diff --git a/.clang-format b/.clang-format index 49311c24e80..da504244b0a 100644 --- a/.clang-format +++ b/.clang-format @@ -7,7 +7,7 @@ AlignOperands: true AllowAllArgumentsOnNextLine: false AllowAllConstructorInitializersOnNextLine: true AllowAllParametersOfDeclarationOnNextLine: false -AllowShortBlocksOnASingleLine: Always +AllowShortBlocksOnASingleLine: true AllowShortCaseLabelsOnASingleLine: false AllowShortFunctionsOnASingleLine: None AllowShortIfStatementsOnASingleLine: Never @@ -33,34 +33,39 @@ BreakBeforeBinaryOperators: None BreakBeforeTernaryOperators: false BreakConstructorInitializers: AfterColon BreakInheritanceList: AfterColon -ColumnLimit: 0 +ColumnLimit: 200 CompactNamespaces: false -ContinuationIndentWidth: 4 +ContinuationIndentWidth: 2 +FixNamespaceComments: true +IncludeBlocks: Regroup IndentCaseLabels: true IndentPPDirectives: BeforeHash IndentWidth: 2 -KeepEmptyLinesAtTheStartOfBlocks: true +KeepEmptyLinesAtTheStartOfBlocks: false MaxEmptyLinesToKeep: 2 NamespaceIndentation: All ObjCSpaceAfterProperty: false ObjCSpaceBeforeProtocolList: true PointerAlignment: Left -ReflowComments: false -SpaceAfterCStyleCast: true +ReflowComments: true +SortIncludes: true +SortUsingDeclarations: true +SpaceAfterCStyleCast: false SpaceAfterLogicalNot: false SpaceAfterTemplateKeyword: false SpaceBeforeAssignmentOperators: true -SpaceBeforeCpp11BracedList: false +SpaceBeforeCpp11BracedList: true SpaceBeforeCtorInitializerColon: true SpaceBeforeInheritanceColon: true SpaceBeforeParens: ControlStatements SpaceBeforeRangeBasedForLoopColon: true SpaceInEmptyParentheses: false -SpacesBeforeTrailingComments: 0 +SpacesBeforeTrailingComments: 1 SpacesInAngles: false SpacesInCStyleCastParentheses: false SpacesInContainerLiterals: false SpacesInParentheses: false SpacesInSquareBrackets: false +Standard: Cpp11 TabWidth: 2 UseTab: Never diff --git a/.github/workflows/cppcheck.yml b/.github/workflows/cppcheck.yml new file mode 100644 index 00000000000..aae061cc70c --- /dev/null +++ b/.github/workflows/cppcheck.yml @@ -0,0 +1,20 @@ +name: cppcheck-action-test +on: [push] + +jobs: + build: + name: cppcheck-test + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v2 + + - name: cppcheck + uses: deep5050/cppcheck-action@main + with: + github_token: ${{ secrets.GITHUB_TOKEN}} + exclude_check: ./src/openms/thirdparty + inconclusive: disable + other_options: -i./cmake -i./doc -i./src/tests + + - name: show report + run: cat cppcheck_report.txt diff --git a/.github/workflows/openms_clang_format.yml b/.github/workflows/openms_clang_format.yml new file mode 100644 index 00000000000..3017f518388 --- /dev/null +++ b/.github/workflows/openms_clang_format.yml @@ -0,0 +1,33 @@ +# Action to allow clang format linting at the files changed in the PR + +on: + pull_request: + branches: + - develop + +name: Clang format linting +jobs: + +# Checkout OpenMS + lint: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v2 + +# Get files changed in the PR + - name: Get changed files + id: changed_files + uses: tj-actions/changed-files@v12 + with: + path: . + files: | + \.h$ + \.cpp$ + +# Perform linting + - name: Use clang format linting + if: steps.changed_files.outputs.any_modified == 'true' + uses: DoozyX/clang-format-lint-action@v0.13 + with: + source: ${{ steps.changed_files.outputs.all_modified_files }} + clangFormatVersion: 13 diff --git a/.github/workflows/openms_clang_format_add_and_commit.yml b/.github/workflows/openms_clang_format_add_and_commit.yml new file mode 100644 index 00000000000..d4df553051c --- /dev/null +++ b/.github/workflows/openms_clang_format_add_and_commit.yml @@ -0,0 +1,39 @@ +# Action to allow clang format linting at the files changed in the PR + +on: + issue_comment: + types: [created] + +jobs: + lint: + name: Automatic clang format linting + runs-on: ubuntu-latest + if: github.event.issue.pull_request != '' && contains(github.event.comment.body, '/reformat') + steps: + - uses: actions/checkout@v2 + with: + ref: ${{ github.event.pull_request.head.sha }} + fetch-depth: 0 + +# Get files changed in the PR + - name: Get changed files + id: changed-files + uses: tj-actions/changed-files@v10.1 + with: + path: . + files: | + \.h$ + \.cpp$ + +# Perform linting + - name: Use clang format linting + uses: DoozyX/clang-format-lint-action@v0.13 + with: + source: ${{ steps.changed-files.outputs.all_modified_files }} + clangFormatVersion: 13 + inplace: True + - uses: EndBug/add-and-commit@v4 + with: + message: 'Committing clang-format changes' + env: + GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} diff --git a/.github/workflows/pyopenms-wheels.yml b/.github/workflows/pyopenms-wheels.yml index 98a0ad6913c..509128af300 100644 --- a/.github/workflows/pyopenms-wheels.yml +++ b/.github/workflows/pyopenms-wheels.yml @@ -212,10 +212,13 @@ jobs: ln -s $f $lnknm done for f in $Qt5_Dir/lib/*.framework/Versions/5/Qt* + do + install_name_tool -id $Qt5_Dir/lib/$(basename $f).framework/Versions/Current/$(basename $f) $f + done + for f in $Qt5_Dir/lib/*.framework/Versions/Current/Qt* do install_name_tool -id $f $f done - otool -L /Users/runner/work/OpenMS/Qt/5.12.7/clang_64/lib/QtCore.framework/Versions/5/QtCore popd mkdir bld pushd bld @@ -254,6 +257,7 @@ jobs: # build pyopenms distribution (macOS) cmake -DPYTHON_EXECUTABLE:FILEPATH=$CURRENT_PYTHON_EXECUTABLE -DPYOPENMS=ON . make -j4 pyopenms + ls -la pyOpenMS/pyopenms/QtCore.framework/Versions/* # copy to directory cp pyOpenMS/dist/*.whl pyopenms_whls/ diff --git a/.github/workflows/rebase.yml b/.github/workflows/rebase.yml index 7540cabf95c..142cc146b2f 100644 --- a/.github/workflows/rebase.yml +++ b/.github/workflows/rebase.yml @@ -13,6 +13,6 @@ jobs: with: fetch-depth: 0 - name: Automatic Rebase - uses: cirrus-actions/rebase@1.3.1 + uses: cirrus-actions/rebase@1.5 env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} diff --git a/.gitmodules b/.gitmodules index 1eb8637bffc..56e0275afbb 100644 --- a/.gitmodules +++ b/.gitmodules @@ -5,3 +5,6 @@ path = THIRDPARTY url = https://github.com/OpenMS/THIRDPARTY shallow = true +[submodule "src/pyOpenMS/pyopenms-extra"] + path = src/pyOpenMS/pyopenms-extra + url = https://github.com/OpenMS/pyopenms-extra.git diff --git a/.gitpod.Dockerfile b/.gitpod.Dockerfile index 9835f8337bf..23812a4b23e 100644 --- a/.gitpod.Dockerfile +++ b/.gitpod.Dockerfile @@ -6,7 +6,7 @@ ARG DEBIAN_FRONTEND=noninteractive ARG CLANGDVER=12.0.1 # Install tools for VSCode, Intellisense, JRE for Thirdparties, etc. using apt-get -RUN apt-get -q update && apt-get install -yq gdb unzip wget php openjdk-11-jre clang-tidy python3-pip && rm -rf /var/lib/apt/lists/* +RUN apt-get -q update && apt-get install -yq gdb unzip wget php openjdk-11-jre python3-pip && rm -rf /var/lib/apt/lists/* RUN wget https://github.com/clangd/clangd/releases/download/$CLANGDVER/clangd-linux-$CLANGDVER.zip && unzip clangd-linux-$CLANGDVER.zip -d /opt/ && mv /opt/clangd_$CLANGDVER /opt/clangd/ && rm clangd-linux-$CLANGDVER.zip # # More information: https://www.gitpod.io/docs/42_config_docker/ diff --git a/AUTHORS b/AUTHORS index 70cd3eb5be4..80e5d92fc3b 100644 --- a/AUTHORS +++ b/AUTHORS @@ -23,6 +23,7 @@ the authors tag in the respective file header. - Darren Kessner - David Wojnar - David Voigt + - Dhanmoni Nath - Dilek Dere - Dimitri Schachmann - Dominik Schmitz @@ -56,8 +57,10 @@ the authors tag in the respective file header. - Knut Reinert - Lars Nilse - Leon Bichmann + - Leon Kuchenbecker - Lucia Espona - Lukas Mueller + - Lucas Rieckert - Lukas Zimmermann - Marcel Schilling - Marc Sturm diff --git a/CHANGELOG b/CHANGELOG index f0f13217105..0b333965344 100644 --- a/CHANGELOG +++ b/CHANGELOG @@ -16,6 +16,9 @@ UTIL - An executable, just like a TOPP tool, but usually experimental or of less ------------------------------------------------------------------------------------------ - Deisotoping algorithm using KL +- Resolve compatibility issues between IDRipper and IDMerger #4957 +- Basic MzTabM support for AccurateMassSearch +- Changed default parameter keep_unidentified_masses to "true" (AccurateMassSearch/AccurateMassSearchEngine) ------------------------------------------------------------------------------------------ ---- OpenMS 2.7 ---- diff --git a/PULL_REQUEST_TEMPLATE.md b/PULL_REQUEST_TEMPLATE.md index db7fcd25004..468fc8e2477 100644 --- a/PULL_REQUEST_TEMPLATE.md +++ b/PULL_REQUEST_TEMPLATE.md @@ -12,6 +12,12 @@ Please include a summary of the change and which issue is fixed. # How can I get additional information on failed tests during CI: If your PR is failing you can check out - http://cdash.openms.de/index.php?project=OpenMS and look for your PR. If you click in the column that lists the failed tests you will get detailed error messages. +- Or click on the action: e.g., for clang-format linting # Note: - Once you opened a PR try to minimize the number of *pushes* to it as every push will trigger CI (automated builds and test) and is rather heavy on our infrastructure (e.g., if several pushes per day are performed). + +# Advanced commands (admins / reviewer only): +- /rebase will try to rebase the PR on the current develop branch. +- /reformat (experimental) applies the clang-format style changes as additional commit +- setting the label NoJenkins will skip tests for this PR on jenkins (saves resources e.g., on edits that do not affect tests) diff --git a/cmake/compiler_flags.cmake b/cmake/compiler_flags.cmake index d7ff9a26ec6..5196dd423bd 100644 --- a/cmake/compiler_flags.cmake +++ b/cmake/compiler_flags.cmake @@ -42,6 +42,11 @@ if (MY_CXX_FLAGS) add_compile_options(${MY_CXX_FLAGS}) endif() +if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin") + # workaround for MacOS 10.13 and below which does not support std::visit + # see https://github.com/OpenMS/OpenMS/issues/5714 + add_definitions(-D_LIBCPP_DISABLE_AVAILABILITY) +endif() if (CMAKE_COMPILER_IS_GNUCXX) diff --git a/cmake/package_general.cmake b/cmake/package_general.cmake index e972fbfa678..fbd14bcfb25 100644 --- a/cmake/package_general.cmake +++ b/cmake/package_general.cmake @@ -63,7 +63,7 @@ set(CPACK_RESOURCE_FILE_README ${PROJECT_SOURCE_DIR}/cmake/OpenMSPackageResource # " COMPONENT applications) if(APPLE OR WIN32) ## On Linux we require Qt to be installed from the package manager system-wide (e.g. via dependencies) - set(PACKAGE_QT_COMPONENTS "${OpenMS_QT_COMPONENTS};${OpenMS_GUI_QT_COMPONENTS}") + set(PACKAGE_QT_COMPONENTS "${OpenMS_QT_COMPONENTS};${OpenMS_GUI_QT_COMPONENTS};${OpenMS_GUI_QT_COMPONENTS_OPT}") find_package(Qt5 COMPONENTS ${PACKAGE_QT_COMPONENTS}) ## we have to find again so the target variables are reloaded install_qt5_libs("${PACKAGE_QT_COMPONENTS}" ${INSTALL_LIB_DIR} "QTLibs") endif() diff --git a/doc/CMakeLists.txt b/doc/CMakeLists.txt index f83bb788ad9..db118e95b43 100644 --- a/doc/CMakeLists.txt +++ b/doc/CMakeLists.txt @@ -80,11 +80,12 @@ if(ENABLE_DOCS) if(WITH_GUI) #------------------------------------------------------------------------------ # QT dependencies - find_package(Qt5 COMPONENTS Core Network Svg OpenGL REQUIRED) + find_package(Qt5 COMPONENTS Core Network Sql Svg OpenGL REQUIRED) + find_package(Qt5 COMPONENTS WebEngineWidgets) set(_doc_progs_include ${OpenMS_GUI_INCLUDE_DIRECTORIES}) set(_doc_progs_link_libraries ${OpenMS_GUI_LIBRARIES}) else() - find_package(Qt5 COMPONENTS Core Network REQUIRED) + find_package(Qt5 COMPONENTS Core Network Sql REQUIRED) set(_doc_progs_include ${OpenMS_INCLUDE_DIRECTORIES}) set(_doc_progs_link_libraries ${OpenMS_LIBRARIES}) endif() diff --git a/doc/code_examples/CMakeLists.txt b/doc/code_examples/CMakeLists.txt index 82da81cc108..2b92fe08859 100644 --- a/doc/code_examples/CMakeLists.txt +++ b/doc/code_examples/CMakeLists.txt @@ -50,7 +50,7 @@ include_directories(SYSTEM ${OpenMS_INCLUDE_DIRECTORIES}) #------------------------------------------------------------------------------ # QT dependencies -find_package(Qt5 COMPONENTS Core Network REQUIRED) +find_package(Qt5 COMPONENTS Core Network Sql REQUIRED) # add the targets foreach(i ${EXAMPLES_executables}) @@ -70,6 +70,7 @@ add_dependencies(Tutorials_build ${EXAMPLES_executables}) if(WITH_GUI) find_package(Qt5 COMPONENTS Core Network OpenGL Svg REQUIRED) + find_package(Qt5 COMPONENTS WebEngineWidgets) # add OpenMS GUI includes include_directories(SYSTEM ${OpenMS_GUI_INCLUDE_DIRECTORIES}) diff --git a/doc/code_examples/Tutorial_FeatureMap.cpp b/doc/code_examples/Tutorial_FeatureMap.cpp index 5aad6b73aa7..ac2a98e37f5 100644 --- a/doc/code_examples/Tutorial_FeatureMap.cpp +++ b/doc/code_examples/Tutorial_FeatureMap.cpp @@ -57,9 +57,9 @@ int main() // Calculate and output the ranges map.updateRanges(); - cout << "Int: " << map.getMinInt() << " - " << map.getMaxInt() << endl; - cout << "RT: " << map.getMin()[0] << " - " << map.getMax()[0] << endl; - cout << "m/z: " << map.getMin()[1] << " - " << map.getMax()[1] << endl; + cout << "Int: " << map.getMinIntensity() << " - " << map.getMaxIntensity() << endl; + cout << "RT: " << map.getMinRT() << " - " << map.getMaxRT() << endl; + cout << "m/z: " << map.getMinMZ() << " - " << map.getMaxMZ() << endl; // ... and many more return 0; diff --git a/doc/code_examples/Tutorial_GUI_ParamEditor.cpp b/doc/code_examples/Tutorial_GUI_ParamEditor.cpp index 06796f3b143..ac74938fdac 100644 --- a/doc/code_examples/Tutorial_GUI_ParamEditor.cpp +++ b/doc/code_examples/Tutorial_GUI_ParamEditor.cpp @@ -58,6 +58,6 @@ Int main(int argc, const char** argv) editor->store(); paramFile.store("Tutorial_ParamEditor_out.ini", param); - + delete editor; return 0; } //end of main diff --git a/doc/code_examples/Tutorial_GUI_Plot1D.cpp b/doc/code_examples/Tutorial_GUI_Plot1D.cpp index 4c9d0623611..46d530f2681 100644 --- a/doc/code_examples/Tutorial_GUI_Plot1D.cpp +++ b/doc/code_examples/Tutorial_GUI_Plot1D.cpp @@ -33,7 +33,7 @@ #include #include #include -#include +#include using namespace OpenMS; using namespace std; @@ -49,11 +49,11 @@ Int main(int argc, const char ** argv) PeakMap exp; exp.resize(1); DTAFile().load(tutorial_data_path + "/data/Tutorial_Spectrum1D.dta", exp[0]); - LayerData::ExperimentSharedPtrType exp_sptr(new PeakMap(exp)); - LayerData::ODExperimentSharedPtrType on_disc_exp_sptr(new OnDiscMSExperiment()); + LayerDataBase::ExperimentSharedPtrType exp_sptr(new PeakMap(exp)); + LayerDataBase::ODExperimentSharedPtrType on_disc_exp_sptr(new OnDiscMSExperiment()); Plot1DWidget * widget = new Plot1DWidget(Param(), nullptr); widget->canvas()->addLayer(exp_sptr, on_disc_exp_sptr); widget->show(); - + delete widget; return app.exec(); } //end of main diff --git a/doc/code_examples/Tutorial_RangeManager.cpp b/doc/code_examples/Tutorial_RangeManager.cpp index 9a940e31d9c..382f4fbb194 100644 --- a/doc/code_examples/Tutorial_RangeManager.cpp +++ b/doc/code_examples/Tutorial_RangeManager.cpp @@ -51,9 +51,9 @@ Int main() //calculate the ranges map.updateRanges(); - cout << "Int: " << map.getMinInt() << " - " << map.getMaxInt() << endl; - cout << "RT: " << map.getMin()[0] << " - " << map.getMax()[0] << endl; - cout << "m/z: " << map.getMin()[1] << " - " << map.getMax()[1] << endl; + cout << "Int: " << map.getMinIntensity() << " - " << map.getMaxIntensity() << endl; + cout << "RT: " << map.getMinRT() << " - " << map.getMaxRT() << endl; + cout << "m/z: " << map.getMinMZ() << " - " << map.getMaxMZ() << endl; return 0; } //end of main diff --git a/doc/doxygen/install/install-linux.doxygen b/doc/doxygen/install/install-linux.doxygen index 631ca715b40..c75ec7d1aee 100755 --- a/doc/doxygen/install/install-linux.doxygen +++ b/doc/doxygen/install/install-linux.doxygen @@ -113,12 +113,12 @@ sudo apt-get install qtbase5-dev libqt5svg5-dev libqt5opengl5-dev sudo apt-get install libboost-regex-dev libboost-iostreams-dev \ libboost-date-time-dev libboost-math-dev libboost-random-dev libsvm-dev \ - libglpk-dev zlib1g-dev libxerces-c-dev seqan-dev libbz2-dev coinor-libcoinmp-dev libhdf5-dev + libglpk-dev zlib1g-dev libxerces-c-dev libbz2-dev coinor-libcoinmp-dev libhdf5-dev # Use from contrib: EIGEN; SQLITE; WILDMAGIC (since libwildmagic-dev is buggy) - Ubuntu/Debian
(>= 17.04)
+ Ubuntu/Debian
(17.04 and 18.04)
     # include the ubuntu universe repository and update
     sudo add-apt-repository universe
@@ -127,7 +127,7 @@
     sudo apt-get install qtbase5-dev libqt5svg5-dev libqt5opengl5-dev
     sudo apt-get install libeigen3-dev libsqlite3-dev libwildmagic-dev libboost-random1.62-dev \
       libboost-regex1.62-dev libboost-iostreams1.62-dev libboost-date-time1.62-dev libboost-math1.62-dev \
-      libxerces-c-dev libglpk-dev zlib1g-dev libsvm-dev libbz2-dev seqan-dev coinor-libcoinmp-dev libhdf5-dev
+      libxerces-c-dev libglpk-dev zlib1g-dev libsvm-dev libbz2-dev coinor-libcoinmp-dev libhdf5-dev
       # this should eliminate the need for building contrib libraries.
       
@@ -141,7 +141,7 @@ sudo apt-get install qtbase5-dev libqt5svg5-dev libqt5opengl5-dev sudo apt-get install libeigen3-dev libsqlite3-dev libwildmagic-dev libboost-random1.67-dev \ libboost-regex1.67-dev libboost-iostreams1.67-dev libboost-date-time1.67-dev libboost-math1.67-dev \ - libxerces-c-dev libglpk-dev zlib1g-dev libsvm-dev libbz2-dev seqan-dev coinor-libcoinmp-dev libhdf5-dev + libxerces-c-dev libglpk-dev zlib1g-dev libsvm-dev libbz2-dev coinor-libcoinmp-dev libhdf5-dev # this should eliminate the need for building contrib libraries. diff --git a/doc/doxygen/parameters/DefaultParamHandlerDocumenter.cpp b/doc/doxygen/parameters/DefaultParamHandlerDocumenter.cpp index 389ee35be79..1d7dc7a3cdd 100644 --- a/doc/doxygen/parameters/DefaultParamHandlerDocumenter.cpp +++ b/doc/doxygen/parameters/DefaultParamHandlerDocumenter.cpp @@ -192,7 +192,7 @@ void writeParameters(const String& class_name, const Param& param, bool table_on { f << "Parameters of this class are:

\n"; } - f << "" << endl; + f << R"(
)" << endl; f << "" << endl; String type, description, restrictions; for (Param::ParamIterator it = param.begin(); it != param.end(); ++it) @@ -249,7 +249,7 @@ void writeParameters(const String& class_name, const Param& param, bool table_on type += " list"; //restrictions - if (it->valid_strings.size() != 0) + if (!it->valid_strings.empty()) { String valid_strings; valid_strings.concatenate(it->valid_strings.begin(), it->valid_strings.end(), ", "); diff --git a/doc/doxygen/parameters/TOPPDocumenter.cpp b/doc/doxygen/parameters/TOPPDocumenter.cpp index 1c6bf13d552..966c808b1ca 100644 --- a/doc/doxygen/parameters/TOPPDocumenter.cpp +++ b/doc/doxygen/parameters/TOPPDocumenter.cpp @@ -46,8 +46,6 @@ #include #include -#include - using namespace std; using namespace OpenMS; using namespace Internal; @@ -78,7 +76,7 @@ void convertINI2HTML(const Param& p, ostream& os) String d = it2->description; d.substitute("\n", "
"); os << indentation - << "
" + << R"(
)" << (String().fillLeft('+', (UInt) indentation.size() / 2) + it2->name) << "" << (d) @@ -181,7 +179,7 @@ void convertINI2HTML(const Param& p, ostream& os) case ParamValue::STRING_VALUE: case ParamValue::STRING_LIST: - if (it->valid_strings.size() != 0) + if (!it->valid_strings.empty()) { restrictions.concatenate(it->valid_strings.begin(), it->valid_strings.end(), ","); } diff --git a/share/OpenMS/CHEMISTRY/Enzymes_RNA.xml b/share/OpenMS/CHEMISTRY/Enzymes_RNA.xml index b8d27cd1260..0e2bca81781 100644 --- a/share/OpenMS/CHEMISTRY/Enzymes_RNA.xml +++ b/share/OpenMS/CHEMISTRY/Enzymes_RNA.xml @@ -90,6 +90,8 @@ and what it cuts before. Also be sure to add gains before and after the cut. --> + + diff --git a/share/OpenMS/CHEMISTRY/Modomics.tsv b/share/OpenMS/CHEMISTRY/Modomics.tsv index 497e34d0fa3..c648aeb1d08 100644 --- a/share/OpenMS/CHEMISTRY/Modomics.tsv +++ b/share/OpenMS/CHEMISTRY/Modomics.tsv @@ -175,3 +175,8 @@ uridine 5-oxyacetic acid cmo5U 502U U V V C11O9N2H14 318.0699 318.2403 uridine 5-oxyacetic acid methyl ester mcmo5U 503U U υ υ C12O9N2H16 332.0856 332.2672 wybutosine yW 3483G G Y Y C21O9N6H28 508.1918 508.4892 wyosine imG 34G G € € C14H17N5O5 335.123 335.3202 +deoxyadenosine dA dA A C10O3N5H13 251.1018 251.2424 +deoxycytidine dC dC C C9O4N3H13 227.0906 227.2176 +deoxyguanosine dG dG G C10O4N5H13 267.0968 267.2418 +deoxyuridine dU dU U C9O5N2H12 228.0746 228.2024 +thymidine dT dT U C10O5N2H14 242.0903 242.2290 diff --git a/share/OpenMS/examples/FRACTIONS/BSA1_F1_MS2_MassQL.tsv b/share/OpenMS/examples/FRACTIONS/BSA1_F1_MS2_MassQL.tsv new file mode 100644 index 00000000000..3ce0a51efe1 --- /dev/null +++ b/share/OpenMS/examples/FRACTIONS/BSA1_F1_MS2_MassQL.tsv @@ -0,0 +1,6 @@ +i i_norm i_tic_norm mz scan rt polarity precmz ms1scan charge +3.4273596 0.030094782 0.0043198643 147.2906036376953 287 25.066029 1 457.723968505859 286 2 +3.5819836 0.031452496 0.0045147534 166.33941650390625 287 25.066029 1 457.723968505859 286 2 +3.7775564 0.033169772 0.0047612544 172.2393798828125 287 25.066029 1 457.723968505859 286 2 +6.3876147 0.056088034 0.0080509875 177.509521484375 287 25.066029 1 457.723968505859 286 2 +4.9549294 0.043507986 0.0062452224 182.23687744140625 287 25.066029 1 457.723968505859 286 2 diff --git a/src/openms/CMakeLists.txt b/src/openms/CMakeLists.txt index f4ef0d09be2..6ffaf418818 100644 --- a/src/openms/CMakeLists.txt +++ b/src/openms/CMakeLists.txt @@ -97,7 +97,8 @@ set(OPENMS_DEP_LIBRARIES ${COIN_LIBRARIES} ${GLPK_LIBRARIES} ${CMAKE_DL_LIBS} ${Qt5Core_LIBRARIES} - ${Qt5Network_LIBRARIES}) + ${Qt5Network_LIBRARIES} + ${Qt5Sql_LIBRARIES}) # xerces requires linking against CoreFoundation&CoreServices on macOS # TODO check if this is still the case @@ -161,10 +162,11 @@ openms_add_library(TARGET_NAME OpenMS ${OpenSwathAlgo_INCLUDE_DIRECTORIES} #Includes boost which could be non-contrib ${Qt5Core_INCLUDE_DIRS} ${Qt5Network_INCLUDE_DIRS} + ${Qt5Sql_INCLUDE_DIRS} LINK_LIBRARIES OpenSwathAlgo ${OPENMS_DEP_LIBRARIES} DLL_EXPORT_PATH "OpenMS/") - + #------------------------------------------------------------------------------ # since the share basically belongs to OpenMS core we control its installation # here diff --git a/src/openms/cmake_findExternalLibs.cmake b/src/openms/cmake_findExternalLibs.cmake index 7371d3b0414..33632a5ffd5 100644 --- a/src/openms/cmake_findExternalLibs.cmake +++ b/src/openms/cmake_findExternalLibs.cmake @@ -143,9 +143,9 @@ endif() SET(QT_MIN_VERSION "5.5.0") # find qt -## TODO Use the component variable during install time +## TODO Use the component variable during install time ## Why were many more QT modules linked? Removed for now until complaints. -set(OpenMS_QT_COMPONENTS Core Network CACHE INTERNAL "QT components for core lib") +set(OpenMS_QT_COMPONENTS Core Network Sql CACHE INTERNAL "QT components for core lib") find_package(Qt5 COMPONENTS ${OpenMS_QT_COMPONENTS} REQUIRED) IF (NOT Qt5Core_FOUND) @@ -159,8 +159,9 @@ ENDIF() ##TODO check if we can integrate the next lines into the openms_add_library cmake macro add_definitions(${Qt5Core_DEFINITIONS}) add_definitions(${Qt5Network_DEFINITIONS}) +add_definitions(${Qt5Sql_DEFINITIONS}) -set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${Qt5Core_EXECUTABLE_COMPILE_FLAGS} ${Qt5Network_EXECUTABLE_COMPILE_FLAGS}") +set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${Qt5Core_EXECUTABLE_COMPILE_FLAGS} ${Qt5Network_EXECUTABLE_COMPILE_FLAGS} ${Qt5Sql_EXECUTABLE_COMPILE_FLAGS}") # see https://github.com/ethereum/solidity/issues/4124 if("${Boost_MAJOR_VERSION}.${Boost_MINOR_VERSION}" VERSION_LESS "1.59") diff --git a/src/openms/include/OpenMS/ANALYSIS/DECHARGING/FeatureDeconvolution.h b/src/openms/include/OpenMS/ANALYSIS/DECHARGING/FeatureDeconvolution.h index 31b4fab1b48..22d7a1ed059 100644 --- a/src/openms/include/OpenMS/ANALYSIS/DECHARGING/FeatureDeconvolution.h +++ b/src/openms/include/OpenMS/ANALYSIS/DECHARGING/FeatureDeconvolution.h @@ -63,10 +63,8 @@ namespace OpenMS enum CHARGEMODE {QFROMFEATURE = 1, QHEURISTIC, QALL}; - typedef FeatureMap FeatureMapType; - typedef Feature FeatureType; typedef DPosition<2> ClusterPointType; - typedef FeatureMapType::FeatureType::CoordinateType CoordinateType; + typedef Feature::CoordinateType CoordinateType; typedef ILPDCWrapper::PairsType PairsType; /** @name Constructors and Destructor s @@ -95,7 +93,7 @@ namespace OpenMS @param cons_map [out] Output of grouped features belonging to a charge group @param cons_map_p [out] Output of paired features connected by an edge */ - void compute(const FeatureMapType& fm_in, FeatureMapType& fm_out, ConsensusMap& cons_map, ConsensusMap& cons_map_p); + void compute(const FeatureMap& fm_in, FeatureMap& fm_out, ConsensusMap& cons_map, ConsensusMap& cons_map_p); protected: @@ -133,7 +131,7 @@ namespace OpenMS Filter for adding an edge only when the two features connected by it, fulfill the intensity criterion. **/ - inline bool intensityFilterPassed_(const Int q1, const Int q2, const Compomer& cmp, const FeatureType& f1, const FeatureType& f2); + inline bool intensityFilterPassed_(const Int q1, const Int q2, const Compomer& cmp, const Feature& f1, const Feature& f2) const; /** @brief determines if we should test a putative feature charge @@ -158,4 +156,3 @@ namespace OpenMS }; } // namespace OpenMS - diff --git a/src/openms/include/OpenMS/ANALYSIS/DECHARGING/MetaboliteFeatureDeconvolution.h b/src/openms/include/OpenMS/ANALYSIS/DECHARGING/MetaboliteFeatureDeconvolution.h index 383933b8570..aa4b312a027 100644 --- a/src/openms/include/OpenMS/ANALYSIS/DECHARGING/MetaboliteFeatureDeconvolution.h +++ b/src/openms/include/OpenMS/ANALYSIS/DECHARGING/MetaboliteFeatureDeconvolution.h @@ -63,10 +63,8 @@ namespace OpenMS enum CHARGEMODE {QFROMFEATURE = 1, QHEURISTIC, QALL}; - typedef FeatureMap FeatureMapType; - typedef Feature FeatureType; typedef DPosition<2> ClusterPointType; - typedef FeatureMapType::FeatureType::CoordinateType CoordinateType; + typedef Feature::CoordinateType CoordinateType; typedef ILPDCWrapper::PairsType PairsType; /** @name Constructors and Destructor s @@ -95,7 +93,7 @@ namespace OpenMS @param cons_map [out] Output of grouped features belonging to a charge group @param cons_map_p [out] Output of paired features connected by an edge */ - void compute(const FeatureMapType& fm_in, FeatureMapType& fm_out, ConsensusMap& cons_map, ConsensusMap& cons_map_p); + void compute(const FeatureMap& fm_in, FeatureMap& fm_out, ConsensusMap& cons_map, ConsensusMap& cons_map_p); protected: @@ -124,11 +122,11 @@ namespace OpenMS /// (more difficult explanation) supported by neighboring edges /// e.g. (.) -> (H+) might be augmented to /// (Na+) -> (H+Na+) - void inferMoreEdges_(PairsType& edges, Map >& feature_adducts); + void inferMoreEdges_(PairsType& edges, Map>& feature_adducts); - void candidateEdges_(FeatureMapType& fm_out, const Adduct& default_adduct, PairsType& feature_relation, Map >& feature_adducts); + void candidateEdges_(FeatureMap& fm_out, const Adduct& default_adduct, PairsType& feature_relation, Map>& feature_adducts); - void annotate_feature_(FeatureMapType& fm_out, Adduct& default_adduct, Compomer& c, const Size f_idx, const UInt side, const Int new_q, const Int old_q); + void annotate_feature_(FeatureMap& fm_out, Adduct& default_adduct, Compomer& c, const Size f_idx, const UInt side, const Int new_q, const Int old_q); /// A function mostly for debugging void printEdgesOfConnectedFeatures_(Size idx_1, Size idx_2, const PairsType& feature_relation); @@ -139,7 +137,7 @@ namespace OpenMS Filter for adding an edge only when the two features connected by it, fulfill the intensity criterion. **/ - inline bool intensityFilterPassed_(const Int q1, const Int q2, const Compomer& cmp, const FeatureType& f1, const FeatureType& f2); + inline bool intensityFilterPassed_(const Int q1, const Int q2, const Compomer& cmp, const Feature& f1, const Feature& f2) const; /** @brief determines if we should test a putative feature charge diff --git a/src/openms/include/OpenMS/ANALYSIS/DENOVO/CompNovoIdentificationBase.h b/src/openms/include/OpenMS/ANALYSIS/DENOVO/CompNovoIdentificationBase.h index 83bd4c3156f..548467a9c0a 100644 --- a/src/openms/include/OpenMS/ANALYSIS/DENOVO/CompNovoIdentificationBase.h +++ b/src/openms/include/OpenMS/ANALYSIS/DENOVO/CompNovoIdentificationBase.h @@ -91,7 +91,7 @@ namespace OpenMS void updateMembers_() override; /// filters the permutations - void filterPermuts_(std::set & permut); + void filterPermuts_(std::set & permut) const; /// selects pivot ion of the given range using the scores given in CID_nodes void selectPivotIons_(std::vector & pivots, Size left, Size right, Map & CID_nodes, const PeakSpectrum & CID_orig_spec, double precursor_weight, bool full_range = false); @@ -123,7 +123,7 @@ namespace OpenMS void windowMower_(PeakSpectrum & spec, double windowsize, Size no_peaks); /// compares two spectra - double compareSpectra_(const PeakSpectrum & s1, const PeakSpectrum & s2); + double compareSpectra_(const PeakSpectrum & s1, const PeakSpectrum & s2) const; /// returns a modified AASequence from a given internal representation AASequence getModifiedAASequence_(const String & sequence); diff --git a/src/openms/include/OpenMS/ANALYSIS/DENOVO/CompNovoIonScoringBase.h b/src/openms/include/OpenMS/ANALYSIS/DENOVO/CompNovoIonScoringBase.h index 867802fddc0..6801a232bc1 100644 --- a/src/openms/include/OpenMS/ANALYSIS/DENOVO/CompNovoIonScoringBase.h +++ b/src/openms/include/OpenMS/ANALYSIS/DENOVO/CompNovoIonScoringBase.h @@ -113,7 +113,7 @@ namespace OpenMS void updateMembers_() override; - IsotopeType classifyIsotopes_(const PeakSpectrum & spec, PeakSpectrum::ConstIterator it); + IsotopeType classifyIsotopes_(const PeakSpectrum & spec, PeakSpectrum::ConstIterator it) const; double scoreIsotopes_(const PeakSpectrum & spec, PeakSpectrum::ConstIterator it, Map & CID_nodes, Size charge = 1); diff --git a/src/openms/include/OpenMS/ANALYSIS/ID/AccurateMassSearchEngine.h b/src/openms/include/OpenMS/ANALYSIS/ID/AccurateMassSearchEngine.h index 573c9f70e1b..d0144f0f30c 100644 --- a/src/openms/include/OpenMS/ANALYSIS/ID/AccurateMassSearchEngine.h +++ b/src/openms/include/OpenMS/ANALYSIS/ID/AccurateMassSearchEngine.h @@ -40,75 +40,20 @@ #include #include #include +#include #include #include #include #include #include -#include -#include +#include + #include #include namespace OpenMS { - class EmpiricalFormula; - - class OPENMS_DLLAPI AdductInfo - { - - public: - /** - C'tor, to build a representation of an adduct. - - @param name Identifier as given in the Positive/Negative-Adducts file, e.g. 'M+2K-H;1+' - @param adduct Formula of the adduct, e.g. '2K-H' - @param charge The charge (must not be 0; can be negative), e.g. 1 - @param mol_multiplier Molecular multiplier, e.g. for charged dimers '2M+H;+1' - - **/ - AdductInfo(const String& name, const EmpiricalFormula& adduct, int charge, UInt mol_multiplier = 1); - - /// returns the neutral mass of the small molecule without adduct (creates monomer from nmer, decharges and removes the adduct (given m/z of [nM+Adduct]/|charge| returns mass of [M]) - double getNeutralMass(double observed_mz) const; - - /// returns the m/z of the small molecule with neutral mass @p neutral_mass if the adduct is added (given mass of [M] returns m/z of [nM+Adduct]/|charge|) - double getMZ(double neutral_mass) const; - - /// checks if an adduct (e.g.a 'M+2K-H;1+') is valid, i.e if the losses (==negative amounts) can actually be lost by the compound given in @p db_entry. - /// If the negative parts are present in @p db_entry, true is returned. - bool isCompatible(EmpiricalFormula db_entry) const; - - /// get charge of adduct - int getCharge() const; - - /// original string used for parsing - const String& getName() const; - - /// get molecular multiplier (mono, dimer, trimer) - UInt getMolMultiplier() const; - - /// EF of adduct itself. Useful for comparison with feature adduct annotation - const EmpiricalFormula& getEmpiricalFormula() const; - - /// parse an adduct string containing a formula (must contain 'M') and charge, separated by ';'. - /// e.g. M+H;1+ - /// 'M' can have multipliers, e.g. '2M + H;1+' (for a singly charged dimer) - static AdductInfo parseAdductString(const String& adduct); - - private: - /// hide default C'tor - AdductInfo(); - - /// members - String name_; ///< arbitrary name, only used for error reporting - EmpiricalFormula ef_; ///< EF for the actual adduct e.g. 'H' in 2M+H;+1 - double mass_; ///< computed from ef_.getMonoWeight(), but stored explicitly for efficiency - int charge_; ///< negative or positive charge; must not be 0 - UInt mol_multiplier_; ///< Mol multiplier, e.g. 2 in 2M+H;+1 - }; - class OPENMS_DLLAPI AccurateMassSearchResult { public: @@ -263,9 +208,9 @@ namespace OpenMS public ProgressLogger { public: - + /// uses 'AccurateMassSearchEngine' as search engine id for protein and peptide ids which are generated by AMS - static const char* search_engine_identifier; + static constexpr char search_engine_identifier[] = "AccurateMassSearchEngine"; /// Default constructor AccurateMassSearchEngine(); @@ -286,6 +231,8 @@ namespace OpenMS /// input map is not const, since it will get annotated with results void run(FeatureMap&, MzTab&) const; + void run(FeatureMap&, MzTabM&) const; + /// main method of AccurateMassSearchEngine /// input map is not const, since it will get annotated with results /// @note Call init() before calling run! @@ -311,7 +258,7 @@ namespace OpenMS if (map[0].metaValueExists("scan_polarity")) { StringList pols = ListUtils::create(String(map[0].getMetaValue("scan_polarity")), ';'); - if (pols.size() == 1 && pols[0].size() > 0) + if (pols.size() == 1 && !pols[0].empty()) { pols[0].toLower(); if (pols[0] == "positive" || pols[0] == "negative") @@ -336,7 +283,7 @@ namespace OpenMS OPENMS_LOG_INFO << "Meta value 'scan_polarity' cannot be determined since (Consensus-)Feature map is empty!" << std::endl; } - if (ion_mode_detect_msg.size() > 0) + if (!ion_mode_detect_msg.empty()) { throw Exception::InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("Auto ionization mode could not resolve ion mode of data (") + ion_mode_detect_msg + "!"); } @@ -349,9 +296,22 @@ namespace OpenMS void parseAdductsFile_(const String& filename, std::vector& result); void searchMass_(double neutral_query_mass, double diff_mass, std::pair& hit_indices) const; - /// add search results to a Consensus/Feature + /// Add search results to a Consensus/Feature void annotate_(const std::vector&, BaseFeature&) const; + /// Extract query results from feature + std::vector extractQueryResults_(const Feature& feature, const Size& feature_index, const String& ion_mode_internal, Size& dummy_count) const; + + /// Add resulting matches to IdentificationData + void addMatchesToID_( + IdentificationData& id, + const std::vector& amr, + const IdentificationData::InputFileRef& file_ref, + const IdentificationData::ScoreTypeRef& mass_error_ppm_score_ref, + const IdentificationData::ScoreTypeRef& mass_error_Da_score_ref, + const IdentificationData::ProcessingStepRef& step_ref, + BaseFeature& f) const; + /// For two vectors of identical length, compute the cosine of the angle between them. /// Since we look at the angle, scaling of the vectors does not change the result (when ignoring numerical instability). double computeCosineSim_(const std::vector& x, const std::vector& y) const; @@ -362,6 +322,8 @@ namespace OpenMS void exportMzTab_(const QueryResultsTable& overall_results, const Size number_of_maps, MzTab& mztab_out, const std::vector& file_locations) const; + void exportMzTabM_(const FeatureMap& fmap, MzTabM& mztabm_out) const; + /// private member variables typedef std::vector > MassIDMapping; typedef std::map > HMDBPropsMapping; @@ -398,6 +360,8 @@ namespace OpenMS bool is_initialized_; ///< true if init_() was called without any subsequent param changes + bool legacyID_ = true; + /// parameter stuff double mass_error_value_; String mass_error_unit_; @@ -415,6 +379,7 @@ namespace OpenMS String database_name_; String database_version_; + String database_location_; bool keep_unidentified_masses_; }; diff --git a/src/openms/include/OpenMS/ANALYSIS/ID/BayesianProteinInferenceAlgorithm.h b/src/openms/include/OpenMS/ANALYSIS/ID/BayesianProteinInferenceAlgorithm.h index f740fee1365..ea75a6b9e68 100644 --- a/src/openms/include/OpenMS/ANALYSIS/ID/BayesianProteinInferenceAlgorithm.h +++ b/src/openms/include/OpenMS/ANALYSIS/ID/BayesianProteinInferenceAlgorithm.h @@ -42,7 +42,7 @@ #include #include -#include +#include namespace OpenMS { @@ -115,7 +115,7 @@ namespace OpenMS std::vector& proteinIDs, std::vector& peptideIDs, bool greedy_group_resolution, - boost::optional exp_des = boost::optional()); + std::optional exp_des = std::optional()); /** * @brief Perform inference. Filter, build graph, run the private inferPosteriorProbabilities_ function. @@ -131,7 +131,7 @@ namespace OpenMS void inferPosteriorProbabilities( ConsensusMap& cmap, bool greedy_group_resolution, - boost::optional exp_des = boost::optional()); + std::optional exp_des = std::optional()); private: diff --git a/src/openms/include/OpenMS/ANALYSIS/ID/FIAMSDataProcessor.h b/src/openms/include/OpenMS/ANALYSIS/ID/FIAMSDataProcessor.h index 74dc6fba574..00987739b4e 100644 --- a/src/openms/include/OpenMS/ANALYSIS/ID/FIAMSDataProcessor.h +++ b/src/openms/include/OpenMS/ANALYSIS/ID/FIAMSDataProcessor.h @@ -1,4 +1,4 @@ -// -------------------------------------------------------------------------- +//--------------------------------------------------------------------------- // OpenMS -- Open-Source Mass Spectrometry // -------------------------------------------------------------------------- // Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, @@ -36,6 +36,7 @@ #include #include #include +#include #include #include @@ -64,7 +65,7 @@ namespace OpenMS FIAMSDataProcessor(); /// Default destructor - ~FIAMSDataProcessor() = default; + ~FIAMSDataProcessor() override = default; /// Copy constructor FIAMSDataProcessor(const FIAMSDataProcessor& cp) = default; diff --git a/src/openms/include/OpenMS/ANALYSIS/ID/FalseDiscoveryRate.h b/src/openms/include/OpenMS/ANALYSIS/ID/FalseDiscoveryRate.h index ffcb9b848a8..7280aa35fd2 100644 --- a/src/openms/include/OpenMS/ANALYSIS/ID/FalseDiscoveryRate.h +++ b/src/openms/include/OpenMS/ANALYSIS/ID/FalseDiscoveryRate.h @@ -127,7 +127,7 @@ namespace OpenMS @param fpCutoff up to which nr. of false positives should the target-decoy AUC be evaluated @param diffWeight which weight should the difference get. The ROC-N value gets 1 - this weight. */ - double applyEvaluateProteinIDs(const std::vector& ids, double pepCutoff = 1.0, UInt fpCutoff = 50, double diffWeight = 0.2); + double applyEvaluateProteinIDs(const std::vector& ids, double pepCutoff = 1.0, UInt fpCutoff = 50, double diffWeight = 0.2) const; /** @brief Calculate a linear combination of the area of the difference in estimated vs. empirical (TD) FDR and the ROC-N value (AUC up to first N false positives). @@ -137,7 +137,7 @@ namespace OpenMS @param fpCutoff up to which nr. of false positives should the target-decoy AUC be evaluated @param diffWeight which weight should the difference get. The ROC-N value gets 1 - this weight. */ - double applyEvaluateProteinIDs(const ProteinIdentification& ids, double pepCutoff = 1.0, UInt fpCutoff = 50, double diffWeight = 0.2); + double applyEvaluateProteinIDs(const ProteinIdentification& ids, double pepCutoff = 1.0, UInt fpCutoff = 50, double diffWeight = 0.2) const; /** @brief Calculate a linear combination of the area of the difference in estimated vs. empirical (TD) FDR @@ -148,7 +148,7 @@ namespace OpenMS @param fpCutoff up to which nr. of false positives should the target-decoy AUC be evaluated @param diffWeight which weight should the difference get. The ROC-N value gets 1 - this weight. */ - double applyEvaluateProteinIDs(ScoreToTgtDecLabelPairs& score_to_tgt_dec_fraction_pairs, double pepCutoff = 1.0, UInt fpCutoff = 50, double diffWeight = 0.2); + double applyEvaluateProteinIDs(ScoreToTgtDecLabelPairs& score_to_tgt_dec_fraction_pairs, double pepCutoff = 1.0, UInt fpCutoff = 50, double diffWeight = 0.2) const; /// simpler reimplementation of the apply function above. void applyBasic(std::vector & ids); @@ -194,14 +194,14 @@ namespace OpenMS double rocN(const ScoreToTgtDecLabelPairs& scores_labels, Size fpCutoff = 50) const; /** - @brief Calculate FDR on the level of molecule-query matches (e.g. peptide-spectrum matches) for "general" identification data + @brief Calculate FDR on the level of observation matches (e.g. peptide-spectrum matches) for "general" identification data @param id_data Identification data @param score_key Key of the score to use for FDR calculation @return Key of the FDR score */ - IdentificationData::ScoreTypeRef applyToQueryMatches(IdentificationData& id_data, IdentificationData::ScoreTypeRef score_key) const; + IdentificationData::ScoreTypeRef applyToObservationMatches(IdentificationData& id_data, IdentificationData::ScoreTypeRef score_ref) const; /** * @brief Finds decoy strings in ProteinIdentification runs @@ -238,14 +238,14 @@ namespace OpenMS /// calculates the FDR, given two vectors of scores void calculateFDRs_(std::map& score_to_fdr, std::vector& target_scores, std::vector& decoy_scores, bool q_value, bool higher_score_better) const; - /// Helper function for applyToQueryMatches() - void handleQueryMatch_( - IdentificationData::QueryMatchRef match_ref, + /// Helper function for applyToObservationMatches() + void handleObservationMatch_( + IdentificationData::ObservationMatchRef match_ref, IdentificationData::ScoreTypeRef score_ref, std::vector& target_scores, std::vector& decoy_scores, - std::map& molecule_to_decoy, - std::map& match_to_score) const; + std::map& molecule_to_decoy, + std::map& match_to_score) const; /// calculates an estimated FDR (based on P(E)Ps) given a vector of score value pairs and fills a map for lookup /// in scores_to_FDR @@ -269,4 +269,3 @@ namespace OpenMS }; } // namespace OpenMS - diff --git a/src/openms/include/OpenMS/ANALYSIS/ID/IDBoostGraph.h b/src/openms/include/OpenMS/ANALYSIS/ID/IDBoostGraph.h index c50ebd4fd5d..21538291c16 100644 --- a/src/openms/include/OpenMS/ANALYSIS/ID/IDBoostGraph.h +++ b/src/openms/include/OpenMS/ANALYSIS/ID/IDBoostGraph.h @@ -366,7 +366,7 @@ namespace OpenMS Size use_top_psms, bool use_run_info, bool best_psms_annotated, - const boost::optional& ed = boost::optional()); + const std::optional& ed = std::optional()); IDBoostGraph(ProteinIdentification& proteins, ConsensusMap& cmap, @@ -374,7 +374,7 @@ namespace OpenMS bool use_run_info, bool use_unassigned_ids, bool best_psms_annotated, - const boost::optional& ed = boost::optional()); + const std::optional& ed = std::optional()); //TODO think about templating to avoid wrapping to std::function diff --git a/src/openms/include/OpenMS/ANALYSIS/ID/IDRipper.h b/src/openms/include/OpenMS/ANALYSIS/ID/IDRipper.h index 029a981073d..e8e899123cc 100644 --- a/src/openms/include/OpenMS/ANALYSIS/ID/IDRipper.h +++ b/src/openms/include/OpenMS/ANALYSIS/ID/IDRipper.h @@ -28,8 +28,8 @@ // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // -------------------------------------------------------------------------- -// $Maintainer: Timo Sachsenberg $ -// $Authors: Immanuel Luhn $ +// $Maintainer: Timo Sachsenberg$ +// $Authors: Immanuel Luhn, Leon Kuchenbecker$ // -------------------------------------------------------------------------- #pragma once @@ -53,6 +53,76 @@ namespace OpenMS public DefaultParamHandler { public: + /// Possible input file encodings for the origin as used by different versions of IDMerger + enum OriginAnnotationFormat { FILE_ORIGIN = 0, MAP_INDEX = 1, ID_MERGE_INDEX = 2, UNKNOWN_OAF = 3, SIZE_OF_ORIGIN_ANNOTATION_FORMAT = 4 }; + + /// String representations for the OriginAnnotationFormat enum + static const std::array names_of_OriginAnnotationFormat; + + /// Represents a set of IdentificationRuns + struct OPENMS_DLLAPI IdentificationRuns + { + /// Maps a unique index to every IdentificationRun string representation (getIdentifier()). + std::map index_map; + /// Maps the list of spectra data elements to every IdentificationRun index. + std::vector spectra_data; + + /// Generates a new IdentificationRuns object from a vector of ProteinIdentification objects. + IdentificationRuns(const std::vector& prot_ids); + }; + + /// Identifies an IDRipper output file + struct OPENMS_DLLAPI RipFileIdentifier + { + /// The numerical index of the source IdentificationRun + UInt ident_run_idx; + /// The numerical index of the source file_origin / spectra_data element + UInt file_origin_idx; + /// The output basename derived from the file_origin / spectra_data element + String out_basename; + /// The full length origin read from the file_origin / spectra_data element + String origin_fullname; + + /// Constructs a new RipFileIdentifier object + RipFileIdentifier(const IDRipper::IdentificationRuns& id_runs, const PeptideIdentification& pep_id, const std::map& file_origin_map, const IDRipper::OriginAnnotationFormat origin_annotation_fmt, bool split_ident_runs); + + /// Get identification run index + UInt getIdentRunIdx(); + + /// Get file origin index + UInt getFileOriginIdx(); + + /// Get origin full name + const String & getOriginFullname(); + + /// Get output base name + const String & getOutputBasename(); + }; + + /// Provides a 'less' operation for RipFileIdentifiers that ignores the out_basename and origin_fullname members + struct RipFileIdentifierIdxComparator + { + bool operator()(const RipFileIdentifier& left, const RipFileIdentifier& right) const; + }; + + /// Represents the content of an IDRipper output file + struct OPENMS_DLLAPI RipFileContent + { + /// Protein identifications + std::vector prot_idents; + /// Peptide identifications + std::vector pep_idents; + /// Constructs a new RipFileContent object + RipFileContent(const std::vector& prot_idents, const std::vector& pep_idents) + : prot_idents(prot_idents), pep_idents(pep_idents) {} + /// Get protein identifications + const std::vector & getProteinIdentifications(); + /// Get peptide identifications + const std::vector & getPeptideIdentifications(); + }; + + /// Represents the result of an IDRipper process, a map assigning file content to output file identifiers + typedef std::map RipFileMap; /// Default constructor IDRipper(); @@ -67,14 +137,41 @@ namespace OpenMS respective @p PeptideIdentification and @p ProteinIdentification. @param ripped Contains the protein identification and peptide identification for each file origin annotated in proteins and peptides - @param proteins Peptide identification annotated with file origin - @param peptides Protein identification + @param proteins Protein identification + @param peptides Peptide identification annotated with file origin + @param numeric_filenames If false, deduce output files using basenames of origin annotations. Throws an exception if they are not unique. If true, assemble output files based on numerical IDs only. + @param split_ident_runs Split identification runs into different files. */ - void rip(std::map, std::vector > > & ripped, std::vector & proteins, std::vector & peptides); + void rip( + RipFileMap& ripped, + std::vector& proteins, + std::vector& peptides, + bool numeric_filenames, + bool split_ident_runs); -private: + /** + @brief Ripping protein/peptide identification according their file origin + + Iteration over all @p PeptideIdentification. For each annotated file origin create a map entry and store the + respective @p PeptideIdentification and @p ProteinIdentification. - //Not implemented + @param ripped Contains the protein identification and peptide identification for each file origin annotated in proteins and peptides + @param proteins Protein identification + @param peptides Peptide identification annotated with file origin + @param numeric_filenames If false, deduce output files using basenames of origin annotations. Throws an exception if they are not unique. If true, assemble output files based on numerical IDs only. + @param split_ident_runs Split identification runs into different files. + */ + // Autowrap compatible wrapper for rip(RipFileMap,...) + void rip( + std::vector & rfis, + std::vector & rfcs, + std::vector& proteins, + std::vector& peptides, + bool numeric_filenames, + bool split_ident_runs); + +private: + // Not implemented /// Copy constructor IDRipper(const IDRipper & rhs); @@ -82,13 +179,18 @@ namespace OpenMS /// Assignment IDRipper & operator=(const IDRipper & rhs); + /// helper function, detects file origin annotation standard from collections of protein and peptide hits + OriginAnnotationFormat detectOriginAnnotationFormat_(std::map & file_origin_map, const std::vector & peptide_idents); /// helper function, extracts all protein hits that match the protein accession void getProteinHits_(std::vector & result, const std::vector & protein_hits, const std::vector & protein_accessions); /// helper function, returns the string representation of the peptide hit accession void getProteinAccessions_(std::vector & result, const std::vector & peptide_hits); /// helper function, returns the protein identification for the given peptide identification based on the same identifier void getProteinIdentification_(ProteinIdentification & result, PeptideIdentification pep_ident, std::vector & prot_idents); + /// helper function, register a potential output file basename to detect duplicate output basenames + bool registerBasename_(std::map >& basename_to_numeric, const IDRipper::RipFileIdentifier& rfi); + /// helper function, sets the value of mode to new_value and returns true if the old value was identical or unset (-1) + bool setOriginAnnotationMode_(short& mode, short const new_value); }; } // namespace OpenMS - diff --git a/src/openms/include/OpenMS/ANALYSIS/ID/PeptideIndexing.h b/src/openms/include/OpenMS/ANALYSIS/ID/PeptideIndexing.h index 3c535d1dd23..7923ea2d81c 100644 --- a/src/openms/include/OpenMS/ANALYSIS/ID/PeptideIndexing.h +++ b/src/openms/include/OpenMS/ANALYSIS/ID/PeptideIndexing.h @@ -34,8 +34,6 @@ #pragma once - -#include #include #include #include @@ -44,7 +42,6 @@ #include #include #include -#include #include #include #include @@ -166,13 +163,8 @@ namespace OpenMS /// Default destructor ~PeptideIndexing() override; - - /// forward for old interface and pyOpenMS; use run() for more control - inline ExitCodes run(std::vector& proteins, std::vector& prot_ids, std::vector& pep_ids) - { - FASTAContainer protein_container(proteins); - return run(protein_container, prot_ids, pep_ids); - } + /// forward for old interface and pyOpenMS; use run() for more control + ExitCodes run(std::vector& proteins, std::vector& prot_ids, std::vector& pep_ids); /** @brief Re-index peptide identifications honoring enzyme cutting rules, ambiguous amino acids and target/decoy hits. @@ -210,714 +202,14 @@ namespace OpenMS */ template - ExitCodes run(FASTAContainer& proteins, std::vector& prot_ids, std::vector& pep_ids) - { - if ((enzyme_name_ == "Chymotrypsin" || enzyme_name_ == "Chymotrypsin/P" || enzyme_name_ == "TrypChymo") - && IL_equivalent_) - { - throw Exception::InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, - "The used enzyme " + enzyme_name_ + "differentiates between I and L, therefore the IL_equivalent option cannot be used."); - } - // no decoy string provided? try to deduce from data - if (decoy_string_.empty()) - { - auto r = DecoyHelper::findDecoyString(proteins); - proteins.reset(); - if (!r.success) - { - r.is_prefix = true; - r.name = "DECOY_"; - OPENMS_LOG_WARN << "Unable to determine decoy string automatically (not enough decoys were detected)! Using default " << (r.is_prefix ? "prefix" : "suffix") << " decoy string '" << r.name << "'\n" - << "If you think that this is incorrect, please provide a decoy_string and its position manually!" << std::endl; - } - prefix_ = r.is_prefix; - decoy_string_ = r.name; - // decoy string and position was extracted successfully - OPENMS_LOG_INFO << "Using " << (prefix_ ? "prefix" : "suffix") << " decoy string '" << decoy_string_ << "'" << std::endl; - } - - //--------------------------------------------------------------- - // parsing parameters, correcting xtandem and MSGFPlus parameters - //--------------------------------------------------------------- - ProteaseDigestion enzyme; - if (!enzyme_name_.empty() && (enzyme_name_.compare(AUTO_MODE) != 0)) - { // use param (not empty, not 'auto') - enzyme.setEnzyme(enzyme_name_); - } - else if (!prot_ids.empty() && prot_ids[0].getSearchParameters().digestion_enzyme.getName() != "unknown_enzyme") - { // take from meta (this assumes all runs used the same enzyme) - OPENMS_LOG_INFO << "Info: using '" << prot_ids[0].getSearchParameters().digestion_enzyme.getName() << "' as enzyme (obtained from idXML) for digestion." << std::endl; - enzyme.setEnzyme(&prot_ids[0].getSearchParameters().digestion_enzyme); - } - else - { // fallback - OPENMS_LOG_WARN << "Warning: Enzyme name neither given nor deduceable from input. Defaulting to Trypsin!" << std::endl; - enzyme.setEnzyme("Trypsin"); - } - - bool xtandem_fix_parameters = false; - bool msgfplus_fix_parameters = false; - - // determine if at least one search engine was xtandem or MSGFPlus to enable special rules - for (const auto& prot_id : prot_ids) - { - String search_engine = prot_id.getOriginalSearchEngineName(); - StringUtils::toUpper(search_engine); - OPENMS_LOG_INFO << "Peptide identification engine: " << search_engine << std::endl; - if (search_engine == "XTANDEM" || prot_id.getSearchParameters().metaValueExists("SE:XTandem")) { xtandem_fix_parameters = true; } - if (search_engine == "MS-GF+" || search_engine == "MSGFPLUS" || prot_id.getSearchParameters().metaValueExists("SE:MS-GF+")) { msgfplus_fix_parameters = true; } - } - - // including MSGFPlus -> Trypsin/P as enzyme - if (msgfplus_fix_parameters && enzyme.getEnzymeName() == "Trypsin") - { - OPENMS_LOG_WARN << "MSGFPlus detected but enzyme cutting rules were set to Trypsin. Correcting to Trypsin/P to cope with special cutting rule in MSGFPlus." << std::endl; - enzyme.setEnzyme("Trypsin/P"); - } - - OPENMS_LOG_INFO << "Enzyme: " << enzyme.getEnzymeName() << std::endl; - - if (!enzyme_specificity_.empty() && (enzyme_specificity_.compare(AUTO_MODE) != 0)) - { // use param (not empty and not 'auto') - enzyme.setSpecificity(ProteaseDigestion::getSpecificityByName(enzyme_specificity_)); - } - else if (!prot_ids.empty() && prot_ids[0].getSearchParameters().enzyme_term_specificity != ProteaseDigestion::SPEC_UNKNOWN) - { // deduce from data ('auto') - enzyme.setSpecificity(prot_ids[0].getSearchParameters().enzyme_term_specificity); - OPENMS_LOG_INFO << "Info: using '" << EnzymaticDigestion::NamesOfSpecificity[prot_ids[0].getSearchParameters().enzyme_term_specificity] << "' as enzyme specificity (obtained from idXML) for digestion." << std::endl; - } - else - { // fallback - OPENMS_LOG_WARN << "Warning: Enzyme specificity neither given nor present in the input file. Defaulting to 'full'!" << std::endl; - enzyme.setSpecificity(ProteaseDigestion::SPEC_FULL); - } - - //------------------------------------------------------------- - // calculations - //------------------------------------------------------------- - // cache the first proteins - const size_t PROTEIN_CACHE_SIZE = 4e5; // 400k should be enough for most DB's and is not too hard on memory either (~200 MB FASTA) - - this->startProgress(0, 1, "Load first DB chunk"); - proteins.cacheChunk(PROTEIN_CACHE_SIZE); - this->endProgress(); - - if (proteins.empty()) // we do not allow an empty database - { - OPENMS_LOG_ERROR << "Error: An empty database was provided. Mapping makes no sense. Aborting..." << std::endl; - return DATABASE_EMPTY; - } - - if (pep_ids.empty()) // Aho-Corasick requires non-empty input; but we allow this case, since the TOPP tool should not crash when encountering a bad raw file (with no PSMs) - { - OPENMS_LOG_WARN << "Warning: An empty set of peptide identifications was provided. Output will be empty as well." << std::endl; - if (!keep_unreferenced_proteins_) - { - // delete only protein hits, not whole ID runs incl. meta data: - for (std::vector::iterator it = prot_ids.begin(); - it != prot_ids.end(); ++it) - { - it->getHits().clear(); - } - } - return PEPTIDE_IDS_EMPTY; - } - - FoundProteinFunctor func(enzyme, xtandem_fix_parameters); // store the matches - Map acc_to_prot; // map: accessions --> FASTA protein index - std::vector protein_is_decoy; // protein index -> is decoy? - std::vector protein_accessions; // protein index -> accession - - bool invalid_protein_sequence = false; // check for proteins with modifications, i.e. '[' or '(', and throw an exception - - { // new scope - forget data after search - - /* - BUILD Peptide DB - */ - bool has_illegal_AAs(false); - AhoCorasickAmbiguous::PeptideDB pep_DB; - for (std::vector::const_iterator it1 = pep_ids.begin(); it1 != pep_ids.end(); ++it1) - { - //String run_id = it1->getIdentifier(); - const std::vector& hits = it1->getHits(); - for (std::vector::const_iterator it2 = hits.begin(); it2 != hits.end(); ++it2) - { - // - // Warning: - // do not skip over peptides here, since the results are iterated in the same way - // - String seq = it2->getSequence().toUnmodifiedString().remove('*'); // make a copy, i.e. do NOT change the peptide sequence! - if (seqan::isAmbiguous(seqan::AAString(seq.c_str()))) - { // do not quit here, to show the user all sequences .. only quit after loop - OPENMS_LOG_ERROR << "Peptide sequence '" << it2->getSequence() << "' contains one or more ambiguous amino acids (B|J|Z|X).\n"; - has_illegal_AAs = true; - } - if (IL_equivalent_) // convert L to I; - { - seq.substitute('L', 'I'); - } - appendValue(pep_DB, seq.c_str()); - } - } - if (has_illegal_AAs) - { - OPENMS_LOG_ERROR << "One or more peptides contained illegal amino acids. This is not allowed!" - << "\nPlease either remove the peptide or replace it with one of the unambiguous ones (while allowing for ambiguous AA's to match the protein)." << std::endl;; - } - - OPENMS_LOG_INFO << "Mapping " << length(pep_DB) << " peptides to " << (proteins.size() == PROTEIN_CACHE_SIZE ? "? (unknown number of)" : String(proteins.size())) << " proteins." << std::endl; - - if (length(pep_DB) == 0) - { // Aho-Corasick will crash if given empty needles as input - OPENMS_LOG_WARN << "Warning: Peptide identifications have no hits inside! Output will be empty as well." << std::endl; - return PEPTIDE_IDS_EMPTY; - } - - /* - Aho Corasick (fast) - */ - OPENMS_LOG_INFO << "Searching with up to " << aaa_max_ << " ambiguous amino acid(s) and " << mm_max_ << " mismatch(es)!" << std::endl; - SysInfo::MemUsage mu; - OPENMS_LOG_INFO << "Building trie ..."; - StopWatch s; - s.start(); - AhoCorasickAmbiguous::FuzzyACPattern pattern; - AhoCorasickAmbiguous::initPattern(pep_DB, aaa_max_, mm_max_, pattern); - s.stop(); - OPENMS_LOG_INFO << " done (" << int(s.getClockTime()) << "s)" << std::endl; - s.reset(); - - uint16_t count_j_proteins(0); - bool has_active_data = true; // becomes false if end of FASTA file is reached - const std::string jumpX(aaa_max_ + mm_max_ + 1, 'X'); // jump over stretches of 'X' which cost a lot of time; +1 because AXXA is a valid hit for aaa_max == 2 (cannot split it) - // use very large target value for progress if DB size is unknown (did not fit into first chunk) - this->startProgress(0, proteins.size() == PROTEIN_CACHE_SIZE ? std::numeric_limits::max() : proteins.size(), "Aho-Corasick"); - std::atomic progress_prots(0); -#ifdef _OPENMP -#pragma omp parallel -#endif - { - FoundProteinFunctor func_threads(enzyme, xtandem_fix_parameters); - Map acc_to_prot_thread; // map: accessions --> FASTA protein index - AhoCorasickAmbiguous fuzzyAC; - String prot; - - while (true) - { - #pragma omp barrier // all threads need to be here, since we are about to swap protein data - #pragma omp single - { - DEBUG_ONLY std::cerr << " activating cache ...\n"; - has_active_data = proteins.activateCache(); // swap in last cache - protein_accessions.resize(proteins.getChunkOffset() + proteins.chunkSize()); - } // implicit barrier here - - if (!has_active_data) break; // leave while-loop - SignedSize prot_count = (SignedSize)proteins.chunkSize(); - - #pragma omp master - { - DEBUG_ONLY std::cerr << "Filling Protein Cache ..."; - proteins.cacheChunk(PROTEIN_CACHE_SIZE); - protein_is_decoy.resize(proteins.getChunkOffset() + prot_count); - for (SignedSize i = 0; i < prot_count; ++i) - { // do this in master only, to avoid false sharing - const String& seq = proteins.chunkAt(i).identifier; - protein_is_decoy[i + proteins.getChunkOffset()] = (prefix_ ? seq.hasPrefix(decoy_string_) : seq.hasSuffix(decoy_string_)); - } - DEBUG_ONLY std::cerr << " done" << std::endl; - } - DEBUG_ONLY std::cerr << " starting for loop \n"; - // search all peptides in each protein - #pragma omp for schedule(dynamic, 100) nowait - for (SignedSize i = 0; i < prot_count; ++i) - { - ++progress_prots; // atomic - if (omp_get_thread_num() == 0) - { - this->setProgress(progress_prots); - } - - prot = proteins.chunkAt(i).sequence; - prot.remove('*'); - - // check for invalid sequences with modifications - if (prot.has('[') || prot.has('(')) - { - invalid_protein_sequence = true; // not omp-critical because its write-only - // we cannot throw an exception here, since we'd need to catch it within the parallel region - } - - // convert L/J to I; also replace 'J' in proteins - if (IL_equivalent_) - { - prot.substitute('L', 'I'); - prot.substitute('J', 'I'); - } - else - { // warn if 'J' is found (it eats into aaa_max) - if (prot.has('J')) - { - #pragma omp atomic - ++count_j_proteins; - } - } - - Size prot_idx = i + proteins.getChunkOffset(); - - // test if protein was a hit - Size hits_total = func_threads.filter_passed + func_threads.filter_rejected; - - // check if there are stretches of 'X' - if (prot.has('X')) - { - // create chunks of the protein (splitting it at stretches of 'X..X') and feed them to AC one by one - size_t offset = -1, start = 0; - while ((offset = prot.find(jumpX, offset + 1)) != std::string::npos) - { - //std::cout << "found X..X at " << offset << " in protein " << proteins[i].identifier << "\n"; - addHits_(fuzzyAC, pattern, pep_DB, prot.substr(start, offset + jumpX.size() - start), prot, prot_idx, (int)start, func_threads); - // skip ahead while we encounter more X... - while (offset + jumpX.size() < prot.size() && prot[offset + jumpX.size()] == 'X') ++offset; - start = offset; - //std::cout << " new start: " << start << "\n"; - } - // last chunk - if (start < prot.size()) - { - addHits_(fuzzyAC, pattern, pep_DB, prot.substr(start), prot, prot_idx, (int)start, func_threads); - } - } - else - { - addHits_(fuzzyAC, pattern, pep_DB, prot, prot, prot_idx, 0, func_threads); - } - // was protein found? - if (hits_total < func_threads.filter_passed + func_threads.filter_rejected) - { - protein_accessions[prot_idx] = proteins.chunkAt(i).identifier; - acc_to_prot_thread[protein_accessions[prot_idx]] = prot_idx; - } - } // end parallel FOR - - // join results again - DEBUG_ONLY std::cerr << " critical now \n"; - #ifdef _OPENMP - #pragma omp critical(PeptideIndexer_joinAC) - #endif - { - s.start(); - // hits - func.merge(func_threads); - // accession -> index - acc_to_prot.insert(acc_to_prot_thread.begin(), acc_to_prot_thread.end()); - acc_to_prot_thread.clear(); - s.stop(); - } // OMP end critical - } // end readChunk - } // OMP end parallel - this->endProgress(); - std::cout << "Merge took: " << s.toString() << "\n"; - mu.after(); - std::cout << mu.delta("Aho-Corasick") << "\n\n"; - - OPENMS_LOG_INFO << "\nAho-Corasick done:\n found " << func.filter_passed << " hits for " << func.pep_to_prot.size() << " of " << length(pep_DB) << " peptides.\n"; - - // write some stats - OPENMS_LOG_INFO << "Peptide hits passing enzyme filter: " << func.filter_passed << "\n" - << " ... rejected by enzyme filter: " << func.filter_rejected << std::endl; - - if (count_j_proteins) - { - OPENMS_LOG_WARN << "PeptideIndexer found " << count_j_proteins << " protein sequences in your database containing the amino acid 'J'." - << "To match 'J' in a protein, an ambiguous amino acid placeholder for I/L will be used.\n" - << "This costs runtime and eats into the 'aaa_max' limit, leaving less opportunity for B/Z/X matches.\n" - << "If you want 'J' to be treated as unambiguous, enable '-IL_equivalent'!" << std::endl; - } - - } // end local scope - - // - // do mapping - // - // index existing proteins - Map runid_to_runidx; // identifier to index - for (Size run_idx = 0; run_idx < prot_ids.size(); ++run_idx) - { - runid_to_runidx[prot_ids[run_idx].getIdentifier()] = run_idx; - } - - // for peptides --> proteins - Size stats_matched_unique(0); - Size stats_matched_multi(0); - Size stats_unmatched(0); // no match to DB - Size stats_count_m_t(0); // match to Target DB - Size stats_count_m_d(0); // match to Decoy DB - Size stats_count_m_td(0); // match to T+D DB - - Map > runidx_to_protidx; // in which protID do appear which proteins (according to mapped peptides) - - Size pep_idx(0); - for (std::vector::iterator it1 = pep_ids.begin(); it1 != pep_ids.end(); ++it1) - { - // which ProteinIdentification does the peptide belong to? - Size run_idx = runid_to_runidx[it1->getIdentifier()]; - - std::vector& hits = it1->getHits(); - - for (std::vector::iterator it_hit = hits.begin(); it_hit != hits.end(); /* no increase here! we might need to skip it; see below */) - { - // clear protein accessions - it_hit->setPeptideEvidences(std::vector()); - - // - // is this a decoy hit? - // - bool matches_target(false); - bool matches_decoy(false); - - std::set prot_indices; /// protein hits of this peptide - // add new protein references - for (std::set::const_iterator it_i = func.pep_to_prot[pep_idx].begin(); - it_i != func.pep_to_prot[pep_idx].end(); ++it_i) - { - prot_indices.insert(it_i->protein_index); - const String& accession = protein_accessions[it_i->protein_index]; - PeptideEvidence pe(accession, it_i->position, it_i->position + (int)it_hit->getSequence().size() - 1, it_i->AABefore, it_i->AAAfter); - it_hit->addPeptideEvidence(pe); - - runidx_to_protidx[run_idx].insert(it_i->protein_index); // fill protein hits - - if (protein_is_decoy[it_i->protein_index]) - { - matches_decoy = true; - } - else - { - matches_target = true; - } - } - ++pep_idx; // next hit - - if (matches_decoy && matches_target) - { - it_hit->setMetaValue("target_decoy", "target+decoy"); - ++stats_count_m_td; - } - else if (matches_target) - { - it_hit->setMetaValue("target_decoy", "target"); - ++stats_count_m_t; - } - else if (matches_decoy) - { - it_hit->setMetaValue("target_decoy", "decoy"); - ++stats_count_m_d; - } // else: could match to no protein (i.e. both are false) - //else ... // not required (handled below; see stats_unmatched); - - if (prot_indices.size() == 1) - { - it_hit->setMetaValue("protein_references", "unique"); - ++stats_matched_unique; - } - else if (prot_indices.size() > 1) - { - it_hit->setMetaValue("protein_references", "non-unique"); - ++stats_matched_multi; - } - else - { - ++stats_unmatched; - if (stats_unmatched < 15) OPENMS_LOG_INFO << "Unmatched peptide: " << it_hit->getSequence() << "\n"; - else if (stats_unmatched == 15) OPENMS_LOG_INFO << "Unmatched peptide: ...\n"; - if (unmatched_action_ == Unmatched::REMOVE) - { - it_hit = hits.erase(it_hit); - continue; // already points to the next hit - } - else - { - it_hit->setMetaValue("protein_references", "unmatched"); - } - } - - ++it_hit; // next hit - } // all hits - - } // next PepID - - Size total_peptides = stats_count_m_t + stats_count_m_d + stats_count_m_td + stats_unmatched; - OPENMS_LOG_INFO << "-----------------------------------\n"; - OPENMS_LOG_INFO << "Peptide statistics\n"; - OPENMS_LOG_INFO << "\n"; - OPENMS_LOG_INFO << " unmatched : " << stats_unmatched << " (" << stats_unmatched * 100 / total_peptides << " %)\n"; - OPENMS_LOG_INFO << " target/decoy:\n"; - OPENMS_LOG_INFO << " match to target DB only: " << stats_count_m_t << " (" << stats_count_m_t * 100 / total_peptides << " %)\n"; - OPENMS_LOG_INFO << " match to decoy DB only : " << stats_count_m_d << " (" << stats_count_m_d * 100 / total_peptides << " %)\n"; - OPENMS_LOG_INFO << " match to both : " << stats_count_m_td << " (" << stats_count_m_td * 100 / total_peptides << " %)\n"; - OPENMS_LOG_INFO << "\n"; - OPENMS_LOG_INFO << " mapping to proteins:\n"; - OPENMS_LOG_INFO << " no match (to 0 protein) : " << stats_unmatched << "\n"; - OPENMS_LOG_INFO << " unique match (to 1 protein) : " << stats_matched_unique << "\n"; - OPENMS_LOG_INFO << " non-unique match (to >1 protein): " << stats_matched_multi << std::endl; - - /// for proteins --> peptides - Size stats_matched_proteins(0), stats_matched_new_proteins(0), stats_orphaned_proteins(0), stats_proteins_target(0), stats_proteins_decoy(0); - - // all peptides contain the correct protein hit references, now update the protein hits - for (Size run_idx = 0; run_idx < prot_ids.size(); ++run_idx) - { - std::set masterset = runidx_to_protidx[run_idx]; // all protein matches from above - - std::vector& phits = prot_ids[run_idx].getHits(); - { - // go through existing protein hits and count orphaned proteins (with no peptide hits) - std::vector orphaned_hits; - for (std::vector::iterator p_hit = phits.begin(); p_hit != phits.end(); ++p_hit) - { - const String& acc = p_hit->getAccession(); - if (!acc_to_prot.has(acc)) // acc_to_prot only contains found proteins from current run - { // old hit is orphaned - ++stats_orphaned_proteins; - if (keep_unreferenced_proteins_) - { - p_hit->setMetaValue("target_decoy", ""); - orphaned_hits.push_back(*p_hit); - } - } - } - // only keep orphaned hits (if any) - phits = orphaned_hits; - } - - // add new protein hits - FASTAFile::FASTAEntry fe; - phits.reserve(phits.size() + masterset.size()); - for (std::set::const_iterator it = masterset.begin(); it != masterset.end(); ++it) - { - ProteinHit hit; - hit.setAccession(protein_accessions[*it]); - - if (write_protein_sequence_ || write_protein_description_) - { - proteins.readAt(fe, *it); - if (write_protein_sequence_) - { - hit.setSequence(fe.sequence); - } // no else, since sequence is empty by default - if (write_protein_description_) - { - hit.setDescription(fe.description); - } // no else, since description is empty by default - } - if (protein_is_decoy[*it]) - { - hit.setMetaValue("target_decoy", "decoy"); - ++stats_proteins_decoy; - } - else - { - hit.setMetaValue("target_decoy", "target"); - ++stats_proteins_target; - } - phits.push_back(hit); - ++stats_matched_new_proteins; - } - stats_matched_proteins += phits.size(); - } - - - OPENMS_LOG_INFO << "-----------------------------------\n"; - OPENMS_LOG_INFO << "Protein statistics\n"; - OPENMS_LOG_INFO << "\n"; - OPENMS_LOG_INFO << " total proteins searched: " << proteins.size() << "\n"; - OPENMS_LOG_INFO << " matched proteins : " << stats_matched_proteins << " (" << stats_matched_new_proteins << " new)\n"; - if (stats_matched_proteins) - { // prevent Division-by-0 Exception - OPENMS_LOG_INFO << " matched target proteins: " << stats_proteins_target << " (" << stats_proteins_target * 100 / stats_matched_proteins << " %)\n"; - OPENMS_LOG_INFO << " matched decoy proteins : " << stats_proteins_decoy << " (" << stats_proteins_decoy * 100 / stats_matched_proteins << " %)\n"; - } - OPENMS_LOG_INFO << " orphaned proteins : " << stats_orphaned_proteins << (keep_unreferenced_proteins_ ? " (all kept)" : " (all removed)\n"); - OPENMS_LOG_INFO << "-----------------------------------" << std::endl; - - - /// exit if no peptides were matched to decoy - bool has_error = false; - - if (invalid_protein_sequence) - { - OPENMS_LOG_ERROR << "Error: One or more protein sequences contained the characters '[' or '(', which are illegal in protein sequences." - << "\nPeptide hits might be masked by these characters (which usually indicate presence of modifications).\n"; - has_error = true; - } - - if ((stats_count_m_d + stats_count_m_td) == 0) - { - String msg("No peptides were matched to the decoy portion of the database! Did you provide the correct concatenated database? Are your 'decoy_string' (=" + decoy_string_ + ") and 'decoy_string_position' (=" + std::string(param_.getValue("decoy_string_position")) + ") settings correct?"); - if (missing_decoy_action_ == MissingDecoy::IS_ERROR) - { - OPENMS_LOG_ERROR << "Error: " << msg << "\nSet 'missing_decoy_action' to 'warn' if you are sure this is ok!\nAborting ..." << std::endl; - has_error = true; - } - else if (missing_decoy_action_ == MissingDecoy::WARN) - { - OPENMS_LOG_WARN << "Warn: " << msg << "\nSet 'missing_decoy_action' to 'error' if you want to elevate this to an error!" << std::endl; - } - else // silent - { - } - } - - if (stats_unmatched > 0) - { - OPENMS_LOG_ERROR << "PeptideIndexer found unmatched peptides, which could not be associated to a protein.\n"; - if (unmatched_action_ == Unmatched::IS_ERROR) - { - OPENMS_LOG_ERROR - << "Potential solutions:\n" - << " - check your FASTA database is identical to the search DB (or use 'auto')\n" - << " - set 'enzyme:specificity' and 'enzyme:name' to 'auto' to match the parameters of the search engine\n" - << " - increase 'aaa_max' to allow more ambiguous amino acids\n" - << " - as a last resort: use the 'unmatched_action' option to accept or even remove unmatched peptides\n" - << " (note that unmatched peptides cannot be used for FDR calculation or quantification)\n"; - has_error = true; - } - else if (unmatched_action_ == Unmatched::WARN) - { - OPENMS_LOG_ERROR << " Warning: " << stats_unmatched << " unmatched hits have been found, but were not removed!\n" - << "These are not annotated with target/decoy information and might lead to issues with downstream tools (such as FDR).\n" - << "Switch to '" << names_of_unmatched[(Size)Unmatched::REMOVE] << "' if you want to avoid these problems.\n"; - } - else if (unmatched_action_ == Unmatched::REMOVE) - { - OPENMS_LOG_ERROR << " Warning: " << stats_unmatched <<" unmatched hits have been removed!\n" - << "Make sure that these hits are actually a violation of the cutting rules by inspecting the database!\n"; - if (xtandem_fix_parameters) OPENMS_LOG_ERROR << "Since the results are from X!Tandem, this is probably ok (check anyways).\n"; - } - else - { - throw Exception::NotImplemented(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION); - } - } - + ExitCodes run(FASTAContainer& proteins, std::vector& prot_ids, std::vector& pep_ids); - if (has_error) - { - OPENMS_LOG_ERROR << "Result files will be written, but PeptideIndexer will exit with an error code." << std::endl; - return UNEXPECTED_RESULT; - } - return EXECUTION_OK; - } + const String& getDecoyString() const; - const String& getDecoyString() const; - - bool isPrefix() const; + bool isPrefix() const; protected: - struct PeptideProteinMatchInformation - { - OpenMS::Size protein_index; //< index of the protein the peptide is contained in - OpenMS::Int position; //< the position of the peptide in the protein - char AABefore; //< the amino acid after the peptide in the protein - char AAAfter; //< the amino acid before the peptide in the protein - - const std::tuple tie() const - { - return std::tie(protein_index, position, AABefore, AAAfter); - } - bool operator<(const PeptideProteinMatchInformation& other) const - { - return tie() < other.tie(); - } - bool operator==(const PeptideProteinMatchInformation& other) const - { - return tie() == other.tie(); - } - }; - - struct FoundProteinFunctor - { - public: - typedef std::map > MapType; - MapType pep_to_prot; //< peptide index --> protein indices - OpenMS::Size filter_passed; //< number of accepted hits (passing addHit() constraints) - OpenMS::Size filter_rejected; //< number of rejected hits (not passing addHit()) - - private: - ProteaseDigestion enzyme_; - bool xtandem_; //< are we checking xtandem cleavage rules? - - public: - explicit FoundProteinFunctor(const ProteaseDigestion& enzyme, bool xtandem) : - pep_to_prot(), filter_passed(0), filter_rejected(0), enzyme_(enzyme), xtandem_(xtandem) - { - } - - void merge(FoundProteinFunctor& other) - { - if (pep_to_prot.empty()) - { // first merge is easy - pep_to_prot.swap(other.pep_to_prot); - } - else - { - for (FoundProteinFunctor::MapType::const_iterator it = other.pep_to_prot.begin(); it != other.pep_to_prot.end(); ++it) - { // augment set - this->pep_to_prot[it->first].insert(other.pep_to_prot[it->first].begin(), other.pep_to_prot[it->first].end()); - } - other.pep_to_prot.clear(); - } - // cheap members - this->filter_passed += other.filter_passed; - other.filter_passed = 0; - this->filter_rejected += other.filter_rejected; - other.filter_rejected = 0; - } - - void addHit(const OpenMS::Size idx_pep, - const OpenMS::Size idx_prot, - const OpenMS::Size len_pep, - const OpenMS::String& seq_prot, - OpenMS::Int position) - { - //TODO we could read and double-check missed cleavages as well - if (enzyme_.isValidProduct(seq_prot, position, len_pep, true, true, xtandem_)) - { - PeptideProteinMatchInformation match - { - idx_prot, - position, - (position == 0) ? PeptideEvidence::N_TERMINAL_AA : seq_prot[position - 1], - (position + len_pep >= seq_prot.size()) ? - PeptideEvidence::C_TERMINAL_AA : - seq_prot[position + len_pep] - }; - pep_to_prot[idx_pep].insert(match); - ++filter_passed; - } - else - { - //std::cerr << "REJECTED Peptide " << seq_pep << " with hit to protein " - // << seq_prot << " at position " << position << std::endl; - ++filter_rejected; - } - } - - }; - - inline void addHits_(AhoCorasickAmbiguous& fuzzyAC, const AhoCorasickAmbiguous::FuzzyACPattern& pattern, const AhoCorasickAmbiguous::PeptideDB& pep_DB, const String& prot, const String& full_prot, SignedSize idx_prot, Int offset, FoundProteinFunctor& func_threads) const - { - fuzzyAC.setProtein(prot); - while (fuzzyAC.findNext(pattern)) - { - const seqan::Peptide& tmp_pep = pep_DB[fuzzyAC.getHitDBIndex()]; - func_threads.addHit(fuzzyAC.getHitDBIndex(), idx_prot, length(tmp_pep), full_prot, fuzzyAC.getHitProteinPosition() + offset); - } - } - void updateMembers_() override; String decoy_string_{}; diff --git a/src/openms/include/OpenMS/ANALYSIS/ID/SiriusAdapterAlgorithm.h b/src/openms/include/OpenMS/ANALYSIS/ID/SiriusAdapterAlgorithm.h index 38d63fe8ca9..b9ea30dfd8c 100644 --- a/src/openms/include/OpenMS/ANALYSIS/ID/SiriusAdapterAlgorithm.h +++ b/src/openms/include/OpenMS/ANALYSIS/ID/SiriusAdapterAlgorithm.h @@ -151,7 +151,7 @@ namespace OpenMS void preprocessingSirius(const String& featureinfo, const MSExperiment& spectra, FeatureMapping::FeatureMappingInfo& fm_info, - FeatureMapping::FeatureToMs2Indices& feature_mapping); + FeatureMapping::FeatureToMs2Indices& feature_mapping) const; /** @brief logs number of features and spectra used @@ -164,7 +164,7 @@ namespace OpenMS */ void logFeatureSpectraNumber(const String& featureinfo, const FeatureMapping::FeatureToMs2Indices& feature_mapping, - const MSExperiment& spectra); + const MSExperiment& spectra) const; /** @brief Call SIRIUS with QProcess diff --git a/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/LabeledPairFinder.h b/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/LabeledPairFinder.h index 63a91952e8d..a78d1867a43 100644 --- a/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/LabeledPairFinder.h +++ b/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/LabeledPairFinder.h @@ -36,7 +36,6 @@ #include -#include #include namespace OpenMS @@ -98,11 +97,11 @@ namespace OpenMS { if (m < x) { - return 1 - boost::math::tr1::erf((x - m) / sig2 / 0.707106781); + return 1 - std::erf((x - m) / sig2 / 0.707106781); } else { - return 1 - boost::math::tr1::erf((m - x) / sig1 / 0.707106781); + return 1 - std::erf((m - x) / sig1 / 0.707106781); } } diff --git a/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/MapAlignmentAlgorithmIdentification.h b/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/MapAlignmentAlgorithmIdentification.h index 35b1753549e..b6c6f626a0b 100644 --- a/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/MapAlignmentAlgorithmIdentification.h +++ b/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/MapAlignmentAlgorithmIdentification.h @@ -43,6 +43,7 @@ #include #include #include +#include #include // for "abs" #include // for "max" @@ -84,10 +85,14 @@ namespace OpenMS { reference_.clear(); if (data.empty()) return; // empty input resets the reference - use_feature_rt_ = param_.getValue("use_feature_rt").toBool(); SeqToList rt_data; + // set these here because "checkParameters_" may not have been called yet: + use_feature_rt_ = param_.getValue("use_feature_rt").toBool(); + score_cutoff_ = param_.getValue("score_cutoff").toBool(); + score_type_ = (std::string)param_.getValue("score_type"); bool sorted = getRetentionTimes_(data, rt_data); computeMedians_(rt_data, reference_, sorted); + if (reference_.empty()) { throw Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Could not extract retention time information from the reference file"); @@ -116,11 +121,11 @@ namespace OpenMS bool use_internal_reference = (reference_index >= 0); if (use_internal_reference) { - if (reference_index >= static_cast(data.size())) + if (reference_index >= Int(data.size())) { throw Exception::IndexOverflow(__FILE__, __LINE__, - OPENMS_PRETTY_FUNCTION, reference_index, - data.size()); + OPENMS_PRETTY_FUNCTION, + reference_index, data.size()); } setReference(data[reference_index]); } @@ -162,17 +167,23 @@ namespace OpenMS /// Minimum number of runs a peptide must occur in Size min_run_occur_; - /// Use feature RT instead of RT from best peptide ID in the feature. + /// Use feature RT instead of RT from best peptide ID in the feature? bool use_feature_rt_; + /// Consider differently adducted IDs as different? + bool use_adducts_; + /// Minimum score to reach for a peptide to be considered double min_score_; /// Actually use the above defined score_cutoff? Needed since it is hard to define a non-cutting score for a user. bool score_cutoff_; + /// Score type to use for filtering + String score_type_; + /// Score better? - bool (*better_) (double,double) = [](double, double) {return true;}; + bool (*better_) (double, double) = [](double, double) {return true;}; /** @brief Compute the median retention time for each peptide sequence @@ -187,7 +198,7 @@ namespace OpenMS bool sorted = false); /** - @brief Collect retention time data ("RT" MetaInfo) from peptide IDs + @brief Collect retention time data from peptide IDs @param peptides Input peptide IDs (lists of peptide hits will be sorted) @param rt_data Lists of RT values for diff. peptide sequences (output) @@ -198,7 +209,18 @@ namespace OpenMS SeqToList& rt_data); /** - @brief Collect retention time data ("RT" MetaInfo) from peptide IDs annotated to spectra + @brief Collect retention time data from spectrum matches + + @param id_data Input identification data + @param rt_data Lists of RT values for diff. spectrum matches (output) + + @return Are the RTs already sorted? (Here: false) + */ + // "id_data" can't be "const" here or template resolution will fail + bool getRetentionTimes_(IdentificationData& id_data, SeqToList& rt_data); + + /** + @brief Collect retention time data from peptide IDs annotated to spectra @param experiment Input map for RT data @param rt_data Lists of RT values for diff. peptide sequences (output) @@ -208,7 +230,7 @@ namespace OpenMS bool getRetentionTimes_(PeakMap& experiment, SeqToList& rt_data); /** - @brief Collect retention time data ("RT" MetaInfo) from peptide IDs contained in feature maps or consensus maps + @brief Collect retention time data from peptide IDs contained in feature maps or consensus maps The following global flags (mutually exclusive) influence the processing:\n Depending on @p use_unassigned_peptides, unassigned peptide IDs are used in addition to IDs annotated to features.\n @@ -321,11 +343,17 @@ namespace OpenMS /** @brief Get reference retention times - If a reference file is supplied via the @p reference parameter, extract retention time - information and store it in #reference_. + If a reference file is supplied via the @p reference parameter, extract retention time information and store it in #reference_. */ void getReference_(); + /** + @brief Helper function to find/define the score type for processing IdentificationData + + @return Reference to the score type denoted by algorithm parameter "score_type" + */ + IdentificationData::ScoreTypeRef handleIdDataScoreType_(const IdentificationData& id_data); + private: /// Copy constructor intentionally not implemented -> private diff --git a/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/MapAlignmentAlgorithmSpectrumAlignment.h b/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/MapAlignmentAlgorithmSpectrumAlignment.h index b4e28867fca..b4877f72891 100644 --- a/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/MapAlignmentAlgorithmSpectrumAlignment.h +++ b/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/MapAlignmentAlgorithmSpectrumAlignment.h @@ -101,7 +101,7 @@ namespace OpenMS * order. * */ - inline bool operator()(const std::pair, float>& c1, const std::pair, float>& c2) + inline bool operator()(const std::pair, float>& c1, const std::pair, float>& c2) const { if (!flag) { @@ -120,7 +120,7 @@ namespace OpenMS * descending. The comparison is done by the first argument of the map. * */ - inline bool operator()(const std::pair& c1, const std::pair& c2) + inline bool operator()(const std::pair& c1, const std::pair& c2) const { if (!flag) { diff --git a/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/MapAlignmentTransformer.h b/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/MapAlignmentTransformer.h index 1f4520063af..5895eed039c 100644 --- a/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/MapAlignmentTransformer.h +++ b/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/MapAlignmentTransformer.h @@ -42,6 +42,7 @@ #include #include #include +#include namespace OpenMS { @@ -63,20 +64,25 @@ namespace OpenMS bool store_original_rt = false); /// Applies the given transformation to a feature map - static void transformRetentionTimes( - FeatureMap& fmap, const TransformationDescription& trafo, - bool store_original_rt = false); + static void transformRetentionTimes(FeatureMap& fmap, + const TransformationDescription& trafo, + bool store_original_rt = false); /// Applies the given transformation to a consensus map - static void transformRetentionTimes( - ConsensusMap& cmap, const TransformationDescription& trafo, - bool store_original_rt = false); + static void transformRetentionTimes(ConsensusMap& cmap, + const TransformationDescription& trafo, + bool store_original_rt = false); /// Applies the given transformation to peptide identifications static void transformRetentionTimes( std::vector& pep_ids, const TransformationDescription& trafo, bool store_original_rt = false); + /// Applies the given transformation to input items in IdentificationData + static void transformRetentionTimes(IdentificationData& id_data, + const TransformationDescription& trafo, + bool store_original_rt = false); + private: /// Applies a transformation to a feature static void applyToFeature_(Feature& feature, diff --git a/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/TransformationModelLinear.h b/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/TransformationModelLinear.h index 6d94b2d0612..453c7fa0ae8 100644 --- a/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/TransformationModelLinear.h +++ b/src/openms/include/OpenMS/ANALYSIS/MAPMATCHING/TransformationModelLinear.h @@ -67,7 +67,7 @@ namespace OpenMS TransformationModelLinear(const DataPoints& data, const Param& params); /// Destructor - ~TransformationModelLinear() override; + ~TransformationModelLinear() override = default; /// Evaluates the model at the given value double evaluate(double value) const override; diff --git a/src/openms/include/OpenMS/ANALYSIS/MRM/ReactionMonitoringTransition.h b/src/openms/include/OpenMS/ANALYSIS/MRM/ReactionMonitoringTransition.h index 3e22c64e792..3317a97d8c0 100644 --- a/src/openms/include/OpenMS/ANALYSIS/MRM/ReactionMonitoringTransition.h +++ b/src/openms/include/OpenMS/ANALYSIS/MRM/ReactionMonitoringTransition.h @@ -91,7 +91,7 @@ namespace OpenMS ReactionMonitoringTransition & operator=(const ReactionMonitoringTransition & rhs); /// move assignment operator - ReactionMonitoringTransition & operator=(ReactionMonitoringTransition && rhs); + ReactionMonitoringTransition & operator=(ReactionMonitoringTransition && rhs) noexcept ; /** @name Accessors */ diff --git a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/ChromatogramExtractor.h b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/ChromatogramExtractor.h index 61bc597317a..98ea0c7f9f8 100644 --- a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/ChromatogramExtractor.h +++ b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/ChromatogramExtractor.h @@ -332,7 +332,7 @@ namespace OpenMS typename TransitionExpT::Transition transition = (*trans_map[coord.id]); prec.setMZ(transition.getPrecursorMZ()); - if (settings.getPrecursors().size() > 0) + if (!settings.getPrecursors().empty()) { prec.setIsolationWindowLowerOffset(settings.getPrecursors()[0].getIsolationWindowLowerOffset()); prec.setIsolationWindowUpperOffset(settings.getPrecursors()[0].getIsolationWindowUpperOffset()); diff --git a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/ConfidenceScoring.h b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/ConfidenceScoring.h index f2fdd40d5f9..5aa79ff0b01 100644 --- a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/ConfidenceScoring.h +++ b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/ConfidenceScoring.h @@ -56,7 +56,7 @@ namespace OpenMS /// Constructor explicit ConfidenceScoring(bool test_mode_ = false); - virtual ~ConfidenceScoring() {} + ~ConfidenceScoring() override {} protected: @@ -67,7 +67,7 @@ namespace OpenMS double rt_coef; double int_coef; - double operator()(double diff_rt, double dist_int) + double operator()(double diff_rt, double dist_int) const { double lm = intercept + rt_coef * diff_rt * diff_rt + int_coef * dist_int; @@ -81,7 +81,7 @@ namespace OpenMS double min_rt; double max_rt; - double operator()(double rt) + double operator()(double rt) const { return (rt - min_rt) / (max_rt - min_rt) * 100; } diff --git a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/DIAPrescoring.h b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/DIAPrescoring.h index a3145be8fa1..262a979ce44 100644 --- a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/DIAPrescoring.h +++ b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/DIAPrescoring.h @@ -90,7 +90,7 @@ namespace OpenMS */ void operator()(OpenSwath::SpectrumAccessPtr swath_ptr, OpenSwath::LightTargetedExperiment& transition_exp_used, - OpenSwath::IDataFrameWriter* ivw); + OpenSwath::IDataFrameWriter* ivw) const; }; diff --git a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/MRMAssay.h b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/MRMAssay.h index 3e3611375d3..32baa1e1e23 100644 --- a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/MRMAssay.h +++ b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/MRMAssay.h @@ -73,7 +73,7 @@ namespace OpenMS MRMAssay(); // empty, no members /// Destructor - ~MRMAssay(); + ~MRMAssay() override; //@} typedef std::vector ProteinVectorType; diff --git a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/MRMFeatureFilter.h b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/MRMFeatureFilter.h index ae9ed336aef..820ca86446e 100644 --- a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/MRMFeatureFilter.h +++ b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/MRMFeatureFilter.h @@ -132,7 +132,7 @@ namespace OpenMS @param[in] transitions transitions from a TargetedExperiment @param[in] init_template_values Boolean indicating whether to initialize the template values based on the first sample */ - void EstimateDefaultMRMFeatureQCValues(const std::vector& samples, MRMFeatureQC& filter_template, const TargetedExperiment& transitions, const bool& init_template_values); + void EstimateDefaultMRMFeatureQCValues(const std::vector& samples, MRMFeatureQC& filter_template, const TargetedExperiment& transitions, const bool& init_template_values) const; /** @brief Transfer the lower and upper bound values for the calculated concentrations @@ -154,7 +154,7 @@ namespace OpenMS to estimate the PercentRSD for. The PercentRSD values will be stored in the upper bound parameter of the filter_template @param[in] transitions transitions from a TargetedExperiment */ - void EstimatePercRSD(const std::vector& samples, MRMFeatureQC& filter_template, const TargetedExperiment& transitions); + void EstimatePercRSD(const std::vector& samples, MRMFeatureQC& filter_template, const TargetedExperiment& transitions) const; /** @brief Estimate the background interference level based on the average values from Blank samples. @@ -166,7 +166,7 @@ namespace OpenMS to estimate the PercentInterference. The average values will be stored in the upper bound parameter of the filter_template @param[in] transitions transitions from a TargetedExperiment */ - void EstimateBackgroundInterferences(const std::vector& samples, MRMFeatureQC& filter_template, const TargetedExperiment& transitions); + void EstimateBackgroundInterferences(const std::vector& samples, MRMFeatureQC& filter_template, const TargetedExperiment& transitions) const; /** @brief Calculates the ion ratio between two transitions diff --git a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/MRMFeatureSelector.h b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/MRMFeatureSelector.h index 7c144257fba..6448e2c5838 100644 --- a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/MRMFeatureSelector.h +++ b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/MRMFeatureSelector.h @@ -286,7 +286,7 @@ namespace OpenMS { public: MRMFeatureSelector_test() = default; - ~MRMFeatureSelector_test() = default; + ~MRMFeatureSelector_test() override = default; void constructTargTransList_( const FeatureMap& features, diff --git a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/OpenSwathHelper.h b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/OpenSwathHelper.h index 987e56cd9e9..9f73d76effd 100644 --- a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/OpenSwathHelper.h +++ b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/OpenSwathHelper.h @@ -162,7 +162,7 @@ namespace OpenMS TargetedExperimentT& selected_transitions, double min_upper_edge_dist) { - if (exp.size() == 0 || exp[0].getPrecursors().size() == 0) + if (exp.empty() || exp[0].getPrecursors().empty()) { std::cerr << "WARNING: File " << exp.getLoadedFilePath() << " does not have any experiments or any precursors. Is it a SWATH map? " diff --git a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/OpenSwathScoring.h b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/OpenSwathScoring.h index 63bc52b6644..351e4225c48 100644 --- a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/OpenSwathScoring.h +++ b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/OpenSwathScoring.h @@ -117,7 +117,7 @@ namespace OpenMS const std::vector& precursor_ids, const std::vector& normalized_library_intensity, std::vector& signal_noise_estimators, - OpenSwath_Scores & scores); + OpenSwath_Scores & scores) const; /** @brief Score identification transitions against detection transitions of a single peakgroup * in a chromatogram using only chromatographic properties. @@ -141,7 +141,7 @@ namespace OpenMS const std::vector& native_ids_identification, const std::vector& native_ids_detection, std::vector& signal_noise_estimators, - OpenSwath_Ind_Scores & scores); + OpenSwath_Ind_Scores & scores) const; /** @brief Score a single chromatographic feature against a spectral library * diff --git a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/PeakIntegrator.h b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/PeakIntegrator.h index 00f5fcb8119..98d8f55eb99 100644 --- a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/PeakIntegrator.h +++ b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/PeakIntegrator.h @@ -76,7 +76,7 @@ namespace OpenMS /// Constructor PeakIntegrator(); /// Destructor - virtual ~PeakIntegrator(); + ~PeakIntegrator() override; /** @name integratePeak() output The integratePeak() method uses this struct to save its results. @@ -537,7 +537,7 @@ namespace OpenMS void getDefaultParameters(Param& params); protected: - void updateMembers_(); + void updateMembers_() override; template PeakArea integratePeak_(const PeakContainerT& pc, double left, double right) const diff --git a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/SwathMapMassCorrection.h b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/SwathMapMassCorrection.h index 9d33e3c8fbd..670eeace687 100644 --- a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/SwathMapMassCorrection.h +++ b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/SwathMapMassCorrection.h @@ -60,7 +60,7 @@ namespace OpenMS SwathMapMassCorrection(); /// Destructor - ~SwathMapMassCorrection() = default; + ~SwathMapMassCorrection() override = default; //@} /// Synchronize members with param class diff --git a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/TargetedSpectraExtractor.h b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/TargetedSpectraExtractor.h index a9f46acb00e..e340469b19d 100644 --- a/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/TargetedSpectraExtractor.h +++ b/src/openms/include/OpenMS/ANALYSIS/OPENSWATH/TargetedSpectraExtractor.h @@ -366,7 +366,7 @@ namespace OpenMS const MSSpectrum& input_spectrum, const Comparator& cmp, std::vector& matches - ); + ) const; /** @brief Compares a list of spectra against a spectral library and updates diff --git a/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/AbsoluteQuantitation.h b/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/AbsoluteQuantitation.h index 416d4d02fad..ae47cf95dda 100644 --- a/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/AbsoluteQuantitation.h +++ b/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/AbsoluteQuantitation.h @@ -91,7 +91,7 @@ namespace OpenMS AbsoluteQuantitation(); /// Destructor - ~AbsoluteQuantitation(); + ~AbsoluteQuantitation() override; //@} /** @@ -317,7 +317,7 @@ namespace OpenMS private: /// Synchronize members with param class - void updateMembers_(); + void updateMembers_() override; size_t min_points_; double max_bias_; diff --git a/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/IsobaricChannelExtractor.h b/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/IsobaricChannelExtractor.h index a33d5735a77..dd3e2d74994 100644 --- a/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/IsobaricChannelExtractor.h +++ b/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/IsobaricChannelExtractor.h @@ -130,7 +130,7 @@ namespace OpenMS @param rt The retention time to check. */ - bool followUpValid(const double rt); + bool followUpValid(const double rt) const; }; /// The used quantitation method (itraq4plex, tmt6plex,..). diff --git a/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/IsotopeLabelingMDVs.h b/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/IsotopeLabelingMDVs.h index 61767bc5d00..2b1458fe0fc 100644 --- a/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/IsotopeLabelingMDVs.h +++ b/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/IsotopeLabelingMDVs.h @@ -54,7 +54,7 @@ namespace OpenMS IsotopeLabelingMDVs(); /// Destructor - ~IsotopeLabelingMDVs(); + ~IsotopeLabelingMDVs() override; //@} enum class DerivatizationAgent diff --git a/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/TMTElevenPlexQuantitationMethod.h b/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/TMTElevenPlexQuantitationMethod.h index d1653edf85a..f03786681ec 100644 --- a/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/TMTElevenPlexQuantitationMethod.h +++ b/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/TMTElevenPlexQuantitationMethod.h @@ -53,7 +53,7 @@ namespace OpenMS TMTElevenPlexQuantitationMethod(); /// d'tor - ~TMTElevenPlexQuantitationMethod() = default; + ~TMTElevenPlexQuantitationMethod() override = default; /// Copy c'tor TMTElevenPlexQuantitationMethod(const TMTElevenPlexQuantitationMethod& other); diff --git a/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/TMTSixPlexQuantitationMethod.h b/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/TMTSixPlexQuantitationMethod.h index d67f6134073..2071e655aa7 100644 --- a/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/TMTSixPlexQuantitationMethod.h +++ b/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/TMTSixPlexQuantitationMethod.h @@ -53,7 +53,7 @@ namespace OpenMS TMTSixPlexQuantitationMethod(); /// d'tor - ~TMTSixPlexQuantitationMethod() = default; + ~TMTSixPlexQuantitationMethod() override = default; /// Copy c'tor TMTSixPlexQuantitationMethod(const TMTSixPlexQuantitationMethod& other); diff --git a/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/TMTSixteenPlexQuantitationMethod.h b/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/TMTSixteenPlexQuantitationMethod.h index 689129fc8da..54f43d39dd9 100644 --- a/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/TMTSixteenPlexQuantitationMethod.h +++ b/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/TMTSixteenPlexQuantitationMethod.h @@ -53,7 +53,7 @@ namespace OpenMS TMTSixteenPlexQuantitationMethod(); /// d'tor - ~TMTSixteenPlexQuantitationMethod() = default; + ~TMTSixteenPlexQuantitationMethod() override = default; /// Copy c'tor TMTSixteenPlexQuantitationMethod(const TMTSixteenPlexQuantitationMethod& other); diff --git a/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/TMTTenPlexQuantitationMethod.h b/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/TMTTenPlexQuantitationMethod.h index b0ddfd8e62c..a4cc971725e 100644 --- a/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/TMTTenPlexQuantitationMethod.h +++ b/src/openms/include/OpenMS/ANALYSIS/QUANTITATION/TMTTenPlexQuantitationMethod.h @@ -53,7 +53,7 @@ namespace OpenMS TMTTenPlexQuantitationMethod(); /// d'tor - ~TMTTenPlexQuantitationMethod() = default; + ~TMTTenPlexQuantitationMethod() override = default; /// Copy c'tor TMTTenPlexQuantitationMethod(const TMTTenPlexQuantitationMethod& other); diff --git a/src/openms/include/OpenMS/ANALYSIS/SVM/SVMWrapper.h b/src/openms/include/OpenMS/ANALYSIS/SVM/SVMWrapper.h index 1957e1b3155..9865b5de30f 100644 --- a/src/openms/include/OpenMS/ANALYSIS/SVM/SVMWrapper.h +++ b/src/openms/include/OpenMS/ANALYSIS/SVM/SVMWrapper.h @@ -34,8 +34,6 @@ #pragma once -#include - #include #include #include @@ -48,9 +46,14 @@ #include #include +// forward declare svm types +struct svm_problem; +struct svm_parameter; +struct svm_model; +struct svm_node; + namespace OpenMS { - /// Data structure used in SVMWrapper struct OPENMS_DLLAPI SVMData { @@ -90,7 +93,7 @@ namespace OpenMS */ enum SVM_parameter_type { - SVM_TYPE, ///< the svm type cab be NU_SVR or EPSILON_SVR + SVM_TYPE, ///< the svm type can be NU_SVR or EPSILON_SVR KERNEL_TYPE, ///< the kernel type DEGREE, ///< the degree for the polynomial- kernel C, ///< the C parameter of the svm @@ -113,7 +116,7 @@ namespace OpenMS SVMWrapper(); /// destructor - virtual ~SVMWrapper(); + ~SVMWrapper() override; /** @brief You can set the parameters of the svm: @@ -510,7 +513,7 @@ namespace OpenMS std::vector gauss_table_; ///< lookup table for fast computation of the oligo kernel std::vector > gauss_tables_; ///< lookup table for fast computation of the combined oligo kernel Size kernel_type_; ///< the actual kernel type - Size border_length_; ///< the actual kernel type + Size border_length_; ///< the actual kernel type svm_problem* training_set_ = nullptr; ///< the training set svm_problem* training_problem_ = nullptr; ///< the training set SVMData training_data_; ///< the training set (different encoding) diff --git a/src/openms/include/OpenMS/ANALYSIS/TARGETED/MRMMapping.h b/src/openms/include/OpenMS/ANALYSIS/TARGETED/MRMMapping.h index 7344efdded8..1c8eeb86498 100644 --- a/src/openms/include/OpenMS/ANALYSIS/TARGETED/MRMMapping.h +++ b/src/openms/include/OpenMS/ANALYSIS/TARGETED/MRMMapping.h @@ -84,7 +84,7 @@ namespace OpenMS */ void mapExperiment(const OpenMS::PeakMap& input_chromatograms, const OpenMS::TargetedExperiment& targeted_exp, - OpenMS::PeakMap& output); + OpenMS::PeakMap& output) const; protected: diff --git a/src/openms/include/OpenMS/ANALYSIS/TARGETED/PrecursorIonSelectionPreprocessing.h b/src/openms/include/OpenMS/ANALYSIS/TARGETED/PrecursorIonSelectionPreprocessing.h index f0823e6206c..ac259092d6b 100644 --- a/src/openms/include/OpenMS/ANALYSIS/TARGETED/PrecursorIonSelectionPreprocessing.h +++ b/src/openms/include/OpenMS/ANALYSIS/TARGETED/PrecursorIonSelectionPreprocessing.h @@ -116,12 +116,12 @@ namespace OpenMS } void setGaussianParameters(double mu, double sigma); - double getGaussMu() + double getGaussMu() const { return mu_; } - double getGaussSigma() + double getGaussSigma() const { return sigma_; } diff --git a/src/openms/include/OpenMS/ANALYSIS/TARGETED/TargetedExperiment.h b/src/openms/include/OpenMS/ANALYSIS/TARGETED/TargetedExperiment.h index 7278c70c2c1..2df8bd71492 100644 --- a/src/openms/include/OpenMS/ANALYSIS/TARGETED/TargetedExperiment.h +++ b/src/openms/include/OpenMS/ANALYSIS/TARGETED/TargetedExperiment.h @@ -102,6 +102,9 @@ namespace OpenMS /// copy constructor TargetedExperiment(const TargetedExperiment & rhs); + /// move constructor + TargetedExperiment(TargetedExperiment && rhs) noexcept; + /// destructor virtual ~TargetedExperiment(); //@} @@ -109,6 +112,9 @@ namespace OpenMS /// assignment operator TargetedExperiment & operator=(const TargetedExperiment & rhs); + /// move assignment operator + TargetedExperiment & operator=(TargetedExperiment && rhs) noexcept; + /** @name Predicates */ //@{ diff --git a/src/openms/include/OpenMS/ANALYSIS/XLMS/OPXLHelper.h b/src/openms/include/OpenMS/ANALYSIS/XLMS/OPXLHelper.h index 3e09671b746..71139ae444c 100644 --- a/src/openms/include/OpenMS/ANALYSIS/XLMS/OPXLHelper.h +++ b/src/openms/include/OpenMS/ANALYSIS/XLMS/OPXLHelper.h @@ -59,7 +59,7 @@ namespace OpenMS { bool operator() (const PeptideIdentification& a, const PeptideIdentification& b) const { - if (a.getHits().size() > 0 && b.getHits().size() > 0) + if (!a.getHits().empty() && !b.getHits().empty()) { return a.getHits()[0].getScore() < b.getHits()[0].getScore(); } @@ -70,7 +70,7 @@ namespace OpenMS } bool operator() (const PeptideIdentification& a, const double& b) const { - if (a.getHits().size() > 0) + if (!a.getHits().empty()) { return a.getHits()[0].getScore() < b; } @@ -81,7 +81,7 @@ namespace OpenMS } bool operator() (const double& a, const PeptideIdentification& b) const { - if (b.getHits().size() > 0) + if (!b.getHits().empty()) { return a < b.getHits()[0].getScore(); } diff --git a/src/openms/include/OpenMS/ANALYSIS/XLMS/XFDRAlgorithm.h b/src/openms/include/OpenMS/ANALYSIS/XLMS/XFDRAlgorithm.h index 7a952337ae8..4662ea4a53c 100644 --- a/src/openms/include/OpenMS/ANALYSIS/XLMS/XFDRAlgorithm.h +++ b/src/openms/include/OpenMS/ANALYSIS/XLMS/XFDRAlgorithm.h @@ -124,7 +124,7 @@ namespace OpenMS */ void fdr_xprophet_(std::map< String, Math::Histogram<> >& cum_histograms, const String& targetclass, const String& decoyclass, const String& fulldecoyclass, - std::vector< double >& fdr, bool mono); + std::vector< double >& fdr, bool mono) const; /** * @brief Calculates the qFDR values for the provided FDR values, assuming that the FDRs are sorted by score in the input vector diff --git a/src/openms/include/OpenMS/APPLICATIONS/MapAlignerBase.h b/src/openms/include/OpenMS/APPLICATIONS/MapAlignerBase.h index 48e1bb31135..893abf5581f 100644 --- a/src/openms/include/OpenMS/APPLICATIONS/MapAlignerBase.h +++ b/src/openms/include/OpenMS/APPLICATIONS/MapAlignerBase.h @@ -184,7 +184,7 @@ class TOPPMapAlignerBase : return ILLEGAL_PARAMETERS; } } - + if (ref_params_ != REF_NONE) // a valid ref. index OR file should be given { Size reference_index = getIntOption_("reference:index"); diff --git a/src/openms/include/OpenMS/APPLICATIONS/ParameterInformation.h b/src/openms/include/OpenMS/APPLICATIONS/ParameterInformation.h index 7395eaa51a6..95a7a5a641a 100644 --- a/src/openms/include/OpenMS/APPLICATIONS/ParameterInformation.h +++ b/src/openms/include/OpenMS/APPLICATIONS/ParameterInformation.h @@ -53,6 +53,7 @@ namespace OpenMS STRING, ///< String parameter INPUT_FILE, ///< String parameter that denotes an input file OUTPUT_FILE, ///< String parameter that denotes an output file + OUTPUT_PREFIX, ///< String parameter that denotes an output file prefix DOUBLE, ///< Floating point number parameter INT, ///< Integer parameter STRINGLIST, ///< More than one String Parameter diff --git a/src/openms/include/OpenMS/APPLICATIONS/SearchEngineBase.h b/src/openms/include/OpenMS/APPLICATIONS/SearchEngineBase.h index 50136025105..5dcd2b06098 100644 --- a/src/openms/include/OpenMS/APPLICATIONS/SearchEngineBase.h +++ b/src/openms/include/OpenMS/APPLICATIONS/SearchEngineBase.h @@ -75,7 +75,7 @@ namespace OpenMS SearchEngineBase(const String& name, const String& description, bool official = true, const std::vector& citations = {}, bool toolhandler_test = true); /// Destructor - virtual ~SearchEngineBase(); + ~SearchEngineBase() override; /** @brief Reads the '-in' argument from internal parameters (usually an mzML file) and checks if MS2 spectra are present and are centroided. diff --git a/src/openms/include/OpenMS/APPLICATIONS/TOPPBase.h b/src/openms/include/OpenMS/APPLICATIONS/TOPPBase.h index 7a48c5eaef2..b7a5158743f 100644 --- a/src/openms/include/OpenMS/APPLICATIONS/TOPPBase.h +++ b/src/openms/include/OpenMS/APPLICATIONS/TOPPBase.h @@ -418,7 +418,7 @@ namespace OpenMS /** @name Parameter handling - Use the methods registerStringOption_, registerInputFile_, registerOutputFile_, registerDoubleOption_, + Use the methods registerStringOption_, registerInputFile_, registerOutputFile_, registerOutputPrefix_, registerDoubleOption_, registerIntOption_ and registerFlag_ in order to register parameters in registerOptionsAndFlags_. To access the values of registered parameters in the main_ method use methods @@ -524,12 +524,36 @@ namespace OpenMS */ void registerOutputFile_(const String& name, const String& argument, const String& default_value, const String& description, bool required = true, bool advanced = false); + /** + @brief Registers an output file prefix used for tools with multiple file output. + + Tools should follow the convention to name output files PREFIX_[0..N-1].EXTENSION. + For example, a tool that splits mzML files into multiple mgf files should create files: + splitted_0.mgf, splitted_1.mgf, ... if splitted got passed as prefix. + + Note: setting format(s) via setValidFormat_ for an output prefix can be used to export + e.g. valid CTD files that contain information on the expected output file types. In theory, it is possible + to output different types and list them here but this should be avoided for cleanlyness (prefer multiple + separate outputs). This could be left empty in case of an unknown amount of different extensions that + are produced but is highly recommended. + + @param name Name of the option in the command line and the INI file + @param argument Argument description text for the help output + @param default_value Default value (remember, no extension is specified here) + @param description Description of the parameter. Indentation of newline is done automatically. + @param required If the user has to provide a value i.e. if the value has to differ from the default (checked in get-method) + @param advanced If @em true, this parameter is advanced and by default hidden in the GUI. + */ + void registerOutputPrefix_(const String& name, const String& argument, const String& default_value, const String& description, bool required = true, bool advanced = false); + /** @brief Sets the formats for a input/output file option or for all members of an input/output file lists Setting the formats causes a check for the right file format (input file) or the right file extension (output file). This check is performed only, when the option is accessed in the TOPP tool. When @p force_OpenMS_format is set, only formats known to OpenMS internally are allowed (default). + + Note: Formats for output file prefixes are exported to e.g. CTD but no checks are performed (as they don't contain a file extension) @exception Exception::ElementNotFound is thrown if the parameter is unset or not a file parameter @exception Exception::InvalidParameter is thrown if an unknown format name is used (@see FileHandler::Type) diff --git a/src/openms/include/OpenMS/CHEMISTRY/AdductInfo.h b/src/openms/include/OpenMS/CHEMISTRY/AdductInfo.h new file mode 100644 index 00000000000..74fc0b3cb9f --- /dev/null +++ b/src/openms/include/OpenMS/CHEMISTRY/AdductInfo.h @@ -0,0 +1,97 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2020. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Timo Sachsenberg $ +// $Authors: Erhan Kenar, Chris Bielow $ +// -------------------------------------------------------------------------- + +#pragma once + +#include +#include + +namespace OpenMS +{ + class OPENMS_DLLAPI AdductInfo + { + public: + /** + C'tor, to build a representation of an adduct. + + @param name Identifier as given in the Positive/Negative-Adducts file, e.g. 'M+2K-H;1+' + @param adduct Formula of the adduct, e.g. '2K-H' + @param charge The charge (must not be 0; can be negative), e.g. 1 + @param mol_multiplier Molecular multiplier, e.g. for charged dimers '2M+H;+1' + + **/ + AdductInfo(const String& name, const EmpiricalFormula& adduct, int charge, UInt mol_multiplier = 1); + + /// returns the neutral mass of the small molecule without adduct (creates monomer from nmer, decharges and removes the adduct (given m/z of [nM+Adduct]/|charge| returns mass of [M]) + double getNeutralMass(double observed_mz) const; + + /// returns the m/z of the small molecule with neutral mass @p neutral_mass if the adduct is added (given mass of [M] returns m/z of [nM+Adduct]/|charge|) + double getMZ(double neutral_mass) const; + + /// returns the mass shift caused by this adduct if charges are compensated with protons + double getMassShift(bool use_avg_mass = false) const; + + /// checks if an adduct (e.g.a 'M+2K-H;1+') is valid, i.e. if the losses (==negative amounts) can actually be lost by the compound given in @p db_entry. + /// If the negative parts are present in @p db_entry, true is returned. + bool isCompatible(EmpiricalFormula db_entry) const; + + /// get charge of adduct + int getCharge() const; + + /// original string used for parsing + const String& getName() const; + + /// sum formula of adduct itself. Useful for comparison with feature adduct annotation + const EmpiricalFormula& getEmpiricalFormula() const; + + /// get molecular multiplier + UInt getMolMultiplier() const; + + /// parse an adduct string containing a formula (must contain 'M') and charge, separated by ';'. + /// e.g. M+H;1+ + /// 'M' can have multipliers, e.g. '2M + H;1+' (for a singly charged dimer) + static AdductInfo parseAdductString(const String& adduct); + + /// equality operator + bool operator==(const AdductInfo& other) const; + + private: + /// members + String name_; ///< arbitrary name, only used for error reporting + EmpiricalFormula ef_; ///< Sum formula for the actual adduct e.g. 'H' in 2M+H;+1 + double mass_; ///< computed from ef_.getMonoWeight(), but stored explicitly for efficiency + int charge_; ///< negative or positive charge; must not be 0 + UInt mol_multiplier_; ///< Mol multiplier, e.g. 2 in 2M+H;+1 + }; +} diff --git a/src/openms/include/OpenMS/CHEMISTRY/ElementDB.h b/src/openms/include/OpenMS/CHEMISTRY/ElementDB.h index 22642370e35..046a3c7edab 100644 --- a/src/openms/include/OpenMS/CHEMISTRY/ElementDB.h +++ b/src/openms/include/OpenMS/CHEMISTRY/ElementDB.h @@ -69,7 +69,7 @@ namespace OpenMS class OPENMS_DLLAPI ElementDB { public: - + /** @name Accessors */ //@{ @@ -78,22 +78,22 @@ namespace OpenMS static const ElementDB* getInstance(); /// returns a hashmap that contains names mapped to pointers to the elements - const std::map & getNames() const; + const std::map& getNames() const; /// returns a hashmap that contains symbols mapped to pointers to the elements - const std::map & getSymbols() const; + const std::map& getSymbols() const; /// returns a hashmap that contains atomic numbers mapped to pointers of the elements - const std::map & getAtomicNumbers() const; + const std::map& getAtomicNumbers() const; /** returns a pointer to the element with name or symbol given in parameter name; * if no element exists with that name or symbol 0 is returned * @param name: name or symbol of the element */ - const Element * getElement(const std::string & name) const; + const Element* getElement(const std::string& name) const; /// returns a pointer to the element of atomic number; if no element is found 0 is returned - const Element * getElement(unsigned int atomic_number) const; + const Element* getElement(unsigned int atomic_number) const; //@} @@ -117,11 +117,11 @@ namespace OpenMS /*_ calculates the average weight based on isotope abundance and mass */ - double calculateAvgWeight_(const std::map & abundance, const std::map & mass); + double calculateAvgWeight_(const std::map& abundance, const std::map& mass); /*_ calculates the mono weight based on the smallest isotope mass */ - double calculateMonoWeight_(const std::map & Z_to_mass); + double calculateMonoWeight_(const std::map& Z_to_mass); // constructs element objects void storeElements_(); @@ -139,11 +139,11 @@ namespace OpenMS */ void clear_(); - std::map names_; + std::map names_; - std::map symbols_; + std::map symbols_; - std::map atomic_numbers_; + std::map atomic_numbers_; private: ElementDB(); diff --git a/src/openms/include/OpenMS/CHEMISTRY/EmpiricalFormula.h b/src/openms/include/OpenMS/CHEMISTRY/EmpiricalFormula.h index f477c0eb46c..664866196ea 100644 --- a/src/openms/include/OpenMS/CHEMISTRY/EmpiricalFormula.h +++ b/src/openms/include/OpenMS/CHEMISTRY/EmpiricalFormula.h @@ -115,7 +115,6 @@ namespace OpenMS */ explicit EmpiricalFormula(const String& rhs); - /// Constructor with element pointer and number EmpiricalFormula(SignedSize number, const Element* element, SignedSize charge = 0); @@ -172,10 +171,10 @@ namespace OpenMS The details of the calculation of the isotope distribution are described in the doc to the CoarseIsotopePatternGenerator class. - @param method: the method that will be used for the calculation of the IsotopeDistribution + @param method: the method that will be used for the calculation of the IsotopeDistribution */ - IsotopeDistribution getIsotopeDistribution(const IsotopePatternGenerator& method) const; - + IsotopeDistribution getIsotopeDistribution(const IsotopePatternGenerator& method) const; + /** @brief returns the fragment isotope distribution of this given a precursor formula and conditioned on a set of isolated precursor isotopes. @@ -249,7 +248,7 @@ namespace OpenMS bool hasElement(const Element* element) const; /// returns true if all elements from @p ef are LESS abundant (negative allowed) than the corresponding elements of this EmpiricalFormula - bool contains(const EmpiricalFormula& ef); + bool contains(const EmpiricalFormula& ef) const; /// returns true if the formulas contain equal elements in equal quantities bool operator==(const EmpiricalFormula& rhs) const; @@ -271,12 +270,23 @@ namespace OpenMS inline ConstIterator begin() const { return formula_.begin(); } inline ConstIterator end() const { return formula_.end(); } - + inline Iterator begin() { return formula_.begin(); } inline Iterator end() { return formula_.end(); } //@} + /** @name Static member functions + */ + // @TODO: make these static member variables instead? + //@{ + /// Efficiently generates a formula for hydrogen + static EmpiricalFormula hydrogen(int n_atoms = 1); + + /// Efficiently generates a formula for water + static EmpiricalFormula water(int n_molecules = 1); + //@} + protected: /// remove elements with count 0 diff --git a/src/openms/include/OpenMS/CHEMISTRY/ISOTOPEDISTRIBUTION/CoarseIsotopePatternGenerator.h b/src/openms/include/OpenMS/CHEMISTRY/ISOTOPEDISTRIBUTION/CoarseIsotopePatternGenerator.h index 91eebd681f0..62d998696ad 100644 --- a/src/openms/include/OpenMS/CHEMISTRY/ISOTOPEDISTRIBUTION/CoarseIsotopePatternGenerator.h +++ b/src/openms/include/OpenMS/CHEMISTRY/ISOTOPEDISTRIBUTION/CoarseIsotopePatternGenerator.h @@ -44,7 +44,7 @@ namespace OpenMS /** * @ingroup Chemistry * @brief Isotope pattern generator for coarse isotope distributions. - * + * * This algorithm generates theoretical pattern distributions for empirical * formulas with resolution of 1Da. It assumes that every isotope has atomic * mass that is rounded to the closest integer in Daltons, therefore it @@ -93,21 +93,17 @@ namespace OpenMS * See also method run() **/ - class OPENMS_DLLAPI CoarseIsotopePatternGenerator + class OPENMS_DLLAPI CoarseIsotopePatternGenerator : public IsotopePatternGenerator { public: - CoarseIsotopePatternGenerator(); - - CoarseIsotopePatternGenerator(const Size& max_isotope); + CoarseIsotopePatternGenerator(const Size max_isotope = 0, const bool round_masses = false); - CoarseIsotopePatternGenerator(const Size& max_isotope, const bool round_masses); - - virtual ~CoarseIsotopePatternGenerator(); + ~CoarseIsotopePatternGenerator() override; /// @name Accessors - //@{ + ///@{ /** @brief sets the maximal isotope with @p max_isotope sets the maximal isotope which is included in the distribution @@ -124,7 +120,7 @@ namespace OpenMS /// returns the current value of the flag to return expected masses (true) or atomic numbers (false). bool getRoundMasses() const; - //@} + ///@} /** * @brief Creates an isotope distribution from an empirical sum formula @@ -260,7 +256,7 @@ namespace OpenMS @pre average_weight_fragment > 0 @pre precursor_isotopes.size() > 0 */ - IsotopeDistribution estimateForFragmentFromPeptideWeightAndS(double average_weight_precursor, UInt S_precursor, double average_weight_fragment, UInt S_fragment, const std::set& precursor_isotopes); + IsotopeDistribution estimateForFragmentFromPeptideWeightAndS(double average_weight_precursor, UInt S_precursor, double average_weight_fragment, UInt S_fragment, const std::set& precursor_isotopes) const; /** @brief Estimate RNA fragment IsotopeDistribution from the precursor's average weight, @@ -315,7 +311,7 @@ namespace OpenMS @pre average_weight_fragment > 0 @pre precursor_isotopes.size() > 0 */ - IsotopeDistribution estimateForFragmentFromWeightAndComp(double average_weight_precursor, double average_weight_fragment, const std::set& precursor_isotopes, double C, double H, double N, double O, double S, double P); + IsotopeDistribution estimateForFragmentFromWeightAndComp(double average_weight_precursor, double average_weight_fragment, const std::set& precursor_isotopes, double C, double H, double N, double O, double S, double P) const; /** @brief Calculate isotopic distribution for a fragment molecule @@ -340,18 +336,18 @@ namespace OpenMS CoarseIsotopePatternGenerator& operator=(const CoarseIsotopePatternGenerator& iso); /// convolves the distributions @p left and @p right and stores the result in @p result - IsotopeDistribution::ContainerType convolve_(const IsotopeDistribution::ContainerType & left, const IsotopeDistribution::ContainerType & right) const; + IsotopeDistribution::ContainerType convolve(const IsotopeDistribution::ContainerType& left, const IsotopeDistribution::ContainerType& right) const; + + protected: /// convolves the distribution @p input @p factor times and stores the result in @p result - IsotopeDistribution::ContainerType convolvePow_(const IsotopeDistribution::ContainerType & input, Size factor) const; + IsotopeDistribution::ContainerType convolvePow_(const IsotopeDistribution::ContainerType& input, Size factor) const; /// convolves the distribution @p input with itself and stores the result in @p result - IsotopeDistribution::ContainerType convolveSquare_(const IsotopeDistribution::ContainerType & input) const; + IsotopeDistribution::ContainerType convolveSquare_(const IsotopeDistribution::ContainerType& input) const; /// converts the masses of distribution @p input from atomic numbers to accurate masses - IsotopeDistribution::ContainerType correctMass_(const IsotopeDistribution::ContainerType & input, const double mono_weight) const; - - protected: + IsotopeDistribution::ContainerType correctMass_(const IsotopeDistribution::ContainerType& input, const double mono_weight) const; /** @brief calculates the fragment distribution for a fragment molecule and stores it in @p result. @@ -364,7 +360,6 @@ namespace OpenMS /// fill a gapped isotope pattern (i.e. certain masses are missing), with zero probability masses IsotopeDistribution::ContainerType fillGaps_(const IsotopeDistribution::ContainerType& id) const; - protected: /// maximal isotopes which is used to calculate the distribution Size max_isotope_; /// flag to determine whether masses should be rounded or not @@ -373,4 +368,3 @@ namespace OpenMS }; } // namespace OpenMS - diff --git a/src/openms/include/OpenMS/CHEMISTRY/ISOTOPEDISTRIBUTION/FineIsotopePatternGenerator.h b/src/openms/include/OpenMS/CHEMISTRY/ISOTOPEDISTRIBUTION/FineIsotopePatternGenerator.h index 04572f7ec38..02fb8344b07 100644 --- a/src/openms/include/OpenMS/CHEMISTRY/ISOTOPEDISTRIBUTION/FineIsotopePatternGenerator.h +++ b/src/openms/include/OpenMS/CHEMISTRY/ISOTOPEDISTRIBUTION/FineIsotopePatternGenerator.h @@ -149,7 +149,7 @@ namespace OpenMS * IsoSpecGeneratorWrapper) directly for increased performance. * **/ - IsotopeDistribution run(const EmpiricalFormula&) const; + IsotopeDistribution run(const EmpiricalFormula&) const override; /// Set probability stop condition (lower values generate fewer results) void setThreshold(double stop_condition) diff --git a/src/openms/include/OpenMS/CHEMISTRY/ISOTOPEDISTRIBUTION/IsoSpecWrapper.h b/src/openms/include/OpenMS/CHEMISTRY/ISOTOPEDISTRIBUTION/IsoSpecWrapper.h index 0ddccae78e6..e4323030cca 100644 --- a/src/openms/include/OpenMS/CHEMISTRY/ISOTOPEDISTRIBUTION/IsoSpecWrapper.h +++ b/src/openms/include/OpenMS/CHEMISTRY/ISOTOPEDISTRIBUTION/IsoSpecWrapper.h @@ -35,6 +35,7 @@ #pragma once #include +#include #include #include @@ -46,16 +47,16 @@ #include -// Override IsoSpec's use of mmap whenever it is available -#define ISOSPEC_GOT_SYSTEM_MMAN false -#define ISOSPEC_GOT_MMAN false -#define ISOSPEC_BUILDING_OPENMS true - -#include +// forward declarations +namespace IsoSpec +{ +class IsoLayeredGenerator; +class IsoThresholdGenerator; +class IsoOrderedGenerator; +} namespace OpenMS { - /** * @brief Interface for the IsoSpec algorithm - a generator of infinitely-resolved theoretical spectra. * @@ -143,7 +144,7 @@ namespace OpenMS /** * @brief Destructor */ - virtual inline ~IsoSpecGeneratorWrapper() {}; + virtual ~IsoSpecGeneratorWrapper() = default; }; /** @brief A convenience class for the IsoSpec algorithm - easier to use than the IsoSpecGeneratorWrapper classes. @@ -175,7 +176,7 @@ namespace OpenMS **/ virtual IsotopeDistribution run() = 0; - virtual inline ~IsoSpecWrapper() {}; + virtual inline ~IsoSpecWrapper() = default; }; //-------------------------------------------------------------------------- @@ -230,20 +231,24 @@ namespace OpenMS const std::vector >& isotopeProbabilities, double p); + // delete copy constructor + IsoSpecTotalProbGeneratorWrapper(const IsoSpecTotalProbGeneratorWrapper&) = delete; /** * @brief Setup the algorithm to run on an EmpiricalFormula * **/ IsoSpecTotalProbGeneratorWrapper(const EmpiricalFormula& formula, double p); - virtual inline bool nextConf() override final { return ILG.advanceToNextConfiguration(); }; - virtual inline Peak1D getConf() override final { return Peak1D(ILG.mass(), ILG.prob()); }; - virtual inline double getMass() override final { return ILG.mass(); }; - virtual inline double getIntensity() override final { return ILG.prob(); }; - virtual inline double getLogIntensity() override final { return ILG.lprob(); }; + ~IsoSpecTotalProbGeneratorWrapper(); + + bool nextConf() final; + Peak1D getConf() final; + double getMass() final; + double getIntensity() final; + double getLogIntensity() final; protected: - IsoSpec::IsoLayeredGenerator ILG; + std::unique_ptr ILG; }; /** @@ -292,21 +297,26 @@ namespace OpenMS double threshold, bool absolute); + // delete copy constructor + IsoSpecThresholdGeneratorWrapper(const IsoSpecThresholdGeneratorWrapper&) = delete; + /** * @brief Setup the algorithm to run on an EmpiricalFormula * **/ IsoSpecThresholdGeneratorWrapper(const EmpiricalFormula& formula, double threshold, bool absolute); - virtual inline bool nextConf() override final { return ITG.advanceToNextConfiguration(); }; - virtual inline Peak1D getConf() override final { return Peak1D(ITG.mass(), ITG.prob()); }; - virtual inline double getMass() override final { return ITG.mass(); }; - virtual inline double getIntensity() override final { return ITG.prob(); }; - virtual inline double getLogIntensity() override final { return ITG.lprob(); }; + ~IsoSpecThresholdGeneratorWrapper(); + + bool nextConf() final; + Peak1D getConf() final; + double getMass() final; + double getIntensity() final; + double getLogIntensity() final; protected: - IsoSpec::IsoThresholdGenerator ITG; + std::unique_ptr ITG; }; /** @@ -342,20 +352,24 @@ namespace OpenMS const std::vector >& isotopeMasses, const std::vector >& isotopeProbabilities); + // delete copy constructor + IsoSpecOrderedGeneratorWrapper(const IsoSpecOrderedGeneratorWrapper&) = delete; /** * @brief Setup the algorithm to run on an EmpiricalFormula * **/ IsoSpecOrderedGeneratorWrapper(const EmpiricalFormula& formula); - virtual inline bool nextConf() override final { return IOG.advanceToNextConfiguration(); }; - virtual inline Peak1D getConf() override final { return Peak1D(IOG.mass(), IOG.prob()); }; - virtual inline double getMass() override final { return IOG.mass(); }; - virtual inline double getIntensity() override final { return IOG.prob(); }; - virtual inline double getLogIntensity() override final { return IOG.lprob(); }; + ~IsoSpecOrderedGeneratorWrapper(); + + inline bool nextConf() final; + inline Peak1D getConf() final; + inline double getMass() final; + inline double getIntensity() final; + inline double getLogIntensity() final; protected: - IsoSpec::IsoOrderedGenerator IOG; + std::unique_ptr IOG; }; //-------------------------------------------------------------------------- @@ -406,6 +420,9 @@ namespace OpenMS const std::vector >& isotopeProbabilities, double p, bool do_p_trim = false); + + // delete copy constructor + IsoSpecTotalProbWrapper(const IsoSpecTotalProbWrapper&) = delete; /** * @brief Setup the algorithm to run on an EmpiricalFormula @@ -413,10 +430,12 @@ namespace OpenMS **/ IsoSpecTotalProbWrapper(const EmpiricalFormula& formula, double p, bool do_p_trim = false); - virtual IsotopeDistribution run() override final; + ~IsoSpecTotalProbWrapper(); + + IsotopeDistribution run() final; protected: - IsoSpec::IsoLayeredGenerator ILG; + std::unique_ptr ILG; const double target_prob; const bool do_p_trim; }; @@ -465,17 +484,21 @@ namespace OpenMS const std::vector >& isotopeProbabilities, double threshold, bool absolute); - + + // delelte copy constructor + IsoSpecThresholdWrapper(const IsoSpecThresholdWrapper&) = delete; /** * @brief Setup the algorithm to run on an EmpiricalFormula * **/ IsoSpecThresholdWrapper(const EmpiricalFormula& formula, double threshold, bool absolute); - virtual IsotopeDistribution run() override final; + ~IsoSpecThresholdWrapper(); + + IsotopeDistribution run() final; protected: - IsoSpec::IsoThresholdGenerator ITG; + std::unique_ptr ITG; }; diff --git a/src/openms/include/OpenMS/CHEMISTRY/RNaseDigestion.h b/src/openms/include/OpenMS/CHEMISTRY/RNaseDigestion.h index 5abe458a048..dad4166c69b 100644 --- a/src/openms/include/OpenMS/CHEMISTRY/RNaseDigestion.h +++ b/src/openms/include/OpenMS/CHEMISTRY/RNaseDigestion.h @@ -67,9 +67,9 @@ namespace OpenMS Size min_length = 0, Size max_length = 0) const; /** - @brief Performs the enzymatic digestion of all RNA parent molecules in @p IdentificationData + @brief Performs the enzymatic digestion of all RNA parent sequences in @p IdentificationData - Digestion products are stored as IdentifiedOligos with corresponding MoleculeParentMatch annotations. + Digestion products are stored as IdentifiedOligos with corresponding ParentMatch annotations. Only fragments of appropriate length (between @p min_length and @p max_length) are included. */ void digest(IdentificationData& id_data, Size min_length = 0, diff --git a/src/openms/include/OpenMS/CHEMISTRY/SvmTheoreticalSpectrumGenerator.h b/src/openms/include/OpenMS/CHEMISTRY/SvmTheoreticalSpectrumGenerator.h index d70fc1280b5..12b0185f679 100644 --- a/src/openms/include/OpenMS/CHEMISTRY/SvmTheoreticalSpectrumGenerator.h +++ b/src/openms/include/OpenMS/CHEMISTRY/SvmTheoreticalSpectrumGenerator.h @@ -136,14 +136,6 @@ namespace OpenMS }; //@} - /// A set of descriptors for a single training row - struct DescriptorSet - { - typedef std::vector DescriptorSetType; - DescriptorSetType descriptors; - }; - - /// Simple container storing the model parameters required for simulation struct SvmModelParameterSet { @@ -217,12 +209,19 @@ namespace OpenMS void load(); ///return the set of ion types that are modeled by the loaded SVMs - const std::vector & getIonTypes() + const std::vector & getIonTypes() const { return mp_.ion_types; } protected: + /// A set of descriptors for a single training row + struct DescriptorSet + { + typedef std::vector DescriptorSetType; + DescriptorSetType descriptors; + }; + typedef std::map IntensityMap; /// charge of the precursors used for training diff --git a/src/openms/include/OpenMS/CHEMISTRY/TheoreticalSpectrumGenerator.h b/src/openms/include/OpenMS/CHEMISTRY/TheoreticalSpectrumGenerator.h index ccd0800f32a..494ac2c5222 100644 --- a/src/openms/include/OpenMS/CHEMISTRY/TheoreticalSpectrumGenerator.h +++ b/src/openms/include/OpenMS/CHEMISTRY/TheoreticalSpectrumGenerator.h @@ -156,8 +156,5 @@ namespace OpenMS double pre_int_; double pre_int_H2O_; double pre_int_NH3_; - - // formula.toString() is extremely expensive, so we use a member map to remember what String belongs to which formula - //mutable std::map formula_str_cache_; }; } diff --git a/src/openms/include/OpenMS/CHEMISTRY/sources.cmake b/src/openms/include/OpenMS/CHEMISTRY/sources.cmake index c78e4df9d52..aee9c6e1669 100644 --- a/src/openms/include/OpenMS/CHEMISTRY/sources.cmake +++ b/src/openms/include/OpenMS/CHEMISTRY/sources.cmake @@ -5,6 +5,7 @@ set(directory include/OpenMS/CHEMISTRY) set(sources_list_h AAIndex.h AASequence.h +AdductInfo.h CrossLinksDB.h DecoyGenerator.h Element.h diff --git a/src/openms/include/OpenMS/COMPARISON/CLUSTERING/ClusterHierarchical.h b/src/openms/include/OpenMS/COMPARISON/CLUSTERING/ClusterHierarchical.h index 3909d2db4a3..bd083e55bb2 100644 --- a/src/openms/include/OpenMS/COMPARISON/CLUSTERING/ClusterHierarchical.h +++ b/src/openms/include/OpenMS/COMPARISON/CLUSTERING/ClusterHierarchical.h @@ -158,7 +158,7 @@ namespace OpenMS float offset, const ClusterFunctor & clusterer, std::vector & cluster_tree, - DistanceMatrix & original_distance) + DistanceMatrix & original_distance) const { std::vector binned_data; binned_data.reserve(data.size()); @@ -188,7 +188,7 @@ namespace OpenMS } /// get the threshold - double getThreshold() + double getThreshold() const { return threshold_; } diff --git a/src/openms/include/OpenMS/COMPARISON/CLUSTERING/GridBasedClustering.h b/src/openms/include/OpenMS/COMPARISON/CLUSTERING/GridBasedClustering.h index 7887c42f448..3426f00e2a5 100644 --- a/src/openms/include/OpenMS/COMPARISON/CLUSTERING/GridBasedClustering.h +++ b/src/openms/include/OpenMS/COMPARISON/CLUSTERING/GridBasedClustering.h @@ -190,7 +190,7 @@ namespace OpenMS MinimumDistance zero_distance(-1, -1, 0); // combine clusters until all have been moved to the final list - while (clusters_.size() > 0) + while (!clusters_.empty()) { setProgress(clusters_start - clusters_.size()); diff --git a/src/openms/include/OpenMS/CONCEPT/ClassTest.h b/src/openms/include/OpenMS/CONCEPT/ClassTest.h index c861c6365c0..ed22f2e4376 100644 --- a/src/openms/include/OpenMS/CONCEPT/ClassTest.h +++ b/src/openms/include/OpenMS/CONCEPT/ClassTest.h @@ -307,10 +307,13 @@ namespace OpenMS initialNewline(); if (this_test) { - stdcout << " + line " << line << ": TEST_EQUAL(" - << expression_1_stringified << ',' - << expression_2_stringified << "): got '" << expression_1 - << "', expected '" << expression_2 << "'\n"; + if (verbose > 1) + { + stdcout << " + line " << line << ": TEST_EQUAL(" + << expression_1_stringified << ',' + << expression_2_stringified << "): got '" << expression_1 + << "', expected '" << expression_2 << "'\n"; + } } else { @@ -338,10 +341,13 @@ namespace OpenMS initialNewline(); if (this_test) { - stdcout << " + line " << line << ": TEST_NOT_EQUAL(" - << expression_1_stringified << ',' - << expression_2_stringified << "): got '" << expression_1 - << "', forbidden is '" << expression_2 << "'\n"; + if (verbose > 1) + { + stdcout << " + line " << line << ": TEST_NOT_EQUAL(" + << expression_1_stringified << ',' + << expression_2_stringified << "): got '" << expression_1 + << "', forbidden is '" << expression_2 << "'\n"; + } } else { @@ -416,7 +422,7 @@ namespace TEST = OpenMS::Internal::ClassTest; #define START_TEST(class_name, version) \ int main(int argc, char** argv) \ { \ - TEST::mainInit(version, #class_name, argc, argv[0]); \ + TEST::mainInit(version, #class_name, argc, argv[0]); \ try { /** @brief End of the test program for a class. @sa #START_TEST. @@ -471,7 +477,7 @@ namespace TEST = OpenMS::Internal::ClassTest; TEST::all_tests = false; \ { \ TEST::initialNewline(); \ - stdcout << "Error: Caught unidentified and unexpected exception - No message." \ + stdcout << "Error: Caught unidentified and unexpected exception - No message." \ << std::endl; \ } \ } \ @@ -480,6 +486,10 @@ namespace TEST = OpenMS::Internal::ClassTest; { \ TEST::all_tests = false; \ } \ + if (TEST::verbose == 0) \ + { \ + stdcout << "Output of successful tests were suppressed. Set the environment variable 'OPENMS_TEST_VERBOSE=True' to enable them." << std::endl; \ + } \ /* check for exit code */ \ if (!TEST::all_tests) \ { \ @@ -759,25 +769,28 @@ namespace TEST = OpenMS::Internal::ClassTest; TEST::initialNewline(); \ if (TEST::this_test) \ { \ - stdcout << " + line " << __LINE__ \ - << ": TEST_FILE_SIMILAR(" # a "," # b "): absolute: " \ - << precisionWrapper(TEST::absdiff) \ - << " (" \ - << precisionWrapper(TEST::absdiff_max_allowed) \ - << "), relative: " \ - << precisionWrapper(TEST::ratio) \ - << " (" \ - << precisionWrapper(TEST::ratio_max_allowed) \ - << ")\n"; \ - stdcout << "message: \n"; \ - stdcout << TEST::fuzzy_message; \ + if (TEST::verbose > 1) \ + { \ + stdcout << " + line " << __LINE__ \ + << ": TEST_FILE_SIMILAR(" # a "," # b "): absolute: " \ + << precisionWrapper(TEST::absdiff) \ + << " (" \ + << precisionWrapper(TEST::absdiff_max_allowed) \ + << "), relative: " \ + << precisionWrapper(TEST::ratio) \ + << " (" \ + << precisionWrapper(TEST::ratio_max_allowed) \ + << ")\n"; \ + stdcout << "message: \n"; \ + stdcout << TEST::fuzzy_message; \ + } \ } \ else \ { \ - stdcout << " - line " << TEST::test_line << \ - ": TEST_FILE_SIMILAR(" # a "," # b ") ... -\n"; \ - stdcout << "message: \n"; \ - stdcout << TEST::fuzzy_message; \ + stdcout << " - line " << TEST::test_line << \ + ": TEST_FILE_SIMILAR(" # a "," # b ") ... -\n"; \ + stdcout << "message: \n"; \ + stdcout << TEST::fuzzy_message; \ TEST::failed_lines_list.push_back(TEST::test_line); \ } \ } \ @@ -799,9 +812,12 @@ namespace TEST = OpenMS::Internal::ClassTest; TEST::ratio_max_allowed = (a); \ { \ TEST::initialNewline(); \ - stdcout << " + line " << __LINE__ << \ - ": TOLERANCE_RELATIVE(" << TEST::ratio_max_allowed << \ - ") (\"" # a "\")\n"; \ + if (TEST::verbose > 1) \ + { \ + stdcout << " + line " << __LINE__ << \ + ": TOLERANCE_RELATIVE(" << TEST::ratio_max_allowed << \ + ") (\"" # a "\")\n"; \ + } \ } /** @brief Define the absolute tolerance for floating point comparisons. @@ -819,9 +835,12 @@ namespace TEST = OpenMS::Internal::ClassTest; TEST::absdiff_max_allowed = (a); \ { \ TEST::initialNewline(); \ - stdcout << " + line " << __LINE__ << \ - ": TOLERANCE_ABSOLUTE(" << TEST::absdiff_max_allowed << \ - ") (\"" # a "\")\n"; \ + if (TEST::verbose > 1) \ + { \ + stdcout << " + line " << __LINE__ << \ + ": TOLERANCE_ABSOLUTE(" << TEST::absdiff_max_allowed << \ + ") (\"" # a "\")\n"; \ + } \ } /** @brief Define the whitelist_ used by #TEST_STRING_SIMILAR and #TEST_FILE_SIMILAR. @@ -852,11 +871,11 @@ namespace TEST = OpenMS::Internal::ClassTest; { \ command; \ } \ - catch (exception_type&) \ + catch (exception_type&) \ { \ TEST::exception = 1; \ } \ - catch (::OpenMS::Exception::BaseException& e) \ + catch (::OpenMS::Exception::BaseException& e) \ { \ TEST::exception = 2; \ TEST::exception_name = e.getName(); \ @@ -879,9 +898,12 @@ namespace TEST = OpenMS::Internal::ClassTest; TEST::failed_lines_list.push_back(TEST::test_line); \ break; \ case 1: \ - stdcout << " + line " << TEST::test_line << \ - ": TEST_EXCEPTION(" # exception_type "," # command \ - "): OK\n"; \ + if (TEST::verbose > 1) \ + { \ + stdcout << " + line " << TEST::test_line << \ + ": TEST_EXCEPTION(" # exception_type "," # command \ + "): OK\n"; \ + } \ break; \ case 2: \ stdcout << " - line " << TEST::test_line << \ @@ -992,11 +1014,14 @@ namespace TEST = OpenMS::Internal::ClassTest; TEST::failed_lines_list.push_back(TEST::test_line); \ break; \ case 1: \ - /* this is actually what we want to get: */ \ - stdcout << " + line " << TEST::test_line << \ - ": TEST_EXCEPTION_WITH_MESSAGE(" # exception_type "," # command ", " # message \ - "): OK\n"; \ - break; \ + if (TEST::verbose > 1) \ + { \ + /* this is actually what we want to get: */ \ + stdcout << " + line " << TEST::test_line << \ + ": TEST_EXCEPTION_WITH_MESSAGE(" # exception_type "," # command ", " # message \ + "): OK\n"; \ + break; \ + } \ case 2: \ stdcout << " - line " << TEST::test_line << \ ": TEST_EXCEPTION_WITH_MESSAGE(" # exception_type "," # command ", " # message \ @@ -1044,7 +1069,7 @@ namespace TEST = OpenMS::Internal::ClassTest; TEST::tmp_file_list.push_back(filename); \ { \ TEST::initialNewline(); \ - stdcout << " creating new temporary filename '" \ + stdcout << " creating new temporary filename '" \ << filename \ << "' (line " \ << __LINE__ \ @@ -1063,14 +1088,14 @@ namespace TEST = OpenMS::Internal::ClassTest; if (condition) \ { \ { \ - TEST::test_line = __LINE__; \ - TEST::this_test = false; \ - TEST::test = TEST::test && TEST::this_test; \ - TEST::failed_lines_list.push_back(TEST::test_line); \ - TEST::initialNewline(); \ - stdcout << " - line " << TEST::test_line << \ - ": ABORT_IF(" # condition "): TEST ABORTED\n"; \ - } \ + TEST::test_line = __LINE__; \ + TEST::this_test = false; \ + TEST::test = TEST::test && TEST::this_test; \ + TEST::failed_lines_list.push_back(TEST::test_line); \ + TEST::initialNewline(); \ + stdcout << " - line " << TEST::test_line << \ + ": ABORT_IF(" # condition "): TEST ABORTED\n"; \ + } \ break; \ } @@ -1094,7 +1119,7 @@ namespace TEST = OpenMS::Internal::ClassTest; #define STATUS(message) \ { \ TEST::initialNewline(); \ - stdcout << " line " \ + stdcout << " line " \ << __LINE__ \ << ": status: " \ << message \ @@ -1126,4 +1151,3 @@ namespace TEST = OpenMS::Internal::ClassTest; TEST::test_count = 1; //@} // end of ClassTest - diff --git a/src/openms/include/OpenMS/CONCEPT/Exception.h b/src/openms/include/OpenMS/CONCEPT/Exception.h index 7885ecc3989..66b91a79e3b 100644 --- a/src/openms/include/OpenMS/CONCEPT/Exception.h +++ b/src/openms/include/OpenMS/CONCEPT/Exception.h @@ -279,6 +279,7 @@ namespace OpenMS { public: InvalidRange(const char* file, int line, const char* function) noexcept; + InvalidRange(const char* file, int line, const char* function, const std::string& message) noexcept; }; @@ -658,6 +659,18 @@ namespace OpenMS IllegalArgument(const char* file, int line, const char* function, const std::string& error_message) noexcept; }; + /** + @brief A tool or algorithm which was called internally raised an exception + + @ingroup Exceptions + */ + class OPENMS_DLLAPI InternalToolError : + public BaseException + { + public: + InternalToolError(const char* file, int line, const char* function, const std::string& error_message) noexcept; + }; + /** @brief Element could not be found exception. diff --git a/src/openms/include/OpenMS/CONCEPT/LogStream.h b/src/openms/include/OpenMS/CONCEPT/LogStream.h index a3f397975a2..cdb30195636 100644 --- a/src/openms/include/OpenMS/CONCEPT/LogStream.h +++ b/src/openms/include/OpenMS/CONCEPT/LogStream.h @@ -469,7 +469,7 @@ namespace OpenMS /// Macro for general debugging information #define OPENMS_LOG_DEBUG \ OPENMS_THREAD_CRITICAL(LOGSTREAM) \ - OpenMS_Log_debug << [](){ constexpr const char * x = (past_last_slash(__FILE__)); return x; }() << "(" << __LINE__ << "): " + OpenMS_Log_debug << [](){ constexpr const char* x = (past_last_slash(__FILE__)); return x; }() << "(" << __LINE__ << "): " /// Macro for general debugging information (without information on file) #define OPENMS_LOG_DEBUG_NOFILE \ @@ -483,4 +483,3 @@ namespace OpenMS OPENMS_DLLAPI extern Logger::LogStream OpenMS_Log_debug; ///< Global static instance of a LogStream to capture messages classified as debug output. By default it is not bound to any output stream. TOPP(AS)Base will connect cout, iff 0 < debug-level } // namespace OpenMS - diff --git a/src/openms/include/OpenMS/DATASTRUCTURES/DataValue.h b/src/openms/include/OpenMS/DATASTRUCTURES/DataValue.h index 8bc11d417d3..ea559c8cd27 100644 --- a/src/openms/include/OpenMS/DATASTRUCTURES/DataValue.h +++ b/src/openms/include/OpenMS/DATASTRUCTURES/DataValue.h @@ -138,6 +138,11 @@ namespace OpenMS ///If they are applied to a DataValue with the wrong DataType, an exception (Exception::ConversionError) is thrown. In particular, none of these operators will work for an empty DataValue (DataType EMPTY_VALUE) - except toChar(), which will return 0. //@{ + /** + @brief conversion operator to ParamValue based on DataType + */ + operator ParamValue() const; + /** @brief conversion operator to string diff --git a/src/openms/include/OpenMS/DATASTRUCTURES/DateTime.h b/src/openms/include/OpenMS/DATASTRUCTURES/DateTime.h index 281397e6dde..24e9ecc8b69 100644 --- a/src/openms/include/OpenMS/DATASTRUCTURES/DateTime.h +++ b/src/openms/include/OpenMS/DATASTRUCTURES/DateTime.h @@ -70,7 +70,7 @@ namespace OpenMS /// Assignment operator DateTime& operator=(const DateTime& source); - + /// Move assignment operator DateTime& operator=(DateTime&&) & noexcept; @@ -172,14 +172,14 @@ namespace OpenMS /// Returns true if the date time is valid bool isValid() const; - /// return true if the date and time is null + /// return true if the date and time is null bool isNull() const; /// Sets the undefined date: 00/00/0000 00:00:00 void clear(); - + /* @brief Returns a string representation of the DateTime object. - @param format "yyyy-MM-ddThh:mm:ss" corresponds to ISO 8601 and should be preferred. + @param format "yyyy-MM-ddThh:mm:ss" corresponds to ISO 8601 and should be preferred. */ String toString(std::string format = "yyyy-MM-ddThh:mm:ss") const; @@ -215,4 +215,3 @@ namespace OpenMS }; } // namespace OPENMS - diff --git a/src/openms/include/OpenMS/DATASTRUCTURES/DefaultParamHandler.h b/src/openms/include/OpenMS/DATASTRUCTURES/DefaultParamHandler.h index 799506f13bf..a27a628edf0 100644 --- a/src/openms/include/OpenMS/DATASTRUCTURES/DefaultParamHandler.h +++ b/src/openms/include/OpenMS/DATASTRUCTURES/DefaultParamHandler.h @@ -155,7 +155,11 @@ namespace OpenMS */ virtual void updateMembers_(); - ///Updates the parameters after the defaults have been set in the constructor + /** + @brief Updates the parameters after the defaults have been set in the constructor + + Also calls updateMembers_(). + */ void defaultsToParam_(); ///Container for current parameters @@ -182,16 +186,16 @@ namespace OpenMS @brief If this member is set to false no checking if parameters in done; The only reason to set this member to false is that the derived class has no parameters! -However, if a grand-child has defaults and you are using a base class cast, checking will -not be done when casting back to grand-child. To just omit the warning, use 'warn_empty_defaults_' + However, if a grand-child has defaults and you are using a base class cast, checking will + not be done when casting back to grand-child. To just omit the warning, use 'warn_empty_defaults_' */ bool check_defaults_; /** - @brief If this member is set to false no warning is emitted when defaults are empty; + @brief If this member is set to false no warning is emitted when defaults are empty; - The only reason to set this member to false is that the derived class has no parameters! - @see check_defaults_ + The only reason to set this member to false is that the derived class has no parameters! + @see check_defaults_ */ bool warn_empty_defaults_; @@ -202,4 +206,3 @@ not be done when casting back to grand-child. To just omit the warning, use 'war }; //class } // namespace OPENMS - diff --git a/src/openms/include/OpenMS/DATASTRUCTURES/FASTAContainer.h b/src/openms/include/OpenMS/DATASTRUCTURES/FASTAContainer.h index 684edaa9d68..87691cd5666 100644 --- a/src/openms/include/OpenMS/DATASTRUCTURES/FASTAContainer.h +++ b/src/openms/include/OpenMS/DATASTRUCTURES/FASTAContainer.h @@ -350,6 +350,13 @@ class DecoyHelper bool is_prefix; ///< on success, was it a prefix or suffix }; + // decoy strings + inline static const std::vector affixes = { "decoy", "dec", "reverse", "rev", "reversed", "__id_decoy", "xxx", "shuffled", "shuffle", "pseudo", "random" }; + + // setup prefix- and suffix regex strings + inline static const std::string regexstr_prefix = std::string("^(") + ListUtils::concatenate(affixes, "_*|") + "_*)"; + inline static const std::string regexstr_suffix = std::string("(_") + ListUtils::concatenate(affixes, "*|_") + ")$"; + /** @brief Heuristic to determine the decoy string given a set of protein names @@ -362,17 +369,12 @@ class DecoyHelper { // common decoy strings in FASTA files // note: decoy prefixes/suffices must be provided in lower case - static const std::vector affixes{ "decoy", "dec", "reverse", "rev", "reversed", "__id_decoy", "xxx", "shuffled", "shuffle", "pseudo", "random" }; // map decoys to counts of occurrences as prefix/suffix DecoyStringToAffixCount decoy_count; // map case insensitive strings back to original case (as used in fasta) CaseInsensitiveToCaseSensitiveDecoy decoy_case_sensitive; - // setup prefix- and suffix regex strings - const std::string regexstr_prefix = std::string("^(") + ListUtils::concatenate(affixes, "_*|") + "_*)"; - const std::string regexstr_suffix = std::string("(_") + ListUtils::concatenate(affixes, "*|_") + ")$"; - // setup regexes const boost::regex pattern_prefix(regexstr_prefix); const boost::regex pattern_suffix(regexstr_suffix); diff --git a/src/openms/include/OpenMS/DATASTRUCTURES/ListUtils.h b/src/openms/include/OpenMS/DATASTRUCTURES/ListUtils.h index ce57ed4e6b1..9c283d305a8 100644 --- a/src/openms/include/OpenMS/DATASTRUCTURES/ListUtils.h +++ b/src/openms/include/OpenMS/DATASTRUCTURES/ListUtils.h @@ -93,7 +93,7 @@ namespace OpenMS @param value The value to test. @return true if \| @p value - @p target \| \< @p tolerance, false otherwise. */ - inline bool operator()(const double& value) + inline bool operator()(const double& value) const { return std::fabs(value - target_) < tolerance_; } diff --git a/src/openms/include/OpenMS/DATASTRUCTURES/MassExplainer.h b/src/openms/include/OpenMS/DATASTRUCTURES/MassExplainer.h index f7516723abd..8248f54bd3c 100644 --- a/src/openms/include/OpenMS/DATASTRUCTURES/MassExplainer.h +++ b/src/openms/include/OpenMS/DATASTRUCTURES/MassExplainer.h @@ -120,7 +120,7 @@ namespace OpenMS protected: ///check if the generated compomer is valid judged by its probability, charges etc - bool compomerValid_(const Compomer& cmp); + bool compomerValid_(const Compomer& cmp) const; /// create a proper adduct from formula and charge and probability Adduct createAdduct_(const String& formula, const Int charge, const double p) const; diff --git a/src/openms/include/OpenMS/DATASTRUCTURES/OSWData.h b/src/openms/include/OpenMS/DATASTRUCTURES/OSWData.h index a76d82a763b..e3ff84068ef 100644 --- a/src/openms/include/OpenMS/DATASTRUCTURES/OSWData.h +++ b/src/openms/include/OpenMS/DATASTRUCTURES/OSWData.h @@ -310,6 +310,12 @@ namespace OpenMS transitions_.emplace(tr.getID(), tr); } + void addTransition(OSWTransition&& tr) + { + UInt32 id = tr.getID(); + transitions_.emplace(id, std::move(tr)); + } + /// Adds a protein, which has all its subcomponents already populated /// All transition references internally are checked to make sure /// they are valid. diff --git a/src/openms/include/OpenMS/DATASTRUCTURES/Param.h b/src/openms/include/OpenMS/DATASTRUCTURES/Param.h index bcfdded3b5c..7cccbd8902d 100644 --- a/src/openms/include/OpenMS/DATASTRUCTURES/Param.h +++ b/src/openms/include/OpenMS/DATASTRUCTURES/Param.h @@ -571,10 +571,17 @@ namespace OpenMS It is only checked in checkDefaults(). @exception Exception::InvalidParameter is thrown, if one of the strings contains a comma character - @exception Exception::ElementNotFound exception is thrown, if the parameter is no string parameter + @exception Exception::ElementNotFound exception is thrown, if the parameter is no string/stringlist parameter */ void setValidStrings(const std::string& key, const std::vector& strings); + /** + @brief Gets he valid strings for the parameter @p key. + + @exception Exception::ElementNotFound exception is thrown, if the parameter is no string/stringlist parameter + */ + const std::vector& getValidStrings(const std::string& key) const; + /** @brief Sets the minimum value for the integer or integer list parameter @p key. diff --git a/src/openms/include/OpenMS/DATASTRUCTURES/QTCluster.h b/src/openms/include/OpenMS/DATASTRUCTURES/QTCluster.h index 972955a4059..7a2bfc1bf95 100644 --- a/src/openms/include/OpenMS/DATASTRUCTURES/QTCluster.h +++ b/src/openms/include/OpenMS/DATASTRUCTURES/QTCluster.h @@ -251,7 +251,7 @@ namespace OpenMS Size size() const; /// Compare by quality - bool operator<(const QTCluster& cluster); + bool operator<(const QTCluster& cluster) const; /** * @brief Adds a new element/neighbor to the cluster @@ -367,6 +367,4 @@ namespace OpenMS bool finalized_; }; - // needed for the heap - bool operator<(const QTCluster& q1, const QTCluster& q2); } // namespace OpenMS diff --git a/src/openms/include/OpenMS/DATASTRUCTURES/String.h b/src/openms/include/OpenMS/DATASTRUCTURES/String.h index 1a742fc4687..e244a4a83fc 100644 --- a/src/openms/include/OpenMS/DATASTRUCTURES/String.h +++ b/src/openms/include/OpenMS/DATASTRUCTURES/String.h @@ -472,15 +472,13 @@ namespace OpenMS return; } - std::string::operator=(* first); + std::string::operator=(*first); for (StringIterator it = ++first; it != last; ++it) { std::string::operator+=(glue + (*it)); } } - }; - OPENMS_DLLAPI ::size_t hash_value(OpenMS::String const& s); } // namespace OpenMS diff --git a/src/openms/include/OpenMS/DATASTRUCTURES/StringListUtils.h b/src/openms/include/OpenMS/DATASTRUCTURES/StringListUtils.h index 008d119ee50..75561140bdb 100644 --- a/src/openms/include/OpenMS/DATASTRUCTURES/StringListUtils.h +++ b/src/openms/include/OpenMS/DATASTRUCTURES/StringListUtils.h @@ -181,7 +181,7 @@ namespace OpenMS if (trim_) target_.trim(); } - inline String getValue(const String& value) + inline String getValue(const String& value) const { if (trim_) { diff --git a/src/openms/include/OpenMS/DATASTRUCTURES/StringUtils.h b/src/openms/include/OpenMS/DATASTRUCTURES/StringUtils.h index db777b3e5ea..3341fd22730 100644 --- a/src/openms/include/OpenMS/DATASTRUCTURES/StringUtils.h +++ b/src/openms/include/OpenMS/DATASTRUCTURES/StringUtils.h @@ -193,27 +193,27 @@ namespace OpenMS namespace StringUtils { - static String number(double d, UInt n) + [[maybe_unused]] static String number(double d, UInt n) { return QString::number(d, 'f', n); } - static QString toQString(const String & this_s) + [[maybe_unused]] static QString toQString(const String & this_s) { return QString(this_s.c_str()); } - static Int toInt(const String & this_s) + [[maybe_unused]] static Int toInt(const String & this_s) { return StringUtilsHelper::toInt(this_s); } - static float toFloat(const String & this_s) + [[maybe_unused]] static float toFloat(const String & this_s) { return StringUtilsHelper::toFloat(this_s); } - static double toDouble(const String & this_s) + [[maybe_unused]] static double toDouble(const String & this_s) { return StringUtilsHelper::toDouble(this_s); } diff --git a/src/openms/include/OpenMS/DATASTRUCTURES/StringUtilsSimple.h b/src/openms/include/OpenMS/DATASTRUCTURES/StringUtilsSimple.h index b1c8ed1147c..422d9d0463e 100644 --- a/src/openms/include/OpenMS/DATASTRUCTURES/StringUtilsSimple.h +++ b/src/openms/include/OpenMS/DATASTRUCTURES/StringUtilsSimple.h @@ -562,7 +562,7 @@ namespace OpenMS static inline String& firstToUpper(String & this_s) { - if (this_s.size() != 0) + if (!this_s.empty()) { this_s[0] = toupper(this_s[0]); } diff --git a/src/openms/include/OpenMS/FILTERING/CALIBRATION/InternalCalibration.h b/src/openms/include/OpenMS/FILTERING/CALIBRATION/InternalCalibration.h index 74f97e22673..362a9c2b85e 100644 --- a/src/openms/include/OpenMS/FILTERING/CALIBRATION/InternalCalibration.h +++ b/src/openms/include/OpenMS/FILTERING/CALIBRATION/InternalCalibration.h @@ -68,7 +68,7 @@ namespace OpenMS InternalCalibration(); /// Destructor - ~InternalCalibration(){} + ~InternalCalibration() override{} /// helper class, describing a lock mass struct LockMass diff --git a/src/openms/include/OpenMS/FILTERING/CALIBRATION/TOFCalibration.h b/src/openms/include/OpenMS/FILTERING/CALIBRATION/TOFCalibration.h index 3e92059e978..1bb06a4ee6d 100644 --- a/src/openms/include/OpenMS/FILTERING/CALIBRATION/TOFCalibration.h +++ b/src/openms/include/OpenMS/FILTERING/CALIBRATION/TOFCalibration.h @@ -178,7 +178,7 @@ namespace OpenMS } /// Calculate the mass value for a given flight time using the averaged coefficients of the quadratic fit. - inline double mQAv_(double ft) + inline double mQAv_(double ft) const { return a_ + ft * b_ + ft * ft * c_; } diff --git a/src/openms/include/OpenMS/FILTERING/DATAREDUCTION/ElutionPeakDetection.h b/src/openms/include/OpenMS/FILTERING/DATAREDUCTION/ElutionPeakDetection.h index afbe4284319..2442d250a4f 100644 --- a/src/openms/include/OpenMS/FILTERING/DATAREDUCTION/ElutionPeakDetection.h +++ b/src/openms/include/OpenMS/FILTERING/DATAREDUCTION/ElutionPeakDetection.h @@ -142,7 +142,7 @@ namespace OpenMS * */ void findLocalExtrema(const MassTrace& tr, const Size& num_neighboring_peaks, - std::vector& chrom_maxes, std::vector& chrom_mins); + std::vector& chrom_maxes, std::vector& chrom_mins) const; /// adds smoothed_intensities to internal data of @p mt void smoothData(MassTrace& mt, int win_size) const; diff --git a/src/openms/include/OpenMS/FILTERING/DATAREDUCTION/FeatureFindingMetabo.h b/src/openms/include/OpenMS/FILTERING/DATAREDUCTION/FeatureFindingMetabo.h index bbc6c384df2..d4b7466b04e 100644 --- a/src/openms/include/OpenMS/FILTERING/DATAREDUCTION/FeatureFindingMetabo.h +++ b/src/openms/include/OpenMS/FILTERING/DATAREDUCTION/FeatureFindingMetabo.h @@ -42,7 +42,8 @@ #include #include -#include + +struct svm_model; namespace OpenMS { diff --git a/src/openms/include/OpenMS/FILTERING/ID/IDFilter.h b/src/openms/include/OpenMS/FILTERING/ID/IDFilter.h index d71a1d023e3..e04bf17eb1b 100644 --- a/src/openms/include/OpenMS/FILTERING/ID/IDFilter.h +++ b/src/openms/include/OpenMS/FILTERING/ID/IDFilter.h @@ -38,6 +38,7 @@ #include #include #include +#include #include #include #include @@ -1377,14 +1378,58 @@ namespace OpenMS /// @name Filter functions for class IdentificationData ///@{ - static void keepBestMatchPerQuery( + + /*! + @brief Helper function for filtering observation matches (e.g. PSMs) in IdentificationData + + Depending on parameter @p cleanup_affected, the data structure may be cleaned up (IdentificationData::cleanup) to remove any invalidated references at the end of this operation. + + @param id_data Data to be filtered + @param func Functor that returns true for items to be removed + @param cleanup_affected Will filtering invalidate other parts of @p id_data that need to be cleaned up? + */ + template + static void filterObservationMatchesByFunctor( + IdentificationData& id_data, PredicateType&& func, bool cleanup_affected = false) + { + id_data.removeFromSetIf_(id_data.observation_matches_, func); + if (cleanup_affected) id_data.cleanup(); + } + + /*! + @brief Filter IdentificationData to keep only the best match (e.g. PSM) for each observation (e.g. spectrum) + + The data structure will be cleaned up (IdentificationData::cleanup) to remove any invalidated references at the end of this operation. + + @see IdentificationData::getBestMatchPerObservation + + @param id_data Data to be filtered + @param score_ref Reference to the score type defining "best" matches + */ + static void keepBestMatchPerObservation( IdentificationData& id_data, IdentificationData::ScoreTypeRef score_ref); - static void filterQueryMatchesByScore( + /*! + @brief Filter observation matches (e.g. PSMs) in IdentificationData by score + + Matches with scores of the required type that are worse than the cut-off are removed. + Matches without a score of the required type are also removed. + The data structure will be cleaned up (IdentificationData::cleanup) to remove any invalidated references at the end of this operation. + + @param id_data Data to be filtered + @param score_ref Reference to the score type used for filtering + @param cutoff Score cut-off for filtering + */ + static void filterObservationMatchesByScore( IdentificationData& id_data, IdentificationData::ScoreTypeRef score_ref, double cutoff); + /*! + @brief Filter IdentificationData to remove parent sequences annotated as decoys + + If any were removed, the data structure will be cleaned up (IdentificationData::cleanup) to remove any invalidated references at the end of this operation. + */ static void removeDecoys(IdentificationData& id_data); ///@} diff --git a/src/openms/include/OpenMS/FILTERING/TRANSFORMERS/LinearResampler.h b/src/openms/include/OpenMS/FILTERING/TRANSFORMERS/LinearResampler.h index 2fc15e581f6..aa1577a24ac 100644 --- a/src/openms/include/OpenMS/FILTERING/TRANSFORMERS/LinearResampler.h +++ b/src/openms/include/OpenMS/FILTERING/TRANSFORMERS/LinearResampler.h @@ -81,7 +81,7 @@ namespace OpenMS /** @brief Applies the resampling algorithm to an MSSpectrum. */ - void raster(MSSpectrum& spectrum) + void raster(MSSpectrum& spectrum) const { //return if nothing to do if (spectrum.empty()) return; diff --git a/src/openms/include/OpenMS/FILTERING/TRANSFORMERS/ParentPeakMower.h b/src/openms/include/OpenMS/FILTERING/TRANSFORMERS/ParentPeakMower.h index 11f39880182..46b975a53b1 100644 --- a/src/openms/include/OpenMS/FILTERING/TRANSFORMERS/ParentPeakMower.h +++ b/src/openms/include/OpenMS/FILTERING/TRANSFORMERS/ParentPeakMower.h @@ -38,7 +38,7 @@ #include #include #include - +#include #include namespace OpenMS diff --git a/src/openms/include/OpenMS/FILTERING/TRANSFORMERS/SpectraMerger.h b/src/openms/include/OpenMS/FILTERING/TRANSFORMERS/SpectraMerger.h index bdf4a31f77b..8f95a86abfe 100644 --- a/src/openms/include/OpenMS/FILTERING/TRANSFORMERS/SpectraMerger.h +++ b/src/openms/include/OpenMS/FILTERING/TRANSFORMERS/SpectraMerger.h @@ -566,7 +566,7 @@ namespace OpenMS Size spec_a = consensus_spec.size(), spec_b = exp[*sit].size(), align_size = alignment.size(); for (auto pit = exp[*sit].begin(); pit != exp[*sit].end(); ++pit) { - if (alignment.size() == 0 || alignment[align_index].second != spec_b_index) + if (alignment.empty() || alignment[align_index].second != spec_b_index) // ... add unaligned peak { consensus_spec.push_back(*pit); @@ -577,7 +577,7 @@ namespace OpenMS Size counter(0); Size copy_of_align_index(align_index); - while (alignment.size() > 0 && + while (!alignment.empty() && copy_of_align_index < alignment.size() && alignment[copy_of_align_index].second == spec_b_index) { @@ -585,7 +585,7 @@ namespace OpenMS ++counter; } // Count the number of peaks in a which correspond to a single b peak. - while (alignment.size() > 0 && + while (!alignment.empty() && align_index < alignment.size() && alignment[align_index].second == spec_b_index) { diff --git a/src/openms/include/OpenMS/FORMAT/AbsoluteQuantitationMethodFile.h b/src/openms/include/OpenMS/FORMAT/AbsoluteQuantitationMethodFile.h index 7f617c483b2..4e7687dbd1c 100644 --- a/src/openms/include/OpenMS/FORMAT/AbsoluteQuantitationMethodFile.h +++ b/src/openms/include/OpenMS/FORMAT/AbsoluteQuantitationMethodFile.h @@ -54,7 +54,7 @@ namespace OpenMS ///Default constructor AbsoluteQuantitationMethodFile() = default; ///Destructor - ~AbsoluteQuantitationMethodFile() = default; + ~AbsoluteQuantitationMethodFile() override = default; /** @brief Loads an AbsoluteQuantitationMethod file. diff --git a/src/openms/include/OpenMS/FORMAT/Base64.h b/src/openms/include/OpenMS/FORMAT/Base64.h index 490967e5e96..12c7a3223d8 100644 --- a/src/openms/include/OpenMS/FORMAT/Base64.h +++ b/src/openms/include/OpenMS/FORMAT/Base64.h @@ -350,7 +350,7 @@ namespace OpenMS void Base64::decodeCompressed_(const String & in, ByteOrder from_byte_order, std::vector & out) { out.clear(); - if (in == "") return; + if (in.empty()) return; const Size element_size = sizeof(ToType); @@ -645,7 +645,7 @@ namespace OpenMS void Base64::decodeIntegersCompressed_(const String & in, ByteOrder from_byte_order, std::vector & out) { out.clear(); - if (in == "") + if (in.empty()) return; void * byte_buffer; diff --git a/src/openms/include/OpenMS/FORMAT/ControlledVocabulary.h b/src/openms/include/OpenMS/FORMAT/ControlledVocabulary.h index b85554fbe1e..e88f3af3829 100644 --- a/src/openms/include/OpenMS/FORMAT/ControlledVocabulary.h +++ b/src/openms/include/OpenMS/FORMAT/ControlledVocabulary.h @@ -115,6 +115,15 @@ namespace OpenMS /// Returns the CV name (set in the load method) const String& name() const; + /// Returns the CV label (set in the load method) + const String& label() const; + + /// Returns the CV version (set in the load method) + const String& version() const; + + /// Returns the CV url (set in the load method) + const String& url() const; + /** @brief Loads the CV from an OBO file @@ -213,14 +222,20 @@ namespace OpenMS If the term is not known, 'true' is returned! */ - bool checkName_(const String& id, const String& name, bool ignore_case = true); + bool checkName_(const String& id, const String& name, bool ignore_case = true) const; - ///Map from ID to CVTerm + /// Map from ID to CVTerm Map terms_; - ///Map from name to id + /// Map from name to id Map namesToIds_; - ///Name set in the load method + /// Name set in the load method String name_; + /// CV label + String label_; + /// CV version + String version_; + /// CV URL + String url_; }; ///Print the contents to a stream. diff --git a/src/openms/include/OpenMS/FORMAT/DTA2DFile.h b/src/openms/include/OpenMS/FORMAT/DTA2DFile.h index 79c46d4b24a..93a883cd449 100644 --- a/src/openms/include/OpenMS/FORMAT/DTA2DFile.h +++ b/src/openms/include/OpenMS/FORMAT/DTA2DFile.h @@ -73,7 +73,7 @@ namespace OpenMS /// Default constructor DTA2DFile(); /// Destructor - ~DTA2DFile(); + ~DTA2DFile() override; //@} /// Mutable access to the options for loading/storing diff --git a/src/openms/include/OpenMS/FORMAT/FASTAFile.h b/src/openms/include/OpenMS/FORMAT/FASTAFile.h index 8a8d2f32b37..1f3965ceb5f 100644 --- a/src/openms/include/OpenMS/FORMAT/FASTAFile.h +++ b/src/openms/include/OpenMS/FORMAT/FASTAFile.h @@ -119,7 +119,7 @@ namespace OpenMS FASTAFile() = default; /// Destructor - virtual ~FASTAFile() = default; + ~FASTAFile() override = default; /** @brief Prepares a FASTA file given by 'filename' for streamed reading using readNext(). diff --git a/src/openms/include/OpenMS/FORMAT/FileTypes.h b/src/openms/include/OpenMS/FORMAT/FileTypes.h index a597bdf1a9d..4d6527e9109 100644 --- a/src/openms/include/OpenMS/FORMAT/FileTypes.h +++ b/src/openms/include/OpenMS/FORMAT/FileTypes.h @@ -111,6 +111,7 @@ namespace OpenMS SPECXML, ///< xQuest XML file format for matched spectra for spectra visualization in the xQuest results manager (.spec.xml) JSON, ///< JavaScript Object Notation file (.json) RAW, ///< Thermo Raw File (.raw) + OMS, ///< OpenMS database file EXE, ///< Executable (.exe) XML, ///< any XML format BZ2, ///< any BZ2 compressed file diff --git a/src/openms/include/OpenMS/FORMAT/GNPSMGFFile.h b/src/openms/include/OpenMS/FORMAT/GNPSMGFFile.h new file mode 100644 index 00000000000..93b0f3b06c9 --- /dev/null +++ b/src/openms/include/OpenMS/FORMAT/GNPSMGFFile.h @@ -0,0 +1,70 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Dorrestein Lab - University of California San Diego - https://dorresteinlab.ucsd.edu/$ +// $Authors: Abinesh Sarvepalli and Louis Felix Nothias$ +// $Contributors: Fabian Aicheler and Oliver Alka from Oliver Kohlbacher's group at Tubingen University$ + +#pragma once + +#include +#include +#include + +namespace OpenMS +{ + class OPENMS_DLLAPI GNPSMGFFile : + public DefaultParamHandler, + public ProgressLogger + { + public: + // default c'tor + GNPSMGFFile(); + + // see GNPSExport tool documentation + /** + * @brief Create file for GNPS molecular networking. + * @param consensus_file_path path to consensusXML with spectrum references + * @param mzml_file_paths path to mzML files referenced in consensusXML. Used to extract spectra as MGF. + * @param out MGF file with MS2 peak data for molecular networking. + */ + void run(const String& consensus_file_path, const StringList& mzml_file_paths, const String& out) const; + + private: + static constexpr double DEF_COSINE_SIMILARITY = 0.9; + static constexpr double DEF_MERGE_BIN_SIZE = static_cast(BinnedSpectrum::DEFAULT_BIN_WIDTH_HIRES); + +// static constexpr double DEF_PREC_MASS_TOL = 0.5; +// static constexpr bool DEF_PREC_MASS_TOL_ISPPM = false; + + static constexpr int DEF_PEPT_CUTOFF = 5; + static constexpr int DEF_MSMAP_CACHE = 50; + }; +} diff --git a/src/openms/include/OpenMS/FORMAT/HANDLERS/AcqusHandler.h b/src/openms/include/OpenMS/FORMAT/HANDLERS/AcqusHandler.h index 3b96f073836..d4cc6cef1a5 100644 --- a/src/openms/include/OpenMS/FORMAT/HANDLERS/AcqusHandler.h +++ b/src/openms/include/OpenMS/FORMAT/HANDLERS/AcqusHandler.h @@ -68,13 +68,13 @@ namespace OpenMS virtual ~AcqusHandler(); /// Conversion from index to MZ ratio using internal calibration params - double getPosition(Size index); + double getPosition(Size index) const; /// Read param as string String getParam(const String & param); /// Get size of spectrum - Size getSize(); + Size getSize() const; private: /// Private default constructor diff --git a/src/openms/include/OpenMS/FORMAT/HANDLERS/CachedMzMLHandler.h b/src/openms/include/OpenMS/FORMAT/HANDLERS/CachedMzMLHandler.h index e8c3d46f460..999cea9abd4 100644 --- a/src/openms/include/OpenMS/FORMAT/HANDLERS/CachedMzMLHandler.h +++ b/src/openms/include/OpenMS/FORMAT/HANDLERS/CachedMzMLHandler.h @@ -87,7 +87,7 @@ namespace Internal CachedMzMLHandler(); /// Default destructor - ~CachedMzMLHandler(); + ~CachedMzMLHandler() override; /// Assignment operator CachedMzMLHandler& operator=(const CachedMzMLHandler& rhs); diff --git a/src/openms/include/OpenMS/FORMAT/HANDLERS/FeatureXMLHandler.h b/src/openms/include/OpenMS/FORMAT/HANDLERS/FeatureXMLHandler.h index a4285229279..cd9ab44d5d1 100644 --- a/src/openms/include/OpenMS/FORMAT/HANDLERS/FeatureXMLHandler.h +++ b/src/openms/include/OpenMS/FORMAT/HANDLERS/FeatureXMLHandler.h @@ -102,7 +102,7 @@ namespace OpenMS size_only_ = size_only; } - Size getSize() + Size getSize() const { return expected_size_; } diff --git a/src/openms/include/OpenMS/FORMAT/HANDLERS/FidHandler.h b/src/openms/include/OpenMS/FORMAT/HANDLERS/FidHandler.h index e824065cf33..090a74fd7d5 100644 --- a/src/openms/include/OpenMS/FORMAT/HANDLERS/FidHandler.h +++ b/src/openms/include/OpenMS/FORMAT/HANDLERS/FidHandler.h @@ -65,7 +65,7 @@ namespace OpenMS ~FidHandler() override; /// Get index of current position (without position moving). - Size getIndex(); + Size getIndex() const; /// Get intensity of current position and move to next position. Size getIntensity(); diff --git a/src/openms/include/OpenMS/FORMAT/HANDLERS/MzMLHandler.h b/src/openms/include/OpenMS/FORMAT/HANDLERS/MzMLHandler.h index 51c1512c23b..5524cec66f9 100644 --- a/src/openms/include/OpenMS/FORMAT/HANDLERS/MzMLHandler.h +++ b/src/openms/include/OpenMS/FORMAT/HANDLERS/MzMLHandler.h @@ -188,10 +188,10 @@ namespace OpenMS //@} /// handler which support partial loading, implement this method - virtual LOADDETAIL getLoadDetail() const override; + LOADDETAIL getLoadDetail() const override; /// handler which support partial loading, implement this method - virtual void setLoadDetail(const LOADDETAIL d) override; + void setLoadDetail(const LOADDETAIL d) override; protected: diff --git a/src/openms/include/OpenMS/FORMAT/HANDLERS/MzMLSpectrumDecoder.h b/src/openms/include/OpenMS/FORMAT/HANDLERS/MzMLSpectrumDecoder.h index 10e6196c278..dfd14cc5802 100644 --- a/src/openms/include/OpenMS/FORMAT/HANDLERS/MzMLSpectrumDecoder.h +++ b/src/openms/include/OpenMS/FORMAT/HANDLERS/MzMLSpectrumDecoder.h @@ -76,11 +76,11 @@ namespace OpenMS @todo Duplicated code from MzMLHandler, need to clean up see MzMLHandler::fillData_() */ - OpenMS::Interfaces::SpectrumPtr decodeBinaryDataSpectrum_(std::vector & data); + OpenMS::Interfaces::SpectrumPtr decodeBinaryDataSpectrum_(std::vector & data) const; - void decodeBinaryDataMSSpectrum_(std::vector& data, OpenMS::MSSpectrum& s); + void decodeBinaryDataMSSpectrum_(std::vector& data, OpenMS::MSSpectrum& s) const; - void decodeBinaryDataMSChrom_(std::vector& data, OpenMS::MSChromatogram& c); + void decodeBinaryDataMSChrom_(std::vector& data, OpenMS::MSChromatogram& c) const; /** @brief decode binary data @@ -88,7 +88,7 @@ namespace OpenMS @todo Duplicated code from MzMLHandler, need to clean up see MzMLHandler::fillData_() */ - OpenMS::Interfaces::ChromatogramPtr decodeBinaryDataChrom_(std::vector & data); + OpenMS::Interfaces::ChromatogramPtr decodeBinaryDataChrom_(std::vector & data) const; /** @brief Convert a single DOMNode of type binaryDataArray to BinaryData object. diff --git a/src/openms/include/OpenMS/FORMAT/HANDLERS/MzXMLHandler.h b/src/openms/include/OpenMS/FORMAT/HANDLERS/MzXMLHandler.h index 1c975852fd7..4f44d93aa64 100644 --- a/src/openms/include/OpenMS/FORMAT/HANDLERS/MzXMLHandler.h +++ b/src/openms/include/OpenMS/FORMAT/HANDLERS/MzXMLHandler.h @@ -80,10 +80,10 @@ namespace OpenMS //@} /// handler which support partial loading, implement this method - virtual LOADDETAIL getLoadDetail() const override; + LOADDETAIL getLoadDetail() const override; /// handler which support partial loading, implement this method - virtual void setLoadDetail(const LOADDETAIL d) override; + void setLoadDetail(const LOADDETAIL d) override; // Docu in base class void endElement(const XMLCh* const uri, const XMLCh* const local_name, const XMLCh* const qname) override; @@ -104,7 +104,7 @@ namespace OpenMS } ///Gets the scan count - UInt getScanCount() + UInt getScanCount() const { return scan_count_; } diff --git a/src/openms/include/OpenMS/FORMAT/HANDLERS/XMLHandler.h b/src/openms/include/OpenMS/FORMAT/HANDLERS/XMLHandler.h index 6a2a0a5b33b..cec6fc94f24 100644 --- a/src/openms/include/OpenMS/FORMAT/HANDLERS/XMLHandler.h +++ b/src/openms/include/OpenMS/FORMAT/HANDLERS/XMLHandler.h @@ -421,7 +421,7 @@ namespace OpenMS /// throws a ParseError if protIDs are not unique, i.e. PeptideIDs will be randomly assigned (bad!) /// Should be called before writing any ProtIDs to file - void checkUniqueIdentifiers_(const std::vector& prot_ids); + void checkUniqueIdentifiers_(const std::vector& prot_ids) const; protected: /// Error message of the last error @@ -575,7 +575,7 @@ namespace OpenMS inline DateTime asDateTime_(String date_string) const { DateTime date_time; - if (date_string != "") + if (!date_string.empty()) { try { diff --git a/src/openms/include/OpenMS/FORMAT/HANDLERS/XQuestResultXMLHandler.h b/src/openms/include/OpenMS/FORMAT/HANDLERS/XQuestResultXMLHandler.h index c455acd1dc4..7d8e9a2849b 100644 --- a/src/openms/include/OpenMS/FORMAT/HANDLERS/XQuestResultXMLHandler.h +++ b/src/openms/include/OpenMS/FORMAT/HANDLERS/XQuestResultXMLHandler.h @@ -97,7 +97,7 @@ namespace OpenMS UInt getNumberOfHits() const; //Docu in base class - virtual void writeTo(std::ostream& os) override; + void writeTo(std::ostream& os) override; // TODO move these to StringUtils? /** @@ -184,7 +184,7 @@ namespace OpenMS * @param xquest_datetime_string The DateTime String to be processed * @param date_time DateTime that reflects the value given in the `xquest_datetime_string` */ - inline void extractDateTime_(const String & xquest_datetime_string, DateTime & date_time); + inline void extractDateTime_(const String & xquest_datetime_string, DateTime & date_time) const; /** * @brief Assigns all meta values stored in the peptide_id_attributes diff --git a/src/openms/include/OpenMS/FORMAT/LibSVMEncoder.h b/src/openms/include/OpenMS/FORMAT/LibSVMEncoder.h index 2ab018324f7..fc1783642d5 100644 --- a/src/openms/include/OpenMS/FORMAT/LibSVMEncoder.h +++ b/src/openms/include/OpenMS/FORMAT/LibSVMEncoder.h @@ -37,11 +37,14 @@ #include #include #include -#include #include #include +struct svm_problem; +struct svm_parameter; +struct svm_model; + namespace OpenMS { /** @@ -56,9 +59,9 @@ namespace OpenMS { public: /// Constructor - LibSVMEncoder(); + LibSVMEncoder() = default; /// Destructor - ~LibSVMEncoder(); + ~LibSVMEncoder() = default; /** @brief stores a composition vector of 'sequence' in 'encoded_vector' diff --git a/src/openms/include/OpenMS/FORMAT/MRMFeaturePickerFile.h b/src/openms/include/OpenMS/FORMAT/MRMFeaturePickerFile.h index 622a1d24c49..b1d65e160f3 100644 --- a/src/openms/include/OpenMS/FORMAT/MRMFeaturePickerFile.h +++ b/src/openms/include/OpenMS/FORMAT/MRMFeaturePickerFile.h @@ -65,7 +65,7 @@ namespace OpenMS /// Constructor MRMFeaturePickerFile() = default; /// Destructor - ~MRMFeaturePickerFile() = default; + ~MRMFeaturePickerFile() override = default; /** @brief Loads the file's data and saves it into vectors of `ComponentParams` and `ComponentGroupParams`. diff --git a/src/openms/include/OpenMS/FORMAT/MRMFeatureQCFile.h b/src/openms/include/OpenMS/FORMAT/MRMFeatureQCFile.h index 8fb49315917..3f2c2f35cd0 100644 --- a/src/openms/include/OpenMS/FORMAT/MRMFeatureQCFile.h +++ b/src/openms/include/OpenMS/FORMAT/MRMFeatureQCFile.h @@ -56,7 +56,7 @@ namespace OpenMS /// Default constructor MRMFeatureQCFile() = default; /// Destructor - ~MRMFeatureQCFile() = default; + ~MRMFeatureQCFile() override = default; /** @brief Loads an MRMFeatureQC file. diff --git a/src/openms/include/OpenMS/FORMAT/MS2File.h b/src/openms/include/OpenMS/FORMAT/MS2File.h index c6248105c9d..af50b013521 100644 --- a/src/openms/include/OpenMS/FORMAT/MS2File.h +++ b/src/openms/include/OpenMS/FORMAT/MS2File.h @@ -70,7 +70,7 @@ namespace OpenMS MS2File(); /// constructor - virtual ~MS2File(); + ~MS2File() override; template void load(const String & filename, MapType & exp) diff --git a/src/openms/include/OpenMS/FORMAT/MSPGenericFile.h b/src/openms/include/OpenMS/FORMAT/MSPGenericFile.h index 66eb6fb17a1..30394d4a0ce 100644 --- a/src/openms/include/OpenMS/FORMAT/MSPGenericFile.h +++ b/src/openms/include/OpenMS/FORMAT/MSPGenericFile.h @@ -75,7 +75,7 @@ namespace OpenMS MSPGenericFile(const String& filename, MSExperiment& library); /// Destructor - ~MSPGenericFile() = default; + ~MSPGenericFile() override = default; /// Get the class' default parameters void getDefaultParameters(Param& params); @@ -105,7 +105,7 @@ namespace OpenMS private: /// Overrides `DefaultParamHandler`'s method - void updateMembers_(); + void updateMembers_() override; /** Validate and add a spectrum to a spectral library diff --git a/src/openms/include/OpenMS/FORMAT/MascotGenericFile.h b/src/openms/include/OpenMS/FORMAT/MascotGenericFile.h index bf8bd950861..24d55266dbb 100644 --- a/src/openms/include/OpenMS/FORMAT/MascotGenericFile.h +++ b/src/openms/include/OpenMS/FORMAT/MascotGenericFile.h @@ -224,7 +224,7 @@ namespace OpenMS } else { - throw Exception::ParseError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Reached end of file. Found \"BEGIN IONS\" but not the corresponding \"END IONS\"!", ""); + throw Exception::ParseError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, R"(Reached end of file. Found "BEGIN IONS" but not the corresponding "END IONS"!)", ""); } } else if (line.hasPrefix("PEPMASS")) // parse precursor position @@ -289,7 +289,7 @@ namespace OpenMS std::vector split; if (line.split('=', split)) { - if (split[1] != "") spectrum.setMetaValue("TITLE", split[1]); + if (!split[1].empty()) spectrum.setMetaValue("TITLE", split[1]); } } } diff --git a/src/openms/include/OpenMS/FORMAT/MascotInfile.h b/src/openms/include/OpenMS/FORMAT/MascotInfile.h index 0dd4e10edec..b5486a1fbe1 100644 --- a/src/openms/include/OpenMS/FORMAT/MascotInfile.h +++ b/src/openms/include/OpenMS/FORMAT/MascotInfile.h @@ -64,7 +64,7 @@ namespace OpenMS MascotInfile(); /// constructor - virtual ~MascotInfile(); + ~MascotInfile() override; /// stores the peak list in a MascotInfile that can be used as input for MASCOT shell execution void store(const String & filename, const PeakSpectrum & spec, double mz, double retention_time, String search_title); @@ -108,7 +108,7 @@ namespace OpenMS spectrum.getPrecursors()[0].setIntensity(pre_int); spectrum.getPrecursors()[0].setCharge(charge); spectrum.setRT(rt); - if (title != "") + if (!title.empty()) { spectrum.setMetaValue("TITLE", title); title = ""; @@ -170,17 +170,17 @@ namespace OpenMS void setInstrument(const String & instrument); /// returns the number of allowed missed cleavages - UInt getMissedCleavages(); + UInt getMissedCleavages() const; /// sets the number of allowed missed cleavages (default: 1) void setMissedCleavages(UInt missed_cleavages); /// returns the precursor mass tolerance - float getPrecursorMassTolerance(); + float getPrecursorMassTolerance() const; /// sets the precursor mass tolerance in Da (default: 2.0) void setPrecursorMassTolerance(float precursor_mass_tolerance); /// returns the peak mass tolerance in Da - float getPeakMassTolerance(); + float getPeakMassTolerance() const; /// sets the peak mass tolerance in Da (default: 1.0) void setPeakMassTolerance(float ion_mass_tolerance); diff --git a/src/openms/include/OpenMS/FORMAT/MascotRemoteQuery.h b/src/openms/include/OpenMS/FORMAT/MascotRemoteQuery.h index 61fb3306827..b2c7ea6a68e 100644 --- a/src/openms/include/OpenMS/FORMAT/MascotRemoteQuery.h +++ b/src/openms/include/OpenMS/FORMAT/MascotRemoteQuery.h @@ -68,7 +68,7 @@ namespace OpenMS OPENMS_DLLAPI MascotRemoteQuery(QObject* parent = 0); /// destructor - OPENMS_DLLAPI virtual ~MascotRemoteQuery(); + OPENMS_DLLAPI ~MascotRemoteQuery() override ; //@} /// sets the query spectra, given in MGF file format @@ -93,7 +93,7 @@ namespace OpenMS OPENMS_DLLAPI const QByteArray& getMascotXMLDecoyResponse() const; protected: - OPENMS_DLLAPI virtual void updateMembers_(); + OPENMS_DLLAPI void updateMembers_() override ; public slots: @@ -102,7 +102,7 @@ public slots: private slots: /// slot connected to QTimer (timeout_) - OPENMS_DLLAPI void timedOut(); + OPENMS_DLLAPI void timedOut() const; /// slot connected to the QNetworkAccessManager::finished signal OPENMS_DLLAPI void readResponse(QNetworkReply* reply); diff --git a/src/openms/include/OpenMS/FORMAT/MzMLFile.h b/src/openms/include/OpenMS/FORMAT/MzMLFile.h index 23096be7947..8162cbd80f1 100644 --- a/src/openms/include/OpenMS/FORMAT/MzMLFile.h +++ b/src/openms/include/OpenMS/FORMAT/MzMLFile.h @@ -71,7 +71,7 @@ namespace OpenMS const PeakFileOptions& getOptions() const; /// set options for loading/storing - void setOptions(const PeakFileOptions &); + void setOptions(const PeakFileOptions&); /** @brief Loads a map from a MzML file. Spectra and chromatograms are sorted by default (this can be disabled using PeakFileOptions). @@ -222,5 +222,3 @@ namespace OpenMS }; } // namespace OpenMS - - diff --git a/src/openms/include/OpenMS/FORMAT/MzTab.h b/src/openms/include/OpenMS/FORMAT/MzTab.h index 6bdacbe8a3b..0102f67f2fe 100644 --- a/src/openms/include/OpenMS/FORMAT/MzTab.h +++ b/src/openms/include/OpenMS/FORMAT/MzTab.h @@ -35,19 +35,14 @@ #pragma once #include -#include +#include #include #include #include #include #include -#include - -#include -#include -#include -#include +#include #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wnon-virtual-dtor" @@ -62,259 +57,6 @@ namespace OpenMS @ingroup FileIO */ - /// MzTab supports null, NaN, Inf for cells with Integer or Double values. MzTabCellType explicitly defines the state of the cell for these types. - enum MzTabCellStateType - { - MZTAB_CELLSTATE_DEFAULT, - MZTAB_CELLSTATE_NULL, - MZTAB_CELLSTATE_NAN, - MZTAB_CELLSTATE_INF, - SIZE_OF_MZTAB_CELLTYPE - }; - - class OPENMS_DLLAPI MzTabDouble - { -public: - MzTabDouble(); - - explicit MzTabDouble(const double v); - - void set(const double& value); - - double get() const; - - String toCellString() const; - - void fromCellString(const String& s); - - bool isNull() const; - - void setNull(bool b); - - bool isNaN() const; - - void setNaN(); - - bool isInf() const; - - void setInf(); - - ~MzTabDouble() = default; -protected: - double value_; - MzTabCellStateType state_; - }; - - class OPENMS_DLLAPI MzTabDoubleList - { -public: - MzTabDoubleList() = default; - - bool isNull() const; - - void setNull(bool b); - - String toCellString() const; - - void fromCellString(const String& s); - - std::vector get() const; - - void set(const std::vector& entries); - - ~MzTabDoubleList() = default; -protected: - std::vector entries_; - }; - - class OPENMS_DLLAPI MzTabInteger - { -public: - MzTabInteger(); - - explicit MzTabInteger(const int v); - - void set(const Int& value); - - Int get() const; - - String toCellString() const; - - void fromCellString(const String& s); - - bool isNull() const; - - void setNull(bool b); - - bool isNaN() const; - - void setNaN(); - - bool isInf() const; - - void setInf(); - - ~MzTabInteger() = default; -protected: - Int value_; - MzTabCellStateType state_; - }; - - class OPENMS_DLLAPI MzTabIntegerList - { -public: - MzTabIntegerList() = default; - - bool isNull() const; - - void setNull(bool b); - - String toCellString() const; - - void fromCellString(const String& s); - - std::vector get() const; - - void set(const std::vector& entries); - - ~MzTabIntegerList() = default; -protected: - std::vector entries_; - }; - - class OPENMS_DLLAPI MzTabBoolean - { -public: - MzTabBoolean(); - - bool isNull() const; - - void setNull(bool b); - - explicit MzTabBoolean(bool v); - - void set(const bool& value); - - Int get() const; - - String toCellString() const; - - void fromCellString(const String& s); - - ~MzTabBoolean() = default; -protected: - int value_; - }; - - class OPENMS_DLLAPI MzTabString - { -public: - MzTabString(); - - explicit MzTabString(const String& s); - - bool isNull() const; - - void setNull(bool b); - - void set(const String& value); - - String get() const; - - String toCellString() const; - - void fromCellString(const String& s); - - ~MzTabString() = default; -protected: - String value_; - }; - - class OPENMS_DLLAPI MzTabParameter - { -public: - MzTabParameter(); - - bool isNull() const; - - void setNull(bool b); - - void setCVLabel(const String& CV_label); - - void setAccession(const String& accession); - - void setName(const String& name); - - void setValue(const String& value); - - String getCVLabel() const; - - String getAccession() const; - - String getName() const; - - String getValue() const; - - String toCellString() const; - - void fromCellString(const String& s); - - ~MzTabParameter() = default; -protected: - String CV_label_; - String accession_; - String name_; - String value_; - }; - - class OPENMS_DLLAPI MzTabParameterList - { -public: - MzTabParameterList() = default; - - bool isNull() const; - - void setNull(bool b); - - String toCellString() const; - - void fromCellString(const String& s); - - std::vector get() const; - - void set(const std::vector& parameters); - - ~MzTabParameterList() = default; -protected: - std::vector parameters_; - }; - - class OPENMS_DLLAPI MzTabStringList - { -public: - MzTabStringList(); - - bool isNull() const; - - void setNull(bool b); - - /// needed for e.g. ambiguity_members and GO accessions as these use ',' as separator while the others use '|' - void setSeparator(char sep); - - String toCellString() const; - - void fromCellString(const String& s); - - std::vector get() const; - - void set(const std::vector& entries); - - ~MzTabStringList() = default; -protected: - std::vector entries_; - char sep_; - }; - class OPENMS_DLLAPI MzTabModification { public: @@ -363,55 +105,7 @@ namespace OpenMS std::vector entries_; }; - class OPENMS_DLLAPI MzTabSpectraRef - { -public: - MzTabSpectraRef(); - - bool isNull() const; - - void setNull(bool b); - - void setMSFile(Size index); - - void setSpecRef(const String& spec_ref); - - String getSpecRef() const; - - Size getMSFile() const; - - void setSpecRefFile(const String& spec_ref); - - String toCellString() const; - - void fromCellString(const String& s); - - ~MzTabSpectraRef() = default; -protected: - Size ms_run_; //< number is specified in the meta data section. - String spec_ref_; - }; - // MTD - - struct OPENMS_DLLAPI MzTabSampleMetaData - { - MzTabString description; - std::map species; - std::map tissue; - std::map cell_type; - std::map disease; - std::map custom; - }; - - struct OPENMS_DLLAPI MzTabSoftwareMetaData - { - MzTabParameter software; - //TODO shouldn't settings always consist of the name of the setting - // and the value? - std::map setting; - }; - struct OPENMS_DLLAPI MzTabModificationMetaData { MzTabParameter modification; @@ -427,29 +121,6 @@ namespace OpenMS std::vector ms_run_ref; // adapted to address https://github.com/HUPO-PSI/mzTab/issues/26 }; - struct OPENMS_DLLAPI MzTabCVMetaData - { - MzTabString label; - MzTabString full_name; - MzTabString version; - MzTabString url; - }; - - struct OPENMS_DLLAPI MzTabInstrumentMetaData - { - MzTabParameter name; - MzTabParameter source; - std::map analyzer; - MzTabParameter detector; - }; - - struct OPENMS_DLLAPI MzTabContactMetaData - { - MzTabString name; - MzTabString affiliation; - MzTabString email; - }; - struct OPENMS_DLLAPI MzTabMSRunMetaData { MzTabParameter format; @@ -528,8 +199,6 @@ namespace OpenMS std::vector colunit_small_molecule; }; - typedef std::pair MzTabOptionalColumnEntry; //< column name (not null able), value (null able) - /// PRT - Protein section (Table based) struct OPENMS_DLLAPI MzTabProteinSectionRow { @@ -805,7 +474,7 @@ namespace OpenMS @ingroup FileIO */ - class OPENMS_DLLAPI MzTab + class OPENMS_DLLAPI MzTab : public MzTabBase { public: /// Default constructor @@ -1084,7 +753,7 @@ namespace OpenMS static std::map mapIDRunIdentifier2IDRunIndex_(const std::vector& prot_ids); - static boost::optional PSMSectionRowFromPeptideID_( + static std::optional PSMSectionRowFromPeptideID_( PeptideIdentification const& pid, std::vector const& prot_id, std::map& idrun_2_run_index, @@ -1161,31 +830,6 @@ namespace OpenMS std::set& peptide_id_user_value_keys, std::set& peptide_hit_user_value_keys); - - template - static void replaceWhiteSpaces_(ForwardIterator first, ForwardIterator last) - { - while (first!=last) - { - first->substitute(' ', '_'); - ++first; - } - } - - static void replaceWhiteSpaces_(std::set& keys) - { - std::set tmp_keys; - auto first = keys.begin(); - while (first != keys.end()) - { - String s = *first; - s.substitute(' ', '_'); - tmp_keys.insert(std::move(s)); - ++first; - } - std::swap(keys, tmp_keys); - } - // determine spectrum reference identifier type (e.g., Thermo nativeID) from spectrum references static MzTabParameter getMSRunSpectrumIdentifierType_(const std::vector& peptide_ids_); @@ -1215,28 +859,6 @@ namespace OpenMS bool skip_first_run, std::map, size_t>& map_run_fileidx_2_msfileidx); - /// Helper function for "get...OptionalColumnNames" functions - template - std::vector getOptionalColumnNames_(const SectionRows& rows) const - { - // vector is used to preserve the column order - std::vector names; - if (!rows.empty()) - { - for (typename SectionRows::const_iterator it = rows.begin(); it != rows.end(); ++it) - { - for (auto it_opt = it->opt_.cbegin(); it_opt != it->opt_.cend(); ++it_opt) - { - if (std::find(names.begin(), names.end(), it_opt->first) == names.end()) - { - names.push_back(it_opt->first); - } - } - } - } - return names; - } - static void getSearchModifications_( const std::vector& prot_ids, StringList& var_mods, diff --git a/src/openms/include/OpenMS/FORMAT/MzTabBase.h b/src/openms/include/OpenMS/FORMAT/MzTabBase.h new file mode 100644 index 00000000000..55fe1b64ff8 --- /dev/null +++ b/src/openms/include/OpenMS/FORMAT/MzTabBase.h @@ -0,0 +1,415 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2020. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Oliver Alka $ +// $Authors: Timo Sachsenberg, Oliver Alka $ +// -------------------------------------------------------------------------- + +#pragma once + +#include +#include +#include + + +#include +#include +#include +#include + + +namespace OpenMS +{ + /** + @brief Base functionality to for MzTab data models + + @ingroup FileIO + */ + + /// MzTab supports null, NaN, Inf for cells with Integer or Double values. MzTabCellType explicitly defines the state of the cell for these types. + enum MzTabCellStateType + { + MZTAB_CELLSTATE_DEFAULT, + MZTAB_CELLSTATE_NULL, + MZTAB_CELLSTATE_NAN, + MZTAB_CELLSTATE_INF, + SIZE_OF_MZTAB_CELLTYPE + }; + + class OPENMS_DLLAPI MzTabDouble + { +public: + MzTabDouble(); + + explicit MzTabDouble(const double v); + + void set(const double& value); + + double get() const; + + String toCellString() const; + + void fromCellString(const String& s); + + bool isNull() const; + + void setNull(bool b); + + bool isNaN() const; + + void setNaN(); + + bool isInf() const; + + void setInf(); + + ~MzTabDouble() = default; + + bool operator<(const MzTabDouble& rhs) const; + + bool operator==(const MzTabDouble& rhs) const; + +protected: + double value_; + MzTabCellStateType state_; + }; + + class OPENMS_DLLAPI MzTabDoubleList + { +public: + MzTabDoubleList() = default; + + bool isNull() const; + + void setNull(bool b); + + String toCellString() const; + + void fromCellString(const String& s); + + std::vector get() const; + + void set(const std::vector& entries); + + ~MzTabDoubleList() = default; +protected: + std::vector entries_; + }; + + class OPENMS_DLLAPI MzTabInteger + { +public: + MzTabInteger(); + + explicit MzTabInteger(const int v); + + void set(const Int& value); + + Int get() const; + + String toCellString() const; + + void fromCellString(const String& s); + + bool isNull() const; + + void setNull(bool b); + + bool isNaN() const; + + void setNaN(); + + bool isInf() const; + + void setInf(); + + ~MzTabInteger() = default; +protected: + Int value_; + MzTabCellStateType state_; + }; + + class OPENMS_DLLAPI MzTabIntegerList + { +public: + MzTabIntegerList() = default; + + bool isNull() const; + + void setNull(bool b); + + String toCellString() const; + + void fromCellString(const String& s); + + std::vector get() const; + + void set(const std::vector& entries); + + ~MzTabIntegerList() = default; +protected: + std::vector entries_; + }; + + class OPENMS_DLLAPI MzTabBoolean + { +public: + MzTabBoolean(); + + bool isNull() const; + + void setNull(bool b); + + explicit MzTabBoolean(bool v); + + void set(const bool& value); + + Int get() const; + + String toCellString() const; + + void fromCellString(const String& s); + + ~MzTabBoolean() = default; +protected: + int value_; + }; + + class OPENMS_DLLAPI MzTabString + { +public: + MzTabString(); + + explicit MzTabString(const String& s); + + bool isNull() const; + + void setNull(bool b); + + void set(const String& value); + + String get() const; + + String toCellString() const; + + void fromCellString(const String& s); + + ~MzTabString() = default; +protected: + String value_; + }; + + typedef std::pair MzTabOptionalColumnEntry; //< column name (not null able), value (null able) + + class OPENMS_DLLAPI MzTabParameter + { + public: + MzTabParameter(); + + bool isNull() const; + + void setNull(bool b); + + void setCVLabel(const String& CV_label); + + void setAccession(const String& accession); + + void setName(const String& name); + + void setValue(const String& value); + + String getCVLabel() const; + + String getAccession() const; + + String getName() const; + + String getValue() const; + + String toCellString() const; + + void fromCellString(const String& s); + + ~MzTabParameter() = default; + protected: + String CV_label_; + String accession_; + String name_; + String value_; + }; + + class OPENMS_DLLAPI MzTabParameterList + { + public: + MzTabParameterList() = default; + + bool isNull() const; + + void setNull(bool b); + + String toCellString() const; + + void fromCellString(const String& s); + + std::vector get() const; + + void set(const std::vector& parameters); + + ~MzTabParameterList() = default; + + protected: + std::vector parameters_; + }; + + class OPENMS_DLLAPI MzTabStringList + { + public: + MzTabStringList(); + + bool isNull() const; + + void setNull(bool b); + + /// needed for e.g. ambiguity_members and GO accessions as these use ',' as separator while the others use '|' + void setSeparator(char sep); + + String toCellString() const; + + void fromCellString(const String& s); + + std::vector get() const; + + void set(const std::vector& entries); + + ~MzTabStringList() = default; + protected: + std::vector entries_; + char sep_; + }; + + class OPENMS_DLLAPI MzTabSpectraRef + { + public: + MzTabSpectraRef(); + + bool isNull() const; + + void setNull(bool b); + + void setMSFile(Size index); + + void setSpecRef(const String& spec_ref); + + String getSpecRef() const; + + Size getMSFile() const; + + void setSpecRefFile(const String& spec_ref); + + String toCellString() const; + + void fromCellString(const String& s); + + ~MzTabSpectraRef() = default; + protected: + Size ms_run_; //< number is specified in the meta data section. + String spec_ref_; + }; + + // MTD + struct OPENMS_DLLAPI MzTabSoftwareMetaData + { + MzTabParameter software; + std::map setting; + }; + + struct OPENMS_DLLAPI MzTabSampleMetaData + { + MzTabString description; + std::map species; + std::map tissue; + std::map cell_type; + std::map disease; + std::map custom; + }; + + struct OPENMS_DLLAPI MzTabCVMetaData + { + MzTabString label; + MzTabString full_name; + MzTabString version; + MzTabString url; + }; + + struct OPENMS_DLLAPI MzTabInstrumentMetaData + { + MzTabParameter name; + MzTabParameter source; + std::map analyzer; + MzTabParameter detector; + }; + + struct OPENMS_DLLAPI MzTabContactMetaData + { + MzTabString name; + MzTabString affiliation; + MzTabString email; + }; + + class OPENMS_DLLAPI MzTabBase + { + public: + MzTabBase() = default; + virtual ~MzTabBase() = default; + + protected: + /// Helper function for "get...OptionalColumnNames" functions + template + std::vector getOptionalColumnNames_(const SectionRows& rows) const + { + // vector is used to preserve the column order + std::vector names; + if (!rows.empty()) + { + for (typename SectionRows::const_iterator it = rows.begin(); it != rows.end(); ++it) + { + for (auto it_opt = it->opt_.cbegin(); it_opt != it->opt_.cend(); ++it_opt) + { + if (std::find(names.begin(), names.end(), it_opt->first) == names.end()) + { + names.push_back(it_opt->first); + } + } + } + } + return names; + } + }; +} // namespace OpenMS diff --git a/src/openms/include/OpenMS/FORMAT/MzTabFile.h b/src/openms/include/OpenMS/FORMAT/MzTabFile.h index f502499a10c..257d3861bcc 100644 --- a/src/openms/include/OpenMS/FORMAT/MzTabFile.h +++ b/src/openms/include/OpenMS/FORMAT/MzTabFile.h @@ -226,6 +226,8 @@ namespace OpenMS const std::map& map_run_to_num_sub ); + private: + friend class MzTabMFile; }; } // namespace OpenMS diff --git a/src/openms/include/OpenMS/FORMAT/MzTabM.h b/src/openms/include/OpenMS/FORMAT/MzTabM.h new file mode 100644 index 00000000000..9dccf921f7c --- /dev/null +++ b/src/openms/include/OpenMS/FORMAT/MzTabM.h @@ -0,0 +1,317 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2020. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Oliver Alka $ +// $Authors: Oliver Alka $ +// -------------------------------------------------------------------------- + +#pragma once + +#include +#include +#include +#include +#include + +namespace OpenMS +{ + /** + @brief Data model of MzTabM files. + Please see the official MzTabM specification at + https://github.com/HUPO-PSI/mzTab/tree/master/specification_document-releases/2_0-Metabolomics-Release + @ingroup FileIO + */ + + struct CompareMzTabMMatchRef + { + bool operator() (const IdentificationDataInternal::ObservationMatchRef& lhs, const IdentificationDataInternal::ObservationMatchRef& rhs) const + { + return lhs->identified_molecule_var.getIdentifiedCompoundRef()->identifier < rhs->identified_molecule_var.getIdentifiedCompoundRef()->identifier; + } + }; + + /** + @brief MztabM Assay Metadata + */ + class OPENMS_DLLAPI MzTabMAssayMetaData + { + public: + MzTabString name; ///< Name of the assay + std::map custom; ///< Additional parameters or values for a given assay + MzTabString external_uri; ///< A reference to further information about the assay + MzTabInteger sample_ref; ///< An association from a given assay to the sample analysed + MzTabInteger ms_run_ref; ///< An association from a given assay to the source MS run + }; + + /** + @brief MztabM MSRun Metadata + */ + class OPENMS_DLLAPI MzTabMMSRunMetaData + { + public: + MzTabString location; ///< Location of the external data file + MzTabInteger instrument_ref; ///< Link to a specific instrument + MzTabParameter format; ///< Parameter specifying the data format of the external MS data file + MzTabParameter id_format; ///< Parameter specifying the id format used in the external data file + std::map fragmentation_method; ///< The type of fragmentation used in a given ms run + std::map scan_polarity; ///< The polarity mode of a given run + MzTabString hash; ///< Hash value of the corresponding external MS data file + MzTabParameter hash_method; ///< Parameter specifying the hash methods + }; + + /** + @brief MztabM StudyVariable Metadata + */ + class OPENMS_DLLAPI MzTabMStudyVariableMetaData + { + public: + MzTabString name; ///< Name of the study variable + std::vector assay_refs; ///< References to the IDs of assays grouped in the study variable + MzTabParameter average_function; ///< The function used to calculate the study variable quantification value + MzTabParameter variation_function; ///< The function used to calculate the study variable quantification variation value + MzTabString description; ///< A textual description of the study variable + MzTabParameterList factors; ///< Additional parameters or factors + }; + + /** + @brief MztabM Database Metadata + */ + class OPENMS_DLLAPI MzTabMDatabaseMetaData // mztab-m + { + public: + MzTabParameter database; ///< The description of databases used + MzTabString prefix; ///< The prefix used in the “identifier” column of data tables + MzTabString version; ///< The database version + MzTabString uri; ///< The URI to the database + }; + + /** + @brief MztabM Metadata + */ + class OPENMS_DLLAPI MzTabMMetaData + { + public: + MzTabMMetaData(); + + MzTabString mz_tab_version; ///< MzTab-M Version + MzTabString mz_tab_id; ///< MzTab-M file id (e.g. repository-, local identifier) + MzTabString title; ///< Title + MzTabString description; ///< Description + std::map sample_processing; ///< List of parameters describing the sample processing/preparation/handling + std::map instrument; ///< List of parameters describing the instrument + std::map software; ///< Software used to analyze the data + std::map publication; ///< Associated publication(s) + std::map contact; ///< Contact name + std::map uri; ///< Pointing to file source (e.g. MetaboLights) + std::map external_study_uri; ///< Pointing to an external file with more details about the study (e.g. ISA-TAB file) + MzTabParameter quantification_method; ///< Quantification method used in the experiment + std::map sample; ///< Sample details + std::map ms_run; ///< MS run details + std::map assay; ///< Assay details + std::map study_variable; ///< Study Variable details + std::map custom; ///< Custom parameters + std::map cv; ///< Controlled Vocabulary details + std::map database; ///< Database details + std::map derivatization_agent; ///< A description of derivatization agents applied to small molecules + MzTabParameter small_molecule_quantification_unit; ///< Description of the unit type used + MzTabParameter small_molecule_feature_quantification_unit; ///< Description of the unit type used + MzTabParameter small_molecule_identification_reliability; ///< Reliability of identification (4-level schema) + std::map id_confidence_measure; ///< Confidence measures / scores + std::vector colunit_small_molecule; ///< Defines the unit used for a specific column + std::vector colunit_small_molecule_feature; ///< Defines the unit used for a specific column + std::vector colunit_small_molecule_evidence; ///< Defines the unit used for a specific column + }; + + /** + @brief SML Small molecule section (mztab-m) + */ + class OPENMS_DLLAPI MzTabMSmallMoleculeSectionRow + { + public: + MzTabString sml_identifier; ///< The small molecule’s identifier. + MzTabStringList smf_id_refs; ///< References to all the features on which quantification has been based. + MzTabStringList database_identifier; ///< Names of the used databases. + MzTabStringList chemical_formula; ///< Potential chemical formula of the reported compound. + MzTabStringList smiles; ///< Molecular structure in SMILES format. + MzTabStringList inchi; ///< InChi of the potential compound identifications. + MzTabStringList chemical_name; ///< Possible chemical/common names or general description + MzTabStringList uri; ///< The source entry’s location. + MzTabDoubleList theoretical_neutral_mass; ///< Precursor theoretical neutral mass + MzTabStringList adducts; ///< Adducts + // Reliability information of the used indentificavtion method has to be stored in the ID data structure + MzTabString reliability; ///< Reliability of the given small molecule identification + MzTabParameter best_id_confidence_measure; ///< The identification approach with the highest confidence + MzTabDouble best_id_confidence_value; ///< The best confidence measure + std::map small_molecule_abundance_assay; ///< The small molecule’s abundance in every assay described in the metadata section + std::map small_molecule_abundance_study_variable; ///< The small molecule’s abundance in all the study variables described in the metadata section + std::map small_molecule_abundance_variation_study_variable; ///< A measure of the variability of the study variable abundance measurement + std::vector opt_; ///< Optional columns must start with “opt_”. + }; + + /** + @brief SMF Small molecule feature section (mztab-m) + */ + class OPENMS_DLLAPI MzTabMSmallMoleculeFeatureSectionRow + { + public: + MzTabString smf_identifier; ///< Within file unique identifier for the small molecule feature. + MzTabStringList sme_id_refs; ///< Reference to the identification evidence. + MzTabInteger sme_id_ref_ambiguity_code; ///< Ambiguity in identifications. + MzTabString adduct; ///< Adduct + MzTabParameter isotopomer; ///< If de-isotoping has not been performed, then the isotopomer quantified MUST be reported here. + MzTabDouble exp_mass_to_charge; ///< Precursor ion’s m/z. + MzTabInteger charge; ///< Precursor ion’s charge. + MzTabDouble retention_time; ///< Time point in seconds. + MzTabDouble rt_start; ///< The start time of the feature on the retention time axis. + MzTabDouble rt_end; ///< The end time of the feature on the retention time axis + std::map small_molecule_feature_abundance_assay; ///< Feature abundance in every assay + std::vector opt_; ///< Optional columns must start with “opt_”. + }; + + /** + @brief SME Small molecule evidence section (mztab-m) + */ + class OPENMS_DLLAPI MzTabMSmallMoleculeEvidenceSectionRow + { + public: + MzTabString sme_identifier; ///< Within file unique identifier for the small molecule evidence result. + MzTabString evidence_input_id; ///< Within file unique identifier for the input data used to support this identification e.g. fragment spectrum, RT and m/z pair. + MzTabString database_identifier; ///< The putative identification for the small molecule sourced from an external database. + MzTabString chemical_formula; ///< The putative molecular formula. + MzTabString smiles; ///< Potential molecular structure as SMILES. + MzTabString inchi; ///< InChi of the potential compound identifications. + MzTabString chemical_name; ///< Possible chemical/common names or general description + MzTabString uri; ///< The source entry’s location. + MzTabParameter derivatized_form; ///< derivatized form. + MzTabString adduct; ///< Adduct + MzTabDouble exp_mass_to_charge; ///< Precursor ion’s m/z. + MzTabInteger charge; ///< Precursor ion’s charge. + MzTabDouble calc_mass_to_charge; ///< Precursor ion’s m/z. + MzTabSpectraRef spectra_ref; ///< Reference to a spectrum + MzTabParameter identification_method; ///< Database search, search engine or process that was used to identify this small molecule + MzTabParameter ms_level; ///< The highest MS level used to inform identification + std::map id_confidence_measure; ///< Statistical value or score for the identification + MzTabInteger rank; ///< Rank of the identification (1 = best) + std::vector opt_; ///< Optional columns must start with “opt_”. + }; + + typedef std::vector MzTabMSmallMoleculeSectionRows; + typedef std::vector MzTabMSmallMoleculeFeatureSectionRows; + typedef std::vector MzTabMSmallMoleculeEvidenceSectionRows; + + /** + @brief Data model of MzTab-M files + Please see the MzTab-M specification at https://github.com/HUPO-PSI/mzTab/blob/master/specification_document-releases/2_0-Metabolomics-Release/mzTab_format_specification_2_0-M_release.adoc#use-cases-for-mztab + */ + class OPENMS_DLLAPI MzTabM : public MzTabBase + { + public: + /// Default constructor + MzTabM() = default; + + /// Destructor + ~MzTabM() = default; + + /// Extract MzTabMMetaData + const MzTabMMetaData& getMetaData() const; + + /// Set MzTabMMetaData + void setMetaData(const MzTabMMetaData& m_md); + + /// Extract MzTabMSmallMoleculeSectionRows + const MzTabMSmallMoleculeSectionRows& getMSmallMoleculeSectionRows() const; + + /// Set MzTabMSmallMoleculeSectionRows + void setMSmallMoleculeSectionRows(const MzTabMSmallMoleculeSectionRows& m_smsd); + + /// Extract MzTabMSmallMoleculeFeatureSectionRows + const MzTabMSmallMoleculeFeatureSectionRows& getMSmallMoleculeFeatureSectionRows() const; + + /// Set MzTabMSmallMoleculeFeatureSectionRows + void setMSmallMoleculeFeatureSectionRows(const MzTabMSmallMoleculeFeatureSectionRows& m_smfsd); + + /// Extract MzTabMSmallMoleculeEvidenceSectionRows + const MzTabMSmallMoleculeEvidenceSectionRows& getMSmallMoleculeEvidenceSectionRows() const; + + /// Set MzTabMSmallMoleculeEvidenceSectionRows + void setMSmallMoleculeEvidenceSectionRows(const MzTabMSmallMoleculeEvidenceSectionRows& m_smesd); + + /// Set comment rows + void setCommentRows(const std::map& com); + + /// Set empty rows + void setEmptyRows(const std::vector& empty); + + /// Get empty rows + const std::vector& getEmptyRows() const; + + /// Get comment rows + const std::map& getCommentRows() const; + + /// Extract opt_ (custom, optional column names) + std::vector getMSmallMoleculeOptionalColumnNames() const; + + /// Extract opt_ (custom, optional column names) + std::vector getMSmallMoleculeFeatureOptionalColumnNames() const; + + /// Extract opt_ (custom, optional column names) + std::vector getMSmallMoleculeEvidenceOptionalColumnNames() const; + + static void addMetaInfoToOptionalColumns(const std::set& keys, + std::vector& opt, + const String& id, const MetaInfoInterface& meta); + + /** + * @brief Export FeatureMap with Identifications to MzTabM + * + * @return MzTabM object + */ + static MzTabM exportFeatureMapToMzTabM(const FeatureMap& feature_map); + + protected: + MzTabMMetaData m_meta_data_; + MzTabMSmallMoleculeSectionRows m_small_molecule_data_; + MzTabMSmallMoleculeFeatureSectionRows m_small_molecule_feature_data_; + MzTabMSmallMoleculeEvidenceSectionRows m_small_molecule_evidence_data_; + std::vector empty_rows_; ///< index of empty rows + std::map comment_rows_; ///< comments + std::vector sml_optional_column_names_; + std::vector smf_optional_column_names_; + std::vector sme_optional_column_names_; + + static String getAdductString_(const IdentificationDataInternal::ObservationMatchRef& match_ref); + + static void getFeatureMapMetaValues_(const FeatureMap& feature_map, + std::set& feature_user_value_keys, + std::set& observationmatch_user_value_keys, + std::set& compound_user_value_keys); + + }; +} // namespace OpenMS diff --git a/src/openms/include/OpenMS/FORMAT/MzTabMFile.h b/src/openms/include/OpenMS/FORMAT/MzTabMFile.h new file mode 100644 index 00000000000..4cf0cf17ab3 --- /dev/null +++ b/src/openms/include/OpenMS/FORMAT/MzTabMFile.h @@ -0,0 +1,126 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2020. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Oliver Alka $ +// $Authors: Oliver Alka $ +// -------------------------------------------------------------------------- + +#pragma once + +#include + +namespace OpenMS +{ + class String; + class SVOutStream; + + /** + @brief File adapter for MzTab-M files + + @ingroup FileIO + */ + + class OPENMS_DLLAPI MzTabMFile + { + public: + /// Default Constructor + MzTabMFile(); + + /// Default Destructor + ~MzTabMFile(); + + /// Store MzTabM file + void store(const String& filename, const MzTabM& mztab_m) const; + + protected: + + /** + @brief Generates the MzTabM MetaData Section + @param map MzTabMMetaData + @param sl Fill Stringlist with MztabM MetaData entries + */ + void generateMzTabMMetaDataSection_(const MzTabMMetaData& map, StringList& sl) const; + + /** + @brief Generates the MzTabM Small Molecule Header + @param map MzTabMMetaData + @param optional_columns Add optional columns + @param n_columns Stores the number of columns in the header + @return StringList with SMH entries + */ + String generateMzTabMSmallMoleculeHeader_(const MzTabMMetaData& meta, const std::vector& optional_columns, size_t& n_columns) const; + + /** + @brief Generates the MzTabM Small Molecule Section + @param row MzTabMSmallMoleculeSectionRow + @param optional_columns Add optional columns + @param n_columns Stores the number of columns per row + @return StringList with SML entries + */ + String generateMzTabMSmallMoleculeSectionRow_(const MzTabMSmallMoleculeSectionRow& row, const std::vector& optional_columns, size_t& n_columns) const; + + /** + @brief Generates the MzTabM Small Molecule Header + @param map MzTabMMetaData + @param optional_columns Add optional columns + @param n_columns Stores the number of columns in the header + @return StringList with SFH entries + */ + String generateMzTabMSmallMoleculeFeatureHeader_(const MzTabMMetaData& meta, const std::vector& optional_columns, size_t& n_columns) const; + + /** + @brief Generates the MzTabM Small Molecule Feature Section + @param row MzTabMSmallMoleculeFeatureSectionRow + @param optional_columns Add optional columns + @param n_columns Stores the number of columns per row + @return StringList with SMF entries + */ + String generateMzTabMSmallMoleculeFeatureSectionRow_(const MzTabMSmallMoleculeFeatureSectionRow& row, const std::vector& optional_columns, size_t& n_columns) const; + + /** + @brief Generates the MzTabM Small Molecule Header + @param map MzTabMMetaData + @param optional_columns Add optional columns + @param n_columns Stores the number of columns in the header + @return StringList with SEH entries + */ + String generateMzTabMSmallMoleculeEvidenceHeader_(const MzTabMMetaData& meta, const std::vector& optional_columns, size_t& n_columns) const; + + /** + @brief Generates the MzTabM Small Molecule Evidence Section + @param row MzTabMSmallMoleculeFeatureSectionRow + @param optional_columns Add optional columns + @param n_columns Stores the number of columns per row + @return StringList with SME entries + */ + String generateMzTabMSmallMoleculeEvidenceSectionRow_(const MzTabMSmallMoleculeEvidenceSectionRow& row, const std::vector& optional_columns, size_t& n_columns) const; + }; + +} // namespace OpenMS diff --git a/src/openms/include/OpenMS/FORMAT/OMSFile.h b/src/openms/include/OpenMS/FORMAT/OMSFile.h new file mode 100644 index 00000000000..4c5455ac829 --- /dev/null +++ b/src/openms/include/OpenMS/FORMAT/OMSFile.h @@ -0,0 +1,90 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Hendrik Weisser $ +// $Authors: Hendrik Weisser $ +// -------------------------------------------------------------------------- + +#pragma once + +#include +#include +#include + +namespace OpenMS +{ + /** + @brief This class supports reading and writing of OMS files. + + OMS files are SQLite databases consisting of several tables. + */ + class OPENMS_DLLAPI OMSFile: public ProgressLogger + { + public: + /// Constructor (with option to set log type) + explicit OMSFile(LogType log_type = LogType::NONE): + log_type_(log_type) + { + setLogType(log_type); + } + + /** @brief Write out an IdentificationData object to SQL-based OMS file + * + * @param filename The output file + * @param id_data The IdentificationData object + */ + void store(const String& filename, const IdentificationData& id_data); + + /** @brief Write out a feature map to SQL-based OMS file + * + * @param filename The output file + * @param features The feature map + */ + void store(const String& filename, const FeatureMap& features); + + /** @brief Read in a OMS file and construct an IdentificationData object + * + * @param filename The input file + * @param id_data The IdentificationData object + */ + void load(const String& filename, IdentificationData& id_data); + + /** @brief Read in a OMS file and construct a feature map + * + * @param filename The input file + * @param features The feature map + */ + void load(const String& filename, FeatureMap& features); + + protected: + LogType log_type_; + }; +} // namespace OpenMS + diff --git a/src/openms/include/OpenMS/FORMAT/OMSFileLoad.h b/src/openms/include/OpenMS/FORMAT/OMSFileLoad.h new file mode 100644 index 00000000000..01b2bda5d34 --- /dev/null +++ b/src/openms/include/OpenMS/FORMAT/OMSFileLoad.h @@ -0,0 +1,159 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Hendrik Weisser $ +// $Authors: Hendrik Weisser $ +// -------------------------------------------------------------------------- + +#pragma once + +#include +#include +#include + +class QSqlQuery; + +namespace OpenMS +{ + namespace Internal + { + /*! + @brief Helper class for loading .oms files (SQLite format) + + This class encapsulates the SQLite database stored in a .oms file and allows to load data from it. + */ + class OMSFileLoad: public ProgressLogger + { + public: + using Key = qint64; ///< Type used for database keys + + /*! + @brief Constructor + + Opens the connection to the database file (in read-only mode). + + @param filename Path to the .oms input file (SQLite database) + @param log_type Type of logging to use + + @throw Exception::FailedAPICall Database cannot be opened + */ + OMSFileLoad(const String& filename, LogType log_type); + + /*! + @brief Destructor + + Closes the connection to the database file. + */ + ~OMSFileLoad(); + + /// Load data from database and populate an IdentificationData object + void load(IdentificationData& id_data); + + /// Load data from database and populate a FeatureMap object + void load(FeatureMap& features); + + private: + // static CVTerm loadCVTerm_(int id); + + void loadScoreTypes_(IdentificationData& id_data); + + void loadInputFiles_(IdentificationData& id_data); + + void loadProcessingSoftwares_(IdentificationData& id_data); + + void loadDBSearchParams_(IdentificationData& id_data); + + void loadProcessingSteps_(IdentificationData& id_data); + + void loadObservations_(IdentificationData& id_data); + + void loadParentSequences_(IdentificationData& id_data); + + void loadParentGroupSets_(IdentificationData& id_data); + + void loadIdentifiedCompounds_(IdentificationData& id_data); + + void loadIdentifiedSequences_(IdentificationData& id_data); + + void loadAdducts_(IdentificationData& id_data); + + void loadObservationMatches_(IdentificationData& id_data); + + void loadMapMetaData_(FeatureMap& features); + + void loadDataProcessing_(FeatureMap& features); + + void loadFeatures_(FeatureMap& features); + + Feature loadFeatureAndSubordinates_(QSqlQuery& query_feat, + std::optional& query_meta, + std::optional& query_hull, + std::optional& query_match); + + static DataValue makeDataValue_(const QSqlQuery& query); + + bool prepareQueryMetaInfo_(QSqlQuery& query, const String& parent_table); + + void handleQueryMetaInfo_(QSqlQuery& query, MetaInfoInterface& info, + Key parent_id); + + bool prepareQueryAppliedProcessingStep_(QSqlQuery& query, + const String& parent_table); + + void handleQueryAppliedProcessingStep_( + QSqlQuery& query, + IdentificationDataInternal::ScoredProcessingResult& result, + Key parent_id); + + void handleQueryParentMatch_( + QSqlQuery& query, IdentificationData::ParentMatches& parent_matches, + Key molecule_id); + + void handleQueryPeakAnnotation_( + QSqlQuery& query, IdentificationData::ObservationMatch& match, + Key parent_id); + + // store name, not database connection itself (see https://stackoverflow.com/a/55200682): + QString db_name_; + + // mappings between database keys and loaded data: + std::unordered_map score_type_refs_; + std::unordered_map input_file_refs_; + std::unordered_map processing_software_refs_; + std::unordered_map processing_step_refs_; + std::unordered_map search_param_refs_; + std::unordered_map observation_refs_; + std::unordered_map parent_refs_; + std::unordered_map identified_molecule_vars_; + std::unordered_map observation_match_refs_; + std::unordered_map adduct_refs_; + }; + } +} diff --git a/src/openms/include/OpenMS/FORMAT/OMSFileStore.h b/src/openms/include/OpenMS/FORMAT/OMSFileStore.h new file mode 100644 index 00000000000..f948152b0dd --- /dev/null +++ b/src/openms/include/OpenMS/FORMAT/OMSFileStore.h @@ -0,0 +1,250 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Hendrik Weisser $ +// $Authors: Hendrik Weisser $ +// -------------------------------------------------------------------------- + +#pragma once + +#include +#include +#include + +#include + +class QSqlError; + +namespace OpenMS +{ + namespace Internal + { + /*! + @brief Check if a specified database table exists + + @param db_name Name of the database (as used by Qt/QSqlDatabase) + @param table_name Name of the table to check + + @return True if table exists, false if not + */ + bool tableExists_(const String& db_name, const String& table_name); + + /*! + @brief Raise a more informative database error + + Add context to an SQL error encountered by Qt and throw it as a FailedAPICall exception. + + @param error The error that occurred + @param line Line in the code where error occurred + @param function Name of the function where error occurred + @param context Context for the error + + @throw Exception::FailedAPICall Throw this exception + */ + void raiseDBError_(const QSqlError& error, int line, + const char* function, const String& context); + + + /*! + @brief Helper class for storing .oms files (SQLite format) + + This class encapsulates the SQLite database in a .oms file and allows to write data to it. + */ + class OMSFileStore: public ProgressLogger + { + public: + using Key = qint64; ///< Type used for database keys + + /*! + @brief Constructor + + Deletes the output file if it exists, then creates an SQLite database in its place. + Opens the database and configures it for fast writing. + + @param filename Path to the .oms output file (SQLite database) + @param log_type Type of logging to use + + @throw Exception::FailedAPICall Database cannot be opened + */ + OMSFileStore(const String& filename, LogType log_type); + + /*! + @brief Destructor + + Closes the connection to the database file. + */ + ~OMSFileStore(); + + /// Write data from an IdentificationData object to database + void store(const IdentificationData& id_data); + + /// Write data from a FeatureMap object to database + void store(const FeatureMap& features); + + private: + void storeVersionAndDate_(); + + void storeScoreTypes_(const IdentificationData& id_data); + + void storeInputFiles_(const IdentificationData& id_data); + + void storeProcessingSoftwares_(const IdentificationData& id_data); + + void storeDBSearchParams_(const IdentificationData& id_data); + + void storeProcessingSteps_(const IdentificationData& id_data); + + void storeObservations_(const IdentificationData& id_data); + + void storeParentSequences_(const IdentificationData& id_data); + + void storeParentGroupSets_(const IdentificationData& id_data); + + void storeIdentifiedCompounds_(const IdentificationData& id_data); + + void storeIdentifiedSequences_(const IdentificationData& id_data); + + void storeAdducts_(const IdentificationData& id_data); + + void storeObservationMatches_(const IdentificationData& id_data); + + void storeFeatures_(const FeatureMap& features); + + void createTable_(const String& name, const String& definition, + bool may_exist = false); + + void createTableMoleculeType_(); + + void createTableDataValue_(); + + Key storeDataValue_(const DataValue& value); + + void createTableCVTerm_(); + + Key storeCVTerm_(const CVTerm& cv_term); + + void createTableMetaInfo_(const String& parent_table, + const String& key_column = "id"); + + void storeMetaInfo_(const MetaInfoInterface& info, const String& parent_table, + Key parent_id); + + void createTableAppliedProcessingStep_(const String& parent_table); + + void storeAppliedProcessingStep_( + const IdentificationData::AppliedProcessingStep& step, Size step_order, + const String& parent_table, Key parent_id); + + void createTableIdentifiedMolecule_(); + + Key getAddress_(const IdentificationData::IdentifiedMolecule& molecule_var); + + void createTableParentMatches_(); + + void storeParentMatches_( + const IdentificationData::ParentMatches& matches, Key molecule_id); + + template + void storeMetaInfos_(const MetaInfoInterfaceContainer& container, + const String& parent_table) + { + bool table_created = false; + QSqlQuery query; // prepare query only once and only if needed + for (const auto& element : container) + { + if (!element.isMetaEmpty()) + { + if (!table_created) + { + createTableMetaInfo_(parent_table); + table_created = true; + } + storeMetaInfo_(element, parent_table, Key(&element)); + } + } + } + + template + void storeScoredProcessingResults_( + const ScoredProcessingResultContainer& container, + const String& parent_table) + { + bool table_created = false; + for (const auto& element : container) + { + if (!element.steps_and_scores.empty()) + { + if (!table_created) + { + createTableAppliedProcessingStep_(parent_table); + table_created = true; + } + Size counter = 0; + for (const IdentificationData::AppliedProcessingStep& step : + element.steps_and_scores) + { + storeAppliedProcessingStep_(step, ++counter, parent_table, + Key(&element)); + } + } + } + storeMetaInfos_(container, parent_table); + } + + void storeFeature_(const FeatureMap& features); + + void storeFeatureAndSubordinates_( + const Feature& feature, int& feature_id, int parent_id); + + /// check whether a predicate is true for any feature (or subordinate thereof) in a container + template + bool anyFeaturePredicate_(const FeatureContainer& features, const Predicate& pred) + { + if (features.empty()) return false; + for (const Feature& feature : features) + { + if (pred(feature)) return true; + if (anyFeaturePredicate_(feature.getSubordinates(), pred)) return true; + } + return false; + } + + void storeMapMetaData_(const FeatureMap& features); + + void storeDataProcessing_(const FeatureMap& features); + + // store name, not database connection itself (see https://stackoverflow.com/a/55200682): + QString db_name_; + + /// prepared queries for inserting data into different tables + std::map prepared_queries_; + }; + } +} diff --git a/src/openms/include/OpenMS/FORMAT/OPTIONS/PeakFileOptions.h b/src/openms/include/OpenMS/FORMAT/OPTIONS/PeakFileOptions.h index 73292b0577e..e80942a5fd3 100644 --- a/src/openms/include/OpenMS/FORMAT/OPTIONS/PeakFileOptions.h +++ b/src/openms/include/OpenMS/FORMAT/OPTIONS/PeakFileOptions.h @@ -230,7 +230,7 @@ namespace OpenMS void setPrecursorMZSelectedIon(bool choice); /// do these options skip spectra or chromatograms due to RT or MSLevel filters? - bool hasFilters(); + bool hasFilters() const; private: bool metadata_only_; diff --git a/src/openms/include/OpenMS/FORMAT/SVOutStream.h b/src/openms/include/OpenMS/FORMAT/SVOutStream.h index 2c787673b4c..0b61abf606e 100644 --- a/src/openms/include/OpenMS/FORMAT/SVOutStream.h +++ b/src/openms/include/OpenMS/FORMAT/SVOutStream.h @@ -35,9 +35,11 @@ #pragma once #include + #include #include // std::ofstream -#include // for "isnan" +#include +#include // because isfinite not supported on Mac namespace OpenMS { @@ -173,9 +175,18 @@ namespace OpenMS if ((boost::math::isfinite)(thing)) return operator<<(thing); bool old = modifyStrings(false); - if ((boost::math::isnan)(thing)) operator<<(nan_); - else if (thing < 0) operator<<("-" + inf_); - else operator<<(inf_); + if ((boost::math::isnan)(thing)) + { + operator<<(nan_); + } + else if (thing < 0) + { + operator<<("-" + inf_); + } + else + { + operator<<(inf_); + } modifyStrings(old); return *this; } diff --git a/src/openms/include/OpenMS/FORMAT/SqMassFile.h b/src/openms/include/OpenMS/FORMAT/SqMassFile.h index e469eb32e07..6947e0384c2 100644 --- a/src/openms/include/OpenMS/FORMAT/SqMassFile.h +++ b/src/openms/include/OpenMS/FORMAT/SqMassFile.h @@ -85,7 +85,7 @@ namespace OpenMS */ //@{ - void load(const String& filename, MapType& map); + void load(const String& filename, MapType& map) const; /** @brief Store an MSExperiment in sqMass format @@ -93,9 +93,9 @@ namespace OpenMS If you want a specific RUN::ID in the sqMass file, make sure to populate MSExperiment::setSqlRunID(UInt64 id) before. */ - void store(const String& filename, MapType& map); + void store(const String& filename, MapType& map) const; - void transform(const String& filename_in, Interfaces::IMSDataConsumer* consumer, bool skip_full_count = false, bool skip_first_pass = false); + void transform(const String& filename_in, Interfaces::IMSDataConsumer* consumer, bool skip_full_count = false, bool skip_first_pass = false) const; void setConfig(const SqMassConfig& config) { diff --git a/src/openms/include/OpenMS/FORMAT/XMassFile.h b/src/openms/include/OpenMS/FORMAT/XMassFile.h index 5940708ff0d..94fbf71c16b 100644 --- a/src/openms/include/OpenMS/FORMAT/XMassFile.h +++ b/src/openms/include/OpenMS/FORMAT/XMassFile.h @@ -70,7 +70,7 @@ namespace OpenMS /// Default constructor XMassFile(); /// Destructor - virtual ~XMassFile(); + ~XMassFile() override; /** @brief Loads a spectrum from a XMass file. diff --git a/src/openms/include/OpenMS/FORMAT/sources.cmake b/src/openms/include/OpenMS/FORMAT/sources.cmake index d098e97fdd7..b9cd37eb31e 100644 --- a/src/openms/include/OpenMS/FORMAT/sources.cmake +++ b/src/openms/include/OpenMS/FORMAT/sources.cmake @@ -36,6 +36,7 @@ ExperimentalDesignFile.h FASTAFile.h FeatureXMLFile.h FileHandler.h +GNPSMGFFile.h GzipIfstream.h GzipInputStream.h HDF5Connector.h @@ -62,8 +63,14 @@ MzDataFile.h MzMLFile.h MzQCFile.h MzTab.h +MzTabBase.h +MzTabM.h MzTabFile.h +MzTabMFile.h MzXMLFile.h +OMSFile.h +OMSFileLoad.h +OMSFileStore.h OMSSACSVFile.h OMSSAXMLFile.h OSWFile.h diff --git a/src/openms/include/OpenMS/KERNEL/BaseFeature.h b/src/openms/include/OpenMS/KERNEL/BaseFeature.h index c65e31372ee..167846863ce 100644 --- a/src/openms/include/OpenMS/KERNEL/BaseFeature.h +++ b/src/openms/include/OpenMS/KERNEL/BaseFeature.h @@ -36,11 +36,13 @@ #include #include +#include + +#include namespace OpenMS { class FeatureHandle; - class PeptideIdentification; /** @brief A basic LC-MS feature. @@ -53,12 +55,11 @@ namespace OpenMS @ingroup Kernel */ - class OPENMS_DLLAPI BaseFeature : - public RichPeak2D + class OPENMS_DLLAPI BaseFeature : public RichPeak2D { public: - ///@name Type definitions - //@{ + /// @name Type definitions + ///@{ /// Type of quality values typedef float QualityType; /// Type of charge values @@ -66,7 +67,7 @@ namespace OpenMS /// Type of feature width/FWHM (RT) typedef float WidthType; - /// state of identification, use getIDState() to query it + /// state of identification, use getAnnotationState() to query it enum AnnotationState { FEATURE_ID_NONE, @@ -77,12 +78,10 @@ namespace OpenMS }; static const std::string NamesOfAnnotationState[SIZE_OF_ANNOTATIONSTATE]; + ///@} - //@} - - /** @name Constructors and Destructor - */ - //@{ + /// @name Constructors and Destructor + ///@{ /// Default constructor BaseFeature(); @@ -90,7 +89,20 @@ namespace OpenMS BaseFeature(const BaseFeature& feature) = default; /// Move constructor - BaseFeature(BaseFeature&& feature) = default; + /// Note: can't be "noexcept = default" because of missing noexcept on some standard containers + /// so we need to explicitly define it noexcept and provide an implementation. + BaseFeature(BaseFeature&& feature) noexcept + : RichPeak2D(std::move(feature)) + { + quality_ = feature.quality_; + charge_ = feature.charge_; + width_ = feature.width_; + // Note: will terminate program if move assignment throws because of noexcept + // but we can't recover in that case anyways and we need to mark it noexcept for the move. + peptides_ = std::move(feature.peptides_); + primary_id_ = std::move(feature.primary_id_); + id_matches_ = std::move(feature.id_matches_); + } /// Copy constructor with a new map_index BaseFeature(const BaseFeature& rhs, UInt64 map_index); @@ -106,10 +118,10 @@ namespace OpenMS /// Destructor ~BaseFeature() override; - //@} + ///@} /// @name Quality methods - //@{ + ///@{ /// Non-mutable access to the overall quality QualityType getQuality() const; /// Set the overall quality @@ -138,7 +150,7 @@ namespace OpenMS } }; - //@} + ///@} /// Non-mutable access to the features width (full width at half max, FWHM) WidthType getWidth() const; @@ -163,6 +175,8 @@ namespace OpenMS /// Inequality operator bool operator!=(const BaseFeature& rhs) const; + /// @name Functions for dealing with identifications in legacy format + ///@{ /// returns a const reference to the PeptideIdentification vector const std::vector& getPeptideIdentifications() const; @@ -174,10 +188,46 @@ namespace OpenMS /// sorts PeptideIdentifications, assuming they have the same scoreType. void sortPeptideIdentifications(); + ///@} /// state of peptide identifications attached to this feature. If one ID has multiple hits, the output depends on the top-hit only AnnotationState getAnnotationState() const; + /// @name Functions for dealing with identifications in new format + ///@{ + /// has a primary ID (peptide, RNA, compound) been assigned? + bool hasPrimaryID() const; + + /** + @brief Return the primary ID (peptide, RNA, compound) assigned to this feature. + + @throw Exception::MissingInformation if no ID was assigned + */ + const IdentificationData::IdentifiedMolecule& getPrimaryID() const; + + /// clear any primary ID that was assigned + void clearPrimaryID(); + + /// set the primary ID (peptide, RNA, compound) for this feature + void setPrimaryID(const IdentificationData::IdentifiedMolecule& id); + + /// immutable access to the set of matches (e.g. PSMs) with IDs for this feature + const std::set& getIDMatches() const; + + /// mutable access to the set of matches (e.g. PSMs) with IDs for this feature + std::set& getIDMatches(); + + /// add an ID match (e.g. PSM) for this feature + void addIDMatch(IdentificationData::ObservationMatchRef ref); + + /*! + @brief Update ID references (primary ID, matches) for this feature + + This is needed e.g. after the IdentificationData instance containing the referenced data has been copied. + */ + void updateIDReferences(const IdentificationData::RefTranslator& trans); + ///@} + protected: /// Overall quality measure of the feature @@ -191,7 +241,12 @@ namespace OpenMS /// PeptideIdentifications belonging to the feature std::vector peptides_; + + /// primary ID (peptide, RNA, compound) assigned to this feature + std::optional primary_id_; + + /// set of observation matches (e.g. PSMs) with IDs for this feature + std::set id_matches_; }; } // namespace OpenMS - diff --git a/src/openms/include/OpenMS/KERNEL/ConsensusFeature.h b/src/openms/include/OpenMS/KERNEL/ConsensusFeature.h index 66c17a67ec2..11b233ca860 100644 --- a/src/openms/include/OpenMS/KERNEL/ConsensusFeature.h +++ b/src/openms/include/OpenMS/KERNEL/ConsensusFeature.h @@ -200,6 +200,7 @@ namespace OpenMS @brief Adds all feature handles (of the CF) into the consensus feature */ void insert(const ConsensusFeature& cf); + void insert(ConsensusFeature&& cf); /** @brief Adds an feature handle into the consensus feature @@ -208,9 +209,11 @@ namespace OpenMS id already exists. */ void insert(const FeatureHandle& handle); + void insert(FeatureHandle&& handle); /// Adds all feature handles in @p handle_set to this consensus feature. void insert(const HandleSetType& handle_set); + void insert(HandleSetType&& handle_set); /** @brief Creates a FeatureHandle and adds it diff --git a/src/openms/include/OpenMS/KERNEL/ConsensusMap.h b/src/openms/include/OpenMS/KERNEL/ConsensusMap.h index b5655441411..c7981dae8b0 100644 --- a/src/openms/include/OpenMS/KERNEL/ConsensusMap.h +++ b/src/openms/include/OpenMS/KERNEL/ConsensusMap.h @@ -82,7 +82,7 @@ namespace OpenMS class ConsensusMap : // no OPENMS_DLLAPI here, since the class is derived from an STL class - we do not want parts of the STL lib in OpenMS.lib, since it will cause linker errors private std::vector, public MetaInfoInterface, - public RangeManager<2>, + public RangeManagerContainer, public DocumentIdentifier, public UniqueIdInterface, public UniqueIdIndexer, @@ -119,7 +119,7 @@ namespace OpenMS enum class SplitMeta { - DISCARD, ///< do not copy any meta values + DISCARD, ///< do not copy any meta values COPY_ALL, ///< copy all meta values to all feature maps COPY_FIRST ///< copy all meta values to first feature map }; @@ -139,11 +139,14 @@ namespace OpenMS /// File name of the mzML file String filename; - /// Label e.g. 'heavy' and 'light' for ICAT, or 'sample1' and 'sample2' for label-free quantitation + + /// Label e.g. 'heavy' and 'light' for ICAT, or 'sample1' and 'sample2' for label-free quantitation String label; + /// @brief Number of elements (features, peaks, ...). /// This is e.g. used to check for correct element indices when writing a consensus map TODO fix that Size size = 0; + /// Unique id of the file UInt64 unique_id = UniqueIdInterface::INVALID; @@ -154,7 +157,8 @@ namespace OpenMS //@{ typedef ConsensusFeature FeatureType; typedef std::vector Base; - typedef RangeManager<2> RangeManagerType; + typedef RangeManagerContainer RangeManagerContainerType; + typedef RangeManager RangeManagerType; typedef std::map ColumnHeaders; /// Mutable iterator typedef std::vector::iterator Iterator; @@ -399,7 +403,5 @@ namespace OpenMS ///Print the contents of a ConsensusMap to a stream. OPENMS_DLLAPI std::ostream& operator<<(std::ostream& os, const ConsensusMap& cons_map); - - } // namespace OpenMS diff --git a/src/openms/include/OpenMS/KERNEL/Feature.h b/src/openms/include/OpenMS/KERNEL/Feature.h index 4f84d3ed058..f95c4af3047 100644 --- a/src/openms/include/OpenMS/KERNEL/Feature.h +++ b/src/openms/include/OpenMS/KERNEL/Feature.h @@ -183,6 +183,13 @@ namespace OpenMS return assignments; } + /*! + @brief Update ID references (primary ID, input matches) for this feature and any subfeatures + + This is needed e.g. after the IdentificationData instance containing the referenced data has been copied. + */ + void updateAllIDReferences(const IdentificationData::RefTranslator& trans); + protected: /// Quality measures for each dimension @@ -203,4 +210,3 @@ namespace OpenMS }; } // namespace OpenMS - diff --git a/src/openms/include/OpenMS/KERNEL/FeatureMap.h b/src/openms/include/OpenMS/KERNEL/FeatureMap.h index 010b1f51338..d3394796382 100644 --- a/src/openms/include/OpenMS/KERNEL/FeatureMap.h +++ b/src/openms/include/OpenMS/KERNEL/FeatureMap.h @@ -40,6 +40,8 @@ #include #include +#include +#include #include #include @@ -96,7 +98,7 @@ namespace OpenMS class FeatureMap : private std::vector, public MetaInfoInterface, - public RangeManager<2>, + public RangeManagerContainer, public DocumentIdentifier, public UniqueIdInterface, public UniqueIdIndexer, @@ -106,45 +108,42 @@ namespace OpenMS /** @name Type definitions */ - typedef std::vector privvec; + typedef std::vector Base; // types - using privvec::value_type; - using privvec::iterator; - using privvec::const_iterator; - using privvec::size_type; - using privvec::pointer; // ConstRefVector - using privvec::reference; // ConstRefVector - using privvec::const_reference; // ConstRefVector - using privvec::difference_type; // ConstRefVector + using Base::value_type; + using Base::iterator; + using Base::const_iterator; + using Base::size_type; + using Base::pointer; // ConstRefVector + using Base::reference; // ConstRefVector + using Base::const_reference; // ConstRefVector + using Base::difference_type; // ConstRefVector // functions - using privvec::begin; - using privvec::end; - - using privvec::size; - using privvec::resize; // ConsensusMap, FeatureXMLFile - using privvec::empty; - using privvec::reserve; - using privvec::operator[]; - using privvec::at; // UniqueIdIndexer - using privvec::back; // FeatureXMLFile - - using privvec::push_back; - using privvec::emplace_back; - using privvec::pop_back; // FeatureXMLFile - using privvec::erase; // source/VISUAL/Plot2DCanvas.cpp 2871, FeatureMap_test 599 + using Base::begin; + using Base::end; + + using Base::size; + using Base::resize; // ConsensusMap, FeatureXMLFile + using Base::empty; + using Base::reserve; + using Base::operator[]; + using Base::at; // UniqueIdIndexer + using Base::back; // FeatureXMLFile + + using Base::push_back; + using Base::emplace_back; + using Base::pop_back; // FeatureXMLFile + using Base::erase; // source/VISUAL/Plot2DCanvas.cpp 2871, FeatureMap_test 599 //@{ - typedef Feature FeatureType; - typedef RangeManager<2> RangeManagerType; - typedef std::vector Base; + typedef RangeManagerContainer RangeManagerContainerType; + typedef RangeManager RangeManagerType; typedef Base::iterator Iterator; typedef Base::const_iterator ConstIterator; typedef Base::reverse_iterator ReverseIterator; typedef Base::const_reverse_iterator ConstReverseIterator; - typedef FeatureType& Reference; - typedef const FeatureType& ConstReference; //@} /** @@ -158,6 +157,9 @@ namespace OpenMS /// Copy constructor OPENMS_DLLAPI FeatureMap(const FeatureMap& source); + /// Move constructor + OPENMS_DLLAPI FeatureMap(FeatureMap&& source); + /// Destructor OPENMS_DLLAPI ~FeatureMap() override; //@} @@ -223,6 +225,8 @@ namespace OpenMS OPENMS_DLLAPI void swap(FeatureMap& from); + /// @name Functions for dealing with identifications in legacy format + ///@{ /// non-mutable access to the protein identifications OPENMS_DLLAPI const std::vector& getProteinIdentifications() const; @@ -240,6 +244,7 @@ namespace OpenMS /// sets the unassigned peptide identifications OPENMS_DLLAPI void setUnassignedPeptideIdentifications(const std::vector& unassigned_peptide_identifications); + ///@} /// returns a const reference to the description of the applied data processing OPENMS_DLLAPI const std::vector& getDataProcessing() const; @@ -253,7 +258,7 @@ namespace OpenMS /// set the file path to the primary MS run (usually the mzML file obtained after data conversion from raw files) OPENMS_DLLAPI void setPrimaryMSRunPath(const StringList& s); - /// set the file path to the primary MS run using the mzML annotated in the MSExperiment @param e. + /// set the file path to the primary MS run using the mzML annotated in the MSExperiment @param e. /// If it doesn't exist, fallback to @param s. OPENMS_DLLAPI void setPrimaryMSRunPath(const StringList& s, MSExperiment & e); @@ -306,8 +311,25 @@ namespace OpenMS OPENMS_DLLAPI AnnotationStatistics getAnnotationStatistics() const; -protected: + /// @name Functions for dealing with identifications in new format + ///@{ + /*! + @brief Return observation matches (e.g. PSMs) from the identification data that are not assigned to any feature in the map + + Only top-level features are considered, i.e. no subordinates. + + @see BaseFeature::getIDMatches() + */ + OPENMS_DLLAPI std::set getUnassignedIDMatches() const; + + /// Immutable access to the contained identification data + OPENMS_DLLAPI const IdentificationData& getIdentificationData() const; + /// Mutable access to the contained identification data + OPENMS_DLLAPI IdentificationData& getIdentificationData(); + ///@} + +protected: /// protein identifications std::vector protein_identifications_; @@ -317,6 +339,8 @@ namespace OpenMS /// applied data processing std::vector data_processing_; + /// general identification results (peptides/proteins, RNA, compounds) + IdentificationData id_data_; }; OPENMS_DLLAPI std::ostream& operator<<(std::ostream& os, const FeatureMap& map); diff --git a/src/openms/include/OpenMS/KERNEL/MSChromatogram.h b/src/openms/include/OpenMS/KERNEL/MSChromatogram.h index 38f1c463fac..1c513589868 100644 --- a/src/openms/include/OpenMS/KERNEL/MSChromatogram.h +++ b/src/openms/include/OpenMS/KERNEL/MSChromatogram.h @@ -52,7 +52,7 @@ namespace OpenMS class OPENMS_DLLAPI MSChromatogram : private std::vector, - public RangeManager<1>, + public RangeManagerContainer, public ChromatogramSettings { @@ -72,6 +72,8 @@ namespace OpenMS typedef typename PeakType::CoordinateType CoordinateType; /// Chromatogram base type typedef std::vector ContainerType; + /// RangeManager + typedef RangeManager RangeManagerType; /// Float data array vector type typedef OpenMS::DataArrays::FloatDataArray FloatDataArray ; typedef std::vector FloatDataArrays; @@ -134,8 +136,7 @@ namespace OpenMS MSChromatogram(MSChromatogram&&) = default; /// Destructor - ~MSChromatogram() override - {} + ~MSChromatogram() = default; /// Assignment operator MSChromatogram& operator=(const MSChromatogram& source); @@ -155,8 +156,12 @@ namespace OpenMS // Docu in base class (RangeManager) void updateRanges() override { - this->clearRanges(); - updateRanges_(ContainerType::begin(), ContainerType::end()); + clearRanges(); + for (const auto& peak : (ContainerType&) *this) + { + extendRT(peak.getRT()); + extendIntensity(peak.getIntensity()); + } } ///@name Accessors for meta information diff --git a/src/openms/include/OpenMS/KERNEL/MSExperiment.h b/src/openms/include/OpenMS/KERNEL/MSExperiment.h index a472556a2f9..0cfed8b7ba3 100644 --- a/src/openms/include/OpenMS/KERNEL/MSExperiment.h +++ b/src/openms/include/OpenMS/KERNEL/MSExperiment.h @@ -36,7 +36,6 @@ #include #include -#include #include #include #include @@ -51,10 +50,9 @@ namespace OpenMS class ChromatogramPeak; /** - @brief In-Memory representation of a mass spectrometry experiment. + @brief In-Memory representation of a mass spectrometry run. - Contains the data and metadata of an experiment performed with an MS (or - HPLC and MS). This representation of an MS experiment is organized as list + This representation of an MS run is organized as list of spectra and chromatograms and provides an in-memory representation of popular mass-spectrometric file formats such as mzXML or mzML. The meta-data associated with an experiment is contained in @@ -63,19 +61,14 @@ namespace OpenMS MSSpectrum and MSChromatogram, which are accessible through the getSpectrum and getChromatogram functions. - Be careful when changing the order of contained MSSpectrum instances, if - tandem-MS data is stored in this class. The only way to find a precursor - spectrum of MSSpectrum x is to search for the first spectrum before x that - has a lower MS-level! - @note For range operations, see \ref RangeUtils "RangeUtils module"! @note Some of the meta data is associated with the spectra directly (e.g. DataProcessing) and therefore the spectra need to be present to retain this information. @note For an on-disc representation of an MS experiment, see OnDiskExperiment. @ingroup Kernel */ - class OPENMS_DLLAPI MSExperiment : - public RangeManager<2>, + class OPENMS_DLLAPI MSExperiment final : + public RangeManagerContainer, public ExperimentalSettings { @@ -89,14 +82,14 @@ namespace OpenMS typedef PeakT PeakType; /// Chromatogram peak type typedef ChromatogramPeakT ChromatogramPeakType; - /// Area type - typedef DRange<2> AreaType; /// Coordinate type of peak positions typedef PeakType::CoordinateType CoordinateType; /// Intensity type of peaks typedef PeakType::IntensityType IntensityType; /// RangeManager type - typedef RangeManager<2> RangeManagerType; + typedef RangeManager RangeManagerType; + /// RangeManager type + typedef RangeManagerContainer RangeManagerContainerType; /// Spectrum Type typedef MSSpectrum SpectrumType; /// Chromatogram type @@ -447,13 +440,6 @@ namespace OpenMS /// returns the maximal retention time value CoordinateType getMaxRT() const; - /** - @brief Returns RT and m/z range the data lies in. - - RT is dimension 0, m/z is dimension 1 - */ - const AreaType& getDataRange() const; - /// returns the total number of peaks UInt64 getSize() const; @@ -494,7 +480,7 @@ namespace OpenMS //@} - /// Resets all internal values + /// Clear all internal data (spectra, ranges, metadata) void reset(); /** @@ -520,20 +506,23 @@ namespace OpenMS */ ConstIterator getPrecursorSpectrum(ConstIterator iterator) const; + /** + @brief Returns the index of the precursor spectrum for spectrum at index @p zero_based_index + + If there is no precursor scan -1 is returned. + */ + int getPrecursorSpectrum(int zero_based_index) const; + /// Swaps the content of this map with the content of @p from void swap(MSExperiment& from); /// sets the spectrum list void setSpectra(const std::vector& spectra); + void setSpectra(std::vector&& spectra); /// adds a spectrum to the list void addSpectrum(const MSSpectrum& spectrum); - - - void addSpectrum(MSSpectrum&& spectrum) - { - spectra_.push_back(std::forward(spectrum)); - } + void addSpectrum(MSSpectrum&& spectrum); /// returns the spectrum list const std::vector& getSpectra() const; @@ -543,14 +532,11 @@ namespace OpenMS /// sets the chromatogram list void setChromatograms(const std::vector& chromatograms); + void setChromatograms(std::vector&& chromatograms); /// adds a chromatogram to the list void addChromatogram(const MSChromatogram& chromatogram); - - void addChromatogram(MSChromatogram&& chrom) - { - chromatograms_.push_back(std::forward(chrom)); - } + void addChromatogram(MSChromatogram&& chrom); /// returns the chromatogram list const std::vector& getChromatograms() const; diff --git a/src/openms/include/OpenMS/KERNEL/MSSpectrum.h b/src/openms/include/OpenMS/KERNEL/MSSpectrum.h index d87f5a57c16..989b5677a84 100644 --- a/src/openms/include/OpenMS/KERNEL/MSSpectrum.h +++ b/src/openms/include/OpenMS/KERNEL/MSSpectrum.h @@ -63,9 +63,9 @@ namespace OpenMS @ingroup Kernel */ - class OPENMS_DLLAPI MSSpectrum : + class OPENMS_DLLAPI MSSpectrum final : private std::vector, - public RangeManager<1>, + public RangeManagerContainer, public SpectrumSettings { public: @@ -108,6 +108,9 @@ namespace OpenMS typedef typename PeakType::CoordinateType CoordinateType; /// Spectrum base type typedef std::vector ContainerType; + /// RangeManager + typedef RangeManagerContainer RangeManagerContainerType; + typedef RangeManager RangeManagerType; /// Float data array vector type typedef OpenMS::DataArrays::FloatDataArray FloatDataArray ; typedef std::vector FloatDataArrays; @@ -173,8 +176,7 @@ namespace OpenMS MSSpectrum(MSSpectrum&&) = default; /// Destructor - ~MSSpectrum() override - {} + ~MSSpectrum() = default; /// Assignment operator MSSpectrum& operator=(const MSSpectrum& source); diff --git a/src/openms/include/OpenMS/KERNEL/OnDiscMSExperiment.h b/src/openms/include/OpenMS/KERNEL/OnDiscMSExperiment.h index 91680a3f3db..42a237fe465 100644 --- a/src/openms/include/OpenMS/KERNEL/OnDiscMSExperiment.h +++ b/src/openms/include/OpenMS/KERNEL/OnDiscMSExperiment.h @@ -76,7 +76,7 @@ namespace OpenMS This initializes the object, use openFile to open a file. */ - OnDiscMSExperiment() {} + OnDiscMSExperiment() = default; /** @brief Open a specific file on disk. @@ -87,16 +87,7 @@ namespace OpenMS @return Whether the parsing of the file was successful (if false, the file most likely was not an indexed mzML file) */ - bool openFile(const String& filename, bool skipMetaData = false) - { - filename_ = filename; - indexed_mzml_file_.openFile(filename); - if (filename != "" && !skipMetaData) - { - loadMetaData_(filename); - } - return indexed_mzml_file_.getParsingSuccess(); - } + bool openFile(const String& filename, bool skipMetaData = false); /// Copy constructor OnDiscMSExperiment(const OnDiscMSExperiment& source) : @@ -240,16 +231,10 @@ namespace OpenMS /** @brief returns a single chromatogram */ - OpenMS::Interfaces::ChromatogramPtr getChromatogramById(Size id) - { - return indexed_mzml_file_.getChromatogramById(id); - } + OpenMS::Interfaces::ChromatogramPtr getChromatogramById(Size id); /// sets whether to skip some XML checks and be fast instead - void setSkipXMLChecks(bool skip) - { - indexed_mzml_file_.setSkipXMLChecks(skip); - } + void setSkipXMLChecks(bool skip); private: diff --git a/src/openms/include/OpenMS/KERNEL/RangeManager.h b/src/openms/include/OpenMS/KERNEL/RangeManager.h index 417b2787e47..289cc1c61af 100644 --- a/src/openms/include/OpenMS/KERNEL/RangeManager.h +++ b/src/openms/include/OpenMS/KERNEL/RangeManager.h @@ -28,181 +28,645 @@ // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // -------------------------------------------------------------------------- -// $Maintainer: Timo Sachsenberg$ -// $Authors: Marc Sturm $ +// $Maintainer: Chris Bielow $ +// $Authors: Chris Bielow $ // -------------------------------------------------------------------------- #pragma once -#include +#include +#include + +#include // for min/max +#include +#include // for std::ostream + namespace OpenMS { - /** - @brief Handles the management of a position and intensity range. + /// Dimensions of data acquisition for MS data + enum class MSDim + { + RT, + MZ, + INT, + IM + }; - This is needed for all peak and feature container like Spectrum, MSExperiment and FeatureMap. - */ - template - class RangeManager + /// Base class for a simple range with minimum and maximum + struct OPENMS_DLLAPI RangeBase { -public: - /// Dimension of the position range - enum {DIMENSION = D}; - /// Position range type - typedef DRange PositionRangeType; - /// Position Type - typedef DPosition PositionType; - /// Intensity range type - typedef DRange<1> IntensityRangeType; + public: + /// Ctor: initialize with empty range + RangeBase() = default; + + /// set min and max + /// @throws Exception::InvalidRange if min > max + RangeBase(const double min, const double max) : + min_(min), max_(max) + { + if (min_ > max_) + throw Exception::InvalidRange(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Invalid initialization of range"); + } - /// Default constructor - RangeManager() : - int_range_(), - pos_range_() - {} + /// make the range empty, i.e. isEmpty() will be true + void clear() + { + *this = RangeBase(); // overwrite with fresh instance + } - /// Copy constructor - RangeManager(const RangeManager & rhs) : - int_range_(rhs.int_range_), - pos_range_(rhs.pos_range_) - {} + /// is the range empty (i.e. default constructed or cleared using clear())? + bool isEmpty() const + { // invariant: only possible when default constructed or clear()'ed + return min_ > max_; + } - /// Move constructor - RangeManager(RangeManager&&) noexcept = default; + /// is @p value within [min, max]? + bool contains(const double value) const + { + return min_ <= value && value <= max_; + } - /// Destructor - virtual ~RangeManager() - {} + /// is the range @p inner_range within [min, max]? + bool contains(const RangeBase& inner_range) const + { + return contains(inner_range.min_) && contains(inner_range.max_); + } - /// Assignment operator - RangeManager & operator=(const RangeManager & rhs) + /** @name Accessors for min and max + + We use accessors, to keep range consistent (i.e. ensure that min <= max) + */ + ///@{ + + /// sets the minimum (and the maximum, if uninitialized) + void setMin(const double min) { - if (this == &rhs) return *this; + min_ = min; + if (max_ < min) + max_ = min; + } - int_range_ = rhs.int_range_; - pos_range_ = rhs.pos_range_; + /// sets the maximum (and the minimum, if uninitialized) + void setMax(const double max) + { + max_ = max; + if (min_ > max) + min_ = max; + } - return *this; + /// only useful if isEmpty() returns false + double getMin() const + { + return min_; } - /// Equality operator - bool operator==(const RangeManager & rhs) const + /// only useful if isEmpty() returns false + double getMax() const { - return int_range_ == rhs.int_range_ && - pos_range_ == rhs.pos_range_; + return max_; } + ///@} - /// Equality operator - bool operator!=(const RangeManager & rhs) const + /// ensure the range includes the range of @p other + void extend(const RangeBase& other) { - return !(operator==(rhs)); + min_ = std::min(min_, other.min_); + max_ = std::max(max_, other.max_); + } + + /// extend the range such that it includes the given @p value + void extend(const double value) + { + min_ = std::min(min_, value); + max_ = std::max(max_, value); } /** - @name Range methods + @brief Scale the range of the dimension by a @p factor. A factor > 1 increases the range; factor < 1 decreases it. + + Let d = max - min; then min = min - d*(factor-1)/2, + i.e. scale(1.5) extends the range by 25% on each side. + + Scaling an empty range will not have any effect. + + @param factor The multiplier to increase the range by + */ + void scaleBy(const double factor) + { + if (isEmpty()) return; + const double dist = max_ - min_; + const double extension = dist * (factor - 1) / 2; + min_ -= extension; + max_ += extension; + } + + void assign(const RangeBase& rhs) + { + *this = rhs; + } + + bool operator==(const RangeBase& rhs) const + { + return min_ == rhs.min_ && max_ == rhs.max_; + } + + protected: + // make members non-accessible to maintain invariant: min <= max (unless uninitialized) + double min_ = std::numeric_limits::max(); + double max_ = -std::numeric_limits::max(); + }; + + OPENMS_DLLAPI std::ostream& operator<<(std::ostream& out, const RangeBase& b); + + struct OPENMS_DLLAPI RangeRT : public RangeBase { - @note The range values are not updated automatically. Call updateRanges() to update the - values! + const static MSDim DIM = MSDim::RT; + + RangeRT() = default; + RangeRT(const double min, const double max) : + RangeBase(min, max) + { + } + + /** @name Accessors for min and max + + We use accessors, to keep range consistent (i.e. ensure that min <= max) */ ///@{ - /// Returns the minimum position - const PositionType & getMin() const + /// sets the minimum (and the maximum, if uninitialized) + void setMinRT(const double min) { - return pos_range_.minPosition(); + setMin(min); } - /// Returns the maximum position - const PositionType & getMax() const + /// sets the maximum (and the minimum, if uninitialized) + void setMaxRT(const double max) { - return pos_range_.maxPosition(); + setMax(max); } - /// Returns the minimum intensity - double getMinInt() const + /// only useful if isEmpty() returns false + double getMinRT() const { - return int_range_.minPosition()[0]; + return min_; } - /// Returns the maximum intensity - double getMaxInt() const + /// only useful if isEmpty() returns false + double getMaxRT() const { - return int_range_.maxPosition()[0]; + return max_; } + ///@} - /** - @brief Updates minimum and maximum position/intensity. + /// extend the range such that it includes the given @p value + void extendRT(const double value) + { + extend(value); + } - This method is usually implemented by calling clearRanges() and updateRanges_(). + /// is @p value within [min, max]? + bool containsRT(const double value) const + { + return RangeBase::contains(value); + } + + /// is the range @p inner_range within [min, max] of this range? + bool containsRT(const RangeBase& inner_range) const + { + return RangeBase::contains(inner_range); + } + }; + + OPENMS_DLLAPI std::ostream& operator<<(std::ostream& out, const RangeRT& range); + + struct OPENMS_DLLAPI RangeMZ : public RangeBase + { + + const static MSDim DIM = MSDim::MZ; + + RangeMZ() = default; + RangeMZ(const double min, const double max) : + RangeBase(min, max) + { + } + + /** @name Accessors for min and max + + We use accessors, to keep range consistent (i.e. ensure that min <= max) */ - virtual void updateRanges() = 0; + ///@{ - /// Resets the ranges - void clearRanges() + /// sets the minimum (and the maximum, if uninitialized) + void setMinMZ(const double min) + { + setMin(min); + } + + /// sets the maximum (and the minimum, if uninitialized) + void setMaxMZ(const double max) + { + setMax(max); + } + + /// only useful if isEmpty() returns false + double getMinMZ() const { - int_range_ = IntensityRangeType::empty; - pos_range_ = PositionRangeType::empty; + return min_; } + /// only useful if isEmpty() returns false + double getMaxMZ() const + { + return max_; + } ///@} -protected: - /// Intensity range (1-dimensional) - IntensityRangeType int_range_; - /// Position range (D-dimensional) - PositionRangeType pos_range_; - - /// Updates the range using data points in the iterator range. - template - void updateRanges_(const PeakIteratorType & begin, const PeakIteratorType & end) - { - //prevent invalid range by empty container - if (begin == end) - { - return; - } - PositionType min = pos_range_.minPosition(); - PositionType max = pos_range_.maxPosition(); + /// extend the range such that it includes the given @p value + void extendMZ(const double value) + { + extend(value); + } - double it_min = int_range_.minPosition()[0]; - double it_max = int_range_.maxPosition()[0]; + /// is @p value within [min, max]? + bool containsMZ(const double value) const + { + return RangeBase::contains(value); + } - for (PeakIteratorType it = begin; it != end; ++it) - { - //update position - for (UInt i = 0; i < D; ++i) + /// is the range @p inner_range within [min, max] of this range? + bool containsMZ(const RangeBase& inner_range) const + { + return RangeBase::contains(inner_range); + } + }; + OPENMS_DLLAPI std::ostream& operator<<(std::ostream& out, const RangeMZ& range); + + struct OPENMS_DLLAPI RangeIntensity : public RangeBase { + + const static MSDim DIM = MSDim::INT; + + RangeIntensity() = default; + RangeIntensity(const double min, const double max) : + RangeBase(min, max) + { + } + + /** @name Accessors for min and max + + We use accessors, to keep range consistent (i.e. ensure that min <= max) + */ + ///@{ + + /// sets the minimum (and the maximum, if uninitialized) + void setMinIntensity(const double min) + { + setMin(min); + } + + /// sets the maximum (and the minimum, if uninitialized) + void setMaxIntensity(const double max) + { + setMax(max); + } + + /// only useful if isEmpty() returns false + double getMinIntensity() const + { + return min_; + } + + /// only useful if isEmpty() returns false + double getMaxIntensity() const + { + return max_; + } + ///@} + + /// extend the range such that it includes the given @p value + void extendIntensity(const double value) + { + extend(value); + } + + /// is @p value within [min, max]? + bool containsIntensity(const double value) const + { + return RangeBase::contains(value); + } + + /// is the range @p inner_range within [min, max] of this range? + bool containsIntensity(const RangeBase& inner_range) const + { + return RangeBase::contains(inner_range); + } + }; + + OPENMS_DLLAPI std::ostream& operator<<(std::ostream& out, const RangeIntensity& range); + + struct OPENMS_DLLAPI RangeMobility : public RangeBase + { + const static MSDim DIM = MSDim::IM; + + RangeMobility() = default; + RangeMobility(const double min, const double max) : + RangeBase(min, max) + { + } + + /** @name Accessors for min and max + + We use accessors, to keep range consistent (i.e. ensure that min <= max) + */ + ///@{ + + /// sets the minimum (and the maximum, if uninitialized) + void setMinMobility(const double min) + { + setMin(min); + } + + /// sets the maximum (and the minimum, if uninitialized) + void setMaxMobility(const double max) + { + setMax(max); + } + + /// only useful if isEmpty() returns false + double getMinMobility() const + { + return min_; + } + + /// only useful if isEmpty() returns false + double getMaxMobility() const + { + return max_; + } + ///@} + + /// extend the range such that it includes the given @p value + void extendMobility(const double value) + { + extend(value); + } + + /// is @p value within [min, max]? + bool containsMobility(const double value) const + { + return RangeBase::contains(value); + } + + /// is the range @p inner_range within [min, max] of this range? + bool containsMobility(const RangeBase& inner_range) const + { + return RangeBase::contains(inner_range); + } + }; + + OPENMS_DLLAPI std::ostream& operator<<(std::ostream& out, const RangeMobility& range); + + /// Enum listing state of dimensions (RangeBases) + enum class HasRangeType + { + ALL, ///< all dimensions are filled + SOME,///< some dimensions are empty, some are filled + NONE ///< all dimensions are empty (=cleared) + }; + + /** + @brief Handles the management of a multidimensional range, e.g. RangeMZ and RangeIntensity for spectra. + + Instanciate it with the dimensions which are supported/required, e.g. + RangeManager range_spec for a spectrum and use the strongly typed features, such as + range_spec.getMaxRT()/setMaxRT(500.0) or range_spec.extend(RangeMZ{100, 1500}); + + Use RangeManagerContainer as a base class for all peak and feature containers like MSSpectrum, MSExperiment and FeatureMap. + + The implementation uses non-virtual multiple inheritance using variadic templates. Each dimension, e.g. RangeRT, is inherited from, thus + all members of the base class become accessible in the RangeManager, e.g. ::getMaxRT(). + Operations (e.g. assignment, or extension of ranges) across RangeManagers with a different, yet overlapping set of base classes + is enabled using fold expressions and constexpr evaluations, which are resolved at compile time (see for_each_base_ member function). + + */ + template + class RangeManager : public RangeBases... + { + public: + // rule of 0 -- no need for a virtual d'tor or anything fancy + // ... + + bool operator==(const RangeManager& rhs) const + { + bool equal = true; + for_each_base_([&](auto* base) { + using T_BASE = std::decay_t; // remove const/ref qualifiers + equal &= ((T_BASE&) rhs == (T_BASE&) *this); + }); + return equal; + } + + + /// copy all overlapping dimensions from @p rhs to this instance. + /// Dimensions which are not contained in @p rhs are left untouched. + /// @param rhs Range to copy from + /// @return true if one or more dimensions overlapped + template + bool assignUnsafe(const RangeManager& rhs) + { + bool found = false; + for_each_base_([&](auto* base) { + using T_BASE = std::decay_t; // remove const/ref qualifiers + if constexpr (std::is_base_of_v>) { - double tmp = it->getPosition()[i]; - if (tmp < min[i]) - { - min[i] = tmp; - } - if (tmp > max[i]) - { - max[i] = tmp; - } + base->assign((T_BASE&) rhs); + found = true; } + }); - //update intensity - double tmp = it->getIntensity(); - if (tmp < it_min) + return found; + } + + /// copy all overlapping dimensions from @p rhs to this instance. + /// Dimensions which are not contained in @p rhs are left untouched. + /// @param rhs Range to copy from + /// @throw Exception::InvalidRange if no dimensions overlapped + template + void assign(const RangeManager& rhs) + { + if (!assignUnsafe(rhs)) + { + throw Exception::InvalidRange(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION , "No assignment took place (no dimensions in common!);"); + } + } + + /// extend all dimensions which overlap with @p rhs to contain the range of @p rhs + /// Dimensions which are not contained in @p rhs are left untouched. + /// @param rhs Range to extend from + /// @return false if no dimensions overlapped + template + bool extendUnsafe(const RangeManager& rhs) + { + bool found = false; + for_each_base_([&](auto* base) { + using T_BASE = std::decay_t; // remove const/ref qualifiers + if constexpr (std::is_base_of_v>) { - it_min = tmp; + base->extend((T_BASE&) rhs); + found = true; } - if (tmp > it_max) + }); + return found; + } + + /// extend all dimensions which overlap with @p rhs to contain the range of @p rhs + /// Dimensions which are not contained in @p rhs are left untouched. + /// @param rhs Range to extend from + /// @throw Exception::InvalidRange if no dimensions overlapped + template + void extend(const RangeManager& rhs) + { + if (!extendUnsafe(rhs)) + { + throw Exception::InvalidRange(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "No assignment took place (no dimensions in common!);"); + } + } + + /// calls RangeBase::scale() for each dimension + void scaleBy(const double factor) + { + for_each_base_([&](auto* base) { + base->scaleBy(factor); + }); + } + + /// obtain a range dimension at runtime using @p dim + RangeBase& getRangeForDim(MSDim dim) + { + RangeBase* r_base = nullptr; + + static_for_each_base_([&](auto* base) { + using Base = std::decay_t; // remove const/ref qualifiers + if (base->DIM == dim) + r_base = (Base*) this; + }); + + assert((r_base != nullptr) && "No base class has this MSDim!"); + return *r_base; + } + + /// is any/some/all dimension in this range populated? + HasRangeType hasRange() const + { + constexpr size_t total{sizeof...(RangeBases)};// total number of bases + size_t count{0}; + for_each_base_([&](auto* base) { + count += !base->isEmpty(); + }); + switch (count) + { + case 0: + return HasRangeType::NONE; + case total: + return HasRangeType::ALL; + default: + return HasRangeType::SOME; + } + } + + /// Are all dimensions of @p rhs (which overlap with this Range) contained in this range? + /// An empty dimension is considered contained in the other dimension (even if that one is empty as well). + /// If only all overlapping dimensions are empty, true is returned. + /// @throws Exception::InvalidRange if no dimensions overlap + template + bool containsAll(const RangeManager& rhs) const + { + bool contained = true; // assume rhs is contained, until proven otherwise + bool has_overlap = false; + for_each_base_([&](auto* base) { + using T_BASE = std::decay_t; // remove const/ref qualifiers + if constexpr (std::is_base_of_v>) { - it_max = tmp; + has_overlap = true; // at least one dimension overlaps + if (((T_BASE&)rhs).isEmpty()) return; + if (base->contains((T_BASE&) rhs)) return; + contained = false; } - } + }); + if (!has_overlap) throw Exception::InvalidRange(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION); - pos_range_.setMin(min); - pos_range_.setMax(max); + return contained; + } + + /// Resets all ranges + void clearRanges() + { + for_each_base_([&](auto* base) { + base->clear(); + }); + } + + /// print each dimension (base classes) to a stream + void printRange(std::ostream& out) const + { + for_each_base_([&](auto* base) { + out << *base; + }); + } + + protected: + /// use fold expression to iterate over all RangeBases of RangeManager and apply a lambda (Visitor) for each one + template + void for_each_base_(Visitor&& visitor) + { + (void(visitor(static_cast(this))), ...); + } + /// .. and a const version + template + void for_each_base_(Visitor&& visitor) const + { + (void(visitor(static_cast(this))), ...); + } - int_range_.setMinX(it_min); - int_range_.setMaxX(it_max); + /// use fold expression to iterate over all RangeBases of RangeManager and apply a lambda (Visitor) for each one (for static members) + template + static void static_for_each_base_(Visitor&& visitor) + { + (void(visitor(static_cast(nullptr))), ...); } + }; + template + std::ostream& operator<<(std::ostream& out, const RangeManager& me) + { + me.printRange(out); + return out; + } + + /// use this class as a base class for containers, e.g. MSSpectrum. It forces them to implement 'updateRanges()' as a common interface + /// and provides a 'getRange()' member which saves casting to a range type manually + template + class RangeManagerContainer + : public RangeManager + { + public: + /// implement this function to reflect the underlying data of the derived class (e.g. an MSSpectrum) + /// Usually, call clearRanges() internally and then populate the dimensions. + virtual void updateRanges() = 0; + + /// get range of current data (call updateRanges() before to ensure the range is accurate) + const RangeManager& getRange() const + { + return (RangeManager&) *this; + } + + /// get mutable range, provided for efficiency reasons (avoid updateRanges(), if only minor changes were made) + RangeManager& getRange() + { + return (RangeManager&)*this; + } + }; -} // namespace OpenMS +} // namespace OpenMS diff --git a/src/openms/include/OpenMS/KERNEL/RangeUtils.h b/src/openms/include/OpenMS/KERNEL/RangeUtils.h index b06bc63ffb9..ceef7e8bba1 100644 --- a/src/openms/include/OpenMS/KERNEL/RangeUtils.h +++ b/src/openms/include/OpenMS/KERNEL/RangeUtils.h @@ -349,13 +349,11 @@ namespace OpenMS inline bool operator()(const SpectrumType& s) const { - for (std::vector::const_iterator it = s.getPrecursors().begin(); it != s.getPrecursors().end(); ++it) + for (const Precursor& p : s.getPrecursors()) { - for (std::set::const_iterator it_a = it->getActivationMethods().begin(); - it_a != it->getActivationMethods().end(); - ++it_a) + for (const Precursor::ActivationMethod am : p.getActivationMethods()) { - if (ListUtils::contains(methods_, Precursor::NamesOfActivationMethod[*it_a])) + if (ListUtils::contains(methods_, Precursor::NamesOfActivationMethod[am])) { // found matching activation method if (reverse_) return false; @@ -364,8 +362,7 @@ namespace OpenMS } } - if (reverse_) return true; - else return false; + return reverse_; } protected: diff --git a/src/openms/include/OpenMS/KERNEL/SpectrumHelper.h b/src/openms/include/OpenMS/KERNEL/SpectrumHelper.h index dc7a51b1f95..849ce58c0eb 100644 --- a/src/openms/include/OpenMS/KERNEL/SpectrumHelper.h +++ b/src/openms/include/OpenMS/KERNEL/SpectrumHelper.h @@ -32,11 +32,13 @@ // $Authors: Timo Sachsenberg $ // -------------------------------------------------------------------------- +#pragma once + #include +#include +#include #include -#pragma once - namespace OpenMS { class String; @@ -220,7 +222,17 @@ namespace OpenMS std::swap(p_new, p); } + + /** + * @brief Copies only the meta data contained in the input spectrum to the output spectrum. + * + * @note Actual data is not copied. + * + * @param[in] input The input spectrum. + * @param[out] output The output spectrum (will be cleared and will contain all metadata of the input spectrum). + * @param clear_spectrum Whether the output spectrum should be cleared first (all raw data and data arrays will be deleted) + **/ + OPENMS_DLLAPI void copySpectrumMeta(const MSSpectrum & input, MSSpectrum & output, bool clear_spectrum = true); } // namespace OpenMS - diff --git a/src/openms/include/OpenMS/MATH/MISC/EmgGradientDescent.h b/src/openms/include/OpenMS/MATH/MISC/EmgGradientDescent.h index 84fd6f8dce8..7936292d5c7 100644 --- a/src/openms/include/OpenMS/MATH/MISC/EmgGradientDescent.h +++ b/src/openms/include/OpenMS/MATH/MISC/EmgGradientDescent.h @@ -68,7 +68,7 @@ namespace OpenMS /// Constructor EmgGradientDescent(); /// Destructor - ~EmgGradientDescent() = default; + ~EmgGradientDescent() override = default; void getDefaultParameters(Param& params); diff --git a/src/openms/include/OpenMS/MATH/MISC/MathFunctions.h b/src/openms/include/OpenMS/MATH/MISC/MathFunctions.h index 7c7695493bf..8a02fc3f321 100644 --- a/src/openms/include/OpenMS/MATH/MISC/MathFunctions.h +++ b/src/openms/include/OpenMS/MATH/MISC/MathFunctions.h @@ -53,6 +53,32 @@ namespace OpenMS */ namespace Math { + + /** + @brief Given an interval/range and a new value, extend the range to include the new value if needed + + @param min The current minimum of the range + @param max The current maximum of the range + @param value The new value which may extend the range + @return true if the range was modified + */ + template + bool extendRange(T& min, T& max, const T& value) + { + if (value < min) + { + min = value; + return true; + } + if (value > max) + { + max = value; + return true; + } + return false; + } + + /** @brief rounds @p x up to the next decimal power 10 ^ @p decPow diff --git a/src/openms/include/OpenMS/MATH/MISC/SplineBisection.h b/src/openms/include/OpenMS/MATH/MISC/SplineBisection.h index 7e3efeb73d4..c3d675afcd1 100644 --- a/src/openms/include/OpenMS/MATH/MISC/SplineBisection.h +++ b/src/openms/include/OpenMS/MATH/MISC/SplineBisection.h @@ -63,7 +63,7 @@ namespace OpenMS double lefthand = left_neighbor_mz; double righthand = right_neighbor_mz; - bool lefthand_sign = 1; + bool lefthand_sign = true; double eps = std::numeric_limits::epsilon(); // bisection @@ -78,7 +78,7 @@ namespace OpenMS break; } - bool midpoint_sign = (midpoint_deriv_val < 0.0) ? 0 : 1; + bool midpoint_sign = (midpoint_deriv_val < 0.0) ? false : true; if (lefthand_sign ^ midpoint_sign) { diff --git a/src/openms/include/OpenMS/MATH/STATISTICS/GammaDistributionFitter.h b/src/openms/include/OpenMS/MATH/STATISTICS/GammaDistributionFitter.h index d0bf0f86574..948e9654330 100644 --- a/src/openms/include/OpenMS/MATH/STATISTICS/GammaDistributionFitter.h +++ b/src/openms/include/OpenMS/MATH/STATISTICS/GammaDistributionFitter.h @@ -94,7 +94,7 @@ namespace OpenMS @exception Exception::UnableToFit is thrown if fitting cannot be performed */ - GammaDistributionFitResult fit(const std::vector >& points); + GammaDistributionFitResult fit(const std::vector >& points) const; protected: diff --git a/src/openms/include/OpenMS/MATH/STATISTICS/GumbelDistributionFitter.h b/src/openms/include/OpenMS/MATH/STATISTICS/GumbelDistributionFitter.h index 7dee1b6418d..32e3cbbf812 100644 --- a/src/openms/include/OpenMS/MATH/STATISTICS/GumbelDistributionFitter.h +++ b/src/openms/include/OpenMS/MATH/STATISTICS/GumbelDistributionFitter.h @@ -93,7 +93,7 @@ namespace OpenMS @exception Exception::UnableToFit is thrown if fitting cannot be performed */ - GumbelDistributionFitResult fit(std::vector > & points); + GumbelDistributionFitResult fit(std::vector > & points) const; /** @brief Fits a gumbel distribution to the given data x values. Fills a diff --git a/src/openms/include/OpenMS/MATH/STATISTICS/Histogram.h b/src/openms/include/OpenMS/MATH/STATISTICS/Histogram.h index 1c6de5e9689..779ea6ab99e 100644 --- a/src/openms/include/OpenMS/MATH/STATISTICS/Histogram.h +++ b/src/openms/include/OpenMS/MATH/STATISTICS/Histogram.h @@ -248,7 +248,13 @@ namespace OpenMS return bin_index; } - + /** + * @brief Increment all bins from to lowest(=first) bin up to (and including?) the bin for @p val by a certain number of counts + * @param val The value which determines the highest bin + * @param inclusive Is the highest bin included? + * @param increment Increase each bin by this value + * @return The index of the bin for @p value + */ Size incUntil(BinSizeType val, bool inclusive, ValueType increment = 1) { Size bin_index = this->valueToBin(val); @@ -263,6 +269,13 @@ namespace OpenMS return bin_index; } + /** + * @brief Increment all bins from the bin of @p val to the highest(=last) bin by a certain number of counts + * @param val The value which determines the lowest bin + * @param inclusive Is the lowest bin included? + * @param increment Increase each bin by this value + * @return The index of the bin for @p value + */ Size incFrom(BinSizeType val, bool inclusive, ValueType increment = 1) { Size bin_index = this->valueToBin(val); diff --git a/src/openms/include/OpenMS/MATH/STATISTICS/LinearRegression.h b/src/openms/include/OpenMS/MATH/STATISTICS/LinearRegression.h index f818128efce..45022ff9fd4 100644 --- a/src/openms/include/OpenMS/MATH/STATISTICS/LinearRegression.h +++ b/src/openms/include/OpenMS/MATH/STATISTICS/LinearRegression.h @@ -37,15 +37,19 @@ #include #include #include -#include - -#include "Wm5Vector2.h" -#include "Wm5ApprLineFit2.h" -#include "Wm5LinearSystem.h" #include #include +// forward declare WildMagic types so WMs headers don't pollute OpenMS library +namespace Wm5 +{ + template + class Vector2; + + typedef Vector2 Vector2d; +} + namespace OpenMS { namespace Math @@ -111,8 +115,11 @@ namespace OpenMS @exception Exception::UnableToFit is thrown if fitting cannot be performed */ - template - void computeRegression(double confidence_interval_P, Iterator x_begin, Iterator x_end, Iterator y_begin, bool compute_goodness = true); + void computeRegression(double confidence_interval_P, + std::vector::const_iterator x_begin, + std::vector::const_iterator x_end, + std::vector::const_iterator y_begin, + bool compute_goodness = true); /** @brief This function computes the best-fit linear regression coefficients \f$ (c_0,c_1) \f$ @@ -136,8 +143,12 @@ namespace OpenMS @exception Exception::UnableToFit is thrown if fitting cannot be performed */ - template - void computeRegressionWeighted(double confidence_interval_P, Iterator x_begin, Iterator x_end, Iterator y_begin, Iterator w_begin, bool compute_goodness = true); + void computeRegressionWeighted(double confidence_interval_P, + std::vector::const_iterator x_begin, + std::vector::const_iterator x_end, + std::vector::const_iterator y_begin, + std::vector::const_iterator w_begin, + bool compute_goodness = true); /// Non-mutable access to the y-intercept of the straight line double getIntercept() const; @@ -248,84 +259,6 @@ namespace OpenMS return chi_squared; } - - template - void LinearRegression::computeRegression(double confidence_interval_P, Iterator x_begin, Iterator x_end, Iterator y_begin, bool compute_goodness) - { - std::vector points = iteratorRange2Wm5Vectors(x_begin, x_end, y_begin); - - // Compute the unweighted linear fit. - // Get the intercept and the slope of the regression Y_hat=intercept_+slope_*X - // and the value of Chi squared (sum( (y - evel(x))^2) - bool pass = Wm5::HeightLineFit2(static_cast(points.size()), &points.front(), slope_, intercept_); - chi_squared_ = computeChiSquare(x_begin, x_end, y_begin, slope_, intercept_); - - if (pass) - { - if (compute_goodness && points.size() > 2) computeGoodness_(points, confidence_interval_P); - } - else - { - throw Exception::UnableToFit(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, - "UnableToFit-LinearRegression", String("Could not fit a linear model to the data (") + points.size() + " points)."); - } - } - - template - void LinearRegression::computeRegressionWeighted(double confidence_interval_P, Iterator x_begin, Iterator x_end, Iterator y_begin, Iterator w_begin, bool compute_goodness) - { - // Compute the weighted linear fit. - // Get the intercept and the slope of the regression Y_hat=intercept_+slope_*X - // and the value of Chi squared, the covariances of the intercept and the slope - std::vector points = iteratorRange2Wm5Vectors(x_begin, x_end, y_begin); - // Compute sums for linear system. copy&paste from GeometricTools Wm5ApprLineFit2.cpp - // and modified to allow weights - int numPoints = static_cast(points.size()); - double sumX = 0, sumY = 0; - double sumXX = 0, sumXY = 0; - double sumW = 0; - Iterator wIter = w_begin; - - for (int i = 0; i < numPoints; ++i, ++wIter) - { - sumX += (*wIter) * points[i].X(); - sumY += (*wIter) * points[i].Y(); - sumXX += (*wIter) * points[i].X() * points[i].X(); - sumXY += (*wIter) * points[i].X() * points[i].Y(); - sumW += (*wIter); - } - //create matrices to solve Ax = B - double A[2][2] = - { - {sumXX, sumX}, - {sumX, sumW} - }; - double B[2] = - { - sumXY, - sumY - }; - double X[2]; - - bool nonsingular = Wm5::LinearSystem().Solve2(A, B, X); - if (nonsingular) - { - slope_ = X[0]; - intercept_ = X[1]; - } - chi_squared_ = computeWeightedChiSquare(x_begin, x_end, y_begin, w_begin, slope_, intercept_); - - if (nonsingular) - { - if (compute_goodness && points.size() > 2) computeGoodness_(points, confidence_interval_P); - } - else - { - throw Exception::UnableToFit(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, - "UnableToFit-LinearRegression", "Could not fit a linear model to the data"); - } - } - } // namespace Math } // namespace OpenMS diff --git a/src/openms/include/OpenMS/MATH/STATISTICS/LinearRegressionWithoutIntercept.h b/src/openms/include/OpenMS/MATH/STATISTICS/LinearRegressionWithoutIntercept.h index 9b8d359d125..17fdb4fc115 100644 --- a/src/openms/include/OpenMS/MATH/STATISTICS/LinearRegressionWithoutIntercept.h +++ b/src/openms/include/OpenMS/MATH/STATISTICS/LinearRegressionWithoutIntercept.h @@ -74,7 +74,7 @@ namespace OpenMS /** * @brief returns the slope of the estimated regression line. */ - double getSlope(); + double getSlope() const; private: /** diff --git a/src/openms/include/OpenMS/MATH/STATISTICS/PosteriorErrorProbabilityModel.h b/src/openms/include/OpenMS/MATH/STATISTICS/PosteriorErrorProbabilityModel.h index 58d2de92dc3..087ef33409f 100644 --- a/src/openms/include/OpenMS/MATH/STATISTICS/PosteriorErrorProbabilityModel.h +++ b/src/openms/include/OpenMS/MATH/STATISTICS/PosteriorErrorProbabilityModel.h @@ -161,7 +161,7 @@ namespace OpenMS ///Writes the log distributions of gumbel and gauss densities into the two vectors for a set of scores. Incorrect_densities represent the incorrectly assigned sequences. void fillLogDensitiesGumbel(const std::vector & x_scores, std::vector & incorrect_density, std::vector & correct_density); ///computes the Likelihood with a log-likelihood function. - double computeLogLikelihood(const std::vector & incorrect_density, const std::vector & correct_density); + double computeLogLikelihood(const std::vector & incorrect_density, const std::vector & correct_density) const; /**computes the posteriors for the datapoints to belong to the incorrect distribution * @param incorrect_posterior resulting posteriors @@ -170,7 +170,7 @@ namespace OpenMS double computeLLAndIncorrectPosteriorsFromLogDensities( const std::vector& incorrect_log_density, const std::vector& correct_log_density, - std::vector& incorrect_posterior); + std::vector& incorrect_posterior) const; /** * @param x_scores Scores observed "on the x-axis" @@ -244,7 +244,7 @@ namespace OpenMS void plotTargetDecoyEstimation(std::vector & target, std::vector & decoy); /// returns the smallest score used in the last fit - inline double getSmallestScore() + inline double getSmallestScore() const { return smallest_score_; } diff --git a/src/openms/include/OpenMS/MATH/STATISTICS/StatisticFunctions.h b/src/openms/include/OpenMS/MATH/STATISTICS/StatisticFunctions.h index c1f76bee9c8..cac8c83c465 100644 --- a/src/openms/include/OpenMS/MATH/STATISTICS/StatisticFunctions.h +++ b/src/openms/include/OpenMS/MATH/STATISTICS/StatisticFunctions.h @@ -37,18 +37,10 @@ #include #include -// array_wrapper needs to be included before it is used -// only in boost1.64+. See issue #2790 -#if OPENMS_BOOST_VERSION_MINOR >= 64 -#include -#endif -#include -#include -#include - +#include +#include #include #include -#include namespace OpenMS { @@ -511,7 +503,7 @@ namespace OpenMS /* assure both ranges have the same number of elements */ checkIteratorsEqual(iter_b, end_b); - return (tp * tn - fp * fn) / sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)); + return (tp * tn - fp * fn) / std::sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)); } /** @@ -555,7 +547,7 @@ namespace OpenMS } /* assure both ranges have the same number of elements */ checkIteratorsEqual(iter_b, end_b); - return numerator / sqrt(denominator_a * denominator_b); + return numerator / std::sqrt(denominator_a * denominator_b); } /// Replaces the elements in vector @p w by their ranks @@ -574,8 +566,7 @@ namespace OpenMS } //sort std::sort(w_idx.begin(), w_idx.end(), - boost::lambda::ret((&boost::lambda::_1->*& std::pair::second) < - (&boost::lambda::_2->*& std::pair::second))); + [](const auto& pair1, const auto& pair2) { return pair1.second < pair2.second; }); //replace pairs in w_idx by pairs while (i < n) { @@ -673,7 +664,7 @@ namespace OpenMS return 0; } - return sum_model_data / (sqrt(sqsum_data) * sqrt(sqsum_model)); + return sum_model_data / (std::sqrt(sqsum_data) * std::sqrt(sqsum_model)); } /// Helper class to gather (and dump) some statistics from a e.g. vector. diff --git a/src/openms/include/OpenMS/METADATA/DataProcessing.h b/src/openms/include/OpenMS/METADATA/DataProcessing.h index de79bd86a5d..47ef124c00c 100644 --- a/src/openms/include/OpenMS/METADATA/DataProcessing.h +++ b/src/openms/include/OpenMS/METADATA/DataProcessing.h @@ -77,6 +77,7 @@ namespace OpenMS CONVERSION_MZML, ///< Conversion to mzML format CONVERSION_MZXML, ///< Conversion to mzXML format CONVERSION_DTA, ///< Conversion to DTA format + IDENTIFICATION, ///< Identification SIZE_OF_PROCESSINGACTION }; /// Names of inlet types @@ -85,7 +86,7 @@ namespace OpenMS /// Constructor DataProcessing() = default; /// Copy constructor - DataProcessing(const DataProcessing &) = default; + DataProcessing(const DataProcessing&) = default; // note: we implement the move constructor ourselves due to a bug in MSVS // 2015/2017 which cannot produce a default move constructor for classes @@ -97,33 +98,33 @@ namespace OpenMS ~DataProcessing(); /// Assignment operator - DataProcessing & operator=(const DataProcessing &) = default; + DataProcessing& operator=(const DataProcessing&) = default; /// Move assignment operator - DataProcessing& operator=(DataProcessing&&) & = default; + DataProcessing& operator=(DataProcessing&&)& = default; /// Equality operator - bool operator==(const DataProcessing & rhs) const; + bool operator==(const DataProcessing& rhs) const; /// Equality operator - bool operator!=(const DataProcessing & rhs) const; + bool operator!=(const DataProcessing& rhs) const; /// returns a const reference to the software used for processing - const Software & getSoftware() const; + const Software& getSoftware() const; /// returns a mutable reference to the software used for processing - Software & getSoftware(); + Software& getSoftware(); /// sets the software used for processing - void setSoftware(const Software & software); + void setSoftware(const Software& software); /// returns a const reference to the applied processing actions - const std::set & getProcessingActions() const; + const std::set& getProcessingActions() const; /// returns a mutable reference to the description of the applied processing - std::set & getProcessingActions(); + std::set& getProcessingActions(); /// sets the description of the applied processing - void setProcessingActions(const std::set & actions); + void setProcessingActions(const std::set& actions); /// returns the time of completion of the processing - const DateTime & getCompletionTime() const; + const DateTime& getCompletionTime() const; /// sets the time of completion taking a DateTime object - void setCompletionTime(const DateTime & completion_time); + void setCompletionTime(const DateTime& completion_time); protected: @@ -136,4 +137,3 @@ namespace OpenMS typedef boost::shared_ptr ConstDataProcessingPtr; } // namespace OpenMS - diff --git a/src/openms/include/OpenMS/METADATA/ID/AppliedProcessingStep.h b/src/openms/include/OpenMS/METADATA/ID/AppliedProcessingStep.h index cc021870522..3945846deb2 100644 --- a/src/openms/include/OpenMS/METADATA/ID/AppliedProcessingStep.h +++ b/src/openms/include/OpenMS/METADATA/ID/AppliedProcessingStep.h @@ -34,7 +34,7 @@ #pragma once -#include +#include #include #include @@ -43,38 +43,53 @@ #include #include +#include + namespace OpenMS { namespace IdentificationDataInternal { - /** @brief A processing step that was applied to a data item, possibly with associated scores. + /*! + A processing step that was applied to a data item, possibly with associated scores. */ struct AppliedProcessingStep { - // if there are only scores, the processing step may be missing: - boost::optional processing_step_opt; + /*! + @brief (Optional) reference to the processing step + + If there are only scores, the processing step may be missing. + */ + std::optional processing_step_opt; + + /// Map of scores and their types std::map scores; + /// Constructor explicit AppliedProcessingStep( - const boost::optional& processing_step_opt = - boost::none, const std::map& scores = + const std::optional& processing_step_opt = + std::nullopt, const std::map& scores = std::map()): processing_step_opt(processing_step_opt), scores(scores) { } + /// Equality operator (needed for multi-index container) bool operator==(const AppliedProcessingStep& other) const { return ((processing_step_opt == other.processing_step_opt) && (scores == other.scores)); } - /** @brief Return scores in order of priority (primary first). + /*! + @brief Return scores in order of priority (primary first). - The order is defined in the @p DataProcessingSoftware referenced by the processing step (if available). + The order is defined in the @p ProcessingSoftware referenced by the processing step (if available). Scores not listed there are included at the end of the output. + + @param primary_only Only return the primary score (ignoring any others)? */ - std::vector> getScoresInOrder() const + std::vector> + getScoresInOrder(bool primary_only = false) const { std::vector> result; std::set scores_done; @@ -88,6 +103,7 @@ namespace OpenMS if (pos != scores.end()) { result.push_back(*pos); + if (primary_only) return result; scores_done.insert(score_ref); } } @@ -97,6 +113,7 @@ namespace OpenMS if (!scores_done.count(pair.first)) { result.push_back(pair); + if (primary_only) return result; } } return result; @@ -111,7 +128,7 @@ namespace OpenMS boost::multi_index::sequenced<>, boost::multi_index::ordered_unique< boost::multi_index::member< - AppliedProcessingStep, boost::optional, + AppliedProcessingStep, std::optional, &AppliedProcessingStep::processing_step_opt>>> > AppliedProcessingSteps; diff --git a/src/openms/include/OpenMS/METADATA/ID/IdentificationData.h b/src/openms/include/OpenMS/METADATA/ID/IdentificationData.h index 1961aa3b565..10cebdf3f49 100644 --- a/src/openms/include/OpenMS/METADATA/ID/IdentificationData.h +++ b/src/openms/include/OpenMS/METADATA/ID/IdentificationData.h @@ -34,28 +34,30 @@ #pragma once -#include -#include +#include +#include #include #include #include +#include #include -#include -#include -#include -#include -#include +#include +#include +#include +#include +#include #include -#include #include namespace OpenMS { /*! - @brief Representation of spectrum identification results and associated data. + @brief Representation of spectrum identification results and associated data - This class provides capabilities for storing spectrum identification results from different types of experiments/molecules (proteomics: peptides/proteins, metabolomics: small molecules, "nucleomics": RNA). + This class provides capabilities for storing spectrum identification results from different + types of experiments/molecules (proteomics: peptides/proteins, metabolomics: small molecules, "nucleomics": RNA). + The class design has the following goals: - Provide one structure for storing all relevant data for spectrum identification results. - Store data non-redundantly. @@ -66,16 +68,16 @@ namespace OpenMS The following important subordinate classes are provided to represent different types of data:
NameTypeDefaultRestrictionsDescription
Class Represents Key Proteomics example Corresponding legacy class -
DataProcessingStep Information about a data processing step that was applied (e.g. input files, software used, parameters) Combined information Mascot search ProteinIdentification -
DataQuery A search query (with identifier, RT, m/z), i.e. an MS2 spectrum or feature (for accurate mass search) Identifier MS2 spectrum PeptideIdentification -
ParentMolecule An entry in a FASTA file with associated information (sequence, coverage, etc.) Accession Protein ProteinHit +
ProcessingStep Information about a data processing step that was applied (e.g. input files, software used, parameters) Combined information Mascot search ProteinIdentification +
Observation A search query (with identifier, RT, m/z) from an input file, i.e. an MS2 spectrum or feature (for accurate mass search) File/Identifier MS2 spectrum PeptideIdentification +
ParentSequence An entry in a FASTA file with associated information (sequence, coverage, etc.) Accession Protein ProteinHit
IdentifiedPeptide/-Oligo/-Compound An identified molecule of the respective type Sequence (or identifier for a compound) Peptide PeptideHit -
MoleculeQueryMatch A match between a query (DataQuery) and identified molecule (Identified...) Combination of query and molecule references Peptide-spectrum match (PSM) PeptideIdentification/PeptideHit +
ObservationMatch A match between a query (Observation), identified molecule (Identified...), and optionally adduct Combination of query/molecule/adduct references Peptide-spectrum match (PSM) PeptideIdentification/PeptideHit
To populate an IdentificationData instance with data, "register..." functions are used. These functions return "references" (implemented as iterators) that can be used to refer to stored data items and thus form connections. - For example, a protein can be stored using registerParentMolecule, which returns a corresponding reference. + For example, a protein can be stored using registerParentSequence, which returns a corresponding reference. This reference can be used to build an IdentifiedPeptide object that references the protein. An identified peptide referencing a protein can only be registered if that protein has been registered already, to ensure data consistency. Given the identified peptide, information about the associated protein can be retrieved efficiently by simply dereferencing the reference. @@ -83,6 +85,9 @@ namespace OpenMS To ensure non-redundancy, many data types have a "key" (see table above) to which a uniqueness constraint applies. This means only one item of such a type with a given key can be stored in an IdentificationData object. If items with an existing key are registered subsequently, attempts are made to merge new information (e.g. additional scores) into the existing entry. + The details of this merging are handled in the @p merge function in each data class. + + @warning This class is not thread-safe while being modified. @ingroup Metadata */ @@ -90,22 +95,26 @@ namespace OpenMS { public: + // to be able to add overloads and still find the inherited ones + using MetaInfoInterface::setMetaValue; + // type definitions: using MoleculeType = IdentificationDataInternal::MoleculeType; using MassType = IdentificationDataInternal::MassType; + using InputFile = IdentificationDataInternal::InputFile; using InputFiles = IdentificationDataInternal::InputFiles; using InputFileRef = IdentificationDataInternal::InputFileRef; - using DataProcessingSoftware = - IdentificationDataInternal::DataProcessingSoftware; - using DataProcessingSoftwares = - IdentificationDataInternal::DataProcessingSoftwares; + using ProcessingSoftware = + IdentificationDataInternal::ProcessingSoftware; + using ProcessingSoftwares = + IdentificationDataInternal::ProcessingSoftwares; using ProcessingSoftwareRef = IdentificationDataInternal::ProcessingSoftwareRef; - using DataProcessingStep = IdentificationDataInternal::DataProcessingStep; - using DataProcessingSteps = IdentificationDataInternal::DataProcessingSteps; + using ProcessingStep = IdentificationDataInternal::ProcessingStep; + using ProcessingSteps = IdentificationDataInternal::ProcessingSteps; using ProcessingStepRef = IdentificationDataInternal::ProcessingStepRef; using DBSearchParam = IdentificationDataInternal::DBSearchParam; @@ -117,20 +126,23 @@ namespace OpenMS using ScoreTypes = IdentificationDataInternal::ScoreTypes; using ScoreTypeRef = IdentificationDataInternal::ScoreTypeRef; + using ScoredProcessingResult = + IdentificationDataInternal::ScoredProcessingResult; + using AppliedProcessingStep = IdentificationDataInternal::AppliedProcessingStep; using AppliedProcessingSteps = IdentificationDataInternal::AppliedProcessingSteps; - using DataQuery = IdentificationDataInternal::DataQuery; - using DataQueries = IdentificationDataInternal::DataQueries; - using DataQueryRef = IdentificationDataInternal::DataQueryRef; + using Observation = IdentificationDataInternal::Observation; + using Observations = IdentificationDataInternal::Observations; + using ObservationRef = IdentificationDataInternal::ObservationRef; - using ParentMolecule = IdentificationDataInternal::ParentMolecule; - using ParentMolecules = IdentificationDataInternal::ParentMolecules; - using ParentMoleculeRef = IdentificationDataInternal::ParentMoleculeRef; + using ParentSequence = IdentificationDataInternal::ParentSequence; + using ParentSequences = IdentificationDataInternal::ParentSequences; + using ParentSequenceRef = IdentificationDataInternal::ParentSequenceRef; - using MoleculeParentMatch = IdentificationDataInternal::MoleculeParentMatch; + using ParentMatch = IdentificationDataInternal::ParentMatch; using ParentMatches = IdentificationDataInternal::ParentMatches; using IdentifiedPeptide = IdentificationDataInternal::IdentifiedPeptide; @@ -147,125 +159,203 @@ namespace OpenMS using IdentifiedOligos = IdentificationDataInternal::IdentifiedOligos; using IdentifiedOligoRef = IdentificationDataInternal::IdentifiedOligoRef; + using IdentifiedMolecule = IdentificationDataInternal::IdentifiedMolecule; + using PeakAnnotations = IdentificationDataInternal::PeakAnnotations; - using IdentifiedMoleculeRef = - IdentificationDataInternal::IdentifiedMoleculeRef; - - using MoleculeQueryMatch = IdentificationDataInternal::MoleculeQueryMatch; - using MoleculeQueryMatches = - IdentificationDataInternal::MoleculeQueryMatches; - using QueryMatchRef = IdentificationDataInternal::QueryMatchRef; - - // @TODO: allow multiple sets of groups, like with parent molecules - // ("ParentMoleculeGroupings")? - using QueryMatchGroup = IdentificationDataInternal::QueryMatchGroup; - using QueryMatchGroups = IdentificationDataInternal::QueryMatchGroups; + + using Adducts = IdentificationDataInternal::Adducts; + using AdductRef = IdentificationDataInternal::AdductRef; + using AdductOpt = IdentificationDataInternal::AdductOpt; + + using ObservationMatch = IdentificationDataInternal::ObservationMatch; + using ObservationMatches = IdentificationDataInternal::ObservationMatches; + using ObservationMatchRef = IdentificationDataInternal::ObservationMatchRef; + + // @TODO: allow multiple sets of groups, like with parent sequences + // ("ParentGroupSets")? + using ObservationMatchGroup = IdentificationDataInternal::ObservationMatchGroup; + using ObservationMatchGroups = IdentificationDataInternal::ObservationMatchGroups; using MatchGroupRef = IdentificationDataInternal::MatchGroupRef; - using ParentMoleculeGroup = IdentificationDataInternal::ParentMoleculeGroup; - using ParentMoleculeGroups = - IdentificationDataInternal::ParentMoleculeGroups; + using ParentGroup = IdentificationDataInternal::ParentGroup; + using ParentGroups = + IdentificationDataInternal::ParentGroups; using ParentGroupRef = IdentificationDataInternal::ParentGroupRef; - using ParentMoleculeGrouping = - IdentificationDataInternal::ParentMoleculeGrouping; - using ParentMoleculeGroupings = - IdentificationDataInternal::ParentMoleculeGroupings; + using ParentGroupSet = + IdentificationDataInternal::ParentGroupSet; + using ParentGroupSets = + IdentificationDataInternal::ParentGroupSets; using AddressLookup = std::unordered_set; + /// structure that maps references of corresponding objects after copying + struct RefTranslator { + std::map input_file_refs; + std::map score_type_refs; + std::map processing_software_refs; + std::map search_param_refs; + std::map processing_step_refs; + std::map observation_refs; + std::map parent_sequence_refs; + std::map identified_peptide_refs; + std::map identified_oligo_refs; + std::map identified_compound_refs; + std::map adduct_refs; + std::map observation_match_refs; + + bool allow_missing = false; + + IdentifiedMolecule translate(IdentifiedMolecule old) const + { + switch (old.getMoleculeType()) + { + case MoleculeType::PROTEIN: + { + auto pos = identified_peptide_refs.find(old.getIdentifiedPeptideRef()); + if (pos != identified_peptide_refs.end()) return pos->second; + } + break; + case MoleculeType::COMPOUND: + { + auto pos = identified_compound_refs.find(old.getIdentifiedCompoundRef()); + if (pos != identified_compound_refs.end()) return pos->second; + } + break; + case MoleculeType::RNA: + { + auto pos = identified_oligo_refs.find(old.getIdentifiedOligoRef()); + if (pos != identified_oligo_refs.end()) return pos->second; + } + break; + default: + throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, + "invalid molecule type", + String(old.getMoleculeType())); + } + if (allow_missing) return old; + throw Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, + "no match for reference"); + } + + ObservationMatchRef translate(ObservationMatchRef old) const + { + auto pos = observation_match_refs.find(old); + if (pos != observation_match_refs.end()) return pos->second; + if (allow_missing) return old; + throw Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, + "no match for reference"); + } + }; /// Default constructor IdentificationData(): - current_step_ref_(processing_steps_.end()) + current_step_ref_(processing_steps_.end()), no_checks_(false) { } - // Copy constructor - not allowed, as references would be invalidated: - // @TODO: implement using deep copy - IdentificationData(const IdentificationData& other) = delete; + + /*! + @brief Copy constructor + + Copy-constructing is expensive due to the necessary "rewiring" of references. + Use the move constructor where possible. + */ + IdentificationData(const IdentificationData& other); /// Move constructor - IdentificationData(IdentificationData&& other): + IdentificationData(IdentificationData&& other) noexcept : + MetaInfoInterface(std::move(other)), input_files_(std::move(other.input_files_)), processing_softwares_(std::move(other.processing_softwares_)), processing_steps_(std::move(other.processing_steps_)), db_search_params_(std::move(other.db_search_params_)), db_search_steps_(std::move(other.db_search_steps_)), score_types_(std::move(other.score_types_)), - data_queries_(std::move(other.data_queries_)), - parent_molecules_(std::move(other.parent_molecules_)), - parent_molecule_groupings_(std::move(other.parent_molecule_groupings_)), + observations_(std::move(other.observations_)), + parents_(std::move(other.parents_)), + parent_groups_(std::move(other.parent_groups_)), identified_peptides_(std::move(other.identified_peptides_)), identified_compounds_(std::move(other.identified_compounds_)), identified_oligos_(std::move(other.identified_oligos_)), - query_matches_(std::move(other.query_matches_)), - query_match_groups_(std::move(other.query_match_groups_)), + adducts_(std::move(other.adducts_)), + observation_matches_(std::move(other.observation_matches_)), + observation_match_groups_(std::move(other.observation_match_groups_)), current_step_ref_(std::move(other.current_step_ref_)), + no_checks_(std::move(other.no_checks_)), // look-up tables: - data_query_lookup_(std::move(other.data_query_lookup_)), - parent_molecule_lookup_(std::move(other.parent_molecule_lookup_)), + observation_lookup_(std::move(other.observation_lookup_)), + parent_lookup_(std::move(other.parent_lookup_)), identified_peptide_lookup_(std::move(other.identified_peptide_lookup_)), identified_compound_lookup_(std::move(other.identified_compound_lookup_)), identified_oligo_lookup_(std::move(other.identified_oligo_lookup_)), - query_match_lookup_(std::move(other.query_match_lookup_)) + observation_match_lookup_(std::move(other.observation_match_lookup_)) { } /*! @brief Register an input file + @return Reference to the registered file */ - InputFileRef registerInputFile(const String& file); + InputFileRef registerInputFile(const InputFile& file); /*! @brief Register data processing software + @return Reference to the registered software */ - ProcessingSoftwareRef registerDataProcessingSoftware( - const DataProcessingSoftware& software); + ProcessingSoftwareRef registerProcessingSoftware( + const ProcessingSoftware& software); /*! @brief Register database search parameters + @return Reference to the registered search parameters */ SearchParamRef registerDBSearchParam(const DBSearchParam& param); /*! @brief Register a data processing step + @return Reference to the registered processing step */ - ProcessingStepRef registerDataProcessingStep(const DataProcessingStep& + ProcessingStepRef registerProcessingStep(const ProcessingStep& step); /*! @brief Register a database search step with associated parameters + @return Reference to the registered processing step */ - ProcessingStepRef registerDataProcessingStep( - const DataProcessingStep& step, SearchParamRef search_ref); + ProcessingStepRef registerProcessingStep( + const ProcessingStep& step, SearchParamRef search_ref); /*! @brief Register a score type + @return Reference to the registered score type */ ScoreTypeRef registerScoreType(const ScoreType& score); /*! - @brief Register a data query (e.g. MS2 spectrum or feature) - @return Reference to the registered data query + @brief Register an observation (e.g. MS2 spectrum or feature) + + @return Reference to the registered observation */ - DataQueryRef registerDataQuery(const DataQuery& query); + ObservationRef registerObservation(const Observation& obs); /*! - @brief Register a parent molecule (e.g. protein or intact RNA) - @return Reference to the registered parent molecule + @brief Register a parent sequence (e.g. protein or intact RNA) + + @return Reference to the registered parent sequence */ - ParentMoleculeRef registerParentMolecule(const ParentMolecule& parent); + ParentSequenceRef registerParentSequence(const ParentSequence& parent); - /// Register a grouping of parent molecules (e.g. protein inference result) - void registerParentMoleculeGrouping(const ParentMoleculeGrouping& grouping); + /// Register a grouping of parent sequences (e.g. protein inference result) + void registerParentGroupSet(const ParentGroupSet& groups); /*! @brief Register an identified peptide + @return Reference to the registered peptide */ IdentifiedPeptideRef registerIdentifiedPeptide(const IdentifiedPeptide& @@ -273,6 +363,7 @@ namespace OpenMS /*! @brief Register an identified compound (small molecule) + @return Reference to the registered compound */ IdentifiedCompoundRef registerIdentifiedCompound(const IdentifiedCompound& @@ -280,21 +371,31 @@ namespace OpenMS /*! @brief Register an identified RNA oligonucleotide + @return Reference to the registered oligonucleotide */ IdentifiedOligoRef registerIdentifiedOligo(const IdentifiedOligo& oligo); /*! - @brief Register a molecule-query match (e.g. peptide-spectrum match) - @return Reference to the registered molecule-query match + @brief Register an adduct + + @return Reference to the registered adduct */ - QueryMatchRef registerMoleculeQueryMatch(const MoleculeQueryMatch& match); + AdductRef registerAdduct(const AdductInfo& adduct); /*! - @brief Register a group of associated molecule-query matches - @return Reference to the registered group of matches + @brief Register an observation match (e.g. peptide-spectrum match) + + @return Reference to the registered observation match */ - MatchGroupRef registerQueryMatchGroup(const QueryMatchGroup& group); + ObservationMatchRef registerObservationMatch(const ObservationMatch& match); + + /*! + @brief Register a group of observation matches that belong together + + @return Reference to the registered group of observation matches + */ + MatchGroupRef registerObservationMatchGroup(const ObservationMatchGroup& group); /// Return the registered input files (immutable) const InputFiles& getInputFiles() const @@ -303,13 +404,13 @@ namespace OpenMS } /// Return the registered data processing software (immutable) - const DataProcessingSoftwares& getDataProcessingSoftwares() const + const ProcessingSoftwares& getProcessingSoftwares() const { return processing_softwares_; } /// Return the registered data processing steps (immutable) - const DataProcessingSteps& getDataProcessingSteps() const + const ProcessingSteps& getProcessingSteps() const { return processing_steps_; } @@ -332,22 +433,22 @@ namespace OpenMS return score_types_; } - /// Return the registered data queries (immutable) - const DataQueries& getDataQueries() const + /// Return the registered observations (immutable) + const Observations& getObservations() const { - return data_queries_; + return observations_; } - /// Return the registered parent molecules (immutable) - const ParentMolecules& getParentMolecules() const + /// Return the registered parent sequences (immutable) + const ParentSequences& getParentSequences() const { - return parent_molecules_; + return parents_; } - /// Return the registered parent molecule groupings (immutable) - const ParentMoleculeGroupings& getParentMoleculeGroupings() const + /// Return the registered parent sequence groupings (immutable) + const ParentGroupSets& getParentGroupSets() const { - return parent_molecule_groupings_; + return parent_groups_; } /// Return the registered identified peptides (immutable) @@ -368,20 +469,26 @@ namespace OpenMS return identified_oligos_; } - /// Return the registered molecule-query matches (immutable) - const MoleculeQueryMatches& getMoleculeQueryMatches() const + /// Return the registered adducts (immutable) + const Adducts& getAdducts() const + { + return adducts_; + } + + /// Return the registered observation matches (immutable) + const ObservationMatches& getObservationMatches() const { - return query_matches_; + return observation_matches_; } - /// Return the registered groups of molecule-query matches (immutable) - const QueryMatchGroups& getQueryMatchGroups() const + /// Return the registered groups of observation matches (immutable) + const ObservationMatchGroups& getObservationMatchGroups() const { - return query_match_groups_; + return observation_match_groups_; } - /// Add a score to a molecule-query match (e.g. PSM) - void addScore(QueryMatchRef match_ref, ScoreTypeRef score_ref, + /// Add a score to an input match (e.g. PSM) + void addScore(ObservationMatchRef match_ref, ScoreTypeRef score_ref, double value); /*! @@ -389,13 +496,12 @@ namespace OpenMS This step will be appended to the list of processing steps for all relevant elements that are registered subsequently (unless it is already the last entry in the list). If a score type without a software reference is registered, the software reference of this processing step will be applied. - Effective until @ref clearCurrentProcessingStep() is called. - */ + */ void setCurrentProcessingStep(ProcessingStepRef step_ref); /*! - Return the current processing step (set via @ref setCurrentProcessingStep()). + @brief Return the current processing step (set via @ref setCurrentProcessingStep()). If no current processing step has been set, @p processing_steps.end() is returned. */ @@ -404,75 +510,170 @@ namespace OpenMS /// Cancel the effect of @ref setCurrentProcessingStep(). void clearCurrentProcessingStep(); - /// Return the best match for each data query, according to a given score type + /*! + @brief Return the best match for each observation, according to a given score type + + @param score_ref Score type to use + @param require_score Exclude matches without score of this type, even if they are the only matches for their observations? + */ + std::vector getBestMatchPerObservation(ScoreTypeRef score_ref, + bool require_score = false) const; // @TODO: this currently doesn't take molecule type into account - should it? - std::vector getBestMatchPerQuery(ScoreTypeRef - score_ref) const; + + /// Get range of matches (cf. @p equal_range) for a given observation + std::pair getMatchesForObservation(ObservationRef obs_ref) const; /*! - @brief Look up a score type by name - @return A pair: 1. Reference to the score type, if found; 2. Boolean indicating success or failure + @brief Look up a score type by name. + + @return Reference to the score type, if found; otherwise @p getScoreTypes().end() */ - std::pair findScoreType(const String& score_name) const; + ScoreTypeRef findScoreType(const String& score_name) const; - /// Calculate sequence coverage of parent molecules + /// Calculate sequence coverages of parent sequences void calculateCoverages(bool check_molecule_length = false); /*! - @brief Clean up the data structure after filtering parts of it + @brief Clean up the data structure after filtering parts of it. Make sure there are no invalid references or "orphan" data entries. - @param require_query_match Remove identified molecules and data queries that aren't part of molecule-query matches? - @param require_identified_sequence Remove parent molecules (proteins/RNAs) that aren't referenced by identified peptides/oligonucleotides? - @param require_parent_match Remove identified peptides/oligonucleotides that don't reference a parent molecule (protein/RNA)? - @param require_parent_group Remove parent molecules that aren't part of parent molecule groups? - @param require_match_group Remove molecule-query matches that aren't part of match groups? + @param require_observation_match Remove identified molecules, observations and adducts that aren't part of observation matches? + @param require_identified_sequence Remove parent sequences (proteins/RNAs) that aren't referenced by identified peptides/oligonucleotides? + @param require_parent_match Remove identified peptides/oligonucleotides that don't reference a parent sequence (protein/RNA)? + @param require_parent_group Remove parent sequences that aren't part of parent sequence groups? + @param require_match_group Remove input matches that aren't part of match groups? */ - void cleanup(bool require_query_match = true, + void cleanup(bool require_observation_match = true, bool require_identified_sequence = true, bool require_parent_match = true, bool require_parent_group = false, bool require_match_group = false); - /// Helper function to compare two scores - static bool isBetterScore(double first, double second, bool higher_better) + /// Return whether the data structure is empty (no data) + bool empty() const; + + /*! + @brief Merge in data from another instance. + + Can be used to make a deep copy by calling merge() on an empty object. + The returned translation table allows updating of references that are held externally. + + @param other Instance to merge in. + + @return Translation table for references (old -> new) + */ + RefTranslator merge(const IdentificationData& other); + + /// Swap contents with a second instance + void swap(IdentificationData& other); + + /// Clear all contents + void clear(); + + /*! + Pick a score type for operations (e.g. filtering) on a container of scored processing results (e.g. input matches, identified peptides, ...). + + If @p all_elements is false, only the first element with a score will be considered (which is sufficient if all elements were processed in the same way). + If @p all_elements is true, the score type supported by the highest number of elements will be chosen. + + If @p any_score is false, only the primary score from the most recent processing step (that assigned a score) is taken into account. + If @p any_score is true, all score types assigned across all elements are considered (this implies @p all_elements = true). + + @param container Container with elements derived from @p ScoredProcessingResult + @param all_elements Consider all elements? + @param any_score Consider any score (or just primary/most recent ones)? + + @return Reference to the chosen score type (or @p getScoreTypes().end() if there were no scores) + */ + template + ScoreTypeRef pickScoreType(const ScoredProcessingResults& container, + bool all_elements = false, bool any_score = false) const { - if (higher_better) return first > second; - return first < second; + std::map score_counts; + + if (any_score) + { + for (const auto& element : container) + { + for (const auto& step : element.steps_and_scores) + { + for (const auto& pair : step.scores) + { + score_counts[pair.first]++; + } + } + } + } + else + { + for (const auto& element : container) + { + auto score_info = element.getMostRecentScore(); + if (std::get<2>(score_info)) // check success indicator + { + ScoreTypeRef score_ref = *std::get<1>(score_info); // unpack the option + if (!all_elements) return score_ref; + score_counts[score_ref]++; // elements are zero-initialized + } + } + } + if (score_counts.empty()) return score_types_.end(); + auto pos = max_element(score_counts.begin(), score_counts.end()); + // @TODO: break ties according to some criterion + return pos->first; } + /// Set a meta value on a stored input match + void setMetaValue(const ObservationMatchRef ref, const String& key, const DataValue& value); + + /// Set a meta value on a stored input item + void setMetaValue(const ObservationRef ref, const String& key, const DataValue& value); + + /// Set a meta value on a stored identified molecule (variant) + void setMetaValue(const IdentifiedMolecule& var, const String& key, const DataValue& value); + + // @TODO: add overloads for other data types derived from MetaInfoInterface + protected: // containers: InputFiles input_files_; - DataProcessingSoftwares processing_softwares_; - DataProcessingSteps processing_steps_; + ProcessingSoftwares processing_softwares_; + ProcessingSteps processing_steps_; DBSearchParams db_search_params_; // @TODO: store SearchParamRef inside ProcessingStep? (may not be required // for many processing steps) DBSearchSteps db_search_steps_; ScoreTypes score_types_; - DataQueries data_queries_; - ParentMolecules parent_molecules_; - ParentMoleculeGroupings parent_molecule_groupings_; + Observations observations_; + ParentSequences parents_; + ParentGroupSets parent_groups_; IdentifiedPeptides identified_peptides_; IdentifiedCompounds identified_compounds_; IdentifiedOligos identified_oligos_; - MoleculeQueryMatches query_matches_; - QueryMatchGroups query_match_groups_; + Adducts adducts_; + ObservationMatches observation_matches_; + ObservationMatchGroups observation_match_groups_; /// Reference to the current data processing step (see @ref setCurrentProcessingStep()) ProcessingStepRef current_step_ref_; + /*! + @brief Suppress validity checks in @p register... calls? + + This is useful in situations where validity is already guaranteed (e.g. copying). + */ + bool no_checks_; + // look-up tables for fast checking of reference validity: - AddressLookup data_query_lookup_; - AddressLookup parent_molecule_lookup_; + AddressLookup observation_lookup_; + AddressLookup parent_lookup_; // @TODO: just use one "identified_molecule_lookup_" for all molecule types? AddressLookup identified_peptide_lookup_; AddressLookup identified_compound_lookup_; AddressLookup identified_oligo_lookup_; - AddressLookup query_match_lookup_; + AddressLookup observation_match_lookup_; /// Helper function to check if all score types are valid void checkScoreTypes_(const std::map& scores) const; @@ -485,8 +686,19 @@ namespace OpenMS void checkParentMatches_(const ParentMatches& matches, MoleculeType expected_type) const; - /** - @brief Helper functor for adding processing steps to elements in a @em boost::multi_index_container structure + /*! + @brief Helper function to merge scored processing results while updating references (to processing steps and score types) + + @param result Instance that gets updated + @param other Instance to merge into @p result + @param trans Mapping of corresponding references between @p other and @p result + */ + void mergeScoredProcessingResults_(ScoredProcessingResult& result, + const ScoredProcessingResult& other, + const RefTranslator& trans); + + /*! + @brief Helper functor for adding processing steps to elements in a @t boost::multi_index_container structure The validity of the processing step reference cannot be checked here! */ @@ -574,7 +786,7 @@ namespace OpenMS { container.modify(result.first, [&element](ElementType& existing) { - existing += element; + existing.merge(element); }); } @@ -622,7 +834,6 @@ namespace OpenMS /// Remove elements from a set (or ordered multi_index_container) if they fulfill a predicate template - // static void removeFromSetIf_(ContainerType& container, std::function predicate) static void removeFromSetIf_(ContainerType& container, PredicateType predicate) { for (auto it = container.begin(); it != container.end(); ) @@ -662,8 +873,27 @@ namespace OpenMS } } + /// Helper function to add a meta value to an element in a multi-index container + template + void setMetaValue_(const RefType ref, const String& key, const DataValue& value, + ContainerType& container, const AddressLookup& lookup = AddressLookup()) + { + if (!no_checks_ && ((lookup.empty() && !isValidReference_(ref, container)) || + (!lookup.empty() && !isValidHashedReference_(ref, lookup)))) + { + String msg = "invalid reference for the given container"; + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); + } + container.modify(ref, [&key, &value](typename ContainerType::value_type& element) + { + element.setMetaValue(key, value); + }); + } + - // IDFilter needs access to do its job: + // these classes need access to manipulate data: friend class IDFilter; + friend class MapAlignmentTransformer; }; } diff --git a/src/openms/include/OpenMS/METADATA/ID/IdentificationDataConverter.h b/src/openms/include/OpenMS/METADATA/ID/IdentificationDataConverter.h index 19c1e83bf17..7fe8f1bb199 100644 --- a/src/openms/include/OpenMS/METADATA/ID/IdentificationDataConverter.h +++ b/src/openms/include/OpenMS/METADATA/ID/IdentificationDataConverter.h @@ -42,6 +42,8 @@ namespace OpenMS { + class FeatureMap; + class OPENMS_DLLAPI IdentificationDataConverter { public: @@ -51,28 +53,107 @@ namespace OpenMS const std::vector& proteins, const std::vector& peptides); - /// Export to legacy peptide/protein identifications + /*! + @brief Export to legacy peptide/protein identifications + + Results are added to existing data (if any) in @p proteins and @p peptides. + */ static void exportIDs(const IdentificationData& id_data, std::vector& proteins, std::vector& peptides, - bool export_oligonucleotides = false); + bool export_ids_wo_scores = false); /// Export to mzTab format static MzTab exportMzTab(const IdentificationData& id_data); - /// Import FASTA sequences as parent molecules + /// Import FASTA sequences as parent sequences static void importSequences(IdentificationData& id_data, const std::vector& fasta, IdentificationData::MoleculeType type = IdentificationData::MoleculeType::PROTEIN, const String& decoy_pattern = ""); + /// Convert parent matches to peptide evidences + static void exportParentMatches( + const IdentificationData::ParentMatches& parent_matches, PeptideHit& hit); + + /*! + @brief Convert IDs from legacy peptide/protein identifications in a feature map + + @param features Feature map containing IDs in legacy format + @param clear_original Clear original IDs after conversion? + */ + static void importFeatureIDs(FeatureMap& features, bool clear_original = true); + + /*! + @brief Convert IDs in a feature map to legacy peptide/protein identifications + + @param features Feature map containing IDs in new format + @param clear_original Clear original IDs after conversion? + */ + static void exportFeatureIDs(FeatureMap& features, bool clear_original = true); + protected: - /// Export a parent molecule (protein or nucleic acid) to mzTab + using StepOpt = std::optional; + + /// Functor for ordering @p StepOpt (by date of the steps, if available): + struct StepOptCompare + { + bool operator()(const StepOpt& left, const StepOpt& right) const + { + // @TODO: should runs without associated step go first or last? + if (!left) return bool(right); + if (!right) return false; + return **left < **right; + } + }; + + /// Functor for ordering peptide IDs by RT and m/z (if available) + struct PepIDCompare + { + bool operator()(const PeptideIdentification& left, + const PeptideIdentification& right) const + { + // @TODO: should IDs without RT go first or last? + if (left.hasRT()) + { + if (right.hasRT()) + { + if (right.getRT() != left.getRT()) + { + return left.getRT() < right.getRT(); + } // else: compare by m/z (below) + } + else + { + return false; + } + } + else if (right.hasRT()) + { + return true; + } + // no RTs or same RTs -> try to compare by m/z: + if (left.hasMZ()) + { + if (right.hasMZ()) + { + return left.getMZ() < right.getMZ(); + } + else + { + return false; + } + } + return true; + } + }; + + /// Export a parent sequence (protein or nucleic acid) to mzTab template - static void exportParentMoleculeToMzTab_( - const IdentificationData::ParentMolecule& parent, + static void exportParentSequenceToMzTab_( + const IdentificationData::ParentSequence& parent, std::vector& output, std::map& score_map) { @@ -116,7 +197,7 @@ namespace OpenMS for (const auto& match_pair : identified.parent_matches) { row.accession.set(match_pair.first->accession); - for (const IdentificationData::MoleculeParentMatch& match : + for (const IdentificationData::ParentMatch& match : match_pair.second) { MzTabSectionRow copy = row; @@ -127,11 +208,11 @@ namespace OpenMS } } - /// Export a molecule-query match (peptide- or oligonucleotide-spectrum match) to mzTab + /// Export an input match (peptide- or oligonucleotide-spectrum match) to mzTab template - static void exportQueryMatchToMzTab_( + static void exportObservationMatchToMzTab_( const String& sequence, - const IdentificationData::MoleculeQueryMatch& match, double calc_mass, + const IdentificationData::ObservationMatch& match, double calc_mass, std::vector& output, std::map& score_map, std::map& file_map) @@ -141,30 +222,32 @@ namespace OpenMS xsm.sequence.set(sequence); exportStepsAndScoresToMzTab_(match.steps_and_scores, xsm.search_engine, xsm.search_engine_score, score_map); - const IdentificationData::DataQuery& query = *match.data_query_ref; + const IdentificationData::Observation& query = *match.observation_ref; std::vector rts(1); rts[0].set(query.rt); xsm.retention_time.set(rts); xsm.charge.set(match.charge); xsm.exp_mass_to_charge.set(query.mz); xsm.calc_mass_to_charge.set(calc_mass / abs(match.charge)); - if (query.input_file_opt) + xsm.spectra_ref.setMSFile(file_map[query.input_file]); + xsm.spectra_ref.setSpecRef(query.data_id); + // optional column for adduct: + if (match.adduct_opt) { - xsm.spectra_ref.setMSFile(file_map[*query.input_file_opt]); + MzTabOptionalColumnEntry opt_adduct; + opt_adduct.first = "opt_adduct"; + opt_adduct.second.set((*match.adduct_opt)->getName()); + xsm.opt_.push_back(opt_adduct); } - xsm.spectra_ref.setSpecRef(query.data_id); + // optional columns for isotope offset: // @TODO: find a way of passing in the names of relevant meta values // (e.g. from NucleicAcidSearchEngine), instead of hard-coding them here - static const std::vector meta_out({"adduct", "isotope_offset"}); - for (const String& meta : meta_out) + if (match.metaValueExists("isotope_offset")) { - if (match.metaValueExists(meta)) - { - MzTabOptionalColumnEntry opt_meta; - opt_meta.first = "opt_" + meta; - opt_meta.second.set(match.getMetaValue(meta)); - xsm.opt_.push_back(opt_meta); - } + MzTabOptionalColumnEntry opt_meta; + opt_meta.first = "opt_isotope_offset"; + opt_meta.second.set(match.getMetaValue("isotope_offset")); + xsm.opt_.push_back(opt_meta); } // don't repeat data from the peptide section (e.g. accessions) // why are "pre"/"post"/"start"/"end" not in the peptide section?! @@ -184,12 +267,12 @@ namespace OpenMS /// Helper function for @ref exportPeptideOrOligoToMzTab_() - oligonucleotide variant static void addMzTabMoleculeParentContext_( - const IdentificationData::MoleculeParentMatch& match, + const IdentificationData::ParentMatch& match, MzTabOligonucleotideSectionRow& row); /// Helper function for @ref exportPeptideOrOligoToMzTab_() - peptide variant static void addMzTabMoleculeParentContext_( - const IdentificationData::MoleculeParentMatch& match, + const IdentificationData::ParentMatch& match, MzTabPeptideSectionRow& row); /// Helper function to import DB search parameters from legacy format @@ -205,5 +288,12 @@ namespace OpenMS static void exportMSRunInformation_( IdentificationData::ProcessingStepRef step_ref, ProteinIdentification& protein); + + static void handleFeatureImport_(Feature& feature, IntList indexes, + std::vector& peptides, + Size& id_counter, bool clear_original); + + static void handleFeatureExport_(Feature& feature, const IntList& indexes, + IdentificationData& id_data, Size& id_counter); }; } diff --git a/src/openms/include/OpenMS/METADATA/ID/IdentifiedCompound.h b/src/openms/include/OpenMS/METADATA/ID/IdentifiedCompound.h index 27d72b37de0..031987a94d4 100644 --- a/src/openms/include/OpenMS/METADATA/ID/IdentifiedCompound.h +++ b/src/openms/include/OpenMS/METADATA/ID/IdentifiedCompound.h @@ -35,6 +35,7 @@ #pragma once #include +#include #include #include diff --git a/src/openms/include/OpenMS/METADATA/ID/IdentifiedMolecule.h b/src/openms/include/OpenMS/METADATA/ID/IdentifiedMolecule.h new file mode 100644 index 00000000000..5385dc21291 --- /dev/null +++ b/src/openms/include/OpenMS/METADATA/ID/IdentifiedMolecule.h @@ -0,0 +1,84 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Hendrik Weisser $ +// $Authors: Hendrik Weisser $ +// -------------------------------------------------------------------------- + +#pragma once + +#include +#include +#include +#include + +#include + +namespace OpenMS +{ + namespace IdentificationDataInternal + { + typedef std::variant RefVariant; + + /** + @brief Variant type holding Peptide/Compound/Oligo references and convenience functions. + **/ + struct OPENMS_DLLAPI IdentifiedMolecule: public RefVariant + { + IdentifiedMolecule() = default; + + IdentifiedMolecule(IdentifiedPeptideRef ref): RefVariant(ref) {}; + IdentifiedMolecule(IdentifiedCompoundRef ref): RefVariant(ref) {}; + IdentifiedMolecule(IdentifiedOligoRef ref): RefVariant(ref) {}; + + IdentifiedMolecule(const IdentifiedMolecule&) = default; + + MoleculeType getMoleculeType() const; + + IdentifiedPeptideRef getIdentifiedPeptideRef() const; + + IdentifiedCompoundRef getIdentifiedCompoundRef() const; + + IdentifiedOligoRef getIdentifiedOligoRef() const; + + String toString() const; + + EmpiricalFormula getFormula(Size fragment_type = 0, Int charge = 0) const; + }; + + OPENMS_DLLAPI bool operator==(const IdentifiedMolecule& a, const IdentifiedMolecule& b); + + OPENMS_DLLAPI bool operator!=(const IdentifiedMolecule& a, const IdentifiedMolecule& b); + + OPENMS_DLLAPI bool operator<(const IdentifiedMolecule& a, const IdentifiedMolecule& b); + + } +} diff --git a/src/openms/include/OpenMS/METADATA/ID/IdentifiedSequence.h b/src/openms/include/OpenMS/METADATA/ID/IdentifiedSequence.h index 2d3cf25dcaf..b42ea38363a 100644 --- a/src/openms/include/OpenMS/METADATA/ID/IdentifiedSequence.h +++ b/src/openms/include/OpenMS/METADATA/ID/IdentifiedSequence.h @@ -36,7 +36,7 @@ #include #include -#include +#include #include #include @@ -47,7 +47,7 @@ namespace OpenMS { namespace IdentificationDataInternal { - /// Identified sequence (peptide or oligonucleotide) + /// Representation of an identified sequence (peptide or oligonucleotide) template struct IdentifiedSequence: public ScoredProcessingResult { @@ -67,9 +67,9 @@ namespace OpenMS IdentifiedSequence(const IdentifiedSequence& other) = default; - IdentifiedSequence& operator+=(const IdentifiedSequence& other) + IdentifiedSequence& merge(const IdentifiedSequence& other) { - ScoredProcessingResult::operator+=(other); + ScoredProcessingResult::merge(other); // merge parent matches: for (const auto& pair : other.parent_matches) { diff --git a/src/openms/include/OpenMS/METADATA/ID/InputFile.h b/src/openms/include/OpenMS/METADATA/ID/InputFile.h new file mode 100644 index 00000000000..f38cf27d5a2 --- /dev/null +++ b/src/openms/include/OpenMS/METADATA/ID/InputFile.h @@ -0,0 +1,98 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2018. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Hendrik Weisser $ +// $Authors: Hendrik Weisser $ +// -------------------------------------------------------------------------- + +#pragma once + +#include + +#include +#include +#include + +#include + +namespace OpenMS +{ + namespace IdentificationDataInternal + { + /// Information about input files that were processed + struct InputFile + { + String name; + + String experimental_design_id; + + std::set primary_files; + + explicit InputFile(const String& name, + const String& experimental_design_id = "", + const std::set& primary_files = + std::set()): + name(name), experimental_design_id(experimental_design_id), + primary_files(primary_files) + { + } + + InputFile(const InputFile& other) = default; + + /// Merge in data from another object + InputFile& merge(const InputFile& other) + { + if (experimental_design_id.empty()) + { + experimental_design_id = other.experimental_design_id; + } + else if (!other.experimental_design_id.empty() && experimental_design_id != other.experimental_design_id) + { + throw Exception::InvalidValue(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, + "Trying to overwrite InputFile experimental design id with conflicting value.", + experimental_design_id); + } + primary_files.insert(other.primary_files.begin(), + other.primary_files.end()); + return *this; + } + }; + + typedef boost::multi_index_container< + InputFile, + boost::multi_index::indexed_by< + boost::multi_index::ordered_unique>> + > InputFiles; + typedef IteratorWrapper InputFileRef; + + } +} diff --git a/src/openms/include/OpenMS/METADATA/ID/MetaData.h b/src/openms/include/OpenMS/METADATA/ID/MetaData.h index c9dc9c958e0..840daeea349 100644 --- a/src/openms/include/OpenMS/METADATA/ID/MetaData.h +++ b/src/openms/include/OpenMS/METADATA/ID/MetaData.h @@ -34,6 +34,8 @@ #pragma once +#include // for "uintptr_t" + namespace OpenMS { namespace IdentificationDataInternal @@ -64,20 +66,14 @@ namespace OpenMS { PROTEIN, COMPOUND, - RNA, - SIZE_OF_MOLECULETYPE + RNA }; enum MassType { MONOISOTOPIC, - AVERAGE, - SIZE_OF_MASSTYPE + AVERAGE }; - // Input files that were processed: - typedef std::set InputFiles; - typedef IteratorWrapper InputFileRef; - } } diff --git a/src/openms/include/OpenMS/METADATA/ID/MoleculeQueryMatch.h b/src/openms/include/OpenMS/METADATA/ID/MoleculeQueryMatch.h deleted file mode 100644 index 20d15a973ff..00000000000 --- a/src/openms/include/OpenMS/METADATA/ID/MoleculeQueryMatch.h +++ /dev/null @@ -1,167 +0,0 @@ -// -------------------------------------------------------------------------- -// OpenMS -- Open-Source Mass Spectrometry -// -------------------------------------------------------------------------- -// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, -// ETH Zurich, and Freie Universitaet Berlin 2002-2021. -// -// This software is released under a three-clause BSD license: -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// * Redistributions in binary form must reproduce the above copyright -// notice, this list of conditions and the following disclaimer in the -// documentation and/or other materials provided with the distribution. -// * Neither the name of any author or any participating institution -// may be used to endorse or promote products derived from this software -// without specific prior written permission. -// For a full list of authors, refer to the file AUTHORS. -// -------------------------------------------------------------------------- -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING -// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; -// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, -// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR -// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF -// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -// -// -------------------------------------------------------------------------- -// $Maintainer: Hendrik Weisser $ -// $Authors: Hendrik Weisser $ -// -------------------------------------------------------------------------- - -#pragma once - -#include -#include -#include -#include // for "PeakAnnotation" - -#include -#include -#include -#include - -namespace OpenMS -{ - namespace IdentificationDataInternal - { - // @TODO: move "PeakAnnotation" out of "PeptideHit" - typedef std::vector PeakAnnotations; - typedef std::map, - PeakAnnotations> PeakAnnotationSteps; - - typedef boost::variant IdentifiedMoleculeRef; - - /** @brief Meta data for a search hit (e.g. peptide-spectrum match). - */ - struct MoleculeQueryMatch: public ScoredProcessingResult - { - IdentifiedMoleculeRef identified_molecule_ref; - - DataQueryRef data_query_ref; - - Int charge; - - // peak annotations (fragment ion matches), potentially from different - // data processing steps: - PeakAnnotationSteps peak_annotations; - - explicit MoleculeQueryMatch( - IdentifiedMoleculeRef identified_molecule_ref, - DataQueryRef data_query_ref, Int m_charge = 0, - const AppliedProcessingSteps& steps_and_scores = AppliedProcessingSteps(), - const PeakAnnotationSteps& peak_annotations = PeakAnnotationSteps() - ) - : ScoredProcessingResult(steps_and_scores), - identified_molecule_ref(identified_molecule_ref), - data_query_ref(data_query_ref), charge(m_charge), - peak_annotations(peak_annotations) - { - } - - MoleculeQueryMatch(const MoleculeQueryMatch&) = default; - - MoleculeType getMoleculeType() const - { - if (boost::get(&identified_molecule_ref)) - { - return MoleculeType::PROTEIN; - } - if (boost::get(&identified_molecule_ref)) - { - return MoleculeType::COMPOUND; - } - if (boost::get(&identified_molecule_ref)) - { - return MoleculeType::RNA; - } - return MoleculeType::SIZE_OF_MOLECULETYPE; // this shouldn't happen - } - - IdentifiedPeptideRef getIdentifiedPeptideRef() const - { - if (const IdentifiedPeptideRef* ref_ptr = - boost::get(&identified_molecule_ref)) - { - return *ref_ptr; - } - String msg = "matched molecule is not a peptide"; - throw Exception::IllegalArgument(__FILE__, __LINE__, - OPENMS_PRETTY_FUNCTION, msg); - } - - IdentifiedCompoundRef getIdentifiedCompoundRef() const - { - if (const IdentifiedCompoundRef* ref_ptr = - boost::get(&identified_molecule_ref)) - { - return *ref_ptr; - } - String msg = "matched molecule is not a compound"; - throw Exception::IllegalArgument(__FILE__, __LINE__, - OPENMS_PRETTY_FUNCTION, msg); - } - - IdentifiedOligoRef getIdentifiedOligoRef() const - { - if (const IdentifiedOligoRef* ref_ptr = - boost::get(&identified_molecule_ref)) - { - return *ref_ptr; - } - String msg = "matched molecule is not an oligonucleotide"; - throw Exception::IllegalArgument(__FILE__, __LINE__, - OPENMS_PRETTY_FUNCTION, msg); - } - - MoleculeQueryMatch& operator+=(const MoleculeQueryMatch& other) - { - ScoredProcessingResult::operator+=(other); - if (charge == 0) charge = other.charge; - peak_annotations.insert(other.peak_annotations.begin(), - other.peak_annotations.end()); - return *this; - } - }; - - // all matches for the same data query should be consecutive! - typedef boost::multi_index_container< - MoleculeQueryMatch, - boost::multi_index::indexed_by< - boost::multi_index::ordered_unique< - boost::multi_index::composite_key< - MoleculeQueryMatch, - boost::multi_index::member, - boost::multi_index::member< - MoleculeQueryMatch, IdentifiedMoleculeRef, - &MoleculeQueryMatch::identified_molecule_ref>>>> - > MoleculeQueryMatches; - typedef IteratorWrapper QueryMatchRef; - - } -} diff --git a/src/openms/include/OpenMS/METADATA/ID/DataQuery.h b/src/openms/include/OpenMS/METADATA/ID/Observation.h similarity index 60% rename from src/openms/include/OpenMS/METADATA/ID/DataQuery.h rename to src/openms/include/OpenMS/METADATA/ID/Observation.h index 7a17cc3bc46..720ba2401dc 100644 --- a/src/openms/include/OpenMS/METADATA/ID/DataQuery.h +++ b/src/openms/include/OpenMS/METADATA/ID/Observation.h @@ -34,60 +34,65 @@ #pragma once +#include #include +#include -#include +#include +#include +#include +#include namespace OpenMS { namespace IdentificationDataInternal { - /** @brief Search query, e.g. spectrum or feature. + /*! + @brief Representation of an observation, e.g. a spectrum or feature, in an input data file. */ - struct DataQuery: public MetaInfoInterface + struct Observation: public MetaInfoInterface { - /// spectrum or feature ID (from the file referenced by "input_file_ref"): + /// Spectrum or feature ID (from the file referenced by @t input_file) String data_id; - // @TODO: make this non-optional (i.e. required)? - boost::optional input_file_opt; + /// Reference to the input file + InputFileRef input_file; - double rt, mz; // position + double rt, mz; //< Position - explicit DataQuery( + /// Constructor + explicit Observation( const String& data_id, - boost::optional input_file_opt = boost::none, + const InputFileRef& input_file, double rt = std::numeric_limits::quiet_NaN(), double mz = std::numeric_limits::quiet_NaN()): - data_id(data_id), input_file_opt(input_file_opt), rt(rt), mz(mz) + data_id(data_id), input_file(input_file), rt(rt), mz(mz) { } - DataQuery(const DataQuery& other) = default; - - // ignore RT and m/z for comparisons to avoid issues with rounding: - bool operator<(const DataQuery& other) const - { - // can't compare references directly, so compare addresses: - const String* sp = input_file_opt ? &(**input_file_opt) : nullptr; - const String* o_sp = other.input_file_opt ? &(**other.input_file_opt) : - nullptr; - return std::tie(sp, data_id) < std::tie(o_sp, other.data_id); - } - - // ignore RT and m/z for comparisons to avoid issues with rounding: - bool operator==(const DataQuery& other) const + /// Merge in data from another object + Observation& merge(const Observation& other) { - return std::tie(input_file_opt, data_id) == - std::tie(other.input_file_opt, other.data_id); + // merge meta info - existing entries may be overwritten: + addMetaValues(other); + rt = other.rt; + mz = other.mz; + return *this; } - - // @TODO: do we need an "experiment label" (used e.g. in pepXML)? - // if yes, should it be stored here or together with the input file? }; - typedef std::set DataQueries; - typedef IteratorWrapper DataQueryRef; - + // combination of input file and data ID must be unique: + typedef boost::multi_index_container< + Observation, + boost::multi_index::indexed_by< + boost::multi_index::ordered_unique< + boost::multi_index::composite_key< + Observation, + boost::multi_index::member, + boost::multi_index::member>>> + > Observations; + typedef IteratorWrapper ObservationRef; } } diff --git a/src/openms/include/OpenMS/METADATA/ID/ObservationMatch.h b/src/openms/include/OpenMS/METADATA/ID/ObservationMatch.h new file mode 100644 index 00000000000..c9fd4bbcd3c --- /dev/null +++ b/src/openms/include/OpenMS/METADATA/ID/ObservationMatch.h @@ -0,0 +1,154 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2020. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Hendrik Weisser $ +// $Authors: Hendrik Weisser $ +// -------------------------------------------------------------------------- + +#pragma once + +#include +#include +#include +#include // for "PeakAnnotation" +#include + +#include +#include +#include + +namespace OpenMS +{ + namespace IdentificationDataInternal + { + // @TODO: move "PeakAnnotation" out of "PeptideHit" + typedef std::vector PeakAnnotations; + typedef std::map, + PeakAnnotations> PeakAnnotationSteps; + + /// Comparator for adducts + // @TODO: this allows adducts with duplicate names, but requires different + // sum formulas/charges - is this what we want? + struct AdductCompare + { + bool operator()(const AdductInfo& left, const AdductInfo& right) const + { + return (std::make_pair(left.getCharge(), left.getEmpiricalFormula()) < + std::make_pair(right.getCharge(), right.getEmpiricalFormula())); + } + }; + + typedef std::set Adducts; + typedef IteratorWrapper AdductRef; + typedef std::optional AdductOpt; + + /// Representation of a search hit (e.g. peptide-spectrum match). + struct ObservationMatch: public ScoredProcessingResult + { + IdentifiedMolecule identified_molecule_var; + + ObservationRef observation_ref; + + Int charge; + + AdductOpt adduct_opt; ///< optional reference to adduct + + // peak annotations (fragment ion matches), potentially from different + // data processing steps: + PeakAnnotationSteps peak_annotations; + + explicit ObservationMatch( + IdentifiedMolecule identified_molecule_var, + ObservationRef observation_ref, Int charge = 0, + const std::optional& adduct_opt = std::nullopt, + const AppliedProcessingSteps& steps_and_scores = AppliedProcessingSteps(), + const PeakAnnotationSteps& peak_annotations = PeakAnnotationSteps()): + ScoredProcessingResult(steps_and_scores), + identified_molecule_var(identified_molecule_var), + observation_ref(observation_ref), charge(charge), adduct_opt(adduct_opt), + peak_annotations(peak_annotations) + { + } + + ObservationMatch(const ObservationMatch&) = default; + + ObservationMatch& merge(const ObservationMatch& other) + { + ScoredProcessingResult::merge(other); + if (charge == 0) + { + charge = other.charge; + } + else if (charge != other.charge) + { + throw Exception::InvalidValue(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, + "Trying to overwrite ObservationMatch charge with conflicting value.", + String(charge)); + } + + if (!adduct_opt) + { + adduct_opt = other.adduct_opt; + } + else if (adduct_opt != other.adduct_opt) + { + throw Exception::InvalidValue(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, + "Trying to overwrite ObservationMatch adduct_opt with conflicting value.", + (*adduct_opt)->getName()); + } + + peak_annotations.insert(other.peak_annotations.begin(), + other.peak_annotations.end()); + return *this; + } + }; + + // all matches for the same observation should be consecutive, so make sure + // the observation is used as the first member in the composite key: + typedef boost::multi_index_container< + ObservationMatch, + boost::multi_index::indexed_by< + boost::multi_index::ordered_unique< + boost::multi_index::composite_key< + ObservationMatch, + boost::multi_index::member, + boost::multi_index::member< + ObservationMatch, IdentifiedMolecule, + &ObservationMatch::identified_molecule_var>, + boost::multi_index::member>>> + > ObservationMatches; + + typedef IteratorWrapper ObservationMatchRef; + } +} diff --git a/src/openms/include/OpenMS/METADATA/ID/QueryMatchGroup.h b/src/openms/include/OpenMS/METADATA/ID/ObservationMatchGroup.h similarity index 67% rename from src/openms/include/OpenMS/METADATA/ID/QueryMatchGroup.h rename to src/openms/include/OpenMS/METADATA/ID/ObservationMatchGroup.h index 2b9f32659c6..265e4a9ac21 100644 --- a/src/openms/include/OpenMS/METADATA/ID/QueryMatchGroup.h +++ b/src/openms/include/OpenMS/METADATA/ID/ObservationMatchGroup.h @@ -34,7 +34,7 @@ #pragma once -#include +#include #include #include @@ -43,24 +43,24 @@ namespace OpenMS { namespace IdentificationDataInternal { - /** @brief: Group of related (co-identified) molecule-query matches + /** @brief: Group of related (co-identified) input matches E.g. for cross-linking data or multiplexed spectra. */ - struct QueryMatchGroup: public ScoredProcessingResult + struct ObservationMatchGroup: public ScoredProcessingResult { - std::set query_match_refs; + std::set observation_match_refs; bool allSameMolecule() const { // @TODO: return true or false for the empty set? - if (query_match_refs.size() <= 1) return true; - const IdentifiedMoleculeRef ref = - (*query_match_refs.begin())->identified_molecule_ref; - for (auto it = ++query_match_refs.begin(); it != query_match_refs.end(); - ++it) + if (observation_match_refs.size() <= 1) return true; + const IdentifiedMolecule var = + (*observation_match_refs.begin())->identified_molecule_var; + for (auto it = ++observation_match_refs.begin(); + it != observation_match_refs.end(); ++it) { - if (!((*it)->identified_molecule_ref == ref)) return false; + if (!((*it)->identified_molecule_var == var)) return false; } return true; } @@ -68,36 +68,35 @@ namespace OpenMS bool allSameQuery() const { // @TODO: return true or false for the empty set? - if (query_match_refs.size() <= 1) return true; - DataQueryRef ref = (*query_match_refs.begin())->data_query_ref; - for (auto it = ++query_match_refs.begin(); it != query_match_refs.end(); - ++it) + if (observation_match_refs.size() <= 1) return true; + ObservationRef ref = (*observation_match_refs.begin())->observation_ref; + for (auto it = ++observation_match_refs.begin(); + it != observation_match_refs.end(); ++it) { - if ((*it)->data_query_ref != ref) return false; + if ((*it)->observation_ref != ref) return false; } return true; } - bool operator==(const QueryMatchGroup rhs) const + bool operator==(const ObservationMatchGroup rhs) const { - return ((rhs.query_match_refs == query_match_refs) && + return ((rhs.observation_match_refs == observation_match_refs) && (rhs.steps_and_scores == steps_and_scores)); } - bool operator!=(const QueryMatchGroup& rhs) const + bool operator!=(const ObservationMatchGroup& rhs) const { return !operator==(rhs); } }; typedef boost::multi_index_container< - QueryMatchGroup, + ObservationMatchGroup, boost::multi_index::indexed_by< boost::multi_index::ordered_unique< - boost::multi_index::member, - &QueryMatchGroup::query_match_refs>>> - > QueryMatchGroups; - typedef IteratorWrapper MatchGroupRef; - + boost::multi_index::member, + &ObservationMatchGroup::observation_match_refs>>> + > ObservationMatchGroups; + typedef IteratorWrapper MatchGroupRef; } } diff --git a/src/openms/include/OpenMS/METADATA/ID/ParentMoleculeGroup.h b/src/openms/include/OpenMS/METADATA/ID/ParentGroup.h similarity index 77% rename from src/openms/include/OpenMS/METADATA/ID/ParentMoleculeGroup.h rename to src/openms/include/OpenMS/METADATA/ID/ParentGroup.h index 7806c0c2f33..c54d0cf8249 100644 --- a/src/openms/include/OpenMS/METADATA/ID/ParentMoleculeGroup.h +++ b/src/openms/include/OpenMS/METADATA/ID/ParentGroup.h @@ -34,7 +34,7 @@ #pragma once -#include +#include #include #include @@ -44,35 +44,42 @@ namespace OpenMS { namespace IdentificationDataInternal { - /** @brief: Group of ambiguously identified parent molecules (e.g. protein group) + /** @brief: Group of ambiguously identified parent sequences (e.g. protein group) */ // @TODO: derive from MetaInfoInterface? - struct ParentMoleculeGroup + struct ParentGroup { std::map scores; // @TODO: does this need a "leader" or some such? - std::set parent_molecule_refs; + std::set parent_refs; }; typedef boost::multi_index_container< - ParentMoleculeGroup, + ParentGroup, boost::multi_index::indexed_by< boost::multi_index::ordered_unique< boost::multi_index::member< - ParentMoleculeGroup, std::set, - &ParentMoleculeGroup::parent_molecule_refs>>> - > ParentMoleculeGroups; - typedef IteratorWrapper ParentGroupRef; + ParentGroup, std::set, + &ParentGroup::parent_refs>>> + > ParentGroups; + typedef IteratorWrapper ParentGroupRef; - /** @brief Set of groups of ambiguously identified parent molecules (e.g. results of running a protein inference algorithm) + /** @brief Set of groups of ambiguously identified parent sequences (e.g. results of running a protein inference algorithm) */ - struct ParentMoleculeGrouping: public ScoredProcessingResult + struct ParentGroupSet: public ScoredProcessingResult { String label; // @TODO: use "label" as a uniqueness constraint? - ParentMoleculeGroups groups; + ParentGroups groups; + + explicit ParentGroupSet( + const String& label = "", + const ParentGroups& groups = ParentGroups()): + label(label), groups(groups) + { + } }; - typedef std::vector ParentMoleculeGroupings; + typedef std::vector ParentGroupSets; } } diff --git a/src/openms/include/OpenMS/METADATA/ID/MoleculeParentMatch.h b/src/openms/include/OpenMS/METADATA/ID/ParentMatch.h similarity index 88% rename from src/openms/include/OpenMS/METADATA/ID/MoleculeParentMatch.h rename to src/openms/include/OpenMS/METADATA/ID/ParentMatch.h index 2793b3e09f6..db966288268 100644 --- a/src/openms/include/OpenMS/METADATA/ID/MoleculeParentMatch.h +++ b/src/openms/include/OpenMS/METADATA/ID/ParentMatch.h @@ -34,15 +34,15 @@ #pragma once -#include +#include namespace OpenMS { namespace IdentificationDataInternal { - /** @brief Meta data for the association between an identified molecule (e.g. peptide) and a parent molecule (e.g. protein). + /** @brief Meta data for the association between an identified molecule (e.g. peptide) and a parent sequence (e.g. protein). */ - struct MoleculeParentMatch: public MetaInfoInterface + struct ParentMatch: public MetaInfoInterface { // in extraordinary cases (e.g. database searches that allow insertions/ // deletions), the length of the identified molecule may differ from the @@ -57,7 +57,7 @@ namespace OpenMS static constexpr char LEFT_TERMINUS = '['; static constexpr char RIGHT_TERMINUS = ']'; - explicit MoleculeParentMatch(Size start_pos = UNKNOWN_POSITION, + explicit ParentMatch(Size start_pos = UNKNOWN_POSITION, Size end_pos = UNKNOWN_POSITION, String left_neighbor = UNKNOWN_NEIGHBOR, String right_neighbor = UNKNOWN_NEIGHBOR): @@ -66,14 +66,14 @@ namespace OpenMS { } - bool operator<(const MoleculeParentMatch& other) const + bool operator<(const ParentMatch& other) const { // positions determine neighbors - no need to compare those: return (std::tie(start_pos, end_pos) < std::tie(other.start_pos, other.end_pos)); } - bool operator==(const MoleculeParentMatch& other) const + bool operator==(const ParentMatch& other) const { // positions determine neighbors - no need to compare those: return (std::tie(start_pos, end_pos) == @@ -96,9 +96,9 @@ namespace OpenMS } }; - /// mapping: parent molecule -> match information - typedef std::map> ParentMatches; + /// mapping: parent sequence -> match information + typedef std::map> ParentMatches; } } diff --git a/src/openms/include/OpenMS/METADATA/ID/ParentMolecule.h b/src/openms/include/OpenMS/METADATA/ID/ParentSequence.h similarity index 68% rename from src/openms/include/OpenMS/METADATA/ID/ParentMolecule.h rename to src/openms/include/OpenMS/METADATA/ID/ParentSequence.h index 8366b5dee89..7196243119d 100644 --- a/src/openms/include/OpenMS/METADATA/ID/ParentMolecule.h +++ b/src/openms/include/OpenMS/METADATA/ID/ParentSequence.h @@ -44,9 +44,9 @@ namespace OpenMS { namespace IdentificationDataInternal { - /** @brief Representation of a parent molecule that is identified only indirectly (e.g. a protein). + /** @brief Representation of a parent sequence that is identified only indirectly (e.g. a protein). */ - struct ParentMolecule: public ScoredProcessingResult + struct ParentSequence: public ScoredProcessingResult { String accession; @@ -62,26 +62,47 @@ namespace OpenMS bool is_decoy; - explicit ParentMolecule( + explicit ParentSequence( const String& accession, MoleculeType molecule_type = MoleculeType::PROTEIN, const String& sequence = "", const String& description = "", double coverage = 0.0, bool is_decoy = false, - const AppliedProcessingSteps& steps_and_scores = - AppliedProcessingSteps()): + const AppliedProcessingSteps& steps_and_scores = AppliedProcessingSteps()): ScoredProcessingResult(steps_and_scores), accession(accession), molecule_type(molecule_type), sequence(sequence), description(description), coverage(coverage), is_decoy(is_decoy) { } - ParentMolecule(const ParentMolecule&) = default; + ParentSequence(const ParentSequence&) = default; - ParentMolecule& operator+=(const ParentMolecule& other) + ParentSequence& merge(const ParentSequence& other) { - ScoredProcessingResult::operator+=(other); - if (sequence.empty()) sequence = other.sequence; - if (description.empty()) description = other.description; + ScoredProcessingResult::merge(other); + if (sequence.empty()) + { + sequence = other.sequence; + } + else if (!other.sequence.empty() && sequence != other.sequence) // differ and none is empty + { + throw Exception::InvalidValue(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, + "Trying to overwrite ParentSequence sequence '" + sequence + "' with conflicting value.", + other.sequence); + } + + if (description.empty()) + { + description = other.description; + } + else if (!other.description.empty() && description != other.description) // differ and none is empty + { + throw Exception::InvalidValue(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, + "Trying to overwrite ParentSequence description '" + description + "' with conflicting value.", + other.description); + } + if (!is_decoy) is_decoy = other.is_decoy; // believe it when it's set // @TODO: what about coverage? (not reliable if we're merging data) @@ -89,15 +110,15 @@ namespace OpenMS } }; - // parent molecules indexed by their accessions: + // parent sequences indexed by their accessions: // @TODO: allow querying/iterating over proteins and RNAs separately typedef boost::multi_index_container< - ParentMolecule, + ParentSequence, boost::multi_index::indexed_by< boost::multi_index::ordered_unique>> - > ParentMolecules; - typedef IteratorWrapper ParentMoleculeRef; + ParentSequence, String, &ParentSequence::accession>>> + > ParentSequences; + typedef IteratorWrapper ParentSequenceRef; } } diff --git a/src/openms/include/OpenMS/METADATA/ID/DataProcessingSoftware.h b/src/openms/include/OpenMS/METADATA/ID/ProcessingSoftware.h similarity index 89% rename from src/openms/include/OpenMS/METADATA/ID/DataProcessingSoftware.h rename to src/openms/include/OpenMS/METADATA/ID/ProcessingSoftware.h index 66b132ade5e..4d481f22bfe 100644 --- a/src/openms/include/OpenMS/METADATA/ID/DataProcessingSoftware.h +++ b/src/openms/include/OpenMS/METADATA/ID/ProcessingSoftware.h @@ -43,10 +43,9 @@ namespace OpenMS { /** @brief Information about software used for data processing. - If the same processing is applied to multiple ID runs, e.g. if multiple files (fractions, replicates) are searched with the same search engine, store the - software information only once. + If the same processing is applied to multiple ID runs, e.g. if multiple files (fractions, replicates) are searched with the same search engine, store the software information only once. */ - struct DataProcessingSoftware: public Software + struct ProcessingSoftware: public Software { /*! List of score types assigned by this software, ranked by importance. @@ -56,7 +55,7 @@ namespace OpenMS // @TODO: make this a "list" for cheap "push_front"? std::vector assigned_scores; - explicit DataProcessingSoftware( + explicit ProcessingSoftware( const String& name = "", const String& version = "", std::vector assigned_scores = std::vector()): @@ -65,8 +64,9 @@ namespace OpenMS } }; - typedef std::set DataProcessingSoftwares; - typedef IteratorWrapper ProcessingSoftwareRef; + // ordering is done using "operator<" inherited from "Software": + typedef std::set ProcessingSoftwares; + typedef IteratorWrapper ProcessingSoftwareRef; } } diff --git a/src/openms/include/OpenMS/METADATA/ID/DataProcessingStep.h b/src/openms/include/OpenMS/METADATA/ID/ProcessingStep.h similarity index 69% rename from src/openms/include/OpenMS/METADATA/ID/DataProcessingStep.h rename to src/openms/include/OpenMS/METADATA/ID/ProcessingStep.h index f06786c9866..6b555954f75 100644 --- a/src/openms/include/OpenMS/METADATA/ID/DataProcessingStep.h +++ b/src/openms/include/OpenMS/METADATA/ID/ProcessingStep.h @@ -35,7 +35,8 @@ #pragma once #include -#include +#include +#include namespace OpenMS { @@ -43,54 +44,49 @@ namespace OpenMS { /** @brief Data processing step that is applied to the data (e.g. database search, PEP calculation, filtering, ConsensusID). */ - struct DataProcessingStep: public MetaInfoInterface + struct ProcessingStep: public MetaInfoInterface { ProcessingSoftwareRef software_ref; std::vector input_file_refs; - std::vector primary_files; // path(s) to primary MS data - DateTime date_time; // @TODO: add processing actions that are relevant for ID data std::set actions; - explicit DataProcessingStep( + explicit ProcessingStep( ProcessingSoftwareRef software_ref, const std::vector& input_file_refs = - std::vector(), const std::vector& primary_files = - std::vector(), const DateTime& date_time = DateTime::now(), - std::set actions = + std::vector(), const DateTime& date_time = + DateTime::now(), std::set actions = std::set()): software_ref(software_ref), input_file_refs(input_file_refs), - primary_files(primary_files), date_time(date_time), actions(actions) + date_time(date_time), actions(actions) { } - DataProcessingStep(const DataProcessingStep& other) = default; + ProcessingStep(const ProcessingStep& other) = default; - // don't compare meta data (?): - bool operator<(const DataProcessingStep& other) const + // order by date/time first, don't compare meta data (?): + bool operator<(const ProcessingStep& other) const { - return (std::tie(software_ref, input_file_refs, primary_files, - date_time, actions) < - std::tie(other.software_ref, other.input_file_refs, - other.primary_files, other.date_time, other.actions)); + return (std::tie(date_time, software_ref, input_file_refs, actions) < + std::tie(other.date_time, other.software_ref, + other.input_file_refs, other.actions)); } // don't compare meta data (?): - bool operator==(const DataProcessingStep& other) const + bool operator==(const ProcessingStep& other) const { - return (std::tie(software_ref, input_file_refs, primary_files, - date_time, actions) == + return (std::tie(software_ref, input_file_refs, date_time, actions) == std::tie(other.software_ref, other.input_file_refs, - other.primary_files, other.date_time, other.actions)); + other.date_time, other.actions)); } }; - typedef std::set DataProcessingSteps; - typedef IteratorWrapper ProcessingStepRef; + typedef std::set ProcessingSteps; + typedef IteratorWrapper ProcessingStepRef; } } diff --git a/src/openms/include/OpenMS/METADATA/ID/ScoreType.h b/src/openms/include/OpenMS/METADATA/ID/ScoreType.h index 7e7a2ba514b..af89c79054e 100644 --- a/src/openms/include/OpenMS/METADATA/ID/ScoreType.h +++ b/src/openms/include/OpenMS/METADATA/ID/ScoreType.h @@ -80,6 +80,12 @@ namespace OpenMS { return cv_term == other.cv_term; } + + bool isBetterScore(double first, double second) const + { + if (higher_better) return first > second; + return first < second; + } }; typedef std::set ScoreTypes; diff --git a/src/openms/include/OpenMS/METADATA/ID/ScoredProcessingResult.h b/src/openms/include/OpenMS/METADATA/ID/ScoredProcessingResult.h index 36e65e1c1e1..4b0dc680903 100644 --- a/src/openms/include/OpenMS/METADATA/ID/ScoredProcessingResult.h +++ b/src/openms/include/OpenMS/METADATA/ID/ScoredProcessingResult.h @@ -59,7 +59,7 @@ namespace OpenMS } /*! - Add an applied processing step. + @brief Add an applied processing step If the step already exists, scores are merged (existing ones updated). */ @@ -95,8 +95,8 @@ namespace OpenMS /// Add a score (possibly connected to a processing step) void addScore(ScoreTypeRef score_type, double score, - const boost::optional& - processing_step_opt = boost::none) + const std::optional& + processing_step_opt = std::nullopt) { AppliedProcessingStep applied(processing_step_opt); applied.scores[score_type] = score; @@ -104,7 +104,7 @@ namespace OpenMS } /// Merge in data from another object - ScoredProcessingResult& operator+=(const ScoredProcessingResult& other) + ScoredProcessingResult& merge(const ScoredProcessingResult& other) { // merge applied processing steps and scores: for (const auto& step : other.steps_and_scores) @@ -112,37 +112,32 @@ namespace OpenMS addProcessingStep(step); } // merge meta info - existing entries may be overwritten: - std::vector keys; - other.getKeys(keys); - for (const UInt key : keys) - { - setMetaValue(key, other.getMetaValue(key)); - } + addMetaValues(other); return *this; } /*! - Look up a score by score type. - - @return A pair: score (or NaN), success indicator + @brief Look up a score by score type All processing steps are considered, in "most recent first" order. + + @return A pair: score (or NaN), success indicator */ std::pair getScore(ScoreTypeRef score_ref) const { - std::tuple, bool> result = + std::tuple, bool> result = getScoreAndStep(score_ref); return std::make_pair(std::get<0>(result), std::get<2>(result)); } /*! - Look up a score by score type and processing step. + @brief Look up a score by score type and processing step @return A pair: score (or NaN), success indicator */ std::pair getScore(ScoreTypeRef score_ref, - boost::optional + std::optional processing_step_opt) const { auto step_pos = steps_and_scores.get<1>().find(processing_step_opt); @@ -159,13 +154,13 @@ namespace OpenMS } /*! - Look up a score and associated processing step by score type. - - @return A tuple: score (or NaN), processing step reference (option), success indicator + @brief Look up a score and associated processing step by score type All processing steps are considered, in "most recent first" order. + + @return A tuple: score (or NaN), processing step reference (option), success indicator */ - std::tuple, bool> + std::tuple, bool> getScoreAndStep(ScoreTypeRef score_ref) const { // give priority to scores from later processing steps: @@ -179,10 +174,46 @@ namespace OpenMS } // not found: return std::make_tuple(std::numeric_limits::quiet_NaN(), - boost::none, false); + std::nullopt, false); + } + + /*! + @brief Get the (primary) score from the most recent processing step + + This will fail if no scores have been assigned. + + @return A tuple: score (or NaN), score type reference (option), success indicator + */ + std::tuple, bool> + getMostRecentScore() const + { + // check steps starting with most recent: + for (const auto& step : boost::adaptors::reverse(steps_and_scores)) + { + auto top_score = step.getScoresInOrder(true); + if (!top_score.empty()) + { + return std::make_tuple(top_score[0].second, top_score[0].first, + true); + } + } + return std::make_tuple(std::numeric_limits::quiet_NaN(), + std::nullopt, false); // no score available + } + + /// Return the number of scores associated with this result + Size getNumberOfScores() const + { + Size counter = 0; + for (const auto& step : steps_and_scores) + { + counter += step.scores.size(); + } + return counter; } protected: + /// Constructor explicit ScoredProcessingResult( const AppliedProcessingSteps& steps_and_scores = AppliedProcessingSteps()): @@ -190,6 +221,7 @@ namespace OpenMS { } + /// Copy c'tor ScoredProcessingResult(const ScoredProcessingResult&) = default; }; diff --git a/src/openms/include/OpenMS/METADATA/ID/sources.cmake b/src/openms/include/OpenMS/METADATA/ID/sources.cmake index 598c2365d39..d1517c705f4 100644 --- a/src/openms/include/OpenMS/METADATA/ID/sources.cmake +++ b/src/openms/include/OpenMS/METADATA/ID/sources.cmake @@ -5,19 +5,21 @@ set(directory include/OpenMS/METADATA/ID) set(sources_list_h AppliedProcessingStep.h DBSearchParam.h -DataProcessingSoftware.h -DataProcessingStep.h -DataQuery.h +ProcessingSoftware.h +ProcessingStep.h +Observation.h IdentificationData.h IdentificationDataConverter.h IdentifiedCompound.h +IdentifiedMolecule.h IdentifiedSequence.h +InputFile.h MetaData.h -MoleculeParentMatch.h -MoleculeQueryMatch.h -ParentMolecule.h -ParentMoleculeGroup.h -QueryMatchGroup.h +ParentMatch.h +ObservationMatch.h +ParentSequence.h +ParentGroup.h +ObservationMatchGroup.h ScoreType.h ScoredProcessingResult.h ) @@ -32,4 +34,3 @@ endforeach(i) source_group("Header Files\\OpenMS\\METADATA\\ID" FILES ${sources_h}) set(OpenMS_sources_h ${OpenMS_sources_h} ${sources_h}) - diff --git a/src/openms/include/OpenMS/METADATA/MetaInfoInterface.h b/src/openms/include/OpenMS/METADATA/MetaInfoInterface.h index 9b230a65193..e36fd968f8d 100644 --- a/src/openms/include/OpenMS/METADATA/MetaInfoInterface.h +++ b/src/openms/include/OpenMS/METADATA/MetaInfoInterface.h @@ -75,6 +75,9 @@ namespace OpenMS /// Move assignment operator MetaInfoInterface& operator=(MetaInfoInterface&&) noexcept; + /// Swap contents + void swap(MetaInfoInterface& rhs); + /// Equality operator bool operator==(const MetaInfoInterface& rhs) const; /// Equality operator @@ -128,4 +131,3 @@ namespace OpenMS }; } // namespace OpenMS - diff --git a/src/openms/include/OpenMS/METADATA/PeptideIdentification.h b/src/openms/include/OpenMS/METADATA/PeptideIdentification.h index 09b23bd91fa..37545f422d7 100644 --- a/src/openms/include/OpenMS/METADATA/PeptideIdentification.h +++ b/src/openms/include/OpenMS/METADATA/PeptideIdentification.h @@ -113,6 +113,7 @@ namespace OpenMS void insertHit(PeptideHit&& hit); /// Sets the peptide hits void setHits(const std::vector& hits); + void setHits(std::vector&& hits); /// returns the peptide significance threshold value double getSignificanceThreshold() const; diff --git a/src/openms/include/OpenMS/METADATA/Precursor.h b/src/openms/include/OpenMS/METADATA/Precursor.h index 84dcb08719e..1f3e165706f 100644 --- a/src/openms/include/OpenMS/METADATA/Precursor.h +++ b/src/openms/include/OpenMS/METADATA/Precursor.h @@ -80,7 +80,6 @@ namespace OpenMS /// Move assignment operator Precursor& operator=(Precursor&&) & = default; - /// Method of activation enum ActivationMethod { @@ -97,6 +96,10 @@ namespace OpenMS PHD, ///< Photodissociation ETD, ///< Electron transfer dissociation PQD, ///< Pulsed q dissociation + TRAP, ///< trap-type collision-induced dissociation (MS:1002472) + HCD, ///< beam-type collision-induced dissociation (MS:1000422) "HCD" + INSOURCE, ///< in-source collision-induced dissociation (MS:1001880) + LIFT, ///< Bruker proprietary method (MS:1002000) SIZE_OF_ACTIVATIONMETHOD }; /// Names of activation methods @@ -113,7 +116,7 @@ namespace OpenMS /// returns a mutable reference to the activation methods std::set& getActivationMethods(); /// convenience function, returning string representation of getActivationMethods() - StringList getActivationMethodsAsString() const; + StringList getActivationMethodsAsString() const; /// sets the activation methods void setActivationMethods(const std::set & activation_methods); diff --git a/src/openms/include/OpenMS/METADATA/ProteinHit.h b/src/openms/include/OpenMS/METADATA/ProteinHit.h index da4c6cc8336..1289f79cc68 100644 --- a/src/openms/include/OpenMS/METADATA/ProteinHit.h +++ b/src/openms/include/OpenMS/METADATA/ProteinHit.h @@ -187,6 +187,7 @@ namespace OpenMS /// sets the protein sequence void setSequence(const String & sequence); + void setSequence(String && sequence); /// sets the accession of the protein void setAccession(const String & accession); diff --git a/src/openms/include/OpenMS/QC/DBSuitability.h b/src/openms/include/OpenMS/QC/DBSuitability.h index 8071cc562c4..370a43b551d 100644 --- a/src/openms/include/OpenMS/QC/DBSuitability.h +++ b/src/openms/include/OpenMS/QC/DBSuitability.h @@ -36,6 +36,8 @@ #include #include +#include +#include #include #include @@ -43,8 +45,10 @@ namespace OpenMS { + class ParamXMLFile; class PeptideIdentification; class PeptideHit; + class MSExperiment; /** * @brief This class holds the functionality of calculating the database suitability. @@ -68,7 +72,7 @@ namespace OpenMS { public: /// struct to store results - struct SuitabilityData + struct OPENMS_DLLAPI SuitabilityData { /// number of times the top hit is considered to be a deNovo hit Size num_top_novo = 0; @@ -97,6 +101,54 @@ namespace OpenMS /// of 0.15 or even 0.05. /// Note that these test were only performed for one mzML and your results might differ. double suitability = 0; + + /// the suitability if re-ranking would have been turned off + /// if re-ranking is actually turned off, this will be the same as the normal suitability + double suitability_no_rerank = 0; + + /// the suitability after correcting the top deNovo hits, if re-ranking would have been disabled + double suitability_corr_no_rerank = 0; + + // resets all members to their defaults + void clear(); + + /// apply a correction factor to the already calculated suitability + /// only works if num_top_db and num_top_novo contain a non-zero value + void setCorrectionFactor(double factor); + + double getCorrectionFactor() const; + + double getCorrectedNovoHits() const; + + double getCorrectedSuitability() const; + + /** + * @brief Returns a SuitabilityData object containing the data if re-ranking didn't happen + * + * Cases that are re-ranked are already counted. To get the 'no re-ranking' data these cases need to be + * subtracted from the number of top database hits and added to the number of top deNovo hits. + * + * @returns simulated suitability data where re-ranking didn't happen + */ + SuitabilityData simulateNoReRanking() const; + + private: + /// #IDs with only deNovo search / #IDs with only database search + /// used for correcting the number of deNovo hits + /// worse databases will have less IDs than good databases + /// this punishes worse databases more than good ones and will result in + /// a worse suitability + double corr_factor; + + /// number of top deNovo hits multiplied by the correction factor + double num_top_novo_corr = 0; + + /// the suitability after correcting the top deNovo hits to impact worse databases more + /// + /// The corrected suitability has a more linear behaviour. It basicly translates to the ratio + /// of the theoretical perfect database the used database corresponds to. (i.e. a corrected + /// suitability of 0.5 means the used database contains half the proteins of the 'perfect' database) + double suitability_corr = 0; }; /// Constructor @@ -105,13 +157,16 @@ namespace OpenMS DBSuitability(); /// Destructor - ~DBSuitability() = default; + ~DBSuitability() override = default; + + /// To test private member functions + friend class DBSuitability_friend; /** * @brief Computes suitability of a database used to search a mzML * - * Counts top deNovo and top database hits. The ratio of db hits vs - * all hits yields the suitability. + * Top deNovo and top database hits from a combined deNovo+database search + * are counted. The ratio of db hits vs all hits yields the suitability. * To re-rank cases, where a de novo peptide scores just higher than * the database peptide, a decoy cut-off is calculated. This functionality * can be turned off. This will result in an underestimated suitability, @@ -119,24 +174,58 @@ namespace OpenMS * * Parameters can be set using the functionality of DefaultParamHandler. * Parameters are: - * no_rerank - re-ranking can be turned off with this + * no_rerank - re-ranking can be turned off with this (will be set automatically + * if no cross correlation score is found) * reranking_cutoff_percentile - percentile that determines which cut-off will be returned * FDR - q-value that should be filtered for * Preliminary tests have shown that database suitability * is rather stable across common FDR thresholds from 0 - 5 % + * keep_search_files - temporary files created for and by the internal ID search are kept + * disable_correction - disables corrected suitability calculations + * force - forces re-ranking to be done even without a cross correlation score, + * in which case the default main score is used + * + * The calculated suitability is then tried to be corrected. For this a correction factor for the number of found top + * deNovo hits is calculated. + * This is done by perfoming an additional combined identification search with a smaller sample of the database. + * It was observed that the number of top deNovo and db hits behave linear according to the sampling ratio of the + * database. This can be used to extrapolate the number of database hits that would be needed to get a suitability + * of 1. This number in combination with the maximum number of deNovo hits (found with an identification search + * where only deNovo is used as a database) can be used to calculate a correction factor like this: + * #database hits for suitability of 1 / #maximum deNovo hits + * This formula can be simplified in a way that the maximum number of deNovo hits isn't needed: + * - (database hits slope) / deNovo hits slope + * Both of these values can easily be calculated with the original suitability data in conjunction with the one sampled search. + * + * Correcting the number of found top deNovo hits with this factor results in them being more comparable to the top + * database hits. This in return results in a more linear behaviour of the suitability according to the sampling ratio. + * The corrected suitability reflects what sampling ratio your database represents regarding to the theoretical 'perfect' + * database. Or in other words: Your database needs to be (1 - corrected suitability) bigger to get a suitability of 1. + * + * Both the original suitability as well as the corrected one are reported in the result. * * Since q-values need to be calculated the identifications are taken by copy. + * Since decoys need to be calculated for the fasta input those are taken by copy as well. * * Result is appended to the result member. This allows for multiple usage. * - * @param pep_ids vector containing pepIDs with target/decoy annotation coming from a deNovo+database - * identification search (currently only Comet-support) without FDR - * vector is modified internally, and is thus copied - * @throws MissingInformation if no target/decoy annotation is found - * @throws MissingInformation if no xcorr is found - * @throws Precondition if a q-value is found in the input + * @param pep_ids vector containing pepIDs with target/decoy annotation coming from a deNovo+database + * identification search without FDR + * (Comet is recommended - to use other search engines either disable reranking or set the '-force' flag) + * vector is modified internally, and is thus copied + * @param exp MSExperiment that was searched to produce the identifications + * given in @p pep_ids + * @param original_fasta FASTAEntries of the database used for the ID search (without decoys) + * @param novo_fasta FASTAEntry derived from deNovo peptides + * @param search_params SearchParameters object containing information which adapter + * was used with which settings for the identification search + * that resulted in @p pep_ids + * @throws MissingInformation if no target/decoy annotation is found on @p pep_ids + * @throws MissingInformation if no xcorr is found, + * this happens when another adapter than CometAdapter was used + * @throws Precondition if a q-value is found in @p pep_ids */ - void compute(std::vector pep_ids); + void compute(std::vector&& pep_ids, const MSExperiment& exp, const std::vector& original_fasta, const std::vector& novo_fasta, const ProteinIdentification::SearchParameters& search_params); /** * @brief Returns results calculated by this metric @@ -153,18 +242,24 @@ namespace OpenMS /// result vector std::vector results_; + /// pattern for finding a decoy string + const boost::regex decoy_pattern_; + /** * @brief Calculates the xcorr difference between the top two hits marked as decoy * - * Only searches the top ten hits for two decoys. If there aren't two decoys, DBL_MAX - * is returned. + * Searches for the top two decoys hits and returns their score difference. + * By default the xcorr from Comet is used. If no xcorr can be found and the 'force' flag is set + * the main score from the peptide hit is used, else an error is thrown. + * + * If there aren't two decoys, DBL_MAX is returned. * * @param pep_id pepID from where the decoy difference will be calculated * @returns xcorr difference * @throws MissingInformation if no target/decoy annotation is found * @throws MissingInformation if no xcorr is found */ - double getDecoyDiff_(const PeptideIdentification& pep_id); + double getDecoyDiff_(const PeptideIdentification& pep_id) const; /** * @brief Calculates a xcorr cut-off based on decoy hits @@ -180,7 +275,7 @@ namespace OpenMS * @throws IllegalArgument if reranking_cutoff_percentile is too low for a decoy cut-off to be calculated * @throws MissingInformation if no more than 20 % of the peptide IDs have two decoys in their top ten peptide hits */ - double getDecoyCutOff_(const std::vector& pep_ids, double reranking_cutoff_percentile); + double getDecoyCutOff_(const std::vector& pep_ids, double reranking_cutoff_percentile) const; /** * @brief Tests if a PeptideHit is considered a deNovo hit @@ -189,21 +284,224 @@ namespace OpenMS * If only the deNovo protein is found, 'true' is returned. * If at least one database protein is found, 'false' is returned. * + * This function also uses boost::regex_search to make sure the deNovo accession doesn't contain a decoy string. + * This is needed for 'target+decoy' hits. + * * @param hit PepHit in question * @returns true/false */ - bool isNovoHit_(const PeptideHit& hit); + bool isNovoHit_(const PeptideHit& hit) const; + + /** + * @brief Tests if a PeptideHit has a score better than the given threshold + * + * @param hit PepHit in question + * @param threshold threshold to check against + * @param higher_score_better true/false depending if a higher or a lower score is better + * @returns true/false + */ + bool checkScoreBetterThanThreshold_(const PeptideHit& hit, double threshold, bool higher_score_better) const; + + /** + * @brief Looks through meta values of SearchParameters to find out which search adapter was used + * + * Checks for the following adapters: + * CometAdapter, CruxAdapter, MSGFPlusAdapter, MSFraggerAdapter, MyriMatchAdapter, OMSSAAdapter and XTandemAdapter + * + * @param meta_values SearchParameters object, since the adapters write their parameters here + * @retruns a pair containing the name of the adapter and the parameters used to run it + * @throws MissingInformation if none of the adapters above is found in the meta values + */ + std::pair extractSearchAdapterInfoFromMetaValues_(const ProteinIdentification::SearchParameters& search_params) const; + + /** + * @brief Writes parameters into a given file + * + * @param parameters parameters to write + * @param filename name of the file where the parameters should be written to + * @throws UnableToCreateFile if filename isn't writable + */ + void writeIniFile_(const Param& parameters, const String& filename) const; + + /** + * @brief Executes the workflow from search adapter, followed by PeptideIndexer and finishes with FDR + * + * Which adapter should run with which parameters can be controlled. + * Make sure the search adapter you wish to use is built on your system and the executable is on your PATH variable. + * + * Indexing and FDR are always done the same way. + * + * The inputs are stored in temporary files to execute the Adapter. + * (MSExperiment -> .mzML, vector -> .fasta, Param -> .INI) + * + * @param exp MSExperiment that will be searched + * @param fasta_data represents the database that should be used to search + * @param adapter_name name of the adapter to search with + * @param parameters parameters for the adapter + * @returns peptide identifications with annotated q-values + * @throws MissingInformation if no adapter name is given + * @throws InvalidParameter if a not supported adapter name is given + * @throws InternalToolError if any error occures while running the adapter + * @throws InternalToolError if any error occures while running PeptideIndexer functionalities + * @throws InvalidParameter if the needed FDR parameters are not found + */ + std::vector runIdentificationSearch_(const MSExperiment& exp, const std::vector& fasta_data, const String& adapter_name, Param& parameters) const; + + /** + * @brief Creates a subsampled fasta with the given subsampling rate + * + * The subsampling is based on the number of amino acides and not on the number of fasta entries. + * + * @param fasta_data fasta of which the subsampling should be done + * @param subsampling_rate subsampling rate to be used [0,1] + * @returns fasta entries with total number of AA = original number of AA * subsampling_rate + * @throws IllegalArgument if subsampling rate is not between 0 and 1 + */ + std::vector getSubsampledFasta_(const std::vector& fasta_data, double subsampling_rate) const; + + /** + * @brief Calculates all suitability data from a combined deNovo+database search + * + * Counts top database and top deNovo hits. + * + * Calculates a decoy score cut-off to compare high scoring deNovo hits with lower scoring database hits. + * If the score difference is smaller than the cut-off the database hit is counted and the deNovo hit ignored. + * + * Suitability is calculated: # database hits / # all hits + * + * @param pep_ids peptide identifications coming from the combined search, each peptide identification should be sorted + * @param data SuitabilityData object where the result should be written into + * @throws MissingInformation if no target/decoy annotation is found on @p pep_ids + * @throws MissingInformation if no xcorr is found, + * this happens when another adapter than CometAdapter was used + */ + void calculateSuitability_(const std::vector& pep_ids, SuitabilityData& data) const; /** - * @brief Tests if a PeptideHit has a lower q-value than the given FDR threshold, i.e. passes FDR + * @brief Calculates and appends decoys to a given vector of FASTAEntry * - * Q-value is searched at score and at meta-value level. + * Each sequence is digested with Trypsin. The resulting peptides are reversed and appended to one another. + * This results in the decoy sequences. + * The identifier is given a 'DECOY_' prefix. * - * @param hit PepHit in question - * @param FDR FDR threshold to check against - * @returns true/false + * @param fasta reference to fasta vector where the decoys are needed */ - bool passesFDR_(const PeptideHit& hit, double FDR); + void appendDecoys_(std::vector& fasta) const; + + /** + * @brief Returns the cross correlation score normalized by MW (if existing), else if the 'force' flag is set the current main score is returned + * + * @param pep_hit PeptideHit of which the score is needed + * @returns cross correlation score normalized by MW or current score + * @throws MissingInformation if no xcorr is found and 'force' flag isn't set + */ + double extractScore_(const PeptideHit& pep_hit) const; + + /** + * @brief Calculates the correction factor from two suitability calculations + * + * Two suitability calculations need to be done for this. One with the original data and one with data from a search with a sampled database. + * The number of db hits and deNovo hits behaves linear. The two searches can than be used to calculate the + * corresponding linear functions. + * The factor is calculated with the negative ratio of the db slope and the deNovo slope. + * + * @param data suitability data from the original search + * @param data_sampled vector of suitability data from the sampled search(s) + * @param sampling_rate the sampling rate used for sampled db [0,1) + * @returns correction factor + */ + double calculateCorrectionFactor_(const SuitabilityData& data, const SuitabilityData& data_sampled, double sampling_rate) const; + + /** + * @brief Determines the number of unique proteins found in the protein accessions of PeptideIdentifications + * + * @param peps vector of PeptideIdentifications + * @param number_of_hits the number of hits to search in (if this is bigger than the actual number of hits all hits are looked at) + * @returns number of unique protein accessions + * @throws MissingInformation if no target/decoy annotation is found on @p peps + */ + UInt numberOfUniqueProteins_(const std::vector& peps, UInt number_of_hits = 1) const; + + /** + * @brief Finds the SuitabilityData object with the median number of de novo hits + * + * If the median isn't distinct (e.g. two entries could be considered median) the upper one is chosen. + * + * @param data vector of SuitabilityData objects + * @returns index to object with median number of de novo hits + */ + Size getIndexWithMedianNovoHits_(const std::vector& data) const; + + /** + * @brief Extracts the worst score that still passes a FDR (q-value) threshold + * + * This can be used to 'convert' a FDR threshold to a threshold for the desired score (score and FDR need to be dependent) + * + * @param pep_ids vector of PeptideIdentifications + * @param FDR FDR threshold, hits with a worse q-value score aren't looked at + * @param score_name name of the score to search for + * The score name doesn't need to be the exact metavalue name, but a metavalue key should contain it. + * i.e. "e-value" as metavalue "e-value_score" + * @param higher_score_better true/false depending if a higher or lower score (@score_name) is better + * @returns the worst score that is still in the FDR threshold + * + * @throws IllegalArgument if @score_name isn't found in the metavalues + * @throws Precondition if main score of @pep_ids isn't 'q-value' + */ + double getScoreMatchingFDR_(const std::vector& pep_ids, double FDR, String score_name, bool higher_score_better) const; + }; + + // friend class to test private member functions + class DBSuitability_friend + { + public: + DBSuitability_friend() = default; + + ~DBSuitability_friend() = default; + + std::vector getSubsampledFasta(const std::vector& fasta_data, double subsampling_rate) + { + return suit_.getSubsampledFasta_(fasta_data, subsampling_rate); + } + + void appendDecoys(std::vector& fasta) + { + suit_.appendDecoys_(fasta); + } + + double calculateCorrectionFactor(const DBSuitability::SuitabilityData& data, const DBSuitability::SuitabilityData& data_sampled, double sampling_rate) + { + return suit_.calculateCorrectionFactor_(data, data_sampled, sampling_rate); + } + + UInt numberOfUniqueProteins(const std::vector& peps, UInt number_of_hits = 1) + { + return suit_.numberOfUniqueProteins_(peps, number_of_hits); + } + + Size getIndexWithMedianNovoHits(const std::vector& data) + { + return suit_.getIndexWithMedianNovoHits_(data); + } + + double getScoreMatchingFDR(const std::vector& pep_ids, double FDR, String score_name, bool higher_score_better) + { + return suit_.getScoreMatchingFDR_(pep_ids, FDR, score_name, higher_score_better); + } + + /* Not tested: + getDecoyDiff_, getDecoyCutOff_, isNovoHit_, checkScoreBetterThanThreshold_ + Reason: These functions are essential to the normal suitability calculation and if something would not work, the test for 'compute' would fail. + + extractSearchAdapterInfoFromMetaValues_, writeIniFile_, extractScore_ + Reason: These functions are very straightforeward. + + runIdentificationSearch_ + Reason: This function simulates a whole workflow and testing it would be to complicated. + */ + + private: + DBSuitability suit_; }; } diff --git a/src/openms/include/OpenMS/QC/Ms2IdentificationRate.h b/src/openms/include/OpenMS/QC/Ms2IdentificationRate.h index 76dacb3ee20..d35e113a837 100644 --- a/src/openms/include/OpenMS/QC/Ms2IdentificationRate.h +++ b/src/openms/include/OpenMS/QC/Ms2IdentificationRate.h @@ -144,7 +144,7 @@ namespace OpenMS */ QCBase::Status requires() const override; - void addMetaDataMetricsToMzTab(MzTabMetaData& meta); + void addMetaDataMetricsToMzTab(MzTabMetaData& meta) const; }; } // namespace OpenMS diff --git a/src/openms/include/OpenMS/SIMULATION/EGHModel.h b/src/openms/include/OpenMS/SIMULATION/EGHModel.h index a36127733b8..f75107eb1ed 100644 --- a/src/openms/include/OpenMS/SIMULATION/EGHModel.h +++ b/src/openms/include/OpenMS/SIMULATION/EGHModel.h @@ -37,8 +37,6 @@ #include #include -#include - namespace OpenMS { /** @@ -120,7 +118,7 @@ namespace OpenMS * @param rt The position where the EGH function should be evaluated. Note that this is the position without the RT offset, meaning that the EGH apex is at position 0 * @param egh_value The computed value */ - inline void evaluateEGH_(CoordinateType & rt, CoordinateType & egh_value) + inline void evaluateEGH_(CoordinateType & rt, CoordinateType & egh_value) const { CoordinateType denominator = sigma_square_2_ + tau_ * rt; diff --git a/src/openms/include/OpenMS/SIMULATION/IonizationSimulation.h b/src/openms/include/OpenMS/SIMULATION/IonizationSimulation.h index 60df8343383..296cb1c4032 100644 --- a/src/openms/include/OpenMS/SIMULATION/IonizationSimulation.h +++ b/src/openms/include/OpenMS/SIMULATION/IonizationSimulation.h @@ -114,7 +114,7 @@ namespace OpenMS void ionizeMaldi_(SimTypes::FeatureMapSim&, ConsensusMap& charge_consensus); /// check if feature is within mz bounds of detector - inline bool isFeatureValid_(const Feature& feature); + inline bool isFeatureValid_(const Feature& feature) const; /// set meta values, mz etc after adducts are ready void setFeatureProperties_(Feature& f, diff --git a/src/openms/include/OpenMS/SIMULATION/MSSim.h b/src/openms/include/OpenMS/SIMULATION/MSSim.h index bd808c3f071..1dd017f310b 100644 --- a/src/openms/include/OpenMS/SIMULATION/MSSim.h +++ b/src/openms/include/OpenMS/SIMULATION/MSSim.h @@ -29,7 +29,7 @@ // // -------------------------------------------------------------------------- // $Maintainer: Timo Sachsenberg$ -// $Authors: Stephan Aiche, Chris Bielow$ +// $Authors: Stephan Aiche, Chris Bielow, Lucas Rieckert$ // -------------------------------------------------------------------------- #pragma once @@ -89,6 +89,9 @@ namespace OpenMS */ void simulate(SimTypes::MutableSimRandomNumberGeneratorPtr rnd_gen, SimTypes::SampleChannels& peptides); + /// Function to generate deisotoped version of the simulated centroided MS1 spectra containing only monoisotopic peaks + void createMonoisotopicExperiment(); + /// Access the simulated experiment const SimTypes::MSSimExperiment& getExperiment() const; @@ -107,6 +110,9 @@ namespace OpenMS /// Access the picked (centroided) experiment const SimTypes::MSSimExperiment& getPeakMap() const; + /// Access the picked (centroided) experiment containing only the monoisotopic peaks of the simulated features + const SimTypes::MSSimExperiment& getMonoisotopicExperiment() const; + /** @brief Access the simulated identifications (proteins and peptides) @@ -156,6 +162,9 @@ namespace OpenMS /// Holds the ground-truth on generated peaks positions and intensities SimTypes::MSSimExperiment peak_map_; + /// Holds the ground-truth on generated monoisotopic peaks positions and intensities + SimTypes::MSSimExperiment monoisotopic_experiment_; + /// Holds the ground-truth on generated features SimTypes::FeatureMapSimVector feature_maps_; diff --git a/src/openms/include/OpenMS/SYSTEM/ExternalProcess.h b/src/openms/include/OpenMS/SYSTEM/ExternalProcess.h index 930d6df6390..d2f0dec3836 100644 --- a/src/openms/include/OpenMS/SYSTEM/ExternalProcess.h +++ b/src/openms/include/OpenMS/SYSTEM/ExternalProcess.h @@ -90,7 +90,7 @@ namespace OpenMS ExternalProcess(std::function callbackStdOut, std::function callbackStdErr); /// D'tor - ~ExternalProcess(); + ~ExternalProcess() override ; /// re-wire the callbacks used during run() void setCallbacks(std::function callbackStdOut, std::function callbackStdErr); diff --git a/src/openms/include/OpenMS/SYSTEM/File.h b/src/openms/include/OpenMS/SYSTEM/File.h index 12a5c787917..550f3cc0e42 100644 --- a/src/openms/include/OpenMS/SYSTEM/File.h +++ b/src/openms/include/OpenMS/SYSTEM/File.h @@ -298,7 +298,7 @@ namespace OpenMS @param alternative_file If this string is not empty, no action is taken and it is used as return value @return Full path to a temporary file */ - static const String& getTemporaryFile(const String& alternative_file = ""); + static String getTemporaryFile(const String& alternative_file = ""); /** @brief Helper function to test if filenames provided in two StringLists match. @@ -349,14 +349,14 @@ namespace OpenMS class TemporaryFiles_ { public: + TemporaryFiles_(const TemporaryFiles_&) = delete; // copy is forbidden + TemporaryFiles_& operator=(const TemporaryFiles_&) = delete; TemporaryFiles_(); /// create a new filename and queue internally for deletion - const String& newFile(); + String newFile(); ~TemporaryFiles_(); private: - TemporaryFiles_(const TemporaryFiles_&) = delete; // copy is forbidden - TemporaryFiles_& operator=(const TemporaryFiles_&) = delete; StringList filenames_; std::mutex mtx_; }; diff --git a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/EmgScoring.h b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/EmgScoring.h index 99635ee29cf..4661ce5fc23 100644 --- a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/EmgScoring.h +++ b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/EmgScoring.h @@ -34,8 +34,6 @@ #pragma once -#include -#include // for isnan #include #include #include @@ -46,6 +44,9 @@ #include +#include +#include // for isnan + namespace OpenMS { @@ -133,7 +134,7 @@ namespace OpenMS EmgFitter1D fitter_emg1D; fitter_emg1D.setParameters(fitter_emg1D_params_); // Construct model for rt - // NaN is checked in fit1d: if (boost::math::isnan(quality)) quality = -1.0; + // NaN is checked in fit1d: if (std::isnan(quality)) quality = -1.0; return fitter_emg1D.fit1d(rt_input_data, model); } diff --git a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/ExtendedIsotopeModel.h b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/ExtendedIsotopeModel.h index 60f0bf27aa3..96262d26f5a 100644 --- a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/ExtendedIsotopeModel.h +++ b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/ExtendedIsotopeModel.h @@ -74,7 +74,7 @@ namespace OpenMS /// assignment operator virtual ExtendedIsotopeModel & operator=(const ExtendedIsotopeModel & source); - UInt getCharge(); + UInt getCharge() const; /// create new ExtendedIsotopeModel object (needed by Factory) static BaseModel<1> * create() diff --git a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/FeatureFinder.h b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/FeatureFinder.h index 37cf28e6fc5..2d69fa00f6b 100644 --- a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/FeatureFinder.h +++ b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/FeatureFinder.h @@ -63,7 +63,7 @@ namespace OpenMS FeatureFinder(); /// Destructor - virtual ~FeatureFinder(); + ~FeatureFinder() override; /** @brief Executes the FeatureFinder using the given algorithm diff --git a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderAlgorithm.h b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderAlgorithm.h index 1f1fec12fe7..0d4556f67c2 100644 --- a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderAlgorithm.h +++ b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderAlgorithm.h @@ -127,7 +127,7 @@ namespace OpenMS */ virtual void setSeeds(const FeatureMap& seeds) { - if (seeds.size() != 0) + if (!seeds.empty()) { throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "The used feature detection algorithm does not support user-specified seed lists!"); } diff --git a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderIdentificationAlgorithm.h b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderIdentificationAlgorithm.h index d02defd0a5d..b0ac29ba152 100644 --- a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderIdentificationAlgorithm.h +++ b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderIdentificationAlgorithm.h @@ -251,7 +251,7 @@ class OPENMS_DLLAPI FeatureFinderIdentificationAlgorithm : /// annotate identified features with m/z, isotope probabilities, etc. void annotateFeatures_(FeatureMap& features, PeptideRefRTMap& ref_rt_map); - void ensureConvexHulls_(Feature& feature); + void ensureConvexHulls_(Feature& feature) const; void postProcess_(FeatureMap& features, bool with_external_ids); @@ -275,7 +275,7 @@ class OPENMS_DLLAPI FeatureFinderIdentificationAlgorithm : void getUnbiasedSample_(const std::multimap >& valid_obs, std::map& training_labels); - void getRandomSample_(std::map& training_labels); + void getRandomSample_(std::map& training_labels) const; void classifyFeatures_(FeatureMap& features); diff --git a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderMultiplexAlgorithm.h b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderMultiplexAlgorithm.h index 3aff966e8c7..8e618a235ad 100644 --- a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderMultiplexAlgorithm.h +++ b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderMultiplexAlgorithm.h @@ -118,7 +118,7 @@ class OPENMS_DLLAPI FeatureFinderMultiplexAlgorithm : * * @param intensity_peptide peptide intensities to be corrected */ - void correctPeptideIntensities_(const MultiplexIsotopicPeakPattern& pattern, std::map& spline_chromatograms, const std::vector& rt_peptide, std::vector& intensity_peptide); + void correctPeptideIntensities_(const MultiplexIsotopicPeakPattern& pattern, std::map& spline_chromatograms, const std::vector& rt_peptide, std::vector& intensity_peptide) const; /** * @brief calculate peptide intensities diff --git a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/IsotopeModel.h b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/IsotopeModel.h index f62777a780e..2b7c45fd9c1 100644 --- a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/IsotopeModel.h +++ b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/IsotopeModel.h @@ -77,7 +77,7 @@ namespace OpenMS /// assignment operator virtual IsotopeModel & operator=(const IsotopeModel & source); - UInt getCharge(); + UInt getCharge() const; /// create new IsotopeModel object (needed by Factory) static BaseModel<1> * create() diff --git a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/IsotopeWaveletTransform.h b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/IsotopeWaveletTransform.h index f5d6365d3c9..9e2008a6cab 100644 --- a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/IsotopeWaveletTransform.h +++ b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/IsotopeWaveletTransform.h @@ -43,7 +43,7 @@ #include #include #include -#include + #include #include #include @@ -51,7 +51,7 @@ #include #include -// TODO: move this to cpp and use STL once it is available in clang +// TODO: move this to cpp and use STL once it is available in clang on Mac #include // This code has quite a few strange things in it triggering warnings which @@ -1877,7 +1877,7 @@ namespace OpenMS if (intenstype_ == "corrected") { double lambda = IsotopeWavelet::getLambdaL(av_mz * c_charge); - av_intens /= exp(-2 * lambda) * boost::math::cyl_bessel_i(0, 2 * lambda); + av_intens /= exp(-2 * lambda) * boost::math::cyl_bessel_i(0.0, 2.0 * lambda); } if (intenstype_ == "ref") { diff --git a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/LevMarqFitter1D.h b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/LevMarqFitter1D.h index 18c758b5fb3..30c68255e63 100644 --- a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/LevMarqFitter1D.h +++ b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/LevMarqFitter1D.h @@ -128,7 +128,7 @@ namespace OpenMS @exception Exception::UnableToFit is thrown if fitting cannot be performed */ - void optimize_(Eigen::VectorXd& x_init, GenericFunctor& functor); + void optimize_(Eigen::VectorXd& x_init, GenericFunctor& functor) const; void updateMembers_() override; diff --git a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/ModelDescription.h b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/ModelDescription.h index 2cd48d016d6..46bccbd90dc 100644 --- a/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/ModelDescription.h +++ b/src/openms/include/OpenMS/TRANSFORMATIONS/FEATUREFINDER/ModelDescription.h @@ -95,7 +95,7 @@ namespace OpenMS /// returns 0 if no description is set. BaseModel * createModel() { - if (name_ == "") return nullptr; + if (name_.empty()) return nullptr; BaseModel * model = Factory >::create(name_); model->setParameters(parameters_); diff --git a/src/openms/include/OpenMS/TRANSFORMATIONS/RAW2PEAK/PeakPickerIterative.h b/src/openms/include/OpenMS/TRANSFORMATIONS/RAW2PEAK/PeakPickerIterative.h index e34c3cddee4..3adb0df93a5 100644 --- a/src/openms/include/OpenMS/TRANSFORMATIONS/RAW2PEAK/PeakPickerIterative.h +++ b/src/openms/include/OpenMS/TRANSFORMATIONS/RAW2PEAK/PeakPickerIterative.h @@ -37,6 +37,7 @@ #include #include #include +#include // #define DEBUG_PEAK_PICKING @@ -166,7 +167,7 @@ namespace OpenMS */ void pickRecenterPeaks_(const MSSpectrum& input, std::vector& PeakCandidates, - SignalToNoiseEstimatorMedian& snt) + SignalToNoiseEstimatorMedian& snt) const { for (Size peak_it = 0; peak_it < PeakCandidates.size(); peak_it++) { @@ -301,13 +302,8 @@ namespace OpenMS // don't pick a spectrum with less than 3 data points if (input.size() < 3) return; - // copy meta data of the input spectrum - output.clear(true); - output.SpectrumSettings::operator=(input); - output.MetaInfoInterface::operator=(input); - output.setRT(input.getRT()); - output.setMSLevel(input.getMSLevel()); - output.setName(input.getName()); + // copy the spectrum meta data + copySpectrumMeta(input, output); output.setType(SpectrumSettings::CENTROID); output.getFloatDataArrays().clear(); diff --git a/src/openms/include/OpenMS/TRANSFORMATIONS/RAW2PEAK/PeakPickerMaxima.h b/src/openms/include/OpenMS/TRANSFORMATIONS/RAW2PEAK/PeakPickerMaxima.h index 3046eba062c..507ff14e3e5 100644 --- a/src/openms/include/OpenMS/TRANSFORMATIONS/RAW2PEAK/PeakPickerMaxima.h +++ b/src/openms/include/OpenMS/TRANSFORMATIONS/RAW2PEAK/PeakPickerMaxima.h @@ -114,7 +114,7 @@ namespace OpenMS void findMaxima(const std::vector& mz_array, const std::vector& int_array, std::vector& pc, - bool check_spacings = true); + bool check_spacings = true) const; /** @brief Will pick peaks in a spectrum diff --git a/src/openms/source/ANALYSIS/DECHARGING/FeatureDeconvolution.cpp b/src/openms/source/ANALYSIS/DECHARGING/FeatureDeconvolution.cpp index 5a258bcfc95..fbe02fb7540 100644 --- a/src/openms/source/ANALYSIS/DECHARGING/FeatureDeconvolution.cpp +++ b/src/openms/source/ANALYSIS/DECHARGING/FeatureDeconvolution.cpp @@ -135,7 +135,7 @@ namespace OpenMS defaults_.setValue("intensity_filter", "false", "Enable the intensity filter, which will only allow edges between two equally charged features if the intensity of the feature with less likely adducts is smaller than that of the other feature. It is not used for features of different charge."); defaults_.setValidStrings("intensity_filter", {"true","false"}); - defaults_.setValue("negative_mode", "false", "Enable negative ionization mode."); + defaults_.setValue("negative_mode", "false", "Enable negative ionization mode."); defaults_.setValue("default_map_label", "decharged features", "Label of map in output consensus file where all features are put by default", {"advanced"}); @@ -235,15 +235,15 @@ namespace OpenMS EmpiricalFormula ef(adduct[0]); ef.setCharge(0);//ensures we get without additional protons, now just add electron masses potential_adducts_.push_back(Adduct((Int)-neg_charge, 1, ef.getMonoWeight() + Constants::ELECTRON_MASS_U * neg_charge, adduct[0], log(prob), rt_shift, label)); - } + } } else//pos,neg == 0 { //in principle no change because pos_charge 0 and ef.getMonoWeight() only adds for nonzero charges EmpiricalFormula ef(adduct[0]); ef -= EmpiricalFormula("H" + String(pos_charge)); ef.setCharge(pos_charge); // effectively subtract electron masses - potential_adducts_.push_back(Adduct((Int)pos_charge, 1, ef.getMonoWeight(), adduct[0], log(prob), rt_shift, label)); - } + potential_adducts_.push_back(Adduct((Int)pos_charge, 1, ef.getMonoWeight(), adduct[0], log(prob), rt_shift, label)); + } verbose_level_ = param_.getValue("verbose_level"); } @@ -306,7 +306,7 @@ namespace OpenMS //@} - void FeatureDeconvolution::compute(const FeatureMapType& fm_in, FeatureMapType& fm_out, ConsensusMap& cons_map, ConsensusMap& cons_map_p) + void FeatureDeconvolution::compute(const FeatureMap& fm_in, FeatureMap& fm_out, ConsensusMap& cons_map, ConsensusMap& cons_map_p) { bool is_neg = (param_.getValue("negative_mode") == "true" ? true : false); ConsensusMap cons_map_p_neg; // tmp @@ -330,7 +330,7 @@ namespace OpenMS fm_out = fm_in; fm_out.sortByPosition(); fm_out.applyMemberFunction(&UniqueIdInterface::ensureUniqueId); - FeatureMapType fm_out_untouched = fm_out; + FeatureMap fm_out_untouched = fm_out; // search for most & least probable adduct to fix p threshold @@ -356,20 +356,20 @@ namespace OpenMS { default_adduct = Adduct(1, 1, Constants::PROTON_MASS_U, "H1", log(1.0),0); } - + // create mass difference list OPENMS_LOG_INFO << "Generating Masses with threshold: " << thresh_logp << " ...\n"; - + //make it proof for charge 1..3 and charge -3..-1 if ((q_min * q_max) < 0) { throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("Min and max charge switch charge signs! Please use same charge sign."), String(q_min)+" "+String(q_max)); } - - + + int small, large; small = q_min; large = q_max; @@ -455,7 +455,7 @@ namespace OpenMS // find possible adduct combinations CoordinateType naive_mass_diff = mz2 * abs(q2) - m1; double abs_mass_diff = mz_diff_max * abs(q1) + mz_diff_max * abs(q2); // tolerance must increase when looking at M instead of m/z, as error margins increase as well - //abs charge "3" to abs charge "1" -> simply invert charge delta for negative case? + //abs charge "3" to abs charge "1" -> simply invert charge delta for negative case? hits = me.query(q2 - q1, naive_mass_diff, abs_mass_diff, thresh_logp, md_s, md_e); OPENMS_PRECONDITION(hits >= 0, "FeatureDeconvolution querying #hits got negative result!"); @@ -463,7 +463,7 @@ namespace OpenMS // choose most probable hit (TODO think of something clever here) // for now, we take the one that has highest p in terms of the compomer structure if (hits > 0) - { + { Compomer best_hit = null_compomer; for (; md_s != md_e; ++md_s) { @@ -476,12 +476,12 @@ namespace OpenMS if (is_neg) { left_charges = -md_s->getPositiveCharges(); - right_charges = -md_s->getNegativeCharges();//for negative, a pos charge means either losing an H-1 from the left (decreasing charge) or the Na case. (We do H-1Na as neutral, because of the pos, neg charges) + right_charges = -md_s->getNegativeCharges();//for negative, a pos charge means either losing an H-1 from the left (decreasing charge) or the Na case. (We do H-1Na as neutral, because of the pos, neg charges) } else { left_charges = md_s->getNegativeCharges();//for positive mode neutral switches still have to fulfill requirement that they have at most charge as each side - right_charges = md_s->getPositiveCharges(); + right_charges = md_s->getPositiveCharges(); } if ( // compomer fits charge assignment of left & right feature. doesn't consider charge sign switch over span! @@ -500,12 +500,12 @@ namespace OpenMS if (is_neg) { left_charges = -cmp.getPositiveCharges(); - right_charges = -cmp.getNegativeCharges(); + right_charges = -cmp.getNegativeCharges(); } else { left_charges = cmp.getNegativeCharges(); - right_charges = cmp.getPositiveCharges(); + right_charges = cmp.getPositiveCharges(); } //this block should only be of interest if we have something multiply charges instead of protonation or deprotonation @@ -534,13 +534,13 @@ namespace OpenMS Compomer cmp_stripped(cmp.removeAdduct(default_adduct)); // save new adduct candidate - if (cmp_stripped.getComponent()[Compomer::LEFT].size() > 0) + if (!cmp_stripped.getComponent()[Compomer::LEFT].empty()) { String tmp = cmp_stripped.getAdductsAsString(Compomer::LEFT); CmpInfo_ cmp_left(tmp, feature_relation.size(), Compomer::LEFT); feature_adducts[i_RT].insert(cmp_left); } - if (cmp_stripped.getComponent()[Compomer::RIGHT].size() > 0) + if (!cmp_stripped.getComponent()[Compomer::RIGHT].empty()) { String tmp = cmp_stripped.getAdductsAsString(Compomer::RIGHT); CmpInfo_ cmp_right(tmp, feature_relation.size(), Compomer::RIGHT); @@ -798,7 +798,7 @@ namespace OpenMS labels = c.getLabels(Compomer::LEFT); if (labels.size() > 1) throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("Decharging produced inconsistent label annotation! [expected: a single label]"), ListUtils::concatenate(labels, ",")); - if (labels.size() > 0) + if (!labels.empty()) { fm_out[f0_idx].setMetaValue("map_idx", map_label_inverse_[labels[0]]); } @@ -822,7 +822,7 @@ namespace OpenMS labels = c.getLabels(Compomer::RIGHT); if (labels.size() > 1) throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("Decharging produced inconsistent label annotation! [expected: a single label]"), ListUtils::concatenate(labels, ",")); - if (labels.size() > 0) + if (!labels.empty()) { fm_out[f1_idx].setMetaValue("map_idx", map_label_inverse_[labels[0]]); } @@ -1004,7 +1004,7 @@ namespace OpenMS if (clique_register.count(i) > 0) continue; - FeatureMapType::FeatureType f_single = fm_out_untouched[i]; + Feature f_single = fm_out_untouched[i]; f_single.setMetaValue("is_single_feature", 1); f_single.setMetaValue("charge", f_single.getCharge()); fm_out[i] = f_single; // overwrite whatever DC has done to this feature! @@ -1036,7 +1036,7 @@ namespace OpenMS #ifdef DC_DEVEL ChargeLadder cl; - FeatureMapType fm_missing; + FeatureMap fm_missing; cl.suggestMissingFeatures(fm_out, cons_map, fm_missing); FileHandler.storeFeatures("fm_missing.featureXML", fm_missing); @@ -1060,7 +1060,7 @@ namespace OpenMS void FeatureDeconvolution::inferMoreEdges_(PairsType& edges, Map >& feature_adducts) { Adduct default_adduct; - + bool is_neg = (param_.getValue("negative_mode") == "true" ? true : false); if (is_neg) { @@ -1068,7 +1068,7 @@ namespace OpenMS } else { - default_adduct = Adduct(1, 1, Constants::PROTON_MASS_U, "H1", log(1.0), 0); + default_adduct = Adduct(1, 1, Constants::PROTON_MASS_U, "H1", log(1.0), 0); } int left_charges, right_charges; @@ -1098,12 +1098,12 @@ namespace OpenMS { it->second.setLogProb(0); } - ChargePair cp(edges[i]); // make a copy + ChargePair cp(edges[i]); // make a copy Compomer new_cmp = cp.getCompomer().removeAdduct(default_adduct); new_cmp.add(to_add, Compomer::LEFT); new_cmp.add(to_add, Compomer::RIGHT); - + //We again need to consider inverted behavior (but cp.getCharge(x) gets negative charges as assigned before! if (is_neg) { @@ -1191,7 +1191,7 @@ namespace OpenMS return; } - inline bool FeatureDeconvolution::intensityFilterPassed_(const Int q1, const Int q2, const Compomer& cmp, const FeatureType& f1, const FeatureType& f2) + inline bool FeatureDeconvolution::intensityFilterPassed_(const Int q1, const Int q2, const Compomer& cmp, const Feature& f1, const Feature& f2) const { if (!enable_intensity_filter_) return true; @@ -1289,5 +1289,4 @@ namespace OpenMS } - } diff --git a/src/openms/source/ANALYSIS/DECHARGING/ILPDCWrapper.cpp b/src/openms/source/ANALYSIS/DECHARGING/ILPDCWrapper.cpp index 8d3bcfed10f..7dc0eecbe17 100644 --- a/src/openms/source/ANALYSIS/DECHARGING/ILPDCWrapper.cpp +++ b/src/openms/source/ANALYSIS/DECHARGING/ILPDCWrapper.cpp @@ -511,7 +511,7 @@ namespace OpenMS String e; if (getenv("M") != nullptr) e = String(getenv("M")); - if (e == "") + if (e.empty()) { //std::cout << "1"; score = pair.getCompomer().getLogP(); diff --git a/src/openms/source/ANALYSIS/DECHARGING/MetaboliteFeatureDeconvolution.cpp b/src/openms/source/ANALYSIS/DECHARGING/MetaboliteFeatureDeconvolution.cpp index 31318830f4d..c1d4518fc35 100644 --- a/src/openms/source/ANALYSIS/DECHARGING/MetaboliteFeatureDeconvolution.cpp +++ b/src/openms/source/ANALYSIS/DECHARGING/MetaboliteFeatureDeconvolution.cpp @@ -343,7 +343,7 @@ namespace OpenMS } - void MetaboliteFeatureDeconvolution::annotate_feature_(FeatureMapType& fm_out, Adduct& default_adduct, Compomer& c, const Size f_idx, const UInt comp_side, const Int new_q, const Int old_q) + void MetaboliteFeatureDeconvolution::annotate_feature_(FeatureMap& fm_out, Adduct& default_adduct, Compomer& c, const Size f_idx, const UInt comp_side, const Int new_q, const Int old_q) { StringList labels; fm_out[f_idx].setMetaValue("map_idx", 0); @@ -389,14 +389,14 @@ namespace OpenMS labels = c.getLabels(comp_side); if (labels.size() > 1) throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("Decharging produced inconsistent label annotation! [expected: a single label]"), ListUtils::concatenate(labels, ",")); - if (labels.size() > 0) + if (!labels.empty()) { fm_out[f_idx].setMetaValue("map_idx", map_label_inverse_[labels[0]]); } } - void MetaboliteFeatureDeconvolution::candidateEdges_(FeatureMapType& fm_out, const Adduct& default_adduct, PairsType& feature_relation, Map >& feature_adducts) + void MetaboliteFeatureDeconvolution::candidateEdges_(FeatureMap& fm_out, const Adduct& default_adduct, PairsType& feature_relation, Map >& feature_adducts) { bool is_neg = (param_.getValue("negative_mode") == "true" ? true : false); @@ -625,13 +625,13 @@ namespace OpenMS Compomer cmp_stripped(cmp.removeAdduct(default_adduct)); // save new adduct candidate - if (cmp_stripped.getComponent()[Compomer::LEFT].size() > 0) + if (!cmp_stripped.getComponent()[Compomer::LEFT].empty()) { String tmp = cmp_stripped.getAdductsAsString(Compomer::LEFT); CmpInfo_ cmp_left(tmp, feature_relation.size(), Compomer::LEFT); feature_adducts[i_RT].insert(cmp_left); } - if (cmp_stripped.getComponent()[Compomer::RIGHT].size() > 0) + if (!cmp_stripped.getComponent()[Compomer::RIGHT].empty()) { String tmp = cmp_stripped.getAdductsAsString(Compomer::RIGHT); CmpInfo_ cmp_right(tmp, feature_relation.size(), Compomer::RIGHT); @@ -682,7 +682,7 @@ namespace OpenMS //@} - void MetaboliteFeatureDeconvolution::compute(const FeatureMapType& fm_in, FeatureMapType& fm_out, ConsensusMap& cons_map, ConsensusMap& cons_map_p) + void MetaboliteFeatureDeconvolution::compute(const FeatureMap& fm_in, FeatureMap& fm_out, ConsensusMap& cons_map, ConsensusMap& cons_map_p) { bool is_neg = (param_.getValue("negative_mode") == "true" ? true : false); ConsensusMap cons_map_p_neg; // tmp @@ -694,7 +694,7 @@ namespace OpenMS fm_out = fm_in; fm_out.sortByPosition(); fm_out.applyMemberFunction(&UniqueIdInterface::ensureUniqueId); - FeatureMapType fm_out_untouched = fm_out; + FeatureMap fm_out_untouched = fm_out; Adduct default_adduct; @@ -1032,7 +1032,7 @@ namespace OpenMS if (clique_register.count(i) > 0) continue; - FeatureMapType::FeatureType f_single = fm_out_untouched[i]; + Feature f_single = fm_out_untouched[i]; if (f_single.getCharge() == 0) { f_single.setMetaValue("is_ungrouped_monoisotopic", 1); @@ -1258,7 +1258,7 @@ namespace OpenMS return; } - inline bool MetaboliteFeatureDeconvolution::intensityFilterPassed_(const Int q1, const Int q2, const Compomer& cmp, const FeatureType& f1, const FeatureType& f2) + inline bool MetaboliteFeatureDeconvolution::intensityFilterPassed_(const Int q1, const Int q2, const Compomer& cmp, const Feature& f1, const Feature& f2) const { if (!enable_intensity_filter_) return true; diff --git a/src/openms/source/ANALYSIS/DENOVO/CompNovoIdentification.cpp b/src/openms/source/ANALYSIS/DENOVO/CompNovoIdentification.cpp index 0e245dccb5d..8c3cc4db8f8 100644 --- a/src/openms/source/ANALYSIS/DENOVO/CompNovoIdentification.cpp +++ b/src/openms/source/ANALYSIS/DENOVO/CompNovoIdentification.cpp @@ -588,7 +588,7 @@ namespace OpenMS score /= it->size(); - if (boost::math::isnan(score)) + if (std::isnan(score)) { score = 0; } diff --git a/src/openms/source/ANALYSIS/DENOVO/CompNovoIdentificationBase.cpp b/src/openms/source/ANALYSIS/DENOVO/CompNovoIdentificationBase.cpp index d422d4dba40..b0ad0f1a34b 100644 --- a/src/openms/source/ANALYSIS/DENOVO/CompNovoIdentificationBase.cpp +++ b/src/openms/source/ANALYSIS/DENOVO/CompNovoIdentificationBase.cpp @@ -284,7 +284,7 @@ namespace OpenMS spec.sortByPosition(); } - void CompNovoIdentificationBase::filterPermuts_(set & permut) + void CompNovoIdentificationBase::filterPermuts_(set & permut) const { set tmp; for (set::const_iterator it = permut.begin(); it != permut.end(); ++it) @@ -470,7 +470,7 @@ for (set::const_iterator it = used_pos.begin(); it != used_pos.end(); ++it } // s1 should be the original spectrum - double CompNovoIdentificationBase::compareSpectra_(const PeakSpectrum & s1, const PeakSpectrum & s2) + double CompNovoIdentificationBase::compareSpectra_(const PeakSpectrum & s1, const PeakSpectrum & s2) const { double score(0.0); diff --git a/src/openms/source/ANALYSIS/DENOVO/CompNovoIdentificationCID.cpp b/src/openms/source/ANALYSIS/DENOVO/CompNovoIdentificationCID.cpp index e0dc5c99794..74014915da8 100644 --- a/src/openms/source/ANALYSIS/DENOVO/CompNovoIdentificationCID.cpp +++ b/src/openms/source/ANALYSIS/DENOVO/CompNovoIdentificationCID.cpp @@ -468,14 +468,14 @@ for (PeakSpectrum::ConstIterator it1 = CID_spec.begin(); it1 != CID_spec.end(); double score = zhang_(CID_sim_spec, CID_spec); - if (boost::math::isnan(score)) + if (std::isnan(score)) { score = 0; } score /= it->size(); - if (boost::math::isnan(score)) + if (std::isnan(score)) { score = 0; } diff --git a/src/openms/source/ANALYSIS/DENOVO/CompNovoIonScoringBase.cpp b/src/openms/source/ANALYSIS/DENOVO/CompNovoIonScoringBase.cpp index 1680231de8f..dcf3239efc8 100644 --- a/src/openms/source/ANALYSIS/DENOVO/CompNovoIonScoringBase.cpp +++ b/src/openms/source/ANALYSIS/DENOVO/CompNovoIonScoringBase.cpp @@ -166,7 +166,7 @@ namespace OpenMS CID_spec = CID_spec_new; } - CompNovoIonScoringBase::IsotopeType CompNovoIonScoringBase::classifyIsotopes_(const PeakSpectrum & spec, PeakSpectrum::ConstIterator it) + CompNovoIonScoringBase::IsotopeType CompNovoIonScoringBase::classifyIsotopes_(const PeakSpectrum & spec, PeakSpectrum::ConstIterator it) const { double it_pos(it->getPosition()[0]); diff --git a/src/openms/source/ANALYSIS/ID/AccurateMassSearchEngine.cpp b/src/openms/source/ANALYSIS/ID/AccurateMassSearchEngine.cpp index 665dfe51fe6..cd26978b8df 100644 --- a/src/openms/source/ANALYSIS/ID/AccurateMassSearchEngine.cpp +++ b/src/openms/source/ANALYSIS/ID/AccurateMassSearchEngine.cpp @@ -33,236 +33,22 @@ // -------------------------------------------------------------------------- #include - -#include -#include +#include #include #include #include +#include #include #include #include #include +#include +#include #include namespace OpenMS { - - const char* AccurateMassSearchEngine::search_engine_identifier = "AccurateMassSearch"; - - AdductInfo::AdductInfo(const String& name, const EmpiricalFormula& adduct, int charge, UInt mol_multiplier) - : - name_(name), - ef_(adduct), - charge_(charge), - mol_multiplier_(mol_multiplier) - { - if (charge_ == 0) - { - throw Exception::InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Charge of 0 is not allowed for an adduct (" + ef_.toString() + ")"); - } - if (adduct.getCharge() != 0) - { // EF will add Proton weights for positive charges, and do nothing for negative ones ... - // we just use the uncharged formula and take care of electrons ourselves - throw Exception::InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "EmpiricalFormula must not have a charge (" + ef_.toString() + "), since the internal weight computation of EF is currently unreliable."); - } - if (mol_multiplier_ == 0) - { - throw Exception::InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Molecule multiplier of 0 is not allowed for an adduct (" + ef_.toString() + ")"); - } - mass_ = ef_.getMonoWeight(); - } - - double AdductInfo::getNeutralMass(double observed_mz) const - { - // decharge and remove adduct (charge is guaranteed != 0; see C'tor) - double mass = observed_mz * abs(charge_) - mass_; - - // correct for electron masses - // (positive charge means there are electrons missing!) - // (negative charge requires increasing the mass by X electrons) - // --> looking at observed m/z, we thus need to decharge to get equal protons and electrons - mass += charge_ * 1 * Constants::ELECTRON_MASS_U; - - // the Mol multiplier determines if we assume to be looking at dimers or higher - // Currently, we just want the monomer, to compare its mass to a DB entry - mass /= mol_multiplier_; - - return mass; - } - - double AdductInfo::getMZ(double neutral_mass) const - { - // this is the inverse of getNeutralMass() - double neutral_nmer_mass_with_adduct = (neutral_mass * mol_multiplier_ + mass_); // [nM+adduct] - - // correct for electron masses - // (positive charge means there are electrons missing!) - // (negative charge requires increasing the mass by X electrons) - neutral_nmer_mass_with_adduct += charge_ * -1 * Constants::ELECTRON_MASS_U; - - return neutral_nmer_mass_with_adduct / abs(charge_); - } - - /// checks if an adduct (e.g.a 'M+2K-H;1+') is valid, i.e. if the losses (==negative amounts) can actually be lost by the compound given in @p db_entry. - /// If the negative parts are present in @p db_entry, true is returned. - bool AdductInfo::isCompatible(EmpiricalFormula db_entry) const - { - return db_entry.contains(ef_ * -1); - } - - int AdductInfo::getCharge() const - { - return charge_; - } - - const String& AdductInfo::getName() const - { - return name_; - } - - UInt AdductInfo::getMolMultiplier() const - { - return mol_multiplier_; - } - - const EmpiricalFormula& AdductInfo::getEmpiricalFormula() const - { - return ef_; - } - - AdductInfo AdductInfo::parseAdductString(const String& adduct) - { - // adduct string looks like this: - // M+2K-H;1+ or - // 2M+CH3CN+Na;1+ (i.e. multimers are supported) - - // do some sanity checks on the string - - // retrieve adduct and charge - String cp_str(adduct); - cp_str.removeWhitespaces(); - StringList list; - cp_str.split(";", list); - // split term into formula and charge, e.g. "M-H" and "1-" - String mol_formula, charge_str; - if (list.size() == 2) - { - mol_formula = list[0]; - charge_str = list[1]; - } - else - { - throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Could not detect molecular ion; charge in '" + cp_str + "'. Got semicolon right?", cp_str); - } - - // check if charge string is formatted correctly - if ((!charge_str.hasSuffix("+")) && (!charge_str.hasSuffix("-"))) - { - throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Charge sign +/- in the end of the string is missing! ", charge_str); - } - - // get charge and sign (throws ConversionError if not an integer) - int charge = charge_str.substr(0, charge_str.size() - 1).toInt(); - - if (charge_str.suffix(1) == "+") - { - if (charge < 0) - { - charge *= -1; - } - } - else - { - if (charge > 0) - { - charge *= -1; - } - } - - // not allowing double ++ or -- or +- or -+ - String op_str(mol_formula); - op_str.substitute('-', '+'); - if (op_str.hasSubstring("++") || op_str.hasSuffix("+") || op_str.hasPrefix("+")) - { - throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "+/- operator must be surrounded by a chemical formula. Offending string: ", mol_formula); - } - - // split by + and - - op_str = mol_formula; - if (op_str.has('%')) - { - throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Character '%' not allowed within chemical formula. Offending string: ", mol_formula); - } - // ... we want to keep the - and +, so we add extra chars around, which we use as splitter later - op_str.substitute("-", "%-%"); - op_str.substitute("+", "%+%"); - // split while keeping + and - as separate entries - op_str.split("%", list); - - // some further sanity check if adduct formula is correct - String m_part(list[0]); - // std::cout << m_part.at(m_part.size() - 1) << std::endl; - - if (!m_part.hasSuffix("M")) - { - throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "First term of adduct string must contain the molecular entity 'M', optionally prefixed by a multiplier (e.g. '2M'); not found in ", m_part); - } - - int mol_multiplier(1); - // check if M has a multiplier in front - if (m_part.length() > 1) - { // will throw conversion error of not a number - mol_multiplier = m_part.prefix(m_part.length()-1).toDouble(); - } - - // evaluate the adduct string ... - // ... add/subtract each adduct compound - bool op_plus(false); - EmpiricalFormula ef; // will remain empty if there are no explicit adducts (e.g. 'M;+1') - for (Size part_idx = 1 /* omit 0 index, since its 'M' */; part_idx < list.size(); ++part_idx) - { - if (list[part_idx] == "+") - { - op_plus = true; - continue; - } - else if (list[part_idx] == "-") - { - op_plus = false; - continue; - } - - // std::cout << "putting " << tmpvec2[part_idx] << " into a formula with mass "; - - // check if formula has got a stoichiometry factor in front - String formula_str(list[part_idx]); - int stoichio_factor(1); - int idx(0); - while (isdigit(formula_str[idx])) ++idx; - if (idx > 0) - { - stoichio_factor = formula_str.substr(0, idx).toInt(); - formula_str = formula_str.substr(idx, formula_str.size()); - } - - EmpiricalFormula ef_part(formula_str); - OPENMS_LOG_DEBUG << "Adducts: " << stoichio_factor << "*" << formula_str << " == " << stoichio_factor * ef_part.getMonoWeight() << std::endl; - - if (op_plus) - { - ef += ef_part * stoichio_factor; - } - else // "-" operator - { - ef -= ef_part * stoichio_factor; - } - } - - return AdductInfo(cp_str, ef, charge, mol_multiplier); - } - /// default constructor AccurateMassSearchResult::AccurateMassSearchResult() : observed_mz_(), @@ -554,12 +340,15 @@ namespace OpenMS defaults_.setValue("use_feature_adducts", "false", "Whether to filter AMS candidates mismatching available feature adduct annotation."); defaults_.setValidStrings("use_feature_adducts", {"false", "true"}); - defaults_.setValue("keep_unidentified_masses", "false", "Keep features that did not yield any DB hit."); - defaults_.setValidStrings("keep_unidentified_masses", {"false", "true"}); + defaults_.setValue("keep_unidentified_masses", "true", "Keep features that did not yield any DB hit."); + defaults_.setValidStrings("keep_unidentified_masses", {"true", "false"}); defaults_.setValue("mzTab:exportIsotopeIntensities", "false", "[featureXML input only] Export column with available isotope trace intensities (opt_global_MTint)"); defaults_.setValidStrings("mzTab:exportIsotopeIntensities", {"false", "true"}); + defaults_.setValue("id_format", "legacy", "Use legacy (ProteinID/PeptideID based storage of metabolomics data) with mzTab-v1.0.0 as output format or novel Identification Data (ID) with mzTab-v2.0.0-M as output format (ID and its MzTab-M output is currently only support for featureXML files)."); + defaults_.setValidStrings("id_format", {"legacy", "ID"}); + defaultsToParam_(); } @@ -669,9 +458,6 @@ namespace OpenMS ams_result.setMatchingHMDBids(mass_mappings_[i].massIDs); results.push_back(ams_result); - - // ams_result.outputResults(); - // std::cout << "****************************************************" << std::endl; } } @@ -789,75 +575,181 @@ namespace OpenMS is_initialized_ = true; } - void AccurateMassSearchEngine::run(FeatureMap& fmap, MzTab& mztab_out) const + void AccurateMassSearchEngine::run(FeatureMap& fmap, MzTabM& mztabm_out) const { if (!is_initialized_) { throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "AccurateMassSearchEngine::init() was not called!"); } + IdentificationData& id = fmap.getIdentificationData(); + IdentificationData::InputFileRef file_ref; + IdentificationData::ScoreTypeRef mass_error_ppm_score_ref; + IdentificationData::ScoreTypeRef mass_error_Da_score_ref; + IdentificationData::ProcessingStepRef step_ref; + + StringList ms_run_paths; + fmap.getPrimaryMSRunPath(ms_run_paths); + + // set identifier for FeatureMap if missing (mandatory for OMS output) + if (fmap.getIdentifier().empty()) + { + fmap.setIdentifier(File::basename(ms_run_paths[0])); + } + + // check ion_mode String ion_mode_internal(ion_mode_); if (ion_mode_ == "auto") { ion_mode_internal = resolveAutoMode_(fmap); } - // corresponding file locations - std::vector file_locations; - StringList paths; - fmap.getPrimaryMSRunPath(paths); - if (!paths.empty()) // if the file location is not available it will be set to UNKNOWN by MzTab + // register input file + IdentificationData::InputFile file(ms_run_paths[0]); + file_ref = id.registerInputFile(file); + std::vector file_refs; + file_refs.emplace_back(file_ref); + + // add previous DataProcessingStep(s) from FeatureMap + auto data_processing = fmap.getDataProcessing(); + for (const auto& it : data_processing) { - file_locations.emplace_back(paths[0]); + // software + IdentificationData::ProcessingSoftware sw(it.getSoftware().getName(), it.getSoftware().getVersion()); + // transfer previous metadata + sw.addMetaValues(it); + IdentificationDataInternal::ProcessingSoftwareRef sw_ref = id.registerProcessingSoftware(sw); + // ProcessingStep: software, input_file_refs, data_time, actions + IdentificationData::ProcessingStep step(sw_ref, file_refs, it.getCompletionTime(), it.getProcessingActions()); + step_ref = id.registerProcessingStep(step); + id.setCurrentProcessingStep(step_ref); } + // add information about current tool + // register a score type + IdentificationData::ScoreType mass_error_ppm_score("MassErrorPPMScore", false); + mass_error_ppm_score_ref = id.registerScoreType(mass_error_ppm_score); + IdentificationData::ScoreType mass_error_Da_score("MassErrorDaScore", false); + mass_error_Da_score_ref = id.registerScoreType(mass_error_Da_score); + + // add the same score_refs to the ProcessingSoftware - to reference the Software with the + // ObservationMatch - the order is important - the most important score first. + std::vector assigned_scores{mass_error_ppm_score_ref, mass_error_Da_score_ref}; + + // register software (connected to score) + // CVTerm will be set in mztab-m based on the name + // if the name is not available in PSI-OBO "analysis software" will be used. + IdentificationData::ProcessingSoftware sw("AccurateMassSearch", VersionInfo::getVersion(), assigned_scores); + sw.setMetaValue("reliability", "2"); + IdentificationData::ProcessingSoftwareRef sw_ref = id.registerProcessingSoftware(sw); + + // all supported search settings + IdentificationData::DBSearchParam search_param; + search_param.database = database_name_; + search_param.database_version = database_version_; + search_param.setMetaValue("database_location", database_location_); + + search_param.precursor_mass_tolerance = this->mass_error_value_; + search_param.precursor_tolerance_ppm = this->mass_error_unit_ == "ppm" ? true : false; + IdentificationData::SearchParamRef search_param_ref = id.registerDBSearchParam(search_param); + + // file has been processed by software performing a specific processing action. + std::set actions; + actions.insert(DataProcessing::IDENTIFICATION); + IdentificationData::ProcessingStep step(sw_ref, file_refs, DateTime::now(), actions); + step_ref = id.registerProcessingStep(step, search_param_ref); + id.setCurrentProcessingStep(step_ref); // add the new step + // map for storing overall results QueryResultsTable overall_results; Size dummy_count(0); for (Size i = 0; i < fmap.size(); ++i) { - std::vector query_results; + std::vector query_results = extractQueryResults_(fmap[i], i, ion_mode_internal, dummy_count); + if (query_results.empty()) + { + continue; + } + overall_results.push_back(query_results); - // std::cout << i << ": " << fmap[i].getMetaValue(3) << " mass: " << fmap[i].getMZ() << " num_traces: " << fmap[i].getMetaValue("num_of_masstraces") << " charge: " << fmap[i].getCharge() << std::endl; - queryByFeature(fmap[i], i, ion_mode_internal, query_results); + addMatchesToID_(id, query_results, file_ref, mass_error_ppm_score_ref, mass_error_Da_score_ref, step_ref, fmap[i]); // MztabM + } - if (query_results.size() == 0) continue; // cannot happen if a 'not-found' dummy was added + // filter FeatureMap to only have entries with an PrimaryID attached + if (!keep_unidentified_masses_) + { + fmap.erase(std::remove_if(fmap.begin(), fmap.end(), [](Feature f){ return !f.hasPrimaryID(); }), fmap.end()); + } - bool is_dummy = (query_results[0].getMatchingIndex() == (Size)-1); - if (is_dummy) ++dummy_count; + // add the identification data to the featureXML + // to allow featureXML export (without the use of legacy_ID) + // been transferred from the previous data stored within + // the feature. + IdentificationDataConverter::exportFeatureIDs(fmap, false); - if (iso_similarity_ && !is_dummy) - { - if (!fmap[i].metaValueExists("num_of_masstraces")) - { - OPENMS_LOG_WARN << "Feature does not contain meta value 'num_of_masstraces'. Cannot compute isotope similarity."; - } - else if ((Size)fmap[i].getMetaValue("num_of_masstraces") > 1) - { // compute isotope pattern similarities (do not take the best-scoring one, since it might have really bad ppm or other properties -- - // it is impossible to decide here which one is best - for (Size hit_idx = 0; hit_idx < query_results.size(); ++hit_idx) - { - String emp_formula(query_results[hit_idx].getFormulaString()); - double iso_sim(computeIsotopePatternSimilarity_(fmap[i], EmpiricalFormula(emp_formula))); - query_results[hit_idx].setIsotopesSimScore(iso_sim); - } - } - } + if (fmap.empty()) + { + OPENMS_LOG_INFO << "FeatureMap was empty! No hits found!" << std::endl; + } + else + { // division by 0 if used on empty fmap + OPENMS_LOG_INFO << "\nFound " << (overall_results.size() - dummy_count) << " matched masses (with at least one hit each)\nfrom " << fmap.size() << " features\n --> " << (overall_results.size()-dummy_count)*100/fmap.size() << "% explained" << std::endl; + } + + exportMzTabM_(fmap, mztabm_out); - // debug output - // for (Size hit_idx = 0; hit_idx < query_results.size(); ++hit_idx) - // { - // query_results[hit_idx].outputResults(); - // } + return; + } - // String feat_label(fmap[i].getMetaValue(3)); + void AccurateMassSearchEngine::run(FeatureMap& fmap, MzTab& mztab_out) const + { + if (!is_initialized_) + { + throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "AccurateMassSearchEngine::init() was not called!"); + } + + StringList ms_run_paths; + fmap.getPrimaryMSRunPath(ms_run_paths); + + // check ion_mode + String ion_mode_internal(ion_mode_); + if (ion_mode_ == "auto") + { + ion_mode_internal = resolveAutoMode_(fmap); + } + + // corresponding file locations + std::vector file_locations; + if (!ms_run_paths.empty()) // if the file location is not available it will be set to UNKNOWN by MzTab + { + file_locations.emplace_back(ms_run_paths[0]); + } + + // map for storing overall results + QueryResultsTable overall_results; + Size dummy_count(0); + for (Size i = 0; i < fmap.size(); ++i) + { + std::vector query_results = extractQueryResults_(fmap[i], i, ion_mode_internal, dummy_count); + if (query_results.empty()) + { + continue; + } overall_results.push_back(query_results); + annotate_(query_results, fmap[i]); } - // add dummy protein identification which is required to keep peptidehits alive during store() + + // filter FeatureMap to only have entries with an identification + if (!keep_unidentified_masses_) + { + fmap.erase(std::remove_if(fmap.begin(), fmap.end(), [](Feature f){ return f.getPeptideIdentifications().size() == 0; }), fmap.end()); + } + + // add dummy ProteinIdentification which is required to keep PeptideHits alive during store() fmap.getProteinIdentifications().resize(fmap.getProteinIdentifications().size() + 1); - fmap.getProteinIdentifications().back().setIdentifier(search_engine_identifier); - fmap.getProteinIdentifications().back().setSearchEngine(search_engine_identifier); + fmap.getProteinIdentifications().back().setIdentifier("AccurateMassSearchEngine"); + fmap.getProteinIdentifications().back().setSearchEngine("AccurateMassSearch"); fmap.getProteinIdentifications().back().setDateTime(DateTime().now()); if (fmap.empty()) @@ -874,6 +766,89 @@ namespace OpenMS return; } + void AccurateMassSearchEngine::addMatchesToID_( + IdentificationData& id, + const std::vector& amr, + const IdentificationData::InputFileRef& file_ref, + const IdentificationData::ScoreTypeRef& mass_error_ppm_score_ref, + const IdentificationData::ScoreTypeRef& mass_error_Da_score_ref, + const IdentificationData::ProcessingStepRef& step_ref, + BaseFeature& f) const + { + // register feature as search item associated with input file + IdentificationData::Observation obs(String(f.getUniqueId()), file_ref, f.getRT(), f.getMZ()); + auto obs_ref = id.registerObservation(obs); + + for (const AccurateMassSearchResult& r : amr) + { + for (Size i = 0; i < r.getMatchingHMDBids().size(); ++i) + { + if (!hmdb_properties_mapping_.count(r.getMatchingHMDBids()[i])) + { + throw Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("DB entry '") + r.getMatchingHMDBids()[i] + "' not found in struct file!"); + } + // get name from index 0 (2nd column in structMapping file) + HMDBPropsMapping::const_iterator entry = hmdb_properties_mapping_.find(r.getMatchingHMDBids()[i]); + if (entry == hmdb_properties_mapping_.end()) + { + throw Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("DB entry '") + r.getMatchingHMDBids()[i] + "' found in struct file but missing in mapping file!"); + } + + double mass_error_Da = r.getObservedMZ() - r.getCalculatedMZ(); + double mass_error_ppm = r.getMZErrorPPM(); + + std::map scores{{mass_error_ppm_score_ref, mass_error_ppm}, + {mass_error_Da_score_ref, mass_error_Da} + }; + IdentificationDataInternal::AppliedProcessingStep applied_processing_step(step_ref, scores); + IdentificationDataInternal::AppliedProcessingSteps applied_processing_steps; + applied_processing_steps.emplace_back(applied_processing_step); + + // register compound + const String& name = entry->second[0]; + const String& smiles = entry->second[1]; + const String& inchi_key = entry->second[2]; + std::vector names = {name}; // to fit legacy format - MetaValue + std::vector identifiers = {r.getMatchingHMDBids()[i]}; // to fit legacy format - MetaValue + IdentificationData::IdentifiedCompound compound(r.getMatchingHMDBids()[i], + EmpiricalFormula(r.getFormulaString()), + name, + smiles, + inchi_key, + applied_processing_steps); + + auto compound_ref = id.registerIdentifiedCompound(compound); // if already in DB -> NOP + + // compound-feature match + IdentificationData::ObservationMatch match(compound_ref, obs_ref, r.getCharge()); + match.addScore(mass_error_ppm_score_ref, mass_error_ppm, step_ref); + match.addScore(mass_error_Da_score_ref, mass_error_Da, step_ref); + match.setMetaValue("identifier", identifiers); + match.setMetaValue("description", names); + match.setMetaValue("modifications", r.getFoundAdduct()); + match.setMetaValue("chemical_formula", r.getFormulaString()); + match.setMetaValue("mz_error_ppm", mass_error_ppm); + match.setMetaValue("mz_error_Da", mass_error_Da); + + // add adduct to the ObservationMatch + String adduct = r.getFoundAdduct(); // M+Na;1+ + if (!adduct.empty() && adduct != "null") + { + AdductInfo ainfo = AdductInfo::parseAdductString(adduct); + auto adduct_ref = id.registerAdduct(ainfo); + match.adduct_opt = adduct_ref; + } + + // register ObservationMatch + auto obs_match_ref = id.registerObservationMatch(match); + IdentificationData::IdentifiedMolecule molecule(compound_ref); + // add to Feature (set PrimaryID to add a reference to a specific molecule) + f.setPrimaryID(molecule); + f.addIDMatch(obs_match_ref); + } + } + } + void AccurateMassSearchEngine::annotate_(const std::vector& amr, BaseFeature& f) const { f.getPeptideIdentifications().resize(f.getPeptideIdentifications().size() + 1); @@ -935,7 +910,6 @@ namespace OpenMS for (Size i = 0; i < cmap.size(); ++i) { std::vector query_results; - // std::cout << i << ": " << cmap[i].getMetaValue(3) << " mass: " << cmap[i].getMZ() << " num_traces: " << cmap[i].getMetaValue("num_of_masstraces") << " charge: " << cmap[i].getCharge() << std::endl; queryByConsensusFeature(cmap[i], i, num_of_maps, ion_mode_internal, query_results); annotate_(query_results, cmap[i]); overall_results.push_back(query_results); @@ -950,6 +924,12 @@ namespace OpenMS return; } + // FeatureMap with IdentificationData attached! + void AccurateMassSearchEngine::exportMzTabM_(const FeatureMap& fmap, MzTabM& mztabm_out) const + { + mztabm_out = MzTabM::exportFeatureMapToMzTabM(fmap); + } + void AccurateMassSearchEngine::exportMzTab_(const QueryResultsTable& overall_results, const Size number_of_maps, MzTab& mztab_out, const std::vector& file_locations) const { if (overall_results.empty()) @@ -1004,25 +984,16 @@ namespace OpenMS for (QueryResultsTable::const_iterator tab_it = overall_results.begin(); tab_it != overall_results.end(); ++tab_it) { - - // std::cout << tab_it->first << std::endl; - for (Size hit_idx = 0; hit_idx < tab_it->size(); ++hit_idx) { - // tab_it->second[hit_idx].outputResults(); - std::vector matching_ids = (*tab_it)[hit_idx].getMatchingHMDBids(); - // iterate over multiple IDs, generate a new row for each one for (Size id_idx = 0; id_idx < matching_ids.size(); ++id_idx) { MzTabSmallMoleculeSectionRow mztab_row_record; - // set the identifier field String hid_temp = matching_ids[id_idx]; - bool db_hit = (hid_temp != "null"); - if (db_hit) { MzTabString hmdb_id; @@ -1116,7 +1087,7 @@ namespace OpenMS std::vector indiv_ints(tab_it->at(hit_idx).getIndividualIntensities()); std::vector int_temp3; - bool single_intensity = (indiv_ints.size() == 0); + bool single_intensity = (indiv_ints.empty()); if (single_intensity) { double int_temp((*tab_it)[hit_idx].getObservedIntensity()); @@ -1145,7 +1116,7 @@ namespace OpenMS stdev_temp.set(0.0); std::vector stdev_temp3; - if (indiv_ints.size() == 0) + if (indiv_ints.empty()) { stdev_temp3.push_back(stdev_temp); } @@ -1167,7 +1138,7 @@ namespace OpenMS stderr_temp2.set(0.0); std::vector stderr_temp3; - if (indiv_ints.size() == 0) + if (indiv_ints.empty()) { stderr_temp3.push_back(stderr_temp2); } @@ -1289,7 +1260,7 @@ namespace OpenMS } -/// protected methods + /// protected methods void AccurateMassSearchEngine::updateMembers_() { @@ -1311,6 +1282,8 @@ namespace OpenMS keep_unidentified_masses_ = param_.getValue("keep_unidentified_masses").toBool(); // database names might have changed, so parse files again before next query is_initialized_ = false; + + legacyID_ = param_.getValue("id_format") == "legacy"; } /// private methods @@ -1319,6 +1292,8 @@ namespace OpenMS { mass_mappings_.clear(); + database_location_ = ListUtils::concatenate(db_mapping_file, '|'); + // load map_fname mapping file for (StringList::const_iterator it_f = db_mapping_file.begin(); it_f != db_mapping_file.end(); ++it_f) { @@ -1345,7 +1320,6 @@ namespace OpenMS if (line.empty()) continue; ++line_count; - // std::cout << line << std::endl; if (line_count == 1) { std::vector fields; @@ -1505,7 +1479,6 @@ namespace OpenMS std::vector::const_iterator lower_it = std::lower_bound(mass_mappings_.begin(), mass_mappings_.end(), neutral_query_mass - diff_mass, CompareEntryAndMass_()); // first element equal or larger std::vector::const_iterator upper_it = std::upper_bound(mass_mappings_.begin(), mass_mappings_.end(), neutral_query_mass + diff_mass, CompareEntryAndMass_()); // first element greater than - //std::cout << *lower_it << " " << *upper_it << "idx: " << lower_it - masskey_table_.begin() << " " << upper_it - masskey_table_.begin() << std::endl; Size start_idx = std::distance(mass_mappings_.begin(), lower_it); Size end_idx = std::distance(mass_mappings_.begin(), upper_it); @@ -1539,7 +1512,6 @@ namespace OpenMS return (denom > 0.0) ? mixed_sum / denom : 0.0; } - double AccurateMassSearchEngine::computeIsotopePatternSimilarity_(const Feature& feat, const EmpiricalFormula& form) const { Size num_traces = (Size)feat.getMetaValue("num_of_masstraces"); @@ -1569,4 +1541,40 @@ namespace OpenMS return computeCosineSim_(theoretical_iso_dist, observed_iso_dist); } + std::vector AccurateMassSearchEngine::extractQueryResults_(const Feature& feature, const Size& feature_index, const String& ion_mode_internal, Size& dummy_count) const + { + std::vector query_results; + + queryByFeature(feature, feature_index, ion_mode_internal, query_results); + + if (query_results.empty()) + { + return query_results; + } + + bool is_dummy = (query_results[0].getMatchingIndex() == (Size) - 1); + if (is_dummy) + ++dummy_count; + + if (iso_similarity_ && !is_dummy) + { + if (!feature.metaValueExists("num_of_masstraces")) + { + OPENMS_LOG_WARN + << "Feature does not contain meta value 'num_of_masstraces'. Cannot compute isotope similarity."; + } + else if ((Size) feature.getMetaValue("num_of_masstraces") > 1) + { // compute isotope pattern similarities (do not take the best-scoring one, since it might have really bad ppm or other properties -- + // it is impossible to decide here which one is best + for (Size hit_idx = 0; hit_idx < query_results.size(); ++hit_idx) + { + String emp_formula(query_results[hit_idx].getFormulaString()); + double iso_sim(computeIsotopePatternSimilarity_(feature, EmpiricalFormula(emp_formula))); + query_results[hit_idx].setIsotopesSimScore(iso_sim); + } + } + } + return query_results; + } + } // closing namespace OpenMS diff --git a/src/openms/source/ANALYSIS/ID/BayesianProteinInferenceAlgorithm.cpp b/src/openms/source/ANALYSIS/ID/BayesianProteinInferenceAlgorithm.cpp index 5e9407b64b7..c70395f8a18 100644 --- a/src/openms/source/ANALYSIS/ID/BayesianProteinInferenceAlgorithm.cpp +++ b/src/openms/source/ANALYSIS/ID/BayesianProteinInferenceAlgorithm.cpp @@ -767,7 +767,7 @@ namespace OpenMS void BayesianProteinInferenceAlgorithm::inferPosteriorProbabilities( ConsensusMap& cmap, bool greedy_group_resolution, // TODO probably better to add it as a Param - boost::optional exp_des) + std::optional exp_des) { IDScoreSwitcherAlgorithm switcher; Size counter(0); @@ -1005,7 +1005,7 @@ namespace OpenMS std::vector& proteinIDs, std::vector& peptideIDs, bool greedy_group_resolution, - boost::optional exp_des) + std::optional exp_des) { //TODO The following is a sketch to think about how to include missing peptides // Requirement: Datastructures for peptides first diff --git a/src/openms/source/ANALYSIS/ID/FIAMSDataProcessor.cpp b/src/openms/source/ANALYSIS/ID/FIAMSDataProcessor.cpp index 1a1543dcd18..6ebee9d798a 100644 --- a/src/openms/source/ANALYSIS/ID/FIAMSDataProcessor.cpp +++ b/src/openms/source/ANALYSIS/ID/FIAMSDataProcessor.cpp @@ -81,7 +81,8 @@ namespace OpenMS { defaultsToParam_(); } - void FIAMSDataProcessor::updateMembers_() { + void FIAMSDataProcessor::updateMembers_() + { float max_mz_ = param_.getValue("max_mz"); float bin_step_ = param_.getValue("bin_step"); float resolution_ = static_cast(param_.getValue("resolution")); @@ -100,7 +101,8 @@ namespace OpenMS { sgfilter_.setParameters(p); } - void FIAMSDataProcessor::cutForTime(const MSExperiment& experiment, const float n_seconds, std::vector& output) { + void FIAMSDataProcessor::cutForTime(const MSExperiment& experiment, const float n_seconds, std::vector& output) + { for (const auto & s : experiment.getSpectra()) { if (s.getRT() < n_seconds) output.push_back(s); } @@ -123,7 +125,8 @@ namespace OpenMS { return output; } - MSSpectrum FIAMSDataProcessor::extractPeaks(const MSSpectrum& input) { + MSSpectrum FIAMSDataProcessor::extractPeaks(const MSSpectrum& input) + { MSSpectrum spectrum(input); sgfilter_.filter(spectrum); @@ -133,7 +136,8 @@ namespace OpenMS { return picked; } - FeatureMap FIAMSDataProcessor::convertToFeatureMap(const MSSpectrum& input) { + FeatureMap FIAMSDataProcessor::convertToFeatureMap(const MSSpectrum& input) + { String polarity_ = param_.getValue("polarity").toString(); FeatureMap output; for (auto it = input.begin(); it != input.end(); ++it) { @@ -146,7 +150,8 @@ namespace OpenMS { return output; } - void FIAMSDataProcessor::runAccurateMassSearch(FeatureMap& input, OpenMS::MzTab& output) { + void FIAMSDataProcessor::runAccurateMassSearch(FeatureMap& input, OpenMS::MzTab& output) + { Param ams_param; ams_param.setValue("ionization_mode", "auto"); ams_param.setValue("mass_error_value", 1e+06 / (static_cast(param_.getValue("resolution"))*2)); @@ -154,6 +159,7 @@ namespace OpenMS { ams_param.setValue("db:struct", param_.getValue("db:struct")); ams_param.setValue("positive_adducts", param_.getValue("positive_adducts")); ams_param.setValue("negative_adducts", param_.getValue("negative_adducts")); + ams_param.setValue("keep_unidentified_masses", "false"); // only report IDs AccurateMassSearchEngine ams; ams.setParameters(ams_param); @@ -162,10 +168,11 @@ namespace OpenMS { ams.run(input, output); } - MSSpectrum FIAMSDataProcessor::trackNoise(const MSSpectrum& input) { + MSSpectrum FIAMSDataProcessor::trackNoise(const MSSpectrum& input) + { SignalToNoiseEstimatorMedianRapid sne(param_.getValue("sne:window")); MSSpectrum output; - if (input.size() == 0) { + if (input.empty()) { return output; } std::vector mzs, intensities; @@ -188,7 +195,8 @@ namespace OpenMS { return output; } - bool FIAMSDataProcessor::run(const MSExperiment& experiment, const float n_seconds, OpenMS::MzTab& output, const bool load_cached_spectrum) { + bool FIAMSDataProcessor::run(const MSExperiment& experiment, const float n_seconds, OpenMS::MzTab& output, const bool load_cached_spectrum) + { String postfix = String(static_cast(n_seconds)); std::string dir_output_ = param_.getValue("dir_output"); std::string filename_ = param_.getValue("filename"); @@ -225,7 +233,8 @@ namespace OpenMS { return is_cached; } - void FIAMSDataProcessor::storeSpectrum_(const MSSpectrum& input, String filename) { + void FIAMSDataProcessor::storeSpectrum_(const MSSpectrum& input, String filename) + { MzMLFile mzml; MSExperiment exp; exp.addSpectrum(input); @@ -233,12 +242,14 @@ namespace OpenMS { } /// Get mass-to-charge ratios to base the sliding window upon - const std::vector& FIAMSDataProcessor::getMZs() { + const std::vector& FIAMSDataProcessor::getMZs() + { return mzs_; } /// Get the sliding bin sizes - const std::vector& FIAMSDataProcessor::getBinSizes() { + const std::vector& FIAMSDataProcessor::getBinSizes() + { return bin_sizes_; } } diff --git a/src/openms/source/ANALYSIS/ID/FalseDiscoveryRate.cpp b/src/openms/source/ANALYSIS/ID/FalseDiscoveryRate.cpp index 19095302146..519d6906865 100644 --- a/src/openms/source/ANALYSIS/ID/FalseDiscoveryRate.cpp +++ b/src/openms/source/ANALYSIS/ID/FalseDiscoveryRate.cpp @@ -178,7 +178,7 @@ namespace OpenMS } else { - if (target_decoy != "") + if (!target_decoy.empty()) { throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Unknown value of meta value 'target_decoy'", target_decoy); } @@ -561,31 +561,31 @@ namespace OpenMS } } - IdentificationData::ScoreTypeRef FalseDiscoveryRate::applyToQueryMatches( + IdentificationData::ScoreTypeRef FalseDiscoveryRate::applyToObservationMatches( IdentificationData& id_data, IdentificationData::ScoreTypeRef score_ref) const { bool use_all_hits = param_.getValue("use_all_hits").toBool(); bool include_decoys = param_.getValue("add_decoy_peptides").toBool(); vector target_scores, decoy_scores; - map molecule_to_decoy; - map match_to_score; + map molecule_to_decoy; + map match_to_score; if (use_all_hits) { - for (auto it = id_data.getMoleculeQueryMatches().begin(); - it != id_data.getMoleculeQueryMatches().end(); ++it) + for (auto it = id_data.getObservationMatches().begin(); + it != id_data.getObservationMatches().end(); ++it) { - handleQueryMatch_(it, score_ref, target_scores, decoy_scores, + handleObservationMatch_(it, score_ref, target_scores, decoy_scores, molecule_to_decoy, match_to_score); } } else { - vector best_matches = - id_data.getBestMatchPerQuery(score_ref); - for (auto match_ref : best_matches) // NOTE: performs copy, should not be necessary? + vector best_matches = + id_data.getBestMatchPerObservation(score_ref); + for (auto match_ref : best_matches) { - handleQueryMatch_(match_ref, score_ref, target_scores, decoy_scores, + handleObservationMatch_(match_ref, score_ref, target_scores, decoy_scores, molecule_to_decoy, match_to_score); } } @@ -608,37 +608,35 @@ namespace OpenMS } IdentificationData::ScoreTypeRef fdr_ref = id_data.registerScoreType(fdr_score); - for (IdentificationData::MoleculeQueryMatches::iterator it = - id_data.getMoleculeQueryMatches().begin(); it != - id_data.getMoleculeQueryMatches().end(); ++it) + for (IdentificationData::ObservationMatches::iterator it = + id_data.getObservationMatches().begin(); it != + id_data.getObservationMatches().end(); ++it) { if (!include_decoys) { - auto pos = molecule_to_decoy.find(it->identified_molecule_ref); + auto pos = molecule_to_decoy.find(it->identified_molecule_var); if ((pos != molecule_to_decoy.end()) && pos->second) continue; } auto pos = match_to_score.find(it); if (pos == match_to_score.end()) continue; double fdr = score_to_fdr.at(pos->second); - // @TODO: find a more efficient way to add a score - // IdentificationData::MoleculeQueryMatch copy(*it); - // copy.scores.push_back(make_pair(fdr_ref, fdr)); - // id_data.registerMoleculeQueryMatch(copy); id_data.addScore(it, fdr_ref, fdr); } return fdr_ref; } - void FalseDiscoveryRate::handleQueryMatch_( - IdentificationData::QueryMatchRef match_ref, + void FalseDiscoveryRate::handleObservationMatch_( + IdentificationData::ObservationMatchRef match_ref, IdentificationData::ScoreTypeRef score_ref, vector& target_scores, vector& decoy_scores, - map& molecule_to_decoy, - map& match_to_score) const + map& molecule_to_decoy, + map& match_to_score) const { + const IdentificationData::IdentifiedMolecule& molecule_var = + match_ref->identified_molecule_var; IdentificationData::MoleculeType molecule_type = - match_ref->getMoleculeType(); + molecule_var.getMoleculeType(); if (molecule_type == IdentificationData::MoleculeType::COMPOUND) { return; // compounds don't have parents with target/decoy status @@ -646,21 +644,19 @@ namespace OpenMS pair score = match_ref->getScore(score_ref); if (!score.second) return; // no score of this type match_to_score[match_ref] = score.first; - IdentificationData::IdentifiedMoleculeRef molecule_ref = - match_ref->identified_molecule_ref; - auto pos = molecule_to_decoy.find(molecule_ref); + auto pos = molecule_to_decoy.find(molecule_var); bool is_decoy; if (pos == molecule_to_decoy.end()) // new molecule { if (molecule_type == IdentificationData::MoleculeType::PROTEIN) { - is_decoy = match_ref->getIdentifiedPeptideRef()->allParentsAreDecoys(); + is_decoy = molecule_var.getIdentifiedPeptideRef()->allParentsAreDecoys(); } else // if (molecule_type == IdentificationData::MoleculeType::RNA) { - is_decoy = match_ref->getIdentifiedOligoRef()->allParentsAreDecoys(); + is_decoy = molecule_var.getIdentifiedOligoRef()->allParentsAreDecoys(); } - molecule_to_decoy[molecule_ref] = is_decoy; + molecule_to_decoy[molecule_var] = is_decoy; } else { @@ -1134,7 +1130,7 @@ namespace OpenMS //TODO remove? - double FalseDiscoveryRate::applyEvaluateProteinIDs(const std::vector& ids, double pepCutoff, UInt fpCutoff, double diffWeight) + double FalseDiscoveryRate::applyEvaluateProteinIDs(const std::vector& ids, double pepCutoff, UInt fpCutoff, double diffWeight) const { //TODO not yet supported (if ever) //bool treat_runs_separately = param_.getValue("treat_runs_separately").toBool(); @@ -1155,7 +1151,7 @@ namespace OpenMS rocN(scores_labels, fpCutoff) * (1 - diffWeight); } - double FalseDiscoveryRate::applyEvaluateProteinIDs(const ProteinIdentification& ids, double pepCutoff, UInt fpCutoff, double diffWeight) + double FalseDiscoveryRate::applyEvaluateProteinIDs(const ProteinIdentification& ids, double pepCutoff, UInt fpCutoff, double diffWeight) const { if (ids.getScoreType() != "Posterior Probability") { @@ -1173,7 +1169,7 @@ namespace OpenMS return (1.0 - diff) * (1.0 - diffWeight) + auc * diffWeight; } - double FalseDiscoveryRate::applyEvaluateProteinIDs(ScoreToTgtDecLabelPairs& scores_labels, double pepCutoff, UInt fpCutoff, double diffWeight) + double FalseDiscoveryRate::applyEvaluateProteinIDs(ScoreToTgtDecLabelPairs& scores_labels, double pepCutoff, UInt fpCutoff, double diffWeight) const { std::sort(scores_labels.rbegin(), scores_labels.rend()); double diff = diffEstimatedEmpirical(scores_labels, pepCutoff); diff --git a/src/openms/source/ANALYSIS/ID/HiddenMarkovModel.cpp b/src/openms/source/ANALYSIS/ID/HiddenMarkovModel.cpp index b30bdb5bd5f..d1e9d0a1674 100644 --- a/src/openms/source/ANALYSIS/ID/HiddenMarkovModel.cpp +++ b/src/openms/source/ANALYSIS/ID/HiddenMarkovModel.cpp @@ -211,15 +211,15 @@ namespace OpenMS Map > transitions; ofstream out(filename.c_str()); - out << "" << endl; + out << R"()" << endl; - out << "" << endl; - out << "" << endl; - out << "" << endl; - out << " " << endl; + out << R"()" << endl; + out << R"()" << endl; + out << R"( )" << endl; for (set::const_iterator it = states.begin(); it != states.end(); ++it) { out << " getName() << "\">" << endl; @@ -243,7 +243,7 @@ namespace OpenMS { for (vector::const_iterator it1 = it->second.begin(); it1 != it->second.end(); ++it1) { - out << " first->getName() << "\" target=\"" << (*it1)->getName() << "\" directed=\"true\">" << endl; + out << " first->getName() << "\" target=\"" << (*it1)->getName() << R"(" directed="true">)" << endl; out << " " << endl; out << " " << endl; out << " " << getTransitionProbability_(it->first, *it1) << "" << endl; diff --git a/src/openms/source/ANALYSIS/ID/IDBoostGraph.cpp b/src/openms/source/ANALYSIS/ID/IDBoostGraph.cpp index 59651bb0b0c..eb8224fd803 100644 --- a/src/openms/source/ANALYSIS/ID/IDBoostGraph.cpp +++ b/src/openms/source/ANALYSIS/ID/IDBoostGraph.cpp @@ -144,13 +144,13 @@ namespace OpenMS Size use_top_psms, bool use_run_info, bool best_psms_annotated, - const boost::optional& ed): + const std::optional& ed): protIDs_(proteins) { OPENMS_LOG_INFO << "Building graph on " << idedSpectra.size() << " spectra and " << proteins.getHits().size() << " proteins." << std::endl; if (use_run_info) { - buildGraphWithRunInfo_(proteins, idedSpectra, use_top_psms, ed.get_value_or(ExperimentalDesign::fromIdentifications({proteins}))); + buildGraphWithRunInfo_(proteins, idedSpectra, use_top_psms, ed.value_or(ExperimentalDesign::fromIdentifications({proteins}))); } else { @@ -164,14 +164,14 @@ namespace OpenMS bool use_run_info, bool use_unassigned_ids, bool best_psms_annotated, - const boost::optional& ed): + const std::optional& ed): protIDs_(proteins) { OPENMS_LOG_INFO << "Building graph on " << cmap.size() << " features, " << cmap.getUnassignedPeptideIdentifications().size() << " unassigned spectra (if chosen) and " << proteins.getHits().size() << " proteins." << std::endl; if (use_run_info) { - buildGraphWithRunInfo_(proteins, cmap, use_top_psms, use_unassigned_ids, ed.get_value_or(ExperimentalDesign::fromConsensusMap(cmap))); + buildGraphWithRunInfo_(proteins, cmap, use_top_psms, use_unassigned_ids, ed.value_or(ExperimentalDesign::fromConsensusMap(cmap))); } else { diff --git a/src/openms/source/ANALYSIS/ID/IDDecoyProbability.cpp b/src/openms/source/ANALYSIS/ID/IDDecoyProbability.cpp index 353e7d03520..d66f2a7199a 100644 --- a/src/openms/source/ANALYSIS/ID/IDDecoyProbability.cpp +++ b/src/openms/source/ANALYSIS/ID/IDDecoyProbability.cpp @@ -78,7 +78,7 @@ namespace OpenMS for (PeptideIdentification& pep : ids) { String score_type = pep.getScoreType(); - if (pep.getHits().size() > 0) + if (!pep.getHits().empty()) { vector hits = pep.getHits(); for (PeptideHit& pit : hits) @@ -131,7 +131,7 @@ namespace OpenMS for (PeptideIdentification& pep : fwd_ids) { String score_type = pep.getScoreType(); - if (pep.getHits().size() > 0) + if (!pep.getHits().empty()) { vector hits = pep.getHits(); for (PeptideHit& pit : hits) @@ -161,7 +161,7 @@ namespace OpenMS // get the reverse scores for (const PeptideIdentification& pep : rev_ids) { - if (pep.getHits().size() > 0) + if (!pep.getHits().empty()) { for (const PeptideHit& pit : pep.getHits()) { @@ -376,7 +376,7 @@ namespace OpenMS // calculate the probabilities and write them to the IDs for (const PeptideIdentification& pep : ids) { - if (pep.getHits().size() > 0) + if (!pep.getHits().empty()) { vector hits; String score_type = pep.getScoreType() + "_score"; @@ -478,7 +478,7 @@ namespace OpenMS } else { - rho_rev = pow(result_gamma.b, result_gamma.p) / boost::math::tgamma(result_gamma.p) * pow(score_rev_trans, result_gamma.p - 1) * exp(-result_gamma.b * score_rev_trans); + rho_rev = pow(result_gamma.b, result_gamma.p) / std::tgamma(result_gamma.p) * pow(score_rev_trans, result_gamma.p - 1) * exp(-result_gamma.b * score_rev_trans); } // second transform the score into a 'correct' distribution density value diff --git a/src/openms/source/ANALYSIS/ID/IDMapper.cpp b/src/openms/source/ANALYSIS/ID/IDMapper.cpp index 88998c5718c..a4c13683cf4 100644 --- a/src/openms/source/ANALYSIS/ID/IDMapper.cpp +++ b/src/openms/source/ANALYSIS/ID/IDMapper.cpp @@ -600,7 +600,7 @@ namespace OpenMS // in the beginning: SignedSize offset(0); - if (map.size() > 0) + if (!map.empty()) { // cout << "Setting up hash table..." << endl; offset = SignedSize(floor(min_rt)); diff --git a/src/openms/source/ANALYSIS/ID/IDRipper.cpp b/src/openms/source/ANALYSIS/ID/IDRipper.cpp index ad2317f9f64..e1e31d17ec2 100644 --- a/src/openms/source/ANALYSIS/ID/IDRipper.cpp +++ b/src/openms/source/ANALYSIS/ID/IDRipper.cpp @@ -28,23 +28,26 @@ // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // -------------------------------------------------------------------------- -// $Maintainer: Timo Sachsenberg $ -// $Authors: Immanuel Luhn $ +// $Maintainer: Timo Sachsenberg$ +// $Authors: Immanuel Luhn, Leon Kuchenbecker$ // -------------------------------------------------------------------------- #include +#include #include using std::vector; +using std::string; using std::map; using std::pair; - -//using namespace std; +using std::make_pair; namespace OpenMS { + const std::array IDRipper::names_of_OriginAnnotationFormat = {"file_origin", "map_index", "id_merge_index", "unknown"}; + IDRipper::IDRipper() : DefaultParamHandler("IDRipper") { @@ -70,36 +73,155 @@ namespace OpenMS return *this; } - void IDRipper::rip(map, vector > >& ripped, vector& proteins, vector& peptides) + IDRipper::IdentificationRuns::IdentificationRuns(const vector& prot_ids) + { + for (const auto& prot_id : prot_ids) + { + String id_run_id = prot_id.getIdentifier(); + if (this->index_map.find(id_run_id) != this->index_map.end()) + { + throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "IdentificationRun IDs are not unique!", id_run_id); + } + UInt idx = this->index_map.size(); + this->index_map[id_run_id] = idx; + const DataValue& mv_spectra_data = prot_id.getMetaValue("spectra_data"); + spectra_data.push_back(mv_spectra_data.isEmpty() ? StringList() : mv_spectra_data.toStringList()); + } + } + + bool IDRipper::RipFileIdentifierIdxComparator::operator()(const RipFileIdentifier& left, const RipFileIdentifier& right) const + { + return std::tie(left.ident_run_idx, left.file_origin_idx) + < std::tie(right.ident_run_idx, right.file_origin_idx); + } + + // Identify the output file name features associated via spectra_data or file_origin + IDRipper::RipFileIdentifier::RipFileIdentifier(const IDRipper::IdentificationRuns& id_runs, const PeptideIdentification& pep_id, const map& file_origin_map, const IDRipper::OriginAnnotationFormat origin_annotation_fmt, bool split_ident_runs) + { + try + { + // Numerical identifier of the Identification Run + this->ident_run_idx = id_runs.index_map.at(pep_id.getIdentifier()); + + // Numerical identifier of the PeptideIdentification origin + this->file_origin_idx = (origin_annotation_fmt == MAP_INDEX || origin_annotation_fmt == ID_MERGE_INDEX) + ? pep_id.getMetaValue(names_of_OriginAnnotationFormat[origin_annotation_fmt]).toString().toInt() + : file_origin_map.at(pep_id.getMetaValue("file_origin").toString()); + + // Store the origin full name + this->origin_fullname = (origin_annotation_fmt == MAP_INDEX || origin_annotation_fmt == ID_MERGE_INDEX) + ? id_runs.spectra_data.at(this->ident_run_idx).at(this->file_origin_idx) + : pep_id.getMetaValue("file_origin").toString(); + + // Extract the basename, used for output files when --numeric_filenames is not set + this->out_basename = QFileInfo(this->origin_fullname.toQString()).completeBaseName().toStdString(); + + // Drop the identification run identifier if we're not splitting by identification runs + if (!split_ident_runs) + this->ident_run_idx = -1u; + } + catch (const std::out_of_range& e) + { + throw Exception::ParseError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "input file", + "Failed to identify corresponding spectra_data element for PeptideIdentification element."); + } + } + + UInt IDRipper::RipFileIdentifier::getIdentRunIdx() + { + return this->ident_run_idx; + } + + UInt IDRipper::RipFileIdentifier::getFileOriginIdx() { + return this->file_origin_idx; + } + + const String & IDRipper::RipFileIdentifier::getOriginFullname() + { + return this->origin_fullname; + } + + const String & IDRipper::RipFileIdentifier::getOutputBasename() + { + return this->out_basename; + } + + const std::vector & IDRipper::RipFileContent::getProteinIdentifications() + { + return this->prot_idents; + } + + const std::vector & IDRipper::RipFileContent::getPeptideIdentifications() + { + return this->pep_idents; + } + + bool IDRipper::registerBasename_(map >& basename_to_numeric, const IDRipper::RipFileIdentifier& rfi) + { + auto it = basename_to_numeric.find(rfi.out_basename); + auto p = make_pair(rfi.ident_run_idx, rfi.file_origin_idx); + + // If we have not seen this basename before, store it in the map + if (it == basename_to_numeric.end()) + { + basename_to_numeric[rfi.out_basename] = p; + return true; + } + // Otherwise, check if we save it in the context of the same IdentificationRun and potentially spectra_data position + return it->second == p; + } + + void IDRipper::rip( + RipFileMap& ripped, + vector& proteins, + vector& peptides, + bool numeric_filenames, + bool split_ident_runs) + { + // Detect file format w.r.t. origin annotation + map file_origin_map; + IDRipper::OriginAnnotationFormat origin_annotation_fmt = detectOriginAnnotationFormat_(file_origin_map, peptides); + + if (origin_annotation_fmt == UNKNOWN_OAF) + { + throw Exception::ParseError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "input file", + "Unable to detect origin annotation format of provided input file."); + } + + OPENMS_LOG_DEBUG << "Detected file origin annotation format: " << names_of_OriginAnnotationFormat[origin_annotation_fmt] << std::endl; + + // Build identifier index + const IdentificationRuns id_runs = IdentificationRuns(proteins); + // Collect all protein hits vector all_protein_hits; for (ProteinIdentification& prot : proteins) { - // remove file origin - prot.removeMetaValue("file_origin"); + // remove protein identification file origin + prot.removeMetaValue(names_of_OriginAnnotationFormat[origin_annotation_fmt]); vector& protein_hits = prot.getHits(); all_protein_hits.insert(all_protein_hits.end(), protein_hits.begin(), protein_hits.end()); } + map > basename_to_numeric; //store protein and peptides identifications for each file origin - for (PeptideIdentification& pep : peptides) { - // try to get file_origin, if not present ignore peptide identification - const String& file_origin = pep.getMetaValue("file_origin").toString(); - // QFileInfo fi("/tmp/archive.tar.gz"); - // QString name = fi.fileName(); --> name = "archive.tar.gz" - const String file_ = QFileInfo(file_origin.toQString()).fileName().toStdString(); - - //remove file origin - pep.removeMetaValue("file_origin"); + // Build the output file identifier + const IDRipper::RipFileIdentifier rfi(id_runs, pep, file_origin_map, origin_annotation_fmt, split_ident_runs); - //TODO LOG that file_origin was not as expected - if (file_.empty()) + // If we are inferring the output file names from the spectra_data or + // file_origin, make sure they are unique + if (!numeric_filenames && !registerBasename_(basename_to_numeric, rfi)) { - continue; + throw Exception::Precondition(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, + "Autodetected output file names are not unique. Use -numeric_filenames."); } + + // remove file origin annotation + pep.removeMetaValue(names_of_OriginAnnotationFormat[origin_annotation_fmt]); + // try to get peptide hits for peptide identification const vector& peptide_hits = pep.getHits(); if (peptide_hits.empty()) @@ -119,14 +241,13 @@ namespace OpenMS getProteinIdentification_(prot_ident, pep, proteins); // TODO catch case that ProteinIdentification prot_ident is not found in the for-loop - - map, vector > >::iterator it = ripped.find(file_); + RipFileMap::iterator it = ripped.find(rfi); // If file_origin already exists if (it != ripped.end()) { - vector& prot_tmp = it->second.first; + vector& prot_tmp = it->second.prot_idents; bool flag = true; - //what to do if there is one then more protein identification, can this occur at all? + for (vector::iterator it2 = prot_tmp.begin(); it2 != prot_tmp.end(); ++it2) { // ProteinIdentification is already there, just add protein hits @@ -146,7 +267,7 @@ namespace OpenMS prot_ident.setHits(protein2accessions); prot_tmp.push_back(prot_ident); } - vector& pep_tmp = it->second.second; + vector& pep_tmp = it->second.pep_idents; pep_tmp.push_back(pep); } else // otherwise create new entry for file_origin @@ -162,11 +283,112 @@ namespace OpenMS peptide_idents.push_back(pep); //create and insert new map entry - ripped.insert(make_pair(file_, make_pair(protein_idents, peptide_idents))); + ripped.insert(make_pair(rfi, RipFileContent(protein_idents, peptide_idents))); + } + } + // Reduce the spectra data string list if that's what we ripped by + if (origin_annotation_fmt == MAP_INDEX || origin_annotation_fmt == ID_MERGE_INDEX) + { + RipFileMap::iterator it; + for (it = ripped.begin(); it != ripped.end(); ++it) + { + const RipFileIdentifier& rfi = it->first; + RipFileContent& rfc = it->second; + + for (ProteinIdentification& prot_id : rfc.prot_idents) + { + StringList old_list; + prot_id.getPrimaryMSRunPath(old_list); + StringList new_list; + new_list.push_back(rfi.origin_fullname); + prot_id.setPrimaryMSRunPath(new_list); + } } } } + void IDRipper::rip( + std::vector & rfis, + std::vector & rfcs, + std::vector & proteins, + std::vector & peptides, + bool numeric_filenames, + bool split_ident_runs) + { + RipFileMap rfm; + this->rip(rfm, proteins, peptides, numeric_filenames, split_ident_runs); + + rfis.clear(); + rfcs.clear(); + for (RipFileMap::iterator it = rfm.begin(); it != rfm.end(); ++it) + { + rfis.push_back(it->first); + rfcs.push_back(it->second); + } + } + + +bool IDRipper::setOriginAnnotationMode_(short& mode, short const new_value) +{ + if (mode != -1 && mode != new_value) + { + return false; + } + mode = new_value; + return true; +} + +IDRipper::OriginAnnotationFormat IDRipper::detectOriginAnnotationFormat_(map& file_origin_map, const std::vector& peptide_idents) + { + // In case we observe 'file_origin' meta values, we assign an index to every unique meta value + file_origin_map.clear(); + + short mode = -1; + for (vector::const_iterator it = peptide_idents.begin(); it != peptide_idents.end(); ++it) + { + bool mode_identified = false; + for (size_t i = 0; imetaValueExists(names_of_OriginAnnotationFormat[i])) + { + // Different mode identified for same or different peptide + if (mode_identified || !setOriginAnnotationMode_(mode, i)) + { + return UNKNOWN_OAF; + } + else + { + mode_identified = true; + } + + if (i == 0) // names_of_OriginAnnotationFormat[0] == "file_origin" + { + const String& file_origin = it->getMetaValue("file_origin"); + // Did we already assign an index to this file_origin? + if (file_origin_map.find(file_origin) == file_origin_map.end()) + { + // If not, assign a new unique index + size_t cur_size = file_origin_map.size(); + file_origin_map[file_origin] = cur_size; + } + } + } + } + if (!mode_identified) + { + return UNKNOWN_OAF; + } + } + if (mode == -1) + { + return UNKNOWN_OAF; + } + else + { + return static_cast(mode); + } + } + void IDRipper::getProteinHits_(vector& result, const vector& protein_hits, const vector& protein_accessions) { for (const String& it : protein_accessions) diff --git a/src/openms/source/ANALYSIS/ID/MetaboliteSpectralMatching.cpp b/src/openms/source/ANALYSIS/ID/MetaboliteSpectralMatching.cpp index 33598c2fb84..8eb7aa60716 100644 --- a/src/openms/source/ANALYSIS/ID/MetaboliteSpectralMatching.cpp +++ b/src/openms/source/ANALYSIS/ID/MetaboliteSpectralMatching.cpp @@ -571,7 +571,7 @@ namespace OpenMS if (report_mode_ == "best") { - if (partial_results.size() > 0) + if (!partial_results.empty()) { matching_results.push_back(partial_results[0]); } diff --git a/src/openms/source/ANALYSIS/ID/PeptideIndexing.cpp b/src/openms/source/ANALYSIS/ID/PeptideIndexing.cpp index bc5ff8d333c..9094c0c4642 100644 --- a/src/openms/source/ANALYSIS/ID/PeptideIndexing.cpp +++ b/src/openms/source/ANALYSIS/ID/PeptideIndexing.cpp @@ -32,6 +32,8 @@ // $Authors: Andreas Bertsch, Chris Bielow $ // -------------------------------------------------------------------------- +#include +#include #include #include @@ -43,6 +45,112 @@ using namespace std; const std::array PeptideIndexing::names_of_unmatched = { "error", "warn", "remove" }; const std::array PeptideIndexing::names_of_missing_decoy = { "error" , "warn" , "silent" }; + + // internal datastructure to store match information (not exported) + struct PeptideProteinMatchInformation + { + OpenMS::Size protein_index; //< index of the protein the peptide is contained in + OpenMS::Int position; //< the position of the peptide in the protein + char AABefore; //< the amino acid after the peptide in the protein + char AAAfter; //< the amino acid before the peptide in the protein + + const std::tuple tie() const + { + return std::tie(protein_index, position, AABefore, AAAfter); + } + bool operator<(const PeptideProteinMatchInformation& other) const + { + return tie() < other.tie(); + } + bool operator==(const PeptideProteinMatchInformation& other) const + { + return tie() == other.tie(); + } + }; + + // internal functor (not exported) + struct FoundProteinFunctor + { + public: + typedef std::map > MapType; + MapType pep_to_prot; //< peptide index --> protein indices + OpenMS::Size filter_passed; //< number of accepted hits (passing addHit() constraints) + OpenMS::Size filter_rejected; //< number of rejected hits (not passing addHit()) + + private: + ProteaseDigestion enzyme_; + bool xtandem_; //< are we checking xtandem cleavage rules? + + public: + explicit FoundProteinFunctor(const ProteaseDigestion& enzyme, bool xtandem) : + pep_to_prot(), filter_passed(0), filter_rejected(0), enzyme_(enzyme), xtandem_(xtandem) + { + } + + void merge(FoundProteinFunctor& other) + { + if (pep_to_prot.empty()) + { // first merge is easy + pep_to_prot.swap(other.pep_to_prot); + } + else + { + for (FoundProteinFunctor::MapType::const_iterator it = other.pep_to_prot.begin(); it != other.pep_to_prot.end(); ++it) + { // augment set + this->pep_to_prot[it->first].insert(other.pep_to_prot[it->first].begin(), other.pep_to_prot[it->first].end()); + } + other.pep_to_prot.clear(); + } + // cheap members + this->filter_passed += other.filter_passed; + other.filter_passed = 0; + this->filter_rejected += other.filter_rejected; + other.filter_rejected = 0; + } + + void addHit(const OpenMS::Size idx_pep, + const OpenMS::Size idx_prot, + const OpenMS::Size len_pep, + const OpenMS::String& seq_prot, + OpenMS::Int position) + { + //TODO we could read and double-check missed cleavages as well + if (enzyme_.isValidProduct(seq_prot, position, len_pep, true, true, xtandem_)) + { + PeptideProteinMatchInformation match + { + idx_prot, + position, + (position == 0) ? PeptideEvidence::N_TERMINAL_AA : seq_prot[position - 1], + (position + len_pep >= seq_prot.size()) ? + PeptideEvidence::C_TERMINAL_AA : + seq_prot[position + len_pep] + }; + pep_to_prot[idx_pep].insert(match); + ++filter_passed; + } + else + { + //std::cerr << "REJECTED Peptide " << seq_pep << " with hit to protein " + // << seq_prot << " at position " << position << std::endl; + ++filter_rejected; + } + } + + }; + + + // free function (not exproted) used to add hits + void addHits_(AhoCorasickAmbiguous& fuzzyAC, const AhoCorasickAmbiguous::FuzzyACPattern& pattern, const AhoCorasickAmbiguous::PeptideDB& pep_DB, const String& prot, const String& full_prot, SignedSize idx_prot, Int offset, FoundProteinFunctor& func_threads) + { + fuzzyAC.setProtein(prot); + while (fuzzyAC.findNext(pattern)) + { + const seqan::Peptide& tmp_pep = pep_DB[fuzzyAC.getHitDBIndex()]; + func_threads.addHit(fuzzyAC.getHitDBIndex(), idx_prot, length(tmp_pep), full_prot, fuzzyAC.getHitProteinPosition() + offset); + } + } + PeptideIndexing::PeptideIndexing() : DefaultParamHandler("PeptideIndexing") { @@ -85,7 +193,7 @@ using namespace std; defaults_.setValue("unmatched_action", names_of_unmatched[(Size)Unmatched::IS_ERROR], "If peptide sequences cannot be matched to any protein: 1) raise an error; 2) warn (unmatched PepHits will miss target/decoy annotation with downstream problems); 3) remove the hit."); defaults_.setValidStrings("unmatched_action", std::vector(names_of_unmatched.begin(), names_of_unmatched.end())); - defaults_.setValue("aaa_max", 3, "Maximal number of ambiguous amino acids (AAAs) allowed when matching to a protein database with AAAs. AAAs are B, J, Z and X!"); + defaults_.setValue("aaa_max", 3, "Maximal number of ambiguous amino acids (AAAs) allowed when matching to a protein database with AAAs. AAAs are 'B', 'J', 'Z' and 'X'."); defaults_.setMinInt("aaa_max", 0); defaults_.setMaxInt("aaa_max", 10); @@ -131,6 +239,616 @@ bool PeptideIndexing::isPrefix() const return prefix_; } +template +PeptideIndexing::ExitCodes PeptideIndexing::run(FASTAContainer& proteins, std::vector& prot_ids, std::vector& pep_ids) +{ + if ((enzyme_name_ == "Chymotrypsin" || enzyme_name_ == "Chymotrypsin/P" || enzyme_name_ == "TrypChymo") + && IL_equivalent_) + { + throw Exception::InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, + "The used enzyme " + enzyme_name_ + "differentiates between I and L, therefore the IL_equivalent option cannot be used."); + } + // no decoy string provided? try to deduce from data + if (decoy_string_.empty()) + { + auto r = DecoyHelper::findDecoyString(proteins); + proteins.reset(); + if (!r.success) + { + r.is_prefix = true; + r.name = "DECOY_"; + OPENMS_LOG_WARN << "Unable to determine decoy string automatically (not enough decoys were detected)! Using default " << (r.is_prefix ? "prefix" : "suffix") << " decoy string '" << r.name << "'\n" + << "If you think that this is incorrect, please provide a decoy_string and its position manually!" << std::endl; + } + prefix_ = r.is_prefix; + decoy_string_ = r.name; + // decoy string and position was extracted successfully + OPENMS_LOG_INFO << "Using " << (prefix_ ? "prefix" : "suffix") << " decoy string '" << decoy_string_ << "'" << std::endl; + } -/// @endcond + //--------------------------------------------------------------- + // parsing parameters, correcting xtandem and MSGFPlus parameters + //--------------------------------------------------------------- + ProteaseDigestion enzyme; + if (!enzyme_name_.empty() && (enzyme_name_.compare(AUTO_MODE) != 0)) + { // use param (not empty, not 'auto') + enzyme.setEnzyme(enzyme_name_); + } + else if (!prot_ids.empty() && prot_ids[0].getSearchParameters().digestion_enzyme.getName() != "unknown_enzyme") + { // take from meta (this assumes all runs used the same enzyme) + OPENMS_LOG_INFO << "Info: using '" << prot_ids[0].getSearchParameters().digestion_enzyme.getName() << "' as enzyme (obtained from idXML) for digestion." << std::endl; + enzyme.setEnzyme(&prot_ids[0].getSearchParameters().digestion_enzyme); + } + else + { // fallback + OPENMS_LOG_WARN << "Warning: Enzyme name neither given nor deduceable from input. Defaulting to Trypsin!" << std::endl; + enzyme.setEnzyme("Trypsin"); + } + + bool xtandem_fix_parameters = false; + bool msgfplus_fix_parameters = false; + + // determine if at least one search engine was xtandem or MSGFPlus to enable special rules + for (const auto& prot_id : prot_ids) + { + String search_engine = prot_id.getOriginalSearchEngineName(); + StringUtils::toUpper(search_engine); + OPENMS_LOG_INFO << "Peptide identification engine: " << search_engine << std::endl; + if (search_engine == "XTANDEM" || prot_id.getSearchParameters().metaValueExists("SE:XTandem")) { xtandem_fix_parameters = true; } + if (search_engine == "MS-GF+" || search_engine == "MSGFPLUS" || prot_id.getSearchParameters().metaValueExists("SE:MS-GF+")) { msgfplus_fix_parameters = true; } + } + + // including MSGFPlus -> Trypsin/P as enzyme + if (msgfplus_fix_parameters && enzyme.getEnzymeName() == "Trypsin") + { + OPENMS_LOG_WARN << "MSGFPlus detected but enzyme cutting rules were set to Trypsin. Correcting to Trypsin/P to cope with special cutting rule in MSGFPlus." << std::endl; + enzyme.setEnzyme("Trypsin/P"); + } + + OPENMS_LOG_INFO << "Enzyme: " << enzyme.getEnzymeName() << std::endl; + + if (!enzyme_specificity_.empty() && (enzyme_specificity_.compare(AUTO_MODE) != 0)) + { // use param (not empty and not 'auto') + enzyme.setSpecificity(ProteaseDigestion::getSpecificityByName(enzyme_specificity_)); + } + else if (!prot_ids.empty() && prot_ids[0].getSearchParameters().enzyme_term_specificity != ProteaseDigestion::SPEC_UNKNOWN) + { // deduce from data ('auto') + enzyme.setSpecificity(prot_ids[0].getSearchParameters().enzyme_term_specificity); + OPENMS_LOG_INFO << "Info: using '" << EnzymaticDigestion::NamesOfSpecificity[prot_ids[0].getSearchParameters().enzyme_term_specificity] << "' as enzyme specificity (obtained from idXML) for digestion." << std::endl; + } + else + { // fallback + OPENMS_LOG_WARN << "Warning: Enzyme specificity neither given nor present in the input file. Defaulting to 'full'!" << std::endl; + enzyme.setSpecificity(ProteaseDigestion::SPEC_FULL); + } + + //------------------------------------------------------------- + // calculations + //------------------------------------------------------------- + // cache the first proteins + const size_t PROTEIN_CACHE_SIZE = 4e5; // 400k should be enough for most DB's and is not too hard on memory either (~200 MB FASTA) + + this->startProgress(0, 1, "Load first DB chunk"); + proteins.cacheChunk(PROTEIN_CACHE_SIZE); + this->endProgress(); + + if (proteins.empty()) // we do not allow an empty database + { + OPENMS_LOG_ERROR << "Error: An empty database was provided. Mapping makes no sense. Aborting..." << std::endl; + return DATABASE_EMPTY; + } + + if (pep_ids.empty()) // Aho-Corasick requires non-empty input; but we allow this case, since the TOPP tool should not crash when encountering a bad raw file (with no PSMs) + { + OPENMS_LOG_WARN << "Warning: An empty set of peptide identifications was provided. Output will be empty as well." << std::endl; + if (!keep_unreferenced_proteins_) + { + // delete only protein hits, not whole ID runs incl. meta data: + for (std::vector::iterator it = prot_ids.begin(); + it != prot_ids.end(); ++it) + { + it->getHits().clear(); + } + } + return PEPTIDE_IDS_EMPTY; + } + + FoundProteinFunctor func(enzyme, xtandem_fix_parameters); // store the matches + Map acc_to_prot; // map: accessions --> FASTA protein index + std::vector protein_is_decoy; // protein index -> is decoy? + std::vector protein_accessions; // protein index -> accession + + bool invalid_protein_sequence = false; // check for proteins with modifications, i.e. '[' or '(', and throw an exception + + { // new scope - forget data after search + + /* + BUILD Peptide DB + */ + bool has_illegal_AAs(false); + AhoCorasickAmbiguous::PeptideDB pep_DB; + for (std::vector::const_iterator it1 = pep_ids.begin(); it1 != pep_ids.end(); ++it1) + { + //String run_id = it1->getIdentifier(); + const std::vector& hits = it1->getHits(); + for (std::vector::const_iterator it2 = hits.begin(); it2 != hits.end(); ++it2) + { + // + // Warning: + // do not skip over peptides here, since the results are iterated in the same way + // + String seq = it2->getSequence().toUnmodifiedString().remove('*'); // make a copy, i.e. do NOT change the peptide sequence! + if (seqan::isAmbiguous(seqan::AAString(seq.c_str()))) + { // do not quit here, to show the user all sequences .. only quit after loop + OPENMS_LOG_ERROR << "Peptide sequence '" << it2->getSequence() << "' contains one or more ambiguous amino acids (B|J|Z|X).\n"; + has_illegal_AAs = true; + } + if (IL_equivalent_) // convert L to I; + { + seq.substitute('L', 'I'); + } + appendValue(pep_DB, seq.c_str()); + } + } + if (has_illegal_AAs) + { + OPENMS_LOG_ERROR << "One or more peptides contained illegal amino acids. This is not allowed!" + << "\nPlease either remove the peptide or replace it with one of the unambiguous ones (while allowing for ambiguous AA's to match the protein)." << std::endl;; + } + + OPENMS_LOG_INFO << "Mapping " << length(pep_DB) << " peptides to " << (proteins.size() == PROTEIN_CACHE_SIZE ? "? (unknown number of)" : String(proteins.size())) << " proteins." << std::endl; + + if (length(pep_DB) == 0) + { // Aho-Corasick will crash if given empty needles as input + OPENMS_LOG_WARN << "Warning: Peptide identifications have no hits inside! Output will be empty as well." << std::endl; + return PEPTIDE_IDS_EMPTY; + } + + /* + Aho Corasick (fast) + */ + OPENMS_LOG_INFO << "Searching with up to " << aaa_max_ << " ambiguous amino acid(s) and " << mm_max_ << " mismatch(es)!" << std::endl; + SysInfo::MemUsage mu; + OPENMS_LOG_INFO << "Building trie ..."; + StopWatch s; + s.start(); + AhoCorasickAmbiguous::FuzzyACPattern pattern; + AhoCorasickAmbiguous::initPattern(pep_DB, aaa_max_, mm_max_, pattern); + s.stop(); + OPENMS_LOG_INFO << " done (" << int(s.getClockTime()) << "s)" << std::endl; + s.reset(); + + uint16_t count_j_proteins(0); + bool has_active_data = true; // becomes false if end of FASTA file is reached + const std::string jumpX(aaa_max_ + mm_max_ + 1, 'X'); // jump over stretches of 'X' which cost a lot of time; +1 because AXXA is a valid hit for aaa_max == 2 (cannot split it) + // use very large target value for progress if DB size is unknown (did not fit into first chunk) + this->startProgress(0, proteins.size() == PROTEIN_CACHE_SIZE ? std::numeric_limits::max() : proteins.size(), "Aho-Corasick"); + std::atomic progress_prots(0); +#ifdef _OPENMP +#pragma omp parallel +#endif + { + FoundProteinFunctor func_threads(enzyme, xtandem_fix_parameters); + Map acc_to_prot_thread; // map: accessions --> FASTA protein index + AhoCorasickAmbiguous fuzzyAC; + String prot; + + while (true) + { + #pragma omp barrier // all threads need to be here, since we are about to swap protein data + #pragma omp single + { + DEBUG_ONLY std::cerr << " activating cache ...\n"; + has_active_data = proteins.activateCache(); // swap in last cache + protein_accessions.resize(proteins.getChunkOffset() + proteins.chunkSize()); + } // implicit barrier here + + if (!has_active_data) break; // leave while-loop + SignedSize prot_count = (SignedSize)proteins.chunkSize(); + + #pragma omp master + { + DEBUG_ONLY std::cerr << "Filling Protein Cache ..."; + proteins.cacheChunk(PROTEIN_CACHE_SIZE); + protein_is_decoy.resize(proteins.getChunkOffset() + prot_count); + for (SignedSize i = 0; i < prot_count; ++i) + { // do this in master only, to avoid false sharing + const String& seq = proteins.chunkAt(i).identifier; + protein_is_decoy[i + proteins.getChunkOffset()] = (prefix_ ? seq.hasPrefix(decoy_string_) : seq.hasSuffix(decoy_string_)); + } + DEBUG_ONLY std::cerr << " done" << std::endl; + } + DEBUG_ONLY std::cerr << " starting for loop \n"; + // search all peptides in each protein + #pragma omp for schedule(dynamic, 100) nowait + for (SignedSize i = 0; i < prot_count; ++i) + { + ++progress_prots; // atomic + if (omp_get_thread_num() == 0) + { + this->setProgress(progress_prots); + } + + prot = proteins.chunkAt(i).sequence; + prot.remove('*'); + // check for invalid sequences with modifications + if (prot.has('[') || prot.has('(')) + { + invalid_protein_sequence = true; // not omp-critical because its write-only + // we cannot throw an exception here, since we'd need to catch it within the parallel region + } + + // convert L/J to I; also replace 'J' in proteins + if (IL_equivalent_) + { + prot.substitute('L', 'I'); + prot.substitute('J', 'I'); + } + else + { // warn if 'J' is found (it eats into aaa_max) + if (prot.has('J')) + { + #pragma omp atomic + ++count_j_proteins; + } + } + + Size prot_idx = i + proteins.getChunkOffset(); + + // test if protein was a hit + Size hits_total = func_threads.filter_passed + func_threads.filter_rejected; + + // check if there are stretches of 'X' + if (prot.has('X')) + { + // create chunks of the protein (splitting it at stretches of 'X..X') and feed them to AC one by one + size_t offset = -1, start = 0; + while ((offset = prot.find(jumpX, offset + 1)) != std::string::npos) + { + //std::cout << "found X..X at " << offset << " in protein " << proteins[i].identifier << "\n"; + addHits_(fuzzyAC, pattern, pep_DB, prot.substr(start, offset + jumpX.size() - start), prot, prot_idx, (int)start, func_threads); + // skip ahead while we encounter more X... + while (offset + jumpX.size() < prot.size() && prot[offset + jumpX.size()] == 'X') ++offset; + start = offset; + //std::cout << " new start: " << start << "\n"; + } + // last chunk + if (start < prot.size()) + { + addHits_(fuzzyAC, pattern, pep_DB, prot.substr(start), prot, prot_idx, (int)start, func_threads); + } + } + else + { + addHits_(fuzzyAC, pattern, pep_DB, prot, prot, prot_idx, 0, func_threads); + } + // was protein found? + if (hits_total < func_threads.filter_passed + func_threads.filter_rejected) + { + protein_accessions[prot_idx] = proteins.chunkAt(i).identifier; + acc_to_prot_thread[protein_accessions[prot_idx]] = prot_idx; + } + } // end parallel FOR + + // join results again + DEBUG_ONLY std::cerr << " critical now \n"; + #ifdef _OPENMP + #pragma omp critical(PeptideIndexer_joinAC) + #endif + { + s.start(); + // hits + func.merge(func_threads); + // accession -> index + acc_to_prot.insert(acc_to_prot_thread.begin(), acc_to_prot_thread.end()); + acc_to_prot_thread.clear(); + s.stop(); + } // OMP end critical + } // end readChunk + } // OMP end parallel + this->endProgress(); + std::cout << "Merge took: " << s.toString() << "\n"; + mu.after(); + std::cout << mu.delta("Aho-Corasick") << "\n\n"; + + OPENMS_LOG_INFO << "\nAho-Corasick done:\n found " << func.filter_passed << " hits for " << func.pep_to_prot.size() << " of " << length(pep_DB) << " peptides.\n"; + + // write some stats + OPENMS_LOG_INFO << "Peptide hits passing enzyme filter: " << func.filter_passed << "\n" + << " ... rejected by enzyme filter: " << func.filter_rejected << std::endl; + + if (count_j_proteins) + { + OPENMS_LOG_WARN << "PeptideIndexer found " << count_j_proteins << " protein sequences in your database containing the amino acid 'J'." + << "To match 'J' in a protein, an ambiguous amino acid placeholder for I/L will be used.\n" + << "This costs runtime and eats into the 'aaa_max' limit, leaving less opportunity for B/Z/X matches.\n" + << "If you want 'J' to be treated as unambiguous, enable '-IL_equivalent'!" << std::endl; + } + + } // end local scope + + // + // do mapping + // + // index existing proteins + Map runid_to_runidx; // identifier to index + for (Size run_idx = 0; run_idx < prot_ids.size(); ++run_idx) + { + runid_to_runidx[prot_ids[run_idx].getIdentifier()] = run_idx; + } + + // for peptides --> proteins + Size stats_matched_unique(0); + Size stats_matched_multi(0); + Size stats_unmatched(0); // no match to DB + Size stats_count_m_t(0); // match to Target DB + Size stats_count_m_d(0); // match to Decoy DB + Size stats_count_m_td(0); // match to T+D DB + + Map > runidx_to_protidx; // in which protID do appear which proteins (according to mapped peptides) + + Size pep_idx(0); + for (std::vector::iterator it1 = pep_ids.begin(); it1 != pep_ids.end(); ++it1) + { + // which ProteinIdentification does the peptide belong to? + Size run_idx = runid_to_runidx[it1->getIdentifier()]; + + std::vector& hits = it1->getHits(); + + for (std::vector::iterator it_hit = hits.begin(); it_hit != hits.end(); /* no increase here! we might need to skip it; see below */) + { + // clear protein accessions + it_hit->setPeptideEvidences(std::vector()); + + // + // is this a decoy hit? + // + bool matches_target(false); + bool matches_decoy(false); + + std::set prot_indices; /// protein hits of this peptide + // add new protein references + for (std::set::const_iterator it_i = func.pep_to_prot[pep_idx].begin(); + it_i != func.pep_to_prot[pep_idx].end(); ++it_i) + { + prot_indices.insert(it_i->protein_index); + const String& accession = protein_accessions[it_i->protein_index]; + PeptideEvidence pe(accession, it_i->position, it_i->position + (int)it_hit->getSequence().size() - 1, it_i->AABefore, it_i->AAAfter); + it_hit->addPeptideEvidence(pe); + + runidx_to_protidx[run_idx].insert(it_i->protein_index); // fill protein hits + + if (protein_is_decoy[it_i->protein_index]) + { + matches_decoy = true; + } + else + { + matches_target = true; + } + } + ++pep_idx; // next hit + + if (matches_decoy && matches_target) + { + it_hit->setMetaValue("target_decoy", "target+decoy"); + ++stats_count_m_td; + } + else if (matches_target) + { + it_hit->setMetaValue("target_decoy", "target"); + ++stats_count_m_t; + } + else if (matches_decoy) + { + it_hit->setMetaValue("target_decoy", "decoy"); + ++stats_count_m_d; + } // else: could match to no protein (i.e. both are false) + //else ... // not required (handled below; see stats_unmatched); + + if (prot_indices.size() == 1) + { + it_hit->setMetaValue("protein_references", "unique"); + ++stats_matched_unique; + } + else if (prot_indices.size() > 1) + { + it_hit->setMetaValue("protein_references", "non-unique"); + ++stats_matched_multi; + } + else + { + ++stats_unmatched; + if (stats_unmatched < 15) OPENMS_LOG_INFO << "Unmatched peptide: " << it_hit->getSequence() << "\n"; + else if (stats_unmatched == 15) OPENMS_LOG_INFO << "Unmatched peptide: ...\n"; + if (unmatched_action_ == Unmatched::REMOVE) + { + it_hit = hits.erase(it_hit); + continue; // already points to the next hit + } + else + { + it_hit->setMetaValue("protein_references", "unmatched"); + } + } + + ++it_hit; // next hit + } // all hits + + } // next PepID + + Size total_peptides = stats_count_m_t + stats_count_m_d + stats_count_m_td + stats_unmatched; + OPENMS_LOG_INFO << "-----------------------------------\n"; + OPENMS_LOG_INFO << "Peptide statistics\n"; + OPENMS_LOG_INFO << "\n"; + OPENMS_LOG_INFO << " unmatched : " << stats_unmatched << " (" << stats_unmatched * 100 / total_peptides << " %)\n"; + OPENMS_LOG_INFO << " target/decoy:\n"; + OPENMS_LOG_INFO << " match to target DB only: " << stats_count_m_t << " (" << stats_count_m_t * 100 / total_peptides << " %)\n"; + OPENMS_LOG_INFO << " match to decoy DB only : " << stats_count_m_d << " (" << stats_count_m_d * 100 / total_peptides << " %)\n"; + OPENMS_LOG_INFO << " match to both : " << stats_count_m_td << " (" << stats_count_m_td * 100 / total_peptides << " %)\n"; + OPENMS_LOG_INFO << "\n"; + OPENMS_LOG_INFO << " mapping to proteins:\n"; + OPENMS_LOG_INFO << " no match (to 0 protein) : " << stats_unmatched << "\n"; + OPENMS_LOG_INFO << " unique match (to 1 protein) : " << stats_matched_unique << "\n"; + OPENMS_LOG_INFO << " non-unique match (to >1 protein): " << stats_matched_multi << std::endl; + + /// for proteins --> peptides + Size stats_matched_proteins(0), stats_matched_new_proteins(0), stats_orphaned_proteins(0), stats_proteins_target(0), stats_proteins_decoy(0); + + // all peptides contain the correct protein hit references, now update the protein hits + for (Size run_idx = 0; run_idx < prot_ids.size(); ++run_idx) + { + std::set masterset = runidx_to_protidx[run_idx]; // all protein matches from above + + std::vector& phits = prot_ids[run_idx].getHits(); + { + // go through existing protein hits and count orphaned proteins (with no peptide hits) + std::vector orphaned_hits; + for (std::vector::iterator p_hit = phits.begin(); p_hit != phits.end(); ++p_hit) + { + const String& acc = p_hit->getAccession(); + if (!acc_to_prot.has(acc)) // acc_to_prot only contains found proteins from current run + { // old hit is orphaned + ++stats_orphaned_proteins; + if (keep_unreferenced_proteins_) + { + p_hit->setMetaValue("target_decoy", ""); + orphaned_hits.push_back(*p_hit); + } + } + } + // only keep orphaned hits (if any) + phits = orphaned_hits; + } + + // add new protein hits + FASTAFile::FASTAEntry fe; + phits.reserve(phits.size() + masterset.size()); + for (std::set::const_iterator it = masterset.begin(); it != masterset.end(); ++it) + { + ProteinHit hit; + hit.setAccession(protein_accessions[*it]); + + if (write_protein_sequence_ || write_protein_description_) + { + proteins.readAt(fe, *it); + if (write_protein_sequence_) + { + hit.setSequence(fe.sequence); + } // no else, since sequence is empty by default + if (write_protein_description_) + { + hit.setDescription(fe.description); + } // no else, since description is empty by default + } + if (protein_is_decoy[*it]) + { + hit.setMetaValue("target_decoy", "decoy"); + ++stats_proteins_decoy; + } + else + { + hit.setMetaValue("target_decoy", "target"); + ++stats_proteins_target; + } + phits.push_back(hit); + ++stats_matched_new_proteins; + } + stats_matched_proteins += phits.size(); + } + + + OPENMS_LOG_INFO << "-----------------------------------\n"; + OPENMS_LOG_INFO << "Protein statistics\n"; + OPENMS_LOG_INFO << "\n"; + OPENMS_LOG_INFO << " total proteins searched: " << proteins.size() << "\n"; + OPENMS_LOG_INFO << " matched proteins : " << stats_matched_proteins << " (" << stats_matched_new_proteins << " new)\n"; + if (stats_matched_proteins) + { // prevent Division-by-0 Exception + OPENMS_LOG_INFO << " matched target proteins: " << stats_proteins_target << " (" << stats_proteins_target * 100 / stats_matched_proteins << " %)\n"; + OPENMS_LOG_INFO << " matched decoy proteins : " << stats_proteins_decoy << " (" << stats_proteins_decoy * 100 / stats_matched_proteins << " %)\n"; + } + OPENMS_LOG_INFO << " orphaned proteins : " << stats_orphaned_proteins << (keep_unreferenced_proteins_ ? " (all kept)" : " (all removed)\n"); + OPENMS_LOG_INFO << "-----------------------------------" << std::endl; + + + /// exit if no peptides were matched to decoy + bool has_error = false; + + if (invalid_protein_sequence) + { + OPENMS_LOG_ERROR << "Error: One or more protein sequences contained the characters '[' or '(', which are illegal in protein sequences." + << "\nPeptide hits might be masked by these characters (which usually indicate presence of modifications).\n"; + has_error = true; + } + + if ((stats_count_m_d + stats_count_m_td) == 0) + { + String msg("No peptides were matched to the decoy portion of the database! Did you provide the correct concatenated database? Are your 'decoy_string' (=" + decoy_string_ + ") and 'decoy_string_position' (=" + std::string(param_.getValue("decoy_string_position")) + ") settings correct?"); + if (missing_decoy_action_ == MissingDecoy::IS_ERROR) + { + OPENMS_LOG_ERROR << "Error: " << msg << "\nSet 'missing_decoy_action' to 'warn' if you are sure this is ok!\nAborting ..." << std::endl; + has_error = true; + } + else if (missing_decoy_action_ == MissingDecoy::WARN) + { + OPENMS_LOG_WARN << "Warn: " << msg << "\nSet 'missing_decoy_action' to 'error' if you want to elevate this to an error!" << std::endl; + } + else // silent + { + } + } + + if (stats_unmatched > 0) + { + OPENMS_LOG_ERROR << "PeptideIndexer found unmatched peptides, which could not be associated to a protein.\n"; + if (unmatched_action_ == Unmatched::IS_ERROR) + { + OPENMS_LOG_ERROR + << "Potential solutions:\n" + << " - check your FASTA database is identical to the search DB (or use 'auto')\n" + << " - set 'enzyme:specificity' and 'enzyme:name' to 'auto' to match the parameters of the search engine\n" + << " - increase 'aaa_max' to allow more ambiguous amino acids\n" + << " - as a last resort: use the 'unmatched_action' option to accept or even remove unmatched peptides\n" + << " (note that unmatched peptides cannot be used for FDR calculation or quantification)\n"; + has_error = true; + } + else if (unmatched_action_ == Unmatched::WARN) + { + OPENMS_LOG_ERROR << " Warning: " << stats_unmatched << " unmatched hits have been found, but were not removed!\n" + << "These are not annotated with target/decoy information and might lead to issues with downstream tools (such as FDR).\n" + << "Switch to '" << names_of_unmatched[(Size)Unmatched::REMOVE] << "' if you want to avoid these problems.\n"; + } + else if (unmatched_action_ == Unmatched::REMOVE) + { + OPENMS_LOG_ERROR << " Warning: " << stats_unmatched <<" unmatched hits have been removed!\n" + << "Make sure that these hits are actually a violation of the cutting rules by inspecting the database!\n"; + if (xtandem_fix_parameters) OPENMS_LOG_ERROR << "Since the results are from X!Tandem, this is probably ok (check anyways).\n"; + } + else + { + throw Exception::NotImplemented(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION); + } + } + + + if (has_error) + { + OPENMS_LOG_ERROR << "Result files will be written, but PeptideIndexer will exit with an error code." << std::endl; + return UNEXPECTED_RESULT; + } + return EXECUTION_OK; +} + +// specialize templates here so they get instantiated only once (speeds up compile time and reduces memory usage) +template OPENMS_DLLAPI PeptideIndexing::ExitCodes PeptideIndexing::run(FASTAContainer& proteins, std::vector& prot_ids, std::vector& pep_ids); +template OPENMS_DLLAPI PeptideIndexing::ExitCodes PeptideIndexing::run(FASTAContainer& proteins, std::vector& prot_ids, std::vector& pep_ids); + +PeptideIndexing::ExitCodes PeptideIndexing::run(std::vector& proteins, std::vector& prot_ids, std::vector& pep_ids) +{ + FASTAContainer protein_container(proteins); + return run(protein_container, prot_ids, pep_ids); +} + +/// @endcond diff --git a/src/openms/source/ANALYSIS/ID/PeptideProteinResolution.cpp b/src/openms/source/ANALYSIS/ID/PeptideProteinResolution.cpp index 7b2445366b1..7125283c24e 100644 --- a/src/openms/source/ANALYSIS/ID/PeptideProteinResolution.cpp +++ b/src/openms/source/ANALYSIS/ID/PeptideProteinResolution.cpp @@ -260,6 +260,7 @@ namespace OpenMS } vector newEv; + newEv.reserve(evToKeep.size()); for (const auto& idx : evToKeep) { newEv.push_back(pepev[idx]); diff --git a/src/openms/source/ANALYSIS/ID/PercolatorFeatureSetHelper.cpp b/src/openms/source/ANALYSIS/ID/PercolatorFeatureSetHelper.cpp index 7488dc502d7..09b8445eb2e 100644 --- a/src/openms/source/ANALYSIS/ID/PercolatorFeatureSetHelper.cpp +++ b/src/openms/source/ANALYSIS/ID/PercolatorFeatureSetHelper.cpp @@ -134,8 +134,8 @@ namespace OpenMS StringList ion_types_found; for (StringList::const_iterator ion = ion_types.begin(); ion != ion_types.end(); ++ion) { - if (peptide_ids.front().getHits().front().getMetaValue(*ion + "_score").toString() != "" && - peptide_ids.front().getHits().front().getMetaValue(*ion + "_ions").toString() != "") + if (!peptide_ids.front().getHits().front().getMetaValue(*ion + "_score").toString().empty() && + !peptide_ids.front().getHits().front().getMetaValue(*ion + "_ions").toString().empty()) { feature_set.push_back("XTANDEM:frac_ion_" + *ion); ion_types_found.push_back(*ion); @@ -157,8 +157,8 @@ namespace OpenMS // Find out correct ion types and get its Values for (StringList::const_iterator ion = ion_types_found.begin(); ion != ion_types_found.end(); ++ion) { - if (peptide_ids.front().getHits().front().getMetaValue(*ion + "_score").toString() != "" && - peptide_ids.front().getHits().front().getMetaValue(*ion + "_ions").toString() != "") + if (!peptide_ids.front().getHits().front().getMetaValue(*ion + "_score").toString().empty() && + !peptide_ids.front().getHits().front().getMetaValue(*ion + "_ions").toString().empty()) { // recalculate ion score double ion_score = it->getHits().front().getMetaValue(*ion + "_ions").toString().toDouble() / length; @@ -713,7 +713,7 @@ namespace OpenMS } sum_removed += incompletes.size(); } - if (incompletes.size() > 0 || imputed_back < imputed_values) + if (!incompletes.empty() || imputed_back < imputed_values) ++incomplete_spectra; else ++complete_spectra; diff --git a/src/openms/source/ANALYSIS/ID/SiriusAdapterAlgorithm.cpp b/src/openms/source/ANALYSIS/ID/SiriusAdapterAlgorithm.cpp index 0c13db0f1cf..d01387c6fc6 100644 --- a/src/openms/source/ANALYSIS/ID/SiriusAdapterAlgorithm.cpp +++ b/src/openms/source/ANALYSIS/ID/SiriusAdapterAlgorithm.cpp @@ -436,6 +436,7 @@ namespace OpenMS indices.end(), [](const SiriusWorkspaceIndex& i, const SiriusWorkspaceIndex& j) { return i.scan_index < j.scan_index; } ); + sorted_subdirs.reserve(indices.size()); for (const auto& index : indices) { sorted_subdirs.emplace_back(std::move(subdirs[index.array_index])); @@ -447,7 +448,7 @@ namespace OpenMS void SiriusAdapterAlgorithm::preprocessingSirius(const String& featureinfo, const MSExperiment& spectra, FeatureMapping::FeatureMappingInfo& fm_info, - FeatureMapping::FeatureToMs2Indices& feature_mapping) + FeatureMapping::FeatureToMs2Indices& feature_mapping) const { // if fileparameter is given and should be not empty if (!featureinfo.empty()) @@ -499,7 +500,7 @@ namespace OpenMS void SiriusAdapterAlgorithm::logFeatureSpectraNumber(const String& featureinfo, const FeatureMapping::FeatureToMs2Indices& feature_mapping, - const MSExperiment& spectra) + const MSExperiment& spectra) const { // number of features to be processed if (isFeatureOnly() && !featureinfo.empty()) diff --git a/src/openms/source/ANALYSIS/MAPMATCHING/ConsensusMapNormalizerAlgorithmMedian.cpp b/src/openms/source/ANALYSIS/MAPMATCHING/ConsensusMapNormalizerAlgorithmMedian.cpp index 0372fa2db36..c3e80432ced 100644 --- a/src/openms/source/ANALYSIS/MAPMATCHING/ConsensusMapNormalizerAlgorithmMedian.cpp +++ b/src/openms/source/ANALYSIS/MAPMATCHING/ConsensusMapNormalizerAlgorithmMedian.cpp @@ -190,8 +190,8 @@ namespace OpenMS boost::regex desc_regexp(desc_filter); boost::cmatch m; - if ((acc_filter == "" || boost::regex_search("", m, acc_regexp)) && - (desc_filter == "" || boost::regex_search("", m, desc_regexp))) + if ((acc_filter.empty() || boost::regex_search("", m, acc_regexp)) && + (desc_filter.empty() || boost::regex_search("", m, desc_regexp))) { // feature passes (even if it has no identification!) return true; @@ -209,7 +209,7 @@ namespace OpenMS for (set::const_iterator acc_it = accs.begin(); acc_it != accs.end(); ++acc_it) { // does accession match? - if (!(acc_filter == "" || + if (!(acc_filter.empty() || boost::regex_search("", m, acc_regexp) || boost::regex_search(acc_it->c_str(), m, acc_regexp))) { @@ -218,7 +218,7 @@ namespace OpenMS } // yes. does description match, too? - if (desc_filter == "" || boost::regex_search("", m, desc_regexp)) + if (desc_filter.empty() || boost::regex_search("", m, desc_regexp)) { return true; } diff --git a/src/openms/source/ANALYSIS/MAPMATCHING/MapAlignmentAlgorithmIdentification.cpp b/src/openms/source/ANALYSIS/MAPMATCHING/MapAlignmentAlgorithmIdentification.cpp index 43300a8df8f..380c138fe78 100644 --- a/src/openms/source/ANALYSIS/MAPMATCHING/MapAlignmentAlgorithmIdentification.cpp +++ b/src/openms/source/ANALYSIS/MAPMATCHING/MapAlignmentAlgorithmIdentification.cpp @@ -33,7 +33,6 @@ // -------------------------------------------------------------------------- #include - #include #include #include @@ -47,9 +46,12 @@ namespace OpenMS DefaultParamHandler("MapAlignmentAlgorithmIdentification"), ProgressLogger(), reference_index_(-1), reference_(), min_run_occur_(0), min_score_(0.) { - defaults_.setValue("score_cutoff", "false", "If only IDs above a score cutoff should be used. Used together with min_score."); - defaults_.setValidStrings("score_cutoff", {"true","false"}); - defaults_.setValue("min_score", 0.05, "Minimum score for an ID to be considered. Applies to the last score calculated.\nUnless you have very few runs or identifications, increase this value to focus on more informative peptides."); + defaults_.setValue("score_type", "", "Name of the score type to use for ranking and filtering (.oms input only). If left empty, a score type is picked automatically."); + + defaults_.setValue("score_cutoff", "false", "Use only IDs above a score cut-off (parameter 'min_score') for alignment?"); + defaults_.setValidStrings("score_cutoff", {"true", "false"}); + + defaults_.setValue("min_score", 0.05, "If 'score_cutoff' is 'true': Minimum score for an ID to be considered.\nUnless you have very few runs or identifications, increase this value to focus on more informative peptides."); defaults_.setValue("min_run_occur", 2, "Minimum number of runs (incl. reference, if any) in which a peptide must occur to be used for the alignment.\nUnless you have very few runs or identifications, increase this value to focus on more informative peptides."); defaults_.setMinInt("min_run_occur", 2); @@ -58,11 +60,13 @@ namespace OpenMS defaults_.setMinFloat("max_rt_shift", 0.0); defaults_.setValue("use_unassigned_peptides", "true", "Should unassigned peptide identifications be used when computing an alignment of feature or consensus maps? If 'false', only peptide IDs assigned to features will be used."); - defaults_.setValidStrings("use_unassigned_peptides", - {"true","false"}); + defaults_.setValidStrings("use_unassigned_peptides", {"true", "false"}); defaults_.setValue("use_feature_rt", "false", "When aligning feature or consensus maps, don't use the retention time of a peptide identification directly; instead, use the retention time of the centroid of the feature (apex of the elution profile) that the peptide was matched to. If different identifications are matched to one feature, only the peptide closest to the centroid in RT is used.\nPrecludes 'use_unassigned_peptides'."); - defaults_.setValidStrings("use_feature_rt", {"true","false"}); + defaults_.setValidStrings("use_feature_rt", {"true", "false"}); + + defaults_.setValue("use_adducts", "true", "If IDs contain adducts, treat differently adducted variants of the same molecule as different."); + defaults_.setValidStrings("use_adducts", {"true", "false"}); defaultsToParam_(); } @@ -73,7 +77,7 @@ namespace OpenMS void MapAlignmentAlgorithmIdentification::checkParameters_(Size runs) { - min_run_occur_ = param_.getValue("min_run_occur"); + min_run_occur_ = (int)param_.getValue("min_run_occur"); // reference is not counted as a regular run: if (!reference_.empty()) runs++; @@ -89,8 +93,14 @@ namespace OpenMS min_run_occur_ = runs; } score_cutoff_ = param_.getValue("score_cutoff").toBool(); + // score type may have been set by reference already - don't overwrite it: + if (score_cutoff_ && score_type_.empty()) + { + score_type_ = (std::string)param_.getValue("score_type"); + } min_score_ = param_.getValue("min_score"); - } + use_adducts_ = param_.getValue("use_adducts").toBool(); +} // RT lists in "rt_data" will be sorted (unless "sorted" is true) void MapAlignmentAlgorithmIdentification::computeMedians_(SeqToList& rt_data, @@ -127,6 +137,73 @@ namespace OpenMS return false; } + IdentificationData::ScoreTypeRef + MapAlignmentAlgorithmIdentification::handleIdDataScoreType_(const IdentificationData& id_data) + { + IdentificationData::ScoreTypeRef score_ref = id_data.getScoreTypes().end(); + if (score_type_.empty()) // choose a score type + { + score_ref = id_data.pickScoreType(id_data.getObservationMatches()); + if (score_ref == id_data.getScoreTypes().end()) + { + String msg = "no scores found"; + throw Exception::MissingInformation(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); + } + score_type_ = score_ref->cv_term.getName(); + OPENMS_LOG_INFO << "Using score type: " << score_type_ << endl; + } + else + { + score_ref = id_data.findScoreType(score_type_); + if (score_ref == id_data.getScoreTypes().end()) + { + String msg = "score type '" + score_type_ + "' not found"; + throw Exception::MissingInformation(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); + } + } + return score_ref; + } + + + bool MapAlignmentAlgorithmIdentification::getRetentionTimes_( + IdentificationData& id_data, SeqToList& rt_data) + { + // @TODO: should this get handled as an error? + if (id_data.getObservationMatches().empty()) return true; + + IdentificationData::ScoreTypeRef score_ref = + handleIdDataScoreType_(id_data); + + vector top_hits = + id_data.getBestMatchPerObservation(score_ref); + + for (const auto& hit : top_hits) + { + bool include = true; + if (score_cutoff_) + { + pair result = hit->getScore(score_ref); + if (!result.second || + score_ref->isBetterScore(min_score_, result.first)) + { + include = false; + } + } + if (include) + { + String molecule = hit->identified_molecule_var.toString(); + if (use_adducts_ && hit->adduct_opt) + { + molecule += "+[" + (*hit->adduct_opt)->getName() + "]"; + } + rt_data[molecule].push_back(hit->observation_ref->rt); + } + } + return false; + } + // lists of peptide hits in "maps" will be sorted bool MapAlignmentAlgorithmIdentification::getRetentionTimes_( PeakMap& experiment, SeqToList& rt_data) @@ -215,7 +292,7 @@ namespace OpenMS throw Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "No reference RT information left after filtering"); } - double max_rt_shift = param_.getValue("max_rt_shift"); + double max_rt_shift = (double)param_.getValue("max_rt_shift"); if (max_rt_shift <= 1) { // compute max. allowed shift from overall retention time range: diff --git a/src/openms/source/ANALYSIS/MAPMATCHING/MapAlignmentAlgorithmKD.cpp b/src/openms/source/ANALYSIS/MAPMATCHING/MapAlignmentAlgorithmKD.cpp index 54b9e75a505..edf054a7c32 100644 --- a/src/openms/source/ANALYSIS/MAPMATCHING/MapAlignmentAlgorithmKD.cpp +++ b/src/openms/source/ANALYSIS/MAPMATCHING/MapAlignmentAlgorithmKD.cpp @@ -270,7 +270,7 @@ void MapAlignmentAlgorithmKD::filterCCs_(const KDTreeFeatureMaps& kd_data, const void MapAlignmentAlgorithmKD::updateMembers_() { - if (param_ == Param()) return; + if (param_.empty()) return; rt_tol_secs_ = (double)(param_.getValue("warp:rt_tol")); mz_tol_ = (double)(param_.getValue("warp:mz_tol")); diff --git a/src/openms/source/ANALYSIS/MAPMATCHING/MapAlignmentTransformer.cpp b/src/openms/source/ANALYSIS/MAPMATCHING/MapAlignmentTransformer.cpp index 470c623722f..50817759067 100644 --- a/src/openms/source/ANALYSIS/MAPMATCHING/MapAlignmentTransformer.cpp +++ b/src/openms/source/ANALYSIS/MAPMATCHING/MapAlignmentTransformer.cpp @@ -184,7 +184,7 @@ namespace OpenMS applyToBaseFeature_(feature, trafo, store_original_rt); // apply to grouped features (feature handles): - for (ConsensusFeature::HandleSetType::const_iterator it = + for (ConsensusFeature::HandleSetType::const_iterator it = feature.getFeatures().begin(); it != feature.getFeatures().end(); ++it) { @@ -195,10 +195,10 @@ namespace OpenMS void MapAlignmentTransformer::transformRetentionTimes( - vector& pep_ids, + vector& pep_ids, const TransformationDescription& trafo, bool store_original_rt) { - for (vector::iterator pep_it = pep_ids.begin(); + for (vector::iterator pep_it = pep_ids.begin(); pep_it != pep_ids.end(); ++pep_it) { if (pep_it->hasRT()) @@ -210,4 +210,24 @@ namespace OpenMS } } + + void MapAlignmentTransformer::transformRetentionTimes( + IdentificationData& id_data, const TransformationDescription& trafo, + bool store_original_rt) + { + // update RTs in-place: + for (IdentificationData::ObservationRef it = id_data.observations_.begin(); + it != id_data.observations_.end(); ++it) + { + id_data.observations_.modify(it, [&](IdentificationData::Observation& obs) + { + if (store_original_rt) + { + storeOriginalRT_(obs, obs.rt); + } + obs.rt = trafo.apply(obs.rt); + }); + } + } + } diff --git a/src/openms/source/ANALYSIS/MAPMATCHING/PoseClusteringAffineSuperimposer.cpp b/src/openms/source/ANALYSIS/MAPMATCHING/PoseClusteringAffineSuperimposer.cpp index 697625cda54..bb7bf71be69 100644 --- a/src/openms/source/ANALYSIS/MAPMATCHING/PoseClusteringAffineSuperimposer.cpp +++ b/src/openms/source/ANALYSIS/MAPMATCHING/PoseClusteringAffineSuperimposer.cpp @@ -398,7 +398,7 @@ namespace OpenMS double freq_intercept = scaling_hash_1.getData().front(); double freq_slope = (scaling_hash_1.getData().back() - scaling_hash_1.getData().front()) / double(buffer.size()) / scaling_histogram_crossing_slope; - if (!freq_slope || !buffer.size()) + if (!freq_slope || buffer.empty()) { // in fact these conditions are actually impossible, but let's be really sure ;-) freq_cutoff = 0; @@ -414,7 +414,7 @@ namespace OpenMS } freq_cutoff = buffer[--index]; // note that we have index >= 1 } - } while (0); + } while (false); // *************************************************************************** // apply freq_cutoff, setting smaller values to zero @@ -576,7 +576,7 @@ namespace OpenMS double freq_intercept = rt_low_hash_.getData().front(); double freq_slope = (rt_low_hash_.getData().back() - rt_low_hash_.getData().front()) / double(buffer.size()) / scaling_histogram_crossing_slope; - if (!freq_slope || !buffer.size()) + if (!freq_slope || buffer.empty()) { // in fact these conditions are actually impossible, but let's be really sure ;-) freq_cutoff_low = 0; @@ -597,7 +597,7 @@ namespace OpenMS double freq_intercept = rt_high_hash_.getData().front(); double freq_slope = (rt_high_hash_.getData().back() - rt_high_hash_.getData().front()) / double(buffer.size()) / scaling_histogram_crossing_slope; - if (!freq_slope || !buffer.size()) + if (!freq_slope || buffer.empty()) { // in fact these conditions are actually impossible, but let's be really sure ;-) freq_cutoff_high = 0; @@ -612,7 +612,7 @@ namespace OpenMS freq_cutoff_high = buffer[--index]; // note that we have index >= 1 } } - } while (0); + } while (false); // apply freq_cutoff, setting smaller values to zero for (Size index = 0; index < rt_low_hash_.getData().size(); ++index) @@ -1035,7 +1035,7 @@ namespace OpenMS const double intercept = rt_low_image - rt_low * slope; params.setValue("intercept", intercept); - if (boost::math::isinf(slope) || boost::math::isnan(slope) || boost::math::isinf(intercept) || boost::math::isnan(intercept)) + if (std::isinf(slope) || std::isnan(slope) || std::isinf(intercept) || std::isnan(intercept)) { throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("Superimposer could not compute an initial transformation!") + diff --git a/src/openms/source/ANALYSIS/MAPMATCHING/PoseClusteringShiftSuperimposer.cpp b/src/openms/source/ANALYSIS/MAPMATCHING/PoseClusteringShiftSuperimposer.cpp index 5bdfdf7ab21..a43550ba183 100644 --- a/src/openms/source/ANALYSIS/MAPMATCHING/PoseClusteringShiftSuperimposer.cpp +++ b/src/openms/source/ANALYSIS/MAPMATCHING/PoseClusteringShiftSuperimposer.cpp @@ -166,10 +166,10 @@ namespace OpenMS // get RT ranges (NOTE: we trust that min and max have been updated in the // ConsensusMap::convert() method !) - const double model_low = map_model.getMin()[ConsensusFeature::RT]; - const double scene_low = map_scene.getMin()[ConsensusFeature::RT]; - const double model_high = map_model.getMax()[ConsensusFeature::RT]; - const double scene_high = map_scene.getMax()[ConsensusFeature::RT]; + const double model_low = map_model.getMinRT(); + const double scene_low = map_scene.getMinRT(); + const double model_high = map_model.getMaxRT(); + const double scene_high = map_scene.getMaxRT(); // OLD STUFF // const double rt_low = (maps[0].getMin()[ConsensusFeature::RT] + maps[1].getMin()[ConsensusFeature::RT]) / 2.; @@ -198,7 +198,7 @@ namespace OpenMS diff = -diff; if (max_shift > diff) max_shift = diff; - } while (0); + } while (false); const Int shift_buckets_num_half = 4 + (Int) ceil((max_shift) / shift_bucket_size); const Int shift_buckets_num = 1 + 2 * shift_buckets_num_half; @@ -228,7 +228,7 @@ namespace OpenMS setProgress(++actual_progress); // ... and finally ... total_intensity_ratio = total_int_model_map / total_int_scene_map; - } while (0); // (the extra syntax helps with code folding in eclipse!) + } while (false); // (the extra syntax helps with code folding in eclipse!) setProgress((actual_progress = 20)); /// The serial number is incremented for each invocation of this, to avoid overwriting of hash table dumps. @@ -322,7 +322,7 @@ namespace OpenMS } // k } // i - } while (0); // end of hashing (the extra syntax helps with code folding in eclipse!) + } while (false); // end of hashing (the extra syntax helps with code folding in eclipse!) setProgress((actual_progress = 30)); @@ -402,7 +402,7 @@ namespace OpenMS double freq_intercept = shift_hash_.getData().front(); double freq_slope = (shift_hash_.getData().back() - shift_hash_.getData().front()) / double(buffer.size()) / scaling_histogram_crossing_slope; - if (!freq_slope || !buffer.size()) + if (!freq_slope || buffer.empty()) { // in fact these conditions are actually impossible, but let's be really sure ;-) freq_cutoff_low = 0; @@ -417,7 +417,7 @@ namespace OpenMS freq_cutoff_low = buffer[--index]; // note that we have index >= 1 } } - } while (0); + } while (false); setProgress(++actual_progress); // apply freq_cutoff, setting smaller values to zero @@ -480,7 +480,7 @@ namespace OpenMS } setProgress(80); - } while (0); + } while (false); //************************************************************************************ // Estimate transform diff --git a/src/openms/source/ANALYSIS/MAPMATCHING/QTClusterFinder.cpp b/src/openms/source/ANALYSIS/MAPMATCHING/QTClusterFinder.cpp index bb058a6b24c..898c2623f5b 100644 --- a/src/openms/source/ANALYSIS/MAPMATCHING/QTClusterFinder.cpp +++ b/src/openms/source/ANALYSIS/MAPMATCHING/QTClusterFinder.cpp @@ -384,8 +384,8 @@ namespace OpenMS for (typename vector::const_iterator map_it = input_maps.begin(); map_it != input_maps.end(); ++map_it) { - max_intensity = max(max_intensity, map_it->getMaxInt()); - max_mz = max(max_mz, map_it->getMax().getY()); + max_intensity = max(max_intensity, map_it->getMaxIntensity()); + max_mz = max(max_mz, map_it->getMaxMZ()); } setParameters_(max_intensity, max_mz); diff --git a/src/openms/source/ANALYSIS/MAPMATCHING/StablePairFinder.cpp b/src/openms/source/ANALYSIS/MAPMATCHING/StablePairFinder.cpp index 2fd93a369c9..449b454acea 100644 --- a/src/openms/source/ANALYSIS/MAPMATCHING/StablePairFinder.cpp +++ b/src/openms/source/ANALYSIS/MAPMATCHING/StablePairFinder.cpp @@ -89,8 +89,8 @@ namespace OpenMS checkIds_(input_maps); // set up the distance functor: - double max_intensity = max(input_maps[0].getMaxInt(), - input_maps[1].getMaxInt()); + double max_intensity = max(input_maps[0].getMaxIntensity(), + input_maps[1].getMaxIntensity()); Param distance_params = param_.copy(""); distance_params.remove("use_identifications"); distance_params.remove("second_nearest_gap"); diff --git a/src/openms/source/ANALYSIS/MAPMATCHING/TransformationModel.cpp b/src/openms/source/ANALYSIS/MAPMATCHING/TransformationModel.cpp index 99be75418a1..c775216f04c 100644 --- a/src/openms/source/ANALYSIS/MAPMATCHING/TransformationModel.cpp +++ b/src/openms/source/ANALYSIS/MAPMATCHING/TransformationModel.cpp @@ -76,7 +76,7 @@ namespace OpenMS } // easily remember whether we do weighting or not - weighting_ = (x_weight_ != "" || y_weight_ != ""); + weighting_ = (!x_weight_.empty() || !y_weight_.empty()); } TransformationModel::~TransformationModel() @@ -230,7 +230,7 @@ namespace OpenMS { datum_weighted = 1/std::pow(datum,2); } - else if (weight == "") + else if (weight.empty()) { datum_weighted = datum; } @@ -270,7 +270,7 @@ namespace OpenMS { datum_weighted = std::sqrt(1/std::abs(datum)); } - else if (weight == "") + else if (weight.empty()) { datum_weighted = datum; } diff --git a/src/openms/source/ANALYSIS/MAPMATCHING/TransformationModelLinear.cpp b/src/openms/source/ANALYSIS/MAPMATCHING/TransformationModelLinear.cpp index 8754ed9b251..aa26f4b2d8e 100644 --- a/src/openms/source/ANALYSIS/MAPMATCHING/TransformationModelLinear.cpp +++ b/src/openms/source/ANALYSIS/MAPMATCHING/TransformationModelLinear.cpp @@ -94,10 +94,6 @@ namespace OpenMS } } - TransformationModelLinear::~TransformationModelLinear() - { - } - double TransformationModelLinear::evaluate(double value) const { if (!weighting_) diff --git a/src/openms/source/ANALYSIS/MRM/ReactionMonitoringTransition.cpp b/src/openms/source/ANALYSIS/MRM/ReactionMonitoringTransition.cpp index 64b6e8da0be..73cb82b0328 100644 --- a/src/openms/source/ANALYSIS/MRM/ReactionMonitoringTransition.cpp +++ b/src/openms/source/ANALYSIS/MRM/ReactionMonitoringTransition.cpp @@ -144,7 +144,7 @@ namespace OpenMS return *this; } - ReactionMonitoringTransition & ReactionMonitoringTransition::operator=(ReactionMonitoringTransition && rhs) + ReactionMonitoringTransition & ReactionMonitoringTransition::operator=(ReactionMonitoringTransition && rhs) noexcept { if (&rhs != this) { diff --git a/src/openms/source/ANALYSIS/OPENSWATH/ChromatogramExtractor.cpp b/src/openms/source/ANALYSIS/OPENSWATH/ChromatogramExtractor.cpp index 0b928c2f6cf..6875420647f 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/ChromatogramExtractor.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/ChromatogramExtractor.cpp @@ -285,7 +285,7 @@ namespace OpenMS throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Error: Peptide " + pep->id + " does not have retention time information which is necessary to perform an RT-limited extraction"); } - else if (boost::math::isnan(rt_extraction_window)) // if 'rt_extraction_window' is NAN, we assume that RT start/end is encoded in the data + else if (std::isnan(rt_extraction_window)) // if 'rt_extraction_window' is NAN, we assume that RT start/end is encoded in the data { // TODO: better use a single RT entry with start/end if (pep->rts.size() != 2) diff --git a/src/openms/source/ANALYSIS/OPENSWATH/ChromatogramExtractorAlgorithm.cpp b/src/openms/source/ANALYSIS/OPENSWATH/ChromatogramExtractorAlgorithm.cpp index 024eebffd0b..2939453f1b7 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/ChromatogramExtractorAlgorithm.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/ChromatogramExtractorAlgorithm.cpp @@ -313,7 +313,7 @@ namespace OpenMS std::vector::const_iterator int_it = int_arr->data.begin(); std::vector::const_iterator im_it; - if (sptr->getMZArray()->data.size() == 0) + if (sptr->getMZArray()->data.empty()) { continue; } diff --git a/src/openms/source/ANALYSIS/OPENSWATH/DIAHelper.cpp b/src/openms/source/ANALYSIS/OPENSWATH/DIAHelper.cpp index 4a83ff2f161..24862b0736a 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/DIAHelper.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/DIAHelper.cpp @@ -45,9 +45,7 @@ #include #include -namespace OpenMS -{ - namespace DIAHelpers +namespace OpenMS::DIAHelpers { void adjustExtractionWindow(double& right, double& left, const double& mz_extract_window, const bool& mz_extraction_ppm) @@ -408,4 +406,3 @@ namespace OpenMS //std::vector > & isotopeMasses, uint32_t charge) } -} diff --git a/src/openms/source/ANALYSIS/OPENSWATH/DIAPrescoring.cpp b/src/openms/source/ANALYSIS/OPENSWATH/DIAPrescoring.cpp index fc5568cbe8d..9882b1abea0 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/DIAPrescoring.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/DIAPrescoring.cpp @@ -67,7 +67,7 @@ namespace OpenMS std::transform(normalizedLibraryIntensities.begin(), normalizedLibraryIntensities.end(), normalizedLibraryIntensities.begin(), - boost::bind(std::divides(), _1, totalInt)); + [totalInt](auto && PH1) { return std::divides()(std::forward(PH1), totalInt); }); } void getMZIntensityFromTransition(const std::vector& trans, @@ -81,7 +81,7 @@ namespace OpenMS void DiaPrescore::operator()(OpenSwath::SpectrumAccessPtr swath_ptr, OpenSwath::LightTargetedExperiment& transition_exp_used, - OpenSwath::IDataFrameWriter* ivw) + OpenSwath::IDataFrameWriter* ivw) const { //getParams(); typedef std::map > Mmap; diff --git a/src/openms/source/ANALYSIS/OPENSWATH/DIAScoring.cpp b/src/openms/source/ANALYSIS/OPENSWATH/DIAScoring.cpp index 2d529e6a1eb..fe709f8e465 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/DIAScoring.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/DIAScoring.cpp @@ -53,7 +53,7 @@ #include #include -#include // for isnan +#include // for isnan const double C13C12_MASSDIFF_U = 1.0033548; @@ -466,7 +466,7 @@ namespace OpenMS // score the pattern against a theoretical one OPENMS_POSTCONDITION(isotopes_int.size() == isotopes.intensity.size(), "Vectors for pearson correlation do not have the same size."); double int_score = OpenSwath::cor_pearson(isotopes_int.begin(), isotopes_int.end(), isotopes.intensity.begin()); - if (boost::math::isnan(int_score)) + if (std::isnan(int_score)) { int_score = 0; } diff --git a/src/openms/source/ANALYSIS/OPENSWATH/MRMAssay.cpp b/src/openms/source/ANALYSIS/OPENSWATH/MRMAssay.cpp index 3635bca49c3..687044754ef 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/MRMAssay.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/MRMAssay.cpp @@ -448,7 +448,7 @@ namespace OpenMS for (const auto& ta_it : sm_it.second) { // Get a random unmodified peptide sequence as base for later modification - if (DecoySequenceMap[ta_it.first] == "") + if (DecoySequenceMap[ta_it.first].empty()) { decoy_peptide_string = getRandomSequence_(ta_it.first.size(), pseudoRNG); } @@ -609,7 +609,7 @@ namespace OpenMS tr_it->second, TargetIonMap.at(target_precursor_swath).at(peptide_sequence.toUnmodifiedString()), mz_threshold); // Check that transition maps to at least one peptidoform - if (isoforms.size() > 0) + if (!isoforms.empty()) { ReactionMonitoringTransition trn; trn.setDetectingTransition(false); @@ -688,7 +688,7 @@ namespace OpenMS decoy_tr_it->second, DecoyIonMap.at(target_precursor_swath).at(decoy_peptide_sequence.toUnmodifiedString()), mz_threshold); // Check that transition maps to at least one peptidoform - if (decoy_isoforms.size() > 0) + if (!decoy_isoforms.empty()) { ReactionMonitoringTransition trn; trn.setDecoyTransitionType(ReactionMonitoringTransition::DECOY); @@ -716,7 +716,7 @@ namespace OpenMS vector target_isoforms_overlap = getMatchingPeptidoforms_( decoy_tr_it->second, TargetIonMap.at(target_precursor_swath).at(target_peptide_sequence.toUnmodifiedString()), mz_threshold); - if (target_isoforms_overlap.size() > 0) + if (!target_isoforms_overlap.empty()) { OPENMS_LOG_DEBUG << "[uis] Skipping overlapping decoy transition " << trn.getNativeID() << std::endl; continue; @@ -843,7 +843,7 @@ namespace OpenMS OpenMS::AASequence target_peptide_sequence = TargetedExperimentHelper::getAASequence(target_peptide); // Check annotation for unannotated interpretations - if (tr.getProduct().getInterpretationList().size() > 0) + if (!tr.getProduct().getInterpretationList().empty()) { // Check if transition is unannotated at primary annotation and if yes, skip if (tr.getProduct().getInterpretationList()[0].iontype == TargetedExperiment::IonType::NonIdentified) @@ -856,7 +856,7 @@ namespace OpenMS } // Check if product m/z falls into swath from precursor m/z and if yes, skip - if (swathes.size() > 0) + if (!swathes.empty()) { if (MRMAssay::isInSwath_(swathes, tr.getPrecursorMZ(), tr.getProductMZ())) { diff --git a/src/openms/source/ANALYSIS/OPENSWATH/MRMDecoy.cpp b/src/openms/source/ANALYSIS/OPENSWATH/MRMDecoy.cpp index 4db0fc62768..4d9aed3c15d 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/MRMDecoy.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/MRMDecoy.cpp @@ -39,7 +39,6 @@ #include #include -#include #include #include #include diff --git a/src/openms/source/ANALYSIS/OPENSWATH/MRMFeatureFilter.cpp b/src/openms/source/ANALYSIS/OPENSWATH/MRMFeatureFilter.cpp index b04377915b7..4404a8e3ba1 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/MRMFeatureFilter.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/MRMFeatureFilter.cpp @@ -184,8 +184,8 @@ namespace OpenMS { String component_name2 = (String)features.at(feature_it).getSubordinates().at(sub_it2).getMetaValue("native_id"); // find the ion ratio pair - if (filter_criteria.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_1 != "" - && filter_criteria.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_2 != "" + if (!filter_criteria.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_1.empty() + && !filter_criteria.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_2.empty() && filter_criteria.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_1 == component_name && filter_criteria.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_2 == component_name2) { @@ -295,13 +295,13 @@ namespace OpenMS features.at(feature_it).setMetaValue("QC_transition_group_score", cg_score); // Copy or Flag passing/failing Features - if (cg_qc_pass && flag_or_filter_ == "filter" && subordinates_filtered.size() > 0) + if (cg_qc_pass && flag_or_filter_ == "filter" && !subordinates_filtered.empty()) { Feature feature_filtered(features.at(feature_it)); feature_filtered.setSubordinates(subordinates_filtered); features_filtered.push_back(feature_filtered); } - else if (cg_qc_pass && flag_or_filter_ == "filter" && subordinates_filtered.size() == 0) + else if (cg_qc_pass && flag_or_filter_ == "filter" && subordinates_filtered.empty()) { // do nothing } @@ -384,8 +384,8 @@ namespace OpenMS cg_tests_count += 3; // ion ratio QC - if (filter_criteria.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_1 != "" - && filter_criteria.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_2 != "") { + if (!filter_criteria.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_1.empty() + && !filter_criteria.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_2.empty()) { if (!checkRange(filter_values.component_group_qcs.at(cg_qc_it).ion_ratio_u, filter_criteria.component_group_qcs.at(cg_qc_it).ion_ratio_l, filter_criteria.component_group_qcs.at(cg_qc_it).ion_ratio_u)) @@ -488,13 +488,13 @@ namespace OpenMS features.at(feature_it).setMetaValue("QC_transition_group_%RSD_score", cg_score); // Copy or Flag passing/failing Features - if (cg_qc_pass && flag_or_filter_ == "filter" && subordinates_filtered.size() > 0) + if (cg_qc_pass && flag_or_filter_ == "filter" && !subordinates_filtered.empty()) { Feature feature_filtered(features.at(feature_it)); feature_filtered.setSubordinates(subordinates_filtered); features_filtered.push_back(feature_filtered); } - else if (cg_qc_pass && flag_or_filter_ == "filter" && subordinates_filtered.size() == 0) + else if (cg_qc_pass && flag_or_filter_ == "filter" && subordinates_filtered.empty()) { // do nothing } @@ -610,13 +610,13 @@ namespace OpenMS features.at(feature_it).setMetaValue("QC_transition_group_%BackgroundInterference_score", cg_score); // Copy or Flag passing/failing Features - if (cg_qc_pass && flag_or_filter_ == "filter" && subordinates_filtered.size() > 0) + if (cg_qc_pass && flag_or_filter_ == "filter" && !subordinates_filtered.empty()) { Feature feature_filtered(features.at(feature_it)); feature_filtered.setSubordinates(subordinates_filtered); features_filtered.push_back(feature_filtered); } - else if (cg_qc_pass && flag_or_filter_ == "filter" && subordinates_filtered.size() == 0) + else if (cg_qc_pass && flag_or_filter_ == "filter" && subordinates_filtered.empty()) { // do nothing } @@ -643,7 +643,7 @@ namespace OpenMS } } - void MRMFeatureFilter::EstimateDefaultMRMFeatureQCValues(const std::vector& samples, MRMFeatureQC& filter_template, const TargetedExperiment& transitions, const bool& init_template_values) + void MRMFeatureFilter::EstimateDefaultMRMFeatureQCValues(const std::vector& samples, MRMFeatureQC& filter_template, const TargetedExperiment& transitions, const bool& init_template_values) const { // iterate through each sample and accumulate the min/max values in the samples in the filter_template for (size_t sample_it = 0; sample_it < samples.size(); sample_it++) { @@ -744,8 +744,8 @@ namespace OpenMS { String component_name2 = (String)samples.at(sample_it).at(feature_it).getSubordinates().at(sub_it2).getMetaValue("native_id"); // find the ion ratio pair - if (filter_template.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_1 != "" - && filter_template.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_2 != "" + if (!filter_template.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_1.empty() + && !filter_template.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_2.empty() && filter_template.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_1 == component_name && filter_template.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_2 == component_name2) { @@ -850,7 +850,7 @@ namespace OpenMS } } - void MRMFeatureFilter::EstimatePercRSD(const std::vector& samples, MRMFeatureQC& filter_template, const TargetedExperiment& transitions) + void MRMFeatureFilter::EstimatePercRSD(const std::vector& samples, MRMFeatureQC& filter_template, const TargetedExperiment& transitions) const { // iterate through each sample and accumulate the values in the filter_values std::vector filter_values; @@ -868,7 +868,7 @@ namespace OpenMS calculateFilterValuesPercRSD(filter_template, filter_mean, filter_var); } - void MRMFeatureFilter::EstimateBackgroundInterferences(const std::vector& samples, MRMFeatureQC& filter_template, const TargetedExperiment& transitions) + void MRMFeatureFilter::EstimateBackgroundInterferences(const std::vector& samples, MRMFeatureQC& filter_template, const TargetedExperiment& transitions) const { // iterate through each sample and accumulate the values in the filter_values std::vector filter_values; @@ -1114,8 +1114,8 @@ namespace OpenMS { String component_name2 = (String)samples.at(sample_it).at(feature_it).getSubordinates().at(sub_it2).getMetaValue("native_id"); // find the ion ratio pair - if (filter_value.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_1 != "" - && filter_value.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_2 != "" + if (!filter_value.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_1.empty() + && !filter_value.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_2.empty() && filter_value.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_1 == component_name && filter_value.component_group_qcs.at(cg_qc_it).ion_ratio_pair_name_2 == component_name2) { diff --git a/src/openms/source/ANALYSIS/OPENSWATH/MRMFeatureFinderScoring.cpp b/src/openms/source/ANALYSIS/OPENSWATH/MRMFeatureFinderScoring.cpp index cafd0b32ed6..281718bfb2e 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/MRMFeatureFinderScoring.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/MRMFeatureFinderScoring.cpp @@ -225,7 +225,7 @@ namespace OpenMS int counter = 0; for (TransitionGroupMapType::iterator trgroup_it = transition_group_map.begin(); trgroup_it != transition_group_map.end(); ++trgroup_it) { - if (trgroup_it->second.getChromatograms().size() > 0) {counter++; } + if (!trgroup_it->second.getChromatograms().empty()) {counter++; } } OPENMS_LOG_INFO << "Will analyse " << counter << " peptides with a total of " << transition_exp.getTransitions().size() << " transitions " << std::endl; @@ -364,7 +364,7 @@ namespace OpenMS } OpenSwath_Ind_Scores idscores; - if (native_ids_identification.size() > 0) + if (!native_ids_identification.empty()) { scorer.calculateChromatographicIdScores(idimrmfeature, native_ids_identification, @@ -447,7 +447,7 @@ namespace OpenMS // Compute DIA scores only on the identification transitions bool swath_present = (!swath_maps.empty() && swath_maps[0].sptr->getNrSpectra() > 0); - if (swath_present && su_.use_dia_scores_ && native_ids_identification.size() > 0) + if (swath_present && su_.use_dia_scores_ && !native_ids_identification.empty()) { std::vector ind_isotope_correlation, ind_isotope_overlap, ind_massdev_score; for (size_t i = 0; i < native_ids_identification.size(); i++) @@ -727,14 +727,14 @@ namespace OpenMS /////////////////////////////////// // Unique Ion Signature (UIS) scores - if (su_.use_uis_scores && transition_group_identification.getTransitions().size() > 0) + if (su_.use_uis_scores && !transition_group_identification.getTransitions().empty()) { OpenSwath_Ind_Scores idscores = scoreIdentification_(transition_group_identification, scorer, feature_idx, native_ids_detection, det_intensity_ratio_score, det_mi_ratio_score, swath_maps); mrmfeature.IDScoresAsMetaValue(false, idscores); } - if (su_.use_uis_scores && transition_group_identification_decoy.getTransitions().size() > 0) + if (su_.use_uis_scores && !transition_group_identification_decoy.getTransitions().empty()) { OpenSwath_Ind_Scores idscores = scoreIdentification_(transition_group_identification_decoy, scorer, feature_idx, native_ids_detection, det_intensity_ratio_score, diff --git a/src/openms/source/ANALYSIS/OPENSWATH/MRMIonSeries.cpp b/src/openms/source/ANALYSIS/OPENSWATH/MRMIonSeries.cpp index ff265f61d52..c83416987e4 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/MRMIonSeries.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/MRMIonSeries.cpp @@ -246,7 +246,7 @@ namespace OpenMS double pos = -1; String ionstring; - if (tr.getProduct().getInterpretationList().size() > 0) + if (!tr.getProduct().getInterpretationList().empty()) { interpretation = tr.getProduct().getInterpretationList()[0]; AASequence ion; diff --git a/src/openms/source/ANALYSIS/OPENSWATH/MRMRTNormalizer.cpp b/src/openms/source/ANALYSIS/OPENSWATH/MRMRTNormalizer.cpp index 4a2f6d0f171..c02b0fbe6ff 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/MRMRTNormalizer.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/MRMRTNormalizer.cpp @@ -262,7 +262,7 @@ namespace OpenMS double d = fabs(residuals[pos] - mean) / stdev; d /= pow(2.0, 0.5); - double prob = boost::math::erfc(d); + double prob = std::erfc(d); return prob; } diff --git a/src/openms/source/ANALYSIS/OPENSWATH/MRMScoring.cpp b/src/openms/source/ANALYSIS/OPENSWATH/MRMScoring.cpp index 10d4b49a637..0e67924170d 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/MRMScoring.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/MRMScoring.cpp @@ -41,7 +41,7 @@ #include #include -#include // for isnan +#include // for isnan #include namespace OpenSwath @@ -609,7 +609,7 @@ namespace OpenSwath spectral_angle = Scoring::SpectralAngle(&experimental_intensity[0], &library_intensity[0], boost::numeric_cast(transitions.size())); - if (boost::math::isnan(spectral_angle)) + if (std::isnan(spectral_angle)) { spectral_angle = 0.0; } @@ -621,7 +621,7 @@ namespace OpenSwath rmsd = Scoring::RootMeanSquareDeviation(&experimental_intensity[0], &library_intensity[0], boost::numeric_cast(transitions.size())); correlation = OpenSwath::cor_pearson(experimental_intensity.begin(), experimental_intensity.end(), library_intensity.begin()); - if (boost::math::isnan(correlation)) + if (std::isnan(correlation)) { correlation = -1.0; } @@ -647,7 +647,7 @@ namespace OpenSwath OPENSWATH_PRECONDITION(signal_noise_estimators.size() > 0, "Input S/N estimators needs to be larger than 0"); double sn_score = 0; - if (signal_noise_estimators.size() == 0) + if (signal_noise_estimators.empty()) { return 0; } @@ -664,7 +664,7 @@ namespace OpenSwath OPENSWATH_PRECONDITION(signal_noise_estimators.size() > 0, "Input S/N estimators needs to be larger than 0"); std::vector sn_scores; - if (signal_noise_estimators.size() == 0) + if (signal_noise_estimators.empty()) { return {}; } diff --git a/src/openms/source/ANALYSIS/OPENSWATH/MRMTransitionGroupPicker.cpp b/src/openms/source/ANALYSIS/OPENSWATH/MRMTransitionGroupPicker.cpp index 6bfb18c51fe..0f111c96505 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/MRMTransitionGroupPicker.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/MRMTransitionGroupPicker.cpp @@ -52,7 +52,7 @@ namespace OpenMS { defaults_.setValue("stop_after_feature", -1, "Stop finding after feature (ordered by intensity; -1 means do not stop)."); defaults_.setValue("stop_after_intensity_ratio", 0.0001, "Stop after reaching intensity ratio"); - defaults_.setValue("min_peak_width", -1.0, "Minimal peak width (s), discard all peaks below this value (-1 means no action).", {"advanced"}); + defaults_.setValue("min_peak_width", 0.001, "Minimal peak width (s), discard all peaks below this value (-1 means no action).", {"advanced"}); defaults_.setValue("peak_integration", "original", "Calculate the peak area and height either the smoothed or the raw chromatogram data.", {"advanced"}); defaults_.setValidStrings("peak_integration", {"original","smoothed"}); diff --git a/src/openms/source/ANALYSIS/OPENSWATH/OpenSwathScoring.cpp b/src/openms/source/ANALYSIS/OPENSWATH/OpenSwathScoring.cpp index f007921fd34..455dace80eb 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/OpenSwathScoring.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/OpenSwathScoring.cpp @@ -353,11 +353,11 @@ namespace OpenMS const std::vector& precursor_ids, const std::vector& normalized_library_intensity, std::vector& signal_noise_estimators, - OpenSwath_Scores & scores) + OpenSwath_Scores & scores) const { OPENMS_PRECONDITION(imrmfeature != nullptr, "Feature to be scored cannot be null"); OpenSwath::MRMScoring mrmscore_; - if (su_.use_coelution_score_ || su_.use_shape_score_ || (imrmfeature->getPrecursorIDs().size() > 0 && su_.use_ms1_correlation)) + if (su_.use_coelution_score_ || su_.use_shape_score_ || (!imrmfeature->getPrecursorIDs().empty() && su_.use_ms1_correlation)) mrmscore_.initializeXCorrMatrix(imrmfeature, native_ids); // XCorr score (coelution) @@ -378,7 +378,7 @@ namespace OpenMS } // check that the MS1 feature is present and that the MS1 correlation should be calculated - if (imrmfeature->getPrecursorIDs().size() > 0 && su_.use_ms1_correlation) + if (!imrmfeature->getPrecursorIDs().empty() && su_.use_ms1_correlation) { // we need at least two precursor isotopes if (precursor_ids.size() > 1) @@ -425,7 +425,7 @@ namespace OpenMS } // check that the MS1 feature is present and that the MS1 MI should be calculated - if (imrmfeature->getPrecursorIDs().size() > 0 && su_.use_ms1_mi) + if (!imrmfeature->getPrecursorIDs().empty() && su_.use_ms1_mi) { // we need at least two precursor isotopes if (precursor_ids.size() > 1) @@ -446,7 +446,7 @@ namespace OpenMS const std::vector& native_ids_identification, const std::vector& native_ids_detection, std::vector& signal_noise_estimators, - OpenSwath_Ind_Scores & idscores) + OpenSwath_Ind_Scores & idscores) const { OPENMS_PRECONDITION(imrmfeature != nullptr, "Feature to be scored cannot be null"); OpenSwath::MRMScoring mrmscore_; @@ -488,6 +488,7 @@ namespace OpenMS getNormalized_library_intensities_(transitions, normalized_library_intensity); std::vector native_ids; + native_ids.reserve(transitions.size()); for (const auto& trans : transitions) { native_ids.push_back(trans.getNativeID()); diff --git a/src/openms/source/ANALYSIS/OPENSWATH/OpenSwathWorkflow.cpp b/src/openms/source/ANALYSIS/OPENSWATH/OpenSwathWorkflow.cpp index ddab379cd32..9ba9f39e5c0 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/OpenSwathWorkflow.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/OpenSwathWorkflow.cpp @@ -328,7 +328,7 @@ namespace OpenMS OpenSwath::LightTargetedExperiment transition_exp_used; OpenSwathHelper::selectSwathTransitions(irt_transitions, transition_exp_used, cp.min_upper_edge_dist, swath_maps[map_idx].lower, swath_maps[map_idx].upper); - if (transition_exp_used.getTransitions().size() > 0) // skip if no transitions found + if (!transition_exp_used.getTransitions().empty()) // skip if no transitions found { std::vector< OpenSwath::ChromatogramPtr > tmp_out; @@ -606,7 +606,7 @@ namespace OpenMS } } - if (transition_exp_used_all.getTransitions().size() > 0) // skip if no transitions found + if (!transition_exp_used_all.getTransitions().empty()) // skip if no transitions found { OpenSwath::SpectrumAccessPtr current_swath_map = swath_maps[i].sptr; @@ -962,21 +962,21 @@ namespace OpenMS featureFinder.scorePeakgroups(transition_group, trafo, swath_maps, output, ms1only); // Ensure that a detection transition is used to derive features for output - if (detection_assay_it == nullptr && output.size() > 0) + if (detection_assay_it == nullptr && !output.empty()) { throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Error, did not find any detection transition for feature " + id ); } // 5. Add to the output tsv if given - if (tsv_writer.isActive() && output.size() > 0) // implies that detection_assay_it was set + if (tsv_writer.isActive() && !output.empty()) // implies that detection_assay_it was set { const OpenSwath::LightCompound pep = transition_exp.getCompounds()[ assay_peptide_map[id] ]; to_tsv_output.push_back(tsv_writer.prepareLine(pep, detection_assay_it, output, id)); } // 6. Add to the output osw if given - if (osw_writer.isActive() && output.size() > 0) // implies that detection_assay_it was set + if (osw_writer.isActive() && !output.empty()) // implies that detection_assay_it was set { const OpenSwath::LightCompound pep; to_osw_output.push_back(osw_writer.prepareLine(OpenSwath::LightCompound(), // not used currently: transition_exp.getCompounds()[ assay_peptide_map[id] ], @@ -1145,7 +1145,7 @@ namespace OpenMS OpenSwathHelper::selectSwathTransitions(transition_exp, transition_exp_used_all, 0, currwin_start, currwin_end); - if (transition_exp_used_all.getTransitions().size() > 0) // skip if no transitions found + if (!transition_exp_used_all.getTransitions().empty()) // skip if no transitions found { diff --git a/src/openms/source/ANALYSIS/OPENSWATH/SONARScoring.cpp b/src/openms/source/ANALYSIS/OPENSWATH/SONARScoring.cpp index 544d3f93782..4bae5c0b2af 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/SONARScoring.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/SONARScoring.cpp @@ -44,7 +44,7 @@ #include #include -#include // for isnan +#include // for isnan // #define DEBUG_SONAR @@ -289,7 +289,7 @@ namespace OpenMS std::vector xvals; for (Size pr_idx = 0; pr_idx < sonar_profile_pos.size(); pr_idx++) {xvals.push_back(pr_idx);} double rsq = OpenSwath::cor_pearson( xvals.begin(), xvals.end(), sonar_profile_pos.begin() ); - if (boost::math::isnan(rsq)) rsq = 0.0; // check for nan + if (std::isnan(rsq)) rsq = 0.0; // check for nan // try to find largest diff double sonar_largediff = 0.0; diff --git a/src/openms/source/ANALYSIS/OPENSWATH/SwathMapMassCorrection.cpp b/src/openms/source/ANALYSIS/OPENSWATH/SwathMapMassCorrection.cpp index 6d8958cdaae..0201fc4b0c5 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/SwathMapMassCorrection.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/SwathMapMassCorrection.cpp @@ -146,6 +146,7 @@ namespace OpenMS std::vector trgr_ids; std::map pep_im_map; + trgr_ids.reserve(transition_group_map.size()); for (const auto& trgroup_it : transition_group_map) { trgr_ids.push_back(trgroup_it.first); diff --git a/src/openms/source/ANALYSIS/OPENSWATH/TargetedSpectraExtractor.cpp b/src/openms/source/ANALYSIS/OPENSWATH/TargetedSpectraExtractor.cpp index 3bf77f3399f..76c2857f983 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/TargetedSpectraExtractor.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/TargetedSpectraExtractor.cpp @@ -66,6 +66,7 @@ namespace OpenMS defaults_.setValue("PeakPickerHiRes:signal_to_noise", 1.0); defaults_.insert("AccurateMassSearchEngine:", AccurateMassSearchEngine().getDefaults()); + defaults_.setValue("AccurateMassSearchEngine:keep_unidentified_masses", "false"); // write defaults into Param object param_ defaultsToParam_(); @@ -648,7 +649,7 @@ namespace OpenMS const MSSpectrum& input_spectrum, const Comparator& cmp, std::vector& matches - ) + ) const { // TODO: remove times debug info // std::clock_t start; diff --git a/src/openms/source/ANALYSIS/OPENSWATH/TransitionPQPFile.cpp b/src/openms/source/ANALYSIS/OPENSWATH/TransitionPQPFile.cpp index 90a414ee40f..cca94850962 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/TransitionPQPFile.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/TransitionPQPFile.cpp @@ -542,7 +542,7 @@ namespace OpenMS { gene_name = peptide.getMetaValue("GeneName"); } - + if (gene_map.find(gene_name) == gene_map.end()) gene_map[gene_name] = (int)gene_map.size(); peptide_gene_map.push_back(std::make_pair(peptide_set_index, gene_map[gene_name])); @@ -672,15 +672,15 @@ namespace OpenMS // Compounds update_decoys_sql << "UPDATE COMPOUND SET DECOY = 1 WHERE ID IN " << "(SELECT COMPOUND.ID FROM PRECURSOR " << - "JOIN PRECURSOR_COMPOUND_MAPPING ON PRECURSOR.ID = PRECURSOR_COMPOUND_MAPPING.PRECURSOR_ID " << + "JOIN PRECURSOR_COMPOUND_MAPPING ON PRECURSOR.ID = PRECURSOR_COMPOUND_MAPPING.PRECURSOR_ID " << "JOIN COMPOUND ON PRECURSOR_COMPOUND_MAPPING.COMPOUND_ID = COMPOUND.ID WHERE PRECURSOR.DECOY = 1); "; // Proteins - update_decoys_sql << "UPDATE PROTEIN SET DECOY = 1 WHERE ID IN " << + update_decoys_sql << "UPDATE PROTEIN SET DECOY = 1 WHERE ID IN " << "(SELECT PROTEIN.ID FROM PEPTIDE " << "JOIN PEPTIDE_PROTEIN_MAPPING ON PEPTIDE.ID = PEPTIDE_PROTEIN_MAPPING.PEPTIDE_ID " << "JOIN PROTEIN ON PEPTIDE_PROTEIN_MAPPING.PROTEIN_ID = PROTEIN.ID WHERE PEPTIDE.DECOY = 1); "; // Genes - update_decoys_sql << "UPDATE GENE SET DECOY = 1 WHERE ID IN " << + update_decoys_sql << "UPDATE GENE SET DECOY = 1 WHERE ID IN " << "(SELECT GENE.ID FROM PEPTIDE " << "JOIN PEPTIDE_GENE_MAPPING ON PEPTIDE.ID = PEPTIDE_GENE_MAPPING.PEPTIDE_ID " << "JOIN GENE ON PEPTIDE_GENE_MAPPING.GENE_ID = GENE.ID WHERE PEPTIDE.DECOY = 1); "; @@ -733,4 +733,3 @@ namespace OpenMS } } - diff --git a/src/openms/source/ANALYSIS/OPENSWATH/TransitionTSVFile.cpp b/src/openms/source/ANALYSIS/OPENSWATH/TransitionTSVFile.cpp index 6f515735ac3..05eafe11bd2 100644 --- a/src/openms/source/ANALYSIS/OPENSWATH/TransitionTSVFile.cpp +++ b/src/openms/source/ANALYSIS/OPENSWATH/TransitionTSVFile.cpp @@ -351,7 +351,7 @@ namespace OpenMS String proteins; void(!extractName(proteins, "ProteinName", tmp_line, header_dict) && !extractName(proteins, "ProteinId", tmp_line, header_dict)); // Spectronaut - if (proteins != "NA" && proteins != "") + if (proteins != "NA" && !proteins.empty()) { proteins.split(';', mytransition.ProteinName); } @@ -397,7 +397,7 @@ namespace OpenMS String uniprot_ids; void(!extractName(uniprot_ids, "UniprotId", tmp_line, header_dict) && !extractName(uniprot_ids, "UniprotID", tmp_line, header_dict)); - if (uniprot_ids != "NA" && uniprot_ids != "") + if (uniprot_ids != "NA" && !uniprot_ids.empty()) { uniprot_ids.split(';', mytransition.uniprot_id); } @@ -839,7 +839,7 @@ namespace OpenMS if (tr_it->fragment_nr != -1 || tr_it->fragment_mzdelta != -1 || tr_it->fragment_modification < 0 || - tr_it->fragment_type != "" ) + !tr_it->fragment_type.empty() ) { interpretation_set = true; } @@ -928,7 +928,7 @@ namespace OpenMS // unknown means that we should write CV Term "1001240" interpretation.iontype = TargetedExperiment::IonType::NonIdentified; } - else if (tr_it->fragment_type == "") + else if (tr_it->fragment_type.empty()) { // empty means that we have no information whatsoever interpretation.iontype = TargetedExperiment::IonType::Unannotated; @@ -1260,7 +1260,7 @@ namespace OpenMS mytransition.precursor_charge = String(pep.getChargeState()); } mytransition.peptide_group_label = "NA"; - if (pep.getPeptideGroupLabel() != "") + if (!pep.getPeptideGroupLabel().empty()) { mytransition.peptide_group_label = pep.getPeptideGroupLabel(); } diff --git a/src/openms/source/ANALYSIS/QUANTITATION/AbsoluteQuantitation.cpp b/src/openms/source/ANALYSIS/QUANTITATION/AbsoluteQuantitation.cpp index 6f986aab06a..060e61dc6c4 100644 --- a/src/openms/source/ANALYSIS/QUANTITATION/AbsoluteQuantitation.cpp +++ b/src/openms/source/ANALYSIS/QUANTITATION/AbsoluteQuantitation.cpp @@ -336,7 +336,7 @@ namespace OpenMS String quant_component_name = quant_methods_it->second.getComponentName(); String quant_IS_component_name = quant_methods_it->second.getISName(); String quant_feature_name = quant_methods_it->second.getFeatureName(); - if (quant_IS_component_name != "") + if (!quant_IS_component_name.empty()) { // look up the internal standard for the component bool IS_found = false; diff --git a/src/openms/source/ANALYSIS/QUANTITATION/IsobaricChannelExtractor.cpp b/src/openms/source/ANALYSIS/QUANTITATION/IsobaricChannelExtractor.cpp index de7328e9382..8d3a784b459 100644 --- a/src/openms/source/ANALYSIS/QUANTITATION/IsobaricChannelExtractor.cpp +++ b/src/openms/source/ANALYSIS/QUANTITATION/IsobaricChannelExtractor.cpp @@ -104,7 +104,7 @@ namespace OpenMS hasFollowUpScan = followUpScan != baseExperiment.end(); } - bool IsobaricChannelExtractor::PuritySate_::followUpValid(const double rt) + bool IsobaricChannelExtractor::PuritySate_::followUpValid(const double rt) const { return hasFollowUpScan ? rt < followUpScan->getRT() : true; } @@ -162,9 +162,10 @@ namespace OpenMS void IsobaricChannelExtractor::setDefaultParams_() { - defaults_.setValue("select_activation", Precursor::NamesOfActivationMethod[Precursor::HCID], "Operate only on MSn scans where any of its precursors features a certain activation method (e.g., usually HCD for iTRAQ). Set to empty string if you want to disable filtering."); + defaults_.setValue("select_activation", "auto", "Operate only on MSn scans where any of its precursors features a certain activation method. Setting to \"auto\" uses HCD and HCID spectra. Set to empty string if you want to disable filtering."); std::vector activation_list; - activation_list.insert(activation_list.begin(), Precursor::NamesOfActivationMethod, Precursor::NamesOfActivationMethod + Precursor::SIZE_OF_ACTIVATIONMETHOD - 1); + activation_list.push_back("auto"); + activation_list.insert(activation_list.end(), Precursor::NamesOfActivationMethod, Precursor::NamesOfActivationMethod + Precursor::SIZE_OF_ACTIVATIONMETHOD - 1); activation_list.push_back(""); // allow disabling this defaults_.setValidStrings("select_activation", activation_list); @@ -471,7 +472,14 @@ namespace OpenMS consensus_map.setExperimentType("labeled_MS2"); // create predicate for spectrum checking - OPENMS_LOG_INFO << "Selecting scans with activation mode: " << (selected_activation_ == "" ? "any" : selected_activation_) << std::endl; + OPENMS_LOG_INFO << "Selecting scans with activation mode: " << (selected_activation_.empty() ? "any" : selected_activation_) << std::endl; + + // Select the two possible HCD activation modes according to PSI-MS ontology: HCID and HCD + if (selected_activation_ == "auto") + { + selected_activation_ = Precursor::NamesOfActivationMethod[Precursor::HCID] + "," + Precursor::NamesOfActivationMethod[Precursor::HCD]; + } + HasActivationMethod isValidActivation(ListUtils::create(selected_activation_)); // walk through spectra and count the number of scans with valid activation method per MS-level @@ -482,7 +490,7 @@ namespace OpenMS { if (it->getMSLevel() == 1) continue; // never report MS1 ++activation_modes[getActivationMethod_(*it)]; // count HCD, CID, ... - if (selected_activation_ == "" || isValidActivation(*it)) + if (selected_activation_.empty() || isValidActivation(*it)) { ++ms_level[it->getMSLevel()]; } diff --git a/src/openms/source/ANALYSIS/QUANTITATION/ItraqConstants.cpp b/src/openms/source/ANALYSIS/QUANTITATION/ItraqConstants.cpp index 3472dd80cf2..971676762f5 100644 --- a/src/openms/source/ANALYSIS/QUANTITATION/ItraqConstants.cpp +++ b/src/openms/source/ANALYSIS/QUANTITATION/ItraqConstants.cpp @@ -175,7 +175,7 @@ namespace OpenMS void ItraqConstants::initChannelMap(const int itraq_type, ChannelMapType & map) { static Map reporter_mass_exact; - if (reporter_mass_exact.size() == 0 && (itraq_type == EIGHTPLEX || itraq_type == FOURPLEX)) // exact monoisotopic reporter ion masses (taken from AB Sciex) + if (reporter_mass_exact.empty() && (itraq_type == EIGHTPLEX || itraq_type == FOURPLEX)) // exact monoisotopic reporter ion masses (taken from AB Sciex) { reporter_mass_exact[113] = 113.1078; reporter_mass_exact[114] = 114.1112; diff --git a/src/openms/source/ANALYSIS/QUANTITATION/ProteinResolver.cpp b/src/openms/source/ANALYSIS/QUANTITATION/ProteinResolver.cpp index 37599ae4da4..f00d71ac412 100644 --- a/src/openms/source/ANALYSIS/QUANTITATION/ProteinResolver.cpp +++ b/src/openms/source/ANALYSIS/QUANTITATION/ProteinResolver.cpp @@ -278,7 +278,7 @@ namespace OpenMS //searches given sequence in all nodes and returns its index or nodes.size() if not found. Size ProteinResolver::findPeptideEntry_(String seq, vector & nodes) { - if (nodes.size() == 0) + if (nodes.empty()) return 0; return binarySearchNodes_(seq, nodes, 0, nodes.size() - 1); @@ -573,7 +573,7 @@ namespace OpenMS msd_group.number_of_decoy = 0; msd_group.number_of_target_plus_decoy = 0; traverseProtein_(prot_node, msd_group); - if (msd_group.peptides.size() > 0) + if (!msd_group.peptides.empty()) { msd_groups.push_back(msd_group); isd_groups[isd_group].msd_groups.push_back(msd_group_counter); diff --git a/src/openms/source/ANALYSIS/RNPXL/HyperScore.cpp b/src/openms/source/ANALYSIS/RNPXL/HyperScore.cpp index 42598c60e85..e9bb8dbfa3b 100644 --- a/src/openms/source/ANALYSIS/RNPXL/HyperScore.cpp +++ b/src/openms/source/ANALYSIS/RNPXL/HyperScore.cpp @@ -57,7 +57,7 @@ namespace OpenMS double HyperScore::compute(double fragment_mass_tolerance, bool fragment_mass_tolerance_unit_ppm, const PeakSpectrum& exp_spectrum, const PeakSpectrum& theo_spectrum) { - if (exp_spectrum.size() < 1 || theo_spectrum.size() < 1) + if (exp_spectrum.empty() || theo_spectrum.empty()) { std::cout << "Warning: HyperScore: One of the given spectra is empty." << std::endl; return 0.0; @@ -65,7 +65,7 @@ namespace OpenMS // TODO this assumes only one StringDataArray is present and it is the right one const PeakSpectrum::StringDataArray* ion_names; - if (theo_spectrum.getStringDataArrays().size() > 0) + if (!theo_spectrum.getStringDataArrays().empty()) { ion_names = &theo_spectrum.getStringDataArrays()[0]; } @@ -131,7 +131,7 @@ namespace OpenMS const PeakSpectrum& theo_spectrum, PSMDetail& d) { - if (exp_spectrum.size() < 1 || theo_spectrum.size() < 1) + if (exp_spectrum.empty() || theo_spectrum.empty()) { std::cout << "Warning: HyperScore: One of the given spectra is empty." << std::endl; return 0.0; @@ -139,7 +139,7 @@ namespace OpenMS // TODO this assumes only one StringDataArray is present and it is the right one const PeakSpectrum::StringDataArray* ion_names; - if (theo_spectrum.getStringDataArrays().size() > 0) + if (!theo_spectrum.getStringDataArrays().empty()) { ion_names = &theo_spectrum.getStringDataArrays()[0]; } diff --git a/src/openms/source/ANALYSIS/SVM/SVMWrapper.cpp b/src/openms/source/ANALYSIS/SVM/SVMWrapper.cpp index e46605469c6..0626ca2ec80 100644 --- a/src/openms/source/ANALYSIS/SVM/SVMWrapper.cpp +++ b/src/openms/source/ANALYSIS/SVM/SVMWrapper.cpp @@ -44,17 +44,14 @@ #include +#include "svm.h" + using namespace std; using boost::math::cdf; namespace OpenMS { - - SVMData::SVMData() : - sequences(std::vector > >()), - labels(std::vector()) - { - } + SVMData::SVMData() = default; SVMData::SVMData(std::vector > >& seqs, std::vector& lbls) : sequences(seqs), @@ -720,7 +717,7 @@ namespace OpenMS return nullptr; } - if (problems.size() > 0) + if (!problems.empty()) { int count = 0; @@ -766,7 +763,7 @@ namespace OpenMS if (problems.size() != 1 || except != 0) { - if (problems.size() > 0) + if (!problems.empty()) { Size count = 0; for (Size i = 0; i < problems.size(); i++) @@ -1394,7 +1391,7 @@ namespace OpenMS void SVMWrapper::setWeights(const vector& weight_labels, const vector& weights) { - if (weight_labels.size() == weights.size() && weights.size() > 0) + if (weight_labels.size() == weights.size() && !weights.empty()) { param_->nr_weight = (Int)weights.size(); param_->weight_label = new Int[weights.size()]; diff --git a/src/openms/source/ANALYSIS/TARGETED/MRMMapping.cpp b/src/openms/source/ANALYSIS/TARGETED/MRMMapping.cpp index 52a6aa26b24..fa5d8e6ddc0 100644 --- a/src/openms/source/ANALYSIS/TARGETED/MRMMapping.cpp +++ b/src/openms/source/ANALYSIS/TARGETED/MRMMapping.cpp @@ -70,7 +70,7 @@ namespace OpenMS void MRMMapping::mapExperiment(const OpenMS::PeakMap& chromatogram_map, const OpenMS::TargetedExperiment& targeted_exp, - OpenMS::PeakMap& output) + OpenMS::PeakMap& output) const { // copy all meta data from old MSExperiment output = (ExperimentalSettings)chromatogram_map; diff --git a/src/openms/source/ANALYSIS/TARGETED/MetaboTargetedAssay.cpp b/src/openms/source/ANALYSIS/TARGETED/MetaboTargetedAssay.cpp index e84d7de333d..1e8be5a59a4 100644 --- a/src/openms/source/ANALYSIS/TARGETED/MetaboTargetedAssay.cpp +++ b/src/openms/source/ANALYSIS/TARGETED/MetaboTargetedAssay.cpp @@ -89,7 +89,7 @@ namespace OpenMS void MetaboTargetedAssay::filterBasedOnTotalOccurrence_(std::vector& mta, double total_occurrence_filter, size_t in_files_size) { - if (in_files_size > 1 && mta.size() >= 1) + if (in_files_size > 1 && !mta.empty()) { double total_occurrence = double(mta.size())/double(in_files_size); if (!(total_occurrence >= total_occurrence_filter)) @@ -112,7 +112,7 @@ namespace OpenMS void MetaboTargetedAssay::filterBasedOnMolFormAdductOccurrence_(std::vector& mta) { std::map, int> occ_map; - if (mta.size() >= 1) + if (!mta.empty()) { for (const auto &t_it : mta) { diff --git a/src/openms/source/ANALYSIS/TARGETED/PSLPFormulation.cpp b/src/openms/source/ANALYSIS/TARGETED/PSLPFormulation.cpp index 5726f674f80..f15d4ea814e 100644 --- a/src/openms/source/ANALYSIS/TARGETED/PSLPFormulation.cpp +++ b/src/openms/source/ANALYSIS/TARGETED/PSLPFormulation.cpp @@ -1068,7 +1068,7 @@ namespace OpenMS #endif if (charges_set.count(features[i].getCharge()) < 1) continue; - if (mass_ranges[i].size() == 0) + if (mass_ranges[i].empty()) { std::cout << "No mass ranges for " << features[i].getRT() << " " << features[i].getMZ() << std::endl; } @@ -1485,7 +1485,7 @@ namespace OpenMS StopWatch timer; timer.start(); #endif - if (new_feature.getPeptideIdentifications().size() > 0 && new_feature.getPeptideIdentifications()[0].getHits().size() > 0) + if (!new_feature.getPeptideIdentifications().empty() && !new_feature.getPeptideIdentifications()[0].getHits().empty()) { // if a selected feature yielded a peptide id, the peptide probability needs to be considered in the protein constraint double pep_score = new_feature.getPeptideIdentifications()[0].getHits()[0].getScore(); diff --git a/src/openms/source/ANALYSIS/TARGETED/PrecursorIonSelection.cpp b/src/openms/source/ANALYSIS/TARGETED/PrecursorIonSelection.cpp index d6ec7bc6e41..d95dc661330 100644 --- a/src/openms/source/ANALYSIS/TARGETED/PrecursorIonSelection.cpp +++ b/src/openms/source/ANALYSIS/TARGETED/PrecursorIonSelection.cpp @@ -737,7 +737,7 @@ namespace OpenMS std::cout << max_iteration_ << std::endl; #endif // while there are precursors left and the maximal number of iterations isn't arrived - while ((new_features.size() > 0 && iteration < max_iteration_)) + while ((!new_features.empty() && iteration < max_iteration_)) { ++iteration; @@ -1092,7 +1092,7 @@ namespace OpenMS // #endif // std::ofstream out_prec("precursors.txt"); // while there are precursors left and the maximal number of iterations isn't arrived - while ((new_features.size() > 0 && iteration < max_iteration_)) + while ((!new_features.empty() && iteration < max_iteration_)) { ++iteration; #ifdef PIS_DEBUG @@ -1131,7 +1131,7 @@ namespace OpenMS std::vector& pep_ids = new_features[c].getPeptideIdentifications(); //#ifdef PIS_DEBUG - if (pep_ids.size() > 0) + if (!pep_ids.empty()) { String seq = pep_ids[0].getHits()[0].getSequence().toString(); std::cout << "ids " << "\t"; diff --git a/src/openms/source/ANALYSIS/TARGETED/PrecursorIonSelectionPreprocessing.cpp b/src/openms/source/ANALYSIS/TARGETED/PrecursorIonSelectionPreprocessing.cpp index 6afe939fedc..6bb4cfa437b 100644 --- a/src/openms/source/ANALYSIS/TARGETED/PrecursorIonSelectionPreprocessing.cpp +++ b/src/openms/source/ANALYSIS/TARGETED/PrecursorIonSelectionPreprocessing.cpp @@ -175,7 +175,7 @@ namespace OpenMS double PrecursorIonSelectionPreprocessing::getRT(String prot_id, Size peptide_index) { - if (rt_prot_map_.size() > 0) + if (!rt_prot_map_.empty()) { if (rt_prot_map_.find(prot_id) != rt_prot_map_.end()) { @@ -193,7 +193,7 @@ namespace OpenMS double PrecursorIonSelectionPreprocessing::getPT(String prot_id, Size peptide_index) { - if (pt_prot_map_.size() > 0) + if (!pt_prot_map_.empty()) { if (pt_prot_map_.find(prot_id) != pt_prot_map_.end()) { @@ -1210,7 +1210,7 @@ namespace OpenMS double PrecursorIonSelectionPreprocessing::getRTProbability(String prot_id, Size peptide_index, Feature& feature) { double theo_rt = 0.; - if (rt_prot_map_.size() > 0) + if (!rt_prot_map_.empty()) { if (rt_prot_map_.find(prot_id) != rt_prot_map_.end()) { diff --git a/src/openms/source/ANALYSIS/TARGETED/TargetedExperiment.cpp b/src/openms/source/ANALYSIS/TARGETED/TargetedExperiment.cpp index a42f451480e..23e8ff16831 100644 --- a/src/openms/source/ANALYSIS/TARGETED/TargetedExperiment.cpp +++ b/src/openms/source/ANALYSIS/TARGETED/TargetedExperiment.cpp @@ -98,6 +98,26 @@ namespace OpenMS { } + TargetedExperiment::TargetedExperiment(TargetedExperiment && rhs) noexcept : + cvs_(std::move(rhs.cvs_)), + contacts_(std::move(rhs.contacts_)), + publications_(std::move(rhs.publications_)), + instruments_(std::move(rhs.instruments_)), + targets_(std::move(rhs.targets_)), + software_(std::move(rhs.software_)), + proteins_(std::move(rhs.proteins_)), + compounds_(std::move(rhs.compounds_)), + peptides_(std::move(rhs.peptides_)), + transitions_(std::move(rhs.transitions_)), + include_targets_(std::move(rhs.include_targets_)), + exclude_targets_(std::move(rhs.exclude_targets_)), + source_files_(std::move(rhs.source_files_)), + protein_reference_map_dirty_(true), + peptide_reference_map_dirty_(true), + compound_reference_map_dirty_(true) + { + } + TargetedExperiment::~TargetedExperiment() { } @@ -126,6 +146,30 @@ namespace OpenMS return *this; } + TargetedExperiment& TargetedExperiment::operator=(TargetedExperiment && rhs) noexcept + { + if (&rhs != this) + { + cvs_ = std::move(rhs.cvs_); + contacts_ = std::move(rhs.contacts_); + publications_ = std::move(rhs.publications_); + instruments_ = std::move(rhs.instruments_); + targets_ = std::move(rhs.targets_); + software_ = std::move(rhs.software_); + proteins_ = std::move(rhs.proteins_); + compounds_ = std::move(rhs.compounds_); + peptides_ = std::move(rhs.peptides_); + transitions_ = std::move(rhs.transitions_); + include_targets_ = std::move(rhs.include_targets_); + exclude_targets_ = std::move(rhs.exclude_targets_); + source_files_ = std::move(rhs.source_files_); + protein_reference_map_dirty_ = true; + peptide_reference_map_dirty_ = true; + compound_reference_map_dirty_ = true; + } + return *this; + } + TargetedExperiment TargetedExperiment::operator+(const TargetedExperiment & rhs) const { TargetedExperiment tmp(*this); diff --git a/src/openms/source/ANALYSIS/TARGETED/TargetedExperimentHelper.cpp b/src/openms/source/ANALYSIS/TARGETED/TargetedExperimentHelper.cpp index 9ed330ce996..a5480697f9a 100644 --- a/src/openms/source/ANALYSIS/TARGETED/TargetedExperimentHelper.cpp +++ b/src/openms/source/ANALYSIS/TARGETED/TargetedExperimentHelper.cpp @@ -38,9 +38,7 @@ #include #include -namespace OpenMS -{ - namespace TargetedExperimentHelper +namespace OpenMS::TargetedExperimentHelper { void setModification(int location, int max_size, String modification, OpenMS::AASequence& aas) @@ -110,4 +108,3 @@ namespace OpenMS } } -} diff --git a/src/openms/source/ANALYSIS/XLMS/OPXLHelper.cpp b/src/openms/source/ANALYSIS/XLMS/OPXLHelper.cpp index f8d754b429f..66bb94db874 100644 --- a/src/openms/source/ANALYSIS/XLMS/OPXLHelper.cpp +++ b/src/openms/source/ANALYSIS/XLMS/OPXLHelper.cpp @@ -491,7 +491,7 @@ namespace OpenMS cross_link_candidate.cross_linker_name = cross_link_name; // filter out unnecessary loop-link candidates that we would not trust in a manual validation anyway - if ((seq_second.size() == 0) && (link_pos_second[y] != -1)) // if it is a loop-link + if ((seq_second.empty()) && (link_pos_second[y] != -1)) // if it is a loop-link { // if the positions are the same, then it is linking the same residue with itself // also pos1 > pos2 would be the same link as pos1 < pos2 with switched positions @@ -516,7 +516,7 @@ namespace OpenMS continue; } // check for modified residue for loop linked cases - if ((seq_second.size() == 0 && link_pos_second[y] != -1) && (*peptide_first)[link_pos_second[y]].isModified()) + if ((seq_second.empty() && link_pos_second[y] != -1) && (*peptide_first)[link_pos_second[y]].isModified()) { continue; } @@ -758,7 +758,7 @@ namespace OpenMS #endif bool mod_set = false; - if (mods.size() > 0) // If several mods have the same diff mass, try to resolve ambiguity by cross-linker name (e.g. DSS and BS3 are different reagents, but have the same result after the reaction) + if (!mods.empty()) // If several mods have the same diff mass, try to resolve ambiguity by cross-linker name (e.g. DSS and BS3 are different reagents, but have the same result after the reaction) { for (Size s = 0; s < mods.size(); ++s) { @@ -774,14 +774,14 @@ namespace OpenMS } } } - else if (mods.size() == 0 && (alpha_pos == 0 || alpha_pos == static_cast(seq_alpha.size())-1)) + else if (mods.empty() && (alpha_pos == 0 || alpha_pos == static_cast(seq_alpha.size())-1)) { #ifdef DEBUG_OPXLHELPER #pragma omp critical (LOG_DEBUG_access) OPENMS_LOG_DEBUG << "No residue specific mono-link found, searching for terminal mods..." << endl; #endif ModificationsDB::getInstance()->searchModificationsByDiffMonoMass(mods, top_csms_spectrum[i].cross_link.cross_linker_mass, 0.001, "", alpha_term_spec); - if (mods.size() > 0) + if (!mods.empty()) { Size mod_index = 0; for (Size s = 0; s < mods.size(); ++s) @@ -811,7 +811,7 @@ namespace OpenMS } } - if ( (mods.size() > 0) && (!mod_set) ) // If resolving by name did not work, use any with matching diff mass + if ( (!mods.empty()) && (!mod_set) ) // If resolving by name did not work, use any with matching diff mass { seq_alpha.setModification(alpha_pos, mods[0]); mod_set = true; @@ -1158,7 +1158,7 @@ namespace OpenMS map new_peptide_ids; for (PeptideIdentification& id : peptide_ids) { - if (id.getHits().size() > 0) + if (!id.getHits().empty()) { PeptideHit& hit = id.getHits()[0]; PeptideIdentification new_id; @@ -1181,6 +1181,7 @@ namespace OpenMS } } vector new_peptide_ids_vector; + new_peptide_ids_vector.reserve(new_peptide_ids.size()); for (pair mit : new_peptide_ids) { new_peptide_ids_vector.push_back(mit.second); @@ -1253,7 +1254,7 @@ namespace OpenMS } } // set delta score to 0 for the last ranked PeptideHit, or if only one Peptide hit is available - if (phs.size() > 0) + if (!phs.empty()) { phs[phs.size()-1].setMetaValue(Constants::UserParam::DELTA_SCORE, 0.0); } @@ -1354,7 +1355,7 @@ namespace OpenMS std::vector< int > precursor_correction_positions; // if sequence tags are used and no tags were found, don't bother combining peptide pairs - if ( (use_sequence_tags && tags.size() > 0) || + if ( (use_sequence_tags && !tags.empty()) || !use_sequence_tags) { candidates = OPXLHelper::enumerateCrossLinksAndMasses(filtered_peptide_masses, cross_link_mass, cross_link_mass_mono_link, cross_link_residue1, cross_link_residue2, spectrum_precursor_vector, precursor_correction_positions, precursor_mass_tolerance, precursor_mass_tolerance_unit_ppm); diff --git a/src/openms/source/ANALYSIS/XLMS/OPXLSpectrumProcessingAlgorithms.cpp b/src/openms/source/ANALYSIS/XLMS/OPXLSpectrumProcessingAlgorithms.cpp index f4374faefd1..5576b2b5a89 100644 --- a/src/openms/source/ANALYSIS/XLMS/OPXLSpectrumProcessingAlgorithms.cpp +++ b/src/openms/source/ANALYSIS/XLMS/OPXLSpectrumProcessingAlgorithms.cpp @@ -35,6 +35,7 @@ #include #include +#include // preprocessing and filtering #include @@ -493,4 +494,5 @@ namespace OpenMS } } } + } diff --git a/src/openms/source/ANALYSIS/XLMS/OpenPepXLAlgorithm.cpp b/src/openms/source/ANALYSIS/XLMS/OpenPepXLAlgorithm.cpp index 9c9658d5b3a..703832d83c1 100644 --- a/src/openms/source/ANALYSIS/XLMS/OpenPepXLAlgorithm.cpp +++ b/src/openms/source/ANALYSIS/XLMS/OpenPepXLAlgorithm.cpp @@ -222,7 +222,7 @@ using namespace OpenMS; protein_ids[0].setPrimaryMSRunPath({}, unprocessed_spectra); - if (unprocessed_spectra.empty() && unprocessed_spectra.getChromatograms().size() == 0) + if (unprocessed_spectra.empty() && unprocessed_spectra.getChromatograms().empty()) { OPENMS_LOG_WARN << "The given file does not contain any conventional peak data, but might" " contain chromatograms. This tool currently cannot handle them, sorry." << endl; @@ -512,10 +512,10 @@ using namespace OpenMS; vector< pair< Size, Size > > matched_spec_xlinks_alpha; vector< pair< Size, Size > > matched_spec_xlinks_beta; - if (linear_peaks.size() > 0) + if (!linear_peaks.empty()) { DataArrays::IntegerDataArray exp_charges; - if (linear_peaks.getIntegerDataArrays().size() > 0) + if (!linear_peaks.getIntegerDataArrays().empty()) { exp_charges = linear_peaks.getIntegerDataArrays()[0]; } @@ -547,10 +547,10 @@ using namespace OpenMS; continue; } - if (xlink_peaks.size() > 0) + if (!xlink_peaks.empty()) { DataArrays::IntegerDataArray exp_charges; - if (xlink_peaks.getIntegerDataArrays().size() > 0) + if (!xlink_peaks.getIntegerDataArrays().empty()) { exp_charges = xlink_peaks.getIntegerDataArrays()[0]; } @@ -673,7 +673,7 @@ using namespace OpenMS; DataArrays::FloatDataArray ppm_error_array_linear_beta; DataArrays::FloatDataArray ppm_error_array_xlinks_beta; - if (linear_peaks.size() > 0) + if (!linear_peaks.empty()) { DataArrays::IntegerDataArray theo_charges_alpha; DataArrays::IntegerDataArray theo_charges_beta; @@ -681,7 +681,7 @@ using namespace OpenMS; auto theo_alpha_it = getDataArrayByName(theoretical_spec_linear_alpha.getIntegerDataArrays(), "charge"); theo_charges_alpha = *theo_alpha_it; - if (theoretical_spec_linear_beta.size() > 0) + if (!theoretical_spec_linear_beta.empty()) { auto theo_beta_it = getDataArrayByName(theoretical_spec_linear_beta.getIntegerDataArrays(), "charge"); theo_charges_beta = *theo_beta_it; @@ -699,7 +699,7 @@ using namespace OpenMS; OPXLSpectrumProcessingAlgorithms::getSpectrumAlignmentFastCharge(matched_spec_linear_alpha, fragment_mass_tolerance_, fragment_mass_tolerance_unit_ppm_, theoretical_spec_linear_alpha, linear_peaks, theo_charges_alpha, exp_charges, ppm_error_array_linear_alpha); OPXLSpectrumProcessingAlgorithms::getSpectrumAlignmentFastCharge(matched_spec_linear_beta, fragment_mass_tolerance_, fragment_mass_tolerance_unit_ppm_, theoretical_spec_linear_beta, linear_peaks, theo_charges_beta, exp_charges, ppm_error_array_linear_beta); } - if (xlink_peaks.size() > 0) + if (!xlink_peaks.empty()) { DataArrays::IntegerDataArray theo_charges_alpha; DataArrays::IntegerDataArray theo_charges_beta; @@ -707,7 +707,7 @@ using namespace OpenMS; auto theo_alpha_it = getDataArrayByName(theoretical_spec_xlinks_alpha.getIntegerDataArrays(), "charge"); theo_charges_alpha = *theo_alpha_it; - if (theoretical_spec_xlinks_beta.size() > 0) + if (!theoretical_spec_xlinks_beta.empty()) { auto theo_beta_it = getDataArrayByName(theoretical_spec_xlinks_beta.getIntegerDataArrays(), "charge"); theo_charges_beta = *theo_beta_it; @@ -916,7 +916,7 @@ using namespace OpenMS; { iso_peaks_xlinks_alpha.push_back(num_iso_peaks_array_xlinks[match.second]); } - if (iso_peaks_xlinks_alpha.size() > 0) + if (!iso_peaks_xlinks_alpha.empty()) { csm.num_iso_peaks_mean_xlinks_alpha = Math::mean(iso_peaks_xlinks_alpha.begin(), iso_peaks_xlinks_alpha.end()); } @@ -928,14 +928,14 @@ using namespace OpenMS; { iso_peaks_xlinks_beta.push_back(num_iso_peaks_array_xlinks[match.second]); } - if (iso_peaks_xlinks_beta.size() > 0) + if (!iso_peaks_xlinks_beta.empty()) { csm.num_iso_peaks_mean_xlinks_beta = Math::mean(iso_peaks_xlinks_beta.begin(), iso_peaks_xlinks_beta.end()); } } } - if (ppm_error_array_linear_alpha.size() > 0) + if (!ppm_error_array_linear_alpha.empty()) { for (Size k = 0; k < ppm_error_array_linear_alpha.size(); ++k) { @@ -944,7 +944,7 @@ using namespace OpenMS; csm.ppm_error_abs_sum_linear_alpha = csm.ppm_error_abs_sum_linear_alpha / ppm_error_array_linear_alpha.size(); } - if (ppm_error_array_linear_beta.size() > 0) + if (!ppm_error_array_linear_beta.empty()) { for (Size k = 0; k < ppm_error_array_linear_beta.size(); ++k) { @@ -953,7 +953,7 @@ using namespace OpenMS; csm.ppm_error_abs_sum_linear_beta = csm.ppm_error_abs_sum_linear_beta / ppm_error_array_linear_beta.size(); } - if (ppm_error_array_xlinks_alpha.size() > 0) + if (!ppm_error_array_xlinks_alpha.empty()) { for (Size k = 0; k < ppm_error_array_xlinks_alpha.size(); ++k) { @@ -962,7 +962,7 @@ using namespace OpenMS; csm.ppm_error_abs_sum_xlinks_alpha = csm.ppm_error_abs_sum_xlinks_alpha / ppm_error_array_xlinks_alpha.size(); } - if (ppm_error_array_xlinks_beta.size() > 0) + if (!ppm_error_array_xlinks_beta.empty()) { for (Size k = 0; k < ppm_error_array_xlinks_beta.size(); ++k) { @@ -987,7 +987,7 @@ using namespace OpenMS; ppm_error_array.insert(ppm_error_array.end(), ppm_error_array_linear.begin(), ppm_error_array_linear.end()); ppm_error_array.insert(ppm_error_array.end(), ppm_error_array_xlinks.begin(), ppm_error_array_xlinks.end()); - if (ppm_error_array_linear.size() > 0) + if (!ppm_error_array_linear.empty()) { for (double ppm_error : ppm_error_array_linear) { @@ -996,7 +996,7 @@ using namespace OpenMS; csm.ppm_error_abs_sum_linear = csm.ppm_error_abs_sum_linear / ppm_error_array_linear.size(); } - if (ppm_error_array_xlinks.size() > 0) + if (!ppm_error_array_xlinks.empty()) { for (double ppm_error : ppm_error_array_xlinks) { @@ -1005,7 +1005,7 @@ using namespace OpenMS; csm.ppm_error_abs_sum_xlinks = csm.ppm_error_abs_sum_xlinks / ppm_error_array_xlinks.size(); } - if (ppm_error_array_alpha.size() > 0) + if (!ppm_error_array_alpha.empty()) { for (double ppm_error : ppm_error_array_alpha) { @@ -1014,7 +1014,7 @@ using namespace OpenMS; csm.ppm_error_abs_sum_alpha = csm.ppm_error_abs_sum_alpha / ppm_error_array_alpha.size(); } - if (ppm_error_array_beta.size() > 0) + if (!ppm_error_array_beta.empty()) { for (double ppm_error : ppm_error_array_beta) { @@ -1023,7 +1023,7 @@ using namespace OpenMS; csm.ppm_error_abs_sum_beta = csm.ppm_error_abs_sum_beta / ppm_error_array_beta.size(); } - if (ppm_error_array.size() > 0) + if (!ppm_error_array.empty()) { for (double ppm_error : ppm_error_array) { @@ -1203,7 +1203,7 @@ using namespace OpenMS; vector< pair< Size, Size > > matched_fragments_with_shift; spectrum_heavy_to_light.sortByPosition(); - if (spectrum_heavy_to_light.size() > 0) + if (!spectrum_heavy_to_light.empty()) { dummy_array.clear(); OPXLSpectrumProcessingAlgorithms::getSpectrumAlignmentFastCharge(matched_fragments_with_shift, fragment_mass_tolerance_xlinks, fragment_mass_tolerance_unit_ppm, spectrum_light, spectrum_heavy_to_light, dummy_charges, dummy_charges, dummy_array, 0.3); @@ -1246,7 +1246,7 @@ using namespace OpenMS; for (Size i = 0; i != matched_fragments_without_shift.size(); ++i) { linear_peaks.push_back(spectrum_light[matched_fragments_without_shift[i].first]); - if (spectrum_light_charges.size() > 0) + if (!spectrum_light_charges.empty()) { linear_peaks.getIntegerDataArrays()[0].push_back(spectrum_light_charges[matched_fragments_without_shift[i].first]); linear_peaks.getIntegerDataArrays()[1].push_back(spectrum_light_iso_peaks[matched_fragments_without_shift[i].first]); diff --git a/src/openms/source/ANALYSIS/XLMS/OpenPepXLLFAlgorithm.cpp b/src/openms/source/ANALYSIS/XLMS/OpenPepXLLFAlgorithm.cpp index e0e478b6e60..87557381ffd 100644 --- a/src/openms/source/ANALYSIS/XLMS/OpenPepXLLFAlgorithm.cpp +++ b/src/openms/source/ANALYSIS/XLMS/OpenPepXLLFAlgorithm.cpp @@ -219,7 +219,7 @@ using namespace OpenMS; protein_ids[0].setPrimaryMSRunPath({}, unprocessed_spectra); - if (unprocessed_spectra.empty() && unprocessed_spectra.getChromatograms().size() == 0) + if (unprocessed_spectra.empty() && unprocessed_spectra.getChromatograms().empty()) { OPENMS_LOG_WARN << "The given file does not contain any conventional peak data, but might" " contain chromatograms. This tool currently cannot handle them, sorry." << endl; @@ -478,7 +478,7 @@ using namespace OpenMS; vector< pair< Size, Size > > matched_spec_xlinks_beta; PeakSpectrum::IntegerDataArray exp_charges; - if (spectrum.getIntegerDataArrays().size() > 0) + if (!spectrum.getIntegerDataArrays().empty()) { exp_charges = spectrum.getIntegerDataArrays()[0]; } @@ -615,7 +615,7 @@ using namespace OpenMS; } // Something like this can happen, e.g. with a loop link connecting the first and last residue of a peptide - if ( (theoretical_spec_linear_alpha.size() < 1) || (theoretical_spec_xlinks_alpha.size() < 1) ) + if ( (theoretical_spec_linear_alpha.empty()) || (theoretical_spec_xlinks_alpha.empty()) ) { continue; } @@ -632,22 +632,22 @@ using namespace OpenMS; PeakSpectrum::IntegerDataArray& theo_charges_la = theoretical_spec_linear_alpha.getIntegerDataArrays()[0]; PeakSpectrum::IntegerDataArray theo_charges_xa; - if (theoretical_spec_xlinks_alpha.getIntegerDataArrays().size() > 0) + if (!theoretical_spec_xlinks_alpha.getIntegerDataArrays().empty()) { theo_charges_xa = theoretical_spec_xlinks_alpha.getIntegerDataArrays()[0]; } PeakSpectrum::IntegerDataArray theo_charges_lb; PeakSpectrum::IntegerDataArray theo_charges_xb; - if (theoretical_spec_linear_beta.getIntegerDataArrays().size() > 0) + if (!theoretical_spec_linear_beta.getIntegerDataArrays().empty()) { theo_charges_lb = theoretical_spec_linear_beta.getIntegerDataArrays()[0]; } - if (theoretical_spec_xlinks_beta.getIntegerDataArrays().size() > 0) + if (!theoretical_spec_xlinks_beta.getIntegerDataArrays().empty()) { theo_charges_xb = theoretical_spec_xlinks_beta.getIntegerDataArrays()[0]; } PeakSpectrum::IntegerDataArray exp_charges; - if (spectrum.getIntegerDataArrays().size() > 0) + if (!spectrum.getIntegerDataArrays().empty()) { exp_charges = spectrum.getIntegerDataArrays()[0]; } @@ -784,7 +784,7 @@ using namespace OpenMS; csm.precursor_correction = cross_link_candidate.precursor_correction; - if (precursor_purities.size() > 0) + if (!precursor_purities.empty()) { csm.precursor_total_intensity = precursor_purities[spectrum.getNativeID()].total_intensity; csm.precursor_target_intensity = precursor_purities[spectrum.getNativeID()].target_intensity; @@ -813,7 +813,7 @@ using namespace OpenMS; csm.ppm_error_abs_sum = 0; // TODO find a better way to compute the absolute sum - if (ppm_error_array_linear_alpha.size() > 0) + if (!ppm_error_array_linear_alpha.empty()) { for (Size k = 0; k < ppm_error_array_linear_alpha.size(); ++k) { @@ -822,7 +822,7 @@ using namespace OpenMS; csm.ppm_error_abs_sum_linear_alpha = csm.ppm_error_abs_sum_linear_alpha / ppm_error_array_linear_alpha.size(); } - if (ppm_error_array_linear_beta.size() > 0) + if (!ppm_error_array_linear_beta.empty()) { for (Size k = 0; k < ppm_error_array_linear_beta.size(); ++k) { @@ -831,7 +831,7 @@ using namespace OpenMS; csm.ppm_error_abs_sum_linear_beta = csm.ppm_error_abs_sum_linear_beta / ppm_error_array_linear_beta.size(); } - if (ppm_error_array_xlinks_alpha.size() > 0) + if (!ppm_error_array_xlinks_alpha.empty()) { for (Size k = 0; k < ppm_error_array_xlinks_alpha.size(); ++k) { @@ -840,7 +840,7 @@ using namespace OpenMS; csm.ppm_error_abs_sum_xlinks_alpha = csm.ppm_error_abs_sum_xlinks_alpha / ppm_error_array_xlinks_alpha.size(); } - if (ppm_error_array_xlinks_beta.size() > 0) + if (!ppm_error_array_xlinks_beta.empty()) { for (Size k = 0; k < ppm_error_array_xlinks_beta.size(); ++k) { @@ -865,7 +865,7 @@ using namespace OpenMS; ppm_error_array.insert(ppm_error_array.end(), ppm_error_array_linear.begin(), ppm_error_array_linear.end()); ppm_error_array.insert(ppm_error_array.end(), ppm_error_array_xlinks.begin(), ppm_error_array_xlinks.end()); - if (ppm_error_array_linear.size() > 0) + if (!ppm_error_array_linear.empty()) { for (double ppm_error : ppm_error_array_linear) { @@ -874,7 +874,7 @@ using namespace OpenMS; csm.ppm_error_abs_sum_linear = csm.ppm_error_abs_sum_linear / ppm_error_array_linear.size(); } - if (ppm_error_array_xlinks.size() > 0) + if (!ppm_error_array_xlinks.empty()) { for (double ppm_error : ppm_error_array_xlinks) { @@ -883,7 +883,7 @@ using namespace OpenMS; csm.ppm_error_abs_sum_xlinks = csm.ppm_error_abs_sum_xlinks / ppm_error_array_xlinks.size(); } - if (ppm_error_array_alpha.size() > 0) + if (!ppm_error_array_alpha.empty()) { for (double ppm_error : ppm_error_array_alpha) { @@ -892,7 +892,7 @@ using namespace OpenMS; csm.ppm_error_abs_sum_alpha = csm.ppm_error_abs_sum_alpha / ppm_error_array_alpha.size(); } - if (ppm_error_array_beta.size() > 0) + if (!ppm_error_array_beta.empty()) { for (double ppm_error : ppm_error_array_beta) { @@ -901,7 +901,7 @@ using namespace OpenMS; csm.ppm_error_abs_sum_beta = csm.ppm_error_abs_sum_beta / ppm_error_array_beta.size(); } - if (ppm_error_array.size() > 0) + if (!ppm_error_array.empty()) { for (double ppm_error : ppm_error_array) { diff --git a/src/openms/source/ANALYSIS/XLMS/XFDRAlgorithm.cpp b/src/openms/source/ANALYSIS/XLMS/XFDRAlgorithm.cpp index 63bb2ae939b..18ef095fa14 100644 --- a/src/openms/source/ANALYSIS/XLMS/XFDRAlgorithm.cpp +++ b/src/openms/source/ANALYSIS/XLMS/XFDRAlgorithm.cpp @@ -102,7 +102,7 @@ using namespace OpenMS; // Loop through the peptides, apply filter, and assign cross-link types for (PeptideIdentification& pep_id : peptide_ids) { - if (pep_id.getHits().size() < 1) + if (pep_id.getHits().empty()) { continue; } @@ -309,7 +309,7 @@ using namespace OpenMS; for (Size i = 0; i < peptide_ids.size(); ++i) { PeptideIdentification &pep_id = peptide_ids[i]; - if (pep_id.getHits().size() < 1) + if (pep_id.getHits().empty()) { continue; } @@ -474,7 +474,7 @@ using namespace OpenMS; void XFDRAlgorithm::fdr_xprophet_(std::map< String, Math::Histogram<> > & cum_histograms, const String & targetclass, const String & decoyclass, const String & fulldecoyclass, - std::vector< double > & fdr, bool mono) + std::vector< double > & fdr, bool mono) const { // Determine whether targetclass, decoyclass, and fulldecoyclass are present in the histogram map bool targetclass_present = cum_histograms.find(targetclass) != cum_histograms.end(); diff --git a/src/openms/source/ANALYSIS/XLMS/XQuestScores.cpp b/src/openms/source/ANALYSIS/XLMS/XQuestScores.cpp index 1aa4f6a7bd9..2e990aa98ee 100644 --- a/src/openms/source/ANALYSIS/XLMS/XQuestScores.cpp +++ b/src/openms/source/ANALYSIS/XLMS/XQuestScores.cpp @@ -330,7 +330,7 @@ namespace OpenMS std::vector< double > results(maxshift * 2 + 1, 0); // return 0 = no correlation, when one of the spectra is empty - if (spec1.size() == 0 || spec2.size() == 0) { + if (spec1.empty() || spec2.empty()) { return results; } @@ -388,7 +388,7 @@ namespace OpenMS double XQuestScores::xCorrelationPrescore(const PeakSpectrum & spec1, const PeakSpectrum & spec2, double tolerance) { // return 0 = no correlation, when one of the spectra is empty - if (spec1.size() == 0 || spec2.size() == 0) { + if (spec1.empty() || spec2.empty()) { return 0.0; } diff --git a/src/openms/source/APPLICATIONS/ConsoleUtils.cpp b/src/openms/source/APPLICATIONS/ConsoleUtils.cpp index 0589bae7320..cf5e69335ce 100644 --- a/src/openms/source/APPLICATIONS/ConsoleUtils.cpp +++ b/src/openms/source/APPLICATIONS/ConsoleUtils.cpp @@ -163,7 +163,7 @@ namespace OpenMS } for (Size i = 0; i < input.size(); ) { - String line = input.substr(i, result.size() == 0 ? line_len : short_line_len); // first line has full length + String line = input.substr(i, result.empty() ? line_len : short_line_len); // first line has full length Size advance_size = line.size(); if (line.hasSubstring("\n")) { @@ -182,7 +182,7 @@ namespace OpenMS // check if we are using the full length and split a word at the same time // cut a little earlier in that case for nicer looks - if (line.size() == (result.size() == 0 ? line_len : short_line_len) && short_line_len > 8 && line.rfind(' ') != String::npos) + if (line.size() == (result.empty() ? line_len : short_line_len) && short_line_len > 8 && line.rfind(' ') != String::npos) { String last_word = line.suffix(' '); if (last_word.length() < 4) @@ -193,8 +193,8 @@ namespace OpenMS } i += advance_size; - String s_intend = (result.size() == 0 ? "" : String(indentation, ' ')); // first line no indentation - String r = s_intend + (result.size() == 0 ? line : line.trim()); // intended lines get trimmed + String s_intend = (result.empty() ? "" : String(indentation, ' ')); // first line no indentation + String r = s_intend + (result.empty() ? line : line.trim()); // intended lines get trimmed result.push_back(r); //(r.fillRight(' ', (UInt) line_len)); } if (result.size() > max_lines) // remove lines from end if we get too many (but leave the last one)... diff --git a/src/openms/source/APPLICATIONS/TOPPBase.cpp b/src/openms/source/APPLICATIONS/TOPPBase.cpp index d1ac1fcf2ff..076f5a3f54e 100755 --- a/src/openms/source/APPLICATIONS/TOPPBase.cpp +++ b/src/openms/source/APPLICATIONS/TOPPBase.cpp @@ -652,7 +652,7 @@ namespace OpenMS case ParameterInformation::DOUBLELIST: { String tmp_s = ((String)it->default_value.toString()).substitute(", ", " "); - if (tmp_s != "" && tmp_s != "[]") + if (!tmp_s.empty() && tmp_s != "[]") { addons.push_back(String("default: '") + tmp_s + "'"); } @@ -669,10 +669,11 @@ namespace OpenMS case ParameterInformation::STRING: case ParameterInformation::INPUT_FILE: case ParameterInformation::OUTPUT_FILE: + case ParameterInformation::OUTPUT_PREFIX: case ParameterInformation::STRINGLIST: case ParameterInformation::INPUT_FILE_LIST: case ParameterInformation::OUTPUT_FILE_LIST: - if (it->valid_strings.size() != 0) + if (!it->valid_strings.empty()) { StringList copy = it->valid_strings; for (StringList::iterator str_it = copy.begin(); @@ -682,8 +683,11 @@ namespace OpenMS } String add = ""; - if (it->type == ParameterInformation::INPUT_FILE || it->type == ParameterInformation::OUTPUT_FILE || - it->type == ParameterInformation::INPUT_FILE_LIST || it->type == ParameterInformation::OUTPUT_FILE_LIST) + if (it->type == ParameterInformation::INPUT_FILE + || it->type == ParameterInformation::OUTPUT_FILE + || it->type == ParameterInformation::OUTPUT_PREFIX + || it->type == ParameterInformation::INPUT_FILE_LIST + || it->type == ParameterInformation::OUTPUT_FILE_LIST) add = " formats"; addons.push_back(String("valid") + add + ": " + ListUtils::concatenate(copy, ", ")); // concatenate restrictions by comma @@ -732,7 +736,7 @@ namespace OpenMS } // SUBSECTION's at the end - if (subsections_.size() != 0 && !verbose) + if (!subsections_.empty() && !verbose) { //determine indentation of description UInt indent = 0; @@ -777,6 +781,7 @@ namespace OpenMS bool input_file = entry.tags.count("input file"); bool output_file = entry.tags.count("output file"); + bool output_prefix = entry.tags.count("output prefix"); if (input_file && output_file) { throw InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Parameter '" + full_name + "' marked as both input and output file"); @@ -789,6 +794,8 @@ namespace OpenMS type = ParameterInformation::INPUT_FILE; else if (output_file) type = ParameterInformation::OUTPUT_FILE; + else if (output_prefix) + type = ParameterInformation::OUTPUT_PREFIX; else type = ParameterInformation::STRING; break; @@ -911,7 +918,7 @@ namespace OpenMS void TOPPBase::registerStringOption_(const String& name, const String& argument, const String& default_value, const String& description, bool required, bool advanced) { - if (required && default_value != "") + if (required && !default_value.empty()) throw InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Registering a required StringOption param (" + name + ") with a non-empty default is forbidden!", default_value); parameters_.push_back(ParameterInformation(name, ParameterInformation::STRING, argument, default_value, description, required, advanced)); } @@ -967,7 +974,7 @@ namespace OpenMS for (Size j = 0; j < defaults.size(); ++j) // allow the empty string even if not in restrictions { - if (defaults[j].size() > 0 && !ListUtils::contains(valids, defaults[j])) + if (!defaults[j].empty() && !ListUtils::contains(valids, defaults[j])) { throw InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "TO THE DEVELOPER: The TOPP/UTILS tool option '" + name + "' with default value " + std::string(p.default_value) + " does not meet restrictions!"); } @@ -999,12 +1006,13 @@ namespace OpenMS if (p.type != ParameterInformation::INPUT_FILE && p.type != ParameterInformation::OUTPUT_FILE && p.type != ParameterInformation::INPUT_FILE_LIST - && p.type != ParameterInformation::OUTPUT_FILE_LIST) + && p.type != ParameterInformation::OUTPUT_FILE_LIST + && p.type != ParameterInformation::OUTPUT_PREFIX) { throw ElementNotFound(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, name); } - if (p.valid_strings.size() > 0) + if (!p.valid_strings.empty()) { throw Exception::Precondition(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Internal error: Valid formats are already set for '" + name + "'. Please check for typos!"); } @@ -1117,7 +1125,7 @@ namespace OpenMS } if (required && !default_value.empty() && count_conflicting_tags == 0) throw InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Registering a required InputFile param (" + name + ") with a non-empty default is forbidden!", default_value); - parameters_.push_back(ParameterInformation(name, ParameterInformation::INPUT_FILE, argument, default_value, description, required, advanced, tags)); + parameters_.push_back(ParameterInformation(name, ParameterInformation::INPUT_FILE, argument, default_value, description, required, advanced, tags)); } void TOPPBase::registerOutputFile_(const String& name, const String& argument, const String& default_value, const String& description, bool required, bool advanced) @@ -1127,6 +1135,13 @@ namespace OpenMS parameters_.push_back(ParameterInformation(name, ParameterInformation::OUTPUT_FILE, argument, default_value, description, required, advanced)); } + void TOPPBase::registerOutputPrefix_(const String& name, const String& argument, const String& default_value, const String& description, bool required, bool advanced) + { + if (required && !default_value.empty()) + throw InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Registering a required OutputPrefix param (" + name + ") with a non-empty default is forbidden!", default_value); + parameters_.push_back(ParameterInformation(name, ParameterInformation::OUTPUT_PREFIX, argument, default_value, description, required, advanced)); + } + void TOPPBase::registerDoubleOption_(const String& name, const String& argument, double default_value, const String& description, bool required, bool advanced) { if (required) @@ -1147,7 +1162,7 @@ namespace OpenMS void TOPPBase::registerOutputFileList_(const String& name, const String& argument, StringList default_value, const String& description, bool required, bool advanced) { - if (required && default_value.size() > 0) + if (required && !default_value.empty()) throw InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Registering a required OutputFileList param (" + name + ") with a non-empty default is forbidden!", ListUtils::concatenate(default_value, ",")); parameters_.push_back(ParameterInformation(name, ParameterInformation::OUTPUT_FILE_LIST, argument, ListUtils::create(default_value), description, required, advanced)); } @@ -1166,7 +1181,7 @@ namespace OpenMS void TOPPBase::registerStringList_(const String& name, const String& argument, StringList default_value, const String& description, bool required, bool advanced) { - if (required && default_value.size() > 0) + if (required && !default_value.empty()) throw InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Registering a required StringList param (" + name + ") with a non-empty default is forbidden!", ListUtils::concatenate(default_value, ",")); parameters_.push_back(ParameterInformation(name, ParameterInformation::STRINGLIST, argument, ListUtils::create(default_value), description, required, advanced)); } @@ -1175,7 +1190,7 @@ namespace OpenMS { stringstream ss; ss << default_value; - if (required && default_value.size() > 0) + if (required && !default_value.empty()) throw InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Registering a required IntList param (" + name + ") with a non-empty default is forbidden!", String(ss.str())); parameters_.push_back(ParameterInformation(name, ParameterInformation::INTLIST, argument, default_value, description, required, advanced)); } @@ -1184,7 +1199,7 @@ namespace OpenMS { stringstream ss; ss << default_value; - if (required && default_value.size() > 0) + if (required && !default_value.empty()) throw InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Registering a required DoubleList param (" + name + ") with a non-empty default is forbidden!", String(ss.str())); parameters_.push_back(ParameterInformation(name, ParameterInformation::DOUBLELIST, argument, default_value, description, required, advanced)); } @@ -1221,14 +1236,17 @@ namespace OpenMS String TOPPBase::getStringOption_(const String& name) const { const ParameterInformation& p = findEntry_(name); - if (p.type != ParameterInformation::STRING && p.type != ParameterInformation::INPUT_FILE && p.type != ParameterInformation::OUTPUT_FILE) + if (p.type != ParameterInformation::STRING + && p.type != ParameterInformation::INPUT_FILE + && p.type != ParameterInformation::OUTPUT_FILE + && p.type != ParameterInformation::OUTPUT_PREFIX) { throw WrongParameterType(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, name); } if (p.required && (getParam_(name).isEmpty() || getParam_(name) == "")) { String message = "'" + name + "'"; - if (p.valid_strings.size() > 0) + if (!p.valid_strings.empty()) { message += " [valid: " + ListUtils::concatenate(p.valid_strings, ", ") + "]"; } @@ -1258,7 +1276,7 @@ namespace OpenMS throw RequiredParameterNotGiven(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, name); } double tmp = getParamAsDouble_(name, (double)p.default_value); - if (p.required && boost::math::isnan(tmp)) + if (p.required && std::isnan(tmp)) { throw RequiredParameterNotGiven(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, name); } @@ -1360,6 +1378,10 @@ namespace OpenMS { outputFileWritable_(param_value, param_name); } + else if (p.type == ParameterInformation::OUTPUT_PREFIX) + { + outputFileWritable_(param_value + "_0", param_name); // only test one file + } // check restrictions if (p.valid_strings.empty()) return; @@ -1400,7 +1422,8 @@ namespace OpenMS // determine file type as string FileTypes::Type f_type = FileHandler::getTypeByFileName(param_value); // Wrong ending, unknown is is ok. - if (f_type != FileTypes::UNKNOWN && !ListUtils::contains(p.valid_strings, FileTypes::typeToName(f_type).toUpper(), ListUtils::CASE::INSENSITIVE)) + if (f_type != FileTypes::UNKNOWN + && !ListUtils::contains(p.valid_strings, FileTypes::typeToName(f_type).toUpper(), ListUtils::CASE::INSENSITIVE)) { throw InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("Invalid output file extension for file '") + param_value + "'. Valid file extensions are: '" + @@ -1408,6 +1431,8 @@ namespace OpenMS } break; } + case ParameterInformation::OUTPUT_PREFIX: /* no file extension check for out prefixes */ + break; default: /*nothing */ break; } @@ -1416,7 +1441,9 @@ namespace OpenMS StringList TOPPBase::getStringList_(const String& name) const { const ParameterInformation& p = findEntry_(name); - if (p.type != ParameterInformation::STRINGLIST && p.type != ParameterInformation::INPUT_FILE_LIST && p.type != ParameterInformation::OUTPUT_FILE_LIST) + if (p.type != ParameterInformation::STRINGLIST + && p.type != ParameterInformation::INPUT_FILE_LIST + && p.type != ParameterInformation::OUTPUT_FILE_LIST) { throw WrongParameterType(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, name); } @@ -1456,7 +1483,7 @@ namespace OpenMS throw RequiredParameterNotGiven(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, name); } DoubleList tmp_list = getParamAsDoubleList_(name, p.default_value); - if (p.required && tmp_list.size() == 0) + if (p.required && tmp_list.empty()) { throw RequiredParameterNotGiven(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, name); } @@ -1490,15 +1517,13 @@ namespace OpenMS throw RequiredParameterNotGiven(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, name); } IntList tmp_list = getParamAsIntList_(name, p.default_value); - if (p.required && tmp_list.size() == 0) + if (p.required && tmp_list.empty()) { throw RequiredParameterNotGiven(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, name); } - Int tmp; - for (IntList::iterator it = tmp_list.begin(); it < tmp_list.end(); ++it) + for (const Int tmp : tmp_list) { - tmp = *it; writeDebug_(String("Value of string option '") + name + "': " + String(tmp), 1); //check if in valid range @@ -1772,6 +1797,7 @@ namespace OpenMS case ParameterInformation::STRING: case ParameterInformation::INPUT_FILE: case ParameterInformation::OUTPUT_FILE: + case ParameterInformation::OUTPUT_PREFIX: case ParameterInformation::FLAG: if (it->value.valueType() != ParamValue::STRING_VALUE) { @@ -1843,7 +1869,7 @@ namespace OpenMS // prepare error message String message; - if (param_name == "") + if (param_name.empty()) message = "Cannot read input file!\n"; else message = "Cannot read input file given from parameter '-" + param_name + "'!\n"; @@ -1872,7 +1898,7 @@ namespace OpenMS // prepare error message String message; - if (param_name == "") + if (param_name.empty()) message = "Cannot write output file!\n"; else message = "Cannot write output file given from parameter '-" + param_name + "'!\n"; @@ -1969,19 +1995,34 @@ namespace OpenMS String name = loc + it->name; std::vector tags; if (it->advanced) + { tags.push_back("advanced"); + } if (it->required) + { tags.push_back("required"); + } + if (it->type == ParameterInformation::INPUT_FILE || it->type == ParameterInformation::INPUT_FILE_LIST) + { tags.push_back("input file"); + } + if (it->type == ParameterInformation::OUTPUT_FILE || it->type == ParameterInformation::OUTPUT_FILE_LIST) + { tags.push_back("output file"); + } + + if (it->type == ParameterInformation::OUTPUT_PREFIX) + { + tags.push_back("output prefix"); + } switch (it->type) { case ParameterInformation::STRING: tmp.setValue(name, (String)it->default_value.toString(), it->description, tags); - if (it->valid_strings.size() != 0) + if (!it->valid_strings.empty()) { tmp.setValidStrings(name, ListUtils::create(it->valid_strings)); } @@ -1989,8 +2030,9 @@ namespace OpenMS case ParameterInformation::INPUT_FILE: case ParameterInformation::OUTPUT_FILE: + case ParameterInformation::OUTPUT_PREFIX: tmp.setValue(name, (String)it->default_value.toString(), it->description, tags); - if (it->valid_strings.size() != 0) + if (!it->valid_strings.empty()) { StringList vss_tmp = it->valid_strings; std::vector vss; @@ -2034,7 +2076,7 @@ namespace OpenMS case ParameterInformation::INPUT_FILE_LIST: case ParameterInformation::OUTPUT_FILE_LIST: tmp.setValue(name, it->default_value, it->description, tags); - if (it->valid_strings.size() != 0) + if (!it->valid_strings.empty()) { std::vector vss = ListUtils::create(it->valid_strings); std::transform(vss.begin(), vss.end(), vss.begin(), [](const std::string& s) {return "*." + s;}); @@ -2044,7 +2086,7 @@ namespace OpenMS case ParameterInformation::STRINGLIST: tmp.setValue(name, it->default_value, it->description, tags); - if (it->valid_strings.size() != 0) + if (!it->valid_strings.empty()) { tmp.setValidStrings(name, ListUtils::create(it->valid_strings)); } @@ -2254,7 +2296,7 @@ namespace OpenMS out_dir_str = QDir::currentPath(); } StringList type_list = ToolHandler::getTypes(tool_name_); - if (type_list.size() == 0) + if (type_list.empty()) type_list.push_back(""); // no type for most tools (except GenericWrapper) for (Size i = 0; i < type_list.size(); ++i) @@ -2263,12 +2305,12 @@ namespace OpenMS outputFileWritable_(write_ctd_file, "write_ctd"); // set type on command line, so that getDefaultParameters_() does not fail (as it calls getSubSectionDefaults() of tool) - if (type_list[i] != "") + if (!type_list[i].empty()) param_cmdline_.setValue("type", type_list[i]); Param default_params = getDefaultParameters_(); // add type to ini file - if (type_list[i] != "") + if (!type_list[i].empty()) default_params.setValue(this->ini_location_ + "type", type_list[i]); std::stringstream ss; @@ -2367,6 +2409,7 @@ namespace OpenMS case ParameterInformation::STRING: case ParameterInformation::INPUT_FILE: case ParameterInformation::OUTPUT_FILE: + case ParameterInformation::OUTPUT_PREFIX: if (queue.empty()) value = std::string(); else diff --git a/src/openms/source/CHEMISTRY/AASequence.cpp b/src/openms/source/CHEMISTRY/AASequence.cpp index 3216c9be960..69648b9cbba 100644 --- a/src/openms/source/CHEMISTRY/AASequence.cpp +++ b/src/openms/source/CHEMISTRY/AASequence.cpp @@ -269,7 +269,7 @@ namespace OpenMS for (Size i = 0; i != seq.size(); ++i) { const Residue& r = seq[i]; - const String aa = r.getOneLetterCode() != "" ? r.getOneLetterCode() : "X"; + const String aa = !r.getOneLetterCode().empty() ? r.getOneLetterCode() : "X"; if (r.isModified()) { const ResidueModification& mod = *(r.getModification()); @@ -282,7 +282,7 @@ namespace OpenMS { nominal_mass = mod.getDiffMonoMass(); } - else + else { nominal_mass = r.getMonoWeight(Residue::Internal); } @@ -300,7 +300,7 @@ namespace OpenMS } else { - bs += aa + "[" + sign + String(nominal_mass) + "]"; + bs += aa + "[" + sign + String(nominal_mass) + "]"; } } else @@ -398,7 +398,7 @@ namespace OpenMS EmpiricalFormula AASequence::getFormula(Residue::ResidueType type, Int charge) const { - if (peptide_.size() >= 1) + if (!peptide_.empty()) { // Initialize with the missing/additional protons EmpiricalFormula ef; // = EmpiricalFormula("H") * charge; ?? @@ -434,7 +434,7 @@ namespace OpenMS } ef += e->getFormula(Residue::Internal); } - + // add the missing formula part switch (type) { @@ -502,7 +502,7 @@ namespace OpenMS // Da, the sequence PEPTIXDE does not make sense as it is unclear what a // standard internal residue including named modifications if (e == rx) throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Cannot get weight of sequence with unknown AA 'X' with unknown mass.", toString()); - if (e->getOneLetterCode() == "") + if (e->getOneLetterCode().empty()) { tag_offset += e->getAverageWeight(Residue::Internal); } @@ -522,7 +522,7 @@ namespace OpenMS double AASequence::getMonoWeight(Residue::ResidueType type, Int charge) const { - if (peptide_.size() >= 1) + if (!peptide_.empty()) { double mono_weight(Constants::PROTON_MASS_U * charge); @@ -535,7 +535,7 @@ namespace OpenMS mono_weight += n_term_mod_->getDiffMonoMass(); } - if (c_term_mod_ != nullptr && + if (c_term_mod_ != nullptr && (type == Residue::Full || type == Residue::XIon || type == Residue::YIon || type == Residue::ZIon || type == Residue::CTerminal)) @@ -953,7 +953,7 @@ namespace OpenMS { os << aa.toString(); } - + // deal with C-terminal modifications if (peptide.c_term_mod_ != nullptr) { @@ -1060,8 +1060,8 @@ namespace OpenMS else { // neither internal nor terminal modification matches to our database - throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, str, - "Cannot convert string to peptide modification. No modification matches in our database."); + throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, + "Cannot convert string to peptide modification. No modification matches in our database.", mod); } } return mod_end; @@ -1102,7 +1102,7 @@ namespace OpenMS const ResidueModification* residue_mod = nullptr; // handle N-term modification - if (specificity == ResidueModification::N_TERM) + if (specificity == ResidueModification::N_TERM) { // Advance iterator one or two positions (we may or may not have a dot // after the closing bracket) to point to the first AA of the peptide. @@ -1276,7 +1276,7 @@ namespace OpenMS OPENMS_LOG_WARN << "Warning: unknown C-terminal modification '" + mod + "' - adding it to the database" << std::endl; } - // ----------------------------------- + // ----------------------------------- // Dealing with an unknown modification // ----------------------------------- @@ -1290,7 +1290,7 @@ namespace OpenMS // for its calculation of C/N-terminal modification mass and it uses // getMonoWeight(Residue::Internal) for each Residue. The Residue weight is // set when adding a modification using setModification_ - if (specificity == ResidueModification::N_TERM) + if (specificity == ResidueModification::N_TERM) { aas.n_term_mod_ = new_mod; return mod_end; @@ -1325,7 +1325,7 @@ namespace OpenMS if (peptide.empty()) return; // remove optional n and c at start and end of string - if (peptide[0] == 'n') + if (peptide[0] == 'n') { peptide.erase(0,1); } @@ -1333,13 +1333,13 @@ namespace OpenMS { return; } - if (peptide.back() == 'c') + if (peptide.back() == 'c') { peptide.pop_back(); } if (peptide.empty()) return; - + // detect if this is the new dot notation containing dots for termini and // track if last char denoted a terminus bool dot_terminal(false), dot_notation(false); @@ -1350,7 +1350,7 @@ namespace OpenMS str_it != peptide.end(); ++str_it) { // skip (optional) terminal delimiters, but remember that last character was a terminal one - if (*str_it == '.') + if (*str_it == '.') { dot_notation = true; dot_terminal = true; @@ -1366,8 +1366,8 @@ namespace OpenMS continue; } - // 2. modification: - // determine specificity: + // 2. modification: + // determine specificity: // - at termini we first assume we are dealing with a N- or C-terminal modifications // and fall back to (internal) modifications if there is none in our DB // - otherwise we can be sure we are dealing with an internal modification @@ -1388,7 +1388,7 @@ namespace OpenMS { specificity = ResidueModification::C_TERM; } - + if (*str_it == '(') { str_it = parseModRoundBrackets_(str_it, peptide, aas, specificity); @@ -1413,7 +1413,7 @@ namespace OpenMS "Cannot convert string to amino acid sequence: unexpected character '" + String(*str_it) + "'"); } } - + dot_terminal = false; // previous char was no dot } @@ -1441,7 +1441,7 @@ namespace OpenMS throw Exception::IndexOverflow(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, index, peptide_.size()); } - if (!modification.empty()) + if (!modification.empty()) { peptide_[index] = ResidueDB::getInstance()->getModifiedResidue(peptide_[index], modification); } @@ -1605,7 +1605,7 @@ namespace OpenMS void AASequence::setCTerminalModification(const ResidueModification* modification) { c_term_mod_ = modification; - } + } void AASequence::setNTerminalModification(const ResidueModification* modification) { @@ -1633,7 +1633,7 @@ namespace OpenMS } if (n_term_mod_ == nullptr) { - + OPENMS_LOG_WARN << "Modification with monoisotopic mass diff. of " << diffMonoMassStr << " not found in databases with tolerance " << tol << ". Adding unknown modification." << std::endl; n_term_mod_ = ResidueModification::createUnknownFromMassString(String(diffMonoMass), diffMonoMass, @@ -1663,7 +1663,7 @@ namespace OpenMS } if (n_term_mod_ == nullptr) { - + OPENMS_LOG_WARN << "Modification with monoisotopic mass diff. of " << diffMonoMassStr << " not found in databases with tolerance " << tol << ". Adding unknown modification." << std::endl; n_term_mod_ = ResidueModification::createUnknownFromMassString(String(diffMonoMass), diffMonoMass, diff --git a/src/openms/source/CHEMISTRY/AdductInfo.cpp b/src/openms/source/CHEMISTRY/AdductInfo.cpp new file mode 100644 index 00000000000..a96e438de16 --- /dev/null +++ b/src/openms/source/CHEMISTRY/AdductInfo.cpp @@ -0,0 +1,268 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2020. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Timo Sachsenberg $ +// $Authors: Erhan Kenar, Chris Bielow $ +// -------------------------------------------------------------------------- + +#include +#include +#include +#include +#include + +namespace OpenMS +{ + AdductInfo::AdductInfo(const String& name, const EmpiricalFormula& adduct, int charge, UInt mol_multiplier) + : + name_(name), + ef_(adduct), + charge_(charge), + mol_multiplier_(mol_multiplier) + { + if (charge_ == 0) + { + throw Exception::InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Charge of 0 is not allowed for an adduct (" + ef_.toString() + ")"); + } + if (adduct.getCharge() != 0) + { // EmpiricalFormula adds/subtracts protons to make up the charge; + // we just use the uncharged formula and take care of charge ourselves + throw Exception::InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "EmpiricalFormula must not have a charge (" + ef_.toString() + "), since the internal weight computation of EF is unsuitable for adducts."); + } + if (mol_multiplier_ == 0) + { + throw Exception::InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Mol. multiplier of 0 is not allowed for an adduct (" + ef_.toString() + ")"); + } + mass_ = ef_.getMonoWeight(); + } + + double AdductInfo::getNeutralMass(double observed_mz) const + { + // decharge and remove adduct (charge is guaranteed != 0; see C'tor) + double mass = observed_mz * abs(charge_) - mass_; + + // correct for electron masses + // (positive charge means there are electrons missing!) + // (negative charge requires increasing the mass by X electrons) + // --> looking at observed m/z, we thus need to decharge to get equal protons and electrons + mass += charge_ * 1 * Constants::ELECTRON_MASS_U; + + // the Mol multiplier determines if we assume to be looking at dimers or higher + // Currently, we just want the monomer, to compare its mass to a DB entry + mass /= mol_multiplier_; + + return mass; + } + + double AdductInfo::getMZ(double neutral_mass) const + { + // this is the inverse of getNeutralMass() + double neutral_nmer_mass_with_adduct = (neutral_mass * mol_multiplier_ + mass_); // [nM+adduct] + + // correct for electron masses + // (positive charge means there are electrons missing!) + // (negative charge requires increasing the mass by X electrons) + neutral_nmer_mass_with_adduct -= charge_ * Constants::ELECTRON_MASS_U; + + return neutral_nmer_mass_with_adduct / abs(charge_); + } + + double AdductInfo::getMassShift(bool use_avg_mass) const + { + double mass = use_avg_mass ? ef_.getAverageWeight() : mass_; + // intrinsic adduct charge comes from additional/missing electrons, but for + // mass shift must be compensated by adding/removing hydrogens: + return mass - charge_ * (Constants::PROTON_MASS_U + Constants::ELECTRON_MASS_U); + } + + /// checks if an adduct (e.g.a 'M+2K-H;1+') is valid, i.e. if the losses (==negative amounts) can actually be lost by the compound given in @p db_entry. + /// If the negative parts are present in @p db_entry, true is returned. + bool AdductInfo::isCompatible(EmpiricalFormula db_entry) const + { + return db_entry.contains(ef_ * -1); + } + + int AdductInfo::getCharge() const + { + return charge_; + } + + const String& AdductInfo::getName() const + { + return name_; + } + + const EmpiricalFormula& AdductInfo::getEmpiricalFormula() const + { + return ef_; + } + + UInt AdductInfo::getMolMultiplier() const + { + return mol_multiplier_; + } + + bool AdductInfo::operator==(const AdductInfo& other) const + { + return (name_ == other.name_) && (ef_ == other.ef_) && + (charge_ == other.charge_) && (mol_multiplier_ == other.mol_multiplier_); + } + + AdductInfo AdductInfo::parseAdductString(const String& adduct) + { + // adduct string looks like this: + // M+2K-H;1+ or + // 2M+CH3CN+Na;1+ (i.e. multimers are supported) + + // do some sanity checks on the string + + // retrieve adduct and charge + String cp_str(adduct); + cp_str.removeWhitespaces(); + StringList list; + cp_str.split(";", list); + // split term into formula and charge, e.g. "M-H" and "1-" + String mol_formula, charge_str; + if (list.size() == 2) + { + mol_formula = list[0]; + charge_str = list[1]; + } + else + { + throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Could not detect molecular ion; charge in '" + cp_str + "'. Got semicolon right?", cp_str); + } + + // check if charge string is formatted correctly + if ((!charge_str.hasSuffix("+")) && (!charge_str.hasSuffix("-"))) + { + throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Charge sign +/- in the end of the string is missing! ", charge_str); + } + + // get charge and sign (throws ConversionError if not an integer) + int charge = charge_str.substr(0, charge_str.size() - 1).toInt(); + + if (charge_str.suffix(1) == "+") + { + if (charge < 0) + { + charge *= -1; + } + } + else + { + if (charge > 0) + { + charge *= -1; + } + } + + // not allowing double ++ or -- or +- or -+ + String op_str(mol_formula); + op_str.substitute('-', '+'); + if (op_str.hasSubstring("++") || op_str.hasSuffix("+") || op_str.hasPrefix("+")) + { + throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "+/- operator must be surrounded by a chemical formula. Offending string: ", mol_formula); + } + + // split by + and - + op_str = mol_formula; + if (op_str.has('%')) + { + throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Character '%' not allowed within chemical formula. Offending string: ", mol_formula); + } + // ... we want to keep the - and +, so we add extra chars around, which we use as splitter later + op_str.substitute("-", "%-%"); + op_str.substitute("+", "%+%"); + // split while keeping + and - as separate entries + op_str.split("%", list); + + // some further sanity check if adduct formula is correct + String m_part(list[0]); + // std::cout << m_part.at(m_part.size() - 1) << std::endl; + + if (!m_part.hasSuffix("M")) + { + throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "First term of adduct string must contain the molecular entity 'M', optionally prefixed by a multiplier (e.g. '2M'); not found in ", m_part); + } + + int mol_multiplier(1); + // check if M has a multiplier in front + if (m_part.length() > 1) + { // will throw conversion error of not a number + mol_multiplier = m_part.prefix(m_part.length()-1).toDouble(); + } + + // evaluate the adduct string ... + // ... add/subtract each adduct compound + bool op_plus(false); + EmpiricalFormula ef; // will remain empty if there are no explicit adducts (e.g. 'M;+1') + for (Size part_idx = 1 /* omit 0 index, since its 'M' */; part_idx < list.size(); ++part_idx) + { + if (list[part_idx] == "+") + { + op_plus = true; + continue; + } + else if (list[part_idx] == "-") + { + op_plus = false; + continue; + } + + // std::cout << "putting " << tmpvec2[part_idx] << " into a formula with mass "; + + // check if formula has got a stoichiometry factor in front + String formula_str(list[part_idx]); + int stoichio_factor(1); + int idx(0); + while (isdigit(formula_str[idx])) ++idx; + if (idx > 0) + { + stoichio_factor = formula_str.substr(0, idx).toInt(); + formula_str = formula_str.substr(idx, formula_str.size()); + } + + EmpiricalFormula ef_part(formula_str); + OPENMS_LOG_DEBUG << "Adducts: " << stoichio_factor << "*" << formula_str << " == " << stoichio_factor * ef_part.getMonoWeight() << std::endl; + + if (op_plus) + { + ef += ef_part * stoichio_factor; + } + else // "-" operator + { + ef -= ef_part * stoichio_factor; + } + } + + return AdductInfo(cp_str, ef, charge, mol_multiplier); + } +} // closing namespace OpenMS diff --git a/src/openms/source/CHEMISTRY/CrossLinksDB.cpp b/src/openms/source/CHEMISTRY/CrossLinksDB.cpp index 0bcf67d2573..7c858b4b391 100644 --- a/src/openms/source/CHEMISTRY/CrossLinksDB.cpp +++ b/src/openms/source/CHEMISTRY/CrossLinksDB.cpp @@ -81,7 +81,7 @@ namespace OpenMS line_wo_spaces = line; line_wo_spaces.removeWhitespaces(); - if (line == "" || line[0] == '!') //skip empty lines and comments + if (line.empty() || line[0] == '!') //skip empty lines and comments { continue; } @@ -89,7 +89,7 @@ namespace OpenMS if (line_wo_spaces == "[Term]") //new term { // if the last [Term] was a moon-link, then it does not belong in CrossLinksDB - if (id != "" && !reading_mono_link) //store last term + if (!id.empty() && !reading_mono_link) //store last term { // split into single residues and make unique (for XL-MS, where equal specificities for both sides are possible) vector origins; @@ -275,7 +275,7 @@ namespace OpenMS } } - if (id != "") //store last term + if (!id.empty()) //store last term { // split into single residues and make unique (for XL-MS, where equal specificities for both sides are possible) vector origins; @@ -365,7 +365,7 @@ namespace OpenMS for (vector::const_iterator it = mods_.begin(); it != mods_.end(); ++it) { - if ((*it)->getPSIMODAccession() != "") + if (!(*it)->getPSIMODAccession().empty()) { modifications.push_back((*it)->getFullId()); } diff --git a/src/openms/source/CHEMISTRY/EmpiricalFormula.cpp b/src/openms/source/CHEMISTRY/EmpiricalFormula.cpp index 60e61cfdffc..1f028fcbfed 100644 --- a/src/openms/source/CHEMISTRY/EmpiricalFormula.cpp +++ b/src/openms/source/CHEMISTRY/EmpiricalFormula.cpp @@ -227,14 +227,8 @@ namespace OpenMS String EmpiricalFormula::toString() const { String formula; - std::map new_formula; - - for (const auto& it : formula_) - { - new_formula[it.first->getSymbol()] = it.second; - } - - for (const auto& it : new_formula) + auto formula_map = toMap(); + for (const auto& it : formula_map) { (formula += it.first) += String(it.second); } @@ -243,13 +237,12 @@ namespace OpenMS std::map EmpiricalFormula::toMap() const { - std::map new_formula; - + std::map formula_map; for (const auto & it : formula_) { - new_formula[it.first->getSymbol()] = it.second; + formula_map[it.first->getSymbol()] = it.second; } - return new_formula; + return formula_map; } EmpiricalFormula EmpiricalFormula::operator*(const SignedSize& times) const @@ -358,7 +351,7 @@ namespace OpenMS return formula_.find(element) != formula_.end(); } - bool EmpiricalFormula::contains(const EmpiricalFormula& ef) + bool EmpiricalFormula::contains(const EmpiricalFormula& ef) const { for (const auto& it : ef) { @@ -518,7 +511,7 @@ namespace OpenMS // split the formula vector splitter; - if (formula.size() > 0) + if (!formula.empty()) { if (!isdigit(formula[0]) || formula[0] == '(') { @@ -529,7 +522,7 @@ namespace OpenMS if ((isupper(formula[i]) && (!is_isotope || is_symbol)) || formula[i] == '(') { - if (split != "") + if (!split.empty()) { splitter.push_back(split); is_isotope = false; @@ -579,7 +572,7 @@ namespace OpenMS } SignedSize num(1); - if (number != "") + if (!number.empty()) { num = number.toInt(); } @@ -686,5 +679,19 @@ namespace OpenMS return formula_ < rhs.formula_; } + EmpiricalFormula EmpiricalFormula::hydrogen(int n_atoms) + { + const ElementDB* db = ElementDB::getInstance(); + return EmpiricalFormula(n_atoms, db->getElement(1)); + } + + EmpiricalFormula EmpiricalFormula::water(int n_molecules) + { + const ElementDB* db = ElementDB::getInstance(); + EmpiricalFormula formula; + formula.formula_[db->getElement(1)] = n_molecules * 2; // hydrogen + formula.formula_[db->getElement(8)] = n_molecules; // oxygen + return formula; + } } // namespace OpenMS diff --git a/src/openms/source/CHEMISTRY/ISOTOPEDISTRIBUTION/CoarseIsotopePatternGenerator.cpp b/src/openms/source/CHEMISTRY/ISOTOPEDISTRIBUTION/CoarseIsotopePatternGenerator.cpp index 2ba123e0f18..45b2e69fa2f 100644 --- a/src/openms/source/CHEMISTRY/ISOTOPEDISTRIBUTION/CoarseIsotopePatternGenerator.cpp +++ b/src/openms/source/CHEMISTRY/ISOTOPEDISTRIBUTION/CoarseIsotopePatternGenerator.cpp @@ -51,21 +51,7 @@ using namespace std; namespace OpenMS { - CoarseIsotopePatternGenerator::CoarseIsotopePatternGenerator() : - IsotopePatternGenerator(), - max_isotope_(0), - round_masses_(false) - { - } - - CoarseIsotopePatternGenerator::CoarseIsotopePatternGenerator(const Size& max_isotope) : - IsotopePatternGenerator(), - max_isotope_(max_isotope), - round_masses_(false) - { - } - - CoarseIsotopePatternGenerator::CoarseIsotopePatternGenerator(const Size& max_isotope, const bool round_masses) : + CoarseIsotopePatternGenerator::CoarseIsotopePatternGenerator(const Size max_isotope, const bool round_masses) : IsotopePatternGenerator(), max_isotope_(max_isotope), round_masses_(round_masses) @@ -104,8 +90,8 @@ namespace OpenMS for (; it != formula.end(); ++it) { IsotopeDistribution tmp = it->first->getIsotopeDistribution(); - result.set(convolve_(result.getContainer(), - convolvePow_(tmp.getContainer(), it->second))); + result.set(convolve(result.getContainer(), + convolvePow_(tmp.getContainer(), it->second))); } // replace atomic numbers with masses. @@ -158,7 +144,7 @@ namespace OpenMS return estimateForFragmentFromWeightAndComp(average_weight_precursor, average_weight_fragment, precursor_isotopes, 4.9384, 7.7583, 1.3577, 1.4773, 0.0417, 0); } - IsotopeDistribution CoarseIsotopePatternGenerator::estimateForFragmentFromPeptideWeightAndS(double average_weight_precursor, UInt S_precursor, double average_weight_fragment, UInt S_fragment, const std::set& precursor_isotopes) + IsotopeDistribution CoarseIsotopePatternGenerator::estimateForFragmentFromPeptideWeightAndS(double average_weight_precursor, UInt S_precursor, double average_weight_fragment, UInt S_fragment, const std::set& precursor_isotopes) const { UInt max_depth = *std::max_element(precursor_isotopes.begin(), precursor_isotopes.end())+1; @@ -243,7 +229,7 @@ namespace OpenMS return estimateForFragmentFromWeightAndComp(average_weight_precursor, average_weight_fragment, precursor_isotopes, 9.75, 12.25, 3.75, 6, 0, 1); } - IsotopeDistribution CoarseIsotopePatternGenerator::estimateForFragmentFromWeightAndComp(double average_weight_precursor, double average_weight_fragment, const std::set& precursor_isotopes, double C, double H, double N, double O, double S, double P) + IsotopeDistribution CoarseIsotopePatternGenerator::estimateForFragmentFromWeightAndComp(double average_weight_precursor, double average_weight_fragment, const std::set& precursor_isotopes, double C, double H, double N, double O, double S, double P) const { UInt max_depth = *std::max_element(precursor_isotopes.begin(), precursor_isotopes.end()) + 1; @@ -273,7 +259,7 @@ namespace OpenMS return result; } - IsotopeDistribution::ContainerType CoarseIsotopePatternGenerator::convolve_(const IsotopeDistribution::ContainerType & left, const IsotopeDistribution::ContainerType & right) const + IsotopeDistribution::ContainerType CoarseIsotopePatternGenerator::convolve(const IsotopeDistribution::ContainerType& left, const IsotopeDistribution::ContainerType& right) const { IsotopeDistribution::ContainerType result; @@ -316,7 +302,7 @@ namespace OpenMS return result; } - IsotopeDistribution::ContainerType CoarseIsotopePatternGenerator::convolvePow_(const IsotopeDistribution::ContainerType & input, Size n) const + IsotopeDistribution::ContainerType CoarseIsotopePatternGenerator::convolvePow_(const IsotopeDistribution::ContainerType& input, Size n) const { IsotopeDistribution::ContainerType result; if (input.empty()) @@ -365,7 +351,7 @@ namespace OpenMS { if (n & (Size(1) << i)) { - result = convolve_(result, convolution_power); + result = convolve(result, convolution_power); } // check the loop condition if (i >= log2n) @@ -378,7 +364,7 @@ namespace OpenMS return result; } - IsotopeDistribution::ContainerType CoarseIsotopePatternGenerator::convolveSquare_(const IsotopeDistribution::ContainerType & input) const + IsotopeDistribution::ContainerType CoarseIsotopePatternGenerator::convolveSquare_(const IsotopeDistribution::ContainerType& input) const { IsotopeDistribution::ContainerType result; IsotopeDistribution::ContainerType::size_type r_max = 2 * input.size() - 1; @@ -409,9 +395,9 @@ namespace OpenMS IsotopeDistribution CoarseIsotopePatternGenerator::calcFragmentIsotopeDist_(const IsotopeDistribution::ContainerType& fragment_isotope_dist, const IsotopeDistribution::ContainerType& comp_fragment_isotope_dist, const std::set& precursor_isotopes) const { - + IsotopeDistribution result; - + if (fragment_isotope_dist.empty() || comp_fragment_isotope_dist.empty()) { result.clear(); @@ -527,4 +513,3 @@ namespace OpenMS return result; } } - diff --git a/src/openms/source/CHEMISTRY/ISOTOPEDISTRIBUTION/IsoSpecWrapper.cpp b/src/openms/source/CHEMISTRY/ISOTOPEDISTRIBUTION/IsoSpecWrapper.cpp index 75f9d842b43..5befc3b492b 100644 --- a/src/openms/source/CHEMISTRY/ISOTOPEDISTRIBUTION/IsoSpecWrapper.cpp +++ b/src/openms/source/CHEMISTRY/ISOTOPEDISTRIBUTION/IsoSpecWrapper.cpp @@ -43,10 +43,13 @@ #include #include +// Override IsoSpec's use of mmap whenever it is available #define ISOSPEC_GOT_SYSTEM_MMAN false #define ISOSPEC_GOT_MMAN false #define ISOSPEC_BUILDING_OPENMS true +#include + #include "IsoSpec/allocator.cpp" #include "IsoSpec/dirtyAllocator.cpp" #include "IsoSpec/isoSpec++.cpp" @@ -62,8 +65,6 @@ using namespace IsoSpec; namespace OpenMS { - - Iso _OMS_IsoFromParameters(const std::vector& isotopeNr, const std::vector& atomCounts, const std::vector >& isotopeMasses, @@ -128,57 +129,77 @@ namespace OpenMS return _OMS_IsoFromParameters(isotopeNumbers, atomCounts, isotopeMasses, isotopeProbabilities); } - - - IsoSpecThresholdGeneratorWrapper::IsoSpecThresholdGeneratorWrapper(const std::vector& isotopeNr, const std::vector& atomCounts, const std::vector >& isotopeMasses, const std::vector >& isotopeProbabilities, double threshold, bool absolute) : - ITG(_OMS_IsoFromParameters(isotopeNr, atomCounts, isotopeMasses, isotopeProbabilities), threshold, absolute) + ITG(std::make_unique( + _OMS_IsoFromParameters(isotopeNr, atomCounts, isotopeMasses, isotopeProbabilities), + threshold, + absolute)) {}; IsoSpecThresholdGeneratorWrapper::IsoSpecThresholdGeneratorWrapper(const EmpiricalFormula& formula, double threshold, bool absolute) : - ITG(_OMS_IsoFromEmpiricalFormula(formula), threshold, absolute) + ITG(std::make_unique(_OMS_IsoFromEmpiricalFormula(formula), threshold, absolute)) {}; + bool IsoSpecThresholdGeneratorWrapper::nextConf() { return ITG->advanceToNextConfiguration(); }; + Peak1D IsoSpecThresholdGeneratorWrapper::getConf() { return Peak1D(ITG->mass(), ITG->prob()); }; + double IsoSpecThresholdGeneratorWrapper::getMass() { return ITG->mass(); }; + double IsoSpecThresholdGeneratorWrapper::getIntensity() { return ITG->prob(); }; + double IsoSpecThresholdGeneratorWrapper::getLogIntensity() { return ITG->lprob(); }; -// -------------------------------------------------------------------------------- - + // in this special case it needs to go in cpp file (see e.g., https://stackoverflow.com/questions/38242200/where-should-a-default-destructor-c11-style-go-header-or-cpp) + IsoSpecThresholdGeneratorWrapper::~IsoSpecThresholdGeneratorWrapper() = default; +// -------------------------------------------------------------------------------- IsoSpecTotalProbGeneratorWrapper::IsoSpecTotalProbGeneratorWrapper(const std::vector& isotopeNr, const std::vector& atomCounts, const std::vector >& isotopeMasses, const std::vector >& isotopeProbabilities, double total_prob_hint) : - ILG(_OMS_IsoFromParameters(isotopeNr, atomCounts, isotopeMasses, isotopeProbabilities), 1024, 1024, true, total_prob_hint) + ILG(std::make_unique(_OMS_IsoFromParameters(isotopeNr, atomCounts, isotopeMasses, isotopeProbabilities), 1024, 1024, true, total_prob_hint)) {}; IsoSpecTotalProbGeneratorWrapper::IsoSpecTotalProbGeneratorWrapper(const EmpiricalFormula& formula, double total_prob_hint) : - ILG(_OMS_IsoFromEmpiricalFormula(formula), 1024, 1024, true, total_prob_hint) + ILG(std::make_unique(_OMS_IsoFromEmpiricalFormula(formula), 1024, 1024, true, total_prob_hint)) {}; + IsoSpecTotalProbGeneratorWrapper::~IsoSpecTotalProbGeneratorWrapper() = default; -// -------------------------------------------------------------------------------- + bool IsoSpecTotalProbGeneratorWrapper::nextConf() { return ILG->advanceToNextConfiguration(); }; + Peak1D IsoSpecTotalProbGeneratorWrapper::getConf() { return Peak1D(ILG->mass(), ILG->prob()); }; + double IsoSpecTotalProbGeneratorWrapper::getMass() { return ILG->mass(); }; + double IsoSpecTotalProbGeneratorWrapper::getIntensity() { return ILG->prob(); }; + double IsoSpecTotalProbGeneratorWrapper::getLogIntensity() { return ILG->lprob(); }; +// -------------------------------------------------------------------------------- IsoSpecOrderedGeneratorWrapper::IsoSpecOrderedGeneratorWrapper(const std::vector& isotopeNr, const std::vector& atomCounts, const std::vector >& isotopeMasses, const std::vector >& isotopeProbabilities) : - IOG(_OMS_IsoFromParameters(isotopeNr, atomCounts, isotopeMasses, isotopeProbabilities)) + IOG(std::make_unique(_OMS_IsoFromParameters(isotopeNr, atomCounts, isotopeMasses, isotopeProbabilities))) {}; IsoSpecOrderedGeneratorWrapper::IsoSpecOrderedGeneratorWrapper(const EmpiricalFormula& formula) : - IOG(_OMS_IsoFromEmpiricalFormula(formula)) + IOG(std::make_unique(_OMS_IsoFromEmpiricalFormula(formula))) {}; + IsoSpecOrderedGeneratorWrapper::~IsoSpecOrderedGeneratorWrapper() = default; // needs to be in cpp file because of incomplete types! + + bool IsoSpecOrderedGeneratorWrapper::nextConf() { return IOG->advanceToNextConfiguration(); }; + Peak1D IsoSpecOrderedGeneratorWrapper::getConf() { return Peak1D(IOG->mass(), IOG->prob()); }; + double IsoSpecOrderedGeneratorWrapper::getMass() { return IOG->mass(); }; + double IsoSpecOrderedGeneratorWrapper::getIntensity() { return IOG->prob(); }; + double IsoSpecOrderedGeneratorWrapper::getLogIntensity() { return IOG->lprob(); }; + // -------------------------------------------------------------------------------- IsoSpecThresholdWrapper::IsoSpecThresholdWrapper(const std::vector& isotopeNr, @@ -187,25 +208,30 @@ namespace OpenMS const std::vector >& isotopeProbabilities, double threshold, bool absolute) : - ITG(_OMS_IsoFromParameters(isotopeNr, atomCounts, isotopeMasses, isotopeProbabilities), threshold, absolute) - {}; + ITG(std::make_unique( + _OMS_IsoFromParameters(isotopeNr, atomCounts, isotopeMasses, isotopeProbabilities), + threshold, + absolute)) + {} IsoSpecThresholdWrapper::IsoSpecThresholdWrapper(const EmpiricalFormula& formula, double threshold, - bool absolute) : - ITG(_OMS_IsoFromEmpiricalFormula(formula), threshold, absolute) + bool absolute) : + ITG(std::make_unique( + _OMS_IsoFromEmpiricalFormula(formula), + threshold, + absolute)) {}; - IsotopeDistribution IsoSpecThresholdWrapper::run() { std::vector distribution; - distribution.reserve(ITG.count_confs()); + distribution.reserve(ITG->count_confs()); - ITG.reset(); + ITG->reset(); - while (ITG.advanceToNextConfiguration()) - distribution.emplace_back(Peak1D(ITG.mass(), ITG.prob())); + while (ITG->advanceToNextConfiguration()) + distribution.emplace_back(Peak1D(ITG->mass(), ITG->prob())); IsotopeDistribution ID; @@ -214,6 +240,8 @@ namespace OpenMS return ID; } + IsoSpecThresholdWrapper::~IsoSpecThresholdWrapper() = default; + // -------------------------------------------------------------------------------- @@ -223,7 +251,12 @@ namespace OpenMS const std::vector >& isotopeProbabilities, double _total_prob, bool _do_p_trim) : - ILG(_OMS_IsoFromParameters(isotopeNr, atomCounts, isotopeMasses, isotopeProbabilities), 1024, 1024, true, _total_prob), + ILG(std::make_unique( + _OMS_IsoFromParameters(isotopeNr, atomCounts, isotopeMasses, isotopeProbabilities), + 1024, + 1024, + true, + _total_prob)), target_prob(_total_prob), do_p_trim(_do_p_trim) {}; @@ -231,11 +264,12 @@ namespace OpenMS IsoSpecTotalProbWrapper::IsoSpecTotalProbWrapper(const EmpiricalFormula& formula, double _total_prob, bool _do_p_trim) : - ILG(_OMS_IsoFromEmpiricalFormula(formula), 1024, 1024, true, _total_prob), + ILG(std::make_unique(_OMS_IsoFromEmpiricalFormula(formula), 1024, 1024, true, _total_prob)), target_prob(_total_prob), do_p_trim(_do_p_trim) {}; + IsoSpecTotalProbWrapper::~IsoSpecTotalProbWrapper() = default; IsotopeDistribution IsoSpecTotalProbWrapper::run() { @@ -245,19 +279,19 @@ namespace OpenMS double acc_prob = 0.0; - while (acc_prob < target_prob && ILG.advanceToNextConfiguration()) + while (acc_prob < target_prob && ILG->advanceToNextConfiguration()) { - double p = ILG.prob(); + double p = ILG->prob(); acc_prob += p; - distribution.emplace_back(Peak1D(ILG.mass(), p)); + distribution.emplace_back(Peak1D(ILG->mass(), p)); } if (do_p_trim) { // the p_trim: extract the rest of the last layer, and perform quickselect - while (ILG.advanceToNextConfigurationWithinLayer()) - distribution.emplace_back(Peak1D(ILG.mass(), ILG.prob())); + while (ILG->advanceToNextConfigurationWithinLayer()) + distribution.emplace_back(Peak1D(ILG->mass(), ILG->prob())); size_t start = 0; size_t end = distribution.size(); diff --git a/src/openms/source/CHEMISTRY/ISOTOPEDISTRIBUTION/IsotopeDistribution.cpp b/src/openms/source/CHEMISTRY/ISOTOPEDISTRIBUTION/IsotopeDistribution.cpp index e8fcd67b108..c1344691783 100644 --- a/src/openms/source/CHEMISTRY/ISOTOPEDISTRIBUTION/IsotopeDistribution.cpp +++ b/src/openms/source/CHEMISTRY/ISOTOPEDISTRIBUTION/IsotopeDistribution.cpp @@ -200,7 +200,7 @@ namespace OpenMS void IsotopeDistribution::renormalize() { - if (distribution_.size() != 0) + if (!distribution_.empty()) { double sum(0); // loop backwards as most distributions contains a lot of small values at the end diff --git a/src/openms/source/CHEMISTRY/MASSDECOMPOSITION/IMS/RealMassDecomposer.cpp b/src/openms/source/CHEMISTRY/MASSDECOMPOSITION/IMS/RealMassDecomposer.cpp index 36b7de3fd7d..ec543ac5d4c 100644 --- a/src/openms/source/CHEMISTRY/MASSDECOMPOSITION/IMS/RealMassDecomposer.cpp +++ b/src/openms/source/CHEMISTRY/MASSDECOMPOSITION/IMS/RealMassDecomposer.cpp @@ -33,8 +33,9 @@ // -------------------------------------------------------------------------- // -#include #include +#include +#include namespace OpenMS::ims { @@ -44,8 +45,8 @@ namespace OpenMS::ims rounding_errors_ = std::make_pair(weights.getMinRoundingError(), weights.getMaxRoundingError()); precision_ = weights.getPrecision(); - decomposer_ = std::shared_ptr( - new integer_decomposer_type(weights)); + decomposer_ = std::make_shared( + weights); } RealMassDecomposer::decompositions_type RealMassDecomposer::getDecompositions(double mass, double error) diff --git a/src/openms/source/CHEMISTRY/ModificationsDB.cpp b/src/openms/source/CHEMISTRY/ModificationsDB.cpp index 4200c808a43..43954780c9a 100644 --- a/src/openms/source/CHEMISTRY/ModificationsDB.cpp +++ b/src/openms/source/CHEMISTRY/ModificationsDB.cpp @@ -596,7 +596,7 @@ namespace OpenMS line_wo_spaces = line; line_wo_spaces.removeWhitespaces(); - if (line == "" || line[0] == '!') //skip empty lines and comments + if (line.empty() || line[0] == '!') //skip empty lines and comments { continue; } @@ -604,7 +604,7 @@ namespace OpenMS if (line_wo_spaces == "[Term]") //new term { // if the last [Term] was a moon-link, then it does not belong in CrossLinksDB - if (id != "" && !reading_cross_link) //store last term + if (!id.empty() && !reading_cross_link) //store last term { // split into single residues and make unique (for XL-MS, where equal specificities for both sides are possible) vector origins; @@ -791,7 +791,7 @@ namespace OpenMS } } - if (id != "") //store last term + if (!id.empty()) //store last term { // split into single residues and make unique (for XL-MS, where equal specificities for both sides are possible) vector origins; diff --git a/src/openms/source/CHEMISTRY/NASequence.cpp b/src/openms/source/CHEMISTRY/NASequence.cpp index 1465cf83027..81541b5af03 100644 --- a/src/openms/source/CHEMISTRY/NASequence.cpp +++ b/src/openms/source/CHEMISTRY/NASequence.cpp @@ -149,20 +149,20 @@ namespace OpenMS EmpiricalFormula NASequence::getFormula(NASFragmentType type, Int charge) const { - static const EmpiricalFormula H_form = EmpiricalFormula("H"); - static const EmpiricalFormula internal_to_full = EmpiricalFormula("H2O"); + static const EmpiricalFormula H_form = EmpiricalFormula::hydrogen(); + static const EmpiricalFormula phosphate_form = EmpiricalFormula("HPO3"); + static const EmpiricalFormula internal_to_full = EmpiricalFormula::water(); // static const EmpiricalFormula five_prime_to_full = EmpiricalFormula("HPO3"); // static const EmpiricalFormula three_prime_to_full = EmpiricalFormula(""); - static const EmpiricalFormula a_ion_to_full = EmpiricalFormula("H-2O-1"); - static const EmpiricalFormula b_ion_to_full = EmpiricalFormula(""); + static const EmpiricalFormula a_ion_to_full = EmpiricalFormula::water(-1); + static const EmpiricalFormula b_ion_to_full = EmpiricalFormula(); static const EmpiricalFormula c_ion_to_full = EmpiricalFormula("H-1PO2"); - static const EmpiricalFormula d_ion_to_full = EmpiricalFormula("HPO3"); - static const EmpiricalFormula w_ion_to_full = EmpiricalFormula("HPO3"); - static const EmpiricalFormula x_ion_to_full = EmpiricalFormula("H-1PO2"); - static const EmpiricalFormula y_ion_to_full = EmpiricalFormula(""); - static const EmpiricalFormula z_ion_to_full = EmpiricalFormula("H-2O-1"); - static const EmpiricalFormula aminusB_ion_to_full = EmpiricalFormula("H-4O-2"); - static const EmpiricalFormula phosphate_form = EmpiricalFormula("HPO3"); + static const EmpiricalFormula d_ion_to_full = phosphate_form; + static const EmpiricalFormula w_ion_to_full = d_ion_to_full; + static const EmpiricalFormula x_ion_to_full = c_ion_to_full; + static const EmpiricalFormula y_ion_to_full = b_ion_to_full; + static const EmpiricalFormula z_ion_to_full = a_ion_to_full; + static const EmpiricalFormula aminusB_ion_to_full = EmpiricalFormula::water(-2); // static const EmpiricalFormula abasicform_RNA = EmpiricalFormula("C5H8O4"); // static const EmpiricalFormula abasicform_DNA = EmpiricalFormula("C5H7O5P"); diff --git a/src/openms/source/CHEMISTRY/ProteaseDB.cpp b/src/openms/source/CHEMISTRY/ProteaseDB.cpp index 563c1fc966b..2ad741ac815 100644 --- a/src/openms/source/CHEMISTRY/ProteaseDB.cpp +++ b/src/openms/source/CHEMISTRY/ProteaseDB.cpp @@ -49,7 +49,7 @@ namespace OpenMS all_names.clear(); for (ConstEnzymeIterator it = const_enzymes_.begin(); it != const_enzymes_.end(); ++it) { - if ((*it)->getXTandemID() != "") + if (!(*it)->getXTandemID().empty()) { all_names.push_back((*it)->getName()); } @@ -62,7 +62,7 @@ namespace OpenMS all_names.push_back("custom-enzyme"); for (ConstEnzymeIterator it = const_enzymes_.begin(); it != const_enzymes_.end(); ++it) { - if ((*it)->getCruxID() != "") + if (!(*it)->getCruxID().empty()) { all_names.push_back((*it)->getCruxID()); } diff --git a/src/openms/source/CHEMISTRY/RNaseDigestion.cpp b/src/openms/source/CHEMISTRY/RNaseDigestion.cpp index 1ec3640e512..12ca878ed60 100644 --- a/src/openms/source/CHEMISTRY/RNaseDigestion.cpp +++ b/src/openms/source/CHEMISTRY/RNaseDigestion.cpp @@ -53,7 +53,7 @@ namespace OpenMS } String three_prime_code = rnase->getThreePrimeGain(); if (three_prime_code == "p") - { + { three_prime_code = "3'-p"; } @@ -207,11 +207,8 @@ namespace OpenMS void RNaseDigestion::digest(IdentificationData& id_data, Size min_length, Size max_length) const { - for (IdentificationData::ParentMoleculeRef parent_ref = - id_data.getParentMolecules().begin(); - parent_ref != - id_data.getParentMolecules().end(); - ++parent_ref) + for (IdentificationData::ParentSequenceRef parent_ref = id_data.getParentSequences().begin(); + parent_ref != id_data.getParentSequences().end(); ++parent_ref) { if (parent_ref->molecule_type != IdentificationData::MoleculeType::RNA) { @@ -234,13 +231,14 @@ namespace OpenMS fragment.setThreePrimeMod(three_prime_gain_); } IdentificationData::IdentifiedOligo oligo(fragment); - Size end_pos = pos.first + pos.second;// past-the-end position! - IdentificationData::MoleculeParentMatch match(pos.first, end_pos - 1); - match.left_neighbor = (pos.first > 0) ? rna[pos.first - 1]->getCode() : - IdentificationData::MoleculeParentMatch::LEFT_TERMINUS; - match.right_neighbor = (end_pos < rna.size()) ? - rna[end_pos]->getCode() : - IdentificationData::MoleculeParentMatch::RIGHT_TERMINUS; + Size end_pos = pos.first + pos.second; // past-the-end position! + IdentificationData::ParentMatch match(pos.first, end_pos - 1); + match.left_neighbor = ((pos.first > 0) ? + rna[pos.first - 1]->getCode() : + IdentificationData::ParentMatch::LEFT_TERMINUS); + match.right_neighbor = ((end_pos < rna.size()) ? + rna[end_pos]->getCode() : + IdentificationData::ParentMatch::RIGHT_TERMINUS); oligo.parent_matches[parent_ref].insert(match); id_data.registerIdentifiedOligo(oligo); } diff --git a/src/openms/source/CHEMISTRY/Residue.cpp b/src/openms/source/CHEMISTRY/Residue.cpp index 116462d0310..25c95dff5f2 100644 --- a/src/openms/source/CHEMISTRY/Residue.cpp +++ b/src/openms/source/CHEMISTRY/Residue.cpp @@ -485,7 +485,7 @@ namespace OpenMS updated_formula = true; setFormula(getFormula() + mod->getDiffFormula()); } - else if (mod->getFormula() != "") + else if (!mod->getFormula().empty()) { updated_formula = true; String formula = mod->getFormula(); diff --git a/src/openms/source/CHEMISTRY/ResidueDB.cpp b/src/openms/source/CHEMISTRY/ResidueDB.cpp index df8d357c25d..003c1f6c594 100644 --- a/src/openms/source/CHEMISTRY/ResidueDB.cpp +++ b/src/openms/source/CHEMISTRY/ResidueDB.cpp @@ -324,7 +324,7 @@ namespace OpenMS vector names; // add name to lookup - if (r->getName() != "") + if (!r->getName().empty()) { names.push_back(r->getName()); } @@ -351,13 +351,13 @@ namespace OpenMS residue_names_[r->getName()] = r; // add tree letter code to residue_names_ - if (r->getThreeLetterCode() != "") + if (!r->getThreeLetterCode().empty()) { residue_names_[r->getThreeLetterCode()] = r; } // add one letter code to residue_names_ - if (r->getOneLetterCode() != "") + if (!r->getOneLetterCode().empty()) { residue_names_[r->getOneLetterCode()] = r; } diff --git a/src/openms/source/CHEMISTRY/RibonucleotideDB.cpp b/src/openms/source/CHEMISTRY/RibonucleotideDB.cpp index cc9cd367f85..4354bb5e0a7 100644 --- a/src/openms/source/CHEMISTRY/RibonucleotideDB.cpp +++ b/src/openms/source/CHEMISTRY/RibonucleotideDB.cpp @@ -190,7 +190,18 @@ namespace OpenMS } else // default specificity is "ANYWHERE"; now set formula after base loss: { - if (parts[1].back() == 'm') // mod. attached to the ribose, not base + if (parts[1].front() == 'd') // handle deoxyribose, possibly with methyl mod + { + if (parts[1].back() == 'm') // do we have both a methylation and a deoxylation? + { + ribo->setBaselossFormula(EmpiricalFormula("C6H12O4")); + } + else // Otherwise we have just the O difference + { + ribo->setBaselossFormula(EmpiricalFormula("C5H10O4")); + } + } + else if (parts[1].back() == 'm') // mod. attached to the ribose, not base { ribo->setBaselossFormula(EmpiricalFormula("C6H12O5")); } @@ -213,7 +224,6 @@ namespace OpenMS ribo->setBaselossFormula(EmpiricalFormula("C10H19O21P")); } } - return ribo; } diff --git a/src/openms/source/CHEMISTRY/SvmTheoreticalSpectrumGenerator.cpp b/src/openms/source/CHEMISTRY/SvmTheoreticalSpectrumGenerator.cpp index 82ae9cccba1..31277743c52 100644 --- a/src/openms/source/CHEMISTRY/SvmTheoreticalSpectrumGenerator.cpp +++ b/src/openms/source/CHEMISTRY/SvmTheoreticalSpectrumGenerator.cpp @@ -41,6 +41,8 @@ #include #include +#include "svm.h" + // #define DEBUG namespace OpenMS @@ -731,12 +733,12 @@ namespace OpenMS if (add_metainfo) { - if (spectrum.getIntegerDataArrays().size() == 0) + if (spectrum.getIntegerDataArrays().empty()) { spectrum.getIntegerDataArrays().resize(1); spectrum.getIntegerDataArrays()[0].setName("Charges"); } - if (spectrum.getStringDataArrays().size() == 0) + if (spectrum.getStringDataArrays().empty()) { spectrum.getStringDataArrays().resize(1); spectrum.getStringDataArrays()[0].setName("IonNames"); @@ -915,7 +917,7 @@ namespace OpenMS Size region = std::min(mp_.number_regions - 1, (Size)floor(mp_.number_regions * prefix.getMonoWeight(Residue::Internal) / peptide.getMonoWeight())); std::vector& props = mp_.conditional_prob[std::make_pair(*it, region)][bin]; std::vector weights; - std::transform(props.begin(), props.end(), std::back_inserter(weights), boost::bind(std::multiplies(), _1, 10)); + std::transform(props.begin(), props.end(), std::back_inserter(weights), [](auto && PH1) { return std::multiplies()(std::forward(PH1), 10); }); boost::random::discrete_distribution ddist(weights.begin(), weights.end()); Size binned_int = ddist(rng); diff --git a/src/openms/source/CHEMISTRY/SvmTheoreticalSpectrumGeneratorTrainer.cpp b/src/openms/source/CHEMISTRY/SvmTheoreticalSpectrumGeneratorTrainer.cpp index 35c9afae7c9..81c7b69c75d 100644 --- a/src/openms/source/CHEMISTRY/SvmTheoreticalSpectrumGeneratorTrainer.cpp +++ b/src/openms/source/CHEMISTRY/SvmTheoreticalSpectrumGeneratorTrainer.cpp @@ -39,9 +39,12 @@ #include #include #include + #include #include +#include "svm.h" + using namespace std; namespace OpenMS diff --git a/src/openms/source/CHEMISTRY/TheoreticalSpectrumGenerator.cpp b/src/openms/source/CHEMISTRY/TheoreticalSpectrumGenerator.cpp index 9d27c7b72ac..ea3d0595e74 100644 --- a/src/openms/source/CHEMISTRY/TheoreticalSpectrumGenerator.cpp +++ b/src/openms/source/CHEMISTRY/TheoreticalSpectrumGenerator.cpp @@ -74,7 +74,7 @@ namespace OpenMS defaults_.setValue("add_all_precursor_charges", "false", "Adds precursor peaks with all charges in the given range"); defaults_.setValidStrings("add_all_precursor_charges", {"true","false"}); - defaults_.setValue("add_abundant_immonium_ions", "false", "Add most abundant immonium ions"); + defaults_.setValue("add_abundant_immonium_ions", "false", "Add most abundant immonium ions (for Proline, Cystein, Iso/Leucine, Histidin, Phenylalanin, Tyrosine, Tryptophan)"); defaults_.setValidStrings("add_abundant_immonium_ions", {"true","false"}); defaults_.setValue("add_first_prefix_ion", "false", "If set to true e.g. b1 ions are added"); @@ -100,18 +100,29 @@ namespace OpenMS // intensity options of the ions defaults_.setValue("y_intensity", 1.0, "Intensity of the y-ions"); + defaults_.setMinFloat("y_intensity", 0.0); defaults_.setValue("b_intensity", 1.0, "Intensity of the b-ions"); + defaults_.setMinFloat("b_intensity", 0.0); defaults_.setValue("a_intensity", 1.0, "Intensity of the a-ions"); + defaults_.setMinFloat("a_intensity", 0.0); defaults_.setValue("c_intensity", 1.0, "Intensity of the c-ions"); + defaults_.setMinFloat("c_intensity", 0.0); defaults_.setValue("x_intensity", 1.0, "Intensity of the x-ions"); + defaults_.setMinFloat("x_intensity", 0.0); defaults_.setValue("z_intensity", 1.0, "Intensity of the z-ions"); + defaults_.setMinFloat("z_intensity", 0.0); defaults_.setValue("relative_loss_intensity", 0.1, "Intensity of loss ions, in relation to the intact ion intensity"); + defaults_.setMinFloat("relative_loss_intensity", 0.0); + defaults_.setMaxFloat("relative_loss_intensity", 1.0); // precursor intensity defaults_.setValue("precursor_intensity", 1.0, "Intensity of the precursor peak"); + defaults_.setMinFloat("precursor_intensity", 0.0); defaults_.setValue("precursor_H2O_intensity", 1.0, "Intensity of the H2O loss peak of the precursor"); + defaults_.setMinFloat("precursor_H2O_intensity", 0.0); defaults_.setValue("precursor_NH3_intensity", 1.0, "Intensity of the NH3 loss peak of the precursor"); + defaults_.setMinFloat("precursor_NH3_intensity", 0.0); defaultsToParam_(); } @@ -264,7 +275,7 @@ namespace OpenMS // default with b and y ions Param theo_gen_settings = theo_gen.getParameters(); - if (fm == Precursor::ActivationMethod::CID || fm == Precursor::ActivationMethod::HCID) + if (fm == Precursor::ActivationMethod::CID || fm == Precursor::ActivationMethod::HCID || fm == Precursor::ActivationMethod::HCD) { theo_gen_settings.setValue("add_b_ions", "true"); theo_gen_settings.setValue("add_y_ions", "true"); diff --git a/src/openms/source/CHEMISTRY/TheoreticalSpectrumGeneratorXLMS.cpp b/src/openms/source/CHEMISTRY/TheoreticalSpectrumGeneratorXLMS.cpp index 31650097c58..be56e6ceedb 100644 --- a/src/openms/source/CHEMISTRY/TheoreticalSpectrumGeneratorXLMS.cpp +++ b/src/openms/source/CHEMISTRY/TheoreticalSpectrumGeneratorXLMS.cpp @@ -170,7 +170,7 @@ namespace OpenMS if (add_charges_) { - if (spectrum.getIntegerDataArrays().size() > 0) + if (!spectrum.getIntegerDataArrays().empty()) { charges = spectrum.getIntegerDataArrays()[0]; } @@ -178,7 +178,7 @@ namespace OpenMS } if (add_metainfo_) { - if (spectrum.getStringDataArrays().size() > 0) + if (!spectrum.getStringDataArrays().empty()) { ion_names = spectrum.getStringDataArrays()[0]; } @@ -224,7 +224,7 @@ namespace OpenMS if (add_charges_) { - if (spectrum.getIntegerDataArrays().size() > 0) + if (!spectrum.getIntegerDataArrays().empty()) { spectrum.getIntegerDataArrays()[0] = charges; } @@ -235,7 +235,7 @@ namespace OpenMS } if (add_metainfo_) { - if (spectrum.getStringDataArrays().size() > 0) + if (!spectrum.getStringDataArrays().empty()) { spectrum.getStringDataArrays()[0] = ion_names; } @@ -365,7 +365,7 @@ namespace OpenMS if (add_charges_) { - if (spectrum.getIntegerDataArrays().size() > 0) + if (!spectrum.getIntegerDataArrays().empty()) { charges = spectrum.getIntegerDataArrays()[0]; } @@ -373,7 +373,7 @@ namespace OpenMS } if (add_metainfo_) { - if (spectrum.getStringDataArrays().size() > 0) + if (!spectrum.getStringDataArrays().empty()) { ion_names = spectrum.getStringDataArrays()[0]; } @@ -429,7 +429,7 @@ namespace OpenMS if (add_charges_) { - if (spectrum.getIntegerDataArrays().size() > 0) + if (!spectrum.getIntegerDataArrays().empty()) { spectrum.getIntegerDataArrays()[0] = charges; } @@ -440,7 +440,7 @@ namespace OpenMS } if (add_metainfo_) { - if (spectrum.getStringDataArrays().size() > 0) + if (!spectrum.getStringDataArrays().empty()) { spectrum.getStringDataArrays()[0] = ion_names; } @@ -864,7 +864,7 @@ namespace OpenMS if (add_charges_) { - if (spectrum.getIntegerDataArrays().size() > 0) + if (!spectrum.getIntegerDataArrays().empty()) { charges = spectrum.getIntegerDataArrays()[0]; } @@ -872,7 +872,7 @@ namespace OpenMS } if (add_metainfo_) { - if (spectrum.getStringDataArrays().size() > 0) + if (!spectrum.getStringDataArrays().empty()) { ion_names = spectrum.getStringDataArrays()[0]; } @@ -965,7 +965,7 @@ namespace OpenMS if (add_charges_) { - if (spectrum.getIntegerDataArrays().size() > 0) + if (!spectrum.getIntegerDataArrays().empty()) { spectrum.getIntegerDataArrays()[0] = charges; } @@ -976,7 +976,7 @@ namespace OpenMS } if (add_metainfo_) { - if (spectrum.getStringDataArrays().size() > 0) + if (!spectrum.getStringDataArrays().empty()) { spectrum.getStringDataArrays()[0] = ion_names; } diff --git a/src/openms/source/CHEMISTRY/sources.cmake b/src/openms/source/CHEMISTRY/sources.cmake index 29d913c6bb1..c2a606cfe3a 100644 --- a/src/openms/source/CHEMISTRY/sources.cmake +++ b/src/openms/source/CHEMISTRY/sources.cmake @@ -4,6 +4,7 @@ set(directory source/CHEMISTRY) ### list all filenames of the directory here set(sources_list AASequence.cpp +AdductInfo.cpp CrossLinksDB.cpp DecoyGenerator.cpp Element.cpp diff --git a/src/openms/source/COMPARISON/CLUSTERING/ClusterAnalyzer.cpp b/src/openms/source/COMPARISON/CLUSTERING/ClusterAnalyzer.cpp index a9c710d5c1e..97cdb6ce1e5 100644 --- a/src/openms/source/COMPARISON/CLUSTERING/ClusterAnalyzer.cpp +++ b/src/openms/source/COMPARISON/CLUSTERING/ClusterAnalyzer.cpp @@ -67,7 +67,7 @@ namespace OpenMS std::vector ClusterAnalyzer::averageSilhouetteWidth(const std::vector & tree, const DistanceMatrix & original) { //throw exception if cannot be legal clustering - if (tree.size() < 1) + if (tree.empty()) { throw Exception::InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "tree is empty but minimal clustering hirachy has at least one level"); } @@ -342,7 +342,7 @@ namespace OpenMS std::vector ClusterAnalyzer::dunnIndices(const std::vector & tree, const DistanceMatrix & original, const bool tree_from_singlelinkage) { //throw exception if cannot be legal clustering - if (tree.size() < 1) + if (tree.empty()) { throw Exception::InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "tree is empty but minimal clustering hirachy has at least one level"); } diff --git a/src/openms/source/COMPARISON/SPECTRA/ZhangSimilarityScore.cpp b/src/openms/source/COMPARISON/SPECTRA/ZhangSimilarityScore.cpp index 38e4f6c5676..ac495a1c0db 100644 --- a/src/openms/source/COMPARISON/SPECTRA/ZhangSimilarityScore.cpp +++ b/src/openms/source/COMPARISON/SPECTRA/ZhangSimilarityScore.cpp @@ -229,7 +229,7 @@ for (PeakSpectrum::ConstIterator it1 = s1.begin(); it1 != s1.end(); ++it1) if (is_gaussian) { static const double denominator = mz_tolerance * 3.0 * sqrt(2.0); - factor = boost::math::erfc(mz_difference / denominator); + factor = std::erfc(mz_difference / denominator); //cerr << "Factor: " << factor << " " << mz_tolerance << " " << mz_difference << endl; } else diff --git a/src/openms/source/CONCEPT/ClassTest.cpp b/src/openms/source/CONCEPT/ClassTest.cpp index 7f4274df24e..4c070fe6ba9 100644 --- a/src/openms/source/CONCEPT/ClassTest.cpp +++ b/src/openms/source/CONCEPT/ClassTest.cpp @@ -59,7 +59,6 @@ namespace OpenMS::Internal::ClassTest { - bool all_tests = true; bool equal_files; bool newline = false; @@ -93,6 +92,13 @@ namespace OpenMS::Internal::ClassTest void mainInit(const char* version, const char* class_name, int argc, const char* argv0) { + // if env var "OPENMS_TEST_VERBOSE=True" enable output of successfull line + char* pverbose = std::getenv("OPENMS_TEST_VERBOSE"); + if (pverbose != nullptr) + { + if (std::string(pverbose) == "True") TEST::verbose = 2; + } + OpenMS::UniqueIdGenerator::setSeed(2453440375); TEST::version_string = version; @@ -132,12 +138,10 @@ namespace OpenMS::Internal::ClassTest TEST::equal_files &= (TEST_FILE__template_line == TEST_FILE__line); if (TEST_FILE__template_line != TEST_FILE__line) { - { TEST::initialNewline(); stdcout << " TEST_FILE_EQUAL: line mismatch:\n got: '" << TEST_FILE__line << "'\n expected: '" << TEST_FILE__template_line << "'\n"; - } } } } @@ -176,13 +180,16 @@ namespace OpenMS::Internal::ClassTest TEST::initialNewline(); if (TEST::this_test) { - stdcout << " + line " - << line - << ": TEST_FILE_EQUAL(" - << filename_stringified - << ", " - << templatename_stringified - << "): true"; + if (TEST::verbose > 1) + { + stdcout << " + line " + << line + << ": TEST_FILE_EQUAL(" + << filename_stringified + << ", " + << templatename_stringified + << "): true"; + } } else { @@ -367,7 +374,7 @@ namespace OpenMS::Internal::ClassTest } } } - //output for all files + //output for all files if (passed_all) { std::cout << ": passed" << std::endl << std::endl; @@ -414,11 +421,14 @@ namespace OpenMS::Internal::ClassTest { if (TEST::this_test) { - stdcout << " + line " << line << ": TEST_REAL_SIMILAR(" - << number_1_stringified << ',' << number_2_stringified - << "): got " << std::setprecision(number_1_written_digits) - << number_1 << ", expected " - << std::setprecision(number_2_written_digits) << number_2 << std::endl; + if (TEST::verbose > 1) + { + stdcout << " + line " << line << ": TEST_REAL_SIMILAR(" + << number_1_stringified << ',' << number_2_stringified + << "): got " << std::setprecision(number_1_written_digits) + << number_1 << ", expected " + << std::setprecision(number_2_written_digits) << number_2 << std::endl; + } } else { @@ -448,12 +458,12 @@ namespace OpenMS::Internal::ClassTest ratio = 0.; fuzzy_message.clear(); - if (boost::math::isnan(number_1)) + if (std::isnan(number_1)) { fuzzy_message = "number_1 is nan"; return false; } - if (boost::math::isnan(number_2)) + if (std::isnan(number_2)) { fuzzy_message = "number_2 is nan"; return false; @@ -579,10 +589,13 @@ namespace OpenMS::Internal::ClassTest initialNewline(); if (this_test) { + if (TEST::verbose > 1) + { stdcout << " + line " << line << ": TEST_STRING_EQUAL(" - << string_1_stringified << ',' << string_2_stringified - << "): got \"" << string_1 << "\", expected \"" << string_2 - << "\"" << std::endl; + << string_1_stringified << ',' << string_2_stringified + << "): got \"" << string_1 << "\", expected \"" << string_2 + << "\"" << std::endl; + } } else { @@ -627,16 +640,19 @@ namespace OpenMS::Internal::ClassTest TEST::initialNewline(); if (TEST::this_test) - { - stdcout << " + line " << line << ": TEST_STRING_SIMILAR(" - << string_1_stringified << ',' << string_2_stringified << "): " - "absolute: " << TEST::absdiff << " (" << TEST::absdiff_max_allowed - << "), relative: " << TEST::ratio << " (" - << TEST::ratio_max_allowed << ") +\n"; - stdcout << "got:\n"; - TEST::printWithPrefix(string_1, TEST::line_num_1_max); - stdcout << "expected:\n"; - TEST::printWithPrefix(string_2, TEST::line_num_2_max); + { + if (TEST::verbose > 1) + { + stdcout << " + line " << line << ": TEST_STRING_SIMILAR(" + << string_1_stringified << ',' << string_2_stringified << "): " + "absolute: " << TEST::absdiff << " (" << TEST::absdiff_max_allowed + << "), relative: " << TEST::ratio << " (" + << TEST::ratio_max_allowed << ") +\n"; + stdcout << "got:\n"; + TEST::printWithPrefix(string_1, TEST::line_num_1_max); + stdcout << "expected:\n"; + TEST::printWithPrefix(string_2, TEST::line_num_2_max); + } } else { diff --git a/src/openms/source/CONCEPT/Exception.cpp b/src/openms/source/CONCEPT/Exception.cpp index 709f93bff12..5226049469e 100644 --- a/src/openms/source/CONCEPT/Exception.cpp +++ b/src/openms/source/CONCEPT/Exception.cpp @@ -256,6 +256,11 @@ namespace OpenMS { } + InternalToolError::InternalToolError(const char* file, int line, const char* function, const std::string& error_message) noexcept: + BaseException(file, line, function, "InternalToolError", error_message) + { + } + MissingInformation::MissingInformation(const char* file, int line, const char* function, const string& error_message) noexcept : BaseException(file, line, function, "MissingInformation", error_message) { @@ -282,9 +287,17 @@ namespace OpenMS { } - DEF_EXCEPTION(DivisionByZero, "a division by zero was requested") + InvalidRange::InvalidRange(const char* file, int line, const char* function) noexcept : + BaseException(file, line, function, "InvalidRange", "the range of the operation was invalid") + { + } - DEF_EXCEPTION(InvalidRange, "the range of the operation was invalid") + InvalidRange::InvalidRange(const char* file, int line, const char* function, const std::string& message) noexcept : + BaseException(file, line, function, "InvalidRange", message) + { + } + + DEF_EXCEPTION(DivisionByZero, "a division by zero was requested") DEF_EXCEPTION(OutOfRange, "the argument was not in range") diff --git a/src/openms/source/CONCEPT/LogStream.cpp b/src/openms/source/CONCEPT/LogStream.cpp index 6e56cf569b9..75cdb839cd9 100644 --- a/src/openms/source/CONCEPT/LogStream.cpp +++ b/src/openms/source/CONCEPT/LogStream.cpp @@ -84,7 +84,7 @@ namespace OpenMS syncLF_(); { clearCache(); - if (incomplete_line_.size() > 0) + if (!incomplete_line_.empty()) { distribute_(incomplete_line_); } diff --git a/src/openms/source/DATASTRUCTURES/Compomer.cpp b/src/openms/source/DATASTRUCTURES/Compomer.cpp index d805f13084e..dc927852d90 100644 --- a/src/openms/source/DATASTRUCTURES/Compomer.cpp +++ b/src/openms/source/DATASTRUCTURES/Compomer.cpp @@ -318,7 +318,7 @@ namespace OpenMS for (CompomerSide::const_iterator it = this->cmp_[side].begin(); it != this->cmp_[side].end(); ++it) { - if (it->second.getLabel() != "") + if (!it->second.getLabel().empty()) { tmp.push_back(it->second.getLabel()); } diff --git a/src/openms/source/DATASTRUCTURES/ConvexHull2D.cpp b/src/openms/source/DATASTRUCTURES/ConvexHull2D.cpp index c20e9a89265..e4dd916ca11 100644 --- a/src/openms/source/DATASTRUCTURES/ConvexHull2D.cpp +++ b/src/openms/source/DATASTRUCTURES/ConvexHull2D.cpp @@ -106,7 +106,7 @@ namespace OpenMS const ConvexHull2D::PointArrayType& ConvexHull2D::getHullPoints() const { // construct outer hull if required - if (outer_points_.empty() && map_points_.size() > 0) + if (outer_points_.empty() && !map_points_.empty()) { // walk the outer hull outer_points_.reserve(map_points_.size() * 2); @@ -165,7 +165,7 @@ namespace OpenMS DBoundingBox<2> bb; // the internal structure might not be defined, but we try it first - if (map_points_.size() > 0) + if (!map_points_.empty()) { for (HullPointType::ConstIterator it = map_points_.begin(); it != map_points_.end(); ++it) { @@ -173,7 +173,7 @@ namespace OpenMS bb.enlarge(it->first, it->second.maxPosition()[0]); } } - else if (outer_points_.size() > 0) + else if (!outer_points_.empty()) { for (PointArrayType::const_iterator it = outer_points_.begin(); it != outer_points_.end(); ++it) { @@ -257,7 +257,7 @@ namespace OpenMS bool ConvexHull2D::encloses(const PointType& point) const { - if ((map_points_.empty()) && outer_points_.size() > 0) // we cannot answer the query as we lack the internal data structure + if ((map_points_.empty()) && !outer_points_.empty()) // we cannot answer the query as we lack the internal data structure { // (if you need this you need to augment encloses() to work on outer_points_ only) throw Exception::NotImplemented(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION); } diff --git a/src/openms/source/DATASTRUCTURES/DataValue.cpp b/src/openms/source/DATASTRUCTURES/DataValue.cpp index 721f3d1e884..6e33dd70574 100644 --- a/src/openms/source/DATASTRUCTURES/DataValue.cpp +++ b/src/openms/source/DATASTRUCTURES/DataValue.cpp @@ -620,6 +620,35 @@ namespace OpenMS return data_.ssize_; } + DataValue::operator ParamValue() const + { + switch (value_type_) + { + case EMPTY_VALUE: + return ParamValue(); + case INT_VALUE: + return ParamValue(int(*this)); + case DOUBLE_VALUE: + return ParamValue(double(*this)); + case STRING_VALUE: + return ParamValue(std::string(*this)); + case INT_LIST: + return ParamValue(this->toIntList()); + case DOUBLE_LIST: + return ParamValue(this->toDoubleList()); + case STRING_LIST: + // DataValue uses OpenMS::String while ParamValue uses std:string. + // Therefore the StringList isn't castable. + vector v; + for (const String& s : this->toStringList()) + { + v.push_back(s); + } + return ParamValue(v); + } + throw Exception::ConversionError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Type of DataValue is unkown!"); + } + DataValue::operator std::string() const { if (value_type_ != STRING_VALUE) diff --git a/src/openms/source/DATASTRUCTURES/DefaultParamHandler.cpp b/src/openms/source/DATASTRUCTURES/DefaultParamHandler.cpp index a33b6570cd9..a61df0ac41d 100644 --- a/src/openms/source/DATASTRUCTURES/DefaultParamHandler.cpp +++ b/src/openms/source/DATASTRUCTURES/DefaultParamHandler.cpp @@ -128,7 +128,7 @@ namespace OpenMS for (Param::ParamIterator it = defaults_.begin(); it != defaults_.end(); ++it) { //cout << "Name: " << it->getName() << endl; - if (it->description == "") + if (it->description.empty()) { description_missing = true; missing_parameters += it.getName() + ","; diff --git a/src/openms/source/DATASTRUCTURES/MassExplainer.cpp b/src/openms/source/DATASTRUCTURES/MassExplainer.cpp index dd1cbce06f7..82c8acb36c7 100644 --- a/src/openms/source/DATASTRUCTURES/MassExplainer.cpp +++ b/src/openms/source/DATASTRUCTURES/MassExplainer.cpp @@ -350,7 +350,7 @@ namespace OpenMS } ///check if the generated compomer is valid judged by its probability, charges etc - bool MassExplainer::compomerValid_(const Compomer& cmp) + bool MassExplainer::compomerValid_(const Compomer& cmp) const { // probability ok? if (cmp.getLogP() < thresh_p_) diff --git a/src/openms/source/DATASTRUCTURES/Param.cpp b/src/openms/source/DATASTRUCTURES/Param.cpp index 82e7f62e0fe..abf55d858a9 100644 --- a/src/openms/source/DATASTRUCTURES/Param.cpp +++ b/src/openms/source/DATASTRUCTURES/Param.cpp @@ -85,14 +85,16 @@ namespace OpenMS { if (value.valueType() == ParamValue::STRING_VALUE) { - if (valid_strings.size() != 0) + if (!valid_strings.empty()) { bool ok = false; if (std::find(valid_strings.begin(), valid_strings.end(), value) != valid_strings.end()) { ok = true; } - else if (std::find(tags.begin(), tags.end(), "input file") != tags.end() || std::find(tags.begin(), tags.end(), "output file") != tags.end()) + else if (std::find(tags.begin(), tags.end(), "input file") != tags.end() + || std::find(tags.begin(), tags.end(), "output file") != tags.end() + || std::find(tags.begin(), tags.end(), "output prefix") != tags.end()) { //do not check restrictions on file names for now ok = true; @@ -117,14 +119,15 @@ namespace OpenMS { str_value = ls_value[i]; - if (valid_strings.size() != 0) + if (!valid_strings.empty()) { bool ok = false; if (std::find(valid_strings.begin(), valid_strings.end(), str_value) != valid_strings.end()) { ok = true; } - else if (std::find(tags.begin(), tags.end(), "input file") != tags.end() || std::find(tags.begin(), tags.end(), "output file") != tags.end()) + else if (std::find(tags.begin(), tags.end(), "input file") != tags.end() + || std::find(tags.begin(), tags.end(), "output file") != tags.end()) { //do not check restrictions on file names for now ok = true; @@ -364,7 +367,7 @@ namespace OpenMS { it->insert(*it2); } - if (it->description == "" || node.description != "") //replace description if not empty in new node + if (it->description.empty() || !node.description.empty()) //replace description if not empty in new node { it->description = node.description; } @@ -413,7 +416,7 @@ namespace OpenMS { it->value = entry.value; it->tags = entry.tags; - if (it->description == "" || entry.description != "") //replace description if not empty in new entry + if (it->description.empty() || !entry.description.empty()) //replace description if not empty in new entry { it->description = entry.description; } @@ -493,6 +496,17 @@ namespace OpenMS entry.valid_strings = strings; } + const std::vector& Param::getValidStrings(const std::string& key) const + { + ParamEntry& entry = getEntry_(key); + // check if correct parameter type + if (entry.value.valueType() != ParamValue::STRING_VALUE && entry.value.valueType() != ParamValue::STRING_LIST) + { + throw Exception::ElementNotFound(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, key); + } + return entry.valid_strings; + } + void Param::setMinInt(const std::string& key, int min) { ParamEntry& entry = getEntry_(key); @@ -575,7 +589,7 @@ namespace OpenMS void Param::setDefaults(const Param& defaults, const std::string& prefix, bool showMessage) { std::string prefix2 = prefix; - if (prefix2 != "") + if (!prefix2.empty()) { if (prefix2.back() != ':') { @@ -627,11 +641,11 @@ namespace OpenMS pathname.resize(pathname.size() - it2->name.size() - 1); } std::string real_pathname = pathname.substr(0, pathname.length() - 1); //remove ':' at the end - if (real_pathname != "") + if (!real_pathname.empty()) { std::string description_old = getSectionDescription(prefix + real_pathname); std::string description_new = defaults.getSectionDescription(real_pathname); - if (description_old == "") + if (description_old.empty()) { //std::cerr << "## Setting description of " << prefix+real_pathname << " to"<< std::endl; //std::cerr << "## " << description_new << std::endl; @@ -841,7 +855,7 @@ namespace OpenMS { //determine prefix std::string prefix2 = prefix; - if (prefix2 != "") + if (!prefix2.empty()) { //prefix2.ensureLastChar(':'); if (prefix2.back() != ':') @@ -1036,7 +1050,7 @@ namespace OpenMS os << it.getName().substr(0, it.getName().length() - it->name.length() - 1) << "|"; } os << it->name << "\" -> \"" << it->value << '"'; - if (it->description != "") + if (!it->description.empty()) { os << " (" << it->description << ")"; } @@ -1064,7 +1078,7 @@ namespace OpenMS { //Extract right parameters std::string prefix2 = prefix; - if (prefix2 != "") + if (!prefix2.empty()) { if (prefix2.back() != ':') { @@ -1407,11 +1421,11 @@ OPENMS_THREAD_CRITICAL(oms_log) pathname.resize(pathname.size() - traceIt->name.size() - 1); } std::string real_pathname = pathname.substr(0, pathname.size() - 1);//remove ':' at the end - if (real_pathname != "") + if (!real_pathname.empty()) { std::string description_old = getSectionDescription(prefix + real_pathname); std::string description_new = toMerge.getSectionDescription(real_pathname); - if (description_old == "") + if (description_old.empty()) { setSectionDescription(real_pathname, description_new); } diff --git a/src/openms/source/DATASTRUCTURES/QTCluster.cpp b/src/openms/source/DATASTRUCTURES/QTCluster.cpp index 11bc3a7281f..32ce948b26b 100644 --- a/src/openms/source/DATASTRUCTURES/QTCluster.cpp +++ b/src/openms/source/DATASTRUCTURES/QTCluster.cpp @@ -129,7 +129,7 @@ namespace OpenMS return data_->neighbors_.size() + 1; // + 1 for the center } - bool QTCluster::operator<(const QTCluster& rhs) + bool QTCluster::operator<(const QTCluster& rhs) const { OPENMS_PRECONDITION(finalized_, "Cannot perform operation on cluster that is not finalized") @@ -533,8 +533,4 @@ namespace OpenMS data_->tmp_neighbors_.clear(); } - bool operator<(const QTCluster& q1, const QTCluster& q2) - { - return q1.getCurrentQuality() < q2.getCurrentQuality(); - } } // namespace OpenMS diff --git a/src/openms/source/DATASTRUCTURES/ToolDescription.cpp b/src/openms/source/DATASTRUCTURES/ToolDescription.cpp index b88f2c41a0d..c1d6e4a180d 100644 --- a/src/openms/source/DATASTRUCTURES/ToolDescription.cpp +++ b/src/openms/source/DATASTRUCTURES/ToolDescription.cpp @@ -96,8 +96,8 @@ namespace OpenMS if (is_internal != other.is_internal || name != other.name //|| category != other.category - || (is_internal && external_details.size() > 0) - || (other.is_internal && other.external_details.size() > 0) + || (is_internal && !external_details.empty()) + || (other.is_internal && !other.external_details.empty()) || (!is_internal && external_details.size() != types.size()) || (!other.is_internal && other.external_details.size() != other.types.size()) ) diff --git a/src/openms/source/FILTERING/DATAREDUCTION/ElutionPeakDetection.cpp b/src/openms/source/FILTERING/DATAREDUCTION/ElutionPeakDetection.cpp index c1d42eeb64b..0f073de6b6e 100644 --- a/src/openms/source/FILTERING/DATAREDUCTION/ElutionPeakDetection.cpp +++ b/src/openms/source/FILTERING/DATAREDUCTION/ElutionPeakDetection.cpp @@ -128,7 +128,7 @@ namespace OpenMS } void ElutionPeakDetection::findLocalExtrema(const MassTrace& tr, const Size& num_neighboring_peaks, - std::vector& chrom_maxes, std::vector& chrom_mins) + std::vector& chrom_maxes, std::vector& chrom_mins) const { std::vector smoothed_ints_vec(tr.getSmoothedIntensities()); @@ -161,8 +161,8 @@ namespace OpenMS double ref_int = c_it->first; Size ref_idx = c_it->second; - if (!(used_idx[ref_idx]) && ref_int > 0.0) - { + if (!(used_idx[ref_idx]) && ref_int > 0.0) + { // only allow unused points as seeds (potential local maximum) bool real_max = true; // Get start_idx and end_idx based on expected peak width @@ -183,20 +183,28 @@ namespace OpenMS // boundaries). for (Size j = start_idx; j < end_idx; ++j) { - if (used_idx[j]) - { - real_max = false; - break; - } - if (j == ref_idx) - { + { // skip seed continue; } + if (used_idx[j]) + { // peak has already been collected? + if (smoothed_ints_vec[j] > ref_int) + { // break if higher intensity + real_max = false; + break; + } + else + { // skip if only a low intensity peak (e.g. flanks of elution profile) + continue; + } + } + if (smoothed_ints_vec[j] > ref_int) { real_max = false; + break; } } diff --git a/src/openms/source/FILTERING/DATAREDUCTION/FeatureFindingMetabo.cpp b/src/openms/source/FILTERING/DATAREDUCTION/FeatureFindingMetabo.cpp index e627dfaf64a..e772e6b4f0e 100644 --- a/src/openms/source/FILTERING/DATAREDUCTION/FeatureFindingMetabo.cpp +++ b/src/openms/source/FILTERING/DATAREDUCTION/FeatureFindingMetabo.cpp @@ -43,6 +43,8 @@ #include +#include "svm.h" + #ifdef _OPENMP #endif @@ -674,7 +676,7 @@ namespace OpenMS double overlap(0.0); - if (overlap_rts.size() > 0) + if (!overlap_rts.empty()) { double start_rt(*(overlap_rts.begin())), end_rt(*(overlap_rts.rbegin())); overlap = std::fabs(end_rt - start_rt); diff --git a/src/openms/source/FILTERING/DATAREDUCTION/MassTraceDetection.cpp b/src/openms/source/FILTERING/DATAREDUCTION/MassTraceDetection.cpp index 1c98d84447b..572787b93c1 100644 --- a/src/openms/source/FILTERING/DATAREDUCTION/MassTraceDetection.cpp +++ b/src/openms/source/FILTERING/DATAREDUCTION/MassTraceDetection.cpp @@ -282,7 +282,7 @@ namespace OpenMS Size fwhm_meta_count(0); for (Size i = 0; i < work_exp.size(); ++i) { - if (work_exp[i].getFloatDataArrays().size() > 0 && + if (!work_exp[i].getFloatDataArrays().empty() && work_exp[i].getFloatDataArrays()[0].getName() == "FWHM_ppm") { if (work_exp[i].getFloatDataArrays()[0].size() != work_exp[i].size()) diff --git a/src/openms/source/FILTERING/ID/IDFilter.cpp b/src/openms/source/FILTERING/ID/IDFilter.cpp index 5f81d7fe399..4c833ceca12 100644 --- a/src/openms/source/FILTERING/ID/IDFilter.cpp +++ b/src/openms/source/FILTERING/ID/IDFilter.cpp @@ -212,17 +212,17 @@ namespace OpenMS const vector& peptides, set& sequences, bool ignore_mods) { - for (const PeptideIdentification& pep_it : peptides) + for (const PeptideIdentification& pep : peptides) { - for (const PeptideHit& hit_it : pep_it.getHits()) + for (const PeptideHit& hit : pep.getHits()) { if (ignore_mods) { - sequences.insert(hit_it.getSequence().toUnmodifiedString()); + sequences.insert(hit.getSequence().toUnmodifiedString()); } else { - sequences.insert(hit_it.getSequence().toString()); + sequences.insert(hit.getSequence().toString()); } } } @@ -231,7 +231,7 @@ namespace OpenMS map> IDFilter::extractUnassignedProteins(ConsensusMap& cmap) { // collect accessions that are referenced by peptides for each ID run: - map > run_to_accessions; + map> run_to_accessions; for (const auto& f : cmap) { @@ -239,12 +239,10 @@ namespace OpenMS { const String& run_id = pepid.getIdentifier(); // extract protein accessions of each peptide hit: - for (const PeptideHit& hit_it : pepid.getHits()) + for (const PeptideHit& hit : pepid.getHits()) { - const set& current_accessions = - hit_it.extractProteinAccessionsSet(); - + const set& current_accessions = hit.extractProteinAccessionsSet(); run_to_accessions[run_id].insert(current_accessions.begin(), current_accessions.end()); } @@ -254,13 +252,13 @@ namespace OpenMS vector& prots = cmap.getProteinIdentifications(); map> result{}; - for (ProteinIdentification& prot_it : prots) + for (ProteinIdentification& prot : prots) { - const String& run_id = prot_it.getIdentifier(); + const String& run_id = prot.getIdentifier(); auto target = result.emplace(run_id, vector{}); const unordered_set& accessions = run_to_accessions[run_id]; struct HasMatchingAccessionUnordered acc_filter(accessions); - moveMatchingItems(prot_it.getHits(), std::not1(acc_filter), target.first->second); + moveMatchingItems(prot.getHits(), std::not1(acc_filter), target.first->second); } return result; } @@ -268,19 +266,17 @@ namespace OpenMS void IDFilter::removeUnreferencedProteins(ConsensusMap& cmap, bool include_unassigned) { // collect accessions that are referenced by peptides for each ID run: - map > run_to_accessions; + map> run_to_accessions; auto add_references_to_map = [&run_to_accessions](const PeptideIdentification& pepid) { const String& run_id = pepid.getIdentifier(); // extract protein accessions of each peptide hit: - for (const PeptideHit& hit_it : pepid.getHits()) + for (const PeptideHit& hit : pepid.getHits()) { - const set& current_accessions = - hit_it.extractProteinAccessionsSet(); - + const set& current_accessions = hit.extractProteinAccessionsSet(); run_to_accessions[run_id].insert(current_accessions.begin(), current_accessions.end()); } @@ -289,12 +285,12 @@ namespace OpenMS vector& prots = cmap.getProteinIdentifications(); - for (ProteinIdentification& prot_it : prots) + for (ProteinIdentification& prot : prots) { - const String& run_id = prot_it.getIdentifier(); + const String& run_id = prot.getIdentifier(); const unordered_set& accessions = run_to_accessions[run_id]; struct HasMatchingAccessionUnordered acc_filter(accessions); - keepMatchingItems(prot_it.getHits(), acc_filter); + keepMatchingItems(prot.getHits(), acc_filter); } } @@ -303,16 +299,14 @@ namespace OpenMS const vector& peptides) { // collect accessions that are referenced by peptides for each ID run: - map > run_to_accessions; - for (const PeptideIdentification& pep_it : peptides) + map> run_to_accessions; + for (const PeptideIdentification& pep : peptides) { - const String& run_id = pep_it.getIdentifier(); + const String& run_id = pep.getIdentifier(); // extract protein accessions of each peptide hit: - for (const PeptideHit& hit_it : pep_it.getHits()) + for (const PeptideHit& hit : pep.getHits()) { - const set& current_accessions = - hit_it.extractProteinAccessionsSet(); - + const set& current_accessions = hit.extractProteinAccessionsSet(); run_to_accessions[run_id].insert(current_accessions.begin(), current_accessions.end()); } @@ -329,27 +323,25 @@ namespace OpenMS const vector& peptides) { // collect accessions that are referenced by peptides for each ID run: - map > run_to_accessions; - for (const PeptideIdentification& pep_it : peptides) + map> run_to_accessions; + for (const PeptideIdentification& pep : peptides) { - const String& run_id = pep_it.getIdentifier(); + const String& run_id = pep.getIdentifier(); // extract protein accessions of each peptide hit: - for (const PeptideHit& hit_it : pep_it.getHits()) + for (const PeptideHit& hit : pep.getHits()) { - const set& current_accessions = - hit_it.extractProteinAccessionsSet(); - + const set& current_accessions = hit.extractProteinAccessionsSet(); run_to_accessions[run_id].insert(current_accessions.begin(), current_accessions.end()); } } - for (ProteinIdentification& prot_it : proteins) + for (ProteinIdentification& prot : proteins) { - const String& run_id = prot_it.getIdentifier(); + const String& run_id = prot.getIdentifier(); const unordered_set& accessions = run_to_accessions[run_id]; struct HasMatchingAccessionUnordered acc_filter(accessions); - keepMatchingItems(prot_it.getHits(), acc_filter); + keepMatchingItems(prot.getHits(), acc_filter); } } @@ -360,38 +352,38 @@ namespace OpenMS { vector& proteins = cmap.getProteinIdentifications(); // collect valid protein accessions for each ID run: - map > run_to_accessions; - for (const ProteinIdentification& prot_it : proteins) + map> run_to_accessions; + for (const ProteinIdentification& prot : proteins) { - const String& run_id = prot_it.getIdentifier(); - for (const ProteinHit& hit_it : prot_it.getHits()) + const String& run_id = prot.getIdentifier(); + for (const ProteinHit& hit : prot.getHits()) { - run_to_accessions[run_id].insert(hit_it.getAccession()); + run_to_accessions[run_id].insert(hit.getAccession()); } } auto check_prots_avail = [&run_to_accessions,&remove_peptides_without_reference] - (PeptideIdentification& pep_it) -> void + (PeptideIdentification& pep) -> void { - const String& run_id = pep_it.getIdentifier(); + const String& run_id = pep.getIdentifier(); const unordered_set& accessions = run_to_accessions[run_id]; struct HasMatchingAccessionUnordered acc_filter(accessions); // check protein accessions of each peptide hit - for (PeptideHit& hit_it : pep_it.getHits()) + for (PeptideHit& hit : pep.getHits()) { // no non-const "PeptideHit::getPeptideEvidences" implemented, so we // can't use "keepMatchingItems": vector evidences; - remove_copy_if(hit_it.getPeptideEvidences().begin(), - hit_it.getPeptideEvidences().end(), + remove_copy_if(hit.getPeptideEvidences().begin(), + hit.getPeptideEvidences().end(), back_inserter(evidences), not1(acc_filter)); - hit_it.setPeptideEvidences(evidences); + hit.setPeptideEvidences(evidences); } if (remove_peptides_without_reference) { - removeMatchingItems(pep_it.getHits(), HasNoEvidence()); + removeMatchingItems(pep.getHits(), HasNoEvidence()); } }; @@ -413,27 +405,26 @@ namespace OpenMS // TODO could be refactored and pulled out auto check_prots_avail = [&accessions_avail, &remove_peptides_without_reference] - (PeptideIdentification& pep_it) -> void + (PeptideIdentification& pep) -> void { - // const String& run_id = pep_it.getIdentifier(); const unordered_set& accessions = accessions_avail; struct HasMatchingAccessionUnordered acc_filter(accessions); // check protein accessions of each peptide hit - for (PeptideHit& hit_it : pep_it.getHits()) + for (PeptideHit& hit : pep.getHits()) { // no non-const "PeptideHit::getPeptideEvidences" implemented, so we // can't use "keepMatchingItems": vector evidences; - remove_copy_if(hit_it.getPeptideEvidences().begin(), - hit_it.getPeptideEvidences().end(), + remove_copy_if(hit.getPeptideEvidences().begin(), + hit.getPeptideEvidences().end(), back_inserter(evidences), not1(acc_filter)); - hit_it.setPeptideEvidences(evidences); + hit.setPeptideEvidences(evidences); } if (remove_peptides_without_reference) { - removeMatchingItems(pep_it.getHits(), HasNoEvidence()); + removeMatchingItems(pep.getHits(), HasNoEvidence()); } }; @@ -446,37 +437,37 @@ namespace OpenMS bool remove_peptides_without_reference) { // collect valid protein accessions for each ID run: - map > run_to_accessions; - for (const ProteinIdentification& prot_it : proteins) + map> run_to_accessions; + for (const ProteinIdentification& prot : proteins) { - const String& run_id = prot_it.getIdentifier(); - for (const ProteinHit& hit_it : prot_it.getHits()) + const String& run_id = prot.getIdentifier(); + for (const ProteinHit& hit : prot.getHits()) { - run_to_accessions[run_id].insert(hit_it.getAccession()); + run_to_accessions[run_id].insert(hit.getAccession()); } } - for (PeptideIdentification& pep_it : peptides) + for (PeptideIdentification& pep : peptides) { - const String& run_id = pep_it.getIdentifier(); + const String& run_id = pep.getIdentifier(); const unordered_set& accessions = run_to_accessions[run_id]; struct HasMatchingAccessionUnordered acc_filter(accessions); // check protein accessions of each peptide hit - for (PeptideHit& hit_it : pep_it.getHits()) + for (PeptideHit& hit : pep.getHits()) { // no non-const "PeptideHit::getPeptideEvidences" implemented, so we // can't use "keepMatchingItems": vector evidences; - remove_copy_if(hit_it.getPeptideEvidences().begin(), - hit_it.getPeptideEvidences().end(), + remove_copy_if(hit.getPeptideEvidences().begin(), + hit.getPeptideEvidences().end(), back_inserter(evidences), not1(acc_filter)); - hit_it.setPeptideEvidences(evidences); + hit.setPeptideEvidences(evidences); } if (remove_peptides_without_reference) { - removeMatchingItems(pep_it.getHits(), HasNoEvidence()); + removeMatchingItems(pep.getHits(), HasNoEvidence()); } } } @@ -490,28 +481,30 @@ namespace OpenMS // we'll do lots of look-ups, so use a suitable data structure: unordered_set valid_accessions; - for (const ProteinHit& hit_it : hits) + for (const ProteinHit& hit : hits) { - valid_accessions.insert(hit_it.getAccession()); + valid_accessions.insert(hit.getAccession()); } bool valid = true; vector filtered_groups; - for (ProteinIdentification::ProteinGroup& group_it : groups) + for (ProteinIdentification::ProteinGroup& group : groups) { ProteinIdentification::ProteinGroup filtered; - for (const String& acc : group_it.accessions) + for (const String& acc : group.accessions) { - if (valid_accessions.find(acc) != valid_accessions.end()) - filtered.accessions.push_back(acc); + if (valid_accessions.find(acc) != valid_accessions.end()) + { + filtered.accessions.push_back(acc); + } } if (!filtered.accessions.empty()) { - if (filtered.accessions.size() < group_it.accessions.size()) + if (filtered.accessions.size() < group.accessions.size()) { valid = false; // some proteins removed from group } - filtered.probability = group_it.probability; + filtered.probability = group.probability; filtered_groups.push_back(filtered); } } @@ -587,8 +580,8 @@ namespace OpenMS { const auto& pred = [&threshold_score,&higher_better](ProteinIdentification::ProteinGroup& g) { - return (higher_better && (threshold_score >= g.probability)) - || (!higher_better && (threshold_score < g.probability)); + return ((higher_better && (threshold_score >= g.probability)) + || (!higher_better && (threshold_score < g.probability))); }; grps.erase( @@ -603,18 +596,18 @@ namespace OpenMS if (min_length > 0) { struct HasMinPeptideLength length_filter(min_length); - for (PeptideIdentification& pep_it : peptides) + for (PeptideIdentification& pep : peptides) { - keepMatchingItems(pep_it.getHits(), length_filter); + keepMatchingItems(pep.getHits(), length_filter); } } ++max_length; // the predicate tests for ">=", we need ">" if (max_length > min_length) { struct HasMinPeptideLength length_filter(max_length); - for (PeptideIdentification& pep_it : peptides) + for (PeptideIdentification& pep : peptides) { - removeMatchingItems(pep_it.getHits(), length_filter); + removeMatchingItems(pep.getHits(), length_filter); } } } @@ -624,17 +617,17 @@ namespace OpenMS Int min_charge, Int max_charge) { struct HasMinCharge charge_filter(min_charge); - for (PeptideIdentification& pep_it : peptides) + for (PeptideIdentification& pep : peptides) { - keepMatchingItems(pep_it.getHits(), charge_filter); + keepMatchingItems(pep.getHits(), charge_filter); } ++max_charge; // the predicate tests for ">=", we need ">" if (max_charge > min_charge) { charge_filter = HasMinCharge(max_charge); - for (PeptideIdentification& pep_it : peptides) + for (PeptideIdentification& pep : peptides) { - removeMatchingItems(pep_it.getHits(), charge_filter); + removeMatchingItems(pep.getHits(), charge_filter); } } } @@ -659,10 +652,10 @@ namespace OpenMS void IDFilter::filterPeptidesByMZError( vector& peptides, double mass_error, bool unit_ppm) { - for (PeptideIdentification& pep_it : peptides) + for (PeptideIdentification& pep : peptides) { - struct HasLowMZError error_filter(pep_it.getMZ(), mass_error, unit_ppm); - keepMatchingItems(pep_it.getHits(), error_filter); + struct HasLowMZError error_filter(pep.getMZ(), mass_error, unit_ppm); + keepMatchingItems(pep.getHits(), error_filter); } } @@ -675,13 +668,13 @@ namespace OpenMS struct HasMetaValue present_filter(metavalue_key, DataValue()); double cutoff = 1 - threshold; // why? - Hendrik struct HasMaxMetaValue pvalue_filter(metavalue_key, cutoff); - for (PeptideIdentification& pep_it : peptides) + for (PeptideIdentification& pep : peptides) { - n_initial += pep_it.getHits().size(); - keepMatchingItems(pep_it.getHits(), present_filter); - n_metavalue += pep_it.getHits().size(); + n_initial += pep.getHits().size(); + keepMatchingItems(pep.getHits(), present_filter); + n_metavalue += pep.getHits().size(); - keepMatchingItems(pep_it.getHits(), pvalue_filter); + keepMatchingItems(pep.getHits(), pvalue_filter); } if (n_metavalue < n_initial) @@ -699,9 +692,9 @@ namespace OpenMS const set& modifications) { struct HasMatchingModification mod_filter(modifications); - for (PeptideIdentification& pep_it : peptides) + for (PeptideIdentification& pep : peptides) { - removeMatchingItems(pep_it.getHits(), mod_filter); + removeMatchingItems(pep.getHits(), mod_filter); } } @@ -713,7 +706,7 @@ namespace OpenMS // true if regex matches to parts or entire unmodified sequence auto regex_matches = [&re](const PeptideHit& ph) -> bool - { + { return std::regex_search(ph.getSequence().toUnmodifiedString(), re); }; @@ -728,9 +721,9 @@ namespace OpenMS const set& modifications) { struct HasMatchingModification mod_filter(modifications); - for (PeptideIdentification& pep_it : peptides) + for (PeptideIdentification& pep : peptides) { - keepMatchingItems(pep_it.getHits(), mod_filter); + keepMatchingItems(pep.getHits(), mod_filter); } } @@ -742,9 +735,9 @@ namespace OpenMS set bad_seqs; extractPeptideSequences(bad_peptides, bad_seqs, ignore_mods); struct HasMatchingSequence seq_filter(bad_seqs, ignore_mods); - for (PeptideIdentification& pep_it : peptides) + for (PeptideIdentification& pep : peptides) { - removeMatchingItems(pep_it.getHits(), seq_filter); + removeMatchingItems(pep.getHits(), seq_filter); } } @@ -756,9 +749,9 @@ namespace OpenMS set good_seqs; extractPeptideSequences(good_peptides, good_seqs, ignore_mods); struct HasMatchingSequence seq_filter(good_seqs, ignore_mods); - for (PeptideIdentification& pep_it : peptides) + for (PeptideIdentification& pep : peptides) { - keepMatchingItems(pep_it.getHits(), seq_filter); + keepMatchingItems(pep.getHits(), seq_filter); } } @@ -771,13 +764,13 @@ namespace OpenMS DataValue()); struct HasMetaValue unique_filter("protein_references", DataValue("unique")); - for (PeptideIdentification& pep_it : peptides) + for (PeptideIdentification& pep : peptides) { - n_initial += pep_it.getHits().size(); - keepMatchingItems(pep_it.getHits(), present_filter); - n_metavalue += pep_it.getHits().size(); + n_initial += pep.getHits().size(); + keepMatchingItems(pep.getHits(), present_filter); + n_metavalue += pep.getHits().size(); - keepMatchingItems(pep_it.getHits(), unique_filter); + keepMatchingItems(pep.getHits(), unique_filter); } if (n_metavalue < n_initial) @@ -794,17 +787,17 @@ namespace OpenMS void IDFilter::removeDuplicatePeptideHits(vector& peptides, bool seq_only) { - for (PeptideIdentification& pep_it : peptides) + for (PeptideIdentification& pep : peptides) { vector filtered_hits; if (seq_only) { set seqs; - for (PeptideHit& hit_it : pep_it.getHits()) + for (PeptideHit& hit : pep.getHits()) { - if (seqs.insert(hit_it.getSequence()).second) // new sequence + if (seqs.insert(hit.getSequence()).second) // new sequence { - filtered_hits.push_back(hit_it); + filtered_hits.push_back(hit); } } } @@ -812,26 +805,26 @@ namespace OpenMS { // there's no "PeptideHit::operator<" defined, so we can't use a set nor // "sort" + "unique" from the standard library: - for (PeptideHit& hit_it : pep_it.getHits()) + for (PeptideHit& hit : pep.getHits()) { - if (find(filtered_hits.begin(), filtered_hits.end(), hit_it) == + if (find(filtered_hits.begin(), filtered_hits.end(), hit) == filtered_hits.end()) { - filtered_hits.push_back(hit_it); + filtered_hits.push_back(hit); } } } - pep_it.getHits().swap(filtered_hits); + pep.getHits().swap(filtered_hits); } } void IDFilter::keepNBestSpectra(std::vector& peptides, Size n) { String score_type; - for (PeptideIdentification& p : peptides) - { + for (PeptideIdentification& p : peptides) + { p.sort(); - if (score_type.empty()) + if (score_type.empty()) { score_type = p.getScoreType(); } @@ -841,14 +834,14 @@ namespace OpenMS { throw Exception::Precondition(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("PSM score types must be identical to allow proper filtering.")); } - } + } } // there might be less spectra identified than n -> adapt n = std::min(n, peptides.size()); - auto has_better_peptidehit = - [] (const PeptideIdentification& l, const PeptideIdentification& r) + auto has_better_peptidehit = + [] (const PeptideIdentification& l, const PeptideIdentification& r) { if (r.getHits().empty()) { @@ -861,7 +854,7 @@ namespace OpenMS const bool higher_better = l.isHigherScoreBetter(); const double l_score = l.getHits()[0].getScore(); const double r_score = r.getHits()[0].getScore(); - + // both have hits? better score of best PSM is better if (higher_better) { @@ -874,19 +867,17 @@ namespace OpenMS peptides.resize(n); } - void IDFilter::keepBestMatchPerQuery( + void IDFilter::keepBestMatchPerObservation( IdentificationData& id_data, IdentificationData::ScoreTypeRef score_ref) { - if (id_data.getMoleculeQueryMatches().size() <= 1) - { - return; // nothing to do - } - vector best_matches = - id_data.getBestMatchPerQuery(score_ref); + if (id_data.getObservationMatches().size() <= 1) return; // nothing to do + + vector best_matches = + id_data.getBestMatchPerObservation(score_ref); auto best_match_it = best_matches.begin(); - for (auto it = id_data.query_matches_.begin(); - it != id_data.query_matches_.end(); ) + for (auto it = id_data.observation_matches_.begin(); + it != id_data.observation_matches_.end(); ) { if (it == *best_match_it) { @@ -895,26 +886,22 @@ namespace OpenMS } else { - it = id_data.query_matches_.erase(it); + it = id_data.observation_matches_.erase(it); } } id_data.cleanup(); } - - void IDFilter::filterQueryMatchesByScore( + void IDFilter::filterObservationMatchesByScore( IdentificationData& id_data, IdentificationData::ScoreTypeRef score_ref, double cutoff) { - bool higher_better = score_ref->higher_better; - id_data.removeFromSetIf_( - id_data.query_matches_, [&](IdentificationData::QueryMatchRef it) -> bool + id_data.observation_matches_, [&](IdentificationData::ObservationMatchRef it) -> bool { pair score = it->getScore(score_ref); - return !score.second || id_data.isBetterScore(cutoff, score.first, - higher_better); + return !score.second || score_ref->isBetterScore(cutoff, score.first); }); id_data.cleanup(); @@ -923,15 +910,15 @@ namespace OpenMS void IDFilter::removeDecoys(IdentificationData& id_data) { - Size n_parents = id_data.getParentMolecules().size(); + Size n_parents = id_data.getParentSequences().size(); id_data.removeFromSetIf_( - id_data.parent_molecules_, - [&](IdentificationData::ParentMoleculeRef it) -> bool + id_data.parents_, + [&](IdentificationData::ParentSequenceRef it) -> bool { return it->is_decoy; }); - if (id_data.getParentMolecules().size() < n_parents) id_data.cleanup(); + if (id_data.getParentSequences().size() < n_parents) id_data.cleanup(); } } // namespace OpenMS diff --git a/src/openms/source/FILTERING/SMOOTHING/FastLowessSmoothing.cpp b/src/openms/source/FILTERING/SMOOTHING/FastLowessSmoothing.cpp index 180dbedcc84..72caa80b31c 100644 --- a/src/openms/source/FILTERING/SMOOTHING/FastLowessSmoothing.cpp +++ b/src/openms/source/FILTERING/SMOOTHING/FastLowessSmoothing.cpp @@ -579,10 +579,7 @@ namespace c_lowess }; } -namespace OpenMS -{ - - namespace FastLowessSmoothing +namespace OpenMS::FastLowessSmoothing { int lowess(const std::vector& x, const std::vector& y, @@ -627,6 +624,3 @@ namespace OpenMS } } - - -} diff --git a/src/openms/source/FORMAT/CVMappingFile.cpp b/src/openms/source/FORMAT/CVMappingFile.cpp index 1c9cbc65162..91bc4baaf6a 100644 --- a/src/openms/source/FORMAT/CVMappingFile.cpp +++ b/src/openms/source/FORMAT/CVMappingFile.cpp @@ -194,7 +194,7 @@ namespace OpenMS String use_term_name; optionalAttributeAsString_(use_term_name, attributes, "useTermName"); - if (use_term_name != "") + if (!use_term_name.empty()) { term.setUseTermName(DataValue(use_term_name).toBool()); } @@ -206,7 +206,7 @@ namespace OpenMS String is_repeatable; optionalAttributeAsString_(is_repeatable, attributes, "isRepeatable"); - if (is_repeatable != "") + if (!is_repeatable.empty()) { term.setIsRepeatable(DataValue(is_repeatable).toBool()); } diff --git a/src/openms/source/FORMAT/ControlledVocabulary.cpp b/src/openms/source/FORMAT/ControlledVocabulary.cpp index 6e0b52cd856..e64b0e4ca68 100644 --- a/src/openms/source/FORMAT/ControlledVocabulary.cpp +++ b/src/openms/source/FORMAT/ControlledVocabulary.cpp @@ -208,10 +208,25 @@ namespace OpenMS line_wo_spaces.removeWhitespaces(); //do nothing for empty lines - if (line == "") + if (line.empty()) { continue; } + + if (line_wo_spaces.hasPrefix("data-version:")) + { + version_ = line.substr(line.find(':') + 1).trim(); + } + if (line_wo_spaces.hasPrefix("default-namespace:")) + { + label_ = line.substr(line.find(':') + 1).trim(); + } + if (line_wo_spaces.hasPrefix("remark:URL:")) + { + // https:// + url_ = line.substr(line.find_first_of('/') - 7).trim(); + } + //******************************************************************************** //stanza line if (line_wo_spaces[0] == '[') @@ -220,7 +235,7 @@ namespace OpenMS if (line_wo_spaces.toLower() == "[term]") //new term { in_term = true; - if (term.id != "") //store last term + if (!term.id.empty()) //store last term { terms_[term.id] = term; } @@ -413,14 +428,14 @@ namespace OpenMS line_wo_spaces.trim(); term.xref_binary.push_back(line_wo_spaces); } - else if (line != "") + else if (!line.empty()) { term.unparsed.push_back(line); } } } - if (term.id != "") //store last term + if (!term.id.empty()) //store last term { terms_[term.id] = term; } @@ -560,6 +575,21 @@ namespace OpenMS return name_; } + const String& ControlledVocabulary::label() const + { + return label_; + } + + const String& ControlledVocabulary::version() const + { + return version_; + } + + const String& ControlledVocabulary::url() const + { + return url_; + } + const ControlledVocabulary& ControlledVocabulary::getPSIMSCV() { static const ControlledVocabulary cv = []() { @@ -574,7 +604,7 @@ namespace OpenMS return cv; } - bool ControlledVocabulary::checkName_(const String& id, const String& name, bool ignore_case) + bool ControlledVocabulary::checkName_(const String& id, const String& name, bool ignore_case) const { if (!exists(id)) { diff --git a/src/openms/source/FORMAT/DATAACCESS/MSDataAggregatingConsumer.cpp b/src/openms/source/FORMAT/DATAACCESS/MSDataAggregatingConsumer.cpp index 02a4358ce1f..22f1785c8e9 100644 --- a/src/openms/source/FORMAT/DATAACCESS/MSDataAggregatingConsumer.cpp +++ b/src/openms/source/FORMAT/DATAACCESS/MSDataAggregatingConsumer.cpp @@ -36,6 +36,7 @@ #include #include +#include namespace OpenMS { @@ -46,13 +47,7 @@ namespace OpenMS if (!s_list.empty()) { MSSpectrum tmps = SpectrumAddition::addUpSpectra(s_list, -1, true); - tmps.SpectrumSettings::operator=(s_list[0]); // copy over SpectrumSettings of first spectrum - tmps.setName( s_list[0].getName() ); - tmps.setRT( s_list[0].getRT() ); - tmps.setDriftTime( s_list[0].getDriftTime() ); - tmps.setDriftTimeUnit( s_list[0].getDriftTimeUnit() ); - tmps.setMSLevel( s_list[0].getMSLevel() ); - + copySpectrumMeta(s_list[0], tmps, false); next_consumer_->consumeSpectrum(tmps); } } @@ -73,13 +68,7 @@ namespace OpenMS if (rt_initialized_ && !s_list.empty()) { MSSpectrum tmps = SpectrumAddition::addUpSpectra(s_list, -1, true); - tmps.SpectrumSettings::operator=(s_list[0]); // copy over SpectrumSettings of first spectrum - tmps.setName( s_list[0].getName() ); - tmps.setRT( s_list[0].getRT() ); - tmps.setDriftTime( s_list[0].getDriftTime() ); - tmps.setDriftTimeUnit( s_list[0].getDriftTimeUnit() ); - tmps.setMSLevel( s_list[0].getMSLevel() ); - + copySpectrumMeta(s_list[0], tmps, false); next_consumer_->consumeSpectrum(tmps); } @@ -100,5 +89,5 @@ namespace OpenMS next_consumer_->consumeChromatogram(c); } - } // namespace OpenMS + diff --git a/src/openms/source/FORMAT/DATAACCESS/SiriusFragmentAnnotation.cpp b/src/openms/source/FORMAT/DATAACCESS/SiriusFragmentAnnotation.cpp index f0644110560..707b61f32a1 100644 --- a/src/openms/source/FORMAT/DATAACCESS/SiriusFragmentAnnotation.cpp +++ b/src/openms/source/FORMAT/DATAACCESS/SiriusFragmentAnnotation.cpp @@ -91,9 +91,10 @@ namespace OpenMS } // convert to vector - for (const auto& it : native_ids_annotated_spectra) + annotated_spectra.reserve(native_ids_annotated_spectra.size()); + for (auto& id_spec : native_ids_annotated_spectra) { - annotated_spectra.emplace_back(std::move(it.second)); + annotated_spectra.emplace_back(std::move(id_spec.second)); } return annotated_spectra; diff --git a/src/openms/source/FORMAT/EDTAFile.cpp b/src/openms/source/FORMAT/EDTAFile.cpp index c6e13902c7e..0a0ed338799 100644 --- a/src/openms/source/FORMAT/EDTAFile.cpp +++ b/src/openms/source/FORMAT/EDTAFile.cpp @@ -183,7 +183,7 @@ namespace OpenMS //do nothing for empty lines String line_trimmed = *input_it; line_trimmed.trim(); - if (line_trimmed == "") + if (line_trimmed.empty()) { if ((input_it - input.begin()) < input_size - 1) OPENMS_LOG_WARN << "Notice: Empty line ignored (line " << ((input_it - input.begin()) + 1) << ")."; continue; @@ -266,10 +266,10 @@ namespace OpenMS { String part_trimmed = parts[j]; part_trimmed.trim(); - if (part_trimmed != "") + if (!part_trimmed.empty()) { //check if column name is ok - if (headers.size() <= j || headers[j] == "") + if (headers.size() <= j || headers[j].empty()) { throw Exception::ParseError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "", String("Error: Missing meta data header for column ") + (j + 1) + "!" diff --git a/src/openms/source/FORMAT/FileHandler.cpp b/src/openms/source/FORMAT/FileHandler.cpp index 2d2ca3fa8ea..8c16d8a4db3 100644 --- a/src/openms/source/FORMAT/FileHandler.cpp +++ b/src/openms/source/FORMAT/FileHandler.cpp @@ -504,7 +504,7 @@ namespace OpenMS // MS2 file format if (all_simple.hasSubstring("CreationDate")) { - if (all_simple.size() > 0 && all_simple[0] == 'H') + if (!all_simple.empty() && all_simple[0] == 'H') { return FileTypes::MS2; } diff --git a/src/openms/source/FORMAT/FileTypes.cpp b/src/openms/source/FORMAT/FileTypes.cpp index 2a87e7adace..d41a6431ba6 100644 --- a/src/openms/source/FORMAT/FileTypes.cpp +++ b/src/openms/source/FORMAT/FileTypes.cpp @@ -55,7 +55,7 @@ namespace OpenMS { } }; - + /// Maps the FileType::Type to the preferred extension. static const std::array type_with_annotation__ = { @@ -102,7 +102,7 @@ namespace OpenMS TypeNameBinding(FileTypes::XSD, "xsd", "XSD schema format"), TypeNameBinding(FileTypes::PSQ, "psq", "NCBI binary blast db"), TypeNameBinding(FileTypes::MRM, "mrm", "SpectraST MRM list"), - TypeNameBinding(FileTypes::SQMASS, "sqMass", "SqLite format for mass and chromatograms"), + TypeNameBinding(FileTypes::SQMASS, "sqMass", "SQLite format for mass and chromatograms"), TypeNameBinding(FileTypes::PQP, "pqp", "pqp file"), TypeNameBinding(FileTypes::MS, "ms", "SIRIUS file"), TypeNameBinding(FileTypes::OSW, "osw", "OpenSwath output files"), @@ -115,6 +115,7 @@ namespace OpenMS TypeNameBinding(FileTypes::SPECXML, "spec.xml", "spec.xml file"), TypeNameBinding(FileTypes::JSON, "json", "JavaScript Object Notation file"), TypeNameBinding(FileTypes::RAW, "raw", "(Thermo) Raw data file"), + TypeNameBinding(FileTypes::OMS, "oms", "OpenMS SQLite file"), TypeNameBinding(FileTypes::EXE, "exe", "Windows executable"), TypeNameBinding(FileTypes::BZ2, "bz2", "bzip2 compressed file"), TypeNameBinding(FileTypes::GZ, "gz", "gzip compressed file"), @@ -200,7 +201,7 @@ namespace OpenMS FileTypes::Type FileTypes::nameToType(const String& name) { String name_upper = String(name).toUpper(); - + for (const auto& t_info : type_with_annotation__) { if (String(t_info.name).toUpper() == name_upper) diff --git a/src/openms/source/FORMAT/GNPSMGFFile.cpp b/src/openms/source/FORMAT/GNPSMGFFile.cpp new file mode 100644 index 00000000000..12dd20747fa --- /dev/null +++ b/src/openms/source/FORMAT/GNPSMGFFile.cpp @@ -0,0 +1,400 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Dorrestein Lab - University of California San Diego - https://dorresteinlab.ucsd.edu/$ +// $Authors: Abinesh Sarvepalli and Louis Felix Nothias$ +// $Contributors: Fabian Aicheler and Oliver Alka from Oliver Kohlbacher's group at Tubingen University$ +// -------------------------------------------------------------------------- +// + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include + +using namespace std; + +namespace OpenMS +{ + GNPSMGFFile::GNPSMGFFile() : + DefaultParamHandler("GNPSMGFFile"), + ProgressLogger() + { + defaults_.setValue("output_type", "most_intense", "specificity of mgf output information"); + defaults_.setValidStrings("output_type", {"merged_spectra","most_intense"}); + + defaults_.setValue("peptide_cutoff", DEF_PEPT_CUTOFF, "Number of most intense peptides to consider per consensus element; '-1' to consider all identifications."); + defaults_.setMinInt("peptide_cutoff", -1); + + defaults_.setValue("ms2_bin_size", DEF_MERGE_BIN_SIZE, "Bin size (Da) for fragment ions when merging ms2 scans."); + defaults_.setMinFloat("ms2_bin_size", 0); + + defaults_.setValue("merged_spectra:cos_similarity", DEF_COSINE_SIMILARITY, "Cosine similarity threshold for merged_spectra output."); + defaults_.setMinFloat("merged_spectra:cos_similarity", 0); + + defaults_.setSectionDescription("merged_spectra", "Options for exporting mgf file with merged spectra per consensusElement"); + + defaultsToParam_(); // copy defaults into param_ + } + + /** + * @brief Bin peaks by similar m/z position and averaged intensities + * @param peaks Vector of Peak1D peaks sorted by m/z position + * @param bin_width Size of bin + * @param binned_peaks Result vector with binned peaks passed in by reference + */ + void binPeaks_( + const vector &peaks, + const double bin_width, + vector &binned_peaks + ) + { + double last_mz = peaks.at(0).getMZ(); + double sum_mz{}; + double sum_intensity{}; + int count{}; + for (auto& spec : peaks) + { + if (count > 0 && spec.getMZ() - last_mz > bin_width) + { + if (sum_intensity > 0) + { + Peak1D curr(sum_mz/count, sum_intensity/count); + binned_peaks.push_back(curr); + } + last_mz = spec.getMZ(); + sum_mz = 0; + sum_intensity = 0; + count = 0; + } + + sum_mz += spec.getMZ(); + sum_intensity += spec.getIntensity(); + count += 1; + } + if (count > 0) + { + Peak1D curr(sum_mz/count, sum_intensity/count); + binned_peaks.push_back(curr); + } + } + + /** + * @brief Flatten spectra from MSExperiment into a single vector of Peak1D peaks + * @param exp MSExperiment containing at least 1 spectrum + * @param bin_width Size of binned scan (m/z) + * @param merged_peaks Result vector of peaks passed in by reference + */ + void flattenAndBinSpectra_( + MSExperiment &exp, + const double bin_width, + vector &merged_peaks + ) + { + // flatten spectra + vector flat_spectra; + for (auto& spec : exp.getSpectra()) + { + for (auto& peak : spec) + { + flat_spectra.push_back(peak); + } + } + + sort(flat_spectra.begin(), flat_spectra.end(), [](const Peak1D &a, const Peak1D &b) + { + return a.getMZ() < b.getMZ(); + } + ); + + // bin peaks + binPeaks_(flat_spectra, bin_width, merged_peaks); + + // return value is modified merged_peaks passed by reference + } + + /** + * @brief Private function that outputs MS/MS Block Header + * @param output_file Stream that will write to file + * @param scan_index Current scan index in GNPSExport formatted output + * @param feature_id ConsensusFeature Id found in input mzXML file + * @param feature_charge ConsensusFeature's highest charge as mentioned in the input mzXML file + * @param feature_mz m/z position of PeptideIdentification with highest intensity + * @param spec_index Spectrum index of PeptideIdentification with highest intensity + * @param feature_rt ConsensusFeature's retention time specified in input mzXML file + */ + void writeMSMSBlockHeader_( + ofstream &output_file, + const String &output_type, + const int &scan_index, + const String &feature_id, + const int &feature_charge, + const String &feature_mz, + const String &spec_index, + const String &feature_rt + ) + { + if (output_file.is_open()) + { + output_file << "BEGIN IONS" << "\n" + << "OUTPUT=" << output_type << "\n" + << "SCANS=" << scan_index << "\n" + << "FEATURE_ID=e_" << feature_id << "\n" + << "MSLEVEL=2" << "\n" + << "CHARGE=" << to_string(feature_charge == 0 ? 1 : feature_charge) << "+" << "\n" + << "PEPMASS=" << feature_mz << "\n" + << "FILE_INDEX=" << spec_index << "\n" + << "RTINSECONDS=" << feature_rt << "\n"; + } + } + + /** + * @brief Private function to write peak mass and intensity to output file + * @param output_file Stream that will write to file + * @param peaks Vector of peaks that will be outputted + */ + void writeMSMSBlock_( + ofstream &output_file, + const vector &peaks + ) + { + if (output_file.is_open()) + { + output_file << setprecision(4) << fixed; + for (auto& peak : peaks) + { + output_file << peak.getMZ() << "\t" << peak.getIntensity() << "\n"; + } + + output_file << "END IONS" << "\n" << endl; + } + } + + /** + * @brief Private method used to sort PeptideIdentification map indices in order of annotation's intensity + * @param feature ConsensusFeature annotated with PeptideIdentifications + * @param featureMaps_sortedByInt Result vector of map indices in order of PeptideIdentification intensity + */ + void sortElementMapsByIntensity_(const ConsensusFeature& feature, vector>& element_maps) + { + // convert element maps to vector of pair(map, intensity) + for (const auto& feature_handle : feature) + { + element_maps.emplace_back(feature_handle.getMapIndex(), feature_handle.getIntensity()); + } + + // sort elements by intensity + sort(element_maps.begin(), element_maps.end(), [](const pair &a, const pair &b) + { + return a.second > b.second; + }); + + // return value will be reformatted vector element_maps passed in by value + } + + /** + * @brief Retrieve list of PeptideIdentification parameters from ConsensusFeature metadata, sorted by map intensity + * @param feature ConsensusFeature feature containing PeptideIdentification annotations + * @param sorted_element_maps Sorted list of element_maps + * @param pepts Result vector of of PeptideIdentification annotations sorted by map intensity in feature + */ + void getElementPeptideIdentificationsByElementIntensity_( + const ConsensusFeature& feature, + vector>& sorted_element_maps, + vector>& pepts + ) + { + for (pair& element_pair : sorted_element_maps) + { + int element_map = element_pair.first; + vector feature_pepts = feature.getPeptideIdentifications(); + for (PeptideIdentification& pept_id : feature_pepts) + { + if (pept_id.metaValueExists("spectrum_index") && pept_id.metaValueExists("map_index") + && (int)pept_id.getMetaValue("map_index") == element_map) + { + int map_index = pept_id.getMetaValue("map_index"); + int spec_index = pept_id.getMetaValue("spectrum_index"); + pepts.push_back(pair(map_index,spec_index)); + break; + } + } + } + // return will be reformatted vector pepts passed in by value + } + + void GNPSMGFFile::run(const String& consensus_file_path, const StringList& mzml_file_paths, const String& out) const + { + std::string output_type = getParameters().getValue("output_type"); + + double bin_width = getParameters().getValue("ms2_bin_size"); + + int pept_cutoff((output_type == "merged_spectra") ? (int)getParameters().getValue("peptide_cutoff") : 1); + + double cos_sim_threshold = getParameters().getValue("merged_spectra:cos_similarity"); + + ofstream output_file(out); + + //------------------------------------------------------------- + // reading input + //------------------------------------------------------------- + // ConsensusMap + ConsensusXMLFile consensus_file; + ConsensusMap consensus_map; + consensus_file.load(consensus_file_path, consensus_map); + + //------------------------------------------------------------- + // open on-disc data (=spectra are only loaded on demand to safe memory) + //------------------------------------------------------------- + vector specs_list(mzml_file_paths.size(), OnDiscMSExperiment()); + + map map_index2file_index; // = + Size num_msmaps_cached = 0; + + //------------------------------------------------------------- + // write output (+ merge computations) + //------------------------------------------------------------- + startProgress(0, consensus_map.size(), "parsing features and ms2 identifications..."); + + for (Size cons_i = 0; cons_i < consensus_map.size(); ++cons_i) + { + setProgress(cons_i); + + const ConsensusFeature& feature = consensus_map[cons_i]; + + // determine feature's charge as maximum feature handle charge + int charge = feature.getCharge(); + for (auto& fh : feature) + { + if (fh.getCharge() > charge) + { + charge = fh.getCharge(); + } + } + + // compute most intense peptide identifications (based on precursor intensity) + vector> element_maps; + sortElementMapsByIntensity_(feature, element_maps); + vector> pepts; + getElementPeptideIdentificationsByElementIntensity_(feature, element_maps, pepts); + + // discard poorer precursor spectra for 'merged_spectra' and 'full_spectra' output + if (pept_cutoff != -1 && pepts.size() > (unsigned long) pept_cutoff) + { + pepts.erase(pepts.begin()+pept_cutoff, pepts.end()); + } + + // validate all peptide annotation maps have been loaded + for (const auto& pep : pepts) + { + int map_index = pep.first; + + // open on-disc experiments + if (map_index2file_index.find(map_index) == map_index2file_index.end()) + { + specs_list[num_msmaps_cached].openFile(mzml_file_paths[map_index], false); // open on-disc experiment and load meta-data + map_index2file_index[map_index] = num_msmaps_cached; + ++num_msmaps_cached; + } + } + + // identify most intense spectrum + const int best_mapi = pepts[0].first; + const int best_speci = pepts[0].second; + auto best_spec = specs_list[map_index2file_index[best_mapi]][best_speci]; + + // write block output header + writeMSMSBlockHeader_( + output_file, + output_type, + (cons_i + 1), + feature.getUniqueId(), + charge, + feature.getMZ(), + best_speci, + best_spec.getRT() + ); + + // store outputted spectra in MSExperiment + MSExperiment exp; + + // add most intense spectrum to MSExperiment + exp.addSpectrum(best_spec); + + if (output_type == "merged_spectra") + { + // merge spectra that meet cosine similarity threshold to most intense spectrum + BinnedSpectrum binned_highest_int(best_spec, bin_width, false, 1, BinnedSpectrum::DEFAULT_BIN_OFFSET_HIRES); + + // Retain peptide annotations that do not meet user-specified cosine similarity threshold + for (pair &pept : pepts) + { + int map_index = pept.first; + int spec_index = pept.second; + auto test_spec = specs_list[map_index2file_index[map_index]][spec_index]; + + BinnedSpectrum binned_spectrum(test_spec, bin_width, false, 1, BinnedSpectrum::DEFAULT_BIN_OFFSET_HIRES); + + BinnedSpectralContrastAngle bsca; + double cos_sim = bsca(binned_highest_int, binned_spectrum); + + if (cos_sim >= cos_sim_threshold) + { + exp.addSpectrum(test_spec); + } + } + } + + // store outputted peaks in vector + vector peaks; + flattenAndBinSpectra_( + exp, + bin_width, + peaks + ); + + // write peaks to output block + writeMSMSBlock_( + output_file, + peaks + ); + } + + output_file.close(); + } +} diff --git a/src/openms/source/FORMAT/HANDLERS/AcqusHandler.cpp b/src/openms/source/FORMAT/HANDLERS/AcqusHandler.cpp index 81ba474c8fc..ca4d0b4f618 100644 --- a/src/openms/source/FORMAT/HANDLERS/AcqusHandler.cpp +++ b/src/openms/source/FORMAT/HANDLERS/AcqusHandler.cpp @@ -92,12 +92,12 @@ namespace OpenMS::Internal params_.clear(); } - Size AcqusHandler::getSize() + Size AcqusHandler::getSize() const { return td_; } - double AcqusHandler::getPosition(const Size index) + double AcqusHandler::getPosition(const Size index) const { double sqrt_mz_; double tof_ = dw_ * index + delay_; diff --git a/src/openms/source/FORMAT/HANDLERS/ConsensusXMLHandler.cpp b/src/openms/source/FORMAT/HANDLERS/ConsensusXMLHandler.cpp index 0bca065d9cb..d0903998ef6 100644 --- a/src/openms/source/FORMAT/HANDLERS/ConsensusXMLHandler.cpp +++ b/src/openms/source/FORMAT/HANDLERS/ConsensusXMLHandler.cpp @@ -42,9 +42,7 @@ using namespace std; -namespace OpenMS -{ -namespace Internal +namespace OpenMS::Internal { ConsensusXMLHandler::ConsensusXMLHandler(ConsensusMap& map, const String& filename) : XMLHandler("", "1.7"), @@ -207,19 +205,19 @@ namespace Internal else if (tag == "centroid") { tmp_str = attributeAsString_(attributes, "rt"); - if (tmp_str != "") + if (!tmp_str.empty()) { pos_[Peak2D::RT] = asDouble_(tmp_str); } tmp_str = attributeAsString_(attributes, "mz"); - if (tmp_str != "") + if (!tmp_str.empty()) { pos_[Peak2D::MZ] = asDouble_(tmp_str); } tmp_str = attributeAsString_(attributes, "it"); - if (tmp_str != "") + if (!tmp_str.empty()) { it_ = asDouble_(tmp_str); } @@ -231,13 +229,13 @@ namespace Internal UniqueIdInterface tmp_unique_id_interface; tmp_str = attributeAsString_(attributes, "map"); - if (tmp_str != "") + if (!tmp_str.empty()) { tmp_unique_id_interface.setUniqueId(tmp_str); UInt64 map_index = tmp_unique_id_interface.getUniqueId(); tmp_str = attributeAsString_(attributes, "id"); - if (tmp_str != "") + if (!tmp_str.empty()) { tmp_unique_id_interface.setUniqueId(tmp_str); UInt64 unique_id = tmp_unique_id_interface.getUniqueId(); @@ -274,7 +272,7 @@ namespace Internal //check file version against schema version String file_version = ""; optionalAttributeAsString_(file_version, attributes, "version"); - if (file_version == "") + if (file_version.empty()) { file_version = "1.0"; //default version is 1.0 } @@ -515,7 +513,7 @@ namespace Internal accession_string.trim(); vector accessions; accession_string.split(' ', accessions); - if (accession_string != "" && accessions.empty()) + if (!accession_string.empty() && accessions.empty()) { accessions.push_back(std::move(accession_string)); } @@ -637,7 +635,7 @@ namespace Internal setProgress(++progress_); os << "\n" << " accessions; accession_string.split(' ', accessions); - if (accession_string != "" && accessions.empty()) + if (!accession_string.empty() && accessions.empty()) { accessions.push_back(accession_string); } @@ -875,7 +873,7 @@ namespace Internal return; } // we are before first tag or beyond last tag - if (open_tags_.size() == 0) + if (open_tags_.empty()) { return; } @@ -1139,4 +1137,3 @@ namespace Internal } } -} diff --git a/src/openms/source/FORMAT/HANDLERS/FidHandler.cpp b/src/openms/source/FORMAT/HANDLERS/FidHandler.cpp index 398150a16fe..da92af3b9f0 100644 --- a/src/openms/source/FORMAT/HANDLERS/FidHandler.cpp +++ b/src/openms/source/FORMAT/HANDLERS/FidHandler.cpp @@ -67,7 +67,7 @@ namespace OpenMS::Internal { } - Size FidHandler::getIndex() + Size FidHandler::getIndex() const { return index_; } diff --git a/src/openms/source/FORMAT/HANDLERS/IndexedMzMLDecoder.cpp b/src/openms/source/FORMAT/HANDLERS/IndexedMzMLDecoder.cpp index b5f2d422b00..4275fe7ad0e 100644 --- a/src/openms/source/FORMAT/HANDLERS/IndexedMzMLDecoder.cpp +++ b/src/openms/source/FORMAT/HANDLERS/IndexedMzMLDecoder.cpp @@ -181,7 +181,7 @@ namespace OpenMS boost::cmatch matches; boost::regex_search(buffer.get(), matches, listoffset_rx); String thismatch(matches[1].first, matches[1].second); - if (thismatch.size() > 0) + if (!thismatch.empty()) { try { diff --git a/src/openms/source/FORMAT/HANDLERS/MascotXMLHandler.cpp b/src/openms/source/FORMAT/HANDLERS/MascotXMLHandler.cpp index 5977efa2506..fe2ab3b4ef3 100644 --- a/src/openms/source/FORMAT/HANDLERS/MascotXMLHandler.cpp +++ b/src/openms/source/FORMAT/HANDLERS/MascotXMLHandler.cpp @@ -256,7 +256,7 @@ namespace OpenMS::Internal else if (tag_ == "pep_res_before") { String temp_string = character_buffer_.trim(); - if (temp_string != "") + if (!temp_string.empty()) { actual_peptide_evidence_.setAABefore(temp_string[0]); } @@ -264,7 +264,7 @@ namespace OpenMS::Internal else if (tag_ == "pep_res_after") { String temp_string = character_buffer_.trim(); - if (temp_string != "") + if (!temp_string.empty()) { actual_peptide_evidence_.setAAAfter(temp_string[0]); } diff --git a/src/openms/source/FORMAT/HANDLERS/MzDataHandler.cpp b/src/openms/source/FORMAT/HANDLERS/MzDataHandler.cpp index 1f21c3e2148..4f42f63078f 100644 --- a/src/openms/source/FORMAT/HANDLERS/MzDataHandler.cpp +++ b/src/openms/source/FORMAT/HANDLERS/MzDataHandler.cpp @@ -198,7 +198,7 @@ namespace OpenMS::Internal { String trimmed_transcoded_chars = transcoded_chars; trimmed_transcoded_chars.trim(); - if (trimmed_transcoded_chars != "") + if (!trimmed_transcoded_chars.empty()) { warning(LOAD, String("Unhandled character content in tag '") + current_tag + "': " + trimmed_transcoded_chars); } @@ -587,7 +587,7 @@ namespace OpenMS::Internal logger_.startProgress(0, cexp_->size(), "storing mzData file"); os << "\n" - << "getIdentifier() << "\" xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:noNamespaceSchemaLocation=\"http://psidev.sourceforge.net/ms/xml/mzdata/mzdata.xsd\">\n"; + << R"(getIdentifier() << "\" xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:noNamespaceSchemaLocation=\"http://psidev.sourceforge.net/ms/xml/mzdata/mzdata.xsd\">\n"; //--------------------------------------------------------------------------------------------------- //DESCRIPTION @@ -600,7 +600,7 @@ namespace OpenMS::Internal #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wconversion" - if (sm.getNumber() != "" || sm.getState() || sm.getMass() || sm.getVolume() || sm.getConcentration() || !sm.isMetaEmpty()) + if (!sm.getNumber().empty() || sm.getState() || sm.getMass() || sm.getVolume() || sm.getConcentration() || !sm.isMetaEmpty()) #pragma clang diagnostic pop { os << "\t\t\t\n"; @@ -613,12 +613,12 @@ namespace OpenMS::Internal os << "\t\t\t\n"; } - if (cexp_->getSourceFiles().size() >= 1) + if (!cexp_->getSourceFiles().empty()) { os << "\t\t\t\n" << "\t\t\t\t" << cexp_->getSourceFiles()[0].getNameOfFile() << "\n" << "\t\t\t\t" << cexp_->getSourceFiles()[0].getPathToFile() << "\n"; - if (cexp_->getSourceFiles()[0].getFileType() != "") + if (!cexp_->getSourceFiles()[0].getFileType().empty()) os << "\t\t\t\t" << cexp_->getSourceFiles()[0].getFileType() << "\n"; os << "\t\t\t\n"; } @@ -632,7 +632,7 @@ namespace OpenMS::Internal os << "\t\t\t\n" << "\t\t\t\t" << cexp_->getContacts()[i].getFirstName() << " " << cexp_->getContacts()[i].getLastName() << "\n" << "\t\t\t\t" << cexp_->getContacts()[i].getInstitution() << "\n"; - if (cexp_->getContacts()[i].getContactInfo() != "") + if (!cexp_->getContacts()[i].getContactInfo().empty()) os << "\t\t\t\t" << cexp_->getContacts()[i].getContactInfo() << "\n"; os << "\t\t\t\n"; } @@ -650,7 +650,7 @@ namespace OpenMS::Internal os << "\t\t\n" << "\t\t\t" << inst.getName() << "\n" << "\t\t\t\n"; - if (inst.getIonSources().size() >= 1) + if (!inst.getIonSources().empty()) { writeCVS_(os, inst.getIonSources()[0].getInletType(), 11, "1000007", "InletType"); writeCVS_(os, inst.getIonSources()[0].getIonizationMethod(), 10, "1000008", "IonizationType"); @@ -698,7 +698,7 @@ namespace OpenMS::Internal os << "\t\t\t\n"; os << "\t\t\t\n"; - if (inst.getIonDetectors().size() >= 1) + if (!inst.getIonDetectors().empty()) { writeCVS_(os, inst.getIonDetectors()[0].getType(), 13, "1000026", "DetectorType"); writeCVS_(os, inst.getIonDetectors()[0].getAcquisitionMode(), 9, "1000027", "DetectorAcquisitionMode"); @@ -711,7 +711,7 @@ namespace OpenMS::Internal warning(STORE, "The MzData format can store only one ion detector. Only the first one is stored!"); } os << "\t\t\t\n"; - if (inst.getVendor() != "" || inst.getModel() != "" || inst.getCustomizations() != "") + if (!inst.getVendor().empty() || !inst.getModel().empty() || !inst.getCustomizations().empty()) { os << "\t\t\t\n"; writeCVS_(os, inst.getVendor(), "1000030", "Vendor"); @@ -723,7 +723,7 @@ namespace OpenMS::Internal os << "\t\t\n"; //the data processing information of the first spectrum is used for the whole file - if (cexp_->size() == 0 || (*cexp_)[0].getDataProcessing().empty()) + if (cexp_->empty() || (*cexp_)[0].getDataProcessing().empty()) { os << "\t\t\n" << "\t\t\t\n" @@ -766,7 +766,7 @@ namespace OpenMS::Internal //--------------------------------------------------------------------------------------------------- //ACTUAL DATA - if (cexp_->size() != 0) + if (!cexp_->empty()) { //check if the nativeID of all spectra are numbers or numbers prefixed with 'spectrum=' //If not we need to renumber all spectra. @@ -792,7 +792,7 @@ namespace OpenMS::Internal { all_numbers = false; all_prefixed_numbers = false; - if (native_id != "") + if (!native_id.empty()) { all_empty = false; } @@ -850,7 +850,7 @@ namespace OpenMS::Internal Int acq_number = 0; try { - if (ac.getIdentifier() != "") + if (!ac.getIdentifier().empty()) { acq_number = ac.getIdentifier().toInt(); } @@ -957,7 +957,7 @@ namespace OpenMS::Internal writeUserParam_(os, spec.getInstrumentSettings(), 6); os << "\t\t\t\t\t\n\t\t\t\t\n"; - if (spec.getPrecursors().size() != 0) + if (!spec.getPrecursors().empty()) { Int precursor_ms_level = spec.getMSLevel() - 1; SignedSize precursor_id = -1; @@ -983,7 +983,7 @@ namespace OpenMS::Internal os << "\t\t\t\t\t\t\n"; if (precursor != Precursor()) { - if (precursor.getActivationMethods().size() > 0) + if (!precursor.getActivationMethods().empty()) { writeCVS_(os, *(precursor.getActivationMethods().begin()), 18, "1000044", "ActivationMethod", 7); } @@ -1434,7 +1434,7 @@ namespace OpenMS::Internal warning(LOAD, String("Unexpected cvParam: accession=\"") + accession + "\" value=\"" + value + "\" in tag " + parent_tag); } - if (error != "") + if (!error.empty()) { warning(LOAD, String("Invalid cvParam: accession=\"") + accession + "\" value=\"" + value + "\" in " + error); } @@ -1445,15 +1445,15 @@ namespace OpenMS::Internal { if (value != 0.0) { - os << String(indent, '\t') << "\n"; + os << String(indent, '\t') << R"(\n"; } } inline void MzDataHandler::writeCVS_(std::ostream & os, const String & value, const String & acc, const String & name, UInt indent) const { - if (value != "") + if (!value.empty()) { - os << String(indent, '\t') << "\n"; + os << String(indent, '\t') << R"(\n"; } } diff --git a/src/openms/source/FORMAT/HANDLERS/MzIdentMLDOMHandler.cpp b/src/openms/source/FORMAT/HANDLERS/MzIdentMLDOMHandler.cpp index 24cc49742c5..a37940e166f 100644 --- a/src/openms/source/FORMAT/HANDLERS/MzIdentMLDOMHandler.cpp +++ b/src/openms/source/FORMAT/HANDLERS/MzIdentMLDOMHandler.cpp @@ -616,7 +616,7 @@ namespace OpenMS::Internal } // Add unit *after* creating the term - if (unitAcc != "") + if (!unitAcc.empty()) { if (unitAcc.hasPrefix("UO:")) { @@ -739,7 +739,7 @@ namespace OpenMS::Internal } child = child->getNextElementSibling(); } - if (acc != "") + if (!acc.empty()) { DBSequence temp_struct = {seq, dbref, acc, cvs}; db_sq_map_.insert(make_pair(id, temp_struct)); @@ -1886,7 +1886,7 @@ namespace OpenMS::Internal std::vector unique_peptides; unique_peptides.push_back(peptides[alpha[0]]); - if (beta.size() > 0) + if (!beta.empty()) { unique_peptides.push_back(peptides[beta[0]]); } diff --git a/src/openms/source/FORMAT/HANDLERS/MzIdentMLHandler.cpp b/src/openms/source/FORMAT/HANDLERS/MzIdentMLHandler.cpp index 777e2a0b7f6..7133c376a97 100644 --- a/src/openms/source/FORMAT/HANDLERS/MzIdentMLHandler.cpp +++ b/src/openms/source/FORMAT/HANDLERS/MzIdentMLHandler.cpp @@ -49,9 +49,7 @@ using namespace std; -namespace OpenMS -{ - namespace Internal +namespace OpenMS::Internal { MzIdentMLHandler::MzIdentMLHandler(const Identification& id, const String& filename, const String& version, const ProgressLogger& logger) : @@ -525,7 +523,7 @@ namespace OpenMS ProteinIdentification::SearchParameters search_params = it->getSearchParameters(); search_params.removeMetaValue("MS:1001029"); writeMetaInfos_(sip, search_params, 3); - sip += String(3, '\t') + "\n"; + sip += String(3, '\t') + R"(\n"; // sip += String(3, '\t') + "getSearchParameters().missed_cleavages) + "\"/>" + "\n"; sip += "\t\t\n"; // modifications: @@ -550,22 +548,22 @@ namespace OpenMS writeEnzyme_(sip, search_params.digestion_enzyme, search_params.missed_cleavages, 2); // TODO MassTable section sip += String("\t\t\n"); - String unit_str = "unitCvRef=\"UO\" unitName=\"dalton\" unitAccession=\"UO:0000221\""; + String unit_str = R"(unitCvRef="UO" unitName="dalton" unitAccession="UO:0000221")"; if (search_params.fragment_mass_tolerance_ppm) { - unit_str = "unitCvRef=\"UO\" unitName=\"parts per million\" unitAccession=\"UO:0000169\""; + unit_str = R"(unitCvRef="UO" unitName="parts per million" unitAccession="UO:0000169")"; } - sip += String(3, '\t') + "\n"; - sip += String(3, '\t') + "\n"; + sip += String(3, '\t') + R"(\n"; + sip += String(3, '\t') + R"(\n"; sip += String("\t\t\n"); sip += String("\t\t\n"); - unit_str = "unitCvRef=\"UO\" unitName=\"dalton\" unitAccession=\"UO:0000221\""; + unit_str = R"(unitCvRef="UO" unitName="dalton" unitAccession="UO:0000221")"; if (search_params.precursor_mass_tolerance_ppm) { - unit_str = "unitCvRef=\"UO\" unitName=\"parts per million\" unitAccession=\"UO:0000169\""; + unit_str = R"(unitCvRef="UO" unitName="parts per million" unitAccession="UO:0000169")"; } - sip += String(3, '\t') + "\n"; - sip += String(3, '\t') + "\n"; + sip += String(3, '\t') + R"(\n"; + sip += String(3, '\t') + R"(\n"; sip += String("\t\t\n"); sip += String("\t\t\n\t\t\t") + thcv + "\n"; sip += String("\t\t\n"); @@ -886,7 +884,7 @@ namespace OpenMS std::map::iterator soit = sof_ids.find("TOPP software"); if (soit == sof_ids.end()) { - os << "\t\n" + os << "\t\n" << "\t\t\n\t\t\t" << cv_.getTermByName("TOPP software").toXMLString(cv_ns) << "\n\t\t\n\t\n"; } os << "\n"; @@ -1238,7 +1236,7 @@ namespace OpenMS String acc = n_term_mod->getUniModAccession(); p += "\t\t\tgetId(); - p += "\" cvRef=\"UNIMOD\"/>"; + p += R"(" cvRef="UNIMOD"/>)"; p += "\n\t\t\n"; } const ResidueModification* c_term_mod = hit.getSequence().getCTerminalModification(); @@ -1248,7 +1246,7 @@ namespace OpenMS String acc = c_term_mod->getUniModAccession(); p += "\t\t\tgetId(); - p += "\" cvRef=\"UNIMOD\"/>"; + p += R"(" cvRef="UNIMOD"/>)"; p += "\n\t\t\n"; } for (Size i = 0; i < hit.getSequence().size(); ++i) @@ -1264,7 +1262,7 @@ namespace OpenMS { p += "\">\n\t\t\tgetId(); - p += "\" cvRef=\"UNIMOD\"/>"; + p += R"(" cvRef="UNIMOD"/>)"; p += "\n\t\t\n"; } else @@ -1613,11 +1611,11 @@ namespace OpenMS p += "\" name=\"" + n_term_mod->getId(); if (unimod) { - p += "\" cvRef=\"UNIMOD\"/>"; + p += R"(" cvRef="UNIMOD"/>)"; } else { - p += "\" cvRef=\"XLMOD\"/>"; + p += R"(" cvRef="XLMOD"/>)"; } p += "\n\t\t\n"; } @@ -1640,11 +1638,11 @@ namespace OpenMS p += "\" name=\"" + c_term_mod->getId(); if (unimod) { - p += "\" cvRef=\"UNIMOD\"/>"; + p += R"(" cvRef="UNIMOD"/>)"; } else { - p += "\" cvRef=\"XLMOD\"/>"; + p += R"(" cvRef="XLMOD"/>)"; } p += "\n\t\t\n"; } @@ -1660,7 +1658,7 @@ namespace OpenMS { p += "\">\n\t\t\tgetId(); - p += "\" cvRef=\"UNIMOD\"/>"; + p += R"(" cvRef="UNIMOD"/>)"; p += "\n\t\t\n"; } else @@ -1670,7 +1668,7 @@ namespace OpenMS { p += "\">\n\t\t\tgetId(); - p += "\" cvRef=\"XLMOD\"/>"; + p += R"(" cvRef="XLMOD"/>)"; p += "\n\t\t\n"; } else @@ -1699,7 +1697,7 @@ namespace OpenMS p += "\" residues=\"" + String(peptide_sequence[i].getOneLetterCode()); p += "\">\n\t\t\t"; + p += R"(" cvRef="XLMOD"/>)"; p += "\n\t\t\n"; } } @@ -1714,7 +1712,7 @@ namespace OpenMS if (hit.metaValueExists(Constants::UserParam::OPENPEPXL_XL_TERM_SPEC_ALPHA) && hit.getMetaValue(Constants::UserParam::OPENPEPXL_XL_TERM_SPEC_ALPHA) == "N_TERM") { xl_db->searchModificationsByDiffMonoMass(mods, double(hit.getMetaValue(Constants::UserParam::OPENPEPXL_XL_MASS)), 0.0001, "", ResidueModification::N_TERM); - if (mods.size() > 0) + if (!mods.empty()) { p += "\t\tsearchModificationsByDiffMonoMass(mods, double(hit.getMetaValue(Constants::UserParam::OPENPEPXL_XL_MASS)), 0.0001, "", ResidueModification::C_TERM); - if (mods.size() > 0) + if (!mods.empty()) { p += "\t\tsearchModificationsByDiffMonoMass(mods, double(hit.getMetaValue(Constants::UserParam::OPENPEPXL_XL_MASS)), 0.0001, String(hit.getSequence()[i].getOneLetterCode()), ResidueModification::ANYWHERE); - if (mods.size() > 0) + if (!mods.empty()) { p += "\t\t 0) ) // If ambiguity can not be resolved by xl_mod, just take one with the same mass diff from the database + if ( acc.empty() && (!mods.empty()) ) // If ambiguity can not be resolved by xl_mod, just take one with the same mass diff from the database { const ResidueModification* mod = xl_db->getModification( String(peptide_sequence[i].getOneLetterCode()), mods[0], ResidueModification::ANYWHERE); acc = mod->getPSIMODAccession(); @@ -1783,7 +1781,7 @@ namespace OpenMS { p += "\" residues=\"" + String(peptide_sequence[i].getOneLetterCode()); p += "\" monoisotopicMassDelta=\"" + hit.getMetaValue(Constants::UserParam::OPENPEPXL_XL_MASS).toString() + "\">\n"; - p += "\t\t\t\n"; + p += "\t\t\t\n"; } else // if there is no matching modification in the database, write out a placeholder { @@ -2153,5 +2151,4 @@ namespace OpenMS ppxl_specref_2_element[sid] += sii_tmp; } } - } //namespace Internal -} // namespace OpenMS + } // namespace OpenMS diff --git a/src/openms/source/FORMAT/HANDLERS/MzMLHandler.cpp b/src/openms/source/FORMAT/HANDLERS/MzMLHandler.cpp index 92b87ff92cb..d3a1b3ea772 100644 --- a/src/openms/source/FORMAT/HANDLERS/MzMLHandler.cpp +++ b/src/openms/source/FORMAT/HANDLERS/MzMLHandler.cpp @@ -346,11 +346,11 @@ namespace OpenMS::Internal } // Error if intensity or m/z is encoded as int32|64 - they should be float32|64! - if ((input_data[mz_index].ints_32.size() > 0) || (input_data[mz_index].ints_64.size() > 0)) + if ((!input_data[mz_index].ints_32.empty()) || (!input_data[mz_index].ints_64.empty())) { fatalError(LOAD, "Encoding m/z array as integer is not allowed!"); } - if ((input_data[int_index].ints_32.size() > 0) || (input_data[int_index].ints_64.size() > 0)) + if ((!input_data[int_index].ints_32.empty()) || (!input_data[int_index].ints_64.empty())) { fatalError(LOAD, "Encoding intensity array as integer is not allowed!"); } @@ -1388,7 +1388,7 @@ namespace OpenMS::Internal warning(LOAD, String("Obsolete CV term '") + accession + " - " + term.name + "' used in tag '" + parent_tag + "'."); } //values used in wrong places and wrong value types - if (value != "") + if (!value.empty()) { if (term.xref_type == ControlledVocabulary::CVTerm::NONE) { @@ -1467,7 +1467,7 @@ namespace OpenMS::Internal } } - if (unit_accession != "") + if (!unit_accession.empty()) { if (unit_accession.hasPrefix("UO:")) { @@ -1894,7 +1894,15 @@ namespace OpenMS::Internal { spec_.getPrecursors().back().getActivationMethods().insert(Precursor::SORI); } - else if (accession == "MS:1000422") //high-energy collision-induced dissociation + else if (accession == "MS:1000422") //beam-type collision-induced dissociation / HCD + { + spec_.getPrecursors().back().getActivationMethods().insert(Precursor::HCD); + } + else if (accession == "MS:1002472") //trap-type collision-induced dissociation + { + spec_.getPrecursors().back().getActivationMethods().insert(Precursor::TRAP); + } + else if (accession == "MS:1002481") //high-energy collision-induced dissociation { spec_.getPrecursors().back().getActivationMethods().insert(Precursor::HCID); } @@ -1914,6 +1922,14 @@ namespace OpenMS::Internal { spec_.getPrecursors().back().getActivationMethods().insert(Precursor::PQD); } + else if (accession == "MS:1001880") //in-source collision-induced dissociation + { + spec_.getPrecursors().back().getActivationMethods().insert(Precursor::INSOURCE); + } + else if (accession == "MS:1002000") //LIFT + { + spec_.getPrecursors().back().getActivationMethods().insert(Precursor::LIFT); + } else warning(LOAD, String("Unhandled cvParam '") + accession + "' in tag '" + parent_tag + "'."); } @@ -1990,7 +2006,15 @@ namespace OpenMS::Internal { chromatogram_.getPrecursor().getActivationMethods().insert(Precursor::SORI); } - else if (accession == "MS:1000422") //high-energy collision-induced dissociation + else if (accession == "MS:1000422") //beam-type collision-induced dissociation / HCD + { + chromatogram_.getPrecursor().getActivationMethods().insert(Precursor::HCD); + } + else if (accession == "MS:1002472") //trap-type collision-induced dissociation + { + chromatogram_.getPrecursor().getActivationMethods().insert(Precursor::TRAP); + } + else if (accession == "MS:1002481") //high-energy collision-induced dissociation { chromatogram_.getPrecursor().getActivationMethods().insert(Precursor::HCID); } @@ -2010,8 +2034,18 @@ namespace OpenMS::Internal { chromatogram_.getPrecursor().getActivationMethods().insert(Precursor::PQD); } + else if (accession == "MS:1001880") //in-source collision-induced dissociation + { + chromatogram_.getPrecursor().getActivationMethods().insert(Precursor::INSOURCE); + } + else if (accession == "MS:1002000") //LIFT + { + chromatogram_.getPrecursor().getActivationMethods().insert(Precursor::LIFT); + } else + { warning(LOAD, String("Unhandled cvParam '") + accession + "' in tag '" + parent_tag + "'."); + } } } //------------------------- isolationWindow ---------------------------- @@ -3270,7 +3304,7 @@ namespace OpenMS::Internal data_value = DataValue(value); } - if (unit_accession != "") + if (!unit_accession.empty()) { if (unit_accession.hasPrefix("UO:")) { @@ -3608,11 +3642,11 @@ namespace OpenMS::Internal { os << "\t\t\n"; ControlledVocabulary::CVTerm so_term = getChildWithName_("MS:1000531", software.getName()); - if (so_term.id == "") + if (so_term.id.empty()) { so_term = getChildWithName_("MS:1000531", software.getName() + " software"); //act of desperation to find the right cv and keep compatible with older cv mzmls } - if (so_term.id == "") + if (so_term.id.empty()) { so_term = getChildWithName_("MS:1000531", "TOPP " + software.getName()); //act of desperation to find the right cv and keep compatible with older cv mzmls } @@ -3620,7 +3654,7 @@ namespace OpenMS::Internal { os << "\t\t\t\n"; } - else if (so_term.id != "") + else if (!so_term.id.empty()) { os << "\t\t\t\n"; } @@ -3654,7 +3688,7 @@ namespace OpenMS::Internal { ft_term = getChildWithName_("MS:1000560", source_file.getFileType().chop(4) + "format"); // this is born out of desperation that sourcefile has a string interface for its filetype and not the enum, which could have been easily manipulated to the updated cv } - if (ft_term.id != "") + if (!ft_term.id.empty()) { os << "\t\t\t\t\n"; } @@ -3664,7 +3698,7 @@ namespace OpenMS::Internal } //native ID format ControlledVocabulary::CVTerm id_term = getChildWithName_("MS:1000767", source_file.getNativeIDType()); - if (id_term.id != "") + if (!id_term.id.empty()) { os << "\t\t\t\t\n"; } @@ -3846,7 +3880,7 @@ namespace OpenMS::Internal precursor.getIntensity() > 0.0 || precursor.getDriftTime() >= 0.0 || precursor.getDriftTimeUnit() == DriftTimeUnit::FAIMS_COMPENSATION_VOLTAGE || - precursor.getPossibleChargeStates().size() > 0 || + !precursor.getPossibleChargeStates().empty() || precursor.getMZ() > 0.0) { // precursor m/z may come from "isolation window": @@ -3935,9 +3969,17 @@ namespace OpenMS::Internal os << "\t\t\t\t\t\t\t\n"; } if (precursor.getActivationMethods().count(Precursor::HCID) != 0) + { + os << "\t\t\t\t\t\t\t\n"; + } + if (precursor.getActivationMethods().count(Precursor::HCD) != 0) { os << "\t\t\t\t\t\t\t\n"; } + if (precursor.getActivationMethods().count(Precursor::TRAP) != 0) + { + os << "\t\t\t\t\t\t\t\n"; + } if (precursor.getActivationMethods().count(Precursor::LCID) != 0) { os << "\t\t\t\t\t\t\t\n"; @@ -3954,6 +3996,14 @@ namespace OpenMS::Internal { os << "\t\t\t\t\t\t\t\n"; } + if (precursor.getActivationMethods().count(Precursor::INSOURCE) != 0) + { + os << "\t\t\t\t\t\t\t\n"; + } + if (precursor.getActivationMethods().count(Precursor::LIFT) != 0) + { + os << "\t\t\t\t\t\t\t\n"; + } if (precursor.getActivationMethods().empty()) { os << "\t\t\t\t\t\t\t\n"; @@ -4003,7 +4053,7 @@ namespace OpenMS::Internal //-------------------------------------------------------------------------------------------- // spectra //-------------------------------------------------------------------------------------------- - if (exp.size() != 0) + if (!exp.empty()) { // INFO : do not try to be smart and skip empty spectra or // chromatograms. There can be very good reasons for this (e.g. if the @@ -4077,7 +4127,7 @@ namespace OpenMS::Internal { os << "\n"; } - os << "\n"; + os << R"(\n"; //-------------------------------------------------------------------------------------------- // CV list //-------------------------------------------------------------------------------------------- @@ -4173,7 +4223,7 @@ namespace OpenMS::Internal ++sf_sp_count; } } - if (exp.getSourceFiles().size() > 0 || sf_sp_count > 0) + if (!exp.getSourceFiles().empty() || sf_sp_count > 0) { os << "\t\t\n"; @@ -4209,19 +4259,19 @@ namespace OpenMS::Internal os << "\t\t\t\n"; os << "\t\t\t\n"; - if (cp.getAddress() != "") + if (!cp.getAddress().empty()) { os << "\t\t\t\n"; } - if (cp.getURL() != "") + if (!cp.getURL().empty()) { os << "\t\t\t\n"; } - if (cp.getEmail() != "") + if (!cp.getEmail().empty()) { os << "\t\t\t\n"; } - if (cp.getContactInfo() != "") + if (!cp.getContactInfo().empty()) { os << "\t\t\t\n"; } @@ -4236,7 +4286,7 @@ namespace OpenMS::Internal const Sample& sa = exp.getSample(); os << "\t\n"; os << "\t\t\n"; - if (sa.getNumber() != "") + if (!sa.getNumber().empty()) { os << "\t\t\t\n"; } @@ -4267,7 +4317,7 @@ namespace OpenMS::Internal { os << "\t\t\t\n"; } - if (sa.getComment() != "") + if (!sa.getComment().empty()) { os << "\t\t\t\n"; } @@ -4368,7 +4418,7 @@ namespace OpenMS::Internal os << "\t\n"; os << "\t\t\n"; ControlledVocabulary::CVTerm in_term = getChildWithName_("MS:1000031", in.getName()); - if (in_term.id != "") + if (!in_term.id.empty()) { os << "\t\t\t\n"; } @@ -4377,7 +4427,7 @@ namespace OpenMS::Internal os << "\t\t\t\n"; } - if (in.getCustomizations() != "") + if (!in.getCustomizations().empty()) { os << "\t\t\t\n"; } @@ -4983,14 +5033,14 @@ namespace OpenMS::Internal { os << " startTimeStamp=\"" << exp.getDateTime().get().substitute(' ', 'T') << "\""; } - if (exp.getSourceFiles().size() > 0) + if (!exp.getSourceFiles().empty()) { os << " defaultSourceFileRef=\"sf_ru_0\""; } os << ">\n"; //run attributes - if (exp.getFractionIdentifier() != "") + if (!exp.getFractionIdentifier().empty()) { os << "\t\t\n"; } @@ -5140,7 +5190,7 @@ namespace OpenMS::Internal //-------------------------------------------------------------------------------------------- os << "\t\t\t\t\n"; ControlledVocabulary::CVTerm ai_term = getChildWithName_("MS:1000570", spec.getAcquisitionInfo().getMethodOfCombination()); - if (ai_term.id != "") + if (!ai_term.id.empty()) { os << "\t\t\t\t\t\n"; } @@ -5157,7 +5207,7 @@ namespace OpenMS::Internal { const Acquisition& ac = spec.getAcquisitionInfo()[j]; os << "\t\t\t\t\t\n"; for (Size k = 0; k < spec.getInstrumentSettings().getScanWindows().size(); ++k) @@ -5227,7 +5277,7 @@ namespace OpenMS::Internal os << "\t\t\t\t\t\t\n"; } //scan windows - if (spec.getInstrumentSettings().getScanWindows().size() != 0) + if (!spec.getInstrumentSettings().getScanWindows().empty()) { os << "\t\t\t\t\t\t\n"; for (Size j = 0; j < spec.getInstrumentSettings().getScanWindows().size(); ++j) @@ -5260,7 +5310,7 @@ namespace OpenMS::Internal //-------------------------------------------------------------------------------------------- //product list //-------------------------------------------------------------------------------------------- - if (spec.getProducts().size() != 0) + if (!spec.getProducts().empty()) { os << "\t\t\t\t\n"; for (Size p = 0; p < spec.getProducts().size(); ++p) @@ -5273,7 +5323,7 @@ namespace OpenMS::Internal //-------------------------------------------------------------------------------------------- //binary data array list //-------------------------------------------------------------------------------------------- - if (spec.size() != 0) + if (!spec.empty()) { String encoded_string; os << "\t\t\t\t\n"; @@ -5300,7 +5350,7 @@ namespace OpenMS::Internal Base64::encodeIntegers(data64_to_encode, Base64::BYTEORDER_LITTLEENDIAN, encoded_string, options_.getCompression()); String data_processing_ref_string = ""; - if (array.getDataProcessing().size() != 0) + if (!array.getDataProcessing().empty()) { data_processing_ref_string = String("dataProcessingRef=\"dp_sp_") + s + "_bi_" + m + "\""; } @@ -5308,7 +5358,7 @@ namespace OpenMS::Internal os << "\t\t\t\t\t\t\n"; os << "\t\t\t\t\t\t" << compression_term << "\n"; ControlledVocabulary::CVTerm bi_term = getChildWithName_("MS:1000513", array.getName()); - if (bi_term.id != "") + if (!bi_term.id.empty()) { os << "\t\t\t\t\t\t\n"; } @@ -5330,7 +5380,7 @@ namespace OpenMS::Internal data_to_encode[p] = array[p]; Base64::encodeStrings(data_to_encode, encoded_string, options_.getCompression()); String data_processing_ref_string = ""; - if (array.getDataProcessing().size() != 0) + if (!array.getDataProcessing().empty()) { data_processing_ref_string = String("dataProcessingRef=\"dp_sp_") + s + "_bi_" + m + "\""; } @@ -5507,7 +5557,7 @@ namespace OpenMS::Internal array_metadata.removeMetaValue("unit_accession"); // prevent this from being written as userParam } - if (bi_term.id != "") + if (!bi_term.id.empty()) { cv_term_type = "\t\t\t\t\t\t\n"; } @@ -5523,7 +5573,7 @@ namespace OpenMS::Internal } String data_processing_ref_string = ""; - if (array.getDataProcessing().size() != 0) + if (!array.getDataProcessing().empty()) { data_processing_ref_string = String("dataProcessingRef=\"dp_sp_") + spec_chrom_idx + "_bi_" + array_idx + "\""; } @@ -5672,7 +5722,7 @@ namespace OpenMS::Internal } Base64::encodeIntegers(data64_to_encode, Base64::BYTEORDER_LITTLEENDIAN, encoded_string, options_.getCompression()); String data_processing_ref_string = ""; - if (array.getDataProcessing().size() != 0) + if (!array.getDataProcessing().empty()) { data_processing_ref_string = String("dataProcessingRef=\"dp_sp_") + c + "_bi_" + m + "\""; } @@ -5680,7 +5730,7 @@ namespace OpenMS::Internal os << "\t\t\t\t\t\t\n"; os << "\t\t\t\t\t\t" << compression_term << "\n"; ControlledVocabulary::CVTerm bi_term = getChildWithName_("MS:1000513", array.getName()); - if (bi_term.id != "") + if (!bi_term.id.empty()) { os << "\t\t\t\t\t\t\n"; } @@ -5704,7 +5754,7 @@ namespace OpenMS::Internal } Base64::encodeStrings(data_to_encode, encoded_string, options_.getCompression()); String data_processing_ref_string = ""; - if (array.getDataProcessing().size() != 0) + if (!array.getDataProcessing().empty()) { data_processing_ref_string = String("dataProcessingRef=\"dp_sp_") + c + "_bi_" + m + "\""; } diff --git a/src/openms/source/FORMAT/HANDLERS/MzMLHandlerHelper.cpp b/src/openms/source/FORMAT/HANDLERS/MzMLHandlerHelper.cpp index f6dafe26476..af07206ca1c 100644 --- a/src/openms/source/FORMAT/HANDLERS/MzMLHandlerHelper.cpp +++ b/src/openms/source/FORMAT/HANDLERS/MzMLHandlerHelper.cpp @@ -65,19 +65,19 @@ namespace OpenMS::Internal { if (np.np_compression == MSNumpressCoder::NONE || !use_numpress) { - return indent + ""; + return indent + R"()"; } else if (np.np_compression == MSNumpressCoder::LINEAR) { - return indent + ""; + return indent + R"()"; } else if (np.np_compression == MSNumpressCoder::PIC) { - return indent + ""; + return indent + R"()"; } else if (np.np_compression == MSNumpressCoder::SLOF) { - return indent + ""; + return indent + R"()"; } } else @@ -85,23 +85,23 @@ namespace OpenMS::Internal if (np.np_compression == MSNumpressCoder::NONE || !use_numpress) { // default - return indent + ""; + return indent + R"()"; } else if (np.np_compression == MSNumpressCoder::LINEAR) { - return indent + ""; + return indent + R"()"; } else if (np.np_compression == MSNumpressCoder::PIC) { - return indent + ""; + return indent + R"()"; } else if (np.np_compression == MSNumpressCoder::SLOF) { - return indent + ""; + return indent + R"()"; } } // default - return indent + ""; + return indent + R"()"; } void MzMLHandlerHelper::writeFooter_(std::ostream& os, diff --git a/src/openms/source/FORMAT/HANDLERS/MzMLSpectrumDecoder.cpp b/src/openms/source/FORMAT/HANDLERS/MzMLSpectrumDecoder.cpp index 836d74fa64c..8b4f00e4d9c 100644 --- a/src/openms/source/FORMAT/HANDLERS/MzMLSpectrumDecoder.cpp +++ b/src/openms/source/FORMAT/HANDLERS/MzMLSpectrumDecoder.cpp @@ -50,12 +50,12 @@ namespace OpenMS bool x_precision_64, bool int_precision_64) { // Error if intensity or m/z (RT) is encoded as int32|64 - they should be float32|64! - if ((data[x_index].ints_32.size() > 0) || (data[x_index].ints_64.size() > 0)) + if ((!data[x_index].ints_32.empty()) || (!data[x_index].ints_64.empty())) { throw Exception::ParseError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "", "Encoding m/z or RT array as integer is not allowed!"); } - if ((data[int_index].ints_32.size() > 0) || (data[int_index].ints_64.size() > 0)) + if ((!data[int_index].ints_32.empty()) || (!data[int_index].ints_64.empty())) { throw Exception::ParseError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "", "Encoding intensity array as integer is not allowed!"); @@ -274,7 +274,7 @@ namespace OpenMS } } - void MzMLSpectrumDecoder::decodeBinaryDataMSSpectrum_(std::vector& data, OpenMS::MSSpectrum& spectrum) + void MzMLSpectrumDecoder::decodeBinaryDataMSSpectrum_(std::vector& data, OpenMS::MSSpectrum& spectrum) const { Internal::MzMLHandlerHelper::decodeBase64Arrays(data, skip_xml_checks_); @@ -310,7 +310,7 @@ namespace OpenMS } } - void MzMLSpectrumDecoder::decodeBinaryDataMSChrom_(std::vector& data, OpenMS::MSChromatogram& chromatogram) + void MzMLSpectrumDecoder::decodeBinaryDataMSChrom_(std::vector& data, OpenMS::MSChromatogram& chromatogram) const { Internal::MzMLHandlerHelper::decodeBase64Arrays(data, skip_xml_checks_); @@ -346,7 +346,7 @@ namespace OpenMS } } - OpenMS::Interfaces::SpectrumPtr MzMLSpectrumDecoder::decodeBinaryDataSpectrum_(std::vector& data) + OpenMS::Interfaces::SpectrumPtr MzMLSpectrumDecoder::decodeBinaryDataSpectrum_(std::vector& data) const { Internal::MzMLHandlerHelper::decodeBase64Arrays(data, skip_xml_checks_); OpenMS::Interfaces::SpectrumPtr sptr(new OpenMS::Interfaces::Spectrum); @@ -396,7 +396,7 @@ namespace OpenMS return sptr; } - OpenMS::Interfaces::ChromatogramPtr MzMLSpectrumDecoder::decodeBinaryDataChrom_(std::vector& data) + OpenMS::Interfaces::ChromatogramPtr MzMLSpectrumDecoder::decodeBinaryDataChrom_(std::vector& data) const { Internal::MzMLHandlerHelper::decodeBase64Arrays(data, skip_xml_checks_); OpenMS::Interfaces::ChromatogramPtr sptr(new OpenMS::Interfaces::Chromatogram); diff --git a/src/openms/source/FORMAT/HANDLERS/MzQuantMLHandler.cpp b/src/openms/source/FORMAT/HANDLERS/MzQuantMLHandler.cpp index 02f4fba8bcb..ffefdb3dc64 100644 --- a/src/openms/source/FORMAT/HANDLERS/MzQuantMLHandler.cpp +++ b/src/openms/source/FORMAT/HANDLERS/MzQuantMLHandler.cpp @@ -344,7 +344,7 @@ namespace OpenMS::Internal { String transcoded_chars2 = sm_.convert(chars); transcoded_chars2.trim(); - if (transcoded_chars2 != "") + if (!transcoded_chars2.empty()) warning(LOAD, "MzQuantMLHandler::characters: Unknown character section found: '" + tag_ + "', ignoring: " + transcoded_chars2); } } @@ -539,7 +539,7 @@ namespace OpenMS::Internal warning(LOAD, String("Obsolete CV term '") + accession + " - " + cv_.getTerm(accession).name + "' used in tag '" + parent_tag + "'."); } //values used in wrong places and wrong value types - if (value != "") + if (!value.empty()) { if (term.xref_type == ControlledVocabulary::CVTerm::NONE) { @@ -667,7 +667,7 @@ namespace OpenMS::Internal data_value = DataValue(value); } - if (parent_parent_tag == "") + if (parent_parent_tag.empty()) { //~ TODO: dummy warning(LOAD, String("The user param '") + name + "' used in tag '" + parent_tag + "' has no valid grand parent.'"); @@ -682,7 +682,7 @@ namespace OpenMS::Internal } else if (parent_tag == "Software") { - if (value == "") + if (value.empty()) { current_sws_[current_id_].setName(name); } @@ -731,7 +731,7 @@ namespace OpenMS::Internal //---header--- os << "\n"; - os << "\n"; + os << R"(\n"; //---CVList--- os << "\n"; diff --git a/src/openms/source/FORMAT/HANDLERS/MzXMLHandler.cpp b/src/openms/source/FORMAT/HANDLERS/MzXMLHandler.cpp index dd9f3e7bfe1..584eca5103c 100644 --- a/src/openms/source/FORMAT/HANDLERS/MzXMLHandler.cpp +++ b/src/openms/source/FORMAT/HANDLERS/MzXMLHandler.cpp @@ -354,7 +354,7 @@ namespace OpenMS::Internal String type = ""; optionalAttributeAsString_(type, attributes, s_scantype_); - if (type == "") + if (type.empty()) { //unknown/unset => do nothing here => no warning in the end } @@ -426,7 +426,7 @@ namespace OpenMS::Internal tmp = ""; optionalAttributeAsString_(tmp, attributes, s_phone_); - if (tmp != "") + if (!tmp.empty()) { exp_->getContacts().back().setMetaValue("#phone", tmp); } @@ -498,7 +498,7 @@ namespace OpenMS::Internal { String name = ""; optionalAttributeAsString_(name, attributes, s_name_); - if (name == "") + if (name.empty()) { return; } @@ -524,7 +524,7 @@ namespace OpenMS::Internal { String name = ""; optionalAttributeAsString_(name, attributes, s_name_); - if (name == "") + if (name.empty()) { return; } @@ -623,7 +623,7 @@ namespace OpenMS::Internal { spectrum_data_.back().spectrum.setComment(transcoded_chars); } - else if (transcoded_chars.trim() != "") + else if (!transcoded_chars.trim().empty()) { warning(LOAD, String("Unhandled comment '") + transcoded_chars + "' in element '" + open_tags_.back() + "'"); } @@ -631,7 +631,7 @@ namespace OpenMS::Internal else { String transcoded_chars = sm_.convert(chars); - if (transcoded_chars.trim() != "") + if (!transcoded_chars.trim().empty()) { warning(LOAD, String("Unhandled character content '") + transcoded_chars + "' in element '" + open_tags_.back() + "'"); } @@ -645,7 +645,7 @@ namespace OpenMS::Internal for (Size s = 0; s < cexp_->size(); s++) { const SpectrumType& spec = (*cexp_)[s]; - if (spec.size() != 0) + if (!spec.empty()) { ++count_tmp_; } @@ -654,7 +654,7 @@ namespace OpenMS::Internal logger_.startProgress(0, cexp_->size(), "storing mzXML file"); double min_rt(0), max_rt(0); - if (cexp_->size() > 0) + if (!cexp_->empty()) { min_rt = cexp_->begin()->getRT(); max_rt = (cexp_->end() - 1)->getRT(); @@ -705,7 +705,7 @@ namespace OpenMS::Internal //---------------------------------------------------------------------------------------- //instrument //---------------------------------------------------------------------------------------- - if (cexp_->getInstrument() != Instrument() || cexp_->getContacts().size() != 0) + if (cexp_->getInstrument() != Instrument() || !cexp_->getContacts().empty()) { const Instrument& inst = cexp_->getInstrument(); // the Instrument Manufacturer is paramount for some downstream tools @@ -754,18 +754,18 @@ namespace OpenMS::Internal os << "\t\t\t\n"; } - if (cexp_->getContacts().size() > 0) + if (!cexp_->getContacts().empty()) { const ContactPerson& cont = cexp_->getContacts()[0]; os << "\t\t\tsize() == 0 || (*cexp_)[0].getDataProcessing().empty()) + if (cexp_->empty() || (*cexp_)[0].getDataProcessing().empty()) { os << "\t\t\n" << "\t\t\t\n" @@ -861,7 +861,7 @@ namespace OpenMS::Internal { all_numbers = false; all_prefixed_numbers = false; - if (native_id != "") + if (!native_id.empty()) { all_empty = false; } @@ -1065,7 +1065,7 @@ namespace OpenMS::Internal } else { - s_peaks = "" << spec.getComment() << "\n"; } diff --git a/src/openms/source/FORMAT/HANDLERS/ParamXMLHandler.cpp b/src/openms/source/FORMAT/HANDLERS/ParamXMLHandler.cpp index 69864ff3da1..5d5e8466bf8 100644 --- a/src/openms/source/FORMAT/HANDLERS/ParamXMLHandler.cpp +++ b/src/openms/source/FORMAT/HANDLERS/ParamXMLHandler.cpp @@ -112,6 +112,11 @@ namespace OpenMS::Internal tags.push_back("output file"); param_.setValue(name, value, description, tags); } + else if (type == "output-prefix") + { + tags.push_back("output prefix"); + param_.setValue(name, value, description, tags); + } else if (type == "float" || type == "double") { param_.setValue(name, asDouble_(value), description, tags); @@ -143,11 +148,11 @@ namespace OpenMS::Internal val.split('-', parts); //for downward compatibility if (parts.size() == 2) { - if (parts[0] != "") + if (!parts[0].empty()) { param_.setMinInt(name, parts[0].toInt()); } - if (parts[1] != "") + if (!parts[1].empty()) { param_.setMaxInt(name, parts[1].toInt()); } @@ -171,11 +176,11 @@ namespace OpenMS::Internal } if (parts.size() == 2) { - if (parts[0] != "") + if (!parts[0].empty()) { param_.setMinFloat(name, parts[0].toDouble()); } - if (parts[1] != "") + if (!parts[1].empty()) { param_.setMaxFloat(name, parts[1].toDouble()); } @@ -213,7 +218,7 @@ namespace OpenMS::Internal //parse description String description; optionalAttributeAsString_(description, attributes, "description"); - if (description != "") + if (!description.empty()) { description.substitute("#br#", "\n"); } @@ -225,8 +230,7 @@ namespace OpenMS::Internal String tags_string; optionalAttributeAsString_(tags_string, attributes, "tags"); list_.tags = ListUtils::create(tags_string); - - + //parse name/type list_.type = attributeAsString_(attributes, "type"); // handle in-/output file correctly @@ -304,7 +308,7 @@ namespace OpenMS::Internal optionalAttributeAsString_(file_version, attributes, "version"); // default version is 1.0 - if (file_version == "") + if (file_version.empty()) { file_version = "1.0"; } @@ -356,11 +360,11 @@ namespace OpenMS::Internal } if (parts.size() == 2) { - if (parts[0] != "") + if (!parts[0].empty()) { param_.setMinInt(list_.name, parts[0].toInt()); } - if (parts[1] != "") + if (!parts[1].empty()) { param_.setMaxInt(list_.name, parts[1].toInt()); } @@ -383,11 +387,11 @@ namespace OpenMS::Internal } if (parts.size() == 2) { - if (parts[0] != "") + if (!parts[0].empty()) { param_.setMinFloat(list_.name, parts[0].toDouble()); } - if (parts[1] != "") + if (!parts[1].empty()) { param_.setMaxFloat(list_.name, parts[1].toDouble()); } diff --git a/src/openms/source/FORMAT/HANDLERS/ToolDescriptionHandler.cpp b/src/openms/source/FORMAT/HANDLERS/ToolDescriptionHandler.cpp index 391733e8dcd..da949a159dc 100644 --- a/src/openms/source/FORMAT/HANDLERS/ToolDescriptionHandler.cpp +++ b/src/openms/source/FORMAT/HANDLERS/ToolDescriptionHandler.cpp @@ -209,7 +209,7 @@ namespace OpenMS::Internal open_tags_.pop_back(); //std::cout << "ending tag " << endtag_ << "\n"; - if (open_tags_.size() > 0) + if (!open_tags_.empty()) { tag_ = open_tags_.back(); //std::cout << " --> current Tag: " << tag_ << "\n"; diff --git a/src/openms/source/FORMAT/HANDLERS/TraMLHandler.cpp b/src/openms/source/FORMAT/HANDLERS/TraMLHandler.cpp index c73adc26059..b417f2b52ad 100644 --- a/src/openms/source/FORMAT/HANDLERS/TraMLHandler.cpp +++ b/src/openms/source/FORMAT/HANDLERS/TraMLHandler.cpp @@ -499,18 +499,18 @@ namespace OpenMS::Internal logger_.startProgress(0, exp.getTransitions().size(), "storing TraML file"); // int progress = 0; - os << "" << "\n"; - os << "" << "\n"; + os << R"()" << "\n"; + os << R"()" << "\n"; //-------------------------------------------------------------------------------------------- // CV list //-------------------------------------------------------------------------------------------- os << " " << "\n"; - if (exp.getCVs().size() == 0) + if (exp.getCVs().empty()) { - os << " " << "\n" - << " " << "\n"; + os << R"( )" << "\n" + << R"( )" << "\n"; } else { @@ -522,7 +522,7 @@ namespace OpenMS::Internal os << " " << "\n"; // source file list - if (exp.getSourceFiles().size() > 0) + if (!exp.getSourceFiles().empty()) { os << " " << "\n"; for (std::vector::const_iterator it = exp.getSourceFiles().begin(); it != exp.getSourceFiles().end(); ++it) @@ -540,7 +540,7 @@ namespace OpenMS::Internal } // contact list - if (exp.getContacts().size() > 0) + if (!exp.getContacts().empty()) { os << " " << "\n"; for (std::vector::const_iterator it = exp.getContacts().begin(); it != exp.getContacts().end(); ++it) @@ -554,7 +554,7 @@ namespace OpenMS::Internal } // publication list - if (exp.getPublications().size() > 0) + if (!exp.getPublications().empty()) { os << " " << "\n"; for (std::vector::const_iterator it = exp.getPublications().begin(); it != exp.getPublications().end(); ++it) @@ -568,7 +568,7 @@ namespace OpenMS::Internal } // instrument list - if (exp.getInstruments().size() > 0) + if (!exp.getInstruments().empty()) { os << " " << "\n"; for (std::vector::const_iterator it = exp.getInstruments().begin(); it != exp.getInstruments().end(); ++it) @@ -582,7 +582,7 @@ namespace OpenMS::Internal } // software list - if (exp.getSoftware().size() > 0) + if (!exp.getSoftware().empty()) { os << " " << "\n"; for (std::vector::const_iterator it = exp.getSoftware().begin(); it != exp.getSoftware().end(); ++it) @@ -598,7 +598,7 @@ namespace OpenMS::Internal //-------------------------------------------------------------------------------------------- // protein list //-------------------------------------------------------------------------------------------- - if (exp.getProteins().size() > 0) + if (!exp.getProteins().empty()) { os << " " << "\n"; for (std::vector::const_iterator it = exp.getProteins().begin(); it != exp.getProteins().end(); ++it) @@ -627,15 +627,15 @@ namespace OpenMS::Internal os << " id) << "\" sequence=\"" << it->sequence << "\">" << "\n"; if (it->hasCharge()) { - os << " getChargeState() << "\"/>\n"; + os << R"( getChargeState() << "\"/>\n"; } - if (it->getPeptideGroupLabel() != "") + if (!it->getPeptideGroupLabel().empty()) { - os << " getPeptideGroupLabel() << "\"/>\n"; + os << R"( getPeptideGroupLabel() << "\"/>\n"; } if (it->getDriftTime() >= 0.0) { - os << " getDriftTime() << "\" unitAccession=\"UO:0000028\" unitName=\"millisecond\" unitCvRef=\"UO\" />\n"; + os << R"( getDriftTime() << "\" unitAccession=\"UO:0000028\" unitName=\"millisecond\" unitCvRef=\"UO\" />\n"; } writeCVParams_(os, *it, 3); writeUserParam_(os, (MetaInfoInterface) * it, 3); @@ -645,7 +645,7 @@ namespace OpenMS::Internal os << " " << "\n"; } - if (it->mods.size() > 0) + if (!it->mods.empty()) { for (std::vector::const_iterator mit = it->mods.begin(); mit != it->mods.end(); ++mit) @@ -682,7 +682,7 @@ namespace OpenMS::Internal } const ResidueModification* rmod = mod_db->getModification("UniMod:" + String(mit->unimod_id), residue, term_spec); const String& modname = rmod->getId(); - os << " unimod_id + os << R"( unimod_id << "\" name=\"" << modname << "\"/>\n"; } @@ -692,7 +692,7 @@ namespace OpenMS::Internal } } - if (it->rts.size() > 0) + if (!it->rts.empty()) { os << " \n"; for (std::vector::const_iterator rit = it->rts.begin(); rit != it->rts.end(); ++rit) @@ -719,28 +719,28 @@ namespace OpenMS::Internal if (it->hasCharge()) { - os << " getChargeState() << "\"/>\n"; + os << R"( getChargeState() << "\"/>\n"; } if (it->theoretical_mass > 0.0) { - os << " theoretical_mass << "\" unitCvRef=\"UO\" unitAccession=\"UO:0000221\" unitName=\"dalton\"/>\n"; } if (!it->molecular_formula.empty()) { - os << " molecular_formula << "\"/>\n"; } if (!it->smiles_string.empty()) { - os << " smiles_string << "\"/>\n"; } writeCVParams_(os, *it, 3); writeUserParam_(os, (MetaInfoInterface) * it, 3); - if (it->rts.size() > 0) + if (!it->rts.empty()) { os << " \n"; for (std::vector::const_iterator rit = it->rts.begin(); rit != it->rts.end(); ++rit) @@ -758,7 +758,7 @@ namespace OpenMS::Internal //-------------------------------------------------------------------------------------------- // transition list //-------------------------------------------------------------------------------------------- - if (exp.getTransitions().size() > 0) + if (!exp.getTransitions().empty()) { int progress = 0; @@ -769,12 +769,12 @@ namespace OpenMS::Internal os << " getName()) << "\""; - if (it->getPeptideRef() != "") + if (!it->getPeptideRef().empty()) { os << " peptideRef=\"" << writeXMLEscape(it->getPeptideRef()) << "\""; } - if (it->getCompoundRef() != "") + if (!it->getCompoundRef().empty()) { os << " compoundRef=\"" << writeXMLEscape(it->getCompoundRef()) << "\""; } @@ -783,7 +783,7 @@ namespace OpenMS::Internal // Precursor occurs exactly once (is required according to schema). // CV term MS:1000827 MUST be supplied for the TransitionList path os << " " << "\n"; - os << " getPrecursorMZ()) << "\" unitCvRef=\"MS\" unitAccession=\"MS:1000040\" unitName=\"m/z\"/>\n"; if (it->hasPrecursorCVTerms()) { @@ -830,7 +830,7 @@ namespace OpenMS::Internal // Special CV Params if (it->getLibraryIntensity() > -100) { - os << " getLibraryIntensity() << "\"/>\n"; + os << R"( getLibraryIntensity() << "\"/>\n"; } if (it->getDecoyTransitionType() != ReactionMonitoringTransition::UNKNOWN) { @@ -906,7 +906,7 @@ namespace OpenMS::Internal { const TargetedExperimentHelper::RetentionTime* rit = &rt; os << " software_ref != "") + if (!rit->software_ref.empty()) { os << " softwareRef=\"" << writeXMLEscape(rit->software_ref) << "\""; } @@ -916,27 +916,27 @@ namespace OpenMS::Internal { if (rit->retention_time_type == TargetedExperimentHelper::RetentionTime::RTType::LOCAL) { - os << " getRT() << "\""; + os << R"( getRT() << "\""; } else if (rit->retention_time_type == TargetedExperimentHelper::RetentionTime::RTType::NORMALIZED) { - os << " getRT() << "\""; + os << R"( getRT() << "\""; } else if (rit->retention_time_type == TargetedExperimentHelper::RetentionTime::RTType::PREDICTED) { - os << " getRT() << "\""; + os << R"( getRT() << "\""; } else if (rit->retention_time_type == TargetedExperimentHelper::RetentionTime::RTType::HPINS) { - os << " getRT() << "\""; + os << R"( getRT() << "\""; } else if (rit->retention_time_type == TargetedExperimentHelper::RetentionTime::RTType::IRT) { - os << " getRT() << "\""; + os << R"( getRT() << "\""; } else { - os << " getRT() << "\""; + os << R"( getRT() << "\""; } } @@ -1001,11 +1001,11 @@ namespace OpenMS::Internal { if (prod_it->hasCharge()) { - os << " getChargeState() << "\"/>\n"; + os << R"( getChargeState() << "\"/>\n"; } if (prod_it->getMZ() > 0) { - os << " getMZ() << "\" unitCvRef=\"MS\" unitAccession=\"MS:1000040\" unitName=\"m/z\"/>\n"; } writeCVParams_(os, *prod_it, 4); @@ -1020,12 +1020,12 @@ namespace OpenMS::Internal os << " " << "\n"; if (inter_it->ordinal > 0) { - os << " ordinal << "\"/>\n"; } if (inter_it->rank > 0) { - os << " rank << "\"/>\n"; } @@ -1099,7 +1099,7 @@ namespace OpenMS::Internal void TraMLHandler::writeConfiguration_(std::ostream& os, const std::vector::const_iterator& cit) const { os << " instrument_ref) << "\""; - if (cit->contact_ref != "") + if (!cit->contact_ref.empty()) { os << " contactRef=\"" << writeXMLEscape(cit->contact_ref) << "\""; } @@ -1107,7 +1107,7 @@ namespace OpenMS::Internal writeCVParams_(os, *cit, 6); writeUserParam_(os, (MetaInfoInterface) * cit, 6); - if (cit->validations.size() != 0) + if (!cit->validations.empty()) { for (std::vector::const_iterator iit = cit->validations.begin(); iit != cit->validations.end(); ++iit) { @@ -1150,7 +1150,7 @@ namespace OpenMS::Internal warning(LOAD, String("Obsolete CV term '") + accession + " - " + cv_.getTerm(accession).name + "' used in tag '" + parent_tag + "'."); //values used in wrong places and wrong value types String value = cv_term.getValue().toString(); - if (value != "") + if (!value.empty()) { if (term.xref_type == ControlledVocabulary::CVTerm::NONE) { @@ -1292,12 +1292,12 @@ namespace OpenMS::Internal } else if (cv_term.getAccession() == "MS:1000902") // H-PINS { - if (cv_term.getValue().toString() != "") actual_rt_.setRT(cv_term.getValue().toString().toDouble()); + if (!cv_term.getValue().toString().empty()) actual_rt_.setRT(cv_term.getValue().toString().toDouble()); actual_rt_.retention_time_type = TargetedExperimentHelper::RetentionTime::RTType::HPINS; } else if (cv_term.getAccession() == "MS:1002005") // iRT { - if (cv_term.getValue().toString() != "") actual_rt_.setRT(cv_term.getValue().toString().toDouble()); + if (!cv_term.getValue().toString().empty()) actual_rt_.setRT(cv_term.getValue().toString().toDouble()); actual_rt_.retention_time_type = TargetedExperimentHelper::RetentionTime::RTType::IRT; } // else if (cv_term.getAccession() == "MS:1000916") // RT lower offset diff --git a/src/openms/source/FORMAT/HANDLERS/UnimodXMLHandler.cpp b/src/openms/source/FORMAT/HANDLERS/UnimodXMLHandler.cpp index 2919b22e737..7bc67a468f7 100644 --- a/src/openms/source/FORMAT/HANDLERS/UnimodXMLHandler.cpp +++ b/src/openms/source/FORMAT/HANDLERS/UnimodXMLHandler.cpp @@ -167,7 +167,7 @@ namespace OpenMS::Internal } String formula; - if (isotope != "") + if (!isotope.empty()) { formula = '(' + isotope + ')' + tmp_symbol + String(num); } diff --git a/src/openms/source/FORMAT/HANDLERS/XMLHandler.cpp b/src/openms/source/FORMAT/HANDLERS/XMLHandler.cpp index f3c2edb34b5..e91db46306b 100644 --- a/src/openms/source/FORMAT/HANDLERS/XMLHandler.cpp +++ b/src/openms/source/FORMAT/HANDLERS/XMLHandler.cpp @@ -224,7 +224,7 @@ namespace OpenMS::Internal throw Exception::NotImplemented(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION); } - void XMLHandler::checkUniqueIdentifiers_(const std::vector& prot_ids) + void XMLHandler::checkUniqueIdentifiers_(const std::vector& prot_ids) const { std::set s; for (const auto& p : prot_ids) diff --git a/src/openms/source/FORMAT/HANDLERS/XQuestResultXMLHandler.cpp b/src/openms/source/FORMAT/HANDLERS/XQuestResultXMLHandler.cpp index 3cdddb7676e..2a28400ddd5 100644 --- a/src/openms/source/FORMAT/HANDLERS/XQuestResultXMLHandler.cpp +++ b/src/openms/source/FORMAT/HANDLERS/XQuestResultXMLHandler.cpp @@ -112,7 +112,7 @@ namespace OpenMS::Internal } - void XQuestResultXMLHandler::extractDateTime_(const String & xquest_datetime_string, DateTime & date_time) + void XQuestResultXMLHandler::extractDateTime_(const String & xquest_datetime_string, DateTime & date_time) const { StringList xquest_datetime_string_split; StringUtils::split(xquest_datetime_string,' ', xquest_datetime_string_split); @@ -287,7 +287,7 @@ namespace OpenMS::Internal double mod_mass = double(DataValue(variable_mod_split[1])); std::vector mods; ModificationsDB::getInstance()->searchModificationsByDiffMonoMass(mods, mod_mass, 0.01, variable_mod_split[0]); - if (mods.size() > 0) + if (!mods.empty()) { variable_mod_list.push_back(mods[0]); } @@ -313,7 +313,7 @@ namespace OpenMS::Internal // change the default decoy string, if the parameter is given String current_decoy_string; - if (this->optionalAttributeAsString_(current_decoy_string, attributes, "decoy_string") && current_decoy_string.size() > 0) + if (this->optionalAttributeAsString_(current_decoy_string, attributes, "decoy_string") && !current_decoy_string.empty()) { this->decoy_string_ = current_decoy_string; } @@ -341,7 +341,7 @@ namespace OpenMS::Internal monolink_masses_string = ListUtils::create(monolink_masses_string_raw); } - if (monolink_masses_string.size() > 0) + if (!monolink_masses_string.empty()) { DoubleList monolink_masses; for (String monolink_string : monolink_masses_string) @@ -360,7 +360,7 @@ namespace OpenMS::Internal this->cross_linker_name_ = this->attributeAsString_(attributes, "crosslinkername"); search_params.setMetaValue("cross_link:name", DataValue(this->cross_linker_name_)); String iso_shift = this->attributeAsString_(attributes, "cp_isotopediff"); - if (iso_shift.size() > 0) + if (!iso_shift.empty()) { search_params.setMetaValue("cross_link:mass_isoshift", iso_shift.toDouble()); } @@ -560,7 +560,7 @@ namespace OpenMS::Internal if (xlink_type_string == "monolink") { - if (mods.size() > 0) + if (!mods.empty()) { bool mod_set = false; for (const String& mod : mods) @@ -973,20 +973,20 @@ namespace OpenMS::Internal (*this->cpro_id_)[0].getPrimaryMSRunPath(ms_runs); String ms_runs_string = ListUtils::concatenate(ms_runs, ","); - os << "" << std::endl; + R"(" nocutatxlink="1">)" << std::endl; String current_spectrum_light(""); String current_spectrum_heavy(""); @@ -994,7 +994,7 @@ namespace OpenMS::Internal for (const auto& current_pep_id : *cpep_id_) { std::vector< PeptideHit > pep_hits = current_pep_id.getHits(); - if (pep_hits.size() < 1) + if (pep_hits.empty()) { continue; } @@ -1012,7 +1012,7 @@ namespace OpenMS::Internal if (new_spectrum) { - if (current_spectrum_light.size() > 0) + if (!current_spectrum_light.empty()) { os << "" << std::endl; } diff --git a/src/openms/source/FORMAT/IBSpectraFile.cpp b/src/openms/source/FORMAT/IBSpectraFile.cpp index 81accdc46c4..a84fc13340e 100644 --- a/src/openms/source/FORMAT/IBSpectraFile.cpp +++ b/src/openms/source/FORMAT/IBSpectraFile.cpp @@ -68,7 +68,7 @@ namespace OpenMS String spectrum; // Spectrum identifier String search_engine; // Protein search engine and score - void toStringList(StringList& target_list) + void toStringList(StringList& target_list) const { target_list.push_back(accession); target_list.push_back(peptide); @@ -184,7 +184,7 @@ namespace OpenMS { modif += ":" + aa_it->getModificationName(); } - if (sequence.getCTerminalModificationName() != "") + if (!sequence.getCTerminalModificationName().empty()) { modif += ":" + sequence.getCTerminalModificationName(); } @@ -212,7 +212,7 @@ namespace OpenMS // we need the protein identifications to reference the protein names ProteinIdentification protIdent; bool has_proteinIdentifications = false; - if (cm.getProteinIdentifications().size() > 0) + if (!cm.getProteinIdentifications().empty()) { protIdent = cm.getProteinIdentifications()[0]; has_proteinIdentifications = true; @@ -230,7 +230,7 @@ namespace OpenMS std::vector entries; /// 1st we extract the identification information from the consensus feature - if (cFeature.getPeptideIdentifications().size() == 0 || !has_proteinIdentifications) + if (cFeature.getPeptideIdentifications().empty() || !has_proteinIdentifications) { // we store unidentified hits anyway, because the iTRAQ quant is still helpful for normalization entries.push_back(IdCSV()); diff --git a/src/openms/source/FORMAT/IdXMLFile.cpp b/src/openms/source/FORMAT/IdXMLFile.cpp index 63ff07ade61..9a1ffa048d7 100644 --- a/src/openms/source/FORMAT/IdXMLFile.cpp +++ b/src/openms/source/FORMAT/IdXMLFile.cpp @@ -128,7 +128,7 @@ namespace OpenMS os << "\n"; os << "\n"; os << "" << "\n"; + os << String(indent, '\t') << "<" << writeXMLEscape(tag_name) << R"( type="string" name="fragment_annotation" value=")" << writeXMLEscape(val) << "\"/>" << "\n"; } } diff --git a/src/openms/source/FORMAT/LibSVMEncoder.cpp b/src/openms/source/FORMAT/LibSVMEncoder.cpp index 4a743d0478e..c68ea01b100 100644 --- a/src/openms/source/FORMAT/LibSVMEncoder.cpp +++ b/src/openms/source/FORMAT/LibSVMEncoder.cpp @@ -39,20 +39,12 @@ #include #include +#include "svm.h" + using namespace std; namespace OpenMS { - LibSVMEncoder::LibSVMEncoder() - { - - } - - LibSVMEncoder::~LibSVMEncoder() - { - - } - void LibSVMEncoder::encodeCompositionVector(const String& sequence, vector >& composition_vector, const String& allowed_characters) diff --git a/src/openms/source/FORMAT/MSNumpressCoder.cpp b/src/openms/source/FORMAT/MSNumpressCoder.cpp index 0d1bd2d865e..31e247bb342 100644 --- a/src/openms/source/FORMAT/MSNumpressCoder.cpp +++ b/src/openms/source/FORMAT/MSNumpressCoder.cpp @@ -36,7 +36,7 @@ #include #include -#include // boost::math::isfinite +#include // std::isfinite // #define NUMPRESS_DEBUG #include @@ -217,7 +217,7 @@ namespace OpenMS { for (n = static_cast(dataSize)-1; n>=0; n-- ) // check for overflow, strange rounding { - if ((!boost::math::isfinite(unpressed[n])) || (fabs(in[n] - unpressed[n]) >= 1.0)) + if ((!std::isfinite(unpressed[n])) || (fabs(in[n] - unpressed[n]) >= 1.0)) { break; } @@ -229,7 +229,7 @@ namespace OpenMS { double u = unpressed[n]; double d = in[n]; - if (!boost::math::isfinite(u) || !boost::math::isfinite(d)) + if (!std::isfinite(u) || !std::isfinite(d)) { #ifdef NUMPRESS_DEBUG std::cout << "infinite u: " << u << " d: " << d << std::endl; diff --git a/src/openms/source/FORMAT/MSPFile.cpp b/src/openms/source/FORMAT/MSPFile.cpp index 6f67fc14e77..d6ac42d5b3d 100644 --- a/src/openms/source/FORMAT/MSPFile.cpp +++ b/src/openms/source/FORMAT/MSPFile.cpp @@ -286,7 +286,7 @@ namespace OpenMS if (iter == end) { throw Exception::ParseError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, - line, "not \"\"\"\" in line " + String(line_number)); + line, R"(not """" in line )" + String(line_number)); } Peak1D peak; float mz = String(iter->str()).toFloat(); @@ -295,7 +295,7 @@ namespace OpenMS if (iter == end) { throw Exception::ParseError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, - line, "not \"\"\"\" in line " + String(line_number)); + line, R"(not """" in line )" + String(line_number)); } float ity = String(iter->str()).toFloat(); peak.setIntensity(ity); @@ -385,7 +385,7 @@ namespace OpenMS for (const MSSpectrum& it : exp) { - if (it.getPeptideIdentifications().size() > 0 && it.getPeptideIdentifications().begin()->getHits().size() > 0) + if (!it.getPeptideIdentifications().empty() && !it.getPeptideIdentifications().begin()->getHits().empty()) { PeptideHit hit = *it.getPeptideIdentifications().begin()->getHits().begin(); String peptide; diff --git a/src/openms/source/FORMAT/MSPGenericFile.cpp b/src/openms/source/FORMAT/MSPGenericFile.cpp index a823fa33d28..822dff495cb 100644 --- a/src/openms/source/FORMAT/MSPGenericFile.cpp +++ b/src/openms/source/FORMAT/MSPGenericFile.cpp @@ -248,14 +248,14 @@ namespace OpenMS "The number of points parsed does not coincide with `Num Peaks`."); } - if (synonyms_.size()) + if (!synonyms_.empty()) { String synon; for (const String& s : synonyms_) { synon += s + synonyms_separator_; } - if (synon.size()) + if (!synon.empty()) { synon.pop_back(); } diff --git a/src/openms/source/FORMAT/MascotGenericFile.cpp b/src/openms/source/FORMAT/MascotGenericFile.cpp index d8d1093df3b..9ec9c516be3 100644 --- a/src/openms/source/FORMAT/MascotGenericFile.cpp +++ b/src/openms/source/FORMAT/MascotGenericFile.cpp @@ -318,7 +318,7 @@ namespace OpenMS void MascotGenericFile::writeSpectrum(ostream& os, const PeakSpectrum& spec, const String& filename, const String& native_id_type_accession) { Precursor precursor; - if (spec.getPrecursors().size() > 0) + if (!spec.getPrecursors().empty()) { precursor = spec.getPrecursors()[0]; } @@ -435,7 +435,7 @@ namespace OpenMS std::pair MascotGenericFile::getHTTPPeakListEnclosure(const String& filename) const { std::pair r; - r.first = String("--" + (std::string)param_.getValue("internal:boundary") + "\n" + "Content-Disposition: form-data; name=\"FILE\"; filename=\"" + filename + "\"\n\n"); + r.first = String("--" + (std::string)param_.getValue("internal:boundary") + "\n" + R"(Content-Disposition: form-data; name="FILE"; filename=")" + filename + "\"\n\n"); r.second = String("\n\n--" + (std::string)param_.getValue("internal:boundary") + "--\n"); return r; } diff --git a/src/openms/source/FORMAT/MascotInfile.cpp b/src/openms/source/FORMAT/MascotInfile.cpp index b24264545dc..dd0d06f3613 100644 --- a/src/openms/source/FORMAT/MascotInfile.cpp +++ b/src/openms/source/FORMAT/MascotInfile.cpp @@ -135,7 +135,7 @@ namespace OpenMS //fputs ("\n",fp); // search title - if (search_title_ != "") + if (!search_title_.empty()) { writeParameterHeader_("COM", fp, false); fputs(search_title_.c_str(), fp); @@ -305,7 +305,7 @@ namespace OpenMS MSSpectrum peaks = experiment[i]; peaks.sortByPosition(); Precursor precursor_peak; - if (experiment[i].getPrecursors().size() > 0) + if (!experiment[i].getPrecursors().empty()) { precursor_peak = experiment[i].getPrecursors()[0]; } @@ -470,7 +470,7 @@ namespace OpenMS instrument_ = instrument; } - UInt MascotInfile::getMissedCleavages() + UInt MascotInfile::getMissedCleavages() const { return missed_cleavages_; } @@ -480,7 +480,7 @@ namespace OpenMS missed_cleavages_ = missed_cleavages; } - float MascotInfile::getPrecursorMassTolerance() + float MascotInfile::getPrecursorMassTolerance() const { return precursor_mass_tolerance_; } @@ -490,7 +490,7 @@ namespace OpenMS precursor_mass_tolerance_ = precursor_mass_tolerance; } - float MascotInfile::getPeakMassTolerance() + float MascotInfile::getPeakMassTolerance() const { return ion_mass_tolerance_; } @@ -670,7 +670,7 @@ namespace OpenMS // TODO concatenate the other parts if the title contains additional '=' chars } } - if (line.trim().size() > 0 && isdigit(line[0])) + if (!line.trim().empty() && isdigit(line[0])) { do { @@ -703,7 +703,7 @@ namespace OpenMS } else { - throw Exception::ParseError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Found \"BEGIN IONS\" but not the corresponding \"END IONS\"!", ""); + throw Exception::ParseError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, R"(Found "BEGIN IONS" but not the corresponding "END IONS"!)", ""); } } } diff --git a/src/openms/source/FORMAT/MascotRemoteQuery.cpp b/src/openms/source/FORMAT/MascotRemoteQuery.cpp index 7f8faf872d8..67087462d3d 100644 --- a/src/openms/source/FORMAT/MascotRemoteQuery.cpp +++ b/src/openms/source/FORMAT/MascotRemoteQuery.cpp @@ -98,7 +98,7 @@ namespace OpenMS if (manager_) {delete manager_;} } - void MascotRemoteQuery::timedOut() + void MascotRemoteQuery::timedOut() const { OPENMS_LOG_FATAL_ERROR << "Mascot request timed out after " << to_ << " seconds! See 'timeout' parameter for details!" << std::endl; } @@ -559,7 +559,7 @@ namespace OpenMS // Click here to see Search Report QString response(new_bytes); - QRegExp rx("file=(.+/\\d+/\\w+\\.dat)"); + QRegExp rx(R"(file=(.+/\d+/\w+\.dat))"); rx.setMinimal(true); rx.indexIn(response); dat_file_path_ = rx.cap(1); @@ -699,7 +699,7 @@ namespace OpenMS bool MascotRemoteQuery::hasError() const { - return error_message_ != ""; + return !error_message_.empty(); } const String& MascotRemoteQuery::getErrorMessage() const @@ -719,7 +719,7 @@ namespace OpenMS #endif server_path_ = param_.getValue("server_path").toString(); //MascotRemoteQuery_test - if (server_path_ != "") + if (!server_path_.empty()) { server_path_ = "/" + server_path_; } @@ -763,7 +763,7 @@ namespace OpenMS proxy.setPassword(proxy_password.toQString()); String proxy_username(param_.getValue("proxy_username").toString()); - if (proxy_username != "") + if (!proxy_username.empty()) { proxy.setUser(proxy_username.toQString()); } diff --git a/src/openms/source/FORMAT/MascotXMLFile.cpp b/src/openms/source/FORMAT/MascotXMLFile.cpp index 21e1acefaa2..ca627f4174d 100644 --- a/src/openms/source/FORMAT/MascotXMLFile.cpp +++ b/src/openms/source/FORMAT/MascotXMLFile.cpp @@ -156,11 +156,11 @@ namespace OpenMS lookup.addReferenceFormat("[Ss]can( [Nn]umber)?s?[=:]? *(?\\d+)"); // - with .dta input to Mascot: // <...>/path/to/FTAC05_13.673.673.2.dta -> 673 - lookup.addReferenceFormat("\\.(?\\d+)\\.\\d+\\.(?\\d+)(\\.dta)?"); + lookup.addReferenceFormat(R"(\.(?\d+)\.\d+\.(?\d+)(\.dta)?)"); } // title containing RT and MZ instead of scan number: // <...>575.848571777344_5018.0811_controllerType=0 controllerNumber=1 scan=11515_EcoliMS2small - lookup.addReferenceFormat("^(?\\d+(\\.\\d+)?)_(?\\d+(\\.\\d+)?)"); + lookup.addReferenceFormat(R"(^(?\d+(\.\d+)?)_(?\d+(\.\d+)?))"); } else // use only user-defined format { diff --git a/src/openms/source/FORMAT/MzTab.cpp b/src/openms/source/FORMAT/MzTab.cpp index cc2e4a34c7f..c9415c24263 100644 --- a/src/openms/source/FORMAT/MzTab.cpp +++ b/src/openms/source/FORMAT/MzTab.cpp @@ -54,152 +54,6 @@ using namespace std; namespace OpenMS { - - bool MzTabParameterList::isNull() const - { - return parameters_.empty(); - } - - void MzTabParameterList::setNull(bool b) - { - if (b) { parameters_.clear(); } - } - - String MzTabParameterList::toCellString() const - { - if (isNull()) - { - return "null"; - } - else - { - String ret; - for (std::vector::const_iterator it = parameters_.begin(); it != parameters_.end(); ++it) - { - if (it != parameters_.begin()) - { - ret += "|"; - } - ret += it->toCellString(); - } - return ret; - } - } - - void MzTabParameterList::fromCellString(const String& s) - { - String lower = s; - lower.toLower().trim(); - - if (lower == "null") - { - setNull(true); - } - else - { - std::vector fields; - s.split("|", fields); - for (Size i = 0; i != fields.size(); ++i) - { - MzTabParameter p; - lower = fields[i]; - lower.toLower().trim(); - if (lower == "null") - { - throw Exception::ConversionError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("MzTabParameter in MzTabParameterList must not be null '") + s); - } - p.fromCellString(fields[i]); - parameters_.push_back(p); - } - } - } - - std::vector MzTabParameterList::get() const - { - return parameters_; - } - - void MzTabParameterList::set(const std::vector& parameters) - { - parameters_ = parameters; - } - - MzTabStringList::MzTabStringList() : - sep_('|') - { - } - - void MzTabStringList::setSeparator(char sep) - { - sep_ = sep; - } - - bool MzTabStringList::isNull() const - { - return entries_.empty(); - } - - void MzTabStringList::setNull(bool b) - { - if (b) - { - entries_.clear(); - } - } - - String MzTabStringList::toCellString() const - { - if (isNull()) - { - return "null"; - } - else - { - String ret; - for (std::vector::const_iterator it = entries_.begin(); it != entries_.end(); ++it) - { - if (it != entries_.begin()) - { - ret += sep_; - } - ret += it->toCellString(); - } - return ret; - } - } - - void MzTabStringList::fromCellString(const String& s) - { - String lower = s; - lower.toLower().trim(); - - if (lower == "null") - { - setNull(true); - } - else - { - std::vector fields; - s.split(sep_, fields); - for (Size i = 0; i != fields.size(); ++i) - { - MzTabString ts; - ts.fromCellString(fields[i]); - entries_.push_back(ts); - } - } - } - - std::vector MzTabStringList::get() const - { - return entries_; - } - - void MzTabStringList::set(const std::vector& entries) - { - entries_ = entries; - } - MzTabModification::MzTabModification() { } @@ -332,741 +186,19 @@ namespace OpenMS // extract [,,,] part MzTabParameter param; param.fromCellString(position_fields[i].substr(spos)); - pos_param_pairs_.emplace_back(pos, param); - } - } - } - } - } - - bool MzTabModificationList::isNull() const - { - return entries_.empty(); - } - - void MzTabModificationList::setNull(bool b) - { - if (b) - { - entries_.clear(); - } - } - - String MzTabModificationList::toCellString() const - { - if (isNull()) - { - return "null"; - } - else - { - String ret; - for (std::vector::const_iterator it = entries_.begin(); it != entries_.end(); ++it) - { - if (it != entries_.begin()) - { - ret += ","; - } - ret += it->toCellString(); - } - return ret; - } - } - - void MzTabModificationList::fromCellString(const String& s) - { - String lower = s; - lower.toLower().trim(); - if (lower == "null") - { - setNull(true); - } - else - { - String ss = s; - std::vector fields; - - if (!ss.hasSubstring("[")) // no parameters - { - ss.split(",", fields); - for (Size i = 0; i != fields.size(); ++i) - { - MzTabModification ms; - ms.fromCellString(fields[i]); - entries_.push_back(ms); - } - } - else - { - // example string: 3|4[a,b,,v]|8[,,"blabla, [bla]",v],1|2|3[a,b,,v]-mod:123 - // we don't want to split at the , inside of [ ] MzTabParameter brackets. - // Additionally, and we don't want to recognise quoted brackets inside the MzTabParameter where they can occur in quoted text (see example string) - bool in_param_bracket = false; - bool in_quotes = false; - - for (Size pos = 0; pos != ss.size(); ++pos) - { - // param_bracket state - if (ss[pos] == '[' && !in_quotes) - { - in_param_bracket = true; - continue; - } - - if (ss[pos] == ']' && !in_quotes) - { - in_param_bracket = false; - continue; - } - - // quote state - if (ss[pos] == '\"') - { - in_quotes = !in_quotes; - continue; - } - - // comma in param bracket - if (ss[pos] == ',' && !in_quotes && in_param_bracket) - { - ss[pos] = ((char)007); // use ASCII bell as temporary separator - continue; - } - } - - // now the split at comma is save - ss.split(",", fields); - - for (Size i = 0; i != fields.size(); ++i) - { - fields[i].substitute(((char)007), ','); // resubstitute comma after split - MzTabModification ms; - ms.fromCellString(fields[i]); - entries_.push_back(ms); - } - } - } - } - - std::vector MzTabModificationList::get() const - { - return entries_; - } - - void MzTabModificationList::set(const std::vector& entries) - { - entries_ = entries; - } - - MzTabSpectraRef::MzTabSpectraRef() : - ms_run_(0) - { - } - - bool MzTabSpectraRef::isNull() const - { - return (ms_run_ < 1) || (spec_ref_.empty()); - } - - void MzTabSpectraRef::setNull(bool b) - { - if (b) - { - ms_run_ = 0; - spec_ref_.clear(); - } - } - - void MzTabSpectraRef::setMSFile(Size index) - { - assert(index >= 1); - if (index >= 1) - { - ms_run_ = index; - } - } - - void MzTabSpectraRef::setSpecRef(const String& spec_ref) - { - assert(!spec_ref.empty()); - if (!spec_ref.empty()) - { - spec_ref_ = spec_ref; - } - else - { - OPENMS_LOG_WARN << "Spectrum reference not set." << endl; - } - } - - String MzTabSpectraRef::getSpecRef() const - { - assert(!isNull()); - return spec_ref_; - } - - Size MzTabSpectraRef::getMSFile() const - { - assert(!isNull()); - return ms_run_; - } - - void MzTabSpectraRef::setSpecRefFile(const String& spec_ref) - { - assert(!spec_ref.empty()); - if (!spec_ref.empty()) - { - spec_ref_ = spec_ref; - } - } - - String MzTabSpectraRef::toCellString() const - { - if (isNull()) - { - return "null"; - } - else - { - return String("ms_run[") + String(ms_run_) + "]:" + spec_ref_; - } - } - - void MzTabSpectraRef::fromCellString(const String& s) - { - String lower = s; - lower.toLower().trim(); - if (lower == "null") - { - setNull(true); - } - else - { - std::vector fields; - s.split(":", fields); - if (fields.size() != 2) - { - throw Exception::ConversionError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("Can not convert to MzTabSpectraRef from '") + s + "'"); - } - - spec_ref_ = fields[1]; - ms_run_ = (Size)(fields[0].substitute("ms_run[", "").remove(']').toInt()); - } - } - - MzTabProteinSectionRow::MzTabProteinSectionRow() - { - // use "," as list separator because "|" can be used for go terms and protein accessions - go_terms.setSeparator(','); - ambiguity_members.setSeparator(','); - } - - MzTabMetaData::MzTabMetaData() - { - mz_tab_version.fromCellString(String("1.0.0")); - } - - // static method remapping the target/decoy column from an opt_ to a standardized column - static void remapTargetDecoyPSMAndPeptideSection_(std::vector& opt_entries) - { - const String old_header("opt_global_target_decoy"); - const String new_header("opt_global_cv_MS:1002217_decoy_peptide"); // for PRIDE - for (auto &opt_entry : opt_entries) - { - if (opt_entry.first == old_header || opt_entry.first == new_header) - { - opt_entry.first = new_header; - const String ¤t_value = opt_entry.second.get(); - if (current_value == "target" || current_value == "target+decoy") - { - opt_entry.second = MzTabString("0"); - } - else if (current_value == "decoy") - { - opt_entry.second = MzTabString("1"); - } - } - } - } - - // static method remapping the target/decoy column from an opt_ to a standardized column - static void remapTargetDecoyProteinSection_(std::vector& opt_entries) - { - const String old_header("opt_global_target_decoy"); - const String new_header("opt_global_cv_PRIDE:0000303_decoy_hit"); // for PRIDE - for (auto &opt_entry : opt_entries) - { - if (opt_entry.first == old_header || opt_entry.first == new_header) - { - opt_entry.first = new_header; - const String ¤t_value = opt_entry.second.get(); - if (current_value == "target" || current_value == "target+decoy") - { - opt_entry.second = MzTabString("0"); - } - else if (current_value == "decoy") - { - opt_entry.second = MzTabString("1"); - } - } - } - } - - const MzTabMetaData& MzTab::getMetaData() const - { - return meta_data_; - } - - void MzTab::setMetaData(const MzTabMetaData& md) - { - meta_data_ = md; - } - - MzTabProteinSectionRows& MzTab::getProteinSectionRows() - { - return protein_data_; - } - - const MzTabProteinSectionRows& MzTab::getProteinSectionRows() const - { - return protein_data_; - } - - void MzTab::setProteinSectionRows(const MzTabProteinSectionRows& psd) - { - protein_data_ = psd; - } - - MzTabPeptideSectionRows& MzTab::getPeptideSectionRows() - { - return peptide_data_; - } - - const MzTabPeptideSectionRows& MzTab::getPeptideSectionRows() const - { - return peptide_data_; - } - - void MzTab::setPeptideSectionRows(const MzTabPeptideSectionRows& psd) - { - peptide_data_ = psd; - } - - const MzTabPSMSectionRows& MzTab::getPSMSectionRows() const - { - return psm_data_; - } - - MzTabPSMSectionRows& MzTab::getPSMSectionRows() - { - return psm_data_; - } - - void MzTab::setPSMSectionRows(const MzTabPSMSectionRows& psd) - { - psm_data_ = psd; - } - - const MzTabSmallMoleculeSectionRows& MzTab::getSmallMoleculeSectionRows() const - { - return small_molecule_data_; - } - - void MzTab::setSmallMoleculeSectionRows(const MzTabSmallMoleculeSectionRows& smsd) - { - small_molecule_data_ = smsd; - } - - const MzTabNucleicAcidSectionRows& MzTab::getNucleicAcidSectionRows() const - { - return nucleic_acid_data_; - } - - void MzTab::setNucleicAcidSectionRows(const MzTabNucleicAcidSectionRows& nasd) - { - nucleic_acid_data_ = nasd; - } - - const MzTabOligonucleotideSectionRows& MzTab::getOligonucleotideSectionRows() const - { - return oligonucleotide_data_; - } - - void MzTab::setOligonucleotideSectionRows(const MzTabOligonucleotideSectionRows& onsd) - { - oligonucleotide_data_ = onsd; - } - - const MzTabOSMSectionRows& MzTab::getOSMSectionRows() const - { - return osm_data_; - } - - void MzTab::setOSMSectionRows(const MzTabOSMSectionRows& osd) - { - osm_data_ = osd; - } - - void MzTab::setCommentRows(const std::map& com) - { - comment_rows_ = com; - } - - void MzTab::setEmptyRows(const std::vector& empty) - { - empty_rows_ = empty; - } - - const std::vector& MzTab::getEmptyRows() const - { - return empty_rows_; - } - - const std::map& MzTab::getCommentRows() const - { - return comment_rows_; - } - - std::vector MzTab::getProteinOptionalColumnNames() const - { - return getOptionalColumnNames_(protein_data_); - } - - std::vector MzTab::getPeptideOptionalColumnNames() const - { - return getOptionalColumnNames_(peptide_data_); - } - - std::vector MzTab::getPSMOptionalColumnNames() const - { - return getOptionalColumnNames_(psm_data_); - } - - std::vector MzTab::getSmallMoleculeOptionalColumnNames() const - { - return getOptionalColumnNames_(small_molecule_data_); - } - - std::vector MzTab::getNucleicAcidOptionalColumnNames() const - { - return getOptionalColumnNames_(nucleic_acid_data_); - } - - std::vector MzTab::getOligonucleotideOptionalColumnNames() const - { - return getOptionalColumnNames_(oligonucleotide_data_); - } - - std::vector MzTab::getOSMOptionalColumnNames() const - { - return getOptionalColumnNames_(osm_data_); - } - - MzTabParameter::MzTabParameter() - : CV_label_(""), - accession_(""), - name_(""), - value_("") - { - - } - - bool MzTabParameter::isNull() const - { - return CV_label_.empty() && accession_.empty() && name_.empty() && value_.empty(); - } - - void MzTabParameter::setNull(bool b) - { - if (b) - { - CV_label_.clear(); - accession_.clear(); - name_.clear(); - value_.clear(); - } - } - - void MzTabParameter::setCVLabel(const String& CV_label) - { - CV_label_ = CV_label; - } - - void MzTabParameter::setAccession(const String& accession) - { - accession_ = accession; - } - - void MzTabParameter::setName(const String& name) - { - name_ = name; - } - - void MzTabParameter::setValue(const String& value) - { - value_ = value; - } - - String MzTabParameter::getCVLabel() const - { - assert(!isNull()); - return CV_label_; - } - - String MzTabParameter::getAccession() const - { - assert(!isNull()); - return accession_; - } - - String MzTabParameter::getName() const - { - assert(!isNull()); - return name_; - } - - String MzTabParameter::getValue() const - { - assert(!isNull()); - return value_; - } - - String MzTabParameter::toCellString() const - { - if (isNull()) - { - return "null"; - } - else - { - String ret = "["; - ret += CV_label_ + ", "; - ret += accession_ + ", "; - - if (name_.hasSubstring(", ")) - { - ret += String("\"") + name_ + String("\""); // quote name if it contains a "," - } - else - { - ret += name_; - } - - ret += String(", "); - - if (value_.hasSubstring(", ")) - { - ret += String("\"") + value_ + String("\""); // quote value if it contains a "," - } - else - { - ret += value_; - } - - ret += "]"; - return ret; - } - } - - void MzTabParameter::fromCellString(const String& s) - { - String lower = s; - lower.toLower().trim(); - if (lower == "null") - { - setNull(true); - } - else - { - StringList fields; - String field; - bool in_quotes = false; - for (String::const_iterator sit = s.begin(); sit != s.end(); ++sit) - { - if (*sit == '\"') // start or end of quotes - { - in_quotes = !in_quotes; - } - else if (*sit == ',') // , encountered - { - if (in_quotes) // case 1: , in quote - { - field += ','; // add , (no split) - } - else // split at , if not in quotes - { - fields.push_back(field.trim()); - field.clear(); - } - } - else if (*sit != '[' && *sit != ']') - { - // skip leading ws - if (*sit == ' ' && field.empty()) - { - continue; - } - field += *sit; - } - } - - fields.push_back(field.trim()); - - if (fields.size() != 4) - { - throw Exception::ConversionError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("Could not convert String '") + s + "' to MzTabParameter"); - } - - CV_label_ = fields[0]; - accession_ = fields[1]; - name_ = fields[2]; - value_ = fields[3]; - } - } - - MzTabString::MzTabString(const String& s) - { - set(s); - } - - void MzTabString::set(const String& value) - { - String lower = value; - lower.toLower().trim(); - if (lower == "null") - { - setNull(true); - } - else - { - value_ = value; - value_.trim(); - } - } - - String MzTabString::get() const - { - return value_; - } - - bool MzTabString::isNull() const - { - return value_.empty(); - } - - void MzTabString::setNull(bool b) - { - if (b) - { - value_.clear(); - } - } - - MzTabString::MzTabString() - : value_() - { - } - - String MzTabString::toCellString() const - { - if (isNull()) - { - return "null"; - } - else - { - return value_; - } - } - - void MzTabString::fromCellString(const String& s) - { - set(s); - } - - MzTabBoolean::MzTabBoolean(bool v) - { - set((int)v); - } - - MzTabBoolean::MzTabBoolean() - : value_(-1) - { - } - - void MzTabBoolean::set(const bool& value) - { - value_ = (int)value; - } - - Int MzTabBoolean::get() const - { - return value_; - } - - bool MzTabBoolean::isNull() const - { - return value_ < 0; - } - - void MzTabBoolean::setNull(bool b) - { - if (!b) - value_ = -1; - else - value_ = 0; - } - - String MzTabBoolean::toCellString() const - { - if (isNull()) - { - return "null"; - } - else - { - if (value_) - { - return "1"; - } - else - { - return "0"; - } - } - } - - void MzTabBoolean::fromCellString(const String& s) - { - String lower = s; - lower.toLower().trim(); - if (lower == "null") - { - setNull(true); - } - else - { - if (s == "0") - { - set(false); - } - else if (s == "1") - { - set(true); - } - else - { - throw Exception::ConversionError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("Could not convert String '") + s + "' to MzTabBoolean"); + pos_param_pairs_.emplace_back(pos, param); + } + } } } } - bool MzTabIntegerList::isNull() const + bool MzTabModificationList::isNull() const { return entries_.empty(); } - void MzTabIntegerList::setNull(bool b) + void MzTabModificationList::setNull(bool b) { if (b) { @@ -1074,7 +206,7 @@ namespace OpenMS } } - String MzTabIntegerList::toCellString() const + String MzTabModificationList::toCellString() const { if (isNull()) { @@ -1083,7 +215,7 @@ namespace OpenMS else { String ret; - for (std::vector::const_iterator it = entries_.begin(); it != entries_.end(); ++it) + for (std::vector::const_iterator it = entries_.begin(); it != entries_.end(); ++it) { if (it != entries_.begin()) { @@ -1095,7 +227,7 @@ namespace OpenMS } } - void MzTabIntegerList::fromCellString(const String& s) + void MzTabModificationList::fromCellString(const String& s) { String lower = s; lower.toLower().trim(); @@ -1105,286 +237,287 @@ namespace OpenMS } else { + String ss = s; std::vector fields; - s.split(",", fields); - for (Size i = 0; i != fields.size(); ++i) + + if (!ss.hasSubstring("[")) // no parameters + { + ss.split(",", fields); + for (Size i = 0; i != fields.size(); ++i) + { + MzTabModification ms; + ms.fromCellString(fields[i]); + entries_.push_back(ms); + } + } + else { - MzTabInteger ds; - ds.fromCellString(fields[i]); - entries_.push_back(ds); + // example string: 3|4[a,b,,v]|8[,,"blabla, [bla]",v],1|2|3[a,b,,v]-mod:123 + // we don't want to split at the , inside of [ ] MzTabParameter brackets. + // Additionally, and we don't want to recognise quoted brackets inside the MzTabParameter where they can occur in quoted text (see example string) + bool in_param_bracket = false; + bool in_quotes = false; + + for (Size pos = 0; pos != ss.size(); ++pos) + { + // param_bracket state + if (ss[pos] == '[' && !in_quotes) + { + in_param_bracket = true; + continue; + } + + if (ss[pos] == ']' && !in_quotes) + { + in_param_bracket = false; + continue; + } + + // quote state + if (ss[pos] == '\"') + { + in_quotes = !in_quotes; + continue; + } + + // comma in param bracket + if (ss[pos] == ',' && !in_quotes && in_param_bracket) + { + ss[pos] = ((char)007); // use ASCII bell as temporary separator + continue; + } + } + + // now the split at comma is save + ss.split(",", fields); + + for (Size i = 0; i != fields.size(); ++i) + { + fields[i].substitute(((char)007), ','); // resubstitute comma after split + MzTabModification ms; + ms.fromCellString(fields[i]); + entries_.push_back(ms); + } } } } - std::vector MzTabIntegerList::get() const + std::vector MzTabModificationList::get() const { return entries_; } - void MzTabIntegerList::set(const std::vector& entries) + void MzTabModificationList::set(const std::vector& entries) { entries_ = entries; } - MzTabInteger::MzTabInteger(const int v) + MzTabProteinSectionRow::MzTabProteinSectionRow() { - set(v); + // use "," as list separator because "|" can be used for go terms and protein accessions + go_terms.setSeparator(','); + ambiguity_members.setSeparator(','); } - MzTabInteger::MzTabInteger() - : value_(0), state_(MZTAB_CELLSTATE_NULL) + MzTabMetaData::MzTabMetaData() { + mz_tab_version.fromCellString(String("1.0.0")); } - void MzTabInteger::set(const Int& value) + // static method remapping the target/decoy column from an opt_ to a standardized column + static void remapTargetDecoyPSMAndPeptideSection_(std::vector& opt_entries) { - state_ = MZTAB_CELLSTATE_DEFAULT; - value_ = value; + const String old_header("opt_global_target_decoy"); + const String new_header("opt_global_cv_MS:1002217_decoy_peptide"); // for PRIDE + for (auto &opt_entry : opt_entries) + { + if (opt_entry.first == old_header || opt_entry.first == new_header) + { + opt_entry.first = new_header; + const String ¤t_value = opt_entry.second.get(); + if (current_value == "target" || current_value == "target+decoy") + { + opt_entry.second = MzTabString("0"); + } + else if (current_value == "decoy") + { + opt_entry.second = MzTabString("1"); + } + } + } } - Int MzTabInteger::get() const + // static method remapping the target/decoy column from an opt_ to a standardized column + static void remapTargetDecoyProteinSection_(std::vector& opt_entries) { - if (state_ == MZTAB_CELLSTATE_DEFAULT) - { - return value_; - } - else + const String old_header("opt_global_target_decoy"); + const String new_header("opt_global_cv_PRIDE:0000303_decoy_hit"); // for PRIDE + for (auto &opt_entry : opt_entries) { - throw Exception::ElementNotFound(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("Trying to extract MzTab Integer value from non-integer valued cell. Did you check the cell state before querying the value?")); + if (opt_entry.first == old_header || opt_entry.first == new_header) + { + opt_entry.first = new_header; + const String ¤t_value = opt_entry.second.get(); + if (current_value == "target" || current_value == "target+decoy") + { + opt_entry.second = MzTabString("0"); + } + else if (current_value == "decoy") + { + opt_entry.second = MzTabString("1"); + } + } } } - String MzTabInteger::toCellString() const + const MzTabMetaData& MzTab::getMetaData() const { - switch (state_) - { - case MZTAB_CELLSTATE_NULL: - return "null"; - - case MZTAB_CELLSTATE_NAN: - return "NaN"; - - case MZTAB_CELLSTATE_INF: - return "Inf"; - - case MZTAB_CELLSTATE_DEFAULT: - default: - return String(value_); - } + return meta_data_; } - void MzTabInteger::fromCellString(const String& s) + void MzTab::setMetaData(const MzTabMetaData& md) { - String lower = s; - lower.toLower().trim(); - if (lower == "null") - { - setNull(true); - } - else if (lower == "nan") - { - setNaN(); - } - else if (lower == "inf") - { - setInf(); - } - else // default case - { - set(lower.toInt()); - } + meta_data_ = md; } - bool MzTabInteger::isNull() const + MzTabProteinSectionRows& MzTab::getProteinSectionRows() { - return state_ == MZTAB_CELLSTATE_NULL; + return protein_data_; } - void MzTabInteger::setNull(bool b) + const MzTabProteinSectionRows& MzTab::getProteinSectionRows() const { - state_ = b ? MZTAB_CELLSTATE_NULL : MZTAB_CELLSTATE_DEFAULT; + return protein_data_; } - bool MzTabInteger::isNaN() const + void MzTab::setProteinSectionRows(const MzTabProteinSectionRows& psd) { - return state_ == MZTAB_CELLSTATE_NAN; + protein_data_ = psd; } - void MzTabInteger::setNaN() + MzTabPeptideSectionRows& MzTab::getPeptideSectionRows() { - state_ = MZTAB_CELLSTATE_NAN; + return peptide_data_; } - bool MzTabInteger::isInf() const + const MzTabPeptideSectionRows& MzTab::getPeptideSectionRows() const { - return state_ == MZTAB_CELLSTATE_INF; + return peptide_data_; } - void MzTabInteger::setInf() + void MzTab::setPeptideSectionRows(const MzTabPeptideSectionRows& psd) { - state_ = MZTAB_CELLSTATE_INF; + peptide_data_ = psd; } - bool MzTabDouble::isNull() const + const MzTabPSMSectionRows& MzTab::getPSMSectionRows() const { - return state_ == MZTAB_CELLSTATE_NULL; + return psm_data_; } - void MzTabDouble::setNull(bool b) + MzTabPSMSectionRows& MzTab::getPSMSectionRows() { - state_ = b ? MZTAB_CELLSTATE_NULL : MZTAB_CELLSTATE_DEFAULT; + return psm_data_; } - bool MzTabDouble::isNaN() const + void MzTab::setPSMSectionRows(const MzTabPSMSectionRows& psd) { - return state_ == MZTAB_CELLSTATE_NAN; + psm_data_ = psd; } - void MzTabDouble::setNaN() + const MzTabSmallMoleculeSectionRows& MzTab::getSmallMoleculeSectionRows() const { - state_ = MZTAB_CELLSTATE_NAN; + return small_molecule_data_; } - bool MzTabDouble::isInf() const + void MzTab::setSmallMoleculeSectionRows(const MzTabSmallMoleculeSectionRows& smsd) { - return state_ == MZTAB_CELLSTATE_INF; + small_molecule_data_ = smsd; } - void MzTabDouble::setInf() + const MzTabNucleicAcidSectionRows& MzTab::getNucleicAcidSectionRows() const { - state_ = MZTAB_CELLSTATE_INF; + return nucleic_acid_data_; } - MzTabDouble::MzTabDouble() - : value_(0.0), state_(MZTAB_CELLSTATE_NULL) + void MzTab::setNucleicAcidSectionRows(const MzTabNucleicAcidSectionRows& nasd) { + nucleic_acid_data_ = nasd; } - MzTabDouble::MzTabDouble(const double v) + const MzTabOligonucleotideSectionRows& MzTab::getOligonucleotideSectionRows() const { - set(v); + return oligonucleotide_data_; } - void MzTabDouble::set(const double& value) + void MzTab::setOligonucleotideSectionRows(const MzTabOligonucleotideSectionRows& onsd) { - state_ = MZTAB_CELLSTATE_DEFAULT; - value_ = value; + oligonucleotide_data_ = onsd; } - double MzTabDouble::get() const + const MzTabOSMSectionRows& MzTab::getOSMSectionRows() const { - if (state_ != MZTAB_CELLSTATE_DEFAULT) - { - throw Exception::ElementNotFound(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("Trying to extract MzTab Double value from non-double valued cell. Did you check the cell state before querying the value?")); - } + return osm_data_; + } - return value_; + void MzTab::setOSMSectionRows(const MzTabOSMSectionRows& osd) + { + osm_data_ = osd; } - String MzTabDouble::toCellString() const + void MzTab::setCommentRows(const std::map& com) { - switch (state_) - { - case MZTAB_CELLSTATE_NULL: - return "null"; + comment_rows_ = com; + } - case MZTAB_CELLSTATE_NAN: - return "NaN"; + void MzTab::setEmptyRows(const std::vector& empty) + { + empty_rows_ = empty; + } - case MZTAB_CELLSTATE_INF: - return "Inf"; + const std::vector& MzTab::getEmptyRows() const + { + return empty_rows_; + } - case MZTAB_CELLSTATE_DEFAULT: - default: - return String(value_); - } + const std::map& MzTab::getCommentRows() const + { + return comment_rows_; } - void MzTabDouble::fromCellString(const String& s) + std::vector MzTab::getProteinOptionalColumnNames() const { - String lower = s; - lower.toLower().trim(); - if (lower == "null") - { - setNull(true); - } - else if (lower == "nan") - { - setNaN(); - } - else if (lower == "inf") - { - setInf(); - } - else // default case - { - set(lower.toDouble()); - } + return getOptionalColumnNames_(protein_data_); } - bool MzTabDoubleList::isNull() const + std::vector MzTab::getPeptideOptionalColumnNames() const { - return entries_.empty(); + return getOptionalColumnNames_(peptide_data_); } - void MzTabDoubleList::setNull(bool b) + std::vector MzTab::getPSMOptionalColumnNames() const { - if (b) - { - entries_.clear(); - } + return getOptionalColumnNames_(psm_data_); } - String MzTabDoubleList::toCellString() const + std::vector MzTab::getSmallMoleculeOptionalColumnNames() const { - if (isNull()) - { - return "null"; - } - else - { - String ret; - for (std::vector::const_iterator it = entries_.begin(); it != entries_.end(); ++it) - { - if (it != entries_.begin()) - { - ret += "|"; - } - ret += it->toCellString(); - } - return ret; - } + return getOptionalColumnNames_(small_molecule_data_); } - void MzTabDoubleList::fromCellString(const String& s) + std::vector MzTab::getNucleicAcidOptionalColumnNames() const { - String lower = s; - lower.toLower().trim(); - if (lower == "null") - { - setNull(true); - } - else - { - std::vector fields; - s.split("|", fields); - for (Size i = 0; i != fields.size(); ++i) - { - MzTabDouble ds; - ds.fromCellString(fields[i]); - entries_.push_back(ds); - } - } + return getOptionalColumnNames_(nucleic_acid_data_); } - std::vector MzTabDoubleList::get() const + std::vector MzTab::getOligonucleotideOptionalColumnNames() const { - return entries_; + return getOptionalColumnNames_(oligonucleotide_data_); } - void MzTabDoubleList::set(const std::vector& entries) + std::vector MzTab::getOSMOptionalColumnNames() const { - entries_ = entries; + return getOptionalColumnNames_(osm_data_); } void MzTabPSMSectionRow::addPepEvidenceToRows(const vector& peptide_evidences) @@ -1594,7 +727,6 @@ namespace OpenMS meta_data.variable_mod = generateMzTabStringFromVariableModifications(var_mods); meta_data.fixed_mod = generateMzTabStringFromFixedModifications(fixed_mods); - // mandatory meta values meta_data.mz_tab_type = MzTabString("Quantification"); meta_data.mz_tab_mode = MzTabString("Summary"); @@ -1966,7 +1098,7 @@ namespace OpenMS return row; } - boost::optional MzTab::PSMSectionRowFromPeptideID_( + std::optional MzTab::PSMSectionRowFromPeptideID_( const PeptideIdentification& pid, const vector& prot_ids, map& idrun_2_run_index, @@ -1982,7 +1114,7 @@ namespace OpenMS // skip empty peptide identification objects, if they are not wanted if (pid.getHits().empty() && !export_empty_pep_ids) { - return boost::none; + return std::nullopt; } /////// Information that doesn't require a peptide hit /////// @@ -3262,7 +2394,8 @@ Not sure how to handle these: const Feature& f = feature_map[i]; vector keys; f.getKeys(keys); //TODO: why not just return it? - replaceWhiteSpaces_(keys.begin(), keys.end()); + // replace whitespaces with underscore + std::transform(keys.begin(), keys.end(), keys.begin(), [&](String& s) { return s.substitute(' ', '_'); }); feature_user_value_keys.insert(keys.begin(), keys.end()); @@ -3273,7 +2406,8 @@ Not sure how to handle these: { vector ph_keys; hit.getKeys(ph_keys); - replaceWhiteSpaces_(ph_keys.begin(), ph_keys.end()); + // replace whitespaces with underscore + std::transform(ph_keys.begin(), ph_keys.end(), ph_keys.begin(), [&](String& s) { return s.substitute(' ', '_'); }); peptide_hit_user_value_keys.insert(ph_keys.begin(), ph_keys.end()); } } @@ -3288,7 +2422,9 @@ Not sure how to handle these: { vector keys; c.getKeys(keys); - replaceWhiteSpaces_(keys.begin(), keys.end()); + // replace whitespaces with underscore + std::transform(keys.begin(), keys.end(), keys.begin(), [&](String& s) { return s.substitute(' ', '_'); }); + consensus_feature_user_value_keys.insert(keys.begin(), keys.end()); @@ -3299,7 +2435,8 @@ Not sure how to handle these: { vector ph_keys; hit.getKeys(ph_keys); - replaceWhiteSpaces_(ph_keys.begin(), ph_keys.end()); + // replace whitespaces with underscore + std::transform(ph_keys.begin(), ph_keys.end(), ph_keys.begin(), [&](String& s) { return s.substitute(' ', '_'); }); peptide_hit_user_value_keys.insert(ph_keys.begin(), ph_keys.end()); } } @@ -3322,7 +2459,8 @@ Not sure how to handle these: { vector keys; hit.getKeys(keys); - replaceWhiteSpaces_(keys.begin(), keys.end()); + // replace whitespaces with underscore + std::transform(keys.begin(), keys.end(), keys.begin(), [&](String& s) { return s.substitute(' ', '_'); }); protein_hit_user_value_keys.insert(keys.begin(), keys.end()); } } @@ -3331,14 +2469,16 @@ Not sure how to handle these: { vector pid_keys; pep_id->getKeys(pid_keys); - replaceWhiteSpaces_(pid_keys.begin(), pid_keys.end()); + // replace whitespaces with underscore + std::transform(pid_keys.begin(), pid_keys.end(), pid_keys.begin(), [&](String& s) { return s.substitute(' ', '_'); }); peptide_id_user_value_keys.insert(pid_keys.begin(), pid_keys.end()); for (auto const & hit : pep_id->getHits()) { vector ph_keys; hit.getKeys(ph_keys); - replaceWhiteSpaces_(ph_keys.begin(), ph_keys.end()); + // replace whitespaces with underscore + std::transform(ph_keys.begin(), ph_keys.end(), ph_keys.begin(), [&](String& s) { return s.substitute(' ', '_'); }); peptide_hit_user_value_keys.insert(ph_keys.begin(), ph_keys.end()); } } @@ -3531,8 +2671,16 @@ Not sure how to handle these: protein_hit_user_value_keys_.insert(protein_hit_user_value_keys_tmp.begin(), protein_hit_user_value_keys_tmp.end()); } } + // column headers may not contain spaces - replaceWhiteSpaces_(protein_hit_user_value_keys_); + set protein_hit_user_value_keys_tmp_2; + // replace whitespaces with underscore + std::transform(protein_hit_user_value_keys_.begin(), + protein_hit_user_value_keys_.end(), + std::inserter(protein_hit_user_value_keys_tmp_2, protein_hit_user_value_keys_tmp_2.begin()), + [](String s) { return s.substitute(' ', '_'); }); + + std::swap(protein_hit_user_value_keys_, protein_hit_user_value_keys_tmp_2); // PRT optional columns for (const auto& k : protein_hit_user_value_keys_) prt_optional_column_names_.emplace_back("opt_global_" + k); diff --git a/src/openms/source/FORMAT/MzTabBase.cpp b/src/openms/source/FORMAT/MzTabBase.cpp new file mode 100644 index 00000000000..3489ffdcfa2 --- /dev/null +++ b/src/openms/source/FORMAT/MzTabBase.cpp @@ -0,0 +1,917 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2020. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Oliver Alka $ +// $Authors: Timo Sachsenberg, Oliver Alka $ +// -------------------------------------------------------------------------- + +#include +#include + +#include + +namespace OpenMS +{ + + bool MzTabParameterList::isNull() const + { + return parameters_.empty(); + } + + void MzTabParameterList::setNull(bool b) + { + if (b) { parameters_.clear(); } + } + + String MzTabParameterList::toCellString() const + { + if (isNull()) + { + return "null"; + } + else + { + String ret; + for (std::vector::const_iterator it = parameters_.begin(); it != parameters_.end(); ++it) + { + if (it != parameters_.begin()) + { + ret += "|"; + } + ret += it->toCellString(); + } + return ret; + } + } + + void MzTabParameterList::fromCellString(const String& s) + { + String lower = s; + lower.toLower().trim(); + + if (lower == "null") + { + setNull(true); + } + else + { + std::vector fields; + s.split("|", fields); + for (Size i = 0; i != fields.size(); ++i) + { + MzTabParameter p; + lower = fields[i]; + lower.toLower().trim(); + if (lower == "null") + { + throw Exception::ConversionError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("MzTabParameter in MzTabParameterList must not be null '") + s); + } + p.fromCellString(fields[i]); + parameters_.push_back(p); + } + } + } + + std::vector MzTabParameterList::get() const + { + return parameters_; + } + + void MzTabParameterList::set(const std::vector& parameters) + { + parameters_ = parameters; + } + + MzTabStringList::MzTabStringList() : + sep_('|') + { + } + + void MzTabStringList::setSeparator(char sep) + { + sep_ = sep; + } + + bool MzTabStringList::isNull() const + { + return entries_.empty(); + } + + void MzTabStringList::setNull(bool b) + { + if (b) + { + entries_.clear(); + } + } + + String MzTabStringList::toCellString() const + { + if (isNull()) + { + return "null"; + } + else + { + String ret; + for (std::vector::const_iterator it = entries_.begin(); it != entries_.end(); ++it) + { + if (it != entries_.begin()) + { + ret += sep_; + } + ret += it->toCellString(); + } + return ret; + } + } + + void MzTabStringList::fromCellString(const String& s) + { + String lower = s; + lower.toLower().trim(); + + if (lower == "null") + { + setNull(true); + } + else + { + std::vector fields; + s.split(sep_, fields); + for (Size i = 0; i != fields.size(); ++i) + { + MzTabString ts; + ts.fromCellString(fields[i]); + entries_.push_back(ts); + } + } + } + + std::vector MzTabStringList::get() const + { + return entries_; + } + + void MzTabStringList::set(const std::vector& entries) + { + entries_ = entries; + } + + MzTabSpectraRef::MzTabSpectraRef() : + ms_run_(0) + { + } + + bool MzTabSpectraRef::isNull() const + { + return (ms_run_ < 1) || (spec_ref_.empty()); + } + + void MzTabSpectraRef::setNull(bool b) + { + if (b) + { + ms_run_ = 0; + spec_ref_.clear(); + } + } + + void MzTabSpectraRef::setMSFile(Size index) + { + assert(index >= 1); + if (index >= 1) + { + ms_run_ = index; + } + } + + void MzTabSpectraRef::setSpecRef(const String& spec_ref) + { + assert(!spec_ref.empty()); + if (!spec_ref.empty()) + { + spec_ref_ = spec_ref; + } + else + { + OPENMS_LOG_WARN << "Spectrum reference not set." << std::endl; + } + } + + String MzTabSpectraRef::getSpecRef() const + { + assert(!isNull()); + return spec_ref_; + } + + Size MzTabSpectraRef::getMSFile() const + { + assert(!isNull()); + return ms_run_; + } + + void MzTabSpectraRef::setSpecRefFile(const String& spec_ref) + { + assert(!spec_ref.empty()); + if (!spec_ref.empty()) + { + spec_ref_ = spec_ref; + } + } + + String MzTabSpectraRef::toCellString() const + { + if (isNull()) + { + return "null"; + } + else + { + return String("ms_run[") + String(ms_run_) + "]:" + spec_ref_; + } + } + + void MzTabSpectraRef::fromCellString(const String& s) + { + String lower = s; + lower.toLower().trim(); + if (lower == "null") + { + setNull(true); + } + else + { + std::vector fields; + s.split(":", fields); + if (fields.size() != 2) + { + throw Exception::ConversionError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("Can not convert to MzTabSpectraRef from '") + s + "'"); + } + + spec_ref_ = fields[1]; + ms_run_ = (Size)(fields[0].substitute("ms_run[", "").remove(']').toInt()); + } + } + MzTabParameter::MzTabParameter() + : CV_label_(""), + accession_(""), + name_(""), + value_("") + { + } + + bool MzTabParameter::isNull() const + { + return CV_label_.empty() && accession_.empty() && name_.empty() && value_.empty(); + } + + void MzTabParameter::setNull(bool b) + { + if (b) + { + CV_label_.clear(); + accession_.clear(); + name_.clear(); + value_.clear(); + } + } + + void MzTabParameter::setCVLabel(const String& CV_label) + { + CV_label_ = CV_label; + } + + void MzTabParameter::setAccession(const String& accession) + { + accession_ = accession; + } + + void MzTabParameter::setName(const String& name) + { + name_ = name; + } + + void MzTabParameter::setValue(const String& value) + { + value_ = value; + } + + String MzTabParameter::getCVLabel() const + { + assert(!isNull()); + return CV_label_; + } + + String MzTabParameter::getAccession() const + { + assert(!isNull()); + return accession_; + } + + String MzTabParameter::getName() const + { + assert(!isNull()); + return name_; + } + + String MzTabParameter::getValue() const + { + assert(!isNull()); + return value_; + } + + String MzTabParameter::toCellString() const + { + if (isNull()) + { + return "null"; + } + else + { + String ret = "["; + ret += CV_label_ + ", "; + ret += accession_ + ", "; + + if (name_.hasSubstring(", ")) + { + ret += String("\"") + name_ + String("\""); // quote name if it contains a "," + } + else + { + ret += name_; + } + + ret += String(", "); + + if (value_.hasSubstring(", ")) + { + ret += String("\"") + value_ + String("\""); // quote value if it contains a "," + } + else + { + ret += value_; + } + + ret += "]"; + return ret; + } + } + + void MzTabParameter::fromCellString(const String& s) + { + String lower = s; + lower.toLower().trim(); + if (lower == "null") + { + setNull(true); + } + else + { + StringList fields; + String field; + bool in_quotes = false; + for (String::const_iterator sit = s.begin(); sit != s.end(); ++sit) + { + if (*sit == '\"') // start or end of quotes + { + in_quotes = !in_quotes; + } + else if (*sit == ',') // , encountered + { + if (in_quotes) // case 1: , in quote + { + field += ','; // add , (no split) + } + else // split at , if not in quotes + { + fields.push_back(field.trim()); + field.clear(); + } + } + else if (*sit != '[' && *sit != ']') + { + // skip leading ws + if (*sit == ' ' && field.empty()) + { + continue; + } + field += *sit; + } + } + + fields.push_back(field.trim()); + + if (fields.size() != 4) + { + throw Exception::ConversionError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("Could not convert String '") + s + "' to MzTabParameter"); + } + + CV_label_ = fields[0]; + accession_ = fields[1]; + name_ = fields[2]; + value_ = fields[3]; + } + } + + MzTabString::MzTabString(const String& s) + { + set(s); + } + + void MzTabString::set(const String& value) + { + String lower = value; + lower.toLower().trim(); + if (lower == "null") + { + setNull(true); + } + else + { + value_ = value; + value_.trim(); + } + } + + String MzTabString::get() const + { + return value_; + } + + bool MzTabString::isNull() const + { + return value_.empty(); + } + + void MzTabString::setNull(bool b) + { + if (b) + { + value_.clear(); + } + } + + MzTabString::MzTabString() + : value_() + { + } + + String MzTabString::toCellString() const + { + if (isNull()) + { + return "null"; + } + else + { + return value_; + } + } + + void MzTabString::fromCellString(const String& s) + { + set(s); + } + + MzTabBoolean::MzTabBoolean(bool v) + { + set((int)v); + } + + MzTabBoolean::MzTabBoolean() + : value_(-1) + { + } + + void MzTabBoolean::set(const bool& value) + { + value_ = (int)value; + } + + Int MzTabBoolean::get() const + { + return value_; + } + + bool MzTabBoolean::isNull() const + { + return value_ < 0; + } + + void MzTabBoolean::setNull(bool b) + { + if (!b) + value_ = -1; + else + value_ = 0; + } + + String MzTabBoolean::toCellString() const + { + if (isNull()) + { + return "null"; + } + else + { + if (value_) + { + return "1"; + } + else + { + return "0"; + } + } + } + + void MzTabBoolean::fromCellString(const String& s) + { + String lower = s; + lower.toLower().trim(); + if (lower == "null") + { + setNull(true); + } + else + { + if (s == "0") + { + set(false); + } + else if (s == "1") + { + set(true); + } + else + { + throw Exception::ConversionError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("Could not convert String '") + s + "' to MzTabBoolean"); + } + } + } + + bool MzTabIntegerList::isNull() const + { + return entries_.empty(); + } + + void MzTabIntegerList::setNull(bool b) + { + if (b) + { + entries_.clear(); + } + } + + String MzTabIntegerList::toCellString() const + { + if (isNull()) + { + return "null"; + } + else + { + String ret; + for (std::vector::const_iterator it = entries_.begin(); it != entries_.end(); ++it) + { + if (it != entries_.begin()) + { + ret += ","; + } + ret += it->toCellString(); + } + return ret; + } + } + + void MzTabIntegerList::fromCellString(const String& s) + { + String lower = s; + lower.toLower().trim(); + if (lower == "null") + { + setNull(true); + } + else + { + std::vector fields; + s.split(",", fields); + for (Size i = 0; i != fields.size(); ++i) + { + MzTabInteger ds; + ds.fromCellString(fields[i]); + entries_.push_back(ds); + } + } + } + + std::vector MzTabIntegerList::get() const + { + return entries_; + } + + void MzTabIntegerList::set(const std::vector& entries) + { + entries_ = entries; + } + + MzTabInteger::MzTabInteger(const int v) + { + set(v); + } + + MzTabInteger::MzTabInteger() + : value_(0), state_(MZTAB_CELLSTATE_NULL) + { + } + + void MzTabInteger::set(const Int& value) + { + state_ = MZTAB_CELLSTATE_DEFAULT; + value_ = value; + } + + Int MzTabInteger::get() const + { + if (state_ == MZTAB_CELLSTATE_DEFAULT) + { + return value_; + } + else + { + throw Exception::ElementNotFound(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("Trying to extract MzTab Integer value from non-integer valued cell. Did you check the cell state before querying the value?")); + } + } + + String MzTabInteger::toCellString() const + { + switch (state_) + { + case MZTAB_CELLSTATE_NULL: + return "null"; + + case MZTAB_CELLSTATE_NAN: + return "NaN"; + + case MZTAB_CELLSTATE_INF: + return "Inf"; + + case MZTAB_CELLSTATE_DEFAULT: + default: + return String(value_); + } + } + + void MzTabInteger::fromCellString(const String& s) + { + String lower = s; + lower.toLower().trim(); + if (lower == "null") + { + setNull(true); + } + else if (lower == "nan") + { + setNaN(); + } + else if (lower == "inf") + { + setInf(); + } + else // default case + { + set(lower.toInt()); + } + } + + bool MzTabInteger::isNull() const + { + return state_ == MZTAB_CELLSTATE_NULL; + } + + void MzTabInteger::setNull(bool b) + { + state_ = b ? MZTAB_CELLSTATE_NULL : MZTAB_CELLSTATE_DEFAULT; + } + + bool MzTabInteger::isNaN() const + { + return state_ == MZTAB_CELLSTATE_NAN; + } + + void MzTabInteger::setNaN() + { + state_ = MZTAB_CELLSTATE_NAN; + } + + bool MzTabInteger::isInf() const + { + return state_ == MZTAB_CELLSTATE_INF; + } + + void MzTabInteger::setInf() + { + state_ = MZTAB_CELLSTATE_INF; + } + + bool MzTabDouble::isNull() const + { + return state_ == MZTAB_CELLSTATE_NULL; + } + + void MzTabDouble::setNull(bool b) + { + state_ = b ? MZTAB_CELLSTATE_NULL : MZTAB_CELLSTATE_DEFAULT; + } + + bool MzTabDouble::isNaN() const + { + return state_ == MZTAB_CELLSTATE_NAN; + } + + void MzTabDouble::setNaN() + { + state_ = MZTAB_CELLSTATE_NAN; + } + + bool MzTabDouble::isInf() const + { + return state_ == MZTAB_CELLSTATE_INF; + } + + void MzTabDouble::setInf() + { + state_ = MZTAB_CELLSTATE_INF; + } + + MzTabDouble::MzTabDouble() + : value_(0.0), state_(MZTAB_CELLSTATE_NULL) + { + } + + MzTabDouble::MzTabDouble(const double v) + { + set(v); + } + + void MzTabDouble::set(const double& value) + { + state_ = MZTAB_CELLSTATE_DEFAULT; + value_ = value; + } + + double MzTabDouble::get() const + { + if (state_ != MZTAB_CELLSTATE_DEFAULT) + { + throw Exception::ElementNotFound(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("Trying to extract MzTab Double value from non-double valued cell. Did you check the cell state before querying the value?")); + } + + return value_; + } + + String MzTabDouble::toCellString() const + { + switch (state_) + { + case MZTAB_CELLSTATE_NULL: + return "null"; + + case MZTAB_CELLSTATE_NAN: + return "NaN"; + + case MZTAB_CELLSTATE_INF: + return "Inf"; + + case MZTAB_CELLSTATE_DEFAULT: + default: + return String(value_); + } + } + + void MzTabDouble::fromCellString(const String& s) + { + String lower = s; + lower.toLower().trim(); + if (lower == "null") + { + setNull(true); + } + else if (lower == "nan") + { + setNaN(); + } + else if (lower == "inf") + { + setInf(); + } + else // default case + { + set(lower.toDouble()); + } + } + + bool MzTabDouble::operator<(const MzTabDouble& rhs) const + { + return this->value_ < rhs.value_; + } + + bool MzTabDouble::operator==(const MzTabDouble& rhs) const + { + return this->value_ == rhs.value_; + } + + bool MzTabDoubleList::isNull() const + { + return entries_.empty(); + } + + void MzTabDoubleList::setNull(bool b) + { + if (b) + { + entries_.clear(); + } + } + + String MzTabDoubleList::toCellString() const + { + if (isNull()) + { + return "null"; + } + else + { + String ret; + for (std::vector::const_iterator it = entries_.begin(); it != entries_.end(); ++it) + { + if (it != entries_.begin()) + { + ret += "|"; + } + ret += it->toCellString(); + } + return ret; + } + } + + void MzTabDoubleList::fromCellString(const String& s) + { + String lower = s; + lower.toLower().trim(); + if (lower == "null") + { + setNull(true); + } + else + { + std::vector fields; + s.split("|", fields); + for (Size i = 0; i != fields.size(); ++i) + { + MzTabDouble ds; + ds.fromCellString(fields[i]); + entries_.push_back(ds); + } + } + } + + std::vector MzTabDoubleList::get() const + { + return entries_; + } + + void MzTabDoubleList::set(const std::vector& entries) + { + entries_ = entries; + } + +} // namespace OpenMS \ No newline at end of file diff --git a/src/openms/source/FORMAT/MzTabFile.cpp b/src/openms/source/FORMAT/MzTabFile.cpp index 64acd466693..db88f579004 100644 --- a/src/openms/source/FORMAT/MzTabFile.cpp +++ b/src/openms/source/FORMAT/MzTabFile.cpp @@ -2918,9 +2918,11 @@ namespace OpenMS } vector pep_ids_ptr; + pep_ids_ptr.reserve(peptide_identifications.size()); for (const PeptideIdentification& pi : peptide_identifications) { pep_ids_ptr.push_back(&pi); } vector prot_ids_ptr; + prot_ids_ptr.reserve(protein_identifications.size()); for (const ProteinIdentification& pi : protein_identifications) { prot_ids_ptr.push_back(&pi); } ofstream tab_file; diff --git a/src/openms/source/FORMAT/MzTabM.cpp b/src/openms/source/FORMAT/MzTabM.cpp new file mode 100644 index 00000000000..2146a2a16c0 --- /dev/null +++ b/src/openms/source/FORMAT/MzTabM.cpp @@ -0,0 +1,755 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2020. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Oliver Alka $ +// $Authors: Oliver Alka $ +// -------------------------------------------------------------------------- + +#include +#include +#include +#include + +namespace OpenMS +{ + + MzTabMMetaData::MzTabMMetaData() + { + mz_tab_version.fromCellString(String("2.0.0-M")); + } + + const MzTabMMetaData& MzTabM::getMetaData() const + { + return m_meta_data_; + } + + void MzTabM::setMetaData(const MzTabMMetaData& md) + { + m_meta_data_ = md; + } + + const MzTabMSmallMoleculeSectionRows& MzTabM::getMSmallMoleculeSectionRows() const + { + return m_small_molecule_data_; + } + + void MzTabM::setMSmallMoleculeSectionRows(const MzTabMSmallMoleculeSectionRows &m_smlsd) + { + m_small_molecule_data_ = m_smlsd; + } + + const MzTabMSmallMoleculeFeatureSectionRows& MzTabM::getMSmallMoleculeFeatureSectionRows() const + { + return m_small_molecule_feature_data_; + } + + void MzTabM::setMSmallMoleculeFeatureSectionRows(const MzTabMSmallMoleculeFeatureSectionRows &m_smfsd) + { + m_small_molecule_feature_data_ = m_smfsd; + } + + const MzTabMSmallMoleculeEvidenceSectionRows& MzTabM::getMSmallMoleculeEvidenceSectionRows() const + { + return m_small_molecule_evidence_data_; + } + + void MzTabM::setMSmallMoleculeEvidenceSectionRows(const MzTabMSmallMoleculeEvidenceSectionRows &m_smesd) + { + m_small_molecule_evidence_data_ = m_smesd; + } + + std::vector MzTabM::getMSmallMoleculeOptionalColumnNames() const + { + return getOptionalColumnNames_(m_small_molecule_data_); + } + + std::vector MzTabM::getMSmallMoleculeFeatureOptionalColumnNames() const + { + return getOptionalColumnNames_(m_small_molecule_feature_data_); + } + + std::vector MzTabM::getMSmallMoleculeEvidenceOptionalColumnNames() const + { + return getOptionalColumnNames_(m_small_molecule_evidence_data_); + } + + void MzTabM::addMetaInfoToOptionalColumns(const std::set& keys, + std::vector& opt, + const String& id, + const MetaInfoInterface& meta) + { + for (String const & key : keys) + { + MzTabOptionalColumnEntry opt_entry; + // column names must not contain spaces + opt_entry.first = "opt_" + id + "_" + String(key).substitute(' ','_'); + if (meta.metaValueExists(key)) + { + opt_entry.second = MzTabString(meta.getMetaValue(key).toString()); + } // otherwise it is default ("null") + opt.push_back(opt_entry); + } + } + + void MzTabM::getFeatureMapMetaValues_(const FeatureMap& feature_map, + std::set& feature_user_value_keys, + std::set& observationmatch_user_value_keys, + std::set& compound_user_value_keys) + { + for (Size i = 0; i < feature_map.size(); ++i) + { + // feature section optional columns + const Feature& f = feature_map[i]; + std::vector keys; + f.getKeys(keys); + // replace whitespaces with underscore + std::transform(keys.begin(), keys.end(), keys.begin(), [&](String& s) { return s.substitute(' ', '_'); }); + feature_user_value_keys.insert(keys.begin(), keys.end()); + + auto match_refs = f.getIDMatches(); + for (const IdentificationDataInternal::ObservationMatchRef& match_ref : match_refs) + { + // feature section optional columns + std::vector obsm_keys; + match_ref->getKeys(obsm_keys); + // replace whitespaces with underscore + std::transform(obsm_keys.begin(), obsm_keys.end(), obsm_keys.begin(), [&](String& s) { return s.substitute(' ', '_'); }); + + // remove "IDConverter_trace" metadata from the ObservationMatch + // introduced by the IdentificationDataConverter + // since it leads to convolution of IDConverter_trace_* optional columns + for (const auto& key : obsm_keys) + { + if (!key.hasSubstring("IDConverter_trace")) + { + observationmatch_user_value_keys.insert(key); + } + } + + // evidence section optional columns + IdentificationData::IdentifiedMolecule molecule = match_ref->identified_molecule_var; + IdentificationData::IdentifiedCompoundRef compound_ref = molecule.getIdentifiedCompoundRef(); + std::vector compound_keys; + compound_ref->getKeys(compound_keys); + // replace whitespaces with underscore + std::transform(compound_keys.begin(), compound_keys.end(), compound_keys.begin(), [&](String& s) { return s.substitute(' ', '_'); }); + compound_user_value_keys.insert(compound_keys.begin(), compound_keys.end()); + } + } + } + + // FeatureMap with associated identification data + MzTabM MzTabM::exportFeatureMapToMzTabM(const FeatureMap& feature_map) + { + MzTabM mztabm; + MzTabMMetaData m_meta_data; + + // extract identification data from FeatureMap + const IdentificationData& id_data = feature_map.getIdentificationData(); + + OPENMS_PRECONDITION(!id_data.empty(), + "The FeatureMap has to have a non empty IdentificationData object attached!") + + // extract MetaValues from FeatureMap + std::set feature_user_value_keys; + std::set observationmatch_user_value_keys; + std::set compound_user_value_keys; + MzTabM::getFeatureMapMetaValues_(feature_map, feature_user_value_keys, observationmatch_user_value_keys, compound_user_value_keys); + + // #################################################### + // MzTabMetaData + // #################################################### + + std::regex reg_backslash{R"(\\)"}; + UInt64 local_id = feature_map.getUniqueId(); + // mz_tab_id (mandatory) + m_meta_data.mz_tab_id.set("local_id: " + String(local_id)); + + // title (not mandatory) + // description (not mandatory) + // sample_processing (not mandatory) + // instrument-name (not mandatory) + // instrument-source (not mandatory) + // instrument-analyzer (not mandatory) + // instrument-detector (not mandatory) + // meta_software.setting[0] (not mandatory) + + MzTabSoftwareMetaData meta_software; + ControlledVocabulary cv; + MzTabString reliability = MzTabString("2"); // initialize at 2 (should be valid for all tools - putatively annotated compound) + cv.loadFromOBO("PSI-MS", File::find("/CV/psi-ms.obo")); + for (const auto& software : id_data.getProcessingSoftwares()) + { + if (software.metaValueExists("reliability")) + { + reliability = MzTabString(std::string(software.getMetaValue("reliability"))); + } + MzTabParameter p_software; + ControlledVocabulary::CVTerm cvterm; + // add TOPP - all OpenMS Tools have TOPP attached in the PSI-OBO + std::string topp_tool = "TOPP " + software.getName(); + if (cv.hasTermWithName(topp_tool)) // asses CV-term based on tool name + { + cvterm = cv.getTermByName(topp_tool); + } + else + { + // use "analysis software" instead + OPENMS_LOG_WARN << "The tool: " << topp_tool << " is currently not registered in the PSI-OBO.\n"; + OPENMS_LOG_WARN << "'The general term 'analysis software' will be used instead.\n"; + OPENMS_LOG_WARN << "Please register the tool as soon as possible in the psi-ms.obo (https://github.com/HUPO-PSI/psi-ms-CV)" << std::endl; + cvterm = cv.getTermByName("analysis software"); + } + p_software.fromCellString("[MS, " + cvterm.id + ", " + cvterm.name + ", " + software.getVersion() + "]"); + meta_software.software = p_software; + m_meta_data.software[m_meta_data.software.size() + 1] = meta_software; // starts at 1 + } + + // publication (not mandatory) + // contact name (not mandatory) + // contact aff (not mandatory) + // contact mail (not mandatory) + // uri (not mandatory) + // ext. study uri (not mandatory) + + // quantification_method (mandatory) + MzTabParameter quantification_method; + quantification_method.setNull(true); + std::map> action_software_name; + for (const auto& step : id_data.getProcessingSteps()) + { + IdentificationDataInternal::ProcessingSoftwareRef s_ref = step.software_ref; + for (const auto& action : step.actions) + { + action_software_name[action].emplace_back(s_ref->getName()); + } + }; + + // set quantification method based on OpenMS Tool(s) + // current only FeatureFinderMetabo is used + for (const auto& quantification_software : action_software_name[DataProcessing::QUANTITATION]) + { + if (quantification_software == "FeatureFinderMetabo") + { + ControlledVocabulary::CVTerm cvterm; + cvterm = cv.getTermByName("LC-MS label-free quantitation analysis"); + quantification_method.fromCellString("[MS, " + cvterm.id + ", " + cvterm.name + ", ]"); + } + } + if (quantification_method.isNull()) + { + OPENMS_LOG_WARN << "If the quantification of your computational analysis is not 'LC-MS label-free quantitation analysis'.\n" + << "Please contact a OpenMS Developer to add the appropriate tool and description to MzTab-M." << std::endl; + } + m_meta_data.quantification_method = quantification_method; + + // sample[1-n] (not mandatory) + // sample[1-n]-species[1-n] (not mandatory) + // sample[1-n]-tissue[1-n] (not mandatory) + // sample[1-n]-cell_type[1-n] (not mandatory) + // sample[1-n]-disease[1-n] (not mandatory) + // sample[1-n]-description (not mandatory) + // sample[1-n]-custom[1-n] (not mandatory) + + MzTabMMSRunMetaData meta_ms_run; + std::string input_file_name; + auto input_files = id_data.getInputFiles(); + for (const auto& input_file : input_files) // should only be one in featureXML + { + input_file_name = input_file.name; + input_file_name = String(std::regex_replace(input_file_name, reg_backslash, "/")); + if (!String(input_file_name).hasPrefix("file://")) input_file_name = "file://" + input_file_name; + meta_ms_run.location.set(input_file_name); + } + // meta_ms_run.location.set(input_files[0].name); + + // ms_run[1-n]-instrument_ref (not mandatory) + // ms_run[1-n]-format (not mandatory) + // ms_run[1-n]-id_format (not mandatory) + // ms_run[1-n]-fragmentation_method[1-n] (not mandatory) + + // ms_run[1-n]-scan_polarity[1-n] (mandatory) + // assess scan polarity based on the first adduct + auto adducts = id_data.getAdducts(); + if (!adducts.empty()) + { + std::string_view first_adduct; + for (const auto& adduct : adducts) + { + first_adduct = adduct.getName(); + break; + } + if (first_adduct.at(first_adduct.size() - 1) == '+') + { + ControlledVocabulary::CVTerm cvterm; + cvterm = cv.getTermByName("positive scan"); + MzTabParameter spol; + spol.fromCellString("[MS, " + cvterm.id + ", " + cvterm.name + ", ]"); + meta_ms_run.scan_polarity[1] = spol; + } + else + { + ControlledVocabulary::CVTerm cvterm; + cvterm = cv.getTermByName("negative scan"); + MzTabParameter spol; + spol.fromCellString("[MS, " + cvterm.id + ", " + cvterm.name + ", ]"); + meta_ms_run.scan_polarity[1] = spol; + } + } + else + { + // if no adduct information is available warn, but assume positive mode. + OPENMS_LOG_WARN << "No adduct information available: scan polarity will be assumed to be positive." << std::endl; + ControlledVocabulary::CVTerm cvterm; + cvterm = cv.getTermByName("positive scan"); + MzTabParameter spol; + spol.fromCellString("[MS, " + cvterm.id + ", " + cvterm.name + ", ]"); + meta_ms_run.scan_polarity[1] = spol; + } + + // ms_run[1-n]-hash (not mandatory) + // ms_run[1-n]-hash_method (not mandatory) + + MzTabMAssayMetaData meta_ms_assay; + // assay[1-n] (mandatory) + meta_ms_assay.name = MzTabString("assay_" + File::basename(input_file_name).prefix('.').trim()); + // assay[1-n]-custom[1-n] (not mandatory) + // assay[1-n]-external_uri (not mandatory) + // assay[1-n]-sample_ref (not mandatory) + + // assay[1-n]-ms_run_ref (mandatory) + MzTabInteger ms_run_ref(1); + meta_ms_assay.ms_run_ref = ms_run_ref; + + MzTabMStudyVariableMetaData meta_ms_study_variable; + // study_variable[1-n] (mandatory) + meta_ms_study_variable.name = MzTabString("study_variable_" + File::basename(input_file_name).prefix('.').trim()); + + // study_variable[1-n]-assay_refs (mandatory) + std::vector assay_refs; + assay_refs.emplace_back(1); + meta_ms_study_variable.assay_refs = assay_refs; + + // study_variable[1-n]-average_function (not mandatory) + // study_variable[1-n]-variation_function (not mandatory) + + // study_variable[1-n]-description (mandatory) + meta_ms_study_variable.description = MzTabString("study_variable_" + File::basename(input_file_name).prefix('.').trim()); + + // study_variable[1-n]-factors (not mandatory) + // custom[1-n] (not mandatory) + + MzTabCVMetaData meta_cv; + // cv[1-n]-label (mandatory) + meta_cv.label = MzTabString(cv.name()); + // cv[1-n]-full_name (mandatory) + meta_cv.full_name = MzTabString(cv.label()); + // cv[1-n]-version (mandatory) + meta_cv.version = MzTabString(cv.version()); + // cv[1-n]-uri (mandatory) + meta_cv.url = MzTabString(cv.url()); + m_meta_data.cv[1] = meta_cv; + + // these have to be added to the identification data + // in the actual tool writes the mztam-m + MzTabMDatabaseMetaData meta_db; + for (const auto& db : id_data.getDBSearchParams()) + { + if (db.database == "") // no database + { + meta_db.prefix.setNull(true); + meta_db.version = MzTabString("Unknown"); + meta_db.database.fromCellString("[,, no database , null]"); + } + else if (db.database.find("custom") != std::string::npos) // custom database + { + meta_db.prefix.setNull(true); + meta_db.version = MzTabString(db.database_version); + meta_db.database.fromCellString("[,, " + db.database + ", ]"); + } + else // assumption that prefix is the same as database name + { + meta_db.prefix = MzTabString(db.database); + meta_db.version = MzTabString(db.database_version); + meta_db.database.fromCellString("[,," + db.database + ", ]"); + } + if (db.metaValueExists("database_location")) + { + std::vector db_loc = ListUtils::create(db.getMetaValue("database_location"), '|'); + for (auto& loc : db_loc) + { + loc = String(std::regex_replace(loc, reg_backslash, "/")); + if (!String(loc).hasPrefix("file://")) loc = "file://" + loc; + } + String db_location_uri = ListUtils::concatenate(db_loc, '|'); + meta_db.uri = MzTabString(db_location_uri); + } + else + { + meta_db.uri.setNull(true); + } + m_meta_data.database[m_meta_data.database.size() + 1] = meta_db; // starts at 1 + } + + // derivatization_agent[1-n] (not mandatory) + MzTabParameter quantification_unit; + quantification_unit.setNull(true); + for (const auto& software : id_data.getProcessingSoftwares()) + { + if (software.getName() == "FeatureFinderMetabo") + { + if (software.metaValueExists("parameter: algorithm:mtd:quant_method")) + { + String quant_method = software.getMetaValue("parameter: algorithm:mtd:quant_method"); + if (quant_method == "area") + { + ControlledVocabulary::CVTerm cvterm; + cvterm = cv.getTermByName("MS1 feature area"); + quantification_unit.fromCellString("[MS, " + cvterm.id + ", " + cvterm.name + ", ]"); + } + else if (quant_method == "median") + { + ControlledVocabulary::CVTerm cvterm; + cvterm = cv.getTermByName("median"); + quantification_unit.fromCellString("[MS, " + cvterm.id + ", " + cvterm.name + ", ]"); + } + else // max_height + { + ControlledVocabulary::CVTerm cvterm; + cvterm = cv.getTermByName("MS1 feature maximum intensity"); + quantification_unit.fromCellString("[MS, " + cvterm.id + ", " + cvterm.name + ", ]"); + } + } + } + } + if (quantification_unit.isNull()) + { + OPENMS_LOG_WARN << "It was not possible to assess the quantification_unit - MS1 feature area - will be used as default." << std::endl; + ControlledVocabulary::CVTerm cvterm; + cvterm = cv.getTermByName("MS1 feature area"); + quantification_unit.fromCellString("[MS, " + cvterm.id + ", " + cvterm.name + ", ]"); + } + // small_molecule-quantification_unit (mandatory) + // small_molecule_feature-quantification_unit (mandatory) + m_meta_data.small_molecule_quantification_unit = quantification_unit; + m_meta_data.small_molecule_feature_quantification_unit = quantification_unit; + + // small_molecule-identification_reliability (mandatory) + MzTabParameter rel; + ControlledVocabulary::CVTerm cvterm_rel = cv.getTermByName("compound identification confidence level"); + rel.fromCellString("[MS, " + cvterm_rel.id + ", " + cvterm_rel.name + ", ]"); + m_meta_data.small_molecule_identification_reliability = rel; + + int software_score_counter = 0; + std::vector identification_tools = action_software_name[DataProcessing::IDENTIFICATION]; + std::vector id_score_refs; + for (const IdentificationDataInternal::ProcessingSoftware& software : id_data.getProcessingSoftwares()) + { + // check if in "Identification Vector" + if (std::find(identification_tools.begin(), identification_tools.end(), software.getName()) != identification_tools.end()) + { + for (const IdentificationDataInternal::ScoreTypeRef& score_type_ref : software.assigned_scores) + { + ++software_score_counter; + m_meta_data.id_confidence_measure[software_score_counter].fromCellString("[,, " + score_type_ref->cv_term.getName() + ", ]"); + id_score_refs.emplace_back(score_type_ref); + } + } + } + // colunit-small_molecule (not mandatory) + // colunit-small_molecule_feature (not mandatory) + // colunit-small_molecule_evidence (not mandatory) + + m_meta_data.ms_run[1] = meta_ms_run; + m_meta_data.assay[1] = meta_ms_assay; + m_meta_data.study_variable[1] = meta_ms_study_variable; + + // iterate over features and construct the feature, summary and evidence section + MzTabMSmallMoleculeSectionRows smls; + MzTabMSmallMoleculeFeatureSectionRows smfs; + MzTabMSmallMoleculeEvidenceSectionRows smes; + + // set identification method based on OpenMS Tool(s) + // usually only one identification_method in one featureXML + MzTabParameter identification_method; + identification_method.setNull(true); + MzTabParameter ms_level; + ms_level.setNull(true); + for (const auto& identification_software : action_software_name[DataProcessing::IDENTIFICATION]) + { + int id_mslevel = 0; + if (identification_software == "AccurateMassSearch") + { + ControlledVocabulary::CVTerm cvterm; + cvterm = cv.getTermByName("accurate mass"); + identification_method.fromCellString("[MS, " + cvterm.id + ", " + cvterm.name + ", ]"); + id_mslevel = 1; + } + if (identification_software == "SiriusAdapter") + { + ControlledVocabulary::CVTerm cvterm; + cvterm = cv.getTermByName("de novo search"); + identification_method.fromCellString("[MS, " + cvterm.id + ", " + cvterm.name + ", ]"); + id_mslevel = 2; + } + if (identification_software == "MetaboliteSpectralMatcher") + { + ControlledVocabulary::CVTerm cvterm; + cvterm = cv.getTermByName("TOPP SpecLibSearcher"); + identification_method.fromCellString("[MS, " + cvterm.id + ", " + cvterm.name + ", ]"); + id_mslevel = 2; + } + ControlledVocabulary::CVTerm cvterm_level = cv.getTermByName("ms level"); + ms_level.fromCellString("[MS, " + cvterm_level.id + ", " + cvterm_level.name + ", " + String(id_mslevel) + "]"); + } + if (identification_method.isNull()) + { + OPENMS_LOG_WARN << "The identification method of your computational analysis can not be assessed'.\n" + << "Please check if the ProcessingActions are set correctly!" << std::endl; + } + + // #################################################### + // + // #################################################### + + int feature_section_entry_counter = 1; + int evidence_section_entry_counter = 1; + for (auto& f : feature_map) // iterate over features and fill all sections + { + auto match_refs = f.getIDMatches(); + if (match_refs.empty()) // features without identification + { + MzTabMSmallMoleculeFeatureSectionRow smf; + smf.smf_identifier = MzTabString(feature_section_entry_counter); + std::vector corresponding_evidences; + smf.sme_id_refs.setNull(true); + if (f.metaValueExists("adducts")) + { + StringList adducts = f.getMetaValue("adducts"); + smf.adduct = MzTabString(ListUtils::concatenate(adducts,'|')); + } + else + { + smf.adduct.setNull(true); + } + smf.sme_id_ref_ambiguity_code.setNull(true); + smf.isotopomer.setNull(true); + smf.exp_mass_to_charge = MzTabDouble(f.getMZ()); + smf.charge = MzTabInteger(f.getCharge()); + smf.retention_time = MzTabDouble(f.getRT()); + smf.rt_start.setNull(true); + smf.rt_end.setNull(true); + smf.small_molecule_feature_abundance_assay[1] = MzTabDouble(f.getIntensity()); // only one map in featureXML + + addMetaInfoToOptionalColumns(feature_user_value_keys, smf.opt_, String("global"), f); + + smfs.emplace_back(smf); + ++feature_section_entry_counter; + } + else + { + // feature row based on number of individual identifications and adducts! + std::map> evidence_id_ref_per_adduct; + + // TODO: Remove copy operation (operator< IDData Ref) + std::set sorted_match_refs(match_refs.begin(), match_refs.end()); + + for (const auto& ref : sorted_match_refs) // iterate over all identifications of a feature + { + // evidence section + MzTabMSmallMoleculeEvidenceSectionRow sme; + + // IdentifiedCompound + IdentificationData::IdentifiedMolecule molecule = ref->identified_molecule_var; + IdentificationData::IdentifiedCompoundRef compound_ref = molecule.getIdentifiedCompoundRef(); + + sme.sme_identifier = MzTabString(evidence_section_entry_counter); + sme.evidence_input_id = MzTabString("mass=" + String(f.getMZ()) + ",rt=" + String(f.getRT())); + sme.database_identifier = MzTabString(compound_ref->identifier); + sme.chemical_formula = MzTabString(compound_ref->formula.toString()); + sme.smiles = MzTabString(compound_ref->smile); + sme.inchi = MzTabString(compound_ref->inchi); + sme.chemical_name = MzTabString(compound_ref->name); + sme.uri.setNull(true); + sme.derivatized_form.setNull(true); + String adduct = getAdductString_(ref); + sme.adduct = MzTabString(adduct); + sme.exp_mass_to_charge = MzTabDouble(f.getMZ()); + sme.charge = MzTabInteger(f.getCharge()); + sme.calc_mass_to_charge = MzTabDouble(compound_ref->formula.getMonoWeight()); + // For e.g. SIRIUS using multiple MS2 spectra for one identification + // use the with pipe concatenated native_ids as spectra ref + // this should also be available match_ref + MzTabSpectraRef sp_ref; + sp_ref.setMSFile(1); + sp_ref.setSpecRef(ref->observation_ref->data_id); + sme.spectra_ref = sp_ref; + sme.identification_method = identification_method; // based on tool used for identification (CV-Term) + sme.ms_level = ms_level; + int score_counter = 0; + for (const auto& id_score_ref : id_score_refs) // vector of references based on the ProcessingStep + { + ++score_counter; //starts at 1 anyway + sme.id_confidence_measure[score_counter] = MzTabDouble(ref->getScore(id_score_ref).first); + } + sme.rank = MzTabInteger(1); // defaults to 1 if no rank system is used + + addMetaInfoToOptionalColumns(observationmatch_user_value_keys, sme.opt_, String("global"), *ref); + addMetaInfoToOptionalColumns(compound_user_value_keys, sme.opt_, String("global"), *compound_ref); + + evidence_id_ref_per_adduct[adduct].emplace_back(evidence_section_entry_counter); + evidence_section_entry_counter += 1; + smes.emplace_back(sme); + } + + // feature section + // one feature entry per adduct - iterate evidences_per_adduct + for (const auto& epa : evidence_id_ref_per_adduct) + { + MzTabMSmallMoleculeFeatureSectionRow smf; + smf.smf_identifier = MzTabString(feature_section_entry_counter); + std::vector corresponding_evidences; + for (const auto& evidence : epa.second) + { + corresponding_evidences.emplace_back(evidence); + } + smf.sme_id_refs.set(corresponding_evidences); + smf.adduct = MzTabString(epa.first); + if (epa.second.size() <= 1) + { + smf.sme_id_ref_ambiguity_code.setNull(true); + } + else + { + smf.sme_id_ref_ambiguity_code = MzTabInteger(1); + } + smf.isotopomer.setNull(true); + smf.exp_mass_to_charge = MzTabDouble(f.getMZ()); + smf.charge = MzTabInteger(f.getCharge()); + smf.retention_time = MzTabDouble(f.getRT()); + smf.rt_start.setNull(true); + smf.rt_end.setNull(true); + smf.small_molecule_feature_abundance_assay[1] = MzTabDouble(f.getIntensity()); // only one map in featureXML + + addMetaInfoToOptionalColumns(feature_user_value_keys, smf.opt_, String("global"), f); + + smfs.emplace_back(smf); + ++feature_section_entry_counter; + } + } + } + + // based summary on available features and evidences + // OpenMS does currently not aggregate the information of two features with corresponding adducts + // e.g. F1 mz = 181.0712 rt = 10, [M+H]1+; F2 mz = 203.0532, rt = 10 [M+Na]1+ (neutral mass for both: 180.0634) + // features will be represented individually here. + + for (const auto& smf : smfs) + { + MzTabMSmallMoleculeSectionRow sml; + + sml.sml_identifier = smf.smf_identifier; + sml.smf_id_refs.set({smf.smf_identifier}); + std::vector database_identifier; + std::vector chemical_formula; + std::vector smiles; + std::vector inchi; + std::vector chemical_name; + std::vector uri; + std::vector theoretical_neutral_mass; + std::vector adducts; + for (const MzTabString & evidence : smf.sme_id_refs.get()) + { + const auto& current_row_it = std::find_if(smes.begin(), smes.end(), [&evidence] (const MzTabMSmallMoleculeEvidenceSectionRow& sme) { return sme.sme_identifier.get() == evidence.get(); }); + database_identifier.emplace_back(current_row_it->database_identifier); + chemical_formula.emplace_back(current_row_it->chemical_formula); + smiles.emplace_back(current_row_it->smiles); + inchi.emplace_back(current_row_it->inchi); + chemical_name.emplace_back(current_row_it->chemical_name); + uri.emplace_back(current_row_it->uri); + MzTabString cm = current_row_it->chemical_formula; + if (cm.toCellString() != "" && cm.toCellString() != "null" ) + { + theoretical_neutral_mass.emplace_back(EmpiricalFormula(cm.toCellString()).getMonoWeight()); + } + else + { + MzTabDouble dnull; + dnull.setNull(true); + theoretical_neutral_mass.emplace_back(dnull); + } + adducts.emplace_back(current_row_it->adduct); + } + sml.database_identifier.set(database_identifier); + sml.chemical_formula.set(chemical_formula); + sml.smiles.set(smiles); + sml.inchi.set(inchi); + sml.chemical_name.set(chemical_name); + sml.uri.set(uri); + sml.theoretical_neutral_mass.set(theoretical_neutral_mass); + sml.adducts.set(adducts); + sml.reliability = reliability; + sml.best_id_confidence_measure.setNull(true); + sml.best_id_confidence_value.setNull(true); + sml.small_molecule_abundance_assay = smf.small_molecule_feature_abundance_assay; + sml.small_molecule_abundance_study_variable[1].setNull(true); + sml.small_molecule_abundance_variation_study_variable[1].setNull(true); + + smls.emplace_back(sml); + } + + mztabm.setMetaData(m_meta_data); + mztabm.setMSmallMoleculeEvidenceSectionRows(smes); + mztabm.setMSmallMoleculeFeatureSectionRows(smfs); + mztabm.setMSmallMoleculeSectionRows(smls); + return mztabm; + } + + String MzTabM::getAdductString_(const IdentificationDataInternal::ObservationMatchRef& match_ref) + { + String adduct_name; + if (match_ref->adduct_opt) + { + adduct_name = (*match_ref->adduct_opt)->getName(); + // M+H;1+ -> [M+H]1+ + if (adduct_name.find(';') != std::string::npos) // wrong format -> reformat + { + String prefix = adduct_name.substr(0, adduct_name.find(';')); + String suffix = adduct_name.substr(adduct_name.find(';') + 1, adduct_name.size()); + adduct_name = "[" + prefix + "]" + suffix; + } + } + else + { + adduct_name = "null"; + } + return adduct_name; + } +} diff --git a/src/openms/source/FORMAT/MzTabMFile.cpp b/src/openms/source/FORMAT/MzTabMFile.cpp new file mode 100644 index 00000000000..3cec2f1f90e --- /dev/null +++ b/src/openms/source/FORMAT/MzTabMFile.cpp @@ -0,0 +1,658 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2020. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Oliver Alka $ +// $Authors: Oliver Alka $ +// -------------------------------------------------------------------------- + +#include +#include +#include +#include +#include + +namespace OpenMS +{ + + MzTabMFile::MzTabMFile(){} + + MzTabMFile::~MzTabMFile(){} + + void MzTabMFile::generateMzTabMMetaDataSection_(const MzTabMMetaData& md, StringList& sl) const + { + sl.push_back(String("MTD\tmzTab-version\t") + md.mz_tab_version.toCellString()); // mandatory + sl.push_back(String("MTD\tmzTab-ID\t") + md.mz_tab_id.toCellString()); // mandatory + + if (!md.title.isNull()) + { + String s = String("MTD\ttitle\t") + md.title.toCellString(); + sl.push_back(s); + } + + if(!md.description.isNull()) + { + String s = String("MTD\tdescription\t") + md.description.toCellString(); + sl.push_back(s); + } + + for (const auto& sp : md.sample_processing) + { + String s = "MTD\tsample_processing[" + String(sp.first) + "]\t" + sp.second.toCellString(); + sl.push_back(s); + } + + for (const auto& inst : md.instrument) + { + const MzTabInstrumentMetaData& imd = inst.second; + + if (!imd.name.isNull()) + { + String s = "MTD\tinstrument[" + String(inst.first) + "]-name\t" + imd.name.toCellString(); + sl.push_back(s); + } + + if (!imd.source.isNull()) + { + String s = "MTD\tinstrument[" + String(inst.first) + "]-source\t" + imd.source.toCellString(); + sl.push_back(s); + } + + for (const auto& mit : imd.analyzer) + { + if (!mit.second.isNull()) + { + String s = "MTD\tinstrument[" + String(inst.first) + "]-analyzer[" + String(mit.first) + "]\t" + mit.second.toCellString(); + sl.push_back(s); + } + } + + if (!imd.detector.isNull()) + { + String s = "MTD\tinstrument[" + String(inst.first) + "]-detector\t" + imd.detector.toCellString(); + sl.push_back(s); + } + } + + for (const auto & sw : md.software) + { + MzTabSoftwareMetaData msmd = sw.second; + + String s = "MTD\tsoftware[" + String(sw.first) + "]\t" + msmd.software.toCellString(); // mandatory + sl.push_back(s); + + for (const auto& setting : msmd.setting) + { + String s = "MTD\tsoftware[" + String(sw.first) + "]-setting[" + String(setting.first) + String("]\t") + setting.second.toCellString(); + sl.push_back(s); + } + } + + for (auto const& pub : md.publication) + { + String s = "MTD\tpublication[" + String(pub.first) + "]\t" + pub.second.toCellString(); + sl.push_back(s); + } + + for (const auto& contact : md.contact) + { + const MzTabContactMetaData& md = contact.second; + if (!md.name.isNull()) + { + String s = "MTD\tcontact[" + String(contact.first) + "]-name\t" + md.name.toCellString(); + sl.push_back(s); + } + + if (!md.affiliation.isNull()) + { + String s = "MTD\tcontact[" + String(contact.first) + "]-affiliation\t" + md.affiliation.toCellString(); + sl.push_back(s); + } + + if (!md.email.isNull()) + { + String s = "MTD\tcontact[" + String(contact.first) + "]-email\t" + md.email.toCellString(); + sl.push_back(s); + } + } + + for (const auto& uri : md.uri) + { + String s = "MTD\turi[" + String(uri.first) + "]\t" + uri.second.toCellString(); + sl.push_back(s); + } + + for (const auto& ext_study : md.external_study_uri) + { + String s = "MTD\texternal_study_uri[" + String(ext_study.first) + "]\t" + ext_study.second.toCellString(); + sl.push_back(s); + } + + String s = String("MTD\tquantification_method\t") + md.quantification_method.toCellString(); // mandatory + sl.push_back(s); + + for (const auto& sample : md.sample) + { + const MzTabSampleMetaData& msmd = sample.second; + + if (!msmd.description.isNull()) + { + String s = "MTD\tsample[" + String(sample.first) + "]-description\t" + msmd.description.toCellString(); + sl.push_back(s); + } + + for (const auto& species : msmd.species) + { + String s = "MTD\tsample[" + String(sample.first) + "]-species[" + String(species.first) + "]\t" + species.second.toCellString(); + sl.push_back(s); + } + + for (const auto& tissue : msmd.tissue) + { + String s = "MTD\tsample[" + String(sample.first) + "]-tissue[" + String(tissue.first) + "]\t" + tissue.second.toCellString(); + sl.push_back(s); + } + + for (const auto& cell_type : msmd.cell_type) + { + String s = "MTD\tsample[" + String(sample.first) + "]-cell_type[" + String(cell_type.first) + "]\t" + cell_type.second.toCellString(); + sl.push_back(s); + } + + for (auto const& disease : msmd.disease) + { + String s = "MTD\tsample[" + String(sample.first) + "]-disease[" + String(disease.first) + "]\t" + disease.second.toCellString(); + sl.push_back(s); + } + + for (const auto& custom : msmd.custom) + { + String s = "MTD\tsample[" + String(sample.first) + "]-custom[" + String(custom.first) + "]\t" + custom.second.toCellString(); + sl.push_back(s); + } + } + + for (const auto& ms_run : md.ms_run) + { + const MzTabMMSRunMetaData& rmmd = ms_run.second; + + String s = "MTD\tms_run[" + String(ms_run.first) + "]-location\t" + rmmd.location.toCellString(); // mandatory + sl.push_back(s); + + if (!rmmd.instrument_ref.isNull()) + { + String s = "MTD\tms_run[" + String(ms_run.first) + "]-instrument_ref\t" + rmmd.instrument_ref.toCellString(); + sl.push_back(s); + } + + if (!rmmd.format.isNull()) + { + String s = "MTD\tms_run[" + String(ms_run.first) + "]-format\t" + rmmd.format.toCellString(); + sl.push_back(s); + } + + for (const auto& fragmentation_method : rmmd.fragmentation_method) + { + String s = "MTD\tms_run[" + String(ms_run.first) + "]-fragmentation_method[" + String(fragmentation_method.first) + "]\t" + fragmentation_method.second.toCellString(); + sl.push_back(s); + } + + for (const auto& scan_polarity : rmmd.scan_polarity) + { + String s = "MTD\tms_run[" + String(ms_run.first) + "]-scan_polarity[" + String(scan_polarity.first) + "]\t" + scan_polarity.second.toCellString(); // mandatory + sl.push_back(s); + } + + if (!rmmd.hash.isNull()) + { + String s = "MTD\tms_run[" + String(ms_run.first) + "]-hash\t" + rmmd.hash.toCellString(); + sl.push_back(s); + } + + if (!rmmd.hash_method.isNull()) + { + String s = "MTD\tms_run[" + String(ms_run.first) + "]-hash_method\t" + rmmd.hash_method.toCellString(); + sl.push_back(s); + } + } + + for (const auto& assay : md.assay) + { + const MzTabMAssayMetaData& amd = assay.second; + + String name = "MTD\tassay[" + String(assay.first) + "]\t" + amd.name.toCellString(); // mandatory + sl.push_back(name); + + for (const auto& custom : amd.custom) + { + String s = "MTD\tms_run[" + String(assay.first) + "]-custom[" + String(custom.first) + "]\t" + custom.second.toCellString(); + sl.push_back(s); + } + + if (!amd.external_uri.isNull()) + { + String s = "MTD\tassay[" + String(assay.first) + "]-external_uri\t" + amd.external_uri.toCellString(); + sl.push_back(s); + } + + if (!amd.sample_ref.isNull()) + { + String s = "MTD\tassay[" + String(assay.first) + "]-sample_ref\tsample[" + amd.sample_ref.toCellString() + "]"; + sl.push_back(s); + } + + String ms_run_ref = "MTD\tassay[" + String(assay.first) + "]-ms_run_ref\tms_run[" + amd.ms_run_ref.toCellString() + "]"; // mandatory + sl.push_back(ms_run_ref); + } + + for (const auto& sv : md.study_variable) + { + const MzTabMStudyVariableMetaData& svmd = sv.second; + + String name = "MTD\tstudy_variable[" + String(sv.first) + "]\t" + svmd.name.toCellString(); // mandatory + sl.push_back(name); + + std::vector strings; + MzTabStringList refs_string; + for (const auto& ref : svmd.assay_refs) + { + strings.emplace_back(MzTabString("assay[" + std::to_string(ref) + ']')); + } + refs_string.set(strings); + String refs = "MTD\tstudy_variable[" + String(sv.first) + "]-assay_refs\t" + refs_string.toCellString(); // mandatory + sl.push_back(refs); + + if (!svmd.average_function.isNull()) + { + String s = "MTD\tstudy_variable[" + String(sv.first) + "]-average_function\t" + svmd.average_function.toCellString(); + sl.push_back(s); + } + + if (!svmd.variation_function.isNull()) + { + String s = "MTD\tstudy_variable[" + String(sv.first) + "]-variation_function\t" + svmd.variation_function.toCellString(); + sl.push_back(s); + } + + String description = "MTD\tstudy_variable[" + String(sv.first) + "]-description\t" + svmd.description.toCellString(); // mandatory + sl.push_back(description); + + for (const auto& factor : svmd.factors.get()) + { + String s = "MTD\tstudy_variable[" + String(sv.first) + "]-factors\t" + factor.toCellString(); + sl.push_back(s); + } + } + + for (const auto& custom : md.custom) + { + String s = "MTD\tcustom[" + String(custom.first) + "]\t" + custom.second.toCellString(); + sl.push_back(s); + } + + for (const auto& cv : md.cv) + { + const MzTabCVMetaData& cvmd = cv.second; + + String label = "MTD\tcv[" + String(cv.first) + "]-label\t" + cvmd.label.toCellString(); // mandatory + sl.push_back(label); + + String full_name = "MTD\tcv[" + String(cv.first) + "]-full_name\t" + cvmd.full_name.toCellString(); // mandatory + sl.push_back(full_name); + + String version = "MTD\tcv[" + String(cv.first) + "]-version\t" + cvmd.version.toCellString(); // mandatory + sl.push_back(version); + + String url = "MTD\tcv[" + String(cv.first) + "]-uri\t" + cvmd.url.toCellString(); // mandatory + sl.push_back(url); + } + + for (const auto& db : md.database) + { + MzTabMDatabaseMetaData dbmd = db.second; + + String database = "MTD\tdatabase[" + String(db.first) + "]\t" + dbmd.database.toCellString(); // mandatory + sl.push_back(database); + + String prefix = "MTD\tdatabase[" + String(db.first) + "]-prefix\t" + dbmd.prefix.toCellString(); // mandatory + sl.push_back(prefix); + + String version = "MTD\tdatabase[" + String(db.first) + "]-version\t" + dbmd.version.toCellString(); // mandatory + sl.push_back(version); + + String uri = "MTD\tdatabase[" + String(db.first) + "]-uri\t" + dbmd.uri.toCellString(); // mandatory + sl.push_back(uri); + } + + for (const auto& agent : md.derivatization_agent) + { + String s = "MTD\tderivatization_agent[" + String(agent.first) + "]-uri\t" + agent.second.toCellString(); + sl.push_back(s); + } + + sl.push_back(String("MTD\tsmall_molecule-quantification_unit\t") + md.small_molecule_quantification_unit.toCellString()); // mandatory + + sl.push_back(String("MTD\tsmall_molecule_feature-quantification_unit\t") + md.small_molecule_feature_quantification_unit.toCellString()); // mandatory (feature section) + + sl.push_back(String("MTD\tsmall_molecule-identification_reliability\t") + md.small_molecule_identification_reliability.toCellString()); // mandatory + + for (const auto& id_conf : md.id_confidence_measure) + { + String s = "MTD\tid_confidence_measure[" + String(id_conf.first) + "]\t" + id_conf.second.toCellString(); // mandatory + sl.push_back(s); + } + + for (const auto& csm : md.colunit_small_molecule) + { + String s = "MTD\tcolunit_small_molecule\t" + csm.toCellString(); + sl.push_back(s); + } + + for (const auto& csmf : md.colunit_small_molecule_feature) + { + String s = "MTD\tcolunit_small_molecule\t" + csmf.toCellString(); + sl.push_back(s); + } + + for (const auto& csme : md.colunit_small_molecule_evidence) + { + String s = "MTD\tcolunit_small_molecule\t" + csme.toCellString(); + sl.push_back(s); + } + } + + String MzTabMFile::generateMzTabMSmallMoleculeHeader_(const MzTabMMetaData& meta, const std::vector& optional_columns, size_t& n_columns) const + { + StringList header; + header.emplace_back("SMH"); + header.emplace_back("SML_ID"); + header.emplace_back("SMF_ID_REFS"); + header.emplace_back("database_identifier"); + header.emplace_back("chemical_formula"); + header.emplace_back("smiles"); + header.emplace_back("inchi"); + header.emplace_back("chemical_name"); + header.emplace_back("uri"); + header.emplace_back("theoretical_neutral_mass"); + header.emplace_back("adduct_ions"); + header.emplace_back("reliability"); + header.emplace_back("best_id_confidence_measure"); + header.emplace_back("best_id_confidence_value"); + + for (const auto& a : meta.assay) + { + header.emplace_back(String("abundance_assay[") + String(a.first) + String("]")); + } + + for (const auto& a : meta.study_variable) + { + header.emplace_back(String("abundance_study_variable[") + String(a.first) + String("]")); + } + + for (const auto& a : meta.study_variable) + { + header.emplace_back(String("abundance_variation_study_variable[") + String(a.first) + String("]")); + } + + std::copy(optional_columns.begin(), optional_columns.end(), std::back_inserter(header)); + n_columns = header.size(); + return ListUtils::concatenate(header, "\t"); + } + + String MzTabMFile::generateMzTabMSmallMoleculeSectionRow_(const MzTabMSmallMoleculeSectionRow& row, const std::vector& optional_columns, size_t& n_columns) const + { + StringList s; + s.emplace_back("SML"); + s.emplace_back(row.sml_identifier.toCellString()); + s.emplace_back(row.smf_id_refs.toCellString()); + s.emplace_back(row.database_identifier.toCellString()); + s.emplace_back(row.chemical_formula.toCellString()); + s.emplace_back(row.smiles.toCellString()); + s.emplace_back(row.inchi.toCellString()); + s.emplace_back(row.chemical_name.toCellString()); + s.emplace_back(row.uri.toCellString()); + s.emplace_back(row.theoretical_neutral_mass.toCellString()); + s.emplace_back(row.adducts.toCellString()); + s.emplace_back(row.reliability.toCellString()); + s.emplace_back(row.best_id_confidence_measure.toCellString()); + s.emplace_back(row.best_id_confidence_value.toCellString()); + + for (const auto& abundance_assay : row.small_molecule_abundance_assay) + { + s.emplace_back(abundance_assay.second.toCellString()); + } + + for (const auto& abundance_study_variable : row.small_molecule_abundance_study_variable) + { + s.emplace_back(abundance_study_variable.second.toCellString()); + } + + for (const auto& variation_study_variable : row.small_molecule_abundance_variation_study_variable) + { + s.emplace_back(variation_study_variable.second.toCellString()); + } + + MzTabFile::addOptionalColumnsToSectionRow_(optional_columns, row.opt_, s); + n_columns = s.size(); + return ListUtils::concatenate(s, "\t"); + } + + String MzTabMFile::generateMzTabMSmallMoleculeFeatureHeader_(const MzTabMMetaData& meta, const std::vector& optional_columns, size_t& n_columns) const + { + StringList header; + header.emplace_back("SFH"); + header.emplace_back("SMF_ID"); + header.emplace_back("SME_ID_REFS"); + header.emplace_back("SME_ID_REF_ambiguity_code"); + header.emplace_back("adduct_ion"); + header.emplace_back("isotopomer"); + header.emplace_back("exp_mass_to_charge"); + header.emplace_back("charge"); + header.emplace_back("retention_time_in_seconds"); + header.emplace_back("retention_time_in_seconds_start"); + header.emplace_back("retention_time_in_seconds_end"); + + for (const auto& a : meta.assay) + { + header.emplace_back(String("abundance_assay[") + String(a.first) + String("]")); + } + + std::copy(optional_columns.begin(), optional_columns.end(), std::back_inserter(header)); + n_columns = header.size(); + return ListUtils::concatenate(header, "\t"); + } + + String MzTabMFile::generateMzTabMSmallMoleculeFeatureSectionRow_(const MzTabMSmallMoleculeFeatureSectionRow& row, const std::vector& optional_columns, size_t& n_columns) const + { + StringList s; + s.emplace_back("SMF"); + s.emplace_back(row.smf_identifier.toCellString()); + s.emplace_back(row.sme_id_refs.toCellString()); + s.emplace_back(row.sme_id_ref_ambiguity_code.toCellString()); + s.emplace_back(row.adduct.toCellString()); + s.emplace_back(row.isotopomer.toCellString()); + s.emplace_back(row.exp_mass_to_charge.toCellString()); + s.emplace_back(row.charge.toCellString()); + s.emplace_back(row.retention_time.toCellString()); + s.emplace_back(row.rt_start.toCellString()); + s.emplace_back(row.rt_end.toCellString()); + + for (const auto& feature_abundance : row.small_molecule_feature_abundance_assay) + { + s.emplace_back(feature_abundance.second.toCellString()); + } + + MzTabFile::addOptionalColumnsToSectionRow_(optional_columns, row.opt_, s); + n_columns = s.size(); + return ListUtils::concatenate(s, "\t"); + } + + String MzTabMFile::generateMzTabMSmallMoleculeEvidenceHeader_(const MzTabMMetaData& meta, const std::vector& optional_columns, size_t& n_columns) const + { + StringList header; + header.emplace_back("SEH"); + header.emplace_back("SME_ID"); + header.emplace_back("evidence_input_id"); + header.emplace_back("database_identifier"); + header.emplace_back("chemical_formula"); + header.emplace_back("smiles"); + header.emplace_back("inchi"); + header.emplace_back("chemical_name"); + header.emplace_back("uri"); + header.emplace_back("derivatized_form"); + header.emplace_back("adduct_ion"); + header.emplace_back("exp_mass_to_charge"); + header.emplace_back("charge"); + header.emplace_back("theoretical_mass_to_charge"); + header.emplace_back("spectra_ref"); + header.emplace_back("identification_method"); + header.emplace_back("ms_level"); + + for (const auto& id_conf : meta.id_confidence_measure) + { + header.emplace_back(String("id_confidence_measure[") + String(id_conf.first) + String("]")); + } + + header.emplace_back("rank"); + + std::copy(optional_columns.begin(), optional_columns.end(), std::back_inserter(header)); + n_columns = header.size(); + return ListUtils::concatenate(header, "\t"); + } + + String MzTabMFile::generateMzTabMSmallMoleculeEvidenceSectionRow_(const MzTabMSmallMoleculeEvidenceSectionRow& row, const std::vector& optional_columns, size_t& n_columns) const + { + StringList s; + s.emplace_back("SME"); + s.emplace_back(row.sme_identifier.toCellString()); + s.emplace_back(row.evidence_input_id.toCellString()); + s.emplace_back(row.database_identifier.toCellString()); + s.emplace_back(row.chemical_formula.toCellString()); + s.emplace_back(row.smiles.toCellString()); + s.emplace_back(row.inchi.toCellString()); + s.emplace_back(row.chemical_name.toCellString()); + s.emplace_back(row.uri.toCellString()); + s.emplace_back(row.derivatized_form.toCellString()); + s.emplace_back(row.adduct.toCellString()); + s.emplace_back(row.exp_mass_to_charge.toCellString()); + s.emplace_back(row.charge.toCellString()); + s.emplace_back(row.calc_mass_to_charge.toCellString()); + s.emplace_back(row.spectra_ref.toCellString()); + s.emplace_back(row.identification_method.toCellString()); + s.emplace_back(row.ms_level.toCellString()); + + for (const auto& id_conf : row.id_confidence_measure) + { + s.emplace_back(id_conf.second.toCellString()); + } + + s.emplace_back(row.rank.toCellString()); + + MzTabFile::addOptionalColumnsToSectionRow_(optional_columns, row.opt_, s); + n_columns = s.size(); + return ListUtils::concatenate(s, "\t"); + } + + void MzTabMFile::store(const String& filename, const MzTabM& mztab_m) const + { + OPENMS_LOG_INFO << "exporting identification data: \"" << filename << "\" to MzTab-M: " << std::endl; + + if (!(FileHandler::hasValidExtension(filename, FileTypes::MZTAB) || FileHandler::hasValidExtension(filename, FileTypes::TSV))) + { + throw Exception::UnableToCreateFile(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, filename, "invalid file extension, expected '" + + FileTypes::typeToName(FileTypes::MZTAB) + "' or '" + FileTypes::typeToName(FileTypes::TSV) + "'"); + } + + StringList out; + generateMzTabMMetaDataSection_(mztab_m.getMetaData(), out); + + size_t n_sml_header_columns = 0; + out.emplace_back(""); + out.emplace_back(generateMzTabMSmallMoleculeHeader_(mztab_m.getMetaData(), + mztab_m.getMSmallMoleculeOptionalColumnNames(), + n_sml_header_columns)); + + size_t n_sml_section_columns = 0; + const MzTabMSmallMoleculeSectionRows& sm_section = mztab_m.getMSmallMoleculeSectionRows(); + for (const auto& sms_row: sm_section) + { + out.emplace_back(generateMzTabMSmallMoleculeSectionRow_(sms_row, + mztab_m.getMSmallMoleculeOptionalColumnNames(), + n_sml_section_columns)); + + OPENMS_POSTCONDITION(n_sml_header_columns == n_sml_section_columns, + "The number of columns of the small molecule header do not assort to the number of columns of the small molecule section row.") + } + + size_t n_smf_header_columns = 0; + + out.emplace_back(""); + out.emplace_back(generateMzTabMSmallMoleculeFeatureHeader_(mztab_m.getMetaData(), + mztab_m.getMSmallMoleculeFeatureOptionalColumnNames(), + n_smf_header_columns)); + + size_t n_smf_section_columns = 0; + const MzTabMSmallMoleculeFeatureSectionRows& feature_section = mztab_m.getMSmallMoleculeFeatureSectionRows(); + for (const auto& smf_row : feature_section) + { + out.emplace_back(generateMzTabMSmallMoleculeFeatureSectionRow_(smf_row, + mztab_m.getMSmallMoleculeFeatureOptionalColumnNames(), + n_smf_section_columns)); + + OPENMS_POSTCONDITION(n_smf_header_columns == n_smf_section_columns, + "The number of columns of the small molecule feature header do not assort to the number of columns of the small molecule feature section row.") + } + + size_t n_sme_header_columns = 0; + out.emplace_back(""); + out.emplace_back(generateMzTabMSmallMoleculeEvidenceHeader_(mztab_m.getMetaData(), + mztab_m.getMSmallMoleculeEvidenceOptionalColumnNames(), + n_sme_header_columns)); + + size_t n_sme_section_columns = 0; + const MzTabMSmallMoleculeEvidenceSectionRows& evidence_section = mztab_m.getMSmallMoleculeEvidenceSectionRows(); + for (const auto& sme_row : evidence_section) + { + out.emplace_back(generateMzTabMSmallMoleculeEvidenceSectionRow_(sme_row, + mztab_m.getMSmallMoleculeEvidenceOptionalColumnNames(), + n_sme_section_columns)); + + OPENMS_POSTCONDITION(n_sme_header_columns == n_sme_section_columns, + "The number of columns in the small molecule evidence header do not assort to the number of columns of the small molecule evidence section row.") + } + + TextFile tmp_out; + for (TextFile::ConstIterator it = out.begin(); it != out.end(); ++it) + { + tmp_out.addLine(*it); + } + tmp_out.store(filename); + } + +} diff --git a/src/openms/source/FORMAT/OMSFile.cpp b/src/openms/source/FORMAT/OMSFile.cpp new file mode 100644 index 00000000000..1e33827db94 --- /dev/null +++ b/src/openms/source/FORMAT/OMSFile.cpp @@ -0,0 +1,68 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Hendrik Weisser $ +// $Authors: Hendrik Weisser $ +// -------------------------------------------------------------------------- + +#include +#include +#include + +using namespace std; + +using ID = OpenMS::IdentificationData; + +namespace OpenMS +{ + void OMSFile::store(const String& filename, const IdentificationData& id_data) + { + OpenMS::Internal::OMSFileStore helper(filename, log_type_); + helper.store(id_data); + } + + void OMSFile::store(const String& filename, const FeatureMap& features) + { + OpenMS::Internal::OMSFileStore helper(filename, log_type_); + helper.store(features); + } + + void OMSFile::load(const String& filename, IdentificationData& id_data) + { + OpenMS::Internal::OMSFileLoad helper(filename, log_type_); + helper.load(id_data); + } + + void OMSFile::load(const String& filename, FeatureMap& features) + { + OpenMS::Internal::OMSFileLoad helper(filename, log_type_); + helper.load(features); + } +} diff --git a/src/openms/source/FORMAT/OMSFileLoad.cpp b/src/openms/source/FORMAT/OMSFileLoad.cpp new file mode 100644 index 00000000000..66c21dda4d5 --- /dev/null +++ b/src/openms/source/FORMAT/OMSFileLoad.cpp @@ -0,0 +1,1120 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Hendrik Weisser $ +// $Authors: Hendrik Weisser $ +// -------------------------------------------------------------------------- + +#include +#include // for "tableExists_" and "raiseDBError_" +#include +#include +#include + +#include +#include +#include +// strangely, this is needed for type conversions in "QSqlQuery::bindValue": +#include + +using namespace std; + +using ID = OpenMS::IdentificationData; + +namespace OpenMS::Internal +{ + OMSFileLoad::OMSFileLoad(const String& filename, LogType log_type): + db_name_("load_" + filename.toQString() + "_" + QString::number(UniqueIdGenerator::getUniqueId())) + { + setLogType(log_type); + + // open database: + QSqlDatabase db = QSqlDatabase::addDatabase("QSQLITE", db_name_); + db.setDatabaseName(filename.toQString()); + db.setConnectOptions("QSQLITE_OPEN_READONLY"); + if (!db.open()) + { + raiseDBError_(db.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error opening SQLite database"); + // if d'tor doesn't get called, DB connection (db_name_) doesn't get + // removed, but that shouldn't be a big problem + } + } + + + OMSFileLoad::~OMSFileLoad() + { + QSqlDatabase::database(db_name_).close(); + QSqlDatabase::removeDatabase(db_name_); + } + + + // currently not needed: + // CVTerm OMSFileLoad::loadCVTerm_(int id) + // { + // // this assumes that the "CVTerm" table exists! + // QSqlQuery query(db_); + // query.setForwardOnly(true); + // QString sql_select = "SELECT * FROM CVTerm WHERE id = " + QString(id); + // if (!query.exec(sql_select) || !query.next()) + // { + // raiseDBError_(model.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + // "error reading from database"); + // } + // return CVTerm(query.value("accession").toString(), + // query.value("name").toString(), + // query.value("cv_identifier_ref").toString()); + // } + + + void OMSFileLoad::loadScoreTypes_(IdentificationData& id_data) + { + if (!tableExists_(db_name_, "ID_ScoreType")) return; + if (!tableExists_(db_name_, "CVTerm")) // every score type is a CV term + { + String msg = "required database table 'CVTerm' not found"; + throw Exception::MissingInformation(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); + } + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.setForwardOnly(true); + // careful - both joined tables have an "id" field, need to exclude one: + if (!query.exec("SELECT S.*, C.accession, C.name, C.cv_identifier_ref " \ + "FROM ID_ScoreType AS S JOIN CVTerm AS C " \ + "ON S.cv_term_id = C.id")) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + while (query.next()) + { + CVTerm cv_term(query.value("accession").toString(), + query.value("name").toString(), + query.value("cv_identifier_ref").toString()); + bool higher_better = query.value("higher_better").toInt(); + ID::ScoreType score_type(cv_term, higher_better); + ID::ScoreTypeRef ref = id_data.registerScoreType(score_type); + score_type_refs_[query.value("id").toLongLong()] = ref; + } + } + + + void OMSFileLoad::loadInputFiles_(IdentificationData& id_data) + { + if (!tableExists_(db_name_, "ID_InputFile")) return; + + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.setForwardOnly(true); + if (!query.exec("SELECT * FROM ID_InputFile")) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + while (query.next()) + { + ID::InputFile input(query.value("name").toString(), + query.value("experimental_design_id").toString()); + String primary_files = query.value("primary_files").toString(); + vector pf_list = ListUtils::create(primary_files); + input.primary_files.insert(pf_list.begin(), pf_list.end()); + ID::InputFileRef ref = id_data.registerInputFile(input); + input_file_refs_[query.value("id").toLongLong()] = ref; + } + } + + + void OMSFileLoad::loadProcessingSoftwares_(IdentificationData& id_data) + { + if (!tableExists_(db_name_, "ID_ProcessingSoftware")) return; + + QSqlDatabase db = QSqlDatabase::database(db_name_); + QSqlQuery query(db); + query.setForwardOnly(true); + if (!query.exec("SELECT * FROM ID_ProcessingSoftware")) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + bool have_scores = tableExists_(db_name_, + "ID_ProcessingSoftware_AssignedScore"); + QSqlQuery subquery(db); + if (have_scores) + { + subquery.setForwardOnly(true); + subquery.prepare("SELECT score_type_id " \ + "FROM ID_ProcessingSoftware_AssignedScore " \ + "WHERE software_id = :id ORDER BY score_type_order ASC"); + } + while (query.next()) + { + Key id = query.value("id").toLongLong(); + ID::ProcessingSoftware software(query.value("name").toString(), + query.value("version").toString()); + if (have_scores) + { + subquery.bindValue(":id", id); + if (!subquery.exec()) + { + raiseDBError_(subquery.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + while (subquery.next()) + { + Key score_type_id = subquery.value(0).toLongLong(); + software.assigned_scores.push_back(score_type_refs_[score_type_id]); + } + } + ID::ProcessingSoftwareRef ref = id_data.registerProcessingSoftware(software); + processing_software_refs_[id] = ref; + } + } + + + DataValue OMSFileLoad::makeDataValue_(const QSqlQuery& query) + { + DataValue::DataType type = DataValue::EMPTY_VALUE; + int type_index = query.value("data_type_id").toInt(); + if (type_index > 0) type = DataValue::DataType(type_index - 1); + String value = query.value("value").toString(); + switch (type) + { + case DataValue::STRING_VALUE: + return DataValue(value); + case DataValue::INT_VALUE: + return DataValue(value.toInt()); + case DataValue::DOUBLE_VALUE: + return DataValue(value.toDouble()); + // converting lists to String adds square brackets - remove them: + case DataValue::STRING_LIST: + value = value.substr(1, value.size() - 2); + return DataValue(ListUtils::create(value)); + case DataValue::INT_LIST: + value = value.substr(1, value.size() - 2); + return DataValue(ListUtils::create(value)); + case DataValue::DOUBLE_LIST: + value = value.substr(1, value.size() - 2); + return DataValue(ListUtils::create(value)); + default: // DataValue::EMPTY_VALUE (avoid warning about missing return) + return DataValue(); + } + } + + + bool OMSFileLoad::prepareQueryMetaInfo_(QSqlQuery& query, + const String& parent_table) + { + String table_name = parent_table + "_MetaInfo"; + if (!tableExists_(db_name_, table_name)) return false; + + query.setForwardOnly(true); + QString sql_select = + "SELECT * FROM " + table_name.toQString() + " AS MI " \ + "JOIN DataValue AS DV ON MI.data_value_id = DV.id " \ + "WHERE MI.parent_id = :id"; + query.prepare(sql_select); + return true; + } + + + bool OMSFileLoad::prepareQueryAppliedProcessingStep_(QSqlQuery& query, + const String& parent_table) + { + String table_name = parent_table + "_AppliedProcessingStep"; + if (!tableExists_(db_name_, table_name)) return false; + + // query.setForwardOnly(true); + QString sql_select = "SELECT * FROM " + table_name.toQString() + + " WHERE parent_id = :id ORDER BY processing_step_order ASC"; + query.prepare(sql_select); + return true; + } + + + void OMSFileLoad::handleQueryMetaInfo_(QSqlQuery& query, + MetaInfoInterface& info, + Key parent_id) + { + query.bindValue(":id", parent_id); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + while (query.next()) + { + DataValue value = makeDataValue_(query); + info.setMetaValue(query.value("name").toString(), value); + } + } + + + void OMSFileLoad::handleQueryAppliedProcessingStep_( + QSqlQuery& query, + IdentificationDataInternal::ScoredProcessingResult& result, + Key parent_id) + { + query.bindValue(":id", parent_id); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + while (query.next()) + { + ID::AppliedProcessingStep step; + QVariant step_id_opt = query.value("processing_step_id"); + if (!step_id_opt.isNull()) + { + step.processing_step_opt = + processing_step_refs_[step_id_opt.toLongLong()]; + } + QVariant score_type_opt = query.value("score_type_id"); + if (!score_type_opt.isNull()) + { + step.scores[score_type_refs_[score_type_opt.toLongLong()]] = + query.value("score").toDouble(); + } + result.addProcessingStep(step); // this takes care of merging the steps + } + } + + + void OMSFileLoad::loadDBSearchParams_(IdentificationData& id_data) + { + if (!tableExists_(db_name_, "ID_DBSearchParam")) return; + + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.setForwardOnly(true); + if (!query.exec("SELECT * FROM ID_DBSearchParam")) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + while (query.next()) + { + Key id = query.value("id").toLongLong(); + ID::DBSearchParam param; + int molecule_type_index = query.value("molecule_type_id").toInt() - 1; + param.molecule_type = ID::MoleculeType(molecule_type_index); + int mass_type_index = query.value("mass_type_average").toInt(); + param.mass_type = ID::MassType(mass_type_index); + param.database = query.value("database").toString(); + param.database_version = query.value("database_version").toString(); + param.taxonomy = query.value("taxonomy").toString(); + vector charges = + ListUtils::create(query.value("charges").toString()); + param.charges.insert(charges.begin(), charges.end()); + vector fixed_mods = + ListUtils::create(query.value("fixed_mods").toString()); + param.fixed_mods.insert(fixed_mods.begin(), fixed_mods.end()); + vector variable_mods = + ListUtils::create(query.value("variable_mods").toString()); + param.variable_mods.insert(variable_mods.begin(), variable_mods.end()); + param.precursor_mass_tolerance = + query.value("precursor_mass_tolerance").toDouble(); + param.fragment_mass_tolerance = + query.value("fragment_mass_tolerance").toDouble(); + param.precursor_tolerance_ppm = + query.value("precursor_tolerance_ppm").toInt(); + param.fragment_tolerance_ppm = + query.value("fragment_tolerance_ppm").toInt(); + String enzyme = query.value("digestion_enzyme").toString(); + if (!enzyme.empty()) + { + if (param.molecule_type == ID::MoleculeType::PROTEIN) + { + param.digestion_enzyme = ProteaseDB::getInstance()->getEnzyme(enzyme); + } + else if (param.molecule_type == ID::MoleculeType::RNA) + { + param.digestion_enzyme = RNaseDB::getInstance()->getEnzyme(enzyme); + } + } + param.missed_cleavages = query.value("missed_cleavages").toUInt(); + param.min_length = query.value("min_length").toUInt(); + param.max_length = query.value("max_length").toUInt(); + ID::SearchParamRef ref = id_data.registerDBSearchParam(param); + search_param_refs_[id] = ref; + } + } + + + void OMSFileLoad::loadProcessingSteps_(IdentificationData& id_data) + { + if (!tableExists_(db_name_, "ID_ProcessingStep")) return; + + QSqlDatabase db = QSqlDatabase::database(db_name_); + QSqlQuery query(db); + query.setForwardOnly(true); + if (!query.exec("SELECT * FROM ID_ProcessingStep")) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + QSqlQuery subquery_file(db); + bool have_input_files = tableExists_(db_name_, + "ID_ProcessingStep_InputFile"); + if (have_input_files) + { + subquery_file.setForwardOnly(true); + subquery_file.prepare("SELECT input_file_id " \ + "FROM ID_ProcessingStep_InputFile " \ + "WHERE processing_step_id = :id"); + } + QSqlQuery subquery_info(db); + bool have_meta_info = prepareQueryMetaInfo_(subquery_info, "ID_ProcessingStep"); + while (query.next()) + { + Key id = query.value("id").toLongLong(); + Key software_id = query.value("software_id").toLongLong(); + ID::ProcessingStep step(processing_software_refs_[software_id]); + String date_time = query.value("date_time").toString(); + if (!date_time.empty()) step.date_time.set(date_time); + if (have_input_files) + { + subquery_file.bindValue(":id", id); + if (!subquery_file.exec()) + { + raiseDBError_(subquery_file.lastError(), __LINE__, + OPENMS_PRETTY_FUNCTION, "error reading from database"); + } + while (subquery_file.next()) + { + Key input_file_id = subquery_file.value(0).toLongLong(); + // the foreign key constraint should ensure that look-up succeeds: + step.input_file_refs.push_back(input_file_refs_[input_file_id]); + } + } + if (have_meta_info) + { + handleQueryMetaInfo_(subquery_info, step, id); + } + ID::ProcessingStepRef ref; + QVariant opt_search_param_id = query.value("search_param_id"); + if (opt_search_param_id.isNull()) // no DB search params available + { + ref = id_data.registerProcessingStep(step); + } + else + { + ID::SearchParamRef search_param_ref = + search_param_refs_[opt_search_param_id.toLongLong()]; + ref = id_data.registerProcessingStep(step, search_param_ref); + } + processing_step_refs_[id] = ref; + } + } + + + void OMSFileLoad::loadObservations_(IdentificationData& id_data) + { + if (!tableExists_(db_name_, "ID_Observation")) return; + + QSqlDatabase db = QSqlDatabase::database(db_name_); + QSqlQuery query(db); + query.setForwardOnly(true); + if (!query.exec("SELECT * FROM ID_Observation")) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + QSqlQuery subquery_info(db); + bool have_meta_info = prepareQueryMetaInfo_(subquery_info, + "ID_Observation"); + + while (query.next()) + { + QVariant input_file_id = query.value("input_file_id"); + ID::Observation obs(query.value("data_id").toString(), + input_file_refs_[input_file_id.toLongLong()]); + QVariant rt = query.value("rt"); + if (!rt.isNull()) obs.rt = rt.toDouble(); + QVariant mz = query.value("mz"); + if (!mz.isNull()) obs.mz = mz.toDouble(); + Key id = query.value("id").toLongLong(); + if (have_meta_info) handleQueryMetaInfo_(subquery_info, obs, id); + ID::ObservationRef ref = id_data.registerObservation(obs); + observation_refs_[id] = ref; + } + } + + + void OMSFileLoad::loadParentSequences_(IdentificationData& id_data) + { + if (!tableExists_(db_name_, "ID_ParentSequence")) return; + + QSqlDatabase db = QSqlDatabase::database(db_name_); + QSqlQuery query(db); + query.setForwardOnly(true); + if (!query.exec("SELECT * FROM ID_ParentSequence")) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + // @TODO: can we combine handling of meta info and applied processing steps? + QSqlQuery subquery_info(db); + bool have_meta_info = prepareQueryMetaInfo_(subquery_info, + "ID_ParentSequence"); + QSqlQuery subquery_step(db); + bool have_applied_steps = + prepareQueryAppliedProcessingStep_(subquery_step, "ID_ParentSequence"); + + while (query.next()) + { + String accession = query.value("accession").toString(); + ID::ParentSequence parent(accession); + int molecule_type_index = query.value("molecule_type_id").toInt() - 1; + parent.molecule_type = ID::MoleculeType(molecule_type_index); + parent.sequence = query.value("sequence").toString(); + parent.description = query.value("description").toString(); + parent.coverage = query.value("coverage").toDouble(); + parent.is_decoy = query.value("is_decoy").toInt(); + Key id = query.value("id").toLongLong(); + if (have_meta_info) + { + handleQueryMetaInfo_(subquery_info, parent, id); + } + if (have_applied_steps) + { + handleQueryAppliedProcessingStep_(subquery_step, parent, id); + } + ID::ParentSequenceRef ref = id_data.registerParentSequence(parent); + parent_refs_[id] = ref; + } + } + + + void OMSFileLoad::loadParentGroupSets_(IdentificationData& id_data) + { + if (!tableExists_(db_name_, "ID_ParentGroupSet")) return; + + QSqlDatabase db = QSqlDatabase::database(db_name_); + QSqlQuery query(db); + query.setForwardOnly(true); + if (!query.exec("SELECT * FROM ID_ParentGroupSet ORDER BY grouping_order ASC")) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + // @TODO: can we combine handling of meta info and applied processing steps? + QSqlQuery subquery_info(db); + bool have_meta_info = prepareQueryMetaInfo_(subquery_info, + "ID_ParentGroupSet"); + QSqlQuery subquery_step(db); + bool have_applied_steps = + prepareQueryAppliedProcessingStep_(subquery_step, + "ID_ParentGroupSet"); + + QSqlQuery subquery_group(db); + subquery_group.setForwardOnly(true); + subquery_group.prepare("SELECT * FROM ID_ParentGroup WHERE grouping_id = :id"); + + QSqlQuery subquery_parent(db); + subquery_parent.setForwardOnly(true); + subquery_parent.prepare( + "SELECT parent_id FROM ID_ParentGroup_ParentSequence WHERE group_id = :id"); + + while (query.next()) + { + ID::ParentGroupSet grouping(query.value("label").toString()); + Key grouping_id = query.value("id").toLongLong(); + if (have_meta_info) + { + handleQueryMetaInfo_(subquery_info, grouping, grouping_id); + } + if (have_applied_steps) + { + handleQueryAppliedProcessingStep_(subquery_step, grouping, grouping_id); + } + + subquery_group.bindValue(":id", grouping_id); + if (!subquery_group.exec()) + { + raiseDBError_(subquery_group.lastError(), __LINE__, + OPENMS_PRETTY_FUNCTION, "error reading from database"); + } + + // get all groups in this grouping: + map groups_map; + while (subquery_group.next()) + { + Key group_id = subquery_group.value("id").toLongLong(); + QVariant score_type_id = subquery_group.value("score_type_id"); + if (score_type_id.isNull()) // no scores + { + groups_map[group_id]; // insert empty group + } + else + { + ID::ScoreTypeRef ref = score_type_refs_[score_type_id.toLongLong()]; + groups_map[group_id].scores[ref] = + subquery_group.value("score").toDouble(); + } + } + // get parent sequences in each group: + for (auto& pair : groups_map) + { + subquery_parent.bindValue(":id", pair.first); + if (!subquery_parent.exec()) + { + raiseDBError_(subquery_parent.lastError(), __LINE__, + OPENMS_PRETTY_FUNCTION, "error reading from database"); + } + while (subquery_parent.next()) + { + Key parent_id = subquery_parent.value(0).toLongLong(); + pair.second.parent_refs.insert( + parent_refs_[parent_id]); + } + grouping.groups.insert(pair.second); + } + + id_data.registerParentGroupSet(grouping); + } + } + + + void OMSFileLoad::loadIdentifiedCompounds_(IdentificationData& id_data) + { + if (!tableExists_(db_name_, "ID_IdentifiedCompound")) return; + + QSqlDatabase db = QSqlDatabase::database(db_name_); + QSqlQuery query(db); + query.setForwardOnly(true); + QString sql_select = + "SELECT * FROM ID_IdentifiedMolecule JOIN ID_IdentifiedCompound " \ + "ON ID_IdentifiedMolecule.id = ID_IdentifiedCompound.molecule_id"; + if (!query.exec(sql_select)) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + // @TODO: can we combine handling of meta info and applied processing steps? + QSqlQuery subquery_info(db); + bool have_meta_info = prepareQueryMetaInfo_(subquery_info, "ID_IdentifiedMolecule"); + QSqlQuery subquery_step(db); + bool have_applied_steps = + prepareQueryAppliedProcessingStep_(subquery_step, "ID_IdentifiedMolecule"); + + while (query.next()) + { + ID::IdentifiedCompound compound( + query.value("identifier").toString(), + EmpiricalFormula(query.value("formula").toString()), + query.value("name").toString(), + query.value("smile").toString(), + query.value("inchi").toString()); + Key id = query.value("id").toLongLong(); + if (have_meta_info) + { + handleQueryMetaInfo_(subquery_info, compound, id); + } + if (have_applied_steps) + { + handleQueryAppliedProcessingStep_(subquery_step, compound, id); + } + ID::IdentifiedCompoundRef ref = id_data.registerIdentifiedCompound(compound); + identified_molecule_vars_[id] = ref; + } + } + + + void OMSFileLoad::handleQueryParentMatch_(QSqlQuery& query, + IdentificationData::ParentMatches& parent_matches, + Key molecule_id) + { + query.bindValue(":id", molecule_id); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + while (query.next()) + { + ID::ParentSequenceRef ref = + parent_refs_[query.value("parent_id").toLongLong()]; + ID::ParentMatch match; + QVariant start_pos = query.value("start_pos"); + QVariant end_pos = query.value("end_pos"); + if (!start_pos.isNull()) match.start_pos = start_pos.toInt(); + if (!end_pos.isNull()) match.end_pos = end_pos.toInt(); + match.left_neighbor = query.value("left_neighbor").toString(); + match.right_neighbor = query.value("right_neighbor").toString(); + parent_matches[ref].insert(match); + } + } + + + void OMSFileLoad::loadIdentifiedSequences_(IdentificationData& id_data) + { + if (!tableExists_(db_name_, "ID_IdentifiedMolecule")) return; + + QSqlDatabase db = QSqlDatabase::database(db_name_); + QSqlQuery query(db); + query.setForwardOnly(true); + query.prepare("SELECT * FROM ID_IdentifiedMolecule " \ + "WHERE molecule_type_id = :molecule_type_id"); + // @TODO: can we combine handling of meta info and applied processing steps? + QSqlQuery subquery_info(db); + bool have_meta_info = prepareQueryMetaInfo_(subquery_info, + "ID_IdentifiedMolecule"); + QSqlQuery subquery_step(db); + bool have_applied_steps = + prepareQueryAppliedProcessingStep_(subquery_step, + "ID_IdentifiedMolecule"); + QSqlQuery subquery_parent(db); + bool have_parent_matches = tableExists_(db_name_, + "ID_ParentMatch"); + if (have_parent_matches) + { + subquery_parent.setForwardOnly(true); + subquery_parent.prepare("SELECT * FROM ID_ParentMatch " \ + "WHERE molecule_id = :id"); + } + + // load peptides: + query.bindValue(":molecule_type_id", int(ID::MoleculeType::PROTEIN) + 1); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + while (query.next()) + { + Key id = query.value("id").toLongLong(); + String sequence = query.value("identifier").toString(); + ID::IdentifiedPeptide peptide(AASequence::fromString(sequence)); + if (have_meta_info) + { + handleQueryMetaInfo_(subquery_info, peptide, id); + } + if (have_applied_steps) + { + handleQueryAppliedProcessingStep_(subquery_step, peptide, id); + } + if (have_parent_matches) + { + handleQueryParentMatch_(subquery_parent, peptide.parent_matches, id); + } + ID::IdentifiedPeptideRef ref = id_data.registerIdentifiedPeptide(peptide); + identified_molecule_vars_[id] = ref; + } + + // load RNA oligos: + query.bindValue(":molecule_type_id", int(ID::MoleculeType::RNA) + 1); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + while (query.next()) + { + Key id = query.value("id").toLongLong(); + String sequence = query.value("identifier").toString(); + ID::IdentifiedOligo oligo(NASequence::fromString(sequence)); + if (have_meta_info) + { + handleQueryMetaInfo_(subquery_info, oligo, id); + } + if (have_applied_steps) + { + handleQueryAppliedProcessingStep_(subquery_step, oligo, id); + } + if (have_parent_matches) + { + handleQueryParentMatch_(subquery_parent, oligo.parent_matches, id); + } + ID::IdentifiedOligoRef ref = id_data.registerIdentifiedOligo(oligo); + identified_molecule_vars_[id] = ref; + } + } + + + void OMSFileLoad::handleQueryPeakAnnotation_(QSqlQuery& query, + ID::ObservationMatch& match, + Key parent_id) + { + query.bindValue(":id", parent_id); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + while (query.next()) + { + QVariant processing_step_id = query.value("processing_step_id"); + std::optional processing_step_opt = std::nullopt; + if (!processing_step_id.isNull()) + { + processing_step_opt = + processing_step_refs_[processing_step_id.toLongLong()]; + } + PeptideHit::PeakAnnotation ann; + ann.annotation = query.value("peak_annotation").toString(); + ann.charge = query.value("peak_charge").toInt(); + ann.mz = query.value("peak_mz").toDouble(); + ann.intensity = query.value("peak_intensity").toDouble(); + match.peak_annotations[processing_step_opt].push_back(ann); + } + } + + + void OMSFileLoad::loadAdducts_(IdentificationData& id_data) + { + if (!tableExists_(db_name_, "AdductInfo")) return; + + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.setForwardOnly(true); + if (!query.exec("SELECT * FROM AdductInfo")) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + + while (query.next()) + { + EmpiricalFormula formula(query.value("formula").toString()); + AdductInfo adduct(query.value("name").toString(), formula, + query.value("charge").toInt(), + query.value("mol_multiplier").toInt()); + ID::AdductRef ref = id_data.registerAdduct(adduct); + adduct_refs_[query.value("id").toLongLong()] = ref; + } + } + + + void OMSFileLoad::loadObservationMatches_(IdentificationData& id_data) + { + if (!tableExists_(db_name_, "ID_ObservationMatch")) return; + + QSqlDatabase db = QSqlDatabase::database(db_name_); + QSqlQuery query(db); + query.setForwardOnly(true); + if (!query.exec("SELECT * FROM ID_ObservationMatch")) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + // @TODO: can we combine handling of meta info and applied processing steps? + QSqlQuery subquery_info(db); + bool have_meta_info = prepareQueryMetaInfo_(subquery_info, + "ID_ObservationMatch"); + QSqlQuery subquery_step(db); + bool have_applied_steps = + prepareQueryAppliedProcessingStep_(subquery_step, + "ID_ObservationMatch"); + QSqlQuery subquery_ann(db); + bool have_peak_annotations = + tableExists_(db_name_, "ID_ObservationMatch_PeakAnnotation"); + if (have_peak_annotations) + { + subquery_ann.setForwardOnly(true); + subquery_ann.prepare( + "SELECT * FROM ID_ObservationMatch_PeakAnnotation " \ + "WHERE parent_id = :id"); + } + + while (query.next()) + { + Key id = query.value("id").toLongLong(); + Key molecule_id = query.value("identified_molecule_id").toLongLong(); + Key query_id = query.value("observation_id").toLongLong(); + ID::ObservationMatch match(identified_molecule_vars_[molecule_id], + observation_refs_[query_id], + query.value("charge").toInt()); + QVariant adduct_id = query.value("adduct_id"); // adduct is optional + if (!adduct_id.isNull()) + { + match.adduct_opt = adduct_refs_[adduct_id.toLongLong()]; + } + if (have_meta_info) + { + handleQueryMetaInfo_(subquery_info, match, id); + } + if (have_applied_steps) + { + handleQueryAppliedProcessingStep_(subquery_step, match, id); + } + if (have_peak_annotations) + { + handleQueryPeakAnnotation_(subquery_ann, match, id); + } + ID::ObservationMatchRef ref = id_data.registerObservationMatch(match); + observation_match_refs_[id] = ref; + } + } + + + void OMSFileLoad::load(IdentificationData& id_data) + { + startProgress(0, 12, "Reading identification data from file"); + loadInputFiles_(id_data); + nextProgress(); + loadScoreTypes_(id_data); + nextProgress(); + loadProcessingSoftwares_(id_data); + nextProgress(); + loadDBSearchParams_(id_data); + nextProgress(); + loadProcessingSteps_(id_data); + nextProgress(); + loadObservations_(id_data); + nextProgress(); + loadParentSequences_(id_data); + nextProgress(); + loadParentGroupSets_(id_data); + nextProgress(); + loadIdentifiedCompounds_(id_data); + nextProgress(); + loadIdentifiedSequences_(id_data); + nextProgress(); + loadAdducts_(id_data); + nextProgress(); + loadObservationMatches_(id_data); + endProgress(); + // @TODO: load input match groups + } + + + void OMSFileLoad::loadMapMetaData_(FeatureMap& features) + { + if (!tableExists_(db_name_, "FEAT_MapMetaData")) return; + + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.setForwardOnly(true); + if (!query.exec("SELECT * FROM FEAT_MapMetaData")) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + + query.next(); // there should be only one row + Key id = query.value("unique_id").toLongLong(); + features.setUniqueId(id); + features.setIdentifier(query.value("identifier").toString()); + features.setLoadedFilePath(query.value("file_path").toString()); + String file_type = query.value("file_type").toString(); + features.setLoadedFilePath(FileTypes::nameToType(file_type)); + QSqlQuery query_meta(QSqlDatabase::database(db_name_)); + if (prepareQueryMetaInfo_(query_meta, "FEAT_MapMetaData")) + { + handleQueryMetaInfo_(query_meta, features, id); + } + } + + + void OMSFileLoad::loadDataProcessing_(FeatureMap& features) + { + if (!tableExists_(db_name_, "FEAT_DataProcessing")) return; + + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.setForwardOnly(true); + if (!query.exec("SELECT * FROM FEAT_DataProcessing ORDER BY position ASC")) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + + QSqlQuery subquery_info(QSqlDatabase::database(db_name_)); + bool have_meta_info = prepareQueryMetaInfo_(subquery_info, "FEAT_DataProcessing"); + + while (query.next()) + { + DataProcessing proc; + Software sw(query.value("software_name").toString(), + query.value("software_version").toString()); + proc.setSoftware(sw); + vector actions = + ListUtils::create(query.value("processing_actions").toString()); + for (const String& action : actions) + { + auto pos = find(begin(DataProcessing::NamesOfProcessingAction), + end(DataProcessing::NamesOfProcessingAction), action); + if (pos != end(DataProcessing::NamesOfProcessingAction)) + { + Size index = pos - begin(DataProcessing::NamesOfProcessingAction); + proc.getProcessingActions().insert(DataProcessing::ProcessingAction(index)); + } + else // @TODO: throw an exception here? + { + OPENMS_LOG_ERROR << "Error: unknown data processing action '" << action << "' - skipping"; + } + } + DateTime time; + time.set(query.value("completion_time").toString()); + proc.setCompletionTime(time); + if (have_meta_info) + { + Key id = query.value("id").toLongLong(); + handleQueryMetaInfo_(subquery_info, proc, id); + } + features.getDataProcessing().push_back(proc); + } + } + + + Feature OMSFileLoad::loadFeatureAndSubordinates_( + QSqlQuery& query_feat, std::optional& query_meta, + std::optional& query_hull, std::optional& query_match) + { + Feature feature; + int id = query_feat.value("id").toInt(); + feature.setRT(query_feat.value("rt").toDouble()); + feature.setMZ(query_feat.value("mz").toDouble()); + feature.setIntensity(query_feat.value("intensity").toDouble()); + feature.setCharge(query_feat.value("charge").toInt()); + feature.setWidth(query_feat.value("width").toDouble()); + feature.setOverallQuality(query_feat.value("overall_quality").toDouble()); + feature.setQuality(0, query_feat.value("rt_quality").toDouble()); + feature.setQuality(1, query_feat.value("mz_quality").toDouble()); + feature.setUniqueId(query_feat.value("unique_id").toLongLong()); + QVariant primary_id = query_feat.value("primary_molecule_id"); // optional + if (!primary_id.isNull()) + { + feature.setPrimaryID(identified_molecule_vars_[primary_id.toLongLong()]); + } + // meta data: + if (query_meta) + { + handleQueryMetaInfo_(*query_meta, feature, id); + } + // convex hulls: + if (query_hull) + { + query_hull->bindValue(":id", id); + if (!query_hull->exec()) + { + raiseDBError_(query_hull->lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + while (query_hull->next()) + { + Size hull_index = query_hull->value("hull_index").toUInt(); + // first row should have max. hull index (sorted descending): + if (feature.getConvexHulls().size() <= hull_index) + { + feature.getConvexHulls().resize(hull_index + 1); + } + ConvexHull2D::PointType point(query_hull->value("point_x").toDouble(), + query_hull->value("point_y").toDouble()); + // @TODO: this may be inefficient (see implementation of "addPoint"): + feature.getConvexHulls()[hull_index].addPoint(point); + } + } + // ID matches: + if (query_match) + { + query_match->bindValue(":id", id); + if (!query_match->exec()) + { + raiseDBError_(query_match->lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + while (query_match->next()) + { + Key match_id = query_match->value("observation_match_id").toLongLong(); + feature.addIDMatch(observation_match_refs_[match_id]); + } + } + // subordinates: + QSqlQuery query_sub(QSqlDatabase::database(db_name_)); + query_sub.setForwardOnly(true); + QString sql = "SELECT * FROM FEAT_Feature WHERE subordinate_of = " + + QString::number(id) + " ORDER BY id ASC"; + if (!query_sub.exec(sql)) + { + raiseDBError_(query_sub.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + while (query_sub.next()) + { + Feature sub = loadFeatureAndSubordinates_(query_sub, query_meta, + query_hull, query_match); + feature.getSubordinates().push_back(sub); + } + return feature; + } + + + void OMSFileLoad::loadFeatures_(FeatureMap& features) + { + if (!tableExists_(db_name_, "FEAT_Feature")) return; + + QSqlDatabase db = QSqlDatabase::database(db_name_); + + // start with top-level features only: + QSqlQuery query_feat(db); + query_feat.setForwardOnly(true); + if (!query_feat.exec("SELECT * FROM FEAT_Feature WHERE subordinate_of IS NULL ORDER BY id ASC")) + { + raiseDBError_(query_feat.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error reading from database"); + } + // prepare sub-queries (optional - corresponding tables may not be present): + std::optional query_meta(db); + if (!prepareQueryMetaInfo_(*query_meta, "FEAT_Feature")) + { + query_meta = std::nullopt; + } + std::optional query_hull; + if (tableExists_(db_name_, "FEAT_ConvexHull")) + { + query_hull = QSqlQuery(db); + query_hull->prepare("SELECT * FROM FEAT_ConvexHull WHERE feature_id = :id " \ + "ORDER BY hull_index DESC, point_index ASC"); + } + std::optional query_match; + if (tableExists_(db_name_, "FEAT_ObservationMatch")) + { + query_match = QSqlQuery(db); + query_match->prepare("SELECT * FROM FEAT_ObservationMatch WHERE feature_id = :id"); + } + + while (query_feat.next()) + { + Feature feature = loadFeatureAndSubordinates_(query_feat, query_meta, + query_hull, query_match); + features.push_back(feature); + } + } + + + void OMSFileLoad::load(FeatureMap& features) + { + load(features.getIdentificationData()); // load IDs, if any + startProgress(0, 3, "Reading feature data from file"); + loadMapMetaData_(features); + nextProgress(); + loadDataProcessing_(features); + nextProgress(); + loadFeatures_(features); + endProgress(); + } +} diff --git a/src/openms/source/FORMAT/OMSFileStore.cpp b/src/openms/source/FORMAT/OMSFileStore.cpp new file mode 100644 index 00000000000..e686c6b57d0 --- /dev/null +++ b/src/openms/source/FORMAT/OMSFileStore.cpp @@ -0,0 +1,1605 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Hendrik Weisser $ +// $Authors: Hendrik Weisser $ +// -------------------------------------------------------------------------- + +#include +#include +#include +#include + +#include +#include +// strangely, this is needed for type conversions in "QSqlQuery::bindValue": +#include + +using namespace std; + +using ID = OpenMS::IdentificationData; + +namespace OpenMS::Internal +{ + int version_number = 1; + + void raiseDBError_(const QSqlError& error, int line, + const char* function, const String& context) + { + String msg = context + ": " + error.text(); + throw Exception::FailedAPICall(__FILE__, line, function, msg); + } + + + bool tableExists_(const String& db_name, const String& name) + { + QSqlDatabase db = QSqlDatabase::database(db_name.toQString()); + return db.tables(QSql::Tables).contains(name.toQString()); + } + + + OMSFileStore::OMSFileStore(const String& filename, LogType log_type): + db_name_("store_" + filename.toQString() + "_" + + QString::number(UniqueIdGenerator::getUniqueId())) + { + setLogType(log_type); + + // delete output file if present: + File::remove(filename); + + // open database: + QSqlDatabase db = QSqlDatabase::addDatabase("QSQLITE", db_name_); + db.setDatabaseName(filename.toQString()); + if (!db.open()) + { + raiseDBError_(db.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error opening SQLite database"); + // if d'tor doesn't get called, DB connection (db_name_) doesn't get + // removed, but that shouldn't be a big problem + } + + // configure database settings: + QSqlQuery query(db); + // foreign key constraints are disabled by default - turn them on: + // @TODO: performance impact? (seems negligible, but should be tested more) + if (!query.exec("PRAGMA foreign_keys = ON")) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error configuring database"); + } + // disable synchronous filesystem access and the rollback journal to greatly + // increase write performance - since we write a new output file every time, + // we don't have to worry about database consistency: + if (!query.exec("PRAGMA synchronous = OFF")) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error configuring database"); + } + if (!query.exec("PRAGMA journal_mode = OFF")) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error configuring database"); + } + } + + + OMSFileStore::~OMSFileStore() + { + QSqlDatabase::database(db_name_).close(); + QSqlDatabase::removeDatabase(db_name_); + } + + + void OMSFileStore::createTable_(const String& name, + const String& definition, + bool may_exist) + { + QString sql_create = "CREATE TABLE "; + if (may_exist) sql_create += "IF NOT EXISTS "; + sql_create += name.toQString() + " (" + definition.toQString() + ")"; + QSqlQuery query(QSqlDatabase::database(db_name_)); + if (!query.exec(sql_create)) + { + String msg = "error creating database table " + name; + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, msg); + } + } + + + void OMSFileStore::storeVersionAndDate_() + { + createTable_("version", + "OMSFile INT NOT NULL, " \ + "date TEXT NOT NULL, " \ + "OpenMS TEXT, " \ + "build_date TEXT"); + + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.prepare("INSERT INTO version VALUES (" \ + ":format_version, " \ + "datetime('now'), " \ + ":openms_version, " \ + ":build_date)"); + query.bindValue(":format_version", version_number); + query.bindValue(":openms_version", VersionInfo::getVersion().toQString()); + query.bindValue(":build_date", VersionInfo::getTime().toQString()); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + + + void OMSFileStore::createTableMoleculeType_() + { + createTable_("ID_MoleculeType", + "id INTEGER PRIMARY KEY NOT NULL, " \ + "molecule_type TEXT UNIQUE NOT NULL"); + QString sql_insert = + "INSERT INTO ID_MoleculeType VALUES " \ + "(1, 'PROTEIN'), " \ + "(2, 'COMPOUND'), " \ + "(3, 'RNA')"; + QSqlQuery query(QSqlDatabase::database(db_name_)); + if (!query.exec(sql_insert)) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + + + void OMSFileStore::createTableDataValue_() + { + createTable_("DataValue_DataType", + "id INTEGER PRIMARY KEY NOT NULL, " \ + "data_type TEXT UNIQUE NOT NULL"); + QString sql_insert = + "INSERT INTO DataValue_DataType VALUES " \ + "(1, 'STRING_VALUE'), " \ + "(2, 'INT_VALUE'), " \ + "(3, 'DOUBLE_VALUE'), " \ + "(4, 'STRING_LIST'), " \ + "(5, 'INT_LIST'), " \ + "(6, 'DOUBLE_LIST')"; + QSqlQuery query(QSqlDatabase::database(db_name_)); + if (!query.exec(sql_insert)) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + createTable_( + "DataValue", + "id INTEGER PRIMARY KEY NOT NULL, " \ + "data_type_id INTEGER, " \ + "value TEXT, " \ + "FOREIGN KEY (data_type_id) REFERENCES DataValue_DataType (id)"); + // @TODO: add support for units + // prepare query for inserting data: + query.prepare("INSERT INTO DataValue VALUES (" \ + "NULL, " \ + ":data_type, " \ + ":value)"); + prepared_queries_["DataValue"] = query; + } + + + OMSFileStore::Key OMSFileStore::storeDataValue_(const DataValue& value) + { + // this assumes the "DataValue" table exists already! + // @TODO: split this up and make several tables for different types? + QSqlQuery& query = prepared_queries_["DataValue"]; + if (value.isEmpty()) // use NULL as the type for empty values + { + query.bindValue(":data_type", QVariant(QVariant::Int)); + } + else + { + query.bindValue(":data_type", int(value.valueType()) + 1); + } + query.bindValue(":value", value.toQString()); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + return query.lastInsertId().toLongLong(); + } + + + void OMSFileStore::createTableCVTerm_() + { + createTable_("CVTerm", + "id INTEGER PRIMARY KEY NOT NULL, " \ + "accession TEXT UNIQUE, " \ + "name TEXT NOT NULL, " \ + "cv_identifier_ref TEXT, " \ + // does this constrain "name" if "accession" is NULL? + "UNIQUE (accession, name)"); + // @TODO: add support for unit and value + // prepare query for inserting data: + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.prepare("INSERT OR IGNORE INTO CVTerm VALUES (" \ + "NULL, " \ + ":accession, " \ + ":name, " \ + ":cv_identifier_ref)"); + prepared_queries_["CVTerm"] = query; + // alternative query if CVTerm already exists: + query.prepare("SELECT id FROM CVTerm " \ + "WHERE accession = :accession AND name = :name"); + prepared_queries_["CVTerm_2"] = query; + } + + + OMSFileStore::Key OMSFileStore::storeCVTerm_(const CVTerm& cv_term) + { + // this assumes the "CVTerm" table exists already! + QSqlQuery& query = prepared_queries_["CVTerm"]; + if (cv_term.getAccession().empty()) // use NULL for empty accessions + { + query.bindValue(":accession", QVariant(QVariant::String)); + } + else + { + query.bindValue(":accession", cv_term.getAccession().toQString()); + } + query.bindValue(":name", cv_term.getName().toQString()); + query.bindValue(":cv_identifier_ref", + cv_term.getCVIdentifierRef().toQString()); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error updating database"); + } + if (query.lastInsertId().isValid()) + { + return query.lastInsertId().toLongLong(); + } + // else: insert has failed, record must already exist - get the key: + QSqlQuery& alt_query = prepared_queries_["CVTerm_2"]; + if (cv_term.getAccession().empty()) // use NULL for empty accessions + { + alt_query.bindValue(":accession", QVariant(QVariant::String)); + } + else + { + alt_query.bindValue(":accession", cv_term.getAccession().toQString()); + } + alt_query.bindValue(":name", cv_term.getName().toQString()); + if (!alt_query.exec() || !alt_query.next()) + { + raiseDBError_(alt_query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error querying database"); + } + return alt_query.value(0).toLongLong(); + } + + + void OMSFileStore::createTableMetaInfo_(const String& parent_table, + const String& key_column) + { + if (!tableExists_(db_name_, "DataValue")) createTableDataValue_(); + + String parent_ref = parent_table + " (" + key_column + ")"; + String table = parent_table + "_MetaInfo"; + createTable_( + table, + "parent_id INTEGER NOT NULL, " \ + "name TEXT NOT NULL, " \ + "data_value_id INTEGER NOT NULL, " \ + "FOREIGN KEY (parent_id) REFERENCES " + parent_ref + ", " \ + "FOREIGN KEY (data_value_id) REFERENCES DataValue (id), " \ + "PRIMARY KEY (parent_id, name)"); + + // prepare query for inserting data: + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.prepare("INSERT INTO " + table.toQString() + " VALUES (" \ + ":parent_id, " \ + ":name, " \ + ":data_value_id)"); + prepared_queries_[table] = query; + } + + + void OMSFileStore::storeMetaInfo_(const MetaInfoInterface& info, + const String& parent_table, + Key parent_id) + { + if (info.isMetaEmpty()) return; + + // this assumes the "..._MetaInfo" and "DataValue" tables exist already! + QSqlQuery& query = prepared_queries_[parent_table + "_MetaInfo"]; + query.bindValue(":parent_id", parent_id); + // this is inefficient, but MetaInfoInterface doesn't support iteration: + vector info_keys; + info.getKeys(info_keys); + for (const String& info_key : info_keys) + { + query.bindValue(":name", info_key.toQString()); + Key value_id = storeDataValue_(info.getMetaValue(info_key)); + query.bindValue(":data_value_id", value_id); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + } + + + void OMSFileStore::createTableAppliedProcessingStep_(const String& parent_table) + { + String table = parent_table + "_AppliedProcessingStep"; + createTable_( + table, + "parent_id INTEGER NOT NULL, " \ + "processing_step_id INTEGER, " \ + "processing_step_order INTEGER NOT NULL, " \ + "score_type_id INTEGER, " \ + "score REAL, " \ + "UNIQUE (parent_id, processing_step_id, score_type_id), " \ + "FOREIGN KEY (parent_id) REFERENCES " + parent_table + " (id), " \ + "FOREIGN KEY (score_type_id) REFERENCES ID_ScoreType (id), " \ + "FOREIGN KEY (processing_step_id) REFERENCES ID_ProcessingStep (id)"); + // @TODO: add constraint that "processing_step_id" and "score_type_id" can't both be NULL + // @TODO: add constraint that "processing_step_order" must match "..._id"? + // @TODO: normalize table? (splitting into multiple tables is awkward here) + // prepare query for inserting data: + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.prepare("INSERT INTO " + table.toQString() + " VALUES (" \ + ":parent_id, " \ + ":processing_step_id, " \ + ":processing_step_order, " \ + ":score_type_id, " \ + ":score)"); + prepared_queries_[table] = query; + } + + + void OMSFileStore::storeAppliedProcessingStep_( + const ID::AppliedProcessingStep& step, Size step_order, + const String& parent_table, Key parent_id) + { + // this assumes the "..._AppliedProcessingStep" table exists already! + QSqlQuery& query = prepared_queries_[parent_table + "_AppliedProcessingStep"]; + query.bindValue(":parent_id", parent_id); + query.bindValue(":processing_step_order", int(step_order)); + if (step.processing_step_opt) + { + query.bindValue(":processing_step_id", + Key(&(**step.processing_step_opt))); + if (step.scores.empty()) // insert processing step information only + { + query.bindValue(":score_type_id", QVariant(QVariant::Int)); // NULL + query.bindValue(":score", QVariant(QVariant::Double)); // NULL + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + } + else // use NULL for missing processing step reference + { + query.bindValue(":processing_step_id", QVariant(QVariant::Int)); + } + for (const auto& score_pair : step.scores) + { + query.bindValue(":score_type_id", Key(&(*score_pair.first))); + query.bindValue(":score", score_pair.second); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + } + + + void OMSFileStore::storeScoreTypes_(const IdentificationData& id_data) + { + if (id_data.getScoreTypes().empty()) return; + + createTableCVTerm_(); + createTable_( + "ID_ScoreType", + "id INTEGER PRIMARY KEY NOT NULL, " \ + "cv_term_id INTEGER NOT NULL, " \ + "higher_better NUMERIC NOT NULL CHECK (higher_better in (0, 1)), " \ + "FOREIGN KEY (cv_term_id) REFERENCES CVTerm (id)"); + + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.prepare("INSERT INTO ID_ScoreType VALUES (" \ + ":id, " \ + ":cv_term_id, " \ + ":higher_better)"); + for (const ID::ScoreType& score_type : id_data.getScoreTypes()) + { + Key cv_id = storeCVTerm_(score_type.cv_term); + query.bindValue(":id", Key(&score_type)); // use address as primary key + query.bindValue(":cv_term_id", cv_id); + query.bindValue(":higher_better", int(score_type.higher_better)); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + } + + + void OMSFileStore::storeInputFiles_(const IdentificationData& id_data) + { + if (id_data.getInputFiles().empty()) return; + + createTable_("ID_InputFile", + "id INTEGER PRIMARY KEY NOT NULL, " \ + "name TEXT UNIQUE NOT NULL, " \ + "experimental_design_id TEXT, " \ + "primary_files TEXT"); + + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.prepare("INSERT INTO ID_InputFile VALUES (" \ + ":id, " \ + ":name, " \ + ":experimental_design_id, " \ + ":primary_files)"); + for (const ID::InputFile& input : id_data.getInputFiles()) + { + query.bindValue(":id", Key(&input)); + query.bindValue(":name", input.name.toQString()); + query.bindValue(":experimental_design_id", + input.experimental_design_id.toQString()); + // @TODO: what if a primary file name contains ","? + String primary_files = ListUtils::concatenate(input.primary_files); + query.bindValue(":primary_files", primary_files.toQString()); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + } + + + void OMSFileStore::storeProcessingSoftwares_(const IdentificationData& id_data) + { + if (id_data.getProcessingSoftwares().empty()) return; + + createTable_("ID_ProcessingSoftware", + "id INTEGER PRIMARY KEY NOT NULL, " \ + "name TEXT NOT NULL, " \ + "version TEXT, " \ + "UNIQUE (name, version)"); + + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.prepare("INSERT INTO ID_ProcessingSoftware VALUES (" \ + ":id, " \ + ":name, " \ + ":version)"); + bool any_scores = false; // does any software have assigned scores stored? + for (const ID::ProcessingSoftware& software : id_data.getProcessingSoftwares()) + { + if (!software.assigned_scores.empty()) any_scores = true; + query.bindValue(":id", Key(&software)); + query.bindValue(":name", software.getName().toQString()); + query.bindValue(":version", software.getVersion().toQString()); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + if (any_scores) + { + createTable_( + "ID_ProcessingSoftware_AssignedScore", + "software_id INTEGER NOT NULL, " \ + "score_type_id INTEGER NOT NULL, " \ + "score_type_order INTEGER NOT NULL, " \ + "UNIQUE (software_id, score_type_id), " \ + "UNIQUE (software_id, score_type_order), " \ + "FOREIGN KEY (software_id) REFERENCES ID_ProcessingSoftware (id), " \ + "FOREIGN KEY (score_type_id) REFERENCES ID_ScoreType (id)"); + + query.prepare( + "INSERT INTO ID_ProcessingSoftware_AssignedScore VALUES (" \ + ":software_id, " \ + ":score_type_id, " \ + ":score_type_order)"); + for (const ID::ProcessingSoftware& software : id_data.getProcessingSoftwares()) + { + query.bindValue(":software_id", Key(&software)); + Size counter = 0; + for (ID::ScoreTypeRef score_type_ref : software.assigned_scores) + { + query.bindValue(":score_type_id", Key(&(*score_type_ref))); + query.bindValue(":score_type_order", int(++counter)); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + } + } + } + + + void OMSFileStore::storeDBSearchParams_(const IdentificationData& id_data) + { + if (id_data.getDBSearchParams().empty()) return; + + if (!tableExists_(db_name_, "ID_MoleculeType")) createTableMoleculeType_(); + + createTable_( + "ID_DBSearchParam", + "id INTEGER PRIMARY KEY NOT NULL, " \ + "molecule_type_id INTEGER NOT NULL, " \ + "mass_type_average NUMERIC NOT NULL CHECK (mass_type_average in (0, 1)) DEFAULT 0, " \ + "database TEXT, " \ + "database_version TEXT, " \ + "taxonomy TEXT, " \ + "charges TEXT, " \ + "fixed_mods TEXT, " \ + "variable_mods TEXT, " \ + "precursor_mass_tolerance REAL, " \ + "fragment_mass_tolerance REAL, " \ + "precursor_tolerance_ppm NUMERIC NOT NULL CHECK (precursor_tolerance_ppm in (0, 1)) DEFAULT 0, " \ + "fragment_tolerance_ppm NUMERIC NOT NULL CHECK (fragment_tolerance_ppm in (0, 1)) DEFAULT 0, " \ + "digestion_enzyme TEXT, " \ + "missed_cleavages NUMERIC, " \ + "min_length NUMERIC, " \ + "max_length NUMERIC, " \ + "FOREIGN KEY (molecule_type_id) REFERENCES ID_MoleculeType (id)"); + + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.prepare("INSERT INTO ID_DBSearchParam VALUES (" \ + ":id, " \ + ":molecule_type_id, " \ + ":mass_type_average, " \ + ":database, " \ + ":database_version, " \ + ":taxonomy, " \ + ":charges, " \ + ":fixed_mods, " \ + ":variable_mods, " \ + ":precursor_mass_tolerance, " \ + ":fragment_mass_tolerance, " \ + ":precursor_tolerance_ppm, " \ + ":fragment_tolerance_ppm, " \ + ":digestion_enzyme, " \ + ":missed_cleavages, " \ + ":min_length, " \ + ":max_length)"); + for (const ID::DBSearchParam& param : id_data.getDBSearchParams()) + { + query.bindValue(":id", Key(¶m)); + query.bindValue(":molecule_type_id", int(param.molecule_type) + 1); + query.bindValue(":mass_type_average", int(param.mass_type)); + query.bindValue(":database", param.database.toQString()); + query.bindValue(":database_version", param.database_version.toQString()); + query.bindValue(":taxonomy", param.taxonomy.toQString()); + String charges = ListUtils::concatenate(param.charges, ","); + query.bindValue(":charges", charges.toQString()); + String fixed_mods = ListUtils::concatenate(param.fixed_mods, ","); + query.bindValue(":fixed_mods", fixed_mods.toQString()); + String variable_mods = ListUtils::concatenate(param.variable_mods, ","); + query.bindValue(":variable_mods", variable_mods.toQString()); + query.bindValue(":precursor_mass_tolerance", + param.precursor_mass_tolerance); + query.bindValue(":fragment_mass_tolerance", + param.fragment_mass_tolerance); + query.bindValue(":precursor_tolerance_ppm", + int(param.precursor_tolerance_ppm)); + query.bindValue(":fragment_tolerance_ppm", + int(param.fragment_tolerance_ppm)); + if (param.digestion_enzyme != nullptr) + { + query.bindValue(":digestion_enzyme", + param.digestion_enzyme->getName().toQString()); + } + else // bind NULL value + { + query.bindValue(":digestion_enzyme", QVariant(QVariant::String)); + } + query.bindValue(":missed_cleavages", uint(param.missed_cleavages)); + query.bindValue(":min_length", uint(param.min_length)); + query.bindValue(":max_length", uint(param.max_length)); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + } + + + void OMSFileStore::storeProcessingSteps_(const IdentificationData& id_data) + { + if (id_data.getProcessingSteps().empty()) return; + + createTable_( + "ID_ProcessingStep", + "id INTEGER PRIMARY KEY NOT NULL, " \ + "software_id INTEGER NOT NULL, " \ + "date_time TEXT, " \ + "search_param_id INTEGER, " \ + "FOREIGN KEY (search_param_id) REFERENCES ID_DBSearchParam (id)"); + // @TODO: add support for processing actions + // @TODO: store primary files in a separate table (like input files)? + // @TODO: store (optional) search param reference in a separate table? + + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.prepare("INSERT INTO ID_ProcessingStep VALUES (" \ + ":id, " \ + ":software_id, " \ + ":date_time, " \ + ":search_param_id)"); + bool any_input_files = false; + // use iterator here because we need one to look up the DB search params: + for (ID::ProcessingStepRef step_ref = id_data.getProcessingSteps().begin(); + step_ref != id_data.getProcessingSteps().end(); ++step_ref) + { + const ID::ProcessingStep& step = *step_ref; + if (!step.input_file_refs.empty()) any_input_files = true; + query.bindValue(":id", Key(&step)); + query.bindValue(":software_id", Key(&(*step.software_ref))); + query.bindValue(":date_time", step.date_time.get().toQString()); + auto pos = id_data.getDBSearchSteps().find(step_ref); + if (pos != id_data.getDBSearchSteps().end()) + { + query.bindValue(":search_param_id", Key(&(*pos->second))); + } + else + { + query.bindValue(":search_param_id", QVariant(QVariant::Int)); // NULL + } + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + if (any_input_files) + { + createTable_( + "ID_ProcessingStep_InputFile", + "processing_step_id INTEGER NOT NULL, " \ + "input_file_id INTEGER NOT NULL, " \ + "FOREIGN KEY (processing_step_id) REFERENCES ID_ProcessingStep (id), " \ + "FOREIGN KEY (input_file_id) REFERENCES ID_InputFile (id), " \ + "UNIQUE (processing_step_id, input_file_id)"); + + query.prepare("INSERT INTO ID_ProcessingStep_InputFile VALUES (" \ + ":processing_step_id, " \ + ":input_file_id)"); + + for (const ID::ProcessingStep& step : id_data.getProcessingSteps()) + { + query.bindValue(":processing_step_id", Key(&step)); + for (ID::InputFileRef input_file_ref : step.input_file_refs) + { + query.bindValue(":input_file_id", Key(&(*input_file_ref))); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + } + } + storeMetaInfos_(id_data.getProcessingSteps(), "ID_ProcessingStep"); + } + + + void OMSFileStore::storeObservations_(const IdentificationData& id_data) + { + if (id_data.getObservations().empty()) return; + + createTable_("ID_Observation", + "id INTEGER PRIMARY KEY NOT NULL, " \ + "data_id TEXT NOT NULL, " \ + "input_file_id INTEGER NOT NULL, " \ + "rt REAL, " \ + "mz REAL, " \ + "UNIQUE (data_id, input_file_id), " \ + "FOREIGN KEY (input_file_id) REFERENCES ID_InputFile (id)"); + + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.prepare("INSERT INTO ID_Observation VALUES (" \ + ":id, " \ + ":data_id, " \ + ":input_file_id, " \ + ":rt, " \ + ":mz)"); + for (const ID::Observation& obs : id_data.getObservations()) + { + query.bindValue(":id", Key(&obs)); // use address as primary key + query.bindValue(":data_id", obs.data_id.toQString()); + query.bindValue(":input_file_id", Key(&(*obs.input_file))); + + if (obs.rt == obs.rt) + { + query.bindValue(":rt", obs.rt); + } + else // NaN + { + query.bindValue(":rt", QVariant(QVariant::Double)); // NULL + } + if (obs.mz == obs.mz) + { + query.bindValue(":mz", obs.mz); + } + else // NaN + { + query.bindValue(":mz", QVariant(QVariant::Double)); // NULL + } + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + storeMetaInfos_(id_data.getObservations(), "ID_Observation"); + } + + + void OMSFileStore::storeParentSequences_(const IdentificationData& id_data) + { + if (id_data.getParentSequences().empty()) return; + + if (!tableExists_(db_name_, "ID_MoleculeType")) createTableMoleculeType_(); + + createTable_( + "ID_ParentSequence", + "id INTEGER PRIMARY KEY NOT NULL, " \ + "accession TEXT UNIQUE NOT NULL, " \ + "molecule_type_id INTEGER NOT NULL, " \ + "sequence TEXT, " \ + "description TEXT, " \ + "coverage REAL, " \ + "is_decoy NUMERIC NOT NULL CHECK (is_decoy in (0, 1)) DEFAULT 0, " \ + "FOREIGN KEY (molecule_type_id) REFERENCES ID_MoleculeType (id)"); + + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.prepare("INSERT INTO ID_ParentSequence VALUES (" \ + ":id, " \ + ":accession, " \ + ":molecule_type_id, " \ + ":sequence, " \ + ":description, " \ + ":coverage, " \ + ":is_decoy)"); + for (const ID::ParentSequence& parent : id_data.getParentSequences()) + { + query.bindValue(":id", Key(&parent)); // use address as primary key + query.bindValue(":accession", parent.accession.toQString()); + query.bindValue(":molecule_type_id", int(parent.molecule_type) + 1); + query.bindValue(":sequence", parent.sequence.toQString()); + query.bindValue(":description", parent.description.toQString()); + query.bindValue(":coverage", parent.coverage); + query.bindValue(":is_decoy", int(parent.is_decoy)); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + storeScoredProcessingResults_(id_data.getParentSequences(), "ID_ParentSequence"); + } + + + void OMSFileStore::storeParentGroupSets_(const IdentificationData& id_data) + { + if (id_data.getParentGroupSets().empty()) return; + + createTable_("ID_ParentGroupSet", + "id INTEGER PRIMARY KEY NOT NULL, " \ + "label TEXT, " \ + "grouping_order INTEGER NOT NULL"); + + createTable_( + "ID_ParentGroup", + "id INTEGER PRIMARY KEY NOT NULL, " \ + "grouping_id INTEGER NOT NULL, " \ + "score_type_id INTEGER, " \ + "score REAL, " \ + "UNIQUE (id, score_type_id), " \ + "FOREIGN KEY (grouping_id) REFERENCES ID_ParentGroupSet (id)"); + + createTable_( + "ID_ParentGroup_ParentSequence", + "group_id INTEGER NOT NULL, " \ + "parent_id INTEGER NOT NULL, " \ + "UNIQUE (group_id, parent_id), " \ + "FOREIGN KEY (group_id) REFERENCES ID_ParentGroup (id), " \ + "FOREIGN KEY (parent_id) REFERENCES ID_ParentSequence (id)"); + + QSqlDatabase db = QSqlDatabase::database(db_name_); + QSqlQuery query_grouping(db); + query_grouping.prepare("INSERT INTO ID_ParentGroupSet VALUES (" \ + ":id, " \ + ":label, " \ + ":grouping_order)"); + + QSqlQuery query_group(db); + query_group.prepare("INSERT INTO ID_ParentGroup VALUES (" \ + ":id, " \ + ":grouping_id, " \ + ":score_type_id, " \ + ":score)"); + + QSqlQuery query_parent(db); + query_parent.prepare( + "INSERT INTO ID_ParentGroup_ParentSequence VALUES (" \ + ":group_id, " \ + ":parent_id)"); + + Size counter = 0; + for (const ID::ParentGroupSet& grouping : id_data.getParentGroupSets()) + { + Key grouping_id = Key(&grouping); + query_grouping.bindValue(":id", grouping_id); + query_grouping.bindValue(":label", grouping.label.toQString()); + query_grouping.bindValue(":grouping_order", int(++counter)); + if (!query_grouping.exec()) + { + raiseDBError_(query_grouping.lastError(), __LINE__, + OPENMS_PRETTY_FUNCTION, "error inserting data"); + } + + for (const ID::ParentGroup& group : grouping.groups) + { + Key group_id = Key(&group); + query_group.bindValue(":id", group_id); + query_group.bindValue(":grouping_id", grouping_id); + if (group.scores.empty()) // store group with an empty score + { + query_group.bindValue(":score_type_id", QVariant(QVariant::Int)); + query_group.bindValue(":score", QVariant(QVariant::Double)); + if (!query_group.exec()) + { + raiseDBError_(query_group.lastError(), __LINE__, + OPENMS_PRETTY_FUNCTION, "error inserting data"); + } + } + else // store group multiple times with different scores + { + for (const auto& score_pair : group.scores) + { + query_group.bindValue(":score_type_id", Key(&(*score_pair.first))); + query_group.bindValue(":score", score_pair.second); + if (!query_group.exec()) + { + raiseDBError_(query_group.lastError(), __LINE__, + OPENMS_PRETTY_FUNCTION, "error inserting data"); + } + } + } + + query_parent.bindValue(":group_id", group_id); + for (ID::ParentSequenceRef parent_ref : group.parent_refs) + { + query_parent.bindValue(":parent_id", Key(&(*parent_ref))); + if (!query_parent.exec()) + { + raiseDBError_(query_parent.lastError(), __LINE__, + OPENMS_PRETTY_FUNCTION, "error inserting data"); + } + } + } + } + + storeScoredProcessingResults_(id_data.getParentGroupSets(), "ID_ParentGroupSet"); + } + + + void OMSFileStore::createTableIdentifiedMolecule_() + { + if (!tableExists_(db_name_, "ID_MoleculeType")) createTableMoleculeType_(); + + // use one table for all types of identified molecules to allow foreign key + // references from the input match table: + createTable_( + "ID_IdentifiedMolecule", + "id INTEGER PRIMARY KEY NOT NULL, " \ + "molecule_type_id INTEGER NOT NULL, " \ + "identifier TEXT NOT NULL, " \ + "UNIQUE (molecule_type_id, identifier), " \ + "FOREIGN KEY (molecule_type_id) REFERENCES ID_MoleculeType (id)"); + // prepare query for inserting data: + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.prepare("INSERT INTO ID_IdentifiedMolecule VALUES (" \ + ":id, " \ + ":molecule_type_id, " \ + ":identifier)"); + prepared_queries_["ID_IdentifiedMolecule"] = query; + } + + + void OMSFileStore::storeIdentifiedCompounds_(const IdentificationData& id_data) + { + if (id_data.getIdentifiedCompounds().empty()) return; + + if (!tableExists_(db_name_, "ID_IdentifiedMolecule")) + { + createTableIdentifiedMolecule_(); + } + QSqlQuery& query_molecule = prepared_queries_["ID_IdentifiedMolecule"]; + query_molecule.bindValue(":molecule_type_id", + int(ID::MoleculeType::COMPOUND) + 1); + + createTable_( + "ID_IdentifiedCompound", + "molecule_id INTEGER UNIQUE NOT NULL , " \ + "formula TEXT, " \ + "name TEXT, " \ + "smile TEXT, " \ + "inchi TEXT, " \ + "FOREIGN KEY (molecule_id) REFERENCES ID_IdentifiedMolecule (id)"); + QSqlQuery query_compound(QSqlDatabase::database(db_name_)); + query_compound.prepare("INSERT INTO ID_IdentifiedCompound VALUES (" \ + ":molecule_id, " \ + ":formula, " \ + ":name, " \ + ":smile, " \ + ":inchi)"); + for (const ID::IdentifiedCompound& compound : id_data.getIdentifiedCompounds()) + { + // use address as primary key: + query_molecule.bindValue(":id", Key(&compound)); + query_molecule.bindValue(":identifier", compound.identifier.toQString()); + if (!query_molecule.exec()) + { + raiseDBError_(query_molecule.lastError(), __LINE__, + OPENMS_PRETTY_FUNCTION, "error inserting data"); + } + query_compound.bindValue(":molecule_id", Key(&compound)); + query_compound.bindValue(":formula", + compound.formula.toString().toQString()); + query_compound.bindValue(":name", compound.name.toQString()); + query_compound.bindValue(":smile", compound.name.toQString()); + query_compound.bindValue(":inchi", compound.inchi.toQString()); + if (!query_compound.exec()) + { + raiseDBError_(query_compound.lastError(), __LINE__, + OPENMS_PRETTY_FUNCTION, "error inserting data"); + } + } + storeScoredProcessingResults_(id_data.getIdentifiedCompounds(), + "ID_IdentifiedMolecule"); + } + + + void OMSFileStore::storeIdentifiedSequences_(const IdentificationData& id_data) + { + if (id_data.getIdentifiedPeptides().empty() && + id_data.getIdentifiedOligos().empty()) return; + + if (!tableExists_(db_name_, "ID_IdentifiedMolecule")) + { + createTableIdentifiedMolecule_(); + } + QSqlQuery& query = prepared_queries_["ID_IdentifiedMolecule"]; + + bool any_parent_matches = false; + // store peptides: + query.bindValue(":molecule_type_id", int(ID::MoleculeType::PROTEIN) + 1); + for (const ID::IdentifiedPeptide& peptide : id_data.getIdentifiedPeptides()) + { + if (!peptide.parent_matches.empty()) any_parent_matches = true; + query.bindValue(":id", Key(&peptide)); // use address as primary key + query.bindValue(":identifier", peptide.sequence.toString().toQString()); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + storeScoredProcessingResults_(id_data.getIdentifiedPeptides(), + "ID_IdentifiedMolecule"); + // store RNA oligos: + query.bindValue(":molecule_type_id", int(ID::MoleculeType::RNA) + 1); + for (const ID::IdentifiedOligo& oligo : id_data.getIdentifiedOligos()) + { + if (!oligo.parent_matches.empty()) any_parent_matches = true; + query.bindValue(":id", Key(&oligo)); // use address as primary key + query.bindValue(":identifier", + QString::fromStdString(oligo.sequence.toString())); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + storeScoredProcessingResults_(id_data.getIdentifiedOligos(), + "ID_IdentifiedMolecule"); + + if (any_parent_matches) + { + createTableParentMatches_(); + for (const ID::IdentifiedPeptide& peptide : id_data.getIdentifiedPeptides()) + { + if (peptide.parent_matches.empty()) continue; + storeParentMatches_(peptide.parent_matches, Key(&peptide)); + } + for (const ID::IdentifiedOligo& oligo : id_data.getIdentifiedOligos()) + { + if (oligo.parent_matches.empty()) continue; + storeParentMatches_(oligo.parent_matches, Key(&oligo)); + } + } + } + + + void OMSFileStore::createTableParentMatches_() + { + createTable_( + "ID_ParentMatch", + "molecule_id INTEGER NOT NULL, " \ + "parent_id INTEGER NOT NULL, " \ + "start_pos NUMERIC, " \ + "end_pos NUMERIC, " \ + "left_neighbor TEXT, " \ + "right_neighbor TEXT, " \ + "UNIQUE (molecule_id, parent_id, start_pos, end_pos), " \ + "FOREIGN KEY (parent_id) REFERENCES ID_ParentSequence (id), " \ + "FOREIGN KEY (molecule_id) REFERENCES ID_IdentifiedMolecule (id)"); + // prepare query for inserting data: + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.prepare("INSERT INTO ID_ParentMatch VALUES (" \ + ":molecule_id, " \ + ":parent_id, " \ + ":start_pos, " \ + ":end_pos, " \ + ":left_neighbor, " \ + ":right_neighbor)"); + prepared_queries_["ID_ParentMatch"] = query; + } + + + void OMSFileStore::storeParentMatches_(const ID::ParentMatches& matches, + Key molecule_id) + { + // this assumes the "ID_ParentMatch" table exists already! + QSqlQuery& query = prepared_queries_["ID_ParentMatch"]; + // @TODO: cache the prepared query between function calls somehow? + query.bindValue(":molecule_id", molecule_id); + for (const auto& pair : matches) + { + query.bindValue(":parent_id", Key(&(*pair.first))); + for (const auto& match : pair.second) + { + if (match.start_pos != ID::ParentMatch::UNKNOWN_POSITION) + { + query.bindValue(":start_pos", uint(match.start_pos)); + } + else // use NULL value + { + query.bindValue(":start_pos", QVariant(QVariant::Int)); + } + if (match.end_pos != ID::ParentMatch::UNKNOWN_POSITION) + { + query.bindValue(":end_pos", uint(match.end_pos)); + } + else // use NULL value + { + query.bindValue(":end_pos", QVariant(QVariant::Int)); + } + query.bindValue(":left_neighbor", match.left_neighbor.toQString()); + query.bindValue(":right_neighbor", match.right_neighbor.toQString()); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + } + } + + + void OMSFileStore::storeAdducts_(const IdentificationData& id_data) + { + if (id_data.getAdducts().empty()) return; + + createTable_( + "AdductInfo", + "id INTEGER PRIMARY KEY NOT NULL, " \ + "name TEXT, " \ + "formula TEXT NOT NULL, " \ + "charge INTEGER NOT NULL, " \ + "mol_multiplier INTEGER NOT NULL CHECK (mol_multiplier > 0) DEFAULT 1, " \ + "UNIQUE (formula, charge)"); + + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.prepare("INSERT INTO AdductInfo VALUES (" \ + ":id, " \ + ":name, " \ + ":formula, " \ + ":charge, " \ + ":mol_multiplier)"); + for (const AdductInfo& adduct : id_data.getAdducts()) + { + query.bindValue(":id", Key(&adduct)); + query.bindValue(":name", adduct.getName().toQString()); + query.bindValue(":formula", adduct.getEmpiricalFormula().toString().toQString()); + query.bindValue(":charge", adduct.getCharge()); + query.bindValue(":mol_multiplier", adduct.getMolMultiplier()); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + } + + + OMSFileStore::Key OMSFileStore::getAddress_(const ID::IdentifiedMolecule& molecule_var) + { + switch (molecule_var.getMoleculeType()) + { + case ID::MoleculeType::PROTEIN: + return Key(&(*molecule_var.getIdentifiedPeptideRef())); + case ID::MoleculeType::COMPOUND: + return Key(&(*molecule_var.getIdentifiedCompoundRef())); + case ID::MoleculeType::RNA: + return Key(&(*molecule_var.getIdentifiedOligoRef())); + default: + throw Exception::NotImplemented(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION); + } + } + + + void OMSFileStore::storeObservationMatches_(const IdentificationData& id_data) + { + if (id_data.getObservationMatches().empty()) return; + + String table_def = + "id INTEGER PRIMARY KEY NOT NULL, " \ + "identified_molecule_id INTEGER NOT NULL, " \ + "observation_id INTEGER NOT NULL, " \ + "adduct_id INTEGER, " \ + "charge INTEGER, " \ + "FOREIGN KEY (identified_molecule_id) REFERENCES ID_IdentifiedMolecule (id), " \ + "FOREIGN KEY (observation_id) REFERENCES ID_Observation (id)"; + // add foreign key constraint if the adduct table exists (having the + // constraint without the table would cause an error on data insertion): + if (tableExists_(db_name_, "AdductInfo")) + { + table_def += ", FOREIGN KEY (adduct_id) REFERENCES AdductInfo (id)"; + } + createTable_("ID_ObservationMatch", table_def); + + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.prepare("INSERT INTO ID_ObservationMatch VALUES (" \ + ":id, " \ + ":identified_molecule_id, " \ + ":observation_id, " \ + ":adduct_id, " \ + ":charge)"); + bool any_peak_annotations = false; + for (const ID::ObservationMatch& match : id_data.getObservationMatches()) + { + if (!match.peak_annotations.empty()) any_peak_annotations = true; + query.bindValue(":id", Key(&match)); // use address as primary key + query.bindValue(":identified_molecule_id", getAddress_(match.identified_molecule_var)); + query.bindValue(":observation_id", Key(&(*match.observation_ref))); + if (match.adduct_opt) + { + query.bindValue(":adduct_id", Key(&(**match.adduct_opt))); + } + else // bind NULL value + { + query.bindValue(":adduct_id", QVariant(QVariant::Int)); + } + query.bindValue(":charge", match.charge); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + storeScoredProcessingResults_(id_data.getObservationMatches(), "ID_ObservationMatch"); + + if (any_peak_annotations) + { + createTable_( + "ID_ObservationMatch_PeakAnnotation", + "parent_id INTEGER NOT NULL, " \ + "processing_step_id INTEGER, " \ + "peak_annotation TEXT, " \ + "peak_charge INTEGER, " \ + "peak_mz REAL, " \ + "peak_intensity REAL, " \ + "FOREIGN KEY (parent_id) REFERENCES ID_ObservationMatch (id), " \ + "FOREIGN KEY (processing_step_id) REFERENCES ID_ProcessingStep (id)"); + + query.prepare( + "INSERT INTO ID_ObservationMatch_PeakAnnotation VALUES (" \ + ":parent_id, " \ + ":processing_step_id, " \ + ":peak_annotation, " \ + ":peak_charge, " \ + ":peak_mz, " \ + ":peak_intensity)"); + + for (const ID::ObservationMatch& match : id_data.getObservationMatches()) + { + if (match.peak_annotations.empty()) continue; + query.bindValue(":parent_id", Key(&match)); + for (const auto& pair : match.peak_annotations) + { + if (pair.first) // processing step given + { + query.bindValue(":processing_step_id", Key(&(**pair.first))); + } + else // use NULL value + { + query.bindValue(":processing_step_id", QVariant(QVariant::Int)); + } + for (const auto& peak_ann : pair.second) + { + query.bindValue(":peak_annotation", + peak_ann.annotation.toQString()); + query.bindValue(":peak_charge", peak_ann.charge); + query.bindValue(":peak_mz", peak_ann.mz); + query.bindValue(":peak_intensity", peak_ann.intensity); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + } + } + } + } + // create index on parent_id column + query.exec("CREATE INDEX PeakAnnotation_parent_id ON ID_ObservationMatch_PeakAnnotation (parent_id)"); + } + + + void OMSFileStore::store(const IdentificationData& id_data) + { + QSqlDatabase db = QSqlDatabase::database(db_name_); + startProgress(0, 13, "Writing identification data to file"); + // generally, create tables only if we have data to write - no empty ones! + db.transaction(); // avoid SQLite's "implicit transactions", improve runtime + storeVersionAndDate_(); + nextProgress(); // 1 + storeInputFiles_(id_data); + nextProgress(); // 2 + storeScoreTypes_(id_data); + nextProgress(); // 3 + storeProcessingSoftwares_(id_data); + nextProgress(); // 4 + storeDBSearchParams_(id_data); + nextProgress(); // 5 + storeProcessingSteps_(id_data); + nextProgress(); // 6 + storeObservations_(id_data); + nextProgress(); // 7 + storeParentSequences_(id_data); + nextProgress(); // 8 + storeParentGroupSets_(id_data); + nextProgress(); // 9 + storeIdentifiedCompounds_(id_data); + nextProgress(); // 10 + storeIdentifiedSequences_(id_data); + nextProgress(); // 11 + storeAdducts_(id_data); + nextProgress(); // 12 + storeObservationMatches_(id_data); + db.commit(); + endProgress(); + // @TODO: store input match groups + } + + + void OMSFileStore::storeFeatureAndSubordinates_( + const Feature& feature, int& feature_id, int parent_id) + { + QSqlQuery& query_feat = prepared_queries_["FEAT_Feature"]; + query_feat.bindValue(":id", feature_id); + query_feat.bindValue(":rt", feature.getRT()); + query_feat.bindValue(":mz", feature.getMZ()); + query_feat.bindValue(":intensity", feature.getIntensity()); + query_feat.bindValue(":charge", feature.getCharge()); + query_feat.bindValue(":width", feature.getWidth()); + query_feat.bindValue(":overall_quality", feature.getOverallQuality()); + query_feat.bindValue(":rt_quality", feature.getQuality(0)); + query_feat.bindValue(":mz_quality", feature.getQuality(1)); + query_feat.bindValue(":unique_id", qint64(feature.getUniqueId())); + if (feature.hasPrimaryID()) + { + query_feat.bindValue(":primary_molecule_id", getAddress_(feature.getPrimaryID())); + } + else // use NULL value + { + query_feat.bindValue(":primary_molecule_id", QVariant(QVariant::Int)); + } + if (parent_id >= 0) // feature is a subordinate + { + query_feat.bindValue(":subordinate_of", parent_id); + } + else // use NULL value + { + query_feat.bindValue(":subordinate_of", QVariant(QVariant::Int)); + } + if (!query_feat.exec()) + { + raiseDBError_(query_feat.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + storeMetaInfo_(feature, "FEAT_Feature", feature_id); + // store convex hulls: + const vector& hulls = feature.getConvexHulls(); + if (!hulls.empty()) + { + QSqlQuery& query_hull = prepared_queries_["FEAT_ConvexHull"]; + query_hull.bindValue(":feature_id", feature_id); + for (uint i = 0; i < hulls.size(); ++i) + { + query_hull.bindValue(":hull_index", i); + for (uint j = 0; j < hulls[i].getHullPoints().size(); ++j) + { + const ConvexHull2D::PointType& point = hulls[i].getHullPoints()[j]; + query_hull.bindValue(":point_index", j); + query_hull.bindValue(":point_x", point.getX()); + query_hull.bindValue(":point_y", point.getY()); + if (!query_hull.exec()) + { + raiseDBError_(query_hull.lastError(), __LINE__, + OPENMS_PRETTY_FUNCTION, "error inserting data"); + } + } + + } + } + // store ID input items: + if (!feature.getIDMatches().empty()) + { + QSqlQuery& query_match = prepared_queries_["FEAT_ObservationMatch"]; + query_match.bindValue(":feature_id", feature_id); + for (ID::ObservationMatchRef ref : feature.getIDMatches()) + { + query_match.bindValue(":observation_match_id", Key(&(*ref))); + if (!query_match.exec()) + { + raiseDBError_(query_match.lastError(), __LINE__, + OPENMS_PRETTY_FUNCTION, "error inserting data"); + } + } + } + // recurse into subordinates: + parent_id = feature_id; + ++feature_id; // variable is passed by reference, so effect is global + for (const Feature& sub : feature.getSubordinates()) + { + storeFeatureAndSubordinates_(sub, feature_id, parent_id); + } + } + + + void OMSFileStore::storeFeatures_(const FeatureMap& features) + { + if (features.empty()) return; + + createTable_("FEAT_Feature", + "id INTEGER PRIMARY KEY NOT NULL, " \ + "rt REAL, " \ + "mz REAL, " \ + "intensity REAL, " \ + "charge INTEGER, " \ + "width REAL, " \ + "overall_quality REAL, " \ + "rt_quality REAL, " \ + "mz_quality REAL, " \ + "unique_id INTEGER, " \ + "primary_molecule_id INTEGER, " \ + "subordinate_of INTEGER, " \ + "FOREIGN KEY (primary_molecule_id) REFERENCES ID_IdentifiedMolecule (id), " \ + "FOREIGN KEY (subordinate_of) REFERENCES FEAT_Feature (id), " \ + "CHECK (id > subordinate_of)"); // check to prevent cycles + + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.prepare("INSERT INTO FEAT_Feature VALUES (" \ + ":id, " \ + ":rt, " \ + ":mz, " \ + ":intensity, " \ + ":charge, " \ + ":width, " \ + ":overall_quality, " \ + ":rt_quality, " \ + ":mz_quality, " \ + ":unique_id, " \ + ":primary_molecule_id, " \ + ":subordinate_of)"); + prepared_queries_["FEAT_Feature"] = query; + // any meta infos on features? + if (anyFeaturePredicate_(features, [](const Feature& feature) { + return !feature.isMetaEmpty(); + })) + { + createTableMetaInfo_("FEAT_Feature"); + } + // any convex hulls on features? + if (anyFeaturePredicate_(features, [](const Feature& feature) { + return !feature.getConvexHulls().empty(); + })) + { + createTable_("FEAT_ConvexHull", + "feature_id INTEGER NOT NULL, " \ + "hull_index INTEGER NOT NULL CHECK (hull_index >= 0), " \ + "point_index INTEGER NOT NULL CHECK (point_index >= 0), " \ + "point_x REAL, " \ + "point_y REAL, " \ + "FOREIGN KEY (feature_id) REFERENCES FEAT_Feature (id)"); + query.prepare("INSERT INTO FEAT_ConvexHull VALUES (" \ + ":feature_id, " \ + ":hull_index, " \ + ":point_index, " \ + ":point_x, " \ + ":point_y)"); + prepared_queries_["FEAT_ConvexHull"] = query; + } + // any ID observations on features? + if (anyFeaturePredicate_(features, [](const Feature& feature) { + return !feature.getIDMatches().empty(); + })) + { + createTable_("FEAT_ObservationMatch", + "feature_id INTEGER NOT NULL, " \ + "observation_match_id INTEGER NOT NULL, " \ + "FOREIGN KEY (feature_id) REFERENCES FEAT_Feature (id), " \ + "FOREIGN KEY (observation_match_id) REFERENCES ID_ObservationMatch (id)"); + query.prepare("INSERT INTO FEAT_ObservationMatch VALUES (" \ + ":feature_id, " \ + ":observation_match_id)"); + prepared_queries_["FEAT_ObservationMatch"] = query; + } + + // features and their subordinates are stored in DFS-like order: + int feature_id = 0; + for (const Feature& feat : features) + { + storeFeatureAndSubordinates_(feat, feature_id, -1); + nextProgress(); + } + } + + + void OMSFileStore::storeMapMetaData_(const FeatureMap& features) + { + createTable_("FEAT_MapMetaData", + "unique_id INTEGER PRIMARY KEY, " \ + "identifier TEXT, " \ + "file_path TEXT, " \ + "file_type TEXT"); + QSqlQuery query(QSqlDatabase::database(db_name_)); + // @TODO: worth using a prepared query for just one insert? + query.prepare("INSERT INTO FEAT_MapMetaData VALUES (" \ + ":unique_id, " \ + ":identifier, " \ + ":file_path, " \ + ":file_type)"); + query.bindValue(":unique_id", qint64(features.getUniqueId())); + query.bindValue(":identifier", features.getIdentifier().toQString()); + query.bindValue(":file_path", features.getLoadedFilePath().toQString()); + String file_type = FileTypes::typeToName(features.getLoadedFileType()); + query.bindValue(":file_type", file_type.toQString()); + + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + if (!features.isMetaEmpty()) + { + createTableMetaInfo_("FEAT_MapMetaData", "unique_id"); + storeMetaInfo_(features, "FEAT_MapMetaData", qint64(features.getUniqueId())); + } + } + + + void OMSFileStore::storeDataProcessing_(const FeatureMap& features) + { + if (features.getDataProcessing().empty()) return; + + createTable_("FEAT_DataProcessing", + "id INTEGER PRIMARY KEY NOT NULL, " \ + "position INTEGER NOT NULL, " \ + "software_name TEXT, " \ + "software_version TEXT, " \ + "processing_actions TEXT, " \ + "completion_time TEXT"); + // "id" is needed to connect to meta info table (see "storeMetaInfos_"); + // "position" is position in the vector ("index" is a reserved word in SQL) + QSqlQuery query(QSqlDatabase::database(db_name_)); + query.prepare("INSERT INTO FEAT_DataProcessing VALUES (" \ + ":id, " \ + ":position, " \ + ":software_name, " \ + ":software_version, " \ + ":processing_actions, " \ + ":completion_time)"); + + int index = 0; + for (const DataProcessing& proc : features.getDataProcessing()) + { + query.bindValue(":id", Key(&proc)); + query.bindValue(":position", index); + query.bindValue(":software_name", proc.getSoftware().getName().toQString()); + query.bindValue(":software_version", proc.getSoftware().getVersion().toQString()); + String actions; + for (DataProcessing::ProcessingAction action : proc.getProcessingActions()) + { + if (!actions.empty()) actions += ","; // @TODO: use different separator? + actions += DataProcessing::NamesOfProcessingAction[action]; + } + query.bindValue(":processing_actions", actions.toQString()); + query.bindValue(":completion_time", proc.getCompletionTime().get().toQString()); + if (!query.exec()) + { + raiseDBError_(query.lastError(), __LINE__, OPENMS_PRETTY_FUNCTION, + "error inserting data"); + } + index++; + } + storeMetaInfos_(features.getDataProcessing(), "FEAT_DataProcessing"); + } + + + void OMSFileStore::store(const FeatureMap& features) + { + QSqlDatabase db = QSqlDatabase::database(db_name_); + db.transaction(); // avoid SQLite's "implicit transactions", improve runtime + if (features.getIdentificationData().empty()) + { + storeVersionAndDate_(); + } + else + { + store(features.getIdentificationData()); + } + startProgress(0, features.size() + 2, "Writing feature data to file"); + storeMapMetaData_(features); + nextProgress(); + storeDataProcessing_(features); + nextProgress(); + storeFeatures_(features); + db.commit(); + endProgress(); + } +} diff --git a/src/openms/source/FORMAT/OMSSAXMLFile.cpp b/src/openms/source/FORMAT/OMSSAXMLFile.cpp index 4f0502e1bad..eb0fc090c2f 100644 --- a/src/openms/source/FORMAT/OMSSAXMLFile.cpp +++ b/src/openms/source/FORMAT/OMSSAXMLFile.cpp @@ -138,7 +138,7 @@ namespace OpenMS // end of peptide id else if (tag_ == "MSHitSet") { - if (actual_peptide_id_.getHits().size() > 0 || load_empty_hits_) + if (!actual_peptide_id_.getHits().empty() || load_empty_hits_) { peptide_identifications_->push_back(actual_peptide_id_); } @@ -155,7 +155,7 @@ namespace OpenMS */ - if (mods_map_.has(actual_mod_type_.toInt()) && mods_map_[actual_mod_type_.toInt()].size() > 0) + if (mods_map_.has(actual_mod_type_.toInt()) && !mods_map_[actual_mod_type_.toInt()].empty()) { if (mods_map_[actual_mod_type_.toInt()].size() > 1) { @@ -306,7 +306,7 @@ namespace OpenMS } else if (tag_ == "MSHits_pepstart") { - if (value != "" && !actual_peptide_evidences_.empty()) + if (!value.empty() && !actual_peptide_evidences_.empty()) { actual_peptide_evidences_[0].setAABefore(value[0]); } @@ -315,7 +315,7 @@ namespace OpenMS } else if (tag_ == "MSHits_pepstop") { - if (value != "" && !actual_peptide_evidences_.empty()) + if (!value.empty() && !actual_peptide_evidences_.empty()) { actual_peptide_evidences_[0].setAAAfter(value[0]); } @@ -357,7 +357,7 @@ namespace OpenMS { // value might be ( OMSSA 2.1.8): 359.213256835938_3000.13720000002_controllerType=0 controllerNumber=1 scan=4655 // ( split; it->split(',', split); - if (it->size() > 0 && (*it)[0] != '#') + if (!it->empty() && (*it)[0] != '#') { Int omssa_mod_num = split[0].trim().toInt(); if (split.size() < 2) diff --git a/src/openms/source/FORMAT/OPTIONS/PeakFileOptions.cpp b/src/openms/source/FORMAT/OPTIONS/PeakFileOptions.cpp index 5917b3cd6b5..b81c05a0d42 100644 --- a/src/openms/source/FORMAT/OPTIONS/PeakFileOptions.cpp +++ b/src/openms/source/FORMAT/OPTIONS/PeakFileOptions.cpp @@ -362,7 +362,7 @@ namespace OpenMS precursor_mz_selected_ion_ = choice; } - bool PeakFileOptions::hasFilters() + bool PeakFileOptions::hasFilters() const { return (has_rt_range_ || hasMSLevels()); } diff --git a/src/openms/source/FORMAT/ParamCTDFile.cpp b/src/openms/source/FORMAT/ParamCTDFile.cpp index 5f83899d1c2..5a2466f9d0b 100644 --- a/src/openms/source/FORMAT/ParamCTDFile.cpp +++ b/src/openms/source/FORMAT/ParamCTDFile.cpp @@ -145,6 +145,11 @@ namespace OpenMS os << escapeXML(param_it->value.toString()) << R"(" type="output-file")"; tag_list.erase("output file"); } + else if (tag_list.find("output prefix") != tag_list.end()) + { + os << escapeXML(param_it->value.toString()) << R"(" type="output-prefix")"; + tag_list.erase("output prefix"); + } else if (param_it->valid_strings.size() == 2 && param_it->valid_strings[0] == "true" && param_it->valid_strings[1] == "false" && @@ -290,7 +295,9 @@ namespace OpenMS if (!restrictions.empty()) { if (param_it->tags.find("input file") != param_it->tags.end() || - param_it->tags.find("output file") != param_it->tags.end()) + param_it->tags.find("output file") != param_it->tags.end() || + param_it->tags.find("output prefix") != param_it->tags.end() + ) { os << " supported_formats=\"" << escapeXML(restrictions) << "\""; } diff --git a/src/openms/source/FORMAT/ParamXMLFile.cpp b/src/openms/source/FORMAT/ParamXMLFile.cpp index 0796e5cb9c3..8fccd1f9de9 100644 --- a/src/openms/source/FORMAT/ParamXMLFile.cpp +++ b/src/openms/source/FORMAT/ParamXMLFile.cpp @@ -128,60 +128,66 @@ namespace OpenMS switch (value_type) { case ParamValue::INT_VALUE: - os << indentation << "name) << "\" value=\"" << it->value.toString() << "\" type=\"int\""; + os << indentation << "name) << "\" value=\"" << it->value.toString() << R"(" type="int")"; break; case ParamValue::DOUBLE_VALUE: - os << indentation << "name) << "\" value=\"" << it->value.toString() << "\" type=\"double\""; + os << indentation << "name) << "\" value=\"" << it->value.toString() << R"(" type="double")"; break; case ParamValue::STRING_VALUE: if (tag_list.find("input file") != tag_list.end()) { - os << indentation << "name) << "\" value=\"" << writeXMLEscape(it->value.toString()) << "\" type=\"input-file\""; + os << indentation << "name) << "\" value=\"" << writeXMLEscape(it->value.toString()) << R"(" type="input-file")"; tag_list.erase("input file"); } else if (tag_list.find("output file") != tag_list.end()) { - os << indentation << "name) << "\" value=\"" << writeXMLEscape(it->value.toString()) << "\" type=\"output-file\""; + os << indentation << "name) << "\" value=\"" << writeXMLEscape(it->value.toString()) << R"(" type="output-file")"; tag_list.erase("output file"); } + else if (tag_list.find("output prefix") != tag_list.end()) + { + os << indentation << "name) << "\" value=\"" << writeXMLEscape(it->value.toString()) << R"(" type="output-prefix")"; + tag_list.erase("output prefix"); + } + else if (it->valid_strings.size() == 2 && it->valid_strings[0] == "true" && it->valid_strings[1] == "false" && it->value == "false") { stringParamIsFlag = true; - os << indentation << "name) << "\" value=\"" << Internal::encodeTab(writeXMLEscape(it->value.toString())) << "\" type=\"bool\""; + os << indentation << "name) << "\" value=\"" << Internal::encodeTab(writeXMLEscape(it->value.toString())) << R"(" type="bool")"; } else { - os << indentation << "name) << "\" value=\"" << Internal::encodeTab(writeXMLEscape(it->value.toString())) << "\" type=\"string\""; + os << indentation << "name) << "\" value=\"" << Internal::encodeTab(writeXMLEscape(it->value.toString())) << R"(" type="string")"; } break; case ParamValue::STRING_LIST: if (tag_list.find("input file") != tag_list.end()) { - os << indentation << "name) << "\" type=\"input-file\""; + os << indentation << "name) << R"(" type="input-file")"; tag_list.erase("input file"); } else if (tag_list.find("output file") != tag_list.end()) { - os << indentation << "name) << "\" type=\"output-file\""; + os << indentation << "name) << R"(" type="output-file")"; tag_list.erase("output file"); } else { - os << indentation << "name) << "\" type=\"string\""; + os << indentation << "name) << R"(" type="string")"; } break; case ParamValue::INT_LIST: - os << indentation << "name) << "\" type=\"int\""; + os << indentation << "name) << R"(" type="int")"; break; case ParamValue::DOUBLE_LIST: - os << indentation << "name) << "\" type=\"double\""; + os << indentation << "name) << R"(" type="double")"; break; default: @@ -280,7 +286,7 @@ namespace OpenMS case ParamValue::STRING_VALUE: case ParamValue::STRING_LIST: - if (it->valid_strings.size() != 0) + if (!it->valid_strings.empty()) { restrictions.concatenate(it->valid_strings.begin(), it->valid_strings.end(), ","); } @@ -290,9 +296,11 @@ namespace OpenMS break; } // for files we store the restrictions as supported_formats - if (restrictions != "") + if (!restrictions.empty()) { - if (it->tags.find("input file") != it->tags.end() || it->tags.find("output file") != it->tags.end()) + if (it->tags.find("input file") != it->tags.end() + || it->tags.find("output file") != it->tags.end() + || it->tags.find("output prefix") != it->tags.end()) { os << " supported_formats=\"" << writeXMLEscape(restrictions) << "\""; } diff --git a/src/openms/source/FORMAT/PepNovoOutfile.cpp b/src/openms/source/FORMAT/PepNovoOutfile.cpp index 3f71920a442..a8bb196d8d3 100644 --- a/src/openms/source/FORMAT/PepNovoOutfile.cpp +++ b/src/openms/source/FORMAT/PepNovoOutfile.cpp @@ -189,7 +189,7 @@ namespace OpenMS //cout<<"INDEX: "<0) + if (!index_to_precursor.empty()) { if (index_to_precursor.find(index) != index_to_precursor.end()) { diff --git a/src/openms/source/FORMAT/PepXMLFile.cpp b/src/openms/source/FORMAT/PepXMLFile.cpp index a98d00f751b..c427f383470 100644 --- a/src/openms/source/FORMAT/PepXMLFile.cpp +++ b/src/openms/source/FORMAT/PepXMLFile.cpp @@ -437,14 +437,14 @@ namespace OpenMS replace(base_name.begin(), base_name.end(), '.', '_'); } - f << "" << "\n"; - f << "" << "\n"; - f << "" << "\n"; + f << R"()" << "\n"; + f << R"()" << "\n"; + f << "" << "\n"; String enzyme_name = search_params.digestion_enzyme.getName(); f << "\t" << "\n"; f << "\t\t sub_regex; search_params.digestion_enzyme.getRegEx().split(")",sub_regex); @@ -459,7 +459,7 @@ namespace OpenMS f << "\" no_cut=\"P"; } } - f << "\" sense=\"C\"/>" << "\n"; + f << R"(" sense="C"/>)" << "\n"; f << "\t" << "\n"; f << "\t" << "\n"; - f << "\t\t" << "\n"; + f << R"(" out_data_type="" out_data="" search_id="1">)" << "\n"; + f << "\t\t)" << "\n"; // register modifications @@ -534,7 +534,7 @@ namespace OpenMS << "getOrigin() << "\" massdiff=\"" << precisionWrapper(mod->getDiffMonoMass()) << "\" mass=\"" << precisionWrapper(ef.getMonoWeight()) - << "\" variable=\"Y\" binary=\"N\" description=\"" << *it << "\"/>" + << R"(" variable="Y" binary="N" description=")" << *it << "\"/>" << "\n"; } @@ -542,20 +542,20 @@ namespace OpenMS { const ResidueModification* mod = ModificationsDB::getInstance()->getModification(*it, "", ResidueModification::N_TERM); f << "\t\t" - << "getDiffMonoMass()) << "\" mass=\"" << precisionWrapper(mod->getMonoMass()) - << "\" variable=\"Y\" description=\"" << *it - << "\" protein_terminus=\"\"/>" << "\n"; + << R"(" variable="Y" description=")" << *it + << R"(" protein_terminus=""/>)" << "\n"; } for (set::const_iterator it = c_term_mods.begin(); it != c_term_mods.end(); ++it) { const ResidueModification* mod = ModificationsDB::getInstance()->getModification(*it, "", ResidueModification::C_TERM); f << "\t\t" - << "getDiffMonoMass()) << "\" mass=\"" << precisionWrapper(mod->getMonoMass()) - << "\" variable=\"Y\" description=\"" << *it - << "\" protein_terminus=\"\"/>" << "\n"; + << R"(" variable="Y" description=")" << *it + << R"(" protein_terminus=""/>)" << "\n"; } f << "\t" << "\n"; @@ -673,15 +673,15 @@ namespace OpenMS f << pe.getProteinAccession(); - f << "\" num_tot_proteins=\"1\" num_matched_ions=\"0\" tot_num_ions=\"0\" calc_neutral_pep_mass=\"" << precisionWrapper(precursor_neutral_mass) - << "\" massdiff=\"0.0\" num_tol_term=\""; + f << R"(" num_tot_proteins="1" num_matched_ions="0" tot_num_ions="0" calc_neutral_pep_mass=")" << precisionWrapper(precursor_neutral_mass) + << R"(" massdiff="0.0" num_tol_term=")"; Int num_tol_term = 1; if ((pe.getAABefore() == 'R' || pe.getAABefore() == 'K') && search_params.digestion_enzyme.getName() == "Trypsin") { num_tol_term = 2; } f << num_tol_term; - f << "\" num_missed_cleavages=\"0\" is_rejected=\"0\" protein_descr=\"Protein No. 1\">" << "\n"; + f << R"(" num_missed_cleavages="0" is_rejected="0" protein_descr="Protein No. 1">)" << "\n"; // multiple protein hits: if (pes.size() > 1) @@ -819,8 +819,8 @@ namespace OpenMS // check if score type is XTandem or qvalue/fdr if (pep.getScoreType() == "XTandem") { - f << "\t\t\t\n"; - f << "\t\t\t\n"; + f << "\t\t\t\n"; @@ -832,8 +832,8 @@ namespace OpenMS } else if (h.metaValueExists("XTandem_score")) { - f << "\t\t\t\n"; - f << "\t\t\t\n"; + f << "\t\t\t\n"; @@ -843,29 +843,29 @@ namespace OpenMS f << h.getMetaValue("XTandem_score") << "\"" << "/>\n"; } } - f << "\t\t\t\n"; + f << "\t\t\t\n"; } else if (search_engine_name == "Comet") { - f << "\t\t\t\n"; // name: Comet:xcorr - f << "\t\t\t\n"; // name: Comet:deltacn - f << "\t\t\t\n"; // name: Comet:deltacnstar - f << "\t\t\t\n"; // name: Comet:spscore - f << "\t\t\t\n"; // name: Comet:sprank - f << "\t\t\t\n"; // name: Comet:expect + f << "\t\t\t\n"; // name: Comet:xcorr + f << "\t\t\t\n"; // name: Comet:deltacn + f << "\t\t\t\n"; // name: Comet:deltacnstar + f << "\t\t\t\n"; // name: Comet:spscore + f << "\t\t\t\n"; // name: Comet:sprank + f << "\t\t\t\n"; // name: Comet:expect } else if (search_engine_name == "MASCOT") { - f << "\t\t\t\n"; - f << "\t\t\t\n"; + f << "\t\t\t\n"; + f << "\t\t\t\n"; } else if (search_engine_name == "OMSSA") { - f << "\t\t\t\n"; + f << "\t\t\t\n"; } else if (search_engine_name == "MSGFPlus") { - f << "\t\t\t\n"; + f << "\t\t\t\n"; } else if (search_engine_name == "Percolator") { @@ -873,24 +873,24 @@ namespace OpenMS if (h.metaValueExists("MS:1001492")) { svm_score = static_cast(h.getMetaValue("MS:1001492")); - f << "\t\t\t\n"; + f << "\t\t\t\n"; } else if (h.metaValueExists("Percolator_score")) { svm_score = static_cast(h.getMetaValue("Percolator_score")); - f << "\t\t\t\n"; + f << "\t\t\t\n"; } double qval_score = 0.0; if (h.metaValueExists("MS:1001491")) { qval_score = static_cast(h.getMetaValue("MS:1001491")); - f << "\t\t\t\n"; + f << "\t\t\t\n"; } else if (h.metaValueExists("Percolator_qvalue")) { qval_score = static_cast(h.getMetaValue("Percolator_qvalue")); - f << "\t\t\t\n"; + f << "\t\t\t\n"; } double pep_score = 0.0; @@ -910,7 +910,7 @@ namespace OpenMS throw Exception::MissingInformation(__FILE__,__LINE__,OPENMS_PRETTY_FUNCTION,"Percolator PEP score missing for pepXML export of Percolator results."); } } - f << "\t\t\t\n"; + f << "\t\t\t\n"; f << "\t\t\t\n"; f << "\t\t\t\t-?\\d+(\\.\\d+)?)\\](\\[(?-?\\d+(\\.\\d+)?)\\])?"); + boost::regex re(R"(^[A-Z]\[(?-?\d+(\.\d+)?)\](\[(?-?\d+(\.\d+)?)\])?)"); boost::smatch match; bool found = boost::regex_search(peptide, match, re); if (found && match["MOD1"].matched) @@ -179,7 +179,7 @@ namespace OpenMS << "'" << endl; peptide.substitute(unknown_mod, ""); } - boost::regex re("\\[UNIMOD:(\\d+)\\]"); + boost::regex re(R"(\[UNIMOD:(\d+)\])"); std::string replacement = "(UniMod:$1)"; peptide = boost::regex_replace(peptide, re, replacement); // search results from X! Tandem: @@ -209,12 +209,12 @@ namespace OpenMS if (lookup.reference_formats.empty()) { // MS-GF+ Percolator (mzid?) format: - lookup.addReferenceFormat("_SII_(?\\d+)_\\d+_\\d+_(?\\d+)_\\d+"); + lookup.addReferenceFormat(R"(_SII_(?\d+)_\d+_\d+_(?\d+)_\d+)"); // Mascot Percolator format (RT may be missing, e.g. for searches via // ProteomeDiscoverer): - lookup.addReferenceFormat("spectrum:[^;]+[(scans:)(scan=)(spectrum=)](?\\d+)[^;]+;rt:(?\\d*(\\.\\d+)?);mz:(?\\d+(\\.\\d+)?);charge:(?-?\\d+)"); + lookup.addReferenceFormat(R"(spectrum:[^;]+[(scans:)(scan=)(spectrum=)](?\d+)[^;]+;rt:(?\d*(\.\d+)?);mz:(?\d+(\.\d+)?);charge:(?-?\d+))"); // X! Tandem Percolator format: - lookup.addReferenceFormat("_(?\\d+)_(?\\d+)_\\d+$"); + lookup.addReferenceFormat(R"(_(?\d+)_(?\d+)_\d+$)"); } vector items; diff --git a/src/openms/source/FORMAT/ProtXMLFile.cpp b/src/openms/source/FORMAT/ProtXMLFile.cpp index dd7464aac19..b9ab9a9e2c1 100644 --- a/src/openms/source/FORMAT/ProtXMLFile.cpp +++ b/src/openms/source/FORMAT/ProtXMLFile.cpp @@ -206,7 +206,7 @@ namespace OpenMS String temp_description = ""; String origin = temp_aa_sequence[position - 1].getOneLetterCode(); matchModification_(mass, origin, temp_description); - if (temp_description.size() > 0) // only if a mod was found + if (!temp_description.empty()) // only if a mod was found { // e.g. Carboxymethyl (C) vector mod_split; diff --git a/src/openms/source/FORMAT/QcMLFile.cpp b/src/openms/source/FORMAT/QcMLFile.cpp index 8986ad1063d..cc4cd66a59f 100644 --- a/src/openms/source/FORMAT/QcMLFile.cpp +++ b/src/openms/source/FORMAT/QcMLFile.cpp @@ -112,15 +112,15 @@ namespace OpenMS String s = indent; s += "" + binary + "\n"; @@ -489,7 +489,7 @@ namespace OpenMS void QcMLFile::removeAttachment(String r, std::vector& ids, String at) { - bool not_all = at.size(); + bool not_all = !at.empty(); for (Size i = 0; i < ids.size(); ++i) { std::vector::iterator qit = runQualityAts_[r].begin(); @@ -586,7 +586,7 @@ namespace OpenMS runQualityQPs_[it->first].insert(runQualityQPs_[it->first].end(), it->second.begin(), it->second.end()); std::sort(runQualityQPs_[it->first].begin(), runQualityQPs_[it->first].end()); runQualityQPs_[it->first].erase(std::unique(runQualityQPs_[it->first].begin(), runQualityQPs_[it->first].end()), runQualityQPs_[it->first].end()); - if (setname != "") + if (!setname.empty()) { setQualityQPs_members_[setname].insert(it->first); } @@ -596,7 +596,7 @@ namespace OpenMS runQualityAts_[it->first].insert(runQualityAts_[it->first].end(), it->second.begin(), it->second.end()); std::sort(runQualityAts_[it->first].begin(), runQualityAts_[it->first].end()); runQualityAts_[it->first].erase(std::unique(runQualityAts_[it->first].begin(), runQualityAts_[it->first].end()), runQualityAts_[it->first].end()); - if (setname != "") + if (!setname.empty()) { setQualityQPs_members_[setname].insert(it->first); } @@ -1000,7 +1000,7 @@ namespace OpenMS } else if (tag_ == "runQuality") { - if (name_ == "") + if (name_.empty()) { name_ = run_id_; //~ name_ = String(UniqueIdGenerator::getUniqueId()); @@ -1020,7 +1020,7 @@ namespace OpenMS } else if (tag_ == "setQuality") { - if (name_ == "") + if (name_.empty()) { name_ = run_id_; //~ name_ = String(UniqueIdGenerator::getUniqueId()); @@ -1042,7 +1042,7 @@ namespace OpenMS float calculateSNmedian(const MSSpectrum& spec, bool norm = true) { - if (spec.size() == 0) + if (spec.empty()) { return 0; } @@ -1896,7 +1896,7 @@ namespace OpenMS row.push_back(feature_map[fiter].getOverallQuality()); row.push_back(feature_map[fiter].getWidth()); row.push_back(feature_map[fiter].getPeptideIdentifications().size()); - if (feature_map[fiter].getPeptideIdentifications().size() > 0) + if (!feature_map[fiter].getPeptideIdentifications().empty()) { ++ided; } @@ -2053,7 +2053,7 @@ namespace OpenMS os << "\n"; if (!xslt_ref.empty()) { - os << "\n"; + os << R"(\n"; os << "\n" diff --git a/src/openms/source/FORMAT/SequestInfile.cpp b/src/openms/source/FORMAT/SequestInfile.cpp index b6fa9b7fef1..b99cf490691 100644 --- a/src/openms/source/FORMAT/SequestInfile.cpp +++ b/src/openms/source/FORMAT/SequestInfile.cpp @@ -62,13 +62,13 @@ namespace OpenMS max_internal_cleavage_sites_(0), match_peak_count_(0), match_peak_allowed_error_(0), - show_fragment_ions_(1), - print_duplicate_references_(1), - remove_precursor_near_peaks_(0), - mass_type_parent_(0), - mass_type_fragment_(0), - normalize_xcorr_(0), - residues_in_upper_case_(1) + show_fragment_ions_(true), + print_duplicate_references_(true), + remove_precursor_near_peaks_(false), + mass_type_parent_(false), + mass_type_fragment_(false), + normalize_xcorr_(false), + residues_in_upper_case_(true) { setStandardEnzymeInfo_(); } diff --git a/src/openms/source/FORMAT/SqMassFile.cpp b/src/openms/source/FORMAT/SqMassFile.cpp index 99253a17792..fdd4f6b877f 100644 --- a/src/openms/source/FORMAT/SqMassFile.cpp +++ b/src/openms/source/FORMAT/SqMassFile.cpp @@ -43,14 +43,14 @@ namespace OpenMS SqMassFile::~SqMassFile() {} - void SqMassFile::load(const String& filename, MapType& map) + void SqMassFile::load(const String& filename, MapType& map) const { OpenMS::Internal::MzMLSqliteHandler sql_mass(filename, 0); sql_mass.setConfig(config_.write_full_meta, config_.use_lossy_numpress, config_.linear_fp_mass_acc); sql_mass.readExperiment(map); } - void SqMassFile::store(const String& filename, MapType& map) + void SqMassFile::store(const String& filename, MapType& map) const { OpenMS::Internal::MzMLSqliteHandler sql_mass(filename, map.getSqlRunID()); sql_mass.setConfig(config_.write_full_meta, config_.use_lossy_numpress, config_.linear_fp_mass_acc); @@ -58,7 +58,7 @@ namespace OpenMS sql_mass.writeExperiment(map); } - void SqMassFile::transform(const String& filename_in, Interfaces::IMSDataConsumer* consumer, bool /* skip_full_count */, bool /* skip_first_pass */) + void SqMassFile::transform(const String& filename_in, Interfaces::IMSDataConsumer* consumer, bool /* skip_full_count */, bool /* skip_first_pass */) const { OpenMS::Internal::MzMLSqliteHandler sql_mass(filename_in, 0); sql_mass.setConfig(config_.write_full_meta, config_.use_lossy_numpress, config_.linear_fp_mass_acc); diff --git a/src/openms/source/FORMAT/SqliteConnector.cpp b/src/openms/source/FORMAT/SqliteConnector.cpp index 114082c9250..aefe8eac403 100644 --- a/src/openms/source/FORMAT/SqliteConnector.cpp +++ b/src/openms/source/FORMAT/SqliteConnector.cpp @@ -184,9 +184,7 @@ namespace OpenMS sqlite3_finalize(stmt); } - namespace Internal - { - namespace SqliteHelper + namespace Internal::SqliteHelper { template <> bool extractValue(double* dst, sqlite3_stmt* stmt, int pos) //explicit specialization @@ -342,7 +340,6 @@ namespace OpenMS } } - } } diff --git a/src/openms/source/FORMAT/SwathFile.cpp b/src/openms/source/FORMAT/SwathFile.cpp index 2257b245549..e11029ac542 100644 --- a/src/openms/source/FORMAT/SwathFile.cpp +++ b/src/openms/source/FORMAT/SwathFile.cpp @@ -107,12 +107,12 @@ namespace OpenMS bool ms1 = false; double upper = -1, lower = -1, center = -1; - if (exp->size() == 0) + if (exp->empty()) { std::cerr << "WARNING: File " << file_list[i] << "\n does not have any scans - I will skip it" << std::endl; continue; } - if (exp->getSpectra()[0].getPrecursors().size() == 0) + if (exp->getSpectra()[0].getPrecursors().empty()) { std::cout << "NOTE: File " << file_list[i] << "\n does not have any precursors - I will assume it is the MS1 scan." << std::endl; ms1 = true; diff --git a/src/openms/source/FORMAT/TransformationXMLFile.cpp b/src/openms/source/FORMAT/TransformationXMLFile.cpp index 826e2c16df0..93ac6909965 100644 --- a/src/openms/source/FORMAT/TransformationXMLFile.cpp +++ b/src/openms/source/FORMAT/TransformationXMLFile.cpp @@ -69,7 +69,7 @@ namespace OpenMS void TransformationXMLFile::store(String filename, const TransformationDescription& transformation) { - if (transformation.getModelType() == "") + if (transformation.getModelType().empty()) { throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "will not write a transformation with empty name"); } diff --git a/src/openms/source/FORMAT/VALIDATORS/MzMLValidator.cpp b/src/openms/source/FORMAT/VALIDATORS/MzMLValidator.cpp index 0bb9570746d..d6541ca9df3 100644 --- a/src/openms/source/FORMAT/VALIDATORS/MzMLValidator.cpp +++ b/src/openms/source/FORMAT/VALIDATORS/MzMLValidator.cpp @@ -61,7 +61,7 @@ namespace OpenMS::Internal { String tag = sm_.convert(qname); String parent_tag; - if (open_tags_.size() > 0) + if (!open_tags_.empty()) { parent_tag = open_tags_.back(); } @@ -120,7 +120,7 @@ namespace OpenMS::Internal String MzMLValidator::getPath_(UInt remove_from_end) const { String path; - if (open_tags_.size() != 0 && open_tags_.front() == "indexedmzML") + if (!open_tags_.empty() && open_tags_.front() == "indexedmzML") { path.concatenate(open_tags_.begin() + 1, open_tags_.end() - remove_from_end, "/"); } @@ -160,7 +160,7 @@ namespace OpenMS::Internal binary_data_type_ = parsed_term.accession; } //if both are parsed, check if they match - if (binary_data_type_ != "" && binary_data_array_ != "") + if (!binary_data_type_.empty() && !binary_data_array_.empty()) { if (!ListUtils::contains(cv_.getTerm(binary_data_array_).xref_binary, binary_data_type_)) { diff --git a/src/openms/source/FORMAT/VALIDATORS/SemanticValidator.cpp b/src/openms/source/FORMAT/VALIDATORS/SemanticValidator.cpp index 430e86b1c2a..b97dfe4d8f8 100644 --- a/src/openms/source/FORMAT/VALIDATORS/SemanticValidator.cpp +++ b/src/openms/source/FORMAT/VALIDATORS/SemanticValidator.cpp @@ -421,7 +421,7 @@ namespace OpenMS::Internal ControlledVocabulary::CVTerm::XRefType type = cv_.getTerm(parsed_term.accession).xref_type; // get value, if it exists - if (parsed_term.has_value && (parsed_term.value != "" || type == ControlledVocabulary::CVTerm::XSD_STRING)) + if (parsed_term.has_value && (!parsed_term.value.empty() || type == ControlledVocabulary::CVTerm::XSD_STRING)) { String value = parsed_term.value; if (type == ControlledVocabulary::CVTerm::NONE) diff --git a/src/openms/source/FORMAT/XQuestResultXMLFile.cpp b/src/openms/source/FORMAT/XQuestResultXMLFile.cpp index 03416e449c1..a872827d5c5 100644 --- a/src/openms/source/FORMAT/XQuestResultXMLFile.cpp +++ b/src/openms/source/FORMAT/XQuestResultXMLFile.cpp @@ -109,7 +109,7 @@ namespace OpenMS std::cout << "Writing spec.xml to " << out_file << std::endl; spec_xml_file.open(out_file.c_str(), std::ios::trunc); // ios::app = append to file, ios::trunc = overwrites file // TODO write actual data - spec_xml_file << "" << std::endl; + spec_xml_file << R"()" << std::endl; // collect indices of spectra, that need to be written out std::vector > spectrum_indices; @@ -138,11 +138,11 @@ namespace OpenMS if (scan_index_light < spectra.size() && scan_index_heavy < spectra.size() && i < preprocessed_pair_spectra.spectra_linear_peaks.size() && i < preprocessed_pair_spectra.spectra_xlink_peaks.size()) { // 4 Spectra resulting from a light/heavy spectra pair. Write for each spectrum, that is written to xquest.xml (should be all considered pairs, or better only those with at least one sensible Hit, meaning a score was computed) - spec_xml_file << "" << std::endl; + spec_xml_file << ")" << std::endl; spec_xml_file << getxQuestBase64EncodedSpectrum_(spectra[scan_index_light], String("")); spec_xml_file << "" << std::endl; - spec_xml_file << "" << std::endl; + spec_xml_file << ")" << std::endl; spec_xml_file << getxQuestBase64EncodedSpectrum_(spectra[scan_index_heavy], String("")); spec_xml_file << "" << std::endl; @@ -153,12 +153,12 @@ namespace OpenMS Size pair_index = std::distance(spectrum_pairs.begin(), pair_it); String spectrum_common_name = spectrum_name + String("_common.txt"); - spec_xml_file << "" << std::endl; + spec_xml_file << ")" << std::endl; spec_xml_file << getxQuestBase64EncodedSpectrum_(preprocessed_pair_spectra.spectra_linear_peaks[pair_index], spectrum_light_name + ".dta," + spectrum_heavy_name + ".dta"); spec_xml_file << "" << std::endl; String spectrum_xlink_name = spectrum_name + String("_xlinker.txt"); - spec_xml_file << "" << std::endl; + spec_xml_file << ")" << std::endl; spec_xml_file << getxQuestBase64EncodedSpectrum_(preprocessed_pair_spectra.spectra_xlink_peaks[pair_index], spectrum_light_name + ".dta," + spectrum_heavy_name + ".dta"); spec_xml_file << "" << std::endl; } @@ -179,7 +179,7 @@ namespace OpenMS std::cout << "Writing spec.xml to " << out_file << std::endl; spec_xml_file.open(out_file.c_str(), std::ios::trunc); // ios::app = append to file, ios::trunc = overwrites file // TODO write actual data - spec_xml_file << "" << std::endl; + spec_xml_file << R"()" << std::endl; // collect indices of spectra, that need to be written out std::vector spectrum_indices; @@ -204,21 +204,21 @@ namespace OpenMS String spectrum_name = spectrum_light_name + String("_") + spectrum_heavy_name; // 4 Spectra resulting from a light/heavy spectra pair. Write for each spectrum, that is written to xquest.xml (should be all considered pairs, or better only those with at least one sensible Hit, meaning a score was computed) - spec_xml_file << "" << std::endl; + spec_xml_file << ")" << std::endl; spec_xml_file << getxQuestBase64EncodedSpectrum_(spectra[spectrum_indices[i]], String("")); spec_xml_file << "" << std::endl; - spec_xml_file << "" << std::endl; + spec_xml_file << ")" << std::endl; spec_xml_file << getxQuestBase64EncodedSpectrum_(spectra[spectrum_indices[i]], String("")); spec_xml_file << "" << std::endl; String spectrum_common_name = spectrum_name + String("_common.txt"); - spec_xml_file << "" << std::endl; + spec_xml_file << ")" << std::endl; spec_xml_file << getxQuestBase64EncodedSpectrum_(spectra[spectrum_indices[i]], spectrum_light_name + ".dta," + spectrum_heavy_name + ".dta"); spec_xml_file << "" << std::endl; String spectrum_xlink_name = spectrum_name + String("_xlinker.txt"); - spec_xml_file << "" << std::endl; + spec_xml_file << ")" << std::endl; spec_xml_file << getxQuestBase64EncodedSpectrum_(spectra[spectrum_indices[i]], spectrum_light_name + ".dta," + spectrum_heavy_name + ".dta"); spec_xml_file << "" << std::endl; } @@ -236,7 +236,7 @@ namespace OpenMS double precursor_mz = 0; double precursor_z = 0; - if (spec.getPrecursors().size() > 0) + if (!spec.getPrecursors().empty()) { precursor_mz = Math::roundDecimal(spec.getPrecursors()[0].getMZ(), -9); precursor_z = spec.getPrecursors()[0].getCharge(); @@ -255,7 +255,7 @@ namespace OpenMS } PeakSpectrum::IntegerDataArray charges; - if (spec.getIntegerDataArrays().size() > 0) + if (!spec.getIntegerDataArrays().empty()) { charges = spec.getIntegerDataArrays()[0]; } @@ -267,7 +267,7 @@ namespace OpenMS s += String(Math::roundDecimal(spec[i].getMZ(), -9)) + "\t"; s += String(spec[i].getIntensity()) + "\t"; - if (charges.size() > 0) + if (!charges.empty()) { s += String(charges[i]); } diff --git a/src/openms/source/FORMAT/XTandemInfile.cpp b/src/openms/source/FORMAT/XTandemInfile.cpp index c8cfa66c842..63a74d3a8a3 100644 --- a/src/openms/source/FORMAT/XTandemInfile.cpp +++ b/src/openms/source/FORMAT/XTandemInfile.cpp @@ -184,7 +184,7 @@ namespace OpenMS void XTandemInfile::writeTo_(ostream& os, bool ignore_member_parameters) { os << "" << "\n" - << "" << "\n" + << R"()" << "\n" << "" << "\n"; writeNote_(os, "spectrum, path", input_filename_); diff --git a/src/openms/source/FORMAT/sources.cmake b/src/openms/source/FORMAT/sources.cmake index be306f85424..b94e89e0306 100644 --- a/src/openms/source/FORMAT/sources.cmake +++ b/src/openms/source/FORMAT/sources.cmake @@ -23,6 +23,7 @@ FASTAFile.cpp FeatureXMLFile.cpp FileHandler.cpp FileTypes.cpp +GNPSMGFFile.cpp GzipIfstream.cpp GzipInputStream.cpp HDF5Connector.cpp @@ -51,8 +52,14 @@ MzMLFile.cpp MzQCFile.cpp MzQuantMLFile.cpp MzTab.cpp +MzTabBase.cpp +MzTabM.cpp MzTabFile.cpp +MzTabMFile.cpp MzXMLFile.cpp +OMSFile.cpp +OMSFileLoad.cpp +OMSFileStore.cpp OMSSACSVFile.cpp OMSSAXMLFile.cpp OSWFile.cpp diff --git a/src/openms/source/INTERFACES_IMPL/MockImplementation.cpp b/src/openms/source/INTERFACES_IMPL/MockImplementation.cpp index f48fb88b272..8ff56fd5d76 100644 --- a/src/openms/source/INTERFACES_IMPL/MockImplementation.cpp +++ b/src/openms/source/INTERFACES_IMPL/MockImplementation.cpp @@ -35,13 +35,7 @@ #include #include -namespace OpenMS -{ - -/** - @brief Mock implementations of the interfaces (empty ones) -*/ -namespace Interfaces +namespace OpenMS::Interfaces { class OPENMS_DLLAPI MockISpectraReader : @@ -161,4 +155,3 @@ namespace Interfaces MockIChromatogramsWriter test_mock_chromatograms_writer; } -} diff --git a/src/openms/source/IONMOBILITY/IMDataConverter.cpp b/src/openms/source/IONMOBILITY/IMDataConverter.cpp index 4b7b9bb90c8..93a9fe390f6 100644 --- a/src/openms/source/IONMOBILITY/IMDataConverter.cpp +++ b/src/openms/source/IONMOBILITY/IMDataConverter.cpp @@ -76,11 +76,12 @@ namespace OpenMS } // fill up the PeakMaps by moving spectra from the input PeakMap - for (const MSSpectrum& it : exp) + for (MSSpectrum& it : exp) { split_peakmap[cv2index[it.getDriftTime()]].addSpectrum(std::move(it)); } - + + exp.clear(true); return split_peakmap; } @@ -185,7 +186,7 @@ namespace OpenMS // collapse for scans that actually have a float data array). if (in[k].containsIMData()) { - MSExperiment frame = IMDataConverter::splitByIonMobility(in[k], number_of_bins); + MSExperiment frame = IMDataConverter::splitByIonMobility(std::move(in[k]), number_of_bins); // move into result for (auto&& spec : frame) { @@ -197,6 +198,8 @@ namespace OpenMS result.addSpectrum(std::move(in[k])); } } + result.ExperimentalSettings::operator=(std::move(in)); + in.clear(true); return result; } @@ -254,8 +257,7 @@ namespace OpenMS if (exp.empty()) { return result; - } - + } std::vector stack; double curr_rt = std::numeric_limits::max(); diff --git a/src/openms/source/KERNEL/BaseFeature.cpp b/src/openms/source/KERNEL/BaseFeature.cpp index cb90fb175c0..c282b80f866 100644 --- a/src/openms/source/KERNEL/BaseFeature.cpp +++ b/src/openms/source/KERNEL/BaseFeature.cpp @@ -33,24 +33,24 @@ // -------------------------------------------------------------------------- #include -#include #include using namespace std; namespace OpenMS { - const std::string BaseFeature::NamesOfAnnotationState[] = {"no ID", "single ID", "multiple IDs (identical)", "multiple IDs (divergent)"}; + const std::string BaseFeature::NamesOfAnnotationState[] = + {"no ID", "single ID", "multiple IDs (identical)", "multiple IDs (divergent)"}; BaseFeature::BaseFeature() : - RichPeak2D(), quality_(0.0), charge_(0), width_(0), peptides_() + RichPeak2D(), quality_(0.0), charge_(0), width_(0) { } BaseFeature::BaseFeature(const BaseFeature& rhs, UInt64 map_index) : RichPeak2D(rhs), quality_(rhs.quality_), charge_(rhs.charge_), width_(rhs.width_), - peptides_(rhs.peptides_) + peptides_(rhs.peptides_), primary_id_(rhs.primary_id_), id_matches_(rhs.id_matches_) { for (auto& pep : this->peptides_) { @@ -59,7 +59,7 @@ namespace OpenMS } BaseFeature::BaseFeature(const RichPeak2D& point) : - RichPeak2D(point), quality_(0.0), charge_(0), width_(0), peptides_() + RichPeak2D(point), quality_(0.0), charge_(0), width_(0) { } @@ -73,7 +73,7 @@ namespace OpenMS } BaseFeature::BaseFeature(const Peak2D& point) : - RichPeak2D(point), quality_(0.0), charge_(0), width_(0), peptides_() + RichPeak2D(point), quality_(0.0), charge_(0), width_(0) { } @@ -83,7 +83,9 @@ namespace OpenMS && (quality_ == rhs.quality_) && (charge_ == rhs.charge_) && (width_ == rhs.width_) - && (peptides_ == rhs.peptides_); + && (peptides_ == rhs.peptides_) + && (primary_id_ == rhs.primary_id_) + && (id_matches_ == rhs.id_matches_); } bool BaseFeature::operator!=(const BaseFeature& rhs) const @@ -171,20 +173,20 @@ namespace OpenMS BaseFeature::AnnotationState BaseFeature::getAnnotationState() const { - if (peptides_.size() == 0) - { - return FEATURE_ID_NONE; - } - else if (peptides_.size() == 1 && peptides_[0].getHits().size() > 0) - { - return FEATURE_ID_SINGLE; - } - else + if (id_matches_.empty()) // consider IDs in old format { + if (peptides_.empty()) + { + return FEATURE_ID_NONE; + } + if (peptides_.size() == 1 && !peptides_[0].getHits().empty()) + { + return FEATURE_ID_SINGLE; + } std::set seqs; for (Size i = 0; i < peptides_.size(); ++i) { - if (peptides_[i].getHits().size() > 0) + if (!peptides_[i].getHits().empty()) { PeptideIdentification id_tmp = peptides_[i]; id_tmp.sort(); // look at best hit only - requires sorting @@ -195,14 +197,92 @@ namespace OpenMS { return FEATURE_ID_MULTIPLE_SAME; // hits have identical seqs } - else if (seqs.size() > 1) + if (seqs.size() > 1) + { + return FEATURE_ID_MULTIPLE_DIVERGENT; // multiple different annotations ... probably bad mapping + } + /*else if (seqs.size()==0)*/ + return FEATURE_ID_NONE; // very rare case of empty hits + } + else // consider IDs in new format + { + if (id_matches_.size() == 1) { - return FEATURE_ID_MULTIPLE_DIVERGENT; // multiple different annotations ... probably bad mapping + return FEATURE_ID_SINGLE; } - else /*if (seqs.size()==0)*/ + // if there are multiple IDs, check if all are equal (to the first): + auto it = id_matches_.begin(); + IdentificationData::IdentifiedMolecule molecule = (*it)->identified_molecule_var; + for (++it; it != id_matches_.end(); ++it) { - return FEATURE_ID_NONE; // very rare case of empty hits + if ((*it)->identified_molecule_var != molecule) + { + return FEATURE_ID_MULTIPLE_DIVERGENT; + } } + return FEATURE_ID_MULTIPLE_SAME; + } + } + + + bool BaseFeature::hasPrimaryID() const + { + return bool(primary_id_); + } + + + const IdentificationData::IdentifiedMolecule& BaseFeature::getPrimaryID() const + { + if (!primary_id_) + { + throw Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, + "no primary ID assigned"); + } + + return *primary_id_; // unpack the option + } + + + void BaseFeature::clearPrimaryID() + { + primary_id_ = nullopt; + } + + + void BaseFeature::setPrimaryID(const IdentificationData::IdentifiedMolecule& id) + { + primary_id_ = id; + } + + + const std::set& BaseFeature::getIDMatches() const + { + return id_matches_; + } + + + std::set& BaseFeature::getIDMatches() + { + return id_matches_; + } + + + void BaseFeature::addIDMatch(IdentificationData::ObservationMatchRef ref) + { + id_matches_.insert(ref); + } + + void BaseFeature::updateIDReferences(const IdentificationData::RefTranslator& trans) + { + if (primary_id_ != nullopt) // is feature annotated with a "primary ID"? + { + primary_id_ = trans.translate(*primary_id_); + } + set matches; // refs. to e.g. PSMs + matches.swap(id_matches_); + for (const auto& item : matches) + { + id_matches_.insert(trans.translate(item)); } } diff --git a/src/openms/source/KERNEL/ConsensusFeature.cpp b/src/openms/source/KERNEL/ConsensusFeature.cpp index b50cafcd8e9..1d33c6a57da 100644 --- a/src/openms/source/KERNEL/ConsensusFeature.cpp +++ b/src/openms/source/KERNEL/ConsensusFeature.cpp @@ -64,9 +64,7 @@ namespace OpenMS insert(FeatureHandle(map_index, element)); } - ConsensusFeature::~ConsensusFeature() - { - } + ConsensusFeature::~ConsensusFeature() = default; void ConsensusFeature::insert(const ConsensusFeature& cf) { @@ -74,6 +72,12 @@ namespace OpenMS peptides_.insert(peptides_.end(), cf.getPeptideIdentifications().begin(), cf.getPeptideIdentifications().end()); } + void ConsensusFeature::insert(ConsensusFeature&& cf) + { + handles_.insert(make_move_iterator(cf.handles_.begin()), make_move_iterator(cf.handles_.end())); + peptides_.insert(peptides_.end(), make_move_iterator(cf.getPeptideIdentifications().begin()), make_move_iterator(cf.getPeptideIdentifications().end())); + } + void ConsensusFeature::insert(const FeatureHandle& handle) { if (!(handles_.insert(handle).second)) @@ -83,11 +87,28 @@ namespace OpenMS } } + void ConsensusFeature::insert(FeatureHandle&& handle) + { + if (!(handles_.insert(std::move(handle)).second)) + { + String key = String("map") + handle.getMapIndex() + "/feature" + handle.getUniqueId(); + throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "The set already contained an element with this key.", key); + } + } + void ConsensusFeature::insert(const HandleSetType& handle_set) { - for (ConsensusFeature::HandleSetType::const_iterator it = handle_set.begin(); it != handle_set.end(); ++it) + for (auto& handle : handle_set) + { + insert(handle); + } + } + + void ConsensusFeature::insert(HandleSetType&& handle_set) + { + for (auto& handle : handle_set) { - insert(*it); + insert(std::move(handle)); } } diff --git a/src/openms/source/KERNEL/ConsensusMap.cpp b/src/openms/source/KERNEL/ConsensusMap.cpp index cbe7a1cb491..cdb27526a01 100644 --- a/src/openms/source/KERNEL/ConsensusMap.cpp +++ b/src/openms/source/KERNEL/ConsensusMap.cpp @@ -48,7 +48,7 @@ namespace OpenMS ConsensusMap::ConsensusMap() : Base(), MetaInfoInterface(), - RangeManagerType(), + RangeManagerContainerType(), DocumentIdentifier(), UniqueIdInterface(), UniqueIdIndexer(), @@ -63,7 +63,7 @@ namespace OpenMS ConsensusMap::ConsensusMap(const ConsensusMap& source) : Base(source), MetaInfoInterface(source), - RangeManagerType(source), + RangeManagerContainerType(source), DocumentIdentifier(source), UniqueIdInterface(source), UniqueIdIndexer(source), @@ -75,14 +75,12 @@ namespace OpenMS { } - ConsensusMap::~ConsensusMap() - { - } + ConsensusMap::~ConsensusMap() = default; ConsensusMap::ConsensusMap(Base::size_type n) : Base(n), MetaInfoInterface(), - RangeManagerType(), + RangeManagerContainerType(), DocumentIdentifier(), UniqueIdInterface(), column_description_(), @@ -102,7 +100,7 @@ namespace OpenMS Base::operator=(source); MetaInfoInterface::operator=(source); - RangeManagerType::operator=(source); + RangeManagerContainerType::operator=(source); DocumentIdentifier::operator=(source); UniqueIdInterface::operator=(source); column_description_ = source.column_description_; @@ -119,7 +117,7 @@ namespace OpenMS ConsensusMap empty_map; // reset these: - RangeManagerType::operator=(empty_map); + RangeManagerContainerType::operator=(empty_map); if (!this->getIdentifier().empty() || !rhs.getIdentifier().empty()) { @@ -616,44 +614,17 @@ namespace OpenMS void ConsensusMap::updateRanges() { clearRanges(); - updateRanges_(begin(), end()); - // enlarge the range by the internal points of each feature - for (Size i = 0; i < size(); ++i) + for (const auto& cf : (privvec&) *this) { - for (ConsensusFeature::HandleSetType::const_iterator it = operator[](i).begin(); it != operator[](i).end(); ++it) + extendRT(cf.getRT()); + extendMZ(cf.getMZ()); + extendIntensity(cf.getIntensity()); + for (const auto& handle : cf.getFeatures()) { - double rt = it->getRT(); - double mz = it->getMZ(); - double intensity = it->getIntensity(); - - // update RT - if (rt < pos_range_.minPosition()[Peak2D::RT]) - { - pos_range_.setMinX(rt); - } - if (rt > pos_range_.maxPosition()[Peak2D::RT]) - { - pos_range_.setMaxX(rt); - } - // update m/z - if (mz < pos_range_.minPosition()[Peak2D::MZ]) - { - pos_range_.setMinY(mz); - } - if (mz > pos_range_.maxPosition()[Peak2D::MZ]) - { - pos_range_.setMaxY(mz); - } - // update intensity - if (intensity < int_range_.minX()) - { - int_range_.setMinX(intensity); - } - if (intensity > int_range_.maxX()) - { - int_range_.setMaxX(intensity); - } + extendRT(handle.getRT()); + extendMZ(handle.getMZ()); + extendIntensity(handle.getIntensity()); } } } diff --git a/src/openms/source/KERNEL/Feature.cpp b/src/openms/source/KERNEL/Feature.cpp index 5a389b877d8..24607e503fc 100644 --- a/src/openms/source/KERNEL/Feature.cpp +++ b/src/openms/source/KERNEL/Feature.cpp @@ -131,7 +131,7 @@ namespace OpenMS else { convex_hull_.clear(); - if (convex_hulls_.size() > 0) + if (!convex_hulls_.empty()) { /* -- this does not work with our current approach of "non-convex"hull computation as the mass traces of features cannot be combined @@ -234,4 +234,13 @@ namespace OpenMS subordinates_ = rhs; } + void Feature::updateAllIDReferences(const IdentificationData::RefTranslator& trans) + { + updateIDReferences(trans); // update the feature itself (via BaseFeature method) + for (Feature& sub : subordinates_) // recursively update subordinate features + { + sub.updateAllIDReferences(trans); + } + } + } diff --git a/src/openms/source/KERNEL/FeatureMap.cpp b/src/openms/source/KERNEL/FeatureMap.cpp index 99d7647e080..5a894034557 100644 --- a/src/openms/source/KERNEL/FeatureMap.cpp +++ b/src/openms/source/KERNEL/FeatureMap.cpp @@ -41,7 +41,6 @@ #include - namespace OpenMS { std::ostream& operator<<(std::ostream& os, const AnnotationStatistics& ann) @@ -105,7 +104,7 @@ namespace OpenMS FeatureMap::FeatureMap() : Base(), MetaInfoInterface(), - RangeManagerType(), + RangeManagerContainerType(), DocumentIdentifier(), UniqueIdInterface(), UniqueIdIndexer(), @@ -118,19 +117,26 @@ namespace OpenMS FeatureMap::FeatureMap(const FeatureMap& source) : Base(source), MetaInfoInterface(source), - RangeManagerType(source), + RangeManagerContainerType(source), DocumentIdentifier(source), UniqueIdInterface(source), UniqueIdIndexer(source), protein_identifications_(source.protein_identifications_), unassigned_peptide_identifications_(source.unassigned_peptide_identifications_), - data_processing_(source.data_processing_) + data_processing_(source.data_processing_), + id_data_() // updated below { + // copy ID data and update references in features: + IdentificationData::RefTranslator trans = id_data_.merge(source.id_data_); + for (Feature& feature : *this) + { + feature.updateAllIDReferences(trans); + } } - FeatureMap::~FeatureMap() - { - } + FeatureMap::FeatureMap(FeatureMap&& source) = default; + + FeatureMap::~FeatureMap() = default; FeatureMap& FeatureMap::operator=(const FeatureMap& rhs) { @@ -160,6 +166,7 @@ namespace OpenMS protein_identifications_ == rhs.protein_identifications_ && unassigned_peptide_identifications_ == rhs.unassigned_peptide_identifications_ && data_processing_ == rhs.data_processing_; + // @TODO: implement "operator==" for IdentificationData? } bool FeatureMap::operator!=(const FeatureMap& rhs) const @@ -193,12 +200,21 @@ namespace OpenMS unassigned_peptide_identifications_.insert(unassigned_peptide_identifications_.end(), rhs.unassigned_peptide_identifications_.begin(), rhs.unassigned_peptide_identifications_.end()); data_processing_.insert(data_processing_.end(), rhs.data_processing_.begin(), rhs.data_processing_.end()); + Size n_old_features = size(); // append features: this->insert(this->end(), rhs.begin(), rhs.end()); // todo: check for double entries // features, unassignedpeptides, proteins... + // merge IDs (new format): + IdentificationData::RefTranslator trans = id_data_.merge(rhs.id_data_); + // update ID references of new features: + for (Size i = n_old_features; i < size(); ++i) + { + operator[](i).updateAllIDReferences(trans); + } + // consistency try { @@ -217,70 +233,61 @@ namespace OpenMS { if (reverse) { - std::sort(this->begin(), this->end(), [](auto &left, auto &right) {FeatureType::IntensityLess cmp; return cmp(right, left);}); + std::sort(this->begin(), this->end(), [](auto &left, auto &right) {Feature::IntensityLess cmp; return cmp(right, left);}); } else { - std::sort(this->begin(), this->end(), FeatureType::IntensityLess()); + std::sort(this->begin(), this->end(), Feature::IntensityLess()); } } void FeatureMap::sortByPosition() { - std::sort(this->begin(), this->end(), FeatureType::PositionLess()); + std::sort(this->begin(), this->end(), Feature::PositionLess()); } void FeatureMap::sortByRT() { - std::sort(this->begin(), this->end(), FeatureType::RTLess()); + std::sort(this->begin(), this->end(), Feature::RTLess()); } void FeatureMap::sortByMZ() { - std::sort(this->begin(), this->end(), FeatureType::MZLess()); + std::sort(this->begin(), this->end(), Feature::MZLess()); } void FeatureMap::sortByOverallQuality(bool reverse) { if (reverse) { - std::sort(this->begin(), this->end(), [](auto &left, auto &right) {FeatureType::OverallQualityLess cmp; return cmp(right, left);}); + std::sort(this->begin(), this->end(), [](auto& left, auto& right) {Feature::OverallQualityLess cmp; return cmp(right, left);}); } else { - std::sort(this->begin(), this->end(), FeatureType::OverallQualityLess()); + std::sort(this->begin(), this->end(), Feature::OverallQualityLess()); } } void FeatureMap::updateRanges() { - this->clearRanges(); - updateRanges_(this->begin(), this->end()); + clearRanges(); + for (const auto& f : (Base&) *this) + { + extendRT(f.getRT()); + extendMZ(f.getMZ()); + extendIntensity(f.getIntensity()); + } - //enlarge the range by the convex hull points + // enlarge the range by the convex hull points for (Size i = 0; i < this->size(); ++i) { - DBoundingBox<2> box = this->operator[](i).getConvexHull().getBoundingBox(); + const DBoundingBox<2>& box = this->operator[](i).getConvexHull().getBoundingBox(); if (!box.isEmpty()) { - //update RT - if (box.minPosition()[Peak2D::RT] < this->pos_range_.minPosition()[Peak2D::RT]) - { - this->pos_range_.setMinX(box.minPosition()[Peak2D::RT]); - } - if (box.maxPosition()[Peak2D::RT] > this->pos_range_.maxPosition()[Peak2D::RT]) - { - this->pos_range_.setMaxX(box.maxPosition()[Peak2D::RT]); - } - //update m/z - if (box.minPosition()[Peak2D::MZ] < this->pos_range_.minPosition()[Peak2D::MZ]) - { - this->pos_range_.setMinY(box.minPosition()[Peak2D::MZ]); - } - if (box.maxPosition()[Peak2D::MZ] > this->pos_range_.maxPosition()[Peak2D::MZ]) - { - this->pos_range_.setMaxY(box.maxPosition()[Peak2D::MZ]); - } + extendRT(box.minPosition()[Peak2D::RT]); + extendRT(box.maxPosition()[Peak2D::RT]); + extendMZ(box.minPosition()[Peak2D::MZ]); + extendMZ(box.maxPosition()[Peak2D::MZ]); } } } @@ -315,6 +322,7 @@ namespace OpenMS protein_identifications_.swap(from.protein_identifications_); unassigned_peptide_identifications_.swap(from.unassigned_peptide_identifications_); data_processing_.swap(from.data_processing_); + id_data_.swap(from.id_data_); } const std::vector& FeatureMap::getProteinIdentifications() const @@ -370,14 +378,14 @@ namespace OpenMS OPENMS_LOG_WARN << "Setting empty MS runs paths." << std::endl; this->setMetaValue("spectra_data", DataValue(s)); return; - } + } for (const String& filename : s) { if (!filename.hasSuffix("mzML") && !filename.hasSuffix("mzml")) { OPENMS_LOG_WARN << "To ensure tracability of results please prefer mzML files as primary MS run." << std::endl - << "Filename: '" << filename << "'" << std::endl; + << "Filename: '" << filename << "'" << std::endl; } } @@ -385,7 +393,7 @@ namespace OpenMS } - void FeatureMap::setPrimaryMSRunPath(const StringList& s, MSExperiment & e) + void FeatureMap::setPrimaryMSRunPath(const StringList& s, MSExperiment& e) { StringList ms_path; e.getPrimaryMSRunPath(ms_path); @@ -396,7 +404,7 @@ namespace OpenMS else { setPrimaryMSRunPath(s); - } + } } @@ -406,8 +414,8 @@ namespace OpenMS if (this->metaValueExists("spectra_data")) { toFill = this->getMetaValue("spectra_data"); - } - + } + if (toFill.empty()) { OPENMS_LOG_WARN << "No MS run annotated in feature map. Setting to 'UNKNOWN' " << std::endl; @@ -428,6 +436,7 @@ namespace OpenMS protein_identifications_.clear(); unassigned_peptide_identifications_.clear(); data_processing_.clear(); + id_data_.clear(); } } @@ -441,4 +450,38 @@ namespace OpenMS return result; } + + std::set FeatureMap::getUnassignedIDMatches() const + { + std::set all_matches; + for (auto it = id_data_.getObservationMatches().begin(); + it != id_data_.getObservationMatches().end(); ++it) + { + all_matches.insert(it); + } + std::set assigned_matches; + for (const Feature& feat : *this) + { + assigned_matches.insert(feat.getIDMatches().begin(), feat.getIDMatches().end()); + // @TODO: consider subordinate features? - probably not + } + std::set result; + std::set_difference(all_matches.begin(), all_matches.end(), + assigned_matches.begin(), assigned_matches.end(), + inserter(result, result.end())); + return result; + } + + + const IdentificationData& FeatureMap::getIdentificationData() const + { + return id_data_; + } + + + IdentificationData& FeatureMap::getIdentificationData() + { + return id_data_; + } + } diff --git a/src/openms/source/KERNEL/MSChromatogram.cpp b/src/openms/source/KERNEL/MSChromatogram.cpp index 00305a86476..549c02df01d 100644 --- a/src/openms/source/KERNEL/MSChromatogram.cpp +++ b/src/openms/source/KERNEL/MSChromatogram.cpp @@ -62,12 +62,12 @@ bool MSChromatogram::MZLess::operator()(const MSChromatogram &a, const MSChromat MSChromatogram &MSChromatogram::operator=(const MSChromatogram &source) { if (&source == this) - { + { return *this; } ContainerType::operator=(source); - RangeManager<1>::operator=(source); + RangeManagerType::operator=(source); ChromatogramSettings::operator=(source); name_ = source.name_; @@ -82,7 +82,7 @@ bool MSChromatogram::operator==(const MSChromatogram &rhs) const { //name_ can differ => it is not checked return std::operator==(*this, rhs) && - RangeManager<1>::operator==(rhs) && + RangeManagerType::operator==(rhs) && ChromatogramSettings::operator==(rhs) && float_data_arrays_ == rhs.float_data_arrays_ && string_data_arrays_ == rhs.string_data_arrays_ && @@ -135,7 +135,7 @@ MSChromatogram::IntegerDataArrays &MSChromatogram::getIntegerDataArrays() } void MSChromatogram::sortByIntensity(bool reverse) { - if (float_data_arrays_.empty() && string_data_arrays_.size() && integer_data_arrays_.size()) + if (float_data_arrays_.empty() && !string_data_arrays_.empty() && !integer_data_arrays_.empty()) { if (reverse) { @@ -180,7 +180,7 @@ void MSChromatogram::sortByIntensity(bool reverse) { { mda_tmp.push_back(*(float_data_arrays_[i].begin() + (sorted_indices[j].second))); } - float_data_arrays_[i].swap(mda_tmp); + mda_tmp.swap(float_data_arrays_[i]); } for (Size i = 0; i < string_data_arrays_.size(); ++i) @@ -190,7 +190,7 @@ void MSChromatogram::sortByIntensity(bool reverse) { { mda_tmp.push_back(*(string_data_arrays_[i].begin() + (sorted_indices[j].second))); } - string_data_arrays_[i].swap(mda_tmp); + mda_tmp.swap(string_data_arrays_[i]); } for (Size i = 0; i < integer_data_arrays_.size(); ++i) @@ -200,7 +200,7 @@ void MSChromatogram::sortByIntensity(bool reverse) { { mda_tmp.push_back(*(integer_data_arrays_[i].begin() + (sorted_indices[j].second))); } - integer_data_arrays_[i].swap(mda_tmp); + mda_tmp.swap(integer_data_arrays_[i]); } } } @@ -277,7 +277,7 @@ bool MSChromatogram::isSorted() const Size MSChromatogram::findNearest(MSChromatogram::CoordinateType rt) const { //no peak => no search - if (ContainerType::size() == 0) + if (empty()) { throw Exception::Precondition(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "There must be at least one peak to determine the nearest peak!"); } @@ -452,20 +452,20 @@ OpenMS::MSChromatogram::Iterator setSumSimilarUnion(OpenMS::MSChromatogram::Iter return round(a->getRT() * 1000.0) < round(b->getRT() * 1000.0); }; - if (smaller_RT(first1, first2)) - { - *result = *first1; ++first1; + if (smaller_RT(first1, first2)) + { + *result = *first1; ++first1; } - else if (smaller_RT(first2, first1)) - { - *result = *first2; ++first2; + else if (smaller_RT(first2, first1)) + { + *result = *first2; ++first2; } - else + else { // approx. equal - *result = *first1; + *result = *first1; result->setIntensity(result->getIntensity() + first2->getIntensity()); - ++first1; - ++first2; + ++first1; + ++first2; } ++result; } diff --git a/src/openms/source/KERNEL/MSExperiment.cpp b/src/openms/source/KERNEL/MSExperiment.cpp index cd1e0414c8a..b85b17db91f 100644 --- a/src/openms/source/KERNEL/MSExperiment.cpp +++ b/src/openms/source/KERNEL/MSExperiment.cpp @@ -60,7 +60,7 @@ namespace OpenMS /// Constructor MSExperiment::MSExperiment() : - RangeManagerType(), + RangeManagerContainerType(), ExperimentalSettings(), ms_levels_(), total_size_(0) @@ -68,7 +68,7 @@ namespace OpenMS /// Copy constructor MSExperiment::MSExperiment(const MSExperiment & source) : - RangeManagerType(source), + RangeManagerContainerType(source), ExperimentalSettings(source), ms_levels_(source.ms_levels_), total_size_(source.total_size_), @@ -83,7 +83,7 @@ namespace OpenMS { return *this; } - RangeManagerType::operator=(source); + RangeManagerContainerType::operator=(source); ExperimentalSettings::operator=(source); ms_levels_ = source.ms_levels_; @@ -98,7 +98,7 @@ namespace OpenMS } /// Assignment operator - MSExperiment & MSExperiment::operator=(const ExperimentalSettings & source) + MSExperiment& MSExperiment::operator=(const ExperimentalSettings & source) { ExperimentalSettings::operator=(source); return *this; @@ -226,21 +226,21 @@ namespace OpenMS */ void MSExperiment::updateRanges(Int ms_level) { - //clear MS levels + // clear MS levels ms_levels_.clear(); - //reset mz/rt/int range + // reset mz/rt/int range this->clearRanges(); - //reset point count + // reset point count total_size_ = 0; - //empty + // empty if (spectra_.empty() && chromatograms_.empty()) { return; } - //update + // update for (Base::iterator it = spectra_.begin(); it != spectra_.end(); ++it) { if (ms_level < Int(0) || Int(it->getMSLevel()) == ms_level) @@ -254,66 +254,19 @@ namespace OpenMS // calculate size total_size_ += it->size(); - //rt - if (it->getRT() < RangeManagerType::pos_range_.minX()) - { - RangeManagerType::pos_range_.setMinX(it->getRT()); - } - if (it->getRT() > RangeManagerType::pos_range_.maxX()) - { - RangeManagerType::pos_range_.setMaxX(it->getRT()); - } - //do not update mz and int when the spectrum is empty - if (it->size() == 0) - { - continue; - } + // ranges + this->extendRT(it->getRT()); // RT it->updateRanges(); - - //mz - if (it->getMin()[0] < RangeManagerType::pos_range_.minY()) - { - RangeManagerType::pos_range_.setMinY(it->getMin()[0]); - } - if (it->getMax()[0] > RangeManagerType::pos_range_.maxY()) - { - RangeManagerType::pos_range_.setMaxY(it->getMax()[0]); - } - //int - if (it->getMinInt() < RangeManagerType::int_range_.minX()) - { - RangeManagerType::int_range_.setMinX(it->getMinInt()); - } - if (it->getMaxInt() > RangeManagerType::int_range_.maxX()) - { - RangeManagerType::int_range_.setMaxX(it->getMaxInt()); - } + this->extend(*it); // m/z and intensity from spectrum's range } // for MS level = 1 we extend the range for all the MS2 precursors if (ms_level == 1 && it->getMSLevel() == 2) { if (!it->getPrecursors().empty()) { - double pc_rt = it->getRT(); - if (pc_rt < RangeManagerType::pos_range_.minX()) - { - RangeManagerType::pos_range_.setMinX(pc_rt); - } - if (pc_rt > RangeManagerType::pos_range_.maxX()) - { - RangeManagerType::pos_range_.setMaxX(pc_rt); - } - double pc_mz = it->getPrecursors()[0].getMZ(); - if (pc_mz < RangeManagerType::pos_range_.minY()) - { - RangeManagerType::pos_range_.setMinY(pc_mz); - } - if (pc_mz > RangeManagerType::pos_range_.maxY()) - { - RangeManagerType::pos_range_.setMaxY(pc_mz); - } + this->extendRT(it->getRT()); + this->extendMZ(it->getPrecursors()[0].getMZ()); } - } } @@ -335,77 +288,37 @@ namespace OpenMS continue; } - // update MZ - if (cp.getMZ() < RangeManagerType::pos_range_.minY()) - { - RangeManagerType::pos_range_.setMinY(cp.getMZ()); - } - if (cp.getMZ() > RangeManagerType::pos_range_.maxY()) - { - RangeManagerType::pos_range_.setMaxY(cp.getMZ()); - } - // do not update RT and intensity if the chromatogram is empty - if (cp.size() == 0) - { - continue; - } total_size_ += cp.size(); + // ranges + this->extendMZ(cp.getMZ());// MZ cp.updateRanges(); - - // RT - if (cp.getMin()[0] < RangeManagerType::pos_range_.minX()) - { - RangeManagerType::pos_range_.setMinX(cp.getMin()[0]); - } - if (cp.getMax()[0] > RangeManagerType::pos_range_.maxX()) - { - RangeManagerType::pos_range_.setMaxX(cp.getMax()[0]); - } - // int - if (cp.getMinInt() < RangeManagerType::int_range_.minX()) - { - RangeManagerType::int_range_.setMinX(cp.getMinInt()); - } - if (cp.getMaxInt() > RangeManagerType::int_range_.maxX()) - { - RangeManagerType::int_range_.setMaxX(cp.getMaxInt()); - } + this->extend(cp);// RT and intensity from chroms's range } } /// returns the minimal m/z value MSExperiment::CoordinateType MSExperiment::getMinMZ() const { - return RangeManagerType::pos_range_.minPosition()[1]; + return RangeManagerType::getMinMZ(); } /// returns the maximal m/z value MSExperiment::CoordinateType MSExperiment::getMaxMZ() const { - return RangeManagerType::pos_range_.maxPosition()[1]; + return RangeManagerType::getMaxMZ(); } /// returns the minimal retention time value MSExperiment::CoordinateType MSExperiment::getMinRT() const { - return RangeManagerType::pos_range_.minPosition()[0]; + return RangeManagerType::getMinRT(); } /// returns the maximal retention time value MSExperiment::CoordinateType MSExperiment::getMaxRT() const { - return RangeManagerType::pos_range_.maxPosition()[0]; - } - - /** - @brief Returns RT and m/z range the data lies in. - - RT is dimension 0, m/z is dimension 1 - */ - const MSExperiment::AreaType& MSExperiment::getDataRange() const - { - return RangeManagerType::pos_range_; + return RangeManagerType::getMaxRT(); } /// returns the total number of peaks @@ -528,9 +441,9 @@ namespace OpenMS bool meta_present = false; for (Size i = 0; i < spectra_.size(); ++i) { - if (spectra_[i].getFloatDataArrays().size() != 0 - || spectra_[i].getIntegerDataArrays().size() != 0 - || spectra_[i].getStringDataArrays().size() != 0) + if (!spectra_[i].getFloatDataArrays().empty() + || !spectra_[i].getIntegerDataArrays().empty() + || !spectra_[i].getStringDataArrays().empty()) { meta_present = true; } @@ -640,6 +553,16 @@ namespace OpenMS return spectra_.end(); } + // same as above but easier to wrap in python + int MSExperiment::getPrecursorSpectrum(int zero_based_index) const + { + auto spec = spectra_.cbegin(); + spec += zero_based_index; + auto pc_spec = getPrecursorSpectrum(spec); + if (pc_spec == spectra_.cend()) return -1; + return pc_spec - spectra_.cbegin(); + } + /// Swaps the content of this map with the content of @p from void MSExperiment::swap(MSExperiment & from) { @@ -672,12 +595,22 @@ namespace OpenMS spectra_ = spectra; } + void MSExperiment::setSpectra(std::vector && spectra) + { + spectra_ = std::move(spectra); + } + /// adds a spectrum to the list void MSExperiment::addSpectrum(const MSSpectrum & spectrum) { spectra_.push_back(spectrum); } + void MSExperiment::addSpectrum(MSSpectrum && spectrum) + { + spectra_.push_back(std::move(spectrum)); + } + /// returns the spectrum list const std::vector& MSExperiment::getSpectra() const { @@ -696,12 +629,23 @@ namespace OpenMS chromatograms_ = chromatograms; } + /// sets the chromatogram list + void MSExperiment::setChromatograms(std::vector && chromatograms) + { + chromatograms_ = std::move(chromatograms); + } + /// adds a chromatogram to the list void MSExperiment::addChromatogram(const MSChromatogram & chromatogram) { chromatograms_.push_back(chromatogram); } + void MSExperiment::addChromatogram(MSChromatogram&& chrom) + { + chromatograms_.push_back(std::move(chrom)); + } + /// returns the chromatogram list const std::vector& MSExperiment::getChromatograms() const { diff --git a/src/openms/source/KERNEL/MSSpectrum.cpp b/src/openms/source/KERNEL/MSSpectrum.cpp index f5ffe78faf1..cfd20304c84 100644 --- a/src/openms/source/KERNEL/MSSpectrum.cpp +++ b/src/openms/source/KERNEL/MSSpectrum.cpp @@ -314,7 +314,7 @@ namespace OpenMS Size MSSpectrum::findNearest(MSSpectrum::CoordinateType mz) const { // no peak => no search - if (ContainerType::size() == 0) + if (empty()) { throw Exception::Precondition(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "There must be at least one peak to determine the nearest peak!"); } @@ -478,7 +478,7 @@ namespace OpenMS #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wfloat-equal" return std::operator==(*this, rhs) && - RangeManager<1>::operator==(rhs) && + RangeManagerType::operator==(rhs) && SpectrumSettings::operator==(rhs) && retention_time_ == rhs.retention_time_ && drift_time_ == rhs.drift_time_ && @@ -498,7 +498,7 @@ namespace OpenMS return *this; } ContainerType::operator=(source); - RangeManager<1>::operator=(source); + RangeManagerType::operator=(source); SpectrumSettings::operator=(source); retention_time_ = source.retention_time_; @@ -515,7 +515,7 @@ namespace OpenMS MSSpectrum::MSSpectrum() : ContainerType(), - RangeManager<1>(), + RangeManagerContainerType(), SpectrumSettings(), retention_time_(-1), drift_time_(-1), @@ -529,7 +529,7 @@ namespace OpenMS MSSpectrum::MSSpectrum(const MSSpectrum &source) : ContainerType(source), - RangeManager<1>(source), + RangeManagerContainerType(source), SpectrumSettings(source), retention_time_(source.retention_time_), drift_time_(source.drift_time_), @@ -549,8 +549,12 @@ namespace OpenMS void MSSpectrum::updateRanges() { - this->clearRanges(); - updateRanges_(ContainerType::begin(), ContainerType::end()); + clearRanges(); + for (const auto& peak : (ContainerType&)*this) + { + extendMZ(peak.getMZ()); + extendIntensity(peak.getIntensity()); + } } double MSSpectrum::getRT() const diff --git a/src/openms/source/KERNEL/OnDiscMSExperiment.cpp b/src/openms/source/KERNEL/OnDiscMSExperiment.cpp index 628c237d484..fd972c34004 100644 --- a/src/openms/source/KERNEL/OnDiscMSExperiment.cpp +++ b/src/openms/source/KERNEL/OnDiscMSExperiment.cpp @@ -38,6 +38,26 @@ namespace OpenMS { + bool OnDiscMSExperiment::openFile(const String& filename, bool skipMetaData) + { + filename_ = filename; + indexed_mzml_file_.openFile(filename); + if (!filename.empty() && !skipMetaData) + { + loadMetaData_(filename); + } + return indexed_mzml_file_.getParsingSuccess(); + } + + void OnDiscMSExperiment::setSkipXMLChecks(bool skip) + { + indexed_mzml_file_.setSkipXMLChecks(skip); + } + + OpenMS::Interfaces::ChromatogramPtr OnDiscMSExperiment::getChromatogramById(Size id) + { + return indexed_mzml_file_.getChromatogramById(id); + } void OnDiscMSExperiment::loadMetaData_(const String& filename) { diff --git a/src/openms/source/KERNEL/RangeManager.cpp b/src/openms/source/KERNEL/RangeManager.cpp index 45d11b0d9c2..4fff90f2bde 100644 --- a/src/openms/source/KERNEL/RangeManager.cpp +++ b/src/openms/source/KERNEL/RangeManager.cpp @@ -28,11 +28,44 @@ // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // -------------------------------------------------------------------------- -// $Maintainer: Timo Sachsenberg$ -// $Authors: Marc Sturm $ +// $Maintainer: Chris Bielow $ +// $Authors: Chris Bielow $ // -------------------------------------------------------------------------- +#include + +#include + + namespace OpenMS { - // No default instance because it hast a pure virtual method + std::ostream& operator<<(std::ostream& out, const RangeBase& b) + { + out << "[" << b.getMin() << ", " << b.getMax() << "]"; + return out; + } + + std::ostream& operator<<(std::ostream& out, const RangeRT& range) + { + out << "rt: " << (OpenMS::RangeBase) range << "\n"; + return out; + } + + std::ostream& operator<<(std::ostream& out, const RangeMZ& range) + { + out << "mz: " << (RangeBase) range << "\n"; + return out; + } + + std::ostream& operator<<(std::ostream& out, const RangeIntensity& range) + { + out << "intensity: " << (RangeBase) range << "\n"; + return out; + } + + std::ostream& operator<<(std::ostream& out, const RangeMobility& range) + { + out << "mobility: " << (RangeBase) range << "\n"; + return out; + } } diff --git a/src/openms/source/KERNEL/SpectrumHelper.cpp b/src/openms/source/KERNEL/SpectrumHelper.cpp index dcd2e08fbfc..0b9daa9338c 100644 --- a/src/openms/source/KERNEL/SpectrumHelper.cpp +++ b/src/openms/source/KERNEL/SpectrumHelper.cpp @@ -28,11 +28,27 @@ // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // -------------------------------------------------------------------------- -// $Maintainer: Timo Sachsenberg$ -// $Authors: Timo Sachsenberg $ +// $Maintainer: Hannes Roest g$ +// $Authors: Hannes Roest $ // -------------------------------------------------------------------------- +#include + namespace OpenMS { + + void copySpectrumMeta(const MSSpectrum & input, MSSpectrum & output, bool clear_spectrum) + { + // clear old spectrum first before copying + if (clear_spectrum) output.clear(true); + + // copy the spectrum meta data + output.SpectrumSettings::operator=(input); + output.setRT(input.getRT()); + output.setDriftTime(input.getDriftTime()); + output.setDriftTimeUnit(input.getDriftTimeUnit()); + output.setMSLevel(input.getMSLevel()); + output.setName(input.getName()); + } } diff --git a/src/openms/source/MATH/MISC/EmgGradientDescent.cpp b/src/openms/source/MATH/MISC/EmgGradientDescent.cpp index 628d559de06..048a6e9d1fe 100644 --- a/src/openms/source/MATH/MISC/EmgGradientDescent.cpp +++ b/src/openms/source/MATH/MISC/EmgGradientDescent.cpp @@ -363,7 +363,7 @@ namespace OpenMS const std::vector& ys ) const { - if (xs.size() == 0) + if (xs.empty()) { throw Exception::SizeUnderflow(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, 0); } diff --git a/src/openms/source/MATH/STATISTICS/GammaDistributionFitter.cpp b/src/openms/source/MATH/STATISTICS/GammaDistributionFitter.cpp index 96772b95803..4c995e02576 100644 --- a/src/openms/source/MATH/STATISTICS/GammaDistributionFitter.cpp +++ b/src/openms/source/MATH/STATISTICS/GammaDistributionFitter.cpp @@ -75,7 +75,7 @@ namespace OpenMS::Math { } - int operator()(const Eigen::VectorXd& x, Eigen::VectorXd& fvec) + int operator()(const Eigen::VectorXd& x, Eigen::VectorXd& fvec) const { double b = x(0); @@ -89,7 +89,7 @@ namespace OpenMS::Math for (std::vector >::const_iterator it = m_data->begin(); it != m_data->end(); ++it, ++i) { double the_x = it->getX(); - fvec(i) = std::pow(b, p) / boost::math::tgamma(p) * std::pow(the_x, p - 1) * std::exp(-b * the_x) - it->getY(); + fvec(i) = std::pow(b, p) / std::tgamma(p) * std::pow(the_x, p - 1) * std::exp(-b * the_x) - it->getY(); } } else @@ -105,7 +105,7 @@ namespace OpenMS::Math } // compute Jacobian matrix for the different parameters - int df(const Eigen::VectorXd& x, Eigen::MatrixXd& J) + int df(const Eigen::VectorXd& x, Eigen::MatrixXd& J) const { double b = x(0); @@ -120,12 +120,12 @@ namespace OpenMS::Math double the_x = it->getX(); // partial deviation regarding b - double part_dev_b = std::pow(the_x, p - 1) * std::exp(-the_x * b) / boost::math::tgamma(p) * (p * std::pow(b, p - 1) - the_x * std::pow(b, p)); + double part_dev_b = std::pow(the_x, p - 1) * std::exp(-the_x * b) / std::tgamma(p) * (p * std::pow(b, p - 1) - the_x * std::pow(b, p)); J(i, 0) = part_dev_b; // partial deviation regarding p - double factor = std::exp(-b * the_x) * std::pow(the_x, p - 1) * std::pow(b, p) / std::pow(boost::math::tgamma(p), 2); - double argument = (std::log(b) + std::log(the_x)) * boost::math::tgamma(p) - boost::math::tgamma(p) * boost::math::digamma(p); + double factor = std::exp(-b * the_x) * std::pow(the_x, p - 1) * std::pow(b, p) / std::pow(std::tgamma(p), 2); + double argument = (std::log(b) + std::log(the_x)) * std::tgamma(p) - std::tgamma(p) * boost::math::digamma(p); double part_dev_p = factor * argument; J(i, 1) = part_dev_p; } @@ -145,7 +145,7 @@ namespace OpenMS::Math const std::vector >* m_data; }; - GammaDistributionFitter::GammaDistributionFitResult GammaDistributionFitter::fit(const std::vector >& input) + GammaDistributionFitter::GammaDistributionFitResult GammaDistributionFitter::fit(const std::vector >& input) const { Eigen::VectorXd x_init(2); x_init << init_param_.b, init_param_.p; diff --git a/src/openms/source/MATH/STATISTICS/GumbelDistributionFitter.cpp b/src/openms/source/MATH/STATISTICS/GumbelDistributionFitter.cpp index 0a1737ce566..2dd54e28f96 100644 --- a/src/openms/source/MATH/STATISTICS/GumbelDistributionFitter.cpp +++ b/src/openms/source/MATH/STATISTICS/GumbelDistributionFitter.cpp @@ -79,7 +79,7 @@ namespace OpenMS::Math { } - int operator()(const Eigen::VectorXd &x, Eigen::VectorXd &fvec) + int operator()(const Eigen::VectorXd &x, Eigen::VectorXd &fvec) const { double a = x(0); //location double b = x(1); //scale @@ -94,7 +94,7 @@ namespace OpenMS::Math return 0; } // compute Jacobian matrix for the different parameters - int df(const Eigen::VectorXd &x, Eigen::MatrixXd &J) + int df(const Eigen::VectorXd &x, Eigen::MatrixXd &J) const { double a = x(0); double b = x(1); @@ -119,7 +119,7 @@ namespace OpenMS::Math }; } - GumbelDistributionFitter::GumbelDistributionFitResult GumbelDistributionFitter::fit(vector > & input) + GumbelDistributionFitter::GumbelDistributionFitResult GumbelDistributionFitter::fit(vector > & input) const { Eigen::VectorXd x_init (2); diff --git a/src/openms/source/MATH/STATISTICS/LinearRegression.cpp b/src/openms/source/MATH/STATISTICS/LinearRegression.cpp index 9fb3e98e22c..28ed9a3bb77 100644 --- a/src/openms/source/MATH/STATISTICS/LinearRegression.cpp +++ b/src/openms/source/MATH/STATISTICS/LinearRegression.cpp @@ -35,6 +35,11 @@ #include #include #include +#include + +#include "Wm5Vector2.h" +#include "Wm5ApprLineFit2.h" +#include "Wm5LinearSystem.h" #include #include @@ -44,7 +49,6 @@ using boost::math::detail::inverse_students_t; namespace OpenMS::Math { - double LinearRegression::getIntercept() const { return intercept_; @@ -198,7 +202,7 @@ namespace OpenMS::Math if (rsd_ < 0.0) { std::cout << "rsd < 0.0 " << std::endl; - std::cout << "Intercept " << intercept_ + std::cout << "Intercept " << intercept_ << "\nSlope " << slope_ << "\nSquared pearson coefficient " << r_squared_ << "\nValue of the t-distribution " << t_star_ @@ -216,5 +220,89 @@ namespace OpenMS::Math } } + void LinearRegression::computeRegression(double confidence_interval_P, + std::vector::const_iterator x_begin, + std::vector::const_iterator x_end, + std::vector::const_iterator y_begin, + bool compute_goodness) + { + std::vector points = iteratorRange2Wm5Vectors(x_begin, x_end, y_begin); + + // Compute the unweighted linear fit. + // Get the intercept and the slope of the regression Y_hat=intercept_+slope_*X + // and the value of Chi squared (sum( (y - evel(x))^2) + bool pass = Wm5::HeightLineFit2(static_cast(points.size()), &points.front(), slope_, intercept_); + chi_squared_ = computeChiSquare(x_begin, x_end, y_begin, slope_, intercept_); + + if (pass) + { + if (compute_goodness && points.size() > 2) computeGoodness_(points, confidence_interval_P); + } + else + { + throw Exception::UnableToFit(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, + "UnableToFit-LinearRegression", String("Could not fit a linear model to the data (") + points.size() + " points)."); + } + } + + void LinearRegression::computeRegressionWeighted(double confidence_interval_P, + std::vector::const_iterator x_begin, + std::vector::const_iterator x_end, + std::vector::const_iterator y_begin, + std::vector::const_iterator w_begin, + bool compute_goodness) + { + // Compute the weighted linear fit. + // Get the intercept and the slope of the regression Y_hat=intercept_+slope_*X + // and the value of Chi squared, the covariances of the intercept and the slope + std::vector points = iteratorRange2Wm5Vectors(x_begin, x_end, y_begin); + // Compute sums for linear system. copy&paste from GeometricTools Wm5ApprLineFit2.cpp + // and modified to allow weights + int numPoints = static_cast(points.size()); + double sumX = 0, sumY = 0; + double sumXX = 0, sumXY = 0; + double sumW = 0; + auto wIter = w_begin; + + for (int i = 0; i < numPoints; ++i, ++wIter) + { + sumX += (*wIter) * points[i].X(); + sumY += (*wIter) * points[i].Y(); + sumXX += (*wIter) * points[i].X() * points[i].X(); + sumXY += (*wIter) * points[i].X() * points[i].Y(); + sumW += (*wIter); + } + //create matrices to solve Ax = B + double A[2][2] = + { + {sumXX, sumX}, + {sumX, sumW} + }; + double B[2] = + { + sumXY, + sumY + }; + double X[2]; + + bool nonsingular = Wm5::LinearSystem().Solve2(A, B, X); + if (nonsingular) + { + slope_ = X[0]; + intercept_ = X[1]; + } + chi_squared_ = computeWeightedChiSquare(x_begin, x_end, y_begin, w_begin, slope_, intercept_); + + if (nonsingular) + { + if (compute_goodness && points.size() > 2) computeGoodness_(points, confidence_interval_P); + } + else + { + throw Exception::UnableToFit(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, + "UnableToFit-LinearRegression", "Could not fit a linear model to the data"); + } + } + } // OpenMS //Math diff --git a/src/openms/source/MATH/STATISTICS/LinearRegressionWithoutIntercept.cpp b/src/openms/source/MATH/STATISTICS/LinearRegressionWithoutIntercept.cpp index 4beb236e953..6eb4e8a05e1 100644 --- a/src/openms/source/MATH/STATISTICS/LinearRegressionWithoutIntercept.cpp +++ b/src/openms/source/MATH/STATISTICS/LinearRegressionWithoutIntercept.cpp @@ -62,7 +62,7 @@ namespace OpenMS::Math /** * @brief returns the slope of the estimated regression line. */ - double LinearRegressionWithoutIntercept::getSlope() + double LinearRegressionWithoutIntercept::getSlope() const { if (n_ < 2) { diff --git a/src/openms/source/MATH/STATISTICS/PosteriorErrorProbabilityModel.cpp b/src/openms/source/MATH/STATISTICS/PosteriorErrorProbabilityModel.cpp index d548fe725ee..8c1c9685dc5 100644 --- a/src/openms/source/MATH/STATISTICS/PosteriorErrorProbabilityModel.cpp +++ b/src/openms/source/MATH/STATISTICS/PosteriorErrorProbabilityModel.cpp @@ -517,7 +517,7 @@ namespace OpenMS::Math } } - double PosteriorErrorProbabilityModel::computeLogLikelihood(const vector& incorrect_density, const vector& correct_density) + double PosteriorErrorProbabilityModel::computeLogLikelihood(const vector& incorrect_density, const vector& correct_density) const { double maxlike(0); auto incorrect = incorrect_density.cbegin(); @@ -530,7 +530,7 @@ namespace OpenMS::Math double PosteriorErrorProbabilityModel::computeLLAndIncorrectPosteriorsFromLogDensities( const vector& incorrect_log_density, const vector& correct_log_density, - vector& incorrect_posterior) + vector& incorrect_posterior) const { double loglikelihood = 0.0; double log_prior_pos = log(1. - negative_prior_); @@ -705,14 +705,14 @@ namespace OpenMS::Math void PosteriorErrorProbabilityModel::plotTargetDecoyEstimation(vector& target, vector& decoy) { - if (target.size() == 0 || decoy.size() == 0) + if (target.empty() || decoy.empty()) { StringList empty; - if (target.size() == 0) + if (target.empty()) { empty.push_back("target"); } - if (decoy.size() == 0) + if (decoy.empty()) { empty.push_back("decoy"); } diff --git a/src/openms/source/METADATA/AbsoluteQuantitationStandards.cpp b/src/openms/source/METADATA/AbsoluteQuantitationStandards.cpp index 5e4d03a5941..b4079ac1850 100644 --- a/src/openms/source/METADATA/AbsoluteQuantitationStandards.cpp +++ b/src/openms/source/METADATA/AbsoluteQuantitationStandards.cpp @@ -65,7 +65,7 @@ namespace OpenMS components_to_concentrations.clear(); for (const AbsoluteQuantitationStandards::runConcentration& run : run_concentrations) { - if (run.sample_name == "" || run.component_name == "") + if (run.sample_name.empty() || run.component_name.empty()) { continue; } @@ -93,7 +93,7 @@ namespace OpenMS { continue; } - if (run.IS_component_name != "") + if (!run.IS_component_name.empty()) { findComponentFeature_(fmap, run.IS_component_name, fc.IS_feature); } diff --git a/src/openms/source/METADATA/CVTerm.cpp b/src/openms/source/METADATA/CVTerm.cpp index 6fbd2d6ab07..631d0b37b3e 100644 --- a/src/openms/source/METADATA/CVTerm.cpp +++ b/src/openms/source/METADATA/CVTerm.cpp @@ -118,7 +118,7 @@ namespace OpenMS bool CVTerm::hasUnit() const { - return unit_.accession != ""; + return !unit_.accession.empty(); } bool CVTerm::hasValue() const diff --git a/src/openms/source/METADATA/DataProcessing.cpp b/src/openms/source/METADATA/DataProcessing.cpp index efa95bfe6c6..9a1640e3589 100644 --- a/src/openms/source/METADATA/DataProcessing.cpp +++ b/src/openms/source/METADATA/DataProcessing.cpp @@ -59,7 +59,8 @@ namespace OpenMS "Conversion to mzData format", "Conversion to mzML format", "Conversion to mzXML format", - "Conversion to DTA format" + "Conversion to DTA format", + "Identification" }; DataProcessing::~DataProcessing() @@ -75,7 +76,7 @@ namespace OpenMS { } - bool DataProcessing::operator==(const DataProcessing & rhs) const + bool DataProcessing::operator==(const DataProcessing& rhs) const { return software_ == rhs.software_ && processing_actions_ == rhs.processing_actions_ && @@ -83,50 +84,49 @@ namespace OpenMS MetaInfoInterface::operator==(rhs); } - bool DataProcessing::operator!=(const DataProcessing & rhs) const + bool DataProcessing::operator!=(const DataProcessing& rhs) const { return !(operator==(rhs)); } - const Software & DataProcessing::getSoftware() const + const Software& DataProcessing::getSoftware() const { return software_; } - Software & DataProcessing::getSoftware() + Software& DataProcessing::getSoftware() { return software_; } - void DataProcessing::setSoftware(const Software & software) + void DataProcessing::setSoftware(const Software& software) { software_ = software; } - const DateTime & DataProcessing::getCompletionTime() const + const DateTime& DataProcessing::getCompletionTime() const { return completion_time_; } - void DataProcessing::setCompletionTime(const DateTime & completion_time) + void DataProcessing::setCompletionTime(const DateTime& completion_time) { completion_time_ = completion_time; } - const set & DataProcessing::getProcessingActions() const + const set& DataProcessing::getProcessingActions() const { return processing_actions_; } - set & DataProcessing::getProcessingActions() + set& DataProcessing::getProcessingActions() { return processing_actions_; } - void DataProcessing::setProcessingActions(const set & processing_actions) + void DataProcessing::setProcessingActions(const set& processing_actions) { processing_actions_ = processing_actions; } } - diff --git a/src/openms/source/METADATA/ExperimentalDesign.cpp b/src/openms/source/METADATA/ExperimentalDesign.cpp index 9e4c642a505..5884ed988a6 100644 --- a/src/openms/source/METADATA/ExperimentalDesign.cpp +++ b/src/openms/source/METADATA/ExperimentalDesign.cpp @@ -289,6 +289,7 @@ namespace OpenMS for (unsigned u : sample_section_.getSamples()) { std::vector valuesToHash{}; + valuesToHash.reserve(factors.size()); for (const String& fac : factors) { valuesToHash.emplace_back(sample_section_.getFactorValue(u, fac)); @@ -349,6 +350,7 @@ namespace OpenMS for (unsigned u : sample_section_.getSamples()) { std::vector valuesToHash{}; + valuesToHash.reserve(nonRepFacs.size()); for (const String& fac : nonRepFacs) { valuesToHash.emplace_back(sample_section_.getFactorValue(u, fac)); diff --git a/src/openms/source/METADATA/Gradient.cpp b/src/openms/source/METADATA/Gradient.cpp index 12efcf4bdca..7f74e443791 100644 --- a/src/openms/source/METADATA/Gradient.cpp +++ b/src/openms/source/METADATA/Gradient.cpp @@ -84,7 +84,7 @@ namespace OpenMS void Gradient::addTimepoint(Int timepoint) { - if ((times_.size() > 0) && (timepoint <= times_[times_.size() - 1])) + if ((!times_.empty()) && (timepoint <= times_[times_.size() - 1])) { throw Exception::OutOfRange(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION); } diff --git a/src/openms/source/METADATA/ID/IdentificationData.cpp b/src/openms/source/METADATA/ID/IdentificationData.cpp index 8c95fb012af..40f31d08186 100644 --- a/src/openms/source/METADATA/ID/IdentificationData.cpp +++ b/src/openms/source/METADATA/ID/IdentificationData.cpp @@ -59,7 +59,7 @@ namespace OpenMS { for (const auto& step : steps_and_scores) { - if ((step.processing_step_opt != boost::none) && + if ((step.processing_step_opt != std::nullopt) && (!isValidReference_(*step.processing_step_opt, processing_steps_))) { String msg = "invalid reference to a data processing step - register that first"; @@ -76,15 +76,15 @@ namespace OpenMS { for (const auto& pair : matches) { - if (!isValidHashedReference_(pair.first, parent_molecule_lookup_)) + if (!isValidHashedReference_(pair.first, parent_lookup_)) { - String msg = "invalid reference to a parent molecule - register that first"; + String msg = "invalid reference to a parent sequence - register that first"; throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, msg); } if (pair.first->molecule_type != expected_type) { - String msg = "unexpected molecule type for parent molecule"; + String msg = "unexpected molecule type for parent sequence"; throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, msg); } @@ -93,23 +93,41 @@ namespace OpenMS IdentificationData::InputFileRef - IdentificationData::registerInputFile(const String& file) + IdentificationData::registerInputFile(const InputFile& file) { - return input_files_.insert(file).first; + if (!no_checks_ && file.name.empty()) // key may not be empty + { + String msg = "input file must have a name"; + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); + } + auto result = input_files_.insert(file); + if (!result.second) // existing element - merge in new information + { + input_files_.modify(result.first, [&file](InputFile& existing) + { + existing.merge(file); + }); + } + + return result.first; } IdentificationData::ProcessingSoftwareRef - IdentificationData::registerDataProcessingSoftware( - const DataProcessingSoftware& software) + IdentificationData::registerProcessingSoftware( + const ProcessingSoftware& software) { - for (ScoreTypeRef score_ref : software.assigned_scores) + if (!no_checks_) { - if (!isValidReference_(score_ref, score_types_)) + for (ScoreTypeRef score_ref : software.assigned_scores) { - String msg = "invalid reference to a score type - register that first"; - throw Exception::IllegalArgument(__FILE__, __LINE__, - OPENMS_PRETTY_FUNCTION, msg); + if (!isValidReference_(score_ref, score_types_)) + { + String msg = "invalid reference to a score type - register that first"; + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); + } } } return processing_softwares_.insert(software).first; @@ -125,44 +143,47 @@ namespace OpenMS IdentificationData::ProcessingStepRef - IdentificationData::registerDataProcessingStep( - const DataProcessingStep& step) + IdentificationData::registerProcessingStep( + const ProcessingStep& step) { - return registerDataProcessingStep(step, db_search_params_.end()); + return registerProcessingStep(step, db_search_params_.end()); } IdentificationData::ProcessingStepRef - IdentificationData::registerDataProcessingStep( - const DataProcessingStep& step, SearchParamRef search_ref) + IdentificationData::registerProcessingStep( + const ProcessingStep& step, SearchParamRef search_ref) { - // valid reference to software is required: - if (!isValidReference_(step.software_ref, processing_softwares_)) + if (!no_checks_) { - String msg = "invalid reference to data processing software - register that first"; - throw Exception::IllegalArgument(__FILE__, __LINE__, - OPENMS_PRETTY_FUNCTION, msg); - } - // if given, references to input files must be valid: - for (InputFileRef ref : step.input_file_refs) - { - if (!isValidReference_(ref, input_files_)) + // valid reference to software is required: + if (!isValidReference_(step.software_ref, processing_softwares_)) { - String msg = "invalid reference to input file - register that first"; + String msg = "invalid reference to data processing software - register that first"; throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, msg); } + // if given, references to input files must be valid: + for (InputFileRef ref : step.input_file_refs) + { + if (!isValidReference_(ref, input_files_)) + { + String msg = "invalid reference to input file - register that first"; + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); + } + } } ProcessingStepRef step_ref = processing_steps_.insert(step).first; // if given, reference to DB search param. must be valid: if (search_ref != db_search_params_.end()) { - if (!isValidReference_(search_ref, db_search_params_)) + if (!no_checks_ && !isValidReference_(search_ref, db_search_params_)) { String msg = "invalid reference to database search parameters - register those first"; - throw Exception::IllegalArgument(__FILE__, __LINE__, - OPENMS_PRETTY_FUNCTION, msg); + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); } db_search_steps_.insert(make_pair(step_ref, search_ref)); } @@ -173,9 +194,10 @@ namespace OpenMS IdentificationData::ScoreTypeRef IdentificationData::registerScoreType(const ScoreType& score) { - if (score.cv_term.getAccession().empty() && score.cv_term.getName().empty()) + // @TODO: allow just an accession? (all look-ups are currently by name) + if (!no_checks_ && score.cv_term.getName().empty()) { - String msg = "score type must have an accession or a name"; + String msg = "score type must have a name (as part of its CV term)"; throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, msg); } @@ -190,28 +212,42 @@ namespace OpenMS return result.first; } - - IdentificationData::DataQueryRef - IdentificationData::registerDataQuery(const DataQuery& query) + IdentificationData::ObservationRef + IdentificationData::registerObservation(const Observation& obs) { - // reference to spectrum or feature is required: - if (query.data_id.empty()) + if (!no_checks_) { - String msg = "missing identifier in data query"; - throw Exception::IllegalArgument(__FILE__, __LINE__, - OPENMS_PRETTY_FUNCTION, msg); + // reference to spectrum or feature is required: + if (obs.data_id.empty()) + { + String msg = "missing identifier in observation"; + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); + } + // ref. to input file must be valid: + if (!isValidReference_(obs.input_file, input_files_)) + { + String msg = "invalid reference to an input file - register that first"; + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); + } } - // ref. to input file may be missing, but must otherwise be valid: - if (query.input_file_opt && !isValidReference_(*query.input_file_opt, - input_files_)) + + // can't use "insertIntoMultiIndex_" because Observation doesn't have the + // "steps_and_scores" member (from ScoredProcessingResult) + auto result = observations_.insert(obs); + if (!result.second) // existing element - merge in new information { - String msg = "invalid reference to an input file - register that first"; - throw Exception::IllegalArgument(__FILE__, __LINE__, - OPENMS_PRETTY_FUNCTION, msg); + observations_.modify(result.first, [&obs](Observation& existing) + { + existing.merge(obs); + }); } - DataQueryRef ref = data_queries_.insert(query).first; - data_query_lookup_.insert(ref); - return ref; + // add address of new element to look-up table (for existence checks): + observation_lookup_.insert(uintptr_t(&(*result.first))); + + // @TODO: add processing step? (currently not supported by Observation) + return result.first; } @@ -219,13 +255,16 @@ namespace OpenMS IdentificationData::registerIdentifiedPeptide(const IdentifiedPeptide& peptide) { - if (peptide.sequence.empty()) + if (!no_checks_) { - String msg = "missing sequence for peptide"; - throw Exception::IllegalArgument(__FILE__, __LINE__, - OPENMS_PRETTY_FUNCTION, msg); + if (peptide.sequence.empty()) + { + String msg = "missing sequence for peptide"; + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); + } + checkParentMatches_(peptide.parent_matches, MoleculeType::PROTEIN); } - checkParentMatches_(peptide.parent_matches, MoleculeType::PROTEIN); return insertIntoMultiIndex_(identified_peptides_, peptide, identified_peptide_lookup_); @@ -236,7 +275,7 @@ namespace OpenMS IdentificationData::registerIdentifiedCompound(const IdentifiedCompound& compound) { - if (compound.identifier.empty()) + if (!no_checks_ && compound.identifier.empty()) { String msg = "missing identifier for compound"; throw Exception::IllegalArgument(__FILE__, __LINE__, @@ -251,154 +290,190 @@ namespace OpenMS IdentificationData::IdentifiedOligoRef IdentificationData::registerIdentifiedOligo(const IdentifiedOligo& oligo) { - if (oligo.sequence.empty()) + if (!no_checks_) { - String msg = "missing sequence for oligonucleotide"; - throw Exception::IllegalArgument(__FILE__, __LINE__, - OPENMS_PRETTY_FUNCTION, msg); + if (oligo.sequence.empty()) + { + String msg = "missing sequence for oligonucleotide"; + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); + } + checkParentMatches_(oligo.parent_matches, MoleculeType::RNA); } - checkParentMatches_(oligo.parent_matches, MoleculeType::RNA); return insertIntoMultiIndex_(identified_oligos_, oligo, identified_oligo_lookup_); } - IdentificationData::ParentMoleculeRef - IdentificationData::registerParentMolecule(const ParentMolecule& parent) + IdentificationData::ParentSequenceRef + IdentificationData::registerParentSequence(const ParentSequence& parent) { - if (parent.accession.empty()) - { - String msg = "missing accession for parent molecule"; - throw Exception::IllegalArgument(__FILE__, __LINE__, - OPENMS_PRETTY_FUNCTION, msg); - } - if ((parent.coverage < 0.0) || (parent.coverage > 1.0)) + if (!no_checks_) { - String msg = "parent molecule coverage must be between 0 and 1"; - throw Exception::IllegalArgument(__FILE__, __LINE__, - OPENMS_PRETTY_FUNCTION, msg); + if (parent.accession.empty()) + { + String msg = "missing accession for parent sequence"; + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); + } + if ((parent.coverage < 0.0) || (parent.coverage > 1.0)) + { + String msg = "parent sequence coverage must be between 0 and 1"; + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); + } } - return insertIntoMultiIndex_(parent_molecules_, parent, - parent_molecule_lookup_); + return insertIntoMultiIndex_(parents_, parent, + parent_lookup_); } - void IdentificationData::registerParentMoleculeGrouping( - const ParentMoleculeGrouping& grouping) + void IdentificationData::registerParentGroupSet(const ParentGroupSet& groups) { - checkAppliedProcessingSteps_(grouping.steps_and_scores); - - for (const auto& group : grouping.groups) + if (!no_checks_) { - checkScoreTypes_(group.scores); + checkAppliedProcessingSteps_(groups.steps_and_scores); - for (const auto& ref : group.parent_molecule_refs) + for (const auto& group : groups.groups) { - if (!isValidHashedReference_(ref, parent_molecule_lookup_)) + checkScoreTypes_(group.scores); // are the score types registered? + + for (const auto& ref : group.parent_refs) { - String msg = "invalid reference to a parent molecule - register that first"; - throw Exception::IllegalArgument(__FILE__, __LINE__, - OPENMS_PRETTY_FUNCTION, msg); + if (!isValidHashedReference_(ref, parent_lookup_)) + { + String msg = "invalid reference to a parent sequence - register that first"; + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); + } } } } - parent_molecule_groupings_.push_back(grouping); + parent_groups_.push_back(groups); // add the current processing step? if ((current_step_ref_ != processing_steps_.end()) && - (grouping.steps_and_scores.get<1>().find(current_step_ref_) == - grouping.steps_and_scores.get<1>().end())) + (groups.steps_and_scores.get<1>().find(current_step_ref_) == + groups.steps_and_scores.get<1>().end())) { - parent_molecule_groupings_.back().steps_and_scores.push_back( + parent_groups_.back().steps_and_scores.push_back( IdentificationDataInternal::AppliedProcessingStep(current_step_ref_)); } } - IdentificationData::QueryMatchRef - IdentificationData::registerMoleculeQueryMatch(const MoleculeQueryMatch& - match) + IdentificationData::AdductRef + IdentificationData::registerAdduct(const AdductInfo& adduct) { - if (const IdentifiedPeptideRef* ref_ptr = - boost::get(&match.identified_molecule_ref)) + // @TODO: require non-empty name? (auto-generate from formula?) + auto result = adducts_.insert(adduct); + if (!result.second && (result.first->getName() != adduct.getName())) { - if (!isValidHashedReference_(*ref_ptr, identified_peptide_lookup_)) - { - String msg = "invalid reference to an identified peptide - register that first"; - throw Exception::IllegalArgument(__FILE__, __LINE__, - OPENMS_PRETTY_FUNCTION, msg); - } + OPENMS_LOG_WARN << "Warning: adduct '" << adduct.getName() + << "' is already known under the name '" + << result.first->getName() << "'"; } - else if (const IdentifiedCompoundRef* ref_ptr = - boost::get(&match.identified_molecule_ref)) + return result.first; + } + + + IdentificationData::ObservationMatchRef + IdentificationData::registerObservationMatch(const ObservationMatch& match) + { + if (!no_checks_) { - if (!isValidHashedReference_(*ref_ptr, identified_compound_lookup_)) + if (const IdentifiedPeptideRef* ref_ptr = + std::get_if(&match.identified_molecule_var)) + { + if (!isValidHashedReference_(*ref_ptr, identified_peptide_lookup_)) + { + String msg = "invalid reference to an identified peptide - register that first"; + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); + } + } + else if (const IdentifiedCompoundRef* ref_ptr = + std::get_if(&match.identified_molecule_var)) + { + if (!isValidHashedReference_(*ref_ptr, identified_compound_lookup_)) + { + String msg = "invalid reference to an identified compound - register that first"; + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); + } + } + else if (const IdentifiedOligoRef* ref_ptr = + std::get_if(&match.identified_molecule_var)) { - String msg = "invalid reference to an identified compound - register that first"; + if (!isValidHashedReference_(*ref_ptr, identified_oligo_lookup_)) + { + String msg = "invalid reference to an identified oligonucleotide - register that first"; + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); + } + } + + if (!isValidHashedReference_(match.observation_ref, observation_lookup_)) + { + String msg = "invalid reference to an observation - register that first"; throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, msg); } - } - else if (const IdentifiedOligoRef* ref_ptr = - boost::get(&match.identified_molecule_ref)) - { - if (!isValidHashedReference_(*ref_ptr, identified_oligo_lookup_)) + + if (match.adduct_opt && !isValidReference_(*match.adduct_opt, adducts_)) { - String msg = "invalid reference to an identified oligonucleotide - register that first"; + String msg = "invalid reference to an adduct - register that first"; throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, msg); } } - if (!isValidHashedReference_(match.data_query_ref, data_query_lookup_)) - { - String msg = "invalid reference to a data query - register that first"; - throw Exception::IllegalArgument(__FILE__, __LINE__, - OPENMS_PRETTY_FUNCTION, msg); - } - - return insertIntoMultiIndex_(query_matches_, match, query_match_lookup_); + return insertIntoMultiIndex_(observation_matches_, match, + observation_match_lookup_); } IdentificationData::MatchGroupRef - IdentificationData::registerQueryMatchGroup(const QueryMatchGroup& group) + IdentificationData::registerObservationMatchGroup(const ObservationMatchGroup& group) { - for (const auto& ref : group.query_match_refs) + if (!no_checks_) { - if (!isValidHashedReference_(ref, query_match_lookup_)) + for (const auto& ref : group.observation_match_refs) { - String msg = "invalid reference to a molecule-query match - register that first"; - throw Exception::IllegalArgument(__FILE__, __LINE__, - OPENMS_PRETTY_FUNCTION, msg); + if (!isValidHashedReference_(ref, observation_match_lookup_)) + { + String msg = "invalid reference to an input match - register that first"; + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); + } } } - return insertIntoMultiIndex_(query_match_groups_, group); + return insertIntoMultiIndex_(observation_match_groups_, group); } - void IdentificationData::addScore(QueryMatchRef match_ref, + void IdentificationData::addScore(ObservationMatchRef match_ref, ScoreTypeRef score_ref, double value) { - if (!isValidReference_(score_ref, score_types_)) + if (!no_checks_ && !isValidReference_(score_ref, score_types_)) { String msg = "invalid reference to a score type - register that first"; throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, msg); } - ModifyMultiIndexAddScore modifier(score_ref, value); - query_matches_.modify(match_ref, modifier); + ModifyMultiIndexAddScore modifier(score_ref, value); + observation_matches_.modify(match_ref, modifier); } void IdentificationData::setCurrentProcessingStep(ProcessingStepRef step_ref) { - if (!isValidReference_(step_ref, processing_steps_)) + if (!no_checks_ && !isValidReference_(step_ref, processing_steps_)) { String msg = "invalid reference to a processing step - register that first"; throw Exception::IllegalArgument(__FILE__, __LINE__, @@ -421,68 +496,82 @@ namespace OpenMS } - pair + IdentificationData::ScoreTypeRef IdentificationData::findScoreType(const String& score_name) const { for (ScoreTypeRef it = score_types_.begin(); it != score_types_.end(); ++it) { if (it->cv_term.getName() == score_name) { - return make_pair(it, true); + return it; } } - return make_pair(score_types_.end(), false); + return score_types_.end(); } - vector - IdentificationData::getBestMatchPerQuery(ScoreTypeRef score_ref) const + vector + IdentificationData::getBestMatchPerObservation(ScoreTypeRef score_ref, + bool require_score) const { - vector results; - bool higher_better = score_ref->higher_better; + vector results; pair best_score = make_pair(0.0, false); - QueryMatchRef best_ref = query_matches_.end(); - for (QueryMatchRef ref = query_matches_.begin(); - ref != query_matches_.end(); ++ref) + ObservationMatchRef best_ref = observation_matches_.end(); + Size n_matches = 1; // number of matches for current observation + // matches for same observation appear consecutively, so just iterate: + for (ObservationMatchRef ref = observation_matches_.begin(); + ref != observation_matches_.end(); ++ref, ++n_matches) { pair current_score = ref->getScore(score_ref); - if ((best_ref != query_matches_.end()) && - (ref->data_query_ref != best_ref->data_query_ref)) + if (current_score.second && (!best_score.second || + score_ref->isBetterScore(current_score.first, + best_score.first))) { - // finalize previous query: - if (best_score.second) results.push_back(best_ref); + // new best score for the current observation: best_score = current_score; best_ref = ref; } - else if (current_score.second && - (!best_score.second || - isBetterScore(current_score.first, best_score.first, - higher_better))) + // peek ahead: + ObservationMatchRef next = ref; + ++next; + if ((next == observation_matches_.end()) || + (next->observation_ref != ref->observation_ref)) { - // new best score for the current query: - best_score = current_score; - best_ref = ref; + // last match for this observation - finalize: + if (best_score.second) + { + results.push_back(best_ref); + } + else if (!require_score && (n_matches == 1)) + { + results.push_back(ref); // only match for this observation + } + best_score.second = false; + n_matches = 0; // will be incremented by for-loop } } - // finalize last query: - if (best_score.second) - { - results.push_back(best_ref); - } + return results; } + pair + IdentificationData::getMatchesForObservation(ObservationRef obs_ref) const + { + return observation_matches_.equal_range(obs_ref); + } + + void IdentificationData::calculateCoverages(bool check_molecule_length) { - // aggregate molecule-parent matches by parent: + // aggregate parent matches by parent: struct ParentData { Size length = 0; double coverage = 0.0; vector> fragments; }; - map parent_info; + map parent_info; // go through all peptides: for (const auto& molecule : identified_peptides_) @@ -492,7 +581,7 @@ namespace OpenMS for (const auto& pair : molecule.parent_matches) { auto pos = parent_info.find(pair.first); - if (pos == parent_info.end()) // new parent molecule + if (pos == parent_info.end()) // new parent sequence { ParentData pd; pd.length = AASequence::fromString(pair.first->sequence).size(); @@ -521,7 +610,7 @@ namespace OpenMS for (const auto& pair : molecule.parent_matches) { auto pos = parent_info.find(pair.first); - if (pos == parent_info.end()) // new parent molecule + if (pos == parent_info.end()) // new parent sequence { ParentData pd; pd.length = NASequence::fromString(pair.first->sequence).size(); @@ -556,12 +645,12 @@ namespace OpenMS double(pair.second.length)); } // set coverage: - for (ParentMoleculeRef ref = parent_molecules_.begin(); - ref != parent_molecules_.end(); ++ref) + for (ParentSequenceRef ref = parents_.begin(); + ref != parents_.end(); ++ref) { auto pos = parent_info.find(ref); double coverage = (pos == parent_info.end()) ? 0.0 : pos->second.coverage; - parent_molecules_.modify(ref, [coverage](ParentMolecule& parent) + parents_.modify(ref, [coverage](ParentSequence& parent) { parent.coverage = coverage; }); @@ -569,7 +658,7 @@ namespace OpenMS } - void IdentificationData::cleanup(bool require_query_match, + void IdentificationData::cleanup(bool require_observation_match, bool require_identified_sequence, bool require_parent_match, bool require_parent_group, @@ -577,38 +666,38 @@ namespace OpenMS { // we expect that only "primary results" (stored in classes derived from // "ScoredProcessingResult") will be directly removed (by filters) - not - // meta data (incl. data queries, score types, processing steps etc.) + // meta data (incl. score types, processing steps etc.) - // remove parent molecules based on parent groups: + // remove parent sequences based on parent groups: if (require_parent_group) { - parent_molecule_lookup_.clear(); // will become invalid anyway - for (const auto& grouping: parent_molecule_groupings_) + parent_lookup_.clear(); // will become invalid anyway + for (const auto& groups: parent_groups_) { - for (const auto& group : grouping.groups) + for (const auto& group : groups.groups) { - for (const auto& ref : group.parent_molecule_refs) + for (const auto& ref : group.parent_refs) { - parent_molecule_lookup_.insert(ref); + parent_lookup_.insert(ref); } } } - removeFromSetIfNotHashed_(parent_molecules_, parent_molecule_lookup_); + removeFromSetIfNotHashed_(parents_, parent_lookup_); } - // update look-up table of parent molecule addresses (in case parent + // update look-up table of parent sequence addresses (in case parent // molecules were removed): - updateAddressLookup_(parent_molecules_, parent_molecule_lookup_); + updateAddressLookup_(parents_, parent_lookup_); - // remove parent matches based on parent molecules: + // remove parent matches based on parent sequences: ModifyMultiIndexRemoveParentMatches - pep_modifier(parent_molecule_lookup_); + pep_modifier(parent_lookup_); for (auto it = identified_peptides_.begin(); it != identified_peptides_.end(); ++it) { identified_peptides_.modify(it, pep_modifier); } ModifyMultiIndexRemoveParentMatches - oli_modifier(parent_molecule_lookup_); + oli_modifier(parent_lookup_); for (auto it = identified_oligos_.begin(); it != identified_oligos_.end(); ++it) { @@ -628,126 +717,129 @@ namespace OpenMS }); } - // remove molecule-query matches based on identified molecules: - set id_refs; - for (auto it = identified_peptides_.begin(); + // remove observation matches based on identified molecules: + set id_vars; + for (IdentifiedPeptideRef it = identified_peptides_.begin(); it != identified_peptides_.end(); ++it) { - id_refs.insert(it); + id_vars.insert(it); } - for (auto it = identified_compounds_.begin(); + for (IdentifiedCompoundRef it = identified_compounds_.begin(); it != identified_compounds_.end(); ++it) { - id_refs.insert(it); + id_vars.insert(it); } - for (auto it = identified_oligos_.begin(); + for (IdentifiedOligoRef it = identified_oligos_.begin(); it != identified_oligos_.end(); ++it) { - id_refs.insert(it); + id_vars.insert(it); } - removeFromSetIf_(query_matches_, [&](MoleculeQueryMatches::iterator it) + removeFromSetIf_(observation_matches_, [&](ObservationMatches::iterator it) { - return !id_refs.count(it->identified_molecule_ref); + return !id_vars.count(it->identified_molecule_var); }); - // remove molecule-query matches based on query match groups: + // remove observation matches based on observation match groups: if (require_match_group) { - query_match_lookup_.clear(); // will become invalid anyway - for (const auto& group : query_match_groups_) + observation_match_lookup_.clear(); // will become invalid anyway + for (const auto& group : observation_match_groups_) { - for (const auto& ref : group.query_match_refs) + for (const auto& ref : group.observation_match_refs) { - query_match_lookup_.insert(ref); + observation_match_lookup_.insert(ref); } } - removeFromSetIfNotHashed_(query_matches_, query_match_lookup_); + removeFromSetIfNotHashed_(observation_matches_, observation_match_lookup_); } - // update look-up table of query match addresses: - updateAddressLookup_(query_matches_, query_match_lookup_); + // update look-up table of input match addresses: + updateAddressLookup_(observation_matches_, observation_match_lookup_); - // remove id'd molecules and data queries based on molecule-query matches: - if (require_query_match) + // remove id'd molecules, observations and adducts based on observation matches: + if (require_observation_match) { - data_query_lookup_.clear(); + observation_lookup_.clear(); identified_peptide_lookup_.clear(); identified_compound_lookup_.clear(); identified_oligo_lookup_.clear(); - for (const auto& match : query_matches_) + set adduct_refs; + for (const auto& match : observation_matches_) { - data_query_lookup_.insert(match.data_query_ref); - IdentificationData::MoleculeType molecule_type = - match.getMoleculeType(); - if (molecule_type == IdentificationData::MoleculeType::PROTEIN) - { - identified_peptide_lookup_.insert(match.getIdentifiedPeptideRef()); - } - else if (molecule_type == IdentificationData::MoleculeType::COMPOUND) + observation_lookup_.insert(match.observation_ref); + const IdentifiedMolecule& molecule_var = match.identified_molecule_var; + switch (molecule_var.getMoleculeType()) { - identified_compound_lookup_.insert(match.getIdentifiedCompoundRef()); - } - else if (molecule_type == IdentificationData::MoleculeType::RNA) - { - identified_oligo_lookup_.insert(match.getIdentifiedOligoRef()); + case IdentificationData::MoleculeType::PROTEIN: + identified_peptide_lookup_.insert(molecule_var.getIdentifiedPeptideRef()); + break; + case IdentificationData::MoleculeType::COMPOUND: + identified_compound_lookup_.insert(molecule_var.getIdentifiedCompoundRef()); + break; + case IdentificationData::MoleculeType::RNA: + identified_oligo_lookup_.insert(molecule_var.getIdentifiedOligoRef()); } + if (match.adduct_opt) adduct_refs.insert(*match.adduct_opt); } - removeFromSetIfNotHashed_(data_queries_, data_query_lookup_); + removeFromSetIfNotHashed_(observations_, observation_lookup_); removeFromSetIfNotHashed_(identified_peptides_, identified_peptide_lookup_); removeFromSetIfNotHashed_(identified_compounds_, identified_compound_lookup_); removeFromSetIfNotHashed_(identified_oligos_, identified_oligo_lookup_); + removeFromSetIf_(adducts_, [&](Adducts::iterator it) + { + return !adduct_refs.count(it); + }); } // update look-up tables of addresses: - updateAddressLookup_(data_queries_, data_query_lookup_); + updateAddressLookup_(observations_, observation_lookup_); updateAddressLookup_(identified_peptides_, identified_peptide_lookup_); updateAddressLookup_(identified_compounds_, identified_compound_lookup_); updateAddressLookup_(identified_oligos_, identified_oligo_lookup_); - // remove parent molecules based on identified molecules: + // remove parent sequences based on identified molecules: if (require_identified_sequence) { - parent_molecule_lookup_.clear(); // will become invalid anyway + parent_lookup_.clear(); // will become invalid anyway for (const auto& peptide : identified_peptides_) { for (const auto& parent_pair : peptide.parent_matches) { - parent_molecule_lookup_.insert(parent_pair.first); + parent_lookup_.insert(parent_pair.first); } } for (const auto& oligo : identified_oligos_) { for (const auto& parent_pair : oligo.parent_matches) { - parent_molecule_lookup_.insert(parent_pair.first); + parent_lookup_.insert(parent_pair.first); } } - removeFromSetIfNotHashed_(parent_molecules_, parent_molecule_lookup_); - // update look-up table of parent molecule addresses (again): - updateAddressLookup_(parent_molecules_, parent_molecule_lookup_); + removeFromSetIfNotHashed_(parents_, parent_lookup_); + // update look-up table of parent sequence addresses (again): + updateAddressLookup_(parents_, parent_lookup_); } - // remove entries from parent molecule groups based on parent molecules: + // remove entries from parent sequence groups based on parent sequences + // (if a parent sequence doesn't exist anymore, remove it from any groups): bool warn = false; - for (auto& grouping : parent_molecule_groupings_) + for (auto& group_set : parent_groups_) { - for (auto group_it = grouping.groups.begin(); - group_it != grouping.groups.end(); ) + for (auto group_it = group_set.groups.begin(); + group_it != group_set.groups.end(); ) { - Size old_size = group_it->parent_molecule_refs.size(); - grouping.groups.modify( - group_it, [&](ParentMoleculeGroup& group) - { - removeFromSetIfNotHashed_(group.parent_molecule_refs, - parent_molecule_lookup_); - }); - if (group_it->parent_molecule_refs.empty()) + Size old_size = group_it->parent_refs.size(); + group_set.groups.modify(group_it, [&](ParentGroup& group) { - group_it = grouping.groups.erase(group_it); + removeFromSetIfNotHashed_(group.parent_refs, parent_lookup_); + }); + if (group_it->parent_refs.empty()) + { + group_it = group_set.groups.erase(group_it); } else { - if (group_it->parent_molecule_refs.size() != old_size) + if (group_it->parent_refs.size() != old_size) { warn = true; } @@ -758,28 +850,26 @@ namespace OpenMS } if (warn) { - OPENMS_LOG_WARN << "Warning: filtering removed elements from parent molecule groups - associated scores may not be valid any more" << endl; + OPENMS_LOG_WARN << "Warning: filtering removed elements from parent sequence groups - associated scores may not be valid any more" << endl; } - // remove entries from query match groups based on molecule-query matches: + // remove entries from input match groups based on input matches: warn = false; - for (auto group_it = query_match_groups_.begin(); - group_it != query_match_groups_.end(); ) + for (auto group_it = observation_match_groups_.begin(); + group_it != observation_match_groups_.end(); ) { - Size old_size = group_it->query_match_refs.size(); - query_match_groups_.modify( - group_it, [&](QueryMatchGroup& group) - { - removeFromSetIfNotHashed_(group.query_match_refs, - query_match_lookup_); - }); - if (group_it->query_match_refs.empty()) + Size old_size = group_it->observation_match_refs.size(); + observation_match_groups_.modify(group_it, [&](ObservationMatchGroup& group) { - group_it = query_match_groups_.erase(group_it); + removeFromSetIfNotHashed_(group.observation_match_refs, observation_match_lookup_); + }); + if (group_it->observation_match_refs.empty()) + { + group_it = observation_match_groups_.erase(group_it); } else { - if (group_it->query_match_refs.size() != old_size) + if (group_it->observation_match_refs.size() != old_size) { warn = true; } @@ -788,7 +878,307 @@ namespace OpenMS } if (warn) { - OPENMS_LOG_WARN << "Warning: filtering removed elements from query match groups - associated scores may not be valid any more" << endl; + OPENMS_LOG_WARN << "Warning: filtering removed elements from observation match groups - associated scores may not be valid any more" << endl; + } + } + + + bool IdentificationData::empty() const + { + return (input_files_.empty() && processing_softwares_.empty() && + processing_steps_.empty() && db_search_params_.empty() && + db_search_steps_.empty() && score_types_.empty() && + observations_.empty() && parents_.empty() && + parent_groups_.empty() && + identified_peptides_.empty() && identified_compounds_.empty() && + identified_oligos_.empty() && adducts_.empty() && + observation_matches_.empty() && observation_match_groups_.empty()); + } + + + void IdentificationData::mergeScoredProcessingResults_( + IdentificationData::ScoredProcessingResult& result, + const IdentificationData::ScoredProcessingResult& other, + const RefTranslator& trans) + { + result.MetaInfoInterface::operator=(other); + for (const AppliedProcessingStep& applied : other.steps_and_scores) + { + AppliedProcessingStep copy; + if (applied.processing_step_opt) + { + // need to reference a processing step in 'result', not the original one + // from 'other', so find the corresponding one: + copy.processing_step_opt = trans.processing_step_refs.at(*applied.processing_step_opt); + } + for (const auto& pair : applied.scores) + { + // need to reference a score type in 'result', not the original one from + // 'other', so find the corresponding one: + ScoreTypeRef score_ref = trans.score_type_refs.at(pair.first); + copy.scores[score_ref] = pair.second; + } + result.addProcessingStep(copy); + } + } + + + IdentificationData::RefTranslator + IdentificationData::merge(const IdentificationData& other) + { + RefTranslator trans; + // incoming data (stored in IdentificationData) is guaranteed to be consistent, + // so no need to check for consistency again: + no_checks_ = true; + // input files: + for (InputFileRef other_ref = other.getInputFiles().begin(); + other_ref != other.getInputFiles().end(); ++other_ref) + { + trans.input_file_refs[other_ref] = registerInputFile(*other_ref); + } + // score types: + for (ScoreTypeRef other_ref = other.getScoreTypes().begin(); + other_ref != other.getScoreTypes().end(); ++other_ref) + { + trans.score_type_refs[other_ref] = registerScoreType(*other_ref); + } + // processing software: + for (ProcessingSoftwareRef other_ref = other.getProcessingSoftwares().begin(); + other_ref != other.getProcessingSoftwares().end(); ++other_ref) + { + // update internal references: + ProcessingSoftware copy = *other_ref; + for (ScoreTypeRef& score_ref : copy.assigned_scores) + { + score_ref = trans.score_type_refs[score_ref]; + } + trans.processing_software_refs[other_ref] = registerProcessingSoftware(copy); + } + // search params: + for (SearchParamRef other_ref = other.getDBSearchParams().begin(); + other_ref != other.getDBSearchParams().end(); ++other_ref) + { + trans.search_param_refs[other_ref] = registerDBSearchParam(*other_ref); + } + // processing steps: + for (ProcessingStepRef other_ref = other.getProcessingSteps().begin(); + other_ref != other.getProcessingSteps().end(); ++other_ref) + { + // update internal references: + ProcessingStep copy = *other_ref; + copy.software_ref = trans.processing_software_refs[copy.software_ref]; + for (InputFileRef& file_ref : copy.input_file_refs) + { + file_ref = trans.input_file_refs[file_ref]; + } + trans.processing_step_refs[other_ref] = registerProcessingStep(copy); + } + // search steps: + for (const auto& pair : other.getDBSearchSteps()) + { + ProcessingStepRef step_ref = trans.processing_step_refs[pair.first]; + SearchParamRef param_ref = trans.search_param_refs[pair.second]; + db_search_steps_[step_ref] = param_ref; + } + // observations: + for (ObservationRef other_ref = other.getObservations().begin(); + other_ref != other.getObservations().end(); ++other_ref) + { + // update internal references: + Observation copy = *other_ref; + copy.input_file = trans.input_file_refs[copy.input_file]; + trans.observation_refs[other_ref] = registerObservation(copy); + } + // parent sequences: + for (ParentSequenceRef other_ref = other.getParentSequences().begin(); + other_ref != other.getParentSequences().end(); ++other_ref) + { + // don't copy processing steps and scores yet: + ParentSequence copy(other_ref->accession, other_ref->molecule_type, + other_ref->sequence, other_ref->description, + other_ref->coverage, other_ref->is_decoy); + // now copy precessing steps and scores while updating references: + mergeScoredProcessingResults_(copy, *other_ref, trans); + trans.parent_sequence_refs[other_ref] = registerParentSequence(copy); + } + // identified peptides: + for (IdentifiedPeptideRef other_ref = other.getIdentifiedPeptides().begin(); + other_ref != other.getIdentifiedPeptides().end(); ++other_ref) + { + // don't copy parent matches, steps/scores yet: + IdentifiedPeptide copy(other_ref->sequence, ParentMatches()); + // now copy steps/scores and parent matches while updating references: + mergeScoredProcessingResults_(copy, *other_ref, trans); + for (const auto& pair : other_ref->parent_matches) + { + ParentSequenceRef parent_ref = trans.parent_sequence_refs[pair.first]; + copy.parent_matches[parent_ref] = pair.second; + } + trans.identified_peptide_refs[other_ref] = registerIdentifiedPeptide(copy); + } + // identified oligonucleotides: + for (IdentifiedOligoRef other_ref = other.getIdentifiedOligos().begin(); + other_ref != other.getIdentifiedOligos().end(); ++other_ref) + { + // don't copy parent matches, steps/scores yet: + IdentifiedOligo copy(other_ref->sequence, ParentMatches()); + // now copy steps/scores and parent matches while updating references: + mergeScoredProcessingResults_(copy, *other_ref, trans); + for (const auto& pair : other_ref->parent_matches) + { + ParentSequenceRef parent_ref = trans.parent_sequence_refs[pair.first]; + copy.parent_matches[parent_ref] = pair.second; + } + trans.identified_oligo_refs[other_ref] = registerIdentifiedOligo(copy); + } + // identified compounds: + for (IdentifiedCompoundRef other_ref = other.getIdentifiedCompounds().begin(); + other_ref != other.getIdentifiedCompounds().end(); ++other_ref) + { + IdentifiedCompound copy(other_ref->identifier, other_ref->formula, + other_ref->name, other_ref->smile, other_ref->inchi); + mergeScoredProcessingResults_(copy, *other_ref, trans); + trans.identified_compound_refs[other_ref] = registerIdentifiedCompound(copy); + } + // adducts: + for (AdductRef other_ref = other.getAdducts().begin(); + other_ref != other.getAdducts().end(); ++other_ref) + { + trans.adduct_refs[other_ref] = registerAdduct(*other_ref); + } + // observation matches: + for (ObservationMatchRef other_ref = other.getObservationMatches().begin(); + other_ref != other.getObservationMatches().end(); ++other_ref) + { + IdentifiedMolecule molecule_var = + trans.translate(other_ref->identified_molecule_var); + ObservationRef obs_ref = trans.observation_refs[other_ref->observation_ref]; + ObservationMatch copy(molecule_var, obs_ref, other_ref->charge); + if (other_ref->adduct_opt) + { + copy.adduct_opt = trans.adduct_refs[*other_ref->adduct_opt]; + } + for (const auto& pair : other_ref->peak_annotations) + { + std::optional opt_ref; + if (pair.first) + { + opt_ref = trans.processing_step_refs[*pair.first]; + } + copy.peak_annotations[opt_ref] = pair.second; + } + mergeScoredProcessingResults_(copy, *other_ref, trans); + trans.observation_match_refs[other_ref] = registerObservationMatch(copy); + } + // parent sequence groups: + // @TODO: does this need to be more sophisticated? + for (const ParentGroupSet& groups : other.parent_groups_) + { + ParentGroupSet copy(groups.label); + mergeScoredProcessingResults_(copy, groups, trans); + for (const ParentGroup& group : groups.groups) + { + ParentGroup group_copy; + for (const auto& pair : group.scores) + { + ScoreTypeRef score_ref = trans.score_type_refs[pair.first]; + group_copy.scores[score_ref] = pair.second; + } + for (ParentSequenceRef parent_ref : group.parent_refs) + { + group_copy.parent_refs.insert(trans.parent_sequence_refs[parent_ref]); + } + copy.groups.insert(group_copy); + } + registerParentGroupSet(copy); + } + no_checks_ = false; + + return trans; + } + + + IdentificationData::IdentificationData(const IdentificationData& other): + MetaInfoInterface(other) + { + // don't add a processing step during merging: + current_step_ref_ = processing_steps_.end(); + RefTranslator trans = merge(other); + if (other.current_step_ref_ != other.processing_steps_.end()) + { + current_step_ref_ = trans.processing_step_refs[other.current_step_ref_]; + } + no_checks_ = other.no_checks_; + } + + + void IdentificationData::swap(IdentificationData& other) + { + MetaInfoInterface::swap(other); + input_files_.swap(other.input_files_); + processing_softwares_.swap(other.processing_softwares_); + processing_steps_.swap(other.processing_steps_); + db_search_params_.swap(other.db_search_params_); + db_search_steps_.swap(other.db_search_steps_); + score_types_.swap(other.score_types_); + observations_.swap(other.observations_); + parents_.swap(other.parents_); + parent_groups_.swap(other.parent_groups_); + identified_peptides_.swap(other.identified_peptides_); + identified_compounds_.swap(other.identified_compounds_); + identified_oligos_.swap(other.identified_oligos_); + adducts_.swap(other.adducts_); + observation_matches_.swap(other.observation_matches_); + observation_match_groups_.swap(other.observation_match_groups_); + std::swap(current_step_ref_, other.current_step_ref_); + std::swap(no_checks_, other.no_checks_); + // look-up tables: + observation_lookup_.swap(other.observation_lookup_); + parent_lookup_.swap(other.parent_lookup_); + identified_peptide_lookup_.swap(other.identified_peptide_lookup_); + identified_compound_lookup_.swap(other.identified_compound_lookup_); + identified_oligo_lookup_.swap(other.identified_oligo_lookup_); + observation_match_lookup_.swap(other.observation_match_lookup_); + } + + + void IdentificationData::clear() + { + IdentificationData tmp; + swap(tmp); + } + + + void IdentificationData::setMetaValue(const ObservationMatchRef ref, const String& key, + const DataValue& value) + { + setMetaValue_(ref, key, value, observation_matches_, observation_match_lookup_); + } + + + void IdentificationData::setMetaValue(const ObservationRef ref, const String& key, + const DataValue& value) + { + setMetaValue_(ref, key, value, observations_, observation_lookup_); + } + + + void IdentificationData::setMetaValue(const IdentifiedMolecule& var, const String& key, + const DataValue& value) + { + switch (var.getMoleculeType()) + { + case MoleculeType::PROTEIN: + setMetaValue_(var.getIdentifiedPeptideRef(), key, value, + identified_peptides_, identified_peptide_lookup_); + break; + case MoleculeType::COMPOUND: + setMetaValue_(var.getIdentifiedCompoundRef(), key, value, + identified_compounds_, identified_compound_lookup_); + break; + case MoleculeType::RNA: + setMetaValue_(var.getIdentifiedOligoRef(), key, value, + identified_oligos_, identified_oligo_lookup_); } } diff --git a/src/openms/source/METADATA/ID/IdentificationDataConverter.cpp b/src/openms/source/METADATA/ID/IdentificationDataConverter.cpp index bdf2b73426e..0626f8c787f 100644 --- a/src/openms/source/METADATA/ID/IdentificationDataConverter.cpp +++ b/src/openms/source/METADATA/ID/IdentificationDataConverter.cpp @@ -37,6 +37,9 @@ #include #include #include +#include +#include +#include using namespace std; @@ -63,29 +66,40 @@ namespace OpenMS ID::ScoreType score_type(prot.getScoreType(), prot.isHigherScoreBetter()); ID::ScoreTypeRef prot_score_ref = id_data.registerScoreType(score_type); - ID::DataProcessingSoftware software(prot.getSearchEngine(), + ID::ProcessingSoftware software(prot.getSearchEngine(), prot.getSearchEngineVersion()); software.assigned_scores.push_back(prot_score_ref); ID::ProcessingSoftwareRef software_ref = - id_data.registerDataProcessingSoftware(software); + id_data.registerProcessingSoftware(software); ID::SearchParamRef search_ref = importDBSearchParameters_(prot.getSearchParameters(), id_data); - ID::DataProcessingStep step(software_ref); + ID::ProcessingStep step(software_ref); // ideally, this should give us the raw files: - prot.getPrimaryMSRunPath(step.primary_files, true); + vector primary_files; + prot.getPrimaryMSRunPath(primary_files, true); // ... and this should give us mzML files: vector spectrum_files; prot.getPrimaryMSRunPath(spectrum_files); - for (const String& path : spectrum_files) + // if there's the same number of each, hope they're in the same order: + bool match_files = (primary_files.size() == spectrum_files.size()); + // @TODO: what to do with raw files if there's a different number? + for (Size i = 0; i < spectrum_files.size(); ++i) { - ID::InputFileRef file_ref = id_data.registerInputFile(path); + if (spectrum_files[i].empty()) + { + OPENMS_LOG_WARN << "Warning: spectrum file with no name - skipping" << endl; + continue; + } + ID::InputFile input(spectrum_files[i]); + if (match_files) input.primary_files.insert(primary_files[i]); + ID::InputFileRef file_ref = id_data.registerInputFile(input); step.input_file_refs.push_back(file_ref); } step.date_time = prot.getDateTime(); ID::ProcessingStepRef step_ref = - id_data.registerDataProcessingStep(step, search_ref); + id_data.registerProcessingStep(step, search_ref); id_to_step[prot.getIdentifier()] = step_ref; id_data.setCurrentProcessingStep(step_ref); @@ -102,16 +116,16 @@ namespace OpenMS { ++hits_counter; sublogger.setProgress(hits_counter); - ID::ParentMolecule parent(hit.getAccession()); + ID::ParentSequence parent(hit.getAccession()); parent.sequence = hit.getSequence(); parent.description = hit.getDescription(); // coverage comes in percents, -1 for missing; we want 0 to 1: parent.coverage = max(hit.getCoverage(), 0.0) / 100.0; - static_cast(parent) = hit; + parent.addMetaValues(hit); ID::AppliedProcessingStep applied(step_ref); applied.scores[prot_score_ref] = hit.getScore(); parent.steps_and_scores.push_back(applied); - id_data.registerParentMolecule(parent); + id_data.registerParentSequence(parent); } sublogger.endProgress(); @@ -126,24 +140,25 @@ namespace OpenMS ID::ScoreType score("probability", true); ID::ScoreTypeRef score_ref = id_data.registerScoreType(score); - ID::ParentMoleculeGrouping grouping; + ID::ParentGroupSet grouping; grouping.label = "indistinguishable proteins"; for (const auto& group : prot.getIndistinguishableProteins()) { ++groups_counter; sublogger.setProgress(groups_counter); - ID::ParentMoleculeGroup new_group; + ID::ParentGroup new_group; new_group.scores[score_ref] = group.probability; for (const String& acc : group.accessions) { - ID::ParentMolecule parent(acc); - ID::ParentMoleculeRef ref = id_data.registerParentMolecule(parent); - new_group.parent_molecule_refs.insert(ref); + // note: protein referenced from indistinguishable group was already registered + ID::ParentSequenceRef ref = id_data.getParentSequences().find(acc); + OPENMS_POSTCONDITION("Protein ID referenced from indistinguishable group is missing.", ref !=id_data.getParentSequences().end()); + new_group.parent_refs.insert(ref); } grouping.groups.insert(new_group); } - id_data.registerParentMoleculeGrouping(grouping); + id_data.registerParentGroupSet(grouping); sublogger.endProgress(); } // other protein groups: @@ -156,24 +171,25 @@ namespace OpenMS ID::ScoreType score("probability", true); ID::ScoreTypeRef score_ref = id_data.registerScoreType(score); - ID::ParentMoleculeGrouping grouping; + ID::ParentGroupSet grouping; grouping.label = "protein groups"; for (const auto& group : prot.getProteinGroups()) { ++groups_counter; sublogger.setProgress(groups_counter); - ID::ParentMoleculeGroup new_group; + ID::ParentGroup new_group; new_group.scores[score_ref] = group.probability; for (const String& acc : group.accessions) { - ID::ParentMolecule parent(acc); - ID::ParentMoleculeRef ref = id_data.registerParentMolecule(parent); - new_group.parent_molecule_refs.insert(ref); + // note: protein referenced from general protein group was already registered + ID::ParentSequenceRef ref = id_data.getParentSequences().find(acc); + OPENMS_POSTCONDITION("Protein ID referenced from general protein group is missing.", ref !=id_data.getParentSequences().end()); + new_group.parent_refs.insert(ref); } grouping.groups.insert(new_group); } - id_data.registerParentMoleculeGrouping(grouping); + id_data.registerParentGroupSet(grouping); sublogger.endProgress(); } @@ -182,7 +198,7 @@ namespace OpenMS progresslogger.endProgress(); // PeptideIdentification: - Size unknown_query_counter = 1; + Size unknown_obs_counter = 1; progresslogger.startProgress(0, peptides.size(), "converting peptide identifications"); Size peptides_counter = 0; @@ -191,41 +207,68 @@ namespace OpenMS peptides_counter++; progresslogger.setProgress(peptides_counter); const String& id = pep.getIdentifier(); - ID::ProcessingStepRef step_ref = id_to_step[id]; - ID::DataQuery query(""); // fill in "data_id" later - if (!step_ref->input_file_refs.empty()) + ID::ProcessingStepRef step_ref = id_to_step.at(id); + ID::InputFileRef inputfile; + if (!pep.getBaseName().empty()) { - // @TODO: what if there's more than one input file? - query.input_file_opt = step_ref->input_file_refs[0]; + inputfile = id_data.registerInputFile(ID::InputFile(pep.getBaseName())); } else { - String file = "UNKNOWN_INPUT_FILE_" + id; - ID::InputFileRef file_ref = id_data.registerInputFile(file); - query.input_file_opt = file_ref; + if (!step_ref->input_file_refs.empty()) + { + if (step_ref->input_file_refs.size() > 1) + { // Undo the hack needed in the legacy id datastructure to represent merged id files. Extract the actual input file name so we can properly register it. + if (pep.metaValueExists("id_merge_idx")) + { + inputfile = step_ref->input_file_refs[pep.getMetaValue("id_merge_idx")]; + } + else + { + throw Exception::ElementNotFound( + __FILE__, + __LINE__, + OPENMS_PRETTY_FUNCTION, + "Multiple file origins in ProteinIdentification Run but no 'id_merge_idx' metavalue in PeptideIdentification." + ); + } + } + else // one file in the ProteinIdentification Run only + { + inputfile = step_ref->input_file_refs[0]; + } + } + else + { // no input file annotated in legacy data structure + inputfile = id_data.registerInputFile(ID::InputFile("UNKNOWN_INPUT_FILE_" + id)); + } } - query.rt = pep.getRT(); - query.mz = pep.getMZ(); - static_cast(query) = pep; + String data_id; // an identifier unique to the input file if (pep.metaValueExists("spectrum_reference")) - { - query.data_id = pep.getMetaValue("spectrum_reference"); - query.removeMetaValue("spectrum_reference"); + { // use spectrum native id if present + data_id = pep.getMetaValue("spectrum_reference"); } else { if (pep.hasRT() && pep.hasMZ()) { - query.data_id = String("RT=") + String(float(query.rt)) + "_MZ=" + - String(float(query.mz)); + data_id = String("RT=") + String(float(pep.getRT())) + "_MZ=" + + String(float(pep.getMZ())); } else { - query.data_id = "UNKNOWN_QUERY_" + String(unknown_query_counter); - ++unknown_query_counter; + data_id = "UNKNOWN_OBSERVATION_" + String(unknown_obs_counter); + ++unknown_obs_counter; } } - ID::DataQueryRef query_ref = id_data.registerDataQuery(query); + ID::Observation obs{data_id, inputfile, pep.getRT(), pep.getMZ()}; + obs.addMetaValues(pep); + if (obs.metaValueExists("spectrum_reference")) + { + obs.removeMetaValue("spectrum_reference"); + } + + ID::ObservationRef obs_ref = id_data.registerObservation(obs); ID::ScoreType score_type(pep.getScoreType(), pep.isHigherScoreBetter()); ID::ScoreTypeRef score_ref = id_data.registerScoreType(score_type); @@ -235,6 +278,7 @@ namespace OpenMS { if (hit.getSequence().empty()) { + OPENMS_LOG_WARN << "Warning: Trying to import PeptideHit without a sequence. This should not happen!" << std::endl; continue; } ID::IdentifiedPeptide peptide(hit.getSequence()); @@ -242,26 +286,27 @@ namespace OpenMS for (const PeptideEvidence& evidence : hit.getPeptideEvidences()) { const String& accession = evidence.getProteinAccession(); - if (accession.empty()) - { - continue; - } - ID::ParentMolecule parent(accession); + + if (accession.empty()) continue; + + ID::ParentSequence parent(accession); parent.addProcessingStep(step_ref); + // this will merge information if the protein already exists: - ID::ParentMoleculeRef parent_ref = - id_data.registerParentMolecule(parent); - ID::MoleculeParentMatch match(evidence.getStart(), evidence.getEnd(), - evidence.getAABefore(), - evidence.getAAAfter()); - peptide.parent_matches[parent_ref].insert(match); + ID::ParentSequenceRef parent_ref = + id_data.registerParentSequence(parent); + + ID::ParentMatch parent_match(evidence.getStart(), evidence.getEnd(), + evidence.getAABefore(), + evidence.getAAAfter()); + peptide.parent_matches[parent_ref].insert(parent_match); } ID::IdentifiedPeptideRef peptide_ref = id_data.registerIdentifiedPeptide(peptide); - ID::MoleculeQueryMatch match(peptide_ref, query_ref); + ID::ObservationMatch match(peptide_ref, obs_ref); match.charge = hit.getCharge(); - static_cast(match) = hit; + match.addMetaValues(hit); if (!hit.getPeakAnnotations().empty()) { match.peak_annotations[step_ref] = hit.getPeakAnnotations(); @@ -273,7 +318,7 @@ namespace OpenMS for (const PeptideHit::PepXMLAnalysisResult& ana_res : hit.getAnalysisResults()) { - ID::DataProcessingSoftware software; + ID::ProcessingSoftware software; software.setName(ana_res.score_type); // e.g. "peptideprophet" ID::AppliedProcessingStep sub_applied; ID::ScoreType main_score; @@ -293,106 +338,93 @@ namespace OpenMS sub_applied.scores[sub_score_ref] = sub_pair.second; } ID::ProcessingSoftwareRef software_ref = - id_data.registerDataProcessingSoftware(software); - ID::DataProcessingStep sub_step(software_ref); - if (query.input_file_opt) - { - sub_step.input_file_refs.push_back(*query.input_file_opt); - } + id_data.registerProcessingSoftware(software); + ID::ProcessingStep sub_step(software_ref); + sub_step.input_file_refs.push_back(obs.input_file); ID::ProcessingStepRef sub_step_ref = - id_data.registerDataProcessingStep(sub_step); + id_data.registerProcessingStep(sub_step); sub_applied.processing_step_opt = sub_step_ref; match.addProcessingStep(sub_applied); } // most recent step (with primary score) goes last: match.addProcessingStep(applied); - id_data.registerMoleculeQueryMatch(match); + try + { + id_data.registerObservationMatch(match); + } + catch (Exception::InvalidValue& error) + { + OPENMS_LOG_ERROR << "Error: failed to register observation match - skipping.\n" + << "Message was: " << error.getMessage() << endl; + } } } progresslogger.endProgress(); } - void IdentificationDataConverter::exportIDs( - const IdentificationData& id_data, vector& proteins, - vector& peptides, bool export_oligonucleotides) + void IdentificationDataConverter::exportIDs(IdentificationData const& id_data, + vector & proteins, + vector & peptides, + bool export_ids_wo_scores) { - proteins.clear(); - peptides.clear(); - - // "DataQuery" roughly corresponds to "PeptideIdentification", - // "DataProcessingStep" roughly corresponds to "ProteinIdentification"; + // "Observation" roughly corresponds to "PeptideIdentification", + // "ProcessingStep" roughly corresponds to "ProteinIdentification"; // score type is stored in "PeptideIdent.", not "PeptideHit": - map>, + + map>, pair, ID::ScoreTypeRef>> psm_data; // we only export peptides and proteins (or oligos and RNAs), so start by // getting the PSMs (or OSMs): - const String& ppm_error_name = Constants::UserParam::PRECURSOR_ERROR_PPM_USERPARAM; - for (const ID::MoleculeQueryMatch& query_match : - id_data.getMoleculeQueryMatches()) + for (const ID::ObservationMatch& input_match : + id_data.getObservationMatches()) { PeptideHit hit; - const ID::ParentMatches* parent_matches_ptr; - if (!export_oligonucleotides) // export peptides + hit.addMetaValues(input_match); + const ID::IdentifiedMolecule& molecule_var = input_match.identified_molecule_var; + const ID::ParentMatches* parent_matches_ptr = nullptr; + if (molecule_var.getMoleculeType() == ID::MoleculeType::PROTEIN) { - if (query_match.getMoleculeType() != ID::MoleculeType::PROTEIN) - { - continue; - } - static_cast(hit) = query_match; - ID::IdentifiedPeptideRef peptide_ref = - query_match.getIdentifiedPeptideRef(); + ID::IdentifiedPeptideRef peptide_ref = molecule_var.getIdentifiedPeptideRef(); hit.setSequence(peptide_ref->sequence); parent_matches_ptr = &(peptide_ref->parent_matches); } - else + else if (molecule_var.getMoleculeType() == ID::MoleculeType::RNA) { - if (query_match.getMoleculeType() != ID::MoleculeType::RNA) continue; - static_cast(hit) = query_match; - ID::IdentifiedOligoRef oligo_ref = query_match.getIdentifiedOligoRef(); + ID::IdentifiedOligoRef oligo_ref = molecule_var.getIdentifiedOligoRef(); hit.setMetaValue("label", oligo_ref->sequence.toString()); + hit.setMetaValue("molecule_type", "RNA"); parent_matches_ptr = &(oligo_ref->parent_matches); } - hit.setCharge(query_match.charge); - if (query_match.metaValueExists(ppm_error_name)) + else // small molecule { - hit.setMetaValue(ppm_error_name, - query_match.getMetaValue(ppm_error_name)); + ID::IdentifiedCompoundRef compound_ref = molecule_var.getIdentifiedCompoundRef(); + // @TODO: use "name" member instead of "identifier" here? + hit.setMetaValue("label", compound_ref->identifier); + hit.setMetaValue("molecule_type", "compound"); } - for (const auto& pair : *parent_matches_ptr) + if (parent_matches_ptr != nullptr) { - ID::ParentMoleculeRef parent_ref = pair.first; - for (const ID::MoleculeParentMatch& parent_match : pair.second) - { - PeptideEvidence evidence; - evidence.setProteinAccession(parent_ref->accession); - evidence.setStart(parent_match.start_pos); - evidence.setEnd(parent_match.end_pos); - if (!parent_match.left_neighbor.empty()) - { - evidence.setAABefore(parent_match.left_neighbor[0]); - } - if (!parent_match.right_neighbor.empty()) - { - evidence.setAAAfter(parent_match.right_neighbor[0]); - } - hit.addPeptideEvidence(evidence); - } + exportParentMatches(*parent_matches_ptr, hit); + } + hit.setCharge(input_match.charge); + if (input_match.adduct_opt) + { + hit.setMetaValue("adduct", (*input_match.adduct_opt)->getName()); } - // sort the evidences: - vector evidences = hit.getPeptideEvidences(); - sort(evidences.begin(), evidences.end()); - hit.setPeptideEvidences(evidences); // generate hits in different ID runs for different processing steps: - for (ID::AppliedProcessingStep applied : query_match.steps_and_scores) + for (const ID::AppliedProcessingStep& applied : input_match.steps_and_scores) { - if (applied.scores.empty()) + //Note: this skips ObservationMatches without score if not prevented. This often removes fake/dummy/transfer/seed IDs. + if (applied.scores.empty() && !export_ids_wo_scores) { + OPENMS_LOG_WARN << "Warning: trying to export ObservationMatch without score. Skipping.." << std::endl; continue; } + PeptideHit hit_copy = hit; vector> scores = applied.getScoresInOrder(); @@ -404,55 +436,51 @@ namespace OpenMS hit_copy.setMetaValue(it->first->cv_term.getName(), it->second); } auto pos = - query_match.peak_annotations.find(applied.processing_step_opt); - if (pos != query_match.peak_annotations.end()) + input_match.peak_annotations.find(applied.processing_step_opt); + if (pos != input_match.peak_annotations.end()) { hit_copy.setPeakAnnotations(pos->second); } - auto key = make_pair(query_match.data_query_ref, + auto key = make_pair(input_match.observation_ref, applied.processing_step_opt); psm_data[key].first.push_back(hit_copy); psm_data[key].second = scores[0].first; // primary score type } } - set> steps; - for (const auto& psm : psm_data) + // order steps by date, if available: + set steps; + + for (const auto& obsref_stepopt2vechits_scoretype : psm_data) { - const ID::DataQuery& query = *psm.first.first; + const ID::Observation& obs = *obsref_stepopt2vechits_scoretype.first.first; PeptideIdentification peptide; - static_cast(peptide) = query; - peptide.setRT(query.rt); - peptide.setMZ(query.mz); - peptide.setMetaValue("spectrum_reference", query.data_id); - peptide.setHits(psm.second.first); - const ID::ScoreType& score_type = *psm.second.second; + peptide.addMetaValues(obs); + // set RT and m/z if they aren't missing (NaN): + if (obs.rt == obs.rt) peptide.setRT(obs.rt); + if (obs.mz == obs.mz) peptide.setMZ(obs.mz); + peptide.setMetaValue("spectrum_reference", obs.data_id); + peptide.setHits(obsref_stepopt2vechits_scoretype.second.first); + const ID::ScoreType& score_type = *obsref_stepopt2vechits_scoretype.second.second; peptide.setScoreType(score_type.cv_term.getName()); peptide.setHigherScoreBetter(score_type.higher_better); - if (psm.first.second) // processing step given + if (obsref_stepopt2vechits_scoretype.first.second) // processing step given { - peptide.setIdentifier(String(Size(&(**psm.first.second)))); + peptide.setIdentifier(String(Size(&(**obsref_stepopt2vechits_scoretype.first.second)))); } else { peptide.setIdentifier("dummy"); } peptides.push_back(peptide); - steps.insert(psm.first.second); + steps.insert(obsref_stepopt2vechits_scoretype.first.second); } + // sort peptide IDs by RT and m/z to improve reproducibility: + sort(peptides.begin(), peptides.end(), PepIDCompare()); - map, - pair, ID::ScoreTypeRef>> prot_data; - for (const auto& parent : id_data.getParentMolecules()) + map, ID::ScoreTypeRef>> prot_data; + for (const auto& parent : id_data.getParentSequences()) { - bool right_type = - parent.molecule_type == (export_oligonucleotides ? - ID::MoleculeType::RNA : - ID::MoleculeType::PROTEIN); - if (!right_type) - { - continue; - } ProteinHit hit; hit.setAccession(parent.accession); hit.setSequence(parent.sequence); @@ -465,14 +493,15 @@ namespace OpenMS { hit.setCoverage(ProteinHit::COVERAGE_UNKNOWN); } - static_cast(hit) = parent; + hit.clearMetaInfo(); + hit.addMetaValues(parent); if (!parent.metaValueExists("target_decoy")) { hit.setMetaValue("target_decoy", parent.is_decoy ? "decoy" : "target"); } // generate hits in different ID runs for different processing steps: - for (ID::AppliedProcessingStep applied : parent.steps_and_scores) + for (const ID::AppliedProcessingStep& applied : parent.steps_and_scores) { if (applied.scores.empty() && !steps.count(applied.processing_step_opt)) { @@ -510,6 +539,7 @@ namespace OpenMS } } + for (const auto& step_ref_opt : steps) { ProteinIdentification protein; @@ -530,8 +560,7 @@ namespace OpenMS id_data.getDBSearchSteps().find(step_ref); if (ss_pos != id_data.getDBSearchSteps().end()) { - protein.setSearchParameters(exportDBSearchParameters_(ss_pos-> - second)); + protein.setSearchParameters(exportDBSearchParameters_(ss_pos->second)); } } auto pd_pos = prot_data.find(step_ref_opt); @@ -547,7 +576,7 @@ namespace OpenMS } // protein groups: - for (const auto& grouping : id_data.getParentMoleculeGroupings()) + for (const auto& grouping : id_data.getParentGroupSets()) { // do these protein groups belong to the current search run? if (grouping.getStepsAndScoresByStep().find(step_ref_opt) != @@ -561,7 +590,7 @@ namespace OpenMS // @TODO: what if there are several scores? new_group.probability = group.scores.begin()->second; } - for (const auto& parent_ref : group.parent_molecule_refs) + for (const auto& parent_ref : group.parent_refs) { new_group.accessions.push_back(parent_ref->accession); } @@ -591,7 +620,7 @@ namespace OpenMS { MzTabMetaData meta; Size counter = 1; - for (const auto& software : id_data.getDataProcessingSoftwares()) + for (const auto& software : id_data.getProcessingSoftwares()) { MzTabSoftwareMetaData sw_meta; sw_meta.software.setName(software.getName()); @@ -605,7 +634,7 @@ namespace OpenMS it != id_data.getInputFiles().end(); ++it) { MzTabMSRunMetaData run_meta; - run_meta.location.set(*it); + run_meta.location.set(it->name); meta.ms_run[counter] = run_meta; file_map[it] = counter; ++counter; @@ -635,21 +664,21 @@ namespace OpenMS ++counter; } - map protein_scores, peptide_scores, - psm_scores, nucleic_acid_scores, oligonucleotide_scores, osm_scores; + map protein_scores, peptide_scores, psm_scores, + nucleic_acid_scores, oligonucleotide_scores, osm_scores; // compound_scores; MzTabProteinSectionRows proteins; MzTabNucleicAcidSectionRows nucleic_acids; - for (const auto& parent : id_data.getParentMolecules()) + for (const auto& parent : id_data.getParentSequences()) { if (parent.molecule_type == ID::MoleculeType::PROTEIN) { - exportParentMoleculeToMzTab_(parent, proteins, protein_scores); + exportParentSequenceToMzTab_(parent, proteins, protein_scores); } else if (parent.molecule_type == ID::MoleculeType::RNA) { - exportParentMoleculeToMzTab_(parent, nucleic_acids, + exportParentSequenceToMzTab_(parent, nucleic_acids, nucleic_acid_scores); } } @@ -668,27 +697,27 @@ namespace OpenMS MzTabPSMSectionRows psms; MzTabOSMSectionRows osms; - for (const auto& query_match : id_data.getMoleculeQueryMatches()) + for (const auto& obs_match : id_data.getObservationMatches()) { - ID::IdentifiedMoleculeRef molecule_ref = - query_match.identified_molecule_ref; + const ID::IdentifiedMolecule& molecule_var = + obs_match.identified_molecule_var; // @TODO: what about small molecules? - ID::MoleculeType molecule_type = query_match.getMoleculeType(); + ID::MoleculeType molecule_type = molecule_var.getMoleculeType(); if (molecule_type == ID::MoleculeType::PROTEIN) { - const AASequence& seq = query_match.getIdentifiedPeptideRef()->sequence; - double calc_mass = seq.getMonoWeight(Residue::Full, query_match.charge); - exportQueryMatchToMzTab_(seq.toString(), query_match, calc_mass, psms, - psm_scores, file_map); + const AASequence& seq = molecule_var.getIdentifiedPeptideRef()->sequence; + double calc_mass = seq.getMonoWeight(Residue::Full, obs_match.charge); + exportObservationMatchToMzTab_(seq.toString(), obs_match, calc_mass, + psms, psm_scores, file_map); // "PSM_ID" field is set at the end, after sorting } else if (molecule_type == ID::MoleculeType::RNA) { - const NASequence& seq = query_match.getIdentifiedOligoRef()->sequence; + const NASequence& seq = molecule_var.getIdentifiedOligoRef()->sequence; double calc_mass = seq.getMonoWeight(NASequence::Full, - query_match.charge); - exportQueryMatchToMzTab_(seq.toString(), query_match, calc_mass, osms, - osm_scores, file_map); + obs_match.charge); + exportObservationMatchToMzTab_(seq.toString(), obs_match, calc_mass, + osms, osm_scores, file_map); } } @@ -739,39 +768,77 @@ namespace OpenMS { for (const FASTAFile::FASTAEntry& entry : fasta) { - ID::ParentMolecule parent(entry.identifier, type, entry.sequence, + ID::ParentSequence parent(entry.identifier, type, entry.sequence, entry.description); if (!decoy_pattern.empty() && entry.identifier.hasSubstring(decoy_pattern)) { parent.is_decoy = true; } - id_data.registerParentMolecule(parent); + id_data.registerParentSequence(parent); } } + void IdentificationDataConverter::exportParentMatches( + const ID::ParentMatches& parent_matches, PeptideHit& hit) + { + for (const auto& pair : parent_matches) + { + ID::ParentSequenceRef parent_ref = pair.first; + for (const ID::ParentMatch& parent_match : pair.second) + { + PeptideEvidence evidence; + evidence.setProteinAccession(parent_ref->accession); + evidence.setStart(parent_match.start_pos); + evidence.setEnd(parent_match.end_pos); + if (!parent_match.left_neighbor.empty()) + { + evidence.setAABefore(parent_match.left_neighbor[0]); + } + if (!parent_match.right_neighbor.empty()) + { + evidence.setAAAfter(parent_match.right_neighbor[0]); + } + hit.addPeptideEvidence(evidence); + } + } + // sort the evidences: + vector evidences = hit.getPeptideEvidences(); + sort(evidences.begin(), evidences.end()); + hit.setPeptideEvidences(evidences); + } + + void IdentificationDataConverter::exportStepsAndScoresToMzTab_( const ID::AppliedProcessingSteps& steps_and_scores, MzTabParameterList& steps_out, map& scores_out, map& score_map) { vector search_engines; + set sw_refs; for (const ID::AppliedProcessingStep& applied : steps_and_scores) { - MzTabParameter param; if (applied.processing_step_opt) { ID::ProcessingSoftwareRef sw_ref = (*applied.processing_step_opt)->software_ref; - param.setName(sw_ref->getName()); - param.setValue(sw_ref->getVersion()); + // mention each search engine only once: + if (!sw_refs.count(sw_ref)) + { + MzTabParameter param; + param.setName(sw_ref->getName()); + param.setValue(sw_ref->getVersion()); + search_engines.push_back(param); + sw_refs.insert(sw_ref); + } } else { + MzTabParameter param; param.setName("unknown"); + search_engines.push_back(param); } - search_engines.push_back(param); for (const pair& score_pair : applied.getScoresInOrder()) @@ -805,48 +872,46 @@ namespace OpenMS void IdentificationDataConverter::addMzTabMoleculeParentContext_( - const ID::MoleculeParentMatch& match, - MzTabOligonucleotideSectionRow& row) + const ID::ParentMatch& match, MzTabOligonucleotideSectionRow& row) { - if (match.left_neighbor == String(ID::MoleculeParentMatch::LEFT_TERMINUS)) + if (match.left_neighbor == String(ID::ParentMatch::LEFT_TERMINUS)) { row.pre.set("-"); } else if (match.left_neighbor != - String(ID::MoleculeParentMatch::UNKNOWN_NEIGHBOR)) + String(ID::ParentMatch::UNKNOWN_NEIGHBOR)) { row.pre.set(match.left_neighbor); } - if (match.right_neighbor == String(ID::MoleculeParentMatch::RIGHT_TERMINUS)) + if (match.right_neighbor == String(ID::ParentMatch::RIGHT_TERMINUS)) { row.post.set("-"); } else if (match.right_neighbor != - String(ID::MoleculeParentMatch::UNKNOWN_NEIGHBOR)) + String(ID::ParentMatch::UNKNOWN_NEIGHBOR)) { row.post.set(match.right_neighbor); } - if (match.start_pos != ID::MoleculeParentMatch::UNKNOWN_POSITION) + if (match.start_pos != ID::ParentMatch::UNKNOWN_POSITION) { - row.start.set(match.start_pos + 1); // mzTab counts from 1 + row.start.set(match.start_pos + 1); } - if (match.end_pos != ID::MoleculeParentMatch::UNKNOWN_POSITION) + if (match.end_pos != ID::ParentMatch::UNKNOWN_POSITION) { - row.end.set(match.end_pos + 1); // mzTab counts from 1 + row.end.set(match.end_pos + 1); } } void IdentificationDataConverter::addMzTabMoleculeParentContext_( - const ID::MoleculeParentMatch& /* match */, + const ID::ParentMatch& /* match */, MzTabPeptideSectionRow& /* row */) { // nothing to do here } - ID::SearchParamRef - IdentificationDataConverter::importDBSearchParameters_( + ID::SearchParamRef IdentificationDataConverter::importDBSearchParameters_( const ProteinIdentification::SearchParameters& pisp, IdentificationData& id_data) { @@ -856,23 +921,12 @@ namespace OpenMS dbsp.database = pisp.db; dbsp.database_version = pisp.db_version; dbsp.taxonomy = pisp.taxonomy; - vector charges; - try + pair charge_range = pisp.getChargeRange(); + for (int charge = charge_range.first; charge <= charge_range.second; + ++charge) { - charges = ListUtils::create(pisp.charges); + dbsp.charges.insert(charge); } - catch (Exception::ConversionError& /*e*/) { // X! Tandem notation, e.g. "+1-+4"? - charges = ListUtils::create(pisp.charges, '-'); - if ((charges.size() == 2) && (charges[0] < charges[1])) - { - for (Int z = charges[0] + 1; z < charges[1]; ++z) - { - charges.push_back(z); - } - sort(charges.begin(), charges.end()); - } - } - dbsp.charges.insert(charges.begin(), charges.end()); dbsp.fixed_mods.insert(pisp.fixed_modifications.begin(), pisp.fixed_modifications.end()); dbsp.variable_mods.insert(pisp.variable_modifications.begin(), @@ -895,8 +949,7 @@ namespace OpenMS ProteinIdentification::SearchParameters - IdentificationDataConverter::exportDBSearchParameters_( - ID::SearchParamRef ref) + IdentificationDataConverter::exportDBSearchParameters_(ID::SearchParamRef ref) { const ID::DBSearchParam& dbsp = *ref; ProteinIdentification::SearchParameters pisp; @@ -915,8 +968,8 @@ namespace OpenMS pisp.fragment_mass_tolerance = dbsp.fragment_mass_tolerance; pisp.precursor_mass_tolerance_ppm = dbsp.precursor_tolerance_ppm; pisp.fragment_mass_tolerance_ppm = dbsp.fragment_tolerance_ppm; - if (dbsp.digestion_enzyme && - (dbsp.molecule_type == ID::MoleculeType::PROTEIN)) + if (dbsp.digestion_enzyme && (dbsp.molecule_type == + ID::MoleculeType::PROTEIN)) { pisp.digestion_enzyme = *(static_cast(dbsp.digestion_enzyme)); @@ -935,48 +988,215 @@ namespace OpenMS void IdentificationDataConverter::exportMSRunInformation_( ID::ProcessingStepRef step_ref, ProteinIdentification& protein) { - // are input files mzMLs? - // @TODO: what if there's a mix of mzMLs and other files? - bool mzml_inputs = false; - vector mzml_files; for (ID::InputFileRef input_ref : step_ref->input_file_refs) { - FileTypes::Type type = FileHandler::getTypeByFileName(*input_ref); - if (type == FileTypes::MZML) + // @TODO: check if files are mzMLs? + protein.addPrimaryMSRunPath(input_ref->name); + for (const String& primary_file : input_ref->primary_files) { - mzml_inputs = true; - mzml_files.push_back(*input_ref); + protein.addPrimaryMSRunPath(primary_file, true); } - else + } + } + + + void IdentificationDataConverter::importFeatureIDs(FeatureMap& features, + bool clear_original) + { + // collect all peptide IDs: + vector peptides = features.getUnassignedPeptideIdentifications(); + // get peptide IDs from each feature and its subordinates, add meta values: + Size id_counter = 0; + for (Size i = 0; i < features.size(); ++i) + { + handleFeatureImport_(features[i], IntList(1, i), peptides, id_counter, clear_original); + } + + IdentificationData& id_data = features.getIdentificationData(); + importIDs(id_data, features.getProteinIdentifications(), peptides); + + // map converted IDs back to features using meta values assigned in "handleFeatureImport_"; + for (ID::ObservationMatchRef ref = id_data.getObservationMatches().begin(); + ref != id_data.getObservationMatches().end(); ++ref) + { + vector meta_keys; + ref->getKeys(meta_keys); + for (const String& key : meta_keys) { - mzml_inputs = false; - break; + if (key.hasPrefix("IDConverter_trace_")) + { + IntList indexes = ref->getMetaValue(key); + Feature* feat_ptr = &features.at(indexes[0]); + for (Size i = 1; i < indexes.size(); ++i) + { + feat_ptr = &feat_ptr->getSubordinates()[indexes[i]]; + } + feat_ptr->addIDMatch(ref); + // @TODO: remove meta value + } } } - if (mzml_inputs) + if (clear_original) { - protein.setPrimaryMSRunPath(mzml_files); - // also store raw files (or equivalent): - protein.setPrimaryMSRunPath(step_ref->primary_files, true); - return; + features.getUnassignedPeptideIdentifications().clear(); + features.getProteinIdentifications().clear(); } - // alternatively, are the primary files mzMLs? - bool mzml_primaries = false; - for (const String& file : step_ref->primary_files) + } + + + void IdentificationDataConverter::handleFeatureImport_(Feature& feature, IntList indexes, + vector& peptides, + Size& id_counter, bool clear_original) + { + for (const PeptideIdentification& pep : feature.getPeptideIdentifications()) { - FileTypes::Type type = FileHandler::getTypeByFileName(file); - if (type == FileTypes::MZML) + peptides.push_back(pep); + // store trace of feature indexes so we can map the converted ID back; + // key needs to be unique in case the same ID matches multiple features: + String key = "IDConverter_trace_" + String(id_counter); + for (PeptideHit& hit : peptides.back().getHits()) { - mzml_primaries = true; + hit.setMetaValue(key, indexes); } - else + ++id_counter; + } + if (clear_original) feature.getPeptideIdentifications().clear(); + for (Size i = 0; i < feature.getSubordinates().size(); ++i) + { + IntList extended = indexes; + extended.push_back(i); + handleFeatureImport_(feature.getSubordinates()[i], extended, peptides, + id_counter, clear_original); + } + } + + + void IdentificationDataConverter::exportFeatureIDs(FeatureMap& features, + bool clear_original) + { + Size id_counter = 0; + // Adds dummy Obs.Match for features with ID but no matches. Adds "IDConverter_trace" meta value + // to Matches for every feature/subfeature they are contained in + // e.g. 3,1,2 for a Match in subfeature 2 of subfeature 1 of feature 3 + for (Size i = 0; i < features.size(); ++i) + { + handleFeatureExport_(features[i], IntList(1, i), + features.getIdentificationData(), id_counter); + } + + exportIDs(features.getIdentificationData(), features.getProteinIdentifications(), + features.getUnassignedPeptideIdentifications(), false); + + // map converted IDs back to features using meta values assigned in "handleFeatureExport_"; + // in principle, different "observation matches" from one "observation" + // can map to different features, which makes things complicated when they + // are converted to "peptide hits"/"peptide identifications"... + + auto& pep_ids = features.getUnassignedPeptideIdentifications(); + for (Size i = 0; i < pep_ids.size(); ) + { + PeptideIdentification& pep = pep_ids[i]; + // move hits outside of peptide ID so ID can be copied without the hits: + vector all_hits; + all_hits.swap(pep.getHits()); + vector assigned_hits(all_hits.size(), false); + // which hits map to which features: + map> features_to_hits; + for (Size j = 0; j < all_hits.size(); ++j) { - mzml_primaries = false; - break; + PeptideHit& hit = all_hits[j]; + vector meta_keys; + hit.getKeys(meta_keys); + for (const String& key : meta_keys) + { // ID-data stores a trace (path through the feature-subfeature hierarchy) which is used + // for a lookup to attach the converted IDs back to the specific feature. + if (key.hasPrefix("IDConverter_trace_")) + { + IntList indexes = hit.getMetaValue(key); + hit.removeMetaValue(key); + Feature* feat_ptr = &features.at(indexes[0]); + for (Size k = 1; k < indexes.size(); ++k) + { + feat_ptr = &feat_ptr->getSubordinates()[indexes[k]]; + } + features_to_hits[feat_ptr].insert(j); + assigned_hits[j] = true; + } + } } + // copy peptide ID with corresponding hits to relevant features: + for (auto& pair : features_to_hits) + { + auto& feat_ids = pair.first->getPeptideIdentifications(); + feat_ids.push_back(pep); + for (Size hit_index : pair.second) + { + feat_ids.back().getHits().push_back(all_hits[hit_index]); + } + } + + bool all_assigned = all_of(assigned_hits.begin(), assigned_hits.end(), + [](bool b) { return b; }); + if (all_assigned) // remove peptide ID from unassigned IDs + { + pep_ids.erase(pep_ids.begin() + i); + // @TODO: use "std::remove" to make this more efficient + } + else // only keep hits that weren't assigned: + { + for (Size j = 0; j < assigned_hits.size(); ++j) + { + if (!assigned_hits[j]) + { + pep.getHits().push_back(all_hits[j]); + } + } + ++i; + } + } + if (clear_original) + { + features.getIdentificationData().clear(); + for (auto& feat : features) + { + feat.clearPrimaryID(); + feat.getIDMatches().clear(); + } + } + } + + void IdentificationDataConverter::handleFeatureExport_( + Feature& feature, const IntList& indexes, IdentificationData& id_data, Size& id_counter) + { + if (feature.getIDMatches().empty() && feature.hasPrimaryID()) + { + // primary ID without supporting ID matches - generate a "dummy" ID match + // so we can export it: + ID::InputFile file("ConvertedFromFeature"); + ID::InputFileRef file_ref = id_data.registerInputFile(file); + ID::Observation obs(String(feature.getUniqueId()), file_ref, + feature.getRT(), feature.getMZ()); + ID::ObservationRef obs_ref = id_data.registerObservation(obs); + ID::ObservationMatch match(feature.getPrimaryID(), obs_ref, + feature.getCharge()); + ID::ObservationMatchRef match_ref = id_data.registerObservationMatch(match); + feature.addIDMatch(match_ref); + } + for (ID::ObservationMatchRef ref : feature.getIDMatches()) + { + // store trace of feature indexes so we can map the converted ID back; + // key needs to be unique in case the same ID matches multiple features: + String key = "IDConverter_trace_" + String(id_counter); + id_data.setMetaValue(ref, key, indexes); + ++id_counter; + } + for (Size i = 0; i < feature.getSubordinates().size(); ++i) + { + IntList extended = indexes; + extended.push_back(i); + handleFeatureExport_(feature.getSubordinates()[i], extended, id_data, + id_counter); } - // store as (raw) primary files depending on file type: - protein.setPrimaryMSRunPath(step_ref->primary_files, !mzml_primaries); } } // end namespace OpenMS diff --git a/src/openms/source/METADATA/ID/IdentifiedMolecule.cpp b/src/openms/source/METADATA/ID/IdentifiedMolecule.cpp new file mode 100644 index 00000000000..59b3fb310d1 --- /dev/null +++ b/src/openms/source/METADATA/ID/IdentifiedMolecule.cpp @@ -0,0 +1,147 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Hendrik Weisser $ +// $Authors: Hendrik Weisser $ +// -------------------------------------------------------------------------- + +#include + +namespace OpenMS::IdentificationDataInternal +{ + +bool operator==(const IdentifiedMolecule& a, const IdentifiedMolecule& b) +{ + return operator==(static_cast(a), static_cast(b)); +} + +bool operator!=(const IdentifiedMolecule& a, const IdentifiedMolecule& b) +{ + return !operator==(a, b); +} + +bool operator<(const IdentifiedMolecule& a, const IdentifiedMolecule& b) +{ + return operator<(static_cast(a), static_cast(b)); +} + +MoleculeType IdentifiedMolecule::getMoleculeType() const +{ + if (std::get_if(this)) + { + return MoleculeType::PROTEIN; + } + if (std::get_if(this)) + { + return MoleculeType::COMPOUND; + } + // if (get(this)) + return MoleculeType::RNA; +} + +IdentifiedPeptideRef IdentifiedMolecule::getIdentifiedPeptideRef() const +{ + if (const IdentifiedPeptideRef* ref_ptr = + std::get_if(this)) + { + return *ref_ptr; + } + String msg = "matched molecule is not a peptide"; + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); +} + +IdentifiedCompoundRef IdentifiedMolecule::getIdentifiedCompoundRef() const +{ + if (const IdentifiedCompoundRef* ref_ptr = + std::get_if(this)) + { + return *ref_ptr; + } + String msg = "matched molecule is not a compound"; + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); +} + + +IdentifiedOligoRef IdentifiedMolecule::getIdentifiedOligoRef() const +{ + if (const IdentifiedOligoRef* ref_ptr = + std::get_if(this)) + { + return *ref_ptr; + } + String msg = "matched molecule is not an oligonucleotide"; + throw Exception::IllegalArgument(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, msg); +} + +EmpiricalFormula IdentifiedMolecule::getFormula(Size fragment_type /*= 0*/, Int charge /*= 0*/) const +{ + switch (getMoleculeType()) + { + case MoleculeType::PROTEIN: + { + auto type = static_cast(fragment_type); + return getIdentifiedPeptideRef()->sequence.getFormula(type, charge); + } + case MoleculeType::COMPOUND: + { + // @TODO: what about fragment type and charge? + return getIdentifiedCompoundRef()->formula; + } + case MoleculeType::RNA: + { + auto type = static_cast(fragment_type); + return getIdentifiedOligoRef()->sequence.getFormula(type, charge); + } + default: + throw Exception::NotImplemented(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION); + } +} + +String IdentifiedMolecule::toString() const +{ + switch (getMoleculeType()) + { + case MoleculeType::PROTEIN: + return getIdentifiedPeptideRef()->sequence.toString(); + case MoleculeType::COMPOUND: + return getIdentifiedCompoundRef()->identifier; // or use "name"? + case MoleculeType::RNA: + return getIdentifiedOligoRef()->sequence.toString(); + default: + throw Exception::NotImplemented(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION); + } +} + +} // namespace diff --git a/src/openms/source/METADATA/ID/sources.cmake b/src/openms/source/METADATA/ID/sources.cmake index 40ea23225be..b1c7a3f0672 100644 --- a/src/openms/source/METADATA/ID/sources.cmake +++ b/src/openms/source/METADATA/ID/sources.cmake @@ -5,6 +5,7 @@ set(directory source/METADATA/ID) set(sources_list IdentificationData.cpp IdentificationDataConverter.cpp +IdentifiedMolecule.cpp ) ### add path to the filenames diff --git a/src/openms/source/METADATA/MetaInfoInterface.cpp b/src/openms/source/METADATA/MetaInfoInterface.cpp index cfaa9dda7a9..2136d2f90fb 100644 --- a/src/openms/source/METADATA/MetaInfoInterface.cpp +++ b/src/openms/source/METADATA/MetaInfoInterface.cpp @@ -109,6 +109,14 @@ namespace OpenMS return *this; } + void MetaInfoInterface::swap(MetaInfoInterface& rhs) + { + std::swap(meta_, rhs.meta_); + // MetaInfo* temp = meta_; + // meta_ = rhs.meta_; + // rhs.meta_ = temp; + } + bool MetaInfoInterface::operator==(const MetaInfoInterface& rhs) const { if (rhs.meta_ == nullptr && meta_ == nullptr) @@ -259,4 +267,3 @@ namespace OpenMS } } //namespace - diff --git a/src/openms/source/METADATA/PeptideIdentification.cpp b/src/openms/source/METADATA/PeptideIdentification.cpp index 95f3cb7d1a2..4d1a561f018 100644 --- a/src/openms/source/METADATA/PeptideIdentification.cpp +++ b/src/openms/source/METADATA/PeptideIdentification.cpp @@ -126,7 +126,7 @@ namespace OpenMS void PeptideIdentification::insertHit(PeptideHit&& hit) { - hits_.push_back(std::forward(hit)); + hits_.push_back(std::move(hit)); } void PeptideIdentification::setHits(const std::vector& hits) @@ -134,6 +134,11 @@ namespace OpenMS hits_ = hits; } + void PeptideIdentification::setHits(std::vector&& hits) + { + hits_ = std::move(hits); + } + double PeptideIdentification::getSignificanceThreshold() const { return significance_threshold_; @@ -248,12 +253,12 @@ namespace OpenMS bool PeptideIdentification::empty() const { - return id_ == "" + return id_.empty() && hits_.empty() && significance_threshold_ == 0.0 - && score_type_ == "" + && score_type_.empty() && higher_score_better_ == true - && base_name_ == ""; + && base_name_.empty(); } std::vector PeptideIdentification::getReferencingHits(const std::vector& hits, const std::set& accession) diff --git a/src/openms/source/METADATA/Precursor.cpp b/src/openms/source/METADATA/Precursor.cpp index 67d3bd8254d..94f41ebf5a4 100644 --- a/src/openms/source/METADATA/Precursor.cpp +++ b/src/openms/source/METADATA/Precursor.cpp @@ -39,8 +39,44 @@ using namespace std; namespace OpenMS { - const std::string Precursor::NamesOfActivationMethod[] = {"Collision-induced dissociation", "Post-source decay", "Plasma desorption", "Surface-induced dissociation", "Blackbody infrared radiative dissociation", "Electron capture dissociation", "Infrared multiphoton dissociation", "Sustained off-resonance irradiation", "High-energy collision-induced dissociation", "Low-energy collision-induced dissociation", "Photodissociation", "Electron transfer dissociation", "Pulsed q dissociation"}; - const std::string Precursor::NamesOfActivationMethodShort[] = { "CID", "PSD", "PD", "SID", "BIRD", "ECD", "IMD", "SORI", "HCID", "LCID", "PHD", "ETD", "PQD" }; + const std::string Precursor::NamesOfActivationMethod[] = { + "Collision-induced dissociation", + "Post-source decay", + "Plasma desorption", + "Surface-induced dissociation", + "Blackbody infrared radiative dissociation", + "Electron capture dissociation", + "Infrared multiphoton dissociation", + "Sustained off-resonance irradiation", + "High-energy collision-induced dissociation", + "Low-energy collision-induced dissociation", + "Photodissociation", + "Electron transfer dissociation", + "Pulsed q dissociation", + "trap-type collision-induced dissociation", + "beam-type collision-induced dissociation", // == HCD + "in-source collision-induced dissociation", + "Bruker proprietary method" + }; + const std::string Precursor::NamesOfActivationMethodShort[] = { + "CID", + "PSD", + "PD", + "SID", + "BIRD", + "ECD", + "IMD", + "SORI", + "HCID", + "LCID", + "PHD", + "ETD", + "PQD", + "TRAP", + "HCD", + "INSOURCE", + "LIFT" + }; Precursor::Precursor(Precursor&& rhs) noexcept : CVTermList(std::move(rhs)), diff --git a/src/openms/source/METADATA/ProteinHit.cpp b/src/openms/source/METADATA/ProteinHit.cpp index 9269881716f..5387979ce52 100644 --- a/src/openms/source/METADATA/ProteinHit.cpp +++ b/src/openms/source/METADATA/ProteinHit.cpp @@ -144,6 +144,14 @@ namespace OpenMS sequence_.trim(); } + // sets the protein sequence + void ProteinHit::setSequence(String&& sequence) + { + sequence_ = std::move(sequence); + sequence_.trim(); + } + + // sets the description of the protein void ProteinHit::setDescription(const String& description) { diff --git a/src/openms/source/QC/DBSuitability.cpp b/src/openms/source/QC/DBSuitability.cpp index 6336bc11701..1c4aee64b1c 100644 --- a/src/openms/source/QC/DBSuitability.cpp +++ b/src/openms/source/QC/DBSuitability.cpp @@ -33,19 +33,30 @@ // -------------------------------------------------------------------------- #include +#include +#include #include #include +#include +#include +#include +#include #include +#include #include #include #include +#include +#include + +#include using namespace std; namespace OpenMS { DBSuitability::DBSuitability() - : DefaultParamHandler("DBSuitability"), results_{} + : DefaultParamHandler("DBSuitability"), results_{}, decoy_pattern_(string(DecoyHelper::regexstr_prefix + "|" + DecoyHelper::regexstr_suffix)) { defaults_.setValue("no_rerank", "false", "Use this flag if you want to disable re-ranking. Cases, where a de novo peptide scores just higher than the database peptide, are overlooked and counted as a de novo hit. This might underestimate the database quality."); defaults_.setValidStrings("no_rerank", { "true", "false" }); @@ -55,61 +66,410 @@ namespace OpenMS defaults_.setValue("FDR", 0.01, "Filter peptide hits based on this q-value. (e.g., 0.05 = 5 % FDR)"); defaults_.setMinFloat("FDR", 0.); defaults_.setMaxFloat("FDR", 1.); + defaults_.setValue("number_of_subsampled_runs", 1, "Controls how many runs should be done for calculating corrected suitability. (0 : number of runs will be estimated automaticly) ATTENTION: For each run a seperate ID-search is performed. This can result in some serious run time."); + defaults_.setMinInt("number_of_subsampled_runs", 0); + defaults_.setValue("keep_search_files", "false", "Set this flag if you wish to keep the files used by and produced by the internal ID search."); + defaults_.setValidStrings("keep_search_files", { "true", "false" }); + defaults_.setValue("disable_correction", "false", "Set this flag to disable the calculation of the corrected suitability."); + defaults_.setValidStrings("disable_correction", { "true", "false" }); + defaults_.setValue("force", "false", "Set this flag to enforce re-ranking when no cross correlation score is present. For re-ranking the default score found at each peptide hit is used. Use with care!"); + defaults_.setValidStrings("force", { "true", "false" }); defaultsToParam_(); } - void DBSuitability::compute(vector pep_ids) + void DBSuitability::compute(vector&& pep_ids, const MSExperiment& exp, const vector& original_fasta, const std::vector& novo_fasta, const ProteinIdentification::SearchParameters& search_params) { - bool no_rerank = param_.getValue("no_rerank").toBool(); - double cut_off_percentile = param_.getValue("reranking_cutoff_percentile"); - double FDR = param_.getValue("FDR"); + for (const auto& id : pep_ids) + { + if (id.getScoreType() == "q-value") // q-value as score? + { + throw Exception::Precondition(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "q-value found at PeptideIdentifications. That is not allowed! Please make sure FDR did not run previously."); + } + if (id.getHits().empty()) continue; + if (id.getHits()[0].metaValueExists("q-value")) // q-value at meta values? + { + throw Exception::Precondition(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "q-value found at PeptideIdentifications. That is not allowed! Please make sure FDR did not run previously."); + } - SuitabilityData d; - results_.push_back(d); - SuitabilityData& data = results_.back(); + if (!id.getHits()[0].metaValueExists("MS:1002252")) // no xcorr at meta values? + { + if (!param_.getValue("force").toBool()) + { + OPENMS_LOG_WARN << "No cross correlation score found. Comet is recommended for identification search. Re-ranking will be turned off. Set the 'force' flag to re-enable re-ranking. Use with care!" << endl; + param_.setValue("no_rerank", "true"); + } + else + { + OPENMS_LOG_WARN << "'force' flag is set. Re-ranking (if not disabled) will be done with the default score. Be aware that this may result in undefined behaviour." << endl; + } + } + break; + } - if (pep_ids.empty()) + // calculate suitability + results_.push_back(SuitabilityData()); + SuitabilityData& suitability_data_full = results_.back(); + + // make sure pep_ids are sorted + for (auto& pep_id : pep_ids) { - OPENMS_LOG_WARN << "No peptide identifications given to DBSuitability! No calculations performed." << endl; - return; + pep_id.sort(); } + calculateSuitability_(pep_ids, suitability_data_full); - if (pep_ids[0].getScoreType() == "q-value") + if(!param_.getValue("disable_correction").toBool()) { - throw Exception::Precondition(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "q-value found at PeptideIdentifications. That is not allowed! Please make sure FDR did not run previously."); + pair search_info = extractSearchAdapterInfoFromMetaValues_(search_params); + + // calculate correction of suitability with extrapolation + UInt number_of_runs = param_.getValue("number_of_subsampled_runs"); + if (number_of_runs == 0) + { + number_of_runs = ceil(original_fasta.size() / double(numberOfUniqueProteins_(pep_ids))); + } + + // sampled run(s) + // TODO: maybe multiple runs? could be controlled with a parameter + double subsampling_rate = 0.5; + vector subsampled_results; + + UInt current_run = 0; + while (current_run < number_of_runs) + { + ++current_run; + vector sampled_db = getSubsampledFasta_(original_fasta, subsampling_rate); + sampled_db.insert(sampled_db.end(), novo_fasta.begin(), novo_fasta.end()); + appendDecoys_(sampled_db); + vector subsampled_ids = runIdentificationSearch_(exp, sampled_db, search_info.first, search_info.second); + // make sure pep_ids are sorted + for (auto& pep_id : subsampled_ids) + { + pep_id.sort(); + } + + SuitabilityData suitability_data_sampled; + calculateSuitability_(subsampled_ids, suitability_data_sampled); + subsampled_results.push_back(suitability_data_sampled); + } + + SuitabilityData median_sampled_data = subsampled_results[getIndexWithMedianNovoHits_(subsampled_results)]; + + suitability_data_full.setCorrectionFactor(calculateCorrectionFactor_(suitability_data_full, median_sampled_data, subsampling_rate)); + + // fill in theoretical suitability if re-ranking hadn't happen + SuitabilityData no_rerank = suitability_data_full.simulateNoReRanking(); + SuitabilityData no_rerank_sampled = median_sampled_data.simulateNoReRanking(); + + double factor_no_rerank = calculateCorrectionFactor_(no_rerank, {no_rerank_sampled}, subsampling_rate); + + suitability_data_full.suitability_corr_no_rerank = double(no_rerank.num_top_db) / (no_rerank.num_top_novo * factor_no_rerank + no_rerank.num_top_db); } - for (const auto& id : pep_ids) + } + + const std::vector& DBSuitability::getResults() const + { + return results_; + } + + double DBSuitability::getDecoyDiff_(const PeptideIdentification& pep_id) const + { + double diff = DBL_MAX; + + // get the score of the first two decoy hits + double decoy_1 = DBL_MAX; + double decoy_2 = DBL_MAX; + UInt curr_hit = 0; + + for (const auto& hit : pep_id.getHits()) { - if (id.getHits().empty()) + ++curr_hit; + + if (!hit.metaValueExists("target_decoy")) + { + throw(Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "No target/decoy information found! Make sure 'PeptideIndexer' is run beforehand.")); + } + + if (decoy_1 == DBL_MAX && hit.getMetaValue("target_decoy") == "decoy") { + decoy_1 = extractScore_(hit); continue; } - if (id.getHits()[0].metaValueExists("q-value")) + if (decoy_1 < DBL_MAX && hit.getMetaValue("target_decoy") == "decoy") { - throw Exception::Precondition(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "q-value found at PeptideIdentifications. That is not allowed! Please make sure FDR did not run previously."); + decoy_2 = extractScore_(hit); + break; + } + } + + if (decoy_2 < DBL_MAX) // if there are two decoy hits + { + diff = abs(decoy_1 - decoy_2); + } + + // if there aren't two decoy hits DBL_MAX is returned + return diff; + } + + double DBSuitability::getDecoyCutOff_(const vector& pep_ids, double reranking_cutoff_percentile) const + { + if (reranking_cutoff_percentile < 0 || reranking_cutoff_percentile > 1) + { + throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "'reranking_cutoff_percentile' is not within its allowed range [0,1]. Please select a valid value."); + } + + // get all decoy diffs of peptide ids with at least two decoy hits + vector diffs; + for (const auto& pep_id : pep_ids) + { + double diff = getDecoyDiff_(pep_id); + if (diff < DBL_MAX) + { + diffs.push_back(diff); } } - if (!no_rerank) + if (double(diffs.size()) / pep_ids.size() < 0.2) { - data.cut_off = getDecoyCutOff_(pep_ids, cut_off_percentile); + throw(Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Under 20 % of peptide identifications have two decoy hits. This is not enough for re-ranking. Use the 'no_rerank' flag to still compute a suitability score.")); } + // sort the diffs decreasing and get the nth-percentile diff + UInt index = round(reranking_cutoff_percentile * diffs.size()); + + if (index >= diffs.size()) + { + return *max_element(diffs.begin(), diffs.end()); + } + + nth_element(diffs.begin(), diffs.begin() + index, diffs.end()); + + return diffs[index]; + } + + bool DBSuitability::isNovoHit_(const PeptideHit& hit) const + { + const set& accessions = hit.extractProteinAccessionsSet(); + for (const String& acc : accessions) + { + if (acc.find(Constants::UserParam::CONCAT_PEPTIDE) == String::npos && !boost::regex_search(String(acc).toLower(), decoy_pattern_)) + { + return false; + } + } + return true; + } + + bool DBSuitability::checkScoreBetterThanThreshold_(const PeptideHit& hit, double threshold, bool higher_score_better) const + { + if (higher_score_better) + { + if (hit.getScore() < threshold) + return false; + return true; + } + if (hit.getScore() > threshold) + return false; + return true; + } + + pair DBSuitability::extractSearchAdapterInfoFromMetaValues_(const ProteinIdentification::SearchParameters& search_params) const + { Param p; - p.setValue("use_all_hits", "true"); - p.setValue("add_decoy_peptides", "true"); - p.setValue("add_decoy_proteins", "true"); + // list of all allowed adapters + vector working_adapters{ "CometAdapter", "CruxAdapter", "MSGFPlusAdapter", "MSFraggerAdapter", "MyriMatchAdapter", "OMSSAAdapter", "XTandemAdapter" }; - FalseDiscoveryRate fdr; - fdr.setParameters(p); - fdr.apply(pep_ids); + vector keys; + search_params.getKeys(keys); - for (PeptideIdentification& pep_id : pep_ids) + // find adapter name + String adapter; + for (const String& key : keys) { - // sort hits by q-value - pep_id.sort(); + for (const String& a : working_adapters) + { + // look for adapter name as a prefix of a search parameter + if (key.compare(0, a.size() + 1, a + ":") == 0) + { + // used adapter found + adapter = a; + break; + } + } + if (!adapter.empty()) + { + break; + } + } + + if (adapter.empty()) // non of the allowed adapter names where found in the meta values + { + String message; + message = "No parameters found for any of the allowed adapters in the given meta values. Allowed are:\n"; + message += ListUtils::concatenate(working_adapters, ", "); + message = "\n"; + throw Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, message); + } + + // extract parameters + for (const String& key : keys) + { + if (key.compare(0, adapter.size(), adapter) != 0) continue; // does adapter appear in meta value key? + p.setValue(key, search_params.getMetaValue(key)); + } + + OPENMS_LOG_DEBUG << "Parameters for the following adapter were found: " << adapter << endl; + + return make_pair(adapter, p); + } + + void DBSuitability::writeIniFile_(const Param& parameters, const String& filename) const + { + ParamXMLFile param_file; + param_file.store(filename, parameters); + } + + vector DBSuitability::runIdentificationSearch_(const MSExperiment& exp, const vector& fasta_data, const String& adapter_name, Param& parameters) const + { + if (adapter_name.empty()) + { + throw Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "No adapter name given. Aborting!"); + } + + // temporary folder for search in- und output files + bool keep_files = param_.getValue("keep_search_files").toBool(); + File::TempDir tmp_dir(keep_files); + String mzml_path = tmp_dir.getPath() + "spectra.mzML"; + String db_path = tmp_dir.getPath() + "database.FASTA"; + String out_path = tmp_dir.getPath() + "out.idXML"; + + // override the in- and output files in the parameters + if (!parameters.exists(adapter_name + ":1:in") || !parameters.exists(adapter_name + ":1:database") || !parameters.exists(adapter_name + ":1:out")) + { + throw Exception::InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "'in', 'out' or 'database' parameter not found! The search adapter is probably not supported anymore."); + } + parameters.setValue(adapter_name + ":1:in", mzml_path); + parameters.setValue(adapter_name + ":1:database", db_path); + parameters.setValue(adapter_name + ":1:out", out_path); + + // store data in temporary files + MzMLFile spectra_file; + spectra_file.store(mzml_path, exp); + FASTAFile database; + database.store(db_path, fasta_data); + + String ini_path = tmp_dir.getPath() + "parameters.INI"; + writeIniFile_(parameters, ini_path); + + // run identification search + String proc_stdout; + String proc_stderr; + auto lam_out = [&](const String& out) { proc_stdout += out; }; + auto lam_err = [&](const String& out) { proc_stderr += out; }; + + ExternalProcess ep(lam_out, lam_err); + OPENMS_LOG_DEBUG << "Running " << adapter_name << "..." << endl << endl; + const auto& rt = ep.run(adapter_name.toQString(), QStringList() << "-ini" << ini_path.toQString(), tmp_dir.getPath().toQString(), true); + if (rt != ExternalProcess::RETURNSTATE::SUCCESS) + { // error occured + OPENMS_LOG_ERROR << "An error occured while running " << adapter_name << "." << endl; + OPENMS_LOG_ERROR << "Standard output: " << proc_stdout << endl; + OPENMS_LOG_ERROR << "Standard error: " << proc_stderr << endl; + throw Exception::InternalToolError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Return state was: " + static_cast(rt)); + } + // search was successful + + // load result + vector prot_ids; + vector pep_ids; + IdXMLFile id_file; + id_file.load(out_path, prot_ids, pep_ids); + + // annotate target/decoy information + PeptideIndexing indexer; + FASTAContainer proteins(fasta_data); + OPENMS_LOG_DEBUG << "Running PeptideIndexer functionalities ..." << endl << endl; + OPENMS_LOG_INFO.remove(cout); // prevent indexer from writing statistic + PeptideIndexing::ExitCodes indexer_exit = indexer.run(proteins, prot_ids, pep_ids); + OPENMS_LOG_INFO.insert(cout); // revert logging change + if (indexer_exit != PeptideIndexing::ExitCodes::EXECUTION_OK) + { + OPENMS_LOG_ERROR << "An error occured while trying to index the search results." << endl; + throw Exception::InternalToolError(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Return state was: " + static_cast(indexer_exit)); + } + + if (keep_files) + { + id_file.store(tmp_dir.getPath() + "indexed_pre_FDR.idXML", prot_ids, pep_ids); + } - vector& hits = pep_id.getHits(); + return pep_ids; + } + + std::vector DBSuitability::getSubsampledFasta_(const std::vector& fasta_data, double subsampling_rate) const + { + if (subsampling_rate < 0 || subsampling_rate > 1) + { + throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Subsampling rate has to be between 0 and 1. Aborting!"); + } + Size num_AA{}; + for (const auto& entry : fasta_data) + { + num_AA += entry.sequence.size(); + } + double num_AS_written = num_AA * subsampling_rate; + + Math::RandomShuffler shuffler; + shuffler.seed(UniqueIdGenerator::getUniqueId()); + std::vector rnd_indices(fasta_data.size()); + std::iota(std::begin(rnd_indices), std::end(rnd_indices), 0); + shuffler.portable_random_shuffle(rnd_indices.begin(), rnd_indices.end()); + + Size curr_AA{}; + vector sampled_fasta; + for (const int i : rnd_indices) + { + if (curr_AA >= num_AS_written) break; + sampled_fasta.push_back(fasta_data[i]); + curr_AA += fasta_data[i].sequence.size(); + } + return sampled_fasta; + } + + void DBSuitability::calculateSuitability_(const std::vector& pep_ids, SuitabilityData& data) const + { + // make sure no old data messes up the calculations + data.clear(); + + bool no_re_rank = param_.getValue("no_rerank").toBool(); + double cut_off_fract = param_.getValue("reranking_cutoff_percentile"); + + if (pep_ids.empty()) + { + OPENMS_LOG_WARN << "No peptide identifications found in given idXML! No calculations performed." << endl; + return; + } + + bool hsb = pep_ids[0].isHigherScoreBetter(); + + // calculate score that corresponds to the FDR cut-off + double score_cut_off; + { + vector ids_copy(pep_ids); + + FalseDiscoveryRate fdr; + fdr.apply(ids_copy); + + score_cut_off = getScoreMatchingFDR_(ids_copy, param_.getValue("FDR"), pep_ids[0].getScoreType(), hsb); + } + + if (!no_re_rank) + { + data.cut_off = getDecoyCutOff_(pep_ids, cut_off_fract); + } + + for (const PeptideIdentification& pep_id : pep_ids) + { + const vector& hits = pep_id.getHits(); if (hits.empty()) { @@ -122,15 +482,11 @@ namespace OpenMS { throw(Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "No target/decoy information found! Make sure 'PeptideIndexer' is run beforehand.")); } - if (top_hit.getMetaValue("target_decoy") == "decoy") - { - continue; - } - // skip if top hit is out of FDR - if (!passesFDR_(top_hit, FDR)) - { - continue; - } + if (top_hit.getMetaValue("target_decoy") == "decoy") continue; + + // skip if top hit is out ouf FDR + if (!checkScoreBetterThanThreshold_(top_hit, score_cut_off, hsb)) continue; + // check if top hit is found in de novo protein if (!isNovoHit_(top_hit)) // top hit is db hit { @@ -138,15 +494,13 @@ namespace OpenMS continue; } - // find the second target hit, skip all decoy or novo hits in-between - const PeptideHit* second_hit = nullptr; + // find the second target hit, skip all decoy or novo hits inbetween + const PeptideHit* second_hit_ptr = nullptr; for (UInt i = 1; i < hits.size(); ++i) { // check for FDR - if (!passesFDR_(hits[i], FDR)) - { - break; - } + if (!checkScoreBetterThanThreshold_(hits[i], score_cut_off, hsb)) break; + // check if target, also check for "target+decoy" value String td_info(hits[i].getMetaValue("target_decoy")); if (td_info.find("target") != 0) @@ -154,38 +508,33 @@ namespace OpenMS continue; } // check if hit is novo hit - if (isNovoHit_(hits[i])) - { - continue; - } - second_hit = &hits[i]; + if (isNovoHit_(hits[i])) continue; + + second_hit_ptr = &hits[i]; break; } - if (second_hit == nullptr) // no second target hit with given FDR found + if (second_hit_ptr == nullptr) // no second target hit with given FDR found { ++data.num_top_novo; continue; } + const PeptideHit second_hit(*second_hit_ptr); + // second hit is db hit ++data.num_interest; // check for re-ranking - if (no_rerank) + if (no_re_rank) { ++data.num_top_novo; continue; } - // check for xcorr score - if (!top_hit.metaValueExists("MS:1002252") || !second_hit->metaValueExists("MS:1002252")) - { - throw(Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "No cross correlation score found at peptide hit. Only Comet search engine is supported right now.")); - } - - double top_xscore_mw = double(top_hit.getMetaValue("MS:1002252")) / top_hit.getSequence().getMonoWeight(); - double second_xscore_mw = double(second_hit->getMetaValue("MS:1002252")) / second_hit->getSequence().getMonoWeight(); - if (top_xscore_mw - second_xscore_mw <= data.cut_off) + // re-ranking + // score difference smaller than cut-off or scores equal using floating point precision + // ('getMonoWeight()' can sometimes have a float error, was unable to fix it (maybe the error happens while reading the input idXML)) + if (extractScore_(top_hit) - extractScore_(second_hit) < data.cut_off || abs(extractScore_(top_hit) - extractScore_(second_hit)) < std::numeric_limits::epsilon()) { ++data.num_top_db; ++data.num_re_ranked; @@ -204,116 +553,234 @@ namespace OpenMS } data.suitability = double(data.num_top_db) / (data.num_top_db + data.num_top_novo); - } - const std::vector& DBSuitability::getResults() const - { - return results_; + data.suitability_no_rerank = double(data.num_top_db - data.num_re_ranked) / (data.num_top_db + data.num_top_novo); } - double DBSuitability::getDecoyDiff_(const PeptideIdentification& pep_id) + void DBSuitability::appendDecoys_(std::vector& fasta) const { - double diff = DBL_MAX; + fasta.reserve(fasta.size() * 2); - // get the score of the first two decoy hits - double decoy_1 = DBL_MAX; - double decoy_2 = DBL_MAX; - UInt curr_hit = 0; - - for (const auto& hit : pep_id.getHits()) + for (auto& entry : fasta) { - if (curr_hit > 10) - { - break; - } - ++curr_hit; - - if (!hit.metaValueExists("target_decoy")) + ProteaseDigestion digestion; + digestion.setEnzyme("Trypsin"); + std::vector peptides; + digestion.digest(AASequence::fromString(entry.sequence), peptides); + String new_sequence = ""; + for (auto const& peptide : peptides) { - throw(Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "No target/decoy information found! Make sure 'PeptideIndexer' is run beforehand.")); + OpenMS::TargetedExperiment::Peptide p; + p.sequence = peptide.toString(); + OpenMS::TargetedExperiment::Peptide decoy_p = MRMDecoy::reversePeptide(p, true, true, ""); + new_sequence += decoy_p.sequence; } + FASTAFile::FASTAEntry decoy_entry; + decoy_entry.sequence = new_sequence; + decoy_entry.identifier = "DECOY_" + entry.identifier; + fasta.push_back(decoy_entry); + } + } - if (!hit.metaValueExists("MS:1002252")) + double DBSuitability::extractScore_(const PeptideHit& pep_hit) const + { + if (pep_hit.metaValueExists("MS:1002252")) // use xcorr + { + return double(pep_hit.getMetaValue("MS:1002252")) / pep_hit.getSequence().getMonoWeight(); // normalized by mw + } + else + { + if (!param_.getValue("force").toBool()) // without xcorr, need to force re-ranking { - throw(Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "No cross correlation score found at peptide hit. Only Comet search engine is supported right now.")); + throw(Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "No cross correlation score found at peptide hit. Only Comet search engine is supported for re-ranking. Set 'force' flag to use the default score for this. This may result in undefined behaviour and is not advised.")); } - if (decoy_1 == DBL_MAX && hit.getMetaValue("target_decoy") == "decoy") - { - decoy_1 = hit.getMetaValue("MS:1002252"); - continue; - } - if (decoy_1 < DBL_MAX && hit.getMetaValue("target_decoy") == "decoy") - { - decoy_2 = hit.getMetaValue("MS:1002252"); - break; - } + return pep_hit.getScore(); // uses q-value from FDR } + } - if (decoy_2 < DBL_MAX) // if there are two decoy hits + double DBSuitability::calculateCorrectionFactor_(const SuitabilityData& data_full, const SuitabilityData& data_sampled, double sampling_rate) const + { + if (sampling_rate >= 1 || sampling_rate < 0) { - diff = abs(decoy_1 - decoy_2) / pep_id.getHits()[0].getSequence().getMonoWeight(); // normalized by mw + throw Exception::Precondition(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "The sampling rate has to be element of [0,1)."); } - // if there aren't two decoy hits DBL_MAX is returned - return diff; + double db_slope = (int(data_sampled.num_top_db) - int(data_full.num_top_db)) / (sampling_rate - 1); + double deNovo_slope = (int(data_sampled.num_top_novo) - int(data_full.num_top_novo)) / (sampling_rate - 1); + return -(db_slope) / (deNovo_slope); } - double DBSuitability::getDecoyCutOff_(const vector& pep_ids, double reranking_cutoff_percentile) + UInt DBSuitability::numberOfUniqueProteins_(const std::vector& peps, UInt number_of_hits) const { - if (reranking_cutoff_percentile < 0 || reranking_cutoff_percentile > 1) - { - throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "'reranking_cutoff_percentile' is not within its allowed range [0,1]. Please select a valid value."); - } + set proteins; - // get all decoy diffs of peptide ids with at least two decoy hits - vector diffs; - for (const auto& pep_id : pep_ids) + for (const auto& pep : peps) { - double diff = getDecoyDiff_(pep_id); - if (diff < DBL_MAX) + vector hits = pep.getHits(); + if (hits.empty()) + continue; + + for (Size i = 0; (i < number_of_hits && i < hits.size()); ++i) { - diffs.push_back(diff); + const PeptideHit& hit = hits[i]; + + if (!hit.metaValueExists("target_decoy")) + { + throw(Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "No target/decoy information found! Make sure 'PeptideIndexer' is run beforehand.")); + } + if (hit.getMetaValue("target_decoy") == "decoy") + continue;// skip if the hit is a decoy hit + + // insert protein accessions + const set accessions = hit.extractProteinAccessionsSet(); + for (const String& acc : accessions) + { + if (acc.find(Constants::UserParam::CONCAT_PEPTIDE) != String::npos)// skip novo accessions + { + continue; + } + if (boost::regex_search(String(acc).toLower(), decoy_pattern_))// skip decoy accessions (this can happen if the hit is 'target+decoy'.) + { + continue; + } + + proteins.insert(acc);// insert the rest + } } } - if (double(diffs.size()) / pep_ids.size() < 0.2) + return proteins.size(); + } + + Size DBSuitability::getIndexWithMedianNovoHits_(const vector& data) const + { + if (data.empty()) { - throw(Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Under 20 % of peptide identifications have two decoy hits. This is not enough for re-ranking. Use the 'no_rerank' flag to still compute a suitability score.")); + throw(Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "No suitability data given!")); } - // sort the diffs decreasing and get the percentile one - UInt index = round(reranking_cutoff_percentile * diffs.size()); - - if (index >= diffs.size()) + vector novo_data; + map novo_hits_to_data; + for (size_t i = 0; i < data.size(); ++i) { - return *max_element(diffs.begin(), diffs.end()); + const Size num_top_novo = data[i].num_top_novo; + novo_data.push_back(num_top_novo); + novo_hits_to_data[num_top_novo] = i; } + + std::sort(novo_data.begin(), novo_data.end()); - nth_element(diffs.begin(), diffs.begin() + index, diffs.end()); - - return diffs[index]; + return novo_hits_to_data.at(novo_data[ceil(novo_data.size() / 2)]); } - bool DBSuitability::isNovoHit_(const PeptideHit& hit) + double DBSuitability::getScoreMatchingFDR_(const std::vector& pep_ids, double FDR, String score_name, bool higher_score_better) const { - const set& accessions = hit.extractProteinAccessionsSet(); - for (const String& acc : accessions) + double worst_score = DBL_MAX; + if (!higher_score_better) { - if (acc.find(Constants::UserParam::CONCAT_PEPTIDE) == String::npos) + worst_score = -DBL_MAX; + } + + for (const auto& id: pep_ids) + { + const vector& hits = id.getHits(); + + if (hits.empty()) continue; + + if (id.getScoreType() != "q-value") // did FDR run? { - return false; + throw Exception::Precondition(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "No q-value found at peptide identification."); + } + + const PeptideHit& top_hit = hits[0]; // get first hit + + if (!checkScoreBetterThanThreshold_(top_hit, FDR, false)) continue; // does this hit make the FDR? + + // extract score from metavalues + double score; + bool score_found = false; + + vector meta_keys; + top_hit.getKeys(meta_keys); + for (const String& key : meta_keys) + { + if (key.find(score_name) != String::npos) + { + score = top_hit.getMetaValue(key); + score_found = true; + break; + } + } + + if (!score_found) + { + throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "'" + score_name + "' not found. The given score name has to exist as a meta value."); + } + + + // is this score the worst score yet? + if (higher_score_better) + { + if (score < worst_score) + { + worst_score = score; + } + continue; } + if (score > worst_score) + { + worst_score = score; + } + continue; } - return true; + return worst_score; + } + + void DBSuitability::SuitabilityData::clear() + { + num_top_novo = 0; + num_top_db = 0; + num_re_ranked = 0; + cut_off = DBL_MAX; + suitability = 0; + suitability_no_rerank = 0; + num_top_novo_corr = 0; + suitability_corr = 0; + suitability_corr_no_rerank = 0; } - bool DBSuitability::passesFDR_(const PeptideHit& hit, double FDR) + void DBSuitability::SuitabilityData::setCorrectionFactor(double factor) { - if (hit.getScore() > FDR) + if (num_top_db == 0 && num_top_novo == 0) { - return false; + throw(Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "No suitability data found. Can't apply correction factor.")); } - return true; + corr_factor = factor; + num_top_novo_corr = num_top_novo * factor; + suitability_corr = num_top_db / (num_top_db + num_top_novo_corr); + } + + double DBSuitability::SuitabilityData::getCorrectionFactor() const + { + return this->corr_factor; + } + + double DBSuitability::SuitabilityData::getCorrectedNovoHits() const + { + return this->num_top_novo_corr; + } + + double DBSuitability::SuitabilityData::getCorrectedSuitability() const + { + return this->suitability_corr; + } + + DBSuitability::SuitabilityData DBSuitability::SuitabilityData::simulateNoReRanking() const + { + SuitabilityData simulated_data; + simulated_data.num_top_db = num_top_db - num_re_ranked; + simulated_data.num_top_novo = num_top_novo + num_re_ranked; + return simulated_data; } -} +}// namespace OpenMS diff --git a/src/openms/source/QC/FragmentMassError.cpp b/src/openms/source/QC/FragmentMassError.cpp index 1dd541d8b69..ef204d6cff6 100644 --- a/src/openms/source/QC/FragmentMassError.cpp +++ b/src/openms/source/QC/FragmentMassError.cpp @@ -34,7 +34,7 @@ #include -#include +#include #include #include diff --git a/src/openms/source/QC/Ms2IdentificationRate.cpp b/src/openms/source/QC/Ms2IdentificationRate.cpp index 8fb6fd84c67..7303aaa7d29 100644 --- a/src/openms/source/QC/Ms2IdentificationRate.cpp +++ b/src/openms/source/QC/Ms2IdentificationRate.cpp @@ -102,7 +102,7 @@ namespace OpenMS return QCBase::Status() | QCBase::Requires::RAWMZML | QCBase::Requires::POSTFDRFEAT; } - void Ms2IdentificationRate::addMetaDataMetricsToMzTab(MzTabMetaData& meta) + void Ms2IdentificationRate::addMetaDataMetricsToMzTab(MzTabMetaData& meta) const { // Adding MS2_ID_Rate to meta data const auto& ms2_irs = this->getResults(); diff --git a/src/openms/source/QC/PSMExplainedIonCurrent.cpp b/src/openms/source/QC/PSMExplainedIonCurrent.cpp index c0e2a06a8ca..b860c05a1df 100644 --- a/src/openms/source/QC/PSMExplainedIonCurrent.cpp +++ b/src/openms/source/QC/PSMExplainedIonCurrent.cpp @@ -34,8 +34,8 @@ #include +#include #include -#include #include #include @@ -63,7 +63,7 @@ namespace OpenMS { if (pep_id.getHits().empty()) { - OPENMS_LOG_WARN << "PeptideHits of PeptideIdentification with RT: " << pep_id.getRT() << " and MZ: " << pep_id.getMZ() << " is empty."; + OPENMS_LOG_DEBUG << "PeptideHits of PeptideIdentification with RT: " << pep_id.getRT() << " and MZ: " << pep_id.getMZ() << " is empty."; return DBL_MAX; } diff --git a/src/openms/source/SIMULATION/DetectabilitySimulation.cpp b/src/openms/source/SIMULATION/DetectabilitySimulation.cpp index 550604046d1..7a0a3fb02e8 100644 --- a/src/openms/source/SIMULATION/DetectabilitySimulation.cpp +++ b/src/openms/source/SIMULATION/DetectabilitySimulation.cpp @@ -39,6 +39,8 @@ #include #include +#include "svm.h" + using std::vector; using std::cout; using std::endl; diff --git a/src/openms/source/SIMULATION/IonizationSimulation.cpp b/src/openms/source/SIMULATION/IonizationSimulation.cpp index 42f230fed7f..d4945bf6969 100644 --- a/src/openms/source/SIMULATION/IonizationSimulation.cpp +++ b/src/openms/source/SIMULATION/IonizationSimulation.cpp @@ -272,7 +272,7 @@ namespace OpenMS std::transform(esi_impurity_probabilities_.begin(), esi_impurity_probabilities_.end(), std::back_inserter(weights), - boost::bind(std::multiplies(), _1, 10)); + [](auto && PH1) { return std::multiplies()(std::forward(PH1), 10); }); for (size_t i = 0; i < weights.size(); ++i) { std::cout << "weights[" << i << "]: " << weights[i] << std::endl; @@ -548,7 +548,7 @@ namespace OpenMS std::transform(maldi_probabilities_.begin(), maldi_probabilities_.end(), std::back_inserter(weights), - boost::bind(std::multiplies(), _1, 10)); + [](auto && PH1) { return std::multiplies()(std::forward(PH1), 10); }); boost::random::discrete_distribution ddist(weights.begin(), weights.end()); try @@ -673,7 +673,7 @@ namespace OpenMS } // ! pragma } - bool IonizationSimulation::isFeatureValid_(const Feature& feature) + bool IonizationSimulation::isFeatureValid_(const Feature& feature) const { if (feature.getMZ() > maximal_mz_measurement_limit_ || feature.getMZ() < minimal_mz_measurement_limit_) // remove feature { diff --git a/src/openms/source/SIMULATION/LABELING/BaseLabeler.cpp b/src/openms/source/SIMULATION/LABELING/BaseLabeler.cpp index fca631c15fc..7454763c275 100644 --- a/src/openms/source/SIMULATION/LABELING/BaseLabeler.cpp +++ b/src/openms/source/SIMULATION/LABELING/BaseLabeler.cpp @@ -83,7 +83,7 @@ namespace OpenMS Size channel_index = 1; for (const FeatureMap& mapit : maps) { - if (mapit.getProteinIdentifications().size() == 0) + if (mapit.getProteinIdentifications().empty()) { continue; } diff --git a/src/openms/source/SIMULATION/LABELING/ITRAQLabeler.cpp b/src/openms/source/SIMULATION/LABELING/ITRAQLabeler.cpp index 3912dfce55b..59cd47baf8c 100644 --- a/src/openms/source/SIMULATION/LABELING/ITRAQLabeler.cpp +++ b/src/openms/source/SIMULATION/LABELING/ITRAQLabeler.cpp @@ -71,8 +71,8 @@ namespace OpenMS defaults_.setMinFloat("reporter_mass_shift", 0); defaults_.setMaxFloat("reporter_mass_shift", 0.5); - defaults_.setValue("channel_active_4plex", std::vector{"114:myReference"}, "Four-plex only: Each channel that was used in the experiment and its description (114-117) in format :, e.g. \"114:myref\",\"115:liver\"."); - defaults_.setValue("channel_active_8plex", std::vector{"113:myReference"}, "Eight-plex only: Each channel that was used in the experiment and its description (113-121) in format :, e.g. \"113:myref\",\"115:liver\",\"118:lung\"."); + defaults_.setValue("channel_active_4plex", std::vector{"114:myReference"}, R"(Four-plex only: Each channel that was used in the experiment and its description (114-117) in format :, e.g. "114:myref","115:liver".)"); + defaults_.setValue("channel_active_8plex", std::vector{"113:myReference"}, R"(Eight-plex only: Each channel that was used in the experiment and its description (113-121) in format :, e.g. "113:myref","115:liver","118:lung".)"); StringList isotopes = ItraqConstants::getIsotopeMatrixAsStringList(ItraqConstants::FOURPLEX, isotope_corrections_); defaults_.setValue("isotope_correction_values_4plex", ListUtils::create(isotopes), "override default values (see Documentation); use the following format: :<-2Da>/<-1Da>/<+1Da>/<+2Da> ; e.g. '114:0/0.3/4/0' , '116:0.1/0.3/3/0.2' ", {"advanced"}); @@ -119,7 +119,7 @@ namespace OpenMS { channels = ListUtils::toStringList(param_.getValue("isotope_correction_values_8plex")); } - if (channels.size() > 0) + if (!channels.empty()) { ItraqConstants::updateIsotopeMatrixFromStringList(itraq_type_, channels, isotope_corrections_); } diff --git a/src/openms/source/SIMULATION/LABELING/SILACLabeler.cpp b/src/openms/source/SIMULATION/LABELING/SILACLabeler.cpp index ac9eed731f7..62798ec2ae8 100644 --- a/src/openms/source/SIMULATION/LABELING/SILACLabeler.cpp +++ b/src/openms/source/SIMULATION/LABELING/SILACLabeler.cpp @@ -132,7 +132,7 @@ namespace OpenMS } SimTypes::FeatureMapSim& medium_channel = features_to_simulate[1]; - if (medium_channel.getProteinIdentifications().size() > 0) + if (!medium_channel.getProteinIdentifications().empty()) { applyLabelToProteinHit_(medium_channel, medium_channel_arginine_label_, medium_channel_lysine_label_); } @@ -141,7 +141,7 @@ namespace OpenMS if (features_to_simulate.size() == 3) { SimTypes::FeatureMapSim& heavy_channel = features_to_simulate[2]; - if (heavy_channel.getProteinIdentifications().size() > 0) + if (!heavy_channel.getProteinIdentifications().empty()) { applyLabelToProteinHit_(heavy_channel, heavy_channel_arginine_label_, heavy_channel_lysine_label_); } diff --git a/src/openms/source/SIMULATION/MSSim.cpp b/src/openms/source/SIMULATION/MSSim.cpp index 4b677fb9d9e..41fa0efb265 100644 --- a/src/openms/source/SIMULATION/MSSim.cpp +++ b/src/openms/source/SIMULATION/MSSim.cpp @@ -29,12 +29,11 @@ // // -------------------------------------------------------------------------- // $Maintainer: Timo Sachsenberg$ -// $Authors: Stephan Aiche, Chris Bielow$ +// $Authors: Stephan Aiche, Chris Bielow, Lucas Rieckert$ // -------------------------------------------------------------------------- #include -#include #include #include #include @@ -108,6 +107,7 @@ namespace OpenMS experiment_(), feature_maps_(), consensus_map_(), + monoisotopic_experiment_(), labeler_(nullptr) { // section params @@ -390,6 +390,53 @@ namespace OpenMS { } + void MSSim::createMonoisotopicExperiment() + { + //if no experiment was simulated there is no need to search for monoisotopic peaks + if (peak_map_.empty()) + { + return; + } + else + { + monoisotopic_experiment_.clear(true); + MSSpectrum buffer_found; + + for (auto spec : peak_map_) + { + if (spec.getMSLevel() == 1) + { + buffer_found.clear(true); + buffer_found.setNativeID(spec.getNativeID()); + buffer_found.setRT(spec.getRT()); + for (auto peak : spec) + { + auto peak_RT = spec.getRT(); + auto peak_mz = peak.getMZ(); + for (auto feature : feature_maps_[0]) + { + double rt_min = feature.getConvexHulls()[0].getHullPoints()[0][0]; + double rt_max = feature.getConvexHulls()[0].getHullPoints()[2][0]; + double mz_min = feature.getConvexHulls()[0].getHullPoints()[0][1]; + double mz_max = feature.getConvexHulls()[0].getHullPoints()[2][1]; + //check if the observed peak is contained in the convex hull 0 of one of the features + if ((peak_RT <= rt_max) & (peak_RT >= rt_min) & (peak_mz <= mz_max) & (peak_mz >= mz_min)) + { + buffer_found.push_back(peak); + break; + } + } + } + if (!buffer_found.empty()) + { + monoisotopic_experiment_.addSpectrum(buffer_found); + } + } + } + } + monoisotopic_experiment_.updateRanges(); + } + const SimTypes::MSSimExperiment& MSSim::getExperiment() const { return experiment_; @@ -421,6 +468,11 @@ namespace OpenMS return peak_map_; } + const SimTypes::MSSimExperiment& MSSim::getMonoisotopicExperiment() const + { + return monoisotopic_experiment_; + } + void MSSim::getIdentifications(vector& proteins, vector& peptides) const { if (param_.getValue("RawTandemSignal:status") == "disabled") diff --git a/src/openms/source/SIMULATION/RTSimulation.cpp b/src/openms/source/SIMULATION/RTSimulation.cpp index c39e1ac7f52..188821c5286 100644 --- a/src/openms/source/SIMULATION/RTSimulation.cpp +++ b/src/openms/source/SIMULATION/RTSimulation.cpp @@ -332,7 +332,7 @@ namespace OpenMS } // print invalid features: - if (deleted_features.size() > 0) + if (!deleted_features.empty()) { OPENMS_LOG_WARN << "RT prediction gave 'invalid' results for " << deleted_features.size() << " peptide(s), making them unobservable.\n"; if (deleted_features.size() < 100) diff --git a/src/openms/source/SIMULATION/RawMSSignalSimulation.cpp b/src/openms/source/SIMULATION/RawMSSignalSimulation.cpp index 7714684531d..64b86262673 100644 --- a/src/openms/source/SIMULATION/RawMSSignalSimulation.cpp +++ b/src/openms/source/SIMULATION/RawMSSignalSimulation.cpp @@ -262,7 +262,7 @@ namespace OpenMS // contaminants: String contaminants_file = param_.getValue("contaminants:file").toString(); - if (contaminants_file.trim().size() != 0) + if (!contaminants_file.trim().empty()) { if (!File::readable(contaminants_file)) // look in OPENMS_DATA_PATH { @@ -977,7 +977,7 @@ namespace OpenMS continue; } // ... create contaminants... - SimTypes::FeatureMapSim::FeatureType feature; + Feature feature; feature.setRT((contaminants_[i].rt_end + contaminants_[i].rt_start) / 2); feature.setMZ((contaminants_[i].sf.getMonoWeight() / contaminants_[i].q) + Constants::PROTON_MASS_U); // m/z (incl. protons) if (!(minimal_mz_measurement_limit < feature.getMZ() && feature.getMZ() < maximal_mz_measurement_limit)) @@ -1203,7 +1203,7 @@ namespace OpenMS // TODO: add instrument specific sampling technique void RawMSSignalSimulation::compressSignals_(SimTypes::MSSimExperiment& experiment) { - if (experiment.size() < 1 || experiment[0].getInstrumentSettings().getScanWindows().size() < 1) + if (experiment.empty() || experiment[0].getInstrumentSettings().getScanWindows().empty()) { throw Exception::IllegalSelfOperation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION); } diff --git a/src/openms/source/SYSTEM/File.cpp b/src/openms/source/SYSTEM/File.cpp index c864302630d..cb0613f889e 100644 --- a/src/openms/source/SYSTEM/File.cpp +++ b/src/openms/source/SYSTEM/File.cpp @@ -123,8 +123,8 @@ namespace OpenMS { // ensure path ends with a "/", such that we can just write path + "ToolX", and to not worry about if its empty or a path. rpath.ensureLastChar('/'); - } - else + } + else { std::cerr << "Path '" << rpath << "' extracted from Executable Path '" << path << "' does not exist! Returning empty string!\n"; rpath = ""; @@ -180,30 +180,30 @@ namespace OpenMS } // https://stackoverflow.com/questions/2536524/copy-directory-using-qt - bool File::copyDirRecursively(const QString &from_dir, const QString &to_dir, File::CopyOptions option) + bool File::copyDirRecursively(const QString& from_dir, const QString& to_dir, File::CopyOptions option) { QDir source_dir(from_dir); QDir target_dir(to_dir); QString canonical_source_dir = source_dir.canonicalPath(); QString canonical_target_dir = target_dir.canonicalPath(); - - // check canonical path + + // check canonical path if (canonical_source_dir == canonical_target_dir) { - OPENMS_LOG_ERROR << "Error: Could not copy " << from_dir.toStdString() << " to " << to_dir.toStdString() << ". Same path given." << std::endl;; + OPENMS_LOG_ERROR << "Error: Could not copy " << from_dir.toStdString() << " to " << to_dir.toStdString() << ". Same path given." << std::endl; return false; } - // make directory if not present + // make directory if not present if (!target_dir.exists()) { target_dir.mkpath(to_dir); } - + // copy folder recursively QFileInfoList file_list = source_dir.entryInfoList(); - for (const QFileInfo& entry : file_list) + for (const QFileInfo& entry : file_list) { if (entry.fileName() == "." || entry.fileName() == "..") { @@ -222,10 +222,10 @@ namespace OpenMS { switch (option) { - case CopyOptions::CANCEL: + case CopyOptions::CANCEL: return false; - case CopyOptions::SKIP: - OPENMS_LOG_WARN << "The file " << entry.fileName().toStdString() << " was skipped." << std::endl; + case CopyOptions::SKIP: + OPENMS_LOG_WARN << "The file " << entry.fileName().toStdString() << " was skipped." << std::endl; continue; case CopyOptions::OVERWRITE: target_dir.remove(entry.fileName()); @@ -333,7 +333,7 @@ namespace OpenMS // do NOT return an empty string, because this leads to issues when in generic code you do: // String new_path = path("a.txt") + '/' + basename("a.txt"); // , as this would lead to "/a.txt", i.e. create a wrong absolute path from a relative name - String no_path = "."; + String no_path = "."; return pos == string::npos ? no_path : file.substr(0, pos); } @@ -386,7 +386,7 @@ namespace OpenMS //add path suffix to all specified directories String path = File::path(filename); - if (path != "") + if (!path.empty()) { for (String& str : directories) { @@ -519,7 +519,7 @@ namespace OpenMS if (path_checked) found_path_from = "bundle path (run time)"; } #endif - + // On Linux and Apple check relative from the executable if (!path_checked) { @@ -577,7 +577,7 @@ namespace OpenMS { dir = getenv("OPENMS_TMPDIR"); } - else if (p.exists("temp_dir") && String(p.getValue("temp_dir").toString()).trim() != "") + else if (p.exists("temp_dir") && !String(p.getValue("temp_dir").toString()).trim().empty()) { dir = p.getValue("temp_dir").toString(); } @@ -597,7 +597,7 @@ namespace OpenMS { dir = getenv("OPENMS_HOME_PATH"); } - else if (p.exists("home_dir") && String(p.getValue("home_dir").toString()).trim() != "") + else if (p.exists("home_dir") && !String(p.getValue("home_dir").toString()).trim().empty()) { dir = p.getValue("home_dir").toString(); } @@ -765,7 +765,7 @@ namespace OpenMS } return false; } - + String File::findSiblingTOPPExecutable(const OpenMS::String& toolName) { // we first try the executablePath @@ -780,14 +780,14 @@ namespace OpenMS return exec; } #if defined(__APPLE__) - // check if we are in one of the bundles (only built, not installed) + // check if we are in one of the bundles (only built, not installed) exec = File::getExecutablePath() + "../../../" + toolName; if (File::exists(exec)) return exec; // check if we are in one of the bundles in an installed bundle (old bundles) exec = File::getExecutablePath() + "../../../TOPP/" + toolName; if (File::exists(exec)) return exec; - + // check if we are in one of the bundles in an installed bundle (new bundles) exec = File::getExecutablePath() + "../../../bin/" + toolName; if (File::exists(exec)) return exec; @@ -797,7 +797,7 @@ namespace OpenMS throw Exception::FileNotFound(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, toolName); } - const String& File::getTemporaryFile(const String& alternative_file) + String File::getTemporaryFile(const String& alternative_file) { // take no action if (!alternative_file.empty()) @@ -814,12 +814,13 @@ namespace OpenMS { } - const String& File::TemporaryFiles_::newFile() + String File::TemporaryFiles_::newFile() { String s = getTempDirectory().ensureLastChar('/') + getUniqueName(); std::lock_guard _(mtx_); filenames_.push_back(s); - return filenames_.back(); + // do NOT return filenames_.back() by ref, since another thread might resize the vector and invalidate the reference! + return s; // uses RVO, so its efficient } File::TemporaryFiles_::~TemporaryFiles_() @@ -827,7 +828,7 @@ namespace OpenMS std::lock_guard _(mtx_); for (Size i = 0; i < filenames_.size(); ++i) { - if (File::exists(filenames_[i]) && !File::remove(filenames_[i])) + if (File::exists(filenames_[i]) && !File::remove(filenames_[i])) { std::cerr << "Warning: unable to remove temporary file '" << filenames_[i] << "'" << std::endl; } @@ -866,7 +867,7 @@ namespace OpenMS if (sl1_name != sl2_name) { - different_name_at_index = true; + different_name_at_index = true; } } diff --git a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/ElutionModelFitter.cpp b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/ElutionModelFitter.cpp index b488e9decdc..925fc442834 100644 --- a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/ElutionModelFitter.cpp +++ b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/ElutionModelFitter.cpp @@ -334,6 +334,19 @@ void ElutionModelFitter::fitElutionModels(FeatureMap& features) } delete fitter; + // check if fit worked for at least one feature + bool has_valid_models{false}; + for (Feature& feature : features) + { + if (feature.getMetaValue("model_status") == "0 (valid)") + { + has_valid_models = true; + break; + } + } + // no valid feature e.g. because of empty file or blank? return empty features. (subsequent steps assume valid features) + if (!has_valid_models) { features.clear(); return; } + // find outliers in model parameters: if (width_limit > 0) { diff --git a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/ExtendedIsotopeModel.cpp b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/ExtendedIsotopeModel.cpp index 3cde4359b02..e513fb2ca7c 100644 --- a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/ExtendedIsotopeModel.cpp +++ b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/ExtendedIsotopeModel.cpp @@ -221,7 +221,7 @@ namespace OpenMS return getInterpolation().getOffset(); } - UInt ExtendedIsotopeModel::getCharge() + UInt ExtendedIsotopeModel::getCharge() const { return charge_; } diff --git a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderAlgorithmIsotopeWavelet.cpp b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderAlgorithmIsotopeWavelet.cpp index e8b5369a26e..4741e84bbb9 100644 --- a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderAlgorithmIsotopeWavelet.cpp +++ b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderAlgorithmIsotopeWavelet.cpp @@ -158,8 +158,8 @@ namespace OpenMS void FeatureFinderAlgorithmIsotopeWavelet::run() { - double max_mz = this->map_->getMax()[1]; - double min_mz = this->map_->getMin()[1]; + double max_mz = this->map_->getMaxMZ(); + double min_mz = this->map_->getMinMZ(); Size max_size = 0; diff --git a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderAlgorithmPicked.cpp b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderAlgorithmPicked.cpp index b7fd3063a93..415bcafd3d1 100644 --- a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderAlgorithmPicked.cpp +++ b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderAlgorithmPicked.cpp @@ -1712,7 +1712,7 @@ namespace OpenMS isotopes.size() - b - e > 1)) { double int_score = Math::pearsonCorrelationCoefficient(isotopes.intensity.begin() + b, isotopes.intensity.end() - e, pattern.intensity.begin() + b, pattern.intensity.end() - e); - if (boost::math::isnan(int_score)) + if (std::isnan(int_score)) { int_score = 0.0; } diff --git a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderAlgorithmPickedHelperStructs.cpp b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderAlgorithmPickedHelperStructs.cpp index d896c771671..77cb0682448 100644 --- a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderAlgorithmPickedHelperStructs.cpp +++ b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderAlgorithmPickedHelperStructs.cpp @@ -140,7 +140,7 @@ namespace OpenMS Size FeatureFinderAlgorithmPickedHelperStructs::MassTraces::getTheoreticalmaxPosition() const { - if (!this->size()) + if (this->empty()) { throw Exception::Precondition(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "There must be at least one trace to determine the theoretical maximum trace!"); } @@ -160,7 +160,7 @@ namespace OpenMS void FeatureFinderAlgorithmPickedHelperStructs::MassTraces::updateBaseline() { - if (this->size() == 0) + if (this->empty()) { baseline = 0.0; return; @@ -185,7 +185,7 @@ namespace OpenMS std::pair FeatureFinderAlgorithmPickedHelperStructs::MassTraces::getRTBounds() const { - if (!this->size()) + if (this->empty()) { throw Exception::Precondition(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "There must be at least one trace to determine the RT boundaries!"); } diff --git a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderIdentificationAlgorithm.cpp b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderIdentificationAlgorithm.cpp index a845cf1d156..99aafacbb52 100644 --- a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderIdentificationAlgorithm.cpp +++ b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderIdentificationAlgorithm.cpp @@ -1277,7 +1277,7 @@ namespace OpenMS } } - void FeatureFinderIdentificationAlgorithm::ensureConvexHulls_(Feature& feature) + void FeatureFinderIdentificationAlgorithm::ensureConvexHulls_(Feature& feature) const { if (feature.getConvexHulls().empty()) // add hulls for mass traces { @@ -1448,7 +1448,7 @@ namespace OpenMS } - void FeatureFinderIdentificationAlgorithm::getRandomSample_(std::map& training_labels) + void FeatureFinderIdentificationAlgorithm::getRandomSample_(std::map& training_labels) const { // @TODO: can this be done with less copying back and forth of data? // Pick a random subset of size "svm_n_samples_" for training: Shuffle the whole diff --git a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderMultiplexAlgorithm.cpp b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderMultiplexAlgorithm.cpp index a3df9109918..48f96900ba8 100644 --- a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderMultiplexAlgorithm.cpp +++ b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/FeatureFinderMultiplexAlgorithm.cpp @@ -236,7 +236,7 @@ namespace OpenMS return list; } - void FeatureFinderMultiplexAlgorithm::correctPeptideIntensities_(const MultiplexIsotopicPeakPattern& pattern, std::map& spline_chromatograms, const std::vector& rt_peptide, std::vector& intensity_peptide) + void FeatureFinderMultiplexAlgorithm::correctPeptideIntensities_(const MultiplexIsotopicPeakPattern& pattern, std::map& spline_chromatograms, const std::vector& rt_peptide, std::vector& intensity_peptide) const { // determine ratios through linear regression // (In most labelled mass spectrometry experiments, the fold change i.e. ratio and not the individual peptide intensities diff --git a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/IsotopeModel.cpp b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/IsotopeModel.cpp index 27620397d74..f8e14d27736 100644 --- a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/IsotopeModel.cpp +++ b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/IsotopeModel.cpp @@ -259,7 +259,7 @@ namespace OpenMS return getInterpolation().getOffset(); } - UInt IsotopeModel::getCharge() + UInt IsotopeModel::getCharge() const { return charge_; } diff --git a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/IsotopeWavelet.cpp b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/IsotopeWavelet.cpp index f534345bb45..1ee4cc844bb 100644 --- a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/IsotopeWavelet.cpp +++ b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/IsotopeWavelet.cpp @@ -169,7 +169,7 @@ namespace OpenMS double IsotopeWavelet::getValueByLambdaExtrapol(const double lambda, const double tz1) { - double fac(-lambda + (tz1 - 1) * myLog2_(lambda) * ONEOLOG2E - boost::math::lgamma(tz1)); + double fac(-lambda + (tz1 - 1) * myLog2_(lambda) * ONEOLOG2E - std::lgamma(tz1)); double help((tz1 - 1) * Constants::WAVELET_PERIODICITY / (TWOPI)); double sine_index((help - (int)(help)) * TWOPI * inv_table_steps_); @@ -178,7 +178,7 @@ namespace OpenMS double IsotopeWavelet::getValueByLambdaExact(const double lambda, const double tz1) { - return sin(2 * Constants::PI * (tz1 - 1) / Constants::IW_NEUTRON_MASS) * exp(-lambda) * pow(lambda, tz1 - 1) / boost::math::tgamma(tz1); //boost::math::tgamma(tz1)); + return sin(2 * Constants::PI * (tz1 - 1) / Constants::IW_NEUTRON_MASS) * exp(-lambda) * pow(lambda, tz1 - 1) / std::tgamma(tz1); //std::tgamma(tz1)); } double IsotopeWavelet::getLambdaL(const double m) @@ -286,8 +286,8 @@ namespace OpenMS query += table_steps_; while (query <= up_to) { - gamma_table_.push_back(boost::math::lgamma(query)); - gamma_table_new_.push_back(boost::math::tgamma(query)); + gamma_table_.push_back(std::lgamma(query)); + gamma_table_new_.push_back(std::tgamma(query)); query += table_steps_; } diff --git a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/LevMarqFitter1D.cpp b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/LevMarqFitter1D.cpp index 556bcb63cc7..168b090566c 100644 --- a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/LevMarqFitter1D.cpp +++ b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/LevMarqFitter1D.cpp @@ -40,7 +40,7 @@ namespace OpenMS { - void LevMarqFitter1D::optimize_(Eigen::VectorXd& x_init, GenericFunctor& functor) + void LevMarqFitter1D::optimize_(Eigen::VectorXd& x_init, GenericFunctor& functor) const { //TODO: this function is copy&paste from TraceFitter.h. Make a generic wrapper for //LM optimization diff --git a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/MultiplexFiltering.cpp b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/MultiplexFiltering.cpp index d5fc9860c09..1228df15b0e 100644 --- a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/MultiplexFiltering.cpp +++ b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/MultiplexFiltering.cpp @@ -586,7 +586,7 @@ namespace OpenMS } // It is well possible that no corresponding satellite peaks exist, in which case the filter fails. - if ((intensities_1.size() == 0) || (intensities_2.size() == 0)) + if ((intensities_1.empty()) || (intensities_2.empty())) { return false; } diff --git a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/MultiplexFilteringProfile.cpp b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/MultiplexFilteringProfile.cpp index 2f68c4c56d1..db30b4e03fe 100644 --- a/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/MultiplexFilteringProfile.cpp +++ b/src/openms/source/TRANSFORMATIONS/FEATUREFINDER/MultiplexFilteringProfile.cpp @@ -161,7 +161,7 @@ namespace OpenMS size_t idx_rt = &it_rt - &exp_centroided_white_[0]; // skip empty spectra - if (it_rt.size() == 0 || boundaries_[idx_rt].size() == 0 || exp_spline_profile_[idx_rt].size() == 0) + if (it_rt.empty() || boundaries_[idx_rt].empty() || exp_spline_profile_[idx_rt].size() == 0) { continue; } @@ -427,7 +427,7 @@ namespace OpenMS } // It is well possible that no corresponding satellite peaks exist, in which case the filter fails. - if ((intensities_1.size() == 0) || (intensities_2.size() == 0)) + if ((intensities_1.empty()) || (intensities_2.empty())) { return false; } diff --git a/src/openms/source/TRANSFORMATIONS/RAW2PEAK/OptimizePeakDeconvolution.cpp b/src/openms/source/TRANSFORMATIONS/RAW2PEAK/OptimizePeakDeconvolution.cpp index eabdbe7f30e..4df7aa18bf1 100644 --- a/src/openms/source/TRANSFORMATIONS/RAW2PEAK/OptimizePeakDeconvolution.cpp +++ b/src/openms/source/TRANSFORMATIONS/RAW2PEAK/OptimizePeakDeconvolution.cpp @@ -60,7 +60,7 @@ namespace OpenMS m_inputs(dimensions), m_values(numDataPoints), m_data(data) {} - int operator()(const Eigen::VectorXd& x, Eigen::VectorXd& fvec) + int operator()(const Eigen::VectorXd& x, Eigen::VectorXd& fvec) const { //TODO: holding the parameters to be optimized and additional values in the same vector is // most likely not the best idea. should be split in two vectors. @@ -175,7 +175,7 @@ namespace OpenMS } // compute Jacobian matrix for the different parameters - int df(const Eigen::VectorXd& x, Eigen::MatrixXd& J) + int df(const Eigen::VectorXd& x, Eigen::MatrixXd& J) const { // For the conventions on x and params c.f. the commentary in residual() // @@ -436,7 +436,7 @@ namespace OpenMS // all peaks shall have the same width double wl = data.peaks[0].left_width; double wr = data.peaks[0].right_width; - if (boost::math::isnan(wl)) + if (std::isnan(wl)) { for (Size i = 0; i < data.peaks.size(); ++i) { @@ -444,7 +444,7 @@ namespace OpenMS } wl = 1.; } - if (boost::math::isnan(wr)) + if (std::isnan(wr)) { for (Size i = 0; i < data.peaks.size(); ++i) { @@ -518,8 +518,8 @@ namespace OpenMS else //It's a Sech - Peak { PeakShape p = peaks[current_peak]; - double x_left_endpoint = p.mz_position + 1 / p.left_width * boost::math::acosh(sqrt(p.height / 0.001)); - double x_right_endpoint = p.mz_position + 1 / p.right_width * boost::math::acosh(sqrt(p.height / 0.001)); + double x_left_endpoint = p.mz_position + 1 / p.left_width * std::acosh(sqrt(p.height / 0.001)); + double x_right_endpoint = p.mz_position + 1 / p.right_width * std::acosh(sqrt(p.height / 0.001)); #ifdef DEBUG_DECONV std::cout << "x_left_endpoint " << x_left_endpoint << " x_right_endpoint " << x_right_endpoint << std::endl; std::cout << "p.height" << p.height << std::endl; diff --git a/src/openms/source/TRANSFORMATIONS/RAW2PEAK/OptimizePick.cpp b/src/openms/source/TRANSFORMATIONS/RAW2PEAK/OptimizePick.cpp index 17ec2f1a2fd..a6d5c7b6e46 100644 --- a/src/openms/source/TRANSFORMATIONS/RAW2PEAK/OptimizePick.cpp +++ b/src/openms/source/TRANSFORMATIONS/RAW2PEAK/OptimizePick.cpp @@ -91,12 +91,12 @@ namespace OpenMS double wl = current_peak.left_width; double wr = current_peak.right_width; double p = current_peak.mz_position; - if (boost::math::isnan(wl)) + if (std::isnan(wl)) { data.peaks[i].left_width = 1; wl = 1.; } - if (boost::math::isnan(wr)) + if (std::isnan(wr)) { data.peaks[i].right_width = 1; wr = 1.; @@ -149,8 +149,8 @@ namespace OpenMS else //It's a Sech - Peak { PeakShape p = peaks[global_peak_number + current_peak]; - double x_left_endpoint = p.mz_position - 1 / p.left_width * boost::math::acosh(sqrt(p.height / 0.001)); - double x_right_endpoint = p.mz_position + 1 / p.right_width * boost::math::acosh(sqrt(p.height / 0.001)); + double x_left_endpoint = p.mz_position - 1 / p.left_width * std::acosh(sqrt(p.height / 0.001)); + double x_right_endpoint = p.mz_position + 1 / p.right_width * std::acosh(sqrt(p.height / 0.001)); double area_left = p.height / p.left_width * (sinh(p.left_width * (p.mz_position - x_left_endpoint)) / cosh(p.left_width * (p.mz_position - x_left_endpoint))); double area_right = -p.height / p.right_width * (sinh(p.right_width * (p.mz_position - x_right_endpoint)) / cosh(p.right_width * (p.mz_position - x_right_endpoint))); peaks[global_peak_number + current_peak].area = area_left + area_right; diff --git a/src/openms/source/TRANSFORMATIONS/RAW2PEAK/PeakPickerCWT.cpp b/src/openms/source/TRANSFORMATIONS/RAW2PEAK/PeakPickerCWT.cpp index c6681ea7797..e3565f4bcbb 100644 --- a/src/openms/source/TRANSFORMATIONS/RAW2PEAK/PeakPickerCWT.cpp +++ b/src/openms/source/TRANSFORMATIONS/RAW2PEAK/PeakPickerCWT.cpp @@ -37,6 +37,7 @@ #include #include #include +#include #include @@ -695,7 +696,7 @@ namespace OpenMS #endif // take shape with higher correlation (Sech2 can be NaN, so Lorentzian might be the only option) - if ((lorentz.r_value > sech.r_value) || boost::math::isnan(sech.r_value)) + if ((lorentz.r_value > sech.r_value) || std::isnan(sech.r_value)) { return lorentz; } @@ -982,7 +983,7 @@ namespace OpenMS } dif /= peaks - 1; charge = (Int) Math::round(1 / dif); - if (boost::math::isnan((double)charge) || boost::math::isinf((double)charge)) + if (std::isnan((double)charge) || std::isinf((double)charge)) { charge = 0; } @@ -1101,13 +1102,11 @@ namespace OpenMS void PeakPickerCWT::pick(const MSSpectrum & input, MSSpectrum & output) const { + // nearly empty spectra shouldn't be picked + if (input.size() < 2) return; + // copy the spectrum meta data - output.clear(true); - output.SpectrumSettings::operator=(input); - output.MetaInfoInterface::operator=(input); - output.setRT(input.getRT()); - output.setMSLevel(input.getMSLevel()); - output.setName(input.getName()); + copySpectrumMeta(input, output); //make sure the data type is set correctly output.setType(SpectrumSettings::CENTROID); @@ -1116,6 +1115,7 @@ namespace OpenMS { return; } + //set up meta data arrays output.getFloatDataArrays().clear(); output.getFloatDataArrays().resize(7); diff --git a/src/openms/source/TRANSFORMATIONS/RAW2PEAK/PeakPickerHiRes.cpp b/src/openms/source/TRANSFORMATIONS/RAW2PEAK/PeakPickerHiRes.cpp index d25cdc80690..1908a2609af 100644 --- a/src/openms/source/TRANSFORMATIONS/RAW2PEAK/PeakPickerHiRes.cpp +++ b/src/openms/source/TRANSFORMATIONS/RAW2PEAK/PeakPickerHiRes.cpp @@ -40,6 +40,7 @@ #include #include #include +#include using namespace std; @@ -98,13 +99,9 @@ namespace OpenMS void PeakPickerHiRes::pick(const MSSpectrum& input, MSSpectrum& output, std::vector& boundaries, bool check_spacings) const { // copy meta data of the input spectrum - output.clear(true); - output.SpectrumSettings::operator=(input); - output.MetaInfoInterface::operator=(input); - output.setRT(input.getRT()); - output.setMSLevel(input.getMSLevel()); - output.setName(input.getName()); + copySpectrumMeta(input, output); output.setType(SpectrumSettings::CENTROID); + pick_(input, output, boundaries, check_spacings); } @@ -122,6 +119,7 @@ namespace OpenMS template void PeakPickerHiRes::pick_(const ContainerType& input, ContainerType& output, std::vector& boundaries, bool check_spacings) const { + if (report_FWHM_) { output.getFloatDataArrays().resize(1); diff --git a/src/openms/source/TRANSFORMATIONS/RAW2PEAK/PeakPickerMaxima.cpp b/src/openms/source/TRANSFORMATIONS/RAW2PEAK/PeakPickerMaxima.cpp index 77305fd1e26..8fd717d8b51 100644 --- a/src/openms/source/TRANSFORMATIONS/RAW2PEAK/PeakPickerMaxima.cpp +++ b/src/openms/source/TRANSFORMATIONS/RAW2PEAK/PeakPickerMaxima.cpp @@ -56,7 +56,7 @@ namespace OpenMS void PeakPickerMaxima::findMaxima(const std::vector& mz_array, const std::vector& int_array, std::vector& pc, - bool check_spacings) + bool check_spacings) const { // don't pick a spectrum with less than 5 data points if (mz_array.size() < 5) diff --git a/src/openms/source/TRANSFORMATIONS/RAW2PEAK/PeakPickerSH.cpp b/src/openms/source/TRANSFORMATIONS/RAW2PEAK/PeakPickerSH.cpp index 57a8270e5c4..cd2eec1f1f7 100644 --- a/src/openms/source/TRANSFORMATIONS/RAW2PEAK/PeakPickerSH.cpp +++ b/src/openms/source/TRANSFORMATIONS/RAW2PEAK/PeakPickerSH.cpp @@ -34,6 +34,8 @@ #include +#include + namespace OpenMS { PeakPickerSH::PeakPickerSH() : @@ -63,12 +65,7 @@ namespace OpenMS Size progress = 0; for (Size scan_idx = 0; scan_idx != input.size(); ++scan_idx) { - output[scan_idx].clear(true); - output[scan_idx].SpectrumSettings::operator=(input[scan_idx]); - output[scan_idx].MetaInfoInterface::operator=(input[scan_idx]); - output[scan_idx].setRT(input[scan_idx].getRT()); - output[scan_idx].setMSLevel(input[scan_idx].getMSLevel()); - output[scan_idx].setName(input[scan_idx].getName()); + copySpectrumMeta(input[scan_idx], output[scan_idx]); output[scan_idx].setType(SpectrumSettings::CENTROID); if (input[scan_idx].getMSLevel() != 1) diff --git a/src/openms/source/TRANSFORMATIONS/RAW2PEAK/TwoDOptimization.cpp b/src/openms/source/TRANSFORMATIONS/RAW2PEAK/TwoDOptimization.cpp index 4d7d2777c35..e13f4b61885 100644 --- a/src/openms/source/TRANSFORMATIONS/RAW2PEAK/TwoDOptimization.cpp +++ b/src/openms/source/TRANSFORMATIONS/RAW2PEAK/TwoDOptimization.cpp @@ -1056,8 +1056,8 @@ namespace OpenMS } else // it's a sech peak { - double x_left_endpoint = mz - 1 / left_width* boost::math::acosh(sqrt(height / 0.001)); - double x_right_endpoint = mz + 1 / right_width* boost::math::acosh(sqrt(height / 0.001)); + double x_left_endpoint = mz - 1 / left_width* std::acosh(sqrt(height / 0.001)); + double x_right_endpoint = mz + 1 / right_width* std::acosh(sqrt(height / 0.001)); double area_left = -height / left_width * (sinh(left_width * (mz - x_left_endpoint)) / cosh(left_width * (mz - x_left_endpoint))); double area_right = -height / right_width * (sinh(right_width * (mz - x_right_endpoint)) / cosh(right_width * (mz - x_right_endpoint))); ms_exp[itv->second[j].spectrum][itv->second[j].peak].setIntensity(area_left + area_right); @@ -1093,19 +1093,19 @@ namespace OpenMS struct OpenMS::OptimizationFunctions::PenaltyFactors penalties; ParamValue pv = param_.getValue("penalties:position"); - if (pv.isEmpty() || pv.toString() == "") + if (pv.isEmpty() || pv.toString().empty()) penalties.pos = 0.; else penalties.pos = (float)pv; pv = param_.getValue("penalties:left_width"); - if (pv.isEmpty() || pv.toString() == "") + if (pv.isEmpty() || pv.toString().empty()) penalties.lWidth = 1.; else penalties.lWidth = (float)pv; pv = param_.getValue("penalties:right_width"); - if (pv.isEmpty() || pv.toString() == "") + if (pv.isEmpty() || pv.toString().empty()) penalties.rWidth = 1.; else penalties.rWidth = (float)pv; @@ -1125,7 +1125,7 @@ namespace OpenMS UInt max_iteration; pv = param_.getValue("iterations"); - if (pv.isEmpty() || pv.toString() == "") + if (pv.isEmpty() || pv.toString().empty()) max_iteration = 15; else max_iteration = (UInt)pv; @@ -1258,8 +1258,8 @@ namespace OpenMS else //It's a Sech - Peak { PeakShape& ps = peak_shapes[p]; - double x_left_endpoint = ps.mz_position - 1 / ps.left_width* boost::math::acosh(sqrt(ps.height / 0.001)); - double x_right_endpoint = ps.mz_position + 1 / ps.right_width* boost::math::acosh(sqrt(ps.height / 0.001)); + double x_left_endpoint = ps.mz_position - 1 / ps.left_width* std::acosh(sqrt(ps.height / 0.001)); + double x_right_endpoint = ps.mz_position + 1 / ps.right_width* std::acosh(sqrt(ps.height / 0.001)); double area_left = ps.height / ps.left_width * (sinh(ps.left_width * (ps.mz_position - x_left_endpoint)) / cosh(ps.left_width * (ps.mz_position - x_left_endpoint))); double area_right = -ps.height / ps.right_width * (sinh(ps.right_width * (ps.mz_position - x_right_endpoint)) / cosh(ps.right_width * (ps.mz_position - x_right_endpoint))); spec[set_iter->second].setIntensity(area_left + area_right); // area is stored as peak intensity diff --git a/src/openms/thirdparty/IsoSpec/IsoSpec/isoSpec++.cpp b/src/openms/thirdparty/IsoSpec/IsoSpec/isoSpec++.cpp index 73af6ef03c6..b89b22a4bf1 100644 --- a/src/openms/thirdparty/IsoSpec/IsoSpec/isoSpec++.cpp +++ b/src/openms/thirdparty/IsoSpec/IsoSpec/isoSpec++.cpp @@ -137,7 +137,7 @@ marginals(nullptr) } } -Iso::Iso(Iso&& other) : +Iso::Iso(Iso&& other) noexcept : disowned(other.disowned), dimNumber(other.dimNumber), isotopeNumbers(other.isotopeNumbers), diff --git a/src/openms/thirdparty/IsoSpec/IsoSpec/isoSpec++.h b/src/openms/thirdparty/IsoSpec/IsoSpec/isoSpec++.h index 807744b0441..a386aee83b5 100644 --- a/src/openms/thirdparty/IsoSpec/IsoSpec/isoSpec++.h +++ b/src/openms/thirdparty/IsoSpec/IsoSpec/isoSpec++.h @@ -113,7 +113,7 @@ class ISOSPEC_EXPORT_SYMBOL Iso { static inline Iso FromFASTA(const std::string& fasta, bool use_nominal_masses = false, bool add_water = true) { return FromFASTA(fasta.c_str(), use_nominal_masses, add_water); } //! The move constructor. - Iso(Iso&& other); + Iso(Iso&& other) noexcept ; /* We're not exactly following standard copy and assign semantics with Iso objects, so delete the default assign constructor just in case, so noone tries to use it. Copy ctor declared below. */ Iso& operator=(const Iso& other) = delete; @@ -219,7 +219,7 @@ class ISOSPEC_EXPORT_SYMBOL IsoGenerator : public Iso IsoGenerator(Iso&& iso, bool alloc_partials = true); // NOLINT(runtime/explicit) - constructor deliberately left to be used as a conversion //! Destructor. - virtual ~IsoGenerator(); + ~IsoGenerator() override; }; @@ -249,14 +249,14 @@ class ISOSPEC_EXPORT_SYMBOL IsoOrderedGenerator: public IsoGenerator IsoOrderedGenerator(const IsoOrderedGenerator& other) = delete; IsoOrderedGenerator& operator=(const IsoOrderedGenerator& other) = delete; - bool advanceToNextConfiguration() override final; + bool advanceToNextConfiguration() final; //! Save the counts of isotopes in the space. /*! \param space An array where counts of isotopes shall be written. Must be as big as the overall number of isotopes. */ - inline void get_conf_signature(int* space) const override final + inline void get_conf_signature(int* space) const final { int* c = getConf(topConf); @@ -277,7 +277,7 @@ class ISOSPEC_EXPORT_SYMBOL IsoOrderedGenerator: public IsoGenerator IsoOrderedGenerator(Iso&& iso, int _tabSize = 1000, int _hashSize = 1000); // NOLINT(runtime/explicit) - constructor deliberately left to be used as a conversion //! Destructor. - virtual ~IsoOrderedGenerator(); + ~IsoOrderedGenerator() override; }; @@ -309,7 +309,7 @@ class ISOSPEC_EXPORT_SYMBOL IsoThresholdGenerator: public IsoGenerator IsoThresholdGenerator(const IsoThresholdGenerator& other) = delete; IsoThresholdGenerator& operator=(const IsoThresholdGenerator& other) = delete; - inline void get_conf_signature(int* space) const override final + inline void get_conf_signature(int* space) const final { counter[0] = lProbs_ptr - lProbs_ptr_start; if(marginalOrder != nullptr) @@ -342,11 +342,11 @@ class ISOSPEC_EXPORT_SYMBOL IsoThresholdGenerator: public IsoGenerator */ IsoThresholdGenerator(Iso&& iso, double _threshold, bool _absolute = true, int _tabSize = 1000, int _hashSize = 1000, bool reorder_marginals = true); - ~IsoThresholdGenerator(); + ~IsoThresholdGenerator() override; // Perform highly aggressive inling as this function is often called as while(advanceToNextConfiguration()) {} // which leads to an extremely tight loop and some compilers miss this (potentially due to the length of the function). - ISOSPEC_FORCE_INLINE bool advanceToNextConfiguration() override final + ISOSPEC_FORCE_INLINE bool advanceToNextConfiguration() final { lProbs_ptr++; @@ -385,9 +385,9 @@ class ISOSPEC_EXPORT_SYMBOL IsoThresholdGenerator: public IsoGenerator } - ISOSPEC_FORCE_INLINE double lprob() const override final { return partialLProbs_second_val + (*(lProbs_ptr)); } - ISOSPEC_FORCE_INLINE double mass() const override final { return partialMasses[1] + marginalResults[0]->get_mass(lProbs_ptr - lProbs_ptr_start); } - ISOSPEC_FORCE_INLINE double prob() const override final { return partialProbs[1] * marginalResults[0]->get_prob(lProbs_ptr - lProbs_ptr_start); } + ISOSPEC_FORCE_INLINE double lprob() const final { return partialLProbs_second_val + (*(lProbs_ptr)); } + ISOSPEC_FORCE_INLINE double mass() const final { return partialMasses[1] + marginalResults[0]->get_mass(lProbs_ptr - lProbs_ptr_start); } + ISOSPEC_FORCE_INLINE double prob() const final { return partialProbs[1] * marginalResults[0]->get_prob(lProbs_ptr - lProbs_ptr_start); } //! Block the subsequent search of isotopologues. void terminate_search(); @@ -455,7 +455,7 @@ class ISOSPEC_EXPORT_SYMBOL IsoLayeredGenerator : public IsoGenerator IsoLayeredGenerator(const IsoLayeredGenerator& other) = delete; IsoLayeredGenerator& operator=(const IsoLayeredGenerator& other) = delete; - inline void get_conf_signature(int* space) const override final + inline void get_conf_signature(int* space) const final { counter[0] = lProbs_ptr - lProbs_ptr_start; if(marginalOrder != nullptr) @@ -481,9 +481,9 @@ class ISOSPEC_EXPORT_SYMBOL IsoLayeredGenerator : public IsoGenerator IsoLayeredGenerator(Iso&& iso, int _tabSize = 1000, int _hashSize = 1000, bool reorder_marginals = true, double t_prob_hint = 0.99); // NOLINT(runtime/explicit) - constructor deliberately left to be used as a conversion - ~IsoLayeredGenerator(); + ~IsoLayeredGenerator() override; - ISOSPEC_FORCE_INLINE bool advanceToNextConfiguration() override final + ISOSPEC_FORCE_INLINE bool advanceToNextConfiguration() final { do { @@ -505,9 +505,9 @@ class ISOSPEC_EXPORT_SYMBOL IsoLayeredGenerator : public IsoGenerator return false; } - ISOSPEC_FORCE_INLINE double lprob() const override final { return partialLProbs_second_val + (*(lProbs_ptr)); }; - ISOSPEC_FORCE_INLINE double mass() const override final { return partialMasses[1] + marginalResults[0]->get_mass(lProbs_ptr - lProbs_ptr_start); }; - ISOSPEC_FORCE_INLINE double prob() const override final { return partialProbs[1] * marginalResults[0]->get_prob(lProbs_ptr - lProbs_ptr_start); }; + ISOSPEC_FORCE_INLINE double lprob() const final { return partialLProbs_second_val + (*(lProbs_ptr)); }; + ISOSPEC_FORCE_INLINE double mass() const final { return partialMasses[1] + marginalResults[0]->get_mass(lProbs_ptr - lProbs_ptr_start); }; + ISOSPEC_FORCE_INLINE double prob() const final { return partialProbs[1] * marginalResults[0]->get_prob(lProbs_ptr - lProbs_ptr_start); }; //! Block the subsequent search of isotopologues. void terminate_search(); @@ -551,15 +551,15 @@ class IsoStochasticGenerator : IsoGenerator ISOSPEC_FORCE_INLINE size_t count() const { return current_count; } - ISOSPEC_FORCE_INLINE double mass() const override final { return ILG.mass(); } + ISOSPEC_FORCE_INLINE double mass() const final { return ILG.mass(); } - ISOSPEC_FORCE_INLINE double prob() const override final { return static_cast(count()); } + ISOSPEC_FORCE_INLINE double prob() const final { return static_cast(count()); } - ISOSPEC_FORCE_INLINE double lprob() const override final { return log(prob()); } + ISOSPEC_FORCE_INLINE double lprob() const final { return log(prob()); } - ISOSPEC_FORCE_INLINE void get_conf_signature(int* space) const override final { ILG.get_conf_signature(space); } + ISOSPEC_FORCE_INLINE void get_conf_signature(int* space) const final { ILG.get_conf_signature(space); } - ISOSPEC_FORCE_INLINE bool advanceToNextConfiguration() override final + ISOSPEC_FORCE_INLINE bool advanceToNextConfiguration() final { /* This function will be used mainly in very small, tight loops, therefore it makes sense to * aggressively inline it, despite its seemingly large body. diff --git a/src/openms/thirdparty/IsoSpec/IsoSpec/marginalTrek++.cpp b/src/openms/thirdparty/IsoSpec/IsoSpec/marginalTrek++.cpp index eb278eab51f..e83532a9d09 100644 --- a/src/openms/thirdparty/IsoSpec/IsoSpec/marginalTrek++.cpp +++ b/src/openms/thirdparty/IsoSpec/IsoSpec/marginalTrek++.cpp @@ -201,7 +201,7 @@ loggamma_nominator(other.loggamma_nominator) // the move-constructor: used in the specialization of the marginal. -Marginal::Marginal(Marginal&& other) : +Marginal::Marginal(Marginal&& other) noexcept : disowned(other.disowned), isotopeNo(other.isotopeNo), atomCnt(other.atomCnt), diff --git a/src/openms/thirdparty/IsoSpec/IsoSpec/marginalTrek++.h b/src/openms/thirdparty/IsoSpec/IsoSpec/marginalTrek++.h index bab2f41bde2..ac2fe47c3ba 100644 --- a/src/openms/thirdparty/IsoSpec/IsoSpec/marginalTrek++.h +++ b/src/openms/thirdparty/IsoSpec/IsoSpec/marginalTrek++.h @@ -74,7 +74,7 @@ class Marginal Marginal(const Marginal& other); //! Move constructor. - Marginal(Marginal&& other); + Marginal(Marginal&& other) noexcept ; //! Destructor. virtual ~Marginal(); @@ -119,7 +119,7 @@ class Marginal inline double getModeLProb() { ensureModeConf(); return mode_lprob; } //! Get the log-probability of the mode subisotopologue. Results undefined if ensureModeConf() wasn't called before. - inline double fastGetModeLProb() { return mode_lprob; } + inline double fastGetModeLProb() const { return mode_lprob; } //! The the probability of the mode subisotopologue. /*! @@ -238,7 +238,7 @@ class MarginalTrek : public Marginal inline const std::vector& confs() const { return _confs; } - virtual ~MarginalTrek(); + ~MarginalTrek() override; }; @@ -282,7 +282,7 @@ class PrecalculatedMarginal : public Marginal PrecalculatedMarginal& operator=(const PrecalculatedMarginal& other) = delete; //! Destructor. - virtual ~PrecalculatedMarginal(); + ~PrecalculatedMarginal() override; //! Is there a subisotopologue with a given number? /*! diff --git a/src/openms/thirdparty/IsoSpec/IsoSpec/operators.h b/src/openms/thirdparty/IsoSpec/IsoSpec/operators.h index f1e9cbd0434..f2125f2424a 100644 --- a/src/openms/thirdparty/IsoSpec/IsoSpec/operators.h +++ b/src/openms/thirdparty/IsoSpec/IsoSpec/operators.h @@ -16,11 +16,11 @@ #pragma once -#include -#include "platform.h" #include "conf.h" #include "isoMath.h" #include "misc.h" +#include "platform.h" +#include namespace IsoSpec { diff --git a/src/openms/thirdparty/IsoSpec/IsoSpec/platform.h b/src/openms/thirdparty/IsoSpec/IsoSpec/platform.h index d1a35284fdc..30fe36b8363 100644 --- a/src/openms/thirdparty/IsoSpec/IsoSpec/platform.h +++ b/src/openms/thirdparty/IsoSpec/IsoSpec/platform.h @@ -107,7 +107,7 @@ #include "mman.h" #endif #else - #include /* malloc, free, rand */ + #include /* malloc, free, rand */ #endif diff --git a/src/openms/thirdparty/IsoSpec/IsoSpec/summator.h b/src/openms/thirdparty/IsoSpec/IsoSpec/summator.h index 30619b99f9d..76a7ede7a6a 100644 --- a/src/openms/thirdparty/IsoSpec/IsoSpec/summator.h +++ b/src/openms/thirdparty/IsoSpec/IsoSpec/summator.h @@ -90,7 +90,7 @@ class Summator{ sum = t; } - inline double get() + inline double get() const { return sum; } @@ -108,7 +108,7 @@ class TSummator { sum += what; } - inline double get() + inline double get() const { return sum; } diff --git a/src/openms_gui/CMakeLists.txt b/src/openms_gui/CMakeLists.txt index 0203c9c0e55..3733c1ff160 100644 --- a/src/openms_gui/CMakeLists.txt +++ b/src/openms_gui/CMakeLists.txt @@ -48,13 +48,23 @@ endif() set(OpenMS_GUI_QT_COMPONENTS ${TEMP_OpenMS_GUI_QT_COMPONENTS} CACHE INTERNAL "QT components for GUI lib") +set(OpenMS_GUI_QT_COMPONENTS_OPT WebEngineWidgets) + find_package(Qt5 COMPONENTS ${OpenMS_GUI_QT_COMPONENTS} REQUIRED) +find_package(Qt5 COMPONENTS ${OpenMS_GUI_QT_COMPONENTS_OPT}) + + IF (NOT Qt5Widgets_FOUND) - message(STATUS "QT5Widgets not found!") + message(STATUS "Qt5Widgets not found!") message(FATAL_ERROR "To find a custom Qt installation use: cmake <..more options..> -DCMAKE_PREFIX_PATH='' ") ENDIF() +if(Qt5_WebEngineWidgets_NOTFOUND) + message(WARNING "Qt5WebEngineWidgets not found, disabling JS Views in TOPPView!") + set(OpenMS_GUI_QT_COMPONENTS_OPT "") +endif() + set(CMAKE_AUTOUIC OFF) # leave off since this is broken, see qt5_wrap_ui below set(CMAKE_AUTOMOC ON) set(CMAKE_INCLUDE_CURRENT_DIR ON) @@ -65,6 +75,7 @@ set(CMAKE_INCLUDE_CURRENT_DIR ON) add_definitions(${Qt5Widgets_DEFINITIONS}) add_definitions(${Qt5Svg_DEFINITIONS}) add_definitions(${Qt5Network_DEFINITIONS}) +add_definitions(${Qt5WebEngineWidgets_DEFINITIONS}) # Executables fail to build with Qt 5 in the default configuration # without -fPIE. We add that here. @@ -92,6 +103,7 @@ set(OpenMS_GUI_DEP_LIBRARIES OpenMS ${Qt5Widgets_LIBRARIES} ${Qt5Svg_LIBRARIES} ${Qt5Network_LIBRARIES} + ${Qt5WebEngineWidgets_LIBRARIES} ) set(OpenMS_GUI_PRIVATE_DEP_LIBRARIES "") @@ -113,6 +125,7 @@ openms_add_library(TARGET_NAME OpenMS_GUI ${Qt5Widgets_INCLUDE_DIRS} ${Qt5Svg_INCLUDE_DIRS} ${Qt5Network_INCLUDE_DIRS} + ${Qt5WebEngineWidgets_INCLUDE_DIRS} LINK_LIBRARIES ${OpenMS_GUI_DEP_LIBRARIES} PRIVATE_LINK_LIBRARIES ${OpenMS_GUI_PRIVATE_DEP_LIBRARIES} DLL_EXPORT_PATH "OpenMS/VISUAL/") diff --git a/src/openms_gui/include/OpenMS/VISUAL/ANNOTATION/Annotations1DContainer.h b/src/openms_gui/include/OpenMS/VISUAL/ANNOTATION/Annotations1DContainer.h index 6d638b58791..19dfed93cf3 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/ANNOTATION/Annotations1DContainer.h +++ b/src/openms_gui/include/OpenMS/VISUAL/ANNOTATION/Annotations1DContainer.h @@ -86,10 +86,10 @@ namespace OpenMS Annotation1DItem * getItemAt(const QPoint & pos) const; /// Selects the item at @p pos on the canvas, if it exists. - void selectItemAt(const QPoint & pos); + void selectItemAt(const QPoint & pos) const; /// Deselects the item at @p pos on the canvas, if it exists. - void deselectItemAt(const QPoint & pos); + void deselectItemAt(const QPoint & pos) const; /// Selects all items void selectAll(); diff --git a/src/openms_gui/include/OpenMS/VISUAL/APPLICATIONS/TOPPViewBase.h b/src/openms_gui/include/OpenMS/VISUAL/APPLICATIONS/TOPPViewBase.h index 82e790e2cfc..27804338b32 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/APPLICATIONS/TOPPViewBase.h +++ b/src/openms_gui/include/OpenMS/VISUAL/APPLICATIONS/TOPPViewBase.h @@ -133,21 +133,21 @@ namespace OpenMS ///@name Type definitions //@{ //Feature map type - typedef LayerData::FeatureMapType FeatureMapType; + typedef LayerDataBase::FeatureMapType FeatureMapType; //Feature map managed type - typedef LayerData::FeatureMapSharedPtrType FeatureMapSharedPtrType; + typedef LayerDataBase::FeatureMapSharedPtrType FeatureMapSharedPtrType; //Consensus feature map type - typedef LayerData::ConsensusMapType ConsensusMapType; + typedef LayerDataBase::ConsensusMapType ConsensusMapType; //Consensus map managed type - typedef LayerData::ConsensusMapSharedPtrType ConsensusMapSharedPtrType; + typedef LayerDataBase::ConsensusMapSharedPtrType ConsensusMapSharedPtrType; //Peak map type - typedef LayerData::ExperimentType ExperimentType; + typedef LayerDataBase::ExperimentType ExperimentType; //Main managed data type (experiment) - typedef LayerData::ExperimentSharedPtrType ExperimentSharedPtrType; + typedef LayerDataBase::ExperimentSharedPtrType ExperimentSharedPtrType; //Main on-disc managed data type (experiment) - typedef LayerData::ODExperimentSharedPtrType ODExperimentSharedPtrType; + typedef LayerDataBase::ODExperimentSharedPtrType ODExperimentSharedPtrType; ///Peak spectrum type typedef ExperimentType::SpectrumType SpectrumType; //@} @@ -215,7 +215,7 @@ namespace OpenMS std::vector& peptides, ExperimentSharedPtrType peak_map, ODExperimentSharedPtrType on_disc_peak_map, - LayerData::DataType data_type, + LayerDataBase::DataType data_type, bool show_as_1d, bool show_options, bool as_new_window = true, @@ -238,13 +238,13 @@ namespace OpenMS void savePreferences(); /// Returns the parameters for a PlotCanvas of dimension @p dim - Param getSpectrumParameters(UInt dim); + Param getCanvasParameters(UInt dim) const; /// Returns the active Layer data (0 if no layer is active) - const LayerData* getCurrentLayer() const; + const LayerDataBase* getCurrentLayer() const; /// Returns the active Layer data (0 if no layer is active) - LayerData* getCurrentLayer(); + LayerDataBase* getCurrentLayer(); //@name Accessors for the main gui components. //@brief The top level enhanced workspace and the EnhancedTabWidgets resing in the EnhancedTabBar. @@ -277,17 +277,17 @@ public slots: /// shows the file dialog for opening files (a starting directory, e.g. for the example files can be provided; otherwise, uses the current_path_) void openFilesByDialog(const String& initial_directory = ""); /// shows the DB dialog for opening files - void showGoToDialog(); + void showGoToDialog() const; /// shows the preferences dialog void preferencesDialog(); /// Shows statistics (count,min,max,avg) about Intensity, Quality, Charge and meta data - void layerStatistics(); + void layerStatistics() const; /// lets the user edit the meta data of a layer void editMetadata(); /// gets called if a layer got activated void layerActivated(); /// gets called when a layer changes in zoom - void layerZoomChanged(); + void layerZoomChanged() const; /// link the zoom of individual windows void linkZoom(); /// gets called if a layer got deactivated @@ -342,29 +342,29 @@ public slots: /// Shows the current peak data of the active layer as DIA data void showCurrentPeaksAsDIA(); /// Saves the whole current layer data - void saveLayerAll(); + void saveLayerAll() const; /// Saves the visible layer data - void saveLayerVisible(); + void saveLayerVisible() const; /// Toggles the grid lines - void toggleGridLines(); + void toggleGridLines() const; /// Toggles the axis legends - void toggleAxisLegends(); + void toggleAxisLegends() const; /// Toggles drawing of interesting MZs - void toggleInterestingMZs(); + void toggleInterestingMZs() const; /// Shows current layer preferences - void showPreferences(); + void showPreferences() const; /// dialog for inspecting database meta data void metadataFileDialog(); /** @name Toolbar slots */ //@{ - void setDrawMode1D(int); + void setDrawMode1D(int) const; void setIntensityMode(int); void changeLayerFlag(bool); void changeLabel(QAction*); void changeUnassigned(QAction*); - void resetZoom(); + void resetZoom() const; void toggleProjections(); //@} @@ -373,10 +373,10 @@ public slots: void openFile(const String& filename); /// Enables/disables the data filters for the current layer - void layerFilterVisibilityChange(bool); + void layerFilterVisibilityChange(bool) const; /// shows a spectrum's metadata with index @p spectrum_index from the currently active canvas - void showSpectrumMetaData(int spectrum_index); + void showSpectrumMetaData(int spectrum_index) const; protected slots: /// slot for the finished signal of the TOPP tools execution @@ -476,6 +476,10 @@ protected slots: /// Main workspace EnhancedWorkspace ws_; // not a pointer, but an actual object, so it gets destroyed before the DefaultParamhandler (on which it depends) + /// LAST active subwindow (~ corresponding to tab) in the MDI container. Since subwindows can lose focus, + /// we want to make sure that things like the ID tables only update when a NEW window is activated. (Actually, + /// we should check for the underlying data but this might be a @todo). + QMdiSubWindow* lastActiveSubwindow_ = nullptr; // due to Qt bugs or confusing features we need to save the current Window id in the children of the workspace; /// Tab bar. The address of the corresponding window to a tab is stored as an int in tabData() EnhancedTabBar tab_bar_; /// manages recent list of filenames and the menu that goes with it diff --git a/src/openms_gui/include/OpenMS/VISUAL/AxisWidget.h b/src/openms_gui/include/OpenMS/VISUAL/AxisWidget.h index 655e536c496..0d0aafd0592 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/AxisWidget.h +++ b/src/openms_gui/include/OpenMS/VISUAL/AxisWidget.h @@ -81,7 +81,7 @@ namespace OpenMS void setMargin(UInt size); /// returns the margin - UInt margin(); + UInt margin() const; /// enable the display of the legend (default true) void showLegend(bool show_legend); @@ -96,19 +96,19 @@ namespace OpenMS const String & getLegend(); /// returns the currently used grid lines - const GridVector & gridLines(); + const GridVector & gridLines() const; /// sets the axis to logarithmic scale void setLogScale(bool is_log); /// returns true if the axis has logarithmic scale - bool isLogScale(); + bool isLogScale() const; /// set true to display the axis label in inverse order (left to right or bottom to top) void setInverseOrientation(bool inverse_orientation); /// returns if the axis label is displayed in inverse order - bool hasInverseOrientation(); + bool hasInverseOrientation() const; /// set true to allow for shortened numbers (with k/M/G units) on the axis label void setAllowShortNumbers(bool short_nums); diff --git a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/FeatureEditDialog.h b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/FeatureEditDialog.h index f4057dca532..23c1843d487 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/FeatureEditDialog.h +++ b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/FeatureEditDialog.h @@ -64,7 +64,7 @@ namespace OpenMS /// Constructor FeatureEditDialog(QWidget * parent); /// Destructor - ~FeatureEditDialog(); + ~FeatureEditDialog() override; /// Sets the feature void setFeature(const Feature & feature); diff --git a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/LayerStatisticsDialog.h b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/LayerStatisticsDialog.h index a5f2548684b..e2d99c15d1a 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/LayerStatisticsDialog.h +++ b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/LayerStatisticsDialog.h @@ -37,13 +37,9 @@ // OpenMS_GUI config #include -#include - #include -#include -#include -#include +#include // for unique_ptr namespace Ui { @@ -52,9 +48,9 @@ namespace Ui namespace OpenMS { + class LayerStatistics; class PlotWidget; class PlotCanvas; - /** @brief Dialog showing statistics about the data of the current layer @@ -66,148 +62,18 @@ namespace OpenMS Q_OBJECT public: - - /// Constructor - LayerStatisticsDialog(PlotWidget * parent); - - ~LayerStatisticsDialog(); - -protected slots: - - /// Shows the distribution according to the clicked button - void showDistribution_(); + /// Constructor not implemented + LayerStatisticsDialog() = delete; + /// Custom constructor + LayerStatisticsDialog(PlotWidget* parent, std::unique_ptr&& stats); + /// D'tor + ~LayerStatisticsDialog() override; protected: - - /** - @brief Struct representing the statistics about one meta information - */ - struct MetaStatsValue_ - { - MetaStatsValue_(unsigned long c = 0, double mi = 0, double ma = 0, double a = 0) - { - count = c; - min = mi; - max = ma; - avg = a; - } - - unsigned long count; - double min, max, avg; - }; - - /// Iterates over peaks of a spectrum - typedef LayerData::ExperimentType::SpectrumType::ConstIterator PeakIterator_; - /// Iterates over features of a feature map - typedef LayerData::FeatureMapType::ConstIterator FeatureIterator_; - /// Iterates over features of a feature map - typedef LayerData::ConsensusMapType::ConstIterator ConsensusIterator_; - /// Iterates over the meta_stats map - typedef std::map::iterator MetaIterator_; - - /// Computes the statistics of a peak layer - void computePeakStats_(); - /// Computes the statistics of a feature layer - void computeFeatureStats_(); - /// Computes the statistics of a consensus feature layer - void computeConsensusStats_(); - /// Computes the statistics of all meta data contained in the FloatDataArray or IntegerDataArray of an MSSpectrum - template - void computeMetaDataArrayStats_(MetaDataIterator begin, MetaDataIterator end); - /// Brings the meta values of one @p meta_interface (a peak or feature) into the statistics - void bringInMetaStats_(const MetaInfoInterface & meta_interface); - /// Computes the averages of all meta values stored in meta_stats and meta_array_stats - void computeMetaAverages_(); - - /// Map containing the statistics about all meta information of the peaks/features in the layer - std::map meta_stats_; - /// Map containing the statistics about the FloatDataArrays of all spectra in this layer - std::map meta_array_stats_; - /// The canvas of the layer - PlotCanvas * canvas_; - /// The LayerData object we compute statistics about - const LayerData& layer_data_; - /// Minimum intensity value - double min_intensity_; - /// Maximum intensity value - double max_intensity_; - /// Average intensity value - double avg_intensity_; - /// Minimum charge value - double min_charge_; - /// Maximum charge value - double max_charge_; - /// Average charge value - double avg_charge_; - /// Minimum quality value - double min_quality_; - /// Maximum quality value - double max_quality_; - /// Average quality value - double avg_quality_; - /// Minimum number of elements (for consensus features only) - double min_elements_; - /// Maximum number of elements (for consensus features only) - double max_elements_; - /// Average number of elements (for consensus features only) - double avg_elements_; + /// The statistics of the layer + std::unique_ptr stats_; private: - ///Not implemented - LayerStatisticsDialog(); - Ui::LayerStatisticsDialogTemplate* ui_; - }; - - template - void LayerStatisticsDialog::computeMetaDataArrayStats_(MetaDataIterator begin, MetaDataIterator end) - { - for (MetaDataIterator meta_array_it = begin; meta_array_it != end; meta_array_it++) - { - String meta_name = meta_array_it->getName(); - MetaStatsValue_ meta_stats_value; - std::map::iterator it = meta_array_stats_.find(meta_name); - if (it != meta_array_stats_.end()) // stats about this meta name already exist -> bring this value in - { - meta_stats_value = it->second; - for (typename MetaDataIterator::value_type::const_iterator value_it = meta_array_it->begin(); value_it != meta_array_it->end(); value_it++) - { - float value = *value_it; - meta_stats_value.count++; - if (value < meta_stats_value.min) - { - meta_stats_value.min = value; - } - else if (value > meta_stats_value.max) - { - meta_stats_value.max = value; - } - meta_stats_value.avg += value; - } - it->second = meta_stats_value; - } - else if (meta_array_it->size() > 0) // meta name has not occurred before, create new stats for it: - { - float init_value = *(meta_array_it->begin()); - meta_stats_value = MetaStatsValue_(0, init_value, init_value, 0); - for (typename MetaDataIterator::value_type::const_iterator value_it = meta_array_it->begin(); value_it != meta_array_it->end(); value_it++) - { - float value = *value_it; - meta_stats_value.count++; - if (value < meta_stats_value.min) - { - meta_stats_value.min = value; - } - else if (value > meta_stats_value.max) - { - meta_stats_value.max = value; - } - meta_stats_value.avg += value; - } - meta_array_stats_.insert(make_pair(meta_name, meta_stats_value)); - } - } - } - } diff --git a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/Plot1DPrefDialog.h b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/Plot1DPrefDialog.h index e445bd02651..8af841bf358 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/Plot1DPrefDialog.h +++ b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/Plot1DPrefDialog.h @@ -57,7 +57,7 @@ namespace OpenMS public: ///Constructor Plot1DPrefDialog(QWidget * parent); - ~Plot1DPrefDialog(); + ~Plot1DPrefDialog() override; private: Ui::Plot1DPrefDialogTemplate* ui_; }; diff --git a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/Plot2DPrefDialog.h b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/Plot2DPrefDialog.h index ce99f73eced..fdf64ba011a 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/Plot2DPrefDialog.h +++ b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/Plot2DPrefDialog.h @@ -57,7 +57,7 @@ namespace OpenMS public: ///Constructor Plot2DPrefDialog(QWidget * parent); - ~Plot2DPrefDialog(); + ~Plot2DPrefDialog() override; private: Ui::Plot2DPrefDialogTemplate* ui_; }; diff --git a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/Plot3DPrefDialog.h b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/Plot3DPrefDialog.h index c44da45508f..3093979c1d8 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/Plot3DPrefDialog.h +++ b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/Plot3DPrefDialog.h @@ -57,7 +57,7 @@ namespace OpenMS public: ///Constructor Plot3DPrefDialog(QWidget * parent); - ~Plot3DPrefDialog(); + ~Plot3DPrefDialog() override; private: Ui::Plot3DPrefDialogTemplate* ui_; }; diff --git a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/PythonModuleRequirement.h b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/PythonModuleRequirement.h index 36af37c2058..c63c0a6b115 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/PythonModuleRequirement.h +++ b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/PythonModuleRequirement.h @@ -67,7 +67,7 @@ namespace OpenMS void setFreeText(const QString& text); /// are all modules present? - bool isReady() { return is_ready_;}; + bool isReady() const { return is_ready_;}; signals: diff --git a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/SpectrumAlignmentDialog.h b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/SpectrumAlignmentDialog.h index f3a4f153b7d..05f069f1eb2 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/SpectrumAlignmentDialog.h +++ b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/SpectrumAlignmentDialog.h @@ -62,7 +62,7 @@ namespace OpenMS /// Constructor SpectrumAlignmentDialog(Plot1DWidget * parent); - ~SpectrumAlignmentDialog(); + ~SpectrumAlignmentDialog() override; double getTolerance() const; bool isPPM() const; diff --git a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPASIOMappingDialog.h b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPASIOMappingDialog.h index 7849f976dbb..e8841f4dde7 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPASIOMappingDialog.h +++ b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPASIOMappingDialog.h @@ -70,7 +70,7 @@ namespace OpenMS /// Constructor TOPPASIOMappingDialog(TOPPASEdge * parent); - ~TOPPASIOMappingDialog(); + ~TOPPASIOMappingDialog() override; public slots: diff --git a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPASInputFilesDialog.h b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPASInputFilesDialog.h index 3cf66cd8a18..e8edc731805 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPASInputFilesDialog.h +++ b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPASInputFilesDialog.h @@ -67,7 +67,7 @@ namespace OpenMS TOPPASInputFilesDialog(QWidget* parent) : TOPPASInputFilesDialog(QStringList(), "", parent) {} TOPPASInputFilesDialog(const QStringList& list, const QString& cwd, QWidget* parent = 0); - ~TOPPASInputFilesDialog(); + ~TOPPASInputFilesDialog() override; void getFilenames(QStringList& files) const; diff --git a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPASOutputFilesDialog.h b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPASOutputFilesDialog.h index c4e84690dd9..19031984a84 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPASOutputFilesDialog.h +++ b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPASOutputFilesDialog.h @@ -63,7 +63,7 @@ namespace OpenMS /// Constructor TOPPASOutputFilesDialog(const QString& dir_name, int num_jobs); - ~TOPPASOutputFilesDialog(); + ~TOPPASOutputFilesDialog() override; /// Returns the name of the directory QString getDirectory() const; diff --git a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPASVertexNameDialog.h b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPASVertexNameDialog.h index d8f7ccd9804..34e2827d7b6 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPASVertexNameDialog.h +++ b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPASVertexNameDialog.h @@ -61,7 +61,7 @@ namespace OpenMS /// Constructor TOPPASVertexNameDialog(const QString& name, const QString& input_regex = QString()); - ~TOPPASVertexNameDialog(); + ~TOPPASVertexNameDialog() override; /// Returns the name QString getName(); diff --git a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPViewPrefDialog.h b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPViewPrefDialog.h index ebac3ca8f82..66d502d3755 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPViewPrefDialog.h +++ b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TOPPViewPrefDialog.h @@ -62,7 +62,7 @@ namespace OpenMS public: TOPPViewPrefDialog(QWidget * parent); - ~TOPPViewPrefDialog(); + ~TOPPViewPrefDialog() override; /// initialize GUI values with these parameters void setParam(const Param& param); @@ -76,6 +76,7 @@ protected slots: private: Ui::TOPPViewPrefDialogTemplate* ui_; mutable Param param_; ///< is updated in getParam() + Param tsg_param_; ///< params for TheoreticalSpectrumGenerator in the TSG tab }; } } diff --git a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TheoreticalSpectrumGenerationDialog.h b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TheoreticalSpectrumGenerationDialog.h index 501c23745a4..e0e08a098cd 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TheoreticalSpectrumGenerationDialog.h +++ b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/TheoreticalSpectrumGenerationDialog.h @@ -63,7 +63,7 @@ namespace OpenMS /// Constructor TheoreticalSpectrumGenerationDialog(); /// Destructor - ~TheoreticalSpectrumGenerationDialog(); + ~TheoreticalSpectrumGenerationDialog() override; String getSequence() const; diff --git a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/ToolsDialog.h b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/ToolsDialog.h index 5024c9674c1..116d269b723 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/ToolsDialog.h +++ b/src/openms_gui/include/OpenMS/VISUAL/DIALOGS/ToolsDialog.h @@ -38,7 +38,7 @@ #include #include -#include +#include class QLabel; class QComboBox; @@ -81,7 +81,7 @@ namespace OpenMS @param layer_type The type of data (determines the applicable tools) @param layer_name The name of the selected layer */ - ToolsDialog(QWidget * parent, const Param& params, String ini_file, String default_dir, LayerData::DataType layer_type, String layer_name); + ToolsDialog(QWidget * parent, const Param& params, String ini_file, String default_dir, LayerDataBase::DataType layer_type, String layer_name); ///Destructor ~ToolsDialog() override; @@ -118,7 +118,7 @@ namespace OpenMS /// name of ini-file QString filename_; /// Mapping of file extension to layer type to determine the type of a tool - std::map tool_map_; + std::map tool_map_; /// Param object containing all TOPP tool/util params Param params_; @@ -127,7 +127,7 @@ namespace OpenMS ///Enables the ok button and input/output comboboxes void enable_(); /// Determine all types a tool is compatible with by mapping each file extensions in a tools param - std::vector getTypesFromParam_(const Param& p) const; + std::vector getTypesFromParam_(const Param& p) const; // Fill input_combo_ and output_combo_ box with the appropriate entries from the specified param object. void setInputOutputCombo_(const Param& p); diff --git a/src/openms_gui/include/OpenMS/VISUAL/DIATreeTab.h b/src/openms_gui/include/OpenMS/VISUAL/DIATreeTab.h index e2c9cd5e73a..d1b803d3652 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/DIATreeTab.h +++ b/src/openms_gui/include/OpenMS/VISUAL/DIATreeTab.h @@ -37,7 +37,7 @@ #include #include -#include +#include class QLineEdit; class QComboBox; @@ -62,14 +62,14 @@ namespace OpenMS /// Constructor DIATreeTab(QWidget* parent = nullptr); /// Destructor - ~DIATreeTab() = default; + ~DIATreeTab() override = default; // docu in base class - bool hasData(const LayerData* layer) override; + bool hasData(const LayerDataBase* layer) override; /// refresh the table using data from @p cl /// @param cl Layer with OSW data; cannot be const, since we might read missing protein data from source on demand - void updateEntries(LayerData* cl) override; + void updateEntries(LayerDataBase* cl) override; /// remove all visible data void clear() override; diff --git a/src/openms_gui/include/OpenMS/VISUAL/DataSelectionTabs.h b/src/openms_gui/include/OpenMS/VISUAL/DataSelectionTabs.h index fcbec247cc9..4e73a993ead 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/DataSelectionTabs.h +++ b/src/openms_gui/include/OpenMS/VISUAL/DataSelectionTabs.h @@ -44,7 +44,7 @@ namespace OpenMS { class DIATreeTab; - class LayerData; + class LayerDataBase; class SpectraTreeTab; class SpectraIDViewTab; class TVDIATreeTabController; @@ -58,11 +58,11 @@ namespace OpenMS public: /// given a layer, determine if the tab could use it to show data (useful to decide if the tab should be enabled/disabled) /// If a nullptr is given, it HAS to return false! - virtual bool hasData(const LayerData* layer) = 0; + virtual bool hasData(const LayerDataBase* layer) = 0; /// populate the tab using date from @p layer /// Should handle nullptr well (by calling clear()) - virtual void updateEntries(LayerData* layer) = 0; + virtual void updateEntries(LayerDataBase* layer) = 0; /// explicitly show no data at all virtual void clear() = 0; @@ -93,7 +93,7 @@ namespace OpenMS /// Tabs which have data to show are automatically enabled. Others are disabled. /// If the currently visible tab would have to data to show, we pick the highest (rightmost) tab /// which has data and show that instead - void update(); + void callUpdateEntries(); /// invoked when user changes the active tab to @p tab_index void currentTabChanged(int tab_index); diff --git a/src/openms_gui/include/OpenMS/VISUAL/EnhancedTabBarWidgetInterface.h b/src/openms_gui/include/OpenMS/VISUAL/EnhancedTabBarWidgetInterface.h index 28342bbcc6f..d4cc140e0d8 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/EnhancedTabBarWidgetInterface.h +++ b/src/openms_gui/include/OpenMS/VISUAL/EnhancedTabBarWidgetInterface.h @@ -94,7 +94,7 @@ namespace OpenMS void addToTabBar(EnhancedTabBar* const parent, const String& caption, const bool make_active_tab = true); /// get the EnhancedTabBar unique window id - Int getWindowId(); + Int getWindowId() const; /// the first object to be created will get this ID static Int getFirstWindowID(); diff --git a/src/openms_gui/include/OpenMS/VISUAL/FilterList.h b/src/openms_gui/include/OpenMS/VISUAL/FilterList.h index 51149795b70..ebfa069868d 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/FilterList.h +++ b/src/openms_gui/include/OpenMS/VISUAL/FilterList.h @@ -64,7 +64,7 @@ namespace OpenMS public: /// C'tor explicit FilterList(QWidget* parent); - ~FilterList(); + ~FilterList() override; public slots: /// provide new filters to the widget diff --git a/src/openms_gui/include/OpenMS/VISUAL/HistogramWidget.h b/src/openms_gui/include/OpenMS/VISUAL/HistogramWidget.h index 9bb729f0d35..254f012191b 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/HistogramWidget.h +++ b/src/openms_gui/include/OpenMS/VISUAL/HistogramWidget.h @@ -75,10 +75,10 @@ namespace OpenMS ~HistogramWidget() override; /// Returns the value f the lower splitter - double getLeftSplitter(); + double getLeftSplitter() const; /// Returns the value of the upper splitter - double getRightSplitter(); + double getRightSplitter() const; /// Set axis legends void setLegend(const String & legend); diff --git a/src/openms_gui/include/OpenMS/VISUAL/INTERFACES/IPeptideIds.h b/src/openms_gui/include/OpenMS/VISUAL/INTERFACES/IPeptideIds.h new file mode 100644 index 00000000000..ee4c2389b83 --- /dev/null +++ b/src/openms_gui/include/OpenMS/VISUAL/INTERFACES/IPeptideIds.h @@ -0,0 +1,60 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Chris Bielow $ +// $Authors: Chris Bielow $ +// -------------------------------------------------------------------------- + +#pragma once + +#include +#include + +namespace OpenMS +{ + + /** + @brief Abstract base class which defines an interface for obtained PeptideIdentifications + */ + class OPENMS_GUI_DLLAPI IPeptideIds + { + public: + using PepIds = std::vector; + + /// get the peptide IDs for this layer + virtual const PepIds& getPeptideIds() const = 0; + virtual PepIds& getPeptideIds() = 0; + + /// overwrite the peptide IDs for this layer + virtual void setPeptideIds(const PepIds& ids) = 0; + virtual void setPeptideIds(PepIds&& ids) = 0; + }; + +}// namespace OpenMS diff --git a/src/openms_gui/include/OpenMS/VISUAL/INTERFACES/sources.cmake b/src/openms_gui/include/OpenMS/VISUAL/INTERFACES/sources.cmake new file mode 100644 index 00000000000..73753748cf3 --- /dev/null +++ b/src/openms_gui/include/OpenMS/VISUAL/INTERFACES/sources.cmake @@ -0,0 +1,22 @@ +### the directory name +set(directory include/OpenMS/VISUAL/INTERFACES) + +### list all header files of the directory here +set(sources_list_h + IPeptideIds.h +) + +### add path to the filenames +set(sources_h) +foreach(i ${sources_list_h}) + list(APPEND sources_h ${directory}/${i}) +endforeach(i) + +### treat as source files, for autoMOC'ing instead of manually calling QT5_WRAP_CPP() +set(OpenMSVisual_sources ${OpenMSVisual_sources} ${sources_h}) +### pass header file list to the upper instance +set(OpenMSVisual_sources_h ${OpenMSVisual_sources_h} ${sources_h}) + +### header group definition for IDE's +source_group("Header Files\\OpenMS\\VISUAL\\INTERFACES" FILES ${sources_h}) + diff --git a/src/openms_gui/include/OpenMS/VISUAL/LayerData.h b/src/openms_gui/include/OpenMS/VISUAL/LayerDataBase.h similarity index 68% rename from src/openms_gui/include/OpenMS/VISUAL/LayerData.h rename to src/openms_gui/include/OpenMS/VISUAL/LayerDataBase.h index eea20eb59f6..9473d2e33d3 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/LayerData.h +++ b/src/openms_gui/include/OpenMS/VISUAL/LayerDataBase.h @@ -39,28 +39,29 @@ #include -#include #include +#include -#include +#include #include +#include +#include #include #include +#include #include #include -#include -#include #include -#include #include +#include class QWidget; namespace OpenMS { - + class LayerStatistics; class OnDiscMSExperiment; class OSWData; @@ -88,38 +89,38 @@ namespace OpenMS available on the next cache update. @note Layer is mainly used as a member variable of PlotCanvas which holds - a vector of LayerData objects. + a vector of LayerDataBase objects. @ingroup PlotWidgets */ - class OPENMS_GUI_DLLAPI LayerData + class OPENMS_GUI_DLLAPI LayerDataBase { -public: + public: /** @name Type definitions */ //@{ /// Dataset types. /// Order in the enum determines the order in which layer types are drawn. enum DataType { - DT_PEAK, ///< Spectrum profile or centroided data - DT_CHROMATOGRAM, ///< Chromatogram data - DT_FEATURE, ///< Feature data - DT_CONSENSUS, ///< Consensus feature data - DT_IDENT, ///< Peptide identification data - DT_UNKNOWN ///< Undefined data type indicating an error + DT_PEAK, ///< Spectrum profile or centroided data + DT_CHROMATOGRAM,///< Chromatogram data + DT_FEATURE, ///< Feature data + DT_CONSENSUS, ///< Consensus feature data + DT_IDENT, ///< Peptide identification data + DT_UNKNOWN ///< Undefined data type indicating an error }; /// Flags that determine which information is shown. enum Flags { - F_HULL, ///< Features: Overall convex hull - F_HULLS, ///< Features: Convex hulls of single mass traces - F_UNASSIGNED, ///< Features: Unassigned peptide hits - P_PRECURSORS, ///< Peaks: Mark precursor peaks of MS/MS scans - P_PROJECTIONS, ///< Peaks: Show projections - C_ELEMENTS, ///< Consensus features: Show elements - I_PEPTIDEMZ, ///< Identifications: m/z source - I_LABELS, ///< Identifications: Show labels (not sequences) + F_HULL, ///< Features: Overall convex hull + F_HULLS, ///< Features: Convex hulls of single mass traces + F_UNASSIGNED, ///< Features: Unassigned peptide hits + P_PRECURSORS, ///< Peaks: Mark precursor peaks of MS/MS scans + P_PROJECTIONS,///< Peaks: Show projections + C_ELEMENTS, ///< Consensus features: Show elements + I_PEPTIDEMZ, ///< Identifications: m/z source + I_LABELS, ///< Identifications: Show labels (not sequences) SIZE_OF_FLAGS }; @@ -129,11 +130,11 @@ namespace OpenMS /// Label used in visualization enum LabelType { - L_NONE, ///< No label is displayed - L_INDEX, ///< The element number is used - L_META_LABEL, ///< The 'label' meta information is used - L_ID, ///< The best peptide hit of the first identification run is used - L_ID_ALL, ///< All peptide hits of the first identification run are used + L_NONE, ///< No label is displayed + L_INDEX, ///< The element number is used + L_META_LABEL,///< The 'label' meta information is used + L_ID, ///< The best peptide hit of the first identification run is used + L_ID_ALL, ///< All peptide hits of the first identification run are used SIZE_OF_LABEL_TYPE }; @@ -144,7 +145,7 @@ namespace OpenMS typedef FeatureMap FeatureMapType; /// SharedPtr on feature map - typedef boost::shared_ptr FeatureMapSharedPtrType; + typedef boost::shared_ptr FeatureMapSharedPtrType; /// consensus features typedef ConsensusMap ConsensusMapType; @@ -169,39 +170,41 @@ namespace OpenMS //@} /// Default constructor - LayerData(); - + LayerDataBase() = delete; + /// Ctor for child classes + LayerDataBase(const DataType type) : type(type) {}; /// no Copy-ctor (should not be needed) - LayerData(const LayerData& ld) = delete; + LayerDataBase(const LayerDataBase& ld) = delete; /// no assignment operator (should not be needed) - LayerData& operator=(const LayerData& ld) = delete; - + LayerDataBase& operator=(const LayerDataBase& ld) = delete; /// move Ctor - LayerData(LayerData&& ld) = default; - + LayerDataBase(LayerDataBase&& ld) = default; /// move assignment - LayerData& operator=(LayerData&& ld) = default; + LayerDataBase& operator=(LayerDataBase&& ld) = default; + /// Dtor + virtual ~LayerDataBase() = default; + /// Returns a const reference to the current feature data - const FeatureMapSharedPtrType & getFeatureMap() const + const FeatureMapSharedPtrType& getFeatureMap() const { return features_; } /// Returns a const reference to the current feature data - FeatureMapSharedPtrType & getFeatureMap() + FeatureMapSharedPtrType& getFeatureMap() { return features_; } /// Returns a const reference to the consensus feature data - const ConsensusMapSharedPtrType & getConsensusMap() const + const ConsensusMapSharedPtrType& getConsensusMap() const { return consensus_map_; } /// Returns current consensus map (mutable) - ConsensusMapSharedPtrType & getConsensusMap() + ConsensusMapSharedPtrType& getConsensusMap() { return consensus_map_; } @@ -226,7 +229,10 @@ namespace OpenMS @note Do *not* use this function to access the current spectrum for the 1D view, use getCurrentSpectrum() instead. */ - const ExperimentSharedPtrType & getPeakDataMuteable() {return peak_map_;} + const ExperimentSharedPtrType& getPeakDataMuteable() + { + return peak_map_; + } /** @brief Set the current in-memory peak data @@ -244,19 +250,19 @@ namespace OpenMS } /// Returns a mutable reference to the on-disc data - const ODExperimentSharedPtrType & getOnDiscPeakData() const + const ODExperimentSharedPtrType& getOnDiscPeakData() const { return on_disc_peaks; } /// Returns a mutable reference to the current chromatogram data - const ExperimentSharedPtrType & getChromatogramData() const + const ExperimentSharedPtrType& getChromatogramData() const { return chromatogram_map_; } /// Returns a mutable reference to the current chromatogram data - ExperimentSharedPtrType & getChromatogramData() + ExperimentSharedPtrType& getChromatogramData() { return chromatogram_map_; } @@ -280,25 +286,25 @@ namespace OpenMS /// Returns a const reference to the annotations of the current spectrum (1D view) - const Annotations1DContainer & getCurrentAnnotations() const + const Annotations1DContainer& getCurrentAnnotations() const { return annotations_1d[current_spectrum_idx_]; } /// Returns a mutable reference to the annotations of the current spectrum (1D view) - Annotations1DContainer & getCurrentAnnotations() + Annotations1DContainer& getCurrentAnnotations() { return annotations_1d[current_spectrum_idx_]; } /// Returns a const reference to the annotations of the current spectrum (1D view) - const Annotations1DContainer & getAnnotations(Size spectrum_index) const + const Annotations1DContainer& getAnnotations(Size spectrum_index) const { return annotations_1d[spectrum_index]; } /// Returns a mutable reference to the annotations of the current spectrum (1D view) - Annotations1DContainer & getAnnotations(Size spectrum_index) + Annotations1DContainer& getAnnotations(Size spectrum_index) { return annotations_1d[spectrum_index]; } @@ -308,7 +314,7 @@ namespace OpenMS @note Only use this function to access the current spectrum for the 1D view */ - const ExperimentType::SpectrumType & getCurrentSpectrum() const; + const ExperimentType::SpectrumType& getCurrentSpectrum() const; void sortCurrentSpectrumByPosition() { @@ -317,7 +323,7 @@ namespace OpenMS /// Returns a const-copy of the required spectrum which is guaranteed to be populated with raw data const ExperimentType::SpectrumType getSpectrum(Size spectrum_idx) const; - + /// Get the index of the current spectrum (1D view) Size getCurrentSpectrumIndex() const { @@ -338,8 +344,9 @@ namespace OpenMS ExperimentSharedPtrType getFullChromData() { ExperimentSharedPtrType exp_sptr(getChromatogramData().get() == nullptr || - getChromatogramData().get()->getNrChromatograms() == 0 - ? getPeakDataMuteable() : getChromatogramData()); + getChromatogramData().get()->getNrChromatograms() == 0 ? + getPeakDataMuteable() : + getChromatogramData()); return exp_sptr; } @@ -399,14 +406,11 @@ namespace OpenMS peak_map_->removeMetaValue("is_chromatogram"); } } - - /** - @brief Update ranges of all data structures - Updates ranges of all tracked data structures - (spectra, chromatograms, features etc). + /** + @brief Update ranges of the underlying data */ - void updateRanges(); + virtual void updateRanges() = 0; /// Returns the minimum intensity of the internal data, depending on type float getMinIntensity() const; @@ -414,6 +418,15 @@ namespace OpenMS /// Returns the maximum intensity of the internal data, depending on type float getMaxIntensity() const; + using RangeAllType = RangeManager; + + /// Returns the data range in all known dimensions. If a layer does not support the dimension (or the layer is empty) + /// the dimension will be empty + virtual RangeAllType getRange() const = 0; + + /// compute layer statistics (via visitor) + virtual std::unique_ptr getStats() const = 0; + /// updates the PeakAnnotations in the current PeptideHit with manually changed annotations /// if no PeptideIdentification or PeptideHit for the spectrum exist, it is generated void synchronizePeakAnnotations(); @@ -422,34 +435,31 @@ namespace OpenMS void removePeakAnnotationsFromPeptideHit(const std::vector& selected_annotations); /// if this layer is visible - bool visible; + bool visible = true; /// if this layer is flipped (1d mirror view) - bool flipped; + bool flipped = false; /// data type (peak or feature data) - DataType type; + DataType type = DT_UNKNOWN; - private: + private: /// layer name String name_; - public: - const String& getName() const - { - return name_; - } - void setName(const String& new_name) - { - name_ = new_name; - } + public: + const String& getName() const + { + return name_; + } + void setName(const String& new_name) + { + name_ = new_name; + } /// file name of the file the data comes from (if available) String filename; - /// peptide identifications - std::vector peptides; - /// Layer parameters Param param; @@ -460,28 +470,28 @@ namespace OpenMS DataFilters filters; /// Annotations of all spectra of the experiment (1D view) - std::vector annotations_1d; + std::vector annotations_1d = std::vector(1); /// Peak colors of the currently shown spectrum std::vector peak_colors_1d; /// Flag that indicates if the layer data can be modified (so far used for features only) - bool modifiable; + bool modifiable = false; /// Flag that indicates that the layer data was modified since loading it - bool modified; + bool modified = false; /// Label type - LabelType label; + LabelType label = L_NONE; /// Selected peptide id and hit index (-1 if none is selected) - int peptide_id_index; - int peptide_hit_index; + int peptide_id_index = -1; + int peptide_hit_index = -1; /// get name augmented with attributes, e.g. [flipped], or '*' if modified String getDecoratedName() const; -private: + protected: /// Update current cached spectrum for easy retrieval void updateCache_(); @@ -489,126 +499,126 @@ namespace OpenMS void updatePeptideHitAnnotations_(PeptideHit& hit); /// feature data - FeatureMapSharedPtrType features_; + FeatureMapSharedPtrType features_ = FeatureMapSharedPtrType(new FeatureMapType()); /// consensus feature data - ConsensusMapSharedPtrType consensus_map_; + ConsensusMapSharedPtrType consensus_map_ = ConsensusMapSharedPtrType(new ConsensusMapType()); /// peak data - ExperimentSharedPtrType peak_map_; + ExperimentSharedPtrType peak_map_ = ExperimentSharedPtrType(new ExperimentType()); /// on disc peak data - ODExperimentSharedPtrType on_disc_peaks; + ODExperimentSharedPtrType on_disc_peaks = ODExperimentSharedPtrType(new OnDiscMSExperiment()); /// chromatogram data - ExperimentSharedPtrType chromatogram_map_; + ExperimentSharedPtrType chromatogram_map_ = ExperimentSharedPtrType(new ExperimentType()); /// Chromatogram annotation data OSWDataSharedPtrType chrom_annotation_; /// Index of the current spectrum - Size current_spectrum_idx_; + Size current_spectrum_idx_ = 0; /// Current cached spectrum ExperimentType::SpectrumType cached_spectrum_; }; /// A base class to annotate layers of specific types with (identification) data - /// @hint Add new derived classes to getAnnotatorWhichSupports() to enable automatic annotation in TOPPView + /// @hint Add new derived classes to getAnnotatorWhichSupports() to enable automatic annotation in TOPPView class LayerAnnotatorBase { - public: - /** + public: + /** @brief C'tor with params @param supported_types Which identification data types are allowed to be opened by the user in annotate() @param file_dialog_text The header text of the file dialog shown to the user @param gui_lock Optional GUI element which will be locked (disabled) during call to 'annotateWorker_'; can be null_ptr **/ - LayerAnnotatorBase(const FileTypes::FileTypeList& supported_types, const String& file_dialog_text, QWidget* gui_lock); - - /// Annotates a @p layer, writing messages to @p log and showing QMessageBoxes on errors. - /// The input file is selected via a file-dialog which is opened with @p current_path as initial path. - /// The filetype is checked to be one of the supported_types_ before the annotateWorker_ function is called - /// as implemented by the derived classes - bool annotateWithFileDialog(LayerData& layer, LogWindow& log, const String& current_path) const; - - /// Annotates a @p layer, given a filename from which to load the data. - /// The filetype is checked to be one of the supported_types_ before the annotateWorker_ function is called - /// as implemented by the derived classes - bool annotateWithFilename(LayerData& layer, LogWindow& log, const String& filename) const; - - /// get a derived annotator class, which supports annotation of the given filetype. - /// If multiple class support this type (currently not the case) an Exception::IllegalSelfOperation will be thrown - /// If NO class supports this type, the unique_ptr points to nothing (.get() == nullptr). - static std::unique_ptr getAnnotatorWhichSupports(const FileTypes::Type& type); - - /// see getAnnotatorWhichSupports(const FileTypes::Type& type). Filetype is queried from filename - static std::unique_ptr getAnnotatorWhichSupports(const String& filename); - - protected: - /// abstract virtual worker function to annotate a layer using content from the @p filename - /// returns true on success - virtual bool annotateWorker_(LayerData& layer, const String& filename, LogWindow& log) const = 0; - - const FileTypes::FileTypeList supported_types_; - const String file_dialog_text_; - QWidget* gui_lock_ = nullptr; ///< optional widget which will be locked when calling annotateWorker_() in child-classes + LayerAnnotatorBase(const FileTypes::FileTypeList& supported_types, const String& file_dialog_text, QWidget* gui_lock); + + /// Annotates a @p layer, writing messages to @p log and showing QMessageBoxes on errors. + /// The input file is selected via a file-dialog which is opened with @p current_path as initial path. + /// The filetype is checked to be one of the supported_types_ before the annotateWorker_ function is called + /// as implemented by the derived classes + bool annotateWithFileDialog(LayerDataBase& layer, LogWindow& log, const String& current_path) const; + + /// Annotates a @p layer, given a filename from which to load the data. + /// The filetype is checked to be one of the supported_types_ before the annotateWorker_ function is called + /// as implemented by the derived classes + bool annotateWithFilename(LayerDataBase& layer, LogWindow& log, const String& filename) const; + + /// get a derived annotator class, which supports annotation of the given filetype. + /// If multiple class support this type (currently not the case) an Exception::IllegalSelfOperation will be thrown + /// If NO class supports this type, the unique_ptr points to nothing (.get() == nullptr). + static std::unique_ptr getAnnotatorWhichSupports(const FileTypes::Type& type); + + /// see getAnnotatorWhichSupports(const FileTypes::Type& type). Filetype is queried from filename + static std::unique_ptr getAnnotatorWhichSupports(const String& filename); + + protected: + /// abstract virtual worker function to annotate a layer using content from the @p filename + /// returns true on success + virtual bool annotateWorker_(LayerDataBase& layer, const String& filename, LogWindow& log) const = 0; + + const FileTypes::FileTypeList supported_types_; + const String file_dialog_text_; + QWidget* gui_lock_ = nullptr;///< optional widget which will be locked when calling annotateWorker_() in child-classes }; /// Annotate a layer with PeptideIdentifications using Layer::annotate(pepIDs, protIDs). /// The ID data is loaded from a file selected by the user via a file-dialog. - class LayerAnnotatorPeptideID - : public LayerAnnotatorBase + class LayerAnnotatorPeptideID : public LayerAnnotatorBase { - public: - LayerAnnotatorPeptideID(QWidget* gui_lock) - : LayerAnnotatorBase(std::vector{ FileTypes::IDXML, FileTypes::MZIDENTML }, - "Select peptide identification data", gui_lock) - {} + public: + LayerAnnotatorPeptideID(QWidget* gui_lock) : + LayerAnnotatorBase(std::vector{FileTypes::IDXML, FileTypes::MZIDENTML}, + "Select peptide identification data", gui_lock) + { + } protected: /// loads the ID data from @p filename and calls Layer::annotate. /// Always returns true (unless an exception is thrown from internal sub-functions) - virtual bool annotateWorker_(LayerData& layer, const String& filename, LogWindow& log) const; + virtual bool annotateWorker_(LayerDataBase& layer, const String& filename, LogWindow& log) const; }; /// Annotate a layer with AccurateMassSearch results (from an AMS-featureXML file). /// The featuremap is loaded from a file selected by the user via a file-dialog. - class LayerAnnotatorAMS - : public LayerAnnotatorBase + class LayerAnnotatorAMS : public LayerAnnotatorBase { public: - LayerAnnotatorAMS(QWidget* gui_lock) - : LayerAnnotatorBase(std::vector{ FileTypes::FEATUREXML }, + LayerAnnotatorAMS(QWidget* gui_lock) : + LayerAnnotatorBase(std::vector{FileTypes::FEATUREXML}, "Select AccurateMassSearch's featureXML file", gui_lock) - {} + { + } protected: /// loads the featuremap from @p filename and calls Layer::annotate. /// Returns false if featureXML file was not created by AMS, and true otherwise (unless an exception is thrown from internal sub-functions) - virtual bool annotateWorker_(LayerData& layer, const String& filename, LogWindow& log) const; + virtual bool annotateWorker_(LayerDataBase& layer, const String& filename, LogWindow& log) const; }; - + /// Annotate a chromatogram layer with ID data (from an OSW sqlite file as produced by OpenSwathWorkflow or pyProphet). /// The OSWData is loaded from a file selected by the user via a file-dialog. - class LayerAnnotatorOSW - : public LayerAnnotatorBase + class LayerAnnotatorOSW : public LayerAnnotatorBase { public: - LayerAnnotatorOSW(QWidget* gui_lock) - : LayerAnnotatorBase(std::vector{ FileTypes::OSW }, + LayerAnnotatorOSW(QWidget* gui_lock) : + LayerAnnotatorBase(std::vector{FileTypes::OSW}, "Select OpenSwath/pyProphet output file", gui_lock) - {} + { + } protected: /// loads the OSWData from @p filename and stores the data using Layer::setChromatogramAnnotation() /// Always returns true (unless an exception is thrown from internal sub-functions) - virtual bool annotateWorker_(LayerData& layer, const String& filename, LogWindow& log) const; + virtual bool annotateWorker_(LayerDataBase& layer, const String& filename, LogWindow& log) const; }; /// Print the contents to a stream. - OPENMS_GUI_DLLAPI std::ostream& operator<<(std::ostream & os, const LayerData & rhs); + OPENMS_GUI_DLLAPI std::ostream& operator<<(std::ostream& os, const LayerDataBase& rhs); -} //namespace +}// namespace OpenMS diff --git a/src/openms_gui/include/OpenMS/VISUAL/LayerDataChrom.h b/src/openms_gui/include/OpenMS/VISUAL/LayerDataChrom.h new file mode 100644 index 00000000000..88b0f24b6a0 --- /dev/null +++ b/src/openms_gui/include/OpenMS/VISUAL/LayerDataChrom.h @@ -0,0 +1,82 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Chris Bielow $ +// $Authors: Chris Bielow $ +// -------------------------------------------------------------------------- + +#pragma once + +#include + +namespace OpenMS +{ + + /** + @brief Class that stores the data for one layer of type Chromatogram + + @ingroup PlotWidgets + */ + class OPENMS_GUI_DLLAPI LayerDataChrom : public LayerDataBase + { +public: + /// Default constructor + LayerDataChrom() : + LayerDataBase(LayerDataBase::DT_CHROMATOGRAM) {}; + /// no Copy-ctor (should not be needed) + LayerDataChrom(const LayerDataChrom& ld) = delete; + /// no assignment operator (should not be needed) + LayerDataChrom& operator=(const LayerDataChrom& ld) = delete; + /// move Ctor + LayerDataChrom(LayerDataChrom&& ld) = default; + /// move assignment + LayerDataChrom& operator=(LayerDataChrom&& ld) = default; + + void updateRanges() override + { + peak_map_->updateRanges(); + // on_disc_peaks->updateRanges(); // note: this is not going to work since its on disk! We currently don't have a good way to access these ranges + chromatogram_map_->updateRanges(); + cached_spectrum_.updateRanges(); + } + + RangeAllType getRange() const override + { + RangeAllType r; + r.assign(*getPeakData()); + return r; + } + + std::unique_ptr getStats() const override; + + }; + +} //namespace + diff --git a/src/openms_gui/include/OpenMS/VISUAL/LayerDataConsensus.h b/src/openms_gui/include/OpenMS/VISUAL/LayerDataConsensus.h new file mode 100644 index 00000000000..21cb48c3fa8 --- /dev/null +++ b/src/openms_gui/include/OpenMS/VISUAL/LayerDataConsensus.h @@ -0,0 +1,76 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Chris Bielow $ +// $Authors: Chris Bielow $ +// -------------------------------------------------------------------------- + +#pragma once + +#include + +namespace OpenMS +{ + + /** + @brief Class that stores the data for one layer of type ConsensusMap + + @ingroup PlotWidgets + */ + class OPENMS_GUI_DLLAPI LayerDataConsensus : public LayerDataBase + { + public: + /// Default constructor + LayerDataConsensus(ConsensusMapSharedPtrType& map); + /// no Copy-ctor (should not be needed) + LayerDataConsensus(const LayerDataConsensus& ld) = delete; + /// no assignment operator (should not be needed) + LayerDataConsensus& operator=(const LayerDataConsensus& ld) = delete; + /// move Ctor + LayerDataConsensus(LayerDataConsensus&& ld) = default; + /// move assignment + LayerDataConsensus& operator=(LayerDataConsensus&& ld) = default; + + void updateRanges() override + { + consensus_map_->updateRanges(); + } + + RangeAllType getRange() const override + { + RangeAllType r; + r.assign(*getConsensusMap()); + return r; + } + + std::unique_ptr getStats() const override; + }; + +}// namespace OpenMS diff --git a/src/openms_gui/include/OpenMS/VISUAL/LayerDataFeature.h b/src/openms_gui/include/OpenMS/VISUAL/LayerDataFeature.h new file mode 100644 index 00000000000..37cb818213e --- /dev/null +++ b/src/openms_gui/include/OpenMS/VISUAL/LayerDataFeature.h @@ -0,0 +1,95 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Chris Bielow $ +// $Authors: Chris Bielow $ +// -------------------------------------------------------------------------- + +#pragma once + +#include +#include + +namespace OpenMS +{ + + /** + @brief Class that stores the data for one layer of type FeatureMap + + @ingroup PlotWidgets + */ + class OPENMS_GUI_DLLAPI LayerDataFeature : public LayerDataBase, public IPeptideIds + { + public: + /// Default constructor + LayerDataFeature(); + /// no Copy-ctor (should not be needed) + LayerDataFeature(const LayerDataFeature& ld) = delete; + /// no assignment operator (should not be needed) + LayerDataFeature& operator=(const LayerDataFeature& ld) = delete; + /// move Ctor + LayerDataFeature(LayerDataFeature&& ld) = default; + /// move assignment + LayerDataFeature& operator=(LayerDataFeature&& ld) = default; + + void updateRanges() override + { + features_->updateRanges(); + } + + RangeAllType getRange() const override + { + RangeAllType r; + r.assign(*getFeatureMap()); + return r; + } + + std::unique_ptr getStats() const override; + + const PepIds& getPeptideIds() const override + { + return getFeatureMap()->getUnassignedPeptideIdentifications(); + } + PepIds& getPeptideIds() override + { + return getFeatureMap()->getUnassignedPeptideIdentifications(); + } + + void setPeptideIds(const PepIds& ids) override + { + getFeatureMap()->getUnassignedPeptideIdentifications() = ids; + } + void setPeptideIds(PepIds&& ids) override + { + getFeatureMap()->getUnassignedPeptideIdentifications() = std::move(ids); + } + }; + +}// namespace OpenMS diff --git a/src/openms_gui/include/OpenMS/VISUAL/LayerDataIdent.h b/src/openms_gui/include/OpenMS/VISUAL/LayerDataIdent.h new file mode 100644 index 00000000000..b53636de254 --- /dev/null +++ b/src/openms_gui/include/OpenMS/VISUAL/LayerDataIdent.h @@ -0,0 +1,104 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Chris Bielow $ +// $Authors: Chris Bielow $ +// -------------------------------------------------------------------------- + +#pragma once + +#include +#include + +namespace OpenMS +{ + + /** + @brief Class that stores the data for one layer of type PeptideIdentifications + + @ingroup PlotWidgets + */ + class OPENMS_GUI_DLLAPI LayerDataIdent : public LayerDataBase, public IPeptideIds + { + public: + /// Default constructor + LayerDataIdent() : + LayerDataBase(LayerDataBase::DT_IDENT){}; + /// no Copy-ctor (should not be needed) + LayerDataIdent(const LayerDataIdent& ld) = delete; + /// no assignment operator (should not be needed) + LayerDataIdent& operator=(const LayerDataIdent& ld) = delete; + /// move Ctor + LayerDataIdent(LayerDataIdent&& ld) = default; + /// move assignment + LayerDataIdent& operator=(LayerDataIdent&& ld) = default; + + void updateRanges() override + { + // nothing to do... + } + + RangeAllType getRange() const override + { + RangeAllType r; + for (const PeptideIdentification& pep : peptides_) + { + r.extendRT(pep.getRT()); + r.extendMZ(pep.getMZ()); + } + return r; + } + + std::unique_ptr getStats() const override; + + virtual const PepIds& getPeptideIds() const override + { + return peptides_; + } + virtual PepIds& getPeptideIds() override + { + return peptides_; + } + + virtual void setPeptideIds(const PepIds& ids) override + { + peptides_ = ids; + } + virtual void setPeptideIds(PepIds&& ids) override + { + peptides_ = std::move(ids); + } + + private: + /// peptide identifications + std::vector peptides_; + }; + +}// namespace OpenMS diff --git a/src/openms_gui/include/OpenMS/VISUAL/LayerDataPeak.h b/src/openms_gui/include/OpenMS/VISUAL/LayerDataPeak.h new file mode 100644 index 00000000000..5cc45d07856 --- /dev/null +++ b/src/openms_gui/include/OpenMS/VISUAL/LayerDataPeak.h @@ -0,0 +1,78 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Chris Bielow $ +// $Authors: Chris Bielow $ +// -------------------------------------------------------------------------- + +#pragma once + +#include + +namespace OpenMS +{ + + /** + @brief Class that stores the data for one layer of type PeakMap + + @ingroup PlotWidgets + */ + class OPENMS_GUI_DLLAPI LayerDataPeak : public LayerDataBase + { + public: + /// Default constructor + LayerDataPeak(); + /// no Copy-ctor (should not be needed) + LayerDataPeak(const LayerDataPeak& ld) = delete; + /// no assignment operator (should not be needed) + LayerDataPeak& operator=(const LayerDataPeak& ld) = delete; + /// move Ctor + LayerDataPeak(LayerDataPeak&& ld) = default; + /// move assignment + LayerDataPeak& operator=(LayerDataPeak&& ld) = default; + + void updateRanges() override + { + peak_map_->updateRanges(); + // on_disc_peaks->updateRanges(); // note: this is not going to work since its on disk! We currently don't have a good way to access these ranges + cached_spectrum_.updateRanges(); + } + + RangeAllType getRange() const override + { + RangeAllType r; + r.assign(*peak_map_); + return r; + } + + std::unique_ptr getStats() const override; + }; + +}// namespace OpenMS diff --git a/src/openms_gui/include/OpenMS/VISUAL/MetaDataBrowser.h b/src/openms_gui/include/OpenMS/VISUAL/MetaDataBrowser.h index 5772b9af049..044453e63af 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/MetaDataBrowser.h +++ b/src/openms_gui/include/OpenMS/VISUAL/MetaDataBrowser.h @@ -185,7 +185,7 @@ namespace OpenMS } /// Check if mode is editable or not - bool isEditable(); + bool isEditable() const; /// Defines friend classes that can use the functionality of the subclasses. friend class ProteinIdentificationVisualizer; diff --git a/src/openms_gui/include/OpenMS/VISUAL/ParamEditor.h b/src/openms_gui/include/OpenMS/VISUAL/ParamEditor.h index b7d04b8dc3c..6023c44b2f0 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/ParamEditor.h +++ b/src/openms_gui/include/OpenMS/VISUAL/ParamEditor.h @@ -192,7 +192,7 @@ protected slots: /// constructor ParamEditor(QWidget* parent = nullptr); /// destructor - virtual ~ParamEditor(); + ~ParamEditor() override; /// load method for Param object void load(Param& param); diff --git a/src/openms_gui/include/OpenMS/VISUAL/Plot1DCanvas.h b/src/openms_gui/include/OpenMS/VISUAL/Plot1DCanvas.h index c275a8f6c7b..106e3ec95f5 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/Plot1DCanvas.h +++ b/src/openms_gui/include/OpenMS/VISUAL/Plot1DCanvas.h @@ -132,7 +132,7 @@ namespace OpenMS void flipLayer(Size index); /// Returns whether this widget is currently in mirror mode - bool mirrorModeActive(); + bool mirrorModeActive() const; /// Sets whether this widget is currently in mirror mode void setMirrorModeActive(bool b); @@ -175,7 +175,7 @@ namespace OpenMS Size getAlignmentSize(); /// Returns the score of the alignment - double getAlignmentScore(); + double getAlignmentScore() const; /// Returns aligned_peaks_indices_ std::vector > getAlignedPeaksIndices(); @@ -324,7 +324,7 @@ protected slots: /// Shows dialog and calls addLabelAnnotation_ void addUserLabelAnnotation_(const QPoint& screen_position); /// Adds an annotation item at the given screen position - void addLabelAnnotation_(const QPoint& screen_position, QString label_text); + void addLabelAnnotation_(const QPoint& screen_position, const QString& label_text); /// Shows dialog and calls addPeakAnnotation_ void addUserPeakAnnotation_(PeakIndex near_peak); diff --git a/src/openms_gui/include/OpenMS/VISUAL/Plot1DWidget.h b/src/openms_gui/include/OpenMS/VISUAL/Plot1DWidget.h index c7c9658399f..88447d4a74d 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/Plot1DWidget.h +++ b/src/openms_gui/include/OpenMS/VISUAL/Plot1DWidget.h @@ -121,10 +121,6 @@ public slots: void showGoToDialog() override; protected: - // Docu in base class - Math::Histogram<> createIntensityDistribution_() const override; - // Docu in base class - Math::Histogram<> createMetaDistribution_(const String & name) const override; // Docu in base class void recalculateAxes_() override; diff --git a/src/openms_gui/include/OpenMS/VISUAL/Plot2DWidget.h b/src/openms_gui/include/OpenMS/VISUAL/Plot2DWidget.h index 50f3dd5701f..b3c2477536d 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/Plot2DWidget.h +++ b/src/openms_gui/include/OpenMS/VISUAL/Plot2DWidget.h @@ -66,7 +66,7 @@ namespace OpenMS Q_OBJECT public: /// Main managed data type (experiment) - typedef LayerData::ExperimentSharedPtrType ExperimentSharedPtrType; + typedef LayerDataBase::ExperimentSharedPtrType ExperimentSharedPtrType; /// Default constructor Plot2DWidget(const Param & preferences, QWidget * parent = nullptr); @@ -112,11 +112,6 @@ public slots: void showCurrentPeaksAs3D(); protected: - // Docu in base class - Math::Histogram<> createIntensityDistribution_() const override; - // Docu in base class - Math::Histogram<> createMetaDistribution_(const String & name) const override; - /// Vertical projection widget Plot1DWidget * projection_vert_; /// Horizontal projection widget diff --git a/src/openms_gui/include/OpenMS/VISUAL/Plot3DCanvas.h b/src/openms_gui/include/OpenMS/VISUAL/Plot3DCanvas.h index 4bf2a2b6d89..3fbb171825e 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/Plot3DCanvas.h +++ b/src/openms_gui/include/OpenMS/VISUAL/Plot3DCanvas.h @@ -85,7 +85,7 @@ namespace OpenMS }; ///returns the Plot3DOpenGLcanvas - Plot3DOpenGLCanvas * openglwidget(); + Plot3DOpenGLCanvas * openglwidget() const; ///@name Reimplemented Qt events //@{ diff --git a/src/openms_gui/include/OpenMS/VISUAL/Plot3DOpenGLCanvas.h b/src/openms_gui/include/OpenMS/VISUAL/Plot3DOpenGLCanvas.h index c6688da372b..11ad77bc022 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/Plot3DOpenGLCanvas.h +++ b/src/openms_gui/include/OpenMS/VISUAL/Plot3DOpenGLCanvas.h @@ -46,7 +46,7 @@ namespace OpenMS { class Plot3DCanvas; - class LayerData; + class LayerDataBase; /** @brief OpenGL Canvas for 3D-visualization of map data @@ -81,7 +81,7 @@ namespace OpenMS Destroys the OpenGLWidget and all associated data. */ - virtual ~Plot3DOpenGLCanvas(); + ~Plot3DOpenGLCanvas() override; ///virtual function provided from QGLWidget void initializeGL() override; @@ -148,7 +148,7 @@ namespace OpenMS double scaledIntensity_(float intensity, Size layer_index); /// recalculates the dot gradient interpolation values. - void recalculateDotGradient_(LayerData& layer); + void recalculateDotGradient_(LayerDataBase& layer); ///calculate the ticks for the gridlines void calculateGridLines_(); diff --git a/src/openms_gui/include/OpenMS/VISUAL/Plot3DWidget.h b/src/openms_gui/include/OpenMS/VISUAL/Plot3DWidget.h index 2763a96836f..4856a507ff1 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/Plot3DWidget.h +++ b/src/openms_gui/include/OpenMS/VISUAL/Plot3DWidget.h @@ -70,10 +70,6 @@ namespace OpenMS // Docu in base class void recalculateAxes_() override; - // Docu in base class - Math::Histogram<> createIntensityDistribution_() const override; - // Docu in base class - Math::Histogram<> createMetaDistribution_(const String & name) const override; //docu in base class bool isLegendShown() const override; diff --git a/src/openms_gui/include/OpenMS/VISUAL/PlotCanvas.h b/src/openms_gui/include/OpenMS/VISUAL/PlotCanvas.h index 467fb1ffcfa..15849e7d4f4 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/PlotCanvas.h +++ b/src/openms_gui/include/OpenMS/VISUAL/PlotCanvas.h @@ -41,7 +41,7 @@ #include #include #include -#include +#include #include //QT @@ -62,25 +62,27 @@ namespace OpenMS { class PlotWidget; + using LayerDataBaseUPtr = std::unique_ptr; /** A class to manage a stack of layers as shown in the layer widget in TOPPView. - The order of layers is automatically determined based on LayerData::type (in short: peak data below, ID data on top). + The order of layers is automatically determined based on LayerDataBase::type (in short: peak data below, ID data on top). */ class LayerStack { public: /// adds a new layer and makes it the current layer - void addLayer(LayerData&& new_layer); + /// @param new_layer Takes ownership of the layer! + void addLayer(LayerDataBaseUPtr new_layer); - const LayerData& getLayer(const Size index) const; + const LayerDataBase& getLayer(const Size index) const; - LayerData& getLayer(const Size index); + LayerDataBase& getLayer(const Size index); - const LayerData& getCurrentLayer() const; + const LayerDataBase& getCurrentLayer() const; - LayerData& getCurrentLayer(); + LayerDataBase& getCurrentLayer(); /// throws Exception::IndexOverflow unless @p index is smaller than getLayerCount() void setCurrentLayer(Size index); @@ -96,7 +98,7 @@ namespace OpenMS void removeCurrentLayer(); protected: - std::vector layers_; + std::vector layers_; private: Size current_layer_ = -1; }; @@ -113,7 +115,7 @@ namespace OpenMS derived from PlotCanvas. A spectrum canvas can display multiple data layers at the same time (see layers_ member variable). - The actual data to be displayed is stored as a vector of LayerData + The actual data to be displayed is stored as a vector of LayerDataBase objects which hold the actual data. It also stores information about the commonly used constants such as ActionModes or IntensityModes. @@ -141,20 +143,20 @@ namespace OpenMS //@{ /// Main data type (experiment) - typedef LayerData::ExperimentType ExperimentType; + typedef LayerDataBase::ExperimentType ExperimentType; /// Main managed data type (experiment) - typedef LayerData::ExperimentSharedPtrType ExperimentSharedPtrType; - typedef LayerData::ConstExperimentSharedPtrType ConstExperimentSharedPtrType; - typedef LayerData::ODExperimentSharedPtrType ODExperimentSharedPtrType; - typedef LayerData::OSWDataSharedPtrType OSWDataSharedPtrType; + typedef LayerDataBase::ExperimentSharedPtrType ExperimentSharedPtrType; + typedef LayerDataBase::ConstExperimentSharedPtrType ConstExperimentSharedPtrType; + typedef LayerDataBase::ODExperimentSharedPtrType ODExperimentSharedPtrType; + typedef LayerDataBase::OSWDataSharedPtrType OSWDataSharedPtrType; /// Main data type (features) - typedef LayerData::FeatureMapType FeatureMapType; + typedef LayerDataBase::FeatureMapType FeatureMapType; /// Main managed data type (features) - typedef LayerData::FeatureMapSharedPtrType FeatureMapSharedPtrType; + typedef LayerDataBase::FeatureMapSharedPtrType FeatureMapSharedPtrType; /// Main data type (consensus features) - typedef LayerData::ConsensusMapType ConsensusMapType; + typedef LayerDataBase::ConsensusMapType ConsensusMapType; /// Main managed data type (consensus features) - typedef LayerData::ConsensusMapSharedPtrType ConsensusMapSharedPtrType; + typedef LayerDataBase::ConsensusMapSharedPtrType ConsensusMapSharedPtrType; /// Spectrum type typedef ExperimentType::SpectrumType SpectrumType; @@ -162,14 +164,13 @@ namespace OpenMS typedef SpectrumType::ConstIterator SpectrumConstIteratorType; /// Peak type typedef SpectrumType::PeakType PeakType; - /// Feature type - typedef FeatureMapType::FeatureType FeatureType; ///Type of the Points typedef DPosition<2> PointType; ///Types of Ranges/Areas typedef DRange<2> AreaType; + using RangeType = RangeManager; /// Mouse action modes enum ActionModes @@ -268,23 +269,23 @@ namespace OpenMS } /// returns the layer data with index @p index - inline const LayerData& getLayer(Size index) const + inline const LayerDataBase& getLayer(Size index) const { return layers_.getLayer(index); } /// returns the layer data with index @p index - inline LayerData& getLayer(Size index) + inline LayerDataBase& getLayer(Size index) { return layers_.getLayer(index); } /// returns the layer data of the active layer - inline const LayerData& getCurrentLayer() const + inline const LayerDataBase& getCurrentLayer() const { return layers_.getCurrentLayer(); } /// returns the layer data of the active layer - inline LayerData& getCurrentLayer() + inline LayerDataBase& getCurrentLayer() { return layers_.getCurrentLayer(); } @@ -296,25 +297,25 @@ namespace OpenMS } /// returns a layer flag of the current layer - bool getLayerFlag(LayerData::Flags f) const + bool getLayerFlag(LayerDataBase::Flags f) const { return getLayerFlag(layers_.getCurrentLayerIndex(), f); } /// sets a layer flag of the current layer - void setLayerFlag(LayerData::Flags f, bool value) + void setLayerFlag(LayerDataBase::Flags f, bool value) { setLayerFlag(layers_.getCurrentLayerIndex(), f, value); } /// returns a layer flag of the layer @p layer - bool getLayerFlag(Size layer, LayerData::Flags f) const + bool getLayerFlag(Size layer, LayerDataBase::Flags f) const { return layers_.getLayer(layer).flags.test(f); } /// sets a layer flag of the layer @p layer - void setLayerFlag(Size layer, LayerData::Flags f, bool value) + void setLayerFlag(Size layer, LayerDataBase::Flags f, bool value) { //abort if there are no layers if (layers_.empty()) return; @@ -324,7 +325,7 @@ namespace OpenMS update(); } - inline void setLabel(LayerData::LabelType label) + inline void setLabel(LayerDataBase::LabelType label) { //abort if there are no layers if (layers_.empty()) return; @@ -349,7 +350,7 @@ namespace OpenMS virtual void setFilters(const DataFilters & filters); /// Returns the mapping of m/z to axes - inline bool isMzToXAxis() + inline bool isMzToXAxis() const { return mz_to_x_axis_; } @@ -482,7 +483,7 @@ namespace OpenMS double getSnapFactor(); /// Returns the percentage factor - double getPercentageFactor(); + double getPercentageFactor() const; /// Shows the preferences dialog of the active layer virtual void showCurrentLayerPreferences() = 0; @@ -543,7 +544,7 @@ public slots: Sets the visible area to a new value. Note that it does not emit visibleAreaChanged() @param area the new visible area */ - void setVisibleArea(AreaType area); + void setVisibleArea(const AreaType& area); /** @brief Notifies the canvas that the horizontal scrollbar has been moved. @@ -841,16 +842,16 @@ protected slots: QImage buffer_; /// Stores the current action mode (Pick, Zoom, Translate) - ActionModes action_mode_; + ActionModes action_mode_ = AM_TRANSLATE; /// Stores the used intensity mode function - IntensityModes intensity_mode_; + IntensityModes intensity_mode_ = IM_NONE; /// Layer data LayerStack layers_; /// Stores the mapping of m/z - bool mz_to_x_axis_; + bool mz_to_x_axis_ = true; /** @brief Stores the currently visible area. @@ -858,7 +859,7 @@ protected slots: Dimension 0 is the m/z dimension.@n Dimension 1 is the RT dimension (2D and 3D view) or the intensity dimension (1D view). */ - AreaType visible_area_; + AreaType visible_area_ = AreaType::empty; /** @brief Recalculates the overall_data_range_ @@ -878,15 +879,15 @@ protected slots: Dimension 1 is the RT dimension (2D and 3D view) or the intensity dimension (1D view).@n Dimension 2 is the intensity dimension (2D and 3D view) or the RT dimension (1D view). */ - DRange<3> overall_data_range_; + DRange<3> overall_data_range_ = DRange<3>::empty; /// Stores whether or not to show a grid. - bool show_grid_; + bool show_grid_ = true; /// The zoom stack. std::vector zoom_stack_; /// The current position in the zoom stack - std::vector::iterator zoom_pos_; + std::vector::iterator zoom_pos_ = zoom_stack_.end(); /** @brief Updates the displayed data @@ -903,10 +904,10 @@ protected slots: void modificationStatus_(Size layer_index, bool modified); /// Whether to recalculate the data in the buffer when repainting - bool update_buffer_; + bool update_buffer_ = false; /// Back-pointer to the enclosing spectrum widget - PlotWidget * spectrum_widget_; + PlotWidget* spectrum_widget_ = nullptr; /// start position of mouse actions QPoint last_mouse_pos_; @@ -916,7 +917,7 @@ protected slots: In this mode all layers are scaled to the same maximum. */ - double percentage_factor_; + double percentage_factor_ = 1.0; /** @brief Intensity scaling factor for 'snap to maximum intensity mode'. @@ -925,16 +926,16 @@ protected slots: One entry per layer. */ - std::vector snap_factors_; + std::vector snap_factors_ = {1.0}; /// Rubber band for selected area QRubberBand rubber_band_; /// External context menu extension - QMenu* context_add_; + QMenu* context_add_ = nullptr; /// Flag that determines if timing data is printed to the command line - bool show_timing_; + bool show_timing_ = false; /// selected peak PeakIndex selected_peak_; @@ -965,4 +966,3 @@ protected slots: }; } - diff --git a/src/openms_gui/include/OpenMS/VISUAL/PlotWidget.h b/src/openms_gui/include/OpenMS/VISUAL/PlotWidget.h index d5b5a23b665..c9029fd9501 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/PlotWidget.h +++ b/src/openms_gui/include/OpenMS/VISUAL/PlotWidget.h @@ -94,9 +94,9 @@ namespace OpenMS //@{ /// Main data type (experiment) - typedef LayerData::ExperimentType ExperimentType; + typedef LayerDataBase::ExperimentType ExperimentType; /// Main data type (features) - typedef LayerData::FeatureMapType FeatureMapType; + typedef LayerDataBase::FeatureMapType FeatureMapType; /// Spectrum type typedef ExperimentType::SpectrumType SpectrumType; //@} @@ -168,9 +168,9 @@ public slots: /// Shows statistics about the data (count, min, max, avg of intensity, charge, quality and meta data) void showStatistics(); /// Shows the intensity distribution of the current layer - void showIntensityDistribution(); + void showIntensityDistribution(const Math::Histogram<>& dist); /// Shows the meta data distribution of value @p name of the current layer - void showMetaDistribution(const String & name); + void showMetaDistribution(const String& name, const Math::Histogram<>& dist); /// Updates the axes by setting the right labels and calling recalculateAxes_(); void updateAxes(); /** @@ -211,10 +211,6 @@ public slots: void setCanvas_(PlotCanvas * canvas, UInt row = 0, UInt col = 2); /// Switch between different intensity modes virtual void intensityModeChange_(); - /// creates the intensity distribution of the current layer - virtual Math::Histogram<> createIntensityDistribution_() const = 0; - /// creates the meta data distribution of value @p name of the current layer - virtual Math::Histogram<> createMetaDistribution_(const String & name) const = 0; /// recalculates the Axis ticks virtual void recalculateAxes_() = 0; /// correct given area X/Y-values if the values under-/overflow the min-/max values of the data diff --git a/src/openms_gui/include/OpenMS/VISUAL/SequenceVisualizer.h b/src/openms_gui/include/OpenMS/VISUAL/SequenceVisualizer.h new file mode 100644 index 00000000000..6ad49fc5549 --- /dev/null +++ b/src/openms_gui/include/OpenMS/VISUAL/SequenceVisualizer.h @@ -0,0 +1,91 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Julianus Pfeuffer $ +// $Authors: Dhanmoni Nath, Julianus Pfeuffer $ +// -------------------------------------------------------------------------- + +#ifdef QT_WEBENGINEWIDGETS_LIB +#pragma once + +// OpenMS_GUI config +#include + +#include +#include + +class QWebEngineView; +class QWebChannel; + +namespace Ui +{ + class SequenceVisualizer; +} + +namespace OpenMS +{ + class OPENMS_GUI_DLLAPI Backend : public QObject + { + Q_OBJECT + + // We can access the protein and peptide data using SequenceVisualizer.json_data_obj inside JS/HTML resource file + Q_PROPERTY(QJsonObject json_data_obj MEMBER m_json_data_obj_ NOTIFY dataChanged_) + signals: + void dataChanged_(); + + public: + QJsonObject m_json_data_obj_; + }; + + class OPENMS_GUI_DLLAPI SequenceVisualizer : public QWidget + { + Q_OBJECT + + public: + explicit SequenceVisualizer(QWidget* parent = nullptr); + ~SequenceVisualizer() override; + + + public slots: + // this method sets protein and peptide data to m_json_data_obj_. + void setProteinPeptideDataToJsonObj( + const QString& accession_num, + const QString& pro_seq, + const QJsonArray& peptides_data); + + private: + + Ui::SequenceVisualizer* ui_; + Backend backend_; + QWebEngineView* view_; + QWebChannel* channel_; + }; +}// namespace OpenMS +#endif \ No newline at end of file diff --git a/src/openms_gui/include/OpenMS/VISUAL/SpectraIDViewTab.h b/src/openms_gui/include/OpenMS/VISUAL/SpectraIDViewTab.h index 83a01ed33bc..ed2c5be47ef 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/SpectraIDViewTab.h +++ b/src/openms_gui/include/OpenMS/VISUAL/SpectraIDViewTab.h @@ -35,7 +35,7 @@ #pragma once #include -#include +#include #include #include @@ -44,6 +44,10 @@ #include #include #include +#include + +#include +#include namespace OpenMS { @@ -65,12 +69,12 @@ namespace OpenMS ~SpectraIDViewTab() override = default; // docu in base class - bool hasData(const LayerData* layer) override; + bool hasData(const LayerDataBase* layer) override; /// set layer data and create table anew; if given a nullptr, behaves as clear() - void updateEntries(LayerData* model) override; + void updateEntries(LayerDataBase* model) override; /// get layer data - LayerData* getLayer(); + LayerDataBase* getLayer(); /// clears all visible data from table widget and voids the layer void clear() override; @@ -81,6 +85,10 @@ namespace OpenMS protected slots: /// Rebuild table entries void updateEntries_(); + /// Rebuild protein table entries + void updateProteinEntries_(int spec_cell_row_idx); + /// Switch horizontal or vertical layout of the PSM and Proteintable + void switchOrientation_(); signals: /// request to show a specific spectrum, and (if available) a specific pepId + pepHit in there (otherwise -1, -1) void spectrumSelected(int spectrum_index, int pep_id_index, int pep_hit_index); @@ -90,16 +98,30 @@ namespace OpenMS void requestVisibleArea1D(double lower_mz, double upper_mz); private: - /// partially fill the bottom-most row - void fillRow_(const MSSpectrum& spectrum, const int spec_index, const QColor background_color); + /// partially fill the bottom-most row + void fillRow_(const MSSpectrum& spectrum, const int spec_index, const QColor& background_color); + /// extract the required part of the accession + static QString extractNumFromAccession_(const QString& listItem); + /// open browser to navigate to uniport site with accession + void openUniProtSiteWithAccession_(const QString& accession); + + class SelfResizingTableView_ : TableView + { + void resizeEvent(QResizeEvent * event) override; + }; - LayerData* layer_ = nullptr; + LayerDataBase* layer_ = nullptr; QCheckBox* hide_no_identification_ = nullptr; QCheckBox* create_rows_for_commmon_metavalue_ = nullptr; TableView* table_widget_ = nullptr; + TableView* protein_table_widget_ = nullptr; QTableWidget* fragment_window_ = nullptr; - bool is_ms1_shown_ = false; - + QSplitter* tables_splitter_ = nullptr; + bool is_first_time_loading_ = true; + std::unordered_map> protein_to_peptide_id_map; + + + private slots: /// Saves the (potentially filtered) IDs as an idXML or mzIdentML file void saveIDs_(); @@ -107,5 +129,16 @@ namespace OpenMS void updatedSingleCell_(QTableWidgetItem* item); /// Cell clicked in table_widget; emits which spectrum (row) was clicked, and may show additional data void currentCellChanged_(int row, int column, int old_row, int old_column); + + /// Create 'protein accession to peptide identification' map using C++ STL unordered_map + void createProteinToPeptideIDMap_(); + + /// Cell selected or deselected: this is only used to check for deselection, rest happens in currentCellChanged_ + void currentSpectraSelectionChanged_(); + + /// update ProteinHits, when data in the table changes (status of checkboxes) + void updatedSingleProteinCell_(QTableWidgetItem* item); + /// Protein Cell clicked in protein_table_widget; emits which protein (row) was clicked, and may show additional data + void proteinCellClicked_(int row, int column); }; } diff --git a/src/openms_gui/include/OpenMS/VISUAL/SpectraTreeTab.h b/src/openms_gui/include/OpenMS/VISUAL/SpectraTreeTab.h index e26e30c4b52..302a8ceb4f7 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/SpectraTreeTab.h +++ b/src/openms_gui/include/OpenMS/VISUAL/SpectraTreeTab.h @@ -38,7 +38,7 @@ #include -#include +#include class QLineEdit; class QComboBox; @@ -63,13 +63,13 @@ namespace OpenMS SpectraTreeTab(QWidget * parent = nullptr); /// Destructor - ~SpectraTreeTab() = default; + ~SpectraTreeTab() override = default; /// docu in base class - bool hasData(const LayerData* layer) override; + bool hasData(const LayerDataBase* layer) override; /// refresh the table using data from @p cl - void updateEntries(LayerData* cl) override; + void updateEntries(LayerDataBase* cl) override; /// remove all visible data void clear() override; @@ -78,7 +78,10 @@ namespace OpenMS /// and store it either as Spectrum or Chromatogram in @p exp (all other data is cleared) /// If no spectrum/chrom is selected, false is returned and @p exp is empty /// @param current_type Either DT_PEAK or DT_CHROMATOGRAM, depending on what is currently shown - bool getSelectedScan(MSExperiment& exp, LayerData::DataType& current_type) const; + bool getSelectedScan(MSExperiment& exp, LayerDataBase::DataType& current_type) const; + + /// received focus e.g. through tabswitching + void updateIndexFromCurrentLayer(); signals: void spectrumSelected(int); @@ -92,13 +95,15 @@ namespace OpenMS QLineEdit* spectra_search_box_ = nullptr; QComboBox* spectra_combo_box_ = nullptr; TreeView* spectra_treewidget_ = nullptr; + LayerDataBase* layer_ = nullptr; /// cache to store mapping of chromatogram precursors to chromatogram indices std::map, Precursor::MZLess> > map_precursor_to_chrom_idx_cache_; /// remember the last PeakMap that we used to fill the spectra list (and avoid rebuilding it) const PeakMap* last_peakmap_ = nullptr; private slots: - /// fill the search-combo-box with current column header names + + /// fill the search-combo-box with current column header names void populateSearchBox_(); /// searches for rows containing a search text (from spectra_search_box_); called when text search box is used void spectrumSearchText_(); diff --git a/src/openms_gui/include/OpenMS/VISUAL/TOPPASEdge.h b/src/openms_gui/include/OpenMS/VISUAL/TOPPASEdge.h index f6619856ec8..c795d39e624 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/TOPPASEdge.h +++ b/src/openms_gui/include/OpenMS/VISUAL/TOPPASEdge.h @@ -121,13 +121,13 @@ namespace OpenMS /// Sets the source output parameter index void setSourceOutParam(int out); /// Returns the source output parameter index - int getSourceOutParam(); + int getSourceOutParam() const; /// Returns the source output parameter name QString getSourceOutParamName(); /// Sets the target input parameter index void setTargetInParam(int in); /// Returns the target input parameter index - int getTargetInParam(); + int getTargetInParam() const; /// Returns the target input parameter index QString getTargetInParamName(); /// Updates the edge color diff --git a/src/openms_gui/include/OpenMS/VISUAL/TOPPASMergerVertex.h b/src/openms_gui/include/OpenMS/VISUAL/TOPPASMergerVertex.h index 781b4bbfa33..87330359d0d 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/TOPPASMergerVertex.h +++ b/src/openms_gui/include/OpenMS/VISUAL/TOPPASMergerVertex.h @@ -77,7 +77,7 @@ namespace OpenMS /// check if upstream nodes are finished and call downstream nodes void run() override; /// Determines whether this merger is merging round based or merging all inputs into one list - bool roundBasedMode(); + bool roundBasedMode() const; // documented in base class void paint(QPainter* painter, const QStyleOptionGraphicsItem* option, QWidget* widget) override; // documented in base class diff --git a/src/openms_gui/include/OpenMS/VISUAL/TOPPASOutputFileListVertex.h b/src/openms_gui/include/OpenMS/VISUAL/TOPPASOutputFileListVertex.h index cfe4647e8a6..d370415cad9 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/TOPPASOutputFileListVertex.h +++ b/src/openms_gui/include/OpenMS/VISUAL/TOPPASOutputFileListVertex.h @@ -78,11 +78,11 @@ namespace OpenMS /// Returns the directory where the output files are stored String getOutputDir() const; /// Creates the output directory for this node - String createOutputDir(); + String createOutputDir() const; /// Sets the topological sort number and removes invalidated tmp files void setTopoNr(UInt nr) override; /// Opens the folders of the output files - void openContainingFolder(); + void openContainingFolder() const; /// Sets a custom output folder name, which will be integrated into 'getOutputDir()' and 'getFullOutputDirectory()' calls. /// @note The string is not checked for validity (avoid characters which are not allowed in directories, e.g. '{') void setOutputFolderName(const QString& name); diff --git a/src/openms_gui/include/OpenMS/VISUAL/TOPPASScene.h b/src/openms_gui/include/OpenMS/VISUAL/TOPPASScene.h index b9f5b789e1a..5fa264ca4f2 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/TOPPASScene.h +++ b/src/openms_gui/include/OpenMS/VISUAL/TOPPASScene.h @@ -201,7 +201,7 @@ namespace OpenMS /// Sets the changed flag void setChanged(bool b); /// Returns if a pipeline is currently running - bool isPipelineRunning(); + bool isPipelineRunning() const; /// Shows a dialog that allows to specify the output directory. If @p always_ask == false, the dialog won't be shown if a directory has been set, already. bool askForOutputDir(bool always_ask = true); /// Enqueues the process, it will be run when the currently pending processes have finished @@ -227,7 +227,7 @@ namespace OpenMS ///Create @p resources from the current workflow void createResources(TOPPASResources & resources); ///Returns whether the workflow has been changed since the latest "save" - bool wasChanged(); + bool wasChanged() const; /// Refreshes the parameters of the TOPP tools in this workflow RefreshStatus refreshParameters(); diff --git a/src/openms_gui/include/OpenMS/VISUAL/TOPPASToolVertex.h b/src/openms_gui/include/OpenMS/VISUAL/TOPPASToolVertex.h index fce2de65fef..025205c2378 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/TOPPASToolVertex.h +++ b/src/openms_gui/include/OpenMS/VISUAL/TOPPASToolVertex.h @@ -184,7 +184,7 @@ namespace OpenMS /// Creates all necessary directories void createDirs(); /// Opens the folder where the file is contained - void openContainingFolder(); + void openContainingFolder() const; /// Opens the files in TOPPView void openInTOPPView(); /// Refreshes the parameters of this tool, returns if their has been a change diff --git a/src/openms_gui/include/OpenMS/VISUAL/TOPPASVertex.h b/src/openms_gui/include/OpenMS/VISUAL/TOPPASVertex.h index d158b254b3b..06646c3ff90 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/TOPPASVertex.h +++ b/src/openms_gui/include/OpenMS/VISUAL/TOPPASVertex.h @@ -230,11 +230,11 @@ namespace OpenMS /// Checks if all tools in the subtree below this node are finished TOPPASVertex::SUBSTREESTATUS getSubtreeStatus() const; /// Returns whether the vertex has been marked already (during topological sort) - bool isTopoSortMarked(); + bool isTopoSortMarked() const; /// (Un)marks the vertex (during topological sort) void setTopoSortMarked(bool b); /// Returns the topological sort number - UInt getTopoNr(); + UInt getTopoNr() const; /// Sets the topological sort number (overridden in tool and output vertices) virtual void setTopoNr(UInt nr); /// Resets the status @@ -243,7 +243,7 @@ namespace OpenMS /// Marks this node (and everything further downstream) as unreachable. Overridden behavior in mergers. virtual void markUnreachable(); /// Returns whether this node is reachable - bool isReachable(); + bool isReachable() const; /// Returns whether this node has already been processed during the current pipeline execution bool isFinished() const; /// run the tool (either ToolVertex, Merger, or OutputNode) @@ -274,7 +274,7 @@ namespace OpenMS /// check if all upstream nodes are finished - bool allInputsReady(); + bool allInputsReady() const; public slots: diff --git a/src/openms_gui/include/OpenMS/VISUAL/TOPPViewMenu.h b/src/openms_gui/include/OpenMS/VISUAL/TOPPViewMenu.h index 605ae517c12..78e497b5d50 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/TOPPViewMenu.h +++ b/src/openms_gui/include/OpenMS/VISUAL/TOPPViewMenu.h @@ -40,7 +40,7 @@ #include #include #include -#include +#include #include @@ -68,9 +68,9 @@ namespace OpenMS /// allow + operations on the enum, e.g. 'HAS_CANVAS + HAS_LAYER + IS_1D_VIEW' FS_TV OPENMS_GUI_DLLAPI operator+(const TV_STATUS left, const TV_STATUS right); - using FS_LAYER = FlagSet; + using FS_LAYER = FlagSet; /// allow + operations on the enum, e.g. 'DT_PEAK + DT_FEATURE' - FS_LAYER OPENMS_GUI_DLLAPI operator+(const LayerData::DataType left, const LayerData::DataType right); + FS_LAYER OPENMS_GUI_DLLAPI operator+(const LayerDataBase::DataType left, const LayerDataBase::DataType right); /** @@ -97,7 +97,7 @@ namespace OpenMS public slots: /// enable/disable entries according to a given state of TOPPViewBase - void update(const FS_TV status, const LayerData::DataType layer_type); + void update(const FS_TV status, const LayerDataBase::DataType layer_type); private: struct ActionRequirement_ @@ -110,7 +110,7 @@ namespace OpenMS /// check if an ActionRequirement is fulfilled by the arguments /// i.e. @p status is a superset of needs_ and @p layer_type is a superset of layer_set_ (or layer_set_ is empty) /// If yes, the the action to enabled, or disable it otherwise - void enableAction(const FS_TV status, const LayerData::DataType layer_type); + void enableAction(const FS_TV status, const LayerDataBase::DataType layer_type); private: QAction* action_; diff --git a/src/openms_gui/include/OpenMS/VISUAL/TVControllerBase.h b/src/openms_gui/include/OpenMS/VISUAL/TVControllerBase.h index 028a353724b..e5fc42bfb78 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/TVControllerBase.h +++ b/src/openms_gui/include/OpenMS/VISUAL/TVControllerBase.h @@ -35,7 +35,7 @@ #pragma once #include -#include +#include namespace OpenMS { @@ -53,25 +53,25 @@ namespace OpenMS ///@name Type definitions //@{ /// Feature map type - typedef LayerData::FeatureMapType FeatureMapType; + typedef LayerDataBase::FeatureMapType FeatureMapType; /// Feature map managed type - typedef LayerData::FeatureMapSharedPtrType FeatureMapSharedPtrType; + typedef LayerDataBase::FeatureMapSharedPtrType FeatureMapSharedPtrType; /// Consensus feature map type - typedef LayerData::ConsensusMapType ConsensusMapType; + typedef LayerDataBase::ConsensusMapType ConsensusMapType; /// Consensus map managed type - typedef LayerData::ConsensusMapSharedPtrType ConsensusMapSharedPtrType; + typedef LayerDataBase::ConsensusMapSharedPtrType ConsensusMapSharedPtrType; /// Peak map type - typedef LayerData::ExperimentType ExperimentType; + typedef LayerDataBase::ExperimentType ExperimentType; /// Main managed data type (experiment) - typedef LayerData::ExperimentSharedPtrType ExperimentSharedPtrType; + typedef LayerDataBase::ExperimentSharedPtrType ExperimentSharedPtrType; /// Peak spectrum type typedef ExperimentType::SpectrumType SpectrumType; //@} TVControllerBase() = delete; - virtual ~TVControllerBase() = default; + ~TVControllerBase() override = default; public slots: /// Slot for behavior activation. The default behaviour does nothing. Override in child class if desired. virtual void activateBehavior(); diff --git a/src/openms_gui/include/OpenMS/VISUAL/TVDIATreeTabController.h b/src/openms_gui/include/OpenMS/VISUAL/TVDIATreeTabController.h index 143776a7692..983ee03189b 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/TVDIATreeTabController.h +++ b/src/openms_gui/include/OpenMS/VISUAL/TVDIATreeTabController.h @@ -35,7 +35,7 @@ #pragma once #include -#include +#include #include #include diff --git a/src/openms_gui/include/OpenMS/VISUAL/TVIdentificationViewController.h b/src/openms_gui/include/OpenMS/VISUAL/TVIdentificationViewController.h index 5fb1a624add..24a1de8c83f 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/TVIdentificationViewController.h +++ b/src/openms_gui/include/OpenMS/VISUAL/TVIdentificationViewController.h @@ -35,7 +35,7 @@ #pragma once #include -#include +#include #include #include diff --git a/src/openms_gui/include/OpenMS/VISUAL/TVSpectraViewController.h b/src/openms_gui/include/OpenMS/VISUAL/TVSpectraViewController.h index 5692e16d7cc..28dd80cdd45 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/TVSpectraViewController.h +++ b/src/openms_gui/include/OpenMS/VISUAL/TVSpectraViewController.h @@ -35,7 +35,7 @@ #pragma once #include -#include +#include #include #include diff --git a/src/openms_gui/include/OpenMS/VISUAL/TableView.h b/src/openms_gui/include/OpenMS/VISUAL/TableView.h index 0eb6891d96e..7eeedc69726 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/TableView.h +++ b/src/openms_gui/include/OpenMS/VISUAL/TableView.h @@ -51,7 +51,7 @@ namespace OpenMS /// Constructor TableView(QWidget* parent = nullptr); /// Destructor - virtual ~TableView() = default; + ~TableView() override = default; /** @brief Export table entries as currently shown in the table in TSV format (only for visible data) diff --git a/src/openms_gui/include/OpenMS/VISUAL/TreeView.h b/src/openms_gui/include/OpenMS/VISUAL/TreeView.h index 7048da23d5d..630a66c125b 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/TreeView.h +++ b/src/openms_gui/include/OpenMS/VISUAL/TreeView.h @@ -51,7 +51,7 @@ namespace OpenMS /// Constructor TreeView(QWidget* parent = nullptr); /// Destructor - virtual ~TreeView() = default; + ~TreeView() override = default; /// sets the visible headers (and the number of columns) void setHeaders(const QStringList& headers); diff --git a/src/openms_gui/include/OpenMS/VISUAL/VISITORS/LayerStatistics.h b/src/openms_gui/include/OpenMS/VISUAL/VISITORS/LayerStatistics.h new file mode 100644 index 00000000000..7aaa21d581e --- /dev/null +++ b/src/openms_gui/include/OpenMS/VISUAL/VISITORS/LayerStatistics.h @@ -0,0 +1,251 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Chris Bielow $ +// $Authors: Chris Bielow $ +// -------------------------------------------------------------------------- + +#pragma once + +// OpenMS_GUI config +#include + +#include +#include +#include +#include + +#include +#include +#include +#include + +namespace OpenMS +{ + class MetaInfoInterface; + class ConsensusMap; + class FeatureMap; + + /** + @brief Struct representing the statistics about a set of values + + Min and max are only useful if count > 0 + */ + template + struct RangeStats + { + public: + void addDataPoint(VALUE_TYPE v) + { + ++count_; + sum_ += v; + min_ = std::min(min_, v); + max_ = std::max(max_, v); + } + + VALUE_TYPE getMin() const + { + return min_; + } + + VALUE_TYPE getMax() const + { + return max_; + } + + size_t getCount() const + { + return count_; + } + + /// get the average value from all calls to addDataPoint() + double getAvg() const + { + return count_ == 0 ? 0 : double(sum_) / count_; + } + + protected: + size_t count_{0}; + VALUE_TYPE min_{std::numeric_limits::max()}; // init with very high value + VALUE_TYPE max_{std::numeric_limits::lowest()}; // init with lowest (=negative) value possible + VALUE_TYPE sum_{0}; + }; + + using RangeStatsInt = RangeStats; + using RangeStatsDouble = RangeStats; + using RangeStatsVariant = std::variant; + + /// a simple counting struct, for non-numerical occurrences of meta-values + struct StatsCounter + { + size_t counter{0}; + }; + + /// Where did a statistic come from? Useful for display to user, and for internal dispatch when user requests a more detailed value distribution + enum class RangeStatsSource + { + CORE, ///< statistic was obtained from a core data structure of the container, e.g. intensity + METAINFO, ///< statistic was obtained from MetaInfoInterface of container elements, e.g. "FWHM" for FeatureMaps + ARRAYINFO, ///< statistic was obtained from Float/IntegerArrays of the container elements, e.g. "IonMobility" for PeakMap + SIZE_OF_STATSSOURCE + }; + + /// Names corresponding to elements of enum RangeStatsSource + static const std::array StatsSourceNames = {"core statistics", "meta values", "data arrays"}; + + /// Origin and name of a statistic. + struct RangeStatsType + { + RangeStatsSource src; + std::string name; + + bool operator<(const RangeStatsType& rhs) const + { + return std::tie(src, name) < std::tie(rhs.src, rhs.name); + } + + bool operator==(const RangeStatsType& rhs) const + { + return src == rhs.src && name == rhs.name; + } + }; + + /// collection of Min/Max/Avg statistics from different sources. Note: must be sorted, i.e. do not switch to unordered_map! + using StatsMap = std::map; + /// collection of MetaValues which are not numeric (counts only the number of occurrences per metavalue) + using StatsCounterMap = std::map; + + /** + @brief Compute summary statistics (count/min/max/avg) about a container, e.g. intensity, charge, meta values, ... + */ + class OPENMS_GUI_DLLAPI LayerStatistics + { + public: + /// get all range statistics, any of which can then be plugged into getDistribution() + const StatsMap& getRangeStatistics() const + { + return overview_range_data_; + } + + /// obtain count statistics for all meta values which are not numerical + const StatsCounterMap& getCountStatistics() const + { + return overview_count_data_; + } + + /** + @brief After computing the overview statistic, you can query a concrete distribution by giving the name of the statistic + @param which Distribution based on which data? + @param number_of_bins Number of histogram bins (equally spaced within [min,max] of the distribution) + @return The distribution + @throws Exception::InvalidValue if @p which is not a valid overview statistic for the underlying data + */ + virtual Math::Histogram<> getDistribution(const RangeStatsType& which, const UInt number_of_bins = 500) const = 0; + + + protected: + /// compute the range and count statistics. Call this method in the Ctor of derived classes. + virtual void computeStatistics_() = 0; + /// Brings the meta values of one @p meta_interface (a peak or feature) into the statistics + void bringInMetaStats_(const MetaInfoInterface* meta_interface); + + StatsMap overview_range_data_; ///< data on numerical values computed during getOverviewStatistics + StatsCounterMap overview_count_data_; ///< count data on non-numerical values computed during getOverviewStatistics + }; + + /** + @brief Computes statistics and distributions for a PeakMap + */ + class OPENMS_GUI_DLLAPI LayerStatisticsPeakMap + : public LayerStatistics + { + public: + LayerStatisticsPeakMap(const PeakMap& pm); + + Math::Histogram<> getDistribution(const RangeStatsType& which, const UInt number_of_bins) const override; + + private: + void computeStatistics_() override; + const PeakMap* pm_; ///< internal reference to a PeakMap -- make sure it does not go out of + ///< scope while using this class + }; + + /** + @brief Computes statistics and distributions for a PeakMap + */ + class OPENMS_GUI_DLLAPI LayerStatisticsFeatureMap : public LayerStatistics + { + public: + LayerStatisticsFeatureMap(const FeatureMap& fm); + + Math::Histogram<> getDistribution(const RangeStatsType& which, + const UInt number_of_bins) const override; + + private: + void computeStatistics_() override; + const FeatureMap* fm_; ///< internal reference to a FeatureMap -- make sure it does not go out of + ///< scope while using this class + }; + + /** + @brief Computes statistics and distributions for a PeakMap + */ + class OPENMS_GUI_DLLAPI LayerStatisticsConsensusMap : public LayerStatistics + { + public: + LayerStatisticsConsensusMap(const ConsensusMap& cm); + + Math::Histogram<> getDistribution(const RangeStatsType& which, + const UInt number_of_bins) const override; + + private: + void computeStatistics_() override; + const ConsensusMap* cm_; ///< internal reference to a PeakMap -- make sure it does not go out of + ///< scope while using this class + }; + + /** + @brief Computes statistics and distributions for a vector + */ + class OPENMS_GUI_DLLAPI LayerStatisticsIdent : public LayerStatistics + { + public: + LayerStatisticsIdent(const IPeptideIds::PepIds& cm); + + Math::Histogram<> getDistribution(const RangeStatsType& which, + const UInt number_of_bins) const override; + + private: + void computeStatistics_() override; + const IPeptideIds::PepIds* ids_; ///< internal reference to a PeptideIds -- make sure it does not + ///< go out of scope while using this class + }; + +} // namespace OpenMS \ No newline at end of file diff --git a/src/openms_gui/include/OpenMS/VISUAL/VISITORS/sources.cmake b/src/openms_gui/include/OpenMS/VISUAL/VISITORS/sources.cmake new file mode 100644 index 00000000000..1ef95c57930 --- /dev/null +++ b/src/openms_gui/include/OpenMS/VISUAL/VISITORS/sources.cmake @@ -0,0 +1,22 @@ +### the directory name +set(directory include/OpenMS/VISUAL/VISITORS) + +### list all header files of the directory here +set(sources_list_h +LayerStatistics.h +) + +### add path to the filenames +set(sources_h) +foreach(i ${sources_list_h}) + list(APPEND sources_h ${directory}/${i}) +endforeach(i) + +### treat as source files, for autoMOC'ing instead of manually calling QT5_WRAP_CPP() +set(OpenMSVisual_sources ${OpenMSVisual_sources} ${sources_h}) +### pass header file list to the upper instance +set(OpenMSVisual_sources_h ${OpenMSVisual_sources_h} ${sources_h}) + +### header group definition for IDE's +source_group("Header Files\\OpenMS\\VISUAL\\VISTORS" FILES ${sources_h}) + diff --git a/src/openms_gui/include/OpenMS/VISUAL/sources.cmake b/src/openms_gui/include/OpenMS/VISUAL/sources.cmake index a6f8f9d2524..40c353832de 100644 --- a/src/openms_gui/include/OpenMS/VISUAL/sources.cmake +++ b/src/openms_gui/include/OpenMS/VISUAL/sources.cmake @@ -18,7 +18,12 @@ HistogramWidget.h InputFile.h InputFileList.h LayerListView.h -LayerData.h +LayerDataBase.h +LayerDataChrom.h +LayerDataConsensus.h +LayerDataFeature.h +LayerDataIdent.h +LayerDataPeak.h ListEditor.h LogWindow.h MetaDataBrowser.h @@ -36,6 +41,7 @@ Plot3DWidget.h PlotCanvas.h PlotWidget.h RecentFilesMenu.h +SequenceVisualizer.h SpectraTreeTab.h SpectraIDViewTab.h SwathLibraryStats.h diff --git a/src/openms_gui/includes.cmake b/src/openms_gui/includes.cmake index 644e1763758..3cbc77175f2 100644 --- a/src/openms_gui/includes.cmake +++ b/src/openms_gui/includes.cmake @@ -1,12 +1,14 @@ set(OpenMSVisual_sources CACHE INTERNAL "This variable should hold all OpenMS sources at the end of the config step" ) ## added to OpenMSVisual library: ${OpenMSVisual_sources} +include(source/VISUAL/ANNOTATION/sources.cmake) include(source/VISUAL/APPLICATIONS/sources.cmake) include(source/VISUAL/APPLICATIONS/MISC/sources.cmake) include(source/VISUAL/DIALOGS/sources.cmake) +include(source/VISUAL/INTERFACES/sources.cmake) include(source/VISUAL/MISC/sources.cmake) include(source/VISUAL/VISUALIZER/sources.cmake) -include(source/VISUAL/ANNOTATION/sources.cmake) +include(source/VISUAL/VISITORS/sources.cmake) include(source/VISUAL/sources.cmake) #include(include/OpenMS/VISUAL/UIC/sources.cmake) ## uic are "sources" of OpenMS because they add .ui depedencies to the lib #include(include/OpenMS/VISUAL/DIALOGS/UIC/sources.cmake) ## uic are "sources" of OpenMS because they add .ui depedencies to the lib @@ -16,7 +18,9 @@ set(OpenMSVisual_sources_h CACHE INTERNAL "This variable should hold all OpenMS ## added to OpenMSVisual library: ${OpenMSVisual_sources} include(include/OpenMS/VISUAL/ANNOTATION/sources.cmake) include(include/OpenMS/VISUAL/APPLICATIONS/sources.cmake) +include(include/OpenMS/VISUAL/INTERFACES/sources.cmake) include(include/OpenMS/VISUAL/MISC/sources.cmake) +include(include/OpenMS/VISUAL/VISITORS/sources.cmake) include(include/OpenMS/VISUAL/APPLICATIONS/MISC/sources.cmake) ## MOC sources are included here include(include/OpenMS/VISUAL/sources.cmake) ## and here ... include(include/OpenMS/VISUAL/DIALOGS/sources.cmake) ## and here ... diff --git a/src/openms_gui/source/VISUAL/ANNOTATION/Annotations1DContainer.cpp b/src/openms_gui/source/VISUAL/ANNOTATION/Annotations1DContainer.cpp index 69e01863f9a..449465de56e 100644 --- a/src/openms_gui/source/VISUAL/ANNOTATION/Annotations1DContainer.cpp +++ b/src/openms_gui/source/VISUAL/ANNOTATION/Annotations1DContainer.cpp @@ -145,7 +145,7 @@ namespace OpenMS return nullptr; } - void Annotations1DContainer::selectItemAt(const QPoint & pos) + void Annotations1DContainer::selectItemAt(const QPoint & pos) const { Annotation1DItem * item = getItemAt(pos); if (item != nullptr) @@ -154,7 +154,7 @@ namespace OpenMS } } - void Annotations1DContainer::deselectItemAt(const QPoint & pos) + void Annotations1DContainer::deselectItemAt(const QPoint & pos) const { Annotation1DItem * item = getItemAt(pos); if (item != nullptr) diff --git a/src/openms_gui/source/VISUAL/APPLICATIONS/INIFileEditorWindow.cpp b/src/openms_gui/source/VISUAL/APPLICATIONS/INIFileEditorWindow.cpp index 0ae8fb72f47..dc32770ea9a 100644 --- a/src/openms_gui/source/VISUAL/APPLICATIONS/INIFileEditorWindow.cpp +++ b/src/openms_gui/source/VISUAL/APPLICATIONS/INIFileEditorWindow.cpp @@ -85,7 +85,7 @@ namespace OpenMS bool INIFileEditorWindow::openFile(const String& filename) { - if (filename == "") + if (filename.empty()) { filename_ = QFileDialog::getOpenFileName(this, tr("Open ini file"), current_path_.toQString(), tr("ini files (*.ini);; all files (*.*)")); } diff --git a/src/openms_gui/source/VISUAL/APPLICATIONS/TOPPASBase.cpp b/src/openms_gui/source/VISUAL/APPLICATIONS/TOPPASBase.cpp index 569188e1399..30f321d1c17 100644 --- a/src/openms_gui/source/VISUAL/APPLICATIONS/TOPPASBase.cpp +++ b/src/openms_gui/source/VISUAL/APPLICATIONS/TOPPASBase.cpp @@ -473,7 +473,7 @@ namespace OpenMS // any tool without a category gets into "unassigned" bin for (ToolListType::Iterator it = tools_list.begin(); it != tools_list.end(); ++it) { - if (it->second.category.trim() == "") + if (it->second.category.trim().empty()) it->second.category = "Unassigned"; } @@ -547,7 +547,7 @@ namespace OpenMS void TOPPASBase::addTOPPASFile(const String& file_name, bool in_new_window) { - if (file_name == "") return; + if (file_name.empty()) return; if (!file_name.toQString().endsWith(".toppas", Qt::CaseInsensitive)) { @@ -631,7 +631,7 @@ namespace OpenMS { // scene has requested to be saved TOPPASScene* ts = dynamic_cast(sendr); - if (ts && ts->views().size() > 0) + if (ts && !ts->views().empty()) { w = dynamic_cast(ts->views().first()); } @@ -1007,7 +1007,7 @@ namespace OpenMS //compose default ini file path String default_ini_file = String(QDir::homePath()) + "/.TOPPAS.ini"; - if (filename == "") + if (filename.empty()) { filename = default_ini_file; } @@ -1311,7 +1311,7 @@ namespace OpenMS { String text = tv->getName(); String type = tv->getType(); - if (type != "") + if (!type.empty()) { text += " (" + type + ")"; } @@ -1329,7 +1329,7 @@ namespace OpenMS { String text = tv->getName(); String type = tv->getType(); - if (type != "") + if (!type.empty()) { text += " (" + type + ")"; } @@ -1347,7 +1347,7 @@ namespace OpenMS { String text = tv->getName(); String type = tv->getType(); - if (type != "") + if (!type.empty()) { text += " (" + type + ")"; } @@ -1365,7 +1365,7 @@ namespace OpenMS { String text = tv->getName(); String type = tv->getType(); - if (type != "") + if (!type.empty()) { text += " (" + type + ")"; } diff --git a/src/openms_gui/source/VISUAL/APPLICATIONS/TOPPViewBase.cpp b/src/openms_gui/source/VISUAL/APPLICATIONS/TOPPViewBase.cpp index 0791bd96bc1..cb9ebae2612 100644 --- a/src/openms_gui/source/VISUAL/APPLICATIONS/TOPPViewBase.cpp +++ b/src/openms_gui/source/VISUAL/APPLICATIONS/TOPPViewBase.cpp @@ -34,19 +34,13 @@ #include -#include #include -#include -#include #include #include #include #include #include -#include #include -#include -#include #include #include #include @@ -64,25 +58,21 @@ #include #include #include -#include -#include #include #include #include #include -#include #include #include #include #include #include #include +#include #include #include #include #include -#include -#include #include #include #include @@ -95,28 +85,17 @@ //Qt #include -#include -#include #include #include -#include #include -#include -#include #include #include #include #include #include -#include #include -#include -#include -#include -#include - -#include +#include #include using namespace std; @@ -128,6 +107,8 @@ namespace OpenMS const String TOPPViewBase::CAPTION_3D_SUFFIX_ = " (3D)"; + const std::string user_section = "preferences:user:"; + /// supported types which can be opened with File-->Open const FileTypes::FileTypeList supported_types({ FileTypes::MZML, FileTypes::MZXML, FileTypes::MZDATA, FileTypes::SQMASS, FileTypes::FEATUREXML, FileTypes::CONSENSUSXML, FileTypes::IDXML, @@ -140,7 +121,6 @@ namespace OpenMS scan_mode_(scan_mode), ws_(this), tab_bar_(this), - recent_files_(), menu_(this, &ws_, &recent_files_) { setWindowTitle("TOPPView"); @@ -177,8 +157,10 @@ namespace OpenMS connect(&tab_bar_, &EnhancedTabBar::dropOnTab, this, &TOPPViewBase::copyLayer); box_layout->addWidget(&tab_bar_); + //Trigger updates only when the active subWindow changes and update it connect(&ws_, &EnhancedWorkspace::subWindowActivated, [this](QMdiSubWindow* window) { - if (window != nullptr) /* 0 upon terminate */ updateBarsAndMenus(); + if (window && lastActiveSubwindow_ != window) /* 0 upon terminate */ updateBarsAndMenus(); + lastActiveSubwindow_ = window; }); connect(&ws_, &EnhancedWorkspace::dropReceived, this, &TOPPViewBase::copyLayer); box_layout->addWidget(&ws_); @@ -332,10 +314,10 @@ namespace OpenMS //button menu group_label_2d_ = new QActionGroup(dm_label_2d_); QMenu* menu = new QMenu(dm_label_2d_); - for (Size i = 0; i < LayerData::SIZE_OF_LABEL_TYPE; ++i) + for (Size i = 0; i < LayerDataBase::SIZE_OF_LABEL_TYPE; ++i) { QAction* temp = group_label_2d_->addAction( - QString(LayerData::NamesOfLabelType[i].c_str())); + QString(LayerDataBase::NamesOfLabelType[i].c_str())); temp->setCheckable(true); if (i == 0) temp->setChecked(true); menu->addAction(temp); @@ -437,14 +419,11 @@ namespace OpenMS //################## DEFAULTS ################# initializeDefaultParameters_(); - // store defaults in param_ - defaultsToParam_(); - // load param file loadPreferences(); // set current path - current_path_ = param_.getValue("preferences:default_path").toString(); + current_path_ = param_.getValue(user_section + "default_path").toString(); // update the menu updateMenu(); @@ -461,38 +440,54 @@ namespace OpenMS connect(watcher_, &FileWatcher::fileChanged, this, &TOPPViewBase::fileChanged_); } + void TOPPViewBase::initializeDefaultParameters_() { + // FIXME: these parameters are declared again in TOPPViewPrefDialog, incl. their allowed values + // There should be one place to do this. E.g. generate the GUI automatically from a Param (or simply use ParamEditor for the whole thing) + + // all parameters in preferences:user: can be edited by the user in the preferences dialog + //general - defaults_.setValue("preferences:default_map_view", "2d", "Default visualization mode for maps."); - defaults_.setValidStrings("preferences:default_map_view", {"2d","3d"}); - defaults_.setValue("preferences:default_path", ".", "Default path for loading and storing files."); - defaults_.setValue("preferences:default_path_current", "true", "If the current path is preferred over the default path."); - defaults_.setValidStrings("preferences:default_path_current", {"true","false"}); - defaults_.setValue("preferences:intensity_cutoff", "off", "Low intensity cutoff for maps."); - defaults_.setValidStrings("preferences:intensity_cutoff", {"on","off"}); - defaults_.setValue("preferences:on_file_change", "ask", "What action to take, when a data file changes. Do nothing, update automatically or ask the user."); - defaults_.setValidStrings("preferences:on_file_change", {"none","ask","update automatically"}); - defaults_.setValue("preferences:topp_cleanup", "true", "If the temporary files for calling of TOPP tools should be removed after the call."); - defaults_.setValidStrings("preferences:topp_cleanup", {"true","false"}); - defaults_.setValue("preferences:use_cached_ms2", "false", "If possible, only load MS1 spectra into memory and keep MS2 spectra on disk (using indexed mzML)."); - defaults_.setValidStrings("preferences:use_cached_ms2", {"true","false"}); - defaults_.setValue("preferences:use_cached_ms1", "false", "If possible, do not load MS1 spectra into memory spectra into memory and keep MS2 spectra on disk (using indexed mzML)."); - defaults_.setValidStrings("preferences:use_cached_ms1", {"true","false"}); + defaults_.setValue(user_section + "default_map_view", "2d", "Default visualization mode for maps."); + defaults_.setValidStrings(user_section + "default_map_view", {"2d","3d"}); + defaults_.setValue(user_section + "default_path", ".", "Default path for loading and storing files."); + defaults_.setValue(user_section + "default_path_current", "true", "If the current path is preferred over the default path."); + defaults_.setValidStrings(user_section + "default_path_current", {"true","false"}); + defaults_.setValue(user_section + "intensity_cutoff", "off", "Low intensity cutoff for maps."); + defaults_.setValidStrings(user_section + "intensity_cutoff", {"on","off"}); + defaults_.setValue(user_section + "on_file_change", "ask", "What action to take, when a data file changes. Do nothing, update automatically or ask the user."); + defaults_.setValidStrings(user_section + "on_file_change", {"none","ask","update automatically"}); + defaults_.setValue(user_section + "use_cached_ms2", "false", "If possible, only load MS1 spectra into memory and keep MS2 spectra on disk (using indexed mzML)."); + defaults_.setValidStrings(user_section + "use_cached_ms2", {"true","false"}); + defaults_.setValue(user_section + "use_cached_ms1", "false", "If possible, do not load MS1 spectra into memory spectra into memory and keep MS2 spectra on disk (using indexed mzML)."); + defaults_.setValidStrings(user_section + "use_cached_ms1", {"true","false"}); + + // FIXME: getCanvasParameters() depends on the exact naming of the param sections below! // 1d view - defaults_.insert("preferences:1d:", Plot1DCanvas(Param()).getDefaults()); - defaults_.setSectionDescription("preferences:1d", "Settings for single spectrum view."); + defaults_.insert(user_section + "1d:", Plot1DCanvas(Param()).getDefaults()); + defaults_.setSectionDescription(user_section + "1d", "Settings for single spectrum view."); // 2d view - defaults_.insert("preferences:2d:", Plot2DCanvas(Param()).getDefaults()); - defaults_.setSectionDescription("preferences:2d", "Settings for 2D map view."); + defaults_.insert(user_section + "2d:", Plot2DCanvas(Param()).getDefaults()); + defaults_.setSectionDescription(user_section + "2d", "Settings for 2D map view."); // 3d view - defaults_.insert("preferences:3d:", Plot3DCanvas(Param()).getDefaults()); - defaults_.setSectionDescription("preferences:3d", "Settings for 3D map view."); + defaults_.insert(user_section + "3d:", Plot3DCanvas(Param()).getDefaults()); + defaults_.setSectionDescription(user_section + "3d", "Settings for 3D map view."); // identification view - defaults_.insert("preferences:idview:", SpectraIDViewTab(Param()).getDefaults()); - defaults_.setSectionDescription("preferences:idview", "Settings for identification view."); + defaults_.insert(user_section + "idview:", SpectraIDViewTab(Param()).getDefaults()); + defaults_.setSectionDescription(user_section + "idview", "Settings for identification view."); + + // non-editable parameters + + // not in Dialog (yet?) + defaults_.setValue("preferences:topp_cleanup", "true", "If the temporary files for calling of TOPP tools should be removed after the call."); + defaults_.setValidStrings("preferences:topp_cleanup", {"true", "false"}); + defaults_.setValue("preferences:version", "none", "OpenMS version, used to check if the TOPPView.ini is up-to-date"); subsections_.push_back("preferences:RecentFiles"); + + // store defaults in param_ + defaultsToParam_(); } void TOPPViewBase::closeEvent(QCloseEvent* event) @@ -507,13 +502,14 @@ namespace OpenMS void TOPPViewBase::preferencesDialog() { Internal::TOPPViewPrefDialog dlg(this); - dlg.setParam(param_); + dlg.setParam(param_.copy(user_section, true)); // -------------------------------------------------------------------- // Execute dialog and update parameter object with user modified values if (dlg.exec()) { - param_ = dlg.getParam(); + param_.remove(user_section); + param_.insert(user_section, dlg.getParam()); savePreferences(); } } @@ -561,31 +557,33 @@ namespace OpenMS vector proteins; String annotate_path; - LayerData::DataType data_type; + LayerDataBase::DataType data_type; ODExperimentSharedPtrType on_disc_peaks(new OnDiscMSExperiment); // lock the GUI - no interaction possible when loading... GUIHelpers::GUILock glock(this); - bool cache_ms2_on_disc = (param_.getValue("preferences:use_cached_ms2") == "true"); - bool cache_ms1_on_disc = (param_.getValue("preferences:use_cached_ms1") == "true"); + bool cache_ms2_on_disc = (param_.getValue(user_section + "use_cached_ms2") == "true"); + bool cache_ms1_on_disc = (param_.getValue(user_section + "use_cached_ms1") == "true"); try { if (file_type == FileTypes::FEATUREXML) { FeatureXMLFile().load(abs_filename, *feature_map); - data_type = LayerData::DT_FEATURE; + data_type = LayerDataBase::DT_FEATURE; } else if (file_type == FileTypes::CONSENSUSXML) { ConsensusXMLFile().load(abs_filename, *consensus_map); - data_type = LayerData::DT_CONSENSUS; + data_type = LayerDataBase::DT_CONSENSUS; } - else if (file_type == FileTypes::IDXML) + else if (file_type == FileTypes::IDXML || file_type == FileTypes::MZIDENTML) { - IdXMLFile().load(abs_filename, proteins, peptides); + if (file_type == FileTypes::IDXML) IdXMLFile().load(abs_filename, proteins, peptides); + else if (file_type == FileTypes::MZIDENTML) MzIdentMLFile().load(abs_filename, proteins, peptides); + if (peptides.empty()) { throw Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "No peptide identifications found"); @@ -653,40 +651,7 @@ namespace OpenMS } } } - data_type = LayerData::DT_IDENT; - } - else if (file_type == FileTypes::MZIDENTML) - { - vector proteins; // not needed later - MzIdentMLFile().load(abs_filename, proteins, peptides); - if (peptides.empty()) - { - throw Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "No peptide identifications found"); - } - // check if RT (and sequence) information is present: - vector peptides_with_rt; - for (vector::const_iterator it = - peptides.begin(); it != peptides.end(); ++it) - { - if (!it->getHits().empty() && it->hasRT()) - { - peptides_with_rt.push_back(*it); - } - } - Size diff = peptides.size() - peptides_with_rt.size(); - if (diff) - { - String msg = String(diff) + " peptide identification(s) without" - " sequence and/or retention time information were removed.\n" + - peptides_with_rt.size() + " peptide identification(s) remaining."; - log_->appendNewHeader(LogWindow::LogState::WARNING, "While loading file:", msg); - } - if (peptides_with_rt.empty()) - { - throw Exception::MissingInformation(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "No peptide identifications with sufficient information remaining."); - } - peptides.swap(peptides_with_rt); - data_type = LayerData::DT_IDENT; + data_type = LayerDataBase::DT_IDENT; } else { @@ -745,10 +710,10 @@ namespace OpenMS // a mzML file may contain both, chromatogram and peak data // -> this is handled in PlotCanvas::addLayer - data_type = LayerData::DT_CHROMATOGRAM; + data_type = LayerDataBase::DT_CHROMATOGRAM; if (peak_map_sptr->containsScanOfLevel(1)) { - data_type = LayerData::DT_PEAK; + data_type = LayerDataBase::DT_PEAK; } } } @@ -826,7 +791,7 @@ namespace OpenMS vector& peptides, ExperimentSharedPtrType peak_map, ODExperimentSharedPtrType on_disc_peak_map, - LayerData::DataType data_type, + LayerDataBase::DataType data_type, bool show_as_1d, bool show_options, bool as_new_window, @@ -836,15 +801,15 @@ namespace OpenMS Size spectrum_id) { // initialize flags with defaults from the parameters - bool maps_as_2d = (param_.getValue("preferences:default_map_view") == "2d"); + bool maps_as_2d = (param_.getValue(user_section + "default_map_view") == "2d"); bool maps_as_1d = false; - bool use_intensity_cutoff = (param_.getValue("preferences:intensity_cutoff") == "on"); + bool use_intensity_cutoff = (param_.getValue(user_section + "intensity_cutoff") == "on"); bool is_dia_data = false; // feature, consensus feature and identifications can be merged - bool mergeable = ((data_type == LayerData::DT_FEATURE) || - (data_type == LayerData::DT_CONSENSUS) || - (data_type == LayerData::DT_IDENT)); + bool mergeable = ((data_type == LayerDataBase::DT_FEATURE) || + (data_type == LayerDataBase::DT_CONSENSUS) || + (data_type == LayerDataBase::DT_IDENT)); // only one peak spectrum? disable 2D as default if (peak_map->size() == 1) { maps_as_2d = false; } @@ -931,33 +896,33 @@ namespace OpenMS { if (maps_as_1d) // 2d in 1d window { - target_window = new Plot1DWidget(getSpectrumParameters(1), &ws_); + target_window = new Plot1DWidget(getCanvasParameters(1), &ws_); } else if (maps_as_2d || mergeable) //2d or features/IDs { - target_window = new Plot2DWidget(getSpectrumParameters(2), &ws_); + target_window = new Plot2DWidget(getCanvasParameters(2), &ws_); } else // 3d { - target_window = new Plot3DWidget(getSpectrumParameters(3), &ws_); + target_window = new Plot3DWidget(getCanvasParameters(3), &ws_); } } if (merge_layer == -1) //add layer to the window { - if (data_type == LayerData::DT_FEATURE) //features + if (data_type == LayerDataBase::DT_FEATURE) //features { if (!target_window->canvas()->addLayer(feature_map, filename)) { return; } } - else if (data_type == LayerData::DT_CONSENSUS) //consensus features + else if (data_type == LayerDataBase::DT_CONSENSUS) //consensus features { if (!target_window->canvas()->addLayer(consensus_map, filename)) return; } - else if (data_type == LayerData::DT_IDENT) + else if (data_type == LayerDataBase::DT_IDENT) { if (!target_window->canvas()->addLayer(peptides, filename)) return; @@ -996,15 +961,15 @@ namespace OpenMS else //merge feature/ID data into feature layer { Plot2DCanvas* canvas = qobject_cast(target_window->canvas()); - if (data_type == LayerData::DT_CONSENSUS) + if (data_type == LayerDataBase::DT_CONSENSUS) { canvas->mergeIntoLayer(merge_layer, consensus_map); } - else if (data_type == LayerData::DT_FEATURE) + else if (data_type == LayerDataBase::DT_FEATURE) { canvas->mergeIntoLayer(merge_layer, feature_map); } - else if (data_type == LayerData::DT_IDENT) + else if (data_type == LayerDataBase::DT_IDENT) { canvas->mergeIntoLayer(merge_layer, peptides); } @@ -1065,7 +1030,7 @@ namespace OpenMS canvas->showMetaData(true); } - void TOPPViewBase::layerStatistics() + void TOPPViewBase::layerStatistics() const { getActivePlotWidget()->showStatistics(); } @@ -1096,7 +1061,7 @@ namespace OpenMS { mz_label_->setText("m/z: "); } - else if (boost::math::isinf(mz) || boost::math::isnan(mz)) + else if (isinf(mz) || isnan(mz)) { mz_label_->setText("m/z: n/a"); } @@ -1109,7 +1074,7 @@ namespace OpenMS { rt_label_->setText("RT: "); } - else if (boost::math::isinf(rt) || boost::math::isnan(rt)) + else if (isinf(rt) || isnan(rt)) { rt_label_->setText("RT: n/a"); } @@ -1120,7 +1085,7 @@ namespace OpenMS statusBar()->update(); } - void TOPPViewBase::resetZoom() + void TOPPViewBase::resetZoom() const { PlotWidget* w = getActivePlotWidget(); if (w != nullptr) @@ -1139,7 +1104,7 @@ namespace OpenMS } } - void TOPPViewBase::setDrawMode1D(int index) + void TOPPViewBase::setDrawMode1D(int index) const { Plot1DWidget* w = getActive1DWidget(); if (w) @@ -1153,11 +1118,11 @@ namespace OpenMS bool set = false; //label type is selected - for (Size i = 0; i < LayerData::SIZE_OF_LABEL_TYPE; ++i) + for (Size i = 0; i < LayerDataBase::SIZE_OF_LABEL_TYPE; ++i) { - if (action->text().toStdString() == LayerData::NamesOfLabelType[i]) + if (action->text().toStdString() == LayerDataBase::NamesOfLabelType[i]) { - getActive2DWidget()->canvas()->setLabel(LayerData::LabelType(i)); + getActive2DWidget()->canvas()->setLabel(LayerDataBase::LabelType(i)); set = true; } } @@ -1165,14 +1130,14 @@ namespace OpenMS //button is simply pressed if (!set) { - if (getActive2DWidget()->canvas()->getCurrentLayer().label == LayerData::L_NONE) + if (getActive2DWidget()->canvas()->getCurrentLayer().label == LayerDataBase::L_NONE) { - getActive2DWidget()->canvas()->setLabel(LayerData::L_INDEX); + getActive2DWidget()->canvas()->setLabel(LayerDataBase::L_INDEX); dm_label_2d_->menu()->actions()[1]->setChecked(true); } else { - getActive2DWidget()->canvas()->setLabel(LayerData::L_NONE); + getActive2DWidget()->canvas()->setLabel(LayerDataBase::L_NONE); dm_label_2d_->menu()->actions()[0]->setChecked(true); } } @@ -1185,32 +1150,32 @@ namespace OpenMS // mass reference is selected if (action->text().toStdString() == "Don't show") { - getActive2DWidget()->canvas()->setLayerFlag(LayerData::F_UNASSIGNED, false); - getActive2DWidget()->canvas()->setLayerFlag(LayerData::I_PEPTIDEMZ, false); - getActive2DWidget()->canvas()->setLayerFlag(LayerData::I_LABELS, false); + getActive2DWidget()->canvas()->setLayerFlag(LayerDataBase::F_UNASSIGNED, false); + getActive2DWidget()->canvas()->setLayerFlag(LayerDataBase::I_PEPTIDEMZ, false); + getActive2DWidget()->canvas()->setLayerFlag(LayerDataBase::I_LABELS, false); } else if (action->text().toStdString() == "Show by precursor m/z") { - getActive2DWidget()->canvas()->setLayerFlag(LayerData::F_UNASSIGNED, true); - getActive2DWidget()->canvas()->setLayerFlag(LayerData::I_PEPTIDEMZ, false); - getActive2DWidget()->canvas()->setLayerFlag(LayerData::I_LABELS, false); + getActive2DWidget()->canvas()->setLayerFlag(LayerDataBase::F_UNASSIGNED, true); + getActive2DWidget()->canvas()->setLayerFlag(LayerDataBase::I_PEPTIDEMZ, false); + getActive2DWidget()->canvas()->setLayerFlag(LayerDataBase::I_LABELS, false); } else if (action->text().toStdString() == "Show by peptide mass") { - getActive2DWidget()->canvas()->setLayerFlag(LayerData::F_UNASSIGNED, true); - getActive2DWidget()->canvas()->setLayerFlag(LayerData::I_PEPTIDEMZ, true); - getActive2DWidget()->canvas()->setLayerFlag(LayerData::I_LABELS, false); + getActive2DWidget()->canvas()->setLayerFlag(LayerDataBase::F_UNASSIGNED, true); + getActive2DWidget()->canvas()->setLayerFlag(LayerDataBase::I_PEPTIDEMZ, true); + getActive2DWidget()->canvas()->setLayerFlag(LayerDataBase::I_LABELS, false); } else if (action->text().toStdString() == "Show label meta data") { - getActive2DWidget()->canvas()->setLayerFlag(LayerData::F_UNASSIGNED, true); - getActive2DWidget()->canvas()->setLayerFlag(LayerData::I_PEPTIDEMZ, false); - getActive2DWidget()->canvas()->setLayerFlag(LayerData::I_LABELS, true); + getActive2DWidget()->canvas()->setLayerFlag(LayerDataBase::F_UNASSIGNED, true); + getActive2DWidget()->canvas()->setLayerFlag(LayerDataBase::I_PEPTIDEMZ, false); + getActive2DWidget()->canvas()->setLayerFlag(LayerDataBase::I_LABELS, true); } else // button is simply pressed { - bool previous = getActive2DWidget()->canvas()->getLayerFlag(LayerData::F_UNASSIGNED); - getActive2DWidget()->canvas()->setLayerFlag(LayerData::F_UNASSIGNED, + bool previous = getActive2DWidget()->canvas()->getLayerFlag(LayerDataBase::F_UNASSIGNED); + getActive2DWidget()->canvas()->setLayerFlag(LayerDataBase::F_UNASSIGNED, !previous); if (previous) // now: don't show { @@ -1220,7 +1185,7 @@ namespace OpenMS { dm_unassigned_2d_->menu()->actions()[1]->setChecked(true); } - getActive2DWidget()->canvas()->setLayerFlag(LayerData::I_PEPTIDEMZ, false); + getActive2DWidget()->canvas()->setLayerFlag(LayerDataBase::I_PEPTIDEMZ, false); } updateToolBar(); @@ -1234,26 +1199,26 @@ namespace OpenMS //peaks if (action == dm_precursors_2d_) { - win->canvas()->setLayerFlag(LayerData::P_PRECURSORS, on); + win->canvas()->setLayerFlag(LayerDataBase::P_PRECURSORS, on); } //features else if (action == dm_hulls_2d_) { - win->canvas()->setLayerFlag(LayerData::F_HULLS, on); + win->canvas()->setLayerFlag(LayerDataBase::F_HULLS, on); } else if (action == dm_hull_2d_) { - win->canvas()->setLayerFlag(LayerData::F_HULL, on); + win->canvas()->setLayerFlag(LayerDataBase::F_HULL, on); } //consensus features else if (action == dm_elements_2d_) { - win->canvas()->setLayerFlag(LayerData::C_ELEMENTS, on); + win->canvas()->setLayerFlag(LayerDataBase::C_ELEMENTS, on); } // identifications else if (action == dm_ident_2d_) { - win->canvas()->setLayerFlag(LayerData::I_PEPTIDEMZ, on); + win->canvas()->setLayerFlag(LayerDataBase::I_PEPTIDEMZ, on); } } } @@ -1267,6 +1232,12 @@ namespace OpenMS void TOPPViewBase::updateToolBar() { + tool_bar_1d_->hide(); + tool_bar_2d_peak_->hide(); + tool_bar_2d_feat_->hide(); + tool_bar_2d_cons_->hide(); + tool_bar_2d_ident_->hide(); + PlotWidget* w = getActivePlotWidget(); if (w) @@ -1291,56 +1262,39 @@ namespace OpenMS //show/hide toolbars and buttons tool_bar_1d_->show(); - tool_bar_2d_peak_->hide(); - tool_bar_2d_feat_->hide(); - tool_bar_2d_cons_->hide(); - tool_bar_2d_ident_->hide(); } // 2D Plot2DWidget* w2 = getActive2DWidget(); if (w2) { - tool_bar_1d_->hide(); // check if there is a layer before requesting data from it if (w2->canvas()->getLayerCount() > 0) { //peak draw modes - if (w2->canvas()->getCurrentLayer().type == LayerData::DT_PEAK) + if (w2->canvas()->getCurrentLayer().type == LayerDataBase::DT_PEAK) { - dm_precursors_2d_->setChecked(w2->canvas()->getLayerFlag(LayerData::P_PRECURSORS)); + dm_precursors_2d_->setChecked(w2->canvas()->getLayerFlag(LayerDataBase::P_PRECURSORS)); tool_bar_2d_peak_->show(); - tool_bar_2d_feat_->hide(); - tool_bar_2d_cons_->hide(); - tool_bar_2d_ident_->hide(); } //feature draw modes - else if (w2->canvas()->getCurrentLayer().type == LayerData::DT_FEATURE) + else if (w2->canvas()->getCurrentLayer().type == LayerDataBase::DT_FEATURE) { - dm_hulls_2d_->setChecked(w2->canvas()->getLayerFlag(LayerData::F_HULLS)); - dm_hull_2d_->setChecked(w2->canvas()->getLayerFlag(LayerData::F_HULL)); - dm_unassigned_2d_->setChecked(w2->canvas()->getLayerFlag(LayerData::F_UNASSIGNED)); - dm_label_2d_->setChecked(w2->canvas()->getCurrentLayer().label != LayerData::L_NONE); - tool_bar_2d_peak_->hide(); + dm_hulls_2d_->setChecked(w2->canvas()->getLayerFlag(LayerDataBase::F_HULLS)); + dm_hull_2d_->setChecked(w2->canvas()->getLayerFlag(LayerDataBase::F_HULL)); + dm_unassigned_2d_->setChecked(w2->canvas()->getLayerFlag(LayerDataBase::F_UNASSIGNED)); + dm_label_2d_->setChecked(w2->canvas()->getCurrentLayer().label != LayerDataBase::L_NONE); tool_bar_2d_feat_->show(); - tool_bar_2d_cons_->hide(); - tool_bar_2d_ident_->hide(); } //consensus feature draw modes - else if (w2->canvas()->getCurrentLayer().type == LayerData::DT_CONSENSUS) + else if (w2->canvas()->getCurrentLayer().type == LayerDataBase::DT_CONSENSUS) { - dm_elements_2d_->setChecked(w2->canvas()->getLayerFlag(LayerData::C_ELEMENTS)); - tool_bar_2d_peak_->hide(); - tool_bar_2d_feat_->hide(); + dm_elements_2d_->setChecked(w2->canvas()->getLayerFlag(LayerDataBase::C_ELEMENTS)); tool_bar_2d_cons_->show(); - tool_bar_2d_ident_->hide(); } - else if (w2->canvas()->getCurrentLayer().type == LayerData::DT_IDENT) + else if (w2->canvas()->getCurrentLayer().type == LayerDataBase::DT_IDENT) { - dm_ident_2d_->setChecked(w2->canvas()->getLayerFlag(LayerData::I_PEPTIDEMZ)); - tool_bar_2d_peak_->hide(); - tool_bar_2d_feat_->hide(); - tool_bar_2d_cons_->hide(); + dm_ident_2d_->setChecked(w2->canvas()->getLayerFlag(LayerDataBase::I_PEPTIDEMZ)); tool_bar_2d_ident_->show(); } } @@ -1350,12 +1304,7 @@ namespace OpenMS Plot3DWidget* w3 = getActive3DWidget(); if (w3) { - //show/hide toolbars and buttons - tool_bar_1d_->hide(); - tool_bar_2d_peak_->hide(); - tool_bar_2d_feat_->hide(); - tool_bar_2d_cons_->hide(); - tool_bar_2d_ident_->hide(); + //show no toolbars and buttons } } @@ -1366,13 +1315,13 @@ namespace OpenMS void TOPPViewBase::updateViewBar() { - selection_view_->update(); + selection_view_->callUpdateEntries(); } void TOPPViewBase::updateMenu() { FS_TV fs; - LayerData::DataType layer_type = LayerData::DT_UNKNOWN; + LayerDataBase::DataType layer_type = LayerDataBase::DT_UNKNOWN; // is there a canvas? if (getActiveCanvas() != nullptr) { @@ -1382,7 +1331,7 @@ namespace OpenMS { fs |= TV_STATUS::HAS_LAYER; layer_type = getCurrentLayer()->getChromatogramData().get()->getNrChromatograms() > 0 - ? LayerData::DT_CHROMATOGRAM // chrom data in 1D view is shown as DT_PEAK... + ? LayerDataBase::DT_CHROMATOGRAM // chrom data in 1D view is shown as DT_PEAK... : getCurrentLayer()->type; } } @@ -1408,7 +1357,7 @@ namespace OpenMS filter_list_->set(getActiveCanvas()->getCurrentLayer().filters); } - void TOPPViewBase::layerFilterVisibilityChange(bool on) + void TOPPViewBase::layerFilterVisibilityChange(bool on) const { if (getActiveCanvas()) { @@ -1430,7 +1379,7 @@ namespace OpenMS zoom_together_ = !zoom_together_; } - void TOPPViewBase::layerZoomChanged() // todo rename zoomothers + void TOPPViewBase::layerZoomChanged() const // todo rename zoomothers { if (!zoom_together_) return; @@ -1440,7 +1389,7 @@ namespace OpenMS PlotWidget* w = getActivePlotWidget(); DRange<2> new_visible_area = w->canvas()->getVisibleArea(); // only zoom if other window is also (not) a chromatogram - bool sender_is_chrom = w->canvas()->getCurrentLayer().type == LayerData::DT_CHROMATOGRAM || + bool sender_is_chrom = w->canvas()->getCurrentLayer().type == LayerDataBase::DT_CHROMATOGRAM || w->canvas()->getCurrentLayer().chromatogram_flag_set(); // go through all windows, adjust the visible area where necessary @@ -1449,7 +1398,7 @@ namespace OpenMS PlotWidget* specwidg = qobject_cast(windows.at(i)->widget()); if (!specwidg) continue; - bool is_chrom = specwidg->canvas()->getCurrentLayer().type == LayerData::DT_CHROMATOGRAM || + bool is_chrom = specwidg->canvas()->getCurrentLayer().type == LayerDataBase::DT_CHROMATOGRAM || specwidg->canvas()->getCurrentLayer().chromatogram_flag_set(); if (is_chrom != sender_is_chrom) continue; // not the same dimensionality (e.g. Plot1DCanvas vs. 2DCanvas) @@ -1461,7 +1410,6 @@ namespace OpenMS void TOPPViewBase::layerDeactivated() { - } void TOPPViewBase::showPlotWidgetInWindow(PlotWidget* sw, const String& caption) @@ -1517,7 +1465,7 @@ namespace OpenMS showWindow(sw->getWindowId()); } - void TOPPViewBase::showGoToDialog() + void TOPPViewBase::showGoToDialog() const { PlotWidget* w = getActivePlotWidget(); if (w) @@ -1533,8 +1481,19 @@ namespace OpenMS PlotWidget* TOPPViewBase::getActivePlotWidget() const { + // If the MDI window that holds all the subwindows for layers/spectra + // is out-of-focus (e.g. because the table below was clicked and you moved out and into TOPPView), + // currentSubWindow returns nullptr (i.e. no window is ACTIVE). In this case we get the one that is active + // in the tabs (which SHOULD in theory be in-sync; due to a bug the way subwindow->tab does not work). + // TODO check if we can reactivate automatically (e.g. double-check when TOPPView reacquires focus) if (!ws_.currentSubWindow()) { + // TODO think about using lastActivatedSubwindow_ + const auto id = tab_bar_.currentIndex(); + if (id < (Size) ws_.subWindowList().size()) + { + return qobject_cast(ws_.subWindowList()[id]->widget()); + } return nullptr; } return qobject_cast(ws_.currentSubWindow()->widget()); @@ -1675,11 +1634,12 @@ namespace OpenMS QStringList TOPPViewBase::chooseFilesDialog_(const String& path_overwrite) { // store active sub window + //TODO Why is this done? And why only here? QMdiSubWindow* old_active = ws_.currentSubWindow(); RAIICleanup clean([&]() { ws_.setActiveSubWindow(old_active); }); QString open_path = current_path_.toQString(); - if (path_overwrite != "") + if (!path_overwrite.empty()) { open_path = path_overwrite.toQString(); } @@ -1692,7 +1652,7 @@ namespace OpenMS { return dialog.selectedFiles(); } - return QStringList(); + return {}; } void TOPPViewBase::openFilesByDialog(const String& dir) @@ -1712,7 +1672,7 @@ namespace OpenMS void TOPPViewBase::showTOPPDialog_(bool visible_area_only) { //warn if hidden layer => wrong layer selected... - const LayerData& layer = getActiveCanvas()->getCurrentLayer(); + const LayerDataBase& layer = getActiveCanvas()->getCurrentLayer(); if (!layer.visible) { log_->appendNewHeader(LogWindow::LogState::NOTICE, "The current layer is not visible", "Have you selected the right layer for this action?"); @@ -1751,7 +1711,7 @@ namespace OpenMS return; } //warn if hidden layer => wrong layer selected... - const LayerData& layer = getActiveCanvas()->getCurrentLayer(); + const LayerDataBase& layer = getActiveCanvas()->getCurrentLayer(); if (!layer.visible) { log_->appendNewHeader(LogWindow::LogState::NOTICE, "The current layer is not visible", "Have you selected the right layer for this action?"); @@ -1763,7 +1723,7 @@ namespace OpenMS void TOPPViewBase::runTOPPTool_() { - const LayerData& layer = getActiveCanvas()->getCurrentLayer(); + const LayerDataBase& layer = getActiveCanvas()->getCurrentLayer(); //delete old input and output file @@ -1786,7 +1746,7 @@ namespace OpenMS topp_.layer_name = layer.getName(); topp_.window_id = getActivePlotWidget()->getWindowId(); topp_.spectrum_id = layer.getCurrentSpectrumIndex(); - if (layer.type == LayerData::DT_PEAK && !(layer.chromatogram_flag_set())) + if (layer.type == LayerDataBase::DT_PEAK && !(layer.chromatogram_flag_set())) { MzMLFile f; f.setLogType(ProgressLogger::GUI); @@ -1801,7 +1761,7 @@ namespace OpenMS f.store(topp_.file_name + "_in", *layer.getPeakData()); } } - else if (layer.type == LayerData::DT_CHROMATOGRAM || layer.chromatogram_flag_set()) + else if (layer.type == LayerDataBase::DT_CHROMATOGRAM || layer.chromatogram_flag_set()) { MzMLFile f; // This means we have chromatogram data, either as DT_CHROMATOGRAM or as @@ -1824,7 +1784,7 @@ namespace OpenMS f.store(topp_.file_name + "_in", *layer.getPeakData()); } } - else if (layer.type == LayerData::DT_FEATURE) + else if (layer.type == LayerDataBase::DT_FEATURE) { if (topp_.visible_area_only) { @@ -1919,7 +1879,14 @@ namespace OpenMS QString("The tool crashed during execution. If you want to debug this crash, check the input files in '%1'" " or enable 'debug' mode in the TOPP ini file.").arg(File::getTempDirectory().toQString())); } - else if (topp_.out != "") + else if (topp_.process->exitCode() != 0) //NormalExit with non-zero exit code + { + log_->appendNewHeader(LogWindow::LogState::CRITICAL, QString("Execution of '%1' not successful!").arg(topp_.tool.toQString()), + QString("The tool ended with a non-zero exit code of '%1'. ").arg(topp_.process->exitCode()) + + QString("If you want to debug this, check the input files in '%1' or" + " enable 'debug' mode in the TOPP ini file.").arg(File::getTempDirectory().toQString())); + } + else if (!topp_.out.empty()) { log_->appendNewHeader(LogWindow::LogState::NOTICE, QString("'%1' finished successfully").arg(topp_.tool.toQString()), QString("Execution time: %1 ms").arg(topp_.timer.elapsed())); @@ -1947,7 +1914,7 @@ namespace OpenMS } } - const LayerData* TOPPViewBase::getCurrentLayer() const + const LayerDataBase* TOPPViewBase::getCurrentLayer() const { PlotCanvas* canvas = getActiveCanvas(); if (canvas == nullptr) @@ -1957,7 +1924,7 @@ namespace OpenMS return &(canvas->getCurrentLayer()); } - LayerData* TOPPViewBase::getCurrentLayer() + LayerDataBase* TOPPViewBase::getCurrentLayer() { PlotCanvas* canvas = getActiveCanvas(); if (canvas == nullptr) @@ -1987,7 +1954,7 @@ namespace OpenMS void TOPPViewBase::annotateWithAMS() { // this should only be callable if current layer's type is of type DT_PEAK - LayerData& layer = getActiveCanvas()->getCurrentLayer(); + LayerDataBase& layer = getActiveCanvas()->getCurrentLayer(); LayerAnnotatorAMS annotator(this); assert(log_ != nullptr); if (!annotator.annotateWithFileDialog(layer, *log_, current_path_)) @@ -1998,18 +1965,20 @@ namespace OpenMS void TOPPViewBase::annotateWithID() { // this should only be callable if current layer's type is one of DT_PEAK, DT_FEATURE, DT_CONSENSUS - LayerData& layer = getActiveCanvas()->getCurrentLayer(); + LayerDataBase& layer = getActiveCanvas()->getCurrentLayer(); LayerAnnotatorPeptideID annotator(this); assert(log_ != nullptr); if (!annotator.annotateWithFileDialog(layer, *log_, current_path_)) { return; } + selection_view_->setCurrentIndex(DataSelectionTabs::IDENT_IDX); //switch to ID view + selection_view_->currentTabChanged(DataSelectionTabs::IDENT_IDX); } void TOPPViewBase::annotateWithOSW() { // this should only be callable if current layer's type is of type DT_CHROMATOGRAM - LayerData& layer = getActiveCanvas()->getCurrentLayer(); + LayerDataBase& layer = getActiveCanvas()->getCurrentLayer(); LayerAnnotatorOSW annotator(this); assert(log_ != nullptr); if (!annotator.annotateWithFileDialog(layer, *log_, current_path_)) @@ -2096,7 +2065,7 @@ namespace OpenMS ConsensusMapSharedPtrType c_dummy(new ConsensusMapType()); ODExperimentSharedPtrType od_dummy(new OnDiscMSExperiment()); vector p_dummy; - addData(f_dummy, c_dummy, p_dummy, new_exp_sptr, od_dummy, LayerData::DT_PEAK, false, true, true, "", seq_string + " (theoretical)"); + addData(f_dummy, c_dummy, p_dummy, new_exp_sptr, od_dummy, LayerDataBase::DT_PEAK, false, true, true, "", seq_string + " (theoretical)"); // ensure spectrum is drawn as sticks draw_group_1d_->button(Plot1DCanvas::DM_PEAKS)->setChecked(true); @@ -2143,12 +2112,12 @@ namespace OpenMS void TOPPViewBase::showCurrentPeaksAs2D() { - LayerData& layer = getActiveCanvas()->getCurrentLayer(); + LayerDataBase& layer = getActiveCanvas()->getCurrentLayer(); ExperimentSharedPtrType exp_sptr = layer.getPeakDataMuteable(); ODExperimentSharedPtrType od_exp_sptr = layer.getOnDiscPeakData(); //open new 2D widget - Plot2DWidget* w = new Plot2DWidget(getSpectrumParameters(2), &ws_); + Plot2DWidget* w = new Plot2DWidget(getCanvasParameters(2), &ws_); //add data if (!w->canvas()->addLayer(exp_sptr, od_exp_sptr, layer.filename)) @@ -2170,7 +2139,7 @@ namespace OpenMS void TOPPViewBase::showCurrentPeaksAsIonMobility() { - const LayerData& layer = getActiveCanvas()->getCurrentLayer(); + const LayerDataBase& layer = getActiveCanvas()->getCurrentLayer(); // Get current spectrum auto spidx = layer.getCurrentSpectrumIndex(); @@ -2180,7 +2149,7 @@ namespace OpenMS for (auto& spec : exp->getSpectra()) spec.setRT(spec.getDriftTime()); // open new 2D widget - Plot2DWidget* w = new Plot2DWidget(getSpectrumParameters(2), &ws_); + Plot2DWidget* w = new Plot2DWidget(getCanvasParameters(2), &ws_); // add data if (!w->canvas()->addLayer(exp, PlotCanvas::ODExperimentSharedPtrType(new OnDiscMSExperiment()), layer.filename)) @@ -2202,7 +2171,7 @@ namespace OpenMS void TOPPViewBase::showCurrentPeaksAsDIA() { - const LayerData& layer = getActiveCanvas()->getCurrentLayer(); + const LayerDataBase& layer = getActiveCanvas()->getCurrentLayer(); if (!layer.isDIAData()) { @@ -2264,7 +2233,7 @@ namespace OpenMS tmpe->updateRanges(); // open new 2D widget - Plot2DWidget* w = new Plot2DWidget(getSpectrumParameters(2), &ws_); + Plot2DWidget* w = new Plot2DWidget(getCanvasParameters(2), &ws_); // add data if (!w->canvas()->addLayer(tmpe, PlotCanvas::ODExperimentSharedPtrType(new OnDiscMSExperiment()), layer.filename)) @@ -2295,7 +2264,7 @@ namespace OpenMS int best_candidate = BIGINDEX; for (int i = 0; i < (int) getActiveCanvas()->getLayerCount(); ++i) { - if ((LayerData::DT_PEAK == getActiveCanvas()->getLayer(i).type) && // supported type + if ((LayerDataBase::DT_PEAK == getActiveCanvas()->getLayer(i).type) && // supported type (std::abs(i - target_layer) < std::abs(best_candidate - target_layer))) // & smallest distance to active layer { best_candidate = i; @@ -2316,14 +2285,14 @@ namespace OpenMS "The currently active layer cannot be viewed in 3D view. The closest layer which is supported by the 3D view was selected!"); } - LayerData& layer = const_cast(getActiveCanvas()->getLayer(best_candidate)); + LayerDataBase& layer = const_cast(getActiveCanvas()->getLayer(best_candidate)); - if (layer.type != LayerData::DT_PEAK) + if (layer.type != LayerDataBase::DT_PEAK) { log_->appendNewHeader(LogWindow::LogState::NOTICE, "Wrong layer type", "Something went wrong during layer selection. Please report this problem with a description of your current layers!"); } //open new 3D widget - Plot3DWidget* w = new Plot3DWidget(getSpectrumParameters(3), &ws_); + Plot3DWidget* w = new Plot3DWidget(getCanvasParameters(3), &ws_); ExperimentSharedPtrType exp_sptr = layer.getPeakDataMuteable(); @@ -2373,10 +2342,10 @@ namespace OpenMS log_->appendText(topp_.process->readAllStandardOutput()); } - Param TOPPViewBase::getSpectrumParameters(UInt dim) + Param TOPPViewBase::getCanvasParameters(UInt dim) const { - Param out = param_.copy(String("preferences:") + dim + "d:", true); - out.setValue("default_path", param_.getValue("preferences:default_path").toString()); + Param out = param_.copy(String(user_section + "") + dim + "d:", true); + out.setValue("default_path", param_.getValue(user_section + "default_path").toString()); return out; } @@ -2481,34 +2450,34 @@ namespace OpenMS } } - void TOPPViewBase::saveLayerAll() + void TOPPViewBase::saveLayerAll() const { getActiveCanvas()->saveCurrentLayer(false); } - void TOPPViewBase::saveLayerVisible() + void TOPPViewBase::saveLayerVisible() const { getActiveCanvas()->saveCurrentLayer(true); } - void TOPPViewBase::toggleGridLines() + void TOPPViewBase::toggleGridLines() const { getActiveCanvas()->showGridLines(!getActiveCanvas()->gridLinesShown()); } - void TOPPViewBase::toggleAxisLegends() + void TOPPViewBase::toggleAxisLegends() const { getActivePlotWidget()->showLegend(!getActivePlotWidget()->isLegendShown()); } - void TOPPViewBase::toggleInterestingMZs() + void TOPPViewBase::toggleInterestingMZs() const { auto w = getActive1DWidget(); if (w == nullptr) return; w->canvas()->setDrawInterestingMZs(!w->canvas()->isDrawInterestingMZs()); } - void TOPPViewBase::showPreferences() + void TOPPViewBase::showPreferences() const { getActiveCanvas()->showCurrentLayerPreferences(); } @@ -2541,7 +2510,7 @@ namespace OpenMS } - void TOPPViewBase::showSpectrumMetaData(int spectrum_index) + void TOPPViewBase::showSpectrumMetaData(int spectrum_index) const { getActiveCanvas()->showMetaData(true, spectrum_index); } @@ -2568,13 +2537,18 @@ namespace OpenMS if (source == layers_view_) { // only the selected row can be dragged => the source layer is the selected layer - LayerData& layer = getActiveCanvas()->getCurrentLayer(); + LayerDataBase& layer = getActiveCanvas()->getCurrentLayer(); // attach feature, consensus and peak data FeatureMapSharedPtrType features = layer.getFeatureMap(); ExperimentSharedPtrType peaks = layer.getPeakDataMuteable(); ConsensusMapSharedPtrType consensus = layer.getConsensusMap(); - vector peptides = layer.peptides; + // if the layer provides identification data -> retrieve it + vector peptides; + if (auto p = dynamic_cast(&layer); p != nullptr) + { + peptides = p->getPeptideIds(); + } ODExperimentSharedPtrType on_disc_peaks = layer.getOnDiscPeakData(); // add the data @@ -2583,13 +2557,13 @@ namespace OpenMS else if (spec_view != nullptr) { ExperimentSharedPtrType new_exp_sptr(new ExperimentType()); - if (LayerData::DataType current_type; spec_view->getSelectedScan(*new_exp_sptr, current_type)) + if (LayerDataBase::DataType current_type; spec_view->getSelectedScan(*new_exp_sptr, current_type)) { ODExperimentSharedPtrType od_dummy(new OnDiscMSExperiment()); FeatureMapSharedPtrType f_dummy(new FeatureMapType()); ConsensusMapSharedPtrType c_dummy(new ConsensusMapType()); vector p_dummy; - const LayerData& layer = getActiveCanvas()->getCurrentLayer(); + const LayerDataBase& layer = getActiveCanvas()->getCurrentLayer(); addData(f_dummy, c_dummy, p_dummy, new_exp_sptr, od_dummy, current_type, false, false, true, layer.filename, layer.getName(), new_id); } } @@ -2605,7 +2579,6 @@ namespace OpenMS } } } - } catch (Exception::BaseException& e) { @@ -2616,13 +2589,13 @@ namespace OpenMS void TOPPViewBase::updateCurrentPath() { //do not update if the user disabled this feature. - if (param_.getValue("preferences:default_path_current") != "true") + if (param_.getValue(user_section + "default_path_current") != "true") { return; } //reset - current_path_ = param_.getValue("preferences:default_path").toString(); + current_path_ = param_.getValue(user_section + "default_path").toString(); //update if the current layer has a path associated if (getActiveCanvas() && getActiveCanvas()->getLayerCount() != 0 && getActiveCanvas()->getCurrentLayer().filename != "") @@ -2676,11 +2649,11 @@ namespace OpenMS Size layer_index = slp.second; bool user_wants_update = false; - if (param_.getValue("preferences:on_file_change") == "update automatically") //automatically update + if (param_.getValue(user_section + "on_file_change") == "update automatically") //automatically update { user_wants_update = true; } - else if (param_.getValue("preferences:on_file_change") == "ask") //ask the user if the layer should be updated + else if (param_.getValue(user_section + "on_file_change") == "ask") //ask the user if the layer should be updated { if (watcher_msgbox_ == true) // we already have a dialog for that opened... do not ask again { @@ -2705,9 +2678,9 @@ namespace OpenMS { return; } - LayerData& layer = const_cast(sw->canvas()->getLayer(layer_index)); + LayerDataBase& layer = const_cast(sw->canvas()->getLayer(layer_index)); // reload data - if (layer.type == LayerData::DT_PEAK) //peak data + if (layer.type == LayerDataBase::DT_PEAK) //peak data { try { @@ -2721,7 +2694,7 @@ namespace OpenMS layer.getPeakDataMuteable()->sortSpectra(true); layer.getPeakDataMuteable()->updateRanges(1); } - else if (layer.type == LayerData::DT_FEATURE) //feature data + else if (layer.type == LayerDataBase::DT_FEATURE) //feature data { try { @@ -2734,7 +2707,7 @@ namespace OpenMS } layer.getFeatureMap()->updateRanges(); } - else if (layer.type == LayerData::DT_CONSENSUS) //consensus feature data + else if (layer.type == LayerDataBase::DT_CONSENSUS) //consensus feature data { try { @@ -2747,7 +2720,7 @@ namespace OpenMS } layer.getConsensusMap()->updateRanges(); } - else if (layer.type == LayerData::DT_CHROMATOGRAM) //chromatogram + else if (layer.type == LayerDataBase::DT_CHROMATOGRAM) //chromatogram { //TODO CHROM try diff --git a/src/openms_gui/source/VISUAL/AxisPainter.cpp b/src/openms_gui/source/VISUAL/AxisPainter.cpp index 530101a3fe7..eb2b4ea4d16 100644 --- a/src/openms_gui/source/VISUAL/AxisPainter.cpp +++ b/src/openms_gui/source/VISUAL/AxisPainter.cpp @@ -82,7 +82,7 @@ namespace OpenMS UInt font_size = painter->font().pointSize(); UInt max_width = 0; - if (grid.size() >= 1) //check big intervals only + if (!grid.empty()) //check big intervals only { QFontMetrics metrics(QFont(painter->font().family(), font_size)); for (Size i = 0; i < grid[0].size(); i++) @@ -261,7 +261,7 @@ namespace OpenMS // Painting legend painter->setFont(QFont(painter->font().family(), font_size)); - if (show_legend && legend != "") + if (show_legend && !legend.empty()) { // style settings painter->setPen(QPen(Qt::black)); diff --git a/src/openms_gui/source/VISUAL/AxisTickCalculator.cpp b/src/openms_gui/source/VISUAL/AxisTickCalculator.cpp index b794910b65f..a1cb3f08d76 100644 --- a/src/openms_gui/source/VISUAL/AxisTickCalculator.cpp +++ b/src/openms_gui/source/VISUAL/AxisTickCalculator.cpp @@ -53,7 +53,7 @@ namespace OpenMS { grid.clear(); - if (boost::math::isnan(x1) || boost::math::isnan(x2)) + if (std::isnan(x1) || std::isnan(x2)) { return; } diff --git a/src/openms_gui/source/VISUAL/AxisWidget.cpp b/src/openms_gui/source/VISUAL/AxisWidget.cpp index 2ce31b34e2a..cb542125945 100644 --- a/src/openms_gui/source/VISUAL/AxisWidget.cpp +++ b/src/openms_gui/source/VISUAL/AxisWidget.cpp @@ -149,12 +149,12 @@ namespace OpenMS } } - bool AxisWidget::isLogScale() + bool AxisWidget::isLogScale() const { return is_log_; } - UInt AxisWidget::margin() + UInt AxisWidget::margin() const { return margin_; } @@ -204,7 +204,7 @@ namespace OpenMS } } - bool AxisWidget::hasInverseOrientation() + bool AxisWidget::hasInverseOrientation() const { return is_inverse_orientation_; } @@ -226,7 +226,7 @@ namespace OpenMS } } - const AxisWidget::GridVector & AxisWidget::gridLines() + const AxisWidget::GridVector & AxisWidget::gridLines() const { return grid_line_; } diff --git a/src/openms_gui/source/VISUAL/DIALOGS/LayerStatisticsDialog.cpp b/src/openms_gui/source/VISUAL/DIALOGS/LayerStatisticsDialog.cpp index f0c03fa9491..cc5ebfe6992 100644 --- a/src/openms_gui/source/VISUAL/DIALOGS/LayerStatisticsDialog.cpp +++ b/src/openms_gui/source/VISUAL/DIALOGS/LayerStatisticsDialog.cpp @@ -37,433 +37,171 @@ #include #include -#include +#include + +#include + +#include +#include using namespace std; namespace OpenMS { - - LayerStatisticsDialog::LayerStatisticsDialog(PlotWidget * parent) : - QDialog(parent), - canvas_(parent->canvas()), - layer_data_(canvas_->getCurrentLayer()), - ui_(new Ui::LayerStatisticsDialogTemplate) + // helper for visitor pattern with std::visit + template + struct overload : Ts... { + using Ts::operator()...; + }; + template + overload(Ts...) -> overload; + + /// stringify a number using thousand separator for better readability. + /// The actual separator used depends on the system locale + template + QString toStringWithLocale(const T number) { - ui_->setupUi(this); - - if (layer_data_.type == LayerData::DT_PEAK) - { - computePeakStats_(); - } - else if (layer_data_.type == LayerData::DT_FEATURE) - { - computeFeatureStats_(); - - // add two rows for charge and quality - ui_->table_->setRowCount(ui_->table_->rowCount() + 2); - QTableWidgetItem * item = new QTableWidgetItem(); - item->setText(QString("Charge")); - ui_->table_->setVerticalHeaderItem(1, item); - item = new QTableWidgetItem(); - item->setText(QString("Quality")); - ui_->table_->setVerticalHeaderItem(2, item); - - // add computed charge and quality stats to the table - item = new QTableWidgetItem(); - item->setText("-"); - ui_->table_->setItem(1, 0, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(min_charge_, 'f', 2)); - ui_->table_->setItem(1, 1, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(max_charge_, 'f', 2)); - ui_->table_->setItem(1, 2, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(avg_charge_, 'f', 2)); - ui_->table_->setItem(1, 3, item); - - item = new QTableWidgetItem(); - item->setText("-"); - ui_->table_->setItem(2, 0, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(min_quality_, 'f', 2)); - ui_->table_->setItem(2, 1, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(max_quality_, 'f', 2)); - ui_->table_->setItem(2, 2, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(avg_quality_, 'f', 2)); - ui_->table_->setItem(2, 3, item); - - } - else if (layer_data_.type == LayerData::DT_CONSENSUS) - { - computeConsensusStats_(); - - // add three rows: charge, quality and elements - ui_->table_->setRowCount(ui_->table_->rowCount() + 3); - QTableWidgetItem * item = new QTableWidgetItem(); - item->setText(QString("Charge")); - ui_->table_->setVerticalHeaderItem(1, item); - item = new QTableWidgetItem(); - item->setText(QString("Quality")); - ui_->table_->setVerticalHeaderItem(2, item); - item = new QTableWidgetItem(); - item->setText(QString("Elements")); - ui_->table_->setVerticalHeaderItem(3, item); - - // add computed charge and quality stats to the table - item = new QTableWidgetItem(); - item->setText("-"); - ui_->table_->setItem(1, 0, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(min_charge_, 'f', 2)); - ui_->table_->setItem(1, 1, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(max_charge_, 'f', 2)); - ui_->table_->setItem(1, 2, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(avg_charge_, 'f', 2)); - ui_->table_->setItem(1, 3, item); - - item = new QTableWidgetItem(); - item->setText("-"); - ui_->table_->setItem(2, 0, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(min_quality_, 'f', 2)); - ui_->table_->setItem(2, 1, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(max_quality_, 'f', 2)); - ui_->table_->setItem(2, 2, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(avg_quality_, 'f', 2)); - ui_->table_->setItem(2, 3, item); - - item = new QTableWidgetItem(); - item->setText("-"); - ui_->table_->setItem(3, 0, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(min_elements_, 'f', 2)); - ui_->table_->setItem(3, 1, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(max_elements_, 'f', 2)); - ui_->table_->setItem(3, 2, item); + std::stringstream iss; + iss.imbue(std::locale("")); // use system locale, whatever it may be, e.g. "DE_de" + iss << number; + return QString(iss.str().c_str()); + // custom locale is only valid for 'iss' and vanishes here + } - item = new QTableWidgetItem(); - item->setText(QString::number(avg_elements_, 'f', 2)); - ui_->table_->setItem(3, 3, item); - } - else if (layer_data_.type == LayerData::DT_CHROMATOGRAM) + void showDistribution(LayerStatisticsDialog* lsd, const QString& text, + const Math::Histogram<>& hist) + { + if (text == "intensity") { - //TODO CHROM + qobject_cast(lsd->parent())->showIntensityDistribution(hist); } - // add computed intensity stats to the table - QTableWidgetItem * item = new QTableWidgetItem(); - item->setText("-"); - ui_->table_->setItem(0, 0, item); - item = new QTableWidgetItem(); - item->setText(QString::number(min_intensity_, 'f', 2)); - ui_->table_->setItem(0, 1, item); - item = new QTableWidgetItem(); - item->setText(QString::number(max_intensity_, 'f', 2)); - ui_->table_->setItem(0, 2, item); - item = new QTableWidgetItem(); - item->setText(QString::number(avg_intensity_, 'f', 2)); - ui_->table_->setItem(0, 3, item); - QPushButton * button = new QPushButton("intensity", ui_->table_); - ui_->table_->setCellWidget(0, 4, button); - connect(button, SIGNAL(clicked()), this, SLOT(showDistribution_())); - - // add computed stats about meta infos in the FloatDataArrays of the spectra to the table - for (const auto& [name, meta_stats_value] : meta_array_stats_) + else { - ui_->table_->setRowCount(ui_->table_->rowCount() + 1); - - item = new QTableWidgetItem(); - item->setText(name.toQString()); - ui_->table_->setVerticalHeaderItem(ui_->table_->rowCount() - 1, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(meta_stats_value.count)); - ui_->table_->setItem(ui_->table_->rowCount() - 1, 0, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(meta_stats_value.min, 'f', 2)); - ui_->table_->setItem(ui_->table_->rowCount() - 1, 1, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(meta_stats_value.max, 'f', 2)); - ui_->table_->setItem(ui_->table_->rowCount() - 1, 2, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(meta_stats_value.avg, 'f', 2)); - ui_->table_->setItem(ui_->table_->rowCount() - 1, 3, item); - - if (meta_stats_value.count >= 2 && meta_stats_value.min < meta_stats_value.max) - { - button = new QPushButton(name.toQString(), ui_->table_); - ui_->table_->setCellWidget(ui_->table_->rowCount() - 1, 4, button); - connect(button, SIGNAL(clicked()), this, SLOT(showDistribution_())); - } - } - - // add peak/featurewise collected meta stats to the table - String name; - for (MetaIterator_ it = meta_stats_.begin(); it != meta_stats_.end(); it++) - { - ui_->table_->setRowCount(ui_->table_->rowCount() + 1); - name = MetaInfo::registry().getName(it->first); - - item = new QTableWidgetItem(); - item->setText(name.toQString()); - ui_->table_->setVerticalHeaderItem(ui_->table_->rowCount() - 1, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(it->second.count)); - ui_->table_->setItem(ui_->table_->rowCount() - 1, 0, item); - - if (it->second.min <= it->second.max) // if (min <= max) --> value numerical - { - item = new QTableWidgetItem(); - item->setText(QString::number(it->second.min, 'f', 2)); - ui_->table_->setItem(ui_->table_->rowCount() - 1, 1, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(it->second.max, 'f', 2)); - ui_->table_->setItem(ui_->table_->rowCount() - 1, 2, item); - - item = new QTableWidgetItem(); - item->setText(QString::number(it->second.avg, 'f', 2)); - ui_->table_->setItem(ui_->table_->rowCount() - 1, 3, item); - - if (it->second.count >= 2 && it->second.min < it->second.max) - { - button = new QPushButton(name.toQString(), ui_->table_); - ui_->table_->setCellWidget(ui_->table_->rowCount() - 1, 4, button); - connect(button, SIGNAL(clicked()), this, SLOT(showDistribution_())); - } - } - else // min > max --> meta value was not numerical --> statistics only about the count - { - item = new QTableWidgetItem(); - item->setText("-"); - ui_->table_->setItem(ui_->table_->rowCount() - 1, 1, item); - item = new QTableWidgetItem(); - item->setText("-"); - ui_->table_->setItem(ui_->table_->rowCount() - 1, 2, item); - item = new QTableWidgetItem(); - item->setText("-"); - ui_->table_->setItem(ui_->table_->rowCount() - 1, 3, item); - } + qobject_cast(lsd->parent())->showMetaDistribution(String(text), hist); } } - - LayerStatisticsDialog::~LayerStatisticsDialog() + + void addEmptyRow(QTableWidget* table, const int row_i, const QString& row_name) { - delete ui_; + table->setRowCount(row_i + 1); + + // set row header name + QTableWidgetItem* item = new QTableWidgetItem(); + item->setText(row_name); + table->setVerticalHeaderItem(row_i, item); } + constexpr int col_count = 4; // columns: count, min, max, avg - void LayerStatisticsDialog::computePeakStats_() + void populateRow(QTableWidget* table, const int row_i, const std::array& data) { - min_intensity_ = canvas_->getCurrentMinIntensity(); - max_intensity_ = canvas_->getCurrentMaxIntensity(); - avg_intensity_ = 0; - unsigned long divisor = 0; - for (LayerData::ExperimentType::ConstIterator it_rt = layer_data_.getPeakData()->begin(); it_rt != layer_data_.getPeakData()->end(); it_rt++) + for (int col = 0; col < col_count; ++col) { - for (PeakIterator_ it_peak = it_rt->begin(); it_peak != it_rt->end(); it_peak++) - { - avg_intensity_ += it_peak->getIntensity(); - divisor++; - } - // collect stats about the meta data arrays of this spectrum - computeMetaDataArrayStats_(it_rt->getFloatDataArrays().begin(), it_rt->getFloatDataArrays().end()); - computeMetaDataArrayStats_(it_rt->getIntegerDataArrays().begin(), it_rt->getIntegerDataArrays().end()); + QTableWidgetItem* item = new QTableWidgetItem(); + item->setText(data[col]); + table->setItem(row_i, col, item); } - if (divisor != 0) - avg_intensity_ /= (double)divisor; - computeMetaAverages_(); } - void LayerStatisticsDialog::computeFeatureStats_() + /// insert an intermediate row with a single spanning cell, which describes where the values came from (e.g. from DataArrays, or MetaData) + void addHeaderRow(QTableWidget* table, int& row_i, const QString& row_name) { - min_intensity_ = canvas_->getCurrentMinIntensity(); - max_intensity_ = canvas_->getCurrentMaxIntensity(); - avg_intensity_ = 0; - if (!layer_data_.getFeatureMap()->empty()) - { - min_charge_ = layer_data_.getFeatureMap()->begin()->getCharge(); - max_charge_ = layer_data_.getFeatureMap()->begin()->getCharge(); - avg_charge_ = 0; + addEmptyRow(table, row_i, ""); + + QTableWidgetItem* item = new QTableWidgetItem(); + item->setText(row_name); + //item->setBackgroundColor(QColor(Qt::darkGray)); + QFont font; + font.setBold(true); + item->setFont(font); + item->setTextAlignment(Qt::AlignCenter); + table->setItem(row_i, 0, item); + table->setSpan(row_i, 0, 1, table->columnCount()); // extend row to span all columns + ++row_i; + } - min_quality_ = layer_data_.getFeatureMap()->begin()->getOverallQuality(); - max_quality_ = layer_data_.getFeatureMap()->begin()->getOverallQuality(); - avg_quality_ = 0; - } + void addRangeRow(LayerStatisticsDialog* lsd, QTableWidget* table, int& row_i, + const RangeStatsType& row_name, const RangeStatsVariant& row_data, + const bool enable_show_button, LayerStatistics* stats) + { + addEmptyRow(table, row_i, row_name.name.c_str()); + // get column data + std::array col_values = std::visit(overload{ + [&](const RangeStatsInt& d) -> std::array { return {toStringWithLocale(d.getCount()), + QString::number(d.getMin()), + QString::number(d.getMax()), + QString::number(d.getAvg(), 'f', 2)}; }, + [&](const RangeStatsDouble& d) -> std::array { return {toStringWithLocale(d.getCount()), + QString::number(d.getMin(), 'f', 2), + QString::number(d.getMax(), 'f', 2), + QString::number(d.getAvg(), 'f', 2)}; } + }, row_data); + + populateRow(table, row_i, col_values); - unsigned long divisor = 0; - for (FeatureIterator_ it = layer_data_.getFeatureMap()->begin(); it != layer_data_.getFeatureMap()->end(); it++) + if (enable_show_button) { - if (it->getCharge() < min_charge_) - min_charge_ = it->getCharge(); - if (it->getCharge() > max_charge_) - max_charge_ = it->getCharge(); - if (it->getOverallQuality() < min_quality_) - min_quality_ = it->getOverallQuality(); - if (it->getOverallQuality() > max_quality_) - max_quality_ = it->getOverallQuality(); - avg_intensity_ += it->getIntensity(); - avg_charge_ += it->getCharge(); - avg_quality_ += it->getOverallQuality(); - divisor++; - const MetaInfoInterface & mii = static_cast(*it); - bringInMetaStats_(mii); + auto button = new QPushButton(row_name.name.c_str(), table); + table->setCellWidget(row_i, col_count, button); + QObject::connect(button, &QPushButton::clicked, [=]() { showDistribution(lsd, row_name.name.c_str(), stats->getDistribution(row_name)); }); } - if (divisor != 0) - { - avg_intensity_ /= (double)divisor; - avg_charge_ /= (double)divisor; - avg_quality_ /= (double)divisor; - } - computeMetaAverages_(); + + // next row + ++row_i; } - void LayerStatisticsDialog::computeConsensusStats_() + void addCountRow(QTableWidget* table, int& row_i, const QString& row_name, const StatsCounter& row_data) { - min_intensity_ = canvas_->getCurrentMinIntensity(); - max_intensity_ = canvas_->getCurrentMaxIntensity(); - avg_intensity_ = 0; - if (!layer_data_.getConsensusMap()->empty()) - { - min_charge_ = layer_data_.getConsensusMap()->begin()->getCharge(); - max_charge_ = layer_data_.getConsensusMap()->begin()->getCharge(); - avg_charge_ = 0; + addEmptyRow(table, row_i, row_name); - min_quality_ = layer_data_.getConsensusMap()->begin()->getQuality(); - max_quality_ = layer_data_.getConsensusMap()->begin()->getQuality(); - avg_quality_ = 0; + // column data + populateRow(table, row_i, {toStringWithLocale(row_data.counter), "-", "-", "-"}); + + // next row + ++row_i; + } - min_elements_ = layer_data_.getConsensusMap()->begin()->size(); - max_elements_ = layer_data_.getConsensusMap()->begin()->size(); - avg_elements_ = 0; - } + LayerStatisticsDialog::LayerStatisticsDialog(PlotWidget* parent, std::unique_ptr&& stats) : + QDialog(parent), + stats_(std::move(stats)), + ui_(new Ui::LayerStatisticsDialogTemplate) + { + ui_->setupUi(this); - unsigned long divisor = 0; - for (ConsensusIterator_ it = layer_data_.getConsensusMap()->begin(); it != layer_data_.getConsensusMap()->end(); it++) - { - if (it->getCharge() < min_charge_) - min_charge_ = it->getCharge(); - if (it->getCharge() > max_charge_) - max_charge_ = it->getCharge(); - if (it->getQuality() < min_quality_) - min_quality_ = it->getQuality(); - if (it->getQuality() > max_quality_) - max_quality_ = it->getQuality(); - if (it->size() < min_elements_) - min_elements_ = it->size(); - if (it->size() > max_elements_) - max_elements_ = it->size(); - avg_intensity_ += it->getIntensity(); - avg_charge_ += it->getCharge(); - avg_quality_ += it->getQuality(); - avg_elements_ += it->size(); - divisor++; - } - if (divisor != 0) - { - avg_intensity_ /= (double)divisor; - avg_charge_ /= (double)divisor; - avg_quality_ /= (double)divisor; - avg_elements_ /= (double)divisor; - } - } + ui_->table_->setColumnCount(col_count + 1); // +1 for button column - void LayerStatisticsDialog::bringInMetaStats_(const MetaInfoInterface & meta_interface) - { - vector new_meta_keys; - meta_interface.getKeys(new_meta_keys); - for (vector::iterator it_meta_index = new_meta_keys.begin(); it_meta_index != new_meta_keys.end(); ++it_meta_index) + const auto& stats_range = stats_->getRangeStatistics(); + const auto& stats_count = stats_->getCountStatistics(); + // add each row + int row_i = 0; + RangeStatsSource old_category = RangeStatsSource::SIZE_OF_STATSSOURCE; + for (const auto& item : stats_range) { - const DataValue & next_value = meta_interface.getMetaValue(*it_meta_index); - MetaIterator_ it = meta_stats_.find(*it_meta_index); - if (it != meta_stats_.end()) // stats about this meta index already exist -> bring this value in + // add sections (relies on items being sorted!) + if (old_category != item.first.src) { - it->second.count++; - if (next_value.valueType() == DataValue::INT_VALUE || next_value.valueType() == DataValue::DOUBLE_VALUE) - { - double val = (double)next_value; - if (val < it->second.min) - it->second.min = val; - if (val > it->second.max) - it->second.max = val; - it->second.avg += val; - } - } - else // meta index has not occurred before, create new stats for it: - { - MetaStatsValue_ meta_stats_value; - if (next_value.valueType() == DataValue::INT_VALUE || next_value.valueType() == DataValue::DOUBLE_VALUE) - { - double val = (double)next_value; - meta_stats_value = MetaStatsValue_(1, val, val, val); - } - else - { - meta_stats_value = MetaStatsValue_(1, 1, 0, 0); // min=1 > max=0 (illegal) indicates that value is not numerical - } - meta_stats_.insert(make_pair(*it_meta_index, meta_stats_value)); + addHeaderRow(ui_->table_, row_i, StatsSourceNames[(size_t)item.first.src]); + old_category = item.first.src; } + bool show_button = (item.first == RangeStatsType{RangeStatsSource::CORE, "intensity"}) || item.first.src == RangeStatsSource::METAINFO; + addRangeRow(this, ui_->table_, row_i, item.first, item.second, show_button, stats_.get()); } - } - void LayerStatisticsDialog::computeMetaAverages_() - { - for (MetaIterator_ it = meta_stats_.begin(); it != meta_stats_.end(); it++) + if (!stats_count.empty()) { - if (it->second.count != 0) + addHeaderRow(ui_->table_, row_i, "Meta count values"); + for (const auto& item : stats_count) { - it->second.avg /= (double)it->second.count; - } - } - for (std::map::iterator it = meta_array_stats_.begin(); it != meta_array_stats_.end(); ++it) - { - if (it->second.count != 0) - { - it->second.avg /= (float)it->second.count; + addCountRow(ui_->table_, row_i, QString(item.first.c_str()), item.second); } } } - - void LayerStatisticsDialog::showDistribution_() + + LayerStatisticsDialog::~LayerStatisticsDialog() { - QPushButton * button = qobject_cast(sender()); - QString text = button->text(); - - if (text == "intensity") - { - qobject_cast(parent())->showIntensityDistribution(); - } - else - { - qobject_cast(parent())->showMetaDistribution(String(text)); - } + delete ui_; } + } // namespace diff --git a/src/openms_gui/source/VISUAL/DIALOGS/SpectrumAlignmentDialog.cpp b/src/openms_gui/source/VISUAL/DIALOGS/SpectrumAlignmentDialog.cpp index a275d4a9c14..8e566f0d39c 100644 --- a/src/openms_gui/source/VISUAL/DIALOGS/SpectrumAlignmentDialog.cpp +++ b/src/openms_gui/source/VISUAL/DIALOGS/SpectrumAlignmentDialog.cpp @@ -61,7 +61,7 @@ namespace OpenMS Plot1DCanvas * cc = parent->canvas(); for (UInt i = 0; i < cc->getLayerCount(); ++i) { - const LayerData & layer = cc->getLayer(i); + const LayerDataBase& layer = cc->getLayer(i); if (layer.flipped) { ui_->layer_list_2->addItem(layer.getName().toQString()); diff --git a/src/openms_gui/source/VISUAL/DIALOGS/TOPPASIOMappingDialog.cpp b/src/openms_gui/source/VISUAL/DIALOGS/TOPPASIOMappingDialog.cpp index aa9c95f4b70..d6eebd218ea 100644 --- a/src/openms_gui/source/VISUAL/DIALOGS/TOPPASIOMappingDialog.cpp +++ b/src/openms_gui/source/VISUAL/DIALOGS/TOPPASIOMappingDialog.cpp @@ -115,7 +115,7 @@ namespace OpenMS QVector source_output_files; source_tool->getOutputParameters(source_output_files); ui_->source_label->setText(source_tool->getName().toQString()); - if (source_tool->getType() != "") + if (!source_tool->getType().empty()) { ui_->source_type_label->setText("(" + source_tool->getType().toQString() + ")"); } @@ -172,7 +172,7 @@ namespace OpenMS QVector target_input_files; target_tool->getInputParameters(target_input_files); ui_->target_label->setText(target_tool->getName().toQString()); - if (target_tool->getType() != "") + if (!target_tool->getType().empty()) { ui_->target_type_label->setText("(" + target_tool->getType().toQString() + ")"); } diff --git a/src/openms_gui/source/VISUAL/DIALOGS/TOPPASToolConfigDialog.cpp b/src/openms_gui/source/VISUAL/DIALOGS/TOPPASToolConfigDialog.cpp index 8505a1a4870..130166509a2 100644 --- a/src/openms_gui/source/VISUAL/DIALOGS/TOPPASToolConfigDialog.cpp +++ b/src/openms_gui/source/VISUAL/DIALOGS/TOPPASToolConfigDialog.cpp @@ -188,7 +188,7 @@ namespace OpenMS try { QString tmp_ini_file = File::getTempDirectory().toQString() + QDir::separator() + "TOPPAS_" + tool_name_.toQString() + "_"; - if (tool_type_ != "") + if (!tool_type_.empty()) { tmp_ini_file += tool_type_.toQString() + "_"; } @@ -200,7 +200,7 @@ namespace OpenMS QString executable = File::findSiblingTOPPExecutable(tool_name_).toQString(); QStringList args; args << "-write_ini" << filename_ << "-ini" << tmp_ini_file; - if (tool_type_ != "") + if (!tool_type_.empty()) { args << "-type" << tool_type_.toQString(); } diff --git a/src/openms_gui/source/VISUAL/DIALOGS/TOPPViewOpenDialog.cpp b/src/openms_gui/source/VISUAL/DIALOGS/TOPPViewOpenDialog.cpp index ca9cc6655f0..2bd81530941 100644 --- a/src/openms_gui/source/VISUAL/DIALOGS/TOPPViewOpenDialog.cpp +++ b/src/openms_gui/source/VISUAL/DIALOGS/TOPPViewOpenDialog.cpp @@ -177,7 +177,7 @@ namespace OpenMS // remove all items ui_->merge_combo_->clear(); - if (layers.size() != 0) + if (!layers.empty()) { ui_->merge_->setEnabled(true); ui_->merge_combo_->setEnabled(true); diff --git a/src/openms_gui/source/VISUAL/DIALOGS/TOPPViewPrefDialog.cpp b/src/openms_gui/source/VISUAL/DIALOGS/TOPPViewPrefDialog.cpp index 4341d03d597..bdf5e2d09ba 100644 --- a/src/openms_gui/source/VISUAL/DIALOGS/TOPPViewPrefDialog.cpp +++ b/src/openms_gui/source/VISUAL/DIALOGS/TOPPViewPrefDialog.cpp @@ -36,6 +36,8 @@ #include #include +#include +#include #include #include @@ -49,9 +51,11 @@ namespace OpenMS { TOPPViewPrefDialog::TOPPViewPrefDialog(QWidget* parent) : QDialog(parent), - ui_(new Ui::TOPPViewPrefDialogTemplate) + ui_(new Ui::TOPPViewPrefDialogTemplate), + tsg_param_(TheoreticalSpectrumGenerator().getParameters()) { ui_->setupUi(this); + ui_->param_editor_spec_gen_->load(tsg_param_); connect(ui_->browse_default, &QPushButton::clicked, this, &TOPPViewPrefDialog::browseDefaultPath_); } @@ -60,82 +64,46 @@ namespace OpenMS delete ui_; } + const char* tsg_prefix = "idview:tsg:"; + void TOPPViewPrefDialog::setParam(const Param& param) { - param_ = param; + param_ = getParam(); // get our own defaults - // -------------------------------------------------------------------- - // Set dialog entries from current parameter object (default values) + // make sure the params we write (using getParam) are the same as the ones we can read + param_.update(param, true, true, true, true, OpenMS_Log_info); - // default - ui_->default_path->setText(String(param_.getValue("preferences:default_path").toString()).toQString()); - ui_->default_path_current->setChecked(param_.getValue("preferences:default_path_current").toBool()); - ui_->use_cached_ms1->setChecked(param_.getValue("preferences:use_cached_ms1").toBool()); - ui_->use_cached_ms2->setChecked(param_.getValue("preferences:use_cached_ms2").toBool()); + // general tab + ui_->default_path->setText(String(param_.getValue("default_path").toString()).toQString()); + ui_->default_path_current->setChecked(param_.getValue("default_path_current").toBool()); + ui_->use_cached_ms1->setChecked(param_.getValue("use_cached_ms1").toBool()); + ui_->use_cached_ms2->setChecked(param_.getValue("use_cached_ms2").toBool()); - ui_->map_default->setCurrentIndex(ui_->map_default->findText(String(param_.getValue("preferences:default_map_view").toString()).toQString())); - ui_->map_cutoff->setCurrentIndex(ui_->map_cutoff->findText(String(param_.getValue("preferences:intensity_cutoff").toString()).toQString())); - ui_->on_file_change->setCurrentIndex(ui_->on_file_change->findText(String(param_.getValue("preferences:on_file_change").toString()).toQString())); + ui_->map_default->setCurrentIndex(ui_->map_default->findText(String(param_.getValue("default_map_view").toString()).toQString())); + ui_->map_cutoff->setCurrentIndex(ui_->map_cutoff->findText(String(param_.getValue("intensity_cutoff").toString()).toQString())); + ui_->on_file_change->setCurrentIndex(ui_->on_file_change->findText(String(param_.getValue("on_file_change").toString()).toQString())); // 1D view - ui_->color_1D->setColor(QColor(String(param_.getValue("preferences:1d:peak_color").toString()).toQString())); - ui_->selected_1D->setColor(QColor(String(param_.getValue("preferences:1d:highlighted_peak_color").toString()).toQString())); - ui_->icon_1D->setColor(QColor(String(param_.getValue("preferences:1d:icon_color").toString()).toQString())); + ui_->color_1D->setColor(QColor(String(param_.getValue("1d:peak_color").toString()).toQString())); + ui_->selected_1D->setColor(QColor(String(param_.getValue("1d:highlighted_peak_color").toString()).toQString())); + ui_->icon_1D->setColor(QColor(String(param_.getValue("1d:icon_color").toString()).toQString())); // 2D view - ui_->peak_2D->gradient().fromString(param_.getValue("preferences:2d:dot:gradient")); - ui_->mapping_2D->setCurrentIndex(ui_->mapping_2D->findText(String(param_.getValue("preferences:2d:mapping_of_mz_to").toString()).toQString())); - ui_->feature_icon_2D->setCurrentIndex(ui_->feature_icon_2D->findText(String(param_.getValue("preferences:2d:dot:feature_icon").toString()).toQString())); - ui_->feature_icon_size_2D->setValue((Int)param_.getValue("preferences:2d:dot:feature_icon_size")); + ui_->peak_2D->gradient().fromString(param_.getValue("2d:dot:gradient")); + ui_->mapping_2D->setCurrentIndex(ui_->mapping_2D->findText(String(param_.getValue("2d:mapping_of_mz_to").toString()).toQString())); + ui_->feature_icon_2D->setCurrentIndex(ui_->feature_icon_2D->findText(String(param_.getValue("2d:dot:feature_icon").toString()).toQString())); + ui_->feature_icon_size_2D->setValue((Int)param_.getValue("2d:dot:feature_icon_size")); // 3D view - ui_->peak_3D->gradient().fromString(param_.getValue("preferences:3d:dot:gradient")); - ui_->shade_3D->setCurrentIndex((Int)param_.getValue("preferences:3d:dot:shade_mode")); - ui_->line_width_3D->setValue((Int)param_.getValue("preferences:3d:dot:line_width")); - - // id view - ui_->a_intensity->setValue((double)param_.getValue("preferences:idview:a_intensity")); - ui_->b_intensity->setValue((double)param_.getValue("preferences:idview:b_intensity")); - ui_->c_intensity->setValue((double)param_.getValue("preferences:idview:c_intensity")); - ui_->x_intensity->setValue((double)param_.getValue("preferences:idview:x_intensity")); - ui_->y_intensity->setValue((double)param_.getValue("preferences:idview:y_intensity")); - ui_->z_intensity->setValue((double)param_.getValue("preferences:idview:z_intensity")); - ui_->tolerance->setValue((double)param_.getValue("preferences:idview:tolerance")); - - ui_->relative_loss_intensity->setValue((double)param_.getValue("preferences:idview:relative_loss_intensity")); - - QList a_ions = ui_->ions_list_widget->findItems("A-ions", Qt::MatchFixedString); - QList b_ions = ui_->ions_list_widget->findItems("B-ions", Qt::MatchFixedString); - QList c_ions = ui_->ions_list_widget->findItems("C-ions", Qt::MatchFixedString); - QList x_ions = ui_->ions_list_widget->findItems("X-ions", Qt::MatchFixedString); - QList y_ions = ui_->ions_list_widget->findItems("Y-ions", Qt::MatchFixedString); - QList z_ions = ui_->ions_list_widget->findItems("Z-ions", Qt::MatchFixedString); - QList pc_ions = ui_->ions_list_widget->findItems("Precursor", Qt::MatchFixedString); - QList nl_ions = ui_->ions_list_widget->findItems("Neutral losses", Qt::MatchFixedString); - QList ic_ions = ui_->ions_list_widget->findItems("Isotope clusters", Qt::MatchFixedString); - QList ai_ions = ui_->ions_list_widget->findItems("Abundant immonium-ions", Qt::MatchFixedString); - - OPENMS_PRECONDITION(a_ions.size() == 1, "String 'A-ions' does not exist in identification dialog."); - OPENMS_PRECONDITION(b_ions.size() == 1, "String 'B-ions' does not exist in identification dialog."); - OPENMS_PRECONDITION(c_ions.size() == 1, "String 'C-ions' does not exist in identification dialog."); - OPENMS_PRECONDITION(x_ions.size() == 1, "String 'X-ions' does not exist in identification dialog."); - OPENMS_PRECONDITION(y_ions.size() == 1, "String 'Y-ions' does not exist in identification dialog."); - OPENMS_PRECONDITION(z_ions.size() == 1, "String 'Z-ions' does not exist in identification dialog."); - OPENMS_PRECONDITION(pc_ions.size() == 1, "String 'Precursor' does not exist in identification dialog."); - OPENMS_PRECONDITION(nl_ions.size() == 1, "String 'Neutral losses' does not exist in identification dialog."); - OPENMS_PRECONDITION(ic_ions.size() == 1, "String 'Isotope clusters' does not exist in identification dialog."); - OPENMS_PRECONDITION(ai_ions.size() == 1, "String 'Abundant immonium-ions' does not exist in identification dialog."); - - a_ions[0]->setCheckState(param_.getValue("preferences:idview:show_a_ions").toBool() ? Qt::Checked : Qt::Unchecked); - b_ions[0]->setCheckState(param_.getValue("preferences:idview:show_b_ions").toBool() ? Qt::Checked : Qt::Unchecked); - c_ions[0]->setCheckState(param_.getValue("preferences:idview:show_c_ions").toBool() ? Qt::Checked : Qt::Unchecked); - x_ions[0]->setCheckState(param_.getValue("preferences:idview:show_x_ions").toBool() ? Qt::Checked : Qt::Unchecked); - y_ions[0]->setCheckState(param_.getValue("preferences:idview:show_y_ions").toBool() ? Qt::Checked : Qt::Unchecked); - z_ions[0]->setCheckState(param_.getValue("preferences:idview:show_z_ions").toBool() ? Qt::Checked : Qt::Unchecked); - pc_ions[0]->setCheckState(param_.getValue("preferences:idview:show_precursor").toBool() ? Qt::Checked : Qt::Unchecked); - nl_ions[0]->setCheckState(param_.getValue("preferences:idview:add_losses").toBool() ? Qt::Checked : Qt::Unchecked); - ic_ions[0]->setCheckState(param_.getValue("preferences:idview:add_isotopes").toBool() ? Qt::Checked : Qt::Unchecked); - ai_ions[0]->setCheckState(param_.getValue("preferences:idview:add_abundant_immonium_ions").toBool() ? Qt::Checked : Qt::Unchecked); + ui_->peak_3D->gradient().fromString(param_.getValue("3d:dot:gradient")); + ui_->shade_3D->setCurrentIndex((Int)param_.getValue("3d:dot:shade_mode")); + ui_->line_width_3D->setValue((Int)param_.getValue("3d:dot:line_width")); + + // TSG view + tsg_param_ = param_.copy(tsg_prefix, true); + ui_->param_editor_spec_gen_->load(tsg_param_); + ui_->tolerance->setValue((double)param_.getValue("idview:align:tolerance")); + ui_->unit->setCurrentIndex(ui_->unit->findText(String(param_.getValue("idview:align:is_relative_tolerance") == "true" ? "ppm" : "Da").toQString())); } String fromCheckState(const Qt::CheckState cs) @@ -151,72 +119,37 @@ namespace OpenMS Param TOPPViewPrefDialog::getParam() const { Param p; - p.setValue("preferences:default_path", ui_->default_path->text().toStdString()); - p.setValue("preferences:default_path_current", fromCheckState(ui_->default_path_current->checkState())); - - p.setValue("preferences:use_cached_ms1", fromCheckState(ui_->use_cached_ms1->checkState())); - p.setValue("preferences:use_cached_ms2", fromCheckState(ui_->use_cached_ms2->checkState())); - - p.setValue("preferences:default_map_view", ui_->map_default->currentText().toStdString()); - p.setValue("preferences:intensity_cutoff", ui_->map_cutoff->currentText().toStdString()); - p.setValue("preferences:on_file_change", ui_->on_file_change->currentText().toStdString()); - - p.setValue("preferences:1d:peak_color", ui_->color_1D->getColor().name().toStdString()); - p.setValue("preferences:1d:highlighted_peak_color", ui_->selected_1D->getColor().name().toStdString()); - p.setValue("preferences:1d:icon_color", ui_->icon_1D->getColor().name().toStdString()); - - p.setValue("preferences:2d:dot:gradient", ui_->peak_2D->gradient().toString()); - p.setValue("preferences:2d:mapping_of_mz_to", ui_->mapping_2D->currentText().toStdString()); - p.setValue("preferences:2d:dot:feature_icon", ui_->feature_icon_2D->currentText().toStdString()); - p.setValue("preferences:2d:dot:feature_icon_size", ui_->feature_icon_size_2D->value()); - - p.setValue("preferences:3d:dot:gradient", ui_->peak_3D->gradient().toString()); - p.setValue("preferences:3d:dot:shade_mode", ui_->shade_3D->currentIndex()); - p.setValue("preferences:3d:dot:line_width", ui_->line_width_3D->value()); - - // id view - p.setValue("preferences:idview:a_intensity", ui_->a_intensity->value(), "Default intensity of a-ions"); - p.setValue("preferences:idview:b_intensity", ui_->b_intensity->value(), "Default intensity of b-ions"); - p.setValue("preferences:idview:c_intensity", ui_->c_intensity->value(), "Default intensity of c-ions"); - p.setValue("preferences:idview:x_intensity", ui_->x_intensity->value(), "Default intensity of x-ions"); - p.setValue("preferences:idview:y_intensity", ui_->y_intensity->value(), "Default intensity of y-ions"); - p.setValue("preferences:idview:z_intensity", ui_->z_intensity->value(), "Default intensity of z-ions"); - p.setValue("preferences:idview:relative_loss_intensity", ui_->relative_loss_intensity->value(), "Relativ loss in percent"); - p.setValue("preferences:idview:tolerance", ui_->tolerance->value(), "Alignment tolerance"); - - QList a_ions = ui_->ions_list_widget->findItems("A-ions", Qt::MatchFixedString); - QList b_ions = ui_->ions_list_widget->findItems("B-ions", Qt::MatchFixedString); - QList c_ions = ui_->ions_list_widget->findItems("C-ions", Qt::MatchFixedString); - QList x_ions = ui_->ions_list_widget->findItems("X-ions", Qt::MatchFixedString); - QList y_ions = ui_->ions_list_widget->findItems("Y-ions", Qt::MatchFixedString); - QList z_ions = ui_->ions_list_widget->findItems("Z-ions", Qt::MatchFixedString); - QList pc_ions = ui_->ions_list_widget->findItems("Precursor", Qt::MatchFixedString); - QList nl_ions = ui_->ions_list_widget->findItems("Neutral losses", Qt::MatchFixedString); - QList ic_ions = ui_->ions_list_widget->findItems("Isotope clusters", Qt::MatchFixedString); - QList ai_ions = ui_->ions_list_widget->findItems("Abundant immonium-ions", Qt::MatchFixedString); - - p.setValue("preferences:idview:show_a_ions", fromCheckState(a_ions[0]->checkState()), "Show a-ions"); - p.setValue("preferences:idview:show_b_ions", fromCheckState(b_ions[0]->checkState()), "Show b-ions"); - p.setValue("preferences:idview:show_c_ions", fromCheckState(c_ions[0]->checkState()), "Show c-ions"); - p.setValue("preferences:idview:show_x_ions", fromCheckState(x_ions[0]->checkState()), "Show x-ions"); - p.setValue("preferences:idview:show_y_ions", fromCheckState(y_ions[0]->checkState()), "Show y-ions"); - p.setValue("preferences:idview:show_z_ions", fromCheckState(z_ions[0]->checkState()), "Show z-ions"); - p.setValue("preferences:idview:show_precursor", fromCheckState(pc_ions[0]->checkState()), "Show precursor"); - p.setValue("preferences:idview:add_losses", fromCheckState(nl_ions[0]->checkState()), "Show neutral losses"); - p.setValue("preferences:idview:add_isotopes", fromCheckState(ic_ions[0]->checkState()), "Show isotopes"); - p.setValue("preferences:idview:add_abundant_immonium_ions", fromCheckState(ai_ions[0]->checkState()), "Show abundant immonium ions"); - - // if setParam() was not called before, param_ is empty and p is the only thing we have... - if (param_.empty()) - { - param_ = p; - } - // update with new values from 'p' to avoid loosing additional parameters and the existing descriptions already present in param_ - else if (!param_.update(p, true, true, true, true, OpenMS_Log_warn)) - { // fails if parameter types are incompatible, e.g. param_.getValue("checkbox") is STRING, but p.setValue("checkBox", 1), i.e. Int was stored. - // You should see 'Parameter 'preferences:use_cached_ms2' has changed value type!' or similar in the console - throw Exception::InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Storing parameters failed. This is a bug! Please report it!"); - } + p.setValue("default_path", ui_->default_path->text().toStdString()); + p.setValue("default_path_current", fromCheckState(ui_->default_path_current->checkState())); + + p.setValue("use_cached_ms1", fromCheckState(ui_->use_cached_ms1->checkState())); + p.setValue("use_cached_ms2", fromCheckState(ui_->use_cached_ms2->checkState())); + + p.setValue("default_map_view", ui_->map_default->currentText().toStdString()); + p.setValue("intensity_cutoff", ui_->map_cutoff->currentText().toStdString()); + p.setValue("on_file_change", ui_->on_file_change->currentText().toStdString()); + + p.setValue("1d:peak_color", ui_->color_1D->getColor().name().toStdString()); + p.setValue("1d:highlighted_peak_color", ui_->selected_1D->getColor().name().toStdString()); + p.setValue("1d:icon_color", ui_->icon_1D->getColor().name().toStdString()); + + p.setValue("2d:dot:gradient", ui_->peak_2D->gradient().toString()); + p.setValue("2d:mapping_of_mz_to", ui_->mapping_2D->currentText().toStdString()); + p.setValue("2d:dot:feature_icon", ui_->feature_icon_2D->currentText().toStdString()); + p.setValue("2d:dot:feature_icon_size", ui_->feature_icon_size_2D->value()); + + p.setValue("3d:dot:gradient", ui_->peak_3D->gradient().toString()); + p.setValue("3d:dot:shade_mode", ui_->shade_3D->currentIndex()); + p.setValue("3d:dot:line_width", ui_->line_width_3D->value()); + + // TSG view + ui_->param_editor_spec_gen_->store(); // to tsg_param_ + p.insert(tsg_prefix, tsg_param_); + // from SpectrumAlignment + p.setValue("idview:align:tolerance", ui_->tolerance->value(), "Alignment tolerance value"); + p.setValue("idview:align:is_relative_tolerance", ui_->unit->currentText().toStdString() == "ppm" ? "true" : "false", "Alignment tolerance unit (Da, ppm)"); + + param_ = p; return param_; } @@ -224,7 +157,7 @@ namespace OpenMS void TOPPViewPrefDialog::browseDefaultPath_() { QString path = QFileDialog::getExistingDirectory(this, "Choose a directory", ui_->default_path->text()); - if (path != "") + if (!path.isEmpty()) { ui_->default_path->setText(path); } diff --git a/src/openms_gui/source/VISUAL/DIALOGS/TOPPViewPrefDialog.ui b/src/openms_gui/source/VISUAL/DIALOGS/TOPPViewPrefDialog.ui index 67193a322b0..7f150d659db 100644 --- a/src/openms_gui/source/VISUAL/DIALOGS/TOPPViewPrefDialog.ui +++ b/src/openms_gui/source/VISUAL/DIALOGS/TOPPViewPrefDialog.ui @@ -13,11 +13,21 @@ TOPPView default preferences - - + + + + + Qt::Horizontal + + + QDialogButtonBox::Cancel|QDialogButtonBox::Ok + + + + - 0 + 4 @@ -481,327 +491,62 @@ p, li { white-space: pre-wrap; } - Identification View + Theoretical Spectra Generation - - - - 0 - 0 - 553 - 333 - - - - - - - - - - - - 0 - 0 - - - - Generate: - - - - - - - - 0 - 0 - - - - - 100 - 155 - - - - QAbstractItemView::NoSelection - - - QListView::ListMode - - - false - - - - A-ions - - - Unchecked - - - - - B-ions - - - Unchecked - - - - - C-ions - - - Unchecked - - - - - X-ions - - - Unchecked - - - - - Y-ions - - - Unchecked - - - - - Z-ions - - - Unchecked - - - - - Precursor - - - Unchecked - - - - - Neutral losses - - - Unchecked - - - - - Isotope clusters - - - Unchecked - - - - - Abundant immonium-ions - - - Unchecked - - - - - - - - - - - - Intensities + + + + + + 0 + 0 + + + + 2 + + + 0.100000000000000 + + + 0.500000000000000 + + + + + + + Alignment Tolerance + + + + + + + + 0 + 0 + + + + + Da + + + + + ppm - - - - - - - A-ions - - - - - - - 1.000000000000000 - - - - - - - - - - - B-ions - - - - - - - 1.000000000000000 - - - - - - - - - - - C-ions - - - - - - - 1.000000000000000 - - - - - - - - - - - X-ions - - - - - - - 1.000000000000000 - - - - - - - - - - - Y-ions - - - - - - - 1.000000000000000 - - - - - - - - - - - Z-ions - - - - - - - 1.000000000000000 - - - - - - - - - - - Relative loss - - - - - - - 1.000000000000000 - - - 0.010000000000000 - - - 0.100000000000000 - - - - - - - - - - - Tolerance - - - - - - - 3 - - - 99999.990000000005239 - - - 0.100000000000000 - - - 0.500000000000000 - - - - - - - - - - + + + + + + + - - - - Qt::Horizontal - - - QDialogButtonBox::Cancel|QDialogButtonBox::Ok - - - @@ -815,6 +560,12 @@ p, li { white-space: pre-wrap; } QWidget
OpenMS/VISUAL/MultiGradientSelector.h
+ + OpenMS::ParamEditor + QWidget +
OpenMS/VISUAL/ParamEditor.h
+ 1 +
default_path diff --git a/src/openms_gui/source/VISUAL/DIALOGS/ToolsDialog.cpp b/src/openms_gui/source/VISUAL/DIALOGS/ToolsDialog.cpp index 81da4ca31e0..b0554d82e85 100644 --- a/src/openms_gui/source/VISUAL/DIALOGS/ToolsDialog.cpp +++ b/src/openms_gui/source/VISUAL/DIALOGS/ToolsDialog.cpp @@ -66,7 +66,7 @@ namespace OpenMS const Param& params, String ini_file, String default_dir, - LayerData::DataType layer_type, + LayerDataBase::DataType layer_type, String layer_name ) : QDialog(parent), @@ -88,17 +88,17 @@ namespace OpenMS // Determine all available tools compatible with the layer_type tool_map_ = { - {FileTypes::Type::MZML, LayerData::DataType::DT_PEAK}, - {FileTypes::Type::MZXML, LayerData::DataType::DT_PEAK}, - {FileTypes::Type::FEATUREXML, LayerData::DataType::DT_FEATURE}, - {FileTypes::Type::CONSENSUSXML, LayerData::DataType::DT_CONSENSUS}, - {FileTypes::Type::IDXML, LayerData::DataType::DT_IDENT} + {FileTypes::Type::MZML, LayerDataBase::DataType::DT_PEAK}, + {FileTypes::Type::MZXML, LayerDataBase::DataType::DT_PEAK}, + {FileTypes::Type::FEATUREXML, LayerDataBase::DataType::DT_FEATURE}, + {FileTypes::Type::CONSENSUSXML, LayerDataBase::DataType::DT_CONSENSUS}, + {FileTypes::Type::IDXML, LayerDataBase::DataType::DT_IDENT} }; const auto& tools = ToolHandler::getTOPPToolList(); const auto& utils = ToolHandler::getUtilList(); for (auto& pair : tools) { - std::vector tool_types = getTypesFromParam_(params.copy(pair.first + ":")); + std::vector tool_types = getTypesFromParam_(params.copy(pair.first + ":")); if (std::find(tool_types.begin(), tool_types.end(), layer_type) != tool_types.end()) { list << pair.first.toQString(); @@ -106,7 +106,7 @@ namespace OpenMS } for (auto& pair : utils) { - std::vector tool_types = getTypesFromParam_(params.copy(pair.first + ":")); + std::vector tool_types = getTypesFromParam_(params.copy(pair.first + ":")); if (std::find(tool_types.begin(), tool_types.end(), layer_type) != tool_types.end()) { list << pair.first.toQString(); @@ -171,15 +171,15 @@ namespace OpenMS { } - std::vector ToolsDialog::getTypesFromParam_(const Param& p) const + std::vector ToolsDialog::getTypesFromParam_(const Param& p) const { // Containing all types a tool is compatible with - std::vector types; + std::vector types; for (const auto& entry : p) { if (entry.name == "in") { - // Map all file extension to a LayerData::DataType + // Map all file extension to a LayerDataBase::DataType for (auto& file_extension : entry.valid_strings) { // a file extension in valid_strings is of form "*.TYPE" -> convert to substr "TYPE". diff --git a/src/openms_gui/source/VISUAL/DIATreeTab.cpp b/src/openms_gui/source/VISUAL/DIATreeTab.cpp index 934903066b1..8e2e1d46413 100644 --- a/src/openms_gui/source/VISUAL/DIATreeTab.cpp +++ b/src/openms_gui/source/VISUAL/DIATreeTab.cpp @@ -272,7 +272,7 @@ namespace OpenMS } - bool DIATreeTab::hasData(const LayerData* layer) + bool DIATreeTab::hasData(const LayerDataBase* layer) { if (layer == nullptr) { @@ -282,7 +282,7 @@ namespace OpenMS return (data != nullptr && !data->getProteins().empty()); } - void DIATreeTab::updateEntries(LayerData* layer) + void DIATreeTab::updateEntries(LayerDataBase* layer) { if (layer == nullptr) { @@ -294,7 +294,7 @@ namespace OpenMS { return; } - LayerData& cl = *layer; + LayerDataBase& cl = *layer; OSWData* data = cl.getChromatogramAnnotation().get(); diff --git a/src/openms_gui/source/VISUAL/DataSelectionTabs.cpp b/src/openms_gui/source/VISUAL/DataSelectionTabs.cpp index d885ea4bcbb..dc04e4f950c 100644 --- a/src/openms_gui/source/VISUAL/DataSelectionTabs.cpp +++ b/src/openms_gui/source/VISUAL/DataSelectionTabs.cpp @@ -37,7 +37,7 @@ #include #include -#include +#include #include #include #include @@ -112,7 +112,7 @@ namespace OpenMS connect(this, &QTabWidget::tabBarDoubleClicked, this, &DataSelectionTabs::tabBarDoubleClicked); } - LayerData* getCurrentLayerData(TOPPViewBase* tv) + LayerDataBase* getCurrentLayerData(TOPPViewBase* tv) { PlotCanvas* cc = tv->getActiveCanvas(); if (cc == nullptr) @@ -128,7 +128,7 @@ namespace OpenMS // called externally // and internally by signals - void DataSelectionTabs::update() + void DataSelectionTabs::callUpdateEntries() { // prevent infinite loop when calling 'setTabEnabled' -> currentTabChanged() -> update() this->blockSignals(true); @@ -164,7 +164,6 @@ namespace OpenMS setCurrentIndex(highest_data_index); } Size current_index = currentIndex(); - // update the currently visible tab (might be disabled if no data is shown) tab_ptrs_[current_index]->updateEntries(layer_ptr); } @@ -182,7 +181,7 @@ namespace OpenMS case IDENT_IDX: spectraview_controller_->deactivateBehavior(); diatab_controller_->deactivateBehavior(); - if (tv_->getActive2DWidget()) // currently 2D window is open + if (tv_->getActive2DWidget()) // currently, 2D window is open { idview_controller_->showSpectrumAsNew1D(0); } @@ -197,7 +196,12 @@ namespace OpenMS std::cerr << "Error: tab_index " << tab_index << " is invalid\n"; throw Exception::NotImplemented(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION); } - update(); + callUpdateEntries(); //TODO actually this is overkill. Why would you load the entire table again + // when you only switched tabs? The TabView should get notified when the layer data changes, so it only + // updates when necessary... + // The only thing that maybe needs to happen when switching tabs is to sync the index across the tables in the different tabs. + // which is the only reason why we need to actually use callUpdateEntries here. + // At least we reduced it to only updateEntries during tab switch, not EVERY update() [e.g. when resizing, refocussing...] } void DataSelectionTabs::showSpectrumAsNew1D(int index) diff --git a/src/openms_gui/source/VISUAL/EnhancedTabBarWidgetInterface.cpp b/src/openms_gui/source/VISUAL/EnhancedTabBarWidgetInterface.cpp index 2bcb29e0dbb..ae2bf8e7a5c 100644 --- a/src/openms_gui/source/VISUAL/EnhancedTabBarWidgetInterface.cpp +++ b/src/openms_gui/source/VISUAL/EnhancedTabBarWidgetInterface.cpp @@ -64,7 +64,7 @@ namespace OpenMS } } - Int EnhancedTabBarWidgetInterface::getWindowId() + Int EnhancedTabBarWidgetInterface::getWindowId() const { return window_id_; } diff --git a/src/openms_gui/source/VISUAL/HistogramWidget.cpp b/src/openms_gui/source/VISUAL/HistogramWidget.cpp index ed83525dc04..75f6052edb9 100644 --- a/src/openms_gui/source/VISUAL/HistogramWidget.cpp +++ b/src/openms_gui/source/VISUAL/HistogramWidget.cpp @@ -81,12 +81,12 @@ namespace OpenMS delete(bottom_axis_); } - double HistogramWidget::getLeftSplitter() + double HistogramWidget::getLeftSplitter() const { return left_splitter_; } - double HistogramWidget::getRightSplitter() + double HistogramWidget::getRightSplitter() const { return right_splitter_; } diff --git a/src/openms_gui/source/VISUAL/ICONS/resources.qrc b/src/openms_gui/source/VISUAL/ICONS/resources.qrc index 97cf729c72b..c3db31d1a8e 100644 --- a/src/openms_gui/source/VISUAL/ICONS/resources.qrc +++ b/src/openms_gui/source/VISUAL/ICONS/resources.qrc @@ -30,4 +30,7 @@ tile_vertical.png unassigned.png + + sequence_viz.html + diff --git a/src/openms_gui/source/VISUAL/ICONS/sequence_viz.html b/src/openms_gui/source/VISUAL/ICONS/sequence_viz.html new file mode 100644 index 00000000000..6e5c0a0fb32 --- /dev/null +++ b/src/openms_gui/source/VISUAL/ICONS/sequence_viz.html @@ -0,0 +1,678 @@ + + + + + + + Sequence Visualizer + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Help +
+ 1) Keep your mouse over a track and use ctrl + scroll to zoom in/out
+ 2) Hover over the modification track to view modification data
+ 3) Hover over the peptide track to view peptide data +
+
+ + diff --git a/src/openms_gui/source/VISUAL/INTERFACES/IPeptideIds.cpp b/src/openms_gui/source/VISUAL/INTERFACES/IPeptideIds.cpp new file mode 100644 index 00000000000..e69de29bb2d diff --git a/src/openms_gui/source/VISUAL/INTERFACES/sources.cmake b/src/openms_gui/source/VISUAL/INTERFACES/sources.cmake new file mode 100644 index 00000000000..e39ece65fdf --- /dev/null +++ b/src/openms_gui/source/VISUAL/INTERFACES/sources.cmake @@ -0,0 +1,20 @@ +### the directory name +set(directory source/VISUAL/INTERFACES) + +### list all filenames of the directory here +set(sources_list + IPeptideIds.cpp +) + +### add path to the filenames +set(sources) +foreach(i ${sources_list}) + list(APPEND sources ${directory}/${i}) +endforeach(i) + +### pass source file list to the upper instance +set(OpenMSVisual_sources ${OpenMSVisual_sources} ${sources}) + +### source group definition +source_group("Source Files\\VISUAL\\DIALOGS" FILES ${sources}) + diff --git a/src/openms_gui/source/VISUAL/LayerData.cpp b/src/openms_gui/source/VISUAL/LayerDataBase.cpp similarity index 77% rename from src/openms_gui/source/VISUAL/LayerData.cpp rename to src/openms_gui/source/VISUAL/LayerDataBase.cpp index 8c09c10c1e0..7c60eda83e6 100644 --- a/src/openms_gui/source/VISUAL/LayerData.cpp +++ b/src/openms_gui/source/VISUAL/LayerDataBase.cpp @@ -32,17 +32,16 @@ // $Authors: Marc Sturm $ // -------------------------------------------------------------------------- -#include +#include -#include // for AMS annotation +#include // for AMS annotation #include #include -#include #include +#include #include #include #include -#include #include #include @@ -54,106 +53,26 @@ using namespace std; namespace OpenMS { - const std::string LayerData::NamesOfLabelType[] = {"None", "Index", "Label meta data", "Peptide identification", "All peptide identifications"}; + const std::string LayerDataBase::NamesOfLabelType[] = {"None", "Index", "Label meta data", "Peptide identification", "All peptide identifications"}; - std::ostream & operator<<(std::ostream & os, const LayerData & rhs) + std::ostream& operator<<(std::ostream& os, const LayerDataBase& rhs) { - os << "--LayerData BEGIN--" << std::endl; + os << "--LayerDataBase BEGIN--" << std::endl; os << "name: " << rhs.getName() << std::endl; os << "visible: " << rhs.visible << std::endl; os << "number of peaks: " << rhs.getPeakData()->getSize() << std::endl; - os << "--LayerData END--" << std::endl; + os << "--LayerDataBase END--" << std::endl; return os; } - - /// Default constructor - - LayerData::LayerData() : - flags(), - visible(true), - flipped(false), - type(DT_UNKNOWN), - name_(), - filename(), - peptides(), - param(), - gradient(), - filters(), - annotations_1d(), - peak_colors_1d(), - modifiable(false), - modified(false), - label(L_NONE), - peptide_id_index(-1), - peptide_hit_index(-1), - features_(new FeatureMapType()), - consensus_map_(new ConsensusMapType()), - peak_map_(new ExperimentType()), - on_disc_peaks(new OnDiscMSExperiment()), - chromatogram_map_(new ExperimentType()), - current_spectrum_idx_(0), - cached_spectrum_() - { - annotations_1d.resize(1); - } - - const LayerData::ConstExperimentSharedPtrType LayerData::getPeakData() const + const LayerDataBase::ConstExperimentSharedPtrType LayerDataBase::getPeakData() const { return boost::static_pointer_cast(peak_map_); } - void LayerData::updateRanges() - { - peak_map_->updateRanges(); - features_->updateRanges(); - consensus_map_->updateRanges(); - // on_disc_peaks->updateRanges(); // note: this is not going to work since its on disk! We currently don't have a good way to access these ranges - chromatogram_map_->updateRanges(); - cached_spectrum_.updateRanges(); - } - - /// Returns the minimum intensity of the internal data, depending on type - - float LayerData::getMinIntensity() const - { - if (type == LayerData::DT_PEAK || type == LayerData::DT_CHROMATOGRAM) - { - return getPeakData()->getMinInt(); - } - else if (type == LayerData::DT_FEATURE) - { - return getFeatureMap()->getMinInt(); - } - else - { - return getConsensusMap()->getMinInt(); - } - } - - /// Returns the maximum intensity of the internal data, depending on type - - float LayerData::getMaxIntensity() const - { - if (type == LayerData::DT_PEAK || type == LayerData::DT_CHROMATOGRAM) - { - return getPeakData()->getMaxInt(); - } - else if (type == LayerData::DT_FEATURE) - { - return getFeatureMap()->getMaxInt(); - } - else - { - return getConsensusMap()->getMaxInt(); - } - } - - /// get name augmented with attributes, e.g. [flipped], or '*' if modified - - String LayerData::getDecoratedName() const - { + String LayerDataBase::getDecoratedName() const + { String n = name_; if (flipped) { @@ -166,7 +85,7 @@ namespace OpenMS return n; } - void LayerData::updateCache_() + void LayerDataBase::updateCache_() { if (peak_map_->getNrSpectra() > current_spectrum_idx_ && (*peak_map_)[current_spectrum_idx_].size() > 0) { @@ -185,26 +104,26 @@ namespace OpenMS /// get annotation (e.g. to build a hierachical ID View) /// Not const, because we might have incomplete data, which needs to be loaded from sql source - LayerData::OSWDataSharedPtrType& LayerData::getChromatogramAnnotation() + LayerDataBase::OSWDataSharedPtrType& LayerDataBase::getChromatogramAnnotation() { return chrom_annotation_; } - const LayerData::OSWDataSharedPtrType& LayerData::getChromatogramAnnotation() const + const LayerDataBase::OSWDataSharedPtrType& LayerDataBase::getChromatogramAnnotation() const { return chrom_annotation_; } - void LayerData::setChromatogramAnnotation(OSWData&& data) + void LayerDataBase::setChromatogramAnnotation(OSWData&& data) { chrom_annotation_ = OSWDataSharedPtrType(new OSWData(std::move(data))); } - bool LayerData::annotate(const vector& identifications, - const vector& protein_identifications) + bool LayerDataBase::annotate(const vector& identifications, + const vector& protein_identifications) { IDMapper mapper; - if (this->type == LayerData::DT_PEAK) + if (this->type == LayerDataBase::DT_PEAK) { Param p = mapper.getDefaults(); p.setValue("rt_tolerance", 0.1, "RT tolerance (in seconds) for the matching"); @@ -213,11 +132,11 @@ namespace OpenMS mapper.setParameters(p); mapper.annotate(*getPeakDataMuteable(), identifications, protein_identifications, true); } - else if (type == LayerData::DT_FEATURE) + else if (type == LayerDataBase::DT_FEATURE) { mapper.annotate(*getFeatureMap(), identifications, protein_identifications); } - else if (type == LayerData::DT_CONSENSUS) + else if (type == LayerDataBase::DT_CONSENSUS) { mapper.annotate(*getConsensusMap(), identifications, protein_identifications); } @@ -229,14 +148,14 @@ namespace OpenMS return true; } - const LayerData::ExperimentType::SpectrumType& LayerData::getCurrentSpectrum() const + const LayerDataBase::ExperimentType::SpectrumType& LayerDataBase::getCurrentSpectrum() const { return cached_spectrum_; } /// Returns a const-copy of the required spectrum which is guaranteed to be populated with raw data - const LayerData::ExperimentType::SpectrumType LayerData::getSpectrum(Size spectrum_idx) const + const LayerDataBase::ExperimentType::SpectrumType LayerDataBase::getSpectrum(Size spectrum_idx) const { if (spectrum_idx == current_spectrum_idx_) { @@ -253,13 +172,26 @@ namespace OpenMS return (*peak_map_)[spectrum_idx]; } - void LayerData::synchronizePeakAnnotations() + float LayerDataBase::getMinIntensity() const + { + return getRange().getMinIntensity(); + } + + float LayerDataBase::getMaxIntensity() const + { + return getRange().getMaxIntensity(); + } + + void LayerDataBase::synchronizePeakAnnotations() { // Return if no valid peak layer attached - if (getPeakData() == nullptr || getPeakData()->empty() || type != LayerData::DT_PEAK) { return; } + if (getPeakData() == nullptr || getPeakData()->empty() || type != LayerDataBase::DT_PEAK) + { + return; + } // get mutable access to the spectrum - MSSpectrum & spectrum = getPeakDataMuteable()->getSpectrum(current_spectrum_idx_); + MSSpectrum& spectrum = getPeakDataMuteable()->getSpectrum(current_spectrum_idx_); int ms_level = spectrum.getMSLevel(); @@ -284,16 +216,16 @@ namespace OpenMS updatePeptideHitAnnotations_(hit); } else - { // no hits? add empty hit + {// no hits? add empty hit PeptideHit hit; updatePeptideHitAnnotations_(hit); hits.push_back(hit); } } - else // PeptideIdentifications are empty, create new PepIDs and PeptideHits to store the PeakAnnotations + else// PeptideIdentifications are empty, create new PepIDs and PeptideHits to store the PeakAnnotations { // copy user annotations to fragment annotation vector - const Annotations1DContainer & las = getAnnotations(current_spectrum_idx_); + const Annotations1DContainer& las = getAnnotations(current_spectrum_idx_); // no annotations so we don't need to synchronize bool has_peak_annotation(false); @@ -302,9 +234,9 @@ namespace OpenMS // only store peak annotations Annotation1DPeakItem* pa = dynamic_cast(a); if (pa != nullptr) - { + { has_peak_annotation = true; - break; + break; } } if (has_peak_annotation == false) @@ -340,10 +272,10 @@ namespace OpenMS } } - void LayerData::updatePeptideHitAnnotations_(PeptideHit& hit) + void LayerDataBase::updatePeptideHitAnnotations_(PeptideHit& hit) { // copy user annotations to fragment annotation vector - const Annotations1DContainer & las = getCurrentAnnotations(); + const Annotations1DContainer& las = getCurrentAnnotations(); // initialize with an empty vector vector fas; @@ -360,7 +292,7 @@ namespace OpenMS // only store peak annotations (skip general lables and distance annotations) Annotation1DPeakItem* pa = dynamic_cast(a); if (pa == nullptr) - { + { continue; } @@ -389,7 +321,7 @@ namespace OpenMS // count number of + and - in suffix (e.g., to support "++" as charge 2 anotation) int plus(0), minus(0); - for (int p = (int)peak_anno.size() - 1; p >= 0; --p) + for (int p = (int) peak_anno.size() - 1; p >= 0; --p) { if (peak_anno[p] == '+') { @@ -401,15 +333,15 @@ namespace OpenMS ++minus; continue; } - else // not '+' or '-'? + else// not '+' or '-'? { - if (plus > 0 && minus == 0) // found pluses? + if (plus > 0 && minus == 0)// found pluses? { tmp_charge = plus; peak_anno = peak_anno.left(peak_anno.size() - plus); break; } - else if (minus > 0 && plus == 0) // found minuses? + else if (minus > 0 && plus == 0)// found minuses? { tmp_charge = -minus; peak_anno = peak_anno.left(peak_anno.size() - minus); @@ -440,27 +372,27 @@ namespace OpenMS } } - void LayerData::removePeakAnnotationsFromPeptideHit(const std::vector& selected_annotations) + void LayerDataBase::removePeakAnnotationsFromPeptideHit(const std::vector& selected_annotations) { // Return if no valid peak layer attached - if (getPeakData() == nullptr || getPeakData()->empty() || type != LayerData::DT_PEAK) - { + if (getPeakData() == nullptr || getPeakData()->empty() || type != LayerDataBase::DT_PEAK) + { return; } // no ID selected if (peptide_id_index == -1 || peptide_hit_index == -1) - { + { return; } // get mutable access to the spectrum - MSSpectrum & spectrum = getPeakDataMuteable()->getSpectrum(current_spectrum_idx_); + MSSpectrum& spectrum = getPeakDataMuteable()->getSpectrum(current_spectrum_idx_); int ms_level = spectrum.getMSLevel(); // wrong MS level if (ms_level < 2) - { + { return; } @@ -469,8 +401,8 @@ namespace OpenMS // since we are deleting existing annotations, // that have to be somewhere, but better make sure vector& pep_ids = spectrum.getPeptideIdentifications(); - if (pep_ids.empty()) - { + if (pep_ids.empty()) + { return; } vector& hits = pep_ids[peptide_id_index].getHits(); @@ -480,7 +412,7 @@ namespace OpenMS } PeptideHit& hit = hits[peptide_hit_index]; vector fas = hit.getPeakAnnotations(); - if (fas.empty()) + if (fas.empty()) { return; } @@ -497,7 +429,7 @@ namespace OpenMS Annotation1DPeakItem* pa = dynamic_cast(it); // only search for peak annotations if (pa == nullptr) - { + { continue; } if (fabs(tmp_a.mz - pa->getPeakPosition()[0]) < 1e-6) @@ -516,19 +448,19 @@ namespace OpenMS fas.erase(std::remove(fas.begin(), fas.end(), tmp_a), fas.end()); } if (annotations_changed) - { + { hit.setPeakAnnotations(fas); } } - LayerAnnotatorBase::LayerAnnotatorBase(const FileTypes::FileTypeList& supported_types, const String& file_dialog_text, QWidget* gui_lock) - : supported_types_(supported_types), + LayerAnnotatorBase::LayerAnnotatorBase(const FileTypes::FileTypeList& supported_types, const String& file_dialog_text, QWidget* gui_lock) : + supported_types_(supported_types), file_dialog_text_(file_dialog_text), gui_lock_(gui_lock) { } - bool LayerAnnotatorBase::annotateWithFileDialog(LayerData& layer, LogWindow& log, const String& current_path) const + bool LayerAnnotatorBase::annotateWithFileDialog(LayerDataBase& layer, LogWindow& log, const String& current_path) const { // warn if hidden layer => wrong layer selected... if (!layer.visible) @@ -542,13 +474,13 @@ namespace OpenMS file_dialog_text_.toQString(), current_path.toQString(), supported_types_.toFileDialogFilter(FileTypes::Filter::BOTH, true).toQString()); - + bool success = annotateWithFilename(layer, log, fname); return success; } - bool LayerAnnotatorBase::annotateWithFilename(LayerData& layer, LogWindow& log, const String& fname) const + bool LayerAnnotatorBase::annotateWithFilename(LayerDataBase& layer, LogWindow& log, const String& fname) const { if (fname.empty()) { @@ -575,8 +507,7 @@ namespace OpenMS std::unique_ptr LayerAnnotatorBase::getAnnotatorWhichSupports(const FileTypes::Type& type) { std::unique_ptr ptr(nullptr); - auto assign = [&type, &ptr](std::unique_ptr other) - { + auto assign = [&type, &ptr](std::unique_ptr other) { if (other->supported_types_.contains(type)) { if (ptr.get() != nullptr) @@ -591,7 +522,7 @@ namespace OpenMS assign(std::unique_ptr(new LayerAnnotatorPeptideID(nullptr))); assign(std::unique_ptr(new LayerAnnotatorOSW(nullptr))); - return ptr; // Note: no std::move here needed because of copy elision + return ptr;// Note: no std::move here needed because of copy elision } std::unique_ptr LayerAnnotatorBase::getAnnotatorWhichSupports(const String& filename) @@ -599,7 +530,7 @@ namespace OpenMS return getAnnotatorWhichSupports(FileHandler::getType(filename)); } - bool LayerAnnotatorPeptideID::annotateWorker_(LayerData& layer, const String& filename, LogWindow& /*log*/) const + bool LayerAnnotatorPeptideID::annotateWorker_(LayerDataBase& layer, const String& filename, LogWindow& /*log*/) const { FileTypes::Type type = FileHandler::getType(filename); vector identifications; @@ -618,7 +549,7 @@ namespace OpenMS return true; } - bool LayerAnnotatorAMS::annotateWorker_(LayerData& layer, const String& filename, LogWindow& log) const + bool LayerAnnotatorAMS::annotateWorker_(LayerDataBase& layer, const String& filename, LogWindow& log) const { FeatureMap fm; FeatureXMLFile().load(filename, fm); @@ -630,7 +561,7 @@ namespace OpenMS engine = fm.getProteinIdentifications().back().getSearchEngine(); if (engine == AccurateMassSearchEngine::search_engine_identifier) { - if (layer.type != LayerData::DT_PEAK) + if (layer.type != LayerDataBase::DT_PEAK) { QMessageBox::warning(nullptr, "Error", "Layer type is not DT_PEAK!"); return false; @@ -650,14 +581,14 @@ namespace OpenMS return false; } - bool LayerAnnotatorOSW::annotateWorker_(LayerData& layer, + bool LayerAnnotatorOSW::annotateWorker_(LayerDataBase& layer, const String& filename, LogWindow& log) const { log.appendNewHeader(LogWindow::LogState::NOTICE, "Note", "Reading OSW data ..."); try { - OSWFile oswf(filename); // this can throw if file does not exist + OSWFile oswf(filename);// this can throw if file does not exist OSWData data; oswf.readMinimal(data); // allow data to map from transition.id (=native.id) to a chromatogram index in MSExperiment @@ -672,4 +603,4 @@ namespace OpenMS } } -} // namespace OpenMS +}// namespace OpenMS diff --git a/src/openms_gui/source/VISUAL/LayerDataChrom.cpp b/src/openms_gui/source/VISUAL/LayerDataChrom.cpp new file mode 100644 index 00000000000..c5cd163ce7b --- /dev/null +++ b/src/openms_gui/source/VISUAL/LayerDataChrom.cpp @@ -0,0 +1,46 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Chris Bielow $ +// $Authors: Chris Bielow $ +// -------------------------------------------------------------------------- + +#include +#include + +using namespace std; + +namespace OpenMS +{ + std::unique_ptr LayerDataChrom::getStats() const + { + return make_unique(*peak_map_); + } +}// namespace OpenMS diff --git a/src/openms_gui/source/VISUAL/LayerDataConsensus.cpp b/src/openms_gui/source/VISUAL/LayerDataConsensus.cpp new file mode 100644 index 00000000000..84fe02461e1 --- /dev/null +++ b/src/openms_gui/source/VISUAL/LayerDataConsensus.cpp @@ -0,0 +1,53 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Chris Bielow $ +// $Authors: Chris Bielow $ +// -------------------------------------------------------------------------- + +#include +#include + +using namespace std; + +namespace OpenMS +{ + /// Default constructor + LayerDataConsensus::LayerDataConsensus(ConsensusMapSharedPtrType& map) : LayerDataBase(LayerDataBase::DT_CONSENSUS) + { + consensus_map_ = map; + } + + std::unique_ptr LayerDataConsensus::getStats() const + { + return make_unique(*consensus_map_); + } + +}// namespace OpenMS diff --git a/src/openms_gui/source/VISUAL/LayerDataFeature.cpp b/src/openms_gui/source/VISUAL/LayerDataFeature.cpp new file mode 100644 index 00000000000..580a96f9fc0 --- /dev/null +++ b/src/openms_gui/source/VISUAL/LayerDataFeature.cpp @@ -0,0 +1,52 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Chris Bielow $ +// $Authors: Chris Bielow $ +// -------------------------------------------------------------------------- + +#include +#include + +using namespace std; + +namespace OpenMS +{ + /// Default constructor + LayerDataFeature::LayerDataFeature() : LayerDataBase(LayerDataBase::DT_FEATURE) + { + flags.set(LayerDataBase::F_HULL); + } + + std::unique_ptr LayerDataFeature::getStats() const + { + return make_unique(*getFeatureMap()); + } +}// namespace OpenMS diff --git a/src/openms_gui/source/VISUAL/LayerDataIdent.cpp b/src/openms_gui/source/VISUAL/LayerDataIdent.cpp new file mode 100644 index 00000000000..274f3b76875 --- /dev/null +++ b/src/openms_gui/source/VISUAL/LayerDataIdent.cpp @@ -0,0 +1,46 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Chris Bielow $ +// $Authors: Chris Bielow $ +// -------------------------------------------------------------------------- + +#include +#include + +using namespace std; + +namespace OpenMS +{ + std::unique_ptr LayerDataIdent::getStats() const + { + return make_unique(peptides_); + } +} // namespace OpenMS diff --git a/src/openms_gui/source/VISUAL/LayerDataPeak.cpp b/src/openms_gui/source/VISUAL/LayerDataPeak.cpp new file mode 100644 index 00000000000..4991a60875f --- /dev/null +++ b/src/openms_gui/source/VISUAL/LayerDataPeak.cpp @@ -0,0 +1,54 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Chris Bielow $ +// $Authors: Chris Bielow $ +// -------------------------------------------------------------------------- + +#include +#include + +using namespace std; + +namespace OpenMS +{ + /// Default constructor + + LayerDataPeak::LayerDataPeak() : LayerDataBase(LayerDataBase::DT_PEAK) + { + flags.set(LayerDataBase::P_PRECURSORS); + } + + std::unique_ptr LayerDataPeak::getStats() const + { + return make_unique(*peak_map_); + } + +}// namespace OpenMS diff --git a/src/openms_gui/source/VISUAL/LayerListView.cpp b/src/openms_gui/source/VISUAL/LayerListView.cpp index 858b1c4929d..3cd7d84efa3 100644 --- a/src/openms_gui/source/VISUAL/LayerListView.cpp +++ b/src/openms_gui/source/VISUAL/LayerListView.cpp @@ -92,7 +92,7 @@ namespace OpenMS for (Size i = 0; i < cc->getLayerCount(); ++i) { - const LayerData& layer = cc->getLayer(i); + const LayerDataBase& layer = cc->getLayer(i); // add item QListWidgetItem* item = new QListWidgetItem(this); @@ -111,13 +111,13 @@ namespace OpenMS { // 2D/3D map view switch (layer.type) { - case LayerData::DT_PEAK: + case LayerDataBase::DT_PEAK: item->setIcon(QIcon(":/peaks.png")); break; - case LayerData::DT_FEATURE: + case LayerDataBase::DT_FEATURE: item->setIcon(QIcon(":/convexhull.png")); break; - case LayerData::DT_CONSENSUS: + case LayerDataBase::DT_CONSENSUS: item->setIcon(QIcon(":/elements.png")); break; default: diff --git a/src/openms_gui/source/VISUAL/ListEditor.cpp b/src/openms_gui/source/VISUAL/ListEditor.cpp index 89fe4254f1e..64d6439c8c0 100644 --- a/src/openms_gui/source/VISUAL/ListEditor.cpp +++ b/src/openms_gui/source/VISUAL/ListEditor.cpp @@ -85,7 +85,7 @@ namespace OpenMS return editor; } - else if (type_ == ListEditor::STRING && restrictions_ != "") + else if (type_ == ListEditor::STRING && !restrictions_.empty()) { QComboBox * editor = new QComboBox(parent); QStringList list; @@ -185,11 +185,11 @@ namespace OpenMS vector parts; if (restrictions_.split(' ', parts)) { - if (parts[0] != "" && new_value.toInt() < parts[0].toInt()) + if (!parts[0].empty() && new_value.toInt() < parts[0].toInt()) { restrictions_met = false; } - if (parts[1] != "" && new_value.toInt() > parts[1].toInt()) + if (!parts[1].empty() && new_value.toInt() > parts[1].toInt()) { restrictions_met = false; } @@ -215,11 +215,11 @@ namespace OpenMS vector parts; if (restrictions_.split(' ', parts)) { - if (parts[0] != "" && new_value.toDouble() < parts[0].toDouble()) + if (!parts[0].empty() && new_value.toDouble() < parts[0].toDouble()) { restrictions_met = false; } - if (parts[1] != "" && new_value.toDouble() > parts[1].toDouble()) + if (!parts[1].empty() && new_value.toDouble() > parts[1].toDouble()) { restrictions_met = false; } @@ -287,7 +287,7 @@ namespace OpenMS for (Int i = 0; i < count(); ++i) { stringit = item(i)->text(); - if (stringit != "") + if (!stringit.empty()) { stringit.trim(); } diff --git a/src/openms_gui/source/VISUAL/MetaDataBrowser.cpp b/src/openms_gui/source/VISUAL/MetaDataBrowser.cpp index ef632cd0854..bc9c6cad0be 100644 --- a/src/openms_gui/source/VISUAL/MetaDataBrowser.cpp +++ b/src/openms_gui/source/VISUAL/MetaDataBrowser.cpp @@ -142,7 +142,7 @@ namespace OpenMS connect(ptr, SIGNAL(sendStatus(std::string)), this, SLOT(setStatus(std::string))); } - bool MetaDataBrowser::isEditable() + bool MetaDataBrowser::isEditable() const { return editable_; } diff --git a/src/openms_gui/source/VISUAL/MultiGradient.cpp b/src/openms_gui/source/VISUAL/MultiGradient.cpp index 46be13e8b0f..c9670e106bf 100644 --- a/src/openms_gui/source/VISUAL/MultiGradient.cpp +++ b/src/openms_gui/source/VISUAL/MultiGradient.cpp @@ -216,7 +216,7 @@ namespace OpenMS { pos_col_.clear(); - if (gradient == "") + if (gradient.empty()) { pos_col_[0] = Qt::white; pos_col_[100] = Qt::black; diff --git a/src/openms_gui/source/VISUAL/ParamEditor.cpp b/src/openms_gui/source/VISUAL/ParamEditor.cpp index 5e1f4f0af2d..962042aa380 100644 --- a/src/openms_gui/source/VISUAL/ParamEditor.cpp +++ b/src/openms_gui/source/VISUAL/ParamEditor.cpp @@ -323,11 +323,11 @@ namespace OpenMS vector parts; if (restrictions.split(' ', parts)) { - if (parts[0] != "" && new_value.toInt() < parts[0].toInt()) + if (!parts[0].empty() && new_value.toInt() < parts[0].toInt()) { restrictions_met = false; } - if (parts[1] != "" && new_value.toInt() > parts[1].toInt()) + if (!parts[1].empty() && new_value.toInt() > parts[1].toInt()) { restrictions_met = false; } @@ -346,11 +346,11 @@ namespace OpenMS vector parts; if (restrictions.split(' ', parts)) { - if (parts[0] != "" && new_value.toDouble() < parts[0].toDouble()) + if (!parts[0].empty() && new_value.toDouble() < parts[0].toDouble()) { restrictions_met = false; } - if (parts[1] != "" && new_value.toDouble() > parts[1].toDouble()) + if (!parts[1].empty() && new_value.toDouble() > parts[1].toDouble()) { restrictions_met = false; } @@ -792,7 +792,7 @@ namespace OpenMS */ child->setData(1, Qt::BackgroundRole, QBrush(Qt::white)); - if (path == "") + if (path.empty()) { path = child->text(0).toStdString(); } @@ -814,7 +814,7 @@ namespace OpenMS if (child->text(2) == "") // node { - if (description != "") + if (!description.empty()) { section_descriptions.insert(make_pair(path, description)); } @@ -828,11 +828,11 @@ namespace OpenMS vector parts; if (restrictions.split(' ', parts)) { - if (parts[0] != "") + if (!parts[0].empty()) { param_->setMinFloat(path, parts[0].toDouble()); } - if (parts[1] != "") + if (!parts[1].empty()) { param_->setMaxFloat(path, parts[1].toDouble()); } @@ -842,7 +842,7 @@ namespace OpenMS { param_->setValue(path, child->text(1).toStdString(), description, tag_list); String restrictions = child->data(2, Qt::UserRole).toString(); - if (restrictions != "") + if (!restrictions.empty()) { std::vector parts = ListUtils::create(restrictions); param_->setValidStrings(path, parts); @@ -852,7 +852,7 @@ namespace OpenMS { param_->setValue(path, child->text(1).toStdString(), description, tag_list); String restrictions = child->data(2, Qt::UserRole).toString(); - if (restrictions != "") + if (!restrictions.empty()) { std::vector parts = ListUtils::create(restrictions); param_->setValidStrings(path, parts); @@ -862,7 +862,7 @@ namespace OpenMS { param_->setValue(path, child->text(1).toStdString(), description, tag_list); String restrictions = child->data(2, Qt::UserRole).toString(); - if (restrictions != "") + if (!restrictions.empty()) { std::vector parts = ListUtils::create(restrictions); param_->setValidStrings(path, parts); @@ -875,11 +875,11 @@ namespace OpenMS vector parts; if (restrictions.split(' ', parts)) { - if (parts[0] != "") + if (!parts[0].empty()) { param_->setMinInt(path, parts[0].toInt()); } - if (parts[1] != "") + if (!parts[1].empty()) { param_->setMaxInt(path, parts[1].toInt()); } @@ -892,7 +892,7 @@ namespace OpenMS { param_->setValue(path, rlist, description, tag_list); String restrictions = child->data(2, Qt::UserRole).toString(); - if (restrictions != "") + if (!restrictions.empty()) { vector parts = ListUtils::create(restrictions); param_->setValidStrings(path, parts); @@ -902,7 +902,7 @@ namespace OpenMS { param_->setValue(path, rlist, description, tag_list); String restrictions = child->data(2, Qt::UserRole).toString(); - if (restrictions != "") + if (!restrictions.empty()) { std::vector parts = ListUtils::create(restrictions); param_->setValidStrings(path, parts); @@ -912,7 +912,7 @@ namespace OpenMS { param_->setValue(path, rlist, description, tag_list); String restrictions = child->data(2, Qt::UserRole).toString(); - if (restrictions != "") + if (!restrictions.empty()) { std::vector parts = ListUtils::create(restrictions); param_->setValidStrings(path, parts); @@ -925,11 +925,11 @@ namespace OpenMS vector parts; if (restrictions.split(' ', parts)) { - if (parts[0] != "") + if (!parts[0].empty()) { param_->setMinFloat(path, parts[0].toFloat()); } - if (parts[1] != "") + if (!parts[1].empty()) { param_->setMaxFloat(path, parts[1].toFloat()); } @@ -942,11 +942,11 @@ namespace OpenMS vector parts; if (restrictions.split(' ', parts)) { - if (parts[0] != "") + if (!parts[0].empty()) { param_->setMinInt(path, parts[0].toInt()); } - if (parts[1] != "") + if (!parts[1].empty()) { param_->setMaxInt(path, parts[1].toInt()); } diff --git a/src/openms_gui/source/VISUAL/Plot1DCanvas.cpp b/src/openms_gui/source/VISUAL/Plot1DCanvas.cpp index 005aa442366..8be877fd9cd 100644 --- a/src/openms_gui/source/VISUAL/Plot1DCanvas.cpp +++ b/src/openms_gui/source/VISUAL/Plot1DCanvas.cpp @@ -87,9 +87,9 @@ namespace OpenMS Plot1DCanvas::ExperimentSharedPtrType prepareChromatogram(Size index, Plot1DCanvas::ExperimentSharedPtrType exp_sptr, Plot1DCanvas::ODExperimentSharedPtrType ondisc_sptr) { // create a managed pointer fill it with a spectrum containing the chromatographic data - LayerData::ExperimentSharedPtrType chrom_exp_sptr(new LayerData::ExperimentType()); + LayerDataBase::ExperimentSharedPtrType chrom_exp_sptr(new LayerDataBase::ExperimentType()); chrom_exp_sptr->setMetaValue("is_chromatogram", "true"); //this is a hack to store that we have chromatogram data - LayerData::ExperimentType::SpectrumType spectrum; + LayerDataBase::ExperimentType::SpectrumType spectrum; // retrieve chromatogram (either from in-memory or on-disc representation) MSChromatogram current_chrom = exp_sptr->getChromatograms()[index]; @@ -377,43 +377,32 @@ namespace OpenMS } else if (action_mode_ == AM_MEASURE) { - if (isMzToXAxis()) + if (selected_peak_.isValid()) { - if (selected_peak_.isValid()) + measurement_start_ = selected_peak_; + const ExperimentType::PeakType & peak = getCurrentLayer().getCurrentSpectrum()[measurement_start_.peak]; + if (intensity_mode_ == IM_PERCENTAGE) { - measurement_start_ = selected_peak_; - const ExperimentType::PeakType & peak = getCurrentLayer().getCurrentSpectrum()[measurement_start_.peak]; - if (intensity_mode_ == IM_PERCENTAGE) - { - updatePercentageFactor_(getCurrentLayerIndex()); - } - else - { - percentage_factor_ = 1.0; - } - dataToWidget(peak, measurement_start_point_, getCurrentLayer().flipped); - measurement_start_point_.setY(last_mouse_pos_.y()); + updatePercentageFactor_(getCurrentLayerIndex()); } else { - measurement_start_.clear(); + percentage_factor_ = 1.0; } - } - else // !isMzToXAxis() - { - if (selected_peak_.isValid()) + dataToWidget(peak, measurement_start_point_, getCurrentLayer().flipped); + if (isMzToXAxis()) { - measurement_start_ = selected_peak_; - const ExperimentType::PeakType & peak = getCurrentLayer().getCurrentSpectrum()[measurement_start_.peak]; - updatePercentageFactor_(getCurrentLayerIndex()); - dataToWidget(peak, measurement_start_point_, getCurrentLayer().flipped); - measurement_start_point_.setX(last_mouse_pos_.x()); + measurement_start_point_.setY(last_mouse_pos_.y()); } else { - measurement_start_.clear(); + measurement_start_point_.setX(last_mouse_pos_.x()); } } + else + { + measurement_start_.clear(); + } } } update_(OPENMS_PRETTY_FUNCTION); @@ -468,7 +457,8 @@ namespace OpenMS newHi = overall_data_range_.maxX(); newLo = newHi - visible_area_.width(); } - //chage data area + + // change data area changeVisibleArea_(newLo, newHi); last_mouse_pos_ = p; } @@ -623,7 +613,7 @@ namespace OpenMS PointType lt = widgetToData(p - QPoint(2, 2), true); PointType rb = widgetToData(p + QPoint(2, 2), true); - // get iterator on first peak with higher position than interval_start + // get iterator on first peak with lower position than interval_start PeakType temp; temp.setMZ(min(lt.getX(), rb.getX())); SpectrumConstIteratorType left_it = lower_bound(spectrum.begin(), spectrum.end(), temp, PeakType::PositionLess()); @@ -652,8 +642,7 @@ namespace OpenMS dataToWidget(0, overall_data_range_.maxY(), tmp, getCurrentLayer().flipped, true); double dest_interval_end = tmp.y(); - int nearest_intensity = static_cast(intervalTransformation(nearest_it->getIntensity(), visible_area_.minY(), - visible_area_.maxY(), dest_interval_start, dest_interval_end)); + int nearest_intensity = std::numeric_limits::lowest() + p.y(); for (SpectrumConstIteratorType it = left_it; it != right_it; it++) { int current_intensity = static_cast(intervalTransformation(it->getIntensity(), visible_area_.minY(), visible_area_.maxY(), @@ -695,10 +684,6 @@ namespace OpenMS //update range area recalculateRanges_(0, 2, 1); - double width = overall_data_range_.width(); - overall_data_range_.setMinX(overall_data_range_.minX() - 0.002 * width); - overall_data_range_.setMaxX(overall_data_range_.maxX() + 0.002 * width); - overall_data_range_.setMaxY(overall_data_range_.maxY() + 0.002 * overall_data_range_.height()); zoomClear_(); @@ -770,10 +755,10 @@ namespace OpenMS for (Size i = 0; i < getLayerCount(); ++i) { - const LayerData& layer = getLayer(i); + const LayerDataBase& layer = getLayer(i); // skip non peak data layer or invisible - if (layer.type != LayerData::DT_PEAK || !layer.visible) { continue; } + if (layer.type != LayerDataBase::DT_PEAK || !layer.visible) { continue; } const ExperimentType::SpectrumType& spectrum = layer.getCurrentSpectrum(); @@ -827,7 +812,7 @@ namespace OpenMS } // Warn if non-empty peak color array present but size doesn't match number of peaks - // This indicates a bug but we gracefuly just issue a warning + // This indicates a bug but we gracefully just issue a warning if (!layer.peak_colors_1d.empty() && layer.peak_colors_1d.size() < spectrum.size()) { @@ -1000,7 +985,7 @@ namespace OpenMS if (peak.peak >= spec.size()) { // somehow the peak is invalid. This happens from time to time and should be tracked down elsewhere - // but its hard to reproduce (changing spectra in 1D view using arrow keys while hovering over the spectrum with the mouse?). + // but it's hard to reproduce (changing spectra in 1D view using arrow keys while hovering over the spectrum with the mouse?). return; } const ExperimentType::PeakType& sel = spec[peak.peak]; @@ -1065,7 +1050,7 @@ namespace OpenMS void Plot1DCanvas::drawAnnotations(Size layer_index, QPainter& painter) { - LayerData& layer = getLayer(layer_index); + LayerDataBase& layer = getLayer(layer_index); updatePercentageFactor_(layer_index); QColor col{ QColor(String(layer.param.getValue("annotation_color").toString()).toQString()) }; // 0: default pen; 1: selected pen @@ -1080,7 +1065,7 @@ namespace OpenMS void Plot1DCanvas::drawMZAtInterestingPeaks_(Size layer_index, QPainter& painter) { - LayerData& layer = getLayer(layer_index); + LayerDataBase& layer = getLayer(layer_index); const MSSpectrum& current_spectrum = layer.getCurrentSpectrum(); bool flipped = layer.flipped; @@ -1188,7 +1173,7 @@ namespace OpenMS bool Plot1DCanvas::finishAdding_() { - if (getCurrentLayer().type != LayerData::DT_PEAK) + if (getCurrentLayer().type != LayerDataBase::DT_PEAK) { QMessageBox::critical(this, "Error", "This widget supports peak data only. Aborting!"); return false; @@ -1260,10 +1245,7 @@ namespace OpenMS // update ranges recalculateRanges_(0, 2, 1); - double width = overall_data_range_.width(); - overall_data_range_.setMinX(overall_data_range_.minX() - 0.002 * width); - overall_data_range_.setMaxX(overall_data_range_.maxX() + 0.002 * width); - overall_data_range_.setMaxY(overall_data_range_.maxY() + 0.002 * overall_data_range_.height()); + resetZoom(false); //no repaint as this is done in intensityModeChange_() anyway // warn if negative intensities are contained @@ -1289,7 +1271,7 @@ namespace OpenMS return; } // only peak data is supported here - if (getCurrentLayer().type != LayerData::DT_PEAK) + if (getCurrentLayer().type != LayerDataBase::DT_PEAK) { QMessageBox::critical(this, "Error", "This widget supports peak data only. Aborting!"); return; @@ -1330,7 +1312,7 @@ namespace OpenMS float it; float ppm; - if (getCurrentLayer().type != LayerData::DT_PEAK) + if (getCurrentLayer().type != LayerDataBase::DT_PEAK) { QMessageBox::critical(this, "Error", "This widget supports peak data only. Aborting!"); return; @@ -1365,7 +1347,7 @@ namespace OpenMS } lines.push_back(text.c_str() + QString::number(mz, 'f', precision) + " (" + QString::number(ppm, 'f', 1) +" ppm)"); - if (boost::math::isinf(it) || boost::math::isnan(it)) + if (std::isinf(it) || std::isnan(it)) { lines.push_back("Int ratio: n/a"); } @@ -1418,7 +1400,7 @@ namespace OpenMS void Plot1DCanvas::showCurrentLayerPreferences() { Internal::Plot1DPrefDialog dlg(this); - LayerData& layer = getCurrentLayer(); + LayerDataBase& layer = getCurrentLayer(); ColorSelector* peak_color = dlg.findChild("peak_color"); ColorSelector* icon_color = dlg.findChild("icon_color"); @@ -1631,7 +1613,7 @@ namespace OpenMS } } - void Plot1DCanvas::addLabelAnnotation_(const QPoint& screen_position, QString text) + void Plot1DCanvas::addLabelAnnotation_(const QPoint& screen_position, const QString& text) { updatePercentageFactor_(getCurrentLayerIndex()); @@ -1665,7 +1647,7 @@ namespace OpenMS void Plot1DCanvas::saveCurrentLayer(bool visible) { - const LayerData& layer = getCurrentLayer(); + const LayerDataBase& layer = getCurrentLayer(); //determine proposed filename String proposed_name = param_.getValue("default_path").toString(); @@ -1740,10 +1722,6 @@ namespace OpenMS //update ranges recalculateRanges_(0, 2, 1); - double width = overall_data_range_.width(); - overall_data_range_.setMinX(overall_data_range_.minX() - 0.002 * width); - overall_data_range_.setMaxX(overall_data_range_.maxX() + 0.002 * width); - overall_data_range_.setMaxY(overall_data_range_.maxY() + 0.002 * overall_data_range_.height()); resetZoom(); modificationStatus_(i, false); @@ -1758,21 +1736,12 @@ namespace OpenMS else { const PointType::CoordinateType zoom_factor = 0.8; + double factor = isMzToXAxis() ? (PointType::CoordinateType)x / width() : (PointType::CoordinateType)(height() - y) / height(); AreaType new_area; - if (isMzToXAxis()) - { - new_area.setMinX(visible_area_.min_[0] + (1.0 - zoom_factor) * (visible_area_.max_[0] - visible_area_.min_[0]) * (PointType::CoordinateType)x / width()); - new_area.setMaxX(new_area.min_[0] + zoom_factor * (visible_area_.max_[0] - visible_area_.min_[0])); - new_area.setMinY(visible_area_.minY()); - new_area.setMaxY(visible_area_.maxY()); - } - else - { - new_area.setMinX(visible_area_.min_[0] + (1.0 - zoom_factor) * (visible_area_.max_[0] - visible_area_.min_[0]) * (PointType::CoordinateType)(height() - y) / height()); - new_area.setMaxX(new_area.min_[0] + zoom_factor * (visible_area_.max_[0] - visible_area_.min_[0])); - new_area.setMinY(visible_area_.minY()); - new_area.setMaxY(visible_area_.maxY()); - } + new_area.setMinX(visible_area_.min_[0] + (1.0 - zoom_factor) * (visible_area_.max_[0] - visible_area_.min_[0]) * factor); + new_area.setMaxX(new_area.min_[0] + zoom_factor * (visible_area_.max_[0] - visible_area_.min_[0])); + new_area.setMinY(visible_area_.minY()); + new_area.setMaxY(visible_area_.maxY()); if (new_area != visible_area_) { @@ -1819,7 +1788,7 @@ namespace OpenMS } else if (m == Qt::ShiftModifier) { // jump to the next peak (useful for sparse data) - const LayerData::ExperimentType::SpectrumType& spec = getCurrentLayer().getCurrentSpectrum(); + const LayerDataBase::ExperimentType::SpectrumType& spec = getCurrentLayer().getCurrentSpectrum(); PeakType p_temp(visible_area_.minX(), 0); SpectrumConstIteratorType it_next = lower_bound(spec.begin(), spec.end(), p_temp, PeakType::MZLess()); // find first peak in current range if (it_next != spec.begin()) @@ -1856,7 +1825,7 @@ namespace OpenMS } else if (m == Qt::ShiftModifier) { // jump to the next peak (useful for sparse data) - const LayerData::ExperimentType::SpectrumType& spec = getCurrentLayer().getCurrentSpectrum(); + const LayerDataBase::ExperimentType::SpectrumType& spec = getCurrentLayer().getCurrentSpectrum(); PeakType p_temp(visible_area_.maxX(), 0); SpectrumConstIteratorType it_next = upper_bound(spec.begin(), spec.end(), p_temp, PeakType::MZLess()); // first right-sided peak outside the current range if (it_next == spec.end()) @@ -1878,7 +1847,7 @@ namespace OpenMS } /// Returns whether this widget is currently in mirror mode - bool Plot1DCanvas::mirrorModeActive() + bool Plot1DCanvas::mirrorModeActive() const { return mirror_mode_; } @@ -2001,8 +1970,8 @@ namespace OpenMS { return; } - LayerData& layer_1 = getLayer(layer_index_1); - LayerData& layer_2 = getLayer(layer_index_2); + LayerDataBase& layer_1 = getLayer(layer_index_1); + LayerDataBase& layer_2 = getLayer(layer_index_2); const ExperimentType::SpectrumType& spectrum_1 = layer_1.getCurrentSpectrum(); const ExperimentType::SpectrumType& spectrum_2 = layer_2.getCurrentSpectrum(); @@ -2071,7 +2040,7 @@ namespace OpenMS return aligned_peaks_mz_delta_.size(); } - double Plot1DCanvas::getAlignmentScore() + double Plot1DCanvas::getAlignmentScore() const { return alignment_score_; } @@ -2100,7 +2069,7 @@ namespace OpenMS { if (intensity_mode_ == IM_PERCENTAGE) { - percentage_factor_ = overall_data_range_.maxPosition()[1] / getLayer(layer_index).getCurrentSpectrum().getMaxInt(); + percentage_factor_ = overall_data_range_.maxPosition()[1] / getLayer(layer_index).getCurrentSpectrum().getMaxIntensity(); } else { @@ -2122,6 +2091,7 @@ namespace OpenMS // be an in-memory representation in the peak data structure. Using // setCurrentSpectrumIndex will select the appropriate spectrum and load it // into memory. + if (index < getCurrentLayer().getPeakData()->size()) { getCurrentLayer().setCurrentSpectrumIndex(index); diff --git a/src/openms_gui/source/VISUAL/Plot1DWidget.cpp b/src/openms_gui/source/VISUAL/Plot1DWidget.cpp index b987fa6b9f7..903dd0786db 100644 --- a/src/openms_gui/source/VISUAL/Plot1DWidget.cpp +++ b/src/openms_gui/source/VISUAL/Plot1DWidget.cpp @@ -152,94 +152,6 @@ namespace OpenMS } } - Histogram<> Plot1DWidget::createIntensityDistribution_() const - { - //initialize histogram - double min = canvas_->getCurrentMinIntensity(); - double max = canvas_->getCurrentMaxIntensity(); - if (min == max) - { - min -= 0.01; - max += 0.01; - } - Histogram<> tmp(min, max, (max - min) / 500.0); - - for (const Peak1D& spec : (*canvas_->getCurrentLayer().getPeakData())[0]) - { - tmp.inc(spec.getIntensity()); - } - return tmp; - } - - Histogram<> Plot1DWidget::createMetaDistribution_(const String& name) const - { - Histogram<> tmp; - //float arrays - const ExperimentType::SpectrumType::FloatDataArrays& f_arrays = (*canvas_->getCurrentLayer().getPeakData())[0].getFloatDataArrays(); - for (const OpenMS::DataArrays::FloatDataArray& dat : f_arrays) - { - if (dat.getName() == name) - { - //determine min and max of the data - float min = numeric_limits::max(), max = -numeric_limits::max(); - for (Size i = 0; i < dat.size(); ++i) - { - if (dat[i] < min) - { - min = dat[i]; - } - if (dat[i] > max) - { - max = dat[i]; - } - } - if (min >= max) - { - return tmp; - } - //create histogram - tmp.reset(min, max, (max - min) / 500.0); - for (Size i = 0; i < dat.size(); ++i) - { - tmp.inc((dat)[i]); - } - } - } - //integer arrays - const ExperimentType::SpectrumType::IntegerDataArrays& i_arrays = (*canvas_->getCurrentLayer().getPeakData())[0].getIntegerDataArrays(); - for (const OpenMS::DataArrays::IntegerDataArray& dat : i_arrays) - { - if (dat.getName() == name) - { - //determine min and max of the data - float min = numeric_limits::max(), max = -numeric_limits::max(); - for (Size i = 0; i < dat.size(); ++i) - { - if (dat[i] < min) - { - min = dat[i]; - } - if (dat[i] > max) - { - max = dat[i]; - } - } - if (min >= max) - { - return tmp; - } - //create histogram - tmp.reset(min, max, (max - min) / 500.0); - for (Size i = 0; i < dat.size(); ++i) - { - tmp.inc(dat[i]); - } - } - } - //fallback if no array with that name exists - return tmp; - } - Plot1DWidget::~Plot1DWidget() { delete spacer_; diff --git a/src/openms_gui/source/VISUAL/Plot2DCanvas.cpp b/src/openms_gui/source/VISUAL/Plot2DCanvas.cpp index 14d4b3e0a46..0b2e885438d 100644 --- a/src/openms_gui/source/VISUAL/Plot2DCanvas.cpp +++ b/src/openms_gui/source/VISUAL/Plot2DCanvas.cpp @@ -45,6 +45,8 @@ #include #include #include +#include + #include #include //STL @@ -133,21 +135,21 @@ namespace OpenMS } //determine coordinates; QPoint pos; - if (getCurrentLayer().type == LayerData::DT_FEATURE) + if (getCurrentLayer().type == LayerDataBase::DT_FEATURE) { dataToWidget_(peak.getFeature(*getCurrentLayer().getFeatureMap()).getMZ(), peak.getFeature(*getCurrentLayer().getFeatureMap()).getRT(), pos); } - else if (getCurrentLayer().type == LayerData::DT_PEAK) + else if (getCurrentLayer().type == LayerDataBase::DT_PEAK) { dataToWidget_(peak.getPeak(*getCurrentLayer().getPeakData()).getMZ(), peak.getSpectrum(*getCurrentLayer().getPeakData()).getRT(), pos); } - else if (getCurrentLayer().type == LayerData::DT_CONSENSUS) + else if (getCurrentLayer().type == LayerDataBase::DT_CONSENSUS) { dataToWidget_(peak.getFeature(*getCurrentLayer().getConsensusMap()).getMZ(), peak.getFeature(*getCurrentLayer().getConsensusMap()).getRT(), pos); } - else if (getCurrentLayer().type == LayerData::DT_CHROMATOGRAM) + else if (getCurrentLayer().type == LayerDataBase::DT_CHROMATOGRAM) { - const LayerData & layer = getCurrentLayer(); + const LayerDataBase& layer = getCurrentLayer(); const ConstExperimentSharedPtrType exp = layer.getPeakData(); // create iterator on chromatogram spectrum passed by PeakIndex @@ -155,7 +157,7 @@ namespace OpenMS chrom_it += peak.spectrum; dataToWidget_(chrom_it->getPrecursor().getMZ(), chrom_it->front().getRT(), pos); } - else if (getCurrentLayer().type == LayerData::DT_IDENT) + else if (getCurrentLayer().type == LayerDataBase::DT_IDENT) { //TODO IDENT } @@ -164,9 +166,9 @@ namespace OpenMS painter.save(); painter.setPen(QPen(Qt::red, 2)); - if (getCurrentLayer().type == LayerData::DT_CHROMATOGRAM) // highlight: chromatogram + if (getCurrentLayer().type == LayerDataBase::DT_CHROMATOGRAM) // highlight: chromatogram { - const LayerData & layer = getCurrentLayer(); + const LayerDataBase& layer = getCurrentLayer(); const ConstExperimentSharedPtrType exp = layer.getPeakData(); vector::const_iterator iter = exp->getChromatograms().begin(); @@ -197,7 +199,7 @@ namespace OpenMS float max_int = -1 * numeric_limits::max(); PeakIndex max_pi; - if (getCurrentLayer().type == LayerData::DT_PEAK) + if (getCurrentLayer().type == LayerDataBase::DT_PEAK) { for (ExperimentType::ConstAreaIterator i = getCurrentLayer().getPeakData()->areaBeginConst(area.minPosition()[1], area.maxPosition()[1], area.minPosition()[0], area.maxPosition()[0]); @@ -213,7 +215,7 @@ namespace OpenMS } } } - else if (getCurrentLayer().type == LayerData::DT_FEATURE) + else if (getCurrentLayer().type == LayerDataBase::DT_FEATURE) { for (FeatureMapType::ConstIterator i = getCurrentLayer().getFeatureMap()->begin(); i != getCurrentLayer().getFeatureMap()->end(); @@ -233,7 +235,7 @@ namespace OpenMS } } } - else if (getCurrentLayer().type == LayerData::DT_CONSENSUS) + else if (getCurrentLayer().type == LayerDataBase::DT_CONSENSUS) { for (ConsensusMapType::ConstIterator i = getCurrentLayer().getConsensusMap()->begin(); i != getCurrentLayer().getConsensusMap()->end(); @@ -254,9 +256,9 @@ namespace OpenMS } } } - else if (getCurrentLayer().type == LayerData::DT_CHROMATOGRAM) + else if (getCurrentLayer().type == LayerDataBase::DT_CHROMATOGRAM) { - const LayerData & layer = getCurrentLayer(); + const LayerDataBase& layer = getCurrentLayer(); const PeakMap& exp = *layer.getPeakData(); float mz_origin = 0.0; @@ -286,7 +288,7 @@ namespace OpenMS } } } - else if (getCurrentLayer().type == LayerData::DT_IDENT) + else if (getCurrentLayer().type == LayerDataBase::DT_IDENT) { //TODO IDENT } @@ -296,28 +298,16 @@ namespace OpenMS void Plot2DCanvas::paintDots_(Size layer_index, QPainter & painter) { - const LayerData & layer = getLayer(layer_index); + const LayerDataBase& layer = getLayer(layer_index); //update factors (snap and percentage) double snap_factor = snap_factors_[layer_index]; percentage_factor_ = 1.0; if (intensity_mode_ == IM_PERCENTAGE) { - if (layer.type == LayerData::DT_PEAK && layer.getPeakData()->getMaxInt() > 0.0) - { - percentage_factor_ = overall_data_range_.maxPosition()[2] / layer.getPeakData()->getMaxInt(); - } - else if (layer.type == LayerData::DT_FEATURE && layer.getFeatureMap()->getMaxInt() > 0.0) - { - percentage_factor_ = overall_data_range_.maxPosition()[2] / layer.getFeatureMap()->getMaxInt(); - } - else if (layer.type == LayerData::DT_CONSENSUS && layer.getConsensusMap()->getMaxInt() > 0.0) - { - percentage_factor_ = overall_data_range_.maxPosition()[2] / layer.getConsensusMap()->getMaxInt(); - } - else if (layer.type == LayerData::DT_CHROMATOGRAM && layer.getConsensusMap()->getMaxInt() > 0.0) + if (layer.getMaxIntensity() > 0.0) { - //TODO CHROM not sure if needed here + percentage_factor_ = overall_data_range_.maxPosition()[2] / layer.getMaxIntensity(); } } @@ -325,7 +315,7 @@ namespace OpenMS Int image_width = buffer_.width(); Int image_height = buffer_.height(); - if (layer.type == LayerData::DT_PEAK) //peaks + if (layer.type == LayerDataBase::DT_PEAK) //peaks { // renaming some values for readability const ExperimentType & peak_map = *layer.getPeakData(); @@ -429,16 +419,16 @@ namespace OpenMS //----------------------------------------------------------------- //draw precursor peaks - if (getLayerFlag(layer_index, LayerData::P_PRECURSORS)) + if (getLayerFlag(layer_index, LayerDataBase::P_PRECURSORS)) { paintPrecursorPeaks_(layer_index, painter); } } - else if (layer.type == LayerData::DT_FEATURE) //features + else if (layer.type == LayerDataBase::DT_FEATURE) //features { paintFeatureData_(layer_index, painter); } - else if (layer.type == LayerData::DT_CONSENSUS) // consensus features + else if (layer.type == LayerDataBase::DT_CONSENSUS) // consensus features { String icon = layer.param.getValue("dot:feature_icon").toString(); Size icon_size = layer.param.getValue("dot:feature_icon_size"); @@ -475,7 +465,7 @@ namespace OpenMS } } } - else if (layer.type == LayerData::DT_CHROMATOGRAM) // chromatograms + else if (layer.type == LayerDataBase::DT_CHROMATOGRAM) // chromatograms { const PeakMap& exp = *layer.getPeakData(); //TODO CHROM implement layer filters @@ -498,7 +488,7 @@ namespace OpenMS painter.drawLine(posi.x(), posi.y(), posi2.x(), posi2.y()); } } - else if (layer.type == LayerData::DT_IDENT) // peptide identifications + else if (layer.type == LayerDataBase::DT_IDENT) // peptide identifications { paintIdentifications_(layer_index, painter); } @@ -526,7 +516,7 @@ namespace OpenMS void Plot2DCanvas::paintPrecursorPeaks_(Size layer_index, QPainter & painter) { - const LayerData & layer = getLayer(layer_index); + const LayerDataBase& layer = getLayer(layer_index); const ExperimentType & peak_map = *layer.getPeakData(); QPoint pos_ms1; @@ -579,7 +569,7 @@ namespace OpenMS void Plot2DCanvas::paintAllIntensities_(Size layer_index, double pen_width, QPainter & painter) { - const LayerData & layer = getLayer(layer_index); + const LayerDataBase& layer = getLayer(layer_index); Int image_width = buffer_.width(); Int image_height = buffer_.height(); QVector coloredPoints( (int)layer.gradient.precalculatedSize() ); @@ -633,7 +623,7 @@ namespace OpenMS Int image_width = buffer_.width(); Int image_height = buffer_.height(); - const LayerData & layer = getLayer(layer_index); + const LayerDataBase& layer = getLayer(layer_index); const ExperimentType & map = *layer.getPeakData(); const double rt_min = visible_area_.minPosition()[1]; const double rt_max = visible_area_.maxPosition()[1]; @@ -670,7 +660,7 @@ namespace OpenMS scan_index = i; //store last scan index for next RT pixel break; } - if (map[i].getMSLevel() == 1 && map[i].size() > 0) + if (map[i].getMSLevel() == 1 && !map[i].empty()) { scan_indices.push_back(i); peak_indices.push_back(map[i].MZBegin(mz_min) - map[i].begin()); @@ -724,7 +714,7 @@ namespace OpenMS void Plot2DCanvas::paintFeatureData_(Size layer_index, QPainter& painter) { - const LayerData& layer = getLayer(layer_index); + const LayerDataBase& layer = getLayer(layer_index); double snap_factor = snap_factors_[layer_index]; Int image_width = buffer_.width(); Int image_height = buffer_.height(); @@ -732,7 +722,7 @@ namespace OpenMS int line_spacing = QFontMetrics(painter.font()).lineSpacing(); String icon = layer.param.getValue("dot:feature_icon").toString(); Size icon_size = layer.param.getValue("dot:feature_icon_size"); - bool show_label = (layer.label != LayerData::L_NONE); + bool show_label = (layer.label != LayerDataBase::L_NONE); UInt num = 0; for (FeatureMapType::ConstIterator i = layer.getFeatureMap()->begin(); i != layer.getFeatureMap()->end(); ++i) @@ -763,21 +753,21 @@ namespace OpenMS // labels if (show_label) { - if (layer.label == LayerData::L_INDEX) + if (layer.label == LayerDataBase::L_INDEX) { painter.setPen(Qt::darkBlue); painter.drawText(pos.x() + 10, pos.y() + 10, QString::number(num)); } - else if ((layer.label == LayerData::L_ID || layer.label == LayerData::L_ID_ALL) && !i->getPeptideIdentifications().empty() && !i->getPeptideIdentifications()[0].getHits().empty()) + else if ((layer.label == LayerDataBase::L_ID || layer.label == LayerDataBase::L_ID_ALL) && !i->getPeptideIdentifications().empty() && !i->getPeptideIdentifications()[0].getHits().empty()) { painter.setPen(Qt::darkGreen); - Size maxHits = (layer.label == LayerData::L_ID_ALL) ? i->getPeptideIdentifications()[0].getHits().size() : 1; + Size maxHits = (layer.label == LayerDataBase::L_ID_ALL) ? i->getPeptideIdentifications()[0].getHits().size() : 1; for (Size j = 0; j < maxHits; ++j) { painter.drawText(pos.x() + 10, pos.y() + 10 + int(j) * line_spacing, i->getPeptideIdentifications()[0].getHits()[j].getSequence().toString().toQString()); } } - else if (layer.label == LayerData::L_META_LABEL) + else if (layer.label == LayerDataBase::L_META_LABEL) { painter.setPen(Qt::darkBlue); painter.drawText(pos.x() + 10, pos.y() + 10, i->getMetaValue(3).toQString()); @@ -833,7 +823,7 @@ namespace OpenMS { painter.setPen(Qt::black); - const LayerData & layer = getLayer(layer_index); + const LayerDataBase& layer = getLayer(layer_index); for (FeatureMapType::ConstIterator i = layer.getFeatureMap()->begin(); i != layer.getFeatureMap()->end(); ++i) { if (i->getRT() >= visible_area_.minPosition()[1] && @@ -843,8 +833,8 @@ namespace OpenMS layer.filters.passes(*i) ) { - bool hasIdentifications = i->getPeptideIdentifications().size()>0 - && i->getPeptideIdentifications()[0].getHits().size()>0; + bool hasIdentifications = !i->getPeptideIdentifications().empty() + && !i->getPeptideIdentifications()[0].getHits().empty(); paintConvexHulls_(i->getConvexHulls(), hasIdentifications, painter); } } @@ -852,7 +842,7 @@ namespace OpenMS void Plot2DCanvas::paintFeatureConvexHulls_(Size layer_index, QPainter & painter) { - const LayerData & layer = getLayer(layer_index); + const LayerDataBase& layer = getLayer(layer_index); for (FeatureMapType::ConstIterator i = layer.getFeatureMap()->begin(); i != layer.getFeatureMap()->end(); ++i) { if (i->getRT() >= visible_area_.minPosition()[1] && @@ -877,8 +867,8 @@ namespace OpenMS points.setPoint(index, pos); } //cout << "Hull: " << hull << " Points: " << points.size()<getPeptideIdentifications().size()>0 - && i->getPeptideIdentifications()[0].getHits().size()>0; + bool hasIdentifications = !i->getPeptideIdentifications().empty() + && !i->getPeptideIdentifications()[0].getHits().empty(); painter.setPen( hasIdentifications ? Qt::darkGreen : Qt::darkBlue ); painter.drawPolygon(points); } @@ -887,40 +877,29 @@ namespace OpenMS void Plot2DCanvas::paintIdentifications_(Size layer_index, QPainter& painter) { - const LayerData& layer = getLayer(layer_index); - bool show_labels = getLayerFlag(layer_index, LayerData::I_LABELS); - vector::const_iterator pep_begin, pep_end; - if (layer.type == LayerData::DT_FEATURE) - { - pep_begin = layer.getFeatureMap()->getUnassignedPeptideIdentifications().begin(); - pep_end = layer.getFeatureMap()->getUnassignedPeptideIdentifications().end(); - } - else if (layer.type == LayerData::DT_IDENT) - { - pep_begin = layer.peptides.begin(); - pep_end = layer.peptides.end(); - } - else - return; + // check if the layer implements the IPeptideIDs interface, i.e. does it have IDs? + auto p = dynamic_cast (&getLayer(layer_index)); + if (p == nullptr) return; painter.setPen(Qt::darkRed); + bool show_labels = getLayerFlag(layer_index, LayerDataBase::I_LABELS); - for (; pep_begin != pep_end; ++pep_begin) + for (const auto& id : p->getPeptideIds()) { - if (!pep_begin->getHits().empty() || show_labels) + if (!id.getHits().empty() || show_labels) { - if (!pep_begin->hasRT() || - !pep_begin->hasMZ()) + if (!id.hasRT() || + !id.hasMZ()) { // TODO: show error message here continue; } - double rt = pep_begin->getRT(); + double rt = id.getRT(); if (rt < visible_area_.minPosition()[1] || rt > visible_area_.maxPosition()[1]) { continue; } - double mz = getIdentificationMZ_(layer_index, *pep_begin); + double mz = getIdentificationMZ_(layer_index, id); if (mz < visible_area_.minPosition()[0] || mz > visible_area_.maxPosition()[0]) { continue; @@ -935,17 +914,17 @@ namespace OpenMS String sequence; if (show_labels) { - sequence = pep_begin->getMetaValue("label"); + sequence = id.getMetaValue("label"); } else { - sequence = pep_begin->getHits()[0].getSequence().toString(); + sequence = id.getHits()[0].getSequence().toString(); } - if (sequence.empty() && !pep_begin->getHits().empty()) + if (sequence.empty() && !id.getHits().empty()) { - sequence = pep_begin->getHits()[0].getMetaValue("label"); + sequence = id.getHits()[0].getMetaValue("label"); } - if (pep_begin->getHits().size() > 1) sequence += "..."; + if (id.getHits().size() > 1) sequence += "..."; painter.drawText(pos.x() + 10.0, pos.y() + 10.0, sequence.toQString()); } } @@ -977,7 +956,7 @@ namespace OpenMS void Plot2DCanvas::paintConsensusElements_(Size layer_index, QPainter & p) { - const LayerData & layer = getLayer(layer_index); + const LayerDataBase& layer = getLayer(layer_index); for (ConsensusMapType::ConstIterator i = layer.getConsensusMap()->begin(); i != layer.getConsensusMap()->end(); ++i) { @@ -990,7 +969,7 @@ namespace OpenMS Int image_width = buffer_.width(); Int image_height = buffer_.height(); - const LayerData & layer = getLayer(layer_index); + const LayerDataBase& layer = getLayer(layer_index); if (isConsensusFeatureVisible_(cf, layer_index) && layer.filters.passes(cf)) { @@ -1043,7 +1022,7 @@ namespace OpenMS } // if element-flag is set, check if any of the consensus elements is visible - if (getLayerFlag(layer_index, LayerData::C_ELEMENTS)) + if (getLayerFlag(layer_index, LayerDataBase::C_ELEMENTS)) { ConsensusFeature::HandleSetType::const_iterator element = ce.getFeatures().begin(); for (; element != ce.getFeatures().end(); ++element) @@ -1111,7 +1090,7 @@ namespace OpenMS Size visible_last_layer = 0; for (Size i = 0; i < getLayerCount(); ++i) { - if (getLayer(i).type == LayerData::DT_PEAK) + if (getLayer(i).type == LayerDataBase::DT_PEAK) { layer_count++; last_layer = i; @@ -1122,16 +1101,16 @@ namespace OpenMS visible_last_layer = i; } } - if (getLayer(i).type == LayerData::DT_CHROMATOGRAM) + if (getLayer(i).type == LayerDataBase::DT_CHROMATOGRAM) { //TODO CHROM } } // try to find the right layer to project - const LayerData * layer = nullptr; + const LayerDataBase* layer = nullptr; //first choice: current layer - if (layer_count != 0 && getCurrentLayer().type == LayerData::DT_PEAK) + if (layer_count != 0 && getCurrentLayer().type == LayerDataBase::DT_PEAK) { layer = &(getCurrentLayer()); } @@ -1242,63 +1221,14 @@ namespace OpenMS selected_peak_.clear(); measurement_start_.clear(); - if (getCurrentLayer().type == LayerData::DT_PEAK) // peak data - { - update_buffer_ = true; - // Abort if no data points are contained (note that all data could be on disk) - if (getCurrentLayer().getPeakData()->size() == 0) - { - popIncompleteLayer_("Cannot add a dataset that contains no survey scans. Aborting!"); - return false; - } - if ((getCurrentLayer().getPeakData()->getSize() == 0) && (!getCurrentLayer().getPeakData()->getDataRange().isEmpty())) - { - setLayerFlag(LayerData::P_PRECURSORS, true); // show precursors if no MS1 data is contained - } - } - else if (getCurrentLayer().type == LayerData::DT_FEATURE) // feature data - { - getCurrentLayer().getFeatureMap()->updateRanges(); - setLayerFlag(LayerData::F_HULL, true); - - // Abort if no data points are contained - if (getCurrentLayer().getFeatureMap()->size() == 0) - { - popIncompleteLayer_("Cannot add an empty dataset. Aborting!"); - return false; - } - } - else if (getCurrentLayer().type == LayerData::DT_CONSENSUS) // consensus feature data - { - getCurrentLayer().getConsensusMap()->updateRanges(); - - // abort if no data points are contained - if (getCurrentLayer().getConsensusMap()->size() == 0) - { - popIncompleteLayer_("Cannot add an empty dataset. Aborting!"); - return false; - } - } - else if (getCurrentLayer().type == LayerData::DT_CHROMATOGRAM) // chromatogram data + auto& layer = getCurrentLayer(); + layer.updateRanges(); // required for minIntensity() below and hasRange() + if (layer.getRange().hasRange() == HasRangeType::NONE) { - update_buffer_ = true; - - // abort if no data points are contained - if (getCurrentLayer().getPeakData()->getChromatograms().empty()) - { - popIncompleteLayer_("Cannot add a dataset that contains no chromatograms. Aborting!"); - return false; - } - } - else if (getCurrentLayer().type == LayerData::DT_IDENT) // identification data - { - // abort if no data points are contained - if (getCurrentLayer().peptides.empty()) - { - popIncompleteLayer_("Cannot add an empty dataset. Aborting!"); - return false; - } + popIncompleteLayer_("Cannot add a dataset that contains no survey scans. Aborting!"); + return false; } + update_buffer_ = true; // overall values update recalculateRanges_(0, 1, 2); @@ -1385,7 +1315,7 @@ namespace OpenMS if (getLayer(i).visible) { double local_max = -numeric_limits::max(); - if (getLayer(i).type == LayerData::DT_PEAK) + if (getLayer(i).type == LayerDataBase::DT_PEAK) { for (ExperimentType::ConstAreaIterator it = getLayer(i).getPeakData()->areaBeginConst(visible_area_.minPosition()[1], visible_area_.maxPosition()[1], visible_area_.minPosition()[0], visible_area_.maxPosition()[0]); it != getLayer(i).getPeakData()->areaEndConst(); @@ -1398,7 +1328,7 @@ namespace OpenMS } } } - else if (getLayer(i).type == LayerData::DT_FEATURE) // features + else if (getLayer(i).type == LayerDataBase::DT_FEATURE) // features { for (FeatureMapType::ConstIterator it = getLayer(i).getFeatureMap()->begin(); it != getLayer(i).getFeatureMap()->end(); @@ -1415,7 +1345,7 @@ namespace OpenMS } } } - else if (getLayer(i).type == LayerData::DT_CONSENSUS) // consensus + else if (getLayer(i).type == LayerDataBase::DT_CONSENSUS) // consensus { for (ConsensusMapType::ConstIterator it = getLayer(i).getConsensusMap()->begin(); it != getLayer(i).getConsensusMap()->end(); @@ -1432,11 +1362,11 @@ namespace OpenMS } } } - else if (getLayer(i).type == LayerData::DT_CHROMATOGRAM) // chromatogr. + else if (getLayer(i).type == LayerDataBase::DT_CHROMATOGRAM) // chromatogr. { //TODO CHROM } - else if (getLayer(i).type == LayerData::DT_IDENT) // identifications + else if (getLayer(i).type == LayerDataBase::DT_IDENT) // identifications { //TODO IDENT } @@ -1558,37 +1488,37 @@ namespace OpenMS if (getLayer(i).visible) { - if (getLayer(i).type == LayerData::DT_PEAK) + if (getLayer(i).type == LayerDataBase::DT_PEAK) { // nothing .. currently } - else if (getLayer(i).type == LayerData::DT_FEATURE) + else if (getLayer(i).type == LayerDataBase::DT_FEATURE) { //cout << "dot feature layer: " << i << endl; - if (getLayerFlag(i, LayerData::F_HULLS)) + if (getLayerFlag(i, LayerDataBase::F_HULLS)) { paintTraceConvexHulls_(i, painter); } - if (getLayerFlag(i, LayerData::F_HULL)) + if (getLayerFlag(i, LayerDataBase::F_HULL)) { paintFeatureConvexHulls_(i, painter); } - if (getLayerFlag(i, LayerData::F_UNASSIGNED)) + if (getLayerFlag(i, LayerDataBase::F_UNASSIGNED)) { paintIdentifications_(i, painter); } } - else if (getLayer(i).type == LayerData::DT_CONSENSUS) + else if (getLayer(i).type == LayerDataBase::DT_CONSENSUS) { - if (getLayerFlag(i, LayerData::C_ELEMENTS)) + if (getLayerFlag(i, LayerDataBase::C_ELEMENTS)) { paintConsensusElements_(i, painter); } } - else if (getLayer(i).type == LayerData::DT_CHROMATOGRAM) + else if (getLayer(i).type == LayerDataBase::DT_CHROMATOGRAM) { } - else if (getLayer(i).type == LayerData::DT_IDENT) + else if (getLayer(i).type == LayerDataBase::DT_IDENT) { } // all layers @@ -1622,19 +1552,19 @@ namespace OpenMS // start of line if (selected_peak_.isValid()) { - if (getCurrentLayer().type == LayerData::DT_FEATURE) + if (getCurrentLayer().type == LayerDataBase::DT_FEATURE) { dataToWidget_(selected_peak_.getFeature(*getCurrentLayer().getFeatureMap()).getMZ(), selected_peak_.getFeature(*getCurrentLayer().getFeatureMap()).getRT(), line_begin); } - else if (getCurrentLayer().type == LayerData::DT_PEAK) + else if (getCurrentLayer().type == LayerDataBase::DT_PEAK) { dataToWidget_(selected_peak_.getPeak(*getCurrentLayer().getPeakData()).getMZ(), selected_peak_.getSpectrum(*getCurrentLayer().getPeakData()).getRT(), line_begin); } - else if (getCurrentLayer().type == LayerData::DT_CONSENSUS) + else if (getCurrentLayer().type == LayerDataBase::DT_CONSENSUS) { dataToWidget_(selected_peak_.getFeature(*getCurrentLayer().getConsensusMap()).getMZ(), selected_peak_.getFeature(*getCurrentLayer().getConsensusMap()).getRT(), line_begin); } - else if (getCurrentLayer().type == LayerData::DT_CHROMATOGRAM) + else if (getCurrentLayer().type == LayerDataBase::DT_CHROMATOGRAM) { //TODO CHROM } @@ -1645,19 +1575,19 @@ namespace OpenMS } // end of line - if (getCurrentLayer().type == LayerData::DT_FEATURE) + if (getCurrentLayer().type == LayerDataBase::DT_FEATURE) { dataToWidget_(measurement_start_.getFeature(*getCurrentLayer().getFeatureMap()).getMZ(), measurement_start_.getFeature(*getCurrentLayer().getFeatureMap()).getRT(), line_end); } - else if (getCurrentLayer().type == LayerData::DT_PEAK) + else if (getCurrentLayer().type == LayerDataBase::DT_PEAK) { dataToWidget_(measurement_start_.getPeak(*getCurrentLayer().getPeakData()).getMZ(), measurement_start_.getSpectrum(*getCurrentLayer().getPeakData()).getRT(), line_end); } - else if (getCurrentLayer().type == LayerData::DT_CONSENSUS) + else if (getCurrentLayer().type == LayerDataBase::DT_CONSENSUS) { dataToWidget_(measurement_start_.getFeature(*getCurrentLayer().getConsensusMap()).getMZ(), measurement_start_.getFeature(*getCurrentLayer().getConsensusMap()).getRT(), line_end); } - else if (getCurrentLayer().type == LayerData::DT_CHROMATOGRAM) + else if (getCurrentLayer().type == LayerDataBase::DT_CHROMATOGRAM) { //TODO CHROM } @@ -1669,7 +1599,7 @@ namespace OpenMS // draw convex hulls or consensus feature elements if (selected_peak_.isValid()) { - if (getCurrentLayer().type == LayerData::DT_FEATURE) + if (getCurrentLayer().type == LayerDataBase::DT_FEATURE) { painter.setPen(QPen(Qt::red, 2)); const Feature& f = selected_peak_.getFeature(*getCurrentLayer().getFeatureMap()); @@ -1677,7 +1607,7 @@ namespace OpenMS f.getPeptideIdentifications().size() && f.getPeptideIdentifications()[0].getHits().size(), painter); } - else if (getCurrentLayer().type == LayerData::DT_CONSENSUS && getLayerFlag(getCurrentLayerIndex(), LayerData::C_ELEMENTS)) + else if (getCurrentLayer().type == LayerDataBase::DT_CONSENSUS && getLayerFlag(getCurrentLayerIndex(), LayerDataBase::C_ELEMENTS)) { painter.setPen(QPen(Qt::red, 2)); paintConsensusElement_(getCurrentLayerIndex(), selected_peak_.getFeature(*getCurrentLayer().getConsensusMap()), painter, false); @@ -1727,7 +1657,7 @@ namespace OpenMS switch (getCurrentLayer().type) { - case LayerData::DT_FEATURE: + case LayerDataBase::DT_FEATURE: { f = &peak.getFeature(*getCurrentLayer().getFeatureMap()); mz = f->getMZ(); @@ -1738,7 +1668,7 @@ namespace OpenMS } break; - case LayerData::DT_PEAK: + case LayerDataBase::DT_PEAK: { const Peak1D & p = peak.getPeak(*getCurrentLayer().getPeakData()); const MSSpectrum & s = peak.getSpectrum(*getCurrentLayer().getPeakData()); @@ -1748,7 +1678,7 @@ namespace OpenMS } break; - case LayerData::DT_CONSENSUS: + case LayerDataBase::DT_CONSENSUS: { cf = &peak.getFeature(*getCurrentLayer().getConsensusMap()); @@ -1762,9 +1692,9 @@ namespace OpenMS } break; - case LayerData::DT_CHROMATOGRAM: + case LayerDataBase::DT_CHROMATOGRAM: { - const LayerData & layer = getCurrentLayer(); + const LayerDataBase& layer = getCurrentLayer(); vector::const_iterator iter = layer.getPeakData()->getChromatograms().begin(); iter += peak.spectrum; mz = iter->getPrecursor().getMZ(); @@ -1772,7 +1702,7 @@ namespace OpenMS } break; - case LayerData::DT_IDENT: + case LayerDataBase::DT_IDENT: // TODO implement break; @@ -1786,21 +1716,21 @@ namespace OpenMS lines.push_back("m/z: " + QLocale::c().toString(mz, 'f', 5)); // adds group separators (consistency with intensity) lines.push_back("Int: " + QLocale::c().toString(it, 'f', 2)); // adds group separators (every 1e3), to better visualize large numbers (e.g. 23.009.646.54,3) - if (getCurrentLayer().type == LayerData::DT_FEATURE || getCurrentLayer().type == LayerData::DT_CONSENSUS) + if (getCurrentLayer().type == LayerDataBase::DT_FEATURE || getCurrentLayer().type == LayerDataBase::DT_CONSENSUS) { lines.push_back("Charge: " + QString::number(charge)); lines.push_back("Quality: " + QString::number(quality, 'f', 4)); // peptide identifications const PeptideIdentification* pis = nullptr; - if ( f && f->getPeptideIdentifications().size() > 0 ) + if ( f && !f->getPeptideIdentifications().empty() ) { pis = &f->getPeptideIdentifications()[0]; } - else if ( cf && cf->getPeptideIdentifications().size() > 0 ) + else if ( cf && !cf->getPeptideIdentifications().empty() ) { pis = &cf->getPeptideIdentifications()[0]; } - if ( pis && pis->getHits().size() ) { + if ( pis && !pis->getHits().empty() ) { Size nHits = pis->getHits().size(); for (Size j = 0; j < nHits; ++j) { @@ -1810,7 +1740,7 @@ namespace OpenMS } } - if (getCurrentLayer().type == LayerData::DT_CONSENSUS) + if (getCurrentLayer().type == LayerDataBase::DT_CONSENSUS) { lines.push_back("Size: " + QString::number(size)); for (ConsensusFeature::HandleSetType::const_iterator it = sub_features.begin(); it != sub_features.end(); ++it) @@ -1837,7 +1767,7 @@ namespace OpenMS float it = 0.0; float ppm = 0.0; - if (getCurrentLayer().type == LayerData::DT_FEATURE) + if (getCurrentLayer().type == LayerDataBase::DT_FEATURE) { if (end.isValid()) { @@ -1854,7 +1784,7 @@ namespace OpenMS } ppm = (mz / start.getFeature(*getCurrentLayer().getFeatureMap()).getMZ()) * 1e6; } - else if (getCurrentLayer().type == LayerData::DT_PEAK) + else if (getCurrentLayer().type == LayerDataBase::DT_PEAK) { if (end.isValid()) { @@ -1871,7 +1801,7 @@ namespace OpenMS } ppm = (mz / start.getPeak(*getCurrentLayer().getPeakData()).getMZ()) * 1e6; } - else if (getCurrentLayer().type == LayerData::DT_CONSENSUS) + else if (getCurrentLayer().type == LayerDataBase::DT_CONSENSUS) { if (end.isValid()) { @@ -1888,11 +1818,11 @@ namespace OpenMS } ppm = (mz / start.getFeature(*getCurrentLayer().getConsensusMap()).getMZ()) * 1e6; } - else if (getCurrentLayer().type == LayerData::DT_CHROMATOGRAM) + else if (getCurrentLayer().type == LayerDataBase::DT_CHROMATOGRAM) { //TODO CHROM } - else if (getCurrentLayer().type == LayerData::DT_IDENT) + else if (getCurrentLayer().type == LayerDataBase::DT_IDENT) { // TODO IDENT } @@ -1901,7 +1831,7 @@ namespace OpenMS QStringList lines; lines.push_back("RT delta: " + QString::number(rt, 'f', 2)); lines.push_back("m/z delta: " + QString::number(mz, 'f', 6) + " (" + QString::number(ppm, 'f', 1) +" ppm)"); - if (boost::math::isinf(it) || boost::math::isnan(it)) + if (std::isinf(it) || std::isnan(it)) { lines.push_back("Int ratio: n/a"); } @@ -1932,7 +1862,7 @@ namespace OpenMS else if (action_mode_ == AM_ZOOM) { //translate (if not moving features) - if ( !(getCurrentLayer().type == LayerData::DT_FEATURE) || !selected_peak_.isValid()) + if ( !(getCurrentLayer().type == LayerDataBase::DT_FEATURE) || !selected_peak_.isValid()) { rubber_band_.setGeometry(QRect(e->pos(), QSize())); rubber_band_.show(); @@ -1961,11 +1891,11 @@ namespace OpenMS if (selected_peak_.isValid()) { String status; - if (getCurrentLayer().type == LayerData::DT_FEATURE || getCurrentLayer().type == LayerData::DT_CONSENSUS) + if (getCurrentLayer().type == LayerDataBase::DT_FEATURE || getCurrentLayer().type == LayerDataBase::DT_CONSENSUS) { //add meta info const BaseFeature* f; - if (getCurrentLayer().type == LayerData::DT_FEATURE) + if (getCurrentLayer().type == LayerDataBase::DT_FEATURE) { f = &selected_peak_.getFeature(*getCurrentLayer().getFeatureMap()); } @@ -1992,7 +1922,7 @@ namespace OpenMS } } } - else if (getCurrentLayer().type == LayerData::DT_PEAK) + else if (getCurrentLayer().type == LayerDataBase::DT_PEAK) { //meta info const ExperimentType::SpectrumType & s = selected_peak_.getSpectrum(*getCurrentLayer().getPeakData()); @@ -2018,7 +1948,7 @@ namespace OpenMS } } } - else if (getCurrentLayer().type == LayerData::DT_CHROMATOGRAM) // chromatogram + else if (getCurrentLayer().type == LayerDataBase::DT_CHROMATOGRAM) // chromatogram { //TODO CHROM } @@ -2054,7 +1984,7 @@ namespace OpenMS { if (e->buttons() & Qt::LeftButton) { - if (getCurrentLayer().modifiable && getCurrentLayer().type == LayerData::DT_FEATURE && selected_peak_.isValid()) //move feature + if (getCurrentLayer().modifiable && getCurrentLayer().type == LayerDataBase::DT_FEATURE && selected_peak_.isValid()) //move feature { PointType new_data = widgetToData_(pos); double mz = new_data[0]; @@ -2157,7 +2087,7 @@ namespace OpenMS double mz = widgetToData_(e->pos())[0]; double rt = widgetToData_(e->pos())[1]; - const LayerData & layer = getCurrentLayer(); + const LayerDataBase& layer = getCurrentLayer(); QMenu * context_menu = new QMenu(this); @@ -2183,7 +2113,7 @@ namespace OpenMS context_menu->addAction("Switch to 3D view"); //-------------------PEAKS---------------------------------- - if (layer.type == LayerData::DT_PEAK) + if (layer.type == LayerDataBase::DT_PEAK) { //add settings settings_menu->addSeparator(); @@ -2324,7 +2254,7 @@ namespace OpenMS } } //-------------------FEATURES---------------------------------- - else if (layer.type == LayerData::DT_FEATURE) + else if (layer.type == LayerDataBase::DT_FEATURE) { //add settings settings_menu->addSeparator(); @@ -2376,7 +2306,7 @@ namespace OpenMS } } //-------------------CONSENSUS FEATURES---------------------------------- - else if (layer.type == LayerData::DT_CONSENSUS) + else if (layer.type == LayerDataBase::DT_CONSENSUS) { //add settings settings_menu->addSeparator(); @@ -2421,7 +2351,7 @@ namespace OpenMS } } //------------------CHROMATOGRAMS---------------------------------- - else if (layer.type == LayerData::DT_CHROMATOGRAM) + else if (layer.type == LayerDataBase::DT_CHROMATOGRAM) { settings_menu->addSeparator(); settings_menu->addAction("Show/hide projections"); @@ -2568,29 +2498,29 @@ namespace OpenMS } else if (result->text() == "Show/hide MS/MS precursors") { - setLayerFlag(LayerData::P_PRECURSORS, !getLayerFlag(LayerData::P_PRECURSORS)); + setLayerFlag(LayerDataBase::P_PRECURSORS, !getLayerFlag(LayerDataBase::P_PRECURSORS)); } else if (result->text() == "Show/hide convex hull") { - setLayerFlag(LayerData::F_HULL, !getLayerFlag(LayerData::F_HULL)); + setLayerFlag(LayerDataBase::F_HULL, !getLayerFlag(LayerDataBase::F_HULL)); } else if (result->text() == "Show/hide trace convex hulls") { - setLayerFlag(LayerData::F_HULLS, !getLayerFlag(LayerData::F_HULLS)); + setLayerFlag(LayerDataBase::F_HULLS, !getLayerFlag(LayerDataBase::F_HULLS)); } else if (result->text() == "Show/hide unassigned peptide hits") { - setLayerFlag(LayerData::F_UNASSIGNED, !getLayerFlag(LayerData::F_UNASSIGNED)); + setLayerFlag(LayerDataBase::F_UNASSIGNED, !getLayerFlag(LayerDataBase::F_UNASSIGNED)); } else if (result->text() == "Show/hide numbers/labels") { - if (layer.label == LayerData::L_NONE) + if (layer.label == LayerDataBase::L_NONE) { - getCurrentLayer().label = LayerData::L_META_LABEL; + getCurrentLayer().label = LayerDataBase::L_META_LABEL; } else { - getCurrentLayer().label = LayerData::L_NONE; + getCurrentLayer().label = LayerDataBase::L_NONE; } } else if (result->text() == "Toggle edit/view mode") @@ -2599,7 +2529,7 @@ namespace OpenMS } else if (result->text() == "Show/hide elements") { - setLayerFlag(LayerData::C_ELEMENTS, !getLayerFlag(LayerData::C_ELEMENTS)); + setLayerFlag(LayerDataBase::C_ELEMENTS, !getLayerFlag(LayerDataBase::C_ELEMENTS)); } else if (result->text() == "Layer meta data") { @@ -2641,7 +2571,7 @@ namespace OpenMS void Plot2DCanvas::showCurrentLayerPreferences() { Internal::Plot2DPrefDialog dlg(this); - LayerData & layer = getCurrentLayer(); + LayerDataBase& layer = getCurrentLayer(); ColorSelector * bg_color = dlg.findChild("bg_color"); QComboBox * mapping = dlg.findChild("mapping"); @@ -2687,7 +2617,7 @@ namespace OpenMS void Plot2DCanvas::saveCurrentLayer(bool visible) { - const LayerData & layer = getCurrentLayer(); + const LayerDataBase& layer = getCurrentLayer(); //determine proposed filename String proposed_name = param_.getValue("default_path").toString(); @@ -2696,7 +2626,7 @@ namespace OpenMS proposed_name = layer.filename; } - if (layer.type == LayerData::DT_PEAK) //peak data + if (layer.type == LayerDataBase::DT_PEAK) //peak data { QString selected_filter = ""; QString file_name = QFileDialog::getSaveFileName(this, "Save file", proposed_name.toQString(), "mzML files (*.mzML);;mzData files (*.mzData);;mzXML files (*.mzXML);;All files (*)", &selected_filter); @@ -2744,7 +2674,7 @@ namespace OpenMS modificationStatus_(getCurrentLayerIndex(), false); } } - else if (layer.type == LayerData::DT_FEATURE) //features + else if (layer.type == LayerDataBase::DT_FEATURE) //features { QString file_name = QFileDialog::getSaveFileName(this, "Save file", proposed_name.toQString(), "featureXML files (*.featureXML);;All files (*)"); if (!file_name.isEmpty()) @@ -2769,7 +2699,7 @@ namespace OpenMS modificationStatus_(getCurrentLayerIndex(), false); } } - else if (layer.type == LayerData::DT_CONSENSUS) //consensus feature data + else if (layer.type == LayerDataBase::DT_CONSENSUS) //consensus feature data { QString file_name = QFileDialog::getSaveFileName(this, "Save file", proposed_name.toQString(), "consensusXML files (*.consensusXML);;All files (*)"); if (!file_name.isEmpty()) @@ -2795,7 +2725,7 @@ namespace OpenMS modificationStatus_(getCurrentLayerIndex(), false); } } - else if (layer.type == LayerData::DT_CHROMATOGRAM) //chromatograms + else if (layer.type == LayerDataBase::DT_CHROMATOGRAM) //chromatograms { //TODO CHROM } @@ -2924,8 +2854,8 @@ namespace OpenMS } // Delete features - LayerData& layer = getCurrentLayer(); - if (e->key() == Qt::Key_Delete && getCurrentLayer().modifiable && layer.type == LayerData::DT_FEATURE && selected_peak_.isValid()) + LayerDataBase& layer = getCurrentLayer(); + if (e->key() == Qt::Key_Delete && getCurrentLayer().modifiable && layer.type == LayerDataBase::DT_FEATURE && selected_peak_.isValid()) { layer.getFeatureMap()->erase(layer.getFeatureMap()->begin() + selected_peak_.peak); selected_peak_.clear(); @@ -2964,9 +2894,9 @@ namespace OpenMS void Plot2DCanvas::mouseDoubleClickEvent(QMouseEvent * e) { - LayerData & current_layer = getCurrentLayer(); + LayerDataBase& current_layer = getCurrentLayer(); - if (current_layer.modifiable && current_layer.type == LayerData::DT_FEATURE) + if (current_layer.modifiable && current_layer.type == LayerDataBase::DT_FEATURE) { Feature tmp; if (selected_peak_.isValid()) //edit existing feature @@ -2993,7 +2923,7 @@ namespace OpenMS } // update gradient if the min/max intensity changes - if (tmp.getIntensity() < current_layer.getFeatureMap()->getMinInt() || tmp.getIntensity() > current_layer.getFeatureMap()->getMaxInt()) + if (!current_layer.getFeatureMap()->getRange().containsIntensity(tmp.getIntensity())) { current_layer.getFeatureMap()->updateRanges(); recalculateRanges_(0, 1, 2); @@ -3011,8 +2941,8 @@ namespace OpenMS void Plot2DCanvas::mergeIntoLayer(Size i, FeatureMapSharedPtrType map) { - LayerData& layer = layers_.getLayer(i); - OPENMS_PRECONDITION(layer.type == LayerData::DT_FEATURE, "Plot2DCanvas::mergeIntoLayer(i, map) non-feature layer selected"); + LayerDataBase& layer = layers_.getLayer(i); + OPENMS_PRECONDITION(layer.type == LayerDataBase::DT_FEATURE, "Plot2DCanvas::mergeIntoLayer(i, map) non-feature layer selected"); //reserve enough space layer.getFeatureMap()->reserve(layer.getFeatureMap()->size() + map->size()); //add features @@ -3020,59 +2950,59 @@ namespace OpenMS { layer.getFeatureMap()->push_back((*map)[j]); } - //update the layer and overall ranges (if necessary) - RangeManager<2>::PositionType min_pos_old = layer.getFeatureMap()->getMin(); - RangeManager<2>::PositionType max_pos_old = layer.getFeatureMap()->getMax(); - double min_int_old = layer.getFeatureMap()->getMinInt(); - double max_int_old = layer.getFeatureMap()->getMaxInt(); + // update the layer and overall ranges (if necessary) + auto old_range = layer.getFeatureMap()->getRange(); layer.getFeatureMap()->updateRanges(); - if (min_pos_old > layer.getFeatureMap()->getMin() || max_pos_old < layer.getFeatureMap()->getMax()) + if (!old_range.containsIntensity(layer.getFeatureMap()->getRangeForDim(MSDim::INT))) { - recalculateRanges_(0, 1, 2); - resetZoom(true); + intensityModeChange_(); } - if (min_int_old > layer.getFeatureMap()->getMinInt() || max_int_old < layer.getFeatureMap()->getMaxInt()) + // clear intensity range and compare the remaining dimensions + old_range.RangeIntensity::clear(); + if (!old_range.containsAll(layer.getFeatureMap()->getRange())) { - intensityModeChange_(); + recalculateRanges_(0, 1, 2); + resetZoom(true); } } void Plot2DCanvas::mergeIntoLayer(Size i, ConsensusMapSharedPtrType map) { - LayerData& layer = layers_.getLayer(i); - OPENMS_PRECONDITION(layer.type == LayerData::DT_CONSENSUS, "Plot2DCanvas::mergeIntoLayer(i, map) non-consensus-feature layer selected"); + LayerDataBase& layer = layers_.getLayer(i); + OPENMS_PRECONDITION(layer.type == LayerDataBase::DT_CONSENSUS, "Plot2DCanvas::mergeIntoLayer(i, map) non-consensus-feature layer selected"); //reserve enough space - layer.getConsensusMap()->reserve(layer.getFeatureMap()->size() + map->size()); + layer.getConsensusMap()->reserve(layer.getConsensusMap()->size() + map->size()); //add features for (Size j = 0; j < map->size(); ++j) { layer.getConsensusMap()->push_back((*map)[j]); } - //update the layer and overall ranges (if necessary) - RangeManager<2>::PositionType min_pos_old = layer.getConsensusMap()->getMin(); - RangeManager<2>::PositionType max_pos_old = layer.getConsensusMap()->getMax(); - double min_int_old = layer.getConsensusMap()->getMinInt(); - double max_int_old = layer.getConsensusMap()->getMaxInt(); + // update the layer and overall ranges (if necessary) + auto old_range = layer.getConsensusMap()->getRange(); layer.getConsensusMap()->updateRanges(); - if (min_pos_old > layer.getConsensusMap()->getMin() || max_pos_old < layer.getConsensusMap()->getMax()) + if (!old_range.containsIntensity(layer.getConsensusMap()->getRangeForDim(MSDim::INT))) { - recalculateRanges_(0, 1, 2); - resetZoom(true); + intensityModeChange_(); } - if (min_int_old > layer.getConsensusMap()->getMinInt() || max_int_old < layer.getConsensusMap()->getMaxInt()) + // clear intensity range and compare the remaining dimensions + old_range.RangeIntensity::clear(); + if (!old_range.containsAll(layer.getConsensusMap()->getRange())) { - intensityModeChange_(); + recalculateRanges_(0, 1, 2); + resetZoom(true); } } void Plot2DCanvas::mergeIntoLayer(Size i, vector & peptides) { - LayerData& layer = layers_.getLayer(i); - OPENMS_PRECONDITION(layer.type == LayerData::DT_IDENT, "Plot2DCanvas::mergeIntoLayer(i, peptides) non-identification layer selected"); + LayerDataBase& layer = layers_.getLayer(i); + OPENMS_PRECONDITION(layer.type == LayerDataBase::DT_IDENT, "Plot2DCanvas::mergeIntoLayer(i, peptides) non-identification layer selected"); + + auto& layer_peptides = dynamic_cast(&layer)->getPeptideIds(); // reserve enough space - layer.peptides.reserve(layer.peptides.size() + peptides.size()); + layer_peptides.reserve(layer_peptides.size() + peptides.size()); // insert peptides - layer.peptides.insert(layer.peptides.end(), peptides.begin(), + layer_peptides.insert(layer_peptides.end(), peptides.begin(), peptides.end()); // update the layer and overall ranges recalculateRanges_(0, 1, 2); diff --git a/src/openms_gui/source/VISUAL/Plot2DWidget.cpp b/src/openms_gui/source/VISUAL/Plot2DWidget.cpp index 74768b6537d..58887adecfd 100644 --- a/src/openms_gui/source/VISUAL/Plot2DWidget.cpp +++ b/src/openms_gui/source/VISUAL/Plot2DWidget.cpp @@ -69,7 +69,7 @@ namespace OpenMS grid_->setRowStretch(1, 3); PlotCanvas::ExperimentSharedPtrType shr_ptr = PlotCanvas::ExperimentSharedPtrType(new PlotCanvas::ExperimentType()); - LayerData::ODExperimentSharedPtrType od_dummy(new OnDiscMSExperiment()); + LayerDataBase::ODExperimentSharedPtrType od_dummy(new OnDiscMSExperiment()); MSSpectrum dummy_spec; dummy_spec.push_back(Peak1D()); shr_ptr->addSpectrum(dummy_spec); @@ -175,175 +175,6 @@ namespace OpenMS } } - Histogram<> Plot2DWidget::createIntensityDistribution_() const - { - //initialize histogram - double min = canvas_->getCurrentMinIntensity(); - double max = canvas_->getCurrentMaxIntensity(); - if (min == max) - { - min -= 0.01; - max += 0.01; - } - Histogram<> tmp(min, max, (max - min) / 500.0); - - if (canvas_->getCurrentLayer().type == LayerData::DT_PEAK) - { - for (ExperimentType::ConstIterator spec_it = canvas_->getCurrentLayer().getPeakData()->begin(); spec_it != canvas_->getCurrentLayer().getPeakData()->end(); ++spec_it) - { - if (spec_it->getMSLevel() != 1) - { - continue; - } - for (ExperimentType::SpectrumType::ConstIterator peak_it = spec_it->begin(); peak_it != spec_it->end(); ++peak_it) - { - tmp.inc(peak_it->getIntensity()); - } - } - } - else if (canvas_->getCurrentLayer().type == LayerData::DT_FEATURE) - { - for (Plot2DCanvas::FeatureMapType::ConstIterator it = canvas_->getCurrentLayer().getFeatureMap()->begin(); it != canvas_->getCurrentLayer().getFeatureMap()->end(); ++it) - { - tmp.inc(it->getIntensity()); - } - } - else - { - for (Plot2DCanvas::ConsensusMapType::ConstIterator it = canvas_->getCurrentLayer().getConsensusMap()->begin(); it != canvas_->getCurrentLayer().getConsensusMap()->end(); ++it) - { - tmp.inc(it->getIntensity()); - } - } - - return tmp; - } - - Histogram<> Plot2DWidget::createMetaDistribution_(const String& name) const - { - Histogram<> tmp; - - if (canvas_->getCurrentLayer().type == LayerData::DT_PEAK) - { - //determine min and max of the data - float min = numeric_limits::max(), max = -numeric_limits::max(); - for (ExperimentType::const_iterator s_it = canvas_->getCurrentLayer().getPeakData()->begin(); s_it != canvas_->getCurrentLayer().getPeakData()->end(); ++s_it) - { - if (s_it->getMSLevel() != 1) - { - continue; - } - //float arrays - for (const OpenMS::DataArrays::FloatDataArray& fdat : s_it->getFloatDataArrays()) - { - if (fdat.getName() == name) - { - for (Size i = 0; i < fdat.size(); ++i) - { - if (fdat[i] < min) - { - min = fdat[i]; - } - if (fdat[i] > max) - { - max = fdat[i]; - } - } - break; - } - } - //integer arrays - for (const OpenMS::DataArrays::IntegerDataArray& dat : s_it->getIntegerDataArrays()) - { - if (dat.getName() == name) - { - for (Size i = 0; i < dat.size(); ++i) - { - if (dat[i] < min) - { - min = dat[i]; - } - if (dat[i] > max) - { - max = dat[i]; - } - } - break; - } - } - } - if (min >= max) - { - return tmp; - } - //create histogram - tmp.reset(min, max, (max - min) / 500.0); - for (ExperimentType::const_iterator s_it = canvas_->getCurrentLayer().getPeakData()->begin(); s_it != canvas_->getCurrentLayer().getPeakData()->end(); ++s_it) - { - if (s_it->getMSLevel() != 1) - { - continue; - } - //float arrays - for (const OpenMS::DataArrays::FloatDataArray& dat : s_it->getFloatDataArrays()) - { - if (dat.getName() == name) - { - for (Size i = 0; i < dat.size(); ++i) - { - tmp.inc(dat[i]); - } - break; - } - } - //integer arrays - for (const OpenMS::DataArrays::IntegerDataArray& idat : s_it->getIntegerDataArrays()) - { - if (idat.getName() == name) - { - for (Size i = 0; i < idat.size(); ++i) - { - tmp.inc(idat[i]); - } - break; - } - } - } - } - else //Features - { - //determine min and max - float min = numeric_limits::max(), max = -numeric_limits::max(); - for (Plot2DCanvas::FeatureMapType::ConstIterator it = canvas_->getCurrentLayer().getFeatureMap()->begin(); it != canvas_->getCurrentLayer().getFeatureMap()->end(); ++it) - { - if (it->metaValueExists(name)) - { - float value = it->getMetaValue(name); - if (value < min) - { - min = value; - } - if (value > max) - { - max = value; - } - } - } - //create histogram - tmp.reset(min, max, (max - min) / 500.0); - for (Plot2DCanvas::FeatureMapType::ConstIterator it = canvas_->getCurrentLayer().getFeatureMap()->begin(); it != canvas_->getCurrentLayer().getFeatureMap()->end(); ++it) - { - if (it->metaValueExists(name)) - { - tmp.inc((float)(it->getMetaValue(name))); - } - } - - } - - return tmp; - } - void Plot2DWidget::updateProjections() { canvas()->updateProjections(); @@ -370,7 +201,7 @@ namespace OpenMS // projection above the 2D area void Plot2DWidget::horizontalProjection(ExperimentSharedPtrType exp) { - LayerData::ODExperimentSharedPtrType od_dummy(new OnDiscMSExperiment()); + LayerDataBase::ODExperimentSharedPtrType od_dummy(new OnDiscMSExperiment()); // print horizontal (note that m/z in the projection could actually be RT - this only determines the orientation) projection_horz_->canvas()->mzToXAxis(true); @@ -407,7 +238,7 @@ namespace OpenMS // projection on the right side of the 2D area void Plot2DWidget::verticalProjection(ExperimentSharedPtrType exp) { - LayerData::ODExperimentSharedPtrType od_dummy(new OnDiscMSExperiment()); + LayerDataBase::ODExperimentSharedPtrType od_dummy(new OnDiscMSExperiment()); // print vertically (note that m/z in the projection could actually be RT - this only determines the orientation) projection_vert_->canvas()->mzToXAxis(false); projection_vert_->canvas()->setSwappedAxis(true); @@ -458,7 +289,7 @@ namespace OpenMS goto_dialog.setRange(area.minY(), area.maxY(), area.minX(), area.maxX()); goto_dialog.setMinMaxOfRange(canvas()->getDataRange().minY(), canvas()->getDataRange().maxY(), canvas()->getDataRange().minX(), canvas()->getDataRange().maxX()); // feature numbers only for consensus&feature maps - goto_dialog.enableFeatureNumber(canvas()->getCurrentLayer().type == LayerData::DT_FEATURE || canvas()->getCurrentLayer().type == LayerData::DT_CONSENSUS); + goto_dialog.enableFeatureNumber(canvas()->getCurrentLayer().type == LayerDataBase::DT_FEATURE || canvas()->getCurrentLayer().type == LayerDataBase::DT_CONSENSUS); //execute if (goto_dialog.exec()) { @@ -480,11 +311,11 @@ namespace OpenMS uid.setUniqueId(feature_id); Size feature_index(-1); // TODO : not use -1 - if (canvas()->getCurrentLayer().type == LayerData::DT_FEATURE) + if (canvas()->getCurrentLayer().type == LayerDataBase::DT_FEATURE) { feature_index = canvas()->getCurrentLayer().getFeatureMap()->uniqueIdToIndex(uid.getUniqueId()); } - else if (canvas()->getCurrentLayer().type == LayerData::DT_CONSENSUS) + else if (canvas()->getCurrentLayer().type == LayerDataBase::DT_CONSENSUS) { feature_index = canvas()->getCurrentLayer().getConsensusMap()->uniqueIdToIndex(uid.getUniqueId()); } @@ -501,14 +332,14 @@ namespace OpenMS } //check if the feature index exists - if ((canvas()->getCurrentLayer().type == LayerData::DT_FEATURE && feature_index >= canvas()->getCurrentLayer().getFeatureMap()->size()) - || (canvas()->getCurrentLayer().type == LayerData::DT_CONSENSUS && feature_index >= canvas()->getCurrentLayer().getConsensusMap()->size())) + if ((canvas()->getCurrentLayer().type == LayerDataBase::DT_FEATURE && feature_index >= canvas()->getCurrentLayer().getFeatureMap()->size()) + || (canvas()->getCurrentLayer().type == LayerDataBase::DT_CONSENSUS && feature_index >= canvas()->getCurrentLayer().getConsensusMap()->size())) { QMessageBox::warning(this, "Invalid feature number", "Feature number too large/UniqueID not found.\nPlease select a valid feature!"); return; } //display feature with a margin - if (canvas()->getCurrentLayer().type == LayerData::DT_FEATURE) + if (canvas()->getCurrentLayer().type == LayerDataBase::DT_FEATURE) { const FeatureMapType& map = *canvas()->getCurrentLayer().getFeatureMap(); DBoundingBox<2> bb = map[feature_index].getConvexHull().getBoundingBox(); diff --git a/src/openms_gui/source/VISUAL/Plot3DCanvas.cpp b/src/openms_gui/source/VISUAL/Plot3DCanvas.cpp index bd60bc4940d..512b1a403de 100644 --- a/src/openms_gui/source/VISUAL/Plot3DCanvas.cpp +++ b/src/openms_gui/source/VISUAL/Plot3DCanvas.cpp @@ -106,7 +106,7 @@ namespace OpenMS bool Plot3DCanvas::finishAdding_() { - if (layers_.getCurrentLayer().type != LayerData::DT_PEAK) + if (layers_.getCurrentLayer().type != LayerDataBase::DT_PEAK) { popIncompleteLayer_("This widget supports peak data only. Aborting!"); return false; @@ -164,7 +164,7 @@ namespace OpenMS resetZoom(); } - Plot3DOpenGLCanvas * Plot3DCanvas::openglwidget() + Plot3DOpenGLCanvas * Plot3DCanvas::openglwidget() const { return static_cast(openglcanvas_); } @@ -198,7 +198,7 @@ namespace OpenMS void Plot3DCanvas::showCurrentLayerPreferences() { Internal::Plot3DPrefDialog dlg(this); - LayerData & layer = getCurrentLayer(); + LayerDataBase& layer = getCurrentLayer(); // cout << "IN: " << param_ << endl; @@ -306,7 +306,7 @@ namespace OpenMS void Plot3DCanvas::saveCurrentLayer(bool visible) { - const LayerData & layer = getCurrentLayer(); + const LayerDataBase& layer = getCurrentLayer(); //determine proposed filename String proposed_name = param_.getValue("default_path").toString(); diff --git a/src/openms_gui/source/VISUAL/Plot3DOpenGLCanvas.cpp b/src/openms_gui/source/VISUAL/Plot3DOpenGLCanvas.cpp index 265b751a055..0f1a3df5f5d 100644 --- a/src/openms_gui/source/VISUAL/Plot3DOpenGLCanvas.cpp +++ b/src/openms_gui/source/VISUAL/Plot3DOpenGLCanvas.cpp @@ -37,6 +37,9 @@ #include #include +#include + + #include #include @@ -539,7 +542,7 @@ namespace OpenMS for (Size i = 0; i < canvas_3d_.getLayerCount(); ++i) { - const LayerData & layer = canvas_3d_.getLayer(i); + const LayerDataBase& layer = canvas_3d_.getLayer(i); if (layer.visible) { if ((Int)layer.param.getValue("dot:shade_mode")) @@ -623,7 +626,7 @@ namespace OpenMS for (Size i = 0; i < canvas_3d_.getLayerCount(); i++) { - LayerData& layer = canvas_3d_.getLayer(i); + LayerDataBase& layer = canvas_3d_.getLayer(i); if (layer.visible) { recalculateDotGradient_(layer); @@ -1121,16 +1124,16 @@ namespace OpenMS for (auto spec_it = rt_begin_it; spec_it != rt_end_it; ++spec_it) { - for (auto it = spec_it->MZBegin(canvas_3d_.visible_area_.min_[0]); it != spec_it->MZEnd(canvas_3d_.visible_area_.max_[0]); ++it) + auto mz_end = spec_it->MZEnd(canvas_3d_.visible_area_.max_[0]); + for (auto it = spec_it->MZBegin(canvas_3d_.visible_area_.min_[0]); it != mz_end; ++it) { - if (int_scale_.min_[0] >= it->getIntensity()) { int_scale_.min_[0] = it->getIntensity(); } - if (int_scale_.max_[0] <= it->getIntensity()) { int_scale_.max_[0] = it->getIntensity(); } + Math::extendRange(int_scale_.min_[0], int_scale_.max_[0], (double)it->getIntensity()); } } } } - void Plot3DOpenGLCanvas::recalculateDotGradient_(LayerData& layer) + void Plot3DOpenGLCanvas::recalculateDotGradient_(LayerDataBase& layer) { layer.gradient.fromString(layer.param.getValue("dot:gradient")); switch (canvas_3d_.intensity_mode_) diff --git a/src/openms_gui/source/VISUAL/Plot3DWidget.cpp b/src/openms_gui/source/VISUAL/Plot3DWidget.cpp index 2068d566e85..2434641e6b4 100644 --- a/src/openms_gui/source/VISUAL/Plot3DWidget.cpp +++ b/src/openms_gui/source/VISUAL/Plot3DWidget.cpp @@ -71,122 +71,6 @@ namespace OpenMS { } - Histogram<> Plot3DWidget::createIntensityDistribution_() const - { - //initialize histogram - double min = canvas_->getCurrentMinIntensity(); - double max = canvas_->getCurrentMaxIntensity(); - if (min == max) - { - min -= 0.01; - max += 0.01; - } - Histogram<> tmp(min, max, (max - min) / 500.0); - - for (ExperimentType::ConstIterator spec_it = canvas_->getCurrentLayer().getPeakData()->begin(); spec_it != canvas_->getCurrentLayer().getPeakData()->end(); ++spec_it) - { - if (spec_it->getMSLevel() != 1) - { - continue; - } - for (ExperimentType::SpectrumType::ConstIterator peak_it = spec_it->begin(); peak_it != spec_it->end(); ++peak_it) - { - tmp.inc(peak_it->getIntensity()); - } - } - - return tmp; - } - - Histogram<> Plot3DWidget::createMetaDistribution_(const String & name) const - { - Histogram<> tmp; - - //determine min and max of the data - float m_min = (numeric_limits::max)(), m_max = -(numeric_limits::max)(); - for (ExperimentType::const_iterator s_it = canvas_->getCurrentLayer().getPeakData()->begin(); s_it != canvas_->getCurrentLayer().getPeakData()->end(); ++s_it) - { - if (s_it->getMSLevel() != 1) - { - continue; - } - //float arrays - for (ExperimentType::SpectrumType::FloatDataArrays::const_iterator it = s_it->getFloatDataArrays().begin(); it != s_it->getFloatDataArrays().end(); ++it) - { - if (it->getName() == name) - { - for (Size i = 0; i < it->size(); ++i) - { - if ((*it)[i] < m_min) - { - m_min = (*it)[i]; - } - if ((*it)[i] > m_max) - { - m_max = (*it)[i]; - } - } - break; - } - } - //integer arrays - for (ExperimentType::SpectrumType::IntegerDataArrays::const_iterator it = s_it->getIntegerDataArrays().begin(); it != s_it->getIntegerDataArrays().end(); ++it) - { - if (it->getName() == name) - { - for (Size i = 0; i < it->size(); ++i) - { - if ((*it)[i] < m_min) - { - m_min = (*it)[i]; - } - if ((*it)[i] > m_max) - { - m_max = (*it)[i]; - } - } - break; - } - } - } - if (m_min >= m_max) - return tmp; - - //create histogram - tmp.reset(m_min, m_max, (m_max - m_min) / 500.0); - for (ExperimentType::const_iterator s_it = canvas_->getCurrentLayer().getPeakData()->begin(); s_it != canvas_->getCurrentLayer().getPeakData()->end(); ++s_it) - { - if (s_it->getMSLevel() != 1) - continue; - //float arrays - for (ExperimentType::SpectrumType::FloatDataArrays::const_iterator it = s_it->getFloatDataArrays().begin(); it != s_it->getFloatDataArrays().end(); ++it) - { - if (it->getName() == name) - { - for (Size i = 0; i < it->size(); ++i) - { - tmp.inc((*it)[i]); - } - break; - } - } - //integer arrays - for (ExperimentType::SpectrumType::IntegerDataArrays::const_iterator it = s_it->getIntegerDataArrays().begin(); it != s_it->getIntegerDataArrays().end(); ++it) - { - if (it->getName() == name) - { - for (Size i = 0; i < it->size(); ++i) - { - tmp.inc((*it)[i]); - } - break; - } - } - } - - return tmp; - } - void Plot3DWidget::showLegend(bool show) { canvas()->showLegend(show); diff --git a/src/openms_gui/source/VISUAL/PlotCanvas.cpp b/src/openms_gui/source/VISUAL/PlotCanvas.cpp index b2560f17019..792473ee232 100644 --- a/src/openms_gui/source/VISUAL/PlotCanvas.cpp +++ b/src/openms_gui/source/VISUAL/PlotCanvas.cpp @@ -40,6 +40,11 @@ #include #include #include +#include +#include +#include +#include +#include // QT #include @@ -59,25 +64,7 @@ namespace OpenMS PlotCanvas::PlotCanvas(const Param & /*preferences*/, QWidget * parent) : QWidget(parent), DefaultParamHandler("PlotCanvas"), - buffer_(), - action_mode_(AM_TRANSLATE), - intensity_mode_(IM_NONE), - layers_(), - mz_to_x_axis_(true), - visible_area_(AreaType::empty), - overall_data_range_(DRange<3>::empty), - show_grid_(true), - zoom_stack_(), - zoom_pos_(zoom_stack_.end()), - update_buffer_(false), - spectrum_widget_(nullptr), - percentage_factor_(1.0), - snap_factors_(1, 1.0), - rubber_band_(QRubberBand::Rectangle, this), - context_add_(nullptr), - show_timing_(false), - selected_peak_(), - measurement_start_() + rubber_band_(QRubberBand::Rectangle, this) { //Prevent filling background setAttribute(Qt::WA_OpaquePaintEvent); @@ -106,7 +93,6 @@ namespace OpenMS PlotCanvas::~PlotCanvas() { - //cout << "DEST PlotCanvas" << endl; } void PlotCanvas::resizeEvent(QResizeEvent * /* e */) @@ -297,7 +283,7 @@ namespace OpenMS changeVisibleArea_(tmp, repaint, true); } - void PlotCanvas::setVisibleArea(AreaType area) + void PlotCanvas::setVisibleArea(const AreaType& area) { //cout << OPENMS_PRETTY_FUNCTION << endl; changeVisibleArea_(area); @@ -383,75 +369,68 @@ namespace OpenMS painter.restore(); } - bool PlotCanvas::addLayer(ExperimentSharedPtrType map, ODExperimentSharedPtrType od_map, const String & filename) + + void setBaseLayerParameters(LayerDataBase* new_layer, const Param& param, const String& filename) { - LayerData new_layer; - new_layer.param = param_; - new_layer.filename = filename; - new_layer.setName(QFileInfo(filename.toQString()).completeBaseName()); - new_layer.setPeakData(map); - new_layer.setOnDiscPeakData(od_map); + new_layer->param = param; + new_layer->filename = filename; + new_layer->setName(QFileInfo(filename.toQString()).completeBaseName()); + } + bool PlotCanvas::addLayer(ExperimentSharedPtrType map, ODExperimentSharedPtrType od_map, const String & filename) + { // both empty - if (!new_layer.getPeakData()->getChromatograms().empty() - && !new_layer.getPeakData()->empty()) + if (!map->getChromatograms().empty() + && !map->empty()) { // TODO : handle this case better OPENMS_LOG_WARN << "Your input data contains chromatograms and spectra, falling back to display spectra only." << std::endl; } + LayerDataBaseUPtr new_layer; // check which one is empty - if (!new_layer.getPeakData()->getChromatograms().empty() - && new_layer.getPeakData()->empty()) + if (!map->getChromatograms().empty() + && map->empty()) { - new_layer.type = LayerData::DT_CHROMATOGRAM; + new_layer.reset(new LayerDataChrom); } else { - new_layer.type = LayerData::DT_PEAK; + new_layer.reset(new LayerDataPeak); } + new_layer->setPeakData(map); + new_layer->setOnDiscPeakData(od_map); + setBaseLayerParameters(new_layer.get(), param_, filename); layers_.addLayer(std::move(new_layer)); return finishAdding_(); } bool PlotCanvas::addLayer(FeatureMapSharedPtrType map, const String & filename) { - LayerData new_layer; - new_layer.param = param_; - new_layer.filename = filename; - new_layer.setName(QFileInfo(filename.toQString()).completeBaseName()); - new_layer.getFeatureMap() = map; - new_layer.type = LayerData::DT_FEATURE; + LayerDataBaseUPtr new_layer(new LayerDataFeature); + new_layer->getFeatureMap() = map; + setBaseLayerParameters(new_layer.get(), param_, filename); layers_.addLayer(std::move(new_layer)); return finishAdding_(); } bool PlotCanvas::addLayer(ConsensusMapSharedPtrType map, const String & filename) { - LayerData new_layer; - new_layer.param = param_; - new_layer.filename = filename; - new_layer.setName(QFileInfo(filename.toQString()).completeBaseName()); - new_layer.getConsensusMap() = map; - new_layer.type = LayerData::DT_CONSENSUS; + LayerDataBaseUPtr new_layer(new LayerDataConsensus(map)); + setBaseLayerParameters(new_layer.get(), param_, filename); layers_.addLayer(std::move(new_layer)); return finishAdding_(); } - bool PlotCanvas::addLayer(vector & peptides, - const String & filename) + bool PlotCanvas::addLayer(vector& peptides, const String& filename) { - LayerData new_layer; - new_layer.param = param_; - new_layer.filename = filename; - new_layer.setName(QFileInfo(filename.toQString()).completeBaseName()); - new_layer.peptides.swap(peptides); - new_layer.type = LayerData::DT_IDENT; - - layers_.addLayer(std::move(new_layer)); + LayerDataIdent* new_layer(new LayerDataIdent); // ownership will be transferred to unique_ptr below; no need to delete + new_layer->setPeptideIds(std::move(peptides)); + setBaseLayerParameters(new_layer, param_, filename); + layers_.addLayer(LayerDataBaseUPtr(new_layer)); return finishAdding_(); } @@ -477,7 +456,7 @@ namespace OpenMS void PlotCanvas::changeVisibility(Size i, bool b) { - LayerData& layer = getLayer(i); + LayerDataBase& layer = getLayer(i); if (layer.visible != b) { layer.visible = b; @@ -488,7 +467,7 @@ namespace OpenMS void PlotCanvas::changeLayerFilterState(Size i, bool b) { - LayerData & layer = getLayer(i); + LayerDataBase& layer = getLayer(i); if (layer.filters.isActive() != b) { layer.filters.setActive(b); @@ -497,140 +476,38 @@ namespace OpenMS } } - const DRange<3> & PlotCanvas::getDataRange() + const DRange<3>& PlotCanvas::getDataRange() { return overall_data_range_; } void PlotCanvas::recalculateRanges_(UInt mz_dim, UInt rt_dim, UInt it_dim) { - overall_data_range_ = DRange<3>::empty; - DRange<3>::PositionType m_min = overall_data_range_.minPosition(); - DRange<3>::PositionType m_max = overall_data_range_.maxPosition(); + RangeType layer_range; // temporary, until we switch overall_data_range_ to a RangeType + //overall_data_range_.clearRanges(); for (Size layer_index = 0; layer_index < getLayerCount(); ++layer_index) { - if (getLayer(layer_index).type == LayerData::DT_PEAK || getLayer(layer_index).type == LayerData::DT_CHROMATOGRAM) - { - const ExperimentType & map = *getLayer(layer_index).getPeakData(); - if (map.getMinMZ() < m_min[mz_dim]) - { - m_min[mz_dim] = map.getMinMZ(); - } - if (map.getMaxMZ() > m_max[mz_dim]) - { - m_max[mz_dim] = map.getMaxMZ(); - } - if (map.getMinRT() < m_min[rt_dim]) - { - m_min[rt_dim] = map.getMinRT(); - } - if (map.getMaxRT() > m_max[rt_dim]) - { - m_max[rt_dim] = map.getMaxRT(); - } - if (map.getMinInt() < m_min[it_dim]) - { - m_min[it_dim] = map.getMinInt(); - } - if (map.getMaxInt() > m_max[it_dim]) - { - m_max[it_dim] = map.getMaxInt(); - } - } - else if (getLayer(layer_index).type == LayerData::DT_FEATURE) - { - const FeatureMapType & map = *getLayer(layer_index).getFeatureMap(); - if (map.getMin()[1] < m_min[mz_dim]) - { - m_min[mz_dim] = map.getMin()[1]; - } - if (map.getMax()[1] > m_max[mz_dim]) - { - m_max[mz_dim] = map.getMax()[1]; - } - if (map.getMin()[0] < m_min[rt_dim]) - { - m_min[rt_dim] = map.getMin()[0]; - } - if (map.getMax()[0] > m_max[rt_dim]) - { - m_max[rt_dim] = map.getMax()[0]; - } - if (map.getMinInt() < m_min[it_dim]) - { - m_min[it_dim] = map.getMinInt(); - } - if (map.getMaxInt() > m_max[it_dim]) - { - m_max[it_dim] = map.getMaxInt(); - } - } - else if (getLayer(layer_index).type == LayerData::DT_CONSENSUS) - { - const ConsensusMapType & map = *getLayer(layer_index).getConsensusMap(); - if (map.getMin()[1] < m_min[mz_dim]) - { - m_min[mz_dim] = map.getMin()[1]; - } - if (map.getMax()[1] > m_max[mz_dim]) - { - m_max[mz_dim] = map.getMax()[1]; - } - if (map.getMin()[0] < m_min[rt_dim]) - { - m_min[rt_dim] = map.getMin()[0]; - } - if (map.getMax()[0] > m_max[rt_dim]) - { - m_max[rt_dim] = map.getMax()[0]; - } - if (map.getMinInt() < m_min[it_dim]) - { - m_min[it_dim] = map.getMinInt(); - } - if (map.getMaxInt() > m_max[it_dim]) - { - m_max[it_dim] = map.getMaxInt(); - } - } - else if (getLayer(layer_index).type == LayerData::DT_IDENT) - { - const vector & peptides = - getLayer(layer_index).peptides; - for (const PeptideIdentification& pep : peptides) - { - double rt = pep.getRT(); - double mz = getIdentificationMZ_(layer_index, pep); - if (mz < m_min[mz_dim]) - { - m_min[mz_dim] = mz; - } - if (mz > m_max[mz_dim]) - { - m_max[mz_dim] = mz; - } - if (rt < m_min[rt_dim]) - { - m_min[rt_dim] = rt; - } - if (rt > m_max[rt_dim]) - { - m_max[rt_dim] = rt; - } - } - } + layer_range.extend(getLayer(layer_index).getRange()); } - overall_data_range_.setMin(m_min); - overall_data_range_.setMax(m_max); // add 4% margin (2% left, 2% right) to RT, m/z and intensity - overall_data_range_.extend(1.04); + layer_range.scaleBy(1.04); // set minimum intensity to 0 - DRange<3>::PositionType new_min = overall_data_range_.minPosition(); - new_min[it_dim] = 0; - overall_data_range_.setMin(new_min); + layer_range.extendIntensity(0); + + overall_data_range_ = DRange<3>::empty; + DRange<3>::PositionType m_min = overall_data_range_.minPosition(); + DRange<3>::PositionType m_max = overall_data_range_.maxPosition(); + m_min[rt_dim] = layer_range.getMinRT(); + m_min[mz_dim] = layer_range.getMinMZ(); + m_min[it_dim] = layer_range.getMinIntensity(); + m_max[rt_dim] = layer_range.getMaxRT(); + m_max[mz_dim] = layer_range.getMaxMZ(); + m_max[it_dim] = layer_range.getMaxIntensity(); + overall_data_range_.setMin(m_min); + overall_data_range_.setMax(m_max); } double PlotCanvas::getSnapFactor() @@ -638,7 +515,7 @@ namespace OpenMS return snap_factors_[0]; } - double PlotCanvas::getPercentageFactor() + double PlotCanvas::getPercentageFactor() const { return percentage_factor_; } @@ -783,8 +660,8 @@ namespace OpenMS //clear output experiment map.clear(true); - const LayerData & layer = getCurrentLayer(); - if (layer.type == LayerData::DT_PEAK) + const LayerDataBase& layer = getCurrentLayer(); + if (layer.type == LayerDataBase::DT_PEAK) { const AreaType & area = getVisibleArea(); const ExperimentType & peaks = *layer.getPeakData(); @@ -842,7 +719,7 @@ namespace OpenMS // do not use map.addSpectrum() here, otherwise empty spectra which did not pass the filters above will be added } } - else if (layer.type == LayerData::DT_CHROMATOGRAM) + else if (layer.type == LayerDataBase::DT_CHROMATOGRAM) { //TODO CHROM } @@ -853,8 +730,8 @@ namespace OpenMS //clear output experiment map.clear(true); - const LayerData & layer = getCurrentLayer(); - if (layer.type == LayerData::DT_FEATURE) + const LayerDataBase& layer = getCurrentLayer(); + if (layer.type == LayerDataBase::DT_FEATURE) { //copy meta data map.setIdentifier(layer.getFeatureMap()->getIdentifier()); @@ -884,8 +761,8 @@ namespace OpenMS //clear output experiment map.clear(true); - const LayerData & layer = getCurrentLayer(); - if (layer.type == LayerData::DT_CONSENSUS) + const LayerDataBase& layer = getCurrentLayer(); + if (layer.type == LayerDataBase::DT_CONSENSUS) { //copy file descriptions map.getColumnHeaders() = layer.getConsensusMap()->getColumnHeaders(); @@ -909,37 +786,34 @@ namespace OpenMS } } - void PlotCanvas::getVisibleIdentifications(vector & - peptides) const + void PlotCanvas::getVisibleIdentifications(vector& peptides) const { peptides.clear(); - const LayerData& layer = getCurrentLayer(); - if (layer.type == LayerData::DT_IDENT) + auto p = dynamic_cast(&getCurrentLayer()); + if (p == nullptr) return; + + // copy peptides, if visible + for (const auto& p : p->getPeptideIds()) { - // copy peptides, if visible - for (vector::const_iterator it = - layer.peptides.begin(); it != layer.peptides.end(); ++it) + double rt = p.getRT(); + double mz = getIdentificationMZ_(layers_.getCurrentLayerIndex(), p); + // TODO: if (layer.filters.passes(*it) && ...) + if (getVisibleArea().encloses(mz, rt)) { - double rt = it->getRT(); - double mz = getIdentificationMZ_(layers_.getCurrentLayerIndex(), *it); - // TODO: if (layer.filters.passes(*it) && ...) - if (getVisibleArea().encloses(mz, rt)) - { - peptides.push_back(*it); - } + peptides.push_back(p); } } } void PlotCanvas::showMetaData(bool modifiable, Int index) { - LayerData& layer = getCurrentLayer(); + LayerDataBase& layer = getCurrentLayer(); MetaDataBrowser dlg(modifiable, this); if (index == -1) { - if (layer.type == LayerData::DT_PEAK) + if (layer.type == LayerDataBase::DT_PEAK) { dlg.add(*layer.getPeakDataMuteable()); // Exception for Plot1DCanvas, here we add the meta data of the one spectrum @@ -948,42 +822,42 @@ namespace OpenMS dlg.add((*layer.getPeakDataMuteable())[layer.getCurrentSpectrumIndex()]); } } - else if (layer.type == LayerData::DT_FEATURE) + else if (layer.type == LayerDataBase::DT_FEATURE) { dlg.add(*layer.getFeatureMap()); } - else if (layer.type == LayerData::DT_CONSENSUS) + else if (layer.type == LayerDataBase::DT_CONSENSUS) { dlg.add(*layer.getConsensusMap()); } - else if (layer.type == LayerData::DT_CHROMATOGRAM) + else if (layer.type == LayerDataBase::DT_CHROMATOGRAM) { //TODO CHROM } - else if (layer.type == LayerData::DT_IDENT) + else if (layer.type == LayerDataBase::DT_IDENT) { // TODO IDENT } } else //show element meta data { - if (layer.type == LayerData::DT_PEAK) + if (layer.type == LayerDataBase::DT_PEAK) { dlg.add((*layer.getPeakDataMuteable())[index]); } - else if (layer.type == LayerData::DT_FEATURE) + else if (layer.type == LayerDataBase::DT_FEATURE) { dlg.add((*layer.getFeatureMap())[index]); } - else if (layer.type == LayerData::DT_CONSENSUS) + else if (layer.type == LayerDataBase::DT_CONSENSUS) { dlg.add((*layer.getConsensusMap())[index]); } - else if (layer.type == LayerData::DT_CHROMATOGRAM) + else if (layer.type == LayerDataBase::DT_CHROMATOGRAM) { //TODO CHROM } - else if (layer.type == LayerData::DT_IDENT) + else if (layer.type == LayerDataBase::DT_IDENT) { // TODO IDENT } @@ -1016,7 +890,7 @@ namespace OpenMS void PlotCanvas::modificationStatus_(Size layer_index, bool modified) { - LayerData & layer = getLayer(layer_index); + LayerDataBase& layer = getLayer(layer_index); if (layer.modified != modified) { layer.modified = modified; @@ -1038,7 +912,7 @@ namespace OpenMS const PeptideIdentification & peptide) const { - if (getLayerFlag(layer_index, LayerData::I_PEPTIDEMZ)) + if (getLayerFlag(layer_index, LayerDataBase::I_PEPTIDEMZ)) { const PeptideHit & hit = peptide.getHits().front(); Int charge = hit.getCharge(); @@ -1050,56 +924,53 @@ namespace OpenMS } } - - /// adds a new layer and makes it the current layer - - void LayerStack::addLayer(LayerData&& new_layer) + void LayerStack::addLayer(LayerDataBaseUPtr new_layer) { // insert after last layer of same type, // if there is no such layer after last layer of previous types, // if there are no layers at all put at front - auto it = std::find_if(layers_.rbegin(), layers_.rend(), [&new_layer](const LayerData& l) - { return l.type <= new_layer.type; }); + auto it = std::find_if(layers_.rbegin(), layers_.rend(), [&new_layer](const LayerDataBaseUPtr& l) + { return l->type <= new_layer->type; }); auto where = layers_.insert(it.base(), std::move(new_layer)); // update to index we just inserted into current_layer_ = where - layers_.begin(); } - const LayerData& LayerStack::getLayer(const Size index) const + const LayerDataBase& LayerStack::getLayer(const Size index) const { if (index >= layers_.size()) { throw Exception::IndexOverflow(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, index, layers_.size()); } - return layers_[index]; + return *layers_[index].get(); } - LayerData& LayerStack::getLayer(const Size index) + LayerDataBase& LayerStack::getLayer(const Size index) { if (index >= layers_.size()) { throw Exception::IndexOverflow(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, index, layers_.size()); } - return layers_[index]; + return *layers_[index].get(); } - const LayerData& LayerStack::getCurrentLayer() const + const LayerDataBase& LayerStack::getCurrentLayer() const { if (current_layer_ >= layers_.size()) { throw Exception::IndexOverflow(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, current_layer_, layers_.size()); } - return layers_[current_layer_]; + return *layers_[current_layer_].get(); } - LayerData& LayerStack::getCurrentLayer() + LayerDataBase& LayerStack::getCurrentLayer() { if (current_layer_ >= layers_.size()) { throw Exception::IndexOverflow(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, current_layer_, layers_.size()); } - return layers_[current_layer_]; + return *layers_[current_layer_].get(); } void LayerStack::setCurrentLayer(Size index) @@ -1134,7 +1005,7 @@ namespace OpenMS } layers_.erase(layers_.begin() + layer_index); - // update current layer if it became invalid + // update current layer if it became invalid TODO dont you have to adjust the index to stay on the same layer?? if (current_layer_ >= getLayerCount()) { current_layer_ = getLayerCount() - 1; // overflow is intentional diff --git a/src/openms_gui/source/VISUAL/PlotWidget.cpp b/src/openms_gui/source/VISUAL/PlotWidget.cpp index 706401c650c..cc8e31bfcc2 100644 --- a/src/openms_gui/source/VISUAL/PlotWidget.cpp +++ b/src/openms_gui/source/VISUAL/PlotWidget.cpp @@ -33,9 +33,11 @@ // -------------------------------------------------------------------------- #include + +#include #include #include -#include +#include #include #include @@ -150,13 +152,12 @@ namespace OpenMS void PlotWidget::showStatistics() { - LayerStatisticsDialog lsd(this); + LayerStatisticsDialog lsd(this, canvas_->getCurrentLayer().getStats()); lsd.exec(); } - void PlotWidget::showIntensityDistribution() + void PlotWidget::showIntensityDistribution(const Histogram<>& dist) { - Histogram<> dist = createIntensityDistribution_(); HistogramDialog dw(dist); dw.setLegend(PlotWidget::INTENSITY_AXIS_TITLE); dw.setLogMode(true); @@ -186,9 +187,8 @@ namespace OpenMS } } - void PlotWidget::showMetaDistribution(const String& name) + void PlotWidget::showMetaDistribution(const String& name, const Histogram<>& dist) { - Histogram<> dist = createMetaDistribution_(name); HistogramDialog dw(dist); dw.setLegend(name); @@ -330,7 +330,7 @@ namespace OpenMS for (UInt l = 0; l < canvas()->getLayerCount(); ++l) { //modified => ask if it should be saved - const LayerData& layer = canvas()->getLayer(l); + const LayerDataBase& layer = canvas()->getLayer(l); if (layer.modified) { QMessageBox::StandardButton result = QMessageBox::question(this, "Save?", (String("Do you want to save your changes to layer '") + layer.getName() + "'?").toQString(), QMessageBox::Ok | QMessageBox::Discard); diff --git a/src/openms_gui/source/VISUAL/SequenceVisualizer.cpp b/src/openms_gui/source/VISUAL/SequenceVisualizer.cpp new file mode 100644 index 00000000000..52e31d8e971 --- /dev/null +++ b/src/openms_gui/source/VISUAL/SequenceVisualizer.cpp @@ -0,0 +1,84 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Julianus Pfeuffer $ +// $Authors: Dhanmoni Nath, Julianus Pfeuffer $ +// -------------------------------------------------------------------------- + +#ifdef QT_WEBENGINEWIDGETS_LIB +#include +#include + +#include +#include + +#include + +// This is the window that appears when we click on 'show' in the 'sequence' column of the protein table + +namespace OpenMS +{ + SequenceVisualizer::SequenceVisualizer(QWidget* parent) : + QWidget(parent), ui_(new Ui::SequenceVisualizer) + { + ui_->setupUi(this); + view_ = new QWebEngineView(this); + channel_ = new QWebChannel(&backend_); // setup Qt WebChannel API + view_->page()->setWebChannel(channel_); + channel_->registerObject(QString("Backend"), &backend_); // This object will be available in HTML file. + view_->load(QUrl("qrc:/new/sequence_viz.html")); + ui_->gridLayout->addWidget(view_); + } + + SequenceVisualizer::~SequenceVisualizer() + { + channel_->deleteLater(); + view_->close(); + view_->deleteLater(); + delete ui_; + deleteLater(); + } + + // Get protein and peptide data from the protein table and store inside the m_json_data_obj_ object. + // Inside the HTML file, this QObject will be available and we'll access these protein and + // peptide data using the qtWebEngine and webChannel API. + void SequenceVisualizer::setProteinPeptideDataToJsonObj( + const QString& accession_num, + const QString& pro_seq, + const QJsonArray& pep_data) + { + QJsonObject j; + j["accession_num"] = accession_num; + j["protein_sequence_data"] = pro_seq; + j["peptides_data"] = pep_data; + backend_.m_json_data_obj_ = std::move(j); + } +}// namespace OpenMS +#endif \ No newline at end of file diff --git a/src/openms_gui/source/VISUAL/SequenceVisualizer.ui b/src/openms_gui/source/VISUAL/SequenceVisualizer.ui new file mode 100644 index 00000000000..a8e044e0be0 --- /dev/null +++ b/src/openms_gui/source/VISUAL/SequenceVisualizer.ui @@ -0,0 +1,24 @@ + + + SequenceVisualizer + + + + 0 + 0 + 708 + 440 + + + + SequenceVisualizer + + + + + + + + + + diff --git a/src/openms_gui/source/VISUAL/SpectraIDViewTab.cpp b/src/openms_gui/source/VISUAL/SpectraIDViewTab.cpp index 422af838074..1528c0776b2 100644 --- a/src/openms_gui/source/VISUAL/SpectraIDViewTab.cpp +++ b/src/openms_gui/source/VISUAL/SpectraIDViewTab.cpp @@ -33,17 +33,37 @@ // -------------------------------------------------------------------------- #include +#include + #include + +#include +#include #include #include #include +#include +#include +#include +#include #include +#include #include #include +#include +#include +#include +#include +#include +#include +#include +#include +#include #include +#include using namespace std; @@ -66,8 +86,29 @@ namespace Clmn << "Curated" << "precursor error (|ppm|)" << "precursor intensity" << "peak annotations"; } +// Use a namespace to encapsulate names, yet use c-style 'enum' for fast conversion to int. +// So we can write: 'Clmn::MS_LEVEL', but get implicit conversion to int +namespace ProteinClmn +{ + enum HeaderNames + { // indices into QTableWidget's columns (which start at index 0) + ACCESSION, + FULL_PROTEIN_SEQUENCE, + SEQUENCE, + DESCRIPTION, + SCORE, + COVERAGE, + NR_PSM, + /* last entry --> */ SIZE_OF_HEADERNAMES + }; + // keep in SYNC with enum HeaderNames + const QStringList HEADER_NAMES = QStringList() + << "accession" << "full sequence" << "sequence" << "description" << "score" << "coverage" << "#PSMs"; +} + namespace OpenMS { + SpectraIDViewTab::SpectraIDViewTab(const Param&, QWidget* parent) : QWidget(parent), DefaultParamHandler("SpectraIDViewTab") @@ -77,37 +118,28 @@ namespace OpenMS // make sure they are in sync assert(Clmn::HEADER_NAMES.size() == Clmn::HeaderNames::SIZE_OF_HEADERNAMES); - // id view - defaults_.setValue("a_intensity", 1.0, "Default intensity of a-ions"); - defaults_.setValue("b_intensity", 1.0, "Default intensity of b-ions"); - defaults_.setValue("c_intensity", 1.0, "Default intensity of c-ions"); - defaults_.setValue("x_intensity", 1.0, "Default intensity of x-ions"); - defaults_.setValue("y_intensity", 1.0, "Default intensity of y-ions"); - defaults_.setValue("z_intensity", 1.0, "Default intensity of z-ions"); - defaults_.setValue("relative_loss_intensity", 0.1, "Relative loss in percent"); - defaults_.setValue("max_isotope", 2, "Maximum number of isotopes"); - defaults_.setValue("charge", 1, "Charge state"); - defaults_.setValue("show_a_ions", "false", "Show a-ions"); - defaults_.setValue("show_b_ions", "true", "Show b-ions"); - defaults_.setValue("show_c_ions", "false", "Show c-ions"); - defaults_.setValue("show_x_ions", "false", "Show x-ions"); - defaults_.setValue("show_y_ions", "true", "Show y-ions"); - defaults_.setValue("show_z_ions", "false", "Show z-ions"); - defaults_.setValue("show_precursor", "false", "Show precursor"); - defaults_.setValue("add_losses", "false", "Show neutral losses"); - defaults_.setValue("add_isotopes", "false", "Show isotopes"); - defaults_.setValue("add_abundant_immonium_ions", "false", "Show abundant immonium ions"); - defaults_.setValue("tolerance", 0.5, "Mass tolerance in Th used in the automatic alignment."); // unfortunately we don't support alignment with ppm error - - QVBoxLayout* spectra_widget_layout = new QVBoxLayout(this); - table_widget_ = new TableView(this); + // id view parameters (warning: must be matched in TOPPViewPrefDialog) + defaults_.insert("tsg:", TheoreticalSpectrumGenerator().getParameters()); + defaults_.insert("align:", SpectrumAlignment().getParameters()); + + QVBoxLayout* all = new QVBoxLayout(this); + tables_splitter_ = new QSplitter(Qt::Horizontal); + + QHBoxLayout* tables = new QHBoxLayout(tables_splitter_); + table_widget_ = new TableView(tables_splitter_); table_widget_->setWhatsThis("Spectrum selection bar

Here all spectra of the current experiment are shown. Left-click on a spectrum to open it."); + tables_splitter_->addWidget(table_widget_); - spectra_widget_layout->addWidget(table_widget_); + protein_table_widget_ = new TableView(tables_splitter_); + protein_table_widget_->setWhatsThis("Protein selection bar

Here all proteins of the current experiment are shown. TODO what can you do with it"); + tables_splitter_->addWidget(protein_table_widget_); + tables_splitter_->setLayout(tables); + all->addWidget(tables_splitter_); + //////////////////////////////////// // additional checkboxes and buttons - QHBoxLayout* tmp_hbox_layout = new QHBoxLayout(); + QHBoxLayout* buttons_hbox_layout = new QHBoxLayout(); hide_no_identification_ = new QCheckBox("Only hits", this); hide_no_identification_->setChecked(true); @@ -119,14 +151,23 @@ namespace OpenMS QPushButton* export_table = new QPushButton("Export table", this); - tmp_hbox_layout->addWidget(hide_no_identification_); - tmp_hbox_layout->addWidget(create_rows_for_commmon_metavalue_); - tmp_hbox_layout->addWidget(save_IDs); - tmp_hbox_layout->addWidget(export_table); - spectra_widget_layout->addLayout(tmp_hbox_layout); + QPushButton* switch_orientation_ = new QPushButton("Switch orientation", this); + connect(switch_orientation_, &QPushButton::clicked, this, &SpectraIDViewTab::switchOrientation_); + + buttons_hbox_layout->addWidget(hide_no_identification_); + buttons_hbox_layout->addWidget(create_rows_for_commmon_metavalue_); + buttons_hbox_layout->addWidget(save_IDs); + buttons_hbox_layout->addWidget(export_table); + buttons_hbox_layout->addWidget(switch_orientation_); + all->addLayout(buttons_hbox_layout); + //TODO add search boxes like in spectrum list view + //TODO add score filter box or Apply Tool to identifications connect(table_widget_, &QTableWidget::currentCellChanged, this, &SpectraIDViewTab::currentCellChanged_); connect(table_widget_, &QTableWidget::itemChanged, this, &SpectraIDViewTab::updatedSingleCell_); + connect(table_widget_->selectionModel(), &QItemSelectionModel::selectionChanged, this, &SpectraIDViewTab::currentSpectraSelectionChanged_); + connect(protein_table_widget_, &QTableWidget::cellClicked, this, &SpectraIDViewTab::proteinCellClicked_); + connect(protein_table_widget_, &QTableWidget::itemChanged, this, &SpectraIDViewTab::updatedSingleProteinCell_); connect(hide_no_identification_, &QCheckBox::toggled, this, &SpectraIDViewTab::updateEntries_); connect(create_rows_for_commmon_metavalue_, &QCheckBox::toggled, this, &SpectraIDViewTab::updateEntries_); connect(export_table, &QPushButton::clicked, table_widget_, &TableView::exportEntries); @@ -135,27 +176,247 @@ namespace OpenMS void SpectraIDViewTab::clear() { table_widget_->clear(); + protein_table_widget_->clear(); layer_ = nullptr; } + // Create the protein accession to peptide identification map using C++ STL unordered_map + void SpectraIDViewTab::createProteinToPeptideIDMap_() + { + //clear the map each time entries are updated with updateEntries() + protein_to_peptide_id_map.clear(); + + if (is_first_time_loading_) + { + for (const auto& spec : *layer_->getPeakData()) + { + if (!spec.getPeptideIdentifications().empty()) + { + const vector& peptide_ids = spec.getPeptideIdentifications(); + + for (const auto& pepid : peptide_ids) + { + const vector& pep_hits = pepid.getHits(); + //add id_accession as the key of the map and push the peptideID to the vector value- + for (const auto & pep_hit : pep_hits) + { + const vector& evidences = pep_hit.getPeptideEvidences(); + + for (const auto & evidence : evidences) + { + const String& id_accession = evidence.getProteinAccession(); + protein_to_peptide_id_map[id_accession].push_back(&pepid); + } + } + } + } + } + // set is_first_time_loading to false so that the map gets created only the first time! + is_first_time_loading_ = false; + } + } + + //extract required part of accession and open browser + QString SpectraIDViewTab::extractNumFromAccession_(const QString& full_accession) + { + //regex for matching accession + QRegExp reg_pre_accession("(tr|sp)"); + reg_pre_accession.setCaseSensitivity(Qt::CaseInsensitive); + QRegExp reg_uniprot_accession("[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}"); + + // The full accession is in the form "tr|A9GID7|A9GID7_SORC5" or "P02769|ALBU_BOVIN", + // so split it with | and get the individual parts + QStringList acsn = full_accession.split("|"); + + foreach (QString substr, acsn) + { + //eg, substr2 = tr, substr2 = p02769 etc + // if substr = tr/sp then skip + if (reg_pre_accession.exactMatch(substr.simplified())) + { + continue; + } + else + { + if (reg_uniprot_accession.exactMatch(substr.simplified())) + { + return substr.simplified(); + } + else + { + throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Invalid accession found!", + String(full_accession)); + } + } + } + } + + void SpectraIDViewTab::openUniProtSiteWithAccession_(const QString& accession) + { + QString accession_num = extractNumFromAccession_(accession); + if (!accession_num.isEmpty()) + { + QString base_url = "https://www.uniprot.org/uniprot/"; + QString url = base_url + accession_num; + GUIHelpers::openURL(url); + } + } + + + void SpectraIDViewTab::proteinCellClicked_(int row, int column) + { + //TODO maybe highlight/filter all PepHits that may provide evidence for this protein (or at least that are top scorer) + if (row < 0 || column < 0) + return; + + if (row >= protein_table_widget_->rowCount() || column >= protein_table_widget_->columnCount()) + { + throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "invalid cell clicked.", String(row) + " " + column); + } + + // Open browser with accession when clicked on the accession column on a row + if (column == ProteinClmn::ACCESSION) + { + // This stores the complete accession, eg, "tr|A9GID7|A9GID7_SORC5" + QString accession = protein_table_widget_->item(row, ProteinClmn::ACCESSION)->data(Qt::DisplayRole).toString(); + // As with the current logic, we have only one accession per row, we can directy use that accession + // while opening the window instead of showing another widget that lists all accessions + openUniProtSiteWithAccession_(accession); + } + + // + // Check if Qt WebEngineWidgets is installed on user's machine and if so, + // open a new window to visualize protein sequece + #ifdef QT_WEBENGINEWIDGETS_LIB + if (column == ProteinClmn::SEQUENCE) + { + // store the current sequence clicked from the FULL_PROTEIN_SEQUENCE column. This column(hidden by default) + // stores the full protein sequence + QString protein_sequence = protein_table_widget_->item(row, ProteinClmn::FULL_PROTEIN_SEQUENCE)->data(Qt::DisplayRole).toString(); + // store the accession as string, eg: tr|P02769|ALBU_BOVIN + QString current_accession = protein_table_widget_->item(row, ProteinClmn::ACCESSION)->data(Qt::DisplayRole).toString(); + // extract the part of accession , eg: P02769 + QString accession_num = extractNumFromAccession_(current_accession); + + auto item_pepid = table_widget_->item(row, Clmn::ID_NR); + + if (item_pepid) + { + int current_identification_index = item_pepid->data(Qt::DisplayRole).toInt(); + int current_peptide_hit_index = table_widget_->item(row, Clmn::PEPHIT_NR)->data(Qt::DisplayRole).toInt(); + + //array to store object of start-end postions, sequence and mod data of peptides; + QJsonArray peptides_data; + + //use data from the protein_to_peptide_id_map map and store the start/end position to the QJsonArray + for (auto pep_id_ptr : protein_to_peptide_id_map[current_accession]) + { + const vector& pep_hits = pep_id_ptr->getHits(); + + //store start and end positions + //TODO maybe we could store the index of the hit that belongs to that specific protein in the map as well + // or we generally should only look at the first hit + for (const auto & pep_hit : pep_hits) + { + const vector& evidences = pep_hit.getPeptideEvidences(); + const AASequence& aaseq = pep_hit.getSequence(); + const auto qstrseq = aaseq.toString().toQString(); + + for (const auto & evidence : evidences) + { + const String& id_accession = evidence.getProteinAccession(); + QJsonObject pep_data_obj; + int pep_start = evidence.getStart(); + int pep_end = evidence.getEnd(); + if (id_accession.toQString() == current_accession) + { + // contains key-value of modName and vector of indices + QJsonObject mod_data; + + for (int i = 0; i < aaseq.size(); ++i) + { + if (aaseq[i].isModified()) + { + const String& mod_name = aaseq[i].getModificationName(); + + if (!mod_data.contains(mod_name.toQString())) + { + mod_data[mod_name.toQString()] = QJsonArray{i + pep_start}; // add pep_start to get the correct location in the whole sequence + } + else + { + QJsonArray values = mod_data.value(mod_name.toQString()).toArray(); + // add pep_start to get the correct location in the whole sequence + values.push_back(i + pep_start); + mod_data[mod_name.toQString()] = values; + } + } + } + pep_data_obj["start"] = pep_start; + pep_data_obj["end"] = pep_end; + pep_data_obj["seq"] = qstrseq; + pep_data_obj["mod_data"] = mod_data; + //Push objects to array that will be passed to html + peptides_data.push_back(pep_data_obj); + } + } + } + } + + auto* widget = new SequenceVisualizer(this); // no parent since we want a new window + widget->setWindowFlags(Qt::Window); + widget->resize(1500,500); // make a bit bigger + widget->setProteinPeptideDataToJsonObj(accession_num, protein_sequence, peptides_data); + widget->show(); + } + } +#endif + } + + void SpectraIDViewTab::currentSpectraSelectionChanged_() + { + if (table_widget_->selectionModel()->selectedRows().empty()) + { + // deselect whatever is currently shown + int last_spectrum_index = int(layer_->getCurrentSpectrumIndex()); + // Deselecting spectrum does not do what you think it does. It still paints stuff. Without annotations.. + // so just leave it for now. + // + // PARTLY SOLVED: The problem was, that if you defocus the TOPPView window, somehow + // selectionChange is called, with EMPTY selection. Maybe this is a feature and we have to store the + // selected spectrum indices as well. I want to support multi-selection in the future to see shared peptides + // Actually this might be solved by the removal of the unnecessary updates in activateSubWindow. + // I think updateEntries resets selections as well.. not sure how we could avoid that. We really have to avoid + // calling this crazy function when only small updates are needed. + //emit spectrumDeselected(last_spectrum_index); + // TODO also currently, the current active spectrum can be restored after deselection by clicking on + // the Scans tab and then switching back to ID tab. (Scans will get the current scan in the 1D View, which + // is still there. I guess I have to deselect in the 1D view, too, after all. + updateProteinEntries_(-1); + } + //TODO if you deselected the current spectrum, you currently cannot click on/navigate to the same spectrum + // because currentCellChanged_ will not trigger. We would need to do it here. + } + void SpectraIDViewTab::currentCellChanged_(int row, int column, int /*old_row*/, int /*old_column*/) { + // TODO you actually only have to do repainting if the row changes.. // sometimes Qt calls this function when table empty during refreshing if (row < 0 || column < 0) { return; } + if (row >= table_widget_->rowCount() || column >= table_widget_->columnCount()) { throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "invalid cell clicked.", String(row) + " " + column); } - + // deselect whatever is currently shown int last_spectrum_index = int(layer_->getCurrentSpectrumIndex()); emit spectrumDeselected(last_spectrum_index); - int current_spectrum_index = table_widget_->item(row, Clmn::SPEC_INDEX)->data(Qt::DisplayRole).toInt(); const auto& exp = *layer_->getPeakData(); const auto& spec2 = exp[current_spectrum_index]; @@ -167,7 +428,7 @@ namespace OpenMS if (column == Clmn::PRECURSOR_MZ) { const auto prec_it = exp.getPrecursorSpectrum(exp.begin() + current_spectrum_index); - + if (prec_it != exp.end() && !spec2.getPrecursors().empty()) { double precursor_mz = spec2.getPrecursors()[0].getMZ(); @@ -175,15 +436,15 @@ namespace OpenMS double isolation_window_lower_mz = precursor_mz - spec2.getPrecursors()[0].getIsolationWindowLowerOffset(); double isolation_window_upper_mz = precursor_mz + spec2.getPrecursors()[0].getIsolationWindowUpperOffset(); - emit spectrumSelected(std::distance(exp.begin(), prec_it), -1, -1); // no identification or hit selected (-1) + emit spectrumSelected(std::distance(exp.begin(), prec_it), -1, -1);// no identification or hit selected (-1) // zoom into precursor area - emit requestVisibleArea1D(isolation_window_lower_mz - 50.0, isolation_window_upper_mz + 50.0); + emit requestVisibleArea1D(isolation_window_lower_mz - 50.0, isolation_window_upper_mz + 50.0); } } else - { // if spectrum with no PepIDs is selected, there is nothing to show... + {// if spectrum with no PepIDs is selected, there is nothing to show... auto item_pepid = table_widget_->item(row, Clmn::ID_NR); - if (item_pepid == nullptr // null for MS1 spectra + if (item_pepid == nullptr// null for MS1 spectra || (!(item_pepid->data(Qt::DisplayRole).isValid()))) { return; @@ -196,20 +457,19 @@ namespace OpenMS // // show extra peak-fragment window // - if (column == Clmn::PEAK_ANNOTATIONS + if (column == Clmn::PEAK_ANNOTATIONS // column might not be present. Check the header name to make sure && table_widget_->horizontalHeaderItem(Clmn::PEAK_ANNOTATIONS)->text() == Clmn::HEADER_NAMES[Clmn::PEAK_ANNOTATIONS]) - { - + { auto item_pepid = table_widget_->item(row, Clmn::ID_NR); - if (item_pepid) // might be null for MS1 spectra + if (item_pepid)// might be null for MS1 spectra { int current_identification_index = item_pepid->data(Qt::DisplayRole).toInt(); int current_peptide_hit_index = table_widget_->item(row, Clmn::PEPHIT_NR)->data(Qt::DisplayRole).toInt(); const vector& peptide_ids = spec2.getPeptideIdentifications(); - const vector& phits = peptide_ids[current_identification_index].getHits(); - const PeptideHit& hit = phits[current_peptide_hit_index]; + const vector& pep_hits = peptide_ids[current_identification_index].getHits(); + const PeptideHit& hit = pep_hits[current_peptide_hit_index]; // initialize window, when the table is requested for the first time // afterwards the size will stay at the manually resized window size @@ -218,10 +478,13 @@ namespace OpenMS fragment_window_ = new QTableWidget(); fragment_window_->resize(320, 500); - fragment_window_->verticalHeader()->setHidden(true); // hide vertical column + fragment_window_->verticalHeader()->setHidden(true);// hide vertical column QStringList header_labels; - header_labels << "m/z" << "name" << "intensity" << "charge"; + header_labels << "m/z" + << "name" + << "intensity" + << "charge"; fragment_window_->setColumnCount(header_labels.size()); fragment_window_->setHorizontalHeaderLabels(header_labels); @@ -235,10 +498,10 @@ namespace OpenMS // reset table, if a new ID is chosen fragment_window_->setRowCount(0); - for (const PeptideHit::PeakAnnotation & pa : hit.getPeakAnnotations()) + for (const PeptideHit::PeakAnnotation& pa : hit.getPeakAnnotations()) { fragment_window_->insertRow(fragment_window_->rowCount()); - QTableWidgetItem * item = fragment_window_->itemPrototype()->clone(); + QTableWidgetItem* item = fragment_window_->itemPrototype()->clone(); item->setData(Qt::DisplayRole, pa.mz); fragment_window_->setItem(fragment_window_->rowCount() - 1, 0, item); item = fragment_window_->itemPrototype()->clone(); @@ -259,28 +522,38 @@ namespace OpenMS QApplication::setActiveWindow(fragment_window_); } } // PeakAnnotation cell clicked + + // Update the protein table with data of the id row that was clicked + updateProteinEntries_(row); } - bool SpectraIDViewTab::hasData(const LayerData* layer) + bool SpectraIDViewTab::hasData(const LayerDataBase* layer) { // this is a very easy check. - // We do not check for PeptideIdentifications attached to Spectra, because the user could just + // We do not check for PeptideIdentifications attached to Spectra, because the user could just // want the list of unidentified MS2 spectra (obtained by unchecking the 'just hits' button). bool no_data = (layer == nullptr - || (layer->type == LayerData::DT_PEAK && layer->getPeakData()->empty()) - || (layer->type == LayerData::DT_CHROMATOGRAM && layer->getChromatogramData()->empty())); + || (layer->type == LayerDataBase::DT_PEAK && layer->getPeakData()->empty()) + || (layer->type == LayerDataBase::DT_CHROMATOGRAM && layer->getChromatogramData()->empty())); return !no_data; } - void SpectraIDViewTab::updateEntries(LayerData* cl) + void SpectraIDViewTab::updateEntries(LayerDataBase* cl) { + // do not try to be smart and check if layer_ == cl; to return early // since the layer content might have changed, e.g. pepIDs were added layer_ = cl; - updateEntries_(); // we need this extra function since its an internal slot + // setting "is_first_time_loading_ = true;" here currently negates the logic of creating the map only the first time + // the data loads, but in future, after fixing the issue of calling updateEntries() multiple times, we can use it to only + // create the map when the table data loads completely new data from idXML file. Currently the map gets created each time + // the updateEntries() is called. + is_first_time_loading_ = true; + createProteinToPeptideIDMap_(); + updateEntries_(); // we need this extra function since it's an internal slot } - LayerData* SpectraIDViewTab::getLayer() + LayerDataBase* SpectraIDViewTab::getLayer() { return layer_; } @@ -288,17 +561,121 @@ namespace OpenMS namespace Detail { template<> - struct MetaKeyGetter> + struct MetaKeyGetter> { static void getKeys(const std::reference_wrapper& object, std::vector& keys) { object.get().getKeys(keys); }; }; + }// namespace Detail + + void SpectraIDViewTab::updateProteinEntries_(int selected_spec_row_idx) + { + //TODO Currently when switching to 2D view of the same dataset and then switching back to the fragment spectrum, + // the spectrum table (almost; annotations gone) correctly restores the row, while the proteins do not get newly + // refreshed. Check why and fix. It is not too bad though. + // no valid peak layer attached + if (!hasData(layer_) || layer_->getPeakData()->getProteinIdentifications().empty()) + { + //clear(); this was done in updateEntries_() already. + return; + } + + if (ignore_update) + { + return; + } + + if (!isVisible()) + { + return; + } + + set accs; + if(selected_spec_row_idx >= 0) + //TODO another option would be a "Filter proteins" checkbox that filters for proteins for this Hit + // only when checked, otherwise only highlights + { + int row = selected_spec_row_idx; + int spectrum_index = table_widget_->item(row, Clmn::SPEC_INDEX)->data(Qt::DisplayRole).toInt(); + int num_id = table_widget_->item(row, Clmn::ID_NR)->data(Qt::DisplayRole).toInt(); + int num_ph = table_widget_->item(row, Clmn::PEPHIT_NR)->data(Qt::DisplayRole).toInt(); + const auto& spec = layer_->getPeakData()->operator[](spectrum_index); + const vector& pep_id = spec.getPeptideIdentifications(); + + if(!spec.getPeptideIdentifications().empty()) + { + const vector& hits = pep_id[num_id].getHits(); + if (!hits.empty()) accs = hits[num_ph].extractProteinAccessionsSet(); + } + } + + // create header labels (setting header labels must occur after fill) + QStringList headers = ProteinClmn::HEADER_NAMES; + + protein_table_widget_->clear(); + protein_table_widget_->setRowCount(0); + protein_table_widget_->setColumnCount(headers.size()); + protein_table_widget_->setSortingEnabled(false); + protein_table_widget_->setUpdatesEnabled(false); + protein_table_widget_->blockSignals(true); + + // generate flat list + int selected_row(-1); + // index i is needed, so iterate the old way... + for (Size i = 0; i < layer_->getPeakData()->getProteinIdentifications()[0].getHits().size(); ++i) + { + const auto& protein = layer_->getPeakData()->getProteinIdentifications()[0].getHits()[i]; + if (accs.empty() || accs.find(protein.getAccession()) != accs.end()) + { + // set row background color + QColor bg_color = accs.empty() ? Qt::white : Qt::lightGray; + + int total_pepids = protein_to_peptide_id_map[protein.getAccession()].size(); + + // add new row at the end of the table + protein_table_widget_->insertRow(protein_table_widget_->rowCount()); + + protein_table_widget_->setAtBottomRow(protein.getAccession().toQString(), ProteinClmn::ACCESSION, bg_color, Qt::blue); + protein_table_widget_->setAtBottomRow(protein.getSequence().toQString(), ProteinClmn::FULL_PROTEIN_SEQUENCE, bg_color); + protein_table_widget_->setAtBottomRow("show", ProteinClmn::SEQUENCE, bg_color, Qt::blue); + protein_table_widget_->setAtBottomRow(protein.getDescription().toQString(), ProteinClmn::DESCRIPTION, bg_color); + protein_table_widget_->setAtBottomRow(protein.getScore(), ProteinClmn::SCORE, bg_color); + protein_table_widget_->setAtBottomRow(protein.getCoverage(), ProteinClmn::COVERAGE, bg_color); + protein_table_widget_->setAtBottomRow(total_pepids, ProteinClmn::NR_PSM, bg_color); + + /*if ((int)i == restore_spec_index) //TODO actually extract the accessions for the selected spectrum and compare + { + selected_row = protein_table_widget_->rowCount() - 1; // get model index of selected spectrum + }*/ + } + } + + protein_table_widget_->setHeaders(headers); + protein_table_widget_->setColumnHidden(ProteinClmn::FULL_PROTEIN_SEQUENCE, true); + protein_table_widget_->resizeColumnsToContents(); + protein_table_widget_->setSortingEnabled(true); + protein_table_widget_->sortByColumn(ProteinClmn::SCORE, Qt::AscendingOrder); //TODO figure out higher_score_better + + if (selected_row != -1) // select and scroll down to item + { + protein_table_widget_->selectRow(selected_row); + QTableWidgetItem* selected_item = protein_table_widget_->item(selected_row, 0); + selected_item->setSelected(true); + protein_table_widget_->setCurrentItem(selected_item); + protein_table_widget_->scrollToItem(selected_item); + } + + protein_table_widget_->blockSignals(false); + protein_table_widget_->setUpdatesEnabled(true); + protein_table_widget_->horizontalHeader()->setSectionResizeMode(QHeaderView::Stretch); + protein_table_widget_->verticalHeader()->setSectionResizeMode(QHeaderView::ResizeToContents); } void SpectraIDViewTab::updateEntries_() { + // no valid peak layer attached if (!hasData(layer_)) { @@ -331,7 +708,7 @@ namespace OpenMS UInt ms_level = spec.getMSLevel(); const vector& peptide_ids = spec.getPeptideIdentifications(); - if (ms_level != 2 || peptide_ids.size() == 0) // skip non ms2 spectra and spectra with no identification + if (ms_level != 2 || peptide_ids.empty()) // skip non ms2 spectra and spectra with no identification { continue; } @@ -364,6 +741,7 @@ namespace OpenMS headers << ck.toQString(); } + table_widget_->blockSignals(true); // to be safe, that clear does not trigger anything. table_widget_->clear(); table_widget_->setRowCount(0); table_widget_->setColumnCount(headers.size()); @@ -394,7 +772,7 @@ namespace OpenMS continue; } // set row background color - QColor bg_color = (id_count == 0 ? Qt::white : Qt::green); + QColor bg_color = (id_count == 0 ? Qt::white : QColor::fromRgb(127,255,148)); // get peptide identifications of current spectrum if (id_count == 0) @@ -483,13 +861,13 @@ namespace OpenMS String(pa.charge).toQString() + "|" + pa.annotation.toQString() + ";"; } - QTableWidgetItem* item = table_widget_->setAtBottomRow("show", current_col, bg_color); + QTableWidgetItem* item = table_widget_->setAtBottomRow("show", current_col, bg_color, Qt::blue); item->setData(Qt::UserRole, annotation); ++current_col; } for (const auto& ck : common_keys) { - DataValue dv = ph.getMetaValue(ck); + const DataValue& dv = ph.getMetaValue(ck); if (dv.valueType() == DataValue::DOUBLE_VALUE) { table_widget_->setAtBottomRow(double(dv), current_col, bg_color); @@ -508,16 +886,23 @@ namespace OpenMS if ((int)i == restore_spec_index) { - selected_row = table_widget_->rowCount(); // get model index of selected spectrum + // get model index of selected spectrum, + // as table_widget_->rowCount() returns rows starting from 1, selected row is 1 less than the returned row + selected_row = table_widget_->rowCount() - 1; } } table_widget_->setHeaders(headers); String s = headers.join(';'); - table_widget_->hideColumns(QStringList() << "dissociation" << "scan type" << "zoom" << "rank"); + table_widget_->hideColumns(QStringList() << "accessions" + << "dissociation" + << "scan type" + << "zoom" + << "rank" + << "#ID" + << "#PH"); if (has_peak_annotations) table_widget_->setHeaderExportName(Clmn::PEAK_ANNOTATIONS, "PeakAnnotations(mz|intensity|charge|annotation"); - table_widget_->resizeColumnsToContents(); table_widget_->setSortingEnabled(true); table_widget_->sortByColumn(Clmn::SPEC_INDEX, Qt::AscendingOrder); @@ -528,16 +913,35 @@ namespace OpenMS selected_item->setSelected(true); table_widget_->setCurrentItem(selected_item); table_widget_->scrollToItem(selected_item); + currentCellChanged_(selected_row, 0, 0, 0); // simulate cell change to trigger repaint and reannotation of spectrum 1D view } + table_widget_->verticalHeader()->setSectionResizeMode(QHeaderView::ResizeToContents); table_widget_->blockSignals(false); table_widget_->setUpdatesEnabled(true); + + // call this updateProteinEntries_(-1) function after the table_widget data is filled, + // otherwise table_widget_->item(row, clm) returns nullptr; + updateProteinEntries_(selected_row); + } + + void SpectraIDViewTab::switchOrientation_() + { + if (tables_splitter_->orientation() == Qt::Vertical) + { + tables_splitter_->setOrientation(Qt::Horizontal); + } + else + { + tables_splitter_->setOrientation(Qt::Vertical); + } + } void SpectraIDViewTab::saveIDs_() { // no valid peak layer attached - if (layer_ == nullptr || layer_->getPeakData()->size() == 0 || layer_->type != LayerData::DT_PEAK) + if (layer_ == nullptr || layer_->getPeakData()->empty() || layer_->type != LayerDataBase::DT_PEAK) { return; } @@ -559,7 +963,7 @@ namespace OpenMS int spectrum_index = table_widget_->item(r, Clmn::SPEC_INDEX)->data(Qt::DisplayRole).toInt(); // skip this row, if this spectrum was already processed - if (std::find(added_spectra.begin(), added_spectra.end(), spectrum_index) != added_spectra.end()) + if (added_spectra.find(spectrum_index) != added_spectra.end()) { continue; } @@ -590,6 +994,11 @@ namespace OpenMS } } + void SpectraIDViewTab::updatedSingleProteinCell_(QTableWidgetItem* item) + { + + } + // Upon changes in the table data (only possible by checking or unchecking a checkbox right now), // update the corresponding PeptideIdentification / PeptideHits by adding a metavalue: 'selected' void SpectraIDViewTab::updatedSingleCell_(QTableWidgetItem* item) @@ -617,13 +1026,13 @@ namespace OpenMS hits[1].setMetaValue("selected", selected); } } - else // general case, update only the selected PepideHit + else // general case, update only the selected PeptideHit { hits[num_ph].setMetaValue("selected", selected); } } - void SpectraIDViewTab::fillRow_(const MSSpectrum& spectrum, const int spec_index, const QColor background_color) + void SpectraIDViewTab::fillRow_(const MSSpectrum& spectrum, const int spec_index, const QColor& background_color) { const vector& precursors = spectrum.getPrecursors(); @@ -652,4 +1061,9 @@ namespace OpenMS table_widget_->setAtBottomRow(first_precursor.getIntensity(), Clmn::PREC_INT, background_color); } } + + void SpectraIDViewTab::SelfResizingTableView_::resizeEvent(QResizeEvent * /*event*/) + { + + } } diff --git a/src/openms_gui/source/VISUAL/SpectraTreeTab.cpp b/src/openms_gui/source/VISUAL/SpectraTreeTab.cpp index 998fbf19f0a..3db093f0327 100644 --- a/src/openms_gui/source/VISUAL/SpectraTreeTab.cpp +++ b/src/openms_gui/source/VISUAL/SpectraTreeTab.cpp @@ -47,9 +47,9 @@ namespace OpenMS std::vector listToVec(const QList& in) { std::vector out; - for (Int i = 0; i != in.size(); ++i) + for (const auto & i : in) { - out.push_back(in[i].toInt()); + out.push_back(i.toInt()); } return out; } @@ -87,7 +87,7 @@ namespace OpenMS }; // keep in SYNC with enum HeaderNames const QStringList HEADER_NAMES = QStringList() - << " type" << "index" << "m/z" << "Description" << "rt start" << "rt end" << "charge" << "chromatogram type";; + << " type" << "index" << "m/z" << "Description" << "rt start" << "rt end" << "charge" << "chromatogram type"; } struct IndexExtrator @@ -182,12 +182,17 @@ namespace OpenMS } } + void SpectraTreeTab::updateIndexFromCurrentLayer() + { + spectra_treewidget_->setTreePosition(layer_->getCurrentSpectrumIndex()); + } + void SpectraTreeTab::itemSelectionChange_(QTreeWidgetItem* current, QTreeWidgetItem* previous) { /* test for previous == 0 is important - without it, the wrong spectrum will be selected after finishing the execution of a TOPP tool on the whole data */ - if (current == nullptr || previous == nullptr) + if (current == nullptr) { return; } @@ -207,8 +212,9 @@ namespace OpenMS { spectrumSearchText_(); // update selection first (we might be in a new layer) QList selected = spectra_treewidget_->selectedItems(); + // show the first selected item - if (selected.size() > 0) + if (!selected.empty()) { itemSelectionChange_(selected.first(), selected.first()); } @@ -288,33 +294,36 @@ namespace OpenMS item->setText(ClmnPeak::ZOOM, (spec.getInstrumentSettings().getZoomScan() ? "yes" : "no")); } - bool SpectraTreeTab::hasData(const LayerData* layer) + bool SpectraTreeTab::hasData(const LayerDataBase* layer) { if (layer == nullptr) { return false; } - bool is_peak = layer->type == LayerData::DT_PEAK && !(layer->chromatogram_flag_set()); - bool is_chrom = layer->type == LayerData::DT_CHROMATOGRAM || layer->chromatogram_flag_set(); + bool is_peak = layer->type == LayerDataBase::DT_PEAK && !(layer->chromatogram_flag_set()); + bool is_chrom = layer->type == LayerDataBase::DT_CHROMATOGRAM || layer->chromatogram_flag_set(); return is_peak || is_chrom; } - void SpectraTreeTab::updateEntries(LayerData* layer) + void SpectraTreeTab::updateEntries(LayerDataBase* layer) { if (layer == nullptr) { clear(); return; } + layer_ = layer; if (!spectra_treewidget_->isVisible() || spectra_treewidget_->signalsBlocked()) { return; } - LayerData& cl = *layer; + LayerDataBase& cl = *layer; spectra_treewidget_->blockSignals(true); - RAIICleanup clean([&](){ spectra_treewidget_->blockSignals(false); }); + RAIICleanup clean([&](){ + spectra_treewidget_->blockSignals(false); + }); QTreeWidgetItem* toplevel_item = nullptr; QTreeWidgetItem* selected_item = nullptr; @@ -322,7 +331,7 @@ namespace OpenMS bool more_than_one_spectrum = true; // Branch if the current layer is a spectrum - if (cl.type == LayerData::DT_PEAK && !(cl.chromatogram_flag_set())) + if (cl.type == LayerDataBase::DT_PEAK && !(cl.chromatogram_flag_set())) { spectra_treewidget_->clear(); @@ -428,6 +437,9 @@ namespace OpenMS { // now, select and scroll down to item selected_item->setSelected(true); + // selected = for mouse clicks and multiselection, + // current = for arrow navigation and signifies THE ONE active item + spectra_treewidget_->setCurrentItem(selected_item); spectra_treewidget_->scrollToItem(selected_item); } if (cl.getPeakData()->size() > 1) @@ -437,9 +449,9 @@ namespace OpenMS } // Branch if the current layer is a chromatogram (either indicated by its // type or by the flag which is set). - else if (cl.type == LayerData::DT_CHROMATOGRAM || cl.chromatogram_flag_set()) + else if (cl.type == LayerDataBase::DT_CHROMATOGRAM || cl.chromatogram_flag_set()) { - LayerData::ConstExperimentSharedPtrType exp = (cl.chromatogram_flag_set() // if set, the actual full data is in getChromatogramData; the peakdata only contains a single spec + LayerDataBase::ConstExperimentSharedPtrType exp = (cl.chromatogram_flag_set() // if set, the actual full data is in getChromatogramData; the peakdata only contains a single spec ? cl.getChromatogramData() : cl.getPeakData()); @@ -457,11 +469,11 @@ namespace OpenMS // whether multiple ones are selected. bool multiple_select = false; int this_selected_item = -1; - if (cl.getPeakData()->size() > 0 && cl.getPeakData()->metaValueExists("multiple_select")) + if (!cl.getPeakData()->empty() && cl.getPeakData()->metaValueExists("multiple_select")) { multiple_select = cl.getPeakData()->getMetaValue("multiple_select").toBool(); } - if (cl.getPeakData()->size() > 0 && cl.getPeakData()->metaValueExists("selected_chromatogram")) + if (!cl.getPeakData()->empty() && cl.getPeakData()->metaValueExists("selected_chromatogram")) { this_selected_item = (int)cl.getPeakData()->getMetaValue("selected_chromatogram"); } @@ -597,7 +609,7 @@ namespace OpenMS } - bool SpectraTreeTab::getSelectedScan(MSExperiment& exp, LayerData::DataType& current_type) const + bool SpectraTreeTab::getSelectedScan(MSExperiment& exp, LayerDataBase::DataType& current_type) const { exp.clear(true); QTreeWidgetItem* item = spectra_treewidget_->currentItem(); @@ -609,12 +621,12 @@ namespace OpenMS int index = item->data(ClmnPeak::SPEC_INDEX, Qt::DisplayRole).toInt(); if (spectra_treewidget_->headerItem()->text(ClmnChrom::MZ) == ClmnChrom::HEADER_NAMES[ClmnChrom::MZ]) { // we currently show chromatogram data - current_type = LayerData::DT_CHROMATOGRAM; + current_type = LayerDataBase::DT_CHROMATOGRAM; exp.addChromatogram(last_peakmap_->getChromatograms()[index]); } else { - current_type = LayerData::DT_PEAK; + current_type = LayerDataBase::DT_PEAK; exp.addSpectrum(last_peakmap_->getSpectra()[index]); } return true; diff --git a/src/openms_gui/source/VISUAL/TOPPASEdge.cpp b/src/openms_gui/source/VISUAL/TOPPASEdge.cpp index d576486e744..4c1e2e96402 100644 --- a/src/openms_gui/source/VISUAL/TOPPASEdge.cpp +++ b/src/openms_gui/source/VISUAL/TOPPASEdge.cpp @@ -671,7 +671,7 @@ namespace OpenMS source_out_param_ = out; } - int TOPPASEdge::getSourceOutParam() + int TOPPASEdge::getSourceOutParam() const { return source_out_param_; } @@ -681,7 +681,7 @@ namespace OpenMS target_in_param_ = in; } - int TOPPASEdge::getTargetInParam() + int TOPPASEdge::getTargetInParam() const { return target_in_param_; } diff --git a/src/openms_gui/source/VISUAL/TOPPASMergerVertex.cpp b/src/openms_gui/source/VISUAL/TOPPASMergerVertex.cpp index 8cfd5b69be0..dae5344e6c8 100644 --- a/src/openms_gui/source/VISUAL/TOPPASMergerVertex.cpp +++ b/src/openms_gui/source/VISUAL/TOPPASMergerVertex.cpp @@ -74,7 +74,7 @@ namespace OpenMS return QRectF(-41, -41, 82, 82); } - bool TOPPASMergerVertex::roundBasedMode() + bool TOPPASMergerVertex::roundBasedMode() const { return round_based_mode_; } diff --git a/src/openms_gui/source/VISUAL/TOPPASOutputFileListVertex.cpp b/src/openms_gui/source/VISUAL/TOPPASOutputFileListVertex.cpp index afea22015ba..6621fbe30d0 100644 --- a/src/openms_gui/source/VISUAL/TOPPASOutputFileListVertex.cpp +++ b/src/openms_gui/source/VISUAL/TOPPASOutputFileListVertex.cpp @@ -288,7 +288,7 @@ namespace OpenMS TOPPASVertex::inEdgeHasChanged(); } - void TOPPASOutputFileListVertex::openContainingFolder() + void TOPPASOutputFileListVertex::openContainingFolder() const { QString path = getFullOutputDirectory().toQString(); GUIHelpers::openFolder(path); @@ -329,7 +329,7 @@ namespace OpenMS return dir; } - String TOPPASOutputFileListVertex::createOutputDir() + String TOPPASOutputFileListVertex::createOutputDir() const { String full_dir = getFullOutputDirectory(); if (!File::exists(full_dir)) diff --git a/src/openms_gui/source/VISUAL/TOPPASScene.cpp b/src/openms_gui/source/VISUAL/TOPPASScene.cpp index 1dc5b8b07c0..35c93837e80 100644 --- a/src/openms_gui/source/VISUAL/TOPPASScene.cpp +++ b/src/openms_gui/source/VISUAL/TOPPASScene.cpp @@ -1382,7 +1382,7 @@ namespace OpenMS { String text = tv->getName(); String type = tv->getType(); - if (type != "") + if (!type.empty()) { text += " (" + type + ")"; } @@ -1404,7 +1404,7 @@ namespace OpenMS { String text = tv->getName(); String type = tv->getType(); - if (type != "") + if (!type.empty()) { text += " (" + type + ")"; } @@ -1426,7 +1426,7 @@ namespace OpenMS { String text = tv->getName(); String type = tv->getType(); - if (type != "") + if (!type.empty()) { text += " (" + type + ")"; } @@ -1448,7 +1448,7 @@ namespace OpenMS { String text = tv->getName(); String type = tv->getType(); - if (type != "") + if (!type.empty()) { text += " (" + type + ")"; } @@ -1627,7 +1627,7 @@ namespace OpenMS // Save changes if (gui_ && changed_) { - QString name = file_name_ == "" ? "Untitled" : File::basename(file_name_).toQString(); + QString name = file_name_.empty() ? "Untitled" : File::basename(file_name_).toQString(); QMessageBox::StandardButton ret; ret = QMessageBox::warning(views().first(), "Save changes?", "'" + name + "' has been modified.\n\nDo you want to save your changes?", QMessageBox::Save | QMessageBox::Discard | QMessageBox::Cancel); if (ret == QMessageBox::Save) @@ -1656,12 +1656,12 @@ namespace OpenMS } } - bool TOPPASScene::wasChanged() + bool TOPPASScene::wasChanged() const { return changed_; } - bool TOPPASScene::isPipelineRunning() + bool TOPPASScene::isPipelineRunning() const { return running_; } diff --git a/src/openms_gui/source/VISUAL/TOPPASToolVertex.cpp b/src/openms_gui/source/VISUAL/TOPPASToolVertex.cpp index 6b0538901a8..04d11a1cc0b 100644 --- a/src/openms_gui/source/VISUAL/TOPPASToolVertex.cpp +++ b/src/openms_gui/source/VISUAL/TOPPASToolVertex.cpp @@ -123,7 +123,7 @@ namespace OpenMS QStringList arguments; arguments << "-write_ini" << ini_file; - if (type_ != "") + if (!type_.empty()) { arguments << "-type"; arguments << type_.toQString(); @@ -348,7 +348,7 @@ namespace OpenMS { TOPPASVertex::paint(painter, option, widget, false); - QString draw_str = (type_ == "" ? name_ : name_ + " (" + type_ + ")").toQString(); + QString draw_str = (type_.empty() ? name_ : name_ + " (" + type_ + ")").toQString(); for (int i = 0; i < 10; ++i) { QString prev_str = draw_str; @@ -484,7 +484,7 @@ namespace OpenMS + getOutputDir().toQString() + QDir::separator() + name_.toQString(); - if (type_ != "") + if (!type_.empty()) { ini_file += "_" + type_.toQString(); } @@ -516,7 +516,7 @@ namespace OpenMS round_counter_ = 0; // once round_counter_ reaches round_total_, we are done QStringList shared_args; - if (type_ != "") + if (!type_.empty()) { shared_args << "-type" << type_.toQString(); } @@ -1165,7 +1165,7 @@ namespace OpenMS TOPPASVertex::outEdgeHasChanged(); } - void TOPPASToolVertex::openContainingFolder() + void TOPPASToolVertex::openContainingFolder() const { QString path = getFullOutputDirectory().toQString(); GUIHelpers::openFolder(path); @@ -1181,14 +1181,14 @@ namespace OpenMS { TOPPASScene* ts = getScene_(); String workflow_dir = FileHandler::stripExtension(File::basename(ts->getSaveFileName())); - if (workflow_dir == "") + if (workflow_dir.empty()) { workflow_dir = "Untitled_workflow"; } String dir = workflow_dir + String(QDir::separator()) + get3CharsNumber_(topo_nr_) + "_" + getName(); - if (getType() != "") + if (!getType().empty()) { dir += "_" + getType(); } @@ -1256,7 +1256,7 @@ namespace OpenMS { TOPPASScene* ts = getScene_(); QString old_ini_file = ts->getTempDir() + QDir::separator() + "TOPPAS_" + name_.toQString() + "_"; - if (type_ != "") + if (!type_.empty()) { old_ini_file += type_.toQString() + "_"; } diff --git a/src/openms_gui/source/VISUAL/TOPPASVertex.cpp b/src/openms_gui/source/VISUAL/TOPPASVertex.cpp index dc93a0b14e1..b643cc03010 100644 --- a/src/openms_gui/source/VISUAL/TOPPASVertex.cpp +++ b/src/openms_gui/source/VISUAL/TOPPASVertex.cpp @@ -551,7 +551,7 @@ namespace OpenMS emit somethingHasChanged(); } - bool TOPPASVertex::isTopoSortMarked() + bool TOPPASVertex::isTopoSortMarked() const { return topo_sort_marked_; } @@ -561,7 +561,7 @@ namespace OpenMS topo_sort_marked_ = b; } - UInt TOPPASVertex::getTopoNr() + UInt TOPPASVertex::getTopoNr() const { return topo_nr_; } @@ -623,7 +623,7 @@ namespace OpenMS invertRecylingMode(); } - bool TOPPASVertex::allInputsReady() + bool TOPPASVertex::allInputsReady() const { __DEBUG_BEGIN_METHOD__ @@ -655,7 +655,7 @@ namespace OpenMS } } - bool TOPPASVertex::isReachable() + bool TOPPASVertex::isReachable() const { return reachable_; } diff --git a/src/openms_gui/source/VISUAL/TOPPViewMenu.cpp b/src/openms_gui/source/VISUAL/TOPPViewMenu.cpp index e3994de80a8..e5247186d9a 100644 --- a/src/openms_gui/source/VISUAL/TOPPViewMenu.cpp +++ b/src/openms_gui/source/VISUAL/TOPPViewMenu.cpp @@ -56,7 +56,7 @@ namespace OpenMS return r; } - FS_LAYER OPENMS_GUI_DLLAPI operator+(const LayerData::DataType left, const LayerData::DataType right) + FS_LAYER OPENMS_GUI_DLLAPI operator+(const LayerDataBase::DataType left, const LayerDataBase::DataType right) { FS_LAYER r; r += left; @@ -91,10 +91,10 @@ namespace OpenMS m_file->addSeparator(); - //Specifically set the role of the Preferences item. Additionally we have to avoid adding other action items that are + // Specifically set the role of the Preferences item. Additionally we have to avoid adding other action items that are // called preferences/config/options and have the default TextHeuristicRole because otherwise they will overwrite the macOS specific // menu entry under Application -> Preferences... - //m_file->addAction("&Preferences", parent, &TOPPViewBase::preferencesDialog); + // m_file->addAction("&Preferences", parent, &TOPPViewBase::preferencesDialog); auto pref = new QAction("&Preferences", parent); pref->setMenuRole(QAction::PreferencesRole); pref->setEnabled(true); @@ -125,15 +125,15 @@ namespace OpenMS m_tools->addSeparator(); action = addAction_(m_tools->addAction("&Annotate with AccurateMassSearch results", parent, &TOPPViewBase::annotateWithAMS, Qt::CTRL + Qt::Key_A), - TV_STATUS::HAS_LAYER, FS_LAYER(LayerData::DT_PEAK)); + TV_STATUS::HAS_LAYER, FS_LAYER(LayerDataBase::DT_PEAK)); action->setToolTip("Annotate Peak layer with a featureXML from the AccurateMassSearch tool"); action = addAction_(m_tools->addAction("&Annotate with peptide identifications", parent, &TOPPViewBase::annotateWithID, Qt::CTRL + Qt::Key_I), - TV_STATUS::HAS_LAYER, LayerData::DT_PEAK + LayerData::DT_FEATURE + LayerData::DT_CONSENSUS); + TV_STATUS::HAS_LAYER, LayerDataBase::DT_PEAK + LayerDataBase::DT_FEATURE + LayerDataBase::DT_CONSENSUS); action->setToolTip("Annotate a Peak or Feature or Consensus layer with peptide identifications"); action = addAction_(m_tools->addAction("&Annotate with OpenSwath transitions", parent, &TOPPViewBase::annotateWithOSW, Qt::CTRL + Qt::Key_P), - TV_STATUS::HAS_LAYER, FS_LAYER(LayerData::DT_CHROMATOGRAM)); + TV_STATUS::HAS_LAYER, FS_LAYER(LayerDataBase::DT_CHROMATOGRAM)); action->setToolTip("Annotate Chromatogram layer with OSW transition id data from OpenSwathWorkflow or pyProphet"); action = addAction_(m_tools->addAction("Align spectra", parent, &TOPPViewBase::showSpectrumAlignmentDialog), @@ -159,6 +159,7 @@ namespace OpenMS TV_STATUS::IS_1D_VIEW); action->setToolTip("Only available in 1D View"); m_layer->addSeparator(); + // Do not call it preferences without disabling text heuristics role. addAction_(m_layer->addAction("Layer preferences", parent, &TOPPViewBase::showPreferences), TV_STATUS::HAS_LAYER); @@ -186,10 +187,13 @@ namespace OpenMS m_help->addAction("Tutorials and documentation", []() { GUIHelpers::openURL("html/index.html"); }, Qt::Key_F1); m_help->addSeparator(); + + // Note: it is important to pass parent by value, since the lambda will be evaluated later, + // even after this function returned and parent reference would be out of scope. m_help->addAction("&About", [parent]() {QApplicationTOPP::showAboutDialog(parent, "TOPPView"); }); } - void TOPPViewMenu::update(const FS_TV status, const LayerData::DataType layer_type) + void TOPPViewMenu::update(const FS_TV status, const LayerDataBase::DataType layer_type) { for (auto& ar : menu_items_) { // only disable if not supported by the view. This way, the user can still see the item (greyed out) and its ToolTip (for how to activate the item) @@ -214,7 +218,7 @@ namespace OpenMS } - void TOPPViewMenu::ActionRequirement_::enableAction(const FS_TV status, const LayerData::DataType layer_type) + void TOPPViewMenu::ActionRequirement_::enableAction(const FS_TV status, const LayerDataBase::DataType layer_type) { bool status_ok = status.isSuperSetOf(needs_); bool layer_ok = layer_set_.isSuperSetOf(layer_type) || layer_set_.empty(); diff --git a/src/openms_gui/source/VISUAL/TVDIATreeTabController.cpp b/src/openms_gui/source/VISUAL/TVDIATreeTabController.cpp index 610dfa45756..4157f033a44 100644 --- a/src/openms_gui/source/VISUAL/TVDIATreeTabController.cpp +++ b/src/openms_gui/source/VISUAL/TVDIATreeTabController.cpp @@ -56,10 +56,10 @@ namespace OpenMS { - typedef LayerData::ExperimentSharedPtrType ExperimentSharedPtrType; - typedef LayerData::ConstExperimentSharedPtrType ConstExperimentSharedPtrType; - typedef LayerData::ODExperimentSharedPtrType ODExperimentSharedPtrType; - typedef LayerData::OSWDataSharedPtrType OSWDataSharedPtrType; + typedef LayerDataBase::ExperimentSharedPtrType ExperimentSharedPtrType; + typedef LayerDataBase::ConstExperimentSharedPtrType ConstExperimentSharedPtrType; + typedef LayerDataBase::ODExperimentSharedPtrType ODExperimentSharedPtrType; + typedef LayerDataBase::OSWDataSharedPtrType OSWDataSharedPtrType; /// represents all the information we need from a layer /// We cannot use a full layer, because the original layer might get destroyed in the process... @@ -71,7 +71,7 @@ namespace OpenMS String filename; String layername; - explicit MiniLayer(LayerData& layer) + explicit MiniLayer(LayerDataBase& layer) : full_chrom_exp_sptr(layer.getFullChromData()), ondisc_sptr(layer.getOnDiscPeakData()), annot_sptr(layer.getChromatogramAnnotation()), @@ -170,10 +170,10 @@ namespace OpenMS void TVDIATreeTabController::showChromatogramsAsNew1D(const OSWIndexTrace& trace) { - LayerData& layer = const_cast(tv_->getActiveCanvas()->getCurrentLayer()); + LayerDataBase& layer = const_cast(tv_->getActiveCanvas()->getCurrentLayer()); MiniLayer ml(layer); // create new 1D widget; if we return due to error, the widget will be cleaned up - unique_ptr w(new Plot1DWidget(tv_->getSpectrumParameters(1), (QWidget*)tv_->getWorkspace())); + unique_ptr w(new Plot1DWidget(tv_->getCanvasParameters(1), (QWidget*)tv_->getWorkspace())); if (showChromatogramsInCanvas_(trace, ml, w.get())) { // success! diff --git a/src/openms_gui/source/VISUAL/TVIdentificationViewController.cpp b/src/openms_gui/source/VISUAL/TVIdentificationViewController.cpp index cb2d6cef4da..7ec8477eefc 100644 --- a/src/openms_gui/source/VISUAL/TVIdentificationViewController.cpp +++ b/src/openms_gui/source/VISUAL/TVIdentificationViewController.cpp @@ -79,14 +79,14 @@ namespace OpenMS void TVIdentificationViewController::showSpectrumAsNew1D(int spectrum_index, int peptide_id_index, int peptide_hit_index) { // basic behavior 1 - LayerData & layer = const_cast(tv_->getActiveCanvas()->getCurrentLayer()); + LayerDataBase& layer = const_cast(tv_->getActiveCanvas()->getCurrentLayer()); ExperimentSharedPtrType exp_sptr = layer.getPeakDataMuteable(); - LayerData::ODExperimentSharedPtrType od_exp_sptr = layer.getOnDiscPeakData(); + LayerDataBase::ODExperimentSharedPtrType od_exp_sptr = layer.getOnDiscPeakData(); - if (layer.type == LayerData::DT_PEAK) + if (layer.type == LayerDataBase::DT_PEAK) { // open new 1D widget with the current default parameters - Plot1DWidget* w = new Plot1DWidget(tv_->getSpectrumParameters(1), (QWidget*)tv_->getWorkspace()); + Plot1DWidget* w = new Plot1DWidget(tv_->getCanvasParameters(1), (QWidget*)tv_->getWorkspace()); // add data and return if something went wrong if (!w->canvas()->addLayer(exp_sptr, od_exp_sptr, layer.filename) @@ -164,20 +164,21 @@ namespace OpenMS } } + // TODO Why would this need to trigger an update in e.g. the Tab Views?? tv_->updateLayerBar(); // todo replace tv_->updateViewBar(); tv_->updateFilterBar(); tv_->updateMenu(); } - // else if (layer.type == LayerData::DT_CHROMATOGRAM) + // else if (layer.type == LayerDataBase::DT_CHROMATOGRAM) } void TVIdentificationViewController::addPeakAnnotations_(const vector& ph) { // called anew for every click on a spectrum - LayerData& current_layer = tv_->getActive1DWidget()->canvas()->getCurrentLayer(); + auto getCurrentLayer = [&]() -> LayerDataBase& { return tv_->getActive1DWidget()->canvas()->getCurrentLayer(); }; - if (current_layer.getCurrentSpectrum().empty()) + if (getCurrentLayer().getCurrentSpectrum().empty()) { OPENMS_LOG_WARN << "Spectrum is empty! Nothing to annotate!" << endl; } @@ -188,7 +189,7 @@ namespace OpenMS vector cols{ Qt::blue, Qt::green, Qt::red, Qt::gray, Qt::darkYellow }; - if (!current_layer.getCurrentSpectrum().isSorted()) + if (!getCurrentLayer().getCurrentSpectrum().isSorted()) { QMessageBox::warning(tv_, "Error", "The spectrum is not sorted! Aborting!"); return; @@ -202,14 +203,15 @@ namespace OpenMS continue; } double mz = it->getMZ(); - Size peak_idx = current_layer.getCurrentSpectrum().findNearest(mz); + Size peak_idx = getCurrentLayer().getCurrentSpectrum().findNearest(mz); // m/z fits ? - if (Math::getPPMAbs(mz, current_layer.getCurrentSpectrum()[peak_idx].getMZ()) > ppm) + if (Math::getPPMAbs(mz, getCurrentLayer().getCurrentSpectrum()[peak_idx].getMZ()) > ppm) { continue; } - double peak_int = current_layer.getCurrentSpectrum()[peak_idx].getIntensity(); + + double peak_int = getCurrentLayer().getCurrentSpectrum()[peak_idx].getIntensity(); Annotation1DCaret* first_dit(nullptr); // we could have many many hits for different compounds which have the exact same sum formula... so first group by sum formula @@ -271,14 +273,15 @@ namespace OpenMS Annotation1DCaret* ditem = new Annotation1DCaret(points, QString(), cols[i], - String(current_layer.param.getValue("peak_color").toString()).toQString()); + String(getCurrentLayer().param.getValue("peak_color").toString()).toQString()); ditem->setSelected(false); temporary_annotations_.push_back(ditem); // for removal (no ownership) - current_layer.getCurrentAnnotations().push_front(ditem); // for visualization (ownership) - if (first_dit==nullptr) + getCurrentLayer().getCurrentAnnotations().push_front(ditem); // for visualization (ownership) + if (first_dit == nullptr) { first_dit = ditem; // remember first item (we append the text, when ready) } + // list of compound names (shorten if required) if (ith->second.size() > 3) { @@ -309,19 +312,22 @@ namespace OpenMS Plot1DWidget* widget_1D = tv_->getActive1DWidget(); // return if no active 1D widget is present - if (widget_1D == nullptr) - { - return; + if (widget_1D == nullptr) + { + std::cout << "Current widget is nullptr" << std::endl; + return; } - // lambda which returns the current layer - // (this needs to be reevaluated, since adding a layer can invalidate the reference/pointer due to realloc) - auto current_layer = [&]() -> LayerData& { return widget_1D->canvas()->getCurrentLayer(); }; + // lambda which returns the current layer. This has to be used throughout this function to ensure + // being up-to-date (no invalidated pointer etc.) + // even after adding a layer with e.g. addTheoreticalSpectrumLayer_ in L372. + auto current_layer = [&]() -> LayerDataBase& { return widget_1D->canvas()->getCurrentLayer(); }; + widget_1D->canvas()->activateSpectrum(spectrum_index); current_layer().peptide_id_index = peptide_id_index; current_layer().peptide_hit_index = peptide_hit_index; - if (current_layer().type == LayerData::DT_PEAK) + if (current_layer().type == LayerDataBase::DT_PEAK) { UInt ms_level = current_layer().getCurrentSpectrum().getMSLevel(); @@ -438,7 +444,7 @@ namespace OpenMS box_text += alpha_cov + "
" + seq_alpha + "
" + String(prefix_length, ' ') + vert_bar; } - box_text = "
" + box_text + "
"; + box_text = R"(
)" + box_text + "
"; widget_1D->canvas()->setTextBox(box_text.toQString()); } else if (ph.getPeakAnnotations().empty()) // only write the sequence @@ -488,7 +494,7 @@ namespace OpenMS OPENMS_LOG_WARN << "Annotation of MS level > 2 not supported." << endl; } } // end DT_PEAK - // else if (current_layer().type == LayerData::DT_CHROMATOGRAM) + // else if (current_layer().type == LayerDataBase::DT_CHROMATOGRAM) } // Helper function for text formatting @@ -856,9 +862,9 @@ namespace OpenMS void TVIdentificationViewController::addPrecursorLabels1D_(const vector& pcs) { - LayerData& current_layer = tv_->getActive1DWidget()->canvas()->getCurrentLayer(); + LayerDataBase& current_layer = tv_->getActive1DWidget()->canvas()->getCurrentLayer(); - if (current_layer.type == LayerData::DT_PEAK) + if (current_layer.type == LayerDataBase::DT_PEAK) { const SpectrumType& spectrum = current_layer.getCurrentSpectrum(); @@ -898,7 +904,7 @@ namespace OpenMS current_layer.getCurrentAnnotations().push_front(item); // for visualization (ownership) } } - else if (current_layer.type == LayerData::DT_CHROMATOGRAM) + else if (current_layer.type == LayerDataBase::DT_CHROMATOGRAM) { } @@ -910,7 +916,7 @@ namespace OpenMS cout << "removePrecursorLabels1D_ " << spectrum_index << endl; #endif // Delete annotations added by IdentificationView (but not user added annotations) - LayerData& current_layer = tv_->getActive1DWidget()->canvas()->getCurrentLayer(); + LayerDataBase& current_layer = tv_->getActive1DWidget()->canvas()->getCurrentLayer(); const vector& cas = temporary_annotations_; Annotations1DContainer& las = current_layer.getAnnotations(spectrum_index); for (vector::const_iterator it = cas.begin(); it != cas.end(); ++it) @@ -928,55 +934,34 @@ namespace OpenMS void TVIdentificationViewController::addTheoreticalSpectrumLayer_(const PeptideHit& ph) { PlotCanvas* current_canvas = tv_->getActive1DWidget()->canvas(); - LayerData& current_layer = current_canvas->getCurrentLayer(); + LayerDataBase& current_layer = current_canvas->getCurrentLayer(); const SpectrumType& current_spectrum = current_layer.getCurrentSpectrum(); - AASequence aa_sequence = ph.getSequence(); + const AASequence& aa_sequence = ph.getSequence(); // get measured spectrum indices and spectrum Size current_spectrum_layer_index = current_canvas->getCurrentLayerIndex(); Size current_spectrum_index = current_layer.getCurrentSpectrumIndex(); const Param& tv_params = tv_->getParameters(); + Param tag_params = tv_params.copy("preferences:user:idview:tsg:", true); + // override: enable metavalues for simulated peaks (needed for annotation) + assert(tag_params.exists("add_metainfo")); + tag_params.setValue("add_metainfo", "true"); - PeakSpectrum spectrum; + PeakSpectrum theo_spectrum; TheoreticalSpectrumGenerator generator; - Param p; - p.setValue("add_metainfo", "true", "Adds the type of peaks as metainfo to the peaks, like y8+, [M-H2O+2H]++"); - - // these two are true by default, initialize to false here and set to true in the loop below - p.setValue("add_y_ions", "false", "Add peaks of y-ions to the spectrum"); - p.setValue("add_b_ions", "false", "Add peaks of b-ions to the spectrum"); - - p.setValue("max_isotope", tv_params.getValue("preferences:idview:max_isotope"), "Number of isotopic peaks"); - p.setValue("add_losses", tv_params.getValue("preferences:idview:add_losses"), "Adds common losses to those ion expect to have them, only water and ammonia loss is considered"); - p.setValue("add_isotopes", tv_params.getValue("preferences:idview:add_isotopes"), "If set to 1 isotope peaks of the product ion peaks are added"); - p.setValue("add_abundant_immonium_ions", tv_params.getValue("preferences:idview:add_abundant_immonium_ions"), "Add most abundant immonium ions"); - - p.setValue("a_intensity", current_spectrum.getMaxInt() * (double)tv_params.getValue("preferences:idview:a_intensity"), "Intensity of the a-ions"); - p.setValue("b_intensity", current_spectrum.getMaxInt() * (double)tv_params.getValue("preferences:idview:b_intensity"), "Intensity of the b-ions"); - p.setValue("c_intensity", current_spectrum.getMaxInt() * (double)tv_params.getValue("preferences:idview:c_intensity"), "Intensity of the c-ions"); - p.setValue("x_intensity", current_spectrum.getMaxInt() * (double)tv_params.getValue("preferences:idview:x_intensity"), "Intensity of the x-ions"); - p.setValue("y_intensity", current_spectrum.getMaxInt() * (double)tv_params.getValue("preferences:idview:y_intensity"), "Intensity of the y-ions"); - p.setValue("z_intensity", current_spectrum.getMaxInt() * (double)tv_params.getValue("preferences:idview:z_intensity"), "Intensity of the z-ions"); - p.setValue("relative_loss_intensity", tv_params.getValue("preferences:idview:relative_loss_intensity"), "Intensity of loss ions, in relation to the intact ion intensity"); - - p.setValue("add_a_ions", tv_params.getValue("preferences:idview:show_a_ions"), "Add peaks of a-ions to the spectrum"); - p.setValue("add_b_ions", tv_params.getValue("preferences:idview:show_b_ions"), "Add peaks of b-ions to the spectrum"); - p.setValue("add_c_ions", tv_params.getValue("preferences:idview:show_c_ions"), "Add peaks of c-ions to the spectrum"); - p.setValue("add_x_ions", tv_params.getValue("preferences:idview:show_x_ions"), "Add peaks of x-ions to the spectrum"); - p.setValue("add_y_ions", tv_params.getValue("preferences:idview:show_y_ions"), "Add peaks of y-ions to the spectrum"); - p.setValue("add_z_ions", tv_params.getValue("preferences:idview:show_z_ions"), "Add peaks of z-ions to the spectrum"); - p.setValue("add_precursor_peaks", tv_params.getValue("preferences:idview:show_precursor"), "Adds peaks of the precursor to the spectrum, which happen to occur sometimes"); - try { Int max_charge = max(1, ph.getCharge()); // at least generate charge 1 if no charge (0) is annotated // generate mass ladder for all charge states - generator.setParameters(p); - generator.getSpectrum(spectrum, aa_sequence, 1, max_charge); + generator.setParameters(tag_params); + generator.getSpectrum(theo_spectrum, aa_sequence, 1, max_charge); + // scale spectrum to maximum peak intensity of real spectrum + auto scale_by = current_spectrum.getMaxIntensity(); + std::for_each(theo_spectrum.begin(), theo_spectrum.end(), [scale_by](Peak1D& p) { p.setIntensity(p.getIntensity() * scale_by); }); } catch (Exception::BaseException& e) { @@ -985,11 +970,11 @@ namespace OpenMS } PeakMap new_exp; - new_exp.addSpectrum(spectrum); + new_exp.addSpectrum(theo_spectrum); ExperimentSharedPtrType new_exp_sptr(new PeakMap(new_exp)); FeatureMapSharedPtrType f_dummy(new FeatureMapType()); ConsensusMapSharedPtrType c_dummy(new ConsensusMapType()); - LayerData::ODExperimentSharedPtrType od_dummy(new OnDiscMSExperiment()); + LayerDataBase::ODExperimentSharedPtrType od_dummy(new OnDiscMSExperiment()); vector p_dummy; // Block update events for identification widget @@ -997,24 +982,24 @@ namespace OpenMS RAIICleanup cleanup([&](){spec_id_view_->ignore_update = false; }); String layer_caption = aa_sequence.toString() + " (identification view)"; - tv_->addData(f_dummy, c_dummy, p_dummy, new_exp_sptr, od_dummy, LayerData::DT_PEAK, false, false, false, layer_caption.toQString(), layer_caption.toQString()); + tv_->addData(f_dummy, c_dummy, p_dummy, new_exp_sptr, od_dummy, LayerDataBase::DT_PEAK, false, false, false, layer_caption.toQString(), layer_caption.toQString()); // get layer index of new layer Size theoretical_spectrum_layer_index = tv_->getActive1DWidget()->canvas()->getCurrentLayerIndex(); // kind of a hack to check whether adding the layer was successful - if (current_spectrum_layer_index != theoretical_spectrum_layer_index && !spectrum.getStringDataArrays().empty()) + if (current_spectrum_layer_index != theoretical_spectrum_layer_index && !theo_spectrum.getStringDataArrays().empty()) { // Ensure theoretical spectrum is drawn as dashed sticks tv_->setDrawMode1D(Plot1DCanvas::DM_PEAKS); tv_->getActive1DWidget()->canvas()->setCurrentLayerPeakPenStyle(Qt::DashLine); // Add ion names as annotations to the theoretical spectrum - PeakSpectrum::StringDataArray sa = spectrum.getStringDataArrays()[0]; + PeakSpectrum::StringDataArray sa = theo_spectrum.getStringDataArrays()[0]; - for (Size i = 0; i != spectrum.size(); ++i) + for (Size i = 0; i != theo_spectrum.size(); ++i) { - DPosition<2> position = DPosition<2>(spectrum[i].getMZ(), spectrum[i].getIntensity()); + DPosition<2> position = DPosition<2>(theo_spectrum[i].getMZ(), theo_spectrum[i].getIntensity()); QString s(sa[i].c_str()); if (s.at(0) == 'y') @@ -1038,21 +1023,16 @@ namespace OpenMS // zoom to maximum visible area in real data (as theoretical might be much larger and therefor squeezes the interesting part) DRange<2> visible_area = tv_->getActive1DWidget()->canvas()->getVisibleArea(); - double min_mz = tv_->getActive1DWidget()->canvas()->getCurrentLayer().getCurrentSpectrum().getMin()[0]; - double max_mz = tv_->getActive1DWidget()->canvas()->getCurrentLayer().getCurrentSpectrum().getMax()[0]; - double delta_mz = max_mz - min_mz; - visible_area.setMin(min_mz - 0.1 * delta_mz); - visible_area.setMax(max_mz + 0.1 * delta_mz); + auto spec_range = tv_->getActive1DWidget()->canvas()->getCurrentLayer().getCurrentSpectrum().getRange(); + spec_range.scaleBy(1.2); + visible_area.setMinX(spec_range.getMinMZ()); + visible_area.setMaxX(spec_range.getMaxMZ()); tv_->getActive1DWidget()->canvas()->setVisibleArea(visible_area); // spectra alignment - Param param; - - double tolerance = tv_params.getValue("preferences:idview:tolerance"); - - param.setValue("tolerance", tolerance, "Defines the absolute (in Da) or relative (in ppm) tolerance in the alignment"); - tv_->getActive1DWidget()->performAlignment(current_spectrum_layer_index, theoretical_spectrum_layer_index, param); + Param p_align = tv_params.copy("preferences:user:idview:align", true); + tv_->getActive1DWidget()->performAlignment(current_spectrum_layer_index, theoretical_spectrum_layer_index, p_align); vector > aligned_peak_indices = tv_->getActive1DWidget()->canvas()->getAlignedPeaksIndices(); @@ -1117,7 +1097,7 @@ namespace OpenMS void TVIdentificationViewController::removeGraphicalPeakAnnotations_(int spectrum_index) { Plot1DWidget* widget_1D = tv_->getActive1DWidget(); - LayerData& current_layer = widget_1D->canvas()->getCurrentLayer(); + LayerDataBase& current_layer = widget_1D->canvas()->getCurrentLayer(); #ifdef DEBUG_IDENTIFICATION_VIEW cout << "Removing peak annotations." << endl; @@ -1147,10 +1127,10 @@ namespace OpenMS { return; } - LayerData& current_layer = widget_1D->canvas()->getCurrentLayer(); + LayerDataBase& current_layer = widget_1D->canvas()->getCurrentLayer(); // Return if no valid peak layer attached - if (current_layer.getPeakData()->size() == 0 || current_layer.type != LayerData::DT_PEAK) + if (current_layer.getPeakData()->empty() || current_layer.type != LayerDataBase::DT_PEAK) { return; } @@ -1190,7 +1170,7 @@ namespace OpenMS } PlotCanvas* current_canvas = tv_->getActive1DWidget()->canvas(); - LayerData& current_layer = current_canvas->getCurrentLayer(); + LayerDataBase& current_layer = current_canvas->getCurrentLayer(); const MSSpectrum& current_spectrum = current_layer.getCurrentSpectrum(); if (current_spectrum.empty()) @@ -1286,16 +1266,16 @@ namespace OpenMS } // Block update events for identification widget + // TODO: Why? If it is to avoid a new selection while repainting, why just do it now and not much earlier?? spec_id_view_->ignore_update = true; RAIICleanup cleanup([&]() {spec_id_view_->ignore_update = false; }); // zoom visible area to real data range: DRange<2> visible_area = tv_->getActive1DWidget()->canvas()->getVisibleArea(); - double min_mz = tv_->getActive1DWidget()->canvas()->getCurrentLayer().getCurrentSpectrum().getMin()[0]; - double max_mz = tv_->getActive1DWidget()->canvas()->getCurrentLayer().getCurrentSpectrum().getMax()[0]; - double delta_mz = max_mz - min_mz; - visible_area.setMin(min_mz - 0.1 * delta_mz); - visible_area.setMax(max_mz + 0.1 * delta_mz); + auto spec_range = tv_->getActive1DWidget()->canvas()->getCurrentLayer().getCurrentSpectrum().getRange(); + spec_range.scaleBy(1.2); + visible_area.setMinX(spec_range.getMinMZ()); + visible_area.setMaxX(spec_range.getMaxMZ()); tv_->getActive1DWidget()->canvas()->setVisibleArea(visible_area); tv_->updateLayerBar(); @@ -1334,7 +1314,7 @@ namespace OpenMS return; } PlotCanvas* current_canvas = w->canvas(); - LayerData& current_layer = current_canvas->getCurrentLayer(); + LayerDataBase& current_layer = current_canvas->getCurrentLayer(); const SpectrumType& current_spectrum = current_layer.getCurrentSpectrum(); // find first MS2 spectrum with peptide identification and set current spectrum to it @@ -1370,7 +1350,7 @@ namespace OpenMS widget_1D->canvas()->setTextBox(QString()); // remove precursor labels, theoretical spectra and trigger repaint - LayerData& cl = tv_->getActive1DWidget()->canvas()->getCurrentLayer(); + LayerDataBase& cl = tv_->getActive1DWidget()->canvas()->getCurrentLayer(); removeTemporaryAnnotations_(cl.getCurrentSpectrumIndex()); removeTheoreticalSpectrumLayer_(); cl.peptide_id_index = -1; @@ -1393,5 +1373,4 @@ namespace OpenMS tv_->getActive1DWidget()->canvas()->setVisibleArea(range); tv_->getActive1DWidget()->canvas()->repaint(); } - } diff --git a/src/openms_gui/source/VISUAL/TVSpectraViewController.cpp b/src/openms_gui/source/VISUAL/TVSpectraViewController.cpp index 5750d64a44e..eb14c2c8d7e 100644 --- a/src/openms_gui/source/VISUAL/TVSpectraViewController.cpp +++ b/src/openms_gui/source/VISUAL/TVSpectraViewController.cpp @@ -57,16 +57,16 @@ namespace OpenMS void TVSpectraViewController::showSpectrumAsNew1D(int index) { // basic behavior 1 - LayerData& layer = const_cast(tv_->getActiveCanvas()->getCurrentLayer()); + LayerDataBase& layer = const_cast(tv_->getActiveCanvas()->getCurrentLayer()); ExperimentSharedPtrType exp_sptr = layer.getPeakDataMuteable(); - LayerData::ODExperimentSharedPtrType od_exp_sptr = layer.getOnDiscPeakData(); + LayerDataBase::ODExperimentSharedPtrType od_exp_sptr = layer.getOnDiscPeakData(); auto ondisc_sptr = layer.getOnDiscPeakData(); // create new 1D widget; if we return due to error, the widget will be cleaned up automatically - unique_ptr wp(new Plot1DWidget(tv_->getSpectrumParameters(1), (QWidget*)tv_->getWorkspace())); + unique_ptr wp(new Plot1DWidget(tv_->getCanvasParameters(1), (QWidget*)tv_->getWorkspace())); Plot1DWidget* w = wp.get(); - if (layer.type == LayerData::DT_CHROMATOGRAM) + if (layer.type == LayerDataBase::DT_CHROMATOGRAM) { // set layer name String caption = layer.getName() + "[" + index + "]"; @@ -83,7 +83,7 @@ namespace OpenMS DRange<2> visible_area = tv_->getActiveCanvas()->getVisibleArea(); w->canvas()->setVisibleArea(visible_area.swapDimensions()); } - else if (layer.type == LayerData::DT_PEAK) + else if (layer.type == LayerDataBase::DT_PEAK) { String caption = layer.getName(); @@ -132,7 +132,7 @@ namespace OpenMS // show multiple spectra together is only used for chromatograms directly // where multiple (SRM) traces are shown together - LayerData & layer = const_cast(tv_->getActiveCanvas()->getCurrentLayer()); + LayerDataBase& layer = const_cast(tv_->getActiveCanvas()->getCurrentLayer()); ExperimentSharedPtrType exp_sptr = layer.getPeakDataMuteable(); auto ondisc_sptr = layer.getOnDiscPeakData(); @@ -140,11 +140,11 @@ namespace OpenMS String caption = layer.getName(); //open new 1D widget - Plot1DWidget* w = new Plot1DWidget(tv_->getSpectrumParameters(1), (QWidget *)tv_->getWorkspace()); + Plot1DWidget* w = new Plot1DWidget(tv_->getCanvasParameters(1), (QWidget *)tv_->getWorkspace()); for (const auto& index : indices) { - if (layer.type == LayerData::DT_CHROMATOGRAM) + if (layer.type == LayerDataBase::DT_CHROMATOGRAM) { // set layer name caption += String(" [") + index + "];"; @@ -181,7 +181,7 @@ namespace OpenMS if (widget_1d == nullptr) return; if (widget_1d->canvas()->getLayerCount() == 0) return; - LayerData& layer = widget_1d->canvas()->getCurrentLayer(); + LayerDataBase& layer = widget_1d->canvas()->getCurrentLayer(); // If we have a chromatogram, we cannot just simply activate this spectrum. // we have to do much more work, e.g. creating a new experiment with the @@ -227,7 +227,7 @@ namespace OpenMS { return; } - const LayerData& layer = widget_1d->canvas()->getCurrentLayer(); + const LayerDataBase& layer = widget_1d->canvas()->getCurrentLayer(); // If we have a chromatogram, we cannot just simply activate this spectrum. // we have to do much more work, e.g. creating a new experiment with the // new spectrum. diff --git a/src/openms_gui/source/VISUAL/TableView.cpp b/src/openms_gui/source/VISUAL/TableView.cpp index f69780ef514..bf2ec87d0fe 100644 --- a/src/openms_gui/source/VISUAL/TableView.cpp +++ b/src/openms_gui/source/VISUAL/TableView.cpp @@ -328,6 +328,25 @@ namespace OpenMS void TableView::resizeEvent(QResizeEvent* /*event*/) { + this->resizeColumnsToContents(); + + int widgetWidth = this->viewport()->size().width(); + int tableWidth = 0; + + for (int i = 0; i < this->columnCount(); ++i) + { + tableWidth += this->horizontalHeader()->sectionSize(i); + } //sections already resized to fit all data + + double scale = (double) widgetWidth / tableWidth; + if (scale > 1.) + { + for (int i = 0; i < this->columnCount(); ++i) + { + this->setColumnWidth(i, this->horizontalHeader()->sectionSize(i) * scale); + } + } + emit resized(); } diff --git a/src/openms_gui/source/VISUAL/VISITORS/LayerStatistics.cpp b/src/openms_gui/source/VISUAL/VISITORS/LayerStatistics.cpp new file mode 100644 index 00000000000..d2361459f66 --- /dev/null +++ b/src/openms_gui/source/VISUAL/VISITORS/LayerStatistics.cpp @@ -0,0 +1,333 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2021. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Chris Bielow $ +// $Authors: Chris Bielow $ +// -------------------------------------------------------------------------- + +// OpenMS includes +#include + +#include +#include +#include +#include + +using namespace std; + +namespace OpenMS +{ + // helper for visitor pattern with std::visit + template + struct overload : Ts... { + using Ts::operator()...; + }; + template + overload(Ts...) -> overload; + + struct MinMax { + double min; + double max; + }; + + /// extract min,max from a statistic (or throw Exception if stats is not present in @p overview_data) + MinMax getMinMax(const StatsMap& overview_data, const RangeStatsType& which, const std::string& error_message_container) + { + auto overview_stat = overview_data.find(which); + if (overview_stat == overview_data.end()) + { + throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, + "Statistic is not valid for this " + error_message_container, + which.name); + } + // getMin/Max from variant + MinMax result = std::visit(overload {[](const auto& stats) -> MinMax { + return {(double)stats.getMin(), (double)stats.getMax()}; + }}, + overview_stat->second); + + return result; + } + + /// Computes the statistics of all meta data contained in the FloatDataArray or IntegerDataArray of an MSSpectrum + template + void computeMetaDataArrayStats(const DataArrayType& arrays, StatsMap& stats) + { + using VarType = RangeStats; + + for (const auto& mda : arrays) + { + const RangeStatsType mda_name = {RangeStatsSource::ARRAYINFO, mda.getName()}; + auto it_var = stats.find(mda_name); + if (it_var == stats.end()) // missing, create it + { + it_var = stats.emplace(mda_name, VarType()).first; + } + RangeStatsVariant& meta_stats_value = it_var->second; + auto& target = std::get(meta_stats_value); + for (const auto& value : mda) + { + target.addDataPoint(value); + } + } + } + + /// Update the histogram for data of a certain FloatDataArray or IntegerDataArray + /// of an MSSpectrum + template + void updateHistFromDataArray(const DataArrayType& arrays, const std::string& name, Math::Histogram<>& hist) + { + for (const auto& mda : arrays) + { + if (name != mda.getName()) continue; + for (const auto& value : mda) + { + hist.inc(value); + } + } + } + + LayerStatisticsPeakMap::LayerStatisticsPeakMap(const PeakMap& pm) + : pm_(&pm) + { + computeStatistics_(); + } + + void LayerStatisticsPeakMap::computeStatistics_() + { + RangeStats stat_intensity; + for (const auto& spec : *pm_) + { + for (const auto& peak : spec) + { + stat_intensity.addDataPoint(peak.getIntensity()); + } + // collect stats about the meta data arrays of this spectrum + computeMetaDataArrayStats(spec.getFloatDataArrays(), overview_range_data_); + computeMetaDataArrayStats(spec.getIntegerDataArrays(), overview_range_data_); + } + overview_range_data_.emplace(RangeStatsType {RangeStatsSource::CORE, "intensity"}, stat_intensity); + } + + Math::Histogram<> LayerStatisticsPeakMap::getDistribution(const RangeStatsType& which, const UInt number_of_bins) const + { + auto mm = getMinMax(overview_range_data_, which, "PeakMap"); // may throw if unknown statistic + Math::Histogram<> result(mm.min, mm.max, (mm.max - mm.min) / number_of_bins); + + if (which == RangeStatsType{ RangeStatsSource::CORE, "intensity" }) + { + for (const auto& spec : *pm_) + { + for (const auto& peak : spec) + { + result.inc(peak.getIntensity()); + } + } + } + else if (which.src == RangeStatsSource::ARRAYINFO) + { + for (const auto& spec : *pm_) + { + std::visit(overload {[&](const RangeStatsInt& /*int_range*/) { updateHistFromDataArray(spec.getIntegerDataArrays(), which.name, result); }, + [&](const RangeStatsDouble& /*double_range*/) { updateHistFromDataArray(spec.getFloatDataArrays(), which.name, result); }} + , overview_range_data_.at(which)); + } + } + return result; + } + + LayerStatisticsFeatureMap::LayerStatisticsFeatureMap(const FeatureMap& fm) : fm_(&fm) + { + computeStatistics_(); + } + + void addMetaDistributionValue(Math::Histogram<>& result, string name, const MetaInfoInterface& mi) + { + if (mi.metaValueExists(name)) + { + result.inc(mi.getMetaValue(name)); + } + } + + Math::Histogram<> LayerStatisticsFeatureMap::getDistribution(const RangeStatsType& which, + const UInt number_of_bins) const + { + auto mm = getMinMax(overview_range_data_, which, "FeatureMap"); // may throw if unknown statistic + Math::Histogram<> result(mm.min, mm.max, (mm.max-mm.min) / number_of_bins); + + if (which.src == RangeStatsSource::CORE) + { + if (which.name == "intensity") for (const auto& f : *fm_) result.inc(f.getIntensity()); + else if (which.name == "charge") for (const auto& f : *fm_) result.inc(f.getCharge()); + else if (which.name == "quality") for (const auto& f : *fm_) result.inc(f.getOverallQuality()); + } + else if (which.src == RangeStatsSource::METAINFO) + { + for (const auto& f : *fm_) addMetaDistributionValue(result, which.name, f); + } + + return result; + } + void LayerStatisticsFeatureMap::computeStatistics_() + { + RangeStats stat_intensity; + RangeStats stat_charge; + RangeStats stat_quality; + for (const auto& f : *fm_) + { + stat_intensity.addDataPoint(f.getIntensity()); + stat_charge.addDataPoint(f.getCharge()); + stat_quality.addDataPoint(f.getOverallQuality()); + bringInMetaStats_(&f); + } + overview_range_data_.emplace(RangeStatsType {RangeStatsSource::CORE, "intensity"}, stat_intensity); + overview_range_data_.emplace(RangeStatsType {RangeStatsSource::CORE, "charge"}, stat_charge); + overview_range_data_.emplace(RangeStatsType {RangeStatsSource::CORE, "quality"}, stat_quality); + } + + + LayerStatisticsConsensusMap::LayerStatisticsConsensusMap(const ConsensusMap& cm) : cm_(&cm) + { + computeStatistics_(); + } + + Math::Histogram<> LayerStatisticsConsensusMap::getDistribution(const RangeStatsType& which, + const UInt number_of_bins) const + { + auto mm = getMinMax(overview_range_data_, which, "ConsensusMap"); // may throw if unknown statistic + Math::Histogram<> result(mm.min, mm.max, (mm.max - mm.min) / number_of_bins); + + if (which.src == RangeStatsSource::CORE) + { + if (which.name == "intensity") for (const auto& cf : *cm_) result.inc(cf.getIntensity()); + else if (which.name == "charge") for (const auto& cf : *cm_) result.inc(cf.getCharge()); + else if (which.name == "quality") for (const auto& cf : *cm_) result.inc(cf.getQuality()); + else if (which.name == "sub-elements") for (const auto& cf : *cm_) result.inc(cf.size()); + } + else if (which.src == RangeStatsSource::METAINFO) + { + for (const auto& f : *cm_) addMetaDistributionValue(result, which.name, f); + } + + return result; + } + + void LayerStatisticsConsensusMap::computeStatistics_() + { + RangeStats stat_intensity; + RangeStats stat_charge; + RangeStats stat_quality; + RangeStats stat_elements; + for (const auto& cf : *cm_) + { + stat_intensity.addDataPoint(cf.getIntensity()); + stat_charge.addDataPoint(cf.getCharge()); + stat_quality.addDataPoint(cf.getQuality()); + stat_elements.addDataPoint(cf.size()); + bringInMetaStats_(&cf); + } + overview_range_data_.emplace(RangeStatsType {RangeStatsSource::CORE, "intensity"}, stat_intensity); + overview_range_data_.emplace(RangeStatsType {RangeStatsSource::CORE, "charge"}, stat_charge); + overview_range_data_.emplace(RangeStatsType {RangeStatsSource::CORE, "quality"}, stat_quality); + overview_range_data_.emplace(RangeStatsType {RangeStatsSource::CORE, "sub-elements"}, + stat_quality); + } + + // IDENT + + LayerStatisticsIdent::LayerStatisticsIdent(const IPeptideIds::PepIds& ids) : ids_(&ids) + { + computeStatistics_(); + } + + Math::Histogram<> LayerStatisticsIdent::getDistribution(const RangeStatsType& which, + const UInt number_of_bins) const + { + auto mm = + getMinMax(overview_range_data_, which, "vector"); // may throw if unknown statistic + Math::Histogram<> result(mm.min, mm.max, (mm.max - mm.min) / number_of_bins); + + if (which.src == RangeStatsSource::METAINFO) + { + for (const auto& pep : *ids_) + addMetaDistributionValue(result, which.name, pep); + } + + return result; + } + + void LayerStatisticsIdent::computeStatistics_() + { + for (const auto& pep : *ids_) + { + bringInMetaStats_(&pep); + } + } + + void LayerStatistics::bringInMetaStats_(const MetaInfoInterface* meta_interface) + { + vector new_meta_keys; + meta_interface->getKeys(new_meta_keys); + for (const auto& idx : new_meta_keys) + { + const DataValue& meta_dv = meta_interface->getMetaValue(idx); + if (meta_dv.valueType() == DataValue::INT_VALUE || + meta_dv.valueType() == DataValue::DOUBLE_VALUE) + { // range data + RangeStatsType key = {RangeStatsSource::METAINFO, idx}; + auto itr = overview_range_data_.find(key); + // create correct type, if not present + if (itr == overview_range_data_.end()) + { + auto empty_value = [&]() -> RangeStatsVariant { + if (meta_dv.valueType() == DataValue::INT_VALUE) + { + return RangeStatsInt(); + } + else if (meta_dv.valueType() == DataValue::DOUBLE_VALUE) + { + return RangeStatsDouble(); + } + throw Exception::InvalidValue(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, + "Metavalue has unsupported valuetype", "??");}();// immediately evaluated lambda + itr = overview_range_data_.emplace(key, empty_value).first; + } + // update the value + std::visit(overload {[&](auto&& stats) { stats.addDataPoint(meta_dv); }}, itr->second); + } + else + { // just count data + ++overview_count_data_[idx].counter; + } + } + } + + +} // namespace OpenMS \ No newline at end of file diff --git a/src/openms_gui/source/VISUAL/VISITORS/sources.cmake b/src/openms_gui/source/VISUAL/VISITORS/sources.cmake new file mode 100644 index 00000000000..15b2a89b3ad --- /dev/null +++ b/src/openms_gui/source/VISUAL/VISITORS/sources.cmake @@ -0,0 +1,20 @@ +### the directory name +set(directory source/VISUAL/VISITORS) + +### list all filenames of the directory here +set(sources_list +LayerStatistics.cpp +) + +### add path to the filenames +set(sources) +foreach(i ${sources_list}) + list(APPEND sources ${directory}/${i}) +endforeach(i) + +### pass source file list to the upper instance +set(OpenMSVisual_sources ${OpenMSVisual_sources} ${sources}) + +### source group definition +source_group("Source Files\\VISUAL\\VISTORS" FILES ${sources}) + diff --git a/src/openms_gui/source/VISUAL/sources.cmake b/src/openms_gui/source/VISUAL/sources.cmake index 7c81284e985..9c43ede60c7 100644 --- a/src/openms_gui/source/VISUAL/sources.cmake +++ b/src/openms_gui/source/VISUAL/sources.cmake @@ -21,7 +21,12 @@ InputFile.ui InputFileList.cpp InputFileList.ui LayerListView.cpp -LayerData.cpp +LayerDataBase.cpp +LayerDataChrom.cpp +LayerDataConsensus.cpp +LayerDataFeature.cpp +LayerDataIdent.cpp +LayerDataPeak.cpp ListEditor.cpp LogWindow.cpp MetaDataBrowser.cpp @@ -41,6 +46,8 @@ Plot3DWidget.cpp PlotCanvas.cpp PlotWidget.cpp RecentFilesMenu.cpp +SequenceVisualizer.cpp +SequenceVisualizer.ui SpectraIDViewTab.cpp SpectraTreeTab.cpp SwathLibraryStats.cpp diff --git a/src/openswathalgo/thirdparty/MIToolbox/include/MIToolbox/MIToolbox.h b/src/openswathalgo/thirdparty/MIToolbox/include/MIToolbox/MIToolbox.h index a02c03a131f..6f88841550b 100644 --- a/src/openswathalgo/thirdparty/MIToolbox/include/MIToolbox/MIToolbox.h +++ b/src/openswathalgo/thirdparty/MIToolbox/include/MIToolbox/MIToolbox.h @@ -17,8 +17,8 @@ #ifndef __MIToolbox_H #define __MIToolbox_H -#include -#include +#include +#include #define BASE_TWO 2.0 #define BASE_E M_E @@ -29,8 +29,8 @@ typedef unsigned int uint; // #ifdef COMPILE_C #define C_IMPLEMENTATION - #include - #include + #include + #include #define CALLOC_FUNC(a,b) calloc(a,b) #define FREE_FUNC(a) free(a) // #elif defined(COMPILE_R) diff --git a/src/openswathalgo/thirdparty/MIToolbox/src/ArrayOperations.c b/src/openswathalgo/thirdparty/MIToolbox/src/ArrayOperations.c index 4895c07eb4f..9c1d143820a 100644 --- a/src/openswathalgo/thirdparty/MIToolbox/src/ArrayOperations.c +++ b/src/openswathalgo/thirdparty/MIToolbox/src/ArrayOperations.c @@ -15,9 +15,9 @@ ** This file is part of MIToolbox, licensed under the 3-clause BSD license. *******************************************************************************/ -#include -#include "MIToolbox/MIToolbox.h" #include "MIToolbox/ArrayOperations.h" +#include "MIToolbox/MIToolbox.h" +#include void* checkedCalloc(size_t vectorLength, size_t sizeOfType) { void *allocated = CALLOC_FUNC(vectorLength, sizeOfType); diff --git a/src/pyOpenMS/CMakeLists.txt b/src/pyOpenMS/CMakeLists.txt index 6513dae59a5..e347f848a54 100644 --- a/src/pyOpenMS/CMakeLists.txt +++ b/src/pyOpenMS/CMakeLists.txt @@ -61,6 +61,10 @@ execute_process( message(STATUS "Python found at ${PYTHON_EXECUTABLE} with version ${PY_VERSION} (if this is wrong, configure with -DPYTHON_EXECUTABLE:FILEPATH=/path/to/python)") +if(UNIX AND NOT APPLE AND NOT CYGWIN) + set(LINUX TRUE) +endif() + #------------------------------------------------------------------------------ # See https://wiki.python.org/moin/WindowsCompilers # Windows support requires that the correct Python version is matched to the @@ -153,7 +157,7 @@ if(AUTOWRAP_MISSING) else() execute_process( COMMAND - ${PYTHON_EXECUTABLE} -c "import autowrap; exit(autowrap.version >= (0, 22, 2))" + ${PYTHON_EXECUTABLE} -c "import autowrap; exit(autowrap.version >= (0, 22, 5))" RESULT_VARIABLE _AUTOWRAP_VERSION_OK ERROR_QUIET OUTPUT_QUIET @@ -168,7 +172,7 @@ else() message(STATUS "Looking for autowrap - found autowrap ${AUTOWRAP_VERSION}, version ok") set(AUTOWRAP_VERSION_OK TRUE) else() - message(STATUS "Found autowrap version ${AUTOWRAP_VERSION}. The version is too old (>= 0.22.2 is required)") + message(STATUS "Found autowrap version ${AUTOWRAP_VERSION}. The version is too old (>= 0.22.5 is required)") message(FATAL_ERROR "Please upgrade autowrap or disable pyOpenMS.") endif() endif() @@ -412,6 +416,20 @@ if(NOT PY_NUM_MODULES) set(PY_NUM_MODULES 8) endif() +set(PYCPPFILES "") +set(PYPYXFILES "") +set(PYSOFILES "") +foreach(NUM RANGE 1 ${PY_NUM_MODULES}) + list(APPEND PYCPPFILES "${CMAKE_BINARY_DIR}/pyOpenMS/pyopenms/pyopenms_${NUM}.cpp") + list(APPEND PYPYXFILES "${CMAKE_BINARY_DIR}/pyOpenMS/pyopenms/pyopenms_${NUM}.pyx") + if (WIN32) + list(APPEND PYSOFILES "${CMAKE_BINARY_DIR}/pyOpenMS/pyopenms/pyopenms_${NUM}.dll") + else() + list(APPEND PYSOFILES "${CMAKE_BINARY_DIR}/pyOpenMS/pyopenms/pyopenms_${NUM}.so") + endif() +endforeach() + + # set data variable nightly builds use repository last change date # yyyy-mm-dd 08:04:17 +0200 -> yyyymmdd string(REPLACE "-" "" OPENMS_GIT_LC_DATE_REPLACED ${OPENMS_GIT_LC_DATE}) @@ -457,7 +475,8 @@ set(PYOPENMS_INCLUDE_DIRS list(REMOVE_DUPLICATES PYOPENMS_INCLUDE_DIRS) -set(CONTRIB_DIR ${CMAKE_PREFIX_PATH}) +## use / instead of \ because a path might end in / and thus might generate invalid python code in env.py: r"C:\dev\contrib_build;c:\dev\Qt5.6.2_\5.6\msvc2015_64\" +file(TO_CMAKE_PATH "${CMAKE_PREFIX_PATH}" CONTRIB_DIR) set(OPEN_MS_BUILD_TYPE ${CMAKE_BUILD_TYPE}) add_custom_target( @@ -479,7 +498,7 @@ endforeach() # fixup these dependencies (i.e. get other dynamic dependencies recursively) if (APPLE) ## On APPLE use our script because the executables need to be relinked -## this is done before setup.py so that we fixup the resulting pyopenms.so's too +## this is done after "setup.py build_ext" but before setup.py bdist_wheel so that we fixup the resulting pyopenms.so's too else() ## Assemble common required non-system libraries ## Note that we do not need the QT plugins or QTGui libraries since we do not include GUI tools here. @@ -504,59 +523,66 @@ configure_file(${_env_py_in} ${_env_py} @ONLY) #------------------------------------------------------------------------------ # create targets in makefile -IF(${CMAKE_SYSTEM_NAME} MATCHES "Linux" AND PY_NO_OUTPUT) - add_custom_target(pyopenms_create_cpp +IF(LINUX AND PY_NO_OUTPUT) + add_custom_command( + OUTPUT ${PYCPPFILES} ${PYPYXFILES} + DEPENDS OpenMS # fake dependency to see if a header file has changed COMMAND ${PYTHON_EXECUTABLE} create_cpp_extension.py 2> /dev/null - DEPENDS prepare_pyopenms_libs + COMMENT "Creating C++ extension with autowrap and Cython" WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/pyOpenMS ) ELSE() - add_custom_target(pyopenms_create_cpp + add_custom_command( + OUTPUT ${PYCPPFILES} ${PYPYXFILES} + DEPENDS OpenMS # fake dependency to see if a header file has changed COMMAND ${PYTHON_EXECUTABLE} create_cpp_extension.py - DEPENDS prepare_pyopenms_libs + COMMENT "Creating C++ extension with autowrap and Cython" WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/pyOpenMS ) ENDIF() +add_custom_target(compile_pxds DEPENDS ${PYCPPFILES} ${PYPYXFILES}) set(PY_EXTRA_ARGS "") -if(PY_SINGLE_THREADED) - message(STATUS "Turning off multi-threaded python module compilation") - set(PY_EXTRA_ARGS "${PY_EXTRA_ARGS}" "--single-threaded") -endif() + if(PY_NO_OPTIMIZATION) message(STATUS "Turning off optimization for faster python module compile time") set(PY_EXTRA_ARGS "${PY_EXTRA_ARGS}" "--no-optimization") endif() + message(STATUS "Py extra args ${PY_EXTRA_ARGS}") -IF(${CMAKE_SYSTEM_NAME} MATCHES "Linux" AND PY_NO_OUTPUT) - add_custom_target(pyopenms_build - COMMAND ${PYTHON_EXECUTABLE} setup.py build_ext ${PY_EXTRA_ARGS} 2> /dev/null - DEPENDS pyopenms_create_cpp +IF(LINUX AND PY_NO_OUTPUT) + add_custom_command( + OUTPUT ${PYSOFILES} + COMMAND ${PYTHON_EXECUTABLE} setup.py build_ext -j ${PY_NUM_THREADS} ${PY_EXTRA_ARGS} 2> /dev/null + COMMENT "Compiling and linking pyopenms C++ extension with the chosen C++ compiler" + DEPENDS compile_pxds prepare_pyopenms_libs + WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/pyOpenMS ) +ELSEIF(APPLE) # We need to still copy libs with our script. Do it before the actual build, so the fixed up names are included in the .so files + add_custom_command( + OUTPUT ${PYSOFILES} + COMMAND ${CMAKE_SOURCE_DIR}/cmake/MacOSX/fix_dependencies.rb -l ${CMAKE_BINARY_DIR}/pyOpenMS/pyopenms -e "@rpath/" -v + COMMAND ${PYTHON_EXECUTABLE} setup.py build_ext -j ${PY_NUM_THREADS} ${PY_EXTRA_ARGS} + COMMENT "Compiling and linking pyopenms C++ extension with the chosen C++ compiler" + DEPENDS compile_pxds prepare_pyopenms_libs WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/pyOpenMS ) ELSE() - add_custom_target(pyopenms_build - COMMAND ${PYTHON_EXECUTABLE} setup.py build_ext ${PY_EXTRA_ARGS} - DEPENDS pyopenms_create_cpp + add_custom_command( + OUTPUT ${PYSOFILES} + COMMAND ${PYTHON_EXECUTABLE} setup.py build_ext -j ${PY_NUM_THREADS} ${PY_EXTRA_ARGS} + COMMENT "Compiling and linking pyopenms C++ extension with the chosen C++ compiler" + DEPENDS compile_pxds prepare_pyopenms_libs WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/pyOpenMS ) ENDIF() -add_dependencies(pyopenms_build OpenMS) - -if(APPLE) -add_custom_command( - TARGET pyopenms_create_cpp POST_BUILD - COMMAND ${CMAKE_SOURCE_DIR}/cmake/MacOSX/fix_dependencies.rb -l ${CMAKE_BINARY_DIR}/pyOpenMS/pyopenms -e "@rpath/" -v - ) -endif() -IF(${CMAKE_SYSTEM_NAME} MATCHES "Linux" AND PY_NO_OUTPUT) +IF(LINUX AND PY_NO_OUTPUT) add_custom_target(pyopenms COMMAND ${PYTHON_EXECUTABLE} setup.py bdist_egg 2> /dev/null COMMAND ${PYTHON_EXECUTABLE} setup.py bdist_wheel 2> /dev/null COMMAND ${PYTHON_EXECUTABLE} setup.py bdist --format=zip 2> /dev/null COMMAND ${PYTHON_EXECUTABLE} setup.py build_ext --inplace 2> /dev/null - DEPENDS pyopenms_build + DEPENDS ${PYSOFILES} WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/pyOpenMS ) ELSE() add_custom_target(pyopenms @@ -564,7 +590,7 @@ ELSE() COMMAND ${PYTHON_EXECUTABLE} setup.py bdist_wheel COMMAND ${PYTHON_EXECUTABLE} setup.py bdist --format=zip COMMAND ${PYTHON_EXECUTABLE} setup.py build_ext --inplace - DEPENDS pyopenms_build + DEPENDS ${PYSOFILES} WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/pyOpenMS ) ENDIF() diff --git a/src/pyOpenMS/addons/IDRipper.pyx b/src/pyOpenMS/addons/IDRipper.pyx deleted file mode 100644 index b2550289d16..00000000000 --- a/src/pyOpenMS/addons/IDRipper.pyx +++ /dev/null @@ -1,110 +0,0 @@ - - - def rip(self, dict ripped, list proteins, list peptides): - - - # Input types: - # ripped : libcpp_map[String, libcpp_pair[ libcpp_vector[ProteinIdentification], libcpp_vector[PeptideIdentification]]] - # proteins : libcpp_vector[ProteinIdentification] - # peptides : libcpp_vector[PeptideIdentification] - - assert isinstance(proteins, list) and all(isinstance(li, ProteinIdentification) for li in proteins), 'arg proteins wrong type' - cdef libcpp_vector[_ProteinIdentification] * c_protein_vec = new libcpp_vector[_ProteinIdentification]() - cdef ProteinIdentification item1 - for item1 in proteins: - c_protein_vec.push_back(deref(item1.inst.get())) - - assert isinstance(peptides, list) and all(isinstance(li, PeptideIdentification) for li in peptides), 'arg peptides wrong type' - cdef libcpp_vector[_PeptideIdentification] * c_peptide_vec = new libcpp_vector[_PeptideIdentification]() - cdef PeptideIdentification item0 - for item0 in peptides: - c_peptide_vec.push_back(deref(item0.inst.get())) - - # dict -> pair ( list, list ) ) - assert isinstance(ripped, dict) and all(isinstance(li, list) and len(li) == 2 and all( - isinstance(pair_element[0], list) and isinstance(pair_element[1], list) and - all(isinstance(proteinid, ProteinIdentification) for proteinid in pair_element[0]) and - all(isinstance(peptideid, PeptideIdentification) for peptideid in pair_element[1]) - for pair_element in li) - for li in ripped), 'arg proteins wrong type' - - cdef libcpp_map[_String, libcpp_pair[ libcpp_vector[_ProteinIdentification], libcpp_vector[_PeptideIdentification]]] c_ripped - # declaration for the loop - cdef libcpp_vector[_ProteinIdentification] * c_protein_vec_inner = new libcpp_vector[_ProteinIdentification]() - cdef ProteinIdentification i_item1 - cdef libcpp_vector[_PeptideIdentification] * c_peptide_vec_inner = new libcpp_vector[_PeptideIdentification]() - cdef PeptideIdentification i_item0 - cdef libcpp_pair[ libcpp_vector[_ProteinIdentification], libcpp_vector[_PeptideIdentification]] * aPair - for k,v in ripped.iteritems(): - - c_protein_vec_inner.clear() - c_peptide_vec_inner.clear() - - prot_vec = v[0] - assert isinstance(prot_vec, list) and all(isinstance(li, ProteinIdentification) for li in prot_vec), 'arg proteins wrong type' - for i_item1 in prot_vec: - c_protein_vec_inner.push_back(deref(i_item1.inst.get())) - - pep_vec = v[1] - assert isinstance(pep_vec, list) and all(isinstance(li, PeptideIdentification) for li in pep_vec), 'arg peptides wrong type' - for i_item0 in pep_vec: - c_peptide_vec_inner.push_back(deref(i_item0.inst.get())) - - aPair = new libcpp_pair[ libcpp_vector[_ProteinIdentification], libcpp_vector[_PeptideIdentification]]( deref(c_protein_vec_inner), deref(c_peptide_vec_inner) ) - - assert isinstance(k, bytes), 'arg key in label_identifiers wrong type' - assert isinstance(v, float), 'arg value in label_identifiers wrong type' - c_ripped[ _String(k) ] = deref(aPair) - - del aPair - - # - ## Make the function call - # - self.inst.get().rip(c_ripped, deref(c_protein_vec), deref(c_peptide_vec)) - - # - ## Get the data back from C++ - # - replace = dict() - cdef libcpp_map[_String, libcpp_pair[ libcpp_vector[_ProteinIdentification], libcpp_vector[_PeptideIdentification]]].iterator it_ripped = c_ripped.begin() - cdef libcpp_pair[ libcpp_vector[_ProteinIdentification], libcpp_vector[_PeptideIdentification]] anotherPair - cdef libcpp_vector[_ProteinIdentification] another_c_protein_vec_inner - cdef libcpp_vector[_PeptideIdentification] another_c_peptide_vec_inner - cdef libcpp_vector[_ProteinIdentification].iterator it_prot - cdef libcpp_vector[_PeptideIdentification].iterator it_pep - cdef ProteinIdentification item_py_result_prot - cdef PeptideIdentification item_py_result_pep - while it_ripped != c_ripped.end(): - # get the pair and the two vectors - anotherPair = deref(it_ripped).second - another_c_protein_vec_inner = anotherPair.first - another_c_peptide_vec_inner = anotherPair.second - - replace_inner_protein = [] - it_prot = another_c_protein_vec_inner.begin() - while it_prot != another_c_protein_vec_inner.end(): - item_py_result_prot = ProteinIdentification.__new__(ProteinIdentification) - item_py_result_prot.inst = shared_ptr[_ProteinIdentification](new _ProteinIdentification(deref(it_prot))) - replace_inner_protein.append(item_py_result_prot) - inc(it_prot) - - replace_inner_peptide = [] - it_pep = another_c_peptide_vec_inner.begin() - while it_pep != another_c_peptide_vec_inner.end(): - item_py_result_pep = PeptideIdentification.__new__(PeptideIdentification) - item_py_result_pep.inst = shared_ptr[_PeptideIdentification](new _PeptideIdentification(deref(it_pep))) - replace_inner_peptide.append(item_py_result_pep) - inc(it_pep) - - replace[ deref(it_ripped).first ] = [ replace_inner_protein, replace_inner_peptide] - inc(it_ripped) - ripped.clear() - ripped.update(replace) - - del c_peptide_vec - del c_protein_vec - del c_protein_vec_inner - del c_peptide_vec_inner - - diff --git a/src/pyOpenMS/addons/MSSpectrum.pyx b/src/pyOpenMS/addons/MSSpectrum.pyx index 1734c14e843..5d124dbe8af 100644 --- a/src/pyOpenMS/addons/MSSpectrum.pyx +++ b/src/pyOpenMS/addons/MSSpectrum.pyx @@ -125,20 +125,19 @@ import numpy as np def intensityInRange(self, float mzmin, float mzmax): - cdef int n cdef double I cdef _MSSpectrum * spec_ = self.inst.get() cdef int N = spec_.size() - I = 0 + I = 0.0 for i in range(N): if deref(spec_)[i].getMZ() >= mzmin: break cdef _Peak1D * p for j in range(i, N): - p = address(deref(spec_)[i]) + p = address(deref(spec_)[j]) if p.getMZ() > mzmax: break I += p.getIntensity() diff --git a/src/pyOpenMS/create_cpp_extension.py b/src/pyOpenMS/create_cpp_extension.py index 6c2c21cd575..9ba273e576e 100644 --- a/src/pyOpenMS/create_cpp_extension.py +++ b/src/pyOpenMS/create_cpp_extension.py @@ -1,25 +1,6 @@ # input-encoding: latin-1 from __future__ import print_function -# windows ? -import sys -iswin = sys.platform == "win32" - -# make sure we only log errors and not info/debug ... -from logging import basicConfig -# from logging import CRITICAL, ERROR, WARNING, INFO, DEBUG -basicConfig(level=21) - -# import config -from env import (QT_QMAKE_VERSION_INFO, OPEN_MS_BUILD_TYPE, OPEN_MS_SRC, - OPEN_MS_CONTRIB_BUILD_DIRS, OPEN_MS_LIB, OPEN_SWATH_ALGO_LIB, - OPEN_MS_BUILD_DIR, MSVS_RTLIBS, OPEN_MS_VERSION, - Boost_MAJOR_VERSION, Boost_MINOR_VERSION, PY_NUM_THREADS, PY_NUM_MODULES) - -IS_DEBUG = OPEN_MS_BUILD_TYPE.upper() == "DEBUG" - -if iswin and IS_DEBUG: - raise Exception("building pyopenms on windows in debug mode not tested yet.") # use autowrap to generate Cython and .cpp file for wrapping OpenMS: import autowrap.Main @@ -30,136 +11,17 @@ import os.path import os import shutil +import sys -classdocu_base = "http://www.openms.de/current_doxygen/html/" -autowrap.CodeGenerator.special_class_doc = "\n Documentation is available at " + classdocu_base + "class%(namespace)s_1_1%(cpp_name)s.html\n" -autowrap.DeclResolver.default_namespace = "OpenMS" - -def chunkIt(seq, num): - avg = len(seq) / float(num) - out = [] - last = 0.0 - while len(out) < num: - out.append(seq[int(last):int(last + avg)]) - last += avg - - # append the rest to the last element (if there is any) - out[-1].extend( seq[int(last):] ) - return out - -j = os.path.join - -src_pyopenms = j(OPEN_MS_SRC, "src/pyOpenMS") -pxd_files = glob.glob(src_pyopenms + "/pxds/*.pxd") -addons = glob.glob(src_pyopenms + "/addons/*.pyx") -converters = [j(src_pyopenms, "converters")] - -persisted_data_path = "include_dir.bin" - -extra_cimports = [] - -# We need to parse them all together but keep the association about which class -# we found in which file (as they often need to be analyzed together) -decls, instance_map = autowrap.parse(pxd_files, ".", num_processes=int(PY_NUM_THREADS)) - -# Perform mapping -pxd_decl_mapping = {} -for de in decls: - tmp = pxd_decl_mapping.get(de.cpp_decl.pxd_path, []) - tmp.append(de) - pxd_decl_mapping[ de.cpp_decl.pxd_path] = tmp - -# add __str__ if toString() method is declared: -for d in decls: - # enums, free functions, .. do not have a methods attribute - methods = getattr(d, "methods", dict()) - to_strings = [] - for name, mdecls in methods.items(): - for mdecl in mdecls: - name = mdecl.cpp_decl.annotations.get("wrap-cast", name) - name = mdecl.cpp_decl.annotations.get("wrap-as", name) - if name == "toString": - to_strings.append(mdecl) - - for to_string in to_strings: - if len(to_string.arguments) == 0: - d.methods.setdefault("__str__", []).append(to_string) - print("ADDED __str__ method to", d.name) - break - -# Split into chunks based on pxd files and store the mapping to decls, addons -# and actual pxd files in a hash. We need to produce the exact number of chunks -# as setup.py relies on it as well. -pxd_files_chunk = chunkIt(list(pxd_decl_mapping.keys()), int(PY_NUM_MODULES)) -print (len(pxd_files_chunk), PY_NUM_MODULES) - -# Sanity checks: we should find all of our chunks and not have lost files -if len(pxd_files_chunk) != int(PY_NUM_MODULES): - raise Exception("Internal Error: number of chunks not equal to number of modules") -if sum([len(ch) for ch in pxd_files_chunk]) != len(pxd_decl_mapping): - raise Exception("Internal Error: chunking lost files") - -mnames = ["pyopenms_%s" % (k+1) for k in range(int(PY_NUM_MODULES))] -allDecl_mapping = {} -for pxd_f, m in zip(pxd_files_chunk, mnames): - tmp_decls = [] - for f in pxd_f: - tmp_decls.extend( pxd_decl_mapping[f] ) - - allDecl_mapping[m] = {"decls" : tmp_decls, "addons" : [] , "files" : pxd_f} - -# Deal with addons, make sure the addons are added to the correct compilation -# unit (e.g. where the name corresponds to the pxd file). -# Note that there are some special cases, e.g. addons that go into the first -# unit or all *but* the first unit. -is_added = [False for k in addons] -for modname in mnames: - - for k,a in enumerate(addons): - # Deal with special code that needs to go into all modules, only the - # first or only all other modules... - if modname == mnames[0]: - if os.path.basename(a) == "ADD_TO_FIRST" + ".pyx": - allDecl_mapping[modname]["addons"].append(a) - is_added[k] = True - else: - if os.path.basename(a) == "ADD_TO_ALL_OTHER" + ".pyx": - allDecl_mapping[modname]["addons"].append(a) - is_added[k] = True - if os.path.basename(a) == "ADD_TO_ALL" + ".pyx": - allDecl_mapping[modname]["addons"].append(a) - is_added[k] = True - - # Match addon basename to pxd basename - for pfile in allDecl_mapping[modname]["files"]: - if os.path.basename(a).split(".")[0] == os.path.basename(pfile).split(".")[0]: - allDecl_mapping[modname]["addons"].append(a) - is_added[k] = True - - # In the special case PY_NUM_MODULES==1 we need to mark ADD_TO_ALL_OTHER as is_added, - # so it doesn't get added to pyopenms_1.pxd - if PY_NUM_MODULES=='1': - if os.path.basename(a) == "ADD_TO_ALL_OTHER" + ".pyx": - is_added[k] = True - - if is_added[k]: - continue - - - # Also match by class name (sometimes one pxd contains multiple classes - # and the addon is named after one of them) - for dclass in allDecl_mapping[modname]["decls"]: - if os.path.basename(a) == dclass.name + ".pyx": - allDecl_mapping[modname]["addons"].append(a) - is_added[k] = True - -# add any addons that did not get added anywhere else -for k, got_added in enumerate(is_added): - if not got_added: - # add to all modules - for m in mnames: - allDecl_mapping[m]["addons"].append( addons[k] ) +# windows ? +iswin = sys.platform == "win32" +# make sure we only log errors and not info/debug ... +import logging +import autowrap +# from logging import CRITICAL, ERROR, WARNING, INFO, DEBUG +# INFO = 20, WARNING=30, autowrap progress reports = 25 +logging.getLogger("autowrap").setLevel(logging.INFO+1) def doCythonCodeGeneration(modname, allDecl_mapping, instance_map, converters): m_filename = "pyopenms/%s.pyx" % modname @@ -181,7 +43,7 @@ def doCythonCompile(arg): m_filename = "pyopenms/%s.pyx" % modname print ("Cython compile", m_filename) # By omitting "compiler_directives": {"language_level": 3} as extra_opt, autowrap will choose the language_level of the used python executable - autowrap.Main.run_cython(inc_dirs=autowrap_include_dirs, extra_opts={}, out=m_filename) + autowrap.Main.run_cython(inc_dirs=autowrap_include_dirs, extra_opts={}, out=m_filename, warn_level=2) if False: # @@ -204,24 +66,181 @@ def doCythonCompile(arg): shutil.copy(m_filename + "tmp", m_filename) os.remove(m_filename + "tmp") -for modname in mnames: - autowrap_include_dirs = doCythonCodeGeneration(modname, allDecl_mapping, instance_map, converters) - pickle.dump(autowrap_include_dirs, open(persisted_data_path, "wb")) - -argzip = [ (modname, allDecl_mapping[modname]["inc_dirs"]) for modname in mnames] -for arg in argzip: - doCythonCompile(arg) - -print("created pyopenms.cpp") - - -with open("pyopenms/all_modules.py", "w") as fp: - for modname in mnames: - fp.write("from .%s import *\n" % modname) - - -# create version information -version = OPEN_MS_VERSION - -print("version=%r\n" % version, file=open("pyopenms/version.py", "w")) -print("info=%r\n" % QT_QMAKE_VERSION_INFO, file=open("pyopenms/qt_version_info.py", "w")) +if __name__ == '__main__': + + # import config + from env import (QT_QMAKE_VERSION_INFO, OPEN_MS_BUILD_TYPE, OPEN_MS_SRC, + OPEN_MS_CONTRIB_BUILD_DIRS, OPEN_MS_LIB, OPEN_SWATH_ALGO_LIB, + OPEN_MS_BUILD_DIR, MSVS_RTLIBS, OPEN_MS_VERSION, + Boost_MAJOR_VERSION, Boost_MINOR_VERSION, PY_NUM_THREADS, PY_NUM_MODULES) + + IS_DEBUG = OPEN_MS_BUILD_TYPE.upper() == "DEBUG" + + print("Build type is: ", OPEN_MS_BUILD_TYPE) + print("Number of submodules: ", PY_NUM_MODULES) + print("Number of concurrent threads: ", PY_NUM_THREADS) + + if iswin and IS_DEBUG: + raise Exception("building pyopenms on windows in debug mode not tested yet.") + + + classdocu_base = "http://www.openms.de/current_doxygen/html/" + autowrap.CodeGenerator.special_class_doc = "\n Documentation is available at " + classdocu_base + "class%(namespace)s_1_1%(cpp_name)s.html\n" + autowrap.DeclResolver.default_namespace = "OpenMS" + + def chunkIt(seq, num): + avg = len(seq) / float(num) + out = [] + last = 0.0 + while len(out) < num: + out.append(seq[int(last):int(last + avg)]) + last += avg + + # append the rest to the last element (if there is any) + out[-1].extend( seq[int(last):] ) + return out + + j = os.path.join + + src_pyopenms = j(OPEN_MS_SRC, "src/pyOpenMS") + pxd_files = glob.glob(src_pyopenms + "/pxds/*.pxd") + addons = glob.glob(src_pyopenms + "/addons/*.pyx") + converters = [j(src_pyopenms, "converters")] + + persisted_data_path = "include_dir.bin" + + extra_cimports = [] + + # We need to parse them all together but keep the association about which class + # we found in which file (as they often need to be analyzed together) + # TODO think about having a separate NUM_THREADS argument for parsing/cythonizing, since it is less + # memory intensive than the actualy compilation into a module (done in setup.py). + # Hide annoying redeclaration errors from unscoped enums by using warning level 2. + # This might lead to a minimal amount of unseen errors, but with all the mess, we would not have spotted them anyway. + # This can be removed as soon as autowrap supports Cython 3 (intodruced scoped enum support) and OpenMS scopes all enums (e.g. with enum class). + decls, instance_map = autowrap.parse(pxd_files, ".", num_processes=int(PY_NUM_THREADS), cython_warn_level=2) + + # Perform mapping + pxd_decl_mapping = {} + for de in decls: + tmp = pxd_decl_mapping.get(de.cpp_decl.pxd_path, []) + tmp.append(de) + pxd_decl_mapping[ de.cpp_decl.pxd_path] = tmp + + # add __str__ if toString() method is declared: + for d in decls: + # enums, free functions, .. do not have a methods attribute + methods = getattr(d, "methods", dict()) + to_strings = [] + for name, mdecls in methods.items(): + for mdecl in mdecls: + name = mdecl.cpp_decl.annotations.get("wrap-cast", name) + name = mdecl.cpp_decl.annotations.get("wrap-as", name) + if name == "toString": + to_strings.append(mdecl) + + for to_string in to_strings: + if len(to_string.arguments) == 0: + d.methods.setdefault("__str__", []).append(to_string) + print("ADDED __str__ method to", d.name) + break + + # Split into chunks based on pxd files and store the mapping to decls, addons + # and actual pxd files in a hash. We need to produce the exact number of chunks + # as setup.py relies on it as well. + pxd_files_chunk = chunkIt(list(pxd_decl_mapping.keys()), int(PY_NUM_MODULES)) + + # Sanity checks: we should find all of our chunks and not have lost files + if len(pxd_files_chunk) != int(PY_NUM_MODULES): + raise Exception("Internal Error: number of chunks not equal to number of modules") + if sum([len(ch) for ch in pxd_files_chunk]) != len(pxd_decl_mapping): + raise Exception("Internal Error: chunking lost files") + + mnames = ["pyopenms_%s" % (k+1) for k in range(int(PY_NUM_MODULES))] + allDecl_mapping = {} + for pxd_f, m in zip(pxd_files_chunk, mnames): + tmp_decls = [] + for f in pxd_f: + tmp_decls.extend( pxd_decl_mapping[f] ) + + allDecl_mapping[m] = {"decls" : tmp_decls, "addons" : [] , "files" : pxd_f} + + # Deal with addons, make sure the addons are added to the correct compilation + # unit (e.g. where the name corresponds to the pxd file). + # Note that there are some special cases, e.g. addons that go into the first + # unit or all *but* the first unit. + is_added = [False for k in addons] + for modname in mnames: + + for k,a in enumerate(addons): + # Deal with special code that needs to go into all modules, only the + # first or only all other modules... + if modname == mnames[0]: + if os.path.basename(a) == "ADD_TO_FIRST" + ".pyx": + allDecl_mapping[modname]["addons"].append(a) + is_added[k] = True + else: + if os.path.basename(a) == "ADD_TO_ALL_OTHER" + ".pyx": + allDecl_mapping[modname]["addons"].append(a) + is_added[k] = True + if os.path.basename(a) == "ADD_TO_ALL" + ".pyx": + allDecl_mapping[modname]["addons"].append(a) + is_added[k] = True + + # Match addon basename to pxd basename + for pfile in allDecl_mapping[modname]["files"]: + if os.path.basename(a).split(".")[0] == os.path.basename(pfile).split(".")[0]: + allDecl_mapping[modname]["addons"].append(a) + is_added[k] = True + + # In the special case PY_NUM_MODULES==1 we need to mark ADD_TO_ALL_OTHER as is_added, + # so it doesn't get added to pyopenms_1.pxd + if PY_NUM_MODULES=='1': + if os.path.basename(a) == "ADD_TO_ALL_OTHER" + ".pyx": + is_added[k] = True + + if is_added[k]: + continue + + + # Also match by class name (sometimes one pxd contains multiple classes + # and the addon is named after one of them) + for dclass in allDecl_mapping[modname]["decls"]: + if os.path.basename(a) == dclass.name + ".pyx": + allDecl_mapping[modname]["addons"].append(a) + is_added[k] = True + + # add any addons that did not get added anywhere else + for k, got_added in enumerate(is_added): + if not got_added: + # add to all modules + for m in mnames: + allDecl_mapping[m]["addons"].append( addons[k] ) + + + for modname in mnames: + autowrap_include_dirs = doCythonCodeGeneration(modname, allDecl_mapping, instance_map, converters) + pickle.dump(autowrap_include_dirs, open(persisted_data_path, "wb")) + + argzip = [ (modname, allDecl_mapping[modname]["inc_dirs"]) for modname in mnames] + + import multiprocessing + + pool = multiprocessing.Pool(int(PY_NUM_THREADS)) + pool.map(doCythonCompile, argzip) + pool.close() + pool.join() + + print("Created all %s pyopenms.cpps" % PY_NUM_MODULES) + + + with open("pyopenms/all_modules.py", "w") as fp: + for modname in mnames: + fp.write("from .%s import *\n" % modname) + + + # create version information + version = OPEN_MS_VERSION + + print("version=%r\n" % version, file=open("pyopenms/version.py", "w")) + print("info=%r\n" % QT_QMAKE_VERSION_INFO, file=open("pyopenms/qt_version_info.py", "w")) diff --git a/src/pyOpenMS/env.py.in b/src/pyOpenMS/env.py.in index 4c5e7c6f185..8d600873e62 100644 --- a/src/pyOpenMS/env.py.in +++ b/src/pyOpenMS/env.py.in @@ -7,7 +7,9 @@ OPEN_MS_BUILD_DIR="@OPENMS_HOST_BINARY_DIRECTORY@" PYOPENMS_INCLUDE_DIRS="""@PYOPENMS_INCLUDE_DIRS@""" QT_QMAKE_VERSION_INFO="""@QT_QMAKE_VERSION_INFO@""" ## CONTRIB_DIR uses paths typed by the user that are -## forwarded unchanged to here. Might include "\" on win. +## forwarded unchanged (just backslashes are converted +## to forward slashes for safety, i.e. a path must not +## end in '\', otherwise r"...\" is invalid python OPEN_MS_CONTRIB_BUILD_DIRS=r"@CONTRIB_DIR@" ###################################################### diff --git a/src/pyOpenMS/pxds/AccurateMassSearchEngine.pxd b/src/pyOpenMS/pxds/AccurateMassSearchEngine.pxd index 02ab8dd843c..495d4f37e36 100644 --- a/src/pyOpenMS/pxds/AccurateMassSearchEngine.pxd +++ b/src/pyOpenMS/pxds/AccurateMassSearchEngine.pxd @@ -1,5 +1,6 @@ from Types cimport * from MassTrace cimport * +from MzTabM cimport * from Feature cimport * from ConsensusFeature cimport * from ConsensusMap cimport * @@ -29,7 +30,8 @@ cdef extern from "" namespace "Op void queryByConsensusFeature(ConsensusFeature cfeat, Size cf_index, Size number_of_maps, String ion_mode, libcpp_vector[AccurateMassSearchResult]& results) nogil except + - void run(FeatureMap & , MzTab & ) nogil except + + void run(FeatureMap&, MzTab&) nogil except + + void run(FeatureMap&, MzTabM&) nogil except + void run(ConsensusMap&, MzTab&) nogil except + void init() nogil except + diff --git a/src/pyOpenMS/pxds/AhoCorasickAmbiguous.pxd b/src/pyOpenMS/pxds/AhoCorasickAmbiguous.pxd deleted file mode 100644 index d9885e6e4d9..00000000000 --- a/src/pyOpenMS/pxds/AhoCorasickAmbiguous.pxd +++ /dev/null @@ -1,17 +0,0 @@ -from Types cimport * -from libcpp cimport bool -# from SeqanIncludeWrapper cimport * -from String cimport * - -cdef extern from "" namespace "OpenMS": - - cdef cppclass AhoCorasickAmbiguous "OpenMS::AhoCorasickAmbiguous": - AhoCorasickAmbiguous() nogil except + - AhoCorasickAmbiguous(AhoCorasickAmbiguous &) nogil except + # compiler - # void initPattern(const PeptideDB & pep_db, const int aaa_max, const int mm_max, FuzzyACPattern & pattern) nogil except + - AhoCorasickAmbiguous(const String & protein_sequence) nogil except + - void setProtein(const String & protein_sequence) nogil except + - # bool findNext(const FuzzyACPattern & pattern) nogil except + - Size getHitDBIndex() nogil except + # wrap-doc:Get index of hit into peptide database of the pattern - Int getHitProteinPosition() nogil except + # wrap-doc:Offset into protein sequence where hit was found - diff --git a/src/pyOpenMS/pxds/ConsensusMap.pxd b/src/pyOpenMS/pxds/ConsensusMap.pxd index 490a3af17a3..bd704a34262 100644 --- a/src/pyOpenMS/pxds/ConsensusMap.pxd +++ b/src/pyOpenMS/pxds/ConsensusMap.pxd @@ -37,12 +37,12 @@ cdef extern from "" namespace "OpenMS::ConsensusMa cdef extern from "" namespace "OpenMS": - cdef cppclass ConsensusMap(UniqueIdInterface, DocumentIdentifier, RangeManager2, MetaInfoInterface): + cdef cppclass ConsensusMap(UniqueIdInterface, DocumentIdentifier, RangeManagerRtMzInt, MetaInfoInterface): # wrap-inherits: # UniqueIdInterface # DocumentIdentifier - # RangeManager2 + # RangeManagerRtMzInt # MetaInfoInterface # # wrap-doc: diff --git a/src/pyOpenMS/pxds/DataProcessing.pxd b/src/pyOpenMS/pxds/DataProcessing.pxd index 1e52492a532..7e319a62996 100644 --- a/src/pyOpenMS/pxds/DataProcessing.pxd +++ b/src/pyOpenMS/pxds/DataProcessing.pxd @@ -29,26 +29,27 @@ cdef extern from "" namespace "OpenMS": cdef extern from "" namespace "OpenMS::DataProcessing": cdef enum ProcessingAction: - - DATA_PROCESSING, # General data processing (if no other term applies) - CHARGE_DECONVOLUTION, # Charge deconvolution - DEISOTOPING, # Deisotoping - SMOOTHING, # Smoothing of the signal to reduce noise - CHARGE_CALCULATION, # Determination of the peak charge - PRECURSOR_RECALCULATION, # Recalculation of precursor m/z - BASELINE_REDUCTION, # Baseline reduction - PEAK_PICKING, # Peak picking (conversion from raw to peak data) - ALIGNMENT, # Retention time alignment of different maps - CALIBRATION, # Calibration of m/z positions - NORMALIZATION, # Normalization of intensity values - FILTERING, # Data filtering or extraction - QUANTITATION, # Quantitation - FEATURE_GROUPING, # %Feature grouping - IDENTIFICATION_MAPPING, # %Identification mapping - FORMAT_CONVERSION, # General file format conversion (if no other term applies) - CONVERSION_MZDATA, # Conversion to mzData format - CONVERSION_MZML, # Conversion to mzML format - CONVERSION_MZXML, # Conversion to mzXML format - CONVERSION_DTA, # Conversion to DTA format + # wrap-attach: + # DataProcessing + DATA_PROCESSING, #< General data processing (if no other term applies) + CHARGE_DECONVOLUTION, #< Charge deconvolution + DEISOTOPING, #< Deisotoping + SMOOTHING, #< Smoothing of the signal to reduce noise + CHARGE_CALCULATION, #< Determination of the peak charge + PRECURSOR_RECALCULATION, #< Recalculation of precursor m/z + BASELINE_REDUCTION, #< Baseline reduction + PEAK_PICKING, #< Peak picking (conversion from raw to peak data) + ALIGNMENT, #< Retention time alignment of different maps + CALIBRATION, #< Calibration of m/z positions + NORMALIZATION, #< Normalization of intensity values + FILTERING, #< Data filtering or extraction + QUANTITATION, #< Quantitation + FEATURE_GROUPING, #< Feature grouping + IDENTIFICATION_MAPPING, #< Identification mapping + FORMAT_CONVERSION, #< General file format conversion (if no other term applies) + CONVERSION_MZDATA, #< Conversion to mzData format + CONVERSION_MZML, #< Conversion to mzML format + CONVERSION_MZXML, #< Conversion to mzXML format + CONVERSION_DTA, #< Conversion to DTA format + IDENTIFICATION, #< Identification SIZE_OF_PROCESSINGACTION - diff --git a/src/pyOpenMS/pxds/FeatureMap.pxd b/src/pyOpenMS/pxds/FeatureMap.pxd index 985948a93c4..4e26c7b66d6 100644 --- a/src/pyOpenMS/pxds/FeatureMap.pxd +++ b/src/pyOpenMS/pxds/FeatureMap.pxd @@ -14,12 +14,12 @@ from MSExperiment cimport * cdef extern from "" namespace "OpenMS": - cdef cppclass FeatureMap(UniqueIdInterface, DocumentIdentifier, RangeManager2, MetaInfoInterface): + cdef cppclass FeatureMap(UniqueIdInterface, DocumentIdentifier, RangeManagerRtMzInt, MetaInfoInterface): # wrap-inherits: # UniqueIdInterface # DocumentIdentifier - # RangeManager2 + # RangeManagerRtMzInt # MetaInfoInterface # # wrap-instances: diff --git a/src/pyOpenMS/pxds/GNPSMGFFile.pxd b/src/pyOpenMS/pxds/GNPSMGFFile.pxd new file mode 100644 index 00000000000..78ba20f47d9 --- /dev/null +++ b/src/pyOpenMS/pxds/GNPSMGFFile.pxd @@ -0,0 +1,18 @@ +from Types cimport * +from String cimport * +from StringList cimport * + +from DefaultParamHandler cimport * +from ProgressLogger cimport * + +cdef extern from "" namespace "OpenMS": + + cdef cppclass GNPSMGFFile(DefaultParamHandler): + # wrap-inherits: + # DefaultParamHandler + + GNPSMGFFile() nogil except + + GNPSMGFFile(GNPSMGFFile &) nogil except + + + void run(String & consensus_file_path, StringList & mzml_file_paths, String & out) nogil except + # wrap-doc:Export consensus file from default workflow to GNPS MGF format + diff --git a/src/pyOpenMS/pxds/IDRipper.pxd b/src/pyOpenMS/pxds/IDRipper.pxd index f4d13faa478..c79b4a307eb 100644 --- a/src/pyOpenMS/pxds/IDRipper.pxd +++ b/src/pyOpenMS/pxds/IDRipper.pxd @@ -8,6 +8,7 @@ from DefaultParamHandler cimport * from Feature cimport * from FeatureMap cimport * from String cimport * +from Types cimport * from ProteinIdentification cimport * from PeptideIdentification cimport * @@ -16,6 +17,53 @@ from MSExperiment cimport * from Peak1D cimport * from ChromatogramPeak cimport * + +cdef extern from "" namespace "OpenMS::IDRipper": + + cdef enum OriginAnnotationFormat: + FILE_ORIGIN, MAP_INDEX, ID_MERGE_INDEX, UNKNOWN_OAF, SIZE_OF_ORIGIN_ANNOTATION_FORMAT + + cdef cppclass IdentificationRuns: + + IdentificationRuns( + libcpp_vector[ProteinIdentification] & prot_ids + ) nogil except + + + IdentificationRuns(IdentificationRuns) nogil except + # wrap-ignore + + cdef cppclass RipFileIdentifier: + + RipFileIdentifier( + IdentificationRuns & id_runs, + PeptideIdentification & pep_id, + libcpp_map[String, unsigned int] & file_origin_map, + OriginAnnotationFormat origin_annotation_fmt, + bool split_ident_runs) nogil except + + + RipFileIdentifier(RipFileIdentifier) nogil except + # wrap-ignore + + UInt getIdentRunIdx() nogil except + + + UInt getFileOriginIdx() nogil except + + + String getOriginFullname() nogil except + + + String getOutputBasename() nogil except + + + cdef cppclass RipFileContent: + + RipFileContent( + libcpp_vector[ProteinIdentification] & prot_idents, + libcpp_vector[PeptideIdentification] & pep_idents + ) nogil except + + + RipFileContent(RipFileContent) nogil except + # wrap-ignore + + libcpp_vector[ProteinIdentification] getProteinIdentifications() nogil except + + + libcpp_vector[PeptideIdentification] getPeptideIdentifications() nogil except + + + cdef extern from "" namespace "OpenMS": cdef cppclass IDRipper(DefaultParamHandler): @@ -24,12 +72,15 @@ cdef extern from "" namespace "OpenMS": IDRipper() nogil except + # wrap-doc:Ripping protein/peptide identification according their file origin # private + IDRipper(IDRipper) nogil except + # wrap-ignore - # see additional pyx file in ./addons - void rip( - libcpp_map[String, libcpp_pair[ libcpp_vector[ProteinIdentification], - libcpp_vector[PeptideIdentification]]] & ripped, - libcpp_vector[ProteinIdentification] & proteins, - libcpp_vector[PeptideIdentification] & peptides) # wrap-ignore + void rip( + libcpp_vector[RipFileIdentifier] & rfis, + libcpp_vector[RipFileContent] & rfcs, + libcpp_vector[ProteinIdentification] & proteins, + libcpp_vector[PeptideIdentification] & peptides, + bool full_split, + bool split_ident_runs + ) nogil except + diff --git a/src/pyOpenMS/pxds/IdentificationData.pxd b/src/pyOpenMS/pxds/IdentificationData.pxd index bd97acd3e7c..f252b3120e7 100644 --- a/src/pyOpenMS/pxds/IdentificationData.pxd +++ b/src/pyOpenMS/pxds/IdentificationData.pxd @@ -6,8 +6,10 @@ from MetaInfoInterface cimport * cdef extern from "" namespace "OpenMS": - cdef cppclass IdentificationData(MetaInfoInterface) : + cdef cppclass IdentificationData(MetaInfoInterface): # wrap-inherits: - # MetaInfoInterface + # MetaInfoInterface IdentificationData() nogil except + # wrap-doc:Representation of spectrum identification results and associated data + + IdentificationData(IdentificationData &) nogil except + # wrap-doc:Copy constructor diff --git a/src/pyOpenMS/pxds/MSChromatogram.pxd b/src/pyOpenMS/pxds/MSChromatogram.pxd index 1a8bb6cebbb..219119c731a 100644 --- a/src/pyOpenMS/pxds/MSChromatogram.pxd +++ b/src/pyOpenMS/pxds/MSChromatogram.pxd @@ -10,10 +10,10 @@ from DataArrays cimport * cdef extern from "" namespace "OpenMS": - cdef cppclass MSChromatogram (ChromatogramSettings, RangeManager1): + cdef cppclass MSChromatogram (ChromatogramSettings, RangeManagerRtInt): # wrap-inherits: # ChromatogramSettings - # RangeManager1 + # RangeManagerRtInt # # wrap-doc: # The representation of a chromatogram. diff --git a/src/pyOpenMS/pxds/MSExperiment.pxd b/src/pyOpenMS/pxds/MSExperiment.pxd index 691884276c7..abab4dfe94b 100644 --- a/src/pyOpenMS/pxds/MSExperiment.pxd +++ b/src/pyOpenMS/pxds/MSExperiment.pxd @@ -13,10 +13,10 @@ from RangeManager cimport * cdef extern from "" namespace "OpenMS": - cdef cppclass MSExperiment(ExperimentalSettings, RangeManager2): + cdef cppclass MSExperiment(ExperimentalSettings, RangeManagerRtMzInt): # wrap-inherits: # ExperimentalSettings - # RangeManager2 + # RangeManagerRtMzInt # # wrap-doc: # In-Memory representation of a mass spectrometry experiment. @@ -75,11 +75,6 @@ cdef extern from "" namespace "OpenMS": void reserveSpaceSpectra(Size s) nogil except + void reserveSpaceChromatograms(Size s) nogil except + - double getMinMZ() nogil except + # wrap-doc:Returns the minimal m/z value - double getMaxMZ() nogil except + # wrap-doc:Returns the maximal m/z value - double getMinRT() nogil except + # wrap-doc:Returns the minimal retention time value - double getMaxRT() nogil except + # wrap-doc:Returns the maximal retention time value - # Size of experiment UInt64 getSize() nogil except + # wrap-doc:Returns the total number of peaks int size() nogil except + @@ -105,3 +100,5 @@ cdef extern from "" namespace "OpenMS": void reset() nogil except + bool clearMetaDataArrays() nogil except + + int getPrecursorSpectrum(int zero_based_index) nogil except + # wrap-doc:Returns the index of the precursor spectrum for spectrum at index @p zero_based_index + diff --git a/src/pyOpenMS/pxds/MSSpectrum.pxd b/src/pyOpenMS/pxds/MSSpectrum.pxd index c6432975080..a3f128e1549 100644 --- a/src/pyOpenMS/pxds/MSSpectrum.pxd +++ b/src/pyOpenMS/pxds/MSSpectrum.pxd @@ -9,10 +9,10 @@ from SpectrumSettings cimport * cdef extern from "" namespace "OpenMS": - cdef cppclass MSSpectrum(SpectrumSettings, RangeManager1): + cdef cppclass MSSpectrum(SpectrumSettings, RangeManagerMzInt): # wrap-inherits: # SpectrumSettings - # RangeManager1 + # RangeManagerMzInt # # wrap-doc: # The representation of a 1D spectrum. diff --git a/src/pyOpenMS/pxds/MassTrace.pxd b/src/pyOpenMS/pxds/MassTrace.pxd index 560798c968c..5c4c7afd352 100644 --- a/src/pyOpenMS/pxds/MassTrace.pxd +++ b/src/pyOpenMS/pxds/MassTrace.pxd @@ -1,15 +1,18 @@ from Types cimport * from String cimport * from ConvexHull2D cimport * +from Peak2D cimport * from libcpp.pair cimport pair as libcpp_pair from libcpp.vector cimport vector as libcpp_vector + cdef extern from "" namespace "OpenMS": cdef cppclass Kernel_MassTrace "OpenMS::MassTrace": - Kernel_MassTrace() nogil except + + Kernel_MassTrace() nogil except + Kernel_MassTrace(Kernel_MassTrace &) nogil except + + Kernel_MassTrace(const libcpp_vector[ Peak2D ] &trace_peaks) nogil except + # public members double fwhm_mz_avg diff --git a/src/pyOpenMS/pxds/MzTabM.pxd b/src/pyOpenMS/pxds/MzTabM.pxd new file mode 100644 index 00000000000..714f0a4355a --- /dev/null +++ b/src/pyOpenMS/pxds/MzTabM.pxd @@ -0,0 +1,15 @@ +from Types cimport * +from FeatureMap cimport * + +cdef extern from "" namespace "OpenMS": + + cdef cppclass MzTabM: + # wrap-doc: + # Data model of MzTabM files + # ----- + # Please see the official MzTabM specification at https://github.com/HUPO-PSI/mzTab/tree/master/specification_document-releases/2_0-Metabolomics-Release + + MzTabM() nogil except + + MzTabM(MzTabM &) nogil except + # compiler + + MzTabM exportFeatureMapToMzTabM(FeatureMap feature_map) # wrap-doc:Export FeatureMap with Identifications to MzTabM diff --git a/src/pyOpenMS/pxds/MzTabMFile.pxd b/src/pyOpenMS/pxds/MzTabMFile.pxd new file mode 100644 index 00000000000..1fdb5e6cfec --- /dev/null +++ b/src/pyOpenMS/pxds/MzTabMFile.pxd @@ -0,0 +1,12 @@ +from Types cimport * +from MzTabM cimport * +from String cimport * + +cdef extern from "" namespace "OpenMS": + + cdef cppclass MzTabMFile: + + MzTabMFile() nogil except + + MzTabMFile(MzTabMFile &) nogil except + # compiler + + void store(String filename, MzTabM & mztab_m) nogil except + # wrap-doc:Store MzTabM file diff --git a/src/pyOpenMS/pxds/Precursor.pxd b/src/pyOpenMS/pxds/Precursor.pxd index 44f439e1818..52779cc001b 100644 --- a/src/pyOpenMS/pxds/Precursor.pxd +++ b/src/pyOpenMS/pxds/Precursor.pxd @@ -68,5 +68,9 @@ cdef extern from "" namespace "OpenMS::Precursor": PHD, #< Photodissociation ETD, #< Electron transfer dissociation PQD, #< Pulsed q dissociation + TRAP, #< trap-type collision-induced dissociation (MS:1002472) + HCD, #< beam-type collision-induced dissociation (MS:1000422) / HCD + INSOURCE, #< in-source collision-induced dissociation (MS:1001880) + LIFT, #< Bruker proprietary method (MS:1002000) SIZE_OF_ACTIVATIONMETHOD diff --git a/src/pyOpenMS/pxds/RangeManager.pxd b/src/pyOpenMS/pxds/RangeManager.pxd index 0c867f39add..96f18b47382 100644 --- a/src/pyOpenMS/pxds/RangeManager.pxd +++ b/src/pyOpenMS/pxds/RangeManager.pxd @@ -4,24 +4,37 @@ from libcpp cimport bool cdef extern from "" namespace "OpenMS": - cdef cppclass RangeManager1 "OpenMS::RangeManager<1>": + cdef cppclass RangeManagerRtMzInt "OpenMS::RangeManager": # wrap-ignore # no-pxd-import - RangeManager1() nogil except + - RangeManager1(RangeManager1 &) nogil except + - DPosition1 getMin() nogil except + # wrap-doc:Returns the minimum position - DPosition1 getMax() nogil except + # wrap-doc:Returns the maximum position - double getMinInt() nogil except + # wrap-doc:Returns the minimum intensity - double getMaxInt() nogil except + # wrap-doc:Returns the maximum intensity - void clearRanges() nogil except + # wrap-doc:Updates minimum and maximum position/intensity. This method is usually implemented by calling clearRanges() and updateRanges_() + RangeManagerRtMzInt() nogil except + + RangeManagerRtMzInt(RangeManagerRtMzInt &) nogil except + + double getMinRT() nogil except + # wrap-doc:Returns the minimum RT + double getMaxRT() nogil except + # wrap-doc:Returns the maximum RT + double getMinMZ() nogil except + # wrap-doc:Returns the minimum m/z + double getMaxMZ() nogil except + # wrap-doc:Returns the maximum m/z + double getMinIntensity() nogil except + # wrap-doc:Returns the minimum intensity + double getMaxIntensity() nogil except + # wrap-doc:Returns the maximum intensity + void clearRanges() nogil except + # wrap-doc:Resets all range dimensions as empty - cdef cppclass RangeManager2 "OpenMS::RangeManager<2>": + cdef cppclass RangeManagerMzInt "OpenMS::RangeManager": # wrap-ignore # no-pxd-import - RangeManager2() nogil except + - RangeManager2(RangeManager2 &) nogil except + - DPosition2 getMin() nogil except + - DPosition2 getMax() nogil except + - double getMinInt() nogil except + - double getMaxInt() nogil except + - void clearRanges() nogil except + + RangeManagerMzInt() nogil except + + RangeManagerMzInt(RangeManagerMzInt &) nogil except + + double getMinMZ() nogil except + # wrap-doc:Returns the minimum m/z + double getMaxMZ() nogil except + # wrap-doc:Returns the maximum m/z + double getMinIntensity() nogil except + # wrap-doc:Returns the minimum intensity + double getMaxIntensity() nogil except + # wrap-doc:Returns the maximum intensity + void clearRanges() nogil except + # wrap-doc:Resets all range dimensions as empty + + cdef cppclass RangeManagerRtInt "OpenMS::RangeManager": + # wrap-ignore + # no-pxd-import + RangeManagerRtInt() nogil except + + RangeManagerRtInt(RangeManagerRtInt &) nogil except + + double getMinRT() nogil except + # wrap-doc:Returns the minimum RT + double getMaxRT() nogil except + # wrap-doc:Returns the maximum RT + double getMinIntensity() nogil except + # wrap-doc:Returns the minimum intensity + double getMaxIntensity() nogil except + # wrap-doc:Returns the maximum intensity + void clearRanges() nogil except + # wrap-doc:Resets all range dimensions as empty diff --git a/src/pyOpenMS/pyTOPP/FeatureFinderCentroided.py b/src/pyOpenMS/pyTOPP/FeatureFinderCentroided.py index 9ca9e425624..ce8a659d4d6 100644 --- a/src/pyOpenMS/pyTOPP/FeatureFinderCentroided.py +++ b/src/pyOpenMS/pyTOPP/FeatureFinderCentroided.py @@ -21,7 +21,7 @@ def run_featurefinder_centroided(input_path, params, seeds, out_path): ff.run(name, input_map, features, params, seeds) features.setUniqueIds() - addDataProcessing(features, params, pms.ProcessingAction.QUANTITATION) + addDataProcessing(features, params, pms.DataProcessing.ProcessingAction.QUANTITATION) fh = pms.FeatureXMLFile() fh.store(out_path, features) diff --git a/src/pyOpenMS/pyTOPP/FeatureLinkerUnlabeledQT.py b/src/pyOpenMS/pyTOPP/FeatureLinkerUnlabeledQT.py index d860e9929ea..99567e7049a 100644 --- a/src/pyOpenMS/pyTOPP/FeatureLinkerUnlabeledQT.py +++ b/src/pyOpenMS/pyTOPP/FeatureLinkerUnlabeledQT.py @@ -59,7 +59,7 @@ def link(in_files, out_file, keep_subelements, params): algorithm.transferSubelements(maps, out_map) out_map.setUniqueIds() - addDataProcessing(out_map, params, pms.ProcessingAction.FEATURE_GROUPING) + addDataProcessing(out_map, params, pms.DataProcessing.ProcessingAction.FEATURE_GROUPING) pms.ConsensusXMLFile().store(out_file, out_map) diff --git a/src/pyOpenMS/pyTOPP/IDMapper.py b/src/pyOpenMS/pyTOPP/IDMapper.py index 999b3f711f7..9af10dc9f34 100644 --- a/src/pyOpenMS/pyTOPP/IDMapper.py +++ b/src/pyOpenMS/pyTOPP/IDMapper.py @@ -21,7 +21,7 @@ def id_mapper(in_file, id_file, out_file, params, use_centroid_rt, map_ = pms.ConsensusMap() file_.load(in_file, map_) mapper.annotate(map_, peptide_ids, protein_ids, use_subelements) - addDataProcessing(map_, params, pms.ProcessingAction.IDENTIFICATION_MAPPING) + addDataProcessing(map_, params, pms.DataProcessing.ProcessingAction.IDENTIFICATION_MAPPING) file_.store(out_file, map_) elif in_type == pms.Type.FEATUREXML: @@ -30,7 +30,7 @@ def id_mapper(in_file, id_file, out_file, params, use_centroid_rt, file_.load(in_file, map_) mapper.annotate(map_, peptide_ids, protein_ids, use_centroid_rt, use_centroid_mz) - addDataProcessing(map_, params, pms.ProcessingAction.IDENTIFICATION_MAPPING) + addDataProcessing(map_, params, pms.DataProcessing.ProcessingAction.IDENTIFICATION_MAPPING) file_.store(out_file, map_) elif in_type == pms.Type.MZQ: @@ -40,7 +40,7 @@ def id_mapper(in_file, id_file, out_file, params, use_centroid_rt, maps = msq.getConsensusMaps() for map_ in maps: mapper.annotate(map_, peptide_ids, protein_ids, use_subelements) - addDataProcessing(map_, params, pms.ProcessingAction.IDENTIFICATION_MAPPING) + addDataProcessing(map_, params, pms.DataProcessing.ProcessingAction.IDENTIFICATION_MAPPING) msq.setConsensusMaps(maps) file_.store(out_file, msq) diff --git a/src/pyOpenMS/pyTOPP/MRMMapper.py b/src/pyOpenMS/pyTOPP/MRMMapper.py index d07e5379fea..57731ba3bb5 100644 --- a/src/pyOpenMS/pyTOPP/MRMMapper.py +++ b/src/pyOpenMS/pyTOPP/MRMMapper.py @@ -47,7 +47,7 @@ def algorithm(chromatogram_map, targeted, precursor_tolerance, product_tolerance dp = pyopenms.DataProcessing() # dp.setProcessingActions(ProcessingAction:::FORMAT_CONVERSION) - pa = pyopenms.ProcessingAction().FORMAT_CONVERSION + pa = pyopenms.DataProcessing().ProcessingAction().FORMAT_CONVERSION dp.setProcessingActions(set([pa])) chromatograms = output.getChromatograms(); diff --git a/src/pyOpenMS/pyTOPP/MapAlignerPoseClustering.py b/src/pyOpenMS/pyTOPP/MapAlignerPoseClustering.py index bec5a4b92c3..dfb01a087e5 100644 --- a/src/pyOpenMS/pyTOPP/MapAlignerPoseClustering.py +++ b/src/pyOpenMS/pyTOPP/MapAlignerPoseClustering.py @@ -82,7 +82,7 @@ def align(in_files, out_files, out_trafos, reference_index, algorithm.align(map_, trafo) if out_files: pms.MapAlignmentTransformer.transformRetentionTimes(map_, trafo) - addDataProcessing(map_, params, pms.ProcessingAction.ALIGNMENT) + addDataProcessing(map_, params, pms.DataProcessing.ProcessingAction.ALIGNMENT) f_fxml_tmp.store(out_files[i], map_) else: map_ = pms.MSExperiment() @@ -93,7 +93,7 @@ def align(in_files, out_files, out_trafos, reference_index, algorithm.align(map_, trafo) if out_files: pms.MapAlignmentTransformer.transformRetentionTimes(map_, trafo) - addDataProcessing(map_, params, pms.ProcessingAction.ALIGNMENT) + addDataProcessing(map_, params, pms.DataProcessing.ProcessingAction.ALIGNMENT) pms.MzMLFile().store(out_files[i], map_) if out_trafos: pms.TransformationXMLFile().store(out_trafos[i], trafo) diff --git a/src/pyOpenMS/pyTOPP/OpenSwathChromatogramExtractor.py b/src/pyOpenMS/pyTOPP/OpenSwathChromatogramExtractor.py index 29443d71c2c..d4dcf6aa484 100644 --- a/src/pyOpenMS/pyTOPP/OpenSwathChromatogramExtractor.py +++ b/src/pyOpenMS/pyTOPP/OpenSwathChromatogramExtractor.py @@ -44,7 +44,7 @@ def main(options): output.addChromatogram(chrom) dp = pyopenms.DataProcessing() - pa = pyopenms.ProcessingAction().SMOOTHING + pa = pyopenms.DataProcessing().ProcessingAction().SMOOTHING dp.setProcessingActions(set([pa])) chromatograms = output.getChromatograms(); diff --git a/src/pyOpenMS/pyTOPP/PeakPickerHiRes.py b/src/pyOpenMS/pyTOPP/PeakPickerHiRes.py index dac084d8875..fce3eb00f98 100644 --- a/src/pyOpenMS/pyTOPP/PeakPickerHiRes.py +++ b/src/pyOpenMS/pyTOPP/PeakPickerHiRes.py @@ -19,7 +19,7 @@ def run_peak_picker(input_map, params, out_path): out_map = pms.MSExperiment() pp.pickExperiment(input_map, out_map) - out_map = addDataProcessing(out_map, params, pms.ProcessingAction.PEAK_PICKING) + out_map = addDataProcessing(out_map, params, pms.DataProcessing.ProcessingAction.PEAK_PICKING) fh = pms.FileHandler() fh.storeExperiment(out_path, out_map) diff --git a/src/pyOpenMS/pyTOPP/pyTOPPExample.py b/src/pyOpenMS/pyTOPP/pyTOPPExample.py index 70a82305b1e..553cc1eabff 100644 --- a/src/pyOpenMS/pyTOPP/pyTOPPExample.py +++ b/src/pyOpenMS/pyTOPP/pyTOPPExample.py @@ -62,7 +62,7 @@ def main(): out_map = pms.MSExperiment() pp.pickExperiment(input_map, out_map) - out_map = addDataProcessing(out_map, openms_params, pms.ProcessingAction.PEAK_PICKING) + out_map = addDataProcessing(out_map, openms_params, pms.DataProcessing.ProcessingAction.PEAK_PICKING) fh = pms.FileHandler() fh.storeExperiment(arg_dict["output"], out_map) diff --git a/src/pyOpenMS/pyopenms-extra b/src/pyOpenMS/pyopenms-extra new file mode 160000 index 00000000000..f3264f97ba6 --- /dev/null +++ b/src/pyOpenMS/pyopenms-extra @@ -0,0 +1 @@ +Subproject commit f3264f97ba64ff326f996fe3c45c86a19a0515c1 diff --git a/src/pyOpenMS/pyopenms/dataframes.py b/src/pyOpenMS/pyopenms/dataframes.py index af2a367cbee..a8a52fcf3ae 100644 --- a/src/pyOpenMS/pyopenms/dataframes.py +++ b/src/pyOpenMS/pyopenms/dataframes.py @@ -1,7 +1,7 @@ from collections import defaultdict from typing import List -from . import ConsensusMap, ConsensusFeature, FeatureMap, Feature, MSExperiment, PeakMap, PeptideIdentification, ControlledVocabulary, File +from . import ConsensusMap, ConsensusFeature, FeatureMap, Feature, MSExperiment, PeakMap, PeptideIdentification, ControlledVocabulary, File, IonSource import pandas as pd import numpy as np @@ -12,6 +12,7 @@ def __init__(self, *args, **kwargs): def get_intensity_df(self): """Generates a pandas DataFrame with feature intensities from each sample in long format (over files). + For labelled analyses channel intensities will be in one row, therefore resulting in a semi-long/block format. Resulting DataFrame can be joined with result from get_metadata_df by their index 'id'. @@ -77,6 +78,7 @@ def extract_row_blocks_channel_long_file_wide_LF(f: ConsensusFeature): def get_metadata_df(self): """Generates a pandas DataFrame with feature meta data (sequence, charge, mz, RT, quality). + Resulting DataFrame can be joined with result from get_intensity_df by their index 'id'. Returns: @@ -143,13 +145,40 @@ def get_df(self): class FeatureMapDF(FeatureMap): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) + + def __get_prot_id_filename_from_pep_id(self, pep_id): + """Gets the primary MS run path of the ProteinIdentification linked with the given PeptideIdentification. + + Parameters: + pep_id: PeptideIdentification + + Returns: + str: primary MS run path (filename) of the ProteinIdentification with the same identifier as the given PeptideIdentification + """ + for prot in self.getProteinIdentifications(): + if prot.getIdentifier() == pep_id.getIdentifier(): + filenames = [] + prot.getPrimaryMSRunPath(filenames) + if filenames and filenames[0] != '': + return filenames[0] + return 'unknown' # meta_values = None (default), 'all' or list of meta value names - def get_df(self, meta_values = None): + def get_df(self, meta_values = None, export_peptide_identifications = True): """Generates a pandas DataFrame with information contained in the FeatureMap. + Optionally the feature meta values and information for the assigned PeptideHit can be exported. + Parameters: meta_values: meta values to include (None, [custom list of meta value names] or 'all') + + export_peptide_identifications (bool): export sequence and score for best PeptideHit assigned to a feature. + Additionally the ID_filename (file name of the corresponding ProteinIdentification) and the ID_native_id + (spectrum ID of the corresponding Feature) are exported. They are also annotated as meta values when + collecting all assigned PeptideIdentifications from a FeatureMap with FeatureMap.get_assigned_peptide_identifications(). + A DataFrame from the assigned peptides generated with peptide_identifications_to_df(assigned_peptides) can be + merged with the FeatureMap DataFrame with: + merged_df = pd.merge(feature_df, assigned_peptide_df, on=['feature_id', 'ID_native_id', 'ID_filename']) Returns: pandas.DataFrame: feature information stored in a DataFrame @@ -168,30 +197,47 @@ def get_df(self, meta_values = None): def gen(fmap: FeatureMap, fun): for f in fmap: - yield from fun(f, meta_values) + yield from fun(f) + + def extract_meta_data(f: Feature): + """Extracts feature meta data. + + Extracts information from a given feature with the requested meta values and, if requested, + the sequence, score and ID_filename (primary MS run path of the linked ProteinIdentification) + of the best PeptideHit (first) assigned to that feature. - def extract_meta_data(f: Feature, meta_values): + Parameters: + f (Feature): feature from which to extract the meta data + + Yields: + tuple: tuple containing feature information, peptide information (optional) and meta values (optional) + """ pep = f.getPeptideIdentifications() # type: list[PeptideIdentification] bb = f.getConvexHull().getBoundingBox2D() vals = [f.getMetaValue(m) if f.metaValueExists(m) else np.nan for m in meta_values] - if len(pep) != 0: - hits = pep[0].getHits() - - if len(hits) != 0: - besthit = hits[0] # type: PeptideHit - yield (f.getUniqueId(), besthit.getSequence().toString(), f.getCharge(), f.getRT(), f.getMZ(), bb[0][0], bb[1][0], bb[0][1], bb[1][1], f.getOverallQuality(), f.getIntensity(), *vals) + if export_peptide_identifications: + if len(pep) > 0: + ID_filename = self.__get_prot_id_filename_from_pep_id(pep[0]) + hits = pep[0].getHits() + if len(hits) > 0: + besthit = hits[0] + pep_values = (besthit.getSequence().toString(), besthit.getScore(), ID_filename, f.getMetaValue('spectrum_native_id')) else: - yield (f.getUniqueId(), None, f.getCharge(), f.getRT(), f.getMZ(), bb[0][0], bb[1][0], bb[0][1], bb[1][1], f.getOverallQuality(), f.getIntensity(), *vals) + pep_values = (None, None, None, None) else: - yield (f.getUniqueId(), None, f.getCharge(), f.getRT(), f.getMZ(), bb[0][0], bb[1][0], bb[0][1], bb[1][1], f.getOverallQuality(), f.getIntensity(), *vals) + pep_values = () + + yield tuple([f.getUniqueId()]) + pep_values + (f.getCharge(), f.getRT(), f.getMZ(), bb[0][0], bb[1][0], bb[0][1], bb[1][1], f.getOverallQuality(), f.getIntensity(), *vals) cnt = self.size() - mddtypes = [('id', np.dtype('uint64')), ('sequence', 'U200'), ('charge', 'i4'), ('RT', np.dtype('double')), - ('mz', np.dtype('double')), ('RTstart', np.dtype('double')), ('RTend', np.dtype('double')), - ('mzstart', np.dtype('double')), ('mzend', np.dtype('double')), ('quality', 'f'), ('intensity', 'f')] + mddtypes = [('feature_id', 'U100')] + if export_peptide_identifications: + mddtypes += [('peptide_sequence', 'U200'), ('peptide_score', 'f'), ('ID_filename', 'U100'), ('ID_native_id', 'U100')] + mddtypes += [('charge', 'i4'), ('RT', np.dtype('double')), ('mz', np.dtype('double')), ('RTstart', np.dtype('double')), ('RTend', np.dtype('double')), + ('MZstart', np.dtype('double')), ('MZend', np.dtype('double')), ('quality', 'f'), ('intensity', 'f')] for meta_value in meta_values: if meta_value in common_meta_value_types: @@ -201,7 +247,35 @@ def extract_meta_data(f: Feature, meta_values): mdarr = np.fromiter(iter=gen(self, extract_meta_data), dtype=mddtypes, count=cnt) - return pd.DataFrame(mdarr).set_index('id') + return pd.DataFrame(mdarr).set_index('feature_id') + + def get_assigned_peptide_identifications(self): + """Generates a list with peptide identifications assigned to a feature. + + Adds 'ID_native_id' (feature spectrum id), 'ID_filename' (primary MS run path of corresponding ProteinIdentification) + and 'feature_id' (unique ID of corresponding Feature) as meta values to the peptide hits. + A DataFrame from the assigned peptides generated with peptide_identifications_to_df(assigned_peptides) can be + merged with the FeatureMap DataFrame with: + merged_df = pd.merge(feature_df, assigned_peptide_df, on=['feature_id', 'ID_native_id', 'ID_filename']) + + Returns: + [PeptideIdentification]: list of PeptideIdentification objects + """ + result = [] + for f in self: + for pep in f.getPeptideIdentifications(): + hits = [] + for hit in pep.getHits(): + hit.setMetaValue('feature_id', str(f.getUniqueId())) + hit.setMetaValue('ID_filename', self.__get_prot_id_filename_from_pep_id(pep)) + if f.metaValueExists('spectrum_native_id'): + hit.setMetaValue('ID_native_id', f.getMetaValue('spectrum_native_id')) + else: + hit.setMetaValue('ID_native_id', 'unknown') + hits.append(hit) + pep.setHits(hits) + result.append(pep) + return result FeatureMap = FeatureMapDF @@ -230,6 +304,102 @@ def get_df(self, long : bool = False): return pd.DataFrame(data=((spec.getRT(), *spec.get_peaks()) for spec in self), columns=cols) + def get_massql_df(self): + """Exports data from MSExperiment to pandas DataFrames to be used with MassQL. + + The Python module massql allows queries in mass spectrometry data (MS1 and MS2 + data frames) in a SQL like fashion (https://github.com/mwang87/MassQueryLanguage). + + Both dataframes contain the columns: + 'i': intensity of a peak + 'i_norm': intensity normalized by the maximun intensity in the spectrum + 'i_tic_norm': intensity normalized by the sum of intensities (TIC) in the spectrum + 'mz': mass to charge of a peak + 'scan': number of the spectrum + 'rt': retention time of the spectrum + 'polarity': ion mode of the spectrum as integer value (positive: 1, negative: 2) + + The MS2 dataframe contains additional columns: + 'precmz': mass to charge of the precursor ion + 'ms1scan': number of the corresponding MS1 spectrum + 'charge': charge of the precursor ion + + Returns: + ms1_df (pandas.DataFrame): peak data of MS1 spectra + ms2_df (pandas.DataFrame): peak data of MS2 spectra with precursor information + """ + self.updateRanges() + + def _get_polarity(spec): + '''Returns polarity as an integer value for the massql dataframe. + + According to massql positive polarity is represented by 1 and negative by 2. + + Parameters: + spec (MSSpectrum): the spectrum to extract polarity + + Returns: + int: polarity as int value according to massql specification + ''' + polarity = spec.getInstrumentSettings().getPolarity() + if polarity == IonSource.Polarity.POLNULL: + return 0 + elif polarity == IonSource.Polarity.POSITIVE: + return 1 + elif polarity == IonSource.Polarity.NEGATIVE: + return 2 + + def _get_spec_arrays(mslevel): + '''Get spectrum data as a matrix. + + Generator yields peak data from each spectrum (with specified MS level) as a numpy.ndarray. + Normalized intensity values are calculated and the placeholder values replaced. For 'i_norm' and + 'i_tic_norm' the intensity values are divided by the maximum intensity value in the spectrum and + the sum of intensity values, respectively. + + Parameters: + mslevel (int): only spectra with the given MS level will be considered + + Yields: + np.ndarray: 2D array with peak data (rows) from each spectrum + ''' + for scan_num, spec in enumerate(self): + if spec.getMSLevel() == mslevel: + mz, inty = spec.get_peaks() + # data for both DataFrames: i, i_norm, i_tic_norm, mz, scan, rt, polarity + data = (inty, inty/np.amax(inty), inty/np.sum(inty), mz, scan_num + 1, spec.getRT()/60, _get_polarity(spec)) + cols = 7 + if mslevel == 2: + cols = 10 + # data for MS2 only: precmz, ms1scan, charge + # set fallback values if no precursor is annotated (-1) + if spec.getPrecursors(): + data += (spec.getPrecursors()[0].getMZ(), self.getPrecursorSpectrum(scan_num)+1, spec.getPrecursors()[0].getCharge()) + else: + data += (-1, -1, -1) + # create empty ndarr with shape according to MS level + ndarr = np.empty(shape=(spec.size(), cols)) + # set column values + for i in range(cols): + ndarr[:,i] = data[i] + yield ndarr + + # create DataFrame for MS1 and MS2 with according column names and data types + # if there are no spectra of given MS level return an empty DataFrame + dtypes = {'i': 'float32', 'i_norm': 'float32', 'i_tic_norm': 'float32', 'mz': 'float64', 'scan': 'int32', 'rt': 'float32', 'polarity': 'int32'} + if 1 in self.getMSLevels(): + ms1_df = pd.DataFrame(np.concatenate(list(_get_spec_arrays(1)), axis=0), columns=dtypes.keys()).astype(dtypes) + else: + ms1_df = pd.DataFrame(columns=dtypes.keys()).astype(dtypes) + + dtypes = dict(dtypes, **{'precmz': 'float64', 'ms1scan': 'int32', 'charge': 'int32'}) + if 2 in self.getMSLevels(): + ms2_df = pd.DataFrame(np.concatenate(list(_get_spec_arrays(2)), axis=0), columns=dtypes.keys()).astype(dtypes) + else: + ms2_df = pd.DataFrame(columns=dtypes.keys()).astype(dtypes) + + return ms1_df, ms2_df + MSExperiment = MSExperimentDF PeakMap = MSExperimentDF diff --git a/src/pyOpenMS/setup.py b/src/pyOpenMS/setup.py index 07d9b48c5f1..6edfc2b6eb1 100644 --- a/src/pyOpenMS/setup.py +++ b/src/pyOpenMS/setup.py @@ -12,11 +12,8 @@ osx_ver = platform.mac_ver()[0] #e.g. ('10.15.1', ('', '', ''), 'x86_64') import sys -single_threaded = False no_optimization = False -if "--single-threaded" in sys.argv: - single_threaded = True - sys.argv.remove("--single-threaded") + if "--no-optimization" in sys.argv: no_optimization = True sys.argv.remove("--no-optimization") @@ -66,25 +63,7 @@ persisted_data_path = "include_dir.bin" autowrap_include_dirs = pickle.load(open(persisted_data_path, "rb")) -# patch for parallel compilation -# https://stackoverflow.com/questions/11013851/speeding-up-build-process-with-distutils -# -- this is not what we want, we don't want to compile each object with -# multiple threads, we want to compile multiple extensions at the same time: from setuptools import setup, Extension -import multiprocessing.pool -def parallel_build_extensions(self): - # taken from distutils/command/build_ext.py - # see also Cython/Distutils/old_build_ext.py - # - note that we are missing the self.cython_sources line, so this will not work under all circumstances - # First, sanity-check the 'extensions' list - self.check_extensions_list(self.extensions) - mypool = multiprocessing.pool.ThreadPool(int(PY_NUM_THREADS)) - list(mypool.imap(self.build_extension, self.extensions)) -if not single_threaded: - import distutils.command.build_ext - distutils.command.build_ext.build_ext.build_extensions = parallel_build_extensions - import Cython.Distutils.build_ext - distutils.command.build_ext.build_ext.build_extensions = parallel_build_extensions with open("pyopenms/version.py", "w") as fp: print("version=%r" % package_version, file=fp) diff --git a/src/pyOpenMS/tests/unittests/test000.py b/src/pyOpenMS/tests/unittests/test000.py index c0669f676ca..66468d1ebee 100644 --- a/src/pyOpenMS/tests/unittests/test000.py +++ b/src/pyOpenMS/tests/unittests/test000.py @@ -8,6 +8,7 @@ from pyopenms import String as s import numpy as np +import pandas as pd print("IMPORTED ", pyopenms.__file__) @@ -845,12 +846,12 @@ def testConsensusMap(): m.sortBySize() m.updateRanges() - assert isinstance(m.getMin()[0], float) - assert isinstance(m.getMin()[0], float) - assert isinstance(m.getMax()[1], float) - assert isinstance(m.getMax()[1], float) - assert isinstance(m.getMinInt(), float) - assert isinstance(m.getMaxInt(), float) + assert isinstance(m.getMinRT(), float) + assert isinstance(m.getMinRT(), float) + assert isinstance(m.getMaxMZ(), float) + assert isinstance(m.getMaxMZ(), float) + assert isinstance(m.getMinIntensity(), float) + assert isinstance(m.getMaxIntensity(), float) m.getIdentifier() m.getLoadedFileType() @@ -1030,7 +1031,7 @@ def testDataProcessing(dp=pyopenms.DataProcessing()): dp.getMetaValue ac = dp.getProcessingActions() assert ac == set(()) - ac = set([ pyopenms.ProcessingAction.PEAK_PICKING, pyopenms.ProcessingAction.BASELINE_REDUCTION]) + ac = set([ pyopenms.DataProcessing.ProcessingAction.PEAK_PICKING, pyopenms.DataProcessing.ProcessingAction.BASELINE_REDUCTION]) dp.setProcessingActions(ac) assert len(dp.getProcessingActions() ) == 2 _testStrOutput(dp.getSoftware().getName()) @@ -2062,12 +2063,12 @@ def testFeatureMap(): fm2.updateRanges() - assert isinstance(fm2.getMin()[0], float) - assert isinstance(fm2.getMin()[1], float) - assert isinstance(fm2.getMax()[0], float) - assert isinstance(fm2.getMax()[1], float) - assert isinstance(fm2.getMinInt(), float) - assert isinstance(fm2.getMaxInt(), float) + assert isinstance(fm2.getMinRT(), float) + assert isinstance(fm2.getMinRT(), float) + assert isinstance(fm2.getMaxMZ(), float) + assert isinstance(fm2.getMaxMZ(), float) + assert isinstance(fm2.getMinIntensity(), float) + assert isinstance(fm2.getMaxIntensity(), float) assert fm2.getProteinIdentifications() == [] fm2.setProteinIdentifications([]) @@ -2121,10 +2122,28 @@ def testFeatureXMLFile(): f.setMetaValue(b'mv1', 1) f.setMetaValue(b'mv2', 2) + f.setMetaValue('spectrum_native_id', 'spectrum=123') + pep_id = pyopenms.PeptideIdentification() + pep_id.insertHit(pyopenms.PeptideHit()) + f.setPeptideIdentifications([pep_id]) + fm.push_back(f) + + f.setMetaValue('spectrum_native_id', 'spectrum=124') fm.push_back(f) - assert fm.get_df(meta_values='all').shape == (2, 12) + assert len(fm.get_assigned_peptide_identifications()) == 2 + assert fm.get_df(meta_values='all').shape == (2, 16) + assert fm.get_df(meta_values='all', export_peptide_identifications=False).shape == (2, 12) + + assert pd.merge(fm.get_df(), pyopenms.peptide_identifications_to_df(fm.get_assigned_peptide_identifications()), + on = ['feature_id', 'ID_native_id', 'ID_filename']).shape == (2,22) + + fm = pyopenms.FeatureMap() + pyopenms.FeatureXMLFile().load(os.path.join(os.environ['OPENMS_DATA_PATH'], 'examples/FRACTIONS/BSA1_F1_idmapped.featureXML'), fm) + + assert pd.merge(fm.get_df(), pyopenms.peptide_identifications_to_df(fm.get_assigned_peptide_identifications()), + on = ['feature_id', 'ID_native_id', 'ID_filename']).shape == (15,24) fh = pyopenms.FeatureXMLFile() fh.store("test.featureXML", fm) @@ -2857,6 +2876,7 @@ def testMSExperiment(): MSExperiment.isSorted MSExperiment.get2DPeakDataLong MSExperiment.get_df + MSExperiment.get_massql_df """ mse = pyopenms.MSExperiment() mse_ = copy.copy(mse) @@ -2874,13 +2894,9 @@ def testMSExperiment(): assert isinstance(mse.getMaxMZ(), float) assert isinstance(mse.getMinMZ(), float) _testStrOutput(mse.getLoadedFilePath()) - assert isinstance(mse.getMinInt(), float) - assert isinstance(mse.getMaxInt(), float) + assert isinstance(mse.getMinIntensity(), float) + assert isinstance(mse.getMaxIntensity(), float) - assert isinstance(mse.getMin()[0], float) - assert isinstance(mse.getMin()[1], float) - assert isinstance(mse.getMax()[0], float) - assert isinstance(mse.getMax()[1], float) mse.setLoadedFilePath("") assert mse.size() == 0 @@ -2934,6 +2950,14 @@ def testMSExperiment(): assert exp.get_df().shape == (3,3) + pyopenms.MzMLFile().load(os.path.join(os.environ['OPENMS_DATA_PATH'], 'examples/FRACTIONS/BSA1_F1.mzML'), exp) + + ms1_df, ms2_df = exp.get_massql_df() + + assert ms1_df.shape == (140055, 7) + + assert np.allclose(ms2_df.head(), pd.read_csv(os.path.join(os.environ['OPENMS_DATA_PATH'], 'examples/FRACTIONS/BSA1_F1_MS2_MassQL.tsv'), sep='\t')) + @report def testMSQuantifications(): @@ -3057,10 +3081,10 @@ def testMSSpectrum(): spec.updateRanges() assert isinstance(spec.findNearest(0.0), int) - assert isinstance(spec.getMin()[0], float) - assert isinstance(spec.getMax()[0], float) - assert isinstance(spec.getMinInt(), float) - assert isinstance(spec.getMaxInt(), float) + assert isinstance(spec.getMinMZ(), float) + assert isinstance(spec.getMaxMZ(), float) + assert isinstance(spec.getMinIntensity(), float) + assert isinstance(spec.getMaxIntensity(), float) assert spec == spec assert not spec != spec @@ -3315,10 +3339,10 @@ def testMSChromatogram(): chrom.updateRanges() assert isinstance(chrom.findNearest(0.0), int) - assert isinstance(chrom.getMin()[0], float) - assert isinstance(chrom.getMax()[0], float) - assert isinstance(chrom.getMinInt(), float) - assert isinstance(chrom.getMaxInt(), float) + assert isinstance(chrom.getMinRT(), float) + assert isinstance(chrom.getMaxRT(), float) + assert isinstance(chrom.getMinIntensity(), float) + assert isinstance(chrom.getMaxIntensity(), float) assert chrom == chrom assert not chrom != chrom @@ -4259,6 +4283,7 @@ def testProcessingAction(): ProcessingAction.FEATURE_GROUPING ProcessingAction.FILTERING ProcessingAction.FORMAT_CONVERSION + ProcessingAction.IDENTIFICATION ProcessingAction.IDENTIFICATION_MAPPING ProcessingAction.NORMALIZATION ProcessingAction.PEAK_PICKING @@ -4266,28 +4291,30 @@ def testProcessingAction(): ProcessingAction.QUANTITATION ProcessingAction.SIZE_OF_PROCESSINGACTION ProcessingAction.SMOOTHING + """ - assert isinstance(pyopenms.ProcessingAction.ALIGNMENT, int) - assert isinstance(pyopenms.ProcessingAction.BASELINE_REDUCTION, int) - assert isinstance(pyopenms.ProcessingAction.CALIBRATION, int) - assert isinstance(pyopenms.ProcessingAction.CHARGE_CALCULATION, int) - assert isinstance(pyopenms.ProcessingAction.CHARGE_DECONVOLUTION, int) - assert isinstance(pyopenms.ProcessingAction.CONVERSION_DTA, int) - assert isinstance(pyopenms.ProcessingAction.CONVERSION_MZDATA, int) - assert isinstance(pyopenms.ProcessingAction.CONVERSION_MZML, int) - assert isinstance(pyopenms.ProcessingAction.CONVERSION_MZXML, int) - assert isinstance(pyopenms.ProcessingAction.DATA_PROCESSING, int) - assert isinstance(pyopenms.ProcessingAction.DEISOTOPING, int) - assert isinstance(pyopenms.ProcessingAction.FEATURE_GROUPING, int) - assert isinstance(pyopenms.ProcessingAction.FILTERING, int) - assert isinstance(pyopenms.ProcessingAction.FORMAT_CONVERSION, int) - assert isinstance(pyopenms.ProcessingAction.IDENTIFICATION_MAPPING, int) - assert isinstance(pyopenms.ProcessingAction.NORMALIZATION, int) - assert isinstance(pyopenms.ProcessingAction.PEAK_PICKING, int) - assert isinstance(pyopenms.ProcessingAction.PRECURSOR_RECALCULATION, int) - assert isinstance(pyopenms.ProcessingAction.QUANTITATION, int) - assert isinstance(pyopenms.ProcessingAction.SIZE_OF_PROCESSINGACTION, int) - assert isinstance(pyopenms.ProcessingAction.SMOOTHING, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.ALIGNMENT, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.BASELINE_REDUCTION, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.CALIBRATION, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.CHARGE_CALCULATION, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.CHARGE_DECONVOLUTION, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.CONVERSION_DTA, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.CONVERSION_MZDATA, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.CONVERSION_MZML, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.CONVERSION_MZXML, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.DATA_PROCESSING, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.DEISOTOPING, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.FEATURE_GROUPING, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.FILTERING, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.FORMAT_CONVERSION, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.IDENTIFICATION, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.IDENTIFICATION_MAPPING, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.NORMALIZATION, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.PEAK_PICKING, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.PRECURSOR_RECALCULATION, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.QUANTITATION, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.SIZE_OF_PROCESSINGACTION, int) + assert isinstance(pyopenms.DataProcessing.ProcessingAction.SMOOTHING, int) @report diff --git a/src/pyOpenMS/tests/unittests/test_MSSpectrumAndRichSpectrum.py b/src/pyOpenMS/tests/unittests/test_MSSpectrumAndRichSpectrum.py index b4c0a17b8e1..6507c64b1e8 100644 --- a/src/pyOpenMS/tests/unittests/test_MSSpectrumAndRichSpectrum.py +++ b/src/pyOpenMS/tests/unittests/test_MSSpectrumAndRichSpectrum.py @@ -22,13 +22,13 @@ def testMSSpectrum(self): assert p_back.getIntensity() == 1e5 spec.updateRanges() - assert isinstance(spec.getMin()[0], float) - assert isinstance(spec.getMax()[0], float) - assert isinstance(spec.getMinInt(), float) - assert isinstance(spec.getMaxInt(), float) + assert isinstance(spec.getMinMZ(), float) + assert isinstance(spec.getMaxMZ(), float) + assert isinstance(spec.getMinIntensity(), float) + assert isinstance(spec.getMaxIntensity(), float) - assert spec.getMaxInt() == 1e5 - assert spec.getMinInt() == 1e5 + assert spec.getMinIntensity() == 1e5 + assert spec.getMaxIntensity() == 1e5 if __name__ == '__main__': unittest.main() diff --git a/src/tests/class_tests/openms/CMakeLists.txt b/src/tests/class_tests/openms/CMakeLists.txt index bb89c3d88c2..1b9a18d6662 100644 --- a/src/tests/class_tests/openms/CMakeLists.txt +++ b/src/tests/class_tests/openms/CMakeLists.txt @@ -70,7 +70,7 @@ endif() #------------------------------------------------------------------------------ # QT dependencies -find_package(Qt5 COMPONENTS Core Network REQUIRED) +find_package(Qt5 COMPONENTS Core Network Sql REQUIRED) if (NOT Qt5Network_FOUND) message(STATUS "QtNetwork module not found!") message(FATAL_ERROR "To find a custom Qt installation use: cmake <..more options..> -D QT_QMAKE_EXECUTABLE='") diff --git a/src/tests/class_tests/openms/data/AccurateMassSearchEngine_output1_mztabm_featureXML.mzTab b/src/tests/class_tests/openms/data/AccurateMassSearchEngine_output1_mztabm_featureXML.mzTab new file mode 100644 index 00000000000..09527a89409 --- /dev/null +++ b/src/tests/class_tests/openms/data/AccurateMassSearchEngine_output1_mztabm_featureXML.mzTab @@ -0,0 +1,85 @@ +MTD mzTab-version 2.0.0-M +MTD mzTab-ID local_id: 0 +MTD software[1] [MS, MS:1001456, analysis software, 2.7.0-pre-idf-ams-2022-01-13] +MTD quantification_method null +MTD ms_run[1]-location file://E:/NotARealFileJustATest.mzML +MTD ms_run[1]-scan_polarity[1] [MS, MS:1000130, positive scan, ] +MTD assay[1] assay_NotARealFileJustATest +MTD assay[1]-ms_run_ref ms_run[1] +MTD study_variable[1] study_variable_NotARealFileJustATest +MTD study_variable[1]-assay_refs assay[1] +MTD study_variable[1]-description study_variable_NotARealFileJustATest +MTD cv[1]-label PSI-MS +MTD cv[1]-full_name MS +MTD cv[1]-version 4.1.56 +MTD cv[1]-uri https://raw.githubusercontent.com/HUPO-PSI/psi-ms-CV/master/psi-ms.obo +MTD database[1] [, , HMDB, ] +MTD database[1]-prefix HMDB +MTD database[1]-version 3.5 +MTD database[1]-uri file:///Users/alka/Documents/work/software/openms_test/OpenMS/src/tests/class_tests/openms/data/reducedHMDBMapping.tsv +MTD small_molecule-quantification_unit [MS, MS:1001844, MS1 feature area, ] +MTD small_molecule_feature-quantification_unit [MS, MS:1001844, MS1 feature area, ] +MTD small_molecule-identification_reliability [MS, MS:1002896, compound identification confidence level, ] +MTD id_confidence_measure[1] [, , MassErrorPPMScore, ] +MTD id_confidence_measure[2] [, , MassErrorDaScore, ] + +SMH SML_ID SMF_ID_REFS database_identifier chemical_formula smiles inchi chemical_name uri theoretical_neutral_mass adduct_ions reliability best_id_confidence_measure best_id_confidence_value abundance_assay[1] abundance_study_variable[1] abundance_variation_study_variable[1] +SML 1 1 HMDB:HMDB28982|HMDB:HMDB29045 C8H16N2O4S1|C8H16N2O4S1 CSCCC(NC(=O)C(N)CO)C(O)=O|CSCCC(N)C(=O)NC(CO)C(O)=O InChI=1S/C8H16N2O4S/c1-15-3-2-6(8(13)14)10-7(12)5(9)4-11/h5-6,11H,2-4,9H2,1H3,(H,10,12)(H,13,14)|InChI=1S/C8H16N2O4S/c1-15-3-2-5(9)7(12)10-6(4-11)8(13)14/h5-6,11H,2-4,9H2,1H3,(H,10,12)(H,13,14) Methionyl-Serine|Serinyl-Methionine null|null 236.083079240399968|236.083079240399968 [M+2CH3CN+2H]2+|[M+2CH3CN+2H]2+ 2 null null 3.631019921875e04 null null +SML 2 2 HMDB:HMDB28803|HMDB:HMDB28971|HMDB:HMDB28987|HMDB:HMDB29155|HMDB:HMDB33355|HMDB:HMDB34110 C10H19N3O4S1|C10H19N3O4S1|C10H19N3O4S1|C10H19N3O4S1|C18H15N1O2|C18H15N1O2 CSCCC(N)C(=O)NC(CCC(N)=O)C(O)=O|CSCCC(NC(=O)C(N)CCC(N)=O)C(O)=O|CSCCC(NC(=O)C(N)CCC(O)=N)C(O)=O|CSCCC(N)C(=O)NC(CCC(O)=N)C(O)=O|CN1CCC2=C3C1=CC1=CC=CC=C1C3=C1OCOC1=C2|CC1(C)OC2=C(C=C1)C1=C(C=C2C=O)C2=C(N1)C=CC=C2 InChI=1S/C10H19N3O4S/c1-18-5-4-6(11)9(15)13-7(10(16)17)2-3-8(12)14/h6-7H,2-5,11H2,1H3,(H2,12,14)(H,13,15)(H,16,17)|InChI=1S/C10H19N3O4S/c1-18-5-4-7(10(16)17)13-9(15)6(11)2-3-8(12)14/h6-7H,2-5,11H2,1H3,(H2,12,14)(H,13,15)(H,16,17)|InChI=1S/C10H19N3O4S/c1-18-5-4-7(10(16)17)13-9(15)6(11)2-3-8(12)14/h6-7H,2-5,11H2,1H3,(H2,12,14)(H,13,15)(H,16,17)|InChI=1S/C10H19N3O4S/c1-18-5-4-6(11)9(15)13-7(10(16)17)2-3-8(12)14/h6-7H,2-5,11H2,1H3,(H2,12,14)(H,13,15)(H,16,17)|InChI=1S/C18H15NO2/c1-19-7-6-12-9-15-18(21-10-20-15)17-13-5-3-2-4-11(13)8-14(19)16(12)17/h2-5,8-9H,6-7,10H2,1H3|InChI=1S/C18H15NO2/c1-18(2)8-7-13-16-14(9-11(10-20)17(13)21-18)12-5-3-4-6-15(12)19-16/h3-10,19H,1-2H3 Glutaminyl-Methionine|Methionyl-Glutamine|Methionyl-Gamma-glutamate|Gamma-glutamyl-Methionine|Dehydroaporheine|Murrayacine null|null|null|null|null|null 277.109628336100002|277.109628336100002|277.109628336100002|277.109628336100002|277.11027947849999|277.11027947849999 [M+CH3CN+2H]2+|[M+CH3CN+2H]2+|[M+CH3CN+2H]2+|[M+CH3CN+2H]2+|[M+CH3CN+2H]2+|[M+CH3CN+2H]2+ 2 null null 3.631019921875e04 null null +SML 3 3 HMDB:HMDB39534 C17Cl1H25O2 CCCCCCCC(Cl)C(O)CC#CC#CC(O)C=C InChI=1S/C17H25ClO2/c1-3-5-6-7-10-13-16(18)17(20)14-11-8-9-12-15(19)4-2/h4,15-17,19-20H,2-3,5-7,10,13-14H2,1H3 Panaxydol chlorohydrin null 296.154308477499967 [M+H+Na]2+ 2 null null 3.631019921875e04 null null +SML 4 4 HMDB:HMDB01190 C10H9N1O1 O=CCC1=CNC2=CC=CC=C12 InChI=1S/C10H9NO/c12-6-5-8-7-11-10-4-2-1-3-9(8)10/h1-4,6-7,11H,5H2 Indoleacetaldehyde null 159.068414287099984 [M+H]1+ 2 null null 3.631019921875e04 null null +SML 5 5 HMDB:HMDB15400 C8H8N4 NNC1=NN=CC2=CC=CC=C12 InChI=1S/C8H8N4/c9-11-8-7-4-2-1-3-6(7)5-10-12-8/h1-5H,9H2,(H,11,12) Hydralazine null 160.074896255200002 [M]1+ 2 null null 3.631019921875e04 null null +SML 6 6 HMDB:HMDB01190 C10H9N1O1 O=CCC1=CNC2=CC=CC=C12 InChI=1S/C10H9NO/c12-6-5-8-7-11-10-4-2-1-3-9(8)10/h1-4,6-7,11H,5H2 Indoleacetaldehyde null 159.068414287099984 [M+H]1+ 2 null null 3.02411e07 null null +SML 7 7 HMDB:HMDB15400 C8H8N4 NNC1=NN=CC2=CC=CC=C12 InChI=1S/C8H8N4/c9-11-8-7-4-2-1-3-6(7)5-10-12-8/h1-5H,9H2,(H,11,12) Hydralazine null 160.074896255200002 [M]1+ 2 null null 3.02411e07 null null +SML 8 8 null null null null null null null null 2 null null 2.15267e06 null null +SML 9 9 HMDB:HMDB32394|HMDB:HMDB36073|HMDB:HMDB41009 C10H8O2|C10H8O2|C10H8O2 CC1=CC=C2OC(=O)C=CC2=C1|CC1=COC=C2C(C=O)=CC=C12|CC1=CC=CC2=C1OC(C=O)=C2 InChI=1S/C10H8O2/c1-7-2-4-9-8(6-7)3-5-10(11)12-9/h2-6H,1H3|InChI=1S/C10H8O2/c1-7-5-12-6-10-8(4-11)2-3-9(7)10/h2-6H,1H3|InChI=1S/C10H8O2/c1-7-3-2-4-8-5-9(6-11)12-10(7)8/h2-6H,1H3 6-Methylcoumarin|Viburtinal|7-Methyl-2-benzofurancarboxaldehyde null|null|null 160.052430255200022|160.052430255200022|160.052430255200022 [M+H]1+|[M+H]1+|[M+H]1+ 2 null null 1.76240992e08 null null +SML 10 10 null null null null null null null null 2 null null 1.8965900390625e04 null null +SML 11 11 null null null null null null null null 2 null null 1.94672e06 null null +SML 12 12 null null null null null null null null 2 null null 4.13215e05 null null +SML 13 13 null null null null null null null null 2 null null 1.81771008e08 null null +SML 14 14 HMDB:HMDB14564|HMDB:HMDB15202 C17H20N2S1|C17H20N2S1 CN(C)CCCN1C2=CC=CC=C2SC2=CC=CC=C12|CC(CN1C2=CC=CC=C2SC2=CC=CC=C12)N(C)C InChI=1S/C17H20N2S/c1-18(2)12-7-13-19-14-8-3-5-10-16(14)20-17-11-6-4-9-15(17)19/h3-6,8-11H,7,12-13H2,1-2H3|InChI=1S/C17H20N2S/c1-13(18(2)3)12-19-14-8-4-6-10-16(14)20-17-11-7-5-9-15(17)19/h4-11,13H,12H2,1-3H3 Promazine|Promethazine null|null 284.134719367999992|284.134719367999992 [M+2Na]2+|[M+2Na]2+ 2 null null 9.864879999999999e05 null null +SML 15 15 HMDB:HMDB14564|HMDB:HMDB15202 C17H20N2S1|C17H20N2S1 CN(C)CCCN1C2=CC=CC=C2SC2=CC=CC=C12|CC(CN1C2=CC=CC=C2SC2=CC=CC=C12)N(C)C InChI=1S/C17H20N2S/c1-18(2)12-7-13-19-14-8-3-5-10-16(14)20-17-11-6-4-9-15(17)19/h3-6,8-11H,7,12-13H2,1-2H3|InChI=1S/C17H20N2S/c1-13(18(2)3)12-19-14-8-4-6-10-16(14)20-17-11-7-5-9-15(17)19/h4-11,13H,12H2,1-3H3 Promazine|Promethazine null|null 284.134719367999992|284.134719367999992 [M+2Na]2+|[M+2Na]2+ 2 null null 3.58375e04 null null + +SFH SMF_ID SME_ID_REFS SME_ID_REF_ambiguity_code adduct_ion isotopomer exp_mass_to_charge charge retention_time_in_seconds retention_time_in_seconds_start retention_time_in_seconds_end abundance_assay[1] opt_global_FWHM opt_global_dc_charge_adducts opt_global_label opt_global_masstrace_intensity opt_global_num_of_masstraces +SMF 1 5|7 1 [M+2CH3CN+2H]2+ null 160.07500553925999 0 281.25 null null 3.631019921875e04 6.25 H1Na1 T141 [3.6310164094607e04] 1 +SMF 2 3|4|6|8|9|10 1 [M+CH3CN+2H]2+ null 160.07500553925999 0 281.25 null null 3.631019921875e04 6.25 H1Na1 T141 [3.6310164094607e04] 1 +SMF 3 11 null [M+H+Na]2+ null 160.07500553925999 0 281.25 null null 3.631019921875e04 6.25 H1Na1 T141 [3.6310164094607e04] 1 +SMF 4 1 null [M+H]1+ null 160.07500553925999 0 281.25 null null 3.631019921875e04 6.25 H1Na1 T141 [3.6310164094607e04] 1 +SMF 5 2 null [M]1+ null 160.07500553925999 0 281.25 null null 3.631019921875e04 6.25 H1Na1 T141 [3.6310164094607e04] 1 +SMF 6 12 null [M+H]1+ null 160.075018056482008 1 308.25 null null 3.02411e07 8.25 null T10_T33_T94 [3.02411478621068e07, 3.42369717701255e06, 2.37974096094367e05] 3 +SMF 7 13 null [M]1+ null 160.075018056482008 1 308.25 null null 3.02411e07 8.25 null T10_T33_T94 [3.02411478621068e07, 3.42369717701255e06, 2.37974096094367e05] 3 +SMF 8 14 null null null 160.134470512511996 1 316.5 null null 2.15267e06 9.5 H1Na1 T43_T106_T170 [2.15267481468212e06, 1.99952370346936e05, 1.38908896083682e04] 3 +SMF 9 15|16|17 1 [M+H]1+ null 161.06023172053699 1 284.75 null null 1.76240992e08 10.0 null T4_T13_T49 [1.76241220640656e08, 1.93463026786891e07, 1.6623527473399e06] 3 +SMF 10 18 null null null 161.132412915304997 0 261.25 null null 1.8965900390625e04 5.75 null T160 [1.89659494716721e04] 1 +SMF 11 19 null null null 163.03996512782399 1 284.5 null null 1.94672e06 8.25 null T41_T102 [1.9467199301806e06, 1.52141576471626e05] 2 +SMF 12 20 null null null 163.077366639892006 1 318.75 null null 4.13215e05 5.5 null T69_T134 [4.13215012682643e05, 4.54567213020705e04] 2 +SMF 13 21 null null null 163.077368733931991 1 267.25 null null 1.81771008e08 9.5 null T3_T12_T48_T61_T101 [1.81771052539316e08, 1.99951640161074e07, 1.7458622245618e06, 1.03241388262815e06, 2.30932968791916e05] 5 +SMF 14 22|23 1 [M+2Na]2+ null 165.056236591301996 0 289.25 null null 9.864879999999999e05 9.5 Na2 T59 [9.86488096925674e05] 1 +SMF 15 24|25 1 [M+2Na]2+ null 165.057161287125012 0 258.75 null null 3.58375e04 3.5 Na1 T121 [3.58374671685804e04] 1 + +SEH SME_ID evidence_input_id database_identifier chemical_formula smiles inchi chemical_name uri derivatized_form adduct_ion exp_mass_to_charge charge theoretical_mass_to_charge spectra_ref identification_method ms_level id_confidence_measure[1] id_confidence_measure[2] rank opt_global_chemical_formula opt_global_description opt_global_identifier opt_global_modifications opt_global_mz_error_Da opt_global_mz_error_ppm +SME 1 mass=160.07500553925999,rt=281.25 HMDB:HMDB01190 C10H9N1O1 O=CCC1=CNC2=CC=CC=C12 InChI=1S/C10H9NO/c12-6-5-8-7-11-10-4-2-1-3-9(8)10/h1-4,6-7,11H,5H2 Indoleacetaldehyde null null [M+H]1+ 160.07500553925999 0 159.068414287099984 ms_run[1]:6565892897288149707 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] -4.278149506456153 -6.848277357391908e-04 1 C10H9NO [Indoleacetaldehyde] [HMDB:HMDB01190] M+H;1+ -6.848277357391908e-04 -4.278149506456153 +SME 2 mass=160.07500553925999,rt=281.25 HMDB:HMDB15400 C8H8N4 NNC1=NN=CC2=CC=CC=C12 InChI=1S/C8H8N4/c9-11-8-7-4-2-1-3-6(7)5-10-12-8/h1-5H,9H2,(H,11,12) Hydralazine null null [M]1+ 160.07500553925999 0 160.074896255200002 ms_run[1]:6565892897288149707 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] 4.109610151436982 6.578431642765281e-04 1 C8H8N4 [Hydralazine] [HMDB:HMDB15400] M;1+ 6.578431642765281e-04 4.109610151436982 +SME 3 mass=160.07500553925999,rt=281.25 HMDB:HMDB28803 C10H19N3O4S1 CSCCC(N)C(=O)NC(CCC(N)=O)C(O)=O InChI=1S/C10H19N3O4S/c1-18-5-4-6(11)9(15)13-7(10(16)17)2-3-8(12)14/h6-7H,2-5,11H2,1H3,(H2,12,14)(H,13,15)(H,16,17) Glutaminyl-Methionine null null [M+CH3CN+2H]2+ 160.07500553925999 0 277.109628336100002 ms_run[1]:6565892897288149707 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] -2.241825824100759 -3.588610857150343e-04 1 C10H19N3O4S [Glutaminyl-Methionine] [HMDB:HMDB28803] M+CH3CN+2H;2+ -3.588610857150343e-04 -2.241825824100759 +SME 4 mass=160.07500553925999,rt=281.25 HMDB:HMDB28971 C10H19N3O4S1 CSCCC(NC(=O)C(N)CCC(N)=O)C(O)=O InChI=1S/C10H19N3O4S/c1-18-5-4-7(10(16)17)13-9(15)6(11)2-3-8(12)14/h6-7H,2-5,11H2,1H3,(H2,12,14)(H,13,15)(H,16,17) Methionyl-Glutamine null null [M+CH3CN+2H]2+ 160.07500553925999 0 277.109628336100002 ms_run[1]:6565892897288149707 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] -2.241825824100759 -3.588610857150343e-04 1 C10H19N3O4S [Methionyl-Glutamine] [HMDB:HMDB28971] M+CH3CN+2H;2+ -3.588610857150343e-04 -2.241825824100759 +SME 5 mass=160.07500553925999,rt=281.25 HMDB:HMDB28982 C8H16N2O4S1 CSCCC(NC(=O)C(N)CO)C(O)=O InChI=1S/C8H16N2O4S/c1-15-3-2-6(8(13)14)10-7(12)5(9)4-11/h5-6,11H,2-4,9H2,1H3,(H,10,12)(H,13,14) Methionyl-Serine null null [M+2CH3CN+2H]2+ 160.07500553925999 0 236.083079240399968 ms_run[1]:6565892897288149707 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] -2.241809269362091 -3.588584357032687e-04 1 C8H16N2O4S [Methionyl-Serine] [HMDB:HMDB28982] M+2CH3CN+2H;2+ -3.588584357032687e-04 -2.241809269362091 +SME 6 mass=160.07500553925999,rt=281.25 HMDB:HMDB28987 C10H19N3O4S1 CSCCC(NC(=O)C(N)CCC(O)=N)C(O)=O InChI=1S/C10H19N3O4S/c1-18-5-4-7(10(16)17)13-9(15)6(11)2-3-8(12)14/h6-7H,2-5,11H2,1H3,(H2,12,14)(H,13,15)(H,16,17) Methionyl-Gamma-glutamate null null [M+CH3CN+2H]2+ 160.07500553925999 0 277.109628336100002 ms_run[1]:6565892897288149707 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] -2.241825824100759 -3.588610857150343e-04 1 C10H19N3O4S [Methionyl-Gamma-glutamate] [HMDB:HMDB28987] M+CH3CN+2H;2+ -3.588610857150343e-04 -2.241825824100759 +SME 7 mass=160.07500553925999,rt=281.25 HMDB:HMDB29045 C8H16N2O4S1 CSCCC(N)C(=O)NC(CO)C(O)=O InChI=1S/C8H16N2O4S/c1-15-3-2-5(9)7(12)10-6(4-11)8(13)14/h5-6,11H,2-4,9H2,1H3,(H,10,12)(H,13,14) Serinyl-Methionine null null [M+2CH3CN+2H]2+ 160.07500553925999 0 236.083079240399968 ms_run[1]:6565892897288149707 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] -2.241809269362091 -3.588584357032687e-04 1 C8H16N2O4S [Serinyl-Methionine] [HMDB:HMDB29045] M+2CH3CN+2H;2+ -3.588584357032687e-04 -2.241809269362091 +SME 8 mass=160.07500553925999,rt=281.25 HMDB:HMDB29155 C10H19N3O4S1 CSCCC(N)C(=O)NC(CCC(O)=N)C(O)=O InChI=1S/C10H19N3O4S/c1-18-5-4-6(11)9(15)13-7(10(16)17)2-3-8(12)14/h6-7H,2-5,11H2,1H3,(H2,12,14)(H,13,15)(H,16,17) Gamma-glutamyl-Methionine null null [M+CH3CN+2H]2+ 160.07500553925999 0 277.109628336100002 ms_run[1]:6565892897288149707 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] -2.241825824100759 -3.588610857150343e-04 1 C10H19N3O4S [Gamma-glutamyl-Methionine] [HMDB:HMDB29155] M+CH3CN+2H;2+ -3.588610857150343e-04 -2.241825824100759 +SME 9 mass=160.07500553925999,rt=281.25 HMDB:HMDB33355 C18H15N1O2 CN1CCC2=C3C1=CC1=CC=CC=C1C3=C1OCOC1=C2 InChI=1S/C18H15NO2/c1-19-7-6-12-9-15-18(21-10-20-15)17-13-5-3-2-4-11(13)8-14(19)16(12)17/h2-5,8-9H,6-7,10H2,1H3 Dehydroaporheine null null [M+CH3CN+2H]2+ 160.07500553925999 0 277.11027947849999 ms_run[1]:6565892897288149707 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] -4.278132951784907 -6.848250857274252e-04 1 C18H15NO2 [Dehydroaporheine] [HMDB:HMDB33355] M+CH3CN+2H;2+ -6.848250857274252e-04 -4.278132951784907 +SME 10 mass=160.07500553925999,rt=281.25 HMDB:HMDB34110 C18H15N1O2 CC1(C)OC2=C(C=C1)C1=C(C=C2C=O)C2=C(N1)C=CC=C2 InChI=1S/C18H15NO2/c1-18(2)8-7-13-16-14(9-11(10-20)17(13)21-18)12-5-3-4-6-15(12)19-16/h3-10,19H,1-2H3 Murrayacine null null [M+CH3CN+2H]2+ 160.07500553925999 0 277.11027947849999 ms_run[1]:6565892897288149707 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] -4.278132951784907 -6.848250857274252e-04 1 C18H15NO2 [Murrayacine] [HMDB:HMDB34110] M+CH3CN+2H;2+ -6.848250857274252e-04 -4.278132951784907 +SME 11 mass=160.07500553925999,rt=281.25 HMDB:HMDB39534 C17Cl1H25O2 CCCCCCCC(Cl)C(O)CC#CC#CC(O)C=C InChI=1S/C17H25ClO2/c1-3-5-6-7-10-13-16(18)17(20)14-11-8-9-12-15(19)4-2/h4,15-17,19-20H,2-3,5-7,10,13-14H2,1H3 Panaxydol chlorohydrin null null [M+H+Na]2+ 160.07500553925999 0 296.154308477499967 ms_run[1]:6565892897288149707 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] -2.47953607880854 -3.969127357095204e-04 1 C17H25ClO2 [Panaxydol chlorohydrin] [HMDB:HMDB39534] M+H+Na;2+ -3.969127357095204e-04 -2.47953607880854 +SME 12 mass=160.075018056482008,rt=308.25 HMDB:HMDB01190 C10H9N1O1 O=CCC1=CNC2=CC=CC=C12 InChI=1S/C10H9NO/c12-6-5-8-7-11-10-4-2-1-3-9(8)10/h1-4,6-7,11H,5H2 Indoleacetaldehyde null null [M+H]1+ 160.075018056482008 1 159.068414287099984 ms_run[1]:12112469906802307848 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] -4.199953860450771 -6.72310513721186e-04 1 C10H9NO [Indoleacetaldehyde] [HMDB:HMDB01190] M+H;1+ -6.72310513721186e-04 -4.199953860450771 +SME 13 mass=160.075018056482008,rt=308.25 HMDB:HMDB15400 C8H8N4 NNC1=NN=CC2=CC=CC=C12 InChI=1S/C8H8N4/c9-11-8-7-4-2-1-3-6(7)5-10-12-8/h1-5H,9H2,(H,11,12) Hydralazine null null [M]1+ 160.075018056482008 1 160.074896255200002 ms_run[1]:12112469906802307848 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] 4.187806453331455 6.703603862945329e-04 1 C8H8N4 [Hydralazine] [HMDB:HMDB15400] M;1+ 6.703603862945329e-04 4.187806453331455 +SME 14 mass=160.134470512511996,rt=316.5 null null null null null null null null 160.134470512511996 1 0.0 ms_run[1]:5576845964105266947 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] nan nan 1 null [null] [null] null nan nan +SME 15 mass=161.06023172053699,rt=284.75 HMDB:HMDB32394 C10H8O2 CC1=CC=C2OC(=O)C=CC2=C1 InChI=1S/C10H8O2/c1-7-2-4-9-8(6-7)3-5-10(11)12-9/h2-6H,1H3 6-Methylcoumarin null null [M+H]1+ 161.06023172053699 1 160.052430255200022 ms_run[1]:2737147212367465006 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] 3.26443251694974 5.257685412800583e-04 1 C10H8O2 [6-Methylcoumarin] [HMDB:HMDB32394] M+H;1+ 5.257685412800583e-04 3.26443251694974 +SME 16 mass=161.06023172053699,rt=284.75 HMDB:HMDB36073 C10H8O2 CC1=COC=C2C(C=O)=CC=C12 InChI=1S/C10H8O2/c1-7-5-12-6-10-8(4-11)2-3-9(7)10/h2-6H,1H3 Viburtinal null null [M+H]1+ 161.06023172053699 1 160.052430255200022 ms_run[1]:2737147212367465006 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] 3.26443251694974 5.257685412800583e-04 1 C10H8O2 [Viburtinal] [HMDB:HMDB36073] M+H;1+ 5.257685412800583e-04 3.26443251694974 +SME 17 mass=161.06023172053699,rt=284.75 HMDB:HMDB41009 C10H8O2 CC1=CC=CC2=C1OC(C=O)=C2 InChI=1S/C10H8O2/c1-7-3-2-4-8-5-9(6-11)12-10(7)8/h2-6H,1H3 7-Methyl-2-benzofurancarboxaldehyde null null [M+H]1+ 161.06023172053699 1 160.052430255200022 ms_run[1]:2737147212367465006 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] 3.26443251694974 5.257685412800583e-04 1 C10H8O2 [7-Methyl-2-benzofurancarboxaldehyde] [HMDB:HMDB41009] M+H;1+ 5.257685412800583e-04 3.26443251694974 +SME 18 mass=161.132412915304997,rt=261.25 null null null null null null null null 161.132412915304997 0 0.0 ms_run[1]:12964529961937795257 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] nan nan 1 null [null] [null] null nan nan +SME 19 mass=163.03996512782399,rt=284.5 null null null null null null null null 163.03996512782399 1 0.0 ms_run[1]:10893964381505000125 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] nan nan 1 null [null] [null] null nan nan +SME 20 mass=163.077366639892006,rt=318.75 null null null null null null null null 163.077366639892006 1 0.0 ms_run[1]:13275112827998205361 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] nan nan 1 null [null] [null] null nan nan +SME 21 mass=163.077368733931991,rt=267.25 null null null null null null null null 163.077368733931991 1 0.0 ms_run[1]:3062115439946092212 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] nan nan 1 null [null] [null] null nan nan +SME 22 mass=165.056236591301996,rt=289.25 HMDB:HMDB14564 C17H20N2S1 CN(C)CCCN1C2=CC=CC=C2SC2=CC=CC=C12 InChI=1S/C17H20N2S/c1-18(2)12-7-13-19-14-8-3-5-10-16(14)20-17-11-6-4-9-15(17)19/h3-6,8-11H,7,12-13H2,1-2H3 Promazine null null [M+2Na]2+ 165.056236591301996 0 284.134719367999992 ms_run[1]:11350671704726741622 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] -2.082883898963334 -3.437936937018549e-04 1 C17H20N2S [Promazine] [HMDB:HMDB14564] M+2Na;2+ -3.437936937018549e-04 -2.082883898963334 +SME 23 mass=165.056236591301996,rt=289.25 HMDB:HMDB15202 C17H20N2S1 CC(CN1C2=CC=CC=C2SC2=CC=CC=C12)N(C)C InChI=1S/C17H20N2S/c1-13(18(2)3)12-19-14-8-4-6-10-16(14)20-17-11-7-5-9-15(17)19/h4-11,13H,12H2,1-3H3 Promethazine null null [M+2Na]2+ 165.056236591301996 0 284.134719367999992 ms_run[1]:11350671704726741622 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] -2.082883898963334 -3.437936937018549e-04 1 C17H20N2S [Promethazine] [HMDB:HMDB15202] M+2Na;2+ -3.437936937018549e-04 -2.082883898963334 +SME 24 mass=165.057161287125012,rt=258.75 HMDB:HMDB14564 C17H20N2S1 CN(C)CCCN1C2=CC=CC=C2SC2=CC=CC=C12 InChI=1S/C17H20N2S/c1-18(2)12-7-13-19-14-8-3-5-10-16(14)20-17-11-6-4-9-15(17)19/h3-6,8-11H,7,12-13H2,1-2H3 Promazine null null [M+2Na]2+ 165.057161287125012 0 284.134719367999992 ms_run[1]:425533765783660679 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] 3.519412118920981 5.809021293146088e-04 1 C17H20N2S [Promazine] [HMDB:HMDB14564] M+2Na;2+ 5.809021293146088e-04 3.519412118920981 +SME 25 mass=165.057161287125012,rt=258.75 HMDB:HMDB15202 C17H20N2S1 CC(CN1C2=CC=CC=C2SC2=CC=CC=C12)N(C)C InChI=1S/C17H20N2S/c1-13(18(2)3)12-19-14-8-4-6-10-16(14)20-17-11-7-5-9-15(17)19/h4-11,13H,12H2,1-3H3 Promethazine null null [M+2Na]2+ 165.057161287125012 0 284.134719367999992 ms_run[1]:425533765783660679 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] 3.519412118920981 5.809021293146088e-04 1 C17H20N2S [Promethazine] [HMDB:HMDB15202] M+2Na;2+ 5.809021293146088e-04 3.519412118920981 diff --git a/src/tests/class_tests/openms/data/AccurateMassSearchEngine_output2_mztabm_featureXML.mzTab b/src/tests/class_tests/openms/data/AccurateMassSearchEngine_output2_mztabm_featureXML.mzTab new file mode 100644 index 00000000000..e8b7cac968a --- /dev/null +++ b/src/tests/class_tests/openms/data/AccurateMassSearchEngine_output2_mztabm_featureXML.mzTab @@ -0,0 +1,66 @@ +MTD mzTab-version 2.0.0-M +MTD mzTab-ID local_id: 0 +MTD software[1] [MS, MS:1001456, analysis software, 2.7.0-pre-idf-ams-2022-01-13] +MTD quantification_method null +MTD ms_run[1]-location file://E:/NotARealFileJustATest.mzML +MTD ms_run[1]-scan_polarity[1] [MS, MS:1000130, positive scan, ] +MTD assay[1] assay_NotARealFileJustATest +MTD assay[1]-ms_run_ref ms_run[1] +MTD study_variable[1] study_variable_NotARealFileJustATest +MTD study_variable[1]-assay_refs assay[1] +MTD study_variable[1]-description study_variable_NotARealFileJustATest +MTD cv[1]-label PSI-MS +MTD cv[1]-full_name MS +MTD cv[1]-version 4.1.56 +MTD cv[1]-uri https://raw.githubusercontent.com/HUPO-PSI/psi-ms-CV/master/psi-ms.obo +MTD database[1] [, , HMDB, ] +MTD database[1]-prefix HMDB +MTD database[1]-version 3.5 +MTD database[1]-uri file:///Users/alka/Documents/work/software/openms_test/OpenMS/src/tests/class_tests/openms/data/reducedHMDBMapping.tsv +MTD small_molecule-quantification_unit [MS, MS:1001844, MS1 feature area, ] +MTD small_molecule_feature-quantification_unit [MS, MS:1001844, MS1 feature area, ] +MTD small_molecule-identification_reliability [MS, MS:1002896, compound identification confidence level, ] +MTD id_confidence_measure[1] [, , MassErrorPPMScore, ] +MTD id_confidence_measure[2] [, , MassErrorDaScore, ] + +SMH SML_ID SMF_ID_REFS database_identifier chemical_formula smiles inchi chemical_name uri theoretical_neutral_mass adduct_ions reliability best_id_confidence_measure best_id_confidence_value abundance_assay[1] abundance_study_variable[1] abundance_variation_study_variable[1] +SML 1 1 HMDB:HMDB39534 C17Cl1H25O2 CCCCCCCC(Cl)C(O)CC#CC#CC(O)C=C InChI=1S/C17H25ClO2/c1-3-5-6-7-10-13-16(18)17(20)14-11-8-9-12-15(19)4-2/h4,15-17,19-20H,2-3,5-7,10,13-14H2,1H3 Panaxydol chlorohydrin null 296.154308477499967 [M+H+Na]2+ 2 null null 3.631019921875e04 null null +SML 2 2 HMDB:HMDB01190 C10H9N1O1 O=CCC1=CNC2=CC=CC=C12 InChI=1S/C10H9NO/c12-6-5-8-7-11-10-4-2-1-3-9(8)10/h1-4,6-7,11H,5H2 Indoleacetaldehyde null 159.068414287099984 [M+H]1+ 2 null null 3.02411e07 null null +SML 3 3 HMDB:HMDB15400 C8H8N4 NNC1=NN=CC2=CC=CC=C12 InChI=1S/C8H8N4/c9-11-8-7-4-2-1-3-6(7)5-10-12-8/h1-5H,9H2,(H,11,12) Hydralazine null 160.074896255200002 [M]1+ 2 null null 3.02411e07 null null +SML 4 4 null null null null null null null null 2 null null 2.15267e06 null null +SML 5 5 HMDB:HMDB32394|HMDB:HMDB36073|HMDB:HMDB41009 C10H8O2|C10H8O2|C10H8O2 CC1=CC=C2OC(=O)C=CC2=C1|CC1=COC=C2C(C=O)=CC=C12|CC1=CC=CC2=C1OC(C=O)=C2 InChI=1S/C10H8O2/c1-7-2-4-9-8(6-7)3-5-10(11)12-9/h2-6H,1H3|InChI=1S/C10H8O2/c1-7-5-12-6-10-8(4-11)2-3-9(7)10/h2-6H,1H3|InChI=1S/C10H8O2/c1-7-3-2-4-8-5-9(6-11)12-10(7)8/h2-6H,1H3 6-Methylcoumarin|Viburtinal|7-Methyl-2-benzofurancarboxaldehyde null|null|null 160.052430255200022|160.052430255200022|160.052430255200022 [M+H]1+|[M+H]1+|[M+H]1+ 2 null null 1.76240992e08 null null +SML 6 6 null null null null null null null null 2 null null 1.8965900390625e04 null null +SML 7 7 null null null null null null null null 2 null null 1.94672e06 null null +SML 8 8 null null null null null null null null 2 null null 4.13215e05 null null +SML 9 9 null null null null null null null null 2 null null 1.81771008e08 null null +SML 10 10 HMDB:HMDB14564|HMDB:HMDB15202 C17H20N2S1|C17H20N2S1 CN(C)CCCN1C2=CC=CC=C2SC2=CC=CC=C12|CC(CN1C2=CC=CC=C2SC2=CC=CC=C12)N(C)C InChI=1S/C17H20N2S/c1-18(2)12-7-13-19-14-8-3-5-10-16(14)20-17-11-6-4-9-15(17)19/h3-6,8-11H,7,12-13H2,1-2H3|InChI=1S/C17H20N2S/c1-13(18(2)3)12-19-14-8-4-6-10-16(14)20-17-11-7-5-9-15(17)19/h4-11,13H,12H2,1-3H3 Promazine|Promethazine null|null 284.134719367999992|284.134719367999992 [M+2Na]2+|[M+2Na]2+ 2 null null 9.864879999999999e05 null null +SML 11 11 null null null null null null null null 2 null null 3.58375e04 null null + +SFH SMF_ID SME_ID_REFS SME_ID_REF_ambiguity_code adduct_ion isotopomer exp_mass_to_charge charge retention_time_in_seconds retention_time_in_seconds_start retention_time_in_seconds_end abundance_assay[1] opt_global_FWHM opt_global_dc_charge_adducts opt_global_label opt_global_masstrace_intensity opt_global_num_of_masstraces +SMF 1 1 null [M+H+Na]2+ null 160.07500553925999 0 281.25 null null 3.631019921875e04 6.25 H1Na1 T141 [3.6310164094607e04] 1 +SMF 2 2 null [M+H]1+ null 160.075018056482008 1 308.25 null null 3.02411e07 8.25 null T10_T33_T94 [3.02411478621068e07, 3.42369717701255e06, 2.37974096094367e05] 3 +SMF 3 3 null [M]1+ null 160.075018056482008 1 308.25 null null 3.02411e07 8.25 null T10_T33_T94 [3.02411478621068e07, 3.42369717701255e06, 2.37974096094367e05] 3 +SMF 4 4 null null null 160.134470512511996 1 316.5 null null 2.15267e06 9.5 H1Na1 T43_T106_T170 [2.15267481468212e06, 1.99952370346936e05, 1.38908896083682e04] 3 +SMF 5 5|6|7 1 [M+H]1+ null 161.06023172053699 1 284.75 null null 1.76240992e08 10.0 null T4_T13_T49 [1.76241220640656e08, 1.93463026786891e07, 1.6623527473399e06] 3 +SMF 6 8 null null null 161.132412915304997 0 261.25 null null 1.8965900390625e04 5.75 null T160 [1.89659494716721e04] 1 +SMF 7 9 null null null 163.03996512782399 1 284.5 null null 1.94672e06 8.25 null T41_T102 [1.9467199301806e06, 1.52141576471626e05] 2 +SMF 8 10 null null null 163.077366639892006 1 318.75 null null 4.13215e05 5.5 null T69_T134 [4.13215012682643e05, 4.54567213020705e04] 2 +SMF 9 11 null null null 163.077368733931991 1 267.25 null null 1.81771008e08 9.5 null T3_T12_T48_T61_T101 [1.81771052539316e08, 1.99951640161074e07, 1.7458622245618e06, 1.03241388262815e06, 2.30932968791916e05] 5 +SMF 10 12|13 1 [M+2Na]2+ null 165.056236591301996 0 289.25 null null 9.864879999999999e05 9.5 Na2 T59 [9.86488096925674e05] 1 +SMF 11 14 null null null 165.057161287125012 0 258.75 null null 3.58375e04 3.5 Na1 T121 [3.58374671685804e04] 1 + +SEH SME_ID evidence_input_id database_identifier chemical_formula smiles inchi chemical_name uri derivatized_form adduct_ion exp_mass_to_charge charge theoretical_mass_to_charge spectra_ref identification_method ms_level id_confidence_measure[1] id_confidence_measure[2] rank opt_global_chemical_formula opt_global_description opt_global_identifier opt_global_modifications opt_global_mz_error_Da opt_global_mz_error_ppm +SME 1 mass=160.07500553925999,rt=281.25 HMDB:HMDB39534 C17Cl1H25O2 CCCCCCCC(Cl)C(O)CC#CC#CC(O)C=C InChI=1S/C17H25ClO2/c1-3-5-6-7-10-13-16(18)17(20)14-11-8-9-12-15(19)4-2/h4,15-17,19-20H,2-3,5-7,10,13-14H2,1H3 Panaxydol chlorohydrin null null [M+H+Na]2+ 160.07500553925999 0 296.154308477499967 ms_run[1]:6565892897288149707 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] -2.47953607880854 -3.969127357095204e-04 1 C17H25ClO2 [Panaxydol chlorohydrin] [HMDB:HMDB39534] M+H+Na;2+ -3.969127357095204e-04 -2.47953607880854 +SME 2 mass=160.075018056482008,rt=308.25 HMDB:HMDB01190 C10H9N1O1 O=CCC1=CNC2=CC=CC=C12 InChI=1S/C10H9NO/c12-6-5-8-7-11-10-4-2-1-3-9(8)10/h1-4,6-7,11H,5H2 Indoleacetaldehyde null null [M+H]1+ 160.075018056482008 1 159.068414287099984 ms_run[1]:12112469906802307848 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] -4.199953860450771 -6.72310513721186e-04 1 C10H9NO [Indoleacetaldehyde] [HMDB:HMDB01190] M+H;1+ -6.72310513721186e-04 -4.199953860450771 +SME 3 mass=160.075018056482008,rt=308.25 HMDB:HMDB15400 C8H8N4 NNC1=NN=CC2=CC=CC=C12 InChI=1S/C8H8N4/c9-11-8-7-4-2-1-3-6(7)5-10-12-8/h1-5H,9H2,(H,11,12) Hydralazine null null [M]1+ 160.075018056482008 1 160.074896255200002 ms_run[1]:12112469906802307848 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] 4.187806453331455 6.703603862945329e-04 1 C8H8N4 [Hydralazine] [HMDB:HMDB15400] M;1+ 6.703603862945329e-04 4.187806453331455 +SME 4 mass=160.134470512511996,rt=316.5 null null null null null null null null 160.134470512511996 1 0.0 ms_run[1]:5576845964105266947 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] nan nan 1 null [null] [null] null nan nan +SME 5 mass=161.06023172053699,rt=284.75 HMDB:HMDB32394 C10H8O2 CC1=CC=C2OC(=O)C=CC2=C1 InChI=1S/C10H8O2/c1-7-2-4-9-8(6-7)3-5-10(11)12-9/h2-6H,1H3 6-Methylcoumarin null null [M+H]1+ 161.06023172053699 1 160.052430255200022 ms_run[1]:2737147212367465006 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] 3.26443251694974 5.257685412800583e-04 1 C10H8O2 [6-Methylcoumarin] [HMDB:HMDB32394] M+H;1+ 5.257685412800583e-04 3.26443251694974 +SME 6 mass=161.06023172053699,rt=284.75 HMDB:HMDB36073 C10H8O2 CC1=COC=C2C(C=O)=CC=C12 InChI=1S/C10H8O2/c1-7-5-12-6-10-8(4-11)2-3-9(7)10/h2-6H,1H3 Viburtinal null null [M+H]1+ 161.06023172053699 1 160.052430255200022 ms_run[1]:2737147212367465006 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] 3.26443251694974 5.257685412800583e-04 1 C10H8O2 [Viburtinal] [HMDB:HMDB36073] M+H;1+ 5.257685412800583e-04 3.26443251694974 +SME 7 mass=161.06023172053699,rt=284.75 HMDB:HMDB41009 C10H8O2 CC1=CC=CC2=C1OC(C=O)=C2 InChI=1S/C10H8O2/c1-7-3-2-4-8-5-9(6-11)12-10(7)8/h2-6H,1H3 7-Methyl-2-benzofurancarboxaldehyde null null [M+H]1+ 161.06023172053699 1 160.052430255200022 ms_run[1]:2737147212367465006 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] 3.26443251694974 5.257685412800583e-04 1 C10H8O2 [7-Methyl-2-benzofurancarboxaldehyde] [HMDB:HMDB41009] M+H;1+ 5.257685412800583e-04 3.26443251694974 +SME 8 mass=161.132412915304997,rt=261.25 null null null null null null null null 161.132412915304997 0 0.0 ms_run[1]:12964529961937795257 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] nan nan 1 null [null] [null] null nan nan +SME 9 mass=163.03996512782399,rt=284.5 null null null null null null null null 163.03996512782399 1 0.0 ms_run[1]:10893964381505000125 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] nan nan 1 null [null] [null] null nan nan +SME 10 mass=163.077366639892006,rt=318.75 null null null null null null null null 163.077366639892006 1 0.0 ms_run[1]:13275112827998205361 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] nan nan 1 null [null] [null] null nan nan +SME 11 mass=163.077368733931991,rt=267.25 null null null null null null null null 163.077368733931991 1 0.0 ms_run[1]:3062115439946092212 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] nan nan 1 null [null] [null] null nan nan +SME 12 mass=165.056236591301996,rt=289.25 HMDB:HMDB14564 C17H20N2S1 CN(C)CCCN1C2=CC=CC=C2SC2=CC=CC=C12 InChI=1S/C17H20N2S/c1-18(2)12-7-13-19-14-8-3-5-10-16(14)20-17-11-6-4-9-15(17)19/h3-6,8-11H,7,12-13H2,1-2H3 Promazine null null [M+2Na]2+ 165.056236591301996 0 284.134719367999992 ms_run[1]:11350671704726741622 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] -2.082883898963334 -3.437936937018549e-04 1 C17H20N2S [Promazine] [HMDB:HMDB14564] M+2Na;2+ -3.437936937018549e-04 -2.082883898963334 +SME 13 mass=165.056236591301996,rt=289.25 HMDB:HMDB15202 C17H20N2S1 CC(CN1C2=CC=CC=C2SC2=CC=CC=C12)N(C)C InChI=1S/C17H20N2S/c1-13(18(2)3)12-19-14-8-4-6-10-16(14)20-17-11-7-5-9-15(17)19/h4-11,13H,12H2,1-3H3 Promethazine null null [M+2Na]2+ 165.056236591301996 0 284.134719367999992 ms_run[1]:11350671704726741622 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] -2.082883898963334 -3.437936937018549e-04 1 C17H20N2S [Promethazine] [HMDB:HMDB15202] M+2Na;2+ -3.437936937018549e-04 -2.082883898963334 +SME 14 mass=165.057161287125012,rt=258.75 null null null null null null null null 165.057161287125012 0 0.0 ms_run[1]:425533765783660679 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] nan nan 1 null [null] [null] null nan nan diff --git a/src/tests/class_tests/openms/data/FIAMS_output/SerumTest_10.mzTab b/src/tests/class_tests/openms/data/FIAMS_output/SerumTest_10.mzTab new file mode 100644 index 00000000000..d144e3fe0c4 --- /dev/null +++ b/src/tests/class_tests/openms/data/FIAMS_output/SerumTest_10.mzTab @@ -0,0 +1,4 @@ +MTD mzTab-version 1.0.0 +MTD mzTab-mode null +MTD mzTab-type null +MTD description null diff --git a/src/tests/class_tests/openms/data/FIAMS_output/SerumTest_merged_10.mzML b/src/tests/class_tests/openms/data/FIAMS_output/SerumTest_merged_10.mzML new file mode 100644 index 00000000000..7194bded116 --- /dev/null +++ b/src/tests/class_tests/openms/data/FIAMS_output/SerumTest_merged_10.mzML @@ -0,0 +1,82 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + IcIixdN+W0Ah+vIu135bQCEyw5jafltAIWqTAt5+W0AhomNs4X5bQCHaM9bkfltAIRIEQOh+W0AhStSp635bQCGCpBPvfltAIbp0ffJ+W0Ah8kTn9X5bQCEqFVH5fltAIWLluvx+W0AhmrUkAH9bQCHShY4Df1tAIQpW+AZ/W0AhQiZiCn9bQCF69ssNf1tAIbLGNRF/W0Ah6pafFH9bQCEiZwkYf1tAIVo3cxt/W0AhkgfdHn9bQCHK10Yif1tAIQKosCV/W0AhOngaKX9bQCFySIQsf1tAIaoY7i9/W0Ah4uhXM39bQCEaucE2f1tAIVKJKzp/W0AhilmVPX9bQCHCKf9Af1tAIfr5aER/W0AhMsrSR39bQCFqmjxLf1tAIaJqpk5/W0Ah2joQUn9bQCESC3pVf1tAIUrb41h/W0AhgqtNXH9bQCG6e7dff1tAIfJLIWN/W0AhKhyLZn9bQCFi7PRpf1tAIZq8Xm1/W0Ah0ozIcH9bQCEKXTJ0f1tAIUItnHd/W0Ahev0Fe39bQCGyzW9+f1tAIeqd2YF/W0AhIm5DhX9bQCFaPq2If1tAIZIOF4x/W0Ahyt6Aj39bQCECr+qSf1tAITp/VJZ/W0Ahck++mX9bQCGqHyidf1tAIeLvkaB/W0AhGsD7o39bQCFSkGWnf1tAIYpgz6p/W0AhwjA5rn9bQCH6AKOxf1tAITLRDLV/W0AhaqF2uH9bQCGiceC7f1tAIdpBSr9/W0AhEhK0wn9bQCFK4h3Gf1tAIYKyh8l/W0AhuoLxzH9bQCHyUlvQf1tAISojxdN/W0AhYvMu139bQCGaw5jaf1tAIdKTAt5/W0AhCmRs4X9bQCFCNNbkf1tAIXoEQOh/W0AhstSp639bQCHqpBPvf1tAISJ1ffJ/W0AhWkXn9X9bQCGSFVH5f1tAIcrluvx/W0A= + + + + + + AAAAAAAAAADsYE1Bf97BRNsWmkVe1QBG1s0BRkYIkUUklAhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6coUN3i75ErGTkRMeRnkRNplRDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACN8g0O9C7BFU1IVR+rkxEfJQRZIREUUSA== + + + + + + + + + 3028 + + +5906 +0 + \ No newline at end of file diff --git a/src/tests/class_tests/openms/data/FIAMS_output/SerumTest_picked_10.mzML b/src/tests/class_tests/openms/data/FIAMS_output/SerumTest_picked_10.mzML new file mode 100644 index 00000000000..749145e87b1 --- /dev/null +++ b/src/tests/class_tests/openms/data/FIAMS_output/SerumTest_picked_10.mzML @@ -0,0 +1,82 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + bfm4QeZ+W0D97Cl/qn9bQCXhB13hf1tA + + + + + + vuDoRZpnt0T31HtE + + + + + + + + + 3028 + + +4533 +0 + \ No newline at end of file diff --git a/src/tests/class_tests/openms/data/FIAMS_output/SerumTest_signal_to_noise_10.mzML b/src/tests/class_tests/openms/data/FIAMS_output/SerumTest_signal_to_noise_10.mzML new file mode 100644 index 00000000000..d53ce2fb64a --- /dev/null +++ b/src/tests/class_tests/openms/data/FIAMS_output/SerumTest_signal_to_noise_10.mzML @@ -0,0 +1,82 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + bfm4QeZ+W0D97Cl/qn9bQCXhB13hf1tA + + + + + + mme3RJpnt0SaZ7dE + + + + + + + + + 3028 + + +4539 +0 + \ No newline at end of file diff --git a/src/tests/class_tests/openms/data/FeatureXMLFileOMStest_1.featureXML b/src/tests/class_tests/openms/data/FeatureXMLFileOMStest_1.featureXML new file mode 100644 index 00000000000..d5747ca1b7e --- /dev/null +++ b/src/tests/class_tests/openms/data/FeatureXMLFileOMStest_1.featureXML @@ -0,0 +1,111 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 25.0 + 0.0 + 300.0 + 0.0 + 0.0 + 0.0 + 0 + + + 24.0 + 0.0 + 320.0 + 0.1 + 0.0 + 0.1 + 1 + + + 23.0 + 11.0 + 11320.0 + 0.1 + 0.0 + 0.1 + 2 + + + + + + + + + + + + + + + + 0.0 + 35.0 + 500.0 + 0.0 + 0.0 + 0.0 + 0 + + + + + + + + + + + + diff --git a/src/tests/class_tests/openms/data/FeatureXMLFile_1.featureXML b/src/tests/class_tests/openms/data/FeatureXMLFile_1.featureXML index 48ce89a91eb..f1cbaf9dc8c 100644 --- a/src/tests/class_tests/openms/data/FeatureXMLFile_1.featureXML +++ b/src/tests/class_tests/openms/data/FeatureXMLFile_1.featureXML @@ -1,124 +1,124 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 25.0 - 0.0 - 300.0 - 0.0 - 0.0 - 0.0 - 0 - - - 24.0 - 0.0 - 320.0 - 0.1 - 0.0 - 0.1 - 1 - - - 23.0 - 11.0 - 11320.0 - 0.1 - 0.0 - 0.1 - 2 - - - - - - - - - - - - - - - - - - - - - - - - 0.0 - 35.0 - 500.0 - 0.0 - 0.0 - 0.0 - 0 - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 25.0 + 0.0 + 300.0 + 0.0 + 0.0 + 0.0 + 0 + + + 24.0 + 0.0 + 320.0 + 0.1 + 0.0 + 0.1 + 1 + + + 23.0 + 11.0 + 11320.0 + 0.1 + 0.0 + 0.1 + 2 + + + + + + + + + + + + + + + + + + + + + + + + 0.0 + 35.0 + 500.0 + 0.0 + 0.0 + 0.0 + 0 + + + + + + + + + + + + diff --git a/src/tests/class_tests/openms/data/MzTabMFile_input_1.oms b/src/tests/class_tests/openms/data/MzTabMFile_input_1.oms new file mode 100644 index 00000000000..441632067d6 Binary files /dev/null and b/src/tests/class_tests/openms/data/MzTabMFile_input_1.oms differ diff --git a/src/tests/class_tests/openms/data/MzTabMFile_output_1.mztab b/src/tests/class_tests/openms/data/MzTabMFile_output_1.mztab new file mode 100644 index 00000000000..9efbafec20b --- /dev/null +++ b/src/tests/class_tests/openms/data/MzTabMFile_output_1.mztab @@ -0,0 +1,509 @@ +MTD mzTab-version 2.0.0-M +MTD mzTab-ID local_id: 14677498592798891241 +MTD software[1] [MS, MS:1001456, analysis software, 2.7.0-pre-idf-ams-2021-12-20] +MTD software[2] [MS, MS:1002169, TOPP FeatureFinderMetabo, 2.4.0-nightly-2019-07-17] +MTD software[3] [MS, MS:1001456, analysis software, 2.4.0-nightly-2019-07-17] +MTD software[4] [MS, MS:1001456, analysis software, 2.7.0-pre-idf-ams-2021-12-20] +MTD quantification_method null +MTD ms_run[1]-location file://I:/OpenSWATH_Metabolomics_data/20181121_full_data/04_PestMixes_individually_Solvent_DDA_20-50/2012_02_03_PStd_10_1-50.wiff +MTD ms_run[1]-scan_polarity[1] [MS, MS:1000130, positive scan, ] +MTD assay[1] assay_2012_02_03_PStd_10_1-50 +MTD assay[1]-ms_run_ref ms_run[1] +MTD study_variable[1] study_variable_2012_02_03_PStd_10_1-50 +MTD study_variable[1]-assay_refs assay[1] +MTD study_variable[1]-description study_variable_2012_02_03_PStd_10_1-50 +MTD cv[1]-label PSI-MS +MTD cv[1]-full_name MS +MTD cv[1]-version 4.1.56 +MTD cv[1]-uri https://raw.githubusercontent.com/HUPO-PSI/psi-ms-CV/master/psi-ms.obo +MTD database[1] [, , HMDB, ] +MTD database[1]-prefix HMDB +MTD database[1]-version 3.5 +MTD database[1]-uri null +MTD small_molecule-quantification_unit [MS, MS:1001844, MS1 feature area, ] +MTD small_molecule_feature-quantification_unit [MS, MS:1001844, MS1 feature area, ] +MTD small_molecule-identification_reliability [MS, MS:1002896, compound identification confidence level, ] + +SMH SML_ID SMF_ID_REFS database_identifier chemical_formula smiles inchi chemical_name uri theoretical_neutral_mass adduct_ions reliability best_id_confidence_measure best_id_confidence_value abundance_assay[1] abundance_study_variable[1] abundance_variation_study_variable[1] +SML 1 1 HMDB:HMDB00043|HMDB:HMDB00883|HMDB:HMDB01382|HMDB:HMDB02141|HMDB:HMDB03355|HMDB:HMDB13716|HMDB:HMDB15550|HMDB:HMDB34366 C5H11N1O2|C5H11N1O2|C5H11N1O2|C5H11N1O2|C5H11N1O2|C5H11N1O2|C5H11N1O2|C5H11N1O2 Betaine|L-Valine|Vaporole|N-Methyl-a-aminoisobutyric acid|5-Aminopentanoic acid|Norvaline|Amyl Nitrite|()-Valine InChI=1S/C5H11NO2/c1-6(2,3)4-5(7)8/h4H2,1-3H3|InChI=1S/C5H11NO2/c1-3(2)4(6)5(7)8/h3-4H,6H2,1-2H3,(H,7,8)/t4-/m0/s1|InChI=1S/C5H11NO2/c1-5(2)3-4-8-6-7/h5H,3-4H2,1-2H3|InChI=1S/C5H11NO2/c1-5(2,6-3)4(7)8/h6H,1-3H3,(H,7,8)|InChI=1S/C5H11NO2/c6-4-2-1-3-5(7)8/h1-4,6H2,(H,7,8)|InChI=1S/C5H11NO2/c1-2-3-4(6)5(7)8/h4H,2-3,6H2,1H3,(H,7,8)/t4-/m1/s1|InChI=1S/C5H11NO2/c1-2-3-4-5-8-6-7/h2-5H2,1H3|InChI=1S/C5H11NO2/c1-3(2)4(6)5(7)8/h3-4H,6H2,1-2H3,(H,7,8) Betaine|L-Valine|Vaporole|N-Methyl-a-aminoisobutyric acid|5-Aminopentanoic acid|Norvaline|Amyl Nitrite|()-Valine null|null|null|null|null|null|null|null 117.078979350899999|117.078979350899999|117.078979350899999|117.078979350899999|117.078979350899999|117.078979350899999|117.078979350899999|117.078979350899999 [M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+ 2 null null 406.5467529296875 null null +SML 2 2 HMDB:HMDB00162|HMDB:HMDB03411|HMDB:HMDB12880|HMDB:HMDB30409|HMDB:HMDB34208 C5H9N1O2|C5H9N1O2|C5H9N1O2|C5H9N1O2|C5H9N1O2 L-Proline|D-Proline|Acetamidopropanal|4-Amino-2-methylenebutanoic acid|Pterolactam InChI=1S/C5H9NO2/c7-5(8)4-2-1-3-6-4/h4,6H,1-3H2,(H,7,8)/t4-/m0/s1|InChI=1S/C5H9NO2/c7-5(8)4-2-1-3-6-4/h4,6H,1-3H2,(H,7,8)/t4-/m1/s1|InChI=1S/C5H9NO2/c1-5(8)6-3-2-4-7/h4H,2-3H2,1H3,(H,6,8)|InChI=1S/C5H9NO2/c1-4(2-3-6)5(7)8/h1-3,6H2,(H,7,8)|InChI=1S/C5H9NO2/c1-8-5-3-2-4(7)6-5/h5H,2-3H2,1H3,(H,6,7) L-Proline|D-Proline|Acetamidopropanal|4-Amino-2-methylenebutanoic acid|Pterolactam null|null|null|null|null 115.06332928709999|115.06332928709999|115.06332928709999|115.06332928709999|115.06332928709999 [M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+ 2 null null 227.974411010742188 null null +SML 3 3 HMDB:HMDB05033 C16H14N2O3S1 Valdecoxib InChI=1S/C16H14N2O3S/c1-11-15(12-7-9-14(10-8-12)22(17,19)20)16(18-21-11)13-5-3-2-4-6-13/h2-10H,1H3,(H2,17,19,20) Valdecoxib null 314.072514176600009 [M+Na]1+ 2 null null 464.264129638671875 null null +SML 4 4 HMDB:HMDB30800 C9H8O5 3-Methoxy-4,5-methylenedioxybenzoic acid InChI=1S/C9H8O5/c1-12-6-2-5(9(10)11)3-7-8(6)14-4-13-7/h2-3H,4H2,1H3,(H,10,11) 3-Methoxy-4,5-methylenedioxybenzoic acid null 196.037175255199998 [M+Na]1+ 2 null null 172.788894653320313 null null +SML 5 5 HMDB:HMDB41777|HMDB:HMDB41778 C16H12O9S1|C16H12O9S1 Tectorigenin 4'-sulfate|Tectorigenin 7-sulfate InChI=1S/C16H12O9S/c1-23-16-11(17)6-12-13(15(16)19)14(18)10(7-24-12)8-2-4-9(5-3-8)25-26(20,21)22/h2-7,17,19H,1H3,(H,20,21,22)|InChI=1S/C16H12O9S/c1-23-16-12(25-26(20,21)22)6-11-13(15(16)19)14(18)10(7-24-11)8-2-4-9(17)5-3-8/h2-7,17,19H,1H3,(H,20,21,22) Tectorigenin 4'-sulfate|Tectorigenin 7-sulfate null|null 380.020206112799997|380.020206112799997 [M+Na]1+|[M+Na]1+ 2 null null 464.30322265625 null null +SML 6 6 HMDB:HMDB32330 C4H4O2 4-Hydroxy-2-butenoic acid gamma-lactone InChI=1S/C4H4O2/c5-4-2-1-3-6-4/h1-2H,3H2 4-Hydroxy-2-butenoic acid gamma-lactone null 84.021130127600003 [M+H]1+ 2 null null 542.72381591796875 null null +SML 7 7 HMDB:HMDB00159|HMDB:HMDB01007|HMDB:HMDB04992|HMDB:HMDB06044|HMDB:HMDB33485|HMDB:HMDB33589|HMDB:HMDB34169|HMDB:HMDB34710 C9H11N1O2|C9H11N1O2|C9H11N1O2|C9H11N1O2|C9H11N1O2|C9H11N1O2|C9H11N1O2|C9H11N1O2 L-Phenylalanine|3-Pyridinebutanoic acid|Benzocaine|Norsalsolinol|Gentiatibetine|Ethyl 2-aminobenzoate|Methyl N-methylanthranilate|()-Phenylalanine InChI=1S/C9H11NO2/c10-8(9(11)12)6-7-4-2-1-3-5-7/h1-5,8H,6,10H2,(H,11,12)/t8-/m0/s1|InChI=1S/C9H11NO2/c11-9(12)5-1-3-8-4-2-6-10-7-8/h2,4,6-7H,1,3,5H2,(H,11,12)|InChI=1S/C9H11NO2/c1-2-12-9(11)7-3-5-8(10)6-4-7/h3-6H,2,10H2,1H3|InChI=1S/C9H11NO2/c11-8-3-6-1-2-10-5-7(6)4-9(8)12/h3-4,10-12H,1-2,5H2|InChI=1S/C9H11NO2/c1-6-8-7(2-4-10-6)3-5-12-9(8)11/h2,4,9,11H,3,5H2,1H3|InChI=1S/C9H11NO2/c1-2-12-9(11)7-5-3-4-6-8(7)10/h3-6H,2,10H2,1H3|InChI=1S/C9H11NO2/c1-10-8-6-4-3-5-7(8)9(11)12-2/h3-6,10H,1-2H3|InChI=1S/C9H11NO2/c10-8(9(11)12)6-7-4-2-1-3-5-7/h1-5,8H,6,10H2,(H,11,12) L-Phenylalanine|3-Pyridinebutanoic acid|Benzocaine|Norsalsolinol|Gentiatibetine|Ethyl 2-aminobenzoate|Methyl N-methylanthranilate|()-Phenylalanine null|null|null|null|null|null|null|null 165.078979350900028|165.078979350900028|165.078979350900028|165.078979350900028|165.078979350900028|165.078979350900028|165.078979350900028|165.078979350900028 [M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+ 2 null null 551.1646728515625 null null +SML 8 8 HMDB:HMDB00466|HMDB:HMDB34236 C9H9N1|C9H9N1 3-Methylindole|Benzenepropanenitrile InChI=1S/C9H9N/c1-7-6-10-9-5-3-2-4-8(7)9/h2-6,10H,1H3|InChI=1S/C9H9N/c10-8-4-7-9-5-2-1-3-6-9/h1-3,5-6H,4,7H2 3-Methylindole|Benzenepropanenitrile null|null 131.073499287099992|131.073499287099992 [M+H]1+|[M+H]1+ 2 null null 528.05902099609375 null null +SML 9 9 HMDB:HMDB00929|HMDB:HMDB13609|HMDB:HMDB13840|HMDB:HMDB14892|HMDB:HMDB30396 C11H12N2O2|C11H12N2O2|C11H12N2O2|C11H12N2O2|C11H12N2O2 L-Tryptophan|D-Tryptophan|3-Hydroxymethylantipyrine|Ethotoin|()-Tryptophan InChI=1S/C11H12N2O2/c12-9(11(14)15)5-7-6-13-10-4-2-1-3-8(7)10/h1-4,6,9,13H,5,12H2,(H,14,15)/t9-/m0/s1|InChI=1S/C11H12N2O2/c12-9(11(14)15)5-7-6-13-10-4-2-1-3-8(7)10/h1-4,6,9,13H,5,12H2,(H,14,15)/t9-/m1/s1|InChI=1S/C11H12N2O2/c1-12-10(8-14)7-11(15)13(12)9-5-3-2-4-6-9/h2-7,14H,8H2,1H3|InChI=1S/C11H12N2O2/c1-2-13-10(14)9(12-11(13)15)8-6-4-3-5-7-8/h3-7,9H,2H2,1H3,(H,12,15)|InChI=1S/C11H12N2O2/c12-9(11(14)15)5-7-6-13-10-4-2-1-3-8(7)10/h1-4,6,9,13H,5,12H2,(H,14,15) L-Tryptophan|D-Tryptophan|3-Hydroxymethylantipyrine|Ethotoin|()-Tryptophan null|null|null|null|null 204.089878382800009|204.089878382800009|204.089878382800009|204.089878382800009|204.089878382800009 [M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+ 2 null null 713.48248291015625 null null +SML 10 10 HMDB:HMDB11664|HMDB:HMDB33731|HMDB:HMDB34244 C9H7N1|C9H7N1|C9H7N1 3-Methylene-indolenine|Quinoline|Isoquinoline InChI=1S/C9H7N/c1-7-6-10-9-5-3-2-4-8(7)9/h2-6H,1H2|InChI=1S/C9H7N/c1-2-6-9-8(4-1)5-3-7-10-9/h1-7H|InChI=1S/C9H7N/c1-2-4-9-7-10-6-5-8(9)3-1/h1-7H 3-Methylene-indolenine|Quinoline|Isoquinoline null|null|null 129.057849223299996|129.057849223299996|129.057849223299996 [M+H]1+|[M+H]1+|[M+H]1+ 2 null null 121.024604797363281 null null +SML 11 11 HMDB:HMDB32973 C6H9N1 2,5-Dimethyl-1H-pyrrole InChI=1S/C6H9N/c1-5-3-4-6(2)7-5/h3-4,7H,1-2H3 2,5-Dimethyl-1H-pyrrole null 95.073499287099992 [M+H]1+ 2 null null 238.058700561523438 null null +SML 12 12 HMDB:HMDB29737 C9H7N1O1 1H-Indole-3-carboxaldehyde InChI=1S/C9H7NO/c11-6-7-5-10-9-4-2-1-3-8(7)9/h1-6,10H 1H-Indole-3-carboxaldehyde null 145.052764223299988 [M+H]1+ 2 null null 244.981048583984375 null null +SML 13 13 HMDB:HMDB15086 C6H7N3O1 Isoniazid InChI=1S/C6H7N3O/c7-9-6(10)5-1-3-8-4-2-5/h1-4H,7H2,(H,9,10) Isoniazid null 137.058912223299984 [M+H]1+ 2 null null 1103.15380859375 null null +SML 14 14 HMDB:HMDB00378|HMDB:HMDB00688|HMDB:HMDB13128|HMDB:HMDB41993 C12H23N1O4|C12H23N1O4|C12H23N1O4|C12H23N1O4 2-Methylbutyroylcarnitine|Isovalerylcarnitine|Valerylcarnitine|pivaloylcarnitine InChI=1S/C12H23NO4/c1-6-9(2)12(16)17-10(7-11(14)15)8-13(3,4)5/h9-10H,6-8H2,1-5H3|InChI=1S/C12H23NO4/c1-9(2)6-12(16)17-10(7-11(14)15)8-13(3,4)5/h9-10H,6-8H2,1-5H3|InChI=1S/C12H23NO4/c1-5-6-7-12(16)17-10(8-11(14)15)9-13(2,3)4/h10H,5-9H2,1-4H3/t10-/m0/s1|InChI=1S/C12H23NO4/c1-12(2,3)11(16)17-9(7-10(14)15)8-13(4,5)6/h9H,7-8H2,1-6H3 2-Methylbutyroylcarnitine|Isovalerylcarnitine|Valerylcarnitine|pivaloylcarnitine null|null|null|null 245.162709733699984|245.162709733699984|245.162709733699984|245.162709733699984 [M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+ 2 null null 442.2005615234375 null null +SML 15 15 HMDB:HMDB01406|HMDB:HMDB31861 C6H6N2O1|C6H6N2O1 Niacinamide|2-Acetylpyrazine InChI=1S/C6H6N2O/c7-6(9)5-2-1-3-8-4-5/h1-4H,(H2,7,9)|InChI=1S/C6H6N2O/c1-5(9)6-4-7-2-3-8-6/h2-4H,1H3 Niacinamide|2-Acetylpyrazine null|null 122.048013191400003|122.048013191400003 [M+H]1+|[M+H]1+ 2 null null 323.958984375 null null +SML 16 16 HMDB:HMDB00001|HMDB:HMDB00479 C7H11N3O2|C7H11N3O2 1-Methylhistidine|3-Methylhistidine InChI=1S/C7H11N3O2/c1-10-3-5(9-4-10)2-6(8)7(11)12/h3-4,6H,2,8H2,1H3,(H,11,12)/t6-/m0/s1|InChI=1S/C7H11N3O2/c1-10-4-9-3-5(10)2-6(8)7(11)12/h3-4,6H,2,8H2,1H3,(H,11,12)/t6-/m0/s1 1-Methylhistidine|3-Methylhistidine null|null 169.085127350900024|169.085127350900024 [M+Na]1+|[M+Na]1+ 2 null null 4436.0439453125 null null +SML 17 17 HMDB:HMDB06543 C10H13N3 Debrisoquine InChI=1S/C10H13N3/c11-10(12)13-6-5-8-3-1-2-4-9(8)7-13/h1-4H,5-7H2,(H3,11,12) Debrisoquine null 175.110947414700007 [M+H]1+ 2 null null 126.029853820800781 null null +SML 18 18 HMDB:HMDB36159|HMDB:HMDB37560 C15H22O6|C15H22O6 Toxin T2 tetrol|3,7,8,15-Scirpenetetrol InChI=1S/C15H22O6/c1-7-3-9-14(5-16,4-8(7)17)13(2)11(19)10(18)12(21-9)15(13)6-20-15/h3,8-12,16-19H,4-6H2,1-2H3|InChI=1S/C15H22O6/c1-7-3-9-14(5-16,11(19)10(7)18)13(2)4-8(17)12(21-9)15(13)6-20-15/h3,8-12,16-19H,4-6H2,1-2H3 Toxin T2 tetrol|3,7,8,15-Scirpenetetrol null|null 298.141640701800043|298.141640701800043 [M+H]1+|[M+H]1+ 2 null null 3.422173046875e04 null null +SML 19 19 HMDB:HMDB34276 C11H18N2O2 L,L-Cyclo(leucylprolyl) InChI=1S/C11H18N2O2/c1-7(2)6-8-11(15)13-5-3-4-9(13)10(14)12-8/h7-9H,3-6H2,1-2H3,(H,12,14) L,L-Cyclo(leucylprolyl) null 210.136828574199996 [M+H]1+ 2 null null 429.018585205078125 null null +SML 20 20 HMDB:HMDB00734 C11H9N1O2 Indoleacrylic acid InChI=1S/C11H9NO2/c13-11(14)6-5-9-7-8-3-1-2-4-10(8)12-9/h1-7,12H,(H,13,14)/b6-5+ Indoleacrylic acid null 187.063329287100004 [M+H]1+ 2 null null 179.279830932617188 null null +SML 21 21 HMDB:HMDB00671|HMDB:HMDB04096|HMDB:HMDB11621|HMDB:HMDB32755 C11H11N1O3|C11H11N1O3|C11H11N1O3|C11H11N1O3 Indolelactic acid|5-Methoxyindoleacetate|Cinnamoylglycine|Methyl 1-methoxy-1H-indole-3-carboxylate InChI=1S/C11H11NO3/c13-10(11(14)15)5-7-6-12-9-4-2-1-3-8(7)9/h1-4,6,10,12-13H,5H2,(H,14,15)|InChI=1S/C11H11NO3/c1-15-8-2-3-10-9(5-8)7(6-12-10)4-11(13)14/h2-3,5-6,12H,4H2,1H3,(H,13,14)|InChI=1S/C11H11NO3/c13-10(12-8-11(14)15)7-6-9-4-2-1-3-5-9/h1-7H,8H2,(H,12,13)(H,14,15)/b7-6+|InChI=1S/C11H11NO3/c1-14-11(13)9-7-12(15-2)10-6-4-3-5-8(9)10/h3-7H,1-2H3 Indolelactic acid|5-Methoxyindoleacetate|Cinnamoylglycine|Methyl 1-methoxy-1H-indole-3-carboxylate null|null|null|null 205.073894350899991|205.073894350899991|205.073894350899991|205.073894350899991 [M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+ 2 null null 203.848312377929688 null null +SML 22 22 HMDB:HMDB13324 C15H27N1O4 2-Octenoylcarnitine InChI=1S/C15H27NO4/c1-5-6-7-8-9-10-15(19)20-13(16(2,3)4)11-12-14(17)18/h9-10,13H,5-8,11-12H2,1-4H3/b10-9+/t13-/m0/s1 2-Octenoylcarnitine null 285.194009861300003 [M+H]1+ 2 null null 182.929275512695313 null null +SML 23 23 HMDB:HMDB32013|HMDB:HMDB41024 C14H20O8|C14H20O8 Vanilloloside|2-(3,4-Dihydroxyphenyl)ethanol; 1-O-b-D-Glucopyranoside InChI=1S/C14H20O8/c1-20-9-4-7(5-15)2-3-8(9)21-14-13(19)12(18)11(17)10(6-16)22-14/h2-4,10-19H,5-6H2,1H3|InChI=1S/C14H20O8/c15-6-10-11(18)12(19)13(20)14(22-10)21-4-3-7-1-2-8(16)9(17)5-7/h1-2,5,10-20H,3-4,6H2 Vanilloloside|2-(3,4-Dihydroxyphenyl)ethanol; 1-O-b-D-Glucopyranoside null|null 316.115820638000002|316.115820638000002 [M+Na]1+|[M+Na]1+ 2 null null 2335.92578125 null null +SML 24 24 EXTRA:EXTRA003 (1)H8(2)H6C12N4O4S1 Sulfadimethoxine-d6 InChi=NA Sulfadimethoxine-d6 null 316.111237665200008 [M+H]1+ 2 null null 9.16857109375e04 null null +SML 25 25 EXTRA:EXTRA003 (1)H8(2)H6C12N4O4S1 Sulfadimethoxine-d6 InChi=NA Sulfadimethoxine-d6 null 316.111237665200008 [M+H]1+ 2 null null 1558.6962890625 null null +SML 26 26 HMDB:HMDB13070|HMDB:HMDB29186|HMDB:HMDB29187|HMDB:HMDB29233|HMDB:HMDB33798|HMDB:HMDB34047|HMDB:HMDB36199|HMDB:HMDB39428|HMDB:HMDB41406 C11H14O4|C11H14O4|C11H14O4|C11H14O4|C11H14O4|C11H14O4|C11H14O4|C11H14O4|C11H14O4 Sinapyl alcohol|5-(3',4'-dihydroxyphenyl)-gamma-valerolactone|5-(3',5')-Dihydroxyphenyl-gamma-valerolactone|3,4-Dihydroxyphenylvaleric acid|3-Methyl-1-(2,4,6-trihydroxyphenyl)-1-butanone|2'-Hydroxy-4',6'-dimethoxy-3'-methylacetophenone|2-Methoxy-4-(4-methyl-1,3-dioxolan-2-yl)phenol|2-Methoxy-3-(4-methoxyphenyl)propanoic acid|Bancroftinone InChI=1S/C11H14O4/c1-14-9-6-8(4-3-5-12)7-10(15-2)11(9)13/h3-4,6-7,12-13H,5H2,1-2H3/b4-3+|InChI=1S/C11H14O4/c12-8-3-7(4-9(13)6-8)5-10-1-2-11(14)15-10/h3-4,6,10-14H,1-2,5H2|InChI=1S/C11H14O4/c12-8-3-7(4-9(13)6-8)5-10-1-2-11(14)15-10/h3-4,6,10-14H,1-2,5H2|InChI=1S/C11H14O4/c12-9-6-5-8(7-10(9)13)3-1-2-4-11(14)15/h5-7,12-13H,1-4H2,(H,14,15)|InChI=1S/C11H14O4/c1-6(2)3-8(13)11-9(14)4-7(12)5-10(11)15/h4-6,12,14-15H,3H2,1-2H3|InChI=1S/C11H14O4/c1-6-8(14-3)5-9(15-4)10(7(2)12)11(6)13/h5,13H,1-4H3|InChI=1S/C11H14O4/c1-7-6-14-11(15-7)8-3-4-9(12)10(5-8)13-2/h3-5,7,11-12H,6H2,1-2H3|InChI=1S/C11H14O4/c1-14-9-5-3-8(4-6-9)7-10(15-2)11(12)13/h3-6,10H,7H2,1-2H3,(H,12,13)|InChI=1S/C11H14O4/c1-6-9(14-3)5-8(13)10(7(2)12)11(6)15-4/h5,13H,1-4H3 Sinapyl alcohol|5-(3',4'-dihydroxyphenyl)-gamma-valerolactone|5-(3',5')-Dihydroxyphenyl-gamma-valerolactone|3,4-Dihydroxyphenylvaleric acid|3-Methyl-1-(2,4,6-trihydroxyphenyl)-1-butanone|2'-Hydroxy-4',6'-dimethoxy-3'-methylacetophenone|2-Methoxy-4-(4-methyl-1,3-dioxolan-2-yl)phenol|2-Methoxy-3-(4-methoxyphenyl)propanoic acid|Bancroftinone null|null|null|null|null|null|null|null|null 210.089210446599992|210.089210446599992|210.089210446599992|210.089210446599992|210.089210446599992|210.089210446599992|210.089210446599992|210.089210446599992|210.089210446599992 [M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+ 2 null null 520.63494873046875 null null +SML 27 27 HMDB:HMDB32021|HMDB:HMDB39078|HMDB:HMDB41126 C26H32O4|C26H32O4|C26H32O4 Norbixin; (9Z,9'Z)-form, Di-Me ester|trans-Methylbixin|Heterophylol InChI=1S/C26H32O4/c1-21(13-9-15-23(3)17-19-25(27)29-5)11-7-8-12-22(2)14-10-16-24(4)18-20-26(28)30-6/h7-20H,1-6H3/b8-7+,13-9-,14-10+,19-17+,20-18-,21-11+,22-12-,23-15-,24-16-|InChI=1S/C26H32O4/c1-21(13-9-15-23(3)17-19-25(27)29-5)11-7-8-12-22(2)14-10-16-24(4)18-20-26(28)30-6/h7-20H,1-6H3/b8-7+,13-9-,14-10+,19-17-,20-18-,21-11+,22-12-,23-15-,24-16-|InChI=1S/C26H32O4/c1-15(2)7-9-17-19-13-22-20(12-21(19)24(29-6)14-23(17)28-5)18-10-8-16(27)11-25(18)30-26(22,3)4/h7-8,10-11,14,20,22,27H,9,12-13H2,1-6H3 Norbixin; (9Z,9'Z)-form, Di-Me ester|trans-Methylbixin|Heterophylol null|null|null 408.230061020800008|408.230061020800008|408.230061020800008 [M+H]1+|[M+H]1+|[M+H]1+ 2 null null 504.62835693359375 null null +SML 28 28 HMDB:HMDB30290 C13H24N2O1 Cuscohygrine InChI=1S/C13H24N2O/c1-14-7-3-5-11(14)9-13(16)10-12-6-4-8-15(12)2/h11-12H,3-10H2,1-2H3 Cuscohygrine null 224.18886376559999 [M+H]1+ 2 null null 375.26019287109375 null null +SML 29 29 HMDB:HMDB31958|HMDB:HMDB39064 C26H34O6|C26H34O6 3-O-Acetylepisamarcandin|Pectachol InChI=1S/C26H34O6/c1-16(27)31-22-11-12-25(4)20(24(22,2)3)10-13-26(5,29)21(25)15-30-18-8-6-17-7-9-23(28)32-19(17)14-18/h6-9,14,20-22,29H,10-13,15H2,1-5H3|InChI=1S/C26H34O6/c1-15-7-9-19-25(2,3)20(27)11-12-26(19,4)17(15)14-31-23-18(29-5)13-16-8-10-21(28)32-22(16)24(23)30-6/h8,10,13,17,19-20,27H,1,7,9,11-12,14H2,2-6H3 3-O-Acetylepisamarcandin|Pectachol null|null 442.235541084600015|442.235541084600015 [M+H]1+|[M+H]1+ 2 null null 800.57757568359375 null null +SML 30 30 HMDB:HMDB06202|HMDB:HMDB13321 C18H35N1O4|C18H35N1O4 4,8 dimethylnonanoyl carnitine|Undecanoylcarnitine InChI=1S/C18H35NO4/c1-14(2)8-7-9-15(3)10-11-18(22)23-16(12-17(20)21)13-19(4,5)6/h14-16H,7-13H2,1-6H3|InChI=1S/C18H35NO4/c1-5-6-7-8-9-10-11-12-13-18(22)23-16(14-17(20)21)15-19(2,3)4/h16H,5-15H2,1-4H3 4,8 dimethylnonanoyl carnitine|Undecanoylcarnitine null|null 329.256610116500042|329.256610116500042 [M+H]1+|[M+H]1+ 2 null null 160.912857055664063 null null +SML 31 31 HMDB:HMDB31737|HMDB:HMDB31738|HMDB:HMDB32397|HMDB:HMDB32528|HMDB:HMDB35245|HMDB:HMDB35631|HMDB:HMDB36023|HMDB:HMDB36024|HMDB:HMDB38130 C14H22O1|C14H22O1|C14H22O1|C14H22O1|C14H22O1|C14H22O1|C14H22O1|C14H22O1|C14H22O1 delta-Methylionone|3-Methyl-4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-one|Methyl-delta-ionone|alpha-(p-(1,1,3,3-Tetramethylbutyl)phenyl)-omega-hydroxypoly(oxyethylene)|1-(2,6,6-Trimethyl-2-cyclohexen-1-yl)-1-penten-3-one|alpha-Irone|Etaspirene|10-Isopropyl-2,7-dimethyl-1-oxaspiro[4.5]deca-3,6-diene|1-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-1-penten-3-one InChI=1S/C14H22O/c1-10-7-6-8-14(4,5)13(10)9-11(2)12(3)15/h9H,6-8H2,1-5H3/b11-9+|InChI=1S/C14H22O/c1-10-7-6-8-14(4,5)13(10)9-11(2)12(3)15/h7,9,13H,6,8H2,1-5H3/b11-9+|InChI=1S/C14H22O/c1-5-12(15)8-9-13-11(2)7-6-10-14(13,3)4/h6-9,11,13H,5,10H2,1-4H3/b9-8+|InChI=1S/C14H22O/c1-13(2,3)10-14(4,5)11-6-8-12(15)9-7-11/h6-9,15H,10H2,1-5H3|InChI=1S/C14H22O/c1-5-12(15)8-9-13-11(2)7-6-10-14(13,3)4/h7-9,13H,5-6,10H2,1-4H3/b9-8+|InChI=1S/C14H22O/c1-10-6-7-11(2)14(4,5)13(10)9-8-12(3)15/h6,8-9,11,13H,7H2,1-5H3/b9-8+|InChI=1S/C14H22O/c1-5-12-7-6-9-13(3,4)14(12)10-8-11(2)15-14/h7-8,10-11H,5-6,9H2,1-4H3|InChI=1S/C14H22O/c1-10(2)13-6-5-11(3)9-14(13)8-7-12(4)15-14/h7-10,12-13H,5-6H2,1-4H3|InChI=1S/C14H22O/c1-5-12(15)8-9-13-11(2)7-6-10-14(13,3)4/h8-9H,5-7,10H2,1-4H3/b9-8+ delta-Methylionone|3-Methyl-4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-one|Methyl-delta-ionone|alpha-(p-(1,1,3,3-Tetramethylbutyl)phenyl)-omega-hydroxypoly(oxyethylene)|1-(2,6,6-Trimethyl-2-cyclohexen-1-yl)-1-penten-3-one|alpha-Irone|Etaspirene|10-Isopropyl-2,7-dimethyl-1-oxaspiro[4.5]deca-3,6-diene|1-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-1-penten-3-one null|null|null|null|null|null|null|null|null 206.167065701799999|206.167065701799999|206.167065701799999|206.167065701799999|206.167065701799999|206.167065701799999|206.167065701799999|206.167065701799999|206.167065701799999 [M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+ 2 null null 145.768722534179688 null null +SML 32 32 HMDB:HMDB34462|HMDB:HMDB40778 C14H20O3|C14H20O3 Heptyl 4-hydroxybenzoate|Eremopetasidione InChI=1S/C14H20O3/c1-2-3-4-5-6-11-17-14(16)12-7-9-13(15)10-8-12/h7-10,15H,2-6,11H2,1H3|InChI=1S/C14H20O3/c1-8-12(16)5-4-10-6-13(17)11(9(2)15)7-14(8,10)3/h7-8,10,12,16H,4-6H2,1-3H3 Heptyl 4-hydroxybenzoate|Eremopetasidione null|null 236.141245638000015|236.141245638000015 [M+H]1+|[M+H]1+ 2 null null 112.273887634277344 null null +SML 33 33 HMDB:HMDB30810|HMDB:HMDB35404|HMDB:HMDB35405 C22H26O6|C22H26O6|C22H26O6 Porson|Isogingerenone B|Gingerenone B InChI=1S/C22H26O6/c1-26-19-9-8-13-10-15(19)16-12-14(20(25)22(28-3)21(16)27-2)6-4-5-7-17(23)18(24)11-13/h8-10,12,18,24-25H,4-7,11H2,1-3H3|InChI=1S/C22H26O6/c1-26-19-12-15(9-11-18(19)24)6-4-5-7-17(23)10-8-16-13-20(27-2)22(25)21(14-16)28-3/h5,7,9,11-14,24-25H,4,6,8,10H2,1-3H3/b7-5+|InChI=1S/C22H26O6/c1-26-19-12-15(9-11-18(19)24)8-10-17(23)7-5-4-6-16-13-20(27-2)22(25)21(14-16)28-3/h5,7,9,11-14,24-25H,4,6,8,10H2,1-3H3/b7-5+ Porson|Isogingerenone B|Gingerenone B null|null|null 386.172940829400034|386.172940829400034|386.172940829400034 [M+H]1+|[M+H]1+|[M+H]1+ 2 null null 590.66278076171875 null null +SML 34 34 HMDB:HMDB34240 C8H8 Styrene InChI=1S/C8H8/c1-2-8-6-4-3-5-7-8/h2-7H,1H2 Styrene null 104.062600255199996 [M+H]1+ 2 null null 429.32855224609375 null null +SML 35 35 HMDB:HMDB13331 C21H37N1O4 3, 5-Tetradecadiencarnitine InChI=1S/C21H37NO4/c1-5-6-7-8-9-10-11-12-13-14-15-16-21(25)26-19(22(2,3)4)17-18-20(23)24/h12-15,19H,5-11,16-18H2,1-4H3/b13-12+,15-14+/t19-/m0/s1 3, 5-Tetradecadiencarnitine null 367.272260180300066 [M+H]1+ 2 null null 219.545059204101563 null null +SML 36 36 HMDB:HMDB05030 C32H39N1O4 Fexofenadine InChI=1S/C32H39NO4/c1-31(2,30(35)36)25-17-15-24(16-18-25)29(34)14-9-21-33-22-19-28(20-23-33)32(37,26-10-5-3-6-11-26)27-12-7-4-8-13-27/h3-8,10-13,15-18,28-29,34,37H,9,14,19-23H2,1-2H3,(H,35,36) Fexofenadine null 501.287910244100033 [M+H]1+ 2 null null 253.140838623046875 null null +SML 37 37 HMDB:HMDB02014|HMDB:HMDB13329 C21H39N1O4|C21H39N1O4 cis-5-Tetradecenoylcarnitine|trans-2-Tetradecenoylcarnitine InChI=1S/C21H39NO4/c1-5-6-7-8-9-10-11-12-13-14-15-16-21(25)26-19(17-20(23)24)18-22(2,3)4/h12-13,19H,5-11,14-18H2,1-4H3/b13-12-|InChI=1S/C21H39NO4/c1-5-6-7-8-9-10-11-12-13-14-15-16-21(25)26-19(22(2,3)4)17-18-20(23)24/h15-16,19H,5-14,17-18H2,1-4H3/b16-15+/t19-/m0/s1 cis-5-Tetradecenoylcarnitine|trans-2-Tetradecenoylcarnitine null|null 369.287910244100033|369.287910244100033 [M+H]1+|[M+H]1+ 2 null null 186.0008544921875 null null +SML 38 38 HMDB:HMDB05030 C32H39N1O4 Fexofenadine InChI=1S/C32H39NO4/c1-31(2,30(35)36)25-17-15-24(16-18-25)29(34)14-9-21-33-22-19-28(20-23-33)32(37,26-10-5-3-6-11-26)27-12-7-4-8-13-27/h3-8,10-13,15-18,28-29,34,37H,9,14,19-23H2,1-2H3,(H,35,36) Fexofenadine null 501.287910244100033 [M+H]1+ 2 null null 298.563873291015625 null null +SML 39 39 HMDB:HMDB05030 C32H39N1O4 Fexofenadine InChI=1S/C32H39NO4/c1-31(2,30(35)36)25-17-15-24(16-18-25)29(34)14-9-21-33-22-19-28(20-23-33)32(37,26-10-5-3-6-11-26)27-12-7-4-8-13-27/h3-8,10-13,15-18,28-29,34,37H,9,14,19-23H2,1-2H3,(H,35,36) Fexofenadine null 501.287910244100033 [M+H]1+ 2 null null 256.3153076171875 null null +SML 40 40 HMDB:HMDB02007 C24H36O2 Tetracosahexaenoic acid InChI=1S/C24H36O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24(25)26/h3-4,6-7,9-10,12-13,15-16,18-19H,2,5,8,11,14,17,20-23H2,1H3,(H,25,26)/b4-3-,7-6-,10-9-,13-12-,16-15-,19-18- Tetracosahexaenoic acid null 356.271531148399959 [M+H]1+ 2 null null 674.6983642578125 null null +SML 41 41 HMDB:HMDB34064 C26H36O5 2,9-Dihydroxy-4,10(14)-oplopadien-3-one; (2b,4Z,9a)-form, 9-(3-Methyl-2E-pentenoyl), 2-angeloyl InChI=1S/C26H36O5/c1-9-15(6)12-21(27)30-20-13-19(14(4)5)23-18(11-3)24(28)25(22(23)17(20)8)31-26(29)16(7)10-2/h10-12,14,19-20,22-23,25H,8-9,13H2,1-7H3/b15-12+,16-10-,18-11- 2,9-Dihydroxy-4,10(14)-oplopadien-3-one; (2b,4Z,9a)-form, 9-(3-Methyl-2E-pentenoyl), 2-angeloyl null 428.256276148399991 [M+H]1+ 2 null null 1204.750244140625 null null +SML 42 42 HMDB:HMDB31259 C5H13N1O1 Neurine InChI=1S/C5H12N.H2O/c1-5-6(2,3)4;/h5H,1H2,2-4H3;1H2/q+1;/p-1 Neurine null 103.099714414700003 [M+H]1+ 2 null null 334.134552001953125 null null +SML 43 43 HMDB:HMDB15386 C30H47N1O4S1 Retapamulin InChI=1S/C30H47NO4S/c1-7-28(4)16-24(35-25(33)17-36-22-14-20-8-9-21(15-22)31(20)6)29(5)18(2)10-12-30(19(3)27(28)34)13-11-23(32)26(29)30/h7,18-22,24,26-27,34H,1,8-17H2,2-6H3/t18-,19+,20-,21+,22?,24-,26+,27+,28-,29+,30+/m1/s1 Retapamulin null 517.322581229300113 [M+Na]1+ 2 null null 246.195114135742188 null null +SML 44 44 HMDB:HMDB05030 C32H39N1O4 Fexofenadine InChI=1S/C32H39NO4/c1-31(2,30(35)36)25-17-15-24(16-18-25)29(34)14-9-21-33-22-19-28(20-23-33)32(37,26-10-5-3-6-11-26)27-12-7-4-8-13-27/h3-8,10-13,15-18,28-29,34,37H,9,14,19-23H2,1-2H3,(H,35,36) Fexofenadine null 501.287910244100033 [M+H]1+ 2 null null 857.96630859375 null null +SML 45 45 HMDB:HMDB00673|HMDB:HMDB03797|HMDB:HMDB05047|HMDB:HMDB05048|HMDB:HMDB06270|HMDB:HMDB29800|HMDB:HMDB30430|HMDB:HMDB31051|HMDB:HMDB31097 C18H32O2|C18H32O2|C18H32O2|C18H32O2|C18H32O2|C18H32O2|C18H32O2|C18H32O2|C18H32O2 Linoleic acid|Bovinic acid|9E,11E-Octadecadienoic acid|10E,12Z-Octadecadienoic acid|Linoelaidic acid|Mangiferic acid|Linalyl caprylate|2,4-Hexadecadienoic acid, 9CI; (2E,4Z)-form, Et ester|5-Octadecynoic acid InChI=1S/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h6-7,9-10H,2-5,8,11-17H2,1H3,(H,19,20)/b7-6-,10-9-|InChI=1S/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h7-10H,2-6,11-17H2,1H3,(H,19,20)/b8-7+,10-9-|InChI=1S/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h7-10H,2-6,11-17H2,1H3,(H,19,20)/b8-7+,10-9+|InChI=1S/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h7-10H,2-6,11-17H2,1H3,(H,19,20)/b8-7-,10-9+|InChI=1S/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h6-7,9-10H,2-5,8,11-17H2,1H3,(H,19,20)/b7-6+,10-9+|InChI=1S/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h3-4,9-10H,2,5-8,11-17H2,1H3,(H,19,20)/b4-3+,10-9+|InChI=1S/C18H32O2/c1-6-8-9-10-11-14-17(19)20-18(5,7-2)15-12-13-16(3)4/h7,13H,2,6,8-12,14-15H2,1,3-5H3|InChI=1S/C18H32O2/c1-3-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20-4-2/h14-17H,3-13H2,1-2H3/b15-14-,17-16+|InChI=1S/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h2-12,15-17H2,1H3,(H,19,20) Linoleic acid|Bovinic acid|9E,11E-Octadecadienoic acid|10E,12Z-Octadecadienoic acid|Linoelaidic acid|Mangiferic acid|Linalyl caprylate|2,4-Hexadecadienoic acid, 9CI; (2E,4Z)-form, Et ester|5-Octadecynoic acid null|null|null|null|null|null|null|null|null 280.240231020799968|280.240231020799968|280.240231020799968|280.240231020799968|280.240231020799968|280.240231020799968|280.240231020799968|280.240231020799968|280.240231020799968 [M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+ 2 null null 889.29443359375 null null +SML 46 46 HMDB:HMDB11496|HMDB:HMDB11526 C27H44N1O7P1|C27H44N1O7P1 LysoPE(0:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))|LysoPE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) InChI=1S/C27H44NO7P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-27(30)35-26(24-29)25-34-36(31,32)33-23-22-28/h3-4,6-7,9-10,12-13,15-16,18-19,26,29H,2,5,8,11,14,17,20-25,28H2,1H3,(H,31,32)/b4-3-,7-6-,10-9-,13-12-,16-15-,19-18-/t26-/m1/s1|InChI=1S/C27H44NO7P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-27(30)33-24-26(29)25-35-36(31,32)34-23-22-28/h3-4,6-7,9-10,12-13,15-16,18-19,26,29H,2,5,8,11,14,17,20-25,28H2,1H3,(H,31,32)/b4-3-,7-6-,10-9-,13-12-,16-15-,19-18-/t26-/m1/s1 LysoPE(0:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))|LysoPE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) null|null 525.285541893599998|525.285541893599998 [M+Na]1+|[M+Na]1+ 2 null null 114.323089599609375 null null +SML 47 47 HMDB:HMDB06461|HMDB:HMDB06469 C25H45N1O4|C25H45N1O4 Linoelaidyl carnitine|Linoleyl carnitine InChI=1S/C25H45NO4/c1-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-25(29)30-23(21-24(27)28)22-26(2,3)4/h9-10,12-13,23H,5-8,11,14-22H2,1-4H3/b10-9+,13-12+|InChI=1S/C25H45NO4/c1-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-25(29)30-23(21-24(27)28)22-26(2,3)4/h9-10,12-13,23H,5-8,11,14-22H2,1-4H3/b10-9-,13-12-/t23-/m1/s1 Linoelaidyl carnitine|Linoleyl carnitine null|null 423.334860435500048|423.334860435500048 [M+H]1+|[M+H]1+ 2 null null 2216.9853515625 null null +SML 48 48 HMDB:HMDB05030 C32H39N1O4 Fexofenadine InChI=1S/C32H39NO4/c1-31(2,30(35)36)25-17-15-24(16-18-25)29(34)14-9-21-33-22-19-28(20-23-33)32(37,26-10-5-3-6-11-26)27-12-7-4-8-13-27/h3-8,10-13,15-18,28-29,34,37H,9,14,19-23H2,1-2H3,(H,35,36) Fexofenadine null 501.287910244100033 [M+H]1+ 2 null null 8484.93359375 null null +SML 49 49 HMDB:HMDB38836 C27H45N1O3 Solanocardinol InChI=1S/C27H45NO3/c1-15-13-27(30)24(28-14-15)16(2)23-22(31-27)12-21-19-6-5-17-11-18(29)7-9-25(17,3)20(19)8-10-26(21,23)4/h15-24,28-30H,5-14H2,1-4H3 Solanocardinol null 431.339945435499999 [M+Na]1+ 2 null null 161.927627563476563 null null +SML 50 50 HMDB:HMDB15505 C13H15N1O2 Glutethimide InChI=1S/C13H15NO2/c1-2-13(10-6-4-3-5-7-10)9-8-11(15)14-12(13)16/h3-7H,2,8-9H2,1H3,(H,14,15,16) Glutethimide null 217.110279478500019 [M+Na]1+ 2 null null 202.042236328125 null null +SML 51 51 EXTRA:EXTRA006 (1)H42(2)H3C23N1O4 Hexadecanoyl-l-carnitine-d3 InChi=NA Hexadecanoyl-l-carnitine-d3 null 402.353690679800025 [M+H]1+ 2 null null 3.056835e05 null null +SML 52 52 HMDB:HMDB31259 C5H13N1O1 Neurine InChI=1S/C5H12N.H2O/c1-5-6(2,3)4;/h5H,1H2,2-4H3;1H2/q+1;/p-1 Neurine null 103.099714414700003 [M+H]1+ 2 null null 987.03363037109375 null null +SML 53 53 HMDB:HMDB03447|HMDB:HMDB30267|HMDB:HMDB40028|HMDB:HMDB40042|HMDB:HMDB40048 C10H11N1O1|C10H11N1O1|C10H11N1O1|C10H11N1O1|C10H11N1O1 Tryptophanol|(R)-Boschniakine|1-(2,3-Dihydro-1H-pyrrolizin-5-yl)-2-propen-1-one|3-[(5-Methyl-2-furanyl)methyl]-1H-pyrrole|3,4-Dihydro-4-[(5-methyl-2-furanyl)methylene]-2H-pyrrole InChI=1S/C10H11NO/c12-6-5-8-7-11-10-4-2-1-3-9(8)10/h1-4,7,11-12H,5-6H2|InChI=1S/C10H11NO/c1-7-2-3-9-8(6-12)4-11-5-10(7)9/h4-7H,2-3H2,1H3|InChI=1S/C10H11NO/c1-2-10(12)9-6-5-8-4-3-7-11(8)9/h2,5-6H,1,3-4,7H2|InChI=1S/C10H11NO/c1-8-2-3-10(12-8)6-9-4-5-11-7-9/h2-5,7,11H,6H2,1H3|InChI=1S/C10H11NO/c1-8-2-3-10(12-8)6-9-4-5-11-7-9/h2-3,6-7H,4-5H2,1H3/b9-6- Tryptophanol|(R)-Boschniakine|1-(2,3-Dihydro-1H-pyrrolizin-5-yl)-2-propen-1-one|3-[(5-Methyl-2-furanyl)methyl]-1H-pyrrole|3,4-Dihydro-4-[(5-methyl-2-furanyl)methylene]-2H-pyrrole null|null|null|null|null 161.084064350899979|161.084064350899979|161.084064350899979|161.084064350899979|161.084064350899979 [M+Na]1+|[M+Na]1+|[M+Na]1+|[M+Na]1+|[M+Na]1+ 2 null null 710.863525390625 null null +SML 54 54 HMDB:HMDB41922 C3H6N6 melamine InChI=1S/C3H6N6/c4-1-7-2(5)9-3(6)8-1/h(H6,4,5,6,7,8,9) melamine null 126.065394191400003 [M+Na]1+ 2 null null 213.320343017578125 null null +SML 55 55 HMDB:HMDB40418|HMDB:HMDB40781 C41H70O14|C41H70O14 Majonoside R2|Vinaginsenoside R11 InChI=1S/C41H70O14/c1-36(2)25(45)10-12-38(5)24-15-20(43)27-19(41(8)14-11-26(55-41)37(3,4)50)9-13-39(27,6)40(24,7)16-22(33(36)38)52-35-32(30(48)29(47)23(17-42)53-35)54-34-31(49)28(46)21(44)18-51-34/h19-35,42-50H,9-18H2,1-8H3|InChI=1S/C41H70O14/c1-36(2)25(45)10-12-38(5)24-15-20(43)27-19(41(8)14-11-26(46)37(3,4)55-41)9-13-39(27,6)40(24,7)16-22(33(36)38)52-35-32(30(49)29(48)23(17-42)53-35)54-34-31(50)28(47)21(44)18-51-34/h19-35,42-50H,9-18H2,1-8H3 Majonoside R2|Vinaginsenoside R11 null|null 786.476562232999981|786.476562232999981 [M+Na]1+|[M+Na]1+ 2 null null 227.415618896484375 null null +SML 56 56 HMDB:HMDB15586|HMDB:HMDB31463|HMDB:HMDB38938|HMDB:HMDB38994|HMDB:HMDB40375|HMDB:HMDB41201 C17H24O3|C17H24O3|C17H24O3|C17H24O3|C17H24O3|C17H24O3 Cyclandelate|[8]-Shogaol|Panaquinquecol 2|Ginsenoyne C|Ginsenoyne K|Panaquinquecol 7 InChI=1S/C17H24O3/c1-12-9-14(11-17(2,3)10-12)20-16(19)15(18)13-7-5-4-6-8-13/h4-8,12,14-15,18H,9-11H2,1-3H3|InChI=1S/C17H24O3/c1-3-4-5-6-7-8-15(18)11-9-14-10-12-16(19)17(13-14)20-2/h7-8,10,12-13,19H,3-6,9,11H2,1-2H3/b8-7+|InChI=1S/C17H24O3/c1-3-5-6-7-8-13-16-17(20-16)15(19)12-10-9-11-14(18)4-2/h4,14-19H,2-3,5-8,13H2,1H3|InChI=1S/C17H24O3/c1-3-5-6-7-10-13-16(19)17(20)14-11-8-9-12-15(18)4-2/h3-4,15-20H,1-2,5-7,10,13-14H2|InChI=1S/C17H24O3/c1-3-5-6-7-11-14-17(20-19)15-12-9-8-10-13-16(18)4-2/h4,12,15-19H,2-3,5-7,11,14H2,1H3/b15-12+|InChI=1S/C17H24O3/c1-2-3-4-5-8-11-16-17(20-16)12-9-6-7-10-15(19)13-14-18/h16-18H,2-5,8,11-14H2,1H3 Cyclandelate|[8]-Shogaol|Panaquinquecol 2|Ginsenoyne C|Ginsenoyne K|Panaquinquecol 7 null|null|null|null|null|null 276.172545765600034|276.172545765600034|276.172545765600034|276.172545765600034|276.172545765600034|276.172545765600034 [M+Na]1+|[M+Na]1+|[M+Na]1+|[M+Na]1+|[M+Na]1+|[M+Na]1+ 2 null null 118.401451110839844 null null +SML 57 57 HMDB:HMDB11473|HMDB:HMDB11503 C21H44N1O7P1|C21H44N1O7P1 LysoPE(0:0/16:0)|LysoPE(16:0/0:0) InChI=1S/C21H44NO7P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-21(24)29-20(18-23)19-28-30(25,26)27-17-16-22/h20,23H,2-19,22H2,1H3,(H,25,26)/t20-/m1/s1|InChI=1S/C21H44NO7P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-21(24)27-18-20(23)19-29-30(25,26)28-17-16-22/h20,23H,2-19,22H2,1H3,(H,25,26)/t20-/m1/s1 LysoPE(0:0/16:0)|LysoPE(16:0/0:0) null|null 453.285541893600055|453.285541893600055 [M+H]1+|[M+H]1+ 2 null null 5199.07421875 null null +SML 58 58 HMDB:HMDB31977 C26H32O3 6'-Oxo-6,5'-diapo-6-carotenoic acid; (9Z)-form, Me ester InChI=1S/C26H32O3/c1-21(13-9-15-23(3)17-19-25(5)27)11-7-8-12-22(2)14-10-16-24(4)18-20-26(28)29-6/h7-20H,1-6H3/b8-7+,13-9+,14-10+,19-17+,20-18+,21-11+,22-12+,23-15+,24-16- 6'-Oxo-6,5'-diapo-6-carotenoic acid; (9Z)-form, Me ester null 392.235146020800016 [M+H]1+ 2 null null 162.95050048828125 null null +SML 59 59 HMDB:HMDB40684 C37H47N1O4 Janthitrem C InChI=1S/C37H47NO4/c1-19(2)31-29(39)17-27-30(41-31)10-11-35(7)36(8)21(9-12-37(27,35)40)15-24-23-13-20-14-26-25(18-33(3,4)42-34(26,5)6)22(20)16-28(23)38-32(24)36/h13,16-18,21,26,29-31,38-40H,1,9-12,14-15H2,2-8H3 Janthitrem C null 569.350510499300071 [M+Na]1+ 2 null null 103.309890747070313 null null +SML 60 60 HMDB:HMDB41430 C32H45N1O4 Gymnodimine InChI=1S/C32H45NO4/c1-19-8-6-9-29-32(13-7-15-33-29)14-12-25(28-18-22(4)31(35)37-28)23(5)26(32)17-20(2)27(34)11-10-24-16-21(3)30(19)36-24/h8,17-18,21,24,26-28,30,34H,6-7,9-16H2,1-5H3/b19-8+,20-17+ Gymnodimine null 507.334860435500048 [M+H]1+ 2 null null 2944.8037109375 null null +SML 61 61 HMDB:HMDB13648 C18H35N1O2 Palmitoleoyl Ethanolamide InChI=1S/C18H35NO2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18(21)19-16-17-20/h7-8,20H,2-6,9-17H2,1H3,(H,19,21)/b8-7- Palmitoleoyl Ethanolamide null 297.266780116500001 [M+H]1+ 2 null null 108.191558837890625 null null +SML 62 62 HMDB:HMDB00207|HMDB:HMDB00573|HMDB:HMDB03231|HMDB:HMDB41480 C18H34O2|C18H34O2|C18H34O2|C18H34O2 Oleic acid|Elaidic acid|Vaccenic acid|(Z)-13-Octadecenoic acid InChI=1S/C18H34O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h9-10H,2-8,11-17H2,1H3,(H,19,20)/b10-9-|InChI=1S/C18H34O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h9-10H,2-8,11-17H2,1H3,(H,19,20)/b10-9+|InChI=1S/C18H34O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h7-8H,2-6,9-17H2,1H3,(H,19,20)/b8-7-|InChI=1S/C18H34O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h5-6H,2-4,7-17H2,1H3,(H,19,20)/b6-5+ Oleic acid|Elaidic acid|Vaccenic acid|(Z)-13-Octadecenoic acid null|null|null|null 282.255881084599991|282.255881084599991|282.255881084599991|282.255881084599991 [M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+ 2 null null 2838.63427734375 null null +SML 63 63 HMDB:HMDB41675|HMDB:HMDB41676 C22H24O13|C22H24O13 4'-Methyl-(-)-epigallocatechin 3'-glucuronide|4'-Methyl-(-)-epigallocatechin 7-glucuronide InChI=1S/C22H24O13/c1-32-19-11(25)2-7(18-12(26)6-9-10(24)4-8(23)5-13(9)33-18)3-14(19)34-22-17(29)15(27)16(28)20(35-22)21(30)31/h2-5,12,15-18,20,22-29H,6H2,1H3,(H,30,31)/t12-,15+,16+,17-,18-,20+,22-/m1/s1|InChI=1S/C22H24O13/c1-32-19-11(24)2-7(3-12(19)25)18-13(26)6-9-10(23)4-8(5-14(9)34-18)33-22-17(29)15(27)16(28)20(35-22)21(30)31/h2-5,13,15-18,20,22-29H,6H2,1H3,(H,30,31)/t13-,15+,16+,17-,18-,20+,22-/m1/s1 4'-Methyl-(-)-epigallocatechin 3'-glucuronide|4'-Methyl-(-)-epigallocatechin 7-glucuronide null|null 496.121695765600009|496.121695765600009 [M+H]1+|[M+H]1+ 2 null null 1128.5126953125 null null +SML 64 64 HMDB:HMDB29541|HMDB:HMDB30621|HMDB:HMDB34914|HMDB:HMDB35479|HMDB:HMDB36281|HMDB:HMDB38396|HMDB:HMDB38874|HMDB:HMDB38950|HMDB:HMDB39617|HMDB:HMDB39634|HMDB:HMDB40134|HMDB:HMDB40813|HMDB:HMDB40837|HMDB:HMDB40934 C21H20O7|C21H20O7|C21H20O7|C21H20O7|C21H20O7|C21H20O7|C21H20O7|C21H20O7|C21H20O7|C21H20O7|C21H20O7|C21H20O7|C21H20O7|C21H20O7 (+)-Zeylenol|Oxyisocyclointegrin|Dulxanthone F|Isolicopyranocoumarin|Licofuranocoumarin|Gancaonin D|Licopyranocoumarin|5-Methoxyhinokinin|Piperenol B|Piperenol A|Calebin A|3'-O-Methylgancaonin P|3-O-Methyluralenol|Uralene InChI=1S/C21H20O7/c22-17-12-11-16(28-20(25)15-9-5-2-6-10-15)18(23)21(17,26)13-27-19(24)14-7-3-1-4-8-14/h1-12,16-18,22-23,26H,13H2|InChI=1S/C21H20O7/c1-21(2,25)17-9-13-19(24)18-14(23)7-11(26-3)8-16(18)28-20(13)12-5-4-10(22)6-15(12)27-17/h4-8,17,22-23,25H,9H2,1-3H3|InChI=1S/C21H20O7/c1-21(2)7-6-10-11(28-21)8-13-15(17(10)22)18(23)16-12(24-3)9-14(25-4)19(26-5)20(16)27-13/h6-9,22H,1-5H3|InChI=1S/C21H20O7/c1-21(2)18(24)8-14-17(28-21)9-16-13(19(14)26-3)7-12(20(25)27-16)11-5-4-10(22)6-15(11)23/h4-7,9,18,22-24H,8H2,1-3H3|InChI=1S/C21H20O7/c1-21(2,25)18-8-14-16(27-18)9-17-13(19(14)26-3)7-12(20(24)28-17)11-5-4-10(22)6-15(11)23/h4-7,9,18,22-23,25H,8H2,1-3H3|InChI=1S/C21H20O7/c1-11(9-22)3-5-13-15(23)8-17(25)19-20(26)14(10-28-21(13)19)12-4-6-18(27-2)16(24)7-12/h3-4,6-8,10,22-25H,5,9H2,1-2H3/b11-3+|InChI=1S/C21H20O7/c1-21(10-22)6-5-13-18(28-21)9-17-15(19(13)26-2)8-14(20(25)27-17)12-4-3-11(23)7-16(12)24/h3-4,7-9,22-24H,5-6,10H2,1-2H3|InChI=1S/C21H20O7/c1-23-18-7-13(8-19-20(18)28-11-27-19)5-15-14(9-24-21(15)22)4-12-2-3-16-17(6-12)26-10-25-16/h2-3,6-8,14-15H,4-5,9-11H2,1H3|InChI=1S/C21H20O7/c22-17-16(28-20(25)15-9-5-2-6-10-15)11-12-21(26,18(17)23)13-27-19(24)14-7-3-1-4-8-14/h1-12,16-18,22-23,26H,13H2|InChI=1S/C21H20O7/c22-16-11-15(12-27-20(25)13-7-3-1-4-8-13)17(23)19(18(16)24)28-21(26)14-9-5-2-6-10-14/h1-11,16-19,22-24H,12H2|InChI=1S/C21H20O7/c1-26-19-11-14(4-8-17(19)23)3-7-16(22)13-28-21(25)10-6-15-5-9-18(24)20(12-15)27-2/h3-12,23-24H,13H2,1-2H3/b7-3+,10-6+|InChI=1S/C21H20O7/c1-10(2)4-6-12-14(23)9-16-17(18(12)24)19(25)20(26)21(28-16)11-5-7-13(22)15(8-11)27-3/h4-5,7-9,22-24,26H,6H2,1-3H3|InChI=1S/C21H20O7/c1-10(2)4-5-11-6-12(7-15(24)18(11)25)20-21(27-3)19(26)17-14(23)8-13(22)9-16(17)28-20/h4,6-9,22-25H,5H2,1-3H3|InChI=1S/C21H20O7/c1-10(2)4-5-11-8-14(23)15(24)9-12(11)20-21(27-3)19(26)17-16(28-20)7-6-13(22)18(17)25/h4,6-9,22-25H,5H2,1-3H3 (+)-Zeylenol|Oxyisocyclointegrin|Dulxanthone F|Isolicopyranocoumarin|Licofuranocoumarin|Gancaonin D|Licopyranocoumarin|5-Methoxyhinokinin|Piperenol B|Piperenol A|Calebin A|3'-O-Methylgancaonin P|3-O-Methyluralenol|Uralene null|null|null|null|null|null|null|null|null|null|null|null|null|null 384.120905638000011|384.120905638000011|384.120905638000011|384.120905638000011|384.120905638000011|384.120905638000011|384.120905638000011|384.120905638000011|384.120905638000011|384.120905638000011|384.120905638000011|384.120905638000011|384.120905638000011|384.120905638000011 [M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+ 2 null null 162.284866333007813 null null +SML 65 65 HMDB:HMDB34498|HMDB:HMDB37740 C16H26|C16H26 (3E,7E)-4,8,12-Trimethyl-1,3,7,11-tridecatetraene|1,2-Dimethyl-4-(6-methyl-4-heptenyl)-1,3-cyclohexadiene InChI=1S/C16H26/c1-6-9-15(4)12-8-13-16(5)11-7-10-14(2)3/h6,9-10,13H,1,7-8,11-12H2,2-5H3/b15-9+,16-13-|InChI=1S/C16H26/c1-13(2)8-6-5-7-9-16-11-10-14(3)15(4)12-16/h6,8,12-13H,5,7,9-11H2,1-4H3/b8-6+ (3E,7E)-4,8,12-Trimethyl-1,3,7,11-tridecatetraene|1,2-Dimethyl-4-(6-methyl-4-heptenyl)-1,3-cyclohexadiene null|null 218.203450829399998|218.203450829399998 [M+H]1+|[M+H]1+ 2 null null 2577.322998046875 null null +SML 66 66 HMDB:HMDB31851|HMDB:HMDB36831 C16H28O1|C16H28O1 3-(5,6,6-Trimethylbicyclo[2.2.1]hept-1-yl)cyclohexanol|Ambronide InChI=1S/C16H28O/c1-10-14-8-12(16(10,2)3)9-15(14)11-5-4-6-13(17)7-11/h10-15,17H,4-9H2,1-3H3|InChI=1S/C16H28O/c1-14(2)8-5-9-15(3)12(14)6-10-16(4)13(15)7-11-17-16/h12-13H,5-11H2,1-4H3 3-(5,6,6-Trimethylbicyclo[2.2.1]hept-1-yl)cyclohexanol|Ambronide null|null 236.214015893199985|236.214015893199985 [M+H]1+|[M+H]1+ 2 null null 2729.864990234375 null null +SML 67 67 HMDB:HMDB31181|HMDB:HMDB32531|HMDB:HMDB38108|HMDB:HMDB39339|HMDB:HMDB39590 C12H20O1|C12H20O1|C12H20O1|C12H20O1|C12H20O1 Homodihydrojasmone|2-trans-6-cis-Dodecadienal|cis-Quinceoxepane|Tricycloekasantalol|(2E,4E)-2,4-Dodecadienal InChI=1S/C12H20O/c1-3-4-5-6-7-11-10(2)8-9-12(11)13/h3-9H2,1-2H3|InChI=1S/C12H20O/c1-2-3-4-5-6-7-8-9-10-11-12-13/h6-7,10-12H,2-5,8-9H2,1H3/b7-6-,11-10+|InChI=1S/C12H20O/c1-10(2)6-7-12-9-11(3)5-4-8-13-12/h6-7,11-12H,1,4-5,8-9H2,2-3H3/b7-6-|InChI=1S/C12H20O/c1-11(4-3-5-13)8-6-9-10(7-8)12(9,11)2/h8-10,13H,3-7H2,1-2H3|InChI=1S/C12H20O/c1-2-3-4-5-6-7-8-9-10-11-12-13/h8-12H,2-7H2,1H3/b9-8+,11-10+ Homodihydrojasmone|2-trans-6-cis-Dodecadienal|cis-Quinceoxepane|Tricycloekasantalol|(2E,4E)-2,4-Dodecadienal null|null|null|null|null 180.151415638000003|180.151415638000003|180.151415638000003|180.151415638000003|180.151415638000003 [M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+ 2 null null 101.550979614257813 null null +SML 68 68 HMDB:HMDB15175 C13H10N2O4 Thalidomide InChI=1S/C13H10N2O4/c16-10-6-5-9(11(17)14-10)15-12(18)7-3-1-2-4-8(7)13(15)19/h1-4,9H,5-6H2,(H,14,16,17) Thalidomide null 258.064058319000026 [M+Na]1+ 2 null null 142.142822265625 null null +SML 69 69 HMDB:HMDB31544 C6H10 3-Methylcyclopentene InChI=1S/C6H10/c1-6-4-2-3-5-6/h2,4,6H,3,5H2,1H3 3-Methylcyclopentene null 82.078250319000006 [M+H]1+ 2 null null 184.979354858398438 null null +SML 70 70 HMDB:HMDB15634|HMDB:HMDB40383 C18H25N3O2|C18H25N3O2 Saxagliptin|()-Pandamarine InChI=1S/C18H25N3O2/c19-8-13-2-12-3-14(12)21(13)16(22)15(20)17-4-10-1-11(5-17)7-18(23,6-10)9-17/h10-15,23H,1-7,9,20H2/t10?,11?,12-,13+,14+,15-,17?,18?/m1/s1|InChI=1S/C18H25N3O2/c1-13-11-15(19-16(13)22)7-3-5-9-21-10-6-4-8-18(21)12-14(2)17(23)20-18/h7,11-12H,3-6,8-10H2,1-2H3,(H,19,22)(H,20,23)/b15-7+ Saxagliptin|()-Pandamarine null|null 315.194677797499992|315.194677797499992 [M+Na]1+|[M+Na]1+ 2 null null 124.177047729492188 null null +SML 71 71 HMDB:HMDB35180 C13H20 (6E,8E)-4,6,8-Megastigmatriene InChI=1S/C13H20/c1-5-6-9-12-11(2)8-7-10-13(12,3)4/h5-6,8-9H,7,10H2,1-4H3/b6-5+,12-9+ (6E,8E)-4,6,8-Megastigmatriene null 176.156500638000011 [M+H]1+ 2 null null 137.100799560546875 null null +SML 72 72 HMDB:HMDB00252|HMDB:HMDB01480|HMDB:HMDB02100 C18H37N1O2|C18H37N1O2|C18H37N1O2 Sphingosine|3-Dehydrosphinganine|Palmitoylethanolamide InChI=1S/C18H37NO2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18(21)17(19)16-20/h14-15,17-18,20-21H,2-13,16,19H2,1H3/b15-14+|InChI=1S/C18H37NO2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18(21)17(19)16-20/h17,20H,2-16,19H2,1H3/t17-/m0/s1|InChI=1S/C18H37NO2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18(21)19-16-17-20/h20H,2-17H2,1H3,(H,19,21) Sphingosine|3-Dehydrosphinganine|Palmitoylethanolamide null|null|null 299.282430180300025|299.282430180300025|299.282430180300025 [M+H]1+|[M+H]1+|[M+H]1+ 2 null null 163.040573120117188 null null +SML 73 73 HMDB:HMDB31851|HMDB:HMDB36831 C16H28O1|C16H28O1 3-(5,6,6-Trimethylbicyclo[2.2.1]hept-1-yl)cyclohexanol|Ambronide InChI=1S/C16H28O/c1-10-14-8-12(16(10,2)3)9-15(14)11-5-4-6-13(17)7-11/h10-15,17H,4-9H2,1-3H3|InChI=1S/C16H28O/c1-14(2)8-5-9-15(3)12(14)6-10-16(4)13(15)7-11-17-16/h12-13H,5-11H2,1-4H3 3-(5,6,6-Trimethylbicyclo[2.2.1]hept-1-yl)cyclohexanol|Ambronide null|null 236.214015893199985|236.214015893199985 [M+H]1+|[M+H]1+ 2 null null 101.354026794433594 null null +SML 74 74 HMDB:HMDB04980|HMDB:HMDB10726|HMDB:HMDB12183|HMDB:HMDB29358|HMDB:HMDB29859|HMDB:HMDB30031|HMDB:HMDB31002|HMDB:HMDB31003|HMDB:HMDB31297|HMDB:HMDB31362|HMDB:HMDB31440|HMDB:HMDB31441|HMDB:HMDB32119|HMDB:HMDB32275|HMDB:HMDB32393|HMDB:HMDB32452|HMDB:HMDB33203|HMDB:HMDB33377|HMDB:HMDB34427|HMDB:HMDB34581|HMDB:HMDB34880|HMDB:HMDB35122|HMDB:HMDB35365|HMDB:HMDB35837|HMDB:HMDB35839|HMDB:HMDB35907|HMDB:HMDB36099|HMDB:HMDB36211|HMDB:HMDB36990|HMDB:HMDB36992|HMDB:HMDB37021|HMDB:HMDB37116|HMDB:HMDB37217|HMDB:HMDB37497|HMDB:HMDB37632|HMDB:HMDB38744|HMDB:HMDB39149|HMDB:HMDB39768|HMDB:HMDB39795|HMDB:HMDB40194|HMDB:HMDB40208|HMDB:HMDB40213|HMDB:HMDB40330|HMDB:HMDB40530|HMDB:HMDB40726|HMDB:HMDB40727|HMDB:HMDB41012|HMDB:HMDB41630 C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2|C10H18O2 cis-4-Decenoic acid|trans-Dec-2-enoic acid|8-Methylnonenoate|5-Octen-1-ol, 9CI; (Z)-form, Ac|3-Nonenoic acid, 9CI, 8CI; (x)-form, Me ester|6-Methyl-5-hepten-2-ol, 9CI; ()-form, Ac|3-Decenoic acid|9-Decenoic acid|2-Octenyl acetate|Cyclohexylethyl acetate|Linalool oxide (trans-pyranoid)|Linalool oxide III|4-Hydroxy-2,6-dimethyl-7-octen-3-one|Ethyl 3-octenoate|2-Methylbutyl 3-methyl-2-butenoate|1-Octen-3-yl acetate|6-Decanolide|cis-3-Hexenyl butyrate|Cyclohexyl butanoate|2-Hexenyl butanoate|3-Methyl-2,4-nonanedione|(S,E)-2,6-Dimethyl-5,7-octadiene-2,3-diol|Cnidiol C|Citronellic acid|(E)-3-(Tetrahydro-5,5-dimethyl-2-furanyl)-2-buten-1-ol|Linalyl oxide|Lilac alcohol|Hexyl crotonate|2,6-Dimethyl-3,7-octadiene-2,6-diol|1-Cyclopropyl-4-methyl-1,3-cyclohexanediol|trans-p-Menth-2-ene-1,4-diol|delta-Decalactone|xi-5-Hexyldihydro-2(3H)-furanone|2-Octenoic acid, 9CI; (E)-form, Et ester|xi-Tetrahydro-3-pentyl-2H-pyran-2-one|9-Hydroxygeraniol|(+)-6-Hydroxy-2,6-dimethyl-7-octen-4-one|5-Decenoic acid|4-Octenoic acid, 9CI; (Z)-form, Et ester|Methyl 2-nonenoate|2-Propenyl heptanoate|cis-3-Hexenyl isobutyrate|6-Hydroxy-3,7-dimethyloctanoic acid, 9CI; (3x,6x)-form, Lactone|3-Methyl-2-butenoic acid, 9CI; 3-Methylbutyl ester|()-cis-Linalyl oxide|()-trans-Linalyl oxide|6-Decenoic acid|Tetrahydro-3-hydroxy-2,2,6-trimethyl-6-vinylpyran; (3R,6R)-form InChI=1S/C10H18O2/c1-2-3-4-5-6-7-8-9-10(11)12/h6-7H,2-5,8-9H2,1H3,(H,11,12)/b7-6-|InChI=1S/C10H18O2/c1-2-3-4-5-6-7-8-9-10(11)12/h8-9H,2-7H2,1H3,(H,11,12)/b9-8+|InChI=1S/C10H18O2/c1-9(2)7-5-3-4-6-8-10(11)12/h5,7,9H,3-4,6,8H2,1-2H3,(H,11,12)/b7-5+|InChI=1S/C10H18O2/c1-3-4-5-6-7-8-9-12-10(2)11/h4-5H,3,6-9H2,1-2H3/b5-4-|InChI=1S/C10H18O2/c1-3-4-5-6-7-8-9-10(11)12-2/h7-8H,3-6,9H2,1-2H3/b8-7-|InChI=1S/C10H18O2/c1-8(2)6-5-7-9(3)12-10(4)11/h6,9H,5,7H2,1-4H3|InChI=1S/C10H18O2/c1-2-3-4-5-6-7-8-9-10(11)12/h7-8H,2-6,9H2,1H3,(H,11,12)/b8-7-|InChI=1S/C10H18O2/c1-2-3-4-5-6-7-8-9-10(11)12/h2H,1,3-9H2,(H,11,12)|InChI=1S/C10H18O2/c1-3-4-5-6-7-8-9-12-10(2)11/h7-8H,3-6,9H2,1-2H3/b8-7-|InChI=1S/C10H18O2/c1-9(11)12-8-7-10-5-3-2-4-6-10/h10H,2-8H2,1H3|InChI=1S/C10H18O2/c1-5-10(4)7-6-8(11)9(2,3)12-10/h5,8,11H,1,6-7H2,2-4H3/t8-,10-/m1/s1|InChI=1S/C10H18O2/c1-5-10(4)7-6-8(11)9(2,3)12-10/h5,8,11H,1,6-7H2,2-4H3/t8-,10+/m0/s1|InChI=1S/C10H18O2/c1-5-8(4)6-9(11)10(12)7(2)3/h5,7-9,11H,1,6H2,2-4H3|InChI=1S/C10H18O2/c1-3-5-6-7-8-9-10(11)12-4-2/h7-8H,3-6,9H2,1-2H3/b8-7+|InChI=1S/C10H18O2/c1-5-9(4)7-12-10(11)6-8(2)3/h6,9H,5,7H2,1-4H3|InChI=1S/C10H18O2/c1-4-6-7-8-10(5-2)12-9(3)11/h5,10H,2,4,6-8H2,1,3H3|InChI=1S/C10H18O2/c1-2-3-6-9-7-4-5-8-10(11)12-9/h9H,2-8H2,1H3|InChI=1S/C10H18O2/c1-3-5-6-7-9-12-10(11)8-4-2/h5-6H,3-4,7-9H2,1-2H3/b6-5-|InChI=1S/C10H18O2/c1-2-6-10(11)12-9-7-4-3-5-8-9/h9H,2-8H2,1H3|InChI=1S/C10H18O2/c1-3-5-6-7-9-12-10(11)8-4-2/h6-7H,3-5,8-9H2,1-2H3/b7-6+|InChI=1S/C10H18O2/c1-4-5-6-7-10(12)8(2)9(3)11/h8H,4-7H2,1-3H3|InChI=1S/C10H18O2/c1-5-8(2)6-7-9(11)10(3,4)12/h5-6,9,11-12H,1,7H2,2-4H3/b8-6+|InChI=1S/C10H18O2/c1-5-10(4)7-6-8(11)9(2,3)12-10/h5,8,11H,1,6-7H2,2-4H3|InChI=1S/C10H18O2/c1-8(2)5-4-6-9(3)7-10(11)12/h5,9H,4,6-7H2,1-3H3,(H,11,12)|InChI=1S/C10H18O2/c1-8(5-7-11)9-4-6-10(2,3)12-9/h5,9,11H,4,6-7H2,1-3H3/b8-5-|InChI=1S/C10H18O2/c1-5-10(4)7-6-8(12-10)9(2,3)11/h5,8,11H,1,6-7H2,2-4H3|InChI=1S/C10H18O2/c1-4-10(3)6-5-9(12-10)8(2)7-11/h4,8-9,11H,1,5-7H2,2-3H3|InChI=1S/C10H18O2/c1-3-5-6-7-9-12-10(11)8-4-2/h4,8H,3,5-7,9H2,1-2H3/b8-4-|InChI=1S/C10H18O2/c1-5-10(4,12)8-6-7-9(2,3)11/h5-7,11-12H,1,8H2,2-4H3/b7-6+|InChI=1S/C10H18O2/c1-7-4-5-10(12,6-9(7)11)8-2-3-8/h7-9,11-12H,2-6H2,1H3|InChI=1S/C10H18O2/c1-8(2)10(12)6-4-9(3,11)5-7-10/h4,6,8,11-12H,5,7H2,1-3H3|InChI=1S/C10H18O2/c1-2-3-4-6-9-7-5-8-10(11)12-9/h9H,2-8H2,1H3|InChI=1S/C10H18O2/c1-2-3-4-5-6-9-7-8-10(11)12-9/h9H,2-8H2,1H3|InChI=1S/C10H18O2/c1-3-5-6-7-8-9-10(11)12-4-2/h8-9H,3-7H2,1-2H3/b9-8-|InChI=1S/C10H18O2/c1-2-3-4-6-9-7-5-8-12-10(9)11/h9H,2-8H2,1H3|InChI=1S/C10H18O2/c1-9(6-7-11)4-3-5-10(2)8-12/h5-6,11-12H,3-4,7-8H2,1-2H3/b9-6+,10-5-|InChI=1S/C10H18O2/c1-5-10(4,12)7-9(11)6-8(2)3/h5,8,12H,1,6-7H2,2-4H3|InChI=1S/C10H18O2/c1-2-3-4-5-6-7-8-9-10(11)12/h5-6H,2-4,7-9H2,1H3,(H,11,12)/b6-5+|InChI=1S/C10H18O2/c1-3-5-6-7-8-9-10(11)12-4-2/h6-7H,3-5,8-9H2,1-2H3/b7-6+|InChI=1S/C10H18O2/c1-3-4-5-6-7-8-9-10(11)12-2/h8-9H,3-7H2,1-2H3/b9-8-|InChI=1S/C10H18O2/c1-3-5-6-7-8-10(11)12-9-4-2/h4H,2-3,5-9H2,1H3|InChI=1S/C10H18O2/c1-4-5-6-7-8-12-10(11)9(2)3/h5-6,9H,4,7-8H2,1-3H3/b6-5-|InChI=1S/C10H18O2/c1-7(2)9-5-4-8(3)6-10(11)12-9/h7-9H,4-6H2,1-3H3|InChI=1S/C10H18O2/c1-8(2)5-6-12-10(11)7-9(3)4/h7-8H,5-6H2,1-4H3|InChI=1S/C10H18O2/c1-5-10(4)7-6-8(12-10)9(2,3)11/h5,8,11H,1,6-7H2,2-4H3/t8-,10-/m1/s1|InChI=1S/C10H18O2/c1-5-10(4)7-6-8(12-10)9(2,3)11/h5,8,11H,1,6-7H2,2-4H3/t8-,10+/m0/s1|InChI=1S/C10H18O2/c1-2-3-4-5-6-7-8-9-10(11)12/h4-5H,2-3,6-9H2,1H3,(H,11,12)/b5-4+|InChI=1S/C10H18O2/c1-5-10(4)7-6-8(11)9(2,3)12-10/h5,8,11H,1,6-7H2,2-4H3/t8-,10+/m1/s1 cis-4-Decenoic acid|trans-Dec-2-enoic acid|8-Methylnonenoate|5-Octen-1-ol, 9CI; (Z)-form, Ac|3-Nonenoic acid, 9CI, 8CI; (x)-form, Me ester|6-Methyl-5-hepten-2-ol, 9CI; ()-form, Ac|3-Decenoic acid|9-Decenoic acid|2-Octenyl acetate|Cyclohexylethyl acetate|Linalool oxide (trans-pyranoid)|Linalool oxide III|4-Hydroxy-2,6-dimethyl-7-octen-3-one|Ethyl 3-octenoate|2-Methylbutyl 3-methyl-2-butenoate|1-Octen-3-yl acetate|6-Decanolide|cis-3-Hexenyl butyrate|Cyclohexyl butanoate|2-Hexenyl butanoate|3-Methyl-2,4-nonanedione|(S,E)-2,6-Dimethyl-5,7-octadiene-2,3-diol|Cnidiol C|Citronellic acid|(E)-3-(Tetrahydro-5,5-dimethyl-2-furanyl)-2-buten-1-ol|Linalyl oxide|Lilac alcohol|Hexyl crotonate|2,6-Dimethyl-3,7-octadiene-2,6-diol|1-Cyclopropyl-4-methyl-1,3-cyclohexanediol|trans-p-Menth-2-ene-1,4-diol|delta-Decalactone|xi-5-Hexyldihydro-2(3H)-furanone|2-Octenoic acid, 9CI; (E)-form, Et ester|xi-Tetrahydro-3-pentyl-2H-pyran-2-one|9-Hydroxygeraniol|(+)-6-Hydroxy-2,6-dimethyl-7-octen-4-one|5-Decenoic acid|4-Octenoic acid, 9CI; (Z)-form, Et ester|Methyl 2-nonenoate|2-Propenyl heptanoate|cis-3-Hexenyl isobutyrate|6-Hydroxy-3,7-dimethyloctanoic acid, 9CI; (3x,6x)-form, Lactone|3-Methyl-2-butenoic acid, 9CI; 3-Methylbutyl ester|()-cis-Linalyl oxide|()-trans-Linalyl oxide|6-Decenoic acid|Tetrahydro-3-hydroxy-2,2,6-trimethyl-6-vinylpyran; (3R,6R)-form null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null 170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999|170.130680574199999 [M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+ 2 null null 116.617515563964844 null null +SML 75 75 HMDB:HMDB32337|HMDB:HMDB33060|HMDB:HMDB34319 C16H11N1O3|C16H11N1O3|C16H11N1O3 Hydroxypropyl cellulose|Piperolactam A|Furofoline InChI=1S/C16H11NO3/c18-15-13(16(19)20)11-8-4-5-9-12(11)17-14(15)10-6-2-1-3-7-10/h1-9,18H,(H,19,20)|InChI=1S/C16H11NO3/c1-20-12-7-10-13-11(17-16(10)19)6-8-4-2-3-5-9(8)14(13)15(12)18/h2-7,18H,1H3,(H,17,19)|InChI=1S/C16H11NO3/c1-17-11-5-3-2-4-9(11)16(19)14-12(18)8-13-10(15(14)17)6-7-20-13/h2-8,18H,1H3 Hydroxypropyl cellulose|Piperolactam A|Furofoline null|null|null 265.073894350899991|265.073894350899991|265.073894350899991 [M+H]1+|[M+H]1+|[M+H]1+ 2 null null 298.82220458984375 null null +SML 76 76 HMDB:HMDB41052 C9H15N1O3S3 Ajocysteine InChI=1S/C9H15NO3S3/c1-2-5-16(13)6-3-4-14-15-7-8(10)9(11)12/h2-4,8H,1,5-7,10H2,(H,11,12)/b4-3+ Ajocysteine null 281.021406668499992 [M+H]1+ 2 null null 429.459014892578125 null null +SML 77 77 HMDB:HMDB30358 C21H26N2O2 Aspidospermatine InChI=1S/C21H26N2O2/c1-4-15-14-8-10-22-11-9-21(20(15)22)16-6-5-7-17(25-3)19(16)23(13(2)24)18(21)12-14/h4-7,14,18,20H,8-12H2,1-3H3/b15-4+ Aspidospermatine null 338.199428829400006 [M+H]1+ 2 null null 448.46820068359375 null null +SML 78 78 HMDB:HMDB03450|HMDB:HMDB03634|HMDB:HMDB03667|HMDB:HMDB30892|HMDB:HMDB30893|HMDB:HMDB31854|HMDB:HMDB32120|HMDB:HMDB32242|HMDB:HMDB32536|HMDB:HMDB34715|HMDB:HMDB34916|HMDB:HMDB34973|HMDB:HMDB34974|HMDB:HMDB34975|HMDB:HMDB34985|HMDB:HMDB35054|HMDB:HMDB35077|HMDB:HMDB35078|HMDB:HMDB35092|HMDB:HMDB35100|HMDB:HMDB35120|HMDB:HMDB35125|HMDB:HMDB35158|HMDB:HMDB35203|HMDB:HMDB35241|HMDB:HMDB35277|HMDB:HMDB35280|HMDB:HMDB35600|HMDB:HMDB35604|HMDB:HMDB35622|HMDB:HMDB35656|HMDB:HMDB35706|HMDB:HMDB35737|HMDB:HMDB35738|HMDB:HMDB35741|HMDB:HMDB35743|HMDB:HMDB35744|HMDB:HMDB36044|HMDB:HMDB36079|HMDB:HMDB36080|HMDB:HMDB36082|HMDB:HMDB36083|HMDB:HMDB36085|HMDB:HMDB36087|HMDB:HMDB36088|HMDB:HMDB36113|HMDB:HMDB36114|HMDB:HMDB36115|HMDB:HMDB36127|HMDB:HMDB36128|HMDB:HMDB36129|HMDB:HMDB36598|HMDB:HMDB37008|HMDB:HMDB37009|HMDB:HMDB37010|HMDB:HMDB37015|HMDB:HMDB37017|HMDB:HMDB37024|HMDB:HMDB37025|HMDB:HMDB37172|HMDB:HMDB37280|HMDB:HMDB37302|HMDB:HMDB37303|HMDB:HMDB38251|HMDB:HMDB38290|HMDB:HMDB38557|HMDB:HMDB39008|HMDB:HMDB39816|HMDB:HMDB40766|HMDB:HMDB41011|HMDB:HMDB41013|HMDB:HMDB41631 C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1|C10H16O1 (-)-trans-Carveol|Perillyl alcohol|Alpha-Pinene-oxide|p-Menth-3-en-9-al|Isocitral|3-Methyl-5-propyl-2-cyclohexen-1-one|2,6-Dimethyl-1,7-octadien-3-one|(E)-3,7-Dimethyl-1,5,7-octatrien-3-ol|2-(trans-2-Pentenyl)cyclopentanone|p-Mentha-1(6),8-dien-3-ol|cis-2-Thujen-4-ol|Campholenic aldehyde|(R)-Carvotanacetone|Piperitone|(+)-Fenchone|(1S,4R)-p-Mentha-2,8-dien-1-ol|(1R,4R)-p-Mentha-2,8-dien-1-ol|Geranial|Citral|2-Pinen-10-ol|Dehydrolinalool|Darwinol|1,2-Epoxy-p-menth-8-ene|(S)-9,10-Cyclo-p-menth-1-en-4-ol|(Z)-2-Methyl-6-methylene-2,7-octadien-1-ol|p-Mentha-1(7),5-dien-2-ol; (2S,4R)-form|Teresantalol|(S)-Phellandral|(R)-p-Menth-4(8)-en-3-one|(+)-cis-Carveol|3-Pinanone|alpha-Cyclocitral|(R)-Piperitone|(S)-Piperitone|p-Menth-8-en-3-one; (1R,4S)-form|Pinocarveol|(-)-Isopinocamphone|Marmelo oxide A|Dihydrocarvone|(1S,4S)-Dihydrocarvone|(-)-cis-Carveol|Carveol|Dehydro-1,8-cineole|(R)-p-Mentha-1,8-dien-7-ol|(S)-p-Mentha-1,8-dien-7-ol|(+)-3-Thujone|(-)-3-Thujone|(-)-3-Isothujone|(-)-Pinocamphone|(-)-trans-Pinocarveol|Verbenol|(E,E)-2,4-Decadienal|6,8-Epoxy-p-menth-2-ene|Terpinolene oxide|(2S,4R)-p-Mentha-1(7),8-dien-2-ol|p-Mentha-1,8-dien-4-ol|p-Mentha-1,8-dien-10-ol|4-Acetyl-1,4-dimethyl-1-cyclohexene|Hop ether|Tetrahydro-5-isopropenyl-2-methyl-2-vinylfuran|Junionone|xi-p-Mentha-3,8-dien-1-ol|xi-p-Mentha-1(7),2-dien-4-ol|xi-Pinol|Photocitral A|xi-3,6-Dihydro-4-methyl-2-(2-methyl-1-propenyl)-2H-pyran|3,4-Epoxy-p-menth-1(7)-ene|2-Hexylfuran|Anethofuran|beta-Cyclocitral|Isocyclocitral|3-Thujanone InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(11)6-9/h4,9-11H,1,5-6H2,2-3H3/t9-,10+/m1/s1|InChI=1S/C10H16O/c1-8(2)10-5-3-9(7-11)4-6-10/h3,10-11H,1,4-7H2,2H3|InChI=1S/C10H16O/c1-9(2)6-4-7(9)10(3)8(5-6)11-10/h6-8H,4-5H2,1-3H3|InChI=1S/C10H16O/c1-8-3-5-10(6-4-8)9(2)7-11/h5,7-9H,3-4,6H2,1-2H3|InChI=1S/C10H16O/c1-9(2)5-4-6-10(3)7-8-11/h5-6,8H,4,7H2,1-3H3/b10-6+|InChI=1S/C10H16O/c1-3-4-9-5-8(2)6-10(11)7-9/h6,9H,3-5,7H2,1-2H3|InChI=1S/C10H16O/c1-5-9(4)6-7-10(11)8(2)3/h5,9H,1-2,6-7H2,3-4H3|InChI=1S/C10H16O/c1-5-10(4,11)8-6-7-9(2)3/h1,7,11H,6,8H2,2-4H3|InChI=1S/C10H16O/c1-2-3-4-6-9-7-5-8-10(9)11/h3-4,9H,2,5-8H2,1H3/b4-3+|InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)6-10(9)11/h4,9-11H,1,5-6H2,2-3H3|InChI=1S/C10H16O/c1-7(2)10-5-4-9(3,11)8(10)6-10/h4-5,7-8,11H,6H2,1-3H3|InChI=1S/C10H16O/c1-8-4-5-9(6-7-11)10(8,2)3/h4,7,9H,5-6H2,1-3H3|InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(11)6-9/h4,7,9H,5-6H2,1-3H3|InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)6-10(9)11/h6-7,9H,4-5H2,1-3H3|InChI=1S/C10H16O/c1-9(2)7-4-5-10(3,6-7)8(9)11/h7H,4-6H2,1-3H3|InChI=1S/C10H16O/c1-8(2)9-4-6-10(3,11)7-5-9/h4,6,9,11H,1,5,7H2,2-3H3/t9-,10+/m0/s1|InChI=1S/C10H16O/c1-8(2)9-4-6-10(3,11)7-5-9/h4,6,9,11H,1,5,7H2,2-3H3/t9-,10-/m0/s1|InChI=1S/C10H16O/c1-9(2)5-4-6-10(3)7-8-11/h5,7-8H,4,6H2,1-3H3/b10-7+|InChI=1S/C10H16O/c1-9(2)5-4-6-10(3)7-8-11/h5,7-8H,4,6H2,1-3H3/b10-7+|InChI=1S/C10H16O/c1-10(2)8-4-3-7(6-11)9(10)5-8/h3,8-9,11H,4-6H2,1-2H3|InChI=1S/C10H16O/c1-5-10(4,11)8-6-7-9(2)3/h5-7,11H,1-2,8H2,3-4H3/b7-6-|InChI=1S/C10H16O/c1-10(2)8-4-3-7(6-11)9(10)5-8/h3,8-9,11H,4-6H2,1-2H3/t8-,9-/m1/s1|InChI=1S/C10H16O/c1-7(2)8-4-5-10(3)9(6-8)11-10/h8-9H,1,4-6H2,2-3H3|InChI=1S/C10H16O/c1-8-4-6-10(11,7-5-8)9-2-3-9/h4,9,11H,2-3,5-7H2,1H3|InChI=1S/C10H16O/c1-4-9(2)6-5-7-10(3)8-11/h4,7,11H,1-2,5-6,8H2,3H3/b10-7+|InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(11)6-9/h4-5,7,9-11H,3,6H2,1-2H3|InChI=1S/C10H16O/c1-9(5-11)6-3-7-8(4-6)10(7,9)2/h6-8,11H,3-5H2,1-2H3|InChI=1S/C10H16O/c1-8(2)10-5-3-9(7-11)4-6-10/h3,7-8,10H,4-6H2,1-2H3|InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)6-10(9)11/h8H,4-6H2,1-3H3|InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(11)6-9/h4,9-11H,1,5-6H2,2-3H3/t9-,10-/m0/s1|InChI=1S/C10H16O/c1-6-8-4-7(5-9(6)11)10(8,2)3/h6-8H,4-5H2,1-3H3|InChI=1S/C10H16O/c1-8-5-4-6-10(2,3)9(8)7-11/h5,7,9H,4,6H2,1-3H3|InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)6-10(9)11/h6-7,9H,4-5H2,1-3H3/t9-/m1/s1|InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)6-10(9)11/h6-7,9H,4-5H2,1-3H3/t9-/m0/s1|InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)6-10(9)11/h8-9H,1,4-6H2,2-3H3|InChI=1S/C10H16O/c1-6-8-4-7(5-9(6)11)10(8,2)3/h7-9,11H,1,4-5H2,2-3H3|InChI=1S/C10H16O/c1-6-8-4-7(5-9(6)11)10(8,2)3/h6-8H,4-5H2,1-3H3/t6-,7+,8-/m0/s1|InChI=1S/C10H16O/c1-8(2)4-5-10-6-9(3)7-11-10/h4-5,9-10H,1,6-7H2,2-3H3/b5-4-|InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(11)6-9/h8-9H,1,4-6H2,2-3H3|InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(11)6-9/h8-9H,1,4-6H2,2-3H3/t8-,9-/m0/s1|InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(11)6-9/h4,9-11H,1,5-6H2,2-3H3/t9-,10-/m1/s1|InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(11)6-9/h4,9-11H,1,5-6H2,2-3H3|InChI=1S/C10H16O/c1-9(2)8-4-6-10(3,11-9)7-5-8/h4,6,8H,5,7H2,1-3H3|InChI=1S/C10H16O/c1-8(2)10-5-3-9(7-11)4-6-10/h3,10-11H,1,4-7H2,2H3/t10-/m0/s1|InChI=1S/C10H16O/c1-8(2)10-5-3-9(7-11)4-6-10/h3,10-11H,1,4-7H2,2H3/t10-/m1/s1|InChI=1S/C10H16O/c1-6(2)10-4-8(10)7(3)9(11)5-10/h6-8H,4-5H2,1-3H3/t7-,8+,10-/m0/s1|InChI=1S/C10H16O/c1-6(2)10-4-8(10)7(3)9(11)5-10/h6-8H,4-5H2,1-3H3/t7-,8+,10-/m1/s1|InChI=1S/C10H16O/c1-6(2)10-4-8(10)7(3)9(11)5-10/h6-8H,4-5H2,1-3H3/t7-,8-,10+/m1/s1|InChI=1S/C10H16O/c1-6-8-4-7(5-9(6)11)10(8,2)3/h6-8H,4-5H2,1-3H3/t6-,7-,8+/m1/s1|InChI=1S/C10H16O/c1-6-8-4-7(5-9(6)11)10(8,2)3/h7-9,11H,1,4-5H2,2-3H3/t7-,8+,9+/m0/s1|InChI=1S/C10H16O/c1-6-4-9(11)8-5-7(6)10(8,2)3/h4,7-9,11H,5H2,1-3H3|InChI=1S/C10H16O/c1-2-3-4-5-6-7-8-9-10-11/h6-10H,2-5H2,1H3/b7-6-,9-8+|InChI=1S/C10H16O/c1-7-4-5-8-6-9(7)11-10(8,2)3/h4-5,7-9H,6H2,1-3H3|InChI=1S/C10H16O/c1-8-4-6-10(7-5-8)9(2,3)11-10/h4H,5-7H2,1-3H3|InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(11)6-9/h9-11H,1,3-6H2,2H3|InChI=1S/C10H16O/c1-8(2)10(11)6-4-9(3)5-7-10/h4,11H,1,5-7H2,2-3H3|InChI=1S/C10H16O/c1-8-3-5-10(6-4-8)9(2)7-11/h3,10-11H,2,4-7H2,1H3|InChI=1S/C10H16O/c1-8-4-6-10(3,7-5-8)9(2)11/h4H,5-7H2,1-3H3|InChI=1S/C10H16O/c1-7-4-5-9-8(7)6-11-10(9,2)3/h8-9H,1,4-6H2,2-3H3|InChI=1S/C10H16O/c1-5-10(4)7-6-9(11-10)8(2)3/h5,9H,1-2,6-7H2,3-4H3|InChI=1S/C10H16O/c1-8(11)4-5-9-6-7-10(9,2)3/h4-5,9H,6-7H2,1-3H3/b5-4+|InChI=1S/C10H16O/c1-8(2)9-4-6-10(3,11)7-5-9/h4,11H,1,5-7H2,2-3H3|InChI=1S/C10H16O/c1-8(2)10(11)6-4-9(3)5-7-10/h4,6,8,11H,3,5,7H2,1-2H3|InChI=1S/C10H16O/c1-7-4-5-8-6-9(7)11-10(8,2)3/h4,8-9H,5-6H2,1-3H3|InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(9)6-11/h6,8-10H,1,4-5H2,2-3H3|InChI=1S/C10H16O/c1-8(2)6-10-7-9(3)4-5-11-10/h4,6,10H,5,7H2,1-3H3|InChI=1S/C10H16O/c1-7(2)10-5-4-8(3)6-9(10)11-10/h7,9H,3-6H2,1-2H3|InChI=1S/C10H16O/c1-2-3-4-5-7-10-8-6-9-11-10/h6,8-9H,2-5,7H2,1H3|InChI=1S/C10H16O/c1-7-3-4-9-8(2)6-11-10(9)5-7/h5,8-10H,3-4,6H2,1-2H3|InChI=1S/C10H16O/c1-8-5-4-6-10(2,3)9(8)7-11/h7H,4-6H2,1-3H3|InChI=1S/C10H16O/c1-7-4-8(2)10(6-11)9(3)5-7/h4,6,8-10H,5H2,1-3H3|InChI=1S/C10H16O/c1-6(2)10-4-8(10)7(3)9(11)5-10/h6-8H,4-5H2,1-3H3 (-)-trans-Carveol|Perillyl alcohol|Alpha-Pinene-oxide|p-Menth-3-en-9-al|Isocitral|3-Methyl-5-propyl-2-cyclohexen-1-one|2,6-Dimethyl-1,7-octadien-3-one|(E)-3,7-Dimethyl-1,5,7-octatrien-3-ol|2-(trans-2-Pentenyl)cyclopentanone|p-Mentha-1(6),8-dien-3-ol|cis-2-Thujen-4-ol|Campholenic aldehyde|(R)-Carvotanacetone|Piperitone|(+)-Fenchone|(1S,4R)-p-Mentha-2,8-dien-1-ol|(1R,4R)-p-Mentha-2,8-dien-1-ol|Geranial|Citral|2-Pinen-10-ol|Dehydrolinalool|Darwinol|1,2-Epoxy-p-menth-8-ene|(S)-9,10-Cyclo-p-menth-1-en-4-ol|(Z)-2-Methyl-6-methylene-2,7-octadien-1-ol|p-Mentha-1(7),5-dien-2-ol; (2S,4R)-form|Teresantalol|(S)-Phellandral|(R)-p-Menth-4(8)-en-3-one|(+)-cis-Carveol|3-Pinanone|alpha-Cyclocitral|(R)-Piperitone|(S)-Piperitone|p-Menth-8-en-3-one; (1R,4S)-form|Pinocarveol|(-)-Isopinocamphone|Marmelo oxide A|Dihydrocarvone|(1S,4S)-Dihydrocarvone|(-)-cis-Carveol|Carveol|Dehydro-1,8-cineole|(R)-p-Mentha-1,8-dien-7-ol|(S)-p-Mentha-1,8-dien-7-ol|(+)-3-Thujone|(-)-3-Thujone|(-)-3-Isothujone|(-)-Pinocamphone|(-)-trans-Pinocarveol|Verbenol|(E,E)-2,4-Decadienal|6,8-Epoxy-p-menth-2-ene|Terpinolene oxide|(2S,4R)-p-Mentha-1(7),8-dien-2-ol|p-Mentha-1,8-dien-4-ol|p-Mentha-1,8-dien-10-ol|4-Acetyl-1,4-dimethyl-1-cyclohexene|Hop ether|Tetrahydro-5-isopropenyl-2-methyl-2-vinylfuran|Junionone|xi-p-Mentha-3,8-dien-1-ol|xi-p-Mentha-1(7),2-dien-4-ol|xi-Pinol|Photocitral A|xi-3,6-Dihydro-4-methyl-2-(2-methyl-1-propenyl)-2H-pyran|3,4-Epoxy-p-menth-1(7)-ene|2-Hexylfuran|Anethofuran|beta-Cyclocitral|Isocyclocitral|3-Thujanone null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null|null 152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984|152.120115510399984 [M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+|[M+H]1+ 2 null null 210.213577270507813 null null +SML 79 79 HMDB:HMDB14924 C15H29N3O5 Marimastat InChI=1S/C15H29N3O5/c1-8(2)7-9(10(19)13(21)18-23)12(20)17-11(14(22)16-6)15(3,4)5/h8-11,19,23H,7H2,1-6H3,(H,16,22)(H,17,20)(H,18,21)/t9-,10+,11-/m1/s1 Marimastat null 331.210722925100015 [M+Na]1+ 2 null null 911.98455810546875 null null +SML 80 80 HMDB:HMDB33071 C9H20O1S3 Propyl 1-(propylsulfinyl)propyl disulfide InChI=1S/C9H20OS3/c1-4-7-11-12-9(6-3)13(10)8-5-2/h9H,4-8H2,1-3H3 Propyl 1-(propylsulfinyl)propyl disulfide null 240.067627828000013 [M+H]1+ 2 null null 140.796768188476563 null null +SML 81 81 HMDB:HMDB41541 C12H24N4O7 N2-Fructopyranosylarginine InChI=1S/C12H24N4O7/c13-11(14)15-3-1-2-6(10(20)21)16-5-12(22)9(19)8(18)7(17)4-23-12/h6-9,16-19,22H,1-5H2,(H,20,21)(H4,13,14,15) N2-Fructopyranosylarginine null 336.164501765599994 [M+H]1+ 2 null null 392.59130859375 null null +SML 82 82 EXTRA:EXTRA006 (1)H42(2)H3C23N1O4 Hexadecanoyl-l-carnitine-d3 InChi=NA Hexadecanoyl-l-carnitine-d3 null 402.353690679800025 [M+H]1+ 2 null null 172.054885864257813 null null +SML 83 83 HMDB:HMDB28980|HMDB:HMDB29001 C14H20N2O3S1|C14H20N2O3S1 Methionyl-Phenylalanine|Phenylalanyl-Methionine InChI=1S/C14H20N2O3S/c1-20-8-7-12(14(18)19)16-13(17)11(15)9-10-5-3-2-4-6-10/h2-6,11-12H,7-9,15H2,1H3,(H,16,17)(H,18,19)|InChI=1S/C14H20N2O3S/c1-20-8-7-11(15)13(17)16-12(14(18)19)9-10-5-3-2-4-6-10/h2-6,11-12H,7-9,15H2,1H3,(H,16,17)(H,18,19) Methionyl-Phenylalanine|Phenylalanyl-Methionine null|null 296.119464368000024|296.119464368000024 [M+H]1+|[M+H]1+ 2 null null 565.9029541015625 null null + +SFH SMF_ID SME_ID_REFS SME_ID_REF_ambiguity_code adduct_ion isotopomer exp_mass_to_charge charge retention_time_in_seconds retention_time_in_seconds_start retention_time_in_seconds_end abundance_assay[1] opt_global_FWHM opt_global_Group opt_global_adducts opt_global_dc_charge_adduct_mass opt_global_dc_charge_adducts opt_global_is_backbone opt_global_is_ungrouped_monoisotopic opt_global_is_ungrouped_with_charge opt_global_isotope_distances opt_global_label opt_global_legal_isotope_pattern opt_global_map_idx opt_global_masstrace_centroid_mz opt_global_masstrace_centroid_rt opt_global_masstrace_intensity opt_global_max_height opt_global_num_of_masstraces opt_global_old_charge +SMF 1 1|2|3|4|5|6|7|8 1 [M+H]1+ null 118.086281670984334 0 70.157003402709961 null null 406.5467529296875 3.829350471496582 9297005714436264670 null null null null 1 null [] T697.1 -1 null [118.086281670984334] [70.157003402709961] [406.546738705937969] 134.418792724609375 1 null +SMF 2 9|10|11|12|13 1 [M+H]1+ null 116.07050212960992 1 71.353998184204102 null null 227.974411010742188 3.529333591461182 13988169324861251106 [[M+H]+] 1.0078250319 H1 1 null null [] T991 -1 0 [116.07050212960992] [71.353998184204102] [227.974416556981055] 78.166694641113281 1 0 +SMF 3 14 null [M+Na]1+ null 337.061439163384307 1 72.795002460479751 null null 464.264129638671875 6.965689659118652 3524591288671436405 [[M+H]+] 1.0078250319 H1 1 null null [] T1029 -1 0 [337.061439163384307] [72.795002460479751] [464.264122490999569] 82.91943359375 1 0 +SMF 4 15 null [M+Na]1+ null 219.026403993619027 0 76.876001358032227 null null 172.788894653320313 3.846715211868286 2545454649552112596 null null null null 1 null [] T633.2 -1 null [219.026403993619027] [76.876001358032227] [172.788896593869993] 52.834487915039063 1 null +SMF 5 16|17 1 [M+Na]1+ null 403.009075742273296 1 77.835001945495606 null null 464.30322265625 3.212812662124634 9387626459312126355 [[M+Na]+] 22.989769280899999 Na1 0 null null [] T670.2 -1 0 [403.009075742273296] [77.835001945495606] [464.303227708695431] 171.967788696289063 1 0 +SMF 6 18 null [M+H]1+ null 85.028360759569168 0 124.755992889404311 null null 542.72381591796875 9.101202011108398 7538986191516763766 null null null null 1 null [] T1061 -1 null [85.028360759569168] [124.755992889404311] [542.723835719635645] 78.303047180175781 1 null +SMF 7 19|20|21|22|23|24|25|26 1 [M+H]1+ null 166.08623103065176 0 174.793996810913086 null null 551.1646728515625 11.34195041656494 16646840599945649823 null null null null 1 null [] T1246 -1 null [166.08623103065176] [174.793996810913086] [551.164684735308583] 61.303848266601563 1 null +SMF 8 27|28 1 [M+H]1+ null 132.080904736267144 0 255.681009292602539 null null 528.05902099609375 5.12271785736084 3698300885826986965 null null null null 1 null [] T795.1 -1 null [132.080904736267144] [255.681009292602539] [528.059029527830717] 124.245132446289063 1 null +SMF 9 29|30|31|32|33 1 [M+H]1+ null 205.097168441206748 1 255.681009292602539 null null 713.48248291015625 7.066551685333252 14384426053008561453 null 1.007276466771 H1 null null 1 [1.003857438894073] T722.1_T2231 1 null [205.097168441206748, 206.101025880100821] [255.681009292602539, 255.681009292602539] [713.482465733413846, 113.140535731367891] 133.83978271484375 2 null +SMF 10 34|35|36 1 [M+H]1+ null 130.065090996600588 0 255.916986465454102 null null 121.024604797363281 4.051439762115479 13598834262540205274 null null null null 1 null [] T1601.1 -1 null [130.065090996600588] [255.916986465454102] [121.024606387372842] 37.314640045166016 1 null +SMF 11 37 null [M+H]1+ null 96.080721831532188 0 274.357995986938477 null null 238.058700561523438 7.71708345413208 7629017709342070880 null null null null 1 null [] T1635 -1 null [96.080721831532188] [274.357995986938477] [238.05869597855235] 37.988147735595703 1 null +SMF 12 38 null [M+H]1+ null 146.060144614468385 0 287.034988403320313 null null 244.981048583984375 9.781938552856444 7077284015137318424 null null null null 1 null [] T1854 -1 null [146.060144614468385] [287.034988403320313] [244.981055645621382] 31.841930389404297 1 null +SMF 13 39 null [M+H]1+ null 138.066068915749923 0 300.0 null null 1103.15380859375 7.563478469848633 124412016228233070 null null null null 1 null [] T643 -1 null [138.066068915749923] [300.0] [1103.153849296941189] 174.096893310546875 1 null +SMF 14 40|41|42|43 1 [M+H]1+ null 246.170103072827118 0 304.281005859375 null null 442.2005615234375 6.214710712432861 11517543399700834814 null null null null 1 null [] T978.2 -1 null [246.170103072827118] [304.281005859375] [442.200559619559499] 87.459442138671875 1 null +SMF 15 44|45 1 [M+H]1+ null 123.055177395598676 0 342.840986251831055 null null 323.958984375 4.027804851531982 4433016435518311254 null null null null 1 null [] T973 -1 null [123.055177395598676] [342.840986251831055] [323.958981908635906] 93.761405944824219 1 null +SMF 16 46|47 1 [M+Na]1+ null 192.074249939345094 1 342.840986251831055 null null 4436.0439453125 3.97005033493042 3695249519776585812 null 1.007276466771 H1 null null 1 [1.005559557148672] T78_T591 1 null [192.074249939345094, 193.079809496493766] [342.840986251831055, 342.840986251831055] [4436.044043762376532, 632.756566210300662] 1386.4874267578125 2 null +SMF 17 48 null [M+H]1+ null 176.118182588981995 0 343.081998825073242 null null 126.029853820800781 3.646950006484985 9629074610406717825 null null null null 1 null [] T1648 -1 null [176.118182588981995] [343.081998825073242] [126.029850416371119] 40.954673767089837 1 null +SMF 18 49|50 1 [M+H]1+ null 299.149127693506557 1 343.081998825073242 null null 3.422173046875e04 3.51179838180542 1286040224504777509 [[M+H]+] 1.0078250319 H1 1 null null [1.002864821667117, 1.004627725867238] T18.1_T53_T294.1 1 0 [299.149127693506557, 300.151992515173674, 301.156620241040912] [343.081998825073242, 342.840986251831055, 343.081998825073242] [3.422172984742792e04, 6337.711911833903287, 996.457075256475946] 1.149528515625e04 3 null +SMF 19 51 null [M+H]1+ null 211.144182672815219 0 361.761989593505859 null null 429.018585205078125 6.010195732116699 8156519372261205237 null null null null 1 null [] T938 -1 null [211.144182672815219] [361.761989593505859] [429.018587669215719] 90.485168457031236 1 null +SMF 20 52 null [M+H]1+ null 188.070751191608082 0 407.964992523193359 null null 179.279830932617188 4.514747619628906 1160105599914520624 null null null null 1 null [] T1390 -1 null [188.070751191608082] [407.964992523193359] [179.279824991363085] 49.4471435546875 1 null +SMF 21 53|54|55|56 1 [M+H]1+ null 206.081355879750618 0 408.206005096435547 null null 203.848312377929688 3.702873468399048 18065976748192727386 null null null null 1 null [] T1052 -1 null [206.081355879750618] [408.206005096435547] [203.848316044741324] 62.401630401611328 1 null +SMF 22 57 null [M+H]1+ null 286.201506241853167 0 485.282020568847656 null null 182.929275512695313 4.160271644592285 8294567185771042249 null null null null 1 null [] T1310 -1 null [286.201506241853167] [485.282020568847656] [182.929272783349006] 51.724838256835938 1 null +SMF 23 58|59 1 [M+Na]1+ null 339.105245928600596 1 503.486022949218693 null null 2335.92578125 6.947090148925781 14745543166368527145 [[M+Na]+] 22.989769280899999 Na1 0 null null [1.004796884605128, 0.996525885316032] T282.1_T1094_T1993 1 0 [339.105245928600596, 340.110042813205723, 341.106568698521755] [503.486022949218693, 503.486022949218693, 505.882987976074219] [2335.925876449327916, 354.968275572300627, 185.410468503569064] 408.090515136718693 3 null +SMF 24 60 null [M+H]1+ null 317.118595456161529 1 504.442977905273381 null null 9.16857109375e04 3.054603099822998 14745543166368527145 [[M+H]+] 1.0078250319 H1 1 null null [1.005657136470347, 0.996287562571297, 1.000696393290809, 1.010876454398499] T4.1_T24.1_T52.1_T198_T615 1 0 [317.118595456161529, 318.124252592631876, 319.120540155203173, 320.121236548493926, 321.132113002892481] [504.442977905273381, 504.442977905273381, 504.442977905273381, 504.683990478515625, 504.202022552490234] [9.168572181587107e04, 1.667971630442888e04, 7459.996300062630326, 1075.866719538898906, 330.196343489842548] 3.379155859375e04 5 null +SMF 25 61 null [M+H]1+ null 317.118262636536485 1 519.763984680175781 null null 1558.6962890625 4.033431053161621 5324029091050585739 [[M+H]+] 1.0078250319 H1 1 null null [1.004559165962178, 0.997624708146589] T4.2_T24.2_T52.2 1 0 [317.118262636536485, 318.12282180249872, 319.120446510645309] [519.763984680175781, 519.522972106933594, 519.522972106933594] [1558.696263199963141, 280.409300050559978, 140.461763675666589] 488.1129150390625 3 null +SMF 26 62|63|64|65|66|67|68|69|70 1 [M+H]1+ null 211.09643012266443 0 558.762016296386719 null null 520.63494873046875 3.637142658233643 6351229811981214154 null null null null 1 null [] T636 -1 null [211.09643012266443] [558.762016296386719] [520.634947813305189] 168.982986450195341 1 null +SMF 27 71|72|73 1 [M+H]1+ null 409.2373206542552 0 650.681018829345703 null null 504.62835693359375 15.13216495513916 16235118809960651801 null null null null 1 null [] T1479.2 -1 null [409.2373206542552] [650.681018829345703] [504.628346526296639] 40.196784973144531 1 null +SMF 28 74 null [M+H]1+ null 225.196139476127684 0 707.20699310302723 null null 375.26019287109375 3.439022541046143 14426322193251047546 null null null null 1 null [] T784 -1 null [225.196139476127684] [707.20699310302723] [375.260183480350634] 123.318473815917969 1 null +SMF 29 75|76 1 [M+H]1+ null 443.243148020067849 0 720.606021881103629 null null 800.57757568359375 47.166996002197266 15569982658256502101 null null null null 1 null [] T2029.1 -1 null [443.243148020067849] [720.606021881103629] [800.577569668230581] 21.490730285644531 1 null +SMF 30 77|78 1 [M+H]1+ null 330.263768476230894 0 727.088012695312614 null null 160.912857055664063 4.205943584442139 15259781623539856870 null null null null 1 null [] T1486 -1 null [330.263768476230894] [727.088012695312614] [160.912856404541515] 46.584560394287109 1 null +SMF 31 79|80|81|82|83|84|85|86|87 1 [M+H]1+ null 207.174476734132526 0 744.767017364502067 null null 145.768722534179688 4.433867454528809 13538677714262027596 null null null null 1 null [] T1679 -1 null [207.174476734132526] [744.767017364502067] [145.768723537223423] 39.367496490478509 1 null +SMF 32 88|89 1 [M+H]1+ null 237.148602519763784 0 745.725975036621094 null null 112.273887634277344 3.928828954696655 16041666842628197649 null null null null 1 null [] T1760 -1 null [237.148602519763784] [745.725975036621094] [112.273887028914444] 33.711521148681641 1 null +SMF 33 90|91|92 1 [M+H]1+ null 387.18042169485642 1 746.208000183105355 null null 590.66278076171875 3.33279299736023 5123099253051985733 [[M+H]+] 1.0078250319 H1 1 null null [1.002694079060063] T553_T1211 1 0 [387.18042169485642, 388.183115773916541] [746.208000183105355, 746.208000183105355] [590.662786504184282, 168.519181870652204] 225.336227416992188 2 null +SMF 34 93 null [M+H]1+ null 105.069978586218042 0 746.449012756347543 null null 429.32855224609375 3.807538509368897 4614017186756401011 null null null null 1 null [] T688 -1 null [105.069978586218042] [746.449012756347543] [429.328540806529361] 136.158248901367188 1 null +SMF 35 94 null [M+H]1+ null 368.279213162984775 0 790.288009643554688 null null 219.545059204101563 4.811758041381836 3329757963215470065 null null null null 1 null [] T1444 -1 null [368.279213162984775] [790.288009643554688] [219.545061632237605] 55.479961395263672 1 null +SMF 36 95 null [M+H]1+ null 502.295148108632532 0 810.848007202148438 null null 253.140838623046875 9.734925270080566 2776771326155910397 null null null null 1 null [] T1712 -1 null [502.295148108632532] [810.848007202148438] [253.140841708975188] 33.563030242919922 1 null +SMF 37 96|97 1 [M+H]1+ null 370.29503106868134 0 817.806987762451172 null null 186.0008544921875 4.648734092712402 9080230307898888024 null null null null 1 null [] T271.1 -1 null [370.29503106868134] [817.806987762451172] [186.000861194627277] 51.128528594970703 1 null +SMF 38 98 null [M+H]1+ null 502.294786676251931 0 847.728023529052848 null null 298.563873291015625 7.082503318786621 16879726905958695782 null null null null 1 null [] T1358 -1 null [502.294786676251931] [847.728023529052848] [298.563880448879218] 50.711311340332031 1 null +SMF 39 99 null [M+H]1+ null 502.295643870799154 0 878.604011535644531 null null 256.3153076171875 6.457612037658691 3302544447668591210 null null null null 1 null [] T1397.1 -1 null [502.295643870799154] [878.604011535644531] [256.315318009837426] 50.211971282958984 1 null +SMF 40 100 null [M+H]1+ null 357.27915989252989 1 884.130992889404297 null null 674.6983642578125 3.144007444381714 11751763167125280995 null 1.007276466771 H1 null null 1 [1.005612663209149] T453.2_T1101 1 null [357.27915989252989, 358.284772555738982] [884.130992889404297, 884.130992889404297] [674.698335966256309, 217.834225040461234] 257.90948486328125 2 null +SMF 41 101 null [M+H]1+ null 429.263758871309562 0 898.969001770019531 null null 1204.750244140625 48.611843109130859 2301760400757012949 null null null null 1 null [] T1790.1 -1 null [429.263758871309562] [898.969001770019531] [1204.750262218984972] 36.681735992431641 1 null +SMF 42 102 null [M+H]1+ null 104.107093701864486 0 908.291988372802848 null null 334.134552001953125 7.180178165435791 13461701011673102314 null null null null 1 null [] T1301 -1 null [104.107093701864486] [908.291988372802848] [334.134555442106432] 60.927520751953125 1 null +SMF 43 103 null [M+Na]1+ null 540.311630832603669 1 912.612018585205078 null null 246.195114135742188 3.937397480010986 12645818291769200087 [[M+Na]+] 22.989769280899999 Na1 0 null null [] T1090.1 -1 0 [540.311630832603669] [912.612018585205078] [246.19512137138625] 75.847434997558594 1 0 +SMF 44 104 null [M+H]1+ null 502.295418081307673 1 929.130020141601563 null null 857.96630859375 3.424405813217163 16484835583553422841 null 1.007276466771 H1 null null 1 [1.00408714388459] T389_T994 1 null [502.295418081307673, 503.299505225192263] [929.130020141601563, 929.130020141601563] [857.966290714969318, 260.971356050289842] 306.008575439453125 2 null +SMF 45 105|106|107|108|109|110|111|112|113 1 [M+H]1+ null 281.247312519574621 0 934.850006103515625 null null 889.29443359375 27.947235107421875 5462910477782999228 null null null null 1 null [] T1632.2 -1 null [281.247312519574621] [934.850006103515625] [889.294447195422208] 40.596694946289063 1 null +SMF 46 114|115 1 [M+Na]1+ null 548.274711841755789 1 941.329021453857308 null null 114.323089599609375 5.27379035949707 127375620886836016 [[M+Na]+] 22.989769280899999 Na1 0 null null [] T2119 -1 0 [548.274711841755789] [941.329021453857308] [114.323092484990411] 26.453907012939453 1 0 +SMF 47 116|117 1 [M+H]1+ null 424.34253169490546 1 945.413990020751953 null null 2216.9853515625 5.787180423736572 16575301711373380460 null 1.007276466771 H1 null null 1 [1.004639296767209] T208.1_T783 1 null [424.34253169490546, 425.347170991672613] [945.413990020751953, 945.174007415771484] [2216.985313233028592, 661.496332114514075] 465.477935791015625 2 null +SMF 48 118 null [M+H]1+ null 502.295457890694991 1 947.332019805908203 null null 8484.93359375 3.317963838577271 18199982915555156970 null 1.007276466771 H1 null null 1 [1.004664733242578, 1.00663879576274] T44.1_T89_T442 1 null [502.295457890694991, 503.300122623937511, 504.306761419700308] [947.332019805908203, 947.091007232666016, 947.572975158691406] [8484.933998908185458, 2645.264688744444811, 611.579414975855571] 3013.239990234375 3 null +SMF 49 119 null [M+Na]1+ null 454.329254787463128 0 960.254974365234489 null null 161.927627563476563 8.482426643371582 9130410714687483490 null null null null 1 null [] T2145 -1 null [454.329254787463128] [960.254974365234489] [161.92763453724038] 27.320693969726563 1 null +SMF 50 120 null [M+Na]1+ null 240.099621275012424 0 963.136024475097656 null null 202.042236328125 7.792730331420899 10230751009040044936 null null null null 1 null [] T1680.1 -1 null [240.099621275012424] [963.136024475097656] [202.042242683091899] 33.873798370361328 1 null +SMF 51 121 null [M+H]1+ null 403.360701904243399 1 977.015991210937614 null null 3.056835e05 10.43193244934082 16195946287832085262 null 1.007276466771 H1 null null 1 [1.005499898886114, 1.002856815256848, 1.009297241812249] T5.1_T20.1_T55.1_T182.1 1 null [403.360701904243399, 404.366201803129513, 405.369058618386362, 406.378355860198667] [977.015991210937614, 977.015991210937614, 978.939056396484375, 978.45703125] [3.056834973702952e05, 8.298682553328574e04, 1.487263400795753e04, 2851.243419516831636] 3.4633265625e04 4 null +SMF 52 122 null [M+H]1+ null 104.106997125920657 0 986.098022460937614 null null 987.03363037109375 6.985591888427734 1856311592457998092 null null null null 1 null [] T635.1 -1 null [104.106997125920657] [986.098022460937614] [987.033644372859271] 179.30926513671875 1 null +SMF 53 123|124|125|126|127 1 [M+Na]1+ null 184.073447723664088 0 986.098022460937614 null null 710.863525390625 8.848762512207031 2566658568879177762 null null null null 1 null [] T130.3 -1 null [184.073447723664088] [986.098022460937614] [710.863514725060554] 101.2491455078125 1 null +SMF 54 128 null [M+Na]1+ null 149.054525966022766 0 986.573982238769531 null null 213.320343017578125 4.975630760192871 9718248518238243987 null null null null 1 null [] T1198 -1 null [149.054525966022766] [986.573982238769531] [213.320346004220482] 49.981010437011719 1 null +SMF 55 129|130 1 [M+Na]1+ null 809.465051382398428 0 988.737030029296875 null null 227.415618896484375 8.92584228515625 16359826120104500679 null null null null 1 null [] T1918 -1 null [809.465051382398428] [988.737030029296875] [227.415613940520416] 31.403802871704105 1 null +SMF 56 131|132|133|134|135|136 1 [M+Na]1+ null 299.161904792397195 0 994.737968444824219 null null 118.401451110839844 4.567496776580811 1751862105542470875 null null null null 1 null [] T1741 -1 null [299.161904792397195] [994.737968444824219] [118.401450133205799] 35.477523803710938 1 null +SMF 57 137|138 1 [M+H]1+ null 454.293020942739418 1 1008.861007690429688 null null 5199.07421875 4.042880535125732 5309940484344648352 null 1.007276466771 H1 null null 1 [1.005394227364775, 1.003321352432636] T71_T257_T1030 1 null [454.293020942739418, 455.298415170104136, 456.301736522536771] [1008.861007690429688, 1008.861007690429688, 1008.861007690429688] [5199.074354523327202, 1372.45841402647784, 289.208451784652425] 1520.83642578125 3 null +SMF 58 139 null [M+H]1+ null 393.242744247120072 0 1009.102020263671989 null null 162.95050048828125 4.351873397827148 9418218938685566757 null null null null 1 null [] T1633 -1 null [393.242744247120072] [1009.102020263671989] [162.950503417559958] 43.336925506591797 1 null +SMF 59 140 null [M+Na]1+ null 592.339347836525235 1 1010.778007507324105 null null 103.309890747070313 5.717926025390625 5584912214469688598 [[M+Na]+] 22.989769280899999 Na1 0 null null [] T2135 -1 0 [592.339347836525235] [1010.778007507324105] [103.309888113417415] 23.059898376464844 1 0 +SMF 60 141 null [M+H]1+ null 508.341777613182103 1 1014.098052978515625 null null 2944.8037109375 7.468392372131348 17269837758652590310 null 1.007276466771 H1 null null 1 [1.00304409231137, 1.004132092881264] T195.1_T651.1_T1785 1 null [508.341777613182103, 509.34482170549353, 510.348953798374737] [1014.098052978515625, 1014.098052978515625, 1014.098052978515625] [2944.803716578753665, 909.873446239507757, 252.535240018623881] 512.3973388671875 3 null +SMF 61 142 null [M+H]1+ null 298.274051839762706 0 1034.459037780761719 null null 108.191558837890625 4.633872509002686 4513858886158194228 null null null null 1 null [] T2085 -1 null [298.274051839762706] [1034.459037780761719] [108.191556683941599] 27.77210807800293 1 null +SMF 62 143|144|145|146 1 [M+H]1+ null 283.263064739828792 1 1057.943000793457031 null null 2838.63427734375 19.741037368774418 2867479859612829978 null 1.007276466771 H1 null null 1 [1.004723309793292] T426.2_T1569.1 1 null [283.263064739828792, 284.267788049622084] [1057.943000793457031, 1057.703018188476563] [2838.634224831039319, 620.121678483046708] 184.326202392578125 2 null +SMF 63 147|148 1 [M+H]1+ null 497.129414939505011 0 1063.902053833007813 null null 1128.5126953125 5.917577743530274 2162179950754390686 null null null null 1 null [] T205.1 -1 null [497.129414939505011] [1063.902053833007813] [1128.512636695231777] 227.178878784179688 1 null +SMF 64 149|150|151|152|153|154|155|156|157|158|159|160|161|162 1 [M+H]1+ null 385.128391876411513 0 1064.863014221191406 null null 162.284866333007813 5.022671222686768 4263465799176542592 null null null null 1 null [] T1784 -1 null [385.128391876411513] [1064.863014221191406] [162.284862207834522] 30.742111206054688 1 null +SMF 65 163|164 1 [M+H]1+ null 219.210721289904683 1 1109.853973388671875 null null 2577.322998046875 3.735053300857544 5578502808567135071 null 1.007276466771 H1 null null 1 [1.004974249637229] T129.1_T716.1 1 null [219.210721289904683, 220.215695539541912] [1109.853973388671875, 1109.853973388671875] [2577.323076251745079, 450.275590947415708] 812.5667724609375 2 null +SMF 66 165|166 1 [M+H]1+ null 237.221380748547034 1 1109.853973388671875 null null 2729.864990234375 3.759226322174072 3680502179294108388 null 1.007276466771 H1 null null 1 [1.004359547631793, 1.006318655331881] T121.1_T667.1_T2201 1 null [237.221380748547034, 238.225740296178827, 239.232058951510709] [1109.853973388671875, 1109.853973388671875, 1110.094985961913835] [2729.864871147984559, 506.311948955546086, 77.900892405995194] 869.57269287109375 3 null +SMF 67 167|168|169|170|171 1 [M+H]1+ null 181.158800444432131 0 1110.094985961913835 null null 101.550979614257813 3.947076082229614 16686855832255892214 null null null null 1 null [] T1978 -1 null [181.158800444432131] [1110.094985961913835] [101.550981591643762] 31.016731262207031 1 null +SMF 68 172 null [M+Na]1+ null 281.053430168903787 0 1141.456947326660156 null null 142.142822265625 5.034920692443848 13483073397663933329 null null null null 1 null [] T1839 -1 null [281.053430168903787] [1141.456947326660156] [142.142815323824806] 33.458534240722656 1 null +SMF 69 173 null [M+H]1+ null 83.085521787361543 1 1145.297012329101563 null null 184.979354858398438 4.307753562927246 18330731406404849362 [[M+H]+] 1.0078250319 H1 1 null null [] T1394.1 -1 0 [83.085521787361543] [1145.297012329101563] [184.979348242778087] 52.300235748291016 1 0 +SMF 70 174|175 1 [M+Na]1+ null 338.183984006496019 0 1145.53802490234375 null null 124.177047729492188 4.021695613861084 8440409936650372217 null null null null 1 null [] T1900 -1 null [338.183984006496019] [1145.53802490234375] [124.177045281321853] 36.897388458251953 1 null +SMF 71 176 null [M+H]1+ null 177.163764403123594 0 1145.774002075195085 null null 137.100799560546875 4.497260093688965 5054487246774918970 null null null null 1 null [] T1538 -1 null [177.163764403123594] [1145.774002075195085] [137.100801911074541] 34.788539886474609 1 null +SMF 72 177|178|179 1 [M+H]1+ null 300.289659700662639 0 1162.299041748046875 null null 163.040573120117188 4.030756950378418 12917300351587807494 null null null null 1 null [] T1330 -1 null [300.289659700662639] [1162.299041748046875] [163.040568685973568] 47.879627227783203 1 null +SMF 73 180|181 1 [M+H]1+ null 237.221168016163176 0 1198.944053649902344 null null 101.354026794433594 3.626064300537109 13467600539688872510 null null null null 1 null [] T1582 -1 null [237.221168016163176] [1198.944053649902344] [101.354026724147218] 32.281425476074219 1 null +SMF 74 182|183|184|185|186|187|188|189|190|191|192|193|194|195|196|197|198|199|200|201|202|203|204|205|206|207|208|209|210|211|212|213|214|215|216|217|218|219|220|221|222|223|224|225|226|227|228|229 1 [M+H]1+ null 171.13802943423633 0 1207.54302978515625 null null 116.617515563964844 4.915366172790527 13902343804386297520 null null null null 1 null [] T2158 -1 null [171.13802943423633] [1207.54302978515625] [116.617512611919693] 27.78624153137207 1 null +SMF 75 230|231|232 1 [M+H]1+ null 266.081329017684993 0 1236.260948181152344 null null 298.82220458984375 4.989136695861816 14410997544311031754 null null null null 1 null [] T1131 -1 null [266.081329017684993] [1236.260948181152344] [298.82220425606647] 72.7686767578125 1 null +SMF 76 233 null [M+H]1+ null 282.028546754420177 0 1239.140052795410156 null null 429.459014892578125 6.265677452087402 14749201789623913860 null null null null 1 null [] T926 -1 null [282.028546754420177] [1239.140052795410156] [429.459023887398359] 80.855873107910156 1 null +SMF 77 234 null [M+H]1+ null 339.206459208989486 0 1239.621963500976563 null null 448.46820068359375 9.96507740020752 9307843734833845025 null null null null 1 null [] T1258.1 -1 null [339.206459208989486] [1239.621963500976563] [448.468200042295678] 54.413963317871094 1 null +SMF 78 235|236|237|238|239|240|241|242|243|244|245|246|247|248|249|250|251|252|253|254|255|256|257|258|259|260|261|262|263|264|265|266|267|268|269|270|271|272|273|274|275|276|277|278|279|280|281|282|283|284|285|286|287|288|289|290|291|292|293|294|295|296|297|298|299|300|301|302|303|304|305|306 1 [M+H]1+ null 153.127319931995544 0 1258.062973022460938 null null 210.213577270507813 7.47251033782959 13790799775093741764 null null null null 1 null [] T1753 -1 null [153.127319931995544] [1258.062973022460938] [210.213573915425911] 32.628276824951172 1 null +SMF 79 307 null [M+Na]1+ null 354.19973439567184 1 1296.138954162597656 null null 911.98455810546875 5.492672920227051 5969600954472802015 null 1.007276466771 H1 null null 1 [1.000924418739032] T584_T1288 1 null [354.19973439567184, 355.200658814410872] [1296.138954162597656, 1296.138954162597656] [911.984539976668089, 192.608999096587496] 199.40704345703125 2 null +SMF 80 308 null [M+H]1+ null 241.074781804646733 0 1302.343025207519531 null null 140.796768188476563 5.825624465942383 17549783855773162373 null null null null 1 null [] T1956 -1 null [241.074781804646733] [1302.343025207519531] [140.796767280061999] 27.282474517822266 1 null +SMF 81 309 null [M+H]1+ null 337.171858652798619 0 1303.061027526855241 null null 392.59130859375 5.568491458892822 13160217896259884405 null null null null 1 null [] T1068 -1 null [337.171858652798619] [1303.061027526855241] [392.591305358728107] 82.248298645019531 1 null +SMF 82 310 null [M+H]1+ null 403.360991605130891 0 1343.070030212402344 null null 172.054885864257813 11.245994567871094 8476436534063058476 null null null null 1 null [] T2165.1 -1 null [403.360991605130891] [1343.070030212402344] [172.054887990886584] 22.32154655456543 1 null +SMF 83 311|312 1 [M+H]1+ null 297.126692611838905 0 1359.83001708984375 null null 565.9029541015625 8.738143920898438 3819349586417270165 null null null null 1 null [] T1056 -1 null [297.126692611838905] [1359.83001708984375] [565.902954186851616] 75.577949523925781 1 null + +SEH SME_ID evidence_input_id database_identifier chemical_formula smiles inchi chemical_name uri derivatized_form adduct_ion exp_mass_to_charge charge theoretical_mass_to_charge spectra_ref identification_method ms_level rank opt_global_chemical_formula opt_global_description opt_global_identifier opt_global_modifications opt_global_mz_error_Da opt_global_mz_error_ppm +SME 1 mass=118.086281670984334,rt=70.157003402709961 HMDB:HMDB00043 C5H11N1O2 Betaine InChI=1S/C5H11NO2/c1-6(2,3)4-5(7)8/h4H2,1-3H3 Betaine null null [M+H]1+ 118.086281670984334 0 117.078979350899999 ms_run[1]:2655476886865018721 null null 1 C5H11NO2 [Betaine] [HMDB:HMDB00043] M+H;1+ 2.661798863812237e-05 0.225411404792002 +SME 2 mass=118.086281670984334,rt=70.157003402709961 HMDB:HMDB00883 C5H11N1O2 L-Valine InChI=1S/C5H11NO2/c1-3(2)4(6)5(7)8/h3-4H,6H2,1-2H3,(H,7,8)/t4-/m0/s1 L-Valine null null [M+H]1+ 118.086281670984334 0 117.078979350899999 ms_run[1]:2655476886865018721 null null 1 C5H11NO2 [L-Valine] [HMDB:HMDB00883] M+H;1+ 2.661798863812237e-05 0.225411404792002 +SME 3 mass=118.086281670984334,rt=70.157003402709961 HMDB:HMDB01382 C5H11N1O2 Vaporole InChI=1S/C5H11NO2/c1-5(2)3-4-8-6-7/h5H,3-4H2,1-2H3 Vaporole null null [M+H]1+ 118.086281670984334 0 117.078979350899999 ms_run[1]:2655476886865018721 null null 1 C5H11NO2 [Vaporole] [HMDB:HMDB01382] M+H;1+ 2.661798863812237e-05 0.225411404792002 +SME 4 mass=118.086281670984334,rt=70.157003402709961 HMDB:HMDB02141 C5H11N1O2 N-Methyl-a-aminoisobutyric acid InChI=1S/C5H11NO2/c1-5(2,6-3)4(7)8/h6H,1-3H3,(H,7,8) N-Methyl-a-aminoisobutyric acid null null [M+H]1+ 118.086281670984334 0 117.078979350899999 ms_run[1]:2655476886865018721 null null 1 C5H11NO2 [N-Methyl-a-aminoisobutyric acid] [HMDB:HMDB02141] M+H;1+ 2.661798863812237e-05 0.225411404792002 +SME 5 mass=118.086281670984334,rt=70.157003402709961 HMDB:HMDB03355 C5H11N1O2 5-Aminopentanoic acid InChI=1S/C5H11NO2/c6-4-2-1-3-5(7)8/h1-4,6H2,(H,7,8) 5-Aminopentanoic acid null null [M+H]1+ 118.086281670984334 0 117.078979350899999 ms_run[1]:2655476886865018721 null null 1 C5H11NO2 [5-Aminopentanoic acid] [HMDB:HMDB03355] M+H;1+ 2.661798863812237e-05 0.225411404792002 +SME 6 mass=118.086281670984334,rt=70.157003402709961 HMDB:HMDB13716 C5H11N1O2 Norvaline InChI=1S/C5H11NO2/c1-2-3-4(6)5(7)8/h4H,2-3,6H2,1H3,(H,7,8)/t4-/m1/s1 Norvaline null null [M+H]1+ 118.086281670984334 0 117.078979350899999 ms_run[1]:2655476886865018721 null null 1 C5H11NO2 [Norvaline] [HMDB:HMDB13716] M+H;1+ 2.661798863812237e-05 0.225411404792002 +SME 7 mass=118.086281670984334,rt=70.157003402709961 HMDB:HMDB15550 C5H11N1O2 Amyl Nitrite InChI=1S/C5H11NO2/c1-2-3-4-5-8-6-7/h2-5H2,1H3 Amyl Nitrite null null [M+H]1+ 118.086281670984334 0 117.078979350899999 ms_run[1]:2655476886865018721 null null 1 C5H11NO2 [Amyl Nitrite] [HMDB:HMDB15550] M+H;1+ 2.661798863812237e-05 0.225411404792002 +SME 8 mass=118.086281670984334,rt=70.157003402709961 HMDB:HMDB34366 C5H11N1O2 ()-Valine InChI=1S/C5H11NO2/c1-3(2)4(6)5(7)8/h3-4H,6H2,1-2H3,(H,7,8) ()-Valine null null [M+H]1+ 118.086281670984334 0 117.078979350899999 ms_run[1]:2655476886865018721 null null 1 C5H11NO2 [()-Valine] [HMDB:HMDB34366] M+H;1+ 2.661798863812237e-05 0.225411404792002 +SME 9 mass=116.07050212960992,rt=71.353998184204102 HMDB:HMDB00162 C5H9N1O2 L-Proline InChI=1S/C5H9NO2/c7-5(8)4-2-1-3-6-4/h4,6H,1-3H2,(H,7,8)/t4-/m0/s1 L-Proline null null [M+H]1+ 116.07050212960992 1 115.06332928709999 ms_run[1]:12368684355741378949 null null 1 C5H9NO2 [L-Proline] [HMDB:HMDB00162] M+H;1+ -1.028593857768101e-04 -0.886179457637546 +SME 10 mass=116.07050212960992,rt=71.353998184204102 HMDB:HMDB03411 C5H9N1O2 D-Proline InChI=1S/C5H9NO2/c7-5(8)4-2-1-3-6-4/h4,6H,1-3H2,(H,7,8)/t4-/m1/s1 D-Proline null null [M+H]1+ 116.07050212960992 1 115.06332928709999 ms_run[1]:12368684355741378949 null null 1 C5H9NO2 [D-Proline] [HMDB:HMDB03411] M+H;1+ -1.028593857768101e-04 -0.886179457637546 +SME 11 mass=116.07050212960992,rt=71.353998184204102 HMDB:HMDB12880 C5H9N1O2 Acetamidopropanal InChI=1S/C5H9NO2/c1-5(8)6-3-2-4-7/h4H,2-3H2,1H3,(H,6,8) Acetamidopropanal null null [M+H]1+ 116.07050212960992 1 115.06332928709999 ms_run[1]:12368684355741378949 null null 1 C5H9NO2 [Acetamidopropanal] [HMDB:HMDB12880] M+H;1+ -1.028593857768101e-04 -0.886179457637546 +SME 12 mass=116.07050212960992,rt=71.353998184204102 HMDB:HMDB30409 C5H9N1O2 4-Amino-2-methylenebutanoic acid InChI=1S/C5H9NO2/c1-4(2-3-6)5(7)8/h1-3,6H2,(H,7,8) 4-Amino-2-methylenebutanoic acid null null [M+H]1+ 116.07050212960992 1 115.06332928709999 ms_run[1]:12368684355741378949 null null 1 C5H9NO2 [4-Amino-2-methylenebutanoic acid] [HMDB:HMDB30409] M+H;1+ -1.028593857768101e-04 -0.886179457637546 +SME 13 mass=116.07050212960992,rt=71.353998184204102 HMDB:HMDB34208 C5H9N1O2 Pterolactam InChI=1S/C5H9NO2/c1-8-5-3-2-4(7)6-5/h5H,2-3H2,1H3,(H,6,7) Pterolactam null null [M+H]1+ 116.07050212960992 1 115.06332928709999 ms_run[1]:12368684355741378949 null null 1 C5H9NO2 [Pterolactam] [HMDB:HMDB34208] M+H;1+ -1.028593857768101e-04 -0.886179457637546 +SME 14 mass=337.061439163384307,rt=72.795002460479751 HMDB:HMDB05033 C16H14N2O3S1 Valdecoxib InChI=1S/C16H14N2O3S/c1-11-15(12-7-9-14(10-8-12)22(17,19)20)16(18-21-11)13-5-3-2-4-6-13/h2-10H,1H3,(H2,17,19,20) Valdecoxib null null [M+Na]1+ 337.061439163384307 1 314.072514176600009 ms_run[1]:14585827119623699820 null null 1 C16H14N2O3S [Valdecoxib] [HMDB:HMDB05033] M+Na;1+ -2.94551611375482e-04 -0.873880307114725 +SME 15 mass=219.026403993619027,rt=76.876001358032227 HMDB:HMDB30800 C9H8O5 3-Methoxy-4,5-methylenedioxybenzoic acid InChI=1S/C9H8O5/c1-12-6-2-5(9(10)11)3-7-8(6)14-4-13-7/h2-3H,4H2,1H3,(H,10,11) 3-Methoxy-4,5-methylenedioxybenzoic acid null null [M+Na]1+ 219.026403993619027 0 196.037175255199998 ms_run[1]:17174120853867982310 null null 1 C9H8O5 [3-Methoxy-4, 5-methylenedioxybenzoic acid] [HMDB:HMDB30800] M+Na;1+ 9.926623334877148e-06 0.045321584995098 +SME 16 mass=403.009075742273296,rt=77.835001945495606 HMDB:HMDB41777 C16H12O9S1 Tectorigenin 4'-sulfate InChI=1S/C16H12O9S/c1-23-16-11(17)6-12-13(15(16)19)14(18)10(7-24-12)8-2-4-9(5-3-8)25-26(20,21)22/h2-7,17,19H,1H3,(H,20,21,22) Tectorigenin 4'-sulfate null null [M+Na]1+ 403.009075742273296 1 380.020206112799997 ms_run[1]:12889006060925453157 null null 1 C16H12O9S [Tectorigenin 4'-sulfate] [HMDB:HMDB41777] M+Na;1+ -3.476307223877484e-04 -0.862587081657411 +SME 17 mass=403.009075742273296,rt=77.835001945495606 HMDB:HMDB41778 C16H12O9S1 Tectorigenin 7-sulfate InChI=1S/C16H12O9S/c1-23-16-12(25-26(20,21)22)6-11-13(15(16)19)14(18)10(7-24-11)8-2-4-9(17)5-3-8/h2-7,17,19H,1H3,(H,20,21,22) Tectorigenin 7-sulfate null null [M+Na]1+ 403.009075742273296 1 380.020206112799997 ms_run[1]:12889006060925453157 null null 1 C16H12O9S [Tectorigenin 7-sulfate] [HMDB:HMDB41778] M+Na;1+ -3.476307223877484e-04 -0.862587081657411 +SME 18 mass=85.028360759569168,rt=124.755992889404311 HMDB:HMDB32330 C4H4O2 4-Hydroxy-2-butenoic acid gamma-lactone InChI=1S/C4H4O2/c5-4-2-1-3-6-4/h1-2H,3H2 4-Hydroxy-2-butenoic acid gamma-lactone null null [M+H]1+ 85.028360759569168 0 84.021130127600003 ms_run[1]:12637936086339880250 null null 1 C4H4O2 [4-Hydroxy-2-butenoic acid gamma-lactone] [HMDB:HMDB32330] M+H;1+ -4.506442652996157e-05 -0.529992607685043 +SME 19 mass=166.08623103065176,rt=174.793996810913086 HMDB:HMDB00159 C9H11N1O2 L-Phenylalanine InChI=1S/C9H11NO2/c10-8(9(11)12)6-7-4-2-1-3-5-7/h1-5,8H,6,10H2,(H,11,12)/t8-/m0/s1 L-Phenylalanine null null [M+H]1+ 166.08623103065176 0 165.078979350900028 ms_run[1]:4856856219285760732 null null 1 C9H11NO2 [L-Phenylalanine] [HMDB:HMDB00159] M+H;1+ -2.402234395049163e-05 -0.144637760318134 +SME 20 mass=166.08623103065176,rt=174.793996810913086 HMDB:HMDB01007 C9H11N1O2 3-Pyridinebutanoic acid InChI=1S/C9H11NO2/c11-9(12)5-1-3-8-4-2-6-10-7-8/h2,4,6-7H,1,3,5H2,(H,11,12) 3-Pyridinebutanoic acid null null [M+H]1+ 166.08623103065176 0 165.078979350900028 ms_run[1]:4856856219285760732 null null 1 C9H11NO2 [3-Pyridinebutanoic acid] [HMDB:HMDB01007] M+H;1+ -2.402234395049163e-05 -0.144637760318134 +SME 21 mass=166.08623103065176,rt=174.793996810913086 HMDB:HMDB04992 C9H11N1O2 Benzocaine InChI=1S/C9H11NO2/c1-2-12-9(11)7-3-5-8(10)6-4-7/h3-6H,2,10H2,1H3 Benzocaine null null [M+H]1+ 166.08623103065176 0 165.078979350900028 ms_run[1]:4856856219285760732 null null 1 C9H11NO2 [Benzocaine] [HMDB:HMDB04992] M+H;1+ -2.402234395049163e-05 -0.144637760318134 +SME 22 mass=166.08623103065176,rt=174.793996810913086 HMDB:HMDB06044 C9H11N1O2 Norsalsolinol InChI=1S/C9H11NO2/c11-8-3-6-1-2-10-5-7(6)4-9(8)12/h3-4,10-12H,1-2,5H2 Norsalsolinol null null [M+H]1+ 166.08623103065176 0 165.078979350900028 ms_run[1]:4856856219285760732 null null 1 C9H11NO2 [Norsalsolinol] [HMDB:HMDB06044] M+H;1+ -2.402234395049163e-05 -0.144637760318134 +SME 23 mass=166.08623103065176,rt=174.793996810913086 HMDB:HMDB33485 C9H11N1O2 Gentiatibetine InChI=1S/C9H11NO2/c1-6-8-7(2-4-10-6)3-5-12-9(8)11/h2,4,9,11H,3,5H2,1H3 Gentiatibetine null null [M+H]1+ 166.08623103065176 0 165.078979350900028 ms_run[1]:4856856219285760732 null null 1 C9H11NO2 [Gentiatibetine] [HMDB:HMDB33485] M+H;1+ -2.402234395049163e-05 -0.144637760318134 +SME 24 mass=166.08623103065176,rt=174.793996810913086 HMDB:HMDB33589 C9H11N1O2 Ethyl 2-aminobenzoate InChI=1S/C9H11NO2/c1-2-12-9(11)7-5-3-4-6-8(7)10/h3-6H,2,10H2,1H3 Ethyl 2-aminobenzoate null null [M+H]1+ 166.08623103065176 0 165.078979350900028 ms_run[1]:4856856219285760732 null null 1 C9H11NO2 [Ethyl 2-aminobenzoate] [HMDB:HMDB33589] M+H;1+ -2.402234395049163e-05 -0.144637760318134 +SME 25 mass=166.08623103065176,rt=174.793996810913086 HMDB:HMDB34169 C9H11N1O2 Methyl N-methylanthranilate InChI=1S/C9H11NO2/c1-10-8-6-4-3-5-7(8)9(11)12-2/h3-6,10H,1-2H3 Methyl N-methylanthranilate null null [M+H]1+ 166.08623103065176 0 165.078979350900028 ms_run[1]:4856856219285760732 null null 1 C9H11NO2 [Methyl N-methylanthranilate] [HMDB:HMDB34169] M+H;1+ -2.402234395049163e-05 -0.144637760318134 +SME 26 mass=166.08623103065176,rt=174.793996810913086 HMDB:HMDB34710 C9H11N1O2 ()-Phenylalanine InChI=1S/C9H11NO2/c10-8(9(11)12)6-7-4-2-1-3-5-7/h1-5,8H,6,10H2,(H,11,12) ()-Phenylalanine null null [M+H]1+ 166.08623103065176 0 165.078979350900028 ms_run[1]:4856856219285760732 null null 1 C9H11NO2 [()-Phenylalanine] [HMDB:HMDB34710] M+H;1+ -2.402234395049163e-05 -0.144637760318134 +SME 27 mass=132.080904736267144,rt=255.681009292602539 HMDB:HMDB00466 C9H9N1 3-Methylindole InChI=1S/C9H9N/c1-7-6-10-9-5-3-2-4-8(7)9/h2-6,10H,1H3 3-Methylindole null null [M+H]1+ 132.080904736267144 0 131.073499287099992 ms_run[1]:3522845058612800625 null null 1 C9H9N [3-Methylindole] [HMDB:HMDB00466] M+H;1+ 1.289912714241837e-04 0.976608978078862 +SME 28 mass=132.080904736267144,rt=255.681009292602539 HMDB:HMDB34236 C9H9N1 Benzenepropanenitrile InChI=1S/C9H9N/c10-8-4-7-9-5-2-1-3-6-9/h1-3,5-6H,4,7H2 Benzenepropanenitrile null null [M+H]1+ 132.080904736267144 0 131.073499287099992 ms_run[1]:3522845058612800625 null null 1 C9H9N [Benzenepropanenitrile] [HMDB:HMDB34236] M+H;1+ 1.289912714241837e-04 0.976608978078862 +SME 29 mass=205.097168441206748,rt=255.681009292602539 HMDB:HMDB00929 C11H12N2O2 L-Tryptophan InChI=1S/C11H12N2O2/c12-9(11(14)15)5-7-6-13-10-4-2-1-3-8(7)10/h1-4,6,9,13H,5,12H2,(H,14,15)/t9-/m0/s1 L-Tryptophan null null [M+H]1+ 205.097168441206748 1 204.089878382800009 ms_run[1]:16181779777847887294 null null 1 C11H12N2O2 [L-Tryptophan] [HMDB:HMDB00929] M+H;1+ 1.435121103554593e-05 0.069972745839509 +SME 30 mass=205.097168441206748,rt=255.681009292602539 HMDB:HMDB13609 C11H12N2O2 D-Tryptophan InChI=1S/C11H12N2O2/c12-9(11(14)15)5-7-6-13-10-4-2-1-3-8(7)10/h1-4,6,9,13H,5,12H2,(H,14,15)/t9-/m1/s1 D-Tryptophan null null [M+H]1+ 205.097168441206748 1 204.089878382800009 ms_run[1]:16181779777847887294 null null 1 C11H12N2O2 [D-Tryptophan] [HMDB:HMDB13609] M+H;1+ 1.435121103554593e-05 0.069972745839509 +SME 31 mass=205.097168441206748,rt=255.681009292602539 HMDB:HMDB13840 C11H12N2O2 3-Hydroxymethylantipyrine InChI=1S/C11H12N2O2/c1-12-10(8-14)7-11(15)13(12)9-5-3-2-4-6-9/h2-7,14H,8H2,1H3 3-Hydroxymethylantipyrine null null [M+H]1+ 205.097168441206748 1 204.089878382800009 ms_run[1]:16181779777847887294 null null 1 C11H12N2O2 [3-Hydroxymethylantipyrine] [HMDB:HMDB13840] M+H;1+ 1.435121103554593e-05 0.069972745839509 +SME 32 mass=205.097168441206748,rt=255.681009292602539 HMDB:HMDB14892 C11H12N2O2 Ethotoin InChI=1S/C11H12N2O2/c1-2-13-10(14)9(12-11(13)15)8-6-4-3-5-7-8/h3-7,9H,2H2,1H3,(H,12,15) Ethotoin null null [M+H]1+ 205.097168441206748 1 204.089878382800009 ms_run[1]:16181779777847887294 null null 1 C11H12N2O2 [Ethotoin] [HMDB:HMDB14892] M+H;1+ 1.435121103554593e-05 0.069972745839509 +SME 33 mass=205.097168441206748,rt=255.681009292602539 HMDB:HMDB30396 C11H12N2O2 ()-Tryptophan InChI=1S/C11H12N2O2/c12-9(11(14)15)5-7-6-13-10-4-2-1-3-8(7)10/h1-4,6,9,13H,5,12H2,(H,14,15) ()-Tryptophan null null [M+H]1+ 205.097168441206748 1 204.089878382800009 ms_run[1]:16181779777847887294 null null 1 C11H12N2O2 [()-Tryptophan] [HMDB:HMDB30396] M+H;1+ 1.435121103554593e-05 0.069972745839509 +SME 34 mass=130.065090996600588,rt=255.916986465454102 HMDB:HMDB11664 C9H7N1 3-Methylene-indolenine InChI=1S/C9H7N/c1-7-6-10-9-5-3-2-4-8(7)9/h2-6H,1H2 3-Methylene-indolenine null null [M+H]1+ 130.065090996600588 0 129.057849223299996 ms_run[1]:11362558746551084758 null null 1 C9H7N [3-Methylene-indolenine] [HMDB:HMDB11664] M+H;1+ -3.468439513198973e-05 -0.266669446943514 +SME 35 mass=130.065090996600588,rt=255.916986465454102 HMDB:HMDB33731 C9H7N1 Quinoline InChI=1S/C9H7N/c1-2-6-9-8(4-1)5-3-7-10-9/h1-7H Quinoline null null [M+H]1+ 130.065090996600588 0 129.057849223299996 ms_run[1]:11362558746551084758 null null 1 C9H7N [Quinoline] [HMDB:HMDB33731] M+H;1+ -3.468439513198973e-05 -0.266669446943514 +SME 36 mass=130.065090996600588,rt=255.916986465454102 HMDB:HMDB34244 C9H7N1 Isoquinoline InChI=1S/C9H7N/c1-2-4-9-7-10-6-5-8(9)3-1/h1-7H Isoquinoline null null [M+H]1+ 130.065090996600588 0 129.057849223299996 ms_run[1]:11362558746551084758 null null 1 C9H7N [Isoquinoline] [HMDB:HMDB34244] M+H;1+ -3.468439513198973e-05 -0.266669446943514 +SME 37 mass=96.080721831532188,rt=274.357995986938477 HMDB:HMDB32973 C6H9N1 2,5-Dimethyl-1H-pyrrole InChI=1S/C6H9N/c1-5-3-4-6(2)7-5/h3-4,7H,1-2H3 2,5-Dimethyl-1H-pyrrole null null [M+H]1+ 96.080721831532188 0 95.073499287099992 ms_run[1]:3115668986484576202 null null 1 C6H9N [2, 5-Dimethyl-1H-pyrrole] [HMDB:HMDB32973] M+H;1+ -5.391346350336336e-05 -0.56112643851308 +SME 38 mass=146.060144614468385,rt=287.034988403320313 HMDB:HMDB29737 C9H7N1O1 1H-Indole-3-carboxaldehyde InChI=1S/C9H7NO/c11-6-7-5-10-9-4-2-1-3-8(7)9/h1-6,10H 1H-Indole-3-carboxaldehyde null null [M+H]1+ 146.060144614468385 0 145.052764223299988 ms_run[1]:15422283419583133148 null null 1 C9H7NO [1H-Indole-3-carboxaldehyde] [HMDB:HMDB29737] M+H;1+ 1.043114726542171e-04 0.714168450438786 +SME 39 mass=138.066068915749923,rt=300.0 HMDB:HMDB15086 C6H7N3O1 Isoniazid InChI=1S/C6H7N3O/c7-9-6(10)5-1-3-8-4-2-5/h1-4H,7H2,(H,9,10) Isoniazid null null [M+H]1+ 138.066068915749923 0 137.058912223299984 ms_run[1]:8394574820616979040 null null 1 C6H7N3O [Isoniazid] [HMDB:HMDB15086] M+H;1+ -1.193972458111148e-04 -0.864782661635023 +SME 40 mass=246.170103072827118,rt=304.281005859375 HMDB:HMDB00378 C12H23N1O4 2-Methylbutyroylcarnitine InChI=1S/C12H23NO4/c1-6-9(2)12(16)17-10(7-11(14)15)8-13(3,4)5/h9-10H,6-8H2,1-5H3 2-Methylbutyroylcarnitine null null [M+H]1+ 246.170103072827118 0 245.162709733699984 ms_run[1]:11505181008353986035 null null 1 C12H23NO4 [2-Methylbutyroylcarnitine] [HMDB:HMDB00378] M+H;1+ 1.183918313927279e-04 0.480935283585236 +SME 41 mass=246.170103072827118,rt=304.281005859375 HMDB:HMDB00688 C12H23N1O4 Isovalerylcarnitine InChI=1S/C12H23NO4/c1-9(2)6-12(16)17-10(7-11(14)15)8-13(3,4)5/h9-10H,6-8H2,1-5H3 Isovalerylcarnitine null null [M+H]1+ 246.170103072827118 0 245.162709733699984 ms_run[1]:11505181008353986035 null null 1 C12H23NO4 [Isovalerylcarnitine] [HMDB:HMDB00688] M+H;1+ 1.183918313927279e-04 0.480935283585236 +SME 42 mass=246.170103072827118,rt=304.281005859375 HMDB:HMDB13128 C12H23N1O4 Valerylcarnitine InChI=1S/C12H23NO4/c1-5-6-7-12(16)17-10(8-11(14)15)9-13(2,3)4/h10H,5-9H2,1-4H3/t10-/m0/s1 Valerylcarnitine null null [M+H]1+ 246.170103072827118 0 245.162709733699984 ms_run[1]:11505181008353986035 null null 1 C12H23NO4 [Valerylcarnitine] [HMDB:HMDB13128] M+H;1+ 1.183918313927279e-04 0.480935283585236 +SME 43 mass=246.170103072827118,rt=304.281005859375 HMDB:HMDB41993 C12H23N1O4 pivaloylcarnitine InChI=1S/C12H23NO4/c1-12(2,3)11(16)17-9(7-10(14)15)8-13(4,5)6/h9H,7-8H2,1-6H3 pivaloylcarnitine null null [M+H]1+ 246.170103072827118 0 245.162709733699984 ms_run[1]:11505181008353986035 null null 1 C12H23NO4 [pivaloylcarnitine] [HMDB:HMDB41993] M+H;1+ 1.183918313927279e-04 0.480935283585236 +SME 44 mass=123.055177395598676,rt=342.840986251831055 HMDB:HMDB01406 C6H6N2O1 Niacinamide InChI=1S/C6H6N2O/c7-6(9)5-2-1-3-8-4-5/h1-4H,(H2,7,9) Niacinamide null null [M+H]1+ 123.055177395598676 0 122.048013191400003 ms_run[1]:4146730309988233022 null null 1 C6H6N2O [Niacinamide] [HMDB:HMDB01406] M+H;1+ -1.118803970143745e-04 -0.909188037935066 +SME 45 mass=123.055177395598676,rt=342.840986251831055 HMDB:HMDB31861 C6H6N2O1 2-Acetylpyrazine InChI=1S/C6H6N2O/c1-5(9)6-4-7-2-3-8-6/h2-4H,1H3 2-Acetylpyrazine null null [M+H]1+ 123.055177395598676 0 122.048013191400003 ms_run[1]:4146730309988233022 null null 1 C6H6N2O [2-Acetylpyrazine] [HMDB:HMDB31861] M+H;1+ -1.118803970143745e-04 -0.909188037935066 +SME 46 mass=192.074249939345094,rt=342.840986251831055 HMDB:HMDB00001 C7H11N3O2 1-Methylhistidine InChI=1S/C7H11N3O2/c1-10-3-5(9-4-10)2-6(8)7(11)12/h3-4,6H,2,8H2,1H3,(H,11,12)/t6-/m0/s1 1-Methylhistidine null null [M+Na]1+ 192.074249939345094 1 169.085127350900024 ms_run[1]:430375439714968383 null null 1 C7H11N3O2 [1-Methylhistidine] [HMDB:HMDB00001] M+Na;1+ -9.737265060039137e-05 -0.506952916738143 +SME 47 mass=192.074249939345094,rt=342.840986251831055 HMDB:HMDB00479 C7H11N3O2 3-Methylhistidine InChI=1S/C7H11N3O2/c1-10-4-9-3-5(10)2-6(8)7(11)12/h3-4,6H,2,8H2,1H3,(H,11,12)/t6-/m0/s1 3-Methylhistidine null null [M+Na]1+ 192.074249939345094 1 169.085127350900024 ms_run[1]:430375439714968383 null null 1 C7H11N3O2 [3-Methylhistidine] [HMDB:HMDB00479] M+Na;1+ -9.737265060039137e-05 -0.506952916738143 +SME 48 mass=176.118182588981995,rt=343.081998825073242 HMDB:HMDB06543 C10H13N3 Debrisoquine InChI=1S/C10H13N3/c11-10(12)13-6-5-8-3-1-2-4-9(8)7-13/h1-4H,5-7H2,(H3,11,12) Debrisoquine null null [M+H]1+ 176.118182588981995 0 175.110947414700007 ms_run[1]:15369548384872726132 null null 1 C10H13N3 [Debrisoquine] [HMDB:HMDB06543] M+H;1+ -4.129401372665598e-05 -0.234467579880261 +SME 49 mass=299.149127693506557,rt=343.081998825073242 HMDB:HMDB36159 C15H22O6 Toxin T2 tetrol InChI=1S/C15H22O6/c1-7-3-9-14(5-16,4-8(7)17)13(2)11(19)10(18)12(21-9)15(13)6-20-15/h3,8-12,16-19H,4-6H2,1-2H3 Toxin T2 tetrol null null [M+H]1+ 299.149127693506557 1 298.141640701800043 ms_run[1]:8197712101089927539 null null 1 C15H22O6 [Toxin T2 tetrol] [HMDB:HMDB36159] M+H;1+ 2.128055108983062e-04 0.711369823881804 +SME 50 mass=299.149127693506557,rt=343.081998825073242 HMDB:HMDB37560 C15H22O6 3,7,8,15-Scirpenetetrol InChI=1S/C15H22O6/c1-7-3-9-14(5-16,11(19)10(7)18)13(2)4-8(17)12(21-9)15(13)6-20-15/h3,8-12,16-19H,4-6H2,1-2H3 3,7,8,15-Scirpenetetrol null null [M+H]1+ 299.149127693506557 1 298.141640701800043 ms_run[1]:8197712101089927539 null null 1 C15H22O6 [3, 7, 8, 15-Scirpenetetrol] [HMDB:HMDB37560] M+H;1+ 2.128055108983062e-04 0.711369823881804 +SME 51 mass=211.144182672815219,rt=361.761989593505859 HMDB:HMDB34276 C11H18N2O2 L,L-Cyclo(leucylprolyl) InChI=1S/C11H18N2O2/c1-7(2)6-8-11(15)13-5-3-4-9(13)10(14)12-8/h7-9H,3-6H2,1-2H3,(H,12,14) L,L-Cyclo(leucylprolyl) null null [M+H]1+ 211.144182672815219 0 210.136828574199996 ms_run[1]:1546647016362370584 null null 1 C11H18N2O2 [L, L-Cyclo(leucylprolyl)] [HMDB:HMDB34276] M+H;1+ 7.839081951033222e-05 0.371266911652132 +SME 52 mass=188.070751191608082,rt=407.964992523193359 HMDB:HMDB00734 C11H9N1O2 Indoleacrylic acid InChI=1S/C11H9NO2/c13-11(14)6-5-9-7-8-3-1-2-4-10(8)12-9/h1-7,12H,(H,13,14)/b6-5+ Indoleacrylic acid null null [M+H]1+ 188.070751191608082 0 187.063329287100004 ms_run[1]:14352778931281644992 null null 1 C11H9NO2 [Indoleacrylic acid] [HMDB:HMDB00734] M+H;1+ 1.462026123704163e-04 0.777381517855865 +SME 53 mass=206.081355879750618,rt=408.206005096435547 HMDB:HMDB00671 C11H11N1O3 Indolelactic acid InChI=1S/C11H11NO3/c13-10(11(14)15)5-7-6-12-9-4-2-1-3-8(7)9/h1-4,6,10,12-13H,5H2,(H,14,15) Indolelactic acid null null [M+H]1+ 206.081355879750618 0 205.073894350899991 ms_run[1]:13217521272150705108 null null 1 C11H11NO3 [Indolelactic acid] [HMDB:HMDB00671] M+H;1+ 1.862047548968349e-04 0.903550553359595 +SME 54 mass=206.081355879750618,rt=408.206005096435547 HMDB:HMDB04096 C11H11N1O3 5-Methoxyindoleacetate InChI=1S/C11H11NO3/c1-15-8-2-3-10-9(5-8)7(6-12-10)4-11(13)14/h2-3,5-6,12H,4H2,1H3,(H,13,14) 5-Methoxyindoleacetate null null [M+H]1+ 206.081355879750618 0 205.073894350899991 ms_run[1]:13217521272150705108 null null 1 C11H11NO3 [5-Methoxyindoleacetate] [HMDB:HMDB04096] M+H;1+ 1.862047548968349e-04 0.903550553359595 +SME 55 mass=206.081355879750618,rt=408.206005096435547 HMDB:HMDB11621 C11H11N1O3 Cinnamoylglycine InChI=1S/C11H11NO3/c13-10(12-8-11(14)15)7-6-9-4-2-1-3-5-9/h1-7H,8H2,(H,12,13)(H,14,15)/b7-6+ Cinnamoylglycine null null [M+H]1+ 206.081355879750618 0 205.073894350899991 ms_run[1]:13217521272150705108 null null 1 C11H11NO3 [Cinnamoylglycine] [HMDB:HMDB11621] M+H;1+ 1.862047548968349e-04 0.903550553359595 +SME 56 mass=206.081355879750618,rt=408.206005096435547 HMDB:HMDB32755 C11H11N1O3 Methyl 1-methoxy-1H-indole-3-carboxylate InChI=1S/C11H11NO3/c1-14-11(13)9-7-12(15-2)10-6-4-3-5-8(9)10/h3-7H,1-2H3 Methyl 1-methoxy-1H-indole-3-carboxylate null null [M+H]1+ 206.081355879750618 0 205.073894350899991 ms_run[1]:13217521272150705108 null null 1 C11H11NO3 [Methyl 1-methoxy-1H-indole-3-carboxylate] [HMDB:HMDB32755] M+H;1+ 1.862047548968349e-04 0.903550553359595 +SME 57 mass=286.201506241853167,rt=485.282020568847656 HMDB:HMDB13324 C15H27N1O4 2-Octenoylcarnitine InChI=1S/C15H27NO4/c1-5-6-7-8-9-10-15(19)20-13(16(2,3)4)11-12-14(17)18/h9-10,13H,5-8,11-12H2,1-4H3/b10-9+/t13-/m0/s1 2-Octenoylcarnitine null null [M+H]1+ 286.201506241853167 0 285.194009861300003 ms_run[1]:12187724406054497822 null null 1 C15H27NO4 [2-Octenoylcarnitine] [HMDB:HMDB13324] M+H;1+ 2.214328575291802e-04 0.773696238564965 +SME 58 mass=339.105245928600596,rt=503.486022949218693 HMDB:HMDB32013 C14H20O8 Vanilloloside InChI=1S/C14H20O8/c1-20-9-4-7(5-15)2-3-8(9)21-14-13(19)12(18)11(17)10(6-16)22-14/h2-4,10-19H,5-6H2,1H3 Vanilloloside null null [M+Na]1+ 339.105245928600596 1 316.115820638000002 ms_run[1]:1749011823934981331 null null 1 C14H20O8 [Vanilloloside] [HMDB:HMDB32013] M+Na;1+ 2.076116048783661e-04 0.612233914036661 +SME 59 mass=339.105245928600596,rt=503.486022949218693 HMDB:HMDB41024 C14H20O8 2-(3,4-Dihydroxyphenyl)ethanol; 1-O-b-D-Glucopyranoside InChI=1S/C14H20O8/c15-6-10-11(18)12(19)13(20)14(22-10)21-4-3-7-1-2-8(16)9(17)5-7/h1-2,5,10-20H,3-4,6H2 2-(3,4-Dihydroxyphenyl)ethanol; 1-O-b-D-Glucopyranoside null null [M+Na]1+ 339.105245928600596 1 316.115820638000002 ms_run[1]:1749011823934981331 null null 1 C14H20O8 [2-(3, 4-Dihydroxyphenyl)ethanol; 1-O-b-D-Glucopyranoside] [HMDB:HMDB41024] M+Na;1+ 2.076116048783661e-04 0.612233914036661 +SME 60 mass=317.118595456161529,rt=504.442977905273381 EXTRA:EXTRA003 (1)H8(2)H6C12N4O4S1 Sulfadimethoxine-d6 InChi=NA Sulfadimethoxine-d6 null null [M+H]1+ 317.118595456161529 1 316.111237665200008 ms_run[1]:15844181087695944204 null null 1 C12(2)H6(1)H8N4O4S [Sulfadimethoxine-d6] [EXTRA:EXTRA003] M+H;1+ 8.28801658485645e-05 0.261353918367357 +SME 61 mass=317.118262636536485,rt=519.763984680175781 EXTRA:EXTRA003 (1)H8(2)H6C12N4O4S1 Sulfadimethoxine-d6 InChi=NA Sulfadimethoxine-d6 null null [M+H]1+ 317.118262636536485 1 316.111237665200008 ms_run[1]:17697099715588215802 null null 1 C12(2)H6(1)H8N4O4S [Sulfadimethoxine-d6] [EXTRA:EXTRA003] M+H;1+ -2.499394591950477e-04 -0.788157894551019 +SME 62 mass=211.09643012266443,rt=558.762016296386719 HMDB:HMDB13070 C11H14O4 Sinapyl alcohol InChI=1S/C11H14O4/c1-14-9-6-8(4-3-5-12)7-10(15-2)11(9)13/h3-4,6-7,12-13H,5H2,1-2H3/b4-3+ Sinapyl alcohol null null [M+H]1+ 211.09643012266443 0 210.089210446599992 ms_run[1]:6501520457475271456 null null 1 C11H14O4 [Sinapyl alcohol] [HMDB:HMDB13070] M+H;1+ -5.526533129796007e-05 -0.261801285778786 +SME 63 mass=211.09643012266443,rt=558.762016296386719 HMDB:HMDB29186 C11H14O4 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone InChI=1S/C11H14O4/c12-8-3-7(4-9(13)6-8)5-10-1-2-11(14)15-10/h3-4,6,10-14H,1-2,5H2 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone null null [M+H]1+ 211.09643012266443 0 210.089210446599992 ms_run[1]:6501520457475271456 null null 1 C11H14O4 [5-(3', 4'-dihydroxyphenyl)-gamma-valerolactone] [HMDB:HMDB29186] M+H;1+ -5.526533129796007e-05 -0.261801285778786 +SME 64 mass=211.09643012266443,rt=558.762016296386719 HMDB:HMDB29187 C11H14O4 5-(3',5')-Dihydroxyphenyl-gamma-valerolactone InChI=1S/C11H14O4/c12-8-3-7(4-9(13)6-8)5-10-1-2-11(14)15-10/h3-4,6,10-14H,1-2,5H2 5-(3',5')-Dihydroxyphenyl-gamma-valerolactone null null [M+H]1+ 211.09643012266443 0 210.089210446599992 ms_run[1]:6501520457475271456 null null 1 C11H14O4 [5-(3', 5')-Dihydroxyphenyl-gamma-valerolactone] [HMDB:HMDB29187] M+H;1+ -5.526533129796007e-05 -0.261801285778786 +SME 65 mass=211.09643012266443,rt=558.762016296386719 HMDB:HMDB29233 C11H14O4 3,4-Dihydroxyphenylvaleric acid InChI=1S/C11H14O4/c12-9-6-5-8(7-10(9)13)3-1-2-4-11(14)15/h5-7,12-13H,1-4H2,(H,14,15) 3,4-Dihydroxyphenylvaleric acid null null [M+H]1+ 211.09643012266443 0 210.089210446599992 ms_run[1]:6501520457475271456 null null 1 C11H14O4 [3, 4-Dihydroxyphenylvaleric acid] [HMDB:HMDB29233] M+H;1+ -5.526533129796007e-05 -0.261801285778786 +SME 66 mass=211.09643012266443,rt=558.762016296386719 HMDB:HMDB33798 C11H14O4 3-Methyl-1-(2,4,6-trihydroxyphenyl)-1-butanone InChI=1S/C11H14O4/c1-6(2)3-8(13)11-9(14)4-7(12)5-10(11)15/h4-6,12,14-15H,3H2,1-2H3 3-Methyl-1-(2,4,6-trihydroxyphenyl)-1-butanone null null [M+H]1+ 211.09643012266443 0 210.089210446599992 ms_run[1]:6501520457475271456 null null 1 C11H14O4 [3-Methyl-1-(2, 4, 6-trihydroxyphenyl)-1-butanone] [HMDB:HMDB33798] M+H;1+ -5.526533129796007e-05 -0.261801285778786 +SME 67 mass=211.09643012266443,rt=558.762016296386719 HMDB:HMDB34047 C11H14O4 2'-Hydroxy-4',6'-dimethoxy-3'-methylacetophenone InChI=1S/C11H14O4/c1-6-8(14-3)5-9(15-4)10(7(2)12)11(6)13/h5,13H,1-4H3 2'-Hydroxy-4',6'-dimethoxy-3'-methylacetophenone null null [M+H]1+ 211.09643012266443 0 210.089210446599992 ms_run[1]:6501520457475271456 null null 1 C11H14O4 [2'-Hydroxy-4', 6'-dimethoxy-3'-methylacetophenone] [HMDB:HMDB34047] M+H;1+ -5.526533129796007e-05 -0.261801285778786 +SME 68 mass=211.09643012266443,rt=558.762016296386719 HMDB:HMDB36199 C11H14O4 2-Methoxy-4-(4-methyl-1,3-dioxolan-2-yl)phenol InChI=1S/C11H14O4/c1-7-6-14-11(15-7)8-3-4-9(12)10(5-8)13-2/h3-5,7,11-12H,6H2,1-2H3 2-Methoxy-4-(4-methyl-1,3-dioxolan-2-yl)phenol null null [M+H]1+ 211.09643012266443 0 210.089210446599992 ms_run[1]:6501520457475271456 null null 1 C11H14O4 [2-Methoxy-4-(4-methyl-1, 3-dioxolan-2-yl)phenol] [HMDB:HMDB36199] M+H;1+ -5.526533129796007e-05 -0.261801285778786 +SME 69 mass=211.09643012266443,rt=558.762016296386719 HMDB:HMDB39428 C11H14O4 2-Methoxy-3-(4-methoxyphenyl)propanoic acid InChI=1S/C11H14O4/c1-14-9-5-3-8(4-6-9)7-10(15-2)11(12)13/h3-6,10H,7H2,1-2H3,(H,12,13) 2-Methoxy-3-(4-methoxyphenyl)propanoic acid null null [M+H]1+ 211.09643012266443 0 210.089210446599992 ms_run[1]:6501520457475271456 null null 1 C11H14O4 [2-Methoxy-3-(4-methoxyphenyl)propanoic acid] [HMDB:HMDB39428] M+H;1+ -5.526533129796007e-05 -0.261801285778786 +SME 70 mass=211.09643012266443,rt=558.762016296386719 HMDB:HMDB41406 C11H14O4 Bancroftinone InChI=1S/C11H14O4/c1-6-9(14-3)5-8(13)10(7(2)12)11(6)15-4/h5,13H,1-4H3 Bancroftinone null null [M+H]1+ 211.09643012266443 0 210.089210446599992 ms_run[1]:6501520457475271456 null null 1 C11H14O4 [Bancroftinone] [HMDB:HMDB41406] M+H;1+ -5.526533129796007e-05 -0.261801285778786 +SME 71 mass=409.2373206542552,rt=650.681018829345703 HMDB:HMDB32021 C26H32O4 Norbixin; (9Z,9'Z)-form, Di-Me ester InChI=1S/C26H32O4/c1-21(13-9-15-23(3)17-19-25(27)29-5)11-7-8-12-22(2)14-10-16-24(4)18-20-26(28)30-6/h7-20H,1-6H3/b8-7+,13-9-,14-10+,19-17+,20-18-,21-11+,22-12-,23-15-,24-16- Norbixin; (9Z,9'Z)-form, Di-Me ester null null [M+H]1+ 409.2373206542552 0 408.230061020800008 ms_run[1]:4916413991589631317 null null 1 C26H32O4 [Norbixin; (9Z, 9'Z)-form, Di-Me ester] [HMDB:HMDB32021] M+H;1+ -1.530974049046563e-05 -0.037410419688131 +SME 72 mass=409.2373206542552,rt=650.681018829345703 HMDB:HMDB39078 C26H32O4 trans-Methylbixin InChI=1S/C26H32O4/c1-21(13-9-15-23(3)17-19-25(27)29-5)11-7-8-12-22(2)14-10-16-24(4)18-20-26(28)30-6/h7-20H,1-6H3/b8-7+,13-9-,14-10+,19-17-,20-18-,21-11+,22-12-,23-15-,24-16- trans-Methylbixin null null [M+H]1+ 409.2373206542552 0 408.230061020800008 ms_run[1]:4916413991589631317 null null 1 C26H32O4 [trans-Methylbixin] [HMDB:HMDB39078] M+H;1+ -1.530974049046563e-05 -0.037410419688131 +SME 73 mass=409.2373206542552,rt=650.681018829345703 HMDB:HMDB41126 C26H32O4 Heterophylol InChI=1S/C26H32O4/c1-15(2)7-9-17-19-13-22-20(12-21(19)24(29-6)14-23(17)28-5)18-10-8-16(27)11-25(18)30-26(22,3)4/h7-8,10-11,14,20,22,27H,9,12-13H2,1-6H3 Heterophylol null null [M+H]1+ 409.2373206542552 0 408.230061020800008 ms_run[1]:4916413991589631317 null null 1 C26H32O4 [Heterophylol] [HMDB:HMDB41126] M+H;1+ -1.530974049046563e-05 -0.037410419688131 +SME 74 mass=225.196139476127684,rt=707.20699310302723 HMDB:HMDB30290 C13H24N2O1 Cuscohygrine InChI=1S/C13H24N2O/c1-14-7-3-5-11(14)9-13(16)10-12-6-4-8-15(12)2/h11-12H,3-10H2,1-2H3 Cuscohygrine null null [M+H]1+ 225.196139476127684 0 224.18886376559999 ms_run[1]:7182072963815914045 null null 1 C13H24N2O [Cuscohygrine] [HMDB:HMDB30290] M+H;1+ -3.758680406917847e-07 -1.669069642751488e-03 +SME 75 mass=443.243148020067849,rt=720.606021881103629 HMDB:HMDB31958 C26H34O6 3-O-Acetylepisamarcandin InChI=1S/C26H34O6/c1-16(27)31-22-11-12-25(4)20(24(22,2)3)10-13-26(5,29)21(25)15-30-18-8-6-17-7-9-23(28)32-19(17)14-18/h6-9,14,20-22,29H,10-13,15H2,1-5H3 3-O-Acetylepisamarcandin null null [M+H]1+ 443.243148020067849 0 442.235541084600015 ms_run[1]:17522365153003328163 null null 1 C26H34O6 [3-O-Acetylepisamarcandin] [HMDB:HMDB31958] M+H;1+ 3.327480721964093e-04 0.750712838948599 +SME 76 mass=443.243148020067849,rt=720.606021881103629 HMDB:HMDB39064 C26H34O6 Pectachol InChI=1S/C26H34O6/c1-15-7-9-19-25(2,3)20(27)11-12-26(19,4)17(15)14-31-23-18(29-5)13-16-8-10-21(28)32-22(16)24(23)30-6/h8,10,13,17,19-20,27H,1,7,9,11-12,14H2,2-6H3 Pectachol null null [M+H]1+ 443.243148020067849 0 442.235541084600015 ms_run[1]:17522365153003328163 null null 1 C26H34O6 [Pectachol] [HMDB:HMDB39064] M+H;1+ 3.327480721964093e-04 0.750712838948599 +SME 77 mass=330.263768476230894,rt=727.088012695312614 HMDB:HMDB06202 C18H35N1O4 4,8 dimethylnonanoyl carnitine InChI=1S/C18H35NO4/c1-14(2)8-7-9-15(3)10-11-18(22)23-16(12-17(20)21)13-19(4,5)6/h14-16H,7-13H2,1-6H3 4,8 dimethylnonanoyl carnitine null null [M+H]1+ 330.263768476230894 0 329.256610116500042 ms_run[1]:3206132486432006274 null null 1 C18H35NO4 [4, 8 dimethylnonanoyl carnitine] [HMDB:HMDB06202] M+H;1+ -1.165887647971431e-04 -0.353016996618321 +SME 78 mass=330.263768476230894,rt=727.088012695312614 HMDB:HMDB13321 C18H35N1O4 Undecanoylcarnitine InChI=1S/C18H35NO4/c1-5-6-7-8-9-10-11-12-13-18(22)23-16(14-17(20)21)15-19(2,3)4/h16H,5-15H2,1-4H3 Undecanoylcarnitine null null [M+H]1+ 330.263768476230894 0 329.256610116500042 ms_run[1]:3206132486432006274 null null 1 C18H35NO4 [Undecanoylcarnitine] [HMDB:HMDB13321] M+H;1+ -1.165887647971431e-04 -0.353016996618321 +SME 79 mass=207.174476734132526,rt=744.767017364502067 HMDB:HMDB31737 C14H22O1 delta-Methylionone InChI=1S/C14H22O/c1-10-7-6-8-14(4,5)13(10)9-11(2)12(3)15/h9H,6-8H2,1-5H3/b11-9+ delta-Methylionone null null [M+H]1+ 207.174476734132526 0 206.167065701799999 ms_run[1]:13189316329624772211 null null 1 C14H22O [delta-Methylionone] [HMDB:HMDB31737] M+H;1+ 1.34956136804476e-04 0.651413373134269 +SME 80 mass=207.174476734132526,rt=744.767017364502067 HMDB:HMDB31738 C14H22O1 3-Methyl-4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-one InChI=1S/C14H22O/c1-10-7-6-8-14(4,5)13(10)9-11(2)12(3)15/h7,9,13H,6,8H2,1-5H3/b11-9+ 3-Methyl-4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-one null null [M+H]1+ 207.174476734132526 0 206.167065701799999 ms_run[1]:13189316329624772211 null null 1 C14H22O [3-Methyl-4-(2, 6, 6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-one] [HMDB:HMDB31738] M+H;1+ 1.34956136804476e-04 0.651413373134269 +SME 81 mass=207.174476734132526,rt=744.767017364502067 HMDB:HMDB32397 C14H22O1 Methyl-delta-ionone InChI=1S/C14H22O/c1-5-12(15)8-9-13-11(2)7-6-10-14(13,3)4/h6-9,11,13H,5,10H2,1-4H3/b9-8+ Methyl-delta-ionone null null [M+H]1+ 207.174476734132526 0 206.167065701799999 ms_run[1]:13189316329624772211 null null 1 C14H22O [Methyl-delta-ionone] [HMDB:HMDB32397] M+H;1+ 1.34956136804476e-04 0.651413373134269 +SME 82 mass=207.174476734132526,rt=744.767017364502067 HMDB:HMDB32528 C14H22O1 alpha-(p-(1,1,3,3-Tetramethylbutyl)phenyl)-omega-hydroxypoly(oxyethylene) InChI=1S/C14H22O/c1-13(2,3)10-14(4,5)11-6-8-12(15)9-7-11/h6-9,15H,10H2,1-5H3 alpha-(p-(1,1,3,3-Tetramethylbutyl)phenyl)-omega-hydroxypoly(oxyethylene) null null [M+H]1+ 207.174476734132526 0 206.167065701799999 ms_run[1]:13189316329624772211 null null 1 C14H22O [alpha-(p-(1, 1, 3, 3-Tetramethylbutyl)phenyl)-omega-hydroxypoly(oxyethylene)] [HMDB:HMDB32528] M+H;1+ 1.34956136804476e-04 0.651413373134269 +SME 83 mass=207.174476734132526,rt=744.767017364502067 HMDB:HMDB35245 C14H22O1 1-(2,6,6-Trimethyl-2-cyclohexen-1-yl)-1-penten-3-one InChI=1S/C14H22O/c1-5-12(15)8-9-13-11(2)7-6-10-14(13,3)4/h7-9,13H,5-6,10H2,1-4H3/b9-8+ 1-(2,6,6-Trimethyl-2-cyclohexen-1-yl)-1-penten-3-one null null [M+H]1+ 207.174476734132526 0 206.167065701799999 ms_run[1]:13189316329624772211 null null 1 C14H22O [1-(2, 6, 6-Trimethyl-2-cyclohexen-1-yl)-1-penten-3-one] [HMDB:HMDB35245] M+H;1+ 1.34956136804476e-04 0.651413373134269 +SME 84 mass=207.174476734132526,rt=744.767017364502067 HMDB:HMDB35631 C14H22O1 alpha-Irone InChI=1S/C14H22O/c1-10-6-7-11(2)14(4,5)13(10)9-8-12(3)15/h6,8-9,11,13H,7H2,1-5H3/b9-8+ alpha-Irone null null [M+H]1+ 207.174476734132526 0 206.167065701799999 ms_run[1]:13189316329624772211 null null 1 C14H22O [alpha-Irone] [HMDB:HMDB35631] M+H;1+ 1.34956136804476e-04 0.651413373134269 +SME 85 mass=207.174476734132526,rt=744.767017364502067 HMDB:HMDB36023 C14H22O1 Etaspirene InChI=1S/C14H22O/c1-5-12-7-6-9-13(3,4)14(12)10-8-11(2)15-14/h7-8,10-11H,5-6,9H2,1-4H3 Etaspirene null null [M+H]1+ 207.174476734132526 0 206.167065701799999 ms_run[1]:13189316329624772211 null null 1 C14H22O [Etaspirene] [HMDB:HMDB36023] M+H;1+ 1.34956136804476e-04 0.651413373134269 +SME 86 mass=207.174476734132526,rt=744.767017364502067 HMDB:HMDB36024 C14H22O1 10-Isopropyl-2,7-dimethyl-1-oxaspiro[4.5]deca-3,6-diene InChI=1S/C14H22O/c1-10(2)13-6-5-11(3)9-14(13)8-7-12(4)15-14/h7-10,12-13H,5-6H2,1-4H3 10-Isopropyl-2,7-dimethyl-1-oxaspiro[4.5]deca-3,6-diene null null [M+H]1+ 207.174476734132526 0 206.167065701799999 ms_run[1]:13189316329624772211 null null 1 C14H22O [10-Isopropyl-2, 7-dimethyl-1-oxaspiro[4.5]deca-3, 6-diene] [HMDB:HMDB36024] M+H;1+ 1.34956136804476e-04 0.651413373134269 +SME 87 mass=207.174476734132526,rt=744.767017364502067 HMDB:HMDB38130 C14H22O1 1-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-1-penten-3-one InChI=1S/C14H22O/c1-5-12(15)8-9-13-11(2)7-6-10-14(13,3)4/h8-9H,5-7,10H2,1-4H3/b9-8+ 1-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-1-penten-3-one null null [M+H]1+ 207.174476734132526 0 206.167065701799999 ms_run[1]:13189316329624772211 null null 1 C14H22O [1-(2, 6, 6-Trimethyl-1-cyclohexen-1-yl)-1-penten-3-one] [HMDB:HMDB38130] M+H;1+ 1.34956136804476e-04 0.651413373134269 +SME 88 mass=237.148602519763784,rt=745.725975036621094 HMDB:HMDB34462 C14H20O3 Heptyl 4-hydroxybenzoate InChI=1S/C14H20O3/c1-2-3-4-5-6-11-17-14(16)12-7-9-13(15)10-8-12/h7-10,15H,2-6,11H2,1H3 Heptyl 4-hydroxybenzoate null null [M+H]1+ 237.148602519763784 0 236.141245638000015 ms_run[1]:18024295067451415244 null null 1 C14H20O3 [Heptyl 4-hydroxybenzoate] [HMDB:HMDB34462] M+H;1+ 8.156176807005977e-05 0.343926952361243 +SME 89 mass=237.148602519763784,rt=745.725975036621094 HMDB:HMDB40778 C14H20O3 Eremopetasidione InChI=1S/C14H20O3/c1-8-12(16)5-4-10-6-13(17)11(9(2)15)7-14(8,10)3/h7-8,10,12,16H,4-6H2,1-3H3 Eremopetasidione null null [M+H]1+ 237.148602519763784 0 236.141245638000015 ms_run[1]:18024295067451415244 null null 1 C14H20O3 [Eremopetasidione] [HMDB:HMDB40778] M+H;1+ 8.156176807005977e-05 0.343926952361243 +SME 90 mass=387.18042169485642,rt=746.208000183105355 HMDB:HMDB30810 C22H26O6 Porson InChI=1S/C22H26O6/c1-26-19-9-8-13-10-15(19)16-12-14(20(25)22(28-3)21(16)27-2)6-4-5-7-17(23)18(24)11-13/h8-10,12,18,24-25H,4-7,11H2,1-3H3 Porson null null [M+H]1+ 387.18042169485642 1 386.172940829400034 ms_run[1]:12722278942372634863 null null 1 C22H26O6 [Porson] [HMDB:HMDB30810] M+H;1+ 2.066788607635317e-04 0.533805325654342 +SME 91 mass=387.18042169485642,rt=746.208000183105355 HMDB:HMDB35404 C22H26O6 Isogingerenone B InChI=1S/C22H26O6/c1-26-19-12-15(9-11-18(19)24)6-4-5-7-17(23)10-8-16-13-20(27-2)22(25)21(14-16)28-3/h5,7,9,11-14,24-25H,4,6,8,10H2,1-3H3/b7-5+ Isogingerenone B null null [M+H]1+ 387.18042169485642 1 386.172940829400034 ms_run[1]:12722278942372634863 null null 1 C22H26O6 [Isogingerenone B] [HMDB:HMDB35404] M+H;1+ 2.066788607635317e-04 0.533805325654342 +SME 92 mass=387.18042169485642,rt=746.208000183105355 HMDB:HMDB35405 C22H26O6 Gingerenone B InChI=1S/C22H26O6/c1-26-19-12-15(9-11-18(19)24)8-10-17(23)7-5-4-6-16-13-20(27-2)22(25)21(14-16)28-3/h5,7,9,11-14,24-25H,4,6,8,10H2,1-3H3/b7-5+ Gingerenone B null null [M+H]1+ 387.18042169485642 1 386.172940829400034 ms_run[1]:12722278942372634863 null null 1 C22H26O6 [Gingerenone B] [HMDB:HMDB35405] M+H;1+ 2.066788607635317e-04 0.533805325654342 +SME 93 mass=105.069978586218042,rt=746.449012756347543 HMDB:HMDB34240 C8H8 Styrene InChI=1S/C8H8/c1-2-8-6-4-3-5-7-8/h2-7H,1H2 Styrene null null [M+H]1+ 105.069978586218042 0 104.062600255199996 ms_run[1]:13310767320551504653 null null 1 C8H8 [Styrene] [HMDB:HMDB34240] M+H;1+ 1.01878222352525e-04 0.969623507179505 +SME 94 mass=368.279213162984775,rt=790.288009643554688 HMDB:HMDB13331 C21H37N1O4 3, 5-Tetradecadiencarnitine InChI=1S/C21H37NO4/c1-5-6-7-8-9-10-11-12-13-14-15-16-21(25)26-19(22(2,3)4)17-18-20(23)24/h12-15,19H,5-11,16-18H2,1-4H3/b13-12+,15-14+/t19-/m0/s1 3, 5-Tetradecadiencarnitine null null [M+H]1+ 368.279213162984775 0 367.272260180300066 ms_run[1]:6043732280261956472 null null 1 C21H37NO4 [3, 5-Tetradecadiencarnitine] [HMDB:HMDB13331] M+H;1+ -3.219660109152755e-04 -0.874243557417607 +SME 95 mass=502.295148108632532,rt=810.848007202148438 HMDB:HMDB05030 C32H39N1O4 Fexofenadine InChI=1S/C32H39NO4/c1-31(2,30(35)36)25-17-15-24(16-18-25)29(34)14-9-21-33-22-19-28(20-23-33)32(37,26-10-5-3-6-11-26)27-12-7-4-8-13-27/h3-8,10-13,15-18,28-29,34,37H,9,14,19-23H2,1-2H3,(H,35,36) Fexofenadine null null [M+H]1+ 502.295148108632532 0 501.287910244100033 ms_run[1]:8237011067308267019 null null 1 C32H39NO4 [Fexofenadine] [HMDB:HMDB05030] M+H;1+ -3.708436315719155e-05 -0.073829820094618 +SME 96 mass=370.29503106868134,rt=817.806987762451172 HMDB:HMDB02014 C21H39N1O4 cis-5-Tetradecenoylcarnitine InChI=1S/C21H39NO4/c1-5-6-7-8-9-10-11-12-13-14-15-16-21(25)26-19(17-20(23)24)18-22(2,3)4/h12-13,19H,5-11,14-18H2,1-4H3/b13-12- cis-5-Tetradecenoylcarnitine null null [M+H]1+ 370.29503106868134 0 369.287910244100033 ms_run[1]:4952301742876480743 null null 1 C21H39NO4 [cis-5-Tetradecenoylcarnitine] [HMDB:HMDB02014] M+H;1+ -1.541243143492466e-04 -0.416220141422897 +SME 97 mass=370.29503106868134,rt=817.806987762451172 HMDB:HMDB13329 C21H39N1O4 trans-2-Tetradecenoylcarnitine InChI=1S/C21H39NO4/c1-5-6-7-8-9-10-11-12-13-14-15-16-21(25)26-19(22(2,3)4)17-18-20(23)24/h15-16,19H,5-14,17-18H2,1-4H3/b16-15+/t19-/m0/s1 trans-2-Tetradecenoylcarnitine null null [M+H]1+ 370.29503106868134 0 369.287910244100033 ms_run[1]:4952301742876480743 null null 1 C21H39NO4 [trans-2-Tetradecenoylcarnitine] [HMDB:HMDB13329] M+H;1+ -1.541243143492466e-04 -0.416220141422897 +SME 98 mass=502.294786676251931,rt=847.728023529052848 HMDB:HMDB05030 C32H39N1O4 Fexofenadine InChI=1S/C32H39NO4/c1-31(2,30(35)36)25-17-15-24(16-18-25)29(34)14-9-21-33-22-19-28(20-23-33)32(37,26-10-5-3-6-11-26)27-12-7-4-8-13-27/h3-8,10-13,15-18,28-29,34,37H,9,14,19-23H2,1-2H3,(H,35,36) Fexofenadine null null [M+H]1+ 502.294786676251931 0 501.287910244100033 ms_run[1]:13127751365645010105 null null 1 C32H39NO4 [Fexofenadine] [HMDB:HMDB05030] M+H;1+ -3.98516743757682e-04 -0.793391526547404 +SME 99 mass=502.295643870799154,rt=878.604011535644531 HMDB:HMDB05030 C32H39N1O4 Fexofenadine InChI=1S/C32H39NO4/c1-31(2,30(35)36)25-17-15-24(16-18-25)29(34)14-9-21-33-22-19-28(20-23-33)32(37,26-10-5-3-6-11-26)27-12-7-4-8-13-27/h3-8,10-13,15-18,28-29,34,37H,9,14,19-23H2,1-2H3,(H,35,36) Fexofenadine null null [M+H]1+ 502.295643870799154 0 501.287910244100033 ms_run[1]:13190176614625612855 null null 1 C32H39NO4 [Fexofenadine] [HMDB:HMDB05030] M+H;1+ 4.586778034649798e-04 0.913163846650736 +SME 100 mass=357.27915989252989,rt=884.130992889404297 HMDB:HMDB02007 C24H36O2 Tetracosahexaenoic acid InChI=1S/C24H36O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24(25)26/h3-4,6-7,9-10,12-13,15-16,18-19H,2,5,8,11,14,17,20-23H2,1H3,(H,25,26)/b4-3-,7-6-,10-9-,13-12-,16-15-,19-18- Tetracosahexaenoic acid null null [M+H]1+ 357.27915989252989 1 356.271531148399959 ms_run[1]:908463259337760233 null null 1 C24H36O2 [Tetracosahexaenoic acid] [HMDB:HMDB02007] M+H;1+ 3.530445342221356e-04 0.988148548011521 +SME 101 mass=429.263758871309562,rt=898.969001770019531 HMDB:HMDB34064 C26H36O5 2,9-Dihydroxy-4,10(14)-oplopadien-3-one; (2b,4Z,9a)-form, 9-(3-Methyl-2E-pentenoyl), 2-angeloyl InChI=1S/C26H36O5/c1-9-15(6)12-21(27)30-20-13-19(14(4)5)23-18(11-3)24(28)25(22(23)17(20)8)31-26(29)16(7)10-2/h10-12,14,19-20,22-23,25H,8-9,13H2,1-7H3/b15-12+,16-10-,18-11- 2,9-Dihydroxy-4,10(14)-oplopadien-3-one; (2b,4Z,9a)-form, 9-(3-Methyl-2E-pentenoyl), 2-angeloyl null null [M+H]1+ 429.263758871309562 0 428.256276148399991 ms_run[1]:7506747945033050039 null null 1 C26H36O5 [2, 9-Dihydroxy-4, 10(14)-oplopadien-3-one; (2b, 4Z, 9a)-form, 9-(3-Methyl-2E-pentenoyl), 2-angeloyl] [HMDB:HMDB34064] M+H;1+ 2.081573139207649e-04 0.484917281177347 +SME 102 mass=104.107093701864486,rt=908.291988372802848 HMDB:HMDB31259 C5H13N1O1 Neurine InChI=1S/C5H12N.H2O/c1-5-6(2,3)4;/h5H,1H2,2-4H3;1H2/q+1;/p-1 Neurine null null [M+H]1+ 104.107093701864486 0 103.099714414700003 ms_run[1]:5796003791699081140 null null 1 C5H13NO [Neurine] [HMDB:HMDB31259] M+H;1+ 1.032068687862875e-04 0.991353878308955 +SME 103 mass=540.311630832603669,rt=912.612018585205078 HMDB:HMDB15386 C30H47N1O4S1 Retapamulin InChI=1S/C30H47NO4S/c1-7-28(4)16-24(35-25(33)17-36-22-14-20-8-9-21(15-22)31(20)6)29(5)18(2)10-12-30(19(3)27(28)34)13-11-23(32)26(29)30/h7,18-22,24,26-27,34H,1,8-17H2,2-6H3/t18-,19+,20-,21+,22?,24-,26+,27+,28-,29+,30+/m1/s1 Retapamulin null null [M+Na]1+ 540.311630832603669 1 517.322581229300113 ms_run[1]:4987645009836269828 null null 1 C30H47NO4S [Retapamulin] [HMDB:HMDB15386] M+Na;1+ -1.69555392062648e-04 -0.313810270182682 +SME 104 mass=502.295418081307673,rt=929.130020141601563 HMDB:HMDB05030 C32H39N1O4 Fexofenadine InChI=1S/C32H39NO4/c1-31(2,30(35)36)25-17-15-24(16-18-25)29(34)14-9-21-33-22-19-28(20-23-33)32(37,26-10-5-3-6-11-26)27-12-7-4-8-13-27/h3-8,10-13,15-18,28-29,34,37H,9,14,19-23H2,1-2H3,(H,35,36) Fexofenadine null null [M+H]1+ 502.295418081307673 1 501.287910244100033 ms_run[1]:13654741212353893273 null null 1 C32H39NO4 [Fexofenadine] [HMDB:HMDB05030] M+H;1+ 2.328883119844249e-04 0.463648306513117 +SME 105 mass=281.247312519574621,rt=934.850006103515625 HMDB:HMDB00673 C18H32O2 Linoleic acid InChI=1S/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h6-7,9-10H,2-5,8,11-17H2,1H3,(H,19,20)/b7-6-,10-9- Linoleic acid null null [M+H]1+ 281.247312519574621 0 280.240231020799968 ms_run[1]:9413164190595256599 null null 1 C18H32O2 [Linoleic acid] [HMDB:HMDB00673] M+H;1+ -1.942004210491177e-04 -0.690496507200897 +SME 106 mass=281.247312519574621,rt=934.850006103515625 HMDB:HMDB03797 C18H32O2 Bovinic acid InChI=1S/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h7-10H,2-6,11-17H2,1H3,(H,19,20)/b8-7+,10-9- Bovinic acid null null [M+H]1+ 281.247312519574621 0 280.240231020799968 ms_run[1]:9413164190595256599 null null 1 C18H32O2 [Bovinic acid] [HMDB:HMDB03797] M+H;1+ -1.942004210491177e-04 -0.690496507200897 +SME 107 mass=281.247312519574621,rt=934.850006103515625 HMDB:HMDB05047 C18H32O2 9E,11E-Octadecadienoic acid InChI=1S/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h7-10H,2-6,11-17H2,1H3,(H,19,20)/b8-7+,10-9+ 9E,11E-Octadecadienoic acid null null [M+H]1+ 281.247312519574621 0 280.240231020799968 ms_run[1]:9413164190595256599 null null 1 C18H32O2 [9E, 11E-Octadecadienoic acid] [HMDB:HMDB05047] M+H;1+ -1.942004210491177e-04 -0.690496507200897 +SME 108 mass=281.247312519574621,rt=934.850006103515625 HMDB:HMDB05048 C18H32O2 10E,12Z-Octadecadienoic acid InChI=1S/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h7-10H,2-6,11-17H2,1H3,(H,19,20)/b8-7-,10-9+ 10E,12Z-Octadecadienoic acid null null [M+H]1+ 281.247312519574621 0 280.240231020799968 ms_run[1]:9413164190595256599 null null 1 C18H32O2 [10E, 12Z-Octadecadienoic acid] [HMDB:HMDB05048] M+H;1+ -1.942004210491177e-04 -0.690496507200897 +SME 109 mass=281.247312519574621,rt=934.850006103515625 HMDB:HMDB06270 C18H32O2 Linoelaidic acid InChI=1S/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h6-7,9-10H,2-5,8,11-17H2,1H3,(H,19,20)/b7-6+,10-9+ Linoelaidic acid null null [M+H]1+ 281.247312519574621 0 280.240231020799968 ms_run[1]:9413164190595256599 null null 1 C18H32O2 [Linoelaidic acid] [HMDB:HMDB06270] M+H;1+ -1.942004210491177e-04 -0.690496507200897 +SME 110 mass=281.247312519574621,rt=934.850006103515625 HMDB:HMDB29800 C18H32O2 Mangiferic acid InChI=1S/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h3-4,9-10H,2,5-8,11-17H2,1H3,(H,19,20)/b4-3+,10-9+ Mangiferic acid null null [M+H]1+ 281.247312519574621 0 280.240231020799968 ms_run[1]:9413164190595256599 null null 1 C18H32O2 [Mangiferic acid] [HMDB:HMDB29800] M+H;1+ -1.942004210491177e-04 -0.690496507200897 +SME 111 mass=281.247312519574621,rt=934.850006103515625 HMDB:HMDB30430 C18H32O2 Linalyl caprylate InChI=1S/C18H32O2/c1-6-8-9-10-11-14-17(19)20-18(5,7-2)15-12-13-16(3)4/h7,13H,2,6,8-12,14-15H2,1,3-5H3 Linalyl caprylate null null [M+H]1+ 281.247312519574621 0 280.240231020799968 ms_run[1]:9413164190595256599 null null 1 C18H32O2 [Linalyl caprylate] [HMDB:HMDB30430] M+H;1+ -1.942004210491177e-04 -0.690496507200897 +SME 112 mass=281.247312519574621,rt=934.850006103515625 HMDB:HMDB31051 C18H32O2 2,4-Hexadecadienoic acid, 9CI; (2E,4Z)-form, Et ester InChI=1S/C18H32O2/c1-3-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20-4-2/h14-17H,3-13H2,1-2H3/b15-14-,17-16+ 2,4-Hexadecadienoic acid, 9CI; (2E,4Z)-form, Et ester null null [M+H]1+ 281.247312519574621 0 280.240231020799968 ms_run[1]:9413164190595256599 null null 1 C18H32O2 [2, 4-Hexadecadienoic acid, 9CI; (2E, 4Z)-form, Et ester] [HMDB:HMDB31051] M+H;1+ -1.942004210491177e-04 -0.690496507200897 +SME 113 mass=281.247312519574621,rt=934.850006103515625 HMDB:HMDB31097 C18H32O2 5-Octadecynoic acid InChI=1S/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h2-12,15-17H2,1H3,(H,19,20) 5-Octadecynoic acid null null [M+H]1+ 281.247312519574621 0 280.240231020799968 ms_run[1]:9413164190595256599 null null 1 C18H32O2 [5-Octadecynoic acid] [HMDB:HMDB31097] M+H;1+ -1.942004210491177e-04 -0.690496507200897 +SME 114 mass=548.274711841755789,rt=941.329021453857308 HMDB:HMDB11496 C27H44N1O7P1 LysoPE(0:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) InChI=1S/C27H44NO7P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-27(30)35-26(24-29)25-34-36(31,32)33-23-22-28/h3-4,6-7,9-10,12-13,15-16,18-19,26,29H,2,5,8,11,14,17,20-25,28H2,1H3,(H,31,32)/b4-3-,7-6-,10-9-,13-12-,16-15-,19-18-/t26-/m1/s1 LysoPE(0:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) null null [M+Na]1+ 548.274711841755789 1 525.285541893599998 ms_run[1]:741011730581856228 null null 1 C27H44NO7P [LysoPE(0:0/22:6(4Z, 7Z, 10Z, 13Z, 16Z, 19Z))] [HMDB:HMDB11496] M+Na;1+ -4.813823989024968e-05 -0.087799481945888 +SME 115 mass=548.274711841755789,rt=941.329021453857308 HMDB:HMDB11526 C27H44N1O7P1 LysoPE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) InChI=1S/C27H44NO7P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-27(30)33-24-26(29)25-35-36(31,32)34-23-22-28/h3-4,6-7,9-10,12-13,15-16,18-19,26,29H,2,5,8,11,14,17,20-25,28H2,1H3,(H,31,32)/b4-3-,7-6-,10-9-,13-12-,16-15-,19-18-/t26-/m1/s1 LysoPE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) null null [M+Na]1+ 548.274711841755789 1 525.285541893599998 ms_run[1]:741011730581856228 null null 1 C27H44NO7P [LysoPE(22:6(4Z, 7Z, 10Z, 13Z, 16Z, 19Z)/0:0)] [HMDB:HMDB11526] M+Na;1+ -4.813823989024968e-05 -0.087799481945888 +SME 116 mass=424.34253169490546,rt=945.413990020751953 HMDB:HMDB06461 C25H45N1O4 Linoelaidyl carnitine InChI=1S/C25H45NO4/c1-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-25(29)30-23(21-24(27)28)22-26(2,3)4/h9-10,12-13,23H,5-8,11,14-22H2,1-4H3/b10-9+,13-12+ Linoelaidyl carnitine null null [M+H]1+ 424.34253169490546 1 423.334860435500048 ms_run[1]:9156554401605467669 null null 1 C25H45NO4 [Linoelaidyl carnitine] [HMDB:HMDB06461] M+H;1+ 3.963099097745726e-04 0.933939566041468 +SME 117 mass=424.34253169490546,rt=945.413990020751953 HMDB:HMDB06469 C25H45N1O4 Linoleyl carnitine InChI=1S/C25H45NO4/c1-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-25(29)30-23(21-24(27)28)22-26(2,3)4/h9-10,12-13,23H,5-8,11,14-22H2,1-4H3/b10-9-,13-12-/t23-/m1/s1 Linoleyl carnitine null null [M+H]1+ 424.34253169490546 1 423.334860435500048 ms_run[1]:9156554401605467669 null null 1 C25H45NO4 [Linoleyl carnitine] [HMDB:HMDB06469] M+H;1+ 3.963099097745726e-04 0.933939566041468 +SME 118 mass=502.295457890694991,rt=947.332019805908203 HMDB:HMDB05030 C32H39N1O4 Fexofenadine InChI=1S/C32H39NO4/c1-31(2,30(35)36)25-17-15-24(16-18-25)29(34)14-9-21-33-22-19-28(20-23-33)32(37,26-10-5-3-6-11-26)27-12-7-4-8-13-27/h3-8,10-13,15-18,28-29,34,37H,9,14,19-23H2,1-2H3,(H,35,36) Fexofenadine null null [M+H]1+ 502.295457890694991 1 501.287910244100033 ms_run[1]:2808407269713785238 null null 1 C32H39NO4 [Fexofenadine] [HMDB:HMDB05030] M+H;1+ 2.726976993017161e-04 0.542903271503465 +SME 119 mass=454.329254787463128,rt=960.254974365234489 HMDB:HMDB38836 C27H45N1O3 Solanocardinol InChI=1S/C27H45NO3/c1-15-13-27(30)24(28-14-15)16(2)23-22(31-27)12-21-19-6-5-17-11-18(29)7-9-25(17,3)20(19)8-10-26(21,23)4/h15-24,28-30H,5-14H2,1-4H3 Solanocardinol null null [M+Na]1+ 454.329254787463128 0 431.339945435499999 ms_run[1]:12984015731170274336 null null 1 C27H45NO3 [Solanocardinol] [HMDB:HMDB38836] M+Na;1+ 8.977546741562037e-05 0.197600053725915 +SME 120 mass=240.099621275012424,rt=963.136024475097656 HMDB:HMDB15505 C13H15N1O2 Glutethimide InChI=1S/C13H15NO2/c1-2-13(10-6-4-3-5-7-10)9-8-11(15)14-12(13)16/h3-7H,2,8-9H2,1H3,(H,14,15,16) Glutethimide null null [M+Na]1+ 240.099621275012424 0 217.110279478500019 ms_run[1]:7672021192280806449 null null 1 C13H15NO2 [Glutethimide] [HMDB:HMDB15505] M+Na;1+ 1.218450167357332e-04 0.507477179356881 +SME 121 mass=403.360701904243399,rt=977.015991210937614 EXTRA:EXTRA006 (1)H42(2)H3C23N1O4 Hexadecanoyl-l-carnitine-d3 InChi=NA Hexadecanoyl-l-carnitine-d3 null null [M+H]1+ 403.360701904243399 1 402.353690679800025 ms_run[1]:13968508705061185077 null null 1 C23(2)H3(1)H42NO4 [Hexadecanoyl-l-carnitine-d3] [EXTRA:EXTRA006] M+H;1+ -2.63723552279771e-04 -0.653815254208618 +SME 122 mass=104.106997125920657,rt=986.098022460937614 HMDB:HMDB31259 C5H13N1O1 Neurine InChI=1S/C5H12N.H2O/c1-5-6(2,3)4;/h5H,1H2,2-4H3;1H2/q+1;/p-1 Neurine null null [M+H]1+ 104.106997125920657 0 103.099714414700003 ms_run[1]:6009941936165879496 null null 1 C5H13NO [Neurine] [HMDB:HMDB31259] M+H;1+ 6.630924957562456e-06 0.063693368966239 +SME 123 mass=184.073447723664088,rt=986.098022460937614 HMDB:HMDB03447 C10H11N1O1 Tryptophanol InChI=1S/C10H11NO/c12-6-5-8-7-11-10-4-2-1-3-9(8)10/h1-4,7,11-12H,5-6H2 Tryptophanol null null [M+Na]1+ 184.073447723664088 0 161.084064350899979 ms_run[1]:16458830007855898892 null null 1 C10H11NO [Tryptophanol] [HMDB:HMDB03447] M+Na;1+ 1.630436683797143e-04 0.885754109637145 +SME 124 mass=184.073447723664088,rt=986.098022460937614 HMDB:HMDB30267 C10H11N1O1 (R)-Boschniakine InChI=1S/C10H11NO/c1-7-2-3-9-8(6-12)4-11-5-10(7)9/h4-7H,2-3H2,1H3 (R)-Boschniakine null null [M+Na]1+ 184.073447723664088 0 161.084064350899979 ms_run[1]:16458830007855898892 null null 1 C10H11NO [(R)-Boschniakine] [HMDB:HMDB30267] M+Na;1+ 1.630436683797143e-04 0.885754109637145 +SME 125 mass=184.073447723664088,rt=986.098022460937614 HMDB:HMDB40028 C10H11N1O1 1-(2,3-Dihydro-1H-pyrrolizin-5-yl)-2-propen-1-one InChI=1S/C10H11NO/c1-2-10(12)9-6-5-8-4-3-7-11(8)9/h2,5-6H,1,3-4,7H2 1-(2,3-Dihydro-1H-pyrrolizin-5-yl)-2-propen-1-one null null [M+Na]1+ 184.073447723664088 0 161.084064350899979 ms_run[1]:16458830007855898892 null null 1 C10H11NO [1-(2, 3-Dihydro-1H-pyrrolizin-5-yl)-2-propen-1-one] [HMDB:HMDB40028] M+Na;1+ 1.630436683797143e-04 0.885754109637145 +SME 126 mass=184.073447723664088,rt=986.098022460937614 HMDB:HMDB40042 C10H11N1O1 3-[(5-Methyl-2-furanyl)methyl]-1H-pyrrole InChI=1S/C10H11NO/c1-8-2-3-10(12-8)6-9-4-5-11-7-9/h2-5,7,11H,6H2,1H3 3-[(5-Methyl-2-furanyl)methyl]-1H-pyrrole null null [M+Na]1+ 184.073447723664088 0 161.084064350899979 ms_run[1]:16458830007855898892 null null 1 C10H11NO [3-[(5-Methyl-2-furanyl)methyl]-1H-pyrrole] [HMDB:HMDB40042] M+Na;1+ 1.630436683797143e-04 0.885754109637145 +SME 127 mass=184.073447723664088,rt=986.098022460937614 HMDB:HMDB40048 C10H11N1O1 3,4-Dihydro-4-[(5-methyl-2-furanyl)methylene]-2H-pyrrole InChI=1S/C10H11NO/c1-8-2-3-10(12-8)6-9-4-5-11-7-9/h2-3,6-7H,4-5H2,1H3/b9-6- 3,4-Dihydro-4-[(5-methyl-2-furanyl)methylene]-2H-pyrrole null null [M+Na]1+ 184.073447723664088 0 161.084064350899979 ms_run[1]:16458830007855898892 null null 1 C10H11NO [3, 4-Dihydro-4-[(5-methyl-2-furanyl)methylene]-2H-pyrrole] [HMDB:HMDB40048] M+Na;1+ 1.630436683797143e-04 0.885754109637145 +SME 128 mass=149.054525966022766,rt=986.573982238769531 HMDB:HMDB41922 C3H6N6 melamine InChI=1S/C3H6N6/c4-1-7-2(5)9-3(6)8-1/h(H6,4,5,6,7,8,9) melamine null null [M+Na]1+ 149.054525966022766 0 126.065394191400003 ms_run[1]:7767416736452629837 null null 1 C3H6N6 [melamine] [HMDB:HMDB41922] M+Na;1+ -8.895697294519778e-05 -0.596807908236552 +SME 129 mass=809.465051382398428,rt=988.737030029296875 HMDB:HMDB40418 C41H70O14 Majonoside R2 InChI=1S/C41H70O14/c1-36(2)25(45)10-12-38(5)24-15-20(43)27-19(41(8)14-11-26(55-41)37(3,4)50)9-13-39(27,6)40(24,7)16-22(33(36)38)52-35-32(30(48)29(47)23(17-42)53-35)54-34-31(49)28(46)21(44)18-51-34/h19-35,42-50H,9-18H2,1-8H3 Majonoside R2 null null [M+Na]1+ 809.465051382398428 0 786.476562232999981 ms_run[1]:7332560001940022811 null null 1 C41H70O14 [Majonoside R2] [HMDB:HMDB40418] M+Na;1+ -7.262665973257754e-04 -0.897217173819425 +SME 130 mass=809.465051382398428,rt=988.737030029296875 HMDB:HMDB40781 C41H70O14 Vinaginsenoside R11 InChI=1S/C41H70O14/c1-36(2)25(45)10-12-38(5)24-15-20(43)27-19(41(8)14-11-26(46)37(3,4)55-41)9-13-39(27,6)40(24,7)16-22(33(36)38)52-35-32(30(49)29(48)23(17-42)53-35)54-34-31(50)28(47)21(44)18-51-34/h19-35,42-50H,9-18H2,1-8H3 Vinaginsenoside R11 null null [M+Na]1+ 809.465051382398428 0 786.476562232999981 ms_run[1]:7332560001940022811 null null 1 C41H70O14 [Vinaginsenoside R11] [HMDB:HMDB40781] M+Na;1+ -7.262665973257754e-04 -0.897217173819425 +SME 131 mass=299.161904792397195,rt=994.737968444824219 HMDB:HMDB15586 C17H24O3 Cyclandelate InChI=1S/C17H24O3/c1-12-9-14(11-17(2,3)10-12)20-16(19)15(18)13-7-5-4-6-8-13/h4-8,12,14-15,18H,9-11H2,1-3H3 Cyclandelate null null [M+Na]1+ 299.161904792397195 0 276.172545765600034 ms_run[1]:5286777058447832662 null null 1 C17H24O3 [Cyclandelate] [HMDB:HMDB15586] M+Na;1+ 1.394574014739192e-04 0.46616051124634 +SME 132 mass=299.161904792397195,rt=994.737968444824219 HMDB:HMDB31463 C17H24O3 [8]-Shogaol InChI=1S/C17H24O3/c1-3-4-5-6-7-8-15(18)11-9-14-10-12-16(19)17(13-14)20-2/h7-8,10,12-13,19H,3-6,9,11H2,1-2H3/b8-7+ [8]-Shogaol null null [M+Na]1+ 299.161904792397195 0 276.172545765600034 ms_run[1]:5286777058447832662 null null 1 C17H24O3 [[8]-Shogaol] [HMDB:HMDB31463] M+Na;1+ 1.394574014739192e-04 0.46616051124634 +SME 133 mass=299.161904792397195,rt=994.737968444824219 HMDB:HMDB38938 C17H24O3 Panaquinquecol 2 InChI=1S/C17H24O3/c1-3-5-6-7-8-13-16-17(20-16)15(19)12-10-9-11-14(18)4-2/h4,14-19H,2-3,5-8,13H2,1H3 Panaquinquecol 2 null null [M+Na]1+ 299.161904792397195 0 276.172545765600034 ms_run[1]:5286777058447832662 null null 1 C17H24O3 [Panaquinquecol 2] [HMDB:HMDB38938] M+Na;1+ 1.394574014739192e-04 0.46616051124634 +SME 134 mass=299.161904792397195,rt=994.737968444824219 HMDB:HMDB38994 C17H24O3 Ginsenoyne C InChI=1S/C17H24O3/c1-3-5-6-7-10-13-16(19)17(20)14-11-8-9-12-15(18)4-2/h3-4,15-20H,1-2,5-7,10,13-14H2 Ginsenoyne C null null [M+Na]1+ 299.161904792397195 0 276.172545765600034 ms_run[1]:5286777058447832662 null null 1 C17H24O3 [Ginsenoyne C] [HMDB:HMDB38994] M+Na;1+ 1.394574014739192e-04 0.46616051124634 +SME 135 mass=299.161904792397195,rt=994.737968444824219 HMDB:HMDB40375 C17H24O3 Ginsenoyne K InChI=1S/C17H24O3/c1-3-5-6-7-11-14-17(20-19)15-12-9-8-10-13-16(18)4-2/h4,12,15-19H,2-3,5-7,11,14H2,1H3/b15-12+ Ginsenoyne K null null [M+Na]1+ 299.161904792397195 0 276.172545765600034 ms_run[1]:5286777058447832662 null null 1 C17H24O3 [Ginsenoyne K] [HMDB:HMDB40375] M+Na;1+ 1.394574014739192e-04 0.46616051124634 +SME 136 mass=299.161904792397195,rt=994.737968444824219 HMDB:HMDB41201 C17H24O3 Panaquinquecol 7 InChI=1S/C17H24O3/c1-2-3-4-5-8-11-16-17(20-16)12-9-6-7-10-15(19)13-14-18/h16-18H,2-5,8,11-14H2,1H3 Panaquinquecol 7 null null [M+Na]1+ 299.161904792397195 0 276.172545765600034 ms_run[1]:5286777058447832662 null null 1 C17H24O3 [Panaquinquecol 7] [HMDB:HMDB41201] M+Na;1+ 1.394574014739192e-04 0.46616051124634 +SME 137 mass=454.293020942739418,rt=1008.861007690429688 HMDB:HMDB11473 C21H44N1O7P1 LysoPE(0:0/16:0) InChI=1S/C21H44NO7P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-21(24)29-20(18-23)19-28-30(25,26)27-17-16-22/h20,23H,2-19,22H2,1H3,(H,25,26)/t20-/m1/s1 LysoPE(0:0/16:0) null null [M+H]1+ 454.293020942739418 1 453.285541893600055 ms_run[1]:7644900471630945836 null null 1 C21H44NO7P [LysoPE(0:0/16:0)] [HMDB:HMDB11473] M+H;1+ 2.052117437756351e-04 0.451716902996654 +SME 138 mass=454.293020942739418,rt=1008.861007690429688 HMDB:HMDB11503 C21H44N1O7P1 LysoPE(16:0/0:0) InChI=1S/C21H44NO7P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-21(24)27-18-20(23)19-29-30(25,26)28-17-16-22/h20,23H,2-19,22H2,1H3,(H,25,26)/t20-/m1/s1 LysoPE(16:0/0:0) null null [M+H]1+ 454.293020942739418 1 453.285541893600055 ms_run[1]:7644900471630945836 null null 1 C21H44NO7P [LysoPE(16:0/0:0)] [HMDB:HMDB11503] M+H;1+ 2.052117437756351e-04 0.451716902996654 +SME 139 mass=393.242744247120072,rt=1009.102020263671989 HMDB:HMDB31977 C26H32O3 6'-Oxo-6,5'-diapo-6-carotenoic acid; (9Z)-form, Me ester InChI=1S/C26H32O3/c1-21(13-9-15-23(3)17-19-25(5)27)11-7-8-12-22(2)14-10-16-24(4)18-20-26(28)29-6/h7-20H,1-6H3/b8-7+,13-9+,14-10+,19-17+,20-18+,21-11+,22-12+,23-15+,24-16- 6'-Oxo-6,5'-diapo-6-carotenoic acid; (9Z)-form, Me ester null null [M+H]1+ 393.242744247120072 0 392.235146020800016 ms_run[1]:2225343569863221235 null null 1 C26H32O3 [6'-Oxo-6, 5'-diapo-6-carotenoic acid; (9Z)-form, Me ester] [HMDB:HMDB31977] M+H;1+ 3.229051243920367e-04 0.821135022234064 +SME 140 mass=592.339347836525235,rt=1010.778007507324105 HMDB:HMDB40684 C37H47N1O4 Janthitrem C InChI=1S/C37H47NO4/c1-19(2)31-29(39)17-27-30(41-31)10-11-35(7)36(8)21(9-12-37(27,35)40)15-24-23-13-20-14-26-25(18-33(3,4)42-34(26,5)6)22(20)16-28(23)38-32(24)36/h13,16-18,21,26,29-31,38-40H,1,9-12,14-15H2,2-8H3 Janthitrem C null null [M+Na]1+ 592.339347836525235 1 569.350510499300071 ms_run[1]:15759393497694501706 null null 1 C37H47NO4 [Janthitrem C] [HMDB:HMDB40684] M+Na;1+ -3.818614704869106e-04 -0.644666314517857 +SME 141 mass=508.341777613182103,rt=1014.098052978515625 HMDB:HMDB41430 C32H45N1O4 Gymnodimine InChI=1S/C32H45NO4/c1-19-8-6-9-29-32(13-7-15-33-29)14-12-25(28-18-22(4)31(35)37-28)23(5)26(32)17-20(2)27(34)11-10-24-16-21(3)30(19)36-24/h8,17-18,21,24,26-28,30,34H,6-7,9-16H2,1-5H3/b19-8+,20-17+ Gymnodimine null null [M+H]1+ 508.341777613182103 1 507.334860435500048 ms_run[1]:688887664096822068 null null 1 C32H45NO4 [Gymnodimine] [HMDB:HMDB41430] M+H;1+ -3.577718135829855e-04 -0.703801217091763 +SME 142 mass=298.274051839762706,rt=1034.459037780761719 HMDB:HMDB13648 C18H35N1O2 Palmitoleoyl Ethanolamide InChI=1S/C18H35NO2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18(21)19-16-17-20/h7-8,20H,2-6,9-17H2,1H3,(H,19,21)/b8-7- Palmitoleoyl Ethanolamide null null [M+H]1+ 298.274051839762706 0 297.266780116500001 ms_run[1]:17467728461602040566 null null 1 C18H35NO2 [Palmitoleoyl Ethanolamide] [HMDB:HMDB13648] M+H;1+ -3.981232964633819e-06 -0.013347567067727 +SME 143 mass=283.263064739828792,rt=1057.943000793457031 HMDB:HMDB00207 C18H34O2 Oleic acid InChI=1S/C18H34O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h9-10H,2-8,11-17H2,1H3,(H,19,20)/b10-9- Oleic acid null null [M+H]1+ 283.263064739828792 1 282.255881084599991 ms_run[1]:14636155937605789108 null null 1 C18H34O2 [Oleic acid] [HMDB:HMDB00207] M+H;1+ -9.20441668768035e-05 -0.324942247773481 +SME 144 mass=283.263064739828792,rt=1057.943000793457031 HMDB:HMDB00573 C18H34O2 Elaidic acid InChI=1S/C18H34O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h9-10H,2-8,11-17H2,1H3,(H,19,20)/b10-9+ Elaidic acid null null [M+H]1+ 283.263064739828792 1 282.255881084599991 ms_run[1]:14636155937605789108 null null 1 C18H34O2 [Elaidic acid] [HMDB:HMDB00573] M+H;1+ -9.20441668768035e-05 -0.324942247773481 +SME 145 mass=283.263064739828792,rt=1057.943000793457031 HMDB:HMDB03231 C18H34O2 Vaccenic acid InChI=1S/C18H34O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h7-8H,2-6,9-17H2,1H3,(H,19,20)/b8-7- Vaccenic acid null null [M+H]1+ 283.263064739828792 1 282.255881084599991 ms_run[1]:14636155937605789108 null null 1 C18H34O2 [Vaccenic acid] [HMDB:HMDB03231] M+H;1+ -9.20441668768035e-05 -0.324942247773481 +SME 146 mass=283.263064739828792,rt=1057.943000793457031 HMDB:HMDB41480 C18H34O2 (Z)-13-Octadecenoic acid InChI=1S/C18H34O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h5-6H,2-4,7-17H2,1H3,(H,19,20)/b6-5+ (Z)-13-Octadecenoic acid null null [M+H]1+ 283.263064739828792 1 282.255881084599991 ms_run[1]:14636155937605789108 null null 1 C18H34O2 [(Z)-13-Octadecenoic acid] [HMDB:HMDB41480] M+H;1+ -9.20441668768035e-05 -0.324942247773481 +SME 147 mass=497.129414939505011,rt=1063.902053833007813 HMDB:HMDB41675 C22H24O13 4'-Methyl-(-)-epigallocatechin 3'-glucuronide InChI=1S/C22H24O13/c1-32-19-11(25)2-7(18-12(26)6-9-10(24)4-8(23)5-13(9)33-18)3-14(19)34-22-17(29)15(27)16(28)20(35-22)21(30)31/h2-5,12,15-18,20,22-29H,6H2,1H3,(H,30,31)/t12-,15+,16+,17-,18-,20+,22-/m1/s1 4'-Methyl-(-)-epigallocatechin 3'-glucuronide null null [M+H]1+ 497.129414939505011 0 496.121695765600009 ms_run[1]:15597192937065941047 null null 1 C22H24O13 [4'-Methyl-(-)-epigallocatechin 3'-glucuronide] [HMDB:HMDB41675] M+H;1+ 4.476335093386298e-04 0.900437389042952 +SME 148 mass=497.129414939505011,rt=1063.902053833007813 HMDB:HMDB41676 C22H24O13 4'-Methyl-(-)-epigallocatechin 7-glucuronide InChI=1S/C22H24O13/c1-32-19-11(24)2-7(3-12(19)25)18-13(26)6-9-10(23)4-8(5-14(9)34-18)33-22-17(29)15(27)16(28)20(35-22)21(30)31/h2-5,13,15-18,20,22-29H,6H2,1H3,(H,30,31)/t13-,15+,16+,17-,18-,20+,22-/m1/s1 4'-Methyl-(-)-epigallocatechin 7-glucuronide null null [M+H]1+ 497.129414939505011 0 496.121695765600009 ms_run[1]:15597192937065941047 null null 1 C22H24O13 [4'-Methyl-(-)-epigallocatechin 7-glucuronide] [HMDB:HMDB41676] M+H;1+ 4.476335093386298e-04 0.900437389042952 +SME 149 mass=385.128391876411513,rt=1064.863014221191406 HMDB:HMDB29541 C21H20O7 (+)-Zeylenol InChI=1S/C21H20O7/c22-17-12-11-16(28-20(25)15-9-5-2-6-10-15)18(23)21(17,26)13-27-19(24)14-7-3-1-4-8-14/h1-12,16-18,22-23,26H,13H2 (+)-Zeylenol null null [M+H]1+ 385.128391876411513 0 384.120905638000011 ms_run[1]:2095912305051978012 null null 1 C21H20O7 [(+)-Zeylenol] [HMDB:HMDB29541] M+H;1+ 2.124304158428458e-04 0.551583673125206 +SME 150 mass=385.128391876411513,rt=1064.863014221191406 HMDB:HMDB30621 C21H20O7 Oxyisocyclointegrin InChI=1S/C21H20O7/c1-21(2,25)17-9-13-19(24)18-14(23)7-11(26-3)8-16(18)28-20(13)12-5-4-10(22)6-15(12)27-17/h4-8,17,22-23,25H,9H2,1-3H3 Oxyisocyclointegrin null null [M+H]1+ 385.128391876411513 0 384.120905638000011 ms_run[1]:2095912305051978012 null null 1 C21H20O7 [Oxyisocyclointegrin] [HMDB:HMDB30621] M+H;1+ 2.124304158428458e-04 0.551583673125206 +SME 151 mass=385.128391876411513,rt=1064.863014221191406 HMDB:HMDB34914 C21H20O7 Dulxanthone F InChI=1S/C21H20O7/c1-21(2)7-6-10-11(28-21)8-13-15(17(10)22)18(23)16-12(24-3)9-14(25-4)19(26-5)20(16)27-13/h6-9,22H,1-5H3 Dulxanthone F null null [M+H]1+ 385.128391876411513 0 384.120905638000011 ms_run[1]:2095912305051978012 null null 1 C21H20O7 [Dulxanthone F] [HMDB:HMDB34914] M+H;1+ 2.124304158428458e-04 0.551583673125206 +SME 152 mass=385.128391876411513,rt=1064.863014221191406 HMDB:HMDB35479 C21H20O7 Isolicopyranocoumarin InChI=1S/C21H20O7/c1-21(2)18(24)8-14-17(28-21)9-16-13(19(14)26-3)7-12(20(25)27-16)11-5-4-10(22)6-15(11)23/h4-7,9,18,22-24H,8H2,1-3H3 Isolicopyranocoumarin null null [M+H]1+ 385.128391876411513 0 384.120905638000011 ms_run[1]:2095912305051978012 null null 1 C21H20O7 [Isolicopyranocoumarin] [HMDB:HMDB35479] M+H;1+ 2.124304158428458e-04 0.551583673125206 +SME 153 mass=385.128391876411513,rt=1064.863014221191406 HMDB:HMDB36281 C21H20O7 Licofuranocoumarin InChI=1S/C21H20O7/c1-21(2,25)18-8-14-16(27-18)9-17-13(19(14)26-3)7-12(20(24)28-17)11-5-4-10(22)6-15(11)23/h4-7,9,18,22-23,25H,8H2,1-3H3 Licofuranocoumarin null null [M+H]1+ 385.128391876411513 0 384.120905638000011 ms_run[1]:2095912305051978012 null null 1 C21H20O7 [Licofuranocoumarin] [HMDB:HMDB36281] M+H;1+ 2.124304158428458e-04 0.551583673125206 +SME 154 mass=385.128391876411513,rt=1064.863014221191406 HMDB:HMDB38396 C21H20O7 Gancaonin D InChI=1S/C21H20O7/c1-11(9-22)3-5-13-15(23)8-17(25)19-20(26)14(10-28-21(13)19)12-4-6-18(27-2)16(24)7-12/h3-4,6-8,10,22-25H,5,9H2,1-2H3/b11-3+ Gancaonin D null null [M+H]1+ 385.128391876411513 0 384.120905638000011 ms_run[1]:2095912305051978012 null null 1 C21H20O7 [Gancaonin D] [HMDB:HMDB38396] M+H;1+ 2.124304158428458e-04 0.551583673125206 +SME 155 mass=385.128391876411513,rt=1064.863014221191406 HMDB:HMDB38874 C21H20O7 Licopyranocoumarin InChI=1S/C21H20O7/c1-21(10-22)6-5-13-18(28-21)9-17-15(19(13)26-2)8-14(20(25)27-17)12-4-3-11(23)7-16(12)24/h3-4,7-9,22-24H,5-6,10H2,1-2H3 Licopyranocoumarin null null [M+H]1+ 385.128391876411513 0 384.120905638000011 ms_run[1]:2095912305051978012 null null 1 C21H20O7 [Licopyranocoumarin] [HMDB:HMDB38874] M+H;1+ 2.124304158428458e-04 0.551583673125206 +SME 156 mass=385.128391876411513,rt=1064.863014221191406 HMDB:HMDB38950 C21H20O7 5-Methoxyhinokinin InChI=1S/C21H20O7/c1-23-18-7-13(8-19-20(18)28-11-27-19)5-15-14(9-24-21(15)22)4-12-2-3-16-17(6-12)26-10-25-16/h2-3,6-8,14-15H,4-5,9-11H2,1H3 5-Methoxyhinokinin null null [M+H]1+ 385.128391876411513 0 384.120905638000011 ms_run[1]:2095912305051978012 null null 1 C21H20O7 [5-Methoxyhinokinin] [HMDB:HMDB38950] M+H;1+ 2.124304158428458e-04 0.551583673125206 +SME 157 mass=385.128391876411513,rt=1064.863014221191406 HMDB:HMDB39617 C21H20O7 Piperenol B InChI=1S/C21H20O7/c22-17-16(28-20(25)15-9-5-2-6-10-15)11-12-21(26,18(17)23)13-27-19(24)14-7-3-1-4-8-14/h1-12,16-18,22-23,26H,13H2 Piperenol B null null [M+H]1+ 385.128391876411513 0 384.120905638000011 ms_run[1]:2095912305051978012 null null 1 C21H20O7 [Piperenol B] [HMDB:HMDB39617] M+H;1+ 2.124304158428458e-04 0.551583673125206 +SME 158 mass=385.128391876411513,rt=1064.863014221191406 HMDB:HMDB39634 C21H20O7 Piperenol A InChI=1S/C21H20O7/c22-16-11-15(12-27-20(25)13-7-3-1-4-8-13)17(23)19(18(16)24)28-21(26)14-9-5-2-6-10-14/h1-11,16-19,22-24H,12H2 Piperenol A null null [M+H]1+ 385.128391876411513 0 384.120905638000011 ms_run[1]:2095912305051978012 null null 1 C21H20O7 [Piperenol A] [HMDB:HMDB39634] M+H;1+ 2.124304158428458e-04 0.551583673125206 +SME 159 mass=385.128391876411513,rt=1064.863014221191406 HMDB:HMDB40134 C21H20O7 Calebin A InChI=1S/C21H20O7/c1-26-19-11-14(4-8-17(19)23)3-7-16(22)13-28-21(25)10-6-15-5-9-18(24)20(12-15)27-2/h3-12,23-24H,13H2,1-2H3/b7-3+,10-6+ Calebin A null null [M+H]1+ 385.128391876411513 0 384.120905638000011 ms_run[1]:2095912305051978012 null null 1 C21H20O7 [Calebin A] [HMDB:HMDB40134] M+H;1+ 2.124304158428458e-04 0.551583673125206 +SME 160 mass=385.128391876411513,rt=1064.863014221191406 HMDB:HMDB40813 C21H20O7 3'-O-Methylgancaonin P InChI=1S/C21H20O7/c1-10(2)4-6-12-14(23)9-16-17(18(12)24)19(25)20(26)21(28-16)11-5-7-13(22)15(8-11)27-3/h4-5,7-9,22-24,26H,6H2,1-3H3 3'-O-Methylgancaonin P null null [M+H]1+ 385.128391876411513 0 384.120905638000011 ms_run[1]:2095912305051978012 null null 1 C21H20O7 [3'-O-Methylgancaonin P] [HMDB:HMDB40813] M+H;1+ 2.124304158428458e-04 0.551583673125206 +SME 161 mass=385.128391876411513,rt=1064.863014221191406 HMDB:HMDB40837 C21H20O7 3-O-Methyluralenol InChI=1S/C21H20O7/c1-10(2)4-5-11-6-12(7-15(24)18(11)25)20-21(27-3)19(26)17-14(23)8-13(22)9-16(17)28-20/h4,6-9,22-25H,5H2,1-3H3 3-O-Methyluralenol null null [M+H]1+ 385.128391876411513 0 384.120905638000011 ms_run[1]:2095912305051978012 null null 1 C21H20O7 [3-O-Methyluralenol] [HMDB:HMDB40837] M+H;1+ 2.124304158428458e-04 0.551583673125206 +SME 162 mass=385.128391876411513,rt=1064.863014221191406 HMDB:HMDB40934 C21H20O7 Uralene InChI=1S/C21H20O7/c1-10(2)4-5-11-8-14(23)15(24)9-12(11)20-21(27-3)19(26)17-16(28-20)7-6-13(22)18(17)25/h4,6-9,22-25H,5H2,1-3H3 Uralene null null [M+H]1+ 385.128391876411513 0 384.120905638000011 ms_run[1]:2095912305051978012 null null 1 C21H20O7 [Uralene] [HMDB:HMDB40934] M+H;1+ 2.124304158428458e-04 0.551583673125206 +SME 163 mass=219.210721289904683,rt=1109.853973388671875 HMDB:HMDB34498 C16H26 (3E,7E)-4,8,12-Trimethyl-1,3,7,11-tridecatetraene InChI=1S/C16H26/c1-6-9-15(4)12-8-13-16(5)11-7-10-14(2)3/h6,9-10,13H,1,7-8,11-12H2,2-5H3/b15-9+,16-13- (3E,7E)-4,8,12-Trimethyl-1,3,7,11-tridecatetraene null null [M+H]1+ 219.210721289904683 1 218.203450829399998 ms_run[1]:4360411235607083360 null null 1 C16H26 [(3E, 7E)-4, 8, 12-Trimethyl-1, 3, 7, 11-tridecatetraene] [HMDB:HMDB34498] M+H;1+ -5.994091026195747e-06 -0.027343967608073 +SME 164 mass=219.210721289904683,rt=1109.853973388671875 HMDB:HMDB37740 C16H26 1,2-Dimethyl-4-(6-methyl-4-heptenyl)-1,3-cyclohexadiene InChI=1S/C16H26/c1-13(2)8-6-5-7-9-16-11-10-14(3)15(4)12-16/h6,8,12-13H,5,7,9-11H2,1-4H3/b8-6+ 1,2-Dimethyl-4-(6-methyl-4-heptenyl)-1,3-cyclohexadiene null null [M+H]1+ 219.210721289904683 1 218.203450829399998 ms_run[1]:4360411235607083360 null null 1 C16H26 [1, 2-Dimethyl-4-(6-methyl-4-heptenyl)-1, 3-cyclohexadiene] [HMDB:HMDB37740] M+H;1+ -5.994091026195747e-06 -0.027343967608073 +SME 165 mass=237.221380748547034,rt=1109.853973388671875 HMDB:HMDB31851 C16H28O1 3-(5,6,6-Trimethylbicyclo[2.2.1]hept-1-yl)cyclohexanol InChI=1S/C16H28O/c1-10-14-8-12(16(10,2)3)9-15(14)11-5-4-6-13(17)7-11/h10-15,17H,4-9H2,1-3H3 3-(5,6,6-Trimethylbicyclo[2.2.1]hept-1-yl)cyclohexanol null null [M+H]1+ 237.221380748547034 1 236.214015893199985 ms_run[1]:9709654871243749802 null null 1 C16H28O [3-(5, 6, 6-Trimethylbicyclo[2.2.1]hept-1-yl)cyclohexanol] [HMDB:HMDB31851] M+H;1+ 8.877855131572687e-05 0.374243604267006 +SME 166 mass=237.221380748547034,rt=1109.853973388671875 HMDB:HMDB36831 C16H28O1 Ambronide InChI=1S/C16H28O/c1-14(2)8-5-9-15(3)12(14)6-10-16(4)13(15)7-11-17-16/h12-13H,5-11H2,1-4H3 Ambronide null null [M+H]1+ 237.221380748547034 1 236.214015893199985 ms_run[1]:9709654871243749802 null null 1 C16H28O [Ambronide] [HMDB:HMDB36831] M+H;1+ 8.877855131572687e-05 0.374243604267006 +SME 167 mass=181.158800444432131,rt=1110.094985961913835 HMDB:HMDB31181 C12H20O1 Homodihydrojasmone InChI=1S/C12H20O/c1-3-4-5-6-7-11-10(2)8-9-12(11)13/h3-9H2,1-2H3 Homodihydrojasmone null null [M+H]1+ 181.158800444432131 0 180.151415638000003 ms_run[1]:370439587077889024 null null 1 C12H20O [Homodihydrojasmone] [HMDB:HMDB31181] M+H;1+ 1.087304364091324e-04 0.600194422803575 +SME 168 mass=181.158800444432131,rt=1110.094985961913835 HMDB:HMDB32531 C12H20O1 2-trans-6-cis-Dodecadienal InChI=1S/C12H20O/c1-2-3-4-5-6-7-8-9-10-11-12-13/h6-7,10-12H,2-5,8-9H2,1H3/b7-6-,11-10+ 2-trans-6-cis-Dodecadienal null null [M+H]1+ 181.158800444432131 0 180.151415638000003 ms_run[1]:370439587077889024 null null 1 C12H20O [2-trans-6-cis-Dodecadienal] [HMDB:HMDB32531] M+H;1+ 1.087304364091324e-04 0.600194422803575 +SME 169 mass=181.158800444432131,rt=1110.094985961913835 HMDB:HMDB38108 C12H20O1 cis-Quinceoxepane InChI=1S/C12H20O/c1-10(2)6-7-12-9-11(3)5-4-8-13-12/h6-7,11-12H,1,4-5,8-9H2,2-3H3/b7-6- cis-Quinceoxepane null null [M+H]1+ 181.158800444432131 0 180.151415638000003 ms_run[1]:370439587077889024 null null 1 C12H20O [cis-Quinceoxepane] [HMDB:HMDB38108] M+H;1+ 1.087304364091324e-04 0.600194422803575 +SME 170 mass=181.158800444432131,rt=1110.094985961913835 HMDB:HMDB39339 C12H20O1 Tricycloekasantalol InChI=1S/C12H20O/c1-11(4-3-5-13)8-6-9-10(7-8)12(9,11)2/h8-10,13H,3-7H2,1-2H3 Tricycloekasantalol null null [M+H]1+ 181.158800444432131 0 180.151415638000003 ms_run[1]:370439587077889024 null null 1 C12H20O [Tricycloekasantalol] [HMDB:HMDB39339] M+H;1+ 1.087304364091324e-04 0.600194422803575 +SME 171 mass=181.158800444432131,rt=1110.094985961913835 HMDB:HMDB39590 C12H20O1 (2E,4E)-2,4-Dodecadienal InChI=1S/C12H20O/c1-2-3-4-5-6-7-8-9-10-11-12-13/h8-12H,2-7H2,1H3/b9-8+,11-10+ (2E,4E)-2,4-Dodecadienal null null [M+H]1+ 181.158800444432131 0 180.151415638000003 ms_run[1]:370439587077889024 null null 1 C12H20O [(2E, 4E)-2, 4-Dodecadienal] [HMDB:HMDB39590] M+H;1+ 1.087304364091324e-04 0.600194422803575 +SME 172 mass=281.053430168903787,rt=1141.456947326660156 HMDB:HMDB15175 C13H10N2O4 Thalidomide InChI=1S/C13H10N2O4/c16-10-6-5-9(11(17)14-10)15-12(18)7-3-1-2-4-8(7)13(15)19/h1-4,9H,5-6H2,(H,14,16,17) Thalidomide null null [M+Na]1+ 281.053430168903787 0 258.064058319000026 ms_run[1]:9095616785973317571 null null 1 C13H10N2O4 [Thalidomide] [HMDB:HMDB15175] M+Na;1+ 1.526499081023758e-04 0.543135128862031 +SME 173 mass=83.085521787361543,rt=1145.297012329101563 HMDB:HMDB31544 C6H10 3-Methylcyclopentene InChI=1S/C6H10/c1-6-4-2-3-5-6/h2,4,6H,3,5H2,1H3 3-Methylcyclopentene null null [M+H]1+ 83.085521787361543 1 82.078250319000006 ms_run[1]:7274891576047161008 null null 1 C6H10 [3-Methylcyclopentene] [HMDB:HMDB31544] M+H;1+ -4.984634145444034e-06 -0.059994012665081 +SME 174 mass=338.183984006496019,rt=1145.53802490234375 HMDB:HMDB15634 C18H25N3O2 Saxagliptin InChI=1S/C18H25N3O2/c19-8-13-2-12-3-14(12)21(13)16(22)15(20)17-4-10-1-11(5-17)7-18(23,6-10)9-17/h10-15,23H,1-7,9,20H2/t10?,11?,12-,13+,14+,15-,17?,18?/m1/s1 Saxagliptin null null [M+Na]1+ 338.183984006496019 0 315.194677797499992 ms_run[1]:5129902440865539797 null null 1 C18H25N3O2 [Saxagliptin] [HMDB:HMDB15634] M+Na;1+ 8.624650030242265e-05 0.255028405768836 +SME 175 mass=338.183984006496019,rt=1145.53802490234375 HMDB:HMDB40383 C18H25N3O2 ()-Pandamarine InChI=1S/C18H25N3O2/c1-13-11-15(19-16(13)22)7-3-5-9-21-10-6-4-8-18(21)12-14(2)17(23)20-18/h7,11-12H,3-6,8-10H2,1-2H3,(H,19,22)(H,20,23)/b15-7+ ()-Pandamarine null null [M+Na]1+ 338.183984006496019 0 315.194677797499992 ms_run[1]:5129902440865539797 null null 1 C18H25N3O2 [()-Pandamarine] [HMDB:HMDB40383] M+Na;1+ 8.624650030242265e-05 0.255028405768836 +SME 176 mass=177.163764403123594,rt=1145.774002075195085 HMDB:HMDB35180 C13H20 (6E,8E)-4,6,8-Megastigmatriene InChI=1S/C13H20/c1-5-6-9-12-11(2)8-7-10-13(12,3)4/h5-6,8-9H,7,10H2,1-4H3/b6-5+,12-9+ (6E,8E)-4,6,8-Megastigmatriene null null [M+H]1+ 177.163764403123594 0 176.156500638000011 ms_run[1]:7746970434582061092 null null 1 C13H20 [(6E, 8E)-4, 6, 8-Megastigmatriene] [HMDB:HMDB35180] M+H;1+ -1.268887211836045e-05 -0.071622271361778 +SME 177 mass=300.289659700662639,rt=1162.299041748046875 HMDB:HMDB00252 C18H37N1O2 Sphingosine InChI=1S/C18H37NO2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18(21)17(19)16-20/h14-15,17-18,20-21H,2-13,16,19H2,1H3/b15-14+ Sphingosine null null [M+H]1+ 300.289659700662639 0 299.282430180300025 ms_run[1]:7437840309974951713 null null 1 C18H37NO2 [Sphingosine] [HMDB:HMDB00252] M+H;1+ -4.618433302994164e-05 -0.153799254935596 +SME 178 mass=300.289659700662639,rt=1162.299041748046875 HMDB:HMDB01480 C18H37N1O2 3-Dehydrosphinganine InChI=1S/C18H37NO2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18(21)17(19)16-20/h17,20H,2-16,19H2,1H3/t17-/m0/s1 3-Dehydrosphinganine null null [M+H]1+ 300.289659700662639 0 299.282430180300025 ms_run[1]:7437840309974951713 null null 1 C18H37NO2 [3-Dehydrosphinganine] [HMDB:HMDB01480] M+H;1+ -4.618433302994164e-05 -0.153799254935596 +SME 179 mass=300.289659700662639,rt=1162.299041748046875 HMDB:HMDB02100 C18H37N1O2 Palmitoylethanolamide InChI=1S/C18H37NO2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18(21)19-16-17-20/h20H,2-17H2,1H3,(H,19,21) Palmitoylethanolamide null null [M+H]1+ 300.289659700662639 0 299.282430180300025 ms_run[1]:7437840309974951713 null null 1 C18H37NO2 [Palmitoylethanolamide] [HMDB:HMDB02100] M+H;1+ -4.618433302994164e-05 -0.153799254935596 +SME 180 mass=237.221168016163176,rt=1198.944053649902344 HMDB:HMDB31851 C16H28O1 3-(5,6,6-Trimethylbicyclo[2.2.1]hept-1-yl)cyclohexanol InChI=1S/C16H28O/c1-10-14-8-12(16(10,2)3)9-15(14)11-5-4-6-13(17)7-11/h10-15,17H,4-9H2,1-3H3 3-(5,6,6-Trimethylbicyclo[2.2.1]hept-1-yl)cyclohexanol null null [M+H]1+ 237.221168016163176 0 236.214015893199985 ms_run[1]:6697974436110359199 null null 1 C16H28O [3-(5, 6, 6-Trimethylbicyclo[2.2.1]hept-1-yl)cyclohexanol] [HMDB:HMDB31851] M+H;1+ -1.239538325421563e-04 -0.522524059762031 +SME 181 mass=237.221168016163176,rt=1198.944053649902344 HMDB:HMDB36831 C16H28O1 Ambronide InChI=1S/C16H28O/c1-14(2)8-5-9-15(3)12(14)6-10-16(4)13(15)7-11-17-16/h12-13H,5-11H2,1-4H3 Ambronide null null [M+H]1+ 237.221168016163176 0 236.214015893199985 ms_run[1]:6697974436110359199 null null 1 C16H28O [Ambronide] [HMDB:HMDB36831] M+H;1+ -1.239538325421563e-04 -0.522524059762031 +SME 182 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB04980 C10H18O2 cis-4-Decenoic acid InChI=1S/C10H18O2/c1-2-3-4-5-6-7-8-9-10(11)12/h6-7H,2-5,8-9H2,1H3,(H,11,12)/b7-6- cis-4-Decenoic acid null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [cis-4-Decenoic acid] [HMDB:HMDB04980] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 183 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB10726 C10H18O2 trans-Dec-2-enoic acid InChI=1S/C10H18O2/c1-2-3-4-5-6-7-8-9-10(11)12/h8-9H,2-7H2,1H3,(H,11,12)/b9-8+ trans-Dec-2-enoic acid null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [trans-Dec-2-enoic acid] [HMDB:HMDB10726] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 184 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB12183 C10H18O2 8-Methylnonenoate InChI=1S/C10H18O2/c1-9(2)7-5-3-4-6-8-10(11)12/h5,7,9H,3-4,6,8H2,1-2H3,(H,11,12)/b7-5+ 8-Methylnonenoate null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [8-Methylnonenoate] [HMDB:HMDB12183] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 185 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB29358 C10H18O2 5-Octen-1-ol, 9CI; (Z)-form, Ac InChI=1S/C10H18O2/c1-3-4-5-6-7-8-9-12-10(2)11/h4-5H,3,6-9H2,1-2H3/b5-4- 5-Octen-1-ol, 9CI; (Z)-form, Ac null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [5-Octen-1-ol, 9CI; (Z)-form, Ac] [HMDB:HMDB29358] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 186 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB29859 C10H18O2 3-Nonenoic acid, 9CI, 8CI; (x)-form, Me ester InChI=1S/C10H18O2/c1-3-4-5-6-7-8-9-10(11)12-2/h7-8H,3-6,9H2,1-2H3/b8-7- 3-Nonenoic acid, 9CI, 8CI; (x)-form, Me ester null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [3-Nonenoic acid, 9CI, 8CI; (x)-form, Me ester] [HMDB:HMDB29859] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 187 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB30031 C10H18O2 6-Methyl-5-hepten-2-ol, 9CI; ()-form, Ac InChI=1S/C10H18O2/c1-8(2)6-5-7-9(3)12-10(4)11/h6,9H,5,7H2,1-4H3 6-Methyl-5-hepten-2-ol, 9CI; ()-form, Ac null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [6-Methyl-5-hepten-2-ol, 9CI; ()-form, Ac] [HMDB:HMDB30031] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 188 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB31002 C10H18O2 3-Decenoic acid InChI=1S/C10H18O2/c1-2-3-4-5-6-7-8-9-10(11)12/h7-8H,2-6,9H2,1H3,(H,11,12)/b8-7- 3-Decenoic acid null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [3-Decenoic acid] [HMDB:HMDB31002] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 189 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB31003 C10H18O2 9-Decenoic acid InChI=1S/C10H18O2/c1-2-3-4-5-6-7-8-9-10(11)12/h2H,1,3-9H2,(H,11,12) 9-Decenoic acid null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [9-Decenoic acid] [HMDB:HMDB31003] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 190 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB31297 C10H18O2 2-Octenyl acetate InChI=1S/C10H18O2/c1-3-4-5-6-7-8-9-12-10(2)11/h7-8H,3-6,9H2,1-2H3/b8-7- 2-Octenyl acetate null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [2-Octenyl acetate] [HMDB:HMDB31297] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 191 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB31362 C10H18O2 Cyclohexylethyl acetate InChI=1S/C10H18O2/c1-9(11)12-8-7-10-5-3-2-4-6-10/h10H,2-8H2,1H3 Cyclohexylethyl acetate null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [Cyclohexylethyl acetate] [HMDB:HMDB31362] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 192 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB31440 C10H18O2 Linalool oxide (trans-pyranoid) InChI=1S/C10H18O2/c1-5-10(4)7-6-8(11)9(2,3)12-10/h5,8,11H,1,6-7H2,2-4H3/t8-,10-/m1/s1 Linalool oxide (trans-pyranoid) null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [Linalool oxide (trans-pyranoid)] [HMDB:HMDB31440] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 193 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB31441 C10H18O2 Linalool oxide III InChI=1S/C10H18O2/c1-5-10(4)7-6-8(11)9(2,3)12-10/h5,8,11H,1,6-7H2,2-4H3/t8-,10+/m0/s1 Linalool oxide III null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [Linalool oxide III] [HMDB:HMDB31441] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 194 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB32119 C10H18O2 4-Hydroxy-2,6-dimethyl-7-octen-3-one InChI=1S/C10H18O2/c1-5-8(4)6-9(11)10(12)7(2)3/h5,7-9,11H,1,6H2,2-4H3 4-Hydroxy-2,6-dimethyl-7-octen-3-one null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [4-Hydroxy-2, 6-dimethyl-7-octen-3-one] [HMDB:HMDB32119] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 195 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB32275 C10H18O2 Ethyl 3-octenoate InChI=1S/C10H18O2/c1-3-5-6-7-8-9-10(11)12-4-2/h7-8H,3-6,9H2,1-2H3/b8-7+ Ethyl 3-octenoate null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [Ethyl 3-octenoate] [HMDB:HMDB32275] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 196 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB32393 C10H18O2 2-Methylbutyl 3-methyl-2-butenoate InChI=1S/C10H18O2/c1-5-9(4)7-12-10(11)6-8(2)3/h6,9H,5,7H2,1-4H3 2-Methylbutyl 3-methyl-2-butenoate null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [2-Methylbutyl 3-methyl-2-butenoate] [HMDB:HMDB32393] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 197 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB32452 C10H18O2 1-Octen-3-yl acetate InChI=1S/C10H18O2/c1-4-6-7-8-10(5-2)12-9(3)11/h5,10H,2,4,6-8H2,1,3H3 1-Octen-3-yl acetate null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [1-Octen-3-yl acetate] [HMDB:HMDB32452] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 198 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB33203 C10H18O2 6-Decanolide InChI=1S/C10H18O2/c1-2-3-6-9-7-4-5-8-10(11)12-9/h9H,2-8H2,1H3 6-Decanolide null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [6-Decanolide] [HMDB:HMDB33203] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 199 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB33377 C10H18O2 cis-3-Hexenyl butyrate InChI=1S/C10H18O2/c1-3-5-6-7-9-12-10(11)8-4-2/h5-6H,3-4,7-9H2,1-2H3/b6-5- cis-3-Hexenyl butyrate null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [cis-3-Hexenyl butyrate] [HMDB:HMDB33377] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 200 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB34427 C10H18O2 Cyclohexyl butanoate InChI=1S/C10H18O2/c1-2-6-10(11)12-9-7-4-3-5-8-9/h9H,2-8H2,1H3 Cyclohexyl butanoate null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [Cyclohexyl butanoate] [HMDB:HMDB34427] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 201 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB34581 C10H18O2 2-Hexenyl butanoate InChI=1S/C10H18O2/c1-3-5-6-7-9-12-10(11)8-4-2/h6-7H,3-5,8-9H2,1-2H3/b7-6+ 2-Hexenyl butanoate null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [2-Hexenyl butanoate] [HMDB:HMDB34581] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 202 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB34880 C10H18O2 3-Methyl-2,4-nonanedione InChI=1S/C10H18O2/c1-4-5-6-7-10(12)8(2)9(3)11/h8H,4-7H2,1-3H3 3-Methyl-2,4-nonanedione null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [3-Methyl-2, 4-nonanedione] [HMDB:HMDB34880] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 203 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB35122 C10H18O2 (S,E)-2,6-Dimethyl-5,7-octadiene-2,3-diol InChI=1S/C10H18O2/c1-5-8(2)6-7-9(11)10(3,4)12/h5-6,9,11-12H,1,7H2,2-4H3/b8-6+ (S,E)-2,6-Dimethyl-5,7-octadiene-2,3-diol null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [(S, E)-2, 6-Dimethyl-5, 7-octadiene-2, 3-diol] [HMDB:HMDB35122] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 204 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB35365 C10H18O2 Cnidiol C InChI=1S/C10H18O2/c1-5-10(4)7-6-8(11)9(2,3)12-10/h5,8,11H,1,6-7H2,2-4H3 Cnidiol C null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [Cnidiol C] [HMDB:HMDB35365] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 205 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB35837 C10H18O2 Citronellic acid InChI=1S/C10H18O2/c1-8(2)5-4-6-9(3)7-10(11)12/h5,9H,4,6-7H2,1-3H3,(H,11,12) Citronellic acid null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [Citronellic acid] [HMDB:HMDB35837] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 206 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB35839 C10H18O2 (E)-3-(Tetrahydro-5,5-dimethyl-2-furanyl)-2-buten-1-ol InChI=1S/C10H18O2/c1-8(5-7-11)9-4-6-10(2,3)12-9/h5,9,11H,4,6-7H2,1-3H3/b8-5- (E)-3-(Tetrahydro-5,5-dimethyl-2-furanyl)-2-buten-1-ol null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [(E)-3-(Tetrahydro-5, 5-dimethyl-2-furanyl)-2-buten-1-ol] [HMDB:HMDB35839] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 207 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB35907 C10H18O2 Linalyl oxide InChI=1S/C10H18O2/c1-5-10(4)7-6-8(12-10)9(2,3)11/h5,8,11H,1,6-7H2,2-4H3 Linalyl oxide null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [Linalyl oxide] [HMDB:HMDB35907] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 208 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB36099 C10H18O2 Lilac alcohol InChI=1S/C10H18O2/c1-4-10(3)6-5-9(12-10)8(2)7-11/h4,8-9,11H,1,5-7H2,2-3H3 Lilac alcohol null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [Lilac alcohol] [HMDB:HMDB36099] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 209 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB36211 C10H18O2 Hexyl crotonate InChI=1S/C10H18O2/c1-3-5-6-7-9-12-10(11)8-4-2/h4,8H,3,5-7,9H2,1-2H3/b8-4- Hexyl crotonate null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [Hexyl crotonate] [HMDB:HMDB36211] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 210 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB36990 C10H18O2 2,6-Dimethyl-3,7-octadiene-2,6-diol InChI=1S/C10H18O2/c1-5-10(4,12)8-6-7-9(2,3)11/h5-7,11-12H,1,8H2,2-4H3/b7-6+ 2,6-Dimethyl-3,7-octadiene-2,6-diol null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [2, 6-Dimethyl-3, 7-octadiene-2, 6-diol] [HMDB:HMDB36990] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 211 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB36992 C10H18O2 1-Cyclopropyl-4-methyl-1,3-cyclohexanediol InChI=1S/C10H18O2/c1-7-4-5-10(12,6-9(7)11)8-2-3-8/h7-9,11-12H,2-6H2,1H3 1-Cyclopropyl-4-methyl-1,3-cyclohexanediol null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [1-Cyclopropyl-4-methyl-1, 3-cyclohexanediol] [HMDB:HMDB36992] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 212 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB37021 C10H18O2 trans-p-Menth-2-ene-1,4-diol InChI=1S/C10H18O2/c1-8(2)10(12)6-4-9(3,11)5-7-10/h4,6,8,11-12H,5,7H2,1-3H3 trans-p-Menth-2-ene-1,4-diol null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [trans-p-Menth-2-ene-1, 4-diol] [HMDB:HMDB37021] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 213 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB37116 C10H18O2 delta-Decalactone InChI=1S/C10H18O2/c1-2-3-4-6-9-7-5-8-10(11)12-9/h9H,2-8H2,1H3 delta-Decalactone null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [delta-Decalactone] [HMDB:HMDB37116] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 214 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB37217 C10H18O2 xi-5-Hexyldihydro-2(3H)-furanone InChI=1S/C10H18O2/c1-2-3-4-5-6-9-7-8-10(11)12-9/h9H,2-8H2,1H3 xi-5-Hexyldihydro-2(3H)-furanone null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [xi-5-Hexyldihydro-2(3H)-furanone] [HMDB:HMDB37217] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 215 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB37497 C10H18O2 2-Octenoic acid, 9CI; (E)-form, Et ester InChI=1S/C10H18O2/c1-3-5-6-7-8-9-10(11)12-4-2/h8-9H,3-7H2,1-2H3/b9-8- 2-Octenoic acid, 9CI; (E)-form, Et ester null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [2-Octenoic acid, 9CI; (E)-form, Et ester] [HMDB:HMDB37497] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 216 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB37632 C10H18O2 xi-Tetrahydro-3-pentyl-2H-pyran-2-one InChI=1S/C10H18O2/c1-2-3-4-6-9-7-5-8-12-10(9)11/h9H,2-8H2,1H3 xi-Tetrahydro-3-pentyl-2H-pyran-2-one null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [xi-Tetrahydro-3-pentyl-2H-pyran-2-one] [HMDB:HMDB37632] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 217 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB38744 C10H18O2 9-Hydroxygeraniol InChI=1S/C10H18O2/c1-9(6-7-11)4-3-5-10(2)8-12/h5-6,11-12H,3-4,7-8H2,1-2H3/b9-6+,10-5- 9-Hydroxygeraniol null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [9-Hydroxygeraniol] [HMDB:HMDB38744] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 218 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB39149 C10H18O2 (+)-6-Hydroxy-2,6-dimethyl-7-octen-4-one InChI=1S/C10H18O2/c1-5-10(4,12)7-9(11)6-8(2)3/h5,8,12H,1,6-7H2,2-4H3 (+)-6-Hydroxy-2,6-dimethyl-7-octen-4-one null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [(+)-6-Hydroxy-2, 6-dimethyl-7-octen-4-one] [HMDB:HMDB39149] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 219 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB39768 C10H18O2 5-Decenoic acid InChI=1S/C10H18O2/c1-2-3-4-5-6-7-8-9-10(11)12/h5-6H,2-4,7-9H2,1H3,(H,11,12)/b6-5+ 5-Decenoic acid null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [5-Decenoic acid] [HMDB:HMDB39768] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 220 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB39795 C10H18O2 4-Octenoic acid, 9CI; (Z)-form, Et ester InChI=1S/C10H18O2/c1-3-5-6-7-8-9-10(11)12-4-2/h6-7H,3-5,8-9H2,1-2H3/b7-6+ 4-Octenoic acid, 9CI; (Z)-form, Et ester null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [4-Octenoic acid, 9CI; (Z)-form, Et ester] [HMDB:HMDB39795] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 221 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB40194 C10H18O2 Methyl 2-nonenoate InChI=1S/C10H18O2/c1-3-4-5-6-7-8-9-10(11)12-2/h8-9H,3-7H2,1-2H3/b9-8- Methyl 2-nonenoate null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [Methyl 2-nonenoate] [HMDB:HMDB40194] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 222 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB40208 C10H18O2 2-Propenyl heptanoate InChI=1S/C10H18O2/c1-3-5-6-7-8-10(11)12-9-4-2/h4H,2-3,5-9H2,1H3 2-Propenyl heptanoate null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [2-Propenyl heptanoate] [HMDB:HMDB40208] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 223 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB40213 C10H18O2 cis-3-Hexenyl isobutyrate InChI=1S/C10H18O2/c1-4-5-6-7-8-12-10(11)9(2)3/h5-6,9H,4,7-8H2,1-3H3/b6-5- cis-3-Hexenyl isobutyrate null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [cis-3-Hexenyl isobutyrate] [HMDB:HMDB40213] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 224 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB40330 C10H18O2 6-Hydroxy-3,7-dimethyloctanoic acid, 9CI; (3x,6x)-form, Lactone InChI=1S/C10H18O2/c1-7(2)9-5-4-8(3)6-10(11)12-9/h7-9H,4-6H2,1-3H3 6-Hydroxy-3,7-dimethyloctanoic acid, 9CI; (3x,6x)-form, Lactone null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [6-Hydroxy-3, 7-dimethyloctanoic acid, 9CI; (3x, 6x)-form, Lactone] [HMDB:HMDB40330] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 225 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB40530 C10H18O2 3-Methyl-2-butenoic acid, 9CI; 3-Methylbutyl ester InChI=1S/C10H18O2/c1-8(2)5-6-12-10(11)7-9(3)4/h7-8H,5-6H2,1-4H3 3-Methyl-2-butenoic acid, 9CI; 3-Methylbutyl ester null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [3-Methyl-2-butenoic acid, 9CI; 3-Methylbutyl ester] [HMDB:HMDB40530] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 226 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB40726 C10H18O2 ()-cis-Linalyl oxide InChI=1S/C10H18O2/c1-5-10(4)7-6-8(12-10)9(2,3)11/h5,8,11H,1,6-7H2,2-4H3/t8-,10-/m1/s1 ()-cis-Linalyl oxide null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [()-cis-Linalyl oxide] [HMDB:HMDB40726] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 227 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB40727 C10H18O2 ()-trans-Linalyl oxide InChI=1S/C10H18O2/c1-5-10(4)7-6-8(12-10)9(2,3)11/h5,8,11H,1,6-7H2,2-4H3/t8-,10+/m0/s1 ()-trans-Linalyl oxide null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [()-trans-Linalyl oxide] [HMDB:HMDB40727] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 228 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB41012 C10H18O2 6-Decenoic acid InChI=1S/C10H18O2/c1-2-3-4-5-6-7-8-9-10(11)12/h4-5H,2-3,6-9H2,1H3,(H,11,12)/b5-4+ 6-Decenoic acid null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [6-Decenoic acid] [HMDB:HMDB41012] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 229 mass=171.13802943423633,rt=1207.54302978515625 HMDB:HMDB41630 C10H18O2 Tetrahydro-3-hydroxy-2,2,6-trimethyl-6-vinylpyran; (3R,6R)-form InChI=1S/C10H18O2/c1-5-10(4)7-6-8(11)9(2,3)12-10/h5,8,11H,1,6-7H2,2-4H3/t8-,10+/m1/s1 Tetrahydro-3-hydroxy-2,2,6-trimethyl-6-vinylpyran; (3R,6R)-form null null [M+H]1+ 171.13802943423633 0 170.130680574199999 ms_run[1]:17133559858863227697 null null 1 C10H18O2 [Tetrahydro-3-hydroxy-2, 2, 6-trimethyl-6-vinylpyran; (3R, 6R)-form] [HMDB:HMDB41630] M+H;1+ 7.316224059650267e-05 0.427504465930534 +SME 230 mass=266.081329017684993,rt=1236.260948181152344 HMDB:HMDB32337 C16H11N1O3 Hydroxypropyl cellulose InChI=1S/C16H11NO3/c18-15-13(16(19)20)11-8-4-5-9-12(11)17-14(15)10-6-2-1-3-7-10/h1-9,18H,(H,19,20) Hydroxypropyl cellulose null null [M+H]1+ 266.081329017684993 0 265.073894350899991 ms_run[1]:4429825928174010669 null null 1 C16H11NO3 [Hydroxypropyl cellulose] [HMDB:HMDB32337] M+H;1+ 1.593426893009564e-04 0.598849927995977 +SME 231 mass=266.081329017684993,rt=1236.260948181152344 HMDB:HMDB33060 C16H11N1O3 Piperolactam A InChI=1S/C16H11NO3/c1-20-12-7-10-13-11(17-16(10)19)6-8-4-2-3-5-9(8)14(13)15(12)18/h2-7,18H,1H3,(H,17,19) Piperolactam A null null [M+H]1+ 266.081329017684993 0 265.073894350899991 ms_run[1]:4429825928174010669 null null 1 C16H11NO3 [Piperolactam A] [HMDB:HMDB33060] M+H;1+ 1.593426893009564e-04 0.598849927995977 +SME 232 mass=266.081329017684993,rt=1236.260948181152344 HMDB:HMDB34319 C16H11N1O3 Furofoline InChI=1S/C16H11NO3/c1-17-11-5-3-2-4-9(11)16(19)14-12(18)8-13-10(15(14)17)6-7-20-13/h2-8,18H,1H3 Furofoline null null [M+H]1+ 266.081329017684993 0 265.073894350899991 ms_run[1]:4429825928174010669 null null 1 C16H11NO3 [Furofoline] [HMDB:HMDB34319] M+H;1+ 1.593426893009564e-04 0.598849927995977 +SME 233 mass=282.028546754420177,rt=1239.140052795410156 HMDB:HMDB41052 C9H15N1O3S3 Ajocysteine InChI=1S/C9H15NO3S3/c1-2-5-16(13)6-3-4-14-15-7-8(10)9(11)12/h2-4,8H,1,5-7,10H2,(H,11,12)/b4-3+ Ajocysteine null null [M+H]1+ 282.028546754420177 0 281.021406668499992 ms_run[1]:13554150294198677721 null null 1 C9H15NO3S3 [Ajocysteine] [HMDB:HMDB41052] M+H;1+ -1.351185754856488e-04 -0.479095156522045 +SME 234 mass=339.206459208989486,rt=1239.621963500976563 HMDB:HMDB30358 C21H26N2O2 Aspidospermatine InChI=1S/C21H26N2O2/c1-4-15-14-8-10-22-11-9-21(20(15)22)16-6-5-7-17(25-3)19(16)23(13(2)24)18(21)12-14/h4-7,14,18,20H,8-12H2,1-3H3/b15-4+ Aspidospermatine null null [M+H]1+ 339.206459208989486 0 338.199428829400006 ms_run[1]:10052857292783559895 null null 1 C21H26N2O2 [Aspidospermatine] [HMDB:HMDB30358] M+H;1+ -2.453290061907865e-04 -0.723243387906875 +SME 235 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB03450 C10H16O1 (-)-trans-Carveol InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(11)6-9/h4,9-11H,1,5-6H2,2-3H3/t9-,10+/m1/s1 (-)-trans-Carveol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(-)-trans-Carveol] [HMDB:HMDB03450] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 236 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB03634 C10H16O1 Perillyl alcohol InChI=1S/C10H16O/c1-8(2)10-5-3-9(7-11)4-6-10/h3,10-11H,1,4-7H2,2H3 Perillyl alcohol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Perillyl alcohol] [HMDB:HMDB03634] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 237 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB03667 C10H16O1 Alpha-Pinene-oxide InChI=1S/C10H16O/c1-9(2)6-4-7(9)10(3)8(5-6)11-10/h6-8H,4-5H2,1-3H3 Alpha-Pinene-oxide null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Alpha-Pinene-oxide] [HMDB:HMDB03667] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 238 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB30892 C10H16O1 p-Menth-3-en-9-al InChI=1S/C10H16O/c1-8-3-5-10(6-4-8)9(2)7-11/h5,7-9H,3-4,6H2,1-2H3 p-Menth-3-en-9-al null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [p-Menth-3-en-9-al] [HMDB:HMDB30892] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 239 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB30893 C10H16O1 Isocitral InChI=1S/C10H16O/c1-9(2)5-4-6-10(3)7-8-11/h5-6,8H,4,7H2,1-3H3/b10-6+ Isocitral null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Isocitral] [HMDB:HMDB30893] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 240 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB31854 C10H16O1 3-Methyl-5-propyl-2-cyclohexen-1-one InChI=1S/C10H16O/c1-3-4-9-5-8(2)6-10(11)7-9/h6,9H,3-5,7H2,1-2H3 3-Methyl-5-propyl-2-cyclohexen-1-one null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [3-Methyl-5-propyl-2-cyclohexen-1-one] [HMDB:HMDB31854] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 241 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB32120 C10H16O1 2,6-Dimethyl-1,7-octadien-3-one InChI=1S/C10H16O/c1-5-9(4)6-7-10(11)8(2)3/h5,9H,1-2,6-7H2,3-4H3 2,6-Dimethyl-1,7-octadien-3-one null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [2, 6-Dimethyl-1, 7-octadien-3-one] [HMDB:HMDB32120] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 242 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB32242 C10H16O1 (E)-3,7-Dimethyl-1,5,7-octatrien-3-ol InChI=1S/C10H16O/c1-5-10(4,11)8-6-7-9(2)3/h1,7,11H,6,8H2,2-4H3 (E)-3,7-Dimethyl-1,5,7-octatrien-3-ol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(E)-3, 7-Dimethyl-1, 5, 7-octatrien-3-ol] [HMDB:HMDB32242] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 243 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB32536 C10H16O1 2-(trans-2-Pentenyl)cyclopentanone InChI=1S/C10H16O/c1-2-3-4-6-9-7-5-8-10(9)11/h3-4,9H,2,5-8H2,1H3/b4-3+ 2-(trans-2-Pentenyl)cyclopentanone null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [2-(trans-2-Pentenyl)cyclopentanone] [HMDB:HMDB32536] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 244 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB34715 C10H16O1 p-Mentha-1(6),8-dien-3-ol InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)6-10(9)11/h4,9-11H,1,5-6H2,2-3H3 p-Mentha-1(6),8-dien-3-ol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [p-Mentha-1(6), 8-dien-3-ol] [HMDB:HMDB34715] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 245 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB34916 C10H16O1 cis-2-Thujen-4-ol InChI=1S/C10H16O/c1-7(2)10-5-4-9(3,11)8(10)6-10/h4-5,7-8,11H,6H2,1-3H3 cis-2-Thujen-4-ol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [cis-2-Thujen-4-ol] [HMDB:HMDB34916] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 246 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB34973 C10H16O1 Campholenic aldehyde InChI=1S/C10H16O/c1-8-4-5-9(6-7-11)10(8,2)3/h4,7,9H,5-6H2,1-3H3 Campholenic aldehyde null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Campholenic aldehyde] [HMDB:HMDB34973] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 247 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB34974 C10H16O1 (R)-Carvotanacetone InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(11)6-9/h4,7,9H,5-6H2,1-3H3 (R)-Carvotanacetone null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(R)-Carvotanacetone] [HMDB:HMDB34974] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 248 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB34975 C10H16O1 Piperitone InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)6-10(9)11/h6-7,9H,4-5H2,1-3H3 Piperitone null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Piperitone] [HMDB:HMDB34975] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 249 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB34985 C10H16O1 (+)-Fenchone InChI=1S/C10H16O/c1-9(2)7-4-5-10(3,6-7)8(9)11/h7H,4-6H2,1-3H3 (+)-Fenchone null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(+)-Fenchone] [HMDB:HMDB34985] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 250 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35054 C10H16O1 (1S,4R)-p-Mentha-2,8-dien-1-ol InChI=1S/C10H16O/c1-8(2)9-4-6-10(3,11)7-5-9/h4,6,9,11H,1,5,7H2,2-3H3/t9-,10+/m0/s1 (1S,4R)-p-Mentha-2,8-dien-1-ol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(1S, 4R)-p-Mentha-2, 8-dien-1-ol] [HMDB:HMDB35054] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 251 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35077 C10H16O1 (1R,4R)-p-Mentha-2,8-dien-1-ol InChI=1S/C10H16O/c1-8(2)9-4-6-10(3,11)7-5-9/h4,6,9,11H,1,5,7H2,2-3H3/t9-,10-/m0/s1 (1R,4R)-p-Mentha-2,8-dien-1-ol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(1R, 4R)-p-Mentha-2, 8-dien-1-ol] [HMDB:HMDB35077] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 252 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35078 C10H16O1 Geranial InChI=1S/C10H16O/c1-9(2)5-4-6-10(3)7-8-11/h5,7-8H,4,6H2,1-3H3/b10-7+ Geranial null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Geranial] [HMDB:HMDB35078] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 253 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35092 C10H16O1 Citral InChI=1S/C10H16O/c1-9(2)5-4-6-10(3)7-8-11/h5,7-8H,4,6H2,1-3H3/b10-7+ Citral null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Citral] [HMDB:HMDB35092] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 254 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35100 C10H16O1 2-Pinen-10-ol InChI=1S/C10H16O/c1-10(2)8-4-3-7(6-11)9(10)5-8/h3,8-9,11H,4-6H2,1-2H3 2-Pinen-10-ol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [2-Pinen-10-ol] [HMDB:HMDB35100] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 255 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35120 C10H16O1 Dehydrolinalool InChI=1S/C10H16O/c1-5-10(4,11)8-6-7-9(2)3/h5-7,11H,1-2,8H2,3-4H3/b7-6- Dehydrolinalool null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Dehydrolinalool] [HMDB:HMDB35120] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 256 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35125 C10H16O1 Darwinol InChI=1S/C10H16O/c1-10(2)8-4-3-7(6-11)9(10)5-8/h3,8-9,11H,4-6H2,1-2H3/t8-,9-/m1/s1 Darwinol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Darwinol] [HMDB:HMDB35125] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 257 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35158 C10H16O1 1,2-Epoxy-p-menth-8-ene InChI=1S/C10H16O/c1-7(2)8-4-5-10(3)9(6-8)11-10/h8-9H,1,4-6H2,2-3H3 1,2-Epoxy-p-menth-8-ene null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [1, 2-Epoxy-p-menth-8-ene] [HMDB:HMDB35158] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 258 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35203 C10H16O1 (S)-9,10-Cyclo-p-menth-1-en-4-ol InChI=1S/C10H16O/c1-8-4-6-10(11,7-5-8)9-2-3-9/h4,9,11H,2-3,5-7H2,1H3 (S)-9,10-Cyclo-p-menth-1-en-4-ol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(S)-9, 10-Cyclo-p-menth-1-en-4-ol] [HMDB:HMDB35203] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 259 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35241 C10H16O1 (Z)-2-Methyl-6-methylene-2,7-octadien-1-ol InChI=1S/C10H16O/c1-4-9(2)6-5-7-10(3)8-11/h4,7,11H,1-2,5-6,8H2,3H3/b10-7+ (Z)-2-Methyl-6-methylene-2,7-octadien-1-ol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(Z)-2-Methyl-6-methylene-2, 7-octadien-1-ol] [HMDB:HMDB35241] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 260 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35277 C10H16O1 p-Mentha-1(7),5-dien-2-ol; (2S,4R)-form InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(11)6-9/h4-5,7,9-11H,3,6H2,1-2H3 p-Mentha-1(7),5-dien-2-ol; (2S,4R)-form null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [p-Mentha-1(7), 5-dien-2-ol; (2S, 4R)-form] [HMDB:HMDB35277] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 261 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35280 C10H16O1 Teresantalol InChI=1S/C10H16O/c1-9(5-11)6-3-7-8(4-6)10(7,9)2/h6-8,11H,3-5H2,1-2H3 Teresantalol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Teresantalol] [HMDB:HMDB35280] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 262 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35600 C10H16O1 (S)-Phellandral InChI=1S/C10H16O/c1-8(2)10-5-3-9(7-11)4-6-10/h3,7-8,10H,4-6H2,1-2H3 (S)-Phellandral null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(S)-Phellandral] [HMDB:HMDB35600] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 263 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35604 C10H16O1 (R)-p-Menth-4(8)-en-3-one InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)6-10(9)11/h8H,4-6H2,1-3H3 (R)-p-Menth-4(8)-en-3-one null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(R)-p-Menth-4(8)-en-3-one] [HMDB:HMDB35604] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 264 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35622 C10H16O1 (+)-cis-Carveol InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(11)6-9/h4,9-11H,1,5-6H2,2-3H3/t9-,10-/m0/s1 (+)-cis-Carveol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(+)-cis-Carveol] [HMDB:HMDB35622] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 265 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35656 C10H16O1 3-Pinanone InChI=1S/C10H16O/c1-6-8-4-7(5-9(6)11)10(8,2)3/h6-8H,4-5H2,1-3H3 3-Pinanone null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [3-Pinanone] [HMDB:HMDB35656] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 266 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35706 C10H16O1 alpha-Cyclocitral InChI=1S/C10H16O/c1-8-5-4-6-10(2,3)9(8)7-11/h5,7,9H,4,6H2,1-3H3 alpha-Cyclocitral null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [alpha-Cyclocitral] [HMDB:HMDB35706] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 267 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35737 C10H16O1 (R)-Piperitone InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)6-10(9)11/h6-7,9H,4-5H2,1-3H3/t9-/m1/s1 (R)-Piperitone null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(R)-Piperitone] [HMDB:HMDB35737] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 268 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35738 C10H16O1 (S)-Piperitone InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)6-10(9)11/h6-7,9H,4-5H2,1-3H3/t9-/m0/s1 (S)-Piperitone null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(S)-Piperitone] [HMDB:HMDB35738] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 269 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35741 C10H16O1 p-Menth-8-en-3-one; (1R,4S)-form InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)6-10(9)11/h8-9H,1,4-6H2,2-3H3 p-Menth-8-en-3-one; (1R,4S)-form null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [p-Menth-8-en-3-one; (1R, 4S)-form] [HMDB:HMDB35741] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 270 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35743 C10H16O1 Pinocarveol InChI=1S/C10H16O/c1-6-8-4-7(5-9(6)11)10(8,2)3/h7-9,11H,1,4-5H2,2-3H3 Pinocarveol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Pinocarveol] [HMDB:HMDB35743] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 271 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB35744 C10H16O1 (-)-Isopinocamphone InChI=1S/C10H16O/c1-6-8-4-7(5-9(6)11)10(8,2)3/h6-8H,4-5H2,1-3H3/t6-,7+,8-/m0/s1 (-)-Isopinocamphone null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(-)-Isopinocamphone] [HMDB:HMDB35744] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 272 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB36044 C10H16O1 Marmelo oxide A InChI=1S/C10H16O/c1-8(2)4-5-10-6-9(3)7-11-10/h4-5,9-10H,1,6-7H2,2-3H3/b5-4- Marmelo oxide A null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Marmelo oxide A] [HMDB:HMDB36044] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 273 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB36079 C10H16O1 Dihydrocarvone InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(11)6-9/h8-9H,1,4-6H2,2-3H3 Dihydrocarvone null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Dihydrocarvone] [HMDB:HMDB36079] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 274 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB36080 C10H16O1 (1S,4S)-Dihydrocarvone InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(11)6-9/h8-9H,1,4-6H2,2-3H3/t8-,9-/m0/s1 (1S,4S)-Dihydrocarvone null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(1S, 4S)-Dihydrocarvone] [HMDB:HMDB36080] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 275 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB36082 C10H16O1 (-)-cis-Carveol InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(11)6-9/h4,9-11H,1,5-6H2,2-3H3/t9-,10-/m1/s1 (-)-cis-Carveol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(-)-cis-Carveol] [HMDB:HMDB36082] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 276 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB36083 C10H16O1 Carveol InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(11)6-9/h4,9-11H,1,5-6H2,2-3H3 Carveol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Carveol] [HMDB:HMDB36083] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 277 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB36085 C10H16O1 Dehydro-1,8-cineole InChI=1S/C10H16O/c1-9(2)8-4-6-10(3,11-9)7-5-8/h4,6,8H,5,7H2,1-3H3 Dehydro-1,8-cineole null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Dehydro-1, 8-cineole] [HMDB:HMDB36085] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 278 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB36087 C10H16O1 (R)-p-Mentha-1,8-dien-7-ol InChI=1S/C10H16O/c1-8(2)10-5-3-9(7-11)4-6-10/h3,10-11H,1,4-7H2,2H3/t10-/m0/s1 (R)-p-Mentha-1,8-dien-7-ol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(R)-p-Mentha-1, 8-dien-7-ol] [HMDB:HMDB36087] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 279 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB36088 C10H16O1 (S)-p-Mentha-1,8-dien-7-ol InChI=1S/C10H16O/c1-8(2)10-5-3-9(7-11)4-6-10/h3,10-11H,1,4-7H2,2H3/t10-/m1/s1 (S)-p-Mentha-1,8-dien-7-ol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(S)-p-Mentha-1, 8-dien-7-ol] [HMDB:HMDB36088] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 280 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB36113 C10H16O1 (+)-3-Thujone InChI=1S/C10H16O/c1-6(2)10-4-8(10)7(3)9(11)5-10/h6-8H,4-5H2,1-3H3/t7-,8+,10-/m0/s1 (+)-3-Thujone null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(+)-3-Thujone] [HMDB:HMDB36113] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 281 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB36114 C10H16O1 (-)-3-Thujone InChI=1S/C10H16O/c1-6(2)10-4-8(10)7(3)9(11)5-10/h6-8H,4-5H2,1-3H3/t7-,8+,10-/m1/s1 (-)-3-Thujone null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(-)-3-Thujone] [HMDB:HMDB36114] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 282 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB36115 C10H16O1 (-)-3-Isothujone InChI=1S/C10H16O/c1-6(2)10-4-8(10)7(3)9(11)5-10/h6-8H,4-5H2,1-3H3/t7-,8-,10+/m1/s1 (-)-3-Isothujone null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(-)-3-Isothujone] [HMDB:HMDB36115] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 283 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB36127 C10H16O1 (-)-Pinocamphone InChI=1S/C10H16O/c1-6-8-4-7(5-9(6)11)10(8,2)3/h6-8H,4-5H2,1-3H3/t6-,7-,8+/m1/s1 (-)-Pinocamphone null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(-)-Pinocamphone] [HMDB:HMDB36127] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 284 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB36128 C10H16O1 (-)-trans-Pinocarveol InChI=1S/C10H16O/c1-6-8-4-7(5-9(6)11)10(8,2)3/h7-9,11H,1,4-5H2,2-3H3/t7-,8+,9+/m0/s1 (-)-trans-Pinocarveol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(-)-trans-Pinocarveol] [HMDB:HMDB36128] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 285 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB36129 C10H16O1 Verbenol InChI=1S/C10H16O/c1-6-4-9(11)8-5-7(6)10(8,2)3/h4,7-9,11H,5H2,1-3H3 Verbenol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Verbenol] [HMDB:HMDB36129] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 286 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB36598 C10H16O1 (E,E)-2,4-Decadienal InChI=1S/C10H16O/c1-2-3-4-5-6-7-8-9-10-11/h6-10H,2-5H2,1H3/b7-6-,9-8+ (E,E)-2,4-Decadienal null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(E, E)-2, 4-Decadienal] [HMDB:HMDB36598] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 287 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB37008 C10H16O1 6,8-Epoxy-p-menth-2-ene InChI=1S/C10H16O/c1-7-4-5-8-6-9(7)11-10(8,2)3/h4-5,7-9H,6H2,1-3H3 6,8-Epoxy-p-menth-2-ene null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [6, 8-Epoxy-p-menth-2-ene] [HMDB:HMDB37008] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 288 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB37009 C10H16O1 Terpinolene oxide InChI=1S/C10H16O/c1-8-4-6-10(7-5-8)9(2,3)11-10/h4H,5-7H2,1-3H3 Terpinolene oxide null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Terpinolene oxide] [HMDB:HMDB37009] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 289 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB37010 C10H16O1 (2S,4R)-p-Mentha-1(7),8-dien-2-ol InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(11)6-9/h9-11H,1,3-6H2,2H3 (2S,4R)-p-Mentha-1(7),8-dien-2-ol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [(2S, 4R)-p-Mentha-1(7), 8-dien-2-ol] [HMDB:HMDB37010] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 290 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB37015 C10H16O1 p-Mentha-1,8-dien-4-ol InChI=1S/C10H16O/c1-8(2)10(11)6-4-9(3)5-7-10/h4,11H,1,5-7H2,2-3H3 p-Mentha-1,8-dien-4-ol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [p-Mentha-1, 8-dien-4-ol] [HMDB:HMDB37015] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 291 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB37017 C10H16O1 p-Mentha-1,8-dien-10-ol InChI=1S/C10H16O/c1-8-3-5-10(6-4-8)9(2)7-11/h3,10-11H,2,4-7H2,1H3 p-Mentha-1,8-dien-10-ol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [p-Mentha-1, 8-dien-10-ol] [HMDB:HMDB37017] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 292 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB37024 C10H16O1 4-Acetyl-1,4-dimethyl-1-cyclohexene InChI=1S/C10H16O/c1-8-4-6-10(3,7-5-8)9(2)11/h4H,5-7H2,1-3H3 4-Acetyl-1,4-dimethyl-1-cyclohexene null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [4-Acetyl-1, 4-dimethyl-1-cyclohexene] [HMDB:HMDB37024] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 293 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB37025 C10H16O1 Hop ether InChI=1S/C10H16O/c1-7-4-5-9-8(7)6-11-10(9,2)3/h8-9H,1,4-6H2,2-3H3 Hop ether null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Hop ether] [HMDB:HMDB37025] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 294 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB37172 C10H16O1 Tetrahydro-5-isopropenyl-2-methyl-2-vinylfuran InChI=1S/C10H16O/c1-5-10(4)7-6-9(11-10)8(2)3/h5,9H,1-2,6-7H2,3-4H3 Tetrahydro-5-isopropenyl-2-methyl-2-vinylfuran null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Tetrahydro-5-isopropenyl-2-methyl-2-vinylfuran] [HMDB:HMDB37172] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 295 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB37280 C10H16O1 Junionone InChI=1S/C10H16O/c1-8(11)4-5-9-6-7-10(9,2)3/h4-5,9H,6-7H2,1-3H3/b5-4+ Junionone null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Junionone] [HMDB:HMDB37280] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 296 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB37302 C10H16O1 xi-p-Mentha-3,8-dien-1-ol InChI=1S/C10H16O/c1-8(2)9-4-6-10(3,11)7-5-9/h4,11H,1,5-7H2,2-3H3 xi-p-Mentha-3,8-dien-1-ol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [xi-p-Mentha-3, 8-dien-1-ol] [HMDB:HMDB37302] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 297 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB37303 C10H16O1 xi-p-Mentha-1(7),2-dien-4-ol InChI=1S/C10H16O/c1-8(2)10(11)6-4-9(3)5-7-10/h4,6,8,11H,3,5,7H2,1-2H3 xi-p-Mentha-1(7),2-dien-4-ol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [xi-p-Mentha-1(7), 2-dien-4-ol] [HMDB:HMDB37303] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 298 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB38251 C10H16O1 xi-Pinol InChI=1S/C10H16O/c1-7-4-5-8-6-9(7)11-10(8,2)3/h4,8-9H,5-6H2,1-3H3 xi-Pinol null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [xi-Pinol] [HMDB:HMDB38251] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 299 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB38290 C10H16O1 Photocitral A InChI=1S/C10H16O/c1-7(2)9-5-4-8(3)10(9)6-11/h6,8-10H,1,4-5H2,2-3H3 Photocitral A null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Photocitral A] [HMDB:HMDB38290] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 300 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB38557 C10H16O1 xi-3,6-Dihydro-4-methyl-2-(2-methyl-1-propenyl)-2H-pyran InChI=1S/C10H16O/c1-8(2)6-10-7-9(3)4-5-11-10/h4,6,10H,5,7H2,1-3H3 xi-3,6-Dihydro-4-methyl-2-(2-methyl-1-propenyl)-2H-pyran null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [xi-3, 6-Dihydro-4-methyl-2-(2-methyl-1-propenyl)-2H-pyran] [HMDB:HMDB38557] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 301 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB39008 C10H16O1 3,4-Epoxy-p-menth-1(7)-ene InChI=1S/C10H16O/c1-7(2)10-5-4-8(3)6-9(10)11-10/h7,9H,3-6H2,1-2H3 3,4-Epoxy-p-menth-1(7)-ene null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [3, 4-Epoxy-p-menth-1(7)-ene] [HMDB:HMDB39008] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 302 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB39816 C10H16O1 2-Hexylfuran InChI=1S/C10H16O/c1-2-3-4-5-7-10-8-6-9-11-10/h6,8-9H,2-5,7H2,1H3 2-Hexylfuran null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [2-Hexylfuran] [HMDB:HMDB39816] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 303 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB40766 C10H16O1 Anethofuran InChI=1S/C10H16O/c1-7-3-4-9-8(2)6-11-10(9)5-7/h5,8-10H,3-4,6H2,1-2H3 Anethofuran null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Anethofuran] [HMDB:HMDB40766] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 304 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB41011 C10H16O1 beta-Cyclocitral InChI=1S/C10H16O/c1-8-5-4-6-10(2,3)9(8)7-11/h7H,4-6H2,1-3H3 beta-Cyclocitral null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [beta-Cyclocitral] [HMDB:HMDB41011] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 305 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB41013 C10H16O1 Isocyclocitral InChI=1S/C10H16O/c1-7-4-8(2)10(6-11)9(3)5-7/h4,6,8-10H,5H2,1-3H3 Isocyclocitral null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [Isocyclocitral] [HMDB:HMDB41013] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 306 mass=153.127319931995544,rt=1258.062973022460938 HMDB:HMDB41631 C10H16O1 3-Thujanone InChI=1S/C10H16O/c1-6(2)10-4-8(10)7(3)9(11)5-10/h6-8H,4-5H2,1-3H3 3-Thujanone null null [M+H]1+ 153.127319931995544 0 152.120115510399984 ms_run[1]:483859871398158446 null null 1 C10H16O [3-Thujanone] [HMDB:HMDB41631] M+H;1+ -7.165400018038781e-05 -0.467937182487349 +SME 307 mass=354.19973439567184,rt=1296.138954162597656 HMDB:HMDB14924 C15H29N3O5 Marimastat InChI=1S/C15H29N3O5/c1-8(2)7-9(10(19)13(21)18-23)12(20)17-11(14(22)16-6)15(3,4)5/h8-11,19,23H,7H2,1-6H3,(H,16,22)(H,17,20)(H,18,21)/t9-,10+,11-/m1/s1 Marimastat null null [M+Na]1+ 354.19973439567184 1 331.210722925100015 ms_run[1]:1253230053346195327 null null 1 C15H29N3O5 [Marimastat] [HMDB:HMDB14924] M+Na;1+ -2.073583238484389e-04 -0.585427323397067 +SME 308 mass=241.074781804646733,rt=1302.343025207519531 HMDB:HMDB33071 C9H20O1S3 Propyl 1-(propylsulfinyl)propyl disulfide InChI=1S/C9H20OS3/c1-4-7-11-12-9(6-3)13(10)8-5-2/h9H,4-8H2,1-3H3 Propyl 1-(propylsulfinyl)propyl disulfide null null [M+H]1+ 241.074781804646733 0 240.067627828000013 ms_run[1]:14357706761137484474 null null 1 C9H20OS3 [Propyl 1-(propylsulfinyl)propyl disulfide] [HMDB:HMDB33071] M+H;1+ -1.219793489894983e-04 -0.505981116552855 +SME 309 mass=337.171858652798619,rt=1303.061027526855241 HMDB:HMDB41541 C12H24N4O7 N2-Fructopyranosylarginine InChI=1S/C12H24N4O7/c13-11(14)15-3-1-2-6(10(20)21)16-5-12(22)9(19)8(18)7(17)4-23-12/h6-9,16-19,22H,1-5H2,(H,20,21)(H4,13,14,15) N2-Fructopyranosylarginine null null [M+H]1+ 337.171858652798619 0 336.164501765599994 ms_run[1]:13842633629315803473 null null 1 C12H24N4O7 [N2-Fructopyranosylarginine] [HMDB:HMDB41541] M+H;1+ 8.30588029430146e-05 0.246339726380388 +SME 310 mass=403.360991605130891,rt=1343.070030212402344 EXTRA:EXTRA006 (1)H42(2)H3C23N1O4 Hexadecanoyl-l-carnitine-d3 InChi=NA Hexadecanoyl-l-carnitine-d3 null null [M+H]1+ 403.360991605130891 0 402.353690679800025 ms_run[1]:11465367372153207899 null null 1 C23(2)H3(1)H42NO4 [Hexadecanoyl-l-carnitine-d3] [EXTRA:EXTRA006] M+H;1+ 2.597733521270129e-05 0.064402204046368 +SME 311 mass=297.126692611838905,rt=1359.83001708984375 HMDB:HMDB28980 C14H20N2O3S1 Methionyl-Phenylalanine InChI=1S/C14H20N2O3S/c1-20-8-7-12(14(18)19)16-13(17)11(15)9-10-5-3-2-4-6-10/h2-6,11-12H,7-9,15H2,1H3,(H,16,17)(H,18,19) Methionyl-Phenylalanine null null [M+H]1+ 297.126692611838905 0 296.119464368000024 ms_run[1]:16054839236227026661 null null 1 C14H20N2O3S [Methionyl-Phenylalanine] [HMDB:HMDB28980] M+H;1+ -4.704615673745138e-05 -0.158337000539242 +SME 312 mass=297.126692611838905,rt=1359.83001708984375 HMDB:HMDB29001 C14H20N2O3S1 Phenylalanyl-Methionine InChI=1S/C14H20N2O3S/c1-20-8-7-11(15)13(17)16-12(14(18)19)9-10-5-3-2-4-6-10/h2-6,11-12H,7-9,15H2,1H3,(H,16,17)(H,18,19) Phenylalanyl-Methionine null null [M+H]1+ 297.126692611838905 0 296.119464368000024 ms_run[1]:16054839236227026661 null null 1 C14H20N2O3S [Phenylalanyl-Methionine] [HMDB:HMDB29001] M+H;1+ -4.704615673745138e-05 -0.158337000539242 diff --git a/src/tests/class_tests/openms/data/OMSFile_test_2.featureXML b/src/tests/class_tests/openms/data/OMSFile_test_2.featureXML new file mode 100644 index 00000000000..01230bc6401 --- /dev/null +++ b/src/tests/class_tests/openms/data/OMSFile_test_2.featureXML @@ -0,0 +1,116 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 0.0 + 35.0 + 500.0 + 0.0 + 0.0 + 0.0 + 0 + + + + + + + + + + + + + 25.0 + 0.0 + 300.0 + 0.0 + 0.0 + 0.0 + 0 + + + 24.0 + 0.0 + 320.0 + 0.1 + 0.0 + 0.1 + 1 + + + + 23.0 + 11.0 + 1.132e04 + 0.1 + 0.0 + 0.1 + 2 + + + + + + + + + + + + + + + + + + diff --git a/src/tests/class_tests/openms/executables.cmake b/src/tests/class_tests/openms/executables.cmake index 89229e34901..0c88eef31d0 100644 --- a/src/tests/class_tests/openms/executables.cmake +++ b/src/tests/class_tests/openms/executables.cmake @@ -221,12 +221,15 @@ set(format_executables_list MzMLValidator_test MzTab_test MzTabFile_test + MzTabM_test + MzTabMFile_test # MSstatsFile_test MzQuantMLFile_test #MzQuantMLValidator_test MzXMLFile_test NoopMSDataConsumer_test TraMLValidator_test + OMSFile_test OMSSACSVFile_test OMSSAXMLFile_test OSWFile_test diff --git a/src/tests/class_tests/openms/source/AccurateMassSearchEngine_test.cpp b/src/tests/class_tests/openms/source/AccurateMassSearchEngine_test.cpp index f2d2dbe1fb8..d245381a1b6 100644 --- a/src/tests/class_tests/openms/source/AccurateMassSearchEngine_test.cpp +++ b/src/tests/class_tests/openms/source/AccurateMassSearchEngine_test.cpp @@ -43,6 +43,7 @@ #include #include #include +#include #include #include #include @@ -50,6 +51,7 @@ #include #include +#include /////////////////////////// @@ -303,7 +305,9 @@ FuzzyStringComparator fsc; fsc.setAcceptableAbsolute(1e-8); StringList sl; sl.push_back("xml-stylesheet"); -sl.push_back("IdentificationRun"); +sl.push_back("IdentificationRun id=\"PI_0\" date="); +sl.push_back("software[1]"); +sl.push_back("database[1]-uri"); fsc.setWhitelist(sl); START_SECTION((void run(FeatureMap&, MzTab&) const)) @@ -347,6 +351,39 @@ START_SECTION((void run(FeatureMap&, MzTab&) const)) } END_SECTION +START_SECTION((void run(FeatureMap&, MzTabM&) const)) +{ + FeatureMap exp_fm; + FeatureXMLFile().load(OPENMS_GET_TEST_DATA_PATH("AccurateMassSearchEngine_input1.featureXML"), exp_fm); + { + MzTabM test_mztabm; + ams_feat_test.run(exp_fm, test_mztabm); + + String tmp_mztabm_file; + NEW_TMP_FILE(tmp_mztabm_file); + MzTabMFile().store(tmp_mztabm_file, test_mztabm); + TEST_EQUAL(fsc.compareFiles(tmp_mztabm_file, OPENMS_GET_TEST_DATA_PATH("AccurateMassSearchEngine_output1_mztabm_featureXML.mzTab")), true); + + // test use of adduct information + Param ams_param_tmp = ams_param; + ams_param_tmp.setValue("use_feature_adducts", "true"); + + AccurateMassSearchEngine ams_feat_test2; + ams_feat_test2.setParameters(ams_param_tmp); + ams_feat_test2.init(); + + FeatureMap exp_fm2; + FeatureXMLFile().load(OPENMS_GET_TEST_DATA_PATH("AccurateMassSearchEngine_input1.featureXML"), exp_fm2); + MzTabM test_mztabm2; + ams_feat_test2.run(exp_fm2, test_mztabm2); + + String tmp_mztabm_file2; + NEW_TMP_FILE(tmp_mztabm_file2); + MzTabMFile().store(tmp_mztabm_file2, test_mztabm2); + TEST_EQUAL(fsc.compareFiles(tmp_mztabm_file2, OPENMS_GET_TEST_DATA_PATH("AccurateMassSearchEngine_output2_mztabm_featureXML.mzTab")), true); + } +} +END_SECTION START_SECTION((void run(ConsensusMap&, MzTab&) const)) ConsensusMap exp_cm; @@ -381,13 +418,22 @@ START_SECTION([EXTRA] template void resolveAutoMode_(const MA ams.init(); TEST_EXCEPTION(Exception::InvalidParameter, ams.run(fm_p, mzt)); // 'fm_p' has no scan_polarity meta value - fm_p[0].setMetaValue("scan_polarity", "something;somethingelse"); + for (auto& f : fm_p) + { + f.setMetaValue("scan_polarity", "something;somethingelse"); + } TEST_EXCEPTION(Exception::InvalidParameter, ams.run(fm_p, mzt)); // 'fm_p' scan_polarity meta value wrong - fm_p[0].setMetaValue("scan_polarity", "positive"); // should run ok + for (auto& f : fm_p) + { + f.setMetaValue("scan_polarity", "positive"); + } ams.run(fm_p, mzt); - fm_p[0].setMetaValue("scan_polarity", "negative"); // should run ok + for (auto& f : fm_p) + { + f.setMetaValue("scan_polarity", "negative"); + } ams.run(fm_p, mzt); END_SECTION diff --git a/src/tests/class_tests/openms/source/Acquisition_test.cpp b/src/tests/class_tests/openms/source/Acquisition_test.cpp index 46319808104..daebc4898a8 100644 --- a/src/tests/class_tests/openms/source/Acquisition_test.cpp +++ b/src/tests/class_tests/openms/source/Acquisition_test.cpp @@ -91,7 +91,7 @@ START_SECTION(Acquisition(Acquisition&&) = default) Acquisition ef_mv(std::move(ef)); TEST_EQUAL(ef_mv == ef2, true) TEST_EQUAL(ef == empty, true) - TEST_EQUAL(ef.getIdentifier() == "", true) + TEST_EQUAL(ef.getIdentifier().empty(), true) END_SECTION START_SECTION(Acquisition& operator= (const Acquisition& source)) diff --git a/src/tests/class_tests/openms/source/BaseFeature_test.cpp b/src/tests/class_tests/openms/source/BaseFeature_test.cpp index 2f7d696c7c7..8e90adc8524 100644 --- a/src/tests/class_tests/openms/source/BaseFeature_test.cpp +++ b/src/tests/class_tests/openms/source/BaseFeature_test.cpp @@ -429,8 +429,6 @@ START_SECTION((AnnotationState getAnnotationState() const)) hit.setSequence(AASequence::fromString("KRGH")); ids[1].setHits(std::vector(1, hit)); // different to first hit TEST_EQUAL(tmp.getAnnotationState(), BaseFeature::FEATURE_ID_MULTIPLE_DIVERGENT); - - END_SECTION START_SECTION((sortPeptideIdentifications())) diff --git a/src/tests/class_tests/openms/source/CachedMzMLHandler_test.cpp b/src/tests/class_tests/openms/source/CachedMzMLHandler_test.cpp index b8e600f6667..a0b0dc98d6d 100644 --- a/src/tests/class_tests/openms/source/CachedMzMLHandler_test.cpp +++ b/src/tests/class_tests/openms/source/CachedMzMLHandler_test.cpp @@ -320,7 +320,7 @@ START_SECTION(static inline void readSpectrumFast(OpenSwath::BinaryDataArrayPtr double rt = -1.0; CachedMzMLHandler::readSpectrumFast(mz_array, intensity_array, ifs_, ms_level, rt); - TEST_EQUAL(mz_array->data.size() > 0, true) + TEST_EQUAL(!mz_array->data.empty(), true) TEST_EQUAL(mz_array->data.size(), exp.getSpectrum(0).size()) TEST_EQUAL(intensity_array->data.size(), exp.getSpectrum(0).size()) @@ -377,7 +377,7 @@ START_SECTION( static inline void readChromatogramFast(OpenSwath::BinaryDataArra ifs_.seekg(chrom_index[0]); CachedMzMLHandler::readChromatogramFast(time_array, intensity_array, ifs_); - TEST_EQUAL(time_array->data.size() > 0, true) + TEST_EQUAL(!time_array->data.empty(), true) TEST_EQUAL(time_array->data.size(), exp.getChromatogram(0).size()) TEST_EQUAL(intensity_array->data.size(), exp.getChromatogram(0).size()) diff --git a/src/tests/class_tests/openms/source/ChromatogramSettings_test.cpp b/src/tests/class_tests/openms/source/ChromatogramSettings_test.cpp index 4ea60f643f0..75ffa8f7815 100644 --- a/src/tests/class_tests/openms/source/ChromatogramSettings_test.cpp +++ b/src/tests/class_tests/openms/source/ChromatogramSettings_test.cpp @@ -81,8 +81,9 @@ START_SECTION((ChromatogramSettings(const ChromatogramSettings &source))) TEST_EQUAL(tmp2.getChromatogramType(), ChromatogramSettings::SELECTED_REACTION_MONITORING_CHROMATOGRAM); TEST_REAL_SIMILAR(tmp2.getPrecursor().getMZ(), 0.11); TEST_REAL_SIMILAR(tmp2.getProduct().getMZ(), 0.12); - TEST_EQUAL(tmp2.getInstrumentSettings()==InstrumentSettings(), false); + TEST_EQUAL(tmp2.getInstrumentSettings()==InstrumentSettings(), false); TEST_EQUAL(tmp2.getAcquisitionInfo()==AcquisitionInfo(), false); + TEST_EQUAL(tmp2.getAcquisitionInfo().empty(), true); TEST_STRING_EQUAL(tmp2.getNativeID(),"nid"); TEST_EQUAL(tmp2.getDataProcessing().size(),1); TEST_STRING_EQUAL(tmp2.getMetaValue("bla"),"bluff"); @@ -94,7 +95,7 @@ START_SECTION((ChromatogramSettings(const ChromatogramSettings &source))) TEST_REAL_SIMILAR(tmp2.getPrecursor().getMZ(), 0.0); TEST_REAL_SIMILAR(tmp2.getProduct().getMZ(), 0.0); TEST_EQUAL(tmp2.getInstrumentSettings()==InstrumentSettings(), true); - TEST_EQUAL(tmp2.getAcquisitionInfo()==AcquisitionInfo(), true); + TEST_EQUAL(tmp2.getAcquisitionInfo().empty(), true); TEST_STRING_EQUAL(tmp2.getNativeID(),""); TEST_EQUAL(tmp2.getDataProcessing().size(),0); TEST_EQUAL(tmp2.metaValueExists("bla"),false); @@ -122,6 +123,7 @@ START_SECTION((ChromatogramSettings& operator=(const ChromatogramSettings &sourc TEST_REAL_SIMILAR(tmp2.getProduct().getMZ(), 0.14); TEST_EQUAL(tmp2.getInstrumentSettings()==InstrumentSettings(), false); TEST_EQUAL(tmp2.getAcquisitionInfo()==AcquisitionInfo(), false); + TEST_EQUAL(tmp2.getAcquisitionInfo().empty(), true); TEST_STRING_EQUAL(tmp2.getNativeID(),"nid"); TEST_EQUAL(tmp2.getDataProcessing().size(),1); TEST_EQUAL(tmp2.getMetaValue("bla")=="bluff",true); @@ -292,14 +294,15 @@ START_SECTION((const AcquisitionInfo& getAcquisitionInfo() const )) { ChromatogramSettings tmp; tmp.getAcquisitionInfo().setMethodOfCombination("test"); - TEST_EQUAL(tmp.getAcquisitionInfo()==AcquisitionInfo(), false); + TEST_EQUAL(tmp.getAcquisitionInfo()==AcquisitionInfo(), false); + TEST_EQUAL(tmp.getAcquisitionInfo().empty(), true); } END_SECTION START_SECTION((AcquisitionInfo& getAcquisitionInfo())) { ChromatogramSettings tmp; - TEST_EQUAL(tmp.getAcquisitionInfo()==AcquisitionInfo(), true); + TEST_EQUAL(tmp.getAcquisitionInfo().empty(), true); } END_SECTION @@ -309,7 +312,8 @@ START_SECTION((void setAcquisitionInfo(const AcquisitionInfo &acquisition_info)) AcquisitionInfo ai; ai.setMethodOfCombination("test"); tmp.setAcquisitionInfo(ai); - TEST_EQUAL(tmp.getAcquisitionInfo()==AcquisitionInfo(), false); + TEST_EQUAL(tmp.getAcquisitionInfo()==AcquisitionInfo(), false); + TEST_EQUAL(tmp.getAcquisitionInfo().empty(), true); } END_SECTION diff --git a/src/tests/class_tests/openms/source/ClassTest_test.cpp b/src/tests/class_tests/openms/source/ClassTest_test.cpp index 0eb9e29d2e9..ff8c3719e56 100644 --- a/src/tests/class_tests/openms/source/ClassTest_test.cpp +++ b/src/tests/class_tests/openms/source/ClassTest_test.cpp @@ -125,8 +125,8 @@ END_SECTION START_SECTION("NEW_TMP_FILE()") std::string tmp_filename; NEW_TMP_FILE(tmp_filename); - TEST::this_test = (tmp_filename != ""); - TEST_EQUAL(tmp_filename != "", true); + TEST::this_test = (!tmp_filename.empty()); + TEST_EQUAL(!tmp_filename.empty(), true); END_SECTION START_SECTION("TEST_REAL_SIMILAR()") diff --git a/src/tests/class_tests/openms/source/CoarseIsotopeDistribution_test.cpp b/src/tests/class_tests/openms/source/CoarseIsotopeDistribution_test.cpp index eab22fdd814..f533ba36556 100644 --- a/src/tests/class_tests/openms/source/CoarseIsotopeDistribution_test.cpp +++ b/src/tests/class_tests/openms/source/CoarseIsotopeDistribution_test.cpp @@ -1,32 +1,32 @@ // -------------------------------------------------------------------------- -// OpenMS -- Open-Source Mass Spectrometry +// OpenMS -- Open-Source Mass Spectrometry // -------------------------------------------------------------------------- // Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, // ETH Zurich, and Freie Universitaet Berlin 2002-2021. -// +// // This software is released under a three-clause BSD license: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. -// * Neither the name of any author or any participating institution -// may be used to endorse or promote products derived from this software +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software // without specific prior written permission. -// For a full list of authors, refer to the file AUTHORS. +// For a full list of authors, refer to the file AUTHORS. // -------------------------------------------------------------------------- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING -// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; -// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, -// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR -// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -// +// // -------------------------------------------------------------------------- // $Maintainer: Chris Bielow $ // $Authors: Clemens Groepl, Andreas Bertsch, Chris Bielow $ @@ -136,7 +136,7 @@ START_SECTION(IsotopeDistribution convolve_(const CoarseIsotopePatternGenerator& { IsotopeDistribution iso1, iso2; solver->setMaxIsotope(1); - IsotopeDistribution::ContainerType result = solver->convolve_(iso1.getContainer(), iso2.getContainer()); + IsotopeDistribution::ContainerType result = solver->convolve(iso1.getContainer(), iso2.getContainer()); TEST_EQUAL(result.size(), 1) TEST_EQUAL(result[0].getMZ(), 0) TEST_EQUAL(result[0].getIntensity(), 1) @@ -720,4 +720,3 @@ delete solver; END_TEST #pragma clang diagnostic pop - diff --git a/src/tests/class_tests/openms/source/CompNovoIdentificationCID_test.cpp b/src/tests/class_tests/openms/source/CompNovoIdentificationCID_test.cpp index 814a0397c1a..a0d5f3eaefa 100644 --- a/src/tests/class_tests/openms/source/CompNovoIdentificationCID_test.cpp +++ b/src/tests/class_tests/openms/source/CompNovoIdentificationCID_test.cpp @@ -120,7 +120,7 @@ START_SECTION((void getIdentifications(std::vector& ids, exp.addSpectrum(spec); cni.getIdentifications(ids, exp); TEST_EQUAL(ids.size(), 1) - TEST_EQUAL(ids.begin()->getHits().size() > 0, true) + TEST_EQUAL(!ids.begin()->getHits().empty(), true) TEST_STRING_EQUAL(ids.begin()->getHits().begin()->getSequence().toString(), "DFPLANGER") END_SECTION @@ -156,7 +156,7 @@ START_SECTION((void getIdentification(PeptideIdentification& id, const PeakSpect cni_param.setValue("precursor_mass_tolerance", 0.3); cni.setParameters(cni_param); cni.getIdentification(id, spec); - TEST_EQUAL(id.getHits().size() > 0, true) + TEST_EQUAL(!id.getHits().empty(), true) TEST_EQUAL(id.getHits().begin()->getSequence() == AASequence::fromString("DFPLANGER"), true) END_SECTION diff --git a/src/tests/class_tests/openms/source/CompNovoIdentification_test.cpp b/src/tests/class_tests/openms/source/CompNovoIdentification_test.cpp index 79edbe23ef1..b1f8d46bf0d 100644 --- a/src/tests/class_tests/openms/source/CompNovoIdentification_test.cpp +++ b/src/tests/class_tests/openms/source/CompNovoIdentification_test.cpp @@ -136,7 +136,7 @@ START_SECTION((void getIdentifications(std::vector< PeptideIdentification > &ids cni.setParameters(cni_param); cni.getIdentifications(ids, exp); TEST_EQUAL(ids.size(), 1) - TEST_EQUAL(ids.begin()->getHits().size() > 0, true) + TEST_EQUAL(!ids.begin()->getHits().empty(), true) // After mass correction for b1 ions (#1440) a different peptide scored best. TEST_EQUAL(ids.begin()->getHits().begin()->getSequence() == AASequence::fromString("DFPDALGQR"), true) } @@ -197,7 +197,7 @@ START_SECTION((void getIdentification(PeptideIdentification &id, const PeakSpect Param cni_param(cni.getParameters()); cni.setParameters(cni_param); cni.getIdentification(id, spec, spec_ETD); - TEST_EQUAL(id.getHits().size() > 0, true) + TEST_EQUAL(!id.getHits().empty(), true) // After mass correction for b1 ions (#1440) a different peptide scored best. std::cout << id.getHits().begin()->getSequence() << std::endl; TEST_EQUAL(id.getHits().begin()->getSequence() == AASequence::fromString("DFPDALGQR"), true) diff --git a/src/tests/class_tests/openms/source/ConsensusMap_test.cpp b/src/tests/class_tests/openms/source/ConsensusMap_test.cpp index af94a505cce..35b630ea9ec 100644 --- a/src/tests/class_tests/openms/source/ConsensusMap_test.cpp +++ b/src/tests/class_tests/openms/source/ConsensusMap_test.cpp @@ -61,8 +61,8 @@ START_SECTION((ConsensusMap())) ptr = new ConsensusMap(); TEST_NOT_EQUAL(ptr, nullPointer) TEST_EQUAL(ptr->isMetaEmpty(),true) - TEST_REAL_SIMILAR(ptr->getMinInt(), numeric_limits::max()) - TEST_REAL_SIMILAR(ptr->getMaxInt(), -numeric_limits::max()) + TEST_REAL_SIMILAR(ptr->getMinIntensity(), numeric_limits::max()) + TEST_REAL_SIMILAR(ptr->getMaxIntensity(), -numeric_limits::max()) END_SECTION START_SECTION((~ConsensusMap())) @@ -153,51 +153,47 @@ START_SECTION((void updateRanges())) map.push_back(f); map.updateRanges(); - TEST_REAL_SIMILAR(map.getMaxInt(),1.0) - TEST_REAL_SIMILAR(map.getMinInt(),1.0) - TEST_REAL_SIMILAR(map.getMax()[0],2.0) - TEST_REAL_SIMILAR(map.getMax()[1],3.0) - TEST_REAL_SIMILAR(map.getMin()[0],2.0) - TEST_REAL_SIMILAR(map.getMin()[1],3.0) - - //second time to check the initialization + TEST_REAL_SIMILAR(map.getMinIntensity(), 1.0) + TEST_REAL_SIMILAR(map.getMaxIntensity(), 1.0) + TEST_REAL_SIMILAR(map.getMaxRT(),2.0) + TEST_REAL_SIMILAR(map.getMaxMZ(),3.0) + TEST_REAL_SIMILAR(map.getMinRT(),2.0) + TEST_REAL_SIMILAR(map.getMinMZ(),3.0) + + // second time to check the initialization map.updateRanges(); - - TEST_REAL_SIMILAR(map.getMaxInt(),1.0) - TEST_REAL_SIMILAR(map.getMinInt(),1.0) - TEST_REAL_SIMILAR(map.getMax()[0],2.0) - TEST_REAL_SIMILAR(map.getMax()[1],3.0) - TEST_REAL_SIMILAR(map.getMin()[0],2.0) - TEST_REAL_SIMILAR(map.getMin()[1],3.0) - - //two points + TEST_REAL_SIMILAR(map.getMinIntensity(), 1.0) + TEST_REAL_SIMILAR(map.getMaxIntensity(), 1.0) + TEST_REAL_SIMILAR(map.getMaxRT(), 2.0) + TEST_REAL_SIMILAR(map.getMaxMZ(), 3.0) + TEST_REAL_SIMILAR(map.getMinRT(), 2.0) + TEST_REAL_SIMILAR(map.getMinMZ(), 3.0) + + // two points feature2.setUniqueId(2); f.insert(1,feature2); map.push_back(f); map.updateRanges(); - - TEST_REAL_SIMILAR(map.getMaxInt(),1.0) - TEST_REAL_SIMILAR(map.getMinInt(),0.5) - TEST_REAL_SIMILAR(map.getMax()[0],2.0) - TEST_REAL_SIMILAR(map.getMax()[1],3.0) - TEST_REAL_SIMILAR(map.getMin()[0],0.0) - TEST_REAL_SIMILAR(map.getMin()[1],2.5) - - //four points + TEST_REAL_SIMILAR(map.getMinIntensity(), 0.5) + TEST_REAL_SIMILAR(map.getMaxIntensity(), 1.0) + TEST_REAL_SIMILAR(map.getMaxRT(), 2.0) + TEST_REAL_SIMILAR(map.getMaxMZ(), 3.0) + TEST_REAL_SIMILAR(map.getMinRT(), 0.0) + TEST_REAL_SIMILAR(map.getMinMZ(), 2.5) + + // four points feature3.setUniqueId(3); f.insert(1,feature3); feature4.setUniqueId(4); f.insert(1,feature4); map.push_back(f); map.updateRanges(); - - TEST_REAL_SIMILAR(map.getMaxInt(),1.0) - TEST_REAL_SIMILAR(map.getMinInt(),0.01) - TEST_REAL_SIMILAR(map.getMax()[0],10.5) - TEST_REAL_SIMILAR(map.getMax()[1],3.0) - TEST_REAL_SIMILAR(map.getMin()[0],0.0) - TEST_REAL_SIMILAR(map.getMin()[1],0.0) - + TEST_REAL_SIMILAR(map.getMinIntensity(), 0.01) + TEST_REAL_SIMILAR(map.getMaxIntensity(), 1.0) + TEST_REAL_SIMILAR(map.getMaxRT(), 10.5) + TEST_REAL_SIMILAR(map.getMaxMZ(), 3.0) + TEST_REAL_SIMILAR(map.getMinRT(), 0.0) + TEST_REAL_SIMILAR(map.getMinMZ(), 0.0) END_SECTION START_SECTION((ConsensusMap& appendRows(const ConsensusMap &rhs))) @@ -631,11 +627,14 @@ START_SECTION((void clear(bool clear_meta_data = true))) map1.getUnassignedPeptideIdentifications().resize(1); map1.clear(false); - TEST_EQUAL(map1.size(),0) - TEST_EQUAL(map1==ConsensusMap(),false) + TEST_EQUAL(map1.size(), 0) + TEST_EQUAL(map1 == ConsensusMap(),false) + TEST_EQUAL(map1.empty(),true) map1.clear(true); - TEST_EQUAL(map1==ConsensusMap(),true) + TEST_EQUAL(map1.size(), 0) + TEST_EQUAL(map1 == ConsensusMap(),true) + TEST_EQUAL(map1.empty(),true) } END_SECTION diff --git a/src/tests/class_tests/openms/source/ControlledVocabulary_test.cpp b/src/tests/class_tests/openms/source/ControlledVocabulary_test.cpp index 018492ad6a0..2a071cbe5a7 100644 --- a/src/tests/class_tests/openms/source/ControlledVocabulary_test.cpp +++ b/src/tests/class_tests/openms/source/ControlledVocabulary_test.cpp @@ -224,7 +224,7 @@ START_SECTION(([ControlledVocabulary::CVTerm] String ControlledVocabulary::CVTer { ControlledVocabulary cv; cv.loadFromOBO("PSI-MS", File::find("/CV/psi-ms.obo")); - String ref = ""; + String ref = R"()"; TEST_STRING_EQUAL(cv.getTerm("MS:1001331").toXMLString("PSI-MS", String("12.5")),ref) } END_SECTION @@ -233,7 +233,7 @@ START_SECTION(([ControlledVocabulary::CVTerm] String ControlledVocabulary::CVTer { ControlledVocabulary cv; cv.loadFromOBO("PSI-MS", File::find("/CV/psi-ms.obo")); - String ref = ""; + String ref = R"()"; OpenMS::DataValue val = 12.5; TEST_STRING_EQUAL(cv.getTerm("MS:1001331").toXMLString("PSI-MS",val),ref) } diff --git a/src/tests/class_tests/openms/source/ConvexHull2D_test.cpp b/src/tests/class_tests/openms/source/ConvexHull2D_test.cpp index 43c2e6e0012..ee01e64ef40 100644 --- a/src/tests/class_tests/openms/source/ConvexHull2D_test.cpp +++ b/src/tests/class_tests/openms/source/ConvexHull2D_test.cpp @@ -128,7 +128,7 @@ START_SECTION((void addPoints(const PointArrayType &points))) ConvexHull2D tmp; TEST_EQUAL(tmp.getHullPoints().size(),0) tmp.addPoints(vec); - TEST_EQUAL(tmp.getHullPoints().size()!=0,true) + TEST_EQUAL(!tmp.getHullPoints().empty(),true) END_SECTION diff --git a/src/tests/class_tests/openms/source/CrossLinksDB_test.cpp b/src/tests/class_tests/openms/source/CrossLinksDB_test.cpp index 06d9804261d..ecfa042017d 100644 --- a/src/tests/class_tests/openms/source/CrossLinksDB_test.cpp +++ b/src/tests/class_tests/openms/source/CrossLinksDB_test.cpp @@ -75,7 +75,7 @@ START_SECTION(Size getNumberOfModifications() const) END_SECTION START_SECTION(const ResidueModification& getModification(Size index) const) - TEST_EQUAL(ptr->getModification(0)->getId().size() > 0, true) + TEST_EQUAL(!ptr->getModification(0)->getId().empty(), true) END_SECTION START_SECTION((void searchModifications(std::set& mods, const String& mod_name, const String& residue, ResidueModification::TermSpecificity term_spec) const)) diff --git a/src/tests/class_tests/openms/source/DBSuitability_test.cpp b/src/tests/class_tests/openms/source/DBSuitability_test.cpp index cef945ccac4..64c75f9b1f4 100644 --- a/src/tests/class_tests/openms/source/DBSuitability_test.cpp +++ b/src/tests/class_tests/openms/source/DBSuitability_test.cpp @@ -49,6 +49,27 @@ using namespace OpenMS; using namespace std; +#include +#include +#include +#include + +#include +#include +#include + +int countAS(const vector& fasta) +{ + int counter = 0; + + for (const auto& entry : fasta) + { + counter += entry.sequence.size(); + } + + return counter; +} + START_TEST(Suitability, "$Id$") ///////////////////////////////////////////////////////////// @@ -167,6 +188,10 @@ pep_id.setScoreType("q-value"); pep_id.setHits({ decoy1 }); FDR_id.push_back(pep_id); +vector empty_fasta; +MSExperiment empty_exp; +ProteinIdentification::SearchParameters empty_params; + ///////////////////////////////////////////////////////////// ///////////////////// START TESTING ///////////////////////// ///////////////////////////////////////////////////////////// @@ -186,23 +211,25 @@ START_SECTION(~DBSuitability()) } END_SECTION -START_SECTION(void compute(vector& pep_ids)) +START_SECTION(void compute(std::vector&& pep_ids, const MSExperiment& exp, const std::vector& original_fasta, const std::vector& novo_fasta, const ProteinIdentification::SearchParameters& search_params)) { + // Test normal suitability (without correction) DBSuitability s; Param p; + p.setValue("disable_correction", "true"); p.setValue("reranking_cutoff_percentile", 1.); s.setParameters(p); - s.compute(pep_ids); + s.compute(move(pep_ids), empty_exp, empty_fasta, empty_fasta, empty_params); p.setValue("reranking_cutoff_percentile", 1./3); p.setValue("FDR", 0.); s.setParameters(p); - s.compute(pep_ids_2); - s.compute(top_decoy); + s.compute(move(pep_ids_2), empty_exp, empty_fasta, empty_fasta, empty_params); + s.compute(move(top_decoy), empty_exp, empty_fasta, empty_fasta, empty_params); p.setValue("reranking_cutoff_percentile", 0.); s.setParameters(p); - s.compute(pep_ids_3); + s.compute(move(pep_ids_3), empty_exp, empty_fasta, empty_fasta, empty_params); vector d = s.getResults(); DBSuitability::SuitabilityData data_fract_1 = d[0]; DBSuitability::SuitabilityData data_fract_05 = d[1]; @@ -233,9 +260,12 @@ START_SECTION(void compute(vector& pep_ids)) TEST_REAL_SIMILAR(data_small_percentile.suitability, 2./5); TEST_EQUAL(data_decoy_top.suitability, DBL_MAX); - TEST_EXCEPTION_WITH_MESSAGE(Exception::Precondition, s.compute(FDR_id), "q-value found at PeptideIdentifications. That is not allowed! Please make sure FDR did not run previously."); - TEST_EXCEPTION_WITH_MESSAGE(Exception::MissingInformation, s.compute(few_decoys), "Under 20 % of peptide identifications have two decoy hits. This is not enough for re-ranking. Use the 'no_rerank' flag to still compute a suitability score."); - TEST_EXCEPTION_WITH_MESSAGE(Exception::MissingInformation, s.compute(no_xcorr_ids), "No cross correlation score found at peptide hit. Only Comet search engine is supported right now."); + TEST_EXCEPTION_WITH_MESSAGE(Exception::Precondition, s.compute(move(FDR_id), empty_exp, empty_fasta, empty_fasta, empty_params), "q-value found at PeptideIdentifications. That is not allowed! Please make sure FDR did not run previously."); + TEST_EXCEPTION_WITH_MESSAGE(Exception::MissingInformation, s.compute(move(few_decoys), empty_exp, empty_fasta, empty_fasta, empty_params), "Under 20 % of peptide identifications have two decoy hits. This is not enough for re-ranking. Use the 'no_rerank' flag to still compute a suitability score."); + TEST_EXCEPTION_WITH_MESSAGE(Exception::MissingInformation, s.compute(move(no_xcorr_ids), empty_exp, empty_fasta, empty_fasta, empty_params), "No cross correlation score found at peptide hit. Only Comet search engine is supported for re-ranking. Set 'force' flag to use the default score for this. This may result in undefined behaviour and is not advised."); + + // Corrected Suitability is to complicated to be tested here. + // The tests for the DatabaseSuitability TOPP tool have to suffice. } END_SECTION @@ -245,6 +275,171 @@ START_SECTION(getResults()) } END_SECTION +DBSuitability_friend private_suit; + +START_SECTION(std::vector getSubsampledFasta_(const std::vector& fasta_data, double subsampling_rate) const) +{ + vector fasta; + FASTAFile::FASTAEntry entry; + entry.sequence = "AAAAAAA";// 7 + fasta.push_back(entry); + entry.sequence = "PP";// 2 + fasta.push_back(entry); + entry.sequence = "EEE";// 3 + fasta.push_back(entry); + entry.sequence = "I";// 1 + fasta.push_back(entry); + entry.sequence = "KKKKKK";// 6 + fasta.push_back(entry); + entry.sequence = "LLLLL";// 5 + fasta.push_back(entry); + entry.sequence = "QQQQ";//4 + fasta.push_back(entry); + entry.sequence = "YYY";// 3 + fasta.push_back(entry); + entry.sequence = "GGGG";// 4 + fasta.push_back(entry); + // 35 AS in fasta + + vector subsampled_fasta = private_suit.getSubsampledFasta(fasta, 0.3); // 35 * 0.3 = 10.5 --> at least 11 AS should be written (& at max. 17) + + TEST_EQUAL((countAS(subsampled_fasta) >= 11 && countAS(subsampled_fasta) < 17), 1); + TEST_EXCEPTION(Exception::IllegalArgument, private_suit.getSubsampledFasta(fasta, 2)); + TEST_EXCEPTION(Exception::IllegalArgument, private_suit.getSubsampledFasta(fasta, -1)); +} +END_SECTION + +START_SECTION(void appendDecoys_(std::vector& fasta) const) +{ + vector fasta; + FASTAFile::FASTAEntry entry; + entry.sequence = "LIEQKPABIM"; + entry.identifier = "PROTEIN"; + fasta.push_back(entry); + + private_suit.appendDecoys(fasta); + + TEST_STRING_EQUAL(fasta[1].sequence, "LIBAPKQEIM"); + TEST_STRING_EQUAL(fasta[1].identifier, "DECOY_PROTEIN"); +} +END_SECTION + +START_SECTION(double calculateCorrectionFactor_(const DBSuitability::SuitabilityData& data, const DBSuitability::SuitabilityData& data_sampled, double sampling_rate) const) +{ + DBSuitability::SuitabilityData full_data; + DBSuitability::SuitabilityData subsampled_data; + + full_data.num_top_db = 100; + subsampled_data.num_top_db = 50; + // delta 50 + + full_data.num_top_novo = 10; + subsampled_data.num_top_novo = 30; + // delta 20 + + double factor = private_suit.calculateCorrectionFactor(full_data, subsampled_data, 0.6); + // rate 0.6 --> db_slope = -50 / -0.4 = 125, novo_slope = 20 / -0.4 = -50 + // factor = - (125) / (-50) = 2.5 + + TEST_EQUAL(factor, 2.5); + TEST_EXCEPTION(Exception::Precondition, private_suit.calculateCorrectionFactor(full_data, subsampled_data, 2)); + TEST_EXCEPTION(Exception::Precondition, private_suit.calculateCorrectionFactor(full_data, subsampled_data, -1)); +} +END_SECTION + +START_SECTION(UInt numberOfUniqueProteins_(const std::vector& peps, UInt number_of_hits = 1) const) +{ + PeptideEvidence ev1("PROTEIN_1", 0, 0, '[', ']'); + PeptideEvidence ev2("PROTEIN_2", 0, 0, '[', ']'); + PeptideEvidence ev3("PROTEIN_3", 0, 0, '[', ']'); + PeptideEvidence ev4("PROTEIN_4", 0, 0, '[', ']'); + PeptideEvidence ev5("DECOY_PROTEIN", 0, 0, '[', ']'); + + PeptideHit hit1; + hit1.setPeptideEvidences({ev1, ev1, ev2}); + hit1.setMetaValue("target_decoy", "target"); + PeptideHit hit2; + hit2.setPeptideEvidences({ev4, ev3, ev5}); + hit2.setMetaValue("target_decoy", "target+decoy"); + PeptideHit hit3; + hit3.setPeptideEvidences({ev3, ev2, ev3}); + hit3.setMetaValue("target_decoy", "target"); + PeptideHit hit4; + hit4.setPeptideEvidences({ev5}); + hit4.setMetaValue("target_decoy", "decoy"); + PeptideHit empty_hit; + + PeptideIdentification id1; + id1.setHits({hit1, hit2}); + PeptideIdentification id2; + id2.setHits({hit3}); + PeptideIdentification id3; + id3.setHits({hit4}); + PeptideIdentification empty_id; + PeptideIdentification id_hit_without_info; + id_hit_without_info.setHits({empty_hit}); + + vector ids({id1, id2, empty_id, id3}); + + TEST_EQUAL(private_suit.numberOfUniqueProteins(ids), 3); + TEST_EQUAL(private_suit.numberOfUniqueProteins(ids, 5), 4); + TEST_EXCEPTION(Exception::MissingInformation, private_suit.numberOfUniqueProteins({id_hit_without_info})); +} +END_SECTION + +START_SECTION(Size getIndexWithMedianNovoHits_(const std::vector& data) const) +{ + DBSuitability::SuitabilityData d1; + d1.num_top_novo = 10; + DBSuitability::SuitabilityData d2; + d2.num_top_novo = 20; + DBSuitability::SuitabilityData d3; + d3.num_top_novo = 15; + DBSuitability::SuitabilityData d4; + d4.num_top_novo = 40; + + TEST_EQUAL(private_suit.getIndexWithMedianNovoHits({d1, d2, d3}), 2); + TEST_EQUAL(private_suit.getIndexWithMedianNovoHits({d1, d2, d3, d4}), 1); + TEST_EXCEPTION(Exception::IllegalArgument, private_suit.getIndexWithMedianNovoHits({})); +} +END_SECTION + +START_SECTION(double getScoreMatchingFDR_(const std::vector& pep_ids, double FDR, String score_name, bool higher_score_better) const) +{ + PeptideHit hit1; + hit1.setScore(0.01); + hit1.setMetaValue("some_score", 120); + PeptideHit hit2; + hit2.setScore(0.04); + hit2.setMetaValue("some_score", 80); + PeptideHit hit3; + hit3.setScore(0.5); + hit3.setMetaValue("some_score", 5); + PeptideHit hit4; + hit4.setScore(0.05); + hit4.setMetaValue("some_score", 75); + + PeptideIdentification id1; + id1.setScoreType("q-value"); + id1.setHits({hit1}); + PeptideIdentification id2; + id2.setScoreType("q-value"); + id2.setHits({hit2}); + PeptideIdentification id3; + id3.setScoreType("q-value"); + id3.setHits({hit3}); + PeptideIdentification id4; + id4.setScoreType("q-value"); + id4.setHits({hit4}); + + TEST_EQUAL(private_suit.getScoreMatchingFDR({id1, id2, id3, id4}, 0.05, "some_score", true), 75); + TEST_EQUAL(private_suit.getScoreMatchingFDR({id1, id2, id3, id4}, 0.05, "some", false), 120); + TEST_EXCEPTION(Exception::IllegalArgument, private_suit.getScoreMatchingFDR({id1}, 0.05, "e-value", false)); + id1.setScoreType("e-value"); + TEST_EXCEPTION(Exception::Precondition, private_suit.getScoreMatchingFDR({id1}, 0.05, "some_score", false)); +} +END_SECTION + ///////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////// END_TEST \ No newline at end of file diff --git a/src/tests/class_tests/openms/source/DataValue_test.cpp b/src/tests/class_tests/openms/source/DataValue_test.cpp index 1fb963ff03d..7df868c4949 100644 --- a/src/tests/class_tests/openms/source/DataValue_test.cpp +++ b/src/tests/class_tests/openms/source/DataValue_test.cpp @@ -37,6 +37,7 @@ /////////////////////////// #include +#include /////////////////////////// #include @@ -458,6 +459,42 @@ START_SECTION((bool isEmpty() const)) END_SECTION // conversion operators +START_SECTION((operator ParamValue() const)) +{ + int i = 12; + double d = 3.41; + String s = "test"; + IntList i_l = {1, 2}; + DoubleList d_l = {2.71, 3.41}; + StringList s_l = {"test", "list"}; + vector std_s_l = {"test", "list"}; + + DataValue d_i(i); + ParamValue p_i = d_i; + TEST_EQUAL(p_i, ParamValue(i)) + + DataValue d_d(d); + ParamValue p_d = d_d; + TEST_EQUAL(p_d, ParamValue(d)) + + DataValue d_s(s); + ParamValue p_s = d_s; + TEST_EQUAL(p_s, ParamValue(s)) + + DataValue d_i_l(i_l); + ParamValue p_i_l = d_i_l; + TEST_EQUAL(p_i_l, ParamValue(i_l)) + + DataValue d_d_l(d_l); + ParamValue p_d_l = d_d_l; + TEST_EQUAL(p_d_l, ParamValue(d_l)) + + DataValue d_s_l(s_l); + ParamValue p_s_l = d_s_l; + TEST_EQUAL(p_s_l, ParamValue(std_s_l)) +} +END_SECTION + START_SECTION((operator std::string() const)) DataValue d((std::string) "test string"); std::string k = d; diff --git a/src/tests/class_tests/openms/source/DocumentIdentifier_test.cpp b/src/tests/class_tests/openms/source/DocumentIdentifier_test.cpp index 013588f114a..86b0db83c00 100644 --- a/src/tests/class_tests/openms/source/DocumentIdentifier_test.cpp +++ b/src/tests/class_tests/openms/source/DocumentIdentifier_test.cpp @@ -153,9 +153,9 @@ START_SECTION((void swap(DocumentIdentifier& from))) di1.setLoadedFileType( OPENMS_GET_TEST_DATA_PATH("File_test_empty.txt")); DocumentIdentifier di2; di1.swap(di2); - TEST_EQUAL(di1.getIdentifier() == "", true) - TEST_EQUAL(di1.getIdentifier() == "", true) - TEST_EQUAL(di1.getIdentifier() == "", true) + TEST_EQUAL(di1.getIdentifier().empty(), true) + TEST_EQUAL(di1.getIdentifier().empty(), true) + TEST_EQUAL(di1.getIdentifier().empty(), true) TEST_EQUAL(di2.getIdentifier() == "this is a test", true) TEST_EQUAL(di2.getLoadedFilePath(), OPENMS_GET_TEST_DATA_PATH("File_test_empty.txt")) TEST_EQUAL(FileTypes::typeToName(di2.getLoadedFileType()) == "unknown", true) diff --git a/src/tests/class_tests/openms/source/ElutionPeakDetection_test.cpp b/src/tests/class_tests/openms/source/ElutionPeakDetection_test.cpp index 7da6ea5f711..b5012afa091 100644 --- a/src/tests/class_tests/openms/source/ElutionPeakDetection_test.cpp +++ b/src/tests/class_tests/openms/source/ElutionPeakDetection_test.cpp @@ -104,7 +104,7 @@ START_SECTION((void detectPeaks(std::vector< MassTrace > &, std::vector< MassTra { TEST_EQUAL(output_mt.size(), 1); - if (output_mt.size() > 0) + if (!output_mt.empty()) { TEST_EQUAL(output_mt[0].getLabel(), "T1"); @@ -150,7 +150,7 @@ START_SECTION((void findLocalExtrema(const MassTrace &, const Size &, std::vecto { std::vector maxes, mins; - if (output_mt.size() > 0) + if (!output_mt.empty()) { MassTrace mt(output_mt[0]); @@ -174,6 +174,17 @@ START_SECTION((void findLocalExtrema(const MassTrace &, const Size &, std::vecto // SavitzkyGolay TEST_EQUAL(maxes.size(), 4); TEST_EQUAL(mins.size(), 2); + + // test window overlap + mt = output_mt[0]; + test_epd.smoothData(mt, win_size); + + // The two largest peaks in the elution profile are about 90 spectra appart + double distance_between_peaks = 90 - 20; // don't include other maximum but induce overlap + test_epd.findLocalExtrema(mt, distance_between_peaks, maxes, mins); + TEST_EQUAL(maxes.size(), 2); + TEST_EQUAL(mins.size(), 1); + // lowess with regression //TEST_EQUAL(maxes.size(), 10); //TEST_EQUAL(mins.size(), 6); @@ -189,7 +200,7 @@ START_SECTION((double computeMassTraceNoise(const MassTrace &))) { TEST_EQUAL(output_mt.size(), 1); - ABORT_IF(output_mt.size() == 0) + ABORT_IF(output_mt.empty()) double est_noise(test_epd.computeMassTraceNoise(output_mt[0])); //TEST_REAL_SIMILAR(est_noise, 515.297);//using lowess and GSL diff --git a/src/tests/class_tests/openms/source/EmgModel_test.cpp b/src/tests/class_tests/openms/source/EmgModel_test.cpp index 0ab97ea6d25..71e16bddded 100644 --- a/src/tests/class_tests/openms/source/EmgModel_test.cpp +++ b/src/tests/class_tests/openms/source/EmgModel_test.cpp @@ -211,15 +211,15 @@ START_SECTION([EXTRA] DefaultParamHandler::setParameters(...)) tmp.setValue("emg:symmetry", 0.1); em2.setParameters(tmp); - ABORT_IF(boost::math::isinf(em2.getIntensity(2.0))) + ABORT_IF(std::isinf(em2.getIntensity(2.0))) tmp.setValue("emg:symmetry", 0.16); em2.setParameters(tmp); - ABORT_IF(boost::math::isinf(em2.getIntensity(2.0))) + ABORT_IF(std::isinf(em2.getIntensity(2.0))) tmp.setValue("emg:symmetry", 0.17); em2.setParameters(tmp); - ABORT_IF(boost::math::isinf(float(!em2.getIntensity(2.0)))) + ABORT_IF(std::isinf(float(!em2.getIntensity(2.0)))) END_SECTION diff --git a/src/tests/class_tests/openms/source/EmpiricalFormula_test.cpp b/src/tests/class_tests/openms/source/EmpiricalFormula_test.cpp index 633afb9c299..89756e13f77 100644 --- a/src/tests/class_tests/openms/source/EmpiricalFormula_test.cpp +++ b/src/tests/class_tests/openms/source/EmpiricalFormula_test.cpp @@ -58,7 +58,7 @@ START_TEST(ElementDB, "$Id$") EmpiricalFormula* e_ptr = nullptr; EmpiricalFormula* e_nullPointer = nullptr; -const ElementDB * db = ElementDB::getInstance(); +const ElementDB* db = ElementDB::getInstance(); EmpiricalFormula ef_empty; @@ -570,8 +570,8 @@ END_SECTION START_SECTION(([EXTRA] Check correct charge semantics)) EmpiricalFormula ef1("H4C+"); // CH4 +1 charge - const Element * H = db->getElement("H"); - const Element * C = db->getElement("C"); + const Element* H = db->getElement("H"); + const Element* C = db->getElement("C"); TEST_EQUAL(ef1.getNumberOf(H), 4) TEST_EQUAL(ef1.getNumberOf(C), 1) @@ -618,9 +618,24 @@ START_SECTION(([EXTRA] Check correct charge semantics)) TEST_EQUAL(ef11.getCharge(), 3) END_SECTION +START_SECTION((static EmpiricalFormula hydrogen(int n_atoms = 1))) +{ + EmpiricalFormula f("H"); + EmpiricalFormula h = EmpiricalFormula::hydrogen(); + TEST_EQUAL(f, h); +} +END_SECTION + +START_SECTION((static EmpiricalFormula hydrogen(int n_atoms = 1))) +{ + EmpiricalFormula f("H2O"); + EmpiricalFormula w = EmpiricalFormula::water(); + TEST_EQUAL(f, w); +} +END_SECTION + delete e_ptr; ///////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////// END_TEST - diff --git a/src/tests/class_tests/openms/source/FIAMSDataProcessor_test.cpp b/src/tests/class_tests/openms/source/FIAMSDataProcessor_test.cpp index b1952e06ce0..994abec0638 100644 --- a/src/tests/class_tests/openms/source/FIAMSDataProcessor_test.cpp +++ b/src/tests/class_tests/openms/source/FIAMSDataProcessor_test.cpp @@ -138,7 +138,7 @@ END_SECTION START_SECTION((mergeAlongTime)) { MSSpectrum output = fia_processor.mergeAlongTime(spectra); - TEST_EQUAL(output.size() > 0, true); + TEST_EQUAL(!output.empty(), true); TEST_EQUAL(abs(output.MZBegin(100)->getIntensity() - 400.0) < 1, true); TEST_EQUAL(abs(output.MZBegin(102)->getIntensity() - 480.0) < 1, true); } diff --git a/src/tests/class_tests/openms/source/FalseDiscoveryRate_test.cpp b/src/tests/class_tests/openms/source/FalseDiscoveryRate_test.cpp index 5892d4ed095..77f898ce486 100644 --- a/src/tests/class_tests/openms/source/FalseDiscoveryRate_test.cpp +++ b/src/tests/class_tests/openms/source/FalseDiscoveryRate_test.cpp @@ -75,7 +75,7 @@ START_SECTION((void apply(std::vector &fwd_ids, std::vect TOLERANCE_ABSOLUTE(0.0001) for (vector::const_iterator it = fwd_pep_ids.begin(); it != fwd_pep_ids.end(); ++it) { - if (it->getHits().size() > 0) + if (!it->getHits().empty()) { PeptideHit hit(*it->getHits().begin()); double fdr(hit.getScore()); @@ -106,7 +106,7 @@ START_SECTION((void apply(std::vector &fwd_ids, std::vect for (vector::const_iterator prot_it = fwd_prot_ids.begin(); prot_it != fwd_prot_ids.end(); ++prot_it) { - if (prot_it->getHits().size() > 0) + if (!prot_it->getHits().empty()) { for (vector::const_iterator it = prot_it->getHits().begin(); it != prot_it->getHits().end(); ++it) { @@ -209,7 +209,7 @@ START_SECTION((void apply(std::vector& ids))) for (vector::const_iterator prot_it = prot_ids.begin(); prot_it != prot_ids.end(); ++prot_it) { - if (prot_it->getHits().size() > 0) + if (!prot_it->getHits().empty()) { for (vector::const_iterator it = prot_it->getHits().begin(); it != prot_it->getHits().end(); ++it) { @@ -287,7 +287,7 @@ START_SECTION((void apply(std::vector& ids))) for (vector::const_iterator prot_it = prot_ids.begin(); prot_it != prot_ids.end(); ++prot_it) { - if (prot_it->getHits().size() > 0) + if (!prot_it->getHits().empty()) { for (vector::const_iterator it = prot_it->getHits().begin(); it != prot_it->getHits().end(); ++it) { diff --git a/src/tests/class_tests/openms/source/FeatureFinder_test.cpp b/src/tests/class_tests/openms/source/FeatureFinder_test.cpp index f7a2baf789d..5f0d736d157 100644 --- a/src/tests/class_tests/openms/source/FeatureFinder_test.cpp +++ b/src/tests/class_tests/openms/source/FeatureFinder_test.cpp @@ -118,8 +118,8 @@ END_SECTION START_SECTION((Param getParameters(const String& algorithm_name) const)) FeatureFinder ff; - TEST_EQUAL(ff.getParameters("none")==Param(),true) - TEST_EQUAL(ff.getParameters("centroided")==Param(),false) + TEST_EQUAL(ff.getParameters("none").empty(),true) + TEST_EQUAL(ff.getParameters("centroided").empty(),false) END_SECTION ///////////////////////////////////////////////////////////// diff --git a/src/tests/class_tests/openms/source/FeatureMap_test.cpp b/src/tests/class_tests/openms/source/FeatureMap_test.cpp index dd450f06710..eee25502f7d 100644 --- a/src/tests/class_tests/openms/source/FeatureMap_test.cpp +++ b/src/tests/class_tests/openms/source/FeatureMap_test.cpp @@ -67,10 +67,8 @@ START_SECTION((FeatureMap())) pl_ptr = new FeatureMap(); TEST_NOT_EQUAL(pl_ptr, nullPointer) - TEST_EQUAL(pl_ptr->getMin(), FeatureMap::PositionType::maxPositive()) - TEST_EQUAL(pl_ptr->getMax(), FeatureMap::PositionType::minNegative()) - TEST_REAL_SIMILAR(pl_ptr->getMinInt(), numeric_limits::max()) - TEST_REAL_SIMILAR(pl_ptr->getMaxInt(), -numeric_limits::max()) + TEST_EQUAL(pl_ptr->size(), 0) + TEST_EQUAL(pl_ptr->hasRange() == HasRangeType::NONE, true) END_SECTION START_SECTION((virtual ~FeatureMap())) @@ -178,22 +176,22 @@ START_SECTION((void updateRanges())) s.updateRanges(); s.updateRanges(); //second time to check the initialization - TEST_REAL_SIMILAR(s.getMaxInt(),1.0) - TEST_REAL_SIMILAR(s.getMinInt(),0.01) - TEST_REAL_SIMILAR(s.getMax()[0],10.5) - TEST_REAL_SIMILAR(s.getMax()[1],3.0) - TEST_REAL_SIMILAR(s.getMin()[0],0.0) - TEST_REAL_SIMILAR(s.getMin()[1],0.0) + TEST_REAL_SIMILAR(s.getMaxIntensity(),1.0) + TEST_REAL_SIMILAR(s.getMinIntensity(), 0.01) + TEST_REAL_SIMILAR(s.getMaxRT(),10.5) + TEST_REAL_SIMILAR(s.getMaxMZ(),3.0) + TEST_REAL_SIMILAR(s.getMinRT(),0.0) + TEST_REAL_SIMILAR(s.getMinMZ(),0.0) //test with convex hull s.push_back(feature4); s.updateRanges(); - TEST_REAL_SIMILAR(s.getMaxInt(),1.0) - TEST_REAL_SIMILAR(s.getMinInt(),0.01) - TEST_REAL_SIMILAR(s.getMax()[0],10.5) - TEST_REAL_SIMILAR(s.getMax()[1],3.123) - TEST_REAL_SIMILAR(s.getMin()[0],-1.0) - TEST_REAL_SIMILAR(s.getMin()[1],0.0) + TEST_REAL_SIMILAR(s.getMaxIntensity(), 1.0) + TEST_REAL_SIMILAR(s.getMinIntensity(), 0.01) + TEST_REAL_SIMILAR(s.getMaxRT(),10.5) + TEST_REAL_SIMILAR(s.getMaxMZ(),3.123) + TEST_REAL_SIMILAR(s.getMinRT(),-1.0) + TEST_REAL_SIMILAR(s.getMinMZ(),0.0) END_SECTION @@ -213,7 +211,7 @@ START_SECTION((FeatureMap(const FeatureMap &source))) TEST_EQUAL(map2.size(),3); TEST_EQUAL(map2.getMetaValue("meta").toString(),"value") - TEST_REAL_SIMILAR(map2.getMaxInt(),1.0) + TEST_REAL_SIMILAR(map2.getMaxIntensity(),1.0) TEST_STRING_EQUAL(map2.getIdentifier(),"lsid") TEST_EQUAL(map2.getDataProcessing().size(),1) TEST_EQUAL(map2.getProteinIdentifications().size(),1); @@ -238,7 +236,7 @@ START_SECTION((FeatureMap& operator = (const FeatureMap& rhs))) TEST_EQUAL(map2.size(),3); TEST_EQUAL(map2.getMetaValue("meta").toString(),"value") - TEST_REAL_SIMILAR(map2.getMaxInt(),1.0) + TEST_REAL_SIMILAR(map2.getMaxIntensity(),1.0) TEST_STRING_EQUAL(map2.getIdentifier(),"lsid") TEST_EQUAL(map2.getDataProcessing().size(),1) TEST_EQUAL(map2.getProteinIdentifications().size(),1); @@ -248,8 +246,7 @@ START_SECTION((FeatureMap& operator = (const FeatureMap& rhs))) map2 = FeatureMap(); TEST_EQUAL(map2.size(),0); - TEST_REAL_SIMILAR(map2.getMinInt(), numeric_limits::max()) - TEST_REAL_SIMILAR(map2.getMaxInt(), -numeric_limits::max()) + TEST_EQUAL(map2.hasRange() == HasRangeType::NONE, true) TEST_STRING_EQUAL(map2.getIdentifier(),"") TEST_EQUAL(map2.getDataProcessing().size(),0) TEST_EQUAL(map2.getProteinIdentifications().size(),0); @@ -501,14 +498,14 @@ START_SECTION((void swap(FeatureMap& from))) TEST_EQUAL(map1.getIdentifier(),"") TEST_EQUAL(map1.size(),0) - TEST_REAL_SIMILAR(map1.getMinInt(),DRange<1>().minPosition()[0]) + TEST_EQUAL(map1.hasRange() == HasRangeType::NONE, true) TEST_EQUAL(map1.getDataProcessing().size(),0) TEST_EQUAL(map1.getProteinIdentifications().size(),0); TEST_EQUAL(map1.getUnassignedPeptideIdentifications().size(),0); TEST_EQUAL(map2.getIdentifier(),"stupid comment") TEST_EQUAL(map2.size(),2) - TEST_REAL_SIMILAR(map2.getMinInt(),0.5) + TEST_REAL_SIMILAR(map2.getMinIntensity(),0.5) TEST_EQUAL(map2.getDataProcessing().size(),1) TEST_EQUAL(map2.getProteinIdentifications().size(),1); TEST_EQUAL(map2.getUnassignedPeptideIdentifications().size(),1); @@ -530,14 +527,14 @@ START_SECTION((void swapFeaturesOnly(FeatureMap& from))) TEST_EQUAL(map1.getIdentifier(),"stupid comment") TEST_EQUAL(map1.size(),0) - TEST_REAL_SIMILAR(map1.getMinInt(),DRange<1>().minPosition()[0]) + TEST_EQUAL(map1.hasRange() == HasRangeType::NONE, true) TEST_EQUAL(map1.getDataProcessing().size(),1) TEST_EQUAL(map1.getProteinIdentifications().size(),1); TEST_EQUAL(map1.getUnassignedPeptideIdentifications().size(),1); TEST_EQUAL(map2.getIdentifier(),"") TEST_EQUAL(map2.size(),2) - TEST_REAL_SIMILAR(map2.getMinInt(),0.5) + TEST_REAL_SIMILAR(map2.getMinIntensity(),0.5) TEST_EQUAL(map2.getDataProcessing().size(),0) TEST_EQUAL(map2.getProteinIdentifications().size(),0); TEST_EQUAL(map2.getUnassignedPeptideIdentifications().size(),0); @@ -600,10 +597,13 @@ START_SECTION((void clear(bool clear_meta_data=true))) map1.clear(false); TEST_EQUAL(map1.size(),0) - TEST_EQUAL(map1==FeatureMap(),false) + TEST_EQUAL(map1 == FeatureMap(),false) + TEST_EQUAL(map1.empty(),true) map1.clear(true); - TEST_EQUAL(map1==FeatureMap(),true) + TEST_EQUAL(map1.size(),0) + TEST_EQUAL(map1 == FeatureMap(),true) + TEST_EQUAL(map1.empty(),true) END_SECTION diff --git a/src/tests/class_tests/openms/source/File_test.cpp b/src/tests/class_tests/openms/source/File_test.cpp index aa10435ca89..29e241c7718 100644 --- a/src/tests/class_tests/openms/source/File_test.cpp +++ b/src/tests/class_tests/openms/source/File_test.cpp @@ -249,7 +249,7 @@ END_SECTION START_SECTION(static Param getSystemParameters()) Param p = File::getSystemParameters(); - TEST_EQUAL(p.size()>0, true) + TEST_EQUAL(!p.empty(), true) TEST_EQUAL(p.getValue("version"), VersionInfo::getVersion()) END_SECTION diff --git a/src/tests/class_tests/openms/source/IMDataConverter_test.cpp b/src/tests/class_tests/openms/source/IMDataConverter_test.cpp index edff6ee0970..05c8f37f2ba 100644 --- a/src/tests/class_tests/openms/source/IMDataConverter_test.cpp +++ b/src/tests/class_tests/openms/source/IMDataConverter_test.cpp @@ -72,6 +72,7 @@ START_SECTION((std::vector splitByFAIMSCV(PeakMap& exp))) TEST_EQUAL(exp.getSpectra().size(), 19) vector splitPeakMap = IMDataConverter::splitByFAIMSCV(std::move(exp)); + TEST_EQUAL(exp.empty(), true) // moved out TEST_EQUAL(splitPeakMap.size(), 3) TEST_EQUAL(splitPeakMap[0].size(), 4) diff --git a/src/tests/class_tests/openms/source/ITRAQLabeler_test.cpp b/src/tests/class_tests/openms/source/ITRAQLabeler_test.cpp index 005ea518993..8e55a8d74fb 100644 --- a/src/tests/class_tests/openms/source/ITRAQLabeler_test.cpp +++ b/src/tests/class_tests/openms/source/ITRAQLabeler_test.cpp @@ -87,7 +87,7 @@ START_SECTION((void setUpHook(SimTypes::FeatureMapSimVector &))) // add another map Param p = i.getParameters(); - p.setValue("channel_active_4plex", std::vector{"114:myReference"," 117:blabla"}, "Four-plex only: Each channel that was used in the experiment and its description (114-117) in format :, e.g. \"114:myref\",\"115:liver\"."); + p.setValue("channel_active_4plex", std::vector{"114:myReference"," 117:blabla"}, R"(Four-plex only: Each channel that was used in the experiment and its description (114-117) in format :, e.g. "114:myref","115:liver".)"); i.setParameters(p); f_maps.push_back(FeatureMap()); i.setUpHook(f_maps); diff --git a/src/tests/class_tests/openms/source/IdentificationDataConverter_test.cpp b/src/tests/class_tests/openms/source/IdentificationDataConverter_test.cpp index af653038b92..161575f7e76 100644 --- a/src/tests/class_tests/openms/source/IdentificationDataConverter_test.cpp +++ b/src/tests/class_tests/openms/source/IdentificationDataConverter_test.cpp @@ -35,10 +35,12 @@ #include #include #include +#include /////////////////////////// #include +#include #include #include #include @@ -47,6 +49,7 @@ using namespace OpenMS; using namespace std; +using namespace std::placeholders; struct ComparePIdSize { @@ -107,14 +110,41 @@ START_SECTION((void importIDs(IdentificationData&, const vector(proteins_in[i].getSearchParameters()) == + static_cast(proteins_out[i].getSearchParameters()), true); + TEST_EQUAL(proteins_in[i].getSearchParameters().db, proteins_out[i].getSearchParameters().db); + TEST_EQUAL(proteins_in[i].getSearchParameters().db_version, proteins_out[i].getSearchParameters().db_version); + TEST_EQUAL(proteins_in[i].getSearchParameters().taxonomy, proteins_out[i].getSearchParameters().taxonomy); + TEST_EQUAL(proteins_in[i].getSearchParameters().charges, proteins_out[i].getSearchParameters().charges); + TEST_EQUAL(proteins_in[i].getSearchParameters().mass_type, proteins_out[i].getSearchParameters().mass_type); + TEST_EQUAL(proteins_in[i].getSearchParameters().fixed_modifications == + proteins_out[i].getSearchParameters().fixed_modifications, true); + TEST_EQUAL(proteins_in[i].getSearchParameters().variable_modifications == + proteins_out[i].getSearchParameters().variable_modifications, true); + TEST_EQUAL(proteins_in[i].getSearchParameters().missed_cleavages, proteins_out[i].getSearchParameters().missed_cleavages); + TEST_EQUAL(proteins_in[i].getSearchParameters().fragment_mass_tolerance, proteins_out[i].getSearchParameters().fragment_mass_tolerance); + TEST_EQUAL(proteins_in[i].getSearchParameters().fragment_mass_tolerance_ppm, proteins_out[i].getSearchParameters().fragment_mass_tolerance_ppm); + TEST_EQUAL(proteins_in[i].getSearchParameters().precursor_mass_tolerance, proteins_out[i].getSearchParameters().precursor_mass_tolerance); + TEST_EQUAL(proteins_in[i].getSearchParameters().precursor_mass_tolerance_ppm, proteins_out[i].getSearchParameters().precursor_mass_tolerance_ppm); + TEST_EQUAL(proteins_in[i].getSearchParameters().digestion_enzyme == proteins_out[i].getSearchParameters().digestion_enzyme, true); + } + */ // String filename = OPENMS_GET_TEST_DATA_PATH("IdentificationDataConverter_out.idXML"); // IdXMLFile().store(filename, proteins_out, peptides_out); } @@ -126,7 +156,7 @@ START_SECTION((void importSequences(IdentificationData&, const vector peptides_in; String filename = OPENMS_GET_TEST_DATA_PATH("../../../topp/THIRDPARTY/FidoAdapter_4_output.idXML"); + //String filename = OPENMS_GET_TEST_DATA_PATH("debug_fraction_1_IDs_after_transfer.idXML"); IdXMLFile().load(filename, proteins_in, peptides_in); IdentificationData ids; @@ -176,11 +207,32 @@ START_SECTION((void exportIDs(const IdentificationData&, vector bool + { + return std::find_if(peptides_in.begin(), peptides_in.end(), std::bind(mzrtcomp, hit, std::placeholders::_1)) != peptides_in.end(); + }), true); + + // and the other way round! + TEST_EQUAL(all_of(peptides_in.begin(), peptides_in.end(), [&peptides_out, &mzrtcomp](const PeptideIdentification& hit) -> bool + { + return std::find_if(peptides_out.begin(), peptides_out.end(), std::bind(mzrtcomp, hit, std::placeholders::_1)) != peptides_out.end(); + }), true); // filename = OPENMS_GET_TEST_DATA_PATH("IdentificationDataConverter_out2.idXML"); // IdXMLFile().store(filename, proteins_out, peptides_out); @@ -205,10 +257,10 @@ START_SECTION((MzTab exportMzTab(const IdentificationData& id_data))) // RNA data, oligonucleotide that matches several times in the same RNA: IdentificationData rna_ids; - IdentificationData::ParentMolecule rna("test", IdentificationData::MoleculeType::RNA, "AUCGAUCG"); - IdentificationData::ParentMoleculeRef ref = rna_ids.registerParentMolecule(rna); + IdentificationData::ParentSequence rna("test", IdentificationData::MoleculeType::RNA, "AUCGAUCG"); + IdentificationData::ParentSequenceRef ref = rna_ids.registerParentSequence(rna); IdentificationData::IdentifiedOligo oli(NASequence::fromString("AUCG")); - IdentificationData::MoleculeParentMatch match1(0, 3), match2(4, 7); + IdentificationData::ParentMatch match1(0, 3), match2(4, 7); oli.parent_matches[ref].insert(match1); oli.parent_matches[ref].insert(match2); rna_ids.registerIdentifiedOligo(oli); @@ -243,22 +295,62 @@ START_SECTION(([[EXTRA]] void importIDs(IdentificationData&, const vector lower number of data queries: - TEST_EQUAL(ids.getDataQueries().size(), 55522); + // in different files get merged together -> lower number of input items: + TEST_EQUAL(ids.getObservations().size(), 55522); TEST_EQUAL(ids.getIdentifiedPeptides().size(), 73950); // according to "grep" on the input file, there should be 335250 peptide hits // in total - maybe some duplicates?: - TEST_EQUAL(ids.getMoleculeQueryMatches().size(), 332778); + TEST_EQUAL(ids.getObservationMatches().size(), 332778); - TEST_EQUAL(ids.getParentMoleculeGroupings().size(), 2); - TEST_EQUAL(ids.getParentMoleculeGroupings()[0].groups.size(), 10853); - TEST_EQUAL(ids.getParentMoleculeGroupings()[1].groups.size(), 9092); + TEST_EQUAL(ids.getParentGroupSets().size(), 2); + TEST_EQUAL(ids.getParentGroupSets()[0].groups.size(), 10853); + TEST_EQUAL(ids.getParentGroupSets()[1].groups.size(), 9092); } END_SECTION */ +FeatureMap features; // persist through sections + +START_SECTION((void importFeatureIDs(FeatureMap& features, bool clear_original))) +{ + FeatureXMLFile().load(OPENMS_GET_TEST_DATA_PATH("FeatureXMLFile_1.featureXML"), features); + // protein and peptide IDs use same score type (name) with different orientations; + // IdentificationData doesn't allow this, so change it here: + for (auto& run : features.getProteinIdentifications()) + { + run.setScoreType(run.getScoreType() + "_protein"); + } + IdentificationDataConverter::importFeatureIDs(features); + TEST_EQUAL(features.getIdentificationData().getObservations().size(), 5); + TEST_EQUAL(features.getIdentificationData().getObservationMatches().size(), 7); + TEST_EQUAL(features.getIdentificationData().getIdentifiedPeptides().size(), 7); + TEST_EQUAL(features.getIdentificationData().getParentSequences().size(), 3); + TEST_EQUAL(features[0].getIDMatches().size(), 3); + TEST_EQUAL(features[1].getIDMatches().size(), 1); + TEST_EQUAL(features.getUnassignedIDMatches().size(), 3); + // check that original IDs were cleared: + TEST_EQUAL(features.getProteinIdentifications().size(), 0); + TEST_EQUAL(features.getUnassignedPeptideIdentifications().size(), 0); + TEST_EQUAL(features[0].getPeptideIdentifications().size(), 0); + TEST_EQUAL(features[1].getPeptideIdentifications().size(), 0); +} +END_SECTION + +START_SECTION((void exportFeatureIDs(FeatureMap& features, bool clear_original))) +{ + // convert IDs from previous test back: + IdentificationDataConverter::exportFeatureIDs(features); + TEST_EQUAL(features.getProteinIdentifications().size(), 2); + TEST_EQUAL(features.getUnassignedPeptideIdentifications().size(), 2); + TEST_EQUAL(features[0].getPeptideIdentifications().size(), 2); + TEST_EQUAL(features[1].getPeptideIdentifications().size(), 1); + // check that "original" IDs were cleared: + TEST_EQUAL(features.getIdentificationData().empty(), true); +} +END_SECTION + ///////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////// END_TEST diff --git a/src/tests/class_tests/openms/source/IdentificationData_test.cpp b/src/tests/class_tests/openms/source/IdentificationData_test.cpp index 8e0dc8a7249..91fa75559e1 100644 --- a/src/tests/class_tests/openms/source/IdentificationData_test.cpp +++ b/src/tests/class_tests/openms/source/IdentificationData_test.cpp @@ -39,6 +39,7 @@ /////////////////////////// #include +#include /////////////////////////// @@ -50,6 +51,8 @@ START_TEST(IdentificationData, "$Id$") using namespace OpenMS; using namespace std; +using ID = IdentificationData; + IdentificationData* ptr = nullptr; IdentificationData* null = nullptr; START_SECTION((IdentificationData())) @@ -62,17 +65,18 @@ START_SECTION((~IdentificationData())) END_SECTION IdentificationData data; -IdentificationData::InputFileRef file_ref; -IdentificationData::ProcessingSoftwareRef sw_ref; -IdentificationData::SearchParamRef param_ref; -IdentificationData::ProcessingStepRef step_ref; -IdentificationData::ScoreTypeRef score_ref; -IdentificationData::DataQueryRef query_ref; -IdentificationData::ParentMoleculeRef protein_ref, rna_ref; -IdentificationData::IdentifiedPeptideRef peptide_ref; -IdentificationData::IdentifiedOligoRef oligo_ref; -IdentificationData::IdentifiedCompoundRef compound_ref; -IdentificationData::QueryMatchRef match_ref1, match_ref2, match_ref3; +ID::InputFileRef file_ref; +ID::ProcessingSoftwareRef sw_ref; +ID::SearchParamRef param_ref; +ID::ProcessingStepRef step_ref; +ID::ScoreTypeRef score_ref; +ID::ObservationRef obs_ref; +ID::ParentSequenceRef protein_ref, rna_ref; +ID::IdentifiedPeptideRef peptide_ref; +ID::IdentifiedOligoRef oligo_ref; +ID::IdentifiedCompoundRef compound_ref; +ID::AdductRef adduct_ref; +ID::ObservationMatchRef match_ref1, match_ref2, match_ref3; START_SECTION((const InputFiles& getInputFiles() const)) { @@ -81,34 +85,34 @@ START_SECTION((const InputFiles& getInputFiles() const)) } END_SECTION -START_SECTION((InputFileRef registerInputFile(const String& file))) +START_SECTION((InputFileRef registerInputFile(const InputFile& file))) { - String file = "test.mzML"; + ID::InputFile file("test.mzML"); file_ref = data.registerInputFile(file); TEST_EQUAL(data.getInputFiles().size(), 1); - TEST_STRING_EQUAL(*file_ref, file); + TEST_STRING_EQUAL(file_ref->name, file.name); // re-registering doesn't lead to redundant entries: data.registerInputFile(file); TEST_EQUAL(data.getInputFiles().size(), 1); } END_SECTION -START_SECTION((const DataProcessingSoftwares& getDataProcessingSoftwares() const)) +START_SECTION((const ProcessingSoftwares& getProcessingSoftwares() const)) { - TEST_EQUAL(data.getDataProcessingSoftwares().empty(), true); + TEST_EQUAL(data.getProcessingSoftwares().empty(), true); // tested further below } END_SECTION -START_SECTION((ProcessingSoftwareRef registerDataProcessingSoftware(const Software& software))) +START_SECTION((ProcessingSoftwareRef registerProcessingSoftware(const Software& software))) { - IdentificationData::DataProcessingSoftware sw("Tool", "1.0"); - sw_ref = data.registerDataProcessingSoftware(sw); - TEST_EQUAL(data.getDataProcessingSoftwares().size(), 1); + ID::ProcessingSoftware sw("Tool", "1.0"); + sw_ref = data.registerProcessingSoftware(sw); + TEST_EQUAL(data.getProcessingSoftwares().size(), 1); TEST_EQUAL(*sw_ref == sw, true); // "TEST_EQUAL(*sw_ref, sw)" doesn't compile - same below // re-registering doesn't lead to redundant entries: - data.registerDataProcessingSoftware(sw); - TEST_EQUAL(data.getDataProcessingSoftwares().size(), 1); + data.registerProcessingSoftware(sw); + TEST_EQUAL(data.getProcessingSoftwares().size(), 1); } END_SECTION @@ -121,7 +125,7 @@ END_SECTION START_SECTION((SearchParamRef registerDBSearchParam(const DBSearchParam& param))) { - IdentificationData::DBSearchParam param; + ID::DBSearchParam param; param.database = "test-db.fasta"; param.precursor_mass_tolerance = 1; param.fragment_mass_tolerance = 2; @@ -134,44 +138,44 @@ START_SECTION((SearchParamRef registerDBSearchParam(const DBSearchParam& param)) } END_SECTION -START_SECTION((const DataProcessingSteps& getDataProcessingSteps() const)) +START_SECTION((const ProcessingSteps& getProcessingSteps() const)) { - TEST_EQUAL(data.getDataProcessingSteps().empty(), true); + TEST_EQUAL(data.getProcessingSteps().empty(), true); // tested further below } END_SECTION -START_SECTION((ProcessingStepRef registerDataProcessingStep(const DataProcessingStep& step))) +START_SECTION((ProcessingStepRef registerProcessingStep(const ProcessingStep& step))) { - vector file_refs(1, file_ref); - IdentificationData::DataProcessingStep step(sw_ref, file_refs); - step_ref = data.registerDataProcessingStep(step); - TEST_EQUAL(data.getDataProcessingSteps().size(), 1); + vector file_refs(1, file_ref); + ID::ProcessingStep step(sw_ref, file_refs); + step_ref = data.registerProcessingStep(step); + TEST_EQUAL(data.getProcessingSteps().size(), 1); TEST_EQUAL(*step_ref == step, true); // re-registering doesn't lead to redundant entries: - data.registerDataProcessingStep(step); - TEST_EQUAL(data.getDataProcessingSteps().size(), 1); + data.registerProcessingStep(step); + TEST_EQUAL(data.getProcessingSteps().size(), 1); } END_SECTION -START_SECTION((const DataProcessingSteps& getDBSearchSteps() const)) +START_SECTION((const ProcessingSteps& getDBSearchSteps() const)) { TEST_EQUAL(data.getDBSearchSteps().empty(), true); // tested further below } END_SECTION -START_SECTION((ProcessingStepRef registerDataProcessingStep(const DataProcessingStep& step, SearchParamRef search_ref))) +START_SECTION((ProcessingStepRef registerProcessingStep(const ProcessingStep& step, SearchParamRef search_ref))) { - IdentificationData::DataProcessingStep step(sw_ref); - step_ref = data.registerDataProcessingStep(step, param_ref); - TEST_EQUAL(data.getDataProcessingSteps().size(), 2); + ID::ProcessingStep step(sw_ref); + step_ref = data.registerProcessingStep(step, param_ref); + TEST_EQUAL(data.getProcessingSteps().size(), 2); TEST_EQUAL(*step_ref == step, true); TEST_EQUAL(data.getDBSearchSteps().size(), 1); TEST_EQUAL(data.getDBSearchSteps().at(step_ref), param_ref); // re-registering doesn't lead to redundant entries: - data.registerDataProcessingStep(step, param_ref); - TEST_EQUAL(data.getDataProcessingSteps().size(), 2); + data.registerProcessingStep(step, param_ref); + TEST_EQUAL(data.getProcessingSteps().size(), 2); TEST_EQUAL(data.getDBSearchSteps().size(), 1); } END_SECTION @@ -185,7 +189,7 @@ END_SECTION START_SECTION((ScoreTypeRef registerScoreType(const ScoreType& score))) { - IdentificationData::ScoreType score("test_score", true); + ID::ScoreType score("test_score", true); score_ref = data.registerScoreType(score); TEST_EQUAL(data.getScoreTypes().size(), 1); TEST_EQUAL(*score_ref == score, true); @@ -195,76 +199,75 @@ START_SECTION((ScoreTypeRef registerScoreType(const ScoreType& score))) } END_SECTION -START_SECTION((const DataQueries& getDataQueries() const)) +START_SECTION((const Observations& getObservations() const)) { - TEST_EQUAL(data.getDataQueries().empty(), true); + TEST_EQUAL(data.getObservations().empty(), true); // tested further below } END_SECTION -START_SECTION((DataQueryRef registerDataQuery(const DataQuery& query))) +START_SECTION((ObservationRef registerObservation(const Observation& obs))) { - IdentificationData::DataQuery query("spectrum_1", file_ref, 100.0, 1000.0); - query_ref = data.registerDataQuery(query); - TEST_EQUAL(data.getDataQueries().size(), 1); - TEST_EQUAL(*query_ref == query, true); + ID::Observation obs("spectrum_1", file_ref, 100.0, 1000.0); + obs_ref = data.registerObservation(obs); + TEST_EQUAL(data.getObservations().size(), 1); + TEST_EQUAL(*obs_ref == obs, true); // re-registering doesn't lead to redundant entries: - data.registerDataQuery(query); - TEST_EQUAL(data.getDataQueries().size(), 1); + data.registerObservation(obs); + TEST_EQUAL(data.getObservations().size(), 1); } END_SECTION -START_SECTION((const ParentMolecules& getParentMolecules() const)) +START_SECTION((const ParentSequences& getParentSequences() const)) { - TEST_EQUAL(data.getParentMolecules().empty(), true); + TEST_EQUAL(data.getParentSequences().empty(), true); // tested further below } END_SECTION -START_SECTION((ParentMoleculeRef registerParentMolecule(const ParentMolecule& parent))) +START_SECTION((ParentSequenceRef registerParentSequence(const ParentSequence& parent))) { - IdentificationData::ParentMolecule protein(""); - // can't register a parent molecule without accession: + ID::ParentSequence protein(""); + // can't register a parent sequence without accession: TEST_EXCEPTION(Exception::IllegalArgument, - data.registerParentMolecule(protein)); - TEST_EQUAL(data.getParentMolecules().empty(), true); + data.registerParentSequence(protein)); + TEST_EQUAL(data.getParentSequences().empty(), true); protein.accession = "protein_1"; protein.sequence = "TESTPEPTIDEAAA"; - protein_ref = data.registerParentMolecule(protein); - TEST_EQUAL(data.getParentMolecules().size(), 1); + protein_ref = data.registerParentSequence(protein); + TEST_EQUAL(data.getParentSequences().size(), 1); TEST_EQUAL(*protein_ref == protein, true); - IdentificationData::ParentMolecule rna("rna_1", - IdentificationData::MoleculeType::RNA); - rna_ref = data.registerParentMolecule(rna); - TEST_EQUAL(data.getParentMolecules().size(), 2); + ID::ParentSequence rna("rna_1", ID::MoleculeType::RNA); + rna_ref = data.registerParentSequence(rna); + TEST_EQUAL(data.getParentSequences().size(), 2); TEST_EQUAL(*rna_ref == rna, true); // re-registering doesn't lead to redundant entries: - data.registerParentMolecule(rna); - TEST_EQUAL(data.getParentMolecules().size(), 2); + data.registerParentSequence(rna); + TEST_EQUAL(data.getParentSequences().size(), 2); } END_SECTION -START_SECTION((const ParentMoleculeGroupings& getParentMoleculeGroupings() const)) +START_SECTION((const ParentGroupSets& getParentGroupSets() const)) { - TEST_EQUAL(data.getParentMoleculeGroupings().empty(), true); + TEST_EQUAL(data.getParentGroupSets().empty(), true); // tested further below } END_SECTION -START_SECTION((void registerParentMoleculeGrouping(const ParentMoleculeGrouping& grouping))) +START_SECTION((void registerParentGroupSet(const ParentGroupSet& groups))) { - IdentificationData::ParentMoleculeGroup group; - group.parent_molecule_refs.insert(protein_ref); - group.parent_molecule_refs.insert(rna_ref); - IdentificationData::ParentMoleculeGrouping grouping; - grouping.label = "test_grouping"; - grouping.groups.insert(group); - data.registerParentMoleculeGrouping(grouping); - TEST_EQUAL(data.getParentMoleculeGroupings().size(), 1); - TEST_EQUAL(data.getParentMoleculeGroupings()[0].groups.size(), 1); - TEST_EQUAL(data.getParentMoleculeGroupings()[0].groups.begin()->parent_molecule_refs.size(), 2); + ID::ParentGroup group; + group.parent_refs.insert(protein_ref); + group.parent_refs.insert(rna_ref); + ID::ParentGroupSet groups; + groups.label = "test_grouping"; + groups.groups.insert(group); + data.registerParentGroupSet(groups); + TEST_EQUAL(data.getParentGroupSets().size(), 1); + TEST_EQUAL(data.getParentGroupSets()[0].groups.size(), 1); + TEST_EQUAL(data.getParentGroupSets()[0].groups.begin()->parent_refs.size(), 2); } END_SECTION @@ -277,7 +280,7 @@ END_SECTION START_SECTION((IdentifiedPeptideRef registerIdentifiedPeptide(const IdentifiedPeptide& peptide))) { - IdentificationData::IdentifiedPeptide peptide(AASequence::fromString("")); + ID::IdentifiedPeptide peptide(AASequence::fromString("")); // can't register a peptide without a sequence: TEST_EXCEPTION(Exception::IllegalArgument, data.registerIdentifiedPeptide(peptide)); @@ -291,8 +294,8 @@ START_SECTION((IdentifiedPeptideRef registerIdentifiedPeptide(const IdentifiedPe // peptide with protein reference: peptide.sequence = AASequence::fromString("PEPTIDE"); - peptide.parent_matches[protein_ref].insert(IdentificationData:: - MoleculeParentMatch(4, 10)); + peptide.parent_matches[protein_ref].insert(ID:: + ParentMatch(4, 10)); peptide_ref = data.registerIdentifiedPeptide(peptide); TEST_EQUAL(data.getIdentifiedPeptides().size(), 2); TEST_EQUAL(*peptide_ref == peptide, true); @@ -317,7 +320,7 @@ END_SECTION START_SECTION((IdentifiedOligoRef registerIdentifiedOligo(const IdentifiedOligo& oligo))) { - IdentificationData::IdentifiedOligo oligo(NASequence::fromString("")); + ID::IdentifiedOligo oligo(NASequence::fromString("")); // can't register an oligo without a sequence: TEST_EXCEPTION(Exception::IllegalArgument, data.registerIdentifiedOligo(oligo)); @@ -356,15 +359,14 @@ END_SECTION START_SECTION((IdentifiedCompoundRef registerIdentifiedCompound(const IdentifiedCompound& compound))) { - IdentificationData::IdentifiedCompound compound(""); + ID::IdentifiedCompound compound(""); // can't register a compound without identifier: TEST_EXCEPTION(Exception::IllegalArgument, data.registerIdentifiedCompound(compound)); TEST_EQUAL(data.getIdentifiedCompounds().empty(), true); - compound = IdentificationData::IdentifiedCompound("compound_1", - EmpiricalFormula("C2H5OH"), - "ethanol"); + compound = ID::IdentifiedCompound("compound_1", EmpiricalFormula("C2H5OH"), + "ethanol"); compound_ref = data.registerIdentifiedCompound(compound); TEST_EQUAL(data.getIdentifiedCompounds().size(), 1); TEST_EQUAL(*compound_ref == compound, true); @@ -375,60 +377,77 @@ START_SECTION((IdentifiedCompoundRef registerIdentifiedCompound(const Identified } END_SECTION -START_SECTION((const MoleculeQueryMatches& getMoleculeQueryMatches() const)) +START_SECTION((const Adducts& getAdducts() const)) { - TEST_EQUAL(data.getMoleculeQueryMatches().empty(), true); + TEST_EQUAL(data.getAdducts().empty(), true); // tested further below } END_SECTION -START_SECTION((QueryMatchRef registerMoleculeQueryMatch(const MoleculeQueryMatch& match))) +START_SECTION((AdductRef registerAdduct(const AdductInfo& adduct))) +{ + AdductInfo adduct("Na+", EmpiricalFormula("Na"), 1); + adduct_ref = data.registerAdduct(adduct); + TEST_EQUAL(data.getAdducts().size(), 1); + TEST_EQUAL(*adduct_ref == adduct, true); +} +END_SECTION + +START_SECTION((const ObservationMatches& getObservationMatches() const)) +{ + TEST_EQUAL(data.getObservationMatches().empty(), true); + // tested further below +} +END_SECTION + +START_SECTION((ObservationMatchRef registerObservationMatch(const ObservationMatch& match))) { // match with a peptide: - IdentificationData::MoleculeQueryMatch match(peptide_ref, query_ref, 3); - match_ref1 = data.registerMoleculeQueryMatch(match); - TEST_EQUAL(data.getMoleculeQueryMatches().size(), 1); + ID::ObservationMatch match(peptide_ref, obs_ref, 3); + match_ref1 = data.registerObservationMatch(match); + TEST_EQUAL(data.getObservationMatches().size(), 1); TEST_EQUAL(*match_ref1 == match, true); - // match with an oligo: - match = IdentificationData::MoleculeQueryMatch(oligo_ref, query_ref, 2); - match_ref2 = data.registerMoleculeQueryMatch(match); - TEST_EQUAL(data.getMoleculeQueryMatches().size(), 2); + // match with an oligo (+ adduct): + match = ID::ObservationMatch(oligo_ref, obs_ref, 2, adduct_ref); + match_ref2 = data.registerObservationMatch(match); + TEST_EQUAL(data.getObservationMatches().size(), 2); TEST_EQUAL(*match_ref2 == match, true); + TEST_EQUAL((*match_ref2->adduct_opt)->getName(), "Na+"); // match with a compound: - match = IdentificationData::MoleculeQueryMatch(compound_ref, query_ref, 1); - match_ref3 = data.registerMoleculeQueryMatch(match); - TEST_EQUAL(data.getMoleculeQueryMatches().size(), 3); + match = ID::ObservationMatch(compound_ref, obs_ref, 1); + match_ref3 = data.registerObservationMatch(match); + TEST_EQUAL(data.getObservationMatches().size(), 3); TEST_EQUAL(*match_ref3 == match, true); // re-registering doesn't lead to redundant entries: - data.registerMoleculeQueryMatch(match); - TEST_EQUAL(data.getMoleculeQueryMatches().size(), 3); + data.registerObservationMatch(match); + TEST_EQUAL(data.getObservationMatches().size(), 3); } END_SECTION -START_SECTION((const QueryMatchGroups& getQueryMatchGroups() const)) +START_SECTION((const ObservationMatchGroups& getObservationMatchGroups() const)) { - TEST_EQUAL(data.getQueryMatchGroups().empty(), true); + TEST_EQUAL(data.getObservationMatchGroups().empty(), true); // tested further below } END_SECTION -START_SECTION((MatchGroupRef registerQueryMatchGroup(const QueryMatchGroup& group))) +START_SECTION((MatchGroupRef registerObservationMatchGroup(const ObservationMatchGroup& group))) { - IdentificationData::QueryMatchGroup group; - group.query_match_refs.insert(match_ref1); - group.query_match_refs.insert(match_ref2); - group.query_match_refs.insert(match_ref3); + ID::ObservationMatchGroup group; + group.observation_match_refs.insert(match_ref1); + group.observation_match_refs.insert(match_ref2); + group.observation_match_refs.insert(match_ref3); - data.registerQueryMatchGroup(group); - TEST_EQUAL(data.getQueryMatchGroups().size(), 1); - TEST_EQUAL(*data.getQueryMatchGroups().begin() == group, true); + data.registerObservationMatchGroup(group); + TEST_EQUAL(data.getObservationMatchGroups().size(), 1); + TEST_EQUAL(*data.getObservationMatchGroups().begin() == group, true); } END_SECTION -START_SECTION((void addScore(QueryMatchRef match_ref, ScoreTypeRef score_ref, double value))) +START_SECTION((void addScore(ObservationMatchRef match_ref, ScoreTypeRef score_ref, double value))) { TEST_EQUAL(match_ref1->steps_and_scores.empty(), true); data.addScore(match_ref1, score_ref, 100.0); @@ -447,7 +466,7 @@ END_SECTION START_SECTION((ProcessingStepRef getCurrentProcessingStep())) { - TEST_EQUAL(data.getCurrentProcessingStep() == data.getDataProcessingSteps().end(), true); + TEST_EQUAL(data.getCurrentProcessingStep() == data.getProcessingSteps().end(), true); // tested further below } END_SECTION @@ -457,7 +476,7 @@ START_SECTION((void setCurrentProcessingStep(ProcessingStepRef step_ref))) data.setCurrentProcessingStep(step_ref); TEST_EQUAL(data.getCurrentProcessingStep() == step_ref, true); // registering new data automatically adds the processing step: - IdentificationData::IdentifiedPeptide peptide(AASequence::fromString("EDIT")); + ID::IdentifiedPeptide peptide(AASequence::fromString("EDIT")); peptide.parent_matches[protein_ref]; peptide_ref = data.registerIdentifiedPeptide(peptide); TEST_EQUAL(peptide_ref->steps_and_scores.size(), 1); @@ -469,26 +488,29 @@ END_SECTION START_SECTION((void clearCurrentProcessingStep())) { data.clearCurrentProcessingStep(); - TEST_EQUAL(data.getCurrentProcessingStep() == data.getDataProcessingSteps().end(), true); + TEST_EQUAL(data.getCurrentProcessingStep() == data.getProcessingSteps().end(), true); } END_SECTION -START_SECTION((vector getBestMatchPerQuery(ScoreTypeRef score_ref) const)) +START_SECTION((pair getMatchesForObservation(ObservationRef obs_ref) const)) { - vector result = data.getBestMatchPerQuery(score_ref); - TEST_EQUAL(result.size(), 1); - TEST_EQUAL(result[0] == match_ref2, true); + pair result = + data.getMatchesForObservation(obs_ref); + TEST_EQUAL(distance(result.first, result.second), 3); + for (; result.first != result.second; ++result.first) + { + TEST_EQUAL((result.first == match_ref1) || (result.first == match_ref2) || + (result.first == match_ref3), true); + } } END_SECTION -START_SECTION((pair findScoreType(const String& score_name) const)) +START_SECTION((ScoreTypeRef findScoreType(const String& score_name) const)) { // non-existent score: - TEST_EQUAL(data.findScoreType("fake_score").second, false); + TEST_EQUAL(data.findScoreType("fake_score") == data.getScoreTypes().end(), true); // registered score: - auto result = data.findScoreType("test_score"); - TEST_EQUAL(result.first == score_ref, true); - TEST_EQUAL(result.second, true); + TEST_EQUAL(data.findScoreType("test_score") == score_ref, true); } END_SECTION @@ -498,17 +520,15 @@ START_SECTION((void calculateCoverages(bool check_molecule_length = false))) data.calculateCoverages(); TEST_REAL_SIMILAR(protein_ref->coverage, 0.5); // partially overlapping peptide: - IdentificationData::IdentifiedPeptide peptide(AASequence:: - fromString("TESTPEP")); - peptide.parent_matches[protein_ref].insert(IdentificationData:: - MoleculeParentMatch(0, 6)); + ID::IdentifiedPeptide peptide(AASequence::fromString("TESTPEP")); + peptide.parent_matches[protein_ref].insert(ID::ParentMatch(0, 6)); data.registerIdentifiedPeptide(peptide); data.calculateCoverages(); TEST_REAL_SIMILAR(protein_ref->coverage, 11.0/14.0); } END_SECTION -START_SECTION((void cleanup(bool require_query_match = true, bool require_identified_sequence = true, bool require_parent_match = true, bool require_parent_group = false, bool require_match_group = false))) +START_SECTION((void cleanup(bool require_observation_match = true, bool require_identified_sequence = true, bool require_parent_match = true, bool require_parent_group = false, bool require_match_group = false))) { TEST_EQUAL(data.getIdentifiedPeptides().size(), 4); TEST_EQUAL(data.getIdentifiedOligos().size(), 2); @@ -517,21 +537,196 @@ START_SECTION((void cleanup(bool require_query_match = true, bool require_identi TEST_EQUAL(data.getIdentifiedPeptides().size(), 3); TEST_EQUAL(data.getIdentifiedOligos().size(), 1); data.cleanup(); - // identified peptides without query matches are removed: + // identified peptides without matches are removed: TEST_EQUAL(data.getIdentifiedPeptides().size(), 1); TEST_EQUAL(data.getIdentifiedOligos().size(), 1); } END_SECTION -START_SECTION((static bool isBetterScore(double first, double second, bool higher_better))) +START_SECTION((ProcessingStepRef merge(const IdentificationData& other))) { - TEST_EQUAL(IdentificationData::isBetterScore(2.0, 1.0, true), true); - TEST_EQUAL(IdentificationData::isBetterScore(2.0, 1.0, false), false); - TEST_EQUAL(IdentificationData::isBetterScore(-2.0, 1.0, true), false); - TEST_EQUAL(IdentificationData::isBetterScore(-2.0, 1.0, false), true); + TEST_EQUAL(data.getIdentifiedPeptides().size(), 1); + TEST_EQUAL(data.getIdentifiedOligos().size(), 1); + TEST_EQUAL(data.getParentSequences().size(), 2); + data.merge(data); // self-merge shouldn't change anything + TEST_EQUAL(data.getIdentifiedPeptides().size(), 1); + TEST_EQUAL(data.getIdentifiedOligos().size(), 1); + TEST_EQUAL(data.getParentSequences().size(), 2); + IdentificationData other; + ID::IdentifiedPeptide peptide(AASequence::fromString("MASSSPEC")); + other.registerIdentifiedPeptide(peptide); + data.merge(other); + TEST_EQUAL(data.getIdentifiedPeptides().size(), 2); + TEST_EQUAL(data.getIdentifiedOligos().size(), 1); + TEST_EQUAL(data.getParentSequences().size(), 2); +} +END_SECTION + +START_SECTION((IdentificationData(const IdentificationData& other))) +{ + IdentificationData copy(data); + TEST_EQUAL(copy.getIdentifiedPeptides().size(), 2); + TEST_EQUAL(copy.getIdentifiedOligos().size(), 1); + TEST_EQUAL(copy.getParentSequences().size(), 2); + TEST_EQUAL(copy.getObservationMatches().size(), 3); + // focus on processing steps and scores for observation matches: + IdentificationData data2; + ID::InputFile file("test.mzML"); + auto file_ref = data2.registerInputFile(file); + ID::ProcessingSoftware sw("Tool", "1.0"); + auto sw_ref = data2.registerProcessingSoftware(sw); + ID::ProcessingStep step(sw_ref, {file_ref}); + auto step_ref = data2.registerProcessingStep(step); + data2.setCurrentProcessingStep(step_ref); + ID::Observation obs("spectrum_1", file_ref, 100.0, 1000.0); + auto obs_ref = data2.registerObservation(obs); + ID::IdentifiedPeptide peptide(AASequence::fromString("PEPTIDE")); + auto pep_ref = data2.registerIdentifiedPeptide(peptide); + ID::ObservationMatch match(pep_ref, obs_ref, 2); + ID::ScoreType score("score1", true); + auto score_ref1 = data2.registerScoreType(score); + score = ID::ScoreType("score2", false); + auto score_ref2 = data2.registerScoreType(score); + // add first score, not connected to a processing step: + match.addScore(score_ref1, 1.0); + auto match_ref = data2.registerObservationMatch(match); + // add second score, automatically connected to last processing step: + data2.addScore(match_ref, score_ref2, 2.0); + TEST_EQUAL(data2.getObservationMatches().begin()->steps_and_scores.size(), 2); + TEST_EQUAL(data2.getObservationMatches().begin()->getNumberOfScores(), 2); + // look up scores by score type: + TEST_EQUAL(data2.getObservationMatches().begin()->getScore(score_ref1).first, 1.0); + TEST_EQUAL(data2.getObservationMatches().begin()->getScore(score_ref2).first, 2.0); + // look up score by score type and (wrong) processing step -> fails: + TEST_EQUAL(data2.getObservationMatches().begin()->getScore(score_ref1, step_ref).second, false); + // look up score by score type and (correct) processing step -> succeeds: + TEST_EQUAL(data2.getObservationMatches().begin()->getScore(score_ref2, step_ref).first, 2.0); + auto triple = data2.getObservationMatches().begin()->getMostRecentScore(); + TEST_EQUAL(std::get<0>(triple), 2.0); + TEST_EQUAL(std::get<1>(triple) == score_ref2, true); + // after copying: + IdentificationData copy2(data2); + TEST_EQUAL(copy2.getObservationMatches().begin()->steps_and_scores.size(), 2); + TEST_EQUAL(copy2.getObservationMatches().begin()->getNumberOfScores(), 2); + score_ref1 = copy2.findScoreType("score1"); + TEST_EQUAL(copy2.getObservationMatches().begin()->getScore(score_ref1).first, 1.0); + score_ref2 = copy2.findScoreType("score2"); + TEST_EQUAL(copy2.getObservationMatches().begin()->getScore(score_ref2).first, 2.0); + step_ref = copy2.getCurrentProcessingStep(); + TEST_EQUAL(copy2.getObservationMatches().begin()->getScore(score_ref1, step_ref).second, false); + TEST_EQUAL(copy2.getObservationMatches().begin()->getScore(score_ref2, step_ref).first, 2.0); + triple = copy2.getObservationMatches().begin()->getMostRecentScore(); + TEST_EQUAL(std::get<0>(triple), 2.0); + TEST_EQUAL(std::get<1>(triple) == score_ref2, true); +} +END_SECTION + +START_SECTION((vector getBestMatchPerObservation(ScoreTypeRef score_ref) const)) +{ + // add a second observation and match (without score): + ID::Observation obs("spectrum_2", file_ref, 200.0, 2000.0); + ID::ObservationRef obs_ref2 = data.registerObservation(obs); + ID::ObservationMatch match(oligo_ref, obs_ref2, 2); + ID::ObservationMatchRef match_ref4 = data.registerObservationMatch(match); + TEST_EQUAL(data.getObservationMatches().size(), 4); + // best matches, requiring score: + vector results = data.getBestMatchPerObservation(score_ref, true); + TEST_EQUAL(results.size(), 1); + TEST_EQUAL(results[0] == match_ref2, true); + // best matches, no score required: + results = data.getBestMatchPerObservation(score_ref, false); + TEST_EQUAL(results.size(), 2); + ABORT_IF(results.size() != 2); + if (results[0] == match_ref2) // can't be sure about the order + { + TEST_EQUAL(results[1] == match_ref4, true); + } + else + { + TEST_EQUAL(results[0] == match_ref4, true); + TEST_EQUAL(results[1] == match_ref2, true); + } +} +END_SECTION + +START_SECTION(([EXTRA] UseCaseBuildBottomUpProteomicsID())) +{ + IdentificationData id; + + ID::InputFile file("file://ROOT/FOLDER/SPECTRA.mzML"); + auto file_ref = id.registerInputFile(file); + + // register a score type + ID::ScoreType score("MySearchEngineScore", true); + auto score_ref = id.registerScoreType(score); + + // register software (connected to score) + ID::ProcessingSoftware sw("MySearchEngineTool", "1.0"); + sw.assigned_scores.push_back(score_ref); + auto sw_ref = id.registerProcessingSoftware(sw); + + // all supported search settings + ID::DBSearchParam search_param; + search_param.database = "file://ROOT/FOLDER/DATABASE.fasta"; + search_param.database_version = "nextprot1234"; + search_param.taxonomy = "Homo Sapiens"; + search_param.charges = {2,3,4,5}; + search_param.precursor_mass_tolerance = 8.0; + search_param.precursor_tolerance_ppm = true; + search_param.fixed_mods = {"Carbamidomethyl (C)"}; + search_param.variable_mods = {"Oxidation (M)"}; + search_param.digestion_enzyme = ProteaseDB::getInstance()->getEnzyme("Trypsin"); + search_param.enzyme_term_specificity = EnzymaticDigestion::SPEC_SEMI; + search_param.missed_cleavages = 2; + search_param.min_length = 6; + search_param.max_length = 40; + search_param.fragment_mass_tolerance = 0.3; + search_param.fragment_tolerance_ppm = true; + auto search_param_ref = id.registerDBSearchParam(search_param); + + // file has been processed by software + ID::ProcessingStep step(sw_ref); + step.input_file_refs.push_back(file_ref); + auto step_ref = id.registerProcessingStep(step, search_param_ref); + // all further data comes from this processing step + id.setCurrentProcessingStep(step_ref); + + // register spectrum + ID::Observation obs("spectrum_1", file_ref, 100.0, 1000.0); + auto obs_ref = id.registerObservation(obs); + + // peptide without protein reference (yet) + ID::IdentifiedPeptide peptide(AASequence::fromString("TESTPEPTIDR")); // seq. is required + auto peptide_ref = id.registerIdentifiedPeptide(peptide); + TEST_EQUAL(peptide_ref->parent_matches.size(), 0); + + // peptide-spectrum match + ID::ObservationMatch match(peptide_ref, obs_ref); // both refs. are required + match.addScore(score_ref, 123, step_ref); + id.registerObservationMatch(match); + + // some calculations, inference etc. could take place ... + ID::ParentSequence protein("protein_1"); // accession is required + protein.sequence = "PRTTESTPEPTIDRPRT"; + protein.description = "Human Random Protein 1"; + auto protein_ref = id.registerParentSequence(protein); + + // add reference to parent (protein) and update peptide + ID::IdentifiedPeptide augmented_pep = *peptide_ref; + // @TODO: wrap this in a convenience function (like "match.addScore" above) + augmented_pep.parent_matches[protein_ref].insert(ID::ParentMatch(3, 13)); + id.registerIdentifiedPeptide(augmented_pep); // protein reference will be added + // peptide_ref should still be valid and now contain link to protein + TEST_EQUAL(peptide_ref->sequence, augmented_pep.sequence); + TEST_EQUAL(peptide_ref->parent_matches.size(), 1); + + // and now update protein coverage of all proteins + id.calculateCoverages(); + TEST_NOT_EQUAL(protein_ref->coverage, 0.0); } END_SECTION + ///////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////// END_TEST diff --git a/src/tests/class_tests/openms/source/IsotopeLabelingMDVs_test.cpp b/src/tests/class_tests/openms/source/IsotopeLabelingMDVs_test.cpp index 82977eeb0da..9ff33b10130 100644 --- a/src/tests/class_tests/openms/source/IsotopeLabelingMDVs_test.cpp +++ b/src/tests/class_tests/openms/source/IsotopeLabelingMDVs_test.cpp @@ -33,11 +33,11 @@ // -------------------------------------------------------------------------- // -#include #include #include #include -#include +#include +#include using namespace OpenMS; diff --git a/src/tests/class_tests/openms/source/LibSVMEncoder_test.cpp b/src/tests/class_tests/openms/source/LibSVMEncoder_test.cpp index a08b3e97530..50bf461d681 100644 --- a/src/tests/class_tests/openms/source/LibSVMEncoder_test.cpp +++ b/src/tests/class_tests/openms/source/LibSVMEncoder_test.cpp @@ -39,6 +39,8 @@ /////////////////////////// +#include "svm.h" + #include #include diff --git a/src/tests/class_tests/openms/source/LogStream_test.cpp b/src/tests/class_tests/openms/source/LogStream_test.cpp index 7ab0c067548..c0375b5af1f 100644 --- a/src/tests/class_tests/openms/source/LogStream_test.cpp +++ b/src/tests/class_tests/openms/source/LogStream_test.cpp @@ -414,7 +414,7 @@ START_SECTION(([EXTRA] Macro test - OPENMS_LOG_FATAL_ERROR)) StringList to_validate_list = ListUtils::create(String(stream_by_logger.str()),'\n'); TEST_EQUAL(to_validate_list.size(),3) - boost::regex rx(".*LogStream_test\\.cpp\\(\\d+\\): \\d"); + boost::regex rx(R"(.*LogStream_test\.cpp\(\d+\): \d)"); for (Size i=0;i(String(stream_by_logger.str()),'\n'); TEST_EQUAL(to_validate_list.size(),3) - boost::regex rx(".*LogStream_test\\.cpp\\(\\d+\\): \\d"); + boost::regex rx(R"(.*LogStream_test\.cpp\(\d+\): \d)"); for (Size i=0;isetExpectedSize(2,0); - TEST_EQUAL(exp.getSpectrum(0).size() > 0, true) + TEST_EQUAL(!exp.getSpectrum(0).empty(), true) cached_consumer->consumeSpectrum(exp.getSpectrum(0)); @@ -177,11 +177,11 @@ START_SECTION((MSDataCachedConsumer(String filename, bool clearData=true))) cached_consumer->setExpectedSize(2,0); - TEST_EQUAL(exp.getSpectrum(0).size() > 0, true) + TEST_EQUAL(!exp.getSpectrum(0).empty(), true) cached_consumer->consumeSpectrum(exp.getSpectrum(0)); - TEST_EQUAL(exp.getSpectrum(0).size() > 0, true) + TEST_EQUAL(!exp.getSpectrum(0).empty(), true) TEST_EQUAL(exp.getSpectrum(0) == first_spectrum, true) delete cached_consumer; diff --git a/src/tests/class_tests/openms/source/MSExperiment_test.cpp b/src/tests/class_tests/openms/source/MSExperiment_test.cpp index fb65bac5454..bcc9c265dd9 100644 --- a/src/tests/class_tests/openms/source/MSExperiment_test.cpp +++ b/src/tests/class_tests/openms/source/MSExperiment_test.cpp @@ -447,13 +447,10 @@ START_SECTION((UInt64 getSize() const )) } END_SECTION -START_SECTION((const AreaType& getDataRange() const)) +START_SECTION((const MSExperiment::RangeManagerType& MSExperiment::getRange() const)) { PeakMap tmp; - TEST_REAL_SIMILAR(tmp.getDataRange().minPosition()[1],numeric_limits::CoordinateType>::max()) - TEST_REAL_SIMILAR(tmp.getDataRange().maxPosition()[1],-numeric_limits::CoordinateType>::max()) - TEST_REAL_SIMILAR(tmp.getDataRange().minPosition()[0],numeric_limits::CoordinateType>::max()) - TEST_REAL_SIMILAR(tmp.getDataRange().maxPosition()[0],-numeric_limits::CoordinateType>::max()) + TEST_EQUAL(tmp.getRange().hasRange() == HasRangeType::NONE, true) } END_SECTION @@ -498,61 +495,60 @@ START_SECTION((virtual void updateRanges())) tmp.updateRanges(); //second time to check the initialization TEST_REAL_SIMILAR(tmp.getMinMZ(),5.0) - TEST_REAL_SIMILAR(tmp.getMaxMZ(),10.0) - TEST_REAL_SIMILAR(tmp.getMinInt(),-10.0) - TEST_REAL_SIMILAR(tmp.getMaxInt(),-5.0) - TEST_REAL_SIMILAR(tmp.getMinRT(),30.0) - TEST_REAL_SIMILAR(tmp.getMaxRT(),50.0) - TEST_EQUAL(tmp.getMSLevels().size(),2) - TEST_EQUAL(tmp.getMSLevels()[0],1) - TEST_EQUAL(tmp.getMSLevels()[1],3) - TEST_EQUAL(tmp.getSize(),4) - tmp.updateRanges(); + TEST_REAL_SIMILAR(tmp.getMaxMZ(),10.0) + TEST_REAL_SIMILAR(tmp.getMinIntensity(), -10.0) + TEST_REAL_SIMILAR(tmp.getMaxIntensity(), -5.0) + TEST_REAL_SIMILAR(tmp.getMinRT(),30.0) + TEST_REAL_SIMILAR(tmp.getMaxRT(),50.0) + TEST_EQUAL(tmp.getMSLevels().size(),2) + TEST_EQUAL(tmp.getMSLevels()[0],1) + TEST_EQUAL(tmp.getMSLevels()[1],3) + TEST_EQUAL(tmp.getSize(),4) + tmp.updateRanges(); TEST_REAL_SIMILAR(tmp.getMinMZ(),5.0) - TEST_REAL_SIMILAR(tmp.getMaxMZ(),10.0) - TEST_REAL_SIMILAR(tmp.getMinInt(),-10.0) - TEST_REAL_SIMILAR(tmp.getMaxInt(),-5.0) - TEST_REAL_SIMILAR(tmp.getMinRT(),30.0) - TEST_REAL_SIMILAR(tmp.getMaxRT(),50.0) + TEST_REAL_SIMILAR(tmp.getMaxMZ(),10.0) + TEST_REAL_SIMILAR(tmp.getMinIntensity(), -10.0) + TEST_REAL_SIMILAR(tmp.getMaxIntensity(), -5.0) + TEST_REAL_SIMILAR(tmp.getMinRT(),30.0) + TEST_REAL_SIMILAR(tmp.getMaxRT(),50.0) - TEST_REAL_SIMILAR(tmp.getDataRange().minPosition()[1],5.0) - TEST_REAL_SIMILAR(tmp.getDataRange().maxPosition()[1],10.0) - TEST_REAL_SIMILAR(tmp.getDataRange().minPosition()[0],30.0) - TEST_REAL_SIMILAR(tmp.getDataRange().maxPosition()[0],50.0) + TEST_REAL_SIMILAR(tmp.getRange().getMinMZ(), 5.0) + TEST_REAL_SIMILAR(tmp.getRange().getMaxMZ(), 10.0) + TEST_REAL_SIMILAR(tmp.getRange().getMinRT(), 30.0) + TEST_REAL_SIMILAR(tmp.getRange().getMaxRT(), 50.0) - TEST_EQUAL(tmp.getMSLevels().size(),2) - TEST_EQUAL(tmp.getMSLevels()[0],1) - TEST_EQUAL(tmp.getMSLevels()[1],3) + TEST_EQUAL(tmp.getMSLevels().size(),2) + TEST_EQUAL(tmp.getMSLevels()[0],1) + TEST_EQUAL(tmp.getMSLevels()[1],3) - TEST_EQUAL(tmp.getSize(),4) + TEST_EQUAL(tmp.getSize(),4) - //Update for MS level 1 + //Update for MS level 1 - tmp.updateRanges(1); + tmp.updateRanges(1); tmp.updateRanges(1); TEST_REAL_SIMILAR(tmp.getMinMZ(),5.0) - TEST_REAL_SIMILAR(tmp.getMaxMZ(),7.0) - TEST_REAL_SIMILAR(tmp.getMinInt(),-7.0) - TEST_REAL_SIMILAR(tmp.getMaxInt(),-5.0) - TEST_REAL_SIMILAR(tmp.getMinRT(),30.0) - TEST_REAL_SIMILAR(tmp.getMaxRT(),40.0) - TEST_EQUAL(tmp.getMSLevels().size(),1) - TEST_EQUAL(tmp.getMSLevels()[0],1) - TEST_EQUAL(tmp.getSize(),2) - tmp.updateRanges(1); + TEST_REAL_SIMILAR(tmp.getMaxMZ(),7.0) + TEST_REAL_SIMILAR(tmp.getMinIntensity(), -7.0) + TEST_REAL_SIMILAR(tmp.getMaxIntensity(), -5.0) + TEST_REAL_SIMILAR(tmp.getMinRT(),30.0) + TEST_REAL_SIMILAR(tmp.getMaxRT(),40.0) + TEST_EQUAL(tmp.getMSLevels().size(),1) + TEST_EQUAL(tmp.getMSLevels()[0],1) + TEST_EQUAL(tmp.getSize(),2) + tmp.updateRanges(1); TEST_REAL_SIMILAR(tmp.getMinMZ(),5.0) - TEST_REAL_SIMILAR(tmp.getMaxMZ(),7.0) - TEST_REAL_SIMILAR(tmp.getMinInt(),-7.0) - TEST_REAL_SIMILAR(tmp.getMaxInt(),-5.0) - TEST_REAL_SIMILAR(tmp.getMinRT(),30.0) - TEST_REAL_SIMILAR(tmp.getMaxRT(),40.0) - TEST_EQUAL(tmp.getMSLevels().size(),1) - TEST_EQUAL(tmp.getMSLevels()[0],1) - TEST_EQUAL(tmp.getSize(),2) - - //test with only one peak - - PeakMap tmp2; + TEST_REAL_SIMILAR(tmp.getMaxMZ(),7.0) + TEST_REAL_SIMILAR(tmp.getMinIntensity(), -7.0) + TEST_REAL_SIMILAR(tmp.getMaxIntensity(), -5.0) + TEST_REAL_SIMILAR(tmp.getMinRT(),30.0) + TEST_REAL_SIMILAR(tmp.getMaxRT(),40.0) + TEST_EQUAL(tmp.getMSLevels().size(),1) + TEST_EQUAL(tmp.getMSLevels()[0],1) + TEST_EQUAL(tmp.getSize(),2) + + // test with only one peak + PeakMap tmp2; MSSpectrum s2; Peak1D p2; @@ -564,20 +560,54 @@ START_SECTION((virtual void updateRanges())) tmp2.updateRanges(); TEST_REAL_SIMILAR(tmp2.getMinMZ(),5.0) - TEST_REAL_SIMILAR(tmp2.getMaxMZ(),5.0) - TEST_REAL_SIMILAR(tmp2.getMinInt(),-5.0) - TEST_REAL_SIMILAR(tmp2.getMaxInt(),-5.0) - TEST_REAL_SIMILAR(tmp2.getMinRT(),30.0) - TEST_REAL_SIMILAR(tmp2.getMaxRT(),30.0) + TEST_REAL_SIMILAR(tmp2.getMaxMZ(),5.0) + TEST_REAL_SIMILAR(tmp2.getMinIntensity(), -5.0) + TEST_REAL_SIMILAR(tmp2.getMaxIntensity(), -5.0) + TEST_REAL_SIMILAR(tmp2.getMinRT(),30.0) + TEST_REAL_SIMILAR(tmp2.getMaxRT(),30.0) - tmp2.updateRanges(1); + tmp2.updateRanges(1); TEST_REAL_SIMILAR(tmp2.getMinMZ(),5.0) - TEST_REAL_SIMILAR(tmp2.getMaxMZ(),5.0) - TEST_REAL_SIMILAR(tmp2.getMinInt(),-5.0) - TEST_REAL_SIMILAR(tmp2.getMaxInt(),-5.0) - TEST_REAL_SIMILAR(tmp2.getMinRT(),30.0) - TEST_REAL_SIMILAR(tmp2.getMaxRT(),30.0) + TEST_REAL_SIMILAR(tmp2.getMaxMZ(),5.0) + TEST_REAL_SIMILAR(tmp2.getMinIntensity(), -5.0) + TEST_REAL_SIMILAR(tmp2.getMaxIntensity(), -5.0) + TEST_REAL_SIMILAR(tmp2.getMinRT(),30.0) + TEST_REAL_SIMILAR(tmp2.getMaxRT(),30.0) + + // test ranges with a chromatogram + MSChromatogram chrom1, chrom2; + ChromatogramPeak cp1, cp2, cp3; + cp1.setRT(0.3); + cp1.setIntensity(10.0f); + cp2.setRT(0.2); + cp2.setIntensity(10.2f); + cp3.setRT(0.1); + cp3.setIntensity(10.4f); + + Product prod1; + prod1.setMZ(100.0); + chrom1.setProduct(prod1); + chrom1.push_back(cp1); + chrom1.push_back(cp2); + + Product prod2; + prod2.setMZ(80.0); + chrom2.setProduct(prod2); + chrom2.push_back(cp2); + chrom2.push_back(cp3); + vector chroms; + chroms.push_back(chrom1); + chroms.push_back(chrom2); + tmp2.setChromatograms(chroms); + + tmp2.updateRanges(); + TEST_REAL_SIMILAR(tmp2.getMinMZ(), 5.0) + TEST_REAL_SIMILAR(tmp2.getMaxMZ(), 100.0) + TEST_REAL_SIMILAR(tmp2.getMinIntensity(), -5.0) + TEST_REAL_SIMILAR(tmp2.getMaxIntensity(), 10.4) + TEST_REAL_SIMILAR(tmp2.getMinRT(), 0.1) + TEST_REAL_SIMILAR(tmp2.getMaxRT(), 30.0) } END_SECTION @@ -623,28 +653,27 @@ START_SECTION((void updateRanges(Int ms_level))) tmp.updateRanges(1); tmp.updateRanges(1); TEST_REAL_SIMILAR(tmp.getMinMZ(),5.0) - TEST_REAL_SIMILAR(tmp.getMaxMZ(),7.0) - TEST_REAL_SIMILAR(tmp.getMinInt(),-7.0) - TEST_REAL_SIMILAR(tmp.getMaxInt(),-5.0) - TEST_REAL_SIMILAR(tmp.getMinRT(),30.0) - TEST_REAL_SIMILAR(tmp.getMaxRT(),40.0) - TEST_EQUAL(tmp.getMSLevels().size(),1) - TEST_EQUAL(tmp.getMSLevels()[0],1) - TEST_EQUAL(tmp.getSize(),2) - tmp.updateRanges(1); + TEST_REAL_SIMILAR(tmp.getMaxMZ(),7.0) + TEST_REAL_SIMILAR(tmp.getMinIntensity(),-7.0) + TEST_REAL_SIMILAR(tmp.getMaxIntensity(), -5.0) + TEST_REAL_SIMILAR(tmp.getMinRT(),30.0) + TEST_REAL_SIMILAR(tmp.getMaxRT(),40.0) + TEST_EQUAL(tmp.getMSLevels().size(),1) + TEST_EQUAL(tmp.getMSLevels()[0],1) + TEST_EQUAL(tmp.getSize(),2) + tmp.updateRanges(1); TEST_REAL_SIMILAR(tmp.getMinMZ(),5.0) - TEST_REAL_SIMILAR(tmp.getMaxMZ(),7.0) - TEST_REAL_SIMILAR(tmp.getMinInt(),-7.0) - TEST_REAL_SIMILAR(tmp.getMaxInt(),-5.0) - TEST_REAL_SIMILAR(tmp.getMinRT(),30.0) - TEST_REAL_SIMILAR(tmp.getMaxRT(),40.0) - TEST_EQUAL(tmp.getMSLevels().size(),1) - TEST_EQUAL(tmp.getMSLevels()[0],1) - TEST_EQUAL(tmp.getSize(),2) - - //test with only one peak - - PeakMap tmp2; + TEST_REAL_SIMILAR(tmp.getMaxMZ(),7.0) + TEST_REAL_SIMILAR(tmp.getMinIntensity(), -7.0) + TEST_REAL_SIMILAR(tmp.getMaxIntensity(), -5.0) + TEST_REAL_SIMILAR(tmp.getMinRT(),30.0) + TEST_REAL_SIMILAR(tmp.getMaxRT(),40.0) + TEST_EQUAL(tmp.getMSLevels().size(),1) + TEST_EQUAL(tmp.getMSLevels()[0],1) + TEST_EQUAL(tmp.getSize(),2) + + //test with only one peak + PeakMap tmp2; MSSpectrum s2; Peak1D p2; @@ -656,11 +685,11 @@ START_SECTION((void updateRanges(Int ms_level))) tmp2.updateRanges(1); TEST_REAL_SIMILAR(tmp2.getMinMZ(),5.0) - TEST_REAL_SIMILAR(tmp2.getMaxMZ(),5.0) - TEST_REAL_SIMILAR(tmp2.getMinInt(),-5.0) - TEST_REAL_SIMILAR(tmp2.getMaxInt(),-5.0) - TEST_REAL_SIMILAR(tmp2.getMinRT(),30.0) - TEST_REAL_SIMILAR(tmp2.getMaxRT(),30.0) + TEST_REAL_SIMILAR(tmp2.getMaxMZ(),5.0) + TEST_REAL_SIMILAR(tmp2.getMinIntensity(),-5.0) + TEST_REAL_SIMILAR(tmp2.getMaxIntensity(),-5.0) + TEST_REAL_SIMILAR(tmp2.getMinRT(),30.0) + TEST_REAL_SIMILAR(tmp2.getMaxRT(),30.0) } END_SECTION @@ -967,7 +996,7 @@ START_SECTION((void reset())) exp.reset(); - TEST_EQUAL(exp==PeakMap(),true); + TEST_EQUAL(exp.empty(),true); } END_SECTION @@ -1007,28 +1036,58 @@ START_SECTION((ConstIterator getPrecursorSpectrum(ConstIterator iterator) const) exp[4].setMSLevel(2); TEST_EQUAL(exp.getPrecursorSpectrum(exp.begin())==exp.end(),true) - TEST_EQUAL(exp.getPrecursorSpectrum(exp.begin()+1)==exp.begin(),true) - TEST_EQUAL(exp.getPrecursorSpectrum(exp.begin()+2)==exp.end(),true) - TEST_EQUAL(exp.getPrecursorSpectrum(exp.begin()+3)==exp.begin()+2,true) - TEST_EQUAL(exp.getPrecursorSpectrum(exp.begin()+4)==exp.begin()+2,true) - TEST_EQUAL(exp.getPrecursorSpectrum(exp.end())==exp.end(),true) + TEST_EQUAL(exp.getPrecursorSpectrum(exp.begin()+1)==exp.begin(),true) + TEST_EQUAL(exp.getPrecursorSpectrum(exp.begin()+2)==exp.end(),true) + TEST_EQUAL(exp.getPrecursorSpectrum(exp.begin()+3)==exp.begin()+2,true) + TEST_EQUAL(exp.getPrecursorSpectrum(exp.begin()+4)==exp.begin()+2,true) + TEST_EQUAL(exp.getPrecursorSpectrum(exp.end())==exp.end(),true) - exp[0].setMSLevel(2); + exp[0].setMSLevel(2); exp[1].setMSLevel(1); exp[2].setMSLevel(1); exp[3].setMSLevel(1); exp[4].setMSLevel(1); TEST_EQUAL(exp.getPrecursorSpectrum(exp.begin())==exp.end(),true) - TEST_EQUAL(exp.getPrecursorSpectrum(exp.begin()+1)==exp.end(),true) - TEST_EQUAL(exp.getPrecursorSpectrum(exp.begin()+2)==exp.end(),true) - TEST_EQUAL(exp.getPrecursorSpectrum(exp.begin()+3)==exp.end(),true) - TEST_EQUAL(exp.getPrecursorSpectrum(exp.begin()+4)==exp.end(),true) - TEST_EQUAL(exp.getPrecursorSpectrum(exp.end())==exp.end(),true) + TEST_EQUAL(exp.getPrecursorSpectrum(exp.begin()+1)==exp.end(),true) + TEST_EQUAL(exp.getPrecursorSpectrum(exp.begin()+2)==exp.end(),true) + TEST_EQUAL(exp.getPrecursorSpectrum(exp.begin()+3)==exp.end(),true) + TEST_EQUAL(exp.getPrecursorSpectrum(exp.begin()+4)==exp.end(),true) + TEST_EQUAL(exp.getPrecursorSpectrum(exp.end())==exp.end(),true) +} +END_SECTION + +START_SECTION((int getPrecursorSpectrum(int zero_based_index) const)) +{ + PeakMap exp; + exp.resize(10); + exp[0].setMSLevel(1); + exp[1].setMSLevel(2); + exp[2].setMSLevel(1); + exp[3].setMSLevel(2); + exp[4].setMSLevel(2); + + TEST_EQUAL(exp.getPrecursorSpectrum(0) == -1,true) + TEST_EQUAL(exp.getPrecursorSpectrum(1) == 0,true) + TEST_EQUAL(exp.getPrecursorSpectrum(2) == -1,true) + TEST_EQUAL(exp.getPrecursorSpectrum(3) == 2,true) + TEST_EQUAL(exp.getPrecursorSpectrum(4) == 2,true) + + exp[0].setMSLevel(2); + exp[1].setMSLevel(1); + exp[2].setMSLevel(1); + exp[3].setMSLevel(1); + exp[4].setMSLevel(1); + TEST_EQUAL(exp.getPrecursorSpectrum(0) == -1,true) + TEST_EQUAL(exp.getPrecursorSpectrum(1) == -1,true) + TEST_EQUAL(exp.getPrecursorSpectrum(2) == -1,true) + TEST_EQUAL(exp.getPrecursorSpectrum(3) == -1,true) + TEST_EQUAL(exp.getPrecursorSpectrum(4) == -1,true) } END_SECTION + START_SECTION((bool clearMetaDataArrays())) { PeakMap exp; @@ -1057,17 +1116,16 @@ START_SECTION((void swap(MSExperiment &from))) exp1.swap(exp2); TEST_EQUAL(exp1.getComment(),"") - TEST_EQUAL(exp1.size(),0) - TEST_REAL_SIMILAR(exp1.getMinInt(),DRange<1>().minPosition()[0]) - TEST_EQUAL(exp1.getMSLevels().size(),0) - TEST_EQUAL(exp1.getSize(),0); + TEST_EQUAL(exp1.size(),0) + TEST_EQUAL(exp1.getRange().hasRange() == HasRangeType::NONE, true) + TEST_EQUAL(exp1.getMSLevels().size(),0) + TEST_EQUAL(exp1.getSize(),0); TEST_EQUAL(exp2.getComment(),"stupid comment") - TEST_EQUAL(exp2.size(),1) - TEST_REAL_SIMILAR(exp2.getMinInt(),0.5) - TEST_EQUAL(exp2.getMSLevels().size(),1) - TEST_EQUAL(exp2.getSize(),2); - + TEST_EQUAL(exp2.size(),1) + TEST_REAL_SIMILAR(exp2.getMinIntensity(), 0.5) + TEST_EQUAL(exp2.getMSLevels().size(),1) + TEST_EQUAL(exp2.getSize(),2); } END_SECTION @@ -1084,10 +1142,11 @@ START_SECTION(void clear(bool clear_meta_data)) edit.clear(false); TEST_EQUAL(edit.size(),0) - TEST_EQUAL(edit==PeakMap(),false) + TEST_EQUAL(edit == MSExperiment(),false) - edit.clear(true); - TEST_EQUAL(edit==PeakMap(),true) + edit.clear(true); + TEST_EQUAL(edit.empty(),true) + TEST_EQUAL(edit == MSExperiment(),true) } END_SECTION diff --git a/src/tests/class_tests/openms/source/MSSim_test.cpp b/src/tests/class_tests/openms/source/MSSim_test.cpp index 596e57b9fe7..093074589c5 100644 --- a/src/tests/class_tests/openms/source/MSSim_test.cpp +++ b/src/tests/class_tests/openms/source/MSSim_test.cpp @@ -29,7 +29,7 @@ // // -------------------------------------------------------------------------- // $Maintainer: Timo Sachsenberg$ -// $Authors: Chris Bielow, Stephan Aiche$ +// $Authors: Chris Bielow, Stephan Aiche, Lucas Rieckert$ // -------------------------------------------------------------------------- #include @@ -226,6 +226,8 @@ START_SECTION((void simulate(const SimRandomNumberGenerator &rnd_gen, SimTypes:: mssim.simulate(sim_rnd_ptr, channels); + mssim.createMonoisotopicExperiment(); + // results of simulate are tested individually in the accessors below NOT_TESTABLE } @@ -264,6 +266,15 @@ START_SECTION((SimTypes::MSSimExperiment const& getExperiment() const )) } END_SECTION +START_SECTION((SimTypes::MSSimExperiment const& getMonoisotopicExperiment() const )) + + TEST_EQUAL(mssim.getMonoisotopicExperiment().getSize(),300); + + SimTypes::MSSimExperiment empty_experiment; + MSSim no_sim; + TEST_EQUAL(no_sim.getMonoisotopicExperiment().getSize(), empty_experiment.getSize()) +END_SECTION + START_SECTION((SimTypes::FeatureMapSim const& getSimulatedFeatures() const )) { #if OPENMS_BOOST_VERSION_MINOR < 56 diff --git a/src/tests/class_tests/openms/source/MSSpectrum_test.cpp b/src/tests/class_tests/openms/source/MSSpectrum_test.cpp index 9a2d2fbac2d..962c6dc0c66 100644 --- a/src/tests/class_tests/openms/source/MSSpectrum_test.cpp +++ b/src/tests/class_tests/openms/source/MSSpectrum_test.cpp @@ -315,20 +315,20 @@ START_SECTION((virtual void updateRanges())) s.updateRanges(); s.updateRanges(); //second time to check the initialization - TEST_REAL_SIMILAR(s.getMaxInt(),2) - TEST_REAL_SIMILAR(s.getMinInt(),1) - TEST_REAL_SIMILAR(s.getMax()[0],10) - TEST_REAL_SIMILAR(s.getMin()[0],2) + TEST_REAL_SIMILAR(s.getMaxIntensity(), 2) + TEST_REAL_SIMILAR(s.getMinIntensity(), 1) + TEST_REAL_SIMILAR(s.getMaxMZ(),10) + TEST_REAL_SIMILAR(s.getMinMZ(),2) //test with only one peak s.clear(true); s.push_back(p1); s.updateRanges(); - TEST_REAL_SIMILAR(s.getMaxInt(),1) - TEST_REAL_SIMILAR(s.getMinInt(),1) - TEST_REAL_SIMILAR(s.getMax()[0],2) - TEST_REAL_SIMILAR(s.getMin()[0],2) + TEST_REAL_SIMILAR(s.getMaxIntensity(), 1) + TEST_REAL_SIMILAR(s.getMinIntensity(), 1) + TEST_REAL_SIMILAR(s.getMaxMZ(),2) + TEST_REAL_SIMILAR(s.getMinMZ(),2) } END_SECTION @@ -1398,10 +1398,12 @@ START_SECTION(void clear(bool clear_meta_data)) edit.clear(false); TEST_EQUAL(edit.size(),0) - TEST_EQUAL(edit==MSSpectrum(),false) + TEST_EQUAL(edit == MSSpectrum(),false) + TEST_EQUAL(edit.empty(),true) edit.clear(true); - TEST_EQUAL(edit==MSSpectrum(),true) + TEST_EQUAL(edit.empty(),true) + TEST_EQUAL(edit == MSSpectrum(),true) } END_SECTION diff --git a/src/tests/class_tests/openms/source/MetaInfoInterface_test.cpp b/src/tests/class_tests/openms/source/MetaInfoInterface_test.cpp index f56729fcd5b..00602b489b7 100644 --- a/src/tests/class_tests/openms/source/MetaInfoInterface_test.cpp +++ b/src/tests/class_tests/openms/source/MetaInfoInterface_test.cpp @@ -143,7 +143,7 @@ START_SECTION(( MetaInfoInterface(MetaInfoInterface&&) noexcept )) } END_SECTION -START_SECTION((MetaInfoInterface& operator = (const MetaInfoInterface& rhs))) +START_SECTION((MetaInfoInterface& operator=(const MetaInfoInterface& rhs))) { //test if copy worked MetaInfoInterface mi3,mi4; @@ -168,7 +168,7 @@ START_SECTION((MetaInfoInterface& operator = (const MetaInfoInterface& rhs))) } END_SECTION -START_SECTION((MetaInfoInterface& operator = (MetaInfoInterface&& rhs))) +START_SECTION((MetaInfoInterface& operator=(MetaInfoInterface&& rhs))) { // Ensure that MetaInfoInterface has a no-except move assignment operator. TEST_EQUAL(noexcept(declval() = declval()), true) @@ -353,7 +353,19 @@ START_SECTION((void removeMetaValue(const String& name))) i.removeMetaValue("icon"); END_SECTION +START_SECTION((void swap(MetaInfoInterface&& rhs))) +{ + MetaInfoInterface mi1, mi2; + mi1.setMetaValue("a", 1); + mi2.setMetaValue("b", 2); + mi1.swap(mi2); + TEST_EQUAL(mi1.metaValueExists("a"), false); + TEST_EQUAL(mi2.metaValueExists("b"), false); + TEST_EQUAL(mi1.getMetaValue("b"), 2); + TEST_EQUAL(mi2.getMetaValue("a"), 1); +} +END_SECTION + ///////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////// END_TEST - diff --git a/src/tests/class_tests/openms/source/ModificationsDB_test.cpp b/src/tests/class_tests/openms/source/ModificationsDB_test.cpp index 5ece60553d4..1c4019808cb 100644 --- a/src/tests/class_tests/openms/source/ModificationsDB_test.cpp +++ b/src/tests/class_tests/openms/source/ModificationsDB_test.cpp @@ -87,7 +87,7 @@ START_SECTION(Size getNumberOfModifications() const) END_SECTION START_SECTION(const ResidueModification& getModification(Size index) const) - TEST_EQUAL(ptr->getModification(0)->getId().size() > 0, true) + TEST_EQUAL(!ptr->getModification(0)->getId().empty(), true) END_SECTION START_SECTION((void searchModifications(std::set& mods, const String& mod_name, const String& residue, ResidueModification::TermSpecificity term_spec) const)) diff --git a/src/tests/class_tests/openms/source/MorphologicalFilter_test.cpp b/src/tests/class_tests/openms/source/MorphologicalFilter_test.cpp index 5fbf2344875..fe79a7163d9 100644 --- a/src/tests/class_tests/openms/source/MorphologicalFilter_test.cpp +++ b/src/tests/class_tests/openms/source/MorphologicalFilter_test.cpp @@ -285,10 +285,10 @@ START_SECTION((template < typename InputIterator, typename OutputIterator > void for ( Int struc_length = 3; struc_length <= 2 * data_size + 2; struc_length += 2 ) { - STATUS("data_size: " << data_size); - STATUS("struc_elem_length: " << struc_length); + //STATUS("data_size: " << data_size); + //STATUS("struc_elem_length: " << struc_length); { - STATUS("erosion"); + //STATUS("erosion"); filtered.clear(); filtered.resize(data_size); simple_filtered_1.clear(); @@ -309,13 +309,13 @@ START_SECTION((template < typename InputIterator, typename OutputIterator > void ); for ( Int i = 0; i != data_size; ++i ) { - STATUS(i); + //STATUS(i); TEST_REAL_SIMILAR(filtered[i],simple_filtered_1[i]); } } { - STATUS("dilation"); + //STATUS("dilation"); filtered.clear(); filtered.resize(data_size); simple_filtered_1.clear(); @@ -336,11 +336,10 @@ START_SECTION((template < typename InputIterator, typename OutputIterator > void ); for ( Int i = 0; i != data_size; ++i ) { - STATUS(i); + //STATUS(i); TEST_REAL_SIMILAR(filtered[i],simple_filtered_1[i]); } } - } } @@ -364,10 +363,10 @@ START_SECTION((template < typename InputIterator, typename OutputIterator > void for ( Int struc_length = 3; struc_length <= 2 * data_size + 2; struc_length += 2 ) { - STATUS("data_size: " << data_size); - STATUS("struc_elem_length: " << struc_length); + //STATUS("data_size: " << data_size); + //STATUS("struc_elem_length: " << struc_length); { - STATUS("erosion"); + //STATUS("erosion"); filtered.clear(); filtered.resize(data_size); simple_filtered_1.clear(); @@ -388,13 +387,13 @@ START_SECTION((template < typename InputIterator, typename OutputIterator > void ); for ( Int i = 0; i != data_size; ++i ) { - STATUS(i); + //STATUS(i); TEST_REAL_SIMILAR(filtered[i],simple_filtered_1[i]); } } { - STATUS("dilation"); + //STATUS("dilation"); filtered.clear(); filtered.resize(data_size); simple_filtered_1.clear(); @@ -415,7 +414,7 @@ START_SECTION((template < typename InputIterator, typename OutputIterator > void ); for ( Int i = 0; i != data_size; ++i ) { - STATUS(i); + //STATUS(i); TEST_REAL_SIMILAR(filtered[i],simple_filtered_1[i]); } } @@ -446,10 +445,9 @@ START_SECTION([EXTRA] (template < typename InputIterator, typename OutputIterato MorphologicalFilter mf; for ( UInt struc_length = 3; struc_length <= 2 * data_size + 2; struc_length += 2 ) { - STATUS("struc_elem_length: " << struc_length); - + //STATUS("struc_elem_length: " << struc_length); { - STATUS("erosion"); + //STATUS("erosion"); filtered.clear(); filtered.resize(data_size); simple_filtered_1.clear(); @@ -467,11 +465,11 @@ START_SECTION([EXTRA] (template < typename InputIterator, typename OutputIterato STHF::erosion(inputf,simple_filtered_1,struc_length); for ( UInt i = 0; i != data_size; ++i ) { - STATUS(i); + //STATUS(i); TEST_REAL_SIMILAR(filtered[i],simple_filtered_1[i]); } - STATUS("erosion_simple"); + //STATUS("erosion_simple"); filtered.clear(); filtered.resize(data_size); simple_filtered_1.clear(); @@ -491,7 +489,7 @@ START_SECTION([EXTRA] (template < typename InputIterator, typename OutputIterato TEST_REAL_SIMILAR(filtered[i],simple_filtered_1[i]); } - STATUS("opening"); + //STATUS("opening"); filtered.clear(); filtered.resize(data_size); simple_filtered_2.clear(); @@ -511,7 +509,7 @@ START_SECTION([EXTRA] (template < typename InputIterator, typename OutputIterato TEST_REAL_SIMILAR(filtered[i],simple_filtered_2[i]); } - STATUS("tophat"); + //STATUS("tophat"); filtered.clear(); filtered.resize(data_size); simple_filtered_3.clear(); @@ -533,7 +531,7 @@ START_SECTION([EXTRA] (template < typename InputIterator, typename OutputIterato } { - STATUS("dilation"); + //STATUS("dilation"); filtered.clear(); filtered.resize(data_size); simple_filtered_1.clear(); @@ -554,7 +552,7 @@ START_SECTION([EXTRA] (template < typename InputIterator, typename OutputIterato TEST_REAL_SIMILAR(filtered[i],simple_filtered_1[i]); } - STATUS("dilation_simple"); + //STATUS("dilation_simple"); filtered.clear(); filtered.resize(data_size); simple_filtered_1.clear(); @@ -574,7 +572,7 @@ START_SECTION([EXTRA] (template < typename InputIterator, typename OutputIterato TEST_REAL_SIMILAR(filtered[i],simple_filtered_1[i]); } - STATUS("closing"); + //STATUS("closing"); filtered.clear(); filtered.resize(data_size); simple_filtered_2.clear(); @@ -594,7 +592,7 @@ START_SECTION([EXTRA] (template < typename InputIterator, typename OutputIterato TEST_REAL_SIMILAR(filtered[i],simple_filtered_2[i]); } - STATUS("bothat"); + //STATUS("bothat"); filtered.clear(); filtered.resize(data_size); simple_filtered_3.clear(); @@ -645,8 +643,8 @@ START_SECTION((template void filter(MSSpectrum& spectrum))) UInt struc_size_datapoints = UInt ( ceil ( struc_size / spacing ) ); if ( !Math::isOdd(struc_size_datapoints) ) ++struc_size_datapoints; STH::dilation( input, dilation, struc_size_datapoints ); - STATUS( "struc_size: " << struc_size << " struc_size_datapoints: " << struc_size_datapoints ); - for ( UInt i = 0; i != data_size; ++i ) + //STATUS( "struc_size: " << struc_size << " struc_size_datapoints: " << struc_size_datapoints ); + for ( UInt i = 0; i != data_size; ++i ) { STATUS("i: " << i); TEST_REAL_SIMILAR(filtered[i].getIntensity(),dilation[i]); @@ -687,13 +685,13 @@ START_SECTION((template void filterExperiment(MSExperiment< UInt struc_size_datapoints = UInt ( ceil ( struc_size / spacing ) ); if ( !Math::isOdd(struc_size_datapoints) ) ++struc_size_datapoints; STH::dilation( input, dilation, struc_size_datapoints ); - STATUS( "struc_size: " << struc_size << " struc_size_datapoints: " << struc_size_datapoints ); + //STATUS( "struc_size: " << struc_size << " struc_size_datapoints: " << struc_size_datapoints ); for ( UInt scan = 0; scan < 3; ++scan ) { TEST_STRING_EQUAL(mse_raw[scan].getComment(),"Let's see if this comment is copied by the filter."); for ( UInt i = 0; i != data_size; ++i ) { - STATUS("i: " << i); + //STATUS("i: " << i); TEST_REAL_SIMILAR(mse_raw[scan][i].getIntensity(),dilation[i]); } } diff --git a/src/tests/class_tests/openms/source/MzDataFile_test.cpp b/src/tests/class_tests/openms/source/MzDataFile_test.cpp index 150b5f5933f..2ac0d3c73d5 100644 --- a/src/tests/class_tests/openms/source/MzDataFile_test.cpp +++ b/src/tests/class_tests/openms/source/MzDataFile_test.cpp @@ -210,7 +210,7 @@ START_SECTION((template void load(const String &filename, Map //acquisition //--------------------------------------------------------------------------- TEST_EQUAL(e[0].getAcquisitionInfo().size(), 0) - ABORT_IF(e[0].getAcquisitionInfo().size() != 0); + ABORT_IF(!e[0].getAcquisitionInfo().empty()); TEST_EQUAL(e[1].getAcquisitionInfo().size(), 2) ABORT_IF(e[1].getAcquisitionInfo().size() != 2); diff --git a/src/tests/class_tests/openms/source/MzTabMFile_test.cpp b/src/tests/class_tests/openms/source/MzTabMFile_test.cpp new file mode 100644 index 00000000000..9b4c495c420 --- /dev/null +++ b/src/tests/class_tests/openms/source/MzTabMFile_test.cpp @@ -0,0 +1,86 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2020. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Oliver Alka$ +// $Authors: Oliver Alka$ +// -------------------------------------------------------------------------- + +#include +#include + +/////////////////////////// +#include +#include +#include +#include +#include +/////////////////////////// + +using namespace OpenMS; +using namespace std; + +START_TEST(MzTabMFile, "$Id$") +///////////////////////////////////////////////////////////// +MzTabMFile* ptr = nullptr; +MzTabMFile* null_ptr = nullptr; + +START_SECTION(MzTabMFile()) + { + ptr = new MzTabMFile(); + TEST_NOT_EQUAL(ptr, null_ptr) + } +END_SECTION + +START_SECTION(~MzTabFile()) + { + delete ptr; + } +END_SECTION + +START_SECTION(void store(const String& filename, MzTabM& mztab_m)) + { + FeatureMap feature_map; + MzTabM mztabm; + + OMSFile().load(OPENMS_GET_TEST_DATA_PATH("MzTabMFile_input_1.oms"), feature_map); + + mztabm = MzTabM::exportFeatureMapToMzTabM(feature_map); + + String mztabm_tmpfile; + NEW_TMP_FILE(mztabm_tmpfile); + MzTabMFile().store(mztabm_tmpfile, mztabm); + + TEST_FILE_SIMILAR(mztabm_tmpfile.c_str(), OPENMS_GET_TEST_DATA_PATH("MzTabMFile_output_1.mztab")); + } +END_SECTION + +///////////////////////////////////////////////////////////// +///////////////////////////////////////////////////////////// +END_TEST \ No newline at end of file diff --git a/src/tests/class_tests/openms/source/MzTabM_test.cpp b/src/tests/class_tests/openms/source/MzTabM_test.cpp new file mode 100644 index 00000000000..54f7f56c701 --- /dev/null +++ b/src/tests/class_tests/openms/source/MzTabM_test.cpp @@ -0,0 +1,368 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2020. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Oliver Alka$ +// $Authors: Oliver Alka$ +// -------------------------------------------------------------------------- + +#include +#include + +/////////////////////////// +#include +#include +#include +/////////////////////////// + +START_TEST(MzTabM, "$Id$") + +using namespace OpenMS; +using namespace std; + +///////////////////////////////////////////////////////////// +///////////////////////////////////////////////////////////// + +MzTabM* ptr = nullptr; +MzTabM* null_ptr = nullptr; +START_SECTION(MzTabM()) +{ + ptr = new MzTabM(); + TEST_NOT_EQUAL(ptr, null_ptr) +} +END_SECTION + +START_SECTION(~MzTabM()) +{ + delete ptr; +} +END_SECTION + +START_SECTION(Fill data structure) +{ + MzTabM mztabm; + + // SML Small molecule section row + MzTabMSmallMoleculeSectionRows sml_rows; + MzTabMSmallMoleculeSectionRow sml_row; + sml_row.sml_identifier.fromCellString(1); + sml_row.smf_id_refs.fromCellString("1,2"); + sml_row.database_identifier.fromCellString("[HMDB:HMDB0001847]"); + sml_row.chemical_formula.fromCellString("[C17H20N4O2]"); + sml_row.smiles.fromCellString("[C1=CC=C(C=C1)CCNC(=O)CCNNC(=O)C2=CC=NC=C2]"); + sml_row.inchi.fromCellString("[InChI=1S/C17H20N4O2/c22-16(19-12-6-14-4-2-1-3-5-14)9-13-20-21-17(23)15-7-10-18-11-8-15/h1-5,7-8,10-11,20H,6,9,12-13H2,(H,19,22)(H,21,23)]"); + sml_row.chemical_name.fromCellString("[N-(2-phenylethyl)-3-[2-(pyridine-4-carbonyl)hydrazinyl]propanamide]"); + sml_row.uri.fromCellString("[http://www.hmdb.ca/metabolites/HMDB0001847]"); + vector tnm = {MzTabDouble(312.17)}; + sml_row.theoretical_neutral_mass.set(tnm); + sml_row.adducts.fromCellString("[[M+H]1+]"); + sml_row.reliability.set("3"); + sml_row.best_id_confidence_measure.fromCellString("[MS, MS:1000752, TOPP Software,]"); + sml_row.best_id_confidence_value.set(0.4); + + MzTabOptionalColumnEntry e; + MzTabString s; + e.first = "SIRIUS_TREE_score"; + s.fromCellString("-10.59083"); + e.second = s; + sml_row.opt_.emplace_back(e); + + e.first = "SIRIUS_explained_intensity_score"; + s.fromCellString("96.67"); + e.second = s; + sml_row.opt_.emplace_back(e); + + e.first = "SIRIUS_ISO_score"; + s.fromCellString("0.0649874"); + e.second = s; + sml_row.opt_.emplace_back(e); + + sml_rows.emplace_back(sml_row); + + // SMF Small molecule feature section + MzTabMSmallMoleculeFeatureSectionRows smf_rows; + MzTabMSmallMoleculeFeatureSectionRow smf_row; + smf_row.smf_identifier.fromCellString(1); + smf_row.sme_id_refs.fromCellString("1"); + smf_row.sme_id_ref_ambiguity_code.fromCellString("null"); + smf_row.adduct.fromCellString("[M+H]1+"); + smf_row.isotopomer.setNull(true); + smf_row.exp_mass_to_charge.set(313.1689); + smf_row.charge.set(1); + smf_row.retention_time.set(156.0); // is always in seconds + smf_row.rt_start.set(152.2); + smf_row.rt_end.set(163.4); + smf_rows.emplace_back(smf_row); + + // SME Small molecule evidence section + MzTabMSmallMoleculeEvidenceSectionRows sme_rows; + MzTabMSmallMoleculeEvidenceSectionRow sme_row; + sme_row.sme_identifier.set(1); + sme_row.evidence_input_id.set("1234.5_156.0"); + sme_row.database_identifier.set("HMDB:HMDB0001847"); + sme_row.chemical_formula.set("C17H20N4O2"); + sme_row.smiles.set("C1=CC=C(C=C1)CCNC(=O)CCNNC(=O)C2=CC=NC=C2"); + sme_row.inchi.set("InChI=1S/C17H20N4O2/c22-16(19-12-6-14-4-2-1-3-5-14)9-13-20-21-17(23)15-7-10-18-11-8-15/h1-5,7-8,10-11,20H,6,9,12-13H2,(H,19,22)(H,21,23)"); + sme_row.chemical_name.set("N-(2-phenylethyl)-3-[2-(pyridine-4-carbonyl)hydrazinyl]propanamide"); + sme_row.uri.set("http://www.hmdb.ca/metabolites/HMDB0001847"); + sme_row.derivatized_form.isNull(); + sme_row.adduct.set("[M+H]1+"); + sme_row.exp_mass_to_charge.set(313.1689); + sme_row.charge.set(1); + sme_row.calc_mass_to_charge.set(313.1665); + MzTabSpectraRef sp_ref; + sp_ref.setMSFile(1); + sp_ref.setSpecRef("index=5"); + sme_row.spectra_ref = sp_ref; + sme_row.identification_method.fromCellString("[MS, MS:1000752, TOPP Software,]"); + sme_row.ms_level.fromCellString("[MS, MS:1000511, ms level, 1]"); + sme_row.id_confidence_measure[0] = MzTabDouble(123); + sme_row.rank.set(1); + + e.first = "SIRIUS_TREE_score"; + s.fromCellString("-10.59083"); + e.second = s; + sme_row.opt_.emplace_back(e); + + e.first = "SIRIUS_explained_intensity_score"; + s.fromCellString("96.67"); + e.second = s; + sme_row.opt_.emplace_back(e); + + e.first = "SIRIUS_ISO_score"; + s.fromCellString("0.0649874"); + e.second = s; + sme_row.opt_.emplace_back(e); + + sme_rows.emplace_back(sme_row); + + // Metadata for MzTab-M + MzTabMMetaData mztabm_meta; + mztabm_meta.mz_tab_id.set("local_identifier"); + mztabm_meta.title.set("SML_ROW_TEST"); + mztabm_meta.description.set("small_molecule_section_row_test"); + + // sample proceessing + MzTabParameterList sp; + sp.fromCellString("[MS, MS:1000544, Conversion to mzML, ]|[MS, MS:1000035, Peak picking, ]|[MS, MS:1000594, Low intensity data point removal, ]"); + mztabm_meta.sample_processing[0] = sp; + + // instrument + MzTabInstrumentMetaData meta_instrument; + meta_instrument.name.fromCellString("[MS, MS:1000483, Thermo Fisher Scientific instrument model, LTQ Orbitrap Velos]"); + meta_instrument.source.fromCellString("[MS, MS:1000008, Ionization Type, ESI]"); + MzTabParameter ana; + ana.fromCellString("[MS, MS:1000443, Mass Analyzer Type, Orbitrap]"); + meta_instrument.analyzer[0] = ana; + meta_instrument.detector.fromCellString("[MS, MS:1000453, Detector, Dynode Detector]"); + mztabm_meta.instrument[0] = meta_instrument; + + // software + MzTabSoftwareMetaData meta_software; + MzTabParameter p_software; + p_software.fromCellString("[MS, MS:1002205, ProteoWizard msconvert, ]"); + meta_software.software = p_software; + meta_software.setting[0] = MzTabString("Peak Picking MS1"); + mztabm_meta.software[0] = meta_software; + + mztabm_meta.publication[0] = MzTabString("pubmed:21063943|doi:10.1007/978-1-60761-987-1_6"); + + // contact + MzTabContactMetaData meta_contact; + meta_contact.name = MzTabString("Max MusterMann"); + meta_contact.affiliation = MzTabString("University of Musterhausen"); + meta_contact.email = MzTabString("MMM@please_do_not_try_to_write_an_email.com"); + + mztabm_meta.contact[0] = meta_contact; + mztabm_meta.uri[0] = MzTabString("https://www.ebi.ac.uk/metabolights/MTBLS"); + mztabm_meta.external_study_uri[0] = MzTabString("https://www.ebi.ac.uk/metabolights/MTBLS/files/i_Investigation.txt"); + mztabm_meta.quantification_method.fromCellString("[MS, MS:1001834, LC-MS label-free quantitation analysis, ]"); + + // sample + MzTabSampleMetaData meta_sample; + meta_sample.description = MzTabString("Nice Sample"); + mztabm_meta.sample[0] = meta_sample; + + // ms-run + MzTabMMSRunMetaData meta_msrun; + meta_msrun.location = MzTabString("ftp://ftp.ebi.ac.uk/path/to/file"); + meta_msrun.instrument_ref = MzTabInteger(0); // only if different instruments are used. + MzTabParameter p_format; + p_format.fromCellString("[MS, MS:1000584, mzML file, ]"); + meta_msrun.format = p_format; + MzTabParameter p_id_format; + p_id_format.fromCellString("[MS, MS:1000584, mzML file, ]"); + meta_msrun.id_format = p_id_format; + std::map pl_fragmentation_method; + pl_fragmentation_method[0].fromCellString("[MS, MS:1000133, CID, ]"); + pl_fragmentation_method[1].fromCellString("[MS, MS:1000422, HCD, ]"); + meta_msrun.fragmentation_method = pl_fragmentation_method; + std::map pl_scan_polarity; + pl_scan_polarity[0].fromCellString("[MS, MS:1000130, positive scan, ]"); + pl_scan_polarity[1].fromCellString("[MS, MS:1000130, positive scan, ]"); + meta_msrun.scan_polarity = pl_scan_polarity; + meta_msrun.hash = MzTabString("de9f2c7fd25e1b3afad3e85a0bd17d9b100db4b3"); + MzTabParameter p_hash_method; + p_hash_method.fromCellString("[MS, MS:1000569, SHA-1, ]"); + meta_msrun.hash_method = p_hash_method; + mztabm_meta.ms_run[0] = meta_msrun; + + // assay + MzTabMAssayMetaData meta_assay; + MzTabParameter p_custom; + p_custom.fromCellString("[MS, , Assay operator, Blogs]"); + meta_assay.custom[0] = p_custom; + meta_assay.external_uri = MzTabString("https://www.ebi.ac.uk/metabolights/MTBLS/files/i_Investigation.txt?STUDYASSAY=a_8pos.txt"); + meta_assay.sample_ref = MzTabInteger(1); + meta_assay.ms_run_ref = MzTabInteger(1); + mztabm_meta.assay[0] = meta_assay; + + // study variable + MzTabMStudyVariableMetaData meta_study; + std::vector assay_refs{1}; + meta_study.assay_refs = assay_refs; + MzTabParameter p_average_function; + p_average_function.fromCellString("[MS, MS:1002883, median, ]"); + meta_study.average_function = p_average_function; + MzTabParameter p_variation_function; + p_variation_function.fromCellString("[MS, MS:1002885, standard error, ]"); // usually we will not average! + meta_study.variation_function = p_variation_function; + meta_study.description = MzTabString("control"); + MzTabParameterList pl_factors; + pl_factors.fromCellString("[MS, MS:1000130, positive scan, ]"); + meta_study.factors = pl_factors; + mztabm_meta.study_variable[0] = meta_study; + + // controlled vocabulary metadata + MzTabCVMetaData meta_cv; + meta_cv.label = MzTabString("MS"); + meta_cv.full_name = MzTabString("PSI-MS controlled vocabulary"); + meta_cv.version = MzTabString("4.1.56"); + meta_cv.url = MzTabString("share/OpenMS/CV/psi-ms.obo"); + mztabm_meta.cv[0] = meta_cv; + + // database + MzTabMDatabaseMetaData meta_db; + MzTabParameter p_db; + p_db.fromCellString("[MIRIAM, MIR:00100079, HMDB, ]"); + meta_db.database = p_db; + meta_db.prefix = MzTabString("HMDB"); + meta_db.version = MzTabString("4.0"); + meta_db.uri = MzTabString("null"); + mztabm_meta.database[0] = meta_db; + + MzTabParameter p_qunit; + p_qunit.fromCellString("[MS, MS:1000042, peak intensity, ]"); + mztabm_meta.small_molecule_quantification_unit = p_qunit; + MzTabParameter p_fqunit; + p_fqunit.fromCellString("[MS, MS:1000042, peak intensity, ]"); + mztabm_meta.small_molecule_feature_quantification_unit = p_fqunit; + MzTabParameter p_idre; + p_idre.fromCellString("[MS, MS:1002955, hr-ms compound identification confidence level, ]"); + mztabm_meta.small_molecule_identification_reliability = p_idre; + MzTabParameter p_confidence; + p_confidence.fromCellString("[MS,MS:1002890,fragmentation score,]"); + mztabm_meta.id_confidence_measure[0] = p_confidence; + + // Fill mztab-m datastructure + mztabm.setMetaData(mztabm_meta); + mztabm.setMSmallMoleculeSectionRows(sml_rows); + mztabm.setMSmallMoleculeFeatureSectionRows(smf_rows); + mztabm.setMSmallMoleculeEvidenceSectionRows(sme_rows); + + // Tests /////////////////////////////// + MzTabMSmallMoleculeSectionRow sml_test; + sml_test = mztabm.getMSmallMoleculeSectionRows()[0]; + TEST_EQUAL(sml_test.smf_id_refs.toCellString(), "1,2") + TEST_EQUAL(sml_test.adducts.toCellString(), "[[M+H]1+]") + + MzTabMSmallMoleculeFeatureSectionRow smf_test; + smf_test = mztabm.getMSmallMoleculeFeatureSectionRows()[0]; + TEST_EQUAL(smf_test.exp_mass_to_charge.toCellString(), "313.168900000000008") + TEST_EQUAL(smf_test.retention_time.toCellString(), "156.0") + + MzTabMSmallMoleculeEvidenceSectionRow sme_test; + sme_test = mztabm.getMSmallMoleculeEvidenceSectionRows()[0]; + TEST_EQUAL(sme_test.database_identifier.toCellString(), "HMDB:HMDB0001847") + TEST_EQUAL(sme_test.identification_method.toCellString(), "[MS, MS:1000752, TOPP Software, ]") + + MzTabMMetaData mtest; + mtest = mztabm.getMetaData(); + TEST_EQUAL(mtest.mz_tab_version.toCellString(),"2.0.0-M") // set by constructor + TEST_EQUAL(mtest.sample_processing[0].toCellString(), "[MS, MS:1000544, Conversion to mzML, ]|[MS, MS:1000035, Peak picking, ]|[MS, MS:1000594, Low intensity data point removal, ]") + TEST_EQUAL(mtest.instrument[0].analyzer[0].toCellString(), "[MS, MS:1000443, Mass Analyzer Type, Orbitrap]") + // meta_software.setting[0] = MzTabString("Peak Picking MS1"); + TEST_EQUAL(mtest.software[0].setting[0].toCellString(), "Peak Picking MS1") + // meta_contact.affiliation = MzTabString("University of Musterhausen"); + TEST_EQUAL(mtest.contact[0].affiliation.toCellString(), "University of Musterhausen") + // meta_sample.description = MzTabString("Nice Sample"); + TEST_EQUAL(mtest.sample[0].description.toCellString(), "Nice Sample") + // p_format.fromCellString("[MS, MS:1000584, mzML file, ]"); + TEST_EQUAL(mtest.ms_run[0].format.toCellString(), "[MS, MS:1000584, mzML file, ]") + // meta_study.description = MzTabString("control"); + TEST_EQUAL(mtest.study_variable[0].description.toCellString(), "control") + // meta_db.prefix = MzTabString("HMDB"); + TEST_EQUAL(mtest.database[0].prefix.toCellString(), "HMDB") + // p_qunit.fromCellString("[MS, MS:1000042, peak intensity, ]"); + TEST_EQUAL(mtest.small_molecule_quantification_unit.toCellString(), "[MS, MS:1000042, peak intensity, ]") + + vector optional_sml_columns = mztabm.getMSmallMoleculeOptionalColumnNames(); + vector optional_sme_columns = mztabm.getMSmallMoleculeEvidenceOptionalColumnNames(); + + TEST_EQUAL(mztabm.getMSmallMoleculeSectionRows().size(),1) + TEST_EQUAL(mztabm.getMSmallMoleculeFeatureSectionRows().size(), 1) + TEST_EQUAL(mztabm.getMSmallMoleculeFeatureSectionRows().size(), 1) + + TEST_EQUAL(optional_sml_columns.size(), 3) + TEST_EQUAL(optional_sme_columns.size(), 3) +} +END_SECTION + +START_SECTION(MzTabM::exportFeatureMapToMzTabM(const FeatureMap& feature_map)) +{ + FeatureMap feature_map; + MzTabM mztabm; + + OMSFile().load(OPENMS_GET_TEST_DATA_PATH("MzTabMFile_input_1.oms"), feature_map); + + mztabm = mztabm.exportFeatureMapToMzTabM(feature_map); + + TEST_EQUAL(mztabm.getMSmallMoleculeSectionRows().size(), 83) + TEST_EQUAL(mztabm.getMSmallMoleculeFeatureSectionRows().size(), 83) + TEST_EQUAL(mztabm.getMSmallMoleculeEvidenceSectionRows().size(), 312) + + TEST_EQUAL(mztabm.getMSmallMoleculeOptionalColumnNames().size(), 0) + TEST_EQUAL(mztabm.getMSmallMoleculeFeatureOptionalColumnNames().size(), 18) + TEST_EQUAL(mztabm.getMSmallMoleculeEvidenceOptionalColumnNames().size(), 6) +} +END_SECTION + +///////////////////////////////////////////////////////////// +///////////////////////////////////////////////////////////// +END_TEST diff --git a/src/tests/class_tests/openms/source/OMSFile_test.cpp b/src/tests/class_tests/openms/source/OMSFile_test.cpp new file mode 100644 index 00000000000..5afff12311d --- /dev/null +++ b/src/tests/class_tests/openms/source/OMSFile_test.cpp @@ -0,0 +1,194 @@ +// -------------------------------------------------------------------------- +// OpenMS -- Open-Source Mass Spectrometry +// -------------------------------------------------------------------------- +// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen, +// ETH Zurich, and Freie Universitaet Berlin 2002-2018. +// +// This software is released under a three-clause BSD license: +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// * Neither the name of any author or any participating institution +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// For a full list of authors, refer to the file AUTHORS. +// -------------------------------------------------------------------------- +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING +// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF +// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// -------------------------------------------------------------------------- +// $Maintainer: Hendrik Weisser $ +// $Authors: Hendrik Weisser $ +// -------------------------------------------------------------------------- + +#include +#include +#include + +/////////////////////////// + +#include +#include +#include +#include +#include + +/////////////////////////// + +using namespace OpenMS; +using namespace std; + + +START_TEST(OMSFile, "$Id$") + +///////////////////////////////////////////////////////////// +///////////////////////////////////////////////////////////// + +String oms_tmp; +String fxml_tmp; +IdentificationData ids; + +START_SECTION(void store(const String& filename, const IdentificationData& id_data)) +{ + vector proteins_in; + vector peptides_in; + IdXMLFile().load(OPENMS_GET_TEST_DATA_PATH("IdXMLFile_whole.idXML"), proteins_in, peptides_in); + // IdentificationData doesn't allow score types with the same name, but different orientations: + peptides_in[0].setHigherScoreBetter(true); + + IdentificationDataConverter::importIDs(ids, proteins_in, peptides_in); + // add an adduct (not supported by idXML): + AdductInfo adduct("Cl-", EmpiricalFormula("Cl"), -1); + auto adduct_ref = ids.registerAdduct(adduct); + IdentificationData::ObservationMatch match = *ids.getObservationMatches().begin(); + match.adduct_opt = adduct_ref; + ids.registerObservationMatch(match); + + NEW_TMP_FILE(oms_tmp); + OMSFile().store(oms_tmp, ids); + TEST_EQUAL(File::empty(oms_tmp), false); +} +END_SECTION + +START_SECTION(void load(const String& filename, IdentificationData& id_data)) +{ + IdentificationData out; + OMSFile().load(oms_tmp, out); + + TEST_EQUAL(ids.getInputFiles().size(), out.getInputFiles().size()); + TEST_EQUAL(ids.getScoreTypes().size(), out.getScoreTypes().size()); + TEST_EQUAL(ids.getProcessingSoftwares().size(), + out.getProcessingSoftwares().size()); + TEST_EQUAL(ids.getDBSearchParams().size(), out.getDBSearchParams().size()); + TEST_EQUAL(ids.getProcessingSteps().size(), + out.getProcessingSteps().size()); + TEST_EQUAL(ids.getObservations().size(), out.getObservations().size()); + TEST_EQUAL(ids.getParentSequences().size(), + out.getParentSequences().size()); + TEST_EQUAL(ids.getParentGroupSets().size(), + out.getParentGroupSets().size()); + TEST_EQUAL(ids.getIdentifiedPeptides().size(), + out.getIdentifiedPeptides().size()); + TEST_EQUAL(ids.getIdentifiedOligos().size(), + out.getIdentifiedOligos().size()); + TEST_EQUAL(ids.getIdentifiedCompounds().size(), + out.getIdentifiedCompounds().size()); + TEST_EQUAL(ids.getAdducts().size(), out.getAdducts().size()); + TEST_EQUAL(ids.getObservationMatches().size(), + out.getObservationMatches().size()); + auto it1 = ids.getObservationMatches().begin(); + auto it2 = out.getObservationMatches().begin(); + auto adduct_it = out.getObservationMatches().end(); + for (; (it1 != ids.getObservationMatches().end()) && + (it2 != out.getObservationMatches().end()); ++it1, ++it2) + { + TEST_EQUAL(it1->steps_and_scores.size(), + it2->steps_and_scores.size()); + if (it2->adduct_opt) adduct_it = it2; // found PSM with adduct + } + // check PSM with adduct: + TEST_EQUAL(adduct_it != out.getObservationMatches().end(), true); + ABORT_IF(adduct_it == out.getObservationMatches().end()); + TEST_EQUAL(adduct_it->observation_ref->data_id, + ids.getObservationMatches().begin()->observation_ref->data_id); + TEST_EQUAL(adduct_it->identified_molecule_var.toString(), + ids.getObservationMatches().begin()->identified_molecule_var.toString()); + TEST_EQUAL((*adduct_it->adduct_opt)->getName(), "Cl-"); +} +END_SECTION + +START_SECTION(void store(const String& filename, const FeatureMap& features)) +{ + FeatureMap features; + FeatureXMLFile().load(OPENMS_GET_TEST_DATA_PATH("FeatureXMLFileOMStest_1.featureXML"), features); + // protein and peptide IDs use same score type (name) with different orientations; + // IdentificationData doesn't allow this, so change it here: + for (auto& run : features.getProteinIdentifications()) + { + run.setScoreType(run.getScoreType() + "_protein"); + } + IdentificationDataConverter::importFeatureIDs(features); + + NEW_TMP_FILE(oms_tmp); + OMSFile().store(oms_tmp, features); + TEST_EQUAL(File::empty(oms_tmp), false); +} +END_SECTION + +START_SECTION(void load(const String& filename, FeatureMap& features)) +{ + FeatureMap features; + OMSFile().load(oms_tmp, features); + + TEST_EQUAL(features.size(), 2); + TEST_EQUAL(features[0].getSubordinates().size(), 2); + + IdentificationDataConverter::exportFeatureIDs(features); + + features.sortByPosition(); + + // sort for reproducibility + auto& proteins = features.getProteinIdentifications(); + for (auto& protein : proteins) + { + protein.sort(); + } + auto& un_peptides = features.getUnassignedPeptideIdentifications(); + for (auto& un_pep : un_peptides) + { + un_pep.sort(); + } + + //features.setProteinIdentifications(proteins); + //features.setUnassignedPeptideIdentifications(un_peptides); + features.sortByPosition(); + + NEW_TMP_FILE(fxml_tmp); + FeatureXMLFile().store(fxml_tmp, features); + + FuzzyStringComparator fsc; + fsc.setAcceptableRelative(1.001); + fsc.setAcceptableAbsolute(1); + StringList sl; + sl.push_back("xml-stylesheet"); + sl.push_back("UnassignedPeptideIdentification"); + fsc.setWhitelist(sl); + + TEST_EQUAL(fsc.compareFiles(fxml_tmp, OPENMS_GET_TEST_DATA_PATH("OMSFile_test_2.featureXML")), true); +} +END_SECTION + +///////////////////////////////////////////////////////////// +///////////////////////////////////////////////////////////// +END_TEST diff --git a/src/tests/class_tests/openms/source/Param_test.cpp b/src/tests/class_tests/openms/source/Param_test.cpp index 4febc620311..9c9dd62043d 100644 --- a/src/tests/class_tests/openms/source/Param_test.cpp +++ b/src/tests/class_tests/openms/source/Param_test.cpp @@ -976,7 +976,7 @@ START_SECTION((Param copy(const std::string &prefix, bool remove_prefix=false) c Param p2; p2 = p_src.copy("notthere:"); - TEST_EQUAL((p2==Param()),true) + TEST_EQUAL((p2.empty()),true) p2 = p_src.copy("test:"); @@ -1616,14 +1616,14 @@ START_SECTION((void checkDefaults(const std::string &name, const Param &defaults p.setValue("double",47.11,"double"); p.checkDefaults("Test",d,""); - TEST_EQUAL(os.str()=="",false) + TEST_EQUAL(os.str().empty(),false) d.setValue("int",5,"int"); d.setValue("double",47.11,"double"); os.str(""); os.clear(); p.checkDefaults("Test",d,""); - TEST_EQUAL(os.str()=="",false) + TEST_EQUAL(os.str().empty(),false) p.clear(); p.setValue("pref:string",std::string("bla"),"pref:string"); @@ -1632,12 +1632,12 @@ START_SECTION((void checkDefaults(const std::string &name, const Param &defaults os.str(""); os.clear(); p.checkDefaults("Test",d,"pref"); - TEST_EQUAL(os.str()=="",false) + TEST_EQUAL(os.str().empty(),false) os.str(""); os.clear(); p.checkDefaults("Test2",d,"pref:"); - TEST_EQUAL(os.str()=="",false) + TEST_EQUAL(os.str().empty(),false) //check string restrictions vector s_rest = {"a","b","c"}; diff --git a/src/tests/class_tests/openms/source/PeakFileOptions_test.cpp b/src/tests/class_tests/openms/source/PeakFileOptions_test.cpp index ce1f0fc76a3..88b9988f63e 100644 --- a/src/tests/class_tests/openms/source/PeakFileOptions_test.cpp +++ b/src/tests/class_tests/openms/source/PeakFileOptions_test.cpp @@ -207,7 +207,7 @@ START_SECTION((void clearMSLevels())) // now clear the ms levels tmp.clearMSLevels(); TEST_EQUAL(tmp.hasMSLevels(), false); - TEST_EQUAL(tmp.getMSLevels()==vector(),true); + TEST_EQUAL(tmp.getMSLevels().empty(),true); END_SECTION START_SECTION((bool hasMSLevels() const)) @@ -228,7 +228,7 @@ END_SECTION START_SECTION((const vector& getMSLevels() const)) PeakFileOptions tmp; - TEST_EQUAL(tmp.getMSLevels()==vector(),true); + TEST_EQUAL(tmp.getMSLevels().empty(),true); END_SECTION START_SECTION(Size getMaxDataPoolSize() const) diff --git a/src/tests/class_tests/openms/source/RNaseDigestion_test.cpp b/src/tests/class_tests/openms/source/RNaseDigestion_test.cpp index 8c68cdaab3d..5fac487d876 100644 --- a/src/tests/class_tests/openms/source/RNaseDigestion_test.cpp +++ b/src/tests/class_tests/openms/source/RNaseDigestion_test.cpp @@ -166,14 +166,14 @@ START_SECTION((void digest(const NASequence& rna, vector& output, Si rd.setMissedCleavages(0); // shouldn't matter for the result rd.digest(NASequence::fromString("ACGU"), out); TEST_EQUAL(out.size(), 10); - TEST_STRING_EQUAL(out[0].toString(), "A"); - TEST_STRING_EQUAL(out[1].toString(), "AC"); - TEST_STRING_EQUAL(out[2].toString(), "ACG"); + TEST_STRING_EQUAL(out[0].toString(), "Ap"); + TEST_STRING_EQUAL(out[1].toString(), "ACp"); + TEST_STRING_EQUAL(out[2].toString(), "ACGp"); TEST_STRING_EQUAL(out[3].toString(), "ACGU"); - TEST_STRING_EQUAL(out[4].toString(), "C"); - TEST_STRING_EQUAL(out[5].toString(), "CG"); + TEST_STRING_EQUAL(out[4].toString(), "Cp"); + TEST_STRING_EQUAL(out[5].toString(), "CGp"); TEST_STRING_EQUAL(out[6].toString(), "CGU"); - TEST_STRING_EQUAL(out[7].toString(), "G"); + TEST_STRING_EQUAL(out[7].toString(), "Gp"); TEST_STRING_EQUAL(out[8].toString(), "GU"); TEST_STRING_EQUAL(out[9].toString(), "U"); } @@ -183,8 +183,8 @@ START_SECTION((void digest(IdentificationData& id_data, Size min_length = 0, Size max_length = 0) const)) { IdentificationData id_data; - IdentificationData::ParentMolecule rna("test", IdentificationData::MoleculeType::RNA, "pAUGUCGCAG"); - id_data.registerParentMolecule(rna); + IdentificationData::ParentSequence rna("test", IdentificationData::MoleculeType::RNA, "pAUGUCGCAG"); + id_data.registerParentSequence(rna); RNaseDigestion rd; rd.setEnzyme("RNase_T1"); // cuts after G and leaves a 3'-phosphate @@ -195,7 +195,7 @@ START_SECTION((void digest(IdentificationData& id_data, Size min_length = 0, /// multiple occurrences of the same oligo: IdentificationData id_data2; rna.sequence = "ACUGACUGG"; - id_data2.registerParentMolecule(rna); + id_data2.registerParentSequence(rna); rd.digest(id_data2, 2); @@ -205,7 +205,7 @@ START_SECTION((void digest(IdentificationData& id_data, Size min_length = 0, TEST_EQUAL(ref->parent_matches.size(), 1); ABORT_IF(ref->parent_matches.empty()); // oligo sequence matches in two locations: - const set& matches = + const set& matches = ref->parent_matches.begin()->second; TEST_EQUAL(matches.size(), 2); ABORT_IF(matches.size() < 2); diff --git a/src/tests/class_tests/openms/source/RangeManager_test.cpp b/src/tests/class_tests/openms/source/RangeManager_test.cpp index 836e0670e47..258e617b979 100644 --- a/src/tests/class_tests/openms/source/RangeManager_test.cpp +++ b/src/tests/class_tests/openms/source/RangeManager_test.cpp @@ -28,8 +28,8 @@ // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // -------------------------------------------------------------------------- -// $Maintainer: Timo Sachsenberg$ -// $Authors: Marc Sturm $ +// $Maintainer: Chris Bielow $ +// $Authors: Chris Bielow $ // -------------------------------------------------------------------------- #include @@ -42,39 +42,26 @@ /////////////////////////// +#include + using namespace OpenMS; using namespace std; -class RM - : public RangeManager<2> -{ - public: - RM() - : RangeManager<2>() - { - - } - - RM(const RM& rhs) - : RangeManager<2>(rhs) - { - - } - - RM& operator = (const RM& rhs) - { - if (this==&rhs) return *this; +// test with additional Mobility (should always be empty) +using RangeMType = RangeManagerContainer; +using RangeMTypeInt = RangeManager; +using RangeMTypeMzInt = RangeManager; - RangeManager<2>::operator=(rhs); - - return *this; - } +class RM : public RangeMType +{ + public: + // avoid compiler warning, but in production code virtual should not be done on a RM to save + // space and time + virtual ~RM() = default; bool operator == (const RM& rhs) const { - return - RangeManager<2>::operator==(rhs); - ; + return RangeMType::operator==(rhs); } bool operator != (const RM& rhs) const @@ -103,7 +90,12 @@ class RM vec.push_back(tmp); clearRanges(); - updateRanges_(vec.begin(), vec.end()); + for (const auto& peak : vec) + { + extendRT(peak.getRT()); + extendMZ(peak.getMZ()); + extendIntensity(peak.getIntensity()); + } } virtual void updateRanges2() @@ -117,9 +109,13 @@ class RM vec.push_back(tmp); clearRanges(); - updateRanges_(vec.begin(), vec.end()); + for (const auto& peak : vec) + { + extendRT(peak.getRT()); + extendMZ(peak.getMZ()); + extendIntensity(peak.getIntensity()); + } } - }; // class RM START_TEST(RangeManager, "RangeManager") @@ -127,31 +123,164 @@ START_TEST(RangeManager, "RangeManager") ///////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////// +// tests for RangeBase + +START_SECTION(RangeBase()) + RangeBase b; + TEST_EQUAL(b.isEmpty(), true) +END_SECTION + +START_SECTION(RangeBase(const double min, const double max)) + RangeBase b(4, 6); + TEST_EQUAL(b.isEmpty(), false) + TEST_EQUAL(b.getMin(), 4) + TEST_EQUAL(b.getMax(), 6) + + TEST_EXCEPTION(Exception::InvalidRange, RangeBase(6, 3)) +END_SECTION + +START_SECTION(void clear()) + RangeBase b(4, 6); + TEST_EQUAL(b.isEmpty(), false) + b.clear(); + TEST_EQUAL(b.isEmpty(), true) +END_SECTION + +START_SECTION(bool isEmpty() const) + NOT_TESTABLE // tested above +END_SECTION + +START_SECTION(bool contains(const double value) const) + RangeBase b(4, 6); + TEST_EQUAL(b.contains(5), true) + TEST_EQUAL(b.contains(3), false) + TEST_EQUAL(b.contains(7), false) + RangeBase empty; + TEST_EQUAL(empty.contains(5), false) +END_SECTION + +START_SECTION(bool contains(const RangeBase& inner_range) const) + RangeBase b(2, 6), inner1(2,4), inner2(3,4), inner3(4,6), over1(1,4), over2(3,7), outer(1,7); + TEST_EQUAL(b.contains(inner1), true) + TEST_EQUAL(b.contains(inner2), true) + TEST_EQUAL(b.contains(inner3), true) + TEST_EQUAL(b.contains(over1), false) + TEST_EQUAL(b.contains(over2), false) + TEST_EQUAL(b.contains(outer), false) + TEST_EQUAL(outer.contains(b), true) +END_SECTION + +START_SECTION(void setMin(const double min)) + RangeBase b(4, 6); + b.setMin(5); + TEST_EQUAL(b.getMin(), 5) + b.setMin(7);// also increases max + TEST_EQUAL(b.getMin(), 7) + TEST_EQUAL(b.getMax(), 7); +END_SECTION + +START_SECTION(void setMax(const double max)) + RangeBase b(4, 6); + b.setMax(5); + TEST_EQUAL(b.getMax(), 5) + b.setMax(2);// also decreases min + TEST_EQUAL(b.getMin(), 2) + TEST_EQUAL(b.getMax(), 2); +END_SECTION + +START_SECTION(double getMin() const) + NOT_TESTABLE // tested above +END_SECTION + +START_SECTION(double getMax() const) + NOT_TESTABLE // tested above +END_SECTION + +START_SECTION(void extend(const RangeBase& other)) + RangeBase b(4, 6); + RangeBase other(1, 8); + b.extend(other); + TEST_EQUAL(b.getMin(), 1) + TEST_EQUAL(b.getMax(), 8) +END_SECTION + +/// extend the range such that it includes the given @p value +START_SECTION(void extend(const double value)) + RangeBase b(4, 6); + b.extend(1); + TEST_EQUAL(b.getMin(), 1) + TEST_EQUAL(b.getMax(), 6) + RangeBase b2(4, 6); + b2.extend(8); + TEST_EQUAL(b2.getMin(), 4) + TEST_EQUAL(b2.getMax(), 8) + RangeBase b3(4, 6); + b3.extend(5); + TEST_EQUAL(b3.getMin(), 4) + TEST_EQUAL(b3.getMax(), 6) +END_SECTION + +START_SECTION(void scaleBy(const double factor)) + RangeBase b(4, 6); + b.scaleBy(10); // diff is 2, so extend distance to 20, by increase of 9 on each side + TEST_EQUAL(b.getMin(), 4-9) + TEST_EQUAL(b.getMax(), 6+9) + + // scaling empty ranges does nothing + RangeBase empty1, empty2; + empty1.scaleBy(10); + TEST_EQUAL(empty1, empty2) +END_SECTION + +START_SECTION(void assign(const RangeBase& rhs)) + RangeBase b(4, 6), empty; + empty.assign(b); + TEST_EQUAL(empty.getMin(), 4) + TEST_EQUAL(empty.getMax(), 6) +END_SECTION + +START_SECTION(bool operator==(const RangeBase& rhs) const) + RangeBase b(4, 6), empty; + TEST_EQUAL(b == empty, false) + TEST_EQUAL(b == b, true) + TEST_EQUAL(empty == empty, true) +END_SECTION + + + RM* ptr; RM* nullPointer = nullptr; -START_SECTION((RangeManager())) +START_SECTION((RangeMType())) ptr = new RM(); TEST_NOT_EQUAL(ptr, nullPointer) END_SECTION -START_SECTION((virtual ~RangeManager())) +START_SECTION((~RangeMType())) delete ptr; END_SECTION -START_SECTION((const PositionType& getMin() const)) - TEST_EQUAL(RM().getMin(), RM::PositionType::maxPositive()) +START_SECTION((double getMinMZ() const)) + TEST_EQUAL(RM().getMinMZ(), std::numeric_limits::max()) +END_SECTION + +START_SECTION((double getMaxMZ() const)) + TEST_EQUAL(RM().getMaxMZ(), -std::numeric_limits::max()) +END_SECTION + +START_SECTION((double getMinIntensity() const)) +TEST_EQUAL(RM().getMinIntensity(), std::numeric_limits::max()) END_SECTION -START_SECTION((const PositionType& getMax() const)) - TEST_EQUAL(RM().getMax(), RM::PositionType::minNegative()) +START_SECTION((double getMaxIntensity() const)) +TEST_EQUAL(RM().getMaxIntensity(), -std::numeric_limits::max()) END_SECTION -START_SECTION((double getMinInt() const )) - TEST_REAL_SIMILAR(RM().getMinInt(), numeric_limits::max()) +START_SECTION((double getMinMobility() const)) +TEST_EQUAL(RM().getMinMobility(), std::numeric_limits::max()) END_SECTION -START_SECTION((double getMaxInt() const )) - TEST_REAL_SIMILAR(RM().getMaxInt(), -numeric_limits::max()) +START_SECTION((double getMaxMobility() const)) +TEST_EQUAL(RM().getMaxMobility(), -std::numeric_limits::max()) END_SECTION START_SECTION((virtual void updateRanges()=0)) @@ -160,51 +289,186 @@ START_SECTION((virtual void updateRanges()=0)) rm.updateRanges(); rm.updateRanges(); //second time to check the initialization - TEST_REAL_SIMILAR(rm.getMin()[0], 2.0) - TEST_REAL_SIMILAR(rm.getMin()[1], 500.0) - TEST_REAL_SIMILAR(rm.getMax()[0], 100.0) - TEST_REAL_SIMILAR(rm.getMax()[1], 1300.0) - TEST_REAL_SIMILAR(rm.getMinInt(), 1.0) - TEST_REAL_SIMILAR(rm.getMaxInt(), 47110.0) + TEST_REAL_SIMILAR(rm.getMinRT(), 2.0) + TEST_REAL_SIMILAR(rm.getMinMZ(), 500.0) + TEST_EQUAL(rm.RangeRT::isEmpty(), false) + TEST_REAL_SIMILAR(rm.getMaxRT(), 100.0) + TEST_REAL_SIMILAR(rm.getMaxMZ(), 1300.0) + TEST_EQUAL(rm.RangeMZ::isEmpty(), false) + TEST_REAL_SIMILAR(rm.getMinIntensity(), 1.0) + TEST_REAL_SIMILAR(rm.getMaxIntensity(), 47110.0) + TEST_EQUAL(rm.RangeIntensity::isEmpty(), false) + TEST_EQUAL(rm.getMinMobility(), std::numeric_limits::max()) + TEST_EQUAL(rm.getMaxMobility(), -std::numeric_limits::max()) + TEST_EQUAL(rm.RangeMobility::isEmpty(), true) //test with only one point rm.updateRanges2(); //second time to check the initialization - TEST_REAL_SIMILAR(rm.getMin()[0], 2.0) - TEST_REAL_SIMILAR(rm.getMin()[1], 500.0) - TEST_REAL_SIMILAR(rm.getMax()[0], 2.0) - TEST_REAL_SIMILAR(rm.getMax()[1], 500.0) - TEST_REAL_SIMILAR(rm.getMinInt(), 1.0) - TEST_REAL_SIMILAR(rm.getMaxInt(), 1.0) + TEST_REAL_SIMILAR(rm.getMinRT(), 2.0) + TEST_REAL_SIMILAR(rm.getMinMZ(), 500.0) + TEST_REAL_SIMILAR(rm.getMaxRT(), 2.0) + TEST_REAL_SIMILAR(rm.getMaxMZ(), 500.0) + TEST_REAL_SIMILAR(rm.getMinIntensity(), 1.0) + TEST_REAL_SIMILAR(rm.getMaxIntensity(), 1.0) +END_SECTION + + +START_SECTION(HasRangeType hasRange() const) + RM rm; + TEST_EQUAL(rm.hasRange() == HasRangeType::NONE, true); + rm.updateRanges(); + TEST_EQUAL(rm.hasRange() == HasRangeType::SOME, true); + rm.extendMobility(56.4); + TEST_EQUAL(rm.hasRange() == HasRangeType::ALL, true); +END_SECTION + +START_SECTION(template + bool containsAll(const RangeManager& rhs) const) + RM rm; + rm.updateRanges(); + RM outer = rm; + TEST_EQUAL(rm.containsAll(outer), true); + TEST_EQUAL(outer.containsAll(rm), true); + outer.scaleBy(1.1); + TEST_EQUAL(rm.containsAll(outer), false); + TEST_EQUAL(outer.containsAll(rm), true); + outer.scaleBy(0.5); + TEST_EQUAL(rm.containsAll(outer), true); + TEST_EQUAL(outer.containsAll(rm), false); + + outer = rm; + // empty dimensions in the rhs are considered contained + outer.extendMobility(56.4); // rm.mobility is empty + TEST_EQUAL(rm.containsAll(outer), false); + TEST_EQUAL(outer.containsAll(rm), true); + // empty dimensions do not count + outer.RangeMZ::scaleBy(0.5); // mz range is smaller + rm.RangeMZ::clear(); // but now does not count anymore + TEST_EQUAL(rm.containsAll(outer), false); // due to mobility from above + TEST_EQUAL(outer.containsAll(rm), true); + + // no ranges overlap... + RangeManager rmz; + RangeManager im; + TEST_EXCEPTION(Exception::InvalidRange, rmz.containsAll(im)) + +END_SECTION + +START_SECTION(template + void extend(const RangeManager& rhs)) + RM rm; + rm.updateRanges(); + RangeMTypeMzInt mid; + mid.assign(rm); // assigns only overlapping dimensions + TEST_REAL_SIMILAR(mid.getMinMZ(), 500.0) + TEST_REAL_SIMILAR(mid.getMaxMZ(), 1300.0) + TEST_REAL_SIMILAR(mid.getMinIntensity(), 1.0) + TEST_REAL_SIMILAR(mid.getMaxIntensity(), 47110.0) + + RangeMTypeInt small; + small.extendIntensity(123456.7); + mid.extend(small); + TEST_REAL_SIMILAR(mid.getMinMZ(), 500.0) + TEST_REAL_SIMILAR(mid.getMaxMZ(), 1300.0) + TEST_REAL_SIMILAR(mid.getMinIntensity(), 1.0) + TEST_REAL_SIMILAR(mid.getMaxIntensity(), 123456.7) +END_SECTION + +START_SECTION(void scaleBy(const double factor)) + RM rm; + rm.updateRanges(); + rm.scaleBy(2); + TEST_REAL_SIMILAR(rm.getMinRT(), 2.0-49) + TEST_REAL_SIMILAR(rm.getMaxRT(), 100.0+49) + TEST_REAL_SIMILAR(rm.getMinMZ(), 500.0-400) + TEST_REAL_SIMILAR(rm.getMaxMZ(), 1300.0+400) + TEST_REAL_SIMILAR(rm.getMinIntensity(), 1.0 - (47109.0/2)) + TEST_REAL_SIMILAR(rm.getMaxIntensity(), 47110.0 + (47109.0/2)) + TEST_EQUAL(rm.RangeMobility::isEmpty(), true) + + // scaling a dimension where min == max does nothing + RangeManager rtmz; + rtmz.extendMZ(100); + rtmz.extendRT(50); + auto copy = rtmz; + rtmz.scaleBy(2.0); + TEST_EQUAL(rtmz, copy) + + // scaling empty dimensions does nothing + RM rm_empty, rm_empty2; + rm_empty.scaleBy(4); + TEST_EQUAL(rm_empty, rm_empty2) +END_SECTION + +START_SECTION(RangeBase& getRangeForDim(MSDim dim)) + RM rm; + rm.updateRanges(); + auto rt = rm.getRangeForDim(MSDim::RT); + auto mz = rm.getRangeForDim(MSDim::MZ); + auto in = rm.getRangeForDim(MSDim::INT); + auto im = rm.getRangeForDim(MSDim::IM); + TEST_REAL_SIMILAR(rt.getMin(), 2.0) + TEST_REAL_SIMILAR(mz.getMin(), 500.0) + TEST_REAL_SIMILAR(rt.getMax(), 100.0) + TEST_REAL_SIMILAR(mz.getMax(), 1300.0) + TEST_REAL_SIMILAR(in.getMin(), 1.0) + TEST_REAL_SIMILAR(in.getMax(), 47110.0) + TEST_EQUAL(rt.isEmpty(), false) + TEST_EQUAL(im.isEmpty(), true) END_SECTION START_SECTION((void clearRanges())) RM rm; rm.updateRanges(); - TEST_REAL_SIMILAR(rm.getMin()[0], 2.0) - TEST_REAL_SIMILAR(rm.getMin()[1], 500.0) - TEST_REAL_SIMILAR(rm.getMax()[0], 100.0) - TEST_REAL_SIMILAR(rm.getMax()[1], 1300.0) - TEST_REAL_SIMILAR(rm.getMinInt(), 1.0) - TEST_REAL_SIMILAR(rm.getMaxInt(), 47110.0) + TEST_REAL_SIMILAR(rm.getMinRT(), 2.0) + TEST_REAL_SIMILAR(rm.getMinMZ(), 500.0) + TEST_REAL_SIMILAR(rm.getMaxRT(), 100.0) + TEST_REAL_SIMILAR(rm.getMaxMZ(), 1300.0) + TEST_REAL_SIMILAR(rm.getMinIntensity(), 1.0) + TEST_REAL_SIMILAR(rm.getMaxIntensity(), 47110.0) + TEST_EQUAL(rm.RangeRT::isEmpty(), false) + TEST_EQUAL(rm.RangeMZ::isEmpty(), false) + TEST_EQUAL(rm.RangeIntensity::isEmpty(), false) + TEST_EQUAL(rm.RangeMobility::isEmpty(), true) rm.clearRanges(); - TEST_EQUAL(RM().getMin(), RM::PositionType::maxPositive()) - TEST_EQUAL(RM().getMax(), RM::PositionType::minNegative()) - TEST_REAL_SIMILAR(RM().getMinInt(), numeric_limits::max()) - TEST_REAL_SIMILAR(RM().getMaxInt(), -numeric_limits::max()) + TEST_EQUAL(rm.getMinRT(), std::numeric_limits::max()) + TEST_EQUAL(rm.getMaxRT(), -std::numeric_limits::max()) + TEST_REAL_SIMILAR(rm.getMinIntensity(), numeric_limits::max()) + TEST_REAL_SIMILAR(rm.getMaxIntensity(), -numeric_limits::max()) + TEST_EQUAL(rm.RangeRT::isEmpty(), true) + TEST_EQUAL(rm.RangeMZ::isEmpty(), true) + TEST_EQUAL(rm.RangeIntensity::isEmpty(), true) + TEST_EQUAL(rm.RangeMobility::isEmpty(), true) END_SECTION + +START_SECTION(void printRange(std::ostream& out) const) + RM rm; + rm.extendRT(1.0); + rm.extendMZ(2.0); + rm.extendIntensity(3.0); + rm.extendMobility(4.0); + stringstream ss; + rm.printRange(ss); + TEST_EQUAL(ss.str(), "rt: [1, 1]\n" + "mz: [2, 2]\n" + "intensity: [3, 3]\n" + "mobility: [4, 4]\n"); +END_SECTION + + START_SECTION((RangeManager(const RangeManager& rhs))) RM rm0; rm0.updateRanges(); RM rm(rm0); - TEST_REAL_SIMILAR(rm.getMin()[0], 2.0) - TEST_REAL_SIMILAR(rm.getMin()[1], 500.0) - TEST_REAL_SIMILAR(rm.getMax()[0], 100.0) - TEST_REAL_SIMILAR(rm.getMax()[1], 1300.0) - TEST_REAL_SIMILAR(rm.getMinInt(), 1.0) - TEST_REAL_SIMILAR(rm.getMaxInt(), 47110.0) + TEST_REAL_SIMILAR(rm.getMinRT(), 2.0) + TEST_REAL_SIMILAR(rm.getMinMZ(), 500.0) + TEST_REAL_SIMILAR(rm.getMaxRT(), 100.0) + TEST_REAL_SIMILAR(rm.getMaxMZ(), 1300.0) + TEST_REAL_SIMILAR(rm.getMinIntensity(), 1.0) + TEST_REAL_SIMILAR(rm.getMaxIntensity(), 47110.0) END_SECTION START_SECTION((RangeManager& operator = (const RangeManager& rhs))) @@ -212,12 +476,12 @@ START_SECTION((RangeManager& operator = (const RangeManager& rhs))) rm0.updateRanges(); RM rm; rm = rm0; - TEST_REAL_SIMILAR(rm.getMin()[0], 2.0) - TEST_REAL_SIMILAR(rm.getMin()[1], 500.0) - TEST_REAL_SIMILAR(rm.getMax()[0], 100.0) - TEST_REAL_SIMILAR(rm.getMax()[1], 1300.0) - TEST_REAL_SIMILAR(rm.getMinInt(), 1.0) - TEST_REAL_SIMILAR(rm.getMaxInt(), 47110.0) + TEST_REAL_SIMILAR(rm.getMinRT(), 2.0) + TEST_REAL_SIMILAR(rm.getMinMZ(), 500.0) + TEST_REAL_SIMILAR(rm.getMaxRT(), 100.0) + TEST_REAL_SIMILAR(rm.getMaxMZ(), 1300.0) + TEST_REAL_SIMILAR(rm.getMinIntensity(), 1.0) + TEST_REAL_SIMILAR(rm.getMaxIntensity(), 47110.0) END_SECTION START_SECTION((bool operator == (const RangeManager& rhs) const)) diff --git a/src/tests/class_tests/openms/source/RibonucleotideDB_test.cpp b/src/tests/class_tests/openms/source/RibonucleotideDB_test.cpp index 79202ecffae..1b6549d05e1 100644 --- a/src/tests/class_tests/openms/source/RibonucleotideDB_test.cpp +++ b/src/tests/class_tests/openms/source/RibonucleotideDB_test.cpp @@ -95,6 +95,15 @@ START_SECTION((const Ribonucleotide& getRibonucleotidePrefix(const String& seq)) } END_SECTION +START_SECTION(EmpiricalFormula getBaselossFormula()) +{ + const Ribonucleotide* dna = ptr->getRibonucleotide("dT"); + TEST_EQUAL(EmpiricalFormula("C5H10O4") == dna->getBaselossFormula(), true); + const Ribonucleotide* rnam = ptr->getRibonucleotide("Um"); + TEST_EQUAL(EmpiricalFormula("C6H12O5") == rnam->getBaselossFormula(), true); +} +END_SECTION + ///////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////// END_TEST diff --git a/src/tests/class_tests/openms/source/SequestInfile_test.cpp b/src/tests/class_tests/openms/source/SequestInfile_test.cpp index d3fa2017453..15ed23dcce4 100644 --- a/src/tests/class_tests/openms/source/SequestInfile_test.cpp +++ b/src/tests/class_tests/openms/source/SequestInfile_test.cpp @@ -344,7 +344,7 @@ END_SECTION START_SECTION(void setDatabase(const String& database)) - file.setDatabase("\\\\bude\\langwisc\\sequest_test\\Analysis.mzXML.fasta"); + file.setDatabase(R"(\\bude\langwisc\sequest_test\Analysis.mzXML.fasta)"); TEST_STRING_EQUAL(file.getDatabase() , "\\\\bude\\langwisc\\sequest_test\\Analysis.mzXML.fasta") END_SECTION diff --git a/src/tests/class_tests/openms/source/SequestOutfile_test.cpp b/src/tests/class_tests/openms/source/SequestOutfile_test.cpp index 03e0e6b3bf1..e0876ac66d0 100644 --- a/src/tests/class_tests/openms/source/SequestOutfile_test.cpp +++ b/src/tests/class_tests/openms/source/SequestOutfile_test.cpp @@ -344,7 +344,7 @@ START_SECTION(void getSequences(const String& database_filename, const map< Stri file.getSequences(OPENMS_GET_TEST_DATA_PATH("Sequest_test2.fasta"), ac_position_map_subset, found_sequences, found, not_found); TEST_EQUAL(found.size(), 4) TEST_EQUAL(not_found.size(), 0) - ABORT_IF(found.size() != 4 || not_found.size() != 0) + ABORT_IF(found.size() != 4 || !not_found.empty()) TEST_EQUAL(String("P02666"), found[2].first) TEST_EQUAL(ac_position_map["P02666"], found[2].second) diff --git a/src/tests/class_tests/openms/source/SpectrumMetaDataLookup_test.cpp b/src/tests/class_tests/openms/source/SpectrumMetaDataLookup_test.cpp index b5aa8671e61..55df16fe02f 100644 --- a/src/tests/class_tests/openms/source/SpectrumMetaDataLookup_test.cpp +++ b/src/tests/class_tests/openms/source/SpectrumMetaDataLookup_test.cpp @@ -144,7 +144,7 @@ START_SECTION((void getSpectrumMetaData(const String&, SpectrumMetaData&, MetaDa TEST_EQUAL(meta.rt, 2.0); TEST_EQUAL(meta.native_id, "spectrum=1"); - lookup.addReferenceFormat("rt=(?\\d+(\\.\\d+)?),mz=(?\\d+(\\.\\d+)?)"); + lookup.addReferenceFormat(R"(rt=(?\d+(\.\d+)?),mz=(?\d+(\.\d+)?))"); SpectrumMetaDataLookup::SpectrumMetaData meta2; SpectrumMetaDataLookup::MetaDataFlags flags = (SpectrumMetaDataLookup::MDF_RT | SpectrumMetaDataLookup::MDF_PRECURSORMZ); diff --git a/src/tests/class_tests/openms/source/SpectrumSettings_test.cpp b/src/tests/class_tests/openms/source/SpectrumSettings_test.cpp index 0d06a530271..c1ede17b941 100644 --- a/src/tests/class_tests/openms/source/SpectrumSettings_test.cpp +++ b/src/tests/class_tests/openms/source/SpectrumSettings_test.cpp @@ -92,7 +92,7 @@ END_SECTION START_SECTION((AcquisitionInfo& getAcquisitionInfo())) SpectrumSettings tmp; - TEST_EQUAL(tmp.getAcquisitionInfo()==AcquisitionInfo(), true); + TEST_EQUAL(tmp.getAcquisitionInfo().empty(), true); END_SECTION START_SECTION((void setAcquisitionInfo(const AcquisitionInfo& acquisition_info))) @@ -100,13 +100,13 @@ START_SECTION((void setAcquisitionInfo(const AcquisitionInfo& acquisition_info)) AcquisitionInfo ai; ai.setMethodOfCombination("test"); tmp.setAcquisitionInfo(ai); - TEST_EQUAL(tmp.getAcquisitionInfo()==AcquisitionInfo(), false); + TEST_EQUAL(tmp.getAcquisitionInfo() == AcquisitionInfo(), false); END_SECTION START_SECTION((const AcquisitionInfo& getAcquisitionInfo() const)) SpectrumSettings tmp; tmp.getAcquisitionInfo().setMethodOfCombination("test"); - TEST_EQUAL(tmp.getAcquisitionInfo()==AcquisitionInfo(), false); + TEST_EQUAL(tmp.getAcquisitionInfo() == AcquisitionInfo(), false); END_SECTION START_SECTION((SourceFile& getSourceFile())) @@ -250,7 +250,8 @@ START_SECTION((SpectrumSettings& operator= (const SpectrumSettings& source))) TEST_EQUAL(tmp2.getPrecursors().size(),1); TEST_EQUAL(tmp2.getProducts().size(),1); TEST_EQUAL(tmp2.getInstrumentSettings()==InstrumentSettings(), false); - TEST_EQUAL(tmp2.getAcquisitionInfo()==AcquisitionInfo(), false); + TEST_EQUAL(tmp2.getAcquisitionInfo()==AcquisitionInfo(), false); + TEST_EQUAL(tmp2.getAcquisitionInfo().empty(), true); TEST_STRING_EQUAL(tmp2.getNativeID(),"nid"); TEST_EQUAL(tmp2.getDataProcessing().size(),1); TEST_EQUAL(tmp2.getMetaValue("bla")=="bluff",true); @@ -274,8 +275,9 @@ START_SECTION((SpectrumSettings(const SpectrumSettings& source))) TEST_EQUAL(tmp2.getComment(), "bla"); TEST_EQUAL(tmp2.getType(), SpectrumSettings::CENTROID); TEST_EQUAL(tmp2.getPrecursors().size(), 1); - TEST_EQUAL(tmp2.getProducts().size(),1); + TEST_EQUAL(tmp2.getProducts().size(), 1) TEST_EQUAL(tmp2.getInstrumentSettings()==InstrumentSettings(), false); + TEST_EQUAL(tmp2.getAcquisitionInfo().empty(), true); TEST_EQUAL(tmp2.getAcquisitionInfo()==AcquisitionInfo(), false); TEST_EQUAL(tmp2.getPeptideIdentifications().size(), 1); TEST_STRING_EQUAL(tmp2.getNativeID(),"nid"); @@ -289,7 +291,7 @@ START_SECTION((SpectrumSettings(const SpectrumSettings& source))) TEST_EQUAL(tmp2.getPrecursors().size(),0); TEST_EQUAL(tmp2.getProducts().size(),0); TEST_EQUAL(tmp2.getInstrumentSettings()==InstrumentSettings(), true); - TEST_EQUAL(tmp2.getAcquisitionInfo()==AcquisitionInfo(), true); + TEST_EQUAL(tmp2.getAcquisitionInfo().empty(), true); TEST_EQUAL(tmp2.getPeptideIdentifications().size(), 0); TEST_STRING_EQUAL(tmp2.getNativeID(),""); TEST_EQUAL(tmp2.getDataProcessing().size(),0); diff --git a/src/tests/class_tests/openms/source/StatisticFunctions_test.cpp b/src/tests/class_tests/openms/source/StatisticFunctions_test.cpp index 8ed2dcb687e..74e564e0056 100644 --- a/src/tests/class_tests/openms/source/StatisticFunctions_test.cpp +++ b/src/tests/class_tests/openms/source/StatisticFunctions_test.cpp @@ -216,7 +216,7 @@ START_SECTION([EXTRA](template< typename IteratorType1, typename IteratorType2 > vv2.push_back(5); result = Math::pearsonCorrelationCoefficient(vv1.begin(), vv1.end(), vv2.begin(), vv2.end()); - if (boost::math::isnan(result) ) result = -1.0; + if (std::isnan(result) ) result = -1.0; TEST_REAL_SIMILAR(result, -1.0); // ************ TEST for nan ***************** diff --git a/src/tests/class_tests/openms/source/String_test.cpp b/src/tests/class_tests/openms/source/String_test.cpp index a0de7f6fff1..dce1d57d3f5 100644 --- a/src/tests/class_tests/openms/source/String_test.cpp +++ b/src/tests/class_tests/openms/source/String_test.cpp @@ -496,13 +496,13 @@ START_SECTION((String& unquote(char q = '"', QuotingMethod method = ESCAPE))) s = "'\\'\\''"; s.unquote('\'', String::ESCAPE); TEST_EQUAL(s, "''"); - s = "\"ab\"cd\\ef\""; + s = R"("ab"cd\ef")"; s.unquote('"', String::NONE); TEST_EQUAL(s, "ab\"cd\\ef"); - s = "\"\\\"ab\\\"cd\\\\ef\\\"\""; + s = R"("\"ab\"cd\\ef\"")"; s.unquote('"', String::ESCAPE); TEST_EQUAL(s, "\"ab\"cd\\ef\""); - s = "\"ab\"\"cd\\ef\""; + s = R"("ab""cd\ef")"; s.unquote('"', String::DOUBLE); TEST_EQUAL(s, "ab\"cd\\ef"); END_SECTION @@ -583,9 +583,9 @@ START_SECTION((float toFloat() const)) s = "47218.8"; TEST_EQUAL(String(s.toFloat()),"4.72188e04"); s = String("nan"); - TEST_EQUAL(boost::math::isnan(s.toFloat()),true); + TEST_EQUAL(std::isnan(s.toFloat()),true); s = "NaN"; - TEST_EQUAL(boost::math::isnan(s.toFloat()),true); + TEST_EQUAL(std::isnan(s.toFloat()),true); s = "not a number"; TEST_EXCEPTION_WITH_MESSAGE(Exception::ConversionError, s.toFloat(), String("Could not convert string '") + s + "' to a float value") END_SECTION @@ -603,9 +603,9 @@ START_SECTION((double toDouble() const)) s = "47218.890000001"; TEST_EQUAL(String(s.toDouble()),"4.7218890000001e04"); s = "nan"; - TEST_EQUAL(boost::math::isnan(s.toDouble()),true); + TEST_EQUAL(std::isnan(s.toDouble()),true); s = "NaN"; - TEST_EQUAL(boost::math::isnan(s.toDouble()),true); + TEST_EQUAL(std::isnan(s.toDouble()),true); s = "not a number"; TEST_EXCEPTION_WITH_MESSAGE(Exception::ConversionError, s.toDouble(), String("Could not convert string '") + s + "' to a double value") END_SECTION @@ -671,7 +671,7 @@ START_SECTION((bool split(const char splitter, std::vector& substrings, TEST_EQUAL(split[1],"world"); TEST_EQUAL(split[2],"23.3"); - s=" \"hello\", \" donot,splitthis \", \"23.4 \" "; + s=R"( "hello", " donot,splitthis ", "23.4 " )"; result = s.split(',', split, true); TEST_EQUAL(result,true); TEST_EQUAL(split.size(),3); @@ -679,7 +679,7 @@ START_SECTION((bool split(const char splitter, std::vector& substrings, TEST_EQUAL(split[1]," donot,splitthis "); TEST_EQUAL(split[2],"23.4 "); - s=" \"hello\", \" donot,splitthis \", \"23.5 \" "; + s=R"( "hello", " donot,splitthis ", "23.5 " )"; result = s.split(',', split, true); TEST_EQUAL(result,true); TEST_EQUAL(split.size(),3); @@ -687,7 +687,7 @@ START_SECTION((bool split(const char splitter, std::vector& substrings, TEST_EQUAL(split[1]," donot,splitthis "); TEST_EQUAL(split[2],"23.5 "); - s=" \"hello\", \" donot,splitthis \", \"23.6 \" "; + s=R"( "hello", " donot,splitthis ", "23.6 " )"; result = s.split(',', split, true); TEST_EQUAL(result,true); TEST_EQUAL(split.size(),3); @@ -701,7 +701,7 @@ START_SECTION((bool split(const char splitter, std::vector& substrings, TEST_EQUAL(split.size(),1); // testing invalid quoting... - s = " \"first\", \"seconds\", third"; + s = R"( "first", "seconds", third)"; TEST_EXCEPTION(Exception::ConversionError, s.split(',', split, true)); END_SECTION @@ -766,7 +766,7 @@ TEST_EQUAL(result, false); TEST_EQUAL(substrings.size(), 1); TEST_EQUAL(substrings[0], s); -s = "\"a,b,c\",\"d,\\\",f\",\"\""; +s = R"("a,b,c","d,\",f","")"; result = s.split_quoted(",", substrings, '"', String::ESCAPE); TEST_EQUAL(result, true); TEST_EQUAL(substrings.size(), 3); @@ -774,10 +774,10 @@ TEST_EQUAL(substrings[0], "\"a,b,c\""); TEST_EQUAL(substrings[1], "\"d,\\\",f\""); TEST_EQUAL(substrings[2], "\"\""); -s = "\"a,\"b\""; +s = R"("a,"b")"; TEST_EXCEPTION(Exception::ConversionError, s.split_quoted(",", substrings, '"', String::ESCAPE)); -s = "\"ab\"___\"cd\"\"ef\""; +s = R"("ab"___"cd""ef")"; result = s.split_quoted("___", substrings, '"', String::DOUBLE); TEST_EQUAL(result, true); TEST_EQUAL(substrings.size(), 2); diff --git a/src/tests/class_tests/openms/source/SvmTheoreticalSpectrumGeneratorSet_test.cpp b/src/tests/class_tests/openms/source/SvmTheoreticalSpectrumGeneratorSet_test.cpp index aa81c0128de..8a4850d3004 100644 --- a/src/tests/class_tests/openms/source/SvmTheoreticalSpectrumGeneratorSet_test.cpp +++ b/src/tests/class_tests/openms/source/SvmTheoreticalSpectrumGeneratorSet_test.cpp @@ -127,7 +127,7 @@ START_SECTION(void simulate(PeakSpectrum & spectrum, const AASequence & peptide, MzMLFile().load(OPENMS_GET_TEST_DATA_PATH("SvmTheoreticalSpectrumGenerator_test_boost58.mzML"),exp); #endif - if(exp.size()) + if(!exp.empty()) { TEST_EQUAL(spec.size(), exp[0].size()); Size min_size = min(spec.size(), exp[0].size()); diff --git a/src/tests/class_tests/openms/source/SvmTheoreticalSpectrumGenerator_test.cpp b/src/tests/class_tests/openms/source/SvmTheoreticalSpectrumGenerator_test.cpp index c30c0e9f955..5fcd0e5a69a 100644 --- a/src/tests/class_tests/openms/source/SvmTheoreticalSpectrumGenerator_test.cpp +++ b/src/tests/class_tests/openms/source/SvmTheoreticalSpectrumGenerator_test.cpp @@ -108,7 +108,7 @@ START_SECTION(void simulate(PeakSpectrum &spectrum, const AASequence &peptide, b #endif TEST_EQUAL(exp.size(), 1); - if(exp.size()) + if(!exp.empty()) { TEST_EQUAL(spec.size(), exp[0].size()); Size min_size = min(spec.size(), exp[0].size()); diff --git a/src/tests/class_tests/openms/source/TargetedSpectraExtractor_test.cpp b/src/tests/class_tests/openms/source/TargetedSpectraExtractor_test.cpp index 7a86243f7bc..a1efc26832f 100644 --- a/src/tests/class_tests/openms/source/TargetedSpectraExtractor_test.cpp +++ b/src/tests/class_tests/openms/source/TargetedSpectraExtractor_test.cpp @@ -907,17 +907,17 @@ START_SECTION(void targetedMatching( TEST_STRING_EQUAL(extracted_features[0].getMetaValue("spectral_library_name"), "beta-D-(+)-Glucose") TEST_REAL_SIMILAR(extracted_features[0].getMetaValue("spectral_library_score"), 0.946971) - String comments = "\"accession=PR010079\" \"author=Kusano M, Fukushima A, Plant Science Center, RIKEN.\" \"license=CC BY-SA\" \"exact mass=180.06339\" \"instrument=Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies\" \"instrument type=GC-EI-TOF\" \"ms level=MS1\" \"retention index=1882.4\" \"retention time=459.562 sec\" \"derivative formula=C22H55NO6Si5\" \"derivative mass=569.28757\" \"derivatization type=5 TMS; 1 MEOX\" \"ionization mode=positive\" \"compound class=Natural Product\" \"SMILES=OCC(O1)C(O)C(O)C(O)C(O)1\" \"cas=492-61-5\" \"chebi=15903\" \"kegg=C00221\" \"pubchem=3521\" \"InChI=InChI=1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3-,4+,5-,6-/m1/s1\" \"molecular formula=C6H12O6\" \"total exact mass=180.06338810399998\" \"SMILES=C(C1C(C(C(C(O)O1)O)O)O)O\" \"InChIKey=WQZGKKKJIJFFOK-VFUOTHLCSA-N\""; + String comments = R"("accession=PR010079" "author=Kusano M, Fukushima A, Plant Science Center, RIKEN." "license=CC BY-SA" "exact mass=180.06339" "instrument=Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies" "instrument type=GC-EI-TOF" "ms level=MS1" "retention index=1882.4" "retention time=459.562 sec" "derivative formula=C22H55NO6Si5" "derivative mass=569.28757" "derivatization type=5 TMS; 1 MEOX" "ionization mode=positive" "compound class=Natural Product" "SMILES=OCC(O1)C(O)C(O)C(O)C(O)1" "cas=492-61-5" "chebi=15903" "kegg=C00221" "pubchem=3521" "InChI=InChI=1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3-,4+,5-,6-/m1/s1" "molecular formula=C6H12O6" "total exact mass=180.06338810399998" "SMILES=C(C1C(C(C(C(O)O1)O)O)O)O" "InChIKey=WQZGKKKJIJFFOK-VFUOTHLCSA-N")"; TEST_STRING_EQUAL(extracted_features[0].getMetaValue("spectral_library_comments"), comments) TEST_STRING_EQUAL(extracted_features[5].getMetaValue("spectral_library_name"), "Adonitol") TEST_REAL_SIMILAR(extracted_features[5].getMetaValue("spectral_library_score"), 0.891443) - comments = "\"accession=PR010134\" \"author=Kusano M, Fukushima A, Plant Science Center, RIKEN.\" \"license=CC BY-SA\" \"exact mass=152.06847\" \"instrument=Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies\" \"instrument type=GC-EI-TOF\" \"ms level=MS1\" \"retention index=1710.9\" \"retention time=416.034 sec\" \"derivative formula=C20H52O5Si5\" \"derivative mass=512.26611\" \"derivatization type=5 TMS\" \"ionization mode=positive\" \"compound class=Natural Product\" \"SMILES=OCC([H])(O)C([H])(O)C([H])(O)CO\" \"cas=488-81-3\" \"chebi=15963\" \"kegg=C00474\" \"pubchem=3757\" \"InChI=InChI=1S/C5H12O5/c6-1-3(8)5(10)4(9)2-7/h3-10H,1-2H2/t3-,4+,5-\" \"molecular formula=C5H12O5\" \"total exact mass=152.06847348399998\" \"SMILES=C(C(C(C(CO)O)O)O)O\" \"InChIKey=HEBKCHPVOIAQTA-ZXFHETKHSA-N\""; + comments = R"("accession=PR010134" "author=Kusano M, Fukushima A, Plant Science Center, RIKEN." "license=CC BY-SA" "exact mass=152.06847" "instrument=Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies" "instrument type=GC-EI-TOF" "ms level=MS1" "retention index=1710.9" "retention time=416.034 sec" "derivative formula=C20H52O5Si5" "derivative mass=512.26611" "derivatization type=5 TMS" "ionization mode=positive" "compound class=Natural Product" "SMILES=OCC([H])(O)C([H])(O)C([H])(O)CO" "cas=488-81-3" "chebi=15963" "kegg=C00474" "pubchem=3757" "InChI=InChI=1S/C5H12O5/c6-1-3(8)5(10)4(9)2-7/h3-10H,1-2H2/t3-,4+,5-" "molecular formula=C5H12O5" "total exact mass=152.06847348399998" "SMILES=C(C(C(C(CO)O)O)O)O" "InChIKey=HEBKCHPVOIAQTA-ZXFHETKHSA-N")"; TEST_STRING_EQUAL(extracted_features[5].getMetaValue("spectral_library_comments"), comments) TEST_STRING_EQUAL(extracted_features[10].getMetaValue("spectral_library_name"), "BENZENE-1,2,4,5-TETRACARBOXYLIC ACID TETRA(TRIMETHYLSILYL) ESTER") TEST_REAL_SIMILAR(extracted_features[10].getMetaValue("spectral_library_score"), 0.887661) - comments = "\"accession=JP000601\" \"author=KOGA M, UNIV. OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH\" \"license=CC BY-NC-SA\" \"exact mass=542.16437\" \"instrument=JEOL JMS-01-SG\" \"instrument type=EI-B\" \"ms level=MS1\" \"ionization energy=70 eV\" \"ion type=[M]+*\" \"ionization mode=positive\" \"SMILES=C[Si](C)(C)OC(=O)c(c1)c(C(=O)O[Si](C)(C)C)cc(C(=O)O[Si](C)(C)C)c(C(=O)O[Si](C)(C)C)1\" \"InChI=InChI=1S/C22H38O8Si4/c1-31(2,3)27-19(23)15-13-17(21(25)29-33(7,8)9)18(22(26)30-34(10,11)12)14-16(15)20(24)28-32(4,5)6/h13-14H,1-12H3\" \"molecular formula=C22H38O8Si4\" \"total exact mass=542.164374296\" \"SMILES=C[Si](C)(C)OC(C1=CC(=C(C=C1C(=O)O[Si](C)(C)C)C(=O)O[Si](C)(C)C)C(=O)O[Si](C)(C)C)=O\" \"InChIKey=BKFGZLAJFGESBT-UHFFFAOYSA-N\""; + comments = R"("accession=JP000601" "author=KOGA M, UNIV. OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH" "license=CC BY-NC-SA" "exact mass=542.16437" "instrument=JEOL JMS-01-SG" "instrument type=EI-B" "ms level=MS1" "ionization energy=70 eV" "ion type=[M]+*" "ionization mode=positive" "SMILES=C[Si](C)(C)OC(=O)c(c1)c(C(=O)O[Si](C)(C)C)cc(C(=O)O[Si](C)(C)C)c(C(=O)O[Si](C)(C)C)1" "InChI=InChI=1S/C22H38O8Si4/c1-31(2,3)27-19(23)15-13-17(21(25)29-33(7,8)9)18(22(26)30-34(10,11)12)14-16(15)20(24)28-32(4,5)6/h13-14H,1-12H3" "molecular formula=C22H38O8Si4" "total exact mass=542.164374296" "SMILES=C[Si](C)(C)OC(C1=CC(=C(C=C1C(=O)O[Si](C)(C)C)C(=O)O[Si](C)(C)C)C(=O)O[Si](C)(C)C)=O" "InChIKey=BKFGZLAJFGESBT-UHFFFAOYSA-N")"; TEST_STRING_EQUAL(extracted_features[10].getMetaValue("spectral_library_comments"), comments) } END_SECTION @@ -970,17 +970,17 @@ START_SECTION(void untargetedMatching( TEST_STRING_EQUAL(features[1].getMetaValue("spectral_library_name"), "D-Glucose-6-phosphate") TEST_REAL_SIMILAR(features[1].getMetaValue("spectral_library_score"), 0.691226) - String comments = "\"accession=PR010050\" \"author=Kusano M, Fukushima A, Plant Science Center, RIKEN.\" \"license=CC BY-SA\" \"exact mass=260.02972\" \"instrument=Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies\" \"instrument type=GC-EI-TOF\" \"ms level=MS1\" \"retention index=2300.2\" \"retention time=538.069 sec\" \"derivative formula=C25H64NO9PSi6\" \"derivative mass=721.29343\" \"derivatization type=6 TMS; 1 MEOX\" \"ionization mode=positive\" \"compound class=Natural Product\" \"SMILES=OC(O1)[C@H](O)[C@@H](O)[C@H](O)[C@H]1COP(O)(O)=O\" \"cas=54010-71-8\" \"InChI=InChI=1S/C6H13O9P/c7-3-2(1-14-16(11,12)13)15-6(10)5(9)4(3)8/h2-10H,1H2,(H2,11,12,13)/t2-,3-,4+,5-,6?/m1/s1\" \"molecular formula=C6H13O9P\" \"total exact mass=260.029718626\" \"SMILES=C(C1C(C(C(C(O)O1)O)O)O)OP(O)(O)=O\" \"InChIKey=NBSCHQHZLSJFNQ-GASJEMHNSA-N\""; + String comments = R"("accession=PR010050" "author=Kusano M, Fukushima A, Plant Science Center, RIKEN." "license=CC BY-SA" "exact mass=260.02972" "instrument=Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies" "instrument type=GC-EI-TOF" "ms level=MS1" "retention index=2300.2" "retention time=538.069 sec" "derivative formula=C25H64NO9PSi6" "derivative mass=721.29343" "derivatization type=6 TMS; 1 MEOX" "ionization mode=positive" "compound class=Natural Product" "SMILES=OC(O1)[C@H](O)[C@@H](O)[C@H](O)[C@H]1COP(O)(O)=O" "cas=54010-71-8" "InChI=InChI=1S/C6H13O9P/c7-3-2(1-14-16(11,12)13)15-6(10)5(9)4(3)8/h2-10H,1H2,(H2,11,12,13)/t2-,3-,4+,5-,6?/m1/s1" "molecular formula=C6H13O9P" "total exact mass=260.029718626" "SMILES=C(C1C(C(C(C(O)O1)O)O)O)OP(O)(O)=O" "InChIKey=NBSCHQHZLSJFNQ-GASJEMHNSA-N")"; TEST_STRING_EQUAL(features[1].getMetaValue("spectral_library_comments"), comments) TEST_STRING_EQUAL(features[6].getMetaValue("spectral_library_name"), "2,3-Pyridinedicarboxylic acid") TEST_REAL_SIMILAR(features[6].getMetaValue("spectral_library_score"), 0.54155) - comments = "\"accession=PR010082\" \"author=Kusano M, Fukushima A, Plant Science Center, RIKEN.\" \"license=CC BY-SA\" \"exact mass=167.02186\" \"instrument=Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies\" \"instrument type=GC-EI-TOF\" \"ms level=MS1\" \"retention index=1721.2\" \"retention time=422.998 sec\" \"derivative formula=C13H21NO4Si2\" \"derivative mass=311.10091\" \"derivatization type=2 TMS\" \"ionization mode=positive\" \"compound class=Natural Product\" \"SMILES=OC(=O)c(c1)c(ncc1)C(O)=O\" \"cas=89-00-9\" \"chebi=16675\" \"kegg=C03722\" \"pubchem=6487\" \"InChI=InChI=1S/C7H5NO4/c9-6(10)4-2-1-3-8-5(4)7(11)12/h1-3H,(H,9,10)(H,11,12)\" \"molecular formula=C7H5NO4\" \"total exact mass=167.02185764\" \"SMILES=C1=CC(=C(C(=O)O)N=C1)C(=O)O\" \"InChIKey=GJAWHXHKYYXBSV-UHFFFAOYSA-N\""; + comments = R"lit("accession=PR010082" "author=Kusano M, Fukushima A, Plant Science Center, RIKEN." "license=CC BY-SA" "exact mass=167.02186" "instrument=Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies" "instrument type=GC-EI-TOF" "ms level=MS1" "retention index=1721.2" "retention time=422.998 sec" "derivative formula=C13H21NO4Si2" "derivative mass=311.10091" "derivatization type=2 TMS" "ionization mode=positive" "compound class=Natural Product" "SMILES=OC(=O)c(c1)c(ncc1)C(O)=O" "cas=89-00-9" "chebi=16675" "kegg=C03722" "pubchem=6487" "InChI=InChI=1S/C7H5NO4/c9-6(10)4-2-1-3-8-5(4)7(11)12/h1-3H,(H,9,10)(H,11,12)" "molecular formula=C7H5NO4" "total exact mass=167.02185764" "SMILES=C1=CC(=C(C(=O)O)N=C1)C(=O)O" "InChIKey=GJAWHXHKYYXBSV-UHFFFAOYSA-N")lit"; TEST_STRING_EQUAL(features[6].getMetaValue("spectral_library_comments"), comments) TEST_STRING_EQUAL(features[10].getMetaValue("spectral_library_name"), "D-Glucose-6-phosphate") TEST_REAL_SIMILAR(features[10].getMetaValue("spectral_library_score"), 0.922175) - comments = "\"accession=PR010050\" \"author=Kusano M, Fukushima A, Plant Science Center, RIKEN.\" \"license=CC BY-SA\" \"exact mass=260.02972\" \"instrument=Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies\" \"instrument type=GC-EI-TOF\" \"ms level=MS1\" \"retention index=2300.2\" \"retention time=538.069 sec\" \"derivative formula=C25H64NO9PSi6\" \"derivative mass=721.29343\" \"derivatization type=6 TMS; 1 MEOX\" \"ionization mode=positive\" \"compound class=Natural Product\" \"SMILES=OC(O1)[C@H](O)[C@@H](O)[C@H](O)[C@H]1COP(O)(O)=O\" \"cas=54010-71-8\" \"InChI=InChI=1S/C6H13O9P/c7-3-2(1-14-16(11,12)13)15-6(10)5(9)4(3)8/h2-10H,1H2,(H2,11,12,13)/t2-,3-,4+,5-,6?/m1/s1\" \"molecular formula=C6H13O9P\" \"total exact mass=260.029718626\" \"SMILES=C(C1C(C(C(C(O)O1)O)O)O)OP(O)(O)=O\" \"InChIKey=NBSCHQHZLSJFNQ-GASJEMHNSA-N\""; + comments = R"("accession=PR010050" "author=Kusano M, Fukushima A, Plant Science Center, RIKEN." "license=CC BY-SA" "exact mass=260.02972" "instrument=Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies" "instrument type=GC-EI-TOF" "ms level=MS1" "retention index=2300.2" "retention time=538.069 sec" "derivative formula=C25H64NO9PSi6" "derivative mass=721.29343" "derivatization type=6 TMS; 1 MEOX" "ionization mode=positive" "compound class=Natural Product" "SMILES=OC(O1)[C@H](O)[C@@H](O)[C@H](O)[C@H]1COP(O)(O)=O" "cas=54010-71-8" "InChI=InChI=1S/C6H13O9P/c7-3-2(1-14-16(11,12)13)15-6(10)5(9)4(3)8/h2-10H,1H2,(H2,11,12,13)/t2-,3-,4+,5-,6?/m1/s1" "molecular formula=C6H13O9P" "total exact mass=260.029718626" "SMILES=C(C1C(C(C(C(O)O1)O)O)O)OP(O)(O)=O" "InChIKey=NBSCHQHZLSJFNQ-GASJEMHNSA-N")"; TEST_STRING_EQUAL(features[10].getMetaValue("spectral_library_comments"), comments) } END_SECTION diff --git a/src/tests/class_tests/openms/source/TextFile_test.cpp b/src/tests/class_tests/openms/source/TextFile_test.cpp index dd9f8356d39..5e7c9db3c63 100644 --- a/src/tests/class_tests/openms/source/TextFile_test.cpp +++ b/src/tests/class_tests/openms/source/TextFile_test.cpp @@ -121,18 +121,18 @@ START_SECTION((void load(const String& filename, bool trim_lines = false, Int fi file_it = file.begin(); TEST_EQUAL(String(*file_it).trim() == "first_line", true) ++file_it; - TEST_EQUAL(String(*file_it).trim() == "", true) + TEST_EQUAL(String(*file_it).trim().empty(), true) ++file_it; - TEST_EQUAL(String(*file_it).trim() == "", true) + TEST_EQUAL(String(*file_it).trim().empty(), true) file.load(OPENMS_GET_TEST_DATA_PATH("TextFile_test_infile.txt"),true,4); TEST_EQUAL((file.end() - file.begin()), 4) file_it = file.begin(); TEST_EQUAL(String(*file_it).trim() == "first_line", true) ++file_it; - TEST_EQUAL(String(*file_it).trim() == "", true) + TEST_EQUAL(String(*file_it).trim().empty(), true) ++file_it; - TEST_EQUAL(String(*file_it).trim() == "", true) + TEST_EQUAL(String(*file_it).trim().empty(), true) ++file_it; TEST_EQUAL(String(*file_it).trim() == "middle_line", true) diff --git a/src/tests/class_tests/openms/source/ToolDescriptionFile_test.cpp b/src/tests/class_tests/openms/source/ToolDescriptionFile_test.cpp index ed18d196c16..036d73c8f52 100644 --- a/src/tests/class_tests/openms/source/ToolDescriptionFile_test.cpp +++ b/src/tests/class_tests/openms/source/ToolDescriptionFile_test.cpp @@ -78,7 +78,7 @@ START_SECTION((void load(const String &filename, std::vector< Internal::ToolDesc files[i] = dir.absolutePath()+QDir::separator()+files[i]; f.load(files[i], tds); //std::cerr << "load: " << String(files[i]) << "\n"; - TEST_EQUAL(tds.size()>=1, true) + TEST_EQUAL(!tds.empty(), true) } } diff --git a/src/tests/class_tests/openms/source/ToolHandler_test.cpp b/src/tests/class_tests/openms/source/ToolHandler_test.cpp index c122e567b41..9b487082805 100644 --- a/src/tests/class_tests/openms/source/ToolHandler_test.cpp +++ b/src/tests/class_tests/openms/source/ToolHandler_test.cpp @@ -86,8 +86,8 @@ END_SECTION START_SECTION((static StringList getTypes(const String &toolname))) { - TEST_EQUAL(ToolHandler::getTypes("IsobaricAnalyzer") == StringList(), true); - TEST_EQUAL(ToolHandler::getTypes("IDMapper") == StringList(), true); + TEST_EQUAL(ToolHandler::getTypes("IsobaricAnalyzer").empty(), true); + TEST_EQUAL(ToolHandler::getTypes("IDMapper").empty(), true); } END_SECTION diff --git a/src/tests/class_tests/openms_gui/CMakeLists.txt b/src/tests/class_tests/openms_gui/CMakeLists.txt index a4f67bbc8f4..4ae7b6df0c9 100644 --- a/src/tests/class_tests/openms_gui/CMakeLists.txt +++ b/src/tests/class_tests/openms_gui/CMakeLists.txt @@ -57,6 +57,7 @@ add_custom_target(VISUAL_TEST) add_dependencies(VISUAL_TEST ${visual_executables_list}) find_package(Qt5 COMPONENTS Core Network Widgets Svg OpenGL REQUIRED) +find_package(Qt5 COMPONENTS WebEngineWidgets) if (NOT Qt5Widgets_FOUND) message(STATUS "QtWidgets module not found!") message(FATAL_ERROR "To find a custom Qt installation use: cmake <..more options..> -D QT_QMAKE_EXECUTABLE='") diff --git a/src/tests/external/CMakeLists.txt b/src/tests/external/CMakeLists.txt index e4acb33e9f8..696f60f7bc3 100644 --- a/src/tests/external/CMakeLists.txt +++ b/src/tests/external/CMakeLists.txt @@ -22,7 +22,7 @@ set(my_sources ## Currently this affects only Qt and since we do not build GUI stuff here, we only need to find QtCore and Network ## At some point we want IMPORTED targets only, since this will make it relocatable. Until then, CMake should find a way ## to automate adding the aforementioned find_dependency calls during export. -find_package(Qt5 COMPONENTS Core Network REQUIRED) +find_package(Qt5 COMPONENTS Core Network Sql REQUIRED) ## Same here. This should be made optional somehow. Figure out how to do that (probably just target_link_library OpenMP privately) ## Since CMake 3.17 OpenMP also auto-detects libomp from brew for AppleClang. diff --git a/src/tests/topp/AccurateMassSearch_2_output.featureXML b/src/tests/topp/AccurateMassSearch_2_output.featureXML index 7aad11d648c..1ecd4c83119 100644 --- a/src/tests/topp/AccurateMassSearch_2_output.featureXML +++ b/src/tests/topp/AccurateMassSearch_2_output.featureXML @@ -72,7 +72,7 @@
- + @@ -82,7 +82,7 @@ 355.507999999979973 235.144546436815318 - 12743.556641 + 1.274356e04 0.0 0.0 1.054042e-04 @@ -100,7 +100,7 @@ - + @@ -111,7 +111,7 @@ 518.841000000000008 332.108359495389948 - 77075.710938 + 7.707571e04 0.0 0.0 7.195689e-04 @@ -129,7 +129,7 @@ - + diff --git a/src/tests/topp/AccurateMassSearch_5_output.mzTab b/src/tests/topp/AccurateMassSearch_5_output.mzTab new file mode 100644 index 00000000000..10771ebd08e --- /dev/null +++ b/src/tests/topp/AccurateMassSearch_5_output.mzTab @@ -0,0 +1,38 @@ +MTD mzTab-version 2.0.0-M +MTD mzTab-ID local_id: 14128832103716313886 +MTD software[1] [MS, MS:1001456, analysis software, 2.6.0-pre-idf-ams-2021-10-07] +MTD software[2] [MS, MS:1002169, TOPP FeatureFinderMetabo, 2.4.0-nightly-2019-07-17] +MTD software[3] [MS, MS:1001456, analysis software, 2.4.0-nightly-2019-07-17] +MTD quantification_method [MS, MS:1001834, LC-MS label-free quantitation analysis, ] +MTD ms_run[1]-location file://I:/OpenSWATH_Metabolomics_data/20181121_full_data/04_PestMixes_individually_Solvent_DDA_20-50/PestMix1_1ngSolventDDA20-50.wiff +MTD ms_run[1]-scan_polarity[1] [MS, MS:1000130, positive scan, ] +MTD assay[1] assay_PestMix1_1ngSolventDDA20-50 +MTD assay[1]-ms_run_ref ms_run[1] +MTD study_variable[1] study_variable_PestMix1_1ngSolventDDA20-50 +MTD study_variable[1]-assay_refs assay[1] +MTD study_variable[1]-description study_variable_PestMix1_1ngSolventDDA20-50 +MTD cv[1]-label PSI-MS +MTD cv[1]-full_name MS +MTD cv[1]-version 4.1.49 +MTD cv[1]-uri https://raw.githubusercontent.com/HUPO-PSI/psi-ms-CV/master/psi-ms.obo +MTD database[1] [, , CustomDB, ] +MTD database[1]-prefix CustomDB +MTD database[1]-version 0.0 +MTD database[1]-uri file:///Users/alka/Desktop/AMS_ID_test/AMS_test_Mapping.tsv +MTD small_molecule-quantification_unit [MS, MS:1001844, MS1 feature area, ] +MTD small_molecule_feature-quantification_unit [MS, MS:1001844, MS1 feature area, ] +MTD small_molecule-identification_reliability [MS, MS:1002896, compound identification confidence level, ] +MTD id_confidence_measure[1] [, , MassErrorPPMScore, ] +MTD id_confidence_measure[2] [, , MassErrorDaScore, ] + +SMH SML_ID SMF_ID_REFS database_identifier chemical_formula smiles inchi chemical_name uri theoretical_neutral_mass adduct_ions reliability best_id_confidence_measure best_id_confidence_value abundance_assay[1] abundance_study_variable[1] abundance_variation_study_variable[1] +SML 1 1 b6db36a2-5130-11e9-8f91-784f43534648 C13H18N2O2 C1CCC(CC1)n2c(=O)c3c([nH]c2=O)CCC3 "InChI=1S/C13H18N2O2/c16-12-10-7-4-8-11(10)14-13(17)15(12)9-5-2-1-3-6-9/h9H,1-8H2,(H,14,17)" Lenacil null 234.136828574199996 [M+H]1+ 2 null null 1.2743556640625e04 null null +SML 2 2 99675-03-3 C14H22N1O4P1S1 CC(C)NP(=S)(OC)Oc1ccccc1C(=O)OC(C)C "InChI=1S/C14H22NO4PS/c1-10(2)15-20(21,17-5)19-13-9-7-6-8-12(13)14(16)18-11(3)4/h6-11H,1-5H3,(H,15,21)" Isofenphos-methyl null 331.100716921799972 [M+H]1+ 2 null null 7.70757109375e04 null null + +SFH SMF_ID SME_ID_REFS SME_ID_REF_ambiguity_code adduct_ion isotopomer exp_mass_to_charge charge retention_time_in_seconds retention_time_in_seconds_start retention_time_in_seconds_end abundance_assay[1] +SMF 1 1 null [M+H]1+ null 235.144546436815318 0 355.507999999979973 null null 1.2743556640625e04 +SMF 2 2 null [M+H]1+ null 332.108359495389948 1 518.841000000000008 null null 7.70757109375e04 + +SEH SME_ID evidence_input_id database_identifier chemical_formula smiles inchi chemical_name uri derivatized_form adduct_ion exp_mass_to_charge charge theoretical_mass_to_charge spectra_ref identification_method ms_level id_confidence_measure[1] id_confidence_measure[2] rank +SME 1 mass=235.144546436815318,rt=355.507999999979973 b6db36a2-5130-11e9-8f91-784f43534648 C13H18N2O2 C1CCC(CC1)n2c(=O)c3c([nH]c2=O)CCC3 "InChI=1S/C13H18N2O2/c16-12-10-7-4-8-11(10)14-13(17)15(12)9-5-2-1-3-6-9/h9H,1-8H2,(H,14,17)" Lenacil null null [M+H]1+ 235.144546436815318 0 234.136828574199996 ms_run[1]:8308517420049663419 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] 1.0 1.0 1 +SME 2 mass=332.108359495389948,rt=518.841000000000008 99675-03-3 C14H22N1O4P1S1 CC(C)NP(=S)(OC)Oc1ccccc1C(=O)OC(C)C "InChI=1S/C14H22NO4PS/c1-10(2)15-20(21,17-5)19-13-9-7-6-8-12(13)14(16)18-11(3)4/h6-11H,1-5H3,(H,15,21)" Isofenphos-methyl null null [M+H]1+ 332.108359495389948 1 331.100716921799972 ms_run[1]:248283675846367528 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] 1.0 1.0 1 diff --git a/src/tests/topp/AccurateMassSearch_6_output.featureXML b/src/tests/topp/AccurateMassSearch_6_output.featureXML new file mode 100644 index 00000000000..ad5134efe20 --- /dev/null +++ b/src/tests/topp/AccurateMassSearch_6_output.featureXML @@ -0,0 +1,155 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 355.507999999979973 + 235.144546436815318 + 1.274356e04 + 0.0 + 0.0 + 1.054042e-04 + 0 + + + + + + + + + + + + + + + + + + + + + + + + + + + 518.841000000000008 + 332.108359495389948 + 7.707571e04 + 0.0 + 0.0 + 7.195689e-04 + 1 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/tests/topp/AccurateMassSearch_6_output.mzTab b/src/tests/topp/AccurateMassSearch_6_output.mzTab new file mode 100644 index 00000000000..10771ebd08e --- /dev/null +++ b/src/tests/topp/AccurateMassSearch_6_output.mzTab @@ -0,0 +1,38 @@ +MTD mzTab-version 2.0.0-M +MTD mzTab-ID local_id: 14128832103716313886 +MTD software[1] [MS, MS:1001456, analysis software, 2.6.0-pre-idf-ams-2021-10-07] +MTD software[2] [MS, MS:1002169, TOPP FeatureFinderMetabo, 2.4.0-nightly-2019-07-17] +MTD software[3] [MS, MS:1001456, analysis software, 2.4.0-nightly-2019-07-17] +MTD quantification_method [MS, MS:1001834, LC-MS label-free quantitation analysis, ] +MTD ms_run[1]-location file://I:/OpenSWATH_Metabolomics_data/20181121_full_data/04_PestMixes_individually_Solvent_DDA_20-50/PestMix1_1ngSolventDDA20-50.wiff +MTD ms_run[1]-scan_polarity[1] [MS, MS:1000130, positive scan, ] +MTD assay[1] assay_PestMix1_1ngSolventDDA20-50 +MTD assay[1]-ms_run_ref ms_run[1] +MTD study_variable[1] study_variable_PestMix1_1ngSolventDDA20-50 +MTD study_variable[1]-assay_refs assay[1] +MTD study_variable[1]-description study_variable_PestMix1_1ngSolventDDA20-50 +MTD cv[1]-label PSI-MS +MTD cv[1]-full_name MS +MTD cv[1]-version 4.1.49 +MTD cv[1]-uri https://raw.githubusercontent.com/HUPO-PSI/psi-ms-CV/master/psi-ms.obo +MTD database[1] [, , CustomDB, ] +MTD database[1]-prefix CustomDB +MTD database[1]-version 0.0 +MTD database[1]-uri file:///Users/alka/Desktop/AMS_ID_test/AMS_test_Mapping.tsv +MTD small_molecule-quantification_unit [MS, MS:1001844, MS1 feature area, ] +MTD small_molecule_feature-quantification_unit [MS, MS:1001844, MS1 feature area, ] +MTD small_molecule-identification_reliability [MS, MS:1002896, compound identification confidence level, ] +MTD id_confidence_measure[1] [, , MassErrorPPMScore, ] +MTD id_confidence_measure[2] [, , MassErrorDaScore, ] + +SMH SML_ID SMF_ID_REFS database_identifier chemical_formula smiles inchi chemical_name uri theoretical_neutral_mass adduct_ions reliability best_id_confidence_measure best_id_confidence_value abundance_assay[1] abundance_study_variable[1] abundance_variation_study_variable[1] +SML 1 1 b6db36a2-5130-11e9-8f91-784f43534648 C13H18N2O2 C1CCC(CC1)n2c(=O)c3c([nH]c2=O)CCC3 "InChI=1S/C13H18N2O2/c16-12-10-7-4-8-11(10)14-13(17)15(12)9-5-2-1-3-6-9/h9H,1-8H2,(H,14,17)" Lenacil null 234.136828574199996 [M+H]1+ 2 null null 1.2743556640625e04 null null +SML 2 2 99675-03-3 C14H22N1O4P1S1 CC(C)NP(=S)(OC)Oc1ccccc1C(=O)OC(C)C "InChI=1S/C14H22NO4PS/c1-10(2)15-20(21,17-5)19-13-9-7-6-8-12(13)14(16)18-11(3)4/h6-11H,1-5H3,(H,15,21)" Isofenphos-methyl null 331.100716921799972 [M+H]1+ 2 null null 7.70757109375e04 null null + +SFH SMF_ID SME_ID_REFS SME_ID_REF_ambiguity_code adduct_ion isotopomer exp_mass_to_charge charge retention_time_in_seconds retention_time_in_seconds_start retention_time_in_seconds_end abundance_assay[1] +SMF 1 1 null [M+H]1+ null 235.144546436815318 0 355.507999999979973 null null 1.2743556640625e04 +SMF 2 2 null [M+H]1+ null 332.108359495389948 1 518.841000000000008 null null 7.70757109375e04 + +SEH SME_ID evidence_input_id database_identifier chemical_formula smiles inchi chemical_name uri derivatized_form adduct_ion exp_mass_to_charge charge theoretical_mass_to_charge spectra_ref identification_method ms_level id_confidence_measure[1] id_confidence_measure[2] rank +SME 1 mass=235.144546436815318,rt=355.507999999979973 b6db36a2-5130-11e9-8f91-784f43534648 C13H18N2O2 C1CCC(CC1)n2c(=O)c3c([nH]c2=O)CCC3 "InChI=1S/C13H18N2O2/c16-12-10-7-4-8-11(10)14-13(17)15(12)9-5-2-1-3-6-9/h9H,1-8H2,(H,14,17)" Lenacil null null [M+H]1+ 235.144546436815318 0 234.136828574199996 ms_run[1]:8308517420049663419 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] 1.0 1.0 1 +SME 2 mass=332.108359495389948,rt=518.841000000000008 99675-03-3 C14H22N1O4P1S1 CC(C)NP(=S)(OC)Oc1ccccc1C(=O)OC(C)C "InChI=1S/C14H22NO4PS/c1-10(2)15-20(21,17-5)19-13-9-7-6-8-12(13)14(16)18-11(3)4/h6-11H,1-5H3,(H,15,21)" Isofenphos-methyl null null [M+H]1+ 332.108359495389948 1 331.100716921799972 ms_run[1]:248283675846367528 [MS, MS:1000207, accurate mass, ] [MS, MS:1000511, ms level, 1] 1.0 1.0 1 diff --git a/src/tests/topp/CMakeLists.txt b/src/tests/topp/CMakeLists.txt index e4ec45d4cd5..4f60a1d43fd 100644 --- a/src/tests/topp/CMakeLists.txt +++ b/src/tests/topp/CMakeLists.txt @@ -197,6 +197,15 @@ add_test("TOPP_IDMerger_5" ${TOPP_BIN_PATH}/IDMerger -test -in ${DATA_DIR_TOPP}/ add_test("TOPP_IDMerger_5_out1" ${DIFF} -in1 IDMerger_5_output.tmp -in2 ${DATA_DIR_TOPP}/IDMerger_5_output.idXML ) set_tests_properties("TOPP_IDMerger_5_out1" PROPERTIES DEPENDS "TOPP_IDMerger_5") +# .oms (SQLite) files - inputs based on BSA example data, generated like this: +# IDFileConverter -in share/OpenMS/examples/BSA/BSA2_OMSSA.idXML -out src/tests/topp/IDMerger_6_input2.oms +# IDFileConverter -in share/OpenMS/examples/BSA/BSA3_OMSSA.idXML -out src/tests/topp/IDMerger_6_input1.oms +add_test("TOPP_IDMerger_6" ${TOPP_BIN_PATH}/IDMerger -test -in ${DATA_DIR_TOPP}/IDMerger_6_input1.oms ${DATA_DIR_TOPP}/IDMerger_6_input2.oms -out IDMerger_6_output1.oms) +add_test("TOPP_IDMerger_6_out1" ${TOPP_BIN_PATH}/IDFileConverter -in IDMerger_6_output1.oms -out IDMerger_6_output2.tmp -out_type idXML) +set_tests_properties("TOPP_IDMerger_6_out1" PROPERTIES DEPENDS "TOPP_IDMerger_6") +add_test("TOPP_IDMerger_6_out2" ${DIFF} -in1 IDMerger_6_output2.tmp -in2 ${DATA_DIR_TOPP}/IDMerger_6_output.idXML) +set_tests_properties("TOPP_IDMerger_6_out2" PROPERTIES DEPENDS "TOPP_IDMerger_6_out1") + #------------------------------------------------------------------------------ # BaselineFilter tests add_test("TOPP_BaselineFilter_1" ${TOPP_BIN_PATH}/BaselineFilter -test -in ${DATA_DIR_TOPP}/BaselineFilter_input.mzML -out BaselineFilter.tmp -struc_elem_length 1.5) @@ -218,15 +227,15 @@ set_tests_properties("TOPP_MapNormalizer_1_out1" PROPERTIES DEPENDS "TOPP_MapNor #------------------------------------------------------------------------------ # DatabaseSuitability tests # test default -add_test("TOPP_DatabaseSuitability_1" ${TOPP_BIN_PATH}/DatabaseSuitability -test -in_id ${DATA_DIR_TOPP}/DatabaseSuitability_in_id.idXML -in_spec ${DATA_DIR_TOPP}/DatabaseSuitability_in_spec.mzML -in_novo ${DATA_DIR_TOPP}/DatabaseSuitability_in_novo.idXML -algorithm:FDR 0.8 -out DatabaseSuitability_1.tmp) +add_test("TOPP_DatabaseSuitability_1" ${TOPP_BIN_PATH}/DatabaseSuitability -test -in_id ${DATA_DIR_TOPP}/DatabaseSuitability_in_id.idXML -in_spec ${DATA_DIR_TOPP}/DatabaseSuitability_in_spec.mzML -in_novo ${DATA_DIR_TOPP}/DatabaseSuitability_in_novo.idXML -database ${DATA_DIR_TOPP}/DatabaseSuitability_database.fasta -novo_database ${DATA_DIR_TOPP}/DatabaseSuitability_novo_database.FASTA -out DatabaseSuitability_1.tmp) add_test("TOPP_DatabaseSuitability_1_out" ${DIFF} -in1 DatabaseSuitability_1.tmp -in2 ${DATA_DIR_TOPP}/DatabaseSuitability_out_1.tsv ) set_tests_properties("TOPP_DatabaseSuitability_1_out" PROPERTIES DEPENDS "TOPP_DatabaseSuitability_1") -# test with custom novor_fract -add_test("TOPP_DatabaseSuitability_2" ${TOPP_BIN_PATH}/DatabaseSuitability -test -in_id ${DATA_DIR_TOPP}/DatabaseSuitability_in_id.idXML -in_spec ${DATA_DIR_TOPP}/DatabaseSuitability_in_spec.mzML -in_novo ${DATA_DIR_TOPP}/DatabaseSuitability_in_novo.idXML -algorithm:FDR 1 -algorithm:reranking_cutoff_percentile 0.9 -out DatabaseSuitability_2.tmp) +# test with custom reranking_cutoff_percentile +add_test("TOPP_DatabaseSuitability_2" ${TOPP_BIN_PATH}/DatabaseSuitability -test -in_id ${DATA_DIR_TOPP}/DatabaseSuitability_in_id.idXML -in_spec ${DATA_DIR_TOPP}/DatabaseSuitability_in_spec.mzML -in_novo ${DATA_DIR_TOPP}/DatabaseSuitability_in_novo.idXML -database ${DATA_DIR_TOPP}/DatabaseSuitability_database.fasta -novo_database ${DATA_DIR_TOPP}/DatabaseSuitability_novo_database.FASTA -algorithm:FDR 0.05 -out DatabaseSuitability_2.tmp) add_test("TOPP_DatabaseSuitability_2_out" ${DIFF} -whitelist ${INDEX_WHITELIST} -in1 DatabaseSuitability_2.tmp -in2 ${DATA_DIR_TOPP}/DatabaseSuitability_out_2.tsv ) set_tests_properties("TOPP_DatabaseSuitability_2_out" PROPERTIES DEPENDS "TOPP_DatabaseSuitability_2") -# test without re-ranking -add_test("TOPP_DatabaseSuitability_3" ${TOPP_BIN_PATH}/DatabaseSuitability -test -in_id ${DATA_DIR_TOPP}/DatabaseSuitability_in_id.idXML -in_spec ${DATA_DIR_TOPP}/DatabaseSuitability_in_spec.mzML -in_novo ${DATA_DIR_TOPP}/DatabaseSuitability_in_novo.idXML -algorithm:FDR 0.9 -algorithm:no_rerank -out DatabaseSuitability_3.tmp) +# test with custom FDR +add_test("TOPP_DatabaseSuitability_3" ${TOPP_BIN_PATH}/DatabaseSuitability -test -in_id ${DATA_DIR_TOPP}/DatabaseSuitability_in_id.idXML -in_spec ${DATA_DIR_TOPP}/DatabaseSuitability_in_spec.mzML -in_novo ${DATA_DIR_TOPP}/DatabaseSuitability_in_novo.idXML -database ${DATA_DIR_TOPP}/DatabaseSuitability_database.fasta -novo_database ${DATA_DIR_TOPP}/DatabaseSuitability_novo_database.FASTA -algorithm:FDR 0.5 -algorithm:reranking_cutoff_percentile 0.5 -out DatabaseSuitability_3.tmp) add_test("TOPP_DatabaseSuitability_3_out" ${DIFF} -whitelist ${INDEX_WHITELIST} -in1 DatabaseSuitability_3.tmp -in2 ${DATA_DIR_TOPP}/DatabaseSuitability_out_3.tsv ) set_tests_properties("TOPP_DatabaseSuitability_3_out" PROPERTIES DEPENDS "TOPP_DatabaseSuitability_3") @@ -286,8 +295,8 @@ set_tests_properties("TOPP_FeatureFinderCentroided_1_out1" PROPERTIES DEPENDS "T #------------------------------------------------------------------------------ # FeatureFinderIdentification test ## internal IDs only: -add_test("TOPP_FeatureFinderIdentification_1" ${TOPP_BIN_PATH}/FeatureFinderIdentification -test -in ${DATA_DIR_TOPP}/FeatureFinderIdentification_1_input.mzML -id ${DATA_DIR_TOPP}/FeatureFinderIdentification_1_input.idXML -out FeatureFinderIdentification_1.tmp -extract:mz_window 0.1 -detect:peak_width 60 -model:type none) -add_test("TOPP_FeatureFinderIdentification_1_out1" ${DIFF} -whitelist "spectra_data" "featureMap" -in1 FeatureFinderIdentification_1.tmp -in2 ${DATA_DIR_TOPP}/FeatureFinderIdentification_1_output.featureXML) +add_test("TOPP_FeatureFinderIdentification_1" ${TOPP_BIN_PATH}/FeatureFinderIdentification -test -in ${DATA_DIR_TOPP}/FeatureFinderIdentification_1_input.mzML -id ${DATA_DIR_TOPP}/FeatureFinderIdentification_1_input.idXML -out FeatureFinderIdentification_1.tmp.featureXML -extract:mz_window 0.1 -detect:peak_width 60 -model:type none) +add_test("TOPP_FeatureFinderIdentification_1_out1" ${DIFF} -whitelist "spectra_data" "featureMap" -in1 FeatureFinderIdentification_1.tmp.featureXML -in2 ${DATA_DIR_TOPP}/FeatureFinderIdentification_1_output.featureXML) set_tests_properties("TOPP_FeatureFinderIdentification_1_out1" PROPERTIES DEPENDS "TOPP_FeatureFinderIdentification_1") ## with (faked) external IDs; fix SVM parameters to avoid randomness: ## test currently produces different results on Windows, Mac, and Linux @@ -297,8 +306,8 @@ set_tests_properties("TOPP_FeatureFinderIdentification_1_out1" PROPERTIES DEPEND #set_tests_properties("TOPP_FeatureFinderIdentification_2_out1" PROPERTIES DEPENDS "TOPP_FeatureFinderIdentification_2") ## with elution model fitting: -add_test("TOPP_FeatureFinderIdentification_3" ${TOPP_BIN_PATH}/FeatureFinderIdentification -test -in ${DATA_DIR_TOPP}/FeatureFinderIdentification_1_input.mzML -id ${DATA_DIR_TOPP}/FeatureFinderIdentification_1_input.idXML -out FeatureFinderIdentification_3.tmp -extract:mz_window 0.1 -detect:peak_width 60 -model:type symmetric) -add_test("TOPP_FeatureFinderIdentification_3_out1" ${DIFF} -whitelist "spectra_data" "featureMap" -in1 FeatureFinderIdentification_3.tmp -in2 ${DATA_DIR_TOPP}/FeatureFinderIdentification_3_output.featureXML) +add_test("TOPP_FeatureFinderIdentification_3" ${TOPP_BIN_PATH}/FeatureFinderIdentification -test -in ${DATA_DIR_TOPP}/FeatureFinderIdentification_1_input.mzML -id ${DATA_DIR_TOPP}/FeatureFinderIdentification_1_input.idXML -out FeatureFinderIdentification_3.tmp.featureXML -extract:mz_window 0.1 -detect:peak_width 60 -model:type symmetric) +add_test("TOPP_FeatureFinderIdentification_3_out1" ${DIFF} -whitelist "spectra_data" "featureMap" -in1 FeatureFinderIdentification_3.tmp.featureXML -in2 ${DATA_DIR_TOPP}/FeatureFinderIdentification_3_output.featureXML) set_tests_properties("TOPP_FeatureFinderIdentification_3_out1" PROPERTIES DEPENDS "TOPP_FeatureFinderIdentification_3") ## elution model fitting for each individual mass trace: ## TODO: reenable - currently not stable on windows in CI @@ -307,8 +316,8 @@ set_tests_properties("TOPP_FeatureFinderIdentification_3_out1" PROPERTIES DEPEND ##set_tests_properties("TOPP_FeatureFinderIdentification_4_out1" PROPERTIES DEPENDS "TOPP_FeatureFinderIdentification_4") ## with batch extraction size smaller than the nr of peptides (we need to whitelist feature ids, since they might be generated differently) -add_test("TOPP_FeatureFinderIdentification_5" ${TOPP_BIN_PATH}/FeatureFinderIdentification -test -in ${DATA_DIR_TOPP}/FeatureFinderIdentification_1_input.mzML -id ${DATA_DIR_TOPP}/FeatureFinderIdentification_1_input.idXML -out FeatureFinderIdentification_5.tmp -candidates_out FeatureFinderIdentification_5_candidates.tmp -extract:mz_window 0.1 -extract:batch_size 10 -detect:peak_width 60 -model:type none) -add_test("TOPP_FeatureFinderIdentification_5_out1" ${DIFF} -whitelist "feature id" "spectra_data" "featureMap" -in1 FeatureFinderIdentification_5.tmp -in2 ${DATA_DIR_TOPP}/FeatureFinderIdentification_1_output.featureXML) +add_test("TOPP_FeatureFinderIdentification_5" ${TOPP_BIN_PATH}/FeatureFinderIdentification -test -in ${DATA_DIR_TOPP}/FeatureFinderIdentification_1_input.mzML -id ${DATA_DIR_TOPP}/FeatureFinderIdentification_1_input.idXML -out FeatureFinderIdentification_5.tmp.featureXML -candidates_out FeatureFinderIdentification_5_candidates.tmp -extract:mz_window 0.1 -extract:batch_size 10 -detect:peak_width 60 -model:type none) +add_test("TOPP_FeatureFinderIdentification_5_out1" ${DIFF} -whitelist "feature id" "spectra_data" "featureMap" -in1 FeatureFinderIdentification_5.tmp.featureXML -in2 ${DATA_DIR_TOPP}/FeatureFinderIdentification_1_output.featureXML) set_tests_properties("TOPP_FeatureFinderIdentification_5_out1" PROPERTIES DEPENDS "TOPP_FeatureFinderIdentification_5") #------------------------------------------------------------------------------ @@ -972,17 +981,17 @@ add_test("TOPP_IDFileConverter_26_out1" ${DIFF} -in1 IDFileConverter_26_output.t set_tests_properties("TOPP_IDFileConverter_26_out1" PROPERTIES DEPENDS "TOPP_IDFileConverter_26") # Test idXML to FASTA # no concatenation -add_test("TOPP_IDFileConverter_27" ${TOPP_BIN_PATH}/IDFileConverter -test -in ${DATA_DIR_TOPP}/IDFileConverter_27_input.idXML -out IDFileConverter_27_output.tmp -out_type FASTA) +add_test("TOPP_IDFileConverter_27" ${TOPP_BIN_PATH}/IDFileConverter -test -in ${DATA_DIR_TOPP}/IDFileConverter_27_input.idXML -out IDFileConverter_27_output.tmp -out_type fasta) add_test("TOPP_IDFileConverter_27_out1" ${DIFF} -in1 IDFileConverter_27_output.tmp -in2 ${DATA_DIR_TOPP}/IDFileConverter_27_output.fasta) set_tests_properties("TOPP_IDFileConverter_27_out1" PROPERTIES DEPENDS "TOPP_IDFileConverter_27") -add_test("TOPP_IDFileConverter_28" ${TOPP_BIN_PATH}/IDFileConverter -test -in ${DATA_DIR_TOPP}/IDFileConverter_27_input.idXML -out IDFileConverter_28_output.tmp -out_type FASTA -number_of_hits -1) +add_test("TOPP_IDFileConverter_28" ${TOPP_BIN_PATH}/IDFileConverter -test -in ${DATA_DIR_TOPP}/IDFileConverter_27_input.idXML -out IDFileConverter_28_output.tmp -out_type fasta -number_of_hits -1) add_test("TOPP_IDFileConverter_28_out1" ${DIFF} -in1 IDFileConverter_28_output.tmp -in2 ${DATA_DIR_TOPP}/IDFileConverter_28_output.fasta) set_tests_properties("TOPP_IDFileConverter_28_out1" PROPERTIES DEPENDS "TOPP_IDFileConverter_28") # with concatenation -add_test("TOPP_IDFileConverter_29" ${TOPP_BIN_PATH}/IDFileConverter -test -in ${DATA_DIR_TOPP}/IDFileConverter_27_input.idXML -out IDFileConverter_29_output.tmp -out_type FASTA -concatenate_peptides) +add_test("TOPP_IDFileConverter_29" ${TOPP_BIN_PATH}/IDFileConverter -test -in ${DATA_DIR_TOPP}/IDFileConverter_27_input.idXML -out IDFileConverter_29_output.tmp -out_type fasta -concatenate_peptides) add_test("TOPP_IDFileConverter_29_out1" ${DIFF} -in1 IDFileConverter_29_output.tmp -in2 ${DATA_DIR_TOPP}/IDFileConverter_29_output.fasta) set_tests_properties("TOPP_IDFileConverter_29_out1" PROPERTIES DEPENDS "TOPP_IDFileConverter_29") -add_test("TOPP_IDFileConverter_30" ${TOPP_BIN_PATH}/IDFileConverter -test -in ${DATA_DIR_TOPP}/IDFileConverter_27_input.idXML -out IDFileConverter_30_output.tmp -out_type FASTA -concatenate_peptides -number_of_hits 2) +add_test("TOPP_IDFileConverter_30" ${TOPP_BIN_PATH}/IDFileConverter -test -in ${DATA_DIR_TOPP}/IDFileConverter_27_input.idXML -out IDFileConverter_30_output.tmp -out_type fasta -concatenate_peptides -number_of_hits 2) add_test("TOPP_IDFileConverter_30_out1" ${DIFF} -in1 IDFileConverter_30_output.tmp -in2 ${DATA_DIR_TOPP}/IDFileConverter_30_output.fasta) set_tests_properties("TOPP_IDFileConverter_30_out1" PROPERTIES DEPENDS "TOPP_IDFileConverter_30") # Test MzIdentML files with unofficial (non CV-term) scores @@ -1001,6 +1010,12 @@ add_test("TOPP_IDFileConverter_33_File_Conversion" ${TOPP_BIN_PATH}/FileConverte set_tests_properties("TOPP_IDFileConverter_33_File_Conversion" PROPERTIES DEPENDS "TOPP_IDFileConverter_33") add_test("TOPP_IDFileConverter_33_out1" ${DIFF} -in1 IDFileConverter_33_output_mgf.tmp -in2 ${DATA_DIR_TOPP}/IDFileConverter_33_output.mgf -whitelist "TITLE") set_tests_properties("TOPP_IDFileConverter_33_out1" PROPERTIES DEPENDS "TOPP_IDFileConverter_33_File_Conversion") +# OpenMS SQLite format (input file is "IdXMLFile_whole.idXML" from the class test, with one score type renamed for consistency): +add_test("TOPP_IDFileConverter_34_1" ${TOPP_BIN_PATH}/IDFileConverter -test -in ${DATA_DIR_TOPP}/IDFileConverter_34_input.idXML -out IDFileConverter_34_output1.oms) +add_test("TOPP_IDFileConverter_34_2" ${TOPP_BIN_PATH}/IDFileConverter -test -in IDFileConverter_34_output1.oms -out IDFileConverter_34_output2.tmp -out_type idXML) +add_test("TOPP_IDFileConverter_34_out" ${DIFF} -in1 IDFileConverter_34_output2.tmp -in2 ${DATA_DIR_TOPP}/IDFileConverter_34_output.idXML) +set_tests_properties("TOPP_IDFileConverter_34_2" PROPERTIES DEPENDS "TOPP_IDFileConverter_34_1") +set_tests_properties("TOPP_IDFileConverter_34_out" PROPERTIES DEPENDS "TOPP_IDFileConverter_34_2") #------------------------------------------------------------------------------ # IDFilter tests @@ -1186,6 +1201,13 @@ add_test("TOPP_MapAlignerIdentification_7_out1" ${DIFF} -in1 MapAlignerIdentific add_test("TOPP_MapAlignerIdentification_7_out2" ${DIFF} -in1 MapAlignerIdentification_7_output2.tmp -in2 ${DATA_DIR_TOPP}/MapAlignerIdentification_7_output2.trafoXML -whitelist "TrafoXML version=") set_tests_properties("TOPP_MapAlignerIdentification_7_out1" PROPERTIES DEPENDS "TOPP_MapAlignerIdentification_7") set_tests_properties("TOPP_MapAlignerIdentification_7_out2" PROPERTIES DEPENDS "TOPP_MapAlignerIdentification_7") +# oms (database file) input - files based on BSA example data, generated like this: +# IDFileConverter -in share/OpenMS/examples/BSA/BSA2_OMSSA.idXML -out src/tests/topp/MapAlignerIdentification_8_input2.oms +# IDFileConverter -in share/OpenMS/examples/BSA/BSA3_OMSSA.idXML -out src/tests/topp/MapAlignerIdentification_8_input1.oms +add_test("TOPP_MapAlignerIdentification_8" ${TOPP_BIN_PATH}/MapAlignerIdentification -test -in ${DATA_DIR_TOPP}/MapAlignerIdentification_8_input1.oms -trafo_out MapAlignerIdentification_8_output1.tmp -out MapAlignerIdentification_8_output2.tmp -reference:file ${DATA_DIR_TOPP}/MapAlignerIdentification_8_input2.oms -store_original_rt) +# don't compare binary SQLite files +add_test("TOPP_MapAlignerIdentification_8_out1" ${DIFF} -in1 MapAlignerIdentification_8_output1.tmp -in2 ${DATA_DIR_TOPP}/MapAlignerIdentification_8_output1.trafoXML) +set_tests_properties("TOPP_MapAlignerIdentification_8_out1" PROPERTIES DEPENDS "TOPP_MapAlignerIdentification_8") #------------------------------------------------------------------------------ # MapAlignerSpectrum tests: @@ -1586,7 +1608,7 @@ ${TOPP_BIN_PATH}/OpenSwathDecoyGenerator -test -in ${DATA_DIR_TOPP}/OpenSwathDec "-Scoring:TransitionGroupPicker:compute_peak_quality" "-Scoring:Scores:use_ms1_mi" "false" "-Scoring:Scores:use_mi_score" "false") - add_test("TOPP_OpenSwathWorkflow_1" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.mzML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.TraML -rt_norm ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.trafoXML -out_chrom OpenSwathWorkflow_1.chrom.mzML.tmp -out_features OpenSwathWorkflow_1.featureXML.tmp -out_qc OpenSwathWorkflow_1.json.tmp + add_test("TOPP_OpenSwathWorkflow_1" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.mzML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.TraML -rt_norm ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.trafoXML -out_chrom OpenSwathWorkflow_1.chrom.mzML.tmp -out_features OpenSwathWorkflow_1.featureXML.tmp -out_qc OpenSwathWorkflow_1.json.tmp -enable_ms1 "false" ${OLD_OSW_PARAM} ) add_test("TOPP_OpenSwathWorkflow_1_out1" ${DIFF} -whitelist "id=" -in1 OpenSwathWorkflow_1.featureXML.tmp -in2 ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_output.featureXML) add_test("TOPP_OpenSwathWorkflow_1_out2" ${DIFF} -whitelist "id=" -in1 OpenSwathWorkflow_1.chrom.mzML.tmp -in2 ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_output.chrom.mzML) @@ -1595,7 +1617,7 @@ ${TOPP_BIN_PATH}/OpenSwathDecoyGenerator -test -in ${DATA_DIR_TOPP}/OpenSwathDec set_tests_properties("TOPP_OpenSwathWorkflow_1_out2" PROPERTIES DEPENDS "TOPP_OpenSwathWorkflow_1") set_tests_properties("TOPP_OpenSwathWorkflow_1_out3" PROPERTIES DEPENDS "TOPP_OpenSwathWorkflow_1") - add_test("TOPP_OpenSwathWorkflow_2" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_2_input.mzXML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_2_input.TraML -rt_norm ${DATA_DIR_TOPP}/OpenSwathWorkflow_2_input.trafoXML -out_chrom OpenSwathWorkflow_2.chrom.mzML.tmp -out_features OpenSwathWorkflow_2.featureXML.tmp + add_test("TOPP_OpenSwathWorkflow_2" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_2_input.mzXML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_2_input.TraML -rt_norm ${DATA_DIR_TOPP}/OpenSwathWorkflow_2_input.trafoXML -out_chrom OpenSwathWorkflow_2.chrom.mzML.tmp -out_features OpenSwathWorkflow_2.featureXML.tmp -enable_ms1 "false" ${OLD_OSW_PARAM} ) add_test("TOPP_OpenSwathWorkflow_2_out1" ${DIFF} -whitelist "id=" -in1 OpenSwathWorkflow_2.featureXML.tmp -in2 ${DATA_DIR_TOPP}/OpenSwathWorkflow_2_output.featureXML) add_test("TOPP_OpenSwathWorkflow_2_out2" ${DIFF} -in1 OpenSwathWorkflow_2.chrom.mzML.tmp -in2 ${DATA_DIR_TOPP}/OpenSwathWorkflow_2_output.chrom.mzML) @@ -1603,7 +1625,7 @@ ${TOPP_BIN_PATH}/OpenSwathDecoyGenerator -test -in ${DATA_DIR_TOPP}/OpenSwathDec set_tests_properties("TOPP_OpenSwathWorkflow_2_out2" PROPERTIES DEPENDS "TOPP_OpenSwathWorkflow_2") # Also test with ms1 traces (precursor ion trace) - add_test("TOPP_OpenSwathWorkflow_3" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.mzML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.TraML -rt_norm ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.trafoXML -out_chrom OpenSwathWorkflow_3.chrom.mzML.tmp -out_features OpenSwathWorkflow_3.featureXML.tmp + add_test("TOPP_OpenSwathWorkflow_3" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.mzML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.TraML -rt_norm ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.trafoXML -out_chrom OpenSwathWorkflow_3.chrom.mzML.tmp -out_features OpenSwathWorkflow_3.featureXML.tmp ${OLD_OSW_PARAM}) add_test("TOPP_OpenSwathWorkflow_3_out1" ${DIFF} -whitelist "id=" -in1 OpenSwathWorkflow_3.featureXML.tmp -in2 ${DATA_DIR_TOPP}/OpenSwathWorkflow_3_output.featureXML) add_test("TOPP_OpenSwathWorkflow_3_out2" ${DIFF} -whitelist "id=" -in1 OpenSwathWorkflow_3.chrom.mzML.tmp -in2 ${DATA_DIR_TOPP}/OpenSwathWorkflow_3_output.chrom.mzML) @@ -1611,14 +1633,14 @@ ${TOPP_BIN_PATH}/OpenSwathDecoyGenerator -test -in ${DATA_DIR_TOPP}/OpenSwathDec set_tests_properties("TOPP_OpenSwathWorkflow_3_out2" PROPERTIES DEPENDS "TOPP_OpenSwathWorkflow_3") # Also test whether it is able to write csv output - add_test("TOPP_OpenSwathWorkflow_4" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.mzML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.TraML -rt_norm ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.trafoXML -out_chrom OpenSwathWorkflow_4.chrom.mzML.tmp -out_tsv OpenSwathWorkflow_4.tsv.tmp + add_test("TOPP_OpenSwathWorkflow_4" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.mzML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.TraML -rt_norm ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.trafoXML -out_chrom OpenSwathWorkflow_4.chrom.mzML.tmp -out_tsv OpenSwathWorkflow_4.tsv.tmp ${OLD_OSW_PARAM}) add_test("TOPP_OpenSwathWorkflow_4_out1" ${DIFF} -whitelist "id=" -in1 OpenSwathWorkflow_4.chrom.mzML.tmp -in2 ${DATA_DIR_TOPP}/OpenSwathWorkflow_3_output.chrom.mzML) set_tests_properties("TOPP_OpenSwathWorkflow_4_out1" PROPERTIES DEPENDS "TOPP_OpenSwathWorkflow_4") # We cannot currently test the correctness of the csv output # Also test with readoptions cache - add_test("TOPP_OpenSwathWorkflow_5" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.mzML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.TraML -rt_norm ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.trafoXML -out_chrom OpenSwathWorkflow_5.chrom.mzML.tmp -out_features OpenSwathWorkflow_5.featureXML.tmp + add_test("TOPP_OpenSwathWorkflow_5" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.mzML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.TraML -rt_norm ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.trafoXML -out_chrom OpenSwathWorkflow_5.chrom.mzML.tmp -out_features OpenSwathWorkflow_5.featureXML.tmp -readOptions cache -tempDirectory "." ${OLD_OSW_PARAM}) add_test("TOPP_OpenSwathWorkflow_5_out1" ${DIFF} -whitelist "id=" -in1 OpenSwathWorkflow_5.featureXML.tmp -in2 ${DATA_DIR_TOPP}/OpenSwathWorkflow_3_output.featureXML) add_test("TOPP_OpenSwathWorkflow_5_out2" ${DIFF} -whitelist "id=" -in1 OpenSwathWorkflow_5.chrom.mzML.tmp -in2 ${DATA_DIR_TOPP}/OpenSwathWorkflow_3_output.chrom.mzML) @@ -1656,8 +1678,8 @@ ${TOPP_BIN_PATH}/OpenSwathDecoyGenerator -test -in ${DATA_DIR_TOPP}/OpenSwathDec # - use iRT correction (but no outlier removal since only 2 datapoints) # - use quadratic fitting for m/z correction # - use 550 ppm for extraction (0.05 Da @ 100 m/z) - add_test("TOPP_OpenSwathWorkflow_11" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_11_input.mzML -tr_irt ${DATA_DIR_TOPP}/OpenSwathWorkflow_11_input.TraML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_11_input.TraML -out_chrom OpenSwathWorkflow_11.chrom.mzML.tmp -out_features OpenSwathWorkflow_11.featureXML.tmp - -mz_extraction_window 0.2 -rt_extraction_window -1 -Scoring:Scores:use_sonar_scores -sonar -RTNormalization:outlierMethod none -mz_correction_function quadratic_regression_delta_ppm -irt_mz_extraction_window 550 -irt_mz_extraction_window_unit ppm + add_test("TOPP_OpenSwathWorkflow_11" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_11_input.mzML -tr_irt ${DATA_DIR_TOPP}/OpenSwathWorkflow_11_input.TraML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_11_input.TraML -out_chrom OpenSwathWorkflow_11.chrom.mzML.tmp -out_features OpenSwathWorkflow_11.featureXML.tmp + -mz_extraction_window 0.2 -rt_extraction_window -1 -Scoring:Scores:use_sonar_scores -sonar -RTNormalization:outlierMethod none -mz_correction_function quadratic_regression_delta_ppm -irt_mz_extraction_window 550 -irt_mz_extraction_window_unit ppm -enable_ms1 "false" ${OLD_OSW_PARAM} ) add_test("TOPP_OpenSwathWorkflow_11_out1" ${DIFF} -whitelist "id=" -in1 OpenSwathWorkflow_11.chrom.mzML.tmp -in2 ${DATA_DIR_TOPP}/OpenSwathWorkflow_11_output.chrom.mzML) add_test("TOPP_OpenSwathWorkflow_11_out2" ${DIFF} -whitelist "id=" -in1 OpenSwathWorkflow_11.featureXML.tmp -in2 ${DATA_DIR_TOPP}/OpenSwathWorkflow_11_output.featureXML) @@ -1679,7 +1701,7 @@ ${TOPP_BIN_PATH}/OpenSwathDecoyGenerator -test -in ${DATA_DIR_TOPP}/OpenSwathDec # Test whether we can write out sqMass files add_test("TOPP_OpenSwathWorkflow_14_prepare" ${TOPP_BIN_PATH}/TargetedFileConverter -test -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.TraML -out OpenSwathWorkflow_14_input.pqp.tmp -out_type pqp) - add_test("TOPP_OpenSwathWorkflow_14" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.mzML -tr OpenSwathWorkflow_14_input.pqp.tmp -tr_type pqp -rt_norm ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.trafoXML -out_chrom OpenSwathWorkflow_14.chrom.tmp.sqMass -out_osw OpenSwathWorkflow_14.osw + add_test("TOPP_OpenSwathWorkflow_14" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.mzML -tr OpenSwathWorkflow_14_input.pqp.tmp -tr_type pqp -rt_norm ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.trafoXML -out_chrom OpenSwathWorkflow_14.chrom.tmp.sqMass -out_osw OpenSwathWorkflow_14.osw ${OLD_OSW_PARAM} ) # add_test("TOPP_OpenSwathWorkflow_14_out1" ${DIFF} -whitelist "id=" -in1 OpenSwathWorkflow_4.chrom.mzML.tmp -in2 ${DATA_DIR_TOPP}/OpenSwathWorkflow_14_output.chrom.mzML) add_test("TOPP_OpenSwathWorkflow_14_step2" ${TOPP_BIN_PATH}/OpenSwathMzMLFileCacher -in OpenSwathWorkflow_14.chrom.tmp.sqMass -out OpenSwathWorkflow_14.chrom.tmp.mzML -test -lossy_compression false -lossy_mass_accuracy 1e-4 -full_meta false) @@ -1690,7 +1712,7 @@ ${TOPP_BIN_PATH}/OpenSwathDecoyGenerator -test -in ${DATA_DIR_TOPP}/OpenSwathDec # We cannot currently test the correctness of the PQP and OSW files # Test with ms1 only (precursor ion trace) - add_test("TOPP_OpenSwathWorkflow_15" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_15_input.mzML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.TraML -rt_norm ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.trafoXML -out_chrom OpenSwathWorkflow_15.chrom.mzML.tmp -out_features OpenSwathWorkflow_15.featureXML.tmp + add_test("TOPP_OpenSwathWorkflow_15" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_15_input.mzML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.TraML -rt_norm ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.trafoXML -out_chrom OpenSwathWorkflow_15.chrom.mzML.tmp -out_features OpenSwathWorkflow_15.featureXML.tmp -Scoring:TransitionGroupPicker:use_precursors -ms1_isotopes 2 "-test" "-mz_extraction_window" "0.05" "-mz_extraction_window_unit" "Th" # "-ms1_isotopes" "0" # "-Scoring:TransitionGroupPicker:compute_peak_quality" @@ -1746,7 +1768,7 @@ ${TOPP_BIN_PATH}/OpenSwathDecoyGenerator -test -in ${DATA_DIR_TOPP}/OpenSwathDec set_tests_properties("TOPP_OpenSwathFileSplitter_1_out3" PROPERTIES DEPENDS "TOPP_OpenSwathFileSplitter_1") # Test MS1 MI scoring - add_test("TOPP_OpenSwathWorkflow_18" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.mzML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.TraML -rt_norm ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.trafoXML -out_features OpenSwathWorkflow_18.featureXML.tmp + add_test("TOPP_OpenSwathWorkflow_18" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.mzML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.TraML -rt_norm ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.trafoXML -out_features OpenSwathWorkflow_18.featureXML.tmp "-test" "-mz_extraction_window" "0.05" "-mz_extraction_window_unit" "Th" "-ms1_isotopes" "0" "-Scoring:TransitionGroupPicker:compute_peak_quality" # "-Scoring:Scores:use_ms1_mi" "false" @@ -1755,7 +1777,7 @@ ${TOPP_BIN_PATH}/OpenSwathDecoyGenerator -test -in ${DATA_DIR_TOPP}/OpenSwathDec set_tests_properties("TOPP_OpenSwathWorkflow_18_out1" PROPERTIES DEPENDS "TOPP_OpenSwathWorkflow_18") # Test MS2 MI scoring - add_test("TOPP_OpenSwathWorkflow_19" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.mzML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.TraML -rt_norm ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.trafoXML -out_features OpenSwathWorkflow_19.featureXML.tmp + add_test("TOPP_OpenSwathWorkflow_19" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.mzML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.TraML -rt_norm ${DATA_DIR_TOPP}/OpenSwathWorkflow_1_input.trafoXML -out_features OpenSwathWorkflow_19.featureXML.tmp "-test" "-mz_extraction_window" "0.05" "-mz_extraction_window_unit" "Th" "-ms1_isotopes" "0" "-Scoring:TransitionGroupPicker:compute_peak_quality" "-Scoring:Scores:use_ms1_mi" "false") @@ -1774,7 +1796,7 @@ ${TOPP_BIN_PATH}/OpenSwathDecoyGenerator -test -in ${DATA_DIR_TOPP}/OpenSwathDec set_tests_properties("TOPP_OpenSwathWorkflow_20_out1" PROPERTIES DEPENDS "TOPP_OpenSwathWorkflow_20") # Test iRT alignment, full workflow - add_test("TOPP_OpenSwathWorkflow_21" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_21_input.mzML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_21_input.tsv -tr_irt ${DATA_DIR_TOPP}/OpenSwathWorkflow_21_input.irt.TraML -out_features OpenSwathWorkflow_21.featureXML.tmp -Debugging:irt_trafo OpenSwathWorkflow_21.trafoXML.tmp -out_chrom OpenSwathWorkflow_21.mzML.tmp + add_test("TOPP_OpenSwathWorkflow_21" ${TOPP_BIN_PATH}/OpenSwathWorkflow -in ${DATA_DIR_TOPP}/OpenSwathWorkflow_21_input.mzML -tr ${DATA_DIR_TOPP}/OpenSwathWorkflow_21_input.tsv -tr_irt ${DATA_DIR_TOPP}/OpenSwathWorkflow_21_input.irt.TraML -out_features OpenSwathWorkflow_21.featureXML.tmp -Debugging:irt_trafo OpenSwathWorkflow_21.trafoXML.tmp -out_chrom OpenSwathWorkflow_21.mzML.tmp -RTNormalization:lowess:span 0.666666666666666666666666666 "-test" "-mz_extraction_window" "0.05" "-mz_extraction_window_unit" "Th" "-ms1_isotopes" "0" "-Scoring:Scores:use_total_mi_score" @@ -1995,16 +2017,16 @@ set_tests_properties("TOPP_RTPredict_5_out1" PROPERTIES DEPENDS "TOPP_RTPredict_ #------------------------------------------------------------------------------ # SeedListGenerator tests -add_test("TOPP_SeedListGenerator_1" ${TOPP_BIN_PATH}/SeedListGenerator -test -in ${DATA_DIR_TOPP}/PepXMLFile_test.mzML -out SeedListGenerator_1_output.tmp) -add_test("TOPP_SeedListGenerator_1_out1" ${DIFF} -in1 SeedListGenerator_1_output.tmp -in2 ${DATA_DIR_TOPP}/SeedListGenerator_1_output.featureXML ) +add_test("TOPP_SeedListGenerator_1" ${TOPP_BIN_PATH}/SeedListGenerator -test -in ${DATA_DIR_TOPP}/PepXMLFile_test.mzML -out_prefix SeedListGenerator_1_output_tmp) +add_test("TOPP_SeedListGenerator_1_out1" ${DIFF} -in1 SeedListGenerator_1_output_tmp_0.featureXML -in2 ${DATA_DIR_TOPP}/SeedListGenerator_1_output.featureXML ) set_tests_properties("TOPP_SeedListGenerator_1_out1" PROPERTIES DEPENDS "TOPP_SeedListGenerator_1") -add_test("TOPP_SeedListGenerator_2" ${TOPP_BIN_PATH}/SeedListGenerator -test -in ${DATA_DIR_TOPP}/IDMapper_1_output.featureXML -out SeedListGenerator_2_output.tmp) -add_test("TOPP_SeedListGenerator_2_out1" ${DIFF} -in1 SeedListGenerator_2_output.tmp -in2 ${DATA_DIR_TOPP}/SeedListGenerator_2_output.featureXML ) +add_test("TOPP_SeedListGenerator_2" ${TOPP_BIN_PATH}/SeedListGenerator -test -in ${DATA_DIR_TOPP}/IDMapper_1_output.featureXML -out_prefix SeedListGenerator_2_output_tmp) +add_test("TOPP_SeedListGenerator_2_out1" ${DIFF} -in1 SeedListGenerator_2_output_tmp_0.featureXML -in2 ${DATA_DIR_TOPP}/SeedListGenerator_2_output.featureXML ) set_tests_properties("TOPP_SeedListGenerator_2_out1" PROPERTIES DEPENDS "TOPP_SeedListGenerator_2") -add_test("TOPP_SeedListGenerator_3" ${TOPP_BIN_PATH}/SeedListGenerator -test -in ${DATA_DIR_TOPP}/ConsensusXMLFile_1.consensusXML -out SeedListGenerator_3_output1.tmp SeedListGenerator_3_output2.tmp) -add_test("TOPP_SeedListGenerator_3_out1" ${DIFF} -in1 SeedListGenerator_3_output1.tmp -in2 ${DATA_DIR_TOPP}/SeedListGenerator_3_output1.featureXML ) +add_test("TOPP_SeedListGenerator_3" ${TOPP_BIN_PATH}/SeedListGenerator -test -in ${DATA_DIR_TOPP}/ConsensusXMLFile_1.consensusXML -out_prefix SeedListGenerator_3_output_tmp) +add_test("TOPP_SeedListGenerator_3_out1" ${DIFF} -in1 SeedListGenerator_3_output_tmp_0.featureXML -in2 ${DATA_DIR_TOPP}/SeedListGenerator_3_output1.featureXML ) set_tests_properties("TOPP_SeedListGenerator_3_out1" PROPERTIES DEPENDS "TOPP_SeedListGenerator_3") -add_test("TOPP_SeedListGenerator_3_out2" ${DIFF} -in1 SeedListGenerator_3_output2.tmp -in2 ${DATA_DIR_TOPP}/SeedListGenerator_3_output2.featureXML ) +add_test("TOPP_SeedListGenerator_3_out2" ${DIFF} -in1 SeedListGenerator_3_output_tmp_1.featureXML -in2 ${DATA_DIR_TOPP}/SeedListGenerator_3_output2.featureXML ) set_tests_properties("TOPP_SeedListGenerator_3_out2" PROPERTIES DEPENDS "TOPP_SeedListGenerator_3") #------------------------------------------------------------------------------ @@ -2202,16 +2224,24 @@ set_tests_properties("TOPP_IDMapper_5_out1" PROPERTIES DEPENDS "TOPP_IDMapper_5" #------------------------------------------------------------------------------ # IDRipper tests -add_test("TOPP_IDRipper_1" ${TOPP_BIN_PATH}/IDRipper -test -in ${DATA_DIR_TOPP}/IDRipper_1_input.idXML -out dummy.tmp ) -add_test("TOPP_IDRipper_1_out1" ${DIFF} -in1 IDRipper_1_output_1.tmp -in2 ${DATA_DIR_TOPP}/IDRipper_1_output1.idXML ) +add_test("TOPP_IDRipper_1" ${TOPP_BIN_PATH}/IDRipper -test -in ${DATA_DIR_TOPP}/IDRipper_1_input.idXML -out ./ ) +add_test("TOPP_IDRipper_1_out1" ${DIFF} -in1 IDRipper_1_output_1.idXML -in2 ${DATA_DIR_TOPP}/IDRipper_1_output1.idXML ) set_tests_properties("TOPP_IDRipper_1_out1" PROPERTIES DEPENDS "TOPP_IDRipper_1") -add_test("TOPP_IDRipper_1_out2" ${DIFF} -in1 IDRipper_1_output_2.tmp -in2 ${DATA_DIR_TOPP}/IDRipper_1_output2.idXML ) +add_test("TOPP_IDRipper_1_out2" ${DIFF} -in1 IDRipper_1_output_2.idXML -in2 ${DATA_DIR_TOPP}/IDRipper_1_output2.idXML ) set_tests_properties("TOPP_IDRipper_1_out2" PROPERTIES DEPENDS "TOPP_IDRipper_1") -add_test("TOPP_IDRipper_2" ${TOPP_BIN_PATH}/IDRipper -test -in ${DATA_DIR_TOPP}/IDRipper_2_input.idXML -out_path dummy.tmp) -add_test("TOPP_IDRipper_2_out1" ${DIFF} -in1 IDRipper_2_output_1.tmp -in2 ${DATA_DIR_TOPP}/IDRipper_2_output1.idXML ) +add_test("TOPP_IDRipper_2" ${TOPP_BIN_PATH}/IDRipper -test -in ${DATA_DIR_TOPP}/IDRipper_2_input.idXML -out ./ -numeric_filenames -split_ident_runs ) +add_test("TOPP_IDRipper_2_out1" ${DIFF} -in1 IDRipper_2_input_0_0.idXML -in2 ${DATA_DIR_TOPP}/IDRipper_2_input_0_0.idXML ) set_tests_properties("TOPP_IDRipper_2_out1" PROPERTIES DEPENDS "TOPP_IDRipper_2") -add_test("TOPP_IDRipper_2_out2" ${DIFF} -in1 IDRipper_2_output_2.tmp -in2 ${DATA_DIR_TOPP}/IDRipper_2_output2.idXML ) +add_test("TOPP_IDRipper_2_out2" ${DIFF} -in1 IDRipper_2_input_1_0.idXML -in2 ${DATA_DIR_TOPP}/IDRipper_2_input_1_0.idXML ) set_tests_properties("TOPP_IDRipper_2_out2" PROPERTIES DEPENDS "TOPP_IDRipper_2") +add_test("TOPP_IDRipper_2_out3" ${DIFF} -in1 IDRipper_2_input_2_1.idXML -in2 ${DATA_DIR_TOPP}/IDRipper_2_input_2_1.idXML ) +set_tests_properties("TOPP_IDRipper_2_out3" PROPERTIES DEPENDS "TOPP_IDRipper_2") +add_test("TOPP_IDRipper_2a" ${TOPP_BIN_PATH}/IDRipper -test -in ${DATA_DIR_TOPP}/IDRipper_2_input.idXML -out ./ -numeric_filenames ) +add_test("TOPP_IDRipper_2a_out1" ${DIFF} -in1 IDRipper_2_input_0.idXML -in2 ${DATA_DIR_TOPP}/IDRipper_2a_output_0.idXML ) +set_tests_properties("TOPP_IDRipper_2a_out1" PROPERTIES DEPENDS "TOPP_IDRipper_2a") +add_test("TOPP_IDRipper_2a_out2" ${DIFF} -in1 IDRipper_2_input_1.idXML -in2 ${DATA_DIR_TOPP}/IDRipper_2a_output_1.idXML ) +set_tests_properties("TOPP_IDRipper_2a_out2" PROPERTIES DEPENDS "TOPP_IDRipper_2a") + # use IDMerger results to test. Input -> IDMerger -> IDRipper -> Output == Input add_test("TOPP_IDRipper_3_prep" ${TOPP_BIN_PATH}/IDMerger -test -in ${DATA_DIR_TOPP}/IDRipper_3_input1.idXML ${DATA_DIR_TOPP}/IDRipper_3_input2.idXML -out IDRipper_3_output.tmp) add_test("TOPP_IDRipper_3_prep_out1" ${DIFF} -whitelist "?xml-stylesheet" "file_origin" -in1 IDRipper_3_output.tmp -in2 ${DATA_DIR_TOPP}/IDRipper_3_output.idXML) @@ -2219,13 +2249,14 @@ set_tests_properties("TOPP_IDRipper_3_prep_out1" PROPERTIES DEPENDS "TOPP_IDRipp ## create an output directory during configure time in the binary tree set(TMP_RIP_PATH ${PROJECT_BINARY_DIR}/tmp_path/) ## ${PROJECT_BINARY_DIR} already includes '/src/tests/topp/' file(MAKE_DIRECTORY ${TMP_RIP_PATH}) -add_test("TOPP_IDRipper_3" ${TOPP_BIN_PATH}/IDRipper -test -in ${DATA_DIR_TOPP}/IDRipper_3_output.idXML -out_path ${TMP_RIP_PATH}) +add_test("TOPP_IDRipper_3" ${TOPP_BIN_PATH}/IDRipper -test -in ${DATA_DIR_TOPP}/IDRipper_3_output.idXML -out ${TMP_RIP_PATH}) set_tests_properties("TOPP_IDRipper_3" PROPERTIES DEPENDS "TOPP_IDRipper_3_prep") add_test("TOPP_IDRipper_3_out1" ${DIFF} -in1 ${TMP_RIP_PATH}/IDRipper_3_input1.idXML -in2 ${DATA_DIR_TOPP}/IDRipper_3_input1.idXML) set_tests_properties("TOPP_IDRipper_3_out1" PROPERTIES DEPENDS "TOPP_IDRipper_3") add_test("TOPP_IDRipper_3_out2" ${DIFF} -in1 ${TMP_RIP_PATH}/IDRipper_3_input2.idXML -in2 ${DATA_DIR_TOPP}/IDRipper_3_input2.idXML) set_tests_properties("TOPP_IDRipper_3_out2" PROPERTIES DEPENDS "TOPP_IDRipper_3") + #------------------------------------------------------------------------------ # ConsensusID tests # idXML input, "PEPMatrix" algorithm using PEP30MS matrix (example from the JPR paper): @@ -2624,15 +2655,30 @@ add_test("UTILS_AccurateMassSearch_1_out1" ${DIFF} -in1 AccurateMassSearch_1_out set_tests_properties("UTILS_AccurateMassSearch_1_out1" PROPERTIES DEPENDS "UTILS_AccurateMassSearch_1") # use FFM and MAD featurexml with custom adducts and database # mztab, featureXML (with isotope intensities) -add_test("UTILS_AccurateMassSearch_2" ${TOPP_BIN_PATH}/AccurateMassSearch -test -in ${DATA_DIR_TOPP}/AccurateMassSearch_2_input.featureXML -out AccurateMassSearch_2_output.tmp.mzTab -out_annotation AccurateMassSearch_2_output.tmp.featureXML -db:mapping ${DATA_DIR_TOPP}/AMS_test_Mapping.tsv -db:struct ${DATA_DIR_TOPP}/AMS_test_Struct.tsv -positive_adducts ${DATA_DIR_TOPP}/AMS_PositiveAdducts.tsv -negative_adducts ${DATA_DIR_TOPP}/AMS_NegativeAdducts.tsv -algorithm:mzTab:exportIsotopeIntensities true) +add_test("UTILS_AccurateMassSearch_2" ${TOPP_BIN_PATH}/AccurateMassSearch -test -in ${DATA_DIR_TOPP}/AccurateMassSearch_2_input.featureXML -out AccurateMassSearch_2_output.tmp.mzTab -out_annotation AccurateMassSearch_2_output.tmp.featureXML -db:mapping ${DATA_DIR_TOPP}/AMS_test_Mapping.tsv -db:struct ${DATA_DIR_TOPP}/AMS_test_Struct.tsv -positive_adducts ${DATA_DIR_TOPP}/AMS_PositiveAdducts.tsv -negative_adducts ${DATA_DIR_TOPP}/AMS_NegativeAdducts.tsv -algorithm:mzTab:exportIsotopeIntensities true -algorithm:keep_unidentified_masses false) add_test("UTILS_AccurateMassSearch_2_out1" ${DIFF} -in1 AccurateMassSearch_2_output.tmp.mzTab -in2 ${DATA_DIR_TOPP}/AccurateMassSearch_2_output.mzTab -whitelist "") -add_test("UTILS_AccurateMassSearch_2_out2" ${DIFF} -in1 AccurateMassSearch_2_output.tmp.featureXML -in2 ${DATA_DIR_TOPP}/AccurateMassSearch_2_output.featureXML -whitelist "date") +add_test("UTILS_AccurateMassSearch_2_out2" ${DIFF} -in1 AccurateMassSearch_2_output.tmp.featureXML -in2 ${DATA_DIR_TOPP}/AccurateMassSearch_2_output.featureXML -whitelist "IdentificationRun id=\"PI_0\" date=" "database_location") set_tests_properties("UTILS_AccurateMassSearch_2_out1" PROPERTIES DEPENDS "UTILS_AccurateMassSearch_2") set_tests_properties("UTILS_AccurateMassSearch_2_out2" PROPERTIES DEPENDS "UTILS_AccurateMassSearch_2") # mztab (default) add_test("UTILS_AccurateMassSearch_3" ${TOPP_BIN_PATH}/AccurateMassSearch -test -in ${DATA_DIR_TOPP}/AccurateMassSearch_2_input.featureXML -out AccurateMassSearch_3_output.tmp.mzTab -out_annotation AccurateMassSearch_2_output.tmp.featureXML -db:mapping ${DATA_DIR_TOPP}/AMS_test_Mapping.tsv -db:struct ${DATA_DIR_TOPP}/AMS_test_Struct.tsv -positive_adducts ${DATA_DIR_TOPP}/AMS_PositiveAdducts.tsv -negative_adducts ${DATA_DIR_TOPP}/AMS_NegativeAdducts.tsv) add_test("UTILS_AccurateMassSearch_3_out1" ${DIFF} -in1 AccurateMassSearch_3_output.tmp.mzTab -in2 ${DATA_DIR_TOPP}/AccurateMassSearch_3_output.mzTab -whitelist "") set_tests_properties("UTILS_AccurateMassSearch_3_out1" PROPERTIES DEPENDS "UTILS_AccurateMassSearch_3") +# TODO: How to test the oms file? +# oms (default) +#add_test("UTILS_AccurateMassSearch_4" ${TOPP_BIN_PATH}/AccurateMassSearch -test -in ${DATA_DIR_TOPP}/AccurateMassSearch_2_input.featureXML -out AccurateMassSearch_4_output.tmp.mzTab -out_annotation AccurateMassSearch_2_output.tmp.oms -db:mapping ${DATA_DIR_TOPP}/AMS_test_Mapping.tsv -db:struct ${DATA_DIR_TOPP}/AMS_test_Struct.tsv -positive_adducts ${DATA_DIR_TOPP}/AMS_PositiveAdducts.tsv -negative_adducts ${DATA_DIR_TOPP}/AMS_NegativeAdducts.tsv) +#add_test("UTILS_AccurateMassSearch_4_out1" ${DIFF} -in1 AccurateMassSearch_4_output.tmp.oms -in2 ${DATA_DIR_TOPP}/AccurateMassSearch_3_output.mzTab -whitelist "") +#set_tests_properties("UTILS_AccurateMassSearch_4_out1" PROPERTIES DEPENDS "UTILS_AccurateMassSearch_4") +# mztab_m + oms (annotation) +add_test("UTILS_AccurateMassSearch_5" ${TOPP_BIN_PATH}/AccurateMassSearch -test -in ${DATA_DIR_TOPP}/AccurateMassSearch_2_input.featureXML -out AccurateMassSearch_5_output.tmp.mzTab -out_annotation AccurateMassSearch_5_output.tmp.oms -db:mapping ${DATA_DIR_TOPP}/AMS_test_Mapping.tsv -db:struct ${DATA_DIR_TOPP}/AMS_test_Struct.tsv -positive_adducts ${DATA_DIR_TOPP}/AMS_PositiveAdducts.tsv -negative_adducts ${DATA_DIR_TOPP}/AMS_NegativeAdducts.tsv -algorithm:id_format ID) +add_test("UTILS_AccurateMassSearch_5_out1" ${DIFF} -in1 AccurateMassSearch_5_output.tmp.mzTab -in2 ${DATA_DIR_TOPP}/AccurateMassSearch_5_output.mzTab -whitelist "") +set_tests_properties("UTILS_AccurateMassSearch_5_out1" PROPERTIES DEPENDS "UTILS_AccurateMassSearch_5") +# mztab_m + feautreXML (annotation) +add_test("UTILS_AccurateMassSearch_6" ${TOPP_BIN_PATH}/AccurateMassSearch -test -in ${DATA_DIR_TOPP}/AccurateMassSearch_2_input.featureXML -out AccurateMassSearch_6_output.tmp.mzTab -out_annotation AccurateMassSearch_6_output.tmp.featureXML -db:mapping ${DATA_DIR_TOPP}/AMS_test_Mapping.tsv -db:struct ${DATA_DIR_TOPP}/AMS_test_Struct.tsv -positive_adducts ${DATA_DIR_TOPP}/AMS_PositiveAdducts.tsv -negative_adducts ${DATA_DIR_TOPP}/AMS_NegativeAdducts.tsv -algorithm:id_format ID) +add_test("UTILS_AccurateMassSearch_6_out1" ${DIFF} -in1 AccurateMassSearch_6_output.tmp.mzTab -in2 ${DATA_DIR_TOPP}/AccurateMassSearch_6_output.mzTab -whitelist "") +add_test("UTILS_AccurateMassSearch_6_out2" ${DIFF} -in1 AccurateMassSearch_6_output.tmp.featureXML -in2 ${DATA_DIR_TOPP}/AccurateMassSearch_6_output.featureXML -whitelist "IdentificationRun id=\"PI_0\" date=" "database_location") +set_tests_properties("UTILS_AccurateMassSearch_6_out1" PROPERTIES DEPENDS "UTILS_AccurateMassSearch_6") +set_tests_properties("UTILS_AccurateMassSearch_6_out2" PROPERTIES DEPENDS "UTILS_AccurateMassSearch_6") # AssayGeneratorMetabo # use FeatureFinderMetabo data @@ -3072,11 +3118,20 @@ set_tests_properties("UTILS_ProteomicsLFQ_7_out_4" PROPERTIES DEPENDS "UTILS_Pro #------------------------------------------------------------------------------ # NucleicAcidSearchEngine: -add_test("UTILS_NucleicAcidSearchEngine_1" ${TOPP_BIN_PATH}/NucleicAcidSearchEngine -test -ini ${DATA_DIR_TOPP}/NucleicAcidSearchEngine_1.ini -in ${DATA_DIR_TOPP}/NucleicAcidSearchEngine_1.mzML -id_out NucleicAcidSearchEngine_11_out.tmp -out NucleicAcidSearchEngine_12_out.tmp -database ${DATA_DIR_TOPP}/NucleicAcidSearchEngine_1.fasta) +add_test("UTILS_NucleicAcidSearchEngine_1" ${TOPP_BIN_PATH}/NucleicAcidSearchEngine -test -ini ${DATA_DIR_TOPP}/NucleicAcidSearchEngine_1.ini -in ${DATA_DIR_TOPP}/NucleicAcidSearchEngine_1.mzML -id_out NucleicAcidSearchEngine_11_out.tmp -out NucleicAcidSearchEngine_12_out.tmp -db_out NucleicAcidSearchEngine_13_out.tmp -digest_out NucleicAcidSearchEngine_1_digest.oms -database ${DATA_DIR_TOPP}/NucleicAcidSearchEngine_1.fasta) add_test("UTILS_NucleicAcidSearchEngine_11_out" ${DIFF} -in1 NucleicAcidSearchEngine_11_out.tmp -in2 ${DATA_DIR_TOPP}/NucleicAcidSearchEngine_11_out.idXML -whitelist "IdentificationRun date" "SearchParameters id=\"SP_0\" db=") add_test("UTILS_NucleicAcidSearchEngine_12_out" ${DIFF} -in1 NucleicAcidSearchEngine_12_out.tmp -in2 ${DATA_DIR_TOPP}/NucleicAcidSearchEngine_12_out.mzTab -whitelist "ms_run[1]-location") +# don't compare binary .oms (SQLite) output file (NucleicAcidSearchEngine_13_out.tmp) set_tests_properties("UTILS_NucleicAcidSearchEngine_11_out" PROPERTIES DEPENDS "UTILS_NucleicAcidSearchEngine_1") set_tests_properties("UTILS_NucleicAcidSearchEngine_12_out" PROPERTIES DEPENDS "UTILS_NucleicAcidSearchEngine_1") +# use pre-digested sequence data: +add_test("UTILS_NucleicAcidSearchEngine_2" ${TOPP_BIN_PATH}/NucleicAcidSearchEngine -test -ini ${DATA_DIR_TOPP}/NucleicAcidSearchEngine_1.ini -in ${DATA_DIR_TOPP}/NucleicAcidSearchEngine_1.mzML -id_out NucleicAcidSearchEngine_21_out.tmp -out NucleicAcidSearchEngine_22_out.tmp -db_out NucleicAcidSearchEngine_23_out.tmp -digest NucleicAcidSearchEngine_1_digest.oms) +set_tests_properties("UTILS_NucleicAcidSearchEngine_2" PROPERTIES DEPENDS "UTILS_NucleicAcidSearchEngine_1") +add_test("UTILS_NucleicAcidSearchEngine_21_out" ${DIFF} -in1 NucleicAcidSearchEngine_21_out.tmp -in2 ${DATA_DIR_TOPP}/NucleicAcidSearchEngine_11_out.idXML -whitelist "IdentificationRun date" "SearchParameters id=\"SP_0\" db=") +add_test("UTILS_NucleicAcidSearchEngine_22_out" ${DIFF} -in1 NucleicAcidSearchEngine_22_out.tmp -in2 ${DATA_DIR_TOPP}/NucleicAcidSearchEngine_12_out.mzTab -whitelist "ms_run[1]-location") +# don't compare binary .oms (SQLite) output file (NucleicAcidSearchEngine_23_out.tmp) +set_tests_properties("UTILS_NucleicAcidSearchEngine_21_out" PROPERTIES DEPENDS "UTILS_NucleicAcidSearchEngine_2") +set_tests_properties("UTILS_NucleicAcidSearchEngine_22_out" PROPERTIES DEPENDS "UTILS_NucleicAcidSearchEngine_2") #------------------------------------------------------------------------------ # RNAMassCalculator: diff --git a/src/tests/topp/DatabaseSuitability_database.fasta b/src/tests/topp/DatabaseSuitability_database.fasta new file mode 100644 index 00000000000..d9a7aec96fb --- /dev/null +++ b/src/tests/topp/DatabaseSuitability_database.fasta @@ -0,0 +1,98 @@ +>sp|P15336|ATF2_HUMAN Cyclic AMP-dependent transcription factor ATF-2 OS=Homo sapiens (Human) OX=9606 GN=ATF2 PE=1 SV=4 +MKFKLHVNSARQYKDLWNMSDDKPFLCTAPGCGQRFTNEDHLAVHKHKHEMTLKFGPARNDSVIVADQTPTPTRFLKNCEEVGLFNELASPFENEFKKASEDDIKKMPLDLSPLATPIIRSKIEEPSVVETTHQDSPLPHPESTTSDEKEVPLAQTAQPTSAIVRPASLQVPNVLLTSSDSSVIIQQAVPSPTSSTVITQAPSSNRPIVPVPGPFPLLLHLPNGQTMPVAIPASITSSNVHVPAAVPLVRPVTMVPSVPGIPGPSSPQPVQSEAKMRLKAALTQQHPPVTNGDTVKGHGSGLVRTQSEESRPQSLQQPATSTTETPASPAHTTPQTQSTSGRRRRAANEDPDEKRRKFLERNRAAASRCRQKRKVWVQSLEKKAEDLSSLNGQLQSEVTLLRNEVAQLKQLLLAHKDCPVTAMQKKSGYHTADKDDSSEDISVPSSPHTEAIQHSSVSTSNGVSSTSKAEAVATSVLTQMADQSTEPALSQIVMAPSSQSQPSGS +>sp|C9JTQ0|ANR63_HUMAN Ankyrin repeat domain-containing protein 63 OS=Homo sapiens (Human) OX=9606 GN=ANKRD63 PE=3 SV=1 +MLKPKDLCPRAGTRTFLEAMQAGKVHLARFVLDALDRSIIDCRAEQGRTPLMVAVGLPDPALRARFVRLLLEQGAAVNLRDERGRTALSLACERGHLDAVQLLVQFSGDPEAADSAGNSPVMWAAACGHGAVLEFLVRSFRRLGLRLDRTNRAGLTALQLAAARGHGTCVQALTGPWGRAAAAAAARGSNSDSPPGRPAPAASPEHRRPSPRRLPRPLLARFARAAGGHGGEAGSAGKNSGRHRAQGSERPELGRSMSLALGAVTEEEAARLRAGALMALPNSPQSSGTGRWRSQEVLEGAPPTLAQAPIGLSPHPEGGPGSGRLGLRRRSTAPDIPSLVGEAPGPESGPELEANALSVSVPGPNPWQAGTEAVVLRAQR +>sp|Q8N8F7|LSME1_HUMAN Leucine-rich single-pass membrane protein 1 OS=Homo sapiens (Human) OX=9606 GN=LSMEM1 PE=1 SV=1 +MTHSSQDTGSCGIQEDGKLYVVDSINDLNKLNLCPAGSQHLFPLEDKIPVLGTNSGNGSRSLFFVGLLIVLIVSLALVFFVIFLIVQTGNKMDDVSRRLTAEGKDIDDLKRINNMIVKRLNQLNQLDSEQN +>sp|P13984|T2FB_HUMAN General transcription factor IIF subunit 2 OS=Homo sapiens (Human) OX=9606 GN=GTF2F2 PE=1 SV=2 +MAERGELDLTGAKQNTGVWLVKVPKYLSQQWAKASGRGEVGKLRIAKTQGRTEVSFTLNEDLANIHDIGGKPASVSAPREHPFVLQSVGGQTLTVFTESSSDKLSLEGIVVQRAECRPAASENYMRLKRLQIEESSKPVRLSQQLDKVVTTNYKPVANHQYNIEYERKKKEDGKRARADKQHVLDMLFSAFEKHQYYNLKDLVDITKQPVVYLKEILKEIGVQNVKGIHKNTWELKPEYRHYQGEEKSD +>sp|P02792|FRIL_HUMAN Ferritin light chain OS=Homo sapiens (Human) OX=9606 GN=FTL PE=1 SV=2 +MSSQIRQNYSTDVEAAVNSLVNLYLQASYTYLSLGFYFDRDDVALEGVSHFFRELAEEKREGYERLLKMQNQRGGRALFQDIKKPAEDEWGKTPDAMKAAMALEKKLNQALLDLHALGSARTDPHLCDFLETHFLDEEVKLIKKMGDHLTNLHRLGGPEAGLGEYLFERLTLKHD +>sp|P26599|PTBP1_HUMAN Polypyrimidine tract-binding protein 1 OS=Homo sapiens (Human) OX=9606 GN=PTBP1 PE=1 SV=1 +MDGIVPDIAVGTKRGSDELFSTCVTNGPFIMSSNSASAANGNDSKKFKGDSRSAGVPSRVIHIRKLPIDVTEGEVISLGLPFGKVTNLLMLKGKNQAFIEMNTEEAANTMVNYYTSVTPVLRGQPIYIQFSNHKELKTDSSPNQARAQAALQAVNSVQSGNLALAASAAAVDAGMAMAGQSPVLRIIVENLFYPVTLDVLHQIFSKFGTVLKIITFTKNNQFQALLQYADPVSAQHAKLSLDGQNIYNACCTLRIDFSKLTSLNVKYNNDKSRDYTRPDLPSGDSQPSLDQTMAAAFGLSVPNVHGALAPLAIPSAAAAAAAAGRIAIPGLAGAGNSVLLVSNLNPERVTPQSLFILFGVYGDVQRVKILFNKKENALVQMADGNQAQLAMSHLNGHKLHGKPIRITLSKHQNVQLPREGQEDQGLTKDYGNSPLHRFKKPGSKNFQNIFPPSATLHLSNIPPSVSEEDLKVLFSSNGGVVKGFKFFQKDRKMALIQMGSVEEAVQALIDLHNHDLGENHHLRVSFSKSTI +>sp|P18621|RL17_HUMAN 60S ribosomal protein L17 OS=Homo sapiens (Human) OX=9606 GN=RPL17 PE=1 SV=3 +MVRYSLDPENPTKSCKSRGSNLRVHFKNTRETAQAIKGMHIRKATKYLKDVTLQKQCVPFRRYNGGVGRCAQAKQWGWTQGRWPKKSAEFLLHMLKNAESNAELKGLDVDSLVIEHIQVNKAPKMRRRTYRAHGRINPYMSSPCHIEMILTEKEQIVPKPEEEVAQKKKISQKKLKKQKLMARE +>sp|Q5TA77|LCE3B_HUMAN Late cornified envelope protein 3B OS=Homo sapiens (Human) OX=9606 GN=LCE3B PE=1 SV=1 +MSCQQNQQQCQPLPKCPSPKCPPKSSAQCLPPASSCCAPRPGCCGGPSSEGGCCLSHHRCCRSHRCRRQSSNSCDRGSGQQDGASDCGYGSGGCC +>sp|Q69YN2|C19L1_HUMAN CWF19-like protein 1 OS=Homo sapiens (Human) OX=9606 GN=CWF19L1 PE=1 SV=2 +MAQKPLRLLACGDVEGKFDILFNRVQAIQKKSGNFDLLLCVGNFFGSTQDAEWEEYKTGIKKAPIQTYVLGANNQETVKYFQDADGCELAENITYLGRKGIFTGSSGLQIVYLSGTESLNEPVPGYSFSPKDVSSLRMMLCTTSQFKGVDILLTSPWPKCVGNFGNSSGEVDTKKCGSALVSSLATGLKPRYHFAALEKTYYERLPYRNHIILQENAQHATRFIALANVGNPEKKKYLYAFSIVPMKLMDAAELVKQPPDVTENPYRKSGQEASIGKQILAPVEESACQFFFDLNEKQGRKRSSTGRDSKSSPHPKQPRKPPQPPGPCWFCLASPEVEKHLVVNIGTHCYLALAKGGLSDDHVLILPIGHYQSVVELSAEVVEEVEKYKATLRRFFKSRGKWCVVFERNYKSHHLQLQVIPVPISCSTTDDIKDAFITQAQEQQIELLEIPEHSDIKQIAQPGAAYFYVELDTGEKLFHRIKKNFPLQFGREVLASEAILNVPDKSDWRQCQISKEDEETLARRFRKDFEPYDFTLDD +>sp|Q9NZI5|GRHL1_HUMAN Grainyhead-like protein 1 homolog OS=Homo sapiens (Human) OX=9606 GN=GRHL1 PE=1 SV=2 +MTQEYDNKRPVLVLQNEALYPQRRSYTSEDEAWKSFLENPLTAATKAMMSINGDEDSAAALGLLYDYYKVPRERRSSTAKPEVEHPEPDHSKRNSIPIVTEQPLISAGENRVQVLKNVPFNIVLPHGNQLGIDKRGHLTAPDTTVTVSIATMPTHSIKTETQPHGFAVGIPPAVYHPEPTERVVVFDRNLNTDQFSSGAQAPNAQRRTPDSTFSETFKEGVQEVFFPSDLSLRMPGMNSEDYVFDSVSGNNFEYTLEASKSLRQKPGDSTMTYLNKGQFYPITLKEVSSSEGIHHPISKVRSVIMVVFAEDKSREDQLRHWKYWHSRQHTAKQRCIDIADYKESFNTISNIEEIAYNAISFTWDINDEAKVFISVNCLSTDFSSQKGVKGLPLNIQVDTYSYNNRSNKPVHRAYCQIKVFCDKGAERKIRDEERKQSKRKVSDVKVPLLPSHKRMDITVFKPFIDLDTQPVLFIPDVHFANLQRGTHVLPIASEELEGEGSVLKRGPYGTEDDFAVPPSTKLARIEEPKRVLLYVRKESEEVFDALMLKTPSLKGLMEAISDKYDVPHDKIGKIFKKCKKGILVNMDDNIVKHYSNEDTFQLQIEEAGGSYKLTLTEI +>sp|P0DOY5|HD101_HUMAN Immunoglobulin heavy diversity 1-1 OS=Homo sapiens (Human) OX=9606 GN=IGHD1-1 PE=4 SV=1 +GTTGT +>sp|Q969S9|RRF2M_HUMAN Ribosome-releasing factor 2, mitochondrial OS=Homo sapiens (Human) OX=9606 GN=GFM2 PE=1 SV=1 +MLTNLRIFAMSHQTIPSVYINNICCYKIRASLKRLKPHVPLGRNCSSLPGLIGNDIKSLHSIINPPIAKIRNIGIMAHIDAGKTTTTERILYYSGYTRSLGDVDDGDTVTDFMAQERERGITIQSAAVTFDWKGYRVNLIDTPGHVDFTLEVERCLRVLDGAVAVFDASAGVEAQTLTVWRQADKHNIPRICFLNKMDKTGASFKYAVESIREKLKAKPLLLQLPIGEAKTFKGVVDVVMKEKLLWNCNSNDGKDFERKPLLEMNDPELLKETTEARNALIEQVADLDDEFADLVLEEFSENFDLLPAEKLQTAIHRVTLAQTAVPVLCGSALKNKGIQPLLDAVTMYLPSPEERNYEFLQWYKDDLCALAFKVLHDKQRGPLVFMRIYSGTIKPQLAIHNINGNCTERISRLLLPFADQHVEIPSLTAGNIALTVGLKHTATGDTIVSSKSSALAAARRAEREGEKKHRQNNEAERLLLAGVEIPEPVFFCTIEPPSLSKQPDLEHALKCLQREDPSLKVRLDPDSGQTVLCGMGELHIEIIHDRIKREYGLETYLGPLQVAYRETILNSVRATDTLDRTLGDKRHLVTVEVEARPIETSSVMPVIEFEYAESINEGLLKVSQEAIENGIHSACLQGPLLGSPIQDVAITLHSLTIHPGTSTTMISACVSRCVQKALKKADKQVLEPLMNLEVTVARDYLSPVLADLAQRRGNIQEIQTRQDNKVVIGFVPLAEIMGYSTVLRTLTSGSATFALELSTYQAMNPQDQNTLLNRRSGLT +>sp|Q9BUD6|SPON2_HUMAN Spondin-2 OS=Homo sapiens (Human) OX=9606 GN=SPON2 PE=1 SV=3 +MENPSPAAALGKALCALLLATLGAAGQPLGGESICSARALAKYSITFTGKWSQTAFPKQYPLFRPPAQWSSLLGAAHSSDYSMWRKNQYVSNGLRDFAERGEAWALMKEIEAAGEALQSVHEVFSAPAVPSGTGQTSAELEVQRRHSLVSFVVRIVPSPDWFVGVDSLDLCDGDRWREQAALDLYPYDAGTDSGFTFSSPNFATIPQDTVTEITSSSPSHPANSFYYPRLKALPPIARVTLVRLRQSPRAFIPPAPVLPSRDNEIVDSASVPETPLDCEVSLWSSWGLCGGHCGRLGTKSRTRYVRVQPANNGSPCPELEEEAECVPDNCV +>sp|Q13127|REST_HUMAN RE1-silencing transcription factor OS=Homo sapiens (Human) OX=9606 GN=REST PE=1 SV=3 +MATQVMGQSSGGGGLFTSSGNIGMALPNDMYDLHDLSKAELAAPQLIMLANVALTGEVNGSCCDYLVGEERQMAELMPVGDNNFSDSEEGEGLEESADIKGEPHGLENMELRSLELSVVEPQPVFEASGAPDIYSSNKDLPPETPGAEDKGKSSKTKPFRCKPCQYEAESEEQFVHHIRVHSAKKFFVEESAEKQAKARESGSSTAEEGDFSKGPIRCDRCGYNTNRYDHYTAHLKHHTRAGDNERVYKCIICTYTTVSEYHWRKHLRNHFPRKVYTCGKCNYFSDRKNNYVQHVRTHTGERPYKCELCPYSSSQKTHLTRHMRTHSGEKPFKCDQCSYVASNQHEVTRHARQVHNGPKPLNCPHCDYKTADRSNFKKHVELHVNPRQFNCPVCDYAASKKCNLQYHFKSKHPTCPNKTMDVSKVKLKKTKKREADLPDNITNEKTEIEQTKIKGDVAGKKNEKSVKAEKRDVSKEKKPSNNVSVIQVTTRTRKSVTEVKEMDVHTGSNSEKFSKTKKSKRKLEVDSHSLHGPVNDEESSTKKKKKVESKSKNNSQEVPKGDSKVEENKKQNTCMKKSTKKKTLKNKSSKKSSKPPQKEPVEKGSAQMDPPQMGPAPTEAVQKGPVQVEPPPPMEHAQMEGAQIRPAPDEPVQMEVVQEGPAQKELLPPVEPAQMVGAQIVLAHMELPPPMETAQTEVAQMGPAPMEPAQMEVAQVESAPMQVVQKEPVQMELSPPMEVVQKEPVQIELSPPMEVVQKEPVKIELSPPIEVVQKEPVQMELSPPMGVVQKEPAQREPPPPREPPLHMEPISKKPPLRKDKKEKSNMQSERARKEQVLIEVGLVPVKDSWLLKESVSTEDLSPPSPPLPKENLREEASGDQKLLNTGEGNKEAPLQKVGAEEADESLPGLAANINESTHISSSGQNLNTPEGETLNGKHQTDSIVCEMKMDTDQNTRENLTGINSTVEEPVSPMLPPSAVEEREAVSKTALASPPATMAANESQEIDEDEGIHSHEGSDLSDNMSEGSDDSGLHGARPVPQESSRKNAKEALAVKAAKGDFVCIFCDRSFRKGKDYSKHLNRHLVNVYYLEEAAQGQE +>sp|Q496A3|SPAS1_HUMAN Spermatogenesis-associated serine-rich protein 1 OS=Homo sapiens (Human) OX=9606 GN=SPATS1 PE=1 SV=2 +MSPSMLTGNSPRGCRLPSISSTTCGRQLEKVPEKRDSGMTEVERTYSANCSDFLESKGCFANTTPSGKSVSSSSSVETGPSVSEPPGLPRVSAYVDTTADLDRKLSFSHSDHSSEMSLPEVQKDKYPEEFSLLKLQTKDGHRPEWTFYPRFSSNIHTYHVGKQCFFNGVFLGNKRSLSERTVDKCFGRKKYDIDPRNGIPKLTPGDNPYMYPEQSKGFHKAGSMLPPVNFSIVPYEKKFDTFIPLEPLPQIPNLPFWVKEKANSLKNEIQEVEELDNWQPAVPLMHMLHLSGALDFPRQS +>sp|P48539|PCP4_HUMAN Calmodulin regulator protein PCP4 OS=Homo sapiens (Human) OX=9606 GN=PCP4 PE=1 SV=3 +MSERQGAGATNGKDKTSGENDGQKKVQEEFDIDMDAPETERAAVAIQSQFRKFQKKKAGSQS +>sp|Q7L211|ABHDD_HUMAN Protein ABHD13 OS=Homo sapiens (Human) OX=9606 GN=ABHD13 PE=2 SV=1 +MEKSWMLWNFVERWLIALASWSWALCRISLLPLIVTFHLYGGIILLLLIFISIAGILYKFQDVLLYFPEQPSSSRLYVPMPTGIPHENIFIRTKDGIRLNLILIRYTGDNSPYSPTIIYFHGNAGNIGHRLPNALLMLVNLKVNLLLVDYRGYGKSEGEASEEGLYLDSEAVLDYVMTRPDLDKTKIFLFGRSLGGAVAIHLASENSHRISAIMVENTFLSIPHMASTLFSFFPMRYLPLWCYKNKFLSYRKISQCRMPSLFISGLSDQLIPPVMMKQLYELSPSRTKRLAIFPDGTHNDTWQCQGYFTALEQFIKEVVKSHSPEEMAKTSSNVTII +>sp|Q8IYH5|ZZZ3_HUMAN ZZ-type zinc finger-containing protein 3 OS=Homo sapiens (Human) OX=9606 GN=ZZZ3 PE=1 SV=1 +MAASRSTRVTRSTVGLNGLDESFCGRTLRNRSIAHPEEISSNSQVRSRSPKKRPEPVPIQKGNNNGRTTDLKQQSTRESWVSPRKRGLSSSEKDNIERQAIENCERRQTEPVSPVLKRIKRCLRSEAPNSSEEDSPIKSDKESVEQRSTVVDNDADFQGTKRACRCLILDDCEKREIKKVNVSEEGPLNSAVVEEITGYLAVNGVDDSDSAVINCDDCQPDGNTKQNSIGSYVLQEKSVAENGDTDTQTSMFLDSRKEDSYIDHKVPCTDSQVQVKLEDHKIVTACLPVEHVNQLTTEPATGPFSETQSSLRDSEEEVDVVGDSSASKEQCKENTNNELDTSLESMPASGEPEPSPVLDCVSAQMMSLSEPQEHRYTLRTSPRRAAPTRGSPTKNSSPYRENGQFEENNLSPNETNATVSDNVSQSPTNPGEISQNEKGICCDSQNNGSEGVSKPPSEARLNIGHLPSAKESASQHITEEEDDDPDVYYFESDHVALKHNKDYQRLLQTIAVLEAQRSQAVQDLESLGRHQREALKNPIGFVEKLQKKADIGLPYPQRVVQLPEIVWDQYTHSLGNFEREFKNRKRHTRRVKLVFDKVGLPARPKSPLDPKKDGESLSYSMLPLSDGPEGSSSRPQMIRGRLCDDTKPETFNQLWTVEEQKKLEQLLIKYPPEEVESRRWQKIADELGNRTAKQVASRVQKYFIKLTKAGIPVPGRTPNLYIYSKKSSTSRRQHPLNKHLFKPSTFMTSHEPPVYMDEDDDRSCFHSHMNTAVEDASDDESIPIMYRNLPEYKELLQFKKLKKQKLQQMQAESGFVQHVGFKCDNCGIEPIQGVRWHCQDCPPEMSLDFCDSCSDCLHETDIHKEDHQLEPIYRSETFLDRDYCVSQGTSYNYLDPNYFPANR +>sp|Q8N1F8|S11IP_HUMAN Serine/threonine-protein kinase 11-interacting protein OS=Homo sapiens (Human) OX=9606 GN=STK11IP PE=1 SV=4 +MTTAQRDSLLWKLAGLLRESGDVVLSGCSTLSLLTPTLQQLNHVFELHLGPWGPGQTGFVALPSHPADSPVILQLQFLFDVLQKTLSLKLVHVAGPGPTGPIKIFPFKSLRHLELRGVPLHCLHGLRGIYSQLETLICSRSLQALEELLSACGGDFCSALPWLALLSANFSYNALTALDSSLRLLSALRFLNLSHNQVQDCQGFLMDLCELHHLDISYNRLHLVPRMGPSGAALGVLILRGNELRSLHGLEQLRNLRHLDLAYNLLEGHRELSPLWLLAELRKLYLEGNPLWFHPEHRAATAQYLSPRARDAATGFLLDGKVLSLTDFQTHTSLGLSPMGPPLPWPVGSTPETSGGPDLSDSLSSGGVVTQPLLHKVKSRVRVRRASISEPSDTDPEPRTLNPSPAGWFVQQHPELELMSSFRERFGRNWLQYRSHLEPSGNPLPATPTTSAPSAPPASSQGPDTAPRPSPPQEEARGPQESPQKMSEEVRAEPQEEEEEKEGKEEKEEGEMVEQGEEEAGEEEEEEQDQKEVEAELCRPLLVCPLEGPEGVRGRECFLRVTSAHLFEVELQAARTLERLELQSLEAAEIEPEAQAQRSPRPTGSDLLPGAPILSLRFSYICPDRQLRRYLVLEPDAHAAVQELLAVLTPVTNVAREQLGEARDLLLGRFQCLRCGHEFKPEEPRMGLDSEEGWRPLFQKTESPAVCPNCGSDHVVLLAVSRGTPNRERKQGEQSLAPSPSASPVCHPPGHGDHLDRAKNSPPQAPSTRDHGSWSLSPPPERCGLRSVDHRLRLFLDVEVFSDAQEEFQCCLKVPVALAGHTGEFMCLVVVSDRRLYLLKVTGEMREPPASWLQLTLAVPLQDLSGIELGLAGQSLRLEWAAGAGRCVLLPRDARHCRAFLEELLDVLQSLPPAWRNCVSATEEEVTPQHRLWPLLEKDSSLEARQFFYLRAFLVEGPSTCLVSLLLTPSTLFLLDEDAAGSPAEPSPPAASGEASEKVPPSGPGPAVRVREQQPLSSLSSVLLYRSAPEDLRLLFYDEVSRLESFWALRVVCQEQLTALLAWIREPWEELFSIGLRTVIQEALALDR +>sp|Q86SP6|GP149_HUMAN Probable G-protein coupled receptor 149 OS=Homo sapiens (Human) OX=9606 GN=GPR149 PE=2 SV=2 +MSLFLSNLSTNDSSLWKENHNSTDLLNPPGTLNIYLFCLTCLMTFAALVGSIYSLISLLKMQNRTVVSMLVASWSVDDLMSVLSVTIFMFLQWPNEVPGYFQFLCTTSALMYLCQGLSSNLKATLLVSYNFYTMHRGVGSQTASRRSGQVLGVVLTVWAASLLLSALPLCGWGAFVRTPWGCLVDCSSSYVLFLSIVYALAFGLLVGLSVPLTHRLLCSEEPPRLHSNYQEISRGASIPGTPPTAGRVVSLSPEDAPGPSLRRSGGCSPSSDTVFGPGAPAAAGAEACRRENRGTLYGTRSFTVSVAQKRFALILALTKVVLWLPMMMHMVVQNVVGFQSLPLETFSFLLTLLATTVTPVFVLSKRWTHLPCGCIINCRQNAYAVASDGKKIKRKGFEFNLSFQKSYGIYKIAHEDYYDDDENSIFYHNLMNSECETTKDPQRDNRNIFNAIKVEISTTPSLDSSTQRGINKCTNTDITEAKQDSNNKKDAFSDKTGGDINYEETTFSEGPERRLSHEESQKPDLSDWEWCRSKSERTPRQRSGYALAIPLCAFQGTVSLHAPTGKTLSLSTYEVSAEGQKITPASKKIEVYRSKSVGHEPNSEDSSSTFVDTSVKIHLEVLEICDNEEALDTVSIISNISQSSTQVRSPSLRYSRKENRFVSCDLGETASYSLFLPTSNPDGDINISIPDTVEAHRQNSKRQHQERDGYQEEIQLLNKAYRKREEESKGS +>sp|Q9H0R1|AP5M1_HUMAN AP-5 complex subunit mu-1 OS=Homo sapiens (Human) OX=9606 GN=AP5M1 PE=1 SV=2 +MAQRAVWLISHEPGTPLCGTVRFSRRYPTVEKRARVFNGASYVPVPEDGPFLKALLFELRLLDDDKDFVESRDSCSRINKTSIYGLLIGGEELWPVVAFLKNDMIYACVPLVEQTLSPRPPLISVSGVSQGFEFLFGIQDFLYSGQKNDSELNTKLSQLPDLLLQACPFGTLLDANLQNSLDNTNFASVTQPQKQPAWKTGTYKGKPQVSISITEKVKSMQYDKQGIADTWQVVGTVTCKCDLEGIMPNVTISLSLPTNGSPLQDILVHPCVTSLDSAILTSSSIDAMDDSAFSGPYKFPFTPPLESFNLCFYTSQVPVPPILGFYQMKEEEVQLRITINLKLHESVKNNFEFCEAHIPFYNRGPITHLEYKTSFGQLEVFREKSLLIWIIGQKFPKSMEISLSGTVTFGAKSHEKQPFDPICTGETAYLKLHFRILDYTLTGCYADQHSVQVFASGKPKISAHRKLISSDYYIWNSKAPAPVTYGSLLL +>sp|O43903|GAS2_HUMAN Growth arrest-specific protein 2 OS=Homo sapiens (Human) OX=9606 GN=GAS2 PE=1 SV=1 +MCTALSPKVRSGPGLSDMHQYSQWLASRHEANLLPMKEDLALWLTNLLGKEITAETFMEKLDNGALLCQLAETMQEKFKESMDANKPTKNLPLKKIPCKTSAPSGSFFARDNTANFLSWCRDLGVDETCLFESEGLVLHKQPREVCLCLLELGRIAARYGVEPPGLIKLEKEIEQEETLSAPSPSPSPSSKSSGKKSTGNLLDDAVKRISEDPPCKCPNKFCVERLSQGRYRVGEKILFIRMLHNKHVMVRVGGGWETFAGYLLKHDPCRMLQISRVDGKTSPIQSKSPTLKDMNPDNYLVVSASYKAKKEIK +>sp|Q9C093|SPEF2_HUMAN Sperm flagellar protein 2 OS=Homo sapiens (Human) OX=9606 GN=SPEF2 PE=1 SV=2 +MSEILCQWLNKELKVSRTVSPKSFAKAFSSGYLLGEVLHKFELQDDFSEFLDSRVSSAKLNNFSRLEPTLNLLGVQFDQNVAHGIITEKPGVATKLLYQLYIALQKKKKSGLTGVEMQTMQRLTNLRLQNMKSDTFQERLRHMIPRQTDFNLMRITYRFQEKYKHVKEDLAHLHFEKLERFQKLKEEQRCFDIEKQYLNRRRQNEIMAKIQAAIIQIPKPASNRTLKALEAQKMMKKKKEAEDVADEIKKFEALIKKDLQAKESASKTSLDTAGQTTTDLLNTYSDDEYIKKIQKRLEEDAFAREQREKRRRKLLMDQLIAHEAQEEAYREEQLINRLMRQSQQERRIAVQLMHVRHEKEVLWQNRIFREKQHEERRLKDFQDALDREAALAKQAKIDFEEQFLKEKRFHDQIAVERAQARYEKHYSVCAEILDQIVDLSTKVADYRMLTNNLIPYKLMHDWKELFFNAKPIYEQASVKTLPANPSREQLTELEKRDLLDTNDYEEYKNMVGEWALPEEMVDNLPPSNNCILGHILHRLAEKSLPPRAESTTPELPSFAVKGCLLGKTLSGKTTILRSLQKDFPIQILSIDTLVQEAIQAFHDNEKVSEVLPIQKNDEEDALPVLQEEIKESQDPQHVFSAGPVSDEVLPETEGETMLSANADKTPKAEEVKSSDSFLKLTTRAQLGAKSEQLLKKGKSIPDVLLVDIIVNAINEIPVNQDCILDGFPMTLNQAQLLEEALTGCNRNLTEVERKKAQKSTLAIDPATSKEIPLPSPAFDFVILLDVSDTSSMSRMNDIIAEELSYKTAHEDISQRVAAENQDKDGDQNLRDQIQHRIIGFLDNWPLLEQWFSEPENILIKINAEIDKESLCEKVKEILTTEIAKKKNKVEKKLEEKEAEKKAAASLAELPLPTPPPAPPPEPEKEKEIHQSHVASKTPTAKGKPQSEAPHGKQESLQEGKGKKGETALKRKGSPKGKSSGGKVPVKKSPADSTDTSPVAIVPQPPKPGSEEWVYVNEPVPEEMPLFLVPYWELIENSYINTIKTVLRHLREDQHTVLAYLYEIRTSFQEFLKRPDHKQDFVAQWQADFNSLPDDLWDDEETKAELHQRVNDLRDRLWDICDARKEEAEQERLDIINESWLQDTLGMTMNHFFSLMQAELNRFQDTKRLLQDYYWGMESKIPVEDNKRFTRIPLVQLDSKDNSESQLRIPLVPRISISLETVTPKPKTKSVLKGKMDNSLENVESNFEADEKLVMDTWQQASLAVSHMVAAEIHQRLMEEEKENQPADPKEKSPQMGANKKVKKEPPKKKQEDKKPKGKSPPMAEATPVIVTTEEIAEIKRKNELRVKIKEEHLAALQFEEIATQFRLELIKTKALALLEDLVTKVVDVYKLMEKWLGERYLNEMASTEKLTDVARYHIETSTKIQNELYLSQEDFFINGNIKVFPDPPPSIRPPPVEKEEDGTLTIEQLDSLRDQFLDMAPKGIIGNKAFTDILIDLVTLNLGTNNFPSNWMHLTQPELQELTSLLTVNSEFVDWRKFLLVTSMPWPIPLEEELLETLQKFKAVDKEQLGTITFEQYMQAGLWFTGDEDIKIPENPLEPLPFNRQEHLIEFFFRLFADYEKDPPQLDYTQMLLYFACHPDTVEGVYRALSVAVGTHVFQQVKASIPSAEKTSSTDAGPAEEFPEPEENAAREERKLKDDTEKREQKDEEIPENANNEKMSMETLLKVFKGGSEAQDSNRFASHLKIENIYAEGFIKTFQDLGAKNLEPIEVAVLLKHPFIQDLISNYSDYKFPDIKIILQRSEHVQGSDGERSPSRHTEEKK +>sp|A3KFT3|OR2M5_HUMAN Olfactory receptor 2M5 OS=Homo sapiens (Human) OX=9606 GN=OR2M5 PE=3 SV=1 +MAWENQTFNSDFILLGIFNHSPTHTFLFFLVLAIFSVAFMGNSVMVLLIYLDTQLHTPMYFLLSQLFLMDLMLICSTVPKMAFNYLSGSKSISMAGCATQIFFYVSLLGSECFLLAVMSYDRYIAICHPLRYTNLMRPKICGLMTAFSWILGSMDAIIDAVATFSFSYCGSREIAHFFCDFPSLLILSCNDTSIFEKVLFICCIVMIVFPVAIIIASYARVILAVIHMGSGEGRRKAFTTCSSHLMVVGMYYGAGLFMYIRPTSDRSPMQDKLVSVFYTILTPMLNPLIYSLRNKEVTRALRKVLGKGKCGE +>sp|Q5VT28|FAM27_HUMAN Protein FAM27A/B/C OS=Homo sapiens (Human) OX=9606 GN=FAM27C PE=3 SV=1 +MRKPQAGTGEAARDPSLRPARTVLVGDQDEYTAAENKSPRGTLCPTGEQRIHAREDACIFSRLFSEK +>sp|Q8WW43|APH1B_HUMAN Gamma-secretase subunit APH-1B OS=Homo sapiens (Human) OX=9606 GN=APH1B PE=1 SV=3 +MTAAVFFGCAFIAFGPALALYVFTIATEPLRIIFLIAGAFFWLVSLLISSLVWFMARVIIDNKDGPTQKYLLIFGAFVSVYIQEMFRFAYYKLLKKASEGLKSINPGETAPSMRLLAYVSGLGFGIMSGVFSFVNTLSDSLGPGTVGIHGDSPQFFLYSAFMTLVIILLHVFWGIVFFDGCEKKKWGILLIVLLTHLLVSAQTFISSYYGINLASAFIILVLMGTWAFLAAGGSCRSLKLCLLCQDKNFLLYNQRSR +>sp|Q86WU2|LDHD_HUMAN Probable D-lactate dehydrogenase, mitochondrial OS=Homo sapiens (Human) OX=9606 GN=LDHD PE=1 SV=1 +MARLLRSATWELFPWRGYCSQKAKGELCRDFVEALKAVVGGSHVSTAAVVREQHGRDESVHRCEPPDAVVWPQNVEQVSRLAALCYRQGVPIIPFGTGTGLEGGVCAVQGGVCVNLTHMDRILELNQEDFSVVVEPGVTRKALNAHLRDSGLWFPVDPGADASLCGMAATGASGTNAVRYGTMRDNVLNLEVVLPDGRLLHTAGRGRHFRFGFWPEIPHHTAWYSPCVSLGRRKSAAGYNLTGLFVGSEGTLGLITATTLRLHPAPEATVAATCAFPSVQAAVDSTVHILQAAVPVARIEFLDEVMMDACNRYSKLNCLVAPTLFLEFHGSQQALEEQLQRTEEIVQQNGASDFSWAKEAEERSRLWTARHNAWYAALATRPGCKGYSTDVCVPISRLPEIVVQTKEDLNASGLTGSIVGHVGDGNFHCILLVNPDDAEELGRVKAFAEQLGRRALALHGTCTGEHGIGMGKRQLLQEEVGAVGVETMRQLKAVLDPQGLMNPGKVL +>sp|O15552|FFAR2_HUMAN Free fatty acid receptor 2 OS=Homo sapiens (Human) OX=9606 GN=FFAR2 PE=1 SV=1 +MLPDWKSSLILMAYIIIFLTGLPANLLALRAFVGRIRQPQPAPVHILLLSLTLADLLLLLLLPFKIIEAASNFRWYLPKVVCALTSFGFYSSIYCSTWLLAGISIERYLGVAFPVQYKLSRRPLYGVIAALVAWVMSFGHCTIVIIVQYLNTTEQVRSGNEITCYENFTDNQLDVVLPVRLELCLVLFFIPMAVTIFCYWRFVWIMLSQPLVGAQRRRRAVGLAVVTLLNFLVCFGPYNVSHLVGYHQRKSPWWRSIAVVFSSLNASLDPLLFYFSSSVVRRAFGRGLQVLRNQGSSLLGRRGKDTAEGTNEDRGVGQGEGMPSSDFTTE +>sp|Q9Y678|COPG1_HUMAN Coatomer subunit gamma-1 OS=Homo sapiens (Human) OX=9606 GN=COPG1 PE=1 SV=1 +MLKKFDKKDEESGGGSNPFQHLEKSAVLQEARVFNETPINPRKCAHILTKILYLINQGEHLGTTEATEAFFAMTKLFQSNDPTLRRMCYLTIKEMSCIAEDVIIVTSSLTKDMTGKEDNYRGPAVRALCQITDSTMLQAIERYMKQAIVDKVPSVSSSALVSSLHLLKCSFDVVKRWVNEAQEAASSDNIMVQYHALGLLYHVRKNDRLAVNKMISKVTRHGLKSPFAYCMMIRVASKQLEEEDGSRDSPLFDFIESCLRNKHEMVVYEAASAIVNLPGCSAKELAPAVSVLQLFCSSPKAALRYAAVRTLNKVAMKHPSAVTACNLDLENLVTDSNRSIATLAITTLLKTGSESSIDRLMKQISSFMSEISDEFKVVVVQAISALCQKYPRKHAVLMNFLFTMLREEGGFEYKRAIVDCIISIIEENSESKETGLSHLCEFIEDCEFTVLATRILHLLGQEGPKTTNPSKYIRFIYNRVVLEHEEVRAGAVSALAKFGAQNEEMLPSILVLLKRCVMDDDNEVRDRATFYLNVLEQKQKALNAGYILNGLTVSIPGLERALQQYTLEPSEKPFDLKSVPLATAPMAEQRTESTPITAVKQPEKVAATRQEIFQEQLAAVPEFRGLGPLFKSSPEPVALTESETEYVIRCTKHTFTNHMVFQFDCTNTLNDQTLENVTVQMEPTEAYEVLCYVPARSLPYNQPGTCYTLVALPKEDPTAVACTFSCMMKFTVKDCDPTTGETDDEGYEDEYVLEDLEVTVADHIQKVMKLNFEAAWDEVGDEFEKEETFTLSTIKTLEEAVGNIVKFLGMHPCERSDKVPDNKNTHTLLLAGVFRGGHDILVRSRLLLLDTVTMQVTARSLEELPVDIILASVG +>sp|Q9HB07|MYG1_HUMAN MYG1 exonuclease OS=Homo sapiens (Human) OX=9606 GN=MYG1 PE=1 SV=3 +MGHRFLRGLLTLLLPPPPLYTRHRMLGPESVPPPKRSRSKLMAPPRIGTHNGTFHCDEALACALLRLLPEYRDAEIVRTRDPEKLASCDIVVDVGGEYDPRRHRYDHHQRSFTETMSSLSPGKPWQTKLSSAGLIYLHFGHKLLAQLLGTSEEDSMVGTLYDKMYENFVEEVDAVDNGISQWAEGEPRYALTTTLSARVARLNPTWNHPDQDTEAGFKRAMDLVQEEFLQRLDFYQHSWLPARALVEEALAQRFQVDPSGEIVELAKGACPWKEHLYHLESGLSPPVAIFFVIYTDQAGQWRIQCVPKEPHSFQSRLPLPEPWRGLRDEALDQVSGIPGCIFVHASGFTGGHHTREGALSMARATLAQRSYLPQIS +>sp|P06732|KCRM_HUMAN Creatine kinase M-type OS=Homo sapiens (Human) OX=9606 GN=CKM PE=1 SV=2 +MPFGNTHNKFKLNYKPEEEYPDLSKHNNHMAKVLTLELYKKLRDKETPSGFTVDDVIQTGVDNPGHPFIMTVGCVAGDEESYEVFKELFDPIISDRHGGYKPTDKHKTDLNHENLKGGDDLDPNYVLSSRVRTGRSIKGYTLPPHCSRGERRAVEKLSVEALNSLTGEFKGKYYPLKSMTEKEQQQLIDDHFLFDKPVSPLLLASGMARDWPDARGIWHNDNKSFLVWVNEEDHLRVISMEKGGNMKEVFRRFCVGLQKIEEIFKKAGHPFMWNQHLGYVLTCPSNLGTGLRGGVHVKLAHLSKHPKFEEILTRLRLQKRGTGGVDTAAVGSVFDVSNADRLGSSEVEQVQLVVDGVKLMVEMEKKLEKGQSIDDMIPAQK +>sp|Q9NTX9|F217B_HUMAN Protein FAM217B OS=Homo sapiens (Human) OX=9606 GN=FAM217B PE=1 SV=1 +MNAGPSWNKVQHSKNSSGKRQSKSQVPHASSQPRSSLTAVTQPTEEKLKESISPEARRKRNPLGSRCQGASGNKLFLDFQSMKIIKENADEDSASDLSDSERIPIPPSPLTPPDLNLRAEEIDPVYFDLHPGQGHTKPEYYYPNFLPSPFSSWDLRDMALLLNAENKTEAVPRVGGLLGKYIDRLIQLEWLQVQTVQCEKAKGGKARPPTAPGTSGALKSPGRSKLIASALSKPLPHQEGASKSGPSRKKAFHHEEIHPSHYAFETSPRPIDVLGGTRFCSQRQTLEMRTEEKKKKSSKSTKLQRWDLSGSGSSSKVETSGHIRVPKQAAVILDSADSCKASKTQAHAHPRKKGKAESCGHATVSSEKKLKTNGVKQNTYKLK +>sp|Q01860|PO5F1_HUMAN POU domain, class 5, transcription factor 1 OS=Homo sapiens (Human) OX=9606 GN=POU5F1 PE=1 SV=1 +MAGHLASDFAFSPPPGGGGDGPGGPEPGWVDPRTWLSFQGPPGGPGIGPGVGPGSEVWGIPPCPPPYEFCGGMAYCGPQVGVGLVPQGGLETSQPEGEAGVGVESNSDGASPEPCTVTPGAVKLEKEKLEQNPEESQDIKALQKELEQFAKLLKQKRITLGYTQADVGLTLGVLFGKVFSQTTICRFEALQLSFKNMCKLRPLLQKWVEEADNNENLQEICKAETLVQARKRKRTSIENRVRGNLENLFLQCPKPTLQQISHIAQQLGLEKDVVRVWFCNRRQKGKRSSSDYAQREDFEAAGSPFSGGPVSFPLAPGPHFGTPGYGSPHFTALYSSVPFPEGEAFPPVSVTTLGSPMHSN +>sp|Q9Y574|ASB4_HUMAN Ankyrin repeat and SOCS box protein 4 OS=Homo sapiens (Human) OX=9606 GN=ASB4 PE=2 SV=1 +MDGTTAPVTKSGAAKLVKRNFLEALKSNDFGKLKAILIQRQIDVDTVFEVEDENMVLASYKQGYWLPSYKLKSSWATGLHLSVLFGHVECLLVLLDHNATINCRPNGKTPLHVACEMANVDCVKILCDRGAKLNCYSLSGHTALHFCTTPSSILCAKQLVWRGANVNMKTNNQDEETPLHTAAHFGLSELVAFYVEHGAIVDSVNAHMETPLAIAAYWALRFKEQEYSTEHHLVCRMLLDYKAEVNARDDDFKSPLHKAAWNCDHVLMHMMLEAGAEANLMDINGCAAIQYVLKVTSVRPAAQPEICYQLLLNHGAARIYPPQFHKVIQACHSCPKAIEVVVNAYEHIRWNTKWRRAIPDDDLEKYWDFYHSLFTVCCNSPRTLMHLSRCAIRRTLHNRCHRAIPLLSLPLSLKKYLLLEPEGIIY +>sp|Q7Z3B1|NEGR1_HUMAN Neuronal growth regulator 1 OS=Homo sapiens (Human) OX=9606 GN=NEGR1 PE=1 SV=3 +MDMMLLVQGACCSNQWLAAVLLSLCCLLPSCLPAGQSVDFPWAAVDNMMVRKGDTAVLRCYLEDGASKGAWLNRSSIIFAGGDKWSVDPRVSISTLNKRDYSLQIQNVDVTDDGPYTCSVQTQHTPRTMQVHLTVQVPPKIYDISNDMTVNEGTNVTLTCLATGKPEPSISWRHISPSAKPFENGQYLDIYGITRDQAGEYECSAENDVSFPDVRKVKVVVNFAPTIQEIKSGTVTPGRSGLIRCEGAGVPPPAFEWYKGEKKLFNGQQGIIIQNFSTRSILTVTNVTQEHFGNYTCVAANKLGTTNASLPLNPPSTAQYGITGSADVLFSCWYLVLTLSSFTSIFYLKNAILQ +>sp|Q9BXL7|CAR11_HUMAN Caspase recruitment domain-containing protein 11 OS=Homo sapiens (Human) OX=9606 GN=CARD11 PE=1 SV=3 +MPGGGPEMDDYMETLKDEEDALWENVECNRHMLSRYINPAKLTPYLRQCKVIDEQDEDEVLNAPMLPSKINRAGRLLDILHTKGQRGYVVFLESLEFYYPELYKLVTGKEPTRRFSTIVVEEGHEGLTHFLMNEVIKLQQQMKAKDLQRCELLARLRQLEDEKKQMTLTRVELLTFQERYYKMKEERDSYNDELVKVKDDNYNLAMRYAQLSEEKNMAVMRSRDLQLEIDQLKHRLNKMEEECKLERNQSLKLKNDIENRPKKEQVLELERENEMLKTKNQELQSIIQAGKRSLPDSDKAILDILEHDRKEALEDRQELVNRIYNLQEEARQAEELRDKYLEEKEDLELKCSTLGKDCEMYKHRMNTVMLQLEEVERERDQAFHSRDEAQTQYSQCLIEKDKYRKQIRELEEKNDEMRIEMVRREACIVNLESKLRRLSKDSNNLDQSLPRNLPVTIISQDFGDASPRTNGQEADDSSTSEESPEDSKYFLPYHPPQRRMNLKGIQLQRAKSPISLKRTSDFQAKGHEEEGTDASPSSCGSLPITNSFTKMQPPRSRSSIMSITAEPPGNDSIVRRYKEDAPHRSTVEEDNDSGGFDALDLDDDSHERYSFGPSSIHSSSSSHQSEGLDAYDLEQVNLMFRKFSLERPFRPSVTSVGHVRGPGPSVQHTTLNGDSLTSQLTLLGGNARGSFVHSVKPGSLAEKAGLREGHQLLLLEGCIRGERQSVPLDTCTKEEAHWTIQRCSGPVTLHYKVNHEGYRKLVKDMEDGLITSGDSFYIRLNLNISSQLDACTMSLKCDDVVHVRDTMYQDRHEWLCARVDPFTDHDLDMGTIPSYSRAQQLLLVKLQRLMHRGSREEVDGTHHTLRALRNTLQPEEALSTSDPRVSPRLSRASFLFGQLLQFVSRSENKYKRMNSNERVRIISGSPLGSLARSSLDATKLLTEKQEELDPESELGKNLSLIPYSLVRAFYCERRRPVLFTPTVLAKTLVQRLLNSGGAMEFTICKSDIVTRDEFLRRQKTETIIYSREKNPNAFECIAPANIEAVAAKNKHCLLEAGIGCTRDLIKSNIYPIVLFIRVCEKNIKRFRKLLPRPETEEEFLRVCRLKEKELEALPCLYATVEPDMWGSVEELLRVVKDKIGEEQRKTIWVDEDQL +>sp|A6NJ78|MET15_HUMAN 12S rRNA N4-methylcytidine (m4C) methyltransferase OS=Homo sapiens (Human) OX=9606 GN=METTL15 PE=1 SV=1 +MLRYPYFCRMYKECLSCWLESGIPNLGVWPNRIHTTAEKYREYEAREQTDQTQAQELHRSQDRDFETMAKLHIPVMVDEVVHCLSPQKGQIFLDMTFGSGGHTKAILQKESDIVLYALDRDPTAYALAEHLSELYPKQIRAMLGQFSQAEALLMKAGVQPGTFDGVLMDLGCSSMQLDTPERGFSLRKDGPLDMRMDGGRYPDMPTAADVVNALDQQALASILRTYGEEKHAKKIASAIVQARSIYPITRTQQLASIVAGAFPPSAIYTRKDLLQRSTHIATKTFQALRIFVNNELNELYTGLKTAQKFLRPGGRLVALSFHSLEDRIVKRFLLGISMTERFNLSVRQQVMKTSQLGSDHENTEEVSMRRAPLMWELIHKKVLSPQDQDVQDNPRGRSAKLRAAIKL +>sp|Q93096|TP4A1_HUMAN Protein tyrosine phosphatase type IVA 1 OS=Homo sapiens (Human) OX=9606 GN=PTP4A1 PE=1 SV=2 +MARMNRPAPVEVTYKNMRFLITHNPTNATLNKFIEELKKYGVTTIVRVCEATYDTTLVEKEGIHVLDWPFDDGAPPSNQIVDDWLSLVKIKFREEPGCCIAVHCVAGLGRAPVLVALALIEGGMKYEDAVQFIRQKRRGAFNSKQLLYLEKYRPKMRLRFKDSNGHRNNCCIQ +>sp|Q9H777|RNZ1_HUMAN Zinc phosphodiesterase ELAC protein 1 OS=Homo sapiens (Human) OX=9606 GN=ELAC1 PE=1 SV=2 +MSMDVTFLGTGAAYPSPTRGASAVVLRCEGECWLFDCGEGTQTQLMKSQLKAGRITKIFITHLHGDHFFGLPGLLCTISLQSGSMVSKQPIEIYGPVGLRDFIWRTMELSHTELVFHYVVHELVPTADQCPAEELKEFAHVNRADSPPKEEQGRTILLDSEENSYLLFDDEQFVVKAFRLFHRIPSFGFSVVEKKRPGKLNAQKLKDLGVPPGPAYGKLKNGISVVLENGVTISPQDVLKKPIVGRKICILGDCSGVVGDGGVKLCFEADLLIHEATLDDAQMDKAKEHGHSTPQMAATFAKLCRAKRLVLTHFSQRYKPVALAREGETDGIAELKKQAESVLDLQEVTLAEDFMVISIPIKK +>sp|Q9Y3A2|UTP11_HUMAN Probable U3 small nucleolar RNA-associated protein 11 OS=Homo sapiens (Human) OX=9606 GN=UTP11 PE=1 SV=2 +MAAAFRKAAKSRQREHRERSQPGFRKHLGLLEKKKDYKLRADDYRKKQEYLKALRKKALEKNPDEFYYKMTRVKLQDGVHIIKETKEEVTPEQLKLMRTQDVKYIEMKRVAEAKKIERLKSELHLLDFQGKQQNKHVFFFDTKKEVEQFDVATHLQTAPELVDRVFNRPRIETLQKEKVKGVTNQTGLKRIAKERQKQYNCLTQRIEREKKLFVIAQKIQTRKDLMDKTQKVKVKKETVNSPAIYKFQSRRKR +>sp|Q9H1R3|MYLK2_HUMAN Myosin light chain kinase 2, skeletal/cardiac muscle OS=Homo sapiens (Human) OX=9606 GN=MYLK2 PE=1 SV=3 +MATENGAVELGIQNPSTDKAPKGPTGERPLAAGKDPGPPDPKKAPDPPTLKKDAKAPASEKGDGTLAQPSTSSQGPKGEGDRGGGPAEGSAGPPAALPQQTATPETSVKKPKAEQGASGSQDPGKPRVGKKAAEGQAAARRGSPAFLHSPSCPAIISSSEKLLAKKPPSEASELTFEGVPMTHSPTDPRPAKAEEGKNILAESQKEVGEKTPGQAGQAKMQGDTSRGIEFQAVPSEKSEVGQALCLTAREEDCFQILDDCPPPPAPFPHRMVELRTGNVSSEFSMNSKEALGGGKFGAVCTCMEKATGLKLAAKVIKKQTPKDKEMVLLEIEVMNQLNHRNLIQLYAAIETPHEIVLFMEYIEGGELFERIVDEDYHLTEVDTMVFVRQICDGILFMHKMRVLHLDLKPENILCVNTTGHLVKIIDFGLARRYNPNEKLKVNFGTPEFLSPEVVNYDQISDKTDMWSMGVITYMLLSGLSPFLGDDDTETLNNVLSGNWYFDEETFEAVSDEAKDFVSNLIVKDQRARMNAAQCLAHPWLNNLAEKAKRCNRRLKSQILLKKYLMKRRWKKNFIAVSAANRFKKISSSGALMALGV +>sp|P02808|STAT_HUMAN Statherin OS=Homo sapiens (Human) OX=9606 GN=STATH PE=1 SV=2 +MKFLVFAFILALMVSMIGADSSEEKFLRRIGRFGYGYGPYQPVPEQPLYPQPYQPQYQQYTF +>sp|A0A1B0GV90|CTXD2_HUMAN Cortexin domain containing 2 OS=Homo sapiens (Human) OX=9606 GN=CTXND2 PE=3 SV=1 +MEDSSLSSGVDVDKGFAIAFVVLLFLFLIVMIFRCAKLVKNPYKASSTTTEPSLS +>sp|O43150|ASAP2_HUMAN Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2 OS=Homo sapiens (Human) OX=9606 GN=ASAP2 PE=1 SV=3 +MPDQISVSEFVAETHEDYKAPTASSFTTRTAQCRNTVAAIEEALDVDRMVLYKMKKSVKAINSSGLAHVENEEQYTQALEKFGGNCVCRDDPDLGSAFLKFSVFTKELTALFKNLIQNMNNIISFPLDSLLKGDLKGVKGDLKKPFDKAWKDYETKITKIEKEKKEHAKLHGMIRTEISGAEIAEEMEKERRFFQLQMCEYLLKVNEIKIKKGVDLLQNLIKYFHAQCNFFQDGLKAVESLKPSIETLSTDLHTIKQAQDEERRQLIQLRDILKSALQVEQKEDSQIRQSTAYSLHQPQGNKEHGTERNGSLYKKSDGIRKVWQKRKCSVKNGFLTISHGTANRPPAKLNLLTCQVKTNPEEKKCFDLISHDRTYHFQAEDEQECQIWMSVLQNSKEEALNNAFKGDDNTGENNIVQELTKEIISEVQRMTGNDVCCDCGAPDPTWLSTNLGILTCIECSGIHRELGVHYSRMQSLTLDVLGTSELLLAKNIGNAGFNEIMECCLPAEDSVKPNPGSDMNARKDYITAKYIERRYARKKHADNAAKLHSLCEAVKTRDIFGLLQAYADGVDLTEKIPLANGHEPDETALHLAVRSVDRTSLHIVDFLVQNSGNLDKQTGKGSTALHYCCLTDNAECLKLLLRGKASIEIANESGETPLDIAKRLKHEHCEELLTQALSGRFNSHVHVEYEWRLLHEDLDESDDDMDEKLQPSPNRREDRPISFYQLGSNQLQSNAVSLARDAANLAKEKQRAFMPSILQNETYGALLSGSPPPAQPAAPSTTSAPPLPPRNVGKVQTASSANTLWKTNSVSVDGGSRQRSSSDPPAVHPPLPPLRVTSTNPLTPTPPPPVAKTPSVMEALSQPSKPAPPGISQIRPPPLPPQPPSRLPQKKPAPGADKSTPLTNKGQPRGPVDLSATEALGPLSNAMVLQPPAPMPRKSQATKLKPKRVKALYNCVADNPDELTFSEGDVIIVDGEEDQEWWIGHIDGDPGRKGAFPVSFVHFIAD +>sp|Q8WVM0|TFB1M_HUMAN Dimethyladenosine transferase 1, mitochondrial OS=Homo sapiens (Human) OX=9606 GN=TFB1M PE=1 SV=1 +MAASGKLSTCRLPPLPTIREIIKLLRLQAAKQLSQNFLLDLRLTDKIVRKAGNLTNAYVYEVGPGPGGITRSILNADVAELLVVEKDTRFIPGLQMLSDAAPGKLRIVHGDVLTFKVEKAFSESLKRPWEDDPPNVHIIGNLPFSVSTPLIIKWLENISCRDGPFVYGRTQMTLTFQKEVAERLAANTGSKQRSRLSVMAQYLCNVRHIFTIPGQAFVPKPEVDVGVVHFTPLIQPKIEQPFKLVEKVVQNVFQFRRKYCHRGLRMLFPEAQRLESTGRLLELADIDPTLRPRQLSISHFKSLCDVYRKMCDEDPQLFAYNFREELKRRKSKNEEKEEDDAENYRL +>sp|P85037|FOXK1_HUMAN Forkhead box protein K1 OS=Homo sapiens (Human) OX=9606 GN=FOXK1 PE=1 SV=1 +MAEVGEDSGARALLALRSAPCSPVLCAAAAAAAFPAAAPPPAPAQPQPPPGPPPPPPPPLPPGAIAGAGSSGGSSGVSGDSAVAGAAPALVAAAAASVRQSPGPALARLEGREFEFLMRQPSVTIGRNSSQGSVDLSMGLSSFISRRHLQLSFQEPHFYLRCLGKNGVFVDGAFQRRGAPALQLPKQCTFRFPSTAIKIQFTSLYHKEEAPASPLRPLYPQISPLKIHIPEPDLRSMVSPVPSPTGTISVPNSCPASPRGAGSSSYRFVQNVTSDLQLAAEFAAKAASEQQADTSGGDSPKDESKPPFSYAQLIVQAISSAQDRQLTLSGIYAHITKHYPYYRTADKGWQNSIRHNLSLNRYFIKVPRSQEEPGKGSFWRIDPASEAKLVEQAFRKRRQRGVSCFRTPFGPLSSRSAPASPTHPGLMSPRSGGLQTPECLSREGSPIPHDPEFGSKLASVPEYRYSQSAPGSPVSAQPVIMAVPPRPSSLVAKPVAYMPASIVTSQQPAGHAIHVVQQAPTVTMVRVVTTSANSANGYILTSQGAAGGSHDAAGAAVLDLGSEARGLEEKPTIAFATIPAAGGVIQTVASQMAPGVPGHTVTILQPATPVTLGQHHLPVRAVTQNGKHAVPTNSLAGNAYALTSPLQLLATQASSSAPVVVTRVCEVGPKEPAAAVAATATTTPATATTASASASSTGEPEVKRSRVEEPSGAVTTPAGVIAAAGPQGPGTGE +>sp|Q07869|PPARA_HUMAN Peroxisome proliferator-activated receptor alpha OS=Homo sapiens (Human) OX=9606 GN=PPARA PE=1 SV=2 +MVDTESPLCPLSPLEAGDLESPLSEEFLQEMGNIQEISQSIGEDSSGSFGFTEYQYLGSCPGSDGSVITDTLSPASSPSSVTYPVVPGSVDESPSGALNIECRICGDKASGYHYGVHACEGCKGFFRRTIRLKLVYDKCDRSCKIQKKNRNKCQYCRFHKCLSVGMSHNAIRFGRMPRSEKAKLKAEILTCEHDIEDSETADLKSLAKRIYEAYLKNFNMNKVKARVILSGKASNNPPFVIHDMETLCMAEKTLVAKLVANGIQNKEAEVRIFHCCQCTSVETVTELTEFAKAIPGFANLDLNDQVTLLKYGVYEAIFAMLSSVMNKDGMLVAYGNGFITREFLKSLRKPFCDIMEPKFDFAMKFNALELDDSDISLFVAAIICCGDRPGLLNVGHIEKMQEGIVHVLRLHLQSNHPDDIFLFPKLLQKMADLRQLVTEHAQLVQIIKKTESDAALHPLLQEIYRDMY +>sp|P54803|GALC_HUMAN Galactocerebrosidase OS=Homo sapiens (Human) OX=9606 GN=GALC PE=1 SV=3 +MAEWLLSASWQRRAKAMTAAAGSAGRAAVPLLLCALLAPGGAYVLDDSDGLGREFDGIGAVSGGGATSRLLVNYPEPYRSQILDYLFKPNFGASLHILKVEIGGDGQTTDGTEPSHMHYALDENYFRGYEWWLMKEAKKRNPNITLIGLPWSFPGWLGKGFDWPYVNLQLTAYYVVTWIVGAKRYHDLDIDYIGIWNERSYNANYIKILRKMLNYQGLQRVKIIASDNLWESISASMLLDAELFKVVDVIGAHYPGTHSAKDAKLTGKKLWSSEDFSTLNSDMGAGCWGRILNQNYINGYMTSTIAWNLVASYYEQLPYGRCGLMTAQEPWSGHYVVESPVWVSAHTTQFTQPGWYYLKTVGHLEKGGSYVALTDGLGNLTIIIETMSHKHSKCIRPFLPYFNVSQQFATFVLKGSFSEIPELQVWYTKLGKTSERFLFKQLDSLWLLDSDGSFTLSLHEDELFTLTTLTTGRKGSYPLPPKSQPFPSTYKDDFNVDYPFFSEAPNFADQTGVFEYFTNIEDPGEHHFTLRQVLNQRPITWAADASNTISIIGDYNWTNLTIKCDVYIETPDTGGVFIAGRVNKGGILIRSARGIFFWIFANGSYRVTGDLAGWIIYALGRVEVTAKKWYTLTLTIKGHFTSGMLNDKSLWTDIPVNFPKNGWAAIGTHSFEFAQFDNFLVEATR +>sp|P30622|CLIP1_HUMAN CAP-Gly domain-containing linker protein 1 OS=Homo sapiens (Human) OX=9606 GN=CLIP1 PE=1 SV=2 +MSMLKPSGLKAPTKILKPGSTALKTPTAVVAPVEKTISSEKASSTPSSETQEEFVDDFRVGERVWVNGNKPGFIQFLGETQFAPGQWAGIVLDEPIGKNDGSVAGVRYFQCEPLKGIFTRPSKLTRKVQAEDEANGLQTTPASRATSPLCTSTASMVSSSPSTPSNIPQKPSQPAAKEPSATPPISNLTKTASESISNLSEAGSIKKGERELKIGDRVLVGGTKAGVVRFLGETDFAKGEWCGVELDEPLGKNDGAVAGTRYFQCQPKYGLFAPVHKVTKIGFPSTTPAKAKANAVRRVMATTSASLKRSPSASSLSSMSSVASSVSSRPSRTGLLTETSSRYARKISGTTALQEALKEKQQHIEQLLAERDLERAEVAKATSHVGEIEQELALARDGHDQHVLELEAKMDQLRTMVEAADREKVELLNQLEEEKRKVEDLQFRVEEESITKGDLEQKSQISEDPENTQTKLEHARIKELEQSLLFEKTKADKLQRELEDTRVATVSEKSRIMELEKDLALRVQEVAELRRRLESNKPAGDVDMSLSLLQEISSLQEKLEVTRTDHQREITSLKEHFGAREETHQKEIKALYTATEKLSKENESLKSKLEHANKENSDVIALWKSKLETAIASHQQAMEELKVSFSKGLGTETAEFAELKTQIEKMRLDYQHEIENLQNQQDSERAAHAKEMEALRAKLMKVIKEKENSLEAIRSKLDKAEDQHLVEMEDTLNKLQEAEIKVKELEVLQAKCNEQTKVIDNFTSQLKATEEKLLDLDALRKASSEGKSEMKKLRQQLEAAEKQIKHLEIEKNAESSKASSITRELQGRELKLTNLQENLSEVSQVKETLEKELQILKEKFAEASEEAVSVQRSMQETVNKLHQKEEQFNMLSSDLEKLRENLADMEAKFREKDEREEQLIKAKEKLENDIAEIMKMSGDNSSQLTKMNDELRLKERDVEELQLKLTKANENASFLQKSIEDMTVKAEQSQQEAAKKHEEEKKELERKLSDLEKKMETSHNQCQELKARYERATSETKTKHEEILQNLQKTLLDTEDKLKGAREENSGLLQELEELRKQADKAKAAQTAEDAMQIMEQMTKEKTETLASLEDTKQTNAKLQNELDTLKENNLKNVEELNKSKELLTVENQKMEEFRKEIETLKQAAAQKSQQLSALQEENVKLAEELGRSRDEVTSHQKLEEERSVLNNQLLEMKKRESKFIKDADEEKASLQKSISITSALLTEKDAELEKLRNEVTVLRGENASAKSLHSVVQTLESDKVKLELKVKNLELQLKENKRQLSSSSGNTDTQADEDERAQESQIDFLNSVIVDLQRKNQDLKMKVEMMSEAALNGNGDDLNNYDSDDQEKQSKKKPRLFCDICDCFDLHDTEDCPTQAQMSEDPPHSTHHGSRGEERPYCEICEMFGHWATNCNDDETF diff --git a/src/tests/topp/DatabaseSuitability_in_id.idXML b/src/tests/topp/DatabaseSuitability_in_id.idXML index cf44ab788d8..ad74ec89fd9 100644 --- a/src/tests/topp/DatabaseSuitability_in_id.idXML +++ b/src/tests/topp/DatabaseSuitability_in_id.idXML @@ -1,13 +1,68 @@ - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + @@ -15,93732 +70,118722 @@ - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - + - + - - - - + - - - - + - + - - - - + - - - - - - - + - + - - - - + - + - + - + - + - - - - + - - - - + - + - + - - - - + - + - + - + - + - + - + - + - - - - - - - + - - - - + - + - + - + - + - - - - + - - - - - - - + - + - + - + - + - + - + - - - - - - - - - - - - - - - - + - + - - - - + - + - + - + - + - - - - - - - + - + - - - - + - - - - + - - - - - - - + - - - - - - - + - + - + - - - - + - + - - - - + - + - - - - - - - + - + - - - - - - - + - - - - + - + - + - + - - - - - - - - - - + - - - - + - + - + - + - - - - + - - - - + - + - - - - + - + - + - - - - - - - - - - - - - + - + - - - - - - - + - + - - - - - - - + - + - + - - - - + - - - - + - - - - - - - + - + - + - + - + - + - + - + - + - - - - - - - - - - + - - - - - - - - - - + + + + + + + + + + + + + -
- - - - + +
+ + + + + + + + + + -
- + +
+ + + + + + + + + + -
- + +
+ + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + +
+ + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - - - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + + + - - + + + + + + + + + + + + - - - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + - - - - - + + + + + + + + + + + + - - + + + + + + + + + + + + - - -
- - - - - - - + + + + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - - - - - - + + + + + + + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - - - + + + + + - + - - - + + + - - - + + + - + - - - - + + + + - - - + + + - - - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - + - - + + - - - + + + - - - - + + + + - - - + + + + + + + + + + + + + + - - - - + + + + - - - + + + - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - + - - + + - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - + + + - - - - - - - - - - - - - - - - + + + - - - - - + + + + + - - + + - - - + + + - - - + + + - + - - - - - - + + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + + + - - - - + + + + - + - - + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - + + - - - - - - - + + + + + + + - + - - - - - - - - - + + + + + + + + + - + - - - - - - - - - + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - + - - - - - - + + + + + + - - - - - - + + + + + + - - + + - - - + - - - - + + + + - - - - - + + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + - - + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - - - - - - + + + + + + + + + - + - - - - - - - - + + + + + + + + - + - - - - + + + + - - - + + + - + - - - + + + - - - - + + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - + + + + - - - + + + - + - + - - + + - - - - - + + + + + - + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - + - - - - - + + + + + - + - + - + - - - - - - - - - + + + + + + + + + - - + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - + - - - - - - - - - - - - - - - + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - + - - - + + + - + - + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - + + - - - - - + + + + + - - + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - + - - - - + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - + - + - + - - - - - - - - + + + + + + + + - + - + - - - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + - - - - - + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - + + + + + + + - + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + - + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - - + + + + + - - - + - - - - + + + + - - - - + + + + - + - - - + + + - - - + + + - - - - - - + + + + + + + + - + - + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - - + + + + - - - + + + - - - - + + + + - - + + - - - + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - + + - - - - - - - + + + + + + + - - - - - - - - + + + + + + + + - - + + - - + + - - - + + + - - - + + + - - - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - + + + + - - - - - - - - - - - - - - - - - - - - + + + + + + + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - + - + - + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + - + - - + + - - - - - - - - + + + + + + + + - + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - + + + + + - - + + - + - - - - - - - + + + + + + + - - - - - + + + + + - - - - - - - - + + + + + + + + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - + + - - + + - - - - + + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - + - - - - - - + + + + + + - - - + + + - + - + - - - - + + + + - + - - - + + + - + - - - - + + + + - + - - - + + + - + - - - - - - - - - - - - - - - - + + + - - - - - + + + + + - - - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - + + + + + + + + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - - - - - + + + + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - + + + + + - + - - - - + + + + - - + + - - + + - + - - - - + + + + - - + + - + - - - - + + + + - - + + - - - - - - + + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - + - + - - - - - + + + + + - - - + + + - + - - - - - - - + + + + + + + - + - + - + - - - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - - + + + + + - - - + - - - - + + + + - - - + + + - + - - - - + + + + - + - - + + - + - - - - + + + + - + - - - - - - - - - - - - - - - - + + + - - - - - - + + + + + + + + - + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - + - + - - - - + + + + - - - + + + - + - - - - - - - - + + + + + + + + - - + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - - - + + + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + + + + + + + + + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - - + + + + + + + + + - - + + - - - - - - + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - - + + - - - + + + - - - - + + + + - - - - - - - - + + + + + + + + - - + + - - - - - - + + + + + + - + - + - + - - - - - - - - - + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - + - - - - + + + + - + - + - + - - - + + + - - - + + + - - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - + + - - - - - - - - - - - - - - - - + + + - - - + + + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - + - - - - + + + + - - - + + + - + - - - + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + + + - - + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - + - + - + - - - - - + + + + + - - - - + + + + - - - + - - - + + + - - - + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - + - - + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - + + - - - - - - + + + + + + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + - + - + - + - - - + + + - - - + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - + + - - - + + + - + - + - - - - - - + + + + + + - - - + + + - - + + - - + + - - - - + + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - + - - + + + + - - - + + + - - - + + + - - + + - - - + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - - + + + + + - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - + + + + + + + + - - + + - - - - - - - - + + + + + + + + - + - - - - - - - - + + + + + + + + - - + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - - + + + + + + + + + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + - + + + + + + + + + + + + + + - + - - - - - - + + + + + + - + - + - - - + - - - + + + - - - + + + - + - - - + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - + + - - + + - - - - - - - + + + + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - + - + + + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - + + + + + + + + + + + + + + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - - - - - + + + + + + - - + + - + - - - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - - - - - - - - - - - - - + - - - - + + + + - - + + - + - - - - - - + + + + + + - + - + - + - - - + + + - - + + - + - - - - - - - + + + + + + + - + - - - + + + - - - - - - + + + + + + - + - + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + + + - + - - - - - - - - + + + + + + + + - + - - - - - - - - + + + + + + + + - - + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - + + + + + + + + + + + + + + - + - - - - - - + + + + + + - + - - + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - + + + + + - - - - + + + + - - - + + + - - - + + + - + - + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - + + - + - - - - - - - + + + + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - - + + + + + - - + + - - + + - + - - - + + + - - - - - - - + + + + + + + - - - + + + - + - - - - - - - - + + + + + + + + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - + + - - - + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - - - - - - - - - - - - - - + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - + + + + + + - + - + - + - - - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + - - - - - + + + + + - + - - - + + + - - - + + + - + - - - + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - + + + + + - - - + + + - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + - + - - + + - - - - - - - + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - + + + + + + + + + + + + + + + - - - - - - + + + + + + - - + + - - - - - - + + + + + + - - + + - - - + - - - - + + + + - - + + - - - - - - + + + + + + + + - + - + - + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - + - + - - - - + + - - - - - - - + + + + + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + + + - + + + + + + + + + + + + + + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - - + + + + + - - - - + + - - - + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - + - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - + + + + + - - - + + + - + - - - + + + - - - + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - + - + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - + - - - - - - + + + + + + - + - - - - - - + + + + + + - - + + - + - - - - - - + + + + + + - - + + - + - - - + - - - - + + + + - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - + + - + - - - - + + + + - + - + - + - - - - + + + + - - + + - + - + - - - + + + - + - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + - + - - - - - - - - + + + + + + + + - - - - - - - - - - - - - - - - + - - + + - - - - - + + + + + - - + + - - + + - - - - - - - - - - - - - - - - + + + - - - + + + - + - - - - + + + + - - - + + + - - + + - - - + + + - - - + + + - - - - - - - - - - - - - - - + + - - - + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - + - - - - + + + + - + - + - + - - - - - - - - - - - - - - - - - + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - + + + + - - - + + + - + - + - - - + + + - - - + + + - + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - + - - - + + + - - - + + + - - - - - - - - - + + + + + + + + + - + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - + - - + + - - - - - - - - + + + + + + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - + - - + + - - + + - - - + + + - - - - + + + + - - + + - - - + + + - + - + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - + + - - - - - + + + + + - + - - + + - - - + + + - + - - + + - - - - - + + + + + - + - + - - - - - - - + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - - - - - + + + + + + + + + + - + - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - + - - - - - + + + + + - - - + + + - + - - - + - - - - + + + + - - - + + + - + - + - - - + + + - - - + + + - + - + - - - - - - - - - - - - - - - - + + + - + - + - + - - - - - - - + + + + + + + - + - + - - - - - - - - - - + + + + + + + + - + - + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - + - + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - + + - - - + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + - - - - + + + + + + + + + + + + + + + + + - + - + - + - - - - + + + + - + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - + - + - + - - - - - - + + + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + - - - + + + - - - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + - + - - - + + + - - - - - - + + + + + + - + - + - + - + - - - + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - + + - - - + + + - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - + + - - - + + + - - - - - + + + + + - - - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - - + + + + + + + + + + + + + + + + - + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - - - + + + + + + - - + + - + + + + + + + + + + + + + + - - + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - - - - - - - - - - - - + + + + - + - + - - - - - - - - - - - + + + + + + + + + + + - + - - - - - - - + + + + + + + - + - - - - - - + + + + + + - - + + - - - - - + + + + + - - + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - + - - - + + + - - - - - - - - + + + + + + + + - - + + - - - - - - - - + + + + + + + + - + - - - - - - - - + + + + + + + + - - + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + + + + + - - + + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - + + + + + - - + + - + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - + - - - - - - - - + + + + + + + + - - + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - + - - - - - - - - + + + + + + + + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - + - - - + + + - + - - - + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - + + + - - - - + + + + - + - - - + + + - - - - - - - - - - - - - - - - + + + - - - - - - - - - - - + + + + + + + + + + + - + - - - - - - - - + + + + + + + + - + - - - - + + + + - + - + - + - - - + + + - - - - - - - - - - - - - - - - - - + + + - - - - - - - - - - - - - - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - - - + + + - + - - - - - - - - - - - - - - - - + + + - - - - - + + + + + - + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - - + + + + - - + + - - - + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - - - - - - - - - - - - - - + + + + + + + - + - - + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - + + + + + + + - + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - + + + + - + - - - - - - - - - - + + + + + + + + + + - + - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - + - - - - - - - - - - - - - - + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - + - - - - - - - - - - - - - - - - - + + + + - + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - + - - - - + + + + - + + + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + - + - - - + + + - - - + - - - - + + + + - - - + + + - + - - - + + + - + + + + + + + + + + + + + + + + - - + + + + + + + + + + + + + + + - - - - + + - - - + + + - - - + + + - - + + - - - + + + - - - + + + - + - - + + + + - - - + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - + + - - - + + + - - - + + + - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - - - + + + + + + - + - + - + - - - - + + + + - + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - + + - - - - - - - - - - - - - - - - + + + - + - - + + - - + + - - - + + + - + - + - + - - - - - - - - - - - - - - - - + + + - + - + - - - - - - + + + + + + + + - - - + + + - + - - - - - - - - - - + + + + + + + + - + - - - - - - - - - - + + + + + + + + - - + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - - - - - - - - - - - - - - - - - + + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - - + + + + - - - - - + + + + + - - - + + + - + - - - - - - - + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - + - - - - + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + - - - + + + - + - - - - - - - - + + + + + + - - - + + + - + - + - - - - + + + + - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - - + + + + - - - - - - - - - + + + + + + + + + - - + + - - - - - - - - + + + + + + + + - - + + - - - - - - - - + + + + + + + + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - - - - - - - - - - - - - - + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - + - - + + - - - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + - + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - - + + - - + + - - - + + + - + - - + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - + + - - - + + + - - - - + + + + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - + + - - - + + + - - - + + + - - + + - - - + + + + + + + + + + + + + + + + - - - + + + - + - - + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - + + + + + - - - + + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - + + - - - - - - - + + + + + + + - - - - - - + + + + + + - - - + + + - - + + - - - - - - - - - - - - - - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - + - - + + - - - - - + + + + + - - - - + + + + - - - - + + - - + + - - - - + + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - + - - + + + + + + + + + + + + + + + - - - + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - + + + + + - - - - + + - - - + + + - - - + + + - - + + - - - + + + - - - + + + - + - - + + - - - + + + - - - + + + - - - - - - - - - - - - - - - - - - + + + + + - - - - + + + + - - - + + + - - - + + + - + - + - - + + - - - + + + - - - + + + - - + + - - - + + + - - - - + + + + - - - + - - - - - - - - - - - - - - - - - - - + + + + + + - + - - - - - - + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - + + + + + - - + + - - - - - - - - - + + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - + - - - - - - - - + + + + + + + + - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - + - + - - - + + + - + - + - + - + - - - - + + + + + + + + + + + + + + + + + - - - + + + - + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - - + + - + - - - - - - - + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - - - + + + + + + + + + + - + - - - + - + - - + + - - - - - + + + + + - + - + - - + + - - - + + + - + - - - + + + - - + + - - - + + + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + - + + + + + + + + + + + + + + + + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - + - - - - + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - + + + - - - + + + - - - + + + - - + + - - - + + + + + + + + + + + + + + + + - - - - + + + + - + - - - + + + - - - + + + + + + + + + + + + + + + + - + - + - - - - + + + + - - - - - + + + + + - + - - - - - + + + + + - + - + - - - + + + - + - + - - + + - - - + + + - - - + + + - - + + - - - + + + - - - - - + + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - - + + + + + - - - + - - - - - - + + + + + + - + - + - - - - + + + + - - - + + + - + - - - - + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - + - - - - + + + + - - - - - + + + + + - - - - - - + + + + + + + + - + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + - + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + - - - + + + - - - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - - - + + + - - - - - - + + + + + + - + + + + + + + + + + + + + + - + - - - - - - - - + + + + + + + + - + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - + - - + + - - - - - - - + + + + + - - - - + + + + - - - - - - - - - - - - - - - - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - - - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - - - + + + - + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - - + + + + - - - - - + + + + + - - - + + + - + - - - - - - - - - + + + + + + + + + - + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - + - + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - + + + - - - - + + + + - + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + + + + + + + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - - - - - - - - - - - - - - + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - + + + + + - + - - - + + + - - - + + + - + - - - - - - - + + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - + + + - - - + + + - + - - - - - - + + + + + + + + - + - - + + - - + + - - - + + + - + - - + + - - - - - - - - - - - - + + + + + + + + + + + + - - + + - - - - - - - - - + + + + + + + + + - - + + - - + + - - - - - - + + + + + + - - - + - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - + + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - + - - - - + + + + - + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - + - + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + + + - + - - - - - - - - - - - - - - + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - + - - + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - + - + - - - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - + - + - + - + - - - - - - - - - - - - - - - - - + + + + - - - - + + + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - - - + + + + + + + + + + - + - - - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - - - - + + + + + + + + + + + - - - + - - - - - - - - - + + + + + + + + + - - - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - - - - - + + + + + - + - - + + - - - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + + + + + + + + + + + + + + - + - + - + - - - - - - - - - - - - - - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - - - - - - - - - + - - - - + + + + - + - + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - + + + + + + + + + + + + + + - - - - - - - + + + + + + + - + - - - - + + + + - - + + - + - + - - - + + + - - + + - + - - - - - - - - - + + + + + + + + + - + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - + + - - - + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - - - + + + - - - - - + + + + + - + - + - + - - - - - - - - - + + + + + + + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - + - - - - + + + + - - - - + + + + - + - - - + + + - - - + + + - - - - - - - - - + + + + + + + + + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - + + + + + + + + + + + + + + + - - - + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - - - + + + - + - - - - - - + + + + + + - + - - + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - + - - - - - - + + + + + + - + - - - - - - + + + + + + - - - + + + - - - + - - - - + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - + - - + + - - + + - - - - - - - + + + + + + + - - + + - - - + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - + - - - - - - - - - - + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + - + - - - - + + + + - + - - + + - + - - - + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - + + + - - - + + + - - - - - - - - - - - - - - - - - - - - + + + + + + + - + - - - - - - - - - - - - - - - + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - + + - - - - - - - - - - - - - - + - - - - + + + + - - + + - + - + - - - + + + - - + + - - + + - - - - - - - + + + + + + + - + - - + + - - - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - + - - - - - - - - + + + + + + + + - + - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - + - - - + + + - - + + + + - - - + + + - - - + + + - - + + - - - + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - + + - - - + + + - - - - + + + + - - + + - - - + + + - - - - - + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - + - + - + - - + + - - + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + - + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - - - + + + + + + + + + - - + + - - + + - - - + + + + + + + + + + + + + + + + - + - + + + + + + + + + + + + + + - - - + - - - - + + + + - - - + + + - - + + - - - + + + - + - + - - + + - - - + + + - - - + + + - + - - - - - - - - - - - - - - - - - + + + + - - - + + + - + - - - - - - + + + + + + - + - - - - - + + + + + - - + + - - + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - + + - - - - - - - + + + + + + + - - + + - - - + + + - - - - + + + + - - + + - - - + + + - - - + + + - - + + - - - - - - - - - - - - - - - - + + + - - - + + + - - - - - - - - - - - - - - - + + - - - + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - + + + + + + + + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + + + - - + + - - - + + + - + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - - - - + + + + + + + - - - - - - - - - + + + + + + + + + - + - - - - - - + + + + + + - - + + - - - - - + + + + + - - + + - + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - - - - - - - - - - - - - - - - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - + + - - - - - - - - + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - + - - - - + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + + + - - + + - - - + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - + + - + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - - + + + + + - - - + + + - - - + + + - - - + + + - + - + - - - - - - + + + + + + - + - + - - + + - - - - - + + + + + - - - + + + - + - - - + + + - - - + + + + + + + + + + + + + + + + - + - + - - - + + + - - - + + + - + - + + + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - + + - - - + + + - - - + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - + - + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - + + - - + + - + + + + + + + + + + + + + + - - + + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + - - + + - - + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + + + - + - + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + - - - + + + - - - - - - + + + + + + - + - + - - - - + + + + - - - + + + - - - - + + + + - + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - + - - + + - - - + + + - - - + + + - - + + - - + + - - - - + + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + + + + + + + + + + + + - - - - + + + + - + + + + + + + + + + + + + + - - - + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - - - + + + + + + - - - + + + - + - - - - + + + + - + - + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - - - + + + + + - + - - - - + + + + - + - - + + - - + + + + - - - + + + - - - + + + - + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - + - - + + - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + - + - + - - - + - - - - + + + + - - - + + + - - + + + + - - - + + + - - - + + + - - - - - - + + + + + + - + - - + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - + + + + + + + + + + - + - - - - - - - - + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + + + - - - - + + + + - - - + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - - + + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + - - - - + + + + - - - + + + - - - + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - + + - - - + + + - - - + + + - - + + - - - + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - + + + + + + + + + + + + + + + - - + + - - - - + + + + - - - - + + + + - - + + - + - + + + + + + + + + + + + + + - - - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - + + - - - + - - + + - + - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - + + - - - - - - - - - - - - - - - - + + + - - - - + + + + - - + + - - - + + + - - - - + + + + - + - - - + + + - - - + + + + + + + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + + + + + + + + + + + + - + + + + + + + + + + + + + + - + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - + + + - - - + + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - + + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - + + + + - - - + + + - + - + - + - - - - - - + + + + + + - + - + - + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - + + + + + + + + + + + + + + + + - - - + + + - - - - - - - + + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - - + + + + + - + - - - - + + + + - + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - + + - - - - + + + + - + - - - + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - + + + + + - - - - - + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + - + - + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + - - - - - + + + + + - + - - + + - + - - - + + + - + - - - - - + + + + + - - - + + + - - - + + + - - - + + + - + - + - - - - - - - - - - - - - - - + + - - - + + + - + - - - - - - - - - - - - - - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + - - - + + + - - - - - - - + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - - - + - - - - + + + + + + + + + + + + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + + + + + + + + + + + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - - + + + + - - - - + + - - - + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - - + + + + + + + + + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + - - + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + + + - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - + + + - - - + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + + + + + + + + + + + + + + + + - - + + - - - - - - + + + + + + - + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + - - + + - - - - - - - - + + + + + + + + - - + + - - - - - - + + + + + + - - - + + + - - - + - - - - + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - - + + + + - - - - - - - - - - - + + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - + + - - - - - + + + + + - - + + - - - - - - - - - + + + + + + + + + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - + - - - - - - - + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - + - + - - - - - + + + + + - - - - - - - - - - - - - - - - + - + - + - - - - - - + + + + + + + + - + - + - + - - - - - - + + + + + + - + - + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - - + + + + + - + - - - - + + + + - - - + + + - + - + - - - - - - - + + + + + + + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - + - - - - - - - - - - - - - - - - - + + + + - + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - - - - - - - - - - - - + + + + - - - - - + + + + + - - - - - - + + + + + + - + - + - - - - - + + + + + - - - - + + + + - - - + + + - - - - - - - - + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - + + - - - - - - - - - - - - - - - - + + + - - - + + + - - + + - - - - - - - - + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - + + + + + - + - - + + - - - - - - - + + + + + + + - + - - + + - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - + + - - - - - + + + + + - - + + - + - - + + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - + - - + + - + - - - + + + - - - - - - + + + + + + - - - - + + + + - + - - - + + + - - - + + + - + - - - - + + + + - - - - + + + + - - - + - - + + - + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + + + + + + + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + + + + + + + + + + + + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - + + + - - - - + + + + - - - - - + + + + + - - - - - + + + + + - - - + + + - + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - + + - - - - + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - + + - + - - - - - - + + + + + + - - + + - + - - - - - - + + + + + + - - + + - - - - - - - - + + + + + + - - + + - - - + - - - - + + + + - - - + + + - + - - - - + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - + + - - - - - - - - - + + + + + + + + + - - + + - - - - - + + + + + - + - + - - - - - - + + + + + + - - - + + + - + - - + + - - - - - - - + + + + + + + - + - - - - - + + + - - - - - - - + + + + + + + - - - + + + - - + + - + - + - + - + - + - - + + - - - + + + - + - - + + - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - - - - - - - - + + + + + + + + + + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - - - + + + + + - + - - + + - - - + + + - - - - - - - - - + + + + + + + + + - + - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - + - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - - - - - + + + + + - - - + + + - - - + + + - + - - + + - - + + - - - + + + - - - - + + + + - - + + - - - - - - - - - - - - - - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - + - - - - + + - - - - - - - - - - - - - - - - - - + + + + + - + - - + + - - - + + + - + - - + + - - + + - - - + + + - - - - + + + + - - - - - - - - + + + + + + + + - - - + + + - - + + - - - + + + - + - - - + + + - + - - - - - - - - - - - - - - - - + + + - - + + - - - - - - + + + + + + - - + + - - - - - + + + + + - - + + - + - - - - - - - + + + + + + + - - - - - - - - - - - - - - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - - - - - + + + + + + + + - + - - - - - - - - + + + + + + + + - + - - - - + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - + - - + + - - - + + + - - - + + + - - + + - - - + + + - - - + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - + + - - - + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + + + - - - - + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + + + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - + + + - - - - + + + + - - - - - - - - - + + + + + + + + + - + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - - - - - + + + + + + + + - + - - - - - - - - - + + + + + + + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - + - - + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - - - - - - - - - - - + + + - - - - + + + + - + - - - + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - + - - - - - - + + + + + + - + - + - - - - + + + + - - - + + + - - - - - - - - + + + + + + + + - - + + - - - - - - + + + + + + - + - + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - - + + - - - + + + - + - + - + - - - - - - + + + + + + - + - - - - - - - - - - - - - - - + + - - + + - - - + + + - - - + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - + + - - - - - - - + + + + + + + - + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - + - - + + - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + - + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - - + + - - - + + + - - - - - - - - - - - - - - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - + - - - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + + + + + + + + + + + + + + - - - - + + - - - + + + - - - + + + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + - - + + - - - + + + - + - - + + - - + + - - - - - - - + + + + + + + - - - - - - - - - - - - - - - + + - - - + + + - - - - + + + + - - + + - - - - - - - - + + + + + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + - - + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - + + + + - - - - - - - - - - - - - - - - + + + - - - + + + - - + + - - + + - - - + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - + + + - - + + - - - - + + + + - - - - - - + + + + + + + + - + - + - + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + - + + + + + + + + + + + + + + - + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - - - + + + - - - - - - + + + + + + - - - + + + - + - + - - - - + + + + - + + + + + + + + + + + + + + - + - + - - - - - - - - + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - - - - - - - - - - - - - - - + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - + + + + + + + + + + + + + + + - - - + + + - + - - + + - - - - - + + + + + - - - + + + - - + + - - - - + + + + - + - + - + - - - - + + + + - - - - - - - - - - - - - - + - + - + - - - - - - - - + + + + + + + + - + - - - - + + + + - - - + + + + + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - + + + + + - - - + + + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + + + + + + + + + + + + + + - + - - - + + + - - - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - + + - + - - - - - - - - - - - - - + + + + + + + + + + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - + - - + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - + - + + + + + + + + + + + + + + - - - - + + + + - + - - + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - - + + + + - + - - - - - - + + + + + + - - + + - + - - - - - - - - + + + + + + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - - - - + + + + - - - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - + + - - - - - - - - + + + + + + + + - - - - - - - - + + + + + + + + - - - - - - - - - - - - - - - - + - - - - + + + + - - - + + + - - - - - - - - - - - - - - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - + + - + - + - - - - + + + + - - + + - + - - - - - + + + + + - - + + - - + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - + + - - + + - - - + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - + + + + + - - - - - + + + + + - - - - - - - + + + + + + + - + - + - + - - - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - + - - - + + + - - - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - + - + - + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + - + - - - - - - - + + + + + + + - + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + - - - - + + - - - + + + - - - + + + - - + + - - + + - - + + - + - - - - - - - + + + + + + + - + - + - - - - - - - - + + + + + + - - - - + + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - + - + - + - - - - + + + + - - - - + + + + - + - - - + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - + + + + + - + - + - - - - - - - + + + + + + + - + - - - + + + - - + + - - - + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - + + - - - + + + - - - + + + - - - - - - - - - - - - - - - + + - - - + + + - - - - + + + + - - - - - - + + + + + + - - - - - + + + + + - - + + - - - + + + - - - + + + - + - - + + - - + + - - - + + + - + - - + + - - - + + + - - - - - - - - - - - - - - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - + - - - - + + + + - + - + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + - + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - + - + - - - + - - - - + + + + - - - - + + + + - + - - - - + + + + - + - - - - - - - - - - - - - - + - - - - - - - - - - - - - - + - + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - + - - - + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - + - - - - - + + + + + - + - + - + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + + + + + + + + + + + + + + - - + + - - - + + + - - - + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + - + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - - - + + + + + - + - - - - + + + + - - - - + + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - + + + - - - - + + + + + + + + + + + + + + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - + + - + - - - - - - + + + + + + + + - + - + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + - - + + - - - - - - - - - + + + + + + + + + - - - - - - + + + + + + - - + + - + - - - + + + - - + + - - - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - + - - + + - - - - - - - - - + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - + + - - - - - - + + + + + + - + - - + + - - + + + + + + + + + + + + + + + - - + + - - - - - - - - - + + + + + + + + + - - + + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - - - + + + + + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - + - - - - - - - - + + + + + + + + + + + + + + + + + + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - + - - + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - + + - - - - - - + + + + + + - + - + - - - - - + + + + + - + - - - + - - - - + + + + - - - - + + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - + - + - - - - - - - - - - - - - - - - - + + + + - - - + + + - + - + - - - - + + + + - - - + + + - + - - + + - - - - + + + + - - - - - - - + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - + - - + + - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - + + + + - - - + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + - - - + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - + - + - + - - + + - - + + - - - + + + - + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - + - - - - - - - - - - - - - - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - + - - - + + + - - - + + + - - - - - - - + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - - + + - - + + - - - + + + - - - - - - - + + + + + + + - + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - + - - - + + + - - - + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - - - - + + + + + + - - - + + + - + - + - - - - + + + + - - - - - - - - - - - - + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - + - + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - + - - + + - - - + + + - - - - + + + + - - + + - - - + + + - - - - + + + + - - + + - - - + + + - + - + - - + + - - - + + + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - + + - - - + + + - - - + + + - - + + - - - + + + - - - + + + - - - + - - - - + + + + - + + + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - + - - - + + + - - - + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - + - - + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - + - - - - + + + + - - + + - + - - - - - - - - - - - - - - - - - + + + + - - + + - + - - - - - + + + + + - - + + - + - - - - - - - + + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - - + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - + - + - - - - - - - - + + + + + + + + - + - - - + + + - + - - - - - - - - - - - - - - + - + - - - - - - - - - - - - - - - - - + + + + - - - + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - + - + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + - - - - + + + + - + - - - - + + + + - + - - + + - + - - - - + + + + - - - + + + - + - - - + - + - - + + - - - + + + - + - + - - + + - + - + - + - + - - + + - - - - + + + + - - - + + + - - + + - - - - - + + + + + - - - + + + - + - + - + - - - - - - - + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - + - + - - - - - - - - - - - - - - - - + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - - + + + + + + + + + + + - + - - - - - - - - - + + + + + + + + + - - - - - - + + + + + + - + - - - - - + + + + + - - + + - + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - + - - - + + + - - + + - - - + + + - - - + + + + + + + + + + + + + + + + - - - - - - - + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - - - - + + + + - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - + - - - + + + - - - + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - + - - - - - - - - - - - - - - - - - + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - + + + + - + - + - - - - - - - - + + + + + + + + - + - + - - - - - + + + + + - + - + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + + + - + + + + + + + + + + + + + + - + - - - - + + + + - + - + + + + + + + + + + + + + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - - - + + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - + - - - + + + - - - + + + - - - - - - - - - + + + + + + + + + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - - + + + + - + - - - + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - + + + + + + + + - + - - + + - - - - - - - - + + + + + + + + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - + + + + + - - - + + + - - - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - - - - - - - - - - - - - - + - + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - + - - - - - - - + + + + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - - - + + + + + + + + - - - + - - - - - - - - + + + + + + + + - + - - - - + + + + - - - + + + - - - - - - - - - - - - - - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - + - - + + - - - + + + - - - - + + + + - + - - - + + + - - - + + + - + - - - + + + - - - - + + + + - + - - - - + + + + - - - + + + - + - - - + + + - - - - - - - - - - - - - - - - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - - - - - - + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - + - - - - + + + + - + - + - - - - - - + + + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + - - - + + + - + - - - - - - - + + + + + + + - + - + - + - - - + - - - - + + + + - + - + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - + + + - - - - - - - - - - - - - - + - + - - - - + + + + - - - + + + - + - - - - - - - - - - - - - - - - - + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - - + + + + - - - - - - - + + + + + - - - - - + + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - - - - - - - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - + + + + + + + - - + + - - - - - - + + + + + + - - + + - + - - - - + + - - - + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - - + + + + - - + + - - - + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - + + - - - + + + - - - - + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + - - - + + + - - - - - + + + - - - - - - + + + + + + - + - + - + - - - - + + + + - + - + - + - + - - + + - - - + + + - + - - - + + + - - + + - - - + + + - + - + - + - - + + - - + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - + + - - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - + + + + + - - + + - - - - - - - + + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - - - - - - - - - - - - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - - - - - + + + + + - - - - - - - + + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - - - + + + + + - - - - - + + + + + - - - - - - - + + + + + + + - + - - + + - - - + - - - - + + + + - + - + - - - - - - - - - - - + + + + + + + + + + + + + - - - - - - + + + + + + - + - - + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - + + - - - + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - - - + + + + + - - - + + + - + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - + - + - - - + + + - - - - - + + + + + - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + - - - + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - - - - - - + + + + + + + + + + + + - - + + - - - + + + - + - - + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - + + + + + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - - + + + + - + - - + + - - - - + + + + - - - - - - - - - + + + + + + + + + - - + + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - - + + + + + + + + + + + + + + + + + - - - + + + - + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - + - - - - + + + + - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - + - + - + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - - - + + + + + + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - + - - - - + + + + - + - + - - - + + + - + - - - - - - - + + + + + + + + + + + + + + + + + + + + - + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - - + + - - - + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - + + + + + + + + + + + + + + - - + + - - + + - - - + + + - - - - - - - + + + + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + + + + + + + + + + + + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - - + + + + - + - - - + + + - + - + - - - - - - - + + + + + + + - + - + - - - - - + + + + + - + - + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - - + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - + - - - - - - - - - - - - - - - - + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - + + - + - - - - - - - + + + + + + + - + - - - + + + - + - - - - + + + + - + - - - - - - - - - - - - - - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - + - + - - + + - - - + + + - + - + - - - + + + - - - - - - - + + + + + + + - + - - - + + + - - - - - - + + + + + + - + - + - + - - - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + + + - + - + - - - - - - - - + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - - - + + + + + - - + + - - - + + + - - - - - + + + + + - - + + - - - + + + - - - + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + - + - - - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - - - + + + + + + + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - - - + + + + + - - - - - - + + + + + + + + - + - - - - - - - - - - - - - - + - - - - - + + + + + - - - + + + - - - - - - - - - + + + + + + + + + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - - - + + + - + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - + - - - + + + - - - + + + - + - - - + + + - - - + + + - - - - - - + + + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + + + + + + + + + + + + + + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - - - - - - - - - - - - - - + - + - - - - - - + + + + + + - - - + + + - + - - + + - - - + + + - + - - - - - - - - - - - - - - + - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - - - - - - + + + + + + - + - + - - - - - + + + + + - - + + - + - - - - - - - + + + + + + + - + - - - + + + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - + - - - + + + + + + + + + + + + + + + + - - - + + + - + - + - - + + - - - - - - - + + + + + + + - - - - - - + + + + + + - - - + + + - + + + + + + + + + + + + + + - - - + + + - - + + - + - - + + - - - - - - + + + + + + - + - - + + - - + + - - + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + + + + + + + + + + + + + + - - - + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - - - + + + + - - + + + + - - - + + + - - - + + + - + - - - - - - + + + + + + - + - + - + - - - - - - - - - - + + + + + + + + + + - + - - - - - - - - - - - - + + + + + + + + + + + + - - - + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + - + - - - + + + - - - - - + + + + + - + - + - - - - - - - - - + + + + + + + + + - - + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + + + - - + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - - + + + + - + - - - + + + - - - + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + - + - - - - - - - - + + + + + + + + - - + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + + + - - + + - - - - - - + + + + + + - + - + - - - - - + + + + + - - - + + + - - - - - - - - - + + + + + + + + + - + - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - + + + - - + + - - - - + + + + - - - + + + - - + + - - - + + + - - - + + + - - + + - + - + - - - + + + - - + + - - - + + + - - - + + + - + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - + + + + + - - - + + + - - - - - - - - - + + + + + + + + + - - + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - - - - + + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - - + + + + + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + - - - + + + - + - + - - - - + + + + - + - + - + - + - - - - + + + + - + - + - + - - - - + + + + - + - - + + - + - - - - + + + + - + - + - + - - - - + + + + - + - + - - - - - - + + + + + + + + - - - + + + - + - + - - - - + + + + - - - + + + - + - - - - + + + + - + - + - + - + - - - - + + + + - + - + - + - - - + - - - - + + + + - - - + + + - + - + - - - - + + + + - + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + - + - + + + + + + + + + + + + + + - + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - + - + - + - - - - + + + + - - - + + + - + - - - - + + + + - + - + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - + + + + + - + - - - + + + - - - - - + + + + + - + - - - + + + - - - + + + - + - + - - - + + + - - - + + + - + - - - - - - - + + + + + + + + + + + + + + + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - - + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - + - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + - - - - - + + + + + - - - + + + - - + + - - - + + + - + - + - + - + - - - - + + + + - - - - - + + + + + - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + + + - + - + - - + + - - + + - - - + + + - - - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + - - - - - + + + + + - - + + - - + + - - - + + + - - - - - - - + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - + - + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + - - + + - - - - - - - - + + + + + + + + - + - - - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - + + - + - - - - - - + + + + + + - - + + - + - + - - - + + + - - + + - - - + + + - - - + + + - + - + - - + + - - + + - + - - + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - + - - + + - - - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - + - + - + - - - - + + + + - - - + + + - + - - - + + + - - - - + + + + - - - + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - + + - - - - - - - - - - - - - - + - - - - + + + + - - + + - - - - - - - - - - - + + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - - + + + + + + + + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - + + - - - + + + - - - + + + - - + + - - - - - - - - - - - - - - - - - - - - + + + + + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - + + - + - - - - - + + + + + - + - + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - + - - - - + + + + - - + + - - - - - - + + + + + + - - + + - - - - - - - - - - + + + + + + + + + + + + - + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - - - - - - - - + + + + + + + + + + - + - - - + - - - - - - - - + + + + + + + + - + - + - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - + + + - + - - - - + + + + - + + + + + + + + + + + + + + + + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - + - - - - + + + + - - - - - + + + + + - + - - - - + + + + - - - + + + - + - - - + + + - - - + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + - - - - + + + + - - - - - + + + + + - + - - - + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + - + - + - - - - - - - - + + + + + + + + - - + + - - - - - - - - - - - - - - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - - - - - - - - - - - - - - - - + + + - + - - - - - - - - + + + + + + + + - - - - - - + + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - + - - - + + + - - + + - - - - - - - - - + + + + + + + + + - + - - - - - - - - - + + + + + + + + + - + - - - + - - - - + + + + - - - + + + - - - - - - - - - - - - - - + - - - - + + + + - + - - + + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - + - - - - + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - + + + + + + + + + - + - - - - - - + + + + + + - - + + - + - - - - - - + + + + + + - - + + - - - - - - + + + + + + - - + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + - - + + - - - - - - - + + + + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - + - - - + + + - + - - + + - - - - - - - - - - - - - - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - + - - - - + + + + - - + + - - - - - + + + + + - + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - + - - + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + - - - - + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - - - - - - - - - - - - - - - + + + - - - - - + + + + + - + - - + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - + - - - + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - - - - - - - - - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - + + + + + + - + - - + + - - - - - - - - - - + + + + + + + + + + - - - - - + + + + + - - - - - - - - - - - - - - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - + - - - + + + - + - + - - - - - - - + + + + + + + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - + + + + + + + + + + + + + + - + - - - - + + + + - - - - + + + + - - - - + + - - + + - - - + + + - - - - - - - + + + + + + + - + - - - + + + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - - - + + + + + + + + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - + + + + + + + + + + + + + + - - - - + + + + - - - + + + - + - - - - + + + + - + - + - - - - - - + + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - + + + + + - + - + - - - - - - - + + + + + + + - + - + - + - - + + - - - + + + - + - + - + - - + + - - - + + + - - - + + + - + - - - - + + + + - + - - - - - - - - - - - - - - + - + - - - + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + - + - - + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + - - - + + + - + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - + + + + + - - + + - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - + + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + + + - + - - + + - - - - - - + + + + + + - + - + - + - - - - + + + + - - - + + + - + - - - - - - - - - - - - - - - - - + + + + - - - + + + - - - - - - - - - - - - - - + - - - - + + + + - - + + - + - - - - + + + + - + - - + + - - - + - - - - + + + + - - - + + + - - - - - - - - - - - - - - - + + + + - - - - - + + + + + - - + + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + + + - + - - - - + + + + - + - - + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - + - - - - + + + + - - - + + + - - - - - - - - + + + + + + + + - - - + + + - - - - - - - - + + + + + + + + - + - - - - - - - - - - - - - - + - - - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - + - + - + - + - - - - + + + + - - - + + + - - + + + + - - - + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - - + + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - + - + - - - - - - - - - - - - - - + - - - + + + - - - + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + + + - - + + - - - - - - + + + + + + - + - + - - - - - + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - - + + - - - - - - - - - - - - - - - - + + + - - - + + + - - - - - - - - - - - - - - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - + - - - + + + - - - - - - + + + + + + - - - - - + + + + + - - - - - + + + + + - - - + + + - + - - - - - - - + + + + + + + + + + + + + + + + + + + + - + - - + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - + - - - - - - - - - - - - - - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + + + + + + + + + + + + + + - + - + + + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - - - + + + + + - - + + - - - + + + - - - + + + - + - + - - - - + + + + - - - + + + - + - - - - - - - - + + + + + + - - - - - + + + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - + - + - + - - - - + + + + - - - - - + + + + + - + - - - - + + + + - - - - - + + + + + - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - + + - - - - - - + + + + + + - - + + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + + + - + - - - - + + + + - + - + - + - - - - - - - - + + + + + + + + - - - - - - - - - - - - - - + - - - + + + - - - + + + - - - - - - - - - - - - - - + - - - - + + + + - - - + + + - + - + - - - + + + - - - + + + - + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - + - - - - - - - - - - - - - - - - + + + - - - - - - + + + + + + - + - - - + + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - + - + - + - - - - + + + + - + - - - + + + - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - + - - - - - - - - - + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - + + - - - + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - + + + + + + + - + - - + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - + - - - + + + - + - - + + - - - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + - + - + - + - - - - - - + + + + + + - + + + + + + + + + + + + + + - - + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - + + + + + - - + + - - - + + + + + + + + + + + + + + + + - + - - - + - - - - - - + + + + + + - + - + - - - - + + + + - - - + + + - + - - - - + + + + - + - + - - - - - - + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - + - - - - + + + + - - - - + + + + - - + + + + - - - + + + - + - + - - + + - - - + + + - - - + + + - - + + - - - + + + - + - - + + - - - - - - + + + + + + + + - + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - + + - + - - - - - + + + + + - - + + - - - - - - - - - + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + + + + + + + + + + + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - + + + + - - - + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + - - - - - - - + + + + + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - + - - - + + + - - - - - + + + + + - + - - + + - - - + + + - + - - - - - - - + + + + + + + - + - + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + - + - + - - - - + + + + - - - - - + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - + + - - - - - + + + + + - - + + - - - - - - - + + + + + + + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - + - - - - + + + + - + - + - + - - - + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - + + + + + - - - + + + - + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + + + + + + + + + + + + + + - - - - - + + + + + - + - - - + + + - - - - - + + + + + - - - - - - - + + + + + + + - + - + - + - - - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - + - - - - + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - + - + - - - - + + + + - + - + - + - + - - - - + + + + - + - + - + - + - - - - + + + + - - - - - + + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - + + + + + + + + + + - + - - - - + + + + - - - - + + + + - + - - - - - - - - + + + + + + + + - + - - - - + + + + - + - - + + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + - + - + - + - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - - - - - - - - - - - - - - + + + + - + - + - - - - - - + + + + + + - - - + + + - - - + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - - - + + + + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - - + + + + - + - - - - - - - - - - - - - - - - - + + + + - - - + + + - + - - - - + + + + - - - - - + + + + + - + - - - + + + - - - - - + + + + + - - - - - - - + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - + + - + - - - - - - + + + + + + - - + + - + - - - - - + + + + + - - + + - + - - - - - - - - - + + + + + + + + + - - + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - + + + - - - - - + + + + + - + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + - + - + - + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - + - + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - + + + - + - - - - - - - - - - + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - + + + + + - - + + - - - - - - - + + + + + - - - + + + - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + - - + + - - + + - - - + + + - - - - + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - - - + + + + + - - - + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - + + - - - + + + - - - + + + - - + + - - - + + + - + - + + + + + + + + + + + + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - - + + + - - + + - - - + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - + + - - - - - - + + + + + + - - + + - - - - - + + + + + - - + + - + - - - - - - - + + + + + + + - + - - + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - + - + - - - - + + + + - - - - - + + + + + - + - - - - + + + + - + - + - + - - - - + + + + - - - - - + + + + + - + - - - + + + - - - - - + + + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - + - - - - + + + + - - - + + + - + - + - - - - + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + + + - - - + + + - + - - + + - - - + + + - + - - - + + + - + - - - - + + + + - - - + + + - + - - - - - + + + + + - - - + + + - + - - - - - - - + + + + + + + - + - - - - - - - - - - - - - - + - - - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - - - + + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - - - - - - - - - - - - + + + + + + + + + + - - + + - - - + + + - + - + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + + + + + + + + + + + + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - + - + - - - - - + + + + + - - + + - + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - + - - - - + + + + - - - + + + - + - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - + + + + + + + - + - - - - - - + + + + + + - - - - - - + + + + + + - - + + - - - - - - + + + + + + - - + + - - - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - + + - - - + + + - - - - - + + + + + - - + + - - - + + + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + - + - - - + + + - - + + - - - + + + - + - + - - - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - + + - + - - - - - + + + + + - - + + - + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - + - - - + + + - - - - + + + + - + - - - + + + - - - - + + + + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - + + - - - + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + + + - - + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - + - - - - - - - - + + + + + + + + - + - - - - - - - - - - - - - - - - - + + + + - + - - + + - + - - - - - - - - + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - + + - + - + - - - - + + + + - + - - - - - + + + + + - + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - - - + + + - + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - + - + - - - - + + + + - + - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - + - - - - + + + + - + - + - + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - - - + + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - + - + - - - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - - + + + + + - - - + + + - - - - - - - - - - - - - - - - + + + - - - + + + - - - + + + - + - - + + - - - + + + - + - + - + - + - - - - - - - - - - - - - - - - - - + + + + + - + - + - - + + - - - + + + - + - - + + - + - - - + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + + + - + - - - - - - - - - + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - + - + - - - - - - + + + + + + - - + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - - - - - + + + + + - - + + - - - - - - - - - - - - - - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - + + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - + + + + + + + + + + + + + + - - + + - - - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + - - + + - - - - - - + + + + + + - - - + + + - + - - - + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + - + - - + + - - - - - - - - + + + + + + + + - - + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - + - - + + - - - - - - - - - + + + + + + + + + - - - - - - - - - + + + + + + + + + - - - - - - + + + + + + - - + + - + - - + + - - - + + + - - + + - - - - - + + + + + + + + + + + + + + + + + + + + - + - - + + - - - - - - - + + + + + + + - + - + - + - - + + - - - + + + - - - - - + + + + + - - - - - - + + + + + + - + - - - + + + - + - - - - - - - + + + + + + + - + - - - - + + + + - - - - + + + + - + - - - - - - - - + + + + + + + + - + - - - - + + + + - + - - + + - + - - - - + + + + - - - + + + - - - - - - - - - - - - - - + - - - + + + - - - + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - - + + + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - - - + + + + + + + + + + + + + + + + - + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - + - + - + - - - - - - - - - - - - - - - - - + + + + - - - + + + - + - - - - + + + + - + - - - - - - - - - - - - - - + - + - - - + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - + - - + + - - - - - - - - + + + + + + - - - - - + + + + + - - - - - - - - + + + + + + + + - - - - - - - - - - - - - - + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + + + - - + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - + - + - - - - + + + + - - + + - + - - - + + + - - - - - - + + + + + + + + - + - + - + - - - - - + + + + + - - - + + + - + - - - - - - - - - + + + + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - + - - - - - + + + + + - - - - + + + + - + - - - - - - + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - - - + + + - - - + + + - - - + + + - + - + - + - - - - - - - - + + + + + + - - - - - + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - - + + + - + - - - - + + + + - - - - - + + + + + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - + - - - - - - - - + + + + + + - - - + + + - + - - + + - - - + + + - - - + + + - - + + - - - + + + - - - + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - - + + + + - - + + - - + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - - + + + - + - - - + + + - - + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - + - + - + - + - - - - + + + + - + - + - + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - - + + - - + + - - - - + + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - + + - + - - - - - + + + + + - - + + - - - - - - - + + + + + + + - - - + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + + + - - + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - + + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - - - + + + + + + - - - + + + - + - - - - - - - + + + + + - - + + - + - - - - - - - - - + + + + + + + + + - + - - - - - - + + + + + + - + - - - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - + - + - - - - - - - + + + + + + + - - - + + + - + - - - - - - + + + + + + - + - - - + + + - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - - - - - - - - - - - - - - + + + - - - - - - + + + + + + - - + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - + + + + + + + + + + + + + + + + + + - - + + - + - - - + + + - - - + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - + - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - + + + + + - - - + + + - + - - - - - - - + + + + + + + - + - + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - + + - - - + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - + + - - - - - - + + + + + + - + - - - - - - + + + + + + - - + + - + - - - - - - + + + + + + - - + + - - - - - + + + + + - - + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - + - - + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - + + + + + + - + - - + + + + + + + + + + + + + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + + + - + - - - - - - - - + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - + + - + - - - + + + - - + + - + - - - - - - - + + + + + + + - + - - + + - - - - - - - - + + + + + + - + - - + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - + + - + - - - - - - + + + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - - - - - - - - - - - - - - - - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - + + - - - + + + - - - + + + - - + + - - - + + + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - + + + + + - - + + - + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - + + + + + - - + + - - - + + + - + - - - + + + - - + + - - - + + + - + - - - + + + - - + + - - - + + + - - - + + + - - + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - + - - - - - - - - - - - - - - - + + - - - - - - + + + + + + - + - - + + - - - - - + + + + + - + - - + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - + + - - - - + + + + - - - + + + - - - - + + + + - + - - - + + + - - + + - - - + + + - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - + - + - + - - - - - - - - - - - - - - - - - + + + + - - - + + + - + - - - - + + + + - + - + - + - + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - + + + - - - - - - - + + + + + - - + + - - - - - - - + + + + + + + - + - - - - - - - - - - - - - - + - + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - - - - - - - - - - - - - + - + - - - + + + - - - - + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - + - - + + - - + + - - - - - - - + + + + + + + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - + - - - - + + + + - - - + + + - - - - - - + + + + + + - + - + - - - + + + + + - - + + - - - + + + - + - - - + + + - - + + - - - + + + - - - + + + - - + + - - - + + + - - - + + + - - + + - - - - + + + + - - - + + + - - + + - - - + + + - + - - - + + + - - + + - - - + + + + + + + + + + + + + + + + - - - + + + - - + + - - - + + + - - - + + + - - + + - - - + + + - - - - - - - + + + + + - - - - + + + + - - - + + + - - - + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - - - + + + + + + + + - + - + - - - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - + - + - + - - - - - + + + + + - + - + - + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - + - - + + - - - - - - - + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - + - + - + - + - - - - + + + + - + - - + + - + - - - - + + + + - + - - + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - - - - - + + + + + + + + + + - + - - - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + + + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - + + + + + - - - - + + + + - - - - - - - - - - - - - - - - - - - - + + + + + + + - - - + + + - + - - - - - - + + + + + + - + - - - + + + - + - - - - + + + + - - - - - + + + + + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - + + + + + - - - + + + - - - + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + - + - - - + + + - - - - + + + + - - - - - - - + + + + + + + - - - + + + - - + + - - + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - - - + + + + - - + + - - - + + + - - - + + + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - + + - - - + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - - + + - - - + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - + - - - - + + + + - - - - + + + + - - + + - - - + + + - - - + + + - + - - - + + + - + - + - + - - - - + + + + - - - + + + - - + + + + - - - + + + - - - - - + + + + + - - + + - - - + + + - - - + + + - - + + - - - + + + - - - + + + - + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - + + - - + + - - - + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - + - + - - - - - - + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - + - - - - - - - - - + + + + + + + + + - - - - - - - - - - - - + + + + + + + + + + - - - + - - - - + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - + + - - - + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - + + + + - - - + + + - - - - + + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - + - - - - + + + + - - - - + + + + - + - - + + - + - - - + + + - - + + + + - - - + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - + - - + + - + - + - - + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - + - - - - - + + + + + - + - - + + - - - - - - - + + + + + + + - - - + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - - + + + + + + + + + - - - - - - + + + + + + - - - + + + - - + + - - - - - - - - + + + + + + + + - - + + - - - + + + - - - - + + + + - + - - - - + + + + - - - + + + - - + + - - + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - + - - + + - - - - - + + + + + - + - + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - - + + + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - + + - + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - - + + + + - + - - - - - - - - - - - - - - - - - - + + + - - - + + + - - - - - - - + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - - - - - + + + + + - - - - + + + + - - + + - - + + - - - + + + - - - - - - - + + + + + + + - + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - - + + + + - + - + - - - - - - - - + + + + + + + + - - + + - - - - - + + + + + - + - + - - - - - - - + + + + + + + - + - - - + + + - - - - - - + + + + + + - + - + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - + - - - + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - - - + + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - - + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - + + + + - - - + + + - + - + - - + + - - - + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - + + - + - - - - - - + + + + + + + + - + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - - - + + + - + - - - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + - + - - - - - - - - - - + + + + + + + + + + - + - - - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - - - - - - - - - - - - - - - - + - + - + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - - - - - + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - + + + - - - + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - + - + - - - - - - - + + + + + + + - + - - - + + + - - - - - - + + + + + + - + - + - + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - + - - - - + + + + - - - - + + + + - + - - - + + + - - - + + + - + - - - - - - + + + + + + - + - - - + + + - - - - - - + + + + + + - + - + - + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - - + + + + + - + - - - - + + + + - + - + - + - + - - - - + + + + - + - + - + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - + - + - - + + - - - + + + - + - - - + - - - - + + + + - - - - - + + + + + - - - - - - + + + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - + + - + - - - - - - - - - - - - - - + - - - + + + - - + + - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + + + + + + + + + + + + + + - - + + - - + + - - - + + + + + + + + + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + - - - - + + + + - + - - - + + + - - - + + + - - - - - - - - - + + + + + + + + + - - + + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - + - + - - - + + + - - - + + + - + - - - + + + - - - + + + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - - - + + + - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + - - - + + + - + - - + + - - + + - - - + + + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - + + + + + + + + + + + + + + - - - - - - - + + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - + - + - + - - - - + + + + - - - + + + - + - - - - + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - + + + - - - + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - + - + - - - - - - - - - - - - - - + - - - - + + + + - - + + - + - - - + + + - + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - + + + + + - + - - + + - - - - - - - - - + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - + + - + - - - - - - + + + + + + - - + + - - - - - + + + + + - - + + - - - - - - - - - - - - - - - - - - - - + + + + + + + - + - - - - - - - - - - - - - - + - - + + - - - - - - - - - - - - - - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - + - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - - + + + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - + - + - + - - - - + + + + - + - - + + - + - - - + + + - - - - + + + + - - - - - - - + + + + + + + - - - + + + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + + + + + + + + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - + + + - - + + - + - - - - - - - - - + + + + + + + + + - - + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - + - + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - + + - - - - - - - - + + + + + + + + - - + + - - - + + + - - - + + + - + + + + + + + + + + + + + + - - - - - - - + + + + + + + - + - - - + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - + + - - + + - - - + + + - - - - - - - + + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - - + + + + - - - + - - - - + + + + - - - + + + - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - + - - - + + + - - - + + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - - - - - + + + + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - - - + + + + + + + + - - + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + + + - + - - + + - - - - - - + + + + + + - + - - + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - + + + - - - + + + + + + + + + + + + + + + + - + - + - - + + - - - + + + - - - - + + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - + + + + + + + + + + + + - + - - - - - - - - - + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - + - - + + - - - + - - - - - - - - + + + + + + + + - + - - - - + + + + - + - - + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - + + - + - - - - + + + + - + - - + + - + - - - - + + + + - - - + + + - - - + + + + + - - + + + + + + + + + + + + + + + - - - + + + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - - + + + - + - - - + + + - - - - - - - - + + + + + + - + - + - - - - - + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - - - + + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - + - - - - - - - - + + + + + + + + - + - - - - - - - - + + + + + + + + - + - - - - - - - - + + + + + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - - - + + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - + - - - + + + - + - - - + + + - - - + + + - - - - - - - - - + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - - - - - - - - + + + + + + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - - + + - - - + + + - - - - + + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - + - - - + + + - + - - - + + + - - - + + + - + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + - + + + + + + + + + + + + + + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + - - - + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + + + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - + - - - - + + + + - + + + + + + + + + + + + + + - - - - - - + + + + + + - - + + - + - - - - + + + + - - + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - + - - + + - - - + - - - + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - - - + + + - + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - + - - - + + + - - - + + + - + - - - - - - - - + + + + + + + + - + - + - - - - + + + + - - - + + + - + - + - - - + + + - - - - - - - - - - - - - - - - - + + - - + + - - - - - - + + + + + + + + - + - + - - - - - - - - + + + + + + - + - - + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - - + + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - - - + + + - + - - - + - - - - + + + + - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - + - - - - - - + + + + + + + + + + + + + + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - - + + + + + + + - + - + + + + + + + + + + + + + + - + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - + + + + + - + - - - - - - - - - - - - - - - - + - - - - - - + + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + - - + + - + - - - - + + + + - - + + - - - - - - - - - - + + + + + + + + + + + + - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - + - + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - + - - - - + + + + - + - - - + + + - + - - - - + + + + - + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - + - - - + + + - - - - + + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - + - - - - - - - - + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + - + - - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - + + - + - - - - - - + + + + + + - - + + - + - - - - - - + + + + + + + + - + - + - + - - - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - + - + - + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - - - - - - - - - - - - - + - - + + - - - + + + - + - - + + - - - - - + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - + + - + - - - - - - - - + + + + + + - - + + - + - - + + - - - + + + - - + + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + + + - + - + - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - + + + - + - + - - - - + + + + - + - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - + - - - - + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - + - + - - - + + + - - - + + + - - - - - - - - - + + + + + + + + + - + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - - - - - - + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + - - - - - + + + + + - + - - - - + + + + - + - + - - - - - - + + + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - + + - - - + + + - + - + - - + + - - - + + + - - - - + + + + - + - - - + + + - - - + + + - - + + + + - - - + + + - - - + + + - + - - + + - - - + + + - + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + - + - - + + - - + + - - - + + + - - - - - - - - - - - - - - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - + - - - - - - - - - + + + + + + + + + - + - - - - + + + + - + - - - - - - - - - - - - - - + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - + - - - + + + - - - + + + - - - - - - - - - + + + + + + + + + - - + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - + - - - - + + + + - - - + + + - + - - - - + + + + - - - + + + + + + + + + + + + + + + + - + - - - - + + + + - - - + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - + + - - - + + + - - - + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - + + + + + + + + + + + + + + + - - - + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - - - - + + + + + + + + + + + + + + + + + - - + + - - - + + + - - - - + + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - + - - - - - - - - + + + + + + + + - + - - - - - + + + + + - - + + - - - - - - - - - - - - - - + - - - - - - + + + + + + - - - + + + - - - - - - - - - + + + + + + + + + - + - - - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - + - + - + + + + + + + + + + + + + + - - + + - - - + + + - + - - + + - - + + - - - + + + - - - - + + + + - - + + - - - + + + - - - + + + - - + + - - - + + + - - - + + + - + - - - - + + + + - - - - + + + + - + - - - + + + - - - + + + - - - + - - - + + + - - - + + + - - + + + + - - - + + + - - - - - + + + + + - - + + - - - + + + - - - + + + - + - - - - - - + + + + + + - + - + - - + + - - - + + + - + - + - - + + - - + + - + - - + + - - + + - - - + + + - + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - + - - + + + + + + + + + + + + + + + - - - + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - - + + + + + - - - - - + + + + + - + - + - - - + + + - - - + + + - - - - + + + + - - + + - - - - - - - + + + + + + + - - + + - - - + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - + - - - - + + + + - - - - - + + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - + + + - + - + - - - - - - - + + + + + + + - + - + - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - + + - - - + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - + + - - - + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + - + - + - - - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - - - + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - + + - + - - - - - + + + + + - - + + - + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - + - - - - - - - - + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - - + + - - - + + + - - - - + + + + - - + + - - - + + + - - - + + + - - + + - - - + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + - + - - - - + + + + - - - - + + + + - - - - - + + + + + - - + + - + - - - - - - - + + + + + + + - + - + - - - - - + + + + + - + - - + + - - - - - - + + + + + + - + - + - - + + - - - + + + - + - - + + - - + + - - - + + + - - - - + + + + - - + + - - - + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - + + - - - + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - + - - - - - - - - - - - - - - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - - - + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + + + - + - - + + - - - - - - - - + + + + + + + + - - + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - - + + + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - - - + + + + + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - - - + + + - + - - - - - - - + + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + - - + + - - - + - - - - + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - + + + - - - + + + - + - + - - - - - - - - - - - - - - - + + - - - + + + - - - + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - + + + + + + + + + - - - - - - + + + + + + + + - + - - - + + + - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - - + + + + + + - - - + + + - - + + + + - - - + + + - - - + + + - + - - + + - - - + + + - - - - + + + + - - + + - - - + + + - - - + + + - + - - + + - - - + + + - + - + - + - - - - - - + + + + + + - - - - - + + + + + - - + + - - - + + + - + - - + + - + - - - - - - - - - + + + + + + + + + - - - - - - + + + + + + - - - + + + - + - + - - + + - + - + - + - - - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - + - + - - - - - - - + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - + - - - - - - + + + + + + - - - + + + - + - - - - - + + + + + - + - + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - - - - - - - - - - + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - - - - - - - - - - - - - - + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - + + + + - - - - + + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - + - + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - - - + + + - + - - - + + + - + - - + + - - - - - - - + + + + + + + - + - - - + + + - - - - - - + + + + + + - + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - - - - - + + + + + + + + - + - - - - + + + + - - - - + + + + - - - - - - + + + + + + - - - - + + + + - + - - - + + + - - - + + + - - - - - - - - - + + + + + + + + + - - + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - + - - - - + + + + - - - + + + - - - - - - + + + + + + - - + + - - - - - - + + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - + + + + + + + + + + + + + + - - - - + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - + + - + - - - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - - + + + + + + - + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - + + + + - - - + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - - + + + + - + - - - - + + + + - + - + - - - - - - + + + + + + - - - - - + + + + + - + - - - - + + + + - + - - + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - - - + + + + + + - + - + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - + - + - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + - + - - - - + + + + - - - - + + + + - + - - - - + + + + - - - + + + - - - - - + + + + + - - - + + + - + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + + + - + - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - + + + - - - - - - - + + + + + + + - - - - + + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - - + + + + - - - - + + - - - + + + - - - + + + - - + + - - - - - - - - + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - + - - - - - - - - - - - - - - + - + - - - - + + + + - - - + + + - + - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + + + - - - - - + + + + + - - - - - + + + + + - - - + + + - + - - - - - - - - - - - - - - - - - - - - + + + + + + + - - - - - + + + + + - - - - - - + + + + + + - + - - - + + + - + - - - - - - - - - - + + + + + + + + + + - + - - - - + + + + - - - - - + + + + + - + - - - - + + + + - + - + - + - - - - + + + + - - - + + + - + - - - - - - + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - - + + + - - - - - - - - - + + + + + + + + + - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - + + + + + + - + - + - - - - - - + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + - - - - - - + + + + + + - + - - + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + + + - - - + + + - + - - - - - - + + + + + + - - - + + + - + - - - + - - - - + + + + - - - - - + + + + + - + - - - - + + + + - + - + + + + + + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + - + - - - - - - - - - - + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - + - - - - - - + + + + + + - - - - + + + + - - - - - + + + + + - - + + - + - - - - - - - + + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - + - - - - + + + + - - - + + + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - - - + + + + + + + + + + + + + + + + - + - - - - - - + + + + + + - + - - - + + + - - - - - - + + + + + + - + - - + + - + - - - - + + + + - - - + + + + + + + + + + + + + + + + - + - - - - + + + + - - - + + + - + - - - - + + + + - - - - + + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - - - - - - + + + + + + + + + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - + + + - - - - - - + + + + + + - - - - + + + + - - - - - - + + + + + + - - - + + + - - - - - + + + + + - - - - + + + + - - - - - - - + + + + + + + - + - - + + - - - - - - + + + + + + - + - + + + + + + + + + + + + + + - - - - - - + + + + + + - + - - + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + diff --git a/src/tests/topp/DatabaseSuitability_in_novo.idXML b/src/tests/topp/DatabaseSuitability_in_novo.idXML index 75f02bb7078..f41973e0493 100644 --- a/src/tests/topp/DatabaseSuitability_in_novo.idXML +++ b/src/tests/topp/DatabaseSuitability_in_novo.idXML @@ -3,10070 +3,18880 @@ - + - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - + + + - - + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - - - - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - + + + + - + + + + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + + + + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + + + + + + + + + - - - - - - - + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + + + + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - + + + - + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - + + + - + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - + + + - + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + - diff --git a/src/tests/topp/DatabaseSuitability_in_spec.mzML b/src/tests/topp/DatabaseSuitability_in_spec.mzML index c5f049d2cb0..9c94390541a 100644 --- a/src/tests/topp/DatabaseSuitability_in_spec.mzML +++ b/src/tests/topp/DatabaseSuitability_in_spec.mzML @@ -12,13 +12,6 @@ - - - - - - - @@ -27,79043 +20,102394 @@ - - - + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - + + + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - WCz3rG/BckDqpo+35sJyQE1J4Cc+w3JAzDyhysXEckCitDODWsVyQOu042tD0nJAoiDOt3fTckDdtIVDYtRyQNSyBfjM33JAss+e6yTgckBGwpA0uOByQLX5rnNO4XJAUhwGHlHickAA/uSNj+JyQOp/TXok43JAfnKJ7snxckBdMMTdffJyQInw7FO383JA942OrqH0ckDkroJ5wf9yQOGVLX5kAHNAyBdr3PoAc0AsP5cpzwJzQH+W4Nn6A3NA4KDR50wNc0BBJnBrCRJzQMhy89O8EnNAA4HnMPkTc0DMyXmnThRzQIjL8eF5H3NAs1lC6KMgc0DkNauWOSFzQC+RxY/KInNAnuTtGjskc0CSoTZhzyRzQBzsWZxGMXNATQIOz6Ezc0BQR1bMOTRzQMVRKDDbNHNABej+Abk/c0BgO7Hz40BzQPDBIlJ5QXNAx93i9XpEc0DKA4MRFktzQC4GikqkU3NAalcXnoFUc0ADETkZDVVzQKp4LDA7W3NAzXDVjIlgc0CylY18RWNzQPN7YCNRcnNArDyBouVyc0Akr1XQt3RzQLxed6ZMdXNAJ2zwrmp2c0AQbl5JeYBzQEqNPR+lgHNArW6Vrg2Bc0AzZ11fhpBzQLv575hNknNADMD2lc6Tc0AaHVYFY5RzQGYaar/3lHNAu1AmQ7mgc0A+yY+eT6FzQIhdJOByoXNAqJtmpFuic0CqlhXN5qJzQEJQa2MGpXNAOeX1aTSxc0CKWJUYgbFzQGTOTE64s3NAb2k1wQ20c0CbfOcq+cBzQPwWEC89wnNA3J+h4tDCc0B2c5zBJsNzQHeOg0zX0XNAVpkkrDTTc0B8bAYo99NzQLB4EZji1HNA7kcidqLgc0Be+mq/OOFzQDyqDkFk4XNAQlhFlzXjc0AGrX3FNfRzQATXfM+O9HNA0q+4ouQAdEBzoM8meQF0QOoq6kOkAXRA3fqSKuQDdECEpScBiBF0QFfd2rZvEnRAolR4AU0TdEBeU/tJeRR0QGLL01F7HXRAp2G4v0sgdEDCY20mjSB0QBTrB7a5IXRArLUW67okdEBqOQru2DJ0QHz1aSRTQHRAbmBIjXpDdEBcyUeP9lR0QFQT27iLVXRAfNzuGrhgdECyf1ZtCWJ0QGM3bnK+YnRAYtAy3k1kdEB79QdQjWh0QLzrZRsjcHRAekkegUFxdEDFrm9QOXN0QOjpEDY3dXRAbO7dwPiAdEA+VFt2JYF0QF79wNhOgXRAUvpvq5KCdEA6LCK/FpB0QBYyhcrPoHRApQzDPDehdEBISWquu6J0QOZZyejRonRAkC1TXw+jdEC/UnslCbB0QGyerZbcsnRABhOAdeXAdEDFoEKsecF0QCPstVXswXRAltEjt3nEdEDyijcZuMR0QMqpzeidyHRAwAMSuv7OdEAU+QAU49N0QBK6z0TO1HRA2nD7diThdEBdjaP9t+F0QNL8885O5XRAzG68Po3zdEAuzHjbePR0QILWIcGkAHVAQkOz384AdUBwJBBGZAF1QF7oxYUFEnVA8C6UUjwTdUBxagGCJRR1QDpHsVq6I3VAF8gujs01dUDOCvK3gFF1QIaqgOxNVHVAJU0UOHdVdUD2o6BlOGF1QBdQYlQAcHVAtUiAFHhydUCXCguajXR1QPG3igx6gXVAxvPmBq6BdUBypc61qIN1QABtU+SahHVA6rnDl7yRdUBuqToLb5J1QMa9kUU9k3VAhzv6DiOhdUDq0v8luaF1QNbIUsViwXVAVoHaSPjBdUB8HQPMzdN1QJ6jQu/k33VAoHzVngjidUCkpRlWSAJ2QHhOjIXSA3ZAanuIHlUSdkANQR2lTRR2QNUlN90LFnZAU17cXIgidkDFcA4unCN2QMhuDDyRJHZAbKizD0ordkC5aB+7HzF2QGbMDSckM3ZAPn3xDlIzdkA2JciglzN2QC3GU5udNHZA3svMrx1BdkAXeXqQeUR2QCDPuSn8TnZA7AgXCMtQdkC0hYgAElF2QBynKYHNVHZADlmLCRBhdkCFXuPSG2F2QNcgd1HaZHZAo5A9qo6CdkAR0lpFvJN2QHNDNGG3sHZAiXUR+MOydkBWTnOWDbR2QO71RS6wtHZAzqkj1L/AdkBE6Ixz5MF2QLvVQjwaxHZAcH/Av87OdkBSAr8s9OF2QFQWpZqR83ZAAFjo90/0dkAFafXzNAJ3QPA6SncBEndAil+IUT0Sd0B+XCNBDiJ3QH5cm1W6JHdAAJCrGg01d0AgSCatnUF3QLg7yWQbRXdAUEBHi0tRd0B47pUck1F3QFg57YUpVXdAQbM+4Udhd0Dbhh6Jj2F3QMZ7NjQob3dAvIL77490d0BY75HNeIJ3QHB03L8JkndAO/3WIevCd0BgCJO2i9Z3QGG241dQ8ndATq7mFU4VeEAoAtuobiJ4QDkGphOFI3hAuK1deg1CeEBMhMa4ekV4QCg9YY7LUXhArBErPIlVeEBnXklU+mB4QFAs7Uy3YXhA9HvKv7dieECyF52FOnR4QPZubY9ndHhA8DGUr4t0eEBuLMkC03R4QGDbNxT+dHhAYtCVNaWBeEBizxsHmoR4QMAwayBQj3hAbEs/NZiReED6xcoXp5R4QM9m1w+6pHhASEQ6Dc7AeEDIRpwh9sF4QAypoWq11HhAANHLOQL0eEB/U9+xjPV4QMFSWRYRBHlA4gDNKpoFeUC7Wy3xwCN5QMCOVz27M3lACdKf84tCeUBUGSmX4VB5QJS/9ec3VHlATpxzLM1UeUAuAJW76mB5QHKJqxPbZHlAH2qjVUNzeUAS+c7s9YF5QFhB9ta/snlAcmzZYULUeUDqXfSizNV5QLWK2IRR5HlATVvnaPgFekD+kLnN3CZ6QEpkSFkMNXpALlpbjBpFekDag3dZLVB6QP1oUFaCUnpAml12YStVekAWKlYWOG16QIzUWRmLcnpAVmlNgQmdekA6+8yKYqJ6QCdaF0eqp3pArv2hXTOsekDAgrUZBq16QBI+g1UNtnpA/VRVWCzDekDGwb0F2NN6QGmoGV155HpA8oL4WjXuekAq6YJkKg57QKFOscFMFXtAgpnq2lole0BWgSx+Hy57QG6i6qJUMHtA4inJgMAze0D8joS9JJV7QJLh+616xntAgtrrHK7Te0BGJ8nWt9t7QL7cwylF4ntALrpHbrnje0Ak35E2/uN7QF7noQWo53tAnpNappfxe0BO3Bg9jPV7QFAv4iyPAXxAarAQqdkBfEDUCC7j8wF8QIjFdRWZBXxABHLuttERfECQ/b5jyyF8QOoLaVHMQXxAaoAd39pRfEAi/sZ4DmJ8QDahp/aTm3xAEm140sOyfEDCbzSrD7Z8QGWbdMjM1XxA3qsV0VfifEClN6NtFvJ8QK7G+Z5V8nxAanGjYAACfUASHp+ASwJ9QJIHu6ZFEn1AtoxqsDwifUCXXx7YoTF9QPxCiKSgU31A/FSO+SzDfUAWNHd51+J9QLK8T2h6831AaXD2y4/1fUBT9Ek/jlV+QFsxQ6KZZX5Avlhs6dPvfkCIFNDxAxt/QFeQmTARM39A37p88FA4f0BWOGmdqj1/QH/YCjUDQ39AN03r11pIf0D+bujCt3F/QEA+vl6xgX9Avl0drqODf0CgRmjfYpF/QN7yq/DdkX9AdzLI5paTf0DSpP6v5Zl/QDzflyBeoX9AtFzgU86hf0BLKH6pVLF/QEeBq+mQs39AcwnRDJbdf0B2ESVQ7+J/QJK5jnhC6H9Aw3lPI57tf0C6+7u6gxGAQDrzMpEwFIBAvoqhRNUWgECyX/l95S+AQAJAdSXXNoBAot5+k+s3gED4EUGEgjmAQPIJiKwpPIBAjMKVO9Y+gEAMpBgQ90iAQEPHhRnnUIBAxtjeAhRRgEDhVu/k5ViAQMijus0OWYBASPYvLylvgEBUdfaTDnqAQBQWG40TfoBAFuZz9hyPgECsULnubJGAQCfO4HoZlIBAwRq4uMOWgEAW4xmwbJmAQMq3HbQYnIBAI3Uu14apgEDiaaNgUsGAQCIKm1NTyYBAsMeJVkzRgEBCRgKYYNGAQJz1AbxK2YBAMlgZ55jZgEC299d5RdyAQAhwZRry3oBAAZgqPkXhgECm/z7EmeGAQPcV10H26IBARmaiWUrvgECfcfm9PPOAQJp9qhhA/4BAArtdoT0HgUCcgt1BPw+BQByecoIeHoFAFtU6CzQfgUCAjONlISKBQB5c0iE2J4FANe7kV7wxgUDq7FRvVY+BQGcZ/flVl4FASNqJU+ehgUBwup5abqiBQI7J/z3sqYFAFHl6c0qvgUBMSDjFfdOBQHDJd3TYGIJADo16tNYggkCUIHrdzyiCQNHIkAekMIJAi/x8bsh5gkCOOJXvy32CQJjG0+3AgYJASDI8XdKBgkBwfZmfxoWCQCCWfT5DiYJAJJI4v0ORgkA6DOBVPJmCQOLnNrJUmYJABofqBw+hgkBj+hfVOqGCQNfiL7cNqYJAyI5w4TOpgkA3OhXJB7GCQIpazjSu+YJA6l8/cHkRg0Bg9A0mehmDQAZAQZByIYNAGJ95wnEpg0A6P7CcaTGDQDy+W6fCVYNAruu6HkDSg0C9P2+W/2iEQDmxQSv+cIRAPMT6U/h4hEBRt8eCatmEQD0cEFFq4YRAoBE0MmPphEDmIN68NvGEQGJKjqZk8YRAL+GAkTT5hEAMm5RKWvmEQAps2RIxAYVAtHDac6BhhUDF7I8FoWmFQCZfYMiYcYVAWLxLiZh5hUBaDlTYk4GFQLKM98cXeoZAssMQWye5hkDg04zVkCmHQNR0nmmRMYdAaKdVzIo5h0A0NQoLXUGHQHuNvPeKQYdAMjFGQxpeh0B8ZnwSHmKHQMxGunAhZodAVP4Fcjlqh0AQPlIDZa6HQNBmFrrHsYdAz+Am22iyh0AQZofhx7mHQPRRB/bAwYdAuppRtT5OiEA0v5eWQlKIQPaySh91rYhAvtv7nCmwiECHo5X4G9aIQA== + NrgMGZxjYkA= - + - a3BWReO5k0SWhb1EWvvWRE9oi0RWsB5HY6+0RNFygESwlQJFDlp/RJLrH0UkS4dEx59sRQuju0RV8pBEKkqYRfgjiERoJs5EuoiWRAKoD0X1cJdEs5XlRPOcJUWSxR1HCAqcRPKLnUSKg0lGVwuaRaObmkQ3gtlEdnUbRb/8+UaEGM9EIHjERFjTq0V05UBFWLm8RA0ieET9oapEp4x6RLhUFkXLV49FdPcYRsmFRkX8SLlF3STLRH0En0RTcftF6xCGRAHnLUWie51EB9V6RPMAoEQ9SR5F1AiLRNRQAUfD3uBEIhkFRfd7PUVYEllHCWyPRMqQG0Xgb5tGeR3xRUtYwUR8vJVEf1brRSkooUSh3RxFFmOvROFNlESrR6JFFRaIRWDLBUWEnp1E0b2mRaSHnkibowJFfZ8XRwOEEEXD5KRFt62JRJRCBUaGjLZE7xf+RDVoCUU03qhEC/3yRFUsmUarcK1E79FjRKEwykSg3SlGqfZXRQ+nlESY14BETTaQRKzBhkQ7ZBJFSPebRMkeWUSUFoRE1SqcRLV31kTrZxFF1xS9RWJl30Tf75FEwwHFRIPOc0QOkKhFDMNSRwhA3UT8t85EbcQ0RYcdfUR1MgFG/Z2KRLCaykVyY9BE68O+RFAh10Q29MBFKEYZRcoDgES+XIhEakOwRFf820SkerZEQBOoRAinAUUzIyJFV8DARAUdhkSL/qpEObaQRMm3JUU4XLFEEnfDRWYRl0TLuZdEvoLjRKiLAEXE5dxEZe6PRC+FAEXvpodEfD8/RTgP3UR/aK5EtfPvRP6GVEVIXoVEgltPRaWLSEY7xxdFc//0RexFwUQGnhFFp9KaRNprt0SeNZVE4R7iRBsZl0SiWJZEF0YaRRnf8EQyUZ5E6oOHRc35jEW4891EfMi2ROhTjkSO5NFE55TKRDCiv0R0ixZGYmDYRboD8EbxVYlEl3sYRSOvlkQStsFE2jKgRT63jUXI26ZEidW+RA8pj0UIRWNGjvmJREj6hkTfXBJFOjGNRCY5t0SWK7NE26G+RLpqmkXGJJ1EPYzoRPmqf0SOvL9EGvJBRcw32kTwfy9FU7WvRGu5/ET6d8BGf4eBRNsfjkUV/n1EARkNSBQR10YP0/FG7QrCRQ7BoEbrUzdF09a2RAAASEX/RZxFN72ERAbzw0TLJKREW7aJRLGMqkRE+fxEaKKQRMgvmUXUBqFETlQeRe43hUYSLbBFlyZHRT0cI0UYK3FFngyvRHxzR0V84OZFf+5iScRXV0VZmK9E7Mo6RTm6ZEjD5aBEXBPYRDgEvUbAJ6VE4/V4RQXly0SfZhdFd4q6RcpuIEZEkJVEcnnkREIqVEVV5WxEJ52nRC+T1kT9la1E9Rm8RdnGukTUhsdEzAG6RL/mokQpG3dFSvYERps9B0Wo68ZEjJa5RD6QtkQifOVHQRflRsFvuETOD59E2iopRT8xlkRvq4pE7xniRQLp4kViLyRFP4mLRCTRzkRTnc5FgD+dRMbusETkPpBEK7Y5RZTmBEUEAWxGRC9DRWe4hETORs5FaK6NRGNoAEUg66tE9+6QRexek0SozqNEimSKRIOcs0QJuvFEycDFRRD+qkaKL69E4opIRtx4/USoxLFF5rSfRaDFnkQSj+xF1jCWRPRRzESM3rxEd8rTRGNMiURz/qlEXBP7R0S/AUWuU/5G5oNLRdxszUZk4J9FMu3NRHXQkkRj8qBEIUrkRC+H80Rs85FEw6UqRfOBDUWtJ4NEbJaZRMehhUQMwJVFjV/nRpvPd0ZRZNJFFqv4RPDku0UlwaxE+3iRROBFR0YbXgRGYm+WRFUbwEQfBIdFTK6qRGUGLUWCXlpF0lSkRpVaJEbqeUxFb3IKRZ6/jUXGqmdFQhS0REBhi0Tm4WpGXPuxRF/HLEYtLrNFg4qBRfFPAEWaPVFFs+SGRvLQ6ESAu+FFLjDERFIj2kRUKXJEDMs7RWCtOEcKEyhHADCQRtVT20U3RjxF1htFRVa8gEhKwtpH+ud/R1huOkVUhmNGjpC4RlbsoUYRartFxHepRQj98ESircVE8+SRRNo2u0TWjzJGfSsaRfCKx0SNS+hFdx/gRflbHEWW45xEdUHBRKXL7UWhB+lErOosRTt840QpzoREaTk7Re5eykTitWNG6FWmRTV7LEVfP+pE4qjuRtqQnUYOtIVFFcpURVPvDEVpE9xHl3hKRy647UZ2+yFFhNrcRQE7EkaRz6FErvMyRU5yqkSG9c1EYV3fR890NkeaONxGq1YARrVJDkUfmRtFONqGRNS1/0Wz1FdFVXkSRQqDHEfFgY9GEmRMRhEakUVEnmxFxREKRYIGnUTz6ulEGWMGR3pmc0Y95h9GvveDRdMC6kSi5bBEhhiNRJiIVkY+cvBFRy+6Rci0gESVLLpEZ+oTRuKtyUWTpyBFOUeURGa2HUW4xApGshXURHdyg0V4D1hFY7SrRGjFrkQwDf9E/4+zRHfdzEQ= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 1oLQZQ3BckD2bsHebcFyQH6h0KQ6w3JASliFO6LEckBpcOImxcRyQOzFGNtaxXJAywIZuEPSckAaNxP1dtNyQLbkacvO33JApoq8rbngckA4U6mlUOJyQGIxO8OQ4nJAjtlAfFHxckBDYDRLy/FyQDfrLRK383JAZeEtm6L0ckBex8GPwf9yQByeTnNjAHNAySIB9PgAc0AWGg90TQFzQPR64IaOAXNAkNov/c4Cc0Bcedy8+gNzQDT9m0yPBHNAxhozrAkSc0Baj17GvBJzQLQkvYb3E3NAVFs88wYUc0DCKQxYTRRzQEoW4LB6H3NAoGH/I6Ugc0A969aAOSFzQLC+MOVnIXNAKsCH+8kic0Caur/+ESNzQAPQ8QE6JHNASjZcEs8kc0DijmicRzFzQPBvTqZYMXNAz+kiZiAyc0DWvUZdCzNzQPZ/YhyjM3NAxCsCkTk0c0A27wOUQkBzQAPgjOTlQHNAuN2dunhBc0Ajqi+2ekRzQI4JBhSjU3NAdSthSnhUc0Dpyr8nhlRzQJ6AFkM8W3NAFBWFKYxgc0BfFVVoNmNzQKZXOYtDY3NAyAS1vFFyc0DWnhYnaXJzQKbcpNWQcnNADM5/oLh0c0CmF0mATnVzQHSR+np5gHNA6rth4KSAc0BIeK02DYFzQIwbIdYOhHNAvvrzx4aQc0AuQ3t5TZJzQKoBBURklHNAKB9vM/iUc0DsnLTBuKBzQGx/XnpaonNAQyWNDQSlc0CIX5K2xbBzQKr1VmS4s3NAiRNingy0c0BExDnM+cBzQEzQsWbRwnNAtHHW3SbDc0CcrgpF2NFzQJQKCOs003NAy9dyjfbTc0CYXfCH4dRzQHt34vU44XNAlIuFQGbhc0DQ44gCi+FzQESXZyw143NAbg75AkXzc0DtakkLNvRzQGauNdp4AXRAhQsAf6QBdEC3kiOqihF0QDKV5O1vEnRArwUDCEwTdECgSpg55hN0QAHq3aV6HXRAiKYbK0sgdEDKzLjduCF0QMXKlE1jJHRAOAi//VJAdEDi9SuVykF0QIhzwZR9QnRAnK0rQfhUdEBnqwsZjlV0QEpm7cO4YHRAsBgjrUxhdEDOvf4KCGJ0QAgrxE28YnRAEJQZVE5kdEAWRJmdInB0QIh/zfZhcHRA5hCFWEFxdECi3EaayHF0QAC09jQ3dXRASgPA/PiAdEBygM9pEYF0QLABCxJOgXRAEmhROBaQdEA2dTcFbJB0QMgSELHQoHRAFxXWLzmhdEDJEVATjaJ0QB8M6im3onRAfrxLXNCidEB9cSEUEKN0QMAYaQpkpXRAKKoeQgqwdEBTE/Lk4sB0QKqCYgx3wXRAPjZE1+vBdED8b5EoEcN0QB58/C4kxHRAmMbATLnEdEDyToSim8h0QGKMM2b3zXRATA7Tx/vOdEDWCfLp4NN0QECVy3zP1HRA9P+cxbvgdEAqL1eSJOF0QHCYsga44XRAUshDkk/ldEAKI4WLwPB0QBarfpaM83RA4hR1A3r0dEDSUGwCvwB1QNvplYpiAXVAAr6lUhECdUCob9XAmwN1QCttD5kDEnVAQimRIyQUdUDS0ltQzDV1QDf/h8SyQXVANByFtIFRdUD3ZAurTVR1QCCzdo53VXVA0jKplzhhdUByS/IY8GF1QPKqIYN4cnVANC+xSo10dUC3ENbwdYF1QHr7g2iugXVA0E3JlaaDdUDzVRJjm4R1QMpDw7i7kXVA1M14jnGSdUAGrK5hPZN1QHof86W5oXVAfpIq0kujdUCoOlS4uaR1QNx9U3WVsHVASxE57DazdUDat+6herN1QImHCFfEtHVAtJ+UvfjBdUBP3CwoztN1QNld4o0H4nVACAsFrjjldUDHpC48JQB2QGz7KgZJAnZAHvqWes8DdkBiih59TRR2QADNpLILFnZAhMk1SJAkdkAKW9BJSit2QHa/e9sfMXZAeavYd1IzdkD2qmN4nTR2QKDgIQ4eQXZA/rSVc3pEdkB4dw9G+k52QFyC8TfLUHZALc4p9A9RdkAu5zgqlVR2QPOBiXvNVHZASzJyqBBhdkBMUn1/H2F2QDIjW/zaZHZAV91Ud2eCdkDHIrvskYN2QHqjFrC7kXZA/EEIVbuTdkB2k84Nt7B2QKgDPZXBsnZAvfLw5Qy0dkBWr7ggsrR2QJbeIfjOznZAkFSHBvLhdkDOMvwXkfN2QDxenWQ0AndAYHLSvgESd0AywD3a6xJ3QMD8+sQOIndAhkTcwnMid0AW9S4vDTV3QHqSjSOdQXdAZPhiRRtFd0B830KOSlF3QJr9HoGSUXdAYE9N2itVd0CK9RW9D2F3QLgAP9GPYXdAs0YnrCdvd0DMP6qbhXF3QJoamnp4gndAEup4uHqDd0CkmhloCpJ3QA4uStJNlHdACDY8rJq0d0Ck6FYP49B3QD17xHiL1ndA0AHXevzad0CMGcIkUvJ3QJZEZxWPEnhAuhsP4echeEBR2/zebSJ4QLDLzgKKI3hApsFXTaMkeEDEN0k9DEJ4QK9JB/16RXhAMbu+a8tReEBWgtbXh1V4QBrruEj6YHhAc4WjF7dheECIrEXnImJ4QGF+aqy4YnhAMrUNgQJ0eECOHbmkF3R4QM5EY5FodHhAmMwliYt0eEAjA3NgCnV4QKIhcOqngXhA6JGqfeWDeEBOUQyvmYR4QEPFw9pTj3hAp7fQUpaReEAcYPvFp5R4QHDhO8bon3hAEkXEG8zAeEAQQn4JCMV4QE1S3xLXznhAjbyfkrbUeECg3nCUw+R4QMKyCCQC9HhArBKB+Iv1eED2jmeGDgR5QFgtSg2NQnlA6giQ8PlCeUDbqLoJ4VB5QCZRlWDMVHlA0oe+GupgeUBId9ER6XB5QOx1jGlCc3lAxuH+71GDeUAz3ZpKwLJ5QBpyz+tB1HlAT2m/48zVeUDoo6ZYUOR5QJowYFY5I3pA3EeSUAw1ekBSb46dGkV6QNxKaTUvUHpA0gec4INSekAy+LMyKFV6QFyDCG85bXpAEGXwr4xyekCsTLhECXN6QJiaJhDUg3pArnsMfwmdekBJ5lL2YqJ6QLtL3Bitp3pAqlmnVDOsekDCwF6ODbZ6QE2lzeoZxnpAo0qI2NnTekAEchXEeuR6QFCX7AE37npAglIKfSkOe0DuS+3xTBV7QPyXf4VaJXtAkjECnVMwe0CyoTYQxTN7QIRmavPna3tADBFiNiSVe0AObqiMecZ7QH2OIyKu03tAqjdYgbbbe0Alyv9ZRuJ7QPj5Gci343tAklKslfvje0B6Krefi/V7QHjURnvZAXxAIPO18/QBfEBmG7YImQV8QNoDAdGFEXxA6LFSwNERfEA5CBafzEF8QK5RwGgMYnxAgopsbz18fEACzhS9k5t8QLgIdz+bo3xAtrPfy/ikfEBqtvzmv7J8QIB9gafM1XxAFBoPgVfifECVrozFF/J8QE7hdSJV8nxAllk5plvzfEBiddd1AAJ9QNaWu0BLAn1AcDf6OwMSfUBCuqzGRBJ9QJgMJC09In1ACBvkM6ItfUAu4lg+oDF9QEJvyUptUX1AYi26GyzDfUBL/kkS2uJ9QDvlj1SQ9X1AyEzTWUEvfkCrtF6nnzh+QCBZG4IiAH9AYqMMhRIzf0AQ13I2UDh/QJy4QwWqPX9AaMzGzwFDf0BFMHdquHF/QOaZ3bmygX9Aml3F16WDf0COTfphYpF/QA+UN6CukX9AToG+o9yRf0AC1Q35l5N/QGKS5mPlmX9A/HWjXl2hf0C6T9EzVLF/QLbjx2yQs39A/I8VsJXdf0DvLj7y7uJ/QM5o3FZI6H9AnfZtD/Hyf0CzGnPfgxGAQGZp9iIwFIBAcVSSrdcWgED8O1r21jaAQCbgAePrN4BAUk9ZBYE5gEC3u2DhLDyAQEkpY3fVPoBAnu1p/IRBgEDigGDG9UiAQIQSN0znUIBAjlf1xxNRgECQWLYw5ViAQERGFwQOWYBAVURFQipvgEB6lmcGHo+AQPrRaAZtkYBAvcynaBmUgEAtn0SExJaAQMTf36pqmYBALNKh0RecgEAHYf7Uwp6AQHkd+5qHqYBARooJWFLBgEBxwpFVU8mAQLP9lzot0YBAAEH8jUzRgEAAlv9pYdGAQLLmk7xK2YBAVPSLYXXZgEClhtIDmdmAQOyAUyhF3IBA9Hjb4/DegEC0vpDIQ+GAQLhP7q9X4YBAyL9b7ZjhgEBQ6Pyw9uiAQOEkXYhC6YBAUseOZkrvgEDS1UhgPfOAQPidTyY//4BAGblMjEAHgUCwxXXeOw+BQPJRfzgeHoFAlez1/jMfgUAcqlKDIyKBQIMBUgchJoFA8kcdPjUngUBSLCO1vDGBQPiysdgNNIFAZIfwUlWPgUBJj4hyWJeBQLifYUTnoYFAiA9t4GyogUAQneO77qmBQEg4knZKr4FAppYduX3TgUBWTiTlAQmCQC6E9hDYGIJAkHure9YggkBFlzI00SiCQJE+w4+jMIJA+M0ze8h5gkC1TC53zH2CQML5NlfAgYJAcQS3H0OJgkCgtJdXQ5GCQBoVYjA8mYJAwIbTxA6hgkBJEtndO6GCQMToT5wOqYJABy5riTOpgkA6dsP5B7GCQKI661p5EYNAyQ3wFnoZg0D8IgewciGDQNLV39KKIYNAyYuoW3Epg0Dgyj0eajGDQLHt6HDEVYNAnr4c6ZP4g0BcgKFm/2iEQBIscf/9cIRAVp/Fwvd4hED12jXty4CEQAjfXh9q2YRAilk+y2nhhEDANesaYumEQIonAj586YRAlKksYzXxhEDLq0XQYvGEQHjMtpo0+YRA9wXlI135hECO3MP2LgGFQG8gXGKgYYVALDdg859phUAs7Xq2mHGFQNe4dY20c4VArBSfV5h5hUDa+rZRkoGFQE/TteETdoZAJ+9Yiia5hkCESlBJkSmHQMx2cTiRMYdAsKZ+KIo5h0AdwBNfXEGHQAQ2CLiJQYdAOuezEIFJh0DSSydVG16HQJh+NjAeYodAMu+p6CFmh0AnJoxRZa6HQG5t/gjHsYdAPinWZca5h0D9acg/wMGHQB+3JnvByYdAooBxyT1OiEB8bzlXJrCIQLjIrHMe1ohAAqyxjiLaiEA= + NrgMGZxjYkA= - + - lbJkRGVH5kSksRVFU95URMxOy0TFwOREEoMaR/vs10QJ6qFE9ojoRFpvUUVCvN5EcP5eRPTobkWQ6YxE3R2+RIchEkV/LVtEppfMRAIGsUT+VqxEoU8GRSTUOke3wsBEDzWbRKtKVEbQX7FFoamaRWeRvUQ5JIpECMEPRdzi40Y9aJBEw1e1RONFu0QCrrVEvfWbRc2u80Tse7tEUr15RBfG00S4clxEM+BbRGS9bEQ8xrlE0Xi1RXJINkY0bFNFAESyRJ3TskTTWNFFmBH8RPG2qkRrqshE+4sARU02lET6DVhEvercRNLu7UROlvNGafJxRMWeykST7ptEYroSRbM4WUckZMpEPQRwRkDDN0bSwgJGkcwbRdF7o0TajGFF18QuRfHYykRIVJ5FCp+SSPBmQ0V9dxxHfxetRKxWl0XjdPZF2EOERLxgu0RIzChF1KvbRAnxH0VDYI5GCknURO1WCEXTweZF3ORaRXOghkQJIl9EtimuRE62D0W+tIxEN3OFRFPDh0SNAKBEwLm8RPW1D0VHYZ9FSZ12RG/uLUU9559EYVSNRNZWt0UBAnREZNNaR37NdkRw1wFF0jBJRYQsS0SZv+lFt/DZRdplp0RHv5RER4PFRBUVb0TSTMpE/Q7RRX9+I0UXgKhEi8X2RGBJlERfLcJEB3zKRKaD/ETLmXhE9GO+RAIWw0QVK25EZMQIRSdoykQtbJxEtaaTRL3QfEQZ2DNFH7usRDzyX0Q8oAFG7s2BRCPRTkRBFfBEnVRORKoizESJ0KhElNEdRW2FNkUwot5Ee5/KRAVSt0TwqhFF48teRU0niER0uxdF44UMRuAp6ERkpAJGkrNbRL8rvUQ9KWpEa96PRCtLZ0TRm9JEyCoERRB8nEQuo3xEyfCnRJrFy0Qt8YREqmIFRfF46kRCHDtF/7CERIqGY0SxOktFqZy0RGPWrESx6J5Eb7AQRg9Fu0UMwN1GZWQNRZk8n0RD851FW2h4RaELaER2lKpECLtjRc2WSUUVhydGoCN2RGHdc0Q8l+pEfSCIRMO3pUTkTWBENkyyRGMogUSoyBNFpECiRWMOnURN/FlF7UmQRNY6J0W/hMxE0gKdRuAJb0ROeYRFIESJRAVB/kcHueJGVFnlRs5ax0UQDIRGWUHSRLqaekSZFFRFgjeHRRH7nERKt/pEenmzRBjkmUSGXKREjYCkRGrfwETC4ZZE+WGURLZTw0SDs3REdzSdRBEzj0WAX9xEMhaNRLOJ/USCbV9G2DG4RZPCH0XcOxVFW8lxRd65e0Tt5slE+RDfRHqF2kTcHIdFxmFOSRLi7URUQAlFLKl/ROffUEicgMpEyyGBRPY9rkZ3Pn9EUIK3REaJYUQX92lEFXwhRZHzU0T7LLhFVdS2RXExgkSBbaBEUM2cRFxngESTd6tF24F2REkvn0TCDBJFbleJRAjmh0XDDO9F0qfKRKz/tkTY/qJEpmOzR0X+sEbkVJNEYJXhRDRFMEWYyYJE1TEIRcvYekQ5w3VEBfchRoQ4UUVgWChFI0pnROewukULKbtEIm6fRJ/Wn0QojAlFHzzxREsAM0bNIHJFopmPRVIxdERgc9lEJ0TmRDe7rES+e3BFOBOgRCWOz0RRo3NEULuERCLgikYwwT9G9AgNRd6kiUXTbYREmN+mRfayukWX/+hEl3WdRNFT6URkdYhE9fqURHHXoETL5ZdE3HbyRwcyLUUtnQJHZSGfRPXtOkUBpKZG0uldRGlAgkV+JL1EZcRoRHVphkQzvWJEmcmVRFb4ekR+xBRFW92oRCEQmUS6bWNELdkiRbOZpkbRz1JGp/KVRcBPf0V9Rs5EUlV6RHPYVEa1j4JEU/O3RbVUjERumyZFtGw9RVwBEEU8/xZFeLKCRr0ebkYX00ZFUyKSRN0/PkX1elpF8k2RRM1yAEZso3lEGuCdRc4AiUUAaUBFe9j3RLmxxETGPH1FWX1aRm+66kRFmqZFlJvhRIZ8NUVuiBFHvC3CRpFiTUZ4H6hFKbWnRPW740SgLdFEX6WESN0MA0h7KrhExwiFR+BoZkU+iXlGV6XERD+Kl0ao1XdGJaDURadvsUU+ZK9E/z7qRFA120QQbrZEHHPkRKb0q0SJ1AdG1TIkRTmfnEQU27FF5PvBRQQp7kR7FYBExp3mRLj57UQuhvRE1s+iRWas6UTJMGtFb0gHRUN/jkRflv9EuzzeRDNXl0SKXFhGoWeERdbvYkUxGOhEzQh/Rn2qI0ZrBe5EBBLRR3bOQkeW6+VGMQ/QRfud0kVqZ0lFLZMYRU4czEQzC+pHPM1MR26v6kbx3BdFXMsFRid+SEXuzR1FRkOwRLTOu0VA5hpF18fxRFeGdESWpxBH2XicRoZQE0bvga1EtpuSRePnakUE8yFF/QKoRAj7AEX2iQ1HIVxzRtnRI0ZO2pBEvQKBRTAIwES8VMdEC6/dRBThMEbZ7NJFptoqRU3xq0SRga1EsSFmRCR4+0UFJHhFV/rXRH9kkEQnlRlGVCuGRWX9S0Vkzb9E4pqwRMuqqEQdCOVEhx6iRA== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - ntE/cQzBckBgX3eUbsFyQGDzS8g7w3JAZ92pxcXEckDIy176WcVyQMtxHMZD0nJAsLdm1HfTckCe+89gzt9yQDpZQNG54HJAiCGDnFDickD07IQVj+JyQIpeWaEi43JAJd1DtMrxckBWUIs9uPNyQEPPZ7Kh9HJAvh4bGsH/ckC+9Uxv+QBzQDJFYZGOAXNA1rBX0tACc0B4cgcH+wNzQNxGpeYLEnNANv1GwL0Sc0CWwnpluRNzQGpF9ZP6E3NAOiKjXk0Uc0AXPAkAex9zQKiQMA6jIHNAVqzrOjkhc0AUkZ7UZCFzQIhIAN7JInNAZETnujgkc0BkyZ5fzyRzQGiNK6BHMXNAS1ywpDY0c0A5v3SR5EBzQNyNK5p5QXNAvmlzGrtCc0DwKmh9ekRzQBADh/IWS3NAFHTGiUJTc0CzuPM7pFNzQFh/IvWFVHNAdAMbWDxbc0AwZ/SkimBzQKi+gy83Y3NA+JUNrElxc0BGtntgTnJzQNIUV3dmcnNADJUiurh0c0D8DKIvTXVzQLCjS09tdnNAYPEjinmAc0ACsz45pIBzQEteWDcOgXNAFODw7g6Ec0AuCS7zh5BzQMtRwn9NknNA+P3KRmOUc0AExKD195RzQBZZ2C25oHNARub15eWgc0BYCKevWqJzQLJTy0gFpXNALl1zf9ewc0Dn4whTfbFzQAzo3Ze3s3NA0RwpoA20c0D0Giqy/MBzQMwC4LDRwnNAXEzZ7SbDc0AM45D6wsNzQGIc91HY0XNAVO1fnjTTc0BMYCqD9dNzQKvoTSzi1HNAVGVyszjhc0AuSJF4ZOFzQJjUXrzr4XNAbtI87TTjc0B+f+W0RvFzQDQdk9G38nNAjuMfwEbzc0B0v/SRN/RzQLbsJViP9HNAlIfqg+MAdECAAFBAeQF0QI5iBYanAXRAgHkov4gRdEA9v5mFbxJ0QDTdZr5ME3RAQgLsa3cUdEAOyStGuSF0QJrBKE0jJHRAS/zOv1MwdEDaKd65VUB0QFCOSgF+QnRAstcWI1VPdEDzFqgk91R0QFg8cn6NVXRAyfk8u7hgdEATihzmBmJ0QMX1NjFOZHRA7BwK8IxodEAH2tW8IXB0QE9wElVBcXRAmzY5ITtzdEDxw32ToHR0QF9bK0o3dXRA37MPbvmAdEByiBtWEIF0QPA0iOxOgXRA0d8AkhaQdEC6gX9T0KB0QIBNpi65onRAqrXSGdGidECMI32OD6N0QEYuW9VipXRAMzEMQAmwdEAszZXZ4cB0QG8tOeN3wXRAFEly4uvBdEBU0lkREMN0QFJ1SYIjxHRANOQJGXrEdECudbP5tcR0QCbCeTj+znRAxtA54jvTdEB62bP74dN0QI5i0rPM1HRAqANmCrfgdEDGHnSrJOF0QDawXW644XRAswM3rU/ldEDf09qyjPN0QGqyAKqmAHVA9xJzxc8AdUDWGsAeZQF1QKS9uPaaA3VAd9e4FyQUdUBsCNZZzDV1QNYxO7i0QXVAJ6lXeehPdUDxmyuBGFB1QBhtg7+BUXVAbPCDKk5UdUBdRgStd1V1QIaPyVoKYHVA9kIEcTlhdUAUTBpM8mF1QPVazrF3cnVALubzso10dUBBsbhweIF1QKDNGCCugXVAxYVw56eDdUCswuM4m4R1QJlJYuo7k3VAAkU9frihdUBPDwWSSaN1QFBOcYW6pHVAIt2UPHyzdUA1O6IOz8B1QDxMRitjwXVAmCyax/nBdUDQpE9fzdN1QDvmljYO4XVAUu+aCgnidUBwMmVFSAJ2QAafVzb9AnZAcLPQe9ADdkAGK5H4TBR2QLj+JyIMFnZAak+nwJAkdkAezSntSit2QKziJLkfMXZArGjnPFIzdkAEkVdXnTR2QEznQowcQXZAfsDAIXpEdkAyqkgW+052QGVS6nDLUHZABY3A+xFRdkBEsc9JlVR2QDC5TmLNVHZAthZt+hJhdkB+5OaioGR2QDb0NDbZZHZArsKGAGaCdkARaJkT6IJ2QGLx/viOg3ZAtFvzOLewdkCoThtwwbJ2QJptMx0NtHZASKhNacHAdkCsfHSHzs52QH0rXOPx4XZAq1BHiZDzdkCeHQ8HMgJ3QKCRQC8BEndAUMMByQ4id0CgHWZfciJ3QKwoPxQNNXdAepX5bZ1Bd0CnJdQiG0V3QJpJ/MZKUXdAieBF4pJRd0C+U7egKFV3QMILL75JYXdAJLkFMI9hd0Cf6cHUoGF3QIamx/Anb3dA5P7CgTxxd0D7h75zhHF3QKy1ZIl4gndAChdBD3uDd0DyrAaCCZJ3QDoFrwlOlHdAS9sayOPQd0DySSEO0+N3QPqgta5R8ndA1xTeQeoheEDscPGkbiJ4QD8DQC+JI3hAeAf0o3syeEAUUoFBDkJ4QB9YU1p6RXhALMe1Y8pReEDURWcd9VN4QG+RNpyIVXhAKCQlhvpgeEAgKg9Yt2F4QCZfHii6YnhAow2kOLdxeECvv4ZwXHR4QNg6m5uLdHhAn69qsql0eEAM8ivApYF4QPZWcv/pg3hAYnnsrpmEeEDO8GVUtoR4QNbAYDOUkXhAJbZktaeUeEBOuAo65594QKpCDUbMwHhA4Epcd7fUeEDigUInA/R4QH4ht0SL9XhAPRmFQpkFeUB2y9dcD0J5QAQAcueMQnlAkF353vhCeUCwo0sD/lJ5QEiVCQvNVHlA5LPYiOpgeUCYzLNZ2WR5QH7LIyZDc3lAwfoj+BKjeUCgQSxY+qZ5QLZ/X3u/snlA2jo71ULUeUA+si17zdV5QFxolLNR5HlAqBd3OiTleUD4BjJfhfJ5QLWB154MNXpAjWNWhRI8ekCaO72eGkV6QDc69mIvUHpA+m22cIFSekBC8+OEhlN6QB8NYjwoVXpA8HeuBY1yekAmy9ksCZ16QHAH0lRgonpAjiGyM6unekB3o51Cwad6QLC4xjwNtnpAWcYdZRrGekDaxH7/Q856QFo3B9s27npALjNDwSkOe0DelJJnTBV7QEHScTxaJXtA09/MHFQwe0BSC6KXxDN7QB8D3rhCUHtACF+Z7m9Se0Di3fY/6Wt7QP/x4pYilXtAtMeNXXnGe0DXrGW7rNN7QH0fyci123tApYW1NUXie0CsMCL2/uN7QA5Wq1ym53tAbCLDxZfxe0Bprrw6jPV7QGoHtOraAXxA0zjxbfoBfECtczFwmgV8QMQbV8bSEXxAlsQkhcxBfEAvxQ0V2VF8QPTJCmINYnxAcwGdQipxfEAi67YRBXN8QEbpDkqUm3xA9NDjX8CyfEC52mO1V+J8QHFS2N0W8nxASHmAgVXyfEBIgdDNAQJ9QL92f3pLAn1Axh7J/0QSfUAS7U+7OyJ9QFKJNgotw31AB4DYvpD1fUAveVC9Ox9+QJdjanyeOH5AXV5dgoxVfkD7i8xdjbB+QITMrhrX735Ad+NlWxAzf0AOz3XxUDh/QKC47e+pPX9ADuGtggVDf0B+n/4UTkh/QPI9ahO3cX9AzOv4zWKRf0C4IWm7rJF/QBI7+AbdkX9AjuxcYOSZf0CuwdXjXqF/QJoE05DVoX9An4hZ3Fexf0DmK+Ozj7N/QEDGnjqW3X9AxJ/FkPDif0AhIw2+Ruh/QIQg2neO7X9A8g09g4MRgEAI5kfbLxSAQNrq5p7WNoBAWUv1sIE5gEBAW7ViKjyAQBxZlv7WPoBAsBdIgvdIgEA25k2c51CAQOiWOv0TUYBAxvEiV+dYgECN3zwSDlmAQNL14kUgWYBAAJ9LDAxhgEBGth3zKW+AQAL91woOeoBAEtObByh/gEClLTElHo+AQCmR1kltkYBAJB5rrxmUgEAIUTvMw5aAQOUSRzBsmYBA9pD94B6cgEBEtCotiKmAQHFbN3yBsYBA5ryvflLBgEAsgcOwU8mAQJSJgTks0YBAbV8vxkzRgECEEzi/YNGAQJ0e/BtK2YBAZKBEEZnZgECUTX5xRdyAQMb3Hjbz3oBA7EmDT0ThgECr7XRcmOGAQH2Om+9E5IBAilpacPfogEBS5DpiQ+mAQBpvOGVL74BAKMSCHj/zgEDTUN6jP/+AQG5Kh8U/B4FA33OPyj0PgUBYcZT6HR6BQDpm/cUzH4FAT/vxwiEigUCmX180MieBQARGOhu8MYFAW9wekg40gUDQntyFVY+BQFqxRMZYl4FAjmQyr+ahgUCzCSKlbaiBQA73eXlKr4FAAbZh637TgUCY4O4YsvKBQJJFes4CCYJARhYiEdgYgkCVJQ1R1yCCQCzhAtbQKIJATCUzXaMwgkB6kH2kyHmCQP46g5LLfYJA+syBVEOJgkDeFvwKRJGCQIAN0pg8mYJAcUojEg+hgkBIweNIO6GCQFVwgMoLqYJAmJLiwjOpgkCQfpsrB7GCQLKnus2u+YJAoVp7j3kRg0CkeNhYehmDQBX/AbVyIYNAxah1hYohg0A8qFJKcSmDQMv4F8JrMYNAW9GGR8NVg0AHvLP2P9KDQCT6WA2V+INAhJNTtv9ohECdsxnt/XCEQCuXT0v4eIRAHpn/LGrZhEDkcSwSauGEQHxnYvVi6YRA3wsEGDbxhEDiINLhY/GEQI3CmHQ1+YRAxhQC4ln5hEBOIVuQoGGFQB+MD6SgaYVAA01zUZlxhUAINQRjmnmFQIRva4WPgYVAVL4tHhN2hkDaoWnNJbmGQOgevQYpwYZAnMl5SZEph0D8Cbc2kTGHQMx85fmHOYdA4J2ZBlxBh0CIS0pDikGHQKXdaEcbXodAsOnbLh5ih0BLhFo8IGaHQKaRxAc1aodANyz1EmGuh0C0uOGzx7GHQG6fr6HIuYdAKOXH+7/Bh0BcCJ+YxsmHQJtS2Qgu4odA/OOJ/HitiEAGx0ZiINaIQKXVAmEe2ohA + KBZXds7jZUDUvl+A/sRuQAojd9/OZG9AjegxcQLTdEBM7E+pf+N1QMiKqkay83tAh47Ifi8EfUDHch9AZRKBQNVL5VdZOoFAAHZnWqVyg0ALNhjn3VqFQA== - + - 5ldFRL+jL0V449pE1nqKRAdrr0Qo/hZHyjDGRA13v0Tv/8VE7PpVRbu8n0R+B2ZEFBE8RZcMd0S0XMBEk2WZRCkzxUTOo7lEa8sJRQtFEEddxKJEg6o6Rv4svUQW84dFkTOPRCispUR4KqlElpOyRipmgETbKfZEd7+DRGeZgkUcfvNEdR+LRNX9yURDIWdFuxdPRLOZD0aUUFBEsDCwRLfjfkUlP8pEw+x3RYuLhETmgctEggdDRMNffURlM0FEw/CKRJvhMkViXG5EFQX2Rod2jkTREclEpul5RCp9FkV8FUVHJhDkRArGgEZDyxtGD3c9RL7p2kXM2zVFq1NeRLdybkTCD1BF0eYMRe1Ve0T+D3BFoz6CSOc8a0S/cBVF8nHzRhhxpkSM/o9FVc7lRY7NiUTSslNEGzIARfdVhUQ5tW5E5tuTREIK6ERB7UhE/DVxRFtDmUbyn7hEDLPPRBL7z0XGBkNFIj9qRP+qvEQBr5xE+ASsRKNncESXdYBE9h45RO3foET6L6xEMqJNRUj4vES8sLVECUqdRC36t0U+j0dH+wupRBY9VUTNuY5EjFYcRSC5LETHr7lFfLqnRZvk+ET1QZdETwSaRSRV/ERh3WxEWqzmRIYGnkRmKbtEbyhpRLPSz0Q3doxEd3qZRO6gnUSUCJxEfHlPREAefEQlUAVFG89URGw3TkQAhi5Fm4VhRH+hl0U9sJJE8vqcRJBRr0QiHW9EODYGRc8iEkXi4ohEgR1URNrvVETFXpdEtFpDREAbDkX8a4ZETmQERbSVhER4d7FE+u3zRTUpL0WPA5tF2w6jRHP050Q7t2ZEN1jaRJYSCEUAxmBE84KsRMVMmEQHnIhEMJEDRSA6t0QidZJE7Jr6RGBMTUVRDYlEoLixRD6H9kR1m6pE/YEHRoT53kW4YNBGH6bcRP6tCUUZwbdF84pFRVfmSkRu2mFEWgpBRWZTX0WakyRGcy1+RANwiESCYfNEEPCKRDq+V0S/7WZEIPZqRLLrNkVSILJFg+OKRJ8pEEX5xmFEH6b2RDEQ50T47o1GM79JRTIKbURLg+lH0erPRl6G0UbouI1FxOCPRpQn9USvaYVE1XXgRMVuiEQFsXZFvH5eRHNFc0TbpNFEMRKERAhduUSxkpVExwdKRBJ8nEQNsMhECQmcRFYvc0WwsIREaSxYROC33kTwAkBG0ga1RQ/IXkQrATRFO0L0RJQBP0UD0IdEAi1vRCA7E0XuRDpJK8oARgWXNkXKJnpE9SBCSJISBEX1oKNEsxGYRlMgbkTT325ESo51RbiyYkW4EG9FDYeQRIE7fkQs8XZERL5rRFDjQkQDl0NFi1lTRJqIa0RUNZtEWzuXRPlotkS9gFdFjEXTRQ9AqkTXYL1EPE5DRDM0cERnEaBHBauARIb9qUaty5dEAHcrRVf5W0T12BxFcAaORGnz+kUVHlNFKE2GRLyyVEQyWcZFXVSlRFs1dUT7wIxEfHzGRPZaJkbVAQhF960wRfHwYURUNlRERv2QRLhM/0RHuhtFZFibRET3S0UnFP1EfGzURF8khkSlmGtE8PCrRYQwiUZp1EpGGq+8ROeSf0VaxYVFOTyvRZE4n0SoSoFEWz+ORHPzfkRZHm9EunTIRCLJ3EeKc9ZESanKRp4mKkX6AspGoI4vRRWd0USxW9hEwKfORHgYfkQEHb9EOPRqRHWkV0TtCnVEV9OLRQdIeEbqSiBGY6kdRUVzqUSzS5tFUrE7RqZI8UTlhYBFepsIRTyASkXMo61EzRUCRSqLqUSMjY1G6JkaRkzGjUUSlbBEm9W4Rcl/6kTz9+hF89fHRRsKlUUSGmRFnnavRPBYWkWH2zRGCq+9REiEkkWG5Z5Eiwh1RE7I5EQi9ohEi0xpRO6WAUVnthFHSpamRuOi/0WTvINF63x6RBhGpkTY82RE4cBtSILR7keZjctElGR8R9NTZ0WHBUNGUBWXRixyNkZwXa9FnKSCRe74V0XS1qpEerGMRGbDo0Rh+gVF7L63RKXPAEaSPS1FdkiRRFosbkXMLbxF0Pb1REpUbURWxYREcI2mRNzLiUWmho1E8QEcRVQn30QB0+1E1QmSRIpUhkQGaItEu0YvRpNFjUW8pjdF0IuARM3ILUb78adFI+7FRxawREfLYuZGUcrpRdzU6EUoJChFwfsZRa1s0ETfkbNEMCfQR7RgOEd6gMVGHiwhRRZd60Xw7SpFDLAVRbJjqkSXGp5EFF7RRd5eEUU3raNECPwNR4gNiUYrNzJGkr94RetLh0U5DwNFaBSvRE1CBUcmY11GFEANRsg4L0V0GIZEpB5vRPqcBkXbOlxEoeo6RoJ+pUU/B2JF8OeRRMF9A0Up0lpFLZ8TReZXYEQZH6FEExuHRCvsF0YQhpZFp0RQRZN1h0SX4kVErO74RI/PpURSbaJE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - cFxuZm/BckBHGlKVT8JyQMwZZbDkwnJADnRpnjzDckAO0j03xsRyQL+JU9xYxXJA5kuVnEPSckAwEOsKeNNyQG6eOeP12nJACvUZMs7fckBWNbRhuOByQHq9EGdN4XJAjYWV4E/ickBkGnqTj+JyQBBTbaEk43JAtXeCTlHxckAiBNNpyvFyQP7TAQC383JANJMOpg30ckBErvTvSvRyQOwtyx+i9HJAVlX9VsL/ckD64ICFYQBzQOAlJpr4AHNAOO4F60wBc0DAX4AQjAFzQNR8CTw7AnNA7+Qq2c8Cc0B0+6DK+gNzQJg0o8mOBHNAoqcCRAgSc0Br9LPevBJzQMZS/AP5E3NALlgeRk0Uc0AiZR0Oeh9zQDU36OajIHNAomoBqTkhc0ATxcdcZCFzQBr3snIQI3NACCEGegMkc0DGlyYpOiRzQHSA9CfPJHNAnTqWu0Yxc0C62NjlWjFzQHAj+KkPM3NAn/LQ+aEzc0Cd7i2INzRzQBxG6cPjQHNAblTjAHlBc0BcrXRaJkJzQD+1DwbjQ3NA0rRzinpEc0B+PSlKEFJzQH6ILCpDU3NARLBF5qNTc0DDqiXsd1RzQElgvUg7W3NAmgDdJYtgc0D0Nde2OWNzQJjUEn5JcXNAEJOsNVFyc0AEIasWu3JzQBTb9ZG3dHNAUjmW+Ex1c0CTi6NFeYBzQDyC0GyjgHNAIrenYA6Bc0DnriWex4FzQOZyRvJcgnNAsNsEChCEc0CgWLj2hpBzQGpxElzUkXNA/ltB1fWRc0AcZhF4TZJzQKR47kXOk3NAYh0Y1GGUc0Ai64aW95RzQKxBe7K4oHNAHhiyzVqic0BMhIrY5qJzQJvO7j4HpXNAbdeLA4Cxc0Byxc6DtrNzQPT4hBsNtHNA3xVIeKK0c0DOjVjP98BzQGpgighMwXNAmp5D8D3Cc0CuGJ+I0MJzQPS1M+P+wnNAkoJJRwzDc0BK+D66JsNzQHoCgw3Cw3NAOtmDn9fRc0A4l+RzNNNzQHQvsyn303NAyBLqsOHUc0CvgGKlOOFzQJF/04tm4XNAs+Mffovhc0BSaitv5OFzQDFVj8k143NACOKV1/zyc0By0d0IRfNzQLmTOVc39HNA/P3l1ngBdEBjuFyYpQF0QFjr8tq8AnRA1tnCUnkRdEAS6VfrbxJ0QEQXicVME3RATChP8+ITdEBgA9nwSiB0QL4eNMK4IXRAfDeLOn0idEAsptbauiR0QD57TZZTMHRAHWsTWdwydECQtBNOgEJ0QNwluPJXT3RA5zp0Wc1RdEBcfFik+VR0QP88WW+NVXRAAife6LdgdEDoCAb1TGF0QHwIbWUJYnRAyHVdXE1kdEAalEhejGh0QNb0zKwicHRATi7RKEFxdECwQmgXy3F0QPBQU8s5c3RA79Mpg6J0dEA2SXjjNnV0QBLHQw74gHRA4j0TmU6BdEBGM5mLFpB0QOQ44uBekXRAVDt371eTdEDnL1Yzz6B0QApb9fA2oXRAdOqL6amidECJipWo0aJ0QBU9wrAPo3RAmsrbmmSldEBVl38qC7B0QGL34UPgsnRAJQXFHOPAdECmmvDreMF0QBBZdErrwXRAkxfamQ3CdEAK2cNDEcN0QDx7pWsjxHRA/IwXprjEdEDKAmzsnMh0QAAbc1f7znRA/C+XEj3TdEBYxdp/4dN0QCSe/ip41HRADFSiWs3UdEBU/ej4uOF0QN4pjPdM5XRA/rh32ozzdEBC5LKHefR0QARjxBzPAHVAxbhz5GIBdUBqsIgxmQN1QChtjqAEEnVAxDRbIyMUdUDmbwJazDV1QPwxL0vaRXVAIBBfePdPdUCoyR8zElB1QBDxAVB/UXVAP5SZG05UdUCykfNr5FR1QGR9BFt3VXVAeq1iHA1gdUClOmjAf2B1QIPOiKY3YXVA3lXeh3dydUBA0koSjXR1QLZMWYl4gXVAmhEJIK6BdUA+/l+5poN1QACx2XichHVAueXXFYyQdUBgZaeRu5F1QLIP7IfwknVAmX0oeNyfdUC32bJWlqB1QOnl374koXVAL6Z05LihdUDImL5QSqN1QE3iKsijqHVAwDQ6jHyzdUDlIpyV+cF1QEAlC0fN03VATQyINObfdUDJFxI8DuF1QETIl5QH4nVAnlz3BkkCdkAC4ZfO0QN2QEyPAQtYEnZAXF12ME0UdkAMY2MLDRZ2QBrzdY6HInZAAcW6M5wjdkDie2MakCR2QPlIbzJLK3ZAhsadjh8xdkB6ck8fUjN2QIpbDKqfNHZAildmD+JAdkCRq+B+HkF2QCBldxB6RHZApz21bfpOdkD608rOylB2QPiOp0gRUXZAIX+btJRUdkCGojQYzVR2QMZDOS0WYXZANzESXVRjdkAumU9F22R2QCjZsirOgHZApzb0VWiCdkCgaH6skYN2QALtH+68k3ZAYven0sGydkCHjjf5DLR2QMOiuVx1wHZAnigfSr/AdkCQ9dpiz852QPCqXdt90HZADO0ypMDQdkDsYgMDfuB2QIYdeNL14XZABOHHmpDzdkDG1qtYNQJ3QIDqStkBEndAtbiqa+oSd0ByRwYxDyJ3QPQo8S26JHdASlRdCKUzd0CMeJNQDTV3QHzbx2ydQXdAgiKcYEBDd0CQkQdMG0V3QLiUTHtKUXdAXqHR6JJRd0C+LSF+KlV3QOC4REOPYXdAo1pLJidvd0AJlSYu+3N3QEYAxJ+ne3dARliIuyd/d0CQZDsNeoJ3QFglLiAJkndAvHHKAU6Ud0AoQfpfm7R3QA5zZJfj0HdAvnEsxo3Wd0AWRnu1/Np3QHRZGy/s4HdA4PcnC1Dyd0BGikzFvAt4QDoQ2QfrIXhAzN7Zam4ieEA+wcJLiSN4QDr46esMQnhAeLLss3pFeEBGPmbsylF4QKzxftSHVXhAuFOJZPlgeEBGujXstmF4QKLGFHW6YnhATgCd48JxeECg0XUOJXR4QJf3CNGLdHhAWrCxWaaBeEDSJF9t5YN4QPnkKvWZhHhAbBRnDJmReEAShf+CqJR4QE+wcVvqn3hApcx/07akeEA+IX+zyrZ4QB7LJr/MwHhAA19efwbFeEBuKzeIt9R4QHZIh8/563hAXISNFQL0eEDUNe4vjvV4QLhn5mSbBXlAy/JYHItCeUBxYE1c+EJ5QNoK0BvMVHlAvO9u3epgeUAbf/T+RHN5QJgIc//4gXlAQEWn3cCyeUCDiFnxQtR5QJpJdeDN1XlAre4uDFHkeUCqe1zD+wV6QEr4lsHdJnpAZozLqQw1ekAFQbxp/0F6QE9HetgaRXpAmdCt1udLekDQErU/LlB6QPeQ9SSBUnpApoGD9CpVekCq+GeKjHJ6QPoeirXVg3pA5jyYEkaTekCmbuDno5R6QCEDc2IInXpArkYFqmSiekBcG/OqDbZ6QOpiZ/0ZxnpAdfawKUPOekCQF0BE2NN6QAtjaXd/5HpANUPSijbuekA+SnrSZ/R6QMIQyOp5A3tApxaowSkOe0B6FibbTBV7QMz/TClbJXtATuyLqVMwe0AQkgSKcFJ7QNAr4kDoa3tATXTdzCKVe0CSxh8HMqV7QKqiK0ei0XtAfFdfr63Te0CuGLXLs9t7QJYQQ91I4ntAH5gQTv7je0DAqx1/jPV7QJnRUS/bAXxA3EaCcPoBfEAM5+gimgV8QA8BhiiJEXxAxFiN/9ARfECY1YSXzUF8QAgJLRHcUXxACgXHwCpxfEDuD+Jvk5t8QHe8MQe/snxAAgTGS8zVfEAwy4HKV+J8QDrapA8W8nxA6NadqlTyfEDKp5j1AQJ9QB6NpO9LAn1AWH3hqQUSfUApyrFORhJ9QAb99PQ9In1AUlxzL58xfUAQmm5zDFV9QCIgrRd8XH1AeK1+LS3DfUAVPVKM1eJ9QFgPzLOR9X1Arv8XHzcffkAsNuDWgyN+QA8bxVhDL35Ah1jYA6A4fkBYjWwGV0N+QCSTN/CNVX5AmY8tVdbvfkB0jyhvUwB/QPiq+AcSM39ADPpYu1A4f0Cku5pKqj1/QLISUiMCQ39AFsLlYmNIf0BlhbMarGx/QEH/eh63cX9Awt8CyLaBf0B+hgpG/4t/QGwMmQ9jkX9AQDWHpaiRf0D2C+Sd3JF/QMpZ9tPmmX9AZjnCd1+hf0Aiy3awVrF/QEps0biRs39AxqOLeJbdf0DsxNQ/7+J/QKpDu41J6H9AKjSQl0QMgEDIruqCgxGAQOF1qE4wFIBAiVPpsdsWgEDgeVcp1zaAQFDdtYzqN4BAxsdnKIE5gECO0aQzKjyAQDZLLenXPoBAbXfMPoJBgEBfgFxc9EiAQNZu1g2USYBAvZDSPOdQgEBqp4i1FFGAQONS+ZnoWIBAwklQig5ZgEDEKhO4CmGAQPwicS4qb4BAaNFkQ+J+gEBuzOCsHY+AQJhtgTptkYBAHBmKnBmUgEC+vsOfxZaAQJUgct1qmYBACa2ObR2cgEDupCiFhamAQDMenC+GsYBAkyCUusy1gECyI7TIf7mAQPg7PHZSwYBASou7bFPJgEAEd5rWKtGAQC8EgVBM0YBAsL1mVGDRgEBNxC96StmAQGH3KcZ02YBA8jrVJpnZgEBlCwTlRdyAQJkE1HPy3oBAaJcl4UPhgEDEKyerm+GAQMogSUNF5IBAejsyrfXogEAb5UcCS++AQBbcujk984BAxqnSoz//gEAYFgd4PweBQIrlXEY8D4FAbARxeR0egUCE9zZ2NB+BQPhMxpQgIoFAK9/8UzQngUAKxRyTvTGBQFq1+klgf4FAHKu6w1WPgUCkODT5VZeBQBjqnoHnoYFAroIQBm6ogUAMIbFBSq+BQFBc0hVwsIFAY0tQCWi4gUB/bBKmfNOBQMJRl9YDCYJASYaVdNgYgkC8t3U51iCCQP7k+3TRKIJAAcWCks8wgkAPBJ/8yHmCQGTM8T3MfYJAcq2PSEOJgkDwJRwcRJGCQC0zeu48mYJAqNoEFVaZgkB4f14PD6GCQNQQSa47oYJAVgBUgJOhgkDI5LcBEKmCQB6Zv7Y0qYJApBCNlwaxgkDKavufM7GCQBKrjU2v+YJApkVkcHkRg0CcrythehmDQPi9vq5yIYNANthg8Ikhg0AuuqrFcSmDQMqodH1pMYNAv/AOIIIxg0DUduTyxFWDQCCXKQbjgYNASKjC3kiDg0Cs0H7PQdKDQIJ0HqaU+INAmKvys/9ohEDysGVt/nCEQLPTY0j3eIRAS4baTGrZhEAuDZdBauGEQFSg4kVi6YRAUiU9pnrphEBYSc3hNfGEQFkwmmNi8YRA0t2Vjjj5hEA4tqjbXPmEQByoIcotAYVAvU5gY6BhhUDE8TtYoGmFQAywfHaZcYVA5B8GpLRzhUBI44+imHmFQMi+P56QgYVA7R9yI3GmhkDQRTk8J7mGQGRts9YowYZANIL3ryT+hkCn74QykSmHQNCtdvGRMYdAtCpLi4o5h0AypMg/jkGHQLaG/aUaXodATKWGlx5ih0A+UuLAIGaHQCu6f0M5ZodA0k4DFjFqh0DMbUWYx7GHQLwCp1rHuYdAb2vyf77Bh0BJ8AUcwMmHQO2FW30m4odAC2WbTiSwiED8GhOOHdaIQA== + NrgMGZxjYkAGYkAjEUJyQK9rGHLRYnNA - + - reFRRSnrrUQEWPtE089fRUHGzkSCSIxEQioPR8eU6US9zolEI0PmRBb2O0V8sIVEyWKtRSK3OkVid4ZE87R+RLFzgEWAUwpFB6eRRHcCkkR7Zu9EtbIQRTkcjUTHTRtFz06eROyo10SxUHBEHOk+Ra25DEdbAIBELaWuRD/9FEYEzsFFmu+dRM0ZEEUn2kNFwVgARxpfskSChoZEIeGzROullESh8cVF5lFGRaU6kUQ2EY9E3IrGRBybqkQNGiFFU8u6RYHzmUTS9JFEALwIRkFwkkTrz5tEVI2PRaSu0kRRcqlFlfvyROBW6kTxK1tE1tPuRDKYm0SN4bVEz+cdRV2LB0cMT8hEw1whRbJ/sUQZ1pREzvWGRBcQT0VxC45EemduRAStWkd1FMJEoN4QRWU3gEY/j+JF2yICRm0jj0SUtgxF5Bu+RDiFgUXhpVRFZUuARPUb5kTN3E1EeJqCRGA5mkXgM4BExdmnRGc+oEjRVqFEkeOHRRW9E0f7A/lEnNKvRfkbKkZ10qBEn9hiRKfnjES2S0FFgBl3REF3ekQ+IftEF6GBRsGGs0Qi95VEhx+SRIurMEa1OVNFYCqpRE3H8USBegBFvSCqRCTygURwucdE0SBfRPTIq0Sz4IlEVeCERBkGo0SgEfJE7zDCRTpSikSgJFJFdL/3RFOJmkSTU7lF+5pVR8gOi0RytG5FTADCRB0IG0U640ZFkCsYRpiF4kWx5LdEE5RRRCOF0kTuO7FE116JRCbc+EWxcPlEc7WWRPtQ50TSSp5EaB6tREk7pERF9JxEPb+ARKwjH0UbB95EPBW2RDx9BEXuOyxFze3RRJfLNkUft5VETM0IRdGRD0VZJYBEUe/JRTmhjERY2o9EAnoQRRqbhEQNrwBFYpxFRbroO0V75KFE7nn+RHp4lES7yc5EbHmSRHWfbkSNRBdF8TAMRYtNgURU3U1FdTy/RGGuJ0atzCNF1aDfRZJ/mkRk9pJEL0GuRK47gUS3PZZE+6qWROPrn0SLgZlEwa6yRCSzhUVSkopE/7zbRH1O60RxHK9EGvjGRHvj0UTkb4tFjYCXRXj+3EQtF41EchsjRWGS8UQKt6ZEENBGRRBzBUai2gZG2PkFR9cVF0UZB5hERROKRElUz0VmAWZF4nSfRFGrAkWGHa9FCRcERvtPUEbbuohELWVsRKPZFEX3CYJEeimNRAQU8USVcaZEd+AMRcsj00XByIREsLkFRbvTgEUPT5tE67MARXJOlUQIkb9E9KyvRMQ5qERYOKtG5GqgRJ9Xo0VmZIpEjf+tROXcBkhoNg9HZlxfRKsz1EZSitxFw+m3RtEmEEU6NXRFQ46uRZFhgUQcu29EaPqCRCjgm0QE9N1EQOSvROpkwERH1JhEjryBRHOJTkWjRcpEzuLDRAHJb0TBTBRFOMqBRUeJzUQ/ZCBFenM8Rof/90UQgCpFuf0nRRkjYkVD55pErZ2kRIuZ3EQdpEtJrBqCRUT/d0QO/FJIgJUQRevfpUbUHoVEssXgRF3DgUQh/+lEp2qFRINN10URAohE6IKSRR9ppUU13xJFlpiWROl/sUTAR1NFuyXBRJngm0QoIZJEn86yRZrdz0V+o45E36PrRPVLiETFtn1EIsG4R1B5jkT2fsNGZsl4RLeoqURi3Y5Fa/cjRUX6qkS4PolE5qhvRO8NwUTslc9FTCotRRiy8kUG1zNFYFKsRIcCuUS+xGlExyYtRdlgh0QNaoBEnnTwRLBTR0aZdFpFiCZ8RSfcCEWsAyVF57fLRdsarET1NFpEC7JpRWIptETchwRFoRLWRI5wnUbGpIdGUCMWRYK7m0X5m5VEoXSpRfRHBUYk98JEUEmuRA63C0XtMwVFKiZwRGJ76EfEJAdFvx3NRiz1GUVFV7xGtGR5RPa9gkW2lnlEnFqzRPdtlUTw1nJE6y+ORNnCqkQnHP9EN6SXRFv0gETx0HxEjolURSGMlkQRRYZFxVjSRIB/gkTZcKxFTSphRuLSE0ZnQYhE2bGfRPdUk0Q2hb5FOkGURNGnZkSV2nZGk6FWRCrGm0Vzk+xEP+xxRUJPN0XBfgFFq9+iRj+6hkabK6RFiEaLRO+pvEX1Gz1FlhmoRFyfx0WXc6tEhztjRZOMaEW0Y/xEDNZpRIIayEQGEYZE0wN0RUvFvUYSFXNE70/2RTJmo0QEQrtEqqS0RHeVNEVbMAdHWH2eRp7UBEYzvSdFEuTVRLCzvUTWc4pE9p5wRA04hkT1DHVIh83pRzymCEUGn2xHeBOCRUDJZUbYpahEOXB3RmDdekYFFYlFcm98Ref9wUSvwttEpDabRFz0AUUO6Z5EgqQ6Rmnan0XUeb1EZG6JRUzRCUbP0t9EWeDOROu7EUWMeIZEGGkERvXlq0QzlDtF490xRfOHGkU/F31EUHq7ROlymUTR9dxEh8J+Ru3QkUVGfF9FfPvARNlR+UUJDKRFGM4bSOlJpUcUWDhHQCVGRUQqAUbJoVRG5TN8RO8vAkVQJJ5FRb/0RJ57kkQsm71EuFECSC22gUfaFAtHpPcsRY1NMUZozD5FwIumROVKlERyuoxE7lSSRK4nhUSkLsNEnb0ERr/pgUVSHbBEzyA8R4eDw0b4G1dGCukXRTWCcUUZ+8tFdNvaREZeAUX3GdNEc6kRR71/ikYjajZGAOiuRPMXl0Vy0uNE8SOJROHeCkXdKXZEl92ZRP03gUasMuFFmWuiRft+pkTydGhFxeMGRWzYlURF1P5EFGxtRK5QI0YSAYtFot41RWhNCEWTZGxE6kOKRFUyrUQ= + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 34pOTXnAckA8euMbb8FyQPBDO55PwnJANnI4RjvDckCUcfKDxcRyQDZUcfZbxXJALBTOvkPSckAQas1FdtNyQELm7E4M1HJAZhAiOWXUckCgAO+ozd9yQJa9MxG54HJAzECOy0zhckDDt2QfUeJyQMqvqSiQ4nJAvBm/fCXjckCYGvETyvFyQIzvy/bN8nJAsKG3nA30ckC6uENZo/RyQLi3i5zC/3JAPi+GLmIAc0CURtX9+QBzQGQo5qpLAXNAQAw5U48Bc0CqjUgy0AJzQJooUsT6A3NAYgKUiAkSc0AF7AXNvBJzQJ77wEL5E3NAen2/kXkfc0CspgcdDiBzQJyCsIaiIHNA1OwRWDkhc0C+TNK3ySJzQOHcgxcHJHNAhG2jrTkkc0DM8SGIziRzQH10jCRHMXNAZq4CIFwxc0BCQlMEZzJzQOPuiNk4NHNACN7JwM00c0B/ifUqVztzQFRfb/xBQHNAzJ6akuNAc0DwpDF9eUFzQHYek9N6RHNAstWtnkJTc0BQKvfYo1NzQGnCvGV9VHNARU2frTpbc0AyEItIi2BzQFZrK6M3Y3NAStK9gs1jc0DEUS7LUXJzQLulOm9ncnNAWk1KibZ0c0CCYKYWTHVzQAY6vLlqdnNASWeBDXmAc0Bj7xBLo4BzQOYCdsUMgXNA5Mwpi8qBc0D489gtXIJzQASp6FUOhHNACuKYM4aQc0A85h+k05FzQNo4VyxNknNAop5C8mKUc0CAodfJ95RzQP41QoC4oHNAzo3o51qic0BYcZjL6KJzQKn2k+8FpXNAwdkAAMuwc0BigODW3LBzQK3xqwKBsXNAcukWJ7ezc0A8cFK4DbRzQAFK5dCitHNArMoeIGPAc0CKAETf+sBzQNoGMdARwXNAFts0j4jBc0C81Qeu0cJzQCCdw+sLw3NA3qyrqCbDc0D4DzkL1tFzQDrgzKk003NAgPzjMPbTc0AUyKQH4tRzQKpvhxql4HNAPRQuYTjhc0AYo4h7ZeFzQO17AESM4XNA3gK9qzXjc0D6Q57PtvJzQCli6/U39HNADuDZquMAdEBgm4fKeAF0QD32ru+lAXRAGLXdv+MDdEAg+U2OixF0QC6osKtuEnRAIFCY+UsTdEB0wpTJdhR0QIi+8uBLIHRAdlRNv4wgdEDchgrftyF0QMhwy2j8InRAfryh0VQwdEB1nqpP2DJ0QGrxUit9QnRAcKnKX/ZUdEDam9ZFi1V0QACXd5O4YHRAYmxPdAhidECOVCiiTmR0QDZCjWwicHRA5BViWkFxdEAyVPzNOXN0QC6AbWKgdHRA4pxN8zZ1dECSuPJG+IB0QKIU7olOgXRAjjU+mRaQdECk49HCa5B0QDT6THnRoHRAtyYU27eidEBeS/iW0aJ0QLVRN8APo3RAPGAQ7gmwdEA+J7U33rJ0QJtq0PbhwHRAKO7XdXnBdEB2SwdGEMN0QLzrBtYjxHRArJYPGXnEdED2Y9Dit8R0QDzoCOucyHRAYWL7RPjNdEDEKiKI/M50QB4lBvw803RAbuQwQXfUdEApUca5zNR0QDKmB7O44HRAD+C5HiXhdEDwct70ueF0QGoVURFO5XRAaDE+QhrydEBAewMCjfN0QFWhfculAHVANoff28wAdUDvk1m2YgF1QJ9XQVZcAnVAHqnhzZoDdUBxZZHlAxJ1QCyqeGAiFHVArGrkycs1dUCiz+DVXEN1QBS3VjPyT3VAJjluQoNRdUCNnfMNTlR1QC7nkix4VXVAjNb1MfhfdUD10qa4N2F1QADLDkepYnVA7Hv4rndydUCYH804jXR1QJximZN4gXVACBIHva2BdUDyGeQgp4N1QBmGO2KahHVAiAY3BI2QdUCDT9uBupF1QIfLngc6k3VA7CVBHdufdUBdO6L6IqF1QHSo4H+5oXVAYNl/kkmjdUDb8/dBpah1QFXto698s3VAtJm3l9DAdUAEdHQCY8F1QGe8ORv4wXVAajrOlMzTdUDHSIHl4991QLbnqEAQ4XVA+a1zZQfidUAwc/fTRwJ2QIcby5TRA3ZACvhrcIgidkB5N9snnCN2QBjwnLyPJHZAaRrv5UordkCBafWNoit2QABrK4kfMXZAfUBt8FEzdkDev0+OnTR2QCr5uEYdQXZAStYOaXlEdkClOwhN/U52QPzsniHKUHZAUenWxxBRdkCI4oiqlFR2QPBt71fNVHZADKxnf9tkdkCoXdQpkoN2QHAJ6AK6k3ZA/OzxRxChdkB+RHC1uLB2QH2ig03CsnZAByMn4Ay0dkDgjX9gebR2QHuhm7+vtHZAg+ZebnfAdkDw/vBIz852QNZ7D72R83ZAymddXjQCd0AwRyjfARJ3QExTaR83E3dAlt2HmA4id0CQy05ZdCJ3QM6swRQNNXdAls15GJ1Bd0B6jdH7GkV3QM46Pd1KUXdAngi2/JJRd0BQmN+kKVV3QMJ5kU1JYXdAQhuyw49hd0D+52PToGF3QNBKizE2YndAvApVOJJjd0Dv8h14J293QFj+DU6GcXdApUKZ2flzd0DU89ARSYF3QI+gaRl4gndAOjzAkHyDd0AoWNcJB5J3QLhEcXRNlHdAj+Ci9Uqid0DlVnyBmrR3QMoYBjbk0HdA3mE9Kf3ad0DWxe4W7OB3QLYJj2pR8ndAkjLfYOkheEBglojVbSJ4QIphCO0MQnhASlorBHpFeEDyV3h6ylF4QMz88KLyU3hAsML3GYhVeEBhvXWD+WB4QLKSKAi3YXhA7HMCgSFieEAAjM2LuGJ4QOgRt1uzcXhAOCTDr2d0eEAOuFl1i3R4QI3rth67dHhAUB8UzcZ0eEC8HEh0pIF4QMnqC2yZhHhAxDorXZiReEBm+59Mp5R4QOZDUhGtpHhAqOXr18zAeECzw/9EBsV4QCaX8zi31HhAgMDokgL0eECEQfDRjPV4QPZHWVyaBXlAvsEGc5cbeUD2iHX3E0J5QEA3bWGIQnlA8t0Cit9QeUB8HdUKzFR5QKkUoXb5gXlADuGJPfqqeUCiRpmMwLJ5QFuqgbfNwnlA4PT/1kHUeUDe1qg8zNV5QHrgvGNP5HlAxqzSYDkjekAkOPhXDDV6QIvwMBQaRXpA+GboOy5QekB7mr3MgFJ6QJKgBJ8nVXpAk14AL5BiekCyzkRTOWV6QAfoL4c3bXpAjhTfL4xyekAIOokYzXt6QMIIeHsInXpA8C7r2GCiekAoNB7bnKt6QLgTeycyrHpAT2IpXwWtekDssV+RDLZ6QCXm4Gwtw3pAwrKyuBrGekAUcjLdZ+F6QPMOsxQ27npAlNgGGxbxekDgR/AwY/F6QArnSDt4A3tAieeUnCkOe0DcCvR4TBV7QBK0vIdaJXtAUARRg1Mwe0CDTR3gxTN7QHDn0mZfUntA4FIZYW5Se0AkP4s+6Wt7QLbd19Dsc3tAGfVg9yKVe0BASiW3ecZ7QIIlBmWn0XtAhZUG3r7Re0DM6tG8JNJ7QOYIy2mt03tATAKUQ7Pbe0DAGEZlR+J7QELxoLP+43tAFGfuwyjse0DsSndfjPV7QNKd6CaTAXxAYhgtb9gBfEBOyyqp9AF8QMbkXxWZBXxAu//ptocRfEA64HIF0RF8QKzxp8LNQXxAeXvlnt1RfEAntcliC2J8QOzqMgZjbHxA7BJfyClxfEB+CL3eP3x8QN01GGeSm3xARh3Hi8CyfEDgx1CQy9V8QMxbuWxX4nxA4nvsHBfyfECUoKmzVPJ8QOxDPmxx8nxAIPNHJwICfUByoYBsSwJ9QFvWlScIEn1Ay2bpSEMSfUBy6nXNYhJ9QKWN1S87In1AMze8aqgtfUDGvYHqnjF9QFXrL71rUX1AjNyVji7DfUAmpLYdkvV9QGL0YhM2H35AMQMBWkEvfkChMG16nzh+QBpjQKv6PX5AiG4qt1BDfkBIxRqqj1V+QBnjfi2NsH5AWuf2HyTtfkDnp5m01O9+QN6v8ELV935AoInkfxEzf0AoWM9VTzh/QHwcVZ6nPX9AVGgeYgRDf0CsGEZsTEh/QAO4sYG2cX9A+L0AaGKRf0CLsHbvrZF/QKT2lYvckX9A0vEJwpiTf0AAl0hN5Jl/QIbpLI5doX9AzkJkflWxf0DKC8ZTjrN/QKwSNBWV3X9Ale4wZ+/if0BBEuMESuh/QDA2Y2+S7X9AfQ9H4EIMgEA4LQ0dgxGAQHw8IjcwFIBAKVUGm4AZgEDuWjml1jaAQA5iCLOAOYBAHO0j/Sk8gED6ajKR1j6AQIPLr4eDQYBAYIZsxedQgECuc/+1FFGAQPUzAinuWIBA6yjlnw5ZgEA2MtC+4WCAQNaeaxYpb4BANkWCFx6PgEC6rhHObJGAQCzca4IZlIBA6Fhd+sCWgEDbEa5Oa5mAQFqYlY0ZnIBAhIYJaYapgEAIwdD0+7+AQLoFlkpSwYBA1qBRNFPJgEAErOhaLNGAQBeKIFlM0YBADWp05WDRgEBrEt3QSdmAQK5t+rOY2YBA+Y/AlCfcgECdC1t8RdyAQEXM6Sry3oBAtCIkMUThgEBnnD/SleGAQM7HFMH26IBA8+yB80rvgEAi8R1GPfOAQPbHT0Q//4BAeu79CxoEgUD2EEzIPgeBQHV4nrQ8D4FAzA9cVR4egUAWAdkbNB+BQBBbgtgkIoFA2z92wzQngUAlTsoRvTGBQN4O1C8ONIFAKEy1TGB/gUCmhk1GVY+BQLb462pUl4FA6i0XA+ehgUAIQiUvbqiBQMZH54RKr4FApP+ImWywgUD4WqW1fdOBQF55WXEBCYJAE8yxUNgYgkAcN5BO1iCCQIxewtvRKIJAKhZraaQwgkDrBxVZyHmCQMJNcXjLfYJAej6yI0OJgkA+rDDcQ5GCQOqSU4U8mYJATgHG8lWZgkBswZlsDqGCQO79uyI7oYJArcgMHQ2pgkBm4T4qMqmCQI+qUxwHsYJAyowJPq75gkCsejhZeRGDQEIJ6st5GYNAZE/ssnIhg0CjhF7JiCGDQIbLHuZxKYNAFLieTmoxg0CI0b5JxFWDQD561E7FWYNAZkAhCuWBg0BWR2p9k/iDQMJ9tXL/aIRA8vj7zP5whEBKc++y9niEQMHgvApq2YRA0S3d6mnhhEB0H/GnYumEQHrdJ8B86YRAGuWVLDbxhEDcbTOJYfGEQM3OLRgz+YRAnb2wO6BhhUAChCbxn2mFQAgMS+aZcYVA7BmkpZd5hUAkCJvHkYGFQK3IElJ0qoZAMoGLSie5hkAQyC+VJ/6GQDoGuF8pAodAQrWN0JAph0Dmq0XhkDGHQNR8JF6JOYdA1HXr9FpBh0DaxMp7h0GHQPrUpMUZXodAouankx5ih0Du0njpJGaHQJfzMEM1ZodA2faptGSuh0CEgPnQxrGHQH60oi3IuYdA49ogjr/Bh0CEK5TVxMmHQALYyod9tYhApN1LPiHWiEA= + KBZXds7jZUDXkZP9yKNsQIkw7CrX8nJAp4GoFS+DdkDMvNRcKfN5QPiBtrRU83xAimm5T9ZBgECEryaZ7ImAQFGVX19CSoNA5rL1gj+ihEB8v+FhjoKFQHe3dhuBWodAqcWGB/CqiEBulvZJuPKKQNLFDdcC44tAZXV2eO+KjkDS9PsAr2uPQHn4T/rYRZFAGxHjjh0CkkBdDiMCD8qSQP8mtpZThpNADyWIEFUWlUDF5MrUtIaVQI88fyWr2pZAQdQKbNBSl0CjvEKNtHaYQL3DSgPsHplAuj8VYOUKmkAGRovPDHuaQNBUVmELJ5tAt8dyRDaHnEC0ailpQaucQPt+2GNXj51ARvDQOWJPnkAP/5vLYCufQKuJJWO7B6BAn9apuNmboEBanh1h2QehQF9iJcMEfqFA - + - wByERHk3IkVfw6REQUtHRbhypkRBhX9EIVgJR5zggUTm8ldEekuYRNMBCkVtJA9FpD1gRAh5hEXD279E9OmJRBT1REVGiJhEL8GLRGXh3UTTbgNFm9WRRJT+e0SXQZtELuOXRGqw+ET3vhBHqbkCRdExEkb0NKdFI/HQRICbcERuDhBFUHT4RjjRU0So2JNEIsKxREyLgEUKhBJFhPzHRC2efEQBmKNEcwFvRDBsh0Rhm4dERTjuRL7pn0VFjgxG7fSuREIelUXF5J1ELv/qRNhq0kQsLtJEN0OfRL1ekkSxZ2NE1Gu5RPfqJkWFFGRECMgIRwfK5URQARJFVdt7RFsRZ0S0WnFESfBLRYoQaERQyVJHeKzSRHpeZkat3dlFxMPBRRhsikSfjA9FAvZRRKypdkTBlZJEW1VTRad2EkWODYREQGOFRFaJrkQAh1dExQQ4RFIOnUWsmRpF342ASMQz9US78AVHzR7ZRCDAk0WPVo1ElOXrRWqJYESqn1JEE54ZRfjAe0RXChhFhWq5RHw7ckZJSb5Efb2JRFjbiUR80tFFRMVARSWMbESvu5pEpKFyRMpjDEXTgZhE+m27RAA4qkTZPHhEP/GORFEV5EQQ9a1FBlQRRSDNp0RMjKpFpNpFRwJPE0UxUYREjqXSRG5gDEUwENRFLgC8RR2fqESwNnFEy5GgRL03qkV79AtFi4ziRCYfUEQNU6lEWLfWROiIM0X6PqBEq5OFRM6560RaCslExdeDRIFVEUW/zqRENkhqRN0ydkTJmVVEz72dRKGB8kQ2uuBEZzpPRMqKuUWj7YRE/KevRA802ERndnBEXk63RFbOlkR3ttZEhLhdRWF3vERKwq9EUB2SRB46vER0hL5EOGxsRGuiMEWOtUhEe/DrRJGG/kVJ1o5EnubnRZP7rUTYnMlE79GORAFUjkQCmYNEPMCSRN4UnURRas5EyJGBRXFufUTNA7pEiEGDRGM7UUTF9chE7rHSRLg3lUQ9L5NEmU0jRbGDkEUOagFFdfN3RO2REUWMdwpGtuawReyth0SLMOxGbVTFRHcUoETMPK5FPaVNRZMFmUSJcI1ExNyCRdbg7EV/5zZGGFwFRT/xgkSS+IRETxJVRHLqtkRsOuNEA02/RWEFXURe3WRENaZsRHdfOkXE5UZFEgqZRHT7mkY+WANFUzuwRUIBu0R4E/dHnjjdRmJj40Y7wbtFj0CpRtqcEEXCS2tEowRnRUAo60R8Wn9Ee5OLRPB7eUU5z5xEOKR4ROb2QERP+blETP6aREHrr0SSJLxE+jN4RGJ/rkQGUXdEa1QyRRh0i0Qhz5BEHz/FRKq+jEV1N9lEuRhLRoWrrEW1HLhEAgE+ReBKHkU+yEhFSzhPRJsCskSgcFpEYlHQRSb7QUn6UoBFZxq8RGwWKkWZn0hIDpyQRDsbp0aA0YNE7InJRNIgq0QBSX5FdGewRSUk2UW1Ep5E8HlgRMlwoEQIDFpEqNlSRPLNi0W5Mo1Eor5cRJDNlEUEYZdEJtgBRjzMoURi7/5EfMOeROjouUcmrbRG9k7pRKpFm0UFsBpFNc/JRMVmbkTTEa5EK7KuRLs2xURBI+NF78gdReylc0RcGmxE/3eXRM+I5kVaSIdEMl/LRBo+AUWstM5EEbAxRULphkSOpH1EEdMhRSviJUY18j1Fzmd3RcSsfkQlbnJE8ihmRMm7LkVfC19EzxwsRYM/30SXLKJEy2tNRSEdDkXCHUZFl9WoRL3nD0VK7r5E4PVxRCPWekZkzoFEu4ctRnCBd0Xa3FtFk5mQRAi7nEVLv99FA4OQRBQ4z0QRe1dES8e9RPOspkQ/EXhEf9HjRB21VETaaONH/pgFReKh20ZotFBFbKLyRH2ZukY3IohEmhogRfGSk0RfwJJEOl9ZRMf4rkTxWYJEQUmsRDaEv0TckKBENmePRHoUmEVM3mlFRcObRB5TpURK311Egz2NRAnZuURxFYNE2OWURYqKMUYIAMJFSnDhRJuqi0QYVp1FoAtFRg6ZqURnXXtFsimkREJK60SgEEVFBhBFRXhIp0Se2I5GncjoRUdJhkU0OJBEVbNqRFk1c0UpcDlFxp2XRGZBP0UXiCNFxTSFRSY8I0WYkqpEi5NeRS5ngEY1vmFEKEedRY1ZaUT+UpZE0fIURcc1yUb2aoRG2Ry4RcUMPkVEuhlFsNX1RCJLZkRatG1IXWzbR8iW8UTHgGRH42VQRWctNUZEtoJGvR5rRMSMHEYiW5FFIReTRf9KqERtf7ZEUo3DRH1etURAIxFGCXmQRLDgO0XKzdNEnJUORXTqp0W3xaZEVCPsRMN61kRc4YpElaGERPsAtkVam5tEP9ZNRYOqHUUtkjpFJGCVRPZSDkWy+oBELLNbRgWfj0XZjClFW5p7RFGJmEX0kQtFXyPjRyOPWEeGnvZG7xfsRE28xkX4lPpF90IlRYDpEEWWlrRENGbiRH411keOKDxHWojpRrLxEkWt7wZGdnkwRYN4B0VjQMZE9PaaRCikwEStntdFrb9YRRuZiUS4zSFH2mSERjoOM0Yx+btEZ5B4RUPYQkVXhdhEYOAER8V+WkZJbilGxTuFRc08gURzilREO1n8RBC8u0RewdFEeLQ9RjSy0UWs6klFgxqPRE4VxkT0yVpFjjL5RHjJikTyvoRED6OVRCRnAkZDm4RF2y4jReDNxkSd+ZhEUFaERA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - zvCxgXHBckCD55szO8NyQLCVXT/ExHJAeG/pWFvFckBC4yUGRNJyQKfYoP3O33JA9mDtFLngckA+XF5xUOJyQN0AKt2P4nJAMhNqBcrxckC8otJot/NyQEARc5Kh9HJALN7+BsP/ckA2jPKWYgBzQHiKaoj4AHNA0efJTEwBc0BWBt/aiwFzQJNI2ybQAnNAjuCdIvsDc0Didu0bDRJzQEOkOrS8EnNA7A/B4fgTc0DqBo/jBBRzQP3uMA1NFHNAHHKFGo4Uc0Bp6aSEeB9zQG6rIXyjIHNAWOR/Rjkhc0BdUnLdYiFzQN5N1g7LInNAwv1jhgQkc0AIixgpOyRzQGsjx+rPJHNAhRbWjkcxc0BGVH8DIzJzQFZ7qK4MM3NARmL0TdUzc0BgVnhwODRzQJqUZxLkQHNAcx4IenhBc0D2MuWoekRzQFm2A9+dUXNA6poWT0JTc0D6tqoTpFNzQNy/E1yHVHNAyKt5bTxbc0BmG3RQjmBzQKT0y4I5Y3NAAEEkLs9jc0Dvtjv9UHJzQLBlYpRqcnNAD6l10LZ0c0Dy0ihCS3VzQDIwWDp5gHNA7G6T5aSAc0D0FzB5DYFzQMgCeizHgXNAgE7kU4aQc0Dq2d2hTZJzQF5X03vNk3NA6y4zUGGUc0BajQ/o95RzQEYNyle5oHNA3GuNskyhc0CAyitDW6JzQKRsD2gFpXNAh+dRC7izc0CudMTNDLRzQAhFoln4wHNAq4f1T9LCc0AzMWXkJsNzQMQ5hdLBw3NA5zJCXdfRc0CxLDC0NNNzQKJ5pwf303NAnOpY+uLUc0BoV07HOOFzQDSo4N9n4XNA3bhlQ93ic0CQ2xA1NuNzQFgnLxVL8XNA0e56dgHzc0DW2wvaNfRzQIiQwSF5AXRAGAqKg6QBdEAryNhacBJ0QHsD+GBME3RAgGwPvngUdEDGq7JEuCF0QDo7KUFkJHRAhMKeSFIwdEDSTtG5ekN0QIRwmmH3VHRAfihQh4tVdEAU+k5vuGB0QP+BtX0IYnRAK7NWyBFkdEDR3ZPTTWR0QG1zKCsicHRA8F4pQkFxdECi/G9NOnN0QFLL8aY4dXRA3hoAFviAdEA8mk6sToF0QNVoXF4WkHRA+7624WqQdECUzKc90aB0QIPENPq5onRAaNfJL9GidEDiAiR7EKN0QHdFMYxjpXRAJzkptQmwdEAeJSj048B0QHP7iuB3wXRAqZ/91uvBdEAZ2EJuCcJ0QEFGS28Qw3RAJN+WiSPEdECk2VlCecR0QFyA2Fi4xHRAjGfB9p3IdEBk8YI1+850QMTxKc7i03RA4MwRDc/UdEDOqOKTueF0QKFATrdP5XRAksjrY43zdEDiOCIEpgB1QGTCmQ9lAXVALK6sdpsDdUCOUBFOmRB1QFRFS/EEEnVA/JzEayMUdUB3cc99zDV1QMDDWSvtT3VAltKjdPZPdUAf9IpTglF1QC6abstNVHVA8ZEtSXhVdUDC70RzOGF1QHiaS5/zYXVAeR20p3dydUDFBiJijXR1QAYsMTN2gXVAJknxea2BdUCvRMV8m4R1QDYd+mOMkHVAslLQ0PKSdUD64osouKF1QKL6dtJKo3VAMP46nKWodUCWOlfZN7N1QKKSRzd9s3VA5qBzAs7AdUACV8DF98F1QC4k5JjN03VAgGkwB+TfdUACjlHWCOJ1QLwTpBFIAnZAph4P+9ADdkB4/MPsTRR2QOosJNkLFnZAGv5oNocidkBMLWR2nCN2QHJzbVyQJHZAGPWZzkordkA9iUzbHzF2QNyF9FMlM3ZATrJCeFAzdkCaOQGInDR2QJa5K9EdQXZAxEQWP3pEdkAXRpzBylB2QPl5WJ0RUXZAdmlq2JRUdkDr7VmMzVR2QAn9407ZZHZAJj9tV2iCdkDCbQ5UkYN2QMqO9Bq4sHZAZAhzMMGydkAWv9C7DbR2QNzrIkfPznZAzseOd/PhdkDwgqAwkfN2QCaP9w40AndAdN+RzAESd0CQ8wr5NRN3QOOnDCM9G3dAqOlXsQ4id0C0EeAvDTV3QHauaUSdQXdATi8fc7NBd0B3Uf6GG0V3QNySJ5dKUXdAihnUD5NRd0DrU414K1V3QGySYABKYXdAzstWP5Fhd0BYSf5pkGN3QOgvcA0ob3dACDel+XiCd0C5GeAUCpJ3QEmsTp/j0HdAlqvfRGXSd0CwIY2J/dp3QN5YwOJQ8ndAAzAI4OsheEBg3hl6byJ4QF3mYxCLI3hAKriLEQ1CeEC1X346ekV4QCabJjXLUXhAXhP4XYhVeEDpzhgC+2B4QCBOZHi3YXhAzXYjBkB0eEA0yYm7i3R4QDD2/8ujgXhANt6UqZmEeEBlerH8l5F4QLKftKamlHhADNK0IM7AeEBVZf0Pt9R4QCpSHxE34nhAhrbCmAH0eECWw44jjfV4QFzYtFqaBXlARF9IQYxCeUCSpU+W+EJ5QMCpjZDMVHlAG3nB8dlkeUBAaF5oQnN5QBBiU2IUo3lARZGMw8CyeUD2Ha6YQtR5QCpU+yLM1XlAkstvu1DkeUAwv/9hDDV6QJw1Wc0aRXpArAmqfS1QekA0jw3mgFJ6QO61FD4pVXpA/GknEzhtekCwe3GwinJ6QCbFACzOe3pA3qAyrQmdekCUU+FzZaJ6QOjV1PoyrHpAikAP6wy2ekCkK20UMMN6QAoYkcgbxnpAuh5QmTXuekA6aVMuJw57QDYBsgBNFXtAYAJP/Fkle0ASchsvVDB7QIV1ZZXDM3tAykQ8W0FQe0DUc2Z65mt7QLx0KtEklXtAOt8tZnvGe0AivJFUrNN7QKzQ3kpI4ntAxBvNbgHke0At9Exnped7QOTn2DuY8XtApCMpGIz1e0C08Zh5kwF8QBBKb2zaAXxA4Y5rGPMBfEAqmfVTmQV8QM4krOOLEXxApXropNERfEBZy1p2zEF8QDwisAnaUXxAFE7l9A5ifECQIxgBwLJ8QKhPycFX4nxAq0n1jBbyfECvZ8S8VvJ8QLPYUKkBAn1AIjpK/UsCfUCE+ZC4oRF9QOg0PP9EEn1AxR0X2DwifUAsguQEs1N9QArhX7Axw31AEB2RE9TifUDs8joVkPV9QCjNM7NAL35AIA56sZ84fkBkerTo9z1+QFXwIbdYQ35AsmUuMotVfkCg4xy6JI5+QEAHdauNsH5AAHS3jiLtfkAIwSzPfvJ+QEhkxZoRM39AlF93zVA4f0C6utnDqT1/QIJmP58EQ39AguImZFFIf0AeOyaAuHF/QPjMN9CwgX9A6biRt6KDf0AsksAZY5F/QGlJE7OlkX9AlN6Xjt2Rf0B3tm835Zl/QN/h8wNgoX9APL83G9Shf0BEcDjgVbF/QFnhSdyV3X9ARAed2u7if0DAXnRATuh/QClDDS2V7X9AD0YNgZcJgEBexv0dRAyAQNhBrl+DEYBATBOdQTEUgECOvlEg2haAQBgCHTzWNoBABNAIl4E5gEAc/2OgKjyAQHQKRLzWPoBAMZqkC/JIgECfvsTG51CAQLCBjCcVUYBAn2Z0+uRYgEDE8lCjDlmAQDhGoJUob4BAumRqFR6PgEBcFdoKbZGAQMgq+VEZlIBAbVStw8CWgEAjjWzVbpmAQHAq2ISGqYBAInJ4clLBgEDCMUR8U8mAQB4TIXYs0YBAejZB2EzRgECeWeExS9mAQGyOK0SZ2YBAfJ4kg0XcgECkCnPh796AQDkMPPNE4YBAS9HZJ5rhgEBLLo/e9eiAQMRwiFND6YBANC0nuEvvgEAUM4LIP/+AQDIG/co/B4FAYr3jSzwPgUDWGMedHh6BQEjJVRg0H4FAeMeKb7wxgUAqryGsDjSBQBwz65C7NoFAdzfqe2g5gUB8BgyXVY+BQDVB/4BXl4FAuqQtu+ahgUC6qYVmbaiBQDRbPTZKr4FAFKeXWmi4gUDwbuhgftOBQHLZ05bYGIJA2F0F6NYggkBmUBFn0SiCQLHVbs2jMIJAhBI/Isl5gkB2OEV9y32CQOGEDkFDiYJAepPIF0SRgkDN+cXUPJmCQLKuQG9VmYJAOF1Ddg6hgkCfzzw/PKGCQFxjZ0wPqYJA7OJBAjWpgkA3ZlapB7GCQEW8Ruuu+YJAeDcAmHkRg0BnYcNRehmDQHJtO91yIYNAJOJQj4khg0BSmEYNcimDQJL9j3RrMYNAniO1IcNVg0ASglmh5YGDQOZBkyOV+INA5xajCgBphECY5q0u/nCEQKgcHSP3eIRA7JPEPGrZhEC4PowaauGEQIZHxzZj6YRAdLjRDzbxhEAuc324Y/GEQHC4JW42+YRA9D0ugVn5hEAsn+1PLQGFQJMQgKsrCYVA6fi2XqBhhUDWP+Q6oGmFQHTm1fOZcYVAKGd/ELVzhUDSqgM8mHmFQHpoYT+QgYVAAM0zDr1IhkAiWOnNcaaGQF/R7yoouYZAzGdSFiDJhkCerrIZKf6GQJsVNioqAodAyuCD9JAph0DjWs6KkTGHQHf35g+KOYdAilP80FxBh0CSNLvehkGHQKyu5hsbXodAMeQf2R5ih0A215Y9J2aHQD3nbFrHsYdAJAhSAMi5h0B6fLM8wMGHQChAH+DDyYdAhDmqLCzih0AaPHkOea2IQNonVNgmsIhA3ANNzBvWiEA= + NrgMGZxjYkA+KJil8iNvQKPid1q/wnFAWrZEKKmydkBqPQyU1/N3QMCREJlvZHxAgXeMn1fDfkDfd3b247qBQLgaRv7i+YJAIztvnVwDhkD83T6lW0KHQBoa78uTm4lA/AwtzwfLikAnN6/RUwONQK76kgfro41ARbI89+8NkEDmpSd5IZqQQP0o+ktSLpJA5xO5SiwykkA= - + - kKEHRfD+EEVB+LVElKufRK4wAket/e5EeFiwRJlUckUlK9xEOgF9Ra/AhUSGd6VEo5euRNu4o0T5qwFFQhu4RClKhEQjOelEywQZR/5DkkRv5jNGtnWHRaGwgUXcdIREmNBBRPdInES7wfRETtrRRv9/XERssG9EJ5xYRBUIg0RqJ1hF+5PfRGggi0QjXn9E/INhRALiR0QpGMREAbehRQfpMUZr6mtE73alROcnjEW1OKdE0jzdRHYIlEQcVAJFzml6REHtsEQNerVEnvKwRNRQx0THDP1GMaycRDmbF0W65XZE4CvORHXtPUfdDuNEg3jNRNLRb0ZJ9BVGj76NRKuWqEWrvwBFQWVfRdU3HUUH8pxEiPuRRZQwYkjmiGlEEQ5HRRVv10YejdRE5MKLRThqC0Z7oVJECdFJRAKU7USPnFtEFbpeRMFdkkTADZpG1R3aRL9aoEX9WCRFWLGlRBfLJkUwMmJEYdaNRPwjV0Qtc6pElCHbRNv+p0UU9cVE6LN+RJDMvEQGJ7lFChlRR5OvyESctu9EibodRW9H6kWFCKZFXdmNRMdXuEQgeqVEhXrBRQNoHkUfAI5ExxXVRLIvsURIlItERdSPRDCARkRRDg9FcimTRF1Za0RuVj5FZgSgRMFP40T9ZMhENXDORLzwC0Uv36ZEoFzQReNglkT7q9VEkaVbRNdTWkS9fYFEJzr+RFbyAEXlwGRE4x1uRCeLg0RaiX1EVUa0RPY+FkUvOH5EtmoQRfxWEkYJhMdELjHNRSjpxERVksJErsWLROhptURJeyVFmcmLRGIcikR5zBRFfdB6RLrH90RRUqRE9uNnRPlJHUWucGpFudMCRUpSnkQAtopEQr1fRMz/IEUInfBFti65RaPlx0aRw2BEuZoVRSygi0RD5qRFh+lxRX96fkQknSxF49utRUPpNEYWtQhF2xN0RJDko0SrR4BEwiUNReE1uEV8lkVF6x7WRKMvD0UZzsJE0lKHRoVzXUXn3oRES7xzRep9/EdAoclG5oClRYst0UY5GJtFxH6PRst7+0RJ0oNENWQqRdE3jkR5ImxFpV/+RFE9mEQ0sHVEiddKRAMVd0X2pMREf0XKRKzlkEWsFYBEsdDHRChgM0ZThKhF/HMURfGeBUVLRERFPXiFRCk3Skmh6RVFbhhWSMBaFkXqkrhG2W7WRK+KDEUiplJEROQ+Rb5R+0WcArtERJRlRJY9cUQPfbRFH3qMRBQEkkSukHtERut3RQMd9kW/wxtFUPW6RKA/40fTYfJGMzvbROWUjkXARAZFD5KWRHNEmUSgBJZE0qBiRfA+UUWcDXxEbHbuRW0Ue0QnyABFeQwARZLsjkSbUlFGvXdSRQo5mkUaf4RETVKIRItb00SkYw5Fzyp/RBOo9ESyHxxFzpeURKI5aERGQ7lF+CW1RmcTk0RSfEVGPqNORRNkuEVjNJJEk0WvRT8Y20Vl56tEDqOqRI3R2kTIGPRH2qghRUgF+UbvCShFl/LARvlZS0RX4WlFZucXReKRcUSDEp5E+SFoRG0u+kRKk8REw9WqRfktOUXRLn9EJ/ZiRFwDYkSd7XJEqFH8RG5Q7EQgrXVFXBg0Rn89f0UmqpZEcHWJRGYVrEXtAJREHuGQRMf0M0Y5KKFE8IMrRTn6ykRuKj1FMPN+RKHw+ES7/U1GfV0NRsBfC0Wtj+1ERRntRJupk0RoI39Fs1zSRGLKVkSyb09Fjby0RNrzdkWT/8hEgrEARRXuTEWmdYJG3WaERJHurkXTMy9Ffn4nRV4akkbKm1hGfOu0RewkV0Vt/PZEm6KCSGdv/Uf51LtE6bp/R2vWdUZpqEBGzNwIRlGEa0WtB61FvcTfRP2fx0SE5IxEFC+ORKchIUaHECNFC36vRBBaC0Uw865FTwfJRFM2wERgkpJESHuDRCZolkWc/txEpgssRWUuDUVJ/s1EKb2GROmXt0Q90zpGpuiZRXt9N0UzXYNE/3g5RdYgn0SaMsdHDnE8RybM00Y/gw9FAAjKRXMs80W2SglFUzYVRTaY3kSwa6pEdlzKR6TwWkd0wNxGUxAURcfCCEY9CUBFtG3KRFCkkETocpJE2EekRVuhJkVpWvBEtDkTRyR8jEYlyhNGyu54RUeJVUUY5tNEDAyJRPSMqUSJ8FREos8DR1JuXUYLfTdG4tusRBu7l0Wjk4BEmYt7RPHy1ETHCtlETjlxRBw1/kReodhEmqxGRqkuqUUGeFRFfyWiRFNe5URlDR9FBC3pRBQZQEQQHRVGXFGXRWrfXEWnJqREnKN7RKCRl0SiKphErmCkRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Q96bQnDBckAaG8Y2PMNyQOS+pN7FxHJArt1mGlrFckDKZjGAQ9JyQAadht5203JAgjdOfszTckA8hM/N0N9yQP6nPwu44HJAhN2l8FDickBgRX3ejuJyQFCUjXQk43JArjMQZ1PxckBf7gkmyfFyQK3cjGW283JANA4hxgz0ckBqahqipPRyQIyE4jXC/3JAxWpbPWQAc0CmRHtG+gBzQPLchrjQAnNASaYMDvsDc0B8jRfOChJzQNil0lK9EnNAweRyC/sTc0AMtqcHThRzQIjPb196H3NAfHwz36Mgc0DPagxgOSFzQJLV5KtlIXNAGbU+P8oic0CVBKYmOyRzQGhiv/bOJHNAzvq/5Ucxc0BIyBO3IzJzQDIdwLkNM3NAdCWsTqIzc0Dn1J221TNzQOoG4go4NHNArN2WwUJAc0ASZGNl5EBzQIqB6tt5QXNAGrm36ChCc0D+70CovUJzQKDKEnl6RHNA6UsTOEFTc0Aqtd9ZpVNzQOjUAPCKVHNA3fnGpAtVc0BCOZVJO1tzQNRTX3+LYHNAClFiZx5ic0DsTqvKOWNzQMmYl0qxY3NAgorbEc5jc0C43K24aHJzQEZ2Ugy4dHNARIPlSEt1c0A2SaFreYBzQIaJr+ukgHNAo3JrkQ2Bc0CGSh4Lx4FzQALaqCZggnNA+Ntf/4eQc0C9Yat4TZJzQDloq9hglHNAXk4FwveUc0C7ab4KuaBzQCVMjmrioHNAEARc5k2hc0C4bWGYWqJzQGSldefkonNAdqLz5AWlc0BDo7nzfLFzQHzuPsy2s3NAkXarZg20c0CTwhrn98BzQPTgsVHSwnNAMv4VuibDc0DT0xtv1tFzQBZb66U003NAO2KJlk7Tc0Dom6KJ99NzQIvjtPPi1HNAUOQESjjhc0DsEk3NY+FzQJx1mUeO4XNAbNykEg7jc0CEx+3sNeNzQFpJZw059HNABIDLF3kBdEAYxHAppwF0QPbVCqKKEXRAjzTOoHASdEDEdZMTThN0QCSHk/dJIHRA3hIVqo8gdECx3j8YuSF0QBSlbFL7InRAG8n9OFMwdECMYHwzujJ0QLoNPPDoMnRAvsWVul0zdEBaaQLfyUF0QPiOxuRgT3RAcwpF3/dUdECuJ7V4jVV0QCS8WRi4YHRAHpCSTghidEBkUc2kD2R0QF2ASA5PZHRAuu6aESNwdEBH6SRGQXF0QCsfBxs6c3RAOX93u6F0dEDff2sRN3V0QLMJGXz4gHRAwqrpCE6BdED6mGqGFpB0QF9P3yhtkHRAMCoQLtGgdEAAhqHyNqF0QNbYryC5onRAKED7jtGidEDsdeHhEKN0QCJpoMMJsHRAJuu2u+PAdEDi8/jReMF0QFKNvKfpwXRAYraRtg/DdEAKAQSEI8R0QD6DtLy4xHRAPnfrNeLTdECao1NazdR0QNxG9MmN4HRAIML8brjgdEAQvvIbJOF0QKhTbYK44XRA1MEtT1DldED/stFHjfN0QONJvIClAHVAZBgKAs8AdUBScnQoYwF1QPjYwnGaA3VALgxsMAYSdUBP+NpzIhR1QIhVzB+LFXVAPj0s78w1dUAsEyIEs0F1QOzjebbsT3VASPEpTwRQdUCE0/0JgVF1QIbw3A13VXVA+EORWDlhdUA+FACod3J1QEDMeH2NdHVA423fr3mBdUCq96ykrYF1QItD4Vemg3VAupYBEpuEdUDUKk8djJB1QIyL7R66kXVAylCnUG2SdUCs/dwEuKF1QDA5DC9Ko3VAcKZud6GodUA+iTjulbB1QE6lkEE3s3VAope1gnyzdUBiV6vvYsF1QKzDzDj4wXVAu2C/9srTdUC9czh8D+F1QGJv6VkI4nVASsOiKkgCdkAblvwE0AN2QH6SazhOFHZAPNMK2AwWdkC24fkGiCJ2QN7u0pObI3ZAb8VXm5AkdkB5aAKsSit2QCvi2V+lK3ZAxu6nfx8xdkA9lgJ7JTN2QHj6beSeNHZA9BUeiR1BdkBGlpvBeUR2QB5naIv8TnZAcW0P9cpQdkDnN7oGE1F2QManUxaVVHZA2lekZ81UdkAY+eti2WR2QH+cL85jg3ZAUhjXRL6TdkAYyg63uLB2QNRGUtjAsnZA9i8z+wy0dkCIGI1UwsB2QHiFbdoZxHZAhO3jgs7OdkBZZgJLwNB2QJ5mUb7q0nZAoFJewC3TdkCKMoMFNuN2QN3IJHaS83ZAON7/3kz2dkB4OIQqNQJ3QHz91PABEndA2PxIyuwSd0C6qqtJOBN3QPOwHXMOIndAaKoyfXIid0AsPuvzDDV3QFSu1yqdQXdAp2vGXhtFd0BrVHz0SlF3QIjfvhaTUXdAnA3W8SlVd0C4F7XNSGF3QL5Q+6eQYXdAODiDLidvd0DGlAb8kXR3QBQarHV2gndAtGzRq3mDd0AHngiyCJJ3QD4Z8JNLlHdAehz4ZZi0d0APCE+xjdZ3QOZpb/v82ndAUgrpWgTjd0C5v8ey0eN3QMynXHZO8ndA3DyUuU0VeEAnFZYB6iF4QKh5vYJuInhA7gZNEQxCeECG/3FVekV4QP5jI+jKUXhAG73rpohVeEDEFLEV+WB4QIPNcia3YXhAhMy40rlieEDE2EFBr3N4QMC50BXec3hAxtErnot0eEDC6sg05XR4QKqC0UCkgXhAZA3neZmEeECi4b0CUo94QFfiyJOnlHhAgvMJ68zAeEDbhicw9cF4QPM0aUS31HhA4S8NXwL0eEAiMzVujPV4QL2kjJGaBXlA6/YkARRCeUCMNXo7ikJ5QG5WRf/NVHlAJYRO//xxeUCeTm+IQnN5QGCBkJ0Uo3lAmRkz4MCyeUAUIDSoQtR5QK7m+KnN1XlAQiXzHU/keUBsD3Cel/B5QIwweqb5BXpAnmCGQQw1ekCoVZK0Ezx6QHL8Qb0aRXpAAykYLS1QekBoGszoOlJ6QOYFTL2BUnpAQOanPSlVekCCmA6cOGV6QMCMI/o5bXpAjijfM4tyekDB8PIez3t6QPxTB8AHnXpAQXBWRmSiekBAoo77DLZ6QA5Rb5Yqw3pAO1NadhvGekDAlviyNu56QJ65bDErDntARr5Kl0wVe0BmzlrSWyV7QNoLPwlUMHtA5CEZ8mFAe0Clj/eAQlB7QFgSErxyUntALj0jxedre0Axxu477JB7QBRTh/IjlXtAHuGSkTOle0BcxEi+ecZ7QHfGKlis03tAhu79FEnie0BOmJRiAOR7QAy9kaql53tAMak46Zfxe0AigvEVjPV7QGS4DmWRAXxAIHMAa9oBfEAttPZ5mQV8QApGduaGEXxAqoXLbdIRfEDDJ4ayzEF8QMy+mBPcUXxAYPoJvwxifECITWAaK3F8QCq+0xwFc3xA6MTlXMCyfEDCxnI4ELZ8QNsnbOJX4nxAqKL5sRXyfEDmqVHDVvJ8QEfC6bj38nxA7hXkHwICfUAcJD5hSwJ9QJ4PTkViDX1AaA5l6EQSfUA40pVgPiJ9QGTdbv9sUX1ACo4aZSvDfUClvZ4pkPV9QL+pDWM3H35Aknlve6A4fkDMj5E2+T1+QFa4746KVX5AviL0g8B4fkB67Mw33pB+QGAZv/uLsH5AaPibxCLtfkAKnlm61u9+QJM92W588n5ArapY7yX9fkAgdVczEjN/QI2UuChQOH9AxmzDCqg9f0AexQfy8UJ/QNjT/363cX9AyvkdSLSBf0Cez1IZpoN/QDip6H9jkX9APnp+3d6Rf0ACh8FL5Zl/QPciwrteoX9AuvBBRFWxf0DMgc8bk8N/QNSmrheW3X9AoMvyCPDif0CrLMbIROh/QD6rm0OV7X9AHtp3vpYJgEDXXLKQRQyAQERGIESEEYBAQ1BVVS8UgEBmPJFRsxWAQPLhKbXnL4BAOgjf59c2gEBmZFD4fzmAQL7tuMoqPIBAKi/Aadg+gEAs6c0G9EiAQIiPNR3nUIBA1hZiThRRgEAeLNor51iAQBlfrCEOWYBAHDZ7BSBZgEDlGM1XCmGAQLWAVrEob4BALR2JNR6PgEDMnfZJbZGAQLT+Un0ZlIBAPCRGBcaWgEB2CKfkbJmAQI4xWOqGqYBAfLo3ZlLBgEBmvByTU8mAQPS4wWss0YBA6eoC00zRgECMWY28StmAQAIMluR12YBAht+MQZnZgEB22qSFRdyAQJ6yQ8Pt3oBAUiQemUThgEA9OlxeWeGAQHSCEbeY4YBA18V6eUTpgEC0GAsVPfOAQI9DApU//4BAYHbtERwEgUAQkfOtyAaBQMpxfSdAB4FAD8o6VjwPgUAZpUQ2Hh6BQPECWO00H4FAjtcclzIngUDlhJvlvDGBQHnAfJ4ONIFA32MQow48gUBZEOY/Vo+BQPSC1x1Wl4FAzp1s0uahgUDbYp/rbKiBQNb8UxtKr4FA6FlqO37TgUDUQphB2BiCQLDKeDwsHIJABTLe99cggkAujAVu0SiCQD7ZbqOjMIJA7P8z1tAwgkAecJ2zx3mCQLYE0KTKfYJAmpjFREOJgkDQSrXwQ5GCQEKy/mA8mYJAkfJ4UVWZgkA3SUrvDqGCQB7w+Mg7oYJA0Cbrlw2pgkA6vKLQM6mCQHLNL4EHsYJA+k6nd675gkDf+j6UeRGDQF5Tvzx6GYNAgXuP8nIhg0DUad1UcimDQNtT2GhpMYNATplnHMRVg0AqU0tsxVmDQGRVpCn/aIRAMJUdqP5whEBZFNF0+HiEQPKD8ERq2YRA3JPAT2rhhEDILb/0YumEQM80O5s18YRAttQA42LxhECRiHfANfmEQBLHGAVZ+YRAzzjQFDABhUDuq5pjoGGFQNVQK5igaYVAg8kamJlxhUAoUhbFmHmFQDQbFMuPgYVAFl33PXGmhkB8hcXpJbmGQL59Q0EhwYZAIA9Jcyb+hkCoXe9MKgKHQKXcFmuRKYdA+8ciOJExh0AQzpHBijmHQODFfT9cQYdAltnXfotBh0AhBmRTHV6HQKKI2XvHsYdAsMLX/8e5h0CAPrCpv8GHQASpBj/DyYdAWM7XGnqtiECBaewfIbCIQFwjHenUsohA + NrgMGZxjYkA= - + - DJobRYzxIkU/yaBEDN6ORGtNB0cA67JEjLyMRKxJqkRQDdJEEemGRfGc80Qaf09EKNByRCcLQkUWWLxEEZheRFeV0ESJjP5EqzHEROx8mkTGIo5E7hQoR8vMv0RZtj9GWluaRQkBbUQ5TMhEFhIRRbIOu0ZVa4FExkWlRHTvO0Rfga9FR6buRFMHgURFEFtEaLeYRJjNlESHUpBEv6dKRMj0v0T2YHhFMJ95RGuMb0Q1TgtGLmy4RDDWMkWzK9VEVceMRAFlgESGYdNEtMdYRIwV/0Qs74REsXZGRDtM00SAoDdEf4sXRWcW7ka0bqxEB43IRJvTR0RN9ldEQ+36RP2iREekVJlEZLRURmXQCkZmd1pE6rN+RGl990U1B2VEN+0ARaSjPETni/tEhN0gRRql1UQQmaJF8tNeSHqzJ0X+CtJGEI5ARIqT1ERcUZFF2ZLdRUQAy0RnbXdEkQpYROURCUVpWZNETS2DRn1j20TBVWZEddyURT8lCkWTcIBEzmaLRJ9GDkWlo4BE3JtYRIrFg0RHRGBEBAB4RMvad0RVQYhEvxi9RPxNnURaGXtFPwAURRDWWET6TdtEfRaFRRSGRkeMFMJE196NRBWWlkTcMkZFCnL4RfRynUVJNJhEAF+tRDgbS0RgiXlEWaicRfqf7UTTwAVFtfuhRIj3/UTJ5WNEAkUFRXrAw0Rs/6FEy2fARNa9CEUEEntEV2s+RNafWUR4+k1FyOZrRB9EwkXDX3BEBPeqRHpjiETRHLlEyZVLRCJEBEUW+1VEeWAvRd5AiERKlmREvK+SRBjZhkSa/eFEeI/+RBOiL0XrW/pFfVbKRMIL20U44nZEZlz+RK/9RUTZTmREWapiRBI7nET8RlBFaBPHREN+U0QScJBEMraiREg5dUSJywFFZ5OvRD0Gb0T2sg5F1+hYRY57oUS7j49EthLcRFm8vUTYDOtE0KzfRctnoEVKblVEMPbFRpYyTES0T5JEvMecRR4abkWQF2lE7np4REN0LkU6mk9FhfwbRqgh4kSlaypE5sFURGSWrUSmJxZFj6mbRe5mf0QYkIdESeobRYacjkReElhEe815RHxPTET1HhlFgveMRP/ZkESlvoJGlNGORHZpCUU7a2lFmyaFROgN6kfngM9GjqjTRoVGmkUUY6BGgWYJRcRbiERiGFlFomVoRUGUhESNaN9E+cejRI8pi0QdXndEzXFoRPPLikSxLZtFxRORRLrOVUTWhMJE845PRAZx0ERPAadFBEn9RPLmSkZSk6hFt1wyRXEE+kR78k9FBuK3ROvdXURTDJJEV9g3SRotnUT94wFFBGpBSAoyjUSoLJpG4v6/RCLuskTxY3tFlk42RSi3w0W9Y7tE13iGRLDw1USTp2JFPXR0RL0ng0RFSaVEJZyLRUrWtUXEr3pEeFu0RDZ+S0TVF91EWcCtR+LNUESbUa9GRycLRb2/bUQYSn5F1LcwRZp7U0Q6R4VE5V6NRJPDkkRKFZhFl2fhRMhC2EUWPJVEBGqgRMvgBEWYuLBEOFMpRgg7IkXSWdlF88VfRLsLXETLHaREw8K1RF3Zg0SgbjVF64Z0RKktokS7lCVFVzvLRHTXoURubcFEfr66RR7hlUYy4b1E//JARmn6rUWp9rFEBN2FRU3yvUWshMlE5q/YRNyR+EQ3CmhEt7rDRF++gETHhthHFhXARNaY8EYQw1VEqXI6RccpvUZaCXtEeJeRRXDuqEQylkZEIB2sRD3QCEUlkmZET21xRbUA4kRBsJtE+8FJRBsci0R+LKtEJd1MRZHshkQBacFECqmDRLrCgEXIQd5F4LWSRV3Sg0TR3Y5Fgx+5RMTCfkQIW19G61oHRZnw0USHIXpFT4UWRbUbvkRecCJG7kTWRYqnUkUiiKVEYA20RHLx1kTaqf9ET8y6RB49bURTTK9EaobYRCKqC0X+9UlFGi4zRfL5wESTJFtFPnZ1RsKosEQUB51FH6iWRBtxg0R1xshEjZ84RRK7iUZPQxdG+uuxRVDhdkXdnINE6bl5SFIe9kdGCKJEj9Z8R18ZPEav+I1Ek/EmRjLH+UUS2h5FsICPRd2Xk0TKeaFEUjd6RE3dq0RPQApGtoLERMiJoUT1nCBFX07jRNrnikR0a7tFiKt2RB3r7USx4e1EgiBnRGqxh0XVGa5EoPoqRaUwDUVnRw5FS/OIRKRCPEaYJHBEkqp7RfU9UEWrT6xE8NJwRBMizkRchFFEQkjMRzidT0fc1OFGLRUDRYqQ60XFQeJFSXAZRZa5FUXcI5xE/RuZRPj0yEdyWk5HX6/ZRobmEkbVU+ZEakmeRDR7okQob+xF45dCRbJ9F0UgyApHTIpwRrKqJkY7EJRFgaFCRW08IkVH3pBELI1rRPxt9kYdI2BGsvcFRlKXTUU0ymxEg/STRJ0etkTLjmpEWhpLRQJ3xkSiJiZGmUyyRRrNgUUIeZVEyXvnRL8kC0XG7wJGuWeRRWXzWUX5cYFEcZmCRG6wYkSjtWRE + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - zGP49A/BckASof37bsFyQFxW5eNPwnJA5syCWeXCckD4EakLPMNyQEG5kiLFxHJA3FW8oFnFckAuw2+MQ9JyQMJaz4Y503JA9A6GQHjTckD2gwJs9tpyQJ4dP0DO33JAAB3pfbngckBlWv3AUOJyQLria5WQ4nJAZYEN0SPjckCUCD4Exe9yQNb1/wRS8XJAesSzc63xckAMfYrQyfFyQPCHbD2483JA3gQyKaP0ckC8hiydwf9yQJbX3ov5AHNAyOMXCdACc0D6hTjt+gNzQNhWSpIKEnNAH26xZrwSc0DI/GAmBRRzQM3k2x17H3NAp8PPt6Mgc0AXIMs8OSFzQDjaSSA5JHNABh5ZQc8kc0DE2P25SDFzQFqBA3ZeMXNATb2H7Awzc0AK/nV9ojNzQDYotao2NHNAtKlp+uJAc0B4zK/HeEFzQKMAkk8nQnNABns1T7pCc0BRsoksekRzQN+baeObUXNAzpTuc0JTc0CWKD1To1NzQJ4Gr2N7VHNAwiMfojxbc0Dk6py1jGBzQETlnoY4Y3NAsBYUt85jc0AHITn3UnJzQIC3PP23dHNAOqlLY0x1c0AfoFSGanZzQNpLLg95gHNA0i/9YqSAc0BPls37DYFzQMR/Dc/IgXNAGhnsAaaCc0Aw6+xlh5BzQDrOSg5NknNArLSgdM2Tc0DB8W+WYJRzQLpwtsj3lHNAiHmSm7igc0Dw0ChcT6FzQIo2YbFaonNAkNMMX+aic0D+BrrzBaVzQGFqJtN+sXNAfF6D57ezc0CVWTCzDbRzQIbBy+33wHNAPLSIbtDCc0CnQr3MJsNzQKAEXiLX0XNANjzJqDTTc0D+/srN9tNzQM74FuPh1HNA5KEV4jjhc0COxs/gZOFzQFfEFS3e4nNAwtW8Tjbjc0DOG1Nr7eRzQGb8vr1I8XNAwkF5xzb0c0BlRs/9eAF0QB4GUE2kAXRAUgiy2nkEdEDu8NxuihF0QA3A5pxvEnRA0hZjBEwTdEACLPdXeBR0QD0q0UFLIHRAWAY9nbghdED9IkH3UjB0QA5l3WzVMnRAvCfmiPdUdEAomiFji1V0QALyPgy4YHRAv6p17AdidECqkdXNTWR0QKfvsTwicHRArqhXGUFxdEBmedIAOHN0QETBu3r4gHRAcYz77h+BdECv4HhfToF0QLhqBqMWkHRA/dZLVGqQdEBylcUZ0KB0QLP+rjc4oXRAVLKLL9GidEB8vfqBD6N0QAA7sYllpXRAYVBmnAewdEB/QqmQeMF0QMY/TvsPw3RAFnGzsCTEdEBOw6ymuMR0QDK6IKqcyHRAXL0x9fbNdECOzfAW4tN0QCR0FFHO1HRA5+TVc7jhdECjQYwZUOV0QEGQmg2O83RA6skCZnr0dEAyuSs4pQB1QNvVhxzQAHVApiQHkmMBdUA6uIGqmgN1QEQfhyQGEnVAW2BRtSQUdUAgGYzHyzV1QDD1DNv4T3VAeuqYQoFRdUAU6OwOTFR1QEUVs012VXVASsADcA5gdUC2DjnrN2F1QPKdsarzYXVAYRJPyndydUDXxIZTjXR1QEGf21x4gXVA2rjcL62BdUDWa7sYpoN1QFQaKcKahHVAGumwKOCKdUCUrtkgjJB1QPYR4Ovbn3VAxnOdL7ihdUDoOTIpSaN1QEqP/gSkqHVASIcQQDezdUBCnM5ofLN1QMdFYeDNwHVAoN6uT/rBdUBOCSbbzNN1QAg4iacH4nVAOljTDEgCdkA+OxcB0QN2QOjLEqFNFHZArm5ugwwWdkA5mllkiiJ2QHwDTEOdI3ZALOCnFpAkdkB2Z2viSit2QFQpMsofMXZADIiLJVMzdkAMzMMKnzR2QC1MRQceQXZAW5tyG3pEdkDo+OZ3ElF2QBYKOa+WVHZARky4Ns1UdkDoHvRiFGF2QL1Q+RfaZHZApsGXZJGDdkDBpSkMu5N2QBZQ64/CsnZAdJeJGg20dkBYOMCGzs52QGgApZrD0HZAe9iDCyzTdkBB2ooX8+F2QCNmPP6Q83ZArF2e60v2dkCsHLICMQJ3QPcLAXMBEndA9RjI5jUTd0DztfD6DSJ3QIh1E75xIndAAQlDubkkd0C3ZuriDDV3QP1WX1OdQXdAsoW+NhtFd0BuhKvUSlF3QFY8HOSSUXdATwoRgSpVd0AWD1+ER2F3QHtQtIqPYXdAsLyz5Dlld0DEudUlKG93QKOW1/mOdXdAjD98ZniCd0Bh7CRHfoN3QNiUKwgIkndAKzWWtkyUd0AmlplZmbR3QKw29uLj0HdAXok+Y/3ad0ACpVl06uB3QNExtgIE43dAz2oXLVLyd0DIKGTiTRV4QA4yM+zqIXhAYobLfm0ieEAQY2fRiCN4QPcgCaR7MnhAbJdELA1CeEC4RJNLekV4QMSAXofKUXhAAuFopIhVeECylTxU+mB4QJgJWwW3YXhAZBpj+7dieEDE77e0LXR4QP7oASNRdHhAVtP18GZ0eECkoTtPi3R4QAcQz+CodHhArsjZ97t0eEAhdjMp4HR4QCTBo3jydHhAlibNYKaBeEDmwEFxmYR4QFJAfuxRj3hA2i8l35SReED3EHydppR4QL5C76W5pHhAQYXvPsvAeEA4oBY1uNR4QANIMRsB9HhAFqes4ov1eEDkFwWxmQV5QOqQfl6NQnlALagt1MxUeUBoxuhX3GR5QPB1M5NEc3lAJKnZt/mBeUAMVo2CgZJ5QCUYr5L2pnlAJGBdK8CyeUDElferQtR5QNJ2Fl7N1XlAjV7pgU/keUBUHwiG+QV6QHJ9IXHaJnpAeQl9HAw1ekBMCrmAGkV6QGa/ddktUHpA/GyVioFSekCrkh5DJ1V6QMH4XHiKcnpAXlGMngmdekDw83yEY6J6QGy0vAasp3pAA9WAngy2ekD8Tmk1LcN6QEb3b/QbxnpAIb1OFtjTekDGDAhMN+56QFjL1qYqDntAsNjrmEwVe0CZMADTWSV7QFvvByZUMHtAKuJQ/2JAe0DX7xQKRVB7QNRzDQ1wUntAZlR2v+hre0AoPXqWwZR7QFCnC1cjlXtApv2XbnjGe0BWi5Zbv9F7QFZrfOat03tAHa9s1Ubie0AGyeQh/uN7QOO7d60q7HtALueTre7se0BGJqPzlvF7QH+xzgWM9XtA701JcpABfEB8nO4s2gF8QAnVVdD4AXxAOJcvs5kFfEBUJafQhhF8QLrOnd7QEXxArhVJcc1BfEBFcDqP2VF8QKpaYxMNYnxAATWYEsGyfEA0m+ZYEbZ8QELU0rnM1XxASU7Wo1fifED4x5bMF/J8QJhnYFJW8nxAK1UhXAACfUDa3jRcSwJ9QJtX/6kCEn1AmGUga0USfUCCGppUPyJ9QOpZkw2jMX1AZVT9+yrDfUD2PmKP1eJ9QFFsEfFo831AoLfLVI/1fUD1ZPgDQS9+QDRWPHCeOH5ABorSL/o9fkBuT0zrUUN+QG1mZguOVX5AKw7ithR+fkBuCgoZJO1+QAp0E5jW735AK3DHpX3yfkApUwQ8ETN/QP96eGFROH9ADMpRg6c9f0D0XI0fyT1/QIT4lQ64cX9AREiXdbSBf0AGxs/looN/QHiT2EZjkX9ANeJVDdyRf0CpuL+P5Jl/QLzd3zReoX9Ai+r2TVSxf0CiENVFUMF/QF4QLL2Pw39AV+ZoQpbdf0BiTbtR7uJ/QGz6Oj1O6H9AN9gMBJbtf0BODDQMlwmAQPZLRxlFDIBAyA/4djAUgEChuqQh1zaAQJcnCMfqN4BAzEj9Eio8gECSCHg11z6AQHiwV41+QYBA0MXRSfVIgEDQavQ851CAQFTaTWIUUYBAdfTEwA1ZgEAwPJbWHFmAQHP53eInb4BAzxIRaR2PgEDjmPUkbZGAQBob/sQZlIBAsKl6i8OWgECoOWOWbJmAQGpGUFMYnIBAf0O0M4epgEDANcYvIsCAQErwGmJSwYBAarLpfFPJgEC+8kc0LNGAQOMIUWdM0YBAZkgvG2HRgEAH2ZjTStmAQMFuk/yY2YBAWJA5ikXcgEBjVKE98t6AQMZQ1Q1E4YBARJhIt1fhgEAMz42jmeGAQMxGxSH26IBA0oId50rvgEDmKUp4PfOAQP8nnV8//4BAtj3b3RwEgUAGuD3tyAaBQCJp5R8/B4FA4hK/7j0PgUD+aR4nNB+BQBaKYK40J4FAjk1hW/AtgUDGQIFr8C6BQEqYfoO8MYFAnhUxHA80gUDWvAV1uzaBQKqHBt1Vj4FA1slgJlOXgUDKljEH56GBQIj3cLltqIFAeCz1PEmvgUBGpRqWZbiBQFbASq5904FA0uSxALLygUCuNdY02BiCQGj+UM/WIIJActp5y9AogkDYkioVpTCCQCi6a3XPMIJA3LnXQkOJgkBeHBMYRJGCQFTsL5c8mYJAMK6GZg6hgkCEx48BO6GCQDb90rwOqYJACHcnUTSpgkC26WJ4BrGCQGZ8Yamw+YJAau/6cnkRg0A4xRlVehmDQNU/ErNyIYNAjSpvWYkhg0AEU2sFcimDQPFRLb1rMYNAlKb25sJVg0DZ5jrTxVmDQApEV9FJg4NANUvc2JL4g0AkJ4ABAGmEQBxd7UD+cIRAGwS5gfh4hEBcBwMgatmEQLV7cx9q4YRAl1445mLphECOWY+KNfGEQL6x20Nk8YRAzqb73TT5hEAdusrvLAGFQDxcPmigYYVAsE6J2p9phUADDR9HmXGFQIDTjIuzc4VAnqmlipl5hUCcRLK8cqaGQKhcnpsnuYZAbowUpyf+hkAabUKJKgKHQFBFBMiQKYdAgb7MrZExh0AdgM41ijmHQM5RN79bQYdAXcLnS4pBh0D/MxnOG16HQEzG1zUfYodATD3W2sexh0BbMhDZxrmHQIxRS9nAwYdABl+uNMDJh0B6xy8Ne62IQPeTwA8msIhA + NrgMGZxjYkAbumJgJkNwQKz0JpO9sXBAdsasq+mTdkBv+8RmY+J4QDnNSn+PxH5AygcPsiYzf0DlsvWCPyKDQDBHSfueaoNA - + - PNSbRGcwaEWWF/BEs6PHRHbfM0WVyeJE+HHqRN7xE0dubmBEperMRMuDtUR/AU1FQVYuRVmUV0Ud+P1EEkZyRHM7g0RS/pZE8Y+WRDZhaUWtLKlE7h7IRJFt0kQtCaREAlS5RCgHMEfP1rRE/Y8dRuSVmUXX6KVEdn0NRQbF10b/paJEtcikRXyR50R/UnREAnK1RAGB+kSMXppE3/rWRNbImUWyj4hE8wiMRKY/DEapjclEgrvRRJfKm0W533dE/JnsRLsUuURjP9JEqYeWRH/86UQwEchEE5YyRSIhrURRwulG6tblRIFuB0VUeJpE8NOURDyZ+kRC6lZHz8CsRGRPf0RxFYtGqmYCRjASokSr2xBGl5K+RK5jMkXMV+ZETt1QRU8yU0WAQf5EScq1RTcVYkjccFRFR/HjRhNK9ETo96ZFi7YRRrhHt0RJfn5EgoIKRQftYUS/m5NEpaiARMLxkkZi0LBE6D2WRASEwUQZAbtFiuNQRQorfkSbobdEEJpYRSEroUTHsMxE0TjdRM3CHkUH415FPnssRWVcwUS6VNVFUoJZR/hX/ESXfhZFVmVdRJpe4UVatdNFDFmcRNUVu0QjOK1Em7mhRc9J/kRXI5REE1+CRBycv0RUfAdFo8JpRBYHg0XveMlEXkOdRMimt0TM4MxEyhNDRdnOpUSvreVFmoF7RAggqUSEsNNEyPABRZqugEQ/PHBEgNLpRNipPEVgZMJElsfDRM6eokTHoKlEqIuNRDuM8US2UnREC5EgRdFtNUaoqA5FKPjxRSNl9USIzeZEs7iXRD3cgESsDX5EcsTNRBCpWUWwDrxEkkChRNsMOkVFWIZEs6TuRLztxERMlSdFgDVxRXu1JEWfKepExay7RBQjyUS53ChF4ir7RWfyvUVrZN9Gj7joRK3XuERSwLRF+x5fRdWsWUWdKwVFjjFzRsKgc0SsDjhF92GvRD4OkETi0RdF2+jGRawbUkVL1F9EoeiUROGZtETMRQVFYnCERABdv0QRSZ1Gpqt2RVenbEVOqrdEKYpzRK6RA0jRlPtG4N7RRqQCt0XLraVGQ0zDREH+rUS0NjZFT31uRPdvl0UtyYBEoXXHROjHjUQoJ89EYdgbRV8vnEQQZq9E6pbjRdRhwESBOSlFy3O7RPuqz0QeRO1EseiVRcE9mUTIdJ1El5vFREq3W0biIKFFSYMkRZaQAkUPxkNFT6GtRJ/YGUUZNIZFzFiYRRxSY0kImelFAkCIRXZjvERbvAdFoeobRUSEY0jKW55EvrPQRGxUxUZAWI5EdNzeREpvP0X/XmpF7OUgRiSWHkUv6LdEd6/kRX93qETjS8lEKcyDRHI3jETGx7FEAnuPRXpRBkbtDCNF5jc2RWeZDEVFEshEd2wHSIJ+GEcOgO5EilBSRfb/kUWHt9NEyB2+RXVxt0SH9IREHJv4RQaFzERWy71EKo/DRAJ+2EQ10LtEQT9TRt4GaUUcujRGM8u4RKA4o0S7EA5Fg+4NRZzAdEQ8mS5FdjB8RFN0AUVOBN1EGGXXRLAt2UTT2p9EP1OQRGLvxkXs2s5GmpbIRCiAbkZKRP9E3HPQRUXFuERsIsJFllvxRfsVcUSlY65Ep5EcRV4mjURkXp5E80cFSKoRzkQv1w9HD0gkRYu7wkbOtI9EpaFeRfVkA0XJg5JEgZOTROxWnUQirFtEjxYMRWAipkS2CJBFJh4URXzFdkSdCKxEu7N6RKuAGUVLAK1EXlIORRQEdUWgWdJF3JyRRWugXkRFlrVF0RzrRHxXxkSl7WNGh1MdRWS+xkShTIlFRQIeRZp+kUQTy5tES++ARmgmH0aKkBRF1ToORdxCOkVRfvdEM2bPRPp19kS2oq5E14QtRfpY0kSuvEtE5T/oRNKZW0Xa7LFGxqSdRS7vHEW7qChFP4QwRRnGpkbrblFGmF5zRW6fOUVdVqVEct6wRPrsi0RaJ4RIBXX9Ry6G0UQ/KYlHhfByRSqIbkYV7gtGqxsHRs2pXEWuYpVF4eHZRIgBm0TLYadE3c2+RI585kSBuxdGEJGPRLfb5kTWSTdFilcFRQXn2kWd5eVEcqGbRFZnq0QKAQ1FJtRIRWONB0Xp8bJFPmOdRPY6ZEVAGBJFIzsgRSpiiURzWrVE59aLROIVWEZj0IlFoEZURQprg0RtHdFEHgfnRy98XUfplAhH6hTDRcwmGUaREQtFEqZCRXZq60QtTKZESJfjR14xQUflnvBGEUUERd4cGUbMGlFFfz71RK/hgESLK3VECdLdRFi4wUWPo0NFOC8ARUuIK0fQS3xGLuonRs7zpUXQQoBFIlGvRNDExETLWvZGBnVoRjvlD0ZDBJdETtBtRQdei0QXrdNELdUyRcY2BUW/XzlGXg/4RQ3dkEXESIFECSDARLB55UQD6qpEh/UQRszRpUVea2lFZMO0RGib2UTDKoVE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - SDVmm3fAckAauczSbsFyQHy+of87w3JAAKmsYMbEckAkBVz2WcVyQNqbt5lD0nJAtkWIx3bTckBEi3UKz99yQGKfNru44HJAYqcFLFDhckD/BkyGUeJyQJo9j06Q4nJA8uyUYSTjckCVChtjueNyQAAN66DJ8XJAwkcKSrjzckDk+hWOpPRyQOKM25zC/3JAyH8DgPkAc0B8RA13TgFzQMeYZ8jOAnNAQPP50foDc0BCFnQ3CRJzQD0zWxC9EnNA/OS0HPoTc0CsPvOvBhRzQOBMQAR5H3NADGat26Mgc0CO/mIeOSFzQI4AMS7LInNA9lfKqA8jc0CsTPasOiRzQGb++uvOJHNAUnot3kkxc0DI1c85IzJzQAxCX4T5M3NAfhofcDY0c0CEV1pB40BzQCjItq95QXNAvCxYbnpEc0B2+plPQlNzQDogHh2kU3NAlw3mW4ZUc0Cbi9ZAOltzQP37R8KLYHNA/96Buzhjc0DK0Uam0GNzQC7bIjtRcnNAyAQxcbh0c0DKssabTHVzQAG2uEx5gHNA7ZB6+qWAc0DkR2wADYFzQEaBRa4OhHNAqEPK9YWQc0BSErIlTZJzQE6OZdvNk3NAo1LQO2SUc0Cgs5cL+JRzQJirH8KMlXNAQhs387igc0DmvGKkWqJzQDzKsiKQonNA2+wiYeaic0Bde6cVBaVzQFRiTpvHsHNAFvkARH2xc0AI9MUEt7NzQJiNsHcNtHNAogEo/vjAc0CEDvH60MJzQBjwZLomw3NA8rsm1tbRc0A+MZ9RNNNzQGgiLbL203NAIyy8neLUc0CZ6bUlOOFzQFrNL9Rl4XNA0Qwu+OXhc0CyJLAdNuNzQEpyWR+38nNAvWZ86Db0c0A8J8pB5AB0QNhjt/d4AXRAlqTCO6cBdEDMXVJ9CBF0QKwj0TaJEXRAJlyEOnASdEAKZbVATRN0QJSiHV3iE3RAxhUn6HcUdEC04cTiuCF0QJBsQtBSMHRAAkz76lJAdEAuOdkZyUF0QHBiRkN/T3RAXrKWEPdUdEDtxqrEjFV0QK7nFh+4YHRAZA8BCwlidEB+aQlBTmR0QNSAhgYicHRAN8n6h8ZwdEAs2TcXQXF0QO5Kd885c3RAWkrN/DZ1dECQfI6Q94B0QKaADUtOgXRAZv8G7RWQdEB0ZXJtNqF0QDdi1By5onRA56xYkNGidECXA/nuD6N0QM/m5cdmo3RAnDJ0mAqwdEDorOKhSbJ0QDyHio3+snRAu2xAmfezdEBpskvG4sB0QNwR/294wXRA/TWpehPDdEA8u3BjuMR0QNzUMCedyHRAGv1ynPzOdEB9SWs1PdN0QGjzFKnL1HRATWz4xrbgdED07toWI+F0QEwPo5S44XRAzqY2Vk/ldEBCu8nrv/B0QDTlhPOM83RALwvdWKUAdUAaxEYHzgB1QMn6w+ViAXVAj05DxFwCdUCSDQiumgN1QJyqGYgjFHVAHNZfNM01dUBRVO1Ts0F1QMFUHw3pT3VA1j83aIFRdUBJ37YbTlR1QGRDWtR2VXVAbWagbDlhdUBuq2Rq82F1QN6Ob9V3cnVAtmE0bI10dUBAeZSxeIF1QNa7ycStgXVAbYiEiUmDdUC2IGp7pYN1QIhDICqbhHVArgtKkYyQdUBqONCo2Z91QKKp2K23oXVAGF9Y4UmjdUA/VTDRNrN1QLzAl617s3VATdmSkvnBdUBWpxIZzdN1QAhWy/Pj33VADyQVsA7hdUD5LUVQB+J1QODHCZRIAnZADiNKidADdkCY4pbcDBZ2QHY+d0KQJHZAVd+HxEsrdkB+8PGRHzF2QDRhR01QM3ZAhEtmK540dkDwiwjWHUF2QPAZEzF6RHZALfMravtOdkBgELCaylB2QOCXxIkSUXZAgrX32M1UdkDkM1Zq2mR2QC/DTkxkgnZAQNHErZKDdkCUmVydaZJ2QL5cmlvBsnZANbofbQ20dkA2ShC9v8B2QCXAa8QZxHZAplR17M/OdkD00XRdwNB2QHec/XD14XZANkvAGJHzdkAKVX27MwJ3QESZecUBEndAsvr7FjYTd0CQXvD3DiJ3QDhP1BUNNXdALE+ZK51Bd0CI5wpTG0V3QFxmMuNKUXdA5BO79JJRd0DSxffaKFV3QDBoS56PYXdA6DwDTuthd0AjVXtQJ293QFTnWBcnf3dADNyeHHiCd0CRTxZyfIN3QLKxi3sHkndATaNgVTHDd0DoUlxJ/dp3QG4xN/zo4HdAq5GRhwXjd0DiY4vyT/J3QD8swoNNFXhASas8SW8ieEDuLbjGiyN4QBYRS6GlJHhAik4SZQ5CeEBSZuBvekV4QNRiPefKUXhAbHhb04hVeEAA+Xx0+mB4QNrc+GG3YXhAUjKOebZieEDEPKmii3R4QPoP/TzNdHhAyFhS0KWBeED7jH+HmYR4QHL1AVKXkXhAXKmulKeUeEC4JLfazcB4QOsIRhoHxXhA2AFLfbjUeEAGozL/AfR4QANP/WOM9XhA0BfxE5oFeUDAbaG5zFR5QMP5SGzqYHlAvm7P6NpkeUDf38ohRnN5QFQCqr/4gXlAdiC3ffmEeUDb41dvgpJ5QBA+mfsSo3lAqPk2RfemeUCE1AOmwLJ5QPJCuK5C1HlA9lIj5s3VeUCCz9P7T+R5QHH46rmS8HlAcCgzHvsFekAIXU9xDDV6QNNJ9J4aRXpAsj+rOi5QekANyjdsgFJ6QCWPXFKFU3pA8hJg0ihVekBy/O1COGV6QAoPMiXMe3pABBteVwidekDwno9nY6J6QEoRwYINtnpAZoXZLCzDekBYLv6zGsZ6QHh3bYbY03pAEUESiTfuekBmWpquFvF6QPIYvXArDntADMaVME0Ve0AUzGMdWiV7QBXCWStUMHtAGHKGqGNAe0B8jW7ceUV7QCqgDvhBUHtA3BT3r3BSe0DJpoV1U3x7QA6Oc3AilXtALaBAZHnGe0ACL6RUrtN7QJges02x23tAfv0Nvkbie0A1WAXe/uN7QIqI5j+M9XtAnPUmbpEBfEDXacwS2wF8QBpbuaiZBXxA8CiHidERfEDMH0RKzUF8QNNrQS4OYnxAgmGYSsCyfECSIb53zNV8QAp+udpX4nxACnGbkhbyfECWIJToVfJ8QDzRLwUDAn1A5HYV30sCfUB/hKQHRRJ9QNJMhks8In1A1p/fJaIxfUBrJ2SdK8N9QKk+cJXU4n1AlLmDmpD1fUDcYxGxggJ+QE9yoyagOH5AeJMZn/k9fkCA3WhkjrB+QMeMAMYh7X5ASNmdkn3yfkAEI2QSETN/QJJzaDBQOH9A/L+N+qo9f0B4cK9v+UJ/QI0F3cG4cX9AqKXxv7CBf0BIp77KpIN/QCJ5+t1ikX9AsLxeUdyRf0CQmW3i4pl/QLRQ3LZeoX9AtKqd3laxf0DUHAkXk8N/QAQ2PuSV3X9AxqYlIPDif0DU1esTTOh/QGWLDNOXCYBA1N8yQEMMgED+8az7hBGAQOiR4J8vFIBAIoaAY9c2gEAgPaoPKzyAQLrp1LrVPoBAs7F/b/RIgEAqnnhx51CAQKx7njUUUYBA4ABcIOdYgECdeQlzDlmAQP1PpVwhWYBAgs8DPChvgEDQrptyHo+AQPpBRiFtkYBA8v0VVhmUgEBYi5oGw5aAQL8A8w1ymYBA5MRL7IWpgEAk2/pwUsGAQGrbGpNTyYBAgs+JISzRgEDz68e4TNGAQOMGItVK2YBAKH4l4JjZgED4QB4FJ9yAQD8sAUdF3IBA/gtXn/LegEAM65w5ROGAQLhuULlW4YBAChsvyvbogEDLJ4WlSe+AQCHq+Uo984BARoMg5z//gEAT0ABTHASBQAw2fIxBB4FAYY9BqDwPgUD2/qpONB+BQKqaii+8MYFA9CDfyw00gUAj8+zBuzaBQOgMznBhf4FAEsMu/VWPgUBw92kZ56GBQO41CVxtqIFAQp4IOUqvgUB8/oulbLCBQCmkjRN904FA86BvW9gYgkCQf0Rq1yCCQFxFX4sVIoJABjFmX9AogkDWmnNtpDCCQGkfPNjPMIJANiRm7Mh5gkAwgjZNQ4mCQLr15eRDkYJAJmjCqB+ZgkCnhYPmPJmCQEjiPBEPoYJAi65+7DqhgkDJhnQ7DqmCQGSb7Bo0qYJAlu1/9waxgkCGpBhROLmCQER/l6B5EYNA7kRqMXoZg0Be/krVciGDQEpQzSByKYNAKj31Z2oxg0A6aTxlw1WDQBD3Jr3kgYNAoGOVR0iDg0CqnU+o/2iEQK5ZRZD/cIRAch7tifh4hEBFOhNCatmEQDz1Njxq4YRAXLhyp2LphECq8p+AeumEQK4T4Yo28YRAMuB1yGHxhECP5oO5NvmEQHpHuU9c+YRA3r2KGC4BhUC70UdkoGGFQPQ2yc2gaYVALkVuhJlxhUCaPa3stHOFQBh2FIuYeYVA4qDMjbt7hUCAOTwidaqGQAb7PDwmuYZAWvi3riX+hkAqqTrtkCmHQLhAlAGSMYdA2tjNWYo5h0CCsq9yi0GHQEburuoaXodARzse/3uCh0CKwa9dx7GHQPbeY57HuYdAgH0qCsDBh0Aaq4MUxMmHQKakjTl7rYhADDUjKCCwiEBm2m3u1bKIQA== + KBZXds7jZUDEsXzkG6NpQNS+X4D+xG5AcLCKEWbickD5NnxfV3N1QMYEjxb+UndAF4g4Sq8DeUA= - + - 80iCRKEPUEW5/UpFrK6lRDcni0T/zRBH5DfQRAonNEUG/RNFz4mTRNNbY0V+G15Fa8GLRJMHgESfzqZFuu/oRLUywkTXJlZFJNfYRJ+Sl0S1KfVERjAhR99+EkUSBHNGQAeMRcxblkVI0K5E9HYoRekA4Earic5E7YmtROOqqUREVK1FbkAARbBWnkTuqa5ECxStREtMFUV/LK1F9s8eRmNW4ER9yNFFfkahRL1nj0SOAJtEVGUDRfDfmkTD4RNFIPW/RJITC0WyBhtHleoHRVHpNEVrN6xEiQrzRN3xV0c8UaREwl77RKI9k0YcU4lEDpYeRqy3HEZbUpFEdwWiREorXUXG/IZE+MicRFlhSkWEqGRFlSsORc4chEWN101IghINRS1Cx0YCPM9EUZ+URZ8i+UX0CIdECG+lRI+OiESb3JJEo//kRPBuikQgopxGj26JRIpKskQ8cv9EJRW4RbFxd0UrXpxEaUzQRMEMakU845FEsQ17RFuZrkRcGohE+m/mRGDNE0VH7Z5Fvd5CRSw7k0S5fPBFHCyBRDq2V0d3ad5EUvWURBLPLUVV1RlGLbvkRU3lpkSeKPdEMxWwRYf2/kQANKVEciUXRbJvm0Qt64hEjK2LRPNctkT+tO1EN/HgROf1d0X5/QxFMuTpRJlszkTeo5lEzGKvRG/ds0QFljVF2p6vRJ3sgESF7tpFXbSdRKjj1URoOMFE8faDRC3H90Q0XjdFA0cjRWyFkEQoErREeXXNRHhrl0RzKUJF5v8+RQ+WkkSsGC1FcvpgRrI/yUSV/tpFqTGURM2+zETHYAdFmx/PRC1HoUQJPMFE8BEfRc7a70Sp7gRFLUERRdMI/0SngohEXJn7RIEnRkWEB4tFFORaReYC5kTyF/BFlBXlRf4d4Ea4sPxEOeOKROalv0UHXZtF0vuQRNiz6kSdjoZFWsaSRu6CPkWlkoBEVi+RRKCeiUTvNlhFn6PNRYMYuUTSn5FEGzogRbzXrUTmJ51Ez24wRVe0IkXRr7FGBpIjRT6AZkXKdAJIhYbvRubG2kYY9JpFv96CRpEZOkWGzoNFK1uTRDJemkV686hE1BsdRVev3kTXp85Ek1ilRAIHDEaurphExDE5RWuU/0RF25hEJ32NRWrr0kR2JHhETpX1RNQgZkZT3gJGGaMuRWxxCkVje2BFXOWJRPSQdUkn+w5FALtlRW4ggEiaYclETqzNRn8J4kT6Z4JES2YGRRFSgkWv2DpGopA0RYWjCEYbwYlEL7gdRY7vlUSFa6FEgP+MRNyGn0R7ydFE20KVRDvtV0VuwfJFX3wkRWoP20TZA5tEVuLSRLU2D0j3OCBHO9oiRZcHN0XC/4xEdU+nRfGgsUTVcKFEEMyWRfL8D0VUXA5G4GKqRMJZREU2jrpENJjORKVRCUXfkMxE5GdcRs8dU0WNvoFGI2wGReLWc0TYemRFZ6DORBb4s0Tj+bFErFTWRDRAFUXOYolED3oyRQG6x0RO59ZGtgXIRE4pgkacdc1FAJOuRYxo+0VgYeFEQpQCRZY3BkU5ewxIDCwoRQa/EEcWkHdFoWPmRicJlUUNWbNEG3a3RKb5k0S0t4JEFCf6REmJlEQ8JJZF6V/vRAfDmES1sQRF6VLFRCFpwUVNJe5FLwOiRaJ+s0Q5H4ZFoZevRCS7qUSIdlxGSjvFRbi09kT2AY9F5sw/RdQhTEWyEV1GEqHkRRwIIEVkehxFNebqREOUCkWkxclEGlzBRAezVUXDl/JE4P0FRc1CV0XJ8IRGMo/sRCxDvEU9MMZEXIX5RE6CEEWDJ4BGQtk+RlA8mEVx3wpFxkD9RA+SkUiN8wxI9s21RHoplkd924JGzvohRoNOm0TADANGKWNJRQJNskW4PvVEJk62RIV/oESRev9E2eEsRmUp30QJfAVFIE6YRFJL3kVxGfhE7PXRRHCRuERnOopEfj/KRettZkU7jwtFBFEPRUXVyUTZYPtExD9gRvivgEUGLW5EtTQtReR6sESx0bJEq9GeREEK5kc8fE5H1wxwRGpUC0fOIftF91QGRrv5U0X8e01FMGX7RPCCdUR1NvJH4T5uR2mGAUcVkRNGuvRgRd8JHkUSrL5E4tSyRGHEwUUjm2ZF3Y3lRH0EH0eyapRGFjwtRqwTtUS0rJZFk5M0RVG5pUT7TsRENLHdRHi+DUcbA4BGGfsZRtZqtkSKB4JFQn6IRMqtikQX3ddEnoiqRIR9T0byR8VFGzGdRRWWoUQJbgZFUMyXRGXnQEYrAatFYJ1SRTpHqkRD76JEFlqbRN7MvkQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - J8oxow3BckDY14RibsFyQAQMn9dQwnJA9lDV8TvDckBmOA7axcRyQPKWS8lZxXJAOMMix0PSckCzPu49dtNyQDjAGsjO33JAAG6q6bfgckAK2+4JUeJyQE4f3H2Q4nJAqMCHOyTjckD2+7cNsPFyQAhOuu/J8XJAKLevsLbzckDw2WK3DPRyQJoqMiSi9HJA/jQpKMP/ckDe8Vx5+ABzQNC2ISmMAXNApeXobM4Cc0DYA3zt+gNzQOSzWwMkBXNACoWzfQoSc0CfI4PQdhJzQHGdw1C9EnNAMBWh2AYUc0DYDjP0TBRzQOzUNsx5H3NAyKsHOaQgc0CkpewpOSFzQAj3uPZiIXNAhg1Xnskic0B0mpv0BCRzQEX7DbTOJHNAo7P0kkcxc0ARNQE5WjFzQKh2c4oOM3NANuCerNUzc0A81J99NzRzQPgecdXaNHNAqPtjhuZAc0DDU3AAeUFzQAr158InQnNAFnfm+HpEc0DPhZtYnFFzQMksYUKjU3NAJMPsKYZUc0DsY1l8jGBzQITUI6g4Y3NAlXkYD5Fjc0Dskf2jzWNzQD92dVpQcnNAoMCyDrd0c0ButtF1THVzQF6G0FV5gHNA2vAGrqOAc0DKlSL9DYFzQIAIpMzIgXNAUPJVCoaQc0As1u5TTZJzQODi9H3Ok3NAmF99RWKUc0B5pI/d95RzQOrS7JW4oHNAxgKM71qic0B2QjrqBaVzQBvBrfrGsHNAInVoATWxc0BaWaf9fLFzQCJhpv22s3NA/gV5+Qy0c0DravmV+MBzQJoAoe/QwnNALDYfvCbDc0BEYxMA2NFzQNN/PoU003NAsCpwuPbTc0BIwBPU4tRzQDwDEL044XNALfefcGThc0D++sOpNeNzQEZZZdbw5HNAqK3P8Db0c0AlX/IveQF0QGTKqH2lAXRAltwrAboCdEA+ag6jdxF0QAyJPZqLEXRAXaLysG8SdEAY9GnrTBN0QBhev4e4IXRA6H1vzrkkdEBqodiSVDB0QFAP+/ThMnRAfoKE71NAdECZ3RTcx0F0QHI39Qp8Q3RAeFg1nF9PdEDilabW91R0QJpJiWuNVXRAsYAvrbhgdEAJ7lM8TmF0QIRNBYoIYnRA8jIaKE9kdEDV7v9lInB0QH8i+yFkcHRArXZzFUFxdED0Ru0eOnN0QKh27nQ2dXRAljAljWiAdEDKP4XW+IB0QEjsXOZOgXRA4syIixaQdEBZ2PQHa5B0QKrZ4MXQoHRA435aeTehdEDia+bFt6J0QMqJJDHRonRANqBaVxCjdEBW6PUeCrB0QGXZcfbCsHRAxMGpW3nBdEBaPA3x6cF0QO60CU0Rw3RA7MFQIiPEdEBfFxKZuMR0QLpeMuycyHRAQn4vmvzOdEC+7CMD4tN0QIV10wp21HRAgv9yuc3UdECW7llWuOB0QLi6Djm54XRATAcXRE3ldEAq+eQ/wPB0QPxmU9CM83RAGj9QzNAAdUDeGoGLYwF1QLrMkvpcAnVA05F/hpsDdUAS7qWsJBR1QKN+GmafInVAqgm8hcw1dUC6vfCb6E91QIjR1+KAUXVAssAWjU5UdUDoygw0d1V1QE5VWHY4YXVAFoOu095vdUA/UvDn8W91QMydWeR2cnVADLLKko10dUCOcDtYeIF1QAnoCE+tgXVAZn4250iDdUCyaajipYN1QPTHenOchHVAUXMcyoyQdUAGXCcOvJF1QCOIaa64oXVA0kWMCEmjdUAff8Nbpah1QIxeZkmWsHVAM+8/DzizdUBo2Vp9frN1QJxc8amDu3VAxPqdm/jBdUATSg3R5d91QP6mG5UH4nVAp1uLQkgCdkAOnTPK0gN2QJj0vspOFHZADNSLBQ0WdkBWNjhDiCJ2QNjnHeKbI3ZAqpsZPpAkdkBEnss+Syt2QOw+vogfMXZAu9khUFMzdkC2U+5PlzN2QAI48t6cNHZA4HHexxxBdkCwWHUJekR2QB6t4YbKUHZALG2rjRFRdkDABNF/zVR2QK4A5a4fYXZAemDWhdpkdkAQhlfEaIJ2QFKRdxWTg3ZAHmNTsfaSdkAmT/zmvpN2QChUZKS3sHZA9MD78MGydkBfyDMFDrR2QHB/w2DAwHZAREL+Hs/OdkAGHF+Q8+F2QCpgz8CR83ZAacGY/Ez2dkDwF8qJMgJ3QOJ3BLcBEndA8rY0PTcTd0CQrtFpDyJ3QNp1vS51IndAvEyp+gw1d0BISCU0nUF3QPZoefcaRXdA4rwkzkpRd0COhB/qklF3QPJUQQwrVXdABtCmxY9hd0BiVB4SKG93QAac9ro8cXdAcCSOEIhxd0DCRTb/I393QCA7JDl6gndAJmp8p3qDd0D68TebCZJ3QHRHwUVNlHdApIVCdeLQd0DeAnhe/Np3QAoLsiEF43dA6RYd6enwd0BUzGKyUPJ3QFKnxaJNFXhAw6OBxm0ieECYujIliyN4QACIbnwLQnhA9PTDg3pFeEAW3zJWy1F4QOYGIuf1U3hAOcDoYIdVeED05cX9+GB4QPiRzlO3YXhA8Y2VwFVzeEAn/wce8XN4QHta7vf9c3hAuNIChTl0eEBqlb2Ui3R4QCLYXUO8dHhAV+5Ox6WBeEA4OXGQmYR4QDupGoCWkXhAQtsQdqeUeEAOuqQfqaR4QKdKlry4pHhAmL0mosvAeEDRS95A98F4QPEiDdvVznhAeS465rbUeEBmIsj0AfR4QPD/twiN9XhAP6TK85oFeUBcyuhGzFR5QGl5uDbaZHlAzq8rl0ZzeUCvQnwJ9YF5QH57wjSCknlAlEWKnfimeUAe7EdVwLJ5QCuoUJ3LwnlApLG0pULUeUCaLN6PzNV5QCTNbhVP5HlAZvAUUpPweUDGphc0+QV6QEHwHxEMNXpAPuM2eRpFekALhCA4L1B6QJTbfxSBUnpASGpqtSdVekCu345mjHJ6QGYPJQ8JnXpATK90Rw22ekCb6wlXG8Z6QFRRKfY/znpALX0WJ9bTekC8cJngeeR6QA5duT427npAkCIeECkOe0Dy2Sn2TBV7QO75fNVSHHtALCrSa1ole0DD6SG3VDB7QMC6JXXGM3tAoDMdJmNAe0ClgFivQlB7QI6PcThxUntANiRG4+dre0DirNiJwpR7QEj/34cjlXtAOuuSmnjGe0BWxKMlr9N7QFpdZXGz23tALEmFCgDke0A0murNoed7QLI4L6uW8XtAePWIJYz1e0DxEh7okAF8QLa+ntzZAXxAcwSlDPQBfECmhUq2mQV8QOLKUC+JEXxAIPmgvdARfEDVoavezEF8QL8R6efbUXxA4pbh2g5ifEBlOZa+KXF8QNtFrrr7pHxADG3qm8CyfEAM9UFzV+J8QDImYsEV8nxA2IzT31XyfEBquUJq+PJ8QGV1bhUAAn1AtFH0t0sCfUCkzKSVoxF9QOSxjA9FEn1A4r59h0AifUBm5nZJLcN9QK9QpQrX4n1AaHZgWZD1fUDSC2LpNx9+QJJ/ZhOgOH5AoCLAgvo9fkCSAVvoIe1+QN7auLp/8n5AIOQ3RhMzf0AKa/eUUDh/QJ34YxylPX9AwA4uQrdxf0A0f4F2s4F/QJ0eVERjkX9Af7OzC92Rf0CjaAEnm5N/QFslCVnlmX9AOJ/kdl6hf0AQl5dM0KF/QEYONWxVsX9AulH1ZZLDf0A67D+wo9N/QILkZ0KV3X9AME+0ze/if0BoM6BHOuh/QMTKhBOU7X9AWJoCKZcJgECI35h3RAyAQGbcVqWCEYBAdmKWaTEUgECcTmwdfhmAQIY2LOzXNoBA9GyRhik8gEDgKcCk1z6AQMYizh7vSIBAV8zaxvVIgEDZCxUF51CAQFa1aOwTUYBA9X5yyedYgED6XJ24DVmAQBaYIuIqb4BAIsBaOh6PgEAoA9gFbZGAQNbzQBsZlIBApmMsIr2WgEB+L+hFyZaAQKI+dfdpmYBAsuKYiIepgEDqVfNBUsGAQJAVhllTyYBArB2t6yTRgEDS3+lnTNGAQJwd6TpK2YBATKV6e5jZgEC9e9qBRdyAQMQEiHf03oBASu72yEPhgEB0IXGOmOGAQH0C5nz36IBARnN2vEHpgECZ8xPlSu+AQNG+MA8+84BAcHPDcj//gEBMprvqGgSBQNQevcJAB4FAKO9jXh4egUAWysUPNB+BQKiU3wgzJ4FAqtS0qL0xgUCUXKRVDDSBQCygGHa7NoFAGK4/rlWPgUCoXAVXVZeBQOBrQn+hmoFA8u0OKU6fgUDetvzz56GBQKJ/hdlsqIFAn6kgfEmvgUBT7HCSfNOBQPrk2ToCCYJAuwxAg9gYgkAk1K1K1iCCQByFjibRKIJADHRPSaIwgkByqhe00DCCQLD5lorIeYJAHFglOUOJgkBi8PcPRJGCQAXXsE48mYJAloWejQ6hgkD+iHEIOqGCQL0qBgFQoYJAYmqN0QupgkBEb8WoM6mCQLpqwjAHsYJAvtL1h6/5gkASZWZVeRGDQCAQleZ5GYNAMBZfzHIhg0DWZL83cSmDQOxRE25qMYNAgtM5XYMxg0CkPs/cwlWDQKRJJaPDWYNARPTCQbttg0B6QVaWlPiDQBY+nDP/aIRALxLbWwBxhEAK99Ub/XiEQOY2eMvLgIRAiAat7WnZhEDnlVqZaeGEQOOJzNdi6YRAcoa1xn3phEAU2HtKNfGEQBpUXO9l8YRAeL1EOzP5hEBijLJWWfmEQPwJBZagYYVAiE+/baBphUBOVujhmXGFQEIeGoS2c4VAfAbR3pZ5hUC4HeLnfJqGQOycm7BxpoZAUJSdeCS5hkDIuVUOkSmHQJVHSO2RMYdAQeojzYs5h0C00CofX0GHQPN37lKKQYdAwozmFHyCh0A5cXdix7GHQOt7hinIuYdA4DOYLb/Bh0BAnEN+v8mHQA== + KBZXds7jZUBOGswAeMJsQG+XdYaqQnFASRZoMb/Rc0D97sGlglN3QBBx/GrXAnpAWPsL8UWkfUCIZ2zfF4qAQHMpLAiP2oFA7JQ2/KOig0CgL9Gt8AKFQBe/uP7v2oVAWoKxpWgDiUAOnjgtJ3OJQFFhMdSfm4xAyPAYJZ9zjUB8i7PW69OOQHv7XmUATpBAcNy++Tv2kEBfETJtNtKRQPDztQ6SupJAdpQEQGdmk0CiChsd2EaUQFqq10ed6pRA64xb6fiilUBxLaoazn6WQGd8m4AUb5dA - + - aFx5RD8DLkX3P4ZE7MaDRSMI7ETBye5EA2YcR+ahq0StGhhFiGT9RKAelEVbBCpFyHyMRJLBk0TS34JFpHkeRY8DjUTY2p9EKpMbRddUA0WsPdZEqY61RE1vJ0edzptENFKmRN9IfURCezxGgYe6RfB7eEQhy9BErcrdRCSl70YZXJBEbePHRDBDkEQAld1FPLgYRb01C0UUiMlElDPURBOfy0QFSYlEj9PHRBZUqUU+UbVEVB4hRr3ztETWdppFOq8KRVplpUQInCNFerOcRIIVn0Rlb+RETnnERJu9R0Wo6gZHcPOQRF2NAkXTGJlE9oRXRRXUXEezab1EtcjFRHuZlkb2rRNGsI8VRhGvOEV127NEIHGDROmppkSYC5VFOS1NRRle8URwRqVFSqdBSDO9b0W4YKxGTuT+RKKXp0UbQedFwvnDRCsEpUQHw5VEvugMRUiFlEbllxdFtsh5RPAhmETnuLNENEi1RU52h0X+hzNF8oSMRDgT3UQxGYBErOCHRMySm0QPiotE2GiDRHtIDkXtUBVFLyGgRaGuoUTtCyJFJ9UURUxFAUZ0XJxEHkVfRxhvPkXqeOhEZxaLRMFNXkWDQANG/YzIRfPKwkREg5tEYmG/RAgg3kRwn9dFrKzBRHnlDkWIt31Esob+RKAAwETjgPREl5SqRAs+MUUMQqJEQdOIRHz/8USXrJ5Et4YWRcQzoEQkiyNF1+R6RPCWnUT0ewlG35+eRKCGAUUV+4JEWXboREDgBUXP/GdElMhJRWNOiUQFqrhEOouoRGnVK0VvDSFFnqlURF79h0R+ghVFPSBJRpjW9UQNw/dFGMyNRBam20TAGO1EsMrARL5xpkR0j/xEkfGGRagvuETRp55Eb7T2RJJwtUTNS75EnTMSRVZLkkQwjQVF5JCMRdVk6kSCJdJExRbzRH4x+UQkHw5FdLwaRnaRAUbNaO9GWAD4RI4Sb0QS/ZhEFc/hRRUeQ0WGKdFEUPBERWU4akbhaWJEzeMcRYa8okSNd4ZElnSlRGKKtUTfM9BExbEfRT2XoUVgPbdE6NIFRbSJCEUOYgJF7tmLRH4M3ER8nqJG7soNRRsYc0XRmKlEb/UESNME+Ebx8elGZjPQRcp2vUa8CQZFGug7RSmqhkWrZ5BE3zSlRKWfmkT4OAxF/IrFRG5hoUS8fuZE8i2kROl+NkY5CM1EFxB7RHVT60RNM49EgT2XRbattUTKJA9FbydvRr/zwEUBdIdE7W1YRUfyLEUXsn9Fim91RPnFk0SriHNENK8BRUzrZUlmozFFc5Q8RXRuYkj7FMdEovm6Ri9Ll0SWsoREYBHXRNij6UQKGIZELSB0RcY7mEUX9iBGdbiGRGcexEUmdgtF+4exRIeep0QeCGtEtJyWRKRFeUXJgZlE/9cBRhKCNUWZv/1E+W6LROFp5kT8ef5He90DR6lNHkVemhBFfB8/RYT68UQz8WVFQEriRdZGCEXWBLFEHGWXRLs2nESR0OxErYv6RD8BOUaJQIdEcZdrRaL0fkZSPphEUIi9RK2zSkW3sr9EFnkrRZw0hERR/RhFaCStREKcpERKjc1EZN2gREyNhUQbttpFh/DDRnkh6US84HtGvHAhRR9F4kWO4KVEAFDYRbrU9UUDZ9NERSyuRE8SoUS1gapEAUntRDgbBkhYvvpETK0QRwzLfkRpnZ9E4TTdRuqHbESUXoNF6PPaRBul2kQVZrlEEBMfRbwy1ER1JHpFKLubRMm6o0Q4sbJE5TwlRW6LtkWtGy1Fui7ARdq39UStdF9GAtGdRdJog0R1Ne9EF0GaRRnUo0QEvUVFrN8ZRbAAmkSG5x1GRXAJRnsGFEW9/r9EM//2RI7xhkTxXM9EqkXJRAQDe0SlDrNE9z5JRUVkI0Wt+dREJovaRAWFcEU7NIVGf2q5RPX6zUUHbbNEl/AlRcGAmEbMuidGg6gMRdQCxUTRPNZE4QENRcYxjEgNJQlI54yXRHD+kUds6otGKWQJRpkVyEXD9uBE+CWnRXzGqETLGKxEc/e6RP7XvERoS+VEd30WRifH2kQGjltFr7R1RA8fy0XbxJ5EeOoRReLmvUSB4sdEEfGsRbZerURictlE2iWERFaKKUW5rSBF3Q45RSId1kQU161EpjBARnCtkEX9nHBFeqbZRJ/Ip0SY+9JEJUvyR91pZEcdhgRHzEzsRVs3GkYar6ZE7pQDRT88EkXKDehEvjjYREUr+kcIm39HAyoLR02yCUZ5CA1FK4SQRLXnfEWWPrlEAxGlRKT+mEQ+w7VFkSJJRTOXukRvyodELZQjR5bElkZBVj9GDgnHRDZFoEXjX09FeZzkRH5xlURdQgpHyZZ4RnAsKkabfNhE7584RSyYxkQCaoFEpI+eREAvRkamcdxFVGw2RUP0qkQfAAtFl+zmRM6YKUYM6apFyk0jRXUDu0Q= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - UxLmjwzBckBGOaITb8FyQNzn0Xw8w3JAOABDRsXEckBUhAqLWcVyQG4kAwtE0nJAAi37DHnTckBs19DH0N9yQCY4qG254HJAHMe7n07hckCXc3ZiUeJyQMrDWFOR4nJAPteouCTjckCkUgsLwu9yQMb0/ESw8XJABhEExcnxckDAytdQtvNyQELyPHkM9HJAkPH87KP0ckCHLKvvwf9yQGpa4j5kAHNA/OqmcPkAc0BeaFiCTgFzQFAcnj6OAXNAoSXFYdACc0Ac1Akk+wNzQOjFdCIJEnNA59IPmL0Sc0CsOmIXYhNzQHZ5Yzr5E3NAhHIJ2wUUc0Bsz8+2UBRzQFsVKXd6H3NAJUuw/aUgc0COj3/HOSFzQDaBmBpmIXNAZpw2Xnsic0DKjtrlyyJzQNpQti8RI3NA4jTOFDokc0BmYpxozyRzQDzzWCVZMXNADCdGCPoyc0BKGW4YCjNzQD61PnyjM3NAMwdUQfgzc0Coyh7kODRzQKxTRNDdNHNAcvvcP+NAc0BS/OlGekFzQFjFONB6RHNA1AlwIKRTc0DoOLXQglRzQEznNYGLYHNA5DNe9Dhjc0DC8KgmzmNzQMFYiodRcnNAGwr1Zbh0c0CDnYRcTXVzQA7P6ix5gHNAWH86q6WAc0BO174+D4FzQAD4MPzJgXNATvkDOIeQc0CiqW26TZJzQKZl3FzOk3NAhNQx5WOUc0AnsvgN+JRzQP5e00K5oHNAQG9OnVqic0CElZvKBKVzQM7+5W3KsHNAApPq5n2xc0BCVO5Ut7NzQP3JWNUMtHNA2rds2fnAc0AGK0pm0cJzQMAA/PYmw3NAQtAF+NfRc0ARtoqwNNNzQABllr7203NAyMVZZuLUc0DY2/t8pOBzQCS/+iU54XNAwS5j3WThc0BKP0K35OFzQEXrRVQ143NAAXNb8UXxc0CdC8kRt/JzQCjK/d798nNAh/Vs8DX0c0DRCNvqeAF0QHgr7uClAXRAjbfpwIgRdEDC6BXxbxJ0QA/FAr9ME3RANRxgzEogdEC86+jTuCF0QKKGIxllJHRAHueAvFIwdEAP/myq5DJ0QFPDe7jGQXRAuOosd3tDdEDPd5odDUR0QJ5X68OET3RALQM8D85RdEB6cQU4jVV0QJ/08+e4YHRAinfxjOVgdEBWWzYgCGJ0QFCEAW9OZHRAnFWsRiJwdEBgICv4xnB0QFxMNlJBcXRAAjzpczZ1dEAKV+sh+YB0QK1UK65OgXRAam2gbbGBdEBYuWIBF5B0QI4WmddqkHRAjDKpuTqhdEB40H+QuKJ0QIyBHqPQonRARHzGuQ6jdEANe6CGY6V0QPh4hRAKsHRAdeDiKuHAdEBciGu5ecF0QMYykb4OwnRANqA5oxHDdEDjRqSTIcN0QLAJOecjxHRAbhyz/7jEdEBUrvsDoMh0QJf3B6v+znRAArWav+HTdEAuE1uuztR0QGHKFgaP4HRAEpnBRrnhdECoHiPgwPB0QOb1VeyM83RAlrI8B9AAdUCoPiLSZAF1QII2StQkFHVAY+GpU8w1dUAEdH1x9E91QF4ftCcLUHVAnMry4oBRdUDYsVULTlR1QFQrjFx4VXVApqJNFQxgdUDgxR8LOWF1QBvV9vnzYXVA7BjPC/5vdUBmSS9Od3J1QB5Sg4uNdHVAemyZsHiBdUCaC44JroF1QCQLzX5Og3VAqGSErZqEdUB+uUusu5F1QMnA6BDdn3VAh1V0vbihdUAgFlSXSqN1QB1E/VmlqHVA+8JNYTizdUCX0/k5fbN1QCZvHk36wXVAIuLyxM3TdUCbSWbW5N91QFD4XIAP4XVAFlIEJQjidUAJ6mLLSAJ2QMQj55vRA3ZAKvYTUUwUdkAs6kfRCxZ2QIjqQvOIInZAjEF7lZsjdkAc9sGZkCR2QBoGNSpLK3ZA4ycAuh8xdkArCpZwUzN2QKK3crOdNHZADJG0xB1BdkCezbRjeUR2QCQ2AQfNUHZArG3tOBFRdkAaMNeyzVR2QJ5aUr7aZHZA1nuxk2mSdkDlYlKLwbJ2QEpUNAoNtHZAAAeyAxzEdkD2RSevzs52QBhN8J/y4XZA4Dgyj5HzdkBm8yE2NAJ3QB5ty8QBEndAtgnL2TYTd0BYqj16DiJ3QBZnFhcNNXdAAlXHfZ1Bd0BEcEFDG0V3QPa2KexKUXdA1BzozJJRd0Aa27IrK1V3QIKWMeeOYXdAxonI5aNhd0C1BzH4J293QKN4Ymp4gndAPvSJ8HyDd0Dv1p78CJJ3QI4QlpZNlHdAFtPIMLiid0AyYN8fLsN3QAE6/w2L1ndAwhAJAP7ad0DqvwPe7OB3QHhuKfAG43dAD0KaRuvwd0B0mzVYThV4QNduRcdtInhAIGFsI4kjeECOSZTbezJ4QKI5NfcLQnhAgW3eWHpFeEAZ5eeEylF4QImYxK2IVXhARKitfvlgeEAbrhvot2F4QBMsBb25YnhAqhp1OWh0eEAcqsSRi3R4QDYimku6dHhAY4LkQKSBeECZMPNbdoR4QCqpcISZhHhABuiEz5eReEBuvmWBp5R4QJxwpS3MwHhAR/RjN/XBeECIbDOat9R4QByuDbsC9HhA/kAxBoz1eEDblVTdmgV5QBYaV/XSQXlAeAbXOY1CeUB7XmSmaUt5QAJj7ePMVHlANKG4B0NzeUDdeJAM+YR5QJdkC+7BsnlAEvjFpNDCeUBskg3/QtR5QLDl5B7O1XlAa0ASQ0/keUC+EyFI+gV6QI2qIjMMNXpAepgt0xpFekC3VyhELlB6QOA0B3uCUnpAj+vm0SZVekDOV5hdOGV6QGC05gQJnXpAZJ1/p2SiekCOMsf3Mqx6QKqOdjUNtnpAaNAKBRzGekCAtAVPeuR6QEBg7ek27npAMg8HxyoOe0DuDwk0TRV7QDI8O2VbJXtAXq9/LCAte0DHkEUfVDB7QFAISsZjQHtAy+6PNUNQe0CY6u+s6Gt7QFKbEuAklXtAWDtqjXfGe0C8RtncwNF7QOk55wKz03tA83aSd0fie0BTVxT8Kex7QPIaKMqX8XtAH01BXYz1e0B2TDl72gF8QNxclxaaBXxAovKveokRfEBgjpB00hF8QFQI0/3NQXxAOobrAdxRfECz//8aDGJ8QC0NRWrBsnxAsDXdfM3VfEDWfhbWV+J8QHQE/gcX8nxAGnKpMFbyfECBgkPqAQJ9QLJ6GM1LAn1Ath25p0USfUD0S0uMPiJ9QOW5Xlctw31AEy44PtbifUAm4Hbij/V9QFZMaYegOH5AJsk5MPo9fkA8ZRYAJe1+QH5wMyt/8n5AGiriMMf3fkCA7LbBETN/QPIbd+dPOH9AYbzHgKo9f0DQfbSZuHF/QMDnNNmygX9A19fvtWKRf0DFBbbb3JF/QA/PARfmmX9A8MY8FV2hf0AMUvfcVLF/QK15tQSTw39AVG1utZrLf0BP0ackld1/QKw6Pdfw4n9AJNUdLE3of0CwbSRzmu1/QDcBLeOWCYBA+KA/1vAOgECeg0MDhRGAQCcfudvbFoBAYspr9dQ2gED4+MD//jiAQLoa5XAqPIBAhiKQMtc+gEAod/Fm9UiAQP1UlknnUIBAYqSqUhRRgEB2EiQv5liAQLaJMf4OWYBAli0zAShvgEBIKbczHo+AQMj3qR9tkYBAF6lw0xmUgEBGMEOYxZaAQJxXEN9rmYBA7l7ktoapgEBOIJfIhrGAQLStBYJSwYBAVHSmFnjBgEB8hHaWU8mAQOI+LQYt0YBAGtYH2EzRgECAxF1IStmAQGgA9RyZ2YBAt2t/N0fcgEAsBo9z8d6AQLZO7WZE4YBAThvoDEPpgEBXCBHPSe+AQCvKGGA884BAgpcZqj//gEBE77v2GwSBQGRDQVFBB4FA7NJaOj0PgUBwczl2NB+BQF5MepQ0J4FAyHf/H7wxgUCGqaroDjSBQNZrCD1Wj4FAiWK9RFWXgUApicZnoJqBQK6Zk1jnoYFA0GS4BG6ogUBBDs6USq+BQAvciKp904FAbiyURLLygUB5twfC2BiCQHxS9YnWIIJAC9pBeNAogkDEh6CLojCCQDSkt/7KeYJASrV9VEOJgkBATPPcQ5GCQG9wYsQ8mYJA4D4Q8w6hgkDj+SQgPKGCQBYEaFYNqYJAoI/zDjWpgkBsOjqsr/mCQH5uvqJ5EYNA2qO223kZg0C2rMR6cyGDQLF0YLiKIYNAws+o3HEpg0AiZm1tajGDQMRq9UPDVYNAJiZ7g7ltg0CYm6cB44GDQKQvGfaU+INAbrEclP9ohEAFg0tz/XCEQNvS28D1eIRADNj1YWrZhECHmeqJauGEQBEKTy9j6YRAKR+kwTXxhEBCeUwvZfGEQJO9syY5+YRApil79ln5hED1j1D0LwGFQNAij4+gYYVAqHs8ZKBphUDTCT8fmXGFQACqT/GYeYVAlOpWipCBhUB52Ulo9uGFQEJEGWeRKYdAP4pZvZExh0AvYcHMiTmHQAg8v+lcQYdAATOrE4hBh0BkRQIzG16HQPJelNl6godAAuRHU8exh0DdS5y4yLmHQPJxeZi/wYdALx0RGMDJh0B2wfUqJrCIQA== + NrgMGZxjYkAbumJgJkNwQMRlXluOUnBA - + - XzxeRGrYMUUIB1BFtl70RFfil0TwBRVHWp2dRNPl+URuRABFj/GeRJw6V0XBTipFT5SpRDeniUSvAZxEVKGDRWCOtUSVVoJE1wC0ROEY90SKWotE8SgHRU4EdESWTsxEqe30RElOLUf22Z9EuIGLRuJddUQFepNFNL2ORcqAnESpc95EzQPPRAShykYdHcdEzD6CRH+SckTy+7REjVKiRPoT0EVTAIxERpeMRBrngkRaQ3ZE7rabRBxXwkRCyq9E8CocReJsw0XyajZGXHJ5RRPfm0Rhv8ZE0MkiRd8ykEQw3gZF02fNRK9JCkXrRgVHmkuZRP3rwETLr6ZEUSQIRQYlWkfH9ndECYjsRG7Gn0a8uTVGJPQiRnflREW6g4pE8yfWRE2DjUVXuzxFZcSgRPAGrEXjvyFIpoBQRd9Ro0Z5oLVEIoOuReyGgkTWeQVGSO9rRHRRf0Rp3bFE5q53RGW5iUQmlYlEpU3kROA+oEYCAaxEFcnPRClMgUX+c45FgchkRCb2KkWHlIZEW7HNRBDqWURIarJE1IOfRNwKfkQcLoNED+iERI7otUQWYZFFQ5p+RKoSuESZqNlEwCi3RbmEk0S9a11HBe3NRPhyT0WzB/1FxgiKRAcwokWIx7tEEZaYRCvbfkQ78odF0sP3RBBxi0QwDv1EjWupRK/8z0Sa6mpE4fHORNWJvURkJ7JEjhksRbavk0T1U5JEyehyRGPFCkUQb3NEz7oZRUHUrUSE2vRF0GiKRDKoxkSbECxF2ns6Rad480Twd4pEjAbTRAGU2EQJKflEjAOjRPs3NUX6oIJEroV6RLM3E0WE+zhGzT8pRU9170W2TXNE+YAfRdoykkQKfnBE3bKhRB3CJEWmVYlElfmeRPxy+kS0LtZElb2URB7ghESuZIJEj/oxRbkdgEV75hFFuPqaRJfMuUTFeYBEz+ijRAMHJUY9+MpFnhjBRqminEQ9rNhEGF5/RcH5fkWr/55EIL9LRTe2S0ZpLyVFZ8ALRdSuFUVzHK1FoNeJRNnV2UQZRY5EIeZiRfat3kRN7ZhG3iygRHbrh0XBFftHNjTwRnku50YM0a5F/AWVRrEq6URuQApFnPz3RFHsd0XhPdREe0oDRfmmvkReMcpEugaUROl0iUR0QYZEnWS8RUmLh0QLH6tEU+yhRLFupEQXo61FTMvURA+RgUSXUPFEM9xeRppNw0VycidFPkY/RZCKZ0VqnrBEdjL3Rcr4YUn07atFsU88Rc398USibV9IToShRGpHn0YrgZZE+rqXRAkfGkXQ4nlFsrnvRTFf4kRS5oxEPNq4RG73mESRlMVF4k/7RAI1jUQKfoJFKIKORDcexkV/Yu5EmUCmRIKj+0SLNeFHq3bqRm/jGEVppN5EUckYRViWi0SnbWJF34ulRM8pvESJ9LNFA3G0RDUFpEQ14NxEd82kREy5Rkb55ENFy9mdRB7rVkY/ao5E+OI8RTBoo0SQN+BEKpSdRF5sRkVLj89EyJs1RcwQm0Q0CrtF8YWiRgWgQEa2wLJFaGvRRNixhkV7U+dFhxPZRLUd8kQ9E/hEE7KERBBA9kdXtgtFACsIR5bfKUV2/9VGN46WRTGO0kQ7BoJERBuSRDvWMEVD+ARFG2C/RISnrkT5FYdE76CKRDD7jEXpfLtFa+kARYy0cUW8/3tEJ5M8RiSiakUDnZJE8yhlRZ8VNEVuUPFEOIMNRf+4HkYd4MhFkPU8RQKOmkSSU8REnLl5RCkQlUSqvXpEy3iIRFYU+kT80H5F75RNRUmPEEVOi3RF2e+MRpnfgES1NrNFmjuDRN6JJkWtDFlGCtIbRvDaQUVV4wdFYKr3RPxzcURqzIdIMZvuRKh9BEhsFb9ERtqJRwQ6W0b0QyFG0X6CRUf4WkWH7rpFWRzDRFzJt0SknbVEISIaRuR7sURiwhdF4zV+RGx/0UVy6rlEwMH9RHhmDUXuNqNF/uefRM/FwEQTzXRF4JwORXj7AUUaZq5EeCW9RCsTWEaxo5ZFGZtZRXqkpkRK7oZE5/bUR7qhQEdihNNGfLLpReGw8EULfg1Fxj4MRdFOokTQNPBH0wRIRzDs/kYFwR1FLtnnReuyIkVJRt1ECqSQRDjtt0RdfIdElii7RSbzLUVRP61EUq4OR+qYjkaPdilG6457RSZda0Vi8gFFJzWTRB8wqURh8xpHE4ljRptBMkbah2JFPmYRRVQZZkRL6TVG7AfhRemhkUUkW4dEnf/tRJ8Z8EQnC6tEyfoNRsHckkXcY3ZFwxvlRJrchEQ= + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 4NrLQnnAckA3aZ1Db8FyQHJFSKw7w3JA/nR1+cTEckDSxJUMWsVyQFBnl61D0nJAd/HtKdHSckBdSCTGdtNyQHgyFB5i1HJALZG9Uc/fckA/Gt4bueByQFDJFhdO4XJAcp2cUFHickChJAAikeJyQLjCcOm643JA+M90867xckDoLV35yfFyQFyNwlvK8nJA/LrtR7bzckDcoTFvovRyQPUkC0rC/3JA+oCxvPkAc0A2vN9GSwFzQMwafWuNAXNAPqoHU9ECc0AWxFjd+gNzQNLJwS4kBXNAvAtlbgoSc0B+1KMmvRJzQFIP05JfE3NAvPSBOPgTc0DeIiVBBhRzQGNtzmZ5H3NAQpN5s6Mgc0Bs2FRvOSFzQBPbWA1kIXNAdsLmdsoic0AMPELrDiNzQGLTshM8JHNAIv9v284kc0DwER6zSDFzQGwo+AhZMXNAdi2Txw0zc0BctM6WojNzQOJydYM2NHNAKoRjQbk/c0CuJ1CIREBzQPZhB+3jQHNAxZrxtnhBc0AYn+1uJ0JzQI5Z34R7RHNAyT8Fs0FTc0BCC8UypFNzQBAgiQ+FVHNAR8Mhg4tgc0CcBybBOWNzQIQi6uTNY3NASPYj/N5xc0AC0mhUU3JzQH6GgfW2dHNAng3TZ011c0CWgXf0eIBzQBb6qMmlgHNA9tN19w2Bc0Ay525lhpBzQGTvVHdNknNAfsSME8+Tc0D87HEuYpRzQPoeq9f3lHNAsNh387igc0DmDrUEc6FzQO4QWjRbonNAYHo7Ieaic0AAHTLrBKVzQEqLWAbRsHNAEIxY1TSxc0CsxuIof7FzQNPnYvR9snNAaeAr9Lazc0BOngW1DbRzQHV5swj6wHNAy1AY29DCc0C5YZHlJsNzQDVbXrXY0XNAlPgBrDTTc0B2wxH+9dNzQJ00P4ri1HNAImQpZ6Pgc0Aal9oyOeFzQJUJf9pi4XNA/igXr4zhc0BsrEs+EONzQI6DK/s243NAqObrLzf0c0C+ttSNjPRzQKVGYLXkAHRA5ArtD3kBdEBC1JElpgF0QOg8QQ5DBHRALKiyyokRdEAWPM5DbxJ0QMzn9z9NE3RA0CGRN3gUdEAGzCSsSyB0QFfZv+O3IXRAuQ5AsFIwdEBGWLrwU0B0QFRK/4jJQXRADho90/ZUdEBCtDusi1V0QLAhTp+4YHRAa7JZOglidEBqBoBZaGN0QN8paLVNZHRAkjbd0iJwdEBJOXzOYnB0QOrBFBVBcXRAZfQu9DlzdECVKlvSonR0QEIMn6g4dXRA7wBWfDCAdEDLQogb+YB0QFDLCCFPgXRAslgwnBaQdECAuGawa5B0QM+On51Tk3RA0erS4TihdEC4a4e0uaJ0QP9o2GbRonRAFr/bwRCjdEDi4w2WaKN0QL8dUiwJsHRASN8Ou+TAdEB7+YyreMF0QEteSiYSw3RAQulsmx/DdECwq13Yt8R0QPisI0SdyHRAPJHVZCXLdEA8J3vH/c50QHLnSjbh03RABH98ps3UdEC8iyopI+F0QHP2x3G44XRAYaMoy07ldEB3hD1EjfN0QP8SPDF49HRAOhI1Z2MBdUDmJIkMmgN1QJHZlTIjFHVA7gt6t8w1dUD6qcDCtEF1QGp8a6zqT3VANfSXy0tUdUAHwLS6d1V1QO5h/O0QYHVA9/9atjhhdUAmqJ28dnJ1QD+6gNCNdHVAEFDBqOp9dUCMV/6FeIF1QJpUWlCtgXVAjgDtGqaDdUBeZ8bTmoR1QGjNH7uOkHVAQXYcCbmhdUCAr5gJSqN1QDg6SUGlqHVANkX0t5GwdUCcQrSYfLN1QPXlUfrOwHVALQgusGPBdUDyujsA+cF1QBzyD4XN03VAIBP+Ig/hdUDoWg+rCOJ1QKbq8ZFIAnZAGst0adEDdkApMAyJTRR2QL1NadwMFnZAj3Zu1JsjdkD8+nBqkCR2QGCJb7tKK3ZAVbeOUKMrdkCJW2mgHzF2QNIoCzFSM3ZAqbGhr540dkAcoUBCHUF2QDWezxB6RHZA5Pfs9fxOdkAQ3Yj2ylB2QBB3lU0SUXZANoKqqc1UdkAjWUZcH2F2QKiE+NzaZHZAuOlU55ODdkCqgRSXaZJ2QHy7KPHAsnZAUpsi4wy0dkDTIVNtsLR2QEN2bRNOwXZAmw7POBrEdkCj3yb4zs52QKSdeht/0HZA7LWqovLhdkDcWY2nkfN2QC77+MBM9HZAkhKYVDQCd0CYWodSARJ3QHN9wVzrEndAsjKpJQ4id0BSB+aQdiJ3QAaVtykNNXdAxAUYaJ1Bd0Cmy6I4G0V3QDBSfsxKUXdACm2mA5NRd0Dmgfgx7lJ3QMBf8BIsVXdAv1xmhklhd0AbK8KTkWF3QDVVrKknb3dADQQeoD1xd0BP10YxeYJ3QN1pGWt8g3dA2NzkkgiSd0C4nfUQTpR3QDnjgYuK1ndAsoe/Wv3ad0CcLzcG6eB3QJxflMME43dAPHw3n1Hyd0B8WfW/biJ4QIJPBw0MQnhAEzKJZnpFeEBi7g5dylF4QJWzjO2HVXhA4lrxQPlgeEAI+TLot2F4QG0LiCy7YnhARUYwjTl0eEAm3MsAXXR4QLJH+IGLdHhAQCTNssN0eEC+pMcy53R4QO40ICQLdXhAUzKrCqWBeEAoT4f00oF4QF9ZhKGZhHhAg7QGsZeReEBci6KUp5R4QA5bOEbOwHhAeVYUMPfBeECYzzKxttR4QDh8MW4C9HhAQsSEjYz1eED5KLkRmgV5QAP7tMrUQXlAAKvAe4pCeUBWkiyqzVR5QECkrnHrYHlANA70rNlkeUBezbcywrJ5QFZlJz9C1HlAtr+v0MzVeUAs/4QpUOR5QNgeI2z5BXpAuGf9Sgw1ekBWBvmfGkV6QCDoLjQtUHpAVdAxQihVekBicFRqOmV6QHX/bVuOcnpAqM947gidekDKDdRDW6J6QD7luaytp3pADdhF7Ay2ekCU8dQuG8Z6QCYeZitBznpAKn3OUqDSekBmETfAN+56QE4QBwYqDntApqefn00Ve0AzK1HLWiV7QOaGcJ8gLXtA0rjEuR4ue0BVQ4pBVDB7QMIkVCV4MntAlEKcA2NAe0Cj3XA4QVB7QPqqyltyUntALMgvVulre0CEnfd3wJR7QIAFnCUklXtAKMdPWHnGe0AKgr1yrdN7QGO0Q7JJ4ntAyuKjCgDke0AQSkuflvF7QGK2qSOM9XtAcY0JSpIBfEAmbjKn2gF8QKSwuQf3AXxAzLHWrZkFfECCQmJs8gZ8QK7PM3qLEXxAVivsWdARfEAnEzutzUF8QB7UgbbbUXxAsBCMzAdifEBZm6O4vrJ8QIp6w79X4nxA0LLgYBbyfEDEv2AIVfJ8QIZwX+tx8nxAwySmdwECfUBE+ufCSwJ9QNAinRADEn1AyQkVKEYSfUADL35iQSJ9QChxOSyhMX1AukUzDDPDfUBiXjnCj/V9QC4hY1g5H35AApwC8aI4fkCgzAXd+z1+QAjt08+NVX5A00NYn46wfkCq5LlN1+9+QLy1Fbd+8n5AIEQn/A8zf0ASH257Tzh/QPLojqyrPX9A1jf3Abhxf0CFcjChsoF/QPy3+gCig39AbEQINmORf0BMsX+Mp5F/QIzruG3ekX9Ac5JnjZSTf0AkkXNg5Jl/QIY09+BeoX9AiWR+pVaxf0BoLiQ6lMN/QP671CCV3X9AoliEvPDif0Cfsy65Seh/QJyjQryN7X9AKiGpbpcJgECVpqbbQwyAQMiU6uuDEYBAJSMspuo3gEA8ek6Q+DiAQGapCm2AOYBAEG3yVSk8gED0dFWh1z6AQLgp3pqEQYBAuHDUWO9IgEC227Zm51CAQF41wXoUUYBAYB1pY+dYgEBoC7QWD1mAQEMWCOULYYBAbU0lNylvgEC5dqEDH4+AQPwT4U5tkYBAigMvyBmUgEB4FbD8wJaAQDKW//sfl4BAD+5vImqZgEBtrAURF5yAQGwVHrCGqYBAMwfEalLBgEDwhzFoU8mAQFwNO3NM0YBAmIyclWDRgEAmOxOJStmAQIL6JmWY2YBABvY8cUXcgECYue978d6AQCAeEjFE4YBAvsvBGVXhgEDOw7iM9uiAQNg85SBQ6YBADNDoKkrvgEBulvoAPvOAQCm3jtE//4BAAkKCyBsEgUBHStNFPgeBQENvNt48D4FA63RmeR0egUAdwrGWNB+BQMh4edc0J4FAQv5pfLwxgUAhKcpxDzSBQBQm4XG6NoFAGfx50V9/gUAL98SeVo+BQBjsm9FVl4FAEKDj0KCagUA0teCH56GBQPlQ3PxtqIFARKrHdEqvgUAE4whUftOBQKeF5aKz8oFATYEO0335gUB6iSeY2BiCQB4ax2/WIIJAUoVcOdAogkDQyxgmyXmCQMmWrkRDiYJAwD4j5EORgkBO/RWUH5mCQPblX5o8mYJAHRvP8w6hgkB68VQmO6GCQPY+a/wMqYJA5Xob9DSpgkAshIJOCLGCQA7MU2ExsYJAm2tj1q75gkAC2HWaeRGDQDyWSkF6GYNAttUhpHIhg0C7KDxlcSmDQKI/j29rMYNAvAwgmsNVg0D6qUsixlmDQPjO0ju8bYNAo2K/h79xg0A5r1D344GDQIoXi4ZKg4NALsBGhpT4g0DQOWwo/2iEQMDuarb9cIRATnPe1vh4hEBcXztEatmEQP5iektq4YRAqq3Mi2LphED+ccdANvGEQMFI3Qpi8YRAwsK4rzj5hECQtjQSWvmEQD7+Cf4tAYVAP5mKTqBhhUCchJYLoGmFQBK+yU6ZcYVAHM1RgrRzhUCBBULimXmFQJLUbACSgYVAluHvAia5hkA3wfU+kSmHQCCLCVuSMYdAkFi7mIo5h0CvR4qBXUGHQPRnGQSIQYdAlVbySnqCh0CaVb3hx7GHQHYQbCDIuYdAfZWpqL/Bh0A0TnzyvsmHQA== + NrgMGZxjYkAUn+iE5kFrQOO2GkbmYnJAsRC8uaGxdUAKeGK9lHN6QNjRAzFQwn1AIo1tSSLKgEBQFkw1tPmBQN8+qirgwYNAtm0RhXnShEDfbZhUjEqHQBqb26EFa4lAQpticRjji0DhxoGxcXOMQHLLAkqzK49AYOweXHBzj0DPekKm/7GQQHpm4cvjvZFAT5I5u1V2kkD6fdjgOYKTQJmCC1mBepRAEJMZ4l+elEBZFVqugPqVQCiraU6tQpZAPSsttrZ+l0Dawc5c846YQO9BksT8yplAWtnFcUlTmkCh7XRsXzebQDkyZGIoz5tAUwTaeqXDnEDIWsJXVJedQJ30qxjRx55AEkuU9X+bn0B08j5b/mWgQOKw/AHj86BAfrIgDwM0oUA= - + - YemFRFmcZEW+bmVFOVzjRLuu4kTfSyVHGrqVRJQI70TuuItE/a8VRUSsA0UtwIBEdcKDRZ0FJEUninVEema9RNfoaUX65nZEdXH/RLhr00RWftZE6xC4RJEBh0Tgb8FEz5UURVwfHUchtX5E6DS/RPn6OEZA+o1Er7u7Rai5qkW9hKhErUQNRWXWAEeSco9EKrmiRFceEkV/SWxENJ+YRdIeDUVxwulEpBriRLMxq0QxH6dEcpSLRB8xnUQTOuVETvawRVEqhkRGBf1F1Tu+REnme0XSebhEG4uYRLNGK0X+LqxE3yt3RMPomET6eudECARIRccn90b5OLtELJwORUwpSEV6D1NHZoSeRH6LIEWah5FGFu8iRijFuURXQf1FC8HURNwycEUsnkFEuxFxRJI8vkR3QWpEb8V4RThpJkWJsd1EGXrFRdicIEhe0kZFakOPRuP460QNoqlFNteGRP7jE0Y7ftBEs7hjRHnBn0QexaZEoEBVRT6EuERYuHREMdmLRgrnrUS2Y4FEIieWRFFkm0WRAoVFaqioRDgx70SV5h9Fa5yQRGXdX0RLhphEcGSORBQY+UQadqRFChQ6RXtTfETyMqxElK2URaSKi0RQllJHV5DFRJy7lkTsM4dE4G1qRBneckWS8fFFQyC1RWICtkSB4n9EwbTOROJBg0QlUKlF8cf6RL0tckSaI9lEkPnURMI6wUSyUd1EbHsqRdjxeEW0TCtFQOCIRI7uDUVm3vxEit33RBDj1kSt2R9FG/aFRKMn+EXZ3opE2D0bRRme0kSVEy5FAEV2ReNRh0QYwLpEjVXARKJlLkUrJ1REhh06RbdqC0X1YGpGvuelRLc2F0WBA+lFYc7NRGnUYUWbFp9Ev4zXRCQIm0XJMKxEqRiJRDg2p0Rcr/JEq5WTRNkXIkW4CK1EuTesRPCbRkXDNI5FtVwqRQPorUQd7alEsGubRB9s2EUe8Z1Fem/PRJxZ40ZehK9E+fq/RPehkkXvn1lFg/aCRDvMvESRx3VF2EF1RgmxSERbMSlFsxqBRG6Z20TUZVdFe7XARReJhETn6XNENPyqRAR3V0UQVq9ElAEZRQqTSEVknndELpIARc1+m0aBTrBEw0krRcmVq0QfcvZHfxISR+cE3kZa/plF7y+nRnbQcERHqpJEPze2RKtdh0WJgJtF3jt/RNsn+0TZnTBFt1ebRD6S0kR3GK9ERhZMRQKJk0T/JNhEoEsPRZL6W0WC4bJEzos5RgzXAUapwzBF5z8NRUgjQUUBI8NERKggRaIge0U4n2BJTwtSRYWyCUW+9txEkFwVReRogkQXqWZIylTmRAiNwkZG4fJEAey+REtnXEWgvIJFXBIpRgALE0UdnXNEBguARJs6nkWUkYlErO3YRKeYd0W9TA5G9qXVRJ0ytkRl9dtEa6ICSHsqCEdgzqJEdugkRUieYkSOrK5EgRc9RRlHdUSRXrFEwnvzRSWtCkVpgLRE1k6KRN2ZOkUoIAxFZ0E+RkQ+HEWZW05F0balRJjTcUZAPcVE8Nu/RPQV/kTKT7pEODKnRCFXo0QweCFF5Za8RBZNCUW0fTxFkuOXRFvKwEX5JrlGHwjORHzUfUa7tUpFdVy8RcvvaES3G7REihm/RSCY00VpaaBEOd+TRNwID0Wta/RHSpgGRY9j/0ZLOGNFGV3zRHgo0EYf+nlEzLKGRaT5vkT3P6REWnxtRENw90RREIREI3zYRKySmUQwLZtE4v2gRHUmsESDzqtEXgI4RZBMn0XhgzpF96aXRQS5l0Tdt+hEBO9iRk+xwkS8S5ZFnwt1RALFxUSBfXFFauUeRVuBQkWI+iZG+JrtRRENGEXl1olE8KiNRGXu4ES9hPtEVpPbRGQNlUTBtgxFX3xPRT/UCUVRJI5E1DTORJZuLEURo6BGABa8RAQ00kW9qKVENfAIRR0kYkXM6HBG8QLhRQDoKUVnbGdEL4aJRKcu2ETaeQ5FFquESC8e6kd+3XZHp1FzRVVBY0ZyjSBGWkvTRUPg/URwDZRFSOn/RMz4zUSwY3hE4I2yRHiY7UQZAhlGJo7sRCMuKEX/Xd9EgfjYROzw4UUPDsxEBbfeRDv7u0QxJ8BEeYCSRJ1Ym0USXc9ENHWURE6CeUVTHuJEX2UmRcx6lkQ9eIlE9/akRBNCQEauaWBF+q8TRZaBv0ShvvxH8JBmR6Y1aUR0xwFHc0TiRX2kIEbChRNFtGaQRXgEpUSMaYZEtePaRKbe2kdhf0dHWETuRqO9HEbA0TlFjyQxRQaeiERJRvZEHQOFRMWVpUQ7qoREy8KPRJlf9UWQqUpFcEDXRPxeLUdtfpJGBPgjRjZTX0XcJ6pFvfAPRRE/DEUcsK1EocIIR9CmYEZgbBVGx4OURNqgLkVHldlEKHUvRYvbRkYYEMtFMJSQRVMAn0Sq561EoaGhRDBfEUaTs7pFDfQ6RaeQ9EQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - 6PWo6nfAckCBn/BPbsFyQHUgHW08w3JAIIPDVMXEckDW/H8oWsVyQPKZT5FD0nJAExbk9HXTckAFiQ59zdNyQHmR5K/N33JAEUHuvLfgckDGFLSkTeFyQKzsVuZQ4nJAJzuxNZHickDAuWo7IuNyQFQo1Vzj5HJAZcYgEMLvckD+9p1jsPFyQERnf2fL8XJAaDir5rXzckB6UyB2ovRyQHJsAeDD/3JAQ3BB+fkAc0DGdf8MjwFzQPa2me/SAnNApiSjCvsDc0B/xlfCChJzQPoVsdgmEnNAfCgl5ngSc0AmX1IuvRJzQMygG374E3NAdaZZEQUUc0Dc7DNCTRRzQBjhjw18H3NAZia23qMgc0BKHOCFOSFzQIbaSm5lIXNA9FFUp8sic0Dkoji1BSRzQHr/ErM6JHNAoejVydAkc0D4nOQRRzFzQERn8zZbMXNABCAZ8gszc0BeV00DozNzQGRYbHrUM3NALl5ktTU0c0BR3/ZlQkBzQCCxhXvjQHNAMRyqvHhBc0C4w/LHekRzQBlwUkaZUXNAVM7Km0JTc0DMPjyGpFNzQLgUizuIVHNAGgOeuYpgc0ANDre+OWNzQO0YiMvOY3NAZiv/G1Fyc0CgjXvKZ3JzQK7T3QK4dHNAp49umk51c0CMKWxPeYBzQNBGFqWmgHNAGJbRkA6Bc0BKZecxXoJzQLPFqmGmgnNANEmAXIaQc0AE9q1bTZJzQCYTtvZilHNA00wigveUc0CgSMzNuKBzQKbplkbmoHNASvjxR3Whc0Dcte7gWqJzQNnNVWqRonNAArUxneOic0CUQx3GBKVzQAKFA7rIsHNAZpJqrdiwc0C21EjUM7FzQB78aeJ+sXNAFIhbiLazc0CYzpFNDrRzQJAk8n74wHNA/T1bXtHCc0DWPgbcJsNzQE41QqPX0XNAI75I2jPTc0Dehrup9tNzQOgzVtzi1HNAFHbdYTnhc0CH3hFXZOFzQPT0r+Xl4XNAQAa4J2jyc0DGP8G7N/RzQO5yjR2M9HNAmcMtUHkBdED6hFJ6pgF0QHEOGi2IEXRA/ISQkW8SdEAPK/4VTBN0QIQf/3h3FHRAJIJi9rchdEAcJ7H0UTB0QL+DakXWMnRA4wFKG+cydEAv4/fkx0F0QHOPefhST3RAiMVIyvdUdECK66pmi1V0QOcggaG4YHRARCOcBQhidEDqiYGETGR0QDlTc/kicHRAKqqN22NwdEBgkl4NQXF0QG4V/wY5c3RAIPMkxZ90dEBacel8OHV0QOY+BBf5gHRAmJSAHRaBdEBD3XasToF0QLqiIMiLgXRATIcGDCuIdEASRaegFpB0QFiJQjpqkHRAJliLOdCgdEBeRfdGOaF0QCK12Ty4onRAmiROv9GidEDIOpktEKN0QDQhSFdmo3RAwPAkJgqwdEDcI4MB37J0QHrQg1P/snRAiLIe6+PAdEC2JEeUecF0QEHHpmS7wnRAGK/wvR7DdEBAdm9SecR0QKARjcK4xHRAksweWpzIdECGYN81yMp0QDL0RBT8znRAoeJ7hT3TdEBeq9Mi0NR0QEZ8/nEk4XRA3C0gfrjhdEDKd7YSwPB0QBgUodKM83RAkmtGWqUAdUA0+5SnzQB1QBrckFtkAXVAQPpk1SMUdUDuCLTv5DF1QCCguPzLNXVAqVjj9AhQdUDQzUpigFF1QEzaBW5OVHVA2GUvMXhVdUCGJURODGB1QDdulGM4YXVAstSNVXZydUDen5VnjXR1QLJJlB5MgHVA4PU5gniBdUBfjRjYrYF1QG0H+ZATg3VANpVA5KSDdUB6PgKrmoR1QB1/75GMkHVABB5ZrW+SdUDJ32iL8pJ1QMzsG0k+k3VAPhBGH5agdUDzF3IUuKF1QGJSLE5Jo3VABhS+qqOodUBfMCfdOLN1QNGCzMN7s3VA/mAxcPnBdUA88jXCzdN1QNBJUEzk33VAKPswUA/hdUAa/CQOCeJ1QKzoUMc44nVAsKZlCDnldUDxFpiDSAJ2QLwFTcAMFnZADLWt9Z0jdkDMF7ZTkCR2QEz317hKK3ZAg4MfuR8xdkA+1zcRUzN2QFFcCUOeNHZAqCJTbB1BdkBolbqzeUR2QLhL0DPMUHZANkp11xJRdkDagc6gzVR2QIBU9VbbZHZA1oNFUWOBdkAW9/ghaZJ2QHqMO6F1k3ZAs5+OY7awdkD1ObViwbJ2QOzsoOkMtHZAZDGwjnbAdkBaxW+1vcB2QMlMMcnNznZAPbUtXILQdkB2onRR8eF2QO6vCguQ83ZAe4P5MTQCd0BqevseARJ3QJahcJAxE3dAKIOIfQ8id0DSAgoFDTV3QA9E7W2dQXdAlviightFd0Dy7xOWSlF3QIChwMmSUXdArD7f+u1Sd0AUIro6KVV3QFAw6HxJYXdA1fSWc45hd0CNHQLCj2N3QKYbe+knb3dAMJFr9YRxd0Ag66tssnN3QPZ3koEnf3dAss6Qd0uBd0Ar77f8eIJ3QMs9lA97g3dAZpQ0NwmSd0CGOJzZnbR3QA3m/nTf0HdALBbs6/zad0AYIym/UfJ3QED6bgduInhApAC7kIsjeECmcbHzezJ4QDozlRIMQnhAcJJua3pFeEDU6wKRylF4QOTPKZuHVXhAHXiPG/pgeEC6cLYcuGF4QIBUNqu4YnhAbe/h6ER0eECGIOLlXHR4QKoqinGLdHhAswWuRa90eEDWOkENpYF4QJLRRj19hHhAPA0Xd5mEeECMQIDkvYR4QMezpqSWkXhA3IcEJaeUeEB66n18zcB4QI6QldL2wXhAmn9FPrbUeEBQImLOAfR4QBxd8suM9XhAolMN7pwFeUCPiRhZjkJ5QP/cOfH3QnlA9Loz1ctUeUAWUQyA63B5QNLptxxDc3lAOuKKRcCyeUByJZJHzcJ5QAbnfVRC1HlAyGWdr8zVeUBawM8DUeR5QEIInUcMNXpA88edYhpFekCmD3F1LFB6QN4cZhwoVXpAHIgg2s5jekCGwYLEjHJ6QF6p3foKc3pAPZgclwqdekD4kyltZKJ6QFYGFas0rHpAErWwfAy2ekCDwXnXLMN6QJjgNJUaxnpAJe8J90DOekCTOfMyeuR6QDC5KGY37npAflunKRXxekB6BG0tXvF6QJylj9ksDntATYeFAk0Ve0AI4iZUWyV7QIOPtTYhLXtAhJN8b1Mwe0BJYCSFfDJ7QM1g9iPIM3tA8qN6h2JAe0CwdVPjQVB7QCvn8qFvUntAXjiGdOyQe0BqYfByIpV7QIikv2x3xntAXGtEEsjRe0A0GSAJrdN7QP8bFMb943tAYNOVOKbne0CMPqVAl/F7QMTcGVuM9XtAVE4wRpMBfEAvyuNP2wF8QCx942mZBXxAxxsLEYgRfEBHp5900hF8QOkyyuDNQXxAciuFJGJDfECOhVih2lF8QALinxYKYnxACpWV3CtxfED+3qXPvrJ8QADLS7pX4nxAfkUETxjyfEAlWNu4VvJ8QDaS16YAAn1AVUNttUsCfUBazPXl/hF9QJuFyNpEEn1ARwF97kAifUC6vcAaK8N9QIRDB9+Q9X1AuHablqE4fkAW6VHu/T1+QD1SWCJCP35AyrXbhcuIfkA4KmhR1u9+QNbAx5t/8n5ABv2bKREzf0Cm+uB6UDh/QMSTYYeqPX9AEZMNm8g9f0DCyuxr/0J/QBo1jcm3cX9AHNPTobaBf0AjqlNsY5F/QEzpmsmmkX9A1sU5SNyRf0BHYaN85Jl/QAjR2aVdoX9AJSJ5q+ikf0C60RNpV7F/QNgD0A2Uw39A7pU8l5jLf0A+3k3Mld1/QLRJXljw4n9Ahg12WTfof0B2w1iflwmAQE7kyipUGYBAgjy9xewpgEAGZC8D5i+AQNB4vRSiOoBAOGI32io8gEA4+wha1T6AQCaWSr/vSIBA3sO1HedQgEBRRJbVFFGAQKwviZrlWIBAUnGWpA1ZgEBkc4mQ4mCAQByW410LYYBAb23jnypvgEDgC/VPHo+AQInx24RtkYBApCTM/BmUgED46qkywpaAQDviH32HqYBAJjQdiYaxgEAS/yii/L+AQElZCHNSwYBAoLwLi27BgEDbwT+KU8mAQJpo1dJM0YBAaAWsG0vZgEAbhXqVmdmAQLYm+01G3IBANIecL/TegEAK5uM8ROGAQKwHW7uY4YBAEt6zo/bogEBqCVjyQ+mAQAAF2LNK74BAit7dDzzzgEBB9u37P/+AQMXGnF8bBIFAEgMAR0AHgUB8f30APg+BQBR/gXPiGoFAMPyjxx0egUCr19SJNB+BQBJ6OtE3J4FA+jbvpLwxgUBaoGL8DjSBQLXOPOJVj4FAOoHEeVSXgUARW6uk56GBQLz7WjFtqIFAqu16cEqvgUBDe6K+sPKBQHrfHlICCYJALj13dtgYgkBUEkOD1yCCQOmYjBXSKIJAUj0X4qMwgkDAZd5iQ4mCQFr12jhEkYJAdt26dSWZgkCKDNfOPJmCQA7uREIPoYJALM8/oDqhgkDEXtL4DamCQDEFWGQ0qYJA3A155QexgkBa4Gx/rvmCQFZrfZp5EYNAQijJV3oZg0BsjQv8ciGDQLsrDTdyKYNAEjHhc2oxg0AVw+ejw1WDQCKlQufFWYNAIDCMP7ltg0BpxVt544GDQLBVbhj/aIRAJIVL+v1whED65w5l9niEQISwpC9q2YRAKHwlImrhhEAd0YEoY+mEQNoMw4c18YRAWAVBgGXxhEB4um0zNPmEQC/ASHRa+YRABAPSsS4BhUAkYiiHoGGFQLCp4XygaYVAvpZqcZlxhUBg+jgytHOFQL/EKXmXeYVAhWv5q5GBhUABDKmsJrmGQKb/hKeRKYdAsGxSFZExh0B1+ssGijmHQMyXQjFdQYdAwguV8YlBh0DpN/OfIGKHQN6ioeh8godAxgbpocexh0DnUBE5ybmHQHKXr6C/wYdAgJuoZr7Jh0DUPFBCHNaIQA== - - - - - - T3s9RNHVE0Vk5xRFtVBjRFmGdETaYgNHB9eERGGrZUQawghFRNawRFdui0S8BoxFVFEURXtthEQqJIFE05V3RJ0TxEQWhmFFYiWTRGFbt0SASblE4ru8RHYUl0SmlopEMJEtR5q9oEQtQXNE/ohtRBpbgUa4V4hF2+N7RXxXg0RERrNEch2fRN7KyUaIMV5EY9LNRE3XVUSOMIlEHFhzRVQE3UTZ8n9EtaNCRGLja0T19oFEAXazRPV1SERSoNBEmmW3RZmuHEZWumZEpxKaROfeIUXOKa9ExwKtRKl660S84MhE0A/MRJXgQEQWiLFEiiDwRHHtBkemb5NETwu/RGynbUSpW45EdwfvRDjbWEdpeMVE/iNrRvkyG0YhuDxE6LGERDy47EVtEm1EJQqORP3450RD60NEothGRHNOiUT1hnVEK19gRc512kRZ05hEbKOpRd3WBEhqf1BF4ntaRmyLuUSxb1RFQoD+Rd44OURrFopECqRCRIC6/UTK0FJE3YOXRrmAt0RiZ9FEtvcSRdbIOkVds1lErTk6RfVAskSPpWBEBA9BRLc1j0SfjDZEKpycRMdid0TNJ51FcKovRfNJiURPNcVFbKBsRJbrSEeGNG5E49w4RJMrrkRSNThFhhpSRG2i9EU8xD9E+fqGRE6GuEW+2bZEkYWARPMaYkT8FKFEM4iPRYRgDEWRAa1EIH6tRBKBUEQnxWpEcOnLRN0ZxUQuemtEfHMhRXqdlkQLxqtEtRm4RJ+sYkThWKVEmqNrREvUnURhyGhEDCQRRQSsUkQHLQ9GwXOrRLYLcERuALJEypoDRey3ckSF4SZFAuhoRA3sdkQaCIBEhIWPRBT0QkSbXBRFvtHlRDJh4UWdIV1EaJ78RPqn7EXk0VREBkPbRMhEmESO2GxEY0KNRNSmp0RDrYdEQyqBRN8GuEQMLQBFi6qpRM8Ej0RCY4NE31kCRe4vikS5QopEtE9AROgwCkUDOnlED+9bRP54jkWmM6FEopFjRB+0EEbOo2JFkAjORgfeiUTx/oFEPhSORbIZckW6iGFEjz1kRTujFkaVVANF56diRNaf/ESeEIZERcGRRFHjLEU5NJpFkeuwRGrrjESJogpFxA07RKiwg0S8DQhFMqG+RHFdm0Z5tkdEIZF+RW9+/kfuh9xGNlfeRl8PkkUNO5RGPTRWRN1VqUQLB4hEhoRHRVuFbESkqoJFTA1nRK2RSkTlTGVEDtNCRLtku0TnwilFjJE9RPB+cERbwWREwcshRcFMhUTzR3RFUw1pRNoLT0T0KY1EYoZTRl9qkkU/yh9FmnUTRcIrW0XyXHRE8kwXRZciSkW0lz5J8wu8RS5IH0XzRkZF0qJISCL5xURl8tlE+oCoRqCOxUSJPb1E0C4DRXT8bkWl6KlFzsLdRMo8aERo1KBEvYtrRftfU0RT9NBER8yNRcpDm0Qgq9JFLsh4RC3kn0Qd17RHvUK9RqnHl0RARQlFJ+VMRFyzx0TGMUNEwg5dRS4F+kS7z1FEi9zmRaYvdUTtqP5EIyV3RBfgmES90dREw7a4RE9ogkT9HLVEcE06RjinJEXBOZdFaEwQRjsF+kSk849EpVONRNFhvkTzO6VEGMOdRB3SskSN1JBErGuVRXqCvUQNFYdEbS6QRIMOrEVG4pBGxwCsRIIVW0ZNE69FdrdqRNV4lEUkyZ1FWxSORHFyZkQkAapEDdu9RLcb00RW9u9HZGznROCy5Ub2chNF0RayRjvWZ0Si61dFZ6CoRJyNv0TDUtNEsR2TRJxXrkQ+o4JEPItaRDqVbURCpGFEi6kjRR7AIkWkfv1ErfJqRB/kZ0RA4o9FedG6RPuISUauT0RETTHqRMEUrkRc5E9F7I6QRP3OUUXQaQdFVBKxRLPXPUb/jM5FGbAARR31xUS1L3dEYYh0RNtKj0QUl4NEM2IgRRPiqkTwffVEKpxzRRgIbUZhloNEYdCbRdXblkQ37q5EGmICRQzvLEV+Ex1GiGgERlosWkVpweZEI/2TRL7GcUTp2HRIh0m9RDwT+Udk23xHpctjRsnKzUWYYJRFMj3URCx9n0U4DTNELnqiREW9iUT3xNxEiKauRC3GDUY5Ip1EaFz3RHITA0Xd0GVEVkPURGDcq0X2YYVEAGLBRKDXXkQMIaFFnL2sRDQCKUXkJQdFMqYYRcvfWUS1015EVQErRsu8mkU7svREwezMRP1rwEe8kDxHijlURG3n10byv8VFc7bYRW2QP0Vrqx5FAhL7RLxf2USHD9FH801JRws24UbPNwhGwE8aRb6IAEUyU1VEnOJzRGZyqkRyVdpFgOo1RUHp/kTQ/QZHZomBRnUYGEaBcHpFsuyARW+r00RHT6BE4RrjREpPAkf24H9GLbYwRlPPiETB3E9FtHCtRJBgBkXQvx1GEHq2RRa2MkUFnZtECsqnRFG3hER535tED7AFRv21pUXpwFdF1siyRD0pX0Q= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - ebBvuG7BckBKntcO58JyQDQ7FdM7w3JAmM1vn3jDckA63C9JxsRyQH1pXJVZxXJAnD/vX3/RckBOoYXSQ9JyQBZvZVF203JAR8yV12PUckAENfu3zt9yQNKHIwK44HJAUXmYk03hckDql9s/UeJyQNBWuW+Q4nJANs5f7SPjckAXRkJGrfFyQHBvylnK8XJAnIxLbBPzckA3Mp4CuPNyQFq0iBOk9HJAKCWuesL/ckCzAptfZQBzQNG/H4j3AHNA5trbcBEBc0BrxIJnTAFzQIfqJXyPAXNAWQeXSjwCc0AOx7Nv0AJzQMvvzAT7A3NArQ7IKgoSc0A6T5R6vRJzQIpJQFgGFHNAsGdizU0Uc0BMhunYpCBzQLji7685IXNAb3krN2Qhc0DfKCmQyiJzQI7hXsgPI3NAeJTs9jgkc0Cm5RSMzyRzQLDTpAVHMXNAapWzXVsxc0CSX2jIIzJzQD1pNvALM3NAq9FMzNYzc0DDNxs23TRzQMr1cMHjQHNA9Hr1IXlBc0CbBwpKJUJzQNTB+1K7QnNAoNTaDXtEc0B8vhxOi1FzQEgEcLaWUXNAfM8qfBBSc0A9NlTcQVNzQIM6ULykU3NABorKo4ZUc0A+7ssJOmNzQIQ63pWxY3NAzDJulNFjc0AmYxoES3FzQO76pSZScnNA8qp4WWhyc0CYLTkASHNzQI5yoHJMdXNABt2zNXmAc0D0ykmupIBzQHVlynANgXNAFPuCfMiBc0ApXpnXXIJzQHKC3C+lgnNAej3DZ4eQc0CCxKjQ95FzQDs4hkNNknNAElcTJM6Tc0BiLUSmZJRzQEIqcTn4lHNA3EFZm7igc0CXxIzR46BzQAQ3OKVNoXNAtp5XdVqic0DQ/NIUBaVzQNAdXITSrnNA7Gc5Udiwc0APQ/4mfrFzQGoZeOdrsnNAxKa7ALizc0BofOWXDbRzQHvnHM/6wHNAHf7i9IvBc0DWps+90MJzQJ1ffN0mw3NAJtIlB8TDc0B16ObS2NFzQLZCCzY003NAFEQQrvbTc0BmnZjI4tRzQIz1ubo44XNAJuibXOfhc0DmbTjSNeNzQIIyVp3t5HNAQ8oFRbTyc0A0b6v1n/NzQDzjm4c39HNA0Bjt6eQAdEDeZBIXeQF0QELynC+lAXRAs2ifzQoRdEDcAp72iBF0QKnVuUhvEnRA2NbIcEwTdED/x7Ir4RN0QNbtvJF1FHRAu/Zh3kogdEBmpsXLJCF0QCJAMcy4IXRArnkGNWIkdEB+IEh2UzB0QIaJhyDmMnRAorJ7Z1NAdECvdqMb91R0QEp3lSaMVXRADumGoblgdEApQ3xFCWJ0QKivyOi5Y3RAWl6f+AxkdECvM0ByT2R0QOPSLv8icHRAB7ogQ0FxdEBt8V4TOnN0QC9srPmgdHRABp8ijzd1dED4Fgzk+IB0QPuyHWtOgXRAtRxDqhaQdEBKmt+8Z5B0QDZsocvQoHRAgEOEurmidECQz5040aJ0QOR0wyMPo3RAtsGYKmWjdEAnfWU6ZKV0QBGylOMKsHRAVFGMPsSydEBsXskk/LJ0QB6CyUjjwHRAQL4RJXjBdEDof3e26sF0QAsV7LgRw3RAetgPpSPEdEDYlM/auMR0QOpWNpydyHRAiRn0tf3OdEBmpUNGp9J0QPxkOS/i03RAWIP2Fs7UdEDSvnc3uOB0QHSOB7Yk4XRAkdeYjbjhdEAmQ83/T+V0QKsP5OWM83RAGiWBDKb0dEAWCha70AB1QN4ACfBiAXVAYaoAXvkBdUAUY63vmgN1QK+Ej5kjFHVAKupVSucxdUBU6IrdOjJ1QPMnn0PNNXVAabRq+dtFdUAAAyGw7k91QFojTGGBUXVAgmE/oE1UdUBKya8OeFV1QASXycEFYHVAzOJVljhhdUBq/aUP82F1QD7r9mJ3cnVAZprzy410dUDOybg4eYF1QMxKF5+tgXVAeivq+aWDdUCU7f1Tm4R1QIe9VzmMkHVAepxRdbyRdUD+PeBqPJN1QBGYWNrYn3VAocLS2LihdUA8G3zfSKN1QJWHj92iqHVA3kVLj5SwdUDvoY3LN7N1QArxPUY6wHVA8bYg4GPBdUDT7dCe98F1QFSn0VjM03VAEuogwg/hdUCgxvDdB+J1QE/6wQo55XVAgYYkFEgCdkBK1Tcj0QN2QPfE6LBNFHZApKaVxwsWdkAiO76kmyN2QNwDyweQJHZAFLtZYEordkBuCcKJHzF2QJZQLYRRM3ZAL2A3iZ80dkCMe6uwHUF2QNJEgmp6RHZApAdXC8tQdkDMKCA3EFF2QElPO3SGVHZAHrBBmc1UdkCeUDzWIGF2QIBJd9PbZHZADOqKlWmSdkDYzjQvKZN2QB7ehkS4sHZAq0ZMWsKydkB2T33bDLR2QHy55O53tHZAw7EUmL7AdkBVm+6GzsJ2QJ89zHMbxHZAdEl8cM/OdkB+BV6C8eF2QIZViCy38nZAboAkFJHzdkCoDGfJTPR2QJ7rvqozAndA3EpVXAESd0BkMkNIDiJ3QHCoeKRzIndAnBiW2Qw1d0C83odwnUF3QDDRuR8bRXdA+oeoBkpRd0AiPJysklF3QGId46YpVXdANi5aG5Bhd0AfnrYsJ293QHzcp3qGcXdAOJ8PWZF0d0DuknKTTIF3QCTVk855gndAenRDcXuDd0B8i6hEC5J3QIzjHDZMlHdADg3LPJu0d0AZRhDF5NB3QMRESLj+2ndABstC0FDyd0DAlzqQ+AF4QE3kKIRuInhAUkDcm4wjeEDoYovWezJ4QKgwksgLQnhALSfiiHpFeEBV1rL6ylF4QPoYbEr2U3hAAU79wYdVeEC+S1J4+WB4QOkJlWG3YXhAPf+6HLhieEAm/7tTOnR4QER0h6RRdHhAxhlDoGN0eEDeUGKZi3R4QEApl5C8dHhAPqsSBuZ0eEBpWQ40C3V4QK+pUOikgXhAhszM2pmEeEAou7mHl5F4QHTizPCnlHhAZJ4Mbc3AeED+d2R49sF4QA0CEJC31HhAYiO/gwL0eEDyaJYojfV4QJyu3L0OBHlA2F6ufZkFeUBO88MnjEJ5QLBCson6QnlAlk0H/4tDeUAU3NirzFR5QJZ0ASNEc3lAQ/4ADsCyeUAlrHcuzMJ5QMJWzvNC1HlAOLbOOczVeUAM+PdmUeR5QLi7+eiD8nlACJkj1/kFekByKG+G3SZ6QHWJym4MNXpAKg60nBpFekANF7nZL1B6QHZ/5J8oVXpAHA8wTY1yekCwdZtOCJ16QLaIYCdkonpAbbZJ3wy2ekCYkyqcK8N6QMrHCfAaxnpATkI31ULOekAlrNzi4td6QKqe1yU73XpA/IL3smXhekAUDRkH9uN6QIwshS585HpAARgjeDfuekD6basQF/F6QEA+Awxh8XpA5MiNwMP7ekCdsN4fKw57QEo6MpVMFXtAh/GZZ1sle0BUnB7eHy17QOtpldUgLntApCVsKVQwe0AzjC5meTJ7QGwvn3XEM3tAjmY1ZUJQe0A4CoQAXVJ7QH5fcgjDlHtA7hJP/yOVe0BjAtTmd8Z7QIBfus+u03tA+DRW+0rie0C1o2i9AOR7QOaZpHqM9XtAPkd3F5QBfEANS1JC2gF8QMjkTff1AXxA1A4OGpkFfEBOMOTEihF8QBgIbPTREXxAQnvrr81BfED44Yyt3FF8QIp8Y8gNYnxAzM2mn/mkfEBWAnkCwLJ8QC1gYmERtnxARiIKws/VfEDou2s3WOJ8QPimAjAY8nxApa3y9lXyfEBvak67AwJ9QA2jkL1LAn1A8q2KJ0YSfUD03L46ZhJ9QM1mpXU6In1AFiigPdbifUCSZRR2j/V9QBa0by2AAn5AgKDzUp4FfkBeTuulQi9+QG7BPyahOH5A3B/ifvo9fkDTKbNljFV+QAWr/vjjkH5AFrq+rtjvfkDfOJ1kEDN/QD5hw21POH9A/oZsIKs9f0DeV1Iat3F/QCJONSVjkX9AxGv57tuRf0CkVdgvX6F/QOwoG5/opH9AvjNMGlWxf0Ac/ICyk8N/QGKsxZSby39AJgCbJ5bdf0DcKcr37eJ/QKb3tS066H9AQfeuKZntf0DuO+QWRgKAQDTCYiGYCYBAvkQIKYQRgEBBXyQhMRSAQOZSsn3tKYBAcf3Jtio8gEDOnqh/1z6AQODH/byDQYBApK+H4PRIgEBKIt0f51CAQP5nUMkUUYBAtP1Df+dYgEAuXZwrDlmAQO2VpRwrb4BALqHX9x2PgEBr+eu4bJGAQI5MI8QalIBA+MnU47yWgEBj2ZGVypaAQJDcwjJwmYBAolEWUYapgEDEqBshFK+AQJyDzDyGsYBAytIo6oG5gECd99mGUsGAQPRFmJRTyYBAfp27v0zRgEA0fb/+YdGAQIxw0q1K2YBAXqCHPpjZgEDGXRDsRdyAQJSGpH/y3oBAbhW0vUThgEBz5GoeVeGAQF8oqkyL4YBAinv0/krvgEDYyXYHPvOAQHf0N+k//4BA6M1+LD8HgUC31DxnNB+BQBBtMmk4J4FAZjg4Kb0xgUDS91baDzSBQANtmptVj4FATNuwaVWXgUAP0k1i6KGBQFaccb1uqIFAzPjbqEqvgUBysysLftOBQM7LYWICCYJAGomqndgYgkCGehct2CCCQJQs2ibRKIJAXOBO2dAwgkA8dpNaQ4mCQECQ0fRDkYJAFg1KejyZgkAbw4D9DqGCQIQ2cWo7oYJAtGnfpgypgkB/lCxbNKmCQPK7ry0GsYJA9ZkHcK75gkA+JuKbeRGDQBdc6Uh6GYNAokWOK3Mhg0BtWsJwcimDQADA38JqMYNAxk98qMFVg0DelwLxxFmDQOp9fUjkgYNAtfHxj0mDg0B4/EMAQNKDQN5AG5iU+INAroeFMP9ohEDgfhaD/nCEQC4FNIf3eIRAlBUbSsyAhEC1FTCEatmEQHAmm3lq4YRAqJSHCWPphEAWp2sXNvGEQJM3ROxi8YRA1PweGDf5hECG0X4hW/mEQACh/u8uAYVALeGqgKBhhUD6ZojFoGmFQLiOMH2ZcYVAjLU8SrVzhUBypT+Il3mFQDZf9IaRgYVAZKoB1yS5hkB8Wr1zJsGGQFcHLJeRKYdASt7pL5Ixh0BcKgoFjDmHQEpqNhtfQYdAztq5woxBh0CgWco2HV6HQI5F2RTIsYdAjqVSMse5h0AeEPspwMGHQPjfCda/yYdA + NrgMGZxjYkDsFOgHcuJjQBu6YmAmQ3BAncs7e+cBckAJeGK9lHN3QIuJO9hVMnlA9zViGgOkfkC9o50aYjGAQI771MhYWoNAvdKLRA66g0AfAFZhmhKGQA== - + - tlWERQC2hUTpJ3xFaDhsROGdzURkz85EkzltRLu6DUdiL5pEgDd7RMwt3ETJBh9FhivYRK0boEVM8DNFbsHgRM0TVERoN4BFKilARBCyf0Qsr4xEfqIHRYJ8g0Qe4LZEX0B/RJZVpEQ6rd1Eb8doRIPDC0WnLyFHPpehRMzikUYHopNFIpXIRGYl50TfK+5GCZWfRImm8UQ6x6REXcRpRCDv30X2DVVFnoSnRH1Ip0QsI6REWfx+RIaJjURBWQZFVJa+Rb1rdkS5pX5E4AxBRmUxbERfelNEixh+RNd6uUSbeV1FqSL5RJ0sREVshmpEwlRtRPvnckT1BSBFedymRJBocUS6P+dE45EUR40bRkVwqgFF9OqRRKDHkEQA7pdEUQVPRVOIhUQE2oRHAXGyRClsn0Qp6HpGMfQ7Ro1vdkRg5I1EnQIiRo07E0WdoHtE0ha8RGNNm0TxLHpECGJqRViDiEXnOKlEeCWKRKtXwkUeXvtH9MFtRID4Y0VgomNGRgYIRWClw0UKvwtGAJOERNaIiES2fLREZuiWRFAsf0Rgog9FR3iURKkDqkb7XCtFy6yLRP+TCUUO4HxFCvR7RX7MaESmFKhEG3aCRJCNdERt7CVF7dyKRLzR20QAMutEBdSFRGxZAkXF9qpE09iTRdif9EQ0PlpEmjZ5RMOEyUT14gBGhvB5RyXn30RuZlhEuJ4SRfEKZkVlqC1G+0ziRVLbkkS5FWZEEhwsRXk7jUU/wDRFyN2pRObz50RriuFE7/lqRPMVUkQ3eaVEdirpRN6iwUR01t9Et4ycRNtM0UTzBsNEX6kHRRTRYkTyDbZEHsMwRZb1Z0SZrdhEJScuRTDplES6lN9FNcmlRONupUTAGoREmNprRP+iw0RU9BNFh8AyRfMEf0RlczdFyO2DREteikQp9rtEpQa9RGsgAUWSt6ZEzOIrRRHOvETpEEVFdYUTRn2Z+ETbGAdG35KIRIfE5kRcyL9Ey3neRK/PpESzkYZE2AqSRAuECkUuOaFEtxCjRML1jERBd3xEVpqVROchHUVkjbtEuP2IRE8oHkWLZWlEfcVaRaBP4ER6xcdEqnrfRKBQ40TfMzNG5zeBRVwyzEZCNc1EsWXeRJDaqUWU9JJFpUR3RH3CQUVLkJVEfxQkRsntjEQBGvdERoLkRCPogkShS71E2d8XRdCst0V9zYZEjxjhRIdElUS46LBE0upARa3QWkRkkItEuro8RRbMXUTuSxFFZkbBRmxeq0VkGXxEZdAQSN4U30bPKwFHmXbbRY4TmkbKEQRFKGeJRSnokkXYqopEQJWWRJhdgUSSIdFEBPhZRUjeZUQbSsBEpda0RPEkb0QCqBRFOEDdRHYHjUQRu69FwW9nRGCSg0Sas/1EWR13Rk3hlkVLKmpEs1owRRhzLkXnnI9FNtqORKHAMUVOS/tEaQtqRdcaW0nLJA9F8OsYRTvj3EQkEB9FtBheSLNED0XuhLxGn5MeRfJBjUQQLitFV8yiRQeXv0WYdalEbsLDRFKQrEQJ5XtEnDlkRHuZXkVtweNEtS6ERW9EiUT+cQNGXve6RH6/5kR54IFEzdK/RKykrES7Bb5HXejTRhrHi0T28UpFy6/uRPJ3V0VUD7pEZ3vtRRQW1kT7F+9EcsmsROKXEUVZOgFFzEUDRZYJZ0RQKsFEosAgRWMDQkVXwqhEG9eARF4JrERpPklGe+1gRaYxyEWX+oREcD/4RdZjQ0W+yJxEBfbjRB0TnkSIJHlESMzdRGM10kQb1pdEWvdbRc6FokRt/aRGnZ+tRP5TRkaC39tELbzSRXJl30RM1ZVFw2K8RcD2t0STGONEb+yeRFB+DEUfH5BE4NqhRJLF+kc7XyRFaeECR1UWREVAMdVGvAaFRcDxlESgD6BExWliRO+5HUW+/opEw6JwRCJQs0Sd0P9EEf57RDdQdkQTBIxEwMeORPzzM0VezG1F/e3sRK1zr0VtSExG8vtERUeAekXGPohE1tYdRUdHvkR+eqpEzr85RnHk/EUgiRBF+hGqRN3MjkQUZJlEUIvrRLOocES1PoVEUDIxRQXBIkXtSWZEbSQHRTLdVkUronhGnF20RPQ3hkUl7cxE9m3JRLk8JUZc/dJFg2YWRYs5BEU0VsBEZLzeRJjwi0SsOptEqORzRJ1ShEgChPpHmA2OR+BuNEViwXVGI99/RXmwyEUv5zZF4x2WRa3Ku0S6drdEvs9uRGsSp0RaJxBGgrXsRJzj7EWaNqBEXAQhRTw/+0QxRpZF65juRG3hQEW8KulEE1XYRHS/AEXCLaNE73BGRiG+g0XSsitF1HBvRLyQwkcUbSZHvuXTRuOMCEay9edFnFsFRW3w/kRR051E3rC7RINb5UdQQ19HZVUJR2hHMUYY7khFCzDARLYcs0TMz5VE8bfVRJdwjkTmE5NEGeXGRRJCS0WpcANFzTqCRMXaF0enIoJGXnklRicWukUSXoRFOscbRVHUkkSPKLBECrMIR3gPj0ZUoDNGM3HaRCOlVkUzFOREvVrCRAiqpkTH9zdGuSTGRRBlgEVnLq5E3h/kRK6omUQWTAZGY0fhRWE/akWVl89E + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + - - - - - - dM7ElwvBckAaFyLcbcFyQGzP6R07w3JACaeEtcTEckCa/060Q9JyQG5YM35103JAvhzP3M7fckAM7RL0uOByQJ7rH+RN4XJApawVOlHickDIRBizkOJyQFnWMkwk43JAL06n1snxckCEfFiLtvNyQGA2AHih9HJAIP2gj8H/ckAou8J2+ABzQO5LKyCOAXNA9Hg9ys8Cc0B0OUfT+gNzQO6Pw8yPBHNAUI3HtCMFc0CFeaOiCRJzQHr6S4N0EnNAFD5hEr0Sc0Cux8cOBxRzQEbga6RLFHNA0I8I1Xkfc0DjMXVTpCBzQBK0LVw5IXNA1UZ7dmQhc0CBNGwifCJzQDB4Nv7JInNAxpiNcw8jc0Br5+aYBCRzQMrkHIjPJHNA8lHkg0Yxc0DoldwYaDJzQLhuhSULM3NAp+z2cTg0c0AGFhKVuz9zQBaBYE9CQHNAyZB5KORAc0A+GGjyeEFzQPnEDAomQnNA74BUsnpEc0DmmBu1QFNzQM+nLI2jU3NADMgIuXhUc0AqvZwfOltzQBhww0iMYHNAkjmqTTljc0BAK9wkUXJzQA7NSqdncnNANAHtZLZ0c0AcFNELTXVzQPJ1Wfp4gHNAZCfXr6OAc0BnHNZtDoFzQIwna/zGgXNAQOgl61+Cc0AWL055pYJzQDQgOUGHkHNAWtfdZU2Sc0CCCbKsYpRzQNA3e9H3lHNANrKEILmgc0CQmpW/dKFzQPgHwGxbonNA95tyM5Cic0BgctQT5aJzQCKvTHEEpXNAHDJ42cuwc0DjphjWM7FzQCdf3gt+sXNAkOeqabazc0CSZwfPDLRzQMgxP1z3wHNAwCu+N9HCc0Bz5E7TJsNzQCjcBTfDw3NApq0vUNjRc0CiECPDM9NzQMIbIMX303NASt2Ew+LUc0D4sdSso+BzQJLOuxo54XNAfCIUOWThc0D2jFSwiuFzQAMtT0Tk4XNAEOB97GXyc0AMzQdDuPJzQBpgybY29HNAzEK7/eEAdEB+C6bGeAF0QPI0AyOjAXRAfJJLC4kRdEDbuHvj9hF0QHfwra5vEnRA2LYdRk0TdEBsKZYEdhR0QOsAaHhKIHRA1ku9DJAgdECAGBFSuCF0QIyq1rO6JHRAm8mZuVQwdEA8bQK75jJ0QK4G3IxTQHRAcTrxY8dBdEBsmvL2ekN0QBvtFUf4VHRAchQU4ItVdEBXFxMouGB0QAn2GBEHYnRAWP29mU5kdED7vLNWInB0QN80YVdBcXRAXcPFL6F0dEDmTCWVN3V0QFQ+VjD5gHRAMSTGqk6BdEAlnCEiFpB0QEhf8HTQoHRAcZEXbTahdEDi7reJzKF0QLLlEiF9onRApHfoSImidEBA4DORuKJ0QCBrW9DRonRAkufghw+jdECMfDT8Z6N0QGE2nHpkpXRAI1OIZAqwdEDcPGciw7B0QLbNrMTkwHRA2ZCQEnrBdEA6OyCK6sF0QMoW9CO8wnRAGY9VrBDDdEAwEBSTI8R0QADFWhx6xHRAul6B3rjEdECOIn6Nycp0QNg+jur9znRAwhbeLz3TdECaKmf44NN0QCg+NsrP1HRAw2pr+7jhdEDLbaWgT+V0QGx9XM+N83RAGf8zAHj0dEAyMlTOpgB1QG4Wh93NAHVAONlqumMBdUDJDvukmgN1QPQujsaXEHVAjEfh/SIUdUCBLOjXnSJ1QMAhFWTmMXVAf7Kltsw1dUBOX7JQskF1QAeIHGkMUHVAYH4jp4BRdUBkaRamTlR1QEpo2g53VXVAF6wIkhVgdUC4SB2aN2F1QKDANI/0YXVAJMwmuHZydUAf1u+NjXR1QHNxe3N4gXVAhEj6GK6BdUDAHzRJEIN1QNQSinymg3VAaCUIl5uEdUCEHs8vvZF1QN7FccZtknVAKHUivrihdUAEyy+6R6N1QKsTM7M0s3VAt3yd73yzdUDVX3wpZMF1QDRJjpX4wXVAfNTG+8zTdUCiBAdaDuF1QIYMBYMH4nVAs3AC0GvydUDBGPvURwJ2QF68ESDPA3ZA72E2gwsWdkB2xkdpnCN2QJDVq1eQJHZAyNxu5UordkD6qE3SHzF2QLKsxluYM3ZAl3LWDZ40dkBkgl0hHUF2QIpLFVR6RHZAtBIZfPtOdkBWU/peElF2QJbMBNDNVHZA1FCRCdtkdkCoKi7Z5IJ2QJzjdPVSg3ZAnl5+nY+DdkDr/NIkvZN2QFQL7nC3sHZAeRmuQsCydkBIaEnTDLR2QH/qlIy/wHZAL4ZK8xnEdkCM/kClz852QCZ2mEl+0HZA8trEmb7QdkC2OS2A8uF2QOBkZjeS83ZADXIsmTMCd0DMj1euARJ3QGODpzPqEndApMAPfg8id0CaJ/UVDTV3QCrI0iOdQXdA3lfJ7hpFd0B+joATS1F3QOAaM2GSUXdAhrXiGSpVd0At7WkmRmF3QJ0SL3uPYXdAvVdNP5Rjd0C+ig5YKG93QE0d1G48cXdAc5umJJF0d0AjxP4peYJ3QM9VTkh8g3dAGLhqxAiSd0ASgD5DTpR3QGVAP7uatHdAFIN9lPvad0DSy5u76+B3QOYY5PpQ8ndAfC0VkPoBeEB4J7vhbSJ4QGS8qkSKI3hAGBDg3Q1CeEDkY3JuekV4QJokKfLKUXhAlqeVs0xUeEBWbY3Nh1V4QMWv6XX5YHhA0rV/x7dheECdW5KUuGJ4QPAeZ71odHhAWgessIt0eEAA0SVvqnR4QEyKd0mmgXhAaewRzJmEeEAaeRaouIR4QIYtTGtQj3hASOcAkZmReEDqbdK8ppR4QHCqVgS2pHhA4IqOP8zAeEDKlJU79cF4QMx9xru21HhAFo06ngL0eECHSZwejPV4QDSxwzcRBHlAs99kIpoFeUB6+hFgzFR5QEidUR3aZHlARBD7BURzeUDY5L1996Z5QDQ1onfBsnlAtK+meNLCeUBS8xAJQtR5QHGFWrHM1XlAnDs4HFHkeUC/4huB+gV6QBIIBlI4I3pAxswPqd4qekD8DzZcDDV6QIRPmn4aRXpArN8wLydVekCo+dEYymN6QPodR6s6ZXpAwCYspoxyekCu82kRCZ16QGrUtrdoonpA5gzYWAy2ekAwoC7aKcN6QJaqRJ0ZxnpAZqu+ZEHOekDIOLRG4dd6QArmnJg83XpA0Tu153rkekDGsTlnNe56QFDO6gJ2A3tAFjyjkyoOe0DDlrumTBV7QDiiz4BaJXtAwsbhxiAte0CwO0pnVDB7QDBxSEZ8MntAIqnToMEze0BUsLRJ1jd7QODD3SIdPXtAeheZWkJQe0B02TbuWlJ7QGUbN7HqkHtATcLeISOVe0AUpZNteMZ7QNhXskTA0XtAS3BDZK3Te0D86jFp/eN7QKv8+WCk53tAlYImZIz1e0B8U8/12QF8QDaI3ibyAXxAh+uO8JkFfEBk3wDWhRF8QOpbesPREXxA93uarc1BfEA+Gloo21F8QJKeVNcNYnxAIymB+ClxfECks6D0BHN8QPoecrTBsnxAFdOdylfifEDOqbA3GPJ8QAQ6nSlV8nxAutfNRAACfUCASDl1SwJ9QIKdItlDEn1ArAnMfz8ifUAXuXainTF9QKz5jGHU4n1A4M9E/pD1fUDkDCI5ngV+QP2ndZKfOH5AyGIcnfo9fkBYgSDGWEN+QJWq3lBN9H5AMBWFXA0zf0AaLBa5UTh/QKQy4dapPX9Aliwo1/9Cf0AwsEVMkVN/QPjv7my3cX9AAkeeQrKBf0A961XTooN/QCIYS69ikX9AfYJbJ6mRf0AD0bz63ZF/QNiVigeak39AVwjLcOGZf0DSwh1QXaF/QB7pn5JVsX9AfOV+/ZPDf0Cj90TWlN1/QCgnQK3v4n9AkASsgknof0B75lVBme1/QGtKiJaFEYBAtJdOw+0pgEB+G2Lv1zaAQKJ1MjQpPIBAEqWYYdY+gEBuWRbA9EiAQMce8VPnUIBA7n+yOhRRgEDRR6i35liAQOQuipsOWYBA3tYZCSlvgEB+1nK+HY+AQLL5gn9skYBAJ2AH1RmUgECYcOhKxZaAQECGsG5pmYBAqDN6s4apgEDyIvSxgrGAQGByglhSwYBA2hWDf1PJgEAGmQO+TNGAQIyWI7BK2YBAlITRXpjZgEBKsxs0RtyAQAxOeXnt3oBAxamnUUThgEAKfRp/VuGAQE7PhNP26IBAWzTBTUnvgEBJeIGcPfOAQGDXM60//4BAjorzhD8HgUACOaqOPA+BQDp3Mk4eHoFAAi7BZzQfgUBNoIi5MieBQNxT4WTbLoFAs38iWYgxgUCc0VOJvjGBQJZ4z+wNNIFAkpb6NGlRgUCmmM4ZYX+BQL4fPpZVj4FAt14Z3lSXgUAOYvc156GBQAxPfkJuqIFA8DByHUqvgUCS+AsaBrKBQO3Ei7d904FAcnAmogIJgkARL/9i2BiCQDD4jDXXIIJAkoDN2dAogkCOLfAtQ4mCQKzou+FDkYJALvvpz+GSgkCkNruyPJmCQBxvzTlWmYJA/vI0fw6hgkA6+1ovO6GCQEiuTS0MqYJANGi+pzOpgkCxf2rkBrGCQNQluXGv+YJAZOv1bHkRg0BU9+ArehmDQLpmpABzIYNAQGiSX4ohg0AklL55cSmDQOajcghqMYNAcF7nUMNVg0CecbH8SYODQLtRixn/aIRAm3H1QgBxhED6jgI693iEQLaJHvP4gIRAaHvkUmrZhECFRw77aeGEQPoiLs5i6YRAike1gjXxhEAM5MISYvGEQL/jHwoz+YRAss2oq1r5hEC3r0thLwGFQPAMb1kzCYVA9u03c6BhhUByU/AFoGmFQNYrGDaZcYVA4ojeDrVzhUCwDNuul3mFQHpl7M6RgYVAop0pEya5hkB1vf79kCmHQIKvY/SRMYdA4VdacIs5h0BWaz22XUGHQCN/BhmLQYdAqel3hBteh0A6vZeix7GHQEj9RwnHuYdA2sfRR8HBh0DW1YLFvsmHQA== - - - - - - qrZxREljWEXOXmpFeIWjRPzjIEdxm9FEXBowRb8Fs0T4uZJEU8ReRW/4LkWL6ptED3mNRczj7kT4gcVEVEUtRddIEUWC2ZxEmaW3RJULTEcnMIJEx+SQRPcc00S/la9EJjeGRgQx5EVp1qJE0pDZREjbJkXa3wdHo8aRRO8fjURbpuBE1oC0RCLUpUT1yNZFA1klRb/Bj0TliY9EvFztRIVfhESaG8NEm3sRRbxOoUWkzJNEdBA+RiSn4UR/m61F7ZnERDwdZUQ2grpEfh5SRWshyUSWvMVEaVTcRNzQC0WI6BJHwzjeRK+qmkSbLZJEOqx6RHd3hUQyB01FJcBoR/Qx7kTRPIpGG4UmRsxqlEQjwxhGWhCMRHL2rkRVgiZF9DhhRBJ/i0QtkJhEAyRoRcnAhkXmOvZEzVC4RXhm+kdkD4FEpCNORV3PXUZSVs9E4kx/RTNxdUTVz/tFCuTqRP1frES5J21EKLiURABilETEJshEV0KJRE/1tUaztu5E7+2RRAg2iUQsCiFFjz9cRS1uzUSaJLtEhaK1RJi6UUXU4GdErzayRBjHDkVysIZEk7CLRNwbkkSDh/hE49kGRZ/yo0XHj1RFGBn5RB+Iv0VVIG1HcCdvRHOi5kS/IUFFUQscRlo38EUpcNRE20iMRDHCfURreE1EaXtfRHNvz0R26LBFQlYGRS4FjETiyqVEUVsURV+No0RyR99Ex7vJRL82xERGhphEQYnTRLv00UTdCpFEU/gHRR0EmkSrvb9EU9udRE0HlUSF6L9ErmZURaMNlkRijtJFDcqqRDgudkTCyZxEOcqxRKPbsESts6FEN2NGRfOUh0TBQnBFQVBjRcX6lUTR9HtEQxCmRNPHj0RR9q1EAUdyRPY3EEWLxp5EMloSRexAI0b2aOdEXfYZRmqRrET596RENj/xRKMvl0QPfXxEHU3ERJN+DkXdoJlEVt3lRAmCbERHTAdFsiXGRF3pi0Qx8FBFKGeYRAY9hkUP/BlFb1i1RDTapESFlxRGmkSIRbdC5EZC/IBE514cRb/b30WxAXVFTEeBRDLVlUXqjS5GUpM+RdQujUR7f6BEeAucRIkjpURuB4NEBhUhRf702UUwkZdEAy+NRGOwHUUj5p5EU0eORDTF1ERctCpFhLzERMo71kYPCW9Enr6kRdMaC0jvON1GKSoDR/lms0UtIYpGaAIaRfFapUSPM2RFt7+FRHfQgUXJO4RE5hWmRHg/5kRZq2JFcgECRaHDuUSOwqVEDv71RPlavEQhMrREpJ6eRLXpnEU5lMZE9/vcRGzsakY+a5dFYkFyRH4yhkXGWlBFx8WBRWGuykR2voFFYUxfSbiL2UXgijBFXJZlSBP55UTII5pEhLnHRMSOykYlTcREGSnMRAdgiURnypxE5Ie1RZjv+UX0XalEr7kKRRYK2UVGhMlE+LLdRLSAg0SCsIZFLRmORAG+7kXMVBVFuNf2RPwnx0TGbMJEeci2RFkY3kemJgJHxvNMRcjTbkRPk5pEJ9iNRAYVE0XUzoVEVyUARqHNkET4MeZEBEGvRJl3GkVyJg1FrRPIREufQkXpXpFE7pr3RCMUREYol0pFSFULRnLQ50XNiHlFQrmZRBlsk0RQTphEhPEeRXfxskSkxKZErwXBRFEmk0SO9+BEunz5RFbyAUXplaBEGUK9RrCQWUZleAdFacK8RSDpoETtf69F3YjuRahErkTfZc1EJIDWRIOisETZp5xEcvwCSOxMGUVCsfBGMGdDRV8E2kYGqXpFIZnxRGbhlURDXpFEgeZsRY6QgkSN7fJEGjPgRFLKlkS2qXlE5GubRKM/REVP5UtFp3aVRCUtm0TNVY5FhOeMROtFyUS0ZU5GkXijRE4jM0Wmn2tEFuzHRA4ogUXpuQtFfPXWRKNgMUbu2qZF8mgsRUe0jESlLwRFHuqpRIuinETvEytFh2McRRGECEV3+55FefaDRmCa+USXBL5FfiENRZHjSkVabihGIonGRRHDIEW47d1EU2tKRZ+4YkToF49IJlf9R9ADmEepfZFGVL+/Re4gikUBmgdF5FCsRSJLwESAFopE/sbHRKkNnESUGUVGhLRlRQrKjkSBP4VE0hzSRXbkpkSUZbZFF84eRUzF2kT3RuNEaVOGRPmbgUTvlKdFN4sCReazfEVFaS1FUMsVRXJKhkQi7KVE+DSMRF63aEZat4VF42FEReKH1kf71DRHoC2CREZp9EbhP/hE6o7bRR8F4UVqjAdFIVM1RQls/ERoH4FEhJDtR0gSWEeU7AtHiGkeRehGGkZ/ckBF8VwkRZ4boURQjtNFE2YXRXzk8ERx1oNEe2keR3tYjEYLoS9GdPa4RXtljEVHfRRFaE3eRHFhrkRZyHdEvAkURywUhkZbvxlGit+7RMEDfEVivbxEqda/RAumKUbC+vZFWD9jRbylikT06IdEoGy/RBYqD0aFDrhFQKpfRRvCpUQ= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - G+LrEG7BckB+JgSEO8NyQDB9WYbFxHJAtgROElvFckCWj/BpQ9JyQChJrq/Q0nJAP2MEZGfTckDCgTTFdtNyQPW/ULLP33JAZ2LHhrjgckBa353FUOJyQBQqx8iP4nJA+uywFiTjckA6FRvMn/ByQBAavjDK8XJA+tmgvLbzckBMOuniovRyQNJ5v4HC/3JAoZoxWPgAc0B9F+5TTAFzQMbWIbeOAXNAuG5hF9ACc0DToAnD+gNzQMgEN4qPBHNALaahjiQFc0C+92KhBxJzQGwXwbe8EnNACfWZWfoTc0DcmEkqThRzQAZOsj96H3NAoLnYOaMgc0DMIYvUOCFzQPoYD1ZmIXNAVnlT5Xsic0BfxNJ5OyRzQIi5a6zPJHNAikA5pkcxc0BYVgcIIjJzQFTdVM4MM3NAgP6MQ6Qzc0C1UgZ7NzRzQOaHazG5P3NAMOBlaUJAc0Duo+Ud5EBzQIhfcsh4QXNAOAdP57xCc0AlFt2qekRzQFicwZmbUXNAaIuHjRFSc0DcMqyiQ1NzQMarpzOkU3NA7MPCnodUc0C0xJLOjGBzQEVJU9M4Y3NAJoL8Nc9jc0Ay1HQfSXFzQFiQJ4lScnNA8XLZ5Ghyc0B6b1znuXJzQDhPdeu3dHNAFcAlU011c0CUjvUSeYBzQL6DnnykgHNAoK9yqwyBc0CrlqsxyoFzQIhKceZdgnNANwD7GqWCc0C1qq6VEIRzQLga2hWHkHNALjPQIU2Sc0DN/BepzpNzQEaeHdlglHNAsA2UkPeUc0BVoD/luKBzQGLGE73ioHNAj1RxOFuic0DIxBLsBKVzQEoctE1+sXNApjV6Vbazc0BvSQNhDbRzQGzBs6KitHNAdDL3gPfAc0AkV9XRJMFzQIBtNjmOwXNASo9dYdHCc0AY0RK0JsNzQJDnR5HX0XNAhjVt7TPTc0A9fuzX99NzQGZ9d8bi1HNA+L5FjqPgc0B3q/QXOOFzQGZqAhli4XNAKLLq1c3hc0DqR+kVNuNzQB546rGi83NA/SmDgzf0c0AwAL2UjfRzQPAtVANMAHRArItw8OQAdEAZiGc1eQF0QPNzslGmAXRAUvYDS3cRdEDqd3zmiBF0QHBNhBVuEnRARpWeWk0TdEBQMYDB4RN0QCoQxQV3FHRABP7h+kwgdECx365AjSB0QD6TjH25IXRALndpmb0idEDMO3faUjB0QEN6vLTkMnRA5jQv3SE0dEDaL5nbyUF0QB6bOXgRQ3RA6PVuTPdUdEBkC5pujVV0QDxKEY64YHRAtKknQgdidEA8yqjRTmR0QLAIdYQicHRAfM2y7kBxdECAoQiqyXF0QLZ9TwU6c3RAVELnd6F0dEBuFC6tN3V0QJw+1pb4gHRABnlXhU6BdECwMGP0FZB0QKjyVuFqkHRAVUJJJ8+gdEC0KlqxOKF0QDVnSpXLoXRAdomzpbWidECG841f0aJ0QFjHwtMOo3RAGKFT6wqwdEDKlVz0w7B0QHBubpbfsnRAm9HDwOTAdEAYyb6recF0QDYV0nXqwXRAqnsdnBDDdEANh7+ZIsR0QKmGZ655xHRAfFhCa7nEdEBIfkDtnMh0QA7AC/DKynRAKAml7vzOdECCl3UJ4tN0QLQenNV31HRAuff0LcnUdEBc0SGeuOF0QEy996KM83RAT8x7N6YAdUAwpnCDzQB1QDFsFg5jAXVAhjFLfJoDdUBCopFsnA11QFbl1ws8EnVAgGLX5yMUdUB6ZIvl5jF1QOjnMsrMNXVALIsm9bRBdUB8ziP7gVF1QICoIRlLVHVAJvG7AHZVdUDOcSjPDGB1QNg1QKQ4YXVASbaADXdydUCS89pdjXR1QH7Ga8LkgHVA6NTy+neBdUDy8f1BrYF1QEKHtNymg3VA4747IJuEdUDI4ifIi5B1QGEO1Q+7kXVAztFvQzyTdUC2TlWikKB1QCDZe/G4oXVAJXy1N0mjdUDJIcN0fq91QPIaZ+N7s3VA/Paaj83AdUCA7TijY8F1QBJLVob3wXVAy25aWMzTdUDasjtS5N91QL8U0LwO4XVAS4TfagjidUC+NGMMSAJ2QK9EyfzQA3ZAZGBxu04UdkC+z6XZCxZ2QLaZLAGbI3ZAKiqor5AkdkCSHrruSit2QDItDrYfMXZApJ9NxCkzdkBIQbBPUDN2QKgIBImbNHZAFgVnsh1BdkDwQWPIeUR2QK4AmCv8TnZA9ixWs8xQdkCHSAFcEVF2QPn1vS7NVHZAKlrS/x5hdkBm9v6322R2QOTU4no9dHZA4xx8V+CCdkAv7kI6k4N2QEbTvky3kXZAMDoonruTdkBuaBO0t7B2QF57j+PCsnZAZHVQPw20dkD0o4r1v8B2QJIimlUaxHZAaPp+/c7OdkBHu6+a8+F2QMPBLhqR83ZAVhhzok30dkClzXKKARJ3QIZnpDsPIndAdCqs4bkkd0BHMNLKDDV3QHpbvV+dQXdAioKUPxtFd0BIEmWDSlF3QOxTAZeSUXdA8J9WpmxTd0Ba8eFaKlV3QCC6yoVIYXdAxv5iEpBhd0DEqD6UOWJ3QMB1LUomb3dATm4DUjxxd0Au4PfmeYJ3QDwDh6J8g3dA/X1tVQmSd0AMV6GmTJR3QPru0Dbi0HdAGsjJGv3ad0CfU5/P7OB3QLx1aqzg4XdAG8lV0lDyd0Bgo8rY9wF4QFD+3xxPFXhALi9OnW0ieEBoFQMdiyN4QIYXXK4MQnhA7F/TSXpFeEA+bV4Vy1F4QGS9cVuHVXhAmCywAvlgeEBOR83kt2F4QKyd0mi2YnhAmMMTvr9xeEDCsMmYUXR4QNznc3CLdHhAlKQWe8F0eEDcrGwWpIF4QGI8V7CZhHhAtDIAmFKPeEDA6RmlmJF4QAWgh5SnlHhAiPdcpcvAeECQ7sVPB8V4QCIoX1W31HhAWLSzOQT0eEDuI3m3i/V4QNrtPLmZBXlAAMvIzyM4eUBG6t6Fgj15QOKWKg2KQnlAWeCXVPVCeUAwfX0x4lB5QD+Cu6PMVHlARI0kkupgeUCuCJde22R5QLbHlVBCc3lAblWRNvSBeUBCGoJVwLJ5QMIiy3jMwnlAl93z7kLUeUBUpC6CzdV5QKHIzHVR5HlAspAVWtzleUDKlTPpTfB5QALAhysMNXpAgYx/GxtFekCY36s2MFB6QCA8UoopVXpAhAsPrsxjekBi63vwOG16QGLJZ3qMcnpArihSukSTekBDLgm4oZR6QFMKPj4JnXpAVqjxwF2iekBMKtn6DLZ6QKAOkXksw3pAgp5fuhrGekDkqHEy2dN6QN8YM4rh13pA8gctVDndekAM5Jttl+J6QL+Fqpk27npABtPpzkwVe0DsUa+OUxx7QArIEMxaJXtAf54G/h8te0BSzw2nUzB7QBPKH3h5MntAcKb9dmNAe0CaVrahQVB7QG7s7GDqkHtAKJPvXCKVe0AFWu6sesZ7QGSV+WSs03tAfRy837jje0BuTXPC/eN7QIhs13kp7HtAlr2K9Jfxe0BeGXYTjPV7QFcBSZ/aAXxAaCAEepoFfEBXxV5JiBF8QJRtE63REXxADgdcw81BfEAG13m5ZkN8QKqKlCnbUXxAVqtj4f1dfECc1TQQDWJ8QPLhLtsrcXxAc6pwbY+lfEA+hifywLJ8QDJ6VG3M1XxARruupVfifEAyHA7QF/J8QEmYrxlV8nxACYkMBwMCfUAZBemJSwJ9QGA3YMJFEn1AxP/3EUEifUA3nJAyoy19QNjO8eqhMX1AQuEGVZaFfUDqE3X/kPV9QOjw3aWgOH5AekMUWY1VfkAutFhPePJ+QLlS3iDX/35Aev5FXRQzf0A2PGwtUTh/QBBNX0+pPX9AVG0jxVpDf0B/cME5M05/QF6w6MaRU39AGsTyG7hxf0AnOLUMrYF/QIRs94Gkg39Ai45G6mKRf0CSnHrK3pF/QI/krwbmmX9AHj2CQl6hf0Am+Iz1VbF/QP6xtIKV3X9A798Syu/if0D84oWHS+h/QL9T9HiYCYBAl9+kMNY2gEDGx5786jeAQOo6WzP6OIBAHvEnVKM6gEAkuYV1KjyAQNQhFTHvSIBAOsvAifVIgEC7irRm51CAQMB51AoUUYBAWpPlWehYgEC/dROPDlmAQNhvouoLYYBASKVY+ChvgEBupmev/IqAQFRTG2odj4BA2D2jUmyRgECIO5HqGZSAQDRlnmvEloBAmewox2uZgEBIUvCzhqmAQN1CXEWHsYBAtojDaFLBgECMV7gabsGAQPbv/VhTyYBAHFA+ZUzRgEDkMKHaYNGAQIyzXTNK2YBA4oF+DJnZgEB3LouBRNyAQGDJjn313oBAPOf7vEThgEApVZXxV+GAQKMskBeX4YBAzIkypPbogECjcRg2ROmAQB3c7cBL74BAED9kkD3zgEDQxWCcP/+AQE4pgqUaBIFAVqx+CUAHgUB+h7nDNB+BQCrjmafzJYFAWmm+cTMngUCKWoa92y6BQFxe/VeIMYFAmI2rHL0xgUBc0CeSDzSBQFDOFJExNIFAqjFb+rs2gUBCq81r3DaBQGFir++AOYFADlc/xFWPgUCcivS5VpeBQCRJbYnnoYFAVC5TbG2ogUDeo4/mSa+BQEkYDg1/04FAbvfPd9gYgkC+vq+B1SCCQNrcMX3QKIJAiLs3I6YwgkDwn4U8xnmCQFzF7TNDiYJA+KWdD0SRgkBPG8KzPJmCQMc4BcFVmYJAVvuwAQ+hgkAoeb74OqGCQE1KcowMqYJAYmTW+TOpgkC858GaB7GCQPtzrewFuYJAXlbP2675gkDxxHeFeRGDQEYUI0V6GYNAy8Rf2HIhg0B+WvhocCmDQNOwncdpMYNAmGErD8NVg0CRWLhEx1mDQPxcoJhJg4NAfpahYZT4g0COS0Fm0V2EQIJFtkz/aIRABJWntf5whEAmc+4S93iEQCA3FBdq2YRAHP5iuGnhhECLmr3qYumEQDSntZI18YRAUt2bhWPxhEDUnWtiNPmEQKPP2jtZ+YRADp5smW/5hEDWALVioGGFQJkP212gaYVAMC4WxJhxhUDh5Vgml3mFQPCcQ8gnuYZAzLC3MCPBhkAcUbxCkSmHQAIMtuqPMYdAaQquGIk5h0C2mLAVW0GHQAKu0Q+KQYdAhKwXrxpeh0BXkCaMx7GHQOhBTgbJuYdAvN+pTMDBh0BdMH+ixcmHQA== + KBZXds7jZUCeFrCBN6NsQBTpB48/A3JAT2m0FPRidUAUR+TilxR5QD0ntHFik3xAo54wAnAlf0CeQshiXdKBQH5VvaYZu4JAL0dJ+56KhECpfz+pZfOEQPZy7woLk4dAqa4t0xF8iED2od00txuLQHDa0+J9hItAIcxfNwNUjUAB31R7vzyOQCdpgm4yPpBAAIeh0rXikEALf1V2aMKRQHx24WnRrpJAi5ZMi76Gk0D8jdh+J3OUQAuuQ6AUS5VA4KOrhl33lUA= - + - Cy8PRd/Lp0U4xCpF3cWjRAAzJUeCRJNEGPqjRH1/qkTtqypFzvYdRUqdrUVYQyVFE4OYRDufj0Qz1p5FDYThRP4q6ESqBS1FCFsiRWgwpETdYrhExCq6RDU4FkdQGn1EedGIRKdzrUS0iTVGTSSkRdBgvERm+RpFN7A4RTmc9kYsjsdEtMKzRG4+hUQ0crFF70E+RdTHg0R+1s1EKE+XRH+240S/mHpEpBOtREuNA0UVkNlFdbOwRNCWKkZIbZdEfCCORIu6AkXPjK5FE9+4RBNtskSJjdtEM5qORCoIp0STcwdFmonhRHj52EQPeb1EeG1HRYDz+UbGuANFlTMuRXAXoEQWuZJEMz+ZRAAWrUSIeodFlfFYR0expkRvvgZFvKWWRnu1CEbncKRECLgURoTgTUX/e+FEpQ56Reu9VUVNVYpES/gsRQcWp0S+R5ZEpQmNRb9l9EfdmFVFWMZ3RuuqDUW9+b1FzU2LRFbZIEbOuK1ESfiLRKN+qURWZn1EJw5PRdBr40SwuZNEScWjRFk5kEbLOP5Ee/CfRFDDtkSDBURFKfeYRdu2ekTMvbtEwEGHRDIulkQVU89Eisn6RICvvUQvmGVFMTuJRDEjv0SomJ5Ed0MjRe18A0Vk9sFFWFADRV2iwkQVF79FUcteR07ma0SZ7U1FRB+hRAep2US+5SlFJA8NRmu940U7vL5EahzXRMr5t0RexoFEXc6zRD0W1UWqxwdFQa/HRGeKjURxrKBE2pf9RP4M7URuguREPbMRRU9B50RBS49EFLQkRboDBEUyIpdEx0cKRYydM0WavohESTCKRFTqIUU5gQFG6FmPRCqsoETLndhERTO+RKYDj0SgboZE8x47RRoW6UWzaWFF9E6IRHqGk0QSxqREAnL+RFhgw0TgDUNFppEzRZGFVUbrO15E5jUURc/W3UXVSeREG8AeRRxYwEQLDoJEuFarRP35vEQdbLNE7XQGRRjJjUThLZhEKoKNRO81o0TUjP1Eq2eoRAjg2URSXrZEzYEgRSThwkWfZSBFZH73RKcMDUXBMedEPzrXRfTChkWhXNlG47t3RNYP5kT89KtEDcmTRU6MaEW/cYlEjSd+RPvoMEWpUHNG6El3RHa2cUVVTJNEEQhiRFBogUQIkYFEUVyPRCfIskSB3pBEPmvQRWlLwUQNpqNEN14WRZqOBEUKoDdFd0KQRNAMs0YzZnNFDHH/RIunB0inRARHp+/kRmBO7kVEf7ZGN7YNRbF480R2Y95EUKF7RcEjmkTJZZdFZD6CRIuj3US3wq5F9p+hRBnW70Tvl69E/t2aRFVZ6ES5QnxEnL72REJUf0TdDfVEdRSERV3iz0QYuy5FCIE2RkWuyUW2jodFiIs0Rb3JUEVKtplE/T+HRH41JUWrwGBJPPsDRe4xV0XJ72BIQWSPRJBiFEVESctGhEYXRYybmkSCY51FXZpVRePWE0ZREx5FV3iURKXzf0Qoxm9E79eWRCwSkUQoErVFUHi2RKMKqkS5rZhEdPaLRBedcEV5I5JETkcVRuHLBkWwEQdFOiWQRHzApkQD9fhHQ/IGRxO2pEQEfTpFX6+fRDpxwUTFG5JE0nKERFIBukTUVElFCOKpRFbL/0WuSpVEwcwIRfHRokTcY4JFdCiNRNyGi0TrGQ5FJKNgRg/izESFP09F7/XSRVddF0Z7EIFFW/bWRLCo5kRzr7NEjlmeRXGmlET+8gtFUw2BRONaB0VhM7REPbq9RUqjskadRI1GSg/NRYT1lkSlzrNF50D0RaY7mkS/X69EPOSMRDzGwkRMhKNEviCKRE9bLEUhFAVFCur2R3O8KUXrxvlGHeoURa39v0Zza5NFsiW4RLQipERaRo5EtZzBRNSa8ET/0rpEyYcMRQhbkkQFWoRE00Y3RXiFf0XqfSZFOV6SRGMzyETwl6tEFn6vRRZlskTAHIhE0sBtRr03vkVb5u5Ek2lHRWoBYEXZtFlGt/ziRbLlIUUKA3dEkZ/IREZL40R19aREs9t5RDgwxkXJq6pE3QyyRIeGaEU6YaRGY/6ZRNUT9kWJeeREw4fKRIUhnUQMqD1FpZ0xRieiI0ZANHhFwxIcRWnx/UTTdmpENjuLSER9C0WUtO9HNKyORz/amkUJdoFGVs34RXMaukXGmRFFnzyhRaAbqUTSfZJExyizRLvI00TLHcdESaf0RMjvC0a+ke5EKN5HRWa6JEYK2YJEGxasREvSUkblvElG+csSRXkG3ETtut1FrraURGRaR0UYvnZEYaf/RUubCkWKyEZF840kReGUOEWwro1E9kVNRsonn0UJlj5FshWjRIjinUQXdCJI/UugR2DHMUfRlTFFpBD5RS1eT0YS1StFttyKRQbU4URfOJNEGNPbROzOBUirxHxHR7QLR16ECkYlDkdFEvzjRASblETgYflE0fXJRBxLskRpb/RFi20eRSX0qESmJT9HAgC7RlgnbEYNWZpFNPzCRdI94kSkhw9F8xFQRCX5B0cusnVGr9IsRrCAW0XYLQNFZlF/RKG1T0aB4MNFNDGMRebxkkRGoPdEk2yYROFrBkZwapVFyKg4RS1y80Q= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - /Gbv1W3BckBoMMfHOcNyQA/JGnvExHJAGJnQt0PSckCK3sZUzt9yQDDcWA+64HJAgHxu70zhckCYVAhuTuJyQDT7i0uT4nJAfLnHKMnxckC8jtm6wf9yQBL8Nrf3AHNAB7zNmtICc0BcjdC0+gNzQG6ulSAJEnNAqAaMdrwSc0C+Z9nk+RNzQNgxDWp4H3NALuxCqqIgc0Dv6c0oOSFzQM7pkhXPJHNAom5XDUoxc0BfhkKvNzRzQMSoyVDkQHNAuBvbC3hBc0DDgLLBekRzQBg72/2iU3NASBR+sYxgc0BNhxlMOmNzQBK6RY3PY3NA0niLZFlyc0BcVshSt3RzQI9T6VtMdXNAJZI1K3mAc0CCe3krCoFzQCEDY+SjgnNA8uTjTIaQc0Cuoyw+TZJzQJZU1TpjlHNAcM3DdPeUc0BOC8a6uKBzQNHeeuNaonNAYAapOuWic0ATQep4BqVzQN49ga+AsXNA7ZbI+bWzc0Di9hX1DLRzQPbLZfn3wHNAFkuRUtHCc0AkZcTWJsNzQPKZY7DX0XNAEhTk2jPTc0BqoVBI4tRzQLJnbVo44XNAaAr8XmPhc0ADmrKMN/RzQIJqLLl4AXRA+aq+1KIBdEBy1SM+bhJ0QF2neS1ME3RA/rR/WncUdEDr/hONjB50QEYy1ca4IXRAKM8IE+YydECwAJUlekN0QE6vBtz3VHRAcAP03YxVdEC2FPSluGB0QGSX16kHYnRAfsMSaSJwdEBwoAxIQXF0QP7dLTQ4c3RA3l+YZzd1dEBS6QxI94B0QJpKvtlNgXRACGlVBhWQdECsVBfpzqB0QCIgopy7onRAvW/UINGidECuFZEEDqN0QDiZMkEKsHRAinm0teLAdEAOuCA7eMF0QMTnBmjswXRAxtUNFw7CdEC2Ki7IEMN0QPD1hUm4xHRAgsBuyJvIdECBXxg7/c50QBrbXb3g03RAS2Ix+LjhdECiMmghT+V0QD6iCyON83RAPEAM2aQAdUAiA2glZAF1QOBjUucjFHVAAMhk1eYxdUCr/2ihzDV1QJHui4oLUHVArDUA8IBRdUA4Sh3ed1V1QLhYUGE4YXVA58P24nZydUBgtiydjXR1QMLgEql5gXVATNtfDK6BdUBW6vu/pYN1QFCGj5KbhHVA8IqEOLmhdUCJTt3US6N1QK5dAu2UsHVAGmUPPXyzdUBsHqfx9sF1QGquuEAI4nVAAxEn5EgCdkBosZyY0QN2QEYqiVZOFHZAqgD+6I8kdkBuUl4cSit2QKvtuo8fMXZAhKTH3VEzdkAnr/RmnTR2QG8WjgEdQXZAoQXsznlEdkD7iWWoy1B2QH0qIZ8RUXZABCXuec1UdkCi495Z2mR2QNrPJ3xAdHZA4nCmYZGDdkCEZeOlvJN2QHZTns7BsnZAUmt1gA20dkCzeWIvwMB2QNsPNMIbxHZAKxz5687OdkDcnJpc+d52QH7m2Dfy4XZARMKtz4/zdkCizmP+6/52QMX+Ex80AndApLsDNAISd0Dj2z7rDiJ3QF3NF/gMNXdAVN+fN51Bd0AigHLiskF3QHc99b0aRXdA1USp3UlRd0D2geIqk1F3QLi9LQtrU3dAhGDZRClVd0CsSO+XRmF3QNyMoeeNYXdA6KtjSaFhd0CQxWyFJ293QOC9Sll5gndAi+gLtXyDd0Dxbxh2CZJ3QGz1iQRMlHdAbnrCtPrad0AZHr+eT/J3QCaG7MZtInhAhbmYKIsjeECcA6y8DUJ4QNv7EYd6RXhAcJGtKcpReECoR1bRh1V4QN7yh4r5YHhAecZHl7ZheEBMKLROt2J4QFo391ZbdHhAMh+Pbot0eEBcd098s3R4QAbXlhakgXhAohTEcJmEeEA2qCL6ppR4QK1n1gG31HhAs0mCcQL0eEBWfAcQjPV4QC9f8g6aBXlA6fzNGSk4eUDK+f9RgT15QAb906v1QnlAEn0avstUeUCNHwJP2WR5QFhIq8FEc3lAB8diwsCyeUDAdmgcz8J5QLKrk4xB1HlAtxzIes3VeUB+nKGgTuR5QNmBQRL6BXpApm6bJQw1ekDMu2mEGkV6QDrtb+knVXpA4co3+4xyekBoVyFsBp16QF45S4sMtnpANAfT8RvGekBUawUj4dd6QOwtLzE53XpA1A/upWjhekBSDvWlNe56QNw1RnIV8XpAJFy90F3xekDMAuzMKA57QMOeh9lMFXtAUu0BX1kle0A0/lS3IC17QExwGwBUMHtAMd+aI3wye0BrfMLTwjN7QPMZ2S3DN3tA3uD1tkFQe0CyoaylwJR7QHMlTYgilXtA4EqOSknie0C+nOQYjPV7QLvkVSraAXxARrCyrpgFfECxunYoiBF8QP9jBjPQEXxAxI5vMs5BfEBapTj+v7J8QE60f3NX4nxA2DiKbxjyfEDQsuqVVvJ8QNw618EDAn1APAlJD0sCfUBgLj3gRBJ9QPSl9GeXhX1AzPuWgo/1fUBgfxmirxh+QDUKpeZAL35AZ03QtZ84fkDvhV6zjFV+QEKfiA4PM39AIuSa81A4f0ByuAVfNk5/QOwfRw2QU39ADqzSIrdxf0CsWcbUsYF/QLo001n8g39AK8xObGORf0B/Dc6LqpF/QD5CcNPdkX9A4IRk5OKZf0DCq5ccX6F/QEPw27bMoX9AGlPmO1mxf0DLfqSult1/QGQHNxjw4n9AdCtT0Dnof0APSZuN+DiAQFSX8dUpPIBAhh1ftdY+gECuXQZv8EiAQN72CMP4SIBAvvnpVuZQgEA8K3cMFlGAQMBxoK7mWIBAetZUbA5ZgEBwoaCOIFmAQJAwIg8pb4BAWWIgyB2PgEBQG8CpbJGAQN/RFYAZlIBADPdV/sWWgEDMr76mbpmAQIBgDjkYnIBAKbq2AoepgECihehBLsGAQLXS+VpSwYBAaVqvB3LBgEBYnkqhU8mAQEjEXuYu0YBAWvQB603RgEDuFg1NTNmAQMXOuB+Z2YBA1GJIr0XcgEAAhGRi9N6AQHa++GZE4YBAmGyPuPXogEC0JHHeQemAQDi/z8xK74BASs49WD//gEC+om41PgeBQL9Rt0IzH4FAP5CWLVMhgUAi/QgrNSeBQMFe+7jbLoFAju30Q4gxgUDsA7hcvDGBQNbreiYzNIFAXmd0Hts2gUDW2j2siTmBQM/B94Vgf4FAzAM4YVWPgUBLXMpN56GBQHafNJRtqIFA+gGLRu+pgUCPMcm9Sa+BQLQRK1ICCYJAHMR1+f4QgkCu83OI2BiCQNCVbNfYIIJA54LKWNEogkCw2/vpozCCQLA7jH7RMIJAZJeojxiJgkDczWNJQ4mCQIgDBZJEkYJA1PjaQT+ZgkCtAmY/D6GCQJLdqiA9oYJAjKGhZQ6pgkD1hEwuNamCQHhY/NYHsYJAOOWlKjOxgkBBLDnOSxGDQKkXikR5EYNAME4de3oZg0DCPUx1dSGDQD5XuaVzKYNAYdCLWWoxg0AGVUI4gTGDQGf8pEUeOYNA8r+GH2k5g0BKx/XP/2iEQMMKy4r9cIRAHxsrrvd4hEAG+v4ZatmEQJ8Rct1q4YRAXv9yrmPphEDNR+HNNvGEQJZ1zwhj8YRAm6Vwtzb5hECa/XLFW/mEQCtM5zagYYVA9Yth2KBphUAOX4OxmXGFQO0qTLCaeYVA7s4nOZKBhUAMAgAsJbmGQHAcYBuRKYdAXHTGRpExh0D8V3ycijmHQPwjvCqLQYdAwLg3Wcexh0C+LGoSyLmHQPd+UN3AwYdAuanMlMDJh0A= + NrgMGZxjYkA= - + - iQ4DRUoAX0WQW7pE+FwIR/Z3HUVDSc9EZriqRCI3KEVUpaNErTAvRYMs0UTtSetEOR22RC5DDEeGyq1EcTYnRkx5kUWfhqZEWDMRRYs40UaDf5FFeR7tRGf9qUTF+apER9qHRRywAkYt34lFKjqgRH7x/USm95pEQx6RRArI4ESY++tEVy3oRga4skSLsYBEznXXRHJXOEcCE8REoPghRg9IAkbCBM5FTWeJRGzpEEVCOohEEx5HRTvFD0V5lbNEFa9KRSY6xkd3TBhF79YRRhBzVUWIWLtFHd6BRKYg+kSEfHlGaI2NRPP6rERo2mJFNniJRBw4vkQAt+1EWbUxRdyPtEQan8REvCSdRINTl0WaFQtF1QWzRX1yKEcLyxhFJhGsREyt7kTB88BFRVKIRZAirESWw6lEhl/URfIHtkR4lZNEGlm6RB3UlkQeZbREgnCQRMJj3EQ14j9F+mKxRP0dvkQiTJ5ECU0HRVdxiURX0K9FDyuTRNpkmkS/dvFEdu/FRagYO0Vu6P5EA+GZRMaB2kRgdxRFj/zGRGM3fkYd8/ZEkT+6RcYZukR+AyhFymO9RHSCmUR5d4dENULZRPenx0QGmBdFPZNFRUujA0VPWL1En37jRbCdKUU2dBhHqoG4RFcVmERondtFXKp+RfXR30Q0InZFrPqsRgXgd0V6A6JEJku5RG9ZpESrEihFcpmTRRTpoUS1UZpEeX0GRY+TEkWIaq1EVvkFRYoJk0TQv8ZErLSMRkpCHEX/EvtHfB/ZRqbllEWYi+FGaI+2RRFQpEYaR9VEcb36RE/IrER+MR9FNnmzRPnEh0VPLv5EyRd/RUvt+ETKIehEuMy+RB4CBkU1OFlF++qrRPIZBUUN1yZGLmWKRdgd80S+2gVFzcFwRXSElkRjqoVFgPlHSe3CSUX6BB1Fp2dTSADgnUbMWT5F2GVpRTTU/0XpPcJERVuhRK82oUS/75xEQiSXRV7GsETp5r1EScRORZItiUSSbslFoAcgRe333USBVOtEAA7eR01B+EaZ6TtFmGrFRHmZHkX0c6hFp9DGRLfZVEVleQRFMCwuRbdxqUTPnjBFpi8JRVuMkUTA5x5GJhYwRZk8rUXXWAtGuMeCRd7HuURu6udEJKIARdmAhUTTPelEaenLRAe5p0blsENGoxCRRfiKqUTfI5VFC5PCReyx6ERjtfBHTYQTRdoz6EZ73M9EsoLHRv50f0X6h0hFKhLyRAX/mETSdZdEbiK+RBzpAEWpnzNFO34PRTquvkTlOZhEfHAJRoQeP0XpiqFEMBc9RuDuGEWyRa1FKEJURUM5QEUnFJREY8opRXKrJUZcbtFFFizBRPVHHEU69mlFf8NFReNGFEXDRiBFMSsGRdfHD0co4ZdEjcMGRssX90T8G/NE1RkyRUReQEZmbO9FFZhZRVh3x0TlB59ER/MPRdGf00Q7lOhIu6oaRbA0aUgiWhtFJooSSAfBA0fyJZVFJbVtRQdtlURWJANGL/gGRf+AtkRXOL1EFp8jRg3dK0WVVMNFTgrFRNT+4ERj8wJHZ3nBRr+w40Tay0NGubS1RRBNG0VWG45El9JWRTjeQUWZuRxFOuiYRAvnF0XlQnxF0XijRKpySUZ3iHJFuF5+RUU9r0Sa0MtElVrKRH1vsUg8IlBILu0CSBwW6EUAChdH3G04Rav4DUYw48pE+R0hRSgKvkRtHclIRQNqSCjdGUjjIylH+KgURv8gRUWH3MxEeqksRekbz0Vu6D1Fp8WzRAqvqkdTmzxHtPnSRs5hlkXa6BFG83BBRTNcOEW+TaJHypQrRyR230bqBBNGdataRW/Y40RFGptG+zAaRmomu0VSRm9FCvpnRvTdG0bSEL9FZKj/RA== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - w1M8dW7BckDqemen4sJyQOtwTdw7w3JAxrxUzaTEckDw8rtNxcRyQG4mcR9axXJA4qjY30PSckAXsRxIa9JyQH9po1Z203JA+Uwmcs7fckA7tPunt+ByQJHQc4pP4XJAFLFplVDickBxkM6nj+JyQCizfuUk43JA4hWDacvxckAwgSVRt/NyQHTOxHKk9HJAE8i/c8L/ckCerBwf+ABzQN70MKSMAXNAou21HvsDc0D+ip8nCBJzQKTVW0x2EnNAOOov4LwSc0DGborH+BNzQElHRVAGFHNAMCSFRk0Uc0AMnqn2eB9zQEwruOGjIHNAct6egTkhc0ATyoMhyyJzQGi2+tIQI3NA5lBP9QUkc0CTfhyhzyRzQOSK4AFKMXNA2Mf7xFkxc0BCb+zrITJzQIIUzKsLM3NAloznyNgzc0BgxmG8NjRzQA4Zb3XjQHNAWmUOq3hBc0A4T3ARJ0JzQPTfMEV6RHNAleeQxhJSc0CPaylCQlNzQKK8kzakU3NAopLfZYhUc0AVNZa5imBzQMT4R7g5Y3NA/v8DZtBjc0CKmpGD+3FzQITHqzRQcnNAOPP86GZyc0CDtC+Wk3JzQA6P7vq4dHNA1OUyO0t1c0AihAGFeYBzQB34bFejgHNAl9MBsA6Bc0C68+yUyIFzQOA4alZdgnNAE6+MXoaQc0AvvLllTZJzQMwiNQLOk3NAIAaf4GSUc0Ak0QII+JRzQNa8Hya5oHNAhU1jEXShc0BOGUNcW6JzQDKD6lHoonNAUKuzNgWlc0BP4lqFNLFzQPFEOvF+sXNA88aCw7azc0BqdGtkDbRzQLTcrpX3wHNAK9Sq+tDCc0AfKIEiJ8NzQJO4aa3Hw3NAXoVfJiTFc0B9aEac2NFzQKUXilk003NAlJboJPjTc0CMGdZn4tRzQBrSF/ig4HNAovp+ATnhc0Aqvz2CZeFzQH4Hw7eO4XNAIJSwhkvxc0C7H65CZ/JzQEgs/hU39HNANFwG7XgBdED0WlENpQF0QCWFv0EHEXRAxv1jW4kRdEDmKK09cBJ0QKPeOQAEE3RAbE0eAU4TdEBl6DlhSyB0QOIcj7K4IXRAfsylGcAidECRtcXQUzB0QIZDojjoMnRAVq9lkclBdEDauLGUFUN0QN3lYTL4VHRA+t1KSY1VdEDGGdpmuGB0QM98/LQIYnRAWQ9c9E9kdEAJTkEqI3B0QN03GrUjcXRAq4gKUUFxdEDBozeaOXN0QJEBza6hdHRAlJL+OTd1dEB2TSNq+YB0QFbqiXhOgXRAln5D3rWBdEDy6OtTFpB0QHg2Jl9skHRAZk8c2KKgdEAY/KWe0KB0QDRGO9C5onRAKrd9ytGidEB6sroaD6N0QDuLH3Jmo3RA+s4mHmOldEBsi5kODLB0QIIItgjlwHRAY8wS53jBdECbA/nd6sF0QO/vKRcQw3RA8rnS2yPEdEDENYeoeMR0QBIdxSq5xHRAvE0nlZ7IdECMtHQw/s50QEjrCi4903RA+g51LuHTdEAv1DTadtR0QCSh19HN1HRAIbgQgLnhdEBhgAuRTeV0QHUANLSN83RAuFiJhs0AdUAWzgp8ZAF1QA71bZpcAnVAzqQtX5oDdUBqn5plJBR1QH5Uu4HnMXVAuDDKWTc1dUDrfpOzzDV1QFhDotP0QXVAtZOtP/5PdUC8DBbiE1B1QET39m2BUXVA5gH4rVFTdUCkAb/5TVR1QHX0nhp3VXVAjoA6ljhhdUBgwpzV9GF1QA5kKVB4cnVAzcfF8I10dUCsfMQReYF1QAolt1OtgXVAsO71baaDdUCGfat0m4R1QJxYYWOOkHVA5XzvM9mfdUDIMmEolaB1QHr1sHq5oXVAQPChlkqjdUCa9THqpKh1QOimQkt/r3VAbPg265awdUACEB0dNrN1QHQ3Ht97s3VA+GH7383AdUB5Yt4PZMF1QBRxqSj5wXVAgLwZi8vTdUBRoJ8z5N91QJxMgg0I4nVA2iTJsTbidUDekGhyJe91QL2bkY9IAnZActXITtEDdkCqbvk+SxR2QNfCNO8MFnZA/ESjo5ojdkAm/vB9kCR2QNQuF6ZLK3ZANxkFCiAxdkDBFWINIzN2QMxe+klPM3ZA7Wg9Z540dkDAXFVEHUF2QLJH37J6RHZAwvdaBMtQdkBctm7LEFF2QAIcVZ/NVHZAqBJ9PdtkdkCWGft1P3R2QMTkgRtognZAA1DK1rqTdkAHRRDBt7B2QESgxCvCsnZA+8A11g20dkD1HaAOG8R2QEIIMXLPznZANlZ0scDQdkB28juX8+F2QONLEuIf8XZAgBZm7JDzdkC3Ut6dUfR2QCCxmgI0AndA0BECGAISd0D5zy/f6hJ3QHTElUkPIndApPVk0nMid0Bm5IgSpjN3QI6vGzYNNXdABjcUnJ1Bd0D6gZQoG0V3QHLCIo5LUXdA1gqJ3JJRd0Da4XDIa1N3QMjYxwkrVXdAvG9/3nRbd0Ds6RSASmF3QOLqdaOOYXdAKJ3lLKBhd0ALYatWzWJ3QPCSLa8nb3dADpeS3oVxd0CHAZTNd4J3QBTct9t7g3dAeJvaawqSd0CEnUbuTJR3QOtFmuCatHdAGsyzrS7Dd0B+tE3o5NB3QNzdXX/t4HdAvrOyjNLjd0B6UwHf6/B3QDTc3V9P8ndAKJTHEU4VeEDmVN8GbyJ4QEyMvo6MI3hAYDi93gxCeEDC0pWpekV4QBHp7AvLUXhAwu9bLvZTeEBufoAHTlR4QPJQ4nSHVXhAom2ksPpgeECydoU5t2F4QP6lCoZRdHhAwvOB22Z0eEA8zerri3R4QGZJhBq8dHhANvp3lNB0eECfSYL0o4F4QIRbHLb0gnhAdKAc4XaEeEAgKQzqmYR4QN9TWuJSj3hAW72GY5aReEAEvzEMqJR4QHYzuWvMwHhAJB/l4AfFeEC8FAV9uNR4QEp9kEDF5HhAUMQeQQP0eEDIj1sujfV4QMi8gRqYBXlA2757R7czeUD7ybOWKDh5QFoRz+N/PXlAFJNymItCeUBWveOEzFR5QKq7cVjZZHlAhM3G1cCyeUBpp2PJzcJ5QB43SuhC1HlAFmUlsc3VeUDfSB1uT+R5QKoB+rWy83lA1BUDh/YCekDaDpKo+gV6QEHpJIs5I3pAFrbmdww1ekCqM4jyGkV6QG+gKOYoVXpAgJlzdY9yekBHU3XUo5R6QFSeaxgEnXpA2ZjxQGOiekAHxA7YDbZ6QEo76Cktw3pANHnjqRrGekCiKYkdQ856QKgiuxHg13pAGOOjIjrdekBegldCZuF6QO7gBpo17npADmas8BXxekA6Ipi5XvF6QKp1s+R3A3tA7wHl/yoOe0D6rD0ETRV7QNMnbZ9aJXtAjI8O2iAte0AuFbZUVDB7QBrhMBx6MntACFPD7mRAe0BE6ZPzQVB7QMD2en1dUntARERk1yOVe0Dk9WU8wtF7QLaDUgQm0ntAOEK2PajTe0A66VLyROJ7QEDqNtj/43tAnsJy75bxe0AuXN7UjPV7QHPUet6QAXxASpZyitoBfECKffohmQV8QL02vuiIEXxADhBZRdARfEC4BLWhzUF8QE6fSuvbUXxAHaxx4gtifEBtYPDjvrJ8QAzH3pjO1XxAsNH+3VfifECqNTyjF/J8QGRoMDRV8nxAkfObWQMCfUAmhyWOSwJ9QAChUmtFEn1AkzgDPT8ifUBoua2A2yJ9QIRdUN9rY31AzK8r9ZWFfUCQDaBeLsN9QKJcwU2P9X1An9WDroQCfkD06gpgQj9+QNaBwwCMVX5Al58HGo+wfkDsXlcPEjN/QEEsrlJROH9Axh0w1/9Cf0BY1apNM05/QD4TDLeMU39Aisz6v7Zxf0CkMVMDtYF/QOCUGzJjkX9AiAuJvt2Rf0AKfaie5Zl/QCqxlDpgoX9ASs9E5NChf0CWW3Ur8qF/QJG5YhnYqX9AIMbM/FSxf0BsbuxFgdJ/QNCAN76V3X9Azo5hKvDif0CbosYSPeh/QOgXGQmXCYBAHiyJYoMRgEDZDP34KTyAQKa8ZlbXPoBAkvkoOvBIgEDm56YX6FCAQARtOswUUYBARjHA3uhYgEDPPAbhDlmAQF4Zd/QZYYBA7PQb4ipvgEDtUoHKHo+AQPSQMy5tkYBAsGxSahmUgEBK+r/qvJaAQI6oKmDKloBAxjGnWIepgEC/PoV/UsGAQBgQLZRTyYBAe73DYC3RgEB5L3TETNGAQMgjqWRi0YBATx3KQ0rZgEDWgkcCmdmAQMDYxYZF3IBA2NATovPegEBwJWV/ROGAQJRZSzhW4YBAeY/t6pnhgEAkTLF79uiAQD5h2D9L74BARvArvjzzgED2wiaoP/+AQNQwZ4Q/B4FACMfUUT0PgUCC6mxtNB+BQNrkxdI0J4FA0BSU8/AsgUABm23A2y6BQABSW0CIMYFAgH7YLr0xgUB8DEktMjSBQOjOIfnbNoFAbfLpfIc5gUDeidCPMTyBQNGyE584PoFAFQC751WPgUCeYHsZVpeBQFItzu3noYFA24S2dmyogUD6MMfcSq+BQHCKSQ9qsIFAjsIFdgEJgkAIR1OA2BiCQHpy/pLWIIJAj45SrdIogkC0+1Vt0DCCQGgJ5EFDiYJArEDtTkSRgkAG4FLiPJmCQO8od3UOoYJA0Ax5WDyhgkD0w+9KD6mCQFuvcU0zqYJAvkO2TAixgkC84n6IMLGCQNbJcbqu+YJAqmLtfXkRg0AhDxNTehmDQNphWCJzIYNAwvtf6oohg0DHXmKRcimDQCDe3K1qMYNAsh0XHMdZg0CmrFcDlfiDQCDH9Wb/aIRA+pQWvP5whEAUTEUG93iEQMLT9VNq2YRATAE/YGrhhEBswYyKY+mEQNCHGPg18YRAmKjvVmPxhEAQ5nb/NPmEQEDWYdZZ+YRAzMT4OisBhUCrHNJkoGGFQGI3ufqgaYVAchtATZlxhUCbB+WetXOFQLAxjiCYeYVAunRAdpGBhUCsjTUqJ7mGQLTHVm0lwYZAN31xTZEph0C2NGAokTGHQIKqYdqLOYdAblXGy1xBh0BeBh0FiUGHQNB4eELHsYdAHI8p7sa5h0Bt/ZE0wsGHQJBRAdHAyYdA + NrgMGZxjYkBImCMySWRuQEMdzoN8QnFAS41ZENNCd0Ax283g6nJ4QNrkpS+rU31AU+TPEW7jfUD+9lMwF2KBQFb4jK4YGoJAYiQeTaN6hECD/jFUekKFQMZR6Gkvk4dAFAOz7Lv6h0BaMoylhpuLQKjjVigTA4xAhzgxS+jDjkBvD/03fwuPQFofa/gk9pBAWel67/upkUD8gOdLYRqTQD3/TfcxLpNAvRZFDIjylEBZqtdHnRqVQKEsGBS+dpZA1ZkX37jmlkDqrljg3tKXQB4cWKvZQphAZp6Yd/qemUACMiuzD8eZQIJJIshli5tAw8eIczafm0BmX/XPmw+dQGUpBcdyw51ACMFxI9gzn0B8rNeZo1efQHZrohUHXKBAyhdVNup1oECbY4vkHF6hQO8PPgUAeKFAv6SrSi0MokBIm3AMIz6iQErmFLRF1qJAoSajE0YEo0DVJ34dXqCjQMVnw3lWsqNA+Wieg25OpEC38qx9cXSkQLdgPk98NKVA3OqVTId2pUDcWCcekjamQAHjfhudeKZA - + - 0WRFRVImtkT7EKhFqg+QRLNAL0X/8KpEM+QVRxDOkUQGH9pE+nM+RURTA0VOBshE0ftYRQZ4EkVxdnhE3PuRRZ2izUSmk/VEv483RX2Am0RjbbNEwH4XR5Laf0SUbXVEKPs/Rn5enUWP5pVFo46uRIJi4USwQgxFalYAR3+klkSO9phEMcyBRGjd0kVYTftEeC7DRI8QtkQb0YVETMKkRBIX4ETS7hpF/YG8RYyVnUQEkjFG0TC6RLT1u0RST6dFACzURM+HjURIfvlE8tmyRO7+iESz7dpERZ2ARKzSj0QlqIZEfGRYRboR5UYk7ppE0pHkRC0PtERb/5ZELjNoRXlYT0cDz8REq3AERbVfiUZpQ/ZFR6maRFci20X5gp1ECShMRT+FrUTDyspEEF+CRRJoKEWMjc9EO/h/RbINyUf70U9EgY+ERDBDTUXk0iJGdbqrRDiKoEUPmpZEvRYURvtsdESrM5BEi3qEREytmkRo0iFF9C+ARkj2+kQFeplE7+ioRJ5ji0TWCIxE0r2ERaKCr0R1rgZFw/SeROjuk0TsoT9Fch6bREQlqkSHnexED4UgRYqgjkUk0kJFKhG1RAJp5kWziIxEF6M2RxHLLkX9o5REsHW3RNT/N0W5geVFQofDRAeswUW+2b5Eo+q5RJ0mokQ9929ENtL5RblqFUX48d9EkzltRF/S8EQwy7dElE7FRO5Sw0Ql7+BEDCUBRQ+1tER8kS1FmzC4RKM3zEQYut1EwPbFRMtlrURRq7RE+P4ZRYLea0QeqapFR52rRDvJ50RPdrtEjZOzRAFHEEVL6fpF4L2FRECdI0UzdIZEvfyURLVgdUQfFNJE+Ti6RIxz7kT/BkJFcGI3RUI+pESJH+hElBq2RpCK80QBI8xFiAkURXD0pEUlr7ZE+ht/RIRVkEQ/PK1EdS25RBwsmETV5IlE2MOBRDtVi0SDcYdECXqORJBMhEREjRtFJpiKRIhRwEQieVZFEPqARIcOb0TXTY5FeV4YRXxDp0SQz+JEq7TOROoeBUb6HWJFnmHsRqL1m0T+fWVEh5LXRNO21UVGMIlFvgPQRPlWjEVy46tGnGmbRZ/YxkS404tEaxYNRQqZ2ESFjTJFmbbDRYrqpkSYmBhFgtqiRHkrtER6QJVE/RTgRIHEbkRWKNhEbGuGRi44tkT5cElFVHOYRBV3sURtzgVIzGsBR7km8kZxCgNGkTiiRmjpUkWyArtE506KRKUVwUQhIixF7+D8RI+tYUQOV7VFc3aPRCfooEQdAbBFRU6HROB6l0QSQI1EHtaMRHUfrUT7d61ES4KqRFlNlUSrFrNEvvGTRC1HAkVBhZhEs4bcRPQYSEZYgMRFov+ORKP/g0RD8UFFG/TzRM8kbEU5ipJFAoDBRT/2W0kX+59F+rdcRTixNUVxvYBECayoRIc6YEgCGolEF9fiRNO4okbIJ+REYA2mRM9ad0WaIXNE+IdURVprH0ZH79NEMP2WRKkngEWY2wpFLgXgRPoRs0UOFcRE28RcRTnPfkRVy8FFjJo3ReXfrkQDol5E7AeARByF8EQj5Z5ES738R2AxAkf1qm9FR0rPRGO1ekSgT6hEheuURJnpAUaYBHpERHbhRIlnpEStR4lE3++fRKWpBUU3vOlEuWwbRZhB8kT3rddEt1GyRLndRkZtGTdFGOi0ReV9XEZsHTBFoIunRII7JEX4sotE1kBPRV2JBUU8uTBFtyy5RJRqq0SGiKVEvbqnRaXFr0ZMUqhE7DVrRv4YnUVQAppEGMWRRc81zEVMIAlFdnSmRP5E+UQxVZREQb0MSHy0JkVhGe9G5EFdRcnNxkY2g5ZFnqrARPcCiESzgHZEQK5URQmis0QH0dVEELyWRMMGiERE1AdFJcuMRAHanUTFnEZFfXqSRE/g00TIFYlEtu7iRZqyGEVNADpGLvo7Rhl8eUU3r2pFb7ARRWbBh0SrAYJERgU+RYYFykQU7DdGdaWxRYxx5UT8dOBEwC0VRa0ZHkW7UY9ElrUjRbG7pEWL1rlGyA93RKtD/EW8+KBEFUy0RIMxB0WHn0FGFZLSRdGp20Tn2MZEwyTuRLiSlkieyxJI3Re7RC2Km0ftsm1Fss97Rsx+pEWhW4NFWPjiRDCypUWxmwVF9xmbRGJ/EEUnGuNEQi+LRHtAIka3aS5FXcqjRPRM60XA+rpEt5aGRPpZhUeTfFZH9wS1RCzJtUYOBm5Gx5SHRRePmERxmr9EQJ3KRfq6CUVMUXhFWAUQRU2f2ETFGIlEkty9RFjVSEbG85FFNVlcRQF4sES8NCRIWnO1R30fNUdK89pF0NhfRi6VK0VF9lNFqcDpRN4ciEQP1JREo3QeSAhcmEc9aCtHBIE7Rd5zO0bFRnRFTC5dRGD85kQGlNFFerYkRR8I9ETQ8EtH0NO4RiCMZUayyZlFopulRfudEEXvc4xEltGtRNbzHUeEv6hGXy5IRq7TbEQ1mohFEKfHRGr5qkQ3J7dEGAFuRuQw+kUeGJpFBWp0RJIi6kQ8ah1GVvSwRdGOYkWix8NE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - AUEQ7wzBckDCqeKAb8FyQJ5rKJ87w3JAMDyr6MPEckBEgakcWsVyQBw39A1+0XJA+pGLokPSckCNSyL2aNJyQO0A8Rh403JAuDW29WHUckCQuMKZ0N9yQPRILJW34HJAOuuUQFDickBNhHgzkeJyQKYnOoDJ8XJAfjoGoczyckDkmNEytvNyQPZ6Jl2i9HJADm09DcP/ckDEd9iPYgBzQHa3Ixz5AHNAQiXVB44Bc0CfDSUy0AJzQBbSwbT6A3NAbm/xoo8Ec0D6OrCRCBJzQMA8Hk96EnNARgcHY70Sc0C+JU0E+RNzQGXqszJ5H3NAXpjrGqMgc0DiO+ROOSFzQKIvKPRjIXNApM3JSM0ic0D8kMkfDyNzQL6pS6M4JHNAsXc3Ts8kc0Bqpvk0SDFzQAdkvwdaMXNABN2H+Q4zc0Diig33oDNzQDQAME82NHNAjl7AAbs/c0D4LOer4kBzQEd6z0N4QXNAvGZgQnpEc0CG9v0snlFzQNCh4eBCU3NA/89YPaRTc0D6Ok27eVRzQBA4h0WLYHNAQ9GzYTljc0CYXYj5SHFzQLrKC9/7cXNAVFsQ31Fyc0B8CTG3unJzQP2oepq3dHNAdAez0Et1c0DY7qcheYBzQKKK7nqjgHNAGqDiTg2Bc0BMZAURyIFzQPynJ21dgnNAX2HpnKaCc0CQ+FDjh5BzQN6u18bSkXNAjKCQa02Sc0D2uVaKzpNzQDoIpC1hlHNAbqxJu/eUc0DwA2qjuKBzQMwu0FhaonNAsIdeKQSlc0BknbndNLFzQM4KefZ9sXNAlPV157Wzc0AZA+97DbRzQH81IH73wHNAeCUjNdDCc0Bi8JbtJsNzQK5tRSbY0XNAVM5QeN3Sc0AJwCEaNNNzQORghcL303NAkHV5RuLUc0Dq85uWOOFzQMvwRW9j4XNAHvQCUeThc0C47vOCNvRzQABHfPN4AXRAg65I16UBdEDnS4HriBF0QFg9x9JvEnRA4zr5J00TdED+2JNH4RN0QAYpCitMIHRAQUgJyY4gdEBU74K/uCF0QBDnZ4G9InRAgOf8MFMwdEBNnLIm5zJ0QL5eHLRTQHRAJt7nMBJDdEBuRGRQgU90QFdRcnz9UnRAdsAZBvhUdEAs5wnnjVV0QIvievi3YHRA4GOlCwlidEAEwigzUGR0QNIKDTsjcHRAINRXFkFxdEAh0+DeN3N0QPI/nUr4gHRAYkjCE06BdEDQfiTKFpB0QAQXmhFnkHRA6C+E4M+gdEAEOn1FOaF0QNKb4oDRonRAkAZ7CxGjdEB+hHvuZaN0QEzGCURkpXRA5GgsBAmwdECDgs7H48B0QMrwEZZ4wXRALDqpwxDDdECLRmxquMR0QOhQ2/KcyHRAmi+uEvzOdED8WrJp4tN0QMArvdHO1HRA/AV+U4/gdEAO1FczueB0QAZHhhq54XRA7Hr6fYzzdEDyzZF1zQB1QCdxMy2bA3VAaEVNDDwSdUDijj8jIxR1QKrVat/mMXVAzOBuDs01dUC+hx8atEF1QDJyb7r0QXVABB6EtulPdUBqW/qjDVB1QP6b9nYkUHVAlsPWIoFRdUANYSMRUlN1QBxei+V3VXVAru6RrQpgdUDddbjwOGF1QFUX6NLyYXVAP9tdD3dydUDW8GZ7jXR1QLJH9Ox4gXVAw0oGu62BdUCq2+rJp4N1QBaZXoOahHVAoHZcYZagdUC66dsVt6F1QO4FhGtJo3VACo8CFH6vdUAQH1qsk7B1QNYxeVD3wXVAypex9czTdUAIUwu0D+F1QCnHZp4I4nVA4uOJc0gCdkDI1brd0AN2QHAzoy1NFHZA4gI9nQwWdkASdZtOkCR2QEqlAuxJK3ZA8Klnqx8xdkDK5hSPnzR2QDgZKlcdQXZAenFiHnlEdkA7Q3r4+052QM5GefXKUHZAgqijPBNRdkARDgWGzVR2QEfnMDIjYXZAWtsuLdxkdkD3GZILPnR2QG06lxBmgnZAWZuTHGOSdkAY++FUvZN2QGThgEy4sHZAxhIWLcGydkDdSESrDLR2QEY/3QF6tHZA0N2Bv8LAdkB2iBCAzs52QAt+frh84HZA3QI4IPXhdkDEPS7NkfN2QIhM04I1AndA60+MNqQDd0BncQvNARJ3QNIeNfENIndAwGDsAA01d0Cun9VmnUF3QBTEhEIbRXdAdHWUNEtRd0CEeP/uklF3QJgKsMhsU3dATFZxYyhVd0BGPXYAdVt3QFyHExFHYXdAvK5VsY9hd0DTKnapJ293QGYjypY9cXdAYhmhcIFxd0D+KZElJ393QJK1Kt13gndAmNWWPnyDd0CrawI5CJJ3QGyY00JNlHdAdMeacODQd0BWj8Vwj9Z3QKjMOw782ndAxH69x+vgd0AsoHQtUfJ3QOSj4Fn3AXhA44t3r20ieECSQ5iwiCN4QIKgme8KQnhAMRV9tnpFeEDL9QMty1F4QIK5O9jzU3hAq5kpDIhVeECcOP8S+WB4QCfTMHe3YXhAk1WVSrlieEC64Yp3/XN4QMC2QokidHhAboyCFlF0eECUUguni3R4QEL67+awdHhAo4CF8M50eEBFmKAp/3R4QLxnf0+lgXhAfM6Lo5mEeEBeKObzUo94QDjR/l2XkXhAXN3LPaeUeEB8WQf6saR4QEyba1/MwHhAh0rmyPPBeEC88kJwCMV4QInw5oG31HhA2HIwKgL0eEBmv71jjPV4QICvpdeZBXlAo+xn87QieUAm10jCKTh5QCLBWqOBPXlA5maQbvhCeUDYbilVzFR5QHjxeRHsYHlA2+AjX9pkeUD+8r5BQ3N5QPtbPH78qnlAWg1t17+yeUC7BpWyQtR5QFj04gzL1XlAe76F9U/keUB+FoeI+QV6QODns7vNKnpA/Z57TQw1ekBS8xmgGkV6QPrHWoUoVXpATVwgwYxyekAzyFBTopR6QH+UINcGnXpAUxn5qGaiekCTT2B9DLZ6QBWKoDUaxnpAJkfljD/OekBrCvfg4td6QI7Ah1U17npAjWnYqSsOe0BA4z8dTBV7QEHOE0JaJXtAQrY6KiEte0DdmZr0UzB7QDjM8Zh5MntAOKITlWJAe0Cw9+SdQlB7QKjPNaAjlXtAqJ11ry2le0Cs1JtbecZ7QAjLOj6j0XtAQNe+n6zTe0BlcW4Q/eN7QFL09L6l53tAJozeA5fxe0BcNFcHjPV7QIqnYAWSAXxAHpteZNoBfEDYJUoxmgV8QG0rz0uJEXxAWHpaedERfEBSIrnpzEF8QIR4StnaUXxARQjdTg1ifEDYuUNULHF8QPuhxeq9snxAjZmM7BK2fEAaJ8/vzNV8QOKQ5HNX4nxApku2eRXyfEBU+QqbVfJ8QI36TjIBAn1AKDinXUsCfUD2wh7TRRJ9QEnklEwnHX1AXOcGiJsxfUAEYLgilYV9QPRQg7mklX1Akiduky7DfUAezKI41uJ9QEjXh7eO9X1ASp1YwZ84fkCueB4FjVV+QPQl+aASDX9A6i0XgREzf0Dc88wiUTh/QGqj+JCSU39A0lhVUrdxf0AEitUXtYF/QOicNqSkg39AHdMHh2ORf0C4Kdih3ZF/QG2mg4nkmX9AOPF5Ll+hf0CgOPWv0KF/QOYMof8QsX9AkNCynlWxf0DyDIPBld1/QNar3Uzu4n9AcKdzfjTof0BObNkNSeh/QB25T9dEDIBAt4e3F8w4gECItX1LoTqAQGS74b8oPIBANO1zZtg+gECyRIV07kiAQLFEWTTnUIBAal2igBRRgECzAbfu51iAQMOibnMNWYBAwOLIZgthgED27t40KW+AQHQC0d4dj4BAnkknHWyRgECmTTciGZSAQC7rvnTAloBAFhdwZh+XgEAOH2XchqmAQCy/LWhSwYBAMAqKm1PJgEB9lN4NJdGAQAgazLlM0YBASsM/e2HRgED+ZqyqStmAQJzkb+mY2YBAwRHkZ0bcgEAF5QWJ8d6AQFy7NORE4YBAMoIz1ljhgEBdtoE89uiAQNhfyehK74BABs00wDzzgEBmqqwgQP+AQMyAbNw/B4FAN1DfsT0PgUBAKGdkNB+BQF//X/c1J4FAOParQeMtgUDIv8fB2y6BQAg/VyWIMYFA4FJtYrsxgUD8MLxGDjSBQJpLhVcxNIFA1nETTdw2gUBcMQwhiDmBQGIqd20uPIFAWqVZ8lWPgUACuS79VpeBQGKzribnoYFAMjrwGW2ogUB0wXam7qmBQK15hgBLr4FAn9GNf2W4gUBqrvXsfdGBQPhfW5cCCYJA5V4ZOdgYgkB8bZdD1yCCQPGBF2fRJYJAjJoKiNEogkB6PyelojiCQHhh+RtDiYJA7FBlRkSRgkD/Pn4OPZmCQEAWKBoPoYJAxnLKozyhgkA3puunDamCQMwFJ3czqYJAfodXYEqpgkAWHM2YBrGCQOiIF3wzsYJAik+ANa/5gkDi0i5LeRGDQIxgRnB6GYNAerwmQXMhg0BAh+cEcimDQBkMZMNqMYNArhWXERw5g0B4JEd7aDmDQMAC5PYkUoNAJlBd88VVg0AeCynOKlaDQNaNbhjkgYNAJnkd/ZT4g0AA+DEP/2iEQCn7U5AAcYRA3/7YrvV4hEAMPypBatmEQPvuNkdq4YRAyU70X2PphEAHhkMsNvGEQKwi1fNh8YRAnmyGxjT5hEARf7svWvmEQA3Jj7gvAYVASgmmYaBhhUCaTONvoGmFQHNIzQOZcYVAMOeyPrRzhUCU971/mnmFQAgg6liSgYVA0t3F9CW5hkDYVAgTkSmHQGuT7gmSMYdAl8LUOIo5h0Ckv39CW0GHQBnT1IiNQYdAo24EWsexh0DL2i2hxrmHQFgHrK/CwYdAOvPPCcLJh0A= + NrgMGZxjYkDiYBUjzERrQNiRk/3Io2xAeiAWnrxidECZcdKIFLN1QLt61LmXI3tAen7y8RR0e0DQ0vb2rOR/QBeQytRDkoFAIrxbc87yg0B7vZTxz6qEQE/CABkwG4dAQuk6ATyzh0B67IIbfFOJQPw7G/mzs4tAND9jE/RTjUDDZ8EIILyOQH61hBEwLpBAKjah0DC6kECVOFfkYMKRQHO44ZxRFpJA3rqXsIEek0BXzrSkh5qTQPTP2LGnOpRAnuJjn51+lEB058/G/f6VQIL4NqfTApZAJv401UOLl0ACEC68KceXQEkk3bY/q5hAqgfzXqv7mUAtOrC+dS+aQI4dxmbhf5tA31AVzbu7m0CkMgdoB5ycQCjTVZncF51A7bRHNCj4nUAM6SihEpyeQG3MPkl+vJ9A3//GVywUoEDlepciXd6gQLjAOhJBGqFAPgbKKYCkoUBDAqR7WeShQDCRsy2bZqJAnI3WgnyqokB3pWIosUqjQI4YwIaXbKNA0DCVL9QQpEBQHZ9Ly6SkQJC8EDr/8qRAqajRUu5qpUBQSIxEKtWlQGk0TV0ZTaZA24n1rUKfpkBbvzZhNA+nQP/KFRRTTadAtEppaFfVp0AjDDZ6Y/unQD/VCWlqY6hA4QPWRXHhqEDKX6ppffGoQAVF9quBj6lAvOqTbZizqUAphhYSkj2qQBV2xnS7eapAghFJGbUDq0DmpoSe2YurQEKdxCPg5atAPzK3pfxRrEACKUAuC8isQIZGZqASNq1AsD04LCnIrUCqh4YGI+StQM7Ipmwzkq5AXlIwKkfIrkDp3NAqWlavQFkKENZLXK9AIbQBmT4OsEAMy0VwOx+wQJp59hpMb7BAnutVo0N2sEDjMKYjTb2wQCyaBk5UxrBAXPaapVoesUClX/vPYSexQGsAsARujLFAPLzYKnCPsUCBASmredaxQP0gwDd247FALUfCLos5skCPQdBqfjqyQKYMt7CYmrJAVeKEn4qfskABKB4jnAKzQBLt8A2jHbNA4e1bqLFzs0DYjaVCr4KzQKeOEN292LNAL5ihQb4CtEBBXU3Awzu0QP6YDNzMWLRAQ95cXNaftEBl56S9zq20QLyjUd7jALVA3qyZP9wOtUBOxGER7Fe1QL5y18Txf7VA4ORxRPSutUAmi7bZAAm2QARvyUH/ILZABlH0XhZ6tkBl8TgkGb22QOYWMuQr67ZA3rYtpiYet0DG3G9pQVy3QL58ays8j7dAP6Jk6069t0BqwgSvTfK3QOvn/W5gULhA44f5MFtTuEBkrfLwbbG4QI/NkrRstrhAdnKeb3PquEAIk4c2ehe5QO83k/GAS7lAGlgztX9QuUCbfSx1kq65QJMdKDeNsblAFEMh958PukA/Y8G6nkS6QMCIunqxcrpAuCi2PKylukCgTvj/xuO6QJju88HBFrtAGRTtgdREu0B4tDFH14e7QHqWXGTu4LtAWHpvzOz4u0CeILRh+VK8QMCSTuH7gbxAMEHElAGqvECgWIxmEfO8QMJh1McJAb1AGR6B6B5UvUA7J8lJF2K9QIBsGcogqb1APajY5SnGvUBPbYRkL/+9QNd2FckvKb5ApneAYz5/vkCdF8r9O46+QGwYNZhK5L5Afd0Hg1H/vkApI6EGY2K/QNj4bvVUZ79A78NVO2/Hv0BRvmN3Ysi/QEHyMrc7D8BA/4F+/bkVwECipKa9PjnAQIoCu9C/OsBA7VIV60VtwECSh0WAyXHAQKm1D6zMncBATuo/QVCiwEDxDGgB1cXAQPLFl8VQycBAOh3wGlnxwECuKJKG1/nAQCoAj93jKcFAhMteSGArwUAn7oYI5U7BQI1Q6fdpXMFA1mBxEe6HwUBT8wSI7I7BQB9x+Spys8FAf/iCB/TOwUAxNqWpd+zBQG/bIcp+B8JAB9lxawAewkBfvsCMCUDCQDtl4fWHYsJANWGNTpJxwkARCK63EJTCQH5xFWgWncJAzWqoeJfEwkDHgZ2BmsjCQHCN0Dgc6MJAtn+F9B0Cw0ATsPj4oAvDQP+PDQ6iLcNA6VLFuik9w0BIoJUnJlnDQKW1v3uwbcNAq/DvQayLw0CVmF4+O6bDQJvTjgQ3xMNAazsrAMTXw0CLti3HwfzDQJz8YvHQJcRAYVn6iEouxEBYX12yV1bEQHMepgdQZ8RALgIqdOCHxEAvgaDI1pfEQJFShI5musRABSRtil/JxEDHQiG96/vEQDEp6wlnCcVAneXtfnQtxUAhDIrM8UHFQFlI6D/7XcVAahwS5nVtxUCiWHBZf4nFQA0/Oqb6kMVAePs8Gwi7xUDJoTRngcHFQDReN9yO68VAvUCNmxEIxkD6YmxYjg/GQK0jLF6cQMZA0AU5GhdBxkBphiYfI3HGQMDo19yhecZA8mh83qWNxkBjCwCdJp3GQK7Ldp8svsZArBuItqrIxkD32/64sOnGQA9s4tAw+8ZAQOyG0jQVx0DLztyRtyvHQPxOgZO7RcdA99NaEb9rx0AoVP8Sw4XHQJr2gtFDj8dA5Lb500m2x0D9Rt3rycHHQLpZxpXS58dAKUxba9EByEDMboMrViXIQOZeRBXaJ8hAL2/MLl5TyEC8USLu4F3IQHi0HK9njshAOK2GouOTyEDbz65iaLfIQE5X6XDwv8hA - + - oA+ORIQ+LkXniztFOOOPRKq4fESLnU9EuysAR1+w7USvEG5Ebv2QREAEqURy+pZEgM9vReHX3URzskFFs7quRMoc1kRyjolEmnjPRN0Oq0THd7tEY/7ERHwT9ERR9x1HBpuIROAvvkSH3WZEw3AkRsqBlUU3uJBEO8zfRK080kZkzZxE7geGROiMnkR7k55EWxeFRX7yzkRbRQRF2lmQRAOsmETB6nREpzyxRLlo0UTX5XRFGvMVRiVfd0Qlf85EortiRQBal0SperpEFsD0RHHBkER4Z5lELilQRK1jq0TYFMNEnvghRdT95kYO05dERE81RafndERsVNhE+tvyRLoQNEVC8mNEk1lDR/GBe0QLmdxEpqiDRr7G8kWe+fFFd7cKRamGl0QMu1ZEbUFMRckWFEXLCgdFsdtlRavdo0dwyi1F5qFYRHEBBkbMWLlE0YygRXU6FEY4yXdEzUyRRJRrNkU6Jn9Gz5r4RGmR40S8FwVFyCNcRWhmhEQ1D4dEc8ZwRD1NA0UsXs5Eli2vRDebGEVcPo1EUn12RIx3VERIsnBEedqqRF44r0QnDXNFZ+cYRcMIfkQb6bBFJShVR3gJ/UTW2AJFrUH0Reyj3UXDS5lEhM23RJuEwkR2BgNGE2rNRKBoD0UNX7xEbHa+RFCBjURpKehEWQwIRZ9lFkW4ZnlE4iFzROhBj0RjYL1EgL5yRDiAi0S4wOxErnjURXMMXkQUBJ1E4BWaRHBnHUUOvMJF4uIfRQ66lURV3qNESYzjRPifkUTQuUtEUBqtRGJ4hES1gcxE7thyRE1WI0WnJMVEVbIbRTuLREamVgJFaZXvRdk2/kRVAhxFAUNlREoErERlbpZEru+xRJZghkSSZ71E2WTsRI+utURUTkBF6GVfRUmWxESJrvlE/5YQRQCo9EXmVU1FZBHlRuvztUT3nK1FXxJvRcvuoESGwd5EPgUuRYToXUaj2HFE84YWRVCDEEUJsWNE6BGSRGH7pURpPKVE2JMHRcCRukVQYZVEg1pWRAFjXkX3K1FE6N2zROc1EEWz871EU0NzRGi+lkb51oFF6nv9R+Br7EZUidNG3gugRadvvEYxtXFFlVjqRI3TykT/zaRELoxCRZpZfUW2xmZEs1WHRCvJ4ETCPeJERmmqRT2gD0VE2MJErDt6RMO4mETyyp5EPUTaRH5+7URy1IhEcZ2ERd4PoEQE1/9Erxo2Rv6G1UW1vm1EsfIeRTAcLUWsB2BFzIZ2RNGshkQO2PZEYm1mRfDFQ0lM0bpFO3cBRdNI30R9uWpFuFBPSM+klkSrob5EHdixRl+SgUSsrZZEZodsRJizUER99oxF5NVjRcnz90VKRdBERxl1RMhUN0V7eQZF0A2aREC6jUXfuY9E9SWFRHwpgkSVnYBEjfagRSEX4UVXdK1EFqDeRD2p9USLmTpEHnTYR3V71EYjsxtFJl+dRP34lUQJUg9FuNCfRM/e+0UjLctE8QKDRGfukEQTD8FEkZ6+RHjyPEb4jkdF4bNaRV8LPUbvcE9FQL6PRKidAEUaDUxFLs11RBE3yEQWGNFEyROZRJzfy0SQL6FEa3+7RQRgr0Y/q9xEiIRzRuBjqkWYLa1EdP+zRTmvvEUIv6BEvmKLRLBDZESz+pxE395hRA6swUTWONhHvlQaRex07Eb6bhFFjUu8RsUEeUXBj9VE8T6ORB9w0kXzHI5ELUayRJUT1URxWPlEHHmlRDl52ERXYINEq+8ORcOG/US9qnpENzaiRRcvCEXCKsZE4rtFRpaMV0ZvN2FF3O1nRSqXOkV0V3hEtO0jRQ+0/UWUPLRFMZWmRL4SnkS6V7dE1CGMRNK+gETYdQBFevRdRciO3ESCtFhF2FqlRhdzpURk255FmoerRHCBL0V1DQlFsRwaRsqk/EUbqC5F2MeERBmiJUWBZ4NIwUUESIdio0QyqYpH6bgdRYi0UkaTralFJIo0RQlIlURxV5xFjCyyRInLzERETJ9EfSeHRHCvJEZmg01F2k37RDYq4EXHo4tEhs2TRAWNuEcjyqxHz27pRE+TnEQ1PGRHCn2SRu4QtkXON/1EOknaRT4v5kRiriFFHYUORXa7l0SU3TBFvUduRB8Bl0TEm8RE/85MRhQsjEW6bYtE2igJRZnsfUSwni5Ipl+xR6AESUcsT8lFCId7Rn84J0XgSWpF/PsKRW0Ux0S/+I5EXDVzRKsTFkilNpVHB5EwR8UUPkY7iXNFK1KSRIVHfUT1FCRF+YtZRKOWmkSpnI5EOmGaRCJI0EVOWkFFWWDKRG+XTEeTNtRGf3x8Rktlj0WpCqFFLLLfRLVbwkQ7QYVEJvIrR/mylkYduDdGuSWJROmOhUUnVQBFaEsURVzPRUY+auxF9OauRQFdr0QR8ihFpgAlRj3Lr0Xb3GhFNsnoRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - XsttLQzBckDwgnTnbsFyQKh6M2NQwnJA7lgQi6XCckB6rHGEO8NyQM11FXnExHJA7/wmslrFckBa/WOjQ9JyQPLNCoVn0nJAur+jv3jTckD8TJUfzt9yQMycdpq34HJAqFfCO1DickBwER+Mj+JyQOuJMyYj43JA8N8FTcrxckD2s8ylzPJyQP4uMbO283JAKNnmoKH0ckA4utpOw/9yQHxeZBb6AHNA4l+45kwBc0BJro4ajAFzQEJkLeHPAnNAri1b7voDc0CUBkDBCRJzQBQ/8am8EnNAaCS1sPsTc0CC0x8rTRRzQIBq4pV5H3NAd4QjYKMgc0DqIGREOSFzQBvV6RJlIXNAwJ8QNcwic0Bam4DEDiNzQDQEVtw6JHNAhOFAGM8kc0ASNn2jRTFzQIww/lFcMXNA6Ex+vaIzc0Ba7OvVNjRzQGHpF0HcNHNApQ+9feNAc0D0mRwfeUFzQHeOqAYmQnNA5UedY3pEc0BIMf0nQ1NzQOp3zBKjU3NAvH9+FIVUc0ASmJ61OltzQLbJbR2NYHNAhUdEWTljc0DWpQk6kWNzQBxZqUHQY3NAqS/tf/txc0DDb6M9ZnJzQIirSFy3dHNAVFKNTU11c0By+WxIbHZzQFoTvu54gHNAlotSmaGAc0CEx1SKDYFzQMo8/OvHgXNAlF0vXKiCc0Ag7h1AiJBzQB5Ji3dNknNAYCPA4PiSc0D8YX8cYpRzQOC3AZb3lHNAnu+60bigc0BgrSJdTaFzQMUJCuBaonNAU/zk6QSlc0C8Bt4lx7BzQNImw0/VsHNAjSYvZ7azc0BeiQchDrRzQGLswoP5wHNAinUCSNDCc0Bcc9f+JsNzQARpK4fY0XNAyiGPejTTc0CfcsZ+9tNzQHol4Rji1HNAf4wM0zjhc0Bmn0i7ZOFzQD03RLs29HNADt14BeQAdEBmMsnteAF0QBg3IEOmAXRAiPMrEAoRdEC7s4PPkRF0QJQvcPRuEnRABBtVC00TdEBofToASiB0QBxyLUC4IXRAlk8I21EwdECoGw6a5TJ0QPTyCV/HQXRAufrftBJDdEASeRuSekN0QN6TYgZjVHRArnQYdfhUdEAITZLXjFV0QOaAiZy4YHRAVCj3dwdidECEpNP3TGR0QEzxywkjcHRA+Kit6UBxdEBiI3pZO3N0QJZVzcSidHRAAFo/Ijh1dEBizphXbIB0QGbX8fn5gHRA3iHUdU6BdEBAK2/jsYF0QLaeadsVkHRA/IhyBmqQdEB/5rSlzqB0QKgQeJw3oXRAPiBiebmidEAXbgpo0aJ0QHgK+AEPo3RAMYcznGWjdEAjSVRLCrB0QGYdwMriwHRAcAlbVnnBdEBEvW4g6sF0QPA0Xh8Rw3RAVE0OLiPEdECmdYc1uMR0QP+zXzj8znRA4JdHsuLTdECmvbVUzNR0QLLYprkj4XRAgui7RLjhdECSZJOdT+V0QH7LKxiN83RAboi65KUAdUC2XKupYwF1QF0dL9ybA3VALqhOFV0PdUDISICBOxJ1QJI3AYgjFHVAXq/xo+YxdUCoY2sczDV1QJnc89mzQXVAfuTGf+FPdUDMldxUgFF1QNMH6/ZQU3VAaEOv9HZVdUDETq3xOGF1QOAGadrzYXVAUo+BEHhydUAuRmiCjXR1QFlFzsWPgHVASmf2lneBdUBDYxSMrYF1QGgDwu2lg3VANvgouZqEdUAe19mEu5F1QDUDqcuUoHVAaOSboCShdUCUgpkmSaN1QMjHj518r3VAkjIn8nmzdUAEyDgNxbR1QBFOQZb4wXVAEsGeIMzTdUBHhnFX5N91QDyuWXAO4XVARns89QfidUAoMKuAOeV1QER3cP9HAnZA0lZkhtADdkAJuMdNTRR2QEGfoU4LFnZAUBESzocidkBkFo9KkCR2QA5Rw2BLK3ZA+ggz2B8xdkDCFVP3nTR2QIDJt34cQXZAXPzhLnpEdkDj6Rza+052QARhN9/JUHZAPk4tARJRdkDG7M6lzVR2QF138JlUY3ZAQeLvSNxkdkDrTNufP3R2QBSBabRognZAcHeBI7awdkAyIf7QwLJ2QIVbGSgNtHZAXrdWjnm0dkA7JaKrvsB2QFUGrb8ZxHZAvZWzuc7OdkD7Av/umN52QOpK11yR83ZAp1qVaTMCd0DA50FDARJ3QFaa2ccOIndApiZM+gw1d0AUGOtInUF3QOT4LMyyQXdAtNbNHxtFd0C0qf0wSlF3QLRXV0uTUXdAVNbdtGxTd0AQ9q1mJlV3QGpJgIhzW3dAL39T2Uhhd0Bf87l/j2F3QNi81OSmY3dADC5GpCdvd0B62G9JeYJ3QGSv1mJ8g3dAmtAoOkqUd0AA6fj+m7R3QFD2hnLk0HdAAlPJhFDyd0BwCystbyJ4QHzw6YqKI3hAnlPhsgxCeEB4bb9vekV4QIaReMbKUXhA5POL/IdVeEDJZEFa92B4QGDxsfG3YXhA4hNOxbxxeECo9atmUHR4QAYghkZpdHhAKoRni4t0eEAyQLpzOoF4QMom66OjgXhAOtyeUJmEeEBqKtGIUY94QIRFUCqYkXhAMqr97aaUeEBLLAnStqR4QK8yWs/NwHhAVHKJO7jUeECAHRC2AfR4QEj9qi+M9XhAQj7m3ZkFeUDAUPg6KDh5QGDZQxWBPXlAxjlw4IxCeUCdxqKb+UJ5QAx4hADMVHlAcpyap9lkeUB4mJglRHN5QEBD1NC/snlALIjk7s/CeUA8imQBQtR5QMJjgULN1XlAKyWujE/keUCzOAf8rvN5QN4Q38X3BXpAfJdYRAw1ekDwJLB8GkV6QBqgwcUoVXpAp5H+ZoxyekDB4BtZCJ16QBgIqQFlonpAwSQgeDKsekCLYdAwDbZ6QMx7jxEbxnpAABGVz0LOekB6sq2D2tN6QGrflB185HpA++Nc1TfuekBhC+IJeQN7QMT/KEcrDntAXlKtD00Ve0AA5sdRWyV7QApcMosgLXtAhfZgg1Qwe0C8KdbPezJ7QPAGMtvON3tAqP+YjSKVe0BqZrDsecZ7QNJrt4an03tAIcdL6EDUe0DRhhA/RuJ7QGE3Ksb/43tAdO+qdJfxe0D9k3U2jPV7QBntFq6RAXxATtQhT9oBfEDyvF6d9QF8QL6BzD+ZBXxAAHI5vIoRfEDy/eDe0RF8QLiQoCjNQXxA5u8xG9xRfEC6sD/ODGJ8QE2yWSjAsnxAyJjjLc3VfEDcFJ0QWOJ8QADwco8V8nxANnChz1XyfECCFIb/AgJ9QO4Oe2JLAn1AjvGaS0QSfUCAB912Kx19QLrBI4U8In1ABlxPvYUifUAu8T4JoDF9QC2ndJ6WhX1AnxX1PKSVfUBpnZrQLcN9QECWElJq4H1AJnb1/9XifUCYPR3Sj/V9QADU4Qo4H35AgPTZ0NXvfkC+ltdBaTh/QMIuNDGnPX9A1j++7rhxf0BiVIR7s4F/QMELpBtjkX9AON4and2Rf0DoMP2KlpN/QPorNLnkmX9AYtm8w16hf0ASijcJ0qF/QI6ydAFWsX9AVtm0oJbdf0A+J3T07+J/QDbzknM+6H9A8gPzqy8UgEAQGBzOKjyAQHRXK3HYPoBAicBicPRIgECNtHoi51CAQAT9oMkUUYBAVPPnMOZYgEDgX68MDlmAQE5GLKUMYYBA+ntAYClvgEAUWqjeLXeAQJ53vbIej4BAntCOn2yRgEBsuMf6GZSAQNzr8dy8loBAMSJyMm6ZgECOnXeshqmAQNrl18L/v4BAtP3ToVLBgEBGUmHCAMiAQFoa5N5TyYBABezAZCPRgECwZb21K9GAQAH4KDFN0YBAWYlZY0vZgEBOVWXTmNmAQE8EOKVG3IBAF1VMx/PegEDGVcndROGAQHGEMor36IBAGev7iknvgECKrypbPfOAQEDDPidA/4BAVohSMz8HgUDoPz/uPQ+BQGptQ0w0H4FA8/4S6jQngUAmRTcj5CyBQLp/JuXbLoFAXBUkP4gxgUDUwJIOvDGBQLTzqsYxNIFAkYxBqr02gUA+Dssk3TaBQOhicWCHOYFAvJYv3C48gUBgfKIwVY+BQIXFxn9klIFAAOmK3laXgUCmq+Ke56GBQOTh1QptqIFAVjXO00mvgUB2yKWBKtSBQMj/hYsECYJAUzJkhtgYgkCGFjkK2CCCQIo78AfSKIJAWGtLfqQwgkCCfQl1Q4mCQIHrqEdEkYJAUBEqljyZgkBuZ7w/VZmCQLafhg8PoYJAj64ncDuhgkDhT+nhDamCQC6j8WozqYJAayRUZwexgkC4CjiiCbmCQEK/vaN5EYNA8LkRJ3oZg0Dya7X4ciGDQABQbcSJIYNASO9at3Epg0B2M2GpajGDQPf+hsokUoNAbv1z6yZWg0D5f1EPSoODQKj1xZiU+INABCtZqP9ohECcoS/j/XCEQCL1eYH4eIRAiYjLZ2rZhEASF8JWauGEQMSi3kBj6YRA7noYKzbxhECMwE+GYvGEQHm5TUgy+YRAzA5nO1z5hEAoIk95LgGFQKxqd5OgYYVAtFEt7KBphUDKQKsLmXGFQALVsYSzc4VAATB91ph5hUAurgyWkoGFQKyDXTMmuYZAJFtGJCnBhkDQe+rekCmHQFax4ZWRMYdABmY0r4k5h0DorHypXEGHQKowo1OLQYdA3DXV8B9ih0CKGiaJx7GHQJJa6EnIuYdAc62CF7/Bh0BaJaRbv8mHQA== + KBZXds7jZUA= - + - m6aJRPmkL0WuqYlECDuxRBq0eEUo0bREwn6CRIPaDEfWwp9E9j6TRC+8EEVzyvhEuEBYReCpDkWLQ4pEqfRORb8YR0TFCp9EDtG5ROnIxEQqYYREOWqBRDI4rUQFiM5ETWIeR06x7ESJ1EdGLWh7RQkgg0RM/OpEAzbyRLSJ40ZJ7ZdEEYatRNCtXETrFG1Ekt+xRdNLm0SY7lZEtTmCRMY2wkQDYopEESbaRJn5hUWh1pFExVMQRg1JokSUtn5F1gGcRH6egURfQNNEvfUKRYISf0S1yIBExG2KRGbm10TM/5NEtzUWRX2krUQoNPFGDPiSRNBI4kR9DqNEqZGGRFvG5kSGSFtHCAKYRHyFA0UphoRGBNULRqZCZUS8vAZGL+0wRSd9VUTLBFdE/s1sRcRJR0WMs2xEnrGpReJCk0cLqfREZGbvRes2oESkxZFFzCzdRWgtnETKIgxF/NxYRC4jlEYQMctEGrhtRCGbT0QaVABFXOVSRRJQjkQi9SpFNpeERO5knESd5bVEtXlRRO51SESdMGdEgJurRBeB20TkFJJF+QrVRA/yyEQ1KKNFmb1UR53pmERwUV9ExAOvRFMNcURfHhpFQEkHRl7xiUQdsppFiQupRHH8u0TunIdEc+TDRPrhGEa+GOtE7uStRDpJxkTIgNVEl3HSRB6qrERrNuJE+ZJ4RD63/ESvGrFE6RZvROrWoETEN51ECBoURTb6bkS/e9NFFn6pRAmSpURoX4ZER1WDRNEZdkSHWthE0n9CRVc1HEXpAXpEBP2TRNeElkQiHHBEJGuxRBS3EUUJyGBEhz8FRSk8K0bNAF5EABe4RBsXw0XY8YVEtYACRS8BjUSJ74dEGDFyRMAp2ERPWYdEdbOSROjKVkRbmgdF6CenRIlLYUQWYIZEV1YURV/fkkRvJXRFCT0QRY9lmEQuKoBEf1aLRP2wA0Z4KANFUsfLRvCGtkSPoJFFX2FjRQNybUSC9OpEpucCRUNwKUYvAltEsENaRZsJP0U8+pBE9c5ZREncDUVnrZ9F2yZsRHHznUTdOKJEABv1RJT4WUSZJBJFAuurRET8n0bLloxFDRr2R70l0kYcKV5FCLzZRnIwl0UP6ZNGOmw+RXrnuEQZEqJELS2FRDBUO0WSUWBEBmuXRdtX+UTOO7pFNt5oRKMmsESr94VEUUWeRKamUkVkdHtEZfd6REdKPkYN97hFq+kaRZOgBUUp2WBFedxjRLYdOUU3jo9FCjdPSRCdcUQRshhFdG5TSBPSXUQEuqFEfLSYRnBk6ERtoudErnyaRCxSdUX/BeNFNaHpRH40skVittpEgSNzRND6j0S7upJFOG6fRFVrk0SsIGZFM6FIRDDT5kXzXr9En5j+RNrKdkQ537pE767fR5Al6UYNAjlFAsWeRMmHNEW6x4xEBaOERNk1wUUl5hBF3U3ZRNRcW0S/EXBEj4IiRfRkdkS2i95EM106RnOzTEUiDbtFz8AjRq5XSkVAbo1E8fb8RGJznkRrYIFEB4JwRJ2FuEQ1w7VENKG6RY0Jp0ZSiLpEMW5QRtQxQkU0kKRFh5I9RFYSeUX6x9pFJPWRROJ+rEQbPStFy6uyRAfq60eNpgVFqpXkRnvjNEXB/LJG2QBIRanSnERnyHhETjFwRJrybkQc/tdFkPGRRKnxrkSpBJFEcpbGRC8KKUXkvYFEK92yREHNikRTsYNEZU2TReBI6kTu9TRGOBsZRgQ7jESa51VFG1A7ReQv7kS5Ui1F5PjeRU5iYkXlGe1ELntyRB+vZUWhKLxEMeDuRDGIOUVX1IBGbwSbRJpwr0Xe+otE704HRTF8UUTRIkZFxQ3XRafLtUUA1PFEZpiURIzzBUWtOH9EtLx/SLWbj0QXL/xHQ+J7RPR+eETy64JHjfZ5Rmp2n0Uf2xhF3e2DRPppukU1MYpElpRxRAEGoETbSg1GKP0hRfuG7EQCxNpFJLGwRPc7gEQw4eBH5tW0R2+xukSqJmlHYwWIRO7gskazneVFkqDXRIUIV0XRek9EkmQIRcSJIkXAQxFFrfoTRemKdESlUW9E3zw9Rh4kl0VYZVhFbM6ZRKFR00e6x05HfCbVRjYwDEV0XLhFDkbjRSt29ESVNC9FbDafROPiZkQVhN9HWIFVR5cj1kYFiSVFLXELRlhPSkV170xFx5bFRBt+hESbEqZEMC3bRQVwUkVliPNEoeEURwM0m0ZCLjZGh9efRWrxjEUfbhVFNoXXRMu3xkTlqQJH4NF2RmiGE0YqGsBEhwtcRVAjlEQuD6NEF7Z2RHwHI0b4ULhFrXRrRdLLY0TDi65EIxmLRGfpDkZ3cIBF4yUvRXLTpEQ= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - nPy3/CXBckC+OTT3b8FyQFgAGcY7w3JAwl0KQqXEckAI/5zbxcRyQHAx5c9ZxXJATthnmkPSckCmVepuZ9JyQAUnsBDR0nJAkINYHnbTckDg2J5B0N9yQMDQd+m44HJAii09mVDhckBrZqj5UOJyQKcsPleP4nJA1v8gYiTjckCFOpmZUfFyQL4IvLTJ8XJArwA5cMvyckCuWkhitvNyQGKCkFmi9HJAZlTtX8P/ckCyMsq2YwBzQEYZr4P3AHNAuFxg50wBc0DI+weMjAFzQAUqd+fOAnNAhKEwqfoDc0CjthxNJgVzQD3GkyAKEnNADHMWfrwSc0C+z+o5+RNzQHlYRiFNFHNAahBkcnsfc0BGHKA3pSBzQDwljFw5IXNA2O3/82Uhc0Bm0LccySJzQJ6NgjPPJHNAcg0g4Ucxc0AoaUHvWjFzQPJuPrAPM3NA4K1/I6Izc0AY4D4E4kBzQE1Gaa55QXNA3FpjNCVCc0CqtMvXekRzQD+yI9uaUXNAXgvI/6NTc0C4Gy5q5VNzQDDepKaJVHNA0t4BTTpbc0DE2L+ui2BzQDI+RV85Y3NAPJa0e0pxc0B0U19k+3FzQID1K/lQcnNA9AupLmpyc0AcqyOGu3JzQAcmTjq3dHNARTlCSUx1c0AqEh7iaXZzQMBGjQ15gHNAGOLAYaWAc0ASx9ZbDYFzQOZm8t5bgnNA/wAR9KiCc0BkktxyD4RzQCrWxqCHkHNAxW/hX/eRc0Aieh0FTZJzQLrUyT75knNAfpZMac2Tc0BM6+inY5RzQA9KNML3lHNArGql64uVc0AWgUJ8uKBzQKJkjvPgoHNALrcJuk6hc0AwI93Ac6FzQNIGlsNaonNAhCSqCeeic0Bs2I9FBaVzQLCxD/TLsHNAK5LQPn6xc0DOTyKctrNzQOBO3VQNtHNAvqogcfjAc0D4JPRUjcFzQFhF+OzPwnNAEO9i6SbDc0CoLfu519FzQFAERR0003NArOeUmPbTc0BYhmSB4tRzQFoTpj2j4HNA+jCnfzjhc0Cc5PVLZ+FzQGzkxTwO43NAbleWKvDkc0D+fovcRfFzQMb0nJJX8XNASAX0BDj0c0DqHZX/jPRzQJqBg+xOAHRAOOVE3eMAdEAXTaQYeQF0QL5E5SOlAXRAjBUXgwcRdECWznoyiRF0QFpjGlhvEnRAOZB3B00TdEA4yCQU4RN0QKadFDB4FHRAcP1SEUwgdED1D+sqjSB0QDaJxf+3IXRA1n32gbokdECI6HEFUzB0QD4dNxfkMnRA8vIM+1JAdEAf0FwGyUF0QN5b1D8VQ3RAZIEK+nhDdEAwjqLN91R0QIaP0O6LVXRAjteWprhgdEDpfF2dCWJ0QITGJtRNZHRAo/CQLyJwdECAYk2/YnB0QFClfQpBcXRAZCopJTpzdEBsQUOAonR0QF7DpcU2dXRA2C1yfPiAdECOa1j8ToF0QGnpK5kWkHRAF9vjqmiQdEAAMPc7oqB0QBhvR/TMoHRAYXBzfTehdEB4Oygb0aJ0QCTmn14Oo3RA6vVpZmajdECRlaurCLB0QLzghK/lwHRA1VHWWXnBdEBVLZlyEMN0QPYtZKsixHRAhrGcuXnEdEA6oWcWucR0QDMF49P8znRA0Cni8z/TdEA8wrcd49N0QPK0rK941HRAxL69mMzUdEC2/y/At+B0QFWWthC54XRAIGiolP7hdEDnyOpQT+V0QIiFdiPA8HRA5tzZXYzzdED3Mftrt/R0QI5sq6mlAHVAlLGw0mMBdUACLB64XAJ1QBe2XU+bA3VAfP38jzoSdUA7gDy4IxR1QPoY4ZfmMXVAq1org8w1dUCa/AwDtEF1QN1ww0TZRXVAYKDFMoJRdUCC7rZiTlR1QE0hYd52VXVAY+oNxApgdUAH564uo2B1QHr0ll84YXVAAtknanZydUAOUzzPjXR1QJyj6vh3gXVAm47zIq2BdUCIWI8bp4N1QKLRAwibhHVA+gLrR4yQdUC+uibTOpN1QDbeIdCUoHVAun1uO7ihdUBe4fQ0R6N1QI51pk5+r3VAMMd8HTizdUAqzFYQfrN1QDf4y2piwXVALGUXPvjBdUDqLduJzdN1QIiqhqPk33VAzJwwQA/hdUDIbyl+COJ1QMYO7+1HAnZALj6g39ADdkBfX107TRR2QJdZ0q8LFnZAUpD1WpsjdkCqrmsokCR2QPZWb9JLK3ZAD7Nooh8xdkB8paCsTjN2QOlTAFSdNHZAW/dUXR1BdkD5c1ZXeUR2QAYNn3P8TnZAnAPB/81QdkC66gCPElF2QOQs7anNVHZAVEaD5SFhdkB2DOv6TmN2QOxll+bbZHZA9jxF+z90dkDMpqLZ+YF2QFYzI9S7k3ZAo58e7rawdkBFs9luwbJ2QJIh4Q0NtHZAsb9Ad87OdkDiC2AWftB2QDrRaQf14XZAYtVj6JDzdkAqk/6bUPR2QO+os5MzAndASfukggESd0DUsz7gDyJ3QGZreit2IndAyqCK+Qw1d0CldIAQnUF3QPLDFCwbRXdAduXsaktRd0AcaKKhklF3QNApB8tqU3dAlUCJcypVd0Ds8+EOdFt3QONZCKVIYXdAwa6beY9hd0BJsAeLj2N3QGq0/1snb3dAnVPOfeGBd0Cy/dgEeYJ3QEwmI7B7g3dAZPMLDQeSd0Cekbm0m7R3QPwel9Lj0HdAkFAUsOvgd0AUaLiL6vB3QC77DtFP8ndATcdIlfYBeEC0e9vWbSJ4QILSK/OII3hA7IdqdaUkeEDKpTWVDUJ4QNBPiyN6RXhA0GPSgspReEBySg64h1V4QBKMHwj6YHhAzKH0VLdheEDlr6iXT3R4QCh0/QpndHhA8IV9dIt0eEBuJIlCunR4QDZMcsvTdHhAyB7P/f10eEDMi+jOpIF4QIjLkXiZhHhAKK7741GPeEDWDdJfmJF4QMSpIL6nlHhAAmv1V83AeEAcHOxe98F4QLaOOPTWznhA+K9qlrbUeEB0gafFN+J4QCRv7YwB9HhAvlBqrY31eEAuKdfdKDh5QN1WKGSCPXlAFBKP9/ZCeUC0GEirzFR5QEpNLKrpYHlA2x8FOENzeUAG/sLqwYN5QFhd8hv8qnlAlM4lF8CyeUDAErXkQtR5QDA1w2vM1XlAus9kmU/keUDeUcrHNgR6QJzqn3DcMnpApuooSAw1ekAfE1pTGkV6QLhH5ZEqVXpAmkIPi4xyekCgjFE2CZ16QKDkGeVmonpAGK116gu2ekDc2T2UGsZ6QI4dWGvX03pAQrgYqeHXekD0dLnqeuR6QHPuJj827npAMrdut3gDe0DpdHhDKA57QIgTWL9MFXtAyldQXVole0B8XUmdIC17QJjbOBZUMHtADVM+MHoye0AGiNkqJD17QLrTxGpDUHtArEYJ31xSe0Di29aT65B7QHItBtMilXtAEl3h1DKle0ARY/U7NNN7QJTI/gyt03tAnwTo8D/Ue0CRBg2u/+N7QDJWWTyX8XtATvsZPoz1e0DcC8/JkQF8QL8VbvXZAXxAEJFDlPcBfED+jMLzmAV8QBKyKETSEXxA/YBJTs1BfEDkPkUm3VF8QILnUt8KYnxABfqOob6yfECOzqzWEbZ8QDRJUJvL1XxAIl/HjFfifEDand8+F/J8QKphMWZV8nxA+zFNRgICfUD0jGUETAJ9QEWhHfOkEX1AM9ZUnkQSfUDWAc8HKR19QFvlD0M8In1A+s1cw88nfUB6qqzVnjF9QExN2OqVhX1A1musbKSVfUBU9KGtLMN9QABV7Q1s4H1AlwJBHtfifUDgYr54j/V9QISFdQOCAn5AqkDynj0vfkAuA5nSj1V+QFqR/bfgkH5AjnwzFY2wfkCeZUkvzt9+QLwyaQnX735AQm6dSNb/fkA+y6KgETN/QPJ3JHFPOH9AKXm9i6M9f0ANlCzONk5/QPOFpse5cX9AeP2vErSBf0A1bHr4YpF/QDgk4fyvkX9AXw8LqN2Rf0D/3xzg5Jl/QMbyU7ZeoX9A0pFh7M6hf0AUg3iY2ql/QDhqcPhTsX9AVojV91LBf0AtqAAwlt1/QILF1djv4n9Atilx7i3of0BuXcDrT+h/QIjC+ruEEYBAEzevgeo3gED6syyIojqAQE9BdGApPIBA06fpSdc+gEBs7Y6d9kiAQEC5UyHnUIBAujfYdhRRgEAsrVQT5ViAQJo6vpcOWYBAlf16A0lagEDvMIkv4mCAQFiaGaoNYYBAj4+1xSdvgECR6Bdw/IqAQBN4owIej4BA+/H9mGyRgEC6BHH7GJSAQIQX3/rDloBA+LD1qG2ZgEDixxsyhqmAQFZWZkyFsYBAmGtzNTTBgEDVD7+BUsGAQMBCobwAyIBAvkR9kVPJgEAIJnmjTNGAQFZcGd1g0YBAOpddP0rZgEAbIfAnmdmAQNgu2v9F3IBAgqW9k0ThgEBmGPV29+iAQMijZNtA6YBAtgQ+lj3zgEA9jXe5P/+AQAXaP8nIBoFA/JH3kT8HgUDGFXfEPQ+BQEN/2f40H4FApn7PtjMngUAYbcnP2y6BQELIu6P/LoFAuIqoCIgxgUB0zl8auzGBQO4dC/wQNIFARv8yHjI0gUAWa7jb2zaBQCG/PuuFOYFACjSzdjI8gUBViFM01z6BQFD9uZrDaIFAj3GmM1WPgUDCjtoaVZeBQJ7HTV/noYFAGC+GcW6ogUD2A/GbSa+BQNaiJzxssIFARYr2bAiygUCaNkYlftGBQC7ZrNx804FAhnDBSAEJgkBkChNl2BiCQE63Zh7XIIJAalHqOs8lgkDS/8BY0iiCQLojhz3SKYJAFD8qAqQwgkAMP/7zB4mCQJzNMzFDiYJA4GSwskORgkBYEqVHPJmCQB1ws/9TmYJAK/Uy6Q6hgkCm1XyoO6GCQLjKBnAOqYJAvIGhojOpgkAcKSK9B7GCQBXBwCKw+YJAtaVEg3kRg0DyGsgCehmDQBiGrKhyIYNANCSBOoohg0AlNrBxcSmDQOpdDYZqMYNA8FRPViVSg0CpzEmWKVaDQG66xvkqWoNAtd97deSBg0Ce30NBSYODQP3WPHCV+INAcEhLDf9ohEB+aV86/nCEQHDlz4D4eIRA/hw1DmrZhEA+jNxkauGEQAFErtVj6YRABsL01jXxhEB+xQ2GYvGEQFjfuxE0+YRAYf/lt1r5hEBo1IrnLQGFQF54nkegYYVAWkaaLaBphUAg43/BmHGFQNwzmlyYeYVAXeVugJGBhUCpe+hWJrmGQASWpq8kwYZAitDMK5Eph0A2KICMjzGHQPHLcemIOYdAwrLCwl1Bh0BYLEctiEGHQAlva7DHsYdAbd2e6Me5h0CG4DrYwMGHQDOr1Dy/yYdA + NrgMGZxjYkA= - + - BvZ4RPhNSkVk35JFBMxPRP0BhEQzTe5EoS8CR05CikQTR0dEu1KNROLfx0QJydpEYzVLRDMul0WryBJFsTCfRA0VXURvoZxFFoS+RBnrq0Tk4o1EF+3/REyVT0TnLeNEwflQRBh2tkSaGA9FgG8oR8hefUQSiZpE5KZJRoE4i0Xi77ZEhsK5RNawxUSq3fBG5y1NRCffbkTaIqVFoMvEREvKjEQ0951ESB1uRAr3vkR2y5FFVV+VRKGJFEayrIZEgSxfRelIgUS6Tb1EPRqKRJ2T4UShKxVFQs16RJVLs0TxLNFE3oZ8RHKfdkT1YLZExbQ3Ra8TdkRnkQNHekjpRG9sx0SuWFpEZQ+xRE9PhERXV0RFjmB7RPxnS0dE/J9ESDJ+RDgyr0TctpRGS8SMRL6HFkat4D1EBD+0RLenhESqKQJGK/FgRBJqe0VUB1FE9KGiRO2qgUX04lhFdPS6RKMTRETpb5hFhPCLR4FIRkVP/wBGpZrQRJktvEWcU1VE4TMVRmUPe0QuNoFEvaWcRAyQXUThE2NENVoDRX2NikSQ5btEnIuyREjSk0Z26+tEtHWFRJzttUTOR+pEjZpoRXe2qkSMm3ZEwI/ZRLlTWkSmgS1FJqOeRN9MoUQPzJlErpRsRGcZokQvNaVE7yicRE/44UTA5txEPgrLReDu60Sqiu9EuKu0RV6EkkQn1VJHoVoMRX3EtkTaoghFupRfRdStw0WwycFFvCiVRHGEUUTDhrtEOHKzRCgQH0ZfUO9EiL0XRf4j00Ro0HpEKmnIRFWp2kRKTdVEPvGXRFHzn0R24apEJeSPRF33h0QM5FtEWNT2RDMQkEQygjRFlh36RPc1iUQwhYZE4oucRYq1VkQlOYlE4L0JRYBRw0TYSZtEyn5gRAGcHUV8ukFFRMYGRW88UkTIHXdEM/tgRB/lW0T7SDdFmRkzRFxnUESKewVF5LTmRMU0Gkbu3fhEfGjFRb7g1URJbNpEdyZ9RPtWhURnyIFEwX/ERIletUT6CIFEQMyqRN+CpkRES5hErcIkRbsFp0T4+pVE1cqoRFE3DkUHm0FFGZOkRLW0xETfD69EA2y9RHLIDUZ82eJEBsreRh4ZZkSHmJhEvBynRf1AcUUWEYJEoYWZRFT6MUVbijJGpJlxRAGwk0TmGrNE4sykRL4KYUQ749pENEiCRJtXCUXT0alFFDIuRe5xb0R/lINEuu4oRQYsW0RS581ELoGmRkxla0VQ9IJEetDoRyR92UZ6E8lG4t2rRZtTnkYUVUFFqaoARUjPhURPyMNE50VJRSZ7NUQsaXBFDi6DRDPXqkTeDeRFHhuBRBq0zUQlRItEv9xmRJRvdUSowgVFb/VORLwfhkWR0qBEAod/RP6HpUS39zFGLPq2RZ1y60SHLBtFGZqMRR7+r0QK0MlFiyNFSUKifUUSbc5Evf2EREm9CEVSKUxIMTGKRH23wURCRaFG0WkHRQKfhkS/jUxEEj95RdL+YESGyJ1FSUuHRfcwUUXRPP5E9NqwRFzbpEWQM25E7CKKRBxyfUTHdFBEyHtfRSfX20Wv7NNEzTnkRLKtXUQLxmtERDW2R5JYukZe0/BEJ872REFjPkVI35dEyMG6RXJy20RXZ45E36+8ROcBtUT+YyBFCX6ZRLqa9kRf+SVGswQpRYzFBUZAfOtFCg6fRZBWU0Tx7vlE3WivRLPNi0SUWgJF7exxRCRonUQ/ZY9ECYx2RJEyrURPEbxFwxqeRmbHqURgFkZG8s8YRZfVjUWlkIFFZTCsRYq1i0Q0hOlEKGoZRcWcaUQDVI5EjXDhRys0qUQsN+xGrLAhRRgGoUYnmGhEd4lWRfIqxUT7fQ1FuKl0RIWTg0QMS51FYMHVRIgyxESr5dlEFLy8RHkxCUVK6ZBExDx0REK56ETosVhEKzSSREVklkTxII5EbcePRGps7kRJlZRExiajRO0kbUTLbldF17OPRMN1TkZ6319EpZgRRrANREUTJ0JFUHOtRGK3gkQOCxBF2wqNRIsMGkZTTotFU4tyRL64wUQbiKVE9WeTRHxiW0QD+f5Eu4fCRFNv8kRWSoBFZwuMRuFGiES8AqpFw756RM0AikRbl5NEK/fHRKuvhEQrEgtFKogFRjkhp0VnoSdF0TLvRBK0pkQPuqtECRgMRZ7Ab0h4BKNEhUniR3SIa0cIJkdF2qklRuJRkkVoF3dF5EqXRSZTnURv4G9Eqhj7RKzMEkaJzoBE9dkuRS2GB0Vc8rdFb229RMwB+0eViTxEuP+4R98umURW59dEerKAR1i+rEaVIslFkmcmRcFBrUT/hYtEgWuzRRVI6kTg2GFFAkD9RB0gGkWd+HNEL4tSRM4WA0XAwPdE3xxsRJkbQUZ5SV5Fsmj6RPG9VEUWIoFEXia0RHldYUTaMMFH1WUzRx7Wt0Y/qyZFNOPNRe0iEUYOu0RFzCEHRYADpUQ50ZZEgg7VR7xyP0c7AN5Giyv4RPIH/kU9aPFEx/HgRdsiVEXHy/BEBPl+RDztt0SbWKRE6nilRR90MEVKZiFFlnwPR2y3h0ag/ixGgqR5RfBaVUWl3AlFQwGKRMmqwESpFO5GS3t5Rj3WFEb3m1hFj896RPtSjURFDbRElk4hRsm/t0VRsF1F7wKwRLH/2USE9QNG+u7ERbgyIUX+LQlF + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - pUNTRXnAckDIHt4iCsFyQFGi1wtvwXJACSQPjFHCckBOY1dSqMJyQEFhsJM7w3JAwx+pfaTEckCyuFRexsRyQIBRYi1axXJAzuHF1UPSckAYGUFjaNJyQD6dJ9x203JA/0XACWHUckBxDCYQzd9yQGG8prq24HJAB4xJ5U3hckAQ3WUEUeJyQKBDtlCP4nJAngCI1iTjckDdGvtxyvFyQE7+xKfL8nJAV35tBrjzckCkPgDXo/RyQLwiF2bC/3JAIVanZGUAc0APJ60l+gBzQEYV0q1LAXNApsIwaI4Bc0CEHVw80AJzQAHvWxv7A3NAFYHw5CQFc0D4yvwfCRJzQEDvDv+8EnNAaBO2KggUc0C+d6OtTRRzQO6N/3J5H3NAGEd1oqQgc0AQ9iiNOSFzQNYhHNdkIXNA3Aq26Hsic0B+xSJ9xyJzQMzhHdIQI3NAhPlo3Dckc0AUvcPMziRzQKroewlIMXNAToRBMiQyc0BHcQ+kNzRzQAETo/XaNHNA/IXTrOVAc0A+YXs1eEFzQCQaas+7QnNA/jkppnpEc0CzODF5QlNzQJAU8bKjU3NAxK3y/3hUc0DM0DRDhlRzQJR1t2SNYHNAUi3mwjljc0Cg6kvRzmNzQG57zmD7cXNAk8mV2FJyc0C2aS6UtnRzQPaIDRBNdXNARvXGUXmAc0Agcc//o4BzQEjNtQcMgXNAkmDBy8mBc0DmkyOGpoJzQP/vcryGkHNA319abE2Sc0ABe+mZYJRzQIJ1Ryb4lHNA5gD+q4yVc0C8nsf/uKBzQFZfvb/hoHNAB96IUkqhc0CE2okpW6JzQMQPjkuRonNARiEdUgWlc0DKqVyv2LBzQEQ3+ce1s3NAFSkb1A60c0CnOIvP+MBzQO5ZAEDQwnNAX7E0DifDc0Cjolwy2NFzQDxjI4Hd0nNAZgMDDDTTc0Cma4ls9tNzQIxitDDi1HNAxNFNZDjhc0Az5GqeYuFzQKHClwcO43NAQLY1VWjyc0CA9et6N/RzQIvJaeNOAHRAVFt5ZnkBdEC4vFfupQF0QP6HPhuJEXRAMa01024SdEDeiNR/TRN0QP6nSfjfE3RAHunAlEogdEBuRZBOuCF0QAceo4i4JHRACW6/O1YwdEDcJbhIujJ0QKZcolTHQXRAjXmMeXpDdECuFk0wY1R0QLftaIj3VHRAZABHeYxVdEC8Il+ZuGB0QFHS5ykKYnRAjIfaFE9kdECEuLxSInB0QEc/+pAecXRAUcUGeEFxdEAiAi0QyXF0QA0WXVw6c3RAtETsGDd1dECPNDYK+IB0QGiX5/9OgXRA6RAFqxaQdEDW1D0paZB0QNi2Pk7QoHRAFhO1uDihdECZttQYu6J0QFp496vRonRA3t2eUQ6jdEBCyNyDZaN0QHB9pmBkpXRASUruGwqwdEArSFz1SrB0QFQ9dBPDsHRACNohX3nBdEDN8pVp6sF0QNeJ2ckQw3RAzL3OnCHEdECUuUpsecR0QBLruYy5xHRAfQ3+WPzOdEAqWFgSztR0QJnNYUm44XRAJs0AKP/hdEBzTyhET+V0QCBMql8W8nRAneR+44zzdEB+BuZyYQF1QD7qh+NeAnVA7Jt4L5wDdUDTSSatPRJ1QPtDfREjFHVAuPLoyOcxdUBabPH8OTV1QOLe3Z/LNXVAKZjsZINRdUBsbhb1T1N1QG+7TMt3VXVAv2TT8AxgdUBQ/l2JOGF1QOY1qEj1YXVA2JP6CXdydUBRCqEhjnR1QN2PmUN5gXVAlI7JTq6BdUDb7N8lpYN1QCokeJubhHVAoEzdrYyQdUBOM3gRu5F1QJQJsWeUoHVA+lnwy7mhdUBexXtfSaN1QGQfQsd+r3VAZNZ9eX2zdUAMJbwwxbR1QLti8KHNwHVAnCt8OfjBdUBOkcXczdN1QBbfXbXk33VA7pH9jwjidUDfKZWYO+V1QDBVF6VIAnZAdGYOitEDdkCDErVlTxR2QH7ACCINFnZA1Q1TFIkidkA4X3LakCR2QNZ3rQNLK3ZAOccFzR8xdkDeNpiJJTN2QOwS8VydNHZAQyMHXx5BdkBXh0whekR2QBYPJA78TnZA4N6jZ8lQdkDcslhrElF2QMovktTNVHZA1w3p9dpkdkBcffyoQHR2QJhvJBj4enZA7rCTrmiCdkCwgaInkYN2QAr3+yRmknZA1y9izHSTdkDn8a4ivJN2QOXVVQrAm3ZAi2fWt7awdkA636avwbJ2QCg9tgUNtHZAItM996+0dkDj1BdAwcB2QHJODiAbxHZAzucW4jDFdkCUIMH1z852QMBK1bl+0HZAeNxAM5DzdkBvPViZNgJ3QBE1Bc8BEndAfQAbCA8id0DExhdDcyJ3QDZ6KEQNNXdAs/F4nJ1Bd0AakWFjG0V3QMl1RNpKUXdAPWTUtpJRd0CGTmnabFN3QD1JoGgqVXdA3EOBu49hd0CSuXXXNWJ3QAl3h1eTY3dA3PXO5Dpld0Dm15CkKG93QJo8CTh4gndA6NfTw3yDd0Cg5HY7CZJ3QKvoV/2Jk3dA41V6tkyUd0DRwLwj3OF3QAAf46Xq8HdAyqWYDFHyd0CQAChTbiJ4QIhd4FSmJHhA6yFHAQ1CeEAOdsBYekV4QFqDcBPMUXhAJlRngIhVeEDQh60X+2B4QPrmqW63YXhAAofRVbpieED/WTofKWN4QKyhQyq4cXhAgVy034t0eEDEMnJ8sHR4QDijFdzRdHhALoDPDqaBeECy0wTemYR4QKyvf/1Rj3hAWrayLZeReEBM6GGtp5R4QDDHlky7pHhAe9HoNc7AeEBiBFTg9cF4QA1xmlYGxXhATnozZ7jUeEBfWfhLxOR4QHCUCMsB9HhA9jTdpIv1eEABi8DyDwR5QC7KJ/mYBXlA9pGplic4eUCfz2PYfz15QN3TlS+LQnlA2f6/hPhCeUDwcrTEzFR5QN1gwIVDc3lAyubR5MCDeUAmsJxswLJ5QMppi/1C1HlAmJ4JoczVeUDyJeUYUOR5QFDF3l4MNXpAMVbPkhpFekD+4qnlKFV6QEQcxq85ZXpAVO2Ni4xyekAiS0MtCJ16QCI90VINtnpALVtHQS3DekBoCyqkGsZ6QFgXQetCznpA0LHWsPXjekDLVmRRNu56QNAv/lF0A3tAcHth3ioOe0A3GOOWTBV7QJ6YZzlbJXtASWifZCEte0AwagfLUzB7QLoC/Vd6MntAKWjzxcQze0A7PzKCJz17QIsTqPPTQ3tA8vglbUJQe0AbvnOtXFJ7QKAfZz7DlHtABm401yGVe0A9DmWTecZ7QKbxhQQ303tAuql2Aq3Te0A+Wz7MQNR7QExJzEv/43tAOA3CjZjxe0B6RgV1jPV7QLw7sZfaAXxARKjSj5oFfEDuaE5j0RF8QFAo4pfNQXxAoDFEeNtRfEBIBxg+DGJ8QCYF25AEc3xAhPfGmr+yfEC4k+AzErZ8QCVN3zvM1XxAfmJ2z1fifEAKGS+tFfJ8QMfZa7ZV8nxAVQ12VEP0fEDSoPjyAAJ9QDv/O1tLAn1AlOYVhkUSfUCLR57jKB19QP5eo/87In1AflGuPoIifUC+DYo22yJ9QEYRaySiLX1A7pH8vJaFfUDMKkPALsN9QBSqlUlr4H1AnDOmidrifUDNk8AykfV9QMRvTptBP35ARPAuvYxVfkC6z42CQIx+QN5sVcSMsH5A94KyHhIzf0AFMsj3UDh/QAYtUA2lPX9AioQyVrZxf0CK/tlZs4F/QCIFgqFjkX9AzDHxBKmRf0Dnqhrh3ZF/QFSDT5/lmX9AH1AwRF6hf0Bs2879z6F/QN8IUxpXsX9AvqghvZbdf0AUyj1P1eJ/QIhlbCss6H9AvqVenYHtf0AKocfH1fJ/QA9QUciXCYBAbgzGauo3gECuE3YgKjyAQN1t9B7xSIBADtXDB+hQgECm/rcBFFGAQIYhJjLpWIBAIhgOfw5ZgEBcBOKoIVmAQLYE5knhYIBAqNT+zihvgEAmocMuH4+AQOabLA1tkYBAozjO1hmUgEAXehlSwpaAQPyg9+GGqYBAbsjsx9eugECqbaaOUsGAQI8nzXdtwYBAjv9OsVPJgECWlkDtTNGAQATM4xNL2YBAjJCm1ZjZgECQuu0ZRtyAQG5+qFLx3oBAMfdywkThgEC8qJr6Se+AQBfHDnI884BA4FtP3T//gEAM+mOHPweBQFoecwA9D4FAlkytvTQfgUBt/lPgMyeBQEDiBqzbLoFA7SFB8ocxgUBNeQKMuzGBQD6e0pkxNIFA5RLHwdw2gUBkZpEchzmBQOCeb8lVj4FArzfxXlWXgUCQKm4m6KGBQFaO7exsqIFAhJebGUqvgUBEDbCQZriBQBLL3OF904FAhBZ9A7LygUDT7eZ9AgmCQIKITWHYGIJAaDzvttcggkCSmOKB0CWCQHboKu/QKIJAxrwKMaUwgkDm36JNQ4mCQD+u5B1EkYJA+iqTezyZgkAUAkI7VZmCQE5S9rMOoYJAJ+c+6zuhgkCS0fKZDKmCQCaId3w0qYJATtZwyAWxgkC8/y5Pr/mCQGZ1o415EYNASIt7/nkZg0BifkAIcyGDQLrwCXlzKYNAZttFeGoxg0CVltaAJFKDQO6O+rQoVoNACDbOuStag0A3ynHhSoODQBCiFx6W+INA2X5jPf9ohEDAg0Aw/nCEQBP696H6eIRAhbyuG2rZhEA28yuyauGEQKAGDYRj6YRAzEjlHDbxhEA+K7MUYvGEQJwhWCo3+YRAHpJW9ln5hEAE58YcLgGFQM39DPyKXoVAE3T7e6BhhUCWi6Z8jGKFQMHXHHigaYVALmd06JhxhUD09+nhtXOFQHIEtg2aeYVA0U7gtJeBhUCMOyD5JbmGQF5UTSAnwYZAdYEcBpEph0D0ITezkTGHQGIJ5F6KOYdAVGXvqltBh0DQVkpJikGHQBzLio3HsYdAUjqjyce5h0CiE9zxwMGHQIrtwhi8yYdA + U6vsr5viYUA2uAwZnGNiQMZtNYzMxW5AqbPSK6YCcEA+w2SRqbN1QATAHHdpU3ZALIFk7hfkfEB4Zd1mWVR+QCRpkOw3OoBAdgVPq6Qqg0BCukzXj8qDQG/A8Xzx8oZAushHUh1zh0DT7buZfQuKQIH07WGJe4pAmhliqekTjUBIIJRx9YONQLEihNwqDpBA1iYvx0BOkEDtqQGaceKRQFOEADBnMpJAfNJfj52qk0CwrfArozKUQMPmDoqzjpRADdfgJ98ylkA/1k4hz1qWQCRas/oPx5dAVlkh9P/ul0AIcIYCRnuZQKRxqg9mi5lAuYbrEIynmkA= - + - TBidRNJ9ckSRUzFF+f51RNIykUS8jW9FOgCKRDZQwUREjqJE/bkVR2aQ4kS+W4FEx+uNRKzos0RIzY1EXembRPnBWUXyaQRFpj50RI8sfkV3JY9EB3ONRPZGtERuw+BEVCmRRLzYCEWbPI1E1r+lRLSSwUSbaB5H/AyiRCdR2kQvF21Gym+HRWg4h0QPawNFMJbIRMAU20Y2GXZEDSJLRIl9ekTLv5REYnxdRGTznkVDjSlFa6d2RHpDmESoq3lE/YO3RM2spEVTn5FEUmk9Rs0OnURuDoFF8Wd3RAmYgUQFu4FEQLQIReUwlUR1ec1EWksLRepc0kSf1O5EPvQAR2SO+UQ8v/5Ey3OSRPUfykRJbxlFptxkR544o0TXU11GvS2DRKCuHkbxrFNEMKNbRMnOB0Zo2mREsDL5RNLGOURixFtFdT8IRU17i0T3hKFFbIyER2JWVEVAVm9Eb0qzRUSmwkRjK5tF4ZP8RS08m0QoSFFEQYVTRMqLHEVJzp9E+piXRjy/2EQ3bApFMsxwRECDi0WpiFZErJKZRP5qLEX1FpVEpPBiRD+RWUTobZBEUMamRJpxhkRtJ5BE1J+/RGCYrUU3zRNFrTsCRXhxr0XnVZtES6BaR60ZhkTKjM9Eplv+REv6QkVmcgdG9iyuRU05d0Rv18NEcBqPRF9AqkRKcBFGa/b+RGNyxkQJU4hEQ8jMRETBdEQZH1dEMZ8QRcHejEQ0+alE8ht/RM7an0RMHIlEOErARK7FLUX8Zu9E+OQARdn31ETCc0NEIfDcRYm/n0RG7+NEiF6hRAWTe0TvlihFZ6kYRfkOiERPcUZF9wuORGC5mUT+GJ9Egp++RK7sEkVAg4lEgsEaRXWYGUZsvhpFQAv7RTpXfUSf0NdElAJsRBe2lUTn6J5ENha4RMA/jUSwplJEcCOlRK1/e0T8xoxEKSvgRCP22kRcHJBERhgcRf/6hkQP/11FbHuyRELHn0THJaBEBjWGRIpZPkaWi9BEwcz+RvW9QUTgIqxEzbukRdhSq0U/O55EKpx7ROChQ0XQTlRG4lIrRdH1skTRT15E0r2ORJM/kUSiKVZE20xaRMjmu0QTE4JEYMJxRJTIL0WvR5RFmyRbRFiW1ET11KxEX9htRB11EkXCF4FEfwQqRYb+9UTV3aVGB8iCRdrDeURbjvVHU7vURoLv7UakmqlFhJuHRqvZ+0RY8N9EMIksRZb7e0Tg0rFE8SN+ROsveEXrKg5F9Gr3RcLkgkQde8FEOy2JROS0aEQ9GXpE1MTuRBMIjkWGy2xEIXQDRfulQ0Y67pxFvX4gRZvqO0XM0IBFxfynRIJ/T0TRX2tEK85HSUQKt0W76cVEGdP9RAxHSUgiTYRERVf2RKokn0b9x3ZE9l6gROoRm0T34dVE0dEbRd19akSWSqhFV1iJRbOtgkSmWLBEEkgfRd0JpkT24pBEQRXPRO3/U0XjLwNFU+c+RWE4c0V3iNpFBimbRMt44kQSvLFHMtScRpXK0kRmgJVE4jlrRDZCHkU7echFgqDGRKon4UR3WMpETxWBRMnbCUXezWxEYtbiRGWHWEZM81RFwv4QRkHbmkUDebRFEOaERGKscEQRmVZEEdRsRIHSj0QXi1VE0YQARcWxoEQ9RYhERTSCRHByqURX95hEx3eIReR6ikYgYjRG1FaTRWSfgEUiqvtF7reDRINd8EQVF7FErGIJRagaV0SOJYdE3v/bR0qk+kTFPdNG7ed+RNuA5kT/ZLFG14GTRTOzBUVepbNEDt6pRI6BfUTYgnpEphtaRZ35wUQO+ENFCQZ0RGA3J0W7rXBE2uaORPjadUQJvllElmEkRY+U0ETWZNpEy5d0RaE2lESbtmNGLquKRHFUCEariylFROhSRTP0m0TYtEFFm7PTRQAcxEVc3FxFvI2tRObNg0QkgYhE4fCHRLtBFkVPP+hE3tqHRZbua0ZOpq5ELnyWRa7E7USTHVlEGTHrREmQDkVR4M1FWnh2RZHsNkUP/75Ee+GHRD4ZdEgGuaxEeUjzR5kqf0ckomVGwHV2RdRdEUUMsKBEj8aKRanMgESfJPVEbR0dRrZ9OkUm9aNEHhvWRdQbrkSrLuFHQ3GvR4i0r0R6AmpHPG2tRpoH7EWD88VFLO/pRNmZN0XfSM9EfNcmRd+RcUR3MrpEt2iKRIXOaUTFf1hGnEtyRWmNuUQCthtF4cioRK9TxUdc0yBHwkDGRmw7BkWZeb1FxF35Rd3EDEXM0TRFu93YRLYyr0SEoNZHcMNRR/BT6UZJIBJG5DBBRfdWpUXNv2lFl93NRB6UmERgnY5Esx/CRbYVEEUam/hESckLR6yidEY1ykNGvkePRW3LUkV+p9FEupx0RMH/w0RRMLdEHu0JRxEqc0SWUENGvtwVRlcPsEREV0lFZ+iKRP9rxkRgZ59EJWImRvW6z0UvUHVFTs/FRHYAqERlsQBGDMCGRfWiPkWnlbBE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - fOCWiA3BckCmsFDXbcFyQIpM1TWpwnJAEPXC1zrDckCxlqbzpMRyQG7RSjPGxHJAUgDnpUPSckCGNEluZ9JyQKyjElfQ0nJAONCJsHXTckBeHaYJz99yQJzkhn+44HJAl5us8kzhckDQeB3rUOJyQGA/MiiP4nJAvnCzgsnxckAsWpLnfvJyQMNgSIG083JA3WimLKL0ckCAgDQawv9yQMFulsX3AHNATBy6jI0Bc0Dgc0HTzgJzQKahAOP6A3NA7N5d5AkSc0D9YLnLeRJzQIxeVxi9EnNAZsow+wUUc0Di4mD/TxRzQAyAP+p4H3NACo2scKQgc0AKf0+TOSFzQE5HJEQQI3NAyS9vh88kc0DK7DjGRjFzQLA+YCFaMXNALSlMqwkzc0CYlj/HojNzQLAu00zYM3NAnZvM8Pkzc0CuLPBiNzRzQHYaL5jiQHNAKCJ7qnhBc0A6uFkoJUJzQKx318x6RHNAeLsHmJxRc0D6Ph6Go1NzQK82R9eFVHNA5F9glIpgc0DkqEz3OGNzQC6gSYL8cXNA5JfaIFFyc0CSMLfSaXJzQHz+iWG4dHNAaN5zX0t1c0CscNloeYBzQI06onukgHNAoZiWfQ2Bc0B41iSOyIFzQK5kcUKHkHNA3HPysNSRc0CvvyNYTZJzQC2v1rlilHNA6TZzr/eUc0BU6P3oi5VzQLQc0Q25oHNAPHhnaVqic0BuPABA5qJzQPamtOIFpXNAFqKNvICxc0DqLVhctrNzQGvQ/okNtHNA1L3yoaG0c0Au6MTf+MBzQFwQ8LvQwnNAgeSZACfDc0AZV5fX19FzQOT4QfIz03NAlo6q0vbTc0C/hbA24tRzQAZ1SAQ54XNA9A3qBmjhc0DGNXsMSfFzQOznjpy38nNA7ushtDb0c0CyzZTyjvRzQGN/dohNAHRANsCmYuQAdEC06CQZeQF0QJehkX2lAXRAKsYyWooRdEBo7NT+cRJ0QIwmV3BME3RAZtOA5eMTdEADHYmBdxR0QN7hnr1JIHRAWrbVs40gdEBUoUn2tyF0QBj98yJUMHRA/op5o9MydEBi0pXWVEB0QDos0/bJQXRAEAEVA0pPdEAsdoP90FF0QIrvlkv3VHRA5YiKd4tVdEBuo82zuGB0QHCyHZAIYnRAUE6R6k1kdECGZaewInB0QNQumL1gcHRANTj9PkFxdEB6QxbfOnN0QBeLVFU4dXRA6XFegviAdEBFK3Y/ToF0QFqY0CezgXRAVEcSqBaQdEDmBA7fzqB0QJ33EpOKonRAgmCFZNGidECBSA91DaN0QFSRxBdmo3RAlPm5RGOldEAe8f5LCrB0QAryurnjwHRApJwgxXfBdEBs7jZM6cF0QKRLNsoMwnRAvgYuWhHDdEDVAGTBIsR0QIoprGJ5xHRAo6hIbLjEdEACjUs3+s50QDou5gc803RAGSGUkOLTdEA0R8R3z9R0QJnQt6Ei4XRAVnfLWDvhdED09VxZuOF0QCYb8O/+4XRADjW7uL/wdEC4l8L6GfJ0QBpARQiN83RAoOH2RHf0dEBAa2o4zwB1QDlDKPhhAXVABJ8afJoDdUCNy0agPRJ1QOgQU8cjFHVAHvIuKQgidUDRVnHg5jF1QARB0gnMNXVAdv9exLNBdUCEJXodXUN1QFRn6OQcUHVAOu5AhYFRdUB99zLXTFR1QIJ/kRB3VXVAJhs1EDlhdUB06rDk+m91QCqfJPJ2cnVAjIbMxo10dUDyLT0ieYF1QPRpvRSugXVAx8wQpqaDdUA1+XZLmoR1QPOp5Tq8kXVA/KHIt7ihdUDDuuucSqN1QOoev+gIq3VASwM8jX6vdUCgV0KvNLN1QJ4ZcX98s3VAqG3dy/jBdUB/LaMhzNN1QH4J1Mfl33VADJkG0Q/hdUArBvVXCOJ1QCo2bSxr8nVAvrzGKEkCdkAssZrqzwN2QEr92T0xE3ZALBNDoAwWdkDlLDV4kCR2QFaQ71hLK3ZA5hE+fh8xdkCezlVLnzR2QL1jW+sdQXZASGk1UHpEdkA0TXd5ylB2QDzE5AsSUXZAVPEtk81UdkAiXtJtHWF2QBpJZELbZHZAZVawtj50dkBTdyL8+Hp2QD0pv/xngnZA+tXc9bWwdkAPM0iRwrJ2QPj2BeUMtHZAaLHAtnXAdkAeRPs9wMB2QF7hyUzPznZAQyeD73zQdkBRdFDcwtB2QAFIZAPz4XZAZv6YnJHzdkAWn1O1MwJ3QILZHzABEndAeiexxg4id0CJbKXHcSJ3QHTMif8MNXdAeAJvSZ1Bd0AcKP1as0F3QIhdLEUbRXdAXqARcUpRd0CIvwykklF3QKYIOAltU3dA8OHo6ylVd0DwVA9YdFt3QNjhLlNJYXdAqtwkf49hd0DcYDT3OGJ3QDZYit6QY3dA6EvKDjlld0DgCCkenGt3QCGxtaEnb3dA5OTTRHiCd0B2BIFzfIN3QLKZsUwKkndAZk/Fb4iTd0DQh8vvTJR3QPzX/xubtHdAOiNRA+LQd0CcpMF3T/J3QJMpJTdPFXhASFGFKG8ieEA8O9ipjCN4QOTjjXt6MnhAflzS8gpCeED4Z4KHekV4QPR5zGHLUXhAhFCyOYhVeEDvtJMd+mB4QDaaYrK2YXhA2Bu7e7tieEAu2cWQW3R4QLJWWbGLdHhA/hjRiKSBeEDjp6qVmYR4QDQhug6ZkXhALElb9qaUeEC8AYQup6R4QEbqEL/NwHhAxNRvZvXBeEDuhdI4ttR4QPpAAmoC9HhAUqLrm4z1eEDgPpLumwV5QPjMsAVtE3lAUGw58yg4eUBE21cbgz15QI6Z3emLQnlAnZKiS/lCeUAV2TMyzVR5QCZDNq5Dc3lAYFhqqvmBeUDUGpqwwIN5QFbYxtbHi3lAcqCG3sCyeUCg0vzSQdR5QB7gmwDP1XlApxa1aVDkeUAw9VULl/B5QBIJXr74BXpA5vRPD90mekDa3FB1DDV6QNPP+54aRXpAHlnOVihVekBNrvhZOGV6QDKzaq2McnpAK/BjpwidekC8HChIYaJ6QN5j9LwMtnpAEojrAS3DekDSwlvSF8Z6QBPQuTpBznpAG6Jp6eLXekDamoBEeuR6QNYCP0817npArhbEMnYDe0CgS+HRKg57QJbag8hMFXtAVIHH6Fkle0DYzhHmHy17QCxVWrdSMHtA+imESXkye0CgqZOKxTN7QBS6PanXN3tA3K/+lF1Se0BM3bovIZV7QHKpDEh5xntAnu+MPjXTe0CmQ64qrdN7QP59jNg91HtAM3SYSUbie0CmRWSx/eN7QIMJfB4o7HtABAq4CfLse0AaifDjl/F7QKYBuTuM9XtAOVgiJ5EBfEBQT1m62gF8QPnGk8P5AXxATmpHZpkFfECk+JZ60RF8QLvz+d+nFXxApsVhWs1BfEBMqmme3FF8QEyr8h8OYnxAOpy7fL+yfED02gZsztV8QKVI9vFX4nxAakR+xBfyfEDDn57RV/J8QJxtiHEBAn1AXq9Dr0sCfUC0GLEkoxF9QFYTHPADEn1APmvO9UMSfUAweuEWKR19QCpof7M+In1ApAjqdZ4xfUCo6eMEhzx9QNnoybeVhX1AVNcapCfDfUA0oxMkauB9QKnyz2uR9X1Aij+6NoMCfkAU4iOAsxh+QCFODmg4H35AJhbafkIvfkB6VHgoilV+QN6bmFiTin5Axf72p+CQfkCAuc2IyN9+QD0V4Vu24H5AYmn21dTvfkBLFJDuUvR+QLQ40KlIEH9Alvv/GhQzf0CnmlgTajh/QJjieVOoPX9Ahu0s4ftCf0BIs83LZEx/QBSh3t24cX9AyD29l7SBf0Aml+FyoYN/QBCAJuBikX9Ajtw4a6qRf0BWbOHw3ZF/QNRb9pLjmX9Aqk6XRV+hf0ChxvBd0qF/QCz1+X9WsX9Ass/bYpbdf0AgKYVz1eJ/QH76eFUu6H9ARun+PIftf0Bgt9ik0PJ/QOuHjCoy+H9AeuyJteo3gEDhpI/iKjyAQLgsEt/YPoBAjIYTU4NBgEDMeLgA9UiAQP53qTLnUIBA3VfvfBRRgEC4mem/5ViAQNYPiOsOWYBAaEUptylvgEDrQ2VkKneAQNj56pUdg4BAcnbJdx6PgEDmkVXIbJGAQDNkxbIZlIBAk5wDj8WWgEBY4reVbpmAQBXd7CKGqYBAMU0h7zbBgEDSAmuVUsGAQGr7scpTyYBA/HJi/EzRgEBGCvGIStmAQKKlLvGY2YBAHHJwUUbcgEAxCTvWQ+GAQKasTev26IBAzfLUDkzvgEBQQytYPfOAQEQgqq0//4BAiZgbLT8HgUAYnpJBPQ+BQKkaZEg0H4FA5BAO9zQngUCezB3X2y6BQAcSZh6IMYFA4TolrrkxgUD0ANDrDDSBQFflnu8xNIFAkp/Grbw2gUCYzEbE3DaBQNvxCOGIOYFAfFJwgrs5gUDO8gP9LzyBQKjQg6PdPoFAkx3calWPgUDyt7auVZeBQDMg7UPooYFA2CBpyWyogUDcs7E47amBQAJG/tVJr4FAiMqZSn7RgUBw4nrffNOBQOH9CvoCCYJAfPBERtgYgkBI2HHu1iCCQMo9YDTQJYJAXUAmPdIogkB8I8TRzzCCQBmP11xDiYJAdIBWSESRgkBEdzqJPJmCQOLohTpVmYJAHCY3tQ6hgkDt2L1fO6GCQKwude4NqYJAnKOQ7zSpgkDcwbm7BrGCQD/g9nav+YJA8o3TOLsNg0Atr3C+eRGDQM4ERpJ6GYNAbH0fX3Mhg0DjQJDNcimDQJT7yfdqMYNAunIMlSVSg0BZU+aoKVaDQIaxHNMqWoNAAjU777ptg0CZ3kjd5IGDQMnUH9SU+INAqyavmM1dhEBELMpk/2iEQJDCKp/+cIRAQn8eO/d4hEDiE8RgatmEQArPM5xq4YRAEGdqVmPphECS1l5TNfGEQPJS2txj8YRAAM08QDf5hEAzhCywWfmEQAZk4N0wAYVAkx9Z7lwBhUB8LNZ3il6FQMb+5XCgYYVA7oWtC6BphUCIKKGLmXGFQAB1YM+0c4VAXjRScJd5hUDOA/xvkoGFQOgiR0gnuYZAZZUtP5Eph0DE2SKkkDGHQPyRB1eKOYdAFimwSFxBh0Bz+1YNi0GHQFKt+6FnjodAIMgZi8exh0BaaOjpxrmHQDbotUzAwYdA0M9m1AHih0A= + KBZXds7jZUBGCTcNzmJoQIGrr+J9g29A3OW/dP8icUDj3lkiQjJ1QNxDnMhXNHhAADAWDZrCeED5lFizr8R7QACO8mDy039ADU8tcpmagECcd4tnxWKCQGR0Q02FAoNA4DqEDj6rhkA= - + - byGlRBkVHkUxOVxEhs9sRZIGeUT1VnJE7aQGR35zgkQj1HBEeQGiRD3GCEVVeZdEz7d3RNEyZEWdi+pE4ZyIRUmHW0T1qJBEGXpzRFOarkSeS5JE8Cl7RM25pET1FhJHiUhXROqnV0SI5EJG0AqxRYg1iUShf7tEKUXmRN7j5kZbkJVEpRWZRQPxCkVCyFxEkRByRH7Qe0R+ho9Edok8RLM3hUQ0VO9E3CKORTJ+gkRpvwJGURl6RHd3dkVwEZVEPOSmRHbGCEWru6BEcCKKRK4KiURcaLFESsHoRAaX+UYRLuFEtWQhRT9ikESz1edEcoZdREhTR0cvB7REXgVlRv8PTEQxjwdGL+DQRT2LRkTYXAtFKcuBRBf5Z0V/xghFUkBhRJBqj0TrbYJFclVrRxxfNkUjPsBFUGGTROIxlUUxrgVGHo5PRJZyZkTrrnREXFDuRETDRESwPW1E0d44REiemkY6tn1Ew9S0RL96UkSFZT5FRydvRP17ZUT4RHBE6IuLRGICI0WcqIxE4EqARFFlZ0RHQkxEdYdVRCdikERcfcxEL37tRLN+kkXJigFFxMnaRLKvp0Um/lVE8VQ+Rye/ukTVuuhEgOYQRTp7zEU5iZJE4ReeRX/foEQ0ikdE3vXsRVBSu0RE9VpELtqzRM4gs0QqNJxEXyfmRPhvWkRJyHlECv/mRHxXiUSVY1pExZ8xRc3lc0SeoYJEeJehRDpKl0QhgUZEVohrRBkVFUWxSW5FruZdRII/gETIwdJFzweARL/KcET2Fp1EjXl4RFm6cUSfux9FAtpoRN/0h0TiGCxFVkRhREKwfETW2zREFC91RLxRgERKH8hEU+nLRJ05gUShnOlE6j1QRpjw2USD6MJFaekhRXZVJkX5eJhEAizrRLbsrETXVlZEjpWLRNVGXESwG9ZEInbnRC3j9ETfuHtEvXKFRF1iIEXoHEtEcpxtRQwb1UTRhYdE7AHsRMPm+EVBD/xEXizXRg9FmkQmC3FFZ2Z4RU4PXEQ6ByNFA+eCRpuKkUTXTSZF7uiqRGyHeESlzp1E2xBmRGvDDEV6EKxFPhtGRFOyf0S6+QRF+uBlRD6baURvfZtE3nEIRa+ZnURSq41GAU9bRTLdXUQZ5eVHQWjTRrGFeUUAkcxGgTNoRSqAi0a1bMlEfHG/RLssvkTMildERBI0Rfn0ZEQ4oBFFi/+cRENGhUQI/YRFxhHXRNJPAUbPE45EoMphRDHUn0RUL3VEseqIRDFDpETTba1E8d5nRVZ8nkTwo05Eu53IRFOjNUYy1plFe8IcRU582EQ1NlJFhki4RKrbH0VDmkNJqfVJRXseUEhmjLdEKNekRiP+gUS4KftEhhKSRLtT80S3IYBFS62uRTtEkETjbENEOVuTRFXMbUSFbIhEQc2IRG7bkUXPuNREJX6HRPYIAkX57o9E8ZKVRc//y0UZIalEcdcLRdh7kUR2fJFEk+6KRBwry0eZweBG6kMRRfIUaETVOY5E2A53RFAjkUQccbxFpdSVRLPAokQM2oZEnyqRRLbQgUT1yQlFDpteRHjVwETOKy5GenUjRTspxUWCEEBFN/euReMfTETQNPVEUqiqRPVnoUSrDLBEMdnARPafoUReXnhE2EuSRFBjw0SUI3VE/yxXRH2/tEU3sZpGIeWURPaNVkZi1ulE/UWlRa/ZmEU8kX9EFw/URXO4okSmCcJES8XlRO8kjUSlitxH+e3VRESABkfnHxhFWVG4RlAeXkSsaYZE3C9ARRiM/USC4ZlEtmxzRLXLYkQPGBdFxAmKRBIvGEUkGbtE9WJNRLO+L0Rw54NEtMaFREjNhERIBldEo71dROlVRkRnTEpEOypfRGoaU0QkNW5EtmydRA856UQFTbxElSEuREg5j0Qs0ptFLJ2BRA5WekTCuTZG3OuYRHyQ6kWmJ11Fa09+RR9W9kRuRRNFs4bdRft7W0bh3/1FjMMyRdLZSUSiQD5EO+yJRKENQEVXNH1EZs5lRHm/80R52DlF/IaDRsKlpEQBW5hF7BYMRd5/gESNR11EYNxWRTDqvEUTya9F7psjRfxkmEQ9dMtEGAN1RFNFakjRZONH7PpyR9ixQEb15YBF2ywZRaKha0VjWJFEu07sRHAGqEQyVQpGIyIeRd2rqEQGuMxFp4fPRMOa3Eda6pxHs+ZZRDwfi0QSC1VH2R1NRF6OkUYMeHRF4/BhRASuAUX9ZGBEE5p8RS1ca0TS2QFFkBjkRHDavkTjyxZFzZynRP1NtkSu0JlEY984RgrzhkUcE4xEgXxmRSsiX0R91cVHnaBERzvM0kZVNyJFWxupRcF160VPMwlFlqcoRTmrbEQ2Z6REK+Y+RF6w1EeuXk5HmrnnRrZLD0ZfyApF/tzERXhbdUXh725EEI6jRDaZbkRQu5NEuRBMRPG310UYchFFeckXRXLkDkflsXFGkoUpRh7Gb0UXV4BFcLO4RLDknETTGrVEAVeIROO8yESu9wJHRp5fRpjVJUZJv51E97FmRUQmtUSL25VEyawhRksiy0WHzoFFWL+YRIyEskR9f61EnbsORqFNhUVwXCtFf5mMRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - k7Q7xnjAckBCn3bkCsFyQKKG6GRvwXJAdiu4fTzDckCPjmXIxMRyQJWX2c9bxXJArE8d8EPSckBAj9lYbdJyQN7n7q1103JAfsBOONHfckBSOFFgueByQB1ROUtP4XJA2Ms3l1DickD8ANO2kOJyQAtt/lIk43JAyscruMnxckBMtrdre/JyQISOpmXM8nJAH7maTrfzckC+xi24wf9yQLpEM4hmAHNA9VkvmPgAc0DKPgVvTAFzQAYWSWyNAXNA5PMu/c8Cc0AuZVPh+gNzQFSdFCgJEnNA3MFEQ7wSc0A8408M+hNzQDZPnvR5H3NAqrq+3aQgc0DPU0yJOSFzQLErAMdjIXNAJQCUnXkic0CNnZn5yiJzQA68Mj/PJHNAPLFX9EYxc0D6HhmuVzFzQKgoU2YnMnNAK42iBA0zc0DUtVwS1jNzQFRFLqw3NHNA/f3Nf+RAc0DMv3J1eEFzQH26aaZ6RHNACHbdrY1Rc0BDRIDrQ1NzQMZriWqjU3NAAkiPUnhUc0AK2cbYhlRzQLR4PryKYHNA4AuXGTxjc0DaNcfssGNzQGIgwJz7cXNA8U+tAlJyc0Bm/t2GZHJzQERtKEa2dHNAdiwBdUx1c0DEI8LyeIBzQGARxz+jgHNAv2OLoQ2Bc0DwjRYSyYFzQOj7ny+kgnNA0qGuKQ+Ec0Do0z+eh5BzQN3SnoFNknNAfRTE7GOUc0Bxk5Of95RzQAyejg65oHNAbK7RdU+hc0DMnsCtW6JzQHRec5uPonNArj7FcQSlc0CG9BBzNbFzQLjGloZ9sXNAikLqiLezc0CbFqb5DLRzQBXkp0D5wHNAjr7vmtDCc0D3TjfIJsNzQFUOubLY0XNAGH/w0jTTc0DaJKtrU9NzQJTJonL203NArii6h+LUc0BwtfezouBzQJAVnig54XNAgBsGRGPhc0AICYvteeJzQCW7R6Hw5HNA8mhZdTb0c0Bh8e+3TgB0QK7xotvjAHRANCcC1HgBdEDkd9P6pQF0QOAZuIWJEXRAYMCdCk0TdECPMEwwdxR0QMKSO/dJIHRACjsK3I8gdEByXmWquSF0QAmEPGVUMHRAlpE5atYydEDC1iWjyEF0QGf6M6n3VHRAMLwzioxVdED2N1ZquGB0QEAHVPIHYnRA8UlnVhJkdED+v9ovUGR0QLCfCawicHRAg6fQSUFxdEDuty0nF3N0QG1n+WQ7c3RAc28uYaN0dEABynelN3V0QGu1oIj4gHRAOSnwUk6BdEA4ASDqFZB0QN7REapqkHRAsNeiHTihdECor4jYuKJ0QC5+niXSonRA1Bysog6jdEDmey/ECbB0QF53w7LesnRAZIcTPOLAdECA7J25eMF0QCDR+VbqwXRAdK1SBw7CdEBsofsgu8J0QGJw/goRw3RAbMlpgrfEdEBAXcad/c50QCT6PI/i03RADjPSAHjUdEDOiN11ztR0QASMhSW54XRAobVRzP7hdEBuHQtEROJ0QNYZduhP5XRAZ43pA43zdECIiHRKefR0QJRZFtPPAHVAuoyuO2QBdUDd+Y1DmRB1QM5LxFc7EnVAmm/c0SMUdUDWRXhE6DF1QMpBBvvLNXVAhvbVNPpPdUBzLh4VTlR1QMIFgYN3VXVASdohTvZfdUB78Vv7DWB1QFytJcKhYHVAKu50hjdhdUBOcAAXeHJ1QBZD8+uNdHVAB7R/YHeBdUAek6AOrYF1QGPy8jCmg3VACBqfnJqEdUDqFW0QjZB1QFdZaSW8kXVA8O6w5pOgdUBEw2g4t6F1QEow6DtJo3VAxvFJDX6vdUBOfla8NrN1QAgDaUx7s3VAQtLf0szAdUCAAr6AYsF1QDwfGRL4wXVAjffyJcvTdUDGF+P84991QIEgpyAN4XVAJEQwFgjidUCqD+Owa/J1QIQEbsCg9HVAqr6ghEgCdkA56QvqzwN2QM5qOnBNFHZA5vlX5gwWdkCTm+v3jyR2QFKqyTlMK3ZAgIwmox8xdkC+9CUaHkF2QLYCla95RHZANJsohv1OdkAqYDksy1B2QC6up+MQUXZAeNS4oYZUdkA4JZJ/zVR2QFyWcLQPYXZAAuSdNLZhdkCFeiumTWJ2QI7DF35QY3ZAKMLRTttkdkB0s0ngP3R2QLRgwEtmgnZAOUEvpZGDdkC4j8zzdpN2QIxtPJK9k3ZA2tkgtriwdkBSk2F3wbJ2QEQJ23gNtHZABrzcB8/OdkBbT23I9OF2QP6EIJGU83ZAVKlSzDMCd0DeY8nTARJ3QOAmvoGQE3dAVIGfWQ4id0BgTYY0DTV3QG77LgedQXdA0G6mHhtFd0ASntmPS1F3QIRP7CqTUXdAQA35D2xTd0CGODGuKVV3QG7Pz9tHYXdAOP+M845hd0BL1LWxOWJ3QGS4KduPY3dAOaiK2CZvd0DWE7BoJ393QLbGLbF5gndA7NMDKXyDd0BLRRT0CJJ3QDgh0YmKk3dAeB2fskuUd0CeRmlCuqJ3QLfxzt+ZtHdAgfPW8OHQd0AWEZY5UPJ3QPajxNptInhAlDwdKIgjeEDagOnZDkJ4QBSCOzN6RXhAeoVRv8pReEDElVYyiFV4QJZoDt/5YHhAyGa+TbhheECOsZIRumJ4QK5nNRYoY3hAtNZbyjF0eECwuu2ai3R4QLN39vqkgXhAjdItlJmEeEAt3b1UUI94QGPPHC+WkXhAVBT1jaeUeEAqVUzXzMB4QH7ab/a31HhApjGwWQL0eEDUXDNajPV4QB4kVPyZBXlA8hif2Sc4eUDnsl7gjEJ5QF34m4/4QnlAypMGVcxUeUDyjMZM6WB5QOjzse3YZHlAHrysUMKDeUB0K+hnyIt5QHaYTwnAsnlAi6AIRNDCeUCIzs208Mt5QDjuoaZC1HlACB+IiczVeUAXkMVvT+R5QNTs/JX5BXpARGrLUjgjekDo5TAzDDV6QNeIRKkaRXpAFH3irihVekBVVx/FjXJ6QF9/XfUGnXpA9kBJI1qiekB+lPNzDbZ6QPh8nEYZxnpAe0NUpULOekBeCiHG0tN6QB0O38Th13pAN8HvnjbuekA7Pf6aKQ57QNRwg/9MFXtAbhkvMFsle0Cu6dGEIS17QOAx+N1SMHtAtK4g7Xoye0DKZOnQwzN7QLyKvQ9bUntAuUoa7iKVe0DYhoirecZ7QIaxadDF0XtA53dHrDXTe0DSONjbrtN7QGJc5f1H4ntA6JehyAHke0AFkHV+J+x7QA9rGyqM9XtAa5DLEJIBfECJATZr2gF8QKEhNY35AXxAmAHz1pkFfEDMEQnPjBF8QKyziknREXxANqWg1s1BfEDxvFmKDGJ8QM6Ky3G/snxAmKq7KsvVfEAgrp8dWOJ8QLoElM0X8nxAaLZuvFbyfEBMkB3aAAJ9QNKZ+/1LAn1AMOn5IEUSfUAIvuCXKB19QC5KPYQ8In1AV7gFL9kifUAEuRqcnzF9QFqmV5+WhX1AopNMdSzDfUCeCj2ga+B9QLtFZfzW4n1AnOJPhpH1fUD4IzVIWwB+QKEk/qg2H35AwIBNKIxVfkBuQg71i7B+QK2L1IlR9H5AxDY5dRAzf0CnHIzQUDh/QOzBbM+3cX9AngFSkrOBf0De2fEApYN/QBoOYAhjkX9AVlZYCqyRf0CNvrTn3ZF/QOqRQKflmX9AbA1HnV6hf0CnJX9t06F/QGXcCmVWsX9AFPV4QJfdf0B8CZ7L1eJ/QMi+g6cu6H9AsNfdAYftf0Di3x+wz/J/QIFcl8Yp+H9AWrI+Vf04gEB1r24HKzyAQCPNJ1zXPoBAOqlHbXhBgECik62a8EiAQPr3xPjlUIBALctDEhVRgEBWNV1xDlmAQEaGIDsob4BA1jd1Mx6DgEBQfvvS+4qAQKLMtggfj4BAfEvsxGyRgEA/COkFGpSAQCrTQCDFloBAVlznUmuZgEDKZIksh6mAQM5gy5hSwYBA0vKJ4lPJgECyKZGIK9GAQMQiaElN0YBABFhdykrZgEBIc9KlddmAQPbF/nOZ2YBAKkgOokXcgEAy3JRg796AQGXm5ClF4YBAtmUacFjhgEBDbE1O9uiAQHA4d5NE6YBANAXDFEvvgECKsCsmPPOAQOQ1tRRA/4BANw/dvj8HgUD0+CtLPA+BQIQi4dM0H4FAhLjOsDYngUAeplXm2y6BQIs+X1iIMYFAFzCtNbsxgUCpFwBDDzSBQJ7sY3YxNIFAETNWs9s2gUBdmmj2hjmBQNVyRPgtPIFAnmcdckF8gUCJVM3PVY+BQOoCYornoYFABjlW3WyogUAgNnc1Sq+BQOSbJ/1ssIFAWbN6oX3RgUBG3FA6f9OBQLmt6Bco1IFAwtX0zAAJgkA/My3QABGCQMJv+mrYGIJAzLTJ19YggkA2WyFV0SiCQPIul+amMIJAvLdSctAwgkBd9OVvQ4mCQNJqol9EkYJAzmKToj2ZgkAO/PveVZmCQJQgFqMOoYJAbhRTlzqhgkDQR55fD6mCQBAln0Q0qYJAUp4BvjSxgkCD5W9QsPmCQBbns2e8DYNApMCwoXkRg0Dx32VDehmDQKKNxnhzIYNAyb5GWY4hg0CF1LyucimDQK5HcpNrMYNA0nvhJSVSg0CbnkVmxFWDQHq2LUwoVoNAiors9Ctag0Ds4dN5u22DQA2T7W3jgYNAvaZYAUHSg0C673OLlfiDQFwob2j/aIRA3keL5/1whEASSZQS+XiEQDbD+V5q2YRA0vPiIGrhhEA72yM4Y+mEQJz/e2A28YRAvq/f4WLxhECqsobuNfmEQCuLnkBa+YRAT7AizC4BhUDHSNYa+w2FQAArXXK2LoVA3P1PTLwyhUD83MWJiV6FQGYDH6egYYVANFHMwqBphUBK0thzmXGFQE7kc+q0c4VA0L+2FJl5hUBSFiFqJ7mGQBa0Na4lwYZACOpQUJEph0A8u0kjkTGHQKKMNnGLOYdA65QMv4tBh0AY0x6Ba46HQKRzHMdtkodAtEUpBsixh0CENsAgybmHQGQ2FyfAwYdAyiLjrRnmh0DCfqIPGuqHQA== + KBZXds7jZUCYvfARosNsQGS4z0t+BG1A7mf6OVTSc0BU5elWwvJzQK/xM6KFQ3pAFSlCsQLje0DR+jXTCLR/QB71RJTY+YFAIlB7YXzag0Cv+cUsGrKEQE9WIAfeAodAuAxCQOmSiUAJqQD/VQOLQH846E9Vm4xA0NSmDsILjkCcReSj5k2QQH/tJdoRmpBA5cckcAeqkUCWcPisQi6SQGXfG4VdbpNAONJ0AH9SlEDCCAyBmW6VQE3ntQGlbpVAMf2ICdvylkAfMvx81W6XQHp/ydX7TphAA0jPhAvzmECPlArXIWuZQBhdEIYxD5pAc6rd3lfvmkAv4OJYYqObQIotsLGIg5xAeGIjJYP/nEDUHYJPtIeeQI/l9fezk55AdlAqkfINoEBTNGRl8hOgQAGSk/oK2KBAeCxNNAgWoUAl07NgG4ahQANutp0g4KFAsBQdyjNQokD1+J+hO6KiQDufvcpG3qJAgINAok4wo0AtKqfOYaCjQKTEYAhf3qNAlk9KDHqgpEDbPp/Mf6CkQCHa6gyNLqVAiVOXyp2gpUDyCqk2q0CmQEnfEtXIgqZAfUwSoMMKp0BtIDM72TCnQAiOewnc1KdAGzUrOfcwqED6GGUN95aoQA3AFD0S86hAqC1dCxWXqUDPxPMBRiuqQDNvxnQtYapA8wUUaFbZqkDig75yS2GrQBj+/DZs26tABsXe2FsPrECRBkhCdNmsQD325QWC3axAtUdoqISHrUBhNwZskoutQNnRv6WP+a1AD0z+abCLrkA= - + - GNyHROyrc0SjhRtFahiDRUXZjUQEY8dELzUBR3nRh0QMznhEfy7lRHINwUTXAopENklQRWvBCkXVIJVEWRRCRTDYfEQjFHREotyrREwQAUW6nJpEPEsPRRNbpkRt7WZE4/62RBXEC0cSHK1E374iRgSjjkWf4btEXmYFRf0650b2oJZE0iKORCALqkRd3YhFrVyvRK3Gn0QFB09E5BqhRNTGV0QQrbpEYSTARON3nUXsUxVGnVo8RCFjlkRar5NFe8apRAA2v0RPDq9E0/rSRNGFd0RRnFVEGJaHROK7mUTT9YhEy905RTVr2ka7Us9EfRILRTeGm0RVt7BEfeuORGw9QEVyPzFHVJmYRMsHd0ab5QBGbbelRFYk8kXHHnFEedIrRQBubURbtodEUUJgRWHN3ERRgP9E6z2HRUFLbkcuEypFvyuYRZCVkUSjW7lExkGWRf86e0RwHPpF8Ut6RDK9aEQIV01EMrQJRfkOrUSbuJZETH6QRsh09ESzIZBEQ4YzRVZCVETskKxEfk2dRFKAFUWA5ZxE9tvCRP5WZ0QMEZVELl4VRWR/jEUF9SlF5gBcRCqwxURxe85F8yEyRyZBckQPSBFF+3p0RC2MwUREjC1FyDiyRVao0kUjyrVEl1GJRPGwXETCUQRG+mmaRBhtvUSOa1BEYWmLRBrsq0TenqpEnLCDRMKxXUQDYtlECC4LRb/xwETmBqdExNBuRLhuykTxZBhF4eGpRep+NEThRdxEDurFRVQHfETXdXxEreXhRGZccEQt4KJEQdUaRS93eERxvBRFOdqgRCtNbkR34r5EwFhKRIpUY0Tdk1NEO+c6Rb9k8ESgyUNG4wu1RHQGqEVOatdEDTYYRbtKm0ToLqRER4hLRPALxUTkgalENHelRAoFhURlTQFF346eRHJ4jETRHOdEUomGRP8RlETmT5xEHyMjRdiw0ERkm3VEV++TRWmnuERoaNZEyV+mRO/rwEUTEZJETQrlRmtGo0W8q4BFXmi+RKvrmUSFPzBFInaBREyLWUaSNWNEAq9hRBf7U0SGf5JEdVItRTptoETSDohEn46oRMg/Z0TJQf1ETzyBRKIgNkXDRbRFgFdiRd97S0Q3HJVEjJa4ROahc0biVH9EJrttRTJJ5UdLrddGZlPURtpet0XkcpFGm0aPRPjECUWKb3VEnf46RcHiQkSQZQZFJH54RTIxf0SrA69EuDEiRrOnpURYc9VE76WyRFoBaETUDm5EjWehRPp5z0TvjG5FW/isRCY7skRg+TFG6c2vRXMi4kRAAzRF/FpqRZqDd0Tir3FEAVetRDBXQEnqPhxFxXVJSMdnlURqQLtE5LuiRvONAUWoT2JFECSARc7i4UUXzKVEDFTMRBpAX0TJtJREvJCrRTyJVEQiw3xElzc5RWSqnETJMFNFW5NlROBDhUQssNNFAKniRCKw40SY9VhEDtmtRNB40keI4c1GGgUIRZRnAEWcyw1FgNlQRN3mp0XT4QFFE9R1RM4YXUT9RH5E0V8GRRuXxURvqilGWoIvRW1n2UU7xlZF71JQRTagekQYfWdEwzUoRRYwvUR6NtdEfjDLRMz48ERo1tpE/0CBRNJhUESqvYZGu+LKRDbGQUZ6iMlEB7+iRRGGlEQORq1FqTztRRp9hESFF+dEDA6URMI250cl1NNEjIoAR+FGAUWiALhGm41QRXP3MUVleOdEshRXREfcqkTGMklF3riNRNoWWEW45IZEhaS6RCdLVETWFJ5EzofWRPv0VkSM9X5El05ERWur6kTh79dFBfnmRPFxrkQjijxGjJ6KRIfC7EVFvwJFnxFbRVkv1UTeMQRFaOvVRSbe/0Z7mJBGSybfRbpKIUUlRvlEyjs4RMqZG0XgPsREik+ERGiO0EQ7bidFFu2SRsdZtEWPEwlFDwpSRBlWZ0TAREJF8jLnRVcuvUUsS+1E8wKBRMWB6kRm+YRIKz8GSJaq20QM8ZBHiRVlRpoEvUQzD3dFB29QRRJgWESE+LZFTy6aREbhk0Q6SKREfIepRJjsdETRki1GG7stRfUv4kTFjs9FzR2sRK2Nwke8FqVH277QRKLe9ESdZz9HqtyKRtx/qUVl7A9FLU9AREiynEWQoShFlIL0RNgYDEWVLntEx5rbRPXutEQuyrtE8AV3RPQVXUSgJ0tGGOiYRSZXM0WeN6xEWHxzRMN0GEgNmaVH+9EyR/32IkWTmNFF7ZM2RsRQKUWSpIlFcal2RM6bgETU3JtEqI8TSOGjl0d4YipHGhsGRQ5NPkabKJZFvN3DRfEAY0REC4FFGbOPRJdDCkXgfqBEaiaXRAdXwURBG9xFkUQSRZQB7kRGWS9H+KynRlr/UEbI8ItFuIuVRbchtERkVcdEKcawRDAIsETF/LlEgweDRI+mwUSmChZHEwGKRnXpNUZ9XaZEAzeGRWxzg0RDdI1E9mJTRl9w9kUbsnVFEZ0dRYxK6ERo2HZEIKr8RbYth0WP+CdFh2cvRfHzREQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - SFEjkg3BckDVzicZbsFyQO5jGXZQwnJARENhQafCckBIFpyB5MJyQNqVSzo8w3JAvM84gsPEckAK6YN9WsVyQDAcSa5ZznJAaE+/oUPSckACt9PYddNyQFf1gifM03JA6ioMqGHUckBwZeBAz99yQOpNtTm54HJALEpEwEzhckD4ynXsUOJyQJWs6EGQ4nJAfDVwtSTjckDdEtjY4+RyQBcvjpTC73JAKtG18MnxckCStE0wt/NyQAgWMwCk9HJARGdKjML/ckB+YFqV+QBzQARYW/BKAXNAiCHQlowBc0AlN/zUzwJzQDzF6wD7A3NA6mWzkY8Ec0DkeQlfCRJzQMb4YeO8EnNAW25lmAcUc0DdRjxaTRRzQE0JtKJ5H3NAlMiSEaQgc0C2VRBOOSFzQGQURDpnIXNATvakUnoic0CcODnZyiJzQL/piFHPJHNAHO8vz0cxc0Dr1K7mWjFzQDIQPGv8MnNAZjBPG6Qzc0AsZGaf1zNzQMDvL3w2NHNASgHJ8ts0c0Ddvc84Q0BzQNW4uP7iQHNAHY3oUnlBc0CqhpLzukJzQPICqZ16RHNAUCWT9JtRc0CGbSqRQlNzQENGIBijU3NABrOkGYRUc0AaEZyDjmBzQHaMeYg5Y3NA/GTm1fpxc0Bspa4lUHJzQEt1bn2RcnNAUVxGT7l0c0CEAaBuS3VzQOZ14AF5gHNAzo96WqSAc0BCC3WVDYFzQB427zPHgXNApKDhnV6Cc0AKeXFipoJzQLJUwX2HkHNAuA7vSE2Sc0AATPkyYpRzQBurKfn3lHNAvov0Go2Vc0CuuqX4uKBzQLwEr63joHNA+pV5xk6hc0A+hSx0dKFzQGwMeZdaonNAWparDwWlc0B4mrKp07BzQJasWPR+sXNAH10kcbezc0CPmBtvDLRzQJzsQGKhtHNA4GiWMvrAc0DGFmrlz8JzQGSFNPkmw3NALuYcLtjRc0D327X/yNJzQKgYivMz03NAKMZqp+LUc0DKxrgXOeFzQJsPgZ5l4XNAJIAtBeXhc0Bc3BmV8eRzQBFRySy38nNAViqGtzf0c0DoxaJ0UAB0QC8/ULd4AXRAEJZ3F6gBdEA90q6xixF0QMYG9lJvEnRA52uJ3E0TdEB46fkguSF0QKxgtQ26JHRAGlIHIlQwdECHhgOBujJ0QAGLsUfaMnRAmLgdACRBdECUnnHcyUF0QJ6Px8N5Q3RADKjWxvZUdEA0sqA5jFV0QAUdc6e4YHRAeI0EKglidEAstepbT2R0QOYIgF4icHRAjBm5R0FxdECs07ZvOXN0QHylHbqhdHRAxmJLfDd1dEDmzcnJ+IB0QL5ilp9OgXRAUGzFFBeQdEDS/Wz3aZB0QO4/mlnRoHRAEkqUVzehdEBcHZcsu6J0QNUXKvnRonRAVsirIBCjdEDi3TqiY6V0QPoquFQJsHRAzdEPP+PAdEAm7baLeMF0QFnwVYsOwnRAYRIAxSLEdEAPsyicecR0QOrCO4q4xHRAszs0szzTdECi7AgpztR0QDrGtYe44HRA4iPudbjhdEDYC/Wj/uF0QN4pFVlP5XRAkGMhE43zdED4z6YJzwB1QO6DkudjAXVAZNoQH5sDdUDEi0K0OhJ1QOYYRncjFHVAMISyYcw1dUALFM19s0F1QLx/ChiBUXVAId2knFBUdUAKWEq/d1V1QAbJRVYKYHVAo208zzhhdUBpsVNodnJ1QChCYrWNdHVA/G5G7XmBdUDaOajvrYF1QKgTRemmg3VAGr9+fJuEdUDZXIhpjJB1QCm0AKO7kXVAWQPTFpagdUCgJj7atqF1QIZ4+KlJo3VAGommMHyzdUArAyCv+MF1QKYYjOPM03VAMtkIxA/hdUAJ3j5+COJ1QCat0lE55XVA1iK//SjvdUC2ek5yavJ1QMrOn7pIAnZA5l7I79ADdkBYrFs8TBR2QGQQ1YgMFnZAHDFMF5AkdkDYhGLPSyt2QC6DFZofMXZA0K29UZczdkD2Wc1bnTR2QC6JWDrjQHZAoI3UqR1BdkCo3lwhekR2QHCqnh/KUHZAA9JZdRFRdkDlEGvazVR2QIxvSMPaZHZAj9trxbBydkChu6Xv93p2QJ9UxPBRg3ZARo5+s5GDdkA8Un00vZN2QHMNwaR1r3ZAdq36Q8GydkCQLmrnDbR2QPoAjw4bxHZAEJ4CFc7OdkBACylI8+F2QHSuDiOS83ZAdyQEaDMCd0A8N8yzARJ3QBDzfDPrEndAK1J4HfIad0AKXVIQDiJ3QJHuBLBzIndA0NyXhrokd0AeNB0VDTV3QKSqLp+dQXdAGhrSXxtFd0Ba+2YeS1F3QBLk2bqSUXdASGu9LGtTd0B+G+eQKlV3QHJglHSPYXdAbjakeJJjd0Ab4kEnKG93QDg6KFp4gndAjprK5XuDd0DYkizDipN3QBmelKzi0HdA/uS6143Wd0BYADrl6/B3QKRSHs1R8ndASiolcE4VeECnkEMRbyJ4QKDvEreLI3hAnhjyjaUkeECYERpxC0J4QOVyM3Z6RXhAlXe42spReEDisTW88FN4QHOktKiHVXhAuhr3vfpgeEDNQfgOt2F4QPyBwyDAcnhAhLhYmhZ0eEB7DQSIRXR4QIATy3ZddHhACJ3frYt0eEBS7KHwxnR4QBRvQSrWdHhAVRwcoqOBeEBWyuKimYR4QMcP+3aakXhAyb54eaeUeEAelD3OqKR4QBx2fEa8pHhAoHetJc3AeEAT5aOu9cF4QPovUsQGxXhAze5fR9fOeEBzfmu7t9R4QCiclrMC9HhAipfX4Iz1eEAEhdIGDwR5QG+LasmaBXlALrjpMvhCeUAo5qYdzVR5QMjundbqYHlAuALXDNpkeUBwBDcGQ3N5QFZovZvAg3lAtpWN4cCyeUAA1kl1z8J5QBCZ445C1HlAMt3OtszVeUAvvktyT+R5QGINXBj6BXpAfW82dgw1ekA2Dc/EGkV6QGE37UkpVXpAyqOayTllekD3xURNB516QAv0yEvCp3pAk2P+KQ22ekAMswpILMN6QMhH7MYbxnpArEKRjz7dekDyBwGGeOR6QET2uxo17npAPzDtZSsOe0Di++DDTBV7QDExEPxZJXtAzBmkNSEte0Cw28HqUjB7QDiRpyN6MntAY1L4wcIze0BsTJf8XVJ7QKoYFE4mlXtAaI2reTXTe0Caf6f1qtN7QGelcyj/43tATJX9jJfxe0BaB8b3i/V7QBj6LOaRAXxAD42aYdoBfEDCinMA+AF8QByO4JiZBXxA8J4YEocRfEDc1L6L0RF8QLoVGk7NQXxAhg4OStlRfEAfPmTDDGJ8QKynZvxPY3xAbsp+7b+yfEAubzOcV+J8QN4Hhi0V8nxANiWTi1XyfEB8x9PAmft8QIr54OwBAn1AtvjrjksCfUBT9tKdRhJ9QEbnt7EqHX1Al8k1gEAifUCIQyd9hSJ9QILqOV2VhX1AdJOwcSzDfUC0r53gauB9QIwAPIXX4n1A0J3b44/1fUDCUHkMnQV+QAJO6iKPsH5AZu/Hf9fvfkDuhYtvEDN/QDiOeQhPOH9AJK/pPbhxf0Azi/7ZYpF/QATLDcCokX9ARkS6Fd2Rf0AoEGUk5Zl/QJrvjhVfoX9AhN5dHc+hf0CMfelpVLF/QClceMKV3X9AIYgWx9Tif0CWV2mcLuh/QKBSSeqG7X9A9qRlAtLyf0CWLE0AMPh/QJrAQ4cqPIBA4ob029c+gECaxLll70iAQBPscA3oUIBA/MVLKhRRgEDgjPLW4liAQJ5oKCoOWYBAgAzWBShvgEBERqduHY+AQAQCkyxtkYBAcEOVqRiUgEDHqsq9uZaAQJTUlMzKloBAhig+smiZgEDOVk3DhamAQCx1X4kSr4BAxCir0kW6gECE7+B+UsGAQAhmNLNTyYBAmJJLVi3RgEDEjkWnTNGAQDOzOu1h0YBAvTE10krZgED8feIxmNmAQMkjUb9F3IBA+mYI7UPhgEBS3+RDVeGAQIaCA6s884BAaLjekj//gEB83NIYGgSBQE7yNXxAB4FAm2sr+DsPgUBOhkmiNB+BQOr+fRw0J4FAREYdntsugUCo4GQAiDGBQBhgn6u7MYFAlOQ5oQ80gUAaJ7g+MTSBQM55sy28NoFAXiubAd42gUC2O3sPhzmBQP3Zp0EQPIFAYDpRMCo8gUBhc2ru53aBQFFrT0CTeYFAFBkaZGB/gUBy9VIUVY+BQMoqiWdWl4FAgpIQiOehgUC7UXl1bKiBQGcUyrFJr4FA10zNuX3TgUB2dJK2J9SBQJShPXOy8oFAwpK+GgEJgkC1bEha2BiCQIjPdRfWIIJAssYSK9EogkCWDVt9ozCCQJAEfyDQMIJAIAbJMUOJgkBMa/K8Q5GCQBMgGjA8mYJAaHB6m1GZgkAIDNFJD6GCQMLd6m07oYJALxOVXA2pgkDgn4HZNKmCQGiTkMLCrYJA3n+NugaxgkAYg3hgrfmCQFg87mV5EYNAkJMYxXkZg0AXx8bpciGDQGOIgsiKIYNAuH4ZMXIpg0DL7kUGaTGDQJIfLiwlUoNALFBmrChWg0BI0LC5u22DQCb11qpKg4NAQ2H/xJT4g0AKv+wLAGmEQK/FV7L9cIRAV+nojPV4hEDo6kRQatmEQAfl1U5q4YRALeRCvWLphEDF/u/qNfGEQMS3btZi8YRAoD0FGTT5hEDxkQwXXPmEQKw08sguAYVAd+PmUPoNhUBG7VHDtS6FQP7O4ii9MoVAGNVPSYlehUCk+SGpoGGFQLasJXKgaYVAKfiSIJlxhUDiYzLmtHOFQCAbNEOZeYVAIAjWnrp7hUDWIqlBkYGFQEppAignuYZA3mkOUJEph0BrhdxYkDGHQFlV8S6MOYdAOpnBO15Bh0Cu8LCLikGHQLW0+HZpjodAWH3xNG2Sh0AI3gMix7GHQF9MktDIuYdAUDx43MDBh0CEEuKPwsmHQD4d9R4Z5odArkavjxrqh0A= - - - - - - z0rFRBeTX0V/HsNEata4RGGkjkSK3MVF/tyhRJ1cE0VJWo9EO7UORyN3sUTezYdE3FiARHRVIkUjmRJF6IOURHdprUVUns5EYoibRLrAhESuxGpELMh7ReG64ESGAJxE6qT5RClR3ETu86VE78WIRIyiLEUECExHzLB/RJNBvkTGEoRGnhHMRePvyERxJg5F6F8ARWJa2UYZK+JEojezRLZcs0SYCMtF5AkKRUB/80Qpo6REUplhRDlNwEQ1x6REvouJRC6DpER7fg1FlfbnRTR4oUR1EzZG0uGSRFMAE0XmpnJFGvnZROqvqURtbEBFLB6jRGiz80TSaW9E+ZLKRDlWKkXRWxJHysueRMGoBUV4ms1E2NK3RPZN9UT8Q2NF6eFbR2RGAUU096pGwbacRMFlO0YMuqVE4t+RRI4UikTh6glGyOhkRUZhkkTNnZZEEWKZRbipG0V+FJNEF93TRCtu5kXjSlZHtGJdRfd/nkTsEadFIUvQRVdRAEb7EItETTyNRAEJjUThOMxEJZciRXl8oURqx6hGZ7rMROBBsESbJpJEw61dRZv4PUUnR4RExcMFRa1HhkRCSoZEOOt1ROavmERF+65E0ujERMu2C0WVmaBFzi3mRCc53kQXY+VF/RtfR9qK90QaL4tEZjnaRE/udkVWHg9GWMjDRfZZuER+uOtEWhXGRKySsEQHvPxFN3gqRbdWrETb05pEmkwIRSYJ0kSGYZ5EAyKvRIjik0R96wJFNFCfRNaTD0W2UIFE0c8fRfuZ5kVh3sREYmDYRT/HskQtRcNEf/65RKFFoUQmfEZFpQp4RfdVCUUEbaxEX3a7RI7bREXSAulEPWszRcvQ9USGCiZGT7kJRY61/0UqbbFECb8DRRmTqkRyM9JENMPFRL3shESHTphE13n7RLe/9kTMB5pEFHFzRGw+NkX/y7pEKHOCRNFU70QlcotFvdoPRfFpsUS5PqVEf90yRsEFi0QJaOdG0216RDmQ00QEg2dEe2ilRYA5n0UR47ZEasNrRa9bKkYddTZFl+aTRCSQmESDhoFEdtGtRG7OzERHK4pE/IYzRYs+nEUCDJtE9LkORTVSsES79QlFE97tRI8dnUbl4ZVEO/iZRLCkd0Ul1ZhEpHh1ROZ4BEjJKfhGFh3wRo4R6EXXyqRGHiLwRHlMF0WlcjZFQNnxRHJWgEVsVxhFKsVcRqG0wETiGc9EBvmlROPon0RNarBEmS7qRFkVZUW+aI5ECBeaRG2J20TQUVZGCta8RVP0lETIgFlFedocRS9Oi0Wk0JJEQsi1REx2KEUgqUVFkAFoSWomD0Vr1bNEN1c9RT+DaEgUZrBEgUHMRozQdEQk0YdESWq7RHmLlUS8XNlEGiipRAUO3kTfV7tFfF4ERnMtpESQDANFBK/VRNo0kUWMKodEhVZ3RPpjM0WX0iJFXbOQRX84sURqdAlGTu/BRCNLJUUMra9ETeHjR5Ag+EZXFS9FeI2CREBkLkW6NYtEAxHVRTJF00T/3xNFc0d5RC5inkQdHOlENmSARMZwekbJ3IpFleFwReySR0WuuyZFqCq8RMPqw0QXnKpENmjZRGhyzkS9INpEhVifRdB/u0b+lblEctaCRpVkOkWCVN5FhSK1RDBevUUwMs5FgrO+RI669kTnGJREGSrIROlLBUjARzFFV1sER/RVlURSBDJF6c3ORrhbpEU+9TZF593BROvrB0WC7xRFec/mRHl2rkUTZc5EpIdTRebzokTGM5lEuM6eRL9QiUXvPZ1E6h2WReeQa0ZYR7JE9A38RYASZ0W6hIFFG0OqRD8zC0XylWJFICE5R/MV+0YpnRVGf+CoRT/MAkUUWOhElo11RFdizUSiEIlFdiiMRjyvnETkB6tFRlseRUBVP0VF7xRG+vOJRWszuURzRsVER263RCak+EQBiYBETbKVRJDljEjqdQVIRZOYRKhXl0e2NGBFdm6bRpmxA0VyWopEOgSIRaNypUR6K9tEnBsqRjIBmkQBCIhFAvGdRMG320UKeq9E9OmnRyq7gEdfJMdEii2vROb140Z7mcBE1xslRgvOrkVGTHlEP/m1RK6lL0UjawJFBF+bRJssl0UjG9hEtDFYRcInE0VdCCVF7bz+RBYHgkRdaZREqlaGRNdoYUYhHqRFyUgzRd7UokSK3uhEytXlR8paSkef4tRGU7owRcDT7EXVbRBGIdwaRSKMREWlYJFEF5DIRPTM1URqxvRHu2djR9qYBkdb8BJFUrYeRv+GN0W0oadFgRpuRbxZBkUPuqZEYLWaRDLb+EWtRjBFLc63RAgeGEesqJhGHbIlRhDZpEUry5BFzLT7ROyV1kTe9dNEAjSHRGseyURW56lE8KrWRBFkFEeryopGAzomRtLvikR9lYBF98GHRHqLpUQkjN9E7oY4RjXgyEUGuIBFHYTaRI/h00QpyrRE6+yEROOVN0b0fqRFFYBNRcsfi0RuEiFF+nTQRA== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + - - - - - - +ogW5A3BckAEo05Hb8FyQNylBVWnwnJAJ/UIXTzDckA6vAN7xcRyQJA0OJVaxXJAds4ki0PSckB3E98ea9JyQHmlofh203JAePFOj8zTckDqyI6bYdRyQIONjj3P33JAsmsz3bfgckD6RdP8TeFyQJRC79pQ4nJAapr0FJDickD+yJTLJeNyQCDm92458XJA4mKMf1DxckDiRTFKyfFyQHQS+7TK8nJAGcCxmbjzckDY5UiiofRyQJQ3b2vC/3JASPc6BmQAc0Ai7iPF+ABzQJ5R9rsUAXNAIAJmPSYBc0BKrieWjQFzQGiQkGPSAnNApQL4tfoDc0DvxNWNCxJzQO66oiF4EnNAOjMF9rwSc0CiId+/BhRzQMf8Sw1LFHNAZ7OJtnkfc0DuzsrLDSBzQFzzX16kIHNAVKk+MTkhc0De/ZRMZCFzQDQzKkJ7InNArg58hcoic0C/RT2VECNzQFagDlQFJHNAoLh0mzkkc0CFEqH3zyRzQOUKb+ZJMXNAoafWMFoxc0Cy7ZTQIjJzQDxykTijM3NAaIQYAjg0c0Cwu+0j5EBzQHhcrbZ5QXNACmZ3M7pCc0DOlKIDe0RzQM6hzdeZUXNANcH1wEFTc0DOntugo1NzQNwzSh2HVHNAL5fiy4pgc0BczVmpOWNzQET+e2PPY3NA9Ow7D/xxc0B4Ix77Y3JzQFpSG6+3dHNAUinhhk11c0CYCLwCeYBzQPF35qqjgHNA5lJMjAyBc0BjJ9T1x4FzQDBk+ClcgnNAOEyX76aCc0CalXt7EoNzQOZ+wAQPhHNASWy2K4eQc0BWTkZATZJzQPTaYgljlHNAlKTTKPiUc0C2k/nuuKBzQPNE9l5aonNAvgMjPwWlc0B6MPA6ybBzQOC1dv22s3NAivhwAQ60c0AQR5c7+cBzQK00FrnPwnNA6cfKAyfDc0BqFUaG19FzQFRiccPI0nNAkEWlbDTTc0CDeBXMUNNzQKplEOb303NAQIGUauLUc0DyVrZ0OOFzQAptHKjO4XNA1hwjBBHjc0DvGYwdOuRzQGLAe2Dv5HNAbPmb+7fyc0DGQe9FN/RzQBEamvaN9HNAUf7fmk4AdEBU0bsN5AB0QMDLMAx5AXRAvjJFlqUBdED+KhfvugJ0QMwp5EmLEXRAmDM+2G8SdECKVFK7TBN0QAYd/hzkE3RAm1qYT3YUdEDE4VMRTCB0QFrmpea4IXRAt3tNRVMwdEA6zLRDujJ0QDhtCXLHQXRAdmg9zftSdEAOfPOmY1R0QMnxAhf3VHRAqAa0w4xVdEDycIc7uGB0QOAvmHQIYnRAjLguFxBkdECPG7GtT2R0QHYZMqEicHRAeQA3PchwdEBkkVoyQXF0QJaa7FbIcXRA/l2/6TdzdEDAJsawoXR0QFupwBY3dXRAvwGqqviAdED8jQizToF0QB65wx2ygXRArlifBBeQdEA4d1WdoqB0QGwwBz82oXRAoFgQTLeidEAmfVXV0aJ0QNSrMsEOo3RA7f+irgmwdEAweA55/LJ0QBxpZDjjwHRAFQZQCXnBdEB+HYbK7MF0QJSZOukPw3RAbjBKzCTEdEAsz9uZt8R0QJ18jUqcyHRAso7SMP3OdEAwiDoaztR0QL6GUSG34HRATFVLa7jhdECMvEwl/+F0QBHyFna/8HRALyHapIzzdED+9UHVefR0QFFaE6qmAHVA5BJevb4AdUBpnDOCzwB1QEIPG7liAXVAUsUph10CdUA8K1YUnAN1QPmIDVE8EnVACnrQeyMUdUAkFXISniJ1QFSSTiQ3NXVAzHaV0Ms1dUCQ9K/49U91QH0bUgCCUXVAAIUxlHdVdUDkDqgmOGF1QMbmJUP0YXVARnYkKXdydUCuT829jXR1QEvj3afjgHVAs+MtpHiBdUD0gqd5rYF1QJH65BKDgnVAwRmeHg6DdUBPbYzkpYN1QDKgcG+bhHVAVGNrDTqTdUBiTpo9JaF1QBgaOyc6oXVADg4i4behdUBuRMO4fq91QC6C8bd9s3VApR2g98/AdUA+h9s3Y8F1QFxg3zb4wXVAjhd33cvTdUCuCq9o5N91QPcwacQL4XVAZks99wfidUCYz1GTbvJ1QBQpz5NIAnZAiRiao9EDdkBIN0WATRR2QHL27rELFnZABzNAR4kidkCmR+/pkCR2QCkecudJK3ZAZgzQyR8xdkDZUCiPJjN2QMB3WocdQXZArdYqrXpEdkCa0e83/E52QOrX8FjIUHZAwmJAIRFRdkAalC1qzVR2QLaWng1MYnZAZjMuMFFjdkBRGdDs2mR2QN4yW1RngnZASBNjBVSDdkBupBPlu5N2QDYgrucloXZA6AgedbawdkCmAuJowbJ2QEhTHYkNtHZAPhJ6cb/AdkCsKtp4GsR2QO6cX+7OznZAe9KtD4DgdkAYh89M9eF2QMR/2YWQ83ZArrL0szQCd0CPoXq9ARJ3QLYfmQnsEndAxdp8wQ4id0AnZl4KDTV3QOc9gAWdQXdAuD2mHxtFd0ChTx/HSlF3QEePwy+TUXdAPzhZYW1Td0AnAjoMKFV3QD9kmKyQYXdAIVVfhpFjd0AijsPaJ293QNLYnjN5gndAJkUUAHyDd0CcSa6vCJJ3QBXKSfVMlHdAkgkHtJq0d0Do0rtuitZ3QDyzUO/q4HdANm5hievwd0CvxYeqUPJ3QI77/FVuInhALsDvDYojeED7g6sODEJ4QF5goEp6RXhAlH9Z38pReECO/2ZJ9FN4QLpH/uGJVXhAnmaN/PlgeEASqPz2t2F4QGaH2gctdHhA+KX690R0eEA8YRydZ3R4QEea5HyLdHhAtiNmW7t0eECEwTwL23R4QBKz4PgKdXhAhtBhi6SBeEBqK5I/doR4QK5xGX2ZhHhA1N51lJWReEC6jmf7ppR4QOEvtCe5pHhAfaHNZczAeECYmYd89cF4QGrbJXi41HhABkhcnAP0eEDf8qy/jfV4QDVLdAoRBHlAeJ4zzZoFeUDOQFmfKTh5QBn6mASLQnlAQhkzu/hCeUCabBzIzFR5QPflgevAg3lANgNKlcCyeUCe36CW0MJ5QCQ8mO5B1HlAzkEfgMzVeUBtSQ+AUOR5QCQQfkqU8HlAri9o+voFekDke9c/DDV6QAICMMEaRXpA2jo4VyhVekBdOvE0PGV6QPn/hU85bXpACsp6GY5yekC4p1BuCnN6QCtkIE0JnXpAisG4VWKiekBZPSngDLZ6QEjQz+Erw3pAXnfiyBrGekCoZdzxeOR6QGEcoMg17npAbxBHaykOe0AKMXzdTBV7QO6lVfNaJXtAFzdb9CAte0DEQGdfHy57QOi8j5ZUMHtACmeJ43oye0CgK2e7wDd7QNrvpbNcUntApcluQSWVe0BgcpgGesZ7QLf3QUO/0XtA9jGICSXSe0C+MZ84uON7QNVuwL//43tA0Icf95bxe0AOoEsejPV7QO7EtpSRAXxAag+1bdoBfECAMjfxmQV8QBX14fXREXxA5Q1D5s1BfECF1Tva4FF8QCpgkRX+XXxAzjt5IAxifEAKxQ6+K3F8QNi9IxLAsnxAMMQAE83VfED4uOwZWOJ8QAx1ySUV8nxAAF+Oe1byfEB3kM49QfR8QMo+1yMBAn1AennPlEsCfUAuWxJURBJ9QKmljuEnHX1Aa4YDBzwifUBYQ+e5gSJ9QKBJDLqgMX1AbEVF0ZSFfUAs0A76LcN9QMToQj5r4H1ABHG6CZL1fUBA89kxOh9+QCQCynubUn5A2EkkhNjvfkB3wEjNEDN/QGSpZKxQOH9A6HbO5WVMf0DMng4SuHF/QDZI3XCxgX9Ahqx5M2ORf0CQ612j3ZF/QCKRiyHkmX9AscHDV16hf0Aw9D+C0qF/QDr7cEfppH9AQ3GGiFexf0D+/3wHlt1/QNav4cvV4n9AoTPJlS7of0BewwdLhe1/QLoc5kLa8n9AuWi7bS74f0D00jkWe/1/QI1ZTMcrPIBAxodNovRIgECIzfsI5lCAQOMIfH0UUYBAWQ8IX+dYgEAAkNE6DlmAQEagaGwdWYBA7M4uwChvgEChxgOdHoOAQCA2ip8ej4BAWgobY0WRgECCgdbkbJGAQIuLAnYZlIBA9anDxseWgEBERItBapmAQHhNHlGHqYBAOrkzi1LBgECQxrsrAciAQLbiD5BTyYBAitHoeyzRgECoZ87ZTNGAQFw2r9Bh0YBA/iaGZErZgECiKevVmdmAQBC0TpNG3IBAMwAmxO3egEC3t89BReGAQCJNwDz16IBAqKuyykvvgEA7sJ6LPPOAQCAIU8E//4BATXU4wkAHgUDGbAoRPQ+BQJa/nqc0H4FAGRr/ezIngUCCR53U5i2BQMYpuhncLoFAjcffhIgxgUBlwQJKvDGBQBjI8pAQNIFAMK+4ETI0gUA+zhByvDaBQIQClKvaNoFAebowO4s5gUDjHwtmMjyBQGIU9mTodoFA1DT+opV5gUBG0i6aVY+BQHuKMWZWl4FAUreDv+ahgUDOU0XLbKiBQCQCBs3sqYFAbEzkUUmvgUBsdqsJZriBQFRCwbZ80YFASIcvLn3TgUCAi4iAK9SBQLhVLGYECYJAFDaDPtgYgkCIKOn8/RiCQIze+kHXIIJA7GhV+tIogkBqwsXJojCCQIVLhA3RMIJA3m3iYEOJgkDtSLsERJGCQGyxVrE8mYJATATILQ+hgkAP6vsKPKGCQMVEti8OqYJAikbCujWpgkBtrlAaCLGCQG2ZYaUxsYJAIi4o3a/5gkBqtdzEeRGDQFkWIHJ6GYNA4MQzI3Mhg0CWOmEMcimDQOLB5e1qMYNAiaSd8CRSg0AKLt8HKVaDQP1eIKK9bYNAeLb4tb9xg0AOrUcU5IGDQLpIPeqV+INAdAAtHQBphEBeaujA/3CEQJD0UFD2eIRAAopYFveAhEBHwYpaatmEQBPYwOtq4YRAjtVfBGPphEBEyjW4NfGEQNkrhdNi8YRAhZ6+TzT5hEAaboMCWvmEQP484nIyAYVAwvYuHvsNhUAJnDEEty6FQLQ7+vO8MoVAQsTzgrk2hUC8nOmWoGGFQMZ9R9GfaYVAqCs5m5hxhUDewLS+tHOFQDJg5ZWXeYVAGMlaH5GBhUCYiI/fJrmGQBgbmoMmwYZALLjveJEph0BaS8HlkTGHQAgw44CKOYdA/ISti4xBh0DG+KJTW0mHQH7x9cxojodAWAvUvMexh0CUrRUqyLmHQAbBWhS/wYdAyBhI7b3Jh0CKxHVhG+aHQI2Kio8e6odA+PTscBvuh0CegMsJJPKHQA== - - - - - - AmuzREfsKEVs575EdUiMRfwA1UQslutEyunzRun6U0Rx/8dEKVSORL4VdUSpO+VE8muRRGDXsERlfYlF6cEpRYF+t0Th7pFEYq11RKcOT0UlQ3REFYSZRG7EDEWCrZ5E5PBoRGQD/ESAaTxESNiORMnftEQAHJxEiIsvR3K5t0Tr77NEVkhARtIkm0WeHNBEVJjYREmVc0RwUfhEJ4/sRsnEkkT9Tv9EBddtRKiackRFCZNE+syPRK9GwUXRYZ9Ee76lRCBmekTohltECXK+RDfrzURWe5xFFjF5RHRcHkaR655Eut6GRD8LiUVR0qlEPYepRFAOG0VAA3dEqoGlRE4Ue0SHZedEHpUlRb9R4kYq++9EaOA4RczfmkSF+W1EmeLLRGHpsERLWmNENHU9RS4wUkdVGf1ECSNmRhxTE0a3HAJG5povRYneWkRCL2JFmuoxRSRH30QvwoRFdEZIRx9fD0Vi79dE9OSvRSTwgkT09b1Etzt+RUHG6EWCF4pEK32YRGxVa0Q8YpZEqlZWRCqcOUXIWJVEm2D4RNkWuUSIonxG/HkURWGDa0QCeIxEuDPDRPLbeEXzd3FENxGLRGXaekSuRwtF+WzCREXscUR4+J1Edw6LRLXOmkR1xq9EojUERcwbo0XfIlBFmiCORPyk4UTvVMBF5F1qRPFmQ0fW31pEC625RF2/m0QliApFnT4xRax3BkZU2IlEqM6fRevjYERTeI5EUda0RMbJ9UU01rpE8z/SRPrOo0TFA8dE/9GHRHICokQF8glFSDmYRPNvrET+bo1E/ZGuROky8kQ50otEwyQxRbMsAkb2NKBEABydRT2fXUT8SH5Em3pSRK9KikR45JZEdru7RBrZbkTNxYpEleMwRRJDVERocIBEzYFkReQ6VETlEodEmw+lRJgHPEX3yWJEq2P7RIjDIUbAvJJEV2bWRPbL40VvxW9EvV1hRM8fkESqXqREe3dYRJA0Y0SVf1tEk9OaRBaSeUR0k65EQXxVRKfbWkSAqAFFdyyBRFHhlkQUp4xEBUo5RRWBlUTkuZJFyx7OREnfxkTalZ1Ec9KnRBnm60XWiHVEky/ARhbKhkTRvKtFvE9ORXZtj0Ss131EHjlBRXI5MkZ2JJ1EOoN1RLAQ90Qqt7xEtiNnROlT4ES8HFtEVwplRDxrBkVLZNZFDAyqRDneoUQGqV1FczFiRPi660SpyDVFwlQRRTM0kEbZHK5EiD6bRWm6AEgZLOBGz3bcRujCn0XGv5ZG03moRB47M0WMwC9FBVpHRYXRlEURTMNEhglbRh4EA0Xo+qpEAqqLRP2rZEQuZqBEr6OGRBfN1URnmZdFDadzRFDVtURUNFZGp7joRXkeVkTmkRdFWRceRTufgUVytUNESfc4Rd0+rEUD5UdJCHCHRcCeEUUVSOdEe0ISRYsHm0TGxUpIJnTDRJSfjUYU54hESp3SREBDgURWfPZEoNVgRSapkUVsi3FEtMiTRAw4ikRC84pEU4fGRP2kOEURKVZFQvKMRetGVETptgZGMDYERQYL4UTEd2VElpWaRDj2tUedLbRGl10oRR0tfkQ5KHZEMKieRLZrbUSGIpNEI9SwRGTO3kUS/cdE+HivRJt4aERrpRJFMo7qRJziQUZSjvJE3eiNRZcpdUR3M/5EZOB7RZULpESwPZVEDkayRH58rkRJfzxFrvUORQJfYUQT7oNEovKwRfRrk0YHsclEXqBpRovcqEXuYp1FjNS+RSb2kURIeFVE9nWWRO10SUS/1L5El6hQRCYK7Eegaf5ED60IR95hbkTQdhNFaCKyRiyvVUUPoBxF2WCPRIthBUVESIZEn1bCRGkk/0TGdKVFKe7wRKG/i0S/CElEyGKXRIvzB0VTvnFEUY92RANwkUUytMhEA7w1Rn98xUWBi/JEzE9wRVwz/0SsstREnywSRVR22UUlAzNH1oMDRwRYQUYd+GFFWkwLRSC0dkSU6zZFqx/2RHjNB0UxPpBGsVG0RA8TpUWMdthE6VwBRecKgESOuSRF1dtiROwqE0bkAHJFczfIRFoZSEQhqh5FeFx3SG5Bl0QKDOtHEgu7RNmld0e/tkJFWO9YRtP5gUVH2/ZEEhZnRBX0nEUOTaREWBfHRB8fo0TE0yFGeC8MRdDztkRnQNVFOnvSRBAnfERWU3hHlAVER6aOzUQG3uFERGz3Rv+v+US16vxFBNApRb2PX0TXLRRFPzbvRFaCzUVzUxBFWLw/ReYTEEVzDYxElU7yRGRLg0SnqgdFcYmMRCQ5pURiQZxEJ7A/RiWce0Qnk4FFvgQiRexcuUSR+1ZEoCbkRxlcU0dCPPBGs9LgRawY/kXeU1lFr5QnRWrMC0UQpIBEDuSCRP+T1EdZaT5HKPzrRplV9kXgkCxFqVWyRbbaOkVNNl1EJiBbRLkmhETXtaJEztT1RYZnDUWrkZpEfvx4RLR0EUcM5IxGLjcmRplplkUFEGdFMlINRYERlkTrgYJEmGBzRN1Ao0X+S/FEZmVeRH4A/ka3l0ZGaQ8GRsznb0TCHUZF8E6NRK8EuUS6r4BETJQmRtpf4UX3I3ZFQJ3JRKiRlERWvbREhhsDRmr8jEW/YUBF+4SfRJQAK0WDQ09F7kiDRLlNW0Q= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + - - - - - - U7jO0A7BckA8J0YvbsFyQIsftNpQwnJAOvZm46XCckDOqScq4sJyQL6BggM7w3JA9DMy2MXEckCeC2ftWsVyQOTLWZ9D0nJAFVklkXjTckDV2tQO0d9yQNhaaMS24HJAOkzI1UzhckBEEQpCUOJyQPgJlN2P4nJAuoya8SPjckD+B7PIyfFyQPJ86IHK8nJAwNnJvbbzckD+/ptmD/RyQBaEiR6h9HJAVMlUL8L/ckCPeqoXZgBzQEptqgD4AHNA1J6XeiQBc0DZ7U0rjgFzQBcJWNLPAnNAsMM20/oDc0CXUL1KCxJzQBJvGGEnEnNASA+PprwSc0CMZ0JC+hNzQLjbLztOFHNASfwag3kfc0Dk+COBoyBzQO6K53M5IXNAEg13HXkic0BEt0N1yyJzQCNGkSERI3NA8SDRC9Akc0DirloeRjFzQDpMntoBM3NApCx0TJ8zc0CsGu3TNjRzQGKCRwDiQHNAZioTGXlBc0BUSz+5eURzQEpGbuKjU3NAME1c04VUc0C1hn8Ci2BzQNIDn/c4Y3NABgs/n85jc0CzGTfPSnFzQCrbA2BQcnNAqHubFk11c0DKBkJBeYBzQNBrq6SjgHNAMiv2/AyBc0D84BqhXoJzQMgai2OmgnNAOhtP+xSDc0DMUZIlD4RzQJ9R8qWHkHNA5KRiMtSRc0B8p210TZJzQJV43KxilHNA1j8GsveUc0DQDsLcuKBzQA0b0DRMoXNALgpSLVuic0BcCyvhJaNzQHcgGwQEpXNADUh+SMmwc0BiypZkNrFzQL41WMh9sXNAIlrVXG2yc0CCaSJatrNzQJpv38oMtHNAwDuWq/jAc0Bsm49G0cJzQLCeIjknw3NAwu/G7cLDc0BGYIk12NFzQGTkPqUz03NAfvvFUFPTc0AAOivY+NNzQJrivcHh1HNANXWj2jjhc0A547MvZuFzQFIqGgg29HNApCMGp00AdEDbqn/15AB0QIZQSg95AXRAv2I1HKUBdECWuumOChF0QAXXMXN4EXRAcmshP4kRdEAC90PaTBN0QIvP6Jh2FHRArK1b0UkgdEBx4kLOuCF0QNYvxUe5JHRAjiZ9ilYwdEC2LzskuTJ0QFAnDLzlMnRAWy8zi15PdEAMC76V9lR0QKUhnlCMVXRAvL0707dgdED+J2XyCGJ0QJYV3tdPZHRApPsO/SJwdEArDVhDQXF0QMh7Jn05c3RA/yS/xKF0dEBWbOQrN3V0QDjj2hX5gHRAwNS02xCBdEBLcEtDToF0QPrOQ8YVkHRA/LcIPtGgdECo3GCnOaF0QD/M4nW4onRARwePZdGidECXM9amDaN0QE3EQRZlpXRACGo6SQuwdEA7sqNE48B0QJw7MDd4wXRAks+jOhDDdEB//vBRJMR0QD8AVHV6xHRA3h6nvbjEdEBm4VZAPNN0QKqWb7iH03RAYHgIKODTdECko8kWd9R0QMQolqvN1HRAxkE9WrfhdECcHTvR/uF0QPB9avdQ5XRARLRUNMHwdEC+qHUfjfN0QA4q0+2kAHVAJPdJa9AAdUDhhOGAYwF1QG2TeO5dAnVAqF/ecpkDdUAR/Sk7OhJ1QKYny2sjFHVAyu+Wcsw1dUCeyKQI20V1QH+bly7dT3VAZgmkcIJRdUD6Y3/wTVR1QErOypN2VXVAJdmrajhhdUA4O10hkGJ1QNo31n93cnVAvI3qfY10dUAMPGQxeYF1QEsPIV2tgXVA8kX1U6eDdUDmpEh5m4R1QOB4Iya7kXVAAk2TgW+SdUDMLrnyuKF1QDqT6gBIo3VARZWoZqSodUC+zKeoe7N1QDZjeK3PwHVA1yaqU/rBdUDQEssWzNN1QAejdTnk33VAIl4BZg7hdUDHMSYZCOJ1QOG1jv5q8nVAC3tOFEkCdkAWhBk20gN2QI4eSiJMFHZA+mmEHgwWdkCkaD6QiyJ2QChc6NqPJHZAyqgT3h8xdkCIBTQ7JDN2QJLEoGGeNHZAQnxoeh1BdkBgl8VLekR2QADIAPHKUHZAgkjUyBFRdkB+lepmzVR2QBTVpagiYXZAYy+R0E9jdkCWp7K022R2QDhM3UxigXZAhCAmuJCDdkDa4wMWu5F2QCSpsiu9k3ZANPkI9cGbdkACJ6WWwbJ2QLeB8RwNtHZAVkjGJHm0dkBEOTZ8zs52QJInaWK/0HZADLWt+fLhdkBOlA9KkfN2QJxKtWozAndAmpqUpAESd0DCQLiwDyJ3QMAGZA8NNXdAfmRBE51Bd0A3UaI5s0F3QMTvLE4bRXdASEB1ckpRd0AaRMT5klF3QH6E+PtsU3dAnnOJASpVd0Bla3u9SGF3QBcfkJ6OYXdA6q4qJDVid0A6MoNkkmN3QBCTLEAnb3dAJIAMK4Rxd0AUb9A2eIJ3QO+/F/t8g3dAotYLg4uTd0AbBBnOS5R3QBqAXW2ctHdAZqno4IzWd0CGjoJHUPJ3QNxddZVuInhA/iRkb4sjeECeCBCxejJ4QGdDqkANQnhAOkVvVnpFeED+b4p+y1F4QK5Y6/KHVXhA6Wv+C/lgeEDIDYMnuGF4QIqgFXMmY3hAtWWXKW50eECbHD6ii3R4QA7gxve6dHhAUvRxisZ0eECq6Hb43XR4QBi0YU0JdXhAyPTDnaWBeEAaH5E+eoR4QLR0/m+ZhHhAKNiOY5iReEAjTzxGp5R4QKm+ZCeqpHhAlqoqsvGyeECuag8YzMB4QCDp1iH1wXhApsAwOrfUeECoc3jyxOR4QBYyTosC9HhACfiAmoz1eEAreLkJDQR5QGbx0zmaBXlAYuTrbSc4eUCxnTeyikJ5QCjoQqn4QnlAfm5tK81UeUBEcRzx2mR5QN4x9ltDc3lA+/ycXMODeUAOBqJ2wbJ5QOi/qBfQwnlAijtDgkLUeUBEpb29zNV5QEyt/1lP5HlAACczXJbweUC4u3zT+gV6QPvO/EAMNXpAcoFVPhpFekDQa4wvKFV6QE5nXGhUm3pA7hvyjgidekBY6OtGM6x6QKc4DJUMtnpARvkkNCrDekBcPkYPHMZ6QGAWjWhBznpAsT+I7eHXekDXRsqNYuF6QI45s5J45HpA+md0ajbuekDlgTrCFvF6QK8ezqJc8XpAhOwW9SkOe0AiEYXgTBV7QCMCHNJaJXtAvnTDuiAte0A7g9mFUjB7QIZnR1B8MntA24Ogc+uQe0CMEvsDJJV7QMT7/w15xntAvQShisXRe0AAgx7HI9J7QKF4SxCt03tAkj9qYP7je0DLhpeyl/F7QAaHHC2M9XtA3lljUJIBfEDk+oaB2gF8QP8us0CZBXxAPjHgMIcRfEAcfDWX0RF8QCpE/BLNQXxAgPwxjddRfEDo3pyBDGJ8QKgE6YMncXxA4vgRlQFzfED6iz5TwLJ8QGO/FFLL1XxAIOPwnVfifEDZUCPjFfJ8QKjQteNV8nxAbnwg5wECfUBNtgLmSwJ9QOC/VCv+EX1ApNnS6UMSfUCToKvMKB19QB5WKyU8In1AMb3v/IYifUBTopaazid9QFzqrUqeMX1AoBR4JW1RfUAgESj/lYV9QNhLad8rw31AgSMn4WrgfUA4iFaS1eJ9QCa5OeeP9X1A+uBFrzYffkD8GlKMjVV+QMNNDPOLsH5A9WBgzxQzf0CxyjvCTjh/QHyvmp6mPX9AhvHvSLZxf0BfzCdgroF/QO6PHhWmg39AFrt3a2ORf0AU1GaNrpF/QCoAAtPbkX9AyDPD+uaZf0D8QGJfYKF/QHlu+FbtpH9ApqoXblWxf0DAPazHlt1/QNBMLO7V4n9AZKX5Mi/of0ASsHlSge1/QOEmKMDT8n9Avo5Q5uo3gEAz/e0TLDyAQHBFBfTmUIBA6D5IxRRRgEA28UNq5FiAQL5n91cOWYBAuLjJjh9ZgEBqWmoUC2GAQJ+ElUQpb4BAVrFCJR+PgEBc7e5ebZGAQBQg7xQalIBA7CJ0M8GWgEAhxWyMhqmAQNATkl9SwYBAnppJq1PJgEAxGLUbLNGAQI75X0tN0YBAvuHlCEvZgECYT3wHctmAQEJ/kNWY2YBAVGgsAEbcgEDo0hdq8d6AQCDEnUFE4YBASD50LPbogEBuDZ0PROmAQDpAwrRJ74BARHm2aDzzgEAiBzTdP/+AQFKqQVs/B4FAgL1BfDwPgUCdKu4MNB+BQAatVuk1J4FA1z8Ps9sugUBydHUViDGBQG6KMGm8MYFAn52ePRA0gUD+0WmgMTSBQIJ0qzO9NoFALtM5Et02gUA4Og0khjmBQBuReqAtPIFAsk0BZed2gUAkiyiyk3mBQJ/qUetUj4FA0MzdYVWXgUBVgAFx56GBQEwkaK1tqIFA6ISJ1UqvgUAT5LtJftGBQDq97jMr1IFAqFz+4gQJgkCW0UKK2BiCQMx4Y7vWIIJAC5FdjtEogkCWOty2CSqCQL5DXN21LIJAbLBKAs8wgkCBeItLQ4mCQCg/5QpEkYJAEt/oxzyZgkB+HhusVZmCQClG7voNoYJAaEsovDuhgkBmjJymDKmCQAkM5LI1qYJAzGYrHAexgkA4oHLXMrGCQMCfwviu+YJAjpqVgHkRg0BCGwlGehmDQFxylidzIYNASmEP23Epg0DoRZAFazGDQAakMaeBMYNAKIoW9SRSg0ALuE7hKFaDQD4wdBZHWoNAtaNVweSBg0D3ETeVk/iDQCQvif/+aIRA6ShMUPxwhEDy7ucW+HiEQAIRCVdq2YRAQXj392nhhED3jJmjYumEQHPyrbU28YRAgPqr7WLxhEBcihpgNfmEQLDiNgFZ+YRAUsbTQrcuhUBKyrYmuzKFQHz6V8q+NoVAN89nq4pehUDI/hpqoGGFQLeuioagaYVA1tdC6ZhxhUAenrlYs3OFQC7KTZaWeYVAjHlED5SBhUACSq5IJ7mGQOiAoEEkwYZAPgtLaZEph0DGdK/VkDGHQHYpHn2LOYdAUHt65FxBh0CWJhPtjEGHQGCwF/RojodA0JAXkMexh0DqK6uPyLmHQCrNNinAwYdAeJyGuMHJh0C2FTk7GuaHQE5U8iMe6odA - - - - - - yI2gRB6TNEWVMXFED8NDRJViWESXAmxFtXlOREenS0QqZfZGOi5AROHEtETsAIdExudIREHAJUXDIAlFJjJ4RK2ogEXv8FpEgXNKRLdthkTimclE/be0RPLHZ0TSow1FRheRRNUTKkT0BcpEfbkER2PQl0Q+bDVEIMMTRiFgOUVNh35EH1SVRLBL60T+MMpGmNi1RKpjYkSe3ohEGr9aRfBVx0RgnjdEkUlXRJK02UTz95lEgiGBRakS9EXyhVhFkduIRGiHv0QbJcNEm+RURBIcekR7LUpEVcPlRBzC80aNwJRES4fxRN86TUStU55EIffDRO9/gEReQQVFxKtLRHPpRUe/orxEKj9WRnq3B0ax1IBEpyTNRbpjR0QoM99ExBUpRG0cdUQOWn9EFiVwRGRkUUWdUC5F+SrCRGWgmEXS2yJH7JOYRBf8OkVxznNFWKwiRF4vrkRLwzpFV8XVRXeozERMfQZFJFh2RLYkP0TJ+YJGY/fQRPuNRkT3rnNEPaqORLwmOEUFlHFEH/3BRImCCEU2ZCpEgMI8RMxAW0QNLYxE1vIrRPCgkUT6MgJFLReDRdp38ESuZu5EWbGgRWe5QkccAkdFwdCgRODoqETgVRVF1bItRGXb10VCPo9Fo26ERLWSdkSXtFxE6VrXRXLiy0ScdGREf0q1RFoRxUQ+OqRE/GOPRKNge0RFz15EHOMJRXDDlEQSiTZEFRi2RNYGgESmz9BEC4i7RMPYrEVSgo1ELpmSRGjNvkUSPZBEd56TRNBol0QgZEpE+3JsRIGDWkRRGPxEiIkIRTF4SUTgEzNEawqDROE1jESajLJEwGryROdOKES6rtJE3w4MRrOwsUQoA9lF2YinRIh8ikQojl9EL39URO/zv0QQdNNEajNTRNXMvkQb+oFEBILPRClg3kRg4ZJEKYBpRMadGUXdIYdEmu6MRXF2k0StIK1E40OeRDiJc0RjJAFG4CG4RiW1a0QpOZdE5qenRZxUgEWta2NEzBJSRfwhDkbmOkREoX5pRCTc1UQYSHVEe153RF1mY0RrvPNEQXM1RLb4xESjNZtFJMsvREJJEEXojJdE7GSZRBbauUQopchEXY1vRrW6UkULPt9H0ZK8RoaaiUVxs8hGR3KfRSRih0ai8zREWScCRZ5aVEQ2LxlFhY1VRFqc0ESXTIhFfDlGREmApkT6E2VG/un8RM4fpEQy82ZEHQqzRBx2nUTMGk9FIspgRDnRQERJo45E6vVBRi+yiEW2xNVEVNQWRSu8EEXSeFlEi/CoRZYfNkk+hWtF82PjRBeY3ETtpZlEMa1BRfrJiUQPTkJIWsKrRIqnmUaiMKJE6ptaRCpMAkXj74VEHME5Rcdza0RXUHlFnRW1RVakUUSwHrZEXS6EROGAjkRkK4tELGKHRYTIkURFEqhEEPMARR0ZMkUPLJ1E/7ePRbO9wUR1edZE78dZRHsyZkTx+MBHgu24Rt4hGUWrz79E8hm4RHS4PESEzcZFlMyPRIr1oER9TnBEHwmiRPSd1UQKRkFEX57ORE/aEUVakGREv7CJRKuOIEZjfitF3S+DRYvEqUR/rrFEWqg/RDXvUEWYl7VEefoeRcpmAEUFQZNEwDmVRPemqkUBFZRGi7yKREmPP0Yl+5hFRrRcRHunmkUH7NtFL8qIRGCxlkSk3l9ElmJSRCsv30QLaYpE9I3KR6smCEW4QbVG/frtRCFkn0b7Uz1Eyik5RfPJnUUmLZJEJa+1RKDHikTBE6NEADhuREYWrERJRoVEXLgaRfTFnkTK3MRERYOAROU+/UR2121E2opPRIWJiET2LWFEeC5/RQVEdUTlo75Ep01ARrCLhUTBSmVFACMARRPCLkVWFYVEUn9NRbB2u0Uc1BNHE7nxRpEnE0YVgIBFpzqPRLiB1kT1vAZFwD9tRt8peUSASKtFELXGRLX9qkSGYsxE+r0URdhq70XOeopFXoWqRGaKwkTO52VIY5fgR8qUp0SaGoZHcJxVRoU1MkR36VFFYtgPRf5yU0Sps45FRvSsRLhwNkR17JxEbjqTRKbQHUbEBzhFhfqlREjGyEUDbrBEZw1BR4lxGEeA4ZxEVkX2ROE3vEaXYblETAPmRTJ5ZUWzwaxEBNJtRTws+kRMs2VF8XykRE8+IkXPPcJE4ekXRewnzEQ3m6VEz+pXRCrNOkZnSYZF+qtSRc4IwERJXwlFIVp8RCg/10fg2lNHDhDoRplLCEUR36ZFEO3uRe9OsERD4T9F1e6DRDidWUScfZlEYYjSRzSoW0eAxvpGJdoFRiKoKkXTUW9ETM0oRUcMzkRPIFtEadRaRHYpWUTpSsJFOAkWRXxClkRBXxNHuN2ARpV7NUYc3DVFcRZeRUrvAEWmQYBEqxK3Re4YF0UqIopEALmZRKxb+EaApW5Gs2YJRoPNQETUujpF9zGKRCOP2kSlC51EKNUbRmVxykV9D09FnISwRKhEokRihIhEg9wFRv7do0XL8jlFnDXZRD0rMkV1jYtE - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - DLK7lHjAckB+/+KaDcFyQCJ0+StuwXJAE0fiGDzDckDfiEvkx8RyQOxCr0FbxXJA2gJGsEPSckDf+LU7dNNyQC4y6G/N33JAIigG/bbgckC5GU4jUeJyQIHMFY2Q4nJAGHitgyTjckByYxXdyvFyQGogbW2b8nJAsooXJrXzckCMsXBvovRyQFx4wT3D/3JAiPby018Ac0DK173U+ABzQPJSoacnAXNAHmCy9koBc0CE0ngJjAFzQBewMKzPAnNApAuhw/oDc0Ai9UMfDhJzQGSIGFp4EnNAVw7/Hb0Sc0AEtACV+BNzQKEo24xMFHNA1tIWVo0Uc0DCj+nFeh9zQI1PReekIHNAvDlCZTkhc0CUE8CJZSFzQFzEAGHlIXNAuv8FcHsic0AmN4t9ySJzQJElXVYPI3NAyONHjDokc0CgktqDzyRzQD+T199HMXNAMi+CYloxc0BOmMo8ETNzQLfkQ8Y2NHNAFKefiuRAc0CecdYVeUFzQJDq6vZ5RHNAqsNMl0NTc0CcLy7npFNzQNG1TYF4VHNAdTh7nodUc0CJW5OjPVtzQNhuu+CMYHNAnk8pUjpjc0CorA7LzmNzQDAMzgBRcnNA8ib/MLZ0c0C8f40eTXVzQDOoAR15gHNANghZm6GAc0CENh5YDYFzQIlsL3DHgXNAgbLlTV+Cc0CeF9H/poJzQCL8RwwTg3NAOFyb5g6Ec0C6b+m7hpBzQEiaqeiWkXNA0MX5Vk2Sc0C1fq5LZZRzQBRUlRL4lHNA/ow+/7igc0Ag23nZTqFzQLSDSotaonNAviMjsuaic0Dru5zFBKVzQIVaFZ/JsHNA8zZ2Wzaxc0AhTJv2f7FzQKZtDFi3s3NA+sh3VA60c0BbEQtnorRzQJCakg75wHNAlmDflNDCc0DoM93jJsNzQESFmr7X0XNAx7oh4dzSc0Cw8zgxNNNzQPiW0QH503NAgqi5YOPUc0C6IOV5D+BzQPeBFZuk4HNAqdBwrzjhc0DmFsFHS/FzQOBMqy9l8nNAGXHEvTb0c0Ce2C1tTwB0QGaT4dHjAHRAYKCm/HgBdECQVshTpQF0QA5flD2LEXRAEgNGj24SdEBeVi+bThN0QJBp8RdLIHRAQnMb+rghdEDkv4hEUjB0QHtEf/TUMnRAW/G+AucydEDiJo9WD0R0QBy76AtjVHRAmIf7cPhUdEDrwnG1i1V0QKpk7vW4YHRAyq1fNQlidECyV/LuZWN0QKiuR2oPZHRA2iO/bU5kdEBoFfsqInB0QDSxDHZBcXRAPPPEX8pxdECSG8wgOXN0QJBSSXs4dXRASNI/fPiAdEDJjzckEIF0QOo59vJOgXRAipXNFUmCdEDeOM1VFpB0QBSnablqkHRAR/u486KgdEBlAV/Lz6B0QHxOYdfOoXRArlSC6ruidEADhetW0aJ0QP//2FYQo3RAxSfxGQuwdEB+ifIITLB0QGjgZlXFsHRAWEAmpOKydEC/8fUM48B0QJJB1LB4wXRAMN76z+jBdEAMuhusI8R0QHoKKpy5xHRAVERwVZ/IdEB05Rgq/c50QGESp1I703RAkhKLKeLTdEDk8841ztR0QDaiNNaO4HRAYAT69iPhdEAS26TvueF0QP5Q3KL/4XRACnvWzE/ldECWzi1KjfN0QCZqZpKmAHVAXuZ7wNAAdUBEVAjdYgF1QEEYsVFfAnVA75O6pJoDdUBE76fPOhJ1QIjq40cjFHVAAK+kZcs1dUD3is/NskF1QPgCC9/+T3VAPuI5soBRdUCrI3g/J1J1QC4TAbBNVHVAANxMWHdVdUDAo8HbOWF1QHSs1cB2cnVA1DIvaY10dUA0LBMfeYF1QJmyWvutgXVAFqczn6aDdUBczgWMm4R1QCm+2PGLkHVApOd79nCSdUA1cmjclKB1QBVmud25oXVA4KuxZH6vdUDvHlO3e7N1QOLhcW7EtHVAwzq1e2LBdUAzsRUM+cF1QLZxllTN03VA7yl8tuHfdUDCkrQXD+F1QL1243AJ4nVATp1KsjnidUCEOuxAbPJ1QFP1XNdIAnZAuvPjI9ADdkARfU3gUxJ2QHXhHi9NFHZA2UXhIAwWdkAeHOXZiCJ2QITbxYqQJHZA4YoXdR8xdkBhCq9enzR2QJJK/yoeQXZARlpITHpEdkBGDyvFylB2QGbYwXkRUXZAB1ra/YZUdkCujXInzVR2QNW8ClBTY3ZAU40pGdtkdkDCWTui+IF2QGZiZEBrgnZAZFbCfFKDdkA8hmG2k4N2QJTqy2u8k3ZAK5MgFzuidkA2Eo3et7B2QOyGUj7BsnZA2lCxeA20dkDxdBwswsB2QB/c5LJNwXZAiKNCvhrEdkBXrthFz852QJogmtJ90HZAZLJEPMLQdkDwdu179OF2QJT74CqR83ZAAWvFujMCd0CBUmnIARJ3QCBK653wEndA3LS3wgITd0B02xDaDiJ3QGR5MmF1IndA+SWPeLkkd0BDCwP2DDV3QMqZ5aQqNXdA3R0NVJ1Bd0A2NwNdG0V3QGI7/PVJUXdAN6NIlJJRd0Az6Ro7bFN3QPf4epgoVXdAFutf6Edhd0DfnAERkGF3QFxKNFo5YndA18kyC5Jjd0CE3F5nKG93QBITiKZ3gndA18oH7nyDd0BYLxIpCpJ3QLrdfIqIk3dAXaZcWUyUd0DZnMVum7R3QALDYh3k0HdAa/Zn7VHyd0CnLQCR7AJ4QP51SzpNFXhAEtUlgm0ieECW0MToiSN4QMhtsesLQnhADAv0TnpFeEDY0YTay1F4QOzacDmIVXhAdhb/5/pgeECG4LP5tmF4QJBITbQnY3hANFUYerxxeECyediSRHR4QBuc/TtddHhA3LhHiot0eECYoD7h0XR4QGLZcValgXhAuLiNiZmEeEAQ0M7zmZF4QICY82WnlHhAq2J+8c3AeEDkv5tF9MF4QI4EnnkHxXhAEApWa7fUeEA6xjXPN+J4QAg4j4vH5HhApxiLaQL0eECcPglgjPV4QBpx0xuaBXlAHRxy2bYzeUCOtVdUJzh5QGh7VciOQnlAfJ+K4/dCeUDQFnwr31B5QMOxFFnMVHlA2EVCQfiBeUDqB3bswIN5QNbhpxTHi3lA/jYrYfimeUCW1tvP+ap5QK11tnS/snlA7vimes7CeUDR8/lY88t5QGjSqEpD1HlAEaRkXs7VeUB2X7RVUOR5QEg3KWwk5XlAvD6O1k3zeUCGUKxJ/Qt6QA5ga5Q4I3pA6xcMZww1ekAeH+OUGkV6QNbG6lQqVXpAdzca5jxlekCO5NCEOW16QLrxVpiNcnpAOmgJFaSUekA8Z472U5t6QJzIQjEJnXpAskfuqQ22ekBcAjXOLcN6QKu5bDAbxnpA0sT600LOekDeOXCt4Nd6QIbXQAl85HpAfN1CBjbuekBcon9V3PN6QDCEidgpDntA1x1h/kwVe0DIz4+YWiV7QDQxcI0hLXtAgBg+hx0ue0DagPW/VjB7QDTbhD97MntADJ7bgMI3e0DOYFhxI5V7QJOiaa16xntAcPUuJ7DTe0AQyvhrSOJ7QJxvPRsB5HtA3saW5Cfse0Bg5Ij5l/F7QNRVVFyM9XtAMpOB+pQBfEBU/fEf2gF8QEQvoICZBXxA6CQBvokRfEBw8RIr0hF8QPVGkTzNQXxABJvao9hRfEDscNH2DWJ8QFAuewQEc3xAGFjd9cCyfEDyiFr1V+J8QGtPPRAY8nxAS3VC1VXyfEAPGDUgAgJ9QHWxYqFLAn1ABkfU//4RfUCH3LLWRRJ9QMt+aUEpHX1ANk0oSj4ifUA9ZxkhhCJ9QIhEcPiVhX1AeIgw1inDfUAWtU/NauB9QBLeYaLY4n1AHjlT45D1fUBGwo0IOB9+QMoXiHWOVX5APNspnYywfkCIVHPSzN9+QCvEvYrU735AHWMFjhEzf0DNO/ySt3F/QPAuYNK2gX9A6hqIFaODf0B8aJtnY5F/QK7Ar9HckX9AkuutjuGZf0ACvuilXaF/QOwL0d/ToX9AMaOMYeqkf0AiUiqXVrF/QAyYxa1MwX9AJo9Y8JXdf0B+y/XN1eJ/QDe37icv6H9AZNmV1nntf0A9nN/pz/J/QGiGI5SDEYBAik9VwOspgEAKxhhX6zeAQNwqF3CiOoBApFrp3io8gEDvtimy2D6AQCJWMoL3SIBAEE5fnOdQgEALHDbWFFGAQLwjuQzoWIBADt07Lg5ZgEDY5ML3CWGAQMQfctwpb4BAQH7HsB6PgEBvoVxAbJGAQACXnykalIBAhkwtJh6XgECKUhT4bZmAQNss4wiHqYBA+S2X+iHAgEDB3caXUsGAQL7ACA1swYBAPYT1rADIgEDEQ6S+U8mAQPIQ3/dM0YBAqqcMhUrZgEAAxbvsctmAQKsBp0KZ2YBAsttXQkbcgEBchcoMReGAQOJ9bP316IBAEe5N50vvgEDcNOUxPPOAQJUyq4U//4BAApNCBj8HgUAiO/IfPA+BQAXSq6E0H4FAOphD6TUngUAV44Hg2y6BQDwYXC6IMYFAWJ5vG7wxgUBi4/QiDzSBQAFmRcQxNIFA/EeEWNI0gUBO/KNbvDaBQEQym+PbNoFANLKSOoA3gUANSVNOhTmBQJMuTx8pOoFAsCeIi+Z2gUDA/U7BlHmBQNF+rXhAfIFAL2aEDlaPgUAkoEwbVpeBQKUTujJSn4FAJ2gthuehgUAZZCBxbaiBQKCK0PJJr4FA0yXA0AOygUD00ChkfdGBQKKxOxR804FAhfAzLirUgUAeCimE0NaBQOyTbpkDCYJAQozOJNgYgkDX2/E21iCCQLhrWIzSKIJAVU3CZggqgkDqpQvytiyCQNBinMljL4JAhteTraQwgkD8VCxqzjCCQMzU8VhDiYJAaEKKFUSRgkCI/oPrPJmCQLWfgdMOoYJAqqlF8TqhgkCCLmZlDqmCQP4BDbczqYJA7BqKewixgkCqoFuheRGDQDpI8Vt6GYNAlVtA93Ihg0B+o6jhjCGDQN7i+PtyKYNAVNrqq2sxg0AsVWLqJFKDQHFy8+YnVoNAFoXuprCBg0ARu2dT5YGDQG7Cf1RKg4NA3KglrD/Sg0AlW0mZlPiDQNCrwmf/aIRAI2d6h/5whED4CUrA93iEQGZWElZq2YRA98wkDWrhhEAYTRd4Y+mEQLec9rE18YRAwo7eXGLxhECzvujhNvmEQEj9Jh5b+YRAmyO9qi0BhUBWsx1Bty6FQOMb8Q27MoVA8tf+jNhJhUAAdDJdoGGFQCuCXmSgaYVAXJywrphxhUAAQTEltHOFQAKplWCYeYVAvO73xo+BhUBk7v38JbmGQHFKIuGRKYdAsPjEu5Exh0C2GER1iTmHQCjH3AJgQYdAUNhXHIxBh0DaQZ5ax7GHQErqpjLIuYdAeUNuNcDBh0DStG4KwcmHQCCDVg4a5odA2hX5WBzqh0A= + U6vsr5viYUA2uAwZnGNiQOX3bq39EXBAQx3Og3xCcUAMubYkrCJ4QDHbzeDqcnhAvzIaAMODfkD6draBGlN/QERngVD5sYJAVviMrhjagkA7RgF/MEqGQOrYMOpv4oZAzialuodSikAIKu3Ux3KKQDNUb9cTq4xA - + - 5D+JRMvDukRMgyBF6diBRUp/X0QouZhE7McPR7DNqERo4uVE5n23RMjsfEVANCVFaYGvRKfDhEW6gIFEblOLRCCZ1kRuqQRFGnmQRPXHM0VT6chEH5iiRMdxwkSrZ/JEfLcHR3fKfkQGIFBEGUt4Rp1onkU72cZErMpIRNpuu0QgqRxFQhLkRrs1n0TIXkZEM3+mRAvG+kTM+l5EeIZQRJbHxkW3K6lEek3DROR8M0TJEOlE8huURJT5j0WTQSZGpYeYRIPNfUVR0GpElteJRPmfT0QP0JRET1YARZXFi0SwM9VE06dhRLGvxEQUNwBHhgTgRMYT90RQwZJEiVyFROeCdETnQBFF2re0RHAD80SbUUtElMxaR5Aux0SUIVNGF6YERvlxw0QU/Q1GWnBrRK5WHEWzmDBEF8yDRIlIWkR2tIlFaggTRXwhZkStPOFEdBiURfnDLUd2ujpF1g9dRKz1dkXVLZREh2SgRQEhdkRW/4lEIEsjRhhKgESRT4NEFb0nRQQsfkTFH4NEYmWMRn6fBUXT3NJESR2DRCcnSUUEVpVEZ7oiRSbqpUSllk5Er11vRP6aXETs9GZE9+eZREVv20SwVYJFwasQRRBhd0TMEYJEZUHKRCNXtUVQJElH3RiRRHyeIEXnSLVEnDhXRc9XPkSeCgRGOHg6RMNGn0V/mnpExfqCRJXQm0Rg5IBEuavCRJ/p1UWFyPJEP0b3RHNdVUSSE0xEd2VGRDlcpUTvtwlF/jqoRAOAkkSiPF9EQsCBRL53x0R6WGtEjx2/RBq18kTI2WZEBaFpRG7aOEX7IKZFbCfJREPlwUU+s7FEamOxRHrMqkSIFlxErPObRLdylEQ9rj9Fa0w4RVupU0S7J61Ep/b1RCHauURQfFhESXzPRNpO50Sb/uhET4EkRtMXzURAKqhFC1X2RGQDFEWRvKhEQeRnRCgQvkTXbK1E+1deRAwckESuN09Eo2VURNx73UTMR4lEuwKeRDLwy0Qs9SFFnfRTRDvlykT3dn5FXLDuRPzieERLy+BE8cX1RJvVgkT8rBJG7+fURpbaokQcs45F2n5xRWROfEQx2SBF0s5FRN+UOUY6b6tENvXGRIqbZ0TM1olEa/RERPCoikRiK7hEKGpJRBUpfUTRVgVFMryrRf/miERpVoJEeNecRB6rLUUPCpdEeLhgRIUrWkRj2gJF+fDJRHMWn0ZSjGZEmtyJRMgvO0WonIVEkqmARJIdAUhEd6BEUgSyRsfn4UaajpJFe8+VRiLHhkRjdgVFUtqKRCYkK0UukUBEI5UYRVUPZUX5mc9Eem6fRoLG9kTcrQlFUW+ORKB9c0RKKYhEbdcXRbcHiUSsdoREdwmBRfeRrESFpddEh9VCRs0LuEVxoiVFFFcwRQz9X0Vt6H5EnMRNRBvkuUToVUxFGh9FSSWYtURn5hRFaGlSSIUBvURomqFGxRzHROxjcURiL79EzThzRVKyW0Rxa3pE4qqARRAotkWB/59EPtysRGDbsURQP7BEUx2bRBM3jER4XI9F+NKSRNa7n0SjS2xE4wJ3RHUvi0QxiUVFAN2dRFulQEQt7etFbteVRJRY6EQxuHREJV1VRGH7h0QHpHtEcUm/R+GExEYFIaxEbPx9RNb1n0QgvY9EBsF8RK+AEkUIycFEnLe3RTVxiUTdWqxE8v9+RB2kDEX4HGNEtMcARWAkdESTXadErVQxRiA2TEWDR5FFpa5pRHeJ4UTujAFFG52vRN0kMEWWubpE3nKPRKOSrERHbJVEvyRoRGasp0VF85VGlmWNRG6rMUaONptFwhxzRB3Dl0WO7uZFQ+6JRMy0qURZiahE0FstRWbG1UdceeJEXqvSRscXFEUMYLNGkFthRLdookUzf51FeT3pRJPX7kSjy51EuBGERD7tL0US7WNEbyslRXyrYEQ+rqpEg8aPRKNCjEQm3T5EIXmzRJJRi0Ug48pE2uuJRGoFVEZnSGVF5HqkRIlva0X0v1dEjz28RGJpMEX8olNEPtTnRdki1UZuwsVGSG2nRWheCkXqr2BEaNB9RClvnERsM3lEGNV4RFTzoER3fwVFjIYpRYNGTUYTcb9EVVGwRT2xeETHOApFs/koRUNHs0VB44FF2jtdRGcXuUTOjA1Fk/yLRJ6pb0iaWsNE0HVlRC2U7Eeu1XhHEZ5oRkaGZ0TtFzZFD1cFRZVCokXvorlEZRLkRCI6pUQiyjBGEmQvRVIum0R1x9VFtqGHRK0LLkdgVu9GoKl+RCFhoURqPIhGqF0CRTXQY0R0PdlFtTm5RCwvG0XTA4BEq210RZtUNUUncG9EtfqSRZ9Jp0RYXGNE7XxiRc7g+kQWBxlFTD1ERJFEsUWdgqxEe/cFRcOaskQm56lEt/E7RqI3nEWZD0JFPc+TRd4AKEX8a2hERrJaRISqwERMiNJHmDoxRws26EbgPdNFpC4JRhksGkW+HQ5FkeWoROBZ2kcvxzpHdd32Rt1vCEUzrAhGYfY+RRat/ERMQ5VE4zlyREHEj0RJd55EVpBPRLl7i0R4X9JFMMw5Rcaa3UQlJwlHFQaLRpQ2LEYU/nNF+slVRa377kT7qstEJ97XRMGGqUXIyFZF8iBdRJ1PA0eUknNG0IsLRpjtpETfyGZFyWufRGSDDUVGmh9GgsepRfWMTEV62pxEdXaoRIX4FkYGA5tFU9qARdfozUQAciVFR5OERA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - ELHXgHfAckCA9hJfDcFyQMxptBBvwXJArQdEu0/CckDEUryppsJyQFnx24PkwnJA825bdDvDckDkudRSxMRyQPgdkVtaxXJAWgHEdUPSckCsM/7E29JyQCJjzMp303JALPNYYs7TckAGzFTszt9yQBa0NCG44HJABo7MElHickBvZLhFj+JyQPTTjQsl43JAoN9OWMHvckBEsdljyfFyQMTT60y383JAfqzgIML/ckDcb/uDYgBzQNjc/4v4AHNA7kqV3iMBc0D0G6DVjAFzQERbQx/YAXNAupl9vTsCc0C9A2A8zwJzQGpdJrH6A3NAlm9hLQsSc0DChsu+vBJzQOZDtnz5E3NAul4Y0wUUc0CeUP9ReB9zQPSxFp2kIHNAkgNWIzkhc0BWhX8+ZSFzQJ59M4t8InNArizwZssic0DWXQCZDyNzQMr6mKk6JHNAvOirIs8kc0CDnljTRzFzQDCbqLMMM3NA/aWwv6Mzc0DInRMIODRzQFIlO3fjQHNAJS1iz3hBc0BKUeCbekRzQAA6PtoPUnNAnANwOkJTc0Czh4g8pFNzQElBNs/jU3NA0iv/73hUc0Cav0lVhVRzQLR6/GuLYHNA1HeSdzpjc0CUCbk0UnJzQHJqLPFkcnNAE0FOvrZ0c0CCWKz2S3VzQCQmdPd4gHNAVC22XKWAc0CGwqtEDYFzQMTsSP7HgXNARJmxBl2Cc0BpRSVRqIJzQPk9ERYSg3NAlObtYoaQc0D2xQ4eTZJzQOQwCIrMk3NAArPkzGKUc0BKi02T95RzQMKo9924oHNAB4dYSuOgc0BAiWwcWqJzQFJsdpoFpXNAICmCy9Swc0CkCTBffbFzQGVzr9q3s3NA0EynNAy0c0Do4Cbk98BzQAqccAfRwnNAjZaL+ibDc0CspI6319FzQJUDkIc003NA5tp6LVHTc0Dw0ovS99NzQDb+Ghnj1HNAfqfJvznhc0BQuVfX8ORzQKWl8tJn8nNAZv4KNv7yc0DcmQQCNvRzQOeH0v14AXRAILyn16UBdEBsj/GJewR0QL0GMYCIEXRAmC4u/E0TdED7YrTZTCB0QKRmgheRIHRAdrwX1bghdEDKLS23uSR0QGjDWM+8MnRALO77MdYydEAAEfxg5jJ0QCzi2J97T3RAXqtcYPhUdECmO95VjFV0QOUIEai4YHRAHMsCEwhidECSpKOcTWR0QJ2nEk0icHRAAiq5KUFxdEBzqS5lyHF0QFbMCbc5c3RAljuTt6J0dEBQ48EeN3V0QHZiPYD4gHRAXEPWfx+BdEDKQpifToF0QBMkn2kWkHRAu087d2qQdEA4q76NU5N0QAo3UyPQoHRANEr/W7iidEC4J2JC0aJ0QP7b+z8Qo3RAqMedyGSldEA4MQdtCrB0QMokyYzesnRATnMZLeTAdECvkuxe+sB0QBLLGvF3wXRAeKnkm+nBdEDQ5fFbDcN0QPzSz6m4xHRAZuGghc7UdEBabrSIuOB0QL1aAUi54XRAvmWzAf/hdECb2WiZT+V0QDqRJxyN83RARnboNc4AdUAY4l/7YgF1QCNukA2bA3VA/B6V6DsSdUCzaOztIxR1QGwFP8TMNXVAPLVFKgBQdUA4rydRgVF1QAcaJdQmUnVAMPPOC0xUdUA+MUw0eFV1QI5j1JU4YXVAICFTJnZydUCA7ihajXR1QLSdHWZ5gXVA6e4o3a2BdUDmXBQ7m4R1QGGqPlKMkHVA0p9Cb7yRdUBuWCu+PJN1QLKrzIc9mHVAHmGziNufdUDsJgM9uaF1QFRxsXd+r3VAClqUqZWwdUA6Jqc8fbN1QLL5DbnEtHVA4NaPrNDAdUAYg88u+MF1QLAHS0rM03VAJQP2IeXfdUDGX09EEOF1QEyxEukH4nVAw2yVhTnldUDUw9JGa/J1QO/lS4pIAnZArLC+ctADdkBBesJ/DBZ2QP3PhSeIInZA7v9tlZsjdkDUlXCEkCR2QK5mnwelK3ZAKU8nmR8xdkDqip/WnTR2QEUdMNsdQXZA47CQrHpEdkB2ZP2mx1B2QJDwHNgRUXZAx1W5E4dUdkASDy10zVR2QJocbQUiYXZA/Wk6G1JjdkCg21m52mR2QG7KprBognZAuqPl2BGDdkAPkJWec5N2QJWExK67k3ZAXb4SgsGydkA2HzY5DbR2QFo6SuK+wHZA2IxYJs/OdkBi+HWUwdB2QMAxEfLy4XZAzhZKHZHzdkBSM2ldMgJ3QEuLoVgBEndAc8zS7A0id0DoWGu+cSJ3QOFe9hsNNXdA47MLVZ1Bd0CoZT40G0V3QMqtM4xLUXdAaJr5tJJRd0A0tkQAKVV3QHmk3DKQYXdAJQa0TZFjd0AQVowbOmV3QIklwPWYa3dAKk+sEShvd0A2J7FfkHR3QDfz0j15gndAu3Dpb3yDd0C8456mCZJ3QBp55dWJk3dAhnQyjEyUd0CYnL4dnrR3QNZt+6nh0HdA4pG8xYzWd0D+mMME6+B3QAiumDhP8ndA1yiHFfgBeEAOXTu8TRV4QNIM6a9uInhAYlyjc4ojeEBIq/IweTJ4QF/H8IQMQnhAFllQG3tFeECuXHwky1F4QKwpA3+IVXhA1eVwLvlgeECSWVI3uGF4QERO1k24YnhA6ZF/oShjeEBR/y86tXF4QEieGPU4dHhAKP8Bn4t0eECcY5+j2XR4QMB5K1ulgXhAxrNOwZmEeECWWhCHUI94QJDYyUGZkXhA7gVmgqeUeEBEgRRTuKR4QAsmHFTOwHhAKmJH+PTBeEA0Z2PiBcV4QFac7LO31HhAcCDTzAH0eEDeKkW9jPV4QM5rKzANBHlAxsd2NJkFeUDFNI4Evw15QByGSPwoOHlAKWsWmPlCeUAyQ+lM4FB5QMVj7mTMVHlAJdhtVedgeUCq2KoJ22R5QJZNYirAsnlAphw2AtDCeUBNsDjmQtR5QAhjTcjM1XlA7hKzb0/keUB2iI8l+QV6QCBlU9U9I3pAgtlDPQw1ekD3hMDNGkV6QJ5qO5UpVXpAYufGPItyekDqaxAzCJ16QAOMK9wMtnpAGAT0ES/DekCYHRz+GcZ6QOuZXDPX03pANBUQTePXekD16JZbNe56QPQpJzfY83pA2BjhzSgOe0DeQ93ITBV7QKhFWGBbJXtATkEB7SAte0CqECsNUzB7QCYwSqJ6MntA/EVT/sMze0ByGTKo6pB7QPtT3CEjlXtAtylZZ3nGe0CyFWvjUNJ7QMzKU3at03tATpf235bxe0D4eCldjPV7QHnqohqQAXxALnLBudkBfEBCKPozmQV8QDMj+N+LEXxACHxIWdIRfECivBlQvxp8QA/nT9DIHnxAKB6uE81BfEBOd2zB2lF8QLHrxjsPYnxAqLy60StxfECLXdKyBnN8QKrpVkDBsnxABIM1b8vVfECIB5WpV+J8QAjQzkUV8nxArkV801byfEAscfAVAgJ9QEBqbnBLAn1AMi6DXkYSfUDp9psDKh19QLX350Y9In1ABFWlSoEifUC43hoDoTF9QColN0GWhX1ADbuQai3DfUDSVR7oaeB9QPZGpvXX4n1AwMLyUZD1fUAWf8iggQJ+QIZ97ow8L35A1GRlv5SKfkA63qhFUvR+QCRMPa4OM39AEMLXll04f0Bw4UCWt3F/QMqQOeCjg39Al7YI0WKRf0Caa0ak3ZF/QGidV3XmmX9A+jFtSV2hf0CjOCKI56R/QNpm/ttUsX9AG0Jn7pXdf0C2Tp+61eJ/QNRXCVQu6H9AAyADc33tf0CgyJWI1vJ/QMRDKJox+H9AxIm4qPwSgEDkrirf7SmAQDv8HQKjOoBA1WBDvSk8gEDkKS8l2D6AQAQkiHSAQYBAODPy0+5IgEBdvLILvEyAQNYH6mjnUIBAfmzEdxRRgEBEohnw5FiAQHZ+c+8OWYBAoHc08CFZgECtXaw04WCAQKE4o9sOYYBADKbwjitvgEBqKGEkKXeAQNxSgEMof4BAZ/2p3B2PgEA3MiztbJGAQCjEZnYZlIBAgvNlanSZgEDQ+k6HhqmAQEEVNWZSwYBArr5thlPJgED42nrPJNGAQMY2AZxM0YBAYtx51krZgEBkUq59mdmAQLTw/cci3IBAYE2OSUbcgEDKXNjJROGAQHFJjhRM74BA2pm+ID3zgEAEKLJQ7viAQGGH/Xo//4BA7gJ3YT8HgUDO3cfvPA+BQGUsnsA0H4FAUp95wtsugUBMjtH07y+BQNzLymSIMYFAbvz0zroxgUD1cESbDzSBQHFagjwxNIFAjNml3dI0gUAcymK/uzaBQMTITInaNoFA9oeI0X83gUDiT3kujzmBQHoDrYIsOoFAyrOW+OZ2gUDKKq8zk3mBQAuFyethf4FAHR6FrFWPgUA50QtV56GBQN0Yg/htqIFAteuB0e6pgUBPVfNFSq+BQJC61FF+0YFAcmZ/BX/TgUCyBVg5K9SBQJ7KCPXR1oFAUPNlOgQJgkD0FDLC2BiCQCP1jm/WIIJAO4J+FdIogkCNSQdwCSqCQCqYe0u2LIJA0lzi/aQwgkBcwFWx0DCCQAKgyDpDiYJAXCA5AESRgkDMBjSfPJmCQFPTBhwPoYJADAJcBTuhgkBS87ptC6mCQEEXaOQzqYJApEZHnwixgkCTz7cNrvmCQKLFcYN5EYNA6leZj3oZg0CVNP7wciGDQL1cL3twKYNAlRGsQWkxg0CaZyBWJVKDQKTL96yxgYNAWBDH0nn2g0DqpoKhlTKEQPSOXoP/aIRACvdI+P1whEAEDgIj+HiEQLL/n7r5gIRAgJl3T2rZhED6Y+wFauGEQIlnZ+di6YRAqO1VfH3phEDqhTv+NfGEQNJ6z8tj8YRATA/v/zL5hEBF28rZWfmEQOxglHEuAYVA/l95w7YuhUAbQ97zuzKFQCx/Bq6gYYVAOuonFKFphUA5N1somXGFQNYJAHuyc4VA+nmUuZd5hUB1JB3aJrmGQDhvUbEeyYZAOsqB95Aph0BVmHQFkjGHQFMqO0CKOYdAHLLL5lxBh0CeCyx+iEGHQAXLxz/HsYdATdXRmcW5h0C+c3ThvsGHQKrq/hDAyYdABmb/xhnmh0Bw93nfI+6HQA== - - - - - - N6FmRMmSkEQJZjdFPC6JRCTm1EQ0Kq9Eu2nNRW+lsUQKAchEJsYLR27LqURZ4ulEBKyKRD5nL0VC0sFEH4ipRYWZGkWdEJ9EZ+eVRIQih0XVORBFro0TRcW+nERW9zZFHZZsRLlT0kSaoIZEyfFpRGtXA0VlEjJHXvQMRdXiYkben65Fgq2sRfpgvETZDkBFl+gKR6bzQEVpqABFugvYRLswpEQ33WtEALKkRcF7FUUBpspEPlWKRGJGnUSg2PREJXjhRRqgI0YzL5lEB+yzRJOGeEXNcItEEujqROV64UR1JAZFsuczRfemqUTNM3hEo3/fRCa5/0Q/vARH56LBRLFR7EQ5LJJE7iSKRNL4i0QnrdNEFugsRf2bdEf3ndhE3dnDRPEye0bFAUVGOU6IRI5e5EXwpEtFZEBVRGQOsESiy4ZFuFQjRZaFrUTEPqdF2uUtR7jNJUWtU05F2DzGRFvz7ESLtp5FoRIPRmR7i0TFyY1EAmxPRHQxEkWTJqRGFzwKRQ/cgkQ/MepEyUNtRbJpj0Rab45EK/oxRXRxokS93bxE3gN7RMLGqESvp3pE5bmeRGUHrETUcLhF96QWRaHowEQ5C6dFwFpVR49bYURFcIFEl1GFRDiNAkWTC0xFwjRHREPd+0Wsx7tF+9iMRIgXdURz68dEVQISRVb2xUW5+jBFTX6XRCxHDEVnmW5EfDqsRMJHW0QZe/ZEA6aCRGLpqETNpRVFM5+yRDKhgUS7U1NFdZNqReex70SMd/xFc4iaRFiZ+kQuAOZEoYmsRA9LNUXj00VFUuWXRE0ArESE9NNEEw3WRAxqE0URhC5FzJABRUB9N0Zscx5F+N3VRcVhx0SeoJVEWG6rRHSef0QIasVEMeuDRKkPA0XEDoBEyKSURPWpoESiR59EOPmAROrEEEVuPZVE+mVvRA1st0TXAXxFXZi4RFlBx0RoA49FRQomRezDwESbw4VE20b2RJmdHEYKV25Ec6vlRpyZ80RPh6hFl+OlRchvjkRK/RVF4/2RRKWLWEapcpBEMcchRcunLUXh54lEwO3DRBvAZkR1CfZE1PEgRQZRjkXkvKlEVI0mRZK7oUS4UbBE6olIRXMQAkXioaZGcriART3jh0RgpgVIpkbrRmQZ5kZKiMhFKpijRvSfEkVMPmpFFXkhRY+ygkS73I5E5M+HRTa4k0T07ARFKPKmRmXdb0Q/mlVFgyGtRPhvfkTU2KREiF21RGuylkRzKaREz7CLRPkXhUTRnoRFrsqTRGqFnkSTt/1ElKBnRvZXt0XGuyhFA4JJReKPe0V39ZFE3Ue8REQXj0T34CtF0RRmSeFDDEUIxg9FRdpvSKXCxUSxpAxFaXO/RkRQqkRauf1EQ6ydRGIO0kSS7JNE7VODRWkeD0ZRXKhE5oHTROOJhUTz6oFEvxubRP/AhkSF3Z1FMCuRRH6w60Tgdm5F9F6WRFUTE0YP3RNFUrnpRJ3O/0TnHmxEJh7xR4Qn80Yw3olFm62BRN8sG0VlCQpGdPXlRIcE2ESJiJNEl4ccRUp+JEU3P+JED6+wRJ+RVkbTN2dFoGWLRTr830RqgF1FZ4j2RIMNoUT9r9RExKPERGZ3WkRjOIZEbZazRWmQuEYuGcBEod5eRmuawkVjhoBExFjERal0vESqgohEFpkGRqTjnURttuZEltaJRJTcxEQrBRBF6ajDROvYAkhkGD5F/gMNR1LKGkWd8cVGjX6XRRMVs0UTy9NEOEwxRZl0r0S/cnBEde+hRO3rEkXFo7VEMDEVRTRxp0RzeZxENkGkRIqqi0QZ5ftE0E+iRC/lm0VI9IdE6QxQRqCF/ETHLNREKxNzRTvrnEQteQdFInrIRfjR1kYV1HtGlnq/RWJOKUVZBsdEoDaHRIX6jUQmtIdE85UGRawHzETMoKhE3XPRRFbyqUQvxmhFKfWARrFkn0RB5L9FbMOfRBdjcEQ3vJxEOIHVRJfot0TL045E2xwgRR+Oy0WkGYlFp6V4RKnlA0VDA4pIHaoCSJ8ZZ0Qkz5dHhAGRRvRjMUUmAYdE2qSURDz9sEWKAMxEI57FRB0ubEQ/1C5GVnZBRXMmnUSjN91FcmQTR6h8gET9qgFH+KngRJ5U/kRIUzlGyVOhRdiypETNk6hFaTlERQp0gEQCarBE4QEmRehCKkVuFIBEGxjIRUJZLEV/LTtFYE2sRAcKEkVXQ4FF9eL0RI/zl0W6lblEFZKjREH4bkaaf4lFJAyhRdhgIUUt+EVFxG59RM7flEQ51uNHRm9DR6cgAUeF4ttF5mISRv+ICEXIHUVFESDGRIdEzERE9+9Hl/dmR4m/A0ficO1FM8lFRTl71kQFvoREuJZ/RH4RfESUy+JFQhwDRYEcz0QV1YVEdBEXR+rliUbI+zhGGoycRKU6mkXW80pF3qMFRWZbikQUm8RE9GTGRc3F0kThSxhH6c6ERjnRI0ZctqpEQpWMRW3kA0VBk3pE43xBRnTayEUtvpBFHjm5RJRLykThiwpGJXmnRTuiQUXv5q9ECRL6RLnacUQ= - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - + + - - - - - - e/ZWqw/BckD+Jk8dcMFyQCQtWP9OwnJA0rNvXabCckC+M8IF58JyQA3DspY7w3JA/D2U6sXEckCISsxsWsVyQN9TzElZznJAiIKBu0PSckCMzewYP9NyQFK02tB303JAXR0VAM/TckBv1UVazd9yQJmQEhe34HJARPXAPE3hckBocsqaUOJyQCFOTnSO4nJAc5VZJrrjckCoU8KVyvFyQMBt5Pm283JAMEwCnKH0ckCB7wyVwf9yQILood74AHNAXjGbcyYBc0DMNTBBSwFzQMh5cleNAXNAdvU2DNACc0AeagPk+gNzQFmAlF0NEnNAYoxIA70Sc0AQRmnxXxNzQNy97toEFHNACqhAbHsfc0CIALqJpCBzQPKa7II5IXNAiGvhhGchc0D8KVfyeSJzQI2eSpkPI3NAz8Atms8kc0Bc77SMRjFzQMNmLvFYMXNAL89nzyIyc0AQp9gyDTNzQKCtkpagM3NALkSqfTc0c0A5iVFpzTRzQKaxqCDkQHNAxuJV33lBc0BmLo70uUJzQOTVRP56RHNA/gS8XppRc0D70QibQlNzQPSmBHKkU3NAifsrLHhUc0A2D2x5hVRzQNv2qviLYHNAEsFnMzljc0ASoc/+p3JzQIzwKqG2dHNAqpRevUt1c0BRDYsJeYBzQKRsHCmkgHNAOgDXlgyBc0Bw7ma5yIFzQB+F10FdgnNAiHABCKeCc0AC07KIEoNzQFtp6saHkHNAM3fzWk2Sc0BhXA/qy5NzQPqJCEv4lHNAdApTU7igc0BcHGLrWqJzQOyn5MAFpXNAeIUlw36xc0BDXh2EtrNzQDboIPgNtHNAmkN5kffAc0DGLTVR0MJzQNsOaecmw3NAhLX0HtfRc0BEDbcTNdNzQHuIZc5R03NAbJm+pfbTc0AXi1td4tRzQJCCheQ44XNA6thJ+mThc0C+M9ZQZ/JzQPLfk9g39HNAIUJjq04AdEAOb/dXeQF0QG4FTQKlAXRABNyttIoRdECEJRyEbxJ0QAYlgnhNE3RAkPjSyOMTdEAmZvCPjiB0QLK9Dze5IXRAH1U3RVMwdEB+vdntujJ0QEwB8RzjMnRAMf+p8FRAdEAmPPmzx0F0QHgPhVdwT3RA7Tm0APhUdEB6Mqiyi1V0QCK1sSC4YHRAFGJc+ghidEBI3ExNT2R0QOY51JYicHRAzvmVREFxdED7f1ozOXN0QPV/y0o3dXRAZxHygviAdEDC2ztkToF0QCIsMvlJgnRAu4M2FhaQdEAuhJk9oqB0QJrsXlnQoHRASgbs4TahdED4yhpAuaJ0QMYv/VDRonRAPi7g+Q+jdEC+YXSqY6V0QCgPUeAKsHRAMJWnNk2wdECDx1vm37J0QD4NEILhwHRARgLPTHjBdEAMeMVG7MF0QDr8ewIPw3RAMtrPd7jEdECTuRAYnMh0QPhIjMr8znRAGsmwxDzTdEDiQj9P4tN0QMBe4Pl31HRAZSF/D9HUdEAp4W+aJeF0QOS4r4G44XRAylNaav/hdEAiwFWrjPN0QMgjZItjAXVAFgqMWVwCdUCRhoJ+PBJ1QFay5BwkFHVAoOTHjcw1dUD2AhFus0F1QCUsXeqBUXVAAkLxQydSdUC0nMLaTFR1QCaHLCV3VXVAmxJ9rwtgdUDuza4MOWF1QJyhp8TyYXVA3n2o8+JxdUBo72g9d3J1QJTSADyNdHVAfVnR5HeBdUBKA6pPrYF1QC8Z6Uymg3VAGOJJEJuEdUCYK6AHi5B1QLAgn4S7kXVAtlp7IT6YdUDkJAMjmJ11QCF10CRKo3VAVP4BeX6vdUAyU3xblbB1QI57jag1s3VAiGY2zX2zdUCwWjOZY8F1QCz5aND5wXVAWOp9oMzTdUBcVMcw5d91QI75ZeYN4XVAcA8YgAjidUBsu6cUSAJ2QNwdIWHRA3ZAZEY4LwwWdkC+tcufkCR2QA+7tZtKK3ZA/seo5R8xdkACvmWDnDR2QH/lvt8cQXZACBX9Ow9CdkAy8mXreUR2QKyfEkT7TnZAC3BZ5MlQdkC8g5pUElF2QMJgWOTNVHZA9gFyHhBhdkAUVF2VH2F2QPLosspNYnZAkn8hcsxidkCT/wkoUmN2QOkRK3TaZHZAIuZFa8pydkCUxopcZoJ2QFq+dO0Rg3ZAbOL07JCDdkDqDXKKvJN2QAeof0i6sHZA1NW5McKydkBqz0W2DLR2QEgteUKwtHZAgFO2ncHAdkBkUS31zs52QHrPmAF/0HZAGDVrn73QdkD0+aka9OF2QMEXksyR83ZAcsPTRU/0dkDKjeegNAJ3QE7bJpcBEndAD5SL/w4id0DPg2rUuSR3QKG+4kMNNXdAp1mszJxBd0DCNUgcsEF3QMj6K0MbRXdAXy0YzEpRd0B5/APfklF3QG+KVNArVXdAuLkp/49hd0AsRys1J293QC57+4OSdHdA8HmFJXiCd0A64ueXfIN3QHDVI54KkndAPdyg5IiTd0CpsUiqTJR3QHJho5e3ondAjIUi8Zm0d0DspANJ7eB3QE/BCG1R8ndA0n1ug+oCeEAc8vGQTRV4QBSV/RFvInhAyAYdTKYkeEAPvsYADEJ4QF7B8oh6RXhA4H23I8pReECoHhLDh1V4QFKjd9f5YHhAbuAVqrZheECE6BYruWJ4QD+xg5wnY3hA+Ir0Tv9zeECYPwHEGHR4QCAFXMYndHhArzzGj4t0eEAANSW2unR4QEiVmTTHdHhAKRVM9/F0eEAACDLoIXV4QELB47elgXhA1J4Vn5mEeEDSbc6ymJF4QGorNJanlHhAlrKOVLmkeEANkkZSzcB4QND+Oly31HhAnPm+/AH0eEDckNsmjPV4QNIidxqaBXlA0Bt53hwTeUDAYwmzzFR5QM9ui7rpYHlAuplDgtlkeUAKVLP6RnN5QIgRF6jAsnlAjNnZcELUeUAiv7Suy9V5QEJyugtQ5HlA4gV6cfoFekCopnqL2yZ6QMD3Qh0MNXpA9wRSfBpFekBOoPBVJ1V6QChJDYSMcnpAlUk7O1WbekBwIqX6Bp16QMEBQyAzrHpAraQGwAy2ekDkvG/aK8N6QO79/GwbxnpAhV74QeLXekAeAnNJOd16QAFokws27npATimTMNjzekDVnRA1dQN7QLBzONQqDntADAPvb0wVe0D265waWiV7QM/5DbIfLXtAQl4AVlQwe0DZxBmFejJ7QBpldbXEN3tA3elo1FtSe0Dtx/fLI5V7QKpPHQck0ntAMweJ31rie0CQK7GgK+x7QBS13f6W8XtArhDAPoz1e0DmZ/PYkgF8QKtwCd/ZAXxAtAO/l/QBfEDahKrEmQV8QEZKwGKIEXxANlOLdNERfEAvd9OoxSJ8QP8XvbiVLXxAqGegmM1BfEDZISloSVx8QKnG1BC0b3xAFCVNGStxfEB3ljEOBHN8QCFrypm/snxAppJt6svVfEAiIXm3V+J8QOLMpTcV8nxAXBVmaFXyfEB1DqGuAQJ9QHidGURLAn1Ay67PrwUDfUDCnoAUAhJ9QPziJSJEEn1AmYL7ZikdfUDvgU96PiJ9QJh+jZGBIn1AE69nzqQtfUCkHuv+oDF9QDLzwqlsUX1ACtHjxyvDfUB8ZeKo1+J9QDSkN66Q9X1Aep83JD0vfkAqoBqs1+9+QMqvM/UPM39AmBJp67hxf0A/Mt7ls4F/QFx4NCNjkX9A5pC7+96Rf0BZWM4dlJN/QITNHfblmX9A+f/ZuF6hf0DWqQMT56R/QC94In1XsX9A9pUu4JXdf0B6bb0F1eJ/QJ2QxXYt6H9AtKGk2nXtf0Bc/Ssj0vJ/QDKeEADtKYBAoVGKEyYugECapb/WKTKAQCi3hQb+OIBAzmn8WCo8gECYyHK82D6AQB825d/uSIBAJ5CykuZQgECf1sL1E1GAQGogVk4OWYBA2N3WPh1ZgEB0f+ZHKm+AQAgly5kej4BAouqSwWyRgEAxg4FmGZSAQB6p3/i6loBAr0eGbiWXgEAPW3U8hqmAQPpN0Jg0wYBAIm/vSVLBgEB/4lxdU8mAQDZVCyMs0YBAwrb+eUzRgEAnNvEzYNGAQOTxrI9K2YBAbCl0g5nZgECSteN3RdyAQIj5Dw7t3oBAw0FNsEThgEDBb9ST9+iAQOBBtgZF6YBAApXnoErvgEDq8BXrPPOAQJ7IcKc//4BAvb1H9z4HgUAQoG7qOw+BQOInDhI0H4FAL2iCkzIngUBWvIKs2y6BQOlD7RuIMYFAsPFWj70xgUDYGgFQDTSBQFabxzwzNIFAoLEUVdM0gUA10tXnuTaBQI8b0mnbNoFA8B9niX83gUCge3LphjmBQNz42CgvOoFAQ89vI5BBgUCU/pB+53aBQOig7NyTeYFAcLuL61SPgUBG4X+eVJeBQFQSbWhSn4FA7IobvuehgUAWkaPObaiBQCyBa9TtqYFAjEM3cEqvgUCSL1Q5BLKBQMzenpR+0YFApvQcQ37TgUBYb3dGK9SBQDaFI1bQ1oFAk2lFHAMJgkCCmS+E2BiCQFxFBP7WIIJAKOQJrtEogkBoWZKPCCqCQN2xrpGkMIJADlZW9glqgkC+29AZL36CQLH2JkNDiYJAgdOMp0ORgkCABk+kPJmCQJpoN/EOoYJAeQ2mKzqhgkBYNGE4DamCQCBf+Y41qYJARwQDywaxgkAW1TxQeRGDQIp/0eF5GYNA8nzsoXIhg0CgLVFQiiGDQIYfyUtwKYNA+mylpWkxg0A7lPZdJlKDQGos1HixgYNAnu2AO+SBg0Di+gP7k/iDQMDrSij/aIRAFlkP7f9whEBYKeos93iEQMboYw5q2YRAIubIgWrhhEDeDrQAY+mEQPZ7TWk28YRA09FCZ2PxhEBi8bWfNfmEQKhRBwtb+YRAc3p9mrcuhUBbP/RkvjaFQLJq1oGgYYVAYlESkaBphUBKcwXWmHGFQPB0m4KZeYVADHQZWia5hkBxo2TkkCmHQP6WdNKRMYdASjh/l4k5h0DYkkUCXEGHQCiJjIOHQYdAUI80+8exh0BqtUiex7mHQP+WGIG/wYdABuGoh8HJh0A= - - - - - - uPOwRKtnVEXb54xEMc/FRFKPbERaMbRF9DMKRajKoURhySlFiQ8IRzXwZ0Rub4hEIPKGRGXIDkWW4cBEur1rRFeGVkWyAUhFk2mIRJ0gNkVje5tEp1zvRDKbKEWnSyVFLiC/RFqd2kSVE81E7ZvERFywKUfjKKREt8UORjHGwETI2JBFEC7bRCbD3ESjUgFHw2SoRKbOF0VDxdtE9wF5ReP9CEUeRK9ESj+4RCujgUTQyINEw5fNRNGsf0T4gcpEl7ejRdHZfURC6CtG5RC0REdiwkStsjBF6HaRRAxhh0RXXtdEoj0HRcklc0TLELVEzrkaRYSa5Ub8DvBEE2gMReS7AkUa64tEoCXIRBOzAUXHhRJFQFBLR4QWmURJ3IZGmkcbRnSVCEbh9zlFlpeVRNHLsEUnkhZF6BIARbqhjkXxJChHki4ZRcIrM0WdypZEYpDMRN8UkUV+zRNG37lhREbjekQt/ANFjGuVRLw5ZUYVP9FEnZ2nRIOyf0Szx0BFAyiFROyyu0QjMdxEsmOCRLWrjERngmxEab2XRE0so0RMX3hESGoTRWZnjESZyK1FTr1XRdhw4kRTKQFGg5BCR7tRpESe6JlEFgk/Rd9g00U6IINEESW5RSwCj0QMDMRE4TZ/RAxDn0T45cFFmES9RBXiiETR+sdEqnZ1RHo2ckQGZaJEkDmIREgloEQBktBECcp1RQaUs0RglfhEMYpxRK76q0SR13xE/smQRMWVz0SnLUFF/DCURfOZ0kWAQONE6ifHRDkgxEQKuAlFJ65ORakjtEQ5B4JEo88+RSzAD0X05FBF1zujRA05EUXE9JlEBD53RGxU90QLNk5G+YL5RKOxqkUgTulEH/wJReILo0QV+6pETeu6RXZZl0W+xKFEbyJuRPWPoUSXgIhEciviRM01ckTvvrFEm/vIRHA7j0R9vwNFaeYxRSqIi0VLQghFlrL2RPEg9UU/3LJEK5P6Rjytt0RwYbNFPGOCRPMIXkWPrIhEUPycRCfqVEWqi4ZGwuFwRLgtdUQ7hKdElL21RBr98kQptyZFRrKURL1ShERCFw9F276iRJ8/2kTA6rlERafwRLCaq0VVoHFEBW6dRMjZ6UQjk6FEau2MRABi8kSbtA5FKOOKRO7c9ESeaYVGluB2RceGfkSVJfFHgXzkRtGWAUbo3sxGaJmVRep1p0a7q6lEbKdqRX/WoEWLCWpEJN6PRN/a4EZv4ehErlAwRZtGx0RT9HpEdxFwREW/iUR4SqBERRipRPt49UQiCGNFuMilRGFksUQs3DBGriLGRZvUH0XI9BFFnz49RSFKtkSMLJpE2W3IRHCsikTPkJhE+BNiSQLRnEXvhtVEawPORFT+zUQHKS9FV6BoSGaSh0QsLLxGxyK8RCKo/0SkLAxF3n+ZRUr/MUa0Ig1F8FNqREpO0UUViZ1ELhvoREnKcUQ81FlFKU76RUFqKEXowANF1fK0RLgXikQ57QJIQBUKR5CYSEWm5uFEis7LRPzOCkXQS5JEeXDORWuBm0T0qgNFJIM6RUTtq0SpEd1ED3bNRGeMa0SB/LtElA9YRvyaTEVlMl9F+VbBRKEWb0Um169EvOyrRNeEM0ViZh1Fh7x5RMelokQRMstFWmbSRvHl50QwhIRGFS5cReik0kVvQZpEOJS4RTZHlkQ62mpEhdrHReGpjkQu2ZZE+OexRFqrlERFIBhFQcuLRIq+8kf5ihpFY8jrRjyFDEWB1MBG8v2SRL/gwEQRL31FwESNRRCVpERB8khFekWCRI+0r0T7w5xEauyQRI3yr0SPoRVF3kx8RKeqb0SE5pZEcn2uRTmg6kTS4mNGVmjPRLxxoESBDoxEy3GVRRgGekTEaTFF9/uqRQc9h0aL5wZG5/hCRVkrJkUxsoJEStr1RNUtpkRBIMREUj/JRBwPikShMOpEV84QRUQ5nkamRbNFI9MiRevAB0WHoUJFPrqVRRlTpkV4Fb5EVCWJRKPJ00Sxy6xEnGxrSNDh4UerxfZE3+l8R1DlWkWNm2ZGrEg4RYS9d0SrBIhEDCt8RaWgnERm2olEE8CNRHe9h0QInhtGJbVVRTqe8kS+LehFJvTORCqNHUeI18VGjH3nRG4Em0TuqRdGJMxlRc5plES+7YpFjABDRc7v7UTP3IRE6/+JRIcfb0UU7v5Ea8O7RdtKskRDiolEYeFeRUZnD0UHTrFEDPAfRVpzXUQkMhFF+JCIRA742URYyKVEZPSxRHesX0Y1j6VF/p1xRWkh+kRawqFE56+dRHXKiURxIOxHf3R2R00iEUdfkIlFJdvqRYBsAkVe8jJFlzm2RDX52Ed4QzNHBp7mRt+N6ERYeuFF7vwyRcAJ6UShXpFEwqwARUhmhEThd/1FzQv7RPE01UQKiS9H7MqWRuNnREYqf49FunvORc697USxQ/tEOu0nRYoF3kTAqwJH/H1kRu5oLkbX93BFKbD1RDc3XkacQs5FpiqGRYP/lUTh7PJEwOTXRa+9jkV2zXRF2tnJRA== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + - - - - - - Dsor/w3BckChx9Swb8FyQJCruIlQwnJAbn/c2KPCckDSEWKdOsNyQNWZEd3ExHJAmGcQnlvFckAMBT+oWc5yQB1DJbZD0nJAuawtB2DSckBQ9rMkd9NyQPlekbgM1HJAbEvhhs7fckCyY1Bct+ByQFKz8YlP4XJAbnSBeVHickC2gzVdjuJyQK3JB2sh43JAToNhXTrxckBZxHNoyfFyQGqrFYq483JAFmCuuA70ckDXhdqZofRyQArdpjlkAHNAwrOvJPkAc0CjxPScJgFzQOjFjkxNAXNA2JuciIwBc0CGQ+bwzwJzQGI1XLr6A3NA9AudugkSc0BYvht+dRJzQJCVS2C8EnNAyaZw6vkTc0Bgl32bSxRzQKQjFQ95H3NAak5/nDogc0BKRgnYoyBzQNo7LmE5IXNAltJGHmQhc0Bk99OT5SFzQCRp3oN6InNAFBNsyA8jc0C2EQzCziRzQGZO0HZGMXNAhmKpNQszc0Aq2lPqODRzQGvAYszNNHNAhOy1/+NAc0Da39AteEFzQMR3xJAlQnNASCmln3pEc0AufLCtmVFzQMA44XVDU3NAwuUVuKRTc0Aey71yhVRzQOBvZ5OMYHNANqdJ8jljc0AgO41eUXJzQEK5yXhocnNAzYYbrbh0c0Af5VyPSnVzQLDUxyt5gHNAFGUmSQyBc0ClOrvVyoFzQPhjx4VbgnNASG6MjaeCc0AMrlTfEoNzQDqUihmHkHNAavJkfE2Sc0Bk9uNt95JzQNnO7SrNk3NAfu4NJ2OUc0AymCe895RzQCo8aoO4oHNAiAuIleCgc0Dwo6VVTKFzQDXN8AtbonNAASBlYuaic0C2YHF3BKVzQNakGrw0sXNA3e5p2bazc0D6MGgmDLRzQFBRdi7Qv3NA4nW63fjAc0AmKfWmjcFzQOJGeIPPwnNA1h729ibDc0DgCumS1tFzQC29h2Dd0nNAw2UusTTTc0DsMAX94dRzQPQqldek4HNANfMrgzjhc0ANzHahEvJzQMzc2CE39HNAFRM/Go70c0BOrg8ATgB0QHpbjoXkAHRAPRJE13gBdECg8tLTogF0QC1cRYFNE3RAk9AURkwgdEB8hdyVuCF0QJrhH1RSMHRAkuq2QrkydEAwfT0/9lR0QAwhdCKLVXRAqCZjNLhgdED2Hn9tCGJ0QNStbM1PZHRA695s1iFwdEBel52pQXF0QNgdMTQ6c3RA/pW1uaJ0dEBO7wGUOHV0QGTfawX6gHRAYBpZbk6BdEA6hMz9SIJ0QIT3EW0WkHRAdmsAZ2yQdED8qHga0KB0QDRmecY4oXRAqlFbhLmidEAOWYEO0qJ0QNRuxNkPo3RAHv/AimWjdED+hlGvC7B0QHbsnNVksnRA0tlp+eLAdEDaSYEVeMF0QJ7Tq08Ow3RAY2e7/yHDdEDakaZ3t8R0QF8WcrX7znRANhO37+HTdEAS9WIM0NR0QHRQWcq34HRAfMQgaSPhdEBtU8H8tuF0QHQdreD94XRAohXoEo3zdEBM7J1EpAB1QLhJszvNAHVAjGtYA2QBdUDguwddXQJ1QNjURog8EnVAxN/xkSQUdUCcsOf5yzV1QFP7+O3ZRXVAPBnUT91PdUCNZ4svB1B1QPy8BIEcUHVAGxKXm4NQdUAjFUp/gFF1QPQNINgmUnVAuEA3SU1UdUBLaMvvd1V1QLps4u/6X3VAIMSHtDhhdUDMS4fJ9WF1QEhNBBL5b3VAO0owqLtxdUBO+Tu+ZnJ1QMYtzXZ2cnVAMpfQpY10dUA6sWBleoF1QKxzwPutgXVA+gTVM6WDdUA0r7qHmoR1QMqMKl6LkHVAmvOcnD2YdUAg/rQqmJ11QPCmvCLan3VAhImoYZSgdUBqcguFJKF1QAivFLe4oXVAOM9XZu6idUBURFcUR6N1QLk4kVfnsnVAIsKdh3yzdUDcW+Bm+MF1QDaOIO3M03VApibBxOPfdUBqlFn+D+F1QEqi6J8I4nVAqsuX3kgCdkA8XDE50AN2QCCjICL+EnZAIn0QPU4UdkC5AkN/CxZ2QObbZQSeI3ZAMigtw48kdkDXoq6ZHzF2QEDSVWNmMnZAXFtK1h1BdkDptqaBDEJ2QCsAVbx5RHZAXpT1iPxOdkCFlZjWylB2QEHbCysSUXZAl1J33yhRdkCKV1d0zVR2QOtzY+LfYXZAvIA1Ac1idkCwYwW+UWN2QFogtyzbZHZAQPltgmiCdkAKj5MtEoN2QJSRFH+8k3ZAqsCZULmwdkCsGWrfwLJ2QMxhwHsMtHZAwu3UPcHAdkDg3PjOGMR2QA58YMvOznZAss3lKn3QdkBIni0w8uF2QGrM8i2R83ZALHITUDQCd0CXF/PXARJ3QNR2l/XqEndA1SA/+g4id0CIXRhwcSJ3QIF1uriqLXdAQJ8de6Uzd0C0XxsODTV3QPCmeUedQXdAYsZdl7JBd0Df/FxnG0V3QGqPqxNLUXdAdJKDO5NRd0CisjZtKlV3QLQ5UiWQYXdAJDLLwJBjd0AQuQ+nJ293QD6budWIcXdAqgP4mCZ/d0Auzt+oeIJ3QAhyk+98g3dAochAzweSd0DEqCDUiZN3QIBvULJLlHdAYpOU/MbSd0Bxnq3jjdZ3QNwQvIRQ8ndAyGX/CPYBeEBYCjc8HwJ4QAQLwd5MFXhA3z6J020ieEDOovGgiiN4QPGGqfd6MnhAnjD9qwxCeEC4sAF0ekV4QJchJU/MUXhATt8hZ/JTeEBZlEW/iFV4QPjBOpD6YHhA3zM9MLdheEBYTvMcI2J4QA4/prwnY3hALMCKaLdxeEBi9uJ773N4QDTG/GUBdHhA80AGDGd0eEDSKIR7i3R4QDwBt/65dHhAgMajtPF0eECkN4SzOHV4QPyzCs6kgXhAdmNWl5mEeECHMV5bmpF4QNTotomnlHhAuDPlP1SgeEBeVEygzMB4QOfTM7T2wXhA9LBM17bUeEDvs9wxAvR4QIA9Sb2M9XhAgYylBZkFeUBoEZgfvw15QH2RcOUnOHlA+/Kp9o1CeUCoouV8+EJ5QA4Z3x7MVHlAVpDMludgeUA+EIXI2mR5QHCHlx1Fc3lAUH0DR/umeUB1ocsOwbJ5QJ2c1u1C1HlA20fZ4c3VeUBufU/DwOJ5QEC00FhQ5HlA+W3eX/kFekDolnd33SZ6QKD5+GwMNXpALVcN5RpFekCxqGdAKFV6QIPY78c4bXpAntnQfYxyekBvnpjgVJt6QLDeIIAInXpAHhFc7wy2ekD3fmA9KsN6QMIMug4bxnpANKq3TUPOekBo0bUE0tN6QOx7jV7h13pA1WixXzzdekCIS65vmeJ6QN4Hnc807npAdLlVe9nzekAMoiisKg57QDgo2JfjEntAKTioekwVe0Ci/KgPWyV7QHCllb4gLXtAWHHXDFUwe0BeAFUPezJ7QJNBXjbFN3tAcH9vRFxSe0ARwRMhI5V7QIjySYUypXtANth1yabRe0AUv6BXI9J7QB5rKzOp03tABiK/H0Pie0Bq9Qh4Jux7QLC7DhKX8XtArOtFe4z1e0AwOm1UkwF8QCAqVA7bAXxAoPK1zJkFfEAs8mbV0RF8QDxKJwHNQXxAhHWoOdhRfEAsJOrnRlx8QFWdK/cJYnxAerOchQdzfEBxjhbAwLJ8QDjFSFfM1XxAoEWktFfifECwXgzDFfJ8QMatHsFW8nxAlLPzcAECfUD4bZQ8SwJ9QBUGP6v+EX1AmFX2hkUSfUC2wN+UKR19QK75J0U+In1AUGW3BIUifUAo638tojF9QLncr96UhX1AcIbkFC7DfUBFyAhW2OJ9QANumeCR9X1AnnimK079fUA2nptNOR9+QGIJQB5BL35A954jXI1VfkCKWdtyj3F+QJQRHqiSin5AqbWBoM/ffkCQWUza1+9+QFko1pzU/35AlYRlLSEAf0A4rS+XFDN/QBpKadZQOH9AAoSkO6o9f0B2C13it3F/QFy04buzgX9A1P/yYaODf0CXe4VoY5F/QKC0DUWqkX9AFJi+h92Rf0D82h8RXqF/QEhu5iVWsX9AS7IYUJXdf0DVI4hF1eJ/QCJRbaku6H9AWMU3G4ntf0DfeseW2PJ/QNTpMMrsKYBAsPOskyUugEANYP5PKTKAQBTSGTjqN4BAAQ2OCCk8gEAWb+P81j6AQAQcY031SIBA4AGsAbtMgEAgttFz5VCAQEa1UssUUYBAJA73eA5ZgEDEwvDeH1mAQGTU5qvYXoBAt7GaaAthgEAMl3vWhmGAQAE/rp8pb4BAEFTLG/2KgEABQa/2HY+AQKYZjN5skYBAbl2IgRmUgEC6KAahw5aAQEhDvLZwmYBA/1gSFoapgEDRiWuKUsGAQKW2DXEQxoBAFFnEuQDIgEDRlUd2U8mAQNARciEs0YBA/BZF1kzRgEDAvKQ2S9mAQAklOOtz2YBA1R9hF5rZgEBuIr/3RdyAQMDMQDVE4YBAjgarX1bhgEDmrpP09eiAQAKFP+lK74BA4Iq/cD3zgEAzhUERQP+AQMx/S1I/B4FAlPTCgD4PgUB5H7inNB+BQMx/7B42J4FAziGkQuMtgUAxNeuo2y6BQFJNy0OIMYFAbJPyUbwxgUDW5QK6DzSBQBrZjsgxNIFAkt7QztI0gUBKlo9MvDaBQN7+7TzbNoFAzvPep383gUBmsRByhzmBQD6j/pIqOoFAfT7Nm+d2gUAoZimhlHmBQOZ2MLE9fIFAPNaUS1WPgUBCXd5jVpeBQBFqOJrnoYFAvq/skG2ogUBsElwY7qmBQOsugsBKr4FAnfClEX3RgUC4pmAoK9SBQC5W4XTS1oFAjJwP6X7ZgUAqCtExAwmCQKniO2vYGIJAmXuyn9YggkDkcs5S0SiCQJYno9ezLIJA0sVlQ6QwgkD8nBUE0DCCQEqxsmhDiYJA5p5u4UORgkCw+HGSPJmCQC6sbmEPoYJAxK1Q5juhgkCcLOMADamCQM6MCn4zqYJACDiTiwexgkAKmUP/rvmCQCIlaah5EYNApKDeUXoZg0AFBPyCciGDQB5iMRpxKYNAeZ8I2moxg0CaL9uDJVKDQJ/4FdK0gYNA+le9T+SBg0CgMlKamPiDQPxrMrr/aIRAPMkkJv5whECDeNvP9XiEQKx3e0Bq2YRAaoG/W2rhhEAYqyBZYumEQOF5gbo18YRAZl6mOWPxhEB/oAGWNfmEQIaKX8Ra+YRA26/b6rcuhUCkSxqiuzKFQDGagLS+NoVANkTxQopehUDwKX+foGGFQE+6jo6gaYVA8HZYjZlxhUBCGvrel3mFQFgVDzkmuYZAbp+ied3ahkBGa+fukCmHQPhw2BSRMYdAALykyIg5h0Ag6An9ikGHQHK2kUHHsYdA0tEUPse5h0BYQy/ywMGHQFT/SHjCyYdAc0uq1xfmh0AeNxMiHOqHQA== - - - - - - IiPtRJ5C10RkVd1EZKKMRIX0Y0US5klEUx5iRLfvKkU4twNHrMVHRNPxcUS0okpEBTjyRPp7sERGNYlEhiN7Rb+EtURVv3xEJfyqRM4FX0XYfz9E3y1cRORTj0SV51ZEr2ZSRW8LoESffitEOoquRFIbmkT+N/BGFtRvRCFOekS1GQNGlkCGRfAng0SAvcNExddYRG0v+EQs8tRGK71uRD0gVUTGFelE4jpMRL56WEWhGedEFMGERBU/TUT7jDVElyviRJlyc0WogF1E1lPjRVQ4NETD+5xE2Ks7RbwbT0TFwlpEMGnPRHKpZ0S/JN1EwIukRGYuAUUZbchG0AfgRKqOx0SLSGZEY3XaREBBX0RSQwNF7oM1R7zKrkTQsXREYcGdRLRUd0YP6tlFUZkkRI5vkUTAQ8FFBmiPRCdVs0Q8SV1E675NRc374ESlfzxEF+vWRI9EPETD42pFG+ATRzW9MEX364JEZYlCRf0xhEVCalREaEj5Res+WUTOBgZFXRE8RLh0n0RrQEtESTJaRioDb0T6thhFCWeqRJEnwUTl8Z1EaayoRHlmh0Q3Ht5ER+RZRV8H/kTf5sZE9V+rRf2lN0drsQNF9wM/RGqZn0R3Zh1F6MypRe+yRkTH5oNFVeyGREagzETlnGlEkc13RHiSkEWYWY9EreeTRFKW2EST6VlEyWZSRIIjykTZJadEGi5SREoNo0QhOW1Ez6WaRPF2uEQtM4hEbw1oRL1m0kQgXABFxXq7RZ1Rl0T3XlJE23KkROGtqkQLcptEMvsORQU/IUUxKWtEQkaMRI0oj0TbL0BEEEtKRBGJe0RWEgVFAC6JRKTHskQRAVNECX7uRKBXY0RrUDlEip2YRBUgj0Sq141Eko4fRgiwAEUlq6JFOksFRb+nBkXNsUBEO/5YRuvVo0XEvo5EzAWeRPUvYUSYv9REbezCRL6mhEQ1EFxEsSIQRTCSgUQRS3VExzpRRGtudkTUtFBFGn6BRX8mDUUDdTNEgXKXRFTsskRhKsREjTbIRUjivEZHvkhEAS23RTq1kERFLkBFeLOJRNCMkES8EitFNdMaRM4JTUb33nREOdqhRTRAJ0UODx9FU1RHRIhDpkS69NpEcxg7REVr7ERZy4hF+auTRNb9l0Qi2jhFpd5JRHDApkSeoo9E5u/hRIFhe0YTX3lEnFUbRe5XQERA0U5ENA+KRGty1Ee0mM5G502XRQg2wUbo32NFX719RlH780S0IDFFKV5hRPbQc0U2vT5EEC48RET280Tqp+9GvbnBRIigXkUFe9xEvZFIRNoaZUTA4ahEq3U5RAcYhUSjbV9ERHMVRfiakESfL0VEVXnjREX7EkaTXI9FDvxfRKE44ESuxfdEjdwLRboBW0QpesNEpNKHRHOENEQjva1EFU2eRcN7NkmLzWtFIotbRIo6T0R+qQNFqEBDSGpZ6UTnZo5G/ztaRJ4MsUQcropEXSJqRflAckUOodNFJll4RHX900T8jE5EM2t/RIKStERXsppFPtxTRKIadUQp5XRE64RiRC+nTEX8p9JFjo7ARIQKt0RDGddEmVNtRI2ZV0QiF7dH0QLbRl3w+ES0znlES2SkRBXq50TIMbtEI8zORV4YPEQe1wlF5QtLROLzSERCjqZF/ljZRO3nf0RdF8RE+CSURCehlUQeZKNEgjMNRnCOB0Uf/p5F8Fu2RDIgI0V3K7xESeeoRPBWFUU8zlNEoOelRHiA4kRGb7FEbp+SRCIgN0SOMcRFz2yjRj8h00QXWmNGqqSxRRa4kkU5JwFGZY+KRKxQikS9o4xEJ0tHRImOukR8TH9EAlnJR4f69UT6DcVGtuTURCqWn0b+x0VExtNjRWTFpkVpP7lEo5HXRJ39hkRnfI1EFchrRL9ZV0TU/KBEZiIvRJdwdkTO1I5EO0cNRQL4MkQ+O6lE9YmcREjRZUSn/kVETyWtRGLTu0TK0bREtKWJRMX8kUV9/LtEzzF/RNyhMUbY2XhESX4xRW79TkWWlTNFKJZrRcLJZUYFmTJGL2giRYn/Z0T6lnNEsKGyRVSbQ0UeoIxEXvxARcYJ7kR6E9JEj6O3RHMz20RcT4BGG5WlRW8oIUXN4/5E0Qq0RKU3rkQEPhBFSmqBRGh+BEWOAcRFxQR3RV4mIUXEO4NElFzeRMneTUgb9AxF0YpbRAjrv0edjlhEpG5KR18BOEa1gkdEgf08RXRwr0TiTDVFvgnmRLA3kERzO5REI8mCRKAaIUZEvilF8P+qRLrvAUahpsVECtiCRJ3SCUfD5dVG1zFuRLprAUU14zhGp+STRVUMh0T/BMRFf/JeRa61uUTyVwdFwUL3RHm55UQllElEfJJgRUDr2EQnpGxFBD8MReTbgkQXUM1EJlBeRRdkC0UFINxEpad6RIQJiEQl+0VGLqZ7RTTbPUXhE3JEDCRWRAPTfkSH4c1HvUdNR74Wy0Y+RI5FENztReYxw0TClwZFIWzCRDE0yETEladH4RoUR/9vqUbxNL1Fet34RGb73UTGJFBEhhRYRC3iVUTCD9ZFLy1JRftBgkTFlg5HyU2BRnOGB0atyWxFuyRYRbxyokSnBp5E/fw3RQ+skETMFmFEcG5BRKb+3kbPvUhGeef7RbOFLkWtnpJEn72nRL6DHEaZU8dF9vh/RSnh40QuweZFjRBxRa9fSkWn3DtEG1q7RAi6ikQ= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - IgTjSg3BckBk2Rz4bcFyQAxZIa9PwnJAdDLyK6bCckCmFPc7O8NyQI6RKm1ZznJAEzOMtEPSckCDGsAV3dJyQMAqzwl303JAkGLvAs/fckDm/B15JOByQNphp3i54HJASO3XYUzhckCGbJKwUOJyQGohO5OP4nJA7KEYmSXjckBY6y9OO/FyQJsnG1DK8XJA+k/ZQbnzckBSzR3UC/RyQH0ysuGi9HJA3lrnWcL/ckAjQW+0ZABzQEOWDe34AHNACM+GsyQBc0BoyQILjgFzQMrnGvDOAnNAU1f73foDc0BpAthNGBFzQOAUQ6kKEnNAtCmW4CMSc0DmzMUmvRJzQOjcfln5E3NAxB8t6UwUc0Da5KL4eB9zQO7YcoqkIHNAyjrXMTkhc0CTRlJHYiFzQNLZaah6InNAls5fqMkic0CQJxVGECNzQOOm6ng6JHNAVs6/P88kc0AQy6JwRjFzQAYDRXJZMXNAXKQGbPkyc0DyjfvfojNzQFi6dnY3NHNAGlK4ic00c0DtmX7E3DRzQF5Wd6S6P3NAyYONCOJAc0B/UDcCekFzQKdjLip6RHNAbNaFGptRc0AA5yX4olNzQIZmJDR3VHNAjN9ZEodUc0B4QSoCjWBzQAmcOM45Y3NAlBDHqpFjc0A36nDnzWNzQPQsBAlkZHNAstHlgrlyc0Ck5POwt3RzQFFT+oVLdXNA8HjHDWl2c0AKzupWeYBzQBCpvYylgHNA5sud9Q6Bc0D+BVYNx4FzQHsZCy+lgnNAzEQ3+oeQc0DgyuwfTZJzQJRU9wz5knNAF+8aV82Tc0DqMCKOYZRzQNo5Hqr3lHNAbdP7BYyVc0AauzGjuKBzQFhDJPRNoXNA7X1Uflqic0C1I5DP5KJzQOQAYyQFpXNADJvsyLazc0Aapi7rDLRzQEzRKpb3wHNAgPr19ozBc0A0WRQVPcJzQAapE2TQwnNA/lWixibDc0D24lGf1tFzQP7clLwy03NAuJNHNPbTc0AqCMJf4tRzQOs3Sxx833NAqLhkLqHgc0CT1lOwOOFzQPZN4kRo4XNAwaAmGs3hc0DNvJ2+EeNzQFee9bjt5HNAOoztuBDyc0BudOudZvJzQEzvZvM29HNAPEjhwk0AdED51fUeeQF0QBqK2vGjAXRAlI8wnAsRdEBo7mOmeBF0QEEw9/1NE3RADEkNdOMTdEBYFJZ4dhR0QF7RawWPIHRAClXgbLkhdEAdeQ5gAyN0QNpPr5NRMHRA57+ElrkydEB1W8xk4zJ0QK6tlfxSQHRAMtn9dHlDdECkHZGm91R0QK6DNZGMVXRAgNxtwLhgdEDkFvjXCGJ0QIL4UMNNZHRA1sg19iFwdEB6QMSUQXF0QEYwzJg5c3RAjJGVmjZ1dEAk5FPj+IB0QI7OMkcPgXRAs3uR1U2BdEA+TGkaFpB0QHYpqjfQoHRATsdnSTihdECgItNCuqJ0QC5uhd7RonRAvs9pzQ2jdECSUKDxZaN0QFI/gjsJsHRAjKAyNt6ydED9fW+RILV0QIMxq5K3v3RAruFglePAdEDk8pEwe8F0QLQGL2DrwXRAylRxPgvCdEBd7v/ZD8N0QCrI5V4ixHRAFEDGMrjEdEC1mLvG/M50QORWOzlV0HRA5HAq5eHTdEBP7j1Gd9R0QGphVz3N1HRAkPxwWLjhdECYlsFGAOJ0QA4sYlpQ5XRAIM0LM8DwdECMkJAvjfN0QGiVAoCjAHVAhH3AX88AdUDaQkeUYgF1QLb02vhcAnVAySuAZpgDdUA6rxxVPBJ1QJTX9vEiFHVA8UqLg8w1dUCCP6CWDlB1QAqlyJuBUXVA0uTM/SdSdUDEqXo/TlR1QMgo3gx3VXVAHPeOkDlhdUBU17Hy82F1QA9fXPq8cXVAJE0uKHRydUAiF2WAjXR1QGF/qZ1PgHVAsvEbqOKAdUAg/nypeIF1QAXxmACugXVAzv6/k6aDdUDcKlqHm4R1QCKHiZKLkHVAqCnwwz2YdUCAI1dbmJ11QCoAE0Dan3VAZjF5FZagdUCmO1xauKF1QN4vd1LxonVARnSUf0mjdUC7zpWHPKh1QBKSj9JIqHVAuD+rAwardUD+1H/e57J1QFCA1VR7s3VA1Nh9VczAdUCT4PbwY8F1QKCpJL34wXVA0GQuw8vTdUDMuHRU4991QHAUVroP4XVAjqZKTQjidUASW9zxavJ1QONEfJlIAnZACqzVy9EDdkDlddArTRR2QHD49B2JInZAMhnmi50jdkDIRXmykCR2QH3KfKYfMXZA9Fn0eh1BdkAGuU3nDEJ2QNVk+j16RHZAllGfBctQdkDm1whDEFF2QHyt12vNVHZApEdczhJhdkAWs6H1TGJ2QHTystjLYnZAywprhVFjdkAapeEn22R2QPazWO8laHZAdodxV4JtdkB+xhbFynJ2QJbSarZpgnZADHUCgRGDdkDAvAb6kYN2QMVVqQ15k3ZA3WT/obyTdkCj40IIpKF2QM6/gP41onZA6xL6e8OydkDmb7bbeLN2QKdufe0MtHZAYb/zksDAdkDsy7cUGsR2QMMZ0tHPznZAhhct77/QdkBPCJlMf+B2QLhk9p/z4XZAPslejpDzdkADshd1NAJ3QB3zbVEBEndAd5npPAUTd0Di6bnUDiJ3QG3F9am6JHdAKC0Hr6Ytd0CgdVNSpjN3QN+/PyINNXdAAaXcU51Bd0AO9YHYskF3QELBmv0aRXdA7RQTsUpRd0DSVMc5k1F3QHCRuIgqVXdAow9CnEdhd0D9YEycj2F3QCuk8iCiYXdA0sOnNjRid0BfPshYlGN3QET4ZCQnb3dA2CSxfiV/d0Dqhbvmnn93QI2BCoZ5gndA1Vs8d3yDd0CYwbxzCpJ3QCUWhIKKk3dAFjzHQk2Ud0CIcD7pu6J3QBwD6bDh0HdAmJKl++ngd0BJEJjsUPJ3QPwHO1FNFXhAFqx+7W4ieEBsoAdziyN4QMWyR1wOQnhAlpyGRnpFeECm0ptwylF4QHmr2mDzU3hA8Lb3HohVeEAqF6dR+mB4QIAeDnG3YXhA3vps1bhieEDu4wXnOHR4QLuTr5GLdHhAqOpp3dh0eEB2hyjyOYF4QBDs0pamgXhAoEXgstGBeEAwxepEmYR4QMS+g05Sj3hAin1wY5mReEDmSVpKp5R4QBp3VtTNwHhAloPsRrfUeEDwYMqpw+R4QO4ikakC9HhAQt3bj4z1eEAi6AnXmAV5QOjyf/q7DXlA2njTvhsTeUC6uiFhjUJ5QNSmTv74QnlA70vWfcxUeUBBiJ0t6WB5QOQ1It7ZZHlA3ET+ZUNzeUBOMB1Q+qp5QEWdYn2+snlA5cavEULUeUD8zBb/y9V5QAyHz6a84nlAujhEWlHkeUDbqgfqIuV5QLaV84T5BXpAd0OJRAw1ekAAO7y5GkV6QCaHPH0oVXpAjI3/p41yekALDiysqJN6QE7Q5S2llHpAoDAY9VWbekAmRRB8CZ16QGmOCTgNtnpAjt1JrRnGekDFXSIw2NN6QHhQQhrj13pAphH1kT3dekDUGZLAZeF6QBFdDtOD4npA6h77A37kekDMBm1+Ne56QPRrfzMW8XpALQuhnWDxekCI/EVw1/N6QCHB+xx6A3tA7I7x2SoOe0AMLN8p5BJ7QLoDPbdMFXtAPbmOwFkle0AA9qmTIC17QEScLR5UMHtArP8WQ3sye0AcdZtLxDd7QHTQeuwilXtATKgsfzCle0CwpDuGecZ7QPZuhZ3843tAZv+rNJbxe0DRM6lJjPV7QM05QJWSAXxAfPswetsBfEBYVxV8+gF8QL++nkOaBXxACAzU44oRfECkDimi0RF8QC5bs1jKIXxA1I9UBs1BfEC3ajmm2lF8QCaEe9oOYnxAXugcgMGyfEDIJC5My9V8QFUCueVX4nxAY29gixbyfEDCdiqWVfJ8QFvU97Sr/XxA+sK8l/8BfUAOFvLVSwJ9QMyB0PhFEn1A9BDeVSkdfUC6CwgAgiJ9QO4lUSOfMX1AyA/+n1Y7fUDQpLRghTx9QEEsZ8ENVX1AfXXYl5SFfUBI79XYK8N9QMMEgbLX4n1AHEReaubyfUBXgFmdjvV9QNSTQ5Pt+n1ARIpEXrEYfkDum2eBQC9+QHbvwyOPVX5AdALeW5hlfkBeIHEljbB+QPNL3cytxH5A8l1W89PvfkCWBD8hIgB/QIBCr7MTM39AHlimCmw4f0Cs3s4Bt3F/QGS3fsq2gX9APa31YKGDf0CPDrfrYpF/QPbM/jaokX9AnETKsd2Rf0B8UZJplJN/QEriXT5eoX9AFDjhAVaxf0Di7I0Clt1/QCsW7SnV4n9AHP9z2C7of0AqvWHwhu1/QArgAdfZ8n9ANtZjn98pgEDu/mulJS6AQJYSkb4qMoBASIvtICs8gEA6a0De1z6AQL7NqUbvSIBAB6sTCudQgEBySKXdFFGAQA+6SwHnWIBAaP4myw5ZgEB6LISD2V6AQKI0UHMPYYBAvvuOzoZhgEA+fohfKm+AQOj0cKEpd4BArOoxRvyKgEB6rjRsHY+AQMQBptFskYBANlUzARqUgEBgwMgDyJaAQNK710GHqYBAdM3AURO1gEDY+QDW/L+AQKaYsn5SwYBA2HHJ7g/GgEDoxJFwAciAQIBq7I1TyYBAWbSLMRPKgEA8Hm6yK9GAQErNEnxM0YBAbc5Zll/RgEBGSaXjStmAQNxtAU+a2YBAonxavkTcgECO8Kw57d6AQC6/1KpE4YBAGYBxafbogECdP57ySu+AQIJ6JUc//4BA4FVM/z8HgUB28ZaRPA+BQBQu4zw0H4FAjtOhZzQngUAmqOXX2y6BQEh1xCmIMYFAPx66YbwxgUBq3BN8EDSBQD73XioxNIFAyTP0xNI0gUABzEb9uzaBQFzRth7bNoFA1Cy5LX83gUAC8XytiDmBQGojK7ksOoFAE935kud2gUAw3nQ4lXmBQGDA+jdhf4FAWEQ051WPgUB4qbwLV5eBQPbEXcjnoYFArF1QJ26ogUD80D+fSq+BQPQFwC1ssIFAKCkj2HzRgUBifwfrftOBQOpGPzkq1IFATqp4vtrWgUBigMIEAgmCQEBpcyMEEYJAHLnmhdgYgkAefvQD1yCCQFD04GLRKIJA9n9UZUOJgkA1lbpBRJGCQKO5Xjg9mYJAQkcaBlaZgkBq7qK+DqGCQPolais8oYJA3gYeGw6pgkAYNu2dNKmCQEHQAFvDrYJAMzB+fwixgkA8ryFSNLGCQIpKAYKu+YJA8haTm3kRg0AU2/GNehmDQGYv8npzIYNA6v9t6HEpg0CQB6ItajGDQDtYs8uBMYNAEbkI/Bw5g0Dq1x38IlKDQPItcgfjgYNABNIKnpT4g0DQl9wZ/2iEQMh4zIn+cIRAIF3BefZ4hEDWohgratmEQESYbstp4YRAwu3YWmLphEB/UV37e+mEQMTV1QM28YRA9Qd36WLxhEDOoU+LNfmEQJZva6cuAYVA/MRdHrcuhUBEG2GaujKFQNNNcKmgYYVAhHIKnqBphUDqIXzXl3GFQOFlm9iYeYVAQt7uVwnShUDqCvddJ7mGQCZDYyEpwYZARCrCIdzahkBu64Bp4uKGQOqhNRSRKYdAxlPiWZExh0AshjeOijmHQJAcka1cQYdAal9iXopBh0C277Ohx7GHQGZ0wpvHuYdANnX9D8LBh0AjTCDMwMmHQA== + KBZXds7jZUDEZV5bjlJwQDtMc7KVAnNA6yam0jxjeEA7qk8G7hN6QA== - + - uS0KRZhYOUVoJ5pE2/iwRDz7wEUFTsRE0hERR55xn0SxMIhEO+rIRIX9PkQXzPtEWF9CRAtDdEV9tgdFH8KkRDfVnERllYpFIdaPRDPXaER79fdE374ARd08rEQmcTlFDJ/pRMkSuUQIqZRE/E7lRktSXES5SbJE8bpYRBxfD0YpzKFFlLe0RGRFlURah/NEvr3QRpASlkRhh/JERPaKRALUg0SGNFtEliaARemm9kSw0spE4S91RHl4m0TAYIlEC7Q2RIH9PESEgIVEcVvARMt2YUWWhAFGknJQRDYzkUU9GYNEQs12RDHikUTEDepEGqGDRGn1ikSG4X1EdrZXRKDibEQJdAtFbiFrRBvx3EYp/JtE54ocRUBvrER3c8hEALERRcaTPUfEAbREpiGDROaoA0XtrVlGPL1IRK4XzEXW531EB/ncRWgncUS/7zBFA0RtRUuHEkVD9hFFrENxRAHTg0RMfoBFZnURRyhn9kT0+SRFL4ONRJZpoEVY5FxEgYqPRD+pE0YwKmJEGjtVRHl6YERyGplESRCwRIfSoUSmaQVFYuizRPfAg0a2RcVEHUlyRJzkhEQ9vzxFxu5fRMw5n0QDpLhEQCq4RKndRkSwYohESFmqREVpk0RUgltEdIWTRJu1b0TW3c1EoGSTRUs3O0VdNfJEUU+sRck+LUeqD8FFq1auRNFqBkWcQFxErwzPRXPSz0UvpfFE8D6YRE60mUThQptF8RSdRI3OGkWREbVELHVHRJChbEQOl4FEylruRFhxl0To6YNEVBFwRM10+EQfW4REEIIBRSumlUSNe0REagQPRVUSmUT+A4FEH80QRaqgHkWLfUtEdCVLRAn+vEVhRpFEtfFlRKdUpERWjo5ERY+GRLLPBUUAFghFGOZPRXkCWESM/7tEvmI6RZ7aZURGFPREE/AbRTihg0Sd03VEsoeRRL1mLkZ46W5Em+6FRBUw20TDfZdFNFDRRHXqv0QgckJE2vX1RmVKPEbd3nBE+UmVRAhpvkQm2SRFUWVpRFwBPUQ7X0NE6yCCRGMCcUQ3cAFFlVlgRNhxxETmDxdFQtiEREG7QUT7/lxEd3JSRavEN0Sb73pFvgoNRapcREWi4qpE6YiHRMpZuUWcaedGGNa2RZmfrkROuExFMdyRRGdePEXUa1tGMN88RLLApEQDpVJG7cwfRWenUUVnt8NFJjF1REwshkQwykxErFKnRJgf7ERC8GJEcVRVRIXggETgH1JErm63REh4XkRDK5lFzVKJRCivo0TxkQhFfj+zRHn1VUTTx7NE0ePvRCgT10Txp4dGnSaDRE2Ya0Uq+pVEHnVVRJduw0SQJuRHikbjRo5VnEV/NbhGmFOiRdLsqEYOPv1EP7iaROzfWUUfYrlEuJhARDTPPkSUJYNFY6GGROfRV0S9NslE3P0KR5mwwkQQIHRFxYUQRaRycEQJHrJEyfvQRMXIvUShvpJElh0sRTInVUT/RMxEE6EXRrwNokWo8ltEbF4LRXNzR0WubyJFJpGWRNtP+0Si40FJwgPARMpgTkTggSRFrJR4RNYzSEioTm5EWeTbREeioEaSn95EgmXaRXbmz0SIjF1FrDbpRUrDz0Rs95tExBlWRKoBTEQTJUpEf2WhRaWNhUTWlXdEp0F1RP3WakT14UhFcm65RevbDUVLSa1EJK6/RJXaxERW9t9EKz7QR7Q24EbKvCBFy+LKRDStrETf/9NE/a0ORctgP0ReHeBFHzy3RKDBbETCeJtFMjXVRKoAwERVr7REhvpPRMDrz0RIGCRFXG67RL3L30TySWFEO0qKRI7UqETGeTJGKexFRaKen0WCXgFFk+o2RdbupEQsLQJGE4nZRBJLjkQRBLFE8nTLRS+3zEYF7vRECFR/RnKc8EQZ1KpFHNmiROVTkUXMQYtEumrIRSAw40QNu5JETHW8RP8tkUT40NBH7p0iRfbE1UbdXFREKdHjRFClnkYlyEJFNtTmRTGCbEW9gX1E1YJ+RBnuXUQF4nlEfLGMROcUTURcRYpEFYBQRO7nykQt14FERB6HRAJ4ckT5DLJFNvq9RNooYUS0rIREanWVRN3Tp0SEUKBExdRqROMQvEWToQBFRgGkRE9bRkYS7ZhEgwbHRMcGj0SzflZFUZ8yRWBlvEUuuiVGdgEORkjAQkX0T7lEEjLTRIJbBUbVlHJFmOJyRXOiC0U48ftEB/dbRTPwpkZkp4pEMM3WRQEYPEWfHIVEyIXdRI3AGkUd00xExkUcRWWGJkWW4rFFIKpZRSOkBkUJj/ZEEkRiRNKnd0T87mpIxvozRYzYi0TLk+NHE4blRCMIsUT9mWVH9L2ERZCzVkbQxQRFRCliRE4HkkTYUYlFOMfDRNKTo0T/RwtG3xZFRapo6URBgvBF5MzCRJRU9kauaNFGf2IMRdx4UERWOSlGg/RwRQKJlkSkX8FFH47RRAYUbEUrjh5F5mz5RFMr60TLbGdEYTqgRfoXvkT53lJFHFPKRLMVAEX85Z5EWuQURW1BnESeXp9EX0CNRK3JrUQ2SF1E2/RaRsn4gUVMNURFWcgNSDxLl0cpdh5H3xs6RXnCvkUMEEZG68CzRK7UgUUMyuNEK3fIROTkeERnymhECjr0R4hubEfVvAtH/CwaRqGyakWeB5FEyX5tRFMty0QZN2tE20eLRFIL40Wwt01FTGfmRErVQEdvx6BGTFhCRjbdvURmCk9F9yCMRf+gmUQzYtNEuZDyRFGvh0S9SAxH7ZCCRkje9kWOlW5F7y5eREfVdkS76IxEW+VGRRQggEQsvDZGWvTrRYkNfkXHT45EierwREUI+EWy04xFOlZSRThoqUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - VFx4QQ3BckDaofvebsFyQHUD6m5OwnJAbN6U4KbCckCIEw/rOsNyQI5MON3ExHJA327Tz1rFckBeGF9kWc5yQGLfbJdD0nJAhFwWJaTSckDKBHqU2NJyQMbStuF103JA2hSkTNDfckCCcVtxueByQJhDu2dM4XJA1+qeQVDickBK3xqaj+JyQJkVFwm643JAXpCqisrxckAgFuQztvNyQK6+/iOi9HJABNs5j8L/ckBkSRS/YgBzQGq8LqL4AHNATZx1XhEBc0CgIc4PJQFzQL6WDPNMAXNA3BGMWY0Bc0DMXGrDzQJzQLYfNMP6A3NAaHTNAQoSc0AS6P9rKBJzQOxX9i+PEnNA0Si8E70Sc0Dyul279xNzQH3OMTZMFHNABnoR/3gfc0Dqc3/HpSBzQChLqGE5IXNAuuMbp2Yhc0AlVp0aeiJzQLIyGQsRI3NAsHh2Nc8kc0CrB5n0RzFzQK8LzetZMXNAOvQu9Qwzc0BkrqkCoTNzQDOWMXj4M3NARAvoGDk0c0BIpdiU3jRzQG40GajjQHNAhgl2CnhBc0Aynui2JkJzQLNI3Qm8QnNAYqlal3pEc0ALq8ZJm1FzQLLRVsmjU3NAtCSionhUc0BokoFKi2BzQBBAldQ5Y3NAiFZQUlNyc0DsQx6CZXJzQNYM/d6qcnNAiMii7Ex1c0A21nJ5a3ZzQOYQxO54gHNAEksDfQ2Bc0Cg7Kf3yIFzQAJlVf+mgnNAtlb3qg+Ec0CosIc8iJBzQFjTyC5NknNA4ruyBfuSc0BMYgrIzZNzQFRXrW9ilHNAnm8ny/eUc0Ck8keojJVzQBpn5qW4oHNADvtpqUuhc0ARCcT+rKFzQNxxIOHkoXNAkHOvu1qic0COssLp4qJzQJLW35oEpXNAobCujsewc0B1flSGfbFzQM7rVEq2s3NAMd4Ycw20c0CP4GsN+MBzQPQyzzLQwnNATr9xzibDc0Aj+9701tFzQCgUiRLa0nNAJjdf4zPTc0CewgEl4tRzQIDntmCk4HNA+pUm+Djhc0CxebHUTeFzQGD+Eapk4XNAjWZGbs7hc0BDR9iKRvFzQMXSOZsQ8nNAEDQqNjf0c0B0aTxhTwB0QDyC5r7lAHRA7+P8q3gBdEDWk24GpQF0QDA1I0NuEnRAVoeVUE0TdEAY+8vOdxR0QFowipSNIHRAkiuRELkhdED/LivtASN0QGhV71e6JHRALiTx9FMwdEBidChNujJ0QLVRW+7JQXRAQG4+D3hDdECv6FDY9lR0QHKhQ4eMVXRAU6VdfrhgdECSZWHJB2J0QORDsYJOZHRAHXsEbyJwdEAnNr4QQXF0QET6PiU5c3RA3VAno6F0dEDsXmYDN3V0QOnPZaL3gHRAvMmbkE6BdEAy1fsSS4J0QMw2Oz8WkHRA/nW3EdGgdEDask4kOKF0QLLcKIVPoXRA35vWc46idEAOyQKTuaJ0QL460rHRonRA9MBIDxCjdEDsMa1hZaN0QIir52gIsHRASIhpXt+ydECy7gL94sB0QCr7Lmx4wXRAImzZdOnBdECjqe6eDcJ0QOo3N+gQw3RAelu01LjEdEBIM3Eg4tN0QBcDQjN31HRAFkSiFdHUdEDEMORauOF0QAwMDij+4XRAzAAPwFDldEBW5L3pjPN0QGick2XPAHVAqBgrAWMBdUAcQUJB+QF1QPxHQmFeAnVAwQIpV5kDdUAmTl6ROxJ1QOyNmJEkFHVAUjnn8wkidUCsB4fXyzV1QKHAsjjaRXVA5LM/neBPdUBwI6F9gFF1QKUPxUcnUnVAsMnAH0xUdUACf9padlV1QHbig9M3YXVArRXC+IxidUCMCxEZu3F1QHK1WA52cnVA9nKwJ410dUBC5JuCToB1QO4PPY14gXVAj2eDuK2BdUBUmuoUpYN1QHSrzpqahHVAZ644TIyQdUDMY/Gyu5F1QAUViuI9mHVALe5v5peddUAxdZavuKF1QIT5vK/gonVAWFwkufOidUD2BPydSaN1QLBU/l4Iq3VAab5bzDazdUAJrs8efrN1QJZjh6BkwXVA4bI2OfnBdUAmu29szdN1QGDVkpAI4nVA7wAbJMzzdUDliB1qSAJ2QFhoelvQA3ZA/laARE4UdkDKGx+UCxZ2QDXwZ4+eI3ZAlEiCiZAkdkBeOOGYHzF2QOAlYgkmM3ZA9P8i15w0dkD2k8bjHUF2QPbRtVAMQnZASKPC7nlEdkBnEmvq+052QGoyGurHUHZAzzF9whFRdkC3rs6OzVR2QG7mlopQYnZAGs3rU8xidkA+HkIqUWN2QEKGNHXbZHZA83VZ+iVodkC2DSSbgW12QGHNaDhngnZAzc/EIhKDdkAsADGMkIN2QNHoWw77hHZALtpDc7uTdkA84vbtt7B2QN2/N9rBsnZANTXLCg20dkDclQeFwMB2QLxA97aJwXZAZF1lGxnEdkCrvqw+z852QMuj/1704XZAsjv+aKnidkAGrdogifF2QFDHV0po8nZA0o0GmpHzdkBKV+/UMgJ3QNgm94QBEndAXmNP5g4id0DHNAmHozN3QHRtIBkNNXdA6h/4P51Bd0DPpBYW80F3QCRobycbRXdACJ+NTEpRd0D8ZG59klF3QFJF0R8oVXdAkpHGMElhd0CwRmtrj2F3QCZhElA1YndAzGVAWpFjd0BIoWCrO2V3QBtZ7R8nb3dArJmAYolxd0DknQHJeYJ3QG7XIb98g3dALFOA4wmSd0AGcn41ipN3QKgSZ3dNlHdAF0wGpZu0d0AEMp4O5NB3QKBmAZTr4HdAeANCNFDyd0AwJDWyTRV4QPjRG4ZuInhA5KEBkYojeEAsbipyC0J4QCc9P0F6RXhAkQ9v6MpReEAodGfJ8VN4QGcWMjKHVXhACvema/pgeEAglXiVt2F4QFFDlCC5YnhAcPYqGChjeEDW4ZDJXHR4QNLr+cyLdHhAttG64LB0eEDaRNvcw3R4QKrA7rXmdHhA9122NaSBeEB8DqLAmYR4QFEOXRlTj3hAjg0cnZeReEAG6frYp5R4QJzY5jy2pHhAogP7Bs3AeECwqF7zttR4QIZBko3F5HhAPOpKrQL0eECe/YshjfV4QDVB+ASbBXlAuH1AN74NeUCErFI+GRN5QKBkQtn5I3lADDJEB/pCeUB6LlsVzFR5QJOuWlfaZHlAnNqDmkZzeUBe4FKb+YF5QFIW49c3onlA/Aa6uj6jeUA4TWqBv7J5QETY9nVC1HlAEwYMQs3VeUAaWsTnwOJ5QL3XM/1P5HlAthJdmSTleUC0Gax2de15QKt7bAcs8HlAfrF4uDgjekCUNoxjDDV6QM7mGk4aRXpAC5pouyhVekC0Mq/ni3J6QARMnO2jlHpAmnGJDVebekAqJhxRDbZ6QFoIxdwrw3pAccj9TRnGekAGY4MNQ856QBdQfqXV03pAPOHoVOHXekDizQm5Ot16QJBOpnQ37npAGRhPoNfzekBx4Jo8ewN7QO5V69cqDntACHuO4OQSe0BeWhVETRV7QMoMYJRaJXtAPE0c5CAte0AC9FnleTJ7QEIm9G0ePXtA/Je2NSOVe0D6toEkMKV7QND2XYd5xntAC2zo77HRe0A+P6FIq9N7QAPdKKwp7HtAkiMS+5bxe0ALiBaajPV7QNsShCqRAXxAKLeEGdoBfEAZNHetmQV8QC5CQtaJEXxA2qqKwdERfEB6VtTnohV8QFEbsKHMQXxAlQ4j1txRfECcdCfBs298QDLTb5yOpXxAMA/vpL+yfEDWzTSczNV8QD84CM1X4nxAumhtsRXyfEB+ZmScVPJ8QMOjg1Fy8nxAytXwja79fEAS0DUaAgJ9QH7cRtFKAn1Aphdy/UMSfUDEEvrTKR19QBaYEDlBIn1AGnD78YEifUARMlqGJS19QBxlAk2hMX1AvjtFQlc7fUA8viCLkvV9QPBeFkE3H35AXEbYDj4vfkB6e4IXjlV+QBvtSiGvxH5AKID9Js3ffkC6r+fB1u9+QENzYmohAH9AGsVjXQ8zf0AEze6AuHF/QCaeYliygX9AP+akV2ORf0B4TzPyrJF/QE9D4zHckX9AfNT+5OCZf0DiZRfEXaF/QGqor2xUsX9AGKtXNpbdf0CrcB4+1OJ/QF5A7gUv6H9A2Pf7DXntf0CsP9RalwmAQPdOLhfACYBAKFi5MeApgEBehjP7JS6AQKQ/9vnkL4BAii1OLCkygEAUeZ1SLDaAQDBEk4Q5OYBAuE/STCk8gEAas8wH1z6AQBxaIdXySIBAyfmh+eZQgEC+imFKFVGAQI3PepXmWIBAkC+O2g5ZgEBUNbwP2l6AQDn0w+OEYYBA8Q3OOSxkgEAGJelKKW+AQCoKwzn8ioBAIAQL9h2PgEDQEt5UbJGAQKjO2jsZlIBA/qcLwcGWgEAeB0XNa5mAQNjLTKWGqYBA9Gu3OhW1gECUCshcUsGAQL+W/jNvwYBA3txdTRDGgEAemgh1U8mAQMPXh20TyoBAGTihSBbOgECHNaa1AdCAQLpdmvIr0YBAhlskikzRgEC5mJHbYdGAQHqlRFBK04BAfRjJQErZgEB0OqnomdmAQAhIe0tH3IBAIP0w70ThgEAVkn4vWeGAQDovXEL26IBAuoh24ELpgEBdoD0eS++AQJksY4s984BAbBq3NED/gEDgpfDHPweBQANOZik9D4FAxm27ZjQfgUChtuKcNCeBQH9LQiHoLYFA9GGD4NsugUBG4tuQiDGBQMAI92m8MYFAalsdjTE0gUBBVp/F0jSBQAB9pDS5NoFACUyXnd82gUCdeQ6XfzeBQPR57vMrOoFAM94/d+h2gUAeWW47Yn+BQOypx9NVj4FAdh+wXFWXgUBU45J956GBQKqMjHZtqIFA33RTIUqvgUDHSA5IabCBQDCbCZFIt4FAgqs3rn3RgUC0jhG8fdOBQCRvffAp1IFAGosS8QIJgkCZOP5W2BiCQBuR5pbWIIJACGvLENIogkCisxMrQ4mCQFZtcUVEkYJAxmOXGz2ZgkAuuBhpVpmCQPKMXvwOoYJAkwLYQzyhgkBufKaoDKmCQKIbY6MzqYJAEvTY/MKtgkAEZAUZCLGCQF8AspExsYJAjuebi4vDgkD6Z5RIr/mCQB4UrXh5EYNA1OFjV3oZg0DOh+9ncyGDQFJOjiVyKYNAakShr2sxg0CO1QLIaDmDQITrpMwlUoNAaJKzM+SBg0BILsY/k/iDQGK3Vm//aIRAMaV1lv5whEC3S+z193iEQLaND2XMgIRAqn0HFfqAhEAAkd1QatmEQLUMRXFq4YRAZZZ0UmPphEBfjTfBNfGEQMi4b11i8YRARtDaSjb5hEAlqSfbWfmEQEk657kwAYVAyhFYyLUuhUBsDyBPoGGFQApdcTWgaYVAY4c2BZlxhUCOi3Bes3OFQCJnwXWZeYVAPGtj/ZGBhUCbfdDbJrmGQEF+9ujc2oZABCxUhuLihkC4+Kn0kCmHQFdiQcSQMYdABd+h7Ig5h0DjX4qciUGHQA6iqHOESYdAew5DNcexh0ATDn+7x7mHQB5TTXe/wYdAUR0+xL3Jh0A= + KBZXds7jZUA= - + - idUhRQ1+T0UAO45EKfr5RLAdwUXBFOZEkdy/RAkeDkWk2SRHtiKIRHRmSEXK8dtEbG4YRbvHFEWvxrFETtN2RbSpAEV7qKlEmQWgRXCg2kTUJb1EH5P6RHca70Tw5mFFAKSBRM4GukTOnZREBIUdRdIEtUTnnxFHVSm/RL6zf0TV53tE66UrRtXExEWMZMxE27J/RMPiwURA6gxH/XcCRfIR+UQqZaJE2kebRfVkLUVA4uZEsx6oRHNYhkTc87dEiaD+RC0dsUT0gkRF30ObRaGzm0Q78YlEn2kGRsJtbERtOZpFwy6lRGP3t0SBNQ5F0pSbRPVl4ER7N2lEVGpfRcKfgETOLfBGW4suRV3H2UQqC0NFGUuVRKC8CUVAhVRHPrwfRQcw2kQb0NxECQKeRhhOjkQEM+xFsa67RIv9bkSuiJFEXL7tRR6bkURXIBdFNYuBRLvB6ESiim1FMC8VRZYsNEXi17RFgHkkR8vGQ0WXpWVE5B6ARWBD4kVawLFEc2ouRt/Yl0QxPtREEmKqRCE0jkT0GK1ESgACReHv9ET/YqJEolOBRq+qDkVmS5hEGYB9ReMqxkR/UYJEYfQCRW1inkQDcnhE1Rm1REhWm0R3m71EtC+ERF+axES5SfxECJa+RXEQCUX6iRRFQZzARTMnQ0eGjJFFn7rPRERso0T1SDpFfkv3RYh94UTdAvBF9kDhROutpkQQkoNEM9plRIMvmURZ4ohF8R4GRYOQJ0W1pLBESSB8RB40FEVK8sJEuSQARQpookSp9QZFIP4DRbqQ70QI36BEYMSTRJE7REW4VZ9EiCCQRFTi3EUFSJpEfWvwRADGgkSF9ohEE8/MRNAbHkX20CxFo5aSRAGLWUVENbNEBQjbRFO4zESSRkFFNUKvRNhq+USJnR9FRBx2RKVgrkS5yihFRsWgRrljnkTmkgBFZFSURVJTJUUVrDtFJ3bkRM5lo0SLaFBHX4GqRng5k0T08PxEM4cnRSM4ikRrfIhEtKXKRCteCkVOB4BEXgH/REXNfkSeKV9F3x+GRLAfn0XbQPxE3JrSRMVm0UTvJJ1E8xEIRqROBUenh99EO/utRHH15kVCSLFEEdeCRRwDnUQv06hEHDJ+RZVlu0aTloREld3aRszmUEWz0KtF3WRLRod79UTCj6FEwPAQRUbH0URz9XxEIEW1RA0Vo0RdmTRFPcC+RV4wAEVJ65hEqrTERNTqZUWySc9EpPaARIMgfkQ0tI9EUlkTRS3pNkVSEZtGI7ZxRZUQikTsXf9HF3bmRqmmdEQi++ZG5ifIRcAfq0a1YUpFvMXiRHwsUUX9JnxE5gqMRM8+oESo56dFiGWnROB4+USzvjZHgn2oRHhAqEV6StVEgTm8RN7+ikSqmfNEuSMSRXxm1USyV5NFbPDaROQwKEVlYEVGfJnjRW/Zr0TPLAlFHi1nRX95gUX5NpREhYGlRIVKnEWLQllJNGrjRSy9HEUF2shE5lNNRSczYEimIZlER0kORUIJp0YEHcNEAI0NRXJP20Vwp9tEOx1XRQ/8DUY8KNlEXypXRR8k7ESEjotE2u6NRB/I2UXzcqtELOunRIS1h0RcjIhEEiOJROO2ekU+lv1FYdszRVJ/ikS0riJFc+uRRNQoeUQ7AI1EYvKhRKbA8EeoNwJHddYuRVBPrUTLeQBFyqXeRM1Q90XIC5lEzcPqRCB6tURKWHVEd4ptRcvDNEV+6gRFNnyLRNcjl0QhlH1EtV1ZRelxWEZQ+FhFBcCIRT1gJUXH6ZNEdMbKRaxPlUSAqaNEluULRVEMo0Tl+aFEhNLLRUmbsUZ/2vdE4hBcRtz2ykVsFsREm6DrRSBul0SWlOFFr3y1ROL4t0QZeoZEfd6hRGHHn0RKk+1HrtclRWqW4UarXnpF9sakRJuRK0W2lptGLX8nRfiRxEVMym1EX44xRWLwg0TEmMlEoP+iRJBZqEQ155REe26SRC2JqUV0i9FEzEyHRP7rgUSeWw5FqTuaRBKo1EUJgapEg3VLRnu3DEWhyEVFVmqSRK8lQEXjewpF8OiFRdAJEkb3a9NF7uMtRQyRhES6X5JE/jg5RVgdaEaT/ZBE9Y8SRoX1BUWn90xFjPrWRH7+6USpFD9FeERNRVho20aOVJ5E/wIMRv3UhEVKEiVF4QCQRN0Vw0SygOhEkTGJRVHI/EVd139F3LvIROoVs0SQpB1FVM3PRMM+nEhohABFlcEyRgTjGEit389FMkSFRPSNfkTIkehEQU6dR3+BlkVXF25ER8qcRjA6nUSnbwZF8yPiRW7xnURwBZpEVim1RMd41kQ3N4lEsWwnRmJnTEVFesVEccLURS+Qy0R9EZpEG2zsRmv8tEYhveNEm/L8RQKPPEXlWKFER1NPRcEoU0W4pfhEEU2iRAMjgkS6pclFi6DqRPVkI0X4PklFzbVKRa1doUSeDKNEg9IFRWOEtUQMUSNF7RkRResiWEaxY6BFfNuNRWSuWUjrV/hH35+FR/kLJkWzrcVFfquKRsYdOkXj3aVFgPSQRCFfukR72JdETUxqRJbyrESL50BIptDORzokc0ceGGZGXXnJRSvQjkSBsY9ERxbQRAWiqUTBFRhGGWF9RYdRD0WpvIREML2bRDvke0c8qAhHSGekRgwbiUVmaM9Fo1DrREXX2kTLKYpEPd2kRLCnOEcjI7JGztRJRsEbk0RO0p9F8GT3RLlbBUUSsjJF+EX8RAUHfEaDTd5F9B7AReHLhkUzSclEV7sqRkfL2kWI6mhFvyS8RA== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - u4wo3w/BckA91yYpbsFyQDfAE4FQwnJAeFL0BafCckBibfZ148JyQDk5+2o7w3JATHcVrsTEckDEazTBWcVyQDd6YHlYznJAwNl6hkPSckBsFq7oSdNyQNAcO2d303JA5JzzwdzWckCfuj+Wz99yQO1xfRm44HJAlBy1HU7hckAYX7BzUeJyQJueve6P4nJA4lRp5SbjckBXPtqZwe9yQGQrVRg38XJAnPMuN07xckDyBtAbyvFyQNLlQdK183JAzu1jqg/0ckB4BYdsofRyQDDSJ0VkAHNAmBfyn/kAc0CUB6E3JgFzQBRC4PdKAXNAvA2XcI0Bc0BUb2+KzwJzQJgGzcf6A3NAGoa43yMFc0Cv4kuyCxJzQN6fIMy8EnNAkJF8mV4Tc0C6y5Ee+hNzQGLZU+xMFHNAU8N4oHgfc0DiH03tDSBzQHKTHQujIHNAogE87Dghc0DSGy2NZCFzQKb57md6InNA3oC/Z8sic0CUN6zrDyNzQKYJcx46JHNAZ2FVy84kc0CCdsvnRzFzQLMZaB1ZMXNAIrxh9yEyc0BOTOc3ozNzQNbmqcg1NHNA6PSWI880c0Cm9zMsuD9zQAYO49c/QHNAZLnO2OJAc0ABncT/d0FzQL5FE3IkQnNApAjFqrxCc0CElBZTekRzQOhEjTyaUXNAW2XqehBSc0CFnmGYQlNzQAypKC6kU3NA0rmTcXhUc0BUrdinhlRzQP2Dl2iNYHNATqXEHjljc0ACbquKzmNzQKe7FMRVcnNAvNTx9GRyc0CmiIyjqnJzQFa2HAe4dHNAzC28u0t1c0AK5R/beIBzQNYromKkgHNAWquY8guBc0Cy34ndW4JzQESyEwKmgnNAbhIEvA6Ec0Bt7NXVhZBzQE2d6iZNknNA/KLwwfiSc0DcfU9yY5RzQEIAb6D3lHNAjq0GXrigc0AUzsusTaFzQNpjjbZaonNATMXrDQWlc0DIkSK7yLBzQM0oRmvZsHNAjNzfBzaxc0Dlw0VRfLFzQAbfegV5snNAilEV57Wzc0BMygCcDLRzQBSax0T3wHNA9CA4MY3Bc0CwRvpqOsJzQCNzH8jPwnNAZTZCqCbDc0BHp1311tFzQOi/tSg003NAzaZ1+E/Tc0BUIK209dNzQPfRgc/i1HNA9CWDwzjhc0DnW9J38ORzQIaFzK4S8nNADP5Xvrbyc0C+LSqqNvRzQKZpm+iN9HNAx1KhRE8AdECV7apH5AB0QMTBh6V4AXRAgn1goqQBdECEuerttwJ0QOx59lmIEXRABWyrGW4SdEBamSaLSxN0QOV0U013FHRA/rQi6I4edECYy3DySiB0QOIXW4aNIHRA7jN1SrghdEC0pPyW/iJ0QOFwfFZTMHRAatCE87gydEDeNY4+5jJ0QDNx0uB2T3RAltyXUv1SdEA1iGJO91R0QIBVB1KLVXRAfG17ZLlgdEBeEjnLCWJ0QDxK2wdnY3RALHsiVLhjdECNgERFTmR0QP5zQPAhcHRAnMWgfmFwdEAO+jgTQXF0QPLQhVo6c3RA3we4sqN0dEAVGcXJNnV0QP2mmMr4gHRAKPxr802BdEBWR7y/SIJ0QNKW0mYWkHRAxmYzemqQdECOwppPz6B0QGGZsGc3oXRAZtpzR7midEDk7zsP0aJ0QPAXCvUPo3RA+J44LWajdECY57F4C7B0QPIewr3CsHRAkDj1NSK1dEDsWBXn48B0QBZtoQl5wXRAlr4dMA7CdECabwP3D8N0QDq295QkxHRAhl5gFrfEdECf+JJMnsh0QLsh8yn8znRAQmyUGD3TdEBEow4C4dN0QDo29EN11HRAIqzi98vUdEDOMFOQjeB0QAiLMcS44XRAH//3NP/hdECfht6MTuV0QAvyw4m+8HRAJfenCYzzdEAJyt6/zwB1QLRdex9hAXVA+kwbgl0CdUCor7bPmgN1QId0bH46EnVAwqrZhyQUdUDipag3zDV1QJSfRnm0QXVAitFYA9pFdUBJrmKQglF1QEBXffcmUnVA6HlNZ01UdUCm+upkd1V1QB3CBh43YXVAkHmfoHVydUDwnKxjjXR1QG/WyI15gXVA3Mh7lK2BdUB/mTYjpoN1QIJeazSbhHVAek71QbuRdUBAyga/qZJ1QMTzRZc9mHVAdiqq2JeddUDsABIPJqF1QEDi4je5oXVAxhWA8PCidUDg6cR6uaR1QFbrxRFHqHVAToQYwQardUBquDPwerN1QDoZVpZjwXVACi3k/vjBdUBsKU2LzNN1QMrjWmHk33VA9jfx7w/hdUBYfLbeCeJ1QDS2yGRIAnZARmA+udADdkC8KkyKVBJ2QD5p/mJNFHZAujYWrAwWdkBdBmMvnCN2QIzY1BuQJHZABrWpUx8xdkBwTCZVJjN2QKYOIVOfNHZAiNmihOJAdkDx5q+3HUF2QGYxjcZ5RHZAw4N5GstQdkAEb/9bElF2QBBkKEfNVHZAWG+eUE5idkDUYfZ0zGJ2QGzdqzVRY3ZANwi8ANtkdkBom34ZJmh2QLh1NEl/bXZATKCl9WSBdkB0GHFmZ4J2QDCzIXoQg3ZA4NZIjZCDdkAGHw3v+oR2QKqRu0i3sHZAJo1bUsGydkCWR3MFDbR2QHQSejmvtHZAcEaN4r/AdkARXVYVHcR2QHN89dLOznZA2j6X9/PhdkB/avVfkPN2QO+vEJozAndAz3/6xwESd0ADSZweBRN3QHsTX1QPIndA0iS3gHIid0DStazfDDV3QPuZMtecQXdAELtgHBtFd0BV/FLoSVF3QE03SGCSUXdAdn//LypVd0AgR9EESGF3QA/IybyPYXdAYvJW9idvd0BNROMygnF3QPjI1mp5gndAoOaIX3yDd0D8jM/tB5J3QGPvA+iJk3dAna8XhEyUd0AqT/mbt6J3QGY7MH6ZtHdAlHJxAuTQd0BxkLeRYdJ3QDw87fiL1ndAEsSHpujgd0AE1XfyTvJ3QB4WHl5tInhARTYBQIojeECNacn4CkJ4QKZLSIjnQnhAjgpDlnpFeECIMX9PylF4QFZasliJVXhAABrqbPlgeEDOuENwt2F4QN+aJ/snY3hAZoMnpLFxeECEHN8hAnR4QNbnsDNodHhAffVUZIt0eEBGKjIVuXR4QBrRQmWlgXhALELMn5mEeEDayGfaxYR4QBRtmhBTj3hAhHvVX5WReEDWvczylZN4QNW/H5CnlHhACUTWA7OheEC4sQRfuqR4QFO+2I/MwHhAJC2QXfbBeECcgK51B8V4QHAx7o231HhAwIgAkAL0eEAU6tm3jPV4QCFbcruYBXlAUQEHwcANeUC3qieZ9kJ5QMDFvenkUHlAmiGRL81UeUAtHvSoRHN5QFOWh17AsnlAahM0LMzCeUCVhoVOQtR5QEolFNPM1XlAdJb74L7ieUC/u+rUUOR5QGLMrQsY6HlAU36LSpTweUDdNitx9QJ6QKMilVM2I3pAhvELDAsxekBmN1VMDDV6QKdBYyoaRXpA/KhLqSdVekBuwhX+NWJ6QDoeAxiMcnpAvLgCHFabekDiAZD7CJ16QBrOResMtnpAFcJjFyrDekD20O1SG8Z6QFRaiTrX03pA2hj0f+HXekC0zojPOd16QN65NIxm4XpAqr9kr3jkekB9kv/yNe56QHxUHB0Y8XpA9mbJW2HxekCANGZC2PN6QLewpYMpDntAbMgDS+cSe0A3zaLOTBV7QBhbKYBZJXtAzAf29iAte0AsjZ4PVTB7QGO479t7MntAAHVFzOqQe0CZV/+bI5V7QH2N598upXtAZEMjJbTRe0BHu3/Uv9F7QATMOuyu03tAbLrA+ETie0DlvXPK/uN7QBrOPBOM9XtAIGERH5MBfEAXjOoy2gF8QBZx+Yv4AXxA/Lr6HZkFfEBxS98RihF8QB8U78/SEXxAchLYQeMhfEB0cLtnzUF8QDKjl1PaUXxARqhPsLJvfEC+8FUjLHF8QBVZ9dkDc3xA4GTb68GyfEDIVX3XV+J8QNDDqT8V8nxAmMqaAFXyfEAxiBPlAQJ9QEEQrFlLAn1AKu+GYEQSfUD4jXDZYxJ9QLFnhaQpHX1AL+cgGIMifUAL9M3jyCd9QD6RWVQkLX1APCmpuaExfUC6kbBrVzt9QBpCp1VqUX1AGDuqRySYfUDgv+jSKsN9QFajV8/Y4n1ADmWXGubyfUBeWYC0kPV9QKrOLlM2H35An+YJeUQ/fkCa21Qrj1V+QNJe5Rwmjn5AS/vMLo+wfkC0zlDZq8R+QOcrM5e31H5A8ElULs3ffkAwhODw1+9+QNR5+8AhAH9A03pDNms4f0BUXcBkt3F/QLSW2H+xgX9AIN3ohGORf0CUBey3ppF/QN7+hk3fkX9AA2N3tF2hf0ANGSEjV7F/QATNlUuW3X9A/OSRSNXif0CH2DyFLeh/QP4HideI7X9Ayl/vWdvyf0CCLuJj3ymAQGV+JvglLoBA9CGL3ykygEDpby0xLzaAQAr5NCD+OIBA223cxCo8gEACAgge1z6AQC3EhD0CQYBAYGehVz1BgEADa39f8EiAQPJsvmPnUIBA2X69CRVRgEDCs1xAH1OAQJKAw8cOWYBA+NwUL9pegEDSmZKV4mCAQFrb93YNYYBAxutJMYVhgEBI1AqqMmSAQOxCA3wqb4BA1nhQ8R2PgECCUP9XbZGAQDVsGJYalIBAMKyDgseWgEDkoTsvG5mAQJTBpWCHqYBAACmRdz6+gEDpKOvTJsGAQMIafIU0wYBAOtDsXVLBgECew1uHEMaAQL8+l4tTyYBAQrTe0BPKgED9NTfZGs6AQPg0F0ot0YBAfMR90EzRgEBiDjeGYNGAQARyAGM81oBAfFRtpErZgEAQZGywmdmAQBwZDoxF3IBAUdtiPEXhgEATaHl29+iAQEbP3fxK74BAKHo/kvbwgEDBw6S2PfOAQKi6uvI//4BAZ4V6PEAHgUAYFwPYNB+BQAqaiW1QIYFAS+vQBDMngUBSkyaq2y6BQB8KjPyHMYFA35S5RLwxgUAuUVeNDTSBQEjX/EswNIFAaRwKNdM0gUDaR0TE3zaBQKcXIFmAN4FA9FPK2385gUASWttKLDqBQGjhDn1if4FAXoUPIlWPgUCB8/avWZeBQA4H84DnoYFAItx3G22ogUBcZBrRS6+BQFDT7MF80YFAnMhJ5n3TgUBg/zYNKtSBQNkve8MCCYJAIuXufQMRgkBWFh4d2BiCQBA5kCXXIIJAoOkPsNAogkBnpac80DCCQOQafNQyS4JAwWWmOEOJgkB9/ed4RJGCQOxr3FIZmYJAJ74sgz2ZgkCMYk4dVpmCQBbl8WcOoYJA3mRLdzyhgkD8VVciD6mCQMYG+xI0qYJAmrk4aEmpgkCrRELWw62CQJCMdA0HsYJAfbA5nTKxgkCGdT3YrvmCQKpSt/W6DYNAXoDv3lQRg0AspLZaeRGDQHgOE2t6GYNAAq+UqnMhg0Ayh7g8cimDQMAToZlrMYNA0R/GsR05g0DXeISiazmDQIjcaYeU+INA0mcnzZIAhED3xwlB/2iEQFx2Sp7+cIRAFW0+pfp4hEDlLbgUatmEQMxFNDlq4YRAyL06L2PphEBGIdubNfGEQIM4aKVj8YRA5oJVzDX5hECM4rBhW/mEQIwdmHMwAYVAX/T7lLcuhUAHYt1koGGFQPr4S3KgaYVALmN345lxhUD2+xxOs3OFQI4j3BSZeYVA6me8Z5CBhUB6LbY5JrmGQK44co4iwYZArlNzrifJhkA6GYSu29qGQN4LONDj4oZAvHpoK5Eph0DCF2eJkTGHQJAkOWOLOYdAjHZtMmBBh0D+WjaviEGHQDOdPEOESYdAakIEZsexh0Aok7sKyLmHQBlS0j3AwYdA1iuKUcHJh0A= + U6vsr5viYUAoFld2zuNlQP9T9bnLw2pAN5QtbGpicEAis/wNadJyQI3oMXEC03RA4zw2dppDeUA= - + - rCwmRQs+HkVkb/dEWocFReLWf0QNGuVFK6jPRBOezkRarydFIr8NR1OJc0Q/iaxESbGiRER9AEWt1AhF6emTRL1fbEW2jC1FzrOcRKfVdkTGepFEQ51yREQmGUUG1uNESgyJRJiGBkVgPI9ExLFfRZcSB0WdK8lEBs6gRDpCnkQ3JR9HEnyTRAcQokSYmU9GucphRMxKxEX447tEk2fbRPTqg0R/HRdF0IsJR3n08kTomPREnae2RA9XsET9V45EamfgRXfjwUSg2KdEZcNhREQ0l0QtosdEGwGTRPe1ekSeT41EI3kORWapgUVTC5xEnLSURBWWEUbIQ6JEtM+KRNqN3ESYBplFQ8iPRLdlfURrmupEEO4IRW8pq0RU9qpEfEa6RL2HikTK54FEY/A/RYu3AkcNjsdEVTURReXEhESf5T5Fnm6KRElbNUVQzUdHUCnvRGjACEVqwIdGURIjRpu5a0S7zrBFz21eRaZVkETNSGpEWLSjROCdo0SNGFZE+0CDRfZv6ERMAOJECZuuREvRdETa1bZFTyUHR+DUSUU7QV1F+JSZRAzajUQCBrhFuRDxRU4Zs0QggblEVYGCRH86MkX9KcpEY0qrRJ9/sUTa0ZBGzLwCRSKGd0SNJMVEbgunROwsGEVjwY1EKGqLRGFfIkV+caVEJC8VRcmK0USgCKdEcYC3RB0WfkSyBGlE812XRFCk7EQuORRFde6ORdKCLUXw3mVEyP2KRBZ48ER8sKxFF2SMRE8eSUerXV5FnuLYRCAJyUReZkhFpWXgRZ5viUQNkthFwpm+REK5EUWEzdREY5h7RGz8o0U9OARFzcU7RbrQbER7hpREHJJ3RImV7kS5sfdEl4F8RFvYxUTn2ohEuneeREdKvUTSxpZE13OZRC7v2kTMtpFEYyXpROD6hUQtxltFD8rOREGYqETz8YZEYlLORblZxUTmmLNE6kqARCQJv0Ry5cJEPlk3RV0mJkUBY5pEHumFRNxplkTWIRlFWhSZRL3Ys0T9QC5Fysa+RGv2NEY1RwxFTkOZRZce60SjJBFFcLSmRDPHa0ToTHlHrwvdRkNwWUTA/edEAJO/RUDhjESIBYxETueJRKgvpUTskr9EQ03cRDvaykTNvnBEvSbCRHojIEU+zaZFwE+RRLMLiEQXkqpEQU32REmw1UT7RNpFnPwKR5oZ4EQUJ6lEQaXARO+gx0XuXYNFDRoJRbNoi0Xm41xGMmqORNg4RkdXrFNFhesZRdi7wkYgu95FfouQRBEmpUR+rdtE1NvHRJ7haERHkfVECbotRZ/KkEUvIY5EPOXNRPtZfkRWFDRFz/qhRNBa7ESI0ARF5oSIRnbgs0SkJ3JF2V6mROgz7kfe0OVGVCSvRtYttEUhypxGaaIKRV0YsUTdEoVF0u2jRanEhUQgxP5EERctR5LG5ESO9MNFZlOoROXKgUQYGIpE/YGDRGtNdUQqlG5EMlDbRJkTCUUrAoBFLrvrRMfYH0X58oVEt71fRlI0z0VoerlE6y/2ROCXQEXL6ZdEclyARPi5j0R8EaFFjzM8SVUsdUXoTlFF8fU/SBUAgEQNl4pEnIkLRSudaEQlV4dGYh2FRFoul0To4ctEBsyMRHlfgES+ZWpF3ZtqRb9LpUWLXIdEmeQqRSCMnUQy+ZdEi6KEReGRnUQhzHNFVECCRApyt0Ug3+hEP8ESRQU/4ETku8lEAx2VRF+5bkRa6PFE/850RBPcqEfOrLBGawARRaDNTEQDl9xEE6oMRb2g8kREop9FVcNsRKiU0EQzrrxEn6KdRaUfKkUaXslEaHHERCIPDUXXPu9EQEKnRPV66kRqB7JEBKeGRMH7EkYsIhZFmbc/RR9ahkT87oFFmjKXREwCIUVhonRE04zbROEND0U8Kb1EPvvaRLbasERYy5VGXsfNRDQAUEbqqCxF3Mp8RWBGmUQPyrJFbDyYROXU4EWurpZEsDiYRMQcx0SU921EeB4IRVbI30fTlwlFMdLeRtoKYEU4T8RG8bk3RbMQwkScNepF1X/DRLhKzUSD2HxEBUaBRAF/sURWXo9EI6NvRLNloUTP/4hEOMCLRAUw+kSGiMFE1cOCRBnB6kSh461EySCvRLTCBUU4tHREAv2LRLe0iUQJDNxEtWLORJN1+kUr1edEBks+Roh5jkQJh/dE7AxBRT4M/0SCzOVF6ko/RueG60Wzn2dFc86uROMCPUVV+lhG4Sq4RURkAEVhFhRFjaHuRKN+zUQbxL5EW1pnROOAKUU7XBtF6F3XRkuMo0T5sylGzvhoRftiq0QmYNFEMkfSROiVkkTxH9ZEc2dfRfDNv0WKNK9FsXUbRTSffkT+vPxEFxSERMeskkRr1Q9FzEmxSOYtlEarsDBIamzvRbpznEQm+vJEoQawR2knf0WwPI5EwReQRvozAEWEmhRFcH7HRWHm9kQqavREOpeIRHcmqESg6RxGguGBRYbj8EVwcLVEd6OqRIJ63UY6X35GH8K2RMRqk0SvQAFG/QyhRRHecUVbrzZFK2qnRH/QukQhy5BEkYO2RczSi0QsE1ZFBaAqRVOHE0WzBgtFYDKoRD9N40Q85E5FHu2LRCZVZUY476JFhFgqRaw5n0QztYJE0piQSGBVHUjTJnhECTedR4veV0WuELRF10vNRha1DkXYDrtFeVw9ReKKa0RCVdxEb/MDRaC/8UT9wvxE8CezRO0dbUjIpAFID7SPR2QwkkbhKL1F7y29RHCwJEWY5qpEYF2KRO6v7UW9oSxFr/QVRfk4jUe2cQFHGmGwRjfJpkXP4vtFTPU2RYmRFkWpPplEtISnRE3sX0czRdNGryBuRvvPdUQwOMFFmF2wRDP2kETwu3FEiDV4ROrRe0V/CoBENEB/RtV7C0aeUcRFFB2pRDNmxURsqMdEWLY0Rk2awEUY73lF334MRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - NORIHHfAckBFj447D8FyQLpNcuZuwXJAoL89qaXCckC/+r9y5sJyQDPmJFE7w3JAgkjDqcPEckDusqllWsVyQIJAgBxZznJAiEoF10PSckCXfaUZzt9yQJZZuF634HJAGic7fk7hckCeuHIbZeFyQC/l8j5R4nJAKIbnc5DickD4eJYryvFyQP6QBS+383JAjBaSL6P0ckDyuiqNwf9yQPgJtuljAHNAjISrWfgAc0DAtfeRJAFzQN5D9u2OAXNAC+IECc8Cc0AI7Muk+gNzQN7HvPAKEnNAap9PfXcSc0B+Qg8lvRJzQAVOLc8FFHNAg4KYJ0wUc0Ax6IxMeh9zQLwJa1qjIHNAqhY1Tjkhc0AunRYKZSFzQHhVqd16InNANFY3X8kic0CIdxesDyNzQFhPXSIGJHNA8BVV8M4kc0Al+2Z3SDFzQFo7uNZbMXNA7ifGuR8yc0ANEsG1ojNzQPH5SN04NHNAcLOygORAc0CjtOaZeEFzQI4FZGZ6RHNAj85kDqRTc0BsP7p5hVRzQBbmPgKMYHNA+LwbBjljc0BrvOkI0GNzQM6+6K1IcXNAvKFGaKlyc0CDLcn3t3RzQIKRA79LdXNAIByaBXmAc0Cg2t9gpIBzQCbj7/MMgXNAmuHWIceBc0CqnqrpXoJzQEsb//mngnNA4hEfwIaQc0BwDKE8TZJzQPhLg9L5knNAbqWMzM6Tc0BMie+rYZRzQKIZ3Ov3lHNAJ5PTS7igc0ArPcT1SaFzQCjidhlaonNAHFvk7eWic0CSx63lBaVzQPu3U2nGsHNAkjhCctmwc0B0BzzBtrNzQDSwNRQNtHNADWKQavjAc0CAvsqTz8JzQLW6va8mw3NA8lWoi9bRc0DO6GvNNNNzQPSDQCL203NAGh7JlOLUc0BUBZjlOOFzQOA6P2Vl4XNAUusEb8zhc0DXz1XkDeNzQHjW+3fw5HNAxSTEFhHyc0Au/ssbN/RzQOiJZlxOAHRAWBj7CHkBdECQpIPepAF0QFL/k+EJEXRApEtKzIYRdECMHGGjTBN0QNeLNC5LIHRA8EiwmLchdEAYwarEuSR0QDbzfWq5MnRAytxkydYydEDsKu1zXTN0QJOCHOB5Q3RAKndj+F5PdEBqVWtz91R0QLaoN1uMVXRArW0jQ7hgdEAbllJZTGF0QIohPFUJYnRAfoODfE5kdECXNiphInB0QE5TakJBcXRAb/nV7jhzdEAKOdg6o3R0QDImUVU3dXRA1uJvAvmAdECarKjwTYF0QNV9amQWkHRA/t57Rc+gdECuHfSbOKF0QHxPtvDRonRA0rSkDw+jdEBi0FWiZaN0QGvuIlwIsHRARie5TePAdEAj9JXUd8F0QMJfrLQMw3RAjDXmWSPEdEDIO0TRuMR0QFa9Sm/6znRA8JFKiDzTdECKETUp4tN0QCIzQX3O1HRAWlCvJ7fgdECYfwUSI+F0QCeJ33e34XRAKQNiOI3zdECd/8viePR0QP6Hyj+kAHVAreushc4AdUBoUXxWYwF1QBJv7UL4AXVANhdxITsSdUC/oQ+XJBR1QHStYMmdInVA/DETgMw1dUA+8f8jA1B1QEZFBc4mUnVARITObE1UdUCTL7Wrd1V1QHhvWCo4YXVAymYAv/NhdUDqCmxadnJ1QE2YyIiNdHVA/ZL98XeBdUCSxE/DrYF1QEfNr3Clg3VA3S6ebZyEdUAs2V8OPph1QNIiVhmYnXVAlnXkHJKgdUB3i6Pc3qJ1QNWrB3nxonVAwLSdpD2odUC3WEV0z8B1QMDGNxX3wXVAbAhcJM7TdUBMybo7COJ1QCjKoKfO83VAXsuSYkcCdkBh/+Sq0QN2QDPjrkBQFHZAzvBi7gsWdkApRUNpiCJ2QDiJp5SeI3ZAigEMQpAkdkDEyFCQHzF2QKQfiQCdNHZAEHck7xxBdkAeCo2reUR2QAW2AHvLUHZAVY7UQxJRdkAY9XrqzFR2QK6PNuITYXZAmigpqk5idkB4wYJtzGJ2QPAsNaRPY3ZAE1HPdtpkdkCCgLQvJmh2QN0JONd/bXZArh2jw8dydkC+lxuYEoN2QLilqEWRg3ZALqLZ87yTdkBYPdibtrB2QCBRlMrBsnZAWqNymwy0dkBwqUQmdsB2QA5o5te/wHZAQsdag8/OdkAys8ou9eF2QL2Ji46T83ZAIsqfv0r2dkBoxDNnMwJ3QK4TLOQBEndAARnLQxAid0BV5Vv8uSR3QA+rR6GmM3dA4LKtBg01d0DI0gNUnUF3QHxzFcqyQXdAEdb9PBtFd0CbpsEQS1F3QKI8awaTUXdA2m0S1ypVd0BiEZ9USWF3QAj/oAmPYXdAFve7jidvd0AZ9sTeUIF3QMb4jwl5gndAStK8qXyDd0CTtQFnB5J3QEYpBTGJk3dAoE7u8UuUd0AUMbr7xtJ3QIcZ5zWN1ndAkAD3iezgd0AGWeBiT/J3QALXZiBvInhADmrzEIsjeEAyZq5DDUJ4QF0+AMR6RXhAxfhtbctReEDiGplp91N4QNCVY4aHVXhAdMWnvvlgeEAdtBOWt2F4QGkZEJu4YnhAwqoB0idjeEB0RWlEtnF4QH4x/p6LdHhAmndgr6OBeEBEE+d3mYR4QN9+ZF1Rj3hA1TKoapiReEArgnbwlpN4QNPkKjKnlHhAfZEGWbmkeEBc/8nvzMB4QIueUqrVznhAwLkR2LbUeEAwILjmxeR4QA8tpKoC9HhADtgtOY31eEAt3S60mQV5QMYn+YrADXlAskvqeohCeUCcKvCw90J5QLWbl3LeUHlAzFoXDMxUeUC8SISw6GB5QLNQiPbAsnlA37fvdzPTeUCyE5rbQdR5QCVMwd/M1XlAxBuw0VDkeUBXaoW7Geh5QPxxf7P5BXpAbM4p4jcjekAiO+2B3CZ6QEYxK4oMNXpALPGClxpFekAW1OYAglJ6QHHRhEIqVXpACio2N45yekCAysgeVJt6QBhJlycInXpAigPr7gy2ekDsgS9HGsZ6QHi3jnfh13pAkOHPCDndekCcJN6yNO56QH5rxPvY83pASCS7ZikOe0COLGNt4xJ7QA2Xnf5MFXtAgPJPt1ole0CR1BfsHi17QL7J9LN6MntAeL6AjdU3e0C3F80DXVJ7QDSzEg0jlXtAEf5OEi+le0DMUWYAfcZ7QFMS++HF0XtAvlgUNK7Te0AEXQTC/uN7QOpiVGmm53tAyAMWTYz1e0B4e1IikwF8QKqbXNvZAXxA2BnVUfcBfEDaWhNRmQV8QPaIjRuNEXxAZxPtftIRfEAJwLpDzUF8QBlYuOILYnxABvvKObNvfEDdtikojqV8QMxxmM/AsnxA3p65pszVfECqTMsMWOJ8QBiw9n4X8nxANLOTTlXyfEDTMEzRAgJ9QLJM8h9LAn1A8bDyqkQSfUAm1K/oYxJ9QBvlA/wpHX1Aq1V/gj4ifUCO5lzLgiJ9QFKs3gGgMX1AoYnuUSzDfUCE3ZPb1+J9QD6SWqCR9X1AP/hNHUEvfkBULxV2jlV+QNlU11EYjn5AkfgC9K7EfkDiWQPn1u9+QBk12vkhAH9A+ogW4mo4f0BQtMaXuHF/QJzv5vGxgX9AcWfTI2ORf0BWmmgYrZF/QOtw+2HckX9AW8b39uKZf0DCdwPcXaF/QDxn+oRWsX9AiaAcbJXdf0DedqRA1eJ/QDyPJsMt6H9AI8top4ftf0Dm6N6Q0/J/QMDz18LeKYBAMURECyYugEBW6/0dKTKAQDC3bccuNoBAvti+4+o3gED2O9LwKTyAQMYatKR5QYBAkB7jRvlIgEAPlNHw51CAQJjvtLYUUYBAHFVDWcxRgEDGK9ze7FiAQBjSE1oOWYBATcE2G9legECADarLDGGAQKY2N+yGYYBAhGbW5zJkgEDO3KfRKG+AQAKE854pd4BATKhmDPyKgEBck0zgHo+AQKS/0KtskYBATku1wxmUgEA7DUTTtpaAQIalkBPKloBAwnCJeYepgEDqWeyJUsGAQG0DHNAQxoBA+J92qVPJgEAGkwI1E8qAQIYgC0wZzoBAlgRW2CvRgEAQ5y02TdGAQPjU8BpL2YBAtBS7cJnZgEAJqRbER9yAQHK7DyxF4YBARyknH/bogEB5VsL7R+mAQElZR4c884BAoM3m+j//gEApcH45QAeBQADBAo09D4FA+tWPQzQfgUDeu4s4UyGBQJLeOK02J4FAJp0R7NsugUBJr1MgiDGBQFAHydS8MYFAWm6yeTI0gUCTmczr0TSBQBoVFBPdNoFA6tAHGX83gUDYUUnbKjqBQHxAnayUeYFAFtw7aVWPgUAW1yR7kKGBQMxRlNjnoYFA+u9nEG2ogUAatu9vS6+BQDwyWWF+0YFAYDHN3H3TgUDWBDe+KtSBQPf+9loCCYJA6nB90dgYgkAwaLsz1yCCQCzFjQPRKIJActR0vUZKgkB3JZJmQ4mCQCtMSI5EkYJAbjlodhqZgkBSKDMyPpmCQAYVDZIPoYJAbKi+4zyhgkBYaAG5DamCQMw5xRA0qYJAwK+EHQixgkBiZC5UM7GCQEqu6Wx5EYNAkePMk3oZg0A63dN1dCGDQMY5dkBzKYNAcKBySWsxg0AH4TTwaDmDQI4Z05olUoNAQFc7zuWBg0AY88nFlfiDQH0txtL/aIRAeAPzwv5whECSo8Ob+XiEQLYzRjxq2YRADljrDWvhhED4Mnn/YumEQChnSRE38YRAfmdbemPxhECoNDPPN/mEQBI4Mwpd+YRAGiNTki8BhUA6Zqw2ty6FQGPyZHSgYYVA+DTiNqFphUCzegrVmXGFQCMo68Ozc4VAKK0U1Jh5hUB/NQ+8kYGFQJ4n/3AouYZArqSmatzahkDgZcHk4+KGQCCWqhaRKYdArVEqvZExh0CIMnbmijmHQALdra+LQYdAgd2lL8exh0CbFpU3yLmHQPbHGGi+wYdAtOQk4b/Jh0BeWsTMGOaHQA== + KBZXds7jZUA= - + - 7yyORCDmsUS0PShF5GIERUyNk0R/0p5Fz26yRPqJyURoRgVFqsn5RnMJrUSiiMNE/NqMROrmWURimSFF/YXRRLVDdUUbNY9E4066RJ+p0EQUt8VEIe4jRTX+7kRFy2tENK2nREUdCUffUIFEDHzIRIzFQ0ZT3opFtoCuRMLgukTmOilFgzrdRr5VoURLWONEDZ98RMp9yUT4uIlE6BesRechiESUFXtEX41rRJiXmUQtQYREcNL9RFQ+d0XcI/xF59lbRS9tx0SImZlEqaPWRK8RdkTJ1YJE/UXTRL+Nn0T6mQhFowDpRpPyl0Q4jxFFxaKORM8mukTqXBNFFdkURQf2PUe4/wVFbn6NRMJ1+EQIWXhGbefGRUnGa0RnteBFl3dfRPqNUUX5fWFEMnJkRJtFRkXnxwNFWvfmRGGgl0XbhN1GoWAgRa9IT0UAwtNEN2SpReAE60Xw9YxEsJVnRPhLgETdw3BE5Lf1RN/sCEVAGY9EOAuMRmh9nkRBfJJEcZK6RJylPUWwm69E4DiNRMuetEQGmIVEyDiWRMM2skS/+2VEUAxDRIBikETtdMtEl3CfRZQ1XESuOChFhmm1RMMprUX/sjJH5zpLRWyniESthrtE8poLRbR/qkUAz7lFPN3dRPVXw0R80IlFpez7RE9NK0V9D7FEuW0GRZtU6ERMu55EPbN3RHGjDEWXoZ9EhUCaRD7IAEXj6rdEM7BnRNwtjEQcLxJFe+XLRbS5kkTTdL1EaaiURGd/s0Rs6mlEjvIFRcOuCUXPDmpE+5U5RardjkTNTNNEFl2RRD/ICEX+ohxF3wBgRCKFDEUUFiRGA8gARXAigEXb2YtEuXD7RJbBVUcdB9VGTnF1RDqPBUXv1y1FOMXLRGmMh0RD/gVFu8CiRA8sLUXZx4lE0l9WRbHaq0S8VO1E0mrZRIFki0SIYcFEKZL6Rd8S9EbKAq5EQPPPRf8sekV6FMJEUlo6ReXDWEameHZEPReWRBoGg0eohmhFAmorRS/Q90bFROJFFeL3RHcJk0Q+Y5dEt6+ARK7jr0TP/rVEuziuRTxzg0S+0upEWepQRT0ykESDEQBFox1fRN9LpkTYi39Ggx8vRVEDpEQJq5BEnAnyR0dU40bvz4tFteK1RjaMmEVI7p5GM7jHRPWEb0TXNjNF6xlpRSZdZETPGLZEB6YdR2vA0kTxI4ZFxUqYRM1BakQRy4REdt+oRKCly0Q7E0lFRZJwRE7sAkVASCVGFYWURTtmkkREZT1FoJP3RIYlIUUMJKNEcFmZRI49gUSiwUZJ389HRdCNTEjKH3NE223jRDqgpkS5PKRGk9lKRDo2vkSJxIJEe2uURS2TukQ4xIJFIhT5RcGQyUR0SLdEu3yTROrVikTLzXlET+FLRci2lkR3s2pFt+x9RCx040XL89BEsYLPRGAWqERwY6xEDbqGRBvakESyK9VHjHLeRkw580RpwihFZKnIRKzis0RHIbNE6KTERWdtq0SM31JFGoPPRB8PvkTnBAdF71dyRBLsqkQgnjdG8YI/RWe1DkXxSTBFibiwRDr5j0QQFJBF0ZmDRGcih0SKmfFEhvKcRHcmmkQV3GlEUBalRrceukT+9EZGWdUtRTnqpUV+r4REd9qTRUSm80WMG9hEMWunRMUnfUTMzPhE+bKrRCn020etPsxEcNnaRuz7D0Vpu7dGtr0nRZXIhUQt9YBFA7d7RNqFHEXqDINEGrSFRLyGnERJyM1E4KB9RLTiEUW5JlREfZXlRALFpETkTalEWkzgRJkuy0VZNaRE2RVNRgps1kRr6BVFjfqBRC6TZEVNgwdFHZGGRcTtf0b0eQxGg09XRQciN0VTx2pFZ1NhRiv830Ved49ES911RM7JLEWqhW9EB6nxRHSOGUXvsbhGFtVyRBGpkUQVUNlFfUopRQWYzUQ4ndNET2eDRKnCCEU8bIFEqONeRJ5vSUX0xytFNK55RdrywEQeY51EkdX9RJNMoUjIiL5GqTgjSHwWO0YkbvdEOP3aRAwqq0c8j4ZGclYFRbuY/0RBputFx8SoRO/XdUSxmZBEcOwSRusJPkUrsfNEPXrKRXPiiEQvxvNEPybERqBgcUZweAdF06KvRWJBQEXvGl1FqjCvRL0uhkT4voJEyIKPRbmsuURTw0lFSifbRPqPFEX7WclEg16IREQ9ykTcEhpFE+JLRi3GjUVGUFJFv5CBRDRueEgorwhIB5pfRH/PmUfojcdFNxCmRp0l6EQYfMBFXFQYRaKN0kTDlG1I/coGSOJDm0c2QKpGJNfeRWCCxUSjJHdEAeNlRIjqqkT5ZMNF3md2RcRgI0XDf4dHGR0URz9Bq0aV02RFWd7XRS9E1kQF+SRF5YGRRGywv0TvbVxHY6rORiN/gUYsdJNEDtCgReN06UTe+MRE4HE5RX7DgkREuHtGUdoPRqHdoEUf8wJFBnUkRgclxkVxpxJFLGOxRATn20Q= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - oj38GQ7BckAI9sAob8FyQLoZlaaownJAlBf9VOPCckAeMduAPMNyQLeUKPKkxHJAsVQBt8XEckAorvVAW8VyQPqymDxXznJAa2MLCETSckA0TROjd9NyQP0Dr0Rl1HJANpDNe9DfckBipfB4ueByQJ652Z9O4XJAhuo7ClDickBKL1GJj+JyQHdg/iQ58XJA45j6TsrxckCWujvDEvNyQFPlBDG483JA84Zf2qL0ckCoYl+cw/9yQA2l/bNkAHNAA2bsmvkAc0AoXt4vEQFzQORCJBEnAXNAHcIseEsBc0DwzvlDjgFzQPg4mBbPAnNAuo9uA/sDc0BKwy3hIgVzQA/Vx2YJEnNASugrcb0Sc0C4a99A+RNzQKzRUbNOFHNAuIHIa3sfc0A6T3TJpCBzQJVNzqk5IXNAZFteuGYhc0BmlqwLeyJzQJYiJt/IInNAYEjF0A8jc0AURpSyzyRzQNBd6YJJMXNA55EJeFsxc0Cqt215ITJzQKIjB1miM3NAv1k89NYzc0D8D5FPODRzQNRsyi/kQHNADPMQL3lBc0DblrRAe0RzQDZmfaSbUXNAxCswCBNSc0AlgyyVpFNzQCghSxqGVHNA5JPusY5gc0C82UU8OWNzQNYcpvRJcXNArQyI51Jyc0A8PQTGpnJzQPjpeFO3dHNAwr1SAk11c0CcYz1geYBzQOjcGlqjgHNAjSlDWw6Bc0CgiD3wxoFzQAofpwWlgnNAPk/eQg+Ec0Ck/OHBiJBzQD3zuFpNknNAa3XAK/uSc0CWNKQ8z5NzQBcqELlglHNAdJ1G1PeUc0CVxyR1uaBzQBpoB/lNoXNArCCnFVuic0DWseex56JzQCqdmeIEpXNAzyR/BXqlc0D43REOx7BzQNSUAArVsHNA8wyNTn6xc0Asl3BKt7NzQDwO28oMtHNACZ6SyfjAc0De/1aiz8JzQHvr38smw3NAmt5DUNfRc0Bw7/RjNNNzQNY3243203NAGjPErOLUc0CSAVX9OOFzQMCjMLRk4XNAd18hqw7jc0B3IiL/8ORzQLlA6ZbS8XNA6UcGsRDyc0CwpxPyuPJzQCBOfNE39HNA93OLzk0AdEBwKDgXeQF0QFBUJYulAXRAToY1+40RdECtYy+apxJ0QMb3309NE3RASoncEXcUdECasgNySiB0QBpiO0KOIHRA4n1SvrkhdED1DyKbAyN0QC78Hy5SMHRA7pHDLroydED+4utv2jJ0QMyksPFUQHRAlouF2npDdEBvRhehUk90QNN7lPz3VHRATrK9xYxVdEBOzlYRuWB0QGURE+sHYnRAETxayU9kdEDYFzsYInB0QFWaUyBBcXRAEGuA3D1zdED/1Pe3oHR0QPh1StI3dXRAzjaa2viAdEBkkIWSToF0QOZB9FxKgnRAxZwuiBaQdECQjsLZ0KB0QH/AQX02oXRA3FLQx7eidEAt82EG0aJ0QHLROlgPo3RAu90eRmWjdEDVnbJ3CrB0QH5CzabiwHRAHVHBvHjBdEDQHwZv6MF0QKYorJMMw3RAKrf1ISTEdEDAZb4FuMR0QDSbnIn9znRAaD7eXD/TdED+hWID49N0QAxo1jvO1HRA4NCrkSXhdEBNHdPbt+F0QNd5R1nI4nRAbvt2DU/ldECznpbPjPN0QEAfOmyjAHVAxGvRZM4AdUBsbG35YgF1QEAKFhddAnVAnLUk3pgDdUD+AFHBOxJ1QBeqNzckFHVA8FSsg+cxdUCGbCWGzTV1QAop2H0FUHVAhxRN14FRdUDao0IbTlR1QNsausp2VXVAONHTtg5gdUDqbQY+OWF1QKbfYlv0YXVA/Nt/snVydUD5vtx5jXR1QOX8bFx5gXVATAEye62BdUCnboSdpoN1QAgq3i+chHVAbYsXgI2QdUCQRjvCupF1QLY1K7xtknVASmyc+D2TdUDyoSvzPZh1QJ0tSx6YnXVAz455bbihdUDLv4w14KJ1QOuzu6X0onVARvWOxuSydUDel7ppObN1QChjZ2R8s3VA3hlXXmPBdUBcdJM4+cF1QDZM6P7N03VApgAz3+TfdUDuGLkcCOJ1QHUaPaBJAnZATqmaddEDdkB0DZ3FTRR2QNqgNBQOFnZArI/sg4gidkCnRWoymiN2QOgp0xyQJHZA5JvmUaYrdkD1GTikHzF2QOU1tIIdQXZAbTOie3pEdkD4rbKzElF2QASCzBQuUXZAcYX5RodUdkDk0hOIzVR2QIIu/TLMYnZA0QvUw1BjdkAsglf+2mR2QGiYEcMlaHZAJgbkdIFtdkB73P9HyHJ2QKrFbk9aeHZAHETS4ZKDdkDKEZTJoaF2QEdXXn47onZApS9BIMOydkCUt1QkDbR2QJ6cpl6xtHZANukyO8HAdkCKTt6pzs52QBjjEiDy4XZAz1A60KnidkDAAFsvkvN2QJbHgMxL9nZAeO0p9DMCd0C2RRFjARJ3QD60bcTrEndAcrAIMQUTd0Bivxe4DyJ3QMxcpAcNNXdAxIUIVp1Bd0Ac5k5AG0V3QI5LTDdLUXdAE3fgiZJRd0DF2kKkLFV3QOXrrFyPYXdA6PisPShvd0AqW4+sknR3QLJgSHJ5gndAYX1wh3yDd0By0WIeCpJ3QCLmMniKk3dAC2IRTkuUd0Cm//aunLR3QNYUa/Ph0HdAqVbVo8TSd0BC9VGP7eB3QJhvYlJP8ndAq0wjhvkBeEAKKKg+bSJ4QOgLw5YNQnhArIhp+g9EeEDS4m2eekV4QPhHvIjLUXhAOHsYXIhVeECNtNh2+mB4QF4dIIy4YXhA/rFg9bhieEBdWXM7RHR4QHuPcoeLdHhA1inV9al0eEC641ERyHR4QBZ1EroKdXhANp1d8qaBeEDU11lnmYR4QDgY36qakXhAlhWezJqTeEAeW+rZp5R4QBd7Hq+6pHhAVkEahMvAeEAkrjOYBsV4QCCZtf221HhA9mqEbgL0eEDGXRQrjPV4QDBhmugPBHlAQvWKYRoTeUAyeIqQujN5QFCg2N4SQnlAqyFegItCeUD/Y+cO+UJ5QJy+/SHMVHlASbWD+EVzeUAGkAEn+oF5QPjpbu83onlAyoCsnPemeUAsi8ikwLJ5QLmvQFQw03lA/MR/i0LUeUDG0QIMzdV5QAxgzsbA4nlAFgpQSlDkeUDwNn8GOCN6QJLS2aoMNXpA/ExhBRtFekBzgm1dgVJ6QHKfivgnVXpAKvkjVotyekDJZVPypZR6QHwyh3oGnXpAxP4Huwy2ekCT2JJoK8N6QAaztE4axnpANmJQhULOekAgz3bT1dN6QECYcPvh13pA6H9Ma2jhekCmh2aZNe56QIK1wX8W8XpAMELk3l3xekCekLKM2fN6QE/3bUZNFXtAFKafSlole0DwOsJdIC17QHpP3aR7MntABn/9FsMze0AOCTAp0zd7QIck1ucilXtAjK2QgKzTe0AYgTfx1dN7QIw84bdD4ntAAuJe8/7je0DK67csjPV7QMJdl1CRAXxAjASSjdoBfEAU00gymwV8QHAPbNPSEXxAQiEVoc1BfECSMdC73FF8QAYZlTsNYnxALDsa3gVzfECSThSiwbJ8QITrbfpX4nxAzyxe8BXyfEAQhv4JVvJ8QL7FnrkAAn1Ab9v9CEwCfUA3eVC+ZQ19QFrg4/9EEn1AIv8mdCkdfUAkefJLgyJ9QPqjUnHNJ31Amxgxv58xfUBSJUuWLcN9QMA3GmvY4n1A91LnUpD1fUB2VL8B+Pd9QK4LsvFBL35Ac+RlGY9VfkBeQ1k3fop+QA52lqOPsH5AvM3w3a7EfkCcEqLWHgB/QH3sttMQM39AOYJYPGw4f0C0BdaauHF/QCjRXvukg39AVCTSr2ORf0ALmV2KqZF/QCtk0SfckX9AGNWUr12hf0C/bwoCV7F/QN6Wyz6X3X9AELcJbdbif0A4qYmNLuh/QK+gN2GE7X9AaFOET9byf0DYOGN93imAQJ0ABcUlLoBAL5/2eOYvgECcwHQOKjKAQF5uBRUvNoBAzCsDkCo8gEAWGqa92D6AQKSlaYn1SIBAgANREuhQgEDXNGW/FFGAQOokcS/mWIBAqhNq+A1ZgECoGXJiIFmAQF+Vv9HaXoBACOAaV+FggEB8DKHWhmGAQPBKzUUpb4BANG8Kph6PgECmBS3vbJGAQAWvWsIalIBAqhchJMeWgEDvlWlOhqmAQKr2G+QUtYBAjhvqm1LBgEAKAPX6EMaAQBOgZ3QAyIBAXvxK2lPJgEBNznKgFMqAQJAoF80XzoBAPoDA6yzRgEDgKAjjTNGAQOS0kXBh0YBA/z07+DPTgEBgPIjFStmAQJSPpWyY2YBALQYkmkfcgEBMxKMEReGAQHXsW7j26IBAer9feUvvgEBXO0nkPPOAQGpQDkjD9IBApgiIxz//gECa3ykDQQeBQI6FHPM9D4FAaHPdOTQfgUBq2IfUNSeBQKE5ivvmLYFAvv0PHtwugUBTLY9wiDGBQPjyqxG9MYFAnqGGjzY0gUBUPvfM0jSBQJiN02/bNoFAZ4SNR4A3gUDpTB3vijmBQLwk6PlVj4FAkncdK1WXgUBDKGbXkKGBQDJumDHooYFATqaeoW2ogUAdWcJn8amBQMxJqZFLr4FA+esxM2ywgUA6hYx2CLKBQFABrsNnuIFA1Flih33RgUBQ7JGNftOBQFpOBYsCCYJAmRhO+9gYgkCQVinj1iCCQO5Uz2vRKIJAyjZEz6QwgkC/2Ypm0TCCQNEag45DiYJAxGWQQkSRgkB6bOAoPZmCQCoYT25WmYJA1MFZqg6hgkCW9wIVPKGCQI7hWBgPqYJAaCeJYTSpgkDvs7/8B7GCQGTU2nev+YJAcosCOLsNg0AKfFS/eRGDQI5tjFV6GYNArERFB3Mhg0AY79cIiSGDQM56xPRxKYNALG+awWoxg0BiRhsflPiDQOTM8ZX/aIRApG2laP5whED8epUYzYCEQKAJAEBq2YRAqnVjrGrhhED0YVIKY+mEQL4GJDs28YRAzIFr22PxhEB5b5DfM/mEQL4Cr7pZ+YRAtM8TfqBhhUCNsXoYoWmFQD4AkguZcYVAPGMw9pp5hUAI2Hysu3uFQII05UeUgYVATPgc5ye5hkA6tgL2JcGGQMiAI+rb2oZASK5irJEph0D2fxp5kjGHQBK1gI2LOYdAXJ1H/VtBh0ADt9ogjEGHQGDc4irHsYdAln76U8i5h0DQHmsIwcGHQAwKfGq/yYdAZvkoPRnmh0DYj875HuqHQA== + NrgMGZxjYkA= - + - GlGNRHpUNUXWUbtEEKhFRGp4h0VpBV9EQ0bIRHKjmEQZzKNEoI0FRyEDVUSBeXlEniBNRA0ehkQ8erdEJBNCRTHJAkXhRUlEM204RbOOOUTWr51Ecv2GRG6NmURwR19EoQY0RTALPEQhhtxEmURrRMfoqkSi4tRE3usaR5ccP0TPxJ1EhX8nRvd0lEXdiIZEjsqMRK+9BkXn59pGSRh7RDlQoETAUpVEj02eRA0AnkXPRgdFds/GREJ4LEQjnINEwBSCRCduxkR1K/JEyj+xRV/FFUbRL11Ea4GTRB8QVkXa6qNEySyVRHLw1URrw0JEXmulRKwSeURSnrJEwuMFRckT/UZG4KRE58rKRO3nfkR0xL5EP6xoRHdU5kRlezNHUJiVRAurVkQgQnBE7DZeRqmX7EXZ6ohE+MKsRbdxikTkCfJEzx9bRMDYe0R4UVdEjyRERBU2bkVfrg9FYjy4RMB+pkUqk+JGC+DzRHxdHkXJmIdEl+aORUl+BUZsUOdE0kZhRA8/gkQ2l4NE5XbUREZUfEQjDxBFF9K6RPOHg0bjRB9FxdOBRFAyZ0SK7klFHnyGRKV4g0Qg+HJElYbAROoCQ0RYQ5dEt6d7RONnf0QJrXdEKDRcRGYdMkQ+TGtEtnv3REFgl0VANBhFhbJ3RJgmkkWhODxHq3FrRJ2og0Q3NItEeU4QRfFC10V9m6tE7LCyRRo1mUTSoUBErHxAREOGhEVRjw5FzKu2RAVTg0TWwKlEMs3QRLTcmEQdJZxEA6hCRA2iwkTeA7xEvn9mRFIhjERuTONE/yxaRK2mMEUMf1lEZ5KURNHhuEUe345EgteBRO9H7UQJFWxEVhhKRG2Cu0R2mwlFrvCERHmmDEVwwFJENR1uREHEWkRJWQlFC9mLRFVeBUVxCWdEiaUCRblsAkamAQBFsQScRSQP70R4m9hExh2BRExek0QD8IBE46BARHEEKUcZIphG9CrfRDOg0EQ0GTZFfrNfRHOYT0QahMFEu1qTRIVGvkRoaJNE2gWdRAjg7UQszWlFQVetRB7BlkTnLZ5EFZ67RIcXh0SeyLtF0tBNROEZw0Y7iohFfD9uRSy6L0UofXlEcf9GRNkEM0Z/m5JHwP50RUmCx0TiJgdHpT3LRUyNAUXa6ltEqLmNRFPSa0QEM35E6j4JRSn1gUUaRpNEWTOwRADL8UTRrW1EqxB1RDn95kT/mFRElHq/RPJdiEZ/EXREzhmURI4lL0X0R9ZHm5m4RsbSx0au8IRF0KFgRt12qkTz/wdFyIJMRRCQWEQpP+pE9GYcR3ROl0QeJ41FcjNPRFFvYkT5KdhEp09kRLgOlkQLbatE6mpYRJ1kgUXFpo1EB+NbROmSJUbps6FFEcIzRQaCHUVEampFMh+SREx7zkTKEjdJt96NRVA+uEQZudxEzMsXRe8MOkiw5ZJEdnhbRLTlhUYLollEDAeVRCJgQET3XSdFxAeBRRVXh0UzaFxEdriFRA69TUTild1EoiqVRDyQc0RhVDNFXOuXRGjEPUTAXlREj+ZNRGT3SEW+CWpEveCmRVNokkQcpNNEgjwURY3YikTNp55HXcWrRqTBNkXYkOZEU/LNRFb8gUS4A3ZErx6wRfTTi0Twf6NEk6mKRBMXR0Q+AmpFwt6eRElpmEQfDw9FZc+eROtfv0ScQTVGlJEBRV0JmkUzE0JFBkBtRAkMrkScdzFF+m+IRC0YXkTp53VEmJ+ZRCh/gEYk1blEuhpCRhnXKUWeLWxF6AK3RRJ7k0SmU6xEyRaBRHWOBkVrtc1HAH70RDzm3Ea1FsBEUR6hRjS1UESbZTNFOzO/RcQubEUlZsVEeD1XRBibeUQoqYVEdu3oRMcbfETa6ZhEBq/tREgjtERDRjREUwuTROD05kQ1muJEDPe2RKmLiEWpm45EXYElRoKUgESx6KNESl5URfJZEEVd9nlFwevMRhPUl0bmot5F/5hxRWO5bUUOVQNGUOxbREQEikVU441EnZYyRZ1SuURVQbhELpVGRTL1dEas62lEEgSCRcad0ERwwhVFRQhxRLK5CkVtr9REEt4XRRjQokW0dFtFIIOnRLC7wERF3mZE0fZ1SMPImkb/hUBES2PsR7oxFUYFphlF3IfCRGZDf0dbFVNFzwqORNUoW0bbIAJF2KwIRWBcsEUJnaJEqPiqRFjSlURHLlJEAxksRhRAFUVr57ZEhWjaRa2ZvEQcVnFEB76JRhveXkYST8FEjqGDRa9HIEX6WGNF8LyhRI3PpkSoGapFIhbiRCq4c0Ru/fhE7fkPRTBiY0QozMtEhhODROdcrUTvY21EPMLiRJIZokSp945EPNolRhAciEUL7U9FDENrRLyaakRpK9pHDvdXRzbK9UadAMtEM0zPRXqO2kX/AiRFjUUjRSpUAkWILJdEuTqtRBGq20d172hHpYPaRrxV90R4SAFGJ+MsRQbybETQPrpFnlwqRUBpYUSnahlH7OGGRrH2KUaNK1xFTORaRbLGD0WWmttESvv7RnptbUZRvwtGuVFxRRHGPURAsP5EIAz8RBhahESTPgpFUbkqRmmwsEV5eUZF85WRRCBW4kSqLudF5wCCRQVoNEU52JpERGMtRcQxEUU= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - kZ1tfg3BckBWDDmWbsFyQETPDotRwnJAvrY24qbCckCpbaWNO8NyQLpWVy3FxHJA4mRC8VjFckDQk8MqWs5yQPrIgLkc0XJAFhlNu0PSckB4nR9Hd9NyQDhH4T7N03JAfobv887fckCUwNawuOByQLrNg05O4XJAEv8TSVHickDJ4EMNkOJyQCY6nXMl43JAOoekfcrxckC4abB8WfJyQC5g+Qy183JATt6h66X0ckDpV5kewv9yQGBHCEthAHNARFHy1JIAc0B02QYQ+QBzQEFcAGESAXNASjGiiyQBc0DyomX8TAFzQOQrDJGNAXNAWSg2kM8Cc0DiKeja+gNzQFB8wAAKEnNA3/csI70Sc0ACzj8h+RNzQObybC5PFHNAC247dHgfc0DQsStNpSBzQAaScHw5IXNAAIX+LmUhc0Cs8xW8eiJzQIbaAb3KInNASpBO3BAjc0DrGD0V0CRzQCBkSqZIMXNAvSkmrloxc0AUnyGSDTNzQKDRsFCiM3NAgpWGrDk0c0DYa5kP3DRzQND4wU3jQHNAWW1WZnlBc0B+VDk5u0JzQApyXnR6RHNAo0TXgRFSc0C0eLl8p1JzQKdjeRJDU3NAYpmeiKNTc0Dr6sx8hlRzQGUlHX2NYHNAxEiSbx5ic0D+kVa7OGNzQKe8tvhJcXNAHCPP5lJyc0D6kz59lHJzQA0RMjSNc3NAaNQ/hrh0c0B4DuM6THVzQKqscjB5gHNA6URjeKWAc0AGzybmDYFzQOp6xXnLgXNAogjU4VqCc0DSZFsWpoJzQGh+gu0NhHNAXussbIeQc0DGxaphTZJzQFbz8gf5knNANk0+cWKUc0C0Ql2x95RzQPK5Ys+MlXNAgkBUj7mgc0Dd1e1s5aBzQI2yC1NNoXNAgKl7yOGhc0DNeoduWqJzQHw93QnmonNApvxFlQWlc0CczLtBfrFzQDJ5Y523s3NASpWgcA20c0AMHowC+sBzQLX1/mOOwXNAixZAfM/Cc0BSkScUJ8NzQJqQE0PY0XNAMHQRKN7Sc0BOXoSENNNzQLI4Ddz303NA7/tmGOLUc0CqGk6bOOFzQK5FP81l4XNA6I+W6c7hc0AGxoOEEvJzQDSm9n2e83NAnHuxbjf0c0AkUdu5i/RzQHE6XYpPAHRApLQb5+EAdECcCoNPeQF0QD7qBiqlAXRATnrW2OQDdEBe+1ZgiRF0QIL4fNr2EXRA9GrbCE4TdEAickKHSiB0QJTo4j6OIHRA6KaSg7ghdEAu6ChKBCN0QCkHMSJVMHRA6vk4SLwydED23GzE3zJ0QHpDyBPKQXRAf4JvRndDdEBSzGF3+1J0QBIXYSb0VHRAvdI51otVdEB0XQ++uGB0QJ4ImkgJYnRA506UUU5kdED04BgkI3B0QABxuhZhcHRAlwa6PUFxdEC+Usc+OXN0QFuLCCKidHRApfiTAjh1dEBfzutw+IB0QOIpFaJOgXRAbbhPDEuCdEBGYYgsF5B0QAJu88BqkHRAnPyT6KKgdEBAa/4c0KB0QPrBtWg4oXRAYD8B9LiidEABrZdZ0aJ0QL7M++EPo3RAyj4Y52WjdECe2sZOZ6V0QGXbx34KsHRAjgyhzxezdECqgbPq97N0QL4FzPnkwHRA6lTr23fBdEC5FLfM6sF0QKCbVQoOwnRA8XxlFQ7DdEBu40jvH8N0QDDhncoixHRAzfgQyLnEdECQYOt+nch0QDUPFu38znRAC5EPgeLTdEDCn7sQdtR0QLA1L3/O1HRALr8Q6LjhdEAX9XncTuV0QDGq9yfA8HRArzZpfY3zdEDgBPgPpQB1QIt/LhHOAHVANmVa/2MBdUCA5pfVWwJ1QEy/IQ+aA3VAnQtaUjwSdUARjyBLJBR1QFRUxw43NXVAIG0HI8w1dUCIlrik1091QAb/dJYjUHVAeXlGFIJRdUDTWuICylJ1QH/6KRtMVHVA/jJpQnhVdUAC+8eUOWF1QBpMQBx3cnVA9iVrpo10dUD3hfD3eIF1QAKLGGWtgXVAHlNvAKWDdUB4LSLu44N1QKcog6uchHVAPHWrLruRdUBIAU5TPph1QMQeOTiYnXVABBQXoyWhdUCzKEJ8t6F1QPQATNfyonVAOjcgpUqjdUDWmLuuObN1QAAZ/oF8s3VAeL0E5mPBdUDAJCsa+MF1QH6YqCrN03VADpS8o+LfdUCmpqcAD+F1QF6ZDiig4XVAWtTVBgjidUA4OR1WOuV1QII7WQlJAnZAonulHNEDdkCYEdq7AxN2QDq3G4JOFHZAydH7PQ0WdkD3+U/YiiJ2QOLl11yQJHZAEtpPoh8xdkD2CQSYnDR2QJEPQ3QdQXZAIgsqCTBBdkCZXdixeUR2QEpmb5vJUHZAGlpMMRNRdkBu9y7hzVR2QJiN9JEiYXZAYn48G05idkAo3T4rzGJ2QIm12MpRY3ZAZqFVOtpkdkDO6wYKJmh2QNIYHKmAbXZAxp9LzslydkAiDUX62nJ2QGq0HwTOgHZAbozgIo6CdkBgN3tkk4N2QMAgzm9oknZADRtYiryTdkA2/g8oOKJ2QNlO3022sHZAXVU8O8KydkAAEJB6DbR2QDi9cZzNznZAjj4k1H7QdkC+uPy78+F2QBMdPEyq4nZAQLtMHI7xdkC6KsLjkPN2QF1P4shL9nZAsnrRFTMCd0BgLn/YARJ3QAKuVeoPIndAMquyiXMid0DLBayWuiR3QNb2R1GkM3dA2rIY/ww1d0AuloRBnUF3QLPUJemvQXdA0NDs3RpFd0AONdtSSlF3QFPAeUWTUXdA/Gr1hCpVd0DtbO5Gj2F3QGQJwTOnY3dANnkmFihvd0DoyWQOhXF3QEwPLOezc3dAGeiYw3iCd0A1x5WRfIN3QA7P138JkndArK5nuomTd0AAphAdTJR3QC4Ouabu4HdA4knVlE/yd0DmiDW5biJ4QFp6GB2MI3hAOPK/rwtCeEDoBghfekV4QGSnHFfLUXhAdOTHAIhVeECHadol+2B4QAgv1aK3YXhANqJ/57dieEDAK0iOKWN4QBv8WdJEdHhAvJckbFF0eEDER4PQi3R4QHXHbjzbdHhAaFUgQqOBeEA30BbZmYR4QCSta2iZkXhAZ7S0QpKTeEDi3hnpp5R4QHbZ6UKnpHhA6js0vMzAeEBGhAuc9cF4QM6bIiS31HhATMoKh8XkeEAG9RFvAvR4QP6yc4eM9XhACj/z8JoFeUAFAmyEtjN5QOJWDKMUQnlAkiEaL4tCeUCNlCDZ+EJ5QC6Cha0MQ3lA1jwp4+BQeUDUSYYfzVR5QPwJDuPZZHlAxIV/wf1xeUDGMuwewLJ5QKw3XOVB1HlAIO8sq8PieUBwcC9ZT+R5QNIjP9Aa6HlA2k2DZfUCekAZUSZ1+gV6QNpZHdo5I3pAoH0Aegw1ekBqlQHfGkV6QAYbfdKAUnpA4CdsKydVekBK8x2eOWV6QDCsXmA1bXpAVvxScI1yekBghnugCp16QLC8ihAwrHpAoB8p2gy2ekDOykmE4td6QHle0j873XpAT1iRimXhekBg4WMRN+56QGNWCbcX8XpAK+Is0tjzekBeXYri6QN7QGzhiyssDntAEluYEuESe0BkKc6uTBV7QIQQY1NUHHtAJUvY/lgle0BugN8UIC17QNZmJmRWMHtAADxErHoye0Aq47ttwzN7QFnG/lLXN3tAmPWrcx49e0D6I5fkYVJ7QLUnpsnskHtAKpPgDiOVe0ClKroikrd7QLgHz3R1xntAF6I0fq/Te0DLPLOF2dN7QKUJNWFH4ntAMhY9dv/je0DZHrT6i/V7QNCmlrzZAXxANrRpfvUBfEAG8xE+mQV8QAhjaoLSEXxAwyX9f81BfEAd7/i021F8QHyjjaMLYnxAqcqwjyxxfEBWoOavBXN8QHrsqsg8fHxAerJZPr6yfEBWH9/jC7Z8QJbyaEXP1XxAilCnnlfifEByHTfBF/J8QO5Zs15V8nxAezuDjAECfUCYZ3SmSwJ9QCm/Qy8DEn1ALIrPI0YSfUBGvUQNZhJ9QNyso6EpHX1AEI+6lEEifUCoVhyqgiJ9QARgI37LJ31AohPkRp4xfUAOfbKM+TJ9QMdeEiptUX1AjUu1aSzDfUAHFjQH1OJ9QAp2lUiS9X1AnGgAdzkffkD07JGxPy9+QFhvx86NVX5AHkPUU5tlfkB8z28CYq9+QG4uwgmrxH5A08/+u9bvfkDa9M/uIAB/QEQDbGoQM39Al02j6FQ4f0Dx4u3Rajh/QARUlyioPX9AB06wR7dxf0BkwGEMpYN/QBbyMSNjkX9Aits1gN6Rf0BqMDRA5pl/QO1CCKJfoX9Ajom+9+akf0Bh+hhMV7F/QCzNJEKV3X9AdL/laNXif0Car9NHLuh/QBx67uGB7X9AejiNj9jyf0CnS8mqLPh/QCDehfDeKYBATDYehyUugECZkfTfKDKAQC4SKkM+OYBAlNV23KI6gED4wmB/KzyAQEGfyaf1SIBAEuTSiOdQgEAG4BlbFFGAQATRYrAOWYBAGnjvp9pegEDD/XRZDGGAQJMJnUaGYYBAGAYFFilvgEBeBTd7KH+AQOV/jpcej4BApsfhImyRgEC0ghmRGZSAQDBddxrKloBAMmdPvoWpgEDpXbS/grGAQM/reWBSwYBAnRdtInjBgEBsYXWNEMaAQAr7KndTyYBANMjDxRPKgEDEgWNDGc6AQIx5iQgt0YBAZpXFY0zRgEDOybqzYNGAQE5NYm5K2YBAPsk2f5nZgEB1ru1ZONyAQF6AAeFG3IBAq0Xr/+LegECMkVyFXeCAQN6RIYhE4YBAnD5AIFbhgEDYYD+f9uiAQBKjZTNB6YBAxnTE4EnvgEBGGndBPfOAQOUWQRJA/4BAwEPlcEAHgUCiFWWoNB+BQAhlCw40J4FAWrQVjdsugUCm+LLMhzGBQLoS+u68MYFAYY47XA40gUAu606BNTSBQES/sibSNIFAM4r8wNk2gUAmAgbtfjeBQI5qc7yIOYFAwcWTDROFgUCuZ/jMVY+BQDCDRKJUl4FAFr9BpOehgUC9PtbKbKiBQN6byllLr4FAAg3Mk3/RgUAuw0STfdOBQFjMkf0ACYJAPLhgjdgYgkC8eKdI1yCCQHh81GrQKIJA8gsRmM8wgkBWtbU8REaCQD8mhcZHSoJAQIwOHkOJgkBw6ykgRJGCQHI0/TYbmYJANr7WzjyZgkBs9ciEDqGCQFjyPi47oYJAvJKsWA2pgkCBOTaYNKmCQPYs1uIHsYJAx/DEPa/5gkB6umdFuw2DQMAmmXF5EYNAWPNKNnoZg0BMpxZ7ciGDQK7EKCaLIYNA2Hy4TXEpg0DkoEFRajGDQLGo746V+INAZC1ZUP9ohECyjtuU/nCEQEq3PXv2eIRAuiOtTGrZhEA4Qa1IauGEQNY9lpNj6YRA3tCt3DXxhEDZk/+HYvGEQKC6GGo1+YRA8DDAy1v5hEAsnhzSLgGFQG4kN2X5DYVAJKCLs7cuhUDjNmt+oGGFQK95lNmfaYVAtK0eE5lxhUCOaSApmnmFQBrSZiCRgYVAltbDpiW5hkAGHQ+ZKcGGQDY9wgXb2oZASiO1CZEph0BIy4cskjGHQLyV7JuJOYdAF25YOV1Bh0CAVujRiUGHQEWzCH2FSYdAun7de8exh0CYl24gybmHQIEGc+LAwYdATWksCcLJh0CqI93AGuaHQG6WqqYc6odANPeKJiLuh0AyioB/FvKHQA== - - - - - - cenPRMdEbUXLB5REb34ORQQLwEV1mLFEXYTiRLYe0USEnUVEaFsPR+r+qkT5v4ZEjC7xRKK8MEU9P31EPMKHRVB0zETJmZhEm2qcRUPwU0R9ZKNEzHCiRHROtkSXRF5E8DZlREd6TkVwbHJEaGPmREOAt0RDyulE/w6TROinP0dV3NNE7X81RgiIr0XhWZFEyFX8RLOZ4kTmee1GWabtRC057EQZxqJEx62RRHgJsEUqHvdEkIW8RDpqRERXw5lESfqFRMNCh0QiOKxE2mSvRZose0S9ATBGls+RRJo9WkSjlNJEK36GRQEfwETHAetE7x5vRMPQ50RleWhExr6SRHN6X0RMqXZEoKG6RAoGcUWhXghHVxjQRMMPFkU8pIVEVKyPRBkIGkUnn4pEkP8sRUaeREeZ7N1ESxPlRJsAgEbnSV5EpfcQRiSsiERU0IdEVudxRK4W5kUwpqVEkL4JRTCT60TiRm5FJSwaRUUk40QU1GBEp3iqRbwm7EbKYDpFOQJoRNpvJ0UQwMdEEsCYRQOEGEaua29Ecc1uRBl6B0VK/VBEppdKRfqGgESasL5EAVVyRHWAmEazAvxEIz91RGfppkQ8FYhEZnxLRUtPsERwQ7VEk/MDRT+1XkTDGr9ExaWcRJUhckSWLoBEpRqURIdfi0S3855Ef7UdRVJ1qEUSg0NFsNi+ROAnu0VaToNEABxAR23XBUVd2JREhNijRMY3X0W5nNdFtwJ+RFL7xEWHRIdEQTt0RG4G9US3XWlEeDmlRPVIaEU9MyRFosqjRC/HgkR7u6dEFspYRCwtW0TWtQBFOYAcRQxOyEQnMnVEIV2RRDOeikSw2r9EDlYKRd1vuUSXZShF8JfQRJsB3kSI7ONEpKNaRbcI3ERK0IREwMrfRUt9EEXkw65EB2aORLTV8EQbjGNETqsBRejJRkW1V39EqE9sRW9/YETtY3pEMYaMROe+cEQjp79E+kfBRIFp9kQD6xVFp7gLRiloDEXpVqpFowXERIwOVkSY5dNEV8BoRHRH80bTSINGj7WaRHbKikTIb0pFyDaqRDP5n0SgQwJF6kWLRLS6REV8VsdEVe6BRBTxi0QcAWxEyZIlRTempURzTJ1FHKoFRRlZYURtFINE+4u1RNrJqkRYe/NFzyHuRocRekQWoJZFem+cRDYygkXQQ6tEOz1WRUw0SUbO75dEeOeLRBQSn0eNKFlFHrAHReIHKEdjmAVGnRLqRBafbkSTFoxECamARIjpm0TQbnpE1aenRGCFjkSHyuBEqN4dRRqEkkW0vUFFIiioRMUOmUTUMYVEcDxeRKTz9UQucGNEc5WeRNyzk0aw8UBFmy2YRCqFfUTRUoZEYoXtR7rf30YWX8NFe6W8RmIIwkX/bZlGNWLTRBQUVUWY0EZEo3FmReYti0RRWllE7ucSRfz3IUeELqBEntCsRZ9TpUQKS8dEmk7GRAZWKUUy4JZEs8rSRN9ML0Ybnb1FYjMdRZp7G0XUVkhFKRNjRJQgV0R/GwBF4ww3RbGsS0lIub5E5/bIRG8dSEhNWJdExfVqRHWtn0YcwntEAJoxRYDxdkQBfHdFbgF1RM3ulkWeWgdGC/DjROuVXkTcJZRFe7SLRIEHkESCnYVE5vNhRG3VfkVWNpJEyNZQRH5eVUVGY8tFiwvfRKdROUX7B2FEz6pRRFa0q0RQHOhEhT7AR7+0wUaFG7hFPYdXRRr2gkQVBGtERHHYRM7whURzxHxE4tTCRSe3jkUU7GZFYibSRFX7vkRINg5FjNfvRGPObUQkMkdEeFeeRB09OEanMYZEEUQ2RZrQ3EVJ55pEym9uRZrDjUTYIrNEm39bRLUNtETDF5ZEzU08RVVycERGy6NE736eRJXnWUQbwslElO2lRCrUmkbDdjtGHusTRSmjpkWTZNBFaEHNRaEHeEQn2rtEZvz7RLnKfkRcrKFE6ky4RCH1WUQV32ZELQjmRxllkURu5elGxnX7RMK1z0Zm8HtEggI9RZnWj0SUTMpFvxWhRIf9REUE9+hEUKyHRL25eUTr+bNE04jERIb8ckQ0lCZF7mlVRPKBpkT4f8BERgVpRF4Mi0QcksBE6tSPRGd4E0VkSOFEU/NaRJQshUSHdHNEogq0RS9XUkSpfUhGuwPFRI8ZXER/w5NF/RBnRKzhEUWfkgRFSSZCR1+9HEf0W1hGTzO4RZvWm0Q+CZlFHkAHRlSKhkXV5J1ER2ZQRLL/EUVfUgJFCpeHRS8okkZCwrJFMXQFRZnpt0QzZ45EnirgRBUvXETYt2lFaWuMRQsETUVHtL1EVq/0RBgod0R1qnpI+yTBRE2T00aphvJH9hUwRgx0DkVnVslEO+CFRxfKT0XJ9E1G7pYeRSUoDUXcMgpFxwSmRN3kgkSh9p9F5JXcRFBKzUSD251EpoeVRNqshERvqQpG/sg2RRRh4EUBo+tEl8B0RhWRaUbtc7NEMCBaRKE/vEVmzNVEW7I7RS0H7ET77O9EYuFsROOAy0VSyZhEhvQeRSCIA0V/VAlFSDE1RVfS30RJ2LlExrI6RiA+gkVdzgZFRgmoRML1uER8gkdE6IzuR+SBZEf+KD5EV4sIRztJukVGViRGF+7oRI3AikVpqLZE76vVRGHrEkWYhOdH6KZVR6ue8kbXhzVFLpQFRglFOkU1ApZELUfiRZqOE0WiT/ZEvsAiR6BKjEYQQElG5sNbRRh4a0WH1ShFDUXJRA806ES617NEH7CKRPmVCkdxI3lGf8IeRlYZjEUU06NEKVjLRKKopETZa95EWE5JRi2QAEZRHIdFbjqMRJAE4US/kn9EgMgNRlDmbEU79E1FGyOyRECprkWgnotFN/PFRNEkfUQ= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + - - - - - - epXzVg7BckANnXC9bcFyQPBcvLpRwnJAGsDxa6bCckDNBk3E58JyQIGwyV07w3JAOmmUb8TEckAOlVrmWcVyQM1bSxxaznJAOiMSvUPSckCg5aHZz9JyQEoETth403JAJkeLP5DfckAEMpgs0N9yQO39GBS74HJAIrLHM+TgckCqV5cjUeJyQCcnXc2Q4nJAikHtQCXjckBd2XSrwe9yQKwkLSDK8XJAgrAEmbfzckB60Oeoo/RyQPW482vB/3JAaj+8nWQAc0De5ek9+QBzQIipNFwkAXNApMZ+HIwBc0AtLdqxzwJzQAAa5uH6A3NAy+zFVgkSc0C69AmiJxJzQBBWQdV3EnNAJJ8EO70Sc0CietMlYRNzQGgYDc73E3NAv9CQ3Xofc0DYJw2WOiBzQIDwHlakIHNA1o9HMTkhc0CeySftZCFzQCzS+x57InNAtLo3gMwic0DLknvRDiNzQOXtdYDPJHNAmNKF/0cxc0Ce13WLVzFzQNRGzaMgMnNAxIRn0A0zc0BOup4/oTNzQDBm1BLVM3NApns1fTg0c0Dk7om30zRzQHQhIyq5P3NAUBwyseNAc0A1hGc9eEFzQE5xNrB6RHNAegYau0FTc0DEyrDRo1NzQKwQHNeFVHNAYAToR4lgc0AjwY2PHmJzQNo2jn05Y3NA5oF5Tkdxc0AGdx6/UnJzQDHgTiepcnNAGkrDILxyc0B1Ak8et3RzQGSLt/hMdXNAnhVRWHmAc0BSVc2epIBzQN4IwAcNgXNAsJ0olseBc0BQKit8poJzQCBUpG+IkHNAAsxVUU2Sc0DC8cGm+5JzQE4DBt7Ok3NAJE5PnWOUc0Cj+gge+JRzQBNDPPK4oHNAPPD4TEyhc0A1svv74KFzQHzAnwVaonNAmvbQKOiic0BMbLj5A6VzQNIpxpE4sXNACqpm732xc0AuLfVWt7NzQGqgJHgNtHNAbLXV8PnAc0Ceh/gCjcFzQFS7NSr1wXNAgAVbpdDCc0CMCc8MJ8NzQExTupLX0XNAGbQ62zPTc0DpJ9HA99NzQESqRq7i1HNA0ibNgDjhc0Dh1PepZeFzQDBVIu7N4XNAygUGYvHkc0D/0c0tjPFzQFVb/XEP8nNAwL+FPzb0c0BCpOp3eQF0QGWah1ilAXRA/imVbAoRdEBtbc+sTRN0QJYzAyl5FHRAZRxfekwgdEALcKTikCB0QGYiIzy4IXRAkjT1r/8idEDKvasZVzB0QNpFyzu8MnRAd2nELNcydECGmdMTU0B0QLJwH3jIQXRAPoPUxfVUdEDULvHKjFV0QK3Jspu4YHRASAUuDwhidEBIgndaT2R0QF7C94IicHRAijmgV0FxdEBozSnCznF0QBCubPg5c3RAKpaKaw10dEC7dlhKonR0QFR0M6c2dXRApjn/cfiAdEDqxMCMToF0QLp/6IFMgnRA7M9kkBaQdEBWijFPa5B0QPh5NDLRoHRAnLAZ9TihdEDerZHkt6J0QK7EcS3SonRA/F8c2w+jdEB4elDyZKN0QKr1rzgKsHRAUEjkG+XAdECV2L2jesF0QF0XE4zswXRA+d7Ndg7CdEAe4y6qD8N0QJyvAXAjxHRABru1XbjEdECC2bzU+850QD7EK0s903RA2p9QbuHTdED0wu06ztR0QMKIK5K44HRA9D0OryPhdEAFMWu+uOF0QFZWBYSN83RA76tZ/nj0dEAOuzA6pgB1QPrpsUzPAHVATpfOn2MBdUCg0z6NXQJ1QEGXlkCcA3VAePC0QzoSdUAMBSU+JBR1QKQNzZCBInVAAS1otp4idUDXPjR5zDV1QNOaSbOzQXVAQjMupQVQdUAYK3bWgVF1QDD6D6AoUnVAxotS8ExUdUBSpykGdlV1QBr/88bkX3VA1pcWQxBgdUBMUkBfOGF1QAvRGQj0YXVANwxbvndydUA9oaBajXR1QMqjY154gXVAphWHcK6BdUDImOZhpoN1QGz6cgOdhHVACmnBNj6YdUDFcpo5mJ11QDES31yWoHVAZV5xXyWhdUB1/59NuaF1QFD2HjP0onVANJxrvXyzdUBE459L0MB1QAXRV59jwXVA5KBX+/jBdUCaQ6wlzdN1QJalL/Hm33VAnitJhw/hdUCSdfCfB+J1QF1hrphIAnZAHF+my9EDdkB91It2TRR2QPNI47AMFnZAXp22E4kidkAyRGP7kCR2QEcP9dQfMXZAflfmVh1BdkAQ3jxneUF2QLc9/egNQnZAIlFuvHpEdkBUqG7H/U52QC6IDOnKUHZAmv+RchFRdkAk3LXGzVR2QBDiAGBOYnZA/D7WBcxidkBMYYoCUmN2QIJssAPbZHZACYsOTSZodkA64vdzfm12QG1CfAbJcnZAvV2e2o6CdkBG90KKDoN2QOMlVfbAsnZA93YKogy0dkCDrVHOz852QCiDuFd+0HZAqICbz/LhdkB4gaWHkPN2QFpI2nBL9nZATEeOoDMCd0AsY/hpLAt3QKRMGEQBEndA0mL0yw4id0AEqF8FciJ3QOBuRhINNXdAjODFZ51Bd0CgGvlvG0V3QJC1315LUXdAXLZdxpJRd0BeMxCiKVV3QO7mZV2PYXdAppkHT5Rjd0DJzc4tmWt3QFCLwr4nb3dATrOMDYdxd0C8zNB3J393QL8npjF4gndA3dvdpnyDd0AsYYutB5J3QLjLLQ+Kk3dA8i0YgU6Ud0Co3qTfjtZ3QJJCtM3s4HdAqKyNZ1Hyd0Bf8aUOTxV4QG4rl/xtInhAevzfIg1CeED2iGxBekV4QAK/IG/LUXhASg+5JvZTeEDiY1RBiVV4QDYT4MH6YHhAyDtxV7dheED6jnO1t2J4QIrB0ZwsY3hAbt4GhFx0eEALwYHgi3R4QGUZEfipdHhAnfEEpMd0eEAqWb9XpIF4QFq6Pqd1hHhA+XQhq5mEeEDCQG8TuIR4QGABDZmXkXhA1uDjb6eUeEDeee3Bp6R4QLnXEde5pHhABjUmFc7AeEDYMh72BsV4QCBeYQW41HhAkFpzTwL0eEDVa7mGjPV4QO9WtHNVA3lAsvquDhMEeUBY84JGmQV5QIJFbucTQnlAVkZTKv5CeUAc0b3wzFR5QHIMsJzZZHlAZuqCHPeBeUAmhLZpwbJ5QJqh7INC1HlAsrRvts3VeUD06GOCveJ5QA446aNQ5HlAQm3rzibleUDAmXFOl/B5QEeRF6v4BXpAxp8NFTojekAiU3V2DDV6QHt5d90aRXpAAxtugoFSekBYAfIPK1V6QK5pB86OYnpAuocySI1yekBSnVDfopR6QJTSjk0NtnpAcyGVMCvDekB2Ma+LG8Z6QC3lt1ZDznpA7gaeVtjTekAMhBHY4dd6QACdXIE73XpAor2z0C/tekD1gNh3Nu56QMqITiTX83pAbtYYZ8IQe0BRxtLaTBV7QOjR21VaJXtAt3OW3iAte0BY0qU4UzB7QI32i1x6MntAt2xHzMc3e0DYuWGwIpV7QAmHHuEupXtAEp5WwHvGe0D2y0P0M9J7QFQBkyA303tA0E5pPa3Te0DqkW+J2dN7QNPWIc3+43tAUuKLHijse0Cm70EVmPF7QII96UKM9XtAD5nsgtoBfEAmG+ecmQV8QJF4O/eLEXxATPH6nNARfEBXc/FHzUF8QPYH59LbUXxAZErzHw1ifEAY23Klj6V8QGzp6l3BsnxAHMOeBM3VfECOm4ImWOJ8QM7M6E0W8nxACjPLEFbyfED34LFcJPl8QEv924UBAn1AZMTfnUsCfUBSXjnlRRJ9QHNLfFcpHX1AM8gn8j0ifUCKpBNcgyJ9QNR/V/4uLX1AfOewg6IxfUCoGmkSK8N9QDJmCFiT9X1AWOTK/I1VfkB1ffQ5e4p+QLQckD8fjn5AvJ6sWeGQfkB1j+6LrsR+QLY5yPDM335ABp8yGNbvfkDo+1QgT/R+QMrSPL4gAH9Aamcm7xAzf0BO2mVTuHF/QN7+TMiwgX9Aohn/9mORf0BCRAk9rZF/QHyMhH5goX9AcozcSFSxf0BsYFf/ld1/QAG9pQvW4n9AdvBpJS/of0B1eSsShO1/QIq5robU8n9AUjDduS/4f0DLgel63imAQKAIMbclLoBAdC1sBugvgEC8a/BVKjKAQM9xxXHqN4BAdPWaSAI5gEAU4jWxKjyAQHZrKNPYPoBA5n9TYvhIgECIoqgC6FCAQNC1NVoVUYBAybRtOiJTgECW7qPY6FiAQCLFzC4OWYBA8jnphiFZgED6Yvpl2l6AQHoE6E8LYYBAVNcxU4dhgEBee2UCKG+AQLHda+r7ioBAph+fMB+PgED89LURbZGAQBirqG4ZlIBAQqmQM8eWgECJgEbaZZmAQGYTuqyGqYBAVo5hJYaxgEDAnj6CF7mAQJ4in51SwYBACSqQWBDGgEDcpvW0U8mAQLI4XeATyoBAt31tbhjOgEDP3teELdGAQNQDWtpM0YBANFb48ErZgEAo7gpRmdmAQJbX5Q843IBA3oFI4OPegEC8eiMz9t6AQGrGXx5F4YBAHInyzlfhgEC2OJAc9uiAQHA5DyRL74BAST7SAED/gEAeVcHiQQeBQN65XMI6D4FAW5BcdTQfgUC2lcUoNCeBQFFqfHbbLoFAYg0HSogxgUAYz+GUvTGBQDtBdS8xNIFA2A8hg9I0gUBeN2Ya2jaBQKBEn7SBN4FAGX5We2F/gUCDmuwRVo+BQIxREQVXl4FAzU0+wOehgUAaRd/bbaiBQAox+UFKr4FAxd9sln3RgUBkZWDafNOBQGfnKyQp1IFAbP/vJQIJgkAADc9R2BiCQGqCO3/WIIJA0WcZytEogkBS9E9qpDCCQOKEvwvPMIJAwMUOTENGgkBEFo9oQ4mCQJgcdjxEkYJAlsIKij2ZgkALUhsBDqGCQNCGmz88oYJAHjq+kg6pgkA8Mv7aNKmCQJ04A2RMqYJAnHdnOQixgkA8QdC7NLGCQNbx3l6w+YJAxIoGp3kRg0A+HWRsehmDQEKaI0JzIYNAhJjJ7XEpg0Aq6uGcajGDQBPioknFVYNAJqTt35T4g0CrP6Tu0F2EQLAe9QMAaYRAOifkYP5whEAKUYh093iEQGa0Rm9q2YRAgNAAOWrhhEAhdAYyY+mEQISH7iU18YRAsKs2q2PxhECcw79QNfmEQCUS2vlZ+YRATveX1fsNhUDCET+C+hGFQKZuWbKgYYVAspWR1qBphUCYuB0tmXGFQFQDC8GYeYVAcxg25JGBhUAH6ERiJbmGQKwPNxWRKYdAwbSkCZExh0BVLzbOijmHQBgEHRdcQYdATlXQHYpBh0AUR/AYhkmHQENiX53IsYdABOnkcci5h0BYc0Y2wMGHQLH10EDCyYdALIdm9Brmh0C6z2vvG+qHQN3ggwEa7odA - - - - - - jEUMRWRa7UTwhTBEHH70RDp+dkQX6ppFY8mjRFPbhkQfLmVE2ubaRjsEZkQx1ZpE6Z95RF/T2EQGeKdEIUdJRBQWQEU4fuJE2VFkRGRMWURZJl5F4zy1RIC3x0QHHaREkyxfRJOKdEVmO7lENfl3RGj0v0T3jfRGa6KERInIW0QSVktE8PoERoxFUET6+XdFd0mvRKFcg0QY6/FEwZjnRrwNkkSzwOpEzWinRDB8vkRFuHtFcRUMRZk/5UQUT4JEAD5bRBalm0TgxFNE66DORLItO0Sl+3hEKSXQRJfxgEWJAuZFAbwYRSmzPEWeUKlEre5nRMXfUkQ9m9hEqT+XRN21uUSc2JZEbUSVRB/amkR70jtFr5HARh/p4UTqKgpFKVdpRC7QnkTPkxBFPCgxR8TtikQk255E7PkCRTGkcUZ59M9FIweORI5MU0QlDrlFriGIRDlD3kQwHIhEdl5qRI9PTEV5TvNEyNKQRHjPdkSn6IJEbbckRfXVxkZi0v1Ewp4TRfdK5kRCM4xFrb3oRUkrmESrj3JEEkuSRJnRRUQ0qd1EGlbnRHDgXUZu/u5En/JjRIX0MkV6Wm5ETwB3RItze0ReMNREnc9OROcrj0QkBKtEeM2tROOjQERde5BEIFKURLnvCkUBvJpFK1MRRUxoGUVjKKVFNls3RzuTkUSsCFhFufpuREWujkTIDa1EooklReFy10Vjq6FEB86ZRWben0TMSb1EEgGRRL5RW0RXBUFFNMrXRMn5mUT6obZExVTgRJYdpkQf9m9Es/ZLRLhAq0RRz3JEKCc5RfrIiERkWaZEObG3RMU+5kS0DFdE9XFpRAjh70SVF6pF0pWaRBmim0Q6H6BEH2+FRPd0i0RifYFENE2uRGD83ETTj0xENm5URP81J0VZ8pJEho+ARGHRskT381JEqgCPRA2J8kRLWkJExb6BRNivCkVEwEdEJgmTROm3LUZf8wVFqL9nRXNbDkWuvK9EjUCqRixLKUZw0bFE1NagREYm60RbXq1E0W6OREnNukSbw1RE1KTaRM/nBkWR151EaVq0RI3+GkVsx4ZFjfwBRX1nwER4dZ9ECtaeRFqg00WiG9VGVfOeRaoBRkRhAo9ErrdGReR8b0S2/bNEhHNBRUkaQkYzkVdEjHFGR5KHKEWfeihFfKzPRmwN+0UDgsREaJpMRH/2OkSph69ELKt0RXTaF0VnsFhEFsO2RMc4r0RgCkJEdjMBRWZwhkQX2HdGUzU9RQiFXUTFP95H49DrRgxlxUYIIZtFILaVRl894ETsMkhFckoRRX1aQ0SYUn1FPktdRA3NkURubhFFeYAjRx0nt0QRL35F4bKdRP0VgESGVVREsDvnRNNaiUQzCi9F37HIRFNJGUZ5o59FxuyAROhEzESJAA5FOgQhRfJFmUSPH31EkrhIRcJVPknHLyNGTYI9ReqpREUnHOtEDNpASF7HHEUHydFELxqwRlM8eUSVKWpEzSLMROp6jkQJ159FuRh1RU7R9EUnQ0pEd56NRIOhvkR3RfpF/xhuRJS1nEWDW9hExtahRJq+ZEUI2LhFfx/yRDnElkTtYmBFKxuTRJx2m0QT0LdEG6yCRJb910fAJcpGOcEZRipqDUUMFaxEbQ93RHL2ikQPB8NFG/xnRIRw3URGu2NEvHiERFAHUEUdOL5EUmtSRDvh10TmgKZESzlyRJZ4NUbiLApFutYLRj2+lER9KXdFX7N4REFygEUWhFxEns+fRCBq40SNEuNEFOJLRFmmUUQj6KJEOgs9RFRurEWj7KNGhFNaRkawt0VTQ31EtbyhRRvu4kVs6aFEfV+tRBE9dkSddftEMTx3RGN3z0doI+1EOWzLRiG1bESH6RNFUfKxRiecZ0VL9p1FKdCxRI1yUkV3nnBENvO8RB+siEQySdpEmKoRRfWhi0QxYZFEvY6/RHo9U0RKMJdEib52RCC6k0RnsTZF4xK4ROWLp0UWSMNEhV08RkTnh0SYQIBF8TtDRc2uc0WB3khHjSkuR7bdgEYQbPRFYiETRfc0OEWYic5FPUh5RPipQUWPg4dEz60YRSpnOUUCm7VEHU0KRYXcIUX6XKdGlU6BRNx1zEThxJ9FZva6RAbhxkQkLotEo8KZROXPy0Sln1lECJ8nRWJbVkUGuUNFHjDJRIJ6P0S5IBJFQqRvROKpV0TI5HBIcFSmRhNU5Uc70B5G55ZIRa2ikUSqJnJHBjRzRmsM6kTjYOpEE6SxRC1zdkTnYohFyyePRMHbpESVo6REWqIURiNgI0X+H8JEQnDrRQ606USqUolGmBIkRtBnrUSXwo1FE7CpRAk9PEUvDm9ESXmBRPcarEWZXclEzb4hRX8dIkWmMzNFwYyIRDYwgkSje69EAaC1RO2YVEb3TF5F+KlTRVAxjkTupKFEZzmSRMgXF0j2TJ5HwQMyRyODe0WIqi5G4HbbRDnAgkUcHrNE0FaWRCVArURBnnZEsHYBSLXzg0fHgw1H1/4yRmkfQEWXyUxEZimxRDm/pUTLls1Fk/ExRfo0C0V3iz1H1N61RnozT0bOf0lFrvSwRaD90kRayrhEEEowRRrThURxDfZGw3mFRqZRHkZsiyxFUNiTRK81AUVHtyxGMK6/RQt+hEX10FhE9YmsRHS7dkQPIwNGDwVvRYg4LkUwWdFEVYUHRtRGoEWijgdF - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - wGzuKhDBckA2hT6ubsFyQGRxaROnwnJAek43UjvDckBhxYzwxcRyQDkCy95ZxXJAZzM3oUPSckD2CwThs9JyQF6T4md203JAEFqksGHUckD2GM2Yz99yQHacJ6i44HJAZrJUX03hckBqsdabUeJyQG6Cwg6S4nJA5a602yTjckB5coYhyvFyQG3RJkC283JAS+BhgaP0ckA0nHXHwf9yQJp+Vo9jAHNAc9uj1/gAc0Dg5U4pJwFzQAQh8BpPAXNAluHdwIwBc0DWJ8ItzwJzQEAuqfX6A3NAVMCWPggSc0BVxZIRdxJzQPI7uwm9EnNAZb+i5mITc0DHSbXlAxRzQDDL39h5H3NAP3mn7KMgc0Dz4KQ3OSFzQDBpoNlkIXNANWw4H3oic0CA/NH2xyJzQOCCsCsRI3NALyavtAYkc0CwoatEOyRzQKYIjvLOJHNA0gBFqkcxc0AQpIqiWjFzQIH+OV38MnNAOffIvg0zc0B9iqYPNzRzQGTzmpXbNHNAvQ6pqLk/c0B2Oc854kBzQL6wCL14QXNAJbT6wHpEc0CStTammlFzQOQDkeKkU3NA5DD4H4hUc0AoCh0+DVVzQPjVp2iMYHNAv3ebqjpjc0ACaEEQSXFzQEIAfRtScnNAyBvTurd0c0ArjmSpTHVzQKsf1GN5gHNAzmJgLKWAc0BaJn5nDYFzQImZz8TIgXNAPxjdaqWCc0C2PbhHh5BzQHI/nNCLkXNA7bJoudSRc0DUpOpsTZJzQNfgHAzOk3NAqlw4I2GUc0B44VuE95RzQHtbCnONlXNAVWLEvrigc0DsxBNs4qBzQI+Q11BOoXNAGtRsLVuic0Cmpj0u5qJzQMgwTnUEpXNAoOX8x9Wwc0DSXsYTfrFzQCKxTZp4snNAhRfCF7ezc0Dw6VKgDbRzQHhFDPH3wHNAGFl8ADvCc0C4JtWX0MJzQPKVHd4mw3NAGCAYJdjRc0Dy8SOfM9NzQDQMn7v203NAhqhGruLUc0BoLxhSpOBzQOGFvQ054XNAStOwA2Xhc0AFQYsfjOFzQPCFNSLO4XNAbBZDMvDkc0BkyQ57EPJzQPQsyIm58nNA1CaanDf0c0BMGG25jPRzQLwhT99NAHRA5NvLouQAdEDibfTueAF0QKeE0XalAXRA+Mq08YgRdEDuGHHd8hF0QKj4DqukEnRATXg1C04TdEDUyO9xdxR0QEbjZS1OIHRA08anmZEgdED8AnaNuCF0QJRP3ygDI3RAAorTwlMwdEDLGGYhuzJ0QH8T1qvfMnRAwGC7N8pBdEAuYxkWekN0QOQ5y7hZT3RAajRHIGRUdEDhEE3zjFV0QJ4zRBe5YHRApueHiApidEButslDTmR0QBTSrKgicHRAfE5gVWJwdEB/MvOGynB0QMLTkktBcXRAasUmBs1xdEB8IyZsOXN0QIAVH6+hdHRAlAl6/DZ1dECpGoH/ZoB0QOQIizP5gHRARqc2pE6BdECaA+JtS4J0QKy8FioWkHRA0INiumuQdECzlgLroaB0QGcyqojQoHRANg40vTihdEDI4zuIuqJ0QIxa+4XSonRAYbFoKxGjdECX9iTBZqN0QIdH9LAKsHRAPotyncWwdEBJA0Rx4sB0QJo32Ht5wXRAvp0xmQ3CdEDgq5bDD8N0QC830ZIiw3RA/nP8miPEdEAdfnJhuMR0QJz5H6P8znRAUgOr8eHTdEDt/jp7ztR0QHKC3py44XRApsq8fU/ldEAccP1TjfN0QJoz+MN69HRA3Nw1lqQAdUDsQQnpzQB1QG0VQ5hkAXVAJcimE10CdUDKT4WwmgN1QNi0iz2aEHVAPLiBiTwSdUDSrz5lIxR1QIqO8DHmMXVAJGHU1XkydUA0TikZNzV1QKwZNkbMNXVAO4D75bNBdUCgfKO0gVF1QEGTh/hMVHVA3L9bZHZVdUCRb6lDD2B1QBVAOwI5YXVAQ8sDhXZydUBNjxW/CHN1QPBOtV+NdHVArudYOOSAdUBE3FAgeYF1QNCyvCyugXVAbG2/2qeDdUBVQ6M6moR1QCjl5py6kXVANWa9ojyTdUDnKufnPZh1QOq9YbWYnXVAJ1vjlJagdUD2G7P/uaF1QMX0azzvonVA6kLqSgmrdUD76QAhlbB1QG3s6tQ4s3VASTfDdHyzdUDKlJ+/xbR1QDxyjZnRwHVAOMA1n2PBdUBSnTaT+cF1QKFdUsnM03VAETdvuA/hdUAJ0qKfCOJ1QAwr3EVIAnZAmPfV4s8DdkBJp2855gR2QHruFR1VEnZAHnydFk4UdkCSa1rnCxZ2QHE2/IKMInZAILf3qJAkdkA8mK6/HzF2QAK8rOCdNHZAtpkXEB1BdkBqdIvSekR2QM//C2P7TnZA3ohxiMpQdkA+eRQlE1F2QPAMMqaHVHZARZBSts1UdkDCQpBdzGJ2QOYoNb9QY3ZA7DFKottkdkA8v6tHJmh2QNTZmgttbXZAy08mZYFtdkAA3zB4yXJ2QDFhVqlognZA6Eu7CpCDdkDAfsvZu5N2QMj4AfnCm3ZAoghldhGhdkAGo4glpaF2QK44ztrBsnZA0Eb49Qy0dkBVVoY4sLR2QAq6BFDAwHZAEm2lvRrEdkCa8Np9McV2QGILvhXPznZAT4lWCfThdkDawbeip+J2QNhNKLeR83ZAJMLM3Uv2dkCot/dEMwJ3QLr9roYtC3dAxil7wQESd0CaKi/JDyJ3QIaYc0sNNXdAcIi0S51Bd0DMyofPG0V3QAZ/JY5KUXdAENgm0ZJRd0CYuG92KVV3QIAMD91IYXdAOtN7NJBhd0AmvP0oomF3QIzFEWSTY3dA5Np1Kjpld0ACvuQWmWt3QPqWcVkob3dAxIrKNoZxd0DjWKB6j3R3QGAvraJ4gndADmLzq3yDd0DRWRjGCJJ3QM5Wuz6Kk3dAlqO4ZU2Ud0C74MYWmrR3QIxW1totw3dAgXTQ2uTQd0BR2Ono6uB3QMhbaExP8ndAmtb9hfYBeEDWGeKkTRV4QC/7Q6ZtInhApufGPoojeEDC6Ky8DkJ4QAUvH4d6RXhAjnWqA8xReECMHpCq9FN4QPlf61KIVXhAEFMzRPhgeEBFCrl8t2F4QC/sIZy3YnhAnu5sFrpxeEDfINC0VHN4QEhwB76LdHhA1hVbYch0eED4ufSJpIF4QHIIcPN3hHhAxsUe4ZmEeEDWrNHylZF4QBY//COolHhA2O824M3AeEAnBIuf98F4QMjL4tkHxXhArUxMqLfUeEAwIIcNOOJ4QHtoK8QC9HhA0spsLYz1eEC4VcA1KQN5QH4S+kcQBHlAdRabYpsFeUCUcnbHuyJ5QEE1fZoUQnlAWGzMz/hCeUBLiKOJ4FB5QFaQtuwhUnlAtuffaTlUeUCM6JH9y1R5QDTdDdXrcHlAMn/CLEJzeUB8ZcoywLJ5QNYvWlbRwnlAKzJf2zPTeUCwuLoqQtR5QG7wI1nN1XlA5/Cl0L/ieUDlD1dXT+R5QN+j2kQY6HlADmSKpfsFekDmKpahOCN6QHutwqQMNXpAJkkKGhtFekB2AtJVgVJ6QGSbNN8pVXpALMi9jY9iekAQI7I+i3J6QEiHq3MInXpARruugg22ekDYARb4LsN6QMn2lxQbxnpAFNg1bUDOekBg7QNG2tN6QJp3F1Dh13pAAgj5ojvdekCZMwF7aeF6QP+QQiP043pA+hluLHrkekBSPbf+Nu56QJgFmq4W8XpAzR3WymDxekDB1eDz2fN6QDy9VwMpDntASFTiTE0Ve0D+8LcjURx7QALXc31bJXtAWsum2yAte0Dy/ERBWDB7QD4tWvl6MntAks7f2sQze0CQPZGjwDd7QCDUz+APdHtArShkDSKVe0Ds/0EhNtN7QNzlp/HY03tANyVoBMjhe0DIRH6/QuN7QHIMz8T+43tATJOCL4z1e0Ai22dw2QF8QDMbnhaZBXxAGKr9cIgRfEAgWkEf0hF8QJPL37mlFXxA8CqKys1BfEB8KJOS3lF8QBVb4Q1GXHxAnsmBtQ5ifEBDjs1cK3F8QPwBzQkFc3xArl5KKfukfEDcoABKwLJ8QPrV1NQRtnxA3L5MrczVfEA13b3rV+J8QDMlmi8Y8nxAdjwDmlXyfEDkBF6vIPl8QMhPqEgBAn1AcPRtF0wCfUAM3xJ9RRJ9QOyRPLspHX1AtIvsgDsifUCet2YcgyJ9QIqQsqLLJ31A/Dv6WyzDfUCTj1da2OJ9QLkwtmSQ9X1AKj+kJT4vfkCBA0iXjlV+QPIus26PsH5APRldjE7JfkC7+QhiqM5+QGwoKDZR9H5AmHIfsCAAf0AWb69aEiB/QCKzmDERM39A/q2x8rdxf0CsuUeVtYF/QKbkQ+6kg39AwDCjm2ORf0Dy0lHPqJF/QNBxfl7bkX9ATgSaS16hf0AYSwjmVbF/QLQyrv6T3X9ARmRrwNXif0AC4I4YL+h/QH5outKE7X9AIcBC4dLyf0AUmTQcLfh/QM7jp+KM/X9AOvunOt8pgEA4C+4aJi6AQByhXlsoMoBATq1Y+So8gEAmdqOy9EiAQFAZOdvmUIBAgcdUMxRRgEDuoPREDlmAQHDOCa0MYYBAKJW+1oRhgEA03HNdKG+AQLTgMxUpd4BAuomVFx2PgEDgrYgMbpGAQOwXDVoalIBAa7c25ceWgECM0xXghqmAQBJr/T4WtYBAXMOwRg+9gEAKr/uIUsGAQPOI3s0QxoBAAaKqbVPJgEDorjXGE8qAQL2120AazoBAJEm5QyzRgEACpOuhTNGAQHJWLgJh0YBAflpu/nnSgED4YdDKStmAQEQ9cASZ2YBA3P2wljjcgED6REpi5d6AQGEuEn5E4YBAwGt1oFfhgECtDGk+QumAQMS+7yFK74BA6Diuhz3zgEBk3TbMP/+AQIrnDJtAB4FAkAgSID0PgUD3BkDdNB+BQMGaC5wyJ4FAbjBe+dsugUCk6Frh5C+BQFV8DESIMYFAliGQyb0xgUDEQxCGLzSBQGK/uUTTNIFAKEKbrNs2gUBCiSUrfjeBQLizWzhhf4FA3x3Q9VWPgUChpIFhVZeBQO4aIiLwnoFAA3foaVSfgUB50j+X56GBQP5V0Z9uqIFApgxAckqvgUDwspYSCbKBQBiEoTx+0YFA4IebQ3/TgUBC28pM2BiCQCw8/GvWIIJACEzeVNAogkB0S1C2ozCCQNgkuutFRoJAQPq3e0OJgkAACXcURJGCQO7wQA/klYJA+gFIiDyZgkCHp+29DqGCQGY9vAs8oYJAemPqrA2pgkDRqU2vM6mCQIgrC5QHsYJAQgaVIq/5gkD0zZubuw2DQDBHTLh5EYNA5bRtH3oZg0CMOPXaciGDQAZdhBuJIYNA423+w3Epg0CsHOicajGDQHbu0vr+aIRAICovIv9whEA8yF5e+HiEQLsQ/R/KgIRAypTUhjrKhEB++uiOatmEQLzXGxJq4YRAnG1lm2PphED6mP6LNvGEQBdtDVFi8YRAPG/b1TL5hEDcvbTUWfmEQHqkcVstAYVAwiCz9foNhUAMBH2t/hGFQErw/5oDFoVAhxjnvaBhhUBKYIj5oGmFQJrDr1mZcYVAd71IS7VzhUCSQiT+l3mFQJkTLhSTgYVA/lv/VrxIhkDmYasGJrmGQIcLlTskwYZAgpKKQpEph0AITVc/kTGHQILDAyqKOYdA4+0MY1xBh0Cs2nT4h0GHQG4YfHLHsYdAeGJB8si5h0DLCQ6gwMGHQIFmA+HDyYdAMVytuLzRh0BpaHghGuaHQAQlmDId6odAwhb5Oxnuh0A= + NrgMGZxjYkBDHc6DfEJxQKX7jOV64nFAbFYhH5MTeEBDe6rX1FN4QGWErAhYxH1A8P1wh0EKgECBAvIfg8KCQOyUNvyj4oJAUMIAGTD7hUCBMeBJL0uGQBQShIWGU4pAQDwGiNLLi0A= - + - IejiRH+agkXoYw5FuuWERUymtkTrzgVFXakDRzW0fkRzOqVEMouuRJ/d0EQSORdF21pqRHGMd0UjZv9EKt6JRJWVoUXfi8RE1h0ORfuR/USHYZpEw7k2RaK63ESPz5pE0HfGRH3ZdkTJRxBHH0/iRBbZn0SWAmBGXRRJRFlsskWY8LVE4Q8ERXEAAUfGQcFEJujORHM3jkTqss1EHvmARHc/hkTaC7pF9h3RRJ2/0UTrO1ZEcc16RPQpl0T1n2BEPtd4ROzeFEX2v8JFiqxKRg6mdURRsoxFuKwTRfYvgERWZM1EAY/WRJtGn0SyVr9EwmDJROXAW0XZehtHcxIYReGTBUX8HYVETcqHRLaJTEVSwV1EtQp0RG5kYUcytnlEv5MBRdpDlEZHKZhEVhpRRuCLa0TW95ZENcDqRRSQmkQ+6C1FnbabROZHdUQtjzZEJx6XRdVsO0WJrflE/0+XRAxUlEVK2flGKhp3RSCZFEUJav9EUimxRXMEwkQR9x1GLJaHRDv1nkTTtVVEpKdkRDxh0kSgMqdEjywKRXP2uURMl+JEzpaJRJYvmkaIAfZEmEDuREWkjURH84ZEZ2BQRVKurETBYZJETbFmRIv8TEXHm3pE+P+qRJFwqEQ8bU9E9XxXRLKEsUT+9IdEHa5sRF9PB0U1S7lFBscARdIE6kQY29RFHhmhRCujdUSbKkxHxKqBRIPB8URrVLtEjsjJRNVbXEQjOH5FQtYBRmb8oETHgL1F8BWYRG1ch0StPLZEWtyGRJxxlURHR01F8WwIRfNOi0ToB9JEDRpvRMqa9kTK1ShFJqqhROg85kSLcW1E69V/ROAwq0SBdvdEfPuvRMHrykQg0ktF0v7DRGpmukVwIYVEKPTURGSrUUQ6t8pE4xWiRFDSwUQzO2JEi7L1RI9R8UR5vYREeJaRRKSUX0SJvTpFbG5kRMOLd0SwXbpEJAynRFBx8USCnjdFc+cLRY9RnEQxp2ZGXfthRPwRs0SZoLRFsFAdRS9OGUUkvKVEU51fRF2/x0YJ2QFGs+yRRMWb1kRY5rZE1POsRLMYhkRoXp1E3EenRNaC5UTitbhEWZuKRGlNekU+lVZExzGbRKLxIEVIvo9FChfGRKmCVUSX13FEr/ipRG3dr0R5vVhEO4IURu370UZiEdZEfDagRRIMf0X7H0VEDJqfRMWUX0Wp4J5EIK5mRupjYkcFL1hFMCs/RQiNsUZm2+lEd3ekRRaVJkUUDp1EURi6RIIDmkTXMFdE98ZERMyDb0SU19tEFHywRYB7hUS385REATOMROo/skT2EUZFn36vRMREvUT9LRRFrEJPRPwb7kTqNGREXFeRRoi0kkUw1vRHQMrPRqZR5kZXJIVFUCqaRtOm/0Sbb45Ecz9BRca85ETEuVlF+viVRINQg0TJQWtFNC55RECgiUSJRSJFH9ofR63xmUTjGolFL4icRFV1lEQqeIdEgeGDRI4Zr0QQbpFEBghXRGRCc0QbGFdFnEudRPnvpEQ0DVRG/MfGRcN0mkQumAtFDRMwRdN3WEXFk8hEJbB4RMbmsUSIT01JL6seRQWPO0WjAK1EQhhUSJfPlURE/KxGJrcMRXeB8URtY4dEVUs1RZ6JUkTdTshFpFOqRZpEQUQh6rxEykDLRJModESbVhBGV/2xRI4yn0Tg+c9ETX+IRAeMokUPAU5EA7LORB+6gEVoPrpE8UyNRKLlykVcat1EIZZORYb/EEVsettEvZOQRFI7gkSOO8VH6KjKRiUnUEbPGRdFv+H0RAE2gURLEtpEg2zvRQbCqUR0mSZFybt1RADcTkR3QrFF29oeRe+tGkW8EqtEA7XNRDgkA0XexsxEmEKkRCzFgERBzJZEuO42RrDfZ0SftTBFvsbyRZUIVURk6KlFRVBgRPoklUQCC4tEjZAMRfIYY0V3B4lEimGLRBYRZkQJwZlEBkqdRovYOEZaispF+a+URMLQnEVF/n5EDfvFRZULlURno2NEvki0RGMaWUQsjoBEMjWcRO5vLkXzUnREyCl8REwH40cYFw9FJorhRuDEjEQJoilFpxPPRl58cEVqaeVF/V2ERCvJQEWZee1EJVb0RKg4mESocv1ERMyFRGzwkETPPtpEzg/hRBeao0SfyplEgzVURQ+cZUR9OOlEjjiXRTjZk0TxzIdEkq5hRmvnv0QuKblEmA9eRdJ1DUUyp5BFs4tbR9G0FkftwI5Gtez9Rb0bCkU8wHdEajUaRbJVqkVhAgRF3I8cRZ9RGEWp8VhFH6R/RmcYrEWKP4BEu8+GRAm730TgnGpE4+MdRXTisUVQ8mBFY0yqRCle2kQDSolEe8VrRP6OfkiXZF9GL+3pRyfQ1kUROpREZwKtRBx7gEdIRkFFC3hrRF8McEb3sfREqQ8mRdHtj0Q+NadFZfbSRH0mtUSLeexE80EhRdP+FUaUxT5FJ2k9RUkM7kUX84VEjgmCRsMCdkS7Ky1G7QsdRQLCjEW/mtREWjw/RTo1nUTJpn1E4ni2RcB6rkSqfY1ENw/LRF66RkXe4RBF2ucjRQJ0dES96tFEK4/dRB8GNEaVMYxFHv4gRW4/4kR85L5EXMLIR7b1R0eGqYVE4Z/ZRsW8nkWqVQZG9VnYREX5O0XiLNRE63RlRJg3VUQu+OJHs95bR2MQ3UY1RwdFEJsRRpAANUXSs9RFrgxqRYv/FkURZ39E8vrbRGo/DkeHhnZG2lQtRuzdeUVgQYdFDCvBRBgy4UQ3SqhEg+2kRZ8gD0VIHGhEg08BR84JgkbEqyhGlYpPRKiyXUWz/6FE1JN+RGZk3ERPPYtEcqsfRsi+1EWN4H1FCnOdRO3W40RVyw9GcbiORWB+QEWLwaVEigiYREcUskVgdcFFDNVARQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - KbAuNw/BckDXuO7JbsFyQGBfkTZQwnJA5jtS+qXCckDcQC8A5cJyQFnjM0Y8w3JA2gomxcTEckDskjjQWcVyQBo8mphD0nJA87rtUXfTckAn5zZqzNNyQIhPQhPP33JAKlnbgbngckBWQwd4TuFyQOpyi+tP4nJAhXIFxI/ickC6MYwQyvFyQC4QFZy783JADMvWaaL0ckAPFpHJwP9yQORdkBj5AHNAuKY1RSQBc0B6ySjojAFzQD1PupbPAnNASFf+z/oDc0Ay495KCRJzQAQGk6J5EnNAUjiP2rwSc0DKOVtyYhNzQI7v1mL5E3NAg1ncawUUc0AP2wKATBRzQJXMz7x6H3NAvR3NoKUgc0DEUTUlOSFzQMMC+btjIXNAQOLaK3oic0DoZXOUySJzQGWOGkwPI3NACRygJ88kc0C0WIwURzFzQK5nW8xbMXNAoaJBVCQyc0AAUunwDTNzQCRlKmagM3NArk+Pejk0c0Bujec4uT9zQI6BFvXiQHNAnXIdpnhBc0CgU5dzekRzQDzMUWubUXNANhqzyEBTc0AoUV/+o1NzQBSJtRB3VHNAXVI/3Ixgc0BQAKUtOWNzQCzfzqJqcnNAOIeoLatyc0BcQb7UtXRzQFQvNI5MdXNALsz6HGp2c0CY8TULeYBzQJG32pSkgHNARICCMQ2Bc0BW7w6yx4FzQESyuiqmgnNAyXB31YiQc0BsznJP95FzQLb+rxJNknNAYDyXUviSc0AEN8znYZRzQDLXyaP3lHNA/kNXnYyVc0B2FR46uKBzQB1XRIdNoXNABCq0xFqic0AIvr8/5qJzQBZEDSkEpXNA5l4yy3+xc0CYTGHvtrNzQEqLqeoMtHNAS9tDH6G0c0BOVqZt+MBzQLuqOlDQwnNAIpj6jybDc0D2m6lD19FzQDfLp9y60nNAPIO3kDTTc0CiC4Lc9tNzQAs2utXi1HNA46irbqTgc0Do+RViOOFzQJKc0dFk4XNA4DhY3Mzhc0CabwIREONzQAhsZDUR8nNAmvenkjf0c0DcdRmGjPRzQBoA1DdOAHRArvjhh3gBdEAi6cRxpQF0QMg3OUNNE3RA1QVTY3cUdECEz7R7SiB0QK/NxCm4IXRAity0A1MwdED4lNB61zJ0QMEn/fT3VHRAsarnzIxVdEBAacvYuGB0QIQJHAEIYnRAqP9HAk9kdECcb2YyInB0QALmDidBcXRAlJvwyjtzdECTesqjNnV0QNVSH2D4gHRAGCzJ6U6BdEAG/PtysoF0QJLUfikWkHRAwjLtjWuQdEB4gZkdz6B0QIzQFQ03oXRAWNE2sriidECMTWZS0aJ0QFj5MXkQo3RAXg2b5mWldEAoyhlICLB0QOr69dPiwHRAPUjjq3jBdEDkVDifDsN0QIjepDIhxHRADhLfCnrEdEDL8p/luMR0QCe8AhD8znRAe7z8teHTdEBsCP7NzNR0QB2oWyu24HRA4l2Z37nhdEDiglnET+V0QOyU3t+M83RAFs0FbqUAdUAF9G9xwgB1QP4t7i/NAHVABM7tTmMBdUAeLDLCmQN1QE0puAE8EnVATEuf/yQUdUCvWIgFejJ1QKiA5ATMNXVAQHSiA7RBdUARIgtG2k91QP5A3lSBUXVA6PnofU1UdUAAV2yidlV1QIB5XPAMYHVAbPM5rjhhdUBFSd8Au3F1QBRceQZ3cnVAjB2Bko10dUC7o7E2eIF1QKR6KQaugXVAx9lkuaaDdUC0gFvimoR1QGrJJxm7kXVA9i0VyT2YdUACOVe1l511QLwpWyyXoHVAtjzxbyShdUBOdYm5uaF1QClUq3nxonVA6edSAkmjdUCqYnSWuqR1QErLVeAIq3VAqIhTMXyzdUDLknopz8B1QLDVwT/5wXVAxkv7NVDDdUDwKFMuzdN1QE7I13Lj33VAoyzm0hDhdUCkFIRCB+J1QNgxH0U65XVAPDIbUkkCdkCT4xOc0AN2QN3RjWIBE3ZAxsq86k0UdkDeSpi3CxZ2QO4ZW4GQJHZAVlZ60R8xdkAJQ+86mzR2QIBr+14dQXZAhubqbQ9CdkDyLFFleUR2QLTgLuPIUHZAkcNB2hJRdkDOK0BzzVR2QNYKzrtOYnZAAHCSF8xidkAclAcPUmN2QJd5QLraZHZAeo8CJSZodkDq5wC1fm12QIDoTfnJcnZAZgdJ/PeBdkDrNOXkC5N2QHCrbcK9k3ZA7J2u3sGydkBKSeFQDbR2QAZsl2iwtHZA1hZpZ3PAdkBaRJNawMB2QJw9bbsaxHZAQv4oq8/OdkAZYbITv9B2QED6ZNz04XZAW3gPiZLzdkATOFwvMwJ3QAaAO14BEndAoN9E1AUTd0C28RxvDyJ3QILz8LRyIndAPynEpAw1d0BfxzvJnEF3QLJL3vgaRXdAISEEukpRd0C/6VveklF3QBxthaYoVXdAQObgXI9hd0DYc1FfkWN3QFsxVw46ZXdAon2cDidvd0D4wFnWJn93QGSqJgh6gndA6nxVhnyDd0AWJ+cbCpJ3QBJDRCyJk3dAFH6ej0uUd0BbE6VvpqN3QLx2qKKZtHdA0FivyePQd0A4mM0H7PB3QCFvpJhO8ndAThSmlhsCeEBGCJjWTRV4QOR7isNtInhARp75A4ojeED3ZLJZDEJ4QDS8RCJ6RXhAbCeaYctReEBC5kqMh1V4QOyBnWn3YHhAMk0KQ7dheEA3vlVii3R4QFxa4qi7dHhAkg2DeqSBeEASUV0ymYR4QHrjBfhSj3hAtOH5QJeReEBtuGfeppR4QLYx3da7pHhAAwP3us3AeEBWCCSq9sF4QFLgmo8GxXhAZNGpGbjUeEDJck3rAfR4QGJ/RGCM9XhAEj3uM5kFeUADzEV9wQ15QCtsZth/PXlAYRTpNxRCeUCAiB5F+EJ5QMcaeyMiUnlAm5MWSMxUeUAg+/Gn+IR5QKZ1/7L8pnlA5pG8xMCyeUDa68oz0MJ5QKs9C8lC1HlAnPR0gsvVeUCGCcMEvuJ5QALMgshP5HlAAoMDdxfoeUDDRyWdkvB5QGh6eRUMNXpAEARZkxpFekA6yLTYgFJ6QJLytbAoVXpAYBBujI5iekAoONyTi3J6QBcKskMGnXpA0/gLSw22ekCa3OOiGcZ6QJmAEvhDznpASBv+RtXTekCvgeRl4td6QLCyLvc73XpA6Jfvp2bhekAroYY9Nu56QAI6diwW8XpAdNFDvF7xekBqGcl52vN6QGl6PhwqDntA2l11ykwVe0AgvmSRWCV7QPGFaDwgLXtAjBjMtlIwe0AsN61IezJ7QPh1Jg8ilXtAFAvPJHrGe0BXwbN+wNF7QP8oJT8303tAYCJtVazTe0B81Cyb1NN7QLHCAf3+43tA5pZqmJXxe0DSVzojjPV7QFxtY9KTAXxAq+l0PdoBfEAeaCKo9QF8QOo4jhOaBXxAFfv384kRfECQfh+00BF8QLAZH/PMQXxAvvW+fNtRfEDjMqttDGJ8QNMMWtQEc3xA3mhHGsCyfEDwm1sbzNV8QIb0H9pX4nxAxmdaRhjyfEDAO14LVvJ8QN8jvwEi+XxAuVT9ev8BfUB8Cjm4SwJ9QNrcz3RFEn1Ar7fanCgdfUArAR/yPiJ9QAixSpyEIn1Aog03paAxfUCqEKehKsN9QBLfiHXX4n1AnsmseZD1fUBoigjmPi9+QLpH3OiNVX5ALW1nw03JfkBTtKnYpc5+QHwpLQEk7X5Aik9lBtb/fkAyuykyIQB/QByUySANIH9A6J0LABEzf0A2AVKpuHF/QMFyFQuwgX9ADI6Ly6SDf0Bsw6odY5F/QCMonyhcoX9ADtCf81axf0CwqF/Tld1/QGwUz7XV4n9AUI6KdC7of0A62BGuhe1/QJwJzbXY8n9Agd14VT34f0AMcys/hv1/QMxg9hDeKYBAKfIlQSYugEBacC6HJzKAQBp083kqPIBATd/wG9Y+gEBRFnpc70iAQNQpx//mUIBAxmQGKhRRgEBoG9wbJlGAQDiK8j3pWIBAeGO3Ig5ZgEBeUzNa2F6AQGh1tA8pb4BAxOapWx6PgEDS1JvjbJGAQM35fZwalIBAMFUYg4epgECgQRtuFLWAQJCMrndSwYBADTSxrhDGgEBomyKJU8mAQLb8cmcTyoBAeGZuoCzRgED4C93iTNGAQLSe/Idg0YBA9gsE9drRgEAe53NbStmAQEh0smCY2YBAGrxgWkfcgECRrSbcROGAQOP+eZj46IBAvFq2RTzzgEAWZ1bJP/+AQMvqwPs+B4FA0MnW0D4PgUDovz4PNR+BQHK5EyU0J4FAnACqINwugUBKLLdG5S+BQJWg1y6IMYFAtHTQKb0xgUB6yZ+sMTSBQGZABmrUNIFAtSGrebs2gUBPUJWY3TaBQPAowL5/N4FA8HmdbFWPgUAlkSAnV5eBQFrcCu5DnIFAypWYJvCegUATp/sd56GBQKpg+D1uqIFAWA9vXu2pgUB0yLnqSa+BQHYkzrN904FAiseCQ9gYgkCYQzoJ2CCCQKICxwfRKIJAe7bmUUOJgkBxnpjCQ5GCQJZ95H88mYJAmils8w6hgkCMidWYOqGCQGjpl7EOqYJARkHifzKpgkCud6aBCLGCQDyw8Git+YJAstjolHkRg0ApgW8cehmDQLAuFRVzIYNAYKOsjXApg0BEMEYYajGDQBLj6XbjgYNAUPc0hZT4g0BUI4rl/2iEQN4gLx0AcYRAVmzIqvZ4hEAcMIgmOcqEQAVNHtw/0oRAqzgcGmrZhEAAIqwLauGEQBiSJ39j6YRAisuJ7DTxhEDtLWkbY/GEQOCfv7cz+YRA3iUUMFn5hEAmgOmjLwGFQKDhRZP6DYVAImN/Lv0RhUD3VNJioGGFQNsYzEigaYVAYNdcYJlxhUA7Fn28tXOFQDmvKLyYeYVAiC9r14+BhUBu9K4oJrmGQMGgZTKRKYdAUnOBdpExh0A4FWQkjDmHQKi6VbdcQYdA/N21FIpBh0Dirn94x7GHQPZRt2nHuYdA8bn0c7/Bh0CeKnrPv8mHQBIp7JW80YdA2N9dVBrmh0AapKNQHOqHQMCZWlId7odA + KBZXds7jZUD1hHOUyCJpQBTpB48/A3JAaYA5p9LBc0AUR+TilxR5QGneFfsq03pAb1MuLltlf0DG8wsW1yGAQBtX4bM5y4JAV/iMrhjagkBXJ3vYxGKGQK43he+Q04ZAPzwGiNKLiUB1eDfDHPOJQAShlbhIu4tA+Y7mf0qMjUC+83WwwLuPQPxe6lR7ipBAXxEybTaikUBZiNpQt4qSQKCciUvNbpNAvDoiaXKik0AFvWI1k/6UQC/F50D5NpVAr9zeVU/7lkBPrTTTvgKXQPheHyJwV5hAAcSZ4QSPmEBB4V/ukLOZQBhHbLQ1I5pAwfhWA+d3m0CYXmPJi+ebQD3olpoCRJ1AGHZa3uGrnUCH2Gg4LkifQA== - + - adz+RAN/ZkXyPI1EciT7RMyulUQ3nJ1FVIXFRIM2qkTFPupGyjG2REM8U0St855E5DuHRM8yY0TxM3BFFFUnRRc6d0XvroVEHpuZRHZFj0Rj3wdFzymsRHp6nkT/PgVFP54aR9UTmEQCamBEgT5IRshXfUSCNHVFzY95Ra8tZURVwH5EQJ7pRHTz5kZdjKNEU3SsRMPzC0V6oYlEDgecRUIC00RF06dEuDRcRBsmRkSRsYdEGXWoRMxAb0Q44qVEloyXRZQpI0aYWKREocRxRERln0X40q9ENnxmRE0m8URnhkxE/SljRGamvkQqTiJFxbdzRDyH8EauXv9EEN0fRUYrrkSomXxEXBg3RXyGikTTZVhH7UlcRIhTjkRla3FGPPBMRC/SCEa8J2ZECmLsRVhF5kRuHwlFuVSMRFzGY0XwEiBFjxSCRGDG3kSUsYJFc7yoRgIuJkWr4WZEupwNRWp31ES/NKRFHwXhRMIT80U2rJhE+BRrRFs/jkRKg5RELxLkRI8Ea0QT885EeDJ8Rjo9zkTckUpFH5h0RC5drUS3MiVFFFp5RH32jERPenxExroKRXP+oUVtICRFqfj7RFcvj0UZukhHCIS4RFzNyEQUs0dFk5DoRaLMdURYRdZFAgKXREJ6dETlYUxEFd7FRAzyKEVni9BEGuNzRH2TtkS9g9VExBrDROnmtkSPYV5EYPxhRBmu90QSgM5EkKeeRKFMCEUM6p5EqRkeRY60okQ7pK5FXGi1RJm2L0RVmzpEeJHLRCwqpkSF8rNEhdIcRRUuYkQhXlBF24F5RKxljERZznpEGnSCRPAYsEQzFYhEELYJRbLrT0QGUYdEvFwTRnVgtERUHb9FivADRfSx2kSNspFEO7KCRqLQr0XPsIJER0RQRAVYukQJ0JNEDAxoRJ48l0Qfz5JE0eSnRJaSh0RBRp9Ea3x7RJ/xs0RBwKlEZblkRC1+EkVONo9E05R9RVyNxUR022NEKBlxRFUJVESx6ANGUu68RlozekQXM4pFC7yCRJUTY0XTbppEqIk3RVnDOUbRFIVE9zIrR4UpVkVwj/lELE2ORstDlUWmbBNFeUtURJkPdETBP71EBEEARZSNokUdu2BEMKOCRGCetUT2BpJEeVUGRZsdfUTfoolEfwABRTBfxkSWy6BG08yFRBNkVUUiyHtEK8XpRzJH00a19NhGCjOeRXmwkkYMDgtF/d8YRRpAB0VC8ktE6GZyRaQWeUQ7tM5ELe8FR3UclETVvWJFDL6uRLSmQkT/r5tEzuynRJV9oET8B75E/1h2RAd7f0SdPY1FMmWzRNuVtERWh1FGGHieRVkZPEVtBgNF2TRSRcGMR0mDWVhFDYgmReaASUiq0WpEvFanRFOzq0YtHYBEIV7ARIHBt0QZ0pBEEo4bRVu+V0VlK+JFQKmqREUfZ0S0InJEwxEjRjjghkQtfchEuy6WRZDTX0T+5FZEwb2UReoTcERGaqpF0BuiRP8y5kQ/aQJF4XC1RPdxVUTPyMtH+5vZRvznPkb3TSZFSrXcRGdkmUQ+0a9Er9CTRcXg9USp03FEmJB2RFM3gkXYoSJF27pIRWp4HUUgVfhEZjqfRFoXBEV3NNxEhWguRi4jTEUJZalFpoZnRGE6fUXf+QBFbU2oRFyn4kTbOdBFx1y6RAiMmEQGNadEXv6rRVSAqkbtzqBE7CFIRjQEEkVDWJhF7mSdROLydUWaN9RFP+mZRKGEvUQKmJxEZPfGROgYokSVsdlHdZ3wRFGQ5EbTgI5E0FPzRAMYvUZas4NFKA4/RVJj0kRGIQJFGXR7RBaAuETLFahEAcMQRdSXaUSZ43BEhnMWRV8Vp0RvYFBEgTZeRL8ddEXamG5EqO+tRLc3k0VUL71EzquKRPVIQkboZSZFZTUrRVyQREXFvEpHAY0OR/7pLkbTVXBFu5NYRJc5gUTpHKtEyfVFRRi7okShipFEXabYRA2TyUQ4EkJFTtl/Rr495kR2RcBEsl+8RaCulURhUAtFE40aRRI9t0UAXPhE+2sbReuDDUVENHZICtsURqaCAUi2A5lFEX7KRENAikdFLjlFpSFYRKzmYUZtdBZFnYuURAFgxkUb6VxEX97lRK71G0ae+SFFQP37RER8skXF3qlE6lBlRraYYESss0lGl0nRRB2ghkUlXZJELFiKRCAanURlsYhEJSFsRR/OrkSVwNlENoujRGnySEUZqyRFgGNSRKmFGkWLZ61EEXNSRkped0UepUdFbezTRwkeSUdLkOpGvrvCRQ/38kWJSzhFo1wGReen+UQmEr1EUyfVR0kQWkfpqA5Hh8IARiI1R0UIaXpEvXSZRKGmz0Wy8DhFVTP/RFPTXEXi58tESdgMR0kBi0YmFh1GMlN1RRltYkVSJb5ESqF1RC67xUSJwZhFI3xPReBRC0dhIolGYZs6Rs3EWkSjp3VFMsiaRC4g20TWJypG9VyyRdbpaEXhGW9Ezsz/RHEnCUYTXbtFEWEwRcyjfESsQGlEV62aRbYkI0W0f7dE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - lGRzLA7BckDUthH0JsFyQIVlC9RvwXJA/w4r21DCckBJzwUBpsJyQARqszzkwnJA365VRjvDckBxRNCRw8RyQD/oB7xYxXJAPGM2Q0PSckDP45KAS9NyQHa9X5Z203JAMZn9gszTckCP38+lz99yQB+VjcW34HJA3DvvrOPgckAtYDdeTOFyQJZAphxR4nJALDnupo/ickDA3EH3yfFyQJqWmCq383JABCUbyAz0ckAez42VofRyQApzy9m//3JALUUWqmIAc0DyK7dD+QBzQNzTYG4RAXNAoJd6jiUBc0DQyTLLSwFzQEP4q0mNAXNAen6Q99UBc0BajCXMzwJzQDGJcd/6A3NAzlLjNwoSc0Cno0CGKBJzQDgUJMV3EnNAGmuSvLwSc0Aom7LsBRRzQCa7+EVNFHNAGAhncnkfc0B41+ZopCBzQPLMaGs5IXNAvDpbDGUhc0AaLnbTeiJzQDkzgNnLInNAPo55JRAjc0BFTgTAPCRzQLrjGK/OJHNANFK0u0Yxc0BamBfqWTFzQB44QHkjMnNAkQJSyQkzc0CkiD/WoDNzQOfPFs3VM3NA91HANzY0c0DogjZP2jRzQG65dDy4P3NAbJRQuORAc0BURGT8eEFzQCjXniq8QnNAHiPzF3pEc0DYnjHdm1FzQCYpMBtDU3NAsGw+6aRTc0CcN/mshlRzQC4Ko8KNYHNAKVfmQDdjc0BsTaJ6jmNzQJVN79DNY3NAwnovmE9yc0A6jb4wanJzQMb7Mw+3dHNAg8Wcpkt1c0Dk1Gb/eIBzQBJZL/SkgHNAVtaUzg6Bc0ByxoecyYFzQFjvV2pdgnNApm1H1oaQc0CUTxBb/JFzQN6OpyRNknNACAiNmvqSc0DI/b6gYZRzQCEZas73lHNAjQC/qrigc0BcexAy5qBzQFDXu1NNoXNAvN0O4OChc0DGGofVWqJzQAdnEUznonNABDLjHgWlc0Dyj5pSx7BzQEoTpJY0sXNALsgbDbazc0BdzgiuDbRzQJMUEOr2wHNAYB1oVCXBc0BkPh33i8FzQDYTPovPwnNAVKKr8SbDc0BH4Ar0wsNzQJaiJtXX0XNA8Dn4/TPTc0BVqFFr9dNzQH6Dm8Di1HNA5h0W6KHgc0APZ92cOOFzQKoW659h4XNADG0JL8zhc0A/3YYu6OFzQJCVrGcQ8nNAKEklUzb0c0Ds09WWTgB0QLjRh694AXRAyPpQi6cBdEBPx3huDQV0QB0Zlhl4EXRAKNSTw4gRdEBE0y748xF0QCTwIZVvEnRAyU8A9kwTdEDgO+nrdxR0QHB44YJMIHRAxLDzbbchdEBZ4h/sHiJ0QEhPV6i5JHRANMWxtlQwdEBjdwLAuzJ0QBMYChfnMnRARnAjM1VAdEDkT1apyEF0QLR/Gzd7Q3RAi0hO14JPdEDtDWJc/FJ0QFjM4uNfVHRAliYUoPZUdED2n8uLi1V0QMi6nkO4YHRAnDCUh01hdECKjboWCGJ0QNJU4eZOZHRAahkCGWBrdEC0APY3InB0QEpAN5lkcHRAIJqH4EBxdEB6Wqo2OnN0QA5feHM3dXRA+BjTsPiAdEAKxA/uToF0QK5jnL9JgnRA4nRpmBaQdEDIitRqa5B0QDywsLajoHRAfOg2GTehdEA4W57ZX6F0QJY4JUC6onRAaBDda9GidEBlsrqrD6N0QBLTwS5mo3RAxpQ4gQmwdEBsR+kS/bJ0QPolOZu5v3RAWx9lB+TAdEC+WUOMecF0QFDQcdnqwXRAsu9wsgzDdEDEPvM0H8N0QLbbCnIixHRAXDeYgnnEdEAS5p/ut8R0QGhweqr7znRATz1cKODTdECSWLIvedR0QC8OLbjP1HRAJojujvffdECfMxtIuOB0QGQEZPK34XRAqgDbar/wdEAufnAnjfN0QGRKHs2mAHVA9BBG4s0AdUBmBxYDZAF1QF1Gn1peAnVAYrRWDpkDdUAWtxXLOhJ1QEbKRysjFHVAHkOYzcs1dUAk6ByX2kV1QEppMS79T3VAgJ3QpYJRdUA87zg3TVR1QOQ0KNJ3VXVAmjrNjzdhdUCNpBLQunF1QP2kwH12cnVAjGqJlo10dUDODKCJeIF1QBy7GJGtgXVAk98ZMaSDdUBIz/18m4R1QCoGWEKMkHVAj0qDWLyRdUC+sXXOPJN1QBcAhcE+mHVASuoFbpiddUCGJzPNlaB1QJSl4724oXVAnZnYJO6idUDo/yasuqR1QADp4cbmsnVA7iIGKzqzdUD8ztHrebN1QGCo0sTPwHVAHguBsPfBdUB9Bn8TztN1QBHiRWcP4XVAD8vWZQnidUBgoOIwSAJ2QIVzuAppAnZAtKtFzNADdkA8gKkMTRR2QB4j3y0MFnZAyEMskIcidkCTX2p4nSN2QHqRqc6PJHZAGi5qtx8xdkBEGyLpJTN2QGonvHCdNHZAGuUazR1BdkBIt2snn0F2QC1UxfsNQnZAgb7aC3lEdkCAAJ7T+052QHAm8knLUHZApbHzfxFRdkBuNhEyzVR2QDQ9rLshYXZAAHEozk5idkClquMrzGJ2QJqjCCJSY3ZAjuOat9pkdkCM7mBfJmh2QH2phxiAbXZA1Po3vmiCdkBr6Ta2kYN2QO7HAh+8k3ZAVIphZSGbdkD81hVMwpt2QAAaFzUNoXZAZp4nvUijdkBOKwLgubB2QLBhal3DsnZAzHYWTg20dkDIbiZrsLR2QBYU3XB3wHZA5q8eJcLAdkCeS/k6TsF2QHLwJQfQznZAx/NVYX7QdkCFvWmMvtB2QC7v8ojx4XZA1nZ4xJDzdkBn2v1kMgJ3QE07k+EBEndAMd6pSwMTd0AgC024HRN3QF1DCseNIHdA1pCRMxAid0CAt/7ODDV3QCqK9d2cQXdAL8OxWhtFd0DWIeLiSlF3QMRxgbGSUXdAjFmzISpVd0CcuQq5SmF3QEwHQZmOYXdA9K66sZJjd0CKzRt3mmt3QCTNzBUnb3dAQJ4oFiR/d0BWDo4jeYJ3QGCWI3F8g3dA7AtqgweSd0CeNbVyipN3QJTUjClOlHdAzFwJn5q0d0DnjOWhjdZ3QGZNv/nq8HdAVkl3AVHyd0C6LU8i+AF4QM0HVyIkE3hAstVsck4VeEBROgqLbiJ4QHXJMLCJI3hAFNofK6YkeEDK9UfOC0J4QNxuL4p6RXhA4piRP8pReEDBcM7b8lN4QLqrDwSIVXhAvJdqJvlgeEBsqVuxt2F4QIrfoTq8YnhAfm20h0BjeEDWAVSXOXR4QD9yQYhSdHhAAOf8TYt0eEAgygPSsHR4QLxszOzPdHhATdY8RfN0eECOMjHnpoF4QPIacv6ZhHhA3CG57E+PeEAyA2q7l5F4QAGJVtKnlHhAi4K4VM3AeEAsM2p19sF4QDAxERe41HhAP7DBM4njeEAmbaC/AvR4QOBYjoiM9XhA8sQJyxEEeUD6oKttmgV5QHW+shgUQnlADNmfGY9CeUBeugCs+0J5QPEgOmohUnlAX9IJiMxUeUCi6BHa6mB5QDBvfIjbZHlAZV+YhsCyeUBPNe4IQtR5QKYtAXHM1XlAtFNBU7/ieUAummFcUOR5QDSjbJsY6HlAbihHkfgFekB8g6hCDDV6QHxVNW0aRXpAppRnVy1QekBWMX0hgVJ6QFroL7QnVXpA/Mv8PIxiekAWZikmOW16QG8QlB2NcnpArTYv0gidekB+Mk/CDLZ6QGQK4rktw3pAnFGU2RnGekA8K7MIp9J6QDcPFtnf13pAhGAfUjzdekAkW7aLZeF6QHAz8+p55HpAbxAIEDjuekCiaXNAFfF6QGbPvUpc8XpAzvz3tdjzekCM8suOdgN7QM+XqFYrDntA4owbqkwVe0AyrjZ5WyV7QFFREKAgLXtArF11WVIwe0BLdY9zeTJ7QCqp0lLXN3tAJgZkwOmQe0CcuLJMw5R7QGSSvSwjlXtAOEW5KTKle0AX9OPDecZ7QKV07N4303tA9YSlyqjTe0B7Uwjn/+N7QPjPfxCM9XtAIvW+NpQBfEA9lZdt2QF8QFAN1Cr1AXxAvpzpoZgFfEDZFN3giRF8QOu2rejREXxAvic/cs1BfEAyjrvQ2lF8QKdXigaAU3xABr7X/kdcfECu8RzGCmJ8QEB6YRcqcXxA3AxjEr6yfEAunO3w0cJ8QFIqZHnN1XxAgsHcslfifEC60f7KEvJ8QA1Exl9V8nxAIbWXgST5fEDKBSn0AQJ9QJScw4VLAn1ACHYuAEYSfUCwYi1UKR19QAdoRLk8In1AmvvEMIMifUAWhWeZojF9QHpx4HAsw31AXpxWgtfifUDGgD/3j/V9QO9JnapR/X1A236x1DkffkA6gsiaQS9+QAif4vo8P35AloPFCFyMfkCFRo674pB+QOKEiZyOsH5A6C/2m6jEfkDMUxscT8l+QKRc4E6ozn5AMYMJstfvfkBxIYWM1v9+QH5hlVofAH9AztjP2RMzf0Ai3KR0tnF/QHR77uyng39AfrF1P2ORf0ASV/BbXqF/QA4pMuZVsX9A0g+El1HBf0DkZcg8l91/QO3cuqDV4n9ANko12y7of0AagH1ViO1/QMu+sgTg8n9AzFZunyr4f0BY8y464CmAQMBd9v0lLoBAR7OCFPo4gECoprfFKjyAQNpBs+bWPoBAma6w8/NIgEDF7pfb5VCAQJ6WDHkUUYBAjFKETeVYgEDRzqmwDlmAQA66WUwob4BAL5iaax2PgEB4jbRObZGAQOp2jjMalIBALk9ps8eWgEAaOCbCa5mAQPz0Si6HqYBAl+YN0BS1gEAj66gLFrmAQGTMk2dSwYBA1oN9Pm/BgECgySmGEMaAQOJyXWtTyYBAtQR1uBPKgEA0m47mFs6AQCgSZcMs0YBAoIYKhEzRgED2hEQXYtGAQDurgzxL2YBAWEE9BZnZgEDeERpzONyAQPiDQTzk3oBA5pTFN/begEBqMNGtROGAQD7pihD36IBAYgLKYUDpgEAAkPaWSu+AQAIVZAw+84BANAwCmT//gEB2pZvMPweBQG5O6tI0H4FA5pmXUTQngUBwk1Rz2y6BQO6qABGJMYFAeHg7Gb0xgUDonZrpMzSBQE/NnKDUNIFAVgaBKtY2gUDr0IscgjeBQE4YwZ+JOYFAbpwFkVWPgUDWsEEVVpeBQFfZElxDnIFAqVCz8e+egUAUVS765qGBQARZyPtDpIFARCs7Ym2ogUAEMmcw7qmBQFPyAKJKr4FA7vPKgH3RgUADWAGlfdOBQOaZn6oq1IFAgkfcYrXygUAPT2Jz2BiCQIDrUtniHIJAIsHuEtcggkA6ngRJ0SiCQFYvFQykMIJAfoIwrs4wgkCihCArQ4mCQMLy1w5EkYJAj5Lk2DyZgkDScJAmD6GCQNhLL2E7oYJAOPFReQypgkCy0V7IM6mCQIQmdJSu+YJA18Peb3kRg0DuPbs9ehmDQM3dU0hzIYNA8K5PB3Ipg0BtLr3vajGDQLoanekaUoNAKVPl8MRVg0Du+HiF5YGDQLQic9Uq8YNAiyRUF5b4g0AotYAx/2iEQK5w+vb9cIRAm9Cjvvd4hEBQGpLS84iEQLvQg+g5yoRAXLTpLUHShEBq6EpOatmEQC5or3hq4YRADNwML2LphEAuWKOmNfGEQPJhaQhj8YRABhgcYDb5hEA/EFHuWvmEQCAyuUosAYVAYSfF+PoNhUCqqp6s/RGFQKztomYAFoVALP8UdaBhhUDMTmAMoWmFQDjvaxaZcYVAMCQWL7VzhUD2thlrmXmFQEq3RkaRgYVAgek9DCa5hkCI0Om0kCmHQFzW+eOSMYdAUYDjjYk5h0B2MeGiXEGHQApA5xKKQYdA4MoIuIZJh0CcZpuvx7GHQFOWNbjGuYdAVF6Q6r7Bh0DobZ0mG+aHQPx5BLUc6odAW4WLYR/uh0A= + NrgMGZxjYkDAIFw1+IJuQBu6YmAmQ3BAJ2tCVJRydUCPXyNQFkR4QH2/Rlks43lA5bMnVa60fEB4soMkDvKAQFYHXkfjcoFAeOFxTrp6hEDq5wGDOnuFQA== - + - Adc0RS6ugkSzlx5FKyGDRL0XJkWfVmpEaOTeRbdljUTN4uZE0ov2Rq7FU0SXi7BEvqpsRAgYEkVYBu5E9NlURHqVqEToKptFUGvfROr/gkXibKVEWFGJRGxLeURMRbZEmrS4RDogPkXq22xEeTSmRKnRoUSI4apElRdxRGcEwERcrTJHYGm/RDEZWkSoAnBE6EQ6Ro5bx0UYSLtEswTKRG7w1UT4eQVHKl66RB8UAEXyMMlECMDHRJsGZETbA79FpejQRNZY+USBFpNEzAZPRMeflkTZ80lE7F6URDvgeURpqUdEn0EERcUWw0WxxIBEEic0Rg16iEQh0tFEkleCRaJm5ESrHqpEX+cPRTGnZ0SJAY5E7UYIRVFPokQuiqVEIx4zRcSHDUeitudEB8UaRZe+yUSJZ75EIHohRSdfbkTs+UhHr+6ZRDfKDUW+dZJG/lopRh0ZcUQkSI9EcnqPRN+6xkXOW2ZFIuQqRUfTzUQDXZ9E6tVzRSrpIEVJj/ZE55BGRPZ/g0R1ksJFAhHSRlrDh0TU7SFFD0EKRTzDjkSJ5LJFSdKhRBC+9EXxSsFEw6GHRO07b0T/i65ER6MLRaCNvUR8OJ1GsCQMRfhvekRea6NEJu3PRA2zpESi3XhEplNGRXOJh0TEeYNExWzJRIh5dEReeptE4QbFRDkalUSiv1pE8uGWRIYwiUTseX9Em9GURPAxuET7lVdEiX3vRAlC/kQM77pFCHZgRDaoH0Xure9ET+K5RMv7xEUqVnVEvyVIR31Yv0TP6flEfUE4RS9JukUmBmtEJETQRSrzuUS7RW5EwaaaRC4UVkQBRJNEnvNRRZyWCkVAL5pEPa+kRMZucEQ3ybpEdygDRRavBUXa541EJGqpROMt7ETXY4VEkZxkRLBH4kQplMpEJH3PRPWTPURoafBEZxFsRNL4m0RYLgtFcl7GRD6bvEWaqdlEFs3uRNDnq0TB4Y9Ex/ZpRJW82UR2uwVFD/uBRT2MrkQ8MMBE+pOWRHsEv0T/YflE+XswRUo8Y0Rq+glF2x6MRhWJB0Xy4J1F2yuZRITfWUV/WnVEiaOARLl8tURyQHZGzDW1ReKjVUTmsPtEype4ROTbT0TKagNFb9FVRHyUVESEGqREwjsFRcpRmkTJy7tE5zg5RcVslUXo/oREE2L3RI2Tx0TlV9hEc+GYRMIge0QUyv5F81PkRqYbu0Q+UW5EK5++RbIsbURnHMNE+UZlRbTEkERXlA1F65qQRZxDzkYlHJ1EIwKPRARO8Ea7tFdFtdqFRVt7gEZ9jG9F85WHRHOC1ESBMJ1EFqLZRMt7fERM4nJEDZK4REqjjkTfwzxF44+2RS2MbURs22pEwEV6RN3qXkSUgzRFI/+DRDEldESSTJ9Eo9LjRKir70RkeopGgAqwRPeofUTPdGxE+W02RaF86kfsRe1GXwy5RgNdjkX8aq5GKYwrRcbPgUT09kxF6/J9RcTEekTzl7BF8xRxRIQSqUTFpAVHoN6/RADFdkXsNMdEwKmgRJt8skRQGJdEPvgrRWwyaEQ3GX1E+daJRCkOW0UY/opEOsuDRPgd70S0qzVGz3rLRVxVZ0RxCeZEXsgzRW9DIEVEz55EUCe9RF0sJ0X/bwJFrCVJSa+3rUV49A1F+iO9RNrCVkXCXUhIDjSZRHKb/UQr2YpGs94NReFNykQDrDBFBSGGRHKSe0XA/QlGD3zKROr46UTw5jNGw0qbRK9pbETTi8VESMOLRe/3b0SEtLxE28FjRU7TzkW8Jc9EYCWWRciB2UQZ0BFFjGvERGDI1EeaCsJG9hugRIWuhkZoEUdFaYAGRSWlyESuyNJE2mPIRJAs2EW4xHxEMwLcRBVfZETzBYxFGG4mReIS9kQTcI1E2B4LRQ6hrEQNPQFFn3bvRAoYd0TrCtxEtt40RgVee0Ww9PZF4y1OREVzM0WX759E/f+MROMIfkQxKENFA+OyRIL0wkSrWRpGmXeQRLGnfEQ4bKVGq+WoRByzPUbOnEVFbYqgRW1O3UThraFFDZ/ARRcWh0SHD4xEl06iRIQPuERpBqhEzPfARCYPcURHbpJE+XHqR7ISnUQBb+RGxQ53RO4fKEUePsdGdwNiRTNRpEVsZIFErDIRRSV4c0Q2folEAzyKRB65wEQfEo9Eex6jRDD4i0Qk/nZEzemWRGrOWUTI3GZEG2RmREAtP0VWhwNFmfiURAV8o0SWQq5FQXPlRNBAlEXi+blEuvBARn3EnEUBFhtF7RVtRC7IpEXk8RVH1sPeRjDjCUawMIdFpCmZRBOeekRoFXJFfiKfRKdFU0U8WQ5FutzqRJj4LkXYZZpGpC6kRKiS2EUWo8JE/mcCRQ39hUVEcs1E4ibbRN+NaEQBnQ9F2CWGRSqLxUQfcoZINjXDRCt4T0bvPPpHQX+vRca/tERvTp9EnPSHR6KVE0U5F3ZGi/P5RGI5w0TCVfhEHR1YRPOiukV2vdREMEuVRHv6y0SYSehEP9wXRgtiU0XhkfZFmGHGRJepXEbIhhZGDAnZRLsPSUWi7HRELm+iRJH+mERzLExEf5ivRXdm+ER4PrxFc90YRUpwFkWT9E5ECBciRW/Rj0SLJjFFdNMZRbCdiUQsnYVEEXV2RMvCTkYmrXdEPmyGRU/SKEUzj8hEQ6qVRI8jBUgEjoBHJt4iR3EbvkW1FSNG1wEARbuFUUX43JFE9SMESG7Pk0ezKhlHdmksRpwnXkVKGEtERi5iRCtSXkRCU2NE3taGRAx24UUXWSdFiKsqRdujgkTbrthF52YFRUIxKkefl7lGY1w3Ri5ljUWqrohFUt8HRebPDkX2loFEy/ytRTe8JEXo019EtRwFR7nHkkYLjilGFLaTRLebY0XJ1KlE+/7oRPCSN0bF/btFt2aARQwbjUTfZsdEERtORLZy+EVYzbdF5oNJRdPHkUUBLmpFEwk2RQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 6tDuXQ/BckAqVh3NbcFyQKC7ZwhPwnJApaF1DKfCckBmJXluO8NyQCpgUyTFxHJAZIUvdVnFckB7RGYGRNJyQKTYEbNH03JAZi57tnjTckBS6850zdNyQJyUfgiP33JAzC+dP8/fckDV4481uOByQB2Ec/L74XJA0nf2GFDickDEj568j+JyQAG9XwnL8XJAlmhAfbXzckDqSsZrDPRyQJBta+2i9HJAXpdq58H/ckCBraaO9wBzQCgRL1QmAXNAEaU5NEsBc0A4GLfzjQFzQIaYemrPAnNA9P8pAvsDc0Ca8rq9JgVzQEId51gKEnNAUDiJ/LwSc0DjvWiR+BNzQN4AsFBLFHNAbF8rZXkfc0Dr0fILpCBzQC9oQ5o5IXNAGII/4GMhc0DiJBLgeyJzQCPzndHJInNA6IUUFRIjc0Csb0MczyRzQCqb885HMXNAEpNiTVgxc0AOHUoNITJzQCIoikkOM3NAQHvBgjg0c0CACcag40BzQNQA8NB3QXNA/UJrEyVCc0AosEdoekRzQGig7vdRUnNAGKeDyEFTc0CmPRxPpFNzQCBFIWOFVHNABrTc841gc0ABZrkoOWNzQCizSwzOY3NADGPjiVFyc0B8PfKluHRzQMrodmhNdXNAZAKpCnmAc0CiDO5lpIBzQAgS9KcMgXNAtjAhrMiBc0AI4vWiXoJzQNHFqDMPhHNA0l99IIeQc0DuduRmTZJzQOzGN5n3knNAm61zjc+Tc0AOEMqiY5RzQLl9ZPX3lHNAnUmCtbigc0C2Qofk4qBzQK45gWVNoXNAKOAbK3Shc0A0YLDh4KFzQFdZvCkOonNAZ79lt1qic0CBXna35qJzQAKCcUgFpXNA5Iby2tewc0CEkBEBNLFzQJ75gR5+sXNAAmmKhbazc0B7udzwDLRzQFD+Rqr4wHNAnLpbHNDCc0CKlHHWJsNzQKJYDDjX0XNASapadjTTc0DOElCy+NNzQM4Ei7Xh1HNA+AJqQKfgc0Dpu24KOeFzQAF4LFFj4XNA9xMz/czhc0D6uQUREfJzQKRmBdE39HNAlvnN+E0AdEDkF4Xd5AB0QPRyN+x4AXRACPrQ7KUBdEAbxipJiBF0QELFdKL1EXRAtwuGHE4TdEBYw6EeeBR0QPwb9dpKIHRAcRiaCI0gdEDsL1oPJSF0QIoQ8ly5IXRAWvzchlQwdEB9WYbU2jJ0QDctwL38UnRAnE+KIvZUdEBW8OQCi1V0QHb0uC+4YHRAOv3V2QdidEAwe0jLUWR0QKiDyu1fa3RALLJEPyNwdEDi4/FoQXF0QDQayoTNcXRAfqsuVjhzdEC0uuhoOHV0QIouemlsgHRADOkYIfiAdEC8OqGtToF0QPQVSyYWkHRAqnCXO22QdECsax8Qn6B0QDMJUKPPoHRA6nUJFzihdEA25xr8vaJ0QLLoIUbQonRAH0VWHhGjdED6qn+GY6V0QHqRQHwKsHRAHcZunmWydEA00ZXK/bJ0QDOvM2HkwHRAsACGnXnBdEASiKBf6cF0QGGzJcANwnRAtvsFZA7DdEBE5wPGHsN0QFqsszQlxHRA95pNB3rEdEBoNvRAucR0QEotiSP9znRAyWgb8TzTdECyUvYm4tN0QNIBVgzP1HRAkMxW0LnhdEAM4HPhTuV0QA4ywzc48nRATMOJD43zdECw6kZgePR0QLb5lA/OAHVAbF1LXGMBdUBNbTpWXQJ1QGBbBGc7EnVANBzsxyMUdUDguGF1fDJ1QMIkjATNNXVAJqPIIilDdUCXS9WZ4E91QAGIoSH8T3VA6kltM4FRdUB+Q8LKdlV1QNmviuQNYHVAEXp73ThhdUB5Kz4a82F1QEeaxsZ2cnVA3pFOA450dUC06bx2eYF1QAhIYzutgXVAnLn7g6aDdUA+uWSGm4R1QK5kntW/kXVABF/EFz6YdUBKZ7Dll511QPnT7vzbn3VAKt/cZJOgdUAZYZduuqF1QJbepFbwonVA0h3ij+eydUByyDNkArN1QGw5Qns1s3VAIQYhOnuzdUBM28efzcB1QEtvek/5wXVACYFZQM7TdUCxYt+wEOF1QC/DqmgI4nVAr7X74UgCdkCswTiC0AN2QFwVMAr/EnZAWpbq40wUdkACGjTODBZ2QLK2dE2JInZAOKF1v5kjdkByqsjwjyR2QDj+mNYfMXZAfJUExR1BdkDe9aOgD0J2QFZjac15RHZA8fLFt/xOdkCw1YfQylB2QKOdjesRUXZAlF2koIdUdkCqskGZzVR2QCu5IFZNYnZAxCmIYMxidkCWrZ2AUGN2QFCFEbHbZHZAC+yTjyZodkAwBlLRgW12QHRD37jGcnZA2jaEeM6AdkDtnqZwZoJ2QOZNHC2Tg3ZA0BuYEiGbdkAy0Y5Ex5t2QNLnGXslo3ZAxNcqvrewdkD3nI93w7J2QCtUVHgNtHZAhtuh1Xe0dkCpr+FpsLR2QH4RLp+/wHZADSPuFRnEdkBseePWzs52QIaZpBTz4XZAslFubZLzdkCGu0xCNAJ3QPSo6N4BEndAOptoBQYTd0C8qE2vahN3QERUWqAOIndA1ucMo3Mid0BstP4sDTV3QEITg1edQXdADhL4xIhCd0C0UrP0GkV3QASebDVLUXdASq+pApNRd0BC6O/xKlV3QAxH1jyPYXdA0J8OCKFhd0D+yp4vk2N3QPwPs8Y6ZXdAsZLzWSdvd0B21usIh3F3QJU8TRl5gndAcbyYf3yDd0AcepXUiZN3QNYN9gpOlHdAzUY0RpChd0DVpvK3mbR3QHqa2uzi0HdAlmOtMpPid0B8E0V9T/J3QFlRPcIfAnhAVUBjt2wieECoNmtfiiN4QJSv86qkJHhAkjE/s3oyeEDGb9eDC0J4QCPD9Yt6RXhAyP1x8cpReEBZhK1a91N4QFzyhryHVXhAcHtXU/pgeECvHOPotmF4QIkdGRn/YnhAfGgCn8JxeEAYcRZpUXR4QPLLiUFndHhARk+Gsot0eEA9aLspvHR4QOBbldnOdHhAtHChpP10eECd/XjAo4F4QIzfgaWZhHhAaLyWi8qEeEDBwBjQUI94QAZSCLGYkXhANgfcWKeUeEB/fE/Yt6R4QFo7RlLNwHhAC3plaAjFeEBESZoSuNR4QCgUrq834nhAQmc32wL0eECdhm1LjPV4QFqaZ2AUBHlAKVn7cZkFeUD+aW60FEJ5QIe0OBONQnlAI/YUcfpCeUCL965h4VB5QOyhFNEeUnlAWsJQbc1UeUBB3Y512mR5QAZB8J9Dc3lA1AxukvWBeUBesPn/v4N5QPJ5KMq/snlA4DDmM0LUeUCeom5DzdV5QFUN2dDA4nlAzNS/+lHkeUDQK4LjJOV5QKvLSogZ6HlAqZdXa93zeUDqSV1Y9gJ6QF18VPX4BXpAQpRLXTgjekD626ZFDDV6QLwcHYsaRXpASp453S9QekDqJKo6gVJ6QHZl3TUpVXpA2gFZWY9iekBtUfEjjnJ6QC4B21YKnXpAOFphpcmhekBS6t2aDLZ6QIoYfEoZxnpAJUsJS03RekDOLAit1NN6QJYW1PDh13pAby8PVjvdekAGpy1QZ+F6QLLctzY27npAiyThchfxekCTolUf2/N6QDAj1zQpDntAdUFjzUwVe0CUbHljWiV7QCaBNjogLXtA9MGClXsye0CUW0m5xDd7QGB2b+dbUntA7Le8iuyQe0Ao0jKeI5V7QOt32aGk0XtA4U2VhyXSe0AZ9fynOtJ7QIxJyG4303tAswi6LbDTe0Bek+0EQ+N7QDYR9XiW8XtAaJosa4z1e0CcbZkh2wF8QEZFzXCZBXxAJjkK8vIGfEDCXnxm0RF8QPw4SCDKIXxAHN2sdQIkfEBE26u3zEF8QI4YfKXcUXxA2ELwF0lcfEDovajcD2J8QIPd5i8ncXxAhIaFhb+yfEDWqKvZz8J8QLZRANtX4nxAmbM+lBXyfEB+/jTaVfJ8QDhmOtMi+XxARo3EDv8BfUCBzrqrSwJ9QASgA+5DEn1AqOFJLCgdfUCacMAMPCJ9QCX6vQaAIn1ARc2MKaAxfUDmtydiiDx9QHSKdgUsw31A5G7EC9bifUA5ENuSjvV9QDx7XpxaG35A8DiN3jgffkD6pMdyjVV+QLq7z3nJiH5AAoDnUF+MfkDCt9IgTsl+QKD8h8unzn5AMyFLsADUfkArwoHVHwB/QCXN2OwPIH9AdvSI1hEzf0DynhRMZzh/QHYMtgq4cX9A/nvJW7CBf0DJAkA3Y5F/QF5s8oPgkX9A+A2ZYJiTf0B6hF8iX6F/QA4b+41WsX9AgLVaqpXdf0BF+hTP1eJ/QK7cRIMu6H9AOGKssYXtf0Ax5ci71vJ/QAqVGlLgKYBAsPyQ4yUugEAqrYAN8DiAQJrMsnX+OIBA3ZSSZEE5gEBFgPCpojqAQHhWj98pPIBArnjidNc+gECouypn7UiAQMTAkefmUIBA4d6I5RRRgEC2OiQE61iAQDqSqIEOWYBAdfDWYUpagEBiFMfO2V6AQJ7Tmn7gYIBA2k9bvl9hgECAWqXSKW+AQFSYt1aFcYBAcu5/OR6PgEAta574bJGAQJLNtLEZlIBAeVvDuMWWgEDaP+GeH5eAQK6h2mJxmYBAIRjXMIapgECiLa1LFLWAQArRFMIYuYBAnqowrg+9gEAtvRzF/L+AQFeFy1IlwYBAEiW0TDTBgEDIikVgUsGAQN6wuSN4wYBA7qORaRDGgEBx/Q5lU8mAQGiz1AATyoBAAzeYOSzRgEDQtsmnTNGAQJSc2Mxh0YBAkjDHfUrZgEA4CNlxNtyAQEoltwxE4YBAFyKaX1PhgEBO7j3o9uiAQFpFEt1K74BAnDYSyDzzgEB4YEivP/+AQH5OUcZAB4FAvverGz0PgUC+GEKVNB+BQPzPVkE2J4FAj7AAztsugUC09qNEiDGBQAjuVYW8MYFAbwxBMjI0gUDiv2Wx0zSBQFSNQePiNoFAZoxKNIA3gUCNFIRIKTqBQOJH7XfmdoFAsrIhhJV5gUDvkfzNVY+BQBS2UDlWl4FAine5nEOcgUCAKT1Z756BQLa2Z8aboYFAYxSM4+ahgUDak0IKbqiBQPQW6jzuqYFAuq06UEqvgUCCfknTa7CBQANCl3190YFAhE5v9H7TgUBRx2riK9SBQNXPtacCCYJAqBzpWdgYgkAmjUOF1SCCQL8sEMvQKIJA2PJt188wgkA/Ryz6CYmCQGClWyBDiYJAkvtnNG2JgkD44bgWRJGCQP7TJt88mYJAlkn3HlaZgkBq035jD6GCQO8HClo8oYJA8LGyJA6pgkCZrQ32M6mCQFpO+2EGsYJANaFmFa75gkBEmT4zrAGDQNxSIJd5EYNAGBxbD3oZg0CSAkBRcyGDQO16559yKYNAS4oXZCgqg0BKNqqeaTGDQHRq+mOAMYNAxFt8Ymg5g0Arl1Sv44GDQJixzBJKg4NAzqkSyyrxg0BAC8vq/miEQDzOicr+cIRADO71rfh4hEDguH6T+YCEQEsmHXY5yoRAHhWS+kDShED8TDJOatmEQDzXpZxp4YRAztKI8GLphEB+ifJ8NfGEQHSHY6xi8YRAcmfAmzT5hEBwPDL5WvmEQEhffpYuAYVAsMbYjfsNhUDRlLmK/hGFQKKK5af/FYVAXHdjgaBhhUCErY/poGmFQCIcekSZcYVAdVOnZrRzhUDyarUQmnmFQBfBRFmRgYVAIAWGwiW5hkAz8a92JsGGQAQtiCaRKYdA4Kk3PJExh0C0slq5ijmHQMjVBlKKQYdAvBv+L4VJh0AkA12bx7GHQAzIo6zGuYdAQyuWmr/Bh0DfZFfCwMmHQAQ4Sq0b5odAmqAMnxnqh0AHJtdeHO6HQLSrslMc8odA + NrgMGZxjYkDiYBUjzERuQKPid1q/wnFA+TZ8X1czdkBxDmdlvjN2QPmUWLOvRH1AcWxDuRZFfUBk4CNf19qAQHx5mgMEK4JAqKMcBlAjhUB8qIgtsLOFQA== - + - +akLRX+bGUUM/nRE8ScORUALkkVLC5NEl5+aRM1AA0fT+jpE5nbLRPpvYESnpV9E2/PqRISy4URukzREhfOFRaA/D0XLtG5FYnf3RB22UUTgKYtEKFPWRHqbKEUkwfpEpb50RE6IvERfPAxFIrcmR2/RU0TxS8tEtQA3Ro7oskVuXpJELYnMRKwMDEU5IPxGUTjhRGTk5EQCaLhEPRmvRCn7kkVkdd5ENzn0RCoEZET601tEsS+fRAU5/0Q/LKJFIpOlRCORE0Yf9KREnIO3REMcZ0XCL+NEkPaWRJalC0XEl5NEto2dRPodxkSvHDpFlc0FR4Xtq0Q6byFFkfrIRL0smURC8YdEqvI2Rb98P0f9zdJEByyFREuWCkUVtYlGqLYURlnZaET1xF5E5J9jRAHnaUTaX2xEELDWRann0EW9VQtFTz6dRMrmWUQQ0a5ExKxYRayED0X6SRRFgsqARWD8q0b9ATxF5DX3RKI93kTBqK1F4NVpRKNtIEbWjIZErIRvRDqSp0TdOhJF/uGiRF1AZ0QZYH9G0CbHRFf4wkSWxodEI9RtRURcb0TY4rlEdSluRMXoeEQ68gdFTKq2RNILa0RIyqdEsv/JRKnaTERmoaVFynw8RU6Vm0QU9ehEDCHURSfDN0eqp3FEcaAcRZ+TrkSbr2tEpRsrRYB24EUt+8dFvEB6RIcaYUSGVepETk6rRGpskUQG9lxFP6bjRCknhUSCqtNEr49QRILGZURSfOtEaQoQRXGOj0QJt4hEfLWyRNKesUStYFlE9xx1RGrGKkXyqa5EcghIRJAjeUSYHtdEW6EbRQVNzEScDWhEN0XmRYUxlUS3MYFEtfwBRWDXmET24MxEM9IrRYXSkkSEFRRF7hlLRI8bu0T5pn9ENwSDRGWB7USC3N9EBMQHReMazkQmRNJE/wwRRhiiCkV38LZFQeQDRR191kRYUHNENDM7RowF3EU7WodE7ayfRIY5zkRoa+BE254wRbevQ0TLNIhEo4+6RGxbmERPCRVFobeCROlBjUQM+0tFOoV5RWhl0ERLroVEoVG0RHRSpETR87pEhL+kRGAP90VgPdJGDGTKRZhfXESdf0lF5k2jRNObiEQYSyVFNo9lRF3LVkZkK/tEvo67RoeGPUVdH8NEm+waRnrGVkV6pn1E7RheREWlgUTOSfxEI8Q1RWUfTUQL1pJEyvBvRDsN6EQlK6ZF3bp2RCpyZ0QdW9REDZfSRFiRTkUbsMpE7ewSRUiJDUVDFYJG6CNkRKo/i0T0GC5FrpLSRK4/8kevy81GNKthRH5zr0bsPpBFqlSWRncO4ES0iEVFfv61REnDL0UT0odEKCadRcdrhEQX3QFFSNDiRn9ZckVL1YlEdMFaRA7vikS2NoREDkddRESsjUSY+IZEsP8NRcZeqkS43nBEDNJuRIOeBEVVmTVGiLmPRcKujESwLSlF8I8PRap/gUWADXtExS2JRHGhjkWcpd9FR9BLSdokuUUW8UxFe8TDRMjcKEXFhlVIW3OsRNpK0US27KlELoS/Rn08w0S7CA1FzQB4RPI6aUUujl1E4eJtRb0110X2rstEAprlRPDOEUaQqL9EtIu8RJG2j0R2uXNE+Um+RRtaokTcQZxE8fV1RDLwVEQPHWpFNvD5RTZr6kR0bU1F1s7IRDilYUR+5Q9F1phBRHRKhERBwcxErECsREtB0EdS29BGxrK4RKmRXUYNDSdFnUL3RHGH20SXioBEzPpnRD2bqUWAbfpEUsWuRE6sUURieENFuKYNRVAqJ0WzBctE0HYKRVkpxUSSrrZEJYgyRq4oNUUygbJFC+2vReg2qETdwlZEDgNrRCY7IUUti/5EZp8nRcnOnUQ6unpGOMtbRJw4rUSIYp9FyHSbRmQsV0bNHa1FCieCRCluo0Vso3RELtPeRKTD1kX1GJJEt86cRCGRoESb8XdE29UaRVDBgETFRetHfSwZRer+80Ze199EqQKzRNodtUbPHDBF8g2TRf4Mz0S/R+BE9GyoRAwFTEQwoIlET+GKREPNF0VP/UVE2yKFRKdH9ES1vo9E5puFRFtnnkXG76lE7imTRIgZq0UwT3dEg0elRAyCgUT/cHtFCN/SRDuqRkaKhY1ES4SFRI7kY0UWkzRFkNRgRdsW7UYy6p1GKBvoRUZZgkUcxoRECKV2Res050Qi6AdFOuPXRIZrRETv1bpEdSNJRZeGw0QJ93hFlLOXRv+ChUQJ2r9FzUFNROv86UQVpKpEfHtWRBaRfETIt2REYjQ7RXQdqEUGknhFf4GFRN8vc0QCQmNEyz/pRCRNn0UPehFFUeeqRPcPZ0QiypBERH4ARdGcgkiEJstEJ8PbRaYR+EeVzFdFYsPYRMpIgUf2SIRFOvRNRnTiq0RbtKtFAC6bRDwkkES2js1EsOWORAz5JUbjzVVFSGrIRBJI+EUiX3NEOQJoRvYg8UVl1PFEea93RdJ9qkQLNoREwpPxRKmNs0SyIK5E17plRPkyukV/TptErVAERlrG/kUxaQtFYCtWRbJxIEV21aNEAI4mRZWelEQbROhEfcK/RCifEUXq63xEPg83RmsGikXIGElFB8WsRJE9cUShkw9I3YA/RHzbikeEYCRHlY07RVx/yEUADSlGLEsqRS7AgEU9zbVEK3T9RI+8UESh+gBILRd6R6QrFEfEsSpG2cO7RJhPKEWVu6REx8+DRI2lqUTE6HNE2mRlRGQaykVg+yBFlLUERbkxb0R+eyFGJs5qRWkbLUcD+pJG/zlBRqaDX0XtNqNFliP3RI95t0QPgYpEhPBqRZDiNEXWGZlEnYYOR5i8hkaY6yFGOljCRDLSekWFLrZEvyLiRJaDpUSwvDNGtuvpRalqmUUsh8BESkxaRP/kIUZ+ratFQgA5RQSxnESPuUFFfYqIROO0w0RWFVRE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - A497/Q3BckDHlVW8JMFyQE7KoppuwXJAhoy5+E7CckBEkVWwpsJyQHTYrk07w3JAts0my8TEckD5aMxaW8VyQIgBy6tD0nJAQh0Wp0jTckCQi0C6dtNyQG52i57O33JArO2mabjgckByYlNCTeFyQPOC/8hQ4nJAiP8PxpDickBiBsihPPFyQPbTep/K8XJA7ufFqrbzckAYYqu0pfRyQD/cpS/D/3JALkRPQvgAc0D6avmiJQFzQCKxRH5LAXNArPb3lY4Bc0C2isz50gJzQLQeM/z6A3NAdsxDBwsSc0Bpr5qWvBJzQGwuN5sGFHNA4AXNgE4Uc0DGYZG7ex9zQEbo3OKiIHNAAESchDkhc0C7BKJEZSFzQORkNMy/IXNAvIJT4noic0BIR3YiyyJzQGxtJUsQI3NAH7gJSjgkc0BWFjs1zyRzQIeHPwlHMXNAdgfNEwozc0BH10ehozNzQICwuBrWM3NA9rK78TY0c0Cq3UVs4kBzQPgbKyx5QXNAuMG9n3pEc0CcJLKNUFJzQAIe1n2kU3NAc84g7IdUc0BxFp4FjGBzQFLypi46Y3NApk/UfdBjc0BeBl0CVHJzQFiDynu3dHNAyt7nyEx1c0Dvs6o+eYBzQG4j3AAMgXNA4iYomliFc0DugQYlh5BzQPbAvmhNknNALwgPcvuSc0BkX3eWZJRzQKB2HKT3lHNAkNZtebigc0D/ZTazTaFzQOVjg4VaonNALLAMEeeic0BEfMlRBaVzQOsVTLHLsHNAjWx1GDexc0Dm0yu99LJzQPD9yGy3s3NA1ABchgy0c0Bad7uvorRzQMYFL3X3wHNALm5qpzzCc0D+MaSh0MJzQIogKRAnw3NAwLL+otbRc0ANbQ//MtNzQLbwCRb203NAmT2e1eLUc0DQNX5Ho+BzQC8+4o044XNAHqocdmThc0CknS1JEfJzQPtjKhM39HNASgnD+lAAdEBTvAN74wB0QOCCHQZ5AXRAKMGj16UBdED0VYqGCBF0QKIEy1aKEXRAyHxKdE4TdEC8YR1+4RN0QC5UVQJMIHRAijC2b7khdECGbjYBXTN0QLldlzVTQHRASAwnunpDdEC0Y3I2/lJ0QOxJdKL1VHRAHmeSKYxVdEBsd+kBuWB0QDCf23YJYnRAXN49DU9kdEAqpzxgX2t0QDiOTmgicHRAfHuqPkFxdEDUiakQOnN0QOGrRGyjdHRA5DGx9Dd1dEAroc2G+IB0QPZu6XdPgXRAFcBZFkqCdECC5cteFpB0QMyzAvhskHRAi5stE6KgdECYwvy60aB0QHjmkDY5oXRAGQR/Q7midECgUeGR0aJ0QK02LuYOo3RAfRQn3WajdEA4K97nYqV0QOyd+FkLsHRARoadqvuydECgksC44sB0QMxsJ714wXRAzuDgMO3BdEBSBgpiDsN0QOw04kAjxHRAxW9ql7nEdECWLEou/M50QJaYilrh03RAX9BrSs/UdEAvM46Bt+B0QMFatmoj4XRAbGTBVbnhdEAEzhwiUOV0QFcxcliv8nRA3vIRKI3zdEDWH2hs0AB1QDlLB7ZkAXVA+qeMRfkBdUD2uQaiXwJ1QCRHdf6YA3VAiJ0wozwSdUBEUduRJBR1QPjM14B8MnVAlkaTFM41dUC80M1+/k91QGxnV2aCUXVA9U5Y30xUdUB+FLNjd1V1QMqc8vQLYHVAmh9hoDdhdUBey5yid3J1QFYpUjmNdHVAcLbkonmBdUAMYcSvrYF1QCsSZH0MgnVAxs3u8aWDdUCcLcF3mYR1QHCjfzxyknVA/KVAPjqTdUB/+570PZh1QGqVp4aZnXVA7OKyQ9ufdUCCU+9hgKB1QDYqg963oXVAmzhSPe+idUBeVHK16LJ1QMRnZvh8s3VAGP4d3DXAdUCELFNsYsF1QKiOjqz5wXVAAwOK5szTdUAcGWpI5N91QKMBEMkP4XVAyvIf2gfidUBchapgZvN1QFQ2v29JAnZAxZBGpdADdkAYhNI3ARN2QLKwuIRMFHZAzk3GqAwWdkDY7OkYiiJ2QIT358+bI3ZAWxI5rJAkdkBqu8BlHzF2QAxRxrIpM3ZArKydmpYzdkACCzqDnjR2QPb22b4dQXZAzm2NWXpEdkBs5s2qyFB2QI9bCRsRUXZAHknZ04dUdkAg7AixzVR2QPJQ4zBPYnZA1qG9TcxidkDw9l0AUmN2QDRpXFvbZHZATo6INCZodkDvO2m9gG12QGi0PaTKcnZAkAC9gWeCdkDVtwVlkYN2QBAJqmcgm3ZAFtMSTbewdkAIQ9l5wrJ2QK5IeQoNtHZA3kY4LL/AdkBG/azzGcR2QKo28NnNznZAOVS+a/LhdkDHXH13kfN2QDXTZPAxAndAPZBMCwESd0AajedZAhN3QHJCxAMPIndAXJfuzLkkd0ClomH8pi13QEnFNQANNXdA1ClCp9BAd0AOUVHynEF3QIZs018bRXdAmOSDhEpRd0Aut9t6klF3QKwOcewnVXdABDxRf0dhd0DMMteXj2F3QBBW2NiSY3dAZcyzlTpld0DCAZb5mmt3QAzYEcYnb3dAnTazHYhxd0A2SaZPeoJ3QDpwh2d8g3dA47To9gaSd0A6CadZipN3QFZ+ITdMlHdAZqZhd7qid0Bs/fyYmbR3QCE4OOON1ndAd/P0Tuzgd0DN98ixUfJ3QGac5zZNFXhA3VUNem4ieEBUwBuUC0J4QNL3cp56RXhAIhE/F8tReEAjmGaoh1V4QPwMoPD4YHhAj3SpILdheECxRHI9uGJ4QP1CtDJcdHhAVPc2eot0eEAe8kN7r3R4QKwO6NfLdHhAuOcpb6OBeECamXeDmYR4QAytni9Sj3hAoC6iy5eReEBpF4nWp5R4QLgPt2S5pHhA3xutq8zAeEBcAIi09MF4QLTSNCIFxXhAhP9ohbbUeED2QiV9w+R4QNmWkGQC9HhAMsmQMIz1eECA7OOpEQR5QEY/mVaaBXlA5IuWjw0keUAty1NnFEJ5QPznTy6LQnlAcgEKLfhCeUCLRKYRIlJ5QOUvoCnMVHlANBO2W0BzeUDYeCGHwLJ5QHv6wVdD1HlA9HyKP8vVeUDqEK5xv+J5QBt1LvBO5HlAdDcmBhfoeUCsvmXPlfB5QA65QJQ3I3pA4yAwFgw1ekDmgGy1GkV6QHz/osIuUHpA0l1iK4FSekCdbDMzKFV6QAmOZfOPYnpAO/ux9zhlekB9QfcMjXJ6QKe6fGYNtnpAuquWCCzDekD8HtTWGsZ6QIAppiBCznpAIviuEtXTekCsVSoL4dd6QCeyPOJj4XpAwsMrTnjkekB0TkH6Ne56QDYLabUW8XpAyMqmw1vxekCmtk+U2/N6QOzFROEpDntAyL3T+UwVe0DZXJo3WiV7QAjHTCogLXtABggiC1Iwe0Au7M3BejJ7QFZOEIHEM3tAQMaCRV5Se0BCr/sDIpV7QD4Pyfs303tAYxlI0kTje0AcSuQ4/+N7QDwfyFuX8XtAg8059Yv1e0C3cJd0kwF8QGE8ECjbAXxAtExBB5kFfECC9lLG0BF8QMvRE3ipFXxAiH7YDbojfEAEAIzjAiR8QJm0b8gKLHxAjT4VQc1BfEBOGMj8DGJ8QGKGg5oqcXxA1bVBpr+yfEByIHqOzNV8QNZ6DZZX4nxAYsOMqxXyfEDC2I8lVvJ8QDDcIZt9/nxAgLcjBwMCfUD6j5B5SwJ9QDUcahgJEn1APtDv1UQSfUAEgqOXKh19QFIcLbI9In1AxBYM+4AifUA8sCVYoTF9QF93WcMqw31AIiAbbZD1fUDqulo7uvV9QHb3HVf2931APmatA4xVfkBbfFeCTcl+QAbYoZOozn5AcLb2lcrffkAAuiN31v9+QJjpUlweAH9AbH+ZzQwgf0A8XqtEETN/QKw5jU5rOH9AQYvb2rZxf0CD8hdYsYF/QI7rJjxjkX9AqP6luWChf0C4Bp4hVrF/QIQfypOV3X9ASNmqO9Xif0CPE7HvLuh/QE7QIwSJ7X9A1E1SreLyf0AIW15vLfh/QPxaWm2RDoBAVxcc/yUugECAGxF59jGAQJQQ9Q1KOYBA7rhEh285gEDPnEyLeDmAQK954r4sPIBA3AYJWvZIgECMstCd5lCAQHtSrb4UUYBAUL+XgOlYgEDsGMAnDlmAQEgBC+4nb4BA8pheIh6PgECOE5YWbZGAQGwDQpMalIBAjxoRnsaWgEAVHHk0h6mAQGQ2bM0UtYBAWlZheRi5gEB2NvloUsGAQOYg1OoQxoBA5iM+aVPJgECwNAYIE8qAQF6hYkEs0YBAQDxevkzRgEA4Z0CvYNGAQJ6GUxtK2YBAQV9hUTncgEBG6a5v5d6AQFHxeNlE4YBA+quXBJjhgEBY4Q4B9+iAQOxV9bRK74BALqfzyjzzgEAKMGD0P/+AQE0gwtVAB4FAPOVpRD0PgUCkElSCNB+BQGYZKRI1J4FAfyHn8+MtgUD3w3iM2y6BQJB57OmIMYFA6jsjb74xgUALuY8oMzSBQAiQ9+zTNIFAjJ27B+I2gUCInpyxgTeBQKB8cPqQQYFAnDiR5+d2gUBUPXV0lXmBQB3mU7hVj4FAMsq0r1aXgUBSLFh5Q5yBQF4Y4+bvnoFAf5wldp2hgUCC444j56GBQGA8AARFpIFA1B7ZH26ogUBkOrFCSq+BQChCDwYHsoFAt9T94n3RgUCSCOH9e9OBQGcVngECCYJAtPrmTtgYgkAgKqEV1yCCQEg7hBDQKIJAhTEYX6UwgkDKoelK0TCCQIdY/19DiYJAOgb4E0SRgkBcgu3gPJmCQKrp67NVmYJASBBi1g6hgkDDPWP1O6GCQA6jJBUOqYJAP7iu4TSpgkBfTpFeN7GCQLrycoKv+YJADvfZeHkRg0Bm4+0hehmDQEK1bqxKIYNA5m6+LnMhg0DEOJrdcSmDQPCZ0tBoMYNAbIQxQr1tg0DOSkKjQXWDQNbP6DLlgYNArhBS3UqDg0BSkDPBlfiDQM1R3cX/aIRAUBoExP9whECMIQ7q93iEQGJo//zLgIRA3FcyfTnKhED6OlIjQdKEQNhZWf1p2YRAnMSAfmrhhEDuWt61YumEQJmERGF86YRAWJbZbjbxhECt71+HYvGEQFp05841+YRAaMaOrFr5hEBetg1/+g2FQMs80YP/EYVAkf+uiKBhhUCktDnUoGmFQGQTCRiZcYVAwr9SxbRzhUAPjNaymHmFQE5DX8qQgYVAyPiUcSa5hkCGgvlukSmHQDSSe/iQMYdANBrfoIk5h0CpUshgXUGHQJqUYgmOQYdA+uD/Vsexh0AKG/hix7mHQKnzwOfAwYdAcK3kf7zJh0CsHZxbGOaHQIrOuqEe6odAjqEsyRruh0A= + NrgMGZxjYkB61vaTY2FrQI8BR/y9MnFAzMJH6YnBc0BSCOXPY2N5QJMd3CKi8nlAqFzp1PvTfUD3FBO3siGAQIG0GZBfEoJAIj+Vuf5ZgkDl4eOs6yqFQIRCZKNRcoZArA2KvFcziEA+lUSbyXKKQNUNEYxqa4tA - + - Z9+rROn9LUThSRdFDUtkRFZY/EREnK1FfdaMRDQGoUS1TvVGpJVnRGHjiEQj6cxE75/GRDxEl0S6HTlFWV3WRCZpSETBtUtFeqLmRN/CpESQetxEmC0MRcEGkkQC/o1EROWaRKoV20QsKx5HPJZtRJQqRUYXXIRFKPKvRLnAakSjyM5EUF/nRr8ru0Rp8kFEBOFURBXvgUQnonVEwFlaRFgcpEXsNRVFvsw/REcyZ0TlrlpEFN+BRM0OkkRHP5hFhwEQRuubl0Tc54hFOaacRLQnjETS+eZE/kdtRImimUQAXb9Epso4Ra9F8kavgcxE2LJRRKeBJEUwN0xHqTEPRX4sxEQ0M31Ghq0BRjt2XESoWMZFd9MCRgOSFEX/d2JEW9+IRHJkmkSlc1dFxdf/RJeBdUS5dJREaRZsRO9mekW14ZVG2Qv+RHZXD0V5jq9E/WiTRcUokUQwmgRGS96MRIKlTkTuAvFE8LKHRPjElUS9/YNGibYORVtSmESZ1HtEW2xLRSxlV0Rm55NEZmQERcP6WkTDcWlE2oV2RKNKqUTHHMREMNIFRcazkEXYl+5EeVe5RCyxzUT9jZ5FTdM4R1qpykTG31BEjt6mRABVLUWp7+NFKEGNRDmlxUWKlrtEzaQ1RPyuukSFT8RE8BvrRFuLSUVmfddErLZ4RFXUYkRQ/ltE2OBWRJiRtETHdw1FccuIRPxXfEQA1YVE/JLnRJWT5ERD/41ERyexRG8tR0QSk2JEKzQURXqNqUS54bZE6c3ERUamjkS8c75E2u9LRLAdwESUp1tEsXPNRL73IUV5vo1EQw4ZRdpmnES6A29EKLeMROIvrUSP1FdED9brRPZJDEU9TxpG0jT0RJldzUU3bUFELuPLRJMm70SYUFpENJY7RHu7TkbhKShFiUhbRE0ASERgWs1EYEF3RMwTnkSqB71Efb5ERK62lESKQ6hEJEWoRIcFkUQucX1EN2MgRbRuYETRsWxFdky4RCyamEQukY1Ep6WPRMtvXkTch+1EKRQQRlZ/ykbFLHNEvquARBx/w0SyMZFFpO1PRac4gESN9RVFovxiRB1KREbNsoFEU4WFRq4LNUWL2BFFeRgLRuauKEUvVpZE/SN9RN1GiEQU7khFXVpqRNwDy0QkcKFFhVqsRCDpTkQzjOtEBqagRPQEH0VUWNhEuK96Rqwdr0SShDFF2d6HRDd+UETh6+JHOJtsRIFzxEZcqspG6KiKRYBKk0ZKttxEXnt8RFxkBEX6eQRFAthIRIernUT/+V9FIMF1REaHwkSdeq9GBG2xRCww7kQFrsRE6FSSRAmFfES1X6hECdBtRPzswES8m45EfsJyRUNezkQ3w1tGZNCvRRCRNUWKCyBFt0RdRX00VUS73WNFeCU6ScCOh0USkxRFRQAlRTIUPEict3xEp6d9RPbXkkZvyF1EW0XWRE+4akS4n35EQd1YRUJinUQZPHxF+NbKRUiIoUTD6KVEGNSZRJMPzEXYRYJEkjiFRBwjZEQeT1NF7bWIRLOOVUWGuXNFJhKvREL6ZEUgxr1Eb023ROlRo0TEjFZE6beyR77HvkY8TzZFFlcsRljpH0U8SqxEW91RRLu+nETVxq1FG3+rRC7ArETYspBEgt1BRCe+Z0VrV/tEhmk7RPGUzETr6xdFWTTWRPbyrUTeot5ELH8hRugxLkXQBn5FxkBMRHiNSkXDAExE1zaARIAlF0Uda41GMInJRNZYxES7PYFFGCx7RnlLikQVpV9Gl3aCRY4JsUWQ0WxE3mlARJoFCkUFJ4xEoQHLRcSJn0SMBIlEmzGfRKIucUS2W81HWXvMRBiV0EaPIkVEyBAxRX8hrUapXGxEPBtVRdIgYEUWp7FEvzQdRQFqkkR8hXREPKq/RC/sNESvo3tEB5LVRCzvbkUnrQJFTiFzRFasRUQ2CrFFcxN0RBnU4UTx7itEx9F2RWFIhEQuHTlGjDtWRRkELUUZCkBFbYmWRuxnWEaH+IFF+k3mROFP1ESdJYtEEXQJRdu8P0RSYWNE5CSZRI+Li0T8OIFE/ImpRIAKT0Uc9T9GA9mKRIg1e0UIh5NEjOsWRc6BkUUrgzJFRC5YRMxv3EQYXLpFc1SxROrAcEjUJcRFbWLXRyucLEUZdMFEGVaBRwpjMEWJ9EpGzQ/IRAfy0kT1GZZFPwFvREqVfkRo06dEijehRIFHDUZMyyRF0L7HRAo1wkUxKZdEm+pxRBkORkbKgORF1vqrRK9jj0V4s0FE/P+ORC+pSkRToUFE4akQRfaIfURWapNFKXqvREsFCUZsWf5Fs10tRYWdQkUnCQdFRLgERY5Rn0Q9OWNESqjSRMj0mUQsXG5EhT4xRoTIZkUJQBFFQdZvRNm/kEReeNdH8B5WRx5t5UaFbgZFh2erRSOLEEagNtdEVIEnRULWYEQWQ4FEDCTaR4OxREezJ0VEoXX1RlUuB0Y6q/1E6SeHRP7Cu0QAIWJEgttXRBZNg0SXC7JF0or/RKystkTCgU5ERUYvRiIlTkWK1wxHRISFRj8IDUbToohEQIuWRdWcXUW5E51EaIGoREE9x0RBgKJE84v/RkTBY0bXVRNG0+ZlRCxoSEVw1VpEPC7YRPpmHkZnd8ZFXdo5RRQwhEQaoYVEMowDRgikh0UPAjFF04WDRGVS+UQ2T3xEz7hMRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - JAKCeQ3BckDK6f5YbsFyQJa6C2dPwnJA+BC/06XCckBoDkQ+O8NyQPzcA+SlxHJABOyltMTEckDYEborWcVyQEAt25BD0nJAgOvnZUfTckBqzThQd9NyQEzwcWPM03JA6NME52HUckAEjaQ30N9yQLhZ3/C34HJA/NwouU3hckC1o16gUOJyQN6vIkqO4nJAwhEwmybjckBrpiLQyvFyQKXrDyq083JAu7EmYg70ckAskWBkovRyQLY22+HB/3JAeINvkWQAc0A25sno+ABzQA2a+nskAXNA5NNePUwBc0DqffpwjQFzQB43PLc8AnNAgD3H2M8Cc0B8ie2Y+gNzQOTK47MjBXNARM94AwoSc0AUeoqVvBJzQK1a3xr4E3NA+MMxvQYUc0ASea9TTBRzQKSDdOl5H3NAvOlAEzggc0DMGfJMpCBzQFuNjFI5IXNAMcoQeGUhc0D48Z3yvCFzQJmMTrV7InNA7NsIyckic0Cq8jPlDyNzQFypN1k5JHNAl/pSJ88kc0BmrN+PSDFzQHoRnpVZMXNALbuVxA0zc0DyLjuyozNzQLqIAcA2NHNAeg1KnM00c0AaEGLuQUBzQGqvFKjjQHNAwMz1Q3hBc0DOO4sAJUJzQP8S5qPpQnNAHBIxUnpEc0CKles+D1JzQPieh15QUnNAJocLT0BTc0BTiaocpFNzQL50myKGVHNAMrWjCA9Vc0AkvZnPi2BzQF9Lf7gdYnNACLa48jljc0AkphitzmNzQJKmK3tScnNAOqgcaGdyc0DAg/4zu3JzQBM+9RC4dHNArs/IWUx1c0BhGq+ra3ZzQOhPfwB5gHNA1pHydqSAc0CVO4gCDYFzQOITzUbHgXNAcsiSqaaCc0CeM1tZh5BzQKAcFgnZkXNAVB4QHk2Sc0ABEy+a+ZJzQKYmzDHNk3NAbFpVoGKUc0C36TVf95RzQAor13e4oHNAEhBPn02hc0BQYW6A4qFzQPaL9uZaonNAOtlRpeaic0Bu7+NoBaVzQFjj0drFsHNAtcDCkdewc0D8AT9VNLFzQC0paLx9sXNAq0H1rzeyc0D6rq/A8rJzQH7Is7i2s3NAWB5bFA60c0BweVoKpLRzQATkFXD4wHNAfG5pHI/Bc0BGgsSUPMJzQNwpQcvPwnNAQqFS2f/Cc0AqEN3cJsNzQPjXld3X0XNAOqxNoLzSc0Am9MUQNNNzQC4PkNj203NAThq2YeLUc0CSHy8ppOBzQNTzdfc44XNAxpBKiXvic0CWBzz37eRzQN6c+OQp8nNA9moZWfvyc0DIlXsNN/RzQLbKfAyN9HNAeL0xpE8AdECMWq2+4wB0QCGI9Mp4AXRAfpwgBqcBdECJ1D75uAJ0QOjlga7kA3RAhKKbJggRdEBiAfYfixF0QCBhMh9sEnRAuH3XrkwTdEDJ3k344RN0QMLrlWq4IXRAssWGgLkkdECCS4wyVDB0QMTERFq5MnRADh42x9YydECKqUfy5jJ0QLh0ddJ5Q3RAEDnaJ6VEdEB4StUJjU90QKhyG6j9UnRASAD8XPdUdEDwRsTbi1V0QK1ufWC4YHRALHAvWQhidEC+OMp4TWR0QOi1ceBha3RAKGEMKyJwdEDWXMXsQHF0QLYGvDk6c3RAd17+t2ZzdEB09sazoXR0QFSGDSQ3dXRAbLSqPfmAdEC+nuaWEoF0QL0y65dOgXRAAiaeSUqCdEAcZORtR4N0QAhcvrUWkHRA9kOxlWyQdEBC748ZpKB0QADpVzXQoHRAHrOHWjmhdEBvpBehzKF0QMQEbS25onRADl258dCidEDmTbf4DqN0QNxwZ2AKsHRA63CoScSwdEDjbqgzub90QNP5laPiwHRAXmMeiHnBdEDlTtovEMN0QARc6I0lxHRAQepScHrEdEC7REOvuMR0QM5+LD6dyHRAFIm+Hv3OdEB6zjXT4dN0QCZvPanO1HRAVrqHNiPhdEC66FCft+F0QOBZTOdO5XRAFOTogrDydEBmrLwMjfN0QNLs8M+iAHVAJObFvM4AdUDYoQxlYwF1QP5CWPWQAXVA0tIlul0CdUAQWgTomAN1QGLNnRqZEHVA8lRR5TsSdUBgqSJvzhN1QKKdHjUjFHVAmJ5pX3wydUAxKQfFyzV1QIFlnbmzQXVA2HCQ8YJRdUAVpof5J1J1QFYZPqZLVHVAmHa6DHdVdUAG8akkDGB1QGQBy1E4YXVAzCWjnLlxdUAyOka1d3J1QMwWYI6NdHVAzpTlKeWAdUCi79ideYF1QP91lMmtgXVAZPRUNqaDdUCLjxMjm4R1QCiJrMY9mHVAALrTMJeddUCgCAPYuKF1QJ4Lar3vonVA7TFIHZSwdUAcZkZJ6LJ1QGn4a4p7s3VAeIQyBs/AdUC0wpYqZMF1QEFAwsX4wXVAkDrtX87TdUCXQOZK5t91QE0IoQ8I4nVAPOIf0kgCdkD8ch290AN2QOKX1DxNFHZACodNgwwWdkA0/RwCiCJ2QAjcb1qQJHZA+ArS1h8xdkA4XSIR40B2QJY1VdgeQXZArHR3BJ5BdkA5G5P6DEJ2QEonXvl5RHZAwWcuNftOdkCvXLhBylB2QB6CkCsSUXZAgoaEq81UdkAip3DcuGF2QM6YijXMYnZA0kRa3FFjdkAwiuET22R2QCZQWTwmaHZApWrVvn9tdkBEVNhiy3J2QNYD7pRngnZAmWuyo5KDdkD24ET4IZt2QJ7HL9Q3onZAZMixPyejdkB6Waw2t7B2QMKpH8nCsnZAfu05RGqzdkCHrJvqDLR2QBIQah6wtHZAZjtMHnjAdkC9fXX+v8B2QB56YUrPznZAEty957/QdkDSjtxc8+F2QOC/UAGR83ZANWR0UTMCd0Dzz1mrARJ3QPONey8DE3dAyhhgcg4id0CroBHocyJ3QBL1ro6lM3dANMM0Ow01d0BkTvn6VTh3QD4RW0GdQXdATxJrhq9Bd0BMdHI5G0V3QMix1Y1KUXdAHuQbqZJRd0BGMPsUClN3QKLikWspVXdAEni0L0phd0AahZYokGF3QLV7W8M3YndANicIhGVid0Am5xrFkmN3QI5HXTiaa3dAsDu9+ydvd0CVeNekknF3QCm5Iza0c3dA0DB0mSR/d0C2uss0TIF3QKh4Gsp4gndA/G+7nXyDd0AV6u0TCpJ3QF4AOCmJk3dAPvLa602Ud0CA7pInj6N3QBQBbo+ho3dAPJZyCbazd0AALBUim7R3QE8x8J/j0HdAw7k2cevgd0DoAMxo3OF3QPZZQY3s8HdAWfEHnU/yd0CcMZLv9wF4QKzkWRNOFXhAorPU0m4ieED/084xiSN4QG4lfYkNQnhAairJ7RFEeEAoi6guekV4QOTTzJvLUXhAv5hKevRTeEBCMyRsiFV4QOS4JSX6YHhAiSsL2LdheEA853NKC3R4QMb5lnwtdHhAjpodG0Z0eECljxE/XXR4QOi6eMuLdHhAIbvud7B0eEDUnIvsxnR4QHBjLoz+dHhAOiacKzqBeECAjVNIpYF4QBXJ7svPgXhA6lYB+5mEeEAikmhCU494QGCE+AyVkXhA0c0yUaiUeED69Pp4zcB4QIRf23UIxXhAFreBO7fUeECsCldnDOF4QMI1OTvG5HhA4RZQQwL0eED0MRV8jPV4QLqO5s8VBHlAPp2Z7ZsFeUB0SOe7CyR5QKp/ZgASLHlAyAUqjxRCeUADpBOkzFR5QD4zkEnaZHlAdAkoAUhzeUCKXSEb94F5QPxde8LAsnlAMAYrjMzCeUDFD8pRMdN5QJC8RgZD1HlAYsg2Ic3VeUDmh10PvuJ5QFgax1hP5HlAerNfJhjoeUBw1o/Q+gV6QI5ygpQMNXpAVcgDzxpFekBsJGwwL1B6QK1fZnSBUnpAhEDiDClVekBeS9lzj2J6QMZY1Z04bXpA3jAUL41yekDOegRroZR6QJRwMPoFnXpAmnMrsQy2ekA7swryLMN6QKz0PTQaxnpAoalUvEDOekAsJ0KW2NN6QOXbJkvg13pAakd1CDvdekDtPLWveeR6QEbWBh427npAnIYsHdnzekA1+9HQdgN7QNJSPA4rDntAQdmuQU0Ve0CtLfheWiV7QGTPnvQfLXtAEhI9GFMwe0CKv8H7ezJ7QOaCY/3tkHtAdpbvLCOVe0CWwKo3CsR7QPH6R4h4xntAyPTbHzjTe0CStl9dR+N7QFIKXPn+43tAygl/Z4z1e0CIQiOI2QF8QNKIRp/1AXxA6Rs/UJkFfECM9umhihF8QKGV2HHQEXxAoMFIvOEhfEAygrRwAyR8QC4I1LkJLHxA8Cv85sxBfEDuU5M62lF8QAxNTMYNYnxAyu3k+ilxfEBQRhM+vrJ8QHRAa4HH13xAX+pn+FfifECNmCQRF/J8QIJOF/JU8nxAyhbGSQACfUAxHl2SSwJ9QMA6ODFjDX1AxtuqywQSfUAWelOVRRJ9QLBvIwYpHX1AMGss0T8ifUBkieivhSJ9QEhg3J5rUX1AnNu7KmhjfUBsyUTNLMN9QH1kQ8w9031ArNIOpmngfUB1MnT71uJ9QDAh+LeO9X1A8HcnVDcffkCQbrtMjVV+QJp8V7BSYX5ASTkpBpuRfkClUUytqcR+QIqjYNBNyX5AZqhOkanOfkDUnwhE/9N+QNKO/e7K335A+ViAZYrvfkCKE3OU1u9+QIjZfawfAH9AJg7IQg0gf0CUQj55FTN/QKRR2a1pOH9ALtKgvbhxf0DGfunKtIF/QI5nWi+sg39AgSIjgmORf0BkuIMXqZF/QHOVsSzhkX9AQpB0+V+hf0CqUmvgV7F/QI85y7OV3X9Anbjne9Xif0Cshz5VLuh/QPxOMu9z7X9A0vP9aoztf0C0LTlH0vJ/QHiVZ0olLoBAxLA/WOcvgEAm8P1IKDKAQMhy5CtxOYBAcBSEvCs8gEBnS1WB2D6AQKxn+CXsP4BALlIZePZIgEAWZCdNvUyAQLBKD2HnUIBAoKSjUxRRgEBuw7XT6FiAQNz6FN4OWYBAyvHYm+RggEBBjtx3DGGAQBC58M2EYYBAhyGudilvgEAwUxI6HY+AQBBlpEBskYBAJCO3RhqUgEDnubfRypaAQFoltoJrmYBAQJaw5YapgECraZVitLKAQMRXBCkVtYBARrVAGRm5gEDOCeobD72AQF0wU779v4BA4IandlLBgECzD6REEMaAQGJP9uv/x4BAcdJRYlPJgEB+LVAHFMqAQBy1HAoD0IBAtu+pA0zRgEDO3vHMStmAQDXZj3aZ2YBAyp3yCjfcgEAskDxD5d6AQFpicPdD4YBAiEg4pPXogEDQUAgvS++AQDxEwBg+84BANC16mz//gECr9m9uPweBQDai+Hs8D4FAI/1YYjQfgUAgdLaTNCeBQEZdRMkxKoFA9McZbPAsgUDpsPB64y2BQPP6X0nbLoFARgm9RIgxgUBEruQOvjGBQHPDvxoRNIFAAtZHJzE0gUC5fFNS0jSBQB7LbPW5NoFAh43nod42gUCkfP60fzeBQFBes+7mXYFA6Cfh8eh2gUCkbHq+VY+BQLDyCp9Vl4FAvIy6Q0OcgUDApIOy8J6BQIX6z+mcoYFA20IRSuehgUAk+sCZbqiBQBrrUVFKr4FAeqPi9WuwgUBWyv9uS7eBQFJVcmRnuIFAc08jZX3RgUDh7EnFKdSBQC2qPWjV1oFAxBtJHoLZgUA2XUh1MuuBQDnNgPkECYJAps3ditgYgkBoDwWQ1iCCQKtJGh7SKIJAmp2gpnNGgkArF0M7Q4mCQLbHLItDkYJAKrWejDyZgkBeipPkDqGCQEza4l47oYJAqqtIWQ+pgkAUPtKeM6mCQP7/dJ0GsYJAPAhukjOxgkCf5jVOrvmCQFzDM3d5EYNAaJ5JlXkZg0BijR5SciGDQB6QQkiLIYNAQNSnVXIpg0DsOrBsaTGDQGtCkEhuOYNAbF8Ry7ptg0C+cItsvXGDQIj1FeRBdYNAVAsJHkV5g0DycBuU5IGDQDSwFDkq8YNAIaRoDf9ohEBSH9Rb/nCEQAYH5s34eIRAvtPMZfSAhEDQnUVQOcqEQOH1V7JA0oRAib+jMmrZhEB2/DrIaeGEQHpME39i6YRA3qNMDDXxhEBOIcOPYfGEQBorhlU1+YRA8EtoAlr5hECSxBtNLwGFQJ5vGlL7DYVA+Evhg6BhhUCGUrtmoGmFQPCPbgiZcYVAgGkvZ7ZzhUBAhRNXm3mFQBw5e8OUgYVAThRvySa5hkDSDxpvJMGGQLJz8dOQKYdAyawvCZIxh0BFHJI8izmHQI5R7qxdQYdAdRyo4YhBh0DYuNiUeEmHQNAkKFzHsYdAXCP2O8e5h0CgaPtOwMGHQHeCCSe9yYdAoKBwGADeh0C81ah3AeKHQPTR8REb5odAIKDciRvqh0BwXTpRHNaIQA== + eg5Y0/EhYkA2uAwZnGNiQAoahmk8YnBA0RY+T/xBc0Bgbopu1NJ0QLt61LmXI3tAWZ0vne3Se0Da1Dx02BGBQKEA44NE2oFABf++diRKg0D83T6lW+KGQGsIrDbG8oZA+jAKLPK6iEA= - + - nsMORYi8MkWnXnhEUwBTRW/e3UVUmYBEHtr9RFTO/0TgQflGyKaiRABP10TgfHtELj2NRF6ADkXWNQxFtu+ZRNVMi0X89/xEezOcROoUekXoBKxEvWO5RPYv+kQNKFtF1p2gRFZVhEUGMwFFPDOcRE+2AkWV1XJEZX6iRE2cIEfze4xEdWD5RLxwH0bLScdFlbK2RSm1vUTwORBF1m+NRFltCUVmsRdHlBYhRQw9dEQgyeVE85AIRdo+0EQEGMtE6mfORRjtNUUG0cRELIazRAxwrEQdCu1ExRSgRNN1kUSTuPhEvq6aRV3siUQ/f09EGpMsRiRck0QFEiBFosm2RKizpEVyeuhEJ81rRMmSskTsZpJE1YgLRW05pEQq97FEuttSRPGQs0SgI+dE63lNRQ1LX0SRdxNHDVAPRR/iUkVUu5RETM6IRCEkc0V89llEVlVVR0b2wkVpM9lEAHoJRUyej0YeHy1GU8zCRARx4UQ+viFGLglgRhpMHkXMEaNEvV+KRDdp0USJi6hEy2aIRF4Wn0R537JFPD5IRU3HeUQIlQBFUO67RBb9WkQwo4pFJiB7RK9Av0amNoBFsMvLRKfZGUX2mxJFffv/RQ85u0QUZB9GgGOjRD7YeETouppEJkPRRP/n+0R/ZKtEOjG7RPEE5kTjMpRGlaHhRKP2kkRU3YdEZ8OkROsruETEDWZE9JibRVbxi0SyyRxF8irbRHpvH0WxUcFEHg+ZRA3QvETLg7pEJE5jRBDBVERbVxlF33MIRR7hH0W/lLNFLFBcRTC3G0XqcR5FT7DRRbNaWkcEPVlF/V/MRLmey0QEOsFE+tg4RbgZf0SiBBBGeVPRRG2KXUQFi+FF/Nf0RCLLdkRi69FE9mqQRMU7hUR1tsVEK1OgRXpFBUVOcwNFvr16RHYif0RX9txENIv7RFDTA0WhTJdElNNZRFF8B0UyC4BEPcYjRXBHEUVEgAJFoPXnRP7oK0V99rNEUE0uRTq2AEYvvKpEI5SrRMXGLUVd5l5ESC7+RIIRqESVHo1E2/gjRQC8UkROrzpFVqfORDp+RkWRpphEuibIRLN7i0R3dq9Exi6+RMixf0Q5gjVFPgvGRMxhYUWBA09GdPRfROsHC0X3XsFFjEDoRCHCo0R9zkBGujNCRdbt/0SF8JpEacGpRJ2SdUX9eq5Eik4HRa+Qk0TsnAhFLpuyRJuAmkTLrU1FKb3HRYeEKUV+ThxF3BzZROWUgETMgQ9GtDffRmFrlkQnT7BF1Fl1RCgWu0TfPXVF9335RDCcjkQZfWdFA2xPRsuKgURna7BGg3ZbRVg8EUXAWjBGQL0qRVjlmkSDNcVERjStRPtyPUXkB3REDJPqRFMT/kTftBxFEZB9RKDmz0UXFaNErTafRFHu2URS/V9FnX/NRI13fkRHCadEwR/5ROB8rkaED8ZEU6qTRZa930Ra3rREEo0GSFQrcET5eARHf14WRrhTzkbyzMhF+NG3RrqRXUQEviJFQip+RP2GhkVkD69E7A2rRIeGj0XCUwtFkjSVRXGDV0Q+I2VENrSSRDrTYETB3wVF83XoRlyYy0SdVWRFWSLFRFoHZESfm05EQleCRGdpn0QZGJNEa+4PRRR6Z0TVhtpEcgbxRFPbgkSOFbFEfodLRRlr0US0IxZFIYabRBq1W0ahwtBFRu+QRI3GK0XDP1xFVz1wRSdxg0QF7cNEM2sjRdxoZEUWaF1JGkSWRWRvLUXRDKxEv/GGRKE4U0U15ZhE/+9kSI2es0T8ddVE6Xq2RkkNYEUSe4pEW/egRY8hoESFj9dEkW+ORVR7GEZmhM9EWCUDRdH2T0VnI9VEVlb3RdwS2EX+StlElAR/RL+TjURTDrlFZAaPRFZSdURidPpFeHUjRdcFRUXGizVFcky8RKnD6UQjIOVHQDQBR+T9o0Va3QNGZ/V2ReSQz0Qf1qhEpwHVRNTajUSs2pJEXR3KRQYJqkQsr/NEDXSRRD6wckQc+zBF512XRHz/l0R+MFBFXFfbRAT6u0S4kRtFPrFPRnb4i0XMIVtFD/GxRPM+CkWMIaBEB2eCRR5dWUQkLwJF2m6tRlI2M0X4dqtEOKisRmswiEat8WNFaeSPRfwPhkRZPI5FMzylRPhmukUgmVJFwlfYRT2SbEThUMdEAAUbRYXRMUU6835E8LHiR0u/FkXyu+tGpJw8RXKBp0Y1MZxEucrTRP+ekkU7bYBFrL+ZRFoIcUQ9CKlEE3PkRKtutkQgX6tEgXz2RGTH2URVZ8tE7L28RDHtGUWnl15EFLumRP8I1URrZXxFu9nDROlAaETTrJJEZfhrRLQaiURZjs9FPcisRKJNiERpPcZEa2qHRWpe6kSgNghFdc10RnBLhUTWPJNEo9+lRe+dGUWcGW5FHBysRvJmhUY1izZF8N8bRXBaDUUelBlFgN6fRBjBtUQepVBEuYMyRXfFoURsq5NEfyoJRcgHpkRbG0ZFtm6lRtd5uETiLgdGT2OJRODVp0SrA2FEL4HGROd+KUX4XYpFdhRJRdWisERvF4NEVQ0MRaYCnkQxT9ZF9BQmRQKXy0TFg51EX8R0SAM+qUWZc8NEanbXR6LxIEXgen1E8nFZR2XOXUYasahE3ye/RMkVEEU7JVJFrRb7RK+L50Spbd1Eb6geRgESIkVfYudEaMkBRq3e/EQiDXtEmlqoRHJgAEVn9j5GA6cyRnMY8URRfH5EUHRLRWPsBEUrj4dEzhztRDHHy0TiHm5EwWmfRI6MCUZpuAtFsm5MRiZJ/0XRgk9F6S+IRbc3L0VgNlpF3VOpRBQwjERu93ZEGJa1RYfcBkXuQJFEnPN9RCVAXkQHBZlE0EFpRov7d0Uj8HdF89OPRIgG/EdoQlpHD2wTR8hWyUWGHRVGbKm/RHQJZUWyu7JEGh2gRPEmxETxKNBHJBUzRyX9yEYr3FJFSGYDRrwcHEXgCVpE44IDReLHqUQnJbpEloeaRA72nERRydpEUFbfRSYVTkU4dBxFKHd9RJHZXkbl84FF8sInRzB4kkZ2fjZGne6WRf7+pUWE2vRE1YbMRKmEBUXvvuJEZr3fRvLFSUZXzg9GXVunRE8xU0WPo9BEnocDRWe8kUQHIkpGmZv8RTn+m0WRJq9Ew83SRAinYUSnvQ1GsnOPRTsQDUVkwbBErrdiRXAFAEXKjx5Fg6yqRFqUakQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - X3b/uQ3BckDki52ubsFyQIwd6iqnwnJAvQq3IeTCckAuKYZIO8NyQJS8jLFaxXJAIjllkkPSckAO7brtSNNyQF5mykB203JA/lIDtGHUckD0QuiKz99yQC5rNOO54HJAyd9RJlHickAKcIqsj+JyQIwxi3fK8XJARbIyaczyckCAf+fvEvNyQF7aES+283JAEMoMcA/0ckAmCHPWo/RyQJIsiW7B/3JAoqj+8GMAc0B8Q3ie+ABzQHEPlB8lAXNAyq070ksBc0D+5xFvjAFzQK/RFZrVAXNAFb/fns8Cc0DMzCvZ+gNzQJDxYW+PEnNAKx4RUL0Sc0C0O0mT+RNzQCAJm0JPFHNAEADPs3kfc0AUjO0SpSBzQBLy8Vc5IXNAoL3/amQhc0AS4r2beiJzQDjNMv7IInNA7rNO4hAjc0D+pY+SOiRzQOQ8AKPPJHNAawK2y0Yxc0ALbv33WDFzQJoPs8zWM3NADYjrGPczc0BcoTnPNjRzQAKqu+ndNHNAGi5paeRAc0BoTR+JeUFzQL7Ud5x6RHNAarkFIphRc0CkCxELEVJzQOD7PTVRUnNAikTjOENTc0CYdVd2pFNzQA+XERyGVHNAfflXkYtgc0DcUYe6OmNzQPL1KHFRcnNAU76N/mVyc0AMgwACu3JzQBInP7C4dHNA6IRML011c0C4p2tjb3ZzQDPEZzR5gHNASRBVKaSAc0B6HLhKDYFzQLHfCEfHgXNAVA38sF+Cc0CGm1izhpBzQBAhW9jTkXNAN1oJYE2Sc0AeJgFn+pJzQADnoqjOk3NAelT6e2KUc0BaJk8Q+JRzQEJuhRe5oHNAWrBFH06hc0B+xY3U4aFzQO9yTUxaonNAqmCEt+aic0Bi1uSZBKVzQET0Ot/IsHNApnKuU32xc0AAGYTB8bJzQFQwI9y2s3NAtJ23wA20c0BQdzf1+MBzQO6c3dyNwXNAt1W+6c/Cc0D6Fs43/sJzQFir0MImw3NAhEXYytfRc0AMJEeC3NJzQA6Va4wz03NAJnJTAPfTc0AxMfzs4tRzQFv0y7ej4HNAOKCQrTjhc0DqQ+06ZeFzQPcvXRTa4nNA6kIbYjDyc0CO7U/9/PJzQL3mj8449HNA4FZZVY30c0Dzh1Y+5AB0QLCQdPt4AXRAedlnzaYBdEDEecLDugJ0QJjWGH2JEXRAaOfPmE0TdEA0PCZh4hN0QLUedAJ4FHRAekSq4YwgdEAPNNR7uCF0QH6ijt5SMHRAeIpHFOcydEDOB6g7U0B0QGx++9N6Q3RAMCrRIfxSdED4GJfD91R0QG6ZFeyMVXRA7j7r2bhgdEBcZIdWCGJ0QB7NX90SZHRAql3DmVBkdEBItfNHYGt0QH6Q5X0icHRA9igTDGFwdECM+j9IQXF0QFruMJY4c3RAniKMWGVzdEAOU0Mio3R0QBA6qKI3dXRAwx0bcfmAdED7KOQnT4F0QL+9heO1gXRAiajJiPWKdECwPI0CF5B0QPhZx9ZpkHRAHMwEnaSgdECcnasb0KB0QKrG/zg4oXRAjDF+mLqidEBigHlH0aJ0QDGejhkQo3RAIZfujGajdEB6SEAkC7B0QPhZ/sjiwHRAoo0feXjBdECu1YyS6sF0QFy+cix5xHRA4vQlIrfEdEC6bEKB/s50QLlyX11C03RAhr2YX+LTdEBmZUa+eNR0QF8dttvM1HRAx2QLXbjgdECkOGaauOF0QEB8KlbA8HRAzaUGg6/ydEAKZRlPjfN0QIIcfsClAHVAUs55MtAAdUCNRDGLZQF1QH7fo/tcAnVAjnPe7JYQdUBpoDlNOxJ1QKZwckQkFHVAYj9VRcw1dUCcyQwiFVB1QJSwNKCBUXVAM5/WA05UdUDg9X6mdlV1QAgr6cU4YXVAmgi+lfhhdUDSl2QteHJ1QLAb7+KNdHVARnPyAXeBdUByGP29roF1QHsgkcqmg3VASGq1b5uEdUCko42HjZB1QMrMQO2+kXVAg2yMuzuTdUBDgJKsaJN1QMWNIYw9mHVAMsWZV5iddUB+hyV+laB1QIhi8L4koXVAJETv4LahdUDuVSggSaN1QLjcsS26pHVAsqJT8gmrdUA13Dm2lrB1QLCdsknosnVAaRzChgGzdUCT/90oxrR1QLAzzKnNwHVA1u0AMmPBdUC+63gO+MF1QPdjf85PwnVABn8xOMzTdUBOK5Uw4t91QKtaZH4N4XVAFpcCnwjidUASy6SMOeV1QFpt1TtJAnZAT/Oyl9ADdkDiCp9LTRR2QIT5BTQNFnZA6Guus6kidkC9BA4ZkSR2QCAgXLofMXZArpTkwZ40dkCag77JHUF2QDZ4DJN5RHZACBzkev1OdkAE+CZ1EFF2QADaagGJVHZAfATsrs1UdkDXPP30FGF2QCnMZKfMYnZAmDDx01BjdkDSSSUi22R2QLC2cMUlaHZA8wYWE4JtdkCQfXpy94F2QFPZEP2Qg3ZACGLVwLqRdkC6keDcuZN2QIC+lHchm3ZAnhOa9yWjdkAiO60gwrJ2QEBtMz0NtHZAqikbZnfAdkAek5xnwsB2QKChbScbxHZAmjtHjc/OdkCOAbWVk/N2QIZGo400AndA+Ci+3wESd0BkaC52BRN3QLZmCPwOIndATV5rHA01d0CsP7BknUF3QMM+TAwbRXdArCnnQUtRd0DIHXPJklF3QJRdgBTtUndAYO/UhypVd0AI/5q/SGF3QGxayoaOYXdA5g2w+5Jjd0BQOyNVKG93QGhT5+WFcXdAceExKih/d0AAbYOeTIF3QPIbKhl6gndAjrOIiHyDd0Bef67SCJJ3QBKGX8qJk3dAYKOHAkyUd0AWVre3m7R3QBr2Iasvw3dA2gMVsuLQd0BHrBBLjdZ3QGtEZxnt8HdAEXdgYFDyd0A+YhIybyJ4QKeJwheMI3hAUK4mrwxCeED7Dj6hekV4QNLVx7vKUXhAme5fmYdVeEDg6KQi+mB4QLAVTPK2YXhA5gz4lbhieEDu0uusKWN4QCPAVQ9FdHhAgSPCLl10eEAAtG20i3R4QIrpwKutdHhAZMUrRg51eEBMD0M+pYF4QLjmo7WZhHhAnOio9JaReECtBIMcqJR4QCDdpKO2pHhABZ1lAs3AeEDTnbxa9sF4QKoPABoGxXhAlH22dLjUeEB/OEsQFPN4QIq95WgB9HhA9p5nII31eEBPGUVYEwR5QD0YlYKaBXlAy2TRj7cieUBaa9luCyR5QGZlbfEUQnlALNMKg/tCeUAkjml0zFR5QGQg7EvoYHlARsggAttkeUBiPlr4RHN5QCghqZTAsnlAOHHyEULIeUB6WciTQtR5QIxevPzM1XlA3khcHr/ieUDwvLt+UOR5QKrQn5Yb6HlA5jkpEPsFekBBYG9YDDV6QIxMPqEaRXpAmu7MTi9QekCYpAm0glJ6QEZSx3soVXpAw3OuVI9iekCpUiImjHJ6QD3bgyyilHpAfRighw22ekB+cT4/LMN6QKiV2dgZxnpA4vpFHD/OekCgxRqModJ6QAKkYBvW03pA5w8/KOHXekDUTC4KO916QNbYjKFp4XpABDWXsXnkekAI1ww6Ne56QKJ8BqsX8XpALgkQZV/xekC2qOBO1vN6QN5caPoqDntAqvLf/kwVe0A13MU/WyV7QPBS9cAhLXtAPbMoWFIwe0A4GRJOezJ7QDgulh8ilXtALjvlAnjGe0B6iP3PN9N7QNgJQRit03tAr/wxEEbje0ACiwfQ/+N7QNyHzReM9XtAwTKJXpEBfECMbLdW2gF8QIKFQ1XzAXxANo7TWZoFfEAEseAC0RF8QPIAQHvLIXxAlMJiBwMkfEDurcwLCyx8QEqQkabMQXxADtIuodhRfED/1T92DWJ8QIl8IncEc3xA191aAsCyfEAUuGh3y9V8QFhtG9lX4nxAgOKLFRnyfEA69mvuVfJ8QCmVwv0AAn1AvGy6bksCfUBYtM9yAxJ9QI2nondEEn1ADle1dSkdfUDIK0YUPiJ9QGYdqZGDIn1AXECEz9EnfUCOFriToDF9QFVwr6VpY31ADKzqT2rgfUBkQh2vj/V9QEDQpH6GAn5AREr88zgffkD60Cl/Qj9+QOcPNg5OyX5ASzdQp6bOfkDM9UWnHwB/QKihB+IuEH9ABVpBqLhxf0DzueQcsoF/QDql24ylg39ApDx44mKRf0AG3fRLrZF/QNpkbPTfkX9ArD+KCJyTf0C7GgR+XqF/QPg5p0VVsX9AVhB2r5bdf0Cy5pX41OJ/QHtx+3Eu6H9A3Ey0cILtf0CgpLir0/J/QLjflB4q+H9A5gX29t4pgEAEHDBlJS6AQMKQOu/qN4BA7ICrinY5gEBjiSXLKzyAQH1mQz7ZPoBAFItun/BIgEBwpRW35lCAQE2n59ITUYBACrVnbedYgEBkNSgMDlmAQDg0+vLYXoBAVo/muihvgEDezAvpHY+AQB7LfLRskYBA2ykSChqUgEB/NX8TxZaAQGPB0XiHqYBAgF2PvxS1gEBokzcUF7mAQAEIs838v4BAxpP1alLBgEBw/sHoD8aAQGXXQ2YAyIBAfzt1clPJgED2Q1IlFMqAQNyLe8gs0YBAWFMlnEzRgEDw9nFlYdGAQAxVx2tL2YBAkqOeeJnZgEDC+UoEONyAQNRqA1jj3oBAB3YS0kThgEDBj3sw9uiAQAwMPx5F6YBAdr8HTUvvgEB4v/ItP/OAQHD4GLE//4BAs/Pndj4HgUBy7r41Pg+BQICHyJA0H4FAh1qhefErgUD4A+zt2y6BQP0O9diIMYFAohg2+bwxgUAKY3HvODSBQGRuLVDUNIFAtfG1JNs2gUDRLh3G5kGBQPafQZlpbYFAMrz91uZ2gUAQPXoLlXmBQPp/yLpVj4FADY/zH1eXgUBS++13Q5yBQOZvyKTwnoFA0SLc0pmhgUC021Xh5qGBQEJmByZCpIFADtI6726ogUA2vrPiSq+BQJpbO91psIFAnM+HQgeygUA8Q/vZfdGBQKh64Gx/04FAd/FpTCrUgUCgKYuFztaBQCzJD/t62YFA6WcqEgEJgkCMrgXj2BiCQPpbbkLXIIJAJ/Yh/tAogkArP3toozCCQIn2nEtDiYJA0kDu+UORgkDSNwaCPJmCQI6IbeFVmYJAHg0QjQ6hgkA+26GKO6GCQHysHbwNqYJA6AjZazWpgkAJcPlpB7GCQLNwpjGv+YJAEtgxgnkRg0DL6Ls7ehmDQPazCGtzIYNAOKU3r3Epg0BkkBHdajGDQNuBiadoOYNAKwobRbttg0Bn6nM4SIODQOA7lXiU+INAg0wQGgBphEB+VKwQ/nCEQLZBjzj4eIRAml3Zu8uAhEAozaS494CEQOrUHfQ5yoRA4Pjq20LShECd2YdaatmEQP4jKZZq4YRAgF2UbmLphEADQuYQfemEQAQ9g5818YRAbUgm02LxhEBkiVctNfmEQBa4iMNa+YRATrfRDSwBhUD3apqeoGGFQI4YBKqgaYVAblKgGZlxhUAPw8iAmnmFQEqN2UQnuYZAGFAmJZEph0BIwZa4kjGHQMABHsaKOYdAfT13c15Bh0BULhl0i0GHQJzhLXvHsYdA4sWvfMa5h0CjOzSGwcGHQLjVtpbAyYdArXEIoP7dh0BRXWZ2AeKHQK6dU5AD5odA + NrgMGZxjYkC0UdoP9eFsQHzKEHuiRG1A/DHvuH3hc0CZcdKIFPN0QB478ekAUnlAu3rUuZdjekDdg9bqGtR/QCJ+nLBXsYBAUm81kpkCg0AZXRzfjkmEQOGXk4fFyoRAGYwKCTvSh0D/6E9yHVuIQKqQi6F8iopAkO3QCl8Ti0AOvlW+CKONQL3zdbDAO45A6/T9ZrpVkEAnfHskAXqQQDR3PjPbsZFA2ZLgMkcGkkB9+X7/+w2TQCIVIf9nYpNAYQ9SBzKSlEBrl2HLiL6UQANxzlputpZADfndHsXilkAa9KAtn0qYQGoizhoB45hAZORyy8pOmkDqOcUvV6eaQHr5s8zwaptA/04GMX3Dm0D6EKvhRi+dQEk/2M6ox51AVzqb3YIvn0Bgwqqh2VufQPzNi5jfqaBAAZKT+grAoEAgD6z+71ehQPMcff4lgqFARFDMZAAGokAXXp1kNjCiQJ3b/msjzKJAO5+9ykbeokDBHB/SM3qjQC0qp85hoKNATF6IO0xEpECGtdnVhGakQHCfqKFc8qRAqvb5O5UUpUC3s1ecctalQGqCdUbA9qVA2z2vmX1IpkAoehUSztymQDTJ4aCgDqdAWAoCB7G8p0BNcv7g496nQHxLIm3BaqhAcbMeR/SMqEAHjYvW2TSpQJX0Pq0EO6lAK86rPOriqUBT7N54EiGqQA== - + - Z4EGRVvALUWpWxZFSTdmRELYxkUbhqtE264DR8NZd0TAD7hEf7CFREMqzkRAvcdEqjd7RY9MTEVWIJZFMm1uRERhUEQTXZxEqRlmRIHFlkShybZE4SKVRFdyeEVEjvlEa6XDRKTavESPkH1EQVSsRCqnE0eJLUpE2NNnRjHdgkXYc6xEagsERTMS8ES3O+BGBCfFRCVcqkTqLttEP5mYRCfkb0SuW5BFMhY+RQSGkURJq8NErqNgRD/9rURrDZBEphjcRDKyr0Us4BdGmTRURC48bURVEgNF/g3aRJGfpEVlkq5EBYLfROJ720SJ9QZFKPRlRMqfZEQxqcNEPUH6RJ+qjkRuagRHIBUVRSQ3DUUweqJExPpyRFgZE0XIvlZEU9NiRwV5skXGDapE1Eq+RK9ImEZ0nyxGte2wRPoCckTImPtF20Y7RlUkb0VwnZZEljlDRBqoeUQasIFFo99QRcvSCEXYwnJEFNPARcbjXUTk/adGeiZ2RcN5jESLTeNEkPIARdTln0War2dEeZYMRnvzZkRwFYpEsZt6RFnPgERx0A1FJrWBRDunrERitI1GgUcQRS/JVkTD3/FEY0QcRaOceETMhGBEtuR3RPrySkVhh8lEcv5eROGtlUTkcZ1EfS/eRK8P4USGMhVF9aq8Rea3IkUYv4BEGAcMRaGoQUXplNBFjTyiRPP2X0cgFfBEh1qJRGsYfkR7zLRE4EQORdIJCEZUp3ZE+DiDRFVtu0Vu2qhEgoKORKkK3UQXhaxEorbuRAD8QkWfogtFVl6VRPlzw0R49QVFn56URPUB/USHaaRERKe4RKHDvkSgXE9EANnuRFDwP0QBBQpFVeWJRAUFI0V0e3BEXCosRRbu6UVx/8NEITmhRK7d2kRQuFVE/KF2RL9n3ESeYd9EACAuRS3kd0QuK6JEQBeJRMx/FEVUDDZFqqxvRDFWKkWGPy9G50XdRCO7nkXKtc5EZZrQRHJ1ZETQ91REvdz8RAdlkkRf7QBGPWWLRQD8iUSAZmhEWz/sRESDVETx8KFEdhmjRBaGgkQcYiVFK9PGREtQiUQSJWREZqxIRAeArkTDQp9E77jXRNoprUT6iblEFWEORdUIpES06GdFEM3uRKrj10SS/aVEX42RRIvXAkZeLOVGKNSeRDmPxUXIu45FMkKXRLUKPUUkCpJExvwnRm/ia0SKU45G5TRDRZ+oEEXV0thF56aORCHnbUQxE5ZEc5ZqRIj/V0RCAidF5JJNRDauP0UqTKJF7wNgRIeLdET62cJEagBhRZNC/EQfKulE2yWmRkNqfEQwF1xFsXwASK3D90YY5tZG6yW+RVmTlkbVcXtEikIYRVjAr0Q2mQNFU/9vRZPMckUdeHZE+CxLRMCRVUREuf5EGsWcRnROxkQuhRFFPrDXREN1pkQ62m5EH1C+RJc9rERwtKREm57jRL1sbkXUi+FETjAORX6/UkYl26pFKwRJRYNsNkUJDipFeILaRAREqUQrQNhELN45RaNcUEkdu7RF/SFORDM5TEXxM1RIBjEZRbimrkbPko9EVgEDRUqSmURqLqFEkLkqRfk0pUT2UJtFPBq4Ras3n0T0hZNEwn+GRDThWkX3yGtFVKmpREQeYkVTmZZEb8i0RIqqmETg/IVFXMtxRAgxs0WUd+xE05V5RYOVuERaWSBFILaGRAVsvUeSIttGG/nJRX+XiEWvMH1FhSyVRMaDX0S/BX9Egf3ERUkoYURIZRBFuux+RKTxhUSyIbJEB45RRfn2AUWh5d9EQzxjRK8jB0U3FyFFRYTxRCDe1kQ4VWxE4is9Rg7ZDkXJayhF7+1mREAyt0QxWA9FgKGJRGAFlUaMKmJE124HRQIbjETp/JJGUb3BRM/NTUafFOVEY8awRWBtpkUy2Z1El0soRrwNL0UffM5FWsGqRMEs50R97ldEadHXRFQ0ckQmy+FHpmQnRVvl3katbRJF8I21RhQiiUQXg0ZFR9mARQ4IiUQnnSFFLTvqRDM/t0T4BL1EPH7URLEtIkUijoJEFhJqRCOqiERfcb5EGnvyRFu1qEUdIHVE5+SqRXtQbUTjrcpEhhBgRuU2lUR+TdxEhTtWRCfPnkVTuzNFQaWFRRYtlkYdOZdFUzlKRZksxESaoVBEyF1QRDEBCEW9MI1EEtikRESEvESz3udEEQ/7RMc8R0WOsFpGe9ufRKkrp0XQ1KFEX5znRFmSOEUBVCJFOEFuRVhH8ESv3fBEFCyyReh9xkRMaX5E3f18SNYjpUUG0IhEuR7tR32zjUQUjoFEzTKFR0ImM0Ue7FxGzkqDRE4HzESVIpZElAWkRfCniESxgHZE8XDgRPFCzkTN/AFG1H8aRTf26kTXs9BFwqSPRNE1I0YJ1t9FNo7dRN9E+ETkjadEJXnxRDpbRkSbOWhEcy0WRTuoDUX5VKRFtii3RGxiH0bXvwdGlh4YRf/IN0UfAItEPyc+RedmE0WFCopEITRnRJldpEWvDZZEpq5ARV+3Y0QH+aVEwRp0RLpEX0Zl11ZFStMiRXUPiER9lsxH2h1XRw4v40Ya2dJERb3ZRVHm3UWOgR5FDG8YRZCEhUSeBsVEcX7dR87MTUdhofJG4aEHRrATTEUwGntEBrvxRB9SrkSHardEyTLCRWN5GEVGhUNFkdKBRHZVhkTJR9NFn764RCVmGUf68HVGLqIjRrWS4URUfH1F5J6CRaVU2kTRbqlERBm6RJINB0d7LIBG6G0mRvKwckVFiBZFS6guRkXjvEVVvo9FgF2PRBbnm0S/6ypGjUafRYPlREW1jrdE0N4wRkgqxEVRUURF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - N26b+g3BckAgCJHlb8FyQLDB5/imwnJAqlhkuuPCckDe0MicOsNyQBFjOirHxHJAAzyl+1nFckCu6yW0Q9JyQMr+5N1h1HJAjETMpc/fckCanfhvueByQLn5nldQ4nJA4AwtNI/ickDAMjcHJeNyQLLRVPTI8XJAgjdGSrbzckBcZobOovRyQCM1FQDD/3JAeBjZpGMAc0Cay+qs+QBzQFLDKPEkAXNAgnAp6UoBc0DSNPsljAFzQLTDR6XQAnNA+DNQwfoDc0B7YoW8JgVzQGIjdwAJEnNA6a153bwSc0CiaXzwYBNzQHCz3eX4E3NABQImmwUUc0Au11m2TRRzQIiasth6H3NAHvc/v6Mgc0C2wPF1OSFzQLRHUgFkIXNAgHu5Zcoic0BID2qMDSNzQOifL008JHNAOqE2AM8kc0ADU+MySTFzQO4olvPOMnNA8i9BvA8zc0CXD8wM2TNzQA7sZ741NHNAQle+Vtk0c0CwMRaCtz9zQABYKGjiQHNAJDnA3HhBc0A8J3AX4EFzQDB6g7kkQnNATOzZiXpEc0A6nXspUVJzQOJbTiVEU3NAOyeoV6RTc0D4LpsQd1RzQGIDDhaJVHNAClviuIxgc0Dx0crDG2JzQFR/vZ45Y3NAzOxhRs9jc0DM3PtGSXFzQC1Wz3hQcnNAzn+p6GZyc0DBoZQ9uHRzQEgjiZFLdXNAPME4L3mAc0C8yQ3UpIBzQLPR4+ALgXNA3n6MFciBc0Bm1MHKXYJzQEnhzGangnNAohgVM4eQc0BSGgYH0pFzQJTvDkZNknNAzsn0CPqSc0DCnvzZzZNzQBf/eTlhlHNA62eQCPiUc0B2AXz4jJVzQAXlHj65oHNAlumkw+Wgc0CGM1HJTKFzQKDFdxtbonNA0CVzcuaic0DM84I1BaVzQP45sFx+sXNAr3MVdvWyc0AWg7+Bt7NzQKI/KQgOtHNAHKohBfjAc0BApTCW0MJzQBSkMgD7wnNAzliB7ybDc0DbL5SEwsNzQHDi32LY0XNADG3ZN7vSc0CGQPwPNdNzQCh+NnX203NAei0xYuPUc0B2ZgLiOOFzQHBsE6dh4XNAWP0+jefhc0C1eh1BL/JzQPxL1+258nNAfop9/Pnyc0AoVuLsNvRzQACvEuOL9HNAi6BZ/3gBdEBAQxfTpQF0QBeMzTflA3RAts7tngkRdEA6i+rWhxF0QBLxse5NE3RACcXgtk0gdECkUL3SuCF0QOSxSStUMHRABBz7oLsydECao4SXU0B0QLJUFQh4Q3RATEfd8PxSdECvGbeOY1R0QFx9yz74VHRAqrt4jo1VdEAPxveruGB0QPkr/PrkYHRAq0lRyAdidEBBicC+TWR0QEe4d3lfa3RA9SlrAyNwdED0zcoqQXF0QO4y5ZM6c3RAdCY0KGlzdEDSvsvtpHR0QIZHp1E3dXRA8GouTviAdEAWY71fToF0QNA4u1hKgnRA5FjBXPaKdEAPYW2kFpB0QG3okfVqkHRAm3maNVuRdECINjSyz6B0QNQXT8g4oXRAYCiPl7midED2ebE90aJ0QPDq20UPo3RAMikqcWajdEA5ARu0YaV0QEgimYgLsHRAqGlpuvuydECILHkB48B0QO+1drV5wXRAyjNmjunBdEAzulaQD8N0QCwtmVwjxHRAHlVEprjEdECusOkh/s50QN6YjhQ803RAFCz2NuHTdEB2uIrHzdR0QMocvzi34HRA+oExQSPhdECVxAf1ueF0QG3k7eBP5XRABDMcP8DwdEDepFy5rvJ0QBdr1SaN83RA24NKsXf0dEBqmx1ppQB1QOgGdn5jAXVA+dM94fcBdUAYkdHtXQJ1QAovdCSaA3VAgtr8mjwSdUCw8ZRGJBR1QBt3aArNNXVAcM5pPuBPdUDkONFZAFB1QN7ZUH1NVHVAgSDTZndVdUCrCk1XC2B1QOSAOQw4YXVA3lOhrXZydUBIocg3jXR1QCFqed93gXVAgWFoea6BdUA2qQOpDIJ1QIJ/81elg3VAOmkAE5uEdUBgBnb7vJF1QLyaZVo8k3VAWsUzaWmTdUDq9zTMPZh1QPg2xWqXnXVAllmvaJSgdUBG8xswuKF1QEvIRlfnsnVALOSFKjizdUBWQl7Ue7N1QHznIljFtHVA7ND6hc7AdUDQrXsmY8F1QI5eiPn3wXVAAluB+szTdUBgLHGn4991QPJkRIUO4XVAkK68pAjidUCkBFrbRwJ2QBiromHQA3ZA9k2/QU0UdkC+3gW7DBZ2QOdbu/+HInZAVWOY5asidkCiXNpfkCR2QFLxJ5QfMXZA+GVj9pYzdkD5jyoVnTR2QNywqKfjQHZA77Eyoh1BdkAq7UjvC0J2QKFQCYd6RHZAw7SXQM1QdkCMnaMaE1F2QETe2a3NVHZA3gn+eExidkCMfHtUzGJ2QIsEGVZRY3ZAAgGX9NpkdkAqCmG3JWh2QLAQ4WuBbXZAosUB6cpydkDs9EnJkYN2QMx5E5Ifm3ZAs3zll7awdkCoy1gwwrJ2QC4yc+YMtHZACPbfyMDAdkBStpWBz8J2QOVryU8dxHZAnRl4KM7OdkAeqOpBf9B2QKh0mlry4XZA3h3THpLzdkA3ZFZ/MwJ3QO8IsnMBEndALlKicgMTd0CTA3HHDiJ3QKwFoAANNXdAdQykW51Bd0ByM0deG0V3QFu7w+9KUXdAIHJwf5NRd0AWSEaeKVV3QEPutmxKYXdAC6FIro9hd0BTQQUok2N3QAqDe1Qnb3dAPHFpYT1xd0CEJfrkgnF3QB5Xoaknf3dAPZ6Sn3mCd0AMjS56fIN3QNqviBwIkndAnkZrGImTd0D9LffbTJR3QBmBuxC3ondAvLqJpZq0d0BO2FdsLsN3QNMlmj9Q8ndAYJGlHY8SeEBa+ypDbyJ4QIxGL6uKI3hANbgYWqYkeEBcuqJWfDJ4QFf+UGwMQnhAmLeobnpFeEDCCFjtylF4QCqJdG6IVXhAQH4YsvlgeEAAtrwZt2F4QM5tj5W5YnhA/3PaiYt0eEAJzTl7qnR4QBgbivbddHhAXvLtLaWBeEA4CND69IJ4QOZwSpaZhHhA1EWPRLWEeEDeeG9/nJF4QKhsbtSnlHhAQwa1YLakeEBCtfkbVbB4QIgQyKPMwHhAYHhDZ/TBeED8K+SIt9R4QGKOrF4X83hAKO9QyAP0eEAc1Lzii/V4QIJx+Pgc+3hAfE9cMxUEeUA6Q7k7mgV5QJo2q8oMJHlAEPn6YRMseUBx4SiMFEJ5QPzUqJeMQnlAVgjSgfhCeUCQ5AtRoEh5QAgC8L/LVHlAMl2ES9pkeUBaKlf3Q3N5QOjiXbL3pnlASFtJO8CyeUC20WsW0MJ5QFnnGE9C1HlA0O9QV8vVeUCY0HSOwOJ5QMxJyYBO5HlALIIGRRnoeUCMmMyk+wV6QOgA87ncJnpAYze6Uww1ekB1/s2lGkV6QKRg5jwvUHpA+E48cIFSekAeWQcDKFV6QDavFj+OcnpAs21HqQidekADV6/EDbZ6QCoyzTotw3pAtAmUbRzGekBNTiyyQ856QK4BlTSj0npADoSWQjvTekBM01/q2dN6QGvH/0Dh13pADgqtDzfuekDm25Hq2PN6QB7gjOh0A3tA1S8NzyoOe0C4nbffTBV7QDVkMZBaJXtARaRAZR8te0AtXd7zVjB7QECxpjx6MntAEAPwniR9e0Bw30hhJJV7QBzKkel6xntAKB+NjTfTe0C6UVC3K+N7QFJwffhF43tA4+Gfc/3je0Dk4R/3lvF7QCThaH6M9XtAARcCT5MBfEANNjXk2gF8QIYgWVL6AXxAuDA/S5kFfECLEHlsihF8QDaJibjREXxAjlwiiwIkfEBoJ2rhCSx8QDq49YvNQXxAhRZludpRfECn5DvGDmJ8QLyYEiorcXxAUXRH/wZzfEAGtTx0PXx8QN2bq6a/snxAUPx2CBG2fEAoIoWuztV8QF5bh+dX4nxA8ktF+xfyfEDOYLa/VvJ8QIa4MysEAn1ATuCnlUsCfUCH3ShWRRJ9QETxEnkpHX1Akoe69ToifUC2vYY7gyJ9QGaF3VSgMX1A4w+5QWhjfUC0L0joK8N9QI57nlZr4H1ALAj1QtnifUDgtQi1kPV9QF6p9WOFAn5AuQBvFkEvfkCqURF74JB+QCCPxs9OyX5A/m7EnAPUfkAsxoWPy99+QAoFnbfV735Ahc1YOx8Af0AJ+OzTDyB/QOSJ+r8PM39AugbT37Zxf0BixUivsYF/QK/2ANWgg39Aead36GKRf0AnHeAkYKF/QFbPz+BUsX9AenxkJk/Bf0C/YCM3ld1/QIIxBvPU4n9AYO4n5y7of0Dtq+9bdu1/QEaF1rIlLoBADIIMOOYvgEDqiiFwczmAQKTZ5L4qPIBAWlpWg9k+gEAq0coz9UiAQAesOxe9TIBAeJ1GjuZQgEBAxKHEE1GAQB5TuVbsWIBAtL3ECQ9ZgEANyeviKm+AQKW3pykej4BAS80HNG2RgEA4GcqFGZSAQDKFYHPJloBAQkuYdIapgEA7Ea4mFbWAQEiE7kQYuYBAgtVnUA69gECbEGGCGMGAQOm4X4NSwYBAgKDxuBDGgEByzL2XZciAQM53Q55TyYBAFj8mcRPKgEC7FjCULNGAQMbyJdtM0YBA4pTJhUvZgEC3mXsGmdmAQIB+2R833IBAgJZk1uXegEBS/7y/Q+GAQGMoyCBW4YBAXvsf+fbogEBiCMkQS++AQJZvCcc884BAPrFRpj//gEAag722PweBQEL8vKY9D4FAu1o8xzQfgUBe/698MieBQNM/P4TbLoFA+oShxYgxgUBaE20dvTGBQDQBKczyMYFA/Dj/qTY0gUDExYsm0zSBQOwYY1OuNYFAXnKDD9s2gUAaiLj3iDmBQLAb5FTmdoFA+uTO2JN5gUA1aMKyQXyBQJvEGcdVj4FAFswzvlWXgUBUMGlYQ5yBQKL9uUbvnoFAxD1uMJmhgUBim8/v5qGBQGxzJ1FGpIFAXhI8ifCmgUB0WmfJbKiBQDYWrJ5Kr4FADgtnO22wgUDLFOOcCbKBQCyhgNznx4FAna9qaX7RgUCKUfRKftOBQNaQuSwq1IFAyC0plNXWgUD05NW3AgmCQM45TJTYGIJAh1Ygz9cggkC3IjyK0SiCQK+0mKegMIJAMGGxXUOJgkCqLJvzQ5GCQIIw1788mYJAjGjAdlWZgkAH9GqYDqGCQIz37gw8oYJA4t4hYw6pgkBMtKyqNKmCQKDf4S8IsYJAnNW59q75gkChJES/eRGDQN71lUJ6GYNA3L3rEHMhg0AQIZ2ScSmDQI6xeGNrMYNAAPdj/rxtg0Am221+4oGDQExQqg1Kg4NATB96iijxg0A06YY5k/iDQB5rktf/aIRA1uT9sP5whED8cJdJ93iEQDd+cvzzgIRAcAyiYTrKhEDIY0FVQtKEQGLp93tq2YRAjDywyWrhhEBlYhYhY+mEQHJmv/018YRABqsaZmHxhEDErfIRM/mEQMk2r1ha+YRAlPt6lS8BhUCkVUqsoGGFQOzVHuCgaYVA4Rq+lplxhUB2MsK9tHOFQKiYmdiYeYVAVYEdZya5hkBK6YzxkSmHQLc96aWRMYdA65q8xYo5h0CeG+wuXkGHQOOiGCKKQYdAhM07tcexh0CV5o9zx7mHQKzS1H/AwYdAXagj3L7Jh0CigfoI/92HQDpwtYsB4odAUJqUDv7lh0CJrn2t/emHQA== + krjVFDGDWkCEfuNfSGJkQPWEc5TIImlAyJDnwU5Db0DQFj5P/AFxQPMfQIB/snVAl3HSiBQzd0DtxdaNrKN7QGfFAHBvs31AJGmQ7Df6gEBEZ4FQ+ZGBQLVtEYV5soNA/rlhSHGShUAZm9uhBcuGQI++4uCySohAGcrJy7FTikAgw2N59AKLQEbQbnETfI1A5+4JiWALjkCJDMZF1iGQQICRp7RFvpBAOo6tuv8tkkAxE48pb8qSQOykEslFupNARijQKpXmk0BsvAnem36VQMIXEMKwspVAyeX52dd+l0AfQQC+7LKXQBJoOqb42phAaMNAig0PmUCSfzG7Tp+aQH9GE10+o5pAp5RyvHS7m0DJNuX6aaecQIuqRcSqP51ArUy4AqArnkDVmhdi1kOfQMJh+QPGR59A9g51mgNsoEChPHgMDoagQBpQlQAUGqFAxX2Ych40oUDJZI3+MRqiQHSSkHA8NKJAh1wtyj8Ao0A0Hgx7ZxajQBLnzcpSjqNAjak+gorco0Dqp0GFZ5SkQGVqsjyf4qRA8PRSPbJwpUCZvDmDhZSlQOJ/PEHNMqZAJP6i7J1epkAGwVyn3eCmQOSJHvfIQKdAKgJ9De6Op0A9FVH+6waoQNgWdQsMj6hAYVZxZPy0qED8V5VxHD2pQOyX2s0Uf6lAdyJ7zicNqkCqbI1vOj2qQNCtrdVK06pAnPd2c1X/qkBbOE7WXWGrQMA4l9llratA5MLu1nAfrECAMDelc2OsQA== - + - BvvlRJchA0VatgRFvxaTRB9zqEXHXshEXUjCRG2JAUfEq2BEGGbBRL2U9ES1+5hFTvAGRcntZkSP4U1FLhVkRPqeuUQlWXNEGOZGRJdGCUXoosNEg96FRLTtYkTWJJREqj0iR304YETULZhEEIZ0Rki/MUSjFotF8juERSn2kkRa6rVEP6ruRF9oxkaxUJtE62rOREgIXkQEkUZEFGijRfP7C0Vt5JVE1sOARFrzcEQxBs9EKukvRPjaW0TxnNFEPeGmRZ4hPUTlIU1Es0ApRihQekRz2MJEalY9RWorVUSN8WNEbsqXRGlZh0SX9w9FGgFiRIb6b0RikpJEdf/dRGpEuUQGPzlFFM7sRihNukTcKtxEFHW2RHX9jkQibFtEiBYARfpZqkScekZH4MuYRYPehkQKzodESRl3Rmhae0QsQA9Gw4RpRCN9WkT0RPNF7uIRRq9QFUXdHnhE5WN4RICykUXsFuJEuzDQRDULm0XZuF9E56+URq4ITURbWYRFZ0NARL3TLkX0MnBEKv6IRW/H90XWe0dEML06RHAGRUSFYIBENjpMRBj98ETYxFREP/SSRv9wnUT5RGBE2X5XRHbS5URMVllF+RhkRBKa5UTNfJdEl0V9RIM/k0R3Z4NEBJ12RBqLRkStrYZEbmEdRUhFf0UXuGREnKs9RaIXl0R6yOVEbPbRRW3MTkeg+69EQ7wyRE3gL0QpP9NEBzMHRSEQ0UV/SF9EgUdsRDcnpUX+mJZENXBbRD7iuUT5q25E4SreRDFtN0VQ0/9ERVLARKcNhETAkYlETM5HRKDhpETW6bdEMviDRJALd0TbG4ZE/z3VRLdrtER8SIhEvYNGRIEK7kRIY29Eg+x3RI7NDEUfnWlEDOhJRAmD20Rlm7RFatSNRBnFs0QK3q5E9Z9KRAcGjkSwi8JEf1PnRDYsCkXJBjNFcY93RBZGeETU1HRE6zUHRT4KlkQTCB1FAkPeRDdRD0Y6WclEbw7ERfHkUEQyfQJFvaxrRPckk0SibYVEIvBgRFfz7UU6U1pF5nNqRIxpu0TJNgZFrFN1RBQHv0QPb0VE6kOJRDgtjkT0+uhEb5XWRMKdnkRg9c9EEy8RRcMYa0V2TohEddNmRFZZk0REGNdEca5NROZJ70W+0r9GWKRbRDupvkRlhHhERkB7RQhyaETOuVNF7zyARCmXQEWsVBpGv3eIRJDjZUbo1c5Et3PNRNE/nkXLoZhEwJdsROilxkQ+uSNFjWZIRFS3xURpYJVFHMiURCQHcURwV4NE+agURa+UZ0TAeqJENJ4IRbnE+0QU3pBGO+KFRGE9UkWAlPBHkh27Rn6PykYgrJ9F/SOVRvK6z0S9w2tENUstRQehLUUlBWxFADNHRA4mf0TQKmdEHfX6RLn2gkYstopEO7cnRYHjsUTE+1NEEsiwRKMAW0TTF+RE3aJFRDECgEW6FMlEopVmROBqQEQOpdlEhx9WRqdxokW7/iZFd7ohRSQ0KEU6T6lEUu0/SYkA+kXg+UtEhH4vRb2xb0QZOFBIKYXiRBQceUQOoZpGNS6eRA2SX0R0uhZFxPtSRL7gOEX8iCZFsBxQRac/x0XHAsdE9FKyRJTS3ET/4YlF47JlRLvBPkVd44hE0CKeRJ6OgES3gW1F0tdmRD3fxkRbbG5ExgBaRWlJukQrldJFfC22REPU5ETXXtNEuO2+RP+Sb0Sk4ZhEOZu4RxivzUbC4MVFlJltReEyE0URXpVEYXN4RNk/rUX/jrBEBX2ZRH6qr0R+q9tEcXg4RNWfY0RPpTNFIj7bRHsxhkQlfG1EowaXRAGJREZhGzxF6+sOReUgYESf9ZZEaKBKRP6sB0X9cI9EtW2GRoq4i0QSwMxEFC2iRIdDsUU+kYZGfnyDRNuSWUaREeZE/yiaRai0g0RdVYBF9QhvRmOctkUc78hFsgmQRIw8oUQZRqpEWYOvRPethkRAOqlEOmBNRJJ9kESxet9HBPnLRI5s4EaVvSxFplS8RoI6UkXYUENFxzHLRDK2r0TTwpJEQM3KRFhLsUTl3k1FQgaWRJ7n/ET9CWBENVuwRC1VgERnCUtFJ7RORNNaoESouJJEmBypRQtw+UT5+sVEFPqFRbEIzES8kXNESlA9RjKWMUXHYzNFYC08RLpkn0UtiGhGWx8FRldp9US+xBxFPs6dRExyOkXiXjNFG0ioRHCn5EQ1cYFEFJMDRYGwWEb10D9ETlSURdsn8kQQliBFxDg9Rbo0PUX5dXJE/gW4RMUEn0XX/fFEpdyHRPnBikSnzm5I1wtnRT67gkRJ9ONHjwfMRDv0kETLpYJH02V1RlhnnURVpIFEtJCRRIl7VkU0KANFPxx+RH4hrkQ8IKREepP7RSNGBEVfmOFEN3rwRY5pdEQ/vwJGiQfpRRT+60SZmYtETYEYRTlKfkR/ejdFYNPiRGmMmUTSq19Fh8ESRWW2uUQpe7pFuSStRPewIkaFyQhGOOpSRU7tD0VW2g5FDs2GRFLDDUVDFA5Fdk1URMyFbUSDiVNEWapJRdVzz0SdOylFdJabREhsTUSoEEdGC0tmRUbvIUXmeUtEcGzHRyWBLkdDo9FGjKsFRfOCvkXVCPFFtpoVRU/xOkVTAKVEeJTARGxOykeafERHkizyRrG26UUwZipF63ufRIKedUTqNpRElS2tREJuaERwXdtFqmYcRaQuvUR0ozFEf3piRXBtYUQSCQdHTU+GRhM0LkaoBI9FAApsRV4TrUTt0oFE/8iORB52AkdurWdGDwQfRmxrokQGnFlFsAHORDg7GEb/k4xFwVkhRYdLjkQpushEVwj4RZwpiEWB4mBFnl/CRDobiEa0uDpGBGyjRYagA0U= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Go2/MA7BckCQwwDgbsFyQMrAC5RQwnJA4VENgqbCckBliqcD4sJyQKDkHpo7w3JASqPxl6LEckBVoP62xMRyQNEVz5tZxXJAAZzmv0PSckDs1/iqdtNyQHSOeUHN03JA7N6U5WHUckAcXsT9zt9yQHD4kOu34HJAkBKbWkzhckCyo7BCUeJyQEw3CFGR4nJAiUAvaiXjckDk4QC7PPFyQN8ktMHJ8XJATrw7/7bzckC7//btofRyQFB9YiDB/3JASpma92IAc0BRfTY/+QBzQDaZREUlAXNAwKSAyE0Bc0AQuTJWjAFzQAZ49pjQAnNAZujuJ/sDc0CYWQKfCRJzQNCfCIkoEnNA1w0luHgSc0AWdLHrvBJzQHKbJBf5E3NAis8pH08Uc0A0oGlleh9zQNAy6kS2H3NA6nsDhA4gc0D/UHcopCBzQNtsf3Q5IXNA13eWiGQhc0D5dBwJeyJzQCKTQhDLInNAbDFPChAjc0Cf0qzaAyRzQKKZgIXPJHNAoDBHzUcxc0BPLiWvIjJzQE4vxu7OMnNAs3UtVA0zc0CYmndcoTNzQDZAWdHWM3NAkjimOvszc0Cg5JViNzRzQJSYbmXjQHNA6tWnqHhBc0AAsWhoJUJzQIPjXmK6QnNADiIXHHpEc0BdCFf0m1FzQPOnOoFSUnNAYrVB1qNTc0CmYwpKeFRzQOoK8XWHVHNACDpNlYxgc0CEH36ZOGNzQNrsfqHNY3NAtJGr10pxc0CYk3sQuHRzQEKSUK5MdXNADGYeJ3mAc0ByaxyWpIBzQCH4LkMOgXNASGpqhsmBc0CigOFWX4JzQADlLFcQhHNA/fa2qluFc0BJniVPh5BzQGIJ8XVNknNA9VcAFvqSc0BWnWuSYpRzQI8oo733lHNASIb7EYyVc0AGesvIuKBzQAxNX2fioXNArthyelqic0CQ5+Bc5qJzQHBm5r4EpXNALDub4Miwc0Bsw67bNbFzQP8zfS5+sXNAOOY1d7ezc0B7A7YsDrRzQPE3+NX3wHNAJT90FSXBc0CEJBOB0MJzQNwif7IAw3NAG2nJIyfDc0APYa2A19FzQDC9SvW+0nNAbogczDTTc0Cy2VTN99NzQNduCZNN1HNAkoTTo+LUc0AInvFOD+BzQPyTxvmk4HNAuoEpFDnhc0AoKACFZeFzQIDaYfTm4XNADsqWmUnxc0CPnqNxL/JzQOKlFSD88nNA4Mvpkjf0c0DtVfCyTgB0QCCO7bl4AXRAROnJS0UEdEBhreyEoRB0QNvb/rEJEXRA6ME0vIoRdECDbelrbxJ0QFz65ZxME3RA5V+to+ITdEAOn7w1ehR0QBRdGb1LIHRAuFVozJEgdEDiBz1cuiF0QBE6/zNTMHRAIIi1J70ydECu8oRq1zJ0QJy8ACfKQXRATJcGq/5SdEBitEM4+VR0QPrcZgiMVXRAKMS7ZrhgdEDFNntvTWF0QPiOTAwIYnRAFIZ/zE5kdEDGhOyDYmt0QJ9dRN4icHRAYl8H9cdwdEBFLUJKQXF0QLqLTeU5c3RADnKFbDd1dEBaXsn5+IB0QOWdE6YLgXRAJXdmlE6BdEAMv0jm9Yp0QLMxrawWkHRAkunAV6OgdEBEWd870aB0QEUXPek2oXRAKjfParmidECjuJ9a0aJ0QJy3qwQQo3RAyv6mr2ejdEC79SIQCrB0QFojBvDiwHRAo/lLS3jBdEBg6Btj7MF0QIBjuMoNwnRAvIFFjSPEdEDQGyBTucR0QLN7D9z+znRAakJAYuLTdEBHwohMdtR0QDDNVZXO1HRASufUFbjgdEDrY5GYueF0QMvEtRhQ5XRA4n5UIMDwdED+QpUhsPJ0QDO1EoGN83RAeLMkxaQAdUCqoP1MzgB1QCZ5u0FkAXVA+M49WV0CdUAY+/LSmgN1QPxcVGI8EnVAdMaXxiMUdUCon4YD5jF1QByWs+02NXVAtwxa58s1dUBKXW+hBlB1QLAwwVyBUXVAvgENGE1UdUDSqMondlV1QDb9KnI4YXVA+ts0tPZhdUBq/LLluHF1QHCXGMZ3cnVA8gdgxY10dUArQLN75IB1QLRs74d4gXVA2P10n62BdUA23R6xpoN1QGAUDeeahHVAc7K5t4yQdUAaCv/Ub5J1QG5zxBA7k3VAtIFohmuTdUA6A0UnPZh1QKy4e4CWnXVABX0uZbihdUD69h/xSKN1QAKlDF/psnVAHuOajwKzdUCCqWqCOrN1QDSa2ObNwHVAsrrHw/nBdUCA3t45y9N1QLh5eJXk33VAioZ/hHjgdUAsg1reB+J1QNjtDYWC83VAdfyxOkgCdkCyuU980QN2QHswy/ZUEnZACYlPcEwUdkDpJMDqCxZ2QAdmYEerInZAkAAWipAkdkD/g/O1HzF2QEegB7MdQXZALhlcbQ1CdkB9kD3/ekR2QLqu1MX9TnZAhlJrWs1QdkBqGG9AElF2QDJ9xIHNVHZAdGlnU01idkAyLGybzGJ2QN2K5sxRY3ZAokx7I9pkdkDOri60Jmh2QOBHo+Z9bXZADHNtv2OBdkCakzxLZoJ2QOZzJlxOg3ZAQPXWE5GDdkByXYKvIJt2QM2U8Tk6onZACi2UaLiwdkCoP8o5wbJ2QIUqlfcMtHZAeFevPa+0dkBHvQa/wMB2QMzUhYtOwXZAHc1Kd4zBdkBICLKmHcR2QDfskuLOznZAYk6Jq37QdkCBvFsVgeB2QJC9KJuQ83ZAOCzVaE30dkDwwqThS/Z2QFKjLFU0AndADYfjDwISd0CCeWakBBN3QFL2sm0PIndAGoDPoHUid0DwAdTNuiR3QAo6zDoNNXdAB5HRoFY4d0Cw8ogHnUF3QBDknigbRXdAnJsj2UpRd0AMMEbSklF3QEjxjI4qVXdAPYxjPo5hd0Asw7fIoWF3QMPKWlaTY3dA9BBe/idvd0BZc5USO3F3QGKveSGFcXdAc89awHiCd0ARpFTWfIN3QPg66mgJkndA6ANlOoqTd0DoIgobTpR3QFwKBRri0HdA1IZR7VDyd0A4Cmqj+AF4QAADzCxuInhA0JLQq4sjeEDYYLzwDEJ4QP18ZlR6QnhA9kWDenpFeEB6FAyjy1F4QLxuPRSKVXhAyUjcMPlgeECUan6ft2F4QB4xmuG8YnhA42EEx79yeEBAHOTCFHR4QBbpYuNcdHhAbI+voot0eEAiZ2jRrnR4QNzx1+WlgXhASJhGupmEeEDogKB+vYR4QHonLlVSj3hAQ/qdrpaReECEu3uMp5R4QGbnj5fNwHhA5ihBirbUeEA06YtvFvN4QHRnQ58C9HhAbelDUIz1eEA4J5z5HPt4QDYQTroUBHlAQEmmi5sFeUAY1VqQCyR5QGJSPbwULHlAlhxDfhJCeUBAv0d6jEJ5QFb60K7LVHlASygLUEVzeUCCK8fB+IF5QGAhCzfAsnlAVkmhDELUeUDvWEd5v+J5QBLn5T1P5HlAtSNOOhnoeUDmSP6bBPd5QNbk9N7ZJnpAJjz+mQw1ekBMqEa5GkV6QEzORMcuUHpAxlmDioBSekDraMG6LFV6QNOVKu08YnpAUMO6oItyekC4uXrkDLZ6QJIhk9EYxnpA7KWs1UDOekA4sOSHotJ6QBLO5ujh13pAxvronj7dekB6+53UNu56QNhUOlPX83pAIr1+ZXYDe0CW5gWuKA57QFz+Wv5MFXtA4Dq8ylole0AeSln4Hy17QPbv5CpXMHtAWkv8AX4ye0C63lYcXVJ7QEABdCtmgntARdWgL8CHe0Bq2roB7ZB7QCZykSgjlXtAUASYLnjGe0AyQCqeN9N7QIvzU56v03tAzLUB9kTie0Aeu5zOReN7QFLgbET+43tASvLy/4v1e0CgRg8zlAF8QBiCtB3aAXxAybbheJoFfECIzUaCiBF8QNYFhQLSEXxA/hbU9KgVfEDaicMiAyR8QFk8DY8JLHxAenOC9Q40fECcs9UfzUF8QHTCXhPbUXxA4ngoHkhcfEAwAWsSC2J8QLuIqYwrcXxAJtphsAZzfEBynGARv7J8QDlJcpbM1XxAAUlhrFfifECEj293F/J8QGIykgNV8nxA+o8gxwECfUCgCWOdSwJ9QMyULqYBEn1ATiQ16EMSfUCiwy5oKR19QAbDtJY/In1AkLS7s4UifUDuo6bwnzF9QIwFCwJqY31AFm+7JivDfUCUI0CRa+B9QEBTMo6Q9X1AVvSPUVsAfkCv9HLmNx9+QJW3SiaNVX5AJtst5N+QfkBQ3XsAjrB+QMB8MlNNyX5AYJ0TYqbOfkAMRq4z/dN+QFqJwvTK335AZAeU6dTvfkBGU38c2f9+QMJmViYfAH9A7poOTg8gf0BwbyEJuHF/QBQXvbqzgX9AMz9AvaODf0DeTFICY5F/QNhXvOheoX9AWjX9I1axf0BcKFeVUcF/QNMu77eW3X9AMvobGtXif0DY/QQzL+h/QGnHVF2H7X9A3CCOrubyf0Cfq8276ymAQGoGMPwmLoBAohoW2SgygEBgAOIo6zeAQJwloPX4OIBAtmqWJXc5gECsZQzzHzyAQHuPBUwuPIBA+gqIkfZIgEBLNrCY51CAQOTN5EQUUYBAlZIKzuVYgECmVHa7DlmAQFJ8UucLYYBAxjvIHu9hgEBO3AB4KW+AQAu+4aQod4BAgMDpAB6PgECOsemwbJGAQFaNU9cJlIBAVFd/dBuUgECNV/RTuZaAQMIg7R+IqYBAVi5PKhW1gEB1I+ebGbmAQKz3xYwQvYBAFPK+clLBgEDwBD9VEMaAQPhA7h4ByIBAHJfIjVPJgEA1lojnE8qAQFTHD29M0YBAJE5nTivZgEAEQn5YStmAQOwLd+eY2YBAWSTlCvTegEBQjiDxROGAQGVCVwv36IBApm/xhEPpgECpWTtFSu+AQJx3/jk984BAfoEBzD//gEB60ILLPweBQF4TATE9D4FAIFRuezQfgUAiZMAMNSeBQOStmqPcLoFAjfsKu+gwgUB8bjFCiDGBQPVmHbq8MYFAdrv0DDQ0gUAYnC5jrjWBQF3M75LeNoFAoLrS5H43gUA8Sz4KhjmBQKVD28OxOYFAEWnqRbU9gUDGbCE8uUGBQB4qRtjndoFA+u4IAJR5gUB6ecQ2Q3yBQMJkIh5hf4FARAYSjVWPgUBOAVjkWZeBQE4V+4lDnIFAPtIMKfCegUDeStJAU5+BQBxV0JWaoYFABDWiDeehgUDvtW0mQ6SBQFA2OJj1poFArLj0EW6ogUDCP3FSmqmBQAClR0dKr4FAjCDSgH7RgUCJVd+vKNSBQDKJaGbU1oFAlMkDKwIJgkDJYUps2BiCQHgDWv7WIIJAcopjXNEogkANDkSr0DCCQFCXLcF0RoJANoQhPEOJgkBHcjmNQ5GCQF5mcEU8mYJAeGXkvQ+hgkBBBl7pOaGCQL2nu9wOqYJAbNfYrTKpgkAFp1c2B7GCQIYsm+0wsYJAjHLUr6/5gkCaVQmaeRGDQLpfXxB6GYNAYm8OvHIhg0CgOucSiyGDQLq8aHlwKYNAzDiY2mgxg0C0LvylxVWDQMC7irzBWYNAnAWg4Lttg0BAJaW7wXGDQCSfc/TlgYNARC/RRyC5g0A8V8jCP9KDQIfa780p8YNA1N0YWJT4g0B+9oLUkgCEQKFa2aR5T4RAfGM3DQBphEBRhzKr/nCEQFMzqxX4eIRAkjsSRc2AhEDeHi2qOcqEQN5QqHRC0oRAkMatTmrZhED3at0rauGEQDYGvIVi6YRAQCEncjbxhEBkB81JZPGEQJWurvk0+YRASjnu41j5hEBBZLCIKwGFQFi03UGgYYVANT8QgaBphUBuqdk6mXGFQI4YUHibeYVAonLxUpGBhUDF0LyO2NGFQAJBF9UluYZA1vvkeiTBhkBYWwsSkSmHQP/bAW6RMYdA+JfBNYk5h0BUyEgMXEGHQBLGpKqKQYdAHAv/EVONh0BCMSujx7GHQNwcPf/GuYdA2AOx7cDBh0Ays+sTw8mHQFrvCdn+3YdAwCY3qQLih0AYRUor/+WHQNaJu2b96YdA + NrgMGZxjYkBUZ6VXTIVuQIAj0Oo3pG5Aw6olJCtEd0DZCLvtoFN3QGhgBw15ZH1AwwgCeINVfkA= - + - otjoRHmqU0XpV5lEpq1LRfjFSkRaiLFFSh1KRODsnUQCxqNELCsNR+578kTcM1lEbIFcRKbBt0SlKgdFZzyaRDgFdkVHYQFFS/mARH0kg0RLioVFrEuzRC1ZqURVreNE6j2tRNiGb0UUhwlF9iBcRIt/mkQQnuZEPv8NR03H/kSn9ElEb8yxRD4q7UWyNJZFvx3TRHnAEUULFmVEShBARAyNGkXzyu9GjnbVRNXLhUQNQNBE4pypROBqikQQpJdFu5ASRdxXbUTfmnJEEziAROM9uEQS619EmOJTRHQws0RQfelEXjCARXlyekR8qm5EQokARsy/wERaMq9EsXPDRayQikQE6JpE+CqGRDy4nESnOJFEKEpQRNhJmUSQd15FHv32RuA7u0Q+ShRFGE24RPtPgURoQVhEw5qIRPlzDEXELkxHaqzbRU2dEUUFyYhGhbJ5RGAy8kWpe61EeVD6RaOj4kU0IVdFGRHNROxPnEQTXYZEvRuNRQ4UDEWIixZFHqVORGZHUkUp4VJE0fyURiHfNkX7A3BEQMRJRXF2CEX981BEk27PRRerQ0TUnYBEP0HuRZ7erURuXpNErMKGRAkqRUSGh6NEpRAiRXt+ykSyWXBGi7VdRM38V0Str5pEVRqNROO7cUTm/1xF6m6SRPeSg0QjOdRESFx0RCfvZkQTWohE3S2iRN7SZUSUfENEX/o3RXgNiUR5HDhFdCCJRdvnRURN9CZFCy8BRWPRDEVUuq9FjPQ/RDa3TEcRqCpFCoG3RC0GIEWdjTVEqSQDRpo9bETpeqpFbR+ERPPRhUT0ZpxEBpCvRKv6S0WjepFEAbF8RCTnxER/geJE3OjPRAcwuERkZ31EO6mEREyjtER+wq9EwHW4RAxChEQCfLhEt892REMxOkXGJapEjfaKRIY2uURlvcFFg5mXREVmpETEgLZETanORB7V3EQqjxRFyU8FRfGNdUTFxphEggsuRRtAa0Q16pdE+gPNRE5xpUT8yuxEFQaIRD6mmUQfWfdEkOZHRlmCcES7pwtF29rVRW+qLUXRAeRENidIRA1UhkQ/HadExnfMRNlu30UKMjlFKN69RKJzWkTH8tJEkMmORGaRR0T3N9tECH3lRA3o0ERdl4xE32VSRDy+E0WtMIlEPvKuRbgx1EQm5IFEwo/dRMM2zESU3mVEzmzSRQcazkb5Ms1FOTmjRI/OIEU3jnNEwj25RAiRKEW6wXFGNOrPRFPNUUZ0wp5EyMAlRbOsyUWQqYpEEsSBRJE/ZkRN7klERwLFRAUl+kSG4HJEWzG/RGLwOUU3bttF/2tvREmNrESZsEdESP5wRF/oc0QN+2lFNGqKRCsjU0S5p91EltmARM4ohUSs0iJF92aTRvbfgESSIHhFo1mgRHbPYEQ8PvZHb56BRLOw5UZx7NNGLmC/RU7tjEaDYuFE2RciRTX/8ES+9PZEQw29Ret9jERzXlVELtreRF08cEaAUppEbGAjRaBRsURhXKVElKeoRIoMPES33qJFr3T4RCrh9ETYmIlEwDRMRtVPx0XfOftE7IIBRW67LkUL1phEtqyTRO/DeERDpYdF7+1GSVxXoUV51PJEQrNKSEiW0kQem1BEqYrgRKommUaHqS5F5OuNRQzojUUZG6RFWv+jRU3Fi0TioLNE2r2IRByc4UXm8TVFUjafROAykkT4ZYFFT8+HRDRppkTGP39FFSPKRcQmb0XmFfhEl/6PRKQ2VUT8T1xEsK64R+KPtEbh9cVFgREmRX6e70T2EExE+OMARXkt5kURKAtFVZC4RGZRwUQRhTVF0bmuRIGWS0Wcr+RE9B5XRGVoEEXfFlJG23NcRXPZuUQmHWJETI6CRC/7fkSmhuJEeCx9RKlwe0S320lFI0lbRNaENkYVOfdECSlWRM/Ep0Tv1JFE3vmfRv/PrkRBMEdGew6pRQEdpESMga1FQIZ8RLmZx0Z3PAVGOpcwRUi4vUX4NKpEbFGjRLQcsUQcropEWxBWRGXlA0VEQmxECpTOR0jqB0WbrKtG5XMbRakOdkaus1FEkStVRROpd0X14qVER31oROtQekQvqdBECVHARO4yeUWz5LpEzQGwRJguTkTWK89EZbiORNbph0TW3QRF7c+hRICyT0QDnKFE+PW3RKXdl0TqE+VFTen2RC9iqEWI9v9E2oq7RGw0SEbosIZFhzALRZkwckTtn6RFYAwLRnaku0Vy2xBFblKXRBHQhET0kgJFHg5vRFgjikS1Z8tE876URD/HZ0RC7Y5Ea+jNRPc4X0WIy3tGF56XRF8+7UWDwHJESySzRPEQ7ETntntEgsVDRVNTkEX1Ta5EjffERP99CkU6E/9E2H2pRb6AGUWh67ZEVclRSEGstUUg22FE6r22R3pTK0WRP0dHAulrRJWXH0b0XtRE7oyERG/TjkVPBpJEvf5kRGXsjUSnxLdEfJsmRmptPkUGLq1EuH8JRjs3CUVlyhBGRcCGRMqz20VWwpxE0XFxRX4QSUaPLwVFA8O4RPshW0RD/qNF/CK9RAwrgESRyeFFt+GNRc+9j0TRBKNE+ripRd+U0kRAp4lG1mdFRhVFnkTvlY5FPqJtRUn0QUXMKFVEPbMURXGfcUSO+SpFYH2pRal7F0WBkwVFwQKPRMopaUbYZIZFX2ZdRTB/jUQqAFJEOJLfR4zyPUeq0eJG4x20RVXuxkViVBVFjhUDRQMPukQenVBEB+16RA2vs0ccRxdH4kq6RnEv8kRmCLxFTJLsRFbLY0TA71JErB7pRB4nikT8AG9EiRtbRACOi0TKRLdEWOedRAU3kkSdyXpEsHHXRbIGPEUZASdFO8lRRLlgIkW3+19EFnonR9V4bUZp2C1GZZFeRWNBg0W5rulE772LRESOkkRdWthGcwNRRs959EVcxxVFb9tTRGWsV0R9EJREEyqERLsONkZ+DOlFPsx8ReQXSkQdo69EGIlSRA+wz0Vkap9FozJDRRzEnETSSQNH7TijRlAKKEaKB0FF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - kunpdwzBckCUo4subsFyQIcWITWmwnJA1gEPRefCckBmZFgOPMNyQB4FJa7FxHJAzo3aelrFckDTQYGuQ9JyQBzIFze00nJAxpQOdXzTckDWSY/fzd9yQFNi4RG64HJA876zn0zhckC+uyzdUOJyQDAbGpGQ4nJAw0MXWcrxckAZWuoOt/NyQArNpLYM9HJAr+69vqL0ckAQXRkcwv9yQMmdcc1jAHNAmrMadPkAc0C2VNm9JQFzQKB9xipMAXNAbDVQw44Bc0BEvLIn0AJzQCl3d9b6A3NA1LjyqSIFc0BRkP+tBxJzQLSVm6q8EnNARhpeswYUc0CaL6ibeR9zQFLWPlmkIHNAaL2ndTkhc0CoJ1ubZCFzQMFpnr7JInNApJdX0BEjc0AbClbmBiRzQEFcpmU5JHNAHKV1m88kc0AudjZ1RzFzQMgPeRAkMnNAOkJY/g0zc0B6iYTkojNzQPBAgqf3M3NAkG5UnDc0c0A8WWIx5kBzQEJaMI94QXNAb9o+rHpEc0CduRbKEVJzQPy/00pAU3NAqBup6aNTc0CUniDQeFRzQPZUjv+GVHNAtzU+dDVgc0AelK9vOWNzQHpRD11RcnNABIyZkGlyc0CE+9wwt3RzQIja2GpMdXNA8orKDnmAc0C+SmAIpYBzQBvSkA8PgXNATM+rtsiBc0CGUmg3poJzQHtlj3SGkHNAeFe3H/aRc0ChIt98TZJzQCMYSgT6knNAJBwKOc6Tc0B7sttOYpRzQKE5Wnn4lHNA5iNd5hCbc0D0U1eVuKBzQCzJonZMoXNARiFiIlqic0ACr9Zjj6JzQCTgyHbnonNAPmmOcQWlc0BwQbbSx7BzQLVePhF+sXNAgvEil7azc0BTxo32DLRzQJypqhWjtHNA+STTZ/jAc0Cvo5PC0MJzQCbzlNMmw3NAFXJc1MbDc0ARJhRo19FzQMpB0xc003NA/F0CS/bTc0CGssEj49RzQJKkEks44XNAto/wm2bhc0CY/Pu7D+NzQNdrXhbw5HNAsz3CWu3yc0Da42JiN/RzQAXO5BuN9HNAXu0uIXkBdEAgnIiipAF0QBoshDmIEXRAjm/rSE0TdECvM8lcdxR0QJpN4HJNIHRAl/PeaoghdEBDy35ruCF0QN8rRqBRMHRAPJ7QjLoydEATL6i0VEB0QDI+znDIQXRAHa2CPXpDdEBOw93/U090QMhgOaD+UnRAmXsy5vZUdEA4zw92ilV0QHC+Cti3YHRAVBgS7ghidECfAAl2T2R0QCX7dbdga3RASo03GiNwdEAi3cdiQXF0QNDpOM05c3RA63q4Dzl1dEDRS9uv+IB0QCp+/fYQgXRAVlHmlk6BdEBY1EZBtYF0QJV7xUrzinRAJhCaX1WLdECaXXcDFpB0QDzBu41qkHRAKLeaR7qSdEByNmQ3z6B0QBDtsd86oXRAMhM4zrmidEDCJgWE0aJ0QEBE1CURo3RApg23NWKldEB2rqjOC7B0QKaeVKPCsHRAKBqZfOPAdEBsT7e3eMF0QBSZoZPtwXRA8O862hDDdEDJtelcIsR0QFB3Hvd5xHRAS5QGHrnEdEBRxP4t+s50QO+rm67i03RAX+wEg83UdEA6K6eJuOB0QOGvWykj4XRApP6/NbjhdEBmIsIhUOV0QBbQ6zGu8nRAd7NaDo3zdEB+HNdhdfR0QHk+Pk7OAHVAujsCW2IBdUCwe9bpXgJ1QCSsRBw9EnVADva9UyQUdUDuAYoDzDV1QAw8qTy0QXVAUwY9vydDdUBoKISP3k91QLRuU56AUXVA1Iswc01UdUBI7npbd1V1QN90NvYOYHVAGiFL+ThhdUAutMy382F1QPZaWy92cnVAYpWjnY10dUBO9ZWreIF1QC5aEBeugXVA9zZdfqaDdUDhYopqm4R1QPZp1/C9kXVALTMZ3W6SdUCNkrq8O5N1QFpShHc+mHVAFDTVspeddUCsR4N92591QEm9dzSXoHVAIPR5iiGhdUCcPqWluaF1QBZYzvPmsnVA7jWo09DAdUDYxJw5ZMF1QMzPWkP5wXVAOPDJY8zTdUDGZ47m5d91QN+x+U4O4XVA5As7hwbidUD20HOfOuV1QC5//1ZIAnZAT3Zs2s8DdkBkdekxABN2QA71lS1NFHZAjH4iUAwWdkCIRqskiiJ2QJmD5E6QJHZAAPjUxR8xdkC+VhB6nTR2QGC19qcdQXZAEDF8vHhEdkDU7w0l+052QMQvHyvKUHZAvmt9sBFRdkBDE9/czVR2QGKifGlPYnZAK81VJcxidkDUL+MCUWN2QECrAL7bZHZAXBi0aCdodkCzeNidf212QDBMA0DLcnZAiGhnMZGDdkA47Cw5uZN2QFZRO3u4sHZAVMpKGMOydkD6LlWsDbR2QPQNOD+utHZAEFd1yb7AdkBQzRAy0M52QKTA/tLx4XZARbEDGpLzdkAswbTPS/Z2QEB5Mlc0AndAepwiEAISd0CkvhGXAxN3QIslLqEPIndAkjxlDXIid0BatugLDTV3QOqP6n2dQXdA/GyDfhtFd0AuZNu0SlF3QACfWuSSUXdANCc1aClVd0AOHt7oSWF3QJLowN+QYXdAljtpzZJjd0BM6mStJ293QOINXF4kf3dA5khRlnqCd0DoD6w3fIN3QPnjQuYIkndAbsMmTomTd0B0cgyTS5R3QGYI2Bzh0HdAXvKzio7Wd0Dh4Qg97eB3QKwfbvxQ8ndA9sYE+CACeECS3s1TThV4QMfJwD1vInhA1unS3IojeEBI9LgBpiR4QEzZg0wLQnhAB7HStHpFeEAmjh1yy1F4QGcA6fqGVXhAfguItvlgeEBDfmkgt2F4QE6Ti1m6YnhA4tEOEbhxeEBMgJnWL3R4QNAbDbmLdHhAnqzeWs90eECCFpga8nR4QDSzklmlgXhAQLYyspmEeEDDTqdfmJF4QLqZQGqnlHhAXr78LczAeECz6UDM9MF4QLDcQ44GxXhABbj/JLfUeEAPnRQPGPN4QNrDKeUB9HhAWFMzmoz1eECoYm9hH/t4QAl7pFQTBHlAy4el6poFeUBW1j0lDCR5QGbcAEcULHlAmsVKKflCeUCU1/+CzFR5QP+7XubZZHlAYpx9ZERzeUBT4s+GwLJ5QNwHkQtCyHlADK6tkPTLeUAEQ6ZhQtR5QG3KW/vL1XlAbMYSQMHieUDOJOnGUOR5QANZ+IsZ6HlAcih6a/kFekBDH70Y3CZ6QDszTFcMNXpA5l8eYBpFekAdARn8LlB6QH7uNl6BUnpAZsfF3SdVekCQqLVQPWB6QIr0f7AdcHpA0Ib0x45yekD+svQrCZ16QOgWqdMMtnpAfquOWCzDekCbDSbpGsZ6QMDQPqil0npAPELPstfTekBE2kOW4dd6QP33tdQ53XpAdq71voXiekAKN09MNe56QHON6ADY83pAIqXE5ikOe0C6xfL0TBV7QKR9ssBaJXtAEouviB4te0DmzVbAUTB7QHxN1vZ5MntAarjwssQze0ACGzPbIpV7QGTGrdB2w3tAGTznR3vGe0AwSh5YN9N7QFN73fSs03tAbKHY6ELje0DCbs1t/+N7QN82Gy+M9XtAQvi8EpQBfED4xx1w2QF8QMC/3Bv2AXxArcJnRJoFfECwtuR7iBF8QMyhvUfREXxAWo4hFwMkfEAYL6QjCix8QKoSTxQSNHxAGCqqqsxBfEAONl1c21F8QEqVcbkNYnxAeDsT3L+yfEAOFB4eDrZ8QKFGn7jM1XxAc8yf1FfifEBTMh0qFvJ8QEA5CJxV8nxAwuKssEH0fEAO/30hAgJ9QP/9SpBLAn1A8lFusKcRfUAMgEX+QxJ9QFb+SPkoHX1AWBNh0vchfUCmpKBUPSJ9QJ2n6fmCIn1A4OZEW9cnfUBXA8hJoDF9QPpvmT9oY31ABpckNy3DfUCUEdBIa+B9QN5pAeuR9X1A3jG+g/n3fUDjUltGnQV+QAjvjG6MVX5A6ZqGV+CQfkAKlPjeTcl+QIw7gFRgzn5AHo86CKnOfkCunxmC1O9+QKJzgNMfAH9AbHnozYcef0BilkrRDyB/QBbks7MPM39A/C3X7rdxf0DE6As+Y5F/QHBPwkKskX9ANhLz/duRf0DOdFYgmpN/QDyYtD1eoX9A7wSX1lWxf0COCH3ylt1/QDLSmFfV4n9AtK4OLC/of0AQCAsqiO1/QLzU7z0mLoBAq6c5ROs3gECE+fK3dzmAQKK8024rPIBAdJBQ7nxBgECIc0Bz7UiAQCw7tmbmUIBAlnMxIxRRgEDS3bUZ51iAQGUqqKUNWYBAttHjlR5ZgEAoSOFU2l6AQNjQ/n/wYYBA0gZ/0vVlgEBMp1/t1GmAQFDEnuwob4BA5WOGdh6PgECSrDCNbJGAQN6xQKMZlIBAiJB2NLqWgEBYcIRyhqmAQKf/xcwUtYBAgNZSaRe5gEBpo3h9UsGAQOrlEC8QxoBAQHlubFPJgEAm89NCFMqAQJqCQegs0YBAW5DxrkzRgECu5H9ZYNGAQKjDRWYx04BADEcN2i3ZgECVZXIyS9mAQBQp+i1H3IBA+jh59EPhgEAY/l+D9eiAQKDhXM1K74BANHVwST3zgEDhfILtP/+AQJZReuo/B4FA9iB7Iz0PgUA0J1WBNB+BQMZxJPYyJ4FA2Hs/GdsugUC8759PiDGBQFS0Y7a8MYFAvFN+1DM0gUDavS7wrjWBQOKftwHaNoFAeJ0crrE5gUAC36+Epz2BQIx6mOsrP4FA/TWMFeh2gUABfbtklHmBQISitnI+fIFA/Ha6PfJ+gUCx8dAVlYGBQGbyEORVj4FAUr5MDFuXgUDmasl4Q5yBQGLNzBrwnoFAzHov1Z6hgUDCzpAc6KGBQO4fzW9DpIFAvB8wGO6mgUDpD5F2baiBQDI9NyxKr4FAOmyjfn3RgUALrftdftOBQPjOIK4q1IFA39Vs7tjWgUDLgfwmfNmBQM4XoSPYGIJAWbI5ltYggkDYMqV+0SiCQI7WJPihKYJAthDmsNEwgkCONrZBQ4mCQMp56A5EkYJAa+OutTyZgkDAvRbdDqGCQHzJjeg6oYJAqjnN5g6pgkBC/MrnNKmCQIT4EvgGsYJAG+0zwAS5gkDCGTdUsPmCQBHd+Z55EYNAeGaEIXoZg0C/Imz6ciGDQEzUDexxKYNAB8/KWmoxg0D+HXhnvW2DQGY9/a7lgYNAQH05HUmDg0AuqPzBlPiDQIq8Rxr/aIRA5fERyP9whEBDCDPP+HiEQI4OZDtq2YRASVx4fGrhhEAEryZjYumEQLnHcYw28YRAih/6GmLxhEDi5Qs/NvmEQFziOoli+YRAZ+NrHS4BhUD6/Gd/oGGFQPu/8sSgaYVAVhcSbplxhUCOZPpStHOFQEJYZbCZeYVAwiwyK5SBhUDyafJ1JbmGQIJaQoUnwYZAOpV5V5Eph0AcdOgnkTGHQIJ89eCIOYdARqATm15Bh0BW2J0xjUGHQMjPkpbHsYdABu/UWMi5h0BbBpoDw8GHQBZnS+DFyYdACqgZAP/dh0B4odT4AeKHQOdR3zsB5odAnNtnZvvph0Cjhgs5AO6HQA== + KBZXds7jZUDXkZP9yKNsQKPid1q/AnFAPcnXHQrCdED04oX55HJ3QMwgJD3i0npA9EBiTT2EfkA= - + - IZ+gRKOwG0XAIgBFVN52RLVgokUctkdEBM6nRHSQBkc+sGtEfUCURK7070Q4QZBEooydRBBNYkVX8xpFSFBuRQts6kQZK3ZEcMsARTH+EUWqaXtEw3cBRWAiqkRhAadEfJR8RNWa0USgwQxHTHt4RI8gn0SNtFVGzneMRdgI30TQEg5FFNLPRj+yg0S1APREP32hREFQe0S+lZJElh+sRXncAUVaaV1ENJqMRAsxdUR8uYREjPSxRHwrukRpVpZFH68VRng3U0SeIYdEtsOGRQShpEQisp5EFOhyRLNQG0UynpxEWuVaREMHhUTtNhFFrsv9Rj0LxkQ/R/dEBNXqRK5Gp0TDszJF+9tgRJ4FVEepti5FXfqhRFsrtkSd6XxGYduNRK7VE0YlG5REgZfyRWtReUREZoFFJjcVRRV7Y0QSK5lEKuKJRaykLEV7yWxE3UwfRXujhUXdnJ1GKJ0+RLaaFEUKYitFjdv7RFADjUWVnttFSfByRAojrERCeoNE0i4yRO15okQdaIlEp1iARltX8kQAptxEp6hDRd1Tk0SNYpNEAx6ARPWwD0WGX3pE7J2ERM1Yl0R4YmJEnMGKRLzrjUT/YfBE2eLGRKs4uUQO6qNFSmVCReVVlkRaJqpEWKStReEmUkfUke1E236mRLvTFUVbQkxEbVcMRuhKeETbWHBEfpVRRPtuokUORZtE1PtWRMIerUQn8ZZEIE+xROguBEXKKepE3DiURCdkxUSAnVtEHbTJRIqyqEQHq5NEgu2dRCc0mEQOXpdE5Sv3RPO1nUSDpKtEpkTsRMJre0Q+3YBEzZgnRXsqb0T4ZI1ELbO+RadKbESJ7LJEgtnJROm+zET0xfpE5ytIRWpYE0VVu8xEV4uVRP8mbUQkXr5EOeHCRGDPEEXOL5hEmq4mRSHdaURVOLpEPXlMRhFLA0WOA/9FzmW4RN3WK0WKo2NENA6FRK7dl0ThmRJGS0yeRQCGW0RJ96hEkK97RHkkw0QrJ9VE1CdpRANJnET0QBVFPun0RM38hURqroFELbALRbxqhkQFFqVFA+MDRelbnURN4rBEelzERNuhj0QUnBVG0tHfRu7Sq0TuJsBFvwCCRfjqtkQTDc9Ef6NfRYCeaUagwoJEN/0kRojC/UTna0hFQLiSRfcrw0Qn9LNE4iUIRQsnYUTke6VEvqcVRfYGlUXj13BE1w6HRBHEJUXBs4lEUfARRdxJiERsIwZFJ76GRtK9qkT4JVBF+Kw8RPwh9UcLlcpGu+biRkJDpUWYHZxGm0HyRKHxZ0R1HztFxuW9RDOjmkWrtoBEkgSpRIP6SkY2C71EwESiROIPlESDmIZEDiNxRDNFm0S5dL9Ee5mkRKkko0Tf2TJF1BiJRGlHiUSWiMNEV6M5Rjm6s0Vm4QVFLbwhRbOXUUVzzJxE0mt9RMrNFEXAWVdJQd4zRUIp/0TGBktFfXVcSC1Su0RezppG3mSjRMTpvUQxcZNEHwobRVekTEUK8ZVF/FjRRU58xUTW3PJE/p27RN8EnUUoKI1EAMlRRN+NrEVIq3REYl+2RIIiakUfdlVEWppnRIWU10VMs9NE3UzBRLKBDUVxmdtEaIL9RKwldkSRZtNHYHfpRohAwEXtPKlElh9BRbEYWkSESWZEcXK2RBq2ekRO5+lFlQyQRF/030RIDnNE4i2IRN8dxUS8PmlECQqQRF5i8kRya6tEGW24ROC8L0ZTjQlFZvD3RMAmbkQO+rREYExmRF/MC0VR8UREdwLGRI7JC0bR+55EEPuIRHeeqkTd4q1Gw4KdRInCP0ZpmydFqkupRcjW0URETbBFHUgFR5r0V0b2TBBFo9jBRc/1iETrGKVEgwT0RGm4mkQ56Z1E1C7cRxH/90R4NsxGekFdRCb+C0UyHb1G9dJwRL/BWEXKfQVFVZJsRNExhkSiTHdElHNPRCGdlkRtbKZEyoy7RFpipUUwmfdEnXyARJ1vc0T2EJREPgWERJW8HkUa35hE3xXCROASh0Qvs65F2OCFRPFdzEQ6JKxEShWuRfjTUEas5INECYBtRNA1dkQMGDpF+sYqRShdDkX6fxhGYczSRUjdpESfBSxFEpJpRGl1s0TVLexEReBwRJWNnkSKP+JEsURtRnZm1kT9MY9FODCURKyjcUS0nPtEqwZtRHl1XkQULkpFf7s2RcIHhUV3e0dFmfqgRLyrrUQOUJxF+EXGRF+JfUgl/ntFY+LfR9R300RURpFE46t5Rz5aOUXElVlEzQaIRNpHbEaoGrxEs6qcRaxcekQnqrtEKdq+RHKWFUbX6ztFqTf0RIDD50UaH8BEVDAFRmae4kU+rAZFv/0URegGukYvKa1ENzswRqXoy0SogGFEu0AXRlvmHUbXTlRF8wKURAy0gERxZZVFa2+ORFualUYQmTJGp3tnRU6VJkWdHhtFQGmNRPSbIEWdo85EW1GkRQhorkTTlXxFhA8BRSD4dUSDjlhGBkSXRVJGLkWOIJdEsOioRNlSzUf9qkdHJDjcRob19kU+PeBFbpPoRCXtMUX4v9tEiAZ/REkfdkTCjc9HeyRLR/Ys20avovxFxUAHRY8ooUQHvYRE72BeRMsceET3QchFcEoJRUYZ50SUnAdH/S+PRn0YHkarsYtFT+OHRc5Q7kRPWIpEYqTYRKLVAUdth4RGhjoTRvZ22kSazX1FI1+fRLeq50SvGa9EsLQ4Rg6bp0V9Em5FzPWwRKHa4ERGYwNGPjKbRSD6K0XoV9hEu/PeRnVzp0aIK9lFBlRDRWcOpUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - k1T4IQ7BckAQOd1Eb8FyQObNuremwnJACUhcKDzDckDWGpMAxsRyQPZh/sVD0nJAgyqN2HbTckBehoB/zt9yQGyc7JlP4XJAzP98yVHickATxXm/kOJyQAh4/YzJ8XJAuNbcqLnzckBOKoPxofRyQNoHYQ3D/3JArNgXQmIAc0D626LJ+QBzQPg2M5MlAXNAUzWEYowBc0B6frUW1AJzQBAJTwv7A3NA7BNCTQkSc0BP1UDmvBJzQBiPEsD5E3NAiAR2EAUUc0BbaviyTBRzQJCf7WN5H3NAQrzS76Mgc0AjridEOSFzQDaKtzBlIXNAuy0RaQ8jc0DIv2MEzyRzQJ+imAlHMXNAQtFKQVgxc0DErCyNCzNzQO6ccPWgM3NAOZ9OMtczc0CeFgriODRzQNR0hLe6P3NA27wYMEJAc0BIJ0rG40BzQL6XDP54QXNAIUdU6LtCc0D2yYRXekRzQHoD2StCU3NAp2mRjaNTc0C07rdke1RzQEWXkdw6Y3NAfxzlF1Byc0DzuOJouHRzQJJJWUxNdXNAokajMml2c0D8SdVPeYBzQNyyf0ikgHNApsmFfQ6Bc0DkFgH1yoFzQIAYUklcgnNAxRUhmamCc0DirSXoh5BzQHgTwviNkXNAABlilE2Sc0DQ8cj4+JJzQAohxGHMk3NAjBil/2WUc0DivrzN95RzQFyfsGOLlXNArfvW17igc0CYApKQWqJzQOSJ5PzmonNAoF3UIwWlc0A6iUxw17BzQJC00wB9sXNAUNLyuLezc0CGYrc2DrRzQEnW+Hv4wHNAPP3u5c/Cc0DCeblMAcNzQOJzKuYmw3NAQnke4dbRc0DmyzoBvNJzQPKmUv7c0nNAz1cuuDPTc0Cotm3U99NzQLjbeEHi1HNACuSs7Djhc0A54TWS3OJzQMT7r+kQ43NARSWYJP3yc0DMNlZKOPRzQKN6dJ+P9HNADISRbOMAdEAuUsZFeQF0QKwlb6elAXRAiGn0mpARdEDGlJkBTRN0QLZ7APV1FHRAx8R6n0ogdEBECEFityF0QH5NdQ1jJHRAmFIbwlQwdECq/qduujJ0QB5aAfzWMnRAquI+nvpSdEAZu0MI9lR0QGB1NH2NVXRAWgEBk7hgdECu27OnCGJ0QLFwlkARZHRAjCFd3E9kdEDifdc9Y2t0QD2LB+IhcHRAUp4LkEFxdECfuD2bO3N0QOKNY+A1dXRA7K9hIPmAdEAfXL07T4F0QKaUx9L0inRAfdTtTxaQdECOZi3FaZB0QCAVh1NQk3RANqJ9Ic+gdECSYH+cOKF0QLe4pw67onRA7nEhF9GidED4vRCaEaN0QLByZ2D6snRALMDLq/azdECAw93H48B0QK/LP8x3wXRAgto8zevBdEACo2R+DsJ0QPLJ+nIjxHRAi73CbrjEdEAaLUmC+850QHNXL1Tj03RAJNqDHHXUdEDx7o3s0NR0QMyM2VG54XRArPNg507ldEBd0AM2jfN0QAGgVXmlAHVARrRnD2QBdUBe9IHeXQJ1QAzcdeOaA3VAoq9jsjwSdUD2ynYzbxJ1QPyHd8ckFHVAAhTsO58idUCewzFCzDV1QN7ZsW+0QXVAUNKYXSZDdUC6YBIcE1B1QPyoUcCAUXVA0Xzac3dVdUCWKOeYOGF1QJx44+rzYXVArDQ1XwNwdUBGW7d/d3J1QHIDokqOdHVALs51wjx9dUDAGaW3d4F1QHx3NnWtgXVANnwRLpaCdUA1Wq+rpYN1QMqCstiahHVAv10vII6QdUAhqjGKO5N1QBRe1D4+mHVA1rOXk5mddUCutmqzuaF1QO4J/kz0onVAPCrgMueydUDg6ctJfbN1QFT+KA/PwHVA5AAXiPnBdUCML7J7OdN1QLOpuIXL03VALAXmCOTfdUDg52r4B+J1QFK6yFk75XVAjOL1L4LzdUAyvmTJSAJ2QAmwe/LQA3ZAqhvUhwETdkDoiCiChiJ2QJQopjybI3ZAiF+f1JAkdkBsT5KqHzF2QHxQJ3odQXZAyiwAG3tEdkCiF01T/U52QNnsPD8TUXZAWjxexoZUdkD0cWirzVR2QPMTJrLMYnZASJkuxFFjdkBoHlxL2mR2QHK0NzImaHZAw8LKl4BtdkDEkndcyXJ2QAfq5B1ngnZAEaU5XZCDdkA2C/DiIJt2QMocGxq4sHZAlp2Vd8KydkDkVgK5DbR2QFSbiwR2wHZAGmaxf8DAdkBqJ5POTcF2QMwY1fUcxHZArHf/1M/OdkDGPNvmwdB2QNoRqP2R83ZA0HiG4zICd0BmP6AWAhJ3QAAbIVoOIndAu/mCM3Mid0DgvYWFDTV3QBrkbd1XOHdAui69/5xBd0CEMGH5skJ3QEY+Y20bRXdAQKpG3ktRd0Dqig5jk1F3QCLToVQpVXdALM73dJBhd0BRDGXJJ293QFykQKqFcXdA7HLgKid/d0CqeAyMeYJ3QKJaH898g3dAKscFtYmTd0DA1mmfTpR3QLSHR8vi0HdAHClFFY3Wd0D8K8P06uB3QIb2FKVQ8ndA4JovTh8CeEBNC8VrTRV4QGaISI9uInhAXKavaHwyeEBCTYGyDUJ4QDb/bDF6RXhAVH4q3MtReEA9AieniVV4QIIv9jb6YHhAJt4Z8rdheECk13dct2J4QKaKPTI8dHhA1i3kNmd0eEDCM0Xfi3R4QF1uDaXEdHhAULNGjf10eEAwMVLjpIF4QPi7NM+ZhHhA8Jb6oFOPeEAM6SbBlpF4QKCsD42nlHhAHfCX1raheEDhnab5tqR4QApDDKrNwHhAVqyo2vXBeEAwjVhWCMV4QJ4twsK41HhAkJAM6BjzeEDUS7UTAvR4QArExL6M9XhAQHcGphYEeUBSxzKImgV5QBvW0I0LJHlARYC5PxMseUDHlS1uNTR5QLplLrCNQnlA1PEKVMxUeUAc+z982WR5QDiyctnAsnlA1pz/38/CeUDA4QgdQtR5QJi4jPTO1XlAOGglqr/ieUCBgPm0T+R5QI6Pv6wZ6HlAuKFz3vsFekDikx19DDV6QFIAJqEaRXpA/D9W3i5QekDkWTOWKFV6QGqIv8C+W3pAGA13NzdtekARcJfYi3J6QJqEl7yllHpA+rGYAAidekDcfg5+7a16QEvQV9oNtnpAVRyVxBvGekCQ9E9po9J6QFjBIQni13pAzr2G5TbuekBcJXoX2vN6QO4o1xUqDntA8IMr9UwVe0B7K86FWiV7QMpzyrIgLXtA0sjwflcwe0DMbx9aejJ7QEA3DUvDM3tAGl1YYVxSe0AHIaTbvId7QCblWCMilXtAwlarTnnGe0C+bPL6vdF7QLZUWno303tAmOORhP7je0BtTnjclvF7QEhFPaCM9XtAdlDCBkr+e0C8Z+zZkgF8QD4jJv/aAXxAumlvTPcBfEDZVIktmgV8QND6NWSJEXxAKKBWmNARfEBgwpKVpxV8QN8XLToDJHxAhjgSDAssfEAae4DODzR8QMzKpaLNQXxAalYAJNhRfEAuDPyBR1x8QCCF+SgNYnxAYl1SzlVjfEDaQd9oK3F8QEYUY5bAsnxAKI0v4VfifEBB4D7uFvJ8QHa5Q5NW8nxA/hjDWAMCfUAiMg4KTAJ9QCwEzH1FEn1AEwb7pSkdfUCfn0LGPSJ9QNtScbqBIn1AaA9mTaIxfUByxFxmakF9QA5fIa5rUX1APv5DyyvDfUC1DoORauB9QDCYVqGQ9X1A+rYQbloAfkDQ5UQTNx9+QFLDlovfkH5AWNSCnqnOfkDwRJyXU/R+QI8KXc4fAH9AOhvw+ocef0CDPJHUESB/QOQg4pwSM39AVUNvD7hxf0AvP0JBtIF/QJqXogOjg39AMAhjGWORf0CkvvhyrZF/QO78O1zjmX9AvzS2HWChf0CACXGFVrF/QL0agGWW3X9ALuTZj9Xif0AwK6SkLuh/QECN63yI7X9A/usxO9Lyf0CMXgXl5CmAQE5m3awmLoBAfN+/YykygEACepy2AjmAQFLKFn0vPIBA4FHs0dc+gEDgiRbD70iAQOKbVW3nUIBAgiHiphRRgEA8JCu55liAQEeEdJoOWYBAkS58Yh9ZgEDeWnm0DmGAQI8VR2aIYYBAesA5RPBhgEBGp81I82WAQPevaQoqb4BAkeEfXR+PgEDt/nURbZGAQGzE8dMalIBAnn6MUYapgECmHa2OFLWAQOD3o6QYuYBAwyf1Gw+9gED208SiUsGAQA8uRvJ8wYBAhDJD5xDGgEBU03y/U8mAQOjm+Q8t0YBADz7PDk3RgEBguDIqK9mAQIuzjzVL2YBAdOcXvJnZgEAIkb1rROGAQKx5qoH26IBARNjINU3vgEDolwpJPPOAQPYJbUhA/4BAvPXk9T8HgUDNU35QPA+BQICWM+U0H4FAf+KerjQngUDqGQlT2y6BQOA9TJSHMYFA5lzrAbwxgUBGU/4ENjSBQOa3AazSNIFAegn67a41gUCGTcSr2jaBQJYSdXCAN4FAiLuuU4Y5gUDWJmj3sTmBQPh+8HCkPYFAKF4pLbg9gUCCjFFTqkGBQObuid+6QYFAEydcmed2gUAlJYC7lHmBQDqtcOY9fIFA8Dp4N+1+gUAcgRwJYH+BQBGtF4OSgYFACqxYPFaPgUDWzCG0VZeBQPnPfWNDnIFAhQkzzu+egUBOKyeOUZ+BQGqAX32boYFA3O35w+ehgUDN61+RP6SBQIzddaXvpoFAqaB9322ogUBX4V4y8KmBQNOcKsFKr4FAKJiLDG2wgUDks8SDftGBQBXVqsJ904FADlu93SrUgUDnfbxZ19aBQAx1RxkCCYJAdSUZV9gYgkCUaeh01iCCQLIXC1nRKIJAbhVVA6IpgkCqT8KJpS2CQPKQsJvQMIJA7B/4lkOJgkAOFKknRJGCQCcK1Qw9mYJA8lwxWA+hgkBs4vbaO6GCQO+DQU8OqYJAbmJCHDOpgkBiIVZHCLGCQJp8qBOu+YJAzqwmuXkRg0DrjFR5ehmDQKQPKWdzIYNAQntwenEpg0ByTMkgazGDQOP4BQ0fOYNAQozmAglmg0B92DDfuW2DQCxc4k5Jg4NAxCTbfZb4g0D3ja+G/2iEQEHqVW7/cIRARO+acfV4hEBC0bzrzICEQFlXIqP1gIRA1j8jmGyuhEBTrDl3atmEQLBPvplq4YRArpz7bWPphEBgTXdlNvGEQOerc2Jk8YRAtDvlaDX5hEDeXQubWvmEQCbU0ZMuAYVA8wFBpqBhhUDERyFpoGmFQO87/8OZcYVAuQLm0LNzhUAHPyZxl3mFQIIlnia6e4VAvKFiKpWBhUCOzRTPJ7mGQIZL0EqRKYdA/FMp+5Axh0A3vJ9+iTmHQNQbmHxdQYdAhnBE4YxBh0DZa0ngx7GHQBuQG67HuYdAePzrOcHBh0BrMGcJwsmHQBIg29T+3YdA7BKrowLih0BAfhfsAeaHQFcoLhIC6odAFOToc/zth0Aoy24JA/KHQA== + 4qRcexsiYEAoFld2zuNlQJi98BGiw2xAb5d1hqpCcUCN6DFxAtN0QA== - + - skfJRAPkD0Xaq0NFTRZ6RaVus0SZxAJHFb/gRCfzBEUpAExETpljRVMFDkVFHX5FWNGYRKKFDEWVaLpE2auaRL4nKUXJdOhEVci5RIWypURDgxdHlj7kRL/XMkarzXNFCG95RVA/xUTFa5pEVZkARSAdvUaqAZJEGcdrRG+TmkXF5s9EcauRRBU8Z0RiUp9EvT+RRFiHg0QjAVZEK6FtRKOZSUT4lo5FVzOIRE4uCkYR+atEciGDRaBVfERxeyxFaGfWRNSUwETeCQBFN4bORNh12Ebry8REJanLROFSg0TRJz5EmI2DRPrDGkW150xEqexER3rLnERW565EG+eSRFiFhEamYIdEwPweRohbx0Wxpy1FtjYQRT7PiUQQuT5Egy5vRa2VqURIhbZEJRCJRfmceEQiI3BGQIUzRVZamES7pFhEFF8oRfLYz0QIroFFbXjyRepsWkREGlRElzQ5ROKF0ETQUmNEOppURF0bfkZLl/xEeBNWRPLhQEW63JFEFZaQRKGABkV3935E56FwREe0r0QJ0VZEghSrRDjll0QgfqxEboiVRaiKN0WF3HJEece6RIJdjkR3jrtFfBc1R9/C1ESZokJEfDghRYcCwkWKONFEEP7GRa4KcES9rFxEUvjERALThURyxJFEZ0wuRVwoqkSp7m9EQX2LRMp3zURmyKBEaUhvRBAJXUQEYlZEoZAcRYHVekTF84pE1C12RMG+iETeZTZFS/R1RFNIr0VeTK1ExC+iRLgmlUTKwF1EPFgfRUMIOERpMAVFqHttRFqIIEX2ILdE9sKvRFmBWkQNS1FERwgNRYFqEUVp0WdE+sNFRE5tBEV0UWJGkVNvRMAD3ESB57FFEPFQRLyR6ETyGRBFO+SbRCKgi0RaqpVGnF28RZaWi0SVgIxEv8ZzRI8IgEQwrI9ENoAERegRVUQLa2REKCKGREdjJkWQHoJESOZoRL35ckXaHwxFPAOlRD5hUETZeKdEsUcIRm06zEZFM5xFARZ6RalHfkSccTBFce5TRKbrjkaNmUVGpvW5RAh9L0WE/dJFn5bGRO19jUSeuaFEgzZpRJw9VkRIzXdEo/H3RIZ4t0U6X4xE0dhXRIAVUERO7ZJEMlcJRcD/ZkS0Hh1FkyLuRCjDf0aK2WhFMFOgRKDD6kfRCnBEtO62RoJaiURf6MxGPDWlRf+0hUYJhxFFrBgQReA3XkXzL5FEnaGEROCQ50QcYBlG9w2wRHSEzESP1FJESVRnRABLo0SfFcJE0C+GRFLTgESMqFtFCuNTRJGBjUSoOi9GpgmORSJFx0RgVdVE+bZVRToYp0Sbg7JEpZi2RS3cUkmTmjdFUh1ARDgkJkU58llICftyRF5o6UQXIL1G5xBlRDGdrkQybtFE89KHRGmMh0TfsAJFqTszRe7Wd0WMlRFG9vuUREEtvUTXcplFKh2URBw2dETmimRE98fTRelix0STyEFF/uJsRHPt6kULdwpF9Vn+RBttBEXraZ1EyUbeRMm7+kfQLvxGvoacRTz4G0UxW6JEo4OERBvhm0Tv1nBE16WPRNEgV0SvlKxFfNKKRNR6i0SPtulEURvNRMSqaUSfidpEbJtGRmYuTEV8EIVElOJYRLQ17ER/p69ET/OFRGe/X0S+vuZEQHXMRA1FIEW/oqRFoceqRHtuvkVDcrZGrHX+RLCRlUQPJUhG/EUFRQrdnkValLlEcSmSRT59a0QO8hRH7kNURqhJakVbTO1FzuN6RB/FmkSby7dEixdTRJhAiEScXLNE0P7qR4YoMEX+9e9G8koERWPcukbK/oBFvATqRIsorkRB9uxEncW9RAtPWkTn3kxEiz2LRAcarUX7ueZE8WJtREfcXkQ3wFBEItydRMt5dkQ5g9dFKiqLRM3KjkSaGbNElbaqRZgdtUS8yXBEf/I8RmwahkQ5VF5ErpFCRcT2D0WS5S9FxOP7RdjHikWOxcpEA1qyRBlDQkRviMNFDu9SRRaB/EQPM6VEWgSxRA6U0kQdi3dFhVeFRvDeqEQLx9BFgsHIREBXhkRE2nxEMYq6RTdyuETBTvJEI6o2RXczJEXWrfZEipPeRPidikUSYRNFVyRQRNvIeEimY1VE3yRkRbOY7kc9PslEHa+BR4/EpUTasnxGOr+wRE8biEVrJrNEIq6oROkDz0RQBgdGc6xERdt0lkTQat1FwFy7RNK8n0UP94RF7g3RROcHy0SqNoVEC2VPR/7X5ETUQnREjbbmRLr0u0bubvdE0kuFRR5Oz0S+YJBEIaCPRhvfHUZ+uLVFADHrRH1MVETnfNVESpWKRc2Nm0RJ9zpGqPNORnJrVUQsar9F4vozRYyY40QfFH5EoQAPRfeEh0S9RlFF7LyTRA9io0WvnLVE+wGIRUxI/UQRtHhECu1MRoQMcEWPx0FF0sShRT1qpkTA+V1E9ozPR2QHO0fLZ9RGfhfdRbkNAEb6vgVF9iz5ROgN8USUGOZEe4LXR4HaSkdcDv5G7PgHRjd+LUVIOmlEARRbRN33hkSrHk5EGNyFRPLZykXOxUtFfF7NRLlZXUR2i5pEh5psRILMC0d3PYZGiDY7RrKQbUUZtoBF6ucrRSTWvkSFg4pEIwv5Rm5YdUatWSRGYweZRB8ZXUXq4phEl6qORJRwC0UddT1GvBLHRQ7iZEVujZtEuzUGRb3u3UWBbKlFZfI4Rc/kjET0P8RGrHqHRtYh9EW5F2hF6qu2RD9pakQ= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - EU29hgzBckCmVgK0bsFyQNniXI9OwnJA0vJvmabCckCAFmCaO8NyQHDCcgvGxHJAOEO6lVrFckCuTIR8Q9JyQBxaerSu0nJADRMiUXfTckDBReDszNNyQNyOLRzR33JAmhT8CbvgckBqCSW5T+FyQC5gcBlm4XJACXVtllDickCdA6IckOJyQKi/oKXJ8XJAdlcXYLXzckD+9MYVDfRyQMDTwnaj9HJA48c6IcL/ckDaJri8YgBzQDzDwu34AHNAinBaGCQBc0CM+UqQTAFzQKiRu7yNAXNAI6tia9ACc0DOONHl+gNzQAJIuFSPBHNA9BXconkSc0DjJa/2vBJzQMqf6e9gE3NA5tAEHvkTc0Dmnui0TBRzQJQxCoB6H3NAeh0RFTcgc0Ac8CmsoiBzQPYYAlE5IXNAFpMYmmMhc0CgdfW6yyJzQPCjT9cOI3NAEHIXmTokc0CIMoU4zyRzQL6aRh9HMXNAHqakR2Axc0A7wzRXODRzQBzrswnlQHNApSa5B3lBc0AEwGpoekRzQB2R7JsQUnNAWh6/EERTc0Amc38YpFNzQKqnoTrjU3NAi/vEzIRUc0DTJT2wi2BzQL74seY4Y3NAxHR3ls1jc0Cku5wYUnJzQB4Zk/G4cnNADqnQaLl0c0BQFlg0TXVzQDXITPZ4gHNAp2/uiaWAc0Dq5zxXDYFzQH4Jl+KkgnNAZOyoNIaQc0BMWbAz1JFzQECPmU5NknNAvmmIZM2Tc0DhdKxsYpRzQLyYUp73lHNA2sVp+RCbc0CmNqe6uKBzQNtQbg1PoXNAQsDrAFuic0C2wIkd56JzQLGUHrYFpXNAUMLdjn2xc0DdCCuYtrNzQMjVBsINtHNAsLBbwvjAc0DfV0GQz8JzQH6+AiAnw3NAY1/iIcfDc0CmXv361tFzQCSniDY003NAMMQ2HfbTc0DncASZ4tRzQKnkVzik4HNA5kQ4Xjjhc0CuHULzZOFzQAL0Hm3v5HNAk6Uwwvryc0A4eBwiN/RzQEBjbsSN9HNAG3zIMeQAdEA4c7e+eAF0QAqRDYSlAXRAwnd10eUDdEDQrco0CBF0QOqdc4SKEXRAjgZqk00TdEC2FAQF4xN0QE8JAYx3FHRARujEsEsgdEA/A7wouSF0QMGW5B26JHRAXjLy6VMwdEBGVUaHujJ0QGgRKrrWMnRA2Gz2ElZPdEDPlMNHPlJ0QKx+USn8UnRAHlhl5fVUdECPdG0wi1V0QIhGhHC3YHRA+m8CWU1hdEBYPVsCCGJ0QHYBv3MQZHRAHy1+cE5kdEDi+RUnInB0QGxEnSpBcXRAgvsfJxZydEAE6PM0PHN0QFBNTzGidHRAckgOIzd1dEBfJQNo+YB0QNBnuRROgXRAj1/STvSKdEBMBgZ7FpB0QMg6cINqkHRA9LIfeVKTdEDUOpg3N6F0QCoiYW+6onRAkKN5jtCidECaBHwtD6N0QGa6v1sJsHRAwE3Oz0qydEC2+q0y97N0QBCUv2biwHRAgJpKtHjBdECo94VS6sJ0QJhSep8Sw3RA0OJEQCLDdEDE4XT+t8R0QESoSpr8znRAWCryOTvTdEBj+2Yb4tN0QNojTW541HRAhufjXtDUdECxe4Y1uOB0QFYuLi244XRAXBRUyU/ldEA+Cc9ZjfN0QCOdbMylAHVAyqVHDWQBdUCskkxsXQJ1QE2aZLU7EnVAIC0IayMUdUDwhMYGzTV1QKj/JC8nQ3VAUiF92dpFdUCB33go2E91QJaCj7/wT3VAAmSy1IBRdUB4geh6J1J1QGQS15RNVHVAduxp5XdVdUDyR85lOGF1QC6F6wfxYXVAQk7JXndydUCsUYabjXR1QCCD0Wx4gXVADDo0ca2BdUB9xQ50loN1QK6BSe2ahHVAkLsHqYqQdUB1tjvCu5F1QAkcJYg8k3VAHp3jpD2YdUAabCC/l511QKhd3Wy4oXVAAX4R+/GidUD8zW2I5rJ1QFJhult8s3VAbVxq587AdUAuscjR9sF1QLrgV6LN03VA4OM8HEzddUCSXXfMEOF1QERRpfAH4nVA2DmY0UgCdkBhYnYl0QN2QNL6TVVVEnZATOc3o0wUdkAoJW9ZDBZ2QJCLvHiJInZAjPTWHJ4jdkBRRVwxkCR2QAaxwmQfMXZAkONfS500dkC6n6kRHkF2QLsrpN2dQXZAiAt+k3lEdkACsIq8/U52QJ7bQZDLUHZADjOpHxJRdkC/uImWzVR2QAq9XwskYXZAdS46GsxidkCgA7gPUmN2QNkcZ6bbZHZArojrgiZodkCy/l+Jf212QDDnH1pognZA3nsgt5KDdkAWWT3AvJN2QCbpJDEem3ZAKAsFwcKydkAMJtgsDbR2QFBFsoXAwHZAIvn5YM7OdkC3fWJFwNB2QFKjkqPz4XZAovowEfjydkDvbDtskPN2QDoati80AndAq9L9TQESd0Dpby200B53QFA3J/YOIndA9lqrrnQid0D+xeX8DDV3QJbkFhtXOHdA/r0LI51Bd0DJOXVTG0V3QB1Da+NKUXdARDjz3ZJRd0B+n1MUKlV3QEoEHvcNYXdAcB1MPI9hd0A5mPk+OmV3QByOyP4mb3dAbHWIpXeCd0B21EVtfIN3QCI9sY2Jk3dAlpKa2E2Ud0AQXhBaj6F3QOzBXSibtHdAw1Dnq+PQd0DP+VhC6+B3QCI4arHp8HdAnGrAA1Hyd0CMNxgB+AF4QPLpb1NNFXhAzcc/4m4ieECL9snUiSN4QL1XueemJHhApkJfbgtCeECII61TekV4QN5/XeDLUXhAbNzQeIdVeECadLWa+mB4QEDj0MC3YXhAyBHxaIt0eECoHYYNpIF4QGy5ykiZhHhAAtj6d1OPeECklrtWl5F4QIlvoRenlHhABhZaurekeEAeDATRzcB4QF45kMG31HhAg8zX1RXzeEC+zmXhAvR4QPrwGnWM9XhAUrYoeRz7eEBrKhFxEwR5QLzdYmSaBXlA+GLSYwwkeUBIhpzFikJ5QL7vA4z0QnlALQwMjMxUeUBE11Kw6mB5QBzPuI/AsnlAEfg+rs3CeUD+HGl2QtR5QHoAg1zN1XlAhEPdNb/ieUAfytZiT+R5QBzsvmEZ6HlArDSEUfgFekBtByMZDDV6QE4qCpwaRXpA7Mu5ui5QekDJvlHyKFV6QKWrforCW3pAkWasa8hjekCnrs4VjXJ6QBVKnN11gnpAIBjP9AqdekDKSvZGSKJ6QNiJbeLqrXpAdT3HG0uzekBt9V6qDbZ6QLap1coZxnpAOUcHiETOekC12AYT2NN6QL9yiqTk13pAxOhr5jzdekBoTa7Ge+R6QMccNP017npAyd1YuyoOe0Au1uHZTBV7QPJsTDVaJXtA4mX1kiAte0Bjb031Hy57QFwUKUN7MntApsz2vcQze0DwPxJ8wpR7QEKljIMilXtAEMFszDXTe0AjOHox/eN7QBDwJ1mM9XtAmu/OnUf+e0ATncRa2gF8QOT4dZWhA3xAUF52gpkFfEDqrhq/+gh8QK7ymtGLEXxAahRkjNERfECgjFj0AiR8QApgcvcJLHxAqqZIzBA0fEDkl179zEF8QF5XHZ2DU3xAiqD/AkdcfECkTPm6C2J8QEpb8XsrcXxAZWQSWANzfEDI+r6IwbJ8QLb6cY3N1XxAOmjxylfifECWElmXFfJ8QOTyIOJV8nxAH3T2GwECfUCAXtWPSwJ9QAtz2/VDEn1AzSMthSodfUBce9ULOyJ9QBQ892iEIn1AaPo/hqAxfUCSvE/b0TN9QCraiYEFtH1AQ7VutSvDfUDkK7CQauB9QIShFA2S9X1AwFTteEAvfkDc8z45jFV+QCTle4t6in5AOSKUck7JfkDgwUqhHwB/QCr1q6YOIH9A7bJhMRQzf0DQMXkKt3F/QDiiemWhg39Awl6AqWORf0CMEJsDqZF/QPt4bJpeoX9AYCG/X1exf0BvcJH2ErZ/QIwUFR8Cz39AdNmoKpXdf0A4mF8A1OJ/QMWMAtou6H9AdqO/Soztf0CCtcTX0PJ/QJ43RlnqKYBAkneR9CUugEBiLZyuKTKAQLxWztAtNoBARoDWnOs3gECIMYITdjmAQFSC5aorPIBAbtLCNoNBgEAZ7yjb7UiAQHCAUm7nUIBAIofeTRRRgEDT76Agn1GAQNiSIwQOWYBAfrgVXPBhgECgaZoy8mWAQEBp3W4pb4BAcJ0S1x6PgEBqxUbhbZGAQDG/VTwalIBABYzOwMmWgED7OfIMHZeAQODuQviGqYBA8J0T1BO1gECWEuyXF7mAQA6fSIBSwYBAcGyYgBDGgEB7hqerU8mAQLoU2Css0YBA+rVAa0zRgEAUjHf1YNGAQEGXpV4s2YBAwIgxDkrZgECZcmutl9mAQJh7BGpF3IBAOIkdMkThgEC2yikGVeGAQOQiBqz26IBAlLuVm0zvgEDIcW3gPfOAQHxA870//4BAIVPhA0AHgUA80IQLPQ+BQITE8/M0H4FAgizvXA4kgUCQ8HXmNCeBQDlI1Z/zK4FACMOen9sugUCcy3H1hzGBQAXoVIG8MYFA0OhSuw00gUByZpvZMTSBQFV23v2uNYFArw1cxN02gUBGpI4QsjmBQIDnl2WlPYFAvjTAZ7c9gUArVKFwqkGBQBTNKt28QYFA9vWfjOd2gUAqEZ6AlHmBQDqqX7s/fIFAXf2Xpet+gUCWjANtkIGBQEIPQC5Vj4FAy3d3e1aXgUCSyEMcQ5yBQGZUgk/wnoFA3sU3QpmhgUC//ULT5qGBQAQqHFhApIFApmohTm2ogUCaQgxESq+BQJ7wBuZLt4FABnaLAX3RgUA+kKYHftOBQIxpF+Ur1IFAkg36rH3ZgUB4CUpV2BiCQGD02NvWIIJAPvHZONIogkBbz3XmoSmCQMLjgoilLYJADy28g6QwgkCTiNdPQ4mCQAtRo7tDkYJAAvCSeDyZgkDIX7O+DqGCQDQP0FQ7oYJAuu5/ng2pgkBNu3exM6mCQMZLursIsYJANR6nGK/5gkBmO/+TeRGDQBaI28N5GYNA3rku+nIhg0AUzHa9cSmDQAow0+VqMYNA8qTX3Rw5g0DkLyhIlfiDQNEG9Or/aIRAqKghDf5whEAGQEPf9niEQB7CmmT4gIRA5fePUGrZhEA+L6EuauGEQBySJi5i6YRARehFkXzphEAQufuJNvGEQClH99Vg8YRA1E6+fzT5hEB4URDjWfmEQD2f5kugYYVABk7sUaBphUBG9NXvmHGFQBiy2omzc4VAWS4kzpl5hUDu7IXrkYGFQErL6c8nuYZASPonhirBhkBBGrKLkSmHQK67HROTMYdAPOLAq4o5h0AuuYiLikGHQACOYPnHsYdAEgnj5ca5h0CDXDb+wsGHQMaN/AHFyYdAtwJSK//dh0AIrc6KAeKHQAppuIUE5odAEsYw2wbqh0A= + NrgMGZxjYkByWoXuS4RpQD4omKXyI29AjwFH/L0ycUAfcqimUaN2QAOnB+ytM3lARjPwHQC0fkDi1tLfKbKAQM5DehFMkoFADQFV4nXqgkAwR0n7nqqFQKDh+B3N8oZA6pkp8xariUCgEOdHeXuKQBXEq/Vi44tApOwJ646rjUAEPrFkBRSPQA== - + - 3GOpRKa5dUXPF5JEXqdjRQwesEWOBMFEbNKyRPLHEUezl1tEUneFRF+ufkT9bntEFEH7RKzqg0TbXnpEs96DRUQNMEUaMXVFiynURNUWhERGTfVELiXsRM6EyUTPXRBFxMKqRGdrh0RTd+BEnl/iRKLbHUdcIIdEufhtRLQTQ0YtYIFEA3GcRUNLq0S56JtEoZFeRPGbSUUjn+NG4cC/RCWRt0Tex6dEWD6oROzCpEVLMQpF6+JaRLL6ukSkBIFEDu+QRddSLEZ5GXVE5az9RJPwtUXPMnBECBbZRItV6ESIrSdFJ51jRPNGykT3OXlEXW3sREe5HkXKLf5GYRDpRFpvBkUdmX5EvR5MRcyGdETbDFlH2gYHRcZNFEUdlXpGK1CQROOQE0b+s7xEe9DpRWJqIkXoqENF09ChRHHiUkVxHyJF/qjrRApmmEXPu4tG2k5ZRJSGSUVhuVRFmJLxRGtznkUvgm1E5lkARognqUSnIZpEyz6BRAnxD0UqzYpESVlqRGCumEYZTQtFdH2ERO6UikSzVLNEH+iARRSBv0Qndo1EytqqROu5RUVPpmFEeUewROGph0Ruz4ZEPYu2RAZWXER/FR1F+k6DRBuvz0QXgY9FV515RBWmMEWXYYBEHAnxRKbRtkX5GkNHW0BMRBHvAUW96qFEjWOfRELULEUx4upFP8r/RDJQs0UbJopEEa2iRPzuv0RaSLBE7awQRXHyDkUPqhlFrgZgRD6cukQzQLxEBwmKRMOGXUQnvJxEvl52RCLnM0Vr5utEaU3kRBQ7gkRLq1xEGnWMRIzdX0Ss/SBFiJ+BREZI6UWDG5VEmNGgRKY49UTpAwdFwCgURX6WVkXR0dJEF7Z9RPf3jUQXwXFEqOXKRHY7mUSxe8VEPEonRQa9R0WoxZhEj9OORL+A4EYtcCBFBwbPRfP6FEUPZo5Figi+RD0DlUSR1JhEDlUsR5qPlEYCsgVFeP6ERZbSoER8q7FE33yiRGMQvUTgitREwirsRLCcjUSUaEBFVSOeRZGUCUXGLXpE1gOgRGywskTa2aBEy8uBRFJZD0Y5BrBGvo6fRDr6rEV6GIZE6HdjRebA/0SuiLhECxlBRWB4EEfF0WVE7pglRtzvkERhLsBF7em8RY72+0QKFIhE6STeRCvOh0Q5v4dEaegKRWQnv0WbTYJEqbMhRbasn0R29K9E3LToRJe/KUWdurZEzTKURlJyhkSNFIxFREjARJR1BkhM77pEXcrnRmDe7ka64KRF/LOHRuXPDUWmr3dEiXg8RczCokR1KYhFSgSlRKyYOEZpOBZFOdmTRBzmWUQugZlEJu6BRJSKukSA9JFE757FRCdUgkSYe5FE5vNNRdGFrURdfZVEqZi5RNLzb0Z3EJpF5mY3RcO/HUXuFYpF9iViSYEUOUU75mJI32uDRINvtUTirLNGjkjARO0UDkUuYBBFQno8RYHNiEXsPg5GcvyIRBXEI0XYl+9EmBI/RXZkxUQDrqlENyrARTMOi0RGFn5FroiRRCnm+0VAuAhFrvtqRbEmEEVhnntEzzX8ROys60dBcgRHIPsxRZ/QUEVnqeFEi567RG40lURCiHtE+BunRHkxKUUfdLtEfzFRRDNsxkXm+LBE8+fYRH2GnET/uIZEzm96RLWxkERrUoFFogjzRMiqGUYj8E5FxAB3RQh3pEQyGJJEi4KCRCUFmkROTgpFnGkTRd4fyESG/rhGxP08RZCyWEaire1EK+GaRcq7j0QRl4JEcHCsRS/1SEfyfJhGkEiARQIitEWdImlE+EzKRDYbuUSrXodESKVzRHH0z0T3tJlE3ELzRxH2PkV01wRH11sKRYMox0YG5GRF7cbqRN0qn0QXasBEXA7rRED/eURe+HZE0U+fRNa9gUX12hdFf47IRLKssUQowqdEMZ5wRD6SlUWy9pFE4J9sREYieEWImdBEnnA6RvvtdESWKWtF9E8oRTbjWETJ+XxE7nATRXHbikXKvr5Fla4DRQgSt0RU82VEikBORog91UXxPL9E+zByRAC/lkQnyRVFnZhhRO/Ew0TTZoFFeot7RhbOXkR8h71FI4q1Rcyl5kRn29dEA1I6RVN1akXb/zJFwdCJRL4CiURDANlENyVuRatV+URTKXpIOepzRVy45EfSYLJEHY1rR5BNkkUjnwFF5yNYRleq20QWZKZEc1ifRRfJsURUhOJE3fm2ROpSwkT/NytGVCIzRdrlS0XoO9RFSNWNROW2A0VUMa9EMEsERkQOoEU0tb1ErCt1REn4UkWONaBHSHOFROTtHUeoRIBFbdDzRb0nFkWj7+lEblPCRsOfjEYgJwNG9yM4RVxrskRkYsdFmKMJRQreeUaHt01GkwSvRQCzLUWF9vRE15YuRdpaMEUSV09EbI2TRSeTCkWPAi5FjdjARONuV0atGn5FtmEYRREGIEYOVE1FzaWLRHa60Udle01HIDzsRgErz0WJxgVGQ+L6RNv0NEW/qgdFZ0+oRMfb2EftFDtHzoLXRoc+AUZIvjJFJb2JRMh1n0QKIbhFthYWRapnzkTIj3dEYlcZR2mWgUYcijVGAoutRJuCnkUg3UxF4JPjRAkEwkTVk/5G6IdyRidqIUacpqNE9zmHRc1L1USF5pxEzuOPRD9jNUYy55BFHnRXReTXvkRh4gFGVA+iRWsCJkUv15REZJCKRkJvH0bl25hFXX/4RA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - pi4DrgzBckDgffWebsFyQFwPRCRPwnJAwsWU+6XCckASbIyuO8NyQEc22KbFxHJAPc/JL1vFckBOVVVuQ9JyQGp0S61203JA4Cm4G87fckAc7Lhdt+ByQFUKd2BQ4nJAEJX+u5DickDin3btI+NyQGij/5DJ8XJAjKpOlbbzckC7TDs2DfRyQKDcicyh9HJAQElBBcL/ckAIZaNnYwBzQBL1cD35AHNA0eX1ZCQBc0BSiovOTAFzQD5bgMePAXNA4iaCaM8Cc0Aiw0aP+gNzQC58CUkIEnNABeLJo7wSc0DWkEnPYRNzQIYHC1P6E3NAvnGNGE0Uc0BizlLleR9zQKrnnpOjIHNAS87MOzkhc0CBFpqeZCFzQOZaVV3JInNA8nrJ2BAjc0Aj/0E4BSRzQM4exSw6JHNAyK21L88kc0A1RATBRjFzQATAWlNbMXNANvmpGTY0c0C/a/2JuD9zQBz3ikJCQHNAWjJn/+NAc0DiL8hheEFzQMp3Iqh5RHNAUpnp+0JTc0DunK27o1NzQMQDksx3VHNA8oEUxYdUc0B4hSxNi2BzQJmwllwdYnNAwo1nqzljc0C/88r6UnJzQNYK4vVlcnNAc4L3ULd0c0As8EGhTHVzQCq53XBqdnNASgcs7HiAc0BW4gXUpYBzQFm4rbMLgXNAgD+M5cmBc0BOgKcXXIJzQMRQkHCHkHNAytjOLU2Sc0Ay9qefzpNzQBgp4XtjlHNAB1oFWfeUc0AKePhluKBzQIpkeChOoXNAJhJ+J1uic0CArLf45qJzQDYZM9wEpXNALCKTTsSwc0CaQpmcNbFzQGIhHa58sXNAOp3Jlrazc0AEf0XJDLRzQOx1Ol2itHNA8ip2MvnAc0CCPmcdjcFzQEzuuKDPwnNAmHsskP3Cc0B4wV1uJsNzQOTrUNPX0XNAsjO9qjPTc0DmViVu9tNzQFUSL3JO1HNAMCMdguLUc0AOi53OpOBzQN6MraE44XNASqFizWThc0B8PgtY2uJzQHDw+DFn8nNA4jZ3jUvzc0BU0ZWdNvRzQFjkdohOAHRArJ93qXgBdEBI76VYpQF0QAgjmHoIEXRABI0K2XkRdEB6psBYihF0QBilbOpME3RAD/AeXUsgdEBiwrO+jiB0QDTXUpC5IXRAtSyZAVMwdEBMmoGcvDJ0QAibZTbXMnRAKtH9AEw1dEDsWrxq/VJ0QCqHkDKLVXRAofD5Z7hgdEAcSdxZCGJ0QNn7b8MPZHRAUmdBuk9kdEDJ2LhAI3B0QAuZztpAcXRAvMHTNjlzdEDExefsNnV0QHtdOYP3gHRArWF2EU6BdEDE5GWV84p0QKcRqfQVkHRA3XWn5WqQdED8rXkK+5J0QL+pCfVQk3RA5qjjyKOgdEAs8DF/z6B0QBgGouk3oXRAROjgarmidEB8XoJO0aJ0QA6+gEAQo3RAPPqAXwiwdEBUiRMv97N0QMSj2+zhwHRApvgULHnBdEBgRHiv68F0QNP7nwEMwnRAfYvRjBDDdEDQe8Dpt8R0QNY9Ez6fyHRA0yXZJf3OdEAKF9Sh4tN0QC7i1tDN1HRAxymbr7fhdECWYHrCTeV0QAZOIt2+8HRAknqWnIzzdEBXv/TPefR0QEBb7cmkAHVA+hlYbc8AdUACziw+ZAF1QBpacD5dAnVAM/JU4pgDdUAinJL0OhJ1QNC9pasjFHVAVh36rbkYdUCVUuYPniJ1QBP6rzjNNXVAoFLJkiVDdUDSA6cxvVF1QAjRClEnUnVAcIFZeE1UdUCboG8neFV1QPogNDH3X3VANjc36DhhdUDEKqIT9GF1QDoRSFV4cnVAJEFalY10dUC2pH05eIF1QPGj1RKugXVA0JWKQpaDdUBMoeuXmoR1QFn19xiNkHVAtsEZEjyTdUAqZ9Z0PZh1QJiL8K+XnXVADsyakdufdUD61XY5lKB1QLXcEpC4oXVA/jKvvd2idUB2qBcO86J1QJosIrBLqHVAaATZpQerdUBintRE6LJ1QK+0bRA1s3VAvFWHKtHAdUATIEJAYsF1QLYNdTX4wXVA+PBA3srTdUA2WctJTN11QJ+JnOLk33VAihHWRAnidUDshxz5pOJ1QF9fct045XVAgY+5nEcCdkDwPfkU0gN2QGCBbqhOFHZAE998aQsWdkCJfEVigRl2QJVqrLmHInZAGjDLF5AkdkDlHgiYHzF2QJYuo+MlM3ZA6sLR85o0dkC1vim0HUF2QPIJhWWeQXZAJQMELXpEdkAx8P7X+052QHSZmh/KUHZARvCGPhFRdkBnf6Lph1R2QFyKXFzNVHZA2M5y5bdhdkBUUJVfzGJ2QNAp2zlRY3ZA/vpu5dpkdkBf1TnlJmh2QDwe8beBbXZA98PI6stydkACBUdWkoN2QKC/i1a2sHZAlmSsq8KydkANtqlBDbR2QFgkvmDAwHZAn9dVFRnEdkCj1f7izs52QE0ysWz53nZABFeWCfPhdkBENFog9fJ2QH2VnDWP83ZA3PNVDDMCd0DKYuFOARJ3QHABFRu3IXdAFhVsSQ4id0BUDfUXdCJ3QMZfPIe6JHdATAdFOqgtd0B7heQUpTN3QJJIfZ8MNXdAkCKf1pxBd0BWF5SzGkV3QFAiwnNKUXdAVKcH1JJRd0B4atRQKVV3QAFFaMdJYXdA1hfPi49hd0CmVxVNJ293QH0/8qB4gndAqsESKXyDd0As8dp/B5J3QESPB22Kk3dAVBB8F0yUd0DQebClt6J3QPKq5QaM1ndA+hXbQ+rgd0BSB5JxT/J3QGeIPCZOFXhAak6H/GwieEBY2SRkiyN4QJTvGH2iJHhAKvHDxAtCeEAo4Z1yekV4QKwjbn3LUXhAMDSCA4hVeEDslWZN+WB4QEhSDke3YXhA9FsnC7hieEAI8L1zKmN4QDpbQnMydHhApFDxNUV0eEDsEUlji3R4QGku0tyvdHhAlutQlsh0eEDnyDFP23R4QJlazwelgXhAY3ovnZmEeEApQ3malpF4QHgjo4OnlHhAEPBD3vKyeEBa66znzMB4QMIMPoz2wXhAT0exgQbFeEDcGr/uttR4QK+qb4fE5HhAnMHvUxbzeEAiY/TjAfR4QCcMDZyM9XhA5Od1+w8EeUAy2VNzmAV5QFRgsa8LJHlA0jQaS4tCeUBxIz3731B5QF/JO1KZUnlAusbtzsxUeUBcwrdy62B5QO656bnZZHlAqsUMfsCyeUD+cPh7QtR5QLkKQ6LM1XlA/tyvwcLieUDAG2hAUOR5QPsBco/b5XlAeyo9XhnoeUDaMpBblPB5QPLu1ij4BXpAVjL2xjgjekAqguxLDDV6QIyFlV0aRXpAEUKcGy9QekCum3qKKVV6QDA/Kg7BW3pATi4a3jdiekCCHPz3OGV6QIxLKfk4bXpA+oPIFYtyekAoAxjLOpN6QO42czVIonpA1jreDKOnekDWot2n6q16QNYwtNxEs3pAjPnp8gy2ekCaQ5daCLx6QIJ0Nsgsw3pAIFLRZuHXekCxssOzOd16QG7WjQ1o4XpAoKG0nzXuekDvo+6zFvF6QCqrSThe8XpAaKhgfl0Be0A2m8gSewN7QDx2ZgkqDntAyGo7zkwVe0CKoNjyWiV7QOB810EgLXtAgnG5UHsye0DSyGV9ZoJ7QHG9ufkilXtAQL6oFnrGe0BMODD8ftF7QCTxF8KV0XtA/h4lrwDke0Duc2OalfF7QOdgB/GL9XtAZMjE/0j+e0C6/ugokQF8QDpZnUfaAXxAJqyBM/gBfEAoS2jbpAN8QGvSI0+ZBXxA3Ck4H4oRfEC0euwz0hF8QMSjvFsDJHxA7B+a3wosfEBqC3X8DzR8QDbZuB8ZPHxAE2Vqis1BfEAkJkQX3FF8QGHsG6VGXHxAzEwluAxifECNBu5pKXF8QNALIb+3o3xA1Cv+mr6yfEBy+a47ztV8QCNiFsFX4nxAnLO/jRbyfEBOQB7OVPJ8QO9K7FbO+nxAghvfz/8BfUB4EwUISwJ9QFZG/fNkDX1A90UCOAASfUAcae/dQhJ9QP4cAyIoHX1A5Fcu3oEifUBUiCVL3yd9QBRR6dwnLX1AVkrrLJ8xfUBH8zq20zN9QCZgC4ZqQX1AdyZ+HxikfUCckMMILsN9QEd5DQ8/031ALNrvTGvgfUBhlhVY1uJ9QFZ0QMx38H1AdCKgXJH1fUCXMzBijFV+QDKNpsOXZX5A6AG5DU3JfkAKoFRGps5+QDge6fDV735AlKNlY7H7fkBvLqBnIAB/QApM25y2cX9ASjH2EbSBf0DyIn2kpIN/QNst9adikX9A+btFjKuRf0C71pha3pF/QPC8OcZfoX9Ax5tC4FWxf0AZvhv4lt1/QAxRLiPV4n9A9KEaky3of0AlfcC7gO1/QJnhATAmLoBAZJfxL+UvgEBSakYvKTKAQKB6P6MtNoBAluGh3+k3gECzx/V+2DiAQCFV/4BZOYBAgAO+Syo8gEDm8oRK1j6AQDhizrH1SIBAPA9kYr1MgEARAHHh5VCAQIStQf8UUYBA8GYnqOdYgEAQ6CHwDlmAQEAVIaoLYYBANAOO2u9hgEBLbu538mWAQK5wuPcpb4BA+h4skRyPgEB4MHyMbZGAQE3ZaZwZlIBAA6XsArmWgECY6L2Ch6mAQPqljkMUtYBAMA19a0W6gEC2aABhUsGAQCDay08QxoBACJbxUFPJgEDPuTReE8qAQDhYZtQs0YBAmmlApkzRgEAKOU7MLNmAQBjN0/tJ2YBAfoaeWZrZgECsFosnROGAQDxDk69V4YBADHDGb/bogEAdO+UiS++AQKnuAbU984BACHK4mD//gECei7YRQQeBQIif4dY8D4FAPhxxfjQfgUB20XT6DSSBQNwXlhozJ4FAIsoRXtsugUCMi8X4hzGBQCjE8zS9MYFAZEzUeDM0gUCLFhj10zSBQJhBL9SuNYFAzvjwxbE5gUCkJPNxpT2BQIfJWu23PYFAECc8jqpBgUAIil+psEWBQKEmF9nndoFApyspX5R5gUAcoW01PXyBQOzn42nkfoFACK7uFZOBgUBm/k0GVY+BQMpylkBVl4FA0oHUr0KcgUCUEH8f8J6BQCBsr9maoYFAip98u+ahgUCPHwsiQ6SBQE5ono1tqIFAevjiXUqvgUDr2ssyTLeBQF5s9epnuIFA8JcfqH7RgUCQ5JcmKtSBQJBGfJ3V1oFA4jvKSAQJgkCm+yLFARGCQOi0KnfYGIJAXH/VndYggkDwEpbi0SiCQGzLfPehKYJA8D6VdaUtgkD39MSwzzCCQBZ9x/yZMYJAgL7rxqwxgkDOnU5vnjWCQMrWhh9DiYJAtm57TUSRgkBsOUtRPZmCQKjVXthWmYJAiPmPSA6hgkAa2d/rO6GCQJVm07kOqYJAoNmu1jSpgkAgW3qKNLGCQFQXCgmv+YJAEn83VnkRg0Bo+MpOehmDQD68RSNzIYNAngo0xXEpg0C8pCJYajGDQIoCbdfCVYNAuNGQiETWg0Aktb7ik/iDQMSTNaLKGYRArCaFZ/9ohECIAuus/HCEQA9k6e/2eIRAUtfdD2rZhEBHMBdCauGEQEzBkYRi6YRA5PLXajXxhEBWAdN6YvGEQAPYLX40+YRArHsGQ1r5hECie3G3bwmFQIZdWkWgYYVAvffTj6BphUCvU1eOmHGFQBZQJKqYeYVAIQJPlyS5hkA+XLlU+fWGQOhbafmQKYdAEtLUVJExh0Cf2r3qiTmHQEdhhh2KQYdAYsOLjlxJh0Aup1s6x7GHQK1F9ALHuYdAUGsTy77Bh0DMvWwJw8mHQLbjzCj/3YdAHqyxVQHih0AgEHNqA+aHQLtscKr96YdA + KBZXds7jZUCaHOeqTqRtQNS+X4D+xG5ATexPqX/jdUBqPQyU13N2QKNAVK4XVHpA8sP94cgEf0A= - + - 9wP7RH5YSEX5W4pE+LVaRahFtEVcoctEn54NRTyF/UYlpwpFiDsSRSBE+0R+8pZFaokIRc4qx0Tj34JFyRjbRLkfeET4x5tEgW4cRYkZZET3lkVFJC7oRMShXkT3gtREyv6RRF7CJEeO24hEIAATRmZeb0R9kq9F/9xmRG2yw0QQJfVEpTDhRtMvbERguaRE4v/HRDSOdEQgqZREet18RUs6IUVIUatETkWpRAehXUTdUHFETmoCRYpog0VnuARG9tTMRCiTrkVlxnxEJaehROfiy0SeO4tEOiQZRYh46kTFSYpEaASpRIc5N0U5G3dEaKcCR0uK9ES7exhF3RSTRMdWZ0Rb0MtEQPBSR/94/0SZZPFEjvSIRj0a0EUasH5Edv/8RQyZ2EQckTVFL2RbRDQrtkTGQAVFfJqdRdboFUWhaZFEuAXnRAOZeETLPq5FAUG7RKEvk0bUIB5F5xMeRbG4jUSQBGpEUf21RaQinUR5xSBGDS2xRN8evkQgCbxE2wd+RBZTCkWuoHlEhS5pRkBxyUQJMLFEhzqVRIMjikRJgXRFn3PURGLOa0QuDc9EYxOhRPHJ60RU/ItETXuARN3O20QtVAVFuI6GRSqUVkUF4ppEaRGYRGQH1UXqQEBHNNSJRX+V5ET8eExFJLPTRewz7USOJc9FYy+0RIfliES6YsxExeuHRPtF30TcGLFE3Y+SROAVJ0W6L9NE9ay1RJCKdUSQJfVEpQjnREpWzkQvqGtENSO3REyrIEXuWtZEdxu1RHK2xUQ4LL9EbehkRe3uukSDYphEPCPeRSpXiURlK7dE5lqPRDi94kTHKwlFplKZRH0rWUV9sENFMa7cRLzphESYJUVFhzoQRVJUVUS9XJNEU5DLRLC6/USPilhE41ciRXJrm0RiMMREJUGzRlIBJkVQJIpFa05sRfsciEW0nqFE963jRM+zgkcKWgZHLoiKREd8dUQigOdEm7gORUMHi0UuaA9FrISnRC+ivESYpIhEUjxfRE3VwUTyncVEMBicRHHZwUS7YoBESKFKRf6MYkTm/JREnSSTRY9xCUWuQdlEBl6wRLGxqUTOuoJEAVbLReBJAkc+empE99CNRNWn3kVAtXpEBcBURQ7Hm0R2S8tEACh8RYfJgkT9/9BGaERyRNUgPEZ0+J5EuXyvRdV+lEU1SKlEmzh6REuPwkSuH4NExd4oRYydnEWa58VEWXJ0RIUkfEX7F55E+BKRRE6jtkRuzvdEZmEWRce2kkZdj2xEWCseRaunu0Tmo3RES/+QRMaEq0SiHQFIMZcAR2RNwEYlx5ZFXRfARpLhL0VGYbVEbSRYRWyjmkUGWtZE+XwXRm4voESTX4lEOB22RIBKfUTLf4hER7qfRAGhDUVGFXVEr1BFRRoBg0TSIZNEIi8DRWEuMEb/IrRF6P4vRb94MUV8MkhFA7+CRN1onERmNylFEZ6JRVH/SkmVJZZF0KlCRfgjd0UeEiBFT7pSSOphLkWw55tG9kppRMerKkUzBe5EwPuERExZi0WFA6BEmuwSRW+pf0UC5w5GNESdRCuzAEVJyYpFj8GPRAAJaUT4AWpEBBy6RUilhURxeJdEexudRRxv3UXkfwVFlCsYRVz50kQR+nFEWQoCRVlKbkSU1JFEmUmDRBlT1keiRAJHNcQDRUybOkWgVq1E8yyQRHS3ekTUfKVE57iSRAxGRUQMcppFMeijRKrIKUXRsGhEn9e5RVZFiERsKqFEiQEWRbsM8USkvdlE0RtERaaK10SkX/9EADt9RIDChkSrE+JEK2wtRnd7F0X4gBhFMdvDROx4okRqt2dFBNC0RJD9oUTuzwFF5mNdRMRaukUB4qFGEDh/RZ3rt0TEcXtGW0JtRRo+NkVbBLxFlx6YRJWYxEVyhlVH/gSiRh6LiUWkwKtEdurCRZQi6USt2rNEJ6LPRNrw+ETFX6JEtlb6RGiwl0QYTd5HNNcNRfdpzkarB41ENyLdROIks0aEV2xEAoqORIyQX0XGRutEzQexRPW+gkRs8qNELZrERAVVoET8fPNESPmKROFbqERdoJ9ERD0vRRYxi0QHTHtEQnAPRe55EEVb729EgzKpRLwHiESBGZJErDd2REIIlEWkqQdG5/YLRW0Ng0SFIERGlOGZRCfkkkRpCopFCHM9RTVTTEWVPLxFaXTCRU0pk0R837xGPGKBRFXiN0ZidwdFFVXURPbfjESfT91EulMXRTHAAEWA7QVFlz53RMirEUV/jMtG9myCRGT//kULw7pEn9i5RSESMUWlSBRFb5kIRQ8wgkVxHztFNISYRMdUEkVpfitFia1bRFuikUjstVpFN+wCSB+430TaqK5ENAOZRxD6iUWTo4dGrYWLRGGAsUVATf1EUXANRdvU2kQmpHtEVQgjRo5gJ0UI3rNEzIHxRcGOf0So3JBEK3XeRT+urEUbN89E6EnLRLfTzUTtAK5HihUvR9TqrUXbtANGFPIrRc6IjUSB5r9GyT+RRqI5k0WvVhFFmxOhRL4FtEW7bilFGpNORs14JkbWM5ZFzwJQRf3FDUVahDBFgMdCRa/tkETDyI1EMKSPRR1QRkU7QfNEK0G0RA9ll0SdxFFG2BqVRXN6YUX/dWxGVqQHRq/oi0Tc5N5EDjMJRRiftkRuCmFI3YPoR/3Dh0c390FFqaWURbK2j0ZPBRBFTI+/Ra5LmkSgk9JE3G9DSDmKzUc5xWFHoMhlRmf5tEW4K6hEGv1rRCOpAUUePXxEugusRdlgNEUPi/tEJU95R1od6kYoRYhGX92HRVI9z0VtR9JEqtPgRAqBdUSIoUpHlEOnRsPVREbAF69FI/WXRCeWDEW0kIFG3pgURnaki0VMtDJF6gGPRJhDHUYnLJJFTZkkRabfnEQWzGxGfWsCRtHFcEVUFMJE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Zjf6aA3BckDviSh9b8FyQHQOQXpQwnJA46lJEKXCckDwvNo55cJyQNoMD6Q6w3JAzAv2AMXEckCSgj+PWcVyQPlpqjVD0nJASJHE+njTckCIqkLdzt9yQCwkzU+64HJAs8xsCUzhckCFQVAa++FyQBSTTeJQ4nJAJh+Sa5HickB/8kQWK+NyQJIODcJR8XJA5V2vkcnxckDxIiIPe/JyQA+nhgq383JAP0GKjwz0ckARrfDwo/RyQFrWHCHB/3JAj4KV2GIAc0A/CxXk+QBzQDS8QPIiAXNA/Ce+u48Bc0De2qVC0AJzQO0f4WX6A3NAyNlj7QgSc0BZW7kWvRJzQE1nOXb3E3NAijSqr3kfc0DyR9IkpCBzQAYQB3U5IXNAGPH8/WUhc0DRNAUE5SFzQCCPeKYOI3NAsGtIgwQkc0AYvouRziRzQJLaipdHMXNANsdIGaEzc0BV8z5I+TNzQAD5mAQ4NHNAUFw7Wc00c0AiUKpq4kBzQD8j8al4QXNA2gJbOiRCc0DWVrOQekRzQMaoq6miU3NAFT9vuuFTc0DK2M/5d1RzQECwItiKYHNAbcbVPjtjc0AN+2QLaHJzQNbV+FO5cnNAaRfOIZFzc0CLq+Fct3RzQLwwAIBLdXNAwMahP2l2c0BwZrvneIBzQBRlb4qkgHNAXHu7tguBc0AKRyukh5BzQBqR/Ir3kXNAhrG8KE2Sc0B4tML4zZNzQHiCjKpglHNAUNrnSfeUc0A4KCujt6BzQE2kXi1OoXNAxk+vBVuic0DRKi9f56JzQHz7OAkEpXNAMU+WatSuc0C8CCvnfbFzQA1Xa7l/snNA3P9CUw+zc0DZi5iAtbNzQJIDFYsNtHNAgFCkUfnAc0BVnA5uIsFzQHFD+dQ5wnNA+qv4ItDCc0ACF/prJsNzQBBgQ10bxHNAaK01d9jRc0A2PAz2MtNzQBjdmAf203NAZbuYouLUc0D3k8uwpOBzQGawd4o44XNAaw1dC2Phc0CS7Joo3eJzQCTTuIDi6nNA7P9GjDb0c0Al7g4+i/RzQMzC693jAHRAFoP9ingBdEDgJk6mpAF0QKC7oQm6AnRAAF9sGAgRdEByLaUaTBN0QM4xzFnjE3RAencVUHQUdEA3y0GRSSB0QG5Jac63IXRAWNkwtxwidEAuojbJuDJ0QCavr4ZeM3RAbI7Y1P1SdEDwoa3Dq1R0QOkg7Lv2VHRAWtOmjoxVdEB/axTTt2B0QC2PYswHYnRAjrB8jVFkdEAkVukLInB0QKpzQkVBcXRA/jMcKDlzdEDQP4vod3N0QPzQFluhdHRAUGDXFTd1dEDonUZN+IB0QCYw2V5OgXRA7KpdabKBdECwNkxx9Ip0QHIC9hsWkHRAKrp7cbmTdEDa9UM20KB0QNyTnm45oXRAvDcfVNKidED22uv5DaN0QIARIpAitXRAv6BNr+PAdEAOBfrwesF0QPaDd3XrwXRAxMN8uiPEdEDUXBYbtsR0QElB6oz6znRAERwLQOHTdECEONbed9R0QOALUpLM1HRA3i+tebvgdEB5UVI6tuF0QA3c419O5XRAg4fr+4zzdEDsyCr+YgF1QKDPfhNfAnVAxpxev5oDdUCdAX5qlRB1QKX4/XY8EnVAccSOVSQUdUApsZ6Duxh1QMx6Z3A4NXVA4OchVss1dUDh3jq7gD11QPIyGwYmQ3VAFm9k2wFQdUBrn6E+gFF1QFZx1iwmUnVAyE9yqUxUdUD6LoFKd1V1QKyik6M4YXVAaEYrmfNhdUD0Ic8pdnJ1QBzYI2xic3VA8J8MUo10dUAlijcReIF1QD6rkRavgXVA3mi8fpODdUCPKWVcm4R1QO2ItC6OkHVATD8lvD2YdUCaUmHIl511QDRj5QG4oXVA7uBEDd6idUD8YPop8qJ1QII5W1u1pHVALIdWOJetdUCJT44clLB1QPxWu9PnsnVA3mM44nqzdUCaJo3QYMF1QB6owWL3wXVAmJ+kcczTdUBBAzvdB+J1QCxquaA65XVA1mycyUcCdkClO0HN0AN2QIY+ixcBE3ZAGIeGPU0UdkC7f2fvDBZ2QPoJaPqFInZAvK3iwI8kdkBYiJeXHzF2QOQpQO4jM3ZABDJYG500dkCmlgalHUF2QGIk4Sh5RHZAtID7s/1OdkBMzxO/yVB2QEqC5RUSUXZAO4Fy5yxRdkA3IYfnOVR2QBq8WlnNVHZALeLKkcxidkC4l3bN22R2QKCQd4ElaHZAhvvkmn5tdkB8T7xFdnB2QASoPCNmgXZANKjaJ5CDdkAYbm4xwrJ2QM6nvbwMtHZAWFGS33e0dkBF4HxhrrR2QI7xxrvAwHZAxkW5Zc7CdkDqKQAUGsR2QCiLJovOznZAulos0H3gdkAvQAEO9eF2QMSqYvL18nZApMw95pDzdkAiDDW9MwJ3QLpW9W8BEndAfl4O7jcUd0CMBqHhyxR3QI7kiiIOIndAcLO/SHUid0DAqOXItyR3QKpyOXOrLXdAyCAoKAMzd0DYRDKqpjN3QL/xojrlM3dAgscuFXs0d0BSvl+/DDV3QPyGjFGdQXdAkNsMZbJBd0A8PXYNG0V3QMQJhb9JUXdAAjwd0JJRd0Bm9ibsKlV3QDpSgzCOYXdAAOsJ5p9hd0B2ZydTN2J3QIY/7hEnb3dAmN4CgneCd0Cu/WJLWYN3QBR1gWt7g3dAipGWXU+Ud0AWKWMlSrZ3QCQ7cj+N1ndAfLbwAezgd0D7Tk2d3uF3QGQkfiDs8HdAulkjGVDyd0Aeh9bjIxR4QLDNxS24FHhA/LA9O00VeEDuIQe7bCJ4QHuY5Qj4NHhA496pPAxCeECsLeMXekV4QDzvUVDKUXhAUKycO01UeEAYYhiUiFV4QBQZQLr4YHhANB8rFrlheEDHnMfgumJ4QHLrggBZZHhAv0B/gTB0eEDMKhz0WXR4QEnISR5sdHhAMwloj4t0eEDxub+GrXR4QF7dzr09dXhA8Pm2BKSBeEAQKsCE0oF4QDAi/rN6hHhAwril1ZmEeEDcBvmFmJF4QDyxcWCnlHhAdssiQPWVeEAmx3Qhs6R4QK9E21bPwHhAStnz9QfFeEDEFg8st9R4QJGLyrjF5HhADImRdwL0eEB9Mno9jPV4QFi5+xAYBHlA8FAIhpkFeUA6CYFWDCR5QMQ8e8okJXlAwnR3IxQseUBFKOrv9zN5QD5k0+wZNHlAmSgkjQZEeUA6YZRe4FB5QOgYpzQ3VHlAnJZO4cxUeUDB/B44RmR5QHSOPozocHlAJl8e2Xd0eUCqqTPQwLJ5QIO8bR/UwnlAmOXysELUeUD2KHWRzdV5QPEDyGHA4nlArHEhXU7keUBQiHrJJuV5QGYKY2oa6HlA2lK54/oFekB8Acms4Cp6QFm1s4sMNXpAIMmoehpFekDYzeMD5kt6QE7Xr5ctUHpAYruu7iNUekCK1WmVKFV6QGovZh6+W3pA+m4TR6RkekBoLurojHJ6QEYQVHFidHpABrqm97F0ekCLxiJl44R6QBplsUihlHpAUEaBes2VekBUbAg+SKJ6QDLJBMifp3pAZpUQuuisekAUF0vL7K16QE6igVFIs3pAeuGlVA22ekBSLZKiGsZ6QBDQztKi0npAZ6kORyfWekCKhtP+4dd6QDql1Lg63XpAgTWt1WfhekCOin+vN+N6QGDP8fE27npA0wuCZBbxekCAYfSAYfF6QL6vf54rDntAWpxw98UQe0C9CzipTBV7QABCneNaJXtA1RnZ0CAte0A+hP7sTzB7QKQ3qAp9MntAXorA2otke0DvmBsNd3V7QHpuiORmgntAdPO5aoSFe0Ak8Xzmw4d7QA0Uk2uLlHtAehdlecGUe0C9xy/UI5V7QIP+6WK4lXtAayHB6y2le0B7qYOVxKV7QFo74tz4tXtAWmQOxAbGe0BoMx7pecZ7QMJZtByJ1ntA0IEgKrbbe0D9G71TAeR7QBJWKmuX8XtAzlJU/4v1e0At5X87Sf57QDTRaQ6UAXxAwQtbs9kBfEBelioF9wF8QEnYzQeiA3xAMkDCm5gFfEAisQ2D/wh8QPQaYe3REXxA/tSuSQMkfEBc9WSXICV8QLa7VvYJLHxALMddUw40fECif/02zUF8QHZJtXvbUXxAoN9MBCFVfECi6aCCSFx8QBfqxc0OYnxAbGfhSiBkfEDwJpF8K2V8QPYQ87nNdHxAfCrXSmJ1fED6dnd2cIV8QIQ+b5eilXxA4FR3XrGlfEDc1z4IJKZ8QMn/m46+snxAyc3u1+O1fEAANTf9MLZ8QMvXCjHwxXxAKdUTEF7GfEBQ2m8tWOJ8QJq0tgsX8nxAgPKzBlXyfEBSm13QXPN8QMgES1n+AX1ADDy8eksCfUAVLqF8AhJ9QB55Ra9FEn1AJMsJEiodfUDCZ2LQOCJ9QPosDcyGIn1AMI0GvJ4xfUDvhPvw1jN9QCoVMM5pQX1AhlJRegxVfUAqhqSyolV9QAxmiu0ZZX1A7GXXdLBlfUAkmSAVTXV9QP/zx5PPhX1A+hIJPI+VfUAxkQyd3ZV9QHZNfIUUpH1AXuCKfg+mfUDU97lSA7R9QDaumOfNtX1AZnUQciC2fUDobJD/LsN9QAYiGW1Pxn1Aklxmf2zgfUASrzOaTDV+QD5Q0grjNX5A+mP0fz4/fkD65t1R8EV+QK5xd+f5VH5ARDrbDI5VfkDKsoGY+VV+QOTCEnZ6ZX5AJTVd0jd1fkC0pWrpzHV+QMiNFRu8hX5Aos+nTtOPfkDiJ9IntpN+QFduXljGlX5ATNXB2PmlfkCwSDyWCbZ+QADGk6ROyX5AbI0daKnOfkD1iy2GwNN+QAUdfHTL335A5dWzENrvfkDfO2OsHwB/QG3rmAotEH9AkPAKA/gUf0C4Uw5WjxV/QKB3ZyIjFn9AFVLhNhAgf0DcZI14MSZ/QIohEWUVM39AHP/88zs1f0DKN8Y9zTV/QJGpiTI8Nn9Amu5dSnA4f0BMqJjMeVV/QGoTbcQOVn9AYvVcxGZlf0AOf0AZGmZ/QC1EP4O3cX9A6l5qZeF9f0DoXHeasoF/QH6pO3Wjg39Az4vbp6WFf0B4FbF3Y5F/QEKvML2skX9A0P5SE5WTf0CMtOf/spV/QGSgZP1coX9AZdWgwuelf0CFIjBQU7F/QIrQgIqV3X9AEOpvYdXif0ACKrt/L+h/QDm4QUuG7X9A7vsl0zn1f0Aml0sRz/V/QH+VH3ruAoBAbX6UiLwKgECCmucQ3RqAQJHPLkwnG4BAMDu4SSwjgEDjsyFSJi6AQPzKMMspMoBA3yDiHvUygEBgUy+yHDaAQMZ1bUAvNoBAlALoc+o3gECQXBxNKTyAQLKuBEDYPoBAUEX13oRBgECr8NKI8UiAQIgrXNK9TIBAIlxgU+dQgEBcmL4fFVGAQL7XQ6PpWIBAHvrWgg5ZgEBCcwGmIFmAQLTWe7oOYYBAdGskqfBhgEBG9Q/88mWAQAbC6oC9aoBAkpEBACxvgECU2p/csYqAQM69UlT9ioBAYC1c6h2PgECmeb+VbJGAQArp26UCk4BAIGFicRuUgEDW3kGpyJaAQHIjZswTo4BA6kcdgV2jgECaRSHBhqmAQKTBjuYXq4BAI5SNTxW1gEBowA3GFbmAQJZYFdtDuoBAdjA/vFLBgEBcWU3WEcaAQMOrSOf/x4BAgjZPk1PJgECjen0AFsqAQArtslEs0YBAIjqD80zRgECeMIWXLdmAQF7OSZ1K2YBA0bC2QEThgEB2rH/yVuGAQCoNSA326IBA5Kug5LLqgEBKiruDS++AQKAijH3R+oBAHEy4qT//gEBaV1xt0ACBQBNKA9Q/B4FARic/Xj8PgUCLR3YY6hKBQBayYOYzE4FALnuFN/McgUD3EZjjNB+BQNLGl+OxH4FAmFLJ/wYjgUD/hYY3MieBQLQQ7Z7bLoFAyzPG1ogxgUCuGS4EvzGBQAKMBMgtNIFA+EJ0/q41gUA+aFWn2DaBQHndSReyOYFA0n15XqQ9gUAEMXXVtz2BQKSCshOsQYFAc7wf8rtBgUCuDHqw53aBQGBRkeyUeYFAFMVErkB8gUA54IyE536BQFop9TaZgYFALDEW1wmDgUAQB666VY+BQFxY+zxXl4FAunKoqEOcgUCuE8WN756BQMGYwhWaoYFA7o+Pu+ihgUD73hFFTqSBQIrdroxuqIFAxJpRQJipgUAaP0xAS6+BQDFIBOt90YFAOg5R8nrTgUDrY8eGKtSBQPqm4G3a1oFAhOL76H7ZgUBbVLkoAgmCQPBfY3zYGIJA9/GeWNgggkDr1ltj0yiCQLDBQWCiKYJAls3YRqYtgkAkXKVhozCCQMLZkR3PMIJAW2L73JgxgkAQoo1kqzGCQPw1H3mhNYJAUTo7UpNBgkBQhfwo6UqCQK62JNUzS4JAsMNTU31LgkDpjdDrvFqCQNZxErOcZ4JAhj6EDnKEgkBxflmKQ4mCQCAccWdEkYJAJmaiQxWZgkDuZPW+PZmCQPwa6A4PoYJArN7AjzyhgkBuyJgIDamCQPiKC4szqYJA78qOhAi7gkBPB5sVU7uCQMRb1x2eu4JAulvIy6TDgkAbcof1adOCQD6ayjaz04JAcAK7EK75gkC8BcXceRGDQAAbzmd6GYNAmvYXBgobg0AMwqNfUhuDQLf0WNWeG4NAnsh7EHMhg0B/j///jSGDQKAh69BxKYNABi6BBCorg0Bv0+NkcyuDQDSibm69K4NACZURPWsxg0CWtnacgTGDQH3CclR6M4NAwopxPsQzg0Ce37vYSDuDQOYmCgWUO4NAwJm8txxBg0Dw1pmxPEODQGCzHhWJQ4NAwONvf9NDg0CqF1aQ3EuDQGJZXaMqi4NA6H1lK3KLg0Ayp3eLvYuDQArBQLp5k4NAXqf9xwGbg0DdURdTSZuDQOft9HqTm4NA1m06BN6bg0DOFBO0mqODQLT2C13lo4NAjOo7oR6rg0AkpltFaauDQDbZxge0q4NAKE92z+urg0DIqNP4XbODQGLXlv9us4NAMMAN36izg0Dna6mav7ODQBzThkz0s4NAFLAqZLC7g0DYVSgH+7uDQKYLvn3Jw4NAggiowQLEg0Buyg45k/iDQIF30ptJ+4NAM6Q5a5L7g0Aeq1RFav6DQJT1jOpsAoRAFJRCXlEDhEBt4XZomgOEQOYle3hyBoRAKXhnah8LhEANfD+IaQuEQOeknsyzC4RAcLKb8f0LhEBU+ZrVcBOEQP4kXVy6E4RAFGR/KwUUhECgLLkLPhuEQO3YKJ+JG4RATWNR+9MbhECvNbwqCxyEQBN3EIp8I4RAqEpTMZUjhEAyV2UzySOEQLZ7XG0UJIRALlN6kqQrhEAEoZZ7zyuEQMsvPzAbLIRANBSdPp4zhEBwowoB6jOEQJyvY9kfNIRAcvGsbrlLhEB+Q9RIeU+EQCZwdU3/aIRAAnjF3BxrhEBWVhnIa2uEQKJtkVWya4RAbYi+9P1whEBdvo3/bnOEQNGV6mT3eIRAJIBQnj57hEBiAAFhiXuEQAWiQpXTe4RA+ty7ePuAhEAs0z36kIOEQMkRhnzag4RAcl4XYV+LhEC6u94TqYuEQNhQDhj0i4RAoBml2VKThEAy3fCnnpOEQMfa5Ojpk4RAK0IzczSUhEDgbNunf5uEQPxt/o6km4RAjqcyPcmbhEC29hbi8JuEQJnJqO87nIRAMLl1KHajhEC/u/ZFv6OEQCvww5QKpIRAAU/FRcarhEBpoXxbEKyEQApjl4Pgs4RASqEteWrZhEB28Gp5PtuEQDzb+BCK24RA+eIeu2rhhEBhQyqMkOOEQDSMO5Zj6YRAsCBWahnrhEDgoN3bXuuEQKDWV2Gp64RAJa30ZDXxhEAUF+YAZPGEQIadk0Zm84RATOVq97HzhEC3TfVHOvmEQGhEEvFZ+YRAwFswUXH5hEBwy4DPM/uEQKaH3wCA+4RAogSQRMn7hEDSTtxzcgOFQEJ2JvW+A4VALhQa5wkEhUAiDMfKVAuFQJK2mMF9C4VAqk8TvqALhUDHFecwxguFQJG/1SboC4VA97CanRAMhUCQbWdulBOFQE9BQzLfE4VASmWRaCsUhUBW6sletBaFQKPBf9ibG4VAFK6w6OUbhUCKw/EHMRyFQP4Ppba0I4VAGCO19AEkhUDO/DXbE0uFQEScrjdhS4VAlr7+kThbhUBeSeAMf1uFQJrmHLCgYYVAQX6Q+p9phUBjNlkMVmuFQEvR8FCfa4VAGsOH3HZxhUDKFjWsmXGFQMBZKneUc4VA6JzyLd9zhUA2rc+QmHmFQDghmTV1e4VAsAmyEZ17hUDYGDlpwHuFQDdJnJzne4VAhM9FM46BhUDqiyfOaYOFQB8NEQm1g4VAdwn0jv+DhUADMUcmvYuFQDxu6sHdi4VA5H+yIAeMhUB8PINSiZOFQAr/1ELUk4VAoPZ9wR+UhUBoCde33ZuFQAyLXrsrvoVAJBUyulHLhUDI+wiVaOOFQNILjoq044VAvyaIKZXrhUCY474fQ/OFQH+qFZuK84VA7IPrh9bzhUCs9IVUkfuFQPsljQDf+4VAhsgVOKwDhkBwCSYV9QOGQIaNke+2C4ZAOiHHossThkBGEsuOq2OGQJAa+lCAc4ZArCsJYcpzhkAseMjZJLmGQMKEx+siwYZAEEe1rqHjhkAYnkmQ9/WGQBgfcdaQKYdAI3IaKZIxh0A0CfupiDmHQFwGFT9hQYdAklRSZo1Bh0DkK5wsCn6HQFdHxEDHsYdAGiX/cMe5h0DNTPTgn8GHQHYVMarAwYdAM9B46b7Jh0AK+LBG/92HQKAFHWkB4odAaJDy2QXmh0DDxdkZ/+mHQMiwZp249IhAYUuoIrr8iEA= + KBZXds7jZUAYxSyCnORuQANJK5hVInJAjMDylKaDdkADpwfsrTN5QFn7C/FFpH1Aen7y8RS0fUBoaXt7VhKBQKPcBSdaaoJAaJhppQKbhECjC/RQBvOFQF936dM5M4hABzm+bZILiUA= - + - kFXiRNBvEkVQUCxEmgogRa+EKkQbA5VFR3GsRHHMmURrV8RGz5CCRDvoSURklaJEGiaaRNmFNEQbMUtFAC+bRPP9LUQmolFEzx0iRfsdTkTr541EkZmQRBHWlkT8eaVEEZZhRAyI8kQ4gIlE5m6MROZamUR0NLtGcGVIREY9h0W1BBtFxqrLRHmM9kRSwN1GhN+dROnfaETdRaBE8Dk5RHb3LUVPqblEHAmiRLHCeETxoYpE+ec3ROlSqUT5hSdFda6JRDPKnEWXGY5FrbiBRCNKsESptaJE8g+WRCnwMUSLW3JEUfo4RM+eqkRfddNEwgxkRK88qkYBKHJEyfUyRRBusUT45E9EJRkfRx34PEWK4uFEIlZURuhKfUUTcXJEB0SiRYmwkETODhNF2/MvRD0WcEQkMURELm5URLf4P0UZodFFaoTwRPJ5KEQJpDxEMc9JRejVVkZe0adEL/D9RJW30kT4H89EHqR7RdprREQc8c1Fpep2REeoIkVypVJER3gLRQ/NfUR1HEREqSoXRgbij0R4X4REQFCGRLQ6REWs9FFEreV8RBGNoUQC95dEgtpRRDszi0SSgmNEhsaqRIJ+V0Q0eL1Ew94CRWlCVUXeWjlFALKlREhJrEXHQhxHVL5hRcgPukT3D/1EKybKRPI24kSnBbpFVM9tRNcHC0U/cphFhAIyRT5viUTEbD1EBeQSRegsmURsc4tEYaS2REOQsERGmEVEzMZJRCc5hET5YMREwo30RGR/XEQxC8JE6xQvRNrrjUTpy2pEo1mdRQ2xgES/FbxEsqFyRIEZPkQLuExFe53aRGif/0RkkmFEWb9NRS8cS0QkpNBEIklERI4RckTk4XdEqlTfRG9C+USlRP5ErOyYRL5dc0R4CIVESM0+RuImxEThrgBFeWHsRGaPCUXWbJNEJ2SVR6j3F0c1M6NEYq7jRFed4kVyrIFENoZaRGA3XETF16RE+j7XRC32dUTEe2pEBNqRRC2sM0WOjEJErEGARQDzvkQe9plEtfcqRYqvm0SNzp5EXuGbRVVX6EZ/ppVEMcUZRP7ds0XwAPJEv3mqRNiNqkSwblZFNx8tRPPVrUTabWlGi9LeRS7OTkWb1V9FksSARNTEMUQ6G0FEgAysRGhoFEW45IhF/JVNRAPOTEQgmaZEaGlPRCD11ESfbTtF6D4rRIpNNUQhaYBET/4pRHYEAkXGgUZGEZhuRNvKkUQKS19FFamNRFnLekQbTUJEJ0lbRHV8ekRrwJtEGSfnRNbuAEicfOVGOseFRSsP10ZzaYRFuwOdRqzA5EQQZx1FRJu7RD4lS0TjP1lFoCyDRGPAkURwn95FWISmRFu0e0RzVzZEiwjfRHgTLkTxCrVEiByNRDFXrURvjRJFc9uFRCJH8EQ50a9EQJjiRPzRD0bx4JhFXHdtRRd1tkRbzh5FDAqxRK/bK0R1jZdE43JGRF6WCEU1M45FZiU3SQhJj0Xhoy5EqSwoReqwP0RGX0pEN5g7SE/qy0TMd4tGGBtMRJEAkESlpdlE/0mLRFPntUWebbREe9NMRYzX1EWW2p1EpXXTROsAN0WDUf5EyjuCRMf2Q0QH4T5EmfArRF4Ki0T7LgdGC+tcRWve70Rc9DxESTuDRRX1VUUofDJEQYEKRtW31UR2iKlEH5nmROHMdUS0TapEXi+CRGU+Q0Q2GLVHyk28RgpKLESmpKFEVYu9RArRH0XMfYtEl63FRcjuzkTGdeJEg9aXRPzCv0SlD9JEkIvpRG3H1EQwALtEe65SRJtSTkXi1wNFI1dpR1mdSEYAHstE2eOlRIEov0TfbMFEHFlFRYNgQUQn5rZEucfoRAFdk0S+5axE1elVRLFCIUbfLANF0nVPRZ1NO0SWUAFFabOGRC2xk0V0jkNEUXOFROiuSESA/2VEjmxNRJa9wEWJDGVGCnrfRFYoNkU0AzpGJ1tVRWtEMUZ68CBFf5Q0RHjwfkSUMa1FIZOPRkY2HEXVMNdEUakpRp0UC0Ub8k1FbeKeRXplT0SwHYpFNJwZRwSdekTBMTVGLPUURVIpt0WaNMlEN+9VRSgk0USFR5JED+uAREbTRUSDsGlEXF05RvcjJ0WNzr1F8os6RXMXsUa4CvNEMAdGRQ3ilUUhyH9EwSRKRORro0eWGRdFj52DRjPIUETBz9tEwWljRjgzV0QO1wNFIoUSRZSoo0QjmUNESh6NREuCZEQtTKBErQBLRdnbtUYICU1EI9+jRYA1NkX7EjNGHMIcRVBeBUXkP49EO92/RcCfgUTbkJZEXuWmRC0jSkR52I9EwqLIROa/N0Up6SxHFbpoROIqKUbu1LZE7peKRVjamUQDBFJFwByBRIR8MEWmYrZFvqZaRBU2eURBEa9E0hReRZTIaERwUfREk86tRH4rO0SZ5mZEHCxIRP0hpkVTnV5Ee8VhRKaZVkUAGdlGLrmSRLtM4EXEcqNELruBRI3vT0QyCFREh/UnRNyuskTsQLBFg46fRJMrAkXoxt5FjztMROmIwUQSwLJER/4ZRUI3PUY5VLBEhXGSREmOYkRv3hdF3D11RLzLK0Vn4CZFaba1ReYcSEXAdqtEeKAURQZPOUU7sV1Eg7gXRS+2P0UA64hFuayyRPRkCUeXQ4FGFDJ3RLJLwUTbFkFFp1WPRFdg0ERHeAhFEDCQRKSztEQ7J2ZETrghRcNUtUbdbj1Ezo/YRWYrsUTYUstEZ+eHRb2q2ETnC2tEuAy3RJJwl0RgS3NFjvkkRdtufUUQYLFEz04tRTMEikSEmK1EF8FbRAZD+ERRGi9EWGE0ReG9NEREqCREdwZDSNquDEWXs7xESfi5RxTev0RtnJdE2QVQR5oWj0X/KTdGHWYyRWfphkTEblFEQbSLREGy+kR8KYxExasVRuOkbURblb9EbqHDRKmnMERxcJhE3fKXRO3c0kXz605EQIZrRF9nV0RBfM5FeUegRXavjkROWYhE7nypRwJ9rkTE+hdHQYtzRZb5AUbbwxFFgaWpRIn8y0awnj5G9qgIRr+4FkV1no9E7ZlhRESwg0WAso9EZLBMRhd8DkZtOJ9Fr0tURcK6ZURPPxVFv2A6RKZYz0RK8Y1FkskuREDGZkVRmHVE9FpnROhSn0QcKRdG+l1kRXClGEW7nblGClgrRhufV0RMOb9E+AKWRP/sLEWZmedEzq9kRLsZNETfvUxEnUt0REViX0RdFTlEytNKRJWoPki2VsxHqhOHRLdqaUcFUn9F1ISQRtia5USolopFPqSURI3+qkSC4GpFJTHXRLwLXESK+JdEaWeORFJ5+0fNMmNHriExRKq6qETobpVEsHUKR7lm9UQeDiZG25cCRcpJsUVFh2VGYDBhRbsYoET7L+tERQB9RSF8i0RKGgpFE3dHRPIhUUSE07JEz1+TRYeUCUXTz41ETbMHRXwtoER77EBEOJyURBNUNUWss1dGMWKURjWLl0WEUPJFRjaMRPKC20Qk/NlFdfqSRL5ojURd7INEshWVRc5+m0S4vYhGf/71RObEtkUa3ZlEy9GnRMfnk0R4kM5EXhIRRb1ZLEVTn/hE0cBpRNTRf0R+rWdErNnSRGkzp0Wq6p1GYpdkRh4ODkUdaeRFkMDXReqU4USBoqFFQqgaRgH4oERs4rBExbp2RBvsSEZ8WrJGZqd6RJVdU0UhBgtGe2GDRLLR4kR9bIxEjyqaRAv8OkTFnaJFV4KVRDUPAEWpQRRFOSf9RIF3aES/3tJECF85RWyiHUZpOVBGLhFpRMhHgkU4KZ1FZdAbRcFywkWGNZdFrRyNRAl+rEVfAoVG3Bd2Roc6o0Tfm+9EaZUDRTDP+kWHG7xFlJvaRJK0hUVdQohFlS7CRMaZmkQlsYlEbLhNRx9blEQXMQlF+8DSRvzbdURmvYZG1FxIRD2piEUQKpFFeT4+RQQhuEU8fY5Eb2b0RGdxhESmttFEEs19RM5VpUTpbyBF7DeKRWcWrET7wAxGMI0/RnlWQ0ToQYlEfwP0RPoIhkX3t4dEydOPRbQrM0XVDcVFZzAORX7HUESJmXJEP40qRYSclkTJGpJErlqHRIQYNkQZgkNEalenRJcNUkUmVQxHTFpSRnNKskQiARlFHTu0RNT9LUaMrDVFLDzIRfGXfEWS4ZhEHD1vRLE9lES//ghF4KlpRJhqu0TU9G1FAS6FRbmQ50Qf52hEFxXARCxq3EQ4IQFF2kacRKrwTUR6M59Et21ERMSab0QMzp1EwhY5RD6mPkQtpBVFvgYfRU0/k0RBT2JEccj2RO+QxkTWB15EcGxZRJWI9EQKZkZEsJ/ORCDOBkXMJYZEgd9NRPxrh0RugHRGhmMGRo6Wr0VKmzxEaRgVReQ/00SAjhRGyzKWRZJg50RAKihF94HRRIhWeUb8Vh1Gz9ObRTp2zETse6pETpoqRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 1G/3iAzBckBQ2zu0bsFyQLgTV3FQwnJAdowJ1qbCckADTL0DO8NyQK6RaaHExHJAbkdMj1nFckBabSOAQ9JyQHDi5Riw0nJAWisC00XTckBRCbvjddNyQJA3X+pj1HJAsfVqF8/fckArzsVVJOByQCU4Q4G34HJAKrtpyk7hckDmh6MpUeJyQENkUo2Q4nJALoHqhiPjckAYJ/wrUvFyQFAA6RLJ8XJAfvrX4g3zckBO9ByDtfNyQILNsgMN9HJAlq8FWKL0ckA4LOUHwf9yQFBra/pkAHNAPSOyJPkAc0CCvu76JQFzQKYhdsZKAXNAmM0GCYsBc0DVEB/6zwJzQGI0QJD6A3NAzTKoFCIFc0CfudpkCRJzQIwjsTImEnNALu+2dHgSc0DaK1rMvBJzQKrh0VP4E3NA+Q2FxHcfc0BmWVfOoyBzQDpzOjM5IXNA6PrRVWQhc0C00XsTeyJzQIf+qIQPI3NAdDpfQzokc0BpEr41zyRzQIoz4rlGMXNAIq9UaVoxc0B4M6JUDTNzQFa3EHSiM3NAhi4dSzc0c0BaqgVT2zRzQLyQbjzjQHNAc8DL3XhBc0BGOWz5eURzQEJB97RCU3NABqnMGKRTc0Bfcb7l4lNzQHie0UB7VHNABpLKJjlbc0COaY1pi2BzQK6CndU5Y3NAZX9OKdFjc0BozpCuSXFzQMnjA5RNcnNACjWVrmVyc0CNySVNuHRzQJR3mzFMdXNAhrqABnmAc0BevJLfpIBzQD067rUMgXNALgg6A8iBc0Bia5NaXYJzQGoU2QmHkHNAmmruFk2Sc0DIOvG6zZNzQFSQsYFilHNAvNtEo/eUc0DWW5LkjZVzQEHot724oHNAi858Ylqic0DhPLYUj6JzQI6S74/oonNAtVaSxiSjc0D4x/4OBaVzQCm50dAzsXNAyxMOWHyxc0CbYb2iEbNzQNWERU63s3NAckOojAy0c0DCJbSU+MBzQInU5MEiwXNA6ESNHNDCc0C8lMzeJsNzQIydvWTX0XNAcXoISzbTc0Bbr12Q9tNzQCJNfFni1HNA2pkN6Djhc0C9bp/qZOFzQBQ1Corl4XNAl9W8CNzic0DOZH6g7uRzQBBmSfk29HNAIiPHKHkBdEB6lFXZowF0QFDj6tS5AnRAeBojTAkRdECm1wlwiBF0QBHgbJdNE3RAoRHIu0sgdEAglaqkuCF0QMwBsCseInRARhd3vLkkdEDyCUACUjB0QI6qT1u4MnRACArBYtYydEASWIrqUkB0QH44RJj8UnRAFOBi8PdUdEAYU31cjFV0QH9lxC64YHRAyvlM6AlidEAf/o4eD2R0QBlpdSpPZHRAR97bdSJwdEA+cN4vYHB0QJABXA/HcHRABhboGUFxdEDEBsCIOnN0QEQHcyI3dXRAmuy6P/iAdECe6iWdToF0QHytg/bzinRAr1wExhaQdED9Bvrba5B0QHA5D3PQoHRAQ6uZDTehdEDG6wThj6J0QKYCBIG3onRAmL40gNGidECINohFEKN0QG9hoAwJsHRAUxxWO0qydECnF8IoKrN0QGRjCnnlwHRAAH4LEHnBdED7b98CD8N0QBDkLkQkxHRA4BxEbrnEdED0pBY7HM10QFmGd5D8znRAtJHBo+DTdEA2pJNaeNR0QOIcdTXO1HRAC47F9LjhdEAwxgCRv/B0QOZ1SHcC8nRAddOaDY3zdEA+JAYLpgB1QAZ/cJXQAHVAcNJKMGMBdUCHRW5l+AF1QGQNtx1dAnVA2k8F+JoDdUDw7NMhlhB1QIZ24PU7EnVA+1xjrSMUdUAAUqRcuxh1QBSybqgWHnVA74Jyu50idUBSKH9DzDV1QIwb7oeyQXVA7IqplyVDdUDqGatn2kV1QN6MnOfpT3VAzEVuUYJRdUAmxYPyJVJ1QNzmoB0zU3VAIrSDvE1UdUDd9v7fd1V1QCmdzs8JYHVAKkGa2zhhdUB9VNBLd3J1QC+l+X+NdHVA8MndWnmBdUA0zHE5rYF1QJpSCEyjg3VAAAVOKpuEdUC4dpJgjJB1QJMxdRtxknVAeNErpT2YdUAe8wzslp11QDQuUaKToHVAVq9sOLihdUB3cDnC3qJ1QG3v4cfxonVA+tW3VXyzdUBKIs4nzsB1QGBDtMX4wXVA7FGFIc7TdUCSrF1G4991QG4+ghcO4XVAjHv2NgjidUDUTq+URwJ2QD5XQOtmAnZAXhLRm9EDdkB+eeQVARN2QAChpaBNFHZAkHruPgwWdkCq8kb4TBZ2QDg9JUaQJHZA3PFLgh8xdkCKpBWFJDN2QJj+LgWWM3ZASHoZRJ00dkDejZx84kB2QGEvL4IdQXZAwSSthnlEdkAja9F4ylB2QHTq6HERUXZANi+bXc1UdkBebN9aIWF2QJrw2TvMYnZA4KjFLlRjdkBDUJg82mR2QIb+VDwmaHZAupfmuoJtdkA1byNXXHh2QGAUqjZPg3ZATsc6wJCDdkC07Hee+YR2QKQsrJm4kXZAhS11TrmTdkDrnlNnIJt2QK/RXDOjoXZA6VS567ewdkAgV64nwrJ2QB74YcoMtHZAjhM9DHq0dkD2IDeWsLR2QCD35Mx2wHZAnu9T3b/AdkBOL9+UGsR2QCasUvXPznZAHmU/MH3QdkC5yiVmf+B2QKeue6CR83ZAhN7fIjMCd0DvmDygARJ3QP8m+QYPIndAtDtgeHMid0DtsZtNuiR3QJaQoxCmM3dAqFC9HA01d0AM4JwZnUF3QBWwiAIbRXdAMw/4bkpRd0DaKX6uklF3QInC7zArVXdAWOA2HUlhd0CAwHGQjmF3QLCXquwnb3dAFt4nbZJ0d0DMMXrhJn93QKbrhg14gndAoM3/VnyDd0D5SFh9iZN3QBPh8cpKlHdAhukYgI2hd0AGuVA8m7R3QARPUpjj0HdAVvRuUGDSd0D5REmn7OB3QJC7n3Xr8HdAxUBl7FHyd0BiQI08biJ4QKLW776JI3hAOsp7NA1CeEASczI5ekV4QLAnVaXKUXhAfKKvBIdVeEAqqYpC+WB4QJizb0u4YXhAHCUykLpieEAqcudiKGN4QBYov32xcXhALPG0AEt0eEB+9ESfi3R4QI1KCc87gXhAZBB6/qOBeECkIRzlmYR4QC7pzi9Sj3hAWQD+fpeReEDubDZyqJR4QGDm0LbMwHhAK57qurfUeEAMxATCw+R4QNMECy4Y83hAyHfoswH0eECinyuvjPV4QLtnJVYSBHlA4wlMoZgFeUDUsIzxCyR5QFu80qG4M3lAJFmiio1CeUC+1T48+UJ5QIGqy5TjUHlAaoepeM1UeUCN7LYq22R5QJZAWS5Dc3lArjk1pMCyeUB8sJuVQdR5QG72qG7M1XlAu33S8r3ieUBKB04dT+R5QJxNZm8l5XlAyia/1jgjekAf34CU3SZ6QBL2tDwMNXpAwXVkCw88ekCQgsCAGkV6QCwChnwuUHpAVpalyilVekB4bH2VvVt6QLxC08g4bXpA5Hy1bY1yekAch7WEopR6QLzlbqIInXpAOJNf8kaiekD/K3cxoqd6QCaZ1sDsrXpAjDzckUezekAyBbwlDLZ6QETRF4SguHpAeAJ8GQ28ekCSIitzLsN6QG+sOaQaxnpAjJTlxEHOekBuF8kE49d6QJxgUvs63XpAUXIlI2fhekCVPMjg9ON6QPqJ+lh65HpASOAcITXuekDPA9ffFvF6QCpcM29h8XpAsND27ikOe0D4s9gyTBV7QDy4oA5QHHtAFFz5clsle0CKcM5pHy17QGhMDvt5MntAgFND0F1Se0CiyNjRZ4J7QLsKOZS/h3tAYk2m/eyQe0BYjTe3IpV7QM5jU7IXpXtAUiXspTGle0Da2Wv1ecZ7QMi83Yys03tAktJ1REjie0CZ0FyBpOd7QFJeYq0n7HtAMEs7N4z1e0Bw0+tVSf57QHp33+WSAXxA6voFytkBfEB5WBol9QF8QK4YpFSkA3xANNQT4pgFfECUygoFihF8QMGGYxzTEXxAY0ACHQMkfED0PUBTCix8QPaXl2MSNHxAtls47sxBfEDCfYTh2VF8QO5AevBFXHxA0gF2cQtifEAwaJsSK3F8QKrSPdPBsnxAqeWzHMvVfEAyBaDbV+J8QIiYZS4W8nxAQGEUMVTyfEAwrvWh/wF9QE/3u3dLAn1AqpBYYwcSfUAM4/bGRRJ9QN3wNdQoHX1AXHmNCz0ifUCmdbsjgSJ9QK64HbqgMX1AGJHzq84zfUCWr2VKaEF9QBppNcANVX1APd4bpgK0fUA2dRcALMN9QKe6UXVq4H1A5Jty/JD1fUBsizV+Oh9+QMKwL0VAL35Agi1VI41VfkBbPdyg7G9+QLY5Sn/ViH5AUcKv9niKfkBU0JYljbB+QGDtQodMyX5ALInOw8jffkCWmZY21+9+QLXMDqUeAH9Ad6CLCg0gf0D2pcJMbjh/QIC1NWC4cX9Av2JdCrmBf0Bm3n4DY5F/QNaUXTxfoX9ASEKMMlixf0AjI26Rlt1/QNj4opjV4n9A8G+xdi7of0BJGQVii+1/QLPrJxEmLoBAHA3bNSkygEAwPvdHLTaAQOxaEufqN4BAin8uOnY5gEAr9BPJKzyAQFI/KzzXPoBAo3XNjfBIgEDDkW4s5lCAQPSEfAcUUYBArRVEe+VYgEAMjLp3DlmAQGb8F0cNYYBAFFpBD/BhgEDIH+OBKG+AQFiOpzP8ioBAOkM4Xx6PgED+eajMbJGAQJKI8/YLlIBAnIZ3NBuUgECAwlz6x5aAQDDUgOyGqYBAS68B9RW1gECsxFUrSbqAQP7Vr7TbwIBA6ADXclLBgEDWnwRVEcaAQO9WqkX/x4BALJiEd1PJgED4YwRILNGAQBIy1WZM0YBAVe9rJ2DRgECSvP31RNOAQMh5Ft4t2YBAPK1Yx0nZgEBAsNHXQ+GAQF4wD6BW4YBABVaT4vXogEB75HcQS++AQGAfTln28IBAYVqhXjzzgEB6u6vtP/+AQHq/3fA/B4FAKrrTDj0PgUAeQ2Z1NB+BQO4SYrgzJ4FAOhhglNsugUDtQT5OiTGBQAL3F2G9MYFABmUCNw00gUAkiABsNDSBQLxQrv2uNYFANvMrxdY2gUBoehgXgDeBQNUKodCxOYFA1izvqKU9gUDk2WdItz2BQB97RwetQYFAAocSJqdJgUDG4ObJ53aBQGCHIJSUeYFAxMOdbkF8gUC6oLv56n6BQJx+edNff4FAVipFylWPgUDPykzTVpeBQGw/WChDnIFAmLtROO+egUAqjP0jmaGBQPpM7fLmoYFAvMQwbUKkgUA8SF5PbqiBQBqUHqpKr4FAk9C+a2ywgUA446xUA7KBQG6ed9tkuIFA/oCYfX3RgUAgSsJXfdOBQMaydx0q1IFASJjvztHWgUBI4HBaKtyBQPzuC+gCCYJA9ml0lNgYgkBSdZrJ1iCCQODkztbRKIJA5Y0WF6IpgkAGI2W/pS2CQDKBH+KjMIJAj/BD8tAwgkCTSE0amjGCQMpubmGtMYJAEE4JNaA1gkBSZ+I2Q4mCQCWYWkBEkYJAqdktTj2ZgkC2oFu0VZmCQIZq+9YOoYJAZEwlrTuhgkCggjQND6mCQJTxlbAzqYJApTLUwzWxgkB9zHKZrvmCQKSKkHB5EYNAhszHP3oZg0DAg5hRcyGDQGztAnSOIYNAcJyHoHEpg0ACSTZoajGDQCcGMH5pOYNAqa2sLCC5g0A93DiHJb2DQKLbWl+U+INA0NJ6UWr+g0BT9KFwbAKEQBS/pFPQGYRA4UqSpf9ohECCRuni/3CEQLTrLcz4eIRAJGF4K2rZhEDivlZFauGEQEAfS/pi6YRAzDh1MTTxhEB+lETmYfGEQABPTeU3+YRATg7ywlj5hEBi2rQ8oGGFQHaD1QOhaYVAJM6G45hxhUCszE64mHmFQEfa7oQuvoVAiN2QFS/ChUBo56GOJbmGQB24prQhwYZAKktjPfr1hkB6XlkmkSmHQC9KRqWRMYdAcsspl4o5h0BuGGutXUGHQCKbs/6GQYdAbE35rgl+h0D2zJL+CYKHQOBjRrDHsYdAFQfWysa5h0BArdUXv8GHQMzvSdG/yYdAytZHk/7dh0A4w9NDAuKHQDKu31QB5odAJp5ntf7ph0A= + KBZXds7jZUA/KJil8iNpQGaLOdoMYnFAH3KoplGjc0BUSTk3e5J4QA0wqAPA03pAVKcVi9Ojf0AvGFvR8qGAQKkCee+VWoNA - + - f2HLRFjKi0WWlcdEqYyTRXVexkUbUHVEjkTGRKn/D0eNAU1EKnR2RCoIdERf4phEPAiqRHsjiURaVwlFX9CzRAPEiUXXdEZFhTd2RJO3m0Te0aRFEFh6RFWsrEQUzbNEZGwORdqSwESto6hEQ9kLRSevvURW28REdqiNREDQr0RPqAVHOxdLRD/luERS6kxEaDZvRLquE0aoY49FQ+jfRNvCJEVBM/5GQwebREvzdkRAhrREg5KIRIuQk0WM4ehEEMemRCARaURnNnZEtGHKRN0Xi0RaeQFFuurLRYH6IkYP4tBEx/xnRbNafUS8aZJEBthfREzCw0QGLSpFI7lgRMsBmETLqoBE592MRM+q4ER/xxxFHMf/RuDKnkRHgipFimSTROaxvESdQStFwRRDR8WNuUREshdF/A+BRp3LpUQMRRFGgXXyRcpme0RtD+1EfBiIRFUJDkUh5U1EL7iHRAPi2ESr8oFFhD8gRXDZ8kSsUlRESumYRYGQi0YIp2NFaHO8RKVCAEWwMsFFJDssRjK0/ERhfKBEaP4eRbcdikT+cy1FY/yPRhPy80Rjd1dEq1l4RNfstUS9QElFGq7MRHDvDEWqhHtE59tvRIpPkETyJ31EvKB+RBJzYkRGAvREtOMFRfcr4kTkRMhFB0IQRZyGiUQUPAlFe2vqRcD3Y0R1L0VE05pUR388qUV4bPlENoRsRfReBUbUrFBFz7e6RfCAm0SkmdpEvY/BRADykkRx1KhESL0PRSNT6ER7aNFE11GZRLStzUTrXrhEgiXXRGY3jURci5REPACSRA2VwEQ5UvhEzIUQRZNWokSHMuFEjlcmRS/ZgERpYW9EatXuRfkWiUSYgKxEOoS7RBZFSESe9gBFhmKGRNL9Y0TVuGtF9hjwRJzK/ESebeBEQiC2RFhCPUVTY4RE2gDYRIKvV0R+2V9EZsWHRJmpCEUu7FpE4C2QRFRmG0UwWX9EqkthRQTDDkWTkTpGeZELRUdGp0Uz0yRFd44VRelojUT6WKZE0WrsR4y0aEdMu3FEG47/ROMzQEV3YRZG//G+RGEclkSe8N1EKriURJ1R0EQbzoZEQgRMRWUmi0WpzF1EFr/YRPbH2UQg2DNFo6QORRPwhkSaGgRGycsAR4pRpUTrBGtESoLaRBJcSkRe57xFP9NSRTtO6UTtDKdFfXkkRusXg0SWpzBGSfSsRL98B0XTiJJFEsmgRNq0nUQQMTxECWGMRM0Ti0SOJ3lEEX6LRJccdkThi7xEk7iMRBR/E0XRT8lFTbBiRDfIqkRiyo1Eee60RDt34EQrenVFHKNgRKhhf0R/SbVE+CM6RZZkjkbd/YdFvSvFRKdzlkTRd6NE8fcESFvs+0a71M5Gfx+yRfPJmEYdEgVFVmKcRJiHckWfj4ZFkW+SROObnkSzZNRE+xoURnIIvkSSsJREuOZURB9UsESAA2lEmtOERLKwmkQY/opEueHeRKz2R0VneatE5n6ORNeRQkZVddZFak4NRRgRXEXCIDFFKzeZRNEfxETZhllEriTPRPhdREknY6JEMiIuRXZmRUjY6mtEjHQ6RWDpk0b0iRdFuczPRXYNv0TnEIZEXi2cRdvNmkXoaWpEoGWuRGrTGUVEEoNE0HSPRACh40RWGX9E5Tl/Rb4VgkQHxI9EGTeZRW8+6EXArJZERW1pRSokxkRmZtVEEKmYRFuJvkQTGrJHAN1lRAodzUZ/FSFFCvInRTtHmkSoIatETjrwRC3xiURP6QdFPkzMRdgRCkWFHMZFubuVRQE0v0VdEuBEaNJaRCoBpURAG9REqFSrRDr0LkVJ15ZEjra+RG1pbkS/CIdEpMbwRLESKEWDG5NE6O2WRGACKEZoZnVEF8xQRas8ikV+nGJFL4qWRPocAUVvGq9EVh6ORMI66EU/eENE27uaRIiUh0SqEGVEOe2CRMcMeURvx3NEYhiYRhXQtkXaEMxEMwcyRpNUG0WzxDVFSU+VRfc5AUXrr49F5EbrRqYbREZauB9F/wz3RcMf+URPAZhEkLfARCt9h0TxO/5Ee+JeRKOv10fowgNFlJa0RhuczEQxWatGQCRpRDL0YUVZmwNFeGHoRAX2yUQ+mOJE+3mzRPcOG0Wy/IpEswc4ReuGx0TYTpNEVFsiRQZruUSRJI9EAdJrRWCDWERq51dEd7bFRL6pakTbLPxEgT6BRNvggUSREJ9FqQqPRCTmyETNVwtGIAG9RMayXUa0pYFFSgs1RfJnkEWvXK5F9n5/RWYyiET00RNHXOeFRhQycEVS0alE8XQLRTBMF0WV7YpE74EXRfwHXkV5j5FG90hfRDwV6kUIJPlEdGmERX+F2USegYpE7iQjRWwplUUpBfxE6SEKRYI9pkQEUyJFZ/1LRfGPekQqszNEwgyLSHjigUU8xJtEq0sBSNgqtEThAIpHV9WpRW7pgUQodRJF6gFyRvaetkWVMrZENDwAReje2UT3F5dEt5WCRDEgQ0ZWj3JFVCXsREfnFkZH5zRFntHwRfdvfkVNiu9EW011RGL3OUXZYXFH46NVRKgOjkRz6/1GTLcxRdXrlUVlex9FFwOaREk3xEYZhqZGlJoHRoffhUU8RKJEN4jfRXSfCUUuQzBGF8ndRekpe0XWkhxF1coaRcMsLkUCj/pEHlyWRJnIV0R0w3BENNcjRZRY8URDnT9F6YmZRJrzmkQzYxFF/SJ4RjN3ckVAM1lFAX75RrHEkUYzVn1E6UO+RFQxdkWmxExFDDw/ReEET0gEJNpHLS55R0zxO0WPW8RFUXeURhCAJUXm+H1FUgSIRKmCq0TrNChIVJ2vR83OOke/zt9EFxprRgxPh0XKOY5EpmqNRBXAgES2mGtEVcVsRdcqz0QAHpdE0l70RXYXEUWY0bBEeyJaR9moyEZgXYVG8vhrRfAPuEVyQclEbI+6RHpDLUfNiJxG9yczRknsd0UszN5EiweMRD/uwURoRIJE4gWQRGWyakaNmvxFDL66RRyb0kT0sAFFdHbpREN5wERZChpGjOTDRTbaXEUCg9FEPsPnRg9BnEZz1hVGBig1RQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - XT+qXXjAckA6lkb/DMFyQJr2FNJuwXJAlFq52k7CckDpzSIcp8JyQEDT4E07w3JALEvAA8XEckCsYFFVWsVyQDutMDtD0nJAKJYu6q/SckA4pYfqOdNyQOScapB203JAq/HiMc7TckCeja0XZNRyQDx5G8jO33JAvaWz87jgckAo66EuZeFyQDgVT1tQ4nJAgmKdJ4/ickDSYbd8JeNyQE+rMOjJ8XJA0aA143vyckDyqeyrz/JyQE2RS92283JAdQzJTaL0ckDKKt10wv9yQNrfCtBmAHNA0WvhAfkAc0CWJuM8JAFzQNuTNuxMAXNAtHlICY4Bc0BwKvR6zwJzQOE5y6L6A3NAcwPDRgoSc0DHcoKreBJzQKpThIq8EnNAI/q3rfgTc0Dq9ybZTBRzQAKpTxB4H3NAoNFKxqMgc0D6xqRVOSFzQJAsKwdlIXNAr8At5sgic0DIP/+jDyNzQH7/yEYEJHNAcAP0w84kc0AmUyeESDFzQGY9dcpaMXNA9NGaWSMyc0AaEhrWDTNzQECRAzo4NHNAm6RodNo0c0CcbuL44kBzQNZ3/WZ4QXNAUjUmX7xCc0D0bVYEekRzQJgLERKbUXNAUrzMYBBSc0Dll5XCQVNzQNKpAq2jU3NA7PTGOYdUc0Dvxjw8i2BzQKYkUtEdYnNAvMjaHTljc0B+CXvKzWNzQKPqv1AncXNA7LF1V0hxc0Dan1VR+nFzQBx+6JRPcnNAZmPqkrZ0c0C6AVqZS3VzQKppANp4gHNANCtw46WAc0Cmj8UHDYFzQPRzvWhbgnNAJHCOcaaCc0BhMUwLiJBzQEFo1c/3kXNATzMPG02Sc0CIpvmQzZNzQAfdN2JjlHNAkQllc/eUc0CIqWL9i5VzQPhOl4u4oHNAqTBYcE2hc0AQzstXdqFzQMpquolaonNAJp7kCOeic0CQlEp7BKVzQFuvnFTVsHNA2CkODTOxc0C43KUJfLFzQK7daBQSs3NAzvOZPrazc0A0PQC/C7RzQF7k22+ktHNA3VSy7/bAc0BZgv1HPcJzQAHY+yzQwnNAZntOnybDc0BYS/d3YsNzQK6rZavX0XNAwtl/3zLTc0A6ptMU99NzQBqIiIbi1HNAUeO9DKPgc0Dk8/tnOOFzQMoYEPBl4XNAlgaPA9zic0Ceg0hhD+NzQL0/MTA65HNAkor/MTb0c0CcqTJDjfRzQBnCicBPAHRAQSYsMuMAdECmdw+7eAF0QAsZ11OnAXRAtgerdeMDdECyNUVjiBF0QC4d7S2mEnRA/skKAE0TdEDOnCea4RN0QJnZqcZ3FHRA+lXMro8gdEA3FJNltyF0QNaOlkLXMnRA0J1KLVwzdEAncyE3VUB0QGb/4Mh5Q3RAjEGSfPtSdEA2PjIZ91R0QBzteoeMVXRA1t3esLdgdEB6IjBGCGJ0QIiOO0JQZHRAXN5kMiJwdECg/CALYnB0QFsRktdAcXRAUkc+RTpzdECgwFtlo3R0QN2fIYI3dXRAVe5lmWeAdECMMn20+IB0QO58QVBOgXRAHQ93y/OKdEBMKpk+FpB0QHIOGAprkHRAWHdQsqOgdEA8q37fz6B0QLG57eu4onRA/sERr9CidEC+FdwMEaN0QI1qd4JkpXRAxPEp6ietdECq4SGICrB0QI6/18rFsHRAhFYR+iizdED5DWDXur90QNs8zWbjwHRAYnmk5HjBdEB9qpay6sF0QLLz3fG6wnRA6GH8QA7DdED03MS4IsR0QDd8cwm4xHRANjsxCfvOdECRR2ajqNJ0QAA/RRk703RA4ocFfuHTdEB3NB37etR0QFvfb8fN1HRADSirUbfgdEAu6RsuJOF0QF48yPK34XRADCQ+9U/ldEBmvZCRjfN0QM76jOp59HRA86eqhKUAdUDPHjYFzgB1QEFou6lkAXVABKEKU10CdUCqkZF2mQN1QCgouDyYEHVAnYpJ5zsSdUAiJrnLIxR1QGhECJC7GHVADgy7ORIedUCusWKAnSJ1QHpOtZs2NXVA/CXa3sw1dUCHLdRHKEN1QHq0+giFSnVAA6Muo4pOdUAiFHjg5E91QKrzKMyBUXVA8im5hiZSdUDzDkE9TVR1QKptKoF4VXVAPG66J/JfdUDZOX3xD2B1QEbdDHU4YXVAmrzP2XZydUAOzcl6jXR1QIAymdzigHVA3MSJlHiBdUDWWlCSroF1QMgHAfakg3VAbnreqpqEdUBvA/YAjpB1QEsOPs+6kXVAIAMmSXCSdUAckuyvPJN1QIv2gsg9mHVArv1HT5addUAsXlsI1591QFqipV+4oXVAKErg3tyidUCYKBdm8aJ1QCVOk0FIo3VAmI2mn0uodUAsnwEB5rJ1QDEIqP43s3VAk6ROxTnAdUAkTsUwzsB1QHi0M8ZjwXVA72sPIPjBdUDy8UjyNNN1QHdxZvbL03VA4W5q/A/hdUA5fmKwB+J1QAyjN2A35XVAsEYn7EcCdkCRdiod0QN2QGgLK8oAE3ZAtHQNmkwUdkDsxOIUDRZ2QETXNkBJFnZAMzVvbn4ZdkACDf2riCJ2QIakeUKeI3ZAzrsHEpAkdkBQW9hVHzF2QOSbpWGcNHZAROuDDR1BdkAQF6eueUR2QN/6dSX7TnZAwl4ZyspQdkBwmUi/EVF2QL4Boy/NVHZAFlhurMxidkAo0XvkUWN2QJgTXNbbZHZARLx/KCZodkDQ5//Rf212QC4sAC5aeHZAQgUAHT2DdkDHUlTmkoN2QGoXG8K3kXZAenPlSTuidkDs2icYuLB2QJyM+SfCsnZApo+YUg20dkBIdqSKebR2QErjVFO/wHZAmnWGDhjEdkDU3Jptz852QJDG7GS80HZALoCCN/XhdkAMsS/DkfN2QBuYQ3xL9nZAXleAWzICd0ASKTWNARJ3QPrqj9j1FXdAaPDYhw4id0DoSnAjdCJ3QG4xiMepLXdA+KwvTaYzd0CkFDjyDDV3QIRacTSdQXdAltyzAxtFd0D8jdCFSlF3QHi2VSGTUXdANGpYJilVd0CadN0ISWF3QF6OaE2QYXdAF6E949Fid0AUdNUEOWV3QHzZNAknb3dAQ6i7iXeCd0DMdvMVVoN3QA4G2j98g3dAjvpJPgaSd0AULw60GZJ3QBammoZNlHdAjOIHZJu0d0AwAaTbLMN3QB6/Iyrj0HdAaLCdGOvgd0CkSz0XUfJ3QEw3oMr6EHhAxnjjD48SeEDCJ3OFbSJ4QILB9UMMQnhADrINNnpFeECsNtkQy1F4QGiGnP/2U3hAts0cPohVeECDtpHw+GB4QLoHmKK4YXhAZunkgLlieEBGJCyQGXR4QFaurnqLdHhAWJUpLa10eED9kPqo8Xh4QL6YtQA4gXhACGC8q2GBeEA07iP9o4F4QNt3oYyZhHhA/s8M4LuEeEA8dLwCUY94QDqZL9aYkXhAkg5g2aeUeECHAHtmuaR4QJrV47zOwHhA2J9IAPXBeEAFPuoaPcJ4QKbIcgq41HhA+PK5EBfzeEBM43A5AvR4QJZSBbCM9XhAtiQPohQEeUCiupxtmgV5QO3Zo7O3InlA19kJQwwkeUCruZAniUJ5QJ6RjMT4QnlAdEP/jPtDeUCwdn2C41B5QF6L2ziZUnlAwuEWsMxUeUB91H1N6mB5QIL6csjaZHlAeBoQtOpweUCC9l7gQ3N5QBBUQu/3hHlAZcDPOjeieUA+LHbfwLJ5QCBiXqZC1HlAVo1CSM3VeUBMaJzuveJ5QGHwQYtP5HlAsgXQjxXoeUCqfTiR+gV6QDvFM/w4I3pACYkcWgw1ekAo5wVVGkV6QJ40/7QuUHpA7iP4GShVekDVTgFvwVt6QNDdmp/HY3pASMVGBzhtekAYkKcijXJ6QMRnAc2jlHpAv98EawKdekCCHz5ESKJ6QAJg516gp3pAEsD8t+qsekAVCn9K7K16QF98z9FFs3pAQ/IY7w22ekCESewNn7h6QOfyQXz6vXpAlkVyIS/DekAircwfGMZ6QDRarLxCznpArAc7NEnTekC7UVQ849d6QG6kFV843XpAnAsgmWPhekCNCPyvN+N6QGz6pFh65HpATBAyhTbuekCoIzHVFvF6QNzB54Vf8XpAaWYk22j0ekBUwJQFKw57QHypLIJMFXtA4BIP41sle0CG5G5fIS17QLBaKzMZLntANInehXoye0A1W2MOwTN7QNpwDFFfUntATrbwHmeCe0DuUQuZvYd7QLuoa3DqkHtAeCisKiOVe0CugTzILaV7QCK9zAx3xntAdglsscfRe0D3J57UR+J7QLivLa7943tAukc4Rpfxe0AFFgQzjPV7QHaZwPxH/ntApwmRf5IBfECOOBkc2gF8QDr+mOqiA3xAofiMXZkFfEANvPpg+Qh8QL6x+HHQEXxATjHDogIkfEC94m69Cix8QLBQVm4NNHxAYG4uuMxBfEAjx4+h2FF8QBSnLEr7XXxALjvbGwxifECdxSZ4K3F8QDz2/Q8Gc3xAnRWCKcCyfEA0L17eV+J8QAjId2AW8nxANkqbfFXyfECekyjJAQJ9QCixb7xLAn1AllOnuAUSfUBO3eVLRRJ9QHDFDrMpHX1AUJO85z0ifUCrtx1soTF9QPyi8QtrQX1A7jWo+2tRfUDad7m3tlV9QOYtmHMDtH1AFpliFyzDfUCUO5UCbeB9QNRtO6jV4n1AxYU3vI/1fUAqI0fD+Pd9QJ0ohnU2H35AxEnQ8D8vfkDCCBHejFV+QPoZPlKxcX5AQHCwEuKQfkDg63A02O9+QPzVp9AfAH9AXlJq+w0gf0BWkyC+uHF/QIW0SLuwgX9AIuQ5vqODf0AsgfhwY5F/QLZ+GPCskX9AivDbId2Rf0BuAVf7mpN/QGPhNdpcoX9AeMOQNHqhf0AVzpkEVbF/QPSrdjyX3X9ASi5W0dTif0Czsv5yKuh/QBw5W92B7X9AtHFgltjyf0CgOOoW6SmAQJcGl+YlLoBAgU1O8CkygEA35dglLjaAQHjoZb92OYBA71sBuys8gEApsud32z6AQAo4kDz1SIBAjkweT+ZQgEAY5c8SFFGAQNTjyDLlWIBAPljiBQ9ZgECCNxgA3V6AQLZTiuAKYYBAIrCffu9hgECOxEkmKm+AQLIEwbofj4BAFCvFaWuRgEBSmVPHCZSAQCUsMkkalIBAjiElA4apgEC+At8jFbWAQOqvfxIZuYBA4PN3YQ+9gECaUWFvUsGAQO5e1JRswYBAIST3MxDGgEBmfmu4U8mAQFyyaYcTyoBAK+S3ECzRgEAGfpx+TNGAQLrR3Xws2YBA2vYLf0rZgEBGhnUnmdmAQI5yZ8pF3IBAF0DwxUPhgED4G89e9uiAQKC2E4pK74BACG1u0D//gEDFh87wPweBQA4hj+A8D4FAr/rYpTQfgUCcsuHMtR+BQLRJ4TM3J4FAr5v5l9sugUA0yEWyhzGBQHYJz/y8MYFAPfdhjTU0gUB1Ize9rjWBQD6EKMKxOYFABh28LKc9gUCkW28huT2BQHSOQs8WQYFA/eCHsrdBgUAglvOC53aBQNDzhiSUeYFA74ZZrT98gUDpexeP7X6BQCgsip2SgYFAKs+OXFWPgUDa5wCZVpeBQOoFUIZDnIFA3rAUjPCegUBjokKNl6GBQMG3bKPmoYFABgcyuUWkgUDwh8Bs66aBQBS0Q7ltqIFAAmHvqu2pgUAePGIhSq+BQCP258B90YFAFZaEQyvUgUAoxwaf2daBQD5CaXkACYJA/u7XgtgYgkD+CRAJ1yCCQAkz10DTKIJAvBmtJqIpgkC2HCR1pS2CQKyf3z+lMIJAdOuUk9AwgkC2QGTQmjGCQOt4dhitMYJAKS91PJ41gkBSwjNPQ4mCQI72px5EkYJA+uOv1DyZgkCeUHTsDqGCQJJu7kA6oYJARLy3Nw2pgkAGFMeSNKmCQJit6KEGsYJAVwlFc675gkAunx1keRGDQIZnrwV6GYNA0naz5nIhg0BX0zqycSmDQBz0dS1qMYNAnn/Xe0iDg0ChkhVYlPiDQEIm+Exq/oNAlDTHq20ChECGj5qVKFmEQIyVXo3/aIRAoDOpXP5whEByjBD4+HiEQN5E+hNq2YRAXAHzOWrhhEBpx6bWYumEQNS88sk18YRAjKtawGLxhED6eQJGNvmEQMXJ2u1Z+YRAw3/fzi8BhUA6iXdZoGGFQODB46mgaYVA3G8+AplxhUAe6dmEs3OFQMgz2kWaeYVATE6bUZGBhUCyD5/kLb6FQDsm538wwoVA4j3BQzTGhUDG2vZavUiGQE7fr3AmuYZAlMM2jyTBhkDG3YrD9/WGQPFgtd/7+YZANL81HJEph0DRSbUVkTGHQFSty5GJOYdAUphNBl1Bh0B7UtSKh0GHQCYC0pldSYdAYIslwgp+h0DUEx48DoKHQBCAyYbHsYdAKPjjV8e5h0DSUrCwwcGHQNyeLV++yYdAg1XjDP/dh0DeB0HZAeKHQHJNWzQB5odASngO4v/ph0Bj8l41Ae6HQA== + KBZXds7jZUD1hHOUyCJpQGS4z0t+BG1A7mf6OVSSdECmgagVL4N2QAy5tiSsInhAzULwjN2TfkA= - + - cnuVRJV3nkRMXh1FS3m7RPE2jEW9q+JFkyn2RAZqfET8pzVH50FZRH6uskRUGbtE/xueRAkllESjxfFE1Z2+RFs9dUQL+61FrfQuRQkJnERzqJRF+ZmHRGFQUESvFRJF1pX9RJO5vUSu3rxEYgkRRWY3mkSJXc1EJZcJRT0Z20SqPBNH+xCYROAXhETVJUJGVsCbRT7dyEQof+JEtiYQRfY3BEexf4lEygjBRAjGhkTaLmlEdDfPRa+C5kRNcqxEePpNRAl5kkR/J5NE2rKARD/ttERg5qhFnUmQRHjpF0a9G3RE0+dtRGEYyETFN6NFzdHsRNhapEQw2qZE83wBRQeWaUSFT01EtmOuRBJXnET5If5EKTHGRGsfL0UybRRHdXvIRN0AIkVOCmNEcJ6TRNGpU0X46ppEDvhYR2yWgURRMRlFkHN0Rn3OdkRjGxJGlQKCRAAccUSQJfxF6hD6RH1jLEUkxIlE+kKgROZcXESEaeVEZO6eRfUhYUWZ9FxEziH8RLxyfUQ75adFwa+PRrU4U0SKXYRFEgAmRdRg90S2iclFQWj4ROmHA0Y7J79ETcElRfTRnUSYFYdEiiIdRYIPykQ1t7dEE+LTRCh1lUbIj8FEhuR6REpltUReLGZEcst0RQsqlESsSqJEN299RK3zAUU5591EzEizRJkxqkSEMJ9E9yNHRelJ1UQnDP5EYpSNRb/gykTacvdEJt6rRalxnkTa0T5Hd0VLRXfK2kS7PLREqyiiRGuIlkVR3vNFu/1/RXdJ4UWzmINE4TOMRMsNykSPgtVEN+YERbL+AUV6OMlEf6mBRN/buEQe23BEnquLRJMye0RDPbVEKI3QRO1Vz0ROvlxEuU7NRMCzu0RBA8pExksDRaY3fURSdF1EeNClRCigakRO0tNEaReNRFoCj0TzfmlF5b5oRGJPz0XcQJBEZ3LARDrek0Qqet1EHYALRQLKj0T93LVEJ252RW9GNEU67DxFKltbRPA2tEQu9mhEqwVdRZpwbEQNc4BEvRyERD8olkSjy9REup+TRWtLo0Q6fNNEbzdLRDmikEQ2wUFFWgbWRBRjDEan6mBEsC8DRaNBykXn/idFppm1RORszUSkuntE+ox/ROhugkSMiddHFqd7Rx3cXkRYSeNEXnQHRfvSIEYRCZFE8r/LRJuslkRlt3REweFIRJzMqESc2JVEn4MKRamjQ0RSxJxEk6i3RMjNLkX83pxEu2eoRQsBAEXccr9EVYWhRMxjwkT4jQRF+jKcRBWVk0QnZWxEL0sRRkrr5kYH26BE3LjKRRV1hkVBP4tET5DQREq5jUWCx1NGZ5foRWBf+0RDZx9F+jafRTgWB0Wn1rZEHcxERAnfyUT1BZpEUlBaRPyMq0R4qyFFFwiuRV+HaERqXc1Ef2NIRJedSEVB3oBEumacRJStEEU5ZGFEQtQbRSt/pkYe84hEjAZRRVGavkQHjoZEwM6SRKbu/UeIHv9GgOvcRrer0UWU8IZGgrUWRTsxTURVxFFFZgBmRIa6g0Q8gZpFRi0zRawNgETZN/NFbDm2RKgatkRJ+5VE7uarREl1mkRVrqJEOWfORFpqGEXlS2hE9DJnRLaJiEX0r8pEhRFLRluU2kWe4V5E9IpARWI2NUXsSBpFYesERZsjjkTN/ktJHV3iRULDT0TdAXFEQEpBROGPY0V9sktIporeRAVLoETRUA9FMHy5RkKlVkSjkgFFRSq+RGlMcUR9gkpFnytiRAjiiUU1Ed1FSMB/RD/L6kTqfYBE3zsXRUVmfUQEfaZEuu1rRG4hfkTlQYdE96uYRX9jt0QlRb5ECsFNRGXbtET3/F5E2GaGRNOqkkX4bupFavKzRLea8kQV1QFFvR96RDmjgUTjurRE93/NR8eh0EYfqeJEGnwuRRPTpkRtqmxEa5ihRIY/ykS/AZdEJv1VRLF1mUXQ7zZF1kmGRCkgCUbsPJpFLbvARWyayET/KnlEKxWjRBFn0ETJeHREt3pMRCXotESPgLFEkJPiRL38eETzfJJEhKb0RCVjCEWAm9JEefNRRLctpUSZhDJG0utrRUrUQ0ULd1dEy6utRFadrkR4XK1EYZtRRVSybkQaZOtE4RFrRTQ0bUQtmFpENPyBRfWmg0RAA95EaofXRZ1Ts0Z4x1pFXQCqRIzIVEbhIyBFLvahRcsaiUQiPclFrJulRlFR2EUr5yZFf6nTRXgTl0QZjYdECR+NRGfv/UTdj4VEahYWRcr+8EfJRi5FVkfyRiPyOUVRTL1Gk/KHRLfOQkWTL7FEq3wCRUqHrUTo8QpFSKyPRGSxgEQfXZBFVDboRBzHh0SqIqdErvYYRb/mr0QouHBE1ZC0RKk4uEQUnZpEPei6RIJll0ShAodFOJfTREw9p0XBv4NEeMxnRIvfS0aQanREhip3REyfUUQ4uDFFYEeIRM9xO0UBNkFF7+3WRckD2ETyoHdEWIuURN05Q0S2g/NGd29sRq2ieEVLY/VETA6SRE69fkSQReJEbNsrRbXyjUbNRJlEmGbzRf+Fd0Qb4KFEG00gRbDKE0XzKjVFTVAQRYGDxkTvN0RF9cb8RIbii0VbYANFgcl/RFMkg0jvtwZFjDRBRRkuAUhl2OFEu9mIROdRhkcAAhZFDvpoRmuekkQ172tE8KSQRWTW0kQKru1EjF4+RrzEX0VV4/5EFE7+RRKhbUTH7cZEFazrRdcUgkU9+Q5FfnneRC1M8kaCPX5GD4wbRTSbN0V81V1EbY4ZRYJp/UYWt7ZGBpHWRdH8N0UOruBE3WXXRfy420RpABlGvbjtRay5c0UssGZF0QPhRGXQZURWmChFDIiIRG1/TUUk2DFF0KsdReqmhERhTZZEoIhmRi7xukVTKoRFlMYmR9ayqUYZdPVE259iRBg/n0WMZGJFA6EGRS0+A0hFMIpH+7cAR2WU3kV7zCNGG8RGRYP1h0VSjtlEPSuhRCD+6kf+RWBH/cESR1+3D0bK4UVFImTIRDTP0kRbCXFFxOUKReV2WETBIwNGcx9oRY7iAEW0PTdHeoiyRobVT0brI4JF7LSSRW8u8ESCVqxE7YvMRC92CUcKnoFGP00PRmhzskRwgYRFXot3RHEfk0VF3BJFIMCRRHcbgkQ+8Q1F34G8RIVFeETs1JREraFXRhOi8UVSxYZFf7KJRPkqDUWpC4tE0FtjRWkNH0XHAyJG+ozERXMiSUUzj7JEXQwrRxfHykZq8yBGarx3RXGwHkU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - lVJV4grBckCIXDdAbsFyQN73cWRPwnJAiFOlI6bCckBkCaLTO8NyQLZiqsHDxHJAQzeX51nFckA+t721Q9JyQM1zm9J103JAxFT6OszfckBcT6eKuOByQKSmn69M4XJACUPFVFDickDuZ2a1juJyQFrubAsj43JAsmtMwE/kckCkcZk0yvFyQNyQeDJ78nJA8GL8wrTzckBcxLFoDfRyQNBScxKi9HJAP+R7A8P/ckAe7v9LYwBzQKb91nL5AHNAFoLFQksBc0A4dZu/jQFzQGsFbxDRAnNAqkVp2foDc0ASQpDACBJzQNHFPey7EnNA6rjBvvgTc0AirdUlBBRzQBIyFMJ4H3NAWsON26Qgc0Dw8AMtOSFzQGest6RjIXNA5k9cgMkic0CUYkjPzyRzQGy9UrpHMXNA9IjqkSMyc0CsJXXxDjNzQADlo7PUM3NAG57YuzY0c0BlnF6k3TRzQGT41ZPiQHNAZJo5kXhBc0CbmiM5ekRzQK5mc7JAU3NA2PAutqNTc0Baiat7g1RzQOqcB1aKYHNAMcEBZjhjc0BRHNPZ+3FzQOgK12m1dHNAq/RltUx1c0C8zEDpbHZzQF8B6fd4gHNAqBtObaSAc0DKadQnDYFzQAvD6viGkHNA83ZML02Sc0BDTLL5zJNzQLxZk51hlHNAcAAkLveUc0CI2/yAuKBzQGCCJsxaonNAyRHkoeWic0BXeLMWBqVzQOkJS5lpsnNAEJq8MhGzc0Ad7jYStrNzQFJMqfsMtHNASP3fmPjAc0D4fNbbjcFzQHUa6b7PwnNA0ExEJSbDc0BYEUDw19FzQPy7Bqs003NAlA+AROLUc0CMfLVKOOFzQDTRAqFj4XNAUu34NTj0c0B8FT0xTgB0QHIte8B4AXRAhM2C0qMBdEBRe8sruQJ0QP1Fmc2LEXRAO4fSP04TdEC6nrWI4hN0QJXACAVMIHRALD/jr7chdEAIadk6UjB0QKwqATO5MnRADW+kctcydEBr4+aG/FJ0QLrcD8X2VHRAtDxeRIxVdEDOQjOhuGB0QExOTb0GYnRASHVKVU9kdECP6E3/IXB0QEixrFRBcXRA3LO2ojhzdEAY4xYVo3R0QNZsWcs2dXRAnj3TJfmAdED0tUDOToF0QKJ9aPLzinRASvgM+BWQdEA1uF+VapB0QNE2G1f9knRAINDJZtCgdEDEyB/6N6F0QIK5cbO3onRAGdyblNCidEAoWbitDaN0QN17c0lIsnRA9h1qaiqzdEDEfKkH48B0QODCFAV5wXRAJD4CcRDDdECe8dKLt8R0QMyR+nAdzXRAzbhEy/3OdEBckhpT4dN0QJdWeuF21HRAFMJBjczUdEDSurCbIuF0QDGkvQ+54XRAONXP5lDldEB+5BnTjPN0QIBpBrelAHVACIfEAM4AdUD4sr6AYwF1QKoh3VReAnVAWs/kqjsSdUBG9JVyIxR1QGRgYkm6GHVA27+miss1dUCS7kL7AlB1QGh2EjomUnVAn+jAaXVVdUAynr5XN2F1QE6+uo8yYnVAs2Yn+3ZydUCp9W3yjHR1QG+FWnd4gXVA+LW2JK2BdUACIw9UpoN1QIrfVXmahHVApuEGaIyQdUDCMaqqcJJ1QHhBEtc9mHVAXFKZKpeddUCGfWBalKB1QDbfFQK4oXVA7jBcW/CidUA0GVmrOqh1QDPeNLZNqHVAXjE263mzdUCI/YqB+cF1QFq9+8TM03VAcqg4BQ/hdUDWBifrB+J1QAaWZqNIAnZAYqBtl9ADdkBv7PyzARN2QMwou0sLFnZAG+7f3EgWdkCcPMwqiSJ2QLC1mySQJHZAJNgysR8xdkAqtOAVnTR2QAyDwUbiQHZA4BYjuhxBdkB5J0eZekR2QDjUdWLKUHZAwXHgHhFRdkDpKmfUzVR2QDHz++LLYnZAWNRh39tkdkD0wMA8Jmh2QKXHFPqRg3ZAXgx1m7qRdkDACGnYtrB2QPwuxTzCsnZAxs1AVAy0dkD4QPOcvsB2QA9dgqfPznZAPH/EKIDQdkAekpEl+N52QI8Oejz04XZAHciGYpHzdkAm9gnyMgJ3QA5Ry9UBEndA6g0y4A4id0CiPKzAdCJ3QBj2LKu6JHdANFrEMQ01d0A4i3ZCnUF3QPS6A/YaRXdAAH/UuUpRd0CeXBNZklF3QLSRa1EpVXdAIvwG3I5hd0Ci9NTKn2F3QP6qlVknb3dA3O9cMniCd0BkDjApV4N3QH42nTF7g3dAVnT9hheSd0CqmfqDSpR3QFbnnM3r4HdAwjj3jlDyd0BAFitFbSJ4QIDrjn4MQnhAWBQdtHpFeEA8F6TcylF4QD5HFWOIVXhA9ItQJftgeEB4APw/t2F4QOQYeOG2YnhACPmJaVp0eEB2CY6ai3R4QOSJ84SjgXhA7cttpZmEeECwDGmcmJF4QIpQX6CnlHhADF5hMbCkeEDc/3RFzMB4QFo1+Am31HhAJiLPHAL0eEBsD3/djPV4QDTECq4SBHlAkoeWMpkFeUB5VipVCyR5QOknwgISLHlAhCR8YIxCeUAsUBxl+0J5QFZXML35Q3lAx19f6MxUeUAJnw5o7GB5QDzUd1DAsnlAUKKxE0LUeUAqwMgPztV5QJzWSrq94nlAQobDuE7keUAqNEt4+gV6QKaGerbcJnpA2tYHbQw1ekBGOX5JGkV6QJxTRVAuUHpAGGNZNChVekB0SayBzGN6QJ4GyOo3bXpAcxbdSYpyekAQsHNhC516QKKHPEZIonpAFGFu8Z+nekAV3OvH7qx6QGy3jfzrrXpAIAG5aEazekASlXMeDbZ6QIRWpCOguHpA4oIRYxvGekDVa1vE2dN6QPTcJzfi13pA1IpXJGfhekCaW7NoNe56QBCQqTMX8XpAhxIpK1/xekBWZdU+Kg57QLDe9OlMFXtAoFNAslkle0BmMEPrIC17QODHOf7EN3tAChLsn2SCe0B4H5pzwYd7QIRGwb8klXtAnMmpKHnGe0Ccaav5rdF7QFwmsNAq0ntA8s1YkarTe0D+h9IpSOJ7QLK54seL9XtAUtSCsEj+e0BYt+BzkQF8QE7kRAXbAXxAhFfPFvkBfEA+Cm0TmQV8QNg1E2KKEXxA69cMi9IRfEDJxtE+AyR8QB5mONUJLHxADcRjaM1BfECWSU4VSFx8QC4QMWMMYnxAsu62hr+yfEBl/GDbV+J8QOYHC4wW8nxAV1MYMFbyfEDnrttzAgJ9QDCgzy5LAn1AddzUIUMSfUCwBXNbYBJ9QAHduVo/In1AGoYvIoIifUBuSpW1akF9QGyv18IDtH1AmxdL5yrDfUBm8D2kj/V9QNyysvk2H35AaVfTDI1VfkD6YSylWHN+QOQQckJNyX5AeCPHFs3ffkBRCiae1e9+QHztO8Qj+n5AwD+AxR4Af0AZ+wYeDSB/QGRM3fW3cX9AeP4FCLSBf0AgUOAGZJF/QMELQHGqkX9A2mXkYF6hf0CGKLNxVrF/QLYvIGyV3X9AJ52sU9Pif0Aw7n1jLeh/QNhR056J7X9AaKE6e+QpgEB8xzpFJi6AQO3AKtroL4BAIv7BkSkygEB4OB1sLTaAQKqyoRv4OIBAVhE5xm45gEDMN5/4KzyAQFtqssvwSIBAS+tysvdIgEC1Ndxr5lCAQG6v9ngVUYBACK2+Xg5ZgECV/kmtH1mAQCTND50NYYBA2lrseypvgEAclsy2+4qAQBIMZxkfj4BA3FUUbW2RgEAKcvItGZSAQFyt/VOGqYBAarLysxOvgEB4BETZFLWAQJbe7gAPvYBAgDSlsCrBgEByEVZ2UsGAQGptgIwQxoBA/FMCslPJgECA1lXbE8qAQJIm50hN0YBA7vWm1C7ZgEDKvCZJS9mAQFQc28CZ2YBAenWRKUThgEDItSdDV+GAQMGkJiz36IBA4nCDA0TpgEAv6m1fSu+AQD3kKG4884BAPlvxjT//gEDHDLRvPgeBQByHb0s7D4FA+bHPqzQfgUCeN3i9UyGBQBZ7m3IPJIFANgfY4TUngUD8Gsag2y6BQNO/rbCIMYFATkli9rwxgUCYT9KREDSBQNiwPDgwNIFAtssp6a41gUBaF5TRgDeBQFPGkMCxOYFAkr8aKaU9gUBEDk6X53aBQFi6VxiUeYFALkdqbTx8gUAPyKbf436BQFBAdFKTgYFANJbD3VWPgUAjOcpeVpeBQHR3vWJDnIFAXMKeY++egUBRVWuFm6GBQIgnvUrnoYFArYCoUEekgUDkzbMF8qaBQNZ04BxuqIFACKNn+UmvgUAiorZsfdGBQGxedhor1IFAqn+2rQIJgkAc1ek82BiCQCHNrCn8GIJALCpcudcggkATq78f0iiCQO7l22eiKYJAWjGEkaUtgkAg3XvJmTGCQF+mBDSuMYJAxgBVCKE1gkAYJrFaQ4mCQOwl3oFEkYJAGNqo5j6ZgkBQ6XsSWZqCQLR4NthbnoJAZJ3JmA6hgkBRWeFTPaGCQO4TfMIMqYJAONFw9zOpgkD0tTdmSqmCQG773PUIsYJAA2SirjOxgkArh8UKrvmCQAMpjmt5EYNACN/pu3oZg0ACFWPbdCGDQG1P63pyKYNAqOi8xWkxg0CYHp9MgTGDQELrn8YdOYNAlHFDtmg5g0A9opMX5IGDQASiYLlp/oNAxJCzPv9ohEATdxZP/nCEQB7XA9v5eIRAcJ3+QWrZhEBIui3sauGEQBk+qalj6YRAwhHiaDXxhEBIZPAZY/GEQK9LQiI1+YRAN49bV1v5hEDz7nHFLQGFQB4/ak+gYYVAdY02qKBphUBsN8NgmXGFQHKpsnWaeYVAfkxSW4+BhUB8NkEck4mFQOh0T7ssvoVAfICwfDHChUAo/+upJbmGQCBuE+QeyYZANI6G7ZAph0CwFbX3kDGHQOZ77DKKOYdAZFNfi4lBh0BOE+/RCn6HQO4G620OgodAIDr3c8exh0DRwnTgx7mHQA+etAjAwYdAxufaFsTJh0BJlQ7Z/t2HQEyNlsMB4odAjos3ngLmh0Dy7Ril/+mHQJKAirIC7odA + KBZXds7jZUDOIQhxcuNoQBTpB48/A3JA525gjBGDc0BqPQyU13N2QKp1/l+3s3tA+ZRYs6+EfEA5aMnMZ/KAQHMpLAiP2oFAZJJLz7Mqg0A6VdIX++KEQMi/Few/Q4ZAV+hz4WsLiEA6hMBBp2uIQMmsHjfTM4pAVxdiCxiUi0At2uhTX0yNQB5DCBuEnI5AWARrVquEj0ALEcSkXRqRQN6YmrmbTpFA7yaXrJOekkCPGoIuxVqTQAQ82K25upNADzJ5QxsflUCEU8/CD3+VQPNHTEtRo5ZA - + - DeNmRDSVGUXf3JhEvjx9RUa5iUVclplEsOBgRA5OAUfgFsJE77OhRGdXtETT9llEHRU+ReP22kQbC4lEvldNREx6L0VJkZtEwIBiRC1CbERAEwBFPvGjRDFlw0SqfcdEMGdoROstk0TY6ZxEp7fkRk5IokRLZANGRel4RfHQd0WWlHtEvKX+RCZIrkZg6UlEa1uCRPUwgkWx1epEGpVbRKlldkRF045EmcmkRNz3eUQy/rRE6wiaRYxE9UVxwcVEpW1ERdGHr0TG5IxEW9XfROXri0Sqi49EQggFRQf7YkSlZudG9/SgROli6US45CZFf40wR4n5ZETUJ5tEdyViRjYE3kUoqLBFHzCMROI+BUW/j4BEFmCgRCcsdEVDThhFH4ufRE/dhkRNCZJFrf1HRulpEUVxmgpFghWmRWqx60Xh3J9E0hXnRKznykRjtIdGkPWJRMzpekS5f5VEpLk7RdszhESG4q1EOZUYRZlOmUSA7F5EtK+SRAl2oEQsEV9EVhP+RCerlEW8F+lEQbeZRNMLokUN8ilHgvbiRBK7cUSBLKpEAqvYRH3Ty0U57SBFt3urRdEwhkTup05EJcywRFM2TkSFs5ZErAmdRC5/50Q2UkZEW3KbRNE/kESLe9lE52PzRIgN70T2N8JEG3HCRJ7KlESdRnhE6I4BRc20lUSU/OhEoHp4ROU0ukWmHqBEMGCMREQDnERzrvJEpEIcRdtrwUREPVJFIJEKRdzEgkSHvIdFImH0RKjL2ETDqYJEd6W+RCYaHUZYScVEJtWcRVpUF0UiBgpFKVCKREHfY0QX36dH40r/Rou5oESvrq5EbW26RbYxpER6pp1E8lOERJfivkT8bKVEUP5xRK2eCEXAXHVFXo65RKJglERNmYlEW5amRBlHgESZpvhFoYHzRhVej0R3oWVE8cujRVOziEVSBv9EbshlReSNQUZyew1Gz4s3RZtsFUWnwuREpgdoRLPFuERAVv9EKtx/RZX7lETK5yBFKlpuRDoUmUQ4wmhEYmHlRIkVoUTecXtGZrstRYgb0UR6d6ZExRTdR8fq0Ub5BcVGVMmJRZU5j0YLChFFX2UCRab0iEQy2FlFGNOxRMWEg0R2xLtFcMavREprs0Tyz5xEgzDsRNWqO0XVs6pEpssYRmnSakXflO1EBBX/RKxtT0UnEXpEX0EuRdl3MknOtV5FOg89SIKQvUSPFJtG6ySERHN7DkXW+XFFjU1PRZf+uUUAzppEpPh6RNGg/UROi3FEDIGSRLLdhESFXEVEj2J0RWJgpESt/2hFakbRRS0jkUTm0KNEE3C4RGeVfkQRHVFEz168R4ISx0b2DUhFK38LRWybdkTHyn9El3V3RH1UlEQd89JFmb7lRFWmdkQKItVF/eZiRe8lr0V59pFEB0X5ROtSoER3UvVEL/QtRYtPw0REIOJEJ6TsRMNKakTQ/wdGgPguRfCze0UjjIdEvycLRRw2kEQctDZFcOi1RE+SmUSlopNEcgJ5RNlbjUTJT4pGopy3RLxzj0RNdVFGJeMGRUdbq0XUEFpEI/OoRYYEAEaRlWhFVB3URUV8l0S7JbhEEHa7RHzrz0c7mcFEG/HCRgPBG0Vil6tGbfb7REDaqEScCaFEuqWlRIY5jkTLpaJFshm9RG9+vURTaodEuRv3RHq3QUQrY3lEYSvAREN9q0SvUrtEXt2WRRQZikR7buVFkGkARaWkFEZiEctEwgxCRd8FG0VvLgBFo+xkRXByOEWSto9EWb6BROUwvUbSBlVEfCQARlaU7kSIkpxE3s2nROdQlkSPl99E2BbcRPHKM0XS4MVGgPzVRWK9NkUV7dZE0jPARMjZUUSHli9FsEmFRU+3GUXJStVEUyxeRLZ1gEUbGm1ET89tRPXlnEiBY65EPFAhSDibi0QF+K5H2CoERXxHpkYk7JpExZKnRVuD7EShFOBEfF6DRNWM20Tdip9E/34nRth6UUX8TM1EC27RRTcrW0T8LGxEptsHRcwymkV/BIdFFNzuRPBBskTD981EdBmPRpSpbER+U9lF5miiRGc9yEatXoNGesrTRXjHFkXbndhEHhGPRXVznEQVEAZG+nOzRcj5REXOJB1F2tVXRMl8lUQusfVEZ0UaRchIIkXb1B9Fa+SARXCXOkboUIJEUa2GRXkzQkXOThdHULKMRm0GYkV60iBF5me1RPS9hUhpCBRItWy7R9zFrEQexGxE+AfARUNJzkZuFhJF/XHjReSA9kR5RNhENGTXRIHNqESE0nNIfEINSLdvmUdwu7dGopmnRVdXKEXzvK9EowSgRH0HoESy1BVF3JLMReviC0V9ndREQj6FRxD3Hkfz/qJG5T2NRSm5DkYrdvVE6PIJRZH/pETBFFdHvQPnRj+5a0aFdchF02bQRMSuhESKhiRFB7zrRBGFmURYjppEPyVwRpBxAEa7e7ZFE385ReLcM0VWhbREN5YnRrFHqkW6E4JFqcDtRJ1sEEeMlcpGAw4nRvPoiEVvt/BE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - m+UOV2/BckBkxx4FUcJyQAQ+HECmwnJAFv+UmzvDckCBktBXx8RyQKROxElZxXJAxR37AH3RckB1U7bBQ9JyQPFLX5az0nJA0JY2G3bTckAOPWGKzd9yQERrvB224HJAFPGUr0/ickDkul7ckOJyQI1dwMcj43JAfMGnpsnxckDMVJxXffJyQGuMQba283JAlCRxp6L0ckCEoeMTwf9yQDJpMgpkAHNA2nPah/kAc0Cedmd0iwFzQEyixwzRAnNAWD0fDPsDc0CCBaKsCRJzQNA2xQe9EnNAIKA3bfgTc0CsYv2YeR9zQAscVXyiIHNAu3cIVzkhc0AQiWI8yyJzQOgXANQPI3NAwOVL/c4kc0AcM4SyVDFzQOTg/FwKM3NA5W5FHKMzc0AGPhxF9zNzQG2lhFs4NHNAMLZ7/EFAc0Cs7qmy4UBzQMoGGgh5QXNA9s3bubtCc0CvYGnveURzQDiivHZBU3NAtNvzUqNTc0CiBlR6h1RzQD59XguKYHNAqD8XAjljc0A4OZcI0GNzQJGml9D7cXNAUsC/eVNyc0DMxDsOvnJzQGA9tqe4dHNAFUi/lUx1c0CIV7QueYBzQLjHCv6lgHNAkoc9hwyBc0AHyAa2yYFzQMBmAE5cgnNAUKy4hQuEc0DeBFCWhZBzQPrcokRNknNAwk8tRGKUc0CoW18g+JRzQAzkg7K4oHNALJMMvuWgc0DIE1LlTaFzQCZUHlxaonNAvdI6vOWic0Bm/acJBqVzQCZ3gFk1sXNASk9rtn6xc0AgFauQb7JzQBY0TkG3s3NA53qppgy0c0Ba1jC0+MBzQNzS3mA+wnNAsj/S1NDCc0A4eYzoJsNzQPjMOZzW0XNAoqjBvTTTc0Czf35D99NzQKDx3RLi1HNAnU7LNTnhc0CcrAhtZeFzQDzxw9Hd4nNAMC8JRQ7jc0COpm1nOORzQGt38Sc39HNAHoly6+MAdEDdmBo5eQF0QLE9x+GkAXRAAPGPOroCdEBIVm9RCBF0QCK7cwCHEXRA7DTuVU0TdECEsEl7dRR0QLohEVK4IXRAIifZplQwdEC8fZiseEN0QGi7/NT4VHRARnGDEYxVdEB6/sD8uGB0QMKF7S8IYnRAwn7jxE5kdEBw+42EInB0QLIj8VpBcXRAbAz+RsxxdEDU4YpzOXN0QHzy2rQ4dXRA/BL1fPqAdECI+0kTT4F0QHoTqBf0inRARoejSRaQdEB8pMaaapB0QCvmHzjQoHRAICtpHLqidEDt7zzd0aJ0QOkb6q8Qo3RAuqi00wiwdECqFaZQKbN0QBxgTpnjwHRAZmnOrXjBdEBACY157MF0QJAzjYYQw3RAwBNFMyTEdECfrrzrtsR0QLJLa7YZzXRAoyA1yv3OdED9f4JsPdN0QGRISNDi03RAha700HbUdEAgy9MCz9R0QBJ/18O24HRA1O/dWCHhdED4QU63uOF0QGSfHbCN83RAGobHodAAdUCmsXDKYwF1QME9C3lcAnVAkmwiQpwDdUCayzX6OhJ1QG4DfcojFHVAAnG+nbsYdUBfWCJkFx51QCQ+Xg6cInVA/nT1GTo1dUCysdV2zTV1QLVStRyzQXVA69XIU4lOdUAFtM1i+091QLEK+c0mUnVAns1o53dVdUDF0mwKoWB1QJ81O5I4YXVARiPtiHZydUCGJmSijXR1QESppEV4gXVA77Kl4K2BdUA2qXtb6oJ1QEqkVoqZg3VAAFTXWaiDdUAyiZiemoR1QLRN2ka7kXVA+Kz+RXCSdUBGOLY1Pph1QFykpEuXnXVA02TV89ufdUB0YgKal6B1QIXJ21S4oXVAIs0F496idUDO0Zq18aJ1QOXQKY0/qHVA2AOIn+aydUDD8gVyOLN1QHeu0Jh+s3VAxUQHI2PBdUAnrQtT+MF1QDah9dYO4XVAObtl5QfidUCz7RweSAJ2QFByu+LPA3ZAzYkpUAATdkAKCpryTBR2QCcW0gINFnZA9jYDZYcidkD06ERJkCR2QHijQrUfMXZAO1wFD5w0dkA1jZ0PHkF2QL7P0rl5RHZAiv9tQMpQdkAI1xe9ElF2QC3sNDyHVHZAgoEMes1UdkDJxoRfD2F2QEBQu2nLYnZAFvMvkNpkdkBFHCZFJmh2QLIsMeZdeHZAMvHrUo2CdkC8VK9+koN2QH4NotG3sHZAuqC13MGydkCR3So4DbR2QOUnUmrAwHZACrTQhtDOdkDm/SvtvtB2QLAGsZn43nZAZr9GpvLhdkDD1aaWH/F2QDaOHmCS83ZAVb2+HjUCd0DQlJQ9AhJ3QOB8Ey0PIndA7su+OHQid0D6EjtauiR3QNLnGvynLXdAycSZAg01d0AEZ5bKnEF3QDkssWGwQXdA5NiPMhtFd0AE9Mw5S1F3QHjtvfCSUXdABJPHLClVd0ABieY7SGF3QOeGtbKOYXdAPNV/epRjd0Bw2c5sJ293QF8k6qI+cXdA/kpm7JF0d0AqUYgueIJ3QDTMaZF8g3dAQo8qYhmSd0B0YEOTS5R3QNgvPi8uw3dA5lszeOPQd0DOvDCyjtZ3QDhtkwzt4HdAtAXBb1Dyd0DmpWS4bSJ4QLjg91R7MnhA/pQLaA1CeEDWP1C1ekV4QB5Va+PKUXhAdpuMFohVeEAHpWAq+WB4QJCP1JC3YXhAdHysbrdieEB+K8rkMHR4QC3NNhBFdHhA7tnvcU90eEC9uk67i3R4QNxTCAqkgXhASEvKrZmEeEBa+nsYmZF4QLbgjs2mlHhAWpEXV6ikeEB3WFU3uaR4QKJNwSPMwHhAqDJjNPXBeEAA6tzfttR4QDidlP4B9HhASP2qL4z1eECmmkZREgR5QL50RDubBXlAsF+M/bMzeUCYrf6likJ5QPuxrbD4QnlAFm5ILsxUeUDcoWlr2WR5QHlUTfhDc3lAfoiLU46beUBGSxhAwLJ5QNb8ALlC1HlA3AJUhMzVeUAMYKeqv+J5QAPzU9lP5HlARo2+7hfoeUBFcy7tL/B5QF7lGJT4BXpAMuV8eQw1ekCW41pgGkV6QCxjtTcvUHpA6spEgSdVekBkR8ffv1t6QDKoJEfNY3pAomUwpY1yekC+LU4CpZR6QFcTwikHnXpAawpGkEaiekB4z95goqd6QJ36vq7rrXpAZUyL0EazekDvAnw+DbZ6QEprTWcbxnpASIYzvN/XekCw+8mTaOF6QKNgl0047npA/EbmuhbxekAdL4o1XfF6QOBc0HF4A3tAlSh7RCoOe0C0xc03TRV7QD43bYVbJXtAUDbI/x8te0D0WwQIfDJ7QCaS93ZgUntAkF9oJmWCe0C270lgI5V7QOZvbzYwpXtA3HqdSXnGe0D6webSq9N7QN7hTnD+43tAuMUUDVPke0BAT25XlvF7QPLdtjOM9XtArPGcOUn+e0C9FVTo2gF8QE6l+SSjA3xAwMIG+pgFfEBzwO4MjRF8QDqXQazREXxAMMsFrwIkfEDfYX0GDSx8QJRY0JTMQXxAuai8BNpRfEAPspvXDGJ8QOQhARMDc3xANt2khb+yfEDYWiCiV+J8QDz3H0gV8nxAsFTJsFXyfEC2iC8YAQJ9QGRf9o5LAn1A29CnIAASfUCEHF93RRJ9QHTnvmIqHX1AAkCqAD8ifUBEfiU0giJ9QD15TxxOVn1AYA05TgS0fUBP2gcoLsN9QOaa61ATxH1ABRa7+tbifUDCI/ZPkPV9QIkkRcuKVX5AAUEgIdhvfkCJxe8bjbB+QGxLMILM335ACtrksx8Af0BLMxlqDSB/QM53n5m4cX9ARHJ/47OBf0CWCLjQo4N/QJCuzrJikX9ANiTAd1+hf0AeM/grVrF/QPCpU/qW3X9A/gdxqtbif0CssWptLuh/QDD6XPqK7X9A+FkNduApgEAeA0/kJS6AQIZntDkpMoBA4MFVHSs2gEDWi25wKzyAQOpHY7vYPoBATSoB24JBgECkmh8q7kiAQOvXOn/mUIBAcOJtSxVRgEAv4Kqz5FiAQJwhI3cOWYBAubPhvSBZgEDq5iFiCmGAQGxGt1oob4BAnPw+tB2PgEDgag50bZGAQKVqAesMlIBAYEkrRBuUgEBsyIN+tpaAQBYwxveGqYBA/aFBTRW1gEBUnk9/UsGAQG6GVOgQxoBAzFHMhVPJgEC4MRoNDcyAQFUQgKQi0YBAZM+ISizRgECbYJkWTdGAQK6MVFxK2YBABrYDm0ThgEBfx06BV+GAQBg1Hw336IBAd+OZsUrvgEBJ5ouOPPOAQF4sbtg//4BA3jOTDD8HgUDYwb8SPA+BQOiAQ7s0H4FAIvkuHjYngUAGmC122y6BQAybRyKJMYFAnLtIH70xgUB/7h5zNzSBQNaqeFyuNYFAFTAqj7I5gUA4Fz7EtD2BQN6TzWLndoFAZ31hcJR5gUDc5Pw+QXyBQOCMy4bqfoFAOvsSvFWPgUCcXKr5VpeBQGlst2VDnIFAh45tXu+egUAQHqYdm6GBQLSseS3noYFA2EsuH26ogUCAeyjZSq+BQFBuDeB90YFALHrlt37TgUCwRDhsK9SBQBwzHpHY1oFAkkUYTgMJgkDh81pE2BiCQHCyK9fWIIJAtHWv4tEogkBnEZpfoimCQBwU/YClLYJAkug795gxgkA+whv7qzGCQBSRPeiqNYJAFHQUGpBBgkC+OjQqcmqCQJCnuklDiYJAnckvikSRgkAlc22+PZmCQAPab+pZmoJAhDUY2w6hgkC8DmwpO6GCQDP5+NwNqYJATOPz3TOpgkCB8c1MB7GCQA7TT1mu+YJASlh2dXkRg0CSNq1IehmDQGQYNit0IYNACKQtXHIpg0Cg8WzbajGDQFL8mVcdOYNAjSrAcmg5g0CzFuFh4YGDQNSYMF+V+INACauOR2v+g0A4lQ80bQKEQBhhS0xyBoRAlmcBJv9ohED+CDG9/nCEQGBY11H3eIRAdZ9AZpHShEDDMDZoatmEQB7f4Gdq4YRAgD+Mj2PphEB8aDR7NvGEQONRACVi8YRAzIcD0zb5hEA4f+veW/mEQM4jMIWgYYVAEt+XNKFphUDs4ueYmXGFQHv3KRiYeYVApP7qhZCBhUAO3H9rLr6FQDJD9AwywoVADEOwbSW5hkB6MvHxkCmHQPaSHG+QMYdAKsIu6Yo5h0CtdD97XkGHQLaLLfaJQYdADt54xwp+h0DoUTHKDYKHQP4NK1bHsYdAHjJJE8i5h0BbpbXowMGHQIx2J4PAyYdA+FfpQ//dh0CqWrkkAuKHQBb5QKgB5odAXM58cv3ph0AIBW/9Ae6HQA== + KBZXds7jZUA= - + - AZw5RTxeA0VVw3pFg1CpRRfTpUT/jpJEHzNORKyDC0dwDWpEsARgRC7AjEQshH1EBJGNRc/cCEX7Ip1E0vZ8RWSPyETgXIpEg9dXREB/B0UOa4tEBcnlRHU7WkSyTZtE0uUKRw46pkQ5GTxGk1yJRSxaukRYwMlEt1vPRuOynUT7/MVEBAWURTU/ukSZKVlE0gxPRJtVcUTafmhEyc1kRCT2kkTw1m5FGoBmROdK+0U+XfFEysh8RbEWXEQ5M6JEVdreRGNfaERlqjlELoysRA6NekS0d71EEJQMRfcn3UY+3Z9E4eXSREV5w0QUI19Emu94RI6PPkUY6z1H0ULyRJCSVUaVIAlGZV1GREFuhURmhedFj+XrRCHm20ScMHdEAQWKREOrZkQMtG5F4WcjRTLQsUSC/EVEIIpxRXoqckaTPg1FLUG3RB/yl0SaxJ9F8qACRpCcjES8jYlEivRQRP3tT0QbXOVEumShRN9YikZK/PNEPsGLRPCRj0Rat5lEkQBJRUu+bUSJKANFxdq6REHtl0QFjmhEuk8ERQhaWkWznO9EYobgRAmakkU56jJHJbZwREXYJ0USWYpEbewNRczMzUWjhxRFgq+JRbTeiET5HYNEwyqHRO6j30TEgdREFJoDRb/KikREsNtEQpO2RGiycURUEsZEt6GKRLTPlkRbjWVEzgaaRNWxdEQ6ttdEfqCWRCIs10Qx5VBE4+WBRPTS4UQJm7pFeOSORC4Lr0Tnc69EdKN3RJfjC0XLMxNFwiAzRTdklkTFVY5EUJ5oREWeMEUlSlZElpdtRPaunkQYrphF38WvROuMaUTMWBJFpfqhRH3oHkYSlPJErHK3RS2UgkSyB09EksyTRGTpskRglH1EK319RHIohUdIDgNHEUtXRIqcmESfU+lE7lzgRH47q0W7e5ZEhsn5ROLLgUTFzH9EC76gRARTE0VtiqJEJeIpRZA5eEWQdNREtRSQRO6tm0Q81YBE1MhgREvC/0VCbQVHYG2zRAVup0UTGU5FWvzyRGmyHUV7eUtEXuthRrFeh0SPS/1FIAEMRW7Va0X0RXpEBQFSRMjajUQtNrZEIs4xRdQOpEX15LlEl0EFRfzxeURq9mlEhuKPROs4VkT2HCpFxbiNRP8+m0YQFHVF9PvHRLkDskTCPINEsfvwRzL0s0agDq1F6fvHRgGutUVyfpFGFAjbRO3/a0SLMixFUYZLRD0kaUXhrJNEVSdwRMopukTxv7pFMLt4RHoAXURBKY5E7HePRN3tq0QqhJJEl72pRIiVbUUPT0VEkxfUREv4LEbtaJJF/kETRWGL2ETHuEJFN/tiRIKDqkR8A85EZNMcRXkxO0kFHElF4x05SKBQuEQGnpxGAjR6RLwScERfRapE4cufRIsgnEXivGJFU3KuRZerZkR/bYhECeY0RHHbcURWrYlEKHZeRRY5kkRn/sxEnRcWRdmVakVpZdZFC4YARSioAUUN38pEtVh/RM4DSETyqZ5E9Em4RxVRxEaxQJJFLDAaRSej30RDEnFEUJ6kRHfnpUTP161E86BaRVLWHEXoAexFiYdzRdT2vUXcUOtECzGfRNArBUUrZsdEpY8aRX1D0UR74odEBzukRF9pS0bwQVpFYxgbRULqjUSJ6/JEngPeRF7gUkWP7p5EgJzIRMgmokR6qp1EnPDFRBMXqEWdrYJGsPEPRaRbW0au+Y9EQLGhRTsjlUTA4Z5F02vIRQhv+kSuIrhFnx6jRFpKgkRl7mtEO27CRMAv3Uf2DLVEyp/VRtywHEWQ1LdG8eNnREHQWkW3zj5FqJT2RHYLskSVZ1BErQXJRS7JhESjh7ZE9nmHRP2F/kQjD65EeBKQRHLBXURDB4hEdiNpRRLjmER1hNxFGN+vRGkcdERah1lG2ghQRYxBD0Ws5kZFokGCRXv+30SLBIREabqDRDWAV0bEt8JFlySdRNGnwURW4LVESnxVRCTt9USIuSNFcAawRkv6gURof9ZFOTS3RGyUikSH0RZFyLlGRazphkU8RdVE0wIWRZt6kkR/rwNFKoVnRX8Rm0gVJt1EpLgfSLmHXETVTYpEh6mKRH7MoUdeEGFGhQO8RaQ200REbWJEllenREUCkES8fhxGbgdBRb4wx0QwnwVG9jyXRND2nUV1r3tFzTGuRBbs2USzdB1GdCxYRexpdUThG6lGS8GYRvHq7EUt6H5FTnK5RQ5w80TubA1GYlCKRTnocUXDKSxFSMKeRAHaDEUkvIlEmJ7sRMRclESAhINEXwbhRPfcREYiXoFFDqsTRZDPF0dfAJxGm2T3RFn0PkXCgZVEHzhTRMw7jUQ/OUFI62zbR5foWUfznHFEOETQRWLHcEae4SJFmsiDRQCBHEUNc35EbXM6SNFFxUdN5mRHeZ+BRjN2r0Umsb1EcCZjRDswckQt2J5EvBzWRAHbqERacZhEoG7QReQWBkU6rwlFs/KERJ5ATkfFlrxGSeJuRtcJj0UhL7NFgucnRVyIyUSFbS1HzAKjRuX1L0YtAn9FL4HVRD7SzUR4vBZFLMaIRL1lUEYsBtFFknOqRQMRqEQdlhVFN0EkRcoVGUWUQCRGOPevRb8GRUX+IMVEBOD4RvExvUZazBNGTdVhRWe5s0Q= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Moc4NQ7BckDeydwqb8FyQBySsAJQwnJArOQILabCckCCR4k2PMNyQHb1ppfDxHJAFdL8LVvFckBj2up9Q9JyQFIGcbuw0nJAXm/Ro3XTckBS+gWZztNyQFgHmbPO33JAotr9fLbgckDDPsiO/+FyQKLrQGlR4nJADGTEAZDickD1PIgFJONyQCg5bj7K8XJACsw1pnryckByF0flIvNyQAZm1gGl9HJAPFHfxsH/ckDWZTyiYwBzQILG96r4AHNAqBIBDREBc0DC0g88TAFzQGCXuomOAXNAOgmvts8Cc0Dok6Hi+gNzQMYyXnIJEnNA6i/cgiQSc0DOg8zXvBJzQBTKWt/3E3NAdGPjbQcUc0CTS1BRex9zQF+fekikIHNApdSHIDkhc0A+wt+uySJzQF5xKM4PI3NAsAVeKTokc0CwV9mPzyRzQGIiYxhIMXNANJIjaloxc0BxyHJR1jNzQIDKOdE3NHNA/Qjmv9A0c0AaolvLQEBzQOu4hefjQHNAepfd7XdBc0Agyv/QHUNzQAf0kKJ6RHNAbvM8e5lRc0DA5+scQlNzQMzoHqejU3NA2i8jpndUc0DM71JUhlRzQOo8JRmNYHNASAAZe2Zic0AYGOEcPWNzQFYT9vXNY3NAiijw0Ptxc0Ae+fvwUHJzQFbnMHCRcnNAooZKm7h0c0B2hqP1S3VzQDboEEl5gHNAAoaP+KSAc0B3KrlcDYFzQNzo64fIgXNA+hBoIWCCc0DWeyPvEIRzQIzX3smGkHNAeajVY02Sc0BWPB8TzpNzQNwn7RhklHNAei6sFPiUc0BRFTGIuaBzQECi1FxOoXNAEPEK4Fqic0Bq3l1H5aJzQJqdUl8GpXNACpFEvNiwc0AyXMoUE7NzQBYl6oW2s3NA9GYgoQy0c0AmI4LYobRzQJ8vUHP4wHNAtndaW9DCc0BRmrCPJsNzQHhJZlqR0XNA51eXutfRc0AYgKrh3dJzQFQeq7Q003NAePn8K1XTc0C0IgGO99NzQDrgYFfi1HNATHiDkzjhc0DyIaBHZOFzQGKqa13b4nNAcsp+Lw/jc0BQZQJ17uRzQDbfUFw39HNAjjldJo/0c0DGrYvdTwB0QPL7F5/iAHRAGhH+D3kBdEBU6nwPpgF0QMJ/3x+IEXRAIJcdR0wTdEDHiVdY4RN0QFef8vx2FHRAihvOhPkfdEC2n4NJTCB0QPalIhO5IXRAvL3ku/4idEBC6H9vujJ0QAV5efpUQHRABa1PwnlDdEBGF3b4/FJ0QLvjYDX4VHRAeOcYA41VdEB/HuC9uGB0QM0uFjUJYnRAh+CqdRFkdEArebAST2R0QB2zT2UicHRApBMCEclwdECCxk1sQXF0QKMl9RPLcXRAoyE62vBydEAl7yUdOnN0QLhkV/Y1dXRAgdpvWfiAdED2ikg2JIF0QE7B7/pNgXRAU5SsOfSKdED4GoHJFZB0QHTWbWtqkHRAgOGM5/mSdEBj7pwTU5N0QPw3PoTRoHRAVEb1djihdEDK5VJGuKJ0QCgjOL/TonRAzFP4jw+jdEClF4hvCbB0QKqzPRDEsHRAkmTt8+LAdEBJ2Nt8eMF0QOT4urrswXRAYt0zTBDDdEBitvlfJMR0QF5Ev3R5xHRARuaXU7jEdECNDx0mG810QKrc4Jr+znRARPV10OHTdECKk8/td9R0QHKaNSbP1HRAioTy7fnfdEDMjJTut+B0QNKbWJIk4XRA2H0iN7jhdECkQ87PTuV0QFfJJXuN83RAEv8niKUAdUAIMN35YwF1QIJCoBReAnVAM5rZ/jsSdUATCpYsIxR1QJmshbO7GHVAVm4fnNMddUDWMs9UFh51QHh7KWk2NXVAKLeyQ8w1dUACxD3ctEF1QGQcD/wmUnVACI1PNk5UdUCW3RDhd1V1QHAUaPQ4YXVA/q90jXhydUC25efBjXR1QPmJrwDkgHVAP71g9HiBdUCGw0o9roF1QAYimWGlg3VAFNfEEpuEdUDeNA02u5F1QDA2r01tknVASrEzEj6YdUBu65bsl511QKQhzNXbn3VA5jEVtZSgdUDk4oLwtqF1QB0qblrgonVAP5mQZ/KidUAqftRJTah1QC3pVj7qsnVAAOB5Z3qzdUBqEpUpzsB1QC7QQtdiwXVAYICx9PjBdUDwIs1qzdN1QHigbirh33VAMDG2xQfidUCpnXEAPOV1QDwi+F4lAHZADJNs+EgCdkBmHl5r0gN2QALHYfpLFHZAqp1H4w0WdkBZwoAsSxZ2QCcM8gLzIXZAXDEkuogidkAO4yIDkCR2QNq/oHQfMXZAE55zdyYzdkCOqb2EnTR2QB21DrAdQXZAcmHFZqJBdkA4vpgze0R2QHw9Imj8TnZAteRFFstQdkBQcl+zEVF2QM4ZUaTNVHZA2vNxaMxidkDHNdcE2mR2QLY1htgmaHZA/K+tZ2mCdkC1HDKKkYN2QDIgVSW6kXZACLZO47awdkD8ckpPwbJ2QLKHKRkNtHZA8uCONnjAdkC6oC3h5MF2QFihnInPznZACYCh9/HhdkAtJ67hkPN2QABkB+EzAndAWYeihwESd0Bfo+oMDiJ3QFRK5Fm6JHdAhE6usRgyd0CYCV8IDTV3QG011CmdQXdA4drkFhtFd0C7sGMBS1F3QCT27PuSUXdAwRF8ep9Td0BEQ5m3KVV3QMZLoFxHYXdA0gaexY9hd0AYGkU3J293QGVl6Rcof3dAgPISnXmCd0BK/sUSfIN3QGwaEzoZkndANGw1moqTd0AoqrfzTJR3QPrM2nG3ondA5yeboZ20d0ASS8wC6/B3QIkPOjhQ8ndAMLf+XPcBeED8sHAmbiJ4QMPKp7eKI3hAZfIaFKUkeECxhx+zezJ4QM7lOPIMQnhAklLOHnpFeEA8kRg/y1F4QHqP+JKIVXhAAEAEXPdgeEA+DaVjt2F4QEKh8h+5YnhAHvmJgiljeECqSqGgSnR4QPgI82RcdHhApOYxuYt0eEAsPsHnxHR4QFav3KXadHhA8AOH5eV0eEDNtvo2PIF4QHTqJS6lgXhA1Kyh1ZmEeEBeLhVFUo94QMoMKx2XkXhAXbg6rqeUeEAOcNNEuKR4QCCd3JHMwHhAqJF2v7jUeEDiooOswuR4QIXsFWIC9HhAOlbqmoz1eEAqNm+RmAV5QEIpJKIKJHlAai++caFIeUDRLiJ8zVR5QGbWaZDaZHlAkg1hf0NzeUB8qFpijpt5QNooLISVo3lADgdc+8CyeUAMzDjjQtR5QOyVbHLO1XlAEEUUTL3ieUC02mY5UOR5QMijfr8Y6HlAuLn8APkFekAYoi0OOiN6QIU/FXwMNXpAdouC6xpFekADEEl7L1B6QK8RGuwoVXpAy1UR08JbekCObWVoOWV6QL62onIccHpAOWlEo4xyekCuUWRsCp16QPQHONFIonpAsHey56CnekCyb8KF7K16QGy7GXdHs3pAQNlB3Ay2ekCco3YGn7h6QLYyvy0sw3pAEkkTJR3GekAe7CFdRM56QG7XUgfm13pA+eQy2WfhekAgUkZZNu56QOaX91EX8XpAlfNL+F/xekBi36gGZ/R6QNYRbcAqDntAjM4lN00Ve0D/xpnKWSV7QKZU9yIiLXtArPhNG1xSe0Bo3vm3Z4J7QG4389z8g3tAbM2tAL+He0AJUa1f65B7QCD4y3sklXtAgsDgHnnGe0C0tr7kmtF7QENVSC+x0XtA77xWoMDRe0CY2HAk/+N7QO5ya+ZS5HtA3ngXQJfxe0Dz1A1gjPV7QHRLpEtI/ntA1oJbntoBfEB4G9hA+QF8QBQy3bKZBXxAtGBx+PkIfECAYPEMiBF8QE4d+RvREXxA3t0EmQEkfEAjBXa2CCx8QIwTeg7NQXxAf7CxD9pRfEAC/Pu6SFx8QI6raywNYnxADY0psCpxfEBU35RRPXx8QGrJUu6/snxArhkS38zVfECfGV7dV+J8QIJEW/AV8nxAamZGAlbyfEDJ4lLxRgB9QPCZbnwCAn1AvtzU2UsCfUB7a8w8/RF9QBZfYqFFEn1AOsWjSCcdfUDwymxaPiJ9QMQjPPqhMX1ArF7Yu5hyfUBaMTgEBLR9QHBt9DwQxH1AHjm+G2zgfUBdiXlVkfV9QDpH1eBCP35AcTrkqo5VfkDH56Okyoh+QGraBYp6in5A8am43kKMfkCgyRA0Tcl+QHAc7SrX735AxtWIWh8Af0DQggW5DiB/QIU4VJMRM39Aghakkrhxf0BUVPqir4F/QMSjpyakg39A7mi+W2ORf0CK8YogX6F/QL1yKo1VsX9AyLTYrJbdf0BGRqoU1eJ/QNp1xwTx4n9A4MDHvyzof0B/SEGTrfp/QEqXErklLoBAl7iHDioygEBQuA/2LTaAQJLEUED5OIBAAHmgIIFBgECqDK4a8EiAQDwtHrfnUIBAFvOv1BRRgECGzVoR71iAQEQjq6oOWYBANr1bIBlhgEDIWgAZ8WGAQKNpDkcqb4BA05X2tR2PgEDeTzr+bJGAQHp7qFAalIBA8uramMmWgEB4oeQVh6mAQJUl6ucUtYBAYKh6ABq5gEC5Bct2UsGAQKoQWXsQxoBAthmrsFPJgEDYHJc5EsqAQNbYJ+gs0YBArQiX10zRgEDZ/Hx+LNmAQATISiJL2YBAmVNPhkbcgEDi/0I+ReGAQCz4vd5l6IBABKeoCvbogECOmrt4Su+AQGOH5wD18IBAuT0w6z//gEDGSiuwPweBQPXRuh09D4FAlAdGqzQfgUAKgcxMDSSBQBi0dogyJ4FA6q0ateUtgUCDo1w12y6BQBAnh2CIMYFAUEb1CLwxgUDGbNF5OTSBQERloWOuNYFAqJif0do2gUAGhaensDmBQKH8FG/ndoFAyJ5iRJR5gUCi4mt/QHyBQCifSI3nfoFAvZtaHpKBgUBEM1ChVY+BQEyH56NUl4FAvXRvKUOcgUAk8lDN756BQKxnAUpSn4FAXhMLopqhgUBknMji5qGBQKY8+PVFpIFAsxBgNW6ogUCVod8U7amBQA/q9wZKr4FAmt6Mi2ywgUDor4lQf9GBQBh7gl5904FAwLwUvinUgUCpoyjM1taBQC09LvIECYJA/HJWZNgYgkBh41YD1yCCQKw6Z1rRKIJANEaNUKIpgkCfaxBCpS2CQADpW4ykMIJAJELr2pkxgkA6hfAXrjGCQCILjpidNYJA5QQGea01gkCkLHU/Q4mCQFiyenhEkYJAmpgbUz2ZgkA01qmfDqGCQMhlk8k7oYJAu/oHrA6pgkCG4inoM6mCQMiC7BsHsYJAerVh2jKxgkBOcrg8sPmCQDHyl3N5EYNA9CZRYHoZg0ApjfQlcyGDQGA7hDZyKYNAAQQ1+Wkxg0DWljGAHjmDQJ60o4XjgYNA+HnbMZT4g0AqBwCIav6DQE4bv/xtAoRAUGSWDf9ohEDZ6aCP/nCEQHk+3qf3eIRAHOSzIcB5hECEflyiy4CEQOotFOv6gIRA9ru4gJHShEAkxJshatmEQANdxM5q4YRA8wFSS2LphEBDCOdqNvGEQCQ5Uddi8YRA723wRDL5hEA3LnsQV/mEQI8OlKAvAYVAODfWVKBhhUCyFq7VoGmFQCqO+Q+acYVAChDoFbRzhUC6NqQHmXmFQBxNOZ6SgYVA4qRXAS6+hUDJ2uVPL8KFQCq7fp0luYZARN7JcSLBhkBySTxOkSmHQDmXVoORMYdAKrUDh4k5h0CRameukEGHQPjhL61+SYdA4aqpiQp+h0AueJcODYKHQGC7T1nHsYdA0GOyVse5h0DOHpnZv8GHQL7KK9i9yYdApvI/+/7dh0DI2zT/AeKHQEc8r14D5odALsm7sAbqh0D7aSSHAO6HQA== + KBZXds7jZUAYxSyCnORuQNzlv3T/InFA - + - ccKBRI2eOkXZAoFE5amURaPNkkVSc51EqH25REfICUe8qi5EGj63RNVOY0QbkwJF2UeORJHBVkTpsLFFHXT2RJ7St0T8zHRFgMK2RBwoQkTA2a9E8mavRANUXETSp99Eg/lRREkS00T/L4NEyuWvRC9fG0eRKcNEEHVdROI9REZ4F15F+9xxRRCVpUR+F+ZEdoToRjhY0URUZG9E69hgROv0iUXqks5Ez0V+RDegU0TgrpVEPRlaRHV8hkR1kuREq3WERQfNVkSkuwhGYKF7RGoBsESIz2dFOJB9RHO5b0RH35REA5FoRAFDrUTWrV1EZZSVRGoM/URJ7ItEfpxMRGx+SkUR0O1GRszCRO9nPEWWC+lE2KyoRLQXoUTqB1FFB+9KR/Jho0Sqj8VEn8mJRrnIAEYXKZdEOyLTRcg41EQG2DZFGFQ+RI4QWkQg6HtFUdgcRc5jaETABbFEsx+JRRujQkae6T9EIuIkRe9TR0QlcK9EmkhJREHKxUQhJ69F1OYTRi6UiUQKjaNENdFjRD7feERKhexESR+PREIJmkS8I8dEglCMRvlVBEXRa6tE/89IRaIoskSS6nBETGZTRMgHm0RoojNFJAtnRKbWnETXZIJE3D1uRKwPUETNMKtEaOoERXznhkVpdmJFcEqBRPCUekToTaxFUu15RBqSQkcUqohEBOVuRFGeBkWG7dVEN/cSRbbDUERiaeZFd792RUkIjEVa1mhEeUeiRCeYVkT5661E1smmRNsyzERBAZFEs/HqRD3HakTw611EyxPxRB8w3UR9rWFEZz/BRC0YhURp/45EDBbpRNZGc0QqebpEqYBtRNANe0S8ypxE7jV0RJHTkUT0I6xEKegQRWwliUQWR/NFJ96CRAEmg0SkNAZFPBbqRAVcFEW1swJFZ42DRIUZqUR5MkNEP+BxRX8pkUSmHdVFkjBIRCglEkUD4gFFqfAMRaW6KUb+SKNEut//RMyxsEUISSBFSPYaRUHikkSD1ElEp0RER9+qnkYUKEhEoChPRK/ep0QQDLpEfAp9RWEb6kTlQmJExMJ4RMOEmkTzfXRE2LG9RNiZjETS2qREqW0nRe8CWUQUJnhEd4yURb5pXES3rJFEgfaYRH9oakRP8VVEJ0umRHmcAEYRq/RGD19yRPxZr0Ty881F1aFIRCxKX0W14Z9EFOvARBF7dEXfM1VG+ynXRepKi0SDHntFffBXRDFMwkSVsl5EoZ9wRHxO0kSgNZhFPaOSRDU9R0SCyBpFxN+fROml/kSl3ghF9b+BRvpVj0VKEmFE4E5fRNUN6kdxidxGk33PRjN9o0XaF5ZG7TA+RN/S6kSEe7dEPbd7RVOYXUWUQ2xEPJTJRIyPt0WThb5EuyGXRLYim0RiI4ZEWQVQRCsDg0RdG4JEgxqORBorLEV9T8lEiJuoRPhFSkQmE51EW1MeRhZZmEWEq+5EoLkCRWPNaUU9K5VEjRdeRPzI/kR1vYZFZENBSSAVW0UXz1ZESC1tRNVqXETic/tEl7tOSHLbZ0Qy3KREQ4GrRvSukEQMZwVFOxQHRYouTkQ8xmdFREG6RefHoUQ12clEpzGPRMbWZUWeWX9E0Fx7RLgFC0XXZ4BE3qo9RS2qAkZ3uJlEKZreRNWN5kRdD5pEebGIRCHtVUS8DrpH9Z29Rk7R/EVuky5FFolZRASJW0TUKphExnTRREGRV0S/K0NFo2GkRP+FsEWnPidF303WRZYvlUQWu4FEzxZ/RKUzXERjC8dEi+D7RM4b+0TShO9EOpnhRI9h8ET1VKlEpvtQRqVAU0UFws1Em9iPRPkjSkWNR4NE1nUBRbtxk0TkwMxELDiBRNiQgEQqPrpEoiTgRKsLlkQ2uG9E+ZO1RVEIo0azZgVFhdFmRqjy90QsQpdF1Y1NRKzukkTh6KBFYb2KRZZgrETtCftFQOiYRNhXe0SDhYlEjF28ROCnSURoRh9FvLJdRCpE4Ucr+wlFnJrwRg/60kSJS09FdeXCRnzoh0TekIBFMu8VRVVUoEQ1oqtE1tOORPndH0agEwVF5ZPzRDt54URviJ1EuZqIROXKzkSnT4ZEEXLdRNm3pERxr4JEJy5RRdOBg0SVh4lEs36dRQiyvEQe+HNE3kBZRoO2jkXwmhFFYMKLRXJzQEX2JDFFtoT2RPVQQkTx+FpGNYToRcIqtUSttLJEV3p2RC/MDkXttWhFMMKaRrtlqkRU8M9Ffy5MRC6etESHme1EBzM7RTRVeEVZKgxFzYXGRGkM5EQFNppFWwWcROIFjkidOUlFRXMJSH9KiUTW0XpEBnqNR15ucEQT8o5G5je5RH6VuEUFgVtEq/jNRDRh8UR8+IZEfS0QRkn+P0WSw8NEltUNRhOFYkSDAqxEotiuRKQhHEbWnoZFAaTFRIXPlUTzJKBFeQ6TRMHHOUXurMVGecaURrS+80WhSh1Foqu8RL+UnUVcYtBEudTQRTSk70XfxJFEGmBgRaFMKEVwnYNELFwSRTeIZkR64mlF6pmQRNQFwUQMXZtEu6EMRUSDP0QV8cJEBwxIRiDiZ0UySjVFoQ8aR5BHlEb5oMhEdn1FRb1VLUWYDM5EkltdRGbTHEiZkKpHxsc9R3lFtUWSPEVGqjYaRfi8ZkUyattE2GehRJporkRyPBhIHhScRxC/LkfJKkVGNJRXRfHZj0R6rZpEZra2RJvuUEWuqxRFz/DURV8QN0Ub+uFElKJfRCr1akS5IWREl2vdRMZlMkfVlb5G/IYsRucrmEXFSKZFKUXuRO44t0RE46JEWIYhRxPNkEY6Gz5GNDu/RCgFhUUrpJBErK2ARCf0YUQ8baFECqaFRLtfQkZWkwFG/Q2ERUmCrkSfflZEaWfERC6PjkQ4zgdGbQeTRR7TKkWGlphEn566RvC2j0ZsVaJFiutNRbYOn0Q= + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - GO3Lrm/BckB6NY0Np8JyQAhD9bA7w3JAbYWUocTEckAZTkAHWsVyQJpBZ5lD0nJA1knNkHXTckAMK2cpYdRyQMKT+TnO33JAoGDZALngckCyb4oTTeFyQDiL30VR4nJABsJuoY/ickBkRh+jw+9yQK+Km55Q8XJAUKqeQMrxckAcL6AjfvJyQNK5pJC083JAxgaDrwz0ckCiNbteovRyQKvNBvHB/3JAqv9VoWMAc0C01iK79wBzQNyXe39LAXNA8mS5HI0Bc0A2iTEV0gJzQE5cLPP6A3NArHO9PCMFc0B8AKlMCxJzQGfuM3R3EnNA4Lsth70Sc0DEIuRi+xNzQFTjnfkFFHNAMqvakk0Uc0DI0tY3eh9zQB5B1+KkIHNA2Q9RUjkhc0A0CzAszCJzQOoKji4RI3NAVLHyrM8kc0BJeNXuSDFzQKW9truiM3NANAaL49czc0DYovTX+jNzQJa014E2NHNA2Jw3yNo0c0Bsp4zDtz9zQDanIfBBQHNAAKBMneNAc0Dct37feEFzQA6q8X16RHNAL5+eB5lRc0AOz7V+D1JzQNhHiERFU3NA+0OJ4qNTc0CIwxQnhlRzQLRVfMGMYHNAyBXoBDhjc0ARQR0LUHJzQL4x/0djcnNAoQVxhbZ0c0A8m3BHTXVzQIodyvdudnNAFvaZMnmAc0DuUdB2pYBzQDnWA6MNgXNATIi8/ceBc0AQehGVXoJzQDqviXEPhHNAKpvW94eQc0DYWTYvTZJzQNISrBsOk3NA7FdvCs6Tc0AWewl2YpRzQBJdZgP4lHNAUGxKM4yVc0C89gt1uKBzQLyQSeJMoXNAJH9yGFuic0CggSqm56JzQOK5iGoFpXNAHSWr7sWwc0CAU3e4e7JzQOVjNmsTs3NA2gdzlbazc0C8echiDrRzQOnMYqH3wHNA1GpgkM/Cc0CbYAC7JsNzQMQQ0KfX0XNAfB4WbTDTc0De8RgK99NzQOZtqm7i1HNAgH/UUznhc0BKpTCi8ORzQFf9pQg+8nNAPRM9/v/yc0Au4suuN/RzQPumzEKM9HNAQgy25+YAdEAjgMTXeAF0QByMlGqmAXRAls9atKEQdEDaHWPyiRF0QC7/aQdNE3RACuuecuATdEDgnrQFeBR0QGevBuRLIHRATJsZ040gdEA8RXN8uSF0QN11O/FTMHRAgkNEyLkydEA6QCEN1jJ0QG6ACKR7Q3RAnXRAxmJUdEDWfK4D91R0QM4NYdWKVXRAcRaLXrlgdEA1hGxFCGJ0QDDo8tpOZHRAKR63hyJwdEAPO5kUY3B0QIQcwStBcXRA5QqVv8dxdEDi+iueOXN0QNZBiWk2dXRAnmEkAPmAdEAYUZ8DToF0QD9OA0eygXRA5lJuFvWKdEA5chsRFpB0QGTTNqtrkHRAajfo2M+gdEA62gl5OaF0QKis0BC5onRAKKM+8NGidEDeafJnD6N0QBamvH5lpXRA4d4KyAmwdECUnSAK48B0QA3ImWt5wXRArAeHYuvBdEAY4h9BD8J0QLRIgiq+wnRA/RGfmhDDdEBCCGxAIsR0QEY/PeS4xHRAXMh67P7OdEDmV5lc4NN0QAWNK3F01HRAoN+J9szUdEDLV5EJj+B0QDC97xe24HRAp9zACrjhdEAU8f+9TeV0QB605oaN83RAW9Xrq6X0dECgqSEJpQB1QLZsRyddAnVAmClZcpgDdUAqylfkOxJ1QK/3jFEjFHVAvywjJnsYdUDo9gA2uxh1QMkchJLQMnVAFkO0R8w1dUAMzMAbs0F1QDjq9XaBUXVAHno6WidSdUCSFj33TVR1QKOUWc52VXVAL3nOYwxgdUCOKNQ1OGF1QGpOtRP1YXVAH7gwfHdydUD1w+t1jXR1QIMCIjF5gXVA+BMj562BdUCwqyqMpoN1QB3iNs6bhHVAotj1t22SdUA6dMooPph1QKComEyYnXVATo4aiZSgdUCIXeGouaF1QPb+ffTconVAciUvXfGidUCK1rvU5bJ1QPLQJH99s3VANMguD83AdUDSvwwC+cF1QNTgGDrM03VAiGyvrRDhdUB8A/h8B+J1QHgw3bXP83VALNzbokgCdkDEU+N/0gN2QLjWwBL/EnZAWX3uEAwWdkDyctdukCR2QK8KB6kfMXZAIiXoEZ40dkAHgHmrHUF2QEfxxzt6RHZAfs/5eMpQdkB/gGA6ElF2QCA1NGbNVHZAFlqcgMxidkABNYXx2mR2QHZ6dqolaHZAnAB/VGKBdkAgDusUaYJ2QJBZBe6Qg3ZAA0tYabawdkBYuc9hwbJ2QJ4/i8F4s3ZAPhp8Sg20dkDChJaadsB2QBz8mdIZxHZAvAIAEM/OdkAMTwsP8uF2QKiG34OS83ZAfNlo3Uz0dkBidCyUMwJ3QJcyXVsBEndAi0zkqg4id0D/8FTuDDV3QONyQx6dQXdABsV1YRtFd0Bwl1a2SlF3QOfLqVeSUXdAT6MnqSlVd0AI8CepSGF3QHMQ0aKPYXdAjD/duyZvd0DkUGR/sXN3QIJI/XV8gndAXK2vF3uDd0BzOZhyBJJ3QHtktthNlHdAOjsQGJy0d0CCM9lH49B3QDIipcpj0ndARncpg47Wd0AfGBwk7eB3QHNdHg5Q8ndAZPmp9U8VeECUyWv0bSJ4QIEr6ceHI3hAG53bKHoyeEAITObLCkJ4QBYBVUd6RXhAWiaH0spReEAa8HuPh1V4QEiWM+D5YHhAAlbRV7hheEByYbW9t2J4QGwPdgPvc3hAxqd8ggF0eEA5BRxli3R4QORc1BaudHhATU4nHsR0eEBiNpw353R4QDzr5kMKdXhAwMoWniF1eEDCRMDBpIF4QPSOJX/lg3hAXMgsdZmEeEBaWa72U494QELRyQuYkXhAkp4yAaeUeEC3SC7HqqR4QKcZNLZzq3hAPH9pXszAeEBWbAdP9cF4QFjOwsYFxXhAhi4dSbjUeECDjn8DAvR4QJxBkKeM9XhAmmkpNZkFeUA4aONFi0J5QPJZnQ34QnlAg54DxsxUeUAIeadx2mR5QACiWJ5Ec3lAKJc8M42beUCM3+UBO6J5QJytixHAsnlAiNDs0kLUeUAw0dgQztV5QJQFGJ++4nlAR0cT3lHkeUCsbGHwGOh5QPS8DUX5BXpA/Ja6veAqekBL4i4nDDV6QArynHEaRXpADBJm/y5QekAqIfkcgVJ6QAYQGDIpVXpAcL3ags9jekCvMe7BOGV6QCCAXhs3bXpANPMcUY5yekAbfUNwCp16QMji79VIonpAlubDiOytekAVmjozR7N6QB0yrwsNtnpAXlfR4yzDekC6rmSFGMZ6QDt7ct7g13pALdch9GbhekC+GFRbNe56QKC1YPEW8XpAopA0/2b0ekA14UUhKQ57QIRI3fTAEHtAhnfYskwVe0BKgPOcWiV7QAdhmNgeLXtAKPfXscEze0Ciw9V0ZoJ7QG1GtygBhHtAPO476b+He0AMcIJcJJV7QMga6N1jwntAWs3N4XfGe0BpPD/7M9J7QLInXw2v03tANIQ+ikXie0Bwa16G/ON7QLquYxCM9XtAsqB4XZMBfED1iKdL2wF8QCzfvB/5AXxAyOdA2pkFfEDsTwHs0BF8QGpo5E4CJHxA9HGHOgYsfECuYxjXzUF8QNIc63DZUXxA8Y8RAg1ifECia6BvBHN8QHhbaTPAsnxAhjxaRMzVfEA8ZdH3V+J8QDrD+cwX8nxA4szUsFXyfECLtkxHSgB9QF5jXWAEAn1AaPxhuksCfUBV/IOVBxJ9QOUpAPZDEn1AVjaVXCodfUBeYi/hPSJ9QHTALiGGIn1Aen8V8aAxfUCjUNBZ1bN9QIYHfS0EtH1A+Zq89izDfUBICWPmDsR9QBxNTfNo4H1AO/jUCtfifUDqMrXnkfV9QAjPcYQ2H35AKPXc1j4vfkAK+6fbQj9+QPORGBaMVX5AwpCOQU3JfkCe2bRi0N9+QFKsA6kk+n5AuP5ZL9X/fkC9qAE4HwB/QEDt0UYLIH9ApxMa7A8zf0BImNm+uHF/QMg6y4C2gX9AdaVcXqaDf0BmcmOsY5F/QIVBf1mrkX9Aq1W0dF+hf0DY3fHFVbF/QHVYhDmX3X9AkHqp29Tif0BQrVxJLOh/QOrmZ/glLoBABgm4T+cvgEDIDnpB9TGAQGjsn7AoMoBAdFXfOes3gEAWNfkEOTmAQP8ac3lwOYBAkNKH9yw8gEB8dnMf51CAQPqDwYsUUYBA0pIDbuZYgEDxmPu1DlmAQEPjT+bhYIBAW8pmrShvgEAUHHEnKXeAQPPbmB4ej4BAC4u5nm2RgEAg1DoWG5SAQP0xlVnKloBAguB3NR6XgECY9Q61hqmAQBw86uASr4BAPmHfEhW0gEBSCVCCFbWAQGrs5CMYuYBA8QmQgFLBgEB8c5I9EMaAQMLJbrRTyYBA9LYC9BPKgEDeqYmiI9GAQGW66fVM0YBAGLIZ+izZgEAudBYIS9mAQCi4dAKZ2YBAsvIM/EPhgEC2G0HmVOGAQOiBJi326IBAGLWcNkXpgEB89hKVS++AQOTN0No884BA8smdxD//gECIt0F4PweBQNgwRCw9D4FAizclzPMcgUBfgALXNB+BQJCoAAg1J4FAPYWUuuMsgUBS8BQB9C2BQJR1PcfbLoFAqi9D2YgxgUD+lRhLvDGBQA5w1sEQNIFA5q3zsjk0gUA4kNzj0TSBQMLk4kSvNYFAwLBMmLA5gUDk+F4V6HaBQJLs9yOUeYFACKfxdz98gUA2wK166X6BQJO00z2RgYFACKiOb1WPgUCWa48DRJyBQPRIAPPvnoFABKImDpmhgUCmuH7x5qGBQA5USU1EpIFA6RftW22ogUB8bLlamqmBQBxxc3tJr4FAJKVEKG2wgUBKJ+Z4fdGBQGzVjWAq1IFA5JZzANPWgUA8FWmcAQmCQDyvirvYGIJAC1R2RNcggkDwKPEA0iiCQPB3iX6iKYJAbWRllKUtgkA8Sn4jzTCCQAgeXuqYMYJAdD6T060xgkCuSa1PnTWCQApmsaZ2aoJAgF//XkOJgkDq+Wv4Q5GCQFgZPlQ9mYJAoQykWw+hgkBw/cZgO6GCQOTkJS4OqYJAADr+XDSpgkCwouChSKmCQFrQvG8GsYJAOFOmJzWxgkDgkp0Kr/mCQM9e7Jd5EYNA8MZq3XkZg0DqTLg+cyGDQGYVe+txKYNAz7pLqmkxg0A0l1/GbTmDQL6hVo3mgYNAc0dsQJX4g0BkmBPnaf6DQJyKWBP/aIRAAjEOdf9whEA8QZoF+niEQBIAcz2S0oRAiDIzX2rZhEAKTV6JauGEQLd8Qthi6YRASy7P+jXxhEAMMwzYYvGEQPgM/rcz+YRAJXa90Vj5hEASaoMYMAGFQBKVuXagYYVACi47mKBphUAee91XmHGFQGJz3z+1c4VAh2npBZh5hUBaH1B6kYGFQAL7CnUwwoVA9nVNwLxIhkBVRP3LJrmGQEU7vyAmwYZADl3stJAph0Ax1bYMkzGHQJ9IQ2SKOYdAjgBPwFxBh0C/JjywiUGHQOADQSVfSYdApv3ED8exh0AT0Je9xrmHQChXbzTAwYdA/vB2HMLJh0AM+GAW/92HQDxeb00C4odAbRtangHmh0CvxKL3/+mHQA== + KBZXds7jZUD60UzrnGVsQBTpB48/A3JA/caCySZEdUBPi4Bk7yN5QCSIykDVVH1AFuYUngdVf0A2nYzRz+KBQMyWRZjiqoJAYccO1BsbhEBbv6ONDnOEQPDvbMlH44VAhuklkFqrhkCxE6iSpuOIQKpCTcG/44lAFUFyrzL8i0A+I/H8FuyNQDOSLpqKjI9AH6lvk2G6kECZYA5im4qRQJ/AZqi3fpJA - + - b+NfRULAd0WC6sBF37ZbRMULjkQxTgdH5N9qRGOxVEQK9epEvgyERKPqkkRhaoFF2aELRWM0jUR4cWBEUDCYRXLOn0T/VoZEsZZfRDW8o0TBBsJEHWaIRI/s5ETglbFEJqSKRKz5uETPGhxHm+9CRAQWrUQIVW1EVvNXRsVojkXaLZdF82CBRPmcnESYv/FEYe7CRktC5ESNGUxEDZe4RcSVEUWb6nxEwhmKRKlsYURy4HdEu316RP/SbESXEGFEWa/hRNCbmkUQTgxGRM1qRG9ZKEQJYcxE49NiRbxyskQHNG5EdmzrROKutkRp/cBEE4CMRB82GEVDxoFEFq/URi6leER8k+xEQczURC0+YkTRIaZEy4YdReFIRUdwet1Eb1RKRP8Ju0TmrnRGLfhMRDk+EEYlmm1E+d78RfFSh0QUyVBF0bxBRAuNWkQMf7pEngmERWUv40QbiLREXseZRU+aUUZLESpFYzJRRMQ7zUS7o5NFyET/ReJKoURU+sdEamd1ROY0wkQx8lpEK2NrRNNkjUaJGQ1FF9NwRDJjsUR8LT9FdROTRKDzoUSlsbRE/MhbRE/XQkXkbcpEZ20ARdns+URS+JhEdBt+RAb1ykRcUuNEYfFkRWesMkUWB2pES4y0RQeTTkSgWk5H8LF/RAbpm0RvbftEOMVIRbz34kWs3m1EATkvRTQNrkUkKGtEQt/ZRBO0fkR0yIBEd4fcRBOKUUVAJGVEuUXQRCQ6bES7ZPtEW3yaREfdbkSYqnNEvBjJRIN0dkSee7lEPKCrRFRXlESIWGFEIMJiRPRucESS05hESGYVReochEQZptVFuXBHROkreESV6AxFO2JeRMKy1USvUhtFZ2GhRPvBkkSEH15Ea35QRX8BeURf1IJETdqeRTVbnkRqJgZF97vxRNHoDkURMo5EFV4kRcM6IkaRovVEQIisRcSKK0XOBRRFE/WARJh9LUc9nX5GtauaRNWHvURp8axExRc5RXTbcUTz3qREWaJgRJQJ4EQmMplEwwlYRKeOCkXzoT1EcJOHRePGZ0THwVBE/5i+RMSzAUaj4ddGHlGuRMvdqUUchn1FKyNrRJ7zQUV79j9GU7jLRTQXIUUji0lFnahdRHwlnkQmu9dELyhsRGvjSUXWNG1EVsq8RXM+TkR7yYhER6gDRX4TtEREnutE9S1SRDuQ2USkeIRGcdVcRYyB7kdxTcBG2XPNRpq3jEX0xYVGjJ/0RM2hXETRPD1Fn6FzRczhPkRIBXZEgeqIRcuAh0T1dJhE3MRtRMb3ikS08HtEI49vRGlacUTck8ZEEtx+RICfMEVXdcNEqft5RDsmpUTDxjJGARWLRXF26US8Qt5E+iRaRUFLhER5GnFE8GSCRFxEQEksrZRFJ8PZRIge20TsOI9EFsKPREASSEUXt0xEkzpQSMS+qUS0lflEOkydRgltlUQlbYZERvSrRH01o0QBsm5EgnwzRUsicEV6L8tFJ6mZRM3Jt0SJH5FEjbt/RfX8XkSN25dEQqtSRStcXkRnzUJFZPLCRfkb10SoT8JEOXe7RIhWUkSZU6xEXDaFRKzRuUeTvb5Gvt/qRc7KB0W5FPpEq/PLRK5IcEQVlopETDLfRKdpr0Ta6QFFlXOXRYL1DUWffs1Fs3zgRKuhqESs8AZF7nIQRdMeCEWbxAFFM61LRVzShUSDKUZETYNGRmi9JkXr1rlEWRFyRDeYV0VHGE9E/FHLRKNLzkSR9EZEZXSFRC7MS0Ron4BE7w6aRDB6yUR02ZlGSUyWRIC+YEYuVwVFHm+7RagYhkWEKRlFHBt5RBC0rkVOAlBEfU+eROmXTUSA1thE+jBNRCDZ6UdgBLlEawjeRlCCj0TVUCBFRE67RirGQkTEXk9F9p2ORMM6fETX5FNEIkSCRGxIdERr48NFXjgBRaT6hUT4FMVE5JaORHr0DkV+6WNEEhqERPr2gETZpp1Eyox9RAp9VUSvKJBELE1/RCWsZUWGX05EGvFyRFbDjUWTcoJE10uARF9sYUYcyNZECvlnRbQBLkWcHq9EzpZTRZviCUVgEgZGHhZ4RB5xM0S8Z2pFTEpbRGJe5kTqUZtEBKCgRLjrJ0WwU25G0fmFRKm7n0WVAWVENw0GRfjaQERN2x5F8SM0RctqGkVbPoZEgDpKRL1+4EQ1H4FEvmxoRDzbJkWCmGtESaJ8SLbZ9kQcI/FHUxHyRHjQXUQBKYlH4k+MRMr0VUbktZtEGpKXRX5izUTW6H5Ez+VmRCYNrkQU1bFE9TALRmx/MUXPqLBELoBIRNCS5kWX2+BEnY+aRBi2iER+nMdFARDEReeBzUTg+XtEG8GXRFvQnUTAWlVFZaC8RANokkbb5FlGotPFRZQF8USzk5JELTOORXPN3EXijQVGvtITRejXFUW5iKhE+NMPRWtPXUQPCSFFkWxUREmnuURpkQtFrNKERJLkREToD0VG33KORRhLGUVoJ/BGWDR9Rt+zaUQJzRRFLukdRa/OrkSXtohEXQPTRyY1RkeWl+tGkwXsRV8aAUZzgyRFrKkTRStsbUQsWrREfVpHRKvEqkTKrNtH8glNR3Sb8kYe7h5Gr0UuRa6bSEQvTX1EDSrERHoF4kQ7/6xFN8hNRayMxURpjpxEAAEKR2/1hEYDYCFGH7+XRYInSEUUANpEcUl9REixZERhlgFHikqDRuFHCEa4vXdEQ+VXRYGCokRUqWJECaR8RFQdqET4f6pEd4wORj1BukVxw1ZFH02MREw89kQeVklEi1PfRRKXg0XqQ4VFbQW3RIrXMkZpDwdGDiCHRRTuqUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - MgeMf27BckAyuPITp8JyQPYSdXI8w3JAdj7WNMXEckBco04/XMVyQFw86MlD0nJARiMOKXjTckAoE+Jn0N9yQKDlH2O44HJARsw/5E7hckDmJAsoUOJyQBx22lWQ4nJArhJuiiXjckD0P7o5yvFyQM5LUSB88nJA7p9wjbbzckCcQ+xCofRyQBGT/xvC/3JABpKFI2EAc0CeQyXo9wBzQCTag61LAXNAYBcWSI4Bc0BYXaJT0AJzQPY0Cs76A3NAzHqETQoSc0BbNFW1vBJzQISOYT8FFHNA7ot0w08Uc0AosuoNeR9zQOL/THCjIHNAor4kZjkhc0CeLo6lZSFzQPVkjr57InNAkGq5isoic0CwLknoDiNzQIglsr44JHNADhz75s4kc0BebZfVRzFzQCQecYQiMnNAAcgaYmcyc0B/gZlTzjJzQLZrqxEOM3NAWID+56Ezc0BO/6JW2zRzQBr7kSq5P3NALvCYmuNAc0C/2YDWeEFzQPZUV/y7QnNAMkXTc3pEc0CgKRRbm1FzQF0eHSERUnNA1QBZCEFTc0Cs4mYxpFNzQPOg4tmGVHNABpS/Ljpjc0CeCIoikGNzQFy9MPz7cXNATiDklFByc0DWsQJXZ3JzQEhrzW23dHNAMBqcP0t1c0B8ScYea3ZzQL+y4PZ4gHNAfRg4vKSAc0DA4Du3DYFzQHdycbLIgXNATPaXJl+Cc0AioTSDh5BzQHSjNDj4kXNAi4RWRk2Sc0BrNdB6D5NzQKiApp3Nk3NAU3sWcmOUc0D4csCK95RzQKT4I1+NlXNAXq1wvbigc0CplK/EWqJzQHK1Zw/oonNAYHIvqQalc0DGWR0R2LBzQELkkCt+sXNA4WiKSBCzc0AxV2XLtrNzQPQE844NtHNATs5MmvjAc0CMBEpSPMJzQM+SMqbQwnNAOlcatibDc0CYfLZwJMVzQLA2b3zY0XNAqp3bajTTc0CqCPUG99NzQN0n3cHi1HNAY1qCX6Tgc0AYMijdOOFzQJcgA5Fg4XNAQnWVN43hc0Dc20nj5OFzQICs3ME+8nNAElU/Pzj0c0DygeAq4QB0QNSXvjJ5AXRAL/USXKgBdEBeCCWguwJ0QMdJXLoIEXRAxHQbY4oRdEDa0V11TRN0QGH76zx3FHRA8Mme90ogdEC3/ZFAuSF0QHf9ieBTMHRA0v0VdLkydEDE/evz2FJ0QAoceMf9UnRA7blL2PdUdEDLgbQxi1V0QBiv/JO4YHRAOMsltQhidEC2c6wJEGR0QK467+5OZHRAGN6+OCNwdEBYNg4sQXF0QCzgUAM5c3RALg/WzDR1dECR7d6Q+YB0QGDd41pOgXRA2uJ85LSBdEAf6Bd684p0QAxWpbwWkHRASn7Y6GqQdEAEhi7J+JJ0QMiNhkFNlHRABGjTPc+gdEA9spLFOKF0QMfB4l6LonRAZl//0beidEB9G14W0aJ0QBoVf6gQo3RAXh5I3GKldECQETHkCrB0QLZ6oBPjwHRAFIoVzvrAdEAbX8ycd8F0QC80jC7rwXRAdkPu3w/DdEDnwuLxI8R0QA4lA1O4xHRAFh/D3fvOdECqdB31OtN0QFlq0uHg03RApsXNnHfUdEDgVTDYzNR0QP9WVUy44HRAHjrKcSLhdED8UwkiueF0QBttypZP5XRAvKWFsozzdEAq6V8zpgB1QP/gB+HNAHVAnpiuUWQBdUAssdxdXQJ1QDCKxhiaA3VA48g3XjsSdUDQFYuAJBR1QMqZ1d43NXVA9A7a+8s1dUBNeYGUJkN1QCD5613bRXVAKEQG8utPdUALeDoTAVB1QMNvfhGBUXVA1KUlECdSdUBa4plATlR1QMNS/E13VXVA0OJ9m+9fdUA5+VteN2F1QFfURw7xYXVAtl7up3dydUD0tNjKjXR1QAs2goZ4gXVAbDXOT66BdUC8i5zJpoN1QEbws1GbhHVAPSb0zm6SdUC0WcslOZN1QPCE3yQ+mHVARAYMYpiddUB0TlFmlaB1QItk0Ty4oXVAAqLhDvKidUC3aWnt5rJ1QI7afCZEs3VAiLf4xzrAdUAsfmlIzcB1QBze1ohkwXVADFa+0fjBdUC54yN1N9N1QIqKkNzM03VAKO824uTfdUC6q8saD+F1QIahwZEI4nVA1cXiKjzldUCGYRmEKO91QMYTHiRIAnZAbm4ic9EDdkBElClYTBR2QNHgCG4MFnZA/+D76IcidkBg/JabkCR2QNaa+3EfMXZAQ3cX2CUzdkBqEA1BnjR2QGU5DCsfQXZA2yLR1XlEdkAiLy2p/E52QD8+1nvLUHZAzMDAphFRdkD6eyh8zVR2QNLM0NAQYXZACDezbyBhdkBgX4QP3WF2QHZgZC/MYnZA6aQwJlJjdkA1Tl0Q22R2QMJWQQonaHZAmtvG92WCdkC8/fOWk4N2QFDZuV63kXZAQ/yzwLewdkAsb+5bwbJ2QAaa2oYNtHZA080RvsLAdkBwAjaLGsR2QLdjms/PznZAVLiGQMDQdkCCc8jokPN2QIb8S4FO9HZAKEV2hkz2dkABUVnrNAJ3QKKrY6cBEndAGq23qQ4id0Dg++ofcyJ3QP5F9zMNNXdAQFAHP51Bd0D2tspXG0V3QCYweypLUXdAQDH2qJJRd0AyHGK1KlV3QA1TszUMYXdAfdRcR0lhd0D7/upakGF3QFADxg06YndAwgGmMDpld0D29R4iJ293QJKuQAeEcXdAhKpqQih/d0BenpZbeYJ3QHg9Aax8g3dA8hZChkyUd0AJSiJ2t6J3QK/fhxSatHdAdoB92eTQd0DcF0Fx7eB3QGZYsubq8HdAwEaTy0/yd0C6nI8OTRV4QG53Sz5uInhAmEUFFg1CeEDI2fh/ekV4QPLNm6TKUXhAZEsmhohVeEA3+44Y+mB4QGYWtea2YXhAMgq/2s1heEAuDz3FuGJ4QL31NPyfa3hAWtsryot0eEDW2F/0rnR4QNkI27DIdHhAIDnH3xZ1eECpgOKDpIF4QGfMd82ZhHhAhhBVpVKPeEDmw6p5mpF4QDTyV0enlHhAAPAa8+efeEDXjGtTtqR4QNBECZF3q3hApI0BFs/AeEDGFJ/J9sF4QGNDj+8FxXhA2DTXkrfUeEBtcD7Ow+R4QIg6yxYC9HhAZUwGaYz1eEAIDrwGWwN5QKLc6gqZBXlAzKYP+hVCeUAmJN7XjEJ5QLnbatf5QnlAEKpC9uZQeUCKrsZ0zFR5QKz4BODqYHlAnFd7JNpkeUBRyR43+4F5QLqbPSCLm3lAxJAXDsGyeUCSMfFEQtR5QGW8q8jN1XlARgSOCk3keUDujlRrGeh5QPaXRKmT8HlATPyim/sCekDm2jLp+QV6QJ79vaU5I3pAsEv8kAw1ekD+TT71GkV6QI2chiUvUHpAit7eAYFSekCiDtzuJ1V6QAvA2BXPY3pAIP8QmdVrekB77xGDOG16QP6Y8SEdcHpAMHd3noxyekCoMRztR6J6QIpxevOlp3pA4v66GuytekAe4VLpRLN6QGjcjfMMtnpA1jLXhKK4ekDi0jQ8LMN6QBsHGJsYxnpAPvlwY9jTekC8/I9A49d6QEo5Omo27npAlqo3DGf0ekDKK+bJeAN7QPAHxlN2BHtAyGz3aCkOe0Am1R57TBV7QID7SINaJXtAOsaOACIte0C2BiQyfTJ7QEyDljZiUntAIHzEdmaCe0CfhrASv4d7QMCefwnClHtA15tpDCSVe0BAcRA4esZ7QM66mQ0V0ntA4Du2YlLke0D+IDUAmfF7QF9W3VeM9XtAgmIjmo8BfECCu9Mb2gF8QOO1ZxiaBXxADrmwlYYRfEAUy10D0RF8QMk57IspGnxAHBXkVwQkfEChRwVjzUF8QDryUSPbUXxAt+iIXEZcfEBEafxtDWJ8QEsLkdIqcXxAyHFmIQZzfEBqhEJGMIN8QCpTNIy/snxAQpU2MM/VfECOg4/nV+J8QHYfpC0X8nxAgJmUKVXyfEC83c5lRQB9QK2fhk4BAn1AcmV+v0sCfUA43pXDAxJ9QBpVzxxFEn1ASggTAWISfUCGjgT6KR19QBg4isA+In1A/hx+uoUifUAOFHg4oTF9QNoT43xnUX1ActbuGwO0fUD8BX2YnLV9QPEUe3krw31AJlYFQRHEfUBSA4vqauB9QNoCf2iQ9X1AVIDDODgffkATMXiqT8l+QGYPCI1x235AABu+fczffkD/ut+W1+9+QMA0fVwgAH9AuCclCw4gf0DcgHAUvzd/QPJTUm9POH9AiaMHZLhxf0C+fLvQroF/QHpSAKOlg39AAowC3WKRf0CyjMNKq5F/QFoEWgiZk39AMfZwQ16hf0Bo59y5VrF/QHZlYIeX3X9AztL8xdPif0C2K9xh6imAQO7crfslLoBAq+NMkikygEBFR4Z/6zeAQCYry1UAOYBAM927anA5gEBa80zm9EiAQEToFo7nUIBAcsfYdBRRgEB4BOHX5FiAQNlSkEQOWYBAs8PVSClvgEBx/bShHY+AQN3OXYNtkYBAphQ8BBuUgEAaTc8cwJaAQBpQ8w+HqYBALan/7xS1gEAwChnXNcGAQIzA5XtSwYBAsLWp0Q/GgEBindRoU8mAQBwqIxITyoBA2j9ZtSzRgEDY2MBeTNGAQDIffJBh0YBA1rHVlCvZgEB03YVaStmAQGbJvu9E4YBAkhGhlfbogEAC/sbxQOmAQOwcbSZK74BAlru73D3zgECXH4OlP/+AQB28jDEqB4FAjMAUDUAHgUAicKLSPA+BQDqDooM0H4FAvJ4b/LsmgUDKZ/OQNSeBQGt/B/XbLoFAhCaRujEvgUAqglIAiDGBQDqLHCe8MYFAQ9sqIw00gUCajHRnNDSBQFhYIwKvNYFA2YSGA/I1gUAazgqQ3DaBQMqbTICvOYFA9rCPuOd2gUCUQRsLlHmBQM5cB+Y/fIFAgCOjlet+gUDudC1tVY+BQKaDMMlUl4FArmydx0OcgUC0xyNN8J6BQMzYO9mVoYFACj0J7eahgUDy7HBRQKSBQAMjyuxsqIFAPfY1xkqvgUBi2xyDftGBQJBnR2t904FAIEXy+wIJgkBOMUNu2BiCQJn4mZzWIIJA2oE5CtEogkDkXl9BoimCQBzHElilLYJAptB9UKMwgkA95Z95qjGCQK4vjqSdNYJA6p3nOUOJgkBYFK86RJGCQLT3Mr08mYJARHFMcVWZgkBLYTr6DqGCQADsNqc7oYJAtDJ0cg6pgkADFJkPNKmCQD3QXu1JqYJAwmSeawixgkChS8ABP7GCQC9Ksxuv+YJAdtnVfHkRg0C0lzcyehmDQHzHNiRzIYNAHPbEcHIpg0CQrEOCazGDQIZgyGVKg4NAAifmn5T4g0D//75Faf6DQGpml2j/aIRADE0kY/5whED4z1KN+XiEQMT40G6R0oRAxK28YGrZhEA+fn0hauGEQDRqcX9i6YRAREB6znzphECsurtMNvGEQAOx2bJi8YRAxp83jDX5hEB2sIAPXPmEQGHKp32gYYVAxFNC26BphUC2jOC7mHGFQKm/0860c4VA+sawnZd5hUDrbqrOkYGFQLQ6UoQouYZA4eXIJvX1hkBgKIpD+fmGQKc9HwORKYdA1HQGDJIxh0DSN1BliTmHQLo4LjVdQYdAqJcvS4lBh0BYXzYu04qHQNhOld7HsYdAEvPoIce5h0CioCx6wsGHQJu8Nxf/3YdAS81oswHih0BG4ggxBOaHQNbF5bsD6odA + KBZXds7jZUAmWGpEdaJuQDtMc7KVAnNA - + - BjeHRS7otUU2I/ZFfXDBRPs6qUT2HyRHJx+ZRCyJq0RNPQBFNCWMRBW4skXFUVxF9KDRROldhkXiqAVFasPERHGx50QzNgpFZlS3ROLsBUW5/KFETIWGRDdf3USajD9H2Xs1RTMLdEZH1b1FFe6aRCxv2ESGkPJECnEDRyR71EQaE41ElgFMRXw2DkWISZZEeoS5RZ2DN0XJyOBEIgSARKbDoUTZrsREToe5RBmi10S6GG9Ejc4VRXIDr0U6pIJEUD8+RkIYl0QFAqxEhH2/RL7xtUWiMwhFVgBMRW0r3ERFOehEVxUTRf9zn0QOse1ED4IRRW0ob0QHbwxHbH8jRYwSMEU53/lElQP6RO6gYkVuNYJEK8xmR6LR90RckBNFLKIwRRuFmkaA2YlEZxA7Rp0E9EUmcDdFMNlURSfqjUQyEcZEtIG4RB8/nEXEmOxEmg3KREFagESBAL9FT+SIRvpQiUQefExFfnw1RdaHlkSM59dFQS2dRKojIkYe+W5EobaZRP1lpETmpUFFFWgARf7MhESxEqhGHQGaRJ2BqkSpU5NE2e0FRe/hiUUNLv1EXjCoRDJ+LUWtQMBErtoVRfvzdUSVDLhEDuPRRGon8UQSnKBFC/5oRUNlpUT9PNBEle3IRbpgSke6PPxEN7TxRC2eUEUkeQNGMxSaRCvICkW3GatF5muzRBnmnESG/4VEOw3WRCdMxkSDyohEzsoHRSmQ/0SYDDVFAC65RNy43kRt6gNF2D5wRIAF+UT6T6FExMfIRJP8yUS7pyZFTCGtRP2vm0SQctpEXzTgRM/8nET5s4REJHmNRBZAO0WkYr1ESt3aRTrYkURzvlxESwz8RIBPKkUFsqlE5PqERR4jKEVO9ohE0hxiRUSqpkQFC4xENBDURIVLoEQAg/xETu12RfoQFEX7ZR5Fm7uPRGHqF0WR+YFEz65DRfzzwUaUh/5EM3HNRYGNCUXxN0JFMkyaRNb5jEQ/BB9H1YOkRoZApEThYARFyT0wRZid6UQgh0tErYeiRHs6k0SoKZlEIhs7RTj5i0QOUgRFYQ2TRNkmxERr+WVFKb/RRGkcskS1Nq5Fs0kCRSiJ2ERzxKtEoZi5ROTIOkbEAwJHWg55RNTrs0RbQtRFOtOoRQ4QhUShhshESKZ6RZhe4kZB5lVEv3CARCjUhkSwpgxGSWuMRB4ejEWHs4VFMy6GRELuvERW+49Er6W4RIFwT0WgC7BFeAeQRH8SykRJaUtFIy2fRDoBe0UAxqxE/KGTRMOYxESgAa1G3ORDRb9MkkSffQlI3Fr0RhFe/UaCotpF7GmfRnAwCEXG34xEe7jERFeYSUUsWY1Eq6D7RG7Vh0UwjPVEi7yXRJ3ZwkSn/rlFEJasRJSyqkR3j4xET/uFREHxqkRwVXpEekbTRPwjrkSBIIFFUH8eRaM8cUaspspFyc5dRUPD70QrqHxF0RC8RBVJmkTUFo5EKOBoSb9990UiqWhFa5bfRNfyjUUseXxItJzARLmqMUUXUqlGmW2XRHibf0Qscr1EZbcFRUolyERopqlEitI+ReyQh0Sz4X5FeYc1RiAejkS8QitFBaXLRJaF40SvYapEEsZ8ROYF2kXpGaFEdlnvRIKJj0Q+lQZFsHtlRRbiCkbwewVF8yiVRBcpnET2BoxESFGKRKkqGEVeUb1EBlgCSNHfE0fQax1Gl52ARQU5akWR7yRFHhaiRD7CyUTEUKNExQ/CRMB1FUVNsXpE7MyxRb3FNkXljMRFMwabRKEF20S5RwJFcXmFRHweCUVQsTJFkJqURcHxn0T/aLxEOOflROy3X0b42G1F1BSTRI7Q20SEzKNE0JiXRUSk4kTZ7dFEd8ZWRenU0ET6M0xF8MiRRFtz1UUy7sBGLBeLREp6fkav+75FBNSeRAKcxUUl6IFEzw07Rb+G4EV3goZEOBSBRIAAx0QAyORETCHDRC73iUSTNA1FBES3RCluDUgdVjpFb3IFR3AksUQkOztFWCzWRqe8iUTnjJ9F3af0RE4q70RcKO1EzGyWRAHxk0QZipFEzbDFReKQqkR+FAdFF73GREMiCkW3Mh9F5eudRN/TwUSEgWtEQE2gREgJu0TezGpFFyXARK20hUSF55VEgM/YRWNa1kTsEtNEZLpNRokc00S8eMdEmydkRU8QSUUZUP1EJGZxRRU+mESlLhZGg2iuRfddtEQoPvNE0IWCRMNRNEXi/otFuACvRsaXw0SiBMlFgZ0kRd/QOEU64TtF5oQ0RZ/VvES2NCJFPB37RI80AEWTap1IsYASRc80GEj5PaJEHejHRE+koUfKApRFlC6WRN+Di0ZrSL9FG58YRf1Jf0R/bu9Eg+WtRJohNEYfaXNEjPJYRY5r50QDQfxF0jSHRLesC0WmrRBGs52CRKzOgEVBUv1EXBV1RHqaBUW2HlBFgWR+RHFphESFyddEMHGSRqnVakYscM5Fkn2QRQDPq0WCLMlEg8fcRXTVpUWOPv9Eut51RYq43kRVIoZEQCJHRVQBJkWbNJ1E/V3xRET9XEbTD2pFyI51RZ+GxEbcwXxGRvSrRJW0V0V7bdZEw0otSAu5q0eg+0NH2eFTRcD5AkZoKjxG9DUJRegob0UbNOJEmEQyRb+0jUTkK9dEKtYkSIffqUdLdjJHHWJqRikDo0XIEItEHR/1RBXPskQFIvVFxrAzRZu/DUUChsdEfb5IR+ISyUYbK2dGWzIBRZnNkkWWh8BFHdk2RXK2H0WySDtHuU2iRlzmOkamuqxERUuNRTlxs0RS+JtELm2ARPuQ5kTllWBGTbXuRbhVlUUMJX5EVYwWRQW/dUQSJC1GAritRXKSVUXAuh1GVOPDRZ/EH0XTat1E + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - tsmGnQ7BckBs2CCMb8FyQBw83VRQwnJA0blHOafCckD8NKzr5cJyQB4fyO47w3JAqi+dOsbEckAkv4TpXMVyQMgDYEyK0XJAIcGZEUTSckCGnKvesdJyQGTlCh5303JAFMBCL87fckBojXBkI+ByQAUKwOi54HJAgcAZd/zhckCa/TzHUeJyQDCAUkSQ4nJADC1kWSXjckD45a6Sw+9yQFzCChlS8XJAL4QzNcrxckDcOh5dfPJyQBDkNli083JA4wN1hg/0ckDVH1C3ovRyQBI+WzjD/3JAyLipKGMAc0DAB3eg+QBzQKVMcgRNAXNAa9ioN40Bc0DwLUfozwJzQCzxOO76A3NAwo9+OScFc0B24BUBCxJzQJI92SO9EnNABtnuAfkTc0Ac3xolTRRzQDz/wlV7H3NAFp3FEbgfc0BLhWw/pCBzQCNJTcE5IXNA8Mn/rGQhc0D4YvPFESNzQPyBOD85JHNAHDky688kc0Bad+atSDFzQGpNLSLMMnNAznut86Mzc0BvtBfyNzRzQNiz5EHcNHNAwArlw7k/c0CIOFqY5EBzQJpWL9d4QXNApHog6CBDc0DRu0QMe0RzQAaly9SjU3NAie7NWHtUc0BaNYOAi2BzQKEiczI7Y3NAqumyQEdxc0BuShPn+3FzQNb+8z1TcnNA3pIu32lyc0BECfcqu3JzQFzAoVi2dHNA1CeQqk11c0AleihdeYBzQOml1CGmgHNAhkfXqQ2Bc0C7PA+GyYFzQDEfkodggnNAXgGRdYeQc0DOHuKrTZJzQNjf0VcNk3NA3oHGVdCTc0Bcm/XJYpRzQLAleUP4lHNA1RvA3Ligc0Bshcbs5qBzQNExHI9OoXNATbiuOluic0Cs6O7m5aJzQK9RzUgFpXNA5v6Jksqwc0CENTnMNbFzQPggsx6AsXNA06hyV7ezc0DezyFeDrRzQN2ffjKjtHNAJu0Bs/jAc0Ag+sKOOMJzQJTTerPQwnNA9Hx0AifDc0CGRBS619FzQFwZFsIz03NAIDA9GVLTc0AjY9Os9tNzQMGGGNDi1HNAmHq2s6Pgc0BipFEvOeFzQJdsW6mM4XNAeu0uLM7hc0CKkjfN7+RzQG4xG8NI8XNAIMok0ozxc0Akae5EPvJzQDvICBA39HNANNktrXkBdEDCE+NzpAF0QJ8oCzl4EXRABmehzIsRdED2TjV6TRN0QJptNQB4FHRAKClSP0wgdEDuH3mhjyB0QE5sh0y5IXRAfOIUZVQwdEB3Cld/uTJ0QKLIkwvZMnRAvA99Ts9AdEDa6Fr991R0QPY9qQqMVXRAoKcFMLlgdEBkTyUTCWJ0QMrAQOFOZHRAHFajqSJwdEDufVCmQXF0QPLfrlM6c3RAAvYbQ6J0dEBOw/MpOHV0QHZnfVb5gHRA9knzok6BdEBxGc+O9Ip0QKjjgLcWkHRAkn/vEWmQdEDlmXOfoqB0QHZnRnS4onRAhLOFp8+idED8TUaSEKN0QDaG0NsIsHRABGVfAOPAdEA+Tb2UecF0QMLMnkULwnRASW0tnA7DdECMaMdBesR0QP7Li6i4xHRApHpRc/vOdEAxfi2z4NN0QARCwZp51HRAOC38683UdEDMSGafkOB0QPEGFgC54HRA2uPIgLnhdECZ7PMFwfB0QGL3DOON83RAQv5TEnv0dEATBU78pAB1QHC0ta1jAXVA3osem10CdUB0M44anAN1QJTSzOc8EnVAYgbXTiUUdUB44EIfjBV1QIY1DIl6GHVAS3b8fbsYdUCaYNPUmyJ1QIxuiAfNNXVA4g/JlLRBdUC3Nl9zJUN1QByq0H6AUXVAiDJN1idSdUDK/XXuTlR1QMtwDoJ4VXVAlGNaWzlhdUD+tRbU8GF1QCQSi053cnVA+timvY10dUC8nAOLeIF1QGqywOSugXVAj+bi6aaDdUBO9vSom4R1QP7it9qMkHVAfMfnzLuRdUCPHfbYb5J1QArRpiY+mHVABuz1bpiddUBmpJGNuKF1QP/vtGLdonVArkYSl/CidUBj+khx5bJ1QBp52FV9s3VA9GSdi9DAdUBOGJrhYsF1QLSKM8D4wXVAdCUwrMvTdUCImOsc4d91QELgxr0Q4XVAkir1+QjidUB4wg4DSQJ2QM7FQ1bRA3ZAyiMcigETdkDyMGnaTRR2QBwbuWQMFnZAuTpfOEsWdkBT/TtriSJ2QFIiCkSQJHZAiuhGwB8xdkBgJBcRnjR2QExh8k0eQXZAVpZwk55BdkBszvwvekR2QOzU17j7TnZAwCqNy8lQdkAGGiy/EVF2QGwxJBnOVHZAIkDuoCBhdkBWrC4szGJ2QH/QR7rbZHZAEAHFlCdodkBcXK8rZoJ2QPgVFuiSg3ZA54E2uaGhdkBentK9d6N2QCJ1nJXCsnZArsF8ygy0dkDLfmGyerR2QDxdJRd1wHZA+qn2w7/AdkD35oDxGcR2QK2O5MDPznZAMI3gHMDQdkD8SN4Y8+F2QObJZGOT83ZAapHRqTMCd0AySIzoARJ3QBDQcfUPIndALABrRHQid0BARj80DTV3QBgoz2idQXdA2LjRoLBBd0DSRUuLG0V3QP5H9ntLUXdAjkDvuJJRd0BhknxfLFV3QBFpKuVIYXdA+0/LJJBhd0CMRrx/NmJ3QNb5jOE6ZXdANIILFihvd0CygHRXjHF3QN57HCR7gndAzwWZxHuDd0AgytmUBpJ3QABE+IBNlHdAERHfX6Kjd0CBdP/wmbR3QMoiaSktw3dA4SlRauHQd0AWwN/li9Z3QEjuaXBS8ndAttMVhVsCeEB/EgAwTxV4QNiVKnFtInhAGm51z6YkeEDQdIoADUJ4QH7vjC57RXhAfg2/+cpReEDY5OGFiFV4QJohAlP6YHhA+sq6iLdheEDl7URquWJ4QDcLCFu9cXhA8vXTFC50eEB2qetfUXR4QMKiI5WLdHhALISr4b10eECbqBtxF3V4QHnsFFylgXhA/hiq25mEeEAU9X4gmpF4QCAsyEmolHhA3rKLZ+efeEAgD32OqKR4QPwgFSd3q3hAZjtHiH+zeECMCXlqzsB4QGTcCnv2wXhA7qCzQrjUeEAgfxIhA/R4QL2RIT6N9XhAiDB3MhEEeUC0jOcnmgV5QHJedPsQJHlAMOhKQRRCeUAg7jH99UJ5QCRnthTNVHlAss/waulgeUCEmkCv22R5QGKL4L9Fc3lA49ZVJ4+beUBG0OY9wbJ5QIjFR39C1HlA57RP1s3VeUAPc1uswOJ5QHMCDGhP5HlAUB0+zpXweUA4Megz/AV6QMb/OzE6I3pA+ZODiww1ekDsbbraGkV6QM8Azo4vUHpATEv7QYJSekAtIPztJ1V6QHBNXEzAW3pA5B36qDlgekBgCXTtzWN6QHSaI+gdcHpAc+b+Ao5yekCMRSMQo5R6QDBNf1YJnXpAvLybYUmiekAe/AQI76N6QOiReh+hp3pABDZS5uytekDP6Tt2R7N6QIcd47ANtnpAWMEVlJ24ekDanzb+LMN6QL8ZXHMbxnpA56IjNubXekBoOhW2euR6QGcgESo27npANGgBI2b0ekCoMwArdwN7QIRtbzMrDntADnZD8EwVe0CaXGLeWiV7QJwmG1FmgntAXttHv8GHe0A+h9wEJJV7QG5d2Vt5xntAetqoA1Pke0AEdkdBjPV7QB2Te8ZI/ntAa6BzANoBfECSXEgGmwV8QFg47g2JEXxAXjqCUNIRfEBcxMRpxiF8QJTDSzgDJHxA7gaPJs5BfECC/aYh3VF8QI7oeZkMYnxAHTy9FwZzfEDE+Y4fwbJ8QFBC2gBY4nxANNZm1xfyfEAn3ImzVfJ8QByMO4lDAH1AXk0mkgECfUCfFiTlSwJ9QDawy40LEn1AtLcDb0USfUB0OuGkPSJ9QFiDcLlWIn1AVbTjOXgifUA7v1PxoTF9QHCaWWIEtH1ALm2+yizDfUALuSgLa+B9QKrcOr3b4n1Ajcie95D1fUDDZ3tTPy9+QCYAwdLcSn5Ag+a/3YxVfkDWjDIgD45+QB6AC8KOsH5AT5neN0/JfkDDEcVsz99+QBWRuYPX/35AZvg8xiAAf0BtdoTJr2x/QANsJbW3cX9AmoM8frOBf0AaeQvKo4N/QCzIk9tjkX9A5kDeP6WRf0CeyqItYKF/QCaRyMRVsX9AOlZFd5bdf0BawKQo1OJ/QIK6b4Lz4n9ASCyuSi3of0AoL4HwRwKAQMPdjIImLoBAzJBWXykygEDN1IrddjmAQPRCU00rPIBADobqxfRIgEDa59b35lCAQE3BNYoUUYBApu8Z/+lYgECUY0W+DlmAQCTtaJ8LYYBAjkvFDihvgEDuQSHvHY+AQEz/L35tkYBAOfB7XhmUgECMTOlAh6mAQPOnT/kTr4BAzC3WT4SxgEDSpur0FbWAQMzTr69SwYBA7UtPbxDGgEBjXnyhU8mAQA40nq9M0YBA/KzxrmHRgECS39W4StmAQHsLVAlF4YBA0QQGNfjogEBfxsSmS+mAQIimvlhM74BAOHBh0TzzgECAjj9dQP+AQHsUxD9AB4FAlF1/tTwPgUC8TP2hNB+BQHoskZI2J4FAPjDmTtwugUAZeMeRiDGBQO17OSS9MYFAgOwfVDQ0gUDkEUjR0TSBQHXcclyvNYFADPWDiZFBgUBo7ggO6HaBQKp4AsWUeYFAYOAYR0F8gUAeb6pu7n6BQHxBb/FVj4FAClpollaXgUB87r+6Q5yBQNiYG3PxnoFAi7sAwZuhgUCUFM9056GBQENlzVdDpIFAsNTmLG6ogUD8/T0D7amBQDwWYvdJr4FAg5jVpW2wgUDQDYd/CrKBQJRClPx90YFA4JYYQ37TgUAdt3FiAQmCQPcox8XYGIJA3nZSLNcggkAQ3uPZ0SiCQJmPdliiKYJAUsArl6UtgkBFJSsS0TCCQMKVzuisMYJA1yIj16I1gkBCNeoTyjuCQLRXRkpDiYJAzaGc7zGNgkDNhm4cRJGCQFydN888mYJAfJszMg+hgkCPYrsSO6GCQBSGoF4OqYJADgejDTOpgkD5+iXVB7GCQOhcJwaw+YJAhKZvsXkRg0DyEvVBehmDQKgDUjxzIYNATUp35Ishg0Dc2yTGcimDQJgwNy9rMYNAaJk+jW45g0B4G8+O4oGDQHS+UMSW+INApt0mdGr+g0BYlY5w/2iEQM/9DQ4AcYRAubPG4/d4hEA8cnB8atmEQFkfZoVq4YRAFTckG2PphEDJA8W2NvGEQB4Vv9Ri8YRANqFHnTX5hEBotAOyXPmEQGY28rcvAYVAhgT0qqBhhUB6E+hKoWmFQMZOquKYcYVA67R2jpd5hUAtX60SkoGFQAmXpHIouYZALcMTkvr1hkBDCjrl/vmGQLjH9ryRKYdA4dw0QJIxh0DivnLkiTmHQLg4UdOJQYdAkDmUPV5Jh0AtsIfpx7GHQHLeR7DHuYdADvPIF7/Bh0BscUqXwcmHQPi3qDX/3YdA57tF/gHih0BAAsaEBeaHQLJ6YL8Q6odA + KBZXds7jZUA= - + - pP+JRCB7hkXMF6NEzzu3RekEqEQoLdNFVWXORM/ppkRIiU1EFaQ0R5kBYEQKAfVEXHQMRftpgEQUFbpE88ZiRGJ0nEXHjj5F74DCRH5AjERgUoFE0OaERWrPyUTY1N9ECmWHRBZC5kTWKxdFo1KqRCjhvUTMVJ1EYf+xRMJmC0VnCRRH3GtrRFrCvERfjC5GK7uSRZGTf0Tddp5EzNNNRAn+G0Wac+JGor2nRDDBlERSAoNEqUurRZ9ayEQdCFFEI6tuRHbYAEX6aohEjIB1RP0Lv0T0ca1FgxLbRLnmIEaHd4BF8WbKRJ0Vr0RyXzpF85h8RNffs0QARYJEGWmKRHjaoUSrBaJEUnM9RRKaFEcVr9BEoSwIRTmOsUT8uZxEhy8pRW9PSEdG62tEF7K+RNMKGUXLeKFGeo7yRTgTe0SPDZNE9wnZRQTlIUVWeC5Fh6ViRD1Vl0ROJo9En7CBRW5eBUX0o5REg9rxRIiVbERQV69FiFw7RnqLZUV4YcBEuOGzRMeDyEQdmKFF3z22RGoCHkaiFKZEIVpnRGFVaUTUnaRE1daERLZvP0XFPz5FzB2VRvBz70QF+5lEdLH0RKklZUWJn4FE23G5RM70iUSK2txEaY8GRdNwzESkH6FEbg6JRB/qskTyhwBF6VLNRa2MJEVULeJE7uqnRSAfQ0cu9xNFMzGPROVEBEXsDzVF61DZRaleI0UcC/FFGbWARCX4iEShWJhEZJHxRFoj90QZIKlEVnyPRF6IGEWN7V5E/5KXREN3VUQutw1FTEkARV7y90Sv+l5E8ToIRafPhUTESGlEwJ1GRVVxxETnpM9Fi4h0RE54jkQ1AAJFPmIXRQxQnERMWEFFqc8+RYjheERsIMtEG8YLRb40jEQ+omNFeTaHRFm45kT0RZRE4dpBRS35fUQmOh1FJBIGRdqhdkSu2wlFEUxqRs+q9kTRKphFBzIRRZPmI0URQaZE6LeJRHXxikSOJgRHx9ZdRmwq/USuY4hEzwLARHHPl0T8U7JErlmRRHi+qERt5QdFXymFRIr9j0R1x9JEkm4CRbsJmkWhjB1F1IGSRDxn+UT58b9Efj3PRKwhT0TYfvtFjhDtRiY1lUQDC5dFIB9sRNjYg0U57rVEWm0GRez7I0U51mxGirlVRC9sxUW44TNFGwtdReigakS0IwBFSjd5RJp2pUR2ZQ1FBxurRRNVeUQPjZ1Eu5OURBL8u0T6cENFUnCDRFI5g0QSrgZFrYYHRbRAikY4Q1xF6DCTRLEd+0ePH+BGF27jRf5X30brVrFF+bCTRhEd3USbw7tEs2pORbrifETxlKdE/GKKRfe+UEQ4p99EXheFRSTvs0RKy7RE/l1tRE/NpERM7GpEost/RPAig0Tb4JBEh3FjRPA0fkRfwyBFiWmZRNSl2UQg4TNG8ti9RRBYNkVXjzpFZoVHRfg7mESRX4tEbNXpRCZMQEXen1dJ5YUERa6k4UTKg2tFSgFZSIEF20Rz7atGC/YiRcDofETwgGNFYpv3RJnq1UQvn4xEW2d1Ra3qc0Vq8AxGGgSnRDTtp0SLHZBEKpULRZdPzUQn86RFbDeERNaIt0RsVptEYYqwRHntiUUUKyBGdOEXRTRgA0U5/wRFHKhvRDHAg0RibHlEAKDSR/9f80aIRd9FFUXmRey5LEUD8JJEyCxyRA9ALUUv461EKhO/RPl9gkSlyKVE6M4qRS6kJUXhHZdE/7CgRX1fxUSUwNBFXPTSRBA7vUThaQRFHmBQRFmmd0SNYrNEzwKJRco5b0Rc47ZELNkuRm9vVEWI12dFOYyFRBOpN0ULJFtEFkeKRPLtuUaqvdVEIkNMRiDlskUTlJhEX4ahRfPTmkQQ/4lEL/bhRedznESPXLJEq0h4RDs45USv8eZHyQ0YRUm87EY6q4lEKRRSRe5Rp0bgnV1EcMaHRT+elEQmNodEAUFaRNmqyUSmDDxFinPFRJLZ7EQNGYpEPlXQRGT1tER9w1BEr/cIRQRc8EQky1hEP3XNREwYnEQ0CXJEoEp3ReoRlkQpN79Fnn2ORKqZlkQf401G93uQRGP/fEWNBGZF7V8XRQ+zeEVUQrlEcpm4RNcFg0TWktRFvnVsRXDExERZfMdEcywzRf/GVkX+hYlGzeSQRGNovkUiVoVEnOgPRSARVEVUUn9FA3w4RVz0/kTirHBEIuWJRN66tERTAIJIfLm6RAXr8Ufba41H7WcURRwSVUacn7FFQZfKRGVXX0R4t7dE7LeFREF3O0azfF1FTHHaRHkICkYDWxpF9rkKRhS6UkWz3NdE4yqaRPCtvkRjEBZFC81GRCpOn0aJxDpGmr3WRTFyAUWHF8hFCKraRPuaBkbGmMZFO/AoRZssLUUnd/dEwOHSRCkEdER4IUtFrIR6RDRKfUQ5VhdF09iBRCTKxkSEnldGH4ORRU4hLUVo8btGYmYjRvocSURELgtF+qtZRBKyTkSkTQNIAzdhRCf1gEeM2gpHIGizRTFgNkbI9ENFER0RRXy4/ETAYOBE1XXtRxkJZkdBjgtHEjAgRc4CCkZCMoFFB3mHREZggUTEln1Emp2sROZNAkbjalpFvNroRPO4MEdzzqxGAps/Rq7WkkVpyp1FPm8wRTKuEkWt63VE26ILR7uKiUYRFhlG+y9RRW9qjUT9FctEtiVnRDJOqUQkjUdG3ILQRc2uikVzJPdE3C2MRDtY/EVefWVFcr5bRUstykRRW8pFVWDLRcdyHUUBBVZE + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 80FJMW/BckDgmkfcicFyQOqRRcKmwnJAc6CcBTzDckA02nJKxsRyQHb1eqFD0nJA5BoCDrPSckCIb9VLdtNyQLORNNvO33JAezT9ALfgckBm5Ba/TOFyQIrIXjJS4nJARqP+EJDickAC8KmNJONyQHoD8QHV6nJAGv8Hl8rxckAzLVy3evJyQM1LwSOn83JAGgNYKQz0ckD6GWSPovRyQAbAoBLD/3JAoluAz/gAc0DjazzljQFzQNx0GNU3AnNApX8c188Cc0DgZtfT+gNzQC1z6D0kBXNAra3rgQoSc0Cc5My/dxJzQPqd1i69EnNAL182A7oTc0CPkogNBhRzQIwI8C5OFHNAuZXX2Xkfc0CgsBHHpCBzQPBsvzw5IXNAiOwW0WUhc0AkHpz4yiJzQOVz6fkPI3NAUb2vnTokc0CxibJpzyRzQHD0HPdGMXNAVKtKH1sxc0BohhfWJDJzQHx1Jbr4MnNA6vJEFaMzc0D6D8l62TNzQJg2fZI2NHNA8pUs8ts0c0BUo4yP40BzQN1UlRJ5QXNA+MfahShCc0D2khzHukJzQBIWfOd6RHNAyifYQEJTc0CQeL5Ao1NzQOaiFN/jU3NA3EhAGodUc0BZwxOBi2BzQJYDnoI6Y3NAJ4Nx+7Jjc0BunW8kUHJzQOjtRr9mcnNA8G+heJByc0BakM70t3RzQMCMIqxMdXNAAi13ZXmAc0BcgUwKpYBzQEwcWs0NgXNAE3306TmBc0Dvt4yZXYJzQE2jNGaGkHNAaeC7ak2Sc0C4A5GV0ZNzQDmYoBJjlHNAZiYszPeUc0BIyq+UuKBzQFgqjP9aonNAhLlhxOaic0A8nGO2BKVzQB4a4X7IsHNAmpBaun2xc0C6u9gut7NzQMVmx4cNtHNAHnqW66K0c0Dnm6jP98BzQGYmTS6MwXNAudBqdtDCc0Bheu8cJ8NzQFRnXmrDw3NAT5QqVNfRc0Dyb9o/3tJzQA6RUBI103NAcdB4iFDTc0DU34dC9tNzQOGyla/i1HNAwsQhFjnhc0D4kO+TZOFzQAwgzYs/8nNAEJMuFzf0c0Av0HVH5AB0QGAsuj55AXRAZ1JAxKYBdEBY2F7BegR0QISAqs0KEXRANi4oo4kRdEA0bz++TBN0QG7lMDbkE3RApjkaWngUdEBGMnrhSiB0QBBvWFOMIHRA9N0qrbchdEBid3sLWiN0QIQFzc4kJHRAUdQHwbkkdEB+y7wVVDB0QGTdxbe4MnRArAMDNecydEBYctHkSzV0QDLhsVdXQHRAUwfjMnlDdEA+CmO2+lJ0QFOO7kv3VHRAupWUJYtVdEAGcV24uGB0QHYzvx4IYnRAeO4xSxBkdECjejJfT2R0QEIJ7aUicHRArZ3Wp2JwdEDxkDWrQXF0QGF3iBw6c3RALumJlqJ0dEBRVJ/ZN3V0QDGiF0H4gHRAjoIumE6BdEBVmfSskoJ0QE+LW0z0inRAPEQasRaQdECeQceZapB0QLs2WFn7knRA3q4oT9CgdEAoeeXfOKF0QKyGhXy6onRAsPdRpNCidEBu/Yx3D6N0QKGipmwKsHRAHu1U9PuydEBS53y15MB0QMx5d9J4wXRAPfKKsurBdEA+G1OxDsJ0QD7UcVAQw3RAujFF3CTEdEBC2JLqesR0QPcFvPe4xHRAFHCHFpzIdEAUIiNV+850QKhtIyc903RA4yx5geLTdEAQvzPCd9R0QGiwsGjN1HRAd8KcgbngdEB9IOQfI+F0QNo0r7y54XRA2irYkE/ldED5XWpIwfB0QHXEe8WN83RATu4MOXv0dEAcTJqFpAB1QIWoQNDOAHVARP2I7WQBdUDgZs/zXQJ1QKoS+lKaA3VAmJkRQ/kEdUDlg/BDCAh1QDElx2E7EnVA7tT4UCUUdUCc5eCjehh1QF2BWi+8GHVAm5cxbNYydUAIT0IgNzV1QH6MxG/MNXVANdhN2iZDdUCO4UWAh0p1QPJyDl8mUnVArL2No01UdUAff4/Ed1V1QMdL7Fj3X3VAsIlAexBgdUB7nfMhOGF1QBhxyBd2cnVAmuGV7o10dUA5q3JveYF1QIisgDWugXVAq0z/qqaDdUAewj2mmoR1QK/wcpm+kXVAl3dbx26SdUBSU+RQPph1QApbai6YnXVAsv0/VdyfdUBs4PgKuaF1QGakRz7xonVADTAjVU+jdUBPl9V75rJ1QGp3YP05s3VAXMWPm3uzdUDnPNmQz8B1QLCom3VjwXVAiKwfvvjBdUD+WOg2zdN1QCwfyPEP4XVAbEa8MQjidUAcGWN7OuV1QJbFm51IAnZAqjchX9IDdkBg28lDVhJ2QAyCQof/EnZA9NtOYk0UdkAcXDT3DBZ2QI8YrpiJInZAQd8F7pAkdkCiBfqqHzF2QGJvRZWbNHZASf3mxx1BdkAOPMJFeUR2QDYCiTT9TnZAtHFINchQdkCnvJW6ElF2QL7rGYnNVHZATkwhzMxidkC7HWCj22R2QFShoWMkaHZA3S6TFmOBdkCSqC46aoJ2QLrFrrSSg3ZAuCxRefqEdkAGLyQBOaJ2QBurH7J4o3ZAqq3e+N+udkDbeLKdt7B2QPJjeMHBsnZA+nNv/wy0dkA0fBjMdsB2QJqDU0q8wHZAKKu0ERvEdkAUpsnfzs52QE6TPRzC0HZAGD3D5vThdkDdhtsjkvN2QKKa2zhM9nZALls8RjQCd0DdYHX7ARJ3QOhqGOcPIndAqq3lX3Mid0BlzQ1yuSR3QHpfFqyoLXdADwO+Vg01d0CCRAZpnUF3QERS/2MbRXdA6R+Y8kpRd0D8Orlek1F3QGVZZ+wqVXdAruNl80dhd0BEk7FikGF3QPBBOrcnb3dAwuW8tTxxd0B9XRY7TIF3QI4StE55gndAFL3+SnuDd0AqO2UYCJJ3QMGLbh1MlHdAXLoup5u0d0AK69brKsN3QIqiljiO1ndACumGT+3wd0AJbWSMUvJ3QNQQyUFeE3hABj4vIU0VeEDmmIPhbCJ4QGW5mFGJI3hACa1B2AtCeEBKcIC1ekV4QMa031rLUXhAxia7yIhVeECI48VQ+WB4QI5kiNO3YXhAA26iDKRreEAHBZLLt3F4QByQXYqyc3hAgN818xp0eEDcPybCZXR4QL/fhdiLdHhAMAzq9bp0eEByauMVpoF4QDhhHOiZhHhAtpwdb5iReEBcj6LJp5R4QDuDZQznn3hAMN7LyLakeEDVCo6fd6t4QO2JgDyBs3hAA3VMmc3AeED+kHid9MF4QFT+MD4HxXhA9L5zwbfUeEB2yGbMAvR4QIxrC2eM9XhApLTbbFYDeUA+uphRmgV5QGYf0agUQnlAXMshFflCeUAR6xxDzFR5QJA6VMPZZHlAu0ZcoEVzeUCGW+B/i5t5QArKJm7AsnlAIsKPq8zCeUBuP3TFQtR5QJ4BqjHM1XlA5sAftcHieUBZWldiUuR5QF4GvqQk5XlAoGnnuhnoeUCmpuU8OQR6QPiIc0H7BXpADM5fmzkjekA6Opqhqit6QORK4KMMNXpAzl2V5BpFekDaYMO/LlB6QLeb3GiBUnpA7okU7ydVekDw/NLBjWJ6QFSoiIfPY3pA6MiKBddrekDenqzdH3B6QAA5VTOMcnpAF0OJ80iiekC6UAi27qN6QHDr6cr2q3pAE3jEEuytekCnkYjKRbN6QNOobsANtnpA4G3DFy7DekA0NW6SGsZ6QO88yKc/znpADkZrTNvTekBcPf0A4dd6QC28k0x95HpArTKUTDjuekBFKOcJZvR6QBRC4PpXAXtAJnS/N3UDe0BxvAAFKg57QKpZ0NdMFXtAuBwMMVsle0CKnWlaHi17QFpU5J3GM3tA1vUDIl5Se0DFCFtHZoJ7QPBHCOjAh3tAAqh4jOuQe0A+1TLpIpV7QNiPIPEtpXtAO3c2TXvGe0CX5EiOwNF7QPS0T0Il0ntASx68zf7je0D09rWwTuR7QKZh8DOX8XtAuIoLyIz1e0ARBDjoR/57QAzJg5OPAXxA9XX/TtoBfEC8fG+v+AF8QGZ7sYGZBXxAz1akWBwMfEA953iL0hF8QMzlrGPNQXxASbOuNn1TfEDCmeGBRVx8QNnKtvcNYnxAFHkyBi1xfEDO3KavwLJ8QKntUO8RtnxAwg793cvVfEDCA0YGWOJ8QIJ83bEX8nxA7HoWIVXyfED7m37tAQJ9QFZVysJLAn1Aop3BKNACfUAJetwrRBJ9QI8+YH8sHX1AqR0aOD8ifUC49djKhyJ9QAaIJpRsUX1A0ZMo8wO0fUDYz9/GK8N9QFy1OwMszn1AyU+LoIXTfUC1oHYba+B9QNQAuebW4n1AzLl2SJH1fUBT9L86WwB+QMs4dtaGAn5A4ojg/jYffkAoTbErQS9+QPKKCU6MVX5AQFprfeKQfkDU/8UXzt9+QAxhBfHV735AopxnaSAAf0AYDGBCDCB/QHLAKF8SM39A0h70o7dxf0ACQ364tIF/QNj0iLSkg39AchHz6GKRf0BA+0KXrJF/QJrQFozckX9AlWFHtZSTf0DJ4kxnXqF/QF6qCHRWsX9AGEFhU5fdf0CIywfl0+J/QAIQryXx4n9AwABHYe0pgEA6rRkGJi6AQAb8UxTpL4BAZFR8/ykygED05pvi6jeAQGpFs7dwOYBAhqfR2Xc5gEAbHlotKzyAQOQx/ID1SIBAcEucgudQgECI2o31FFGAQGgS4yvqWIBAyI3D0g5ZgEDKYtdHKW+AQOivFsoej4BAUkW/XG2RgEAXkyRjG5SAQDQ513KHqYBAjLZmUdOugEDuYsuPUsGAQCac3ekPxoBAIofhJADIgEBaER7CU8mAQOKNufMRyoBA4BIQuCzRgEDyjIDaTNGAQE7aUgxg0YBAYoUF3UnZgEAMMwzvROGAQD8kSeb26IBAvJIewEvvgECa3xwkPfOAQB6lJOc//4BA4ZRmMkAHgUD2URY/PQ+BQGRD6rY0H4FAOQUxszQngUAKSSFz6yyBQLggOa/bLoFAulNc44cxgUD7t4YJvDGBQFMKQ8I2NIFAuf5g4q41gUBxE32f2zaBQHKdTDmxOYFALLNSKJNBgUAWAcF353aBQFpags6UeYFADqL88T58gUDYwElN5n6BQFIh9VJhf4FASlshn1WPgUBvXljMVpeBQLwxJdNDnIFAqo0N0u+egUCNc0fOmqGBQOQ9J8PAoYFAAvYB7OehgUB6hthWQ6SBQGR5cN7FpYFANjjmom6ogUA24DGLyKmBQG47Pb3tqYFA1lNLKUuvgUBgeKQFftGBQIJyFI9+04FAOTPXjynUgUAEOfvws/KBQOzyY4TYGIJA3FkFJdYggkDExc3T0CiCQD1knTSiKYJANNYIwKUtgkCVJn+X0DCCQPlhxqqZMYJAhzzxEqI1gkDeEwoX7W6CQA6QAW9DiYJAff233kORgkAOKd6XPJmCQPTacjRVmYJA3I+P+g6hgkD7ZM0BO6GCQDhY68MNqYJASK5DsTSpgkB7JatYB7GCQMfA5FkLuYJAXotIJq/5gkBeQcOaeRGDQIzlZWB6GYNAotwiKHMhg0Ckj+hTcSmDQLY287hsMYNAhWwqOgOhg0CeANALlfiDQJ35p3ds/oNAIV0kd/9ohEAgsCzH/nCEQCyJ1c/2eIRA/Uw0LmrZhECmvoc6auGEQHIdKpRj6YRAhMJu9DXxhEAx8Mx8Y/GEQEYICbQ1+YRAnvnxWFv5hEAq3SBJMAGFQAsRXIygYYVAKMgFdaBphUDQeKwsmHGFQCjgiOGyc4VAEujK7Zh5hUD53HysOZuGQHLQRSsmuYZAPJipi/v5hkAtbtslkSmHQA7itwySMYdAem3Uc4k5h0CSKar8XEGHQO7KbYqJQYdAvJxPycexh0CUL2B7yLmHQJXCzdzAwYdA2jV6C8XJh0AnYH2P/t2HQEUAL/EC4odAE4ruDgHmh0A= + XBt4PPKiZUAoFld2zuNlQK5rGHLR4nFAO0xzspUCc0DQdBqjVFN3QIxMgVG7cnlA4qCFVlPjfUDQ0vb2rGR+QJOT/X2iaoFAcP8w1VV6gkC8k4RNtaKEQAEEsm2XMoVAUHQoiQyriEABM6CXQ7uIQCxdIpqP84pA - + - RV93RbfSYEQiIrlFHiThRUbeu0RhYyVH8GKDRFkImUT4uN5E5I+qRHqcekRMs4FF3O4hRStOwkSWAq5EdbNkRU8zxUR0D9VED8hiRL/txESt3gxFFqfhREbliEQ00VREsCL5RE32KUfP75RE3zfORAZCmkTy0G5G9FCgRNLqqUU498VETwecRAKS20SJJeNGeN9sRMbbwESElH5ExRBvRG9Xo0W3xSJFgjKcROGOoETeDldEeEeaROrciETk/3REHueiRPw87kQAf7VFdBt/REv0bEQ9oShGSWjBRBppWUUhrXhESrTaRMvfnkTNY0xFX4mKRMZ2w0SyWXVEsXuORA0ywkR9jy5FOY0JRyUE9EThkh1FhchZRFoCmkSIcVVF2XJQR6IxhkSKrftEXP6TRsxOH0aRJw1GdulQRRc2AkUDK0tEsXyuRJ+KgUWG9ERF+jWbRNnsukS4yV5En1GoRYfeTkaeaZNEXexCReKmWUTtnKlEcH2PRGtj/UQk4KVF/CcARoODqkT7BVBFRwnDRILNfkSVPalGHIf8REmoU0RoEVhEawGnRB2JcUUunLBE7kmBRNtriESeU4hEEto/RTlChkTDnp5EGfZaRPiV4USKG9tEuaSLRHgFakSv72xEfrm7RE/H6EQ4XadEjDvARM53sUWcy1FF0t3AROwqv0RlEqNFqx6JRG8ISkftnQdFeIGQRMxppkSrGFRFeTa0RYEMfETlnf1EwHO7Re0fk0RkDGFEmzmTRC3ZhUR8329ETeymRDoKIEVm+9BEqgplRJyKwUSjXsdE5zmgROG8XkTCXKpEi7fERBEl+0SlJRBFUPmFRPlc6UTHnoJEivamRJlFXkRmhdNEcKxuROcOn0Ss5TdFoD6/RH8DdkQvOtdFvm57ROXEnUT/E4REzk/TRHxRFkWA8rlE66N0RLDdWETjgiBFMX8LRVw91kSsbalEGltiRA9NXkSHej9FGfGfRCG6ikREo8VETqlxRJ3DIEWqm0tEqibhRHnfHEUXrwNFjaghRvfdBkVS4aFFUhfCRNE25USd7a9Ewnu1RF+Q9kbJm0FGHEJ9RANzxkRanG9FzjhcREHox0R5n7BEki7oRCF2zkRQnYREChQ4RZ/u4kREGF9EjfxLRfGwkkRGzohFKiLvRP9ta0QrH7hEJIyyRErvvESDHZdEWr3pRUYqzEaWyJZEFsOLRUIllkWW/pFEuL2SRG82gEWik2RGaOwYRkBYJ0WdKRNFyFBWRNSlYUTF3ClF/omVRHPZf0TDs45EBj9eRIE+gEQ6ewRF0ficRdRLfkQHLchEAvGwRLECOkV20Y9EbmWMRAM8JUVQn4BED2/nRMDfiEaQwD5F3xyURFhMc0SJz3NE0YD4R9UH20aVc+RGnx6iReCXqUYNCg9F5DG1ROOLU0WpBaBFubdyRFkuakQYmeNEe/dXRWpEqUS5E9hE2/XURAfVeES/+bVEpNanRLXBAkWTgcBE/TKBRH+mf0V/swBFhineRLyhREanF9RFmEE2RVY2AUX/1XhFxQ83Rde3XUQ8guJElCOwRPL7rEVAyFVJQMy6RRS/VEW0C11IniWhRBezqEaKgAtFkvtfRO0Cw0Wdn+5EnOK1RPBbX0Ry/6lEEZRpRQYQhEVZewFGnDZ2RK656kQbhKBFCMzRRE95nEW0uZ5EOTnvRKdXYkSjimZFTv+gRJEq90XFbQBF6T7WRKAICkVuIF1Ettd5RMDYekTME+JEw79/RMHVfkSsn91HQPPfRmF5rkUsMwlG7jM5RUtOxUR1pAVFdfSUROIZTUTHxu5ECvLVRLFwfUVsWQJF6nQ8RQpES0VO7d9FQQ+RRPnpuUTuBXREzSaCRKaQqUTc3p9ERiUbRUDFS0VES11EBnxWRKu/1US/+UhG2eJiRXzgf0T9xIZEo3qGRKWMhUVkB0xFspCvRO9sKUXfOnBE/t20RPcPF0Wk1ixF0suqRENXi0Q95rdFhDazRlyAqkREf8FE+6JIRm+j90RNtY9FWAiKRN+4wUV9uNFF+Yd+RKJHiUQpPZZEnm2rRIyh/ETzt3BElKW6RAkS8Ee2CCdFZx/zRgBCRUUQy7pG1adzRLwNZUWOSJ1Eq8+9RHyKpkSQto5EdqG4RN7l40RzNY1E13NiRMTtHEW1U9tEtYkxRRjLlUSXNFdE/RC+RMW3gES4LtFENLRuRABemkQytYVErRedRa3MgUR0W4FE+3GRRUnGsURfzVlEe946RhWH9kShmHREeVRsRGlWJkUS4mhFDewaRaq7VEWJBj9F9xWgRACTpUWs945EOq0HRX5A10S+Co1EPh6CRMRZ5EQcvOREh/tfRfp2jUa2B6NEXci3RbxRDkVh1BpFMEdARXNCA0VHffBEshaSRLxHhEjbKQtFtehqRJuEAkjJ5ZxEPPfYRJMYh0d5FytFr8RJRmxxuUWFWJhEVaarROeJ3UTVXjpGMSdLRWGuAEUfIiNGaOoFRcrcVURLf/dFf9tcRV/b60RSYp1EI/EkRUxez0QZXZBEVRybRGgLdUZIOzBGEfm7RTAb10RCLYtEVgGvRcoj5ETSKtVFwxW6RXPCCkU8Xj1FI4gYRQ7cdUS99ZJEGPYWRfd6l0RYyHVE0TlFRQ74GkVR9vBEzXWoROUXpUQGcEhGbQhkRQPxcEVG6n5GwzjiRbBwWUR9zpxEmSOGRIVHeEQOR+dHz2pORxjY7kZVLhFFLbTdRV8NzkWp3xRFDz47Rb4p3kSmtFREjlyURF3z6UeKEGRHe7QAR+5aI0bE4WRFx7FXRGl1dkTncVpEgO23RcmfT0UIUiJFQT0aR22qh0biPUZGAEWMRbgqp0WFcehEFUDZRCR0kkSXjg9Hh2OBRtaMGEaJGaxE9iluRWGAXkTLL4tE3q2YROJSIkYLvtNF/7hTRcR2qkR899tEGMwXRvKY3EVk50pFC6/uRFE0wUWAF3pFh4B+RA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - jCIU9m3BckD8mckZTsJyQLUrBEGmwnJATHQATTvDckDWSl7yxcRyQMvW/uxYxXJAqzGj40PSckAGr0B6RtNyQFE93jdi1HJAfjQESNDfckAJXMWnuOByQH875SBO4XJAshyip1HickCaqOmwj+JyQBQo9roo43JA6n5HkNTqckDL9esbyvFyQHDKEFvb8nJAjkGJV6jzckAX6ppTDPRyQEtV3QWi9HJABA3YF8L/ckDulgdyYwBzQFclj7X5AHNAfE3S7o0Bc0CS2U8g0AJzQAml9j/7A3NAjsQWZwsSc0CcRomLdxJzQChaMu68EnNAQAMfAvgTc0BsgaRyTBRzQHpmhCB6H3NAkd0WJ6Mgc0CJfyxBOSFzQH4Hfx8QI3NAWmFlIc8kc0CaSjcNRzFzQHxuLbBaMXNAUsl1MqIzc0CPOsV6NjRzQP9gWaG5P3NAvazfNuNAc0BSK7JreUFzQLzjIiW9QnNAJCTd8R5Dc0AvGMyQekRzQMb4En+cUXNAgudLU0BTc0BiWMlGpFNzQA4Caoh6VHNAfidyLw5Vc0C0SyfVi2BzQD7LhrY6Y3NA+oR3prBjc0AIIwPK0GNzQNRVbgb8cXNA32w/EVFyc0DekKL3ZnJzQBpNTVy4cnNAVFrRt7d0c0AQWy1XS3VzQDDBatJ4gHNAWueaNqWAc0BXmKGDD4FzQHjdkrfIgXNAOTL7aYaQc0AraM8vTZJzQJ7/TZIMk3NAYqxuv8uTc0A1huSyYZRzQKxixDT4lHNALFpwn7igc0A8ZhPoTKFzQJ7WSAbhoXNAPE2wfFqic0AAkBD45qJzQDAaGrMFpXNArPwfXn2yc0CGxkfmuLNzQBxBD0QNtHNANVEeLvjAc0CW2myCjcFzQBY6sazQwnNALUVRFifDc0AoWnrh19FzQAxK32w103NA7t940PbTc0Be1vqC49RzQFLYTfSj4HNAoihSFDnhc0DrJ+FZ5OFzQAJeNM0/8nNAJqbpybfyc0DEf7deNvRzQF6US3p5AXRAFmY+oaUBdEBdIBtV5AN0QO6HmTiJEXRANPVcc0wTdEBdS/b1SCB0QDzurvqMIHRAnta/L7ohdEBQk3VFZSR0QLkIxA9UMHRARg4im7oydEBKZl0e1zJ0QLDTwT5TQHRArtPzff5SdECdcnkq+FR0QEbSIDqLVXRA8uWB0bhgdEA7xf5ECGJ0QJSzpXZPZHRAxY/a+SFwdEB/TJ9qQXF0QFh4yDZ7cnRAKQnfHjpzdEB9oxXNoHR0QHJDhJU3dXRAI4Wyd/iAdEDND37MToF0QC7EYIYWkHRAGl+8qfqSdEAz0vGHN6F0QKSKThO3onRAnn2PrtGidEA8BNSrDqN0QGfoaZwIsHRAGu2ln7e/dEDcLbDD48B0QInptnt4wXRAPGzCM+vBdEDjWtlyEMN0QCIpcdckxHRAdPlfrHnEdEAq66IWucR0QAh34w7+znRABs3pSOHTdEAyT8Au0NR0QP2pF0O44XRAmYcSIk/ldEDSrll7v/B0QHGeSweN83RAj/H6snf0dED4+1nTpAB1QH5O+i9lAXVAUA50wV0CdUDIFyBmmwN1QC4bsNuZEHVAHutJpjsSdUCnC3v7IhR1QNBO4Cp4GHVAtkyFlrkYdUA2yGBAnSJ1QBWfG2HLNXVAVu0W2QVQdUCe+EJSglF1QMJbVI5NVHVAd7gjTXdVdUDoBHkHOWF1QGhak+N1cnVAhe2MUI10dUDqUu/beIF1QLgUwu+tgXVAoAaBi6iDdUBc8/bSmYR1QMYrFL+7kXVAjHeg022SdUDysoVTPZN1QBY96As+mHVA1Fp9+ZeddUA+BnLLk6B1QASH6Hq6oXVALqXBnvGidUAIP/G1lrB1QNlvhULosnVAti7mxXyzdUAultzrxLR1QDuDRNPPwHVABHVQ4/nBdUC2RcNgzNN1QJBlRCfl33VAvKiD3Q3hdUA4hdk3COJ1QMaQnZRJAnZAqO8ywtEDdkBslcDMThR2QHBKDgMPFnZAKMXScZAkdkBzwvjTHzF2QErasMQmM3ZAOhrAVp40dkCl2hIJHkF2QPmh1zx5RHZA3NYFKPxOdkDEwj5Zy1B2QJhYhhETUXZAutKq1c1UdkBeSmYQIWF2QGrML1rMYnZAuUCszdpkdkBcv/rXKGh2QK326f/EcnZA2OxAhZGDdkBGSeGM95J2QN2NmBM7onZASOYVhHmjdkAhVtEswbJ2QPpAlIANtHZAaJw8c3fAdkDQEjozvsB2QN9OAfDPznZAHOSLSpHzdkA4wFL5MgJ3QNCeFpkBEndAOSrFxw8id0CmoFL6ciJ3QOrZS7N/MXdAsJkL8aUzd0CoSJTcDDV3QPJ4OCydQXdASnJuk7BBd0BYX7tOG0V3QFBJZP0+T3dAis6ClEtRd0CadzYnk1F3QNXFWgQsVXdAZ37LbpBhd0AunYMUJ293QKEeGHk7cXdAexz3n3mCd0CHmx0qfIN3QOKtKm8FkndAoLjy1UuUd0DY4cDTmrR3QPQ9NQgaw3dAHGvuueTQd0AcFUP4TvJ3QNja/FkgAnhAURq5A04VeEDUxWmt6yF4QECkg2JuInhAeK9VIIojeEBOJqzUDUJ4QJSd9VR6RXhAlCA2t8pReEDKlGKkh1V4QAup8UH4YHhAACMWG7dheEB0Ox/VuGJ4QIZBFmWka3hAQPe09q5zeECegWY1LHR4QHZIHs84dHhA7Ek6Imd0eEDi1AB/i3R4QIKmgem4dHhAB5Bwb+Z0eECSTquAo4F4QJRYkIN1hHhAfvzreZmEeECMTMPDmJF4QCYl4kinlHhAZhE0oeifeEBEFLiOdqt4QLyi+sJ+s3hAFsXhYc7AeECCUg/1ttR4QA8nkCfE5HhAtnL5oQL0eEDVzAV4jPV4QFKu8FibBXlAOJEB7rUzeUB8kibzE0J5QJRxeGeJQnlAT9E6OvtCeUD2rVwHzVR5QMj775LYZHlAkbuLr0JzeUDA9TCsv7J5QHauu4RC1HlAzIMd/czVeUCVTLYOueJ5QMLd4m1P5HlA19/+uvgFekAonJ1LrSt6QNJlSw8MNXpA+ExDjBpFekCyFCiaLlB6QPgcoiKBUnpAauFd0yhVekCjf9wakmJ6QIImWOzNY3pAfkwgvjllekBVe5B7OW16QNKYsWCMcnpA7i4CfgidekBsVLrTRqJ6QPwUhAfvo3pAAJyFHPerekCa+NCE7K16QJwXmyRKs3pAcDocIg22ekAKWsGsEcN6QDW6/M0uw3pABplSIRvGekComAN5Qc56QMLNtdna03pA0P21rjXuekAOtV+bZ/R6QOoVwqsqDntA8EvrCU0Ve0AGjZKAWiV7QAauh2fBM3tAFPxV6l9Se0BhNHjYZIJ7QCtVHFnAh3tAaH6A6WCSe0B9ri/owJR7QOKlC3IilXtA2AUWMTWle0DuYTRSv9F7QAoE7HsA5HtAcdAcIVbke0CVMfQcl/F7QHaN+3CM9XtASoLwoo8BfEA6RX7Y2QF8QKxH7Z32AXxAmrEy1ZoFfEAgTKfDhRF8QLch/tbQEXxAmMuBiacVfEBhnXYhAyR8QG4mkyvNQXxAvOTPP9tRfEBlygiEylt8QKpwL0ttX3xAWLKn/w9ifECk1nwuK3F8QA7bL4XAsnxASk8jnMvVfEDeQxHIV+J8QJpQr/EX8nxAMHnEtFXyfEAOXZ0pAgJ9QCvsdtFLAn1ATj0ZOaURfUCWg667RRJ9QGIRkjMpHX1AyHs7fkAifUA2KTXpgyJ9QPI81GllUX1ARKea4tWzfUAQCPwlBrR9QErM3f8rw31AGtlLqivOfUBxBxq8gNN9QKxp+ZRp4H1AMuXcUNvifUDvoLlUj/V9QPTT1OL3931AunX0y0n9fUBkSdiUmwV+QJTuAgWMVX5AhTPvi5llfkCMdBdCscR+QAJKE+pOyX5AAMbFaf/TfkBUabZT0+9+QESOIGLU/35A3FgqJyAAf0Di2fMNDSB/QPpe/Ri4cX9A2JKI0bGBf0AQDi4vpIN/QFwUFcljkX9AOahJG6qRf0Dd1uXRlZN/QLyhh11foX9AyQCRJVWxf0CfbIR4lN1/QCKrQAnU4n9A+liL7fTif0DSLj7rKuh/QDe+rY4mLoBAypHx5ykygEBg3k7cKzaAQDjzmHgpPIBASmKr4fZIgEAKHw715lCAQJGpGPsUUYBABFQDO+VYgED+J37QDlmAQCIQOJYgWYBAABQ02ihvgEASbzZQHo+AQGauesJtkYBAIDvv+hmUgEAZibqvhqmAQJja+nxSwYBA2m6mp3fBgEAk5E5KEcaAQBolfqNTyYBAFj3BuEzRgEAT5w84YtGAQGybF3RK2YBAnxyt40PhgEBGS1kQVeGAQCfLA4/16IBAzhxyqEDpgECNsLy1S++AQB/gJsA984BAzkijnz//gEAGhe7DPweBQHLtRek8D4FA0Bm8NjQfgUCrT9lVsB+BQLhB/bE1J4FALhEZwLQngUC4i3iI9C2BQBxLkUfbLoFAi2w3vogxgUB2XKO3vTGBQKONVdg3NIFANgsKO641gUAL0YQA2zaBQJPUp8mxOYFA2FnV2Od2gUB4sHivlHmBQMqBCnA+fIFA7K0vI+d+gUBw97HklYGBQCIpDZ9Vj4FAe2YAEFaXgUC1XSquQ5yBQDRnRbDvnoFAMPok2pqhgUCUVhlAwaGBQMzkzZHnoYFAZu4OPcWlgUBQjnEHJaaBQHifia9tqIFABIL8psapgUA4xmiX7amBQNxDDzRKr4FAkvqw237RgUDU4uBNf9OBQI5HcLoo1IFAoxy9UgMJgkAEth5y2BiCQPCHiIXWIIJACL1jFdEogkCXljigoimCQIrtGculLYJAswcgeNAwgkDi/dKWrTGCQEy0T0HuboJAqgHEtJZxgkCIeyVcQ4mCQNGqkyFEkYJArsQfuDyZgkAsGvG1VZmCQJYZYP4OoYJAQ5CDPDuhgkCRtZGSDqmCQFghkl8zqYJANb+r/AexgkAYag09rvmCQCwvBYJ5EYNAMDtNC3oZg0CInDQ/cyGDQKyYaKNyKYNAAmA7dGoxg0AENUUx5IGDQAScyCpKg4NAXHKi9JT4g0A0PHusiESEQBbH4J3/aIRATK3/cv1whEBcgO1C+XiEQHPGl2tq2YRA3VdsaWrhhEBmFjmcY+mEQAT04AQ28YRAPtVhK2HxhECSrmaANfmEQDzd325b+YRAeNu/3S8BhUBSJqySoGGFQIv6NOugaYVAdFXeXphxhUBYH0yrtXOFQEwcjZqaeYVAGst+85GBhUDGMlsnKLmGQIvcvC+RKYdAmwI9nJAxh0AEStjOiDmHQAKKaXhdQYdAF+G8EolBh0BSQIqCG16HQLhIMNHHsYdAMm8jKcm5h0BSJNWev8GHQBCaGKrAyYdAXF+UN//dh0BUmYlmAeKHQJrnJlAE6odA + KBZXds7jZUBGCTcNzmJoQNzlv3T/InFAo+J3Wr9Cc0DcQ5zIVzR4QJGgd7ctc3pA5/R7vMXjfkBRTxgBuLKAQNcnCPtuioJA5C+8PA+7hECReujy5oqGQOReqma7Q4hAkanWHJMTikBIjHSDR1yLQHO29oWTlI1AkdjERj+cjUAC31R7v1yPQPqCx7FlWpBAI9EmEZzSkUBXrLetoVqSQGrl1QuytpJAfmWZc7tSlEAJwxy856aUQJN62nThbpVAUkVdiAgDlkCpjxt2B4uWQJlZDIMe55ZAv6Rcdy2nl0AVSUwaOrOYQPleHyJwN5pAt2Hfrn6PmkBDT/G/mzucQGjjxiOom5xAWGQywcFXnUAa+isy7ieeQG55c8Lnc55A/g//OSSsn0B1tNmsASCgQCTJH4MihKBAmfX5EhLOoEAkgJoTJVyhQGvdzn04aKFASAryEDDOoUCPZyZ7Q9qhQBryxntWaKJAjx6hC0ayokA+M+fhZhajQLNfwXFWYKNA/CqHrXT8o0Cl6qp1cSKkQIe1J66HiqRA/nXdfJTopEASQMiumhilQNY2UTep7qVANzixfbAapkApw5qBy9ymQFKVEtPRYqdA57o6TdnCp0DdH7PT5PCnQAtFkkrkNKhAaKpT1Pd+qEAvhrKw9OKoQPM09NQKDalA/fTViA/bqUCIEeW3FwmqQCF/LYYaTapANybdtTUJq0Dyr+uvOF+rQJCxD71Yz6tAFjpDrUPRq0ChxOOtVl+sQFA9i8eDsaxA+k8WtXklrUAQyQbSrpOtQLrbkb+kB65Av93+z8yTrkDf03qOugmvQBhpMdfvWa9Ao/PR1wLor0Ccr9bK7hewQLD1uFEIZ7BAfHUUUASJsECQu/bWHdiwQCi7rdMV7LBA+NPV6yxhsUA= - + - QcJ5RaN2UUTzyL9FNGDDRRQxoUQLUKRE6AITR5h7OERbzaVELxTiRLB/9UQNGWdEQGedRblREEUpSj1EjCMRRVTAbUVaBnNEprLdRAK5f0RbO8hEdMPYREudq0Q9mJ9EHgWGREjNAEX74h9HnleYRGegVkSrBE5G2efARSLqgkTPIeJEi5gURXJt2UYlIZ9EkHyFRZgaFEWyf5JEqR91RITzwES+W4pEt5SMRKTHk0XnA5hENDOHRDjMEEbbDGREurmARHregUW2U5BEbcRmRO2EnESdHhpFhYViRD34X0QS27JE1wLRRLATtkRDqoxEZEHDRMqv2ES5qvdGBcfOROZJAUUszGBEhlEbRSkbSkejoY1EfKifRA/FAUUIJm1GMlkRRkE2f0TAIVFE5RzPRUS1C0VPCRhFjY1yREHGhkWQpflEQa7kRISrOkT/QXJFbk0sRmxUWUVYx3pEr/TPRJ1eaEUIMkVE6RzmRSVkXETnrydFXdtBRBEO4kToHo5GbWEGRYthY0ThB6dEGAQ9ReN4hERww2pEAVpDRaOfUER3o8hExXKkRCBCk0T9SZNEshS9RBs6n0TPsYxEC1KQRYpoLEXDOeVEjVnSRVzxMUfd3UpEDDYHRbEKZkSM33NEeFYkRbmqykUKkMdFZsBMRLoIhURLM4VEOLGGRAj8CEV4JYlEo456RCRVwkRolgFFs7W3RLwBdEQ/lkNEQ4t9RBEEL0W2cG9EoBqeRO43yUS2pw1Fg0p7RCgJkUT4KdlFF9GYRKUGgkQDzXxE4SDkRNDIskSqR3ZEvx0WRUWGokQv9ltEKmLURPpAl0RIbjJFpt6MRIQshERMpsdEnwbxRBzvFEU4FAJFQI40RuvGBEXyRatFo9StRMU94kSMqYZEPj5lRN2Sd0Rjn8RGk4kMRiqEpUTOr5pEKpccRXvuPUSUWs5ENfGfRJ2WTkSMZpZEMiYRRZWY00RusahEEtacRN01TEU4UXBFgsHzRMsQ20RmwqFEo0TiRaos1kYc5mFEjRB+RJhfoEVZkWxFMcKORJ0/okQJeFBFFSNERrp6VkScSphFuPsMRZZryUTcpmBE5fwfRbPdqkS6SURE2lS6RGfjEEU8RY1FBeZnRC8dbETFigFFm+nsROF45kRh5o9GtpRFRTpWjURM/4REFKWRRA6X8UfxTc5GWpW8RTX84kYrYVNEYd2fRZqShUa7kqFE3bw7RSqjlEVMuG1Ew1joRIe0eEUTq25EXxuWRInKp0SWPkRE9IfNRHezvUTg4llEHjVNRPjWWEStVThF8JqIRBlLj0Sn0ydG+SSqReLS1kR7WSBFXS0zRXNYi0SXn3lFcYfMRKRbc0TsDd5EOrj9RTi/SElX8I1FDtnaRAgiF0XSMcJEpc5PSLUs2kR6E7tGf7GERLXnwUWazwFFa8yLRJx0ekUQBKJEvEGBRX97ykVgJLlECRxeRGlOgEXJ3m1EgZmLRFukvUWNicVEXdNqRNSAS0VPC+ZFwVsDRSp+gUQlnrZEazTLRDJeeUS3SNNHBxXaRvUTPkUAARFGQfYmRdGQnERJVwxFXdRoROfklkR2ObhE/zOuREypk0Sg7LdFVnGyRCdqhkVIrplEJAfMRUAiRESaloREulrFRO2+bETBVk9EDkXeRGtF/kRZZwZFVsI2Rs2pPEW1e35EWN6URCcsbUVaJxxF2y5XRAUVgETGWQxFGoOGRN5ITEX06ZJEbhluRIjju0XfCq5GKiCGRLckS0aBY2FFkj+nRcfCdET+zmtF+jyLRDqTnURX9MVFZIebRKxWb0SAI3dEsXSjRPMb30RLpuFEdQl6RDTL5EdqYwtFk7PTRkUnCEXPTLRGaN17RNbIb0UnAqFEUy/vRO6jYESvw09Em7+0RLslsERExWNEtYWRROOhj0TkghlFD2Z0RHNtzkQDUrBEhz1oROvDhkQ3+gNFnxRRRNj3TUQCY7hEkmV+RDXrlESqpFxEHwxnRXEAvUQJb5xF/YhcRKV4tEQyPldGAHjKROQlhURuA3VFnrsoRRsEwESGwQ1Fzz6NROMU3UTjmKBF0PEKRS66XUSyjARF4VXzRLLTVEVAeXVGC+i7RNx4wkX4hbNEvsQIRWlLI0XI/JRFfdMNRXmy/kSclntIdLXBRAyHA0UbvO1HIkF7R2KFKEW6YnJGMV1eRYJ6B0XXvqJEWpyMRLpb3URNbLdEX9UxRjjRaUUziRhFOlfuRZhObERl4QJF3sx3ROvVtESWydRFH1SeRfV4ykS3Gt9E0LUNRf6ibUT30ntEvMZLRo6tG0aASIZF1lT8RG2xo0Qnf5dFEwa3RBI770UGLJ9FgbzfRD+9uUXNLzNFPGc5RaTXpET9RDtFh/ycRHblTURuMfNEkz+PRHTYyESjKIJEUmmORHiLPEaaYJ5Fsn4cRad3PkZAAdxF+rWIRI3qoESzPO1EUhGoRJFi20ed3FlHZA7uRkhvFkUmqahF2NIwRvXDCkXrnixFIprHRGj4v0RJt9lHPPtNRz3S6EYIoQ5GNJokReUmnETguWZErBBXRInFgETy17pFIKAhRbUGFUVuWCRH7LCKRksrNkYDeZpFEmNkRQdt1ER8XsNEL3amRG7LBEeQcWlGVloLRkxtokRCE3tF/W+uRGMulkRO3j1GrDPSRYAfh0XJsnVEQaLBRMHRZkQbSwpGW093RcRjNUVH3K1EXBJ6RbpHDEU3EXBE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - eu9Rkw3BckBqky+1bsFyQPiTEutOwnJAhq/ryqbCckB3C4E0PMNyQC51kPfFxHJAwqrbR1zFckCGAWidQ9JyQN5H4xu00nJA18k6ysvTckD7f5mezt9yQEq0TNK44HJAxu3Z20zhckASEgBDUeJyQKPUO4qS4nJADimqOSPjckAJNzwX1OpyQAKHNsrC73JAmhfUcsnxckAi+4fBe/JyQPQi4PjY8nJAhpAInafzckA8Pw9kpPRyQNL7KKzC/3JAbCwqy0MAc0D2Q0kbYgBzQL7BhnH2AHNAwKpJUUwBc0BMda17jQFzQPjlIx7YAXNAJbGHWdACc0D+EVm7+gNzQGz7WqIKEnNAHghg7rwSc0BoChqr+hNzQHN5FRhMFHNA7gWaWHsfc0Ca7cqDoyBzQHjrcZA5IXNACiiU/GQhc0CwwZjR5SFzQDzEEXYRI3NAcs/c+jokc0C14eJxzyRzQH/RQ/ZGMXNAImK8WVoxc0C0d3FTDDNzQEywtlGiM3NAlshi6tQzc0COQw2UNzRzQIZHxdLdNHNAAN0sv+NAc0Drq3TVeEFzQOSKz516RHNA+5UOGppRc0DY2gPnQ1NzQJiR9ByjU3NAGMth4IZUc0BCkARLjGBzQL1LYk9lYnNA79dFJztjc0AYjZn1+HFzQPfUchNRcnNAJRaHWWByc0B6Xq3TuXJzQM3XPZK2dHNAbtBSRUx1c0DWc7dheYBzQHA8lF2kgHNAQ4kvOAyBc0DEhnpWyIFzQHb1LZWHkHNAWw4tQtORc0BAuUB0TZJzQEaQjdwOk3NAquMWkmGUc0Bay4kN+JRzQF5T8eK4oHNADN/10Fqic0Dw+aJU5qJzQDRUbj0FpXNAwoFWq9ewc0B3IF+sfbFzQDbxPry3s3NAHGJNNw60c0CCziuQobRzQEhbn/b4wHNAj/QyECTBc0DA3el20MJzQHvbsAcnw3NAnPl4m9fRc0BZFfAvNNNzQHwPw2RQ03NAQhAdHPjTc0DWGJsy49RzQF4BMfk44XNAMm5hqefhc0CsM3dx3eJzQJCP/Lbw5HNA0sL/jT/yc0C4SfopN/RzQFZur9WN9HNATqmZEk4AdEC0yYJG4gB0QOIY3xh5AXRADBzoZaYBdECGMBBWvAJ0QJAfQGUKEXRAlhzw2ooRdEBxoDVyTBN0QFPn6ErjE3RAiEexFXcUdEANyH2HSiB0QGBetJm5IXRAYkqbGlUwdEAYhtSrXzN0QGphhiZTQHRAzPlB2vxSdEA9Vbnq+VR0QPI+mS2MVXRAAm/IGLhgdECGNWiJCWJ0QADq8FxOZHRA+ZhcZCJwdEBvaVsbYnB0QORzymZBcXRAk1kUDjlzdEA0LcOGo3R0QMoOfasugHRARuYl+viAdEDEhYc0T4F0QJYu3ST0inRAr+xYSxaQdEBYblFT/JJ0QOxVo7aioHRAWpHq4NCgdEAhdFMGN6F0QGwgFL/KoXRAaV5kWbqidEDgdSWt0aJ0QACa8OUQo3RAMJPTrDOrdEAE52ESCrB0QC3h6Hj6s3RA/L8rEePAdECdF3pvesF0QIDtd3ztwXRAZqhkYQzCdEBkhJC+u8J0QL8Md5gPw3RAis+hjbfEdEBmif5K/c50QPInwivj03RATDVL8M7UdEBq9DH0IuF0QOshfam44XRAN7JBHk/ldEDzCL9VjfN0QBTKBUakAHVAprUzes8AdUAMGu1cZAF1QLTeNMtcAnVAUlYxcJsDdUCiWCIdPBJ1QJPMAYUjFHVA77lpjbkYdUCbiW+pzDV1QNZu8ke0QXVAHLHVJttPdUCIwTYS+E91QI2MpumBUXVAPnpk201UdUDJM6cqd1V1QA3EtMoJYHVApOgKtzlhdUBVbnyceHJ1QEcSdZuNdHVANhfxfHuBdUDaCGGTrYF1QGUT42ymg3VAvSarkJuEdUDqGQmsi5B1QMwPXZe6kXVAkPRAqjyTdUCMdR31PZh1QKh9griXnXVA/oQ/D9yfdUAYlBruj6B1QLi6MnW5oXVAXxPNZ/OidUA8oG+TlbB1QAv0nHfmsnVAYuWch3yzdUCQ0s7oYsF1QBR8hj35wXVABIo0PVDDdUB852ewzdN1QFbTstkH4nVAC67MOzzldUBAA17dZvN1QGDPLfpHAnZA9MSADNEDdkAyLqn0TRR2QEd8JnQMFnZAnl+bhJAkdkBWAurNHzF2QAp2x1CeNHZApigktB1BdkC1hw1JekR2QJK2mFL9TnZA12iCDctQdkCYe38WEVF2QFn3oHnNVHZAnF2MrMxidkAN0YF72mR2QFpIBo0maHZAz+ILT4JtdkAKkfpnaYJ2QHj4Zg+Sg3ZAd+6Rx3ejdkCMnjpbt7B2QCjATsnBsnZA6pct6Qy0dkA8zwtadsB2QHxg99cZxHZAyMpzh8/OdkCcaUXuYNN2QGzNODzz4XZAdSJeo5DzdkCsbh0JNAJ3QCFHJXcBEndAv9ohyw4id0BkHeg9cyJ3QJPHehblIndAezPONw01d0DKCbGonUF3QGtqAa+yQXdAcwOghhtFd0Dju406S1F3QCKTKfmSUXdA/4/pam1Td0Ca31plKVV3QCwlPGtjYHdABl1LXElhd0CijKpkkGF3QNIpnzAnb3dARGYmpoNxd0CYOYIRm3F3QGds78gmf3dAXArj6HqDd0BL9RmUGZJ3QK5d0TFPlHdAusZz+eHQd0CcFEK26eB3QA4JIBBR8ndAg1GNDuoheEAk/7ZdbSJ4QGpz6+mKI3hA8E+8E6UkeECepRv7ezJ4QIZvmkUOQnhANzf/8HpFeEAgFecgzFF4QF0wIfqHVXhA+sLN1vhgeEAPWBEMt2F4QHBG1cy4YnhAFn29MihjeEBBfH8VpWt4QEIUXEGsc3hAcD9+91t0eEAgnn7Di3R4QEZANP6tdHhAgrQE0aSBeED6nx3ImYR4QELxJFa8hHhArTWzlVGPeEDu9D2kl5F4QCYAdrSnlHhABl4m5OefeECOyTxtd6t4QC572s59s3hARB6XH83AeEBnfoxj98F4QPFgg2W31HhAy2zSngL0eEBsQFKVjPV4QCeV+0qaBXlA+1CHrmsPeUA2lzZqFEJ5QAwBWmCLQnlAkriw5vZCeUAAlRsVIFJ5QBhyTSDMVHlAfNyQIOlgeUDT7JK02WR5QKpNkDn7gXlA0b2elsGyeUAuWrBd0MJ5QOoOxY5C1HlAud2WLM7VeUAydwUuv+J5QMwxI8BP5HlA1pBus/oFekAkmx+GPiN6QC5Pij2qK3pA3iry3bYzekDy/9eXDDV6QBwxOpEaRXpABP76tS5QekAFVScbOFJ6QD5jm4+BUnpA+A4x2ylVekDElov7jWJ6QDtRHTbOY3pA/htZ59ZrekCYY5q2OW16QAJnAnGMcnpAaiWq6u+jekAoWk+49at6QGB6BoDrrXpA7AnmG0ezekDkyOx1DLZ6QNwD0KUvw3pASrI6EhzGekDaifAMQs56QLVDfwCi0npATrNIctjTekBMzGor49d6QNyJM8A27npAgvpxXisOe0AY5KvQTBV7QC4eSFRbJXtAu8YleSwye0AW6mU+XVJ7QBtZdO5kgntAvcMZ8r+He0AqE9bG65B7QP87+77ClHtAMH5NdSOVe0CMB5VQecZ7QGRce3PG0XtApilXI6vTe0AC0jN4/eN7QIUaKl1T5HtAJM0pWYz1e0CghdbeSP57QPBEpgqTAXxAQEgXI9oBfEC0I2HepAN8QProQMGZBXxADChnd4kRfEAZoMUQ0RF8QAo2CtPNQXxAlWq5fM1bfEDsfdtfRlx8QOw8dTkLYnxAsEEu7cCyfED44JeXy9V8QFID4fNX4nxAjrXENRfyfEBr0SxAVfJ8QBY9x+rK+nxAc7D9mQECfUCmK12KSwJ9QOZR/0xFEn1As/dXTSgdfUD6t9R/oDF9QH5oXnIEtH1AphH1YSzDfUAz8F2mKs59QKQ6hfN/031Aw/HZZWngfUCCJF8a1+J9QCBHQSeS9X1ATKVcnToffkBMsJ1UQS9+QGSbtDGOVX5Aj+Lw8w1ufkCwYXwUjrB+QDbPgZTJ335AhPh+qtXvfkAgbDy9UfR+QOkD1hcgAH9ApESwWi4Qf0BW8/URDiB/QMY0gti3cX9AONqfr7OBf0BLPc+UYpF/QAzkrC+okX9AAuHLWJWTf0BqoQIQXaF/QEQCGO5QsX9AewdMf5bdf0CY/UEb1uJ/QNhe3Fvx4n9A3A6MLy3of0CUZ4jYvAmAQL1R8NIlLoBAlqQeseYvgEDiv+V6KDKAQDbAh5L4OIBA8v4Fn3Y5gECSh/hcLDyAQEB9/JLWPoBAFq5bA/BIgEDjcdEl51CAQIbAT7QTUYBANFjvgOdYgEA0xMcaD1mAQByq+sAgWYBA9ojNKAthgED+E+J+KW+AQE2HMfkod4BAxlHlPx6PgECOghXBbJGAQAjpCwsblIBAphi9usOWgED3jn3DG5eAQOylDqKFqYBAZmF3PBSvgEAUJx4ygbmAQBLBz35SwYBAAt3yuA7GgEBYvPm9/8eAQMbulrRTyYBAUD/TzRHKgECYinJALNGAQIoC5KVM0YBA0jJkj0rZgEBgxAUiReGAQKg7f0hX4YBAi6IUMfbogEA0MI7NS++AQGGEJ2A884BAvhXIzT//gEBWD6jtQAeBQNlt8OI+D4FAgnjcx+YagUBP8SG39x6BQMLEKI80H4FAK5YWBDMngUAkAllp8CuBQFbYHJvZLoFAr82vWTAvgUCrwOCaiDGBQPQseiG9MYFAsoT1zS40gUCO3Mvx0jSBQIAgb2euNYFANuSYMn83gUA4Xiev53aBQNLgYOSTeYFANmd4DT58gUCEOLWE5n6BQHwVAxdWj4FAXY9qslWXgUBs/KltQ5yBQDYUkf3vnoFAOWcOxpqhgUBdA9GnwKGBQIi9qnTmoYFAKnFND0SkgUCAXxe6xKWBQPIEUtMkpoFA3/MwIfGmgUBqQowBbqiBQIJPsUfIqYFAUiF7hfCpgUDI0sDnSq+BQKq459l90YFADofqy3zTgUCS8gM0KtSBQPcCOasCCYJA8qgfotgYgkCYGX/+1iCCQOAvUsDRKIJAXzB7dqIpgkB6k+HUpC2CQKulqxmlMIJAEh0RXc8wgkD4asGqqjGCQEo39fjtboJA1qh59JlxgkDaW3OUQHSCQLoao1dDiYJAR/CqHkSRgkD2g2bjPJmCQC5oWepVmYJA3ikvPG6cgkCIebvGDqGCQP/h+ms7oYJAWiPyzg2pgkC4wLkYNamCQINDMuQFsYJAvASmMK/5gkAQFJCXeRGDQJUqLUR6GYNAahBZtnIhg0AkUvEZjiGDQJaxkB9yKYNAqhl6qmoxg0AvL5u5aDmDQF0MqfHnRINAZfUdeOGBg0BUqxUWlPiDQBguGQJr/oNA/7YEum4ChEBbwxVq/2iEQC0pOWgAcYRAaqdLhvh4hECzxEMpw3mEQI8n6fH8gIRAEsNcimrZhEASw5eZauGEQNT8eXFj6YRAVPYN8DXxhEBbsfMrYfGEQHYqhy01+YRAoKyIM1r5hECsa4GhoGGFQGZn6V+gaYVAa5usaplxhUDMbIysmHmFQJ864Y0muYZA/4GOJSXBhkCyRZ5PkSmHQGlO0YSRMYdAx5J6Noo5h0B6uBXyikGHQMFKrhzIsYdAVCsQHMi5h0BkYw35wcGHQJrCP1jAyYdAZmSguf/dh0DqudpgAuKHQA== + KBZXds7jZUDOIQhxcmNtQNvlv3T/InRA - + - +DOURE4BX0Vz+MpE7fS2RYfGr0VSWMtESAOMRB6DAkfHPV9EsMxSRH2c4UTwFrtEY+OHRIALSkVgbglFQ4Z9RLRdhkW27opEuxiKRTg2jUTOh49ES2rnRIdkw0TARt9EY26eRA6gnUREErdEc2uERKka5URfbDtEgQtIRbroJUeJYItE+JMVRmGsk0VX149EqBJ5RL7Ty0QVMvNGf6diRMOMjETVvppEhZdmRGyEbkVYyRhFTIeZRHg7lER+nnNEP7+NRHA4p0Q0Zm1EWbftRHvYjUWiqvNFp3ZCRL8sBkWqeKtF4+DCRNhtuERfNEtEj7XQRITkmUSD8rNEWitlRBKajETse9xEmTxARWUJBEe5nd9EwE8NReKuokRMpRVFbqpxRPwqP0erXJBEoc3NRAM7aEaqPQ5GHHXMRXlLlkXCEhpFRwpMRErsukREjixF4MwNRYajTERY9gJFhptcRG6VI0Wt/XBGnPAsRW7wBEUtseJEtsrFROp0l0WPrxFGZ9pVROrGbkSN2ohE2LD5RJ+xGkVPqpFEa+hmRH4ih0TBTGpGENqMRA4/d0RUhGhE4iNkRN2vMEUxVIVEVFpSRDz5sUQog+VExHBwRDvYQkTp4XZEpT59RKr3gEQ9RghFxxahRV+1EEUdAdRESVuuRT9XfES3L0FHBo7WRI0IW0RlDlBEL4waRfbI5kXHGLZEzrLgRfuGgkRbOmNEZ+rCRIL9ckSaqFtEoK1ZRLB5AUX4ZfhEu4q6RKldnUTAKGlEenPaRGlIsETNwkxEr5eNRMpfXETWi15E0HEXRcMhFUWlGwJF2V+wRAY1zUQ76AdFrs1kRBfk30UQsotEuXKDRBnF2ESvKRRFeZySRLWFb0WN3TZFK6L1RGCkP0XXgb5EzHBsRFH/nkT3k1REWZunRJj7vET9SlZE+zYuRTBGtUSy5BBGlJ5uRDL44EVb4/JEHSj/RPlckkQStrNEYeFiREx61kY1STRGQaVcRFLhaUS7R7ZEd5KDRN4ahkQalZVEpK74ROxdU0Q76hhF60idRNR4sETb4WJFOdCERN8TckQEDp9FcEQJRUpx50RcuIpERGDKRa/P0kaNvIBESFeTRXLsTEVJxKJERXjIRJ8lXEXhWCpGY6a7RbM0GUU/v0BFfcNlRMzwXUTqfx9FB4UkRaL/lkR/PxBFZ5W3Rb0WWkTa5pVEihFsRfvgpUSKeMdEidznRN643USd/4VGMK41Rdc5/ETuakxE2nHnR7So+0Y7QYpFfOPARkYpl0UmFJFGLQZVRAoSHEWIqW5EDpiORDgJF0XUap9FTD+YRKPCMUR3gW1EJwppRZA0e0TNE5lEsc6URCyun0R1GttEaSmCRMhwZEVpx21ENVJZRI/3g0R396hEztcsRkcyf0XmmBBFUeM3RQ9iPUXZwaxEWERZRIT7gkXMgohEX4iIRY7qTElvVbdFDWVGRcQbW0jo76hEsaWXRNbs3EQtI7hGG4TuRNhjHUY7vvREdlwWRfi2i0QxLlNFFC6SRUzr90W+27NE0KM/RAUIgkUvw6tEC02tRMHjbUQLyalF3sKGRFu41kSBa2pE7/s1RVZrTkT6kPhFPLirRJDGPkXzbQVFPLq6RMjRZkSJWaFElfp+RFqz3Uc14f9G/P7qRCKFY0QXD0JGdkoZRQl13kS03P9Ed4CYRFRIi0RgWMhEGUEBRkbqP0VPjWhF2MT3ROjx5kVfupNEz8+4RDoumkQzOpVE8POnRGfyqkSrpT1FqHTWRKCLM0bUdjpF/O3NRG+810Qd7DJFSbcZRVmnpkRgmnZEmOU1RTddlESP5ipFfDWMRHHSm0QiQ4dEd5+zRrwpa0TkZ59EfNlrRk1DiUTLmOBFiueHRAlAoEWeawhGvBR+RBnajUSkl7dEjz+fRIojl0SW9tJHLH8RRf2u2EaY6GZEg+AbRSNYqUbCN3pFB0MARZ5cnkQdi4VEswtYRNX5DEUB7alEgIFDRfAiqkQZ75NEi9+KRPKgr0RN6gVFdY6DRFQjuURowWlEfD20RK5dX0TpFIdFNZ9KRMvAsUSQQblFBuHHRFcjPEak0I1ECRlyRNLGXEVc2KtEZJsoRXC0AUXUjSFFq3MARYfCVUSl77hF2U6VRHfIb0WoF8hE9Xa5RB7LH0Xm1sFE0XzdRBvzJEXKZXRGISGYRLMU3EXm451EqsKkRKV+OUUDXYlEVdo8RU8RlkXvrytFuA9NRKb0gETDF7hEotxbRF7Xg0QUvGRIGeHCRJ6XcUSTpNhHwil8REAghkSNuFtHHSU6RtjwkUUCJNdEGDLYRAgP2kQkDKdEs8QRRrPKH0WgrCFFjF5KRAMCYkTEewtGQU/wRIPV0URugmRF3ipeRKT0g0UXwKxEiHXQRIK/XUSCvudEEU+GRCskLEZL7xJGfXRURS06vUShAslFleHMRPfE5EUNVthFevwpRWfeN0ZTE0xFsy6aREa1lEWF0YlECc6ZRMzbF0UYNpVEI8RGRG0EJUX338VE0huXRB3ezkSBcaZEHPIlRgyyiEWGyXFF3AsmRuTtrUXZAZNEN9VuRBd1rUQnrY5FCSxGRU1EuUQZhN9HaGFjR4Zn80a/7BBF3MtiRFEWoEX2LxFGtsfXRFT9IkU1CrhE2WF5RPn4u0fE8DBHXDTDRrcFfUSDWN5FR5YyRdhfQUT69FpEG9GARNQBY0Q9WZREXD+HRMhP8EVA9ixF5uwTRSS5ZkRTpmRE4B0RR8NykkYh4ThGnJ56RWJib0XkHKxEfmikRA9e1kYfWDpGdskHRvK2GEVhAAFFirmIREP4PEaiIfhF4bpeRbQzpETUwvFFMcuLRaOSIkWuF8BEE2xsRVBZVEU= + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - EaA5gXjAckBQrHdlC8FyQNuLedtuwXJAqics807CckB3tSrupsJyQMt7T2g7w3JAuldjkqLEckCJfBZ7xMRyQJhiyaxbxXJAdiyTekPSckBGrqEueNNyQN3We7lh1HJAL09FkM/fckD/iHyNt+ByQCDeDMRQ4nJAfLDtNI/ickB6UFPdJeNyQHZqzNXT6nJAKkflvsnxckBQeKOjp/NyQFqCqPCi9HJATFd1EcL/ckDD7LASQwBzQF7/CmBiAHNA6gU12fkAc0CDNjQVTQFzQKygunyNAXNAGFSI984Cc0A9te3T+gNzQNZcuL4HEnNA3LCTgbwSc0Dny3I/+RNzQGjJlFtMFHNA5KqOVIsUc0B0Gv9FeB9zQP8+C4O2H3NAAvUejKMgc0AgrkPcOCFzQHTvbLnHInNATmwHAQ8jc0CDw9RyzyRzQK5CSc9HMXNA1EYcpFgxc0BIr4xfDTNzQGSG/7GiM3NAxKn2Zzg0c0D26n/uQUBzQMAljcLkQHNALKtmNHhBc0CjphY2ekRzQNbpy12bUXNATGO3rkNTc0DMJO/oo1NzQHD2sW58VHNARLojv4pgc0AOxRcCZ2JzQD3acMk7Y3NAD90HBc5jc0CGLglA+3FzQLSDwXRTcnNAVlL9NWZyc0Bwgts5knJzQNSlqc23dHNAt7F2H0t1c0C3b97heIBzQGosqMClgHNAMvXEIw6Bc0CsSD0xx4FzQMgn2oVegnNAwhgiuQ6Ec0AA3lFSh5BzQIQ02E9NknNAzSMdHc6Tc0AEQnXWYpRzQKhTJqH3lHNAETGzJLmgc0A88BTuWqJzQCfo5FDmonNABm86NAWlc0CW0M2oxbBzQDj1U8w1sXNApor5UX6xc0B+mFQzt7NzQHFMlt8MtHNAea1dCffAc0BgO0E4O8JzQLALiAfQwnNAIjQpoybDc0BYZwR919FzQAAM92Az03NAnJfkLVHTc0B5//4f+NNzQKp1OZPh1HNA7deWQTjhc0CWouGEZOFzQJKESbw98nNAAnS2aWnyc0B0bSlKovNzQGrl0OE29HNATsX9euQAdEC2LP/PeAF0QIet2w+lAXRASqrnEQwRdEAZnXnUTRN0QCy6RDJLIHRAY3CK3I0gdECA2WLNuCF0QPT7Ew9iJHRAXBhsMVMwdECxGjifuzJ0QCt9ybBbM3RAcCSJbHtDdECI0w/RVE90QKalyqv2VHRA8KKypYtVdEDxcmkeuGB0QKhDli8IYnRAYrsV3g9kdEBqWAFDT2R0QH4k9YAicHRAfsXn5EBxdEDcroT/OXN0QHjTP0SidHRAOMowTzd1dEDQgjgC+YB0QOKU3olOgXRA2JGHMfKKdEBuDzDBFpB0QC60O8dskHRAF+EHJNCgdECyp++YgKJ0QNAJ4AfRonRAuNw6QRCjdEC8nUqlZaV0QJWo/880q3RAfkcmzAmwdEB5o//zxLB0QInyq/DiwHRAjEytx3fBdEBAU5+47MF0QEJKbsoPw3RAdhZ5rSTEdEB3XsJDeMR0QLXKlgC4xHRA0CCaTfzOdECsz+lCztR0QCZ++dQj4XRAGk+M/LjhdEC8NkFnTuV0QLoeM6uM83RALABrdHj0dEA38x00pAB1QOYX9GPOAHVAO26ms2MBdUAqA94NXQJ1QDrg+j2bA3VAoodl/TsSdUBMkIX+IxR1QOzEF6hIInVAcHaKLp0idUAOLA0IzDV1QJgG7cuxQXVA7mJyZIJRdUDoMUOidlV1QF5Muhs4YXVA9dtQlHZydUC4sgiyjXR1QIyA/vJ4gXVAblQjb66BdUBSqn9i6YJ1QGbWqmqlg3VAa0D9gpuEdUDYlyWpwJF1QNAjvE07k3VA2TVzJT6YdUBYEalGmJ11QPpbh42VoHVAhu6BpbehdUCexYZ38aJ1QKYXlWvpsnVAHB9YAXyzdUD+4gbIzcB1QLDMp99kwXVAejzU3fjBdUBCuIeXUsN1QN15sd7M03VAENa4cOPfdUBvtHUYB+J1QBhK695HAnZAe0IgbtADdkASR36GTRR2QBoduqgLFnZAeAXxnYkidkB2OdoSkCR2QO5XT5QfMXZAzP4G8B1BdkDiI6sIekR2QKDDXCvKUHZA0+OGNBJRdkDDiltczVR2QHLORTiUYnZA1/oUPc1idkDEtruE22R2QI5n7sgoaHZAvHD/O8hydkBjW+qekYN2QKCuXrRGo3ZAtM9wInejdkDSbnQif6t2QI7cjDm3sHZAPNBOwcCydkDycHTIDbR2QIgdiB+vtHZAXKxGSXXAdkCqpqE8wMB2QCjeqGkaxHZAZjX6UM/OdkDxd0FVv9B2QHtovJ1h03ZAzlqMC/LhdkApW2oKkfN2QATkkCkzAndA61+jWQESd0A8dmcYDyJ3QCt+9zV0IndAwOya7Aw1d0AhCHcHnUF3QMYjrbiuQXdAGcYR/BpFd0BUv11uSlF3QNyUZNiSUXdA9hlZQihVd0BaMWqgSmF3QHxUZcmOYXdAJoj/pidvd0CSsb0LPnF3QAxJxU94gndAHlReuXqDd0BuKG1WTJR3QO5xWFSbtHdAK9xEx+LQd0BMJsAYi9Z3QM1R7F/t4HdARL7hU+oheEDcMSppbiJ4QMq6TBiKI3hA6/G126UkeEDeuTqRDUJ4QEAboGB6RXhAXN2IP8tReEB+xihqh1V4QJ5lSQf6YHhAIFKYL7dheEAJS8AUpGt4QB1l911Wc3hASsVjcrBzeEBuiYIfJXR4QFYfbv5RdHhAGEcpXV10eECswXqWi3R4QI6hThWsdHhAbGtOyr50eEBLJ20j8XR4QBp+97+kgXhApCqkk5mEeECca6/mtoR4QCL4MKxSj3hArscO6JuReEBZFLwhp5R4QELuNQx2q3hAW3PgEX+zeEAYR3ZBzMB4QNaDPNz2wXhA/DFX1LfUeECPDNRiAfR4QIrhBcCM9XhA/m+PQRAEeUCaZYg4mwV5QLC4WOcLJHlAxPG2FrkzeUAgCxs0FEJ5QP62rQf7QnlA30M5dMxUeUBWksvB2WR5QGwlQHNDc3lABgSLo8CyeUAqz/lRQtR5QGzwnU/N1XlAjJfuBL/ieUAGfqg7T+R5QHrfzy4Y6HlAanQH8voFekBAUwdP3yZ6QMyrC1KrK3pAEiaPTAw1ekAWLtCbGkV6QFaRc+UvUHpAvzzkhIFSekCuljpHKVV6QBS8NX6SYnpAtkIIQ89jekCk8En4jnJ6QCZ8V/AGnXpAvVXtn0iiekBL7G0176N6QHxxLJ2fp3pA+ipjhvarekBNmzzH7K16QL+B8bNFs3pAKgGgLw22ekCAgj3DGcZ6QFkSIVTg13pAFPf3bGfhekAtB2TgNu56QIDaEl8X8XpA2l5x11bxekAmeGx/KQ57QAZWDTZMFXtAyIznBlole0AwlPuCxDN7QHW4H5NkgntAsLJqcsCHe0AgWHpRI5V7QIhdcExQ03tA9N52ka3Te0BAvA9ARuJ7QAQ5uIf843tAmDxTdJfxe0AGWus2jPV7QGEYagdJ/ntAuFjSx5IBfEApPGxY2gF8QN7/B3T4AXxAMsL5PZkFfEAuGr7tiRF8QNqY6pTREXxAhb/AMc5BfEA8m5Da21F8QNHSP8bKW3xAFqWhnUdcfECBvIfyC2J8QNCBccjVY3xAGn3FMPekfEAC2hnwvrJ8QJr9/ibN1XxACq6C1FfifEAO18+PFvJ8QF9stixV8nxAItawjQECfUD1qznuSwJ9QOSkwnXPAn1A7FP4B0YSfUDGz3wvJR19QGFivjc/In1ArjqSGKIxfUB6Qs+LK8N9QC3lg7SB031AXSjY/mvgfUBwsMqW1uJ9QEtx11+Q9X1AsFV7kj8vfkBUZ2JXDo5+QLsOIiLjkH5AFueXVU3JfkDiEsbv1u9+QHwQY/ofAH9AVf0EYrhxf0BIw8KgsoF/QC0gJO+kg39Axk+aomKRf0BM5A13XaF/QNo8PF9WsX9ARKmq/c3af0B+kw76ld1/QFttpsrV4n9A+lNMeijof0AaXiTcJS6AQB7YSXgoMoBAVpCTVyo8gEA4pcAx2D6AQHa7rhv2SIBAAwcdk+ZQgEACpXjKFFGAQMZuQrLlWIBAI9NRaw5ZgECsXQmwIFmAQPoalpLhYIBAjhTU0gxhgEC2DJrGKG+AQLoiFUIej4BAotKiU2yRgEC6khp0DJSAQL5yLSWGqYBAol8G3vu/gEDmzbCFUsGAQIydz5wQxoBAZAZXglPJgECoTxS/B8+AQEmDvLRM0YBA7uHkRWHRgEAoL5zFSdmAQC6a88SZ2YBARE6X1kThgEDeylto9uiAQC5fdvxB6YBAL+CPx0rvgECG/WrkPvOAQDjeJL8//4BA2NesGEAHgUB1zHUFPQ+BQOKwzDE0H4FAv42ZizYngUD+ztTA2i6BQLpWYvzzLoFAQImpp4gxgUBOziTTvDGBQALu87kvNIFAPlI5odM0gUDxKuuM53aBQA/39a2UeYFAHhRO6z58gUCgBeteVY+BQLr0lORUl4FAs9EsEUOcgUDzY8+N756BQNKM/jyeoYFAaEPAAMGhgUDmoJp756GBQCjTbGZDpIFA70fwj8SlgUDBhbJvI6aBQNo8Aa9tqIFAQHooWMmpgUAOf8Wm7KmBQNo80eglqoFAUhR0zEqvgUCYOg3yS7eBQMZkSDh+0YFAUAtDZH3TgUACE8qNKdSBQCKJxIQCCYJAS2IShtgYgkAhFsbh1iCCQCrY0dvRKIJA3LejFaIpgkClbkQqpS2CQBB5u57OMIJAVr6mY5oxgkBk2Zce7W6CQDcZh2iZcYJASrwdcEJ0gkB6MNIO7XaCQJJwtEJDiYJADBeTE0SRgkA7kWpvPJmCQICgYscOoYJASpGXaDyhgkBojTyvDamCQLimoLU0qYJA0uok6wexgkCw4zjPNbGCQE3jro55EYNAHEM58XkZg0CZwKmXciGDQEwt6ftwKYNApWLmOmoxg0CO+VT+5IGDQMy2isxKg4NAfQvNIuWJg0DYEZ20QNKDQHuvE/GU+INAFhXw3Wz+g0AcWO9a/2iEQIzL5i//cIRAAbLJAPd4hECeWCw1atmEQPTo/79p4YRA0INKumLphEAItqkINvGEQMi4siNi8YRAyi9r3DX5hEBoqg6ULQGFQByoZWWgYYVAgl6GzKBphUCIeO9XmXGFQD3/tauXeYVAiy0NrpGBhUC9KzddJ7mGQPqD/U+RKYdAHFXs65Axh0BGl3RgijmHQLA1dLZcQYdA1o0qN4pBh0D4Pnp2XkmHQJWlB0LHsYdAMrHG7ca5h0AqkJ08v8GHQE4PZhG/yYdABlFmbP7dh0DwUj1KAuKHQLSa5DkE5odATjbw9rb0iEA= - - - - - - 7IWaRF5MkURgPWZFDiquRDe54kXvxv5Foy1xRMZzpUQPnLZE91MSR7pHm0Q1pm9EgYPfRE6GvkQ/R4tFONW/RGmkoEQJPJhFreqlReWc+0SN79FEsGs3RXFeAEXHAo5EP07YRC+Lm0ThcppEVXk/RXQDKUc3YYFEQjJLRtPApkUmst1EP9ByRN8KykSYAYFE/7MDResy6Eagb41E1VSvRLRvrUV98DBFVSXQRIW5eURhWZpEXR27RJDMi0QPn8VEXQGWRUx1CUb9x3BE6M6fRONqwkU17IhEemXKRAR0bkQw0SFFuvtyRMhQmUTTvqxE0TOZRF1Da0Q55bhEuIZWRXt7+kbkwsBEoMIxRbgymkT9OLVE6MuPRGxvN0UVZWFH91QERYqPukTVV5RGcAQNRiy88kXuAIxFiQYxRfreiETPT8NEpFP0RPb0ikXDhkhFT/zYROmpikT0FqNFa51yRmTTW0XFY/9E6FNTRZRx0UQKxpBF2FQERsC6k0Tju6VEXDtzRF3thkSLuPdEm/6VRHBwlkZGwbxE0oB4REfdTkXC9YxE8UlfRHEvCkUgNItE3CSKRONjq0SmbIFEEhSBRJ2KpkQvt9tERqvMRKy2oEUygVRFDBmxRBWzhESWvcJFqF5mR+rY40Sllo9E0GjLRPz/NUUdFxVGBk+8RKG0n0WuR+FETW+CREWGVkQfB9lEen4yRbZHkESYovhEJ6nPREFmlUQj3XNEtCAURR32k0S74ZZE+9OcRDpTjkT/BjlF9Z/uROMfDkW7gI1EiSMNRX0mtkTtdN5FySihRGAXtETHCpJEj7SdRI9ICUWcqJlEN0ZwRaInREV4w4ZEiQvBRPmOL0VF37dEm7+rRLOdBkVz+z1FDwAVReUJUUYB3/NEUzHIRZo1i0R9dk9Fg/w2RQ5jR0QUXaVEWAWmRnGzx0VMYYVExe/eREnwPUWg+4ZEgz47RTLBqkTHU7xEH6IkRZGWnUSGxetEr9mmRBg0E0WduZxFtJgaRfUSiUQum8FEuwSIRHSjFEaOTupGbvvHReUzYUWWdb9EnlF2RWozdkbdT7lEshn/RbMtK0WHGuNEAtCuRG7LKkW694BEBzvNRMnioURtkYVELtAnRaXmsUXTBIpEzkm0RLhwokRlEMZE0Q86RdZ7h0SwzQNFoaSTRPw2BEUQbxRFzsudRq/6iEXWM8FEjxMCSFH93UbeHglGrSrTRlVdu0WcgpZGwiUsRTiChEQjLS1F02m3RbKTlkR/BwFF7pQvRWgxoUQewohERm2cRNomkkQCXJ9EOeuPRIPJjkUz4MJE4jl6RFKBuESNTVlGZ7qvRRtEQ0WO+yNFbdgoRcgus0VOd5NEjKukRDzkzkRVYAtFunw5RbmDZElgmqFF/38vRbCExUSKO3NFUbVvSGRQiEQHHotEZ1aKRG11qEbq8wVG4gsjRasS+0TIJZtE6AQeRWT+fEXDaCpGmAODRDeBD0UVxtdER1m7ROglaEU0UF9EqqDPRS3xzERusJVE11FxRVOUCka8k+NEydQjRWm2t0Rm4H1EfGUZRTEjh0RqlwJF62H1R4pdC0d6TeJEEnkfRpEkUkURtYBEPrL0RJxF1EQIBe5ES+8ERaCkCUahybxEMYZTRQrKM0WYW7pEMIu4RW5QzERilwFF1mEMRXkI5kQC6ThFjcKBRNpg/0T9T1pGM0BJRbrRiEQMHXRFBlMhRfjETEWfmtFE6lenRDVcskTZj6hEoHLERUmqvUZ+5opEs97sRPT1gEYDxwFFczbURdivoUSWWslFGKMRRoB2nkSm9fxEUI6URBCAw0Qg34NE2g2HRIeKAkWNrYNEDp/1RyS6JkVtigFHA7chRdGytka5XGNEnaUxRU5Lb0T0ZOZE61KSRMKnvUQmY8dE0ppcRXcRskQmCwVFI8bhROZMeESz8IBESmWGROMYkESZlYBF2g2kRUd4h0RxysZE5rMmRtraRUVIditFk+FyRJqt/0TZPxFFiLeiRE/Uu0UU4h9F2JuPROuOtEQUpOpEGgc9RZE2o0Y+AYtELhzHRdahyES+07FE5xCbRKmuHUUoPnNFNtAiRdEMNUUJUiRFz2mKRNTGgUhbyq5EYbvyR0oFdESuFIJHHe9iRd3ZQ0aRmZtEL3jPRRx740S9+plEV8bIRAuSrURUGRtGp8JhRfqf2UTTOi9GS9ecRNd2y0XQJ+5E1/OMRQwH70R6h9dErmySRFAMD0Z2BN1FErNERUQWqUU8S6xEF5n0RXAbuUVnDBRFdIxLRg8FZUWG/Q1Ftl3FRctLpURkVkpFCHiuRJy2cEQeip1EQmFtRUWgcUQF2otEEYLwRCnhs0S2lppEd+1hRtsWckWionFFX4gRRrAZwUUTGKNEHYOSRN870EUdithFOUx8RWSj0ES8BvFHJw9KR3TO+UYd4MRFkA8LRqeqNUVjBE1FgVWcRFddVURm4t5HEtNER1FT9Ub1Rw1GaaAsRari7URWq3lEUXCBRGHii0RIjKpEavuARM0d0kWkYB1F5x4CRapaFkcRa4ZGIBArRkcdvkVf/J9FMJL/RGRZsUSaSulGJvJMRvQ5EEZM2ktFJBCUREwj90RXomFGGiLmRdwffkXyPKpER7/1RL0bdURl6gtGzxCURYoRFkXcMpxEiqIWRThrP0Xfz6xERNWGRA== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - ooJ5m3fAckCuwlQyDcFyQDalrmpvwXJAFruasVHCckDiQjaopsJyQHZLaHs8w3JABdpmmMXEckBZhjy0WMVyQBHrxq5D0nJAxsYVVHbTckBYjbqdzd9yQMi5dVS34HJAOjISkFHickBenbLvj+JyQJuRYi4k43JAWO3pONPqckB0neBYyfFyQOCTZ63a8nJAa33kH7bzckA3oRdgo/RyQOpjjwzC/3JASOCeS0QAc0DwDRix+ABzQCAC9OJOAXNAVjGL044Bc0Ck9sce0QJzQOwJouT6A3NAZK34mCMFc0AGfX5aCRJzQDjFgJq9EnNAKkCZKAcUc0AI/Nl6TRRzQFyRE6x4H3NA3gCdIKUgc0BZQ9BNOSFzQEak8WxmIXNANC/K6RAjc0B4hZ5ZzyRzQHSn9ElJMXNAmvn2PFoxc0BQx53NDDNzQNsS9AY4NHNAnGT65uNAc0AauOnHeEFzQK8S0/UmQnNAVgqGpL5Cc0CGKhK6ekRzQGL33CqeUXNAzridlkBTc0D8JheopFNzQDaqRn+GVHNAKg114otgc0DOat5KOmNzQBtfUnH8cXNAfmEkp1Fyc0B5yKqVZnJzQJg/EuO2dHNAjXUjP051c0CbavpneYBzQCyn9uClgHNASnQ+pw6Bc0D2oRKpxoFzQEJHNSZdgnNA45PA+AyEc0B4VGEAiJBzQMLUO4JNknNAdaPdtmKUc0AMGMuT95RzQLcCBje4oHNAAO3XA1uic0Cdfbni5aJzQHv6SgEFpXNArlj/pMewc0C3Xfqv2LBzQFqVcfZ9sXNAbtzOo7azc0AuxkO7DbRzQM3xS8aitHNA8ORaSfrAc0DQIB9yz8JzQIDSAoEmw3NA8rGqXNjRc0AuNj2mNtNzQGLcoGtS03NACzThlvbTc0DKx0bB4tRzQOdVXNI44XNAoDTS+2Hhc0C9CKnjNvRzQCpLkWGM9HNA0pLHQHkBdEAX3tjPpQF0QCaKZmgJEXRAAkhxEogRdED+3igCThN0QFyXQI14FHRAUrFTbkogdEBoS/T/jSB0QE/f+fa4IXRAz7H31boydECS7kvayEF0QEohExt8Q3RAGLNWymZPdEDw5NtQ9VR0QJpYAGOMVXRArGmENLhgdECMUzHnCWJ0QEKrP8IicHRAENjBgUFxdEAoM2djOXN0QGqVppQ3dXRAkr2Y6XCAdEDGR4lP+YB0QIQ9iuFOgXRAaAR99/OKdEAe0aoLtIx0QBTLnKQVkHRA2e8x/s6gdECBrpOguaJ0QMKDItXPonRAvFZc9A6jdECYsygnM6t0QAd+4aELsHRAMCpjAE6wdEBMj9RYwrB0QJj9I+3iwHRA0HLDMnjBdEC+4omm6cF0QLLfB4cmwnRAMB9QhA7DdEDxQM+aI8R0QLHjxXW4xHRAYqc+zfzOdEDA+Oc24tN0QPp1bWnN1HRAuhyXlrfgdEDIjoJDuOF0QN6tbvWM83RATfMRpaUAdUA1Nkl4YwF1QEX3DdNeAnVASCSwC50DdUDHgpBaTAt1QJwCUdk7EnVAMHoQ7CIUdUDWITI6niJ1QEac7uvLNXVApYAcw/ZPdUCuRZjZgVF1QJhTsKZNVHVAjJWkGnhVdUAEbuupOGF1QMNHCZP0YXVANzX5S3dydUDaeSWzjXR1QDDJl3d4gXVAAlXeoq2BdUCQJAsTp4N1QKm5OgubhHVANx89T7uRdUBwNYsRPZN1QNedhCk+mHVAIvuXKJiddUAahCtbuKF1QBMh5yPuonVAWG9FUueydUB4eL1IfLN1QKhyuc3MwHVAW6xB7PfBdUBLe+ZCzdN1QPzQaUwQ4XVAH/XE5QfidUB6pm+COuV1QGo+vvtIAnZAbGAeuNADdkCyjNcAABN2QCDzc7ZPFHZAdmuuqwwWdkBWxGaRiCJ2QLTLe3SQJHZAVhK51h8xdkAwqeIaHkF2QF4vLfV5RHZAjgpbrv1OdkBl6DzSxlB2QBTOv44SUXZAyZCmic1UdkAb/jsIE2F2QERnj/7MYnZAnsTolNtkdkBUl0W6JWh2QHtJoIaRg3ZA7D1QLvWSdkA0H6+ReKN2QLYGvxLCsnZAAJnjcg20dkAOX+zzz852QHTVqme+0HZAkJz6WmDTdkBbNUs99eF2QMhmHZKR83ZAPgcnPkv2dkBoh0ykMwJ3QFZwhJ0BEndASuK0hA8id0AJ9c9FcyJ3QPiM8BcNNXdA9MGRNp1Bd0B44yQgG0V3QN5Y+2BLUXdABiyDTpJRd0D6IKTFKFV3QEB+TdSPYXdAMHqMHyhvd0Bz7+01kXR3QIwptHZ5gndAGFFmLnqDd0BoH7kGmrR3QE7ts6SMw3dAxUeQJ4vWd0CFrQ5t6OB3QLDulPtOFXhAKRHP2uoheED13qE+byJ4QFwkoCWLI3hAdMu4zA1CeEDf4vFSekV4QMPF4wnLUXhAX15cA4lVeEBgI/U2+mB4QDYK2XC2YXhA50rbsrdieECAOP1ypGt4QOyLxdBVc3hAeOi8wbNzeEDO8zabi3R4QGgS+Hu8dHhA9chHJ6aBeECE6+GpmYR4QF+uWN2YkXhAFOZiTaeUeEC43pl/5594QD6ojW+4pHhA7KeKC3ireEAEL7RSzMB4QBgNfw+31HhAl2ytfQP0eEB2qH9RjfV4QOudaDuZBXlAc5S4jxNCeUCe5P6djkJ5QIRjBlz5QnlANXCyNONQeUBGb+24zFR5QAE41xLaZHlAlvo4nkZzeUD2WTzZ9qZ5QImfnT3AsnlAeAGwlELUeUBI5itFztV5QFS87ja/4nlAHRfR307keUCWbd97GOh5QDj/wPz4BXpAzoRg/zgjekD7ru3rCzV6QN6rimAaRXpA0fJV6y9QekDc4gDsgFJ6QKAocQkpVXpAW7cdJc9jekBWS/djjHJ6QIiJpG1Ac3pAlBlK+keiekCyBYAt8aN6QCzTWqT3q3pAaC0couytekBQt56iDbZ6QFRwm+kGvHpAiEs2KyzDekA5vMQDG8Z6QN6irwpCznpAjJgy1+LXekApv+DLZuF6QIyvlm427npAdXo8gRfxekChsfP8XvF6QCwGeDsqDntAWP6V+EwVe0AUCBPTWiV7QO6PW6DEM3tALvruU2aCe0AwR/ktIpV7QP+xuHJ7xntAFjQgpP3je0BqjkvBlvF7QAYRJ1eM9XtA1kQQCNoBfEBG08u/9QF8QCG8KvSZBXxA/FydYtMRfEB45ix7AyR8QP/lJCjNQXxA4N+A4ttRfEDUQv4oy1t8QMQKsl8OYnxA665VSMGyfEBo40lBzNV8QM87PM5X4nxAFkK7qRTyfEAKv94qVvJ8QM5QkcgBAn1ATDflnEsCfUDUuFaaRBJ9QCKSwkNkEn1AlKhkjCQdfUBoI1jAPiJ9QJRtk9Urw31A9sRHw2rgfUCCkHK10+J9QHYx+e2Q9X1AMebIbz4vfkCeVqUsmnF+QM92RRDW735ADuEyaVD0fkBe+KOLHwB/QCrsHlW4cX9AVgc2lK+Bf0CU8sPapIN/QBZ6oohjkX9AJI9nP6yRf0DYvog9XKF/QF74//9UsX9AAOTWzJTdf0CYus5L0uJ/QIiiUWbw4n9AqlW8EzHof0Cem+LqJS6AQGQpk3MpMoBA9oBSUJ86gEBzDARlLDyAQOyr+tj0SIBALu+d7OZQgED/K5MWFFGAQMy+lXjnWIBAAAtx/A5ZgEDcLHblIFmAQNIlS6YLYYBAKNLssChvgEBkherFHo+AQEqe+iBukYBAeUGc/BqUgEA7LJxOhqmAQBDg9pVSwYBACRup7Q/GgEAFhOOaU8mAQOYfvb8k0YBAY4yP4CrRgECOEbQnTdGAQIph1K1K2YBAKsSGNEXcgEB+LlaGROGAQNkgUwZM74BAyiD3kz3zgECOcB8TQP+AQDwoBCs/B4FAxFLteTwPgUBUvlOh4RyBQPzNe980H4FAhFgJeTQngUCMtGqB2y6BQLGtPBuIMYFAYASIOL0xgUAu9NHNKTSBQCg7oCD9OYFARbK7c5FBgUCqOtHC53aBQJQ7NEuVeYFAswfuCz98gUBR6SrR5H6BQGPgqD1Vj4FATGHg81aXgUACjPdVRJyBQJ68Lr3vnoFAr1+nZp2hgUBZt+H1wKGBQIPczPnnoYFAyAqFUcSlgUCEbrPXIaaBQFrkuvRtqIFAbaZZZ8ipgUDA6URq7KmBQCY+ymcmqoFALI5o8iuugUCe73VXSa+BQNq4nFt+0YFAgAW9XX7TgUCFlk+lKtSBQNtPcmoCCYJAGlRaX9gYgkBADW/t1yCCQAsMHmHRKIJAFgARS6IpgkCkgaBBpS2CQA/+ZDmkMIJA4ug6gtAwgkD8qqUC7W6CQLZFWMiZcYJA1ef2NkB0gkAbJskd83aCQDWd2IxDiYJAnXtWLUSRgkCoWQ2/PJmCQM+nCf8OoYJAeDjvszqhgkD65+i6D6mCQMLuadUzqYJAiixVUwexgkA89O6dr/mCQC6uiat5EYNAtX1UW3oZg0AsnSz7ciGDQOYwXQlyKYNA0A+rdGkxg0AC/gIelfiDQGosVaBr/oNAu7dDj/9ohEC25Ep8/nCEQFiB+a72eIRA1rAAUmrZhEB25ElkauGEQFDgtOpi6YRAUP+OyjXxhEB6fRG8YfGEQDJREGA2+YRABBa47l35hECm5wRGLgGFQOFx42ygYYVAPq6zcaBphUCOwySpmHGFQBXvjK2YeYVAWGdQNye5hkACK5MnJ8GGQJ6WYWmRKYdAUvwo55Axh0CMcS9/iDmHQDBlwdeQQYdATh2fl8exh0DAlQR0ybmHQHQ80eK/wYdAG4qVFMTJh0Agn46t/t2HQEZyHIEE4odALiTc2vrlh0A= + NrgMGZxjZUAoFld2zuNlQBu6YmAmw3FAFOkHjz8DckAxOsR5l5N1QA== - + - 3XdJRIx+WETlszJF/XidRAyktkV3etFF8QyRRM0Xj0RD0wxHn0eZRFUh9kQq0Y9E8/5sRT+j/kTMVJREFnuIRYObeUXjvMVE8oXIRPtAr0RbLdtE7Yi3RLv1tUS09WxE8E2cRFaM80SPkxlHj0x0RCyXtkSQ/jlGuW6cRcoSiEQsVNdELzLCRHf2zUZDiVNEX2SLRDkQVkVW3bFEh8jERICSoUTC/qtEUpLfRCO0S0UYlWtE4IVrRAEXB0Zn8WhE+EKSREd1mUWZDoFEpwehRMaa+URBjmVExmyQRK1ivER/D8xEwpAMRTaE+kZVdLlEiIiZREjbZUQtOYZE1tKBRARbE0XM9lBH5g7ARE6pUkYF6BNGInL5RfOgRkUCizdFql5mRK2bQ0Tz3LZEYDRKRQoZ+ERK1nVEuKuKRCIvm0U76iBGzK8hRWeGhkTddw5FoO3sRATBZkVfyNRF7COIRKcJnERIi45EpleVRoz07ERrpcpE0vN3RD/TJEUR7F5E1RGKRFILqEQLLwhFOnS0RGCfpkQLHZ9EWmpzRE5DlER/MepE3GmARZJaFkXgcbJF70tFRwdUq0QrxJJEzbBwRJ1aI0Uw/+VFmaIpRento0RTtaFFdl+IRPFEBEUbt7pEC9bgRNUGjkTNG5dE/CZ2RB3Yi0TRPIJEOsSuRKcrVETy8FFEDWPmRLAzn0QuHwBFi0uoRDcDg0RtE/xEQ9lvRC7x80SKJt9FQkeCROGdikQJkbxEQnNqRP0vhUQmGX5FqXYORQHAYURhaiBFlSZjRKYEkUQ1GqVEwhgKRWN54ETBBYpEppLXRO+FJEYbTOZEzpCxRU9t20RCRspEatB3REntdkRDBHxGeSADRvwInUS7mbhE1bG/RHDPHUVr2mREBUjtRNFG9kSFcotEcgJCRWyviURXAndFbmERRYCheUTqinpEQBNvRBakhUQp6+hFJ1rIRoWok0WnlUJFyGmLRBS7hERLjuBEXHFIRonFkUTeraVFRTYQRRGwQkUB00hFgpZRRKyvDEX0qwNF7JqFRXdlDEVvv5VE+I5+RFkZbkQt+u5EIVReRPub9UQmw49GVzNrRUInwURfDvVH9Au6RsSJ2UZGGVdFx1B2RpxE8kTCizFFPI9/RbP3l0ROGLdEJMs+Rd7JeETKOYpE/wSGRBK4XERyx4tETyyJRLGEXkUvDH1Ey2usRG6ZLUaE96FFisIRRWp5FkXm8zxFOA9fRKUZKkWqZXlEjiuXRCF1UknW+G1FWr1LRTgUVEjIfspElNGpRjXKXkSOf6JEMeuVRbmZ70SxgdpEYD2HRYR6wkVo9NdEW/8jRbPngUQAkH1EilKHRNOKUEW+zZxECFx+RMmmckTiekhFLAP/RZG6qETNV89EhPELReHWbUQ71MxEi5JhRKgm2kcYtelG7IWKRB5JqkW/4T5FyXCWRDNwgUSmv4BEli73RNE7p0VHPkVFET8ORRNezEWOToZEjwqTRJwSx0RTZ7VEjyKPREWsm0REsCpFgmj3RPWQzUSF7glFf485RtuvKEW0BIdE2CRPRboJ8kStSYlE0RaSRG+zuEV0urlGhwI8RkFv9kT3gaVF2OWERUdWcEQtgNNFgB+3RHRxs0SVI4VELtnHREZ3ckRAqeFHt4ULRd2Y9EaSaitFN0WyRuUwb0WImqREOieNRLZsl0SoyJpEVkwbRZVXhkSMdiVFfIGpRAb0dkR88FxE61iPRHFPEUU88qlFqpbOREC+l0SVgi9GVauDRCc2xUQpMzFFQEGsROYNA0Vv17BEJ06aRIVieEXWuQ1FCqRZRNg1/0SjgLREbhZKRdybfUamu8REUz+8RQt7nUSKCmpEdmsRRdGLLkUnFSpF06nZRMiB3kSDWXpImYKyRMdS9UdGfqFE1vWgRFIGhEdcwE9GoSaMRPIMikXZG9JEL9jKRDz3HUafVlxFpbSSRJ5pc0QdxfpFSI3SRABG9EVJ51RFvC35RLVhe0R5fUpEAaByRP+gCEa03l1FOawgRb9CmESLcpRFNdSURPY2zEW6lIdFOyURRfWQ/EW870NFLwZwRQGhiUQvizVFfQ6LRJ7MokSGOGhEWhBjRKthKkUUm/NErgTtRMQqtUQpi1xEzkJNRvLCXkW5JwlFjK4ERtEXY0UniaREnjqsRKWL10W704lF8r/wRI4Au0QtU81H7jNQR4lW2UbkVK1FAtDcRXtEBEW5MvZEfmXMRKUGi0RvVMxHY5BQR3me60ZbBt1F1qbxRIsZxkTxf4VE5dGeRT14I0Uds7lE0TAPR0B2kEYJfiJGQ1t7RY5lc0VkQ+dEbI7zRH9AzEQP/wFHOc1xRmS8/EXso2VFieakRKXZZkTe4h9GHpPORViKV0X1G45Eq079RaYqY0VW7khF/rPVRMwuAUWMjehEhVduRA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 0mvzeW3BckB8Gfz7UcJyQPpyfzOmwnJAgIyQBebCckAaSWw0O8NyQGtckFDGxHJAPz4ySFnFckDVgs+qQ9JyQGip11y00nJAQMZ7unXTckBErZUlYdRyQAa1UP3N33JAhCHjP7rgckDUXqJmUeFyQM9L8zlQ4nJAokudHY/ickBolTtY5ORyQFqma9jS6nJAvpigyMrxckDi1/bce/JyQFQNXoe283JAJzqpkaH0ckBjbsl/wv9yQJLA29pFAHNAkgqmtvgAc0AaABRIjQFzQCbsdijPAnNAdsc+EvsDc0CSG0iaCBJzQPirL/m8EnNAbCU3mfkTc0BM97D4BhRzQBa2sOBMFHNAT5b/PHsfc0DNofCboyBzQDsgjoo5IXNAJlJ52GUhc0CETD+SySJzQAaOsigQI3NAEWbBRAQkc0BcyP5nOyRzQOTCyoPPJHNAO4vSNUUxc0Bv71CqIDJzQODM03sKM3NAjqkb4dQzc0D/B2G/NTRzQLsARE/cNHNA7L+PdLg/c0Dutluy4kBzQCIx1ZV5QXNAE8IH6HpEc0B0mC4bQlNzQEePzuyiU3NAfNirG4hUc0DoWTYLjGBzQMheAztmYnNA3gh7CTpjc0D6qajPr2NzQCr2Qo3RY3NAixRb41Fyc0A2Yk0NuXRzQFBTMIlNdXNAbM06JnmAc0D6u26cooBzQPViDNnLgHNAV/lVkw6Bc0AWHH9xpIJzQBC4rEUPhHNAy8wkOoeQc0DWX31hTZJzQDvf9Of3lHNAVOqHPYuVc0DKk3PeuKBzQNq/1FNzoXNAjoQPMFuic0Bys+os56JzQJy1Yd4DpXNAyk7lZ9ewc0CUiLhrt7NzQINFCU0NtHNA3Ejfr/nAc0AGC+bRTMJzQARGoP7OwnNA1fvMQSfDc0B7aMah19FzQH4rmaky03NAh9aGsVDTc0CiaXEL+NNzQLquDN3i1HNAOGCTejjhc0Akm5E2ZeFzQLdRNfiP4XNAU36ZrOThc0DXKmo13OJzQKoFBVfv5HNAYik94zb0c0Cu/JV25AB0QOwcDXp5AXRAMOOi+KQBdEBpyM1BCRF0QKRPlDiJEXRARsVVMKYSdEAM7H0bTRN0QO7Gx1xMIHRAIry1pLghdEA86JtPUzB0QKCYNcq6MnRACLziHdgydEAAS47WU0B0QFP6vnB7Q3RAaoyAFGRUdED7d8Ih+FR0QAjMA/SMVXRA/lIsErhgdEBeEV95CGJ0QNMiJuAPZHRAViLGSk9kdEBWG5/VInB0QL2e3urDcHRAGNZ9SEFxdEDROSRRzHF0QJ7BwTMUcnRAXjzuSxVzdEAUKGqVO3N0QGgOVpo4dXRAatYSPviAdEAofW4pT4F0QCnTRhiMgXRAphrGcPOKdED6aYl0FpB0QEhXrNnPoHRANTc2h7qidEAQlC6K0qJ0QMJv8rkPo3RATRZjKTKrdEC+cZW5C7B0QHRoJCbiwHRAy7C9H3nBdEApepTfJcJ0QHcwMRUkxHRA1KLP3XjEdEDaUfiVuMR0QNuKKyH8znRAKpnFFzvTdEAFsp3gdNR0QEBNb7XN1HRAJ+BM7LfhdEDrJgGwUOV0QJuVgvqM83RAfNUxnqQAdUC+LzaIYwF1QCyinz1dAnVAtDLuVZsDdUCKr90vOxJ1QPH4Ri4kFHVABsIQ+ss1dUDJXtgr2U91QMPjSxOCUXVASjCm7E1UdUBVFttRd1V1QOO/+R8NYHVAOhZ2/DhhdUAMnTNKd3J1QD/KpXqNdHVAkePToneBdUBawLs0roF1QKFYfKumg3VAsBIwVpuEdUCqAaiVvJF1QJp8JWNwknVAgHwbVD6YdUDchqvrmJ11QKgHHp6UoHVAtr283bihdUATYJje8aJ1QMm2OorpsnVAQPDV9HuzdUDOPF0cNsB1QKNgJK/QwHVAgKTFOmTBdUCO11We+cF1QBjgbLBZy3VAaDBbLM3TdUB825TE4991QKZbpgcQ4XVAsm4UMgjidUBdl02YOuV1QCqKIhhIAnZAaJWe2dEDdkDT3t/JARN2QNuOM6xPFHZAJ8vwcAsWdkBYPj/2kCR2QEbyX6gfMXZAGNnAlZw0dkDGmWhuHUF2QEwlyYt6RHZANBIbkBFRdkCseuq1zVR2QPhBsUPMYnZA3x9jittkdkAegKegJGh2QH62yhkrcXZAoJg/YWuCdkASZsuKkYN2QG3HLjd5k3ZADES5mbyTdkDG/sjseaN2QF0PYBG3sHZA3N3oA8KydkA80hBmDbR2QFzAcKS/wHZAmLRVkBrEdkBWD1l7z852QFR1OoN90HZArd2xaH/gdkCcHPxO8+F2QMcHatCR83ZAIBvgDkv2dkAKmb95MwJ3QF72dZIBEndAbE2hGA8id0Bvjzq0dCJ3QFkgMCMNNXdAX9RPOp1Bd0AlUOJcG0V3QBnAA2NKUXdAMzIpJJNRd0BleB58KlV3QFKKUUpIYXdAXiv6M5Bhd0C4LPfoKG93QPjdzAiSdHdAS4rDvCd/d0ALgkaSeYJ3QKD+a4V7g3dALhfcnAiSd0ACAIMmTZR3QFo3MoectHdA2Apm84zDd0AQKKuJ4tB3QB3zIAnt4HdAU7fHnFLyd0DQILd8TBV4QNoJxW5uInhAGVbaWoojeECzt5wQpCR4QCYTWn0KQnhARkZacXpFeEDSXKoWy1F4QLB+fhyIVXhA/HffRvpgeEDpbk6Gt2F4QE/t0Jy7YnhA9SGq2aRreEAeR9cfVXN4QNvD2Havc3hATmEixUR0eEDz40ODXHR4QJ6kycqLdHhAOlQxmK90eECAqGTnxnR4QFikMMTedHhABmqWi6SBeEBRUyEJfoR4QBhR5JmZhHhAGkCKeL2EeEAI/HC2Uo94QN4T9w+XkXhAVT0mYKeUeEDy5F7CtaR4QIfqTPV2q3hAQVxF7H2zeEBJ2f1PzcB4QCxn7H631HhAtiJubAL0eEDokXINjfV4QHiRluaZBXlA0vRAmBVCeUC24VspjkJ5QD6Xgi3gUHlAS8dIZMxUeUDcLK8XSHN5QAxnacf1gXlAzigK0MCyeUCwLz6JQtR5QECGccHM1XlAMNhVXb7ieUAOXzHaT+R5QGh5GpT7BXpA+yJl6jgjekDTvguCDDV6QBi90ZUaRXpA1HYoVC9QekAWFqHngVJ6QMkcRsgoVXpAHMaMfM9jekCMv8lHOWV6QLTxFQU3bXpAs0wawItyekDq6LBASKJ6QIYsWzbvo3pA4CaCH6KnekC4uj4296t6QBepDGz/rHpAGG68ue2tekAE94agRLN6QDS77Rj9s3pAZY0bJA22ekCooR+xLcN6QPOTkqIZxnpAZhPRU0LOekDq5IPkodJ6QBm/Q5ng13pAbOci537kekD8ZfSuNu56QCZsS/ApDntAhmd/pUwVe0BHnriRWSV7QIjIbvweLntAKs9oHsQze0B4XMYoZoJ7QLx/JGTBh3tAWbbO+OuQe0BCu0PpIJV7QDZgR0Z4xntAk4le6LDRe0AouZ/yx9F7QEI3u+6r03tAgEx0mfzje0DV7fcpjPV7QMiftnuTAXxABIEDX9kBfEBk+v2C9QF8QDRp5qWZBXxACrCoM9IRfEC3sjtH4SF8QIPu9QrMQXxAdU4Xy9xRfECGhAU3SFx8QNZL4/0NYnxAwFDY/ipxfEAkjLh4A3N8QNGkkNDAsnxAplck9VfifEBA3xYLFvJ8QDbNORdW8nxALIcRfwICfUDWe6WcSwJ9QApkEMNFEn1A3BVzOigdfUAmBCnFPyJ9QC4kEVWFIn1A4B3hLqExfUCS4DkyLMN9QFScPvdq4H1Af6R0kNnifUDpVcd1kPV9QGYSJ9KEAn5AUJRd9jcffkCEJfgzQS9+QNrdZE6LsH5A5pgfhkzJfkDwkY/N1e9+QKte2r1N9H5AA5ngth8Af0CAinkmuHF/QAZ63zWzgX9A4YYya6iEf0AuqgAoY5F/QAdEg46pkX9Amjk9bZmTf0BYpMWLXaF/QH148vlTsX9A7cgC75jdf0DM1LaE1OJ/QK5T34Pw4n9AAkryxyzof0AilFYeJi6AQFDQTO8pMoBApiSzNCs8gEAK3+k81z6AQAhZPvf1SIBAQuhU6+ZQgEDqZbpwFFGAQJw/jsvkWIBAAvyHFQ5ZgEAzzhTtKG+AQC3NtOEdj4BAMH6rYW6RgECqLIbnCpSAQGqmvRQclIBAYqfxJoepgEAgTHsj/L+AQNO4K4NSwYBAyDgrHnLBgEDE36fTD8aAQCSCyKBTyYBAbv69kHHJgEBa3XRpLNGAQLVtIgZN0YBAXiyb5ErZgEBUSoGvQ+GAQEj78A9W4YBAdNm+U/bogEArjB/1ROmAQAS7vkxL74BAYBkBNz3zgEALkGyBP/+AQKY4igNAB4FAX1OIZj0PgUDptOe0NB+BQJTP1bA1J4FAfEqZyOQtgUAvXLdt3C6BQNCIz8eIMYFAgJuPPb0xgUBR74zDLTSBQJCLAO/cNoFA0MGZvX43gUBQDqu853aBQHbZXt6TeYFAAAlYET58gUDCAHl1VY+BQA5QRoJUl4FASJRbdkOcgUBQkGyG8J6BQMSctZtUn4FA4HN1t5ihgUDugOVywKGBQOpbjIDmoYFAvl4gO0WkgUDY3NhbxKWBQMiRNSYkpoFAFo31W26ogUCFoiwh7qmBQIJbGusoqoFAiXqaBUqvgUCIutitftGBQGEbpLV+04FAtiCaadgYgkApOEC31yCCQKgjWkzQKIJAYFTZQaIpgkAs7v2SpS2CQCKBWoGkMIJACkIxc5kxgkC4GvVg7W6CQJUXG9mZcYJAyEXYzkN0gkAWcS+U7XaCQFSNJ1pDiYJA0EVlJ0SRgkBCL2YNPZmCQKE9rtwOoYJAnFr0PDuhgkDmA3mDEKmCQK6fJTo0qYJASnUn9QaxgkA+QDcksPmCQB0EppJ5EYNAppMXRnoZg0BDgQ7cciGDQFRLrGZyKYNA+IIiNWkxg0CQvMKuR4ODQHvDSqGT+INANr8XFmr+g0BWYI8X/2iEQN0Lcx3+cIRA5nhj5/d4hED8HSw0atmEQFrF2Dxq4YRAy7xZa2LphECeYhxDfOmEQD6uunA18YRAXuCJQGLxhEDkAIZdOfmEQEwovWagYYVA1iYG8qBphUB5wDiYmHGFQEKEChe1c4VA7IUTy5Z5hUDqg4tbJ7mGQAxb1G6RKYdAixk86pAxh0AJa434iTmHQCJcovdbQYdAYYI0SolBh0BkcJr0x7GHQB4iG7bHuYdAhqUcB7/Bh0BWNp8ivsmHQKTA13T+3YdAavqrAgHih0A= + KBZXds7jZUDXkZP9yKNsQANJK5hVInJA - + - g+IqRVY9SUQwz7dFsm2HRCM84kVEdotEpaBeROIrEEcYN1xEf6SARBXjgUSjb81Ej+7SRKv0bUTN/k5FSUP5RBbYSETyQ4JFyepaRRcLgETPe21EFxq8RNkHG0UJ1exEy/0PRZr0pkSNcehEW7whR0/x5USpH2hGOj6SRQsto0WU06lE8ILMRC+Z3kTYU+NGrIJPRA2ddERR04NEhXteRJ6QX0TuMbVFymUARWPxaURsgz1EhX9zRNzwzkThq2pEYABURI7uv0S1cZ5FaysTRgpLnUQAZIBFkDG8RDgyg0SwAElEKLH+RPg8UkTpZT5EIKPiRFaUmkQzYxRFKGnuRsVjn0ThbD5Ev2L4RF1jRkRjB3xEH10MRczRSkdtiVJG46dLRKbhC0a7HHlEPev5RddWb0X8mRhFzNtrRKTeiEVzmOZEfT/dRMWmPkSwBZFF8PwnRsIlN0VKnW9EVt5JRU0llESAcYtFWpIERuQovkQpXTpE3DRpRPi3skTmBIVE1wQmRRYvaER2qZ5Ge4S+RMd2o0TubtBEkhKXRP4cVUWMT5pE6iADRd6No0QtptFEOUlbRL7hnES0Wq1ElyWFRO7vuUSQHa5EXYWsRf00QEXArHtEY3mcRCpS1EWErWpEB0dLR0HQS0RvWIZEviE2RI7xqkRfELREbVYgRdx/4EUi3U5EufQBRRxQxEUIeqBEhfKqRHX4vkRzDTFFIDVcRCnG3kR07adEp7LbRO1+T0SzsoREjRNFRAa3EEXeFNpEt+B9RAG+cUTqXOBEOALLRMekmUQOYMFFblupRA+NnUTkbSpFnZGvRMdPX0Xh5DZFw5tORWeYT0S9mKpEK9t+RJNE5kSWSqtEE9AnRQtb/ETcmDNG+P/ARO+DsUUdcflEZlwFRRkck0SFfopEGU6IRkAK5EVCKWtEvQqlRA2g2USSHJ9EDyolRTh7bUTcFlJEbv6kRMxD2kToqlJEXwSZRN4VwERwpIREzwJKRdiikESavoNFDqf5RIk3dkT+tG5EfayVRCDvEkbwDtRGNx6pRFSelUUn32lF5DIoRWlKR0bm1b1F+ZUlRXKx1UQv6ElEOCiTRAiOUEUSImdEqWx5RAKRCEVGKotE0z0ZRdcSo0V7QdFEZo9iRJGUHkVhHHhEfvNLRJIk20SSIuBEJ7iARGVvAkWC5ZBGghZQRbdXsUQ4JvJHehLYRqxNy0YruIdFJkGLRkrorESSiZhEtANrRT5DVUUqDk9EyRhPRChsk0RP3j1FsJqtRNGMo0QNJb5Ebs3CRLmXgkQl8mREGRKyRCKHrESG5lFFAIxrRK9NrkRlHJpEQ1lZRpnah0WCUQRF6ewLRRTGEkUoF4FENjdwRVsagkQT3eVEFhe3RL5AakURqkZJFYyzRauhHEVsDMpEuY89RWlYG0Ukb0xIVUC6REUSYETh7fhEwBKTRuvDPkSqnWRFQniKRG5IwERcEw5F1ERiRaea3UVL3d1EqmGiRDfhgUS7wkhE3zqkRYXodESA8mNEZ+FdRaQ80UWf5flE47YURaocwkQEYpZEjIRkRJ3Ow0echMxGzB3RRAk1dEXIDChF4pyiRC99ikThI4xEumGWRIlNI0Up2e5FOxz1RGGRG0VYd6hEV13pRMD210SIcVJENt3BRdQ/0kQFkKFER/C2RLOOoEQNgupEUXE9RF4GXEVNxzhFv5QmRlVDFkXk03ZE/K+oRCWIFEVWIBVF4HpxRE2GuUQOD6dEJRS8RBH8ckXcD6JEj+mBRBIdqkZc325Et5I6Ru9sEkVwNKFFvSq7RQMBYUSXN8JFTOedRJLerUTk97BELltrRFYRYERiIvZEz/XjR5eWAUV53f1GtgM1RSU/q0Z+x5BF9856RNy60UTwuplEU6WNRKrrGEU18/REOvx9REFmA0UvS0RE93ByRM2zgEQ8b09EmnFuRDJoVkQgzH9E608jRTXNo0U2rahEuZ+/RPZBO0a7GoJEDWmRRF3DW0WiyjhFII6NROmk8EQhnLZE8eumRKR2i0VFFNVEL7GhRLgaokQk6s1ET4MgRUkCg0bzAn1EFDbQRcUwIkXmVDBFcxZWRaVV6kQPQdhELvfTRHvxSkTpenxIzpegRDiaDkVRxPxHrBRQRPZmukQ4l4VHQNVlRkEYckWmeedEJKvLRIp1WUSD0rBEYWHRRFY5KUbOTBxFe8riRA4l7UVDSbZEj+WyREcPo0W0oIRFhCTIRFjPskTKL2REZo2ORHez60U5BGhFe3raRDxfwEVkXp9EYIakRZ8C20UHWoZE/2mvRCfZzEUdzR1FQ4mBRKQTYUVBG4dErRUMRXyZ3kQAd3lEN0U1Rc9AWkRDj59EwFBRRqn5okVZtRVFKfMKRiE2VUVw8ZNEQ+WwRLph7UXLsYxFNVAaRcHdrkS6WtNHF1lMR3ym2kbjlLNFiVThRTP5CUUq4htF+Z3CRD5ZaUQ1gdFHb7lMR3tM7kbWTwVGFwUtRYnSkkS9XZdESrJhRBWNwEUyexZFbUHcRB8bEEctiHhGUU0ORvkgkkQnYW9FYZ6HRa6vvkRzVe5GwcVnRhJbE0YPbalE6zh4RYl3z0TPaC1GvH/FRURilEXF9llEEVV7RPyGCEarMIRF9ec8RdBqvkRZGfNEsVaXRA== + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - xT5vsG/BckCe7XGVTsJyQORsrWinwnJAaLr6oTzDckAarHDSxMRyQD4/MUVaxXJAHnneD0TSckCsXdYYtdJyQErFO+3N0nJA6Pu2KUjTckDLYCILd9NyQFnBrvDM03JASRVl9c/fckDa02I4uuByQH5qOYZM4XJA+o+vBVHickBCaNAGkeJyQOaMmI0j43JAbupva9PqckCKeQNkUfFyQGaFKD3L8XJANNl4M8/yckCvERKW1fJyQAAhqi+283JAoKt846H0ckBTUSyXwv9yQI8eTcxFAHNAvGNz1V8Ac0D0jGsS+wBzQPbz3SCNAXNA0I4nyjsCc0AfXBE30AJzQBZfNPX6A3NATRNtywoSc0COHF/0vBJzQN1ev20GFHNAXtoq7E0Uc0DTsUaoeR9zQBYMfKyjIHNANgOEpzkhc0A+u4QSzCJzQB/U3k0RI3NAzEiB0zckc0DDbZcO0CRzQNDgCN9GMXNAUl1UXgszc0Ce2wl4ozNzQEBzsSs4NHNAEHJ65ds0c0DUwI8l40BzQKMFQ114QXNALu4T0XpEc0B1Rgi3QlNzQPZMJyukU3NAJPoMm3pUc0DUvAwBjGBzQLjV34w4Y3NAPqmZ1FNyc0DSUnHLZnJzQESThQq6dHNAViq7UE11c0CLm9hra3ZzQIoNRnZ5gHNAXCIkVKWAc0D+gdXADYFzQI4LYurJgXNA/DxlO1+Cc0ByzgkQh5BzQPLKnndNknNAPB7X1M+Tc0DgivMxYpRzQLZaFAb4lHNA9N1sN42Vc0Bq2acquaBzQOwYO1F5oXNAjFsunluic0BUNknm5aJzQAx7114EpXNAXkuYRMiwc0Au8WlsfrFzQKjfYy64s3NA8pg+wgu0c0Cf3ubt+MBzQMmqTVHQwnNAeIaYySbDc0AeiYRK19FzQPJOsWE103NAT6tO8lHTc0CIfStR99NzQF4ZIh7j1HNAADSH8zjhc0AM0P7hZeFzQF7kyFA39HNAKMTo+uQAdEBcb+WheQF0QPgdpzWkAXRAUKRWO7cCdEBwIW1JiBF0QFxggqlNE3RAuBFtjnYUdECfRsTguCF0QJD1W3K6MnRALPDc2dUydEDO67eIU0B0QH9+wmZ6Q3RA4B8N06hPdEDzT04A+FR0QBiK6EqMVXRA1p0ebrhgdEBorehQCWJ0QCXJw75OZHRANF6OXiJwdEAMR4RlQXF0QKYqd6zKcXRAP+biIztzdECOV1xRN3V0QIAal8z4gHRAik40M0+BdECJNQzrtIF0QDZZUXn2inRAtlVhbhaQdEASHfpsapB0QF4OPHCkoHRAFA94qtGgdECuhAZHN6F0QOzbJDe4onRAbaaUidCidEAO5cjzDqN0QLhGsfIJsHRAokeYTuTAdEDFAr3YecF0QOqGZ5rrwXRAZLjivw/DdECsnjPNIsR0QKQpD4m4xHRAG/xmNP3OdEAO+Q4HPtN0QM6jV0zi03RANDGw+MzUdEB+9sbu9990QGCbp5Ij4XRA+jDNbz3hdECNV1OIueF0QDCQzrZQ5XRAZv747YzzdEAg4x4howB1QNTcX6RjAXVALPdQf10CdUAafvHBmwN1QBIwFbo8EnVAiXxvhyMUdUAxcz9fuxh1QAkLo93LNXVADikZ4rRBdUCa2RK19U91QOTxXn9OVHVA52X+jXdVdUB9gqY3DGB1QBxnd643YXVA/igE1XZydUDT+6aUjXR1QE4PLZp4gXVAKCjYE66BdUDyEAhBpoN1QHgWYmWbhHVARIdgMY2QdUAOltaiPph1QGaIrmCYnXVA2H3Oh5WgdUBevHrvt6F1QOaEowvyonVAzY4UU7ikdUDiYNFMfLN1QCRSygDGtHVAfoy7Rc3AdUAWdXULY8F1QOZ1UZn5wXVAiHug/FHDdUCmE98CzdN1QJTqkYHl33VA3OGNpBDhdUD28FIVCeJ1QG2eXQU55XVA/2bOWR3rdUBBFde2SAJ2QFpkhv7QA3ZAXy4dhkwUdkChDKalChZ2QC/ewPKJInZAcl2PxJAkdkBrvU6pHzF2QKMcRdieNHZAsEol5ONAdkBQcPxSHUF2QDkb41Z6RHZAAn6Py8lQdkB0We6WE1F2QKio4LfNVHZAsMHKG5NidkAU4tHXy2J2QEAwqe3bZHZAmN7ayidodkD6rPkW94F2QDLH8fNQg3ZA8ogKQJKDdkC6LLeyd6N2QOOmZlu4sHZAH2EqFcOydkBGHjsbDbR2QL+AwqLBwHZA7Rv3a8/OdkCcF3Ts8+F2QLRJ+w6R83ZAVJU/ezMCd0CzvpUYUg13QNxduZkBEndAS2VlmqsSd0BqHL8cDyJ3QJA+zDR0IndAyIxHG7skd0BY4mlVqDN3QNKyOgQNNXdAWiZQV51Bd0B0XKFDG0V3QCLfSJJLUXdAqJ8wZ5NRd0AkINgLK1V3QNGTgxhKYXdAZ+XYi5Bhd0BiG5khN2J3QEJaelyRY3dA/IQj/CZvd0DhL+IZeYJ3QP8Yl3J7g3dAtk31LweSd0D+2xErTpR3QCp9bJ0sw3dA2gCcDo3Dd0AEA56ji9Z3QEwfoudQ8ndAP1N1CiACeEBejpUFbyJ4QFTojvuMI3hA5n70HQxCeECsW2fHekV4QLz4exzLUXhA2F4Bj5NSeEAiQaTbh1V4QM6lBl3vV3hAqfRcHPlgeECu66d7uGF4QJ5c8w+ka3hA87EWuLRzeECmVucURnR4QPTFKXVPdHhA3sbGvYt0eEA1CfJGvHR4QM3e4cbbdHhA46W+baaBeEBdYMTHmYR4QIFwzbFTj3hAbVQ66ZaReEAsxEmPp5R4QLh6k1m4pHhAPMEOknereEAEpvpmf7N4QKK0073OwHhA7cX+wvbBeEAxnlwRBsV4QOJ4EMS31HhAzokU7gH0eEDw2DdYjPV4QBNtlMabBXlA5nPCqRNCeUBS4CRkikJ5QPz5uTfNVHlAtHM6LepgeUBVqKRl2WR5QASbFC9Fc3lAN9bz0vWBeUAOypOIwbJ5QOjtH2nmxHlAKrhx1ULUeUD5FTu0zNV5QLEa/9HB4nlAHFyXzFDkeUBg5JY4/AV6QLbSrFg3I3pAlnwC0KUjekD1Ds2g3SZ6QDpY9X/gKnpAl7q6OAw1ekCGptAiG0V6QLe+XUUuUHpAOhQGW4FSekBjiWraKFV6QIKVujs5bXpAlBg4Ao5yekDOc9mFSKJ6QCIC+hLwo3pAuGfFcverekCMXRSI7q16QPIiZVdHs3pA3tq2Hg22ekApugWVGcZ6QC5BDEjX03pAwrtXi+LXekDeg8H3eeR6QJrHZhk67npAmee43xQBe0DqjPFcdgN7QOqMEyEqDntAjsTu+UwVe0Ca1KsSWiV7QKKcpugsMntA6sj+BsUze0BU21gHYFJ7QJayn/lngntAlieUgsKHe0AufKsHCo17QEYd5B8jlXtApsqFt3nGe0A0IpbbwdF7QDYK40cm0ntATyb40P3je0Boq4LIl/F7QM1YV36M9XtAbleqO0n+e0A0qLSykgF8QCoQ8RraAXxAG6EBtqMDfEB+QAKCmgV8QCqaCHHQEXxANDNgCc5BfECjluNC2VF8QMquJ7XNW3xAiYNWgw9ifEBjs5fiv7J8QJgeMdjL1XxAWsVq5FfifED8pq/UFvJ8QJCe9zxW8nxAV1cUlAICfUAK1k+eSwJ9QGPr2+9EEn1AaK4epCkdfUCfpA9/PCJ9QE+WEwakLX1AYFluAaExfUBvT8hl1LN9QB4+oNcsw31A3rXXgmrgfUAUTYpD2OJ9QKS3ehqR9X1A2iIkUZBVfkCWKvEQpmN+QD4hhVzTb35A6oFS+x8Af0CYfrPdt3F/QJbUAwqzgX9A/JekQaaDf0BkQoH0poR/QJzp8qdjkX9AMJ2duKqRf0BaADBjX6F/QJuEDO9VsX9Aup7bGrm9f0CYE1a1l91/QD4i85vT4n9ARj20yoftf0Db3rqGTQOAQEIsTaglLoBAJUztoyoygEA14zLQ6zeAQCAYWsgpPIBAcgbVJ+9IgEAmRDNX5lCAQNJQFBEUUYBACq9wbeZYgECgJ0l9DlmAQDcTnG8pb4BAAdyGkB6PgEAIdLqCbZGAQPoAffoMlIBAdlXFY7iWgEDijMk/XZmAQKyYgluFqYBAEexLj1LBgECULdF9EMaAQMCEtMJTyYBAZeL8wCzRgEBilRzATNGAQOCdMEti0YBAyh9RssjRgEDQM6emStmAQJQrK8Ka2YBATiG2tEThgEAg7WqCV+GAQBDPpGn26IBAZ/MNsEPpgEAS+ZeXS++AQBaMqGc884BAHfo2IUD/gEAmQ7QuQAeBQKVRZ3s9D4FAxjSNKDQfgUCYUOLfuyaBQDbFGmcyJ4FARcvruNsugUCQseBLiDGBQA73u8S8MYFAeM9mLig0gUAUWQ3rNTSBQNol+m2vNYFA8UAcwvJFgUBMv98T6HaBQL6xPHyUeYFAfjNNXz18gUAf8UEDYn+BQI2sH8JVj4FAxnu2UlaXgUBif/ELQ5yBQGYJt27wnoFA0FjeqpuhgUDqwOUnwKGBQBQC+LHmoYFA9BeeZ0OkgUBiCaApxKWBQEdY/2ZuqIFAWgTvzEqvgUBGdgE4a7CBQKqwqQdIt4FATmKC1X3TgUAWGLk2K9SBQM5TDUmG8YFAYpJ5etgYgkDtveZ31yCCQCCqfwLRKIJAFk5dE6IpgkCbej8zpi2CQP79UnujMIJAXGjtWZsxgkBW4pBrsDGCQCpjNqvnOYJALJWdmu1ugkDQi4Z5mXGCQNYByjFFdIJABMiIbUOJgkCu0H4ORJGCQAblRYs8mYJASytfvw6hgkCGzVF4O6GCQNDUwAwOqYJA09TbBzWpgkCIqgf6CLGCQF3F9Hit+YJAeAGLj3kRg0CuEkNfehmDQPDs+tlyIYNAmZRR+HIpg0C0TtGxazGDQHQraqfjgYNADsPNvpX4g0A9UOVmAGmEQB6G2Ir+cIRAjk8fa/h4hEDKYWtkatmEQMIEY4lq4YRAytOpZmLphEACG7MUfemEQDZ0GIY28YRAF+meY2HxhECgNrfaNfmEQOA9fsdZ+YRAIgq87CwBhUDlYRSmoGGFQA3IyZegaYVAlPbKWZlxhUD7h3/+tXOFQKTCaJuZeYVAzE9ekpCBhUAC5DedJrmGQJ0oCVqRKYdApnWcs5Exh0BkdZTTiTmHQOiOTUFcQYdAWBCjIYxBh0CsqYqvx7GHQA6fOHrIuYdAr9TOf8DBh0AQAEiRvsmHQFLZiKIA3odA6+6pJQLih0BmS2Ud+NGIQA== + KBZXds7jZUAnt2DdIQNrQFAtpBCXEnJA - + - uGh6Rbg+q0SmlgJGEdwCRgGJu0Q9C8BEaZoUR2tokUSqLW9EXByNRBH3bEQ9V2JE+OAKRTCzEUU+bH5EjaGXRZrhGkVC33VELWcNRQ1ue0TYM4NFxvM/RNmOPkQmU8tEmO3ERHfCCEWFk9hE9w1YRIGk5UQU8uJEbaBjRNVEH0X8URhH2F2ZRNRPNEYpRKlFGuKqRLVxrUSmIdNE6InhRo4ZzkStF5FEo8ZMRJ3mfEUeXvVE3iRfRPO8hETJhsZEu9WfRMrwp0Qy1IhFMjoWRhPztUSEpFtFd5qzRNys4UQkV+hEQkaCRM9tkETzYqpErX4dRVxBYESvQ/5Gy/EGRdcnDUXONXBEJu9uRFwaF0W98UFH9o2pRG+PvkR74W9Gi+toRMl5HkZviElEeTLvRY1ri0XNJylFiNiARNzshUQTrzNFPAIXRSgz/0QRm71FAeUSRkMTJUUwo31Ej04fRX/4ekRr0XJFA4gJRga7z0T1nBhFZW6HRLX4pUaXWZFEAuCCRFoq5ESmMiJFFxeIRPy2CkUxCCFFS7uHRBHPSURYtaREYp9YRLr3kURtVw1FKganRVlzM0VAFf9EVOPMReMXNUeFx71EAZMQRe1HnkQAmUpFhIy/RSrVgETATsFEq+6fRexqikQggmNEbKmoRHAZnUT6+ZdE1QmrRI3h8kRkDexEou7bRCUNtUT/UpdENQS8RHWLrUSmtCtFxm2CRNY8g0QaHdVEILLrRAtZUESFaYVE6qtKRLd8QkUk4cREd2jDRVL2i0QLyvZEy6v0RFu1mET4e3RF5tk0Rfv4q0SQkh9Fgu+VRNhGokR/GLlEjV4MRUMFgkSA5x9Fez32RMzGPkavlb9EfbS6RU+a8EQqU8xEYBRYRD7xb0YdGPtFgiiGRFvd10SNJMdEHP99RHQcKkX3W3FE/dxXRNFmr0QHtCNFyH51RFv9oEQpVHhEry+FRGe5F0U0GlJEqSa7ROCbj0X09vlEYsiuRBLlj0Sn9HxEHdb6RUEjykb9RP1EcRpoRH6Fq0WkhWBFeA+aRDEyZ0Vaz0VGtmWhRL/0mEXSKQ9FDi3tRHgPXEQS931E4vlGRZaNFUU6O71EfzkBRQUzh0VR3oRESWUQRa9U9ESklu9EAfn6RCPIoUUhXYJGnKXpRFJXPkUwPbBE34BwRMa9YkQVoOtHt4XSRpVuwkYlVJNFVx+URrWe70S7B5tEngk1Re0gVESShVhEy16BRV6GE0WPYjFFX22bRMS/kkTKeINEu3XxRAktkUSwPrpEveWPRK3pYkW3pY1E6urjRFw/GUb4dcVFNETtRN9jO0VBw7dEOq9aResWS0Vtm3hFNrj7RO85P0WPuwNFp7ZMSQvTcUVpXCBF0IcFRWbIUEiFAYxEj0zlRJEhnEZfTLlEQupcRceLkkSt2rZEREOjRNUdn0SrkVNFdyVHRbEvAUbCU95EPDToRBQGqESaE69FSeVxRCalokQcn9RENadLRPOMVUVTkUZEVs3YRShX1UQ/0blE/+vnRKt5gETy0IpEEvFHRNDFj0SBj5VEclnWR3go5Uam5V1F2J4YRfQbLEWiVa1EXt+eRIwBT0UU9LVFT+CFRC492ERxBSZFOHHFRd6OqUQ6+GZE/YawRHa3cURI6YVE3QuBRJ8SYERdnwhF3g82RlluOkVx0YpEYNeTRIUnvEQrhuxEQ9NuRCHHjURaxCtFpSSZRPrBBEUi2+5Ew3fWRGp/nUVPyaBGFZJ+RMxZm0R7G0NG8IuJRA8ovEXIBLNFroXERWrOo0R5emxE6eGNRCghGkUMxMtEEHzuR4hvGEXune5GrPcNRa4lxUY/PH5Fij7KREXU2kRiz1FE0k+PRCeFjkT3RwRFQpriRL9WzUQN6wtFkGSJRKKzjERxc/1EJEMWRUVRk0X6CZtEjACiRDpVzkRfhDdGvEXJRLNJKEUe0i1F+PGNRIQYyUS7srhEmAq2RIWLpURDF2xFGarRRC6te0R80YVEFNHQRDumVUXCOIRGhtyYRMl7uUUlaglFauvnRAICkUWnzhhFI1IERTsSa0TXgYtER/6ASKgWz0SYO/ZHlRm6RGvugEe8wSdFtrifRHUzX0YJ8kZEfUuqRbhjz0QfDYJEr1ScRAnRsUQ47qxEpdsQRordUEW6axZFPh/lRevRPkS835FEd/nCRdq2lEWh8OFEn3CsRHHep0RRWOxEba2URE0nwEV8aIVFejoCReTfg0SwG6tFw+msRNxSkEXUyU5FnkvfRC6yQEViJixFN7KPRJKzy0ThnFlFivxBRUy3rERJjEZEP1uMRC8or0QPTZFEnFA+RmUujEUmpzhF54plRm83+UUKq41EMh73RA/rgUS2Np9EDB3HRWNCI0XZ0RhFsy7UR/32WUdnW+RG+t7ORbSE90XggtZE5Qk9RawTiESI7wBFK0fTR3RMTUdEI9lGwxzwRXLlSUV/oI9EOP6zRId8w0Vl9x1Fy+sBRe09GEcVGoNGYnwcRiWdn0Q1l7VFxXhfRdPx+EQ0+opEsPysRJLRDkdyE3BGXosdRr/SiUSK0GVFI3bNRL+P5EQyrUBG14bNRWSOhEWZ63BE9sqwRCutCUaZtKFF/rhVRetIlUThyRBFCUYNRZfRg0Q= + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - aroA7XjAckC6qbrebsFyQO9kLtpQwnJAtM+eEafCckDN2PqtO8NyQLylaoTExHJAqtneylnFckDUHt5wQ9JyQK8EJGxI03JAI66cUXfTckAQXkHzz99yQCfsyTu34HJAer7r2FDickB3YtRLkOJyQCS0U7ol43JA4kAu3NTqckAekT5CyvFyQLjNZiAS83JAlqvQDbjzckCwMnXBDPRyQPIOKbDC/3JAwFoORUQAc0A0qp0gYwBzQBQvmTT4AHNAzijsR0wBc0Dcmi2ljAFzQJ4wxzM7AnNAeVgA1c8Cc0BET7vR+gNzQA4S69eOBHNAgR33dSIFc0CZDzQHChJzQF1x7BG9EnNApCymEWQTc0AKfYUOBhRzQL/CpqlOFHNANfCjVXgfc0BeI6GZtx9zQNimToeiIHNAqhiK/Tghc0B0yAOHYiFzQEBjpi56InNAjmRFDswic0ADIKIQESNzQO4w8WoFJHNAXGEHUjskc0D2qTMkzyRzQJ3FjxxHMXNAwg47WAszc0Aa0fAz2TNzQMp8IvQ1NHNAhllGMbk/c0Drlo1yeEFzQO5k2si5QnNAohXesh5Dc0DcfGszekRzQIJRQDKbUXNAOX8vZkJTc0Do89zvo1NzQKYoxRB2VHNAG0gdUotgc0AedkTLO2NzQKAYFA/PY3NAStZxpVByc0B25ISjt3JzQMIoG6S2dHNAFl4lX0x1c0Bxt4k9eYBzQBk1FA6lgHNAyhrh2QuBc0Ck/6jXxoFzQHUwtZthgnNAuFoiiQ6Ec0CDJO0khpBzQCS/wZ7VkXNAjBvmVU2Sc0CMe8AczpNzQEUvyY5ilHNAnjT4+/eUc0CwY+nMi5VzQHI2V0i4oHNAlMdcWOagc0BePcdAW6JzQJybWdzlonNArgWa/QSlc0B6Uq+hxbBzQCT938jTsHNAjCLvALezc0D8SEK0DbRzQP44RQ/5wHNAOkBmFyXBc0AV+fgk0MJzQCa5vZYmw3NAWkkY5tfRc0C/VN3DMtNzQNElfWFR03NA8NMqzfXTc0Cns+nm4tRzQK912K2j4HNAgHlG2Djhc0CYNL6KZOFzQHujGJCL4XNApMziGOThc0A6SoqH2uJzQGTNzH8P43NANRM+VvDkc0Da4srqRvFzQB5b7Mu38nNAELmSPzj0c0AHB2mcjfRzQCGXC2TjAHRAOKvl0ngBdEAQfbpApQF0QLb68HUKEXRATOjdlIkRdECcURO2TBN0QH61iXWOIHRAlUpRI7ghdECxEL0ouiR0QNTWwqZRMHRAQL0Hw7oydEDx5GMoVUB0QLV6FHB5Q3RAxA/XsftSdECFOZIZ+FR0QLmu5vyLVXRAriOI9bhgdEC4e7F6CGJ0QNQsBrIQZHRACKroHU9kdECOHuy/InB0QHAAE0FBcXRAbjY7RspxdECZ168vOnN0QB5AmjKidHRAxRA+djd1dEDprKrd+IB0QIxPAflOgXRAcy9rlpGCdEArGH319Ip0QAIq36CzjHRADGyQ6BWQdEDWDqgOa5B0QDYiFk6hoHRA4JE1ltCgdECewRc6OaF0QDGXGYW5onRAwkSMXNGidECkYTPbDqN0QCDFUpsJsHRA1LOkRcOwdEBO/qd5SrJ0QNCD3XWCsnRAdpxnBePAdECMSL0kecF0QKllB57pwXRAJjGOng3CdEDIYXZ8H8N0QHl/7zMkxHRA/9H+I7rEdEBALBgO/c50QAq5IYk903RAyzKV9+HTdED+aS+UddR0QFb5lCPO1HRAzt+CtiThdEBQmq0xueF0QKWU3CEa4nRA+lAqHE/ldED0R7IVAvJ0QDWehhuN83RA9E3NJnj0dECbWpEVpQB1QIcP62DMAHVAuqhylV0CdUDsWAW6lwN1QEAhlXuKCnVAYHAAiEwLdUDFNe/TOxJ1QJhM3s0jFHVAXJTPTZ0idUCMGjGHzDV1QBc/BAyvQXVAYrEjAttFdUDwaz8shkp1QOzQAaz6T3VAjP5FVoJRdUD0f/gETlR1QGCxKKd3VXVAippMLeJfdUD+BCljFGB1QHkLctc2YXVALokAYfVhdUAGYkiHd3J1QOiTsISNdHVArD9QY3eBdUDMqb4qrYF1QC+LSBOng3VAPA1w7ZmEdUDbwWQqbpJ1QM5c7w5klXVAkBo07D2YdUA+ahzel511QEywrwKVoHVA3hxtCyShdUAEwWeRuaF1QFJ1IjHxonVAWqm74D2odUAwAJlJ57J1QDoO1jx9s3VAVbQhfcW0dUCyyJgTY8F1QGD8BMr4wXVAkBawqVHDdUBidmiGzdN1QNXnDgoO4XVAuktrJAjidUAIF5oLOeV1QB5Rlssb63VAljtz9kgCdkBcN64L0QN2QNwUQg//EnZAzsr9000UdkCUa+pgDBZ2QJCcsiiIInZAnzer5Y8kdkBs2wiKHzF2QHxZPKQdQXZATDNBm3pEdkCRwmnuyVB2QAZ3nOYRUXZAZDHhMYdUdkAyZx9czVR2QAM9NB3MYnZAJQ3g1NpkdkCi+j6aJmh2QA+VUxtjgXZA3SG0qZGDdkA0EXuBvJN2QL9N8Dp6o3ZACErRj7ewdkB4eugFwrJ2QJBZdXkNtHZAWH/sq3q0dkBoWmZK5MF2QF6q8VAaxHZAqtOKTs/OdkBnCw/Zv9B2QEc5T6Lx4XZAQ1ZwspHzdkB64IcTdwF3QLpXIJ8zAndA/mlEAFENd0BExCT/ARJ3QGqOjHmqEndAhs3m5fEXd0Ag/FDMBRh3QMFv/e8NIndA/rO0dnIid0A1Uc5NuSR3QEov5VrWMXdAQM2e+Qw1d0CLiwQvnUF3QGqYP+caRXdAMa4KcUtRd0C+TULpklF3QM/4GNcqVXdAA+azoBBhd0BWyLUWSGF3QF/QOnxaYXdALAqhXI9hd0B6vxhGKG93QDic0UeEcXdAzPNBYZN0d0D2dA4aeIJ3QPIYcMV7g3dAAKQ6QgmSd0AsBX2fTJR3QFjUn/m3ondArXuTeyzDd0Cyk1TFjMN3QB7aZVHk0HdAOTe79lHyd0ASz+wrTRV4QNAYrgFuInhAG2yBcYgjeEAOa8/lDUJ4QJKYuYN6RXhA5DrOp8pReEDTdC3UlVJ4QKzvhr2GVXhAnlWvKe9XeED+lfS3Sl14QMoO79j5YHhAzoFC2LZheEBAm/dft2J4QJfPL1Gka3hACpeTBUZ0eECSncFDXHR4QCRctK2LdHhADwJEpLB0eEBKh9K5xnR4QKvQqArbdHhAMGm/GKaBeED+QpijmYR4QChgGCGXkXhA25Y7QKeUeEB4gqcVuqR4QNm9KkJ3q3hApR5JT3+zeEDBCRGgzcB4QIbxUlz3wXhA9ncBtAbFeEDyWelJt9R4QNvbZbcB9HhA9n1gfYz1eEA6XCNwmQV5QHBILYuKQnlAmVzVcstUeUBgO8sNDmJ5QC6Sh2jcZHlA/pJWtUNzeUDMuOJxwbJ5QLtyyN5C1HlAJPmMFMzVeUDgnkOJweJ5QJ5z5rxP5HlAOvXlofkFekDPWuJIOSN6QCyJD2PhKnpA3DILhww1ekDmmX7DGkV6QKqXDZovUHpAjC+FmIJSekBk2z/vKFV6QFi8hE2OcnpADWnKtEaiekAZxq3t7qN6QDA6hF6jp3pAjpY81ferekBi0ldw6q16QPeHxo5Ds3pAhFXZ+Ay2ekAGqZi5EsN6QMiOjzwbxnpAEFqKntXTekBXjqlI39d6QA6uYNT243pAh6e2dDbuekBoz/OIegN7QNlJLEopDntAoOaRwUwVe0DaOmFAWyV7QDaFv3QvMntAUvTLsMYze0BAqa9TXVJ7QGjGRdhlgntAwmejHcCHe0CwXTzIFo17QBgEjKDqkHtAlp/KrCKVe0BgTjQ4ecZ7QLglrm6x0XtACYUnqzPSe0D3KwrA+uN7QIDFsmiX8XtACL5iNYz1e0C2ya5olAF8QPlDezvaAXxAI7RlmPUBfEAA/7C2mQV8QKuPTKeKEXxAPqtzl9ARfECaUJwfzUF8QDzO1x/cUXxAOHPL4kRcfECPlsB3DmJ8QKiidi0tcXxAG3ECusCyfEAaKh7Cy9V8QA5Ce51X4nxAAOn+vBbyfEDRnndlVfJ8QBxaS/kCAn1A2PRqzEsCfUB8Sq4HABJ9QCz3Lj1DEn1AdPIDcysdfUBxwT54QSJ9QDKrinOfMX1Ae83e/GtRfUDoowUC1rN9QOLw+vYqw31AbPfAY63DfUA0gjIE1+J9QJC2n+FZ831AjK10tJD1fUAGfPQYjVV+QFrfKlAGc35AMqwpBOGQfkDnZ3IOjbB+QATpcqBR9H5AFJrZdx8Af0D4rFdNDSB/QG2jKEK4cX9A2xI7SrKBf0Amwywuo4N/QKknGfKohH9AXC4vZ2ORf0CCztVlp5F/QJzonpyYk39AZ9DnYl6hf0BXVW5tVrF/QBLTkl6X3X9AcjYW/9bif0Cpti2OK+h/QCCXCzuF7X9AENT36u4pgED586mZJS6AQMTKme8pMoBApikEeik8gECIIBSi70iAQKgG5u3mUIBAYPaVKBRRgEBuqHSf5liAQECOMz4OWYBAjITQpeFggEDQi1ZPC2GAQNIRjmrvYYBAEG3tGSdvgEC3iUhgKneAQEIAe7LdiYBAMK1MJh6PgEDMCaCgbJGAQOhQONYKlIBAlXLMBRyUgEBWJ5p5hqmAQM4GSmBSwYBA1L/oQm/BgEApYFlLEcaAQOafsWchyYBA/MlEDyvJgEAlnx19U8mAQEJlh5ws0YBAyMcIiEzRgEClNKmXYdGAQBbO9yFK2YBAoUc09UPhgEC4ZGZMV+GAQLnQ3f/16IBAkmY7mkTpgEC0mayfSe+AQOQlF6c984BABgq9tT//gEBP4ix2PweBQL4MwiI8D4FA/q7aCPQZgUCKDrA0NB+BQJrRSH01J4FAJBvba+4sgUCifNXR2y6BQCh6CiqJMYFAh9QhHrwxgUB2RUZUNTSBQCkojhOuNYFAyPFpgII3gUDeS/R/KD+BQDqqn/HzRYFAYAx4OfhJgUCElYh+53aBQGTfSgSVeYFAsgRfwj98gUAsR6HfVY+BQK8aYsJVl4FA6K95OUKcgUAoTuzO756BQIexdpqcoYFA/dNtR8KhgUAw0YGv6KGBQAodIMBApIFA2pNCM8SlgUCmEXx8baiBQP4pG6ZJr4FAYy9Gq33RgUB+M1JWfdOBQBRCAv8q1IFAelp2jYfxgUAN2AeXMfSBQPhKOUHYGIJAoFOlDdcggkCG4Mgv0CiCQJ+LEi6iKYJAjmf4dKUtgkB1rksbozCCQOOurBTQMIJAkNqsYpkxgkC/MWHSrjGCQBN/3dOgNYJAvgxsmOg5gkBS/Yx07G6CQJLO1YCZcYJA9+5TjEN0gkCpKGovQ4mCQH4BqHVDkYJA4DhbMTyZgkBesUrcDqGCQLOfOIU6oYJAcgoawwypgkCv5LNWMqmCQD4NeLlIqYJAPNJIugexgkBADHqMsPmCQAzAkGh5EYNAz7yMHHoZg0CQ3ol1ciGDQBQRJeuKIYNALnd2eXEpg0BePfqDaDGDQHMIFCpKg4NA1ttR4pT4g0A0EbA+av6DQLE4wTP/aIRALFmQx/1whECIMwI293iEQL+cwU7AeYRAmL93VWrZhEDYlVoEauGEQKSuLuZi6YRAPrbw7zXxhEDB9Fv5YfGEQIJoN9Yz+YRAImXko1r5hEBQfTXYLgGFQBD9VIGgYYVASpIep6BphUDwHezImHGFQFXOize0c4VAmoszaZh5hUB4zHg1koGFQNJyeakkuYZA01Ds5CDJhkDfcCmFkSmHQCBG74eRMYdAmiSEBIo5h0Bm1P+FWUGHQPYqr2yJQYdAKkLWrMexh0A2Du0Fx7mHQK4P2KnBwYdA4X4sBP/dh0Amwj4rA+KHQK6Ygwj00YhA + 4qRcexsiYEAoFld2zuNlQOJgFSPMRG5A1L5fgP7EbkDBMzRFF9NzQMy81Fwpc3VAF4g4Sq9DeEAiEdlhweN5QBfmFJ4HVX9Akbfa2ox6gEDFxerG+6qDQEsKu9IEe4RAxfTY8Kczh0BLOan8sAOIQPAeW/Pza4lAdmMr//w7ikChja0BSXSMQB0lAJlVlIxAzLcvBJWsjkAPKnfhgA6QQFY+JtyW8pBA - + - WKmIRD/HXkVYPIlEQIELRlTrKUbAWrtEBISORMKEDke7ynNEIF/DRIeM2EStMrhE1u6dRT4uTkXCSp5EcMGaRGhlukU9PW9E7jusRDvEZURfnfxE/MR0RYXapkQKcf1Eb/pdRIcpnUTc8GxEaScIReEpN0d+iYdEycJ/ROnQAUUU02JGW7OXRAUcokXZUIlE+wHoRAVvYkS1SQBFHIDkRiCrmUTCDqdEb6dZRCYEzUQbiWhEYWKFRMJY00VXdjNFweeNRNS3mETyZuFEOnRiRJ3QlkXJIohEtAygRISZLUbTfZJEAAWXRNMCoUUgqPBE8XGnRCYCH0XkW3JEn/gGRfzhoUShCtZEyskiRaSrCEfdDBBFpRnzRPeyZ0Rsp4lEFomERJEkeEVabIZE5HtXR32kXkSJUhlFQpeSRqNKgEQqHxZGtlVuRGAqC0ZspppF/51BRWPRpUQJnZFE1VWRRaJGYUV/QpNEow9MRK+yvEXSwzpG7qRBRZNFvkSxJxFFPGukRAcIuEXaU3dEqRUWRoFttkRIPoVE/lCXROTji0Qk+29EsqKcRHGCi0TlLJ5E6XAGRVermkTQy6pEtbqwRr0X1kR3nXRE5RjaRCE7lUVm1sFEefMZRX3bVkQ2AJFE0pPSRL31jkRmhatEoUqgRPSof0S6uulEAJmzRUfUMkXbcXZEOkQNRbQcyEV4/WBHxNFcRKJZKkWLeeJEWGjDRLVLBUX1Iw5GVi6oREc2T0R29qdEnam6RZzcpER1e2REshLmRJyryETHUZFE11UHRen+/kQp7fZEyMFsRE4ti0TloVpE0S7IRBOZ6kTKn6hEluKhRG/9lESQ/YRECE4HRUsW10TJgJNEGD6QRJbioUQoKapEvN+YROnwLUVwG0tEruW0RIJecEQYH+tFRbqmRGcD0kT8dpJEJMQ8RfXVrUS6VY1EeolQRJqZsEW8VhRF3xjSRBY2I0W1A3REsVZ5RPP6a0RFbuJE4eSiROqMx0Tv9BBFQNeFRKMyiETcRvVEfmqnRDi7F0VTbD1GFv2PRNdzuEU5dhFFk9UdRbjQpkTpwXtEhLeCRssOvUXML39ElvSQRPoV5UQaxJhE+ZF6RA1JkkTGrQ1FePuURCNO4USMkCxFB0iaRGKy1URTbslEnx5gRSvTlkRtHJlErwSDRUc+BEVOEltEgaOXRK4l1ETuettExqITRjfhz0YIp5JFNoq0Ra8VsUTTrVxFDzCeRKA5bUY76apFyNogRUh4R0XCG2NE0vGBRR8Fm0Ttk4xE4+plRHMtPUXYGa5FUYReRCxNdkQEY85EvOsfRXarj0SjzqdEacLKRHJUVUSpbihFcvDxRkHah0Z74WVGYnfjRBGEOkX5pVhFwA6vRLc3kURzJW5Ejf8DSHC/3kbRhtVGAB2oRVP9lEbEIxNFZGOPRGAIq0R6UKVEWLxNRSR7iEVbQYtEbrugREDP4ERweVFFI7HFRMaDkUQwtWxEh4FvRNDLakVx74ZE9gaDRKAToUSa5XJFV6u1RCcJiERp601GPOO4Rem8CUbhsYxFWP88RWokYERQE/REhEBcRSz8x0SS5hhF3flvRaVNjEVn2VRJe8bQRdfieEVwZS9FsTA0RZ3tXkghIRVFwv20RhD7m0QvygdFpI+BRKe6zURxG6xEKrWfRPq2MkVeGo5FApT5RaaLCUUmIblEcTOvRatNWkRtyL5Ep1HhRDB2eUUlK+xF7jfURLp62kSdExZFow2yRJyV6ETsippEkN7XR9gQ50b15sdFMHi+REMGQkXLi4JE7EORRYq1i0VgSR9FiE4tRa9i6ES8EsVE0U/LRYzVWUS2bvNEZz65RIhSd0RzQX9EGOv2RLgsvEShWtBEHUoxRkhUP0Uf3ZZE52R3RIoIx0Rj4mJFILuIRCwzbkQvE7pED5IiRZ4/mkTiLPlE/nTZRJpFaETfgMpFWdSkRnwhnUS2NH9GPKg0Re3mz0XqfrBEo46uRfJD6UXOlqtEeduSRPS9d0S1DqREVkn9RNkl50SZNgBIlCMbRSRd4kaYbS9FbWPcRnNfbUTa919Fp/qlRJtP10TmNJREZnmhRJsLlkTDbr1E/OKIRMnKoUQlnVpE/Yf9RP0WuUQgV4xEdgZoRBs7ikRJE4REpSc3RfdkakRdLKFFSIXsRNaoiEQvAKVE6DFWRpwGdUSgLKVELBRxRS7sK0VqsSRFMS1WRYh3oERpUoJELjGJRHTAKEXYdfxECEU0RYE89kTvqj1FpTqKRjw8akQ5zbNFoorhRC0Kh0RkGYNEhYTRRA+Ac0S5eqREApldRQ/ClkVFPPtE8tTdRE0RE0WBbIVIUZW+RMKcX0SSDWlE2cuJRB+sAUinoJpEM+WKR0/VO0WC7GNG4MKNRe051UTln8tEZzmFRK94hUScPMpE/E4xRiDyXkU0Ue5ENFV2RFfy2kV4ywBFKIu6RO2sqEVIo11FJ2XQRJw0n0Sp4oxE4biBRFpqY0T8CKBFb980RWRipkVLiZdF3pgkRey8rkXFN+5EgWSYRfC+kEVaozFFRyGYRMJOV0WOtoBE6lZiREqaMkURjFdFRsoBRUio4kTes1lE7unTRGA2M0XvGWNGUESsRX+mTUW8aMJGINBjRnoanUS54rlEEKMnRSIRz0TsiK9EwT/ARLWMjEX8V5JFCAtxRfIv40eWBkpHQyvnRryI5EWB+OxFOqotRRjTI0XfP7VE5dYPRScDp0Qkh+xH3MVJRyeo0kaFwkZFxy7sRdfiGEWcvm5ELYXaRLAYt0THGupFtKhORYuUBEV0inFEOtsWR9sOj0avDUNG6YKyRe/ZhUXye+NEhZThRJjW3URmtwxHKdB2Rv4yGkaRe7pEw51KRaNDrkTwv3tEmPF4RH0BN0aPHttFErmBRe+xgUR+/OpE9uEZRjQxvkUYvSpF64nbRPDzfURwQcBE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - i1C5nwzBckDuOoEqb8FyQPV14QJPwnJAorsad6bCckBs/M74O8NyQFSqYtTBxHJAtr0WGFnFckA6Em91Q9JyQL5NxBWy0nJAZn+5K3fTckAydKiQzt9yQBjDgUC34HJA5jSSQ07hckBEkbhfZeFyQPEB5y1R4nJAyh9+S4/ickAg6n+dJONyQMGdbz/T6nJALAfja8rxckAUvzk6t/NyQKanwQGh9HJAdeA0RcH/ckASC9s/RABzQLYA7fpjAHNASp9TRvkAc0DEQvOCSwFzQCA2muCMAXNAGPHJ/DsCc0Cag5AU0AJzQBAjj8z6A3NAdrHOMCMFc0AggNEjJhJzQK36C6a7EnNAUow6T/gTc0AH4NXiTBRzQPbCDGV5H3NAjB8xZ6Mgc0A+08JUOSFzQC4ZM0jlIXNAfv+Aecgic0DkeZx2DSNzQB54wkQ6JHNAenjHZc8kc0CrEHh2SDFzQOwl97QJM3NAfQvRAKMzc0AU+CuUNzRzQECgHqrPNHNArH8E7+JAc0BMEooieEFzQDYYDI96RHNAgfFNC55Rc0Azeltoo1NzQMqnBn93VHNApp8D2Ytgc0AaLD4rOmNzQNNLcZhRcnNApNEByLtyc0DfkoSjt3RzQKafLkdMdXNA+osfLnmAc0CUzP4DpYBzQN2NVKsNgXNADC4qcMiBc0B8anemXIJzQJp5jw2HkHNA/hv8gtSRc0CkNUpvTZJzQMgEg8TNk3NAqFiiemKUc0ChDkad95RzQKrRsxe4oHNA36sXpeOgc0CKwrzTTaFzQNqsW/NbonNAgIAaL+aic0Bqw39KBaVzQJ0JLSzIsHNAavQSZTSxc0BSbGDHfbFzQNoEn/a2s3NAHJbBzg20c0AhOISH+MBzQOLfLy4+wnNAOHx+oNDCc0B9ESblJsNzQGSsjMLCw3NAzP3KF9bRc0Ax5rz1NNNzQNydG2BR03NAslED3fbTc0Al0NaMTNRzQBwejbzi1HNAmCvHXTjhc0ASBLvJZ+FzQCQXoI6K4XNAL2QZ7/Pkc0DaygQuR/FzQBKJ86O18nNAyh0sRKHzc0DKqmViNvRzQLyS+qyM9HNAcG3RBU4AdEBYOf3R4gB0QOaMQBh5AXRAHL1qjaQBdEC4Y28VjxF0QD6n3xdOE3RAbMURPXgUdECmX+PekSB0QFiT7Oe3IXRAUxdc/lMwdEAuCYg3uTJ0QDAszqTjMnRARMD6MshBdECsGv2SO0N0QHwBU73+UnRAIgy7+/hUdECwdgomjVV0QBWYKEC3YHRA/J/JkAhidECSjvqbTWR0QLJyAakua3RAkz08FyJwdEAjmTjbY3B0QHocZEtBcXRAyrp2jzlzdEAtAh9GonR0QLDYjWQ2dXRAIoDalPiAdEBF5K08ToF0QETonoiSgnRAKFa34fOKdEBNdJGHFpB0QKmR1GlskHRAtZvnGqWgdEBG77/hz6B0QNiKR5M5oXRAXjsF2NGidEDygI6sD6N0QKqg2KT7snRA/Oq5bePAdECHGVfCecF0QA5nZN/owXRAYYIDoBDDdEDdmt3fHcN0QJj0VN24xHRAFG2hVJ7IdEB7QYM3/c50QHbf6GHh03RA2GtPHM3UdEDcFq0bJOF0QNPWVeC34XRAMpsKmB7idEBhrCh0T+V0QPw773DA8HRAjnCRZI3zdEBhdaXXefR0QKKIm2OkAHVA572dd88AdUC4m34IYwF1QGCx62hdAnVAVKv+0JkDdUBU/AQ6PBJ1QNMEmUMkFHVA2AU6/kYidUDiE0QKoCJ1QNnQczrMNXVAFmvk/7JBdUDGQDxtKEN1QLqJE+/WRXVA8NyQXNpPdUC+sOKVBlB1QAI4q2GBUXVAIr96dXdVdUA26Um0C2B1QNTF2UijYHVAaESMPTlhdUBEmtCx9GF1QG8vHyt5cnVAdKg4ko10dUDNyr5jeYF1QLyIH2atgXVA0L6uMaWDdUDGSw0Gm4R1QDTmDRWKkHVADD/bBz6YdUDmPx8RmZ11QCrEs2nbn3VAmpSD15SgdUB4HysSuaF1QLBFiaeWsHVAHx1kDuWydUBWijb5fLN1QMo1f03OwHVAvxO252LBdUC0oz5Q+MF1QNDuPjFTw3VAQK8rmSvSdUDYneir4991QBykw3IH4nVAidh8UDnldUBDw933G+t1QKJboSpIAnZAkWQRtM4DdkAmhV0XARN2QLA9jOtLFHZAMSX4dgwWdkCopklUkCR2QPJ4BnkfMXZA/iShpZ00dkDiWBy95kB2QKh/vSgdQXZAqjkXUXhBdkCfrgcfekR2QHQ4CYP7TnZAzgYIJ8tQdkBe/M9IEVF2QJznbL6HVHZAXkDy681UdkAGHnmmzGJ2QG7VM77aZHZAxvPKNidodkBSn2MIaIJ2QKKNwYeSg3ZAfIUgXXujdkDdrRTjt7B2QKBm+8W/snZAZhSfAA20dkCPQ4ojwsB2QJ1sJF7RwnZAPj8r+M7OdkAgt3yGftB2QFh3mXNW2HZA4lYksvPhdkCg9csJkvN2QNKHRI80AndAvnvCqVANd0DHFZATAhJ3QETlJ+6pEndAAK+fbGMTd0BxpsKE8Bd3QCKJ5lQGGHdAS9bhMUodd0Dv7RSLDyJ3QJwLCoZzIndARXc1kaUid0CSYwSjrjN3QMxkzdUMNXdAKf/VEp1Bd0Dywp75GkV3QCSGgUZKUXdAaMR41ZJRd0Ca/nEvK1V3QLLx5hBHYXdA+13lZI9hd0BWP5WHoWF3QDqENbQ3YndAzGs2eiZvd0BMKqp0OnF3QLhrnfaHcXdAulF9+LJzd0CkuSIpeYJ3QEStMJ95g3dAEL6nLgeSd0CNCV3eS5R3QMJdqsIKs3dAFFmBtpu0d0CY/d6vjMN3QMp/geXh0HdACjnXrOngd0BbksOGT/J3QFR5CthtInhA6CKbTIojeEAqOQU1pCR4QA6kYyV8MnhAk/2AWQpCeEAaZGwGekV4QIDxYtzKUXhAOatJN5RSeEAc13aGhlV4QFzBC1LuV3hA2UYzeTRdeEDOUsZe+WB4QDyFwua3YXhAFPWGg6VreEBSz8N9w3F4QJxQAru/cnhA7bij26xzeED59gTRUHR4QFjrV2xddHhAQRE+gIt0eEDYiWbOrnR4QNyNwNLBdHhAjsi/wNF0eEC24kaeIXV4QBime7GmgXhAWmnnV2qEeECE6f3BmYR4QL50/RNSj3hAksrUjZaReEBye97fp5R4QJtoprazpHhAEyG8anareECac7fYfbN4QIafMzqfu3hA0PRwHM7AeED8H3/ct9R4QNxo8VzF5HhAevWRcgH0eECC2KJWjPV4QFqku5NUA3lAomFg4Q8EeUDw8D6xmwV5QLSfTJAMJHlAO1HB1vNCeUAGrHI2zFR5QBdTOjDrYHlADHYY+tlkeUBaFPCM94F5QOKjDO6/snlAc3gDgELUeUCIqZn3zNV5QKE/lX5Q5HlAs/VCiiLleUC+88YZ+gV6QFGJebw4I3pABFqJz9kmekDQl5JVDDV6QPCMKJsaRXpA4IzmaC5QekBWDIBxgFJ6QErbWocoVXpAoo0pkc1jekDKvEPnH3B6QPZsPhqOcnpALUtlS6KUekCSckN1Bp16QDEAl4xIonpAJRqOl++jekD8g/EDo6d6QCyQwcX6q3pAsmRb0OusekCYuM/o7a16QNc+zmdGs3pAJSv8pg22ekCo40+NKcN6QCTsf7IaxnpAoNEthDnjekCN/BQ1N+56QEpp2nV7A3tAqwnRIioOe0BYQ1f2wBB7QJykJT5NFXtA8jzeHFole0Aid/KSLTJ7QIL1ndvDM3tA+HmXgWWCe0BAKCLyvod7QOg3P24HjXtAPrioTyKVe0A2D4aJd8Z7QCQa2SGj0XtAhYpGVr/Re0DcGWgWT9N7QNqEJlmM9XtAyUMSPZEBfEBnqzFX2gF8QFiXHFuZBXxA2xEGHIgRfEBmZvfN0RF8QFNm01CoFXxAWlHS5cxBfEB3YHwx2lF8QJEo0v4KYnxAwgL8HI2lfEBTFjq3vbJ8QLyWyLjL1XxARFTinFfifEACx+H4FfJ8QM77kyBV8nxA9hF0qQECfUBktSv9SgJ9QGDDf5FhDX1ATXimTEQSfUBeeLZtKR19QOniDMo/In1AkZI5xtWzfUDkkW3GrMN9QE6ST3hr4H1AdIsgQ9rifUB8n7MPkfV9QHI1PlI3H35AXXYAfY1VfkC2gi0vX2x+QLVwzpLnj35AZGykL42wfkBOKJXsebN+QBpkREJMyX5AhFYF3dPvfkANYUn4HwB/QKjbDvALIH9AwkjVaU84f0BWw+Upt3F/QDJpYmyxgX9AnZhdm6WDf0Cqx8V0q4R/QBokKGVikX9AEzzqEamRf0DsIXXPXaF/QPssD4dWsX9As1V3rJXdf0ASz+5G7uJ/QBxHN2ss6H9A2s438fslgEAIzNECJi6AQNIOlm79OIBAKqNfQUc5gEA2clpaKjyAQO63dRr0SIBACts6kDFJgEAIcEeU5lCAQFiOl3sVUYBAigkMLehYgEDKzJMKDlmAQO4BALgfWYBAxLh/gd1ggECBuIesCmGAQDvFBCMqb4BAU5WY5t2JgEAPTZqXHo+AQOXUEQhvkYBAVICPJgqUgEDA5+FsG5SAQCCJ0iq3loBA3TtGDsqWgEC0rCDLI5eAQFLNPbeFqYBARKGqKxKvgECUn1qFM8GAQA2TG1VSwYBAABMNiw/GgECP/VJiU8mAQMivbRUKz4BAV6nsfyzRgED+Bo6QTNGAQET2jlNg0YBAMLHOIUrZgEAANZgEROGAQGjrUhP26IBAnuIHdEDpgEACIajAO/OAQMaeHwRA/4BApoOW+z8HgUDgCxsiPQ+BQMyozkI0H4FA9hNCKzQngUDEpTIz4CyBQMN6ZYbbLoFAOGdWuIkxgUBOPSstvjGBQOVr/GE0NIFAlE4fStM0gUAC3YYrHTaBQIT6WkjeNoFAajGVBIA3gUBwJlFckEGBQIfFiBf0RYFAOOldcPdJgUDEdU2i/k2BQJWegJLyUYFAGns4hud2gUCWV7ARlHmBQD31e+FVj4FAKIoQRlWXgUCUsTjmQpyBQHASEezunoFAxpFgYZihgUC0hv2VwKGBQF/5NLLnoYFALCgboUCkgUDGz8j0baiBQLl8OiZKr4FASG2DfGmwgUDuEvd8SreBQP2tpU590YFA0DWQ7c/WgUDOHaW4g9mBQGT+LOSF8YFAeXkBZ7LygUAWFrYiMvSBQGBpIYTf9oFAVFyb5oj5gUCAmccnAwmCQEi2u0DYGIJAGPfOBtcggkCGvcjZ0CiCQPSRljmiKYJAXSNUrqUtgkBWYFCizzCCQIokp1GcMYJANaWb8KkxgkDAMsdrnjWCQL+YRY7nOYJAWjYA8eg9gkDr9X4M7m6CQMYG5MyYcYJA/DsduUR0gkDMV7Dl73aCQID/bh1DiYJAKD15E0SRgkCszOwU5ZWCQLYJgz09mYJA0vf4R1aZgkDEnhZ/DqGCQKq0Wak7oYJAEoB6iQ2pgkAsXjiWNKmCQMLA87wHsYJAZm7xQTCxgkDteo2Cp9WCQL9sVi6u+YJABeBNRnkRg0Ae6Dg+ehmDQL2ijzVzIYNAdqEnwHEpg0B4X8LSaTGDQHpdFYSCMYNA+uaqXkmDg0DXi3wllPiDQLJDbyoqWYRA4kvQ9uJZhEBcOohQ6F2EQP4Luf3+aIRAdIgopv9whEDOrI9g+HiEQAiP5GPBeYRAnkvDVcyAhEAqpMw+atmEQCQUE5hq4YRAPpgAw2LphECaRYE0NfGEQG6QGJhh8YRA+NEhkDT5hEA17AfeW/mEQIod2b4vAYVAQkpZP6BhhUCC1JwZoGmFQMpsk/WZcYVARzmw1Jd5hUBZbZ9JkoGFQEpHmXbXgoZAvDhbSiW5hkCm+4QXJ8GGQArZZlcgyYZAOBD09pAph0Cng9BokDGHQMsQhM+JOYdA/lrOGF1Bh0BXv5IwiEGHQOTxFpPHsYdAhcq1yMe5h0BWv8B5wsGHQBo1yLP93YdAKG7CQgLih0DsbB4wAuaHQBEukmdSEohACmdJBPHRiEBAIo+f9NWIQDiR6q732YhA + KBZXds7jZUBGCTcNzmJoQGS4z0t+BG1Agauv4n2Db0Ab4qE8ghJ2QBLQ8gOEI3pAbOKv26eCfEDQk58RLhqAQJoeogrgWYFAX7z9BlrigUCMwqKsuwqFQFRxggJYWoVAf5sEBaSSh0CM8ZDWZ5OIQLcbE9mzy4pAf8ryLlAbi0Cs0JfUsUOOQHFu89ArzI5Anfz65O4FkEDqzd72W/KQQIESzuwkipFA/k2iXmWOkkAV0XQxliKUQHnPUCR2cpRAXOUjLKwGlUDA4/8ejFaVQP5GoH/oKpdA - + - 4bakRGWCI0VD9UxER1AmRsskJkbhwEVERd6xRHTaAUc76YJEgql7RGUlhEQpwfVExoWbRKyPPET0pmVFErAYRQIsW0Tv2KREilI1RQVwj0SxwapErv2BRK+RSUWs5aZEPH2SRBrigUR067xEADJrRKmX3ERMbdpGJcNhRFXvgETpA9BF7JSvRdgxmURELblETmXoRJ50vUZRJ2ZEQWVlRMVheEQET3hEKxOPRZTS90TUwW1E09yBRItgtEQkgyNEn10HRadgj0UmU/xFBw9yRAROVUVICWlEtPNuRFxTrkSqU2ZEfVC7RAiWnESR8SZFtygAR54fkERgeB9FuQGtRIwmikQzWwtFLG5bRF7mKkfj+HlE2pD2REymZUYOaMxFQkx2RKGsRESLXahF5dOURcOzF0WUU4ZEeCSGRK+hj0Rpn1VFmCi6RPwDr0Qq40lEmnRRRQU4GUZmwk1EC//wRA8H0kQofgtFlUm9RCDeU0RWJYtFjxb/RZGZPUSy+3hEUSB9RCO5bEQCsJxELVJLRAZH10TETUVEXd5rRIVvy0Q/O2FGOZCERNjXOESQjhFFqjKiROSwKURaFKdEqgaFRJBJBUVWfiVEAVBNRJFQUkQiFF9E9sGiRP2nD0WM5k9F1OkXRTNZT0R6gY1ExBujRRZUSkS/CzRHvWgrRV3HlkSyqLREX6ERRYq1uEXkJJ1E3WSBRFvwm0VPDItENxhmRLmCyUQk+alEcK+oRONc/0R6Z2JEls2ORF1XV0QbZFhEsyacRMibi0Q0t5ZECRiCRN2Y1ERasKdEvbyzRBZuVETl5dlENZpFRAs3TkRlo4tEFFKsRf3db0Ss64hEvMxlRGYQzURp0R5F1+SjRFMFykURGipFDHmTRC6gs0SjuxlFe4ycRK9DWkRUxEREYc9DRIMLYEQuzL5ETc0lRQX7lEQJJU1ENQgiRTSIcERlpehEG9gWRuE050RHq4lFG+cnRRYY6ETLvZ1EM6BSRrPkgEWfG1pExWO7RJWtp0QiFlVEwPh1RK4uwkQYyJNEMJtfRMR92ESyDYVE1fp0RHhdm0RMgzdFGLtaRA3cr0SN44BFn+HVRCkWkEQ30uhE4FyORLgmpEXQsQBHXMycRAXXPETO2rdFd9RQROXDM0XFXZREv2zoRM1bNUVCJ0FE/IYtRm24ukWu5hBFlDwTRY1ro0T3ECJFlSFzRCQJnUTKcAlFP2q6RWT2p0QNCUJEeLpNRfx1QkRN8kpEaD2CREEn9kTxAAFFW1yhR9i9jUb41QVHA/UyRIUfW0UggcZFmtGhRDJZI0WdzfNETaaeRBRwRETcGedHZgfVRnNvukaz3I5FjU6aRuktqUR6W4FELVBBRRwjrUR6cWlEgaymReVsmUSjBWREkilyRGSSnUTt0RFFMVeqRDMAk0TTmGdEUmioRGzYEEXHhYxEdCZgRLPbq0QW/wNFlPODRJtJi0Qke1pEzfCORF4IC0ZUIaJFOe80Rl035kT4SfRF8TTLREDuG0UjMg5FzdTmRN1dZ0QsZHVETWaDRNvmH0VTP2lFqokvSZj7l0Wc+BdF5zunRL8Ah0QbJxRFTmeURACIL0gsLKdEKDfhRHFijUa55lxEXB/6RPlTjkSC6DVEv50PRTbhiEV4rH1EQS+URct/uUXIbVdEJ5hQREdFjkRr7IBEW7K8REoZJ0XYXZREaXOARFBxnkQa30VF/mP9RUcahUQu7YxEe7ZfREIhYkRFS91EweZdRJ/Opkf2aqFG39gdRu18tUTlBxxFLXqORBHNlUS2x/ZEsCeTRBrEeUSmI2BFWAU1RdplDUVTRZpEAQtrREbPnkSrILpEGKnMRQdxe0SLqclESi9IRHLuBUUCDVhE0snMRFcBikQ4cwpGNRZBRYyojESfiZ5Et90ERTyBCEVvTGREN9SCRV8EZ0RsGodEPk7kRIvriUR04pBG5DmXRAGLd0bU949FeGyDRI4epkWV5ihE9973RYJSW0QnMZFEUXhZRIMu6USwHJ1EVYrCR/dcD0Xq5spGLRUVRTd+nUaISXZEdTgORYBNhURJYlVED+Z6RBIwWkTnihpFPqJSREkgoUQcNXBEYEK2ROMqNUQD9VNE559GRNqTVUTt74ZEt8pwRMD2gEViS2tElVuKRLZ/10VCd6hEduC2RLpclEQJ4D1G7X23RC5BN0VF9jVF3z4YRds4MEUQTKVEp4lKRPPvSUVUHbREzmCfRLmhk0RXGB9F+6a4RHEAH0Uz07lGq0igREJ6vUUzPhFF0EdKRIVRo0R0hSBF6IbrRNE3TUXp1IdEvJu4REcwrESBdqJEjseORHOALESnYwlFQU9VRL9DsEQVUnJINCvSRI5h5UcNWVhEb0lXRArEdEeDkAZFqbxlRkvaeUXJRLBEwCNMRLXAaUT5FhxGcXA5RVVaHEWrqAZGXVHlRN2obkTVBl1FTshlRdWZCkVvvN9Egb2fRHEtX0Q2W1JEiHRHRPK1WkSS5KxGHgocRiKECkUsfmxEh9HFRXNDBEVPCsJFy9K2RKh2mUUZTwhFVeA9RFvLNkRIW0RF1ed1RBPuGEUA6SJFoEqERLleNUSykaNEkMR6RDZEXUThBslFLslnREnoaUU8tRZFPiZpRDie1EQD1ztG/N6HRaAZL0Xa8SJHjoK6Rk7sYUTs6oNFemB+RY4x2UTTUSRFTuiGRCzoYUVnkHxFziS1RDEGXkRRzjBIn/DCR7WGlkQbgE9HPRskRbBdkEVce2xG1VQGRQ5iikX53fZEbp6ZRG675USJ+8RE+nYLSHJbjUf+qyVH1MEcRqllbEVmQ5hEErVdROxMbEQ3WpZE5Re7RDLMRkQSZNRFuvwuRatru0Rz8Y1EAA+CROezREcZacJGdzt9RulORUU+T71FzImqRIzk40QskYhE7OwLR+p+fkbbSDhGBEqdRfWooUSshj9EVXbMROTmNESWG3hEuTpMRqDN60WVwoVFdiqjROO93ERhvhJGt1aURd/qR0XJ5QdFlUuWRI8Be0RKvzdEl+IdRbM8w0Tc1lRE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - rqosiHDBckDIe9cxUcJyQJKlFESnwnJAfkWI7DvDckABHI2vxcRyQAeNw8daxXJA64K9l0PSckCMrJEfs9JyQAHPPwFJ03JAdrAlRXbTckDAB5rLzt9yQG7VKr254HJA4GHqRkzhckBRWAOuUOJyQDrIjIiO4nJAcwg+BSXjckDmRhL9yvFyQIh/Lb3n8XJACeEzTLXzckDmHSqNDvRyQPRl7sOj9HJAIPKsKsD/ckBABGPoRABzQIjnvJf5AHNAgoXC/EwBc0Bs+ca3jgFzQDrGY4fPAnNALC3iyPoDc0Acj66dCRJzQMhcie+8EnNAB2K1VAQUc0BysFW6SxRzQOpm14V5H3NAtpKNE7Ufc0A//An3oiBzQJOollg5IXNA/v2IhMkic0C6QGd7DyNzQInuQZEFJHNAVt5sY88kc0AykjsOSDFzQGzTcTRfMXNA7KHBAgkzc0Dn+eguoDNzQH2aqqM3NHNAZhOTEc40c0CYU19kQUBzQOEexFvjQHNACmEiMHhBc0CetH08ukJzQD0rRzp6RHNAImQFwptRc0Au1n1yQFNzQBzGQ6qjU3NAbMpqt4RUc0B4V2QmjGBzQHKELN02Y3NArP7FuM1jc0CKZt4jSXFzQGa5sGxScnNAElh5dLxyc0A61542uXRzQJQoH9dMdXNAeZh7InmAc0DIX66MpIBzQP7WmQMMgXNAVnRP0luCc0CCsuozEoRzQKZrH+WIkHNArg1nXk2Sc0D7SXg6zZNzQNRX8fRjlHNACAjJZfeUc0DEOdZhuKBzQCT1ssJMoXNAC9QppVuic0DGGHD4i6JzQBuMd57monNAGIektQWlc0BA7z8qx7BzQPhoF4N+sXNA1iIiAVqyc0DGrCkeE7NzQDCsdxu2s3NAxnhwTQ20c0A22iTL98BzQMg4RPiOwXNAShsn+M/Cc0CgN4jIJsNzQOye3pvX0XNAZN4fcDHTc0C4mdAdUdNzQKHKpEH203NA7mBRnuLUc0AaPDrlOOFzQGQRA7tl4XNAk2XhC4zhc0ASW74R3eJzQH65baRK8XNApbfB7zb0c0Aaei4p4wB0QJ2utNx4AXRAl1loV6QBdECHTflUihF0QFBj9bmoEnRAxb3JrEwTdED+3gIQ4xN0QChJdJZ3FHRAxvyGjEsgdEBePTMQuCF0QHQzPDFbI3RADvWLNVQwdEBJLpFUvTJ0QIpHTO7GQXRAYYGOjfxSdEDGPftZ+FR0QAFCg4qMVXRAfK79t7hgdEAmQ3/VB2J0QLjumThQZHRAlK74giJwdEBQrcqyYHB0QLRbyVhBcXRAf86/6PVydED48ca4OnN0QMqIcT44dXRA2L9Q8PmAdEDcYEOqToF0QLypC60WkHRAv2xESyqYdEDO8nNAoqB0QF8YVG3PoHRAOGNYibyidECjZmgN06J0QJOPLPEPo3RAMd3eXwqwdEDhbzNEw7B0QHaGSam4sXRAzVyel/yydECK7hUP5MB0QEJ/wZ54wXRAeJnci+zBdED86wIiEMN0QHK2uf4jxHRAI2b47XnEdEAKmKvSucR0QNLbRHueyHRAQDTM/fvOdEC2H7VyPNN0QPrL0GPg03RAXCCb283UdEABk7GHIeF0QMq1imG34XRAhLTBJMDwdED0qanXjPN0QFgbvCakAHVAuOEI7dAAdUD61k4UYwF1QO7o/fZcAnVAQUxAU5sDdUAxgNsdSgt1QDqFdO07EnVAgMd/4CIUdUDuMEBQSyJ1QI76J2edInVAEebZ6cs1dUDw7ReYskF1QAg3VwjbT3VA+lFj7YBRdUBMfnf9TVR1QLb2/kd4VXVATNApBDdhdUDBUIAG9WF1QFQ+hy53cnVAdOGPl410dUBC29HgeIF1QM3w4SeugXVA5hQGyKaDdUDctrqomoR1QBd4qD6KkHVANMFDr7uRdUBmbapkPZh1QMUN5ZqXnXVAUeZG+JOgdUCT1bDUuaF1QAE+2fzronVAAt00AUuodUDQfMcLfbN1QJrwrnPRwHVA3wvthmLBdUCmkCVn98F1QPRrpAUr0nVAipez5MrTdUBEtigYEuF1QErybLAI4nVANa2fT0gCdkA2ax8i0wN2QO/NaNtUEnZAwvRGqQITdkD20z0DiCJ2QKh6/9CPJHZAELuGzR8xdkAxASZInTR2QH7B+7QdQXZATjFq7npEdkBv/4nl+052QOKCK/XGUHZAJiVV1xBRdkCbgdbjJFF2QLzldfbMVHZA0G87w8tidkB+wxq/2mR2QPGxYE0maHZAhOOj1X5tdkBK2QFpaoJ2QNAMuAaSg3ZAnyn/j7iwdkCFxjxXwbJ2QNqVMBwOtHZArqp0jL7AdkAlLAXRGsR2QI+aAFbQznZA9PHSNvHhdkC5qi66jvN2QBfQCo80AndAjUA/jegCd0AL7wF5UA13QDjKW5cBEndAoQNcXakSd0Dzw/Ir7xd3QFQFYBEFGHdAcQ2mXUwdd0DAR00HYh13QA4EA1IPIndAePhcWnEid0BnS/6eqCJ3QNrUcDmlM3dAkeP3CQ01d0BJbbzLnEF3QPBDYOkaRXdAYu5vbEtRd0AIGl+LbFF3QMz3kp2SUXdAOv5tMShVd0AJKIPjR2F3QPzbzmKPYXdA8irGaSdvd0Dcak0CkXF3QGaS0oerc3dAIdpaTXiCd0Ar8l/0eoN3QGT18Q4IkndAiE4SUE2Ud0AQdp+utqJ3QH6vCjGbtHdAqPyfmozDd0AcYw6/4dB3QFgVlwbr4HdAGryys+7wd0C00ehBUvJ3QBDTEWEiAnhAkkElC24ieEAy6SOEiiN4QCkE2UAMQnhAYADHuRBEeECQQjpAekV4QFQr3ZnLUXhAxB+kHZVSeECUGj1vh1V4QGqP6rXuV3hAs4ocM0xdeEDTf601+mB4QPqUXba2YXhALEMUaiFieEB7Z3yIj2J4QIbMt+63YnhAcCnXIKJreEByAkkUtnF4QIQA2mL2c3hATn8QKVN0eEDAP5p7ZnR4QKZGS3yLdHhAbnScPbt0eEBRAysEA3V4QHDgfPymgXhADqMXKmOEeEA212q0mYR4QORtrSqXkXhAQ8uvrKeUeEA+EQIVqaR4QHVZYSZ3q3hArkGvk8zAeEBcK09Dt9R4QDLG+Y0C9HhA9hOur4z1eEAjCfhrEQR5QM7yhiOaBXlATG/lda4qeUAmt0ZTiUJ5QI4Qz4H6QnlAS0euRsxUeUBQ6m0Y3GR5QGplcRb8cXlARrpARkNzeUAshagQ94F5QIaaFI/AsnlA9MCssULUeUBQ1j1MzdV5QNxjv2LC4nlAx8JZb1DkeUD8lyQbae15QNwvbND5BXpABMjstWUjekBPSJ1bDDV6QN9oNp0aRXpA7G/u/i5QekDQOm5IJ1V6QC5N4Go7YHpAs1PnEzllekDbQx5byGt6QEZwresecHpAWiM9NI9yekD456wL/3J6QBKnobxHonpAWQHKbPCjekDQSk+lpad6QNESCvBFs3pAlVaPDw22ekCMjiqWGsZ6QDS6vqRBznpA9Goj9NnTekC3F8u55td6QIAp6b417npAbU8Z8CkOe0A2jXtITRV7QGkUiUlaJXtAEI/7b1Mwe0AEUTKeLDJ7QA5HoHhiUntAlNsMAWWCe0CQEgNIwod7QLvb88HqkHtAgnzjgMKUe0BGbeQfI5V7QBKt3895xntAUKtKIajRe0Cwv+lXvtF7QESPfK8k0ntAVGtrb/3je0B0rCdylfF7QNeBcCOM9XtADpFcWdsBfEB43fT+mQV8QG7vEJ+uCnxA9ixc1IoRfEAiLbbA0RF8QPlcBVKyEnxABlgQ381BfEB4WzpkDWJ8QF4bEfFPY3xAs8P4+ypxfECONolTvrJ8QCh+DkvM1XxAq+Mp8lfifECgkkk2GPJ8QL4aWo9V8nxATLRRSQMCfUCyEK5ISwJ9QJzjx/JEEn1AknF6rSUdfUAEmKWhPSJ9QK5EThOFIn1AOpo4QaAxfUC+yrRValF9QGyIiajUs31AOi5EoivDfUD+Rwiia+B9QIv8xyeQ9X1AceXXejgffkA/1iG0Pi9+QN5rwQ9BP35AoUlTxIxVfkAKT0ZqmmV+QMI55UQ/jH5Afb/el+GQfkB2FNyNjLB+QGldT5a+xH5AemuNrUzJfkBJAIVKqc5+QL3ak6XJ335AFHuoEx8Af0CC83+jECB/QK14hpITcH9APKw70blxf0B6RtYP1n9/QNJTpdKvgX9AfKnDlaGDf0BsyUPuqoR/QGSmPxxjkX9A1kraQ6iRf0CyfiOXYqF/QFToxvBUsX9AltQ/4ZTdf0ABLPCT1eJ/QMJ2sNQv6H9A9xjLW/slgEDq6EJ/JS6AQFLmCKEpMoBADo3Lzus3gEBPGFIy/jiAQBa2G2BBOYBACDXox6M6gEDOOfuHKzyAQFXqFNDwSIBAZnFvf+dQgEAOd/nkE1GAQL++nhLmWIBA7Aclwg5ZgECOQPNoDmGAQIJwb9Yob4BA5Kd7YSh3gED8XIMN3omAQKQm3AQej4BAVJorh2yRgEDksJtAGpSAQLBhKDq4loBAHiHaL4epgEBbDmjMgLmAQMinxG3/v4BArEZAYCXBgEAKZXKOUsGAQNznvJcRxoBAeFj5dv/HgEDuZOSYU8mAQEzFosMt0YBA4IV9D03RgEB9RfvDStmAQNRYIChE4YBAWKerMlbhgEDMd0ay9uiAQIrRAYlD6YBAyMt8qjzzgEAk6ZUGQP+AQE6PR5dAB4FAEi6Ppj0PgUDQG+Gk9RmBQGjDEGM0H4FAMS6OZDQngUDgC6Uz2y6BQBUniz/mMIFAtLNyTokxgUD1LkCyvDGBQBQwIrYzNIFAAeJib9I0gUBgsYJK9EWBQC6LjUL3SYFAJ/16eOtNgUBdODjp/U2BQLZcfybyUYFA7gdWHud2gUCXM9KhlHmBQE5HHWFBfIFAHn65tup+gUAgeUGsYH+BQLRoEiFVj4FAX7EOL1WXgUDvK5FGQ5yBQLxrrwXwnoFAcF1IJZyhgUDCmw4K56GBQBunfK5CpIFA5DTbqW2ogUCIFGy8Sq+BQElmSsFqsIFAtkXglyjMgUA4jckM1s6BQNl/h8t50YFAqvcp2H3TgUBE6+MPK9SBQC8YgSuG8YFAQwTIdDL0gUBRvdSL3faBQMvAQSeC+YFAqhdZhDL8gUC4ZIN4AgmCQJ3o9aHYGIJAdvTaK9YggkDuGCHr0iiCQIeopWWiKYJABjyZgKUtgkB6mrb9mTGCQLz1IlmsMYJArj7Nh541gkC0eOyI5jmCQMLp8MPpPYJAjNhN6+xugkBkp/Y1mXGCQEajGYNFdIJAwHdyLut2gkA+K4JiQ4mCQPOaTVxEkYJAS2ymFByZgkBvchNbPZmCQJZXcjVWmYJAXtj3nw6hgkBtrm9JO6GCQNr2b2ANqYJAqmAIODWpgkBoge8aB7GCQNYMQTw2sYJAJxoovqnVgkDMfmQarvmCQJhvV655EYNA+Osad3oZg0Dm6G8acyGDQN42XxVyKYNAEPZXwWoxg0CimbGE44GDQMkgBVBq/oNAsv+VdOJZhEAux4s0AGmEQAKBpUP/cIRARMYxbvh4hECavpYbzICEQJ0JREZq2YRATrzNUmrhhEBKb9zlYumEQAxD/d418YRAb5351GLxhEBStU6WMPmEQOzlEK1T+YRA3jHjOy0BhUA96N5VoGGFQPLHchugaYVATvFzOplxhUAeZwkKtHOFQGVjroOZeYVAwA/rzJCBhUCDQF1M2IKGQKDYEGuFhYZAzKYqpCW5hkA84DN0kSmHQNjGxeuQMYdABFh+koo5h0B4qmBtjEGHQGjpBavHsYdATr1/wca5h0DlE3pbv8GHQCwJmTy7yYdANG18jv/dh0A9M+SWAOKHQBOPNHBNDohANgxTI1MSiECx4hEN8tGIQA== + U6vsr5viYUAoFld2zuNlQP9T9bnLw2pA1L5fgP7EbkBW/v7hfdJxQMEzNEUX03NArFID5xVDdkAXiDhKr0N4QAKnB+yts3pAbdw8T0e0fEBY+wvxRSR/QGGYIKpvkoBAjMKirLvKgkA= - + - NBcrRXahbkTOST1GU3FWRoCspETrNXlEdDAFR2OhokR4AtNEd1xjRJKbxUTQsNNE0aRORAzjXEXWg8lEaYCNRA9oYkVOmlZEXXmURDk0VET9xJFE4sSERNQJi0UKanFEE89eRNn0jEQ0lc5E0SgjR3/LsERYiw1GYEaGRXytjESK5LFE6nM9RPB24ES36r9Gi9FuRM+zqUSQ2itEpFCBRf9M/ERumElE8xc5RFD9VUSb/1FE1q0vRK7OXESZOdpE+g6BRWegXkQ+lAFGDqpYRCLkXEQj81NF/mtkRFzsiUSKjZtEeftuROtYbUQFzndET7t+RN3XgUT/nQhFxgjyRsi980TzVONEc90wRFXqoUSk9/hEDmE4R1ErZEQXQ6JEI0RuRgJJ8UU2409EpcyoRVqNP0Ro07BFEhX0RCf3MURVvDhEQ8o3RM5YOkRGv1ZFYYfZRJdCj0ScYVlEjShYRRvuKkaldwxF1hd5RIppckSYJoREzqOpRYtqwkUf989EFD2ARN84xURwED5ENFnQRISFmkSedYJGTtrRRC2bR0TATDhEw+X9RNFOeESw/VFEfjamRAIyBUUzjFhE3PayRACiZUSx3GZE2qE9RKtzu0SV7/FEGkB7RS/gWkX2nK9ELGKLRa96sERZAzlHw7AmRACWCEXopKREkYgZRcp770XQXpVF+v1ORLiSZ0RJf3tEgRcxRNvUsESuBU5ErWydRKjjjkSsDkJEQxRTRPlpoURmHINEQrlKRJoQmkQo3oZEnTZxRP3WzUT3H4JEW0LXRBk4T0SW3KtElpfhRALke0SbW5FEpOtSRGg3rUV8b3NEvP5BRM/wqETmjh1FveKKRJ6CdkTp+ZFFA+L8RJ4gbkR7TJ1ErEtJRZMVcUSxTVREEvZYRFoYYUSDZrtEcX3lRKZcS0SqiddExaUURpNivERbTYBFSrYfRdGm8ERBpVZEuOptRKDpNEYqb69FziaVRIO+mESZMGZEI2JjRJo830S/3ohELjZ2RLYawUQttblEp+ySRL61fUTEZiVF2PNnReOoi0SLQT9EeGR2RDZCikTdjeNFBOnIRjRgXkQDxJFFvMUsRZc1Q0QEMU1EGzASRbZbQ0TNRShG226IReUwLEUZT+ZEk/FxRM0VOEQyGDlF4xKORP+69USg12RFXA5ERC10gkTFezFFaBtRRN7ijURIJPREMX1fRH1pCkgPl4RGqXGcRwB+tkWLpHZGUjEwRXc2+kT1jzlF85WGRKnAkEQYp4tE2vTXR/sqr0ZfQ7VGOpFoRUpeIUT/No1G+Pf1RP08c0R4IiVFh2VWRbXQUUS6cSJEFJqERF4fGEX0IpFEZ4OURI5YQkSDGmxElFQCRZh5pkSAvXBEi/ZFROrWm0R7QGBECKFPRcRATEShdz1ECyVpRKXOJkYosbpFbWlMRk142ETeAoRFBo+rREMf/0QeZ2xF4h01RMyukUS8n5dEg6DKRMVUlkQF0F1E5SlgRXjLrEVfsDJJhAStRU+ui0RfUrBE8wJPRL5qN0gJRoZEsRyFRl7ZdUSlJaREAju7RK8uX0XDJIdF1iXkRURlbkQeDKdEdi5ZRMxBYkQ60YNEp/RqRYsFdkTqnDZEcw+CRK6ikkT3PEZF7ijuRfeZ9kSxR+tEG2W8RJXQR0SuBZtEbY5XRKStskfWxM9GHfJYRsJFHEV0a59ERv44RO6MSkT53wFF1DiQRKUihEQN62tFRKFQRXdvrkRofqxEb9u+RQSTwkSdfYREzI07RHrxd0SvaapEqjGJRCWSEEZkUVFFqg1cRCF9oUQeqW5Egbq/RLO8gkSvzMBEitV5RGcHP0UAUI1EKwL7RNdDNEXihT1FCR6fRNzekkVf3YdGr9NbRty+lEU8XNNE85qzRIrFhkW2T0JEAUzARVnYi0SFpC9ETqe7RNq6vEQJy45EnNXkRzr9F0X3N9JGFC8JRXwTvUYIGW1F699YRNT4x0SId2ZE/uyfRM6Zm0TizlVEOWJyRKyXOEVMDvREeJOfRHZvdEQC91BEXsfeRJreX0RTNWNEViBuRPzVgUTNKiBEAwWDRIPiPkRcg1FEbKtiRZ1ylEQpPmlEwxaZRayaNETy8s9ELcRzRL6RyUQJkElG3pCNRIG1bEUJpR9FfCYORRR2PUWegKdELiG7RBIJTUWZGuFEjkdyRBOEBkW/NQZFSlMjRErKuURASg1FODFYRa1HfUY3yY1Emt7IRZ+gk0Qv1wdFDNlKRH+0EEUh9SZFuXr5REa5VkVPdYtEmqj/RA9aLERWkEVEiJKbRLGIbkge8WVETWZORC3i5EeX85hEDYBzR/vibkaMWZZFeSb1RNou1UTutotE2h98RDZLHkYVOUdFu8UFRepZbEQjTglGyaEGRRfOukVy2GxE9UtjRR0b30SnLI5EvR6JRH8LR0f6kbNGpCZFRRGujkVV1LZEkseSRf0UQkXTh6NEZnOdRB8FPkSflLBFlSYHRdaQX0Wb3QxFFLYHRZnGEUX4cD5EuQvQRBsLKEVcPoJEyiWWRPEOfUSir2ZE8WKVRBJRqkRLD/tFwX6+RZo250TkucpEnohmRCr/1UTcx09G17JTRZpMNEXqSmpHKiH+Rpw+okUQIptFQ4gDRf8YQ0VRgvJE/xdDRRUWE0X+V9lEBvZKRKfvAkjT0HdHDpdARESBIUcZFglF/i6VRSdKKUaEew5FPcwoRSeI1kRAO3VEd6bBRGwne0Rqg+pHrBJnR2iFA0dReRdG3KdDRWQkdUQg4j1E2rovRdrL5kXpGDBFG9zfRHCdQESwxBhHNRqiRo5bNUYBNINF6+pzRRJJtkRvA1lEjPuzRMlJ+kb2P25GrwwGRrqDc0T3dFdF0GKsRIeJO0SvlKFEevWyRFZBHEbaZrJFpNRZReQ5F0XmHNZF0L5IRRuTK0VQYTpEU0H6RGd9eUQFSaZEn3aBRIqIa0Q= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - mpA9gw7BckAWkPfMbsFyQOJT6hxRwnJAZD/8ZKbCckCqBUujO8NyQICXSzNZxXJAXrk+rUPSckC++hg1SdNyQM35cFd303JArigYP83fckBsOffQuOByQGUHg3ZQ4nJA6l43HI/ickD+WXW8JONyQO5IEITK8XJAupBykrbzckDQmKCWofRyQEiqX8DC/3JAgozjbUQAc0DSLDnJZQBzQKpicE75AHNAKpXiUUkBc0DkoF3KjQFzQCDgERfPAnNACLBgoPoDc0DrlbyUJQVzQCYV874KEnNAdsbHiXkSc0BBpikRvRJzQCLGe9T4E3NAjm5UGQUUc0AYGZIaThRzQNBLihB5H3NAANP+P6Qgc0AG/CdyOSFzQOiDiVRkIXNA8EGtdMkic0AyHiNhECNzQMJQbko7JHNAbg4ERM8kc0CSmp/pSTFzQDRf4jYlMnNAmcRKzw0zc0BvteKNojNzQORE9oz6M3NAi+b/cjk0c0BwsrR040BzQKfPsoR4QXNAUoW7oHpEc0CObUGjFFJzQAAkngJDU3NAgb0M5KNTc0BcQ5K4hVRzQERmMVuMYHNAxEVQITljc0Bv/JF7ZGRzQNN174tQcnNAid2FdWlyc0DXWyOCtnRzQAxbsAFMdXNAYInQBHmAc0CO9hq5pIBzQCgKeqENgXNA+KiRC8qBc0CUe/MhXoJzQF76bqsMhHNAovsJlYeQc0CiCG1TTZJzQO4BgI0Qk3NA26KBV2GUc0ASTJnc95RzQLuplFm4oHNAmmDEC+Wgc0BUCCUtc6FzQNak6pJaonNADoTkIeaic0AUvjFsBaVzQMHMK5d9sXNAxXXNRniyc0CWQ9Zit7NzQLiFQOkNtHNA9UFJH/nAc0Bc006Qz8JzQCwt68Amw3NAywHF7NfRc0D6idzTMtNzQI1TSJNT03NA6ns8i/fTc0AywcNt4tRzQEx0ZLqj4HNAhlfuJTjhc0CF7FTKZOFzQOBYW7WL4XNAXiNE09ric0Dw7auI/PJzQEJrOPc19HNAv5lII1AAdEBaQo4y4gB0QLDKk+J4AXRAtlxDqqQBdEAUvTNAixF0QFRULc9ME3RAnGe6JHcUdEAcv/puSSB0QMQpmOWQIHRAuAMjYLkhdEAIsL1JuTJ0QKSKW2zYMnRAECDA3F8zdEAMqzGVVEB0QBh9N8NiVHRANl2KdfdUdEDy/TRHjFV0QLZFEAq4YHRATfTpCQlidEAD35tmT2R0QOuVwIwsa3RAyrNQXyJwdEAkgqSIQXF0QP2OeXA6c3RASpJJI6J0dECQxtlGOXV0QIBXZ3j4gHRAxlOXkk6BdEDrZPYHFpB0QBfxt2xqkHRAFomyeNCgdEB8dzGKOaF0QOzMzDq6onRA/sAEmtKidEB2cPmmD6N0QDIKv8sKsHRAln9omeTAdEAXUNYjecF0QKeqhSLtwXRAAijBMCTEdEBEVlLct8R0QBjvo/f7znRAele9gTzTdEDo9Wne4dN0QES6ZrrN1HRAmMBOWiLhdECfRUp5uOF0QJ+GHbiM83RADpFAKaUAdUAgkdpwZAF1QHD5L09dAnVAfuwlGp0DdUCL8FnjOxJ1QCVqnLQjFHVAqlTpZJ0idUDN6XivyzV1QB7qjgDaRXVAFHZfiO1PdUDUvO/vFVB1QCtKNPuAUXVAIFuWxE1UdUA/gQEJeFV1QMg7MSU5YXVAwnRhNHhydUApD/VujXR1QOofjJXjgHVAM8Ne0HmBdUDIGbI7roF1QF8MDPulg3VADzi4RZuEdUByvDPNj5B1QOZwzDBxknVAzBcF1D2YdUBobYjDl511QCBnI3qToHVAXpAC3LahdUA4owoR8aJ1QCqR8s1JqHVAfikrXnyzdUBANESuYsF1QJgOeM/4wXVADL2wMyzSdUCqpyITzdN1QJBj33Do33VA1G1MtwnidUBEKHuIGut1QCsH1v5F83VAyj2MTEgCdkBGCQF00QN2QORa+llUEnZA17jCLU4UdkAIALgLCxZ2QMWcntuPJHZAImc+gwkxdkC0vU0uIDF2QEw09/odQXZAgE2Q8nlEdkAewwO6/E52QGVrymTJUHZALaS80xFRdkCewlzRh1R2QBmSF/XNVHZASZgSgBNhdkBgWEIOzWJ2QETiKjzcZHZAzGfXRidodkCxjIa5kYN2QPZiQcmkoXZAzmybn8KydkDw9xCcDbR2QAZNGWnOznZAUNe+i/ThdkC1egN+kfN2QLiiLWQ0AndA4+gbRy4Nd0BalCpqUA13QBKd+0puDXdASuw/kQISd0AUGI9bqRJ3QBYJKCYBGHdARs4jQ0wdd0A0dOvwYR13QDRIxPYOIndAfmi+3XIid0CSgeYapyJ3QMtwsNJ+MXdAAsKS/Aw1d0CME6kRnUF3QAArhwEbRXdAx8RgWEpRd0CQXwTYklF3QLzU32ItVXdAKMQrSEdhd0DAvNfrjmF3QKp/DNqgYXdApvni3zlid0CpJSdVOWV3QKzfXs8mb3dAKp+QuNlwd0BEs7f2hXF3QGOHXkxPgXdARrm2AHmCd0CMlRdbeIN3QOsrAzoHkndAsoRehkyUd0DYBHsRjMN3QCaBCTk52HdAYsZSW1Hyd0AYeXjGbSJ4QM0ssEOJI3hAkCuheA1CeEANCzguekV4QJI1jCBuTXhAFsEqC8tReEBq+jjTlFJ4QBsA9oGIVXhAPykWQu1XeEAiJaTQOF14QJqufgtLXXhACOd8hfhgeECi8SL7t2F4QMdPp62RYnhA2aP6ebZieEBid+/PpGt4QDLGtaqtc3hAtIqX9kV0eEC3nfcdaXR4QDCQrbaLdHhAq9lgIM90eEDf1TnxpIF4QEyFB5h2hHhAmlP8qZmEeEB72+dgUY94QIW+CbqXkXhAqBw5aKeUeEDIO7+Hd6t4QKDCTBHPwHhA3f/zd/bBeECU1KsaB8V4QGs9xNy41HhA6DJY6gH0eEAshiYjjPV4QFRUuN4PBHlA31Is2ZkFeUAR1iW8sjJ5QPy0rAL5QnlAnlWkTMxUeUASM5pP3GR5QILc7zpDc3lAMMrvoTqPeUBhBs0/wbJ5QLZR+cfQwnlAey2QvELUeUCMX+9Ky9V5QAiNg65P5HlAV1eBL/oFekDMytEJOCN6QAa4tUcMNXpAO5VYkjE1ekCKMP17GkV6QAQ56fUuUHpAWlx/bChVekBD2pC7PmB6QJwmSSvFa3pAEoxKwzptekDZFvzWHnB6QKCvKl+KcnpAI4qlwgBzekAQsQ5HCJ16QAaKfHdHonpAkrWG0u+jekANtt1Wo6d6QJW/7YH6q3pANlqSoe2tekBgkgi4SLN6QCDK3zUNtnpAx9OgCSvDekBwuNBhGsZ6QErtm2zU03pAlAcVKeTXekDOpoLPNe56QMbMDLAqDntAJytfykwVe0B0+8N1WiV7QBQAV6QdLntA7p2p2Cwye0Cp1wHtwzN7QCtTeT9eUntA6FIejGeCe0CQzqLQwId7QDz18wPDlHtAnkksGyKVe0DluzNwodF7QBl6YdC/0XtAcmvEMcHhe0D8e7fF/eN7QFrMBEaW8XtAbo3h+4v1e0Celf2glQF8QAL25BraAXxAIHaRIPcBfED+FxivmgV8QF4vsaeNEXxAK1HAnNERfEB1tqW/zUF8QPABVnnZUXxAGXZCTA1ifECeFh3hv7J8QCQvoz7M1XxA7pZJCljifECOBt0xFvJ8QB5p5UBW8nxAeZvViwECfUAM1PmCSwJ9QMXR+1VEEn1ANCYBhVkSfUCfKPqkPiJ9QCBlNqqgMX1AxlQoofNYfUDcIsHT07F9QC1aDz3Vs31AugtA9SzDfUA+YoTlauB9QL7b+4SP9X1AkJdlwoMCfkAYdr1+OB9+QA+YcLOLVX5AYgrEhHOTfkAUVvhazt9+QK8svFAhAH9A+l6H1Asgf0Cq6+spt3F/QOk6n6y1gX9AOSXLv6WDf0B9oavDqoR/QPxbfs5ikX9AAFuIAeKRf0CALWCxXaF/QGWjc2VXsX9AvmFE41+4f0Bg+tfDld1/QFoNsHPV4n9ARGhTh/AJgEDjBZJA9g2AQMNuw1H8JYBABUCNxCUugEBkEvLqHy+AQBjZKd8oMoBAkNJRSeo3gEBI3DzUAzmAQJZLHweiOoBAJ1FzeCo8gEB+n2ze+EiAQNz3HGLoUIBAv90JZxRRgEB+t8AG6ViAQOjdZr4OWYBAjswRzwphgEAK4TtGK2+AQIKFu6LeiYBArB02Qh6PgEDGnDNVbZGAQNi95ikalIBAiaBn2LiWgECyLflAh6mAQL1c1Bc1wYBACPrTilLBgEAAPrh0EMaAQLDFAbRTyYBAasOX3yvRgEB2JwvLTNGAQEQWSfAa2IBAZq7laUrZgEAlNkYIYNmAQKHhU/NE4YBAKPmjQljhgEA4oHUp9+iAQCxZQLJE6YBA85ei8krvgEA91N1mPfOAQDjaXcA//4BAWDzyl0AHgUDAfrwKOw+BQEo10rg0H4FA/LoAdjMngUBQgJbT2i6BQP8orrqJMYFAKuh8Sr0xgUCCioBG9EWBQGx1pkL3SYFAuAe53etNgUCkYpNE/U2BQBRGOP/vUYFAlC8jAgFSgUCQtvQI53aBQNLDVfqTeYFA7PL7v1WPgUB5qB9SVZeBQKK8fAlEnIFAzOpDl/CegUDPXLvamqGBQECKodDmoYFA4kU4p22ogUDYZYBC8KmBQGT1KFFLr4FAmlqSLgiygUCbRmPCKcyBQMuNMizWzoFASvGJ1HzRgUDO9DUAftOBQPbruGgq1IFAihfxA4bxgUBS622hMvSBQMKoB9vb9oFAKnsn44X5gUBY3Cug2BiCQCpO6krXIIJAmHT5OtEogkD0U5BMoimCQJ4urb6lLYJAYaARKqMwgkCuDzs8mjGCQEKqjfmtMYJAl4Tj7p41gkA8PgiH5zmCQIL4M/LrPYJAuK3lve1ugkAoOJipmnGCQD5btipGdIJA3OE3dkOJgkBz6FdSRJGCQLA3bOY8mYJA+PNQXCSegkBuFNs2D6GCQGWroXo7oYJAVHlIeAypgkDrMIqOM6mCQKdxYoQIsYJAMjYnPKnVgkBeTpNar/mCQDjqQ5B5EYNATSU8PXoZg0CclVo4cyGDQPdSqLNxKYNA6nY0x2oxg0DPqf19WDaDQHf0YlnkgYNAmk79hpP4g0AoDPXZzBmEQBGiVuDhWYRAjUOcs+VdhECsPfqN/2iEQL5rgZf/cIRAZhwha/h4hED06ZwY+ICEQDDpzFtq2YRAtpNaRWrhhED0JJ8FY+mEQGIAlUY28YRAZghZnGLxhECk3e2NM/mEQJnk/gxa+YRA8sdxCC8BhUD2uHtmoGGFQB7n3RWhaYVA7ERf3JlxhUCYwo64s3OFQOBw0j6aeYVA7yyYUpKBhUBjICm6JrmGQBBWBGGRKYdAHX09ppAxh0AWzTRdizmHQGaPofBcQYdA9o3OLotBh0Ad0FFZx7GHQPl6R4DHuYdAoH1lDMHBh0BObaH5wcmHQHAyFUL+3YdAeMLmuwHih0C4M6GkTw6IQDTMi5Pz0YhAR74ryPTViEA= + eg5Y0/EhYkAoFld2zuNlQHipJL+oMXBAnREdidiCc0CasibwK6J1QMTSZACHk3tAiHAmTZrSfEApldiPL9KAQNU8FL+OIYFAuplZKHGKg0CcaLrO+imEQOXD2yq9woVAY5Rg3mYyh0AQ7l0tCfuHQPK8vtOS+ohA1xkEPXUDi0ACRIY/wTuNQPvPOudh241A5TeWpxYikEDhfXD75nGQQPaSsfwMjpFAaUFUMX6SkkDaqIQEQxKTQLBVAyyUdpNA8L3FBWkulECUa9YzyvqUQAbTBgePSpVAeIGpOwB/lkBPVUfTr6aWQMED6gch25dAM2sa2+UqmEA98ymfPKeZQH1b7HgRL5pAhnVqa10Dm0AfvWjMTVOcQBWeyGCJy5xAXiAJLaonnkA= - + - PxF/RELhZ0X+vnxEkpo4RiLUlkadVZxEPJwDR7EM2EQAqH9EG0/tROWJw0TsL21F+1kdRWP5hETcK4pFs+i+RIVLvURbBuBEt0BmResQyUQ+niZFLzVjROAXn0SsWNJEEMgTR1jUb0Tf36dE/Bs9RLmXKEZ7YplFXESaRZb830RivohE5qfJRO2a0EY7iIRESemSRHFR30RJv39EYE29RfQT1kSvUm9EW0KJRFvvkkRuT0lEKpuXRAhxuUT9oJVFuQcURhWtdESMvspEYWF9ReB3nUQAOaxEeUC5RMOLakQ5WZtE3/GeRMxfrEQdVAZFRmz6RhWFCUX4BD9FDUaERJJal0QadJBETXwxRciDUkfvwolESGqpRK3zcEZkhRFGKdVPRErKYUQCt+lF8kG0ReHs9kRUg55Eb/FTRBbGaEXbDiFFE1jcRLkdeEWC1idGSVNfRRjMsUTJSV9E1T6fRKwipEVuI5tE8Y/tRbcrjERXn4lEXjDvRMedcETjbRNFerZrRMI7nUT+TopGDGACRQNoeUSHvk9FUqxtREqZc0TmJ2xEMMYURZbtwETvJohEFfRWRCpiqUTfW2ZEarfRRIaj8ETvG3BFWF01RUOJA0WTd4VE+uW6RdJNQkcWLe9EeWSMRIhuxkQH/thEywYBRlXOmEWiyXNE2AnDRNlpe0TrhHtEPIiLRI1700RUW9NERQS3RFKBiUQvmGdEyp6iRGmz+USgFdxEUKuBRI5Bu0Q56rJEn/B4RNpfJUWzj/tFM/FmRBhLn0QKUOhEXkSbRCaWrkU7kBRFb7GdRJhJNkWlHVZEkqbMRPQWtkS2xoZEyQqARBU3FUUBTQdFU0kgRc46J0Z8a29EJknyRPQN5EW8uR5Fi1s1RQsdgEQXIZ1EbTRPRnqrt0UJx3NEtb6URJpbzETsdVZEMcK3RCqHeESCOcBE9rCkRG0gyETYN1BEgY3kRHj5gERfwEtE0HmLRURSK0Xn1ZdEKLWVRB+FxUSBlPtFloPCRFstyUYcPK1FUK2JRVVLy0Q8/3lEG7uNRayjn0SNqWpGJ/CERGP2mkXwaDBFflUVRfbqiEXRmmtEdOLERA6mu0Xy6u1EHAadRNHCGEXloeFEbLn5RCbZeEiJHD5FSxCORoPA/0ddcARHwRjLRaFQSEVgXjRFj5reRKoGKEU9S5lETlnsR6uLwkYthMJGhraqRWH9nEYrhtBEJMGHRIPYHkUQ6Z5E2IxgRBGQdURtaodFKE6NRPGKpET5pn1EnGXkRIhW0kQ9b69E2t60RBuPC0VCXGZE/OiwRAN3lkUCioZEOfSERAUwNEZCI4JEoxuLRT06ZUYBazhFrbjnRYPrhEQyECJF7yD6RMNylkVVn7ZEox9oRNDi60SPDZREhQsFRUVEBEZcFEtJwpMTRUjrXkU60/xEDW1USAmOj0SdfBhFrbiURk6/jUTOSu1EsTPIRIPhdkSIOjtFV1aRRZA0BkbBE4FECFT9RMGUiEQ7CIxEhnGWRUfdrkTOq4ZEVehyRB2wV0XC1YJEDBztRcizsUQgRf5ENTv9RCl2k0RY7eZHgORURFx37Ea7+4tGvE4jRdvBrkRFVJBESw9+RGwfAkWleYVEkh2KRAy3CUVjsxlFEFODRdXvxkTVjYdESufzRJb7g0To8+NFwyyZRIWfwURIF3JE3gldRNY8A0UjW7NE/9dXRvATdkXA4VhE/A+LRKnGfURFxYtE5OekRGjlsESkJ5tEMWYlRfi+iUT9/GFFWFm9RKZsrkTGl6hFQSSkRm1j5USTaFJGNV0URXlOtEVkp5ZEFfHgRaXH10Wggq5EuNfLROigz0QZyr1EmLv4R3uG50T1j+ZGSPY7Rdbep0bkjD9FdQOARL6zl0TwtMVEP0STRKElW0R0VWxEj6MARaGPS0X0Y+JETC1ORM8edkRm3GtEOVqfRDDroERhVV1FiG2IRD3xqEVQBydFF/vlRAmtwERusztGMdKBRLrCWEVc80JFexa+RMjWnkRmbMJEyVY6RZ2KkkSFp4BE2fNsRQ/qXUQDRt9EudCBRJitLEUiaUxEYuqBROmj30S9Q1lFwVOWRgi1p0QqythFJSWQRFE+yUS4iyxF9ARPRT5T+0RuGytF+NauRGFSBkWmCAVFwCqASG6lzEQANPlHt+epRM9Zg0da4pNEcJhgRm1dokQJQ5dFcTu5RPpEtERmTNFEEligRG9EpEQ8Jx5G4x1aRR7wB0VuNgVGj92xRAk9YEXoMRtF+PS6RC0bpkeoQTBHxuebRQCg3EWfgi9F1PPFRGtTOEWhzyNF4bShRUHWwUTy8edEFb2NRZbDZkTGN4ZFwKj+RJX/bURVUTxF7OGNRNbvgkVp1CVFgC4FRcU3xUQ9c99Ejn5ERmEE3EWF4bhFertTRTTtQkZnfWlFYW8qRfTPaEf91OtG4i24RFdGx0WAhaFFy/5FRfo2IkUIcsRE7ysVReTXBUXe9JJEBxvURxejV0dH4vlGycpRRMUgv0VfUwpGigYiRQCUEkV9hdFEaY6RRP9GzERoatlHEYVKR5pkAUfHggVGO1NHRWy2jUTvC3ZEbpN3RJ/53URKdV9FIMUgRXqbzkUbxVJF2sk5ReYnhEQOCx1HGGSGRrEwMEbzBINFaqdaRdVA4kSfFJlEW+ufRA559kYJrFBGQ+QZRjD+jkRMKIZFQq6NRAOhD0V5VVFGEnXQRUdblEWfmXFEhIHQROsaEEZSmbBF22pfRRT5sERsbupEToeURGdFgES4QvxE2h+IRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - SEI7DnnAckBNnEXsb8FyQEwI7+pPwnJAL40JRafCckDwmH7tO8NyQLFijhnFxHJAJOjdQ1rFckBRH7KKQ9JyQFrAoe200nJALVVBQUjTckBq48o9eNNyQLNvMOtg1HJAlmmqSM/fckAabI6dI+ByQEUl5UW34HJAMBDGTlDickByxNyNkeJyQBZCx8bC73JAIS9IzMnxckBjtUgdt/NyQHNiqmGk9HJAcMBWT8H/ckDegxGeRABzQH/UGkhiAHNA1BvhsPkAc0AHvbzXTQFzQIo7i/mNAXNAuhaR788Cc0DJ2gXg+gNzQK7iF1vhEXNA3t1BjwgSc0Au4KM2vBJzQLChHZMFFHNACn1mM04Uc0DO1058eR9zQNbTkZkOIHNAdraPtKIgc0A5HaxgOSFzQP+qrDNpIXNAjGiPoQ8jc0BI2UTUzyRzQG5FQCpHMXNA+d3/LFwxc0CyAsyPDDNzQNKAnPqjM3NAt3BZrdYzc0DsoI66NzRzQNRBmH5BQHNADN5/yuJAc0DKROyxeEFzQOqw6kV6RHNAJcy4zEFTc0DQnOdUpFNzQL/LHYuNYHNAQpI14hxic0CyutBqPGNzQNReAopIcXNAyinf3mdyc0A2pSKFkXJzQHiEM/O3dHNAOtaMREx1c0CyD5ApeYBzQGhScXClgHNAz12Hgg2Bc0Bm9pbax4FzQI+tqmVdgnNAQoRG+oWQc0CDmZk3TZJzQLpOpYbQk3NA3NFpQmKUc0BgQV9i95RzQKCV5LGLlXNABuIfdbigc0Cy6908WqJzQGTvnT/monNAMsmdpwSlc0CKe782x7BzQHs4pvY0sXNAaurlE32xc0DY95mi9LJzQCDK65y3s3NALK2dVQy0c0BEA71+98BzQOPWn8nPwnNAmFJwECbDc0D0DzAM2NFzQB5UHJwz03NA4LYOg/bTc0CRESfo4dRzQAMYuyuk4HNAOAG6wzjhc0AaJEsH3eJzQGMo8Oxn8nNA6nwgDLjyc0DQYk/kNvRzQLheFmaM9HNAFDozh+UAdEDeDGuUeAF0QA7snMqmAXRAnk8+fQkRdEA7hrhBeBF0QBjLtSeLEXRASrReVkwTdEDQZt4UTCB0QCRyS2+NIHRAvdL0z7ghdEAMwYgiuTJ0QDgEKR7UMnRAT/A5k+YydEAUgBsxWzN0QBwtZUb/UnRALzTJOvdUdEDtDBcrjFV0QI7Ah5+4YHRA8E1HIQhidEBqUhGdT2R0QBQRARUta3RAftnK9yJwdEDf6YRNQXF0QN4yNDs5c3RAHa914jZ1dEAgSTFV+oB0QENBI6dOgXRAqgXfZpKCdEDQZuuOFpB0QG4O3LxqkHRA7OEhjtCgdEC1Gdg0t6J0QFiaMCHTonRA6RM3YRCjdEAKHwQcCLB0QLpRTjvkwHRA4JCwInfBdEApX3506MF0QHRuWdoPw3RAHiCcryDEdEBs021oucR0QO6CsPP7znRAu/rrquDTdECceI0aeNR0QHbokNjO1HRAJRlE+rjgdEAyFqgyuOF0QMjK2KpP5XRAwgju94zzdEB5ZBS3owB1QCW28AplAXVAlyMLVFwCdUBYk9HVmgN1QCOV0348EnVAwEF/7yQUdUDSL2QGnSJ1QACLEtfMNXVAxm/Dy4BRdUBez31YJlJ1QHtCojNOVHVARPqQCXdVdUAZPgCqD2B1QI5tPdg4YXVAwolJifNhdUDGlHAueHJ1QIT6aGCNdHVAjN4ZuneBdUCorMPDroF1QBiZOVsRg3VAAEhFbaWDdUBh8mthmoR1QMGGqBa8kXVAsax8TT6YdUAqBniEl511QIfqe1WVoHVAfkWUF1KjdUAfeRp1lbB1QAJpGzvnsnVARESZkjazdUCOaO1sfbN1QOh4agLEtHVAYOHnLmPBdUCjOzpP+MF1QDdHu40r0nVAMR3uQMzTdUCCz1Dp5N91QOGzzAII4nVAIjQXakgCdkAu2YN00gN2QPT/JsMAE3ZAujHHIQ0WdkA78SAkkCR2QAy5dvIfMXZArpbANp00dkBsQKM9HkF2QOBK19l6RHZA4vYTRRJRdkDIGk0Lh1R2QGiMiGbNVHZAPI5mOc1idkCkePP92mR2QAPVpY0oaHZA6vhAV2mDdkA2y8I9koN2QLw6efZ3o3ZAqOR8OLmwdkBs3kZvw7J2QHjJbXUNtHZAuKUdCL/AdkBGpNpnHMR2QMqyurPPznZAVMtRhX7QdkAfp5zp9OF2QD6FNxCR83ZAcGQuGDQCd0CkQ3+GLQ13QMPdSmdQDXdABpAfSQISd0DcWj1IqRJ3QM7/lEkAGHdAF+Lwpksdd0DQ+feUXx13QKzqavINIndAbi6RfKoid0Acz3s5DTV3QIAlHticQXdAbmWUOhtFd0ACcb5bS1F3QFT34LqSUXdAslYe1idVd0Dy8wcLSmF3QOqZBCaOYXdAN4V2pidvd0C4x+Dt2nB3QNb1RuWDcXdAkB98UOOBd0C9V/P0d4J3QMisoE16g3dA4KXhlKSId0AGd4/ECZJ3QOAHoJ1LlHdAiFjZqJq0d0D3/O6sjMN3QPIg4Mvi0HdA34V5XDjYd0DUoIVH6+B3QPCk++JQ8ndA0komaG4ieEDoHbETDUJ4QJRaJrt5RXhAMOZo9ctReECMZl05lVJ4QBKkbSqHVXhA+V4dbu5XeEBkCAT0Nl14QIZtItdKXXhA0XOPovlgeEDCCh2ntmF4QICCgKC4YnhAvDriolN0eEAMG4TIZnR4QEGQ7luLdHhAzubCmLp0eEBU9q9U83R4QABJEzn8dHhAmkyK3aOBeEDXJMVzmYR4QN6RzpaYkXhABsaFhKiUeEAF/HkRd6t4QDiHH4LOwHhAoicOULjUeEDkaHcQAvR4QBUMk/qL9XhAmgtNAML+eECe3SIwFAR5QPy0Yf6aBXlAS0h+jxMseUDBeMW+90J5QFTBJ1/NVHlA+nO+FNlkeUDMX2VY2IN5QF4x34nAsnlAsmSstULUeUAMPi8yzdV5QEiy1nC/4nlA2/+Q81HkeUA0q8h7F+h5QBRh5pH6BXpAHLHV7t0mekATfxoyDDV6QLSUCMwaRXpAeAQ5hS5QekCeBpXDKFV6QJRPc+88YHpAQ/B1x8RrekAgFQ52Nm16QCBDE1odcHpAKQ8j5YtyekCx7YEG/XJ6QKk34kEKnXpAVaxzekeiekBCz4Zu76N6QOpviPyjp3pARgExKeutekD3vMoKDbZ6QLSk9S0qw3pAykyGfxrGekBEComs2dN6QDyjwnk27npA0FtxOSgOe0DMyCTFTBV7QH1nk5dbJXtA+OuX6ioye0A+RtsoZYJ7QHe2XLuci3tAw7HO0+uQe0A4uzzEIpV7QLo/gkqo0XtA0Er/tiPSe0CivDhYqNN7QImlFXIn7HtAFGIxrpfxe0B7xGD2i/V7QIATHqnaAXxAyOjfz/YBfEAI2qScmQV8QGhS0IquCnxAfjwrZYkRfEBgDmtm0hF8QLwQdevkIXxAHEGsWc1BfEBy50oR21F8QH9pxSwrcXxAYDQ+Pb+yfEAeq0QXzNV8QK/tq+dX4nxATW05nhfyfEC6ZaynVfJ8QAxsBfcAAn1AJKT7oksCfUCmtfm8RBJ9QEa3cMY6In1AbnR7a54xfUB0LYFZ1rF9QOqPV/pis31Afk8htdOzfUBkIsDeJ8N9QLwuLWlq4H1A+Tk01I/1fUAN+mvvWAB+QJREEANCL35A1u7vlSJOfkCy3foSDpR+QES5G6XP335A4HigXNXvfkCk/rKLIAB/QN3nl+nBCn9APIch5rdxf0Cwpm35o4N/QAKjOKVBhH9AIY+h9qqEf0ACnUHyYpF/QB4QL0mqkX9AAgcc+5iTf0CwQjV9XqF/QH8gcHFVsX9AwpdC05Xdf0CWTJky1OJ/QCj8wJTz4n9AWi536IXtf0AdCFiE8QmAQIDE19D1DYBALieo6/slgEC7Dm/xJS6AQIJuwegoMoBA6MK/mwA5gEAVrjERLDyAQMteCoPWPoBAKCMe7/dIgECEG7Wd51CAQLMyF2sUUYBAdgOVo+hYgECqoGZpDlmAQNQ2w+8eWYBAYFf2bQphgEAGHBsAKW+AQLyGyODeiYBABO2F8h6PgEB0lz4UbZGAQIIss70KlIBAv3uFgxuUgEBL+8i/yJaAQC5A62uGqYBAtonni4WxgEBV70CRRLqAQHRPmJdSwYBAZaEcBhHGgECsKF+NU8mAQCgaEisSyoBAL2EErivRgEBwA9VyTNGAQNarseNg0YBAtHlvL0rZgECsPX0uU96AQBHqchBF4YBAwKesCPbogEBsc/sdS++AQBjjBnU//4BAD7P7MUAHgUAysoBlPA+BQJCCI+00H4FAFs1rGjQngUAWJc8N5CyBQG/cj6PaLoFAAIfoLHoxgUCe4DfXijGBQJ4kNiy9MYFAl3+geaEygUBNHZjxJDSBQHR2X7g4NIFA/gYCL/RFgUBceeQ090mBQEmTBTH8TYFAeeq2J/BRgUCoZmdsBFKBQN1I40L2VYFA2GVnVeh2gUCmV2BGlHmBQGjuu+JAfIFAruK7ClaPgUDar5PpVJeBQH6lPc5CnIFARibJne+egUDnOvL9n6GBQDU2nCbnoYFA/PlvKm+ogUBMalq4Sq+BQGQqXxwqzIFAuWbWQ9bOgUDg1D+3gNGBQDtmD/Is1IFAT2/FqtTWgUCgO4yvhfGBQKTG+kYy9IFAfpq9rtz2gUDD/HF1jvmBQOgVqg4v/IFAFsnIfAEJgkDQJpux2BiCQP4Aj+vVIIJAKdrTntAogkAYYKF7oimCQLSBHYulLYJAnFI5aaQwgkCK55nJmzGCQL+LDhueNYJAbk1jGLI1gkCqLJNcozmCQFTQbObnOYJAuQk20us9gkAr2Mtt7W6CQOhznRiYcYJAgXcIXEOJgkDA2KTvQ5GCQFz2CYrklYJA4GEIrzyZgkBAIKE+VZmCQGxKYoEOoYJARuzXeTqhgkCE0jBSDqmCQMA1s2I0qYJAhmvY0AaxgkA/nplPQM6CQDJoeOGn1YJAV1c8Ea/5gkBvTOCseRGDQJ2T1955GYNAnCC8U3Ihg0DaAXvziSGDQDXKyUxxKYNAGFmaMmsxg0AIq22sWzaDQFGQXDu5UYNApyMeepX4g0AOk6svzBmEQLDdcmTRHYRA3pTBHeJZhEAY9YA85V2EQFk8e8zaYYRAGJQSxv9ohEB8ZnNt/nCEQKJRZFz1eIRA36drr8F5hEAdutwsxX2EQLg51VZq2YRAfsmzVWrhhEALt4UlY+mEQOxJ0LE18YRAfJDOCWTxhEA4cgeuNvmEQPYN8M5Z+YRAafInAy8BhUDWBD4voGGFQJyKJwagaYVAAuQPYphxhUCq03fHm3mFQIiQwASQgYVAWNQVgNiChkDShd3dJbmGQMxja/CQKYdAaOVXvZAxh0C6j2DMijmHQGKJ6IOLQYdAWAxXt8exh0CmJ1ogx7mHQKqN/Ry/wYdAis770APih0BaV6Q29dWIQA== + KBZXds7jZUA8VWQoKMVvQKPid1q/AnFAwDM0RRdTdUDF63mLQnN2QE6LgGTvY3tAU0PGqhqEfEA= - + - vvWSRC53X0XX2LJE+YVCRse/8UYfwZ5EYReBRIBSBkcxibREGAcjRYg9lkTPZUxEylkFRXSzZkQ+NA1F3tJERcxG+kQ0Y4JE3/V/RZGJ3ER6vKJEZ8/wRJclcUV/uuBE67XURH3UgERJEotEuKq9RMjAHUfqPGlEPwXIRMmqHUZAoKJFG6OgRGoo10SlO6FETObLRMa16kYRYElEF77URHIFlUVM1yJFYmvyRIInYET7jJBEpX+4RAVplERa2oRE0DTBRPRVkkXOkBRGU4uXRLbkgUWV8qJE4MKQRL2QsUTAcY1E5XSlRMofh0RQ5KhE2AchRdCo9UY3A6ZE1L8iRQktpUT7mq1Enn8FRU58LEc4tIFEhgTARD8kVkYKO4dEiivFRSqF70Um8c9FASQVRVpmO0Q195BE/IGhRFEfWkRYF1VFgT4uRe7FCEV2lolFzfE4RvWSDEVdd15EzaKxRDrvhUUb4JNE3F4JRpe7hESH8YZEkuN1RPs+G0XWn8dEi56qRFOWhEbrtphEswaBRNxieES4upZEB3NvRTRPukSB3oVEJswCRdG12UR+y1dEMA09RKQgQkRs04VEEHHCRBrgIEV5e6VFJJk5RUVypETQwNtEL5SKRfdrKEeNMQpFNNmXRBAyMkXYtAJGuBaRRLg1tkWGT45ERyrtRF1wuESie6tEay7HRFcTukQ3qbBE9FiyRNtFjkQiJJZEevB4ROG7C0XAfRxF3eujRM3/h0RNIcNEuU2ERPaPP0UVyHpEzv6sRWBN+0TYy4NEYRIMRR2RhEQPpYdFXUcYRTYqpkQMNFFFDRyIRJtIgkTKjJpE4Qz9RA/E4UTcnApF7+J/RNK7zkSKEyVG7arzRPPYhEVfRn1ECfhcRRFqrkTrqpVEr/INRvhAY0W3H7ZER0aSRGzJnESjzdVE1eWaRNBpw0QCqmpEQBWjRL8M0EQbdMFEMOC4RPBcY0SnVj5FRQiCRaI0EkXD1XhE30eRRGrZ2EVyP7VGGEKvRJj+nEW6kjRFJT0BRW/Ke0TM3UpGMaSiRSO9BkUN5dxE9q5wRBS/j0WZm7NEY/CMRJ5h3UTROnhFzPuNRDZEjUREnUdFb5qVRMWlaUTRSYJEKn4HRQozAEXl0ZZIVB1pRjBuKUhN8Q5HBunMRVdu3kUAv0pF4nEDRT9u1EeMrcNGXi6sRjfhUUW4volGceAKRTIAjETaqgZFju2ERZtEw0SDroVELzZqRG0NoET5LERFiSzmRA9ByUQPeIJE/Ld1RL22nkRQDIJEpu39RPPQp0Qoux9FQFIrRTOQbETaniFGCAeeRXz8ZEagkD1FhV0eRjhArEQB1JxElExBRWUbAEXcJP9EdrtIRfu00EVt1kpJiDCrRdfxXETOTH9EFdxWRfPvUkgoIe9E2PmHRjKLw0SjkNpEPcPNROl7sEXO1txFfcl4RHZ3p0Tcs95EoZ+ORELuu0QGbKRFDyS5RJG3sUTrLD9FCivjRRskB0U+165Enci7REvQWEQDj8VEgmCbROt84kfd3QBHbG1uRnK2KEU4l6lEi3ajRKzHm0Rkwh5Fo5myRHvGn0SeNYJE05U4RUNOEEXjVKZEu8q2RDUwkkXw5XNEh5XZRNLAdURcr/1EbUHkRL+TPkbFBypFOwDrRE1lnUSp27hExqaKROotrEQcYJNEPFQvRT9C0UQR6W1E2pi6RTg5uUaITG5GBakKRWjl5UUXJblEhsaoRESA1EX1fIxEy6DPRVNr80TC0gNF8igVRdaljEQVnthH+vEWRTf+4UbdYSlFqGGVRgElSEXlFIlE/0aQRDsGvUTqRodEZul0RC2oaETUsZdFMcnRRC/8bEQNaFtETLGMRC1tjkSGHaREoh6kRIljbEW5xGRED4u0RbAzhURIT45ENUUERQWOQEZsoJFEREdfRLPeGUWAQzNFJAYqRVR6ZERIR3lEEt6TRJDQxUV4kIBFBO3QRE0gakXsMQJFauPaROD84kQn1JhEHRMPRdApOkWsWI1GS25tRO9yoUW6plBFCWuLRNIvHkV42lpFaeOARYfCGUWj7dxESv2hRAnNYETGjahE1GRsRPj9UkSp9GBIFrm+RGifxUeK7IlEkh+2RLLRVkcsmHhFMLkzRu2GiUTH9JBFoy/NRC30okT5CBxGzz89RQ+3IkW9uRdGX00NRawzY0SUZUlFh262RK5pDEUUEPBEQXx4RLrilUQYrpJExyUASP65h0dVK2BGp7lyRczl5EThc59EdbB2RdV8SEXIAxpF0JGpRQDd/ET2PYxFg5cQRYs5lESMSjpF6pX8RA33TkVxdgdGMMGSRdnng0Xigg9FJyfBROwTQUYMczFGQRx0RSisGkVkYZZE+3KLRKMpTUbN5m5F7+HXREBLSEddNtxGFnaLRNd300UKswlF442FRGwCnETbuaNFjosaRb8S10TyO9pEQI7nR5JDU0es51NESKrmRrNkA0XwLLVF5kb9RYhP80ToQRpFo7+QRCHYnER9Rc1Evk7EREu0wUdgcxpHYL3CRmIRGkUxLvlF2TkfRdpVYUSnLlVEzWahRO7otEQDfqxE6e4MRpOCXkXjoLBEYFbPRTELY0U/d6VE8N+VRIMogUSgFRtHqOeCRnCsPUYiXXhFwn5fRWHAEEXG069EBu1yRJK/60bY61BGpavPRS2NGkWtj3BE0yF/RDny9ERxDiBGnVOrReC3UUXxGQBFvJ0GRgrUekUgNhtFpVtoRATBiUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - IAXqX3DBckAIcXtZUsJyQComY9KmwnJAEvPoRObCckDZxNgmPMNyQBA39PHFxHJAkjLgRFrFckCEkbHf2NFyQAILUMlD0nJA/KZSG7TSckC4QanGSNNyQJaUVip503JAaEazd83fckDoY3pzt+ByQEOoPjVR4nJA/u7tmJDickA6gfMmJuNyQERCdt3J8XJAHHxsXLfzckDG3XxrofRyQLPl3r/B/3JACL/kGUUAc0DgtlR2YwBzQEw7KfD2AHNAxHKKqpABc0Bp0ZXlzgJzQI60Ocr6A3NA+mLsKQsSc0BmPfmueBJzQBNdNvm8EnNARIOUnfgTc0CvAQ1ZBRRzQHKJFPd2H3NALsRXqKQgc0Aa4NiMOSFzQL/qsfBkIXNANv95dckic0DMtsDNDyNzQLSnko0EJHNALo8ihs8kc0CdkkCBRzFzQChT/+1XMXNAQr7G3rg/c0BMrlRx40BzQLQslct4QXNAiDpfb71Cc0B0np52ekRzQDm1Ch2WUXNAtDN1CBVSc0A+Jc3EQVNzQBmM8ASkU3NAgGoEuYZUc0AGDpNcjWBzQB4/D2I5Y3NA5+NgsVByc0AGPHzJZ3JzQA/eeke3dHNAQASwBE11c0BGGRoNeYBzQH4W0JGlgHNABc64EQ6Bc0DWLz+aXYJzQPLRTeCGkHNADzDDak2Sc0BS5mFyYpRzQBxc0Bb4lHNAPybotbigc0AUGDbSWqJzQJhs5HHmonNASVfJpgKlc0DgQgUgt7NzQCRegOgOtHNA371/MPjAc0CaStWY0MJzQJl/N6Mlw3NAQyMb19bRc0CEdF8t49RzQGwMAz454XNA4avcVNzic0AYSMfaN/RzQOYpm+eO9HNAl4CG+k0AdED0VjgFeQF0QBBKkRalAXRAfFW63ocRdECOda5WTBN0QH60KxZ4FHRAYPySfEsgdEDWs9gvjSB0QCw/Et24IXRA2H8kmVwjdEBSqbu6uSR0QAKfoJxUMHRA0DRwD7sydEDOJIYK5zJ0QKRAkbFSQHRApU6Gv3lDdEDMX4l4/FJ0QMQKaLX3VHRAiCNoeY1VdECTKQmeuWB0QOV9orsIYnRA2qdR4E9kdEDL8wXqInB0QG7C+5xBcXRAR3bY5zpzdEDZoDOKNnV0QMLelHv6gHRAbiSOn06BdECzbGYFFpB0QAyhahRrkHRAbDg/Hg2SdEDG3wHbzqB0QFaOzT44oXRAj4wGK7midEAE+Q5P0aJ0QMSrQTsQo3RAqnUSxwuwdEDYbHrR+rJ0QKwkfWTkwHRAfVidFHjBdEDdypEIucR0QBKwq/ybyHRAypQxL/zOdEBcNvcy4dN0QOROhajM1HRAwJTAeLnhdED95TGZT+V0QJ1cdzeN83RAHJivDWQBdUAQP4tMXQJ1QEgAnvw6EnVA4J4QcyMUdUCWLKW6nSJ1QJgLwvfLNXVAnNuFfNlFdUB2lODl3E91QFakMVuBUXVAiuOhWU1UdUBH9Rnhd1V1QCq3WXvuX3VAUtjMWThhdUBqP6bddHJ1QJKMDZ6NdHVA/4tN+XiBdUDqLW7XrYF1QK7RLD2ng3VAnhswsZqEdUCKWiTzcJJ1QO4QE1M+mHVAaAinc5eddUDYgn3k2591QBAaLl24oXVA1NFzBueydUDk/7qnfLN1QFyVoHU6wHVAOPEmbWTBdUCgQQ+V+cF1QO4oEIVQw3VAKido/czTdUD814c9D+F1QIien4wI4nVArqI/yEgCdkBklFdG0QN2QGxAk+T/EnZArkptUgwWdkCoXACPiSJ2QCaqP7eQJHZAFg2u9x8xdkAgjt8snjR2QEJVXi0dQXZASL4cIXpEdkBQW0iCylB2QGWB80YSUXZAQYzG9s1UdkBTUDfHE2F2QBqcRT4dYXZAlopvVsxidkCzwBTs2mR2QBqVS0MoaHZAphMhZWmCdkBwXtNjkoN2QFCE1MzAsnZAKrXiZA20dkBOztc9wcB2QIR+ShrQznZAvlSI7fLhdkC92GMAkvN2QFIiGqQ0AndAhQKcrRsNd0DKV0m3UA13QOLYOeZ8DXdA5pcGqwISd0ASntN6qRJ3QMD29p39F3dAniixRk4dd0D4AoteYx13QJ7gaMoOIndAf9pQ1HEid0AkVqIlpyJ3QIlHsPy4JHdAFOWs9Aw1d0Dy2tfZnEF3QBy8eu2yQXdAXbpNExtFd0C4OHGlSlF3QE4dQhySUXdAMmzEhCpVd0Ceab4NjmF3QCSkPosnb3dAFnjuYdtwd0DI61DnJn93QJ5N/fp4g3dAj42NP+TQd0BAfRAVN9h3QNxJS/tQ8ndAnshJjk0VeEDRNB/fbSJ4QJbYKVoMQnhA//WdBxJEeEBnrSqLekV4QLdqjrjLUXhA7PHjBpVSeEAtqPYSiFV4QIi8ckPvV3hA6tMfi0ldeECur1C8+GB4QGFk22m4YXhAOfQdH7VieEDavWZDpWt4QFr1NikOdHhAaLoZ8CN0eECK7DngUHR4QIcP4kZndHhALB8ppYt0eEDnE5UNqHR4QLR1sQC7dHhAIVvwdup0eECs3IyK/HR4QHQBXZulgXhAgTB263SEeEBMK5t/mYR4QBrbMhuWkXhAIKOovqeUeEBcM5lKs6R4QCJsOInNwHhAbvqwWQfFeEBOiTvrt9R4QDVKu78C9HhAakLPGIz1eED9U8QfmwV5QE0HC1KsKnlA6/KJe7UzeUBqDiqH+UJ5QAI5RlDMVHlA9HkttelgeUDpKSxs2mR5QGHoCe7ag3lAfVITVr+yeUCn1x9zQtR5QHfgwpPL1XlAYYfR2r/ieUCmyeQQUeR5QH3lV7QY6HlAq/vJJ/oFekDO+7qvOCN6QFxn8GYMNXpAvl9/mhpFekAw3ZCpLlB6QNG4eDYqVXpAa6AKhT1gekAshoLHNmV6QIin66vGa3pAYz+djxxwekDawSGdinJ6QFl7wJoAc3pAtOAajgidekBsbBb0RaJ6QAp1lkzvo3pAhtJZv/WrekAP0afa6616QMq2QY8NtnpALmElAOLXekB1bOxlaOF6QGIKNe827npA0p2RvBbxekA84fUuX/F6QMIa+a0qDntAd4eLQU0Ve0DogqExWyV7QBjqSkQtMntA2aD3ZMQze0CEZGgGaYJ7QBm0w+IilXtA++l4dHnGe0BDRj65vtF7QKoY+/z943tAvp5biYz1e0BO2U04kgF8QK53jiXaAXxAsBm6nvgBfEDUj4ximgV8QG4rp/KTC3xADdTS+YkRfEBdYT9X0hF8QNMgjirNQXxAWs2wzClEfEBy7aox2lF8QPJn9QAPYnxAtDrmhbWjfEC27F4hwrJ8QOhGhcpX4nxANqS05hbyfEDu3nVNV/J8QDCcrPoBAn1AvqXcQEsCfUCcHLSXRRJ9QDRcLOAoHX1AkXVtizsifUBs8fxRoDF9QKqvERstw31AUo+hz2vgfUBHqyNn0+J9QFZZbYiQ9X1AvNUtojgffkAOnEYkQi9+QEQhFjqLVX5AaCZL+NmQfkA07Gn01O9+QHPeCrkhAH9ATFL+asMKf0AUiSLFtnF/QFBmtJavgX9A7xGm+qODf0BWTKHmp4R/QMC5GKFikX9Ar+wxb96Rf0BTXj2pX6F/QHmjOT5WsX9ApzHyaZfdf0DyABts1+J/QH4PH4Lz4n9A4pzib/EJgED0eXpJ9Q2AQPzTuVX3EYBABz6GjCUugEBK/numKDKAQHjwg7KhOoBAx423Oyw8gEAUPHN++EiAQKxHFnDmUIBApCxQtxRRgEDZaVhb5FiAQLRNrOQOWYBAnFXKQClvgEAsDYNIBXGAQJgJVsYod4BATiOzUN6JgECcJfX3Ho+AQOwxmCRtkYBAKWvdNhmUgEDfbfVmxZaAQGbKJjiGqYBATtZJA0W6gEA8BrY1/L+AQDTGbJJSwYBAsuUAtVPJgEB4p14fLNGAQMyT7OlM0YBAxiua/krZgEBQcPZ1Ut6AQFFZsZFE4YBAXTpUgkrpgECE8PoBS++AQEZaNW8984BAfHzgzj//gED6wWBoQAeBQLKY4To8D4FAJLI1FTQfgUD2EcqCNieBQJalIhTcLoFA3Xuce+QwgUCEWzFFezGBQKR9Dzy8MYFA+UIcKSc0gUDzqzDpODSBQMckP6fJNoFAmK2GLPRFgUBo+ZoH90mBQM7J0cTqTYFAvFRw+PxNgUDQfcPW8lGBQP5DDHjmdoFAusXnrJV5gUAZ/B5dQHyBQCDF781Vj4FAtWGTulaXgUBq71OrQpyBQErl0jfvnoFA2hQK6eahgUAIPJovb6iBQMyCEmTwqYFABtBFdEqvgUArmP/kKcyBQHue9cDWzoFA4CSbDH3RgUDKOA/jKtSBQOj3ZZjX1oFA2KGKuYXxgUAJKJtrMvSBQL7Krzrd9oFA0jI2fIX5gUBLPiEsNPyBQKFYTRQDCYJA1MlrzNgYgkAIWEYV1iCCQF4WqfPRKIJAz1ODLaIpgkC4kc6FpS2CQG2PwrekMIJAw5pJy88wgkDLHULbnjGCQPRRTiinMYJA5aODdKI1gkCAXQp25jmCQB5nbETrPYJAfnRjZu1ugkCcBhqrmHGCQKUQ4F1HdIJA8lktZEOJgkD0+kXtQ5GCQPZWvqE8mYJA5GhVc1WZgkDOVqa4DqGCQJ91fUw8oYJALIjGVAypgkB4pnbBM6mCQPq57y8HsYJA5o6fe3kRg0A9xrNfehmDQNz1M/ZyIYNAdMT2uokhg0AoaJx1cimDQH5H+uBpMYNAnNyqhYExg0AOc1fqk/iDQEzbdKLNGYRA4v+i8s4dhEC9/jqH4lmEQNWIusvmXYRAHpmUMd1hhEAaXWSa/miEQGL5vzf9cIRAXIMcQPl4hEDKm+w+wHmEQB7UymFq2YRAhA7ApGnhhEByvUl5Y+mEQJ7SDc828YRAAkgsmGPxhEBk/yYHNfmEQEHhy4VZ+YRAhkF5tCwBhUCe7bm5oGGFQAQDIrCgaYVAMH9G6JlxhUBm9NidmXmFQHGo1lWQgYVA2QGISSa5hkCw5hYWkSmHQI9mwkeRMYdAvWUo8Yo5h0CpIkEHi0GHQLNppTDHsYdA3RGZDci5h0DkUfyfwsGHQDEP2+K9yYdA/mJi7QTih0A= - - - - - - gDxPRfbZtER5+jJGWQlyRMvJGUdO5bBE3vTDRCmjkETIMQBH/G1tRNALL0WJ4JBEDuLERGz8jUTBzWVFKheCRHqRgkSK505F4TKuRP3Ut0T/9b1EHvqHRaEjn0RINs5E5u+cRFr8oETHWRJHXYaaRIcXjUSZVlZGM71+RSGkdEVFpqhEAvyoREb82EaUkLZEfneuRCy2BUUUg6RE/BvKRRHEt0RBy5BEaLSdRKekvUTon3pF1+qKRHQ+EkbshWVEDRZsRPbQj0QXdJNFpmC+RNvLr0Safv1Eka3VRFPK3URudtZEFF80RUP180b1teFEU1q1REIGlkQuiPpE9a5TR5xu00SmAWVG76UnRugxw0Xji+ZFElnjRI2pPkWkVthEQysPRbGWskUoKfZFqPYJRWINmkXNOf9FRw6XRLpR1ETuPIpELqtsRL1YfkbPlSJFmb2XRGNhQUWi4YpEiJqiRAmWh0RduxpF2uZfRNdMikQLRbhEGPAiRYGSjUTZCW9EzGSWRIA5tETmdI9Ey7jIRKLdi0We8Q1FqWvYRHU6ukUtd0tH0SQLRY+RbUTPrDFF2mDaRWMFuUWTo7lEoiaHRKRxsUTaPKxE+nKcRCJ9p0SqcjhFzLC6RO1tb0T3MflEh29hRDLzHkXlW5JETZqWRDpuYUQY0qBEpaMIRdWihURPlrpFNMvDRCDdE0V7YCVFSMYURYuudESx5CxFs4+IRAiYZkRGRn5EZS2FRBI+0kS8unlEUGcBRVcg30R1Uh1GiEnWRAhu3EVs3AlFaNvSRABZiUTZfmBGZIpBRWoRn0Rjv7pEGS+jRMCD90SCGXBErl6JRGqNCUWROYVEzZndRFidiERmRhZFg1aVRaHPFUVgAMdEMsOFRJarA0Vzx/BFz4WlRqUPyEQm6qlFjo5aRQueokRJuhdFshZGRqzWZ0Rwn2hEE4WIRfix7ES1CQJF/OSMRH9SYEUgjgNFr1B2RZ24pkSyKSdFObqQROPtKEV9dO1E1ZTqRFH5rUh2pNZEk7Z7RuakS0h1t69HdREvRvtNokUrhUFFXkpzROy/a0XKw3NEesbrR8sks0Zgv4pF0/akRuROaEVMbVtGvVrCRF3yJEWgNjhF2kyxRG4KjkSgpuxEGot3RKzWJkVfIK1EHyOhRN+uTUXIR8VESlNzRKHSPEbKopVFKv6pRosSGEVaXA1GL6AaRQ4iGEURH09Fxip3RC6niUSRYcBEA14bRRchVUWooOpFbKNLSd5bVUanh59F06oBRR37tERw4R9FD4juRO6yUUgl2JNEY9KjRp7DXEQfixNFX7WSRJhQOEU4+HhFlbj4RbwXokRzpLVE5Et8RDHtlEQ7u8ZFbQeXRPxvpURPxudEdPhyRZPXzEUp1wVFXsnZRDYTDUUJ2HlEWf7ORHlPhkRKKeNH6g/uRtLdOUZLejtFeed3RBOghkSJg5FEF5fZRFz/gEQ6JoZE6uTMRBKbnkQNsdJEbxh/RPN0lUSsmaRFSdPNRBdOCEUUZuZEQfjtRPw9AEXLko9ELBU8Rlm+GkUynshEA+6oRJkxwkR+twdFAfObRNQ9U0WF3L5EPsimRhXXlERFmE5GKaUuRa0RvUUJE8xEPzdsRIBDqkWTD71Fd0KLRGFer0RN4slEKnaEROUWi0SrR/lHEb8yRU/TBkcMfEtFh/q0RpqlgkUuaJZECn2PRGeJc0SOxuxEaWhBRWZeeUSKvhZFI62VRCAIgkT/KWFE0RJ/RCyAi0QAFfhEaR3ERMWFekXyRndE1hSNRD7Q3kQw10RGGSCbREu3aUVusF9FVPa1RNPkbkRzWZFETMuORn5LCUYpNfpEN6BpRccn1ETcD1lEPjmjRMJv3kQYrDNFmYt9RtmEcEStdbVFQ7EARQPJqkSDXptEqMM4RV6EI0Wnl35F1PU6RUssnkSmK+9EBZGDRA0qgETYTYRIhIv+R1SSw0R0WYlHUBeBRqJUgUTcTYFF+4CERL2ox0SQm5xEDVogRpEVQ0Wcph9FgbT6RQYTokQncWpF0XabRBoyakXI2rdEk6PLRFU9gkSa/IJEw3aqRybyREeYPolF3i4eRlOGd0XQSVlFE5DWRNIEg0Qxr6hFhkW4RHuyIkXAs5hEnm2ERe//LkUBrndE6zVbRVosJUZCN/hFUVWORdtoWUVD05VEyqpjRreAIkandDtF1S5URRsqqkTKdKlEgX9ERjHkRUW2si1FObYLRxxQoEZD6Z5ErPSKRHjUT0XH2klFFKkfRUA/RUUlCxxFWp0NRaE7wkRS921Enm/bR8rVP0dNMftGnFoyRQkIsUWZgORFEF7LRMUFJEVwPr9Er5nlRw8PXkc8bPNGLU8uRZ6zI0a6FTxFNNOSRE6XukQtHllF0hfXREos90U/XjRFQgOkRIGWvUWIbTJFuvbtREurikQrgA5HosaIRoqTGkakn2dFItBxRWTvKUX2q5xEouy4RFB9Ekd5UHdGgYgtRsAabUUTwcJEQVyURGOLEUYRktxF9tk8RUN5tkTx5gdGwoKkRU2pWUXUKYtEvpxnRA== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Qtr0AXrAckAwK3FAbsFyQGeGqNS7wXJAn67R4VDCckAAtM3IpsJyQDRIc6XjwnJAz2UJ9zvDckBej50NxsRyQHCrpUFZxXJAN0Z8udbRckDWnA18Q9JyQAZUSEC00nJA9LkxH0nTckCaKCzFdtNyQOnCA3nN03JAnX3DX87fckCYBJObuOByQAjLqkVM4XJAqFY/iU/ickDZNqwekOJyQKhFdXXL8XJAFOmT/7TzckDccFZ5o/RyQLLvNwnB/3JADJ0sikQAc0BksWcWZQBzQP00Mtz4AHNAlskCmUsBc0BTPvqijQFzQFwWBhHOAnNAbQWOj/oDc0C4r32yjgRzQHO3xZYJEnNAiDN9obwSc0BOKLZi+BNzQM+aEN8FFHNAsfWu5k0Uc0Bx24aqeR9zQMaey5GjIHNA4o4sIjkhc0B7q1WiYiFzQC6UqybKInNAeqDvKhIjc0Cs3HDeBCRzQDV71pvOJHNATHOfIUgxc0CCRBAeWzFzQO1DgLYPM3NAfghIT9Yzc0DQawOJNjRzQEKxgqrcNHNAoJotM+VAc0ABIMZweEFzQEWCsS69QnNA1URuKB9Dc0CCgvrpekRzQFR2KWaZUXNALgUu7ERTc0AkkdYxo1NzQLcxWC+FVHNAl9ala4tgc0B2NQTYOGNzQD7bb8pScnNAABaXBWpyc0Dyrxqnk3JzQN0Vnyy8cnNAZKarfrd0c0B4mFZVTHVzQNU9SN94gHNAYGj83qaAc0BYffNjDYFzQLzMuVDJgXNAA26bJ16Cc0DrX71sh5BzQL590IzSkXNAwG3XU02Sc0CqNrkWzZNzQAc2L51jlHNAwALTw/eUc0Bg2gqnuKBzQB/ha2XkoHNAkygejEyhc0BM22znWqJzQP7TY7LlonNAywpezwSlc0DYFt0307BzQMNy3+81sXNAFOysF7ezc0DeRVbjDLRzQAghDu73wHNAy9yF5ozBc0DDJAfDz8JzQBA7XL4mw3NAPx1j1sXDc0AAzvoC2dFzQCbbB2o003NARIGbN/bTc0BoyusO4tRzQAGuOoKj4HNAcaomATnhc0DIYxfVZOFzQH5OIfuP4XNAihwUGdzic0AaNWWF7+RzQPwn2qk29HNAs7/wqeMAdECg8/LMeAF0QJJj3I2lAXRAogGbHboCdEDIK651ixF0QG5f899ME3RATN2YDuETdEDzSXYHeBR0QHA60wRLIHRARBkel4wgdEBxPhmhuCF0QMzrYQ1TMHRAkUzcuLoydEDia0b6eUN0QOgT88v6UnRAzOiU0vZUdEA1XEsBjFV0QPRK3+O3YHRAJmL1GAhidECHoP6vUGR0QLoHLCYicHRAfkydQEFxdEB0vkUnOnN0QP3mqXSidHRAKmU+Djd1dECC6y/r94B0QPMgll9OgXRA7uQj5hWQdEDKDUpZCZJ0QJ9xkArRoHRArSJ1vjqhdEAq1y0FuqJ0QCDVWufPonRAC+aUwg+jdEAgkBvmYqV0QJYbGvQJsHRAOy0sgOLAdEBuOLQQeMF0QPOn40HawnRAnHgGORDDdEAqoDlnI8R0QExAS/l5xHRAxj7PvbfEdEAE5+RJ/M50QGidikc803RAYqsjJeHTdECmd3lMd9R0QDN256LN1HRA19QCR7fgdECyFPuTuOF0QHLJqQ5P5XRAXHc8wYzzdEDgu2AJpQB1QA8++79iAXVAJWKvIF4CdUC4iLPjmQN1QDLSzNM8EnVArLPHWCMUdUC468jTuhh1QBA1v9PLNXVA66Yt/bJBdUAW2UuEglF1QHYSuKhNVHVAEjvdv3ZVdUAd4+3RDWB1QG15whY5YXVAAnH72ndydUCQ7EBcjXR1QC7h16p3gXVAJmrd462BdUDk6WqPp4N1QADShT6chHVAyiwqw7uRdUD6yr87PZN1QE7MhMw9mHVAb2+AlJiddUBIBAMTIKF1QI0w0re3oXVAArBJZeeydUCl4r09fLN1QMJZ6J3EtHVAEF5cnmPBdUAbKKnP+MF1QPJcRihRw3VAKKN2MM3TdUDYX13bDuF1QHJ2FKQI4nVAEEzpnkgCdkDIfDEg0QN2QI4LDNUBE3ZAiG7g2U4UdkCUZ1qJChZ2QLR9qJOLInZAJNQHwJAkdkAELtzKHzF2QICn41kmM3ZAcmrXM540dkCmoWIpHUF2QHQzKdp5RHZAI36AChFRdkBcU1NuzlR2QPxraXS4YXZAYELuZc1idkCcqvxl3GR2QDkp46UnaHZAKiiudWmDdkAUnRCjkYN2QK6i3TW9k3ZA1r7XPcGydkB3WEWGDbR2QOoR3k3CwHZABt/4nhvEdkBpDtztz852QHbOkge/0HZAJNYViPLhdkD+ND5OkvN2QHO9a+AzAndAB5iHG1ANd0DmhCiUAhJ3QPnrWe+oEndA1dvMgf4Xd0D+wRW2TR13QEqv+PldHXdATEyqfQ0id0CIJK8hdCJ3QCNwa1WpIndAEKREGKYzd0C2E6u+DDV3QKwD6gSdQXdAgjQbyxpFd0AcKHWGSVF3QCYrM0aSUXdA/nNhACpVd0CBJVF2j2F3QMafkFAnb3dAyCTSu9xwd0ByjMuiqnN3QL6p5tR2gndA+5eO2nqDd0DIlq5SCJJ3QLnqsZBLlHdAwC1MTZq0d0BMBhfojdZ3QIh2uew32HdAUD4c8ejwd0Du0D1eT/J3QHwh70kfAnhA8o89c24ieECE2WnxiiN4QKy94c6kJHhAtWKFNAxCeEDUg5TLeUV4QN5TqkXLUXhA7Bpv+pRSeECkdzPshlV4QPqcVabtV3hA79FZDkpdeEAI5Qi992B4QNCXxbi3YXhAcCnglpRieEB+M1EYuGJ4QBISytztZ3hA0C81zKRreECHdFNRrHF4QDcW7laLdHhA0mXpp8d0eECoZhbI03R4QKyTc2OkgXhAeEjAX5mEeEByoHHglpF4QLdfjimolHhA5Uj2LnireEDh9VHFfLN4QCo8mRHNwHhA0i+a5/XBeEB8+GdxuNR4QDoWdu0B9HhAYfvfZ4z1eEB+uGcMwv54QCTvZbhTA3lAPI4oMg8EeUAWFGSgmgV5QOzLVuyrKnlAfsB4yYtCeUC4ycKV90J5QHrFPi0ARHlApxQAFsxUeUDq5lwU6GB5QApihpnaZHlAk2fqCPtxeUBM/CG5RHN5QKxCsKXXg3lAZATinL+yeUA8zonZQtR5QD8GisDO1XlAqvVfEsDieUCuvWFaUOR5QHjz65z4BXpAADA//zcjekDrWllBDDV6QPh1XTYaRXpAUtV+qS5QekCqKuZ/PVJ6QKTBK3oqVXpAZjeZUz1gekB+SNUeOGV6QAY3oc84bXpAruU9nx5wekD6v3f5jnJ6QFg0P8nvo3pAqH1KMvWrekA0JK/A6616QFxd1eZGs3pA08NvDgy2ekDWQ9ImKsN6QOBxnHMbxnpA9CSf8ELOekBQ53N849d6QPjFHUk27npAgkiebSkOe0B2Fi5kTBV7QKq/peZaJXtAosrl9VMwe0AA5y83LDJ7QEjtzbfGM3tA5rvXc15Se0Dwn8PIZYJ7QDROvXbrkHtAFN0g4CKVe0BGmKRoeMZ7QLlvpQet03tAwJ8Lxv7je0Bjgsr1lvF7QOIpAB6M9XtAoLiv3tkBfEA2+Aw19wF8QJKHpp6YBXxAxIaS8q0KfEBGgxXPlAt8QIBFIpzSEXxAZBzOz7sSfED44ws9nxN8QNoYzZfMQXxAniul3ClEfEDEc/WaR1x8QOwoiF8KYnxAQvvfLipxfED4D4jzwbJ8QMV0kArM1XxABK5F01fifEASaAY+GPJ8QOILQ61V8nxA6n/eU/3yfED4SwksAQJ9QBswdK1LAn1AnGhm1QYSfUCU+16HQxJ9QEyoW1tiEn1AFHsMqD0ifUAA89SCnjF9QMCqjV1sUX1A/tBcM0tWfUDaACad9lh9QMnzPaWhW31AHsto9dOzfUBwHYC3LsN9QDLoR389031Aa4/hUWvgfUCipEnW1+J9QNgt6QGR9X1AEhCzh0AvfkBug6QYjFV+QJiMdF/Za35AUi3OWwuOfkBlkWPcfKJ+QES0fhiHtH5Aj3HOcE3JfkDyCOqSyd9+QHBBT8AgAH9A5W1iVMIKf0Cm1z7VtnF/QEZr17q1gX9AXqv/iUSEf0BeTLqhqoR/QLxymvBikX9ASva9epeTf0D8YQndXaF/QPxRk4dVsX9AnAuZPZTdf0AKK9EJ1eJ/QP4XcB63+H9AONgRehf+f0C1bFBz8QmAQIP+K930DYBA3vc2Q/gRgECErUxP7CmAQCWxWaUmLoBAcvVe5ycygEDm4VPJKjyAQJrJoG/4SIBAalZIZ+hQgEB3HIvpE1GAQIY2KMnpWIBAqJof9w5ZgEDO758TIFmAQOXEZyMpb4BAF/3v/wRxgECBrowUCXWAQG37zqopd4BAPr4voxyDgEBsXp7i3omAQEZjKR8ej4BAI7pr62uRgEATpAK6GZSAQETl8soel4BAaOo2cIapgEAI6Fp9UsGAQJxXZZhTyYBA7OKig0zRgEA4j+SQYNGAQERmylVK2YBAPOprREThgECukxT0VuGAQMwYGQD26IBAmoqvUkPpgEAUPY8HTO+AQEBgkx4884BA0F3Ckj//gEBpljoXQAeBQAKEMxI9D4FAjKCaUDQfgUDmvlTuMyeBQAWZp+baLoFABGgGsHoxgUCODgt3izGBQESQtme8MYFAbDt9Cic0gUCyZfJ31DaBQMV09wX0RYFAmEjq7fZJgUCYRBBJ7E2BQB42aOT8TYFAcS/92O9RgUBcbgXOBFKBQHLr94LodoFAvvih75N5gUAhU5W0PnyBQDlIhCFVj4FADoMR3FaXgUCuBlIWQ5yBQN56bHLwnoFApiGiipahgUCXlZUmv6GBQHd4ycHnoYFAcvMku22ogUD4BVGCSq+BQDTS7X9rsIFAEhJLgSrMgUDDmdfa1s6BQNizNn6C0YFA1uybpH7TgUAT3hz2KdSBQOSYvEjb1oFAYq84Q4XxgUCW4amaMvSBQAhag2fV9oFAOZ1NKuP2gUBL1ZdFgvmBQFJUDRdu+oFAMJrF89cYgkBOCnUg1iCCQKUMJCTRKIJAVJuPAaIpgkAgQP6wpS2CQFDRiG2jMIJAR2VJf6oxgkD4GgHknzWCQHCP2eLmOYJAg98xxus9gkDdZaIQ7W6CQLg0JvKXcYJAtUyWXTx0gkASQsMhQ4mCQCCfKetDkYJAfI2wxzyZgkDifbWAVZmCQJXy1YEOoYJAsoDTuTuhgkCSv0xeDqmCQOhYYgY0qYJAXG2o4gaxgkCoUoQrL7GCQOF6NByn1YJAVfTs9K75gkD4WHqJeRGDQCCcTeh5GYNA+b9Cr3Ihg0CU/lzOcSmDQOzSUstrMYNAIVL4N80ZhEAJMuyb0B2EQLaR+frhWYRAoGyq9+NdhEBEXplp6mGEQPRQdTv/aIRA3uMWIAFxhED+DyGR+HiEQAZw7Bxq2YRAg3BKUGrhhEAbRQTRYumEQOVFf1I28YRAlpOGe2HxhEAb+CGzN/mEQLx8L0pc+YRAEVNUPy4BhUCmGd6tMQmFQHKY/0WgYYVAT70iOKFphUAug+L6mHGFQAg8Wbu0c4VA8o/9Lpx5hUCS6p9ykIGFQAyDpuEluYZA2yRPJZEph0COBR2HkjGHQNAEjGaJOYdAgjWP3FpBh0Bwvtlnh0GHQO4+tXjHsYdAtG7BTci5h0DBw7zywMGHQAgjJsvByYdATpJ2c7fRh0BFg6e4/d2HQA== + KBZXds7jZUAYxSyCnGRqQNS+X4D+xG5Aaj0MlNdzdkCeiA5o7PN2QCzgWofEBH1Aapvo5y+FfUB8eZoDBMuBQBafm20OC4JAFs6Jl7qThUCFjBYX06uGQEH4C5oGzIdATLi8Jj+0iUA= - + - +7mWREp6j0VFRY1EBqbVRGAxYUaMw5ZETEdbR8y6hEQz0JFEbMuCRPV8Bkcxl51ESDNoRYaaqkSTvIxEV3WuRIJ1v0S5y1BEIN2ARQJLB0VbaW9FcSZQRHRs40Rn8NZE0oKyRXyveES/29hEzZ94RH30vESGtdRE5xIqR5sfcUTty85E/DcoRh1Am0VY7qFFoxJuRNlE80RaChRFP5bKRjFvl0QOS4hEQAGaRCqpYkSNmcFFEvkKRaNzx0T7MWpEbs2SRAhQqUR6Q3dEiEywRFfAt0VLFJdEmfNpRGA0DkajkXNElUe3RO1IgkVtl+REUJCARCzUIkU7wo1EJPxsRDXiXESlWY1E1avWRGrTDEVwJ/pGwCzBRL7vHkVV3IVEbdSiRJzMUUWv8aNElFJNR07hoERnpjtFOl98RpVoIEZwVL5EpwqARBwk+kXeZ+9FoB0mRRCOSUQ5NHxEQpFgRS3VA0V+96tEsSpsRPIjrEV3TipGGdxvRObdKUUp1ZhEEYfIRISVmEW+gHlEEFwDRuQAkkRqf11Ep0fORKafjETWq+NEuDdbREtXg0ZnQABFZmBoRCg9akRf3UFFpr18RLkxkkSIz5dE0DWURO30OEVmd4pEOWngRPtPV0Q5FJZEiXHpRFQ1LkWKlKBFCOd9RYjrm0R9y6BFSt08R+aO20QN4sxEMQOsRMGtPUVBxMJFdbK1RTWoUETJHKxEyxCMRP6Yr0SADOdExHcWRY+BgUTtxqREEeZ+RFFlD0XhYbBE71jjRMZPpESNy6FEy3eYRC3CxUS09GREOO67RGppXkRP/jRF9xR1RIq8RkVt2V5EKuDORS9MhkSFBAZFL3c2RXVaqUQ6r89EDa4hRXjCkkRrxk1FZ4dfRGkKgET/iIJE8uu2RPvobETa4A5FNhTRRBfBG0aZZhVFsUC9ReG+HkUwRMtEdhGBRCtFW0Se1RpGUO7JRaHfb0ROhZREJ0LARC4lw0RQ4ptEdjimRK1fD0UqXL1Evm+gRGDDqUTy5ilFzTGMRey81ERQy4NEnVKJRJJzi0TmmYZEBoD9Rcke10YxJ4xEPN2tRIQDsEWaElxFIDo0Re1lL0Z6NmxEsblNRTa4EUWd9rJEgOSSRJocSkXKT3hEvqQaRSEQikVCMXlEdK2fRI4IL0Vda3NEZsSXRN/s60RohLFEhq6wSMWTakYDDj9InbNARybTsUW3eKhFwxw5RcJssUQogNREx3R6RH5m10cgmrpGDUWuRm54h0UrAnZGUsObRAx8VUU/jIVFJ9HWRFGkdET8K+dEgZ8BRaAvpkTIzbJE8ciIRL2GZkT1CQtFV0uCRMoh5UQqqIBE2EBKRXy8hERGFo1Ept/LRKb7WUYhT4pFTwKeRizzBkXBoA1GJynWRPRtLkWVml1Fxd3JRGbQjkRrH3FEiWOcRNyeUUQth0NJBWXvRApH90Sa00pFYXpISHy8o0QUcopGoTCBRD54jkSHj/dEySu0ROzI40TeS4NFejzvRVDCXUQhJ2hEdpN5RIzivESMt+5EtlmoRAm4oET7yWxEht+IRWq/WkQBacNEChLNRHp1eUTKUNRE2EFjRSAu7EWOYPVEkEVJRUiaxESFVZRE7LOaRFH6xUdKotpGTHgbRutjiEQ2GBdFhmV9RMH3XUSoKJNEldGORNFilUTgTslEk465RKb4DEXxa5dE/gCdRVB9nUSakgFF0+9uRDiefkS84sJEWGXERIq0NUZMBoVF7mX3RLd8f0Ru+5REiiC4RFIwLEW4vxxFs0y/RCXnwkRwnnhESa+HRFqiv0UEjJRGEXhGRsMbK0X53ahF7+mYRPu9+0QzxoxFARWKRM3QlET108dFy2mSROgajUSghIVEbe0YRbwQCEWBXJJEdDr7R+JQ/URuWOBGPb2rROReH0URGsFGhBNIROlshEUFBfdExF7gRPj5YEQ53ttE0TW/RJLks0Rido9EHENzRM4ZsERYlJZEwRpSRWmNgkQXYRpFpNlgRFFGpUSkRoBE6E2YREmCbERqmKFEWeB8RC7EiUQGnxBFWJOeRBPnqkVexKlEynCqRGnkfkRq701GpI90RKWhL0W1rDhF4SC4RD+1yER0wIlEXGuFRLDHEkcQxWhGBYKDRSL7aUToiRxFJXWtRPjsBkX2lNdEUzF9RTSCeUbfvltE4WqbRVlawUR5lQFFjCMgRT0dhUQvV3JEVrKFRNjhK0V+nV9FPD0yRZl5IEXQV4lEPQjxRLFhgUgG0vFHv2CBR+hsaUV/VltG+L+FRXuVykTj9bVEFimwRFSOqkQU0rhEOsAyRl93C0Xms4pEUlTfRfnB/0TmzoBFyy2NRZogBUWWCJlEUxoLRTk/FEUKfthHIaJiR7+wskU9Nx9GnqNARX5F7ES+HCJFOZxERSTWkUTZnZVFANmvRM8LOEVoL0lFu1hjRCIQdER14UBFnN0oRf0ICkX+5YREYUowRqrsFEbKfJZFyYusRNNe1UT1ML1EkGdSRib2KkaryvJEaUPvRNDN/0RMVWNEHwZERqnxf0V/d15FscL/RmsWgEZFH6tEAq8zRRsqm0RawJJFKrjCRH0PK0Xvp4dEYQVwRKMS3UdPYjpHIkn2RsiIEEUawuRFDGsGRsS8PkVDChxFcdmKRK+fbEQHHoZE8aLORHHn5EfTxlBHUcbSRgeJFkazwUVFIWiJRTLNJkUUh9pFYEKMRYSotUREdrNFcvQaRV7q4ESJIhZHz12ORqdpJUYJ9pBFtZZORW2OcUSDjddEfgHWRBgvaUQaLhRHTHZgRh7AFEboXIxEjqdFRRU500QezeBEsWlARuKdzkUePYFF8JOvRFv810QtIxFGdICMRTq5YEXptJJEwNuWRP5raUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - wA8uFAvBckAFz9sGb8FyQJlTGcSmwnJAsFaJFjzDckAkf1J9xMRyQEKzvVRaxXJA8PeztUPSckCkPbLvstJyQLQHZC9J03JAfKdl6XfTckBODxyUz99yQAjdoOa34HJAAsscE1HickCOOOo+keJyQOMkcDIk43JAjQ7TqsrxckAYHUNYp/NyQO8vEQgM9HJADdrh1KH0ckBkmgZTRABzQIB1QQ34AHNAlgZawhABc0D6/M4cjQFzQBq0npjQAnNA2LSLsPoDc0BeC6dt7hFzQGyn9MEJEnNAvgpgX7wSc0AcVeg++xNzQMjyH4J4H3NAI8WaXKMgc0DJCf5+OSFzQNLeuE97InNAtFK3h8kic0DWPLDyDiNzQPIMLq44JHNAOl6Lnc8kc0CYFVYoTDFzQASLWkAkMnNAv0nzHQozc0C07btsojNzQObwp+83NHNAQc1c8eRAc0CAMbGgd0FzQPec3nd6RHNACdbt75xRc0Cn8FmIQVNzQPieWF6kU3NAxkvjAXhUc0C+NNotOGNzQKEQF4yRY3NANVWhZVNyc0BezXQIanJzQJT+Ubq2dHNAilQlE011c0Dk61A5eYBzQB7M0PSigHNA/RXdcQyBc0AaIzUqXIJzQKzQ3bikgnNAbvInJeeCc0ALxee3hpBzQIqzlUCPkXNAFwXXhU2Sc0Be0OZYYpRzQP6A/PD3lHNA0KUHjLigc0ByODfKWqJzQFBWqYLmonNAQCeGIAalc0A4sYN1x7BzQOiUVFHWsHNAaXfzizWxc0A6osoYfbFzQIrp5RPxsnNAoHrHOLezc0C5AMdqDrRzQF8XkmH5wHNAMhyee8/Cc0DThyQbJ8NzQA4jW1nDw3NAsebottbRc0DqMsYa49RzQO7rZyCj4HNAeP18kDjhc0Bo9Uc5N/RzQFKOZrmN9HNAGngT4eMAdEDG6NbneAF0QOzXnme5AnRAVhRPVIsRdEDS/pl1TBN0QHeiQX52FHRAmBdHFEogdECGCtsquCF0QJZCFm9UMHRAcJCbArkydEAEWAon5DJ0QHXm17B6Q3RAhTPZU/dUdEAKzOO7jFV0QF4Wswm4YHRA0Hzx4whidECY8voJTmR0QND/VGcicHRAYtRXCxZxdECAzHNfQXF0QGohKXXIcXRAR2NOEzlzdEDX4kzgoHR0QAqZ2A82dXRA5E5isfeAdEDiMBCMToF0QEBY60CNgXRAM68G/BWQdEAQmVaZapB0QN7TUVOjoHRANMeZTNCgdEDmW/FMOKF0QBFniZ66onRAnEvaM9KidEA2lolxD6N0QPDEekJNsHRAP/QwIubAdECx7O+WeMF0QNcOUuHrwXRANMtnNQ7CdEDyI9+S2sJ0QNSMln0kxHRASAn0DXrEdECcf+DAuMR0QKyCU0H+znRAdid4Aj3TdECaR+r84dN0QIK1/XR21HRAnqFNF83UdEBa6cX3t+B0QDI+fewi4XRA8sXg67fhdEABr+IiUOV0QAKcr6S/8HRA41cSRo3zdECuHwUJpQB1QDqCsl5jAXVAjk8x9F0CdUDcnwxnmgN1QIpxbkk8EnVAMhg25yMUdUAangRizTV1QOT07/SyQXVA4kiNQ99PdUA2zUD+9k91QH1QWbaBUXVAnEe/GE1UdUAr/lmed1V1QNDMzq04YXVAY2o+53dydUACXCoXjnR1QAgxe7F4gXVArBStQ62BdUBiC6QU6YJ1QFH83UGng3VAnGf2zZqEdUCWbp2BjJB1QI5SMxa7kXVA5KFD9z2YdUDuvi/EmJ11QDM9aNq3oXVAh0WfiOWydUDcRdRofbN1QDaSlrFjwXVAggge5ffBdUDyTaWfUMN1QB3/bBk203VAEobAIczTdUCgxL3y4t91QLglH38I4nVA/O7MrEgCdkDPPOhJ0gN2QHws1NxMFHZAvDy+TA0WdkCEuzwCiCJ2QNvecJGQJHZA1OWWsB8xdkDg70+EHEF2QNEBqtx5RHZAIIHshfxOdkDt/MvwzVB2QNVc8PoRUXZAb0Cw6M1UdkBqMqbFJWF2QKiXnaDMYnZAswGKi9tkdkA6Gv0sJmh2QMwQt7FognZAVVKz/WaDdkB0qw2rkYN2QIADubVBrXZADGVh7cCydkDE/VsRDrR2QKQIZPZ5tHZAFNzLSRvEdkBQDO4gz852QGeTbebA0HZAdVJycpHzdkDyogGcNAJ3QH2lZSdQDXdAaIGdKHYNd0DkRJJWAhJ3QJoCJROpEndA5q8dp/8Xd0C+xMfZTR13QGLi16VjHXdA7HjxyQ0id0DSVDwzcyJ3QObABXEDM3dAn1C4lgw1d0BaaXHYnEF3QPsdiGQbRXdA2Y+V8kpRd0AnQmgkklF3QOePGU4oVXdAMpO6Qklhd0Bk68aHjmF3QLAgJuImb3dAhgQUG9twd0At9iMEhXF3QKy2S7N3gndAVBx+SXuDd0B+pxUQTJR3QG8na6MMs3dAa6EqNCzDd0AmAQko49B3QP4pnjSL1ndAjNzEyzbYd0BE7Je/7OB3QKjlbJzq8HdAIpwcTVDyd0DWcpQHbyJ4QHtlaY6KI3hAGhojbQtCeECkNG4LekV4QG6rDu7KUXhAQPnVSZVSeEDKK3ifiFV4QGhJ//TtV3hA2+BR+DNdeEBSDjPOS114QKDeXmn6YHhA8fOHorZheEAUIN4BkWJ4QMD4RfKsYnhAiOZKI6JreEDDMrukunN4QEPvR0sgdHhABt/DV4t0eED22i71unR4QPcM6v7xdHhAS64ShoqAeEAYHkIApoF4QHiqGX+ZhHhApDg1pZaReEDpsOBYp5R4QFreuNO5pHhAGxWm8s3AeECiUzd8B8V4QEdujNa31HhAjsUg3wzheEDoWY0FxOR4QMM7X6oB9HhAPjfdk4z1eEAeRBViw/54QK3YBbXv/nhAeW3BHU8DeUD8vE3PmAV5QLChorWpKnlABpkQv45CeUDWx4Zl+UJ5QPuOIkDkUHlA034l78tUeUBiXz43QXN5QMShXv3bg3lAGUqC47+yeUD8UUYfQ9R5QPTJmE7O1XlA3IEh8sDieUCsmDYoUOR5QJQ4DTAZ6HlA/PrqmvoFekArqZ5jARJ6QLGgejA5I3pAOM/cfAw1ekAIVfbPGkV6QGvzHgcvUHpArrrO74FSekB7WoINKVV6QMjkORY6bXpAQnV90I5yekBavd2W8qN6QML6odXurXpArnFM8wy2ekBmkAJrKsN6QE9oWdMZxnpAgPfjfETOekAl3crh2dN6QOol7RQ27npACMaasCgOe0CIPbzuTBV7QDY+UslaJXtAbHDRwFQwe0Aurq1pKjJ7QCyILkdmgntAXsuZDSKVe0CrYeBqe8Z7QDH18cqL9XtALNWp15IBfEBsRQ4o2gF8QKHobMOZBXxAZqXNa6wKfEAv+xuImAt8QFal5C6JEXxAqMOfN9ERfEAyvilIzUF8QGHzH6aDU3xAvOMm8AtifEBPrE1IK3F8QL3Vq17AsnxAFGOkiM7VfEChyXLdV+J8QEwq+tEW8nxAaKqc+1XyfEAaG+/jQfR8QAbTFGwCAn1AxsMkXksCfUDSDWr9QxJ9QFKp7ik8In1AilqfXJ8xfUC4/mbkSVZ9QFWWT4D0WH1A7L09VlNefUBvj7BhqWN9QHLFuMYxw31AUgczSSzOfUCY43o5a+B9QGg5WjjX4n1Aw0hA6I/1fUC2XddrPy9+QIjdKaM/P35AiV5KGo5VfkAmtUGLP4x+QG5h0VSNsH5ABDk+98zffkCAa36CIQB/QN4yJa+5cX9AKK1N5a6Bf0DEPaV6pIN/QNhFKmVBhH9AmhINH2ORf0DZsvPapZF/QKDf5Jisk39AA3Cn41+hf0BtG+u3VbF/QLIPOdCX3X9A5Baiodbif0C0H7FUufh/QJxXpKET/n9AGmWetPEJgED82EDi9A2AQNqQaND3EYBAQo5QxiUugEBzfS3m6jeAQO73txUsPIBA4jAG9IJBgEBwr8+r70iAQJy0k5vnUIBAzD5xFBRRgECKxKQX5liAQARa2ecNWYBADUCnjihvgECIQfl6BXGAQCNED4XeiYBAN7/hTh6PgEAvUjMcbZGAQOCKCVsZlIBA4s1mWHCZgEBaIXbjhqmAQBYoTjSGsYBA1z5FelLBgEAgFu/FD8aAQEM8Q0QiyYBAgL+XoFPJgECN5TNNLNGAQPZwx6dM0YBAlDg8AGDRgEAWeTJ2SdmAQEgx1uVT3oBAtGYAhUThgECQ6W+69uiAQIRS+zRM74BAxBgA2jzzgEDBtIbWP/+AQDx0Ixw/B4FAMCNEuj0PgUDZruiTNB+BQMxG59AOJIFAHLhx8TcngUDaW2ia2S6BQOrU+3p6MYFAB5OPuIsxgUA2GJG6vTGBQLxoUksmNIFAf0XL/9c2gUBM1P2kejmBQKBVYRn0RYFAa9aSP/dJgUBsrb9C602BQPTwHpX8TYFAPl455O5RgUBuMWnZAFKBQOCEcyPodoFA8ht0vZR5gUB0M6Y3QHyBQOco/qxgf4FAmyC/PFWPgUBE4mCLVpeBQBZOPVNCnIFANlQf5++egUAGWnf0wKGBQFT819znoYFATOehScWlgUDnAFQSbaiBQIWuAH5Kr4FAmFY7WirMgUDSfAua1s6BQN7DKTqA0YFAK/LniX3TgUBqj3pbKtSBQCTH8Vsr5IFAttELn4XxgUBmL3AnMvSBQGCsWQva9oFAcJU8j4X5gUBn2YGMMfyBQFT4KBsDCYJAcpmPYNgYgkAzLx0U1iCCQHLFCDLRKIJAcFmqcKIpgkBgApGJpS2CQA6Os4qZMYJA9vGYFq8xgkDmzb55oDWCQCW7ZevmOYJArLSd7+k9gkCwZqNhmXGCQBQbRFJDiYJAjgrD0UORgkBhu/OkPJmCQPOBiu1VmYJAvaJnDQ+hgkAenDLmOqGCQPAzShoOqYJAWFbcGTSpgkAynvOWB7GCQAoj0zyu+YJAmXfAoHkRg0CCCR4SehmDQEsJo6ByIYNAq8amc4ohg0Aq45REcSmDQBlrxqtrMYNAsNz9VOOBg0BqRd9klfiDQNPhGq/NGYRAoCCsYOJZhEDe82S65l2EQHg0EPb/aIRAJypczv5whEDO/jP693iEQJoiSqe/eYRAIiVAOmrZhED59tgVauGEQCPFVCNj6YRAHwOWiTbxhEA29cTSYvGEQDgnrGs1+YRAWxgq41j5hEAYm7aJoGGFQOp3JEqgaYVAt/EnophxhUDUyfQStHOFQATD8miaeYVAziu7p4+BhUDs2ru3JbmGQLL59PyQKYdAUbOuvpExh0Bw24T5ijmHQIaytSCLQYdAxpWQ+8exh0BzIt59x7mHQOrQoLLBwYdAKixnZ8DJh0Ae7b/v/t2HQFdZZXEH4odA + KBZXds7jZUA1uAwZnGNrQNS+X4D+xG5A - + - u06DREsCekXhKSlGw5qKR9y5UkSQdnNEbt8SR38RsEQb271FirO9RJR53ESAPchEkAmDRXF6BkVadYJEUGYqRbG/zEQzGIZESkfsRDAVoEUbJuBE3RZeRJkFuURSkZREPLn+RgS/SkQEM25Eu+soRuACZEWWN5BEtL6iRKJjyEZimERE30pqRA5OjUTyC15EV6uHRdGp7ERAeoVEWbo/RGrWhUTLTepE7/WiRGAniEU///1FI86DRAlnpES9g3dF8JlTRC24okTTSUtEjr5cRB+vZkS2rIdEyHw2RT519EbAI7BEnoQARf4emUSZn1hE7dRXRCDcPkXmKYtEsYxDRwcG4ES5oF1GDBH3RRRJwUX3ieNF0j4ORcjTikQ5GGpEn6yaRB6ck0Qx7FhEU35FRbtbGEWIaKBElnGCRcJrFUahuGRExa8sRTJwmUW322FE+SMJRi2UAkXvOp5EcrWNRO9eV0Y8xIVEH4+IRCknXUVD45VERNJRRDEfCEXpxbFEuCy/RPNGTkQy3lZEF9iYROGc3kRy6IZFnJpNRXgowkRj15tFUVV2RFvePEe9+25EzpJzRVocfkQAwqZEPlsTRfUhykVIw0ZEEUSnRXPEmUTWHoREUg+oRBqtvESXPp5EsKWPRFy6t0Q5jkdEpyymRPVl50RvbZhEe4tPRCwnlUTa+JlEb+qOREU/tERw5ehEeoKHRBc1eER/FnlEuTQaRSlka0ShjqREf1nnRHMQoERH2EREsba3RUxHq0Qyys9EyFEtRW2TmEQOVQdF4676RGC9NkXWF4xEu6tCRPMMwESaQ4dEqozERG8tgkQkGOtEpNXaRK9UDUa0mxJFxtqWRZRlZUT1xRJFQmAWRZX1lkROgmtEbDY1RhdkPUWxKKdEEKdoRGnB1UR545ZEw5rvRAAtyUQsh0ZEHg2aRHYpxERoeTlFZHVDRYLi2USz4q9EyeexRG+efETuOcNFuyXaRnnqQEXYdDZFLetlRAO1nUTVNzdFV7gGRmmBxEQ5pT9Fz2kTRXa1yUSR8YFEhG13RIMtcEXC1YtEKT7+RHEYa0XCsoVEbqmpRJ3FM0Xue5NELNq7RAu+A0W5S5JIcY3kRBOheUY7FyFIS+YSR6sjLEYmVGBFLHlCRX9jwkSoOGhEhzDjR0aAp0aQ66lG0OZ6RaqJdUbVQNlE0UJTRBulzkQ1JYNFYVajRODjkUTGkY5E5tnzRB++mERzs31EoeZ3RGbKekS5aplEzlSfRAEPbETLiYhEfSfRRHKrI0UNTZlEpEbFRHliHkZgO25FK9eqRqcu7ESyLClG02fCRNDHEUXekjRFBd0ZRTXCukRt5IdEhZiFRKMF0kQqDFRE+NM2SYTwVUUi1KZE91xFRGcJQUUu7ztIxfe+RIGujkaXaoVEZHDORHtFfkQ8tF1FAE9oRDE2V0SqtZZFDRWfRRR0uERlk7FExGm8RFkLoEQmaXZEqRWERAQCS0TWGoRETPNgRT4NjkSRudZEbfVMRRwGyUWAQ6xE7lPIRAd1FUWGb4FEY2xcROF7cUQAUoBEZn2kR3HCpkYnbpFFnVRARBF9BUV9SmtEcxerRFK0DEW/woxEyyreRSgPsER39P5EiueZRCNbgUSaahxFDOvoRKJbL0Y1fyRFYOcTRbe310R6juxEySAxRW/xlUT+xopGY7iyRAlyLkbB7YlFZdCARKXvDkWW0MtEe0emRTn55kUMTF5EBZzDRDpjckSRRthEl9alRKK3xEdWCyVFvjPXRuVcXUTp2jhFEGmZRjlySEUsxZdE7jWQRK5DiEQKbHxELtO3RJM4SESkhYtEXneIRLoUI0WgIo5EJdQMRY62jUSlcGdE9nXARHrCb0StHGhEVFm1REsLt0R39p5FyjGtRMs5f0RtAJBEmVsrRrkFUkQ6ZEFElwd5RdL2OEVCZfZE5krARPfouET1iFNE3+szR1j4vkYPnMJFSL8YRRoIgUSTkVhEqRZjRM19wET3GE9FpISCRoI5jEQ7bqVFxw/ARGahIUXv7jZF7BxCRaoDbkWrboJF+uJ9RKkXEEXX/I5E+bhQSH/ox0TISV9EROq+RynGhETIzlJHCFJWRRGDI0Y9urFEL+d6RU2jr0QXo7ZEtrOhRAKQJUb4AyVFnwXJRJK2FUYIdotEYhgERS2XCkVcXIFFga3YRJQkw0TtEYBFhmuhRFW+qkQtLLxHdKU6R+2bhkVYbBFGas+oRBjg80SEzUFFTEkjRVQv3USmhXdEYr6PRfUK6EQ80Z5E/XWsREgcYEVhRgdF7lXxRPY91UTg/VRFJE4eRtJb8EU/lplFRcKtROPqZEXJGlJEyfsyRhaL6EUJVllF8J83RauXiUSdcshEfn9IRp6rOUVi0EpFxEefRlYjJUabhyZF33sERRhTmkQl+a9Fl5KnRHnwwkSbYtJHb0cvRyYM9kYzMdRE4sCaRfEe8UVb1uhEUS0CRf+si0R92/1Etgy4R4qnIEfZmrdGs50GRR3j0kUwKw1FF/WORFTttURzjhpFV+pmRRDiB0Vsft1FhZBCRRpKDkUkxZlEyk0OR102Y0YBkjxGQcyQRb2LhUXtewJFiSONRDw27EYSZXFGBPYCRg9Hb0R9M1ZFRLyPRB8P+kRunyFGU4OvRZfhmUVRrLpEmksTRoM5jkXIcRVFywCBRKoYz0RJlWJE + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - sOHV1XfAckAerUHHb8FyQNNr/zdRwnJA5oBta6fCckDqYKL75cJyQI8sByw8w3JA5k53x3XDckBSt1JExMRyQIz41O9bxXJA3sRq7ZzRckAuxK+NQ9JyQIIBHsK00nJAKHkFn0nTckDbjrbgd9NyQAnQkkLO33JA4lDz57jgckCoxFTmTOFyQDx6SAJS4nJAWaTooI/ickCWcx07JuNyQBCTO6bK8XJAmOyFfKfzckCsGQCmoPRyQN4pQ+HB/3JAh+Uw5kQAc0C+RwGKZQBzQDo1Xe34AHNAnYAhgiABc0Awp+bQTQFzQBsES9KOAXNAbTjbKdECc0AKXlTg+gNzQLRmA5QlBXNAfYBivAkSc0A7KXcThhJzQEiGDgi9EnNAP6vLCAYUc0DPxFrCSxRzQMHI0fl4H3NASoHuKA0gc0DiALAYpCBzQEQ4MVU5IXNAntX202Qhc0B+yp9yySJzQBzbBT0NI3NAE0Qd1s4kc0B82RzIRjFzQAirSvBaMXNA8N5P7A0zc0Aoow7SoDNzQFIZQe03NHNAQuulQuVAc0DtIwd2eUFzQGXEz+O7QnNA0EYNEnpEc0B8qdIijU9zQH7QSosQUnNACmtn6EJTc0CSscg4pFNzQDQLI0x6VHNAGbCSdIdUc0CRaIQpjGBzQNKAbVM5Y3NAAI41IU9yc0DS07qcZXJzQGIFWue4dHNA8KcUFE11c0Dy56f/eIBzQAus8TqkgHNA/qeAdQyBc0BvDNm9XIJzQH5rWAGngnNATF3NoQ+Ec0BFLpQGhpBzQNdWEU5NknNA6ek0CGOUc0Ci4CZg95RzQA5aWD6MlXNAOmTsybigc0Ajmqhu5aBzQK15KVdOoXNAdn2IJlqic0CY+ujE5qJzQEGCQhwFpXNA69l168ywc0DgXjKgNLFzQJZSIAb3snNARshuWT6zc0Bmf+ZTt7NzQF2BmSYNtHNARPyuKPjAc0D0YzDnO8JzQPdYhu/PwnNA5Pq3TSbDc0Dl7Aut2dFzQA9+w3Ex03NAaJj5w/fTc0AZ6qju4tRzQLa1Xwk54XNAGsDo4Yrhc0BUXY/S5uFzQGh6QuPb4nNAlS/W9zjkc0Abx7yT/fJzQJycNcY39HNAfu7lxo30c0CgtU35eAF0QBOhEpumAXRAuXKufQkRdECMELhniBF0QNy+cmZNE3RACCe0jHcUdEDmIUlYSiB0QOKCv6CMIHRAU1orF7khdECIyeQSVDB0QLy2jQe8MnRA1uclIdUydEB8lNAqY1R0QPy9FSv2VHRARkeXfoxVdEAG/A+9uGB0QG7W19wHYnRAChosLA9kdEA1jCN9TmR0QOhyyOUicHRAz+btRkFxdECA/V0HOXN0QJeF2zI3dXRAluw1FfeAdEAkuIhkToF0QIz+qqAWkHRABEIuimuQdED0conNzqB0QINy8//MoXRAZ+6wnZOidECRf3uot6J0QF45mxXQonRAGcZw1RCjdEAOJUJwDLB0QCD5fRXEsHRALiY33+PAdECoPoa2d8F0QFJoVMXswXRAUkxDQA7CdEA8phJEEMN0QPheHqy4xHRAfMvG6/zOdEDM0vfAPNN0QLUSnnTj03RAlLBz0M3UdEDCTykuueF0QJbu/KVP5XRAAIUnIY3zdECPUbcYowB1QOlZZ0RjAXVA+nM6MV0CdUAo8V/gmwN1QBQLPuE7EnVAaEbmoAgTdUCCpcTzIxR1QCi9vwe7GHVAAJK0a8s1dUBiaC7YdVV1QKkm56cOYHVAZobIoThhdUCaGgjZ8mF1QADjto54cnVArJvQi410dUB05CVF44B1QI4sBJZ4gXVANJ4Mo62BdUBOfISepoN1QMZ1DwybhHVArk86AXCSdUBPvTb/PJh1QESylcSYnXVAYkr1/5SgdUA0mjYDuaF1QKw1UBTosnVAZO/Rf32zdUDqa63HxLR1QK4eAcvQwHVAeg+ff2LBdUCneR97+MF1QIXiDJPL03VAgY2QpA/hdUApFL0sCOJ1QP4OsNFHAnZA9wxsVM8DdkC5owBMBxN2QBbt+gdNFHZACP73zgwWdkCoAaAViSJ2QLJTgXeZI3ZAIaTfnZAkdkDePF8+pCt2QG7pN8QfMXZAfnlD8J00dkCeM1jnHUF2QGpR0EJ5RHZAOvCXADpGdkDudLTZylB2QPTU0PARUXZADiX7Q4dUdkD2ZTe/zVR2QJ6mSY/MYnZA/sXEodpkdkBqmtERJ2h2QKAp19WRg3ZAAIRSzrawdkD2x6uZwLJ2QOSqjq0NtHZA4k6teRzEdkAE1NDlz852QIHICRLz4XZAvVnqOpDzdkB6nGSqMwJ3QG5Q4kERDXdACjUsPFANd0DysuyPARJ3QHil4TCpEndA3PK1tDYTd0AoaavRARh3QNCueD5OHXdAIjVm8GMdd0DuEd9GDiJ3QIFonEBzIndApZSxwp0id0DyLKbUDDV3QNKkCu+cQXdA8DJv7RpFd0Awq4gnSlF3QLp7WmaSUXdArs7wTypVd0BGzqO4j2F3QAVRe/k5ZXdAOpw/PSdvd0CQjhIX3HB3QG7LyDmGcXdA2OgXzJpzd0AYM7cGe4J3QDhEozJ6g3dAR9fD9QmSd0CQ/Rhzt6J3QMcBI/uZtHdAaHo0wezgd0ANV+oK6vB3QGgFtjxU8ndAe4unEG4ieEBeuacGiCN4QJgb5EcLQnhAAVKREnpFeEA5sY9ny1F4QMLiY1KUUnhAgzPph4dVeEB9P2g77ld4QOQgG/BIXXhAzjqP6/pgeECICZaktmF4QPkKbgS4YnhAXmcIWqRreEBkw2gwvXN4QJLI+5sgdHhAsEeAmjJ0eEBDYsAcR3R4QNod6vtbdHhAorSaaYt0eEDSJ20DqHR4QHgWOfTGdHhAmXYG19l0eEDVPDIXOIF4QPn3EcSkgXhAwsfHgpmEeEDl1wSFl5F4QMzDUlSnlHhAZH8n/7akeED0B9qRzMB4QPJNLge31HhAtux2EAL0eEApdObbjPV4QNleL7/D/nhAsIZBxUwDeUCdvY8UmQV5QIgUBj6qKnlArqggExFCeUDgSHl0i0J5QPwZW2v4QnlAZSET3t9QeUA6nMgjzFR5QIwKr1LnYHlA9IniCEJzeUCdLJqw2YN5QJEgunrBsnlAiGUgb0LUeUATjOS+zNV5QHOW1ki/4nlAyKVzklHkeUDw8PXa+QV6QEy6R286I3pAmoKBKt0mekDUBoJGDDV6QKKyoHAaRXpAlKYHxi1QekBmzLSogFJ6QOhPn/EoVXpA9o0QZ45yekBevrkszZJ6QLC10dChlHpAttGnHfCjekAajbYR7K16QKhqp7AMtnpAjOfF8RrGekA6HuPlQM56QLred+w27npAMSKTXnYDe0CSfJ1HKg57QAZSnvhMFXtAijHBglole0AyMaX8UzB7QBwleahCUHtADglEW2FSe0AXwlXrwnV7QGk9aIjBlHtAxjFScSOVe0DBJ5kFd8Z7QKQ3SfGY0XtAEraAUDPSe0BSXMabSdJ7QBi1DmyM9XtAULMThwz7e0B4pAv2kgF8QA8ILlXZAXxAsgK6XJkFfEAsPbvMlQt8QMTsXNyHEXxAxy774tERfEAy8UH+nhN8QCpw5ELNQXxAPDELo9tRfEDYBZDoDGJ8QGAyenfHoHxAEL5OEMGyfEAed2BizNV8QLapkdZX4nxAUCHNMxbyfEBoQoYlVfJ8QI58leYBAn1ApqArlksCfUC41yswBhJ9QHLX1JFEEn1AdPHu4zoifUCUO89j9Vh9QFLOwyWhW31ABscSckpefUDqq9BvLcN9QPNWa5tq4H1AqCVtTpD1fUDUBG/6OR9+QKDYPhdCL35AQo8b4YpVfkB6zsTXos5+QD6Rq4vV735A8v4hNSAAf0CPsovwt3F/QADCr+G2gX9AiGl2cKaDf0BOC/mpYpF/QKRijmWpkX9AyD8NrV6hf0AiNC5qVrF/QLDbHfOT3X9A4j2L7tTif0DbTwlVLuh/QOA4IIvxCYBAQg+RBfUNgEAUDJzr9xGAQL9qq2H8FYBAQmmmyvUpgECgdhoPJS6AQMIRfoLmL4BAoE3MO+c4gEC8SysNAjmAQJ4+uDujOoBAylTCzCo8gEDJqqTu9UiAQGLjFQroUIBAjm87NhRRgECM3PBM5ViAQIcj8PQOWYBAesY8Tg1hgEB4STyeKW+AQPQvOVAFcYBAJLsi5gd1gECA0/2T3omAQAES8xwfj4BATh/VbGyRgECq7LGDCpSAQBpd8kAblIBALgQ1DruWgECai4LShqmAQObT2nVSwYBAcGae0P/HgEA+gT+uU8mAQCDcxoUs0YBAV6Urb0zRgEC4AeVtYdGAQOWoEy5K2YBAx2EKrp3ZgEDkds5BROGAQFVHSvrW4YBAjt7ojfbogEDoqjtIS++AQKEXhPM984BAww/syT//gEDOtPsjQAeBQKcaFow8D4FAlP5arfEbgUCsjMmjNB+BQFqw64hHJoFAHfnNZjUngUCUhxYZ8i2BQKx9YBjbLoFABlZaVXoxgUD/bEutjDGBQDGC85G8MYFASf6M1Sc0gUA0udoK2zaBQBhwiuInP4FAEiLPO/RFgUC/GR5F90mBQJ/nfTXpTYFATm7X3PxNgUC6sCi68FGBQDkJM0TndoFAJvUJkZR5gUA4tyOmVY+BQIDoTtlWl4FAEddhJ0KcgUBxGYY/7p6BQLJIMvuaoYFAMrI0SMGhgUBYGLzy5aGBQM0REwPEpYFAexOOmm2ogUDusO/ux6mBQCW+z1vvqYFATRd1nEqvgUBXTXucaLiBQG6jwdUpzIFAoG9KztbOgUB8NzGxf9GBQKlHhL1+04FAzvz1nizUgUCKeE4T1NaBQFQSm06F8YFA2Pbp6DH0gUB03Nx04PaBQA0I2AGC+YFAuaShtNgYgkBuJBmC1iCCQCyCIwDRKIJA7sAXFaIpgkAvCd9mpS2CQATnuMupMYJAAyDwhec5gkA07Nx26T2CQK6EZg7tboJAhQZgAZtxgkBkRfhdQ4mCQFjCXMxDkYJAifDSxTyZgkCSiJAYD6GCQNIdMFM7oYJAmV4rAw2pgkAUDzOKM6mCQFx5uiUHsYJAsFdo7a35gkDXO1KReRGDQJLqXft5GYNAACfXlHIhg0Ar+ICqiiGDQEbKdp5xKYNAI/l04moxg0C+xngxSIODQGykO2U/0oNAkD9B95L4g0Bju1Z7zRmEQOiGJsjJHYRAcMbsV+JZhEDQSP6J5V2EQEDlXDv/aIRAIR7xd/1whEAnyTkb+HiEQPA42prGfYRAHea8HGrZhEC11cAMauGEQEbZzWFj6YRAs9jCmzbxhECwXL1DY/GEQFPC40s1+YRAVOs26Vj5hEDjueVBLgGFQCIKp32gYYVAja91IaBphUC6gV3TmHGFQJrPNai0c4VAQMZPRJh5hUBSixhxkIGFQD6l8PYnuYZA1w/LQZEph0C4lcbTkTGHQAZAyNCJOYdA1sJukYxBh0A8W0yux7GHQP4LG2jHuYdAB311vb/Bh0AqlyWPTg6IQFReDfr10YhA + U6vsr5viYUA2uAwZnGNiQI5NZYVLA2lAclqF7kuEaUDk926t/RFwQI8BR/y9MnFAsQpJLUGjdkBsfmD77qJ4QM9bBRiZM3pAis8c5kYzfEAlsAkdMaR+QKgg2dCew39Aprgoym9ag0DocBCkJuqDQDXhhr+bIoVAE5uSpnIihkDECeW0x+qGQKLD8Jue6odAM8hxNOCiikAIzd1bQDOLQF7y8zYs24xAl/U7UWz7jEDtGlIsWKOOQCYemkaYw45AKSSOJPJ9kEA= - + - Bj+sRLCjTkW0MphENl06RtoaZkQJEqxHQ3aORIZ9r0TENaJEUN5VRL1sDEeAMoxEXJz+RVO6g0Q2/q9EJxy4RHZbUESi9oZF/FoXRc3OfkSWsFpFMbUgRVq9rUTkWatEyKWKRf4Ac0SfBQxF9OI5RITVl0RYWItEnWnBRNi4AUff22JEkJO0RMeb3ETLwkRGd9trRSCWqEQa/X5EdANnRIjdCEUGxflGNAB+ROBWjUTyfVxEw5aeRfVi+ERNi51EppRVRMWMtETWFMNEgf/XRC7BiUWd65NEvJQkRpRVk0QZxJVEiD6LRBtMlkVCvElETgOGRLeJbUSQ5zpFjKTIRImZgUSM1KNEKZgZRVoT9kZD+6tEu48IRRfAqkTkOn1EE8JeRIxDEEXSQ1RHjoQFRcZcfEbw6GREThAGRkCgikRNRm5EhKkNRvfiOUYLvBdFVl55RO9Wn0SyjIJEEJx6RAKBd0VOdC1FMsmzRIPKa0SyyrBFyG0VRkHnLUUW2l9E2Yu5RLM/wkWEGglGuntvRPE/gERe8pREr4doRHNkVkQhIrlEL7aiRNtWl0YyOtFEJBhqRE8EzkQqVkRF5zZwRGqec0QvaZFEooYyRfCWoUSjYfFEqqyQRN07TkSq09BErPoSRb7MnkWbaD5FL41VRCzABUXcJrxFlS9fR9feFEUOiLJEuNIURcfXCUaGGOxF1PDXRIuCoERRjI1EjRhkROR+hERG7KFELy7fRPFPiEROYKBE7NutRMBWy0QNUH9EyjiGRBdqh0RFCOBE2sn8RKeVV0SzwZpE9JP6RD+5OEXo92dE2KnRRWVjlkQPUNFEBMcbRUgcckTsfr5EDJxgRNuzF0U/ZItExYk3RQ4wtETrUtREm4MaRegicESYsIlEwwtKRmmUdUSZ4wJFtey+RWY9PUWqRCtFnuqTRGXK8EVvV59Fw456RCZozUSdrf9EGeymRFzSZUQ5/4hEYXRQREq9LUVuCd5E1WV5RLnFVEXfWaFF6UrgRLa0c0RFa+FEHF4ARTsDo0Sx22dE9BQHRoUvdURu0tFGnvK5RKYepEX37WtF8bxvRDkYY0RfMWFF4O9yROKQYkbwtX1FyflLRQfQt0SZ/2VFE8xoREuz/USbC5tFb2eURC7oGkVOxJZEyRgARcYNBUXJHrJEQit5SPqolkY+ngFIjO5oREti80bXYyRG6EFaRUQdY0XJQwFFbNN4RNwV70daic5GmRXERo4km0Xd9nhGRefHRIYqTkX7PJNEqbJ9RRAgykSvKqNEUE+AROclgkRBuNJEVhO7RJbSakRx4n5Ezkt6RJpnVEQ7pJJE3Tp/Raq3pkTpKslE+HdZRpYAjUVKFbFGUWUIRRv4AEbqr/xEb/fvRCfkYUXB7INEiC1fRD9juESKRJdEyibcRCodiEUcVFlFULRHSX1kAEbgkYlFu49BRWP2SESiGtRE8TtMSJO81ETPYJpGsFmuRN4AB0VLZHtF3oiKRada1kV1Up1EuV2QRDhaFEUAoIVE7lVSRN6Fs0QsAqtEiMxfRDJGg0V945VEZUyJRKwtmERY9HFF8NgKRv9uAUV1VxtF3UvvRKAC5USu7mxE84xpRCGrxUfj5chGuvs5RantzEQAgEVFdYaNRLrba0TNVYJExMz4RDvckkQwtOZFY1q/RGzkkET8aP5EYj10RJ04xkT9cV5GMgtNRRIn6EWG7ZdEFkmMRJAjq0TMLF1EIOsqRR3jpkQ/rclEhGT3RF7il0Rxi5dG/UpoRHUD2UT8/ENG2tquRcJMjUVQh6FEbCiBRQzDqES1fd5FZsOBRPxnrEQGOVdEFpj4RKrthUSNJtlHmF0GRXXX+EbSlk9FKN+wRuk2dESvxE5FjT+VRM1rZERyGYNE4FHcRKCqxETzeQ1FjbEKRSRhekTNG5JEP23mRHp3gkReZ4tE5gPzRBXSokUFY5hEe3yXRAJqUkYq6aJEJBdDRVteNUVRSBdF+w2QRI5zFkW3VyhHWwavRm2Au0XuA3NEKOhBRFif+UT6AX9EdC6tRDS1akR1rZhEUeDgRA0hp0T9J1pF+0ODRoPnnERbo8dFAk6jRLlIGUUSGfREyRSvRDbz/0S/pGdF3vdyReSJb0RI3SZFGMmxRKxM0UQB/GlIqY5yRFyw40eN1LhEDhNsR2bIUkUhjlJGHnNORJDckkXmVn9EkwTWRNwst0S3u8BEO94YRo7NU0U6KsFE/LFlRJehAkYFQYBEkMj2RJbZ3kRrxThF9QiRRSu/40Rk/pVEcJmMRSoJo0SHBmhEQUSIR5/nCketgj1FIkcBRqkMFUU43wdFBOrLRHAzuUVybK9E4RsWRa0F7URMuaREJgrLRT9nOEW93WVFm4X7RGRmpkRQXrFE7aVGRbKRg0TOZxpGC40BRmfhvUVenM9EugYvRbXbfEQigy1GrajIRTqnHEUhb5REqE1VRuBDqUWy0FVF36SHRn8WCEY2RfhEaRFvRSnj80TiG+VETDKWRDmcz0fOc0hH1gn2RjGA6EXWRANGwe4qRRPKHEU5G8xERfSFRDbY0kdNFjlHnkfcRjKxHUVf6gBGJc4/RURWpkS3tqxEo3vARHL5LUWFVFFEM7LfRAmQsUSoXM9Fz+L8RGrJC0VQx4FEEjIFR/mJi0Y6fwhGXROARZGuZEWZCA5FZoi/RPkjg0TYrAJHsxdfRsgs90VtpJ1EtUmFRYxbx0QMB8VE6yY5RuieokW4GDlFycW2RIxc+UXhq5xFMd0mRdIfkkRwn3tE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - YKmGlXnAckCwcX+rb8FyQGbtl/SnwnJAi3bWdjzDckAUeFznxcRyQAK4/z9bxXJA3s82EUTSckBiinXttdJyQJgmUgtK03JAm1H0f3bTckC9jqaQzt9yQL0NPdK64HJAmHbcCEzhckACHhC7UeJyQK+HBfCQ4nJAeqvLsiTjckAAB1exUfFyQE7cD7jJ8XJAsLH+hanzckDYjgjppfRyQP5niUrD/3JAAKSIXEUAc0Dm4yfmYABzQGsEVvX5AHNArG9uZBQBc0CDtSgVUQFzQLLoMmo8AnNA+mE+PdACc0DrwThC+wNzQH7c9QvkEXNA3rm1qwoSc0CXtZlshRJzQKrxNCm9EnNAzPNczGITc0AEirWEBhRzQEkCWLt5H3NAxjx4Bw4gc0BgwcWupCBzQBb8grc5IXNATS6OrMkic0DOAhq4ECNzQPWmFNbPJHNA4hKDDEgxc0DnGH+yWDFzQMrG9m0NM3NA2NVTyKAzc0Cos7dd1zNzQCanoIg2NHNAli9GANw0c0Bmqz1puT9zQEIOulnjQHNAWJzSsHhBc0DOw2x+ukJzQNgxZkl7RHNAfAF55Y9Pc0DKawCMEVJzQLnhSwNBU3NAslGG0qRTc0DqUNHFelRzQPkYrKAKVXNA9Q8fnYxgc0BG76NKOmNzQE7EUsjQY3NAdqxTCFNyc0Ak/Ll4aXJzQF4biJq2dHNAlspPDE11c0AKSxyweYBzQKs1VQCkgHNATlw+Kg2Bc0AUxqViXIJzQKrrbYwPhHNAygYnojaFc0CVClwkh5BzQMwmgvv2kXNAhfGGuU2Sc0Bd0oksy5NzQGwOnNJjlHNAkLwf8PeUc0AqBnE8uKBzQKtSYLfloHNA8gIt/kyhc0C+oC1xW6JzQAQio/jmonNAno1boQWlc0DUqxt3ybBzQCb7dgrYsHNAkB/7K/Oyc0AQjswTt7NzQG1a1QQOtHNAsjFlRaK0c0Akn0gM0L9zQOZ0Xcb4wHNAX+a6Kj7Cc0DLZqxH0MJzQA3zIlImw3NAxFGsq9jRc0BPawKAMtNzQOwAxMP103NAIcNem+LUc0DyTcKCOeFzQFrMSJlm4XNAJHh9z43hc0BUSU8+5eFzQA97mIWm8XNAquutJi7yc0C6ckBYOPRzQLk+iaVOAHRArGdnX3kBdEAkAhpCpgF0QIRLv7XjA3RAQpVk9IkRdEA23uUHTxN0QBKzBl7iE3RAzBPK80wgdECSuKL4tyF0QChTSyJkJHRA+11iaVQwdEDqSxD6uzJ0QE2QfARTQHRA+xtYGM1AdEDlbJn5eUN0QIpqoiP3VHRAag+Ul4xVdEC87BiJuGB0QKTCQDEJYnRA+rHHqRBkdEDb4oltTmR0QNAC33EicHRAB6woi0FxdEBfLvbNpHR0QIuzhi82dXRA4UNLA/mAdEBG3H8GT4F0QJLUcwIXkHRAru0oR2yQdECuO/0nz6B0QLBu6lc5oXRADtNVHLmidEDatWnb0KJ0QBTvi+APo3RA5PkBymOldEBKB9XpCrB0QLBsNSrEsHRACDBdK+TAdEB2d9WyeMF0QJKIBsQOwnRADFBxzRLDdEClR2dlI8R0QGowzvl5xHRA92a1ILnEdEA92qay/M50QPjlif6l0nRAlL/8LD3TdEDTAYW54NN0QLByIzN41HRAAoDWIM7UdEC8C3C7ueB0QOjPpcEj4XRAVHSmGbnhdEA7r51xHeJ0QMIWpe1O5XRAVcehxYzzdECF/WR7d/R0QPqb8+mmAHVABEmKdGQBdUCgc+hzXgJ1QGJnq3yaA3VASo1iUjwSdUDuZaIvJBR1QIQveuWdInVA0HEOt8w1dUDoI5KjtEF1QBpQDnvqT3VAhXHAWoFRdUAkEAEYT1R1QGvtfzN4VXVAjaQmEDhhdUDghvnZdnJ1QGypVpWNdHVAgQ7oaniBdUDSpSTVrYF1QGNh9rKmg3VA/Ii1Q5uEdUAiTe1GjZB1QD77NBC7kXVAnc44dj2TdUCOz1LGPZh1QLjVXHiYnXVAuKoT7tqfdUBCQmSflqB1QHhbEQMhoXVA2DGMdrqhdUDsUPhRZMF1QNjHJzP6wXVA3HDn81PDdUBa0AjyzNN1QD5JdYfm33VAmLkRBBDhdUCQweAyCeJ1QLMp/3Q24nVACtwzVkkCdkBGk95J0AN2QDovmR5MFHZAprscwg0WdkDV2YmAmyN2QMCOwreQJHZAQqSFDiAxdkBwSuoTnTR2QAx9/1keQXZAYozLs3pEdkDNjLLYyVB2QJfRcicTUXZAVJSbPM5UdkAki0uBzGJ2QHoDa43cZHZArITxySVodkBGwmMqkoN2QKCaJlWjoXZAjvNxLcOydkATADpOeLN2QHQ6KcYNtHZAMDNRwNS4dkB8IBw4d8B2QAwWtMO9wHZApPZL68/OdkDApAd99eF2QKiJKuwe8XZAvwEaC5PzdkB1DhMxNQJ3QP7EnNBQDXdAo1YpVQISd0AIpnl/qRJ3QDDLI1IEGHdAAI1WU04dd0DaHkzfZB13QOkn1/cNIndAAr+amXMid0CaMq/DqCJ3QFyXiycNNXdAgUYiG51Bd0BgVgYmsEF3QLb6THcbRXdA0ffKHkxRd0AXFxHYklF3QAcRlOQpVXdACHWV8o9hd0ACJtouO2V3QHYTkFAnb3dAVbh5LNxwd0Cqa0kHeYJ3QCg0/z58g3dALjrJ4giSd0CzdcLkSpR3QMT6tIqatHdA0qTElSjDd0DsFP6sjsN3QFjyUXOM1ndAybCaP+3gd0BjgeRvUPJ3QCLwF7xuInhAidzm24wjeEAOMZZUezJ4QG+rjjIPQnhAUFeomnpFeECgqBzYy1F4QPnRHF6VUnhAcmzLB4dVeEBaWJj47ld4QB9GkM81XXhAs+U3nUxdeEBKMhCb+WB4QGRyy7G3YXhAbKOA3bZieEDtyteewXN4QMYN+RMadHhAGHNSvC10eEDxdFrDi3R4QMQHWRHIdHhAwlmSmdt0eECIcoLiooF4QIpaYN2ZhHhAHkwo2JeReED2PgkLqJR4QM0Cr3mvpHhAatF2x8zAeECe7I0M9cF4QKjqQFS41HhAhohqhAL0eEDecq+gjPV4QHDmQvm//nhAurs9pJoFeUCCL8kNqAh5QO1hJo4AKnlA8siarhJCeUCZgs7j9kJ5QDv7oYHNVHlAbifZh0JzeUB+0JJ79oF5QDJzEVrag3lAESoXkfWmeUAsaetBwbJ5QLjJTD5C1HlARkfKcM/VeUDeNA7fxOJ5QB/HMFhQ5HlAxHsjXzgjekA8UR9u4ip6QGaf59zxK3pALMfLvww1ekDvnhliG0V6QI72UJovUHpA/7+O3YFSekB065tQKFV6QMaMkXSNcnpA8Xl0dwqdekBncrv6RqJ6QAVI2bXvo3pA6CVFzqOnekCuI+0g7K16QBOJNJwNtnpApy+/1ivDekC6IddUGcZ6QClgZ7lBznpASN00wgPbekAiOzCneeR6QK8k48017npAiuoXAisOe0CEb/X8TBV7QIIAXphaJXtAUg6PT1Qwe0D+jXsPKzJ7QE2+iczFM3tAvr28I2RAe0CidNqmQ1B7QDF7vLpogntA0MJN/r+He0BKMhSlI5V7QNxBrfh4xntApz/Ls/7je0CScPMOl/F7QIYs326M9XtAGinQr9oBfEDkfK9cmgV8QLSJyCOUC3xAfRRlP4gRfEBr+mV70hF8QFCBxsrMQXxAbM/Z6itEfECqupsk2VF8QOp68jwPYnxAi4lD3gRzfEAC5w07wbJ8QDGurVUStnxAbh7fA1jifEBkxvWMFfJ8QCfGMuZV8nxA07qXvgECfUCwJmP6SwJ9QIpXsfCkEX1AUGou20YSfUD8JW3yJh19QBcHHkw9In1A6LvCnkpWfUCy7D6r81h9QA6+jj6iW31AzkMgzyrDfUBft5viaeB9QPQGsiTY4n1AvpL9gJD1fUCn/yeFjrB+QKRT9jbAs35ANQ41aE/JfkBY5Zbhuex+QIZNVUAfAH9AIq1Q5rhxf0AF4rRAsYF/QPb5vdOig39AXgIhq2ORf0B+SILiXaF/QFx9kHXopH9A+wqe41Sxf0A4EjtmmN1/QOgw9sLV4n9AvYCJtfEJgEBy2NuX9Q2AQKokFfz3EYBAiDdUbN8pgECAUKasJi6AQCC0DWTpL4BA6hWKVikygEDmUfkH6zeAQFQUfTbYPoBAFIEpbPZIgEB4OgwG6FCAQPaFgPgTUYBA6ZpzU+dYgECwYgw3DlmAQGzaOoMpb4BAY0W2sARxgEDpgxgKJneAQPm6qZ8of4BAivJAW9+JgEDE/TrsHY+AQGglNndtkYBAsz3dphqUgEBiwoGFhqmAQJi47OGqsYBATMexnlLBgECOasmCEMaAQP9kMLgAyIBATlugilPJgEAOb51eLNGAQPT2/epM0YBAQguZpGHRgEDctsHbStmAQBCiSaJD4YBA8u83vVXhgEDNu06b9uiAQN3OX65B6YBA+ZtDE0zvgEBOqgY1PvOAQBijsO4//4BA7W62/UEHgUDYynEtPA+BQGgTqonwGYFAbj4PvDQfgUCLVv1TsB+BQJ4fMmlHJoFAM9DrkTMngUDE4V7c2i6BQOcVaWJ7MYFAgPcyWL0xgUACMiLJJzSBQIJ5MxvUNIFAL+AV0s42gUAj4z9ofTeBQFLPqEX0RYFA6t7FZ/dJgUDbvfPN6U2BQOXySmT9TYFAaI7qRO1RgUBimgK3AVKBQGa3WqfmdoFA9Ie0OZR5gUBCllNOYX+BQIKva8tVj4FAR+mJqVSXgUA6H/yRQ5yBQJIQ5SnvnoFA93BaiMChgUDKYfjE56GBQIaxd17EpYFAMnGHeG6ogUBiAjqdxqmBQFSyZf3sqYFAEO9gh0qvgUCieF3ECLKBQPUNW+4pzIFAw46mlNbOgUAA/BTdftGBQPo0NEV904FAzOv1xy3UgUCO6zUdhvGBQMqg98oy9IFAyABUY972gUCYmM3OifmBQKlPGTVYDoJA/us3AtkYgkBsUP791SCCQGCSKzjGJ4JAqIYjs9EogkC7fzMRoimCQGpXr4+lLYJA3aHcrKQwgkCuU5GGqjGCQKwZzmPnOYJASjGOwus9gkDUq2Px7W6CQEZixzCacYJAQ2KYcUOJgkALxbsTRJGCQKosbK08mYJA2ovkMA+hgkCD2CB3O6GCQArWOdEOqYJAyDuYCzSpgkA1viXMCLGCQBRWh+il1YJAMCsla6/5gkDOLFmceRGDQM7+Bld6GYNAovE/sXIhg0A24533cimDQOIBPHZqMYNAPAr4KOWBg0Aq9GgFSoODQKwFd7nMGYRAPmniJtEdhEDytcX941mEQO7aOLHoXYRAn3Wlef9ohEDIBEIk/nCEQCiABV/5eIRAK1eEYWrZhECPLJWBauGEQAZXfSRj6YRAgJDljX3phECi2mpnNvGEQIoIa/pi8YRAyInzjzP5hEDqOu4hWvmEQDBF9GYvAYVAzFvvpaBhhUA4V2z1oGmFQGQVl92YcYVAlnOiEbVzhUD2klO9m3mFQL5VLM2QgYVALxZ1trtIhkCenT6ZJrmGQJITFvIlwYZAxdkaV5Eph0CW6V9GkjGHQCaHeWuJOYdAjGjryYpBh0BaPqK7x7GHQLqEKzrHuYdAQkMy38HBh0AueWCjvsmHQK2DfqwE4odA5Hkoc1ISiEA= + KBZXds7jZUC2sNCooUJpQGS4z0t+BG1AeKkkv6gxcEBU5elWwvJzQA== - + - wfFqRHJMN0UC4jNG0TXJR+1utETVsK5EOS4bRxwgiURDORBGOzHkRK9t5kSyONREv/mSRLEbgkUsKx5FZy9RRE2oS0Ts03ZFqF7rRPWpn0R96+hExhu3RawbY0QUFM5EvDNNRMapckQpeldELAmRREeOD0eqRIVEdonCRKlFBUXOF4xGEvyXRN79kEVAErNEyBh6RMQeCEX0Y85GoaS2RL1KXkQZQbZFRqf+RJdE3ESK5VpELDqsRHM5pUSujbBE8QOLRNegdETXtpVEWRm6RfYfXUSl6iZGJumPRIS8c0TM74dEy9+QRdDL8kQQr1xEQdXWRARLEkUn2ohEGszERFEvlUQugptEDFY3Rez1BEcNSslEt5kiRYkXo0RrJnNE5L1uRNFjHUUAg2ZEZ7xSR8Vyj0TCUMBEQQqJRuLdFUbhwahEauWsRAr0/0VNiYBGs/NNRd8nakQDA5xEMUNtRFYaT0WNMw5F1BFkRLRakkRoqZxEiKdnRCQK0kWfoSlGiyp8RY1jWESZPOlEBpqlRUB0BkZ+9WtEi6ZuRBT/gUS/jE9EEj+MRJYbLEXR8GhEuJKURqAJw0SsulZEbyKFRH04PEXffaxEPkKWRAxPRUWhBX1ETMHARMiUmkQ824JE9WNyRHFlkUSGEK5ERislRSDDjUVOL0NFpFN2RGC7AkV3VrpF55RNR8xLXkRMB8VE9Hx1RT32+0X4xcVF4dniRKn+9USByrdExEGbRCBhyUSrMwBF6gW9RO+rAEVBPbpEk2ahRGGRq0QjtU5EWbeMRNgPl0TjtHhEp9avRGlookT394pEbp1TRGTsgERlsXFE7pUERcJhhURNgd9E4YRBRcy0iERBhMNExtXCRU7PhESHc31EpTYIRbqqXEX5IopEeeqtRGozfkXUhsNEweddRW4+j0TIx7NEoMSGRPgiiETExjJFt1oyRR4B/UTQwiRGQWgARcV0AkYS6xJFSGvfRLr9n0SA/XhETNlyRH6ED0b+SUdF70lvRJ5Eo0RWDWJEw/6nREx+gET67xVF5/uxRKPb2UQ58pFETwO/RL2yMEVo3HBEXiRfRa4jj0RLwXxEnebQRAZZ30TAChhGum/cRiXZs0RMwuJFA414RY29jkRLzCFFlCtQRlB4p0WkcRxFZPE+RQZea0XT24hE398XRf54eUSN+5BFA5OERNWWW0ThcLFEbu1gRbzegETBuIREd/kgRUJCCUUDO1FI0SabRp9230dciJlG4pDoRZMMDUVJ9n5FxBipRHeHF0V8KvJHklqzRjhkzUURmblGDaCeRbIrgEZ9jRFFqQpGRXmEjUQri59FTcgbRYLH20Tr9rhExC2KRCvWVkQvhVZEuWGhRDzfcUSIn8FEs6+KRP43vkRNoHBFPseARESYvUT/VphEoJZHRj81k0VK5aJG4OMXRX35LkaL7PJEk+XaROpYB0UpAZ9FpmqmREZz0kSBbq9Ez9DTRBLzRkkFmLNEc+6FRDxNIEX+FVNIk2wCRXFZoUaUn5JEj9viRM75ckRHwvdEqt6HRRAfmEVkMp1EQAenROOtwURXa2pEC8LbRBZmjUSebVxFEuEJRbJVhUTQ2mxEG5FcRPIHJEXVNAhGtMWuRJoKcUSRKv5EWLCjRANxukRN3I9EjfC/R5QnsUaXNkVFpNMURU/1EUUgjp1En5pbRKNqZURy7pxEAgtyRPZ6tERraL9FJfHHRIChoUTqfKxE60dNREPwg0SrAvREXly1RAhiMkYdkGdF70mZRjz6m0QZHo1EkRqZRAFnN0XE4ElFrpVyRABgyUTasYpE1FCHRIwym0UxnZlG6rc2Rkwcm0WFKjlFaZCMREnVg0Vjyq5Fhwt5RPmyEkWei5pEop6HRMCMB0WsElhED8DuR7/6AUU3//xGnMMKRbDDuEb9U4ZESnxoRSbTo0TcZJVEGQqCRP6Dj0QqXIVEw9KiRIADtEQde8VEf175RLj5ckSx2JxEfCCVRKcYhUS06N9E+gGRRWHm10S4vnlEhhk6RthqjEVtgJZE300MRVuCiESMIfdEuHwSR/kVYUbA8q1FywC/REY7q0QJ+FZEbleBRJNjpkQRlLlE3yCtRDXpcEXPXHRGzLqSRBUTnEXVIgtFuOAfRb3CTUTvjmBEVjGuRCLsFUXhFo5FAvzoRLhwlEQRWINE+lmCSAb9Y0TVPIFE5G/rR4tCqUTtuHxH+SYtRb0gVkZJQlZF6N2sRFkDcETnjJhEUYDoRAKzmETRyxNGnpkxRd4L+0QKrUxEZDD2RQgEdkR+G61EapjGRFpXG0VYG3VFY80ORfyLd0U3VHBEQZELRdIBbEQnTExHT6S9Rk9hCkWJYLBFKZlvRPSIjEQpTNdE0lvdRDakh0RKvYxFsx2KRDqE+0Rhzt9EbNZQRrRaVkWzJeFFwSDpRIA7rUTWdopE+TsXRe5XX0R/4y5GqSz7RS0nXEVy5NlEuIitRDRmI0ZUsAlGwWxDRd9v/kRlcIdEl21BRskoYkXd94VEo5RWRUQfPkaX1clF+XdnRG6aSkQFzDxFP1e9RLlAzUQE3ZNE3IvMR5QcP0d0RNtGYpjORepI7UVHRNhEKn8ZRbdF9UQFxnlEN36vREW54Eer6UJHHkPuRlFjEEYnkhlFbcSHRAn6hURaOLxE/JSZRJwzokQ6appEfjnyRRwxIEU01fZEFR0PRx4JhkYUqDtGkoprRBnWgEW9JYZFlE4RRfT92UT3MNNEmBQPRy+XYkb01wxGCCIBRVvphkU14pdESaCSRE5WzUTm7oxEgdlGRtvAqkVdYVBFVdLCRE/ZFEa5Y6pFr9UtReRDpkTftXNEu02FRA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - KNZCJQzBckDQh1qmb8FyQIvlyJRRwnJA4WiLU6fCckDChm1Y5sJyQFr2TTE8w3JA9jAyRcXEckDio33XWcVyQMquLIra0XJAjZuU4kPSckAxlQqjSdNyQHyFVa9203JAmburNGPUckDC2RgM0N9yQDM3fNm44HJAVlQ9z1DickD6rgi7kOJyQK6n3b4l43JAh3JzaMrxckD2rCdHNvJyQFyf1FAS83JAgIJv86fzckBS/nexovRyQJJkhT7B/3JA3XQ+MEUAc0B/6DJ5YwBzQBsVLNr7AHNAtGUpiEoBc0DALte3jgFzQOByzL85AnNAktVU5tACc0AW9gf1+gNzQEzje5GOBHNA3BycsiMFc0CyTEnV7hFzQEQ+0HMKEnNAkHCaHYMSc0CWDGT0vBJzQF2RWVf6E3NArj3LiAUUc0COBb91TBRzQA7sVzh6H3NAoaSeXbgfc0Ck80pQpCBzQLTMgqE5IXNAUy4C+Mgic0BSTzDeECNzQA14CIM6JHNAejjkSs8kc0DiSiSKRzFzQDYVx25eMXNAcpT2uyAyc0D0d0rvzjJzQGqgXlyjM3NAadV+r9Yzc0CFxjpNNzRzQJxAAmHZNHNAkmBFD7s/c0D9KB+A40BzQNJJaNt4QXNAWOrEu3pEc0DYSiYXm1FzQA6hmTekU3NAbAYeiuNTc0AIGWldd1RzQFKs2miHVHNAKPze2zljc0B0HkKKr2NzQB+tduVPcnNANN+Dumdyc0C+lPunuHRzQNx4YZxMdXNAtP1iQXmAc0BRUF3kooBzQNf37zwOgXNA5EPXY16Cc0D2BOkoEIRzQMkwP06GkHNAmNVYiE2Sc0AgCtGYY5RzQCTXR9P3lHNAru2e0bigc0DYy+Vo5aBzQNoDVT5NoXNATOxHtFqic0Dobwiw5qJzQKRb3wcFpXNAfIE4VH2xc0Da7alo87JzQEwMWWK2s3NAkkroHwy0c0A7y3Vj+cBzQI4l6cc/wnNAJGyEGdDCc0CwO1d5JsNzQP8l/BT8w3NAE3c0AdfRc0AI4xwZ3tJzQHpeVoD403NAnI9QceLUc0D6psbTOOFzQB5NTm5l4XNAsq6I/+Phc0C6H0vB7+RzQBxpc6nS6nNApG+4xC/yc0BMUvyvN/RzQPDhYDt5AXRArsQpxaMBdECoYyMfixF0QEZQYaxME3RAdNgFs0ogdEB5d2pDiCF0QFKvQPW4IXRAyQdks1MwdECguWct5jJ0QLbtYEVVQHRAYRLGJ3pDdED+6REbDkR0QI58kHljVHRAZQIEHPhUdEAWWKahjFV0QGwu8Ii4YHRAxfr0VghidEDIx8ILEGR0QF1jGdVOZHRAKunh8yFwdEDzfcFBQXF0QLUzafU5c3RAxFKAQDh1dEDEETfaZ4B0QCGe/or4gHRAIA8f5yOBdECWP9e1ToF0QCobttYVkHRASlKrEm2QdEBCsuI60aB0QMJc02m5onRAWgOxu9GidECQamicD6N0QBrdL99ipXRA9V+oGQqwdEBAi1ZswrB0QEZ3zSXkwHRAtWZB9XjBdEDPQmAc6sF0QMj5J1N5xHRAoDECKLrEdEADMKeEzM10QMwu6Fn+znRAAbuf4CHTdEDkvuR6PdN0QLBOrlXh03RAdgKpx83UdEBOEtcPJOF0QLkTzdS44XRAil9xGdvkdEDj05UPT+V0QAlKYiiN83RAdi42E2IBdUA6ss3vXQJ1QN4k+G2aA3VA12rgmyMUdUCD+ISduBh1QDyTjXzMNXVADk8XtttFdUA2/Yts6k91QKcCNpqBUXVAHIqgI05UdUDLdeiAd1V1QERBcSHzX3VACsUYFjlhdUDdrrDa1291QHIVsP12cnVAP/MYgY10dUBHmDFXeIF1QDDTHqitgXVA8PAae6eDdUAkgAgrm4R1QJe9kKy9kXVA1IXnHT6YdUCSfio6mJ11QDJK+1KVoHVABGNTmLihdUDoQ7Wo76J1QNzkj46WsHVA2ryZ6zWzdUAYtl53Y8F1QFSJpnf4wXVApg5O/M3TdUCEK1725d91QGjKq6gI4nVAA+kDNDnldUAjCzb2SAJ2QKAs2QHRA3ZAfn/Au0wUdkC0gSn6DBZ2QHvoPf6JInZAGDYRwpwjdkC4kSCxkCR2QAua6c4fMXZAqLjZlJ80dkB/mIPwHUF2QPVlHU56RHZA+mkZdP1OdkCCIQbEElF2QKgZPbuHVHZAnJop1c1UdkCwH/jaEGF2QM5LuM3MYnZAwftI79pkdkCOXDFpJ2h2QMgaKPqvcnZAiAIy85GDdkBvDkOxt7B2QD6g7rjBsnZAJm2ZZHizdkCEnG0RDrR2QISBzfOvtHZA6/YTDB3EdkCnrc70zs52QPhl5qX14XZAUE408JHzdkDMLtsDTfZ2QFPAOAY1AndALatWwFANd0DP/1SdAhJ3QMuhbWypEndAeJ81YPAXd0CgLKL8BBh3QNV9BixLHXdAUkMB518dd0AzZf+FDyJ3QA6Af3d0IndAADTkJA01d0DttqdHnUF3QBgpRyobRXdA7DujBEtRd0A8UA3WklF3QOhVbLzuUndAG6kfsypVd0AP9cHDj2F3QLj9UZonb3dABh3ypNtwd0ACyaSsi3F3QONaZVN4gndAqXwV/nuDd0AoW4C2S5R3QO7S9RSctHdAunBhXS7Dd0AszVSj49B3QHirOIOO1ndAyoFXCe/gd0DiB07cZ+F3QCyXFttQ8ndAkpaQeR8CeECYCpCYbSJ4QOI6zDGKI3hAbgl2sAxCeEDAShrDekV4QEo+67fLUXhAcEUcEpVSeEBciUJDiFV4QHBxo7fuV3hAjwlW6kxdeEDBCvnJ+mB4QEKqW3q3YXhAJtSpXLlieEAmoMUhpGt4QP8kXnLBc3hAIFsonQ50eECZnBBlRHR4QFmmkAJSdHhAzrhBY2d0eEC3rwXGi3R4QPosC3qodHhANAWxVrx0eED0ZnJDvXt4QLAnRNylgXhA9T3KCZ6CeEDiNVf05IN4QAA2zemZhHhAarxua7eEeEAioKl1UY94QLqazw6YkXhASyiL/LOReEBYhaPZp5R4QFqCFnjqm3hA0QbtkbOkeEDsL59N4q54QLBGPgPNwHhAbs/6O/TBeEDbdZ4uCMV4QNy5xkHWznhASlROz7fUeEBVNXwCye54QFTIljAC9HhAx+S/8oz1eEACMqK7wf54QAltJ58QBHlAqLAL0ZsFeUC+wknWFEJ5QBkguX+NQnlAxsa++PhCeUCy4mqXzFR5QBMiGIZEc3lAdh5MCsGyeUBMDLADQ9R5QAoBNZC/4nlA5Zk/kVHkeUBoHgOGG+h5QHgoCqoMNXpAp5W+EhtFekBaOwW5L1B6QJMItR2CUnpAyPDHYSpVekCu9hfxi3J6QK2yHFLwo3pABlDdjQy2ekB5sIz3LsN6QNTDUPQaxnpAEJIgk0TOekDUjuyy1dN6QI7sFmTh13pAhD2H2XvkekD8HB9jN+56QGaIz9cqDntAS/AcpkwVe0BMSw5NWyV7QLD0mWdUMHtACpXAli0ye0AR2oa6wzN7QCEuGKFkQHtAYuFpyUJQe0DpGGIPXlJ7QMJcXFKGUntAahKO3MOUe0D+WnBnI5V7QJT983R5xntAQaU9vL/Re0DW7+qYrtN7QO7YXDX/43tArCuxfIz1e0At+pb22QF8QAKQJP2YBXxAGDeO15MLfEAAkT2HiBF8QP2GNV3REXxAghr5Wp0TfED0j338pxV8QBrC71TOQXxAKHqPogxifEAOo1C0BXN8QDgHXvH5pHxANNVgMcGyfECfzis5zdV8QP5HBBNY4nxAZZDRnhfyfEC86E6MVfJ8QD+6AWEDAn1AAUmHW0sCfUB6I1lGRRJ9QNqaBLE9In1A04KWEqExfUBaKdKC91h9QOy9RC+mW31AmnYtlFJefUBANaaU1bN9QDZjbOEtw31ACuzLvD3EfUCo0cTlauB9QAiCE/Xa4n1A7aA8VJL1fUC6rZnHOh9+QFgvXkNFL35AA0jXkHmDfkDUWdJ94ZB+QNrsMIR8on5Al0q5OWTHfkDcd1gUUsl+QNhMnbXX735A2sQOBFD0fkDwsQBmIQB/QKJivcK4cX9ACgFXS7SBf0A4jJQ3ooN/QBbyTmtjkX9AZ6RAyquRf0C/mty/lZN/QI6xWKxfoX9A+koOw+ikf0D9uChVVbF/QLqchkmX3X9AyMCJstXif0DA8IkR8uJ/QGyZXb7xCYBA8E1DJPUNgEC2/P0q9xGAQGQLVF3fKYBAkdIRDCYugEAus/fIpDqAQGSZax8pPIBAdaYhQO9IgEDkKS0A51CAQOUweyEUUYBAA/de4uVYgEBcWr2FDlmAQMTdKCYhWYBAtHtdLwxhgECsoAZIKG+AQAhwBroEcYBATlQuxAh1gEAuG53o3YmAQFoeumcej4BAsmxHfGyRgEALvi1RDJSAQPRiCKYblIBAljxM34apgECWY61k/L+AQMKI3adSwYBAhrgktwDIgECKkSSdU8mAQM4QzCgr0YBA4HaUwEzRgEAuieAMYtGAQFoDVOtK2YBAovmBi0ThgEBdYmM29uiAQE62S8I984BATAevOED/gEDLc7ozPweBQKQS9Eg8D4FAoNZ/qTQfgUD3gsY6NCeBQL6xYn7yLIFAwEJFJtsugUB7mAlGezGBQId+eA28MYFAEvqWtyY0gUBqQsFO1jaBQJZ9Ieq8OYFANrfVc/RFgUAOdKVp90mBQNDNEI7nTYFAX4ohmPxNgUCGZ/Be53aBQPgGafKUeYFA/lylbD58gUBQeA4VVo+BQKfPXFpVl4FApKd1FsGhgUDsCTB/5qGBQCol4wDEpYFAmi2Bu2yogUAc0KdguKmBQKoFdcLLqYFAQkk42kqvgUChx/DnbbCBQLEyaWcqzIFAIEhMAtfOgUAUdQQhf9GBQB55ZeZ904FAOpcYAyvUgUDG3N6Z09aBQBioIM6F8YFA1maSJrPygUCOCp4JMvSBQAlSr3nX9oFA8K4maYT5gUBMOo1i2BiCQD4Hf+zWIIJAiggE7NAogkCZYwpFoimCQKZpMBKlLYJAXYJ6haQwgkB2mCDArDGCQPzUIGDoOYJAHPiW4us9gkBEsevl7G6CQEocveOXcYJA0z2OekOJgkA1H+YLRJGCQDSGWgs9mYJAZOzCalaZgkDmV7bXDqGCQDBrNuo6oYJAKjFCugypgkAIldNQNqmCQGrchimt+YJATCqYonkRg0C89TdkehmDQAThJvpyIYNAbC67z4ohg0AoaSdycSmDQOAJc1drMYNAortbC+GBg0DspfSJSYODQMLt7P+U+INAihamh+v/g0AER6Y+0R2EQHKh0UhfSoRAER/MpP9ohEAGO7WW/3CEQIxvChn4eIRA070pmWrZhEBc/yTRauGEQJxeVshj6YRAn8W+RzbxhEDzDHqEZPGEQIsv7yw2+YRAZFHqJVv5hEAmhYuZLgGFQAgAmYugYYVALxTpb6BphUCQhqF2mHGFQAAiPuSwcYVAvjkcbLVzhUByMJPEmXmFQIvq6h28e4VApF0FFSe5hkDm77FrJcGGQADTsgUhyYZAM9xYcZEph0DmTmVlkTGHQFrpnceKOYdA9j7SgFxBh0DQ0Tlti0GHQPBwMKvHsYdAsgDlQ8i5h0CsqPZOwcGHQJDjIuHCyYdAYONPWP3dh0DobHvmSw6IQA== + KBZXds7jZUA= - + - TspmRO4gQkXSZ4hE/cMyRnvIrUSze/5HzxIHRbuwtERUiYFE5AEjR9d/OUbGVORESObCROMy8kThZLNEEDW5RYUPD0UXAdZEGByVRXMzbUSETe1Es/NURfOSqETTj+1EkB+ERe7EvUQd4uVEbLmXROzpjkRbJ6xES/G7REgcF0dIRJVEwWKDRNxleEQ9FcdEm1QRRepnoEZXNZpFgiyeRXRmx0S7SeVEpH91RJQ7CkX4n89G7RjRRMRBjUQQAQFF8DTWRYpB80RnJ4xEg9lORNKxfUStIKFEHyOSRLQrx0R9UldEUFmrRE/o/USHAL5FIztBRj1GokR2ZbJF0bp+RD/Wx0TKyOdEyEsSReXfVkTXFTZF8HXvRMg2zETxVSJFJvMJR/9Ld0TB96tEL0GtRKYAlURANTJFeS5eR463nkTZv7VGTh5SRl8fxETWoYBEIWDcRa2+oEaOykxFnliBRM4qIUWBP2dFAnUpRfyC6UTh/WxEbZTlRWlyCkZeYXZEQZNoRZMXYUQJ0NxEnQyzRbJd9EW/cZNE0n2aRKyzokR5mW5ENpqwRJwuGUVIIK5Ga18XRcOqwkTyqUVFuTKbRI2HWEQ+sldFn2fwRF/WskQjPpJE6dy8RA3NrkRPHlREpki7RH6gJ0X+Ca5FmaksRY4lq0QqCRpFcf3KRTURVUdU67FE7dGwRJKggUQl73ZFgZttREfx/kX3GMpF2MWiRDe+g0QPLt5EaBPmRDB2LUUrvNlEeH8NRcCiXUQDwIZEOqOURAxXgkQe25lEDBmzRKMAikQKYa5ELwmhRKMGj0SbAKpEgPAFRXEc2EStEllF3SVNRPaC7kRMZQ1Glib+RC9ZJ0W4/9REVnI4RbuwtES7ozJF5xxmREIUtEQkRbZEOcW4RHIeH0US0I5EVFE0RazhS0ThBRVFJw3hRV3IEEU+79lFvakuRTRolkR/ap1Ej0wnRg2WZ0XJcJxEw3OURFvkmkQsw3pES0OARP5Gn0Q35elEvISnRHk6jEQRlC5Frrt8RJnrd0UdrP9EMD+pRGa90kQ1ipdEmlfKRJO7KEZDGtVGnJSxRGhcs0X5GJFFenPqRBfZe0WxWpREl78KRtZ2W0TdQDpFv68DRV1MYUQUDHREUNuYRda5h0R+cUZF/caeRF/mj0VN0LtErkiTRLI3LEV3i4NEd4hLRWmihUTUUR9FbA4mSLaxkUajpsNHZLq8RVR0tUZTYU9FvrBfRbsDUUWkfedEgM7xR7RQ0EZ0NcNGNZKuRUJ8k0Y14odEFFDwRHnESUVTOUpF1yr8RCm/RUT2dxRFv3j6RBhigERzhZ1E9/CERK+vgESUNIZEZzpuRNRGRURSN61Eq1xpRJz/nEUeDrJErgvmRBpLXkZoaMpFbDm8RuJdLUWT2SFGMBzBREYoE0WyF4RFEra3RGxd0kT17QhFd2OcRFzL50QiR3VFDj+nRaMwUEnZMQNGVu+URbIHtERIeklFRVPARJo+iEQkJFFIFvQWRQi0k0SEhgxFU5t0RIGCvEY0Ho1EFCWmREvzh0Qsb+pEBUmBRCvMkkQvSrFE6PUaRbyEnkSTFq9FuZ+ARTm1B0XGcXtEN6yqRNbHOUWW1dlEpAijROq0XUVoSABFBd5kRTHOA0aneCBFGF7aRJ/vwkQYtbhHo9OzRmd1WkVisa1FbiInRRWkpESoK/lE3mi3RUV7tkSuOKtEHMuCRE/bVUSdwINE/sSYRCAm50TsjMtE73dKRtK0fUVLYABHMqm2RB1wykSpsDdForqtRfgQl0Rqx3xEcDlsRE9C2UQJatlE8DMBReWIVER4xZBEFDybRq4ZOkZDO5lF+jctRVGNi0SRXKJF/kqOROzsgUQEgtxFWEm7RHU1ikTDRaxEELn+RDbQnERCY+VHYqcTRcKU8UZdMFJFWYi5RlQdb0WPDfNEjpnORGhcUEXoFvtEJuGxRBGFTERLnLtEAOffRGOasERr5qpE113xRA8knkRAv3hENQd5RKQ8g0ToL8dE/DhdRMHnj0QC7ahEPlZ8RGnx5UR5FIJFn6gNRXtpxEQCx3pGUx6JRP3VZURau2ZFV6eRRFjiPUW3CqhEr0eXRPjHfEQ3K7lGvlE6Rshk6kTmEtlE+UHiRCApf0SOpbJE4vmvRI4iXUUXOHFGPhKhRHPfqUU7L6dEOwijRIfDHkViTeZEK+WERPjZqETnFEhFp/WDRb8PhkSzDr9EvuHbRG9pc0S84oJIi/JsREcT70cGbA1FeOGIRzRWSUUQj21GvveARRxasUQTpRJFGUUYRoZMBkXD4NJEG2rfRe7buETa3ItEziYJRVYQYkX91vBErsPbRMYgmERSxIVELxorRywDkUYV87dEgCSLRYz22ERwdf1ENyBtRAeiqkWHsvpEwMOnRuGcNkUMrzNGOScrRUTxqEQfxhtFeZMORclCw0QqKEFGOP0eRolmsEWrybNETFNhRUnghUTorExG8/iTRNagNUZ8jCJFa/q7RMjWYUaNEJRFYX1GRc4oMkZp5ppFJMbHRN/h1kT0n4FF4f+dRFpB7ETB9blEYLnLR+ClLUeACu5GYvkCRYPa3UXbFd9F60InRXbpOUUfU6dEmmflR8MWPUdac+xGpUxCRUcICUZCODhFIompRHs6tESg/axEKytqRN8UiETUtW5Ef7rdRU9bTEXfuQVFuToYR9TehkbNUTNGACygRUsaikXdu8NESlCURK4J0kTxrA5HxmJ6RrkKBUb7x69EyURqRIfPmkVK+GJEeq7IRPX3gUQVXYJE2FkxRvgxqEUwsXdF9WaNRLRvCUUJAB1GFKS3ReYTUUUC8dxEHAnKRFDkvEQ= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Gly40gvBckASA0yub8FyQOan5VdQwnJAFrw4KqfCckBT+Kk448JyQGhDIyI8w3JAzzty2cTEckCubsMjntFyQHhPoX1D0nJA+albiLHSckCAgMAgSdNyQL7kyid303JAfgjils7fckDUdOGSt+ByQJhC/ctM4XJAY10xNGXhckAB06cTUOJyQEZnqg2P4nJA84qH2CPjckCwS+4Hu+NyQBROkLJQ8XJAPMEu1crxckDOcpj4evJyQDFGrjwR83JA5u0lW6jzckBk/w4IofRyQDWI/SnC/3JA6hYPaUQAc0Dal1FUZABzQJobnGb3AHNAlt2h10wBc0COfnCKjgFzQOKlr0zPAnNAvoxQ4voDc0BpzCxrCBJzQNpcNrWGEnNAvsoCbr0Sc0D6UTFPBBRzQD7lTixNFHNAlCRWZnkfc0ArbIPXoiBzQD+Z+nA5IXNA+7yAeWUhc0C8R8UnyiJzQJzMD7gPI3NAUHIx1jskc0CWmOzVziRzQJAdgO5KMXNADE1pTAszc0AoeUAMPDRzQPa4pvbiQHNA7vrtNXlBc0CaM+APJkJzQABBJi66QnNAdTZm3XlEc0AHIjt7jU9zQPjGw1xDU3NAI5wBtqNTc0A69KUMelRzQA5mMjCGVHNAXMadPYpgc0DefehoOmNzQFS08w7OY3NAZyyZHlJyc0CcsAUeu3JzQPyzj3FMdXNAqlfqA3mAc0DajR/do4BzQDNYtDsOgXNApo86xF2Cc0DBDstVh5BzQLZNP4zWkXNAiDqSVk2Sc0B+YWHdzJNzQHJtOTpilHNAeaeSoveUc0DScKbAuKBzQHSVCMjjoHNALCPBPEyhc0CF0UhA46FzQNpweVtbonNAVkoUmOaic0BAtmlsBaVzQD++rnEzsXNA6tceHH+xc0DL96qx87JzQFKaw6oUs3NAJAzO/7Wzc0A8A2SCDLRzQGW8js35wHNAqBXDbyHBc0DW8Oyyz8JzQEHpZJ0mw3NAOLiTV8PDc0A9Gs/N19FzQD1S4pba0nNAh6zqYzTTc0B4oUON9NNzQJqv9WLi1HNABrDMkznhc0AaZnXqY+FzQKaXRcbZ4nNAgzilry7yc0AugRvpNvRzQH36OtJOAHRABsZnZeMAdEAUNs9AeQF0QMziJ76lAXRA9KwWlg0FdECuZoQuCxF0QL4XeQyIEXRA5pkDlEwTdEA5Q7zASiB0QITxrAmPIHRAehd0O7khdECC4iWFuiR0QNwCPj+6MnRALnD+ONQydEB25K1SWzN0QF1bMg5UQHRASnYawHlDdECFIrXveE90QHf6dQf4VHRAbiNWvYxVdEBCBXEuuGB0QGlbMUgIYnRA6j9/701kdECbg3R/IXB0QIrsn3JBcXRAst1hANBxdECPPA3ROXN0QIZUEDM3dXRAABALozOAdEDY8bLQ94B0QEWdMHBOgXRA4hbzyZKCdEBXzzqGFpB0QNSTV/FqkHRAvJL1YqKgdEC2NtqG0KB0QJaO2Ik5oXRANFSA3NKhdED3sDy4z6J0QLZieIkQo3RABenm7QmwdECux277ZbJ0QHyWuWn8snRASCBdn+PAdEBT5HtzeMF0QDBETDwNwnRAyus/ztrCdEDCTJREEMN0QOqm44skxHRAMkPwWcnNdEA47MuN/c50QPcRQ5Qf03RA7CM8/DzTdEAfDxfs4dN0QKal3mh21HRA9EquYc3UdEBiLnD5IeF0QIyebM254XRAFmI2MBvidEBqSyDiTeV0QNHUaE2N83RAxN2rOqUAdUAfvqupzwB1QAhftntkAXVA5OlQy1sCdUB8zIIYmRB1QJG93KskFHVAnvYtqpwidUC+HuRrfjF1QPZkR65+MnVA9Zld0cs1dUAB8YbJ4k91QHb63nsLUHVAi+C34yZQdUB302CGgVF1QDSQJppNVHVAvxDcXXdVdUA0k7WSD2B1QIazeGWiYHVA7OmU/zdhdUCOb77N82F1QG1Xunh3cnVA9ruHfY10dUBJUe2V5IB1QJE5aw14gXVAkMIrvK2BdUApC2aIp4N1QNpt7QWahHVAvCwRLLyRdUAqVJJBcZJ1QDCOKHs9mHVAoDYVh5eddUCWE6yvkqB1QKaC83y5oXVAeWldweeydUDNzVxCzcB1QCQg7R1lwXVAahKk7fjBdUDm5Za3VMt1QCKgvLTO03VABJl6++PfdUA2+EbJEOF1QAzytW4I4nVAOgKONznldUAkzSFwSAJ2QO4h4NXQA3ZALPrScU0UdkCYDCwNDRZ2QMTDQbOKInZA8j1zIZwjdkCADgQykCR2QB4YeuAfMXZAJYkEDiUzdkBsPJhBmTN2QLIBvHufNHZAkNxcgh1BdkCQT+d5nkF2QPW3vLF5RHZADmD0khJRdkB4fJ5qzVR2QC49wlrNYnZA90ZYMNtkdkAooTpxJmh2QG7l6KnKcnZA8qsJV5GDdkDskIYwNqJ2QJYdj7m2sHZAVoFQ8r+ydkDyzipzeLN2QKToJQgNtHZARt0fAMLAdkDz+qRIHcR2QPSg7pPOznZAZolhSfPhdkCiLeddkfN2QGt3AoY0AndASH0vSlANd0CbQvBoAhJ3QLD1eb6pEndArxG4tuUSd0AwjSTh8Bd3QEb/pmkFGHdAYoZK5ksdd0DIu1lRYR13QK9aMvEOIndASBjlyXMid0AL7sEkpSJ3QE2Loke6JHdA/59NGIEvd0B+11VJpzN3QMbAGAoNNXdA+vgau5xBd0DE8csMsEF3QOPXkB8bRXdAZ2CSF0pRd0APLSPTklF3QBgdFzQrVXdAmPbuz0phd0A6nXeMjmF3QMoxkYmiYXdAjglabidvd0AM4X3F2XB3QEjRz6OGcXdAfNmSH5dzd0B4pt4wkHR3QDV9iLcof3dAbGo17HeCd0DqJG2jeoN3QL89glBLlHdAB6UJ9i7Dd0DrgVf47OB3QF/AKCxQ8ndAbCa9600VeECeKZHcbSJ4QNISNL2LI3hAF4eiV3wyeECWtN2ZC0J4QCroEfISRHhAOhno3XlFeECsa96ybk14QCZMQf3KUXhAZ9Tte5VSeEB6t1pNiFV4QGqHfBnvV3hAetqj3PhgeEC2XjGjt2F4QECQ+du5YnhAfXRzW6VreED8fKncvXF4QP9Z0OG4c3hAPDdLcot0eEBGuSCRx3R4QOo42xY4gXhAEtrqjKSBeEDenXm9nYJ4QHbdYGeZhHhApqaw+paReEC5823cp5R4QDO7KAnsm3hALC1k1umfeEC7PYxtzcB4QP55sEH0wXhANqa1iLfUeEAeHLhqAvR4QKQy9H2N9XhAUpDbGMH+eEBEMcjwSgN5QJIAIOwNBHlAlqIn6ZoFeUDYl2coFEJ5QBSnCU2MQnlAnjzaw/hCeUC1pygZzFR5QKBE4NZDc3lAMn/Ls9SDeUA2/WaswLJ5QIsztlZC1HlAAhVjOs7VeUAvMQB5T+R5QIyv88oY6HlAvKePEdwmekAVEq+MDDV6QCi3KcoaRXpApVmdpi1QekBGrzRVgVJ6QO7Oh5jtUnpAaIFRuCdVekB7DnPHjWJ6QPA+BsOOcnpAHZP9bBCcekA82sx2RaJ6QB7ruNLqrXpAZ+v2BUqzekBlDVSDDLZ6QH7Qx8cYxnpASvAPLTbuekCgfYzr2Pl6QJo6cFMqDntAEr+I38AQe0Dk0wwHTRV7QKOUa7ZbJXtA+P25RlQwe0BgNeFwKzJ7QGzul73FM3tASroI/GJAe0AwxxGCQ1B7QJI3ttpeUntA3ltCsWaCe0AWMnmjwYd7QAAvz7nvkHtAEqPiXMKUe0DEN2bdIpV7QApjgf7843tAxm/N9Zbxe0AwI4uYjPV7QFDR4CXbAXxAqeCKppgFfEASyANHlQt8QD51U02NEXxASlm1x9IRfEA95i/XnBN8QO+ptt/MQXxABtmkdgpifECko0VBPXx8QLGZopK/snxANLJYQ6PPfED4lt29ztV8QFuNvftX4nxAulkeO2nvfEC6aUF4F/J8QL433FJW8nxAJlJTZQACfUBEBwD8SgJ9QK7h3iJFEn1AQKN0OCsdfUCuetb0PCJ9QKoxagCiLX1ADNP7gKAxfUDkN7Sntjl9QKhMCzlIVn1ATknxK/tYfUA2lkWRolt9QNqzk0pHXn1AnocCGdWzfUBDX4y8M8N9QGFEq40+xH1AGjV4udXifUB48nZ4kfV9QMLkfcqIAn5AxQpIljYffkAe74uiPy9+QJiEw0NCP35AY4wXz41VfkDibZHVx4h+QLsm4WSWkX5AeurgMHuifkBWhdGoyN9+QDIBT1TX735AamnNQcb6fkDEHPTZ2P9+QIjSRnEjAH9A8mtIUDUDf0A2ge45uXF/QNqFr8aygX9AaEVX6WKRf0Dc9gH7rJF/QMbOvSaak39AAi3eyV6hf0C8lf4p5qR/QB9MOa5WsX9An0WoGPfAf0DmLURsStJ/QIbEqIWX3X9A9BDvab74f0Dc2QR58QmAQJg9Eo70DYBAmIXpX/YRgEDT6kBM3imAQIgOjyYmLoBAHsK5AOgvgEB7VDr3JzKAQOUxnlHrN4BADv1BISo8gED+rR2c1j6AQD6PS8zuSIBA2PnbreZQgEBKHUIWFVGAQFJezlnoWIBAPjZ1bw5ZgED7OHU34WCAQLGDRD8pb4BAuB/JpQVxgED9e0+GCHWAQN0mxfPciYBA4QWpjx6PgED3XvXhbJGAQLLDJEQblIBASHcw8ryWgEDoonop1pmAQFxar3HWnYBApr0dD4apgEDhJnSeUsGAQJ4IEroPxoBA9GMQpFPJgECy9UPkLNGAQE+ULRJN0YBAY9TC4krZgEA+DyowROGAQE+dyExX4YBAeO4S9fXogEB5LIZFQ+mAQIinHf1K74BACSw5WT//gECkrqM1QAeBQOnjfu49D4FAXEborKkYgUCF604b9BuBQPmSyu80H4FAfvNqLjYngUA6GkGN2y6BQDp2i8LkL4FAfLDwHXsxgUBQTjyyvTGBQCwoEdYmNIFABqq8ITk0gUCdXnlC1jaBQGO662P0RYFAgk70pPdJgUCqVxyq/U2BQFl0TlzyUYFAyBR1JOh2gUAse+6blHmBQHJJJvxBfIFAZqLeK+d+gUBaAiLBVY+BQHrSoulVl4FAFs1wTUKcgUCyhl058J6BQJZcGraZoYFAogso3cChgUBHvSsM6KGBQGvLLhLEpYFATyGIPW2ogUBub5bcx6mBQLwziN5Jr4FAYRshOma4gUAWAxhjKsyBQIyF7OvWzoFA8hdk34DRgUB59RpyftOBQAAjpqAq1IFAqGKjsYXxgUAUiQ4wMvSBQJMgdlfY9oFACO64hIT5gUC3RO1iBAmCQNiMlIfYGIJAw+nL/dYggkCyJ41X0SiCQOJrMIGiKYJAbxcaNKYtgkBSq52upjGCQJnWAjjoOYJAotaWSOs9gkAe7hZ17G6CQMrlST2YcYJAUrfWYUOJgkCgEIh9RJGCQO0TPxgqlIJAcGy/g9KWgkD2vsQ1PZmCQB3+/jRWmYJA/sGvsw+hgkCwMtwhO6GCQBoAtZ0OqYJAhMoqizOpgkCwCET2B7GCQH4aYCE1sYJAlT6vnnkRg0DWgBpGehmDQKJhiBFzIYNA4JLm/3Epg0B1Ami+aTGDQJuh+BgfOYNAsOgdUkiDg0DneRF2UYuDQBPOOoyT+INAqm5xnuJZhED0gpVD/2iEQAm+YwL+cIRAIAPbYfh4hEAIyUhKwnmEQLhJuDtq2YRAh14fpmrhhEA7WHgmY+mEQKNm9Mo18YRAWCuZC2PxhEAORbGZNPmEQHgjWT1c+YRAxfeAMDABhUBUt0JqoGGFQMBiTuCgaYVAfO0YwZlxhUAW2RvrmHmFQLZP/6SQgYVAvF/neyW5hkA4dj4WJMGGQH6+PRKRKYdAVvKv6JIxh0DpgZ0zizmHQJAsMZpcQYdA6zA0FotBh0A2R49Ex7GHQKGm3hrIuYdAqsz0SsHBh0C6aVm1xcmHQJoxzjhJDohA84QJM1ASiEAk+7na89GIQCTR+bXw1YhA + KBZXds7jZUCPTWWFSwNpQGS4z0t+BG1A5fdurf0RcEAHAXHegIJ1QDI6xHmXk3VALsK4VS+TfUBZ+wvxRaR9QHMpLAiP2oFAIHRYvmaqg0Dnn/7N0rKGQHw8qBteu4ZAeoCiCSq7ikAQHUxXtcOKQKEhze/2e41Aeq+QM9ZDjkAwSivlIkSPQARsdxQBBpBAdc6Fbk2ikUA= - + - q0A/RD3tQEXBDMJE8B4ARpjNOUQl2f9HB02YRP3LTUSUtPpGBWhCRKcxNkZp80xEiEf1RINpyUSR+TVEqmBzRN+dl0X2qAtF3y9wRNEfX0Txl4NE3g2BRYjlTETyn+JEKFUxRXdWnUSOecdENex4RU4hhkThLKlEeNlRRNxIqUQNy7NEPMshR7A5PURzSwxFIUghRqzyjkWLFJ9EwTagROlWE0VqUeJGYR5FRA7ktEQK2z9ECmtHRJkrh0UaaIJELZBSRJwLZEQ1Z+VEK+6iRZA3nkSRN4ZE4Yb5RZWtp0RnK5ZE7hZlRT8haUSUPl5E08+vRPXhn0SmsTpEnKqdRC1SdUSHrgtFOETbRm6Ro0RroiFFHWyXRHBU7kRSoUNEuLEnR0+yhUR3m6hEV8FPRnnJDUYznFdEfGBJRHHfOERFYsZFK6icRsYr60QpvoREEPt5REWo/EQ4azhEzHFIRXWxu0Rj7KdEz0shRFV8cEUrMPhF73M5RPoZN0Wu6kREj6eRRNjYdURleGxFR8XmRYyOWUQ0GV5E6UG5RHQCGEUJ+kFEeEqJRO5shka9zolECO9GRAzMYUQCBMlE9NVeRcoch0Rahy9Es2LGRDgFP0Q0gahEsJ1KRMcEgUQncKxEVSyMRKNmdUSojrpE0uT5RKPZbkUEjClFPX/LRC5EiEX8iC1HD3hERJqkDEWU3MdEFEhCRKxd3kSwFO9FgphHRPbvm0UyCJtEMQdCRGdQuETMJV5EitsqRB69mUQ+TpZEHDnKRAOrR0SsDYNEDj+5RPZa/ERWU1NEO1OGRM7BU0TIOzJE6fuTRACGmkTWRlREzqokREq0sEQbtIZEOtzORJjdbETX0R5F5LxfRK+ocETmcsBF7VdLRJ/+gkSeVYtEyxseRQKhQkTNwSpFluCQRJcZMUSe2WBEwIwZReYlR0TXl6NERJlDRK64p0RrHJ9E8UfuRMCgpERW8IREu+UBRTYkT0RKvvNE7breRXdaTEQlCgxFDeeSRQxo/ETsnJNEZ5yKRJW4dESB3gNGG40bReX5gUR0PLFEdaWzRIkYR0Q2ooBEDcv/RHpXKkSM86FEfc1qRLR6akQwmx1FTIVXRPDdgEVlw6dEqJGgRLtgsERpnGxErbSORG0Q4UUCFMJGZptPRLTRYkT4vVNEBr57RfZHQkSSWEtFx5QeRQBYHUZLwVhFqa8RRWcEwERpf0xE3gtfRT4bL0QvKT1EFr0DRRhnZETyhZRFhbtRRIA1iEQ94CBFVKyPRIYUlEQJ95VE6+H/RyxnfEZHQ5hHs82ARKQyvUUAAEdGzk0KRWdmBkWonytFZviSRHjz50QWoFBE4AZhRJPHkESb+8lHhOy2Rok4kEWWVJxG4aYtRVwsh0bL651EwJR1RDL63UQ+mZxE29qSRdEamESyUFREerlDRI43f0QDhm1Em0W2RJGBCEUiI5JE82kxRDwji0T90XJESrgwRAodLUUwZYREUClpROjhBEU0CYlE+TYQRj4jaUTj25BFPqWqRtiX5kRKnRxGfbUMRZ9FG0WOoHFEVtVFRIVHbER/hz9Fl4UpScfXJkURkTdE7YJRRcluxkRhrihIMVbdRKB8jkYtrMFEHYePRAZU8kQnnVVEuM1uRX5sJ0VNvYtFRJrQRB17sERydopEu3mJRAKHOUUVx5hEZ+nYROlgZUWntZpEzC5LRLgIOEVFysRFx5ytRIIggkRFiKNEIY3NRPugm0fiO65GAoiZRdEk8kXmg1JEgM8ORansikTx/9BEkTh2RGjKM0TwyJBE/quDRBmlhUXTG2BEsEmoRCm0OkR0NHxE2H89RLdiHEac8gVFheQaRy1tg0RFqWZEjw88RSQ4BkZfIZ5E3SXsRGgjWUTkAoJEQ0IyROMVMEVu+nJEg4OdRYdniEYIFS5GNOKeRZK5H0WNwIlETTiURaCSZURruNtFvIZ3RKO0QESl39ZEEqw5RI6FgkQ8t8xHQl15RJZ/NkV9YNdGreEFRaiAkkYZjlVFUXCMRDdvzUTxGFFE8PVeRDybP0Tbm55EAogBRaNHn0S/cjVEOIZiRAOQl0Qf5pJEUvdcRAwYkUTEDEdEToBkRMqynURXl0pE99XDRBy8n0R+imdEXCXMRKg1NEShz59EJWHLRF/VhETo1KhERVU0RKMdMEVA8ptEl4g8RupzZ0SHc6BE+I1jRQ8uiERS2xdF/ps/RN8lhkQ8OYZEep5aRK1MXkaw6rhFoWF+RAjxE0V9ADZFGB1MRJHVOkQc9mtE+mKkRAQQi0TDwbFEfGE+RTgSikY5xDpEAI3WRencRUS8chBFwnGiRBEniEQj0nhEvY97Rbveg0UqPPhEklNHRMaNQ0ThYThEU8ivROEAakgTzVBEX0niR/95skTYlXhH9RpLRlA5l0Xhz65EO0fERJpMqET5ZtBEDJAYRm5JMkVDHxNF65BYROnBiUR3QPlF8+58RGo0FUUyKFRE895CRa4RvEQqwwpF0xR6RKQprUQnFBVHN56VRrZ6S0V40VxE/W0XRfbR9kSF8zlEn2BsRK7Bg0XrW4hEPzELRf6xDkXLJ4VEwUu/RteE90Rt9TlGy2/RRMLqZkUpk09F0sBgREbiSEYm5ghGfuOZRQOMnES2gUZF4ShiRuPi1EURvKpFY2BmRfQOwkTkfFBG9iFjRewQKUXSMSRGjdWfRf3vkkRSRjpFypoBRRrDrkR/o4tEKc/9RzcKdEehoEpE2n95RFeTBkfTBQ1FERSsRfdnFkYJy/JE4s4qRXcvo0T135pEPU7lR7frZkdAvP5G7FIZRt0mP0UWxXpEOySIRIJbW0QpiZJEqul3RIl4q0XJtFpFm524RMjor0Qy+xhH7BWBRormJ0Yrm15F6tVmRZmVB0VUy4ZE9FOPROik90ZGnE5GklP6RaE9TkVhCWJEGATCRD7HjEQRTClGIWHGRXzUgEXY4INES5zgRD9jB0Y0bpRF00tuRQhSP0TzezRElyeaRAKXjEQdWUpE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - viUsSXbAckC0tKUUb8FyQEthxXFPwnJAGtT13abCckDGEgbxO8NyQCBYz7/DxHJACMX6DVrFckB6qINjQ9JyQIJkw4e00nJAKqnDbknTckB2lok6ddNyQDL52xLP33JA5tpLmiTgckA2sxerueByQAX/o8pQ4nJANGmYAJHickCYZ1dCJONyQLBN5WXk5HJAih+mtMrxckBASzWxEfNyQKQOBo+n83JAzEcgeQ/0ckBKPJYko/RyQCW3ON3B/3JAtpXoNUQAc0A05lFI+ABzQDBPN+2MAXNApUz9ytECc0Doc5mb+gNzQMI/Sz2EEnNAz1vuBL0Sc0AKIBRZ/BNzQGotkcpLFHNAVBiqs3cfc0BARcHppCBzQLzNKR05IXNAOG+TXGUhc0CQyN3OxyJzQPZjOC4RI3NAvswEKDkkc0CEp8IHzyRzQCAeusJGMXNAVulIKVkxc0DC35J9DDNzQPKJ7VM3NHNAhP6JkUBAc0CidEsy40BzQAIdfxR5QXNA/bIwgbtCc0D4fH6RekRzQFOIMRGaUXNAWlkoABFSc0DeESCZQVNzQINZHBWjU3NAvrb1HIxgc0BDIdLUHWJzQExbfqc7Y3NA2YSOqWRkc0ARGLR8TnJzQCQKwMRncnNAig5/A7Z0c0A4lCaoSnVzQAQuurB4gHNAcZWGDw2Bc0CcIYh5XIJzQFq3/kupgnNA6kMCw4iQc0CCdF3n0pFzQCwhJTNNknNArPCAws6Tc0CUWfpBY5RzQMpmsML3lHNAnGvQrrigc0CwZ4URTqFzQJIoPllbonNABEsr/Oaic0CWKCgXBqVzQI1psDHHsHNA5iYHE9iwc0ABX87FfLFzQDVFEUr2snNAFEkEh7azc0CqAlmqDLRzQGp/Y0H3wHNA4FkMLNDCc0CZjL9eJsNzQJcZUy4jxXNAMhgdJ9fRc0Do2M3d4tRzQLo6z3Gj4HNA4GUrQTjhc0CeFGP7i+FzQGwGXd/Z4nNAqp0uvPDkc0DJmf2gp/FzQM5yf7ou8nNA0Lrw3Lfyc0DuFrO2N/RzQBnuh0OM9HNAPLiP6HgBdEBokW0EpQF0QLcv0iMKEXRA/NpltnURdEAaAx8aiRF0QD6K1KJME3RAwrpFY3cUdECiCGGaTCB0QK7lvAaNIHRAMmJVm7ghdEAmM7gvUzB0QPaupby5MnRAYa3rM2NUdECqdUDcjFV0QPzcPem3YHRAA2RwTglidEBd8qCWT2R0QMa00B8icHRALH/i/0BxdEBLrRD3OXN0QA7hEAY2dXRALj+g0PiAdEACVvPRH4F0QLwgsG5OgXRA4XMd2haQdEB9CnSGa5B0QE7MQALQoHRAjS8gzrmidEBIG7vL0qJ0QDaqp1IPo3RA1OfHnAqwdEDWIQNpSbJ0QE+hXJn6snRA/hRr3uTAdEBNmLZYeMF0QPxEOQbrwXRAXkmZ1LjEdEBmmDe8nch0QCBY+1X8znRA3ojNsOHTdEA0w/Wkd9R0QIKU9b/N1HRAWAfpsiThdED+VH0/uOF0QFFre6ZP5XRAtBCdG8DwdEB6X6hRjfN0QPSW9XClAHVAxIt9FcEAdUA29y8L5wB1QJq2MXtkAXVAStkcWl0CdUA6HlvGmQN1QNenPQ8jFHVAP7uZUp0idUB/ebHpejJ1QCLiZ3PMNXVAdpazkbBBdUA9YqX820V1QIjYoZfuT3VAZvKoQAlQdUAg6+ZegFF1QCj1pnZLVHVAaWdmW3dVdUAWMKp2C2B1QOgZHyo5YXVA3s8XWHdydUAVtBhujXR1QMlNzSR4gXVAJJJbxa2BdUDfKTPmpYN1QL6laCGbhHVA8jklcoyQdUBeetd9bZJ1QGYsxmw9mHVAhDnnfZiddUBOJAIiuKF1QA4n29xjwXVAGCj4z/jBdUCsmOfIzNN1QE5vMKHk33VAGqcaHgfidUAkauQwSQJ2QOBlUATRA3ZAB2w0uE0UdkA1ZiUzDBZ2QI2i80aIInZArKIja5AkdkAH+da/HzF2QKwfXXYeQXZAeUfUGHpEdkCiHpGx/U52QGV0HyLLUHZAYAh14hFRdkBG2B0SzVR2QLIyCqvNYnZA8ODL99lkdkDMXDGHJmh2QCQ7DfJognZAFCaukpKDdkBeEM83wbJ2QP7i1YsMtHZATn/UWHfAdkCXwRWfv8B2QCBunScbxHZAKhulHc/OdkBSffRSftB2QPZ6KBHx4XZAYCE9uZHzdkDMH1abT/Z2QJuS34I1AndA+MiKkVANd0DBTzT3ARJ3QNLEUqmpEndAhjTJdvAXd0DqeTA5Bhh3QImzeVdKHXdAzvmfNmEdd0Bx1HUlDiJ3QDocHMlyIndAo0goCLcid0BJb8cRDTV3QEG5NQidQXdAlN1S9xpFd0BlzllcS1F3QLX0RXmSUXdAe1TXBe1Sd0CPe8ErKFV3QFREVv+PYXdAWAOP7Dtid0A8nGzeJm93QHcHKVXbcHdAkGbaWJF0d0AMZp6jeIJ3QPh+Hox6g3dAsu8JzZm0d0A3LmLrK8N3QPIsknbr4HdAymj8mlHyd0CWOFtIu/J3QLQwh7kfAnhAvsU65E0VeEB0PWYp6iF4QMSP9a5uInhAdnaPf3syeEDdrJjPC0J4QBoJtrh6RXhAgLZL38pReECvQZ1nlVJ4QLgZ1GCHVXhAAj0m7O1XeEDg0zUxS114QIKNDA36YHhAED54ALdheECuV47Yk2J4QFdTrJXTanhA+hpVPMBzeECc703+W3R4QMbUppmLdHhA3HR/nql0eEDTOMCKwXt4QOrVGZekgXhAgMvPfp2CeECE08NVmYR4QEe9/TakinhA5q7Wk5aReEANljqep5R4QDHwiMDtm3hADtWTReefeEDBW5+1tqR4QM1nVfzMwHhAfjtC+PTBeEAypvjbttR4QPW4jcoB9HhA9KoegYz1eED8RzfRwf54QAiKutROA3lA7DuI7JoFeUCNDQjBqSp5QAcuHHAUQnlApNz0KItCeUB6zfqk+kJ5QPdqT2TMVHlACuDD/NhkeUBw4i/TwLJ5QH4EDnDPwnlAp1BBakLUeUAGAFgczNV5QPjPrEC+4nlAbUI3TFDkeUAW7rJ9Geh5QIyIAMf5BXpAYv+2Qgw1ekAkDD6cGkV6QPREJu0uUHpAVIfRZYFSekDMlSSoKVV6QDRQxdaQYnpA2i+hvx1wekBPVMhginJ6QJukkgkKnXpAaoDHjEaiekC7zSXI86N6QM88MBsNtnpAxmabYhvGekAuF/q3QM56QB9S+HHX03pAi70P8TTuekAk4clWeAN7QHgKE+EqDntAcpfnTEwVe0AKm/bHWiV7QMKw5PpTMHtAvqYAscMze0Ai7HW8Y0B7QIIk6CTSQ3tAxmXQ6EJQe0DW/WN5X1J7QLwEIPRSYHtAkIaw8+uQe0BKk2KfJZV7QLayoJd3xntAanxUKADke0CmKdDDlvF7QKJykBqM9XtAAeDKH9oBfEAV9D1q9wF8QPIeNc+YBXxAUsiBbJYLfEDgHPmxhhF8QOLNFLHREXxA1IAKis1BfEAZWEZZ2lF8QOBShlwMYnxA1jEovidxfEDl0Kx5A3N8QGdi10z8pHxAktfxyL+yfEBSL+uVV+J8QEa8Z78U8nxAiuL5lFXyfEBMcXxCBAJ9QK7cqpdLAn1AbiwzE0QSfUCqYbJUYhJ9QDjZKu0oHX1AjLDbhDwifUAuToyvoTF9QDqgQ4lJVn1AOP4hivZYfUB2EvhUplt9QIFmZ9Qrw31AuCWin2vgfUD0+a3PkPV9QK8OSsaLAn5AklPzfDgffkDOIZiyfaJ+QEK9HSeKsH5ArqfSrMX6fkAXkd2KHwB/QIQqbKkxA39AUASGeLhxf0D0BbZfr4F/QIgJJjNjkX9AUlm8ulyhf0DSF+0r6qR/QM5isDNVsX9A6cqbbJTdf0AmkYaa1OJ/QPy14E0t6H9AOlfSvPEJgEDaM+4n9A2AQNo0f8VRIoBAfbLv8N4pgEACjIYHJi6AQLWCMl7rN4BA2uIP6Z86gECaIXvIlkKAQHTfbGbnUIBAKqjOyhNRgEBgjzsK51iAQO7DUzkOWYBAh5myaAthgEC3Z7PeJ2+AQCJdc2gFcYBAdPiWKx6PgECfb66vbJGAQAaSDRQalIBA3MMXJ4apgEBLZcJdUsGAQArM6NMQxoBAHPVaelPJgEC5b2ELLNGAQBhYQclM0YBApJxGEmHRgEA+zwK399GAQLLV9ntK2YBAQH0H9EThgEDc+O6i9uiAQFwuOLtA6YBAeA2nc0rvgECs317QPfOAQBoFFII//4BAsv6n9j8HgUDi0lsvPQ+BQMPfo680H4FAhPF1ETQngUCZ6H3Y4yyBQHAVGiHjLYFAOyNk2NsugUAsBPhmeTGBQAxHxCmNMYFAZpqB3LwxgUCcrQeuJTSBQHxMepPQNoFAoHbRNJ85gUDd50cG9EWBQJZgwUj3SYFASMDAnuhNgUDsyO7M/E2BQN0PJ+DwUYFASkXufud2gUBGJ8SllHmBQBUXY5pVj4FAQAZO/FaXgUA0O3e6Q5yBQLJgJOHunoFASNJP08ChgUBWbnWh5qGBQDLJR+XDpYFAFDZb9vCmgUD06HcIbaiBQDEvVKHIqYFARdfkMu6pgUBEdbHfSa+BQKAP2woqzIFAegb4qdbOgUBjNccrfNGBQEOw55R904FABtx6vCnUgUCEfXfz09aBQFDoy5qF8YFAgZjCgrLygUB6COT+MfSBQAMGTVbb9oFAwPsCZ4j5gUDuq4pe2BiCQJ17nrnWIIJA3/AcY9EogkAuujvvoSmCQEFck2WlLYJAhmU2Np8xgkCvlrqL5zmCQDStwOnpPYJA+LGbOUOJgkDaoCC7Q5GCQDBXR48mlIJACBApkzyZgkBy6MdeVZmCQFqrNF0OoYJAqMs2PTuhgkCgf1nDDqmCQFo7AvkyqYJACqck5gWxgkCDOgthr/mCQE+lFG95EYNA3nPpFHoZg0DLQtj5ciGDQLPbFOZwKYNAi37o92kxg0DEj0QDgjGDQOpVsu4bOYNAyO3LmuOBg0CQEGwLA6GDQLydFYX/aIRAqJ7CT/5whEAWma6I+XiEQJxZjS1q2YRA/w7lQWrhhEApCKBOY+mEQLoxfnw18YRAHJ2DY2HxhECCvRnpNPmEQCcIVBBc+YRAYnJZ0SoBhUDKU+xXoGGFQLwf9AygaYVAJOTbIZlxhUBqel8+tHOFQFQbIWeaeYVAAt97f4+BhUDzAiJQJ7mGQOY1blEhyYZANBUY5ZAph0D5OGa2kTGHQK9wG5yIOYdAOFAl0ltBh0Co47Q0iEGHQPfaTYzHsYdAIX8i1ce5h0DaQjB+wcGHQGHFkCDAyYdAhma+igDeh0CQgK/z8dGIQA== + KBZXds7jZUDGeRuljWJrQNS+X4D+xG5ABcaPA8ohc0DBMzRFF9NzQAUkbFciM3pA6PR7vMXje0BbeHBcuqN+QAfb4Rk6+oFALWsmWInagkC8k4RNtaKEQJq7hVWRAoZA570GUAHbhkDHwSr78iqJQEvr0GyN84lAK+/0F39DjEB48XUS7xuNQFYZdxrLe45A86Dqh/shkEAG6QwnI5KQQHK44ZxR5pFAUNnexE6WkkCHzSKedwKTQJrJsGJ6mpRAB+UZs83GlECw3vFjoLaVQFBnWn/uIpZAxvMyZcbSlkAB6UH0Fy+YQA== - + - AvWcRDYtZEUb+oFEOWEqRk/FH0hjlK5EHiumROfxGkek46pEIaiBRp+cy0Qu7S1FDT+IRKEO8kQvLmNFeowmRRP6q0TfS4JE6DKBRRGnGUUOFCpFHOyBROqfnUR1FjBFI3l7RRBsy0SRXoVEwwqpRPEOLkfoG8lEwCNkRtWcl0Xl0KpEY2qfRGfz4USSWdhGHrSORF5TsURMhNdE5dywRN7mrUVLN/pEKfvyRKxfnUTSsZxEnKWjRKDy90TslblFwzqHRO8BM0Ym5KlEToSjRAR6+kTcLJ5FOHeWRBUGbkQz+kpF1dB2RP1riESPJLZESeqsRMRJKUXDBgBHBQviRJHsekQqI4xEal0WRfxRiET0VlVHLaCeRCll3kSp3pRGttYeRj+5ckTL0fFFX77LRvyzJEVOE5pEJs2JRKCphESkZxJFhIVWRUlkFUWnRq1Etjq6RSXhEkZCGmxE4hpHRdvx5UXi6KxEZOccRuaHe0SMYoVEy9BpRPDqgUTIaPBEa4mbRBcw2URa0pVEXkavRlhYKEVogIZEbSaDRLTBMkVMXzdFFlzBRBwJk0R5E5hE+xZRRXu8hES2NohEgDSpRPyzmUQPIYlF1wxARVR1gEQwGsdFOclMRwVm9kSX7tFE7mAjRaX4SERsUg1GinzTRTG+yEQcvtBEApSKRBB93URLlAtFU22sRO3wckTf24REQh2pRL2QyESfnPVEHyL5RPA860T1wOlEqFmdRHn9a0QPLtRE8WejROcAHkW81MZEm9SaRJDO7EW3sJdEd7KIRNZHm0SFGM5E5ghpRaoO0kSBSPxExbe9RAQ9jERqoGlFrkiQRIpqlEQvXJJEKpDxROu3t0QAaZBEf51QRV0HjESbA/tEOBcCRVFgVUZaTRdFLejIRX3YWEWtRQ9F42hyRNmUkUTxYhNGPVOERWNvDkVNfp9E3MvhRJUcBkUNnaNEVYdKRdvlkUW0+B1F5QLSRJ0iz0S6ZItE/MwARkm67EYNFqFFEddmRXD5mkRBGbhEHLBfRSwJPkbYXVNFsWAjReliuERDT7pEyWCGRcxqJ0XCxKpF7Bl3RDFKsUTEkaxEpPdbRSjdmkRoksZET9P0RLbWgERK5r5Eio/xR4DMgUa6HpFHfK6sRWh3NUaESd9EoxAZRXkuZEVdTrlEIQOaRHEC70eSmslG3R7URo/anUXfZY5GrEeFRMqU00QiPDFFIXFrRHZcrEVRSOlEPT+8RFPItUQyFvNEfFyjRBScbUSYa7ZENPx2REpPXET8X5VEzgypRIFeeURWHJdFjUKJRL+zDkUtS1lGzGTERTQzpEaANDtFyXJJRnocUkW41hdFtFpSRfAd70Te4INEe3UMRTZXb0XmgV1Jb9cWRiHpdERt+j5FFWJ6RfWGZkh6RaNEcDzVROBuokaMRDhFArsKRURHqERvmw5FNNqdRLoNK0XCSJxFVZMKRg6v20THpo1EWnAmRVGMgUTQybRFTnefRLABrUT2P4BFAuunRNqbcUVanptELfn5Rd5KF0V2eIdEcyAlRQNlk0SM9wFFpgHhR0TgBEcpjBJGggYeRix5JUVkevBE0ZCBRL0Du0TytH1EdDJqRIemmET5DtRFzWG2RM8cjkQABqFEAvb+ROw3lkSSIrxEeGNQRqzFTUXFdjVHX7jTRJYhQUWDqopEWvELRtA2xURCrHxElHWNRFc250Togq1ECCqQRNBTyEV7V7VGmftaRhdGG0W9FsxFtao5RaQWr0RQELNFLCPCRTIWm0TQy7RE0K6NREaAhERbRoBE3jEDRcC3/0e0+qlEyqf2RhblKkUk7NRGv5xcRTqasEQog+5EKanCRHRNxESrJc9Ej5VkRYLXBEXYePxEIxeSRCqYGkXHemFEoy+jRHCGEUV+XaJEzOroRKBP9URsjZZEyWaFRXVlhUQul25GMzWFRYdquESpzj5FtvywRPKz1USXFKpELbXpRVPDUUXtLOVEcyogRTwS/0SKdo9E7LWORLDWd0R/EnZFeHSORndEuET7fslFNU70RJt9+0S/efhEoTpORcgynUWNGh1FzhI+RSArjEjS7O9EstcISB+08USxRIpHnRpjRTxjbUSvnEhGSRSuRckhskQ5t59EG3neREyzyUQ4twdGMwQxRa8fIkVpQgZGCx8HRRYgi0QbToFEHaqfRcpwW0WVop9EFd0WRZU1CEUv769EH3fORPG+C0cM0nRGrZDLRE3vW0Uyw6REOiG9RCPmoEQIOJhFIwv0ROeGUkVz4wBFj+e1RsuFQEX9GDJGRF2hRLIm4UReZkZF6WSoRObWcUX05YxGom1SRtH+ikXKwQVF31c5RVcpiUQZwmtGx32WRF3gJ0bbfYJFs1MVRfTETUYokX9FcIFgRRydGEYVDZ1FfiOhRARurUVEXi1Fb1foR7e5W0czWMxEihf7RtMeHEVvA/JFU0UWRucgHUWcODFFlLCZRBrOskQUdQBIXx52R7CADUcJyhxGLb9LRTBzm0QnYnREglLPRMqdikRBA8dFw7odRX8B00Sc7CtHXJCPRmGRO0ZHt6hFk/SHRSOlGEVzuN1EafSVREz+F0dshnFGFf4vRgYv10QMZnBFK++ZRKFEtkRKpYVEHe4uRgLwykX4oF9FC6C4RHH20kRN/QxGjN6tRY7tVEUBSMVEPqmURKNi5EQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - akKlqW/BckBEYhmFp8JyQGqLXA48w3JArAzsjcXEckD6So/OQ9JyQDQp5Pmw0nJAZq89pEnTckCOIZZrd9NyQIvWoD7N33JAiInS1E3hckBHjHcVUOJyQOm8PkGQ4nJAILkkzCTjckD2ZwMAyPFyQNbYdVV98nJA4qiuthHzckAHakTaqPNyQG7KWXui9HJAcyd8XML/ckDGBqlORABzQLLShuz4AHNAz8rxvBABc0Ab7r/tjQFzQH8r467OAnNAKo6vwvoDc0DHqTpkChJzQP72x9eEEnNAJCmcOLwSc0DPspzOBhRzQHzAcnJ5H3NAAFJW4qMgc0B4MUnyOCFzQLzPAqVjIXNASXIUnuUhc0DCO2R/lCJzQFLu6Y3LInNAZ+s9VQ8jc0CQ6hcezyRzQCyfY/1HMXNARHabAyIyc0CQZEjMODRzQCaPZiDiQHNAWfxTU3lBc0DoBjV0ekRzQHyZdj5BU3NAhIhFq6NTc0B8fT7JelRzQIjrZHWGVHNAlBqKVotgc0CDV4lAOWNzQATyEnZIcXNA9B5FZgVyc0DWMTENUHJzQDo6hyNocnNAS8KJKrd0c0BrcnyVTnVzQIKRx7VudnNAzFRnC3mAc0B4jgNApoBzQDo2dicOgXNA2vRtl1yCc0B6tvGIh5BzQHQD6UFNknNAAu6dZ/uSc0Dp7T6OzJNzQHymcaNglHNADG7opPeUc0CMnIF/uKBzQApTe+5PoXNA5l5/aluic0AVjY/C5qJzQJRQyh8FpXNAlGL884Cxc0BiriTd87JzQGIHbrC3s3NArPLONg20c0D+nAo3+MBzQEjb1xXRwnNA8H/7/CbDc0CUuL7u19FzQF9RXnk003NADn1dWWLTc0BzoNcf9dNzQNjQkHTi1HNAnImTf6Pgc0B8g32AOeFzQGWi/KFm4XNA5iPVInric0CsJquq7+RzQKR2CYq08XNA4Sx86S/yc0CU4dEPN/RzQKv/FieQ9HNA+KZ87HgBdEAOKSuQpAF0QC9P65e7AnRAgb8MHU0TdECEjOK+dxR0QKLwJA1LIHRA3vYzW40gdEBAR8A/uSF0QGVgY5baMnRADmWkClRAdEAQqIcLyEF0QLY8cdD3VHRAKhna541VdEAPallguGB0QC4rH3IIYnRADpuxSRBkdEAShzU9T2R0QG4CfGQjcHRA+n+MaUFxdEDTKrodyXF0QGx+CbY6c3RAyIQqxqJ0dEA+J/zLNnV0QJzq/EP4gHRAhE90FBGBdEADvK66ToF0QPJMNpgWkHRAdkAIqKOgdEAjsfzPz6B0QMZeTYk4oXRAoHZ9ArqidEDMkydH0aJ0QJqZMX4Qo3RA6AcxcgqwdEAVmQVkTbB0QBz9dHvjwHRAQJN66XjBdEBYfi/h6cF0QLJAXIMlxHRAK2QD07fEdEB74Vv8/c50QICmsVbh03RACSodMnfUdEDcMRsV0NR0QEDHGZu34HRA1BEUZLnhdEAiNqYHT+V0QNr9TtqM83RAbITH980AdUCeZh6wYgF1QARJwZ1dAnVAcadUBp0DdUBoOla5IxR1QAYt4TyeInVAML9FgHwydUDA+0S/yzV1QDdhne2zQXVAXo8cn3ZOdUDgdMRk9U91QL+1RZETUHVAJLT1tk5UdUB0O/gVd1V1QNJ8CnLoX3VAOrdd0A9gdUB5FY2LOGF1QOETWsHzYXVAhPVAKtFidUCwwvO05291QMg9JDt4cnVArKtOyY10dUCk6lGKTIB1QFBUMgJ4gXVAht7nf6+BdUBcYjbUpYN1QMS5rSyahHVAt/wRVI2QdUCIkpfOPJh1QBXYx/mYnXVA+0c5/bihdUDT7aAnk7B1QF6FX8zmsnVA+hfufzWzdUBHaTxJfbN1QOVp+Vr3wXVA9tEnqczTdUDe0zzkDeF1QLloW9UI4nVAKKGbZkgCdkAG/hQ30QN2QPLQjnFNFHZAFLT7cwwWdkBJD+R5iyJ2QOwfcQCQJHZAsjGwkh8xdkCSTLRKTDJ2QPZKRr4mM3ZAcAG94h1BdkDuVZaweUR2QEib6UbLUHZASejIhxJRdkAhX92HzVR2QFI6DFrMYnZAPCNWPttkdkAZRurPJmh2QICoNQmSg3ZAknnbo7ewdkBsDEjGwbJ2QAVdc9INtHZAEh+WtrvAdkDZ4NB9GsR2QML7JefOznZABCBs1b/QdkBQXLRl8uF2QOBFBTqS83ZA7g/2nTQCd0Cap412UA13QMLqD4cBEndALMIUxakSd0AytDzZ8Bd3QJApTHkGGHdAZKyk+Uwdd0CnDqidYx13QFLP1CQOIndALpwFdnMid0BquhDmqiJ3QOIskGyoLXdA9BL7Cw01d0B0pc1dnUF3QI5Kpj0bRXdA5KtVdkpRd0DI2MqVklF3QASSoGcqVXdAlJoakQxhd0CMiqJMSGF3QExKFjmQYXdARaBseD1jd0B6TS2oaWN3QGh7lh45ZXdAjf8FPyhvd0DwU03S23B3QOKUsKh5g3dAwmrGJAWSd0DB8jpt4tB3QEHX1RuP1ndASGLVee3gd0D+HPjsT/J3QBTu7fAgAnhAfuzbP04VeECTMw/E6CF4QBgIQdJvInhAApcey4gjeEDKuGf4pSR4QLRkEqq1MHhAyoHcbQ1CeEAtbVUVe0V4QM9OFkrLUXhAMJE4CZVSeEBHbJe+iFV4QOvRoQ/uV3hA+OTz6TNdeEDkV/UESl14QFKqZ375YHhAaaqdcLdheEA+DwRokGJ4QN7OnUC5c3hAvhx8jot0eEBh95cuvHt4QLbZQbSlgXhAHNKhw5yCeEA8XhDlmYR4QKQi6mWlinhA2zBCPpmReEDSl+Ixp5R4QEBF5orsm3hAUIj4p+efeEDIlrQ9qKR4QJgNkgnNwHhAtf2q2PXBeEAkCCRYJsR4QAwFJJu41HhA/rMFFAL0eEC0WHXpjPV4QIt41sTC/nhAm9geFxYEeUBBGHGKmwV5QDTENlUMJHlARu1WHqsqeUAe9uMlFEJ5QFDh/5qJQnlAxt2ibvdCeUBkC4FLy1R5QE0GiMnaZHlAXKMbF0NzeUBkvyDz+YF5QLiuwnXAsnlAguGUlM7CeUACeBv8QdR5QDD8wG7N1XlANgSjX8DieUCbskOOTuR5QG76rnT6BXpAHch+ewQSekAkjhl2PCN6QLeHriIMNXpArCmn1hpFekCNosbFLlB6QPq0S+iAUnpAx7dMNihVekBNtegTj2J6QBacuAYdcHpAkPCdUopyekA3WEmVEpx6QHiGnfftrXpAzF/HuAy2ekCM0SPkGsZ6QBY2zrnb03pA6Ndc097XekBKTyHCNe56QARX5BgrDntAbLNXHU0Ve0AZkJplWiV7QO9wt3FUMHtAFjhXhSwye0DUbXn/Y0B7QF4aS+tCUHtA5HfSlyOVe0D+/8WfeMZ7QEQZNvS/0XtAFL/iVZbxe0CIsPZojPV7QJR7IpvaAXxAspPmG5oFfEBvl9STkQt8QKJeSN3SEXxApspGss1BfEAsFU/j2lF8QJ6+/7VIXHxAWozroQ1ifECP6nbEvrJ8QJLGtR7M1XxA9MCNqFfifECyn8iyFvJ8QIAmaOxU8nxALvUQjAECfUCsUYghSwJ9QDfsBidDEn1AEK8/ySkdfUBy/kL1oi19QFY9Rn+jMX1Ai1bhLEpWfUB6FMZh+Fh9QFgaIuGjW31A2jhQLWKMfUB3DtTCK8N9QKQwANs9xH1AptZUbtXifUAUeRY2kPV9QJ36D+RBP35AFFBs8IxVfkCen6zydJt+QPaDZQh9on5AUpR/YtinfkC6ntX3y99+QMCcDrrF+n5AQSQ9Hh8Af0CqwbhKuHF/QBIwDfOygX9AZVCUV6aDf0CD3RE9Y5F/QL2T8A+ak39AwvISVF6hf0Ai+oV0VrF/QGBVrt5H0n9AbYN/Jpfdf0DhPnC50uJ/QMZBqevx4n9Aujs5t/EJgECiM6um8w2AQDbZjw5SIoBA1ErF3VQmgEAb16Fv3SmAQCMD0EInLoBApOrQCCw8gEB0ZnTN2D6AQG4ZMK+VQoBAiFznFPZIgEAXBdfv5lCAQFQsjP8TUYBAS7wpQOVYgEDiuOnTD1mAQIDsxUQob4BAYueIBAZxgEBm6XtvHo+AQO6TBE1tkYBAbvaQOhuUgEBQtntvH5eAQFZlHX+GqYBAQubjh1LBgEDqbFVGEMaAQKR97npTyYBACEDTe0zRgECdJWaMYNGAQGKbLpRK2YBAbPjbVEThgEAGwJHjVeGAQCxdIkn36IBA2fFy5z3zgEByBBcAQP+AQMoOmi4/B4FAy5fGrjwPgUAOy7ZENB+BQIpmx5wzJ4FA4p8aarYngUBr8smi2C6BQDSZwB7vLoFAD34dhXoxgUCZ9Cx+vTGBQKjVKgEnNIFAWEFPRdI0gUCy5Ejl1TaBQAp1JYaeOYFA6v5wbSg/gUBqoqUx9EWBQKipqQf4SYFAVRHm6utNgUDa3okQ/U2BQOYmJ37yUYFAHXPHdpN5gUCyC6z/PnyBQDwrUvxVj4FAIPqFwFeXgUCAvdk+xpuBQHH/UYrxnoFAnOAj8sChgUDkRAqm5qGBQDAK9SDEpYFApCGD3myogUDvj5qqSq+BQLS/3PEpzIFAHgtBPNfOgUACdV96gNGBQCxXMa5804FAdGQ5USvUgUC3d2LDhfGBQGxmQtQy9IFA2kY+Cdv2gUBYnn3/gvmBQDm1mYLYGIJAgs2tx9YggkDozlCC0CiCQGCyBN6hKYJA5Xm/IqUtgkCKbcXPoDCCQHAgwn3PMIJAHEbWmuc5gkDArZ466j2CQA7r01ftboJAcuVi+phxgkCq9IM7Q4mCQN7CKddDkYJAqFMwT9aWgkCTYDCPPJmCQLTmp3MPoYJAYNnGkTuhgkC0E09iDqmCQGpqP8k0qYJARJKDRQexgkBUv2vIrvmCQPCmLnh5EYNAuK5Q7XkZg0AxNb8GcyGDQJMtdmqJIYNArkfXtHApg0A9g6CgajGDQOiN8gbkgYNAnHnSDZX4g0BC11FP/2iEQG1P2YD9cIRA0jPvTfd4hEA4nJhBatmEQAulxTJq4YRAu1syM2PphEBCKHXkfOmEQJf+O5g18YRA8LGaR2PxhEDzlif4NvmEQISqyR9a+YRAxKGLbKBhhUDSkUxnoGmFQCO8XQeZcYVAXO8qzrNzhUC5fzzWl3mFQHaU5aW8SIZAds5aXCe5hkDOnXRzkSmHQIm65SiRMYdABRqQ1Ig5h0AOl6fLXUGHQHPTktuIQYdA8bd+Lsexh0A1jSeEx7mHQOTUDzjBwYdA91OqIcHJh0DYLswQ/t2HQAB4XGnjYYhAuH3DlPTRiEASRuF59dWIQA== + KBZXds7jZUA= - + - FT9JReOIIkaTVy5Igkn1RDtHGUdF/o1EKeKVRrgaz0THkhNFmm59RC2XgEUPJAFF3JCyRFyPZkWhZoZE9FXDRLeYMEUPsddEVxcERTmQh0XpbQlFd6t3RCOTqkR6NRNFpfcMR0w6e0TL8m1FN4YVRrNVp0UpMbREkegKRYh25EaWzqhEaTqLRFGvgkSbUYRELMuqRPoFjUXcMfZE5PJsRKpH8EQSOs1E5xluRUgMGUZ+G45E+hGnRc+ulkS3GZFECAilRKGdCkW36ZlEOY1BRHbTp0QnwRJFJPbrRFakF0WNqZVEZf4BR0QFAkUahzpFNxKlRBNHL0XB4VRHdEGDRKp+rUTBAJtEBiN5RqasEUZ4JpJE4GzXRS3avUYBhDZF3BlyRFNwMUVE7VZFb7xKRXfQ1kTdOJpFQK8iRok1TEW6t5FE+i1tRGo+l0RD3INFAKxwRFua30XHnrNEX2WZROsor0RgbmlElaYPRUWA10TXIpFESMqbRhgZ2UTKK7dE8hmORebdmkRRrc5EzZaORJ9eF0XBOulEzFFnRBiXnkSN5dBEZSraRF/5xEU3HXJFOkaDRAI63kQ/H4xFIWhKR20BiUTe8StFWjbDRNRvzESM+0ZF/CRpRKzf8UVLeMpFhM+qRJ1S5kSVrsBETWbPROxPB0VnxtBEna78RAzJm0S4cKREJDnoRCTBx0TExn9EzsJORWs3q0TnGbVEB4KYRG+ZwER8x85E0w0RRXmMsERjctpFBuZhRKob9kSJMnpFXba7RA2TLkVbGKBEt7irRInKgUXUZYRExQl2RC5Mn0R+kZVEGpumRJdm1EQsM2pES/OKRHxQN0UII5BE/9yRRMszZ0SVxO5EOxyTRudUh0QjPx5F4muLRUDRXUUEVkVFUvaNRPFo2EWnzS9FtReqRCHXhkT7+uFE1fOsRM8PzkRAoOZEAkzWRC/RxkRkCV9FJYLFRfybBkUcJLNEPITKRFSguESUu+ZFa0PkRub5gkTrhIlECufTRUOVm0WMnvtE88I5RSZ6mEYnq9VEWfJsRc+dAUXkGplFGZbIRJ7vLkUXgqBFJTSRREp7iUSEg2ZFWUZqRMhQDEVqlLJEMjwBRUAf60fezotGe4iFRw/5p0XiLj5GExk1RUUXvES+DG5F+WLiRH1+zkQn4HdEyikDSLmi70azZ8ZG2Qy5RQ34okYJX+1ElkOLRGhtkEQN1FBFLGCrRL+ahUQ2b+NEVa1lRSI18EQpbelEZd6cRCLFlERA8IdEaNaERLIiHkV9jZlEuf2EROvnq0SYgyBFcPSoREiHo0SKQopEUQXERAgiT0Zkde5FC/YRRxz2F0WzbrZG8ObrRLQIhkUo+iNFcr1NRapxF0UCSUlFXRhfSZQ8/0RfnENF2ovERXwjZ0iT+5tEYWDFRDgXu0Y/jzFFjfBGRa9Km0ToXilFGY+HRMn+e0Q4rkZFgX2ERW1pFEaTo55Ec+irRD2f50TGcXdERMDwRA7ynUXrR4REDB2jRE6bhkX6ToJEV6qMRKIVlUSIa4pFKq+fRL9V8UXvRfBEjEE3RWhzBUXFb+NE4VaORMRomESDwvtHaXsER4tIUUbb0itGmf03RRkQ0ER4PQlFTY73RD6PqkSn99BE9Zy5RdViyUTPg4dEDqyKRPm300Qw+aJE7Cc5RjIEbEW/3RtHTwLXRMrjP0W2Xs5Fog4DRRgXg0Q7dgtFZk3aRc9xtEYYlIVGYre+RV27+URz0a1FikvQRVwcoEQ6d59EO6hzRIQ80kQOYNpEVrHjRxrhHUUeH8pGnFtBRSwrqUYF4T1FwiOXREAQi0R60aZE0plDRQxKMkVewuJErdmHRMAVhETjcHlEHL2TRKwq0ESt7JpEy06ERKJ2gkRwOcNE1ZmPRBVlkET7EAFFTsbaRPRwt0U7SYJEE0h3RKx9RUZwTMREO/txRfj5P0UwbTZFWf3DRIAvokTfOJlEU2lBRbzCKEUfAK9FshweRaxOx0QLKvpEqzaTREvBkUSUM4lE2R/TRJRxbEUhxoZGVcR7RDT1BEbNFB5FpF3mROdOVUVFvJhFmdqoRMf0e0Sm4wVFsd13SCDd1kSXxN9HIlFyR3hkVEXNyWhG2z+aRZ1sXUQsbYJEoIPSRB4+M0ZhoklFL+knRVc//0VB1bhEo2OdRJhA4kRDEGxER40XRbsEDEV4FwFFjN+XRAPCxkQI9LREtY6gRDUrDUcHwodGgO4URdbtS0XX+J5Ek7/qRJ4RpkR++b9FulbURHHEtETBWSFFXntzRm3IMUWpu+1FXesmRUQ2eUWBCUFGieFSRlEP2UW7WIVE3KAXRYPMZkZphP9FHsnBRXCyxkQjs01GAy+JRXOQT0VE5RdGVyF7RXvSl0SC3oxET+PMRUj0IEU0AoREDGjyRK5e5UfhYGNHpyymRLbzBUeJ1+pFF8wXRgAwBEXUeUFFkurFRPp10UQqlM5HMrAtR9Ly5UY+oN5Eyr7URWBtQEW8wsxEG0S9RPh230XN31VFJBHPRN5pJ0dJepNGr749RlJvp0R5LHNFxEaSRQtPCUXRut5ESF3sRqfiUEawgwNGo6jpRNEjLkWNY4VEwv6xRLNpQEb+lrhFfhicRZv7iERmR9xEJAX8RYtul0Xnz1VFMS6uRLX/vES4kKVEiEnGRCkVuUQ= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - NtVfTm/BckCwJD6NUcJyQKBI1y+nwnJAJOfj++TCckAQ+qwaPMNyQPOglGfGxHJAPQx1d1zFckDdUeDGQ9JyQMiqSiiz0nJAYe8mG0nTckDEYOvmdNNyQFpU1qph1HJARp6109DfckAAE7lBueByQJ47cy9R4XJAdHD+ElDickAiQv4MkeJyQF55A2tL43JASBziusrxckCtwzYbEfNyQNLRpIaj83JAH16a6bXzckD42PEUovRyQEwkhsrA/3JAOF64+EQAc0AHeVL39wBzQL5CWPNRAXNAEF5NQI0Bc0DiEDk2zwJzQHw53fP6A3NA2NF0oQkSc0DIszMchBJzQMIi2Gi9EnNA5bJK6PcTc0AEnAR9BxRzQOL9sTlNFHNAsBDtyXgfc0DYQeGhpSBzQIFwN0E5IXNAgp8WuWIhc0CEMNrXySJzQKKeE9oQI3NASUDhS84kc0BaJehMSTFzQLpibgwjMnNAlSOQvDY0c0AmApy040BzQJaHTwJ5QXNAu7NVJ3pEc0DST0Zmm1FzQPTLC79CU3NAEIHeFqVTc0BeyDgPh1RzQLZaBb+OYHNAf5trvTZjc0CkYwxizWNzQOCCzB9QcnNAUo8ZgLZ0c0DjzuIlTHVzQP2V80F5gHNAib/RH6WAc0Aw29KHDIFzQFp9VPOGkHNADCNneE2Sc0AazTTW+pJzQC8jdcPJk3NA+oOOwV+Uc0CyF1/h95RzQPEKEse4oHNAtbpSFU6hc0CqK7ttW6JzQBdrZ3PmonNAXzFWZQWlc0AuzZr5yrBzQLQ2SAT0snNA4LRjtLWzc0AcW9blDbRzQG5pXiX5wHNAmiUtPNDCc0C6oH7IJcNzQN1Qva3Dw3NA8m7DuNjRc0AKn6QRMtNzQHyTz27403NAouQyduLUc0DxOVkSOeFzQIAS6T9m4XNAS5Oft+3kc0CGGufaL/JzQEnKImA39HNA4OQKfo/0c0CoPoUMeQF0QKEifZGmAXRA7H6vW4gRdECkiI2cTBN0QLRJidjgE3RAdNDTY7ohdEDZGqtJXCN0QM5OfnBSMHRAWT/IjrkydEDvgWCl1DJ0QL73/L/mMnRAJuNIIvlUdEAzTkrci1V0QOJoc824YHRAhiNP/gdidEDkg3XBInB0QJwPZHxBcXRAnMFyVTlzdECeJFkxOHV0QID1TX/4gHRA3oSVRU6BdEAsqppoFpB0QBQgQd9qkHRADkZICdCgdEC4CHy8N6F0QD1kMeu5onRAlwkNWdGidEBVBDkLEKN0QJ6G0txhpXRA7WiwkQqwdEC/ZW1e4cB0QNiKuEL6wHRAIJxKm3jBdEBWcPsK6sF0QBpXBNAMwnRAGHidGSXEdEASxzG+t8R0QLTos2HNzXRAimQOoP7OdEDqG++r4NN0QGqT7G141HRAh6h/ic/UdECG160Jt+F0QGgWwsBN5XRACM1JzL/wdEAgXp3OjPN0QBZR2N6p9HRA0gjPp6UAdUDbw7ukYwF1QAe28QxeAnVAEjxXqJoDdUAykwLE+QR1QJGDnM+ZEHVAxL7pmyMUdUAS6nRKuxh1QPIY9TyeInVAYGkbynsydUAi0nXxzDV1QNxlEJLZRXVAGPs0mu5PdUB4DToYgVF1QBwNh6olUnVAWhaSOndVdUCn5o+jDmB1QHD6S0E3YXVAqoZx29BidUB/9pmXdnJ1QKqF8d2NdHVAOI7DhniBdUDiQFZKrYF1QMDB2Lmmg3VAD6029ZiEdUC2hEr1i5B1QI+Yi8i8kXVALZPRzz2YdUCQYMmxmJ11QE3QdH6XoHVA5g5+8SOhdUDoTlv3tqF1QMzmvVPosnVAlAMsGnyzdUASn29G+MF1QA9LkhXM03VAktowxuXfdUDTwky1COJ1QPwIi/vM9XVAChe/JEgCdkAcWb570AN2QIolfWAOE3ZAxEGS8kwUdkBQorLNOiJ2QGp6Lo+IInZAggAaKJAkdkAE0W7sHzF2QHLahdokM3ZAMvms7500dkByNg/W3UB2QAZDDvwdQXZAbtAJ/HlEdkB/krFm/E52QPCvTEfKUHZA+gvt6BNRdkDBG+/NzVR2QI80OaQOYXZAvzZ6y8tidkASpkeA22R2QHDhkZQmaHZArznaNpKDdkCgsAD5wbJ2QEs3SJAMtHZAEJLDWsHAdkBEkq2QGsR2QHBLL1XPznZAnsUzS/XhdkBGMxT8kPN2QAC0qUMzAndApiQtV1ANd0CEbDvyARJ3QDdH2OCNEndAIJTReakSd0D67OYm8Bd3QPtpstQFGHdAiBczAk0dd0DfdEXrYR13QCq4ghUPIndAggeQlHYid0DuCbzVuSR3QFFjgiinM3dA5n9iCA01d0AAW6UFnUF3QCCqrn8bRXdA1maecUpRd0AS1FppklF3QO7RuhIqVXdAxrirv49hd0C73kTDO2N3QAgExzVmY3dAWdUQKCdvd0CyNPqu23B3QJ6Rw1Qnf3dA6D28cniCd0BYHdlXe4N3QIt4ALMIkndA0Lk8x5q0d0C8v4joitZ3QGjivZpP8ndAzroUQLnyd0DyLpGl9wF4QIHGiaDrIXhAFwkRr20ieEDWNxnMiCN4QIprNTymJHhAxNCf/g1CeECtivFIekV4QOcwZ4vLUXhArCDwDJVSeEDP466Xh1V4QJ09OdDuV3hAGPR+OjVdeEAKf7sdTF14QPToxMf3YHhAl7N1/rVheEB6WdSgkGJ4QOPpRbq0YnhAaqDDQ7xzeEAjXjSHPXR4QCrs5E9RdHhAtHPWlIt0eEAYZENfrHR4QLlK2c3OdHhApOfdviJ1eECuhlAVv3t4QEzAVz2kgXhAyuWnPp6CeEAIkX2pmYR4QKwwjZ24hHhA+h2FzqSKeEDjWFsyl5F4QAaVb7CXknhAJnTPp6aUeEC48lle7Jt4QGQ7AMHln3hAiHCst8zAeEC84moduNR4QAYXGZfF5HhAZX97iQL0eEDCROzXjPV4QMwaOEPA/nhAdK5XexEEeUCZF7p0mgV5QKzFvKSrKnlAyitczRNCeUC+wTaI+EJ5QPhFjU/MVHlA3qJIqOtgeUCheRr12WR5QK7Gg5s/c3lAwFmK7L+yeUDG2ygfQ9R5QK74PM3M1XlAbj8uPL/ieUBWXD3XT+R5QAwfgO34BXpAFrqDqDcjekD9KjQxDDV6QILgZZUaRXpAhdbGui5QekAsz/gRgVJ6QN4Inh4qVXpAqj6+TD5gekAugSqmHHB6QLT8lG2McnpAdmQJdvCjekBwnRru7q16QIJnwwBGs3pANGV6gAy2ekBCTp+DK8N6QPX56wccxnpAos7rmzbuekA+XsJkKg57QNQO6yhNFXtArPdKuFole0B+OE8xVDB7QETp1+PFM3tADdD5WWRAe0A7Py37QlB7QKzcWqhgUntAlq95sWSCe0DzGAP+7JB7QC72HpwjlXtAyspPrXfGe0DvyPZXq9N7QNhWODuY8XtAX8br/Iv1e0BaMTZk2QF8QL4hm8fzAXxAwezTrZkFfEC9AkHmlAt8QF5eK4aGEXxAZvNxU9IRfECF/Nx3zEF8QMgjLYsMYnxAiWz2G8GyfEBWqLaBzdV8QJMo63xX4nxAHrEhyBfyfEAUkAWrVfJ8QM6Ya+0AAn1AHhLiT0sCfUBklVGqRRJ9QAJyOho/In1ANoXgi6MtfUBQZ1SroDF9QO4iRDFIVn1A69y6MU5efUBHzfKoLMN9QBx/ohHV4n1A5OwVrY31fUD84zng+AJ+QOWM9cWNVX5AnT7Cl7RxfkAwNh9QfqJ+QEG3FXjN335A7zUZIcX6fkD48r4/HgB/QBVlbhO4cX9AUMEvDbKBf0B81mPUYpF/QOjbIh6qkX9AskH951uhf0AEVi0ZVbF/QB+OscFJ0n9AUkBLgJPdf0AHAuTmLOh/QFrVDnVLAoBAuVk+w/EJgEBvJHNxUiKAQA+Zz6ZVJoBACHqSmVcqgEBMD3eSJS6AQPt1LgfXPoBAO4xqBJVCgECWEfDy7kiAQPTfr2vnUIBAlxEZahRRgEAc7Fn65ViAQHDpuJ0OWYBAEFmD2QthgEDaiYZjKW+AQAOg0fsGcYBAsQQOf/yKgEDMe8bNHY+AQD2Iqf1rkYBA6cfbExmUgED4vXhMbJmAQGon4wqHqYBA17GlQBGvgEBCymdyUsGAQNqcC3xTyYBA5cJKnSzRgEDSc1IATdGAQBjnbjZK2YBAljpI00ThgEDClR819eiAQAaRWDRL74BAqpGSqTzzgEAs5lTVP/+AQPYGElg/B4FA9v3tTT0PgUDBLWsTNR+BQDhaUFU1J4FAz6PK99ougUCC6lvb5i+BQAxEKC56MYFArFmxq4sxgUDwqWn/uzGBQJhsBrYmNIFAH0SAE545gUA0edlroz2BQOFuMMQoP4FAcvkyAvRFgUCyBn9d90mBQJTDc2zsTYFATsHy7P5NgUAMkxtN53aBQBCD8/iVeYFAx+K6hD58gUD2gm94Vo+BQMoAst1Vl4FAAiaJM0KcgUDMnS4p8Z6BQPs7XILAoYFALKOeqOehgUDy2ox6xKWBQKjuaJVtqIFAlJnTWripgUCylYzISa+BQIAx7GxtsIFAErcL7inMgUAjGX/T1s6BQMLm8Ct90YFAS1vD4SnUgUD8QzE8hfGBQH5DNeyx8oFAIK8BNTL0gUDqV/VM3faBQFyqh7eD+YFAKRd4CAMJgkAQ5lyR2BiCQAiz7djWIIJAkA2XtdEogkBUiiwfoimCQNJUc0KlLYJAbmKoraMwgkDGQdWs5zmCQCQ/RCjrPYJA/o6VIuc+gkCofg/D7G6CQFj5zeqbcYJAOO2DOUOJgkAMcqNFRJGCQKhiYYc8mYJAOsc0mVWZgkCbYkD6DqGCQA2vHVY6oYJAmqunOgypgkDH6v0fNKmCQBniN+0FsYJAWEMlSq/5gkA0p72geRGDQO9/Sg16GYNAcPdDNnMhg0Dr6GjecimDQI4bA/ppMYNASaP2+YExg0DDJ3HrbTmDQG1mvVnlgYNAbJvRHj6wg0CYJOTllPiDQJDDIVDNGYRAGErlzv5ohECM27iY/nCEQCLunPT1eIRAymtQNvuAhEBX+hMQGaqEQMAeCEZq2YRAjhd0fWrhhEAWGYuQY+mEQAg2ZlM28YRAFWs7KWLxhEAoHNthNfmEQMgP/PpZ+YRAMfELSS8JhUAKaNi3oGGFQOF0/fqfaYVADt0MfJhxhUDHFOp5mXmFQKfZhIiQgYVAljShjArShUBWaQTRJbmGQIwovhMowYZA0DQ/5ZAph0DaRaAIkjGHQJy0Av2KOYdAyVP0RlxBh0DUYVjAjkGHQEgsPwjIsYdASEH4d8W5h0B5rR+qv8GHQF4qX769yYdAaaKVgeNdiEB+mycy89GIQNBhdPj21YhA + 4qRcexsiYEAoFld2zuNlQI5NZYVLA2lAZLjPS34EbUDHBI8W/pJzQI3oMXEC03RAqznuW1pjeECKCy3qo8N7QM1C8Izd031A8K+Y9x0agED3JfleMKKBQPDehiHKooNAsXjZVqiihUC3Ci0xNquGQHikf2YUq4hA1VvpG447ikAJqQD/VWOLQGZgarTP84xAJ/q86a3zjkAtjBDEO/yPQPeSsfwM/pBAdG/43Vn+kUB3qqgRY8KSQL3xOKp6WpNAjb/pEonek0AGdHl2m7aUQE2IKHGxmpVAPkHRh7LqlUBkC/tD4i6XQL5YyJwIr5dAqx+qPvgSmEDTbQmeLsuYQBqCuJhEr5lA - + - bd43RU0zuUQwwRRGvmGORPPqLEjesXlET3JaRJPgA0cRpllEKO90RvIGj0ScUEpE4JyuRDEVv0S0tYxE4IxKRaEp50SwYq1EFgoxRcoX3UQMvKZEY5CCRAijk0TpJ5FEZr9WRY2irER57EtEpn2cRLJi70TBPwRHs3yKRGlPXEV6yRlGGApERUL+LEX0gpREe7GARHNJ5UQSE8dGM25XRFK4ZkRbX3FENgSCRXvW1kTcjIJEkaOiRMSf1UQgJ3ZF9T/dRdlCXURKUKpEkLxuRVpfu0SVVIJElVfFRAuibEQsH2dEZmPQRHwDAkV68vpGlaPnRNsrEkVJZjlFB9MzR90j2kS8jjZELJuXRC1yWkYitu5FhS9QRMTb0UWnUY9GWGkTRcLUQURWkbtETrY5RbpPH0VRCuJEy+VpRSvU9UVwiYFEjNcIRV2ri0SGjaFEfsyQRcZx00V103lEd3tMRM74jESI1yJFkFmRRHzGeEbilZJEFr6XRDXvE0WuBEFE49iwRDbHdkTjRVZERS92RN6SXUThLDdEhuaLRBSi2kStmJZF/v4cRbW+n0VCGilHU2IFRQr4cETl9SpFqPKnReFmqUV/Ik1E+vGfRD36rUSqCLdEs2aURBgV9UToRldExRO8RHbFmEQ9p01EWkPqRBeIc0SVU3pEFUpNRPMa+URSFFZEEde3RIAxuUQYXoFEmA/ERBKQFEUw53tEQtZTRJppxkV0ImJElUlzREt2B0XavjpFKqztRKwsdkQhl0dE7FzpRO7DcURZmpBECdFbREeFO0V/02JEL3H4RO4Kf0SVbWVElZ8DRZmKi0TvCAxF15KbRIOzTUQYbFdGUYr5RKSAi0U520tFlwi6RDO0XUTLDKxEkIQARnTfSkXUO4lEzENoRIO6sER3r4JEwcmORFltD0VE4nFECDhkRJBRN0X/9ENESXeWRdNv6kRiwzNE1JOoRIl9SkS4RFxE1afSRX4K0EbGRoVE2a6nRAKfVkTYX5RFWvODRa9TmESp2aBEZSQPRSC8akYBx0hEUZoxRXh0SEUgJ4BEVVpPRaOjEUUGYoxFIKzeROgUs0Q/7epEW6R/RKET/ERXQbJEEETUR0ZkbEaqiIhEbCxYRwrBlUVNayxGl7pTRcFv4kRTOVxFs110RGxjXETRJHRE3MbjR6TJtUZXvsJG1fdvRaaJhkY+W9VEJn8uRbHBpkSK/qVEchWNRTS/60S6Ql5EOcetRFpFEEUfymRERPqDRCuLZ0Rl5uxE3oVYRABUSERe03BEU8FnRfgYkERySo5Euny9RHT0OkafdoxFQp8oRyM1z0ThsoVGFGx8RcCDekXE3t9Ej4s1RUJF60QaWqZEoQ1IReUI40QXhQhFLPBASQFRy0XtV9xEqteiRFLnhET2wldFLkSrRYHUSUgmW/VEt2/YRG+AzESi6YFEzeacRvMNHEX/XSRFrmTbRPgeJEXRnWdE0QRwRScD5EV8qKNE3miJRC9kyURISBJFtCJiRaDfrEQtBWJF7XdgRJRwhkQhVJ5EeuAyRf39+UXgdOJESU43Rf1j4kTfjKNEjABoRBAmyUdi9sFGcmY7RmsECEaJiw1FQKCRRH1ctUR2nYJECWalRBADdkSSlYREsvuQRfoIUkTnk8dE947GRIWvxkRx2SBGQmE9RcOTx0ad94xESn8nRQFCtEWsT5pEFtDORPvWfUTrqVtF1J6TRLXGqETwMblFtvGcRquTREYdjwxFU3iKRQa4lETbmYZEobGbRWg71UUuPspEK8C7RMU4jUTYtthHI+sMRa8x4EbOZvlELcGWRrGfVEVVvcBEjeVWRPyRSkTz/mpEBo2rRInpkESpxEhE70zRRHHeSkTzLaJENUB9RB7He0RduKNEWdZhRAN5d0Sme71FMS6tRLAaN0aRtLVEf6A0RTv+RUWixxNFiNzSRCE1T0T9QUVEwy4GRSj9DUZ6XoxF/5p3RAepfEWTUKBEknBCRPxHAEUmZyhFdNeLRuLaqEQdWLRF/YttRKIX5kSUDIlE4E5iREfGbkW/HSZFZ4ihRK3cvkQQgcJE4rB6RNkZeUgVzuFHIhddRJSqekenL2FGMt2CRfXVpUTVVLBE8B12RC1BOUZC1lBFbmwURRkz+EVuqyFFvgkWRa8No0SPVTJFTBHCRKssoEQnjRRFEAADRSFWnETF1GBEPyLdRrFvZEaizpZEZZXzRPg56kQsQuxEG26VRKiwl0UwJMZExZUARcLNgUR4yuxFGHT0RJEwskXwHAdF+sxwRKerOkVx1IxErgswRmZm7UUHZ3tFvbhFRZ1IKkafAnREFi8ORm9FYkWT1iVFJiihRBtGTEbTr4VFwytdRTUQNkba4KNFj8ywRK/15EUMDJ1F1FlzREK/yER2xnBELgj4R2mbgEe16flGLrIXRYSOu0UU++BFtNz2RNt5E0UMP7pEHW/WRBR640dcDGdHInX6RjxlA0b7fPFEeOWIRCwtl0SYG69EoVlZRF+VqUToJmZEuR+oRbmwTEXX425ETtGGRA5nUETXZR9HcCegRnVMM0Y5DIpFVw6MRVKB9EStH7REAz+HRGcK90Y1wYhGGfgLRprCQkWHYLVEyZpjRNGz0kS5K4xExfBARtEswEX8OYlFIKlnRAnQkESc6QJGZgWIRf7/F0V095VEJg6OROmaY0WNkMBE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Zu16iXjAckAUOzTGC8FyQHH7qERwwXJAYNRM3U7CckB2J9fip8JyQEAUohg8w3JA2pd1V8bEckDPC5GWWcVyQB+miJ1D0nJA+NCxW7TSckBH/GDdSdNyQMaXSZJz03JAzKRiCs7fckC/bMmDuuByQGyr8oFQ4nJAOGf8vI7ickC/hP9KJuNyQFeaBmBK43JAGni02snxckCcx/xDE/NyQK3U5PSx83JAm7Esdp/0ckAybsgIwv9yQICtwmBFAHNAOLi5yGcAc0BHZpUW+ABzQJzPK6dPAXNAOoiZOI0Bc0BkpgTzzgJzQEPFkdT6A3NAwPsNXgwSc0DrarCzgxJzQJCDGXS8EnNAxrw4qgYUc0BSSfCCeR9zQK1hdlWjIHNAtwHaPTkhc0AfGfFRZCFzQDz3x4TIInNAAMwmNg8jc0Asxpu4zyRzQJZmH6RGMXNAQq+tliIyc0CJFl9cNTRzQIcElQK4P3NAYuar9UFAc0AxZC2P5EBzQIxwg3h5QXNAv9dX2XpEc0Bg6D49o1NzQExhxgKHVHNANB3d3otgc0Dy9nTaOWNzQA0gFdBVcnNA4jj+5bV0c0CankosTnVzQOzdTj95gHNA6uRaOqaAc0C4m9zOC4FzQEKJ2+JdgnNAdVhWrYeQc0D7Z0F7TZJzQDyX9pv6knNApEBLiWKUc0D2fj6/95RzQAS5H+C4oHNAOH1nzuSgc0Bu3W3gWqJzQKp/497monNA7qxGWQWlc0CItAL/x7BzQGqi0cv1snNABuqrzLazc0A3aeJqDbRzQPSN1u36wHNAafL8g9DCc0CZXJNqJsNzQEWH7F/Y0XNA9VQp5DLTc0AK9S1C9tNzQBLMGT7i1HNABFlY3Djhc0Dc6HoK5+FzQD416w+28nNA0CRvWTf0c0D3ZANpjPRzQOgwZJzkAHRAhLCN6HgBdECWcjqopgF0QMcs+iALEXRAcJhAaxkSdEBCkmIATRN0QNZZynfkE3RAbhhLGHgUdEDmaNOOSiB0QFJK82ORIHRAck7YlbkhdEAz3w+7VTB0QNAxYX65MnRAednOh3pDdEDRtZcE91R0QA7f5DyNVXRAdIAfPbhgdEA2GIH/42B0QMWxJzIJYnRA8Zdm9E5kdEBMF9vqIXB0QLQ1RlhicHRAxsfHXEFxdECLdYiCOXN0QFOtvC2idHRA4dfJKTh1dEADB2j7+IB0QFQEzB5PgXRACNxFEbWBdEDzm7doFpB0QExlj7LPoHRARBii6DqhdEB2Zdk9uqJ0QABatpUPo3RAUPNK5WKldECjZtb0CbB0QIjjp9v+snRAiPrtLOLAdEDgAFe5d8F0QL+kuPLqwXRA9g+vJLjEdECe2jrjx810QLgbZ+P8znRADi6WY+HTdEBK72xjzdR0QNxiPf0i4XRAyGbsy7jhdECJvrNnT+V0QEOhKvaM83RA6DAZPHn0dEBg6c7QpQB1QJjPBMVkAXVAVCcCjfYBdUDcEw20XQJ1QAa6x5CbA3VAshZsgCMUdUBUAzlvzDV1QPRCCBD6T3VAa+4rAINRdUBm4iTpeFV1QBEGKZQLYHVA7mZgQjhhdUC8V+Q80WJ1QIL+ILx2cnVAasN7BI10dUCtC2zId4F1QMhcUT2ugXVA869ugaaDdUCod8kymYR1QB6d5x27kXVAPCEVjTiTdUCucrMrPph1QApy2NqYnXVANuYlqeeydUDCVwmON7N1QN6cL898s3VAOuVZc/jBdUD2Y7NpOM11QD7OfgPL03VAhnrQTOffdUAEN+H9DOF1QFw1xwwH4nVAjkqBjEgCdkBrCnNq0QN2QPQ0nTNMFHZAut+9mwwWdkD3bquUOCF2QI3XrXaHInZAyZR2N5AkdkBGF32HHzF2QBg2i5OeNHZAiP/0Nx1BdkBzJE2oeUR2QLIqBoH8TnZAbW42s8pQdkA/jW2rElF2QH46oFrNVHZASpSkThRhdkC62Btdy2J2QLY3L9baZHZANCkOfiZodkB+emzFZ4J2QECbiYLXgnZAog2PvpGDdkA1PLyhD6F2QP5UkGg6onZAgFjsHsKydkAEBFqFDLR2QJYxdm3PznZAGsSnrJHzdkDSLJfIT/R2QBrqa/k1AndAiIPMylANd0ASz/0QAhJ3QF67ia6pEndA1uX+jO8Xd0Bi0ZWOBRh3QDoUyHBOHXdAbNltTo8gd0Axep7eDyJ3QP2Z9iN0IndAyvuW9gw1d0AQ4rZcnUF3QBlDLGsbRXdAAKfr0kpRd0CqPLOVklF3QFl9/GHwUndAc0Kb2ClVd0DsOiobSGF3QJ4jzE6OYXdAhp2oSDtjd0DaW499ZWN3QJp/cn0mb3dAt8LxjNxwd0CWd+r2eYJ3QLhFLUx8g3dAZ6XoEI7Wd0Daj3ZRXe13QES9BE9R8ndAxBaLj7nyd0Bo/PrjbSJ4QIGn0HaLI3hAvFHoPxFEeECEnJpZekV4QJDTAhDMUXhALwVX5ZRSeECModhAiFV4QNUiIlPuV3hAkuD1TzZdeEBgXZidTF14QKKQnxv6YHhAjKJNDrdheED8nIPnkGJ4QArYBVGsYnhAC+tbQ9RqeEDoRGeYs3F4QGrZjQK+c3hANO5pgYt0eEAKlCikrnR4QKC1iRPmdHhAYNqWtaOBeEBx1Nz6zYF4QKxw2eacgnhApLFrrZmEeEBW2VJWmJF4QBFQ/ZqnlHhAaS6ADuubeEC0Rnxw5594QPWz87z0o3hAM4GQO87AeEDyfRif9cF4QBsFC5i41HhA/FSr/AH0eEBST4eQjPV4QIAedRvB/nhA/Wa/5JgFeUAaySSvqSp5QIpVYn4UQnlAaGIja/tCeUCkMifhzFR5QCOK/V7aZHlArh2qWEVzeUApSKbEv7J5QLAHEoNC1HlAWpwYJMvVeUB29NpLvOJ5QC8RIhFP5HlACJ50CPoCekC4PQco+wV6QFT43Jg6I3pAXQjgnQw1ekA4gO5WGkV6QD+7yBEvUHpA2Bz4v4FSekBmzbsPKlV6QLC5iyI9YHpAdEC6bR5wekAlmmOiinJ6QBwHHHpGonpAGMUdd+yjekBOTW2E7q16QOz3jkgNtnpANE730BrGekDXqIlG2NN6QAiqpIfe13pAViFIkTXuekAEbmzydQN7QFZg/XAqDntAuJJb4kwVe0A50Q37WiV7QDvki+NTMHtAdyfOPC0ye0CmwbMFY0B7QI/+Ii5DUHtATnBPSF9Se0AG2E8YZYJ7QF8++Te/h3tAEodjCSOVe0AqEUjoesZ7QIAOvhcA5HtAvo8N35jxe0CpL8uqi/V7QMgSxbKTAXxALCgWitoBfEAxrFg8mQV8QJpunNiMEXxAmteofNARfECIYLIFzkF8QEwYxp7ZUXxAGsSpmn5TfECgY2ZCDGJ8QBCDvOa+snxA8AkbyxK2fEC2I9jGztV8QCM5e9pX4nxANLcw2hXyfEBib7ZGVvJ8QAqTEfUBAn1A8EJTrksCfUAkpmP/RBJ9QK/rL3xkEn1AQvk8wyodfUCiwwBJPCJ9QKJxLBdLVn1At9N1FvdYfUAQe+s/plt9QJjn5ihKXn1A+m0l0GGMfUACovzXZLN9QD6rSBErw31ATIpwl2vgfUDlwMr+jvV9QChRINb2931Aln0eqPgCfkDO19R/QT9+QJgHZNHQb35AORxfHJlxfkBDLllu4ZB+QKCcHEt/on5AJAYbq42wfkCGGa6fx/p+QPxIS2rU/35AuEqgdCEAf0AQyMYLtnF/QFoKnyWjg39AWNlww2KRf0BWT7r5X6F/QG1mNfhWsX9AEoKb6JTdf0BELpN10uJ/QH70fOot6H9A9s5X//AJgECgi6oc9A2AQKbttkdSIoBAu1hf/lQmgECueYuO3ymAQGRgaaJYKoBAMrYdiyUugEBuCo635y+AQGNBDPmhOoBAxKoV3Ss8gEAuTjz51z6AQPfUQeyUQoBAeMDBr/NIgEA2kOQ951CAQFDQgnAUUYBACCsSTudYgEBCGL4UDlmAQFZkSpEgWYBA3y3NaWFcgEC5LBbzCmGAQI1WxrO4YYBAQE/YBihvgECC5C5DBnGAQA5R5DyHcYBAuxCOax6PgEA7c2kBbZGAQDZHjxwclIBASIrhJb6WgECItBGRh6mAQNPOdY5SwYBAzktK0RDGgEC+9TKoU8mAQDgFegMl0YBAw+kN+UzRgEAKVUWVS9mAQPxC4cBE4YBAmhtZ5vbogECmyAW9Su+AQPoYfQE984BAS+GXxz//gECMlHuWQAeBQA9Aeu49D4FAMe3okDQfgUCMEYclNSeBQIOERUPjLIFAONLQydougUDTZBjVezGBQCTHBaK9MYFA8BfFhyc0gUBsvntDzzaBQFLFnRl2OYFApsSpnp45gUDe7akdnz2BQA81ZTb0RYFAAKbuifdJgUCVF4tZ602BQEwQ8OX/TYFALZF/Xud2gUB+dBy7VY+BQMzVDU5Ul4FA/D2AZfCegUAi921pmaGBQMCsWU7BoYFAocoKleehgUBa9QPHxKWBQE2L671tqIFAw91+GMupgUCjMvgISq+BQGFyGE0JsoFAPCt8Gky3gUDG69x/KcyBQNw0BY7WzoFADrhuzoDRgUAyMDoMfdOBQMrTnMss1IFAgQu1QdnWgUAKkbLvhfGBQA5Yvrwy9IFA6ISNQ932gUAoeOsDh/mBQLQfKUvYGIJAXeF2UdcggkACYIRy0CiCQNgNzFmiKYJA8vMeoKUtgkBeRFv0ozCCQDr+kuPRMIJAgId0vJkxgkCdBvCK5zmCQKivCenqPYJAncjQl+U+gkDgKi4y/maCQEqP/qDtboJAa/kcmZxxgkDcBTKHQ4mCQGDs0v9DkYJAFwSXIhmZgkA0qfArPZmCQOEwpTRWmYJA96hDkg+hgkDsRcsmO6GCQCeL40kMqYJAWlVMjTOpgkBMi6S3BrGCQG4Kok4GuYJAQNU9nq35gkCtTyifeRGDQELgpD96GYNAqYz6ZnMhg0D+JVn2cimDQAxhQDBqMYNAllz0m2k5g0CGCGRz4oGDQMgKjTVKg4NAGOFrIJX4g0DkMOoJ/2iEQLdoMGv+cIRATrJHyfh4hEBs+29tatmEQOPl6ytq4YRAiVqVyGPphEB9UuGNNfGEQMyXiOhf8YRAplQMBTj5hEDBk1bgLQGFQLglVb+gYYVAulbW0aBphUD1fquDmXGFQPKInvOzc4VA7qhA4ph5hUBezck/k4GFQJSJYWwmuYZAkzWB/ZAph0B5fiamkDGHQJsJbliKOYdAnKYq31xBh0CpZBLXjEGHQEaLm4zHsYdAwna/j8a5h0CoOigRwMGHQCgfmPbByYdAJGlw9mP+h0CGjEtn5F2IQNr9//ny0YhAYCOII/XViEA= + KBZXds7jZUA= - + - N7hcRED0eUQAkzBFJTClRCr6+EXwBD1I/OdKRJGLr0T23QJHmkmRRIrxoEbfUKlEyHm8RPY9sERRbIJF6R4ERQMJm0QFoa5EeIJwRdq9eURdFKFEoi59RDrSzURNCExFjLU8ROOtjkRpnTpEJdCXRH5f8kQ2ARtH73CkRNI1MkWZy0VGnr+GRXw6UkSZAcFEKpS9RhaAfUSd/7pEbkqHRB+trUVhhdJEFGySRBIRp0QKfmtEmK+BRFdjxUSEjm5FpQEMRvBwg0VG5F5EFvA8RJ6THUWGEYtERPZ+RLAf7ESZ0fVGGF+dRHZFDUXvOKxEnOATRcDZNkfqqwJFj7jeRE2kTUY4OCRGvrV5RBEUl0XwBZdGiOwXRd4xh0QspvZE9t40ReYiFUUb4XxEO/eKRT8H/EVWKVdFatM7RI/+90T+U49F9Oq+Rce+ZETM439EA5PZRIt4q0Q+BUBE88p8Rt0MskSIIj9EG/ZaRD82gUW0j2ZE6G1gRKq6lESdFlREk33JRE1ljUTuyD5Elw6GRHAii0TfIPlEUWWPRQ08R0SSTDdF8lB9RD6QmkUyMX9Er3lBR4Al7ESBzIdEiuiRRIMQFUWXOr9FtvpQRIqztUUCfsZEb6w5RPFig0Q0g/NEnENbRAmi/kSKyk9ECIOPRM7wwET7Ja5EnHPsRL/hdkTF+aVEHO5TRNqzzkSCW5BEtwLyRCjxtEQj4cVFkcpGRKREfUT8fa1EikNhRAprdkV2UaNE9NL3RGMGFEXR+KNEY2aTRCJiz0TNQIpEDqPFRE8gCUUkCgRFmI4ARlm7CkX10JpFO2AuRTq9m0R88IZEcxc1RAOcsEXisENF7jsMRX+Eq0Rq64xErHkjRcpvm0SFIJpEB+9TRIugnETqTQ5Fq4tcRR/0aERLA4REoximRPr4PkSrKHpEUkHfRVVov0YrTohECvyhRQ2yXUWkt6dENL+7RLw6FUWMEQpG7/smRI8HYkXMUbJE9e7GRBJVdEQN+MlEh4pfRdfPSET3eS5Eq1MeRQ7Ei0UxjRFFTJAARVo/ZkS5wrtEtc2+R1QIhkZoh1xHayZMRfqO90VT0ShFIYBvRKhRNkUWotpEL4vVR3OAy0ZU761G9ZF4Ranqb0bu72VEW+bPRDPTk0QY6AJFQIH9RE1gBkV3n2xFTmbPRN25b0QeuKdEli5eRDhkXESomc1EfgeEREAYS0UYs4pEpMVlRDaCNUY2QZFFS30ZR5uYzESLx65GO/tOReqrdUVk1AhFEwpKReoCBEUlQ79EXXK2RJJClET5K8dEYJk2STZTokWTxJpE+poURegDokROJ3NFNVU7SMD6qETLa5RGwE+bRLDCE0UjhKBEAfHARHsxjkSMquBEdvNzRQi1k0VQU39ELtSlREpF1EStP1FFXIGPRGaZZkUWKIBEP0BfRBI2ZkWNksJFnb23RFXDmkSJx6FEc45aRIS+X0Qs1YVEkYm0RyKOqEZLCFBGBZW8RWNJEkWk76VEZYwDRVLlmEQGCoRErsxARBIxeURr9M5FA63MRKtWXESMTV5EmS6tRE6USkReawRFseUzRiZzVEVCiWhGIZyURAdb6ERaLFNF0hKjRJsd1kQpIUdEGLsIRSe8pkTe1ptECEBtRQPCjUZAUFFEc+8pRrs1jkXb6WBEs+mKRS77uEXmr3xEJ5GMRGJon0SCeb5EAddSRLIce0Q0ONpHJGEKRbL050atCjVFyPeSRjL9S0XoroVEG1iIRH33okTXcZNE2VqmRCZbEEXHpZxE8/hrRF0oQURtCJ9ERs9xRBek5ERDyH1ERAhaRFEcfURP1WhEF5A8RMfrNkQX8oZE5rGHRBjXo0S1VZZETTu8RFntjEW3llREL80fRsSiJkVQ/QFFVz90ROEYkER3eY1EALoMRabmQERAuXtGNzytRaYMWUR8NZpEgCYaRfebdESVjlVEYNKaRCzVaESekpJECWC8RHaEUEXXK1FGOH91RL76dUWqp5VECNi2RNzHlUSKiVxEmYa5REK6hETLIXREXwh9RduTgkWkXo9EVK27RHF9CEVB/3tI8eJGROnj60febcNEuYR6R40rXEaLsIJFH56gRIeQpkT/S6NE/HYfRvPENkXqxd5E61H2RbaD50RkzZhE4qIeRV7wmEWP6qlEhRMuRdl9DkWTKoBEX10TRVLkb0SH+ctGvy8yRsnxyESrlaREFJ7NRE8Om0XDGIBEsYiNRNrwTkS2KUNFXXUvRbz7BkVb7CBFKlSERAKcEUWIoGREL/9lRPueN0ZjosZF2IV2RQaJx0SE50FFfIFeRNCuDUahWLNFXEJsRRPy20R62z5GF9CSRbSKHEWm3TFGpQTURRwRsUQh3GtEn8C/RG+u4UXPCpFFjDmmRMNjrEQLFfFEDg5URLtWwEeCCjlH3d9URDo350Z5185E93i/RXCh/kXlHqdE830BRT7quESApUdE6Na1ROJQ2keJmFlHPKz/Rij7F0boCxFF++yPRA6PekTlloZEelhlRDaQoUV5pxxFYG2XRLe9DkczknlGop0vRp5qaEWK5xhFaZHgROsJ8kS/SQNHgJp8RrFNCEaMYlpEuclURaWrtUSky9JEqDIeRjMdqkXJijJFUHl1RM9C4kTr6wZGcFaKRaKUVEWz7K5EqV6KRAiaekR7Tc1EnLXCRA== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - gn5f/nfAckAT+QpxDcFyQNJcndJvwXJAgjG6OVLCckB0UBeyp8JyQMLS+lYkw3JApCsdEzzDckAXUWuKUMNyQIzppqVD0nJALAlgmbTSckD8YXflSdNyQM6hUHPP33JAkiN8/bjgckBr+1A5UeJyQLq8Qm6Q4nJAVcB3ByfjckADUjiJS+NyQPgu6G3k5HJAvedbXMrxckAidM5StfNyQFxQEjui9HJAi32QOcL/ckAs+/dRRQBzQKiJAB36AHNA+CocDU0Bc0B2vwoljgFzQOTbWcXOAnNArlN7v/oDc0Bq0yzDIgVzQKy23P0JEnNAtEcDkIUSc0CdHrrsvBJzQJIp7qBTE3NACfTGQPcTc0Cmq87oTBRzQHp53GV4H3NAhoy0Yw4gc0AIeP4gpCBzQCz9+k45IXNAgHV++2Mhc0B66fSs5iFzQNBcN8DKInNAuMkVmhAjc0CSC/wiBSRzQF6XFhHPJHNA+w3CGEgxc0BuePl3WDFzQE9XwPyjM3NAr8Dbidozc0C7B6Q/+DNzQHJ/wKU3NHNAXrRt7Lk/c0BUNhCy40BzQCCvcbR4QXNAgbtNcqRBc0C+rMhNJkJzQJIno3x6RHNAN6nQpKNTc0C26mdZg1RzQJreztKLYHNAOPXf7zhjc0AhVEKKzmNzQIr1MNf7cXNABX9fAlFyc0CkVziuanJzQEhtfPe1dHNAJMqgq0x1c0AyFiJea3ZzQI4HIvp4gHNAQnatrKWAc0DRFw3SDIFzQADbCp1egnNAHCAMtg2Ec0AOKZFFh5BzQIJxazlNknNA1LETPPqSc0CWgIo+Y5RzQEBorYr3lHNAEuZcxbigc0DF0RBQ5KBzQGLck0FPoXNA+JNeHVuic0CMAlrk5qJzQLYaLc0EpXNAg5Wbccmwc0DgE6JZ1LBzQF52flN9sXNAbTKaJXmyc0AEufCc87JzQIgyfHq3s3NAco0/5Qy0c0CW0Mbu98BzQM15IZk8wnNAqgfav8/Cc0BQ5z5MJsNzQK2MQAAkxXNApIq1b9bRc0B2Gph629JzQKa320j203NAYqC1s+LUc0DO2UOzo+BzQMKGBro44XNAhFe54U3hc0BL2D4vZeFzQE4b0RqM4XNAikrM2ejhc0BEGyDS8eRzQFw2Dok39HNAxuslPoz0c0BtyGAXeQF0QJbVba+kAXRASfMe3IkRdEARGegvTBN0QMWbW6niE3RAMGYNwnYUdEDbmj8BSyB0QJxaVJYiIXRAVMJsZLghdECK6n5D5iF0QAAYdppdI3RACK6UsrokdEBoXZvFUjB0QMZ/+566MnRACggBWtUydEAAC/AzzkB0QKoayqt6Q3RAsOpdgzpSdEBQhOPZ9lR0QGxGSbaLVXRAcTXbQrhgdEA6YaeaCGJ0QPHkUuQPZHRAzBao4k5kdEAUenteInB0QCoVIh7EcHRAZjFaFUFxdECOUo2UO3N0QFre2VU2dXRApUUYkPiAdECl5ny3ToF0QDY/7q8WkHRABtUpNmuQdEC/ReIY0KB0QMiqrXC5onRACOWuBNKidECucztpD6N0QA8rQBpjpXRAbtRU0QqwdEDiBEWhw7B0QCklzShKsnRArdJl/+LAdEByHnpH/cB0QEjXiTN6wXRALDfuiOvBdEDGCBYNCMJ0QLTyXKwkxHRAa363FbnEdEAMJKkD/c50QKmcEXs903RALp4VkOHTdED8sHeaztR0QGKNd1+L4HRAMssMs7jhdEA4kr6cTuV0QOhfog+N83RADP/pLs4AdUDBWrPgYgF1QNHHk6pdAnVAqzveCJsDdUD2DL/cIxR1QJZe18GfInVAbr8Gisw1dUBGGDa0KEN1QBOqSJP7T3VAPARK1RtQdUD4ZbqugFF1QJIHlsNOVHVApLcMu3dVdUCEPBgl7F91QFYAnKENYHVABJ4TrjhhdUBMLKKT0mJ1QEi3vQR3cnVAup+LL410dUDSQ1i3d4F1QGL6GzaugXVARgxAFKaDdUDKVb9fmoR1QLDLv/GNkHVAPvcPfbuRdUBJSjeZPZh1QND07s+XnXVAdA0vlbmhdUB2ms3w6LJ1QL0JDUd+s3VAynWS8MW0dUDAxS7UYsF1QGO5j9H4wXVAu/G5pMzTdUD5igxJ5d91QFcWBEgP4XVAlVRm8AjidUAqQa4oOeV1QMxneMZIAnZAHueJ1c8DdkAEn2M7TRR2QPgnajUMFnZAtrDfB4cidkDzBW9fkCR2QHKOe4QfMXZANpTZK580dkDQWC8XHkF2QP7XYNd5RHZAoYccChJRdkBsPvR3h1R2QNMfw2bNVHZA1SNxzstidkBAl+4M3GR2QC4RHKkkaHZATQU1AWSBdkA2BNwgaIJ2QIxUJabVgnZAF2hMVJGDdkAeHukM+IR2QPRqdXXgknZAKlp41bawdkBgVF2SwbJ2QGOly5UNtHZARFyyb7G0dkAgahGYwMB2QI6z4y8axHZAzNPm7jHFdkCAe/6Uz852QAuExqB/0HZA6svxVfThdkCQ/ZXTtfJ2QKyBP2uR83ZApqE3rDQCd0BiBqe0UA13QE+piZYBEndA6H+WTKoSd0BSy0wQ8Bd3QPTc/RsFGHdAskaOcU0dd0CY59DVDSJ3QNMu0zB0IndAWGK/9aUid0DJNRL1DDV3QPY9jACdQXdAKpCBsK9Bd0COkStJG0V3QE50icJKUXdAFEQ2sZJRd0Bg8Bge71J3QB5FTYkrVXdA/q7Lc49hd0AsjSC8PGN3QCAlDcpnY3dAS2T0hzpld0AGJGliJ293QOdoE0KLcXdAEErh85N0d0BWowU8eIJ3QG74x2l7g3dAxwGYQAmSd0BGnpxcTJR3QOjVQvG4ondAOomuW43Wd0DamzlB6eB3QMS5AIdS8ndAzAvKP7fyd0DSDS8gbiJ4QFUssYeLI3hAE5DKO6QkeEBHDcCNfDJ4QCf/60sMQnhAlLzqS3pFeEBcHuXQy1F4QJPlm96UUnhASDVldIdVeEBiyoVi7ld4QM19L3w1XXhAJhxJ9ExdeECQEjYI+WB4QIg6xH+3YXhA1rbpsJNieEA2eCGJsmJ4QFuimRbVanhAI3fdibdxeEDNZDr0uXN4QGvdAhn2c3hAXFJbLzt0eEC2RA8BZ3R4QHD8xniLdHhAiicWSbx0eEDO7eX40HR4QNLFh3u4e3hAugtnE6WBeEAE8cRunoJ4QA/lAfXmg3hAVMC3nJmEeEAX3vFSt4R4QNzF6CSlinhAZE1LMZeReEBU9bq6p5R4QKMicC/qm3hAkiM8SeafeEAIb4jEuqR4QNP/TfnMwHhAfoNHdfXBeECj5T8UJ8R4QA6nazy41HhAUZ+g7AL0eEAA/iwtjfV4QAg/YPHC/nhA+21EaJgFeUCahMNsCCx5QHQfMC0TQnlAyolbs4xCeUBYI3Ql+UJ5QIxisvXMVHlAf7CVk+ZgeUD+sghrQ3N5QLwHsIz3gXlAcZMKrcCyeUCgbD780Lt5QJRymflC1HlAjiJdL8DieUB919IYU+R5QJTjfyQZ6HlAX5fAJ/gFekAmItmKDDV6QJ87+6gaRXpAyDq0oi5QekAJaZ+zgFJ6QGLv0wiCU3pAuji3oylVekAj7MHOPWB6QFLB1NMccHpAoACLeYxyekA+1gaq7KN6QK6nc4vprXpAaqWL6wy2ekA0Nh2nLcN6QALaku4axnpADOQHuUTOekA21imD49d6QGLKxp5i4XpA/Lz4ofTjekD/rEy5e+R6QCOGEvk07npAvLhYZxfxekACJkCHYvF6QPZm0CYqDntAD7M350wVe0CrUldQWiV7QDLCNBxUMHtAGfQLusQze0CFc/0TZEB7QMCNvVBCUHtAZz0PK8OUe0C6UmecIZV7QIO0KA16xntARSAcUUPSe0DWxmaB/+N7QEwyg3SM9XtAstGGD5MBfEA8WJb02QF8QFClRdn1AXxAZvK6m5kFfEBoh6AwjBF8QMEsCVvQEXxANp4lyM1BfEDcXdU63FF8QEo3K2d/U3xA8lqUkgxifEB4rHV0BnN8QEz/EvDAsnxAmkH27s3VfEDh7YTIV+J8QG4Tf+sY8nxAuP0ILVXyfEC/epyzRQB9QPJ2b/EBAn1AFA6yb0sCfUDilho8RBJ9QBqJraM8In1AQLyUEaExfUBOFMZ2Y7N9QPfhanEuw31ATD5YWmngfUBkkmF12uJ9QFJpzT+Q9X1A8hKUcfj3fUAHzhohQi9+QCy8eMmMVX5Aav6IoI2wfkDIUvlKyt9+QJazJlzX735A7XWqFSQAf0BwDHLruHF/QHTZRX60gX9AHSXEZ2ORf0C2uqyaqZF/QNJCYTWYk39A7P2XiF6hf0ACT0pCVrF/QMxKGzKW3X9AFEvuLUgCgEBIN/ro8gmAQIL0DY5SIoBATMPcj1YmgEAytRI87SmAQDGhpDRZKoBA6qP/YyUugEC8vbMP6S+AQBIhPSChOoBAVBcMgJdCgEDYAnAA9UiAQOJGZU3nUIBA5J1ithNRgEB4zmYx5liAQEz++6sOWYBA+ig+tCBZgEAkJbwQYVyAQIJV6Bkob4BAsxUkHgRxgEBCgInHh3GAQEoKyY8ej4BAh/1oAG2RgECOlc7WGpSAQJIi1UqGqYBAmCxqgcS8gEDUe8aAUsGAQNGYp6VTyYBAsVFeMS3RgEB5OnJRTNGAQE7BTLhh0YBAg2XrYkrZgEBViyqmROGAQO5h0zz36IBAam8SMj3zgEDSkBHJP/+AQJ9z5VFAB4FAgvqefzsPgUAv84r5NB+BQLDgHswyJ4FAijYjq9sugUCyeeeCezGBQLIyJKy7MYFAJqh3oSc0gUDog3l/0jaBQB4W8BqdOYFAdjliVPRFgUAqu9oV90mBQDI1R6n8TYFA2ALCTOd2gUBsKWCmlXmBQIMK28tVj4FAuy5fIFaXgUAs5Be7QpyBQN2fLm3BoYFAz4dYXuahgUAUrwFxbqiBQC4pdPhKr4FA4qXCDG2wgUABdAbnKcyBQGQVSGnXzoFAsIixV4PRgUC0E4BJftOBQD0cPdcp1IFAQXTs5NbWgUBILzLTgdmBQNQ54ciF8YFA+iDLoDL0gUBKTs9V3faBQMINrNqD+YFAFMMiWNgYgkAUsg8g1yCCQKOcnvbRKIJA1/iqU6IpgkBOrfx6pS2CQM3yzVGkMIJAQPJ1xtIwgkChWtOpmTGCQDeW1OGuMYJAiw6LHaM1gkDeBJWz5zmCQNDivPnqPYJAs6dqWUOJgkBimGvTQ5GCQEhyfm08mYJAvK24+1CZgkCZ6I7VDqGCQIlhZ007oYJA6PfjLQ6pgkACatbxM6mCQJUeemUJsYJAveCYtq/5gkBsVkWaeRGDQDm8oB16GYNA3L/KpnIhg0AM+J+KiyGDQAKHKjZyKYNAaCCUkGoxg0BWC1nM5IGDQAts44NKg4NApkjg1uGJg0BwLquelPiDQN71ZpXNGYRAQVQzUf9ohEBOlX83AXGEQDoFYvP1eIRAd2qMD8B5hECTtsU7atmEQK6mmR5r4YRAdO6zpGLphEC+e5yYNvGEQOKIlWFh8YRAgRInADT5hEBkFMoKXPmEQKKGI6stAYVAsPM4ZKBhhUBEhzI/oGmFQDA1ygiZcYVAKPnNZbRxhUDXJ9E5m3mFQE64NkomuYZAQkayYZEph0Av0VlCkDGHQJ1AODGJOYdAAs7T211Bh0CcvWYUi0GHQFAOqsVfSYdAPLiJn8exh0DrjyoUyLmHQLBGbDjAwYdAQi/4fcTJh0D6+3cO8dGIQA== + KBZXds7jZUAot2DdIQNrQGS4z0t+BG1AVOXpVsLyc0C7HPhlP5J1QHE2pkEag3dAgneMn1fDe0D/jfJg8pN9QI5v1yUlkoBAwWq0+VdqgUAdmDUbUVqCQFRLWDWvcoVAsHjZVqhihkDjc7Yq2zqHQHekf2YUa4lADp44LSdziUDVyd48k3uMQLtneA2Ns41AnPWETP+Dj0DBSY+O/F2QQOX9FHkwVpFACszPWh26kUBlFQyOhhqTQIrjxm9zfpNAeipNj6w2lEDR93VqiWKUQFEPbX/fJpZA11M9i+g2lkDsaH6MDlOXQDUlQIcVq5dASzqBiDvHmEDQflGURNeYQFCWSKmam5pAqGNxhHfHmkCXqvejsH+bQL14soWd45tAF8LuuAZEnUA9kKma86edQGBEL4UnoJ5AVBN8bSQ8n0AiLYHGLhKgQJyUpzotYKBAjh+RPkgioUDzXT/wTCShQBmqMT9bsKFA5ego9GfmoUA9NIk8ZiKiQArhEcN96KJAYixyC3wko0Aua2nAiFqjQFL1wL2TzKNAIrjtFacGpEBEgKrBro6kQHtDIB3KzKRAaAoCv7kApUCMSyIlyq6lQKA7CezfzqVAsNV5ItUgpkBPUAHq/c6mQA== - + - /gChRC+HgkQxElNFmhCgRN5w70V9Qe9Ex3NpSI3lG0XmYRpHGePBRIGX7kaI7UNFrEftREZgm0WglGNFcV2dRM/9BkWoz5xEsYuLRaSul0QPSwtFSGXBROngC0Uce+NEwquvRNWHoERqqf1E/uYlR687jUSgEp5EkEWHRcZxiUaTx/5ELP2oRf3N5URdZrFECUGBRCwkFkXErupGL1mzRAavaUSVngpF0TflRBgMokQn2cNFrUETReYiakSG97tE7TCORPdLbURdntdEo5R/RGVTzURsTtZFYZiFRFWWxkR1tVVG+3+GRUOZ3URb6qhEotFNRelfn0QSvKJERG/cRL61okQ5qvRErP8BRSsEkETpThNHd30MRUaYDUXx1+pEyYehRGYFOEU7kXtHOy3rRNWPyER11JdG7rRJRsvQuURjkMJEDtAaRt3HqUZtO0VFpIatRFt8pURqqpREN2ZlRHd77EQ8s6hFScckRQoB5USDm41EYCnbRU06CkavN4NERjwnRXRfkkT6Gf9E5VDkRUTkfESqih9GFW9zRDsUsETkobJE9AtgRHJeaUQhjBFFrLejRKsEzUY8uD9FbY2/RIrraUUUF7JEh1CeRE9HpkTZaZtENnGbRfYlYURPUHNE24WSRFfXs0TRfa5EllnJRKfVfERidfJERFiERJ4a40QnG0lF/vWdRVvKb0V76XVEhDvnRLi/3kUspYZErz58Rywok0R2IeREqlSMRVopH0ZsX75FA+iIRFdbnkQhyhJF+xAARfxkbkUHwbZE1ou1RNYQpUQ5UHJEOdUERY0ohkQWvZlEJvyuRLPuhkQCnM1Es1TLRB0YsEQGraBEfkvdRO//D0VDPHhE7xZgRRFOk0TlpetFfxurRFuJ/kSVNoZFZNO/RKdEUEVdcaRETfsHRdkrdkTfwMBEz46BRCx8+ERl2axEP6QHRZR7hUQVAddEFxxGRUUk10SOlxdF6pgXRp/WFkWDE+lFk+5XRef64kSzDYlERTrNRBh7qEXrLK1FohygRJe61EQ8i6xEtMaJRJjZnkQgSfFEo7YPRQeAl0QNpbtEH6MRRaM+mEQgF41FhJXLRIzihUTyq8xERnOfRF1FK0aT4+VGa8bHROFsj0UdHpRFX95oRWLhjkRztRJGBUoqRafa10RnzwBFH1ZsRHKeh0SGCsdEZkGMRYE9bkQAm4JEA12/RCeAPkXuJ8ZFSsGbRA5zvEQlacdEKmuERGdOWEU2QHRE2jYPRR37lkTb7VFFC0X4RI0QtEcKKsRGidhJRzGdhkVUaBtGNRgORV68iUV9ysJElTGRRPlACkjeTs9GMxG+RQSi2EZ6TqtF3dRoRs4AmUT76yxF/649RflvSUV0GiVF/vdzRLGkY0XKMnBEsAyXRI6O60RQBBlFT6KXRHAFr0QYJ8lE356sROM/kUSXJq1EKtyfRA87q0U4lYpEAUmMRICMjUTnc+dEjtl/RqXcqUVpJy9HKGwrRdwjuUbHz4pFjWcsRZ4DH0XhcX5FhD4hRetVjUR3OpZE2kWMRGD73kQ55dlEzN4URbDbjkUyvllJWmosRWxUB0Vd64NEgwciRZFNoUXl055ErQBeSCAV4EQvss1ElnecRF0LsEYal+5EFug2RSHYeETjtyFFD0abRF7MfkSkxRVFcI+7RQRYkUV6B8FE6b2ZRGhja0QD4TxFj8qwRDa54ERaRn5Ffxp7RDWDCEXO2odEjfKhRXN3xEQl2/JFTxelRD0Ug0RgPHxE7GKPREXZvEeEKcBGQ+1QRkS/ckWqkItEfzEYRdyQ9kTnkOBEUMCKRKzQs0QeVK9E5xHGRdzDtkQG+sBEEL2uRGx+dURrCapEEdOGREhw2UTxGP5E8+shRdLkrESNkLtEnxVCRpUPN0WrdzNGPYfaRLQmg0RtPyRFfdtuRAc+mUSXWdRENyqSRAdHp0QwB6RG8w67RHbiREb5d/9EX4O4RQpRlkR0IcBFZGC/RV2NwEQm+p9EoOezRD2XfEQxrt5E+6p9RERq70e/8QNF8gndRpyLkkQJ2zNFGd7JRjWYhUVAp6REQzGRRIah5kTo5tVEZ9KqRPq1q0T0BEhFrROZRNqom0R3RYhE5xF2RIzufETIcoxEUDSERNgZgkXuVpNEkB5MRlyvskTbKqRESthsRVUSJEUtiadE5EKqRJm7mkQu2IdGTl/1RaUomERukCJFae+5REEAlkT+2p5E7Lx/RAvmC0XtvVpFj8VhRmM7qkSPHq5F9ILnRM8b70QOohNFy7DSRDSj6URKaWlFaCwFRVPa4EQwDrZE1Nd4RDYhjUjtCPhHEOe8RNZSikc0EHFF+QRkRqOtwUXJW7VE5rj8RB+AO0ZQbjdFPynIRDTpAUaxY8pE5DrYRB6ax0UJBJREaxBqRapr7ETR0hVFN+6tRp8NDUZnvh5FZQ/RRBhtsESy3LpFikLfRCjQtEScqwxFM5ItRdxwc0WidklFWJzaROTbHEaIV9pFM6cQRWAH50Rb+dVEJKSkRPXFYUQZpyBGHsHERb/0gEVGfflEqzdSRulcmUUmDTNFLj2wRu0QHUYAYNNElLl8RAmrCUU1/9VE02mpRBXDv0VjBV5FevnGR1c+KUd8499GRG8kRW+m80VpOgtGxPk0RZ+FD0X8R+FE9qupRAYE5kc3d2VHx+DpRtgsRUWe/gxGdL95RbIatkRCs45ErVCGRKjD1UT2Y6VE7GHLRe85IUX5QCZFmWJvRBphDkfcTpdGa9sSRt+DiEUstn9FekjaRIsJrURJJ9RE5n0ORxLIkkZegidGnlyvROMYf0WS0AdF0GJNRvYmikXX1YpFO0zVRFflr0RP03NE5EkgRoiPkkVZTVxFSJvDRJYz2UQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - kyxLk3jAckB03RETDsFyQHjH3idvwXJAzuk448jBckB+F0m5T8JyQMOz02GnwnJA/jaT+eLCckAppvLTO8NyQCgHw+LExHJAOq1bPFrFckCHmrJ8Q9JyQBY6sUOx0nJABdPaf0nTckAuawPxctNyQBJ8yQ/O33JA2+uhnbngckCbfiZB5OByQK0d8VpO4XJAZkKdGVDickBWJX1LkOJyQJwk+bMn43JA9H7nB0rjckADVzi/yfFyQKITpVMU83JAO7LsFLbzckBlLrP1ofRyQJgYvDTC/3JAlj1IvEMAc0AiiAZI+QBzQISXGaZKAXNAN61EqY0Bc0AU8SvYzgJzQLkOgov6A3NALD7DawoSc0B37YaChBJzQHzTIP27EnNA/HEPuPcTc0AE1K08eh9zQCZkjS6jIHNADGKIKDkhc0Bwcp4fZCFzQJZjE3blIXNAAEd/ynsic0BnJ4XJkiJzQONujeXIInNAZtOIUg8jc0BDFuGvBSRzQC9z1LE5JHNA4OhU4c4kc0A24TchRzFzQNmwP544MnNAhCisi88yc0DifFBWozNzQPMTg/64P3NAxfeuP+RAc0CCihRHeEFzQNJWMltRQ3NAWmJ6u3lEc0BL8p7XjU9zQH6yTyubUXNAFf/yzD9Tc0Aq2nu3o1NzQErkR792VHNACFi3fIVUc0B3JvKWG2JzQBLSfIc7Y3NAgrlHMs1jc0CWRfJP/HFzQBqFDUCRcnNAO6AG2LZyc0DKt+bnt3RzQBxs94hNdXNAhmp2rniAc0AOgBVYpIBzQNIqM40NgXNAQA7OzwmCc0C6mpN0XIJzQMrV5xWlgnNA/vvLVQ+Ec0B36/fshpBzQEm/NA35kXNApYqZ+0ySc0BzPnfK+pJzQDrFKFPOk3NAX7mqaGGUc0C+cdxx95RzQBIy+6m4oHNAPCEpE+agc0DgF141TaFzQIbusUpbonNApGKjlZGic0DqxTVx5qJzQIBlClQFpXNAoUmvYH6xc0C/KSYhW7JzQGyjc5/0snNA1rB0ehCzc0AEtZmrtrNzQGhoIFsNtHNAkBettPjAc0DQT3pLOsJzQORfPAHQwnNAefZsXybDc0Cu+JUnwsNzQJESF4bX0XNAdQ5HGbzSc0A0xAU+NNNzQFRkIgdS03NA6DZQSfbTc0BoJPWf4tRzQOaAHiE44XNAax2f61Lhc0CYOMCiY+FzQOshr/wO43NAou/abEXxc0AuwghrL/JzQHTnXsI39HNAP6EarE8AdECoyROXeAF0QHoa0oWmAXRA6o+2twgRdEASr+4GiRF0QE5ssR4bEnRAQkOEiksTdECbZKfzRyB0QDKBfmKNIHRAPC+6bSUhdED83FXmuCF0QHk5/9JSMHRAJGTjlrkydEAu4AhuaU90QHR/04M+UnRAoze67PVUdECs2uXUjFV0QA7agLm4YHRAHAXR3QdidEC8WjNBTWR0QPQsbm4icHRAhSgSQ0FxdEBkS/l3yXF0QIrirXo4c3RARMEgCaF0dEAmMeusN3V0QNJThUUtgHRAlcDyffiAdECeZOaJDoF0QGAXyA5OgXRABg75SLKBdECj5f1HFpB0QNDdvrnQoHRAOdq5+DihdEBsYTDpfKJ0QCggMVG4onRAkDw/GNGidEB2SEduDqN0QNRDbDwLsHRAMhGpdMSwdEC2F/D8+7J0QBBRMmb3s3RAzH+JfiG1dEAol5g05MB0QLfvFSH7wHRAhdzEYHjBdEBhc0CP/M50QLBc03ng03RAKIXFuXfUdEBSafZazdR0QByfMiX733RAqpk4YrfgdEARbW5suOF0QIsJd/pO5XRAXgwiXMDwdEDRSIepjPN0QP9VQl159HRAqGSV7aQAdUDBMqVzzgB1QHqGh1JiAXVAuktS6lwCdUAQshnwmgN1QFkqxv9qEnVARfRHDyMUdUB+7juAdCF1QKyQ7kFRInVANrDfBp4idUDX4eODejJ1QKU2S2DMNXVAMw1EsSZDdUC+Xjkg6U91QBH4K4gAUHVAy7QzbIBRdUB8MTP/TVR1QJHcajB2VXVAP0HqYA1gdUBSQfjooWB1QB8t5BU4YXVAjFS/gvNhdUCnULjs0WJ1QGpxq3ZiZXVAyBb5VndydUDlXQGYjXR1QB3v9kB3gXVAitm58a2BdUAGQMPdpoN1QFyBAduchHVAcwcL5nCSdUA98Qv+YJV1QHiilck9mHVAkAf/RJaddUBUw2xYk6B1QASfVTe4oXVANlmndLqkdUB8xCOH5rJ1QDgKloZjwXVAkLvdA/nBdUA+XHYwN811QKCTP9WR0nVA6NOafszTdUAgk2gcDuF1QFz5yFwI4nVAtN4O+ubidUAiFYyNSAJ2QBpUjUPSA3ZAePQjFU0UdkAl6Y2SCxZ2QM538CCMInZAbgDgHpAkdkAWo+6QHzF2QBtgyGTfMXZA4KoUQr4ydkApNq8IHUF2QJn7gQF6RHZAHn5jTf5OdkAC4VRvElF2QJgGD3DNVHZAglAXEY1gdkBmnclbzGJ2QET5BqnbZHZAPseHsSdodkBoRQf0aIJ2QFIWnqfWgnZAUHnVtZGDdkBM0EG8epJ2QO0tqdWek3ZAEJzEdruTdkCZZe7JtrB2QBzGE8DAsnZAKk/OYg20dkD25lo9wsB2QH0eyRTQznZALKABCPPhdkCqWHqFkfN2QM/crZc0AndAr7EYzFANd0CSDcxbARJ3QLeDGEqqEndAO2qBa/EXd0DIWC1UBhh3QBDpVXhMHXdAUu915WEdd0DmSqTKDSJ3QAid1bNyIndAUCL/e6Qzd0AEJj4QDTV3QKGOHR6dQXdAWioyNhtFd0BDILZDSlF3QMEFrOmSUXdA6B2X9yhVd0CpisK/kGF3QARcEaGfYXdAdKhBozxjd0DAIsofaGN3QE4+sIMmb3dAjYLzydxwd0BEhXkshXF3QEoACd5Hc3dALuS/Bo51d0AfgUguI393QO8IEE5LgXdAzLh+7HeCd0AS9oybfIN3QHrQHA8IkndAFtn1syWSd0D7OLoHTpR3QHjR1VcKs3dAWBNQOZq0d0BED+ap49B3QJKkmNmM1ndA2t2Dnurgd0AkMB47YO13QCrcxyhR8ndAGsCL17nyd0Ba4ZLCbiJ4QHLwG9+KI3hAmHLIQLxAeEDK1NE6DUJ4QCb/DoJ6RXhASFMi68pReEDYQ7WulFJ4QD7xpGDyU3hAmNZhmoZVeEAIjHGe7ld4QAiio78zXXhAsz5uPktdeEDoV+/T+GB4QISOtGy2YXhA6OI3I49ieECYuqpDqGJ4QG7PtgPTanhAYgGqAqVreEDIHaIWxHF4QEQog0S6c3hAzyUnq4t0eEBe5hOmwHR4QLQFPaCkgXhA919sNZ6CeEBIkEq7mYR4QGw0qUiXkXhAcKlfRpSSeEBIDoEDp5R4QHB0EvTqm3hAsc6It+efeEBw+Jye8rJ4QAKkzCHNwHhAWGocGbfUeEDx+m6/wfN4QAqXHIAC9HhAEysY64z1eEAM2xFlxP54QFwyMHKaBXlAxroPmRRCeUCELqajy1R5QKFq4UHqYHlAoldhA9pkeUBkWsYo9oF5QLReay3AsnlAtwVjVNDCeUAeVO/XQdR5QJR80uXP1XlAgnZhEL3ieUCe8Q21TuR5QFXNSbxU8HlA5uK8Y6j0eUBg4txo/AV6QPBX1Y0MNXpA+ZSa9hlFekCk62a0LlB6QFcKIuWAUnpADurByClVekB6Urt1G3B6QHiPaq6NcnpAiL/PYmJ4ekDMTLNEoJR6QDwmJDrvo3pATmnw+TOsekD6+qbb6q16QA5u79MMtnpAs/iqoS3DekAoEWtdGsZ6QCA9pd9CznpA8PcwKtXTekD6PnW6Nu56QOiincsqDntAlzjgyUwVe0A8ka0aWiV7QKQvyNAdLntArjT9QFQwe0DhzgYAKzJ7QPxvYwJjQHtAzsUv70FQe0BJ4w5HXlJ7QMm4VA5ngntAhAmyNSKVe0DUan2ifMZ7QDa3ji/A0XtAWJLmkv3je0As4keCKOx7QLS7o52X8XtAYtNmbUzye0CE9odojPV7QAR8lSeSAXxA3iaRktkBfEBBn9y+9AF8QJCzESyaBXxALs/gQ4kRfEBSaMxI0hF8QDgCkwjMIXxACjneyMxBfEB4evQR21F8QOq02t8LYnxAuWdDTOpsfECsWD67wrJ8QM4oD0ma0nxAjUjo+8vVfEDKJ8LmV+J8QF5MigQX8nxAUeWO81PyfEBO56Efc/J8QPwUy2wAAn1A+5+oVUsCfUCI6yk7QRJ9QKJ3LqRAIn1AdPJOdElWfUAzeLNc9Vh9QCAc46FSXn1AQdeLPmKzfUAcjBq0KcN9QLKoqHlt4H1Ac242sI/1fUDsAbOe+fd9QDGhOYD2An5AaB9e+z0vfkDK5lWljlV+QKVI6hkobn5AKzgfZuOQfkBYcDP3dsN+QCibStHY735ALADk8tb/fkCe20RrHQB/QEANFT63cX9AlOjpRLKBf0CO2BOvpoN/QDozPtpikX9AqGuUkbCRf0BBQD7oXKF/QKcGIOBVsX9AOI0We/EJgEAE0uD2USKAQI7AShlVJoBAwO3d4lUqgEBxy6tXJS6AQPi0ee7lL4BAvE5GU+o3gEAPyTZs+TiAQOx2PRO5OoBAu+AHLvRIgEDaOpYn51CAQJDyE4kTUYBASJkuGw5ZgEBkQ6jOHVmAQL74AXpfXIBAwhAnOwxhgEAozOC3KG+AQECr8y4HcYBAy5ewdodxgEDGzsyYinWAQDRDMP8ej4BA+uWmCWyRgEAKzlEuGZSAQADt/raGqYBAgKKBXlLBgED6zry3EMaAQHCOqFoAyIBA3shoIFPJgECE1HMKTNGAQPQazswB0oBATNXJfknZgEDK8qU1ReGAQEeNuAv16IBAZNpx20DpgEDNv50uSu+AQNhwZEc984BA5Ogb7T//gEAWUkFZPgeBQKh6OMQ7D4FAq57+2/UZgUCUUderNB+BQBOFIPMzJ4FA9Lp7zvAsgUACcxAn2y6BQIZDekHxLoFA28utpXsxgUAkeDQjvjGBQCIWgsYnNIFAfoyp+NQ2gUAvQrzmfTeBQEfaK/V5OYFAeWw8mZ45gUACikA59EWBQHzqJhD3SYFALm3jNulNgUAy9Nnz+02BQKQ1LOfndoFAeEyTMWF/gUDstLq6VY+BQPjH2UdWl4FA+DsoAEOcgUCBjPP6mKGBQJ7EI0rBoYFA9Om7n+ehgUDKa+ahbaiBQNBlX+JJr4FAsDVs12qwgUDH3Rb3SreBQEPfA44qzIFAd9N7ANfOgUAoz0Z7ftGBQDJxFkV+04FA1SJCsCjUgUCbRvfGhfGBQBNEGwoy9IFAjTHVkNf2gUAmyPClhvmBQJIXkEUBCYJA9vI1ktgYgkBe9qGf1iCCQIjFcWnQKIJABVDJK6IpgkAuAg1ipS2CQD6VLhGiMIJACBVgucwwgkCUecJ1mTGCQOLXCOmsMYJAnhjBTp01gkCCJNjw5jmCQNwyAtfpPYJAozsqRb9NgkAQWKFj6W6CQOp8Q1qZcYJAkHz5KEOJgkBl2vbEQ5GCQMALZF08mYJA1BBY4FSZgkAOruKSDqGCQMnrPw47oYJAys6KGwupgkDK3E+uMqmCQAQI9SEHsYJA846S2DGxgkAW5ODKptWCQP4HDWR5EYNAEHAEP3kZg0A0Q8skciGDQFZmuulwKYNAokjitgoqg0BETfD8aTGDQGrTNpLMGYRApL/K/tAdhEDuJN1XzyGEQG9t4Yv/aIRAxCsPCABxhEBLnDeX+HiEQGru+ZfCeYRA5lNPEc2AhED/IFhQatmEQKlCPV9q4YRAJoOhCGLphEBiyf0sNvGEQK6H9URg8YRAg+n09TT5hEB4zOnEXPmEQG+8lEWgYYVAw1nxX6BphUBAonlJmXGFQH6XnjOZeYVAME+MIbtIhkDuj8uHJrmGQMNI3+SQKYdA+P3U+5Axh0C+b1kMiTmHQGrE6UdcQYdAszk2g4hBh0B6MsOoxrGHQLS2uFDGuYdAEN782L/Bh0BkJlozvsmHQHAbBixD0odAbgYSuP/dh0AiXa3g89GIQA== + NrgMGZxjZUAoFld2zuNlQBu6YmAmw3FAFOkHjz8DckAxOsR5l5N1QA== - + - ZiejRK3enkR0GlpFHTZwRPkKBkWvSRlG0jLMRM9Og0hE6Q5FHjvTRPVYBke/7HNEoL0BR7mTkUTVIvpED0TyRJTuYkROsZZEkZCeReybHEUTJm5Eak+dRBBON0U3NX9EZx0KRV3+A0VJsqFEAiY0RVQbSkXLQIFECyfzRFp7iERkWwxHwqv0RPmzv0VBrPtFbaa9RVHQMUUXUzVFlogAR592r0RG3sdEyCRrRAVwjkTBqZREisOyRA/ObUTe65pEPoSQRb9YHkW/Z5dELE1zRPPq5kRJb69Es6zpRNkoskUw0GJENdQSRlFecET/+4NEX3LERKmvpkVxv7BEQrvHRB31m0TxVblEeVZuRJVaeUW0B7tEcfFqRKk8IUXcJUlFjXUBR3fTH0Xr9D9F7TqVRHyA/0SPLJFEcItqRJlgeUVe665EYepRR8u82US/TnZEKv/XRJJCdkanLfZFgHaLROMPjETOyetFhfSJRATTv0Z+vW9FERKzRNRCfEQHMTVFZipfRMQno0UaTnxFBULiRB1anUQ2arFFALcgRgqMsUS7Xg1FP36DREdMq0RKd5lEiNPRRJmwnUUp1hNG35ibRBryokR5Ha9EIrChROw1tkSqM05FhlZ4RIZtgEaCebpECnrQRDnLx0TDq7lEjzBzRTNTmERJzG5EHEplRN3lH0V5PZBEcOPZRDrfeERvNZFEBvqRRGsEFUU7atxFTAGcRe4lsERVduFFDiRaR9fkeUTJLUJF8h6eRHnhFkUM7lhEi15oRSIgjUQi5ONFQpmgRKO75EXvCRFFvFz2RIpGjkQMaIhEfVbgRHP5DEVsRvBELiqbRB8alEQw5oVE4geTRDnwiET7XWNEnUgGRQUkEUVlDNhE4hfNRAH1HkXb6W5EelBXRKhLCEUB25REiOWgRD6TAEb7NrFEynckRYXbhESv1/pEKwSZRXiMokT1bWZETaDrRN42hkQi+IZElZuWRC2Fk0SkcoNF3+6+RFLneEQTxp9Eg2vwRDysBUWUVCdFUzKMRGzTjkRW31NFr+nTRHfNOUUwt3tED9k4RQPgN0aiLuhEkKT/RWpgUkXCENxE0kC/RDwfiUS8IRdGRnUXRRUrr0ToAepECmJiROtmC0WQpJZEtNzgRLTP40T/Aq1ENiG+RFAttURe+3JFBV6bRHsAs0UV/uZER7DfRLgx9UR0h65EGHzbRSR/9kaqKW9EDi6PRCEZ4EXPmVtFv1rURJE7nUVpk0dGBiBlROXHN0VEg+dENCzuRGUCokTfOWNFvBOTRRRHUUTW9IpEznvaRJEosESgTxtFPNniRWj7hERiTJxFCci7RGoMwUST7M9E3/+XR7YboUZIiBBHYnaERelF6EWPrihFL2feRAAHLUX78BFFd0GjRMZtA0gnywZHQsXdRvVzrEUlGMtGVigpRX0kMEWrfyhF5g6JRT35EUXyzZFFiN6uRPAFpESTHmlEiCWgRN4Ff0QJz4REBMjeRH6aDEUc18tEoN6eRAzRnETG/45EJ/PPRGZCnERwO6RE+2/DRPeJi0RqhB5F4YCNROQGmEVAs5NEmEJnRMEnxUT5ujxGdfa3RZziJ0fP3INEKt4XRf+unkZTSztFgKyZRbmVMEVm2lNFkj8DRTHltUTVFq1EQJ1uRLXKlkSQqflEhDFUScBSIEXYcnJF1l3NRcobXkgkclBFlqeIRDQSsUa4SOxEuqwgRW5YgUQRClNFyZ2HRWf6E0Xqjc9FsSCtRXw6rkTTS65EerrdRHDXZ0Xxs45EKI53RL44fkRPvnNFNM15RJDrEkZto7lEgUWTRLB710RQa7pEGA2gRGPYi0QiML9HRne0RkghQ0aZ+TxFtN0ZRZ5e80SzY7lEIENpRK6+o0QXp51EPZtTRLge2ESmkPtF3wfCRAc+5USxeyVFmbSBRKSLrEWvMGVFFBxpRudCKkV6btpEmZlcRo/LAkVRdbVEWl0WRcrJ2EQ+LpJEwLBURQRkfkT6YvlEd18HRY9UbER3X89F5YZiRGKsoEbFuiZFGsCDRmMfBkU1fsNF358LRb9LwEURAIhEjoHwRTY910SUD91E96OMRCq69ESng5lEydCPRJYEzUcVTk5Fil7LRkkDfEXGawRFm+OfRlw510TY7qhEs4TRRNjyfkS1/JFEWF6uRIBuy0Tqmo1ETJqwRKPOm0RRIdxERKOARJ7MAEXhympE3leBRC8vhUQvCcBEXw2BREJ3rUROXrRFKrSnRGDBz0RnEIRGlzhqRJB4bEVKVnNFTDLtRCIGmEbhLgtG4WPrRG7pHUWwyJ9EImbAREidnEQaoqJEpZk0RTIDj0XOZ45Gb9SyRSmzNkVOxJpEdvCRRD6fEUVhW9NE6yxcRbBV10TvxEpFvdkTRaIRQ0Uv2AtFr2dPSP6qnES4VbBEszKyR78kRkcVLItErGkaRpTFrEXFBKlE8LN1RKRiIkXu9uBEdUgsRjLqN0V06SVFoGR1RNHEEEZUG+1EyiMERc9JbkXZZHRE7wWaRReRgEQvVElFtMhDRTV4lUR5BJxE7tntRCKG9Uaq7n1GCeaLRJOTKEUx6HlEQyeeRCyq0UV9vf9Eoew9RXrJjkSrUI9EdDGBRZnBREVcLYtFabHDRC3IokRW4yFGTCP8RQ94jUVhmIhEXZ/kROYuA0be6qpFsLpXRU4AjERH5a1EXV1qRtZllUWrlVdFXlk0R7sGnUb9UpJEVOiLRBM/Q0W4CX5FKfPGRIBPEEYrZcBFFl2XRF7abkTd1LBEQULnR/1eZ0dlrQRHpzUNRTFdr0U0gRxGH//RRJagEkUIS7pEFGKxRIxmoERdz6xHszQGR6ZTqEYapcRFwytwROAtHkVNsyhFRXTnRMMTeURXMupFGJ8xRRsBGUWcA75EjZheRMTSKEdYZ6BG+mo7RvtUmUUdxHFFgeXrRAdEykTINORGcvBARhT1+0X28CxFjzSPRF1XT0XFSFRGZxTrRSubg0VBPl5E9oEaRZglAEaaCHhFLUA5RcgwkUSpxIRE8bGIRINjkEQ= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + - - - - - - xHss4W7BckCGXJhsp8JyQMIIwp7uwnJAxytyYSPDckCJLt/2O8NyQFZiQCDExHJA4lewZVnFckBkCNGKQ9JyQLD0d6Wy0nJA5n2Jv0nTckClCh7DdNNyQIvzpC3N33JAfT43O7rgckB0EWN8UOJyQE+YWLKO4nJAokf6uUrjckAeJihyyfFyQIxTSw2283JAaEbZiw30ckAgDsGSoPRyQEDOjC3D/3JA+dvKYUMAc0Alhwij+QBzQJxIYj1NAXNAmzac3s8Cc0CyKdug+gNzQG8tNuMiBXNAO78AfgsSc0DQPACRhBJzQMAiBZ68EnNAYVMyzwUUc0AIi6HxTRRzQFly3Yl5H3NAMETjGaQgc0B6WRJNOSFzQESa13RkIXNAKjRJEMoic0DRtPhzECNzQFr1uxQFJHNA3LsBOzokc0CLUOFXzyRzQMo0ExFFMXNAVhgx2Dkyc0CqZ9pmCzNzQARTKwigM3NACDTKYDc0c0CUtg4n2zRzQDU48kVCQHNAgGlzQ+NAc0Df/TIbeUFzQLYf+B+6QnNAoLOHcnpEc0Bo+iQYmFFzQFqGhcqjU3NAQW4/j4VUc0C/OfG0iWBzQEC+mxc6Y3NAVi+Nzvtxc0By/mpKUXJzQBKbHAhmcnNAekaJPbV0c0BSKec4TXVzQNpt28d4gHNARlTC5KOAc0BIx8gGDIFzQIlJBJ5cgnNA9GlwMBCEc0BmN6r9h5BzQH46HzZNknNAeOKcas+Tc0A/FZMPYpRzQIjHvLf3lHNAdh7kUIuVc0CKSlyAuKBzQLv9GRDloHNAhVRKBU2hc0AMWjw4W6JzQBBciIzmonNAIx+VVQSlc0CP5nuXy7BzQCbx2HvYsHNAp7WdcYGxc0AwuRj08rJzQHkEywG2s3NA4B9JiQ20c0AyeQN2+MBzQKmOwBXQwnNA2o8FJCbDc0C5ZQ20xMNzQGyiGMbX0XNAjFo16/bTc0AvO0WQ4tRzQDfJ6sei4HNAtAdGijjhc0Cw5WnRZOFzQK6m35mL4XNAfndjrC7yc0AkHdRYt/JzQKi60Bo39HNA4AFhO3kBdEBeKTxcpQF0QCq/f3QbEnRAHDqkzkwTdECPmrb5uCF0QAxSAm5TMHRAiXnQyFZAdEAwdsukeUN0QJ4LeH74VHRAIwBv4ItVdEDMvAFhuGB0QLLZFPgIYnRAur6sAk9kdEC6vVq5InB0QHTXr6picHRAXbUXO0FxdEBAgUgeOnN0QHCaGY42dXRAAZyX7veAdEBWtnGBToF0QFwDuDGygXRATpby8xaQdEA6WHnMapB0QJpHbMLRoHRAJHJeOTmhdEB6HpvnuaJ0QESQ46DRonRATu3PLRGjdEBMxcUvYqV0QBRrDaAJsHRALn02wUiydECHx4THI7V0QDB5H+biwHRA8sS5o3jBdEDserOg6cF0QCZbIocPw3RAEG8LAyXEdEA0AMvxeMR0QMbkeyG3xHRArRDzEcjNdEAEGK0q/M50QJqwvgjh03RArKGJH3jUdEBh50E/ztR0QCDTYZW44XRAoqszwE7ldEDS/l0ejfN0QFtXxJOkAHVARFHwoGMBdUD0rH4wXgJ1QNJ4xLpqEnVAROvXoiQUdUBCn4EpnCJ1QIw4pG7MNXVAl/qnIShDdUBu547ZgFF1QAJtgWB3VXVA//5mGhFgdUA57R/JOGF1QAgK3N/RYnVAclQB5HdydUAWcNMajXR1QAg+RF94gXVAnuKdOK6BdUDEe58IpoN1QPXk9CSbhHVALgI4T7yRdUDKZ3imPZh1QIwxZKqXnXVAgM83gJagdUAKGrZsuKF1QIXrrjWVsHVAEAlgjeeydUA0A3ziNbN1QPCL/5B8s3VAOtzGOcW0dUBADKuEz8B1QCQPKGdkwXVAG0YsxPjBdUBQvR9bTsN1QDBpyKk1zXVANz29H8vTdUAR9QJHD+F1QBxsgU4I4nVA7v/2FObidUD0iBLmJ+91QPQTDxNIAnZAPO8QatADdkDWzyTb5QR2QFAhFtZMFHZAXtpYKwwWdkCMoHDPiSJ2QMbn9NuPJHZA6p+WnR8xdkCkbdCn3zF2QE4A0YKeNHZA/KQOkuFAdkDQlknkHUF2QLzj+tV5RHZA49hPJhBRdkAecs/1h1R2QGsKR2XNVHZA3s6pIsxidkAeQg0W22R2QF5PibhngnZAKONlN9SCdkBffd7pkYN2QL5xkZTeinZAQEVLxwyhdkBw16i8t7B2QLh5sW3AsnZAtg9cUQ20dkDec9VovsB2QNCF8TrQwnZA2to8RzHFdkCYNXhqzs52QKeYVSP14XZASX5l3JDzdkDI96q7MwJ3QLBnZa1QDXdArulwpwESd0BGXl5MqhJ3QK4WikDxF3dA1Cg2KQYYd0AWoSjzTB13QOypB4oPIndAx7F/QXMid0AkhqEAuiR3QNqeWRkNNXdAcP0HT51Bd0BWSu1BtEJ3QNOnb7OXQ3dA4DlnGRtFd0Di/MajSlF3QEiMMHWSUXdAsNHy+CpVd0AsQEwlkGF3QC8hj4k8Y3dAQheAaWhjd0DEHK9IJ293QPqlYRnccHdAQpwKnYZxd0BoWvR9eYJ3QDB5zAkKkndArxzW3E2Ud0DvvqkOCK53QOnhQmnl0HdA/luY5I7Wd0DeGz8pTvJ3QF45x9tMFXhA7Ghjnm0ieEBe1SdsiCN4QLZj2J2lJHhA+CedyAxCeEBcSNdFekV4QGlUoI3LUXhAchQcFZVSeEDkmtbGiFV4QBI7d9juV3hAprI1JDNdeED88fzlSl14QDAmpEH5YHhAQhV8ILdheEDVG0LJkmJ4QLR5xg+yYnhAzOZJ8tNqeEAAflhkw3F4QBDaApe/c3hAwsxElBl0eECiJPWei3R4QAUgpk2kgXhAyrslzZ6CeEBDCwKMmYR4QGCYjzKVkXhAckCRAaeUeEBW/ADjU6B4QJRZspS1pHhAjAh+cc7AeEC9ouWYt9R4QEbOtSLD83hADpQjRQL0eEBgFGMrjPV4QJl4RTeaBXlAmq5U8bczeUDcC29+E0J5QHBKO+L4QnlARlmy2MxUeUDi1Ymm2mR5QF/AZEOucnlAwN3s/ENzeUCApoviOo95QIUfl2XAsnlA30qlRkPUeUCN+5vFy9V5QMVor9O+4nlA0PF8KVHkeUCbVmx3+AV6QHxDpDDgJnpA/oppQww1ekB+2q+ZGkV6QNzNRhIuUHpAXEgD8ShVekCMOm6MOWV6QIlux0SOcnpA8hYlCe6tekB6DYPaSLN6QGz/7VQNtnpAygiQKizDekAi5pYeG8Z6QFYveaLZ03pAzgHZXjbuekCWmNeUeQN7QC5Yp7QpDntA/Z+j7EwVe0AOLAWbWSV7QCoDg/9TMHtAe0oDnCkye0CAAKXIwDN7QOp/IihEUHtAdYkbDFxSe0Bs5sNVI5V7QMHnixp5xntA/LDnQf/je0DA4gV6jPV7QHKIFcGSAXxAPBmRG9oBfEBupKU8+QF8QFYPdo+ZBXxAyqo7JogRfECZtQ3O0RF8QLmMIvzNQXxAmvcW1gxifECgs5J9K3F8QIBnF8D4pHxAphsHRb6yfEAegwj5mNJ8QPR7tpHL1XxA6GpyllfifEAjF0R+FvJ8QJm/rV1V8nxAn4EMMQECfUBjqVVeSwJ9QAZGAhpGEn1AP1w8Sz4ifUClsyjffSJ9QAifEGpPVn1A8KuiTJpbfUAiM/uS+mB9QPYOl3Vks31AEOPAlSvDfUCAf1Vg2eJ9QAyXAyGQ9X1AQ7z6A0/9fUAC2y9khQJ+QDJPrkH0An5A8J7LejkffkAWrjP7QC9+QDZrUS6MVX5Amh0q79VvfkCWCio9mHF+QBSU4/51in5ABZCteX6ifkBbucJgVPR+QHhAwkG2cX9AHarlkLGBf0CgMBXhpIN/QDCrUf9ikX9AUtWT+aaRf0BIYJEGlJN/QNKaEnReoX9AuPFshlWxf0AMZVD/l91/QPS0/DHW4n9AULFGNVIigEBSvInUVSaAQMs23d/tKYBAnOR7llgqgEBe/9fsJS6AQL5jeQ4qMoBAInhGo6E6gEDuZ/V6KzyAQLppGIb1SIBAMDYpqOdQgEBaT2Q4FFGAQN5GRenmWIBA1zqpDQ5ZgEAbrBIFDl+AQP0gUKoLYYBAPi6H1yhvgECYf7zDBHGAQChw1l+HcYBAJFB4yoh1gEBmLRKwKH+AQOJPkeYdj4BANSQvum2RgEAkq39AG5SAQE4/3bQdl4BAWrzqpdSZgED2o7QzhqmAQP23ZXJSwYBAXG03l1PJgECEAtNDLNGAQLVNR8xM0YBA0bBirRrYgEAlq2LxSdmAQKTiZK1E4YBAbv8vhUrvgEAera3SPfOAQJnPUVA//4BA8nI1mD8HgUBZo4PPOw+BQBKHB0HhGoFAshhFiTQfgUDPLfXTNieBQCic/yryLYFAhultatwugUCKVzz6ejGBQCMMlj+9MYFA3ku2Dyc0gUCaOlIy0TSBQGAH+AbWNoFAaBUzEZ05gUD/szqy7TmBQAYMi3crP4FAEqbX6/NFgUAnMi1d90mBQJG/1EfrTYFAKkl/Yv9NgUCLpAfG53aBQJnTtcWReYFAiCkfYEJ8gUA8tjM4YX+BQIKbV2JVj4FA4g/JrlWXgUB+9+pzmqGBQKJRdwznoYFAzzMZpW2ogUDvgcfMSq+BQF5YLghtsIFAbvTd2CnMgUA0S3n91s6BQJj5flZ/0YFACbYmzX7TgUCOzUSUKtSBQJqU8RbY1oFA9YPK34XxgUBQuy+tM/SBQKYjpgbd9oFApraXzQEJgkAossZV2BiCQAf51F7XIIJAIpZ3n9EogkD+FWo0oimCQNE7/bGlLYJAzCoJ1qQwgkA+Y7LymTGCQAAZNtWrMYJAauhrFJ81gkCu9DNOoTmCQJhKkMvnOYJAoi5PWug9gkDdlYbk4UGCQCBw40/CTYJAngSmPUOJgkBQivWrQ5GCQLl31DkXmYJAvQRy+zuZgkDkCHN1DqGCQETvSlI7oYJAhVdL4AupgkDOm08MNamCQBy9TWEHsYJAynbprKfVgkDu776gr/mCQK7H0Kx5EYNAfNbS63kZg0AHR7mGciGDQHW0nKKKIYNAJhnYVHEpg0ATuiwbajGDQM5o1B/jgYNAos3ChEmDg0Bss9BdlfiDQEp5MvTNGYRAoGKOJtEdhEBQo/FS/2iEQCEguaz+cIRANYaWZfh4hEB4w2CEv3mEQJxHy7zLgIRAACkqPGrZhEB9OdPaaeGEQEAz65Ri6YRAvhQc9zXxhEC6VokaYvGEQFVvrZo1+YRACgaDA1/5hEC15lmuLgGFQGBF6kmgYYVAvy6nLqBphUBAPN62mHGFQNjPf1i1c4VAKAdz9Jh5hUDoVGw+kYGFQBaD0KonuYZAqiQvRSDJhkDpwxrZkCmHQLYqMTGRMYdAUIBFC4o5h0DcooyzW0GHQARbMqKJQYdAMGx0qcexh0AIa+hwx7mHQJTkEUa/wYdA8I5fsr/Jh0Dy02VlQtKHQAq0RXm29IhA - - - - - - 82o4RR1f3UVqIYlEP6PdRNmLikh8cZJEniGnRNjZCkcMIYFEaMcNR9xEnkRELOlECdbNRAzol0WTuhxFCWSlRDCbj0Uvw41E/KSIRMly20TNiKREDIq3RMGMDkVUg8dENTGbROVSNUeLc2REjjbDRCjRjEX/6WBGzy+0RSe8tkQdvftERs8HRUPw7EYZ/4pEE7gJRcwin0RLG45EZnaIRFehsEUCTc9EUEKZRMd0vkT8l4FEbPXhRMk1hkQQK4xERC/6RCGdtEW0fG9EHsEgRsNFU0TC8oFFr2PuRIhGzUSizlVFyYoYRjjOnkTUlRFFXImCRFODCUU5XBBHhmX+RGrF+EQoX8VE0viwRNAHNkWxl11H5GGdRHriGUWJ42VGfErfRK/FHUZUQIZE4tmQRCJw+0V9MZpGBhAFRRNQbUT9jYBENh1hRE4eJUUJtoZFEk8nRRvAAkU0IqpFDmP1RQCvl0TnWlFFcLK3RO6trUW31YZEJsoLRvfsq0RTypREEs2URLqFeEQX+xNFNaWZRunPDEUoWK5Epr5MRSaQLEWbwatEGUiUROXefERGyaVEkqHMRMmN1UXC9TNFqCyvRA1IxkWBWFtEpO1kR9x5CEUXesVEIHFdRSHbDEad/JFEcfDDRR9Mk0TaIo9EI/SkRBdQvUSoPLFEoCkMRX/JhkRxLexEgtd2RCwHhER8CvhE7UDxRLYaxkQW48dEzEq6RGubiUQuwwFFWfB+RD/Y00QflX9EJSySRJmyHUUlG0xFeL+6RFmW/EXrqbxEsl8BRd/XfUW4NIFEme3zRNUZ0ESDqzZF5gaERNUQYET1Tb9E36bFROdcNUXBDDBF2k4jRQ2BC0Y60AVFoEzURSqNQ0V0s6REMtvHRMjDrkXgUIZF78KhRDh1zEQgPoREff4gRbuiiUQKKd1EgJ18RC2Vq0Trk3JEmfsSRTYGoEQ+LyhFHzbTRPs7t0QDtjpFlM2VRE7SkUQETcNF0eD6RNJEW0QeSMREJ2ntRCkUxEQNgx1G+P3URoh0e0RuPq9Eb01xRG1VkUVqR49FL0pdRW5pkEQzd0JGBGsjRcohAUUBa7FEFLvbRG/OrEXh21tE5eBuRBq6jkTPwihFHkyURdjskkQ+eGBENxmqRIg4O0VIvY9ESqcHRR6a2UT7g6ZHHBaZRuzuL0d6I4tFz370ReEXzUQvBoFFZNOvRC68bEROqvhHrZbERm3ch0S0XnZEYiXZRhRwnEV1iI1GCmrMRKmnRkVryaVF5KwPRTRclkUGPKxEH5GVRKmAsESEiLdEhkGQRIdmmUTEZYhEAnVgRBfW5kRKvIBEv3aJRZHIpkRdzJ9EgMbQRK1yV0ZZeJ1FrrAVR6JaYUXWnHZGxeRERe4ZZkU/+RNFqPhRRcdDLkVVmc1EpOGoRBYvfUQRmsNEORDeRC3hVEm7iINF4M1CReYiWkhE2QlFG7OoRvJrUkRHP5lE6fA3RYcLIUVJqhlFKZ+SRUEh8UUnqsRE3fOQRG+rm0QRdZdEIPqYRcZ4lUTIa4lE+Q3JRN3va0Sig4NFhhDeRT3X3URd3z9Fw7GoRDwv30Rq8JJEJoTYR4SH00ZOnPBFdSknRXFEqkTAAppEDaADRb/zikTGcOFFWKuoRMjztUQXWHZEgH/eROZPmkTnzA1Fl5khRqEEOUWRv21GiOSbREE7uURy3A1FUBqeRMc45kSg3cBESyDIRCFrtkYy1ZZEuclURpzUBkW4d7ZF/irYRCj4qEWGRvxFphrVRHSch0R564tELRi1REXlgESsIZRE6vD2R0k9BEXelOhGokgIRXXRwkblZoFFWBmYRIWiY0RqvoFEWAefRBOjk0SvaRdFWfGYRIVjgUQUCStFDOtYRNCpYERHRedEELWCREnHh0So8oZE3TsNRTlkRESo5pFELmCJRBGEZ0Q4cmRFjkOZRIU/j0Sl8kFGiPnkRAO2hES5rRZFjyobRRCkyETzCKhEOrx3RoLT20Xo3pJEfhTtRFWkxUQmmp5EudGiRMkzokT5daZER7p/RdkAjkZOkQdFED2HRV1MmUSyorFEXAUBRRdFt0QZQ2xFguOTRCBPYkTH2E1FB45iRVUYtkT6VrpEzNOTRN5/uUThoIVIuRUISJ4KyETozI5HTud5RIWqXUa6YcBFsEDPRJbAB0XhviBGRzJnRdU9v0QoFHZEJgfzRY8ay0TwOJJEoVrfRA2ppkVLqwVFNtVeRVianUS9qfBEOCSZRDuxSUToMItESXSmRn6BBkYY4elEPDrbRLbtHkUic5NEi5uHRLrxgkSwdrtF4ZrTRHIDT0QQwzJF/7MZRRvmVUUhYXFEuNdNRgxiHEZrtO9FHpPuRPmQO0W5i3JEugTnRX74d0VLbjZF+p+jRM1YTUYhaIlF8D1kRTp9YkezsdFGEHmoRCsUdUV2GqJFPf7WRJxtXkQ/psxFPu4QRVPAikTp8LxE8V/aRwIcRUe3fIdEcZDNRvvS/0VOe9xFBFjaRPPzU0Wj+vNErikWRXl5iESPKOVHbQZLR6w79kb2bzNFK8cURi72LEWARr1ErPC4RNSBckQh8MRF8wSCRZ/uy0UAKiJFf0q2RK5Im0Qt7mREkdYTR/vjgUaT8CZG3ByQRTbJhkU7ZgBFhxbvRP9840S+eBRHhsB8RikgNkZeAMpETE4RRXgMuUSDoeFEMtV/RP55K0a7xb1FbEVsRWPknEQCZeJEmXgMRt9NlUWpiD1FmtDERHw88EQ2BYlE - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - aJerSA3BckBDfSV+JMFyQCxWYQpvwXJA7rcY1rrBckAYPesCT8JyQO/21ZynwnJAnMuZ0TvDckCdzydnUsNyQMujgYVaxXJAuX1qg0PSckAYkNZasNJyQFSf2Z9J03JAzkqXDXXTckDkxQtYzNNyQEZlPs/O33JA3sZJxLbgckD19+DrTeFyQNygf6xR4nJAMjVWGY/ickBD9cCDJeNyQHd8655K43JAurlBNuPkckARAhcmy/FyQOSoAId88nJAMnBYjLfzckAL0b2rofRyQJ+0jOHC/3JA1Cm7+0QAc0BtJ4mV+QBzQB5yp4XQAnNAXNUGifoDc0AOZ0PvChJzQMY2XWqEEnNASAT+rLwSc0COPmh5URNzQLdSH2b3E3NA7GtoDQcUc0CoJ+5HTRRzQCgqBBl6H3NAQmXUYrcfc0B2tZTJDiBzQKbb+NmjIHNAvSN0Mzkhc0D1Oh1AZSFzQDwZKfnlIXNA+cxEmMoic0Bg4y8BECNzQDSTfH/PJHNAKN2JNUcxc0CXNnJHOTJzQHvJ+zQMM3NATx8F3dYzc0A81KDINjRzQPuMcy7ONHNAnDTcxeNAc0BsOMnZd0FzQNJYSd8jQnNATSsI33pEc0D0+HbcmlFzQDYzvYpAU3NA85O/nqNTc0AcFLAyhlRzQMR/gXiMYHNA17VK+iFhc0AKZ/CUOmNzQEJprwNKcXNAhuk3ePxxc0A5msCxUXJzQKQFlLeQcnNA2D6KL7h0c0C69qL0S3VzQIp9N+R4gHNARBihoqSAc0DbPywNDYFzQCrBvTcJgnNAFMhsu1yCc0BqSVYAD4RzQM7gFXCHkHNAODu+CdORc0DUtBEETZJzQP6UFQ3Pk3NAjq84y2GUc0AWbVKQ95RzQDRdVJS4oHNArsVV0+Sgc0AARhAgUaFzQH7skfZaonNAoqKMk+aic0B4ZdeXBKVzQJpnXt3WsHNA74q2IH6xc0ALjf3c9LJzQCgK3nW2s3NAXmYnVwy0c0CrXzji98BzQJ7UisLPwnNAEXlXYCbDc0CCeU1b19FzQFjdhhS70nNAQvPlojTTc0BK3EZu9tNzQL4dggDj1HNA3AIftjjhc0AbNfSTTuFzQH6OMhVk4XNAYPXi0ovhc0COZlufLvJzQHSv/dU39HNA5hfMXuMAdEDbylbFeAF0QMK8sIWlAXRAUnhNtIgRdEDCRiYDGhJ0QPKf9LJME3RAccyhH+MTdED4KozOdhR0QKtz/NRKIHRA6C/eUI0gdEAqMN2KtyF0QDlYqXtTMHRAxq8ZedUydEB7AQqPDEF0QCE97F56Q3RAuBvkC21PdED+pWWcYFR0QAOx3V73VHRAFhW7JYxVdEAfPHnit2B0QFEtgGBNYXRAd3XywghidECuT/LEuGN0QBSFmytOZHRAE1jH8CFwdEDBQ2tyY3B0QE9/AwJBcXRA7LEMCDpzdEAlLn8uoXR0QNqHESs3dXRAptZbFWmAdEBgSbIe+IB0QBOFy15OgXRAHzdlqI+CdEBjpA0XFpB0QFyzgy3QoHRA4rk1CrqidEDO0ewr0qJ0QEJ/HRoPo3RA8gMNgAuwdED+jd+hwbB0QBzwizzjwHRAh44eCXrBdEBmCLmv6cF0QBVNpUsQw3RAsAhrGLnEdEBMMlOU4NN0QGhTnL/N1HRA5NREDLjgdED3iaADueF0QNTktlZO5XRAzjsRwIzzdEBzCaBAevR0QMqIKfKjAHVApi1xb84AdUBO5/3uYQF1QB6fl8hdAnVAsjJekp0DdUDPImOVIxR1QKy9ZWK6GHVAZSHYE50idUATr3cJzTV1QBoR2Cy0QXVAxfZtYYJRdUALjtbndlV1QFzAaJsPYHVAtFSPhjdhdUAdk9oI0WJ1QJYL8VR3cnVA7RPngo10dUARUoPVd4F1QPPFnRGugXVALrTEGaaDdUA49/kpmoR1QPRLRHeLkHVAcu0iv76RdUDQ+JxPPZh1QGy+c+qXnXVAUBsm7rihdUAw/o5Fk7B1QFx9GHTmsnVAFHST4TSzdUDIVU5WfbN1QKJT1zvGtHVAEAS8WMzAdUBbVx9nZMF1QGzD21v4wXVAIXdoSjbTdUDWVPH/B+J1QP23buc65XVA8354rEgCdkDw+bn20AN2QO8uZHpVEnZAjBPgsQYTdkDVIc+DTRR2QHXzbngNFnZA5JrZdJAkdkCNQ5h2HzF2QPKWN+4dQXZAFu+kKnpEdkCaKx8Xy1B2QOiRRMERUXZAmthUqs1UdkDUsVmxIWF2QMqdMWHKYnZAqS9RZbljdkD0s27N2mR2QB1Nx1MnaHZAOGddJRVzdkCq0tBh1YJ2QMwSEaSRg3ZAu1UkfLuTdkCHgUw/O6J2QF8PQ+i3sHZAJ/vehMGydkBwyO16DbR2QAElacNOwXZAd4hPnBrEdkDpMqx1z852QBSO9xzz4XZAEuvwjpHzdkBkVwZ4MwJ3QEJ97bxQDXdA9oFVugESd0AJV3QHqhJ3QH+iZxzxF3dAZO7CBQYYd0Ce9n5aTR13QJBPKOQOIndA4m0H8ww1d0ByD/sNnUF3QI4IHriTQ3dAXK68JhtFd0DwuCWASlF3QBsiud+SUXdAAI0uWu1Sd0DwuabmKVV3QKsxBqlHYXdAGWTZyY5hd0CqziacoWF3QLQJ1rc7Y3dA6hGpT2djd0AEe87AJ293QIQ7thM/cXdAnZ4TJYNxd0C4wdFyTHN3QLAyIZOPdXdAPunSJ1CBd0AIu9Ted4J3QEk6+NN5g3dAorTI80yUd0BCMqEgt6J3QF4uicUHrndAZnZ4xl+zd0BYHKmG6+B3QGLsNHrR43dA2od2fE/yd0BnfoPltvJ3QG6AH/luInhA/sJyI4ojeEA0aI31pSR4QGiomJ17MnhASRO9zQtCeEAyELQSE0R4QNh5Dkd6RXhAWk2UospReEC+9BbllFJ4QHwC9pGHVXhAwnF9re5XeEColTFtM114QFTy9XFLXXhAZU+c1vlgeEAe/Pmzt2F4QOA/R4MiYnhA3iFkXJRieECAKpgntmJ4QLpXiYnTanhA1Hwo7aRreEAAMVP4uXN4QBq2W3MhdHhAnO8kpFx0eEAYRGGBi3R4QN8zqoSwdHhApL79F8R0eED2+1Y+/nR4QByBvzikgXhADSxc1p+CeEB97HvimYR4QOq8cXFSj3hA++EIgZaReEDytooCqJR4QOyxJYfum3hAYHFguOefeECa5XG9qKR4QKxOUCzLwHhALHkBNrjUeEAGU4GBAfR4QN9BEV2M9XhAsMeh3JkFeUCF+BJojUJ5QIMperT5QnlAuEeQsMxUeUAGZBB122R5QLpmM0GvcnlANKP0WTiieUAKjAxuv7J5QDhenxvTu3lAySP1mc/CeUDsYTapQtR5QGBBWwTO1XlASWqxor7ieUBChF2BT+R5QO1mqWP6BXpAqu2PVgw1ekCOonGjGkV6QAwuRvstUHpAqE6UPClVekDYYPlkOmV6QGAHiSJgonpAtGGboO2tekBKLA4WRrN6QBbQopAMtnpAdGgD+hvGekDftVQ+Qs56QMAK/ujU03pAUQ1m/XfkekAOYlC8Nu56QDzlsw8sDntAH3XzyUwVe0C4uqJhWiV7QCrKPQZUMHtAyH1OOiwye0Aid5EixTN7QBv5lhFkQHtANkIvNUNQe0BnHPuMI5V7QK+GPrJ7xntATkOREwDke0CofjwzjPV7QJzoMDOTAXxAkuGe0dkBfEAAyOGv9QF8QF5HRmiZBXxAog/WGosRfEBitdCX0RF8QCiwbd/NQXxAMhGQOddRfEBJdxdqN5N8QNoC2YK9snxALz37vpvSfECA293VV+J8QKcqak0V8nxA3C04V1TyfECyFBB3AQJ9QBYW1XhLAn1AODcsTwISfUDYyxFRQxJ9QKw/P4w+In1Ag8SCLKQxfUCZ2hHG9lh9QJhCLtVHXn1A9kLx/2SzfUB4uhqcLcN9QGAnYWc9xH1AqIOOkGvgfUCt/ByR2eJ9QERG78ZR8X1Aszumyo/1fUBX2b3AjVV+QOvLSM5yin5AtCzIgXyifkDCXbSU1+9+QIJG+TEjAH9AevxnZc0Cf0A+455cuHF/QKNT6B+ng39A5JuwHGORf0CN5hiCqZF/QGC2vLFdoX9AHMoUIVWxf0Ayxy4gUiKAQJRn7rtVJoBAJv5jV+0pgEAkHC70RyqAQC1LQm8mLoBA8HKRi+s3gEAUzPj61z6AQNPoYi72SIBAS7QD0edQgEAqG8xeE1GAQCIj4bvoWIBAtBdeuA5ZgEDck68NKG+AQFJBAuQEcYBAx/J2toZxgEA82sZBjHWAQECf5Woej4BANIQct22RgECVGK0MGZSAQIMcEGOGqYBArFiWbFLBgEDCc3bSEMaAQOa7o3FTyYBABnAXFi3RgEAaP+w+TNGAQFE3Hxlh0YBAmpJkf0rZgEA/5nzoROGAQN/QW5hK74BAMJIQuDzzgEC2AuuoP/+AQP9HYlpAB4FA4tS2114OgUAeBljpPA+BQLL1ZiE0H4FAmTDGQ68fgUCWZGM+NSeBQNJljLLhK4FA8vIsrtsugUDjWjJSezGBQLyher2+MYFA3G8mtSc0gUByvRGG1TaBQETSwyf0RYFAsAw79vdJgUCoCvUb/E2BQPRW0OTmdoFAsKK4IxyEgUBk/tuHVY+BQKKQH7tWl4FAVD5+IEOcgUBO6a2PUp+BQM4PM47AoYFAsH5Oi+ehgUC06+2fbaiBQBTYNpHtqYFA1I7HMEqvgUBuWLPBS7eBQAPi+5hquIFAkCQvTyrMgUDDSth91s6BQA5nMF2B0YFARKzQ63zTgUCozf1FMNSBQBfaI9mF8YFAIBir+TH0gUCCOsDK2vaBQOiFGbICCYJAhppFStgYgkBSZxkg1iCCQKDbnxPSKIJAPA0UX6IpgkBfQd4VpS2CQHJzhoHQMIJAaI3tGZoxgkC6uX+8rjGCQMZqxmywNYJAsLWkMOc5gkB02XMP6z2CQHBFqoHmPoJAiisoW+FBgkA7qHQPwE2CQGTA+/DEUYJAkv4FMUOJgkB+jWT+Q5GCQMCrl3MmlIJA2psxYDyZgkBe+c9+DqGCQPRii2w7oYJA+FInkA2pgkBELnJaM6mCQKyQ3wSo1YJAXZDpd6fZgkD+HNd6eRGDQLKR3M95GYNAZterC3Mhg0BliHKviiGDQB57wV1yKYNAql+3MWoxg0D+5QpJ44GDQIZlRSzNGYRADE5nZ9AdhECL1ONxxiGEQP7SVCb/aIRAK8zq8/1whEAJaIpq93iEQDVxLEJq2YRAHV19GWrhhEBv1inBYumEQC9TKJo18YRAVosb4GPxhEDup1/7NPmEQHrF5GJZ+YRA3x2uUS8BhUByhbU5oGGFQALAIb2faYVAnHly2phxhUDKgnUUtHOFQHLTfu6XeYVAFoBewJCBhUAWfGILJrmGQJ0JVyeRKYdAPKV98ZIxh0DeZzWxijmHQNgL0zZcQYdApKJkr4pBh0Bira6vx7GHQH4+NV3HuYdAyHMmoL/Bh0Dm2BpXRNKHQDR/bwS39IhA + KBZXds7jZUD1hHOUyKJnQNAWPk/8QXBAFOkHjz8DckBebopu1FJ2QNtDnMhXNHhATCyKy0KDfUCinjACcGV+QHx5mgMEa4FAJkWzj01KgkDtcFmfuVKFQBBaPj9bc4VAfnXaN/sKiEA9YOPkvJuIQMyIQdroY4pAfqTIYaeTi0D3ssPcNJyMQOLRkn4zrI5AOH34uS86kEDZAlJqVk6QQIJtyldbPpJA0b/Uoac2k0CYggtZgVqTQLXVp6ndupRAfJjeYLfelEDDrI1bzcKVQET+BZ8Jg5ZAp8JgYwNHl0AoFNmmPweYQG8oiKFV65hA8bIyAS9LmUBTPlupi2+aQDo1c81Pp5pAgUkiyGWLm0AFVcC30fubQGVf9c+bD51ATtcAhPJXnUAA7mWSOOSeQK9Px23HE59AJThTrywgoECXM1/BDmygQOXDzrlXAqFAvCtIkCRuoUBwTm+6apChQEe26JA3/KFAt2IetYB0okCOypeLTeCiQELtvrWTAqNAGVU4jGBuo0Bn5aeEqQSkQNngs5aLUKRAJ3Ejj9TmpED9IdT8m/6kQFatBgS/xKVATGkMXuropUB67iZqz3KmQD709WEFq6ZAYn5NXxAdp0DTeVlx8jinQIa/bcUgy6dAxQRDdQ37p0DpjppyGG2oQKu3VpQ2zahA2xmEdjMvqUCdQkCYUY+pQMHMl5VcAapAIi4zcUkTqkCzV4GZd8OqQBS5HHVk1apAPuIhmopRq0CQF94QjUmsQGPaCmmgU6xAh2RiZqvFrEA+LNYOq0mtQODvlG3Oi61AybZ2D77XrUDtQM4MyUmuQKB7EHj5ba5AeII3duETr0DEvDDeCRyvQLZHGuIk3q9ATj2QovsKsECTguAiBVKwQLrpSvYnYLBAP8h5pha1sECZ5RrcLtOwQOsNEyooGLFAEqsPXjw0sUBX8F/eRXuxQMvTUK89ibFAHZEUE1LgsUA= - + - m5yARKh2jETMpWVFcs5/RJk7rkTKKRZGuB+mSNvYAUWwus9EYpwNR6YFdUR/2DhHzl73RJyni0Rcwt5EiJ0BRca+oEQzroRFqn9ERWqfwESS0ABFlP+DRJwLUkXEi65EeT3iRB/yI0U+KSZFC+XqRA+FHkUbQLhEwf9FR1/5BEVG1MZFraJcRqSTpUSsbJpFIBebRVADmUQWrMtEHJ2lRNh+eET5EDtF+6D3RrcryET/g+lEWGyfRIzszUSbEMNFhCVnRTzRmET1vMNEOKynRKqDsESHV4pEAhgXRU+Gp0V8r8tEabReRuxmiUTwMq1Ec0GuRZ25AEXald1E11STRLu8CUUfYIVEqbatRgwD7URsEYtEJbyPRC+ZYUXoExlHTa9VRTAOHUXrUzZFzgcPRcHorUTvv4FFyei/RLLAY0cPx8JE/+zXRH6OkEahhCdGXy7FRGLQgkR4bdxFG06qRtT7NUUR7bVEwwuJRH2GKEU+gpxFMM41RZSk+URLYuBF8eIlRsftckVY6qZEuzLMRLe+AEV/kbZFBWIWRt6JYkR22I9E84vERHq7AUXSGzxFesOrRKHAnUbxIhRFfdwJRcQGKUUrinVFtlidRIdiu0TLkZREhIeJRF//SkUu1wJFLjmXRNaoh0Tr95hEK1mWRKXWkET+oehElSwnRXRmtkW6zndEqmuFRb3GsUSNoPxEb3MBRvGFn0R6yERHFmtiRYqgkkRxLgBFJtqJRPUZYEWMGxNGO1qJRFpXxEVz989EkkkKRVxCoURqU0dFhsrQRE5JnkR618NE0dOfRI8cuURAMLNE0zcqRQLlCUUuZdJE6B6PRN9LZEVXkLREhj3xRVBAsER5g5xES3OiRB1jBUXepI5FoWWrRNPvOEVW6cxEroAGRQRfJ0VFco9EByqxRITN6kR4TN1EHmFYRQn92ERVEUdFPFo0RosyIEVRx/lFDhybRfMDPEUpmMpEKJKbRPE2wkU5pgBF2sj/RPt9wUSKr+5EFw+oRB9lykSaj6BESUCNRMaI8UTM6gpFJ7WHRMYsV0Uhc5xENl+pRRwAU0UnDcZEvKJ8RNdf3UT0gPVEbdoNRoQ630a8wthFOglLRZ0HvERZV4JFRmtjRqJUt0S7TjZFaVB+ROAbUkWPZZxE+JBkRJdDCUUREKhFo3ieRGSol0SkJ+JE8lloRd3xskUiKqFEtua4RMaZfkWLaB5FmO0ARWSrLUXo+6FH/A2nRgglDkfAfYZFRm2nRRY/RkU/4ZBFfTYFSHNL80Za24pENNvfRsFmjUUAgbBGqLKURNtK+kSvebVEnbI2Rbv58US3V4RFPZMRRbs9s0Uv75dEnQyjRLqEtUSLvZZEYHd7RH/t8UTnmvREB7GcRF49iEREUgVFpzKhRIQfv0RZOXREtgDKRDkLskT/ampFSt/fRECNhkTbC5NEXYUYRSp1rkRJzGxGm6jTRaOyEkepBytFwy6iRkD2F0VJrIxFSHgtRVNTgkXEBZNEzdaWRJY4AEW4uuZEFJ6uRDaYBkXBt+BENjuaRcFWaEmwVsZF8NgdRaIj6ESCUWBFAeI/ReSSakiuNLJEC18GRcngz0YI0ptESe+fRJWWo0TeLf1ENDOyReb/qUX7fAhGJz/qRJo80USkoaJENDHkRS2JxUQM2p9EPLSVRGOgYkWX5JdEVCitRJt+/UW+rPBEzIYTRVO8+0SWs6xE+kTzR+4320a5Co1FrhpwRaDlf0QJvKlEozrbRNxs4URxqu9F+4IiRWoo1UQHXn1EituZROI2FkX2dPpEdW9bRil/ZEUKt+NG54btRPoRqkSdpAhFwSmuRVZyt0Vv8QhFy1utRCDPpUaWK6pEHDxuRvk7AkXAYOBFzEyeRPzjrUU/9wVGFz2sRCvlqUTZyOBEHgfeRAqQB0gSuRdFpyj7Rin3RUXeAMhGCIWbRB7tUUUV6OJENIHERKgemEQj5IZESJLoRDAm1ERK4YtEMmOMRIg4ukS5toBEef0ZRW8DFUXUNIhEyDsYRf//xUSFho5EiN2wRBXzlEUqKYBEjlVSRuSsnkRB06JF1PH6RKfXEUbdlWlF79WVRFmYA0ULUc9E3DGwRLJEgUSUTKREyNh0RbE+mUYjQbFEWOy4RdPjmUS72adE5ZkzRVw0v0QIMmlFIGplRenDDEUc/jRFb4mSSFaKj0QcywJIJA28RH9tk0dpHYdFms2PRsYK0kXpHsVErlymRMguRUY35VVFZ7SoRG6O70RzdQFGaa9wRFSIBEUxlKVEkDcgRbs+HkUtap9EJtsgRQ58lET/nqRGoDgNRpOgLUV/PRNFq6iERF8T3kWmmCRFrE/2RCa3gUSDeYJERONDRXsGUUV3oIpEneNPRXn2i0SvR4tEFx6KRn+oEEbyd4ZFV+y+RL0yEEXnSNJFjtCERWNO6ESr4AxFN09ZRjOpk0XxgjpFAd2eRzaxD0d04ghFIvbURThEl0U1QC5FvFfWRfHBT0VHVotE9A2mRE1BI0WjWhRFtwsQSMSBjkdzw8VENUkfRyA350W2CSVGtSwnRZFeVEWN/gBFuWuTRMEDB0i2CoBHqTQXR2WRKEUVWh5GgqtdRQvFs0S5MmlGUvv/ReWjFEXrzBFG9pUzRSf/E0W9QUJHvqquRkGZZkZDR6hF3giNRdhJFEWPM8tESMOYRBUpKkcMR4tGDRo8RpQUnUSjKGpFm8evRO2vBEX5pThGp+nBRQ+ghUX+b6JEbbYBRfUxG0Y8SKRFRmVXRZ+orUS7bXxE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - CrGy6G/BckAaarw/UsJyQKq6YOenwnJA4LokgOvCckDuoFUEHMNyQL9rFhE8w3JAviVF8cXEckBeIGM2WcVyQPgMOMtD0nJA7tcJRv7SckAuZ+T7SdNyQE08fch203JAoMMFI9HfckD5nYwjuOByQHLSuCtP4XJAiF2E7lDickDzy4jokOJyQLQwMmUk43JAhELPG0rjckBgR9fEyfFyQORRVKgS83JAeJ6Oq7bzckAqcyJuo/RyQIRlisnB/3JApgCvUUUAc0A6uEMCYQBzQIiN19D5AHNA18T9Ek0Bc0B0nRSBjgFzQDyRaUfNAnNA30Lg1/oDc0CpCsukChJzQMyZzWmFEnNAMO+i67wSc0D2kOqQVRNzQI9IhfgGFHNAhXIBHE8Uc0ARF67TeB9zQJVncy64H3NA/i7SGKQgc0D4qKtCOSFzQFhRtMbIInNAkpBbhDckc0Ctw9bKzyRzQOgzxpFHMXNAOju99yEyc0CKYT9KETNzQL5ekineNHNAWi6dibk/c0Bq6hcD5EBzQMnYWzV4QXNAznV40ydCc0CW8MRzekRzQE284KOfUXNA7AFayEJTc0Aie/nUpFNzQHQtTm+HVHNAKW+fADtjc0BLRLjWzGNzQHhVgC5KcXNAlJeox/xxc0Ag4ghMUnJzQB2N95FocnNA3Ik0Nbh0c0CEeJwhTHVzQCpzCAV5gHNAUn7uG6WAc0AuDhtFzIBzQHj6NccLgXNAmkI9JsOBc0BWarJqCYJzQCTYubtbgnNABBbInIiQc0Ds3phETZJzQELyXAFjlHNApFKctveUc0D5TlKuuKBzQAY2R7nioHNAGI46TE6hc0CFDkJnW6JzQFT6Ka/monNADiyYWwWlc0AsRJZExrBzQHiTLG7YsHNAsBpHa3+xc0A1ZMx887JzQKRPXTgQs3NA8Vm7S7ezc0AXQJidDLRzQHBohM34wHNAQki4NNDCc0C2Jra1JsNzQHv0o1XCw3NAhFLxktfRc0B0ESe9MtNzQHNzecz303NAiHbrCeLUc0A6BbGhOOFzQO72Dt5l4XNAmGE19Xnic0DPHRSQL/JzQIiygl039HNAGBmHLI30c0CQefKx5AB0QCgR9+J4AXRAzc08KKYBdECuUkQv5AN0QLmvwlmJEXRAs499GBsSdEAP7tT9TRN0QAjdp1F0FHRADJ1M80ogdEAIov6OuSF0QCzPMS27JHRABLP+K1IwdECU5YBXuDJ0QD4X8Y3VMnRAn1KsootPdEB8PaPEOlJ0QNbe3EL4VHRA9q9QiI1VdEDuRcpxuGB0QCSaLvUHYnRADOz8aE5kdEDefwtEInB0QLi7ulRBcXRAOqrXas1xdEBmpd4rOnN0QO6C4/SidHRA9HWg0jZ1dEDkY1oY+YB0QMid/OsQgXRA9ndsUk6BdEBwiM2lFpB0QAzN6LGioHRAXXdwldCgdEBEs6wbN6F0QIIdQmS6onRALddecNOidECgFPmwEKN0QALzOXQKsHRAI1DzcuHAdEDsZvf4eMF0QHqABCDtwXRAfkuHJA/DdEBkkS7nuMR0QATjEFvh03RAeXtbCnfUdEBqhnBRztR0QOC+i+s84XRASG9jOrnhdED8iTUwwfB0QARcUSWN83RAKtbRdaYAdUDck/M5zQB1QKtVBfliAXVAUAxV3l0CdUDLjkt1mwN1QIyuzhojFHVAZQyK6YsVdUCSbtbjvhh1QPxJU5uCInVAftsxeZ4idUC8VhaSyzV1QP1YkYbYRXVARqq7zw1QdUCqpplJglF1QKOVa7ZNVHVA2pg7XHdVdUDRl8XYDmB1QEzYc2E4YXVA1ja1zfNhdUD+JSXV0WJ1QJkdb7J2cnVA/m2DjI10dUAWMPsceYF1QMRaoiqugXVAyM446qaDdUB5lWJtm4R1QH5pXei/kXVAQPr7/j2YdUCQNvF4lZ11QMbz1vi5oXVA8J7nE+6idUDUVFDs5rJ1QGxekRh8s3VAaI7fxe+6dUBYI2Ioz8B1QCQY0gVkwXVAYH9vY/jBdUCDf8jUNs11QO30hTmQ0nVAaBj5LTbTdUAJaDUUzNN1QCyUnLDk33VA7+gjxgjidUD8Kw2fSQJ2QJB6zuvNA3ZAygVfPksUdkD8esKJDBZ2QHC8Z/84IXZAnoaTE4kidkDyGPUCkSR2QFQ6tqQfMXZAAoL9TJ40dkAyumv3HUF2QHaDl9N5RHZAdCdy7RJRdkCXmFmqzVR2QF2PvezMYnZAqleoUdxkdkATUMXkJmh2QERqqA2Sg3ZA4FWpGOCKdkDgWWo6epN2QGJFmlLCsnZAFhgKqA20dkAGoMfj/cJ2QJRffNobxHZAvhiOFM7OdkBaU67SC9N2QKCtT4yQ83ZA62fxTjMCd0AGEaHDUA13QE0E974BEndAfPN46qkSd0Au4LSZ8Bd3QC2Q920GGHdApuNXX1Add0AE4dj+Xx13QGLFrbcNIndAk7xswXMid0DVx4COsiJ3QAxNa8O6JHdASLsB8gw1d0DgVzElnUF3QDYbG/6vQXdA2+4hWplDd0BoHg8wG0V3QFJrha9LUXdAMPBas5JRd0BiXbT5KFV3QGiho3eQYXdAO0LLKjxjd0BpgcIeamN3QEjpL5gnb3dAtvLO7dVwd0AImPWUPXF3QF4uldCDcXdAdiAPInqCd0B0M+rTfYN3QEGnF74JkndA9OW65UuUd0DuLeskCK53QODAFnwJs3dAlwllSmKzd0DQ+4RditZ3QHcgjRDt4HdAwoJVk2Dtd0CQKZw9UPJ3QFQ7+AS48ndAueTXAW4ieEAWb0Z7fDJ4QIpTQBsMQnhA4HfFfgxDeEBN6Fa3eUV4QCtbypLKUXhAaD0s4ZRSeECJIhaBhlV4QJaDttLtV3hAQpZqskpdeEBEt3DH+WB4QLFjFwa3YXhAGjAfDLdieEAnUsGIpGt4QH/eavC6c3hA9MmEJF10eEDktUCJi3R4QEbpML2wdHhA6LQXGdt0eEACaYiwpoF4QGpUwSjOgXhAmP+F652CeEAwQvaxmYR4QP+22Zm+hHhAsLw3HlOPeEBKohqMl5F4QM8aF4enlHhAosdGsLakeEAyPNT+zMB4QHL8WQ4HxXhAbz+FUrfUeECg8vr3vvN4QDLVTaAC9HhAVgwxNI31eECQu3+tw/54QLaCaTebBXlAju2vABgzeUDOwseE+UJ5QNH2QpjMVHlAgPdsHdpkeUDO65S7r3J5QK5OrzBGc3lA6llStMCyeUBGe3+3QdR5QAhhtrbM1XlAB1a7WU/keUCY02C/+wV6QMWiQK02I3pAHPgkreQuekC7mNCPDDV6QMKPVIUaRXpAzGUxlS1QekDspyDcKVV6QDrfsh42YnpAfcJwrY5yekCcw2ufC516QLBfVsvvo3pAWDQhOkuzekD7uGZ4DbZ6QKDNxgctw3pAUJsMVRzGekBxY/tJ1NN6QF7UaST043pALnkFBDXuekCiYc3zdgN7QLckVXwrDntAvgjZ+EwVe0C6LmsCWyV7QFJ1GkxUMHtA9pXysMQze0B6BkR9Y0B7QKLYTVRCUHtAZHJLDt5Re0DC2mmaU2B7QAfpP6qBgntAPO4cuCOVe0A0EM3JecZ7QB4dwX+M9XtAUbA0KtoBfEBHKlpM9gF8QLTJGi2ZBXxAap0HZz4LfEDXsuO3ihF8QDalmsLREXxAqshiKs1BfEDGteD62VF8QC2IyOkNYnxAhvNAu7JvfEAYLX1PKnF8QDVRxp8Ec3xA7qIWMTuTfEBzaZPM+aR8QFMRBT6+snxAzpLrVJzSfEAslviazNV8QIyFv7NX4nxAoMEivxnyfEAg4LivVfJ8QOCxhPf/AX1AMqb4m0sCfUAe4M/KRRJ9QNMRNgIqHX1AqeufXz8ifUBOjI50oTF9QKJ7d6VmUX1AVvPa2PtYfUBmkoyoo1t9QAXfRJBks31Ad506A+CzfUAixWR6LcN9QAqYIwFDxH1AlIsXA2zgfUBwQT/0kPV9QOSTg2U5H35ANIMeao5VfkB6WCMrj7B+QAWY3ybP335Agi9V6tXvfkCG3s1Aw/p+QHDR6UTX/35AOmf0g8wCf0Cs6RQ2t3F/QNJZwnGxgX9A+LxesKSDf0C/qerYY5F/QJZYzKqrkX9ALD/voJWTf0BIgdRMYKF/QGjd1OVXsX9AvHOPoJLdf0ChKyUf2OJ/QMedSOzuCYBATsbMLFIigEBYFWonViaAQHxpJnFIKoBAnQ88YSgugEDonFBHSy6AQG5bejsoMoBAZPgtj1AygEBsXyU+6zeAQPovGAkqPIBAAKLNjdc+gEDsZV6870iAQIsaB0/mUIBAYrXTSxRRgEDF4n+a6ViAQH6YfgUPWYBADDMvhihvgEBq9mBvBHGAQKQrMZyHcYBAPsTwRYl1gEDqKnPCHY+AQHpY4SJtkYBAmGlDpBqUgED24hN505mAQHJVQHOGqYBAQOIVO4GxgECCMLR9UsGAQG6WLGOqx4BAxKg8ZwDIgEB6f3jAU8mAQC7rawIRyoBAeHZ+H6rMgEA2l3g+LdGAQIoCnopM0YBAmSz1xmDRgEBgetO7StmAQCr8milF4YBAGoK7qvjogECdvLVMS++AQCY/dq0884BA7kOUGED/gEAK8mz4PgeBQEI8/DNeDoFAfHmbCj0PgUCcL6rfNB+BQIZ/MBahH4FAl6jtPTUngUC25prL2y6BQHYwycd6MYFAQs+9Er0xgUC8fINOJzSBQPbt4FjQNoFAOn8POJ85gUDKW6PhkEGBQCW3PO/zRYFAiRcxAvhJgUCihvL9/U2BQNiJ6TJcWIFAI7Zmmed2gUCKbVh6VY+BQH6gPepWl4FAAb49xUKcgUAGtpXfUp+BQPQrP16boYFAbATPSOehgUC1wP/9baiBQKVb64VKr4FAEPMwdvGxgUCbMu4DS7eBQPR65R6AvoFAGFLKVyrMgUAMRr9N186BQNkk/xSD0YFASUy4Q37TgUByovxlL9SBQGrETXrT1oFAntTYkoXxgUBM4VupM/SBQJYnB/TZ9oFA7Cc63IX5gUAclBZeAgmCQDke9YXYGIJAB51cANYggkA8IR+L0SiCQOT7v3WiKYJAtWy7I6UtgkB4kbZzozCCQGS0OeWZMYJATuleY60xgkDgYp/nnzWCQFo/okCyNYJAJUFI1eY5gkAGmz3/6T2CQEq8l3PtQYJAQPJhyr9NgkCZOGKow1GCQNKFfFLuboJA2NiQXEOJgkBSB0+sQ5GCQPzx8Uo8mYJAL0y72niZgkBs9zr2DqGCQBbBiVo6oYJAT6GSTQ2pgkCci0aoNKmCQLxkTc4JsYJArzKBOKfVgkAcIfLMqtmCQCkuHoZ5EYNAhkbvO3oZg0B9RQ/OciGDQLAncCxyKYNARdZOWGsxg0BQMncIS4ODQE0TiIaU+INAF2/tTM0ZhECdI3HI0B2EQMacq/PFIYRA15YsV9YhhEDIZEkPxiWEQLTLLK/RKYRA5i+BOQBphEB35e56/nCEQCl1Zf73eIRA0BFeSmrZhEA1oWZBauGEQKlOE0Vi6YRAbMlw9zXxhEC4U1ivYvGEQDjtBuE0+YRACrWTAi8BhUCGtcNToGGFQES7luufaYVA+865P5lxhUB6ySKItHOFQBk1HJOYeYVAoyWmfJKBhUAEy7MGKK6FQKVEKsQmuYZAai+veJEph0Ak9Qg5kjGHQB9/Ya6JOYdAHLptnmBBh0AAeeN8iUGHQIRohwmMSYdAKcujkMexh0DlRhpBx7mHQBKyui7AwYdATd7oibzJh0A= + KBZXds7jZUCPTWWFSwNpQIkw7CrX8nJA - + - PMFKRW4yZkSsSdlF+rGGRG2bBUXDsrRIB0XKRCnZ2ESEnBNHdMmVRPE+PUfC4rdEDF8ERY7UrkRmx3xEyS9TRQQ00EQ9G5xETMDyRNfsh0V8LoREctqORLmo8ETo/r9EHLCnRCYzlkT5G7BEPCiwRLXxnURToq9E3ukaR3nwjkREJ/NF0yksRpiskUR1T7BFjw6ZRGp4r0Rv/WNE3CAdRdF000ZnRaNEZv9dRMxLuEUqx0BFQhxWRGnKekSGEXNEuKOMRNrCwkTfW29FQutlRHvOE0Z0d51E0MmqRPbFhUX85vdEq6QURYEGSkQ4eGZE15oSRynyC0Xzg4xEK2OxRIV8GEXBOwtHMcmPRE6lTUTVW51EDnJNRA1lmEUTfpJE92MwRahhREe+kwZFuwKVRvJXKkZN6qRERAyORCaEukWnD4lGgOcVRViOjkRJZaNEgnppRIkBqkTzspFE0CF4RSmLEkXcycpEFYKKRTtD90U2mZVEi0hARZbszURl4KVE0eW9RQ/gIEYl/5JEZmpbRHWBj0TtiQdFZTu4RJY6i0S3dJVGnNnERNtmiUQQ98xE66l9REKcOEU99ENEVhfLRCahFEW543lEU9jORJTdtUR+ZdhEKTeARHEggkSKsttEjaXFRBMNr0U7pzpFOx/ORD8psUUJeUtHYMVuRChCPEV049dEHVq2RH8DKEVZuz5EOafHRXWdwUUz1HlE/9+URPfQp0RIUcxE2m+PRGosEkXvTf1E90iiRNx1JEW2UoxEyGzFRLjghkTaSstEFgPORAlk7kQH3z9EN3cjRR8Uj0TpR69FFL+ORD6Jc0TNGvNEKr9/Rf6d0kQpFi5FW9BvRHS5gUT3121Ect/NRAz/KEVahYpESwXYRDpsZ0T6I6tEeFzfRH9svUSUcAlFhgxhRDbE8URc4IxE0PMERtFSGEUokctF4aRURfgI90QU8FtEP00CRo5z+ET21udEj4wIRUb8EEUvAthEP45zRIYxmkTwfbxEesEZReDG3kRD34FE1AhnRJ3P00SUI69EL+BYRSZrhEWVY5VETNXVRAxBd0QdR5NESieDRLVhxEVxveNGF6GiRN/klUUeUINFcmoeRXsPGUYr44dFfM3eRD+Hf0TkxIhF8yN5RDgpYERU9Q5Fr4N+RW4tgESTzZZElZAhRc4fZESQ4xNFEGEKRSanlkeLq4pGoKIMRyIpYkVqe9ZFicu7RLN2AkWv9kRF4QyvRLNVfEQbXLREzpTqR5H9zEaQi9pF0ddsRGOkxUZL0atFWzuMRrLto0TogSVFHlZVReXeg0SchmpFoYuFRCCtUET7MZ9EhIG8RMyI5UT0yB1FSyX9RPD7skQxXm1Et0WbRKCYiERhX3lEeuGJRGYqB0XbYp5EZCdBRaHHbETDEOREI5FHRJ2uI0bjaK5Fck++RuXQHUUV/mlG5QdNRT0cTkUqz11FTDqSRAzDj0S92ANF9lFqRYa7SElanJZFKtDdRG94SUXWoHVEf/01Ra4aTUgoz6JE3WRqRPv1DkX6YptG0lFzROMey0RB6YdEJBpiRU2szkTQKqBFQueERfWCkkRbxIJEKKJERG0FqkTjsLFFdgiTRJ4SDUXhbYpEKF1qRSe/6EXtvqFEQvXvREKVfURYqbNElrl5REcmq0eAbrlGZascRbBR/ETBE2NEzNvZREKAeURhiqpEBvqORByZu0U3ZMREog+yRKJde0SLG4RExMTBRLzcoETxZplETkwhRiK3HUULKCFH8xilRJLkL0XWJhBGxbNbRJxpoUS9bEZEUV5ARZhPbUSrG4pGwLplRkY/FEUvf6NFJMuJRFw4h0Si5pNFBx3wRe5xe0S5jMtE7teURC9Ey0RtK15E7cJURNTlg0SJJfZEKnGkRCVVlEQTS/lH9VP5RAStBEezNThFiG+zRoKuWUV2f6hEWsmiRPRzZkTNG1RE4m55RKB610T7lBhFoDHaRC4qmkT0oY1ECXfCRItAF0XGCXBEdFoNRdsEcETLj3FEYz6FRHVLfURzWrBEWmCKROOqeEXW3oVEDwqRRGEaOkbdS2dE6H+MRLdleUWQreBEBzqvRLUWl0TxhIVEi2y6RVZ/NEW4P89FwwisREwYhEW7tolEcBSSRO8to0QAxh5FRm3NRBkcxkQzEjhFzHV3Ro49wEQ+xM9F05wURb1zukS6sq5FmKznRIwuSkWwKktF0r0GRbefyERFAcdEPvCPRAV0ekhVi2REXaOURGWQ6kcxXKFEn56KRIUqoETOCoFHDsJoRafcgkbZ+cpF92jGRN4Z7ERnt+JE24EeRvKYO0U+m7ZEd6uNRPgR9EXMxG5EvDgkRZVjBkWB7yNFVv8GReXyzUQYB65Ey4dyRJcbb0RQ8pJG0QEgRh1A8kQD659EQqLRRJDdsUU7/PdE+67TRCScZ0R144pEXecoRYju5kRfqmhF7SWJRAxKkUTd74NEeItmRuUIVEbl86JFGV2eRDeaAUUudaFE8OIGRlZqq0XIIw9F47zMRIlIh0Sh/zdGLsqCRU1ALkW3ro5HpSLuRmtXpkQybdhFCUusRV0HTEUHVYhEnFmjRTgd9kTWHI9EjzMZRfJkGEVUpFlECbbUR7zKRkd27uhGg3xrRItUq0ULJwBGgAUFRTQNPUUcf6JE3LkURSmXmkRitttHqOY/R3I490ZfshhG51k3Rdv7dkSIQrtEUea2RgWfgEbWejJFDYIhRZa2gkTS/aZEf0LeRVSTC0X9NNRE0zoLRz9Hj0bCpwdGbNqcReMNgkWefilFwZ+IRO4N+EYBclZG1ZEjRl6WekRswz1F5/jGRDHsokQ2kAZFacBGRn6MnEVizX5FgUiZRF6k2ER8iJ5EwtIMRhS2rUX54k9FHyxsRA== + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RpQDaAq9kNI21AJ2tCVJTyc0CjRsc6eCJ3QE4sistCA3xAxU/Ja/uSfEB0rGVOvwGBQOBopV0ZAoJALv9FRjcChUDgl5OHxYqFQG/A8XzxUodAJd7FdG6aiECYwHhMBIuKQFLkahrQwotAKcX55EVDjUDhDMkP/IqNQLjtV9pxC49AuQgl1J4hkEDzef6/6RmRQM2I6DuovZFAFJ2XNr6hkkBvaT5XBeaSQJS0jksUZpRAzJIuU0HmlEAVFW8fYkKWQPHdfkdQZpZAXpev64Kel0A7zlDle2qYQAD5Kz+/wplAt72QfJc2mkD+0T93rRqbQBd8/hHwVptA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBX/v7hfVJwQJEaXId5UnFAV1zbNdZjd0BYdfDAkYN3QB/QhPqptH1ARRrbkkSUfkAHR8IrjHKCQEDeKTR62oJAmEtDxM0qhUBADRheJmOGQJh6Me55s4hA0RGZ9mcbiUC2y+3Y0UOMQMjwGCWfs4xALB7jQSvMj0Ctqm0HCdyPQMilVq9bcpFA1uytmFqykUBlFQyOhnqTQK0pu4ic/pNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBxWoXuS4RsQAoahmk8YnBAOAsfS35TdUAx283g6nJ4QIkLLeqjw3tAMTmqNEOEf0CMsbwEPuqAQF9I+6mNyoJAt9s+B4oig0BGBJ38teqEQMJ1xcYZY4dA1wgelfeih0DCpLPwxeuKQJFb/oxvo4tABmislz40j0DVHvcz6OuPQGBdxkdbmpFA6qbyLkq6kUCp3wYUfPaSQPDztQ6S2pNAnL1XPZAGlEAFCfcPuPaUQIDTKkXGipVA6R7KF+56lkAA6yFaHE+XQP2ejX/3FphAStvz90dTmUB9toSUTduZQMbKM49jH5tADN/iiXmjm0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAYxSyCnGRqQDeULWxqYnBAU72qemZjc0BV5elWwvJzQFMbh86+dHpAkIdiLHITe0BwbEO5FgV+QK3YHhfKo35A53AQpCYKgkBlvEYC7SqCQAXCzI5+moVAgw0D7US7hUAUEoSFhnOIQDLIcTTgwohAozrierI7ikDB8M8pDIuKQMGLnmUKzI1AwR++U7gTjkBQtPxaNpSPQJImRDgilpBAcdy++TsmkUB2PBdAWBqSQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA/KJil8iNpQFf+/uF9UnBAdU+7zNXic0DmbmCMEcN1QNBbBRiZM3pArcn0xSn0fkCiAOODRBqBQDqSxP+gkoJABi6toNAyhEDJuiL1zFqEQAZdm8p8u4dAyekQH3njh0AGjIn0KESLQMkY/0glbItAyUftctH0jkBquVMRtdyPQJa628euBpFANfSgnbCykUAW0tLcBMuSQOcKBqz2PpNAlunJ8VqPlECZIWu6PIuVQEgALwChG5ZAkYJvzMF3l0BLONDIgteXQBGaZuEXPJlA/U4118hjmUAmr6fiPViaQH1mLOweKJtApsae95McnECTe23tREScQFjdAwbaqJ1AE5NkApsInkBcFaXOu2SfQAr0aBQg9Z9ABxaF7oB4oEBeBWcRsyChQMehAPmrWqFAt5CZGNbmoUCHLXwD1zyiQHccFSMByaJA4LiuCvoCo0CgRCoVJeWjQNCnRyok76NAYNClH1DHpECQM8M0T9GkQCBcISp7qaVAUL8+P3qzpUBE5ngnhhumQKlKcUadeaZAnXGrLqnhpkBYX2lEu3mnQPb83TXMB6hA46DSrdNDqEAHKyqr3rWoQE+IED3vLalATj/ZpfSZqUAPFIxHGhCqQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBe4xb9Y+JuQDeULWxqYnBA/u7BpYKTdkCdL4tboKF2QGSKH5W40nxA7KzBAvHDfUDDyRDjnSGBQG214K8veoJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RpQLAuKNpy5GpArmsYctHicUBgbopu1NJ0QLbCjnNsQ3lA1Sxg6X/zeUDyfRzU14N9QBHP2L4vlH9A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDXkZP9yKNsQBu6YmAmQ3BA2obJ21KCdUAJeGK9lHN3QMhEyTjBsnxA9zViGgOkfkBk0VLGDOKBQPtJH7et2oJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBxWoXuS4RsQMZtNYzMxW5AdE+7zNVidUDjFPeZPnR2QDdWWaB7k31AphuVbeSkfkAb2hr6aVKCQPDehiHK4oJAfwflFvZqhUAOMEMMInOGQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ew5Y0/GhYEBxWoXuS4RsQLKsbNnoUXBArFID5xVDdkDZbbRQl2J4QKyw3zpuVH1A+3a2gRrTfUB0KSwIjzqCQHQaW2/EgYJAdElJmXAKhkAufAwABzuGQC6r+imzw4lALpwpkegKikAlinpY6luNQEzt5XtAm41AW8d9+BUKkEAmDupS9pGQQKW3T5ZBDpJAgzfaTjKSkkAC4T+SfQ6UQBJgOEReWpRA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAtECBNt2JpQDtMc7KVAnNAPsnXHQrCdECRoHe3LXN3QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEfuNfSGJnQOJgFSPMRGtAjwFH/L0ycUBCHc6DfMJyQOoNkUeBg3dAMNvN4OryeUDqa22b2ZR+QJgcVZohgoBA7JQ2/KPigkDFIvo/g6qDQFRLWDWvcoVA7MMkJlBrhkB/ddo3+6qHQICkyGGnc4pA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBa6U0me2NuQMZtNYzMxW5ACAFx3oCCdUDjFPeZPnR2QCZSLcnYEnlA7azBAvFDf0BhBAG8wQqBQMUxy9hNI4RAZlBm8JpyhUBUWinOeeuFQGZ/VBpH+4hAgWDOc9sTiUDKrB430xOMQJ+xil4zpIxA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCmvpxNHKRoQFRnpVdMhW5A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERrQJEaXId5UnFAsyNeuPzCdkBRpJXvqkN5QCfJHqjsw35A4iSrb02igEBOt+9LbmKDQJx3i2fFooRALXwMAAdbh0A+MfW6EDOJQC2r+imz44pAaVt3vVxri0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 7BToB3LiY0AoFld2zuNlQCe3YN0hA2tAZLjPS34EbUBU5elWwvJzQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEfuNfSGJnQHJahe5LhGlACRqGaTzicUAACNcwPvNyQCZrQlSUcnVAJ8keqOwDe0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCmvpxNHCRnQOJgFSPMRGtA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCYvfARosNsQGS4z0t+BG1A6q+08yjycUCmgagVL4N2QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD+9P4gH+NsQKPid1q/AnFARtUTyqeidED5NnxfV3N1QGjeFfsqE3pAG0B+kNrjekBxTQlleYqAQJgcVZohooFAAlKK/bpCg0DFIvo/g8qEQC18DAAHe4VAxVHoaS9TiED0p7IPc4OIQOOipFSH44tAgCPcizWEjEAPTDqBYUyOQHaDSJDe649ATzpMu0YKkEA3MWTfCsKRQM9RQ9CczpFAt0hb9GCGk0BLQYNnuJqTQMxdnPWGopRA7aL/uvS+lUBbhvrqsmqWQG269s9Kg5dA253x/wgvmED84lTFdkuZQH3/bVNFU5pAEfiVxpxnmkD57q3qYB+cQJEPjdvyK5xAeQal/7bjnUAN/8xyDvidQMAaVPrMx55ABy8D9eKrn0BX754QOvyfQGf2ixki1qBA84v+AjPioEBZgXUdPZihQLMXeg1exKFA5AsWHlAmokA+WeN2do6iQAhNNoRg1KJAYdhoi4Oao0CX5BV+mbSjQIUZifGTSKRAuyU25KlipEAQpCnyptakQBSxaOvMKKVAAi8T9sGYpUA5qVG64iqmQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAKGoZpPGJwQKz0JpO9sXBALCOImr/SdUA6THOylcJ2QE4sistCQ3tAAacH7K3zf0C4Gkb+4lmAQOQAzhJjEoNAS/vpOTpihEDkL7w8D5uGQHgBj9+biodAnoKcNIebikDcLln8JyOMQC+HHc3IU41AQFwjGbQ7j0BJ2vN0KjaQQJDuom9AGpFANzFk3woykUDXAlJqVv6RQLdIW/Rg9pJANCxCZpL+k0DOyy3HkYqUQEuvFDnDkpVAK/Udw82KlkDLxgtOGVeXQHIJzb3jbpdAuR18uPlSmEDiSd4gSuuYQGs04cY/35lAlGBDL5B3mkC0tiGTYDubQEZ3qD3Ww5xAEeARj5w7nUBd+noQB1ieQJH3CKTy/55AU3UmVxkuoEAiBzdZHEagQHe2Rr0p3KBAe5JpYD9soUCb92YjOoqhQG0dU2RaLqJAvziHiUo4okB9MCdVWB6jQD5OEY54QKNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQIkw7CrX8nJAH3KoplGjc0BQi4Bk7yN5QEYz8B0AtHtAZISsCFhEf0AX5hSeB1V/QDJxRC7YKoNAC6L4+C8zg0CaylbuW/uEQJaeDktkQ4ZALqv6KbMDiUD6y9hn8FuJQC7a6FNfjIxAtB65X2hcjUC/3mnsoESPQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD1hHOUyCJpQMzCR+mJAXNA15HJDo0ic0De6D8QKMN8QGuhW3SQU31ANiDGFwBqgUDTIeokIDqCQGFKSBpMooNAjHTKHJjahUBmAo5gd0KGQB15S7XZkohA9wYP+bj6iEAiMZH7BDOLQLBZ7/Awm4xATVsT/lBrjUBn1dVtxBWQQIrD3IbeOZBATFk6RwWikkAPzZoQRqqSQCNNXnhPRpRA/dohvC6ulEBtPTAWe0qWQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDiYBUjzERuQNzlv3T/InFAcQ5nZb4zdkBrPQyU1zN3QJjPrtxsRH5AhDRfjFw1f0DTnrDe71KCQGBI+6mNKoNAZKMxdzELhUDxTHxCz+KFQIJR/doQm4hA+IPVsogTiUAOzSZX05uMQIxkee7fG41A1fjMZj+kj0DGyTMMRlKQQByTy8FlXpFAI/MjCIJSkkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA/KJil8iNpQAoahmk8YnBAlLmMQumSdEAKeGK9lHN3QAhfTTLZk3xAfh0jrYR0f0CE3hTDmNKBQHjhcU66uoNAe72U8c9qhUAJ5vLm+3KGQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAYxSyCnORoQOduYIwRw3JAO0xzspUCc0BCe6rX1BN5QM9bBRiZM31Av46RVkIagEB6jqbHI6KCQImWWgnEMoVAer2U8c8qhkAWEoSFhjOJQJgOUdwnu4lA3T0qlfI7jEBiFhqPqdOOQEFr9LF+VI9Atko7WmXGkECONH3DEGqRQEVzmU+RjpJAMJb5Fk2Ok0Dn1BWjzbKUQL++Vwx5VpVA1dOYDZ9ylkBE/gWfCbOWQIfq/Rvl/pdAKYJqeEo/mUBrANEjG4OZQLiqyG12B5tAMb7lYXyDm0A4wr+CzMucQBZCSju9D55AgrKRIPjPnkClaqgw6defQDQb+3wcrqBA3na9AQ22oEBpuCZrJYChQFkT5EsysKFAwkNZckhGokA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RpQCZYakR1om5AMH3xjJLhckAna0JUlPJzQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEfuNfSGJnQAoahmk8YnBA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD62J8L/6FwQEMdzoN8QnFAwTM0RRfTdkAKeGK9lHN6QMGREJlv5H1AYMxmwizkfkDBarT5VyqCQNgnCPtuioJAOivX5MGihkAkmH4W5MKGQDpaxQ5uK4pAJMdsQJBLikCGyjsq42OOQJ6Hjyv6w45AGEYI4h2+kEC/1F0sDf6QQC5bSeND2pFAP+xUQWPCkkDgca7xiSaUQPECuk+pTpRAKmKAj7UqlkCTZDaj5XKWQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAbumJgJkNwQPrYnwv/oXBAVlzbNdZjd0CO6DFxAtN6QPS1ts1syoBAEfxh6wKCgkC+vX+A7uKFQC9NHtZaEoZAL3wMAAebiUB4EGB4ZuOJQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDXkZP9yKNsQOzQoK8iBW9AsyNeuPyCdEB2xqyr6ZN2QKHhXRVrs3tAZISsCFjEfUDQH520YWKBQJVvICG4+oFA/SVCWsOKhECVng5LZIOFQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAAVPW5y0NsQBu6YmAmQ3BAxwSPFv5SdECvyfTFKXR6QI5fI1AWhHpAO5LE/6BSgECRt9rajFqCQJ6/jhwta4NAkebIBDnjhUBl6zQsmXOGQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBImCMySWRuQBu6YmAmQ3BAJCru7HxDdkAbGD+0flR3QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBImCMySWRuQMZtNYzMxW5AQh3Og3zCckAeWZMbloN2QAl4Yr2U83hAkv5TC4aEfkC+jpFWQnqAQKwsdCLPWoJA3N9NQZoKhEA7VdIX+yKEQEANGF4mI4dAO4TAQaerh0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA2uAwZnGNlQKPid1q/wnFAo+J3Wr9Cc0CjQFSuF9R4QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAnt2DdIQNrQKmavaDqInVAdE+7zNUieUDQWwUYmTN9QE6IASLCmYBAr9momziigUBOt+9LbiKEQDxV0hf7ooVA2jIZyDAjiEA8hMBBpyuJQKFev9ecK4tA0GRkff4zjUA0P2MT9DOPQGDvNHZQgpFAfyMW4zomkkB3cgdJgRaTQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBDHc6DfEJxQBpDcYES0nJAat4V+ypTeUCO6DFxAtN6QIcv0uWC43xArDnuW1pjfkB9aslqOXKCQGr9mmkEOoNA/t0+pVtCh0BHcpIdu4qHQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4UVm4m7BYEA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDGeRuljWJrQBTpB48/A3JABcaPA8ohc0CIjsh+LwR6QHlrUPO5IntAqpfKr7J0f0C8ZJYjCRqBQGZQZvCacoJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBa6U0me2NuQANJK5hVInJAQQS5+MBieUDKo7/RbVN7QGMNuylE035A34yCugOSgkCu2aibOMKCQNZrAuk6KoZAEgdzuMRah0ChL9Gt8CKJQDqZzAXHQolAoV6/15yrjEDOeXBBHkuNQDJjQHDeY49A+aPyQ2qDj0ASZzoj292QQBlJF01FdpFAxH2fMSFqkkD+zHsmhgKUQFOm/SZNMpRAnCg+822OlUAVUE75tpaVQBxANQjEUpdA+tOy0vcimEDOVpoWCt+YQENW854Yf5lAWWs0oD6bmkBdf/gLNqeaQN2W7yCMa5xAtpQknHqbnEA2rBux0F+eQMIaVPrM955AIZmlhxFeoEAOGEDFCHagQM6ju88zWKFA0K2dhS9eoUBbOD6GQuyhQBW4aspJPKJAf3le7FKaokBuQ53RbAKjQHK7EFlz4KNALs8Y3Jfko0BSEDlCqJKkQP38ecKLqqRAmSToPL52pUDwPiwvrPClQPKvGkThPKZAfTq7RPTKpkCwyqc519KmQAjFW0UHWadA1AvIn+eAp0AtvUQUHVuoQJSXQ6oSY6hAuCGbpx3VqECGSHcbQCGpQBGtza5A+6lAREAX500HqkDPgYBQZtGqQATvfxthQatA88KgtnZ/q0BderIihGesQOUEUyOXxaxAG3JS7pFNrUAsGQIeramtQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUC0UdoP9eFsQNvlv3T/InRAoYOBwRKidED314XGqhJ5QKJAVK4XVH1A+xoxjQESgECU4yJ+hPKCQI771MhYGoRAJeijFsaqhUAdJDO+hOKFQIkVbjNSw4hAgVH92hD7iEAYPswofouKQBJWfnNSs4tArB5wZNWTjkBWGXcay/uPQNYmL8dADpFA6ztwyGYqkkBdo6CbK0qSQJ1S1dastpNAD7oFqnGWlEAZQhVuyIKVQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBImCMySWRuQEMdzoN8QnFAeiAWnryic0Bq3hX7KlN5QKHhXRVrs3tAwDIaAMPDfUBk0VLGDOKBQF9I+6mNaoJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCEfuNfSGJnQDtMc7KVAnNA1s6DlSfidUDPWwUYmTN9QP2PywzW8n1AdtZggfhhgEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD60UzrnGVsQBu6YmAmQ3BA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA0WUyRs0FwQIkw7CrX8nJAb/vEZmNid0DE0mQAhxN6QOOghVZTY39AHLwSeDsKgUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4jyZjTbDXEAoFld2zuNlQGS4z0t+BG1A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCmvpxNHCRnQBu6YmAmQ3BAGrpiYCbDdEAJeGK9lHN3QI5fI1AWxHxAfR0jrYR0f0C+jpFWQvqBQCK8W3POUoRAvr1/gO6ChUAi60mdetuHQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RpQEr3Gcv1RGxA+0+R6hKTckAZoU3VamN4QCIR2WHBo3pAILFKpgw6gECIZ2zfF+qAQBeQytRD0oNAHEgQG2/yhECqcG4Qm9qHQNWa8BLnEopADMIVihHDikCb6nN/PYuMQJzGliJTG41A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDOIQhxcuNoQN9iJOBzYnFA1c6DlSeic0A1tyjlC9N1QCsjiJq/EnhAI3UoQnoDfUD3FBO3siGAQFhmujApioFA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + U6vsr5viYUA2uAwZnGNiQGxclKvzIXFAQx3Og3xCcUDCsJiwi5J1QEN7qtfUU3hAwg51BOSjfECZz67cbMR8QPRn3j1JWoJALmsmWIl6gkBZlaha1bKEQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBxWoXuS4RsQNS+X4D+xG5AjegxcQLTdECsUgPnFUN2QKs57ltaY3hAAqcH7K2zekCrl8qvsnR/QIEC8h+D4oBAAHZnWqXygUCBMeBJL2uEQEQ5YAEeO4ZAeBBgeGYDiEBEaE4rysOJQHg/TqISjItAO0fOWQFcjUC8AkdJi9SPQB073sFWcpBAdJbkpWsGkUCdUtXWrDaSQPSt27rBypJAs2cW2NJSk0A7woq1166TQIREy4H4CpVAEJEG1A5TlUCaWQyDHieWQJ+5ZMk6G5dA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCN7m7sniJrQMZtNYzMxW5A1c6DlSeic0AKeGK9lHN3QF1VdeMYM3xAMTmqNEOEf0Cu2aibOKKBQI/71MhYWoNA19kva0vahECPKsPyBOOGQM64r5mCcohA8leND5F7i0Ay5nm2DguNQDYbhrYJxI9AmQo0cN1JkECykBWuNXaRQOP6BQ4JTpJA/IDnS2F6k0D6fdjgOeKTQHyY3mC3PpVAnN9UNHYGlkAur0Nv/YqXQE72uUK8UphAqp6DBhlXmUDODbFXEheaQL4eR24i85pASv3w7i3jm0A+Nj6DeLecQJTtwoxZ551A4Je61rTbnkDe3ZQqheufQOLWRm/1L6BASPp8nOW7oECgzuY6AxahQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD60UzrnGVsQBu6YmAmQ3BA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUC8CZAYN6JnQMzCR+mJAXNAnREdidiCc0Cdb/ncMJR6QFRJOTd7kntA7Ag5WXDagECq04rF6VGBQBkP3v7RAoRA19kva0t6hEAZPswofouHQPUq7FWjCohA9Vnaf0+Ti0BdAcXP9tOLQFTgRP4tbI9AOR3TJsjbj0BxhNH5LJqQQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjZUAoFld2zuNlQHFahe5LhGxAO0xzspUCc0DHBI8W/lJ0QAKnB+ytM3xA7sXWjaxjfEAijW1JImqAQIAC8h+DooFAsbXLPk4ygkCx5Llo+rqFQEoKu9IEu4ZAQA0YXiaDh0De6l4OXMOKQNTtu5l9i4tAbRO9A4iLjEA3odUWGgqQQM96Qqb/UZBAfrWEETDukECTysUSVgqSQE+SObtVFpJA3bqXsIEOlEABqZ7Jm2KUQMHQari3kpVAS5lwZ8dmlkAI5RmzzXaWQE/5yK3jWpdA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCwLijacuRqQBu6YmAmQ3BAWHXwwJGDdEB2xqyr6ZN2QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4UVm4m7BYEA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBe4xb9Y+JuQOzQoK8iBW9AzMJH6YkBc0CTuYxC6RJzQFoUIXwBRHlAzCAkPeISekCwaCWBmbR9QMo9XDv9IYBAV+OA6vhigkCRaQJLaSqDQE7CABkw+4VAiEiCeaDChkAV7qYonAOJQIh3cKNMS4pAeRtxRSgcjECzofKlmIOMQBfPvMIknI9AeUpfb9Skj0DTew1cKLKQQIS5XjKAtpBA6v7fLllGkkAAqZ7Jm4KSQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + eg5Y0/EhYkA2uAwZnGNiQHzKEHuiRG1AK8WrRmdBcEAsI4iav9J1QFKG870VUnhAZ8UAcG/zfEBS5M8RbmN/QEKLXq3jQYBAYNwamDvSg0CMH7IlQ0qEQIsGnZqHCoZAHSQzvoQCh0C2MB+d00KIQEoq2GPmKopARzWgNRX7ikByXyI4YTONQHMqXzP5Yo1AA2Sj0KLrj0DrqxSowj2QQJDar139vZFAAi/nevPRkUDZXPApHhqTQJFXRXAfmpNAIt8w9j52lEDYa/RqNX6UQLyBx3JrApZA02AYa2iClkBTeA+AvkaYQG6YLIGxTphA7q8jlgcTmkAFj3SOBJOaQOmkR5Y6F5xAnzELCzEfnEAwufaQUPucQOizS9dRe51Av+FUhnzDnkAxNoyjcteeQGuyk6zWK6BAYC91TM9PoEDEPcaz+fGgQIRwlbLf/aBAD/s1s/KLoUDO/adn/r+hQDM8VhkDOqJAWT8R0RaKokC+xvYZFsiiQH2AMTcnOKNASVGXGilWo0CQZUYVPzqkQNYLZD5KXqRAtO+dEkqspECWl99IdUClQPsDTQ1gkKVAu4/IF4tCpkC5++zYbXamQN08DT9+JKdAeYdo45gop0CdyIhJqdanQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + EnhTK8ihZUAoFld2zuNlQCvFq0ZnQXBAN5QtbGpicEAlUi3J2JJ3QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 7BToB3LiY0AoFld2zuNlQCe3YN0hA2tAN5QtbGpicEBbtkQoqbJzQMXreYtCc3ZA6g2RR4HDeUCMRg7FWqR8QAwXk3gENH9A1EvlV1kagED/dWdapVKCQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCJy7y2HKVqQBTpB48/A3JATOxPqX/jdUCcb/ncMJR6QExKLP3X9HxAzeZqmMTSgEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RpQBjFLIKcZGpAjMDylKZDdEAACNcwPvN1QHp+8vEUdHtAj18jUBYEfEChbMOVltKAQMfe/1G3ioFAVgdeR+NSg0DOcmg7+PqDQFY2THGP24ZAYlMMd08DiEDnOs0J0ZOJQPF7amx7y4lA52m7M30cjUCEXA6o0tONQKbLQqiEGpBA9ERsYi92kEDvuxRGsB6SQHRcY3eFOpJANtDDQMYCk0C93qNDppaTQIDAld7xBpVAPfaaWPxalUCECkpTEj+WQJdDaLEim5ZABCJBaGgDmEBJWs2/aCeYQOg3FHCeh5lAxUkNV4TzmUBFYQRs2rebQJpOeX7k05tA4WIoefq3nEApd9dzEDydQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA/KJil8iNpQBu6YmAmQ3BAW7ZEKKmyc0DewAA0zHN4QFsUIXwBxHpA3h7dhySFf0Atuf7nrOqAQG6+3G0+S4NAjrzN0f8ChUCMD5lYltuGQI7ru/uri4hAuRU+/vcDikA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBa6U0me2NuQBTpB48/A3JAA0krmFWic0DbQ5zIVzR4QMqjv9Ft03xAaZvo5y9FfkDlAM4SY/KBQOFTmZn5SoJARYFjtoVjhUB44XFOuvqFQNaF5E7HG4hA2uRAOA0TikADjIn0KESLQPg1/SJlo41A50mpU1UukEATHlFk42WQQF0OIwIPapJAy80NLZa6kkCn/vSfOm6UQFr2ayLCgpRAvBM2oWCKlUAMDdEwCA+WQNIod6KGppZAvY64pTEbmEBhUdWXsm6YQNQRi3hir5lAeNSnauMCmkBjOultjnebQClWj98MD5xAeU8qb7STnEDbbPTtUpudQI9ka3Dar51AapVS435jn0DZVD0OBrSfQJKiB9YY3KBAqIxb3t/3oEAd5HA/MaahQJrODUsAPqJAZPgfOkeKokAlEHe0GAijQDy5k/RbkKNASVGXGim2o0Ci3MkhTHykQGGxfMNxkqRALR4zi2RGpUAhPfjNnHSlQB+pHI9/CKZAesgq1b+apkB4NE+Wos6mQAVTy9XSKKdAOMDKoM2wp0CzZ8PT8CioQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAeR9VQy0JnQB77tsc9snFAo+J3Wr/CcUAeWZMblsN4QN6E8C9v43hAAI7yYPJTfkBZtJLATHqBQGN0Q02FwoNAWeOA6vgChUAdxyNF/cKHQBM2YeJwA4lAHfYRb6lLi0B2Yyv//JuNQAQ01ksfKpBA9H7tkBUykECTXDRBS/KRQHOW5KVr9pFAV6y3raF6k0A1vrCUhxaUQLTVp6ndepVA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBImCMySWRuQBu6YmAmQ3BA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCN7m7sniJrQNS+X4D+xG5AaYA5p9IBc0DfhPAvb2N3QIuJO9hVcnhAGuGH9y2DfkAaJ2kFH4R+QFS/WpJ7SoJAq0GA5u7RgkDlw9sqvQKFQGWUYN5m0oZAdshcw/66h0CQvuLgsgqJQG2n3PE1U4tA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCPTWWFSwNpQB77tsc98nBAFOkHjz8DckB0T7vM1WJ1QNtDnMhXNHhAdK2XIC50fEBpm+jnL0V+QEVSdYzZ2oFAdCksCI86gkCfU64K23KEQP+kVYRR24VAA4F4J2eLh0COzbN5faOHQLn3NXzJ24lAIdI0Er8bi0Cy1rWqANSNQBr7BGYc9I1Ao5JDNDQWkEALAsBjRnaQQFMUK6ldIpJAaCuwX4J2kkCaKNqjcwaTQLGt8Cuj0pNArz0bpZkilED4wZ8mubaUQCstWzy17pVAh+r9G+V+lkDdQ8BK+3qXQAcC9TA7Q5hA81gBTCGXmEAcFzYyYV+ZQAluQk1Hs5lAH4ODTm3PmkCcLi1HtyObQGgFxBqOK5xAskNuSN0/nEB9GgUctEedQMhYr0kDXJ1Aky9GHdpjnkAR2+8VJLieQCbwMBdK1J9AiqMeGRgUoECeAjkMOHigQBUuvxkroqBAKY3ZDEsGoUDVuTokVoShQIIYDBRuzKFAHM7pHmxookBAEKzfe7KiQEBYQRx32qJAy5pM4I5Ao0BkmWGCh4ijQO8kpN2ZsqNAE65ZgKWIpEDH5ReYrrikQFJwuJjBRqVAbDmMh8hOpUCQeqzt2PylQCoxLFPWTKZAtbvMU+napkDXjlvo7uCmQNlFJFH0TKdAMBqO7xGnp0C7pC7wJDWoQIhaHE8STahArJs8tSL7qEBpuSbuQjWpQJ4mJrk9valAKUWi+G0XqkD3sVjAYIOqQLTPQvmApapAP1rj+ZMzq0C3PdTKi2WrQO1u2/exM6xA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD60UzrnGVsQHzKEHuiRG1AxMM6r+ZjdEAFwBx3adN3QOuEgiaVdHxABR75ysHkfkCTk/19osqBQLzhXN3YcoNAk8Lrp05ThUAApVWEUbuHQPbvtcTa64lAANRDrv1Di0BkAQ7LiVyOQMD3fndcBI9ALvDGfGD6kEDEkZJDZAaRQHao91GqkpJArge+kba+kkCNK8ok2yaUQMWKkGTnUpRAd6H1ci3flUANQ8E5MeuVQFu3yHpjY5dAiTIB0Uy3l0A7SWbfkkOZQEA7LVSk75lAu2Bd9OgHm0DyUZJi6jucQF3C2UclLJ1AcmmJd0AAnkC668lDYSyfQAGS52xsyJ9AnYFgrFt4oEAmwVwFTOagQPYMk7N+nqFAf0yPDG+soUAaTrMZj0yiQD/YCheajqJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDEsXzkG6NpQBu6YmAmQ3BAPWWIPVEic0DiFPeZPnR2QATAHHdpU3lAPSFB5QHFfEAtuf7nrCqAQAKPfOVgMoBA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD60UzrnGVsQOzQoK8iBW9AWHXwwJGDdEA9w2SRqbN4QB/QhPqptH1AmM+u3GwEf0A9bueitgKCQMuWRZjiCoNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERrQOjivfH6omxA+TZ8X1czdkDolp9obVJ2QG3cPE9HNH5Ar/EzooWDf0BhmCCqb1KBQJJL+sg6woNA8pyhQrEKhEC9dXzLhvqFQFbKa189I4dAvaRq9TKDiUAd9hFvqSuKQL3TWB/fC41AFNWRneDDjUA//xOgLPyPQDyTnIsrhpBAhYNuKVeKkkAhFwFlbBKTQDYsQmaSLpRA4qxeJZOKlECyG4L9rfqVQGLEVTrpTpZAljFVBeR+l0Di20xPPxOYQEhIuhMqC5lA9/CNUGUvmUCRyvrfSmeaQFQafkyhL5tApt874XCDm0AGMeNa53udQAMJLN2sg51AY1rTViN8n0Claqgw6aefQN2/9JgHYqBAecEYpieioEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQBTpB48/A3JAH3KoplGjc0Bv9VHaAlR4QA0wqAPA03pAKoFk7hdkfkDA9V95KMR+QAj7NgwnmoJAT5MS74Myg0AzJbkOc9KEQG3kztnbwoZAUXZ1+cpiiEBtE70DiEuKQBt+PqxMe41ANxuGtglkj0CNVhZr/IGQQCo2odAwepFAHH90YChKkkBAS+LRVpaSQFTLpTlgMpRAeahkXGRKlEDAvBNXei6VQGhLaaFpzpVAPKxT7pX6lkB/zjt0mmKXQLzDSgPsvphA/+UyifAmmUAFRovPDBuaQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDXkZP9yKNsQHzKEHuiRG1AsiNeuPyCd0AFwBx3adN3QNQsYOl/83xA830c1NcDf0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCwLijacuRqQMZtNYzMxW5AeiAWnrzickAeWZMbloN2QHp+8vEU9HlAHrdvb+6UfUBbkLVjYoqAQCDgONC4goFAv71/gO6ig0BN5t11GquEQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAKGoZpPGJwQM1e+AjRYXFARbz+PuyCd0AIAXHegIJ4QIBedxSco35A9r5wO++yf0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBkuM9LfgRtQIB6f5CPcXFAiDDsKtfyckDehPAvb2N3QNuGydtSwndANNn0NAfUe0DFlvycTyKAQHbWYIH4wYBA8MB+n5tagkA9AgeRZMqDQBvrAKLnkoRARhWDpDPLhkA04Ya/m2KHQHE/Bad/A4lANBB16UfrikACRIY/wbuLQPs7G/mz841AyW8sTy3EjkBGIM7I+lWQQGRPjbxsJpFAjTR9wxA6kUB5ZM69kkKSQAkkvVosBpNA+XvF0ugGlEBSpv0mTWKUQN2RmNoei5VAr8/tIolilkDzptnbRKeWQJPlwCq/5pdAc77Q8JprmEDcZwH330KZQInTEfLAh5lA0OfA7NZrmkBcf/gLNgebQHJJPUATkJxA2G44o1HTnEAkYKJOWRyeQDWYKJ+N055As4gARIXkn0Cmjf043zOgQEzP6aVdtKBAfk5x8/M5oUClWhytgHqhQAnZEfQGyKFAyZs8E5EookCUY7L0GVaiQB/uUvUs5KJAiSe4HbwKo0CtsQ8bx3yjQHh5hfxPCqRAnAPd+Vp8pEAGPUIi6qKkQJHH4iL9MKVAXI9YBIZepUAcUoMjEL+lQIDQeGqWDKZAp9wjJCNNpkDZW6txudKmQH+dl943U6dAy+aUddSUp0AK3wBIUB2oQBL7Q3DqeKhAufP4RW4dqUBrhnZ3DT+pQHfrmBF8A6pAPLc0oStRqkBgQYyeNsOqQDd3FByn5apA68ssn0lRq0BbuDSCt5OrQKtXqKl0M6xATUMehtJVrEA24kiqh8GsQPtXFoTwVa1AKG0yrqKDrUAfmTbqAASuQOj4rbjNZa5A3ZDWtQ7qrkBzg0654POuQAEbLrMZXK9AMw/KwwvWr0ASLqcMFQWwQBLN2WMTTLBAi/ObjiJmsECk7emWG6OwQGu52RM417BA6TI6FyXqsEAueIqXLjGxQEq1qfk+SrFAc73aFzh4sUDDep57TKuxQLgCK5hBv7FA/Ud7GEsGskAk/Q1eZkeyQEKNy5hUTbJAh9IbGV6UskDqncKScqyyQMwXbJln27JA3twXGG0Us0DjvhvJgk+zQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCmvpxNHCRnQFO9qnpmo3JAO0xzspUCc0DiFPeZPrR4QMmjv9FtE3lAAGazhJZEfEACI5zTDhqAQADiR2z3qoFAAVKK/bqig0ArDMpuQ+ODQLo0KGRvq4VAH6NG6BIzh0DlXqpmu+OHQHSHCFznq4lAsKfHgFTriUAU1ZGd4AONQJLYxEY/PI1AI91F34D0j0AKAsBjRkaQQEMFCH6GhpFAihm3eJwKkkDDHP+S3EqTQDwwHIfilpNAhbJcUwPzlEBDNPanMg+VQPVKW7Z4m5ZAFNu6SC+7lkBb72lDRZ+XQD7Nm4KZ95dAcQSrRGu7mEC4GFo/gZ+ZQM31+XfFv5lAzS2bQKe7mkBNDfGMG4SbQE1FklX9f5xA3DVPgkdMnUCUWUFQE2SdQMBLIop90J5AeG8UWEnonkB8w4W2T1agQAUe+pNUaqBAB04mt2LkoEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQK5rGHLRonJAiTDsKtfyckBQi4Bk7yN5QCIR2WHBo3pAIo1tSSIKgECfJMDgLiqAQC1NHtZa8oFAIrxbc86Sg0D3VOeI3AqHQIbpJZBaK4hAW4KxpWgjikCGGBS6BrSLQOqqD5uU64tAhkcC5LI8j0An7OxbEEKQQHU6ZoCf6pFApwPkcGYGkkC8ThV7tc6SQCcb24W8ypNAbmV6iftalEDZMUCUAheWQFPp3mI855ZAmv2NXVLLl0BZSTepWNuXQKLLd3V5N5lAFu3N9G2XmUDIAzMDtCObQP/0Z3G1N5tA4wo7eeu7nEAlLSP/7yOdQPqNDUwcUJ5A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD60UzrnGVsQFf+/uF9UnBAxMM6r+Zjd0AeWZMbloN5QP9ls4SWhH5Aj9u3N3dKgEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDAIFw1+IJuQKPid1q/wnFAtmSyHxSyc0DBMzRFF1N1QLbCjnNsw3pA/NWsGsdzfEC/jpFWQnqAQP2ZRLePwoFAeeFxTrp6hEBBXT1eCAuGQNrkQDgNk4hA0mG+9knDiEAFD8M6WcuKQDRljeCc24xA/O1CaZBjjkBfjw/j6BOPQEWLUC/eFZBAL99+hkpOkUDUs64kCt6RQIwIb4KGTpNAMd2eIEbek0ChHbCDrGqUQEby3yFs+pRA/kagf+hqlkCjG9AdqPqWQI1v/nQUM5hAIzPHMv6+mEDUg61vKheZQDhICDQk25lAUHPtBkbjmkDpye+oTeebQGWILghs/5tAMkwwdW5DnUAWChZ9lQueQNStrMiqZ59AuhmDvOgFoECq4tFuAJagQBOltcMLzKBA8faAaRZ6oUDTMDHONq6hQBWB2GYh7KFAXrvRzkk8okDmsZaQP/6iQKXPgMlfIKNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAKI3ffzmRvQBTpB48/A3JAouJ3Wr9Cc0CjQFSuFxR4QLvZylJERHtA3ptTU84KgEClmAs5jqqAQGzEsUj60oFApcf5YjozhECwh6rvchuGQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCwLijacuRqQHzKEHuiRG1AWHXwwJGDdEA+w2SRqbN1QHp+8vEU9HlAmc+u3GwEfEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD62J8L/6FwQKPid1q/AnFANXsY4a7Cd0CjQFSuFxR4QPzVrBrH831AC3MKz4MKgEC4vTaFW/qCQG+g1OsPI4NAuOwkrweDhkCN8ZDWZ7OGQH8Yy75zi4lAR0Rxzt+zikA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEfuNfSGJnQOzQoK8iBW9AtmSyHxSyc0B2xqyr6ZN2QJMXaZZBJHpA3SX6lsLCe0CD3hTDmBKBQObx/HmYeYFAer2U8c+qhECgRN1xEHqFQC9tO2c8QodADp44LSeziEAvnCmR6MqKQMjwGCWfs4xAXKLONkrzjUBXGXcay3uOQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCAen+Qj3FxQJ0RHYnYgnNAnss7e+cBdUCdb/ncMJR6QNlttFCXInxAleMifoRSgEB+O9tAjcmAQCbooxbGCoNARWeBUPnRg0BEOWABHpuGQEWWb3qlWodA02G+9kljiECJWWghHqOLQJ1ph6nLe41A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBK9xnL9URsQHzKEHuiRG1AwkxJ0NKycUBbtkQoqTJyQORVSwFWI3dA6Q2RR4FDeEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAbumJgJkNwQACq+tzlYXBACXhivZRzd0B0T7vM1WJ4QK/xM6KFg39AMDmqNEOEf0DXJwj7bkqDQCv9+NV4yoNAvAF6brqChkA6VdIX++KHQCAvRItGm4lAAYF4J2frikCxM8UjiFOMQMisHjfT841AeF9rM/Rbj0Ct2M9nClaQQKDFiCEwMpFAwu0QaTBykUAg3X82hvaSQNlw4zthBpNArwXeK7K+lEBZiNpQt8qUQPiHHvjSGpZA++lWpPPulkB4nxUNKd+XQHsBTrlJs5hAGgGSYGUDmkDEg46Fag+aQJoYiXW7x5tAU6zsepbXm0Cxm1tI7FudQNPD44/sm51Ax7CcSRJ4nkC32baXIiCfQBAz3RUz1J9AzffETyxSoEB6JNiONKygQPE45bU8AKFAbK/Bkk9uoUBKxBe9X8ahQG4FOCNwdKJAxTr0mXKUokCT/SDyhXajQIXGb6SddqNAzNoen7NapEC49QnBm3ikQHvvFp3RWqVAdu2pjKlepUA2eSWX1ECmQNR6SaT0gKZA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCJy7y2HKVqQMZtNYzMxW5AqhGvf/6TdUCMwPKUpoN2QMdia2pWJHlArsn0xSn0e0DlsydVrrR8QGhpe3tWsoBAECtQFa/qgUCGujdmrkKEQKEv0a3wooRAFeOVW9oKhkAyNFJGMluHQKQL9FAG04dACDm+bZLrikCWYRxjvvOLQGxmiIoeBI5AlpAKjWp8j0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDEsXzkG6NpQOO2GkbmYnJA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCPAUf8vTJxQIxiFkFOcnJAVlzbNdZjekAACNcwPnN6QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAtECBNt2JpQBTpB48/A3JAFmZs+rPCc0Ccb/ncMJR6QBbESE4M1HpAxbQEH35qgUASe3UVkZKBQDDMMQDpIoVAJrjTCNGChUC14DH+/EqHQMSs1TtAK4lARuWylj4DikBT1TMxbPOKQKoSfbPKG41AUwQiWxh8jkCfeZD3EJKQQKXx0MQnCpFA6WlilTyWkkBHU00YZC6TQP5+o5ZispNA1nurDZD2lECwlQilqD6VQHjdJ2HMGpdADb/4oOQ+l0Ai1DmiCluYQPj0HnYi35hAouswt2AfmkB05F4NPquaQCIDKMy245tA9PtVIpRvnECe8mdj0q+dQHQTTTfqM55AiSiOOBBQn0AeCl94KHSfQPMoPxomqKBA4LXtZTLMoEBMtHEhSW6hQCfKnGBIsKFA1z4SIlz8oUD4+lqKZsKiQPw2+/Bx/qJAtvL6VXSoo0AhL+S/hwCkQHZ+dmCfiqRAeroWx6rGpECaCM5dqvykQJ77Ni27dKVAwoWOKsbmpUC/ALcswP6lQAYVZifW4qZAmkYC5drspkBJW/ri+OynQNdFJFH09KdACed17SPPqECoduJ6EgepQMly8fdOsalAaAJehT3pqUBU/ZH4YT+qQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDOIQhxcmNnQHzKEHuiRG1ArmsYctHidEAFwBx3adN3QNB0GqNUU3pAJ8keqOxDfUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + BIYf0EKDYED1hHOUyKJnQLqes2bJJG1A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAQHUC2t+NsQNzlv3T/InFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDs0KCvIgVvQGiLA8lIY29ABcAcd2mTdUC0I164/MJ2QEBilUwZtHxAouFdFWvzfUCYHFWaIQKCQLOR7uFjYoJAer2U8c9qhUAs/fjVeAqGQHGcFCAHA4lASk61wNCaiUBxywJKs4uMQBF6W9A8o4xAAtCD4vRDj0A+gAB2nsuPQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDibPs7jeFnQNq4KFfnQ29A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + eg5Y0/EhYkAoFld2zuNlQHipJL+oMXBAFOkHjz8DckB4BwETAUN3QE+LgGTvI3lAcZSClXKUfkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCaHOeqTqRtQOO2GkbmYnJAFOkHjz8DeEBrPQyU1/N6QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAnt2DdIQNrQG+XdYaqQnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD+9P4gH+NsQBu6YmAmQ3BA1c6DlSfickBxDmdlvrN0QEl0RIUX43pA5bMnVa60fECfyEiKr1N/QB0EFi2jkoBAT5MS74Myg0BKCrvSBLuDQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUC8CZAYN6JnQBTpB48/A3JAZos52gxidECcb/ncMJR6QGbpFS5lc3tAL7tLWGtigUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBcG3g88qJlQOzQoK8iBW9A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAbumJgJkNwQJEaXId5UnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBmiwPJSONqQI8BR/y9MnFADtLLr2fCc0CPXyNQFkR4QA4wqAPA03pA6mttm9mUfkDBarT5V2qBQFjjgOr4YoJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCGpXi5ZgJtQNvlv3T/InRAiq1QlkuydEBpPQyU1zN6QBgFnbUjw3pAGEzQ5ncygEDwr5j3HfqBQEBMV7aKaoNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBkuM9LfgRtQM1e+AjRYXFA+TZ8X1ezdEDqr7TzKPJ0QBeIOEqvQ3hACAFx3oCCeEA12fQ0B9R7QM9bBRiZs35AdtZggfghgUC4vTaFW3qBQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBKAwDktuFlQOJgFSPMRGtAGafAYcvxckDlVUsBVqN1QG/7xGZjYndAO6pPBu4TekA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBkuM9LfgRtQFJGuZtSsnNApoGoFS+DdkBwl3WGqkJ3QAGO8mDy03xAqEVAsvdxgUDwwH6fmzqEQNVL5VdZmoRAf+nclMcChkCPnsVP0ZqIQB7HI0X9YopAb2PiA2rTi0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBUZ6VXTIVuQGz4RMs6wnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDsFOgHcuJjQBu6YmAmQ3BAncs7e+cBckDewAA0zHN4QGQm0LT/MntAsyP5wF6CgEAyQlYELCKBQLJS5+oKC4RAMnFELtiqhECygdUUt5OHQHY0PdVQ84hAFq+fMUMsjEDYNwy/owuNQNXHoTZNGpBAbDN99CdKkEDr3OI3czaRQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAeR9VQy0JnQBu6YmAmQ3BAtmSyHxSyc0BCe6rX1FN4QNhttFCXInlAmM+u3GzEfEAKiBaToyGAQOm4E1mO8oFANbKYle9ZgkB6vZTxz6qEQMiSPNFGYoZADp44LSeziEDIwSr78uqJQDnIui9z64pA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA2uAwZnGNlQFf+/uF9UnBACRqGaTzicUAeWZMbloN2QNB0GqNUE3hAkv5TC4aEfkC+MhoAw0N/QPAdjhgjWoJASC6YL+/KgkDwTHxCz+KFQIzxkNZnE4dAVHpGX1v7iEAg0jQSvxuLQFSpNIkHhIxAIAEjPGukjkD0RGxiL0aQQEKXdqx73pBAlqbotWtqkkDCrm3B0aKSQAsxro3y/pNAFr7fysEulECHIO4kDsuVQHPnz8b9LpZAOTdTM1RXl0Al/jTVQ7uXQLUmk8pvI5lAtCaTym+DmUA1PorfxeeaQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDEsXzkGyNlQFRnpVdMhW5A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDsyMl+5JFwQKmavaDqInVA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUC3D8dBTiNqQGS4z0t+BG1A+difC/+hcEC6YtlzMBN3QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBxWoXuS4RsQEMdzoN8QnFAxwSPFv5SdECeKRjPP5N3QFsUIXwBhH5Anof0IpikfkDOcmg7+NqCQI+N36dTWoNAIJJgQJUShkAwdjclS/OGQLGW4djWyohAxFbbYKL7ikB4wofoQtOLQMSFyYpOhI5AocIOuFULj0CEJOGYY2aRQPLCgy/nqZFAmKSkAG0Ck0By2npEPW6TQHy6dwijhpRAvMpM4mhylUDFPLjUw+KVQA6/+KDkPpdAbUw0V5J+l0DtYyts6EKZQL9A4BUOS5lAbXsigT4Hm0CkxETvTtebQIT+9FNvm5xAiNoX94RbnUDO7sbxmp+eQBcDduywI59A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCYE/Y0vCFwQI8BR/y9MnFA5VVLAVajdUCYcdKIFDN3QKyw3zpu1HtAX8xmwixkfUD3kdlwgrqBQOm4E1mO8oFAhA0D7US7hUB8mbeU5fqFQEs5qfyww4hAEHpb0DwDikDeGU04CMyMQNelAeCoC41AOX34uS9qkECykBWuNYaQQJam6LVrCpJAg23KV1tukkBIvU3EsZaTQDWEL2ah+pNASplwZ8cWlUDI1ETZB1uVQKfCYGMDF5dAJf401UNbl0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA/KJil8iNpQI8BR/y9MnFAlLmMQumSdECxCkktQaN2QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCAI9DqN6RuQNS+X4D+xG5AFmZs+rPCc0At5s0TJZN3QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDGeRuljWJrQFRnpVdMhW5ANL2bcWwhdECqEa9//lN2QKhiXGFcInxAOWn7ntZkfEAOhI4ophGCQFYHXkfjMoJAfwflFvZqhUAs1UoT/qGFQDlaxQ5ua4lA5icrC3aiiUDzrKUG5muNQKB6CwPuoo1A1/9C/y62kECt5nX9stGQQMFmOWW8bZJAZiih9Fp+kkAekClh+G2UQMNRkfCWfpRAAqb8aC7ylUAge4Hs0n6WQIK9832EtpdANPtEVNwamEBm08aFujqZQH19hSD9dplA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkC6CZAYNyJpQFRnpVdMhW5A/w1KvZ4BckDMvNRcKbN0QI5lltx2EnhAWxQhfAHEekA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkC6CZAYNyJpQFRnpVdMhW5AbFyUq/OhckA5Cx9LflN1QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + hH7jX0jiZUAoFld2zuNlQDAn7Gl4w25AnREdidiCc0AMubYkrGJ3QCWYDtfJE3xAXbnEw9HSfUCjUAiEJsKAQK6L0AsVcoJAo3/2rdJKhEB1t3YbgXqFQMx/fX3lgodAPOMcK+2CiED1fwRN+LqKQGcNny05u4pAhKhiQiSDjED4ESDGenONQBPRwDdQS45ARYtQL94VkEDTWLK50ymRQFkLFJfnsZFAHNvyhfSFkkBti9f+8E2TQGVdM1IV4pNAgqAYABdqlEBJcwZaS2aVQGa26wdN7pVAkIe1VGFKlkDXm2RPdy6XQOq/qZG0XphA6xsot4DKmEDO1XyZ6uKZQP+b6x6KZppAFeorlADHmkBGsJoZoEqbQClq7/sJY5xAKsZtIdbOnEA96rJjE/+dQIT+YV4p455Ar88rqz0/n0DLEhFZP8efQMpyf9m5YaBAVxRysLqloEBV/R/azO+gQHtVkhbLU6FAX70BjtG9oUCflrJ82wGiQGl940HWi6JAxI6bS/EDo0CNvgOo5jmjQOgY80j8daNAsf8jDvfno0AMo0pGB+ijQDyKxA4KdqRAFmMs+gu2pEAuFa4SJTilQCAjDq4QhKVAIKCXFkD6pUDgrom4O2amQOArEyFr3KZABPCpHkwUp0Dq6/TUb6qnQNUgaEhqJqhAmQDt0o2qqECmUSZyiDipQCSLjdOgOKlASMytObHmqUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBAWxMY0uBpQGaLOdoMYnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBQecKZJCNsQJ0RHYnYgnNA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAot2DdIQNrQANJK5hVInJAtmSyHxTyckBUSTk3e5J4QPEGK/XDEnpAdlI7aP4CfkATEC0mR4N/QFj62R7XkYJAMoidYrb5gkDp/lq3GEqFQClnHZHtkYZAegPcT1oCiEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + TpUFzbqBXkB6DljT8SFiQLWw0KihQmlASsuepCghbEDDtgs97KBxQM79KMRAonRA4QfIJ0QxdUADEcpYx6F6QEKj6bMwo3xAIWKGQx8yfkCYsHSIz+mBQCfZ0n37sYNA2jiMVJExhEBSA1WAR+qFQGlh6km9+YVA4wfWGImiiECSYXEZ0DGJQNrmVUfAOoxAiUDxRwfKjEAD59wW03KPQBpFcuBIgo9AyYcdhn+dkECjN3pxSt2QQOpLKWxgwZFArguCX8Apk0BmO2kDfI2TQPUfMVrWDZRAPqJxJvdplUDDZFn/t42VQIW2ICENTpZAzMrPGyMyl0Agjkn7842XQGei+PUJcphA4EqTgyzOmECwJDnCKs6ZQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAtECBNt2JpQBTpB48/A3JAiq1QlkuydECjQFSuFxR4QKOko47Qs3xA3ptTU84KgEAZ/vdWVGKBQJjuM0tGC4RAGS3mgADrhEDDGLZNkkOGQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RpQPrRTOucZWxAU72qemajckBgbopu1NJ0QKS9uBmME3lAJ8keqOwDe0DCDnUE5KN8QIpDj4ItGoFAWGa6MCnqgUAZbO13WeKCQLyThE21AoVAQmx0R2wahkBtlvZJuFKIQFB0KIkMC4lA35yGfjjTikBtxeRzZNuLQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCzxYFkpHFwQFAtpBCXEnJAsyNeuPyCd0AXiDhKr0N7QLOBOgxVlH5AC3MKz4MqgUA9bueituKDQAui+Pgvs4RAW7+jjQ5zh0ACgXgnZ0uIQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RsQI8BR/y9MnFAjwFH/L2yckCPXyNQFkR4QI9fI1AWxHlA5bMnVa60fECCAvIfg+KAQKwsdCLPWoJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + eg5Y0/EhYkA2uAwZnGNiQHipJL+oMXBAr2sYctFic0A/BLn4wGJ5QNYsYOl/c3tAF2HcqpdJgED+9lMwF8KBQBeQytRD0oNAF7+4/u9ah0DucFmfuZKHQBfupiic44pAglH92hCbi0Cte3/dXNONQEDuLfiuG45A0g18ih2akEBSrf8FyrWQQBkiK4UzfpFAr9bvAQa2kkCoSol6X0aTQMZZwtQ2SpRAWmHuiKWSlUAP3AKhV6aVQFbwsZttipZADHhTl+vel0BTjAKSAcOYQAgHF6qz1phAnA5DXiIfmkC6HXy4+SKbQLORFTFTs5tASUbarSXrnEAQuwUtj7OdQJBaiag7z51AQnHutoFbn0CMqkXEqn+fQNFfw2LoTaBArPhYj8V7oED2V6wx/k+hQGyE1JnwXaFALBBQpBtAokBytm3NJsSiQOyby65GIqNAl65WnDzGo0Cqk2t6VAikQLymP2tSyKRAAx+egXcupUCu6PHXcg6mQEozTXyNEqZAbr2keZiEpkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDsFOgHcuJjQBu6YmAmQ3BAdmjQV5ECcUA5Cx9LftNzQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDEsXzkGyNlQMZtNYzMxW5A4rYaRuaicUA+w2SRqbN1QFZc2zXWo3lAZYSsCFjEfUCxaCWBmfR/QOyUNvyj4oJAIrxbc84ShUAK5vLm+3KGQIbpJZBaK4hAKDev0VMDikCGGBS6BrSLQFNhMdSfO4xAFUFyrzJ8jUDiiY/JywOOQEBr9LF+tI9Acdy++TvGkEAvXlhOa6KRQCPzIwiCUpJAvoa2Q5dqk0AId4jhwt6UQBuwpj/TapVAH/patPNylkBloHjd/m6XQHwjS7Avc5hAfCNLsC8DmUD8OkLFhTeaQC46sL51j5pA4FAVzbu7m0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBkuM9LfgRtQFgXFG05cnNAMjrEeZeTdUDMvNRcKXN7QMZJVt+axH9AXT3q3MtRgUAQK1AVrwqDQIhnbN8XioNAEFo+P1uThkB/RuwNTyKHQA5vSgN76ohALqv6KbMjikA3b9HSjSKMQMKLnmUKLI5A5ac6h3IVkED3WhA0KzKQQGW/MZzI2ZFAdnIHSYH2kUB61HKd7vWSQMBi2eas+pNAxMREOxr6lEDU4pxOtpaVQBv3S0nMepZAU+2iMEbClkCX5ovg50aYQNMEmkWchphArfvM4Q1jmUDqh2wYzRqaQCnrDHkpL5tAzwvR8Q2nnECGFP10ZS+dQE8jyAZka55Aljd3AXpPn0A4K2KDq3ufQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA2uAwZnGNlQFRnpVdMhW5A4rYaRubic0DMvNRcKbN0QD3DZJGpM3pAWhQhfAHEfUCTF2mWQeR9QL6OkVZCmoFAWpC1Y2KqgUBPkxLvg1KEQN67cOSvGoZAJJh+FuTChkCzwNwLEIuIQN7qXg5co4lAeuyCG3yTi0CYPT8G1KONQN4ZTTgIrI5ATLYWGECWkEDTovkjOtqQQP7MeyaGIpJAHZPLwWXekkCsuym3kaaUQONQ4P/GrpRALNMgzOdqlkBjaNcUHXOWQHVVYZgIx5dArOoX4T3Pl0Dz/sbbU7OYQL9FMzY0y5lACoKZroRHmkDWyAUJZV+bQB3dtAN7Q5xAVHJrTLBLnEBmX/XPm5+dQJ30qxjRp51A5nbs5PFjn0AdDKMtJ2yfQFaagJEpmqBAZn0oXxn4oEB7kmlgP5yhQL8IW2Y8vqFAbR1TZFpeokB/lNZwZ6CiQMaohWt9JKNALanOboWgo0C4M29vmOajQNy9xmyjWKRA7TRKebCCpEARv6F2u/SkQM7/eNnDnqVANQDC3MuipUDyQJk/1EymQFlB4kLcUKZAfcs5QOfCpkBLzMtG93KnQAgNo6n/jKdAbw3srAchqEBhmNWwIrOoQGGY1bAi46hAISRRu02VqUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBmiwPJSONqQBTpB48/A3JA1c6DlSfickA28gnAwnN3QPfXhcaqUnhAWPsL8UXkfED3NWIaA2R/QA8rUBWvioFA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEuil1aXFwQOO2GkbmYnJAhBgGycGCd0BXXNs11mN6QNUYFGjn8n1AeWXdZlnUf0CYEq9Z1SGCQOm4E1mOEoNAxRhU/zZKhUAWv7j+7zqGQFYd1Zd4AohAP78/zgJziUAQcLWP8AKMQD/uLfiu+4xAus4/Vr5NkEDQeP7wAIqQQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDEsXzkG6NjQFRnpVdMhW5A0BY+T/wBcUDQdBqjVBN4QIqn3Qnr43pA0NL29qwkf0CM/5SUYXqAQGiYaaUCG4NAHQQWLaMyg0CVng5LZEOGQEoKu9IEW4ZAJqOP46X7iEBKOan8sOOJQO3ONfMRBIxASmiXJl1sjUCly0KohHqQQG6kHTFa6pBAIbuCP6BGkkBSuvA4kG6SQNPR503m0pNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAsECBNt2JpQOzQoK8iBW9ANFlMkbNBcEBkJtC0/7J2QG/7xGZjYndAK4Fk7hfkfEAbqyzQvUmAQKrTisXpEYJAKCHWMmN6gkC3STQoj0KEQMgkR7BBooVASE61wND6hkBZKchIg1qIQNlSNlkSs4lA6i1J4cQSi0B5VqfW8NqMQPej8kNqQ41AhsxQOZYLj0CGmyUJpHGQQPV8DSsR0pFAOLKKF+r9kUCEpWsgPZqTQLShyq4FypNAy7kaG1N+lEDLJJ2BNl6VQH3QfymZCpZA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 2PxvrzYhZEAoFld2zuNlQBwPdBE9Am9Ao+J3Wr8CcUDkW76NtvFzQLzZylJEBHlA5Lma4Q4De0Dem1NTzgqAQFaKl40TmoBAbMSxSPrSgUDnjhgmVVKDQJnKVu5b+4RAeJOZvpYKhkDE9NjwpzOHQHjCh+hCk4lAxCPHGlS8ikCj7AnrjsuLQFUoSLOVdI1A0PKukPDzjkBzluSlaxaQQK+NBkMOXpBAJa1JtLGikUAvpf1XZCKSQKXEQMkHZ5NA9WISlsUilEC72YHKLYOUQNl45Z37ppVABFzClk7flUBLcHGRZMOWQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBDHc6DfEJxQBpDcYES0nJAQ3uq19RTeEDhnQW7KgN8QJnPrtxsxHxAHPkEYOE5gED3kdlwgpqAQEcjh2ItcoJAWr+jjQ4zhUBHUnWM2fqFQJ6CnDSHe4lA2jIZyDADikA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDsyMl+5JFwQDtMc7KVAnNAgNhb5OfCekDPWwUYmTN9QNTM0S3LaYFAsbXLPk6yg0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAYxSyCnGRqQKmavaDqInVAIHKoplFjd0A38gnAwjN7QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCCq6/ifYNvQG+XdYaqQnFAxet5i0KzdUDBMzRFF9N2QMGREJlv5H1ATXJr2TNEfkDgd3b243qCQOALluSRIoNACzYY591ahUCaylbuW3uGQCmH1NE164hALqv6KbODikC8Z3gNjfOMQEz8thQLFI5APJOciysmkEA7XayCAnqQQJm8jIdnJpJAu3Sjl1g+kkA7jJqsrgKUQDseCdujSpRAUDNK3MlmlUC7o5HBBMeVQGe2HK/6+pZAXQUOFUHrl0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDEZV5bjlJwQEMdzoN8QnFAGrpiYCbDdEDRdBqjVFN3QBoYP7R+1HtADBeTeAR0fkA4tqFciyKAQBS0pzEuAoFAVgdeR+Oyg0B44XFOuhqEQLo0KGRvy4ZAljIuORKrh0BJXYZZm5OIQMFcsDte44lAZ65CRPMjjEDBi55lCmyNQC7a6FNfLI9A7LUgaFakj0B2cgdJgZaRQGFdxkdbmpFA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCRGlyHeVJxQN9iJOBzYnFAbbpw/0tzd0AlKu7sfIN7QDQVBTlkpH1Ae37y8RT0f0CZuXBG3lqCQKFsw5WWkoRAKr7x3h8ThUAycUQu2EqHQI7ru/urq4lAMqAyWITTikC5FT7+9+OLQJbN/HQQ7I1Ar3xRQj56kEDBjoPYPH6QQEGmeu2SQpJAYP44t2eGkkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCAI9DqN6RuQMZtNYzMxW5A4xT3mT50dkCuz2dSioJ2QAQkbFci83pACtY+Ee2EfkBaeHBcumN/QDCVIYvCeoFAW7+jjQ6zg0DAHNxpNLqDQMBLypPgQodAUp4jvEVLh0AkeZSwbFuKQLSh8qWYY4tA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAAVPW5y0NsQI4BR/y9MnRAqZq9oOoidUA38gnAwjN7QHy/RlksY3tAIo1tSSLKgEA5SsFKOSqBQE+TEu+D8oNAzCplhpAyhUDic7Yq2/qHQPkwCizyWohAXV7USH5zi0AAxXIVM4uLQMfwGCWfk45AVD1Ud7ULj0CONH3DEAqRQEj88GsQ1pFAckpQy0aOkkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + eg5Y0/EhYkA2uAwZnGNiQHJahe5LhGlAsaxs2egRcUA5Cx9LftNzQNhttFCXInlAWxQhfAFEeUAuwrhVL5N9QLFoJYGZtH1AqGVdQ9mBgUDslDb8o+KCQKiUS22FCoVAN72pYrHShkCm5xb0G+OGQDUQdelHq4hA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERuQEMdzoN8QnFAcQ5nZb4zdkB+v0ZZLGN4QMdia2pWpHpAfh0jrYR0f0Ar3dtEl1qAQLZtEYV5UoNAjwqmYSNzg0Ai60mdenuHQBqb26EF64dAtsvt2NGDi0B+yKW+kYOMQEfQbnETPI5AOX34uS86kEDx+rftDo6QQE39uyE51pFATiSo6UqOkkCqJqwdddaTQGKka1FUKpRAd7msUnpGlUBcPREsuyKWQMA77R6bopZADlR2OgFvmEAKLL+8xqaYQFQckVryqppAwGrbSEe7mkAGM/ZoODecQDxaG+Bih5xA6kjJcG67nUC8cRL1uEueQP9dCnKU155AJU04dfIJoEDAuoBD9U2gQEpFIUQIDKFAgEb8TSAwoUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAeR9VQy0JnQGS4z0t+BG1A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + hH7jX0jiZUAoFld2zuNlQGS4z0t+BG1Ancs7e+dBcUC6HPhlP9J0QI3oMXEC03RAr/EzooVDekA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAc6N63HmJpQHzKEHuiRG1A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEfuNfSOJlQFRnpVdMhW5A0BY+T/wBcUAyOsR5l9N3QFidL53tknlAwZEQmW/kfUDm9Hu8xaN/QHFNCWV5qoFA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAAVPW5y0NsQKPid1q/AnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBK9xnL9URsQEMdzoN8QnFANFPZBFMzdEAKeGK9lHN3QKj4mfRCNHxAMTmqNEOEf0AbKPOJjSKBQF9I+6mNyoJA4lOZmfkqhEDwTHxCz4KFQHF8944l84VAG3f+RBu7h0A4qJ2ekfuIQBum7G7HQ4tAYagkbqQzjEBEpnM+2nuOQCgRlW4jApFA1OmeLTOKkUDaJ/p8aU6TQMymIWWEcpRA7qe95HLqlEDgJuXMjQ6WQG6/tPnIrpZAxDy41MOSl0CE1PX67sqXQAtRZ8/ZdphAzVY2xw8nmUDvZjrXD/uZQLFsCc9Fq5pA03wN30V/m0D7XNtsca+cQDCm/dqBf51ArXNAe7c7nkAUvNDitwOfQPsxiYzxH6BA/OhR9fZDoEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERrQAojd9/OZG9AcQ5nZb6zdEBM7E+pf+N1QMdia2pWJHlAE0fk4pcUfEBj4CNf1xqAQKd0LtyjmoFAp6McBlAjhUAt6OwRWTOFQDbMevt764ZAVuhz4WtriEBj0h+h3ROKQJqrbIjks4xAp5UYSFZcjkDHsREuRtyPQOjKz4s0ypBAK+23ETnSkECrBK8mj5aSQM1ONGV1VpNAOi0NHLtelEBNZit6yxqVQOxDcioB65VAYntse/E2lkCeWtc4R3eXQOKSY5BH+5dA+KekkW0XmUAecs5NnTuZQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4jyZjTbDXEA2uAwZnGNiQHBahe5LhGxAQx3Og3xCcUBatkQoqbJzQAp4Yr2Uc3dASHREhRfjekAxOao0Q4R/QBsZIvHCCYFALP341XjKg0Bf3BqYO1KFQJAqw/IE44ZAwwnltMdqiED0V40PkfuJQMM4095z84tAiDgxS+gDjkDDZ8EIIHyPQFqx2SYaHpBAojMa8zp6kUBhy1cZZoKRQEXhKiGcBpNAIksRCJE+k0DF+CE28sqUQGw746W8QpVADA3RMAivlUAeUki0As+WQK5uTYRE05dA0GitwkhbmEAZ6+2OabeZQJPysV2FX5pAdhTeiqW3m0DwG6JZwV+cQDme4iXiu51AW5hCZOZDnkDrtEc0KEifQP9831sRNKBAzmVWITdqoEAjBzdZHKagQPNdP/BMbKFA45KyY0eIoUDVHZxnYkqiQLPpuvp3TqJA1yrbYIj8okCVqRdyjSyjQGK1e2GbiqNAVTWTfLgOpECHrWQwsYykQBXBDofj8KRA4DiXN9RSpUBuTEGOBrelQDnEyT73GKZAP33/tyTJpkBevLINDRunQP10n4Myr6dAg7Sb3CIdqEC7bD9PQJWoQNw/zuNF46hA361ftVBDqUABOLeyW+WpQJ852797JapAw8MyvYaXqkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + XBt4PPKiZUAoFld2zuNlQK5rGHLR4nFAFOkHjz8DckBv9VHaAlR4QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDjthpG5mJyQIxiFkFOcnJA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAvoQZLiCFyQDtMc7KVAnNA9vuahKBSeEACpwfsrTN8QL1WL764g35A5ADOEmMygUDC2OF7aNqDQEgumC/vSoRAcS4f/wGDh0BWuYW3v+KHQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDNXvgI0WFxQK9rGHLRYnNA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBQecKZJCNsQBu6YmAmQ3BAMMPSmoOidkAJeGK9lHN3QDAhr+7bs31A9zViGgOkfkAoIdYyY3qCQFLjN+9l2oJAVSd72MSihUBSEiYZEmOGQOYr/HAGW4hADGUGEYpjikAPLINAGZOLQHCS0C0WfI1AoDAE2VpLjkC4YN8rYYKQQNAveYED6pBAnHayM5cGkkC0RUyJOW6SQE6NF0LdkpNAZlyxl3/6k0Ayo+pJExeVQEpyhJ+1fpVAsrrhXmnblkDKiXu0C0OXQPs8IiuKN5hAfKDgwlHPmEAPveWSk9OZQNnJ0L6Nz5pAWD8mX7Qvm0BZ4cfT45OcQG/C+DHlw5xAhkXLBBZYnkC2CrjPH5SeQIGaBc4YEqBAG5FX8josoEA/kqWZJvigQOzBFRxZPqFA/x0hpFHaoUC98tNFd1CiQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEfuNfSGJnQBu6YmAmQ3BACRqGaTzidEAJeGK9lHN3QAl4Yr2U83tAK4Fk7hfkfEAyQlYELCKBQNkDK56EuoJA7JQ2/KMihUBs5M7Z28KGQBe/uP7vWodAMxB16UfLiUDREZn2Z1uLQDM/YxP0U41AZPI8Mr9jj0Djj4OnJa6QQI+iDpUbspFAY6d6vHtykkDsy/6QV7KTQOO+cdHRNpRAbOP1pa12lUAtr0Nv/TqWQLbTx0PZepdArcY6hFP/l0A2675YLz+ZQArwKoCP/5lAtgK2bYUDm0BnGRt8y/+bQADzhwuxB51AsQntGfcDnkCACn8gB8yeQIeZ7ooZAqBAMhAplB4ooEASJI+LLJCgQFcIEmM0KqFAwTiHiUqQoUAoOdCMUjyiQEx68PJiWqJATHrw8mLqokAMBmz9jTyjQApykL5w0KNAZZGeBLFipEDK/QvJm7KkQPAbPwXE8KRA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERuQEMdzoN8QnFAxwSPFv6Sc0Bhbopu1NJ0QLx61LmXI3tAO6pPBu6Te0DlAM4SY9KAQFUcagsDKoFAdCksCI+agkBVS1g1r7KEQJ9Trgrb0oRAyn0wDScLh0DoK/xwBruIQExZxo2S04tAlIX5v6gjjEB82WFuGl6QQIuwRyAKdpBAPcesLlDCkkBhXcZHW+qSQBN0K1ahdpRAIksRCJFOlUA3YFIJt2qWQF1k/fPMepZATXWTCt2Gl0Dde/QIIz+YQJSJQgXzaphAeJ8VDSnvmUBZazSgPguaQHDuBnNvn5tA1cgFCWXvm0C3ArZthYOcQOvdRgqLC51AAfOHC7GHnkBr9T0f4c+eQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDEZV5bjlJwQJ0RHYnYgnNATOxPqX/jeEBkbLHC8LN8QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBkuM9LfgRtQACq+tzlYXBAjgFH/L1ydkD5NnxfV7N3QI5fI1AWhH1Abdw8T0e0f0CBAvIfg8KCQDadjNHPYoNA/cgy4TtrhkDkL7w8D1uHQHNYGjI7I4lAYPb8/ccDi0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDYkZP9yKNsQAoahmk8YnBA7Cam0jxjdUCZcdKIFHN2QEJ7qtfU03lAYMxmwiykfEBkhKwIWER/QE2370tu4oFAxiL6P4Oqg0BN5t11GmuFQPFMfELP4oVATRXMn8bziEDxe2pse2uJQHg/TqISLItA8apYlif0jEAMIPLdaTSPQAd+isA/QpBAT5I5u1X2kEC5lO/Ohc6RQGWnerx7EpJAnarC1rtSk0DlvnHR0daTQBmaAm7XHpVAl9XW3xdjlUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAc6N63HmJpQPV+Nhksk3ZA7mf6OVRSeEDjPDZ2msN9QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCGpXi5ZgJtQHzKEHuiRG1APsNkkamzdUA3+HxMI4J2QDdWWaB7k31AsmglgZm0fUCtr61o/4GBQIG0GZBfEoJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAmWGpEdaJuQNS+X4D+xG5Aaj0MlNdzdkA67XwZ6WF3QMVJVt+axHxAYa7EkJdyf0B2BU+rpGqCQF5dB26t4YJAXoz1l1lqhkAK5vLm+3KGQIm2d5qloohAAcVyFTMLikA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4UVm4m7BYEC+wWWcSyJvQLPFgWSkcXBA3z4PIn6idkDahsnbUoJ4QDpLWW1B83xAaN4V+yqTfkAA03bTLBKDQP72UzAXYoRA97H2AWSqhkD11dNeTvqHQMG5v7TlwotAWAOee9qSjECI5WXEUcuOQIUJQyE8u49ADuMEgNRpkUBCnJgl9KGRQL6L2LwPbpNAwPlpjhq2k0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA2gKvZDSNtQFf+/uF9UnBAj2WW3HaSdkBFvP4+7IJ3QLYm3lMlo35A7GVI0vfZgEAlG7hcFGqEQIBG7A1P4oRAHPo3i0sCiEA6mcwFx+KIQDpL9HWjkotAZ59xqygLjEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA8VWQoKMVvQIkw7CrX8nJAZYXGTawTdkAXiDhKrwN5QGXjoqEEJX1A1UvlV1magUAWn5ttDquBQNV604EFI4VAFs6Jl7ozhUAApVWEUVuHQNAgao8yNIlAlIX5v6hji0DucSZ6isSMQLLWtaoA9I5AQSnl2nBmkEC2FEtRPHqRQFY+JtyWgpFANixCZpI+k0DWVR3x7EaTQOhCp3TYypRAu9mByi3TlUBoWp6JLo+WQJ/vVNJjV5dAGnEDmHQbmED8GEXOn1eZQP6G1p+qn5lA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBoiwPJSGNvQPtPkeoS03RAD9LLr2cCdkBRpJXvqkN5QDHbzeDqcntAvLJusyyqgEAszgqszMGBQLOR7uFjQoRAI62K2gNahUBGcpIdu0qIQLaNLhZbYolA13YTtvwCi0Dht7AYp5qLQAR9uFteK45A6Bjbw6S1kEBnwkAH8KGRQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDOIQhxcmNtQOzQoK8iBW9AzLzUXCnzc0DnbmCMEcN1QCIR2WHBY3hADjCoA8DTfUB9HSOthLR+QCVpkOw3eoJAvr1/gO7igkDslDb8o4KFQIXpJZBa64VA7MMkJlALiUCjOuJ6snuJQBnKycuxM4xANhuGtgmEjUBE9EvO/WuOQDgPZ+gkUpBAGyU68FqGkEBPkjm7VeaRQM07n/6g0pJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAtECBNt2JpQK9rGHLRYnNA2g4uegHidED8FzCrhFJ6QEN7qtfUk31A/jqGf+6xgECYHFWaIWKCQByMQmpGQoRAq7SgX3IKhkBiJB5No3qHQKKTII6poolAYlMMd08Di0A2dMTJAKuNQGKC+qD7i45AeVUsyxMqkECXKSL8m6GQQPhsI+Bp7pFA4KtiyLz9kUANgmThjwqTQPbAo8niGZNAI5el4rUmlEAM1uTKCDaUQDms5uPbQpVAIuslzC5SlUCCLiew/J6WQKICHeGEFpdA6RbM25r6l0D+HWdHGGuYQGkuw/DwvplASA455UNvmkDpRboFR4ObQMT9eHxfO5xACxIod3UfnUDOyR7fhw+eQJo6hmyh555ASrledqPbn0ANqb7A+1WgQDHq3iYMBKFAmJ7hJ/IzoUAJq1LhIAqiQIrgk5QSeqJA4WvGmzUQo0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCmvpxNHKRoQKPid1q/AnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEfuNfSOJlQHzKEHuiRG1Ancs7e+dBcUDzH0CAf7J1QMbreYtCM3dADBeTeAS0fUC0qXnosGN+QE2370tu4oFAoQDjg0Q6gkDgl5OHxeqFQDThhr+bQoZARMVdpFEDiUD7DC3PB0uJQNilAeCoC41AP9AldoCTjUCONH3DEKqQQGnY5NjrzZBAckpQy0YukkAb70nnMVqSQLw6ImlyMpRAZd8bhV1elECgUPVwqLaVQEn17oyT4pVAHEA1CMSCl0APswPL9OKXQCXIRMwa/5hAvqGxWwCnmUA8SxefS5OaQAck8ichA5tAhc1Xa2zvm0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUC2sNCooUJpQFAtpBCXEnJAW7ZEKKmyc0DqDZFHgcN5QHfu64dFI3pAlT+ocp2zfUD1tbbNbGqAQPVJ1rsaEoFAWeOA6viCg0CGTldUXMqDQIbpJZBaq4ZAhn1FfghTh0AaysnLsbOKQIasM6i024pATdjZtyDkjUDUHKrDKbSOQE4kqOlK3pBAgxXdV0zykEDOO5/+oKKSQM0Fr/V39pJATlOWE/dmlEDkiIHIqIqUQJfV1t8Xw5VAlp/m1u4WlkCs6hfhPd+WQPP+xttTw5dAFrfd60Tbl0D6zLDzel+ZQD3vmHl/x5lAeuSnCNEjm0DMF/duq4+bQMNm6NTxf5xA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RsQBu6YmAmQ3BAAAjXMD5zdEDiFPeZPnR2QABms4SWhHtAVrq3iS51fkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAAVPW5y8NqQAoahmk8YnBAjgFH/L1yc0AKeGK9lHN3QCfJHqjsA3tAVVzbNdajfECTk/19ogqBQEj/qQVD4oFATebddRoLhUBILpgv72qFQKxbYkx7g4hAazeaYHKbiED6X/hVnmOKQKyKUHYnDIxAPiPx/BasjkBztvaFkxSPQIOnS4ZB2pBA3Lx3FoaukUAj0SYRnJKSQAO/QpuXnpJAtdWnqd0qlECy+YQGyFqUQDXtnr4z75VADyN1AgRblkDEFf2zX7eXQI86bBdaH5hA1k4bEnADmUB2LGLCpQOaQFZmEifGx5pAWkI1ytuHm0DSVVK+4ZOcQAxZmtghFJ1A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBGCTcNzmJoQBu6YmAmQ3BAo+J3Wr9Cc0A9w2SRqbN1QP7uwaWCk3lAVEPGqhoEfkDFSVbfmkR+QHFNCWV5CoJADytQFa9KgkDWVvYkG1OFQGgsiZOwooVAlTIuORLLiEA4WsUObmuJQMI4095z84tAZWBqtM+TjECQiuy2G8yOQCZmnfv/C49AKjah0DAakUDIXG3wYyqRQBHfrbyEhpJA3EwG33amkkAlz0arlwKUQMP1EsvKEpRA2njlnfumlUCl5j3A7caVQLr7fsET45ZAjI9KrEEzl0DRflGURHeYQKMSHX9yx5hAupXvUaNbmkCCADkJboOaQGYWDBGkB5xANoUv6b4nnEB9md7j1JudQBqbAvH0q51AL7BD8hrInkAf+1o3EcCfQKMZi+IlLqBAtL7NARmOoEBjpQbtUBChQHRKSQxEcKFANNbEFm8iokA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD+9P4gH+NsQDtMc7KVAnNA2obJ21LCdECWWL39WFN5QE4sistCw3xAJbAJHTFkf0DuQWt1DWqBQKa4KMpvuoNAMgVkHIayhUBt5M7Z28KGQMEtwhGyeodAsafHgFQLi0AkW4wuPhOMQE+FDjGKS45AvlfIGesRkEBZWewmC7KQQKBtmyEhlpFAb24tKDGekUCFg24pV7qSQCCFkjZ3WpNAaZlBMY0+lEAEm2U+rd6UQE2vFDnDwpVA6LA4RuNilkD+xXlHCX+XQM3GC04Zh5dAFNu6SC9rmECw3N5VTwuZQMbxH1d195lA2wZhWJsTm0CVYEMvkJebQI0dxmbhX51AN8K/gsy7nUDUMXVh90OeQBvYkooCQJ9Au8l42hk0oEAyZDIUF6KgQK1UYt409qBAJO8bGDJkoUBbaVrcUvahQK8whYFKLqJA5qrDRWvAokDUKG5QYDCjQAujrBSBwqNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAYxSyCnORoQANJK5hVInJAU72qemajckDKo7/RbVN7QBoYP7R+1HtASP+pBUPCgEAEa5+IdoKBQKwsdCLP2oNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBxWoXuS4RsQIkw7CrX8nJAdE+7zNVidUDfhPAvb2N3QM9bBRiZs3tAGidpBR+EfkDfjIK6A3KBQFS/WpJ7SoJAf+nclMeChECZ32Kye3KFQDk8vYw/g4hA/AwtzwcLikBkZj+Pi7uKQPOOnYS3g4xAjRGuZ0nDjECEkx4d+TuPQB4WLwCLe49AVp/GetuhkEALzM9aHfqQQGy0B3wBvpFAveI0aWNGk0DJ3fd3Pb6TQN7yOHlj2pRAGgwlZZ9GlUDCCAyBmV6WQJb7ZPy6EpdAUTFqdsUmmECtfjfP66aYQGZGq3frQplAPKeVxBdvmkDDb5tzJ0ObQLy+jNltM5xA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDOIQhxcuNoQOO2GkbmYnJA1c6DlSeic0A+w2SRqbN4QPfXhcaqEnlAUuTPEW5jf0AyQlYELGKAQMNG15xtGoNAjB+yJUNKhEAdJDO+hAKHQCZ0obn5sodAU3pGX1vbikCwBNf52wqLQOR+x/eck41A3Qp8nz0zjkDuriMT6pWQQCAcI97kZZFA0sT2GiAakkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCEfuNfSGJnQAkahmk84nFAFOkHjz8DckA28gnAwnN3QH2/Rlks43lANlDmExuFfkBSQEdo7fmAQBIHc7jE2oJAtm0RhXkShECjC/RQBpOFQGo3mmBym4hAGpvboQWriEDOZGR9/jONQH7Ipb6RQ41AI/ol5/4lkEAZSRdNReaQQGx8ZrMfgpFAy198W4tykkDoa6ZKO06TQBVQTvm2dpRAaIOdX5ESlUCxBd4rsm6WQHJ5PvXydpZAJJCjAzkDmEAxHdVACDOYQGukUv5O55hA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCeFrCBN6NsQHzKEHuiRG1AbFyUq/PhcUCUuYxC6RJzQC9jMn+ZEnpAu3rUuZcje0C1glWqpJmAQF1s2AZ4GoFARofWQuZRg0CKcn2s2UKEQNpnen49WodAVHpGX1tbiUDRRvqsdPKKQOha6pqyY41ATqfhL3sFkEAmRNpbH/6QQAC+Rj7BkZFAtWw4UUvGkkCy1KtMB96TQESVlkZ3jpRAi6lFQY1ylUAuxOvjIqqVQNQrhg2uzpZAd0YssEMGl0CGQusb9FqYQCldkb6JkphAz8Qr6BS3mUBy39GKqu6ZQLnzgIXA0ppAS7RrfzCDm0BIHN967JqcQP3K0I12z51A10Q9cBhjnkCv4TWcvFufQMQtUT+vV6BAyzLNuv7zoEDpJToOxVmhQIkqbYYM2qFA3GfseuWfokCuIlZVItyiQGepVeT9aaNA0mN2uzKKo0AnNdHuKEykQBl4JbZIbqRATC26vT5OpUDxOJlwXXSlQNe3Wr5R3KVAFcPwbWjmpUD7+HokYoqmQAdO2nGDqKZA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQBTpB48/A3JA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCKSQG2khJwQFf+/uF9UnBAGKFN1WojdkBXXNs11mN3QDbyCcDCs3lAEtiEjhhygED1tbbNbMqAQKPcBSdaKoNAIrxbc87yg0DQ4qrMu1KGQIS/Kl0hC4hAMuZ5tg5rikCxxc8CgzOLQF/sHlxwk41AQspQm8TrjUCdVOjk/cGQQBT6cwf5VZFA5GiX3xOmkUCUEWscTxqTQMh+audJKpNAIzrJEXvilECOPH8lqyqVQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAeR9VQy0JnQBu6YmAmQ3BAVv7+4X3SdEB2xqyr6ZN2QHYkif9BpX1A6g2RR4EDf0ACvmoPDduBQLyybrMsioJAvOFc3dgShkDMxTPCjvOGQOnnAYM6O4lAMPP93hqMi0DpFvCs5sOMQOpF3taSjI9A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDYkZP9yKNsQHzKEHuiRG1ADtLLr2fCc0A+w2SRqbN1QDDbzeDqMnlAzRqxsIHEe0BS5M8RbqN+QKpQUX+5KoJAvNKLRA5ag0BL++k5OiKFQO4TSiYyc4ZASyrYY+aqiEDuQjhQ3vuJQH1rlkUKxItAj+3QCl/zjEAQTDqBYcyPQGrY5NjrnZBAUajdjFFCkUBO7rfgISKSQJoqHllynpJAzgWv9Xfmk0DjrF4lk/qTQBeI78GYQpVAlcPDM9mGlUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDOIQhxcmNnQAoahmk8YnBA525gjBHDckAx283g6nJ4QKp1/l+383pAhy/S5YLjfEA5aMnMZ5KAQCZFs49NCoNAnZWT6fOqg0CKcn2s2SKGQADDXQaAQ4hA7p9HyWU7iUAr7d8IzHuKQFCjFrO4U41Avs2DRCOEjkAoaYJuMm6QQFvWgTktDpFA2n/nfHj6kUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAmWGpEdaJuQBTpB48/A3JAh9H1kSpSd0CIjsh+LwR6QIcv0uWCY35AOybk7U6agEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBmJ+r5U0J0QPtPkeoS03RA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA3lC1samJwQHKwihFm4nVAvxofulvzeED6NnxfV3N+QA4gP0jt8YFATwcVTFBKgkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERrQPrYnwv/oXBAzLzUXCnzc0BV5elWwvJ2QKs57ltaY3tAVEPGqhqEfEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCdFrCBNyNrQK9rGHLRYnNAPcnXHQrCdECdKRjPP5N6QD0ntHFi03tA830c1NcDf0DKPVw7/SGAQPlt/BOYCoNAwRzcaTS6g0DwTHxCz6KGQIskpRy20ohA8HtqbHsrikA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCO7m7sniJrQOJgFSPMRGtAmXHSiBSzdUAO0suvZ8J2QIcv0uWC43xASXREhRfjfUDhaKVdGQKCQFJAR2jtGYJA4ZeTh8WKhUBSbzWSmaKFQONztirbWohA2HYTtvwiiUABxXIVM+uLQMjwGCWf845AAfRgP99zj0B7+15lAA6RQEpqgj0bvpFALRLEc0Zak0CUWlTbRsKTQHaUBEBntpRAFHJL8JyGlUD2q/tUvXqWQCqHjPHCopZAC8E8VuOWl0APC/HKAy+ZQJrpmksPX5lAnjNPwC/3mkB/bf8kUOubQLRIkMFVE5xAlYJAJnYHnUA0YIfWq9edQBWaNzvMy55AfeLHoswzn0AwxYTs+2egQJd8llgJwKBAVb1tuxFqoUAivv/BIYqhQBVJ6cU8TKJAnhzBXUr+okBcXZjAUjCjQICeuCZj3qNAXBRhKVjko0BAKjQxjsCkQByg3DODxqRAy2udmqaKpUBjtIsumaqlQBKATJW8bqZAIawr+qaQpkBGpBTJvJKnQGsLf5zflKdA0S61yc8gqECPTJ8C8EKoQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAYxSyCnORuQI8BR/y9MnFAjMDylKaDdkCxCkktQaN2QK7J9MUp9HtA0xNLXsQTfEA7ksT/oBKBQEy370tuooJAWeOA6viihEBDlm96pTqGQILjB7oL24dAcJwUIAdjiUCCEvbjt2OLQAGhlbhIG4xAExd3fPkbjkAB0IPi9KOPQKAODpEtopBAFWgF2QNukUAc/k0oSW6SQKSQY84vNpNAzhSzNo+6lEBWp8jcdcKUQBeX8wKwFpZAnykJqZYelkBgGTTP0HKXQB9BAL7s4pdAvUIkywxzmUDRV2XMMi+aQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDEsXzkG6NjQMZtNYzMxW5A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjZUAoFld2zuNlQKqz0iumwnBAUC2kEJcSckCqEa9//tN3QIvPHOZGM3lA5bMnVa70fkCPb9clJbKBQPIIglQDA4NAIHRYvmZqhECsW2JMewOHQOp7IXHogolAEIksaQccikAXgsYWSquMQAdorJc+tI1AhzCjosAhkEAat6geUG6QQDlHCLEGrpFA/zoN+JD6kkCWcPisQq6TQEi9TcSxVpRAFojvwZhylUAtQbKd8uKWQKWwTbfEOpdAvGkQkx6rmEAlyETMGv+YQEuSbohKc5pACd4X1FCDmkCJ9Q7ppkecQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUC2sNCooUJpQJ0RHYnYgnNAdE+7zNWidEBkbLHC8LN5QAKnB+yts3pA88P94cjEf0DlAM4SY3KAQIZdKO0m44NAKcTGudu6hECkruTXfnOHQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDPIQhxcmNtQBu6YmAmQ3BAORGS194hdUCPXyNQFkR4QK22UsfOIn1A4F8x7zu0fkBWipeNExqCQLq3YaqfcoRA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAYxSyCnORuQAoahmk8YnBA3WIk4HPidUBbGpQIYtJ2QMsgJD3iEn1AkToUIb0BgEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4qRcexsiYEAoFld2zuNlQJgT9jS8IXBAO0xzspUCc0CRoHe3LXN3QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAmWGpEdaJuQDtMc7KVAnNAOu18Gelhd0BiDbspRBN7QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAot2DdIQNrQHzKEHuiRG1A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDOIQhxcmNnQMZtNYzMxW5A1c6DlSfickDRdBqjVJN2QJwpGM8/E3lA830c1NcDfEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCmvpxNHKRoQKPid1q/wnFAU72qemZjc0DF63mLQjN3QFMbh86+dHpAU0PGqhpEfUBxuel2y0KAQKlQUX+5KoJAAr5qDw37gkCpfz+pZbOFQEaBY7aFQ4dAcKvluNG7iEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBe4xb9Y+JuQIkw7CrX8nJAr89nUoqCdkCJjsh+LwR6QArcsZ1N03xAYpggqm+SgEBpG6PrMoKBQI3Coqy7yoJAzEhtCL8ahkDw72zJR2OHQFjEloSBG4pANLNlcMCri0Af8DyU7SONQJjgL41MxI5AwY6D2DzekEDI39fdQS6RQEGmeu2SopJArPWq5XeykkC9lbqErm6UQCwNovrNdpRAPa2xmQQzlkDeIwcJFMOWQLmc8TAg/5dAXjv+HWqHmEDQH8QDUZOZQBBSYyywE5pALUm0/4yTm0D0ZzY05pebQBFfhwfDF51AUZEmMCKYnUDDdewVCaSeQGgU+QJTLJ9AocZxlS80oEDygRxNN3ygQPpRpJxSWqFAsg2YV2JeoUC63R+nfTyiQHAFOCNwRKJArGgJq5j+okAwkbMtmyajQGpgqXam5KNAiRzmNL5MpEDD69t9yaqkQHunzzjZDqVAlByap+e8pUBeBtrXCQ+mQO2nzK4K46ZAt5EM3yw1p0B4Mm2vHXGnQBAdP+ZP+6dAv0YcqjNVqECbXqhPaMWoQH/Sl7ReN6lAW+ojWpOnqUAu54+yfDeqQBniwyWhjapA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDsFOgHcuJjQBu6YmAmQ3BA/pDlUSqCckDiFPeZPnR2QMXreYtCs3hABB75ysHke0Ahb7W1GXV/QMVJVt+axH9AqlBRf7nqgkAkmH4W5MKDQLPA3AsQi4VAqn8/qWVzhkDVqcGrsauIQEahgEdnk4lAZq5CRPNji0BG0G5xExyNQPqO5n9KbI9AbViJVjWSkEDHN8XdULqRQLdIW/RglpJAR0+88qZ+k0AAy5vAgfKTQBXg3MGnDpVAkT+OkNKClUDYUz2L6GaWQJX309b90pZAeQ2n3jNXmEAiRA8pFGuYQGlYviMqT5lA+SSe84kbmkCy2v7vSquaQKs7AwLQp5tAZPFj/pA3nEBNnX9VDMydQOQIWxPn+51AZCBSKD1gn0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBTq+yvm2JjQOzQoK8iBW9APmWIPVHic0CYcdKIFPN0QFy2RCipcndAJ8keqOwDe0C3wo5zbMN9QFqQtWNiioBA70FrdQ3qgkC+vX+A7qKDQOnnAYM624VA5iDro0SChkDd/2rSexqKQEwVzJ/Gc4pAQ/RLzv0LjkBALTXvB7OOQLar2/ipdZBAnellfhrSkEBowkAH8AGSQOfZNxxG1pJATNgTDyaGk0D+XArvdmqUQDDu5hZcCpVARXG56YxOlUB5cCfjfGaWQCr1HcPN2pdAkPP5ta36l0AOC/HKA1+ZQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCmvpxNHCRnQNS+X4D+xG5A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBImCMySWRuQFRnpVdMhW5AS41ZENNCd0DRdBqjVFN3QNrkpS+rU31A+DViGgNkf0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCJy7y2HKVqQNzlv3T/InFAxMM6r+ZjdEBw9VHaAlR7QFjTzBTqlH5AtykXl60ygUAQlzAnAWOCQLdYBcFZu4RA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCO7m7sniJrQBu6YmAmQ3BAbjh/7f2hdUDewAA0zHN4QJX5xmSssn1A3h7dhySFf0Auqi1P4vGBQJq5cEbe+oFAkZjwdBWThUCS1/drboqGQIm2d5qlIopA9MW6kaErikC04Pmc8VqMQFjzhK4tRI1AtA/oxp3jj0D2aRR1QqaQQIuJW1j4/ZFAQFrmEm6qkkALoVJtTsKTQIncJt+OBpRA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDOIQhxcuNoQBu6YmAmQ3BACRqGaTzicUA9w2SRqbN1QAl4Yr2U83hAyxqxsIHEe0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA2uAwZnGNlQAoahmk8YnBA3mIk4HPickAsI4iav9J1QAUkbFci83pALIFk7hfkfEBbeHBcumN/QMBqtPlXqoBALWsmWIk6g0BUS1g1r7KEQL5vp/DK8oVAtk4nHwLLiEC1TicfAouJQLZ9FUmuU4xA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAKGoZpPGJwQIB6f5CPcXFAR9UTyqeid0CSoHe3LfN4QNYsYOl/s31AIfjD1gUEf0B0KSwIj5qCQK/ZqJs4IoNAawisNsYyhkCmuCjKb7qGQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA2uAwZnGNlQHJahe5LhGlA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDEZV5bjlJwQOO2GkbmYnJA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA2uAwZnGNlQMZtNYzMxW5AG7piYCbDcUDjFPeZPnR2QOIU95k+9HdAHrdvb+6UfUAdt29v7hR/QIa6N2auYoJA8N6GIcqig0B9mbeU5fqFQOe9BlABO4dA3pyGfjgTikDenIZ+ONOKQPztQmmQo41A/O1CaZBjjkCwjQZDDl6QQH6OmEke9pBAMKX9V2QikkAwpf1XZIKSQLC89Gy65pNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAaQ3GBEtJyQK9rGHLRYnNAPExzspVCeEDRdBqjVNN4QO/F1o2sY3xAd+7rh0Vjf0ANF5N4BPR/QLG1yz5OMoJAz9eZ//m5g0BElm96pTqGQMa2GS4xUodA2HYTtvxCikDzvL7TknqKQNilAeCoy41AVuqI8B4Tj0BJ/PBrEOaQQIieNHTLiZFAyRPogGaqkkAItiuJIU6TQCY92HyiqpRAZd8bhV1OlUDYUz2L6PaWQOX2EpqzEpdA79YPXhmLmEAv5+Q33xaZQGvGT/U0V5pAede21Qobm0CO7PfWMDecQLW2IZNgW5xA1QCn0UYbnUAcFVbMXP+dQETff4iMI55AZZeWmH1bn0CNYcBUrX+fQKWN/Tjf86BAuXISF/cFoUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + BIYf0EKDYECwLijacuRqQCmEV99PUnBAWHXwwJGDdECEkKEqE6N2QLOBOgxV1HpAhO59fmu0fUBtIcHBgXKBQG/942SXAoJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + dMX1fTEEXkDsFOgHcuJjQPaEc5TIImZA0RY+T/xBcEDWzoOVJ2JxQO5n+jlU0nNAMdvN4Oqyd0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCAI9DqN6RuQBTpB48/A3JAGx6yQN+idUBPi4Bk7yN5QFbAKhaPw3xAqpfKr7J0f0ArjwO1c+qBQNR604EFQ4NA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDEZV5bjlJwQK9rGHLRYnNAGrpiYCbDdEAAbCYR99J5QN3AADTM83xAKDYaWI4hgEAAZYGyJzKBQChlCII6qoNARCh6WaB6hUBGtsRskjqHQP56WlEYe4lAZAeBV+rKikArgf/2eaOMQGQ2b4GWU45AFdh2EBMWkED57UkYSZqRQBcfHBoMtpFAQnCK5Gn2kkDJNYEoUkKTQPSG7/KvgpRAErjB9HKelED2zZT8qCKWQNkKVMzwDpdAduWLEf/ml0BZIkvhRtOYQI1oXuQve5lA6Eqp1nKbmkDqkU7ga3ubQHdzB8yeY5xAjPPKM6ifnUD3iv7g9CeeQNV1CwDJ+55ACwvCSP7Dn0DDe3k6+YOgQJDFQtgDsKBATgYaOwwSoUCCB/VEJPahQKeRTEIvOKJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDsFOgHcuJjQBu6YmAmQ3BAdmjQV5ECcUA9w2SRqbN1QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBkuM9LfgRtQCwEOjT2RW5ApFlpOdMzdUAyOsR5l5N1QMGREJlvpHtALOBah8TEfUBEdlLpw+qAQHqdd2Du+oFAQckdcFoDhUCIOUuQPDOFQE9l8Z+oO4hAQfgLmgaMiEDQIGqPMlSKQNzgGhxrPIxA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAUn+iE5kFrQBu6YmAmQ3BArFh2c3YRc0AJeGK9lHN3QM5heKT5gXhARBrbkkSUfkDOv1T4UZN/QLC1yz5OEoFArovQCxXSgkA9tC4BQZqEQLDkuWj6moRAPeMcK+0iiECwE6iSpiOIQD88BojS64lAPRILVZmri0AGaKyXPvSMQMw6aUrFc41Ag0vNYHU+kED1xZKaDoKQQMzNDS2WmpFAcbXSMSpOkkAVUE75tvaSQPHMyUaAEpRAKdARYcCSlEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA/KJil8iNpQOJgFSPMRGtAcQ5nZb6zdEComr2g6iJ1QMqjv9Ftk3pA/2WzhJbEekDG3v9Rt2qAQOUAzhJj0oBA5C+8PA/7g0DlL7w8D1uEQOReqma7g4dAA4F4J2frh0DKrB430/OKQOSNmJBnDItAdZIZKanEjUCR2MRGP/yNQMiDWbh1wpBA3SoJ6JAGkUDemJq5m96RQF1CAP3mypJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RpQHFahe5LhGxAjwFH/L0ycUBW/v7hfdJxQH2/RlksY3hAVlzbNdbjeEB9HSOthHR/QIyxvAQ+ioBAt9s+B4rCgkACUor9ugKEQC18DAAHO4ZA+543rgILh0COf9vpWVOKQPvNJdiuk4pAjq7JEwbcjUDyrKUG5iuOQB3XJwkypI9AjuuTBBkykEDV/0L/LhaRQA4DixlvlpFA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBmiwPJSGNpQA7Sy69nAnNAO0xzspUCc0Bp3hX7KlN5QJZYvf1YU3lA8WQHSRykf0DIzy657LGAQKW4KMpv+oJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD60UzrnGVsQG+XdYaqQnFAkXg429FjeEADpwfsrXN7QCH4w9YFBH9AEkRloGpKgUChAOODRDqCQKNI5jisAoRAMnFELtjKhUBrCKw2xlKHQPx4DeFZ44pANRB16UdrjEApf7KGuwuOQDU/YxP0849A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQD1liD1RInBAO0xzspUCc0ArI4iav1J3QK/xM6KFA3tA8n0c1NeDfUAFRjinHXR/QPAdjhgjWoJAZCZrvWHSg0Dn/A1HWvKFQHYlbDyGuodAyFM12u1qiEBtBOxqvVKLQL8ytQglA4xAmgqREB97jkDsOFquhiuPQP+brZbVyZBAKDOSZQkikUAWH4BpBl6SQD+2ZDg6tpJAkg7AACIqlEC7paTPVYKUQAK6U8prZpVARCUlD2h2lkB+qZNhhzKXQPWmDISRgphA+pjT+KL+mEAKvE2Ft56ZQKyvOAfpippAZ+U9gfOem0Aon3ieBFecQG+zJ5kaO51AsdUPHx+jnUDvyh6ucP+eQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA2uAwZnGNlQHZo0FeRAnFA+0+R6hLTdEB2xqyr6RN4QOkNkUeBA3xA9bW2zWwKgEBYtJLATJqCQIa6N2auwoJAseS5aPr6hECFujdmrsKFQNwOPGtGM4dA6ecBgzrbiEBAPAaI0kuKQBQShIWGE4tAPzwGiNJLjUBtQqstNHSNQGigQxAKApBA6Lc6JWAGkUDFyTMMRgKSQGSnerx70pJAReEqIZzGk0BcZP3zzFqVQFxk/fPMupVA3Hv0CCMfl0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBeG3g88qJrQKmavaDqInVA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAAVPW5y8NqQDtMc7KVAnNAAAjXMD5zdEACpwfsrTN5QABms4SWhHtAFLSnMS6igED3kdlwglqBQBTjlVvaKoRAJJh+FuSChEBB6ToBPFOHQOvDJCZQi4dAeuyCG3xTiUCkFgUeyOuLQL6ve8L0m41Am/WETP+Dj0CR7qJvQFqQQH+Rp7RFTpFADd7iBlwmkkAh8yMIgnKTQGgH0wKYVpRAv/RHFaJylEBMHaYKztqVQNZ3GujSBpZAY6B43f5ul0BWjxH9KMuXQN+PuHQaO5lAoH/jmlTPmUBfp6+JcP+aQFKWSKmaW5tA376mnsbDnECchhpHxl+dQG7nBJTyi55A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCdFrCBNyNrQBTpB48/A3JA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCJy7y2HKVqQLMjXrj8gnRA9X42GSyTdkDQdBqjVBN4QCbJHqjsg3xAvNnKUkTEfED3kdlwglqBQAtzCs+DioFAIrxbc86Sg0ALovj4LxOFQIbpJZBaq4ZAOKidnpE7iEDqFvCs5kOLQPL6fZYJPIxAHSUAmVV0jkDh9W/bHdyOQAYQ+e40ipBA2AJSalY+kUBPkjm7VeaRQIoZt3icypJAZKd6vHsCk0DRLWZzsq6TQKu7KbeR5pNA50KndNjKlEBd0o7F13KVQDDF50D5JpZARdooQh9Dl0CnwmBjA3eXQLzXoWQpk5hAwclo2ToPmUAZAZJgZZOaQHPgzeeAW5tAMIRkM5YnnEAl9zL2xuecQLCbW0js651AOwx09+wDnkDHHi4bHYCfQO0i2QUzkJ9AAhyNgyxWoEC8msmUMYagQCam5IA3yKBA5J2ETEWuoUA4+YowWvqhQKQpAFdwkKJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCPTWWFSwNpQAoahmk8YnBAtmSyHxSyc0Bgbopu1NJ0QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCCq6/ifYNvQKPid1q/AnFAwTM0RRfTdkCjQFSuFxR4QFCLgGTv43xA3uLMg8c0f0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCdFrCBNyNrQFf+/uF9UnBAFmZs+rPCdkBXXNs11mN3QBbESE4M1H1Aj9u3N3dKgEAps+ARXnqCQLfbPgeKgoNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBe4xb9Y+JuQAoahmk8YnBA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDsFOgHcuJjQJi98BGiw2xA47YaRuZickDuZ/o5VNJzQAXAHHdp03dAWxQhfAFEfEC1wo5zbAN9QHll3WZZ1H9A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDPIQhxcmNtQBTpB48/A3JAr2sYctHidEA28gnAwnN3QNYsYOl/83xAXbNRN3GEf0D8GjGNATKBQBIHc7jE2oJA/Ekft626hEA9MfW6EBOFQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDZ8ImWdQRpQOJgFSPMRGtA+0+R6hKTckCZcdKIFLN1QLfCjnNsQ3lA+61tPmukeUBbkLVjYiqAQP0FJcnhWoBAIrxbc84yg0D9NBPzjeODQCLrSZ16u4ZAt4fz6gXkh0DcPSqV8ruKQLe24RSybItA3GwYv55EjkB+4ockHnWOQO5Ng3Sl5pBAvwg7J+X+kEAGHeoh++KRQG5leon7qpJAUA28vybnk0BSe02RMS+UQGYi/cBMA5VAGDliz5IvlkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA+KJil8iNvQOO2GkbmYnJA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDEsXzkG6NjQKmz0iumAnBA32Ik4HNicUCXcdKIFDN3QKa9uBmMk3dAXsxmwixkfUBtGE1TpMR9QJOT/X2iyoFALWsmWIl6gkCRmPB0FZOFQPSWzGf14oVA9cW6kaGriEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RpQPrRTOucZWxAJ2tCVJTyc0DdXLFTE9R5QGINuylEE3tAQotereNBgECM/5SUYXqAQLX/G2R0soNAX9wamDvSg0CI3KFnTgqHQNNQ2E7MQodAZFVZ5w37iUCmLV5SppqKQIKmFdJli41Ay9OxYKQ1kEC9wkqAzpGQQATX+XrkdZFAS+uodfr5kUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCzxYFkpHFwQDtMc7KVAnNA2obJ21KCeEACpwfsrTN8QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBK9xnL9URsQBu6YmAmQ3BApVlpOdMzdUAbGD+0flR3QKW3RY0rRXxAQtmGKy1lf0BmvEYC7SqCQGiYaaUCu4JAyL8V7D9DhkBfd+nTOVOGQOYQ0taX04lAfcilvpHjiUDd71EFz2uNQN7LdKjk+41A0g18ih06kEA5VgzyHQKRQBz+TShJPpJAuW0DB3TGkkCcFUU9nwKUQDmF+hvKipRAHC08UvXGlUAdm80jAA+WQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD+9P4gH+NsQNS+X4D+xG5A2obJ21LCdECRoHe3LXN3QAFIEVMB03xA7KzBAvHDfUAszgqszKGAQKPcBSdaCoJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAeR9VQy0JnQEMdzoN8QnFAjwFH/L2yckCZcdKIFLN1QI9fI1AWxHlAJ8keqOzDe0BbkLVjYuqAQJOT/X2iaoFAFeOVW9rqhECTwuunTvOEQHkQYHhmA4hAiqFr1oWLiECkOuJ6sjuKQO7ONfMRJI1AmxliqenTjUAGEPnuNFqQQE0kqOlKrpBAUADLjGBekkDJE+iAZnqSQJmCC1mBupNARQMoGIJGlEBLmXBnxwaWQI/z+bWtSpZAlYlCBfMKmEBBCl/E85aYQFYfoMUZs5lA33kUox4PmkDSDuBcNX+bQF+RC7h005tAUibXcYtDnUARqHDGul+dQAQ9PIDRz55Akb9n2xAkn0BCqpnKE0qgQIfXUzkWeKBAEmL0OSkGoUBnooKZKUyhQGvtJkFMLKJAjJpraD9OokCQ5Q8QYi6jQOUlnm9idKNATt2v228UpEAJZ77VciKkQAzVT6d9+qRALl+npIgkpUDMYMuxqNylQHVzVp+eCKZAilhrfbbCpkDO/oimwS6nQBXjC37JUKdAjPYocs8UqEBubj6F7BaoQEyCpHz69qhAHYM2gwoXqUAMDiCHJdmpQEJ7H1IgGapA/pgJi0CbqkACB5tcS/uqQIkjqotTKatAwpIWZ3bdq0CuG5NaaSusQE0dt2eJa6xA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDiYBUjzERuQJ0RHYnYgnNAzLzUXClzdUAiEdlhweN5QJ1v+dwwlHpA88P94cgEf0CRt9rajHqAQCbooxbGqoJA1XrTgQXDhEDgOoQOPquGQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA/KJil8iNpQBu6YmAmQ3BAH3KoplGjc0BxDmdlvrN0QHXGrKvpE3hAkxdplkEkekCxaCWBmbR9QPS1ts1sCoBAgbQZkF8SgkAhvFtzzjKDQEzm3XUaa4VAgeMHugubhUCwE6iSpoOIQOUQ0taXs4hAdz9OohKMi0CsPHjmA7yLQNtsGL+epI5AEGpCA5DUjkAdSuICboaQQO1Ng3SlFpFANM201Z4akkABzkbcrrKSQEji9dbElpNAkfak0doalECRZDaj5fKUQKcL5tIAN5VApnl3pAsPlkAnI93nVvuWQCaRbrlh05dAPqavuoePmEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjZUAoFld2zuNlQI8BR/y9snJAO0xzspUCc0AeWZMblsN4QGINuylEE3tAHrdvb+7Uf0B4soMkDpKAQAm3BL1PSoNAjwqmYSNzg0DQ4qrMu1KGQIbpJZBaC4dAsROokqZDiUDQEZn2Z9uJQBVBcq8yXIxAmhliqenzjkBCRxdVlISPQH6OmEkehpFAUiVzn3POkUCVEWscTxqTQDep13i0WpRARyjQKpWmlEBdPREsu8KVQLfAzo0KH5ZA2SxRw9aOl0Cb1qGVQKOXQORY4mFh/5hAWURI2CxTmUDIbrVpl4OaQNlbP+2CF5tAEl+HB8OHnEC9cRL1uJucQFxPWaXui55AGpsC8fSbnkBN2fyCJTCgQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDNXvgI0WFxQK9rGHLRYnNA9B9AgH9yeUCPXyNQFgR/QF496tzLUYFAgQLyH4OCg0BebNgGeNqEQIEx4EkvC4dAGL+4/u/aiEDkXqpmu6OLQAg5vm2Sq45AeD9OohKsj0BpoEMQCuKRQKGjiypKYpJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkC0UdoP9eFsQOO2GkbmYnJA2obJ21KCdUA5Cx9LftN2QCuH13p48ntAOWn7ntbkfUDA7e0/iDGAQMfe/1G3KoFAwBzcaTS6g0Dw3oYhymKEQOtGXmyA8oVA8A11S3brh0BOdCiJDIuKQOfs9Hmtg4tA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCJy7y2HKVqQAoahmk8YnBATOxPqX/jdUCSoHe3LfN4QDqqTwbuE31ASf+pBUMCgEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + U6vsr5tiY0AoFld2zuNlQKmz0iumwnBA15HJDo0ic0BwDmdlvvN2QJ7sXUilU3xAnLR9T2sSgECyI/nAXkKBQP63TDm+KoRAslLn6grLhEB5fo36dtOHQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCRGlyHeVJxQDtMc7KVAnNAsyNeuPzCdkCWWL39WFN5QNB0GqNUU3pA51jLnH7Df0CVQDL3C1KAQJH9ITkXcoNAlW8gIbjag0AgJoAuQzqFQCLrSZ1624dAPnc8GZvKiEDpFvCs5uOKQD6mKkNHU4xAo2nQpF7kjkBc9+Ytn+OPQFFMX2eFNpFAUN1v6gsWkkBmYaBoq1KSQND0Zv9h2pNA5niXfQEXlEDlCagAiPaUQIjaE9E9O5ZAZSGfFd66lkAXA3LGaQOYQMJKjxEau5hAlxpp27/HmUCmYGIZUD+aQCZDx9Drj5tAbB53V7E/nEBtV3bLAXScQOw1bmwHBJ5A/H/UwC08nkADuUA/OJifQBAAmCg32J9Apub3HCc+oECTQbX9M7agQMonGIM37KBAuDmezEm4oUC9acrvVzKiQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQDeULWxqYnBA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD60UzrnGVsQBu6YmAmQ3BAOQsfS37Tc0D9xoLJJkR1QABms4SWBHpAjB7P6P5Ue0Atuf7nrCqAQKq8MZELQ4JALejsEVmzg0DV5rOTV3uEQFgSbxSl64VAzMUzwo4TiEBYQV0+UXSJQIYYFLoGFIxAdpIZKakEjUAFu3ce1cyOQOVthrA/LpBAmPJ8kJCCkECXhOu+hbqRQK91T2PBFpJA4XS9XLG+k0AvjUZ4F9uTQHgPh0Q4N5VAYYy0cQeDlUBcJVpMbruWQEWih3k9B5dAjiTIRV5jmEDcPFFhxH+YQA48v1q0J5pAJi0j/++DmkAlv5Et5bubQNhDiA02EJxAOtTSLgvYnECB6IEpIbydQHqlBGFyNJ5AEBHgHk2En0BsZ3ouVxqgQEiU65lRpKBAKl8a+mQAoUDTHoyaZDKhQLXpuvp3jqFAk6oHpY8UokAOde0Bm7SiQB7scA6o3qJAAADXBbZ2o0B3d6MVy6SjQJsB+xLWFqRAwItSEOFYpEBbjXYdAfmkQIAXzhoMO6VA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkB8yhB7okRtQMB/Us6k421ANpQtbGpic0Bgbopu1BJ0QJGgd7cts3lAJ8keqOxDekCu8TOihUN9QJOT/X2iqoBAzteZ//k5gkDAmaIjBNODQPvdPqVbYoVAt3giUjtrh0D7DC3PB+uIQEahgEdnM4lAXzr365MDjEBzpyXtyFuMQJ7Rp+8UlI5A8D54hNW7jkDBoXyOC7qQQOZrpko73pBA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + hH7jX0jiZUAoFld2zuNlQDAn7Gl4w25A1L5fgP7EbkDBMzRFF9NzQJhx0ogUc3ZAF4g4Sq9DeEDuxdaNrON6QEQa25JEVH9AF+YUngdVf0BNt+9LbuKBQDadjNHP4oFAx6ENahGbhEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD1hHOUyCJpQDtMc7KVAnNA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEfuNfSGJnQEMdzoN8QnFAaYA5p9LBc0Bhbopu1NJ0QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBa6U0me2NuQDtMc7KVAnNA6JafaG1SdkCRoHe3LXN3QA9Y598bY35AuGG/LtyDf0Ay1nXy2WmBQPkBHAJGUoNAxrYZLjFyhUAXU9jsneKGQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD60UzrnGVsQHzKEHuiRG1A/caCySZEdUA+w2SRqbN1QFMbh86+tHlAYMxmwiwke0BwbEO5FkV9QPeR2XCCmoBAnONreRe7gUC+vX+A7qKDQDDED7Vuw4VAUp4jvEWrh0Aw8/3eGkyJQFLNEebxM4tA9x6k7oZUjEB/07aLU1yOQMX/IxVvLpBA1OmeLTPKkECpFfccpbKRQIYABDx5FpNAWyxcK+s+k0A4F2lKv2KVQA1DwTkxi5VA6i3OWAXvlkC/WSZId9eXQM5DoWA7c5hA09npr4BzmUAYNHP+ZneaQOpcvIKxB5tA/ElGBp37m0BqdLOXB8ycQHxhPRvzv51AtGSFNTPQnkDGUQ+5HsSfQEw9rJ40KqBAPDS6YzKooEA+yJWiT+ygQGC+EWE9GqFAYgm2CGCaoUDrSLJhUKihQCKVMROLfKJAq9QtbHuKokBG1lF5myqjQGtgqXambKNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAAVPW5y0NsQBu6YmAmQ3BAcQ5nZb6zdEDuZ/o5VFJ1QO7F1o2sY3xA+ZRYs69EfUCKQ4+CLTqCQBArUBWvqoJAEFo+P1szhkDOBogppoKGQPkwCizyuohABzm+bZLLiUD5X/hVnkOMQM5kZH3+04xA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCdFrCBNyNrQIkw7CrX8nJAwrCYsIuSdUCJjsh+LwR6QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAmWGpEdaJuQBu6YmAmQ3BAooOBwRJidUA9w2SRqbN1QMSMg/KV0npAyxqxsIHEe0Bi9S8j9/GAQFxs2AZ4eoFA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDXkZP9yKNsQANJK5hVInJAeiAWnrxidECLzxzmRrN6QGjeFfsqk3tAxfMLFteBgEDFlvycT+KAQFQcagsDSoJAxcXqxvtqhEAOb0oDe0qGQFimjgJTc4hAO3XvqNxyiUBY1Xws//uLQJ+iucVoi4xAz+jTdwoKkEBOzLrpOyKQQONol98TppFAzuOx/pHmkUAqfUbaKYqSQBjUg5y96pNA2/4tT1OWlEBf6DKX086UQCIT3UlpepVAEGoaDP3alkBsA6/nlH6XQFd+yQYTv5dA7Bqm/OpCmUBr/oxuHFuZQOsVhINyH5tAjnwiUCdnm0CdLOmRuKucQA6UGWV9K51AtK+7ZOk/nkBYhOsCqS+fQInsVbASIKBA7E3xi/95oECtdq2tHZKgQNG3zRMuQKFArNlslipcoUCPr23fOyaiQH0KK8BIbqJAgTpX41bookA7AsuLVlSjQD8y965kzqNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUC4fceqz1FyQKmavaDqInVA1s6DlSfidUD/7sGlgpN5QNYsYOl/83xAxklW35rEf0D+9lMwF4KCQJx3i2fF4oNAK/341XiqhUCcpnmRcWuHQGPSH6Hdc4pA9QTCiPrCikDy+n2WCTyMQPUzsLKmS45A8ilswLXEj0BCLgdU6QmQQCZE2lsfjpFA3piauZtukkCmW9FwdVKTQPUbbYzMApRAA4XBbLFSlUA/DD8q+AaWQLWbJnv33pZAvyM2P07Ll0DKsGd8HfuXQAY45Tlkr5hArzTMVV6HmkDru0kTpTubQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD+9P4gH+NsQNzlv3T/InFAf9hb5OeCdUD+7sGlgpN2QH82ODhAlHxAOZE6ezK0fUBdbNgGeNqBQJx3i2fFYoJA7nBZn7mShECcpnmRceuFQFKeI7xFq4dAyaweN9MTiUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + XBt4PPKiZUAoFld2zuNlQJzLO3vnAXJAA0krmFUickD314XGqlJ4QAOnB+ytM3lA9zViGgNkf0Bes1E3cYR/QPP5sLs4SoNAprgoym9ag0DTvs1v0YKGQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCwLijacuRqQAoahmk8YnBAdmjQV5ECcUAna0JUlPJzQGQm0LT/MnhAJ8keqOwDe0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAKI3ffzmRvQBu6YmAmQ3BATOxPqX/jdUAbGD+0flR3QDlp+57W5HpAp/iZ9EI0fEC3KReXrTKBQDCVIYvCeoFATubddRoLhUBKCrvSBDuFQK43he+QU4hAThXMn8aTiEDfGU04CEyLQEIYKSvoW4xAbUKrLTSUjkBy+vBzX1SPQE+SObtVxpBAu6qToIG6kUCfwGaotz6TQDQWnpSWUpNAH9hdvQ0DlUB+BnAywlaVQGnIL1s5B5dAMB3VQAijl0CASwIuapuYQHoNp94zp5lAyc1C+or3mUASUIPGq1ObQPoknvOJa5tAxGbo1PHfnECsOwMC0PecQJBR1gkGfJ5AdejPSRvsnkAsf9GoKDigQKHpXr8XRKBAhQoEsEv+oED6dJHGOgqhQB62sSxLuKFARZZ/unbgoUBC99GSW2aiQGqOaImM4qJAzTg7/HMwo0DDGZuQrwikQPIwJMuJMqRA6BGEX8UKpUCyvJ/VtBSlQKRHidnP1qVA2lM2zOVQpkBl3tbM+N6mQGZMaJ4DD6dA8dYInxadp0CK1r+bDuGnQK4X4AEfj6hAFs/xbSyfqEBvWiR1T2WpQG6jWwxKcalAtbcKB2BVqkCUUg1EZWeqQO3dP0uILatA2q/z1XVXq0D+OUvTgMmrQHgfqbSg96tAvsXG3aurrEDRqtu7w72sQH5RQujWja1AkTZXxu6frUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDOIQhxcmNnQDeULWxqYnBAW7ZEKKmyc0D+7sGlgpN2QIJ3jJ9Xw3tAT+/PRKgDfUDsZUjS9xmAQNIh6iQguoBAYyZrvWFyg0DslDb8o6KDQGNVWecN+4ZAgHXaN/uqh0DEWCjRYBOLQJ7GliJTO4tALe/0F38DjUDxXs12wjuOQBaP8aAVRpBAjzI5DhKykEDYtHnaMg6SQLjwbfRRapJA7zdMrWOik0ABc67AcsaTQDZM+6d5hpRAFojvwZjilEAaYs6vrwqWQCoIsymifpZAvMNKA+wumECqH6o++EKYQDzbQRhC85lAB0maOjRDmkBOXUk1SiebQFNeFOtyh5tAMnMcPYCrnEDTdQsAyUudQLKKE1LWb55AHPhLzOmnnkAZUYUzFhqgQN8s5A8TZqBAPdvcMCGMoEBhHP2WMTqhQJ+4Xxo+SKFAU6fmmkz8oUAq+siDVhKiQBMzYqV33qJA6oVEjoH0okB1EOWOlIKjQMJHWqOV3qNAzpsXlrdIpECAP/puo8SkQIyTt2HFLqVA2cosdsaKpUBkVc122RimQDuor1/jLqZAJOFIgQT7pkD7MytqDhGnQK8isuocxadA7b4UbinTp0ARADXUOYGoQG+uLfVHp6hANYqM0UTzqEBA3+seZrmpQPUVCNxv1alAZCAMhXZnqkC1oYPmmreqQCSsh4+hSatApyxt6rV5q0DLtsTnwOurQK/t8Pi5E6xAecu85d7rrEBveWwD5fWsQDlXOPAJzq1AQKoqLQMIrkBDFxqkDpyuQDI1FDEeyq5AzqG6pCEqr0BWv2suKTyvQPLi2goy2K9AcYDqyyADsEADofr+KFqwQOGJTBoodbBAyUGvMzW/sEDBT4qfPeawQNMUNh5DH7FAj+JjaEEksUD3no0bTpGxQPvCncVLp7FACRsCA1kSskDbiNtKYRiyQG2p631pb7JA6eA/iG6DskCy7jv+crayQC4mkAh4yrJAt84sWHUds0BAogTwgkuzQGMUxtuGgLNAl6wA75HLs0D1NNYOj9ezQCnNECKaIrRA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAsECBNt2JpQI8BR/y9MnFAiq1QlkuydEBWXNs11mN3QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCmvpxNHCRnQBu6YmAmQ3BA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEfuNfSGJnQAoahmk8YnBA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUByWoXuS4RsQNS+X4D+xG5AOQsfS35TdUAyOsR5l5N1QI1GDsVa5HtAYMxmwixkfUCqUFF/uQqBQPeR2XCCuoFAPjH1uhAThUD3wMeaLkOFQD5g4+S8m4hAWMSWhIFbiUBcsZ/PFCyMQHYVU2/Z64xAX1q33DMikEA7oqDMQjqQQN9xrvGJ5pFAhZJyam4+kkDDh4H5v2qTQDep13i0ypNATiyqS+VelUANeFOX626VQABDD1or65ZAjY9KrEEzl0AWWFBbUQeYQD+mr7qHv5hA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCAen+Qj3FxQIkw7CrX8nJA34TwL29jd0CA2Fvk54J4QKLhXRVr831A3+LMg8d0fkCYHFWaIQKCQGZQZvCa0oJAkXro8uYKhUD8SR+3rRqFQJGp1hyTk4hA/HgN4VmjiEAno4/jpduKQPXWoDkfrItAHoIPEt1zjkC8AkdJi7SOQKcD5HBmtpBAj9j+nUT+kECk7T+fahqSQCcb24W8epJAARcwm6YalEAMnz9f/QaVQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + rEBFHEuCZUAoFld2zuNlQG+XdYaqQnFAVv7+4X3ScUDjPDZ2mkN5QMqjv9Ft03lAcU0JZXkqgEB4soMkDvKAQAQuraDQMoRAeOFxTrp6hEC+gI2YSDOIQDI0UkYye4hAXzr365Oji0C+r3vC9LuLQNwAOK1MTI9A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDAIFw1+IJuQFf+/uF9UnBAm7Im8CtidkBFvP4+7IJ3QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAYxSyCnORoQBTpB48/A3JAjMDylKaDc0CqEa9//hN3QNtDnMhXNHhANlDmExuFfkA4tqFciyKAQKwsdCLP+oFAnONreRc7g0BjDxKJg0OGQHY0PdVQE4dABV2bynzbiEBjPgCzL8yJQI5ogrV7BIxAZmBqtM/zjECRJJN4aQaQQLNHLO89PpBAETyKjb/KkUD9N/6MaUKSQBNNP46PXpNAwr1xAunWk0AJ0iD9/rqUQJNkNqPlIpVAd3oJqxunlkDuVYXWP0eXQCmRbrlhM5hAN9jFomCjmEBOW5h1kTeaQNun08enf5pAIryCwr1jm0AAcv2D18ObQKLTedcTKJ1AgIn0mC2InUBU6t7lWbSeQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCwLijacuRqQFAtpBCXEnJAsyNeuPzCc0BQi4Bk7yN5QNUsYOl/M3lA8n0c1NfDfECodC7coxqAQIpDj4ItGoFA1XrTgQVDg0C1bRGFeVKDQOJztirbeoZA88uPbF3ThkCtHnBk1dOKQEahgEdnE4tAccsCSrNLjUCk/e+SDGyOQDh9+LkvapBALyhoRUI2kUCCbcpXW26SQBM+O014upJAAoXBbLEylECiZplCpIKUQEsHAjnSjpVAU+iAt82OlkBiitQLAyOXQGn9wbjzqpdAxiaytC+rmUBHDjnlQ6+ZQKQ3KeF/r5tAq6oWjnA3nEC6TGripcucQMIt6WChy51Aa85RV8/XnkALsCktwiefQH37V6b9T6BAxmMQIQx2oEBvhkGqGBKhQOtb+e8heKFAHps5qDYSokCr53T6TFqiQDZyFftf6KJA3JLZc0T4okCKp9FxYvijQI/9RwKDDqRAGj+xa5vYpEDRu4BseNykQKXJUWyuZqVAXP3p1ZCmpUDJCnLSvhSmQO2Uyc/JhqZAHIll4LuIpkAR1uk12jSnQNwU4ermaqdAnBdTn/L+p0AjKZDl/E6oQFyjzqkd4ahA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + dMX1fTEEXkB6DljT8SFiQLqes2bJJG1APWWIPVEicEB7IBaevCJyQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RpQOh00xhyUXBAOQsfS37Tc0AjF0zuIXJ3QI9fI1AWRHhA5bMnVa60fECybpgN+oJ9QB0EFi2jkoBA6jtNn755gUDkL7w8D5uDQLFn864qgoRAdTQ91VBThkDckXWxdrqGQAe897PC8ohAPGDj5LxbiUAy5nm2DiuLQFqxn88U7IxAMhVo4LqzjkDgHuNq8z2QQPfIoQU2epBA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCmvpxNHCRnQNS+X4D+xG5ApF/cxTMCckCN6DFxAtN0QPqz4MrLcnZA3ug/EChDe0D6Eb0eJIR9QG4jDjJAKoFA/bdMOb5KgkD/J4/KgeKDQP3mOmNq04VAkggzBtnqh0AoEb1ltguIQCExkfsEs4lAVRdiCxg0i0CwWe/wMHuLQFVGUDXEvI5AsIjdGt0Dj0ByN1cVeEKQQDzaQZUkBpFAiEyYFp5ekUCeYdkXxHqSQJkDMpFgBpNA5XWIEtpek0DgF+GLduqTQPUsIo2cBpVAQp94DhZflUALQmOOwiKWQCa1SxZM45ZAUlYSidgGl0CmzEIroqeYQNJtCZ4uy5hA7eDxJbiLmUDp8NtwX1+aQDT1oCDOb5pA/wUdcoV7m0B+5XK++XOcQH8dFIfbP51Ax2ezihrQnUD/NAucMQSfQEd/qp9wlJ9AQCaB2ENkoECu/7YDPZigQMuwIdlW8qBA0kDXaU1GoUDVcAONW8ChQF3Ld2pg1KFAlfx+l4aiokA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCmvpxNHCRnQOJgFSPMRGtAqbPSK6YCcEBxDmdlvrN0QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RpQGiLA8lIY29AlLmMQukSc0C0I164/MJ2QFsUIXwBRHxADzCoA8ATfUBakLVjYkqBQGtFnh5sIoNAWr+jjQ7ThECYS0PEzUqGQOvDJCZQi4dAJ3ShufkSiEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBUZ6VXTIVuQACq+tzlIXFAcQ5nZb5zeEB0T7vM1SJ5QMdia2pW5HxAz1sFGJlzf0CQt9rajJqBQBLYhI4Y8oFASgq70gSbhUB2BU+rpIqGQNsOPGtGU4hAPTH1uhCTiUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAGYkAjEUJyQPV+Nhksk3ZAlLmMQulSeEC4hdTs0cN+QJQXaZZBZH9AbUfrjioagkAuuf7nrEqEQDdPtEGsModAN8x6+3sriUAuLjRw48qKQP73IAvoM4xAvzK1CCWDjUDFI8caVDyPQKgbm1CzHZBA+KakDlC6kEBKfRek70GSQFXQlAqMupJAX5JYpRVek0B1p5mmO3qUQLy7SKFRXpVATY0XQt2ilUCWD1gO/v6WQDzTP7anIpdA35GY2h5bmEC86jbL/eaYQF+pj+90H5pABW13lx5DmkBO77djP5+bQN/AhgTL45tAJtU1/+DHnEA86nYAB+SdQEasOpuQh55AUv+3AS0An0DSapVL5kOgQHowmqo0kqBAXfU1TPnRoECecboQRUChQE+AH1AUlKFAwrLadlXuoUBBCwlUL1aiQICqekJj1KJAAxDoGGOOo0By7CyvgxqkQFybGiCGtKRAli1NFZTIpEAcJ5YqsZalQG7uwM+ozqVADrJ/LsxYpkDqTIJr0UKnQAH0MZvsnqdA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBa6U0me2NuQBTpB48/A3JAMTrEeZeTdUBBBLn4wGJ5QGzcPE9HtHxACF9NMtmTf0DHch9AZRKBQBW0pzEugoJAK6DpXPEqhEAzBWQchhKGQMItwhGy2odA9aeyD3NDiUDCXLA7XmOLQK/6kgfrQ41A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCzxYFkpHFwQDtMc7KVAnNACRqGaTzidECRoHe3LXN3QDDbzeDq8nxArP2F+CJSgEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEfuNfSGJnQJgT9jS8IXBA32Ik4HNicUDfwAA0zHN4QHgHARMBw3tANRUFOWTkfEDnrQKMzBmAQOfc8LV4ooNAigSIi9RChEC1LgqOIHuGQEjgv5/LuodASA+uyXeDikA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBImCMySWRuQIkw7CrX8nJAS41ZENNCd0BQi4Bk7yN5QKHhXRVrs3tA/BoxjQESgEA7JuTtTpqAQItDj4It2oFAO1XSF/sihEAeJDO+hOKFQElOtcDQGohAzjV2U1IriED5X/hVnmOKQEl9o+p8o4tAimR57t8bjUAD0IPi9KOPQFw1D8ogIpBASmqCPRsukUC5Xv/FXCKSQPyA50thupJAAHOuwHIGk0AX9oCTo5qUQJ7iY5+d3pRAXgowjrl+lUCnjHBa2tqWQOjSNT3J4pZAi6JDYhBfmECa6ZpLD2+YQD25qHBW65lATAAAWlW7mkBTzulxfAebQJWCQCZ2F5xAN+S8ebKLnECql4EnnDOdQE35/XrYp51Ajq1UL9K3nkCWez5H+QOfQKTClTD4059AJMnRqh+ooECrbH0fH7CgQH1UBLJCbqFAnfdmIzpyoUDBOIeJSiCiQKJM7YBYcKJA5cLehlWSokBwBEjwbVyjQHN9q6p2gqNAlI6f7XjOo0DMCN6xmUikQEKjl+uWzqRA8En+F6r2pEDN5ABVr5ilQJ9e9hXI9qVA8SUhu79GpkB8sMG70tSmQF/qcSDz2KZA6nQSIQZnp0ChqKqK6NanQA9t++8baahAYTQmlRO5qEAz91LtJtuoQL6B8+05aalAhiwPZCm7qUBJDJTuTPepQN+3QWtMgapAbgR9vWL5qkCOzDlpaoGrQC6Q+MeN26tA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBQecKZJCNsQNzlv3T/InFAqJq9oOoidUCjQFSuF1R3QG/1UdoCVHtAtU3085dCgEBJ/6kFQ2KAQEZSdYzZ+oJArCx0Is/6hECqfz+pZROGQBBaPj9bE4hAqq4t0xGciUB0hwhc5yuLQDuzrmtTVIxA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCJy7y2HKVqQANJK5hVInJAU72qemZjc0AhmueCrbJ1QHXGrKvp03hAD1jn3xvjfEAEHvnKweR+QDCser+gqYFA+W38E5gKg0Aw22jpTDKFQCe66BeEyohA6ecBgzrbiEAn6dZBMFOMQEwVzJ/Gc41AuO1X2nELj0BYIUteKUaQQJ81+lg/KpFAWOZrhNRRkUBRTF9nhbaSQAr90JIa3pJAURGAjTDCk0DNO5/+oIKUQAMo5Zt2TpVAFr7fysHelUC1PkqqvJqXQJbV1t8Xo5dAEsUWdzNvmUCt+8zhDYOaQJLcDYyJM5tAKesMeSlPnECmXNHzks+cQA0B4IBf051AIkwRi66bnkBWgyBNgC+fQGlgwIXEf59Ancx5KttZoEDyJ4AO8KWgQPZXrDH+H6FA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCYE/Y0vCFwQKPid1q/AnFA7mf6OVSSdEBEvP4+7AJ5QDfyCcDCM3tAIo1tSSIKgEDlAM4SY7KCQBls7XdZooNAGZvboQUrh0BILpgv70qHQNkyGcgwA4pA46KkVIdDjED3g9WyiJONQKrOSmTzS49AIq5XtdTLj0D17H5iIGqRQDrriYs6MpJAl077tVyOk0C22skiVv6TQODQO4J96pRAzO8KJHwalUATBLoekv6VQMTmDoqzbpZAKoeM8cKSl0ANaU9W1MqXQFbrjyL1JplApnbMiN5emUCfbdDuFYOaQO/4DFX/uppANg28TxWfm0C28KLBRhecQDYImtac251A6CMhXlvrnUD/pvMwjH+fQID4a3TI359AzD2fo/y5oEDYXqwf6eWgQCXJ0aofgKFA/J/MhfmToUAg4ezrCUKiQLAKOxQ4SqJAEmzW7yQEo0BuAtvfRTCjQFmAheo66KNAHRfT3WMwpEAPorzhfvKkQLILuPFdDqVAPZZY8nCcpUDPLTjsqdSlQMjXwVuJZqZAWm+hVcKepkDl+UFW1SynQIhjPWa0SKdAeu4mas8KqEA+hXRd+FKoQCgDH2jtCqlAhZkjWA43qUDm+r4z+/CpQHckDVwp+alAm2UtwjmnqkBxPCidE7uqQL+mTShKVatAysdapDaBq0BVCcQNT0usQBgygC9te6xAo3PpmIVFrUB6Aa3cZE2tQDqNKOePL65A/P4boKhrrkAgiXOds92uQMXOkVCo+a5ARMqTA8SLr0DpD7K2uKevQIcoaY7kKrBAAOGZ5+g4sEAZSXnB7IGwQMaBThz1nbBA2Eb6mvrWsECSDm5D+uKwQB2MShsEHrFAJC9+dgI6sUD8hxoBC5GxQIxHXYsRw7FABQ1SDR8kskD1qHM3GzSyQEpSoo0oa7JAbm5ouSiVskBu3PmKM92yQAD9Cb47NLNAZ4/B7zg4s0BHVf90TqmzQKxCo0FNx7NAJlHPWlUctEClY/x3XWq0QAYXDeBqjbRAS1xdYHTUtECehFWubQ21QJChreB9G7VAF0pKMHtutUDnq6nfjJu1QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCmvpxNHCRnQNS+X4D+xG5A4rYaRuaicUBqPQyU13N2QHAOZ2W+s3dA+ZRYs6+EfEBwbEO5FsV+QEN2UunDSoFAY+AjX9eagUBDpUATcNOEQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQNzlv3T/InFAH3KoplGjc0DcQ5zIVzR4QObMPOBp1HlAN1DmExuFfkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAot2DdIQNrQKPid1q/AnFAIrP8DWmSc0DF63mLQnN2QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA1uAwZnGNrQDeULWxqYnBAGrpiYCbDdEDF63mLQnN2QKgRr3/+03pAxUlW35qEfUCbtH1Pa3KAQEZSdYzZ2oFAxt7/UbeqgkANfhucReOEQI0KpmEjs4VAOKidnpEbh0DxN3B+r8uIQP/TQ679I4pA8WZeqFtUjEDG/+m9aSyNQLiSBLjHXI9AYxfs84pakECly0KohAqRQBUuUQLRppJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBOGswAeMJsQGS4z0t+BG1Ag9z1xGTydEBOzq136nF2QE4sistCg31AC2PnElaDfUAU2tH+1omAQItDj4It2oFAowIw9AJSgkCCIg+xZHKFQMwCt8MVioVAEyeQSaYqiEDMMaXtwRKJQD5REkzyYopAW1oD4+3aikDPVZPkMxuNQJnBrgDgGZBAJWoEKchVkEB914EIFp6RQG7sRPXosZFAt26FwQkOk0DHx1OmQaKTQN5KJnlyNpVArysI+Vr2lUDCYPmAqLqWQC9D/w2xupdAQnjwlf5+mEB4xT/a0RaZQL5nMC0aS5pAKtyk6BejmkDS5/OUI+ebQHTMdoZDp5xAHNjFMk/rnUCITDruTEOeQM7uKkGVd59AAh69QrQHoECLuLUG22mgQMKpOE3f6aBAS0QxEQZMoUC0NCJR+quhQD92i7oSdqJAx6LyrC7AokDr4xITP26jQGRudIkoeKNADyUzeU8cpEBW+V2NQzqkQK+EkJRmAKVAi4P0FHiQpUDTxbD6dq6lQK8NTBKDAqZAXlBR+4k8pkBvmcccruSmQIKRcWGa6qZAeVmp0LKyp0BAiREtqNCnQJ3jAM69JKhAwW1Yy8iWqECZFEQ0y5aoQFmgvz72eKlAkp4W9eaoqUCcXvio63aqQH6YqA0Me6pAwOhPpvboqkDFrFcIIl+rQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA2uAwZnGNlQOzQoK8iBW9AdmjQV5ECcUCTuYxC6RJzQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBZFxRtOXJwQNzlv3T/InFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Jv8eN4WFXUA2gKvZDaNrQHJahe5LhGxAyASPFv5SdEBWYk7CNvJ0QB5ZkxuWw3hARCBOH6UifEBZ+wvxReR/QOk7TZ++GYFAyk5C43qCg0BNaRe8SjKEQFl3oNimSoVAdmmei11qh0DqeyFx6AKIQLGnx4BUC4tACkpCx7Ryi0A1dMTJAKuNQNqnTlBnQ45A0Wn6r+mlkEBkKrQCrNmQQBtazE0VqpJArhqGoNfdkkCbccNia26UQPgKWD4D4pRA5WGVAJdylkB4Ik9TWaaWQC9SZ57CdphAwhIh8YSqmECmKPT4ui6aQHlCOTzueppAjld6PRSXm0C6qLdgxMqbQJ6+imj6Tp1A2EdM2z+bnUDnQMs0G6ueQOzHD0NJN59ALlV6LzGPn0BPb7qox2GgQN8+bJKuq6BAQfqjrOIjoUAmUxuNxI+hQP/xQ3jwCaJAsd27jdcdokCjaKWR8t+iQEYG83IG7qJAUMbUJgu8o0BRfZ2PEOCjQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAtECBNt2JpQHzKEHuiRG1AcRTa8R4Cc0A+w2SRqbN1QOW5muEOA3tALIFk7hfkfEBWipeNE5qAQNoDK56EuoJAuI1md2ayhEDaMhnIMEOGQEe2xGySeoZA0RGZ9mfbiUABCaVkCnuKQJINJv1LM41AmxliqenzjkAjEqeVjeuPQFmdgsXc2ZBAfo6YSR6GkUCgsTHA8r2RQOfF4LoIopJA+n3Y4DlSk0Au2o+1HoaTQImmNtZlGpVArvGGynRKlUBtvAnem56WQGAI7Ni6lpdA7dMA8/FimEB3i76r6yqZQAPpQfQXf5lAwA3/dwyHmkC0ailpQYubQAmQP0Qt45tA+37YY1dvnEBQpO4+Q8ecQHuWz3itM55A38xMNG+PnkAKvy1u2fufQC/yoaTiKaBAqWlutPdvoEBTfPmh7ZugQM2qjhoIHqFAKz1tXAKioUDx666AGMyhQLbHDV0VMKJAfC0Y6jCWokB2U4lnQBKjQNW4SvFTvKNAaN5ya1vUo0CVRMb7fp6kQK/yIWZxuKRAuc4d+YkQpUDdWHX2lIKlQG3qwTF/nqVAAePM85/0pUAlbSTxqmamQEWrNeyTpKZASa5EV7sUp0Bt72S9y8KnQDjt51i06qdAGwRdu+nCqED25IckwtCoQD+OtLj0NKlAtnADL+2yqUAXTyhzCTuqQIehwVgLxapAcNpaeiwBq0BFmWEkGaurQB/vUnhKAaxABSXdLkSNrECqMLzhYsusQClm/ZRUO61ANbtc4nVZrUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD1hHOUyCJpQDtMc7KVAnNAeiAWnryic0DQdBqjVBN4QGINuylEE3tAJskeqOyDfEB/XncUnKN+QFqQtWNiSoFAo9wFJ1pqgkAU45Vb2kqFQKML9FAG84VAFBKEhYbTiEBtE70DiAuLQBRBcq8yXIxAZPI8Mr+jjkA7oqDMQjqQQEb54QDp7ZBAu7mX4Zj+kUBaeaVo8omSQNDO2OK+GpNAo/vlNBPmk0DqD5UvKcqUQF/3Ntjq4pRAEQ6c5jBvlkB5OPMkVZKWQCYj3edWi5dAK09YM5semECmOtT8rE+ZQHU/KtHGIppAvb2mz93jmkC8U9nL3AabQATSVcrzx5tA09arng2bnEBOwidoH8ydQFPuorNjX55AANmMdmVYn0BpA+S0iXufQA6NpOHng6BAx4D1tUiQoEDrCk2zUwKhQFWhU9z9Z6FAD0xtGWSwoUDgK/TcEPahQBkMT81ofqJAoLdv5zvYokAjzDCBbUyjQHh446FQ3qNA4cPQTHsypEA4BF+se8CkQNQFg7mbeKVA+I/atqaipUCUkf7DxlqmQKek0rTEoqZA7Rwxy+kgp0CZL7y432SnQBGniMj0kqdAJLpcufLyp0CvRP25BYGoQDafcZcKlahAb9B4xDBjqUBbl1pmIJepQJTIYZNGZapA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA0WUyRs0FwQBu6YmAmQ3BAiq1QlkuydEAJeGK9lHN3QF/MZsIs5HtAsW6YDfrCfEDAarT5V6qAQFhmujAp6oFAVEtYNa+yhEC6aYkafAKGQOgr/HAGu4hAgZUvKugKiUDlwvlGdCOMQOha6pqyQ4xAdOtXPKDrjUB3g0iQ3guOQDbla7XrwZBABTL25RoKkUBMRqXgMO6RQMUNyqoXipJAljZ3flzyk0BUNiigQ1KUQOAmSRyI9pVABk2NromelkApqYnoqFKXQE/PzXqq+pdApZjJf8QemUDLvg0SxsaZQO4aCkzleppAFEFO3uYim0CgMW9aK8ecQF4xIHwSJ51AL1rNT1ePnkCoIfIZPiufQPiaUAqqB6BAX8GVosEroEAdkznZvwmhQB25NW7PEaFAQR2R1sp7oUBBQ41r2oOhQJrOv3L9SaJAAakM4fVdokCMWal2GAyjQCah9a8LYKNAZBodMS0SpEBLmd5+IWKkQCSmmDtY9KRAb9r+5DEQpUD6ZJ/lRJ6lQEmegQpu9qVAuFw/sVKEpkDUKCILgYSmQHjourt9ZqdArOmVxZWKp0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCEfuNfSGJnQNAWPk/8wXFAFOkHjz8DckA7qk8G7hN6QFidL53tUnpAdu7rh0XjfUB+2PbsSSKBQDsm5O1OeoJAnCmz16GyhEDOBogppoKGQDAKVxP5uohA7FdEFP4SikAwOUU9pUOMQL9hozLRC45ATlsT/lArjkDxndsc1BmRQIESzuwkKpFAZSih9FqukkBxtdIxKt6SQK8Yc5KGspRA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA/KJil8iNpQFf+/uF9UnBARtUTyqeidEB5BwETAcN1QJsQA0SEM3tARjPwHQC0e0A0HnmnQZKAQBeQytRDsoJAmEtDxM2qg0AXv7j+7zqGQPx4DeFZw4ZADp44LSfTiUCQWbEcscuKQNXJ3jyT24xAV4VXLB3UjUAA9GA/3xOPQEeOX5oFbpBACOwbkkrqkECQEKBmJsqRQOwB75mAbpJApSXhZ0zmkkCeGFSoxvqTQO8VswV46pRAUC+5tgxHlkChLBgUvjaXQJofi1Q4S5hAU0N9IgTDmECwNMxVXmeZQDdZUCo6R5pA+bYMIn/DmkBAy7sclaebQJSCQCZ2R5xAVuD8HbvDnEB4mBMurMudQDr2zyXxR55Awojly9fPn0Db8odeBgqgQLpPJe0OrqBAm34DaTHsoEAT21f0MXShQDcceFpCIqJAjsC11VEyokCyAdY7YuCiQPen82RtBKNA1kL2oXKOo0AcoNwzgwakQB1XpZyIcqRA3CtYPq7opEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDXkZP9yKNsQAoahmk8YnBAeiAWnrxidEAx283g6nJ4QAh4Yr2Uc3pAhy/S5YLjfEBSQEdo7TmAQJgcVZohQoFAGWztd1lCg0DFIvo/g2qEQEZykh27aoZAjE6gT+9yh0Abd/5EGzuJQNpSNlkSc4pARqGAR2dzi0ChftxofnuNQNqBJIO+e49ANFVBPPVBkEBpMNLY+omRQLRsOFFLBpJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEfuNfSOJlQHzKEHuiRG1A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDiYBUjzMRsQNvlv3T/InRAAAjXMD5zdEBpPQyU1zN6QMdia2pWpH1AQJovRq4agUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDQSJ3KkANtQBTpB48/A3JA9vuahKCSdECcb/ncMJR6QEf8qCPGAntA3tC0CduBgUASe3UVkZKBQHaoPzIdq4RAqNh9vFyahkDa1QlPqUOJQDy5IfizoopAZ+Oj+v/ajECUKOpGIUSNQP3hI5urcZBAlARHQTymkEBGZGRnzM2RQN70GN9nqpJAkFQ2BfjRk0And1mriAaUQNpECKMj1pVAcWcrSbQKlkCHfGxK2iaXQDdu+J5f1pdA0Ww+6AUrmUDphF2tpSKaQJubwrvrrptAtvCiwUa3m0ATGpO9gredQD39Pg8o051AJ5pWJYxTn0DfXrtiZPefQAbYlBbha6BALzvZO93doEDpNp+1EWyhQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERrQJoc56pOpG1AlLmMQukSc0Bvl3WGqkJ0QMXreYtCs3hAHEB+kNqje0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBDHc6DfEJxQIxiFkFOcnJAmXHSiBSzdUBTvap6ZqN4QLt61LmXI3tAPT/5eApagEDwHY4YI5qBQNAfnbRhYoRAhP4xVHqihUBhJB5NoxqHQOgr/HAGu4hAjE6gT+9SiUBMWcaNklONQCAvRItGW41A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCPTWWFSwNpQOJgFSPMRGtA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCO7m7sniJrQHzKEHuiRG1AZMjzYKchcUCG0fWRKpJ2QAXAHHdp03dAqNr3wq0CfEDzfRzU1wN/QIHzIIe4KYFAiGds3xdKgUCsHaOJBGKDQBxIEBtvUoVAQP5GxVtqh0CwKLRWxlqJQNTe6gCzcotA21I2WRKTi0BjB0n23jqNQAhZ2/5zu45ALXNkEotpkEDNLq7L2rmQQBax7pf7FZJA34nJING1kkBdxZ2SEfqSQCgMCu3xEZRApkfeXjJWlEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + U6vsr5tiY0AoFld2zuNlQKmz0iumwnBAFOkHjz8DckCjQFSuFxR4QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUB61vaTY2FrQANJK5hVInJA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 2PxvrzYhZEAoFld2zuNlQFAtpBCXEnJAAA5KvZ5BdECrOe5bWmN4QDuwwpJOYntA5ttmMQqEf0BLXgbviNmAQGmvwtngaYRAvHV8y4bahEBLntrAsqKGQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAbumJgJkNwQIB6f5CPcXFAo0BUrhfUeEAIAXHegAJ6QPmUWLOvRH1AqVBRf7nKgUBOiAEiwhmCQHuOpscjQoVAc1gaMjvjhkCmuCjKb3qHQLcbE9mzK4tA6nshcejCi0Cu+pIH68OOQOqqD5uUS49A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAOutBpADJxQG+XdYaqQnFAacYatcOCd0D3HWfUm9N5QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4qRcexsiYEAoFld2zuNlQL4gXDX4gm5AO0xzspUCc0CasibwK2J2QHbu64dFI3pAwXNuZ9pyfkAy1nXy2amAQMH+0+cFcoJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBZFxRtOXJwQK9rGHLRYnNA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCdFrCBNyNrQE5ptBT0onRA9X42GSyTdkCfacKzGRN7QH0FKGcdJH9A/TqGf+6xgECICl1mkKqEQMdCTzJwyoVAHOsAoueyiED0SPTX0fKIQK3vgTopa4tAIU+ZfTMbjEARHUxXtYOOQIV8Y5q/M49An5F4fgvWkECLQHKZAPaQQLYUS1E8apJA1TBENyz6kkCbmK8qffaUQLq0qBBthpVAshuC/a2KlkBcFiVkqaqXQMabRWW3JphARrM8eg3rmUBU06eb+pKaQMbKM49jr5tA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAKI3ffzmRvQBTpB48/A3JA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCCq6/ifYNvQKPid1q/AnFAiDDsKtfyeEBqPQyU1zN6QBaIOEqvA39A+OH+cGRigUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RpQFkXFG05cnBAiq1Qlksyc0C0I164/MJ2QOW5muEOg3lABSRsVyIzfUCROhQhvWGAQLxkliMJ2oFA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAUn+iE5kFrQANJK5hVInJAJVItydiSd0AeXwao9tF3QHbWYIH4YYBA8lzNcIeBgECDYU4JyTmDQEDeKTR6eoVAekDONwDShkBeL+Ye0gqJQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDo4r3x+qJsQNzlv3T/InFACAFx3oCCeEBkbLHC8LN5QM9bBRiZs35A7Ag5WXDagECiAOODRFqDQFA2A3b88oNA5sPbKr2ih0AaPswofguJQErxpUdJu4pAOI+IE9abjEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDAf1LOpONtQK9rGHLRYnNAO0xzspVCdUBYnS+d7dJ4QD3DZJGpc3lAQK87Cs5xgECndC7co5qBQEnCtx2dUoVAOlXSF/uihUDJfTANJ2uHQBDuXS0JW4hA9oPVsoiTikDa9SbginONQDpHzlkB3I5A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDs3IbI4yFtQI8BR/y9MnFAdswfOEqidUCxCkktQaN2QMfMLddvEnxA0xNLXsQTfEB6jqbHI8KAQCsSPfujEYFARJZveqXahUD1GQauJSqGQIYeh0Zn4ohAC8IVihHjiEAXIwjfqJqLQDTCnFkkG4xAqCeJd+pSjkA08YqD0KOPQDG9tDexKZFA5GiX3xPWkUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDAf1LOpONtQG+XdYaqQnFA4J0FuyoDdkBv9VHaAlR4QDuqTwbuU3xA+70hFHpygEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBIOn3vtNFwQNeRyQ6NInNA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDAf1LOpONtQOO2GkbmYnJAAkkrmFVidEAgmueCrfJ3QHEOZ2W+c3hApK0X/a0BgEDFAt2uoTqAQDApQXlwAoRAWOOA6vhChEDnC9/fJAuGQPdU54jcCodAeBBgeGbDiEBagrGlaKOLQLzTWB/fC41A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUB61vaTY2FrQG+XdYaqQnFAsRC8uaGxdUA28gnAwnN3QAIRyljHIXxAXbNRN3GEf0ASDeZEJcmAQPKcoUKxCoRA3BSv96bhhUCs74E6KQuIQEBCeRQz+ohAa2z7Fn8yi0DKQD4lgZuLQPxwfK/A6o1AW0W/vcJTjkDDtyBgB0aQQA1hHE2MvZBAdc6Fbk3SkUBqigxJyL2SQFpS6keOXpRADOyInATilECj1CoUr7qVQFbcWjow5pZAt1Tue7hWl0AI879IdnKYQBR+3nf0VplAH3aSG6cGmkCQbR4PECObQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUC3D8dBTiNqQNS+X4D+xG5A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RsQK9rGHLRYnNAwTM0RRfTdkCdKRjPP5N6QPzVrBrH831A9xQTt7KBgECNk7SCD8KAQFS/WpJ7yoNAOtgLXivKhEDgOoQOPsuHQAEEsm2X0odAp2YqHqrTikAqBDk9qgqLQKeVGEhWXI5ASFX1JwKbjkBic2oZV/aQQCTC8SjXEZFAdvMtgWCSkkAI2MQwDZaSQFoJAYmWFpRAzpXZbm6WlECyq6x2pBqWQPxqfdzSOpZA+b9bcbr+lkAQ60BE3NaXQIjouWbmxphAjNqA2/eimUAqSja6IuuaQHFe5bQ4L5xA3GCbyGh3nEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + XBt4PPKiZUAoFld2zuNlQJzLO3vnAXJAA0krmFUickBZnS+d7ZJ2QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkC2sNCooUJpQOO2GkbmYnJAIrP8DWnSdUAeWZMbloN5QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCaHOeqTqRtQKPid1q/AnFAdE+7zNXidkDehPAvbyN4QHStlyAu9H1Apd+EaYdUfkD+mUS3j0KDQBYzu1u8coNAYscO1BtbhkAWYqmFaPuGQIAYy75z64lAqkJNwb8Di0BHRHHO3/OMQA5wF95LHI5A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkB8yhB7okRtQDitQvclQnFAlLmMQukSc0DqDZFHgYN3QHNPu8zVYnhAxE/Ja/vSfkC+jpFWQtqAQKnTisXpcYJAtW0RhXlyhEANAVXidYqFQN5tmFSMqodANgHcsYjCiEBCm2JxGMOKQC3gW+C/WoxACccIgYTLjUCZ40eoy4GQQPxzksmguZBAEonTysbVkUAoDKad90mSQCieFMzs8ZJAcSBVmA1OlEDaIgusPZaUQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAUn+iE5kFrQOO2GkbmYnJAiq1QlkuydEBrPQyU1/N6QP5SEYY7s3xAfybPfG2SgkBJsdF1H3KDQDl5r3TlkoZAjXTKHJi6h0A5qJ2ekRuKQPChlDkkU4xAV/lZiemrjUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAoFld2zmNtQFf+/uF9UnBAb5d1hqoCdUDlVUsBVmN2QMCXgyXQcntANlZZoHvTfECn92ci1MGAQEix0XUfkoFAxUgkDSxShEAP3XeFi5qEQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA2gKvZDSNtQHzKEHuiRG1ABcAcd2nTdEAJftVJ9cF1QNDYaYMN83tA830c1NcDfED58DVayLGAQFpC3dM+GoJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD1hHOUyCJpQEMdzoN8QnFAaYA5p9LBc0B+v0ZZLGN4QGneFfsq03pA2cuQpO+zfkD8GjGNAXKAQOyUNvyj4oJA8/mwuzgKhEAK5vLm+3KGQBFLbaaQmodAAcVyFTMLikARelvQPCOLQMjwGCWfE41APoAAdp5LjkDkj4OnJU6QQK5oXjD77ZBAYH/DPkEakkD4WDDOJvKSQHWUBEBnNpNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD+9P4gH+NsQOzQoK8iBW9Af9hb5OeCdUDqDZFHgYN3QKaZo1uWk31AEc/Yvi+Uf0CNH7IlQ8qCQIiWWgnEUoNAuiVXy6TyhUAcd/5EG1uHQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkASeFMryKFlQHJahe5LhGlA0BY+T/wBcUCPAUf8vTJxQCZrQlSUcnVAVlzbNdZjd0BEvP4+7AJ5QEQa25JElH5A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDAIFw1+IJuQEMdzoN8QnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDOIQhxcmNnQMZtNYzMxW5A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD1hHOUyCJpQEMdzoN8QnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBmiwPJSONqQHzKEHuiRG1A1c6DlSfickAFwBx3adN0QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBK9xnL9URsQG+XdYaqQnFAxwSPFv6Sc0DKo7/RbZN3QAKnB+yts3pAkf5TC4bEfUCfJMDgLuqAQAJSiv264oJAA1KK/boChEACgXgnZ2uGQJRWC5b8uoZAZq5CRPODiUD4g9WyiNOJQPeyw9w0PIxA+LLD3DRcjUBb4I35wFSPQNkCUmpWrpBAvBglcoxykUCLGbd4nDqSQEtBg2e4OpNAopyJS83Ok0CUw8Mz2ZaUQLkfXB7+YpVAeNmWOw8blkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDOIQhxcmNnQMZtNYzMxW5AQh3Og3wCckAKeGK9lHN3QGneFfsqE3pAZYSsCFjEfUCYHFWaISKAQJZvICG4+oFA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDodNMYclFwQEMdzoN8QnFAZSbQtP+ydkDWMtN14IF3QJ2NZ6/4sn1AoMhIiq/TfUDhaKVdGaKBQBKKrP70IYNAcJEDU0Vqg0A/kFGkVkqGQJ2XqPimkoZAzrivmYISiEBfvTAyxMqKQOFaoZ8f24pARYhrvKvzjUB9Du0cHFuOQIcJt9quiZBAnrN1dfHFkEDR+Yh42o2SQE81Xeoa0pJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkB8yhB7okRtQM4hCHFyY21A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBImCMySWRuQOzQoK8iBW9AmHHSiBTzdEDrJqbSPGN1QLp61LmXY3pA2eSlL6uTfED+9lMwFwKBQPAdjhgjOoFAhP4xVHpChUBCukzXj0qFQNO+zW/RAohAe92xgrHaiEDT7buZfYuLQJkubm0Ja4xA/Vs4ipWDj0AXsbRA9tOPQNNsCRsRzpBA4kPvzABGkUApWJ7HFiqSQLeC3CJHUpJAaZlBMY3ek0DLuRobU06UQPjBnya5ppVAS9ERMKkSlkCUU1L8yW6XQHSx373UcpdAvqGxWwB3mUA2tc5PBpOZQH83Dxwn75pACJKD+St7m0D7Jk+zQrucQFEUxMVM15xAmpYEkm0znkCtPbTBiEeeQLEZ12Sex59A/BbDL9oloEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDYkZP9yKNsQHzKEHuiRG1ADtLLr2fCc0BlJtC0/7J2QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDo4r3x+qJsQFRnpVdMhW5AlvrgqQDCc0BxDmdlvnN1QAqgoZnwwntAmM+u3GyEfUCYsHSIz+mBQIa6N2auwoJA/N0+pVsChUAXv7j+73qFQMMJ5bTHCohANRB16UcLiUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkASeFMryKFlQHzKEHuiRG1AK8WrRmdBcEAsI4iav9J1QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDYkZP9yKNsQFf+/uF9UnBAE4oR9pJidkB+v0ZZLGN4QE4sistCg31AUkBHaO05gEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBa6U0me2NuQN9iJOBzYnFACAFx3oCCdUAwYzJ/mdJ3QFkBf32m8ntAi298ylwjfkAOhI4ophGCQOOI+k8GooJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD1hHOUyKJnQOzQoK8iBW9A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCwLijacuRqQBu6YmAmQ3BA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEfuNfSOJlQHzKEHuiRG1A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEfuNfSOJlQI8BR/y9MnFAW7ZEKKnyckAdWZMblkN3QOoNkUeBA3lAq7DfOm5UfUB4Zd1mWRR/QOJTmZn5qoJAdgVPq6SKg0BzWBoyO2OFQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBmiwPJSGNsQEMdzoN8QnFAeiAWnrxidEAKeGK9lHN3QKHhXRVrc3xAmc+u3GyEfUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + eg5Y0/EhYkA2uAwZnGNiQCa3YN0hA2tAjwFH/L0ycUAHAXHegIJ1QFZc2zXWY3dArLDfOm7Ue0DKBw+yJrN9QOm4E1mO8oFA3GKHh8pxgkAWv7j+7xqFQKOOLZc2eoVA3epeDlwjiEBqutOmooKIQAgV4RCoW4pAJA20nhqDjEDPQIcgFGSNQF5p5RVALI9AQ4hBxLZNkECKnPC+zDGRQGA22n9JopFAbrLDxgK2kkC9X8p7haKTQITHBMgo0pNAoXWdg7smlUBo3dfPXlaVQIWLcIvxqpZAf2Cqoo/qlkABe7AiDXeYQMlQfEC77phA3mW9QeEKmkCy/JeXNoOaQJB8IlAnl5tADyaIk3KDnEDtpRJMY5edQCU7yZSYn51Abr0JYbn7nkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBTq+yvm2JjQOJgFSPMxG9AjwFH/L0ycUDlVUsBVqN1QOVVSwFW43dAc62XIC60e0CssN86bhR+QJH+UwuGRH9A6rgTWY4Sg0Dc301BmqqDQLHkuWj6GoZAljIuORKrh0B4EGB4ZiOJQPpf+FWew4pAPzwGiNIrjEBejcJyKtyNQAZorJc+NI9A+TYz10DykEC0tb3ASKaRQKq4Gkxq/pJA/qWPXnSqk0AH4gpIpv6UQKAHDLKwzpVAufhvVuyKlkC2HE2z1uqWQJ0OQ14iD5hAE0Y9rxLrmEDn/hT8TROaQMTHJCQ895pAY+5Uk2nfm0AOuPbBZ/ucQEcEKJufY51AVcylvH3fnUBdGWmcxX+eQGrh5r2j+55AoRce0v0BoEBkhevc732gQGMc/ZYxOqFAJBFn5xpgoUAjqHihXByiQOYVRqxOmKJA0bxwn3oco0DYoC+waVqjQFxHEaCNqqNAYyvQsHzoo0CA0WidmBykQFW2ubSXqqRApclRbK4epUATrlmApZClQH2KxSbDJKZAOKZCT7uSpkArn70k4SSnQCoxLFPWVKdAtileJfSyp0CDvF5a+RqoQIdaHE8SxahAMtFWWBcbqUCsUgUeKMepQAqSyhIsIapAhBN52DzNqkAvirPhQSOrQHaeYtxXj6tAiBXm6GTpq0BoKUzgclGsQOGgGPCHr6xAWrQ15I0TrUCQtRDupa+tQEw/H+io1a1Ata35vLuxrkBxNwi3vteuQNk3UbrGI69AysI6vuGdr0DLwjq+4eWvQKumbV/6ObBAvGsZ3v9OsEBosbJhEbKwQAKxaV4JurBA4Xan4x4TsUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBImCMySWRuQI8BR/y9MnFAJCru7HxDdkBWXNs11mN3QLKBOgxVVHxAHbdvb+6UfUCgbMOVljKBQEgumC/vyoJABJqNsiJLhECqMWcZQuOGQJh6Me55U4hAcV0NKa7riUBfptf95VuLQJyHjyv6I4xAitBZADKUjUAtjBDEO9yOQKIRHfxUypBAYDbaf0lykUBTkwRxftaSQBJNP46P/pJABappf8RilEBvdi+Ky/6UQEy+GHraRpVAhYtwi/EalkBi01l7AGOWQDei1Zk3p5dAv/xJdzxjmECBkqc3Y6uZQD8UQYySJ5pA8Sqmmtizm0AyFI+sjLebQHFCna8ueJ1Ajz1/qMi3nUCGV96wVJSeQKVSwKnu055ARbTJWBIsoECUXC2CSFygQGqssicoLqFAbB2hPF1ioUBCbSbiPDSiQJEVigtzZKJANPgP5lf2okBRoQUWnkajQL+CsOZqhKNAQyzvGbkIpECxDZrqhUakQNWX8eeQuKRANbfYHdTKpEAnQsIh74ylQK1YZaKlvqVA/wI23AOTpkBbbV2gw76mQOb3/aDWTKdAJPseqxmVp0A/gzCo+RKoQK88iBQyX6hAOscoFUXtqEBkexl3DxWpQO+8guAn36lA6NsgE2PtqUBzHYp8e7eqQJ3Ret5F36pAKFwb31htq0CYFXNLkbmrQLOdhEhxN6xA8aClUrR/rEB8K0ZTxw2tQNiVbReHOa1AKkA+UeUNrkCwVuHRmz+uQKLhytW2Aa9AAgGyC/oTr0AmiwkJBYavQJRstNnRw69ADIt5BhAksEDC+85u9kKwQFHQyYYZa7BAosEM9Au0sEDKlb4IJ8ywQLQ9gdsWNbFANnb4ZTFPsUAgHrs4IbixQEjybE080LFAwbdhz0kxskCINppNMEGyQAb9sU9TeLJAzXvqzTmIskBdB65OYviyQK1BKFNP+bJAWYfB1mBcs0DJ5+erbHuzQDlN/1t2zbNA22Nck3f8s0CQV/tahU20QIep9RaJX7RA1ZxL246UtEDM7kWXkqa0QOdh91mUzbRAI/lBlqEmtUCTp5DdpTC1QM8+2xmzibVA/4fKOrCztUDhuk8Bvgq2QFaSxjm/M7ZAc9tfNMZhtkCb1xa6yHq2QLggsLTPqLZAFJ0LPNbbtkAx5qQ23Qm3QCYZgCPhXLdAncbek+eMt0DSXhmn8r+3QPTQ2pL2DLhASyQOKQAhuECgFnQWCHC4QMTpAqsNgrhATFwNmhnTuECkr0AwI/O4QKNmCZkoU7lAhHV+tThkuUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBmiwPJSGNsQI8BR/y9MnFAeiAWnrxidEBWXNs11mN3QO7F1o2sY3xAHbdvb+6UfUBYZrowKUqCQCK8W3PO0oJA7EZebIBShkCEvypdIeuGQOx1TJYs24lAS+vQbI3ziUB9es0ubpOMQBIXd3z5+4xARKZzPtqbj0CjG/gUO7SPQAbpDCcjUpFAUSVzn3OekUC3avSbTF6TQJsVRT2fopNAAVvGOXhilUBMlyyyyK6VQLNxK0i+7pZAqcAcrgSvl0BliJBWBHuYQFvXgbxKO5lAwrGAUkB7mkA/7VTEgL+aQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBmiwPJSGNsQI8BR/y9MnFAeiAWnrxidEBWXNs11mN3QO7F1o2sY3xAHbdvb+6UfUD3kdlwgrqBQCK8W3PO0oJAinJ9rNnChUCEvypdIeuGQIqha9aFS4lAS+vQbI3ziUAbpuxuxwOMQBIXd3z5+4xA4tGSfjMMj0CjG/gUO7SPQNV+HMdPCpFAUSVzn3OekUCGAAQ8eRaTQJsVRT2fopNA0PDV2aQalUAbLTxS9WaVQIIHO+jqppZAeFYsTjFnl0A0HqD2MDOYQCptkVx385hAkUeQ8mwzmkAOg2RkrXeaQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBmiwPJSGNsQMZtNYzMxW5AeiAWnrxidEBxDmdlvnN1QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBImCMySWRuQI8BR/y9MnFAJCru7HxDdkBWXNs11mN3QEYz8B0AtHtAHbdvb+6UfUBqRZ4ebOKAQCK8W3PO0oJAMXFELtjqg0Ai60mdeluGQDGgMliEc4dA6RbwrOZjiUDEgNaT23uLQLBClrxSbIxAKK6gsGeUjkBBRxdVlCSPQMZtteZ51pBAILuCP6BWkUAjl6XitdaSQGqrVN3LWpNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBmiwPJSGNsQI8BR/y9MnFAeiAWnrxidEBWXNs11mN3QO7F1o2sY3xAHbdvb+6UfUAdBBYto5KAQFhmujApSoJAfgflFvaqhEDsRl5sgFKGQEUziyZis4dA7HVMlizbiUAMXzE2zruKQH16zS5uk4xAnWOyzg90jUBEpnM+2puPQE5JUPxdfpBABukMJyNSkUCYOSKaiYKSQLdq9JtMXpNA/n6jlmJClEBJuwkPs46UQLCVCKWozpVApuT5Cu+OlkBirG2z7lqXQFj7Xhk1G5hAv9VdrypbmUA8ETIha5+ZQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBmiwPJSGNsQAkahmk8onJAiTDsKtfyckDfhPAvb2N3QH2/Rlkso3pAbdw8T0d0fUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBmiwPJSGNsQKPid1q/AnFAQh3Og3xCdEAxOsR5lxN3QNB0GqNUU3pAv5EQmW8kfUAvZjNhFjKAQKZ0LtyjmoFA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBmiwPJSGNsQHzKEHuiRG1AQh3Og3xCdEA+w2SRqbN1QEJ7qtfUU3tAzRqxsIHEe0D6bfwTmOqBQOUAzhJj8oFAXHHL/eoChkBGBJ38tQqGQNrkQDgNE4pAoDTEpGNLikChEOdHeRuNQKBjss4P1I1A0J/quBJSkEC0RyzvPW6QQBkiK4UzrpFAmF3/9nPykUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBK9xnL9URsQBTpB48/A3JANFPZBFMzdECjQFSuFxR4QDSxtVirRHtAMZigze8kfkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUC2sNCooUJpQDtMc7KVAnNAHl8GqPbRdEBdVXXjGHN4QJIEx5fm0nxAaP2aaQQ6gEDahmTktCGBQMoAalNXUoRAbmcIIAwqhUDoUSY+r+KHQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDGbTWMzMVuQJgT9jS8IXBAcQ5nZb5zdUBfbopu1FJ2QDhp+57WpHtAX8xmwixkfUCb42t5F1uBQC+VIYvCOoJAKgzKbkMjg0COOZSLzzuGQMJ1xcYZQ4ZAJqOP46VbiUAiGjjHJkSKQLXL7djRI4tAIkkm8dLMjUC1+tsCfqyOQBE8io2/qpBADBTTD4XikEDDUu+bBTeSQPApphe7ZpJAokALJgHzk0AgfN+XQTeUQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAc6N63HmJpQBu6YmAmQ3BAGxg/tH5Ud0DuZ/o5VFJ4QO7F1o2sY39A/QUlyeF6gUD3kdlwgjqDQI4KpmEjM4RA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCO7m7sniJrQFRnpVdMhW5ADtLLr2fCc0CqEa9//lN2QDDbzeDqMnlAOWn7ntZkfECL5xcsroN/QGPgI1/XOoFAWdSvUS7Kg0D05KT3GPODQLsQSweF+4ZAULMvgGVih0CCPPEW8QOKQFDiHaoR64pAE0FyrzK8jEDh5p5CU6ONQAo4sGxvIpBAVIkiqd9VkEA4n/WwFdqRQIUn8AOL7pFAgSE2fTY2k0DPF8KhtvKTQGU3CYVsupRA5pqUdOeGlUBJTdyMoj6WQC8d1UAI45ZAyWTTofgCmEDhMzpPTm+YQK16pqkuh5lAKrZ6G2/LmUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDAIFw1+IJuQBTpB48/A3JAYG6KbtRSdkBPi4Bk7yN5QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBML328ejFwQI8BR/y9MnFAooOBwRKidEB9v0ZZLGN4QMSMg/KVEnpAmxADRITze0Di3T/d7aJ9QN6MgroDsoBA6M0fHa5pgkAJtwS9T+qCQKIgABUmaoZAnJeo+KbyhkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD60UzrnGVsQFf+/uF9UnBAdU+7zNXic0A4Cx9LflN1QJMXaZZBpHtAnBADRITze0CwaCWBmTR/QLlhvy7cg39ACbcEvU/qgkDslDb8o6KDQHu9lPHPaoVAJwjBp6d6hkCZDlHcJ/uIQCc3r9FTA4pA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD1hHOUyCJpQI8BR/y9MnFACRqGaTyickCPXyNQFkR4QAl4Yr2Us3lAHbdvb+5UfkC+jpFWQtqAQLkFOjrDYoFA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDEsXzkG6NjQHJahe5LhGlAcFqF7kuEbEB0T7vM1eJzQF9uim7UUnZAdK2XIC70ekCGL9LlgmN+QOfc8LV4ooBA7kFrdQ1qgUB6vZTxz6qEQOUg66NEAoVACeby5vtyhkB4AY/fmwqJQJzGliJTe4pACQYQeN3Ci0Bj8jwyv4ONQAk1/qGJS49ASPzwaxBWkEBoMNLY+imRQK9EgdMQDpJA1yRPYTwekkAvXHjoZtKTQFc8RnaS4pNARHG56YzulEDmZKRrvqqVQFqG+uqyCpZAQ46UZ/qql0Dprljg3tKXQIqiQ2IQj5hAacZP9TSXmUDTJIQuMeuZQBynxPpRR5tA+O6t6mBfm0BlKQXHcqOcQELff4iMY51A5UD828hnnkCLYcBUrb+eQFFyyRPvKaBARFG8lwJGoEDPkiUBGxChQCKjhz0NPKFA89NFZyu+oUDiLgNIOB6iQBjMLjZBwKJABnAjrkjMokAqsUMUWXqjQF/g3TBXpKNATvJjemkopEAfbFk7goakQHJ8u3d0mqRAZoAINphqpUAgkbN1kpqlQPEKqTar+KVAZ6VicKh+pkB8lUk3voamQCcx3nrTYKdAPCHFQelop0Bgqxw/9NqnQG5FjXXpRKhAUjYGQw+dqED5hvbeAQ+pQBLCgU06f6lA6xHg4hzRqUA2A6KzSi2qQBAKybEy06pAW/uKgmAvq0A0lCCvPUWrQBnzKk5uFaxAWYwJflNHrECkfctOgaOsQOTNcudrEa1AyXW0HZelrUCkWe7xlvOtQO5tneysp65A622d7KzXrkB5+D3tvzWvQA/49Om3Sa9AnYKV6sqnr0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD62J8L/6FwQN9iJOBzYnFAVeXpVsLydkAGJGxXInN5QEOj6bMwI35AVyR69kfjf0Az1nXy2cmBQI8/BxgwCoNAMwVkHIZShUCPbvVB3JKGQJcyLjkSa4hAIHN22h1LiUDAMrUIJaOLQBdS9ghV44xAVBNZRHyrj0AirE1X2wWQQFsLFJfn4ZFAf9U9UxcGkkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBe4xb9Y+JuQG+XdYaqQnFACn7VSfXBdUCqOe5bWmN4QPg71aZj8nxAj2/XJSUygEC28ErLqXmCQIZOV1RcyoNA1EEHtgEKhkCzVPz5vfKGQAFIrFtjMolAqjN8KPWKikA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDAIFw1+IJuQDtMc7KVAnNAYG6KbtRSdkBiDbspRBN7QLt61LmXo3xA7GVI0vcZgEAUtKcxLqKAQD/eKTR62oJA7JQ2/KOig0DQ4qrMu5KFQArm8ub7ModAlw5R3CebiECb6nN/PeuJQF469+uTo4tAyPAYJZ8TjUBeaeUVQCyPQBaP8aAVFpBAYDbaf0mikUBgf8M+QRqSQERMrYd/JpNAqm+V3GwelECNzu1ToIKUQI6FaOSiopVAP+VSYuYOlkBAnM3y6C6XQCP7JWock5dAiR4OvwmLmEBt6/cHSJeZQG004cY/D5pAt9vJpXObm0Aetsg7aRucQGnyLrS5J51Ans2/UL/fnUCAdQGH6rueQILjklj1Y59A5fugqQUMoECz/DKwFXSgQCwQUKQb8KBA1z1TFiYioUBiyPMWObChQOyby65G0qFAECYjrFFEokC7UyYeXHaiQJtnjBVqDqNA4EsP7XF4o0Bb8wcglfCjQAVE+LuHeqRAoge3GqvUpEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD1hHOUyCJpQHzKEHuiRG1AQh3Og3zCckAFwBx3adN0QGQm0LT/MnhAWxQhfAFEeUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + XBt4PPKiZUAoFld2zuNlQDeULWxqYnBArmsYctHicUBZnS+d7dJ1QATAHHdpU3ZAJskeqOzDe0CAXncUnON9QFqQtWNi6oBA+gEcAkbygkAhvFtzzvKDQMEtwhGy+oVATObddRorhkAlW4wuPhOJQHnsght8U4lA7IYyPqobjEDa71EFz2uNQAUa1AcbpI9A+0zXqDx+kEAYIiuFM+6QQBFiGKpimpFAWHbHpHh+kkCnSol6X7aSQPrXQ/i0opRA8TpbGIu6lEA6vZvkqxaWQHrvOg0LZ5ZAwQPqByFLl0CX5ovg5xaYQAqGKtRBp5hA4dZdfhMbmkCGdWprXXOaQGHuVJNp35tAAmWqAnk/nEBL5+rOmZudQN3dlCqFq51AkvuZya9/nkAnzmbIsK+fQO71tbPtQaBA0V7TL+a9oEASN9YZ/u+gQPZWvP77v6FA6vdJ1BL2oUAa4RP8BjKiQDEM+c4o2qJA2myPBjIUo0DvA5maNsCjQKudTTBQJqRAE0W5AEdupEDP3m2WYNSkQNPQNAtyUKVAoA8swH7mpUCRyNTWfzamQLUJ9TyQ5KZAxQcVj5TopkDZk0w6m1anQOmRbIyfWqdADdOM8q8IqED+izUJsVioQMvKLL697qhAz7zzMs9qqUCLVqjI6NCpQPP9E5nfGKpAr5fILvl+qkDELtLC/SqrQG2PaPoGZatAhLpNzSgNrEC0oxf1HEmsQKhEpcozf6xAjGSLrzFPrUDNPI6ZSYGtQLClqxVC/a1AizQuZVdnrkDVnZTkV/+uQLAsFzRtaa9A+Sfs4WJxr0CPNAakuQ+wQDaS23+9J7BAbjDWicCCsEAWWBkF05iwQE0spm/H9bBAKNSN7N0ZsUDfTLaiz0yxQPERYiHVhbFAf96J6+yZsUAR/5ke9fCxQNHXn6bq9rFAI3sOBgByskA68H67+X+yQEy1Kjr/uLJARwVmAwvkskCR+nq6CACzQIxKtoMUK7NA0Y8GBB5ys0DyfOqcIpyzQD1wQGEo9bNAa0LfHjD9s0ADEfWVNFq0QBeIeKJBYLRASFZFFj6htECQTW0kT8G0QMEbOphLArVA51dpI15BtUA64S4aWWO1QMwBP01hurVA+dPdCmnCtUARR4/NagG2QIv07T1xGbZAHRX+cHlwtkDxDM1SgHK2QDZSHdOJubZA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAeR9VQy0JnQOJgFSPMRGtA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD1hHOUyCJpQMZtNYzMxW5AeiAWnryic0A5Cx9LftNzQNB0GqNUE3hAOWn7ntbkekCXz67cbER+QI+9/6NuVX9A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + U6vsr5viYUA2uAwZnGNiQOJgFSPMRGtA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + EnhTK8ihZUAoFld2zuNlQANJK5hVInJA0BY+T/wBdEBUSTk3e5J4QJdx0ogUM3pA9DjwE51RgEAN0ma4yeGAQPRn3j1J2oNADQFV4nVqhEA2AdyxiKKHQFiVqFrVcohAmi6mzhS7ikCBlS8q6KqLQHh0r1gfQ49A/ltw66BTj0B7HfgM7HWRQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDOIQhxcmNtQNvlv3T/InRA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkB8yhB7okRtQIB6f5CPcXFAooOBwRLidkDSdBqjVNN4QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAKI3ffzmRvQFAtpBCXEnJAwDM0RRfTdkBQi4Bk7yN5QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Ukz2Fu+BYkAKI3ffzmRvQJ3LO3vnQXFAuxz4ZT/SdEBM7E+pf+N1QC/CuFUv03xAh47Ifi8EfUBCi16t46GAQKd0LtyjmoFAbbXgry/agkBxfPeOJbOGQACWhOuG4oZAlHYoJ97qikA7hMBBp8uLQJSlFlGKc45AO7Oua1NUj0DnSalTVa6RQK/W7wEGxpFAMTp78YCyk0CUWlTbRlKUQEZPvPKmzpRARnG56YzelUBcZP3zzOqVQNWZF9+4ppdAuY3t7wjrl0AAopzqHs+YQIewfO3+MplAXcuM5lrPmkAHyHMCVfeaQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDGeRuljWJrQKPid1q/AnFAchTa8R7Cc0DF63mLQnN2QJQd3CKiMnlAAI7yYPKTfUCOb9clJZKAQCwSPfujsYBAu3V8y4a6g0AsQSslUDqEQLukavUyQ4dAWUfQyrFih0Doby7A3SqJQByoOd+FW4tABsHqqjW7jECtrLp3xxOOQJfFa0N3c49AOmywwxmOkECv+Iip8T2RQIPu8I866pFA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 2PxvrzYhZEAoFld2zuNlQGaLOdoMYnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAYxSyCnGRqQGS4z0t+BG1ArmsYctGickCD3PXEZPJ0QK7J9MUptHlA3ug/EChDe0DQ0vb2rCR/QJz6xK31yYBA+W38E5hKgkAt/0VGN4KDQCZ0obn5coVAvgPH3ng6hkBTekZfW5uIQL4ytQglw4lAfHrNLm7Ti0BPNzahZnuMQAujKySam41AFmPcsNKDj0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERuQEMdzoN8QnFAmHHSiBQzd0BDe6rX1FN4QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCmvpxNHKRoQEMdzoN8QnFAeiAWnrxidEDRdBqjVFN3QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAc6N63HmJpQCzFq0ZnQXBAO0xzspUCc0Dvy0kaDXJ4QAKnB+ytM3lAStiTZdDCfkAUtKcxLqKAQLjMbW6/aYNAQbpM14/Kg0Ac+jeLS4KGQKK9G8Hi4odAMeZ5tg6riUCw2tvGooqKQMLq+k5QY4xA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkB8yhB7okRtQOzIyX7kkXBADtLLr2cCdkBlJtC0/7J2QGQm0LT/cnpAZYSsCFjEfUBQZCTF18mAQJZvICG4eoNAeWSrlOoBhEAKaSwtLLqGQI1OoE/vEodAHlMh6DDLiUABSKxbY1KKQEdTqLdDA41AZHV2eO/qjkAyUjLRzUmQQDJSMtHNOZFAR2dz0vNlkUCQ6bOeFMKSQHxCBG/5PZNAxcREOxqalEB1bRh4VU6VQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDY/G+vNiFkQHJahe5LhGlAW7ZEKKkyckAzWUyRs0FzQImtUJZLsndA6Q2RR4FDeEBEGtuSRJR+QMRPyWv70n5AT5MS74NygkAProlb35GCQDy0LgFBuoVAbeTO2dsChkCYDlHcJzuIQAPg1BCtwohAlORVqe56i0D8Oxv5s9OMQCMNtJ4aQ41AEx5RZOMFkEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDOIQhxcmNnQKPid1q/AnFACRqGaTwicUArI4iav5J2QKNAVK4XFHhAwZEQmW+ke0BNLIrLQgN8QLgaRv7iuYBAp3Qu3KPagEBJH8eWJHKDQG6g1OsP44NArUyRs7CKhkACgXgnZ+uHQEAtNe8Hk4pAk4X5v6ijikBtM9qUabuNQPeyw9w0vI1A/Fs4ipWDj0DEW6I6OzqQQOJD78wARpFAqHF1QnG+kUArxi+ZIaKSQO+FJD2HopJA3dyUp2culEAGCfcPuDaUQCZf1XOIipVAUPnIreM6lkBwT6cRtI6XQAIQLrwpx5dAVGV6GeoSmUBLkm6ISiOZQJQUr1Rrf5pAOHtNISCXmkB/j/wbNnubQN2W7yCM25tAJhkw7aw3nUD/pvMwjD+dQG+bcLnNk55A47zGOMLDnkAR2erjCRCgQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDOIQhxcmNnQD1liD1RInBAA0krmFUickADpwfsrTN5QNF0GqNUU3pAeLKDJA4ygEDMZ1duNkKAQKPcBSdaaoJAw0bXnG3ag0DQ4qrMu5KFQPBMfELPAodA/ehPch27iEAdUyHoMCuKQPTHz6BUU4xASH2j6nxjjEBY9Zm94GuPQD9cIxm0+49An8WIITDCkUCRfjE4MUKSQKeTcjlXXpNAG7XIuEuOk0DwFbMFeLqUQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA/KJil8iNpQI8BR/y9MnFA5m5gjBHDdUBWXNs11mN3QAh4Yr2UM3tAfR0jrYR0f0BI/6kFQ+KBQIW6N2auwoJA2QMrnoSahECF6SWQWkuGQNDiqsy7MohAFu6mKJwDiUAUpqNzNHuMQHjxdRLvG41ApaokDHYzj0AG6QwnI5KQQJvXUtLb9ZBAT2tN80PukUDlxyRwB/qSQJjtjb9kSpNAlkkM5TAGlUA6TwoToW6VQN/LTLFRYpZAtj5Kqrw6l0Bf40PGpyaYQP/AinbdlphAQ/kWzt2qmUChIgfKGbuaQI3p6GsJr5tA6qRHljoXnEA/AE56TzudQJy7rKSAY55AnCk+dos7n0DlPe1wob+fQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAbumJgJkNwQCAUzFL5UXBAGxg/tH5Ud0BH1RPKp2J4QD0hQeUBxXxAN8utIKs5gEACvmoPDfuCQJr4dz030oRAlp4OS2QDh0Ar/fjVeIqHQCp/soa7C4tAKyzn/yQTi0DxqliWJxSOQCtb1SnRm45A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERuQOzQoK8iBW9AzLzUXClzdUDqDZFHgYN3QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + EnhTK8ihZUAoFld2zuNlQKPid1q/AnFAkUKbY9Vhc0A38gnAwjN7QKNok4pzI31AGeDv1CWagUB+Js98bTKCQKssdCLPWoVArMCTEH2ihUCbpnmRcSuLQJw6mX8fc4tAyUA+JYGbjkAuhx3NyDOPQHvZYW4aHpFAFjcEoQaakUD/4h/4gY6TQPu6aHpHJpRA39A7gn2qlUChRJxLvrKVQOhYS0bUlpZA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RpQM4hCHFyY21AAAjXMD7zckAJGoZpPCJ0QES8/j7sQntAiI7Ifi+Ee0AijW1JIiqBQA5PLXKZ2oJAZlBm8JpyhUA7VdIX+wKGQJNWC5b8mohAfxjLvnNLikBdXtRIfrONQH9Huegf1I1ATsy66TuykEDQkOZ3+/2QQJdO+7VcDpJAgqdLhkGKkkDg0DuCfWqTQMm7+oBXbpNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCGpXi5ZgJtQFf+/uF9UnBAdU+7zNXic0CKrVCWS7J3QHWtlyAu9HpAKITy57FxgEAeBBYtoxKCQEbVrtIJAoRAgjHgSS8rhUDV/QzINcqFQBFaPj9b84ZAOSvX5MHiiEAvq/ops4OKQJxYoQFOe41AktjERj8cj0DOw8cV/YGQQBXYdhATZpFA+4LHsWXakUCkANUFPy6TQA8DixlvdpNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQEIdzoN8AnJAO0xzspUCc0BdVXXjGHN4QGneFfsqE3pAXbNRN3GEf0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA/KJil8iNpQAoahmk8YnBADtLLr2fCc0DRdBqjVJN2QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBkuM9LfgRtQCwQIE23Ym9ANFlMkbNBc0D5NnxfV7N3QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCj4ndavwJxQIB6f5CPcXFAkaB3ty0zeECA2Fvk54J4QJH+UwuGRH9AbpZbQVazf0D+9lMwF+KCQD/eKTR6OoNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCsQEUcS4JlQFRnpVdMhW5AVv7+4X3ScUCqEa9//lN2QORVSwFW43dAx2JralbkeUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCwLijacuRqQHzKEHuiRG1A5m5gjBGDc0CyCkktQaN2QATAHHdpE3dA8n0c1NdDfkDZy5Ck77N+QLOR7uFjYoJAF5DK1EOygkDeu3Dkr7qFQH2Zt5TleodAqMM5lzHTikDenIZ+OJOLQArHCIGE645AVNKnGN1VkEA46HogE9qRQGrn6BkDApJATv27ITmGk0DHENkVP6KTQEMAGa1abpVAmO2Nv2SKlUCKFMincFKWQPUWfrugipdAbiqbr6bWl0A+mb6HweaYQIWtbYLXaplA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDEsXzkG6NpQKPid1q/wnFAat8vQH9idUBqPQyU1/N6QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4qRcexsiYEA2uAwZnGNiQCa3YN0hA2tAQx3Og3xCcUBWYk7CNrJ1QNcsYOl/c3tAVsAqFo/DfEAyQlYELMKAQPKLu5ozaoFAlm8gIbjag0C5t2Gqn3KEQJaeDktkY4dAHeUrxyuLh0Ano4/jpRuKQDs26LGDG4tAitBZADK0jkCeY7LOD7SPQNQQi/VEIpFAGLSZsyg2kUCGJ/ADi66SQJjLkMh++pJAaj3DC8EylEBK4vXWxIaUQE5TlhP3tpVALvjI3voKlkDOao0oTXuXQBN8Lbg7l5hAf+x0nXaHmUBdbP9VZ5uaQMhutWmX45pAD4NkZK3Hm0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDGbTWMzMVuQLPFgWSkcXBADtLLr2fCdkDDqiUkKwR7QNUsYOl/839AxALdrqEagkBqRZ4ebIKDQIsug74NI4VAMXFELtiKhkCLXXHouauIQDGgMliEE4pAqa4t0xE8jEDEgNaT2xuOQHDa0+J9RI9ARla+0SOSkEC4BGEGlWaRQMZtteZ5VpJAFS5RAtFmk0Cqg4jur9qTQPlDJAoH65RAB6146uvalUB5WxsfXa+WQIfEb/9Bn5dAXXHuJpMzmEBr2kIHeCOZQKdhwMS+N5pA+gKh/KPrmkAnebfZFPybQHoamBH6r5xAC4+K4UqAnUBeMGsZMDSeQIumgfagRJ9AiCPoEztAoECfXnOCc8igQCqg3OuLkqFABIKpr2O0oUDol3y3mXiiQF0N3LaGeqJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAeR9VQy0JnQBu6YmAmQ3BAsaxs2egRcUA9w2SRqbN1QLEKSS1BI3hAeGXdZlnUfEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDAIFw1+IJuQKPid1q/AnFAYG6KbtRSdkBqPQyU1zN6QNQTS17EU35ArP2F+CKygEB+aslqOTKDQKwsdCLPOoRA4peTh8VKhkDXVvYkG3OGQGZ/VBpHO4hAdng3wxxTikD3g9WyiPOKQApZ2/5zW45A97LD3DR8jkAFxGQUEPKQQB073sFWYpFAgbOkqyu+kkCdUtXWrCaTQBDcAqFXhpRATtS8S9YylUDwNTmfEleXQAiZhdiobpdAobcgFDxjmUBlwnXU5G6ZQEnYSNwa85pAIc8XKZInm0Be7YndQA+cQAXl6jDIq5xAEATv64abnUC3+08/DjieQPQZwvO8H59AzRCRQDRUn0BZEzIkNWygQLqYXIQJcqBABygqIlNsoUCSWdA+HnihQGOKjmg8iqJAg4brvXvgokA7SwIjUZCjQMqamriRxKNA+9Z9LXxypECIkjqEn6qkQMwHPFeahKVASB62jsqMpUCMk7dhxWamQG0Wn13gjqZAsNTXx9UUp0DUXi/F4IanQJIOiCz2kKdAX+nPxfMUqEDrmbozGVeoQB91S9Ae96hAEJKjAi9ZqUDdbOubLN2pQL+mmwBNWapANvgdo08Dq0B/MhcLeDurQCiDB6dqxatApCoA2o09rEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + krjVFDGDWkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDGeRuljWJrQDtMc7KVAnNACn7VSfXBdUBdVXXjGHN4QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAeR9VQy0JnQHJahe5LhGlA5fdurf0RcEACSSuYVaJzQHRPu8zV4nNAWJ0vne0SeEDPWwUYmTN6QLOpeeiwY35AJbAJHTGkfkChAOODRBqBQPcl+V4wwoJAzCplhpBSg0CGTldUXIqEQFtTw3u8GoVA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD1hHOUyKJnQDAn7Gl4w25AjwFH/L0ycUCtUgPnFcN0QL/UPaxqcndAmxADRITze0D6draBGpN+QGvZvQwaioFAdBpbb8ThgkADQ7lk8KmEQP65YUhxkoVAjeK/PZ1ah0C9lZlcaKqIQB7nQNbeEopA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUByWoXuS4RsQDtMc7KVAnNAYG6KbtRSdkCWWL39WFN5QIcv0uWCY35A3oyCugOygECluCjKb7qDQCdFs49NyoNA0OKqzLvyhUAeJDO+hGKHQMfBKvvyiolAHlMh6DDrikAoxfnkRaONQBUyoRZog45AENK8ib6dkEC7GjiA3U2RQJDps54UYpJANwp4F/kZk0AM2fM1MC6UQEwfuRgfNpRAMDWMIFW6lUC+71hEdnqWQHolXr6AvpdACOAq4qF+mECRqDCRsVKZQFLQ/H/NgppA25gCL91Wm0Cv+ex7CYOcQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + U6vsr5viYUAoFld2zuNlQOJgFSPMRG5AxwSPFv6Sc0Db5b90/yJ0QMdia2pWpHpAT4uAZO8jfEA4SsFKOcqAQB4EFi2jUoFArwiXxeQKhEDynKFCscqEQGlbd71cC4hA8suPbF1TiEAd9hFvqYuKQMyIQdroo4xAgSPcizWkjUCsTV6OgdyPQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCPAUf8vTJxQDitQvclQnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + krjVFDGDWkDipFx7GyJgQCa3YN0hA2tAMifsaXhDbUC7HPhlPxJ0QAcBcd6AgnVA2W20UJeid0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDodNMYclFwQEMdzoN8QnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAAqvrc5SFxQDtMc7KVAnNAAqcH7K0zeUDDsJiwi1J5QGGHOgLyMYBA5ADOEmMygUACUor9usKEQFEBQHGUAoZAb1L8W+ySiUDyy49sXZOKQPL6fZYJHI5A0n/GeHgrjkCbVshKAqKQQCp/JkAuGpFA5Uaa6C2mkkAiPKl3fwKUQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBmiznaDGJxQN3+1P+6wnJAZukVLmVzeEDdXLFTE9R5QLw9GjP943xAM7G1WKtEfkCZB0nWAauCQM6YkgihQoRAxDHL2E3jhEBfnROh4vqGQFU2THGPm4dATxcZEIXLjEBFsFHgMWyNQOAbmqjGg49Aa1ppvDkSkEAFI45VCd6QQIU6hWpfopJAYxfs84r6kkCbT8Zrhb6TQHgsLfWwFpRAG2e9gNuClUD4QyQKB9uVQJt+tJUxR5dADMTncRB3l0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA/KJil8iNpQK9rGHLRYnNAH3KoplGjc0CvyfTFKXR6QB/QhPqptHpA15PoDMFigEDXk+gMwcKAQGa8RgLtioJA18LWNm3rg0CR5sgEOcOEQNfxxGAZdIdAkRW3LuVLiEA7H499pYyKQCIaOMcmBItAaCU0Iwe1jUAiSSbx0oyOQGYp/5/JJpFAQzv4hq+SkUAIi3vzBUuTQMNS75sFV5NAiKJyCFwPlUBDauawWxuVQMOB3cWx35ZAbSbX4Zybl0C0Oobcsn+YQEOZ1NoHpJhA+04118hjmUDDsMvvXWiaQHtmLOweKJtAQ8jCBLQsnED7fSMBdeycQMPfuRkK8Z1Ae5UaFsuwnkAK9GgUINWeQFEIGA82uZ9AfdaIlZA6oEA9YgSguxyhQBtGPnS7IqFA/e1/qub+oUDb0bl+5gSiQL15+7QR4aJArAJ4qAQXo0AWBS68NAekQAWOqq8nPaRA1pCpxl/ppECQzxMZQAelQPrRySxwl6VA6VpGIGPNpUC6XUU3m3mmQKnmwSqOr6ZARejlN64Hp0Bpcj01uXmnQGlyPTW5kadAW/0mOdRTqEAp/rg/5FuoQBuJokP/NalA6Yk0Sg8+qUDbFB5OKhiqQNzL5rYvhKpA/1U+tDrGqkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA3lC1samJwQDitQvclQnFAWZ0vne3SdUAma0JUlHJ4QHumMc5wQ3tA7cXWjayjfkAE/752JKqAQPaR2XCC2oJAvlGfbpyqhED2wMeaLmOGQFIyQ6rzsohAwMiQTbB7i0AZXum5X7uLQBJ7LTUeCpBAvsVZ6/UpkED2kAA9VI6RQKNJvsQ2tpJAQIHS2n+Sk0AjYbXZjHqUQJ2qwta7kpVAo3is7uI+lkCBwJXe8RaXQFWPEf0oy5dAykLWqhJzmEDRflGURJeZQBPFFnczz5lAXEdXQ1Qrm0AuqEGQgJebQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCRGlyHeVJxQBTpB48/A3JAWHXwwJGDd0DbQ5zIVzR7QObMPOBplH1A7VA8DtgigUDUae3Zh+KCQAui+Pgvs4RAm5WT6fPqhUCegpw0h7uIQMibOI9VE4lAV8SWhIHbikDiRZXb/wONQFfzhK4tZI5A1bid9TUGkECPjxXfTLaQQFTQlAqMypFAm+RDBaKukkAx8ZEyidqSQLJnFtjSQpRAe+Fj0LTelECWfenfCMeVQAoKwsXgppZAR//QVDLTl0CKIbnaNmuYQCsVpFxoV5lAPDge6Xy3mkDdKwlrruOaQLxPFf7Se5xAwq9tRO9vnUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + EnhTK8ihZUAoFld2zuNlQAkahmk84nFAFOkHjz8DckAxOsR5l5N1QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBxWoXuS4RsQBTpB48/A3JAOAsfS35TdUAUR+TilxR5QDhp+57WZHxAilJgG/gSgECc42t5F7uBQImBTkWkm4NAnBJao8NDhUCn0gow/CuHQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDsyMl+5JFwQJ0RHYnYgnNAChqGaTwidEC7YtlzMBN3QPjXhcaqUntAu8C1x4gkfkAaPf9NrTmBQHsxl06cooJAq0GA5u7xg0AKWvVDyGqEQDWEd0YUo4ZAcm0m9lr6hkBT1TMxbDOKQOL9kSaY+4tAPHXvqNwSjEDNeXBBHsuOQJNgxWYIIpBAylKLKMXpkEBFdyp1Tm6SQOHVXfv1fZJAYe1UEExClEAq+45Oj/qUQOEETCWiBpZAqhKGY+W+lkAqKn14O4OYQMaIsP7ikphAQa1PS2wXmkB4nxUNKd+aQCXDIlOim5tAbkVjH8P3nEAaAZJgZQOdQGEVQVt7551AU8nH+AOEn0DwPZ9Qp6+fQIMp8KjmZaBAnG9NAB2EoECns0em8degQMCwbWYtMqFA7sf2oAe8oUAHxRxhQxaiQK5TcqsynqJAxby8LFH8okDS3cmoPRCjQOlGFCpcbqNAow6I0lsipEB0iH2TdDikQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAYxSyCnGRqQBu6YmAmQ3BAxwSPFv5SdEBWXNs11mN3QB1ZkxuWw3hAHbdvb+6UfUAdt29v7tR/QI4KpmEjU4JAjgqmYSNzg0DwDXVLdmuGQPANdUt2i4dA8DxjdSL0iUDwPGN1IhSLQPBrUZ/OfI1AVGotkq4sjkAbltOhGrWPQLnddD6D3pBAnPNHRrmikUA59WtT2aKSQIAJG07vJpNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAAVPW5y8NqQAAI1zA+c3RAqZq9oOoidUAAZrOEloR7QJdYvf1YU3xAr9momzhCgUAA4kds90qBQGQPEomDY4RArwiXxeTKhEBb7pG3uvuHQK83he+QU4hAr2ZzGT3ci0Al9lpqPBSNQM23LwSVbI9A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RpQF4beDzyomtAzF74CNFhcUDNvNRcKfN2QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCO7m7sniJrQAoahmk8YnBAZMjzYKchcUAKeGK9lHN3QIuJO9hVMnlA4d0/3e2ifUD4NWIaA6R+QILzIIe4iYFAw0bXnG1agkAW1MTCD5KFQMxZU7A8O4dAqrRo/maaiUD5X/hVnmOKQDndxvOSYotAWmPHP/F7jkA5DLUdP+uOQF/ISK4+ypBAAgo/aOABkkBETK2Hf1aTQIIhNn02xpNAwDvtHpsilUD+EHYUUpKVQEBT5DPx5pZAR5O24HLulkDyaUlCN3OYQJGDiH6e8phAB3+KQ12PmUCmmMl/xA6aQFFvXOGIk5tAWK8ujgqbm0Ca8Zytqe+cQNjGJaNgX51AFuHcRMW7nkBUtmU6fCufQEv86awNQKBAHB3lid7boEA9PpwZLoahQHWoF5EBoqFA/ckXJFlookBNaYtLFqiiQCFUbyFk2qJA2Kr0tC5yo0BGTFjwedyjQJqv03liqqRAa0RBv4/epECMOr19fWylQI+FYSWgjKVAGhACJrMapkBKMl1Ji1KmQD8I6/TIHKdACr7YU7Y0p0BjkkLy046nQMi1eB/EGqhAiIorwemQqEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBkuM9LfgRtQMRlXluOUnBAxMM6r+Zjd0D5NnxfV7N3QPmUWLOvxH5ARo9ndH9KgEDVt8VpqxKCQOB3dvbj+oNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQD1liD1RInBAnREdidiCc0BatkQoqbJzQLAKSS1BI3hAvxofulvzeEB3Zd1mWVR+QH3ey8cFCoBA5tzwtXhigUAQv28DXRKEQOYL398k64RAocPwm57KhkDM7XKe6gKJQCrP14adM4lAzBxhyJaLjEAq/sWwSbyMQFUoSLOV9I5ACPCstwdqkEBzluSla9aQQIgHpMxdLpJAvYa2Q5fakkCdHOXNg0qTQEyvFDnDopRATzNK3MnWlEBlSIvd7/KVQJUxVQXk/pVArFw62AXXlkDzcOnSG7uXQDeT0VggI5hAc4jg53F/mUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQHZo0FeRAnFA15HJDo0ic0B2xqyr6RN4QGXpFS5lM3lAnGalv0cigEAWItWzPjKBQACUb9zTOoNAek+f0MrKhUCUdBMYK0OHQAtUIGkMg4hAssXPAoPTikBugeqFmBuNQN/LdKjk+41AN1jsVyJSkEChfJ9iOEqRQE7bvipT5pFAIZSWd44Ok0CXXf/2c0KTQK1yQPiZXpRAahbXQ69qlEDqLc5YBS+WQF70J23DapZAzkOhYDuzl0AAVqTA/46YQHClHbR315lA5Gt3yDUTmkBkg27di9ebQCEnBSmh45tANjxGKsf/nECtBa+prDOdQH++hvbnW55ALR2mvgL4nkCWQVnJGPCfQPCZhWYkoqBAiywobzfaoEB72+7PPGyhQOS3WnZaAKJAwu+dylJQokAI+Xrcaq6iQOfnhploUqNAYYSt443Uo0BAc7mgixikQLoP4Oqw+qRAGDQtW6AepUCsmsnuy7ylQNi/qGXLAKZAY0pJZt6OpkCEWz2p4MKmQIeLaczuPKdA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCRGlyHeVJxQK9rGHLRYnNAIHKoplFjd0AAbCYR99J5QCDQhPqpdH5A8K+Y9x26gkAA4kds9wqFQPDehiHKQoZAKeLOOwpDiEC3Ci0xNkuJQLc5G1vi04xA8+mX7otbjUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDEZV5bjlJwQKmavaDqInVA5m5gjBHDdUDLo7/RbZN6QHp+8vEU9H9A5QDOEmPSgEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQGaLOdoMYnFAlLmMQumSdEDaMPrJ/GJ5QOW5muEOA3tA/Dn8+n/TfkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCeFrCBN6NsQN9iJOBzYnFAcRTa8R7Cc0CiacKzGZN5QHFytkV303pAacRW7THEf0CcZqW/RwKCQPuNUQaF6oJAnJWT6fOKhUDCufcV8fKFQC2aFII1Q4hAwujlP517iUC8wnJ3YQuKQMIX1GlJBI1AvPFgoQ2UjUAn+/CcJyaQQD412rBggpBAo+owNEPykUC6JBpIfE6SQAOnWhSdqpNAABQhMH/yk0CDvlEp826VQIArGEXVtpVAytIAJAlTlkAAQw9aK3uXQBNVQfApr5dA5FjiYWH/mECTbDgFgHOZQMhutWmXg5pARYOdE8a/m0B6hRp43Q+cQMWalCgchJ1AKwcC7QYcnkAOHdX0POCeQG7E9DAYFKBAeRlUfjkyoEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDiYBUjzERuQDeULWxqYnBAxet5i0JzdkAFwBx3aVN5QOf0e7zF43tAlkAy9wuygEBzKSwIj3qBQJZvICG4OoRABgrQQ+aChUAndKG5+fKGQO6fR8ll+4lA0BGZ9mebikB/pMhhp7OMQNBAhyAUJI5A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCmvpxNHCRnQBu6YmAmQ3BAU72qemajckDiFPeZPnR5QBoYP7R+1HtAKt3bRJe6gEDUt8Vpq/KAQMuWRZjiioRAvr1/gO7ChEBav6ONDlOGQL7sbaqaS4hAh8VIM3B7iUDpFvCs5oOKQBYdlVJIrI1Ay4hB2ujDjUD07H5iIKqQQD2lrzdqIpFAcNy++Tt2kkAiKRQRq66TQIdfkcxsCpRAaT3DC8GSlEDGZrMH/ZKWQH8cFAS+8pZA2uZ2bwYvmEDcRQQA+vKYQDcQZ2tCL5pA8MXHZwOPmkBN77djP4+cQC/N6aKTF51AlANnXlVznUBGULx1xKueQHmHyzeW/59A4R9+BvA7oEAoNC0BBiChQBVPGCPuJaFAoJCBjAbwoUD5ZOsqJDKiQCsbIo0ZfqJAhKZUlDz8okDrpp2XRGCjQKgwrJFHbqNAZihMXVVUpEAQn4ZmWmKkQFizNWFwFqVAvrN+ZHhipUCxPmhokzymQBc/sWubiKZAccrjcr4ep0DXyix2xmqnQPxUhHPRrKdA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDYkZP9yKNsQMZtNYzMxW5AsyNeuPyCdECqEa9//pN1QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERrQFB5wpkkI2xAykXjfRWCc0A1tyjlC9N1QFidL53tknlAXHhwXLrjfUBArzsKztGAQMEc3Gk0+oJA1I/fRSXahECISIJ5oAKGQBlNAxLiuohANpOuL3jyiEBhvTAyxCqLQF0Q/LhaA41A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + BIYf0EKDYED1hHOUyKJnQARC2HfzpW5Ancs7e+dBcUBdLTYHvaN1QNhttFCXYnhAJIjKQNXUe0CfyEiKr5N+QC+VIYvCeoFAfWrJajlygkDAmaIjBDOEQH2Zt5Tl+oVAUZ4jvEXrhkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAtECBNt2JpQDeULWxqYnBAbFyUq/MhcUCN6DFxAtN0QI5lltx2knZA4zw2dppDeUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD1hHOUyKJnQG+XdYaqQnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQG+XdYaqQnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD1hHOUyKJnQGS4z0t+BG1AQh3Og3wCckCD3PXEZPJ0QGBuim7UknVAYMxmwiykfEBKN4r+fCN+QDYgxhcAyoFATrfvS27igUDd301BmqqDQMoAalNX0oVA3Q48a0Yzh0DB3+mBjmqJQNTtu5l9y4pAwQ7YqzrzjEBQNzahZruOQGjOX9XU045AfWnwNgvGkEA3RPlF3yWRQLdb8Fo16pJAL4BVRVESk0D+b59VS86TQEMAGa1arpRAsIYEZJFalUCKFMincJKVQMcJ1zbC7pZA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCwLijacuRqQBTpB48/A3JA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQHZo0FeRAnFA3OW/dP8icUBQi4Bk7yN5QP7uwaWCk3lAcpSClXKUfkCMRg7FWqR/QFabfTWR2oJA2gMrnoTag0Dnn/7N0pKFQG7kztnb4odAeKR/ZhRLiEBuE70DiGuLQHjTbZDA04tA/xc+nMkjjkAMtBHMF9yPQEiOX5oFbpBAUMragzfykUDXtr2PMTaSQDTgrYttdpNAIDn+W1KSk0B9Yu5XjpKVQNZBKt+pmpVA61Zr4M+2lkAveVNm1B6XQGtuYvUle5hA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBcG3g88iJnQFRnpVdMhW5A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA8VWQoKMVvQI8BR/y9MnFAxet5i0Lzd0CPXyNQFkR4QFRDxqoaBH5AHbdvb+5UfkAOTy1ymRqCQPIIglQDQ4JA1XrTgQUjhUC5NChkb0uFQNWpwauxq4hATBXMn8ZTiUATQXKvMlyMQI/8oaMprIxA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + rEBFHEuCZUAoFld2zuNlQGS4z0t+BG1AkUKbY9XhcUBtfmD77qJ1QMzkEzmFAnlA6jXQI92SfECoINnQnsN8QHHhKFMn8oFA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBmiwPJSGNpQBu6YmAmQ3BAoYOBwRLic0AJeGK9lHN3QKHhXRVr83pAZISsCFjEfUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDm926t/RFwQG+XdYaqQnFACAFx3oCCdUCRoHe3LbN2QGMNuylE03tABUY4px20fkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCO7m7sniJrQKPid1q/AnFAxet5i0JzdkAna0JUlDJ5QIxGDsVapHxA7sXWjaxjf0CIZ2zfF2qCQDadjNHPIoRAT5MS74NyhUDHoQ1qEduGQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA2uAwZnGNlQD1liD1RInBAQx3Og3xCcUBfbopu1JJ1QGUm0LT/snZAgXeMn1cDe0CHL9LlgiN8QFQcagsDyoBAVBxqCwOKgUBUS1g1r1KEQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBOGswAeMJsQDtMc7KVAnNAJ2tCVJRydUA7qk8G7hN6QE4sistCg31AOybk7U6agEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCPTWWFSwNpQDtMc7KVAnNAxwSPFv6Sc0CMTIFRu3J5QO7F1o2so3tAY/d8k7VJgEAVtKcxLmKBQPbXIM8MUoRAPrQuAUGahED2Bg/5uNqHQNKU0jyYoohAITGR+wQTikA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCYvfARosNsQBu6YmAmQ3BA8x9AgH9ydkDiFPeZPnR2QIJ3jJ9Xg3xAcWxDuRaFfEDJuiL1zPqAQCVpkOw3WoFAtm0RhXkShEAt6OwRWROEQH2Zt5TlGodA9BOTIcUbh0DhxoGxcTOKQIj0Nl0cJItA4fVv2x28jUC1+tsCfkyOQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCdFrCBNyNrQBTpB48/A3JA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCO7m7sniJrQBu6YmAmQ3BAncs7e+cBckCpEa9//lN2QCwjiJq/EnhAyxqxsIHEe0BnxQBwbzN/QFxs2AZ4eoFARWeBUPlRgkDWawLpOgqFQPBMfELPgoVAakymJJISiUCELSB+JouJQBUyoRZoQ4xA/ixKYOkajUCmNiKvqfuOQPsFZUeQWZBA4kPvzABGkUBEiKUTsbWRQMZZwtQ2ypJAKJ54G+c5k0DbbgPWXOaTQKi1bzA9/pRAJV/Vc4jqlUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAc6N63HmJpQAoahmk8YnBA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCO7m7sniJrQIkw7CrX8nJADtLLr2fCc0Cw8TOihQN7QDWTEycW03tAOybk7U6agEBUHGoLA+qBQMwqZYaQUoNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD1hHOUyKJnQOzQoK8iBW9AQh3Og3wCckCTuYxC6RJzQAl4Yr2UM3hAB19NMtkTe0D3NWIaA2R/QObc8LV4IoJAGWztd1lCg0Ddu3Dkr7qFQBBLbaaQ2oZACOby5vvyh0A7de+o3BKJQP/EchUzi4tAMlRv1xOrjEAdFi8AixuPQMvAHPrPoZBAinpXF+FZkUAo6gz2C6KSQDyRvCUn5pJAb/678CGGk0DupyE0bXKUQIaBjsNSGpVABSv0Bp4GlkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + SgMA5LbhZUAoFld2zuNlQGaLOdoMYnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCdFrCBNyNrQEMdzoN8QnFATmm0FPSidECUHdwiorJ3QE7HkGhMtHtAgtvbfxDjfkCeQshiXXKBQLjMbW6/CYNAlSFIkZQKhUC4+1uYa5KGQL4hz2CnQohAuCpKwhcbikBSAnOc/kqMQLhZOOzDo41A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBImCMySWRuQBu6YmAmQ3BA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAAVPW5y8NqQOzQoK8iBW9AxwSPFv6Sc0CxCkktQaN2QOkNkUeBA3lAz1sFGJkzekCIZ2zfF4qAQN6MgroDsoBApbgoym+6g0AcSBAbb5KEQKtwbhCbWoZAXwsJwue6h0BynBQgB2OJQIgLkJH68opAcssCSrPrjEB/6g/AMYuOQEiOX5oFPpBAu+RHd7QRkUCREKBmJpqRQM9kC9+9rZJApiXhZ0y2kkBYPEZ2kkKUQF6NadTpdZRAClOrhNjOlUDepGDpPzqWQJC7xfeFxpdAVEN9IgTTl0Cl0Ab5q+KYQJ4zT8Av15lA7lJHxcw+mkAeS0bVhZubQGpCh1zoCpxANc4YqLYvnUCzxMcoCWedQHzix6LME55AL7QHwCQzn0AwMxa+BlCgQNbRoyugf6BA8L6RyDEyoUAvXdYyw0WhQFPnLTDOt6FAe0kyyUTAoUDU1GTQZ4aiQJr73Crkm6JA84YPMgdio0Ab6RPLfWqjQD9za8iI3KNAfhGwMhrwo0CY/p3Pq6KkQD6dKz1F0qRAVvY9m7mIpUAx392pZRimQBTu3WbHbqZAVWk1p3CKpkA4L/7M1xynQOCqnhCJVKdA9iaemOUCqECgNhobtDaoQBpovv71sKhAxS4D6sk4qUCl8l7/CD+pQP59kQYsBapA6ibsuN86qkC+CQ0RV+eqQEOyHsACAatAnD1RxyXHq0AFHrwLbcurQCfI8cc4VaxAD96dv3GZrEBLCRIuSQOtQM3VPYt/f61Akh3BKF/nrUCLzd1WjWWuQFKpPDOKya5AlY2/CpIzr0BENCY3pYuvQGi+fTSw/a9AItFbBNgZsECbllCG5XqwQEZbswHjf7BAepIgbOztsEBY1yfp7QCxQIxXzOrxJrFA6vc3HPZXsUCw4SPo/JixQJY90Z8Hu7FAdoLYHAn+sUC6xyidEi2yQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBa6U0me2NuQEMdzoN8QnFAz/0oxECidEC3wo5zbEN5QM9bBRiZs3tA7KzBAvFDf0BbkLVjYiqAQAfb4Rk6WoJAv71/gO5Cg0DR4qrMu3KHQInFSDNwW4hANRB16UeLikAaysnLsROLQKnyJ8Hd24xANT9jE/QTjkDVEIv1RDKQQPjIoQU2CpFAHZPLwWWOkUBCuXOjYQ6TQKy7KbeRVpNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDOIQhxcmNnQD1liD1RInBAN5QtbGpicEAlUi3J2JJ3QGQm0LT/MnhAJbAJHTGkfkCfyEiKr1N/QN6MgroDcoFAdgVPq6Tqg0DVawLpOgqFQNgIHpX3AohAAnKnjpwyiEBpDZ8tObuKQPlQJ73TyotAlhNE05rjjUAmV8xiNfOOQCgzkmUJ8pBA8FRWrdZ5kUA/tmQ4OoaSQAfYKIAHDpNAu6Wkz1VSlEBQWmlMKGqUQNIod6KG5pVAAdxQwVF2lkBOGLc5orKXQJUsZjS4lphAs/K1z5fCmEAkVcQp5F6aQDMKreTthppAr/nsewlTnEBuRZbHD2OcQINa18g1f51A+HstSCqvnUA1cTzXewufQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAmWGpEdaJuQKPid1q/wnFANTU3073BdECRoHe3LfN4QMlEyTjB8n5ASP+pBUMCgEBk0VLGDAKDQBIHc7jEGoVAW7DS9EOahkCjC/RQBtOHQJ9zy5u84opAmupzfz1ri0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCmvpxNHKRoQMZtNYzMxW5ApF/cxTPCckBXXNs11mN3QP9rJhH3EnlAHrdvb+6UfUD3FBO3siGAQEgumC/vyoJAiBmUT/TZgkDZMhnIMIOFQEJsdEds2oZA0BGZ9mcbiUCmmT5k+PKJQP0XPpzJQ4xAYOweXHDzjUAmGMVr3HuPQOKMdDz+hZBA96G1PSRCkUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBImCMySWRuQKPid1q/wnFAEooR9pJidkCRoHe3LfN4QJoQA0SE835A3LBfF+6BgEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCJy7y2HKVqQBTpB48/A3JAH3KoplGjc0A28gnAwnN3QHXGrKvpE3hAWPsL8UXkfEDGxrpKD4R+QGZQZvCacoJAY5JLz7PKgkCTVguW/JqFQCq+8d4f04VAjuu7+6vriEAmN6/RU6OJQLc7MGqVW4xAIsxfNwP0jECNNH3DEHqQQLNHLO89npBAcUpQy0b+kUBlXpH9gyqSQLhe/8Vc4pJA9Ibv8q/yk0DP4dGYjXaUQOX2EpqzkpVAUbDf7uvylUDJDOah6RaXQNHH1gNCt5dAE/23PxUbmUDoSqnWckuZQCqAihJGr5pA/817qaPfmkBBA13ldkOcQEm+TUfP45xAwRpU+swHnkAt1CBPBWieQELpYVArhJ9ADyIiewQEoEAsNpoRLoygQFc20XUa6KBAUMDxDjn+oECwwQN9Pa6hQEJL2xJUwKFAgfLBplvAokCb1g0ad+aiQL8XLoCHlKNApuqqdXHCo0D/dd18lIikQOQPF0+dlqRA8QDHgK9KpUBvUYC4tWClQLGMQovaLKZAHmZ4ttNgpkC7TCQ/3/qmQEKnmBzkDqdARtfEP/KIp0Bm6LiC9LynQNEYLqkKU6hAJnQ0jR+fqEAqpGCwLRmpQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAc6N63HmJpQHzKEHuiRG1AlLmMQukSc0A1NTfTvcF0QLbCjnNsg3hAXPZ+SmzSfEDYy5Ck7/N9QMJb42CNcYJA40TIAC+SgkBybSb2WlqEQCaJrX0ZioVA1prwEudyh0AdaC2sUCKJQDrIui9zi4pAgZX3yNw6jEAxpzpeqiOOQOXCweVoU49AuvWPbcqNkEBKaoI9G56QQDblzwTmWZJAlFpU20aikkB/ZxDRBraTQN5KJnlyppRAyOlQnScSlUDe/pGeTS6WQCg7+BaeqpZAJ4HSam6Kl0BxvTjjvgaYQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDauChX50NvQJgT9jS8IXBA6RME1OGRdkDhAVWb46J3QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDAIFw1+IJuQJ0RHYnYgnNAuxz4ZT+SdUDE0mQAh5N7QPa+cDvvsnxAHLwSeDvKgUCZsHSIz+mBQOPnuIen0oRALJEYxCbyhUB2yFzD/tqIQCzABu7SeolAB83dW0CTi0Ajn4YcChONQAf8y4XsG49AqNIV4bUdkEBMgCYPF+qQQPFUVq3WeZFA/QEOhED2kkBxbE3CLD6TQK6D9fhpApVAu1wfYFhClUAE318seZ6WQAut5fSlApdAIcIm9ssemEC1YEehoqqYQGpEZ8LseplAmXYaqdgumkAcW8zQMgebQK6LW6r+SptAMNuPODyjnED3DZx2H6ecQD4iS3E1i51ArMrPz1dvnkCIEh0PYY+fQBZxY/LWGaBANhR4i8uJoEBv/JX5+d+gQFsMYVrhi6FAYYd//RSioUBNl0pe/E2iQIXIn2MlUKJAcdhqxAz8okB3U4lnQBKjQGNjVMgnvqNAnEtyNlYUpEC87obPSoSkQI7WWzpx1qRAfHoC2nVmpUCzzkQJh9ilQNdYnAaSSqZAOnKipYNMpkD7mbxsovimQEQyhFmIGqdAhiRdbbWGp0CdvbZgq+CnQHivRnHQSKhAwf7WxruOqEBMiXfHzhypQFBwuivlTqlAdLHakfX8qUD6nW/F7ByqQJmpw2AL/6pA0l7jfwEjq0BZNT9rNuGrQKofVzoWKaxAfXZf0UaPrEDOYHegJtesQAi4yDpfWa1AjuzyqlG5rUDGr2gGbT+uQLItExFiZ65AhjvkEJghr0DXJfzfd2mvQNWZ5u/WEbBAZNjycckVsED5Iz7t4YOwQLvi7nDYlbBAHa6V6uz1sEDNXmNY4xaxQONOSh/5WrFANndCbfKfsUAH2aEcBM2xQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDsyMl+5JFwQBTpB48/A3JA7Cam0jyjd0Bv9VHaAlR4QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD1hHOUyKJnQKPid1q/AnFACRqGaTzicUDF63mLQnN2QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + U6vsr5viYUAoFld2zuNlQHBahe5LBG5Ab5d1hqpCcUCTuYxC6VJ1QP3uwaWCU3dAU0PGqhrEe0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + eg5Y0/EhYkA2uAwZnGNiQJe98BGiQ25A7NCgryIFb0Ama0JUlHJ1QAXAHHdpk3VAJ8keqOwDe0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUC2sNCooUJpQH1hagXUEXJAqZq9oOoidUAMubYkrCJ4QDfyCcDCM3tArP2F+CJSgEBQZCTF1ymBQD0CB5FkCoNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDAIFw1+IJuQEMdzoN8QnFAfmFqBdTRckB+v0ZZLGN4QPIGK/XD0npAebKDJA4ygEDcsF8X7gGCQAq3BL1P6oJAcJEDU0UKhkAK5vLm+3KGQARyp46cEopAnsaWIlN7ikAt7/QXf0OMQCLDY3n0oo1A9BqbJ+tLj0AgChAyppmQQAm2K4khbpFAoCEHR/xdkkAgOf5bUgKTQOmjRxMdupNABE/RY4iGlEDNuRobUz6VQE3RETCp4pVAXOJ4EH8Gl0Cq+gEs5eKXQKbSSq6qCplA83xC+AU/mUC9VR2B256aQKWTpwZMy5pATH57dgdnnEA0vAX8d5OcQGKTvHctg51AsKtFk5NfnkB5Fo9KXhefQPkthl+0u59AlRZ6LNJRoEBWovU2/aOgQLlXmpLi/6BA4eNeoBVuoUB3Tzpe8OWhQGxu/6Ao/KFAvmPpWAbKokCzgq6bPuCiQBfvG2ApkKNAPsQXBVeqo0A7MDzGOT6kQGO8ANRsrKRA6kQ0xFc+pUCq0K/OgpClQA6GVCpo7KVAnFuZ0p1SpkAAET4ug66mQMCcuTiuAKdAi1Knl5t4p0CAKDVD2eKnQNJmVpKxXKhAxzzkPe/GqEDE8T+WzB6pQOh7l5PXkKlADlGTOAWrqUANdIBi7ZKqQDNJfAcbrapAzf/7bBh1q0BYQWXWMK+rQPFAHNMoI6xAscyX3VPVrECgVRTRRiOtQF/hj9tx1a1A52nDy1wHrkCDa+fYfEeuQAxirJpyCa9Ayn+W05Irr0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjZUAoFld2zuNlQNS+X4D+xG5AbFyUq/MhcUCRoHe3LXN3QL1cokoZkndAs6l56LDjfECrGqKnh8J+QKAA44NEeoFA5xFSbIUZgkBnLImTsIKEQKFkMmT9GYZA9KeyD3ODiEC/te5OVaqJQIWsM6i0O4tA3QarOa06jUDp2f3EQFSOQGwvCS/ZAo9APAEuXTYOkED/GcVjjd2QQIbx//phEpJASQqXAbnhkkDPc0DHgm6TQJAeRvzOxZNAFojvwZhSlEBCNasKFVKVQKWwTbfEGpZAi7fr1jWulkA02aus8OKXQFF1ABWXrphAkQKcqCzjmUA1i9MczTKaQNqE3HRNP5tAGaGmJAO3m0BWdBwMaQudQGIj5/AjE51AavTfc3KnnkCsE7mOTxefQGEU/ce6GaBAP7rR7b0hoED/RU346AOhQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERrQHFahe5LhGxAlLmMQukSc0A4Cx9LflN1QFZc2zXW43hAIxHZYcEjeUCRt9rajBqAQG9x5sFjuoBAb6DU6w9DhEDVetOBBWOEQGSjMXcxK4ZANsx6+3tLh0Bk0h+h3bOJQMfQ+5O9A4pA8vp9lgk8jECCI9yLNUSNQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCO7m7sniJrQBu6YmAmQ3BAncs7e+cBckBxDmdlvrN0QL/UPaxqcndAOGn7ntbkekAzev6bWnN/QOB3dvbjuoFAXgD49CUChEDXVvYkG1OFQF4v5h7SiodAaFt3vVwLiECLNYvEM7OKQPw7G/mzE4xAHhYvAIu7jkCwtPIKIFaQQFl76R3xYZFAlThX5GDikkCja7u7HGaTQB9b+1I4MpVAery7vaFulUAs0yDM5/qWQJtKO+pT/pZAqMJgYwPHmEAXOnuBb8qYQIzYM2s5S5pA+09OiaVOmkAIyHMCVRecQHc/jiDBGpxAKVbzLgennUCEt7OZcOOdQACn8zCMr59AB+0rBKQZoECly2Ln29mgQPou3nDEX6FAysNLtvHboUBTuhB454WiQO+7NIUH3qJAeLL5Rv2Ho0B6/Z3uH6ijQJzzGa0NNqRAOokZ+UqKpEBa67l4GxylQAu61yJpnKVAKxx4ojkupkC5zs8gh5ymQISnqqlc9KZA3Q/whpdKp0APMkuqb4KnQGiakIeq2KdAz73GtJpkqECM27DtuoaoQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCCq6/ifYNvQFf+/uF9UnBA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCAen+Qj3FxQIkw7CrX8nJA9B9AgH9yeUAdQH6Q2iN9QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD60UzrnGVsQIkw7CrX8nJAcQ5nZb4zdkDfhPAvb2N3QMwasbCBhHxABkY4px10f0BmvEYC7cqBQAJSiv26QoNAkebIBDkDhEBmf1QaR1uGQPUTkyHFG4dAkanWHJOTiED1QoFLcaSKQJHYxEY/HIxAiCMlh8isjkC+3mnsoESPQNqm00SKcpBAvBglcoyikUA30MNAxnKSQDwwHIfiZpNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAot2DdIQNrQGS4z0t+BG1A6q+08yjycUAyOsR5l5N1QLEKSS1BI3hAVEPGqhoEe0AS2ISOGBKAQD0CB5FkioFACbcEvU+qg0A9MfW6EBOFQAnm8ub7ModANBB16UeriECcxpYiUzuLQO5iVeG/q4xALcsXu5TzjUBSkB/+S8SPQBb9gnIgvpBAP91QAEz+kEBdETJtNqKRQJwGQfyH/pJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD62J8L/6FwQIkw7CrX8nJA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD1hHOUyCJpQBu6YmAmQ3BAeiAWnryic0BxDmdlvrN0QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCOTWWFS4NqQEMdzoN8QnFAxwSPFv5SdEAKeGK9lHN3QORVSwFW43dAaGl7e1ZSgEBW2G8dN4qAQPeR2XCCGoJAugU6OsOig0D3wMeaLqOFQE7m3XUaq4dAvuxtqpqriEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERuQI8BR/y9MnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCEfuNfSGJnQEIdzoN8wnJAiTDsKtfyckBgbopu1FJ2QBeIOEqvA3lAYMxmwixkfUDVS+VXWZqBQPeR2XCCuoFAnHeLZ8WihEDBmaIjBNOGQJymeZFxK4hAiMVIM3DbiUArz9eGnfOJQCv+xbBJfI1AQhgpK+jbjUCR7qJvQIqQQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAYxSyCnORoQDtMc7KVAnNAAAjXMD5zdEAAZrOEloR7QAKnB+ytM3xAx97/UbfKgECeJMDgLqqBQC1NHtZacoNAWr+jjQ7ThEAtfAwAB/uGQFrukbe6W4hAvoCNmEiziUC+G1zURnSLQAJEhj/B+41AGKWVchGSkEDXyrChdKKQQFO68DiQbpJA/Sj6S1Iek0Cw4+A0zG6UQFpS6keOHpVA1kEq36nqlkCVZ0UODfuWQKzqF+E9j5hAzv6sFvvSmUBOTJQ0erOaQIAVEiVBX5tAl87UAJsPnEAALQk6lyOdQBfmyxXx051AXvp6EAe4nkBKHdvXwiefQHaR7IIZQKBAlxnXb/xVoEBXpVJ6JzihQM8cH4o8ZqFABbpKeEU4okD0FAhZUmiiQF5FfX9o/qJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDsyMl+5FFxQOO2GkbmYnJA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDAf1LOpONtQG+XdYaqQnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCJy7y2HKVqQAoahmk8YnBAjMDylKaDdkDRdBqjVJN5QHp+8vEUtH1AmM+u3GzEf0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDEsXzkG6NjQFRnpVdMhW5A4rYaRubicEBwDmdlvvN2QLzZylJEBHlAxmJralZke0ASLs9X3HR9QNDCjTvawoFAbMSxSPqSgkDQ8XtlhkuFQDPwV1hmm4VAXxraWrITh0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBcG3g88iJnQFRnpVdMhW5ArmsYctGickCYcdKIFHN2QJwpGM8/03lAmM+u3GyEfUAqgWTuF+R/QJOT/X2iyoFA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + EnhTK8ihZUAoFld2zuNlQBTpB48/A3JAMH3xjJLhckBShvO9FVJ4QNfvpWLlM3pAUuTPEW5jf0ClSjOpahqBQLr2aKH4aYJAbHbZuNYihECE/jFUeoKHQHWJVcylA4lAFQOz7Ls6ikAGjtZk57uLQHYGgtYOU45Al5JX/Sh0jkCUS+xKNZaQQLsaOIDd7ZBA21+bRUt6kUCfMAuIE3KSQCVQbeN2fpNAH0gCnWk2lEAJZkDrrAKVQGjKQmmKkpVAUHrv5cLmlUDkuYIApl6XQMxpL33espdAK84x+7tCmEAV7G9J/w6ZQA/kBAPyxplAlQNnXlXTmkBZ1NagHcubQHkZOmaLV5xAoOiFmzOvnEDpasZnVAueQPkwMXvhG55AMu0GNHVnn0BVWQx4BRSgQL23IwDLYaBAepos3hXCoEB/vALF/pmhQG3c3ko2CKJAcUfsyBlcokCRHf+wRraiQCBc5MY3XKNAUal6u3GYo0B16pohgkakQPgcWIFMYqRAuKjTi3dEpUCa4oPwl0ilQL5s2+2iuqVA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCdFrCBNyNrQI8BR/y9MnFAPcnXHQrCdEC2wo5zbEN5QCuH13p48ntA7kFrdQ2qgEDDyRDjnSGBQFJvNZKZwoNAUEU6X2AihUB/ddo3++qGQBdx4G7MKohAqlGEqiMzjEBv79+mnbuMQNdXKVCFW49AOA9n6CQikECdwnm2CPqRQJU4V+RgIpJALOvXqzTCk0AkYbXZjOqTQIkUyKdwwpVA1nca6NI2lkAJLL+8xoaXQO367LoDy5dAN+u+WC/PmUAB6UH0F2+aQBsBkmBlU5tAGGwUx0gDnEDhvqaexlOdQMqCedWOj51A+EF5cffnnkAUc0tzupOfQLqYXIQJWqBAr7GOCPPLoEB4kPxPF0ChQF7GhgYRzKFAglDeAxwOokA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBImCMySWRuQBu6YmAmQ3BAmHHSiBQzd0AbGD+0flR3QJjPrtxsRH5AG3YbCNdlfkDMlkWY4qqCQMcN7ntjM4NAzMUzwo4zhkBa7pG3ujuHQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAgFMxS+VFwQDeULWxqYnBArmsYctFidkBeVXXjGHN4QNUsYOl/c35AJbAJHTGkfkD+9lMwF0KDQKa4KMpvWoNAYiQeTaNahkA6mcwFx2KHQPYEwoj6YopAAcVyFTNrikCHCUMhPBuNQMjwGCWfc41A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCPAUf8vTJxQFJGuZtSsnNA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCmvpxNHCRnQFAtpBCXEnJAQR3Og3zCckBtfmD77qJ1QGjeFfsq03pAbdw8T0e0fEA0HnmnQfKAQMpOQuN6YoJAw0bXnG26gkDBLcIRsvqFQOGXk4fFSoZA7FdEFP4yiEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBcG3g88qJlQOJgFSPMRGtA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUByWoXuS4RsQDeULWxqYnBAjwFH/L2yckCN6DFxAtN0QLEKSS1BI3hAVEPGqhoEe0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RsQI8BR/y9MnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAbumJgJkNwQFgXFG05cnNA4hT3mT50eUBYdfDAkYN6QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCwLijacuRqQOzQoK8iBW9A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4qRcexsiYEAoFld2zuNlQGS4z0t+BG1A4mAVI8xEbkDBMzRFF5N0QAAI1zA+M3VAiI7Ifi/EekDHYmtqVmR7QAtzCs+DaoBAK93bRJe6gEC6BTo6w4KCQAui+Pgv84NAmspW7lu7hUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDOIQhxcuNoQHzKEHuiRG1AIrP8DWmSc0DSdBqjVNN4QCIR2WHBo3pA0tL29qzkf0BbkLVjYmqCQDJxRC7YCoVAW7+jjQ7zhUAyoDJYhJOIQCXHbECQC4tAUPHuQtwjjEC2y+3Y0cONQBcdlVJILI9A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + hH7jX0jiZUAoFld2zuNlQDeULWxqYnBAncs7e+dBcUC/1D2sarJ2QJKgd7cts3ZAtKl56LAjfEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBX/v7hfVJwQPrYnwv/oXBAiDDsKteydkBXXNs11mN3QOWzJ1WudH1AiI7Ifi/EfUBimCCqb3KCQDadjNHPAoNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAKI3ffzmRvQANJK5hVInJATOxPqX/jeEDxBiv1w1J5QG9iFSmZQYBAsnHRUIJygEB5nXdg7nqDQAJDuWTwSYRACqL4+C8zhkD5ITmTJ+KHQDeonZ6RW4lAWiUIfXr6i0Ca1We7HfSNQJKW6Bd+iZBAfmybUjgGkUBErU0mxBWSQJXvbSVpmpJAKMMgLvqZk0Deca7xifaTQAzZ8zUwHpVAgNMqRcYalkBWycXTWyKXQMrD/OLxHphA+CpCJ5hGmUCu2c/qJ6OZQEGtgvO4oppAku+i8l0nm0BYMFXG6TacQEQGCAGks5xACbI8OxNDnkApimza5D+fQF7k0KSsR6BA7QWqJwemoEDpJToOxRGhQKv9SfMUjKFADWdadNW/oUD/8UN48IGiQND1MsIqjqJAju3SjTh0o0DiUE4XIYKjQEzlcllGWqRAO9yAHkSopEAK3RIlVEClQPtn/ChviqVA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDibPs7jeFnQDgRktfeIXVAqZq9oOoidUBsoVt0kFN9QMCXgyXQsn1AcdBCq6mRgUC1/xtkdDKCQHwrwnPgOoVAtZM7UiLahUB8WrCdjMOIQBaXCjx18olADV8xNs57i0A06MYmzYKNQKA/1XElhI9AMfc1ZpdVkEBGDHdnvXGRQEyPKlAujpFA+CLcdQP+kkDIfmrnSVqTQBEBq7NqtpRAQhOuEy8ClUAnFuy0kNKVQL4C7qpKzpZAowUsTKyel0DUFy+scOqXQB2ab3iRRplA7fX96deimUCZia8PrRKbQJ8MY/gdL5tAtSGk+UNLnEAVee+myN6cQMykdsx0351AX2nBRPTinkBbzdTBoKefQNT1gIiKH6BAhideG+XZoECUgfyStQGhQIYM5pbQw6FAV1gcRQPsoUB7mTyrE5qiQEaYYaH7paJAHlnVWxCso0BMyvrUMayjQKVVLdxU0qRAEJuHyDDypECvFQ+QWaClQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBxWoXuS4RsQK9rGHLRYnNAxwSPFv5SdEDWLGDpf3N7QO7F1o2sY3xAMkJWBCzCgEDBarT5V0qDQDJxRC7YSoRA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBImCMySWRuQOO2GkbmYnJAJCru7HxDdkBXXNs11mN6QJjPrtxsRH5AK93bRJe6gEAwlSGLwrqDQCsMym5DQ4RA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERuQOO2GkbmYnJAAQjXMD7zdUDlVUsBViN3QMhia2pWJHxAqFzp1PtTf0CodC7co1qCQA4BVeJ1qoNAOSvX5MHihUBixw7UG1uGQMb02PCnc4lAzAt7IBnriUBdEPy4WqOMQCoiow00DI5A7DharoZrjkC5SgEDYNSPQKUnwc1QRpFAKDOSZQmCkUDaSfdzTw6TQO8Xk2t8SpNABS3UbKJmlEA3c+dviw6VQGJWxGjeZpZA2dRjw8cyl0AT2KvdB3OYQIvryNENv5hA0v93zCOjmUBwAZzZQ3OaQIQW3dpp75tAzSqM1X9znEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUB61vaTY2FrQNzlv3T/InFA+TZ8X1ezdEB4DXSfYdF0QMkNgj6HQXtAbdw8T0e0fEDmXj4p39F+QDadjNHP4oFAc16NvpvxgkD9yDLhO+uEQAY/Mfry+YZAkKnWHJPziEDNatcJXwKKQJDYxEY/fIxAzZnFMwuLjUAfASM8a0SOQKQA1QU/vpBARPbSlcHFkECLCoKQ16mRQDMpM/tqhpJAPSHnnh02k0CvGHOShlKUQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCj4ndav8JxQGYn6vlTQnRAo0BUrhfUeEC3J/iYebJ6QEj/qQVDAoBAlmZcxLRZgUB1BU+rpCqDQI1F3PLr8YRACOby5vsyh0C2RWPC/imIQH1xCdJqMotATKnrjXR7i0BEna/h1jqOQEzY2bcgBI9AOmywwxkekUDsvqkOlyGRQLZb8Fo16pJAnUCRg8Atk0D/3TAnVkaUQObC0U/hiZRAE170jl/ilUBm2shkN06WQFzgNFuAPpdA4skI/FIamEDYz3TymwqZQJTgbQqZZppA7E84WqWmmkCoYDFyogKcQJ5mnWjr8pxAJFBxCb7OnUAaVt3/Br+eQG3SsdXeKp9AzTZqiq5BoEBBqboedGOgQPF3ivC+76BAZerahIQRoUDJOP6q0/WhQCPielCS96FALaJcBJfFokDuMOd56feiQO0t2A7Cp6NA4LvQfQS6o0DSRrqBH3ykQL5eljjguaRA3AacNSRKpUDjVn8H9rulQJr+OwEyMKZAbpjocA6GpkBJEzT/TzCnQCyQiDwcbKdAU9MVs1T+p0DsGwRHR06oQCQE1NxyEKlAvUzCcGVgqUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAmWGpEdaJuQKmavaDqInVAm7Im8Cvid0Cp+Jn0QjR8QA9Y598b439AGyjziY0igUAH2+EZOnqDQK4Il8XkKoVAmruFVZGCh0CuN4XvkLOIQGHnK2X9iopAaIpl5wi0jEBhFhqPqROOQNYmL8dAfpBAFo/xoBWWkUBSFm9eXEqSQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCO7m7sniJrQANJK5hVInJAooOBwRLic0ADpwfsrTN5QGneFfsqE31A5ADOEmMygUA0HnmnQRKCQBEHc7jEWoRAK/341XiqhUCk5xb0G2OIQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCAen+Qj3FxQFAtpBCXEnJApoGoFS+DdkDReo0vteF3QDXZ9DQHlHxAmNUhac0SfkBd7xFNqMGBQP6ZRLeP4oJAF0LyRCDChUCmalA6TIqHQMihDWoR+4dA03D1362yikDm8slUaYuLQGR1dnjvao1ArR5wZNWTjkDS/ndJBhaRQJe+n5W4QZFAUhZvXlzakkAm5/2K5AmTQDea0zedZpVAC2tiZCWWlUDGwjEtyS6XQIuCWXl7WpdAB3KZEJcmmUCrRpYGCruZQOuHbBjNqppA9MjW0ioXm0B6sMoN+XKcQAtMqaVbq5xAUmBYoHGPnUBfNC/nOf+eQK+JSJytj59A/IVENOd1oECIJcr6v6WgQFURdzsKPKFAerCz/tpnoUAFO1T/7fWhQF/RWO8OCqJATE8D+gPaokBREwtcL1CjQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA2gKvZDSNtQIkw7CrX8nJAdswfOEridEDfhPAvb2N3QMwgJD3iUnlAOpE6ezK0fUAgY3IW6amAQMpOQuN6AoJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAc6N63HmJpQA7Sy69nwnNA+0+R6hLTdEAOMKgDwNN6QPutbT5r5HtA/QUlyeF6gUD3kdlwgjqDQI4KpmEjM4RA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCmvpxNHCRnQOFgFSPMRG5AFOkHjz8DckBwDmdlvjN2QBRH5OKXFHlAMZigze+kfEBwbEO5FkV9QEN2UunDioBA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCO7m7sniJrQGTI82CnIXFAjwFH/L0ycUCPXyNQFkR4QFKG870VUnhAVrq3iS51fkAZ4Yf3LYN+QPAdjhgjWoJAIrxbc87SgkDwTHxCz+KFQIbpJZBaa4dAgVH92hCbiEAQelvQPGOKQIYYFLoG9IpAOXrin0+bjUDqRd7WkoyPQGW/MZzIKZBAfEIEb/m9kUBSTF9nhcaRQPxZ+4NPgpNA0mNWfNuKk0BF3DtQcN6UQC+NRngXi5VAxfMyZcailkCvpD2NbU+XQEULKnocZ5hAL7w0osMTmUBcjvxMTfuZQOHSmbAJoJpAQKTPVIN/m0DF6Gy4PyScQFcnoie0E51ADmuthGCAnUDXPpk8CtieQIpa7Rt8TJ9A0DeXDlE0oEAatEQcI2ygQMLCgBJs9qBAyMg8GkFsoUCT8z48igiiQIhUuCRsTqJAtzRfopq2okDPaGcfgjKjQKm/SKa1eKNAoJklSaBEpEBpS8Sw4FqkQPTVZLHz6KRA+SRYUMMKpUBNYZe4Fq+lQFKwilfmMKZApuzJvznVpkB3qHMm/DKnQMp2Ib1ER6dAVbiKJl0RqEA3NO8wJxWoQAPNgiR7EalACGWtWkUnqUAnV9ohhoOpQMjwKGVwCapAGeLDJaFFqkDseoBie3uqQD1sGyOst6pA3gVqZpY9q0C5yty+1CusQFpkKwK/saxAq1XGwu/trEB+7oL/ySOtQM/fHcD6X61AcHlsA+XlrUCPa5nKJUKuQJQDxADwV65AYJxX9ENUr0BCGLz+DVivQOesEjQTEbBAD5RpfzcbsED5cb6yGEqwQCEQ3mZCnLBApbdXNirdsEDNVXfqUy+xQFH98Lk7QLFAlkJBOkWHsUB5mxBuZZKxQHYIf79a+LFA4rPvgnQbskDvzXNBaFmyQAY+R4B/jbJAge6DdHCwskDmA4UFlf6yQOoGY4l/ObNAPQ6BBKR+s0BjzFcLjZqzQKgRqIuW4bNAlBh9A7P+s0CHDXhxnVS0QHTeuojIb7RAGS6IpKWrtEA6f2+91NS0QJLzfCazDLVAs0RkP+I1tUA+ORaqxG+1QHnlGHTumrVAHv9TL9rgtUBZq1b5Awy2QP7EkbTvUbZAOXGUfhl9tkBVz42z/tG2QMuRpLEh1LZANZXLOBRDt0CrV+I2N0W3QHH4lmtDqrdAjJ/HNyPDt0ADGaeeSwG4QDjlYLs0VrhACPmX+E1ouEAavkN3U6G4QBirnkBKx7hArN5Tqlv4uEDE8DfEW1q5QIykkS9xablAOOoqs4LMuUCj7AeqYs25QOQvxDaUL7pATzKhLXQwukAv+N6yiaG6QMMrlByborpA1fA/m6DbukCGAtuxmCG7QGcRUM6oMrtA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCwLijacuRqQBu6YmAmQ3BAeiAWnrzickA9w2SRqbN1QHp+8vEU9HlAPSFB5QHFfEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCJy7y2HKVqQBu6YmAmQ3BATOxPqX/jdUCpEa9//lN2QMdia2pW5HlAE0fk4pcUfECRt9rajBqAQLRN9POXQoBAQ3ZS6cMKgkBY44Dq+CKDQOcL398k64RACqL4+C8ThUCZylbuW9uGQK43he+Q84dAPWDj5Ly7iUBg9vz9x+OJQGiKZecI9ItAjfyhoykMjUAcJQCZVdSOQMy3LwSVDI9AcihT1GDukECIPZTVhqqRQPI/Sum2spJAOlT548w2k0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDEZV5bjlJwQOO2GkbmYnJAUr2qemZjdkBxDmdlvnN4QBkYP7R+lH9AnLR9T2vSgEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQBTpB48/A3JA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAKI3ffzmRvQBTpB48/A3JArFID5xXDd0A7qk8G7hN6QKyw3zpu1H5AHQQWLaOSgEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + xLF85BujY0AoFld2zuNlQOFgFSPMxG9AFOkHjz8DckAxOsR5l5N1QHAOZ2W+83ZAucC1x4gkfkD4lFizr4R/QFwPyY3wmoJApUozqWr6gkCFD1BdA9OFQKV5IdMWg4ZAydJIBHwbikDpPBp6j8uKQHhleG+7k4xAyQE3LiikjUA8SrPMMw6QQMiW7h5KVpBAeq1TLZDikUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjZUAoFld2zuNlQDeULWxqYnBAr2sYctHidECIlDsLkNJ2QNF0GqNUU3pAiPIXX+jjfUAijW1JIiqBQEMoelmgeoJAIrxbc86yhEBwLh//AaOFQLac/64lu4hABA/DOlmriUDjoqRUh+OLQAQ+sWQFNI1A49GSfjNsj0BfyEiuPpqQQHGAQNRvepFAqEqJel/2kUCFAAQ8eRaTQM6CRAiacpRAjc7tU6CClEAN5uRo9kaWQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQBTpB48/A3JAlLmMQumSdEA28gnAwnN3QOoNkUeBA3lAWPsL8UXkfED1tbbNbAqAQKPcBSdaCoJAiJZaCcQShECjC/RQBpOFQM41dlNSy4dAHHf+RBsbiED7Oxv5s/OKQBym7G7Ho4tA+2oJI2B8jkAc1dqYcyyPQJPKxRJWWpBA1+ytmFrykEDsAe+ZgA6SQCLzIwiCIpJAAIKyAYqqk0BHlmH8n46UQAd3iOHCrpRAjqoQ97VylUBQ+cit4wqWQAqaUI7RPpdAAhAuvClXmEC8sLWcF4uZQJE4jLFVH5pA0DB5BCEnm0CnTc2yezubQBmzudBBg5xA8M8Nf5yXnEAuyPrRZ5+dQHDnBJTyW55Art/x5r1jn0B4/31UJBCgQMl6Yvf5c6BAA4oeVTeeoEDDFZpfYoChQEXZI5Mi6KFABWWfnU3KokA/dFv7ivSiQJDvP55gWKNAMf9E/6W2o0BQe7uoizqkQPGKwAnRmKRAEAc3s7YcpUB8FWEK5CalQDRIVxnHyqVAoFaBcPTUpUC/0vcZ2limQKoWYyT5oqZABuemFPA8p0ADopUrHMmnQF9y2RsTY6hAwZk19ymvqECDs/mBIxGpQOUjjfQ0IalACa7k8T+TqUB29avuQ1eqQBNuxqVEYapAnvhmplfvqkC9CVvpWTurQMI5hwxonatASJT76WzJq0CCxQIXk3+sQAggd/SXq6xAQlF+Ib5hrUCTYeBdsHWtQB7sgF7DA65AZ0ln8NNjrkDed/xo7uWuQIxBUL/pZa9AnG+cNPzLr0Cl5uVkCiSwQGBYXk0GPbBA6is25RNrsEDyeG6ADpSwQEE2MuQi67BA0j6sBSQFsUAh/G9pOFyxQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD60UzrnGVsQBTpB48/A3JAH3KoplGjc0BqPQyU13N2QHXGrKvpE3hAjEYOxVrke0B1JIn/QSV/QEVSdYzZeoFA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDEZV5bjlJwQFAtpBCXEnJA/wfXMD5zd0DkPDZ2mkN8QP9ls4SWhH5AAyOc0w7agECRt9rajPqBQANSiv26YoRA1XrTgQVDhkD6MAos8vqHQPPLj2xd04lA+l/4VZ6Di0CtHnBk1dONQD4j8fwWzI9ACCadwDB2kEBB8/TRRwqSQGVPjbxsdpJAwQrs5p3Ok0DhPs1TiEKUQAv7vYTJ0pVA9b6Qu5HelUAfe4Hs0m6XQFLogLfN3pdAmfwvsuPCmECfkngBKTOZQBuCuJhE/5pASxOVwCkPm0DLKozVf9OcQMwDoA1uC51ATBuXIsTPnkB8rHNKqd+eQPzN2XDiVaBA/xh+GAWOoEAjo9UVEAChQLxZVXsNOKFA0bfNEy4AokDGGTcvEgaiQNt3r8cyzqJA6xEg/icIo0CZb0+TQLSjQKudmwhT6qNAR4RHkV60pEB8zlkycfykQKAPepiBeqVATf8XXI8OpkBPJHKWn3qmQA2Lk2a68KZAljghkbVep0DLgjMyyNanQGdp37rTcKhAiw6vPPO4qECLqv8g5B6pQK9Pz6IDZ6lASzZ7Kw8BqkCikYEPJK2qQJJKKiYl5apA6aUwCjqRq0BS1qUwUMerQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAKI3ffzmRvQKPid1q/AnFAhe+Xw7/DdkBqPQyU1zN3QExKLP3X9HxAapvo5y9FfkDtUDwO2IKBQPgQ7ZoQa4NA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUC8CZAYN6JnQGxclKvz4XFAFOkHjz8DckCOZZbcdlJ3QBRH5OKXFHlArLZSx87iekACC1fMZlN/QIpSYBv4EoBArK+taP/hgUDtfyo4hCuDQHyoiC2w84RArN6bkqtqhUA7B/qH1zKHQHzXdldcfIhAnzTEpGNLikCnAflZqLSKQNIre1z07IxAn2Oyzg/UjUBhVNlRILWOQE9JUPxdrpBAeSwt9bC2kEBdQgD95jqSQM9gRxG0cpJApFav9/wek0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + rEBFHEuCZUAoFld2zuNlQBTpB48/A3JAfWFqBdTRckB9v0ZZLON5QDuqTwbuE3pAOybk7U6agEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQBTpB48/A3JAqJq9oOoidUDG63mLQrN4QIiOyH4vBHpAxklW35rEf0DXJwj7bgqBQHYFT6uk6oNA11b2JBuThEBmf1QaR1uGQDBYL6Mc64dAqkJNwb+jikAwhx3NyHOLQKpxO+trLI5A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBxWoXuS4RsQBTpB48/A3JA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAKI3ffzmRvQJ0RHYnYgnNAc0+7zNXidkC7YtlzMBN3QHOtlyAu9H1A4iMh694jf0DkAM4SYzKBQPDAfp+bGoNArgiXxeRKhkDw72zJR6OGQMxZU7A824lADkEptJ8zikDMiEHa6GONQNhI8mYhTI9A5tsXgkp2kECBObq0NsKQQDDM6R92epJAAVGxyYyGkkB34JgajF6TQH1A8WCoUpRAGUIVbsiClUD9V+h1/haWQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBImCMySWRuQBTpB48/A3JARtUTyqeidEA7qk8G7hN6QNQsYOl/s3pAkf5TC4aEfkBqRZ4ebOKAQEgumC/vyoJASF2GWZtThkBav6ONDrOGQFrukbe6O4pAONeLyD0kjEBaHYDhZsSNQDgGevLprI9AhUcC5LL8j0AAGRABq1qRQAwU0w+FApJASZtQzcu2kkCMK8ok28aTQMmyR+Ihe5RA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCRGlyHeVJxQJ0RHYnYgnNAkXg429FjeEDE0mQAh5N7QNwcQClAOoBAKZXYjy/SgEBrRZ4ebAKCQG1Y0TaoGoVAiZZaCcSShUBQwgAZMJuIQNCFm1M0s4lAUPHuQtwjjEDA/6DC1oOPQKA1+lg/+pBAYJdHdkGGkUBErRp+dwqTQFJMX2eFRpNA09V4c6PSlED0rdu6wWqVQBrqJ265tpVA2MOuwvfulkBk2vkL5bqXQCK0gGAj85hA5PHwIDt/mUDEFf2zXxebQMl1Vfp7C5xA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + U6vsr5viYUAoFld2zuNlQAjEgEYihG5Ao+J3Wr8CcUBatkQoqbJzQMXreYtCc3ZAzlsFGJmze0DFSVbfmoR9QLG1yz5O8oJArCx0Is/ag0Cx5Llo+nqGQGZ/VBpH24dAQuk6ATwziUCRqdYckxOKQAkV4RCoO4xAvq97wvQ7jUDp2f3EQHSPQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEfuNfSGJnQHJahe5LhGlAmBP2NLwhcEAna0JUlPJzQPMfQIB/cnZAEHH8atcCekAnyR6o7AN7QJOT/X2iCoFA7GVI0veZgUDslDb8oyKFQPbAx5ouo4VAheklkFprh0DswyQmUKuIQLLvyjW8k4pA46KkVIdDjEDdGU04CMyMQHLLAkqzC45ACETPOlQEj0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCJy7y2HKVqQKPid1q/wnFA525gjBHDckCjQFSuF9R4QOfMPOBp1HlAo54wAnDlf0ChbMOVlhKAQBh7vhAk+4JAmEtDxM2qg0DSzZ4InPuGQPx4DeFZQ4hA/9NDrv0jikC2y+3Y0UOMQGMBDsuJPI1A49GSfjNsj0BkF+zziiqQQKsrm+6gDpFAlMrFElbakUDyP0rptvKRQDvCirXXTpNAq02Y5YZuk0CERMuB+KqUQPTP2LGnypRABFzClk5vlkB058/G/Y6WQLv7fsETc5dATd4CY2/Ll0A7E3bWaTeZQMnNQvqKl5lAhJW2ooqTmkASUIPGq/OaQGiriarAF5xAkmd62wG4nEAZLXEf6iOeQA5XunIdhJ5AYEEgGgAIn0B5tka9KQSgQKKr+RAbRqBAnUCeujR2oEDByvW3P+igQJQ24xQ2CKFA5QsWHlCWoUBUwl4fYeqhQHBNf4doYKJARk1II3ysokCVRWhWfmKjQMKrCb+kIKRAh9BRWpkkpEC0NvPCv+KkQBISu8Ox7qRANlPbKcKcpUANwiXK4qilQFrdMifNDqZAMUx9x+0apkBVjZ0t/simQLNoZS7w1KZA4M4GlxaTp0Cl804yC5enQNJZ8JoxVahAIVIQzjMLqUD3UdlpR1epQBPd+dFOzalAgpNC018hqkDTaHXcea+qQKbUYjlwz6pAyl66NntBq0DF817glHGrQO7oETSGs6tAt35I5K8zrEDgc/s3oXWsQNsIoOG6paxAnmubA69brUCzyROcz6utQF73Fg7aPa5ApVT9n+ptrkCCODd06uuuQMmVHQb7G69AQDDXP/jRr0CJIZkQJv6vQNZV+IYYOLBAsrj7UgRAsEC2GzYMLqmwQJJ+OdgZsbBASDxGPzYAsUAkn0kLIgixQLa/WT4qX7FADt36c0JlsUDIhAW9L5ixQNpJsTs10bFAdvXZiFHusUCGj0q/RjSyQDyWjr1dU7JAMtXjQliXskCToIq8bNOyQPh1mHdk/LJAP+YjQH5ms0BPgJR2c3yzQB7i8yWF2bNAyEWJ+IDds0DkgqhakT60QKgLx32WTrRAxEjm36avtECI0QQDrL+0QFZp9hKvBrVA8OnjF7tItUA2LzSYxHe1QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 7BToB3LiY0AoFld2zuNlQHZo0FeRAnFAo+J3Wr8CcUCYcdKIFHN2QMqjv9FtE3lAvzIaAMODfkBZ+wvxRSR/QCdFs49NSoJAo9wFJ1oqg0C4STQojwKFQNDiqsy7UoZAryi0VsaaiEDHwSr78uqJQNwuWfwnw4tAWMarkzSjjEDTDdkqX1uPQB/yUaOgq49AzZw/neUxkUBZ6Xrv+9mRQBeNETsRNpNAomu7uxw2k0D7ouRCR7qUQCKDstBy+pRAawXznJNWlkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCwLijacuRqQNvlv3T/InRAk7mMQumSdED97sGlgpN5QCIR2WHBo3pAH/jD1gUEf0AijW1JIgqAQOm4E1mOEoNAcP8w1VWag0AU45Vb2kqFQKML9FAGE4dAcC4f/wEjh0AED8M6WSuLQJOF+b+o44xABD6xZAW0jkB72WFuGr6QQEyPKlAuXpFALfDGfGBKkkAwpf1XZOKSQIoZt3icSpRA0gZ6q6AGlUDnQqd02EqWQC8waqfcBpdAiaQjyBRvmECMWVqjGAeZQG269s9K85lAPnC/sV6TmkC3qshtdvebQPCGJMCk35xAN8K/gsy7nUCBspEg+L+fQOhDp/f1x59AGCwr+QVWoEAAZcQaJ8KgQKO2y/kY5KBAlUG1/TOmoUDYJTjVO8ihQLmC1WNEVKJA/GZYO0x2okCrDb9nXxajQCCoeKFcJKNA8iFuYnX6o0B5M6uof0qkQLKt6Wyg3KRA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDEsXzkG6NpQGS4z0t+BG1A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAZQ3GBEtJyQKmavaDqInVAGaFN1WrjeUAdQH6Q2iN9QEYjh2It8oBADk8tcpkagkAQK1AVrwqGQP7IMuE764dA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBQecKZJCNsQNS+X4D+xG5AqJq9oOoidUCRoHe3LXN3QM9bBRiZM31AuGG/LtyDf0Cv2aibOKKBQJYDQA9mwoNAQN4pNHpahEDPBogppiKGQF0v5h7SyoZA7VdEFP6yiUAkW4wuPtOJQLVfDcd/i4xAtIPqI2q7jEB8i7PW65OPQFpZ7CYLIpBAPm+/LkGmkUBDzxd1XTqSQFSEADBnwpJAJ+XqfJO+k0BrB9MCmFaUQD36K3652pRATx2mCs7alUBUff5Q6m6WQGageN3+bpdA0Gw+6AU7mEB9I0uwLwOZQLSCEfA7v5lAxqWLfFBfmkD7lsDqUaOaQNy6zH12e5tAWMCw5o2jnEDA0J+FrP+cQKFC8bKu/51ACVPgUc1bnkDqxDF/z1ufQB5oIVPzd59AAG05wPo7oEABP3qtFH6gQPL3IsQV/qBA88ljsS9AoUDkggzIMMChQH5UBLJCzqFAbw2tyENOokCilSQYU3yiQJNOzS5U/KJAxtZEfmMqo0CF2bYyb76jQHTrPHyBKqRAEGRXM4JMpECYdZR5jJykQDSld5mS+qRAigB+fadepUC/5uACq8SlQEj4HUm1RKZASihKbMOOpkDTOYeyzQ6nQDyzM3DeUKdAXsQns+Ccp0DH9JzZ9hqoQFBPEbf7XqhAUn892gmpqEBECifeJGupQBJU8Hsvl6lABJai6E9NqkAE39l/SlmqQCgg+uVaB6tA9iCM7GoPq0Aaq+PpdcmrQD01O+eA86tAYb+S5ItlrEAMNs3tkIusQIUAs0qcE61AukrF666LrUB3i5xOt9WtQN9CrrrEja5AnIOFHc3XrkAEO5eJ2o+vQFwPASj4ua9Ax+IbxfYOsEAWoN8oC2awQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBTq+yvm2JjQI8BR/y9MnFAHvu2xz2ycUAdWZMblkN3QEW8/j7swnlAP2KVTBm0fEBnxQBwbzN/QLKR7uFjYoJAe46mxyOigkBs5M7Z22KGQDXhhr+booZAMxB16UdriUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDGeRuljWJrQNzlv3T/InFACn7VSfXBdUADpwfsrTN5QDE/HcGj0n1AFLSnMS6igED8zFj93QGCQKW4KMpvWoNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD1hHOUyCJpQEMdzoN8QnFACRqGaTyickBq3hX7KlN5QH2/Rlkso3pAyM8uueyxgEBSQEdo7VmBQFyw0vRDuoRA5iDro0RihUDwkHYwm8KIQHoBj9+baolAquNWKBPDjEAO4jIb83KNQHEP/Td/y49AUWFrK6W9kEACeNA56+mRQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEfuNfSGJnQHJahe5LhGlA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBML328ejFwQEMdzoN8QnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBML328ejFwQI8BR/y9MnFAaoA5p9LBc0B9v0ZZLGN4QJFBgR6B0ntAeLKDJA4ygEAqpA95kwGCQAyTJ2BlOoRAjtHZlR8ahUCgc8ubvEKIQCKyfdF2IolANFRv1xNLjEDcBF7J7iKNQGstvL4a645AZJqJibUpkED/BjD9uHmRQK6KWyfhLZJASfcBm+R9k0D4ei3FDDKUQD+P3L8iFpVAk+fTOBCClUBVpB3BSDKWQKj8FDo2npZA7xDENEyCl0CflO9edDaYQDkBltJ3hplA6YTB/J86mkCD8Wdwo4qbQDN1k5rLPpxAeolCleEinUDN4TkOz46dQNeyMpEdI59AF9ILrPqSn0CRUYKXpJOgQDDh7iSTy6BA6ty0nsdZoUBV2dfzqM2hQMKdKFncX6JABO7P8cbNokDnlREo8mGjQMLlb73Us6NACyBpJf3To0Bw+me78rOkQDAYUvQS1qRA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDYkZP9yKNsQNzlv3T/InFA+TZ8X1ezdEATihH2kmJ2QGneFfsq03pAIPjD1gXEfEDXJwj7bmqBQMjPLrnscYFAZlBm8Joyg0DI/hzjmPqEQPowCizyOodA8f6jsqsyiED6X/hVnsOKQPoRIMZ6E41AwYueZQrMjUDhHuNq8w2QQPXFkpoOgpBAYTbaf0nSkUCn3PeoVA6SQOFN0ZSflpNAJ/TuvarSk0CTZDaj5SKVQKcL5tIAl5VAp+T5Cu++lkCLIbnaNhuXQIv6zBIlQ5hADyt3ZJ6LmUALEsQneweaQCOrOsynJ5tAVQKWxaYLnECjwjHh/eucQJwWRcC875xAgCwYyPJznkDtsgN/KfCeQAJkIsAnBqBAZQ71Mg88oECJmEwwGq6gQCdcC489CKFA4iN/Nz10oUCA5z2WYM6hQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDs3IbI4yFtQBTpB48/A3JAPcnXHQrCd0DbQ5zIVzR7QD0ntHFi035AFiLVsz7SgEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQNS+X4D+xG5AQh3Og3wCckDBMzRFF9NzQJhx0ogUc3ZANdn0NAfUe0Ag+MPWBQR/QJqbaMSvcoFAECtQFa8Kg0AufAwAB3uFQHRYGjI7o4dAkqnWHJOTiEAIOb5tkquLQCaKeljqm4xAbGaIih7EjkDFW6I6O5qQQIAjFuM6ZpFARXOZT5FekkAAOw34kCqTQOfUFaPNgpRAXWT988wqlUD96Vak856VQHJ5PvXyRpZARmyXcBT7lkCIjn/2GGOXQF3vaUNFj5hA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCwLijacuRqQDtMc7KVAnNAf9hb5OeCdUA7qk8G7hN6QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBImCMySWRuQIkw7CrX8nJAJCru7HxDdkDfhPAvb2N3QJjPrtxsRH5AUyqxH19kf0BdbNgGeNqBQFS/WpJ76oFAXZvGMCRjhUDon/7N0vKFQK/LpN0++4hA8HtqbHtriUAbpuxux6OLQEKsSBmWA41ARtBucRPcjUChbZshIUaQQG1YiVY18pBA611tv0xKkkDtb4Bri7aSQAFzrsByZpNAF4jvwZiClEA3YFIJt7qUQBt2JRHtPpZAYXjBX8SGlkBlZveuGEOYQOGPuHQaS5hAens4sD5fmUAqEvlAO6eZQNekKKx6X5tAhzvpPHenm0DsuWmtoHucQAdT4FHNa51ASeNZqdx7nkBRQ7Lv+G+fQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBcG3g88iJnQBTpB48/A3JAwDM0RRdTdUA28gnAwnN3QE6LgGTvY3tANlDmExuFfkDUS+VXWdqAQGN0Q02FooJAGlfhsznLgkD0eMTlxlqFQOGCh8Ol04VADK0JxvELiEDrV0QU/vKIQJvVZ7sd1IlA64YyPqp7jEBiAQ7LidyMQPVaEDQrApBAMRh++poykEDZcOM7YYaRQLEvdQ/x9pFAIIWSNndqkkA2mtM3nYaTQC0ftaYMw5NAGrCmP9MKlUB2ofVyLR+VQL21pG1DA5ZAmsedVCnPlkDUOHdAdJeXQBrflGl/k5hAuE5KSKobmUBjYdU1oO+ZQD1YCNIRjJtA43jMSvazm0AhbtvZRxCdQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDOIQhxcmNtQANJK5hVInJAkaB3ty0zeEB7IBaevOJ4QOKghVZTo35Ae37y8RT0f0Bw/zDVVdqCQGY/gEgdMoNALWsmWIk6hkA6B/qH1/KHQCRKpobA0olAywt7IBmrikA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDiYBUjzERuQBTpB48/A3JA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDUvl+A/sRuQJEaXId5UnFAMjrEeZeTdUBYdfDAkYN3QG3cPE9HtHxAWNPMFOqUfkBjdENNhYKBQEBKCkbMUoNAx6ENahGbhEAHdrBVOFuGQI7Ns3l9o4dA/lQwhG/ziUC701gf38uKQCl/soa7K4xAuwJHSYtUjkA2odUWGjqQQA+YCLOLtpBATLYWGEBWkUAlrUm0sdKRQGLLVxlmcpJApcRAyQeXk0AU4rwnrP6TQCXcN95dW5VAcQutI+j+lUBvzAl8iV+XQLv7fsETA5hAzPX5d8VfmUA7E3bWaceZQH4MX4YL7JpAuypt67+Lm0CTIaCHMQicQNA/ruzlp5xAqTbhiFcknUCCVhP7KzSeQEuYXdyTSJ9AAm4KEIL4n0CxVs/uXDKgQIx4bnFZxqBAb05vumoYoUB+A1h1dIihQGHZWL6F2qFA146KfJdOokCG0UGNm9yiQGLQ8+WvGKNARl29l8a+o0Cp5KLgxfyjQJ/o757phKRAAnDV5+jCpECN+nXo+1ClQF90a6kUZ6VA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDUvl+A/sRuQJgT9jS8IXBAmHHSiBQzd0CRoHe3LXN3QLbCjnNsw3pAr/EzooUDe0DXJwj7bgqBQO5Ba3UNaoFAGWztd1mig0CReujy5gqFQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDXkZP9yKNsQGS4z0t+BG1A6yam0jxjdUAyOsR5l5N1QOuEgiaVdHxAMpigze+kfEAEa5+IdgKAQBh7vhAk24FA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA4rUL3JUJxQBTpB48/A3JAia1Qlkuyd0Bl6RUuZXN4QIkLLeqjw35AbEfrjio6gEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 2PxvrzYhZEAoFld2zuNlQKPid1q/AnFA9ISppYyhckDKo7/RbRN5QBtG8Rw7snpAeLKDJA6SgEBx0EKrqfGBQD/eKTR6moNA/ktsJ2zyhUDMWVOwPJuHQMV3EjfY+ohAMIcdzcgzjEBYWLZyLwONQOKzYAQQHpBAdhwtV8OFkEBaMgBf+QmSQIQV3VdMQpJAyymMUmImk0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkC8CZAYN6JnQI8BR/y9MnFA3mIk4HPickDMICQ94hJ6QFZc2zXWY3pA7ikmbmWDf0Aq3dtEl7qAQPEIglQDw4NAivW28gnKg0Ae1louYdKHQPob/mfSo4hArf64I42aiUDqlQPXdHSOQJ14vpIva49APd8wZlAekECGzwIEfCKSQNNFHVP/JZJAt1vwWjWqk0DQv9ShpyaUQDdz52+LbpVAGUIVbsiClUCVMVUF5E6XQOmJTH7RupdAFUlMGjoTmUBGszx6DbuZQFxd+xRQ95lA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD+9P4gH+NsQDeULWxqYnBAoYOBwRLic0D+7sGlgpN2QDDbzeDq8nlAVEPGqhoEe0CGL9LlgmN+QKlQUX+5CoFAJ0Wzj01KgkCpfz+pZZOEQFBFOl9ggoVADa0JxvGrh0AXceBuzIqIQHHa0+J9xIpANcKcWSQbjEC1ncyJ9gyPQF7CIyk3U49AdvVAj7GNkEBWPibcllKRQL93gVvS6ZFAn8BmqLeukkDm1BWjzZKTQDtnwfLttZNA+lTZCtculUDdyD1GKtqVQIl9NwAD95ZAj9+iVHBml0BtkwoIOXuYQEH2B2O28phAgRPOb0IXmkDBDf93DLeaQDMqM36Io5tAQSX2jGJ7nEBJP3R/rr+cQFY6N46Il51ALVVHh+RDnkAIUZycziOfQHbXh1MFoJ9AqGlutPc/oEDg46x4GNKgQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 7BToB3LiY0AoFld2zuNlQARiQCMRAnBAUC2kEJcSckA/BLn4wCJ3QN+E8C9vI3hAOpE6ezJ0fkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAeR9VQy0JnQANJK5hVInJAtmSyHxSyc0ADpwfsrTN5QCoKcw8Es3tApok6oMORgEDFlvycT+KAQKa4KMpvGoRAvHV8y4Z6hEBLntrAskKGQNHiqsy7UoZAmA5R3CdbiUCPYdNnK4uKQCkT0nRpE4xAHooxXVdTjEDwPniE1RuPQOW112zDW49AwaF8jgvqkEDW8D6+FzKRQNa2vY8xBpJAeFK7EVRWk0AfOf5bUmKTQANP0WOI5pRAjNJ+eV3ylEC1ZTZyznKWQD7p44ejfpZAIv+2j9kCmEDJ5fnZ1w6YQGuB91v6XplAa0d2LRQzmkCBljhdIHuaQE9dSTVKt5tAyhh5KUHXm0Azcxw9gDudQK4uTDF3W51AeofLN5YfnkD3sIz9l7eeQG7jrwLnHaBAjvSjRekhoECyfvtC9JOgQPltUAP6q6BAcHabDgJ6oUC5+csNJY6hQN067HM1PKJAQadZOCCMokCLT+RxUzyjQAEz1UJLbqNAsEfNQGk+pEC/KnUOWVSkQNTRJD50sKRA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUC2sNCooUJpQG+XdYaqQnFA6q+08yiyckCRoHe3LbN2QHgHARMBw3hAH/jD1gXEfEB21mCB+GGAQDom5O1OmoBAoQDjg0SagkD0eMTlxpqEQGgsiZOwooVAu6Rq9TKjh0D5MAos8lqIQILQEAWfq4pAJjev0VODi0AT1ZGd4GONQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDo4r3x+qJvQDtMc7KVAnNAkkKbY9Vhc0C0S52UWNJ4QMmjv9FtE3lAV/sL8UUkf0DKH1S5zjmCQHIpLAiPmoJAWyTVURDyhEADLq2g0FKFQFtTw3u8eohAA12bynzbiEDsV0QU/jKLQJRhHGO+k4tAs4PqI2o7jkC9V8gZ66GQQMLtEGkwspBAC3BRNVEOkkChbZshISaSQFKEADBn8pJA611tv0wqlED05XyDoxaVQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 2PxvrzYhZEAoFld2zuNlQGxclKvzIXFAFOkHjz8DckAxOsR5l5N1QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDOIQhxcmNnQNXOg5Un4nJAnREdidiCc0CLzxzmRrN6QF1VdeMYc3tAKZXYjy9ygEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAbumJgJkNwQMRlXluOUnBAbLpw/0uzdkDEwzqv5mN3QL26fp5xI31AsoE6DFWUfkA9bueitmKCQBiwH8cwkoJA0E6L3g1rhkB83enjvCqHQDR8VfuZg4lAEL6NHxQzi0CYqR8YJhyOQKSeMVtrO49AFVdQ2DNqkECv+Iip8Z2RQJFGkG9PNpJAxQ3Kqhe6kkCmW9FwdVKTQEH9CUIzhpRAA4XBbLFSlUCKf0oOVOKVQE11kwrdVpdAPJavHJoumECXZWWoCFuZQO6sFCvguplASXzKtk6nm0A4nebIC7+bQOqzS9dRS51ApqW6soqnnUBmo4tubRefQLolfhqUQ59Ac13BweFtoEDn0iDBzm+gQKdenMv5UaFAzOjzyASUoUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCmvpxNHKRoQANJK5hVInJAGrpiYCaDckBwDmdlvvN2QCVSLcnYkndA7KzBAvHDfUBwbEO5FgV+QGPgI1/XOoFA2QMrnoT6gUDyCIJUAwODQD0x9boQE4VANsx6+3tLh0A9YOPkvJuIQGPSH6Hdc4pAZmBqtM/Ti0Dy+n2WCTyMQMhjOZ4i7I9Aw+0QaTAikECWyIFdV0KSQHUEdnd2bpJA4LhT+4JGlEAmhl3sn3qUQCfNAvaYKpVAOgYhVKkWlkA+UNXIyb6WQLodGGn/2pdA4LFRHAbjmEBsNH13RWeZQCfGABccx5lAPdtBGELjmkAeS+KFi/OaQNBhR5TRf5xAvfI4LZinnEDTB3ouvsOdQBnkh2Dy251AhR7fPARQn0CV08f3DaifQDUaWSIdaqBA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAbumJgJkNwQJEaXId5UnFAGxg/tH5Ud0CReDjb0WN4QJHWFC8qdX9A15PoDMHCgEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQD1liD1RInBA15HJDo0ic0BkJtC0/zJ4QP5SEYY7M3tAG6TNcJPDfkCUFjfE0jGAQDrYC14rioJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBmiwPJSGNsQBTpB48/A3JAQh3Og3xCdEA28gnAwnN3QJhx0ogUs3hAunrUuZcjfkCql8qvsnR/QGN0Q02FgoFAjp7FT9G6g0BNt+9LbuKEQI7Ns3l9Q4dATebddRpriEAd9hFvqQuJQAc5vm2Sa4xAHSUAmVWUjEAHaKyXPvSPQNgCUmpWTpBAGreoHlCOkUBYGkl/rBKSQJ8u+HnC9pJAms6fM6ZSk0DosDhG41KUQLDj4DTMbpRAYvpFQxL7lUBoyC9bOReWQEYQGUtIf5dA5Ldv8lTjl0DGJxBgnkOZQEHhX+6Q45lAI1EAXNpDm0DB+FYD56ebQJ9AQPP1D51ApQ4qCx0snUBXJY8ZY7ieQB9YNwhM1J5AbTrQGonUn0A07TtqNhigQFh3k2dBiqBA96jjl2/MoEAYAw9ybGyhQILqTAGIlqFAPfv3QIJuokBCdsgLs3iiQP2Gc0utUKNA8YrACdF4o0AhEctIuMKjQLEWPBT8WqRA4ZxGU+OkpEBsJ+dT9jKlQJCxPlEBpaVALXX9ryTPpUBRth0WNX2mQD7GNk8fpaZA3EC+FkgLp0BiB1e1L1OnQM7LpxpjzadAIpPSv1o1qEDAVpEefo+oQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBkuM9LfgRtQEiYIzJJZG5AiDDsKtfyckClgagVL4N2QATAHHdp03pA+9WsGsfzekBaFCF8AUR/QFEqsR9fZH9AWLSSwEzagUDn3PC1eKKDQBgP3v7RgoVAEgdzuMTahUChL9Gt8KKHQKzvgTopi4lA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAsECBNt2JpQKPid1q/AnFAFmZs+rPCc0CjQFSuFxR4QBbESE4M1HpAo54wAnAlf0DSjco2cnKAQLV84h1Eq4JA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCEfuNfSGJnQNS+X4D+xG5A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCuZ9p1aSJuQGaLOdoMYnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA1uAwZnGNrQBq6YmAmw3RA9X42GSyTdkBL0zoexAN7QEF7qtfU03xAbJXDHk6KgEA0HnmnQXKCQDPBaS66koNANE1n0e36hUAz8FdYZhuHQDR8VfuZg4lAxPTY8KfTiUArW9Up0RuNQH5Huegf1I1AR8RPoy4akEA/u1MJZq6QQMfbRriE3pFA8dG4F6w6kkAkBTe0wN6TQG3B+K7HBpRAbYd3gOE6lUDt2O/DHcuVQO2ebpU3/5ZAbfDm2HOPl0DRtEGdbYOYQLfguHafk5lAtcoUpaMHmkDK31WmySObQAHRihTLl5tAgeiBKSFcnUDCnNjdGgyeQDP/5jdnqJ9A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAUn+iE5kFrQJ0RHYnYgnNAUaoIfAvSc0BzswqtjkJ5QBG33XjIg3tAyQcPsiazfUBPBxVMUMqAQBKKrP70AYJAfA268bHyg0CmalA6TAqGQOA6hA4+C4dAOkv0daMSikB0GyhKlROLQM4rmLH6Go5ACPzLhewbj0CZLDFnw5mQQE7ut+AhkpFAsK8DOvQtkkBlcYqzUiaTQJTF1kEqspNAe4bLtHhClEDECAyBmZ6VQPHuxj1mspVAdh9xj98ql0CTUEORotaXQIqfNPfoxphA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBDHc6DfEJxQN3+1P+6wnJAQ3uq19RTeEBsViEfk9N4QEPZhistZX9AbLT9cuvkf0BomGmlAruCQDYJbeMhe4NAyukQH3mDh0BYEm8UpYuIQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAc6N63HmJpQNS+X4D+xG5AMH3xjJIhckCRoHe3LXN3QDDbzeDqMnlAkf5TC4aEfkAszgqszKGAQNkDK56E+oFAV/iMrhjagkBqCKw2xrKEQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA4rUL3JUJxQBTpB48/A3JA/wfXMD5zekCo+Jn0QjR8QMqLNMsgUoJAtykXl62ygkDKuiL1zNqFQBpX4bM5S4dA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA1uAwZnGNrQEMdzoN8QnFAGrpiYCbDdEBlJtC0/7J2QOEU95k+9HpAu3rUuZcje0AEa5+IdoKBQPAdjhgjmoFAk5P9faJKg0B/RuwNT2KDQBBLbaaQGoZAWr+jjQ5ThkA7de+o3FKIQOvDJCZQC4lAZp9xqyiLikAYysnLsTOMQC3LF7uUk41AQcpQm8Rrj0B6+15lAE6QQKB8n2I4epFAw32fMSGqkUBSkwRxfgaTQKeTcjlXLpNAmxVFPZ9ilEDxg0TXgjKVQBstPFL1JpZAB5mF2KhOlkDrrljg3tKXQJtEM2dL65dANDGZrP8umUAbXCp8oa+ZQHtFSKcVE5pAkVqJqDsvm0Ay3/xO0kObQKdvyqlhS5xAFvXPVgjInEAjXwpBfReeQF93ECMpJJ5Advri9Vm4n0C3J25v1A2gQPsIbQVYvqBAdR8OO+LzoEA1q4lFDdahQFSUnwx75KFA9TYFUDi4okAUIBsXpsaiQNSrliHRqKNATsI3V1veo0CSozbt3o6kQA5Os2GGwKRAmY8cy56KpUC3mx+89JClQL3QPDGvOKZAdZO/hwJ3pkCvWyY1yvqmQAAeYIgVBadAi6gAiSiTp0A6nY+e4sSnQK8yWIYzBahA+igLqQ2nqEDTc3jsQ7OoQMX+YfBedalAurSGsziJqUBQiQLxcQOqQHpAAr5ja6pAdYHrv4cFq0CegSIkdBmrQGcM1cOix6tA9wxVK5ffq0CLTfUps3WsQLeY0DXCwaxAfdjeLc43rUDBWLLpxo+tQG9jyDHp+a1ATJobU99ZrkD67Wgy/IeuQHDbO7nvB69AhXgJMw8Wr0CpuSmZH8SvQGJmJb0Kyq9A5qFASxUbsEBCeD7dCh6wQPgdtTIgnLBAVPSyxBWfsEA9YwWzKeOwQAA6TEgnArFAz4MV5jE6sUDg/4nNPHOxQOH/ic08u7FAjEUjUU4GskA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCmvpxNHKRoQNzlv3T/InFA4rYaRuZickAyOsR5l5N1QATAHHdp03dAIhHZYcFje0DBkRCZb6R7QN/izIPHNH9AWLSSwEy6gEDn3PC1eIKCQDadjNHPooJAxcXqxvtqhECuCJfF5IqFQFbKa189I4dA2TIZyDDDh0Ad9hFvqSuKQD1g4+S824pA5CG4fhU0jUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCYE/Y0vCFwQKmavaDqInVADLm2JKwieECp+Jn0QjR8QJoQA0SEM35AVCs7pM2igUBNt+9LbqKCQLhYBcFZu4RA3rtw5K9ahUBJXYZZm3OHQG/A8XzxEohA2mEH8twrikBv79+mnZuLQNqQ9RuJtI1AAPRgP99TjkC2SjtaZTaQQEn88GsQhpBA/sx7JoaSkUD7ElZ6VhKSQH7kcjvcVpNAeypNj6zWk0Bi+kVDEtuUQPtBRKQCm5VAvyM2P07blkDgxah9QyeYQBxNJjuK25hA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 7BToB3LiY0AoFld2zuNlQARiQCMRAnBAFOkHjz8DckArI4iavxJ4QAKnB+ytM3lAGeGH9y1Df0AUtKcxLqKAQIwfsiVDKoNA299NQZqqg0AGCtBD5uKFQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD60UzrnGVsQDeULWxqYnBA/u7BpYKTdkDEwzqv5mN3QCWwCR0xpH5ArGlmCnXKgEAJtwS9T+qCQKNI5jisYoRA077Nb9ECiEA2KYp0A2uIQJpWVJGPg4tANuyXjF2bjEArW9Up0TuOQJsNQ9sEEpBA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBImCMySWRuQBTpB48/A3JARtUTyqeidEBqPQyU13N2QA0wqAPA031ApJgLOY4KgUD2kdlwgrqEQAjG1VUao4VAIbxbc87yhkCZylbuW1uIQCHrSZ16e4pALKv6KbNjjEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAYxSyCnORoQBTpB48/A3JA3WIk4HPickBRCOXPY+N6QPTcEm2EpH1ApJgLOY4KgUC8ZJYjCXqBQKTH+WI6k4RAdrd2G4F6hUCk9ueM5huIQHbmZEUtA4lAzyBqjzJUikCj7AnrjiuMQPwmDzWUfI1AzhaM7dpjjkD+qn4voIKQQOcivYtD9pBAW9RuK9yCkkBnOrSgmbqSQHxP9aG/1pNApcRAyQeHlEAC7jDFQ4eWQHQMeNkQv5ZAFm70LE0jmED0I2/uZoOYQMiEWTuTr5lA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBmiwPJSGNsQBTpB48/A3JAMTrEeZeTdUCTuYxC6dJ5QDGYoM3vpHxAXT3q3MvxgECpUFF/uQqBQPAdjhgj+oRADH4bnEWjhUDwTHxCz4KIQAytCcbxK4lAVHpGX1sbjUCgja0BSTSNQOV+x/ec049AGreoHlCekEDy1tqQJK6RQDnriYs6kpJAEnQrVqGGk0C5AoGgkFaUQPaJ/l3XCpVA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQANJK5hVInJAH3KoplGjc0ADpwfsrTN5QJMXaZZBpHtAWfsL8UWkfUBdbNgGeNqBQKwsdCLPWoJAiJZaCcQShEDXVvYkG5OEQIjFSDNwm4dAajeaYHKbiECz78o1vNOJQCSKeljqm4xAsx65X2hcjUCSXDRBSxKQQNV+HMdPepBARHOZT5GekUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDGeRuljWJrQOMaaiafwnRA+0+R6hLTdED7rW0+a+R7QKp1/l+3831Ajtu3N3eqgEDVae3Zh4KCQB/gONC4YoNAZm5ucsk6hUAWv7j+7/qGQIS/Kl0hy4hANBB16UeLikCE7hiHzVOMQGEWGo+ps41AFfOZHw8Mj0B5jc2T9TWQQKF8n2I4GpFA+aTEqEv6kUAwpf1XZOKSQIjNIp53wpNArJQ973+ulEDRT2NqmB6VQPUWfrugCpZAUWdaf+7ilkA+mb6HwWaXQL6wtZwXK5lAA36/jTQvmUCDlbaiivOaQLZtONRoE5xAzBf3bqtPnEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDAIFw1+IJuQBu6YmAmQ3BAGxg/tH5Ud0Dolp9obdJ3QD0hQeUBxXxAIzkYPh3zfkCev44cLeuBQCMhjTfQMYJAUCcy3TFahUCe7nxG2XOFQC/z/d4aLIhARwayC2nyiEBHNaA1FXuMQPn6xpGcRI1AIzLHr+ABkED8lNpdpGaQQEUXGyrFwpFAslolpQzKkUCMK8ok26aSQJZw+KxCTpNAPkIvMyEzlEB6hsu0eNKUQMGaeq+OtpVAvlkmSHf3lUDTbmdJnROXQNgdTYK/SpdA6YOoSsMvmEBYNUSXFQ+ZQJuaDVkJfJpA512ijEHXmkCyHeArOhCcQGd1maGXm5xAY5/HoGMcnkBM+f162CefQOO2vrW54J9AZoj6Rxd2oEB8G8GOYb6gQAddKvh5iKFAvxMtTzqcoUDJ0w4DP2qiQMfopQKlaqJA0aiHtqk4o0CJX4oNakyjQBSh83aCFqRAKjS6vcxepEAeYdUqh+SkQOq/Ncj3QKVA3uxQNbLGpUDdAeg0GIemQLatxO/GzKZAnY1jP0Npp0BB7y1Z35anQOShEjpZTahAmnpgYAK9qECkLY5EhC+pQCUFAWEVS6lAsI+hYSjZqUAvb/etnPmpQFP5Tquna6pAcBsdbFO7qkBFhDivwi2rQMmmT3N2gatANw8is93vq0DtMKdwgfOrQBFyx9aRoaxAfiPRrfPTrEDR/ULhvIOtQD6vTLgetq1A/jrIwkmYrkDEP/VN3cmuQOiAFbTtd69AvDJojld+r0Ajuuj7NySwQFSGSF8MLbBAtdr4LkB7sEA0TIbkIZ6wQNlkUCxL7bBAxmyWFyr1sECmMtScP2axQEJ9L0FadrFAhvgRIlXXsUBmB4c+ZeixQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA0WUyRs0FwQFAtpBCXEnJAb/vEZmNid0DE0mQAhxN6QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA/KJil8iNpQBu6YmAmQ3BA525gjBHDckBWXNs11mN3QAl4Yr2UM3hAeGXdZlnUfEBmP4BIHTKAQE2370tuIoFAZm5ucsm6g0BN5t11GquEQNwOPGtGc4ZAyps4j1XThkD1xbqRoQuJQJZhHGO+c4pAhso7KuPDi0C/YaMy0auNQF/ISK4+mpBAO6KgzELKkECEJOGYYyaSQERMrYd/JpNANjtGp6myk0D1zZT8qDKVQLIqhj7FfpVAdeWLEf/2lkAuGsbV4EqXQIv6zBIlE5hArjG96jYPmUDUfA3fRW+ZQOv/37F2A5tAX7OkX2Abm0CoNeUrgXecQAKDsoSnl5xAWkxKOscDnkAWA3bssDOeQNpjQU8dyJ9AlhptAQf4n0AR88ANH5KgQKQY6YcmIqFAan7zFEJYoUBTLeGFRCKiQPW/XH5aIqJAtUvYiIUEo0CsuBONZ0ijQA7XCpCoKqRAn/rF+YeOpEDDhB33kgClQOaXfkq9MKVAtQ8H+63CpUA/I7FR4FamQA6bOQLRiKZA/64sXAs5p0AzkyLR5oqnQK7DJFopOahAeqfRy/xuqEBsMrvPFzGpQCoi5vVRralAHK3P+WxvqkDokHxrQKWqQGPBfvSCU6tAl6V0aV6lq0CIuWfDmFWsQFcx8HOJh6xA4USayrsbrUCwvCJ7rK2tQNPPg87W3a1A91nby+FPrkCIfZY1wbOuQOqbjTgClq9A4QjJPOTZr0BQSqKjB16wQKET4J8SXrBAFutW2BPDsED4HdyeId6wQMIw8FslJrFApGN1IjNxsUBUUQCPLX2xQIQps6dI4rFANBc+FEPusUCJCaQBS0myQOBc15dUUbJAcn3nylyoskBPqlg2V66yQBVLDWtjE7NA3l0hKGcrs0Cnax2ea2qzQL4jX618nLNA7LBtHnWxs0CdHy+Tgw+0QMx2q6OKIrRAfBv/eIqCtEA4V+UAlaW0QChhmPyb5bRAuoGoL6Q8tUAxeD43pUi1QBE+fLy6ubVA+DCJfbj2tUAWHm0WvSC2QIpRmbDATbZAz5bpMMqUtkBtKGkVzKC2QH/tFJTR2bZAe9yCtNv3tkBfs1IZ50q3QFuiwDnxaLdA8dNiTO+ht0DHgvqW++u3QIP0cn/3+LdAWaMKygNDuECnfsp8Amu4QAXpo00VprhAh0QIAhjcuECxLj3RJgm5QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + XBt4PPKiZUAoFld2zuNlQK5rGHLR4nFAnREdidiCc0CuyfTFKfR4QGAYu1x+s3tAdSSJ/0Elf0BdkgLUIAKBQMyWRZjiSoJAJ5rLhqIahkCWng5LZGOHQIrHlaMus4pAtO/KNbzzikCoGFKOhkOOQBgdlVJIjI9AOZCNIASukUBxEq8CZVKSQIISzuwkCpNAiJWB1ZXmk0A0KTP7apaUQDkXaUq/8pVAtEAqEMFalkDbeOWd+xaYQDRYISUXH5hAS9vz90ezmUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + xLF85BujY0AoFld2zuNlQP9T9bnLw2pAN5QtbGpicEAis/wNadJyQI3oMXEC03RAlli9/VjTekDo9Hu8xSN7QHiygyQOkoBALk0e1lqSgUCj3AUnWsqCQL9Rn26cSoRANOGGv5uChUBOev1jyBKGQLKnx4BUK4lA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + eg5Y0/EhYkAoFld2zuNlQLGsbNnoEXFA3OW/dP8icUB4BwETAUN3QKNAVK4XVHpAeGXdZllUfkD5lFizr8R+QEvbzKhY8oBAC3MKz4MqgUCvCJfF5AqEQPvsDz4m+4ZAEzZh4nAjh0CKFW4zUsOIQBNlTwwdrIpAsxX1AmX7i0BAa/SxftSNQLNE4ywRhI9AUkxfZ4V2kEA9uESePkaRQL3PO7OUCpNASgnintZek0DT5Hy0uiaUQGAeI6D8epRAHGe9gNuClUB2M2ShIpeVQL+1pG1D85ZAnH60lTFHl0A/zZuCmbeYQByWq6qHC5lAv+SSl+97mkCcraK/3c+aQOUv44v+K5xAP/yJrEVAnED7RCSNJEidQIh+ynhmnJ1AEVpljkpknkCekwt6jLieQI9VgUdxPqBAhQv04k2moECB4GpLjAChQN6WJupwbKFAQWzmVbfioUBp2I9TiTaiQEssyAm8sKJAKWQLXrQYo0Bvth8HxyKjQILvPWXX3qNA6xThou+WpEDbenBs+qSkQA+fOKD6CKVA/wTIaQUXpUCaKdmgDZelQL+QQ3Qw+aVA87QLqDC9pkAYHHZ7U7+mQExAPq9Tg6dAxzBueXG/p0DrusV2fDGoQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDOIQhxcuNoQJ0RHYnYgnNAxwSPFv4SeED4HWfUm9N5QORVSwFWo3tA/L0hFHpygEAbqyzQvQmBQMPpxyPmeoNAG9oa+mmShEAnF5JAcpOGQH8H5Rb2qodAuBsT2bNLiUB25mRFLUOLQLhKAQNg1IxAn+brFEB7jkBHc1/4i5yOQJh1ttbAmZBAVdCUCozakEDh9/ai4fWRQNXnix/inpJAKno3bwJSk0BV/4I0OGOUQJwTMi9OR5VAD/6bSEPelUDBFAFXiWqXQE4qlz2Uk5dAYz/YPrqvmEBBLPhr3y6ZQONWz1MQdJpA80JdeiV7m0D5axBVNpCbQHNaVI97P51A3u90LnccnkC83JRbnJueQJAG2jy9qJ9AHvpFOPkvoEAIj+ioibagQHeFeD8c9qBALNAID5pkoUBqxyqsPDyiQOxbhBnFRqJA9VHLrE/KokBF57Yg6GyjQLXdRrd6rKNAQGjnt406pEAFczIrE0+kQF7+ZDI2FaVAmfMZv7BgpUC9fXG8u9KlQFFAF59WW6ZAfQntxua0pkB1gTcFZwmnQD2VaNERl6dAmcJXa3e3p0CWIJvYNF2oQL0DeNGHZahAuqry1T/PqEDHw1mFjDOpQHo2buBqsalAhbv5UJoZqkCed45Ge1+qQN5GLFi936pA9wLBTZ4lq0Ce0qdi6MGrQOmNqlG556tAqJKJFu2PrECpGSZc5MmsQMwc4RP4Aa1ANFuPxfyTrUBIe6KvIHauQAWMTe8apq5AOgaMszs4r0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD60UzrnGVsQKPid1q/AnFATmm0FPSidEAxOsR5lxN3QHBytkV3E3pAWPsL8UUkf0DMGX/eEhKBQD/eKTR6moNAYPoiGmoahUDQ4qrMu1KGQCcmySnWIohA+eIxnM6KiUDuUW85QiuLQPkRIMZ6E41A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAKI3ffzmRvQDeULWxqYnBAp5q9oOoidUA38gnAwnN3QOI8NnaaQ3xAXrNRN3GEf0A7JuTtTjqDQGgsiZOwwoNA9XjE5cY6h0AyNFJGMtuIQIhZaCEeQ4tAUIUOMYprjECIiFZLysuOQOGJj8nLI49Ajcbr8QXCkECTJkQ4IraRQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4qRcexsiYEAoFld2zuNlQCa3YN0hA2tAZLjPS34EbUCIMOwq1/JyQJO5jELpknRA4zw2dppDeUAiEdlhwaN6QEBilUwZNH5AcZSClXJUf0BNt+9LbkKCQP91Z1qlsoJAFOOVW9pKhUAsfAwAB9uFQLukavUyo4dA2w48a0ZTiECC0BAFn6uKQAgV4RCoe4tAMz9jE/SzjUCC//4uSzSOQMJnwQggfI9ACgLAY0Z2kEAfFwFlbJKRQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAYxSyCnORoQK5rGHLR4nFAFOkHjz8DckA28gnAwnN3QK7J9MUp9HhAxUlW35qEfUDQ0vb2rGR+QHFNCWV5ioBAL5Uhi8I6gkA4ea905ZKDQGOjMXcxy4VAwnXFxhlDhkBagrGlaGOJQLlURfVQ24lA5H7H95wTjEDuYlXhv2uNQKuqbQcJHI9AW8d9+BU6kECd6WV+GnKQQKNJvsQ2lpFAgf84hlD2kUDKgXlScVKTQCNhtdmMWpNAbOP1pa22lEBKmXBnxxaVQB76WrTzQpZA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + eg5Y0/EhYkAoFld2zuNlQLWw0KihQmlAZos52gxicUCsWHZzdhFzQLzfPd+k0nVAzmF4pPmBeEDjoIVWU+N9QFy5xMPRkn5AnPrErfUpgUA/YWN6qgGCQCsjI6Mh8oJA0GXkEuy5hEBWTaWlbSqFQIF3J6i5YodAx0RkQSNSiECsoamqBZuJQPRKCeeEeotAc81PunGjjEBYeNMDEZOOQJ730by9245AFhAY2fRRkEDe0k6QzpWRQPol6+Aq1pFAJef9iuR5kkBBOprbQLqSQAn90JIa/pNAUBGAjTDilEDzUP/phgaVQGYmwY5W/pVApWdk+MySlkBKPJSWjIKXQLzqNsv9JphAYFHVl7KemEB2ZhaZ2LqZQDjadmIZ85lAjHtXmv7WmkCBXLcuOk+bQNOPBpUUu5tAyt73+lqrnEDopEeWOtecQK70ygKRL55AMpUZNGbbnkD3dgvPsYufQEiqWjWM959Ahntnm92ToEAuFY/OysmgQKoFv5joBaFAzo8WlvN3oUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDAIFw1+IJuQFAtpBCXEnJA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 7BToB3LiY0AoFld2zuNlQHZo0FeRAnFAb5d1hqpCcUCN6DFxAtN0QAp4Yr2UM3tAKMkeqOzDfkAh+MPWBQR/QMFqtPlXioJAECtQFa8Kg0A9MfW6EDOGQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDOIQhxcmNtQI8BR/y9MnFAQh3Og3wCdUDlVUsBVqN1QAl4Yr2UM3tArLDfOm7Ue0CWQDL3C1KAQOfc8LV4ooBA+m38E5hqg0BLCrvSBLuDQCWYfhbkooVAeBBgeGbjhkDf6l4OXKOJQNw9KpXye4tA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA1uAwZnGNrQOzQoK8iBW9AGrpiYCbDdEB2xqyr6ZN2QMwasbCBBHtAGhg/tH7Ue0BlvEYC7QqBQA27DYTrcoFAOOWPhjerg0Bl6zQsmZOEQDgUfrDjM4dAZRojVkUciECQRKVYkVSKQGUaI1ZFXIpA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAYxSyCnORoQHzKEHuiRG1AjMDylKaDc0A+w2SRqbN1QAUe+crB5HtAbLT9cuskf0BmvEYC7YqCQDYJbeMhG4NAyukQH3mjhUD9NBPzjSOGQJEVty7lq4hAXjji3OA7ikC+G1zURtSLQMA7scYzVI5AIkkm8dLsjkCop2VLmgqRQJEfQFhDNpFAvyo4HsuekkAzgbyrf1qTQNU/eR/xupNA5AKkIKlmlUBVV3A0R3+VQJYZCS/v8pZA1W5nSZ1Dl0BIMG49NX+YQOzxORzO15hApVleOXF/mkBsCTExJJyaQDSCvC6dR5xA7CAoRnpgnEDmmCE949OdQJ43jVTArJ5AmK+GSylgn0D03GaQcASgQPDhGqMfIqBATWiZl5MqoUBJbU2qQkihQNipAgGs9KFA+IFFqGBIokAcw2UOcfaiQP2h68/B9qJA3E7hGJzYo0C9LWfa7NijQM7Zyhy3mqRAr7hQ3gebpECOZUYn4nylQG9EzOgyfaVAk4XsTkMrpkCzXS/2936mQEGa5ExhK6dAPp+YXxBJp0CaJRdUhFGoQJcqy2Yzb6hAvq9uUY/DqEC7a+vMQx2pQBc7oViyialAFPcd1GZDqkBwxtNf1U+qQNSCmd6RJatAt9qCWuszq0CUDhXpvAesQGXvelgJNKxAH1B+UtXRrEC+eq1fLPqsQN/b+VwAtK1AFwbgZk/ArUCfZ3VnK5auQO/GUyFkxq5AKvIVaD4kr0DA9xFLgtivQLUzf9FW7q9AoDp0nTdcsEBM3MKCS2+wQEyADSFJv7BAuLz831XysEASIcJVVSSxQCSdNj1gdbFAi+a212KFsUCdYiu/bdaxQDcsUFt06LFAfShpRINHskDjcenehXuyQI+3gmKX3rJAu9dJkpcBs0BvfcDnrE+zQJudhxetcrNAAZ7QGrWms0BH4yCbvtWzQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBmiznaDGJxQDitQvclAnJAoS2yr7yCeEDAMzRFF5N6QKGLjgMVlH9A4EiIzDfSgEDQdLWrtlKDQKd0Ltyj2oNA+XQ8e8mKhkDQdLWrthKHQIidmnD1UohAX50ToeLaiECxnSFACIuLQIidmnD1EoxAeMnHT3STjkCIzIiaoZuPQDz82jwQDpFAxH074iaSkUDeXVeQTDKTQFOmmddSWpNA9eApY33GlEBnJl0/XPaUQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RpQFrpTSZ7Y25AA0krmFWic0Ana0JUlPJzQEl0RIUXY3lAl1i9/VjTfUCfyEiKr9N9QHbWYIH4IYFAs5Hu4WMCgkDaAyuehDqEQN67cOSvOoRABS6toNByhkCWMi45EiuJQKjDOZcxU4lA0+27mX2Li0CNEa5nScOMQBw6DF11i45A8T54hNUbj0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDEsXzkG6NpQI8BR/y9MnFACRqGaTzidEBWXNs11mN6QNB0GqNUE35AeGXdZlnUf0CGi0k8ApqCQLvhXN3YcoNAhro3Zq4ihkDZMhnIMAOHQBe/uP7v2ohAPGDj5Lybi0B67IIbfHONQNBAhyAUpI9Amp+xCfq5kEAat6geUB6SQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBoiwPJSGNvQNIWPk/8QXNAr2sYctFic0DSdBqjVFN6QK/J9MUpdHpAzRqxsIEEfkAzQlYELEKCQDCVIYvCGoRA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCmvpxNHCRnQOzQoK8iBW9A2+W/dP8idEDRdBqjVNN1QAKnB+ytM3xA+DViGgPkfUB4soMkDrKBQCQbuFwUKoJAuPtbmGsyhkBCukzXj8qGQEkA3TCt6ohADMIVihHji0BnUZkbBXuMQAOhlbhIe49AZCq0AqxJkED9v4rzv4mRQORBqxcCDpJAea/KittVk0BzagkNLtaTQMOfnCgHWpVAFcyFYGr6lUBSyPodMyKXQJtKO+pTfphA+k/qOauGmEAbYjL/qUKaQKxmT0jx0ppAzXiXDfCOnEAsfkZdR5ecQHUAhylo851Asvz75jAbn0AEKeUelLufQCovPJ22n6BAp4xb3t/foEBxQ+uXzIOhQGWE+6ntxaFAMc9movdlokAjfJt1+6uiQAmQ2lwMbKNA4XM7QQmSo0BQpIlXIlCkQNO17a0p2KRAdOWpvTL+pECZ3ZKMSACmQMX3nxpKHqZAo510QE3OpkCD7z/mVwSnQMiVXQ9j0KdAqOcotW0GqEBT18Z4e5qoQHkY596LGKlA3hgw4pNkqUAEo4ffnqapQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD0hHOUyKJqQIkw7CrX8nJA7mf6OVRSdUAXiDhKrwN5QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBOGswAeMJsQFAtpBCXEnJA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBxWoXuS4RsQBu6YmAmQ3BAcQ5nZb6zdEAACNcwPnN3QKyw3zpu1HtAO6pPBu6TfkBI/6kFQ4KBQLkFOjrDgoJASC6YL+8KhUC5NChkbwuGQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDYkZP9yKNsQIkw7CrX8nJA7Cam0jxjdUDkPDZ2mkN5QA4wqAPA03pABkY4px20fkA0HnmnQZKAQJQnHWxQEoJAYSQeTaO6g0CLBp2ah6qFQChQxFwPw4ZAizWLxDMziUC5VEX1UHuJQBw6DF1164tAuYMzH/0DjUDjZbJs4fOOQFix2SYaTpBACLYriSEOkUChMxrzOqqRQB85/ltSopJA6rVav1sGk0Bouz4oc/6TQAE5LZKMmpRA6NI1PcnClUBeYh2OyJqWQDLDB9v0xpdA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA2uAwZnGNlQFf+/uF9UnBAVv7+4X3ScUBXXNs11mN3QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBTc4twDaJpQOJgFSPMRGtA5Vu+jbbxc0CZcdKIFLN1QEBoCNl5QnpA9H0c1NcDfEAXEwQbdLmAQPlt/BOYioFAF0LyRCBChEDwTHxCzyKFQERIl+qBaodAHVMh6DBLiEDYKDsm2XKLQDuk3dKI24tAA1O9KCWrjUBoqoJ46gOPQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDAIFw1+IJuQFf+/uF9UnBAghmwS/+xdECSoHe3LXN3QL27KCGv0ntAtKl56LDjfED8rlB7r3mBQNGzvKIPCoJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEfuNfSGJnQAoahmk8YnBACRqGaTzidEAsI4iav9J1QCsjiJq/UnpA830c1NcDf0CN8MP7lsGAQCRpkOw3uoFA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 7BToB3LiY0AoFld2zuNlQCe3YN0hA2tAO0xzspUCc0CCGbBL/7F0QMmjv9FtE3lAgneMn1fDe0Dn9Hu8xaN8QN+MgroDcoFABtvhGTpagkCX32KyexKFQKmUS22FioZA+gwtzweriUA8de+o3JKKQCcT0nRp04xA0FWT5DObjkBUGXcay/uPQP8tHMXK4ZBA9HwNKxECkkAWse6X+3WSQD5t38g8BpRAyMdTpkHClEARSpRyYh6WQCPxQ6J9kpZAWzpmEI4imECyGaKXqVqYQKJOFQukBplAMjGZrP8emkCGZOgS2oqaQK4g2UMb65tA0FS6sAWPnED1NIg+Mc+cQDxJNzlHs51A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQGaLOdoMYnFAqJq9oOoidUBGf0S4UQN9QM9bBRiZM31ANiDGFwCKgkB7jqbHI6KCQAyTJ2BlWoVAJprLhqJaiEDG5QdY3VqJQB15S7XZ8otAUmEx1J9bjUCufcxNG6uOQI3G6/EFMpBAV1bdu+MZkUAJtiuJIf6RQNNFHVP/5ZJAic0innfCk0C3W/BaNWqUQNJPY2qYHpVAfRkFmZZqlkBOP6MBtOqWQNpC9ZTSaphAI8U1YfPGmUBG/CU5BdOZQG21B/8ey5tAkOz31jDXm0C3pdmcSs+dQIipeg6Cv55AWQdW8Ibzn0DOFB+7xS2gQNFES97Tp6BA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCO7m7sniJrQDtMc7KVAnNA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDOIQhxcuNoQKPid1q/AnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + eg5Y0/EhYkA2uAwZnGNiQHJahe5LhGlAlLmMQukSc0DRFj5P/EFzQCdrQlSUsndAIxHZYcEjeUB5Zd1mWZR9QCfJHqjsw35Avo6RVkKagUAAdmdapRKDQL69f4DuIoVAAKVVhFGbhkCF6SWQWiuIQJGp1hyTU4lAhRgUuga0i0D11qA5H2yMQK4Ym4kZ7I5AIt1F34CUj0BsoQ7GMpKQQNgCUmpWrpBANSxCZpKukkAeuHPUeN6SQHvhY9C03pRA50KndNj6lEDC9RLLysKVQP1X6HX+FpZA2XjlnftWl0AR2KvdB7OXQIuPSqxB45hAke+i8l13mUDUEYt4Yj+aQHUFdvqT+5pAVCmCjbgDnED1HG0P6r+cQAsyrhAQ3J1A9or+4PQnnkAMoD/iGkSfQItJpSVmoJ9AUS9zE0ZeoED4Wgl1KGSgQIOcct5ALqFApybK20ugoUBDcSWAZqShQGf7fH1xFqJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCwLijacuRqQI8BR/y9MnFAeiAWnrzickCtUgPnFcN0QHp+8vEU9HlA1BNLXsTTfECch/QimGR/QBS0pzEuooBA+0kft63agkCluCjKb1qDQAnm8ub7coZAxVHoaS/zh0CcxpYiU3uKQFgyjKWG+4tAvF9WwhIUj0Bmzl/V1JOPQCeyay0q5pBASmqCPRtekUA8x6wuUAKSQJPswgk8upJAhrd+zHsGlEATBLoekn6UQM3LLceR6pRAXIb66rLalUAq9R3DzeqWQNyd8f8In5dA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCwLijacuRqQHzKEHuiRG1AlLmMQukSc0DmbmCMEYNzQDzDZJGp83dAIxHZYcEjeUBezGbCLGR9QH4dI62EdH9A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBImCMySWRuQKmavaDqInVA6yam0jxjdUBw9VHaAlR7QH82ODhAlH9AS9vMqFiygUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDOIQhxcmNnQAnEgEYihG5Axm01jMzFbkAFwBx3adN0QIzoMXEC03dAYMxmwiwke0CzqXnosON/QCdFs49NKoFAoQDjg0T6gkCLcn2s2UKEQL9Rn26cioZA7p9HyWXbiEBQViAH3kKJQBum7G7HA4xA5DbEQjVLjUCsqm0HCbyOQO4Koji2cZBAn1f3TyW6kEA3jeIE182RQOjZNxxGFpJAgA8j0fcpk0BkyXezYeKTQMmRY50YhpRArrlJUY3mlUDgFDZwSRqWQPc7ih2uQpdAkiubfo9mmECGZOgS2gqZQERCAI3V8plAanq7GhCPmkDAMUAk8b6bQLRqjbg7k5xA17QS9yFTnUAgN1PDQq+eQFbMCQx4t55AneC4Bo6bn0DpJtxoxB2gQKj7jgrqk6BA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAKI3ffzmRvQNzlv3T/InFAhe+Xw7/DdkBQi4Bk7yN5QKyw3zpu1H5Aq5fKr7J0f0BmUGbwmnKCQLoFOjrDgoJA91TniNwqhUC6NChkbwuGQLGnx4BUK4lAThXMn8YTikBCrEgZluOLQE5EuslynI1AQts2Q0Jsj0A7oqDMQmqQQDCW+RZNfpFAt5HgY142kkB5GDrjbdqSQEa6PlmK/pNA+S8x+MOelECQqhD3tQKWQHlHKA0aY5ZAwslo2Tq/l0DamuKU4QaYQPCvI5YHI5lAdODN54BLmUCLY6C6sd+aQHDHGqtd55pAB1PgUc2rnEDstlpCebOcQAM6LRWqR55Ah2rXZiNwnkCdfxhoSYyfQLVQkiPw059Af2npdwiYoED0N/WCOsigQD/1ZIIzeqFAGTDeUVDKoUD/gOCMXlyiQGBEjUxmrqJAI8IA824Ko0AePC0YdJSjQGrWr+2E7qNAKPwOzHhipEAqYiv4r9CkQOiHitajRKVATqNLXsB+pUANgHOluUamQPy3Q1zefqZAzQvvr+Qop0Ag+WPC7iynQEQ6hCj/2qdAJpchtwfvp0DPe+2RF6WoQEuPCoYd8ahAfpDljzWlqUALG4aQSNOpQNcbGJdYa6pA3EtEumblqkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBcG3g88iJnQNAWPk/8AXFAFOkHjz8DckA28gnAwnN3QNB0GqNUE3hAxUlW35qEfUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBoiwPJSGNvQDeULWxqYnBA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDAIFw1+IJuQFAtpBCXEnJA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAYxSyCnORuQJ0RHYnYgnNArmsYctHidEDzZSGOcPN3QP9rJhH3UntAjZO0gg8CgED3FBO3skGBQPDAfp+bGoNA90MB4V7KhEAdxyNF/UKGQIZsX9aKkoZAFKajczTbiUAaTQMS4pqKQNvRSYOg44xAR1Oot0PDjUByfSq6j/uPQG4AnFYmNpBAAsFVqehZkUC2gtwiR5KRQDaa0zedVpNA50S6ginmk0DFwjEtyR6VQDDH+k5KQpVARdooQh/jlkCw3vFjoAaXQMHJaNk6r5hAYvVWcuZSmUAI3hfUUJOZQOIMToc8F5tAhM1Xa2xfm0DGIiGPcpucQGjjKnOi45xA3aXzYaMvnkD3C4lozqueQCYoNC7Ei59AIMdkmvcDoEBaKMkR+KmgQKwIzgMQzqBATLOyFRNsoUCek7cHK5ChQAqrUuEgUqJAXh8zElZyokAuNareK8SiQLeqZRl5mKNA7CxKqjmqo0B3NuEjpHqkQKy4xbRkjKRAm3cBirQopUDzzHSvenClQLNY8LmlUqZAjbmz9tRupkDXmRAgtgCnQLH601zlHKdAPIV0Xfiqp0CXJYwq4eKnQMfG3cYQdahAibB1LvykqEDsvsaVJnepQEeoFfoJi6lAEEkekzHpqUDS6X5jIlWqQNDUmZ1cy6pAK3WxakUbq0COzDlparGrQFBtmjlbHaxAmIwbHW9/rEDb9zo6bqusQLzNO4N/La1ArCj5Y4y9rUAVWW6KovOtQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkB8yhB7okRtQFrpTSZ7Y25Az/0oxECidEB5BwETAcN1QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD62J8L/6FwQDtMc7KVAnNAbn5g++6ieECv8TOihQN7QMofVLnOWYBAG7wSeDvKgUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkASeFMryKFlQFf+/uF9UnBAncs7e+cBdUBXXNs11mN3QBFx/GrXAn1AV7q3iS51fkAcGSLxwomCQOUvvDwPO4NAsPnFLBqShkDlXqpmu8OGQLAotFbGGopAeD9OohLMikBqe5ROPhuOQAwg8t1p1I5ANVVBPPXRkEBjOenqcGqRQLVsOFFLlpJASL1NxLH2k0BElZZGd16UQI/R/L7H2pRA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDPIQhxcmNtQKmavaDqInVA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkB8yhB7okRtQEwvfbx6MXBAZSbQtP+ydkBz8MQzKUJ4QJX5xmSssn1AjOcXLK7DfkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + krjVFDGDWkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAtECBNt2JpQIkw7CrX8nJAiq1QlkuydEDfhPAvb2N3QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjZUAoFld2zuNlQNzlv3T/InFA+0+R6hJTdkA38gnAwnN3QFVDxqoaBHtA+61tPmtkfUDTIeokILqAQP0FJcnhOoJA01DYTsxChECOCqZhI/OEQJp8fl44S4dA0s2eCJw7iUDHgiMEmnOKQFargfnFO4xAZq5CRPNDjUAd1ycJMkSPQBdt9KkvJpBAXoGjpEUKkUDY22WiRKaRQHUEdnd2npJAej3i9YDKk0BZGkl/rCKUQMO/IsKhJpVA2TFAlALnlUBD1xnX9+qWQO2xA/wLg5dANMay9iFnmEDD7hDsTa+YQEtJhclS+5lA/V/q15iHm0C7q5Mjn5ebQG3C+DHlI51A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDOIQhxcmNtQDeULWxqYnBA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAgFMxS+VFwQEMdzoN8QnFAeyAWnryidkAKeGK9lHN3QEJ7qtfU03xAZYSsCFjEfUD5bfwTmOqBQDQeeadBcoJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAYxSyCnORuQBu6YmAmQ3BAxwSPFv6SdkDiFPeZPnR5QORVSwFWI3pAOqpPBu6TfkBxbEO5FoV/QMfe/1G3ioFArtmomzgCgkC+vX+A7iKFQHjhcU66GodAUp4jvEUriUDcDjxrRjOKQBnKycuxM4xAozrierI7jUB995PoPUyPQAM01ksfKpBAohEd/FQqkUDnSalTVa6RQFQoggqbtpJAMTp78YCyk0A5rObj20KVQK0pu4icfpVA9D1qg7JilkCCLiew/J6WQJdDaLEiu5dA2FM9i+jml0DeVxesOJ+YQIpqopkuM5pAbYB1oWRnmkAKgpmuhPebQB+X2q+qs5xA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCmvpxNHCRnQBTpB48/A3JAU72qemajckA7qk8G7hN6QBoYP7R+1HtAgALyH4OigUCgbMOVlvKBQIAx4EkvK4VAoJuxv0J7hUCAYM5z27OIQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD60UzrnGVsQAoahmk8YnBA6yam0jxjdUD414XGqpJ3QNnkpS+rk3xA5pWFIxnDfkBk0VLGDOKBQPL5sLs46oJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA3lC1samJwQLPFgWSkcXBAeiAWnryidkBeVXXjGHN4QCWwCR0xpH5AoeFdFWuzfkBi9S8j9xGCQHYFT6uk6oNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAc6N63HmJpQDeULWxqYnBAX3T9+jQhc0CIlDsLkNJ2QIF9/yu4kXhAqp09PBNDfEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBxWoXuS4RsQFf+/uF9UnBA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD1hHOUyKJnQBu6YmAmQ3BAeiAWnrzickDiFPeZPnR5QA4wqAPAE31AOGn7ntbkfUCWQDL3C1KAQP/hR2z3CoJAlm8gIbjag0BjDxKJgyOFQJaeDktkY4dAKju4mO8riECWzfx0EOyKQCX2Wmo8tIxAGrW9B5L8jUC0HrlfaHyOQA3y1RifwpBApH+uzV9CkUBX4qe2ysaSQO5vgGuLRpNAodJ5VPbKlEBuh3eA4QqVQOjmKE8Mr5VAL/vXSSKTlkBmRPq3MvOXQK8Sz154V5hASlrNv2h3mUAvKsZzzhuaQPxwMs6uA5tAr0G9iCTgm0Cuh5fc9I+cQPZVbIM6xJxAxJzY3RqsnUDb2dBce1CfQHazPexg+J9ArvjjuGiKoEB7ZZqAW96gQNI5BB95OKFA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBOGswAeMJsQI8BR/y9MnFArVID5xXDdEDqEwTU4ZF2QM9bBRiZM3pA6nHgJzqjfUCxtcs+TjKCQL9AucYe6oNAseS5aPq6hUDqajvJaiKGQBNrwph9WolAFBKEhYZTikB3mIy1CXOMQAvxA7S9641APsQyxXV7j0DjIfLVGvaQQJ95kPcQgpFAYznp6nC6kkBRkPUFVw6TQKpNmOWGnpNAm4DHo4ISlUBcZP3zzOqVQPipt5++EpdA3Hv0CCOvl0APLYpy76aYQI6SWRdp+5lAj0SBh0VrmkDYxsFTZsebQNiCK7WU/5tAvNyUW5xLnUCKmZDD2kueQNGtP77wL59AQOZS5QO8n0CX6xddFpigQBL+kvYcoKBAuyw4wyZGoUAEiXz6N2KhQBS4aspJDKJAxBT4BGNEokA4QsLHVH6iQISgcw+OJqNAXIPiLWUso0Co4ZN1ntSjQLUOFTWI8qNAAW3GfMGapEDZTzWbmKCkQCWu5uLRSKVAmduwpcOCpUBJOD7g3LqlQFlnLLDuZKZAosNw5/+ApkBL8hW0CSenQMYEkU0QL6dAPX3/tyTpp0B0GYlLLi+oQJij4Eg5oahA/4HefFghqUDxLhNQXMepQPEMyIBz46lAFU7o5oORqkAWJ/wecsmqQNXZY/Guc6tAb7IuJpXvq0BgG81axz2sQC8+qjDA0axADzDFWOU9rUCIydw34/etQDQorif7P65ArFM0Ne5prkCNs+AuHgavQGzfrz8ZTK9ATT9cOUnor0AN+tOeGyawQB/loh4yVbBA7PWjhCKZsEDLKjyiQ7iwQNAKLfxFH7FAmDs9CDQssUAVUH18T2axQHgBe41JnbFADnHWsl8JskBxItTDWUCyQO42FDh1erJAA0Pk9mGXskAVCJB1Z9CyQFoXTpV//bJAbBKMdHZQs0A5Ex57hnCzQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBOGswAeMJsQOzQoK8iBW9ASRZoMb/Rc0CxCkktQaN2QHDXr6ht4ntAsWglgZm0fUC4Gkb+4nmBQOyUNvyj4oJA1msC6ToKhUB9mbeU5ZqFQANyp46cMohAdHg3wxwziUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA/KJil8iNpQI8BR/y9MnFAlLmMQumSdEAdWZMblkN3QJQXaZZBpHtAkf5TC4ZEf0CRt9rajNqAQHUFT6ukyoJAiJZaCcRyhEDZMhnIMOOFQIjFSDNw+4dAajeaYHKbiECVYRxjvtOKQIj0Nl0chItAiCMlh8gMj0D4juZ/SmyPQAtwUTVRfpFAIbuCP6CGkUA20MNAxqKSQCLzIwiCEpNASlCHqM8+lECxG4L9rdqUQC5mWrAFw5VALQvClMmmlkDgfL++Sw+YQK0iuakfa5hAJ5FuuWHzmED2pPl1QMeZQD4UQYySh5pAhc1Xa2yPm0C+Kzih6EucQOL2R2eoj51APkMvtj4QnkBiDj98/lOfQLoyb01a3J9A6CNYJ0B8oEB5m844FY6gQAQmbzkoHKFALzgHIlZgoUDCHQ8FNgKiQO/DgiyBQqJAgqmKD2HkokCe2Hoqn0KjQEI1BhqMxqNA5ewpJbUmpEDNdm+DpJCkQAkuSovF1KRA8QDHgK8CpUDJucWV8LalQEqM+YfSKKZAh7FlYf6cpkA8F+OL7eqmQM7FFFwUgadARtfEP/K4p0DRYWVABUeoQFkHfsUsS6hAoBstwEIvqUB/dl0+I0epQD8C2UhOKapA+aZfx2VVqkCEMQDIeOOqQP+NVFN5C6tAqHIgLomRq0C/GdBdpO2rQAH+UjWsV6xAfRFwKbLTrECMP7yexCGtQG+cWS3Nla1AOlS0nOIhrkAvKNU3+HeuQCzfnaD9465A3TzNNRZ4r0Da85WeG+SvQAC/9k0TE7BA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAAVPW5y0NsQFb+/uF9knJA+0+R6hLTdEBRpJXvqkN5QDbyCcDCM35A3/vhDoNUf0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDsFOgHcuJjQNEWPk/8QXBAr2sYctFic0AKeGK9lLN5QGUm0LT/cnpAJ8keqOxDfUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBo6vlh9UNnQEMdzoN8QnFAwkxJ0NKycUCeKRjPP5N3QDbyCcDCs3lAnof0IpikfkD9TJ752uR/QGBI+6mNCoJAECtQFa+qgkBgd+nTOZOFQBBaPj9bM4ZA8XtqbHtLiEChXr/XnOuIQFWpNIkHZItAoY2tAUl0jEAP/BSBf2SPQM6TUqeqnI9A65NdyHU2kUAxOnvxgNKRQLFRcgbXNpNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDGeRuljWJrQAoahmk8YnBAV2JOwjaydUCeKRjPP5N6QOtx4Cc6439AiGds3xdKgUDtF3BC1ImDQOpqO8lqYoVA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAeR9VQy0JnQNq4KFfnQ29AjwFH/L2yckDIaN72tvJ1QOVVSwFWI3dAj8NyMM8jfEDTE0texFN+QPRn3j1JOoFAF5DK1ENSgkCDkDwzdQKDQOe9BlABG4ZABwrQQ+YiiEBL69BsjTOJQMFcsDteI4xABT6xZAU0jUAlinpY6juPQMRbojo7KpFA+1vb6VOCkUALcFE1UQ6SQBLfrbyEFpNAIvMjCIKik0COzu1ToOKUQNQJiRbILpVAo+MuVcb+lUDrjFvp+MKWQCP7JWocw5dA/wwfUQJfmEBqD9VkMqeYQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkB61vaTY2FrQK9rGHLRYnNAPcnXHQrCdEA9w2SRqXN5QGSKH5W40nxAWxQhfAEEfUDB7e0/iDGAQL6OkVZCOoFAwRzcaTS6g0AivFtzztKFQCIgq1OH0odATebddRoLiEDe6l4OXMOKQOlLUWPz2opA1cnePJNbjkAHnQ1OS2uOQDXla7XrwZBAZlSvNeX5kEBMaD6IHFaSQBfWlqoOBpNAzH81nXIalEAt69erNCKUQBUCdmmTdpVAqdoXQ1DulUCVGW1+6TqXQCnyDlimspdA3putSgqXmEBydE8kxw6ZQF6zpF9gW5pAu/aP8OdqmkAEedC8CMebQELJd2eW35tAG/yijzlbnUBZTEo6x3OdQJsTmqSPH59A6HSoL/M7n0CYxCuVBBCgQI6VyNzycaBAvAVM+xS+oEAZIGndBQChQK6QNf8vgKFAPWGJQxauoUBuHLEJW2KiQPtYKQ8klKJAHDGpB3lio0C75KQZT3ajQN8lxX9fJKRA2ihJ04ZIpEBqZy7pd+6kQJq0xN2xKqVAw/Jg8Jq0pUBaQEDo3AymQM2yQqSfgqZAs8ty7//SpkC/PSyoukSnQIT8MBke5adAkG7q0dhWqEB2hxodOaeoQOn5HNn7HKlAgEf80D11qUCphZjjJv+pQNnSLthgO6pAaREU7lHhqkBkFJhBeQWrQIhVuKeJs6tAJwm0uV/Hq0BI4TOytJWsQNUdrLd9x6xABtnTfcJ7rUCVqSfCqKmtQCoa9OPSKa5AhzQRxsNrrkC1pJTk5beuQKt1MSzUGa9Az/+IKd+Lr0B1MBDvEJqvQAsKHJL6N7BAGt7F/B0+sEDRqtDGBp2wQOB+ejEqo7BAcp+KZDL6sEBKcMVIFP6wQATAmpc6UbFAKjYDzilvsUCW4KrKQqixQLxWEwEyxrFAdqboT1gZskCcHFGGRzeyQFWiuDVfjLJALj1huU+OskCa5wi2aNOyQA4Dnz5l/7JABshCE3NWs0DUo1NzcWSzQIDp7PaCx7NA5cMS+XnJs0Ckc0T0jTm0QMS/4t6APLRAVuDyEYmTtEAdOTl2m5q0QJslQ5KS2rRAiRlz06UdtUBHa9wVpG21QGnfsFi7jrVA2YvsSKzEtUB7pFzXwMe1QOtQmMex/bVAjSDRvstItkBkFo1Jv162QG3mDkThubZAXTfmf88Bt0BM4t4p6Cy3QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCmvpxNHKRuQN9iJOBzYnFAGrpiYCaDeEBTCOXPY2N5QHXGrKvp035A84u7mjPKgUACj3zlYHKCQMm6IvXMeoVAVrmFt79ihkDl4eOs6yqIQMnpEB95A4lA5RDS1pezi0BcyrRa0AuNQOU/wABEPI9A7c418xHEj0DWNTMIWCKRQCj+/wdPLpJAuksGEI6mkkC3Jl79evaTQGxiax7UMpRAUHg+Jgq3lUA3PlUS0bqVQAKPozRQQ5dAS74YetpWl0BfuJMwjEOZQP3UfYggo5lAqDrU/KyfmkDiWOJhYS+cQL+9ps/dM5xA+du0NJLDnUCkQQupHsCeQEJe9QCzH59AKyy4WzKGoEDQw3J+94+gQDXsmQ83VKFAKU+lhRpWoUAb2o6JNRiiQPV3FRpiNqJAdGXBkFjeokA8jMQUeBqjQGbwqpRzoKNAlRf3G5tApEBYe5SYjmKkQLlYF4Kr7qRAGAcQo7lEpUDeUABRwfClQNiSi63kJqZA/Bzjqu+YpkCe3Htb7NKmQJBnZV8HladAVagVshK/p0CC8k5jIleoQEjqxx4zBalADTS4zDohqUD2/r8cUQWqQGa/6tNdR6pAWErU13gJq0DOvzPXZQurQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBML328ejFwQBTpB48/A3JAc/DEMylCeECIjsh+LwR6QDpLWW1Bc35Ap3Qu3KMagEBX+IyuGDqDQDpV0hf7IoRAVyd72MTChkDONXZTUiuIQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCwLijacuRqQBu6YmAmQ3BAWHXwwJGDdEBWXNs11mN3QJMXaZZBpHtAVrq3iS51fkDJuiL1zFqBQFjjgOr4YoJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDGbTWMzMVuQAojd9/OZG9ABcAcd2nTdECsUgPnFcN3QCyBZO4X5HxAzlsFGJkzfUBL28yoWLKBQNoDK56EuoJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDo4r3x+qJsQFAtpBCXEnJAO0xzspWCd0DkPDZ2mkN8QGINuylEk39A1UvlV1m6gkAUtKcxLmKEQJx3i2fFwoVAPbQuAUGah0CcpnmRcUuJQNCU0jyYootA4GlyOOqTjUD7vlQ/5NqNQAuU9Do2zI9AIMEmc64RkUBPOky7RuqRQKDYHYgE1pJAY7oPI1CGk0CE7vCPOlqUQBXRdDGW0pVANgVWnoCmlkBfwUbPwdaXQBuJunfBMplAEdir3QcjmkCqsRht7fqaQKAACtMz65tA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBTq+yvm2JjQKmz0iumwnBAr2sYctFic0AEwBx3aRN3QNYsYOl/c3tAjEYOxVqkf0BqRZ4ebEKBQEZSdYzZWoNArgiXxeSKhUDaMhnIMGOHQNsOPGtGs4hA2z0qlfI7jECkOuJ6snuMQKJp0KReRI9A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD1hHOUyKJnQNvlv3T/InRAQh3Og3wCdUBgbopu1JJ4QKJAVK4XVHpA6oklL+JJgEDkAM4SYzKBQOq4E1mO0oNA5C+8PA+7hEB+mbeU5dqHQJ6CnDSHu4hALav6KbODikDixoGxcfOKQJDYxEY/HI9ARvRLzv2Lj0CR7qJvQOqQQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA/KJil8iNpQI8BR/y9MnFAH3KoplGjc0CtUgPnFcN0QB/QhPqptHpArbDfOm7Ue0BWB15H43KBQADiR2z3KoNAABE2lqOzhkBGgWO2hUOHQABAJMBPPIpARrBR4DHMikCPaIK1ewSMQEbfPwreVI5ApF2x1nkCkEAjBxcaxe6QQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBUZ6VXTIVuQKa+nE0cpG5A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERrQMZ5G6WNYmtAjwFH/L0ycUAKftVJ9cF1QFZc2zXWY3pACtyxnU3TfEBYtJLATFqAQJbyWWfoIYFAvOFc3dhyg0CWIUiRlKqEQOnnAYM6m4ZAJybJKdZih0B4EGB4ZmOIQLZOJx8CK4lACRXhEKgbi0DjVMzEY1OMQAlEzzpUpI5AR4KW4e9rj0BNJKjpSq6QQDrEncMoSpFAzTuf/qBykkDs2gLSbpaTQBcscZzMdpRAM++xzIR6lEBIBPPNqpaVQMitWBH2gpZA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBQecKZJCNsQEMdzoN8QnFAz/0oxEAidkDLo7/RbdN5QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAAVPW5y0NsQBu6YmAmQ3BAxwSPFv5Sd0CvyfTFKXR6QLXCjnNsg35ABR75ysHkfkAijW1JIkqCQC+VIYvCmoJAIrxbc87ShUDCdcXGGaOGQFGeI7xFa4hAS7ziQuEKiUB+pMhhp5OLQHjCh+hCM4xAB+vl3W77jUCnpE8xusuOQM3lxAzjAZFA0+meLTMqkUDkaJffE5aSQLf/cTVprpJA+n3Y4Dmyk0Az77HMhHqUQN8BPbp6PpZA5QUX28rGlkBfGTTP0AKYQMkb6uIAS5hA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAKI3ffzmRvQNvlv3T/InRATOxPqX/jeEBjbLHC8LN8QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD60UzrnGVsQFRnpVdMhW5A6yam0jxjdUDDqiUkK0R3QOH74Q6D1HpAfzY4OECUf0CBAvIfgyKAQKwsdCLPWoJAbSHBwYHygkBtUK/rLXuGQBBaPj9b84ZAmlZUkY+jiUB0hwhc5wuKQCl/soa7a4tALtroU18MjkBSfzlWzqOOQMmDWbh1kpBAjkOBBCjekUASBpqElu6RQKRYwgVO+pJAtGcW2NISlEAgSAKdacaUQBGRBtQOE5ZAfXHymKXGlkCNgEZrKt+XQB/Tbuzh6phAo5WHbFD7mEBoVa+4AkeaQIgZ7EWRh5tAGmwUx0jTm0Ccma+tmiOdQHeVBMOE051A461eqLAHnkAprGnRyl+fQPowMXvhm59APSQUyBuwoEBtYedvCNagQPjrh3AbZKFAyGV9MTR6oUAcLajWKxKiQEC3/9M2hKJAu6cvnlTAokAjFgpzZ4SjQHmfz2lipqNAFaHzdoJGpEA5K0t0jYikQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQHZo0FeRAnFAnREdidiCc0DzZSGOcPN3QP7uwaWCk3lAFW8jv/NjfUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD60UzrnGVsQHzKEHuiRG1AH3KoplGjc0B5BwETAcN1QEF7qtfUE3lAmBxVmiEigECs/YX4IrKAQKwsdCLPOoRAYiQeTaM6hUB2ND3VUFOJQCws5/8kU4pALFvVKdHbjUBAPAaI0muOQJwNQ9sEApFAjmptzDnWkUDlj4OnJV6SQB2Ty8FlnpNALhLEc0a6k0BmFQyOhvqUQK4pu4icfpVA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + BIYf0EKDYEDEsXzkGyNlQHBahe5LBG5ABELYd/OlbkDGBI8W/hJ1QAJ/yA9SZHZAjV8jUBZEe0AkiMpA1dR7QEHZhistZX9A9LW2zWzKgEBqdIxIGMuEQL69f4Du4oVATebddRqrh0CXejHuefOHQN7qXg5cY4pA+6f7CgYMi0DeGU04COyNQMLToRpyFI5A9/6RDl8mkEBvpB0xWrqQQNoUZRaVqpFA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAkaDOB0mFtQFRnpVdMhW5AzLzUXCmzdEBtwOOLrAF1QMMU6JBEcnlAzBqxsIHEe0CRt9rajBqAQGE5YnLOQYBA8j3jChD6gkC+vX+A7kKDQLlpiRp8AoZA570GUAF7hkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + eg5Y0/EhYkAoFld2zuNlQJe98BGiQ25AN5QtbGpicEDpr7TzKLJyQI3oMXEC03RA6Q2RR4HDeUCNRg7FWuR7QAsXk3gENH9AfWrJajkyg0A2nYzRz8KDQN5tmFSMSodA8O9syUfDh0CB9O1hiXuKQCIxkfsEk4tA3INx83yTj0BL/LYUC5SPQIOnS4ZBypFA00UdU/9VkkAcyF0fILKTQCUJyNl97pNAefFNG1yylUDWiq9Op/qVQFJ67+XCxpdAca7QUq2amECb/C+y4yKZQPHFx2cDX5pAGxQnxznnmkAG2whpKXubQGIo1sFPy5tAT11JNUrXnEBGPqnJhU+dQI1SWMSbM55A + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCs9CaTvbFwQN9iJOBzYnFAAkkrmFUidUBtunD/S3N3QD3ro20FQ3xAbRhNU6SEfkCeJMDgLqqBQDa7lFP+yoJAnlOuCtsyhUBUDFE+VluGQGV/VBpHO4hAfzbTQKKTiEDGgiMEmlOMQBIXd3z5m4xA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RpQCZYakR1om5AOQsfS37Tc0ATihH2kmJ2QGneFfsq03pAOWn7ntbkekA0HnmnQfKAQLoFOjrDAoFA5wvf3yQrhEAkmH4W5MKGQOc6zQnRs4dAJMdsQJBLikBRzRHm8XONQNe00nhzhI1ANw9n6CSCkEDrcWDRj4aQQAGHodK1opFAtyZe/XpGkkCBnpjnC2eTQDc+VRLRCpRAflIEDefulED9jdh+JzOVQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBImCMySWRuQEMdzoN8QnFAf9hb5OeCdUAGJGxXInN5QNUsYOl/83lA/vZTMBcCgUBmP4BIHVKBQCv9+NV4KoRAk0Ul7n56hEAmJskp1oKIQI4qw/IEw4hAUVBLLCK7ikDwLZLcV9uMQH5W8NGD441AQgcbjNdxkEC/Qu/9F7aQQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDXkZP9yKNsQEMdzoN8QnFAJ2tCVJRydUBEvP4+7AJ5QLfCjnNsQ3lAmhADRIRzfUC8ZJYjCbqAQE2370tuQoJA6Wo7yWrig0BN5t11GsuFQHxL3wTC6odAduZkRS0DiUCndWEHDiOKQDA5RT2lA41Ap6RPMbqrjUAYtJmzKEaQQLH7lxQZ1pBALsnatE5ikUDFe1t8InKSQHi5rFJ6ZpNARZNSkXg2lECPPH8lq/qUQMWqSabO+pVAQL5mmtQGl0Dbv4qn9BaXQCLUOaIK+5dAnedWlhAHmUCx/JeXNsOZQOfXKDQ8C5tALezXLlKPm0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCO7m7sniJrQOzQoK8iBW9ABcAcd2mTdUAKftVJ9cF1QPg71aZj8nxAHrdvb+6UfUAnyOzVfbGAQKwsdCLPWoJARRmpwNVBhEDXVvYkG5OEQM41dlNSK4hA0pTSPJhCiECZwHhMBEuLQDA5RT2lQ4xAxsYd8mVzjkDBPcbV5vuOQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBxWoXuS4RsQBu6YmAmQ3BAxwSPFv5SdECpEa9//lN2QMdia2pWZHtAqW+L01ZlfUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAYxSyCnGRqQNq4KFfnQ29A3WIk4HOic0D7s+DKy7J1QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD1hHOUyKJnQNS+X4D+xG5A0BY+T/xBcEBebopu1FJ2QDE6xHmXk3hAgHeMn1fDe0CeyEiKr1N/QHxKrNlX4oBA4GilXRligkANTy1ymZqDQJx3i2fFYoVARJZveqX6hkAtfAwABxuIQPSnsg9zI4tAqMM5lzGTi0Af0jQSv1uNQNPtu5l9y41AWOtaVQAKkEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBOGswAeMJsQGaLOdoMYnFAghmwS/+xdEDYbbRQlyJ5QEZ/RLhRA31ACogWk6MhgEA0RKN06jmBQG614K8vuoRANHORnpbChEBu5M7Z20KIQJigW7siW4lA/+hPch37ikC28RemeuuMQOEbmqjGI49AeLGq8N9lkEAHkR8nFCaRQIwxbljpAZJAlrl9HEDukkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDXkZP9yKNsQKPid1q/wnFACRqGaTzicUDQdBqjVBN4QKNAVK4X1HhAapvo5y8Ff0C+MhoAw0N/QLR84h1EC4NA8vmwuziqg0BDpUATcNOEQB8AVmGa0oZA1oXkTsfbiEBIAN0wrQqKQGeKZecIlItASC/LWlmTjUD6agkjYJyPQFauyrvyFZFAL8zpH3YakkCgnpxZHhqTQK/j4DTM3pNA6SDdJT92lEDDY6Sc1XqVQDMRr8NqepZA2uZ2bwYPl0B6JV6+gF6XQCTXSA0yE5lA+jxV09YimUCsU7rhHK+aQKDGiKRN35pAUt3tspNrnEAsa7H2cnOcQJnxnK2pT51AzswtSq+XnkAZCZTC/xOfQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAAVPW5y0NsQKPid1q/AnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDYkZP9yKNsQGS4z0t+BG1APcnXHQrCdEAyOsR5l5N1QD0ntHFi03tAWfsL8UWkfUDHE2EIxCGBQKwsdCLPWoJAx0JPMnCqhECsW2JMe+OFQMdxPVwcM4hA1VvpG44biUBaUuGXczuMQNWK10U6pIxAWoHPwR/Ej0D+il4VTdyPQPTUltslxpBAMVwUmWx6kUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCmvpxNHCRnQNS+X4D+xG5AqbPSK6YCcEDBMzRFF9NzQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBeG3g88qJrQBu6YmAmQ3BAdmjQV5ECdEAbGD+0flR3QDlp+57W5HpAnSkYzz8TfEBj4CNf13qAQJZAMvcLEoFAKgzKbkODg0BdbNgGeBqEQOyUNvyj4oVAvuxtqpqLh0DswyQmUGuJQCIaOMcmpIpAsUKWvFJsjEDs8hJQ/POMQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBImCMySWRuQEMdzoN8QnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkB8yhB7okRtQEiYIzJJZG5AYG6KbtQSdEBLjVkQ00J3QO/F1o2sI3pAvzIaAMNDf0ARz9i+L5R/QE+TEu+D0oJA8/mwuziqg0Dgl5OHxYqFQIbaVPePsodAp8M5lzGTiECz4Pmc8dqKQDjIui9zS4tA//NgP99TjkCzD+jGnWOOQBWP8aAVRpBAIoq0r++NkEBeETJtNqKRQDif9bAVqpFAHLXIuEsuk0DeKCmCjGaTQGU3CYVsipRA9av7VL36lEBJTdyMog6WQD+czfLo/pZAks8cWcNql0B25e9g+e6YQImMn5AUA5lAv2cwLRpLmkDmtY+MUAObQKN9AzVQz5tAMKZhKnwHnUDs/0MBcSudQDWChM2Rh55AsL1YP9LLnkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEfuNfSOJlQHJahe5LhGlAvyBcNfgCbUBbtkQoqTJyQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD1hHOUyKJnQDAn7Gl4w25Axm01jMzFbkA5Cx9LftNzQNO1bgpsgnZAJ8keqOwDe0DTE0texJN9QIpDj4ItGoFA6bgTWY5SgkCKcn2s2aKEQOCXk4fF6oVAiqFr1oUriEDXdhO2/IKJQAKhlbhIu4tAqPInwd27i0A3G4a2CYSNQGbOX9XU045AspAVrjVWkEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA/KJil8iNpQNq4KFfnQ29ARtUTyqeidED7s+DKy7J1QIkLLeqjw3tANJMTJxbTe0Bh9S8j9/GAQLtkliMJeoFAKCHWMmP6g0BORTpfYIKFQFEhXQJ2ModA30m796E6iEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkC6CZAYNyJpQFf+/uF9UnBAGKfAYcuxc0DlVUsBVmN2QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAsECBNt2JvQDtMc7KVAnNA3WIk4HPidUACpwfsrTN5QAQkbFci831AU6cVi9Ojf0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA/KJil8iNpQGS4z0t+BG1AlLmMQumSdECmgagVL4N2QLIKSS1BI3hAyIqqRrLze0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDEsXzkG6NjQEMdzoN8QnFACRqGaTzicUBhbopu1NJ0QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD60UzrnGVsQBTpB48/A3JAxMM6r+Zjd0DbQ5zIVzR7QMQhFwM/dX5A7VA8DtgigUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCAI9DqN6RuQFf+/uF9UnBASJhZQw3jd0DfhPAvb+N4QIM60hi9A39A3+LMg8f0f0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCaHOeqTqRtQNzlv3T/InFAEJURKc0Cd0Cf7F1IpVN5QNfvpWLlM31AZkfygb2Ef0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDEsXzkG6NjQP9T9bnLw2pAG7piYCZDcEAd+7bHPfJwQBsYP7R+VHdA/e7BpYKTfEDXk+gMwcKAQBLYhI4YUoJAZrxGAu2KgkCR5sgEOcOEQD/eKTR6eoVA9BOTIcVbiUCiC/RQBhOKQM01dlNSS4xAIRo4xyaEjEBcXtRIfhOOQFr9bQE/RpBAE7PO/f+VkUBSuvA4kC6TQJPKxRJWWpNAmc6fM6YSlEDg4k4uvPaUQBPivCesHpVAJ/f9KNLalUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDo4r3x+qJvQGaLOdoMYnFAAkkrmFXidUD14oX55HJ3QFNJOTd7UnxA46CFVlOjfkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCAI9DqN6RuQDeULWxqYnBANLco5QtTd0A38gnAwnN3QDQVBTlkZH5Aq5fKr7J0f0ArjwO1c+qBQNV604EFQ4NA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkByWoXuS4RpQGaLA8lI42pA0BY+T/wBcUAna0JUlPJzQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD1hHOUyKJnQHzKEHuiRG1ACRqGaTzicUCyCkktQaN2QAl4Yr2U83hAsmglgZm0fUC+jpFWQnqAQCDgONC44oFAT5MS74Myg0Cx5Llo+pqEQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBcG3g88iJnQBu6YmAmQ3BACRqGaTzicUB2xqyr6ZN2QAl4Yr2U83hABR75ysGkfEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBe4xb9Y+JuQK9rGHLRYnNA6hME1OGRdkDRdBqjVNN4QHhrUPO5onxAJ8keqOxDfUAkaZDsN1qBQLMUKCiU6YFAiJZaCcRyhEDRZeQS7HmFQOzDJCZQi4dAm22txW2SikDs8hJQ/BOLQJucm+8ZG45AW/1tAT8WkED/5DIG05mQQOolzPZq3pFAsfuXFBkmkkD6fdjgOYKTQGYVDI6GqpNAEJMZ4l+elEBKK9+VvC6VQFkVWq6A+pVA2VM9i+j2lkA+mb6HwYaYQIrVJAASA5lA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBImCMySWRuQBu6YmAmQ3BA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDGeRuljWJrQFf+/uF9UnBACn7VSfXBdUBXXNs11mN3QArcsZ1N03xAGyjziY2CgUAFHcf4UvKBQC4dTshlKoVA1XrTgQWDhUD+elpRGLuIQOhvLsDdKolA/qlIe8RDjEDY6TMvgPuOQP7YNqVwzI9AbAyRLBZCkUDJXG3wY+qRQPs07yFCCpNAEt+tvIRGk0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBImCMySWRuQBu6YmAmQ3BA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDOIQhxcmNnQDeULWxqYnBA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA/KJil8iNpQFRnpVdMhW5AQh3Og3wCckDMvNRcKbN0QNB0GqNUE3hAkxdplkHkekA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERrQM4hCHFyY21APWWIPVEic0A5Cx9LftN2QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA1uAwZnGNrQKPid1q/wnFAPWWIPVEic0Bfbopu1JJ4QKNAVK4X1HhAfL9GWSwjfEBqm+jnLwV/QIhnbN8XKoNASC6YL++Kg0DXVvYkG1OFQIiWWgnEsoZA14XkTsfbiECIxUgzcDuKQBfupiicA4xA17TSeHNkjEBVZyWy+QWQQFHezZV6vpBAB36KwD+SkUCY8nyQkKKRQOF0vVyx/pJAh5WB1ZVWk0Aq9/0o0lqUQCn3/SjSepVA3A1jNxinlkA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA3lC1samJwQOzIyX7kUXFAJVItydiSd0DsJqbSPGN4QCWwCR0xpH5AMGYzYRYygEAnRbOPTcqDQHYFT6uk6oNAHiQzvoRih0AK5vLm+/KHQJvqc389q4pAglH92hD7i0ATVn5zUrOOQP4XPpzJQ49AUxuR19RdkUB7+15lAG6RQPfqnvwbOpNABTL25Rqqk0BUFI/4VzqVQIVJ7fpwbpVA1CuGDa7+lkABOS2SjDqXQEq7bV6tlphAHhxYq9kCmUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDOIQhxcmNnQOJgFSPMRGtACRqGaTwicUCUuYxC6RJzQF9uim7UknVAtsKOc2yDeEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBxWoXuS4RsQDeULWxqYnBAdE+7zNVidUD+7sGlgpN5QDuqTwbuk35AnEidPRlagECv2aibOAKCQLqZWShx6oNA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkBImCMySWRuQOzQoK8iBW9AzLzUXCnzc0CyI164/EJ1QJMXaZZBJHpADTCoA8CTe0CxaCWBmbR9QAZHwiuMUoFAH+A40LjigUAkmH4W5OKEQKxbYkx744VAJMdsQJBriEBAPAaI0uuJQCT2Wmo89ItAbUKrLTQUjUCzHrlfaLyNQLa4zCtwTpBAC6ZBPnpqkEA20MNAxhKSQGjPMTq2apJAfeRyO9z2kkAa5pZI/LaUQB9G744YG5VANVswkD43lkCW1dbfF4OWQOdxlZ6Ew5dA8/7G21ODmEB2mvOTsIuZQIInJdF/S5pA08Pjj+yLm0A0PorfxdebQEpTy+Dr85xAT7MjJwhYnUDstEc0KBifQAHKiDVOpJ9AM8n2Lj78n0CvebwYRdKgQFnw9iFK4KBACAXvH2iYoUAZfHIsdcKhQCyPRh1zCqJApL3blY2MokDsGsInnuyiQMm1xGSjjqNArKY9MsnOo0CsFM8D1I6kQPO67CzfsqRAnp+4B+9QpUCzRmg3CpWlQMIpEAX6wqVAPojRoCJfpkAbtUIMHYmmQKY/4wwwF6dAMBO7pD0hp0AxgUx2SOGnQFULpHNTI6hA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD60UzrnGVsQI8BR/y9MnFAj18jUBZEeECReDjb0WN4QOWzJ1WutHxAAo985WAygEDyCIJUA+OBQAK+ag8Nu4NAvBBLB4X7hkDMxTPCjtOIQLw/OTExhIpAzPQh7DpcjEB2khkpqYSOQPcepO6GlI5A+yZJjJkOkUAgTfFtlc6RQFhQOYjVDpNAoGToguuSk0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + eg5Y0/EhYkAoFld2zuNlQD1liD1RInBAiTDsKtfyckCYcdKIFHN2QLbCjnNsA3pATDeK/nwje0C/jpFWQhqAQNMh6iQguoBAUm81kpkihECNdMocmLqEQLRyBHzsOohA7neZBuvSiEBuxeRzZDuMQIJYPUJC24xAm8uJGcZjj0DmhQdfzvOPQDrXMir93ZBAfmesgQy+kUBRWgX9LXKSQNuQnH1IvpNA0XH8EYQ2lEAYhqsMmhqVQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCwLijacuRqQBTpB48/A3JAk7mMQumSdEBPi4Bk7yN5QJMXaZZBpHtAqpfKr7J0f0A= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERuQN9iJOBzYnFArFID5xVDdkAaBZ21I4N4QG9Zobq7c35AR9Wu0glCgEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUAc6N63HmJpQGmAOafSAXNAO0xzspUCc0Cv8TOihQN7QDDbzeDqMnxAUkBHaO0ZgkA6JuTtThqCQGcsiZOwQoVA5iDro0QihkBeCwnC59qIQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBIOn3vtNFwQKPid1q/AnFASJhZQw3jd0CjQFSuFxR4QNbvpWLl831AsyP5wF4igEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCYvfARosNsQNeRyQ6NInNAuhz4ZT+SdUDX76Vi5TN6QIF3jJ9Xw35ACUkPnEqqgEDejIK6A/KCQGx22bjWQoVA3rtw5K96hkBjVVnnDduIQEC/P84Ck4pAkFv+jG8DjEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCwLijacuRqQKmavaDqInVA7Cam0jyjd0AEpwfsrXN7QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA4rUL3JUJxQEMdzoN8QnFAt8KOc2xDeUBfbopu1FJ5QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCaHOeqTqRtQMZtNYzMxW5A + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAmWGpEdaJuQEMdzoN8QnFAE4oR9pJidkAKeGK9lHN6QGneFfsq03pASP+pBUOCgUB4soMkDrKBQEgumC/vCoVAeOFxTro6hUCM8ZDWZ1OJQLykavUyg4lAtxsT2bOLi0Ag0jQSvxuOQLdKAQNgFI9AWlnsJgsSkUDXlMCYS1aRQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBImCMySWRuQDtMc7KVAnNA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCPAUf8vTJxQDitQvclQnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBML328ejFwQIkw7CrX8nJAwNQ9rGoyeECw8TOihQN7QA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAsECBNt2JvQEMdzoN8QnFABMaPA8rhdkBDe6rX1FN4QAQkbFci831AMTmqNEOEf0CW8lln6AGDQPxJH7etWoRA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBQLaQQlxJyQAZiQCMRQnJAUIuAZO8jeUAGwBx3aVN5QCGxSqYMOoBAck0JZXmqgUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERrQFrpTSZ7Y25ANbco5QvTdUDUtW4KbEJ3QDUVBTlk5HxA1BNLXsRTfkAuayZYiXqCQEyN9Bg1QoNAd7d2G4F6hUBMvOJC4QqGQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDiYBUjzERuQFAtpBCXEnJAxwSPFv6Sc0ByNqZBGoN3QB1ZkxuWA3hAyIqqRrLze0Adt29v7hR/QCtx+zJFAoFAjgqmYSMTg0C47CSvBwOFQEhdhlmbE4dAfxjLvnMLiEBIjHSDR5yKQH9HuegflItAD7gak7OkjUA5mpngl5SPQM4Zoge70pBAnORDBaKOkUCyL3UP8VaSQBz8Ohr4UpNAyES2EBdzk0AxEXwbHm+UQBHH9tw3z5RARya9HESLlUCg71TSY5eWQKRPrRiAi5dA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCwLijacuRqQBu6YmAmQ3BA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCmvpxNHCRnQI8BR/y9MnFAeiAWnryic0DlVUsBVqN1QNB0GqNUE3hADBeTeAS0fUAijW1JIgqAQIW6N2auYoJA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCEuil1aXFwQN9iJOBzYnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD1hHOUyCJpQBu6YmAmQ3BAooOBwRKidEBCe6rX1FN4QJBBgR6B0ntAMDmqNEOEf0AszgqszAGBQMJG15xt+oFAV/iMrhg6g0AmdKG5+RKFQE7XDN1P0oZAHVMh6DCriEDit7AYp9qKQLAzxSOIs4xA4uaeQlNjjkDbXUcm1OuOQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkAbumJgJkNwQOzIyX7kUXFAQh3Og3zCdUAbGD+0flR3QHFsQ7kWxXtAQnuq19TTfEDMlkWY4uqBQKFsw5WW8oFA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERrQNeRk/3Io2xA5VVLAVajdUBgbopu1FJ2QLbCjnNsw3pA5bMnVa60fEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkCO7m7sniJrQHzKEHuiRG1Ancs7e+cBckCUuYxC6RJzQL/UPaxqcndAtsKOc2yDeEA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkD1hHOUyKJnQBu6YmAmQ3BAeiAWnrzickBo3hX7KhN6QK/J9MUpdHpAYfUvI/cxgEBqRZ4ebEKBQIwfsiVDaoJAG0gQG28yhEBhJB5No9qEQNWa8BLnMohAWAOee9pyiEDpBx8UHCuLQAKhlbhIW4tAL6c6XqqDjkDaB3TjziGQQK7W7wEG1pBA8IpGtv+1kUAqxi+ZIaKSQH+zpKsrfpNAqt0mrndmlED/ypvAgUKVQCr1HcPNKpZAf+KS1dcGl0C5HXy4+fKXQPvR0mzz0phA0KBOiyqHmUASVaU/JGeaQCnYdxJV+5tAtSSzZGsTnED+pvMwjG+dQEBbSuWFj51AepYzyKc7n0CdhDrhwY+fQHPM9O3rOaBA+8K5r+GDoED+VpXu/segQCC7on73haFAiZj+VxeSoUBHkJ4jJXiiQBL9VOsXzKJABxwaLlBao0DSiND1Qq6jQCtdOpRgCKRA + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkDiYBUjzERuQI8BR/y9MnFA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUBImCMySWRuQNS+X4D+xG5AS41ZENNCd0AxOsR5l5N4QIeOyH4vBH1AOUtZbUFzfkDIzy657HGBQDom5O1OGoJALP341XgKhkDOBogppiKGQFcne9jEQohAYucrZf0qikA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCYE/Y0vCFwQIkw7CrX8nJA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD60UzrnGVsQKmavaDqInVAwG9ESXRjdkD/7sGlgpN5QK4tRKbik31AEtiEjhjSgECRaQJLacqCQKa4KMpv2oRAkZjwdBVThkBgCwnC59qIQJHH3p7B24lAizWLxDMTi0C88WChDRSMQB4WLwCLG49AgNosJEMukECx7JPTAbKRQMrK/sFuMpJAxwHV1CfOkkDg3z/DlE6TQEcZzOl9kpRAPQkwv9BOlUDHMMP+01aWQIf5AV38UpdAJFqz+g9XmEDR6dP6J1eZQKBJ85ErI5pA5v4U/E1zmkBRy9oGVS+cQMuCedWO/5xA0eLRG6vznUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - mhWg13nAckB4C2JMbsFyQEhgkIxTwnJA5i46MKnCckCf4mT9I8NyQCz3f7Q7w3JAhLTtXXPDckDtLDJ3w8RyQO7Vq4taxXJAf5C0dUPSckAIj7dAAdNyQCeCII9J03JAldUuXnnTckBkijNVzt9yQESn1r634HJAjUa6rU3hckDGjpm7T+JyQKCVTKKP4nJA8vY3cSPjckAUh2RISuNyQE4o/hmR8XJA+6TNosvxckDBgxJkuPNyQFWI5gWi9HJAFPFKZcP/ckD0kperRQBzQFFF53/6AHNAKn5kfk0Bc0AEScgPiwFzQE5sJ27PAnNAITFLe/oDc0DoFmcACRJzQMDoJyyFEnNA8j0bLbwSc0B1Rfcr+RNzQMhPuwh6H3NAhobwpaEgc0CQ74/zOCFzQMTogKJhIXNANYU2xMkic0CSqQ6BDyNzQCMiFIXPJHNACF6fi0gxc0CKRRF4JDJzQAYE2gykM3NAn6VxPPozc0A0XbVNNzRzQHyWzHXeNHNA9ZZSz+NAc0BO6msUeEFzQKprgaEmQnNArIrT4XlEc0AorFLfh1FzQOJvz6dDU3NA+IcisaNTc0BeapWud1RzQHI3EtWFVHNAiu9de4pgc0A5An6cN2NzQOfT1VDRY3NAPFzbbvxxc0DWtYJIUHJzQMrljnxlcnNAd+sa17h0c0AXzlX7THVzQHa8UrV4gHNAFCAEUqWAc0BJsbAzDIFzQEXUg4MJgnNAxFnhAV2Cc0D9eljzV4VzQIhDi4CGkHNATm2QukySc0CGzoviYpRzQJSSKyL4lHNAhj1Es7igc0CrnVRYW6JzQCjU2T/monNA6AHLOAWlc0CaVe2mybBzQD63z30zsXNAtE+T0nyxc0A1+Wz687JzQGV2WNy2s3NA4HTz4Q20c0CgH2yDZMBzQCLigI73wHNAJn2deG7Bc0AEvJgH0MJzQNLdVb0mw3NARCekitfRc0Cdpo95M9NzQArFVwz203NA8JTPN+LUc0CsZzQiOOFzQONplTFl4XNAcOOneA3jc0DiJMOcNvRzQCL04cZ4AXRAtvD5t6UBdEAPmOM3iRF0QGVaNgYbEnRA+5asCk0TdEB/6dR8SSB0QBCKGHS4IXRAyitg3lMwdEAdoCjCuzJ0QHczMk7XMnRAYNWqa3hDdED3YMQcc090QCB/RTL3VHRAIr2JM41VdEC2PYisuGB0QFJ/F7wIYnRAVBj/Hk9kdEBN41i7IXB0QJ46oMHJcHRACE7t+kBxdEC8ZKMlOnN0QD56ASiidHRAlACO/DZ1dEDm8pom+YB0QOrYY91OgXRA0GcafLGBdECagZGSkIJ0QNCi9PQVkHRApLh4ps6gdECPLjWxNqF0QPBLS/W4onRANb5mkNCidEBCS5oMD6N0QFKH2mAJsHRAbqpeWnjBdEBnjUbKD8N0QILOZgwixHRAZjlXBrjEdECQBld2/M50QNbk4btf0nRAXpZAi+HTdEC6W2/jy9R0QITGd6e34HRArklvNSLhdECYAjGUuOF0QL4YisEa4nRAFBt5oU7ldECOZuhijPN0QN4+R4ejAHVASi9JGGQBdUDUG8+aXAJ1QGsZEYSXA3VAqEnYDiMUdUB0kHM9UCJ1QBGTetacInVAKn6Vu8s1dUAOZpPjs0F1QNxNrzr4T3VAiuKiQk1UdUDaV20Md1V1QKoBzOwMYHVAc3OL3KJgdUB65ZWYN2F1QC4Fqk70YXVA+R1wE9JidUBotP3V+XF1QOX2ATCNdHVAYuL6pXiBdUBfjFwprYF1QHDcTvilg3VAisQZY5uEdUBY5FKUPZh1QN6XROWZnXVAjH5UXdufdUA10qoMlKB1QNNeRre5oXVAhnhMmu6idUBJpWSV6LJ1QGqKv9h4s3VA5RTzIWPBdUA6T9Fq98F1QAryyDpSw3VAZleSCjjNdUDgU+Sc4991QN4fhJsH4nVAWkCMUUgCdkBO7ScQ0QN2QJNquIdMFHZAPdz9RQsWdkB08+d1iSJ2QFShKGKQJHZASrMkmx8xdkBlby5KnTR2QBjwV7gdQXZARMvD33hEdkBw/fuM+052QBJYTKnKUHZAsqzYthBRdkCmkLdhzVR2QM4kX7ckYXZA8u4K7MtidkBw/NJ822R2QJDGEG5pgnZAOBcQWNaCdkASGbYykYN2QN0vBlW2sHZA+OIh7sGydkAad13EDLR2QOR+Ful2wHZAfcxDQv7CdkCgVMVMGcR2QLRDgEbOznZAZE+r6X3QdkC8qY3NvtB2QGiJvNeP83ZAf2ygeTQCd0Ds6xadUA13QP+ow2UBEndAbuVyl6kSd0BmmmH68hd3QJ5rtcsHGHdA+LZIvk0dd0BKDZKnDSJ3QOBG09VzIndAyF93UoAxd0DC4JLypjN3QNro/8UMNXdAJfzI2JxBd0CQuUDAGkV3QOXUy+xKUXdA7c4AwZJRd0BmRvzlKVV3QAcomaGOYXdAVm5oRTtjd0DEDuv9ZWN3QPySZAAnb3dA03kZidxwd0Dr0vqAhnF3QAXtOAF5gndA1j/bJ3uDd0BAemYWCZJ3QCE6GApMlHdACpr0upu0d0BQc1QB4tB3QMqBR8Rb0ndA1DUyYe7wd0D12KYLUfJ3QA5CdXi68ndAAmDy2m0ieEAZyTlMDEJ4QK7Cnu4PRHhAvh4gkXlFeECyYMn/ylF4QIaHcb2UUnhA6IrZwIhVeEBoHOP97Vd4QOFD/qc0XXhAsKYn90tdeEB4zowt+WB4QAz/A8m1YXhAUiOMyJBieEDMF9e9s2J4QOqUI1DuZ3hANFHst7FxeEB1rkSGunN4QLYz0cY3dHhA5CYQU0V0eECy+2z0aHR4QCTDTTmLdHhAglvEwbd0eEBMYsPE8XR4QGVGyYSngXhA5ouqTHeEeEA4Rho+mYR4QPr47rDBhHhA0s7IHpaReEDwWF12ppR4QIbmbFeopHhA9JDss7ikeECLVOd/eKt4QJtLPKPKwHhAsicQ4bbUeEBWpTpGwvN4QFrY8YkC9HhAF6r/RY31eEB6JwfemAV5QDDxFgCKQnlAukElCvlCeUD+9jtXzFR5QOrFsR7nYHlAlrScOq9yeUCaSFCbwLJ5QP3zaqDWu3lAgkDzy0HUeUCAHTJjzdV5QOxvyFxP5HlAydiSQAw1ekCG+ZlhGkV6QKL3XjEtUHpAx9nXjyhVekADyPELinJ6QGRSf5vtrXpAfm9adgy2ekCCUD8MG8Z6QBOLmbjW03pAlObP7zjjekCwrJKGAex6QIyHcO017npAlCv5GCsOe0AUX2X5SxV7QJSHiCJbJXtA3KsSBVQwe0AZy4//LDJ7QNQdoxdjQHtA2d4yqUJQe0A6S2uMZYJ7QMYm8l4thXtANbfloOqQe0CUgTp9I5V7QGyjfJcvpXtAJlc5NHnGe0CKkTJZwNF7QKIAayfC4XtAW18zNJfxe0BRCSPpi/V7QIwSDnfaAXxAT1zU3vgBfEB9Um4zmQV8QMpmGLc8C3xAOLjHv4gRfEAIDgNP0BF8QPaE6NBJE3xAdtZg7uQhfEByBhNTzUF8QCVpvuXbUXxANjqvOA1ifEA0gsOXsm98QIAHN7MqcXxAt6BwNcOyfEBVxCqhV+J8QETBVeMV8nxAsGp4n1XyfEDOlrLQAAJ9QF/eSodLAn1AutDBDEUSfUBSyRNlPiJ9QL7MRDd/In1AehBXp6ExfUAkr4UZS1Z9QFuUg0f8YH1AB27hJ2SzfUDeL0pM2rN9QLDbScps4H1A/RZkV5H1fUDRxP4qnAV+QGArFZqOVX5AnCLoDCZufkD0ZG+55JB+QJZbxMN6on5A0rhyL9DffkBt08491O9+QM7ljCJS9H5AoKbE+Mf6fkDgFGbMIAB/QFKl+gS4cX9AGGxeU7OBf0BN8LZ/pIN/QGu+8g9jkX9A0HUwtF6hf0BKt4ZEVbF/QC574Pzf4n9AukHHgFIigEBysl1XVSaAQB6N3JrtKYBAdGkaVkgqgEDT70BhJy6AQPI75e5LLoBAiWRWCFEygEBuE9qnAzmAQIrO/NihOoBAYJDJHyw8gEDiW7qz1j6AQAgT/UUDQYBAmlABCPlIgEBRzDLw5lCAQASucWUUUYBAVTWWTOdYgEBQNlTeDlmAQIgNoeofWYBA/oT3ygxfgEBU63WnDmGAQFh870Mpb4BAUounVwdxgEA4BpuJhnGAQDhaoKcJdYBAPISk84p1gED0WSJ6/IqAQHJwSBAej4BAug+KOm2RgECuYWjDGpSAQJHaNljTmYBAgpvJAIepgEBkrAl0UsGAQCBluo4PxoBASIVkdVPJgEAoejsRLtGAQISG765M0YBAlEqD9knZgEAoq8tlROGAQPm1dK716IBA9hT/UEXpgED2If2jS++AQOshaKw884BAwqhz2z//gEC2GLX+PgeBQFw+0XldDoFAUryEVj0PgUBwzoqCNB+BQKRFfAGgH4FACm6d0DQngUAa0ZWv2y6BQEpEUuZ5MYFAiAQo/bsxgUA3B6k8KDSBQONUMZ/TNIFARF3RB/RFgUAItAip90mBQJuYJsv/TYFAgbjAultYgUBUrsmV53aBQNBn64OWeYFAtAPVMTx8gUDAZthKy4aBQBQ/ft1Vj4FA16xdpFaXgUAK6BfrQpyBQBBUGsXmoYFAe521PG6ogUD6M5M9Sq+BQHy2jwAFsoFAq6u0eUq3gUCibUR9fL6BQCrPzuKCwoFAiFDSWyrMgUDmvCVV186BQMBFNKeB0YFAu6ta3CfUgUBgdQaRhfGBQJ9AHA0y9IFAAwcbneD2gUAG9M+4hPmBQLrgO6MBCYJAbsD4atgYgkCcZ+zM1iCCQGCNHJjSKIJAnZsUMKIpgkDkOvtepS2CQH+OYnWkMIJAhVUVNtEwgkDKxZFjmjGCQAqAGxavMYJARp3vWZ81gkAQjUkJ5zmCQMrF4BrqPYJAd2jedcBNgkCoWyeAwlGCQJjYinLrboJAkolxQUOJgkB1bXD0Q5GCQIb3jIc8mYJA1r2MGFWZgkBGUWlTDqGCQMBjD3I7oYJAzwtrxhKpgkCkaw1uNKmCQDv+3nIIsYJAGvsY0afVgkAwrXuVq9mCQGxnKMOt+YJAaDQoXnkRg0ApPWBjehmDQKA/4hdzIYNAnk3gPnIpg0CUCVCXaTGDQAPsZUtsOYNAxrLaeJT4g0D23b6PzRmEQFQm6XzQHYRAQljYccQhhECkCpuy2SGEQEpZenLIJYRAqTuJ4P5ohEAw/swM/nCEQIK6GRz4eIRA25giIWrZhECCApvhaeGEQOZxo7hi6YRAFuRP7XzphEA63WSdNvGEQCu5BX1h8YRAWPhQaTb5hEDak3UXWfmEQDsrrC6gYYVAXt+exaBphUDZ+ZZpmXGFQFtEMxG0c4VA48bB+5p5hUBE2vZXj4GFQBRNMpeu/oVAxsuJD7MChkAu5DXfKLmGQEgfPNUowYZABlT4LZEph0BYDnw7kTGHQFrf14OKOYdAF6uMT1tBh0BYdRBZhkGHQGf85YPHsYdAigFIy8e5h0B+pQDHwcGHQPdOC0fGyYdAtaousELSh0AK+MlhRdaHQA== + KBZXds7jZUBML328ejFwQFAtpBCXEnJAwNQ9rGoyeEBQi4Bk7yN5QMAyGgDDQ39AqHQu3KMagEBgSPupjSqDQGLHDtQbG4RAfpm3lOW6hkD2p7IPcyOIQA== - + - F06LRNnU9USyC4NE6tSQRVtxoUW17sVIKjo1RCxTdURHwLNEQ+75RuhmrETVCVRHBPRARDKx60SpxKVEBhN2RMaSSUWEbHlE8mOTRFpWM0UUUj5EQ6ZURcukXETX6f1EYCvCRGk5qkRonQZFEvqLRMwZnkQ+/6VEYTkGR5R3xUQiyfxFZRbwRR/je0X01qJEJswCRXjB1UZs14VE6oF9RNT7V0TXxH5FcOzIRCw3bUQcCpdE9pxSRFf7jUQXz3dEbc+5RFrAd0XTxk5ExEYJRsuvTUROmYNECDFvReF0mUSsrHlEcWWbRHSCqkQazVZEiTAyR526ckTUTKhEDUV9RFAKBkUHhPVGuLuaRFdGnUQvrJ5FLwCIRLXkUkTV2x5FbmUtR1/690QN/ING0WkCRveru0X8WUNG79YJRRBhdUShLmNEg1pFRKkUl0RZQF1FF4EERYHzVkT2daxEMts2REe8XEUt5P1Fhv0DRT7GoUSMhqpEGviNRfCX/kVcNG5Ew1JpREDfEEWLzYhGpSHyRD940ESM2s5EPw1WRaC8mETiy+1Ezia5RLtMjETMILdEQ6qQRJXOP0TKZMtENNvaRHZdi0WZskxFdQDsRIP3mEWSC3dEN0EmRwFNPEXZe6xE2fmWROQj8URUd8NF0R9qRP/9v0Q4Db5FyHzBRGzyZUSlQ8RE9HDmRLbtG0XUY8lEFvX5RB/3a0QLn3FEBwnLRN95rEQ16XhEW7qWRIW2EEUUhlhE33KOROJW6kRRYW9Ew4O6RFIMwkXi4NFEMW0JRXyhj0XsPF1Ek70PRb5NZkSvBsdEbz8sRaX9gkTKOUVEyMOiRDYGDEVh2ZBEU9p6RK86CEXIEFREwAx8REH0RkT9NghGHLDcRLHJiEXltS9FiFLcRDJzbUXWfeREVM1YRBadZEQv66hEzB6DRLGnukRszGlEPHmgRFfz9kR7mcpEf5mERH+NsUTUzCVF6i6QRToZw0QY24JEp2GhRBuLnEQROdtFMIvJRmtJpEQyC59F/hV9RWwJbEQ4P8FE235VRZ1HNkYMBXlEgEATRR2MCEXYjWhE89eWRN48i0VHzIBEy1YuRUmjhkW8GnRE7smHRDuxX0QrDyNFY+CDRPCMVUS3AvtEN9vlREzXjkcjDlhGhBrzRpxrV0UQEU9FqdcURVXOKUWzXqdEIbzvRK8qdESZ/tJHwbTIRs8Rq0b1nIRF4D6SRpKuz0TQlxtFzgE8RQmc/UQ6vZFFtiRmRFtpQEShufFEmtOxRDhDxUQIP3NEDN2eRF27oUTZj15ED/psRGg1h0Qbj3tEfiz5RD9w/ET185REuoAaRmejv0X9UqlGXOjPREgSM0YzbwVFUnshRdbjBEXgjSRF3KKoRP0ISkQ3p3lEw2NjRIObYkTwkcJEzmi/RGhVFUarNTpJ/NWrRTgqXkRjYBxFvxoNRVHQQ0g1CJRE+dPxRBHKnUZoWmNE0P0+RJHHZ0Q4k8NEJbOBRdngLUXT0TFF/JOuRXQjtET622tELOODRFmmTUUVFlVE3klvRa8DPkWqcU5ExtDpRRQ370Rlx8VE+uC0RxDJz0bMrAtFBo4ZRbYtwURbM4lEy4q3RdzIvURkU5xE6SaNRIlmkkRd86hE/FSnRCj/FkZGzCVFcB9fR4/9iETb251FFzk2Rs7We0SnHFNEvGeYRJ0gXkW1XIhE9jeZRO3KgEWJHwNF6AigRdlYiEbFElhGr77jROg0q0UxXG1EEC2CRIDLZkVtymxEROhwRJr+zEVUpMZETFvpRDuyj0ShjIBEmc/GRLZu1kcwNv5E4WbiRjv+8kR+GbhGR6d6RTN9j0QI72REPLWmRCJJkUTfk1hEYevcRBYTpEQ+o+FEDIXGRDYnZEQN6QxF2LygRJNil0QncYVENOuDRIi1ZUR513JEQ2HNRFvki0RbWKtFP8DeRP9bakQ9EShGQ1mERScMJUWWLEdE8kJqRcMV1UQwyGZE8jd/RnBJq0R8DwBGvL7mRGLLR0VCsFpE14LORMnUtkSnpqpE/5jwRJUDWUUhz3NGQuykRCbUrUW8bJ5EpW90RJt9hURsowBFVarFRDRNPkWVGFtE7MLDRI5jdkToUmtF7z06Red42EQzH5hEWDmYRAl5Z0gx7K9EAYzXRz/JlUQvX2tHxJNIRlrUg0XWDmxErJ6ERNyxyUR5nZFERQojRi69LkWyr8tEQeD0RJUgBkY+cFNEqJO+RKT33UTtAQNF5kiqRMRoykSprItEpFudRkbv6EViuZVEOZffRCwok0Q2GZJE2mBeRJZqVUReD4pFFIFwRCJugUR4GBVFpZgXRZpEiEXyk2pEec5nRFA1j0TGQVtE8VCPRhghM0YIU6NFk0krRTSo1EU10phFdBXnRGuKcERLpdBE/YJARmMnbEUGF0BF8hViRzcaz0a+nZFEGm6+RBw4k0WFW2hFKotcRWJMv0VUvyxFcY6URSFmAEVmCHBEdzHkR9EmY0ebtdZGAuYNRUsNtUU3AOJFAMrMRPxuVUWsJANFHrf2RCKaiUTJS5JECsvJR3GLRketgfNGyCoLRtRZFkXOq4BEPW2KRAcO30bHLlVGvx9SRXz2IEUcGeRETqWtRX+o7USfhcVEt2YSR6GGhUZ28RdGJcOGRPgKgkWxei1FfgXERMBDhETN1vlGsbFTRunBDkbR/W9EbW1XRUfrgERSsGpEqW9aRC2vukQnQFJEpY8rRn8IuEUaqVhFVwiWRMLTs0SATN9FUjqQRWQxKUUqt3dEB7zERFn+jEQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - YDkTAHjAckBg5Qm9B8FyQHR02jNwwXJA9G6PiqnCckDMpr+53sJyQP/gleQ7w3JAXi9q9qDDckBI8VvrxMRyQAKZ61tD0nJAWMCjsQDTckBQrnvgSdNyQPT32+PR33JAcyo9irfgckDGLvHIUOJyQNPoGEuO4nJABEpofEvjckCCDGduyvFyQCwnF86183JA8lJeTKD0ckDWPazYw/9yQI7/PkJEAHNADI0cZ/gAc0BjCCSgTgFzQGSOIqGOAXNAuipxvPoDc0BlaHfmDBJzQCaj8f2EEnNArIpfUbwSc0B0qa7B+RNzQNxjN7lPFHNAo8bLyHgfc0BqMJJqoiBzQF5eFEA5IXNAw6Wo0pEic0ANlpvRNyRzQJ3h573PJHNA8KygZEcxc0C0uNgqVzFzQLan6xvkQHNAuYbnvndBc0AETo+QKEJzQHDlUoV6RHNAIdcSxhBSc0AArAWdo1NzQPkmX8F3VHNA0EwD5YdUc0ATS2CBjGBzQDJGfJc6Y3NANjwGzPxxc0DaMcKsT3JzQNxNiWpMdXNAykdd1niAc0DdSp7CpIBzQHx0JlUNgXNANhM2dwmCc0D1RBtmXIJzQD2QbnSHkHNAPujAI02Sc0BXx1+UYpRzQCI6RZ33lHNAxqRV2YyVc0AWE33buKBzQGuHV3RNoXNAdL7YRVuic0BISvpt5qJzQKAUpi57o3NAnFiFPgSlc0CSWyZkyLBzQFjkrO23s3NAbqP8Kg20c0DUhLcx+cBzQIJFHUw7wnNACWcuzdDCc0B5PPNeJsNzQChL7/rW0XNANlEQ4ffTc0CZuwDa4tRzQHAsksg44XNA/Mtm+7jyc0BU+eZgN/RzQHKEHkKP9HNAe1RlYuQAdECIDZq+eAF0QCysoRzkA3RApE0t5hkSdEAMr3N8TRN0QFkXHvV3FHRAkrE2aUkgdEDD26WItyF0QLdYcvW5JHRAG/nNzlEwdEAL+pDsUUB0QN/RAsQ9UnRAYC6GpfZUdEAcqeVojFV0QCiT67m4YHRAXjYA0ghidEC+ZpJHUGR0QIorgvghcHRArmyN+2FwdEA24lgiQXF0QDyPoKc5c3RAV+kbrzZ1dEClWlKe+YB0QH4danROgXRAAijHqxaQdECI0n69aJB0QLRlkv3QoHRAbndlPTihdEBYKVjXt6J0QMYiPafPonRAikxt3RCjdECw5K6pCrB0QNCWsHn8snRAcunbyeLAdEAFBQqKd8F0QEc/u53rwXRASmVFaxDDdEDcFqVEIcR0QG6zgk+4xHRAkEP0iMvNdEAcVP9y+850QBf5mcJf0nRAKBI6WzrTdECTh7Ib4dN0QApOcyXP1HRAuA2J9rfgdEDOyC3ht+F0QPvPrBFO5XRAKlnhT43zdED+V+X+owB1QFUQ8dTOAHVApEbEFWQBdUDOw2VnXAJ1QMwLjlSYA3VA2LzshIsKdUBOO+/oIxR1QCgCfJG6GHVAfGuh354idUBy9aSAzDV1QAYJqeLaRXVAZ7LREP9PdUA4jAIOgVF1QEp1DjdOVHVA/F3/3XZVdUDYBcuEDWB1QIri/TQ6YXVAQE+0dnVydUCqWvXdjXR1QIJwpYN4gXVAePSyLq6BdUCDmZH3poN1QKp9XqWbhHVAwpJ2sbuRdUBFkLVKPJN1QBA/JgA+mHVARHK8a5eddUBUpEr0kaB1QLi+em0ioXVA4HE0BLihdUAxNHmbTaN1QLKenrLosnVAHMlnkjmzdUA+UZAGfLN1QPNjpqbOwHVAkJakIvnBdUCMlcNoUsN1QEZJEDA2zXVAQuIhS83TdUBitMte5N91QKQOeTcI4nVAemLC4EgCdkDqloa60AN2QIIxSEFWEnZAMkgozU4UdkA4ocBCDBZ2QJlVfLGHInZAqH2kopAkdkDK8pS6HzF2QNGquFglM3ZAsT6PM5s0dkC2+ETwHEF2QKtfiPF5RHZA8nm2ORFRdkDi5yEGh1R2QDIpM6nNVHZAPJDlG8xidkCTM2Ci2mR2QM4p6hd9bXZAqu/TB2iCdkCcJ+cYkYN2QClG2p8ok3ZAPlOiwrewdkBmw/rGw7J2QCRzds4NtHZA/JCuyL3AdkCUQ6/7/cJ2QCQFBeYZxHZAbFn1Os/OdkBDoFrW8OF2QHonwOSR83ZA7IKhDzMCd0BdiryjUA13QNrtZ2MBEndArJCVNaoSd0A8tgLy8Bd3QLSicgsGGHdA9rLXpE4dd0Dh2Vw8DiJ3QLSJXh9zIndA+zvDGg01d0A2XxjWnEF3QNCaQSsbRXdAETBhmUtRd0D9Hw4Fk1F3QDF8BbkrVXdAFDvAOZFhd0AEF0qSOmN3QCsJqiRqY3dAWvh1TSdvd0DiwVH3PHF3QHYwCVeHcXdAUrTzZnmCd0De58DzeoN3QDDSlE8JkndAOejNbQaud0AMIOFFmrR3QJhMHCbk0HdA9DxMfIrWd0BMKrUq19p3QKj3ePLq8HdAUFblPE/yd0DgOtLvThV4QCRJW9BtInhAVgI+1oojeECnuW5VpiR4QObmBxsNQnhAosipC3pFeEAU+t+vy1F4QD1LJBuVUnhAHCK4sIZVeEDgywKd7ld4QMuhNkE0XXhAvuBaNkxdeECcVFLO+WB4QNqvBZ+3YXhAm8119Y9ieEBsMIlKtmJ4QHDEAWjUanhAE2DCebpzeEAjVrmX6nN4QPMco0b9c3hAHCFanV10eEAIxkGxi3R4QJkgafyvdHhArtrBd890eEDcuyedInV4QKCgiNi+e3hAmkLfTzmBeEBaNP4ipIF4QPqlh+uZhHhAHAwBA5iReECe6/0WqJR4QNdpaciupHhAg2svu8zAeEBGvMbh9MF4QFRJSPcHxXhAyiKGfrfUeEAzWhWhwvN4QPcGe5EC9HhAcmdB0Yz1eEBe6K1RmQV5QJz5sFb+I3lAahVPsrQoeUDqBZ0/DCx5QNplom76QnlACA2fbOVQeUAXryd2zFR5QA7earbZZHlApJ2kga9yeUAs+UOBRHN5QH0KN0PAsnlAfo1lWs/CeUChtGE1Q9R5QPJkSfHN1XlAVhcbq8LieUCuCJ6mUeR5QKwx7PQa6HlAnjrrFPsFekDdIH6jOSN6QP4c7mwMNXpASSdIhhpFekBmQFrVLlB6QEa32aYpVXpAqOd3ZjdtekBE+UOGj3J6QK32xL/xo3pAqdOANuytekCCpyslDrZ6QDZpUWAtw3pAXsoByBnGekByz6EJQM56QDazLj555HpArjf5pgXsekCyUvi1Ne56QNgTjVwM9HpAZPZXxXUDe0Clqf65KA57QMLPaD7BEHtAkh+Ry0wVe0BE8O5XWiV7QP6E1ghUMHtAptCCDSwye0Cq/84rY0B7QNqsAs1CUHtAJLTUslJge0CQyWxRL4t7QEqtpJXskHtAWbBD/iOVe0CqIEXjesZ7QDI88B2M9XtArrOGjdkBfEBybd4DmAV8QC41P0VAC3xA+CapVIsRfEAZCINp0hF8QJr37JbNQXxASL3i8tpRfEBf9NwUDmJ8QMB7OWsocXxA911i9r2yfED4Dhl+zdV8QAJNqOlX4nxAHPxsiRTyfEABpBZ3VfJ8QMeUpXMAAn1AZIp80ksCfUA4dAQ2RhJ9QLz2g1ROE31AjRbbbz4ifUBq4iMzoDF9QFRhCNjUMn1A3u3FL2tRfUBE4GAR9Fh9QD5JSnylW31AS33e6WGzfUCMj14bL8N9QPupBxVq4H1A+FD2GdvifUBk1RD0jvV9QOimlmZnC35AFivnAIxVfkC+5+G9k2p+QDjAegmA8n5AmKQYcsb6fkA3JgTszgJ/QL2ICSO5cX9Ac1m88rGBf0Bw8RGbpYN/QMKvCQtjkX9A1O8xBKeRf0DBfcVVXaF/QLJ+0XJVsX9AnsoLflIigECsdvtDViaAQOepwNVIKoBAXLTxNykugEAI+K5iTC6AQG0afRZQMoBAkrWrNPk4gEC4wlGE2D6AQGRjljr2SIBAsG26OuhQgEA5ef4nFFGAQASA9T3mWIBAyoJ+kQ5ZgEDOpOCO4WCAQIbVJvwob4BAEJCVHQRxgED6gp7ThnGAQBQIX2+JdYBALtd7TR6PgECaq0O6bJGAQFWkZ2YalIBAniNISGqZgEBikNeBiamAQAYGrrsUr4BA2b1GeznBgEAwMECBUsGAQGcLHo9TyYBATJENdEzRgECc1T1FYNGAQEBtbFFK2YBAatftMEThgED7N8ynVOGAQOrsnvX36IBANGjJgUvvgEAbGh6FPfOAQM7SrN8//4BAwcQGZz8HgUCiTx9QXQ6BQGbFHxQ9D4FAYAcIRTQfgUB9pGDLoR+BQIjXD2Y2J4FAzkN4+NougUCBzXarezGBQKn5tK27MYFAJ8+PqCU0gUCZgKpELD+BQIpirCX0RYFADkFDnvdJgUCdnnmh/U2BQCztrTtcWIFAhOVLLx2EgUBudwqXVY+BQFr3svXnoYFAHnGBP26ogUCAGIMRS6+BQP4B+KlqsIFAvBwOZX6+gUBaNisGKsyBQNxV4wnXzoFAotJEvIHRgUBwIGSmf9OBQABo4nEn1IFAvbLQW4DZgUCS4pImhfGBQMlEvA4z9IFANu18r972gUCSfPNtAwmCQApXe0vYGIJAwDvd+dYggkAKVVEF0iiCQGE2bSaiKYJA/meaHaUtgkAVt8eamDGCQCQX/SCrMYJAbJmhx6M1gkAQoPfO5zmCQGAd/PfrPYJAERF4V8BNgkCyNUuFxFGCQKDhA2ZDiYJAsS/hjEORgkCBI2fdBpaCQCasyfAWmYJAQESZbzyZgkDeJiKFDqGCQMMEhjM7oYJAGlJ85gypgkCQHZMNNqmCQGvziyUIsYJAxu2agqjVgkCiUM72qtmCQBxvIEet+YJAkDrtmnkRg0CjKew2ehmDQIjxeopyIYNAGDWExXEpg0BwVPE5ajGDQJBOV4HmgYNA0iJ8Ks0ZhEAqbdTv0B2EQEKUybnOIYRA2qIntc0lhEBL1wnL/2iEQCbxStf9cIRASi7K+/d4hECrkk7pi6KEQGpdgUuPpoRA99TMZGrZhEDKwkBxauGEQFJQqM5i6YRALOZGWTXxhEAJXzjuYvGEQMdZ8UUy+YRACqgv/lv5hEBiDdqJoGGFQEAZPTagaYVA8PgaophxhUBoxfzgtHOFQE3G6YudeYVAgDl2xpGBhUBekKgNrv6FQGZuNLCuAoZAOvJY7yW5hkDq/+RGJcGGQL+ZxF+RKYdAZhQkyJExh0AoI/28iDmHQMqh9gaKQYdA7ry8ycexh0AK78WkyLmHQB39Koa/wYdAbDXAs8LJh0AuKD11QdKHQGF7/LBE1odAiiZR0fTRiEA= + KBZXds7jZUCAI9DqN6RuQNeRyQ6NInNA - + - 0guBROFLZUSpV0NFPA+oRUrrxURbARZJuSudRC/BkEQcQQBHgge0RPQAkkdf0/hEzGKiREvgdEXYRjFF3sy0RaMIikVDyL9Eb2D2RBln0kThM3tExZrBRBvMjUS58M9EFfsRR3VamEQy8lZGurIeRgFFuEXpRppEYqeERCVe4USATuNGKfvDRNJJhETDZF5F3SEJRa8UokQF/yJF0labRccdmkRrxwdGHy6uRHDlhUWdI4NElf+fRPoai0RAPhBFh8p/R6mnlUQkpwpFGoQHR7riwUQ54AtFux3PReABa0TgP1RFAnY+R9OFGkVbdoNGOEZmRMc0HUaMDZFEYIWqRX4nSkbfErFE84xGRa78o0T6xU9FUiojRXxc9USWqItEt5RyRcaPA0YeiydF9U6dRKNakUX3ohhG43SERIfMK0UuqYVEFNqQRBOleUYCgJREONgaReAHZUUxq6pEan3eRJ4EDkU0QYJEr8+HRPudl0TreJBEQRLPREDTHkXn98ZFdfVnRa3SvERaeLJFzf6MRFBjQUf00FlFmB3KRLBAX0WDIO1FKe6iRdlYqURQPMZEiVurRCT3jUQ7hKpEw2QLRXE3LEVCra5E2av8RMdLEUUybpBERQDIREcPk0TKBV9FtZ+jRLA80kRedpFEJBqORM7/yERQuuJEYmSmRLh9FEU9gJJEh6G7RTr6wUTh4pNE5zQkRXgkjUWyrbdEN6yORH6AB0XbcphEmv6BRCz7WkXploNEjADHRGxA10TNH7dE2nQYRamjw0RIWCdFNcKlRF24SkZj5hRFGjfXRXOrOEXEbepEnhaDREeTxESiC+5FAKMPRajjpUSegpxEv2jJRBCyhER45v1ELfpTRE62+US/hplEHxwTRRaJ3kSiD8REPeS5RIxTikRc7hJFHcOERbZ/rkSfJ4hEbZW5RELgjUQ2L6hEXdrsRWGO4Ea+GnBEireuRJVrwkVc+G1F4sBdRXuzckRCeoJGeQGCRRUQVEXIKGpE+CvfRJpLiUWzRoRENrfZRKdA+ES97m1FCcx5RBaQnUTXxoFEY5BkRba9xkQsYBVFc30wRVovi0fzwI9Geuf1RqLoM0VP48hFNeUbRUSOQUXecM1ELWTxRykb2kax2c5G5lSbRU38iUYFFqJE6d/yRBuELkX4Q61E6KSgRf20q0TY9sdEntrSRF9SnUSLObNELlrFROZZlEQ8NJdE0jKbRJBMhUQok5VEdcT0RHw/lUTxS3VF9QubRCRacETcj7JEDpMwRlwL00U2EcpGAPAjRYA9ZEYVjtFEr6QLRW4nHUX2rUdFtPvKRLLifkQH/85E7RX7RBmMzUT00LxEnAdtRZQkRkmb7KBFcbjYRIp2x0Rz/4xEYlGLREX3K0Uwck9Iu+C4RAzcm0YDU31EJaq6RItxlUR8EYREM39HRcOOv0Rb1bBFXDfFRf6JpERVfn9EKy2TRECDtES+AadEKf56RP0RtkXLDrhEkC53RT3OxkTv4jlF0jSEROgvBUY0mtRECIbmRHn730ThTbVEsNyNROBOl0ROd81HydPHRi262kTMKhxFMRfORFpYjUSqqIlE4UCnRAuOqkUM94lE2/7TRC6HfkSPIYVEpFomRWP56EQyYvZEIGOjRORnw0Q6nIJEpHY5RvVMYEWp+YFHLQu8RBmfpUUQgEpGs42bRBYKqkQhXMxEBQARRe3ft0RveKBGhEdaRpnYZkU3WixFLOqHREDEa0UkUvBFkZDmRHWshkS7DrREjQx+RCbhfUQ3WvlHQawlRUsV/EaxqzVF0ojGRrBxlkWzI5lEJSLdRE/Il0TjfrZEyNi4RFojhUT0AohEWU6aROGloUS52qlEZnaDRBcE+0TMxnJEFnCtRO3HpEQ7FZVE43oKRREOnUTVAW9Fp+SVRIzHekS99FhGyK9mRIi4VkWuClRFQtvURI2jnEQTbiBHpMO0RPj2a0ZkqChFCti7RFlM7kSrlbBE2nlMRQNCl0b80q9EVrO9RSXArUSB5vNEV+TyRGOWlUXTP4VEPq9QRaAFB0W+xDtFr2yERJWHw0TKE5lElHafRA+WgEgEweRH0VOBR/SEdUW6t1FGMxiSRbo2wUSuecVEXAi4RJv8p0TJiS1GO7czReO3uURyDeREwh4aRumphUQ/7dxE6GNBRWhUKEU7J8FEH7vLRAtXf0S9Z4xGBssQRjaW2kS1s2ZFCt/xRJCfnUUV9CVFeMn+RLdGckXmP55Ek/DcRDoTkkZpMGlGSvgBRvWH1EQ9GHRFDCW7RL1Qz0U3j7dF9JH5RIedt0Tqy3ZGgxqXRWJ+b0V+8xtH9QKqRs7HOUXlvJ5F8j+gRKSZqUUS/+xEGChjRdeFpkTLyN1H3gtHR9qOZ0RaTKRED1T5Rp0P5EVJoQpGD8bARPHX70Qy/8NEcKq9RFaI00Qtc/VEyPTTRzkBU0cfSNhG/XLkRblWOkWQhnZEXgqZRngNI0YjX2tFuyMQRQJGxUWbHTlFMGgFRd/Zw0TFgopEz3IPR0IckkaRHztG8EWSRZ+uqkXv2JREtm2cRN8pB0fVpGpGSn39RX5LfkSHGUVFkxihRHZZ30QMSsJE4MvERF/MmkRA8U1G49HWRQkui0WCKzBFXikdRuMkiEX+F1NF3pG6RM1fiERqwchEJbyiRA== + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 2BiPLXTBckDF49nMVcJyQMbj20mqwnJA7z09pRzDckDcZcflO8NyQKHa0cFUw3JAEljeGXDDckAQ0CbnxcRyQPBqeOpD0nJAK2mq7knTckB/x4lHu+ByQETjy8VP4nJAYPJ5K4/ickBupxJ2SeNyQMwWol5a43JAcgFnSsrxckCy1SxwtvNyQO8EtMxjAHNAHZPGrPkAc0DFtTbliwFzQAB9oX7PAnNAgwd0p/oDc0C58WFBhRJzQJxUcme8EnNA09yicfkTc0B8/eMupiBzQA6pkik5IXNAuirWCZIic0BDLyBHDyNzQD5FTxc4JHNAgrm8zs8kc0DvLDslRjFzQBbideu4P3NAR/f1OONAc0BGVCBIeUFzQPxdD2YmQnNAQ1RE9XpEc0Buf7MKpFNzQAL9WJ6EVHNA01cteDtjc0Dw7gq7/HFzQOMKorVlcnNAzG1rHbh0c0DDQ6L1S3VzQEb9O754gHNAayVVrqeAc0BQyDfJDYFzQNMFABcLgnNAwlzNg12Cc0DwpQqvh5BzQOZbiixNknNAEDAEhWKUc0DCuse/95RzQBkamJW4oHNAQNhIRFuic0DPDYDI5qJzQHhXwQV7o3NAuk4bvASlc0BypvESyLBzQITHM1cQs3NAkHDWjrezc0Daeq07DrRzQJCbeY/QwnNAZPjZ7ybDc0B+D6242NFzQDKBuTQz03NAOhwzMeLUc0DztpkSOeFzQGDEJU1P4XNAhaTTLDf0c0DSlfjPeAF0QN8IbAqkAXRAGDS4iBkSdECvS8ZrTRN0QI7ceyDhE3RAZuYr2HcUdEAyl94kSiB0QLxBXRm5IXRAxKPG2VIwdECQk0NF+VR0QNR8Ha6LVXRAhJ/4OrlgdEA8US+0CGJ0QIIAW9lPZHRAdtIwGCJwdEDGk+NEQXF0QCg7nHo5c3RAyKVYCjd1dECOkmlu+IB0QAAvk59OgXRAbCZOLRaQdEBkdMp20KB0QDKRZMPPonRAA1IlOxGjdEA0ddwRCrB0QBwEOxF4wXRA0PDmoLjEdECgdJCX/c50QPstHHbh03RARpvnmXfUdECFc7AGztR0QHQ6Lmq54XRAVqUamE7ldEC0xXPajPN0QLtztgylAHVAj4+n5GIBdUD/qjh5XAJ1QCT9DQMkFHVA4kqvhJwidUBQYTYXzTV1QJ2cPHlOVHVARuctZnZVdUB2+5+Mo2B1QByQb6s3YXVAhWWyBXdydUD8QhxpjXR1QDyux1R5gXVATv0mu62BdUAyTJ5qpoN1QLr+gDeahHVA78MVC7yRdUDZZ2ehPZh1QK6yhrbnsnVAjGFtTn2zdUD4cmtLY8F1QABSOLv3wXVAiCrcwczTdUAmzLUKB+J1QAx8URdIAnZAMHsLbkwUdkA4dPMHDBZ2QIICIoOIInZAYanHypAkdkACOLugHzF2QATGPNSeNHZAXl5cwR1BdkCgmyCeeUR2QPBEk87KUHZALJxjXhJRdkBmtGFKh1R2QCf/yYzNVHZAbIw/ZRFhdkA7LM/czGJ2QABIwKLZZHZA2WgvnpKDdkBmjGnVwLJ2QLaSfpIMtHZAPPtn0hnEdkBGfNPKzs52QNSUedeP83ZA2R8CBjMCd0CcmPkiUQ13QAKpISwCEndAsIaGI6oSd0AmHtWY8hd3QMCrmaYHGHdA0gCUGU4dd0BGCGJUXx13QGqQq68OIndA03KIg3Mid0BbZnD8DDV3QA0XhHidQXdA1TQ92RpFd0DmbUf7SVF3QNkqoXSSUXdA61N5OClVd0DOE0AGkGF3QPjb3MI9Y3dAB5gXPWhjd0B64rKwJ293QIItBJB6gndAKPLPsQWSd0Ad7bpjTJR3QET3O4ZuInhA/DiHJokjeEC5o8yqDUJ4QGorWTh6RXhArG8wWctReEAXvzcKlVJ4QLzAeiyIVXhAirB2We5XeEA1jY86NF14QC67ahNMXXhA1IwM+PlgeEBc2+Kzt2F4QIx0r/m4YnhAaz/M1l10eEAsLeqBi3R4QMuch1exdHhAHrODU6WBeEDUmOrimYR4QBjJt/mVkXhA6QGKm6eUeEBZ9nXFysB4QDTxzhm31HhATIxggcTkeEDAvpLsAvR4QPYnCp2N9XhAbMV3PZsFeUCZq28tzFR5QCwnz6JIXXlAMD6sw+lgeUCe4T4rsHJ5QGMwYXm/snlASYOackLUeUBS9bAxz9V5QKyBvrHB4nlAB24UslHkeUAn6LYsJOV5QAi2APj4BXpAlhDS9jojekDmuTNiDDV6QIVXBaoaRXpARV/myCtQekBGSm3qKFV6QAjIB4SPcnpASghyHqKUekAvDXE97KN6QFOsx6rurXpADEGL6kWzekD4Xh+QDbZ6QPwfei7k13pAsr8s02XhekAKbPMaBOx6QDO3Q8A17npAxiR5jBXxekBG2tu3C/R6QG83QnV4A3tAvAE8ZCgOe0D2hvFXTBV7QDAwBy9aJXtAno2SL1Qwe0DQLvSYY0B7QM6G1KZCUHtAsLlpjCOVe0C1EfwKMKV7QCJWg+6X8XtAIKFUuIv1e0DsO5rykgF8QMXHhwXaAXxAPNh3TJoFfEBS34bYPwt8QF9PhCvSEXxAaI7MPc1BfEAE9yeCDmJ8QOQpXMvAsnxARHLPlMzVfEBgOg7SV+J8QKdiGk4X8nxAhRyG0lTyfEDJjCBgcvJ8QJxi6aEDAn1AJ7fPVksCfUBYhQ+tRBJ9QLSkI4M9In1AEiJmNA5VfUBQEUQaLsN9QB/Ib3mQ9X1AIkRbklD9fUDMs8H0QC9+QOIT5UWMVX5A7/QEgyZufkD9NjJjxfp+QIZU0KrANH9A9D3GgbZxf0C8qoOEsIF/QE4rYD5jkX9AjhFes6iRf0C2oIffXaF/QKL1yHlUsX9AtOAhxEgqgEBzsqteTC6AQJ6D3rBPMoBAJMJlDFE2gEDKRbqGKTyAQGOd8nrvSIBAlsLLzOVQgECI6FbsFFGAQC5VtDXlWIBAV+cmYA5ZgEC0COFKDGGAQC5BSNUnb4BA2Oi/gwVxgEDKZkhwhnGAQNTIk5mKdYBAMMAdDv2KgEB45V+2HY+AQMQCyZ1skYBAmNvBqRmUgEBK1dGahamAQGnJ6XFSwYBAiM3Y11PJgEB72enkJNGAQFSMqMVM0YBAcn3dXUrZgEDETJZcROGAQMCNp8r26IBA6rcGcErvgEBJ4UoSPvOAQKTDWgVA/4BAKNRjPT8HgUCCNhtoPQ+BQEhQZWc0H4FAl4ggfDUngUDSVzmE3y6BQHaMnW16MYFAtk2UW7wxgUDIqPc59EWBQBuQtnf3SYFAZqo/Uf1NgUCJAGplXFiBQALyvL1TaIFAJCh1qlWPgUCkR9mxVpeBQN0mX3hCnIFA1LcUfOihgUC5HFYFbaiBQH+cOantqYFAxS4o50mvgUDrYw+LZriBQMCoNTd+voFAgoHd3SrMgUDuio801s6BQKHQsNaB0YFA4mJLGSnUgUDK6jtahfGBQHB4slky9IFAIujx0d32gUAq6gRkh/mBQNazGAsBCYJA6KztUdgYgkDVedsx1iCCQFWbZhXQKIJAZp+4k6IpgkDuAD1ypS2CQFD17xOWMYJAGGx8fKsxgkBSY8TuojWCQJo/9yroOYJAwCmEX+o9gkAKzIs28kGCQO6goiXBTYJAfiIIYEOJgkAaUAx4RJGCQCiyxigqlIJA4CVaYz2ZgkBzqz/gVpmCQGxXvn8PoYJA7K6QAzyhgkAQ2DniD6mCQHqJBJM0qYJA4go2ygexgkCgbyX8MLGCQFqfj3yt+YJAxxKyeHkRg0BEsH1cehmDQPmDDuhzIYNAy3rrRo4hg0DoQfXCcimDQEVyqStqMYNALZfxTOaBg0DXcMt6lPiDQA4k+YnNGYRAc5wfRdEdhEAf0jkQzCGEQNqNBcP/aIRAhk9dc/1whEBGB9Cb+HiEQAT3LAKOooRAd/oNX5KmhED6zo08atmEQGwMORRq4YRA2ds8sGPphEBY8cx+NvGEQIIympdj8YRAWoUNIjb5hEBdwG+CWvmEQFCdZxwuAYVAshmJjKBhhUDUX7f9oGmFQPiXTUaZcYVAROtWRbVzhUD/xqjWmHmFQJ+Yw02RgYVAcMHlrK3+hUBcELaNsgKGQKrgVWORKYdAMslyUJExh0C0/CO+iTmHQNsWZ7ldQYdAoNqwe4pBh0Dl0BXQx7GHQDahsdvHuYdAIPKaLL/Bh0CXM6pCwcmHQMOL0kVC0odAzgN2YUTWh0CMv3Wc9tWIQA== + KBZXds7jZUAot2DdIQNrQDtMc7KVAnNACAFx3oCCdUCv8TOihQN7QHymMc5wg31AkUv6yDqCgUDSs7yiD8qCQCJQe2F8OoRA - + - xYnmRPI9xERCLLZFNVSwRcerT0lv5w9GX57jRD7tqESE1PlGa9PiR3HEoEQsd1ZFHgvMRCTEjUWP0wBFe0JtRQL5uUTDHJ1E/YwlReaGr0SSo5pErvEQRzV2lEaCFx1GSWOaRRWXskSOmcFGR9X2RFDI2UQ36KFE+6uZRRN8y0RpkphEQdLZRA4paEVqh8JETK0CRmN6lkUGjaREJfEmRcsiYUd2quxETk/hRKtKL0UEvdpGqMb/RPVDDkXXBcZF0P8BRYjMQ0UpST5Hn1sTRT2uhUYYjRtGxcqjRejlEkYeicFEejoZRfhXpERL/5ZE4B16RTCEG0WEvIZFdNggRjqRh0Xm1LZEoiqDRbXX/EXW3IBEfyUZRR8MlEbhTPBEwIOeRdVbRkUxeKdE2hamRI0WqET5nktFC3DHRITrmkTMg/BEgktgRcbAWkVlZd5ETynPRes4NEctN3VFNdLWRM54GEXKys5FPzzJRQd++UQbrLZEilzuRD+51kTsGzZFFYTcRNJfz0RYhhdFUnipRFoKBEV8DBxF2AX0RBewuUVnB8tE5RZQRVb4aUXnLe9ENizkRPG+H0WXU7hEXNDvRKCCnUSA9DpFc2QNRVExQEbUcttEOHm7RRUdXkVxSeREBPydRGPkh0UwlRpFZ1OtRa1JLUULnRBFWWz2RK6L7kQDCplFwSDwRIxICkUHpMBEOJjkRVCD9kZkq7dEOSzyRZeymkVa6+lEA2xrRXqknEQlDGRGaQvgRDkC4URQ7wpFdTR4RZBcU0UTo65FrVqjRFI7REWlqiBFp6kfRSWEekcCNmNGEUjaRnTSh0XM5pBF0a8RRS8buESYHzNFKOjGRPc470eoUfpGuYi5Rk3lwEVXw5pGUDoDRfjpJkU03sBEtmimRIpVdUXqnN5EGDmmRNr1t0RytShFE4DLRBb650RvcThGFtqLRQy1qkaoDv9EdkNDRobfJ0Xg5VhFoKo6RfFUSEXrJpZE+xygRWRWRUmrC/JFMkU/RYsPRUiZHe1EKtaiRjI/vUTVm75FVxWfRJqVTUV8fZhFgbDuRJzziEUmheBEZFi7RHF0D0V8IDZFPny8RUyL0URe5OVEvAnhRIhCs0Tl4thEIIfSRPjaxUeFJbJGoePXRKpHBkV9AfdEcvKeRNYeoUQZZaREvKigRNfOwkU4vbxEs2qkRKZSxEUAzPREiZkMRdgeAkXCQMREMRrDRIJGGEbaIQpFI547R113vUVMfxRGCOS8RS78qUQUUL5FYdqcRgKKB0Ubz1xGZ5iMRQVqxkTRoqZFGv70RZPFp0RNmBpFERqsRN+Q6kdcVTJFE3fiRrG8akUa7CtFBla3RvZYaEVorS5Ff86RRKNHpkSD2+9EMeikRKbauETNcyBFnUnwRFpJPUUOWKlELDbdRVjp00RFbU1Gg4K5RGbSUEWCcCFFoHBOR9BYyEajeYVFssSgROA2REUMDgRFKydMRRhzrEYkVtlESB/lRbdsokSHpdtEFpnARJQaDEW8+fVEAGuTROHOdUVd1QxFAp7PROKn/0QSZ6BIAFMfSB+OtUSylqtH+B6IRg0y3kVfVwtFyRLyRKV1uET3mTRGYiJdRfwg7UQn5w5G/jQTRetU+0SBy7pETmIJRUSeYUbIZwxGffLURN3OqEWnHdlE6yevRYyrvkSua0ZFqp40ReV4G0XnZq1ErrhJRalgoUQkmN9EYViSRrd7LkaxwOdF9xRiRVym5kXiCqdF4h0KRZZ30UQGp+hELC5URqFJiEUv31ZF1kHbRqsxYkb8gM1E6vI6RVIVuUR2c4ZFSP0lRYGNqETulw1FcXVdSNjk6UfJu5hEItmCR3LoIkWf79JF8eF1RvsgGkUeUs5FhMvrRAo6q0RjqAVFWQ9jSN+M7Uex74hHsmjpRGnZp0ZeRrRFCZ+gRKOKr0Shc3RGNbMURl8e/EQDwtRFTgQqRc5FA0VXJodFzbQKRVh3ckf8mdJGtCSqRlISbkWF4bdFKnINRYX3HkV4ptJEW+5GR+3W2EYaI4RGA6CmRCV530UmdbVE/XtSRSDGVUXaLVJG9n0ARqXdlEWqoLhEjgPPRDADP0ZDqddFfdmIRdkP2USmHhxF7MW3RIXfp0Q= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - wqyVOnLBckAKcaOsq8JyQGcWLwb/wnJAdJoomAvDckA2lOdDHcNyQC/ZPbk7w3JAKi4dcWPDckAHn4FIc8NyQNTcCHlD0nJAvkkXz0nTckDcLnJczd9yQFqyzIq44HJAbEdg90/ickBD68iLkOJyQPBG1e1K43JATkuowpDxckAQd4W6yvFyQAyyahek9HJA2lxnKfkAc0AkGJkL0QJzQMyC85f6A3NAMnBov4QSc0DwabTVvBJzQKCiNNz3E3NAB+8/sXgfc0AyABrRoyBzQJ7weCc5IXNAjuEoFpMic0CTZasgESNzQOPpNojPJHNA2N8Hnkgxc0DsUE6pIDJzQBYwHTcKM3NAdFWt7OJAc0A/PdbTd0FzQD7N5rsmQnNARuJYnHpEc0ABMTpGpFNzQJzMeIODVHNA0KQcK4xgc0Dl0DaDOGNzQMZx5ZL8cXNADmetlUt1c0DY17uyeIBzQAjutxwNgXNAi52GKwqCc0Ban6ulh5BzQCAmKhRNknNA2PZC+c6Tc0BiE91ZYpRzQF2X20b3lHNAlCpKm7igc0BAURGqWqJzQNyj3fDlonNAb1ic7Hujc0DmExLaBKVzQAIgTg23s3NAyjwb4Q20c0Bqc5U0+cBzQFLAN76NwXNAjg6v0s/Cc0ASf/ahJsNzQDiZos3W0XNAI4orGvfTc0A67Bpa4tRzQKrq+c834XNAEIHaNzf0c0CeULHHeAF0QEAe6XCkAXRA5JLmSRoSdEBdDJ34TBN0QNZA3Dm4IXRAyIwjQFYwdEAmiUVw91R0QCB2ErCLVXRAYMt1QrhgdECqBwu1CGJ0QCCIq+QicHRA8sy09UBxdEBi6Oe5OXN0QHZB1Q84dXRAPoVLFviAdECGZRRrToF0QCo7lusWkHRAGtHDMWuQdED+O1kgOaF0QGYqdCe5onRAuqkF5w+jdEB8zWlZCrB0QAjLG0J5wXRAnk8QcenBdEAr2Ws1esR0QBV8OlG3xHRAGCIJamDSdEDIBAYm4tN0QMxnQTzO1HRAohaeEbfhdEDqZXkGjfN0QKiRmo5jAXVAmkMiHl4CdUC4jOvWIxR1QEg61uzLNXVA2pEby4BRdUDSJ/87d1V1QLUoTds4YXVAeiBt/nVydUB08JFZjXR1QJgOY8p4gXVAaSGnpq2BdUAY9CQ0poN1QM3QMH2ahHVACeFsVz2YdUBstszQkqB1QPtKcXN8s3VAbvil2mPBdUA3eHNa+cF1QKU/mETN03VA7idxCeXfdUDfc6hmCOJ1QB8oTvxIAnZAjlkYUtEDdkCEjSjsTBR2QNJDX4gNFnZAQrTj4IgidkAYAAJXkCR2QFrSA3cfMXZADmvZYSYzdkBamgSEHUF2QEhFP5h6RHZAfrdcwstQdkC+a88HE1F2QFndRuvNVHZAYED0tcxidkDe5fnV22R2QOAGZTglaHZAgitGmJGDdkDC3hzVwbJ2QPT6b7YNtHZA2lp5m/zCdkB2Fw2oz852QIrxOSjz4XZAkIw7CZHzdkAMiSd/MwJ3QKqqkJlQDXdABDqDoAESd0D43YVsqhJ3QFB0QJPwF3dA+pwg+QYYd0BS+PntDiJ3QDJ5vAwNNXdAwvP3aJ1Bd0B8ZgP7GkV3QP4toJpKUXdAHH65mpJRd0BqHTHzJ1V3QLw/e7+QYXdAm7UrOj1jd0BO3U6ZaGN3QLcCJzoob3dAFpfGjIZxd0Bqw4t+eoN3QOGkS/gIkndAnJPc91Dyd0AutYXybyJ4QC7zUb8MQnhAFrk1h3pFeECmv3Ozy1F4QP5tQhqVUnhAF7/27oZVeECrjy+t7ld4QPIUVfQzXXhAkhC7f0pdeEDaRXv9+GB4QIGH82e4YXhAyWfGwZNieEB4bXD2tmJ4QHrB0mExdHhAaE2rO0V0eEAYAjsNXnR4QCoSpaKLdHhA2HNzJK90eEAmUjrqpIF4QNp5Bu6ZhHhAjpFOm76EeEB/iVdhp5R4QHQcphzOwHhAz51SkbfUeEDMg4pIxuR4QF/uClcC9HhApL5y7Iz1eEC30ayRmgV5QN3BvgjMVHlAIF/KHK9yeUAoHiPuv7J5QIxZ2zhC1HlAJjqUycvVeUDCmxuR/AV6QOleZWIMNXpAytHsjRpFekBoktkrKlV6QLbCjsnrrXpABk5w+Qy2ekBkZqmEZuF6QGIDw+AE7HpAiP/TlDTuekDecYJNF/F6QMZcNocL9HpAzNkB+0wVe0AqBqLuWCV7QBDsfz5UMHtAAqdm2GNAe0AHQuFTQlB7QLwfEmoui3tALsMJYyKVe0C4sbScjPV7QP2JgMyUAXxANRAxBdoBfEBTQgRY9QF8QKaKXF6ZBXxATId8NUELfEDiLvyf0xF8QN7zQ77MQXxAaUFOWcCyfED2NH1czNV8QCATn/tX4nxA5gB0QhbyfEDMPqQnVfJ8QMmUEB0AAn1AsvxKcEsCfUDX7nLRRRJ9QCu3FWtBIn1ALAN2i5H1fUBVeAnChgJ+QKw0sEmNVX5AJ0kasECMfkCqdDjIxfp+QFb1G8S4cX9A7X70yGKRf0BctCJKqpF/QA7U3iNeoX9A/Eqk1FWxf0A0zA8lUiKAQObwe/RIKoBAbGNVoUwugEAk4HaeTjKAQHzhQmr6OIBA4tUZvSo8gECI7fp91z6AQEv2xiznUIBAZq1ocBRRgEAC1hDPDlmAQLCFM2Upb4BAmXPU6IhxgEAGf+NsHo+AQPAmpHltkYBAnFYfQRuUgEDgBm1Ch6mAQE5BbX1SwYBAbOCDiFPJgECCBEekLNGAQOgrAaRM0YBA73zdh2HRgEBWIXcoStmAQJR/FztE4YBABHyAyPXogEBid6viP/+AQOLB1GFAB4FAwPshBT0PgUB4sE6RNB+BQPgoBek1J4FA8Z5icb0xgUDKSrW8JTSBQIplQBf0RYFAdqjhO/hJgUAmMg70+02BQJK1h0JcWIFAauUe7lWPgUC2ET/ZVZeBQP+VQKnvnoFA/PziVumhgUAURW8abqiBQHtwfDFKr4FAWhdpDSrMgUAI7U1+186BQJijswV/0YFAOl3mvCvUgUDm6Y012daBQO0IeBqG8YFAL1qpdTP0gUBIw+2n4faBQNzJy0iI+YFA4AdcnQIJgkDJ/8OZ2BiCQBpFRirYIIJAWVTP5tAogkAeY+FXoimCQCiQNWmlLYJA/1Twi9AwgkB07/OJrDGCQHoRji/oOYJAZEKBzuo9gkBXKrOyv02CQHoF51PtboJAdqORXEOJgkCoCL9wRJGCQEmwhfs8mYJApp20cA+hgkDK89HgO6GCQI/ZcBgOqYJA1n2LGTWpgkCxvMGZBLGCQOa5vPGt+YJAMwLvgnkRg0BqM72uehmDQD8nqG9zIYNAPPByZXIpg0DE+rJxajGDQCB2RrVKg4NAmZUARJT4g0D/eWH4zRmEQAiwZkjQHYRA4s8Ixv9ohEB1tu3Z/nCEQAwjhHT3eIRAnoC1kY2ihEDHktBzkKaEQLDmDD1q2YRAx4r1UmrhhEADtCHkYumEQB0DCVo28YRADnSyRGPxhEA2dBKWoGGFQEgTpv+faYVAfRmqAZpxhUDu7OFcmXmFQDiQomCRgYVA+6+L2a7+hUCAWGEwsQKGQJnnJ90nuYZARonq4JAph0AJLQRdkTGHQNsOH2iIOYdAPFBmxotBh0CtDP2wx7GHQImWJ8XHuYdA1HQWa8DBh0B4GIaQwsmHQA== + KBZXds7jZUCmvpxNHCRnQNzlv3T/InFAGrpiYCbDcUBkbLHC8LN5QI5fI1AWxHlAx97/UbdqgECTuSdLS/KAQJPoFXX3eoRAKOLOOwqDhEBNO/Zsb3uIQGylx+KCy4hAsWjAifuTi0DQ0pH/DuSLQNySQoxHzI1A - + - 6ydARSwEtUUZznNF44lrRWIw10XI6I9JPeJPRXoGcEVYaPBGEpAfSDTx8EQJcQhFuU5FRSBxBEVSgxVG4cUWRUX3GkUHxLhEoUIDRbzh70QNFPhG4sQARzuPGUYi941FiQcfRX1+LkXqx7VG7uqIRbXEskTsYqpFwO6vRM/m7kT0F7dEYp/AROW4i0V+ON5EbiwcRngFZUXlbM1EtC0fRbAAG0XJ7FZHAgsXRQ/P4UY3sDtFaWntReMmUEUe501HE1/ZRNBoI0U9yItGah8WRs/rv0WE4Q9G1BE1RZZ/QkXiOHJF/I0PRSzmtkSEm6pEAJ2ZRcZVHkaQTRFFZKG5RKH540VDw7dFwhUHRcJihkYJWPVEvfzBRdz2WUXX/QlFyZzJRPRv4UQlH9pEHZSVRRzHdEVTzc9FTZZPRzTqnUUu0AdF2rhBRfz/9EU7o5pFrKbhRHPg50Ty4N9ExFURRVyJAUVb8CZFARrbRKlbukTaofxEk63jRI1UN0W7uhFF2gj0RHnX6UUeekpFdq7IRUa9D0VbB0dFz9UBRQNwOUVHUStFpcgWRd7QnkYHSh5FNQbuReCFR0VT9XBFrqabRT9J5URosRdGPfDEREK+4ETOBeVE9cvNRI3W0ERRirdFE/4jRRPvY0UFrABFIKvoRFJP8UULQgRHFQXcRM0TzUWA6WJF3VO/RErHW0UfbLJGFW5CRcWwT0UFSg5FN8iTRfiUDUUlpIFFY/y9RFbpT0Uo9+NExAQURXm/HUWnCndHdzCGRmG08UY9JmVFjAWUReL8YUXDowRIWkMGR9mC6EZS6bhF9guxRoDE3ET7vGVFe8C+RDz0KUULzWVF5j/MRH2LDkUEIdhEefThRCVGYEWA9gpF0i5KRmevtEUP46BGidoBRXBbEUYnYuREtYxoRdHXM0U6qlRFLUQJRRm/40SddB1FZi01RUCvn0XbM2NJfnXmRTnPSEWkLmpI/YAHRZ3Gokb2liFF/M3ZRXJCC0WOkpBFW0kARpaDDEWr58pFTDt2RXu1iEXTC+dFwj8RRZCM1UTsOftH6EcLRzDpEkW0WedEI7cERkHQAUWkbw9GSR0iRbiFUkUP8qpFandMRj3RN0WPhB5HuuCBRQjzAUaHZhhF773dRV3vu0bibMVEONNtRmjK90RjytBFpsoARSxMtEVyHwtGYvwHRabC3UQlxOpHyW8bRUcHAkeyrzFFyYnXRsPvWkX7OcVEzxwGRYWJHEVC61lFyK7URLxVzUSQsptFqLZDRoBswERW4TNF1gwtRaAN7ERpD3hHFrPFRoIb2EWqf+tEc8k+Rb9GGUXqa4NFzEOuRs6aE0Zw89REHbkQRfF/ZUU5eFNF+pxJRV/n/UQknp1I5VIfSHq94ETYUKVHEt11RVlAiEYY/6pFkZ3PRAFPI0bxpSVFDCLzRFJYIkZYKT1FRbcGRaQu7ERTJIZGRE7iRXXh1URWSJZFYObCRUXv3kQGucpEHrr4RBQUIEUnvxNFQ3uTRoqLUkbVq8tFWu4rRdaXukQPNx1GaHOKRe50yETnie5EW10JRZq3bUZqSGNFQFiHRe49t0ZNbjJGid/WRGO4TUVqfY5FrlxORf4hDkXkyOVEG1xaSLF010chRGxHLAntRZ8Og0ZP+zdF5YLaRVEKzkQolQdF75BTSO1a2kdTOWhHDwFzRvJKlUVgorpEucbURPesDEbNgoFFUivgReZ0OUVvsRdF/di1RXlwPkUL61pHItbYRqijj0bVuIhFzKamRb6QSUeMW7VGR8t0RqKS0EW3lQRFUnS5RSCjZ0XvJuJECO1yRnKe5kVc0WhF5PANRQybIUZGT6xFaqF/RUsLFUU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 5KEtHnLBckAt998dVMJyQJxHiXOswnJAbAUyOtfCckAWLq+S38JyQF4KfmX/wnJASM4UYAzDckD+9hnPJMNyQLd187I7w3JATigV5WTDckDq6qubccNyQBIOU6xD0nJAnANqqEnTckCa78LhUOJyQCb4PldL43JAEUx4OY/xckBwlObiyfFyQCLk3aXA/3JAhiBvyvcAc0DG6OR4+gNzQKrYvpCEEnNApQA2SbwSc0Ba3K9I+xNzQKBD4imkIHNAlr/hHTkhc0Ckp1U4kCJzQA/tChrPJHNAwlL7vEgxc0AMhwjb5EBzQOUp65F4QXNAWuvORydCc0BGawqFekRzQJWP6zyjU3NA3lVohvxxc0DeeS6yZnJzQPDAaBRNdXNApmQH1HiAc0BY4oIEpYBzQJbwBocIgnNAxAkUXYeQc0D6bZ75TJJzQOgm9sZilHNAaACTa/eUc0DmGVIXuaBzQNo3UAxbonNA7+4LNuaic0B5xIedfKNzQHwHNNIFpXNA6PZOx8ywc0C0L+QytrNzQIoxX8cNtHNA5nLf5M/Cc0D8Xa8MJsNzQJyfLF7Y0XNAJPFukPXTc0BAROY75NRzQNLmcXY44XNAyrEf1HgBdEDWvpJ6pAF0QNhx5TgaEnRANwYRT0wTdEBSEHJeuCF0QKQEegFTMHRAgN4UgItVdEBr2laXt2B0QALn7KEIYnRAdtbWfCJwdEBQ1KXjQHF0QKc4bqY3c3RAoKsmnviAdEC0hTWJToF0QMz48nKygXRA0IWudhaQdEDWH1rEapB0QNQ20L8Po3RAnMgc5giwdEBYfg7NecF0QDziiRfqwXRApO1pSrnEdECKtgx2+850QJYolonO1HRASH2dKLjhdED8E4tUy+J0QMgZnX6N83RAq8o+VmMBdUDV1sVsXQJ1QHBBfZAjFHVA/TqgmpsidUBAZgigzDV1QACiWQjqT3VAyavCPfxPdUA09Za5dVV1QIw7V843YXVA4QTlsXdydUBMc17SjXR1QA93Empse3VAPmkAknmBdUA85JzHrYF1QN42bZSlg3VAa/61JZqEdUDOzUP5PJh1QCQaPvKWnXVAOIdRhLehdUAWEiCD5bJ1QOXRmZh8s3VAsHPLxmPBdUDR6RwY+cF1QCX7sKoI4nVATMt3kkgCdkCkhu8M0AN2QDyBJwuQJHZAuiurdB8xdkC0QiYiHkF2QIyhWB15RHZAsdnbchFRdkCis4BLzVR2QEoqJJLMYnZA/pVrUt5kdkBetBuwJWh2QDoF0puRg3ZAbIuGAsGydkAZ4GXDDbR2QGLOSNTQznZAXq3ePPThdkB+i4iJkPN2QGbXkY40AndA1A3Q/VANd0BoBwGGARJ3QMbNgzSqEndANcc0zQUYd0DEh5DPTx13QFI8N3sOIndA1gSPuAw1d0AsVP4XnUF3QN7ExjkbRXdAKJEbWUtRd0BE1BStklF3QEy/ZDYoVXdAFAhQ1Y9hd0C1WTOuO2N3QILjPWloY3dALW/ypidvd0CeIiDaeYJ3QE9B9SOPoXdAnmR1Nwaud0AeBnbsTvJ3QHFZtadtInhAAoNlFw5CeECn+dKiekV4QOhOfY7KUXhA0OzTl5RSeED3Lj7DiFV4QMo/+RLwV3hA7JOUzvpgeECtrKo5t2F4QCO8Ey23YnhApt4pkIt0eECevHsfqnR4QLzOFXbOdHhAEQkAptt0eECruUASpYF4QHKvR3KZhHhARmYIWJaReEBNx3iop5R4QGr+Cd/MwHhA8k1Mt7bUeEC69BUNAfR4QCDroYCM9XhA3jsH6ZkFeUAosU/R+UJ5QA1TwjjNVHlA9BdYJ69yeUCubU97Q3N5QBLEKW6/snlAEmCDYkLUeUAetPDEzdV5QNCYioBR5HlA0W89bgw1ekDids+UGkV6QANHm2EwUHpAP0yC0yhVekAGuqw1jXJ6QG0jHsIMtnpAqEHitATsekAShHBZN+56QFxS0REW8XpAghurSwv0ekD0/BeqTBV7QBC2p79aJXtAYAZqAFQwe0DsOEQlQlB7QGoq7DuM9XtAvGhz+tgBfEDvO2Hc9AF8QPJF9r6ZBXxARHgDYNERfEBGZevSzEF8QBfu7u++snxACunRmVfifEBIG8aZF/J8QGxX+D5V8nxAmofPp0UAfUC9J3epAAJ9QLZXQ+xLAn1AMAMtnEQSfUBWgtDlLMN9QAbWVy/a4n1AIDJU/pH1fUD86MxBxld+QOW/a8UbXX5APOPE+WVzfkBEts/gDI5+QGge0zQS5H5Apqb7OMb6fkAU5mcquHF/QIRFg66ygX9AC6Rn8aSDf0Axgvj5YpF/QERBmv5doX9AHC0wGlWxf0C2q2i3SCqAQO5P/hBMLoBARAmR6U4ygECiaSAzKzyAQA73Jp7XPoBAu6luLYNBgEACmtyJ9UiAQJfBg1LmUIBA9iwGbRRRgECKLZF9DlmAQIyLIhAqb4BA9ATvFgdxgECcHWHIHo+AQC7j+H0YlIBADL5/gFLBgECiMBluU8mAQEasm4hM0YBApVW8VmHRgEDUsmMjStmAQBbznWJE4YBAFgJdyD//gEDG2L++PgeBQIhgVSc0H4FAL7cuyjYngUAChAlUezGBQMRB/9a8MYFA6w5tzvNFgUB+NI3u90mBQFrEmdr7TYFAWLIcm1xYgUBWQDIwVo+BQJrIKX1Tn4FA1pSH/eehgUAEQ0T9baiBQG10pSVLr4FAosXLJCrMgUDmM6ft1s6BQKRpS9t+0YFAjg3AQCvUgUAKOhtQ2NaBQJy0tr6F8YFADpUXPzL0gUD0mL3E3PaBQK+JyRnYGIJAcuEUZ9cggkBUGOho0SiCQH4KSVmiKYJAupQkiaUtgkCId1FMpTCCQHwSQh6rMYJAPjhyV+g5gkAynVnU6j2CQMKcg0RDiYJAZqvrxUORgkCLFMpGPJmCQMQdp89RmYJAqqULvw6hgkD+0vs7OqGCQLOiISANqYJALpk7lDSpgkAbsOiReRGDQLwNidp5GYNAHf5h23Ihg0C+xZvrcSmDQHVtL69qMYNAVWWon80ZhEAlp4Fqzx2EQPwbGz8AaYRAei20Ef1whEAUGsVjjaKEQA3MtL6PpoRAuuShX2rZhEAdLOPjaeGEQGl4tKhi6YRA5s2cdDXxhEDePRCdYfGEQIV16bw0+YRAe5k7nS8BhUBcIbqBoGGFQEgUjTahaYVA/c9Ta5hxhUBSd9lYtHOFQPlJN0KYeYVAtvn53q3+hUBquSeCsQKGQPj7dlWRKYdA5bCPmpExh0CrpIEcijmHQDyyhwpdQYdAkZ8OOolBh0BLuDsyx7GHQEAyu53GuYdAOC7n98DBh0CxpPH98dGIQA== + NrgMGZxjYkCs9CaTvbFwQEMdzoN8QnFA - + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDYkZP9yKNsQFAtpBCXEnJA7Cam0jxjdUDE0mQAhxN6QGaNWNhAgoBAUuM372XagkAg4DjQuIKEQFISJhkSY4ZAPjH1uhATiEC2P/A1nnuJQA== + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUDEZV5bjlJwQNvlv3T/InRA + + + + + + AACAPwAAgD8AAIA/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUD62J8L/6FwQDtMc7KVAnNAIZrngq2yeEBiDbspRBN7QKStF/2tYYBA9EnWuxrSgUA= + + + + + + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + NrgMGZxjYkA= + + + + + + AACAPw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KBZXds7jZUCzxYFkpHFwQANJK5hVInJAJ2tCVJRyeEADpwfsrTN5QFn7C/FFpH1AFSlCsQKjf0C2PiNbzQmCQKPcBSdaaoJAtm0RhXmShUBdL+Ye0mqGQK1MkbOwKolAwFywO14Di0A= + + - KVQ9RVfe3ERkQINFJFr6RPFbvEQJol9FNDp/RXR0yEVPBaRJDPI5RTGbiEV9IfZGElQxSJLsO0VZTc5FTNkJRSSaHkWBy/BEDbbOREBqDUftThVHhrsgRvCZW0X9pxNFqfPGRjHwZUUdPoRFqxXKRDmK5kQ87JhFl48hRYa1E0bIsD5FGJALRynMvUQKDTJFJijyRt0pAkU4hzJFFhYVRaruPkdIKQJFiftSRqUM9UUS2btFKUkBRlQfXEXJICtFhmWjRLSlTUV7RC1FOLqARdARJUY7y/pEVm3GRM5sgEWVJQhGDOSLRoBz4kQS/7hFaUFFRQUBEUUEXLZE6czYRFhfhEVwGZ5F1IO6RdF1R0esfuBESLkWRebzzUVAxdtEHUHZRQgm40QKlQ1F0HMDRTNDBkVhudhElakbRb8l0kSE/OxEHscvRS9nCUUKtOtFzhJBRWB8dUUsMsNEU+PORFH6M0XLudtEr8rRRCvE4UQpfutEP4UoRR2LHUYya+5EyxvWRP9f+UWsC0tFSQHORNaCN0X07gxF6EQARQknuETw+lFGfSW7RJO6TkVqGlBFRHiKRbq9BEVNHBBG6GS+Rr4XtkX2LahFoYddRUt6LUarL0tFCDXPRPX/CEUA4mVFUaMxRav0o0VWUvxEW+zXRDDpKkXhoRVFug5cRwsvpUblSsdG6YCvRY7GCUUVk01FUO//R/4S1UYHhdpGSsCtRQr/kkZHfxdF7Bg3RUGe7kQs6GlFJ8e1RbtRCUXx8LpEFrzSRIKp1EQXWINFNB/wRIcLQUbqZrpFCjyyRiHZTUWwmRlGg+Y0RTSNc0W6YMREFshYSTv+iEXkydJEluwzRXD7QUXdJ19I1n/iRJW5pkYfXyNF9uoKRehJjkUkjN1FHbUERdeAzETvIKJFTZsGReh56kSrEGJFIfXxRSX7/kR02+FEBjTNRzLP3UaQPLtER9IeRfq9BEX5k9tF/bgURi8/BEXfAMdER3GLRWeKPUZNrjhFiSjMRlxXiEWxY51GwpxRRtwuXUX8fc9FgaWiRU2j+kVBCvdE9hv/R/ZB+kQ3/wlHlmnoREzhE0UlkrtGnJtXRWFy4UQLKfhEXTrsRGb3xUSFz8ZE7dPVRB2yCkVJuc1Ers4jRfSCd0XXAu5EU77sRCZBQUasmTZFKckcRfHjT0eCnOpGVtG8RQh61URsRURFFiIWRamW7URvVCJFEX6KRmFWl0XGohNFOrbFRJdidUXbEOxEyXaISIwfAEieXIZHxbcuRS6naUbtw6ZFim4YRpPxNUUtMhlGTAfVRGKsFkVVfQRFQ+eJRndOwkXB+WRFwsbaReu2r0VvM9hEGpFcRR7oA0WW8lJFACt9RjDmMEb8YMxFCw5yRaMw+kTpgbxFhEVcRRhXJ0UC9kFGpwuZRVyYNEVNJmlG5SHfRfVywURYKERFDmeBRRxQA0VJEN5HDf5ERz7U6kbWv0JFE7isRQhf4UUwufhEVABfRUsH40dEllNHPYLzRt8W9UW/1UZFp0WzRdGFRUUI0+dFryAoRfPm3kVZV2hFn74KR34UjEaDmTZGEr2ERddFjUVoqhlFOFPmRPjrBUeM95FGk40JRjqq3US/pn9FC9XsRcmtRUVMV0RGmB8BRkVqUEWCTN5Eh4L+RDMeF0a8PIVFPINYRXX4+0Q= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 4RLnm3HBckCqhLyfq8JyQCUPsZ/cwnJANki9/u/CckD1Y91FDcNyQHgzc787w3JAbmh1jHDDckDAAFWIQ9JyQDcSZN5J03JA1gVJknPTckChdRtWuOByQMp8B1pP4nJAsjFf6o3ickCWyamaS+NyQOZZrxle43JAYu3cyZDxckDt7kjdyvFyQLWztb2v+nJAQMfFMGMAc0B4ZtB99wBzQPCHMxCMAXNAv1omePoDc0DCkoHkhBJzQObTRum8EnNAmB5LFQYUc0AkJL7OpCBzQJZ19Bk5IXNAIFRb/pEic0AC4TP/zSRzQDj2dZJHMXNA6iIswnhBc0DKPFFQJ0JzQK4Z1UR5RHNAZv9oiqRTc0B7GidlglRzQBkwEoU6Y3NAY6HjHfxxc0DE1vH7UXJzQLdi4z9LdXNAJrhUkHiAc0CcBj3cDoFzQAzX/HYJgnNA/J2gbYaQc0C06Ck+TZJzQKS1j5lhlHNA6ofgq/eUc0CZ4BAQuKBzQNr3E3BaonNAPYkcI+aic0Bc2YOoeqNzQAJBtmoDpXNAtO7LdLazc0BxY/nxDLRzQPwNYRLQwnNAuPdXYSbDc0B8QP8i2NFzQOEaf7b303NAhhH+kuLUc0BJxJ5eOOFzQCnTc8429HNAUjfwh3gBdEB9uoEqpAF0QKiiBkwZEnRAB3PaXkwTdEDdceVAtiF0QAd7lICNVXRAtkLLCbhgdEB8+HQGCGJ0QHjG/z5OZHRAMKuATiJwdEAEaf8xQXF0QDTXpTo4c3RA2sgSVzd1dEAUicZK+IB0QHbx65JOgXRAMBnXF7OBdEDedKnjFpB0QIN678S4onRAmgQZxxCjdECfMoDzuMR0QBiGNjvJzXRAQIxqD/7OdED0GQz/zdR0QJTWNqC44XRARg++dcnidEAoa9FxjfN0QNMWn19kAXVAr4JvGl4CdUDG3T2JJBR1QJTeN9bLNXVAsI/IpXdVdUBhJJtQEmB1QMzUqz45YXVAuaDN9HVydUDUcGJqjXR1QBD4LRh4gXVAeNrdNa2BdUAgbcCXpoN1QLZMHLI+mHVABE5E7piddUBK9Wd857J1QHz9Jo18s3VAzA8ZD/nBdUC4eFIGisN1QIRUC8Ph33VA/zPTSAjidUDc80KlSAJ2QJhKxDACE3ZApkgzSgwWdkBk4gNsiCJ2QPF+wk2QJHZAzuXgqR8xdkCwNh6bHUF2QHicisZ5RHZAyP90xhFRdkApyMOSzVR2QLUNxh/NYnZAgfMvQ5GDdkAMTnhvwbJ2QBKK3n8MtHZAZKp0js/OdkDtXzwCkvN2QIb76BE0AndAXIN5jlANd0BlUVVjARJ3QASNHVeqEndApEYXG/EXd0Cum/i0Bhh3QKjrmytOHXdAjJwVRQ4id0Bzu8svDTV3QLT3S16dQXdAKZ7GRRtFd0B0DlN5S1F3QEYsdKqSUXdAQo7Wz49hd0CGFn5Lo2F3QKHjQTZoY3dAAPproSdvd0DW6wmSe4N3QJT3rGJLlHdArtB8XAaud0CviviibSJ4QPD4YIsMQnhAltEdSHpFeEBscxTqylF4QHFOggSVUnhAZIHnBIlVeECuWr+j71d4QOaJOV8zXXhAFJqtKktdeECei5Gs+mB4QFy4C1i4YXhAKOrhCIx0eEAY/6Oxq3R4QFwCK0OjgXhAposq5pmEeEBeSsQ1l5F4QEyayHiolHhAa7TbcM/AeEB8F1Oft9R4QHUGVhAD9HhAAvs0j4z1eECq+KmtmgV5QNRGrQrNVHlAfARc30ldeUBCXdHor3J5QNJdv2S/snlA3ukTBkLUeUDk6AJZy9V5QCYqKqpO5HlAjruGnQw1ekDq6I/HGkV6QKIKtzErVXpAFjbn/u2tekC8XuZ2DbZ6QA57AOoE7HpAL5dgKTfuekAmm7fdDvR6QD2j7hIqDntAOHYE+EwVe0DWTz2QWyV7QOp+a95TMHtAWN5T0WFAe0B2qi6CQlB7QCz90tIjlXtAxKBEVHjGe0B88vQl/+N7QDK0TCqM9XtAyPZintkBfEB0wqEtmQV8QF2o/4jSEXxAcHIDXc1BfEB+GtswDWJ8QCrGiBG+snxAll3kb83VfEDa0FnyV+J8QCCxm0YW8nxAnwAPulTyfEAwKSqkRgB9QEzgsXgCAn1AnSUPf0sCfUDYXIK2RRJ9QP5FMrcsw31AWI/tSj4vfkAUuFoOxld+QDjM3PoR5H5ABBqUTRjsfkCrDjluuHF/QNpzyhhjkX9AEMySDmChf0Da4FW8VLF/QCKVeN5IKoBA8tpI/EsugEB6sn1JTzKAQLwMpY0rPIBAi3m1MvZIgECzEfZT5lCAQPhrTREUUYBAodqPlQ5ZgECA3MrsKG+AQCqMJrIdj4BAJpN+/myRgECCxxXvGZSAQFbjnvSFqYBAvrwhe1LBgECUe2iKU8mAQF4MbkpM0YBAck9QAWHRgECLGCZDStmAQDvaLmhD4YBAoHGGG/fogEAMylZvSu+AQH7Di8w//4BA7h7SjEAHgUD3ZrEaPA+BQND/PDM0H4FAJ+E7HTUngUBIYffs7CyBQN3UYQb0RYFAL9PJw/dJgUCNL6JBXFiBQP6MW2XhXYFAhKG2QmJ/gUCSdY6kHYSBQCLwu71Vj4FApgwIWleXgUAAn+su6KGBQDJAs1ptqIFAdduQXkqvgUDIt0RjKsyBQB7jjmPWzoFAVEtQ43/RgUBW2O2mKdSBQDJWr3aE8YFANEd84TH0gUBq3xKg1PaBQMLRS/PYGIJAq5uN4tcggkADZuKe0CiCQBKwdxyiKYJAO5zwNaYtgkDnTu8p6DmCQOpSr0zpPYJA+gx8YkOJgkDqz4+IQ5GCQAnKtYYqlIJANNHLfTyZgkAH0608VpmCQC76dFoPoYJAiJMXaTuhgkBZS7f2DKmCQOhfyhs0qYJA50ham3kRg0CUbEXneRmDQMjRe79yIYNAYsDpcHEpg0BBWXT3aTGDQC3I7HXOGYRA6daSU9AdhEAKvfU7/2iEQLBNUIP/cIRAZJTQTY2ihEAmqibJkqaEQD4vs31q2YRA/mFyz2rhhECv+x7aYumEQKhjcbE18YRAxsTVyGPxhECE/UwPNPmEQLL8x5KgYYVAaiRHcqBphUA63Qy3mXGFQBLxoQeZeYVAV6Umv67+hUCE8PvasQKGQFMWwzInuYZAJMaVjpEph0A6g9nJkDGHQKySwSiKOYdAJFCYw4xBh0ANQX6gx7GHQDD/pDvIuYdAWnp0MsDBh0A= + NrgMGZxjYkD1hHOUyCJpQOJgFSPMRGtA0BY+T/wBcUBxDmdlvrN0QNB0GqNUE3hAx2JralYkeUAmyR6o7IN8QB23b2/ulH1A - + - beJuRVjwiUWmQQpFZLkeRX+TVkXg/7BJxoMIRdTM90a96zxIz0HTRIcRykQlMUNFUyjYRLMfE0Yj7wVF3sfQRMh+L0W0vPdEYijiREJ/90Tfvr1EET8NR8fTLUcRfhhGg2e+RYZnLUUL+NVGRPpjRdp/akWGvOhEhqV/RQe1MkW1Hg9G6HdVRVlbxUTJ49ZE7g6+Rj8dG0WV4TFFFBTeRoASdEU0rUdFIdkvRYb7T0esZ9tER9GHRhL+6EXOEv9FE9PhRbXtKUX5pRRFPlFgReUQL0VmZYpFGK0ZRmIq5UQwz9lEqRmsRbVxAUbn4CdFiiubRvLn7USybQ9GJv+ARW52/kRbEfVET8GZRZtzX0UuStZEARy9RT02SkdsVOBEfFLQRAkcVUU3GdZFEVEIRTmQ0UW7WNJE6Z0DRXJtP0U4cdJENiT8RJG7zUT3TzpFJlyARZsjm0WGvkxFjfSARa05EkUNAGhF2i0IRVa89kT99SlF0VIGRatRDUYy4SFF2nzKRcXWeEXnpKZF9Vw6RRcT40QH3Z9GiBoIRfuvWEViAd1ER2KJRZLcqkV07T5FjAnzRJVw/ETPAgZGmUPXRnv/rkW72EFFZ6krRZ3KJkbt041F7s6BRV0/CUXCeKdFO71xRUneE0XM+Q1FnadURzvBpkaq2eBG52QwRSmHkkXxhvpEyaODRUGRBUjlJsxGPUTkRgYolEUlNJlGdKkURV1xxEQSKX1FPL2nRTTxF0U9iMtEZEPGRO7fm0UYewhFwodPRrzWo0VInKJGuEpfRef8KkaxIehERzb8RIa9CEXGLYJFWmlXSeelhkU8UhxFcmVfSKQCB0Wu16lG9XIGRZAgIkVaoHBFyELtRf0N/USoBI5Fi+8WRSFjzET2NZNFS8D9RQvkCEWwcP1EHi3MR2fTxUZzXg5FD6wVRWPHykUuxwNGwjguRVvF+kRtngZF1F01RufXgEXBSHZGKobgREQcbEVVRRZFbp3ARBO77kR22apG+sxSRrh7rkXlx59FQwgIRrN37kRgt/pEjybORLXs8UfsnhJF+brjRgLHg0V2NixFuQO9Rs+QZUWEyMZEkTzXRJ3oAkWU53lFkgULRR8TpkXd+k9GxZJDRYYWQkV2tyZH4F64RlxsvkWFwjNFJ4LxRJMTXUXz+oRGMoG4RfWUAEUtM2NFp6RGRS8ABEXdr+pEcW99SKJC5ke3MHlHreSURcvXbEZ236BFdYTJRHPG1kSAqSVGS8ZeRVjgEUUP4RxGC9XvRNRB40RQzYJG3gfdRS72gkU94NlEvoPaRMw73kSKLqVFF3vwRG+QLkWTPQ5FhJ9tRdFJdkaAfyJGJuqmRZm0TkWCGoRFfBC0Rf/9FUVPWnpG9+uFRUnUOUXa7ItGy5TORUgntkWsXyFFMwvnR0LCQUeyY8lEPz4AR9H4H0XpqMRFDLcBRkT8CEUEmjBFs+7TRzHWNkcWTulGJ5sARj4mTUVo1bZFNWrnRNxn1kUNg0FFkaW0RWL0GUVDSRpHRZ6URklDQEZItIVFlrV9RVoADkWzxgFH9SlkRoqfKkYPZC9FlJEIRtyYokWHSQhFJx9NRtmMwUW5OlVFSn7pRH9cH0YcoIhFHRQzRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - /58e03bAckBWW/Jyc8FyQNOMWxtTwnJA5A+Rf6zCckAYEo8u7sJyQLfluYkFw3JAHIWUeDvDckAUCa2JW8NyQPotVepqw3JAyk+2qkPSckBVf+itSdNyQIBWucPM33JAedEMBbrgckBY1fK0T+JyQLDLNP+O4nJAiBcLD0zjckAWdU2nkfFyQFJT98DG8XJAPk6zYaP0ckDSRud1wv9yQORaeBBgAHNAgz2ZHvkAc0BJQoS/+gNzQMhKkeeEEnNAso74crsSc0BzHLUN+BNzQApij0KjIHNA8odqGzkhc0C97xtdkiJzQMib2QLOJHNAsuTITkoxc0AWGzyU40BzQKZxSH13QXNAqoFL+SRCc0Ca0NhGekRzQJhsINGiU3NADoSXjIlUc0C3KOufOGNzQAy+qs/7cXNADsvIClFyc0AXAysJTXVzQOZOAch4gHNAuOFxZKOAc0B+RWXxDYFzQKEhVPAJgnNAgGBiwYaQc0D+LW3OTJJzQDjw0k1jlHNAWzqbhfeUc0AMOm9SuKBzQChaJZ9aonNA7IZHReaic0CXCrSkfKNzQE51uRoDpXNABVcwPLazc0AM+1hWDbRzQLhRPxXQwnNAuhKFsibDc0D8InCN19FzQPQEqqQw03NA5LCOK/bTc0CoeTbS4dRzQB4ZI1k44XNAshfTZEjxc0CIdrkQNvRzQJTHrd14AXRA1OJouqQBdEBp3Gn9GRJ0QGUC4wtNE3RASGwDHuATdEC4hIRfuCF0QLzx5S+6JHRAnskv2PZUdEA4caDKjVV0QJvZgQi3YHRAiI0cighidEAo0pMrInB0QI7tN/xAcXRANK/1iDlzdEAqAki+NnV0QAo9YHr4gHRABx7Duk2BdECcBfcgs4F0QNclRwUWkHRA1qwI1myddEDKHvP7DqN0QDPFM8oIsHRANAqQvOLAdED8FsuIeMF0QDA6meG5xHRASlISj/vOdEBAUE3KzNR0QGpifuu34XRAOLO1X8ridEAQ1PPR0Op0QEACHnaM83RABgZ7cmQBdUDi3rfVXQJ1QFLz9mSbA3VAgMYLlCMUdUAep1jmciF1QG1BPGqeInVAL3VebMw1dUA9XIKqdlV1QG5r/MgMYHVAjn+hwDdhdUBoYRloeHJ1QFNrkmyNdHVAgveZLGt7dUDiSOkteIF1QKsLhXqtgXVAft7vVKeDdUAKML0wm4R1QCw0b2y7kXVAVnhAlT2YdUCunyualp11QPqW9me4oXVAkf8Gy+eydUDQkwZPfLN1QPhYuJdjwXVAWGmsnfjBdUD+yNZziMN1QPyt24gH4nVAtZwPA0cCdkAiWsmsARN2QHJcusJNFHZANwx/XQsWdkC8rV8sCRt2QAp3qi2QJHZAXycbJb0qdkAXTqe4HzF2QFRPZMYdQXZAgzHr3HhEdkCu8CrAEVF2QEqhWkfNVHZAAnWvBM5idkBD7/pD3GR2QOQtmLslaHZAKLq/i5GDdkBMg6T4wbJ2QFjR7CcNtHZA877PyMHAdkBexfmfzs52QJrzvImR83ZAselP/DICd0CiNjzBUA13QDXjfnkBEndAfOi9JKkSd0CM86iBBRh3QDxUaGVNHXdAQ06Dew4id0C0wrEpdCJ3QMFzyboMNXdA68VX2ZxBd0BBRsUiG0V3QHDyS0pKUXdAOpzgkpJRd0CzkY11KlV3QKFyLpSOYXdAOML/Kz5jd0B3odVlaGN3QDZkoncnb3dA3jivI3mCd0CgY0QOCK53QDxyAw9uInhAQRdmC4sjeECYEUuvDEJ4QOiUvlN6RXhAHhcw8MpReEB19JV9lFJ4QDiKMOSHVXhAvMfFCe5XeEAEBnNtS114QFpKi774YHhALLbIQrdheEDgRVfStGJ4QEav/VqLdHhAWaHU6tJ0eEAwcVoWpYF4QHKdK1yZhHhAxK7rzZeReEBzuBSZppR4QFVFbh3NwHhAZAgUlbfUeEA6NAHoAfR4QPi3rD+M9XhAEpT+VpsFeUCMZ4N6zVR5QIzeMXfAsnlAQITAtc/CeUAATz88QtR5QP2B7H7B4nlA2HtOYFHkeUAKmMtxDDV6QLrvAZ0aRXpAuL2gJilVekB6SKdVDbZ6QMKZ+Nkrw3pAt7O28hzGekCdTtqRBOx6QJDJfZw27npA/MlqpSkOe0DcUbP9TBV7QPUGMzxZJXtAwFpYalQwe0CiUGDbIpV7QKrGAkE203tAboAZkf7je0BUqZK2jPV7QDqMvLySAXxA/lx38toBfEARG/2XmQV8QLprthvSEXxAwA0fZ81BfEAycUDpC2J8QMiVGmQDc3xAJGp0B8KyfEA/g+flytV8QLLEeNpX4nxAKFPb5hXyfEDEQUvQVfJ8QORkRaRGAH1AtJW5HQECfUDLPcpuSwJ9QF58bo5FEn1AXaBJ2J8xfUA6Hg3NKsN9QGrBfrEqxH1AsH1ptjcffkCukfFpIl1+QPKkwBoT5H5AUmiFchfsfkBazz2xIvp+QBDv4X+2cX9Ai7hFuaKDf0AxmHXHYpF/QLMm9zerkX9AbFRaKF2hf0BoEwglVbF/QNZTLatIKoBACryMO0wugEALirwPTzKAQJ6SNBAqPIBAcgkDmdc+gECoPnQT80iAQLvzpVXmUIBAnk8VpBRRgEBs7h6yDlmAQBiRoaMpb4BAkkm68gRxgEATbC5QhnGAQLDCxSYej4BAQA3ulG2RgEDK3Jdkh6mAQBqEvnpSwYBA5CNndlPJgECsNf21TNGAQBhg9z5K2YBAqlJLqUThgEC0lWdxWOGAQOEz6WD26IBAboGMfkPpgECLYGvUSu+AQL8skHU884BAsA1j0j//gEBY38frPgeBQPpWYD09D4FAME81YTQfgUAbx115vTGBQG41Hon0RYFAjont5fdJgUBc+DNgW1iBQLOaFIfhXYFA1owoJuRhgUAoJF51VY+BQI2HEI1Xl4FA3LG94uqegUAMG5Kw56GBQEcCjQxuqIFAthP9zUqvgUBFJc8/KsyBQARXFvHWzoFALqyTSoTRgUDkRzxLLdSBQNc8OLSF8YFAZsnZrTL0gUAQ32G13PaBQNpTX1bYGIJAID9lXNYggkDKboBJ0iiCQFkzcR+iKYJAkN7YuaUtgkD/cKU8pTCCQGB0eB/oOYJA4qTyS+o9gkAGm7VrQ4mCQKMRF99DkYJA9PW0YjyZgkCcvHhED6GCQFRtVb88oYJAyZd4Kw6pgkAk/q3NNKmCQIOcGg4IsYJAAnOGlHkRg0Aqy+LmeRmDQIArEP9yIYNArpu7YHIpg0D8Yt/naDGDQGbqB7DlgYNAPLvlwMwZhECw7Jni0B2EQMfygdf+aIRAlMECC/1whED4wDbk9niEQN6ZvoONooRAbpyzGGrZhEDU+ZoOauGEQD4TxsZi6YRAEPK6+TXxhEARkNvBY/GEQBJtmgU3+YRAdCPObaBhhUA2/zhpoGmFQGwztOCXcYVAe3Iacpp5hUABJuVrrv6FQOzLQXewAoZAzFqy6ya5hkBwvE0okSmHQNxaSo6RMYdArozBqYo5h0BeYcrfi0GHQDeVdtnHsYdAlfqKG8e5h0DOK+o7wcGHQO9G2/TjgohAGURQY42FiEA= + NrgMGZxjYkCPTWWFSwNpQOJgFSPMRGtA - + - m3KYRJ61BUXBm9JE43t8RUDZKEVXfTJFXfqJSWvOl0WOw0lF1lDxRlvLFEgkgcdEd+ioRDAPT0XY++1EJEffRWdrtEQCNx5FU+vCRN8+wUSY/d9EXwz/RIv56EaZ+gJHWuUXRs4XVUWYx/pEXf6qRsITHkVTvmdFmKeZRLvvzUSMETZFlYAIRb1h6UXJYHtFyOzVRCEOAUVmXWFGT+WkRFjDHEXrZdZGoOCzRHfk20SyvLJEuYIcRQvvOEfA3LhEvthfRs88+kXz7NxFmlbKRTEm2UTetx9F99dhRfPFBUXM0Y1Fk4/6RYgfJ0WL3KFEWPnaRKMNmkVK5txFaMvTRP4a50RwmYBGRnoHRSK3nUWBJl5FIBylREmsK0XjkKtE12sERdFhsEQYGIJF4OwmRdJFjkUCY0ZHZm4HRdkKrET/xhJFqyj9RR34C0XabLlFi83JRDb7IUXxfK5EgtPBRDR1tUQQrdFEql/IRIJKrETd6iRFAy/lRdMcT0W8kdJFxAMWRcF8NkWlNMBESOc2RQphsERy77JENdMeRZasEkVHSL5E/DEnRdQyAEVt7zJGulU4RTguAkXVq9xF37BRRdtYNkV3cqVEDKWWRUaoLEXjG+lEoM7yRH01m0bjzK9EZkS2RLZeG0X/xjRF4zCDRUYrkEWY4vhE0YXJRDIs5kTIoe9FZzUGRYLawEaTVaFFMCNbRW2RT0VwiU9GUFUnRRLA50Sqs+JEMwSHRel3I0URAbRFlmSbRGWwQkVBEjRF5kjuRMRkT0c5mqBGdr6kRskK0kVWZBdFfatgRVm56kRkge1Htj/ERhXr0Ebt2q5FUhKORkq0wkSgEgFFmC24RLEaM0UwD4RFe7XnRPCJwUQK+WdFP523ROiMv0SlGmxGW5qoRQPRmEYTOgZF+UIbRuM2/kQuNRNFzM9PRRnAlERAzUdJaDfmRAv8AUVdNU5IVKP3RGuhrUZC1NdEH4NCReYUSUU/f7hFwbutRF6eO0WBrY1FYuSsROIo0EVQI7tE3lK6RNBZtEfldNZGKxXuRA+Z9UWXYuhETZufRFLNmEWo/v9ECRDqRMPaQEZ2ywdFXmYgRr4WMEXzjVxFyxbDRLzUhUbZKLVEyoNERt94nUXd5JJF2WDYRTLC5EQJxalEPNzJRBzG3USHmN1HLMUCRZN05UYmSoJFzp0KRaRvrUaNlmZFN1a9RK1eq0RAir1EYU+XRMcG1USYzZ9F2PYGRbyqy0QYVKZFk3S8RPRsVEbcZ71EvuBdRTpbNkWCi8pGArI5RtEzX0VK7A1F8FyoRENguESb5zdFupqHRklOh0XOo/1Epg7kRJz7sURAszpFEuQnRVTFAEW8e3RIaI3pR1/5eUd181FGFIqLRWDyrURPPshEGt27RKYj90R0u7NE7Y0bRrY6MEUOKMdEbs4CRvDJEUWv/BtGUniHRW8eRkX4Dn5F1mCwRCEOnUWX+MNEUUijRP4XfkVXtyxFnfQtRQmeO0aWgA5GnAyFRX/9UkXFyeRFXktBRd1QEkVgPTZGAVOPRbA0YUXRDCpGiFmFReSnrkTpPz9Fdoi7ROz80kdp4TRHxqvfRqiUrkWxZPJFd+35RKK9EkUYXr9EI6TUR7yZQ0eIk+BG4mnpRdH68ESbCpxEWt0FRbhfAUWzq9NFPpXvRA7m10ThKT9FnYgPRw6JgUa2zRtGUSJ6Rd8HXUVWiqFE4RUIRw7CXUbTJORFKuh1RSp4mUV98xhFaQHORFSBEkY6l6ZF2JenRc4i+USlQAtGNyuNRZdcikVUw7xEgofJRA== + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - KkscYXTBckDYILqHVcJyQHTXFp2rwnJAQMW0lg3DckCWtTkfHcNyQHD5F+47w3JAtfQogFPDckBJA+epYcNyQPjpjntsw3JAeExAKsLEckBeXKzqQ9JyQIgNMg1K03JAei74WrvgckDJXS8YUeJyQAzbc+GO4nJAnOvF0kvjckBa+1t1XuNyQIvd9IyR8XJAEJo95cjxckC4igAFtvNyQKdx6jvB/3JABs6KCmUAc0CeCOL+/ABzQCUenWrQAnNA1CQ8xvoDc0AO0PaGCRJzQK6tC3uFEnNAFgvYVbwSc0CgUEPK+RNzQDz77WCkIHNATMucSzkhc0CmCr1GkyJzQMZ447wUI3NAOFnOgs4kc0Asn+bTRzFzQCJyCXxaMXNA+C24lTY0c0A+RV3f5UBzQIbstrZ5QXNAuOzo/SRCc0BsnqmUekRzQJAmVl2jU3NAMgJ04yBbc0CAPheaO2NzQAsTk938cXNADiwiwVFyc0AEOoW7uHJzQEDv5/lLdXNAL6oa/XiAc0DYPnfvDoFzQAOaf99dgnNALlxnAYaQc0C6PqlNTZJzQBoJMDb4lHNA/GU84Ligc0AAI4BpWqJzQMbDsEjmonNASllcnwSlc0CDeCtbt7NzQPQf2PEOtHNAGJ0ecPrAc0AVFo7Y0MJzQDyHZKkmw3NAHme9F9jRc0CNweZAM9NzQH1/2kji1HNAphpVATrhc0CiL8cGN/RzQFJM1u7jAHRAiqm7d3kBdECOUbEFpgF0QLA9mvmLEXRA5hqC0RkSdEBcmA4TTBN0QPQalg5PIHRAcciu87chdEDhMPyWeUN0QBIB1bz5UnRAWPh5VPZUdECa3sGdjFV0QED2UV+4YHRAd6zB+wdidECKtd2aTmR0QKALeZkicHRALleSiUFxdED7EUKXOXN0QHjdbSo4dXRAGcoJsfiAdEAGEt4kT4F0QGgNFeqxgXRA+phfTBaQdEDNY+VLbp10QPa1by7RoHRAGLyCCxCjdEAhiP5mCbB0QNjP6ljjwHRA+R7Cq3nBdEB4fZQ9uMR0QDcMYwH9znRADO/XRc7UdEDCgZ2buOF0QGWu+2DK4nRAOkRwyNLqdED7nIN+jPN0QEAEnmGnAHVAUiikzGQBdUBwZIu/XAJ1QMkdjUYiFHVAwvkCtZ4idUC9w5PGzDV1QDStT5zfT3VAiwjdkXdVdUA/uYeHN2F1QMNelzx5cnVAPnWFdY10dUDw3ar4a3t1QHzOB8t3gXVAjoSWuq2BdUAvvwQ4poN1QA7Ok2qbhHVApuU7tT2YdUAyQu5NmZ11QMYr24i5oXVA9HWchu+idUAcocp/fLN1QLqwtDZkwXVAWiHDh/jBdUCHkTLhiMN1QBo1kSoJ4nVAEHBEWUgCdkCV+l8dARN2QMuj58ZNFHZAsCnHQgsWdkBSYWfSCBt2QLy2RzGQJHZA/Y6olR8xdkDDBp4+HUF2QHE1iu16RHZAsERwBRJRdkCM+hQzzVR2QI7vbbfPYnZACkdhINpkdkBq0YQpkYN2QGT+qQ/BsnZAMBYMrQ20dkBzExV5GsR2QAzu+FjPznZA7MoPI5PzdkD67b4/MwJ3QNuu7fxQDXdA5hdDowESd0Dd0hF0qhJ3QBpJuOcFGHdAMviEuEkbd0BY586IDyJ3QPjHsFx0IndAzvOu0Qw1d0A6VBy7nEF3QH5jn6uvQXdACOWAzRpFd0BUEu7/SlF3QG6lXuGSUXdAuo/YzypVd0BBqD3hSWF3QF27AQSPYXdARNcNamljd0BnWOsCb2t3QECh/tInb3dAC9/JI3mCd0CGsXRFe4N3QNDi46hGiHdAYIFS2QmSd0CAYdUw6eB3QCa4El9tInhAjAOXkosjeEDqr06UDUJ4QMSEdeR6RXhA8hdJQ8tReEA2rHBhlVJ4QJCz3H6JVXhA2GHGBO9XeEAQUF49S114QB2sr+f4YHhABlq67rZheEC8nZalXnR4QIbxtFyLdHhA2JrNtq90eECYhMv6wnR4QKh14/KmgXhAFY+wnpmEeEAOKB43l5F4QIbSrCCnlHhAFoAK+svAeEChENxXBsV4QOyVVgC31HhARudtJAL0eECZZzKkjPV4QGThTv6aBXlAKSHOCPtCeUByVRnmzFR5QPhXGO2/snlAnNewjULUeUArMC10vuJ5QLaSAipO5HlA4oQtcAw1ekDaKnq6GkV6QJbX6pMpVXpAIFqupYtyekC0y/iA8qN6QAjC/moOtnpARvfGDC3DekALdUo7GsZ6QELVFPZBznpAR2hpIwXsekAKldjoNu56QObiIEsK9HpAMnJLDCwOe0BizUpaTBV7QEJwcTdaJXtArzJFqFQwe0AbpM7AQlB7QJC7yO0ilXtAhF3CADfTe0AK28pcmPF7QNvO2iSM9XtAoAk7n9oBfECrJlkFmgV8QPAeWifSEXxAc3z/4cxBfEAbu1Oq3FF8QNpDt9O/snxAXvkZxVfifEAU2/5sFvJ8QGy8soRW8nxAgijpE0YAfUBmjWwEAgJ9QJy13JpLAn1ACyfdW0QSfUAMyLHhPyJ9QG0mMy0mxH1ArHWYoo/1fUB6w2w6jFV+QDIAC1nGV35AfhCG8h9dfkBkIFgsTcl+QAmhQ/0T5H5AYOAv5RrsfkBC9kgxRfR+QJtjo3cj+n5AhEYq0rdxf0C8qoeYo4N/QBJGPJVjkX9AFqWmaZuTf0AJ3Yk2YKF/QNREslNXsX9AjoRCDm3tf0Dwl9AQ4CmAQGa/x6JIKoBAYi6kBk0ugEDgAlvtTjKAQGyrvSEqPIBAHurzTtg+gEASC7Ag8EiAQAzyjGjoUIBAptOlBxRRgEC4kTW1DlmAQEKunyMpb4BAhpTTAgRxgECgCXGIHY+AQKRaYqBtkYBAvPlwtBmUgEAr+qGY66GAQFp+kWSHqYBA9fqvnFLBgEAO5nVrbsGAQLaf7KxTyYBAvY8VH03RgEDAosnHYdGAQJCAO9FK2YBAdlB85UThgEAinLajS++AQDTmUQY+84BAd4IDBED/gEDajwkeQAeBQFdaYCv0HIFAie33jDQfgUAyBTmSNSeBQBsLpk30RYFAR/60uPdJgUACqTXi/E2BQBKaw3NcWIFALJPehOFdgUBarq/w5GGBQMJappkehIFAIRUDDsmGgUAWwzAEVo+BQGCA0q3moYFAH0JO4G2ogUDsMRx2Sq+BQFrpMzgqzIFA2NG6ANfOgUDkPbs2gtGBQGBj2Iwp1IFA+BUvqoXxgUBKuxKxA/KBQJLkOQ8y9IFA4WVz7dz2gUAAar3h2BiCQJUjyGHXIIJAWce9G9EogkCqSdzNoimCQGUBCcqmLYJA8QHfzpoxgkC2u5U15zmCQHSCi1lDiYJAiCIjvEORgkCYlKf71paCQLhoIFA9mYJAu2vDJg+hgkDOZLtOO6GCQBZfIAAMqYJAUqOhczSpgkDGbf7AB7GCQKJaU7av+YJAotWNsnkRg0ByooAoehmDQNg9UfdyIYNAuc9Dm3Epg0DkWEJ2azGDQDg/W7HMGYRAnr6P4tEdhEDwvPgK/2iEQMbHls0BcYRARODBzPh4hEBIpHvqjqKEQJA2xPiPpoRAQAhEeWrZhECmleo/auGEQCYGshJj6YRAjt60azbxhECemUuOYvGEQLzWYCE1+YRAqqWceiwBhUBZtYaaoGGFQH6kbc+gaYVAcJ5IDppxhUDG8B9OmnmFQELsCAKSgYVA5AbSLq7+hUBy5GSIsQKGQP5ptqUmuYZAbCWsQpEph0A2d1QEkjGHQFwCwOaJOYdAClncXFxBh0A87aZeikGHQJTzhDrIsYdAGohav8a5h0BZhHPBv8GHQPp2g/y/yYdA4IYFITOAiEAcFypo3oKIQAZUFsGMhYhAWorS/TaIiEA= + NrgMGZxjYkDXkZP9yKNsQBu6YmAmQ3BAsiNeuPyCd0DiFPeZPnR5QNnkpS+rk39AKt3bRJe6gEAA03bTLNKDQL69f4DuwoRAuiVXy6TSh0BSniO8RcuIQB5TIegwa4xAtsvt2NFjjUAegg8S3fOPQFfVtoMEfpBA - + - x2sGRRRG2ERGpVVFl5MBRRORikX0rllJBzb0RYY4GEXoPPNEvsBwRMED0kaoG+tHmOrWRKf4ZkVhXslEPYerRQLmv0ScPpREne4rReV1l0QBP4lEVRaqRJfGo0QsObJEgGjNRg+Aj0Q8i79G+XoPRnxSUUWtDgJFWIScRkBHB0UNF41EqFNbRacc9kTq2qdEwqDIRBj6gER+u2JFvRzLRD+d4UWqJzJFiFubRG8WxkS6VgdG+Z2ARB51lkSywutEqdHbRuoR+kShp5FEwVX+RNzXTEdsGTlGDOfFRWl8vUXwtZ9FAW/CRHYjVEWZZNRElcewRCrjVEWJf85Fsbf2RNo5lkRZPqpFPjugRbYS2EQK8ahEe7WTRutItkTL5Z1E/KCHRS8eMkXwH4pEmTgURWKasESqdJNEfc6/RNR3xkSkLlRF/mZDRVfizEQPqp5F7NE8RxLt2UQu57dEzGYbRRMM3EXgurREhzGpRVDinEQLXKlEkJkPRThxhUQ0j65EroqNRB0ipUQ3uqJEzAvFRDWaAkU+mS5Gm0QIRSBwokUpq7BEbYIdRTl6f0VRq+BEXZrtRJZMDkVFioRELcrmRMKfQkWqXcBEzil4RjrRKkXcyw1FhfepRSAwcUXVPxRFFDWPRZseH0ULPsNEQr7IRFBZu0ZKibtEUv8JRT9KNEU8MTZF1Xl/RaLbnUUP06BEGNKPRO4j9ESApNRFcIa4RnKdpEWHk0BFVTgFRQWhkUbIgdBEfBlaRcPxfkU4FSRFwQGRRaUsjkRcuxhFsK+/RNTQ+UTorDJHPBCLRk1RpEZzcIFFI/nWRPxyM0V8fJdEhUboR36Wu0bpV6pFqNDPRkyOkUU6MYdG9hQBRa3zuER40RBFrGUCRd1qy0RrGEhFlWnLRL/Fw0QIDZ9EMHWURCf4h0RwD0hFA62qRFvgmUTjMjJGyoR+RbFpZEbXCr1E7PkBRvYbKkXENCNF44ExRVvNWUUQET5J7uC3RR/VHEXiWjNF2FNCSHf7nEQaLp1GS+DtRECguUQq4jlFrKhaRU+RnEV0oJtECGOmRLa1TEWLOZJFLr/gRc+JoURvj8JE6CKqRySOw0bF4wNF8ICRRIfBo0Syv7RFuPOpRARY8EQXHZtEziouRRpDAkVSKI1E2i+URFCfLkYb7SRFMBLcRVTHsUSzL2tFr0aVRcyuRUUUVJVGhDlCRhcKg0XjL61FLSm4RSL3n0S+W9REcUTQR8uH0EQ6599GtVipRbmD3USJHaRG4FJTRfUWo0SbapZELboARcXdDkUvmhhFLJGaRMxVnkTgh4RFya/zRHR0vUQmn7RE0rduRYjaqkSCaDpGim+GROFzTkUAjAxF7cW4RDCZg0Rz6YxGeE2dRXlfwUQejF1F4c+0ROvy2USR6AtFk+pYRpPJlUVIU+hEgI2uRO//RkXvgRNFDZfsRK21e0RtlBdFh8VdSB2d0kR0T9VHPvlkRxnTMEWYAFdGn2WSRXeQ0URxP6VEObYaRiQgWkUIwo1EBiz6RXN4CEUFlltGWtbNRQlfw0R7D85EC1OrRQXaSEVaP/JEuhCaRE5iiEU62URFNjzxRPODFUXiGzxGQioHRr1eNkW2kfFEaiB8RbhUk0R8AYxF6d1eRWrXPkZDxjtFRdhARU+LMUaWtaxFn4KLRBIdVkWkRr1Hq8slRxh9lUQ1Ms9G4fLBRYI+3UVjbdVEJAUXRWiC90QJ7qtECH26R7lsM0eq9spGAjXWRcAZGkXWwaNEgLGcRMI000VKiy5FL4YFRUKoC0XqgIZEKuIGR2cvekajTB9G6lE8RWrPgkWpSNpEIFy/RCti8EZudFBGRqcRRjsnLUXJwYlERNpuRZ7sVEUTMNFEI0wmRs0tvUUSLk9FM22JRBkAzES56xhGo36jRRv2G0XmaOREo4MZRa1FjkWf6SFFUA2LRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 3t+RY3HBckBak965q8JyQC8fuh8Vw3JAhsrF9zvDckC0nte7iMNyQMiTh+5D0nJA5EqJ4EnTckCFHejOy99yQLltoKG34HJA5mST8lLickAE4wSEjuJyQFwCYTlL43JASLSttcnxckCiEveSw/9yQAKFzG5jAHNAmBLB6/kAc0BH3nW9+gNzQFU77dQJEnNA8iZGTIUSc0BQ5zBMvBJzQIgnjBwEFHNA3kUz8E0Uc0ACcOduoSBzQKDSfoc5IXNAUIAGhpAic0A+A7edzyRzQLrUIyBQMXNAhKQkdyAyc0BEuGIuOTRzQA4aWJXlQHNAnsKpmXlBc0CkcMfEKEJzQJCkBx17RHNAt2j8FkNTc0AkCTziolNzQGdkHfV5VHNA/VT1cotgc0CGFXJvO2NzQDDvZjn8cXNARNusmVFyc0BWKDyITnVzQJJQP+94gHNATbNBUqKAc0Dys5xtDIFzQEwBb6SGkHNAf2NTVE2Sc0ABgGwRZJRzQKZ/JHn3lHNAsAtkKrmgc0C6K7brWqJzQE5Qn8bmonNAGkms8ASlc0Cm+LPpx7BzQAHzwFq2s3NAUORxxAy0c0CXhVTX98BzQOIxLkfQwnNAtRVZISfDc0A9Ve2q1tFzQPBd20j103NAzj3zbOLUc0B84QacOeFzQIKxKzRl4XNAkt5DfTf0c0Am0C37eAF0QMYs4oymAXRAHHejAIoRdEB2MYhFGhJ0QIq1Qo1ME3RAxD+TAbghdEASIJ8F2DJ0QJbobOv2VHRAnLAXgopVdECT51xEuWB0QHoK7tgIYnRAj5u0Kk9kdEAs1AS/InB0QHhPkytBcXRAsV/C2TtzdEAyX3Fb+IB0QLgAOcdOgXRAkfR+VrOBdECidroIF5B0QPCYCJUPo3RAoB2PxgmwdEA4suhEwrB0QIT3W+zkwHRAEEHE8HjBdEDSnGXXt8R0QPoZx+/9znRAHM2v3eLTdECORGbLzdR0QJ7aA5y34XRAQaheqsridEAHlorqT+V0QHI2v8bQ6nRAL735q4zzdECP9TBi0AB1QIJacftjAXVAtNaycV0CdUChWuC+IxR1QDjpWu+cInVAUDV06Mw1dUCCjijVs0F1QLzZ5kf9T3VA67jyw4FRdUBR1BkOeFV1QMWhO1o3YXVAosLpPnhydUBNHmupjXR1QN61dupqe3VA+yDUaHiBdUAeknI2roF1QI0uPWmmg3VAQNX5mJqEdUC8H9l1Pph1QMjHNLOYnXVA7BrufbihdUCyV5uEfLN1QPiVa1z4wXVALacko4rDdUDcR5mhzNN1QNIzzEPk33VAeu3CKQjidUDgXRXWSAJ2QH8NILDPA3ZA3HZJPwITdkAYQOrVTBR2QAoa/KoMFnZA5CcC2ggbdkAhPC35hyJ2QCq1dWeQJHZA0Jf5O70qdkB9Dy+rHzF2QHYXBMWdNHZAAHzMxh1BdkChY1j9eUR2QCHJ3wvKUHZAtG1mMhJRdkB649qNzVR2QFTEZT3MYnZAc4FyB9tkdkCoSR1SJ2h2QCrh+1BmgnZAkJVzUpGDdkBajQTbwbJ2QBbeXYYMtHZAkg6j8sHAdkBQBlVyGcR2QEwl7ePOznZAliiXPvHhdkAE7wztj/N2QL+fBC00AndAvVfVk1ANd0A1xRjVARJ3QGz1YEuqEndAs7hMZ/EXd0DmV6A9Bxh3QJjBc4tKG3dAJ4aQPQ4id0BQafyAcyJ3QP1QNeMMNXdAUGlc+5xBd0BMTesfG0V3QIp73spKUXdANQ+9YZJRd0Ax6VRUKlV3QDpQ6g2PYXdAcCcknT1jd0DWJNmuZmN3QBZGy/I4ZXdAugYsR25rd0DCZtG8J293QHyf9Ax4gndAdNcG8AmSd0CXlOAJTpR3QCrGzJ6atHdAVouImW0ieEDlwniYC0J4QJgX0ml6RXhAItdJ18pReEDebimulFJ4QIao/2GIVXhAOp2J+u9XeEALUPfRSl14QGI9L874YHhAohNQYbdheEDcFqthomJ4QFCu+/EPdHhATn/ogyF0eEAdmXWEi3R4QJQzYVb+dHhAIGoWYqKBeEB0SWRtmYR4QAL7bHyYkXhAEOqqxqaUeEA8UEhWtaR4QOKTyd/MwHhAgBaTLLfUeEB9InphAfR4QELgvP6M9XhAUDVaoY5CeUBaUumXzFR5QDS5y7hpY3lAmKCLGkRzeUBkebevbaN5QPxsDbvAsnlAFpifIULUeUAMRgaDvuJ5QMC3sCsMNXpA+UZJsBpFekA8rzfgJ1V6QN0O3BzurXpAHklt3Ay2ekCPBo3QLMN6QBr2RMQaxnpApcQoB0LOekCgoGZvZuF6QJmPzgME7HpARdFKrjTuekD452RJFvF6QFixyeNf8XpAeiuSDg70ekAe5YLMKg57QJyPHtZMFXtAOPSJvVole0BceCKPVDB7QN7QqeBDUHtAsxWvcF5Se0DDoEHsI5V7QOez2SQ303tA/tblFADke0BCO29tlvF7QMh71uaL9XtAnX1f5dkBfED8F9ovmQV8QKv3/CSIEXxAFdjwptIRfEDu60nvzEF8QBQkeL3cUXxAZN5DRQxifEDwtVtgwbJ8QJh3Oi3M1XxATGGIrlfifEBU6F4RFPJ8QDHTeXhV8nxA1uR9OkYAfUAqVPx1AAJ9QNxgUFFLAn1AjrpYEEQSfUBcoXplZBJ9QJ1l8J4+In1Ajhxybi3DfUC08+x7kPV9QMQnNtc3H35AqobPtIxVfkA/BI5sxVd+QCwVE5saXX5AtDWO1RPkfkCg92ycHOx+QOWskzgj+n5A7ALySLhxf0DOo1d7p4N/QKillxVjkX9AaKg16aeRf0AcvTB6XqF/QOpEVFJVsX9AGrwwjRLof0AMnxSfSCqAQJPYoaYkLoBAlO+XrksugEC4Yx1qKjyAQAAZGzbXPoBAv1Znt/NIgECx4em/5lCAQP+k5kcUUYBAMlaB+Q1ZgEDK7eDgKm+AQNiuJUmGcYBAimgq+/yKgECazDtDH4+AQKh8hmBtkYBA0g8FbOqhgEA32O6Q7qWAQOXwZOWFqYBAlOP5YlLBgEA86U+EU8mAQO6RSPUr0YBA1jERlEzRgECB/4WoYdGAQDhcoJRK2YBAL5G72kPhgEAlF11l9+iAQJX+o9VL74BAPMR+bj3zgEDqio7JP/+AQFCIJEM+B4FAUDGzHD0PgUBpT/fP5h6BQBgytEw0H4FArrtgCjUngUA74gM6vDGBQEbXmsfzRYFAYFFDsvdJgUCekVWw/E2BQBIH+z1bWIFAusLByOFdgUC7pDan5WGBQM4vMFcdhIFA+DPwx8mGgUBqk2zRVY+BQG/FGlFXl4FAuHFW2UOcgUCuH2RJV5+BQFYyeN3noYFAsteqym2ogUBoH07RSa+BQPWh/OUpzIFA/cC95NbOgUC4URhTf9GBQJ5+PW0q1IFAOF34moXxgUDzXaJIM/SBQINyj03h9oFAoMFypQIJgkBCtHpS2BiCQJAauA7XIIJAFol1FNIogkBVLvbQoSmCQN5fla6kLYJAbuch7Oc5gkBsCMPV6z2CQMeQWjBDiYJAqaLDv0ORgkCCFebXKJSCQEt7xwnVloJAYDSiRjyZgkDWAQN+D6GCQMFj9xA8oYJAYGx4zgupgkBg0WBVNKmCQPn6mroKsYJABHJrN6/5gkCodLRrrgGDQJTUwIl5EYNAZucdMnoZg0AgEB6HciGDQDBztMRxKYNAPiTH9Wkxg0DI3gq35YGDQGAGOiuW+INAlsSQtssZhEB0vRLE/2iEQATYankAcYRAAiwZ0fd4hED9o5jEjKKEQKStCWKRpoRA9/vMPWrZhEBlBCS3auGEQGJTOC5j6YRAkILeUDbxhECY3JrIYvGEQDQyEAQ1+YRAnIomc1n5hEDwQPxZLwGFQBpEcYygYYVA+evyW6BphUCgjtdxmHGFQFJQ3daZeYVA3mAICK7+hUArdVG0sQKGQPnrha+QKYdAzqtw9pExh0C+fpNKijmHQGogUa9cQYdAsFavesexh0C06QB9yLmHQExxbme/wYdArprGEsTJh0AWOPbgM4CIQAbMWpTegohAeZB+U4yFiEA= + NrgMGZxjYkA= - + - OBUzRbz7+0SAL+REFeQhSSqFAEU1CMhGw76zR/1GhET9TapE0wwiRUwVxkShd0pFv2/bRNKlyURxYcBEFnThRCDx1Uab+sJEC0dgRrETJkbz1EZFHy6KRHW58kQqI5NGiyiKROUOhkVBbJlElSGERAGGe0TSH4VERE49RXY65ETVWcBFHImSRFj6OkUZYJNED22CRAhBxkQ//kxF4EKJROFB6EQtNdBGjmqZROdbwESoRTBF1iNLR/h2gkQJe1NGhhjGRXyW1UXqg5dFYh3gRAxbakRuE0hFeLIURfXwpERhpzlFYtrNRSlPDkX2dNNEMlOtRdugyEWaZKtEuCesRHXnckYlkrREguqcRKWQJ0UKAElFXggtRVAPg0QuL6VEs+ltRFY2j0XHrl9F9mesRInFxUVf5VxHfzgpRRLQDEUNTeRFwiERRaxJnEWPOyRFb/3LREfQg0RR585ElnuLRE4VkETxL5pEVVXEREm6CEX9cipFm5ReRgv9nERip1JFEyW9RVE3f0RhlZ1EBONRRWgX40SZAM9EjUwkRWRNcUTp9ZhEdASdRBdN10S70t1EMsevRLDgmka9+EtFYyDRRN3G7EXq3VVFNuBmRfRZGEXUK+1EXNS8RECyokYzM6tEiH3sRL24hETKBYFEOesqRcmMdUUvfqFED6CZRS1x0kQLWYJEmv0KRfLaiETpuPtFRp+6RARUwEYLVrdEA5x1RejQlEW9dZlEBRAqRd+4p0a0n05FZq+jRX/Br0QqZ4dEOZFZRbvlMUXfGpFFS26ERKHAfkRKnyJFVxNwROM9tUR60LNE2J0zRyeGokar05dGk3XQRCKSHEVkaEpFn99hRQ7Eq0Th9AFIBvOtRhEh0EbrZoJFQqaBRsNFPEUdszBFWFV8RNi9ykSc3aJEQCqURBpNVUW43ZREswmSRMEYtkTyNoZEWwahRbLHrUTMZkRGSFiZRW+gXEZn8e1EZgnARb7e80ReuNpE6AdFRap3oETDBtdE7L4MRY1aPEnmJQ9FE/PvRFtmQkjfGs1EcLePRgyweESyDrFERkAVRaHrRUV0cZVF70iyREOMaUVjCcFEHhSwRJdGz0R0eoZFjCnpRbxamUSKOq1HlR+vRtJF+ES0MMlE04LmRZQilEQ1pNdEpQqcRKrtIEWN7JtEzsnxRDZKBUWERrJEVw2LRG/AzkQDfCxG+Sc8RcUKvEV/QnREWsSGRPtaSEX/OftFiI/URG4ZokXyrJdG8BQxRsZClkWhdclEnSp8RaOsoUXeC7NEfs2URGepB0Uxj6lEAPPLRyLA+kSuM95Gx5aNRZL4UEVHb5tGEvVfRe1hqUTXgKREg0THRHIk90S5Gn1ERqXARPTgPEX04olENEETRZSL8US/ViRFfW11Raejh0R0aFlGOBmwRMCoJEXYHxVFeLBoRBFCGEaMhp5EFUGQRZMhzkR6dZVEoE3MRNZsFUWFmH5GvN+eRc+/v0RBSfFE65puRFrBHEUztjJFiG4mRZ14wER/KxNFdGVhSJK22kcdy6VEgVBmR2oCEUXtG0BGV0p9RSO2rUSHDaZE6MGyRB8tC0bEXShFe5DbRGnGnkR1fO9Flh3bRN4F7ERDKShGXy2JRf2XoETWQL9EjWqtRU+JWUUfAJBEgEmXRJ/IgkUvEZZE5IaLRDrtf0SIElFFLAL8RLApJUW5aR5GUOsCRtuTdEUSitJEsYO5RQn2PEVlQftERySMRF1VREZVAGdFbt49RYk1EUaJ9FVFVcULRWsazETgx7lHE2UtR32omEQfZYVEInTHRlxRvUWlCPpFxLUERVc03kRS6sBEiyevRBWYc0TSOsFHWFcyR4muxUZOv+JFIKgWReZglURWy7FE8KGeRJuS7UVv3AVF4n8+RbvDr0RPQa1EekYIR8euaEYNBQRG6vqTRdMnV0WoPRhFYF6RRNCUwESkNehGT8JGRqjT5UUrsJVFJRgtRT+DBkXsFgZGt/mZRQfRQEXxD9ZEssrVRYfqkUWmGgJF/oq4RMaWi0WdepVFSLyKRQ== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - hmO5M3DBckCnL+KWUsJyQEBOkvyswnJAgvr1nR7DckBYImXRO8NyQHQSjRlUw3JAHsrNxlrFckDnm0xdQ9JyQJdhVK5J03JABl7DZGDUckC75JDCz99yQKtR/8C24HJAJowXW0/ickAsVx43SuNyQOowWqHI8XJAz7M7RbrzckCqFBMWwf9yQD6KBFtjAHNAb3rBb/oAc0A15G2vjAFzQG4rM7TPAnNAOBt7xfoDc0Chtj4PCRJzQDhtUp+EEnNAdqudMLwSc0BKDQxI+hNzQGPtqfd5H3NAdKFiqqIgc0AOFghJOSFzQJyKFydlIXNAYaEXHhAjc0BnV6ZPziRzQDZeSdhIMXNACAeS4TQ0c0DMS8FfQ0BzQFS5PjLjQHNAN43HTnhBc0BA6RDgJkJzQKSUuyZ6RHNADy9vhA9Sc0BDXBixQVNzQDjPB9ekU3NAyO9/LuFTc0CzH6dzIFtzQDYSP1o4Y3NAnKzyhvxxc0CMJG4EUnJzQHqxH4e2dHNAKk174Ex1c0DT7ArUeIBzQJbaxDilgHNAzfXtZQ6Bc0DPwJBHXYJzQNA3S8GGkHNA9pJFLk2Sc0C+3ZWtzJNzQHk35QlilHNAljCVHveUc0DIGmnXuKBzQGqR5ThaonNAVHhje+Wic0BGwHVABaVzQGUeXiXJsHNADgh2hXyxc0DAdVGXtrNzQPI2PysNtHNArAFhaffAc0By7W1X0cJzQObVtr4lw3NAmQkEm8XDc0D7nkfx19FzQOE1JCEx03NAkB2voPXTc0Cj7b2a4tRzQBy8moU44XNAhq9rsGXhc0BsSHQyi+FzQMqR/rp74nNAIBFrWzX0c0DGWB+NeAF0QPAqqqWkAXRAgihO5IoRdEBoQU7CGRJ0QO5KaC9NE3RAZFadDEkgdEAEH1f+uSF0QIqLCWdTMHRAnbWvPX5PdEBEh1K++FR0QNPBpwaOVXRA9IEAl7hgdEB+47bSCWJ0QJRN/H5OZHRA8Pl5JyFwdEDu8Y5VQXF0QJ72Iq05c3RAaHISJjd1dEC6paq4+IB0QNoy6ahOgXRAyGAePIyBdEChqwQjtYF0QGYV1pwWkHRAusqnrM+gdEAId0pS0aJ0QF18fuAPo3RAveIcqgqwdEC0zNVS5MB0QHJphkl5wXRArF9Ev7jEdEBWKOBY/M50QLLXG5Xi03RAKGzpvnfUdECrx5HhzdR0QIQfWvi34XRA3JDcTcridEDSXJaET+V0QNab0dXR6nRAUOhCD43zdEB6x7p4owB1QDvSP9xiAXVAgCXPO1wCdUCu3cpvIxR1QApmMAWfInVAqoFA+Ms1dUDlf0kqs0F1QGrYumPqT3VAfFdTb4FRdUDZmSTcTVR1QGy+zjN2VXVAQLknhvZfdUCWK3liOGF1QP1gyId0cnVA0ltUqY10dUDR7RPIant1QNLWqVHjgHVASHcUpHaBdUBGwhUJroF1QNy+8Fimg3VASNvYnJuEdUDC+eINi5B1QJTeFvi8kXVA0HBtczuTdUAzpssKPph1QDT3EFmWnXVAqwFbcpagdUC1IjHDt6F1QIDkPcDwonVAzddXg3yzdUCGUytzY8F1QN6mHCf5wXVA8DOxJIrDdUAqVX/yy9N1QNtAIscG4nVAGuhEVUcCdkD2GM4D0AN2QFYBakwBE3ZAVNb5q0wUdkAmtT+6DhZ2QMol87cKG3ZAsM3a4ocidkBeEZvEjyR2QNioXUa8KnZA5LVmpR8xdkDZTu19nTR2QCpB8xUdQXZAtGVuiRJEdkCo+Nh6ekR2QMKUc2ASUXZAbLexjc1UdkAlvqfQIWF2QKSyX9rKYnZAzjPT8NpkdkCxJRJbJmh2QKxQ0qmQg3ZAxxegYcCydkATil63DLR2QJfJgv51wHZAOd3Thc7OdkDwNklukfN2QHpjMEcyAndAHQG7ElENd0AA9XtsARJ3QGAeE9uqEndA8uJTlfIXd0AggGa9CBh3QF+XLnpKG3dAkhsvGmMdd0A6ejWXDiJ3QBhWjJ10IndARuOJGFEjd0AizqkTDTV3QHSiUjydQXdAHh0ZWhtFd0AcYW68SlF3QDjikrWSUXdAils0YShVd0AZu5wMkGF3QCrCe4E7Y3dAgHCEeGdjd0AiOOuVJ293QDbGzvh3gndAEwUhY3qDd0DoU727S5R3QBTeiCrj0HdAgI2CCiPjd0Bu69iWKOt3QJ5NowJR8ndAOTrYUU0VeEAmCX58biJ4QFjuwamJI3hA1luLFqUkeECZmzU0DEJ4QEJnslJ6RXhAhvjgmcpReEAAQYW5lFJ4QB/ITCKKVXhAHr3Yt+1XeECkQIIpOF14QMZcaX/5YHhA2KvJgrdheEBaPKKGtWJ4QJpGCmqLdHhAyyU6o690eEAUz+zpFHV4QDCN82BVdXhA3JvQS6SBeEDGaZ1SmYR4QAZXVhaXkXhAxH8FA6eUeECJRvhBzcB4QDwW/1/4wXhAfPgK2LbUeEBOmpwCAvR4QBE8uk6M9XhABKqW85oFeUDDfA2cuCJ5QIg21WSOQnlAuv6UJ/lCeUDYyVKXzVR5QJIG60mlYnlAsjr/Y21jeUDiYFSJ2WR5QEgHoXRBc3lA9V/dj2yjeUA8iDYuwLJ5QMztxgRD1HlA5pDYPcvVeUBSlsyev+J5QPfCELlO5HlAYiS7vJHweUB+/r8P+AV6QLtE4CsMNXpAYrRNQRpFekC1zKCDL1B6QHBIh8EoVXpAZzCor4xyekAUKumb7K16QJgnoIlFs3pAO3zG5Qy2ekDSBGvfGMZ6QMqR88TY03pA+tXtqTTuekBsxv3mTBV7QLM/QChbJXtASuZtFVQwe0AjlJ8AQ1B7QAbJlkJfUntA5OVAhmeCe0B7klJy7JB7QAq1GqsilXtAWIoYfnrGe0Cqy2coN9N7QDwGbqHY03tAKjkrV0Xje0D0ocMF+uN7QH2qqX+W8XtAyiNmF4z1e0Bcz1knkgF8QBBCcBbaAXxATYwtMPkBfEBjaxKZmQV8QM5qokzTEXxAPKtB0MxBfEAHiGGYKXF8QOZcf0EDc3xAIGx0or6yfEBzcTPzy9V8QIdC/7dX4nxAk5jothXyfEDK9UQCVfJ8QPXnhUxFAH1Azok9lgICfUD/6yD7SgJ9QHwCK7X+EX1ARkkQpEMSfUBu9f12NSB9QPKz41M+In1Ax4hlZqExfUB1mvPo81h9QALB9VIsw31Adt7WStnifUC8jA5nkPV9QDhzaldBL35A2rIBSY1VfkAkQv4xxVd+QHXDwERqYn5AJpdO5yZufkBoJac+zIh+QBl26QB9on5AMQ6/gxPkfkBjIJpkFux+QEuYYDwi+n5AfGTqWcX6fkBamEgytnF/QFgxd960gX9A0nPTuqSDf0AUgqVDY5F/QEqkjQxdoX9AmjHhK1Sxf0ChIXXBFOh/QLBJCGRt7X9AGLcJJu0pgEC5Ivu/SCqAQNhJ3V5LLoBAfzQKfio8gEBclzOx70iAQODEH/rmUIBAp/9uKhRRgEBcorSQDlmAQPy3BeAob4BAfh4/voZxgEDCHxEAi3WAQHBQpp0dj4BAyGD4RG2RgEBtQhdfGpSAQGqKmQXroYBAkUNx2e2lgEBy33q1h6mAQDzmJFYVr4BAwgFBZVLBgEDl9ktaU8mAQKBQ3blM0YBAhBCMlUrZgECsTtYSROGAQEROzgH26IBAFgBodjzzgEBQhxeoP/+AQFf6GG4+B4FAgLAfgTwPgUByLwFJNB+BQMhv+eIzJ4FA5J03GdwugUAs5gofjDGBQABpGwq9MYFAgJUI9NI0gUBmCEO880WBQNLgVEj3SYFA8Aiy2ftNgUBEdmhe4V2BQE5XwffjYYFADMvbbOd2gUAtKPOPHYSBQOPtqznKhoFACxwaHVaPgUCu5yvuVZeBQICC2uVEnIFABLpv/+ahgUBEnZhtbaiBQEiZL0VKr4FALPGzfirMgUBA1MD81s6BQI682HSA0YFAMFNBOYXxgUBwUlWhMvSBQJjtgPHg9oFAv5ig9YT5gUDap81UAgmCQCJHDo3YGIJAJm/o9NYggkB1/3pQ0SiCQAwvdPyhKYJAvEAcpqUtgkASyq7ApDCCQK4zrknPMIJAzlS2DpU5gkDEFUvW5zmCQItBiBLsPYJAGDY+Mfx4gkCUlhskuX2CQA/OD4K8gYJAFvipakOJgkBmtWwHRJGCQMpfSOk8mYJATnwqFQ+hgkCaN5NhPKGCQCy59soMqYJAsYNhmTSpgkDwsRTZCLGCQG1PIH2v+YJABCT0mHkRg0DRyKbAeRmDQHM/WU5zIYNA+Wu14nEpg0A4enX6ajGDQMhBAS3SvYNAuzILwJX4g0Aewbik/2iEQPd0pm//cIRAVoEjl/h4hEAazxm2jKKEQD4t3gpq2YRAVySFFmrhhEDRKKYtYumEQFlGh2Q18YRAyBC4CGLxhED8zMORNPmEQLqCPa1d+YRAq44AQC4BhUACFtB4oGGFQKCxCb6gaYVAijZK7JhxhUA4BWH+s3OFQBC7X3ebeYVATtxuQ67+hUBZ5hIdsAKGQNym4KYiuYZApnP5vSfBhkCz1QLIkCmHQJAmsEuRMYdAgur/Ioo5h0BAYRAQiEGHQISKbAfHsYdAtvN48Me5h0AOK23swMGHQIq9MgTDyYdAPy/mvTOAiEAkU9AK4IKIQCAbYAGLhYhAbGVw/jWIiEA= - - - - - - VeAbRS+Tc0RGfwZFzLIZRRCV+EiHJI5F1rddRAQp9kaT44FH3sZoRH3isEQMWK5EJo+BRcaQHEXjmVNFF5tbRC+HqkQeQDtF/dqsRKp2jESVLZJE2En8RvfOsURb+AxGWvwsRgVfTEWDSZtE3qc3RZzEpkbZylFEYNRURCQVZEXZU4dE/5qQRCAkmESBin1E6kBdRWt6oEQxENtFZBVMRFnu0UQmZCpFJI5wREMLhESNRqNExFbtRDxPm0QRC6ZE4sDgRHQC4EY9OrVE47HNRBF6kESx2xdFwk09R8/LrkRoAvNEgvxBRodF6UV0IcJF4/GdRWrEDUXmYHhE4JxNRIkNLkWRjeJEVRebRFQpW0VzrbZFfByKROLfBEUpAHxE4daERDo1ZkWdYu9Fzyu9RI7sakRYo2REinarRD2zZEbStKhEUVCyRKhwB0XzjC5FfXKHRNTAEUWaQ5JEfFxZRIcOh0SB/dJEW0CLRb2y90RgiohEroWTRfWLNEeeK2tFsWu8ROXAJ0XAqptFv5d7RNNwf0To+sNFEdjJRF1xpUQAEudEEjmhROeszkTLv8tEc7UdRQqKi0RpP79EAm+pREJwnEQ5mw5FSAZSRkinakTpDohF/2vXRS48s0RPB8lEJGY7RZmQwUTDHqlEw+8tRRBQrETKrblEr8aFRI9BWUQtaAlFlIZBRFDp6kQsJUpEwj7IRvAPMUXNIoNEqv7NRJ6egEUA5H5Fbl1/RX2uXURTs5FEmxqKRAxmpEVfn8hE9jeFRCkmikQqma9EJJiKRtb6lkQkN/RE3VsURYpjUUTo+xdFUbuGRRPc7kQvx6tFNt+PRNZTikRUPuFEO0OwRPesB0ZRnH9EJgfARrum3UQT/qBFyiaARK21VUXr4i5FEW0GR7tVdkTEfRBFdHHqRVAhnUTLsJZFoC7sRK8IZkV81U9ER64vRZTL70T53NtEDBZMR6fsX0YqHKpG+iBaRTns4EQRG4BFGJOuRHOnLUVP/sxEYjwgReqf6UchkctGggLrRu0OjkWuToxGSHscRTKRNUU7WJlEIl38RJ58hUUUJr9E0a3yRDk9gkSiWVdEahm7RC6L2UTGPqtEJrlhRHV2SkWPadtEBcFnRCBZrUTy6ylGKNqsRb0zi0Yixb1E4y8FRvHO9kTbIC9FvktbRZTjVkShrz9JtjndRb2ioEQ8IndEzEMjRUoBRkh/yL5EJyGyRsp+7ET4emhEVxtXRR3iLEXK9dVFAfLqRIFbd0RQIJZEyXKZRHada0VeOJdEvwVhRJ3Kf0Re9oBECmy+RKJyWEX2I8pFlYIARcGeEkWZBtREVlJoROpRlUSiXMVH8SnWRplrW0SvWyJFqfDPRC6KY0TpbZZEUWW9RSye6kTgJ15EHFDYRNz6HUYxy0lFeqC4RUBXeURqRa9ElUmkRDj6nUQIHRZFhAi6RHIrNUaT14JEhWvwRLtLgkTMwKBFPdmbRsDjg0TRM1FGQD/3RErNo0Wo8U1Fv3HbRQ6U1ESvJmhEEpfrRCdxykTm6dhHrOYCRZi/z0aBVqVFMv7xRGAIl0b7/XdEHTgXRYMYeUQ718lEHpm1RPpdjUTpt+NE8iBnRM1z2UQfPnhEFeWjREl7kkTlzXVEtO5lRNvnnUTWln5E7vqGRY3mkkSIrQlFdAI1RbjIqUVQcMZEQGl2RFyzNkaQ8z9FErUJRX3yXkXnqPtEWIWDRPkDy0UPd+lEt4/ARAK3tUR3ij5FYnKCRuY1v0VTz/lEyy7/ROsivETpi0FF3OfwRDwDo0TuN6lF57b8REZ32ESh/3VEU35rSOIh5kfSTG1H1rRmRja/kEWlyV1EJf/HRPYgG0YXxEFF+1PdRHxuAUZkngpFA7BnRNZFdkS2j4tEXJSJRHGxPkaObZdFw3CXRG/+y0U+pR5FdCiMRMVQvESIboZEw6aPRXQInUSNvHZELqZJRd6dBUWPuT1F9gQjRqDXG0aX7YBFurydRY76lUW0WvVE1Hl8RINgi0QcukNGqD1rRUvYGkURpRtGyXB/Rd7XU0RgLJtElSCdRJDkRkUQ1eFE3FlJREuRHUXK97pEEcq/R6oaSEcNOOVGIAbVRVI440UVzPFE3fERRe5awURgGG5EnFnFRzttMUcCnN9GzIj9RRKOIEWNfm9Ea3GERDopz0UOx0ZFSeYGRf562kRCWhJH4FmGRqSfFkYgNWpFsi6CRU3Xs0ThZ5JEkneMRDi2+UblJ2VGSywLRuqfWkRFMUZF0yBRRRAW1ETy+L5EGmSwRH/vIEYXr8RFLcZvRUrR8kQlaOpFFlqURW95NUXm2KNEzMixRUhCCEZKUXlFfg7uRA== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - z9biXnDBckCeZ9c7UcJyQIg6m7WrwnJAHj28FjzDckA5iqy+WsNyQOe9xWDAxHJA8q+uKFrFckBuuhGuQ9JyQFe9UhFK03JARmCqWXXTckBDNaG5YNRyQIPKYnnP33JA3eALprngckCKy4E9UOJyQMT2enSO4nJAIjD6ZSTjckBiGpHbSeNyQGevzkjK8XJAZxG8wrfzckD2lBd2n/RyQEwcGIzC/3JA0dlxPGQAc0A21lWM+gBzQCaXQR7RAnNA7zAivfoDc0BUYk+9CRJzQGhvbYaEEnNAKmsRb70Sc0DwvgItBRRzQL5q4F1NFHNAYKNiV3gfc0BUnDm+pSBzQLAQXZE5IXNAD1jsssoic0AGy0J9ECNzQHJQPGLPJHNAB7f2ukgxc0DqkN12NzRzQCYz4xO8P3NAbh6xoOJAc0Dfzk9UekFzQPKegYYoQnNAHEaQ97lCc0BoXQiLekRzQF0Vb6VDU3NALJhcSaRTc0Cbu5K9d1RzQDuPJtkgW3NAM3hYyIxgc0BG7sHAOWNzQIQfrvjPY3NAcD5RCP9xc0CWAC93UHJzQMYF8Km3dHNApDqSZU11c0BGjYPXeIBzQF9Ok8kMgXNAfOKkBoeQc0AeQAe9t5FzQB5O/CrXkXNA3Ylod02Sc0DcKSG0YpRzQDfHMwn4lHNA2indBLmgc0AkBoagWqJzQJy9lDDmonNA8W4hQAalc0BC4YIYx7BzQGJihPJ4sXNAam/0g/Gyc0Amge7iDrNzQPCdkea2s3NAoAehxAy0c0CUR8AQ+8BzQJgimKs7wnNA236ea8/Cc0AAfC9wJsNzQKoG4xPY0XNAywQHFeLUc0BTqqTSoeBzQFoo89A44XNAW1cgg1Lhc0Cu6xs3YeFzQDktkuXv5HNATL7igrfyc0CUxXkAOPRzQLj9RmKO9HNAIIseIuQAdECIlxfteAF0QO6FG7yjAXRAexRNkXkRdED2nAVNGhJ0QLaXaJlOE3RAK4t29XYUdEDksyxjTCB0QOxmbCMkIXRAEdLc6rghdED9WZP4VDB0QILzi35fM3RAextgMDxSdEAslIfvjFV0QFrv8Fa5YHRAtlX08AdidEBCGNPVEmR0QABMb59PZHRA9hH9BSJwdECrGkGSQXF0QGLJ+9o5c3RAtS4CKqN0dEAyTobaN3V0QGix6dz4gHRA0ajTLE6BdEC9Guh6s4F0QF4CLzoWkHRAMnk+ttCgdEByQ2mDuqJ0QFAR9jYQo3RA4ln8mAmwdED3TVTc4sB0QEgWQHl6wXRAOFEz+Q3CdECJLapKucR0QEQFE3H9znRAa/FWHuHTdED914xczdR0QENW8MEk4XRAwKGJ5LjhdECYUA3YyuJ0QB559MdO5XRAfPQSGtHqdEBUGMWjjPN0QEvEmUKkAHVA8KhrNMoAdUDzp80tYwF1QA3R8PhdAnVAJqKP95kDdUAW0ZFHIxR1QC5oeE+eInVAVg8Ji8w1dUCaOfBm/091QH5RyNmBUXVAoxf2VktUdUB+NXGNd1V1QIXBLJw5YXVA3rARIXhydUDcfGGajXR1QJwciVJre3VA9qbKtXqBdUDyoPW8rYF1QHA40QOng3VAAsdzbZyEdUAUh9OPi5B1QPmlyXE9mHVAcsi7u5addUDRcZby2p91QKj7pBe4oXVAOrMvHO+idUA9RZ0JfbN1QB/3vaDgunVA1PtF4s/AdUAS1K+wZMF1QBE97Gz4wXVArBHZoIrDdUAeSoYszdN1QPAZEbDj33VAYbs4wQ7hdUBxwmvTCOJ1QBbEInAV8nVADKSsBEgCdkAmQ8uWzwN2QLijUdsCE3ZABCJdyU0UdkCqT+M1DRZ2QBJORRsJG3ZAAi+ERocidkCgwaVzkCR2QKTzfmO9KnZAssy55R8xdkDC5IarnTR2QKyYGP/hQHZAyxA4/B1BdkB2i/OzEkR2QLgIy2x6RHZA3vpfFctQdkAUBbeNElF2QIpqSK3NVHZAmkrRLsxidkD+5bzv2mR2QHxrkFiRg3ZALsUkZ8KydkBe8/HIebN2QEAMkawNtHZALpiZ5MDAdkAu2iWnG8R2QHqTJfHOznZARPcUHpHzdkBx4PnwS/Z2QKyMc1A0AndAfxXYB1ENd0D+7nPIARJ3QHDgsI+qEndA7B0Ud+4Xd0DDgNXNBBh3QL4sK/FKG3dAUMLu/w4id0CokRcGdCJ3QPgfWiRUI3dAgJ4BFrkkd0BOilOGpDN3QG5oIU0NNXdA7PAEb51Bd0CQD7tYG0V3QBTszcRKUXdAuDyN05JRd0AY1FYgKlV3QPZtJaWQYXdAiCAXO6Fhd0DvesnFPWN3QLQsHGlnY3dADBqfsGxrd0BuCUXkJm93QEgxy7s8cXdAQDmkz4Zxd0BMhelGtnN3QKgyLn8mf3dAhzq0yHaCd0DljBnZe4N3QFBkjCAJkndArFNKRyLjd0AOaILHKet3QCJj6qxQ8ndA+Nj2DHAieEDNdeBXKiN4QFSulQSKI3hA1TPm1ONBeEA2lRJLekV4QPS+oRLLUXhAotmdyZRSeECGaRSPh1V4QLlHZHPvV3hAKObD7UldeECT1kS5+WB4QIoBemW3YXhATMHTo7ZieECEYNRKw3F4QIpfVgs8dHhAGhhkbW10eEAXyq2Wi3R4QOyKOMLSdHhA3iW/SeZ0eEAuTy3OpIF4QBhyeKCZhHhAsn+eJpeReECm3dvMp5R4QMoXD6+1pHhAzJdsH87AeEAGFvr8t9R4QMhOcogC9HhAZQvOyYz1eEBUc8o1mwV5QOirUYO5M3lAdDCqPZJCeUDhe4BJ+EJ5QImkToLNVHlAxB/cp2ljeUB2YXBRrXJ5QCnvRcdDc3lA5qakDUl/eUCb8cDObKN5QFT1n+9xq3lAoGwtdsCyeUA2EkaXQtR5QNig/G3N1XlANdU0n1DkeUASq75pI+V5QBRHD2/6BXpASRAdhzgjekDO5UxhrCN6QFil/VIMNXpAWWXgmBpFekBc5jSbJ1V6QMTra/Y4bXpAvBrq/otyekA2Dvv87a16QJEyokAOtnpARL9ISxvGekDK65/mztt6QFbyCLw17npADsJQTiwOe0AwvxrDTBV7QB8/eQJbJXtAPASJ+FQwe0DV1m1QQVB7QLo+u5VdUntAIKXBlSOVe0CcNGrRfcZ7QLrBXVvF0XtAYGLqoDfTe0B9myyMjPV7QF67ArPZAXxAjgnfGvYBfEDbyJ3GmQV8QMCCG7+JEXxAIihr2NERfECMeSAJzkF8QG5IS3feUXxA0hHnCQ9ifEDq2NXdtG98QO4FUyLAsnxAu7lM5srVfEDAjXIYWOJ8QAllHUsX8nxAks6fDVbyfEAOmFFhRgB9QF7eZUQCAn1AAJyqpUsCfUB2PfsWRRJ9QLiCOVI/In1An9lQJKExfUDu3/pz5Et9QBrzt05q4H1A3OF3dtnifUAcHPLekPV9QMx+sE5AL35AmL9fWUI/fkC08KowjlV+QKvWRhvFV35A5iyG2iBdfkB0IwTkC45+QI47RdAgjn5AgPCQA+iPfkCxW8nAIq1+QHDyBBMT5H5AdFwsjUX0fkDcTBDEJfp+QAI99ijH+n5ASDkL8yEAf0CvZJoxzQJ/QEI2KF+4cX9AzBSp9LSBf0AMgGh7o4N/QMy/iVtjkX9Akte1nKSRf0DVtoSnXaF/QGYcH2ZXsX9Ap0q6Chbof0CWMfBIFvh/QLxjfdxHKoBAmO7WeEsugEAwYAcZIDSAQHrq3lUnNoBATX+VMys8gEBK5hQx9EiAQHr6DRHoUIBAZhjy1hRRgEAA22rJDlmAQHxvrj0NYYBAPnuf/ipvgEBe7tEThnGAQBirCxUej4BAihJIu22RgEDpCuPYG5SAQARRXx/roYBALz4YCu+lgEBBs8dWhqmAQDOsexn2qYBAqNHlnVLBgEDoFK2sU8mAQDP/CGCpzIBAvo6PaFfPgECJbw60K9GAQAaQoDdN0YBAszE3sGTRgEBOYeM0StmAQNOUrZBE4YBAKlnM91bhgECu2BSM9+iAQJa195VK74BANX4T5D7zgEAe+ru5P/+AQDXN+upBB4FAOutHR+YdgUDS7btCNR+BQJzVKSAzJ4FAhAdiFL4xgUCkKDYfJTSBQLgpR9OdOYFAioNogPRFgUD2QnD/9kmBQJKCHDHiXYFA7Bs9q+ZhgUCzfmzaHYSBQOGp5f1Vj4FA7nYXYkOcgUCmWrE856GBQJYccW9uqIFAoJisTEqvgUBK74MWKsyBQGF2zFnXzoFAXBi/44DRgUAjiY15K9SBQNmg4OPU1oFA9kgRFobxgUBaxlZ8M/SBQJrGEYTd9oFAZa/JLIT5gUDC0a+KAgmCQHxlktUBEYJA6toQ9dgYgkCUS0pM1yCCQB883xnSKIJAIn1Hn6IpgkAvDmXCpC2CQA4PaTTnOYJAQfu66+k9gkDhE2pCzm6CQATpFct4cYJA5LxciLh9gkAMvMZTu4GCQJ9F6mVDiYJAaLmFpkSRgkC8oiwBPpmCQB39RnoPoYJAmqWp+DyhgkCGal5JDamCQCPqku80qYJABBnisQexgkC1Sqs/r/mCQLn9TLR5EYNA6iBi13oZg0DeXFJ+cyGDQCkkjQxyKYNA2AVEF2wxg0CUvJxnHzmDQL5J73JnOYNAYdGUs+WBg0ACuLGwmMKDQKDVbOv/aIRASh87af5whEC+ZfN093iEQIxt645q2YRAbLIXkmrhhEAsjUHKY+mEQJ1HayU28YRAsnDGrmLxhECyVYpYOPmEQPWreshZ+YRAWvarLi4BhUAOeDC/oGGFQBLJ02ShaYVAkoyOA5pxhUCgBr9umXmFQHLrQ2eQgYVAdB1oXK7+hUCPFmRwsgKGQIrwJVcmuYZAVrNcyD0Th0C3xQlikSmHQFC0UlWRMYdARlY9QIo5h0By5MOji0GHQFQTc/rHsYdAOhEzoMi5h0DKMsG2wsGHQB4ojQfCyYdAqLZA0eJdiEBia3X05WGIQD8T10szgIhANkMqZd+CiEDR4juhioWIQIRMmqY4iIhAkdhtDOiKiED+fxJrma2IQA== + KBZXds7jZUBMjnNVJ9JxQDtMc7KVAnNAOkxzspUCeUACpwfsrTN5QFj7C/FFpH1A1/gZ0cKBgECrLHQiz1qCQNcnCPtuCoRAAlKK/bpChkBlf1QaR1uGQGZ/VBpHW4lAXF7USH7ziUD6X/hVnmONQKAhze/2O45A - + - +ynLRFJLoUS9zgFFBF+4SO2xtETf21ZETry3RJePBEcOjjtHWkJ5RIheTURyevpEhDz9RPkEL0WO1NREHJJvRKmj5ESQB0FF6sysRHfvtkTrrwpF99mARVxp7UTzZrNEx/vrRn0JjUReYwpGqdwURmQhSUUv8X5EM12mRK/6cEXk+LBG2MuCREtxiUTPi1tFHDNcRLOL00Q9qlZEGx2IRDbgSUWUQ3REDazORFIgA0bC6IpEWwFvRQ6GkUSeS9NEnQahRP2870TWXXlERBmQRHtUgUTiLt1EP8uyRHVA1EblcPlEPRY8RS0sWkQoYnBEOnIrR6jN5USE6lpGemHmRckXt0WTQJhFTT/mRCLTjEQS+XhEBHVcRNq0gERwahRFVEYSRfK4eURVy2dE51FORbPE0EU85TdFYVqSRfIObETWmwRG0yBiRD+EdkTwDoFEF4RRRI+SmEQcf2tEtw+XRK26cEZIH49ESOGNRE3IFkU2oPNEg3RTRBs/nUQ0D2FEekfxRE3EuEQB5FFEUPG3RKWNv0QiKJRF8aQ4RRvchEQlzrBEd8K1RdaXKkdxhS1Fs9GdRP7Ry0SWoQBFGZqpRdYOt0SLPaxFInTMRF0Kk0RTNBJF0hPARENFwkQ+yKZE13JTRDvKIkXBCQJFenTtRGsqsESQeYVEm2ECRc0aaUZESsJEK4AyRba4tEVGU6ZEsVlcRCWGAUVe4lpFFe+eRIxUGEU5jdBEN7fXRBg01UTBlGtEaceFROn/3ER7u9BEkZyoROYzWEYidFNFOVzQRCWYfEVck3FFiC4eRWChkERXlD1Ff9HtRJGPVkRPntBEBswORUncOkYy9b9EJkp/RPv4okR0MeZEsHvfRNK110RfdX5Eq+iFRG/yLEWyU21EyYCxRRlIy0Q3CI1FRJKyRPhMyESWkBNFxKjORLD63EUNXJ1E/TbhRqu+XUT10WlEKR6wRd5Og0T7ZWNFn6fFRJlZSEUQYIxG47d9RSZq+kQ+GYdFg9QQRYkI5UThEX9FwUalRMrMfEQyMvZE0F/TRMTrc0Ra3BxFtuw2R91HSkZCh5VGFAahRFqNikWhYYRFTjUQRXnUs0Te/sdEWHuCRENfgkR8SN5HED/GRjp7tEZ3dJZFC9iFRn9TDUVX0BBF+ioERZDPk0Sp5vBE28ViRIabZ0VrUJtEfzpwRBZtb0SB6m5EmbLCRLmpxkTJCoZETtvDRco2hESU0dZEOLEjRemchkTcnnBEShpbRORLJ0bDMrlFzlKMRlYANUWvrdhFMxbWRMMaPkXYokRFQj1lRMqbgkSZ4d9E/bbeRcnkPUmHf/hEyY/bRI0kQEUHTUtI0v3XRG6ZkkZ+r8hEAYQZRYBkU0UuA1VFZyb/Rc44uESZL1ZEmnZdRA84/UQ0iMtFIHxvRPutbEQmeZFECLhZRCdGEkVY4YZESF4RRYoF3kWz9AhF89bpROK4gkRLX5ZE6GmiRFj2lUQmLvNHEhUGR6fvLUXaH3dE9+GKRNeSXEQEJrRFDvHoRIV2hEQBQeNEmHnERLQsUEbdfg5FF8dzRRsSo0QnkKRE/0o3RUfLlURF5S1FlrxNRgi3qEaOYUNGDjUbRZ9VsUU2SotE3jtjRZZjtEVgQo9EGF+VRI3HkEQhb7tEym94RM6c4kerkgdFEg68RnoHVUW0xjtF1pSqRtZlU0UPIMdER+1NRGu5c0SYVfBEG5yIRFwu4kQeNqNEzBZhRPxB7EQ5a/FE8H+FRO9ljUSxbHRE0r6DRIzRbUQK8SFFyJKJRFdqp0RgZfNErLGuRONFV0RhVtpFnH2hRFmZjERSClFGPzeGRGu3SkWNaehE2jgeRUI7oUTh5ntF3w64RGN6jkSmJ15Ex5pORXCbAkU3LDdFLwurRr/U4EUi4rBE5nCwRDu8s0S5JYdFrwIFRYpqeEThMS9GwazWRRjZykQZknlEzq6PSBtDBUiRDnJEb0ZzRGaFfES3SJhHYpDQRFeldkbu8ZRFCd+0RIIq0kQ0zotEkQB+RNjiPEYKAWtFxC2fRGRz4EVeK95EoDKdRLQNd0TJb1xE2NlPRtN0qEV/6o1FM3ymRKTJMEXh+pFFS1eKRAgxGkXZHMREi1IkRZKpL0b1fQtGZsFdRU2zIUUAHqtEranFRQGhfUX8SHFFdaB8RCSUx0S4/4FEI149RlkYSUWVuz1FNJwKRuODqEXjnpBFTJeeRPXAt0TBLb5E69OQRXLvEEWuHC1IR1K1R5iCU0eUy7tFjnFJRubYuER2eYlFHnLcREuooUQFGCBIFCyxR1W6OUeAIWNGoriLRct+d0TncYhEMxpZRL7JXUR+N+RF54UWRWmP20T7Zz1HCA7JRuBBb0aYFKBFJqW7RUXMukSAmb5ERrKYRM0NGkd72qVGC8ZbRkPze0V60JhE2EDmRJ+bXEQrjehEbbxeRM3MakbJPAJGjyuNRddCxURz9hdG9xGSRUx+WkV4U6pE4Hg1Rd89DEUOPlBG/DVqRqRbBUYXybRFdUbiRETWjkQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - JN+ARnDBckARN/PMUMJyQHYCXf+mwnJAwP3MTCfDckCKQFoEPMNyQMgP3UDExHJAvl1mwlrFckACig3YQ9JyQCp1CcdJ03JAweaLi3bTckCCakMdYdRyQLgb94yO33JA7Pb9Ac/fckDua+SotuByQGKnFo9R4nJAylU/0I7ickDOWATVI+NyQPYFVXJL43JAcFMIolzjckBaLBQzuuNyQJqovWbL8XJAAKoUnbTzckBs4VI+DPRyQIRfNpyi9HJAYn3qhcL/ckCk7fiwYwBzQMq2GqyQAHNARpa2GPgAc0CzTodDUQFzQDyybN6MAXNArwX8xs4Cc0C+d2Sj+gNzQEs6dE0jBXNABTW3mwoSc0CeCNzfhBJzQBcLyQq9EnNAnKi9bgUUc0C9CqqSeR9zQKyG3dakIHNAHB/qOTkhc0DQYhRyZSFzQB7/H2zIInNAShhAFQ4jc0BVGhYXzyRzQK897fmxMHNAg7up3Ucxc0D//9OTIjJzQLhOVqAJM3NAyLdTZzY0c0B2ICWQuT9zQPVcZ6NBQHNAMFTFEONAc0AUstcGeUFzQIFxkyG9QnNArGV4vnpEc0BOKn/TlVFzQGXNAbJDU3NA9EEH6KNTc0C11eUohlRzQIrZNaUfW3NAb7JK1Ytgc0AW7WiSHWJzQAblP+A3Y3NAlLIDtVJyc0B0nLgMu3JzQDh8g123dHNAWLs3Vk11c0Dsqw8KeYBzQA8Ly9+lgHNAoNaqYA+Bc0DC2uz2D4RzQLbJNleGkHNALPevS02Sc0BmkxEAzZNzQGPX0WJilHNAmq1AbPeUc0C4cpqqi5VzQLY4mGy4oHNAqJAssOOhc0DsTYrYWqJzQOz1X4/monNAVHrCVHyjc0D/k5x9BKVzQJT+GtzHsHNAsEMk3Xyxc0AIW9PI9bJzQB2o8w62s3NAmpY5bA20c0BWWbQs+sBzQLH9xL4VwXNA5TRn+ovBc0CPeNud0MJzQIRrE04mw3NAHrvsotjRc0AklwHtvNJzQGaW+JD103NAzZs9HuLUc0COWAoNDuBzQAsayu044XNAApSvdHvic0Ct0997SPFzQKunT8g29HNARqT3eI70c0Dlsonu4wB0QOrh8h95AXRAngE3M6MBdED6dFXpDwV0QBbT9rCKEXRA3L9W9RoSdECuvLyqTBN0QB1aFVV4FHRANDHR3UkgdEAtx5pxuCF0QMbAcQ9TMHRAcqDy8boydED0A6eI1jJ0QGb9iaBWQHRARKsK83lDdEBqzah891R0QHGw3FKMVXRAApXYy7hgdEA4ybFaCGJ0QK4l6IcPZHRA8rDroE9kdED6eOT7IXB0QBUpQGlBcXRAcqTKYjpzdEAgjLFkNnV0QE5owfb4gHRAJsoJI06BdEB9f2fus4F0QCYg31oWkHRA45vYhs6gdEBg/uNMN6F0QB0DCsq4onRAcppi3NKidEBHBzXzD6N0QEilTusKsHRAc5Pd7f6ydECE9I/W+LN0QAZS6WDjwHRANL848XnBdED6MMRADMJ0QADIJW0Qw3RAcPkJgHnEdECKnwT2uMR0QGRI5CD+znRAuikdSDzQdEAim9GePdN0QMuFDUHi03RAd8i4+c7UdEBNjhPT+d90QP6qXZ+44XRAnNL6Mh3idEAyPWKwyuJ0QEqiQ41Q5XRAnGptptDqdEAFrP4z2/J0QCztk9CM83RAur8+C9AAdUBkTvFIZAF1QBLT+KpdAnVASkEtR5kDdUCKQJyZaRJ1QCAY+mqPE3VAmL6V3yMUdUCi7/yYuhh1QE4OuuSdInVABIFsZ8w1dUASQIPrtEF1QELPCxDWT3VAL5z3FE5UdUBWDaL0dlV1QJpzrIiiYHVAHySlwDhhdUAMqFLa82F1QH5/gh54cnVApjxFeo10dUDB7hvvant1QGxaHM94gXVAjnduu62BdUC48FLopoN1QNjBU1CbhHVAzrYpH4uQdUCiQvMFqZJ1QG+pTDw+mHVAvGI0jZmddUAKnNuVlKB1QHydR/+3oXVAODGKTu6idUBojJD1uaR1QB3LDBCWsHVA5oWNkHyzdUD4o1wuYsF1QC1YKP74wXVAAn11iIrDdUBGxuMZzNN1QOT388zj33VAa/uR7g7hdUB4/0SFB+J1QLapVfjO83VA4pv+A0gCdkBwnRw60QN2QEAJcbQBE3ZAiobyzE0UdkBeGIfNDBZ2QKrLoFgGG3ZAWrxYsocidkAK+qT4jyR2QFZ21vVIK3ZAbkhylx8xdkASGjCfnTR2QDZPz2jiQHZAXobPHR1BdkBi/XajEkR2QI5JJr96RHZA3JPqTv9OdkDIAHo7y1B2QLFPPYwRUXZAYtvmuc1UdkA1ehD7y2J2QDAGVMzaZHZA3uY0uAlodkAiuqNDJ2h2QDgwKvqRg3ZAlc2PKvqEdkCcS25Nt7B2QMIMMG7CsnZAykGiHXqzdkAoXCj+DLR2QDMMT55zwHZAqiD8CsLAdkAgeaiXz852QF5XgSx/4HZAu2+OJPXhdkAoC7CukPN2QIJF+GQ0AndAap1ZK1ENd0AKoZVKAhJ3QEX8HxyrEndANgZNNQUYd0DeRPRjSht3QBwOV+4OIndAEC64eHQid0ARY258tCJ3QFaLxh9RI3dAlyXwmKYzd0AQ4P8ZDTV3QBp16CqdQXdABhT1UBtFd0BEzRJUS1F3QHz1cpKSUXdAXHIHGSpVd0BKqvQlSGF3QJ5ExIOQYXdAZDGI1Dhid0CGMKvKPGN3QAB2aZhoY3dAWib1sjlld0DdmwzzJm93QM6WiCuKcXdABi6Zh+OBd0AxVvOQeIJ3QEgE8oJ8g3dAjqw1YAiSd0BM8rtVTJR3QL+w14ELs3dAU1UAGIzWd0AMQp8z3eF3QBLGfSci43dA8+fDtyrrd0CNwKoM6/B3QJYAcUZP8ndAyjCnnxrzd0CnKQsVTRV4QIoa5bNtInhAVPsPoisjeED4s1K4iiN4QKwMVS4MQnhAG4uz5npFeEDsB5wyy1F4QCS3YP6UUnhAVDZHGYhVeEBmlFRg7ld4QC8BokQ2XXhAmXSpZ/hgeEBqANnVt2F4QKawM3JvdHhAglZ9s4t0eEAIi5Cor3R4QNVqt4/HdHhAAgdNR6aBeEA2JzrSmYR4QOnSebZSj3hABhonkZiReEAGJxj9p5R4QH4VQ1PJonhA3hE/Cs7AeECiEXcmt9R4QGbCC0DG5HhABuvdxwH0eEDxboRmjPV4QOJyAr2aBXlA+2SuQIMbeUBDpWtcjUJ5QIQjMdf5QnlAUMBf1f1DeUCmE2NtOVR5QALHEk7NVHlAgCykQepgeUDFqSFu2mR5QHC20zdCc3lA0sbxZG6jeUBKDZFUwLJ5QNoMPRBC1HlAtskrhszVeUDVYYiav+J5QLZArWFQ5HlAPksjVSXleUCziZzU+QV6QPT/0Js5I3pAK512D60jekCWURrutyt6QAIc4C0MNXpAhV1suRpFekBZGQY5KVV6QNACipKMcnpAwgdVTKOUekDes5IjDbZ6QOpKK1AaxnpAlnvzNtXTekBmfGgC4td6QBANAFfL23pAXlpMkGbhekCpjW79fOR6QPZJ3/gD7HpAIDnrOTbuekCyD2jYFfF6QNpBTo9j8XpAPExkk3kDe0C6Q3CCKQ57QD0EWjVNFXtAZKbJOVole0Ao3VruHS57QKYQTu5TMHtA0MLrUCwye0COIWKkPU57QI0aKWRiUntAhqyd7MGUe0CJ0w2zIpV7QMqDPMovpXtAsUHXZHrGe0CEkEilxtF7QGSCAIU303tAdnwASS3je0D02HnoQ+N7QBlOu+T/43tAcgiTL4z1e0Dykfb1kgF8QJ31+1/bAXxAssqvQvoBfEBKYKvXmQV8QCC1Z/iKEXxA3TRF09ERfECtw0DUzEF8QEL2xkXbUXxAVGCcjLFvfEALHKmpj6V8QNjGqA2/snxA2FOmXM3VfECmpWb3V+J8QKZZqScU8nxA/7EZJlbyfEBk1RCtRwB9QGJGQiIAAn1AMAGz5EsCfUBesHTtBRJ9QADu4rdEEn1AU70RPisdfUBMe9JZPiJ9QNbCws3fS31AlINaDg1VfUBQY4MbHGJ9QP73SKsww31ApP08HGvgfUB974Yi1eJ9QA71PG9c9H1A3obfXJH1fUDgeork9vd9QDT3KW5VAH5AAnfaFYwCfkBIRw7tNx9+QJdTiQ1CL35ACDkzb41VfkAGc2gxxld+QOAHWmAfXX5AyK3jUoJifkCcwbR1mWV+QHB8ydlZjH5AqGtpznuifkASKfmi0N9+QKOVVAQT5H5AQw5VyhTsfkA2kUXbSfR+QFpEDX8k+n5AztsBysf6fkAU+TZm1P9+QD/h05a4cX9A0Tv5VLKBf0DU9aZxp4N/QJ4Idt1ikX9ApJaNU6iRf0B6nfV1lpN/QHBdA2dgoX9A8PUUhlWxf0Dox1bMObx/QJEsmJ0U6H9AIAj8k3Dtf0A+fU8SIPh/QPlrCtbIB4BA2lub+EgqgEBwkHXFTC6AQOHV6J/mL4BAGrDG1yk8gECYXAQ82D6AQJIZF2ruSIBAdjJQUOZQgEC6PCADFVGAQAPk8psOWYBAs1I+nOBggEDI/At4K2KAQARK1wMob4BA0il4wx6PgEDkN0yxa5GAQFTx7J0ZlIBACsXhdK6ZgEDzyloO66GAQDyoyqLupYBAXr9xK4WpgEDmjYQW8qmAQC7DebFFuoBAqZnuqDS+gEBMdWJ8UsGAQKgk+KlTyYBAxcksu0zRgEC6N6+DStmAQD6PIDlF4YBA0yn4h1fhgECo4cjb9uiAQINpALRE6YBAljU2C0vvgEDKGzi98/CAQMFTWnY884BAwqwgij//gECwvfZxgAaBQObKFmw/B4FAFfs1yTsPgUDiBZ51NB+BQLy6XQA0J4FAJL4ectwugUBkydvh7y6BQPgcl7K7MYFABbISACg0gUCidgrJ0zSBQPxJFOzzRYFAfa0uOvdJgUCwqC7D4V2BQO76mDTlYYFAiMxhDOVpgUAgKqpdYX+BQLaWgx7KhoFAUDWz+VWPgUAKJdQzVpeBQHtrXZn0noFArqOhxlOfgUDOxdW65qGBQKlsDPhsqIFAaWCVwkmvgUCINvgvTLeBQCzJqipkuIFAkp7kqyrMgUCIZWUh186BQJEdmGOB0YFAh792Zn7TgUDak6kjK9SBQD+AMJeG8YFAQLmvcTL0gUB5dxMr4faBQITEQ5GF+YFARBd+3jUUgkBD1xcm2BiCQBHAk1vWIIJAgEWqDNEogkBiK1EjoimCQFKFdiOmLYJADPOXM6QwgkAR/BqP0DCCQNYjbd+pMYJAnA7NKJI5gkDYHDfh5zmCQEJebwdAPIJAWutEduo9gkAmlB8UuH2CQNouvRa7gYJA1LoBTkOJgkBcEkANRJGCQKN2R5UnlIJAKq9g4jyZgkDATvfUVZmCQEDRs7MOoYJAejTE5juhgkDa2D+JDKmCQGB0hgo1qYJARNMkjQexgkDDnCUTGbyCQAQ63XX+zYJA+DcZzgPSgkAX4dtWqNWCQPow3JR5EYNAPjqYVnoZg0AnkbXPciGDQBzF7adxKYNAazIeP2sxg0BwgY2I5YGDQNaI95LTvYNAyApFMpb4g0COlGZ7/2iEQIoIln8AcYRA7UAWc/h4hEB5grpYatmEQM9tBIVq4YRAsiN5aWTphEBCXoWANvGEQAdvOztk8YRAzjug3jX5hECo6fh7W/mEQEbparsvAYVAO+OHsMtBhUDMEeHD2UmFQIyooGugYYVARqAsdqBphUBWSFyBmXGFQGJ61HSYeYVAIylxx5WBhUB4obqArf6FQBAhtMyyAoZAVrAeUL1IhkDaEAccJrmGQOBI7fQjwYZAoOHcqh/JhkBVL3FYkSmHQG7Ta5WRMYdAdgQhs4k5h0AyFFHMXEGHQOhCy/WMQYdAQ+ftf4RJh0AQzhfcx7GHQM6+qH/IuYdATJiKlcLBh0AFF8cJ/92HQLysFE7jXYhA0OmjxuVhiEAOgY5E6WWIQBLt4pLgaYhAllfy7jOAiEA4MXUw34KIQDjbOOmLhYhA6pcq2DmIiEAMhdRZ4IqIQA== + KBZXds7jZUCPTWWFSwNpQNS+X4D+xG5AHvu2xz3ycEDfhPAvb2N3QA== - + - tHhURQvTgERMPx5FrHhoRfeEm0jE9pxE7LLBRFuaCEegmxRH7ALFRPfKX0QuulpEEgoaRU+WokTpgEpFVyccRXLYukRUsilFs2uFRD4oaUTkvlNF26uCRFBpbURSgvVElMgURUxwr0UhxIZEB+gaRaNsZES3VqxE3CXdRGZF7Uau0nVE2bdvRPfGuUUmcgVGZy+PRVVnuUSObatFXC/IRkVpTkTRFJZEYuOPRGFlkUXHH2FEIGn5RBmrjER4zJZEZo3tRBFOl0QnT2JEaSi3RBztmUVggYNEH6YNRuBtgUScQpVEXr+HRUr2oES6/BFF1svfRI9Ma0RMJeZEkLfKRD8Hg0R6KqBEhxAeRVoG9EZMR5tEQX3lRK+Mg0RllLZElMEjRyGVKEVHOcJEP3lkRuj4TUSP5ARGLgR+RE2zuEXOb+FFAHGHRAXMCUW/04VEkthvRB90dUQUvjRFv742Rca910TxY2tE3gFsRNazbEWjiv1FLG1rRdJmh0SWFI1ELfudRe1WXkT+XQdG2kZgRNoxdERTPwpFSI2LRDmlbkQ0F3BGdqeqRNhJg0ShK5ZEOSezRJ2Pe0Ujk5ZE/1ZmRE9HBEWNtWpEcH22RJL0rES1IZxEToOBRChXvkT05TxFYDmxRc79gEW1zrlEGJHBRGy/sUVdaxBHVMmcRQW5sEQ2rV1FVO3FRXNtt0RSz6RF4xK7RLhxiERCD79EnTFvRNxYF0UJU8JEixSHRG4+qkSQKptEeYK3RLFVjkRKRLRE0nGERO5ZI0VSvuhEyVuKRGjAp0QrQeFEhInIRDHViEQJ9DRFkoKjRJ5SFkZReZBEQsxgRWsafERwgctFyhCSRBewDkVG9aVF9Q+RRExOakRlc5xEaBI+ReOMcETEEwhFsLBoRa3khkQIdIJEYWNaRGdNCkXBWl9Eh8gBRU2KbUQPML5E5oqIRi3LZUUuU4dEiSFiRamrmUX1kVBFPyZ6RO+ee0SGF7lF3nUaRX3jYUTJQAVFCAkuRSeLXEQKW01Ej9EXRlTbZESK7vlEtL2SRPXsr0Sh6otEQEadRJqFO0WO6XFEAlnIRQ74hEUZi4FFvWsZRYPWoETKwFdE3Fz0RF6W7UUdd3REjf3mRgYCckR82F5EwJXORUa89ESIi1JFDsxORLczxEQACH5Fmb6eRr4PMUUlBIFFsk7NRKRx30Su3Z5FIn9rREcMj0SyiilFbKvxRIBiq0UilpNEIj6ORL6jVEWsx1dEz2y0RFG2rkTIXtZEI+srR1s0LEaDgrNGr9udRbtSrkWxBRtFQw/iREJBkkSC/15F8IZ6RKIr9UeySs1GBQfNRnR6pUWHWY5Gf5ieRFdZskT3OC5FtZWORJAgvURfww9FgdKURFybYkWxYX1EsE2VRL10/ESgnfpExwHERO6n3UTHfYREpKmIRJ4Mi0SmpghGoSscRWn5akR+srxEUc11RKXQ2kRRRwVFkhfxRFgIn0RyTM9El/srRsLVrUWfVbRGuusKRX8shEaWsIZFDb49RcPVMkWNzi5GBypJSW2vA0Yz+JVExwFiRYVSS0g1cotEVdgJRQbXoUZSeXdEmYr2RC5Q1EUp56xEo+9BRSlcT0aGwDdFrEONRPi6bER15ohE0siVRAgwaESOMOlFMHSrRMN/uUS0X7xEuzX6RC8zGEV8CepFThaBRT0RHkVWmsBEXm2HRN2mG0Xhe6ZEYbGVRTIZt0SPTh9IwPIrR0RzZEU76o5EKn6vRLNVREYRIFNFS2BARJgOmERnwYpEliQsReo2YER9yZpE1Q9uRcDJ30TwvWhECiWEREJRBEVz7k9G2OmORZzf/kS5jldFV1JoRH7YfkT6H4JEcv2KRLUGwkWugaNEXmjzRD/3jUVnhiRG5gkzRK+hiUTWZGlEptjBRsVB50RKBoJGug/xRO+W80WqXYJEJnzNRVeDzkUpHLxE6zmuREZDnUQHVaxEDGwHRfOI5kdO4g1Fu5f2Ruu2GkXrWhdFBK6zRpbtuEQRwHJFZttURJTAxETrBYlE4uB9RBeFiUTIvFVEk7WVRTWpm0QB5XZEfiWZRNrog0QfPGREcxY8REw2nkSDZWREM4RERSHAOUVpS9lE76eEROq8m0Tpa75Ea++kRFUkbERWQDBFip2JRNTDuUQgaApF6+qgRMmxiESijcJFjVrdRGyLjEQYVlJGKNjERPluq0TeDTFFyO08Rd95MkVvDgFFQ4KMRM7QjkRcW0pE5MI8RfYx60QiC4JECaxYRRwR+UTXls1EquwtRW10rUbxQcNFTL7SRCtyYESdVypFhU1eRbELCUUSSy1F/1qGRBaNeUbbXfxFYVyaRCZKtkTdJ2xExlicRBvQhEh0uv1HqVyHR4KIQUYNM8NFrSmcRETjCkVSNn5E2TrcRHk3tEQn14JEH58jRpEZYUTZ719F6vT8RGhCC0bBqOVE1Iq7RAjdRUQCRMJEEX6JRHesfETON11GOlKqRYTGdkVJyvBEiaFNRBJYhkRSuptEut2pRdrnykRGeGtEPttwRC9lTUWrVSFFmuNIRanqdkT/EYJEkzMXRqcbykXR81hF1mqnRHE/R0UQkbxFm6TARbYtfkSgr7NEY9SdRLSQRkYkrXJFMxgcRaAXAUYRpKhF7BhzRAjwpETjcmtEnpiQRDo3uUWdIK9EVishRSfdgEV72CJF9iwbSJ4nmEeIfoNEJW4dRy6hFEWlsrtF3awuRjRq5kQ78ndFbVwDRfvriEQhXoVETNO0RAebK0WWjwxIInuNR3DwFke4qBtGDOhyRWwHVETFPGxE9zqSRF/v6UUkJ1FFLS8XRVsJLkeYNbNGjlKFRiA7Z0V/N5JFRCK4RIN0+ESmzHJE9E+SRATxjETAiQ1HvZuHRrGlKUZW1GlFYsfhRPg+EUWDgIFEAkRcRNBt5UTuNL5EfDVrRN05SEYDrgFGoIGZRVj8fkTaGhlFR6CIRGMmHEafzqtFApc7RXUJeUROXiVGOJ0PRkewQ0UjGPBEIyR/RrEkmkY8VBpGXwnERTG0PkU= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - aozzVg/BckBrnKOUb8FyQCjOrZpSwnJAam6cHanCckAy6f13HcNyQJAXQN87w3JAVj0YTFPDckCw9+3QxMRyQCZ+6JxYxXJAMFlNFkPSckBDNztgSdNyQBqzyoR203JAFQGP+c3fckB4bfkmueByQIuD+ZtP4XJARpbtYlDickAiKhdmj+JyQCMvuOnJ8XJAv+VRFrXzckDkRdgjDfRyQCu9jrmi9HJAqoAljL//ckA2b6aAYwBzQMxGTa74AHNAZ4KwdYwBc0CyFLhxzgJzQNANP3r6A3NAcEKuoggSc0AcHZLqgxJzQOaXyua8EnNAIgyQPgQUc0CSMadteR9zQPTe06o8IHNAJqBT86Mgc0CXRDuqOCFzQMYfeH9nIXNA3Werx8cic0DAjMgeECNzQAXfd//NJHNAaB7oikgxc0DOWMMnHzJzQELKjsn9MnNAuLqC3DY0c0AvuZJG4kBzQHj0MzN4QXNAfJXoMnpEc0Dr+7xLQVNzQLhh2SWjU3NARK0+NXtUc0DV+V4Gi2BzQORTC0w6Y3NADmmUXvpxc0DySOxeUXJzQCpRP6G4dHNAjFNA/Ux1c0D7MnEsanZzQLiQWZd4gHNAlo8LOqSAc0CmYIGRC4FzQNJDTLpdgnNAiO6VTQ6Ec0AxMuQFhpBzQA8Fj/1MknNAmqPcDc6Tc0Bt53ytYpRzQJjnBkL3lHNAqs9I/IuVc0BUga6dt6BzQM4OUKdaonNASKar/OWic0BmvztYBKVzQK6+gADHsHNAkuKFTH2xc0AsxfE8trNzQCQpKvUNtHNAIYXVzfjAc0Bc/tgvi8FzQJxCy+I6wnNAJrB+vc/Cc0CDzcJaJsNzQHYrT87X0XNAGIU2m/fTc0AsmBl+49RzQNqaLjI44XNAFHRlqWPhc0Cm/H8eDuNzQLHmvkjw5HNAHmvEqjb0c0BK+WwrjvRzQJaxYNvhAHRAIAQL1XgBdEDCA8ikpgF0QFaP4CqLEXRA4HmcHk0TdEClXP44dhR0QKoHlcyNHnRA+ND9+ksgdEDxzUK8uSF0QDA78NRSMHRAzlzog/ZUdECXQ9m4i1V0QMaUEni4YHRAEIJPZAhidEA26m1nTmR0QP6qFnAicHRAelsBG0FxdECKDe2jOHN0QFH7qGCkdHRAnunm9jZ1dEBCzCLo+IB0QHAJtF9OgXRAAa5wDJKCdED8sWP2FZB0QOZDU/1qkHRAHFbPWaSgdECVdN3gzqB0QN53rk84oXRASV8/Ts6hdEBt7W8luKJ0QKp+X6HSonRAJzvl7w+jdEAGl4k0CbB0QHiL4vniwHRAmJq2eXfBdEBzpCO76MF0QFTuusf9znRAc4eD6ODTdEDEgpKCd9R0QLi1a4jM1HRADv1kdrjhdECq0iayyeJ0QKQj36nQ6nRADPzEGYzzdEDT8NNLpAB1QC3P/qthAXVA6DLGE10CdUAi2ymcuA91QJCcTiwjFHVA6l1Lg50idUD2+wriyzV1QDErGwhNVHVAoL5VBndVdUDI9fxlDWB1QBh42dw2YXVAKcwnwHVydUDyoJxfjXR1QPZ9asBpe3VAeps6VHiBdUDuZ568rYF1QJbW1ZGmg3VACFFdN5yEdUACpzokjJB1QNvIrME8mHVAz4yV/JiddUDuRhAXkaB1QBQA7m/wonVAKNLrjPeqdUCEAdTj57J1QHMBc158s3VAQiop1c7AdUCAlxX8Y8F1QJmoMnP3wXVAHOpQMajCdUBSD1ezisN1QBMSb1PL03VAwWoD6A/hdUC3JyrYB+J1QASzRhpJAnZAjI45H9ADdkCM6QUpARN2QGhs83VMFHZAgLToBIgidkCuTukakCR2QJC+lde8KnZAFugovx8xdkCUlw5aIzN2QEp71NKcNHZAw3YT8h1BdkBcGo0vEkR2QJ6gyVx6RHZAtHCu8MlQdkA2xC2EElF2QODRITqHVHZAuocYUs1UdkA03lcxzWJ2QPzCxizcZHZAuIsmpAtodkCCEIoJKmh2QECWxlyRg3ZArtvsm56TdkCY4d1MvZN2QCpd1Pu6sHZAj6hXCcGydkDdiaE1DbR2QJE8l2O7wHZAKNdvFM/OdkCh3cWJ+t52QDfexkjz4XZAYGeKbB/xdkDOLshFkfN2QLyrb7Tr/nZAduD6eDQCd0BXuZndUA13QLD+h2oCEndAvN2Rg6oSd0CewmbV7hd3QHX+kr0EGHdArP7ADEkbd0BjEU6bTh13QCqf+C5fHXdAknGJGw4id0DT0suNcyJ3QAgqvK5QI3dARPZJQbokd0DW6e3epjN3QEiTCsUMNXdA7LhvspxBd0DcavB5GkV3QBjvSRpKUXdAsIh/tpJRd0De5HEHKFV3QIINzEuQYXdAzGIYRzxjd0A0nGslZ2N3QKTJahEnb3dAt6d4QD5xd0AGlnRninF3QO27GSF3gndA6iV7zk6Ud0AotZXT4tB3QD2Yw0Yi43dAl/J4Vijrd0Bk1GPmT/J3QNLt+C1uInhALsm9pisjeEDkmjfNMSt4QH7QQxULQnhAbiUvznlFeECkJdX4ylF4QHYgZ7+UUnhAzHaitodVeEBwuA4l7ld4QOCWl2NLXXhAI+TedvhgeEBCNgbhtmF4QHa/xhm5YnhAZu9Q6LJxeEAct91IbnR4QORPJ36LdHhAPaDF3650eEA4cBXApIF4QFrTWLNuhHhAptf3yZmEeEDiC8HjvIR4QBLmm/6YkXhAFH3zkqeUeECkQRd0zcB4QISRT7K21HhAFsVqocPkeEByM7+6AvR4QKpclPqM9XhA1v68APlCeUB3ez5FzFR5QCoRxRJFc3lAjWZNjmujeUDw0oCVdKt5QODLd/LAsnlATHlRPEPUeUDcAsIly9V5QGSAzDHA4nlAsZeAmlLkeUDoWQXdJeV5QLrvLag78HlAXHRxJZXweUC+pGGGJhR6QDo4Rg6tI3pAaOGovbQrekCqOYNpDDV6QLYOengaRXpAQqlkzShVekDF0ve3oZR6QAX/pcMMtnpAbgsSOxvGekCY/bNy39d6QBVnECl7A3tAuBNykUwVe0C6BPIlWiV7QFLzBdBTMHtA6Gx8BcQze0DQRruJXlJ7QEPibN3rkHtA/kTmYCOVe0C5iqqMMKV7QIDHYqt2xntALkvOMMbRe0A6k1X2N9N7QCTIGdzH4XtAL+a3JYz1e0BH96cKkQF8QPQQd63aAXxAOP066PkBfEAVsjRQmQV8QGR/BHOHEXxAlgUoQtMRfEBIHOV/zEF8QMMifQPaUXxAKuCEhQ1ifEDC8NpJsW98QBS58zzAsnxATXTWxFfifECg2UwgFvJ8QJ652QtU8nxArWHGf0MAfUDAAVwnAgJ9QMjSrcFLAn1AVD3EXUUSfUBScAGAPSJ9QMhj08SfMX1Ar+oXH+FLfUCKAd4G51N9QDivrEIMVX1AdqKggx5ifUD+CrQ7K8N9QNh8M0Br4H1AWeEim9fifUBRN52JkPV9QOwE3HZXAH5AoNz4N4xVfkDl6K/8xVd+QKQWo1siXX5AJD0sWu52fkACQpIFyYh+QAqR8mXV735AkE3jyCH6fkDo2gjZHwB/QMApL2y3cX9APioPH7SBf0DW2BPGYpF/QKxqARSrkX9AvisIHF+hf0DgJ7QsVbF/QK04d0g6vH9ABLeC1j7Ef0D83yFbedx/QExdY87fKYBAxXSd5kgqgEATwBeE+TiAQI51SXFFOYBAjnFw2io8gEDdO2CS1j6AQMN8zx/xSIBAIP31HeZQgEDLQHEIFVGAQFw8grToWIBAAqgc9A5ZgEDYwJ73CmGAQCSEVAYrYoBAcghevidvgEDTFkYCBnGAQIiGRIf8ioBAAhywRB6PgEBqtl/JapGAQKplRfAel4BAml04YxyZgEAkSato6qGAQOSlN8jvpYBAJAVOjoapgEAjMWBQ9KmAQGi9OFpSwYBAZ5dHw27BgEAgbMidU8mAQPLbnIRVz4BAkNLKFCzRgEBsqhhbTdGAQIv5LK5m0YBAcPWDb0vZgEDeYRVritmAQAUEA91E4YBAPhgi5VbhgEAKMFKE9+iAQGRymBpD6YBA6kSarUrvgEC419plP/+AQBvL2CFAB4FAsp4mGD4PgUA6TQJsNB+BQPjDnv9RIYFAyn27azQngUDhq4YviDGBQABqnbi8MYFA0ESpLPRFgUAKjkuQ90mBQH5tO5T9TYFA5UqrBOFdgUAUzt8nVY+BQNaUQFlXl4FA3N5Ch0KcgUDiH7waU5+BQPeOklznoYFAxIb6MW2ogUA8BzupSq+BQCSn/RQqzIFAjTb42tbOgUBmt+K0gdGBQDUKeTUr1IFAr/FbihLZgUBI09rShPGBQGKDSAc09IFADf+U+tj2gUAVnnl/g/mBQIQZHcQCCYJAfvqwStgYgkDsn5PC1iCCQBrU4RXRKIJAuLxOR6IpgkAe/6sUpi2CQLpeRxmlMIJAIGyopM8wgkBsSUqkkTmCQFMHEX7nOYJAZ3Bomuo9gkBWXOQCzG6CQKrJNGR6cYJA+OP4oWx0gkDAIJD8t32CQIifzKC+gYJATk8sRUOJgkD0qMGwZYmCQNYmGpVEkYJANtVBzj6ZgkCdCNIHEKGCQCDU9k49oYJAECiErw6pgkD8Vk1qNKmCQEHtA6ZIqYJAbpTORgexgkA8zkfONbGCQEqTQFUsuYJAeKiTSgHQgkDORfr3qNWCQCqnjZSr2YJAQ4G3ArD5gkDix5pNeRGDQJ6Dj4x6GYNAjN81uHQhg0CibHz6cimDQMD61B1rMYNAoNpT5x05g0CKKjGNaTmDQCly+yblgYNAh1u+V5T4g0Ds2h0//2iEQP7VBvz9cIRAhhOke/h4hED0+VI6atmEQArV2Z9q4YRAftVok2PphEA+YLuzNfGEQBz6iqRj8YRA7jPwmjP5hEC1rKivWvmEQI5UG1KgYYVAbvXvKKFphUBARM6xmXGFQB4VfmKzc4VAYKt1GJl5hUCNeb+MkIGFQN2bL2OUiYVAb1Zycq7+hUC1Z7iTJbmGQITfIByRKYdA0uB+ypExh0CgRkKwijmHQA3a/B2IQYdAagrfmsexh0A4nbxTx7mHQLqSt47AwYdASun0QsDJh0D5qc5t4l2IQHbqQ/HkYYhAI9UmGuRliEAplkJt4GmIQK4btlDnbYhA7QG3/zKAiEDcrB1K34KIQKk42nGLhYhAaOFI1DaIiECCWgFI4IqIQJLmZeicrYhA + NrgMGZxjYkBDHc6DfEJxQLh9x6rPUXJA - + - DwOgRIaXXEWCB5xE2c4NRYLZnERQ74NI8cAVRSy1tkR/z61EEE/rRj3F8EZcV31Ei08URQ2qBkX7dp1Ex5KjRdrYBUXj1lJF+4PCROl0n0TujPVErNKdRJxo4UVjNB1FiqP3RKLY7kQnRQJHEFqlRCn31UVAuxlGMuuiRb984ESeeJFEF6G4RVHwuUbQSIZEnEmRRIRnl0TDolpFIMnhREMkZUTJQ41EoD25RFaIzkR1i4xFzbHZRaw6r0QzYI5F1rGPRDcCu0QifQpFrFGdRIug50SDNMBEobzsRCygoEQDSNxGBkmYRCsCMEU3QJ5EjfGLRM2MNEX+6idHhtePRA4NH0VDok1GFJycRCu+Ckau+K9Fp+LHRQdLJUVK9I9EgE3iRDmjXkVBdQFFCp7aRBnEm0TisHpE4FSTRWhoxUVd/lFFhHexREiqkkUUfhVGJ8mqRM6OjEQ7nJ9En9EtRa4BkURX2tFEhNWPRohm9kSRJG1E9BVqRcL+lERhwcxE5Zm/RCSmAkWnC8VEZfrRRCfNBkVqRKlFSNVARfzR4UR8C/BFC+QiR7CMj0XEmZNEdjroRO4R7UTUBcFF/O6KRCq010UW44dEKIh7RP5L4UR116REXGGJRFHwikTFLbxEesEDRVDJCUUFVsJEDK/DRE2Th0QaOMNEf8K9RAoaukSs4wRFl5BRRdOIEEbCzOdEC9CeRZBAkUTKDANFTH+TRTAInkR7Nw9Fqh0VRT6kK0XKRn9EJ0YXRV9yhkRS+BZF5FHORJBECkaTlqxEI8oERWVJeEXmL6VFfMOcRJm5hUT5Ui1FE5mcRKTunUQsNhJFtAXBRHoyykRZdclFMwqRRFM2r0TB2N5Ez1iCRAT1gUTIcUhFWZuYRN2nMUUI8ppFv8u1RJc4BEV05gxFEVCRRFhhAkZITIJEuyosR8iQlEQEsJ1EBQL9RcEXxUQaeptFVk0kRel3gkVBOKFENZ8jRvvNv0VdBqJENrl+RMHSnUS+ea5FQNSDRN90bkTQuWtELFcmRYoOoEUDgXdEiXJNRX8qA0WUlchEgL+TRECGukSDjIpET/QdRR35K0cuMHZG0R7XRiH0xkQW4bJF4dmrRfr3iUTyt65E8RINRRfzokSWfP5EZP2RRCrdlUSmT89HG6rQRt9LskbSILhF4k6tRsfLzkRNPUZFiIAHRS7Ls0TxL3tF1s6KRLT9WkTO0pBEZyCWROw3w0SjlDBGWCoSRa2cyER4LCVFJ0rwRFyBkkTfiPNE3zX+RUnTukWAMAlHEsgKRTJSZ0bsijxFcagwRclCaUV7FdBE3hejRI8u9UWYDSpJ8yDHRQtDV0UhW2VEmZwxSFrc5UR9OJ5EiYyARvoux0QBC6RFctSrRFUcNUXujqNFxEGkRDXDUkX4sItE2qUYRYb5lURYxxxFCya8RVNCl0RoRxpFoCGYRPqUoURH761EpPC2RPiGnkTq+pdFaTXyRJglx0fC7cpGxW0BRYNjjkQLyMxFm83TRIPGnkTjBnFEajtXRhvJHkVD5YdFhR2CRAjPpEQ2QnhEQaOtRRwSB0VPYodEN6JoRVWeCUZ43ZZETZeORkO+8UQEwWRGK3XxRLgNl0UQGr5ETzydRbpM0UUCLotEHB+kROUVhESdUA1F8U/VRwQwMUU3g7ZGBkDORKJE+USHYo9GYjF1RQ4AoUTAMZJE/yQKRUl3oER8umxE5J+bRBHxx0SMt/1Fp/ORRHAju0QcAM1EWvmERcnf+UR7kcVEGi+YRKLwlUTarJJEXoIERSfuj0RD5zVGrdNFRWoeOEaduhtF2RteRZ5C90TtOh5F8auxRAjcikS7dIFE0oT9RNo5MEU31ItEmo0fRVB1FEXGT1tFOaA0RYgRA0eBfqxEYVE7RofBxEQcgMlEoEEDRXh7lUR1W9VEZmp1RTjzjURFw21Eq2WJRJI+f0aVBo9FRGgXReK/xkSCrN1IRglWRbPSZUjwngRFz6/5RD8p+Ueu2PpEnzvnRsrge0TZNBhGWvL1RICMHEXz1M9EpquiRJuXDkaoSyNF6p8FRbhgBEbEoiZF+ZX9RGHfhUS0cRVFbUQYRi6qsEXgebxEqTWUROnToUWZCKJE5DOhRD/6uESn1edErtkARUviakV4z5dFj2OIRazBb0VbB89EynmTRAA6k0UKSiZFFACoRH+yukTekJ5FW0JWRm+fjkUIPmhFP1IYRuJrRUXRVaJEw6CKRAYbnUSjEIpFAhpGRZmgukR2ha5Ev/SARFCnVUUzdIxENSLDSPRZWkXLlmFIcj8HSEy8nEWJqxdHO5UeRVizMkYZMR1FQnLIRHOfGEVS2oZEXx3nRMDpGUX7lXVEJkeyRCvdsUim5kdIgUD9R/KID0f/+C9GRu+jRB29EEVgSrVEq/ubRA8WB0bEUDRFWVvEREp0vEf+YS9H0KXoRrKHlkXshSNGs6y3RO8+GkUujpNHDUglRx0FrkaHR4tEBpEQRr5WAUUsV4REo82LRNMBuESBRKBGg3QFRtDhv0UjwQ9FA21ORsv17EXTgp5FlH/tRLM1A0dV3qBGNpcPRs7XjUUMYJlEOwieRmLmtkZnIVpGjYKVRVk+zkTsCMlE + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Zua+lwzBckCuSDvsbsFyQKeydb5QwnJAfF1/t6jCckDNCw4YPMNyQDCHb95Tw3JAaG4HncTEckCiuJ8lW8VyQNyPz5VD0nJAFFOByEnTckAYkx50dNNyQG1wKCLS33JANt+TTrjgckBmUHs2TeFyQLDZFjhQ4nJAVzot94/ickAMvkRPJONyQKLN5kJL43JALSZj3ePkckB2/zLoyfFyQDXYLIm483JADt884cL/ckDyPXbBYwBzQJo1odv4AHNA68n7tw8Bc0AzanmtjwFzQGjXyiI6AnNAeh0dBdICc0B0ASrm+gNzQNHCYEQJEnNAVJgy2YISc0CGa1VAvRJzQHop1oz5E3NAlVz0FQUUc0AMuDPWTRRzQD9bwfJ5H3NA3jy00KMgc0AAIAJ8OSFzQDJ4omBjIXNAoR2B6w8jc0BairN8BSRzQK/i8zLQJHNAksDaakcxc0D8quVWDjNzQLxMlnb3M3NAGgVcODc0c0DG3w3vuz9zQEVuPDNCQHNAXEqg9+RAc0AVkbrgeEFzQMTgf8l6RHNAzAUByENTc0DGWSGGo1NzQNxeeESIVHNATDPX/R1bc0DWj1eDjWBzQGdmilxmYnNAleKNzjljc0BNROUlUnJzQOCpL8S3dHNAxYxUzkt1c0AalVrdeIBzQEwjt/ukgHNA4JPfZw2Bc0AUIKClX4JzQDwFgtyGkHNAptD3X02Sc0A5qd8j0ZNzQLj5T9ZjlHNA/dCmM/iUc0AOa54KuaBzQCcY7otQoXNAKVTITluic0BnLqDb5qJzQPzM1q0FpXNA4IcLrciwc0Bec4391bBzQII/o95+sXNAw54d5PSyc0ABki1RuLNzQEz5Me0MtHNAwj65BKO0c0DNF8K8ZMBzQKwpGyn4wHNAKnpr54zBc0A0fszhz8JzQKRV45onw3NAXlI6E9jRc0C61p0s9tNzQNahemji1HNA2uQzxw3gc0C8pHbkouBzQMjZro444XNAK2P0GGbhc0B8f9DviuFzQKLU7Xc39HNA8QiayI70c0AcG5s25AB0QCnBUgl5AXRA+JJwsaQBdEARJLtSjRF0QNXhgw9OE3RALs4jYuATdEB0x8V+eBR0QJgUqy5KIHRA2LW4wyUhdEDIzBdzuCF0QIIUfvtTMHRAdshle9YydEDN8nsoXDN0QL6W3EV7Q3RA6EpIUflUdEAeGMBFjFV0QA38ODy4YHRAmY4xlQhidEB0vjmTUGJ0QCjViRRPZHRAFGLp0CJwdEB8OYBNQXF0QD6YzSY7c3RAuC1vyzh1dED0HAVx+IB0QFsO9nlOgXRAnuCW7ZKCdEAORZ4+FpB0QOf3ju9qkHRAOsPcv9GgdEAyUM0OuqJ0QFK5vqwQo3RAkL10pWSldED6tTT6CrB0QKxzphzjwHRAkIxnoHrBdEAWzZyG68F0QMjHeookxHRAgBeuuLjEdEDIthRT+850QLjMOI0903RAtIXepuLTdEBW5liSdtR0QFAen3DP1HRAUmIiTo7gdECK/A4lI+F0QA3xrrO54XRAkmGvZBridEBemkXMyeJ0QMJqksNP5XRAiOl5M43zdEArJN3XOQB1QOzT5MWjAHVA7ubtUWMBdUAQuu8uXgJ1QOZfMGGbA3VA6DuCNpkQdUBlKdu8cBJ1QJjEKyIkFHVAKkKQ9XQhdUDNp7A0niJ1QNv8gr/MNXVAhdEaAbRBdUBEMD6z10V1QCBhjDGBUXVAiNBQskxUdUBMUIfwdlV1QKYX7o04YXVAFEZfc/RhdUAwBsx5bWN1QAKzX+92cnVAVvxVo/5ydUCbntPNjXR1QDC+iJpqe3VAko37mXmBdUAlzw19roF1QGuDSH7qgnVApB3CJ3KDdUC4YhuppoN1QCyhEb2ahHVA1oXfsLqRdUBw/nwDbpJ1QAxt1s89mHVAtqNmvJiddUDrLHDg2591QJaDFLaSoHVAMqT65bahdUBQT+ZZ8KJ1QGKUCL98r3VA36H0KeiydUCnoVH1NrN1QIn1mUh8s3VAm/38FWPBdUAWamL4+MF1QHLpKOvM03VASGqEWOTfdUD4ZrJDD+F1QH8PNFKj4XVAPEi11AfidUACgbzLaPN1QNuQ5rZIAnZAulXeas4DdkD2PLSMAxN2QCT3nlkxE3ZAsZbTYk0UdkAoQCnviCJ2QJ4jB2SQJHZAjyfZ6R8xdkCZ6W0N3jF2QL5f8cMmM3ZAmBgtz5YzdkBRc5SfnDR2QP5pZT4dQXZA9m0/vBJEdkBmNnQ+ekR2QNYfOwTKUHZAEAsdlRJRdkC2seq1zVR2QGajP/IUYXZAGtaX5MtidkBG7uRT22R2QFRO+/MmaHZAssqao2mCdkDQJeUE5IJ2QGBTrjSRg3ZAiXDEisCydkCGEWfKDLR2QHmfSu+/wHZAEllTr87OdkAiDHxO8+F2QATTiT2R83ZAaWmmX070dkAGagBENAJ3QNfyzCBRDXdAo/7yGgISd0C5FYxgqhJ3QADWf4UGGHdAp5MGX0kbd0BsMsibDSJ3QF6/x3x2IndAVLie0rkkd0ACssQjDTV3QLJrl02dQXdAMBGETxtFd0Aiut/uSlF3QMANea2SUXdAIrEQSyxVd0A2S2EID2F3QNVgfWmPYXdA1tiK5qJhd0Ackp7PNWJ3QKiI9Y07Y3dAtA4tqWZjd0D04ODFOmV3QK9Ohnwob3dA5Q51Jjxxd0AGsb+zjXR3QNTV58V3gndAP3lyQXyDd0DsL7sCCJJ3QPCAiIadkndATKSogUyUd0Cvzp/o+Zd3QIoDZSGP1ndArEFgVuvgd0D2z4eKIuN3QJx0pzsp63dAkEDd2E/yd0BGQaT+HgJ4QDo1ImVNFXhAsNu0RG4ieEBjhawaLCN4QNoupsuKI3hArIRFeDMreEACT6XvezJ4QGhtSykLQnhA/laXaXpFeEBOjes2y1F4QMIZIweVUnhAnucAhodVeECSMeqU7ld4QCj9hKYzXXhAvgM00UpdeECtXWnX+WB4QGI8nM+3YXhA/pDp245ieEB2r7Mur2J4QIDSVctcdHhAC97WoYt0eECVCXEGsHR4QNfjnN7GdHhAtIt7MqaBeEAEOpCemYR4QEwG+w6+hHhANHczt1GPeEBkE/0AlJF4QCDjMK2nlHhAwLIGo83AeEDmD4K59MF4QIB/cSS31HhA7Zj348TkeECobGWkAfR4QGMjSJOM9XhAErVpAZoFeUDOdn1rjUJ5QIs2akH6QnlAyUCtqzdUeUCEY5xczFR5QMYIiYTYZHlAAYsNKkJzeUD6KwqZSH95QJ5vWXX1gXlAVquc4W6jeUAudfsJwbJ5QKbRBO5p03lA6BU0iELUeUBg06n3zNV5QCgyLuW+4nlAT0LOslDkeUBd0Ioo+gV6QKx3lIonFHpAxKatITojekDmvwyxrCN6QDLwtI3eJnpAOIVCwLUrekAKCh4rDDV6QCavlWzmQ3pAgRiwqxpFekCgQrBhL1B6QNZRrcspVXpAHxptKzhtekACy49djHJ6QLywtd4MtnpATK2B3BvGekDNSZaON+56QJAjTtEpDntA4vBHhE0Ve0BY/g4QWiV7QLB/czZUMHtADEUl4mFSe0COhnjbt3t7QO47JA3ClHtAY995ViOVe0APMO6XecZ7QFqAqlzJ0XtATvuFPzbTe0BJwd4mAOR7QBis9YWX8XtA5DGuXYz1e0BQFiX2kwF8QDFD1pHaAXxA7ihqYPgBfEASaeE8mgV8QPPcfvSGEXxA8+8A+dIRfECqbdrdzUF8QJacOqfZUXxAGOvknw5ifEBZKJq2s298QBib8uEDc3xA+rCXVsCyfECZb1kcEbZ8QAyxTehX4nxA5Gp6RRbyfEC6dNHGVfJ8QDoL/S5EAH1AzUvBEwQCfUC7nyvXSwJ9QJ1NDbJFEn1AfmiXNT0ifUDlWeOJoS19QJBRPKadMX1AlHcyPOFLfUAQDQBzX3l9QJK1q+Avw31AvwnKoWvgfUD2z4tH2OJ9QBb6WzyR9X1AIAKUoPX3fUA0dqUAWgB+QOZ3MdI9L35Ah+nsq0E/fkA2KJSTjVV+QLjFeIjGV35APPxnXh9dfkDGr9/oCI5+QMXjjzTLm35AKg7jttanfkBMP9Mw1e9+QDZhZCAj+n5A1W7BBiAAf0D2nle/KgJ/QM5h/vw0Hn9AWAozPLhxf0CarnCQsoF/QBNkujKjg39AhlZFgquEf0D1vxyWY5F/QFo9xAGWk39AyE3ptVyhf0CiDkuxU7F/QKig38Q4vH9Ala6iMnzcf0C7bbVtlN1/QEbmag8Z6H9AmUeYO0kqgEBA3Nb4JS6AQEyhHRJMLoBA5Qz9Jes3gEB7GbX+KTyAQG73Q7KUQoBAeivdFu5IgEBaXE2P5lCAQNQLOOMUUYBARP6glQ5ZgEB2bI28IFmAQHAcSr3iYIBAYjFCRytigEBdgSDZKG+AQJD67AMGcYBAjDCfdPR0gED/5cAw+4qAQIp6sWQej4BAXlXpJRyUgEAaJlcUH5eAQO6IZCnroYBAh1d1mu6lgEBft6bbg6mAQGM62YFSwYBAHgk6YxDGgEAE3mu7U8mAQElwburYyYBAF0fh01TPgECKt/HKDtGAQMXyeuQr0YBAsh/ilkzRgEAkuHf3StmAQGPPLB2L2YBA6sXRHkXhgEAIHtRr9uiAQOM5tNVL74BAWHmWO/bwgEA0jtbSPPOAQPzNIrY//4BABP2rUkEHgUBC+ujcPA+BQH0WKOk0H4FARt0R8zYngUBAAm2lvjGBQHthkg30RYFAspj60fdJgUDUuGDXW1iBQEFgOMAchIFA/VU1nFWPgUAWfzMtVpeBQFu4JNdSn4FAl6bQjuehgUAU2QWdbaiBQABtmHfuqYFAPH5JO0qvgUAu9TraB7KBQORMh1QqzIFAdEdUhdXOgUBBFxgagNGBQJ59Ugd904FAFY8IcizUgUDMlhhBhvGBQBiTuHQy9IFAFhjxDd/2gUAEDQdDi/mBQFCPInoBCYJA3KBpfNgYgkDVegjj1iCCQEPC6cnRKIJA4vfTMqIpgkD7240gpS2CQNhy48qkMIJAiBEwR5E5gkBTT/5x5zmCQKGUnWDrPYJABJekCOZFgkCydvNbenGCQL4Busq4fYJAICBJWcCBgkDI8rZoQ4mCQLJi7l5EkYJAtzI8wimUgkAwm14CHZmCQEQwQvM8mYJAX+hfmlWZgkDwZSkiD6GCQLmWWqM8oYJACMkHBg2pgkAKo1RtNqmCQMHlWxANroJAzpnjFQmxgkDc0KTLMLGCQCp6RvYBzoJAqSA6jf3RgkAwwVfBqNWCQD6NNSev+YJApqz9oHkRg0CR7bRmehmDQLYsbUdzIYNAxkl+/HIpg0CU974IajGDQK5fkwttOYNAIqoZ4ZX4g0Buf1bu/2iEQCJwakj/cIRAwFEzA/l4hEC2kN8zatmEQNyOGNRq4YRA4mtoO2PphEAKH2/hNvGEQNT5NAli8YRAAqKL9jb5hEDsOb8lWvmEQK6W4U8vAYVAKoX4wqBhhUCqQ88LoGmFQLrfK8eYcYVA7OQx97NzhUD0Tvb0l3mFQNulp1CQgYVA2+6Cj6/+hUAne2rjJLmGQFr5UWmRKYdACwOuJpExh0CrCkF+izmHQPyRXklcQYdAqCpfm4tBh0DoxU6OX0mHQPb/fAZ3SYdAYCtdScexh0DL4vq/yLmHQKiWKQDBwYdAlgqcc8TJh0BqF1fW4l2IQI3oNaHlYYhA5KotR+VliECym1Ky42mIQOjFzJfpbYhAJuJEtTKAiEDGXImU34KIQKzjMRaLhYhATkZnhzaIiEBSO+RF54qIQA== + NrgMGZxjYkDs0KCvIgVvQBpDcYES0nJAmHHSiBTzdEA8THOylUJ4QJjPrtxsBHxAA6cH7K1zfkDDRtecbZqBQKrTisXpcYJA1f0MyDWqhEAndKG5+bKEQCejj+OlO4hAaN6wA42yiEBoDZ8tOTuMQOH1b9sdPIxAaDyNV+XDj0DY1O8JVdSPQLCNBkMOrpFA7AHvmYCukUBsGeau1nKTQA239j5KrpNAjc7tU6BylUC2CbhMAneVQMse+U0ok5ZAP+VSYub+lkDfnry1MS+YQLvUkvkBy5hAkbUhxHe7mUA77IkOWI+aQNo3YpCYF5tAhG7K2njrm0Cb8ZytqX+dQL+7xmnZo51A - + - cSh5RCR8jUUg08tE4ZjpRALYV0iv+O1E5NbGRFBrlkTj3BVH0DbhRl3XpkRx7I9EgIj3RNTsfUQBpG5Fr7vrRFEZ00STMrBExktzRL5rgEWVepdEW2q8RH3B1kVKJPpEcuJ1RM8SokTSEJtEG9qYRJaTFUfinMxEbW5KRRtFL0YW8WhF4dRtRVUZsEQD+oBEADGwReQi0kad7ZBEnOvFRNW2XUTfcbdFF725RC+AZkRnpoNEfA2nRJTKgkQeDWNEnUuRRPL8q0VDNhNGGdWRRP7am0W8kd1E2bSARAVJfkTacnBEf27kRHD3rkRgUa9EyapIRa2c9kaiEJ9EMWETReVh0US8QDxFZMdJRwHlf0SME/dEWfKLRoysHkYfdX1EZ3HgReRwBEavLFJF2apJRKufaETUALpEwm1wRHFlP0WqKjNFgaRvRGMyY0TjgudE1rhrRBiFqkW8E8NFIdI0Re8HhkQI68BFYv2YRCsfoES5CB1GAXGyRBn5nERRXotEYtV/RMhCgURvvIxGKhQQRT/ZkkQfp1BF5OGrRMyQtUQChpFEG86VRDhRDUWCUu9E+U2gRCMcXESnLYpEzKqwRPd690RuJJpFZjVIRUI9WUStLA5FSgTdRTTuPUdeJF9FOGWqRMUlGEVSD7BFsdxwRPQv60Ur3ptERhsRRaobukT62bdEXb6rRHfq6USkM6FEhPP0RFCns0RHl4ZEmZZURcFerUQ2L5VET829REGTj0TGOLdEXMKGRLpEjUT2/BRFXbluRDsErEXPhRJFjTG4RahSj0SD2IpEZD2gROEvxkXK5ZRE6q6xRBGpV0QhMkFFg16lRNj4E0XzojtFrmlURHGDlESE86JEc93ERDqO7kTXrNxEWfBqRFE/jESW+yxFxc1cRLPnS0Z/nO1E0KkKRT1lx0Vc9nZE8CtlRJzGh0UI+QtFsgLYRE9ljkSjg5hFWkrkRJCUlkSje5BE4Ay6RMimYUXDw7FEnEKRROCwxEQ9HpVF7SSZRMo4FEV3QaxEUnijRIYvjkTkS25EqPYNRVFYh0TfW7JF2YfDRNWAzUQy/2ZEZAbGRJGu4US5VQdG5fnlRtYEiUR0E6dEVe6OREX3mUQaaKJFS4xARb8+mkV16HtE9ukjRWf6VEYbL1lE2I2fRYkVVkXxLSZFnIaSRAovS0SXotRF8h8nRZ46skVAVJVECw8JRb4HnkQZ4+9ECJ+YRLZs8kRBzBFHfEiARtimpUZC04NFVLp2RR9GREX+UZFEQOCGRGEs9Ud9+d5GMrPNRmBgoEVGI5RGsr7CRGy0kES2IjdF1SXnRF03fET/6xFFfz3bRPTVhEQwwoJFAhRrRLqbdUSYnQtFl4KYRNT4jkR6XdxEkMjaRAILpES+QKREYWKBRJzjE0YFHBNFVcq3ROLSb0T+A9hEKF1pRRrb20QQ4/pE24C8RCanakSrQAFFN5BERtuMkkUxTSRHQs8FRc69dEaemP9EOpZZRfgzMEUWvntFthK+RNPB0EQ5BYdFJItTSUTH5kVGGT9FlJwaReP+WEgZ9PdEQPfMRJxhAEUIYJFGEbLKREGNrUSFrqdFB+qVRDUNkEV5HudFx2EPRUi86kQfBaZEBmmKRFyWwUVt+rRExLCbRHabvUQF4IhEsgP5RBrsHEVWGldErWXsRVwoEkVeKNNEXGbgRDmnwEQy4oJE32NtREUt4kWf0oVEa0fpRKOU9EeX5NpEiivfRodzgUTRdDZForGNRFV1rkRt+shFn9HXRKqVskQpFrtE6kVrRiiKhUWvtmFF5P2FRMCzD0W914BEP8xNRfqIv0R5fKFFj9MoRWvgi0Q8O9RF0TGyRqBCrkQ9kXRGFQACRW+V0kUtRKFERTO6RYtPuEVvXLBESELWRFJAbESquGpEj0UARSc4hkQcY/1Hl9EPRc7u40b6yohE6H9KRQ86t0Y0vqBFsPu4RCuJXUSHg55EURTmRMg3iURfJdBEfOwWRrQM0USsCChF+iWuRDbq9USJtYhEQSJkRB4UJEUwVGhFPsnURJ+qyUTPtbdEXLN9RCpXgUTDA7ZEqf6tRCLoe0Qmh4lERTGiRclslkTjPqtEsPeRRHN1RUYACqtE6zY6RfU87EQxmv5E/p00RY9tp0RQyZREVxTtRPo7aUQV9dFE50+DRKk7AUWurrlE/tn6RKNOZkXjHJ9GcU/FRa/+80RPmH9ECruARBLmOkXDBIpEjjyTRENXxUT1KENFJ/SCRE9QlUTPUENGi7ziRe4NfUQ/85RImQSXRJb0EEjS9WpEPcrDRNN6ikSy0NdEYgmKR7ZKhUbEXapERwKNRcI9wkQpHbhE6jSWRM9J8kSXdg1GVugmRfnUmUSwGR5GJLYYRd9pp0T+Ij9GIZXHRbK0cUQC03VE5C+6RQIz3EREVXRE9D5YRTL72kTWBJlEnNBIRZzxgkS6ugFG3LKqRX+iKEWEjq1E00YTRZ33nUV2/zJFJoXNRPcBU0RMNbFEUzpWRvzxwkWvSVNF9MgXRn2uWUULuLBEkfd5RJqav0VuL1tFEBJ/RO+ghkTYhNJEk49jRHo1FEg/k49H+kJ+RKL+gkQU/x1HBeXwRHHKsEUc2itGoDcIRZwOiUW0LXZEDV7gRDs9gERhNF9E8D6GRPNIEUXpeoBEzMQWSIRlk0ebHytHOqRXRgTjXUWVFuxEyki5RNaI1kUnh0JFxE/nRFTcP0dEvKtGxc5RRjhsbkVt+2ZF1o8iRUhjxERj7J9EUD8sRzPbnUbS4kpG4dqQRLqygkW80KREW9HARE82nETgKGxGds7wRf5vkUUJ0qREgALoRFuJa0RSeFxE8KMsRohkkUW1y4hFUJyvRHXLX0cXix1Hv2ZgRgWj5EVeNDpFxgF2Rr43qkaxegZGHGa3RfgAz0Q= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - oMUwHHjAckBA9ISNDMFyQMpVyrpuwXJA8tKc46bCckAO2oXdO8NyQBTktbj20XJAAqxIfEPSckBTYtsbsdJyQBY8P21J03JAiPXf/2LUckAQa1zsy99yQAZt9DC34HJA4tYQ70zhckCnWEtcUeJyQHbYSxSQ4nJAUNm8wSTjckCWvw7rqPByQDnc/g9S8XJA0Oh4z8rxckB2UH/8tvNyQERosr6i9HJAReL2RcL/ckCKdSzJYwBzQLS6rE/4AHNAvvrJVE8Bc0AqZDUmjgFzQBxKEu/PAnNAJvwYqfoDc0DanhQ3ChJzQNpuFlaEEnNArOFzLLwSc0DuLu2RYBNzQP7yMvP6E3NAyp/3pQQUc0Aezl7ITBRzQEQL+1p5H3NAkfVXDKMgc0AilC0COSFzQEpkPYnJInNA1s+Rbw4jc0DUYQq1BSRzQLTkSRQ6JHNAnjKars8kc0BFddRiRzFzQLcO2bAhMnNAAk43iQgzc0C6Ij7K2DNzQN2z32M5NHNAEqxaF880c0CAFjuA4kBzQATkZgd4QXNAQehA6iZCc0DudAUeekRzQAYQhOOaUXNA6LVGmkFTc0Bmh24Fo1NzQKMycVR7VHNAmN2YDIxgc0CkUQaVOWNzQEKTI7rOY3NAGdR9akhxc0DD3nnr+3FzQMDBlgxOcnNAGoOCyGZyc0B6stc0unJzQNhsuDy3dHNAhBdEK0x1c0CHDDoleYBzQGs9jgqlgHNAWAkhscuAc0AsjCFNDYFzQGxwNRBegnNAm9gJiaaCc0DxXt0o4oJzQA2B5AmJkHNANo5lvtORc0Cm7Izw9pFzQEyeylBNknNAGmrkxGGUc0BsqL5o95RzQIyht36MlXNAR7vvRbigc0By00GDTKFzQMgsr1BbonNAtIq9cOaic0BpUsS2BKVzQKx3t+HIsHNAQO+U4DWxc0BWxPR+OrJzQGq5Rca2s3NAjAP/4Qu0c0BAe2Cn98BzQIBgEUCQwXNA+I75JtDCc0Dw2kNnJsNzQISY7+zW0XNAh4BixfXTc0BaiNmD4tRzQCD9gr8N4HNAPScHTzjhc0DZkkOvy+FzQAYsB3VF8XNAVWA/Bzj0c0C6lkhX4wB0QGrBHe94AXRA1YOhgaQBdEDi7obvihF0QE4boU5NE3RARrLRYeQTdEDeq5R6uCF0QELENhW6JHRAjr6L8VQwdEClWgcP4TJ0QFqRdNBTQHRAYgPrFslBdEBGtageekN0QObkMlAQRHRAEmiaePdUdEDfoO2Wi1V0QOQlP/e3YHRAqMKbJghidEARYEdQuWN0QDYo7JFOZHRAJmQzMSJwdED4r4J0Y3B0QFSn0gFBcXRAz/vxYnpydEAWw/lHOnN0QHJLtM6gdHRARtlhRjh1dEBs1P2U9oB0QDhOydJOgXRAEj8Q/JCCdEA8TsG3zIJ0QPi956cWkHRAIELQNGqQdED2vVu/U5N0QGgOaAvQoHRAA1ovabiidEDJHhPZ0aJ0QH864moPo3RA9OmzbwqwdEAHXzDF48B0QIK65DJ4wXRAPNgWberBdEAGsXgEDcJ0QDFkr0AkxHRAmmiD3nnEdECU95O0uMR0QNJ905T7znRAVJrsi+DTdEApMU4YztR0QD/10wb633RA6nLi/o3gdECJqolMuOB0QBqlvFS44XRA5IuPCcridECcSfoE0+p0QIbflTiN83RA46nK26QAdUBJPRlkYwF1QA2oe81dAnVA6ID1CJYQdUDUeU/wIhR1QMoZFJScInVAxnJUL8s1dUAOBMJRtEF1QBg8mOfaRXVAinDTavFPdUA3HERjHVB1QJhHsUWAUXVAAeqUXU5UdUCapiv6dlV1QECUEREMYHVAGtfrAqNgdUAyCow6OGF1QK4PSWRsY3VAHvCi4HVydUAoJ26XjXR1QNilSr14gXVAPqsQj62BdUCAt/CEpoN1QMTNG3GbhHVAtrNixouQdUCBetAeu5F1QJcVATQ+mHVA4XQtVpmddUDUVwJA2J91QNBbQYSToHVA5ERKMbmhdUA6SB888KJ1QH0O46b2qnVAUwqY3n2vdUBKkFLwfLN1QIsc36HGtHVA/sUQvtDAdUBIE3L8Y8F1QFawlfT4wXVAdVdJUc3TdUBSgp3+4t91QGd5pnMP4XVAUzk5QAjidUDIeEt9Z/N1QNLieBeg9HVAjC3hGkkCdkAW9ABfzgN2QOZN5MMBE3ZAkKeFmE4UdkDaSu9hCxZ2QNAkqM2JInZApYbcYpAkdkD83DWIHzF2QCrThBKfNHZA9tFCaRxBdkC3oyFjEkR2QKzDZhd6RHZANqbKoftOdkAQrTVkzFB2QA6VXdwRUXZANN4C1ohUdkCrNSCGzVR2QF+YqTfMYnZAiGl/8FBjdkB8s1qR22R2QMiSk9UmaHZAZksYfmOBdkCvjuGSkYN2QEPboXB2knZAfomduJ6TdkBKQ5Hut7B2QDjU5uvAsnZAu2St8nmzdkCGlm6+DLR2QBoCbmewtHZApKs+ur/AdkCWyQuLz852QLgwInB+0HZAJNkzyPLhdkCb2v9IkPN2QPwuudUzAndArk2FgVANd0DqzgLLARJ3QGy3vSGqEndAzgh5VfAXd0DuyU6jBhh3QA4fWh9JG3dA2izoG08dd0COa3w4DyJ3QLzbtBxzIndAqNU79gw1d0BaVFJenUF3QEq1M/waRXdAmMjrJUtRd0ByNrsPk1F3QMQfbBcrVXdAjNPK6Ehhd0DgR+lXj2F3QFfnRGg8Y3dAAhOSsydvd0CGKgkDeIJ3QGacCvB7g3dAgdqulAmSd0DcUTx6TJR3QLDxmyRnnXdAeG1qMsOid0CA18iWpaN3QL0m2lHk0HdAzEDpZezgd0COCoQNIuN3QHymHfcp63dArjJg0uzwd0AISBYu+AF4QJyNRp9tInhAwgnHnysjeEB7OChBiSN4QN3RfBgxK3hAihzoLw1CeEA6WQJKekV4QBfpne3KUXhA/jy595RSeEBfitXWhlV4QAOxynvuV3hARG+MuDRdeEBsInqITF14QAiiRhn4YHhA31OnjLdheEBQxlfPjmJ4QFluAUSoYnhAx8Quolx0eEBKST9Zi3R4QIZp3+zmdHhAGR0pgaOBeEDZ+MBW5oN4QChfs4WZhHhA9HMezJaReEA9DR0pspF4QBWt2ASnlHhAEoMlE66keEA+mWZ5zMB4QByYYVL1wXhANkNe1AbFeEBrXnGbt9R4QNx1UL/D5HhAt6PzSwL0eEDiVsVYjPV4QB4bclCYBXlAigeXebEoeUD29rpwCS55QIDjTr2KQnlAGKvGPP1DeUBqAKES4FB5QHJ7WEnMVHlAnSUUmUl/eUBiWpR59YF5QAanmozBsnlAvFG+8UHUeUAiWjyzzdV5QE5TvJtQ5HlALld3G/kFekAizzpVOiN6QCwLntirI3pA/3ZYE9smekACs4oItSt6QF1xoC4MNXpApCLm+OVDekDGJ/ctGkV6QBqpHusuUHpAqfdpuiZVekD8EK0xjHJ6QLJUkX6ilHpASDzJyw22ekD6PNOqK8N6QOybeOgaxnpA0FtfVkPOekBJWF9y1NN6QKTH+MB55HpAJMMqBTbuekCRVOeFewN7QJbA9XQpDntAFBv0bUwVe0DpQX/JWiV7QMwFGnAdLntAFRau61Mwe0B2Lun+wTN7QDrUkha5e3tAyBETgmKCe0C8sl6f65B7QGhJv/YilXtAVyvkSjTTe0DUbR4z/uN7QJlczJmM9XtAzvS3CtkBfEABib068wF8QCRu922ZBXxAHgZcXYsRfEAUaK2c0RF8QJzyCxnNQXxAm/HhXNtRfEC7llnlDGJ8QJZcQAKyb3xAaEbM8SpxfEAcg9P+vrJ8QNjaNH/M1XxAQOD8sVfifECuQ4XuFvJ8QHjJwsdU8nxA+LlBVwICfUCY6ItCSwJ9QO43tiVGEn1AAJMtSzwifUBga9zdoS19QKyuv5TjS31A39MSDW5RfUDcWa2R7FN9QKkUZsktw31ALiduDmvgfUDHZZ4t1+J9QKDesbOP9X1A/pYwnFP9fUA+CENeWgB+QC6Q1+82H35A1//eCT0vfkAIMybTj1V+QDy4MyPFV35AJHDUHh9dfkAIyg8aJI5+QNRXVabkkH5ApqNF0MqbfkA2NHqheKJ+QE83T9XN335A6UwPW9fvfkD8qWliI/p+QLM6Jrq3cX9AYHSK7LGBf0DKHdlTo4N/QDPajKemhH9AKFLa82KRf0AKMaWRk5N/QGoZkTlfoX9AYNXfMuekf0Ce5sxWVrF/QETlhFY6vH9AbjCHvo3Mf0AKpP0jetx/QL9P6y3n4n9AvOF/Q4Lkf0Ad/AuoEuh/QIeukZ5HAoBAqBpVm+wpgEDbr5+ASCqAQGGjHnspPIBAUGxpF39BgEBiIXNzlUKAQOSXlOnySIBAYjgj6OZQgECFsZJEFFGAQICFBPMNWYBAPKc1tQthgEBorx2NK2KAQCgWhdcob4BArbDr2gVxgEACyIfr9nSAQFDH5C8ej4BAeN15AW6RgEAX/KzxF5SAQIZlc5XqoYBAzQpoCu+lgEBtZ1OGhqmAQGCZ6A/8v4BAgH5FY1LBgED900qpEMaAQFkZHV5TyYBA9JvRyxLKgECmDDRuVM+AQM9dGZUL0YBA7pAfpEzRgECuVzIxY9aAQGxZFMlK2YBAdycVpEThgECYTBqR9uiAQFfgeNJA6YBAyB0TA0vvgEA23cMbO/OAQCaHdNU//4BAPS3QVkAHgUBc5W8wPQ+BQOIWAw3wHIFAWOuXKzQfgUBidsiFNieBQJr9gsrjK4FAaqwitfYtgUCaaMSLvTGBQJpmWMgMNIFA5CWTuyk/gUAyWkq180WBQHA5VbX3SYFAJivKHVxYgUC6OP2UPW2BQMXBohRif4FA1ksn38qGgUDCJQS9VY+BQJef3kdVl4FAim5/+ZehgUAl6ijD6KGBQMoTbkhtqIFAmI1f6kmvgUAiWLLxBbKBQMa1x+FKt4FAHFXBFynMgUD5zoo41s6BQKDZ/VaE0YFAgrkyunzTgUCTAx+iKdSBQITeCvyF8YFADFZ6jzL0gUBYdc2Q1vaBQNWgH80DCYJA+qHQxtgYgkBmoF+x2CCCQP/gDFzRKIJAjrHgkaIpgkDYEYSupS2CQFUhw7qiMIJAdaXTzpE5gkBgDR1y5zmCQA8aZHI/PIJApyfNves9gkCLYxbI8UGCQFKW2DjNboJAeXQKO0OJgkDsj40zRJGCQHDBIrYmlIJAzqphxzyZgkDAtiQvD6GCQJGcnmM8oYJADqQvkQypgkDCjTmJNKmCQEaIOxwOsIJANgpprgaxgkCfEtjzAMyCQEBxCWyp1YJAik7kpazZgkAIGU9Ur/mCQOp9Gm55EYNA90VLIHoZg0BCcM3mciGDQHq3LRqJIYNAuSrCnnMpg0Agi4P5aDGDQE6KYySAMYNAT5B+zuOBg0Cg1jmGS4ODQO4vuG1Qi4NAfGQY2pH4g0Bun5W76zSEQEiuGUz/aIRAaoUh2/1whECy6ZeR9niEQHLroEpq2YRAMjezkGnhhEDg96LUYumEQFqGT+E18YRA+Nhfi2LxhECqgpySMvmEQOrrtr9b+YRAQLZPlS4BhUBr7BtIoGGFQMBiVLOfaYVAqFMa25hxhUBhVUt8tXOFQN9URcqYeYVAGssIA5GBhUDqST8Wrv6FQBzZax+xAoZAxDLjgrpIhkBss7PpJrmGQFQW7wUmwYZAtFfvA5Eph0AIinpdkTGHQLqcvaaKOYdAij8pOotBh0CCgg/Rx7GHQLyLLvnGuYdAZ8ikKcDBh0AxtG5jwcmHQLnjK5XiXYhAc02u8+RhiEDJqJiN5GWIQNVlYYnhaYhABNmhN+htiED9drv6MoCIQLYPJo/fgohApOWueIuFiEAwMakbN4iIQAPsLLLliohANPlu+JmtiEA= + NrgMGZxjZUAoFld2zuNlQAkahmk84nFAqZq9oOoidUCdKRjPPxN8QJdYvf1YU3xAdtZggfhhgEA= - + - rgKJRPvtlURV7ElFBOY7RfXjPUhtomZEx/gJR0yqVUQWRKFGeTSTRIIzv0TWkvFE/DxyRHvvmUUh+P9ES5+bRIRvZkSPI4NEV3FqRdvWkESMKudE7avhRKa7wUUwVARFqCiXRAPXAEUiAxhFQ5gtRwP+tEQ/bG5FLnc/Rss9mURRSpxFFXWaRRTPU0So5LFECPKrRWFO+0ZIEYxE/5y3RFkFbETufHZEZW6bRUj9A0U7ZbREGUJVRDGJS0R2R7VE6M5jRG1Sr0RU2bJF/4OIREHLREbJnptE1/KlREBQg0UfUK5EvoPURPhgH0UCJoFE6nC+RNVIaER53aFEux64RBETcUQqT9dEKlEfRchgCkc5jxRFn6eGRCJ6B0UsbMVEnVHkRNl0aER3XvFEwHp0RAXsgUR2L0RHhly7RMdYeUaKCYBETSk5Rui3q0QsiQ9GdHsBRtY1OEWuo7dEPpOORE+RakQCTF9F1wIYRXIR2ETSIV1EjzmXRaeO2EV9yApFZj/QREpwuUUq0G9ElXYaRqNGdUSpmrJEb/XzRDeHvkRZkZtGhsbLRGHXv0SdGHJFuEp+RI15MkWkgE5Epo2aRIW3SEQRG9VEM06CRI3nn0Tx8k9EYAfNRNqxF0X8prxFfQiHRYPCX0R1381ERmzPRSgSm0SyK0tHPEyORLZUU0XPO49EY5IeRZ1xQUX01PxFASm/RJMwf0SfYM5Fy+q7RJbgckRvb4tEeGDdRI/Rd0SWQNBEZWvtROAtr0RqjJlECEGWREh7j0QTr3VEWex6RJ+RJEVs+vJEv2q3RIvT40TnfpFEFHGJRN/wb0QhCx9FsUCKRe1aqkRrSfVF9duJRPshDkVnbMxF23KJRDGYEkX6cgtFNIM9RTLXlEQYU2ZEUKVgRM3qhERlb5lEq2G6RNOM8ETANvFEM8BdRAfrGEXCjQxF4DLfREIElEYqnRJFTybBRWeEVEWpzh1FluSDRFhgmURR0H9F8lqxRDQxikSZJWRENpPYRKknA0Vfeo9E8cGnRBQtbEVEyL9E2Kd+RG6LZkRSEgxF+dWCRFnIkUS69pJETMwkRQbUp0TBnntEln+RRYEJpUT+iaJEgP/0RO0NokSvbrVEb/wNRq2P+EbTr6BEcCG0RbSCCUVKNI1FCQdsRKYTjESHWVBFFS6FREv+vEYFYhNGpTuiRKV6hEU2ASBFZG51REPi90U/OWlE7lh2RJblfkRJYy5FF1heRHUPpEUNnmdEGsDkRGInOEWN8YpEhAp+RBLSFkU0mSNF9h8iR437okZUyqtGI0TSRIZQLUXRDh1Fut/WRKXxWEVMRwVFHeX9RzwI8EZyo9dGCdGMRaLsqEazaNBEAdySRBTiIkVAqzZFnemQRWqH4ETm2PtEXmB/RMFXxEQvT/ZEbuB1RKTOl0SZzZpEp6ebRDwLL0aCqFhFZHGbROytZUTOCYlFskIqRQE7qER+1VZEPOCtRDIxXEZXypFFf045R0HkIkUmK6FGrCs4RQuhYEVKvTtFIraNRdl8FkXusxJF4UZ0RQGEUkkpeJFE/bk3RcsAcEQH4VJIwsqLRLfzUkTQ8bhGb/KGRHn8EkWBQJREw7XcRK7JUEUIEWVE76KgRU0KFEY1CxtFc4SwROponES3ksBE9dduRL2eg0T/Pq9FPgDZRLr6ZEQcj4lFy/H3RdXs4kT5RRVFJN7mRPQoqET7cwBG6jOoRAeqhUQkod1HwHumRGrP3EYhu5BE/XgrRXiRwETkEGlE3S65RXQQh0SRnwJFTzKWRLvubUROIJNEr8gGRUMNf0SOY+hEEhI/RjwEfEUZspJE70EzRVVbpUTDDsxEBBKZRB8fmUSk4zFFC2mbRKIY80QlXbNGv/Y7RnMPPUVjAflFp8CoRLoJp0WyVshFpe6WRGnkzETd+aVE2z/PRD5d60RHKGlEKZjvR3Q+4ETC5eRGJWRVRTRRwUb1ZYBF+HcARagJhEQo/ZdEgAR7RFu/nEQ8wudEGdEkRgftmkReDeFEyB+KRM5FCUVPZXpEQQfFRLfu1ERVPDZFDnTcRN4vlUStin9EpyCYRDgclUTYWaBESTh2RLOe+0RiKspFttjxRFpNh0Q2y+5E4OZGRkZ3h0Q/k41FGJ5VRIDbMEVGO4BEp9q4ROx740W6zzxErE1+RbcPbUSqsYZEUpyTRK175kSU4bZEBxhdRG9oxURDcBJF8WqORUfujkaNccFFY9WFRMpHx0SZBOdEtBawRE2ec0TQc1pFWtm0RLwoWEQotLhFqPp6RVgo9kQtlV9ERIyGSARGJEUfA/lHWNLNRNoyiUSLK8BEOjKIR8fReUSsyXlGf4y9RQHswkRY1pxEHIG5REKKl0ScTitG1ww6Rc8ZFkXuJk5EMbEVRprhA0VU5XRE4ZFYRFys0UQYzWlE5IeGROnIS0YrOKpFI4ClRGM2ZUSQrolEJmbPRCxor0XGER5FnaVmRInoJkXl/QZF1u0VRWOz/EQ2a49EJzrhRZFys0VAXetEsdXBRDpLxkRGUZlFo18RRVAJpkQs1bBEiGM/RmODmUXZF2dF1ALIRUl2jkUMhJNEig6LRIHO80UKzcZEbWJmRYQs20QhueBE8SgBSGGPf0ctKYdE1VcORz4VxEVp5hdGay8KRYWOa0VysnFENvPdRL6EkEQFiNtEwP7SRIzplERXFwhI0WmGR7SdGEfCAB9FD7UJRkz9GEVSusJEgamjRAsVdUTbzG9E2teoRHhrgkQXVLdFRpFORXn48kRZLDBHMuWURn3QSEZKE3NFo0eWRdtv/kTSf+BEGhKLRCsEC0evYYRGA1kxRlhudEQFGpZFvK+nRNfDlUQAW3VE9xuFRPfCkkSzP4lE8UtZRjxV/kXYpXxFdtvERJTdAUZhD6pFM6xQRVVAnkRM85JHiqQ0R6bTpkbg4AxGRT/3RA67X0ZINJxGPgQSRlZ0kUUERt5EuEfCRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 41UizXjAckB6xA8pbsFyQO2TnJtRwnJAqHFDRqfCckBK2R8zPMNyQPhgIVPFxHJAMId3yUPSckCiLFqvSdNyQFT0IDF203JA6r4Ahc3fckAr9sZRueByQGX4lGpN4XJAirE8r1HickBuSbUEkeJyQBbwKrUj43JArj9xF0njckA11RFlyfFyQDqYCvi183JA3vaNKqL0ckBe0iLAwv9yQB8b9lpkAHNAeNSpUvoAc0BeqlSuSgFzQG2VRgiNAXNAOTE28jsCc0BSTjL+zgJzQEG96+X6A3NAPqWkAQ4Sc0Cd/AuGhBJzQBr5IJW8EnNA+dnWjfkTc0BM4YCfTRRzQIGnIDV6H3NAm9Y+CbYfc0A2vQkupCBzQDqrwsc5IXNAAu5ut2Uhc0D5QkewyyJzQM8eZo06JHNAWJxNcs8kc0D+6dd7RjFzQBiHM7ogMnNAVr05jzc0c0DkYJ4BQkBzQM7XrDnjQHNAImMZmHhBc0B8L2tmuUJzQNYUvFF6RHNAfqwr/BFSc0BIVZZ9pFNzQIR1ntJ2VHNAQr+mb4pgc0DrFF0/OWNzQO9TuP37cXNANvIjaVFyc0B1pj+panJzQHjp2Bi2dHNAc5T9skx1c0AKjzPWa3ZzQMA3koR5gHNATMVD2qKAc0COi400DYFzQJ5JJZBjgnNAmhF5IKaCc0ClT+KJDoRzQEQgI5KHkHNAiHwKo02Sc0CGVtQKyZNzQK4dFM5ilHNANDVj1feUc0D/1We/jJVzQMDWJYa5oHNAImOgT1uic0DGtmBB5qJzQPjsHfkEpXNAEpUxYcuwc0BisAYy9bJzQPCBGZ+2s3NAtKw+Vg60c0CeCK2G+cBzQBZ6INWMwXNAn9yPv03Cc0DauaHjz8JzQLQ5fh0nw3NAUo86i9jRc0C5iFhhNdNzQKLrbMr203NAqqpkHuPUc0ClMKftOOFzQFYZPg1i4XNAemjDi9Dhc0AKqF2tfOJzQLicuhkP43NAitszwjb0c0AE9dQHjfRzQGhTWtTkAHRAWRAIeHkBdECGG572pAF0QPyb4FGLEXRA2QPdGxkSdEAHpuq6SxN0QLZt1EJ4FHRA79WjyEsgdEAumIk2uCF0QFIkMlRSMHRAIov3L9UydEBb9+IcXzN0QImcBEjIQXRAAlUi/nlDdECAhFoz91R0QJiiwguNVXRAkNRIu7hgdEBkqtrxB2J0QPAaloxNZHRAXqOyUSJwdEBSpS6QQXF0QIAWvyU5c3RAAMrOCjl1dED2o9NU+IB0QADSRLZOgXRAgP8wU7aBdECEBiHTkoJ0QCAGLbAng3RASjCniBaQdEDyl9/sy6B0QI0JBK43oXRATMNhSbmidECK5mwP0aJ0QIwkLcIPo3RAWsunXwmwdEAaf3YK5sB0QMSEtJZ6wXRAxZ0jqu3BdECWsbSOEsN0QBiT+eAixHRA5HMzK7nEdEDzFfUA/c50QOR6gGnj03RAdUT/43fUdEAEmilu0NR0QCrBuVb633RAbu0vOY/gdECsF1f6uOB0QAYGKBgj4XRAO7e6a7nhdEAcaS+yyuJ0QI/BgzBP5XRA17puIdLqdEDEKzRxv/B0QJJBEhyN83RAsLHXVacAdUDYDT5KzgB1QM6SvH9jAXVAGshpOF4CdUA7BtXrnAN1QKslYdVqEnVATNoGaSQUdUDWCyyrnCJ1QJoj66HMNXVAX+Gf+NlFdUAEqu+Q7091QOgoSfSBUXVAfFoxzkxUdUAsPxB6dlV1QAIMYLk4YXVAoIq0fWtjdUCht/88c2t1QBkeZHR3cnVApjgHs410dUBUc2ULbHt1QPXoggN7gXVAZ5WuCq6BdUAmIPJ6pYN1QFp6CBWchHVAjWR2EouQdUA0sYAYvJF1QM69jhA+mHVA6kAWpJeddUDyhMowlKB1QFQ7eJG3oXVAfNcg9+6idUBmLSAevKR1QNqSWSD2qnVAhKl5Rn2vdUCEFC5hlrB1QJoOH0d9s3VAEJ+Hn/nBdUCCyFwoO8N1QMByDoU503VAjrcL58zTdUBcIot65N91QCJyW0kO4XVAzEwVVwjidUA2lASePOV1QHJE/4Fo83VAlbxYbkgCdkAA+tSE0AN2QNq8VCtZEnZADqrUPf8SdkBu1hSfTRR2QAXcyaQMFnZAUFMp+YYidkBKBLrwkCR2QFp5o31LK3ZAdV4hFiAxdkCkh5tPnDR2QPuVMsAdQXZAnPUqfBREdkAs/4/zeUR2QGbq8QTKUHZAyoTU3RFRdkDvBdsHh1R2QJYVfQDOVHZA3JArdpBgdkBImv6lGGF2QPqVKpnMYnZAqe29ktpkdkCwMx5DJmh2QObRkm6DbXZA9E7bYOSCdkCMRy7zkYN2QP0DcJejoXZApHRrOZSudkA5lbbgtbB2QCz18lTBsnZAHkCSmHizdkDYfRGkDbR2QJex4RxLwXZAH4attBvEdkA8beJf0M52QIwTxUV/0HZAWkBxs/PhdkC8t2ZLkfN2QPOoB6gzAndAYNQUeVENd0CzoSXbARJ3QIyc1IKqEndAOvaqueoSd0AayiMS8Rd3QDiFSdIFGHdAdA97900dd0Btx+fyDiJ3QFYvTPB0IndATaBpnLkkd0D0SRFQpzN3QB/WlzcNNXdAObGETZ1Bd0BFL/GkG0V3QNsq5q5KUXdA7M3XW5NRd0APyV1kK1V3QJegGtKPYXdAbNJwMTxjd0Au7Bw7amN3QAgAzFo5ZXdAQkCbXidvd0ClmFMfhHF3QCJsvf2SdHdAIyScHOOBd0DKYaGXeYJ3QPFR7D9/g3dARAokngiSd0AM5bFyo5J3QAZq99cSk3dAdw2IOU2Ud0CcTQjnaJ13QNjJI4DCondAcTcvLh+od0B8O/K0mrR3QD3Xfagtw3dA5y77N+vgd0ASfOWgIuN3QAiCNJ8q63dAVEXi81Dyd0BKCfN9wPJ3QPIc+igd83dA8C7Jn24ieECXgMrwKiN4QItRljqLI3hAdt0NEDMreEAAZahb40F4QNi83AkMQnhAHneF43pFeEC86jZhy1F4QCUX9y+VUnhAWAB6/IhVeEA6zQ+M7ld4QOPkIMszXXhA+CGPeUtdeEAoGN9o+mB4QAoUNCy4YXhAMBccBZFieEBavT3vtWJ4QJxAlZZGdHhArM3XEWh0eEAxa6Pui3R4QIpYE1GkgXhAlt/qA5qEeEBmZO9rUY94QPjUj/WYkXhAP6BqOKeUeEAzIfVvp6R4QBAEUHjNwHhA9r6Hu/fBeED4Ph/aBsV4QO4qdAG31HhAIEMtOQL0eEBX+bvbjPV4QIxvvP4SBHlAbrOg0ohCeUCyo4tN+0J5QCRZbwXMVHlAfEn57utgeUCWg9J5RnN5QCBIi3xIf3lAHHwyhm+jeUAIxYT3wLJ5QGoenVlC1HlArJnW7MzVeUAcKXCrUeR5QM77DhEm5XlA0q0Q0PsFekCqVE1GriN6QEZ+N26zK3pAByOWxgw1ekBEDskt6UN6QIahmakaRXpAt1DK6i5QekBIc2qjKFV6QGgUbGWLcnpAIDsf2Ay2ekDAVD8BK8N6QCWjxGAZxnpAnKEbYEPOekBzi/Td1tN6QIy2bVA27npA+gnh84HzekCpfFxoEAF7QADKQx8oDntAjuKMPE0Ve0C1pgN9WSV7QJaXeDBUMHtAqhTd5mBSe0CcYudNuHt7QB7145FngntABslD9ZWLe0As+6HyJJV7QBCyse96xntAlquezr7Re0DdqinrqtN7QMplJVqM9XtADMy7TJMBfEASYL/C2gF8QLIArj/4AXxA33CCQ5kFfEBgs17riRF8QAaTu3fSEXxA1wJyEcshfECYKPqCzUF8QFBQf2b6QXxAVoGU0tlRfECovK6mDWJ8QIp5xsGzb3xAMB6ktwNzfEDe1MgowLJ8QFq642EStnxADDUaefrDfEBecEQR0NV8QBB4IypY4nxAOJyq/hfyfEAQQo6cVvJ8QJKqsOEAAn1AAHfKpksCfUAUAjgURhJ9QGplovs7In1AUMs4MqItfUD3oNRLnjF9QC+FWQKEPn1ANiItROJLfUCScgOuK8N9QMe/GP1ZxH1Abh1+ymrgfUCi7i0ekfV9QBM5YwNbAH5A7ST5fTcffkDAkb7aQS9+QMgnlbw+P35AcoMM+oxVfkCXTEhUxld+QKD1qpQgXX5AaPU0avFvfkCoYoWJXHN+QHJoGkNFdX5AZFkQ/eSQfkDXrkyHyZt+QMpZJ8jSo35AWoEnaWGzfkBMloF7F9N+QBLkpW3W735Al890FiAAf0Awcc6huHF/QC5iqUqtgX9Af48nmKKDf0B4ogEfqYR/QEGU7VtjkX9AtoEj7aeRf0AEHI4HX6F/QFplJc1VsX9ADDgqjTm8f0CO1a/wQMR/QFpbiqyNzH9AiM6PRnvcf0AHaFZqgeR/QBYR7KmF7H9AwskkLEkqgECe7FeMJi6AQEp0EQHkL4BA9h5gPOs3gECgWHfKKTyAQOSKnhDYPoBAQPz2IeRBgEDQX5MGlUKAQNc5YhnxSIBAYdiC0+ZQgECGfrySFVGAQPZqffDkWIBASOlPOQ5ZgEBgJFbQC2GAQC/Vax4rYoBAEMemnylvgEASY4mi9HSAQH7bIF0ej4BAWPAaNW2RgECYJpfUGZSAQD6Y5OzqoYBAIs/ZuO+lgEDsV2N9h6mAQLgq4mUUr4BA1PA6Jvy/gEDGLFmjUsGAQIrSqupTyYBA5WuRwBDKgEBMWf4SqsyAQPJoIrUGz4BAFPfTiVXPgECMC9ZSC9GAQEZqqiUk0YBABIkDhyvRgEBKiWvfTNGAQBU38tZg0YBAgEWwW7vTgED5B1KiStmAQKbpzTtE4YBAriKAr/bogEDIy5dcTe+AQL9+GgU+84BANKN0jT//gED4/JVGQQeBQAzRjOo7D4FA0B4gRDQfgUDjqMZj5h+BQK5mbMs1J4FAmK3izd0ugUCeT63y8i6BQHbWK/e9MYFAGBAgafRFgUDwhqp190mBQJoBIsP8TYFAuBle91tYgUCQOt8953aBQOjr1QiXeYFAZtjP7mB/gUAMvY4ky4aBQK5uEKVVj4FA4p0Ao1aXgUC0Y/fbUZ+BQI49hsrnoYFAcAhdIW6ogUA6Y2ye7KmBQFK4ixJKr4FAg0N/MG2wgUDU0yYiB7KBQLiIsBkItoFA9SHWsirMgUBcKriS1s6BQEIxHy570YFAegaxIn7TgUBkWeqIKdSBQBPrB7SG8YFAGdugWzL0gUBEvYB22/aBQGWfQhkDCYJAOllpOjYUgkABoAh12BiCQBZISmrXIIJABq2r/9EogkB5N+N/oSmCQKSv1VilLYJArBiiqaMwgkCUCylvkTmCQKIdhcPnOYJACJ7FFOs9gkCddDC4tH2CQFjv1JpDiYJAG5t3a0SRgkCItPd/KZSCQO3ff/jUloJAIcSjNT2ZgkA2iDD6DqGCQLzsfxs9oYJADqyF8A2pgkDkuRnuNKmCQMUwNnMIsYJAA0LqnTSxgkAbz3gkAc6CQNNDaeyo1YJAfK72NVbcgkD0WwPOrfmCQAwyB8p5EYNAVXeXfHoZg0ACaReCcyGDQH5CSOFxKYNAWjT6OWoxg0DdWseQgjGDQMoZ91nlgYNAcG7DyJP4g0CjnGCo/2iEQD6qm8z+cIRArhvnnPd4hEBK1PpExn2EQN6hdquIooRANJoUaGrZhECmTNP3auGEQCapGi1j6YRAqresqjXxhEAebSx1ZPGEQFzhELA0+YRA+FC6Nl35hEBWuVQzLgGFQIHVyt+gYYVAhKzvHKFphUCVkUyHmXGFQC+m1M6zc4VAEA8m7Jl5hUD0BYAolYGFQBYwVtSu/oVAVEJUUCa5hkAhrl7pHsmGQEIg2HqRKYdA7PkCIpIxh0DkwIbIiTmHQAAKKq+IQYdAIq18oMexh0D4jgwmybmHQPa4MGvAwYdAWZT3SsDJh0Be9pfV4l2IQA7YcsHlYYhAyhzRHORliEDkX4QN4mmIQByzfKvjbYhAkNxaQ+ZxiEDcXlfzMoCIQGXgYt7egohAO0MRAIyFiECV5kA4NoiIQKLQk5xIsIhA + NrgMGZxjYkCAI9DqN6RuQK9rGHLRYnNAGx6yQN+idUA9w2SRqXN5QFbAKhaPw3xAnpCg8oBCgEBJsdF1H/KBQJ6/jhwty4NASeC/n8t6hUC8EEsHhVuHQEkPrsl3A4lA2mEH8tzrikAQO1TZ4wuMQAdorJc+FI5AbaEOxjKSkECDS81gdc6QQA== - + - yQWoRGPuNEUCYrZEwR0FRaE6EUgN4IlEr6jwRqjLhEYqnbVEn+q3RMn7nERWZUNEbBpURRVTEUU0W1xEAEh3RKzsL0Ugw35EfYiSRKt7DkVhCwNGIbblRMdseETR24JEnMeDRP9QXESloN5GbT6CRB5FBEXd3iNGPxtTRY5deUT/xOhEq9BJRIqfn0Xu5MNG4whiRMz0rUTl1ElEGJGORbBGDUUCt15EpBmBROBJNkTpT71E69NLRXAUVkRh0hRGNPGDRCSTV0VSUjxErc+FREGvEkWi6FRExl/RRBESVkRAzZdEf7YeRbb6iERnLwxHJiiYRNjk20Rz+2FEFJK7RJLCWkRrfBZFMjY2R/TOUUS3EPNEZ4UoRhQigEQSaeFFhbmzRWNq2kWmIQdF2QVcRBIJQUTH/XdFOgffREStr0QPiLZEITxfROmkq0UaLLlFf80KRZfFVERqQbFE131ZRXxPAUaCqFtEl6gxRKSpQER9gmtEgh69RDukh0RP7JREvBWPRjzsyURGQ0tEPFF4REN+DkVh33dEYX6aRP3M1kR9RoZEOEtrRNpKskRG4mFEpStjROp5qERBwg1F7oiYRR+jSUUtp6lEC1p3RXDKOEfbqtxEHh6TRG57GUVEHrdFxO1ARDc4mUTD91hErMCcRbIsU0QwcchEo0GNRHvsbkQJaglFPkzpRFKjvUSx5IBEPXN0RGk0jEQSq3hEPJ/pRO9nq0TjcsZEd+6cRMszg0QMn0REiYxpRJ05U0T2XaJEcw8RRcGFhkV5M6tEBpeVRALkMkT9vM5F8l2KRFHfakSvaNREdmnBRcPcZkRTmV5EbYY7RXOhBUUf30NFOfZIRFv8mETeZIBEYNVjRFESVEQF49NE7NmiRETLRUTOV8tEQpQhRl+0XkRe1L5EivWZRSGnnEWvq+REsdJtRIBrkEROJT5Fe7gJRb1bjUTISg5FBDwFRVI0e0T4T4REB0CzRErRUkQsaCpFk1riREIbWUR3hktEmna8RCPJNkQ8ybVE/TAdRXRfPURxq8dE1aObRRPCeETVr1FEdHdrRExSy0Q5pxdF7iuaRMPe3UVneZBE8A7PRuPCo0TwypVFmiXqRILdZ0WnP2xEcA1QRTwESkRWaEBG2P8tRG+nOETPvgxGA23eRD1tp0U3VMdEugdYRFde/kUlI2FELE00RPFsX0T86AtFBti1RAC/mEXqelVESFJeRHXVNkUFsItErlfORDr570St7gdFU2cXR0Kpd0bNTYpG83VFRDFAwETf6KlFgHWMRCqqIUWwUK5Eb9hTRA4hVUSOT+dHqC+7Rkyuq0b3j4hFelaVRrd6sERMFOxEo6JBRdHsbUT7009EFAOHRduRa0QhtEVEw9ZtRFmIqUS40VRE6WVlRPquk0QDm1dE9vmQRCIZfEUaPD5FDWqYRDi0WETw7WBENwWDRDwM+UWe1klFVcGbRAMcZkSneUFElOUnRXKaAUV9BpFEiTGERDdIckR5tZBEiJgjRvAbrUXhrDZHvy3yROVxq0YPuldFKdjbRSNHBEWjCxJFt8QcRR1ANESzny1FJJxrRex7NUm1nC1FU+44SO7jQURy+MdEWZ6XRtIyZkTegsFEtY6JRDmNPkTMOHxF6MWXRcCzv0Xc6LtER+OgRCxwmkQMMl5FfH5gRNjUk0S1UJpEofRaRJ4NakWL/atFU/6sRPDNr0RLMmtEvoiMRD3RvEWRIOJEi1m3R0VBuUTtd79GoClbRJgSJkUG0qlEZWTDRcSPcEQuC61EMdVlRHMYoUSeQKNE8EbbRPe2S0SlCPREqEYkRkX4OUX2jANFdwhLRIa3bkTbUZxEBCT3RAPJZkVG54dEwEziRNyZU0RIe4hGVseaREk8QEakkxFFz6eERdfHX0RXn5FFC1GCRO39vEXjWEFEf6LBRGzYpEQizadEfqtCRARdt0T3y2NEnbM3RMPLdERWQs9HT6HbRPTM+EYFUAlFP1mvRoz4b0X1kp5EJ6+IROoodUT98jhEY5//RJFMokQJcjhE/6zMRcx03USwssJEfH5BRIsvjES2wH1E/xzcRGKA9kTCApFE7PZlRCObakTs03pENGaJRHTcoERUcJ9EmplDRIkbhkRzQopEZuSyRMyFmkXJxmZE1847RPjLskQXpDJGeFJtRPDcXUU4XRZFrbXZRG9UhUSQAaZEYiYBRrRRgUXrKG9E/g3WRKOX1ERSDTVECBxsRP224UQGfeBEH0c3RJ/QxUQ8DglFmvg5RZ9qhEbMLU9EzgSiRQ8OhURm1atEnv8tRchOikTl2ERFPkIHRfS1tUQOrqdF5irXRFG9xURt8llE8clNREpBe0h86fVHnM1bRBuY4kSi+1dEQ//YRO8JbUQKB4ZE4AmORKnxekd9SWNFVe6HREI1YUbLaa9FR1OHRK7tZkRPq6REP3MbRi6WP0XVidZEQfwPRvTHvkR4ZPxEvnlHRGUBq0TjwYlELTEGRsF2XEXNRrREkEoKRZRJYEQWkWNEPnhDRGVXgERF23FFr3TQRMGBcESoUzJF3TsCRWGqRURphw9F82E9RKgsL0U/Ua9EX3GkRToyNUXnC/pE1pLKRPGl5ETrcj9FnDhkRU/sAUUTwaxEZGWeRGHDLkYYjoJFGFX4RM4AjkU8n1tFyc98RAdSP0Q6AOZFNQKvRe/CdUQVzOBH7fZrR9WtiUSaapZEaskDR5WM30W7NvNFkiA1RbghUEX3ZMlEHbFnRJAgZ0SDGMhEV4ZbRIAPrkRmw+pHYfN2R3yc/0bzyghG5O9DRZoZpURJGVZETLE7RDYT4UVEaR1FPovCRKIAOkQGCkBEpmAXRz/EekYlRSJGBsKERVxkj0Ux3AVFOVqqREzPTkQEwQFHQamARqnBEEbW7mdEnTZ1RQRSZUR7RbREq2+xRArkSkTsSDlGE2ehRX2Kg0VtTcVEWmP3RQsHmkWD40NFg5q+RChAUkc/zhdHJIuRRq0qAUYVdkVFWXWsRB09LkaTrC1GaRcQRrvBNEUf4IRE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - votmXnjAckAONA+4b8FyQEfc6clNwnJAIk5uz6bCckDjwOEhPMNyQGKNhKLFxHJAGhL/s1nFckAsYdSLQ9JyQFLfd7dJ03JAyBTkMmPUckDf9wJVz99yQAxRcuS34HJAUHSs6E3hckCvcUNjUOJyQMuW+0mP4nJAKJSEQCPjckAml5VtyfFyQMAOc0q383JA5ocrSaH0ckCgyT0rw/9yQExCRbFjAHNA2meOYZAAc0Dq/N/q9wBzQOoEcbtQAXNAevypg48Bc0B7HnORzwJzQMjPVOH6A3NApNGajo0Ec0AKuzWWhBJzQLhRa6m8EnNAPNNg8foTc0DiJznoBBRzQG9DAHNMFHNAEFc/03cfc0AKEqGyoyBzQNRr1iA5IXNAYw/uNGQhc0DgrbVMyiJzQIYSiF8RI3NAaCuwSM8kc0A/b5cPRjFzQO4Z88ohMnNATmAv3dAyc0Cpe3XZDjNzQAagB9s2NHNAmDtnAuNAc0BchFFVeEFzQLSvNNJ5RHNAJLt8ikFTc0Aky77fpFNzQOCYhcniU3NABdc7YYZUc0DovwKdimBzQAqZBhk6Y3NAbSyqFllyc0BCEQyztnRzQPJHaupMdXNA3mjy/HiAc0CjZCCVo4BzQL4sGzQPgXNA6E8bGlyCc0Aefh8OpoJzQE0HtoyHkHNAyt2sRE2Sc0B+8vDgzpNzQPR+1dxjlHNAym5TkveUc0A2BhhVuKBzQHr95QRbonNA4gxEKeaic0AhgLnBBaVzQMJAxPzIsHNAVyXfP4+xc0AE+UQ7trNzQOaA0sMMtHNAxLvKfPnAc0D5WjwL0MJzQIZZt70mw3NAqFwl09bRc0CWGWCJKdNzQPq/gSv203NA7imqk+LUc0AIW8SoOOFzQCw5KaBj4XNA5KK/we/kc0Bzl76zNvRzQAl/eHPkAHRABNhy+3gBdEDMV5hxpQF0QKh/cGmLEXRAXpvhKE0TdEC+GWZgdxR0QGLC/3tJIHRAbIE4CrkhdEDkUjbCVDB0QCCtYy28MnRA2gUDONYydEAMg1VZ5TJ0QETYvVX3VHRABSyN1ItVdEBCF8bcuGB0QGQupEIIYnRAanda2U5kdEDOmIF/InB0QKKI52JhcHRAEjhRRUFxdEAiog+uOXN0QEL2N0WjdHRAimYt9TZ1dEDd/MGKZoB0QFis4Rv5gHRApuJs806BdEAiMTOpkIJ0QHhdElEWkHRA10apBNCgdECmDkIHuaJ0QMrV09TMonRA2JJOrQ+jdEC+YiBNw7B0QBIQIZ/lwHRAw78hsXvBdEBg2ib66sF0QF6uGpEixHRAf1PA6XjEdEB6/9JjuMR0QDCjyEH7znRAt8A3GtXTdECFJL5qd9R0QDCMyg7Q1HRAFMdkxCLhdEDenfTMuOF0QBiCXEfK4nRAyA9ImU/ldEAYZZ9C0Op0QBCgBy+/8HRAPJyMUozzdEAEzAgxefR0QBB2kIulAHVAGkg5WcwAdUCIT+QXYwF1QMqZueD6AXVAq08g1F0CdUAJseoPmwN1QLR0o3yZEHVAcDXMvyIUdUAM4wbNnCJ1QOqolXjMNXVAN6TBmFxDdUBKDSIn9k91QHR4u+6CUXVACC9fJ3dVdUAmqPh5oWB1QL354FU4YXVA8SMfs2xjdUDCTHGod3J1QMhzz2eNdHVAgK27eHeBdUAyCre+rYF1QIyZxB3qgnVAqs6AMKaDdUCMqlVPm4R1QHDMX3GMkHVAzN2+Xz2YdUD3Kautl511QNYhtBMkoXVAfcn3trmhdUAEt+oJfq91QEclcQY4s3VAS7s12nuzdUDBpqv7YsF1QKd+OGT4wXVAXtcUvMvTdUACf6iaD+F1QHOVPCcJ4nVAvtZYT2XzdUBNcQ20SAJ2QFAcYu7QA3ZABHizhgATdkBUc/l+TxR2QPlxwYALFnZAVNJUTIoidkDSJuJakCR2QHXGvLhMK3ZAagmvnR8xdkCbtSaInjR2QGwkZuEcQXZAaqRzXxNEdkCyP66weUR2QNgeVBHLUHZAnFoaPRNRdkDGGGTSzVR2QDwl2eENYXZA5qzjh8xidkCD0tc122R2QFQ5H2gOaHZAv2WBiidodkAGtsIIgG12QCqqBEyRg3ZALSEV3Z+TdkADRrXPwrJ2QHAg8Td7s3ZAPFR/2gy0dkAFMCPir7R2QFotTdUvxXZAO7OiU87OdkC0nmnHgdB2QLQfFS6R83ZAEspO2TMCd0ACHmkmUQ13QLtdqyUBEndAz8Bc2qkSd0BasH2aBhh3QHLnlK1KG3dAoPlBvU4dd0C3zWm8DyJ3QBgdn650IndAmHw/FA01d0Dxy4JLnUF3QKisIEwbRXdAKlsWQEtRd0CJ0drEklF3QKj20MIqVXdA/elBkklhd0AZMTjDkGF3QOw1EnU8Y3dAsOdoWDtld0BKex5yJ293QM5WRBuSdHdAR+ABZ3mCd0CTrEMmfYN3QBoxPLRonXdAOtkC88Gid0ASoiOaCLN3QJK98yqatHdA6jI8TzPDd0Bev2xP49B3QFI3pKKO1ndAHkXAHSLjd0CU7aTUKOt3QALMwiDs8HdAnA6EZU/yd0BSjjCibSJ4QD/2+KYqI3hA3hfENn0yeEClkQZEDUJ4QAwrDJJ6RXhAStPvOctReECdxWL1lFJ4QOoz+/+HVXhAeIMpO+5XeECgGP4aNV14QK5kArlLXXhAZAtkXvlgeEBQ2r0Yt2F4QP5Pp5mVYnhAQO9kEEN0eEBmRQk+W3R4QMQnG2CLdHhAGfjmrrt0eEAGMmuG3nR4QJAhf46lgXhAD7d2pbuCeEAqzKqMe4R4QEb+QHSZhHhArHxSxpmReECXEIPLp5R4QBKhRIy3pHhAxF48i/GyeEDQ6717zMB4QODqAen3wXhAoj3AqwXFeEBaW2MPttR4QHobPF8C9HhAlPnJaYz1eEBoqvM/mgV5QDwh9naNQnlAcPqTP4pDeUC+2rEHoEN5QFSUgmT/Q3lA9bELea1SeUCiKHO1y1R5QK6/ZwDaZHlAvLzjrUNzeUBPuN9QSH95QDLRZajAsnlA3qsdAkLUeUCUxKW2zNV5QJbSjJ9P5HlA0S4K7hroeUC4tsSt9wV6QICCTjKtI3pAOkg/l7UrekCYOzI9DDV6QEI/yfTlQ3pA0FFihhpFekDKHQkaKlV6QEATuME4ZXpATD6fhfGjekB8cvZV7a16QLJ4rVwNtnpAxLqBVxvGekCklmnm19N6QDqqjFD443pATopcVjfuekDujaqTgfN6QPIhZC4qDntAmqHF+EwVe0DIQxCgWiV7QHJ6X3RTMHtA0VOSYsUze0DZ2X5WX1J7QGqCF2IPaHtAnHa3g7p7e0AIVa/Dlot7QIzbD7HpkHtAIJ9QCZ2Te0DmNYCxI5V7QPS0UxKr0XtAbteQYarTe0AIAoMY/uN7QHujuF2W8XtABlHt+ov1e0AgWHY22gF8QBTJ69n3AXxAwv/1SpkFfEDuqnMEihF8QLAt/eLQEXxA0eFfEbkjfEBK+HpszUF8QHZHELLdUXxAgkHnnQ5ifEC/mba7tG98QJbixpUCc3xAJgBTIL+yfEA+orU0zNV8QOrFSbpX4nxA3uQatxfyfECVGPArV/J8QK9wWKACAn1Ai4zhLEsCfUCpvdw/RRJ9QPNt4XAoHX1AZPxgwz0ifUATaQg94kt9QKqt/sKfW31Aau5J6ivDfUAauMrLauB9QJpTaYfZ4n1AHidjmX3wfUCWf8VXkPV9QOKBAOFBL35A9uY+UY9VfkDo36ZRxFd+QLxsi+geXX5AYEtoZulvfkDKSsxVRYx+QPL357vJm35AcvNkddGjfkBSszX5jLB+QHK9sGBTyX5AGLUOeBfTfkBSc+eBTvR+QAo60asi+n5AckjFjSAAf0B0O6ROuHF/QN6bbJmjg39AFC3YtaiEf0BI2pZAY5F/QKr8iLGpkX9AeIblXpmTf0DwiS/7XaF/QEi7k9tWsX9AMiP89jq8f0C3d0XYRcR/QKfMMqmOzH9AvpwLHHrcf0CgC+vLgOR/QAJ+UiSH7H9AIrPK5d8pgEANp2GuSCqAQBnCCH8pPIBAzanriYE8gECRf62V1j6AQI706kWVQoBAbL+kAPFIgECMPHkv5lCAQBFT7X8UUYBAnpumn+VYgEAICehQDlmAQH+opCgNYYBAFnP0vilvgECAmYqX9XSAQBgQgvcej4BATdl6TW2RgEDYw945GJSAQBAoM5vroYBAoEk1au6lgECLhGo+h6mAQPdDP00Sr4BA1Bq2fFLBgECPWhqnEcaAQJ5mE9lTyYBAeJCJnhLKgEAKuhckqMyAQPh7YFNezoBAGsAyg1bPgECZh4R1KtGAQBjC5PNM0YBAxnP+6krZgEAxhpp/ROGAQLLQlfdX4YBA+vYV2fbogEC8S2/TQ+mAQCRwMm9K74BA+r+Ccj3zgEBdPWyPP/+AQAia1INAB4FA6ta0qjsPgUDgjMAa5h2BQHJ7mao0H4FAAP4XFjUngUBelOhg4y2BQPk05vfaLoFA3L65rfMugUCsMUwgejGBQEb0oqy9MYFAuU08FPRFgUCmeuq590mBQDKP7Z9bWIFAaKcaZFRogUC5N61mVo+BQAaxx81Wl4FAuCncNZKhgUDn5Bt656GBQFJBbAZuqIFAKET22O6pgUDuoSVWS6+BQBWxrkkHsoFApF6qCQq2gUDAcDhXKsyBQCZJImLWzoFAk8juBX3RgUBynDBIfNOBQAvKOyQq1IFAkhaqH4XxgUBz/LyQM/SBQJSYvZje9oFA5pShs4T5gUA0qlu/2BiCQEfMFZHXIIJAB0I/ItIogkCqV5wnoimCQAb6ReGlLYJAVkw2w6MwgkDC2NMP1DCCQOR8dVToOYJAvVqMDus9gkDT2FN7zm6CQFR8rbCjd4JAWkHOZkOJgkBiVIHYQ5GCQLCDruM8mYJA62gyFQ+hgkA6sb0LPKGCQApFkJANqYJAfoEnajSpgkCobl/5DrCCQNZaj/IHsYJAouUaOwDOgkD7fbTLptWCQJ4UQKyu+YJA8mVBrXkRg0AaoK+PehmDQMBlYypzIYNAYEfXanIpg0Crj97VaTGDQIoj3GnkgYNAatS76kmDg0CUraX3lPiDQED+4+X/aIRA/ZwOTf5whEA7UziM93iEQPCLYFhq2YRAF2MhiGrhhECXYZoGZOmEQM/IGBk18YRAbt7nI2PxhECiDzX0NfmEQFJRzY1e+YRAgU2ZXC0BhUBehOStoGGFQMeRaMKfaYVATKH635lxhUBeBE27l3mFQKgEUnyQgYVABmg/M7xIhkBavDtFJ7mGQDatKGYgyYZAxwa7RJEph0DgT6ekkjGHQFjcYZGJOYdAgCP4nVpBh0DgzHXFikGHQC5G+KDHsYdAyhM70ce5h0BCpA9Qv8GHQAqR9ZG+yYdAS4Sg6uJdiEB2kBbm5WGIQM/Cf0rkZYhACRqtjeNpiECqIIx25G2IQMlDqaUygIhAMorMEt+CiEAIxPvei4WIQGYJ6ik5iIhAA4jH0OOKiEA= + NrgMGZxjYkCAI9DqN6RuQPtPkeoS03RASJhZQw3jd0DpDZFHgQN8QDZWWaB7E39AOErBSjlKgkALJTI/YFqFQJpNkDSMYoZA - + - /t+NRNZyYkWBv5NE7awiRZeW9Uc49l9ENuLAREq1EEd2LUJG1TO2RE0lAUX7LZlExOqeRGxlRkWnPttEomBiRHzqJUXePfJEKE+sRL3o3ETeKaBFmkdURFhLzERuEC9E+pujRDoL1kTL+hFH6Q15REaH0ERmX1NGE7BXReK0W0UnondEOImNRJlJm0XvQq1G5GxjRJie2UTwGOBEzjOXRUgN4USf4YZED3V5RETqjERLapBEXtOXRHJ9okUxuxxGUo6QRKj1aEWctntEkxRnRGFzlERXGQtFeXGkRDg2vERvYRNFTT3vRubR8UQHYclEYYqgROo50EQdnBZFC49CR6tpkkSi0L9EZHhsRsYxIUZA3bdFZ8/3Rb2xDEXC4IBEdolhRKsobEX2OgpFhZ6ERH/1n0Xj55dF/CQbRfkJPEQfMMtE8N2cRacJ5EXu15VEfVtzRAHAIEUVCXREeE6iRoyGokRVSlREMRJqRaQvhETKbVREHhIBRXegXUTUpWpE8j2DRGr7TUTafVlEN2fWRLXReEVLW2lFK3CjRGWmxEUCxqpE1fE0R4bB90SKXlZEVcG1RAfcgkTqmAVFKlDnRQM7yESzWbVFdJ3ORF7ht0SZoV1EjcHyRIhtg0RHho9EhoKpRHoEjEQGyXNEM6lNRE0gKkUQu5xEyuNFREv0kkS1UMhEV2SMRIUWOkXIfm1F8ll5RNVrlkRcH1REu66nRfe/jkRX+ExEqjNSRGzCnERIq35EndioRaWfi0R6239Ex2rfRGIksURDkBBFWLBbREPykESEp4xE6QEBRZJDV0SgLzFF8YEQRZJktkQkb/lGlcYeRVYHpkWcwzJEStKmRfhDj0VHAp1EYm98RdeUukS5b4VEkmWCRAeYYkTO0ExEVVA6RV0YXEQQxQpFDLSSRCcpgkSWojpFoAeFRG2qYEWR+u1Eor97RHjlVUSvkIJEdTiQRLxW5EXX9WNEhjq1RjNrh0Rq9oNFUEDGRCzkb0VoX45Enn0jRXE4F0csjDRE22tARrpP6UXVh15EMU6XRTOc7ET31gNGc8a5RG6kHkUcIplEN/aVRS33XkRrEkJE+4jpROSqcURAPtBEDLbrRCk5AkdWG5VGCNJ3RsdmdkURqfpExY7yROEAT0W/0KBERuvyR/COr0apX8pGKZ6kRcxLY0bAnedE232GRP9f8kSpAERFC0HDRFErkkWfplpECVqgRP/ObUQ0Y4RG3G/5RUEJX0TTzZ5EK+IqRDl7TkSrJWBEkp7tRe0qLEWSW5NEUYWERO6taEWqHlhF/ed7RLqVqERpTB5GveGMRWEMNEfzhjBFewOVRuNHVEXPu3lFoGEdRb5kUUWmSPlEn4/FRNa2KEUkykxJfVpWRZpbzERKtBpFbROtRO83iUQCsEpI5jiwRL+8r0Z5r6tEtZdRRPg3v0T6aohEVQNbRDiiz0SzsoZFZpcJRj8aE0UPYG1EZqxPRD6JSkRHX35Ex5uURJspsEWDgbNE8HtrRNLqakTeEFxFrWD5Rbs8xERM2f5E1qWhRCKY5ES75YNFRDbORB5t5keKX41EqpbzRt97H0V2/UxEJO1pRC+YfERzC7tF4kkIRawHdkQTe4NEfuHCRMhAokW09mxE2+w4Rte/MkVtgy5Fh89URKZyp0SZ+EVEXbejRF2I8UQuv15ECV+gRPP4A0V3CI5Et2t9RENamUS3P7hF8cChRiO8MEb3JNtEfMGeRZZzl0QxeJRF5f9RRNU0nUWbvpFEchu9ROSb0ETg7UxExnzDRFHUh0ShTORHp/PZROnf90aAtAJFUzG4Ru1PdkUlE5BEIT32RB4yqkR05EpET4WrRJUFpUUcpItEZzZRRMCf6UQzAYZEz+ZfRGGhzUTud6REysaaRB235kRZ3F5FQC2XRKS0PERiRmVEyt+IROV1hkSHF6ZEGgW0RBAhhkX7XWtEhsqFRK0nREaL56REeA1XRDHDMkXETg1F3HX4RJ5oaEQppdlEFmxgRgYG3kXmNqpEQbSURGMhT0RTmRxFiU9yRMpnBkXIA6ZE4hjIRD/UNUXNKnxGVJ6HROKYmUUjVZVE4NkMRZE3c0Q0alZFxSEaRZtqlERLSDlFuaIERVLhyESjw5xETEt+SLCXKEXiS+5HS9ehRM0R20SuN4ZEzyAcRTW6pEQwOYRH8qVlRs3KkUX9t7FEXtSARAqod0RouJREtJyDRI40DEZaCD1FrAnXROT1e0Rbnv9F7XvVRO7R4kTyrcJEW79fRDFSckRVxs1EfhwIRr0snkV/GYFFIGPXRMM2oUUxGwZFUKt9RIJEHkVCIBhF1OikRP7hzkRknUpF2OAIRSFKjUXzbk1FOYPNROJMYUSO9HpEzMYvRam4lUQFEI1E6MpNRKU2JUbGM3VFeBw+RRo5rkXaLvBEME/ARA67W0RtIsBF9DJERaXHbURtnpZEgEi/R/GRMEcc69hGwZzORWDw80XxzRVFgw5ARd6Hh0Tu5eJE4rhIRJ6nuUSjJoNEoTvdR7HvUEd2vd1GhzMWRlZyJ0VoH2lEQMqRRLQqmURzI5hF53QoRYz1GkX5tAhHKud0RiPlHEb0yYlFtcBkRZkI8UToooVEQASQROlgCUeRIWtGvHQmRuAXaEXwIb9E/HNJRDX1w0RTnmxEArkWRn11q0WW2nJFl1ucRNiNrkTxkxhGzm+hReBeJkUGDsREyMYWR+jG70bqSjlGaMcBRjwBGEWSXyJGxj0JRhzv2UX5lkBFrFi8RA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - ZsmTPXjAckDgWNmcbsFyQCSq1edOwnJA4mxS5KfCckC6lYkf58JyQPX4VkA8w3JAvkORTsTEckDqE2w7WcVyQGTrm39D0nJA+iOweknTckCp5bendNNyQHC2/9IL1HJAbyYzpM3fckB61kH1t+ByQLo1yGRR4nJAVObMXZDickAYptDxI+NyQNa6/aLK8XJArOxcVczyckCOGm3EtfNyQNjn+fmh9HJAIKlsHML/ckD11vVbYwBzQJhpxgn5AHNAEbHbbI8Bc0CgFJtuPAJzQIpdaZrPAnNA2uJSE/sDc0AbDleGCRJzQHjYx1qEEnNAJlAF9LwSc0BM44mbYRNzQIgXW8cFFHNAtHMrDEwUc0AnuQQGeB9zQABLWLCkIHNA7lH8Xjkhc0AopIn0yiJzQPcWD/wPI3NAzqn/ogQkc0AS29u9OSRzQP8oXpbPJHNAwCHXn0Uxc0D5kabyWDFzQPYBheHNMnNA3gX9SAwzc0DKbl9lODRzQBSSJTfcNHNAxjNnjLg/c0AGC/CR40BzQAsCUKV5QXNA/uGeJntEc0CqB5dkm1FzQBhs6dMQUnNA9N+H+0RTc0DY7fwcpFNzQNbNSiR3VHNAoD/TEo1gc0B8fR9faWJzQKlC1+c5Y3NAeSUAAM5jc0AOAJGuU3JzQDD6uFi7cnNAhmqDD7d0c0ANGMU0THVzQFKWKAludnNAuFlqcG96c0DieHPoeIBzQByK7SilgHNA3Pu53w2Bc0DE3R8/YIJzQDzD0/WlgnNACZsf1Q6Ec0BMCFTbhpBzQALc0EhNknNAHu37Mc6Tc0D8LeadY5RzQHQfXHP4lHNAMyQpFrigc0C2t0diWqJzQHCUL5jmonNAjg4+dgSlc0DEumXsx7BzQMg5RDI0sXNA3Xlb4vSyc0DHwFjLtrNzQAo7ZwQPtHNAOnvz4/fAc0Anekh7O8JzQJLVmpzPwnNAQHiwbybDc0DwOosk2NFzQDCZoMEn03NAIJuGhfbTc0C6AYPx4tRzQOrJJB054XNAYMJLm2Phc0Amn+sj4+FzQH+qKSFF8XNA2rGKRTf0c0Ai6oipi/RzQDZhcjB5AXRAUDz1TqYBdEB0exz1dRF0QHEbWGKIEXRA2b/7w0sTdEBg1Iyx4BN0QHYocBxMIHRA0ayku4wgdEBQZok2uSF0QFKp3j9aI3RAMCLnV2IkdEBQWGyEuSR0QFI+9kpSMHRAmKecRXtDdECsWN/691R0QFqyrSmMVXRACMDhdLhgdEDdWGCO5GB0QJAR3yEIYnRApCnTrRJkdEDe7zogT2R0QCQp+WMicHRAnJSnWEFxdEBIuHxfOXN0QNiS0vc3dXRAeNYeBvmAdEDC89weToF0QNx66vCRgnRAsrA+chaQdEAkMkgpapB0QCb5csTOoHRAGjHSbzehdECIsgIyuaJ0QBAY910Ro3RA8MTPJ2aldEAUXKeeEKt0QEQHcAELsHRAuJVen+PAdECstx01d8F0QNZIBHDrwXRAngI1Vx7DdEAghw/3JMR0QNtQYh17xHRAEnhghbfEdECw7idT4NN0QJnvtNl31HRAfLKpws7UdECt5R239990QHZjoyIi4XRAfKgc0bjhdEBsqpMSy+J0QCilhHdP5XRA+kC/w8DwdEAWliSJjfN0QEyNyFfPAHVAZL7nj2UBdUCNYkooXQJ1QIG9GleZA3VAHrf68yQUdUDRgm3QnSJ1QGb2gi2pMnVAIakc8ss1dUCtMuRiC1B1QObqy/KBUXVAsFPrv01UdUDo3tJdd1V1QEoo9Gk4YXVAntLEfGljdUDSMnnC/G91QEYyhet3cnVABAWMO410dUD0x712eIF1QHffDSuugXVA8HVTYKaDdUBMBO2mmoR1QGLADhG7kXVA8DfmFm+SdUAKSLYEPph1QOja5dCanXVAOItmYJWgdUChOHd5I6F1QMGMeEu4oXVAFBPjUfKidUD4vtkqfq91QL8uj/96s3VAICS7087AdUDnSd3AY8F1QIFvjS34wXVAknCJM8zTdUAi3WYsDuF1QDzoR1AI4nVAivGSizvldUCWJzB1aPN1QC2CKEVIAnZA5rEKzc8DdkCkkn3LAhN2QDsIHZhNFHZAhosoyQsWdkDkmEz0iCJ2QLTeoOWQJHZA0noaOUordkDKg+G7HzF2QL4S5XOaNHZA+5sV1OFAdkB+8PRAHkF2QGpmEdcTRHZAsBq11XlEdkAIq36OylB2QPD3JkQSUXZAwkdJkc1UdkBiLBxfzGJ2QGSoTiAmY3ZAWkNeCttkdkDhqQvVJWh2QFSHjoiRg3ZAUM1PkqCTdkBays6LtrB2QMyUf2bAsnZAQhh1xHazdkABAhE2DbR2QBRDNoKvtHZAHBq+wsDAdkDRvTdnz852QNx+8i1+0HZAHnpRGvXhdkC8m2vukPN2QE1MAXVM9nZA0Auz5TQCd0ALmNvrUA13QCZtZMYBEndAc+B+L6sSd0DTg3ZiBxh3QJSykh9JG3dA7th60E4dd0C8+uNxDyJ3QDIXO+JxIndALoIrBw01d0A61CYenUF3QGSyQKEbRXdAnm9rrEpRd0BI3Ue2klF3QPhJqCEoVXdAhfTG545hd0D8JpnGPGN3QAGXd9snb3dAZkYzLD1xd0Dejwh9hXF3QI1/JZd4gndARb8wkHyDd0CSN5a9TJR3QHL1CEVonXdAOdi7e8Kid0C8HDlhHah3QLJSQ2CatHdASij15uPQd0DGAFrAjNZ3QIo3+vXs4HdAMJjtdSLjd0DStRIsKet3QJgLIlBP8ndA3aQGIbryd0BsIAZQbiJ4QHtXXA4rI3hAkqO03ogjeEBI0FdbMSt4QE5Ik9UNQnhAeiESEXpFeEDAJxaCylF4QErgqL6UUnhAOCHRTYdVeEAWHPqs7ld4QDKaR4IyXXhASx1QXUldeEDx7ZKZ+GB4QIZXCEa3YXhADV4WYJNieEDWYStzsGJ4QHqsrvNodHhAzLjzbIt0eECG/j6FqnR4QPLYoTujgXhAJkMtMLyCeEDEs0yamYR4QMmiEmq3hHhAehFB/pmReECU+Rl0p5R4QNfAHIu4pHhATg31WczAeEBwzH079sF4QGcqlhEIxXhAypIitrfUeEACy4NoAvR4QDi3ACKM9XhALKvwAg8EeUB6u87hmQV5QOmg8c6KQnlAUNh3qPpCeUDrRXlSjEN5QNYsT5uuUnlAAOyxZjRUeUBoyv+PzFR5QJO1qeVCc3lAOKBwc0l/eUC0kQqNwLJ5QDb7FLRC1HlAy+iRV83VeUByD8IKTuR5QBUHjC+tI3pArEAGYQw1ekDigDQA5kN6QMuqcacaRXpAtMeubyhVekBUmdXzOWV6QC8XQvyPcnpA+lk1+g22ekBgGaB4GMZ6QKzGXL9Q1HpA8cqidHnkekDeDQ1dNu56QOxgl42C83pA0Dkwvon7ekBVqzDLdgN7QG4/nvsnDntAL9HKuEwVe0C+zB2hWiV7QIZbIqlUMHtAsbaZusYze0DeomNOPU57QFcUUnyXi3tAolWtd52Te0DKlP+TI5V7QIMhdEgvpXtAtgg/JYCze0BcgznBecZ7QOZ4PLqr03tApl418ov1e0A7m+UR2gF8QIZqIWuZBXxAAvrmhIsRfEDXf5VZ0BF8QCNEsb7NQXxAoP4KcIRTfEAulsXGDGJ8QMvSy2Owb3xAhlY/jr6yfEC4ja+2V+J8QODospgW8nxAuXv3e1XyfEBDY1lrAQJ9QPm1rlxLAn1AiBHe4kUSfUCAwJT1PiJ9QMv8wbvfS31A4OM5YCvDfUDlV2Zta+B9QLS3csCR9X1AftZ8IYxVfkDxIwm1xld+QONpdagdXX5AQJqqIfFvfkBQ0K95yYh+QNia0hZCjH5A+ZjxCsqbfkD/4Acf0aN+QL5EEG8V035Abmt2erZxf0DQ2WVksYF/QAdVFUWlg39AoLRXpKyEf0CjWpTjYpF/QJjhJ/ZcoX9AWgiSA1Wxf0CO2U2uOrx/QEiWjKuNzH9ABqnetnrcf0CbQVcWguR/QER32H2E7H9ApkV7BeopgECgo6XeojqAQKTrMpIrPIBAHLq6Wdc+gEAb1TMYlkKAQPiKYaDwSIBADr30f+dQgEAatbxKFFGAQK61E+flWIBA3u52AA5ZgEBrIISoKW+AQOfEuYoCcYBA1Nuzl/V0gEANebTLHY+AQNLNJTcalIBAUGWiHx+XgEAiOwrL6qGAQNiS+ePtpYBAB3clAYepgEDxVfRZUsGAQKfAyQARxoBACaOVuvLGgEBN8Y9mU8mAQMxTpfCnzIBA/4z5ZFXPgEAGGhy7ItGAQNYO75xM0YBA3qF7TWHRgEBk851PAdKAQGBKtxJL2YBAtrP2y0ThgEBWbieBW+GAQPqimb726IBA9BXhokrvgEB+NDbyPfOAQFMNRimt9YBAuavq2j//gECBUbLWPgeBQE4/v6A8D4FAEK3lQvEdgUCD2Q9BNB+BQO6EtPv0IIFAYNaYvzcngUBp5GOY4yyBQF4eUg/YLoFAnuHB37k2gUBEGsOm80WBQHCwZWr3SYFAMGI+rVtYgUCa0hceZGCBQJDtW85TaIFAZTL2nWF/gUC0ViU/HYSBQMMeIZFVj4FA5B8YuVSXgUB+VMZiUp+BQMFQx+fnoYFAbScVv2yogUDcVJM2Sq+BQEHszSgGsoFANJPTpQm2gUD4UxrNC7qBQMZKoJ0qzIFAnIp5D9fOgUAt7nejfNGBQCbyt2F904FA7Y38SivUgUC8di22hfGBQGpS03Ex9IFABKQiON72gUBQwZY+NxSCQNole1rYGIJA4K6kvtYggkBgBD5c0CiCQFBdt5ShKYJAodOO/qYtgkDagUOkpDCCQCBwIV3PMIJAH5Sgy+c5gkAxzmc56j2CQFFK7jlDiYJAlCKL50ORgkAZ0oWtJZSCQGr9GhHWloJAytyrfTyZgkByrpPMVZmCQBe9ZNQOoYJAdHJriDuhgkA2cZ1nD6mCQOwo1m40qYJAoMYruQexgkB+9/n4p9WCQMZQqnml/4JAgn9ubHkRg0C6k/EOehmDQIItuTFzIYNAy9/u43Epg0CInhGwajGDQD4R3DxnOYNAgji5gG5Gg0DXRVn84oGDQI4rF4RKg4NAvv0GjT7tg0CU4vdMlPiDQOIU2xL/aIRA+BxgDf5whEAKoPt3+XiEQMjRaiRq2YRA1C7kFmrhhECaqz3VYumEQKijTQ018YRA/Oez4mDxhEBkXIbeM/mEQKGWYXgxCYVAIt7ibqBhhUBeOhOFoGmFQLohr7GZcYVACLOcZLRzhUCshB+zmHmFQFH+5t2QgYVAtgU4UaGKhUAmafh0qZKFQBjpKmgnuYZAIjd1YpEph0Cd5vXWkDGHQJg1JAmLOYdAGurBFI1Bh0CE13kux7GHQIos8xnIuYdASjtxzr/Bh0CyyZeLwcmHQH7qxYXE0YdAMkH/UuJdiEB/zo2U5WGIQHeDU7DkZYhACRuKJ+VpiEAe3aJr6G2IQIZfEOYygIhAKsebmt+CiEBui++di4WIQBC+E185iIhA + NrgMGZxjYkBImCMySWRuQMZtNYzMxW5ABcAcd2nTdEDrJqbSPGN4QFsUIXwBRHlA59zwtXiigEDZQB2GKsqAQPeR2XCCWoRAer2U8c+qhEAivFtzzpKGQETFXaRRw4lArjeF75CTikBE9EvO/UuNQHVjK//8m41ABhD57jQqkEA6yYyUVJKQQMzNDS2WKpJAH03xbZUek0Dh4k4uvEaTQHALrSPoDpVAaT3DC8EilUDGZrMH/SKXQCIiEjIuW5dA3Hv0CCM/mEAl/jTVQ5uZQNQ4d0B0p5lA1xSa44knm0BUUG5VymubQA== - + - /uiFRMLOi0WYCIREKKc1RdVROER+deFH61nIRH2GqESj2BRHMFlCRsOtfkQXu1BEiTIQRbfUAkVKw09FvIsuRdd1X0RQJl1Fc7aURKh+z0TpgcVEOtfCRDDGqEX0y8REbD+LRDk8fESiXp5EXM4cRwTOzUTA3ctEeHRrRppUZUQPWYNFcrdkRBDtv0TmlLBFqIbKRldN/UToHp5E0lJcRCy+rkQ8tLxFa/AKRQEvn0SfP+FEHHGpRFkw3ESxIEdEtLV4RIp9BEWHa5VFZ/AaRl40T0RVjnpEtZHARNi5jEV7NfxEW52wRBmvUkSzgSFFV1dsRPjN6USc3lxEclaiRK5zFEVKYXVEMS9bRMSi8kacYKdE1ZGNRPP9XET+kblEuYiNRGOVKEU7tmZHu/WORLk1DkXZaZ1GsaAzRtwNy0WL+PVFKSFcRV7PwkSl5Y5ENeB0RP5tkUVI8ydFhtX3RPC+UEQyfYZFchG1RT+rO0W6QUhEEyWoRAm5lkUAVglGnu2iRIlqeETjz0hEa8kCRZMoVkSRLp1GZ5qqRGh9fkSM+KFESWpcRc9deUS0jIdEGwOCRA4yIEWZrkpETw2ERDY3YERXvVdEWhWCRHvumEQHPPdE2690RUKXQ0SGCEFF7VZ4RNiOFkVV3KNFHXxWR2r2bEVMUuBEh/sMRYfl9UVWIwRFol6tRcXKhUSDTdFEdMOTRKra8UR4byhF54VkRPh/gERYgqdE/v++RJjXukTWQpJEIax4ROG0n0R3B6ZE5g2yRAHRdURkYV5EkxruRAXFWkSPkapEtrwpRT4YEUVMPMREj9SJRPXtzkUrbb9E2WD7RLrUm0UBf6REcBLJRHaCFEWJb31EUcU0ReYYlEQ+yJxEZqaPRPqF9EQspfFE7bo6RS7qQkS1WxtFO7L8RVT61UTDztNFokmwRTv520SzhtZEHJ+DRKk+fEXkv8hEwPmDROIJa0SMJK5E7AGMRKcaz0TlOaFEXvesRJK39EQBFxBFUOKnRAO/bURXtx9F5hOgRG/Qf0RnuqRF+bnlRE8G5UQzx7VEJdyyRIHDukQVhQRGfNCbRDktzEYgooBETF1yRNBam0XDz61EqHhyRXUUo0ReGHFF4+UpRneGNUayzXRE+FP+RNnae0WUvoRGUL/qROJJY0RNJw9FfZuORAUVpUW/RoVEV6iSRIbYDkXO1n1E+qDRROjdJUU2dHdEBPudRM39GUc8nJpGj4uURjlxQkWZEMhEDAWJRDYlX0WINJBEt4EBSEwsw0YNa+lGM9ifRRVTh0a9lCBFxKQkRUP7VEVgMZ1FkbN1RIW9XUSO+8BEK5i9RL6bykQTvxtH5V6URidgsUXQaK1EuT2VRI9Nj0RPHJFEMZtARv4nS0XCY7ZEWaFLRL5vdUVd3i9FeuS9RMZcf0TdVs9EPtlNRgMzpkXvHhlHVprfROZOqUaCuwVF/rqNRZotLUVbf15FzamaRFKbwUS8IYVFaxBJSTlS3UXgj9pEPQ3qRBAQVkhMzwdF8SexRN5AjkYbfJFEa8jaRNyKnUTmflBEUlt1RXOxhUVtFaVFNvOoRHt5xER1rKJEPKOVRE3igUTtzL1EUG1jRJkqe0W6F7NECV3HRAWibkW5dtFFZDaHRKYp80RwXWhFDby6R57wo0QfTrRGmPg9RXAWbUQQ3oVEpX3SRV35jERVT5NErEGGRCX7FkWX5bBFLWszRVUOZkSNoPJESBAxRv+kTkUnPSlFG2N/ROfVbkT+8lFFRvaZRMAb/kTll4RESDKdRDgw70TgpIBE6jKRRnyAT0aFh6RFX/xsRFSZeEVPbs9FQLFBREyou0TCisxE/DrwRE9O2Ednq0pF/E3pRjpCQkWHN59G3AF1RcuagEQYr5tEMXyhRIGZh0VsJ0BFDdaxRC4TvUQTq35EQV11ROwBj0Q2WYZESxyQRdMMsUSUzNBEtrOqRUTstESVybdEviqbRD/oQkZCrExFnswURX+jRUUmhbxEaBGgRgEyB0aFzApFli9tRGOsO0SsdL5EALWmRHbblESiLvhE2wlARXSLaUZQzKZEcB2tRU3PAUUyImdEZoWrREuWNkVZ0ftESnFuRNf7ykRaRuFE0PPYREJbh0ihaAhFbguCROCN/Ed16T1FReM8RXYPUkRPKotHJMmARTctlkRJ1oxGPSKjRQM9i0Sgz8FEM0b/RI39oURRqG9Eg3oiRoB0P0U6aPpE+TOARK+46kWazZ1Efq6sRNiP00RUKVpEON5nRONdHkYJlKdFyoDTRQSv1UTjccxEKel2RHRCj0SfpbJFcSHmRB0KpkSm7EdFQKgkRbXEVUWfGUpG3UbzRbQur0Q4MjJFKv5dRU0RtkS5auhEzz5nRNlHHkWG48hEZ5l5RKb9ZkSHxj5GybVdRSvwUEWhOppFClsIRa97lkR4Z4NEhl7PRXIggEXWKORHdddMRxzxr0Q+amtEeZ/2RsaAAEV39+hF9a8PRqFcGEUngU5FezwERVZgqkTcvm5EifQDSO/tfEcPfw1H0ZodRgfjmEWxlmpEOQlwROfGq0Rp4GdEbMmKROD2jESSUspFDuxVRVudyUQEQyRHydWERir8KUbwi4NFtORvRY9T80TreG5ED5ITR8XNiEb55DBGJ1GZRNaGXUUC2fZE/e++RVpyFUU7fwZFl9U9RnAeoEUO2mBFHBDQRPchG0YMWc1FdG9RRWPvrkQp7l1ErsHBRjXrWUZOPAVG0+FQRTdPikTCs89FFsj7RSZGp0WRpChF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - jPwgsA3BckDw3uPpcMFyQIBU/WpOwnJAyqaByKjCckA+vPV948JyQBZ9Fiw8w3JAHp7I58PEckDmXrd5WcVyQDaQXMpD0nJApimSF0nTckDeIxWCddNyQJSTI7tk1HJAHoT7Ts3fckDQAZmXueByQHMbr4BN4XJA/Lg2/FDickDOOka4j+JyQM6C+rgj43JA8/6ZJcrxckDknEJLe/JyQDYMwly283JAOueqcaL0ckB6jDVRw/9yQIeuP8tkAHNAeDsFto4Ac0C+ZNof9wBzQMJx1QdNAXNAw0bg644Bc0CsPLzEzwJzQP3/FNn6A3NAor9QViIFc0CYea44CxJzQN4T1yKGEnNAMuNqs7wSc0DuY16pZRNzQOsw0z/5E3NAMld1D00Uc0C6AYMReR9zQFrI1OWjIHNA1px2mjkhc0CF2rI5YyFzQMb/BVvmIXNA66voK8sic0AwJsdZECNzQA5iA2bOJHNAYtjRK0Uxc0AKh0kEzTJzQMS/8f8NM3NAKhP4ZKIzc0Bz/+TR1DNzQOiSoc42NHNA+ZASgdo0c0CYoUYfuD9zQBJTEsfkQHNAJrUYqXlBc0CKy2u4JkJzQN5qeNi5QnNA/FEVcHpEc0CssuoFiVFzQF6MIJOaUXNAyy+pAD9Tc0DGjjEUo1NzQHKt22d3VHNA+lxIbItgc0AMgye2H2JzQH6+Zcs4Y3NA4m5BnGByc0AwuW3CuXRzQEjHnN1MdXNAlEruIHmAc0DUyrmao4BzQD+CebAQgXNANghq3qmCc0DTwogZh5BzQAZtAgb2kXNA3TKEWU2Sc0Cwp151zZNzQMDweitilHNAtuoTtfeUc0Dg4gW7uKBzQI5kINjkoHNAaFPpCUyhc0CDRYwg4qFzQNxwO01bonNAvmgmuOaic0DCDW/zBaVzQOK8zzTHsHNAZR0tEzSxc0A8n0ZggbFzQJRg4862s3NA6RPIlg20c0Ancbk6+MBzQGjvDx+OwXNAwTS4uM/Cc0D00vYEJsNzQArb9W3W0XNAyKQWfvXTc0C+6SCn4tRzQAguXnA44XNAxKQReGXhc0BPywcYj+FzQCZkMrnj4XNALL2FMbfyc0CkBu4yN/RzQDT56wR5AXRAXnKdd6YBdEBEKt24iRF0QMrRo9lNE3RAqllTSuATdEAoy3xGdxR0QNCTRdRKIHRACXLForchdEDhCuXTUTB0QLqZFGrVMnRAXe8yJXpDdEC0cV0CY1R0QLtUO7n3VHRApHZ/h4xVdECmL+ZmuGB0QMvBb8gIYnRAIAdgc1JidECa0mnQEWR0QO4b/qpPZHRAmjBgsCJwdEB5d29YQXF0QMIOeoA5c3RAxtbiNaR0dEDT1HZsN3V0QMPd7fn4gHRAshgJU06BdEB+cd4TkoJ0QCpF6QoWkHRAZhBei2qQdEB+wuPTz6B0QFLMCpo6oXRA+hdKP7qidEAOVoAHz6J0QE6UkSsRo3RAvqLAZA+rdEDsVbM7CLB0QPDXWcrjwHRAuYfdlHnBdEAJ95fO6MF0QCJ+lTMOwnRA2rAKVyHEdEBay7iJusR0QEYsjyb8znRAua7gYOLTdECsMZZHd9R0QGwrVlDN1HRAQgY6svrfdEBlvv7sJOF0QMjlaVm54XRA+/4NB8nidEBa87oNHOh0QNxrSTGN83RASvieNHr0dEBWCMt7OQB1QG+cM4GkAHVAJPIawM8AdUDS1ndjYwF1QJJjOQJdAnVAyHm0v4wKdUC3e9jhIxR1QED8pbidInVA/ETX8sw1dUBasHhps0F1QJzP+F2CUXVAKpjhHkxUdUCSgUTNdlV1QCIVYgE4YXVAVqbxMWtjdUB6cKKQdXJ1QNZGqauNdHVAeYfVDnmBdUCMqlEcrYF1QCv0B1umg3VA9BcrtJqEdUBOkwHZPZh1QPa4GiiVnXVAljXr27ahdUDTHLZR8KJ1QFSggmZ9r3VA2DwNqXuzdUBaatqBOcB1QBwYwAJhwXVAYnB+T/jBdUDGsD8WzdN1QNqkj78O4XVAHMje/AfidUBMK7LgZvN1QOCYuetIAnZApBJR6dADdkCNq047WBJ2QGZCIUoAE3ZAWP1T+0wUdkAMX8iADBZ2QNUBTpKIInZAKRSED5AkdkCohqZmTCt2QBi1HsEfMXZARjuVbZ0zdkBqhlxRHkF2QAuU19ESRHZApt6pBnpEdkDH4j6Ly1B2QMG3A5QSUXZAtO2WoM1UdkCI7TR4yF12QCVZ5m3MYnZAGs422tpkdkDwy7quJmh2QOFbzth/bXZAIoOXsrBydkDVSKjwZYF2QCzcV7+Rg3ZAVJEE+J6TdkCEzCqvoaF2QKAfgJi1sHZAWoUxjsKydkBp+f2eebN2QKTe/+ANtHZAwmlRTbC0dkAK+KWp1Lh2QOgdd4LBwHZACgF/2M3OdkDiOJ7pgtB2QAKromj04XZA2JHGgJDzdkByYM4hS/Z2QLK2Qt8yAndAOvq3FVENd0Dwi65hARJ3QFzjbtaqEndAVFucvvIXd0B5/drnBxh3QF4kzQoPIndAWM01pnMid0AprNZFCyN3QEQvMc+3JHdAYuS++u40d0DQtedbDTV3QMxFNS+dQXdA6rAPHxtFd0CAzMK4SlF3QCCrj+eSUXdAIFOuPCpVd0Ds0/ziSWF3QAwIxeePYXdAgFKA+jlid0BUwRrMPGN3QCZAqYNpY3dALDzW7iZvd0BCU275kXR3QIYnzsV4gndAHtr0IH2Dd0CltYg5CZJ3QHbAsxBNlHdAFAP2NGidd0COkOIZwqJ3QLQvq/AbqHdAFpJK4natd0Aursy4mbR3QE6spZbf0HdAdQuqm+zgd0B+OdXTIuN3QCAzA2Yp63dAYpyQu1Hyd0ApJSCQbSJ4QFjwzoEqI3hAkCGENYgjeEA2uGm4MSt4QH10MRF7MnhAUovhTOVBeEC+qlTkDEJ4QNVB8zJ6RXhAYas7u8tReEA+zH/elFJ4QMNoCWuIVXhAWy/W0u5XeECefloZM114QLA77XJKXXhAuCUO5/hgeECht3Mtt2F4QCpTek2NYnhA0UEIhWh0eEDiYDyZi3R4QKWcZ8a1dHhAtgCdGQJ1eEBOJ8DPo4F4QGa+x3a6gnhAvsq1wHWEeECI08CQmYR4QNTv+gXGhHhAUKF2PxmIeEA3rtRsmJF4QMic7/GmlHhAqlOig7OkeEA2baygzMB4QDBDhO8GxXhAGlBRYLfUeEA0BPNpxeR4QC0cCJoC9HhAQqrOFYz1eEAaVlGuDwR5QIsJ5LCaBXlABrIWio1CeUAogS599kJ5QJjg+vv9Q3lAatOVKMxUeUAKOwvD6WB5QNpizSxHc3lASftM/kl/eUC+Y9kVv7J5QMCCgdRC1HlA8cCcEc3VeUDYv6yHuuJ5QIZbAd5P5HlA1k8pYCXleUDUjxbBqfN5QDbK6+/7BXpAwEdHUzkjekDaBwJWrSN6QLxjy3gMNXpALKqu6udDekDGY7tPGkV6QAur5mkxUHpATAq0DD1SekCQT8BeKVV6QDJXGsqMcnpAronZH6GUekDW1ma18KN6QJa560wMtnpAUfTIXBrGekC3uYKgUdR6QPZryNE27npASJL1XYLzekDtCj/ziPt6QMheZMkpDntA6gRgCE0Ve0CUdxYUWyV7QCqPIE9UMHtAykIqR8Qze0Cw1aTRYVJ7QERvZ1rjU3tA9rAe+2mCe0DUTxlnlYt7QBKKCizqkHtAXjwRCJ6Te0CocZQWI5V7QD6gbLctpXtAytxdVr/Re0CI72NT/uN7QC02FjKY8XtAuF1ARYz1e0DQ2t/ElAF8QC51NETaAXxANJesP/kBfEDHJgiOmgV8QOR4mmiJEXxAMuc7ldERfEAzZ9nw5yF8QLxC1+fNQXxAWBYSFtpRfEBU7xd4DWJ8QMXYGim0b3xA08/44ytxfEC8pmX6mpd8QM7XFsu/snxALtsfOhC2fEC3CjYhzdV8QO2bk/FX4nxA2yls1RXyfEAKjSNyVvJ8QL6nNy0CAn1Aipp9q0sCfUBIKRnrRBJ9QFnl2YlkEn1Abhf0kj8ifUCxknn/oDF9QORjfQgvw31AW9E2TWrgfUB/+DIk2OJ9QHGagnCQ9X1AgPe5fvn3fUCu7iy6Py9+QJKMjM2OVX5ASCgYxcRXfkAqLqrQHF1+QDKl0q0Yjn5AXlMHgMubfkB0pwZh1KN+QIlwW+UT035A+hw50tbvfkD6W5vfxvp+QPQ1srPW/35APk8RER8Af0BCo405uHF/QFZzeimwgX9A3s5fqaSDf0Dm0MzTqIR/QCbVfLFikX9AAjq0DK2Rf0A2jPDUmpN/QPRQfCteoX9ApAAaFVSxf0Dkko3vObx/QHKADPZBxH9ApPl5hY3Mf0AnGiioetx/QCjR1IKC5H9Ar216oYfsf0Cd3XFE4CmAQFzXDs1GKoBAyXSZ10gugEBOhouSADmAQGfNK1ujOoBAHHfauCw8gEBg9PnA1z6AQK/BPmz3SIBA8mkLCOZQgEAKfAqhE1GAQHDWMFHmWIBAfJN0jg5ZgEDWJJzqCmGAQKzdyvEpb4BAFrIOA/Z0gEDP4T39HY+AQDxby9xskYBAbk5GscCWgECpHrxj66GAQL4+ThqHqYBA+r/vOxG8gEBSXP2n/L+AQIqSOZY0wYBACZMvlFLBgEDaeMcFEMaAQDY2PatTyYBAMDEYdhLKgEBRXt2YqMyAQG7TJ6AIz4BAqiOuVVXPgEB4eynILNGAQCMLJL9M0YBAx4yd3QHSgEBFesUwStmAQBJAadBE4YBA/KBIdvjogEBo7W9kP+mAQGJRG79L74BAhn4gjT3zgEDXb4PJP/+AQL6fdjI/B4FAYwPHgTwPgUDCXi/jNB+BQD6q0ZL0H4FAjCbmbTQngUCRZdwS5CyBQGyq8MPbLoFAoJlkUO8vgUBlieudvDGBQPxlnNSeOYFAitQgDPRFgUDPKC9990mBQKB8jR37TYFAtDaH8VtYgUChvl2YY2CBQKjKhy9TaIFAB99p6FWPgUBCUw/zVpeBQMpms5tEnIFAoLMhSeehgUA1MvQCOKSBQFaFIU5tqIFAb2hAdkqvgUBeOV9FBrKBQBv5oH0JtoFA3t1rkvy5gUBYG2FrD7qBQI7L8kkSvoFALjlMdSnMgUBOXkXk1c6BQGi//ACA0YFAKxpa4nzTgUD8VID4I9SBQLguMjiG8YFA5u32+jH0gUDosIGn3faBQBzQlx8CCYJAqrbdSzYUgkCik98vORWCQO5m0IbYGIJAv0Kwr9YggkDGUan40CiCQF7n9vmhKYJAZkff4aQtgkAg33vwzjCCQDJs2pqqMYJAUi81pec5gkBiv4R5QDyCQKizDRHsPYJAxqHggvFBgkD+DH1mQ4mCQLoa11dEkYJAn50/YSiUgkC0oFmK1ZaCQJNmwZo8mYJA1cGP/Q6hgkDy4oOzOqGCQKmjzj0NqYJATnC5NzOpgkCerWiXCbGCQCbQpxY2sYJA1ERtSajVgkAyCQznr/mCQEF3WoN5EYNAKjfNFHoZg0ApQogNcyGDQOT16tFyKYNAN2zPKGoxg0DqAwUvgjGDQMIJLHZrRoNABo8EEeSBg0BdZZf9lfiDQKy8aG//aIRAOTMbGv5whECXiJJW93iEQCyIAi5q2YRAJxyM3mrhhEArS8Q0Y+mEQKfAdeU18YRAtquBkGHxhEDYsSIpM/mEQEKQtEtY+YRAZu9zzi8BhUDyhcjO1EmFQEiMu1+gYYVAzJZaIKFphUBWEZi5mXGFQGT1uMi0c4VAcvfJNpl5hUCjrq6ounuFQApEywiiioVABc1BMqqShUDW5TTGrZqFQAyTMb+u/oVAyqlEd7xIhkBA/w2LJ7mGQIAehk0owYZA8zc1zJAph0B6rA0tkTGHQErIvLiJOYdAimrsdltBh0CLTVrMikGHQMT4v7HcdYdAFs1Tzsexh0B8Tnh1x7mHQCQJ/oS+wYdARIMIxMDJh0D88g5D4l2IQDzRljXlYYhASsWVK+RliECOksKA4GmIQAKCEbzjbYhAYJzQdzOAiEBcxFyz4IKIQOxcRu6LhYhA049+lDyIiEA= + KBZXds7jZUCwLijacuRqQDeULWxqYnBA5m5gjBGDc0DF63mLQnN2QDzDZJGp83dAAI7yYPKTfUB3Zd1mWRR/QCpx+zJFAoFAg94Uw5iSgkDxnKFCsQqEQBTjlVvaSoVA8cuPbF2Th0A= - + - 0vBTRFp/KkXYw6xET/EJRTWcT0TknchHhAt3RJ30f0RAfABH0eAYRroas0R3jFJE31vJREYwrkQa7ZxEBLtiRdtUAkXJEJBEMXaBRWjPIURvH59EQYvURIcwoUTeIqVFLv9kRM/HhkTzv11EEX9vRO1jOEU7fRNHh8E5RAw5WkTV6N1ESYgpRhJGLkR3sY9FGLxQRGigiUTbgYRFh27CRkzcVEQLc0tEIZacRHXDcETg2YxFjzLQRE6GrURXYoNEaC1zRMrcS0R4qapEj9pXRCZSPkQJcalE3dyDRV+ERUQ0rzdEhf4RRs9+Y0TC5UBEjNg1RIAuX0V+y55EcG+mRP1OYESbW91EOImHRCY+1EQyFQlFl178Rhtd00RbUb9ER3apRFB0Q0W0fkdEPxBCR1eUS0ShGeVEltBYRoRJFUY+h05EwcltRMbIRkT9H+RFVxzzRbFWEkUPTGNEaX9HRAcbiESEyHNFC4EdRaW30US8eIFEGFCNRcFdlEXZFBlFvGzSRHtclUU3nApG4wRiRC7ebET5vWhEnIZYRA/fAkVKOo9GzFZvRPU3tET5iz9Fo3Z9RDz8u0R/xEBEVYDQRADHgkTPF5NEHUumRPq2YUTnOa5EBuLGROv7ikWxZmBFkNmlRBCZX0SL0a9E/MacRYL0O0fEmVZF9cVKRDNG1kQdDlNF7hXJRV9VA0XhC8lFfIiURJSFvkTwvIdEKBfYRIOXU0Qe7KpEc2DoRM82rkR166VEMGJYRLyTSUSymzFEJ8ZbRJJUi0RfIqBErxPORBzYWkQpVyVF/UybRI3UaERD3BVF9HD6RMUtSUQCMrBFFld5RIJFPURqjHdE1YV1RNnSE0XBoJRFS2Y8RLKlyETULgVF2f8oRfBAU0TPn1lERneiRKXRF0W9eAlFDmonRRaY50TlB/1FK1AnRS3mmEW1NtBFDYDbRH/1dUVK1n5ELnJzRJcFy0SLBdJEpbumROlWLkTlkV1EmrwCRUy6pETVf3JEUYctRXOki0QDEJFFZam7RPXda0SNFX9EBLX/RKWQikTGHrJE72vwRVrET0QIS7xGjyRKRGOCnkXY2LpEFQ9LRbNXl0QYTVRF2goURoNOY0SLVSpGqOcVRfWaIkWAXZtEjpt0ROk5fETNE55GUv4KRXyzTkT1bGhEjULFRN3YAEWfH51FmXR+RMdyyEReyU5Ea4ZtRTJsIUT7HZtEpUPJRDLeR0SSt9pEDVQPR+y0iUZQOopGKuDCRAnqJ0UBBGBFUhqnRIyGKUQrgXxEQg1rRIQZ3keGXr1GjNy+Ro81iEUIpIFGb/cMRaLHRkRCqzFFQc5tRHBRrkXpkVhEkKR1RTfKQ0SrLq1EpyagRPeon0TtxpREOxtoR0sv8Ea0pLRFtX4QRViJS0RhVDNEQg9eRE/CHUYzch9Fll+nRDCESUXy3GZFa0VnRKUSXESTqzdEWcx3RMJ3oUSraT1GFLq5RVcVJUeqVv5EBmqGRtRdIUXDMkVFNxIaRSN4Q0WLs5dEgvTBRcS1NEkFzXFFCQy5RCKcL0WMfT9FNFe4RCGxPUiUGZBEhSFKRGAPxUQFaZlGh+F5RGUevURa4mZELWdaRYaipUTqdZFFx/amRRzph0QChr5ECAiORCRrj0Sz6IdEas2IReDEXUTB2IFEMKxGRLtckUU7MslFHG6bRFUsSUS6rKhEzlBzRMDhQURTcFZEm9WxRLlv5UR8UqhH8oZdRJD2sEZ1b2xEuLdgRIqmFEUQq7xE9FRGRKsYdETL8aVFdCuhRN/KqUTzE99EmZXfRfCTOEXg9pZEDjAfRgoJJkVB/QpFbK6IRJaOWkSvaJlEmYRYRG0xckXhQYBE0OGnRIFgmkV/10FEeawwRVA0nERwondFw7aDRvHKWUQiaTxG6Da4RNbNvUXyHKdEdgRqRU3Ub0Tifc5FqHGkRGx+bUREH4VErHnJRKxlMES18RZFclJgRPoITETFR9VHaMrURGbM/0bsSCFFdiGsRvYRTkXE3plECW2lRL5A1UR+6IlEjlxSRf+Ka0S7bMtE/O1ERFlOn0Sfh+tEDYMsRYaGV0TuaCxEUEJsRfOg2UQ+NLpE0EmnRJCRBUWuI31EmK/ORNhij0UR3NBERYGSRJ2AmERYs05GkMGHRCXgcERlLThFJB4LRZz9skRxzY5EyVypRCneqUaWIQdGJ6MrReMEvERbC5NEuOBMRKTB9UScpE1E6NysRGx6U0TyC/hECnEPRdi3L0ZRq3JESnPCRdKnmkQyeRBFSmLeRNKePEWFIzFFv8mcRE+u60QVguZE28lIRCrFhkSIEdZEKPVrSCq51kTVNeNHYiKPRGALtUUiCmVEx+oFRTkCikSgKXJHRUzCRFeHT0a90YVFRPiARLkmc0Sq35dErqjQRO9VLEYFey5FXGmsRNaUEEaDYCxEXxj1RD50MUSzvG5EVvVURBEd00T9YC5FLk8ZRmJokkUaV/ZEi5j9RR0uikReDOdE7XW8RdefWkS88HlEcHU7RVGYJUTSWdVExjg/RVsf20aohgtGRExPRP/0CkVzjFtEhrCURZqTZkU3Pg5FTNphRG8njkS7bg9F/zNDRapMi0T3p0hE0Y1iRNwXOUR58D1GTPF4RZl/OUUZ5YlFn8kXRaSYS0S+EYBE813ORY++I0SvVR9F5TCORF1o00d/HjFHpp4/RCbCQ0QcgNRGkbK+Rd8p5kWK/yNF3b0iRdKjuEQLAIVEV5unRCnbsURF2cpH3NRBR4XKzkZCTu5F9r8fRU6eoEQlBZ9EDZugRJFox0R65sBFvHkpRRwxyETbnw1HyWWKRuqyH0Yo+YVFZ9F0RSo0nER+dXRE7jTYRHa1ikSRJvpG8kxZRngHIkaVElFE17VQRZklQkQmu5dGVfnRRSJpeUTJSGRELVJrRJ5dh0QuiUNEYaMzRkKkvUU+C29F0Md5ROpnyUT6Z6tE3qwFRro9RkXbKxRFXQuwRFJAhUatQSVGkv61RVydQEX1U9lEhAK3RTvizUXslYxFhx3GRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - JqDJpXjAckD+kBq/b8FyQAVFxnNQwnJAyEkj8qXCckCpXwf86sJyQG9iDkM8w3JAcLL9jsbEckCSQA70WsVyQNoAMshD0nJAHIMsAEnTckAtwTMGd9NyQCNzKrbO33JA/WrEqrngckAcL2WwTOFyQJrt4+5Q4nJAbY2R0o/ickAN3npVyvFyQG37Lenz8XJAIa+P/HryckAoHqUbt/NyQB6rjufC/3JAm963ImMAc0DSO065+QBzQH7Vz1lNAXNAYGhZWYwBc0A0DSeLOQJzQH7RR7XPAnNABRCu8voDc0AP7ja7DBJzQJj6DLCGEnNAguy9Ab0Sc0AqRw6K+RNzQOSsVo9NFHNA0e5sD3kfc0DsHA8KpCBzQN6vBjc5IXNALNpv4GMhc0DMMJLMyiJzQO4EbsIQI3NAgBwmRzokc0CLUv7vzyRzQDylYx5IMXNAYeFJZc4yc0AERUctCzNzQEr5SDqiM3NAWFicGDc0c0BoeLyJ2zRzQO6jEru4P3NAnDIJU+RAc0BZj5vKeUFzQF4kOCy6QnNA9kYNm3pEc0CkFac5nVFzQAanJYqkU3NAmArAv+NTc0DHahp4jmBzQBSj3oc4Y3NA8uD6j1Jyc0CAjCl/kHJzQPidAwG8cnNAHpG9X7V0c0Cu8LGIS3VzQGhycGd5gHNAY8Zp+KWAc0BGnCyZC4FzQJM7SZ9dgnNA8qXDQqWCc0Dd6q9VhpBzQF+ZerOOkXNA9+iZfU2Sc0Bo7YSWzpNzQJHsbYhilHNAxF8Y3/eUc0Bo10N1uKBzQCWK3TRNoXNADhYP31qic0Di6lhd5qJzQPS+SEgFpXNAtjjE3cewc0BR3nOFgLFzQNjLNIx3snNAyuMCj/Syc0AwQ4KStrNzQFZWH34NtHNAWg88fKO0c0DUIEQ/+cBzQGjwcwLRwnNAxhFPCyfDc0AUiYtL2NFzQFHwoMQx03NAWGvgiffTc0BJbaZj4tRzQHImdYKi4HNAHvNpTznhc0AOoJS04+FzQAesOSr98nNAgFco1zb0c0BcBD7ci/RzQJMeHqdPAHRAFwhC7OMAdECA5+xYeQF0QAo9NGOkAXRA6IBseQsRdEDvH2zbehF0QPaDI4uIEXRAWO8pA00TdECsLgDOSiB0QMDPIAG4IXRA/hMA8VIwdEDK+8yre0N0QIni/lo9UnRAPfrzmPZUdECubgbPi1V0QMYfToC3YHRAiFP89QhidEA+IZzwUGJ0QDI+/+8PZHRAak0Ogk5kdEDWVIGRInB0QBFbFplBcXRAIDNVzjlzdECx7HI9onR0QCbzxWo2dXRAr1M0WPmAdEBSE2DUToF0QI/IzbqRgnRAlosRQBaQdEDcEfiHapB0QNKSU8TPoHRAmDuC6zehdECsC10OuKJ0QE6z7CkRo3RAQGqT6Q6rdECejCXwDLB0QHrw46L6snRAYBEd/eLAdEBIMroJecF0QBkpdMjqwXRAxc+KCCTEdEAW0hIVesR0QHI8WQS4xHRA3+XNfOHTdEAuGESyd9R0QFM9uljO1HRAdw65u7fgdED3mg40JeF0QGHIxS844XRARmoeq7nhdECAwV7iHuJ0QHzoCpXJ4nRA/Md9P07ldEBL/TQ8jfN0QPbB6xR59HRAqPggidAAdUCesTrJZAF1QIoHjxVdAnVA0PuyB5sDdUBqo080jA51QFBR1awjFHVA4HkL0pwidUDiQzPL5yN1QOS86cTLNXVAQk76mrNBdUByT7br4091QMY42Qj9T3VAKtRSghBQdUDmV/r+S1R1QAJTqIl4VXVArNLAuDhhdUDm/Hf98mF1QJJo8nZrY3VAenZgl3lydUBctX8wjXR1QCYgEfnjgHVAgApsL3mBdUBu201ZrYF1QIHxyjqmg3VAMciW8JqEdUAIHtS9i5B1QPlQPV68kXVAcOMSoa+SdUCrJrkJPpN1QHZrFCW0k3VArlQonz2YdUAI7O6hlZ11QEhUot23oXVA+QvWpn2vdUAwSRbt6LJ1QBy24OR9s3VAF4HjL8a0dUAewJ2J98F1QGRhCGpUw3VAoXJsp83TdUB44foL5d91QHMJByEQ4XVAQi8ijAfidUAsbUKDOeV1QI47iRlm83VA0sW/MkkCdkAPM6gJ0AN2QCKR5mQDE3ZAKPzIq08UdkBObmRziSJ2QFBq26eQJHZA0sp6gE0rdkA+YjvZHzF2QBqO4PydNHZAgu7hz+JAdkDCkn76HUF2QPqYTNATRHZAOGG0c3tEdkDcn1PPy1B2QI53BdcRUXZAhkr2Os5UdkCQqBHHxl12QInqGkrMYnZAIggKpNpkdkCs2jQhJmh2QORd5aWBbXZAxpI03WaCdkCLttnQkYN2QPiNrhZ5k3ZA2IPC2p+TdkBaKiWYu5N2QKxVtuMOoXZAbvb6R8GydkDICXXHd7N2QD7bqDINtHZAXDp8x9O4dkBa6t6GdcB2QFBPz4DOznZA1VpI0n/QdkAQTGwY8+F2QP6071SR83ZAOPowLzQCd0AuvYOCUQ13QAD6D0oCEndA5kBgbaoSd0CIcTVw8hd3QNzAnWEGGHdAqpZE8kgbd0AKQ6ptTR13QJbDi1MOIndAGFUa3XYid0CHYD56ojN3QOTYZU8NNXdAYpN4R51Bd0AoJglhG0V3QJIuKT1LUXdASIN8aJNRd0C++zOMKVV3QDKNYR2NYXdAzFJxUKJhd0AzKVSDPGN3QFdZ9QQ6ZXdAKJvQXSdvd0B9xm1fknR3QKBNDLV5gndAW6nVagiSd0DbWo1HaJ13QPa7XurBondAEKmdMRyod0CO+2gSZK13QKx3Gqp3rXdA13GL3kzTd0AbRxhrI+N3QFcOeHQt63dAdkJ/K1Dyd0AjjoqCbSJ4QL5v36ErI3hAABRbqosjeECghPbSejJ4QN6XK6HjQXhAvg7zVw5CeEAN5ph/ekV4QFXAfT3LUXhA6qDRFg1SeEAY3ZMzlVJ4QI/FLrmHVXhAt/pnVu5XeEA5wSZFN114QJn6AJ5OXXhAHFbuiflgeECwzud8t2F4QAHBns+RYnhA19twOLVieEAsJEmuRHR4QGxysbGLdHhAvWDQzqSBeED+OsrTu4J4QDiq1aqZhHhAfZW1BxSIeEAc5jGtl5F4QKRCauOmlHhAzPTAKc3AeEDsRUSi08J4QJKMuX0GxXhAVsYXorfUeEDgbJgoAvR4QOor4weM9XhAUEiMlJcFeUC8+DvschN5QN2GQ5yNQnlACDvvPPtCeUDNoNYOjEN5QLj2DczMVHlA5uZpO9tkeUBv+zc6Q3N5QBnAepr4hHlAd76nWMCyeUDk7ChRzcJ5QGJI7b5C1HlA238zx8zVeUBVCNbtvOJ5QNK3VmQm43lA1C40dU/keUCo1VJLsCN6QFibrnIMNXpAik5wd+dDekAeQUrhGkV6QKJl7EcpVXpAGB/H/4xyekBwBP1X7XN6QGylAtfrrXpA7JQopQ22ekA5jIc9LcN6QH3B82MbxnpADrp2gULOekCeQfMRT9R6QKLACf027npAftRX1oLzekB+5/Z4iPt6QPf0/yEKAXtAyqh0oSoOe0BdOOIJDRF7QDABbWFNFXtAUiM3Hlole0DI4UoyVDB7QOyJU5LFM3tAkoPfHl1Se0CINdqbmIt7QNW8swsilXtA40KCxa3Te0CWSmjq/+N7QIjFHoKW8XtADpBbVIz1e0AOOBpEkwF8QOJRqyPaAXxAdFukRvgBfEDQU3CvmQV8QCmbC7XREXxAzKz24OYhfEBU/tznzEF8QBL+gLnbUXxAgppA5g1ifEB7uAoEs298QBIS1YkEc3xAcEqT+MCyfEAOCAZh0sJ8QAj7AIDN1XxAHm/ZAVjifECekG6DGvJ8QCHRIyFW8nxAbSTKbAECfUAVgnmOSwJ9QKI8nA8AEn1AvgBapkUSfUDEgU6JPiJ9QJSZqbsvI31A5XllRaMxfUCUG09bV5R9QAY+VHIrw31A68/wzGrgfUBIDPtm2uJ9QOK4Hl2O9X1AIJZ581cAfkAKFygSOR9+QFPOxMnCV35AArPBr5pxfkBTQtAmfYp+QKu0UkbKm35AZIdByNGjfkBxR6EikLB+QFIvxQAW035AHhiedtDffkBMpfxyxfp+QI4OcbwiAH9ARKCEkbdxf0CGfdgjpIN/QGIwRW6phH9AHoK8B2ORf0CY1ppPppF/QO1Hh0BdoX9A/aYjulaxf0Ch833+OLx/QEgn+UGW1H9AkPg94nrcf0CWJBxggeR/QDpU0JeF7H9AP27PA+ApgEDHQtYvojqAQJrMDdUpPIBAUtrv5Ng+gEAqKfRt7kiAQM5I0QToUIBABktdahRRgECtTq/x7FiAQAd3sJUOWYBAHU39iSBZgEAkEvdUKm+AQB7h3m4ej4BAHvwg/2yRgEBskFuCGJSAQJri0NEfl4BA37+4HemhgEBQVKnjh6mAQO4azmsTr4BAW8dChlLBgEDlKj2VdcGAQG7+xk8PxoBAJOXcs1PJgEDD0Q7jp8yAQCjnz39Vz4BAmEZHdizRgECTifMyTdGAQPiU6FkC0oBAzbLoxUrZgEDYgMMFReGAQKQr3kn36IBAQ5wXCkTpgEBmYOz+Su+AQJY03lg984BAe4lM1z//gEDUy+ALQAeBQPHiVIM8D4FAfRLpEuYdgUAsqylsNB+BQC0r/wbrH4FAmBZsTzIngUBgw1c33C6BQBYt3DKIMYFAUYxtdbwxgUAOqFA7nzmBQBbFLUyhPYFAGmsmCPRFgUAR3rAG90mBQO2POhJcWIFAYF2aOGRggUBACKyZUmiBQAOblyv8f4FAOtGUeFWPgUBmByxuVJeBQCveW7VDnIFAuMRQTOehgUABy6OybqiBQF8mbmLsqYFAfEkvTkqvgUDSRzBubLCBQHZV1wQGsoFAeLdsZwm2gUA6Huz6DbqBQIoKq1oqzIFA/B0zHNbOgUD6OmE3fdGBQK1HgLZ904FAaCIsB0vqgUCOskKfhfGBQDbbVDt38oFAVKh/vzP0gUCuOlrZ2PaBQIxj68wBCYJAzcXVW9gYgkAobruN1iCCQGLHmNLRKIJAvOu4hqIpgkBuBY1ypS2CQFYFZgyqMYJAJMATTZM5gkBKHBMn5zmCQGBIrr7qPYJAdiZv43dugkDCot6cy26CQO8UkN51cYJA0vTQV0OJgkC454cnRJGCQExwLXEllIJAqVoLoDyZgkDU0bhLVZmCQNgk7XsPoYJA7LBwoTuhgkBj+iuaDKmCQGLxkIIzqYJAUDwAiwexgkDQTbmBrfmCQL++FZl5EYNAPtztcnoZg0Cj2JT8ciGDQAbIVEZyKYNAZ7mzmWoxg0B67Nl6bEaDQEuzE/BtSoNAlB9U9uSBg0Bi8UOplPiDQCQYzTQAaYRAtJY+xf1whEDRMFLE+HiEQEZW39aNooRA3XpuRmrZhEAb+p1Ca+GEQKLvPchi6YRAM4O9OzbxhEAawS43Y/GEQFe4Z6A2+YRAGqVF1b8NhUCAecZqwhGFQBiUu6OgYYVAqVhJB6FphUCM9TiVmHGFQFhcp/i0c4VA6r2m85Z5hUBYg2b4kIGFQBLHTdyhioVAo/HnH6mShUAsNEkql5qFQOY6osmwmoVALP2lRCa5hkDq4LsVKcGGQPkY24uRKYdAgihlypExh0B0KERFijmHQNqH9gxeQYdAfJd/Rd11h0C4oUW4x7GHQOoQlxnHuYdAVtHoi8LBh0C2m19cw8mHQIrw/4PiXYhApCTt+uZhiEBUgWki5mWIQFYg/2LjaYhAxvA0r0Z+iEA+UCNBM4CIQCxAY+/fgohAjgdghIqFiECM18ZdN4iIQA== + NrgMGZxjYkCYE/Y0vCFwQEMdzoN8QnFAmHHSiBQzd0BDe6rX1FN4QPN9HNTXg31ANR55p0EygECNH7IlQ8qCQGIkHk2jWoNAjU6gT+9ShkBiUwx3T+OGQCAvRItGW4pAHKbsbsfjikA= - + - MhBjRJEYKEWBOrlEEfj/RFlbTURAGbFHHZxbRCR3ekQa4A1HiCv+RSogPERTLfRExk+RRF7ZZEQoTVVF6M4PRZtWPEXLDIpEDFs+REwgR0SXe8BE+ECTRWSNx0QyGjpEMJZ1RL5FmES1JwNF3NcIRzD5j0S47DhEdGBZRj6jWkX/FqxEgKAPRUazmkW+iMhG6rqiRFaErkSmZ8xEU+JgRIQSkkV8tcREXNAWRf6oikRaA4xEK+OORJ0WhERdtVpEv/zlRC+9lUVDK2VE4P0TRp44hURwhEpF53swRK80kEQBjA5FJm3rRCHyP0Tqnl5EpluuRB9JCkVx7+FGd2y3RHCMdkS9nJ9EbsyLRKCqHUXyqUlECW5LRw4ko0Tg6L1Ebw42RuxxLEaICk9E9yfRRa4HDEbp7udE0nhfRE1ycUQ9PX5E+o6tRGU1R0UZ0/tELWN4REmJjUQlXIlF/eOnRakpP0XbYlFE0WumRFQFj0WjdE5Eiez/RcRNZURUnzVEgArqREa+dUTsPF9E9hqIRDWaiUbZEuhEi2JgRO6HcUQfXq9E18MdRYPThUQyMRdF5rfBRLugakRlDT5E+Lq8RFKXrEQYuY5FHRtaRU9ikUSqNmBEoO7AREfew0VhF0NHzDMHRYFgfkSH+6dEmSnDRA40BkZ9cY1EsXqvRWd1g0T4S4hEmOaDRFSNiUT9raxEYbAJRd8smESYMExEAEGpROjGdEQm5WJEEEKuRAMikkQuoidFTC5BRDsVUkSCv7VEZs1KRIaiUkSKfyJESpLORHzJRERWjh9Fg9+LRMEjxkVPm2VElK6GRM2LmETixKFFFt3hRMSLWERkRy1FdYYMRTOFbESNwEJFBXiLRAWonUSFn3pEgRUvRGwwcETmuqhEg7QCRQLRg0SROpFELVH8RBkQCUZnNE9EyYyyREa1x0W8F7pF8CHxRAmmTkQ7DZJEo1TYRKZASETOApVE6S5dRVcopkQ/sbBEn3PRRECpdURpFZREEzBKRJAK/ER+oDtE5dd+RDZ4pkQ4RYhEcQwPRbbNlkTW7o1ExAteRQRN7UTpj2REl7V0RKwd0kQ8ZOJFB22nRCdmvEaKClhEx9NjRM7YokUsSaZE4T5QRS8isUTBFD9F+OoRRpvBrkR6FBhGaw6zRIUwQEW1/JdEluDFRLfL0Ua34TBEI7hVRZCKiUSH6VlECej2RIC6GkXUu6hFwTXERIZnUUQGQgpF5Ct/RCpQiEQwawFFe+oARQnb9kYPjZRGNTVTRidH+0TpuCpFu+JpRIRMjEQF0mFFXmZhRLB3SkRS2u5H2vOqRj+0zEZRgoRF8PqDRtVby0SMs9NEeU2nRMsUdUXKcHZEAmI4RcqlQkRBFsVEl5dlRH8VkkcRRhRHcdlIRlJ2lUQKrLNEVF5VRIsq8kU7Op1EgGK0RCuucUX/ZB9FlbBbRBjMb0Q4ek9EJJOXRGluRUb9G6tFgkRnRLsq40b5TRpFbSKLRswgU0Wb/r5ECEorRfxIN0UUi+5EpdiLROlEFUWGLEFJBGUKRTFYgUSrvkZILbKHROdjqkRRyolGyVKqRNwVakTAz4xE3PFHRXfbW0XnxqFFKY/EREpmWEQN819EM8uiRN1UgUQfu4hFY1ZpRGuM1kSEXE9En6lxRTsmgkRlSM9F2OwMRUaJgETXbkpEzH31REaac0QHH8BHHYyLRM902UYHpBJFL02aRA81tEQmEXlEwzvjRXHA20RRDKJET/SjRPAc90Rez6hEb7LIRflC90S3yj5Edf2NRDb5O0SzCjdGCgHnRM2QB0XyRExEONaARDtsvESBtvREQPVPRCiXpEQiubZFhpqtRsOOh0Q84URGstX7RA//m0W3VZtFTGRVRCvpt0UEBrFEHLZeRAL0gEQA8llEAtHvRCSmYUT25eFE5SnoR+di8kTNgfNG+qIJRfLFpUbH2EhEAF0+ReUxp0T4wEBE2AOKROBgR0SXYe5EDNKxRflxikTUZtdE9bl8RNavdETTpG9EAJ44RHgTZEQmtEhFWqqwRJTdikSVBwNFN99dRB+/wkQEYcBEFjG1RZxHWkROC59EsvNIRoyORES5SFBF1nkXRX80EUVCXm1EioZsRv6i30VN7tZEhWH0RCuoWESDjbVErOCmRC8Cl0S8zy5FMDuBRqnVl0TGn5tFi3qtRFjMUUXwuFxF6KvpRGbWj0SLFVFEQiSxRBn71kRxTpVE0MV2SE72XUTaCaJEgbbnR9YWbkXQVU9FrEWfRA6Sh0d/x6pEIcI0RhtbmUUSXbtEiqGJRAB3k0QGx8FEkLwZRqo9RkX4M5dEA+9gRIHnAkZWgm5EICLoREtOUESnN2dEtpXRRIlTl0XjMNpEYucSRrfRgEXxAe5FnV/GRGP78kR41FhERLCHRRXYkESyictEEPYORf5+L0XUYHFEsgIzRdmGykQCv/JGHJRfRshDbkU4x5tF9zwnRda5sERSoexE/JiERDsALUWTfWREycK9RMii1kS1kVNE2PxQRltDbEUo0mdF84Z7RQfyBEWWxYNE6F+NRMrytkUM8C1FiwOFRNQ2gERMkkBErBLJR4vBREdHc7tEcrzRRoay8ERqdsdF/Vz/RRUFFEXbsApFzae2ROLFsESfrtVHOzpTR+CN00Y6JQNGcdIlRR6uLkW8EoRE1FfGRG9PgERI7s5F32hNRcsEAkVbvIpEWvIMRzQmhEZI6BdG+iGGRSFZgkUW7uVEoUB0RCpJbESSt+lGXs1nRmX7AkbnsXJEDIlGRT5OgkS5EixHe5ZHRkSdvkRV0LJEK+GIREduPUQ2bB1GVRzERZKYUUVGxY5E0muqRG8i7EV9MZVF3wosRc25q0RWhkpG6jz0RUSPRkV5Md9EAsh0RMf6lkUDE+5F5WhmReAroUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - iWuQt3jAckB1g0secMFyQCOyQ1RQwnJAGAmw66nCckDOZlrC5sJyQKQjZAw8w3JASPDTdcXEckCYQmycWcVyQEtpr8RD0nJAi0o6MUnTckCCE538dtNyQF2qHGLP33JAljJaSCPgckDzytdSueByQMelLBJO4XJAEhq7DVLickCIZJL6kOJyQBaQgQYl43JA5hAq6KLwckBjbnqDyfFyQPZbLRq483JAusfUX6P0ckCq0rvAwv9yQIW/vG9jAHNAXCNZwpEAc0DiFzCk9wBzQE0VaL1NAXNA9N62/dACc0DN8Jzs+gNzQAL8AAMLEnNAQlDdiYYSc0AIKUTzvBJzQDMcQ4z4E3NAFAENjU4Uc0B+7IJleB9zQNutBbC2H3NAhhclo6Qgc0DIp/VzOSFzQLRFMjplIXNA80JwWckic0BgPpJaESNzQCDww7bPJHNAok5pJ0cxc0A579QhXDFzQHLsKfAgMnNAtgXWxs4yc0CZmjMeCjNzQKgk60KlM3NAkzWFaTc0c0CcNeiX1DRzQBYBztW4P3NAAoimq0JAc0B8SAvU40BzQFCyI1h5QXNAKvn9R71Cc0CL1IqV20JzQJam03N6RHNAAK6cG51Rc0DEgQfno1NzQMJRNH+GVHNA9Hw9/Ipgc0B2eovEaGJzQCMX2EY7Y3NAVGHDj/txc0C8tuyjJnJzQLBwNGZPcnNA/5kORmlyc0CTQoFItnRzQHHpk4tNdXNA3jR7R3mAc0B4LQe5oYBzQM7pVwwMgXNADI7Th12Cc0DpDBAvp4JzQLni0HQPhHNAqAyRgoeQc0CANNcpkJFzQFGlpkTVkXNAykl5WfmRc0Bsr05OTZJzQKzh6zdklHNAmrcEyveUc0AnzDKwuKBzQKSWxL7koHNA8jXHilqic0CrMWLK5qJzQAmmVOUFpXNAnEnYf9awc0CBVkAKgLFzQC5gZcf0snNAKHKheLazc0BpD5gGDbRzQKgHLQX4wHNAUswc3ozBc0D4LU8O0MJzQGQH4ywmw3NAtAwJxdfRc0Cm9Gu1+dNzQD5LdeLh1HNAfmCw4qLgc0DNLq7kOOFzQN3BqaRj4XNAiEPIXWfyc0AiboZKN/RzQJABdfziAHRAwl5F3HgBdECK7Xb/owF0QONllsKIEXRAOcqvFEwTdEBYv7UheRR0QPKWQ5pKIHRANlQjY7chdEAXIDzg1jJ0QJ6hZ2RUQHRA7yC/VP1SdEC4GYP9+FR0QPCFW16MVXRAJbE4lbhgdEA6fbxBTWF0QDQl9ZEIYnRAeKvR8FBidEAaLt4YuGN0QIoPZOBNZHRA2Jj4UCJwdEAwKPJTQXF0QF6CceDLcXRAmj1hnRVydEDqUI6EOXN0QK6Enpg3dXRAeHbRUfmAdECq0+rBToF0QL7HjtOMgXRAjI6XDLuBdEC8OzFQkoJ0QBo0HwPPgnRAaKnQkRaQdEBQJ66VaJB0QFEGAAvPoHRAGhy/EzihdECy678dQqJ0QGQQRCC6onRA9UooMdKidEDcyh94D6N0QCqlKSxkpXRAbAg9gw+rdEBa+j1iCrB0QDttYHHEsHRA3sUFDuPAdEAwh3P8d8F0QMdBFysNwnRAC0R7p3jEdEAbDRTat8R0QMbJUV39znRAOixDueDTdEBn4XCxd9R0QOJQFLbN1HRAYMfLrbfgdECYxLreIuF0QCK+/QW54XRAwtgZBsridECIuas/T+V0QLiYdfbA8HRA/kxzGo3zdECInGgppQB1QFZiQiHPAHVA2IAzimIBdUB/sbrVXAJ1QKA2PI6ZA3VAsoEXyWoSdUDM1j8LJBR1QIg+G9+dInVA3bjyduYjdUASR+WLzDV1QCjUedvkT3VAYE0PvxBQdUB6BN0sglF1QOC0SBVLVHVAwCMaMndVdUAm0RwZOWF1QJAGPetoY3VAzINGyB1wdUA8Ns8deXJ1QDZlSXSNdHVAEcHs6Wl7dUD49xZweIF1QBT2BPOtgXVA0B71qaaDdUBC6ij/m4R1QOjdRCu8kXVAwkVqAbOSdUD8CITOspN1QBSi6zA+mHVAVGu3s7uadUBav9sbl511QC0hPojbn3VAL/7GoJSgdUB+8aPUt6F1QC4CFsLuonVAU4gvuH6vdUAI+tg16bJ1QGl4jX58s3VA9hncw9DAdUCHXSteZcF1QO81F434wXVArvkElc3TdUBnyhc45d91QGKdFxMO4XVA0mB93wjidUBgUsWbavN1QEBpp50pAHZAvAz4GkgCdkDMA3/T0QN2QBy69gZNFHZAONTPFw0WdkCQhgB/OiF2QAhd3uuIInZABhDCaZAkdkBj4X+xTCt2QIGBKqUfMXZAvvDmFp80dkDGf/9uHUF2QG4WR2sRRHZAWJxKCnpEdkC7xULw/E52QCinS+7KUHZAxtCjKBJRdkDn07rGzVR2QAv1w1PHXXZAtBiyxR9hdkB2tXSRzGJ2QMaz5E1QY3ZANgZDAdpkdkCnU/16Jmh2QHlTEg/KcnZAIoO12ZGDdkCgZ7QTn5N2QIjdViURoXZA2IM9v/+wdkAOKEO4wbJ2QHy+CRN6s3ZA2GSysQ20dkDwRovxd7R2QFPH0o7RuHZAfdWmFXbAdkAC5o84w8B2QJY4SZ5SwXZAoTyQ8RnEdkCQ6ER2NcV2QF4r0dLPznZAe4AcJPThdkBi3vFGuPJ2QFjwLraR83ZABeMy/kv2dkCSPCIZNAJ3QFngXIaiA3dAL3I0HlENd0DUE6XPARJ3QIhiGztDEndAaPNzBaoSd0CqA1g/8Bd3QJ9vJN0EGHdALWNGiU4dd0Bqj30CDiJ3QCBSVJ2lM3dAjM6VSg01d0DoI4XRnUF3QALllZobRXdACOQLlEtRd0BMlLLBklF3QHxTHeooVXdAAuzb3Axhd0CfdbQxSmF3QJyUOOqPYXdAphlYpzxjd0BNszooKG93QD+vJBCSdHdA0oh20Sd/d0Co2OQ15IF3QPrpsfZ5gndA+/qlZHyDd0B2j3F2CZJ3QMZ5wYpMlHdAiabIXmidd0CPIOX7waJ3QAJW+soEqHdAeGKGSRyod0Aj3qzWd613QNh8szPMsndAT8bxcOHQd0D0dafj6+B3QDssLs4i43dAs3YDwSjrd0A0JiRwUPJ3QCsNwCBOFXhA9fQCS28ieEDMoXdhLCN4QEB/o1WJI3hA4vLqZDEreECIZk3WDUJ4QDjINGwURHhAbI3yrXpFeEBiHayuy1F4QLRqdRiVUnhA8/AmYohVeECKkulb7ld4QFLoy8AzXXhAMhI7j0tdeEAUGlr9+GB4QEoeeiu4YXhATjq4VpRieEDXGHNvuGJ4QEq2AqAgdHhArCqdcix0eEBU3c3vUHR4QJiLYnpndHhA7EFPj4t0eEBQh4v6unR4QLyNCV7PdHhANjaTKvx0eEB+sipqpYF4QLy72jy8gnhArnDxxdyCeEB9WojDmYR4QMICx+NRj3hAUcr5eJeReECIjBPcp5R4QCikvY6npHhAUirxbVmzeECIfhNiy8B4QPyu6un2wXhAZOjLItLCeED3SrzUCMV4QFLKBXG31HhATUfxaMTkeEBMW5EPAvR4QK6j3hSN9XhAiqKD0JkFeUBdGvBfkEJ5QLoHGGHMVHlAReDtzNlkeUBLN1eswJt5QGDF7Gu/snlAj6TnUtDCeUDsJHQcQtR5QDFS7TTO1XlAhCj0D73ieUDGHH1LT+R5QAni2f75BXpAnlUF1zgjekAsX7LerCN6QNzc83oMNXpAaLB0OudDekDkYvJ9GkV6QIAaDHQRVHpAAcUQyilVekDYTTyZjXJ6QFq2zY/tc3pAypaBJeyjekByCX2T6q16QDCbWHYMtnpAFho1XRjGekCGQiKAP856QIzA80ZQ1HpAMmMBsFTcekBG2cpRZeF6QLoMJfY37npAMimuihjxekBY/ULfXvF6QLC6TdqB83pABJkI2Yn7ekAv3IVkjwN7QPsi2PSdCHtAFBg8oSsOe0C8B7fhTBV7QNY7bORaJXtAxB9AGFQwe0CMDMZgvzN7QJDBIlWlQXtAxVmgrJWLe0BIchORI5V7QCjmMNd4xntAUBaMJL/Re0ACV03M/ON7QB6xRE6M9XtADg68kP77e0DU8P/q2QF8QOSPsjL3AXxAnGACSJoFfECe7A9fiRF8QB/rBsDSEXxAKKxxOX0SfEAFgX/izUF8QEJRDMbbUXxAAk6LcQ1ifEDOztpJtG98QMylnxMEc3xAMjj/5sCyfEAu99gDWOJ8QItJhSoX8nxAr077/VTyfEByhJAcAgJ9QH1gZYpLAn1AFNPRakUSfUAo6P/iKh19QL4VfLc/In1AAUU5RKExfUAG7bIyv7t9QF5Iuotr4H1AZEFfV4/1fUApthZQWgB+QKZJyUc4H35ANuO7F0EvfkAMDq5JjFV+QAeJPwvGV35AwNZfciJdfkBMRUHye2J+QJs7D/pNZH5ATVx1rSRufkAd8voRj4p+QJV3xg9ejH5A9EK9fcubfkCzln2Z0KN+QGpRifJNyX5A+o5gOkz0fkArRbCYxfp+QGirZnQgAH9AzGBZo7dxf0DGVmEBsYF/QLDZkAGkg39AvMVQHKuEf0Ahd1tAY5F/QBSN56ypkX9AfBHq3V2hf0BiDHf0VrF/QJ7aULU5vH9A/PXj5U/Bf0BEPz/lQMR/QEl3BlSJzH9A6gsFNHvcf0BH7HpKg+R/QKIYH++H7H9AiE/3QOApgEB7JYO0SCqAQJS3yHXnL4BAUU8ZOSo8gEAJpgGE1z6AQGaMFaL1SIBArnBnn+ZQgECZiGn8E1GAQB4oo4zoWIBAlkrUtg5ZgEDJWOmy4WCAQAsEJUMqb4BALAdFhfd0gEAmAR0aHIOAQFCXfloej4BA4OjdWm2RgEDKjSa51aWAQI3Y8IiFqYBAL4UujlLBgEAxkW0WD8aAQOAWt/oAyIBADeYAlFPJgED2WDe3qMyAQDCqmIsJz4BAi8sybFXPgEAltwNILdGAQG53o+JM0YBABKbwe/7RgEAir4zVStmAQDBZS3qk34BA3QD0okThgECO1XsJ9uiAQJmoMDVB6YBA00wDSEzvgECeihHePPOAQM74jO0//4BA3mBqNkAHgUBAdlRSPA+BQFolFtbiHYFARCU0nvUdgUB5b1mk4x6BQEXzSCY0H4FAdmXX2DMngUCyqtgQvTGBQKg2uz+eOYFAmka2VqI9gUDwQJ5cp0GBQA6m7OLzRYFAGIjZI/hJgUDAw0gXXFiBQOYVsNBkYIFAaKB/3lJogUBG584EVo+BQCIoWDJXl4FAmn7fLUOcgUDNppJ856GBQAKP5ThtqIFARnHNuO+pgUC6FwKwSq+BQL8KWxIGsoFAsqBwbAm2gUCU0znhSreBQCcqT68OuoFAspugzw2+gUB4fAVtKcyBQMQcr3rXzoFAiRxAqH7RgUDAuRtcfdOBQAthhmlK6oFA1NBfk07ugUCI4N4yhvGBQIwYyXsy9IFA4OYy49z2gUACMSTOAwmCQGAUsHbYGIJAHtlHjtcggkAd9yfy0CiCQGD4gs2hKYJAv4xec6YtgkCaVpYu6DmCQGhAMqrrPYJAlP7T89dagkCKuLBFzG6CQF1v2X5DiYJAHiXP/0ORgkAEVch61paCQASVIJI8mYJAhoKW0VWZgkAHlOKvDqGCQMg9UMo7oYJA4nBFhg6pgkBSPZc8NamCQB7YzDwIsYJAxYJnua35gkB2mJSdeRGDQCySrBt6GYNASC8nz3Ihg0BwNMJAiiGDQB9xXa9xKYNAsmAGbGsxg0BUUE9YkzGDQCMQQAhCNINApCkLw2g5g0AJrpw/bEaDQMQG/LFuSoNAyrsM0OKBg0C4pZsRSoODQB7kLbBA0oNAIlI4oJT4g0CXznN2/2iEQDYgb6v+cIRAgus4c/h4hEBM2fF3atmEQAwNeAhq4YRAYoxAWWPphEDamQQge+mEQH7pkto18YRAHOb4WmPxhEAOp9DQNfmEQNc3dNNZ+YRAdHKQuS4BhUBuqWt1oGGFQGBbN7+gaYVAJmQyRJlxhUDJ78bbtHOFQPSnaVOZeYVA3Nd//5KBhUD4XqwHooqFQFj1+HupkoVARiJCV5aahUD6zRUmrpqFQB9eXyKt/oVApjFQ8Ce5hkAzCruYJsGGQDbW5f6QKYdAvoT8R5Ixh0B2O2aiizmHQNRDzIFaQYdAyNtyFoxBh0AKdEf4hkmHQK4Hz7redYdAKSSuw8exh0DqU1DQyLmHQPhB3YC9wYdANGQevcHJh0CrWgMkvdGHQMOrtbXhXYhA502A+OVhiECCw2mB3mWIQKbg6T/laYhA5VyaPTWAiED65CfF34KIQFZBRgGPhYhA8FiMWTmIiEA= + NrgMGZxjYkDXkZP9yKNsQK9rGHLRYnNA6yam0jxjdUDWLGDpf3N7QNnkpS+rk3xAmvh3PTdygUD+9lMwF8KBQLhJNCiPAoVAyP4c45jahkCvKLRWxpqIQL/dnBHQcopAeTB9CUizjUDdLln8JwOOQIUa/9DElZBAhoiQos/dkEABCj9o4GGSQNB4YkD74ZJAgSE2fTYmlEC1/MYZPG6VQAE5LZKM6pVA - + - gyC7RPylc0VfMPZEp2tcROO1XUSOucJHhpMORWiHAEVwMhJHqQj+RS1tlkSlOSBF8GKMRMtL70StvZBELztIRWfBU0XYTMlEoFZwRGusfUUCTwlFhxSjRANnGEUI8OdFraNPRAPn/0RoEUxEnP7lRLxaLkdhU5VEDiTkRDh6SEavZ69FckOURLXFvETV+GpEWPGZRfZj1Ubk4nRE2/mbRAFbxUQdOLZFjrT0RHRDfkT48ldEEZBMRSWodURGUsZEAKy7RNbthEQNZ4xEfiGtROohD0Ww3dhFWJ2FROazbkQz1ihGc9mTRA6dXUVhasBE1qgERVXrlkTqGEhFE3FlRPKRZUSTMNFEoqWPRAmO6kTAQhxFC0UGRxDbyUS/fQRFjcueRObZrkSEPHpEElwxRf5hkUR4TXNEvUFwRE3dWEdHatBEaIeERpVoMUYAypBEUNfZReIKQUbcpzZFoPmlRCOdnETkK85EkgOYRXn7HEVcxSJFTChXRPmauUXYAuBFU2cnRV1Xq0TC/btF3hmBRK+pI0bJY6FET3iQROv/EkU+rKxEZRemRpc/wUSnoKpEcSNuRQJmjURuYtZEfY0NRfoAaURbHapE39hfRGAnpETl/QlFZ56SRR2tY0RjHlpFjG+2RFO1cUQCKwVFSaLORRkfRUdrN25E8ANXRK7ZaUVyQqZEy19aRXtS/UWO11BE6wRjRIVVK0XrMWxEy2/CRR1Af0R9ggdFMkwERUjKcUTvoN9EURy8RHAG+UTh/sVEpagoRU6b4kQ9W6dEgf3QROWF/0TwBY9EMDatRM7mRUVxwQZFzpbNRIztXERKlMFEy1xwRJ68rkQLVkdFwQhLRQKF0ER+h5VEru3CRYjPokSQ88VExFy7RCYEyUX2/MhEcPmTRKm4REWZ9zNFDj6fRDCSP0VMFrBEUrerRCyuvETU1aFECmkiRdFJIkWMqABFLkpvRPKMoUSH7TpGzz6LRBhhJ0VtncpFNSLmRc3Kv0S7+a1EFYFURcQ2pkTVBpBFKCrFRHnI8kR9dIdEQhC4REbN9UQsitZEJUHpRCclYERy3NdEFP6MRJNJukQQETRF/TTKRGozY0Q0b7pEDPEaRRFVekRKxmVEBCytRZpQGUWGWN5EGrWaRFEZnkT5WfdEt/4ERlGwtURDjs5GDzStRALuqEV/BdNEPSeARdon40QJUalEQUdrRVpDb0a0E/FEn6KnRIt74kWo6GNEaQziRF0XoUVfc2NEfKwwR/b9skW3PVlEMahRRHmdHEUmoRFFD2yYRQv0ikSu7cBE5eRfRG3zV0TALHNEulWERB0Xh0Q2ciVFZeAARWwMU0QK5QdFGN1yRLDr6UQei3xEkOQfRxvki0bZ5F5Eq6mLRtP8D0XXIX5FCeaVRNjnaEVUfpZEXabtR12e1EZms9NG2U+tRW2wmEY/zgRFlo2KRGn2jUTKRCtF6HG+RWSPe0XBGb1EsNtZRGJSekQ0s/lEVRynRHnpnUTLINtE+/CyRxjmMEfttxpF7ix7RmdJxESSl3VE3A+bRF1HxUS+HQxGzg43RdllDkVu2nhEXqJ0RS+DkkTeVeFEzRKCREnraUTAkIVED11MRukyvUVSIg1HexMuRZlJq0ZE8O1EYof6RIdwJEX/r0RFPQvXRHsUQ0SOs99EoSChRCxYI0XeWtFFkeNQSUurgUXsufVE506yRPw3UkVbFIdF5LVTRP3GVkgTi8JEkPb8RN7Pqka9goBEBsqZRBzP20SN4NFEz4CTRCcPjEQZ4GNF1JBoRPcZhEXSY/pFhSbaRH0AyURCKapFBNuyRNuRn0THr4NFWAKGRJkc8UVHFOBEBMxhRB097kSNBu9EN7dYRChIl0T8ytpHV9KJRKXc60bqn5dEFGXPRFFJo0TxnH5FlQRoRONp2UTLXr9FUNTIRNpgVkQUyydF+g2IRPIrJ0XqrfVEvKQJRY+hw0TsHpFFFVSJRFSrrkSg90hEXN7ORDmzKUY5VhtFiJAbRWrwVUS3OqFEOqngROy5bEXDW7JEFhpMReWPjkTx7rBGFWdRRFN1XkaJUQdFwDnHRT7Wv0R7OqNFV/eaRIsN+0URbMVEgfJ/RLSXq0TDTIZEDywFRVsn90c/zS9FmHH8RrN2RkUON7ZGKq6IRWRFUET+YJdEpKHgRCZAi0R4gdhF/N40RT01xETOoFpE1USpRNkZB0XxT+hE6MyXREN3sERhE2RE7y6XRHB+nUQy2vZEeYTpRFiGgETagGVEzuVURHDlNUVzaDFF9m+SRV0jv0QVU3lELuePRPdDXUYdyIFEsR0iRWHjZ0WZ5gRFGMNoRJIb6kQhdl5E5T8wRsYbm0UCzr9EIuD8ROdPe0Q/XalEvmwmRej7tUQm7QFFNs4YRX0ogUbeuH1E99ndRcv5h0R8HBNFIFSCRGP1fkTUH5xFtpveRPx9ZkQXc/lEibWKSJ3en0Sg219EkC//RxjMf0WEDZ1Ed+Y2RWNL0ESFvZlH+9SNREpghEZkh2dEr/OrRcSdu0RtmK1Ey/jrRGerrUQvqkNGvyWHRULv8kTe7WlEb81YRMlsjUQuNwJGA64WRZjUDkVgTBhGybyiRdYwuURitQhGigqTRcjktEWwqLlEQZXARDA150WqzOhEl5yDRHWlTUU11AxFcHKGRIAWgEWuT+NG7/GBRjfOhkSZjUlFX0thRHx/lkUBTkhFIzfERFqar0S/NlBFWY8XRfiUT0UQGQJFJlfsRJku6kTJeGJGW0uORc6lMkX3faVFJ9Q/RXSU80U0fx9Fte2cRNDSgUST5wBIDCGBR5nDXETAEApHHrANRUkk9kV97ixG1IgURTd5aEWkXC9FrWCyRA95BEgLU3FHDJgNR2tHIUXnSSpGBtKCRao8hkTCnJpECXygREVOjEUoEixFVKKcRPOkZkRzBYRErZ3IRAgc8kXLnDVFkBwiRZ9kHEebm6BGpPMaRkiyd0QxsnxFTQ+DRYoQ1EQtJNdEUkziRDQtBEccCotGkBcoRnFulkQVX4BFo5TeRAOVrkdYjLRGTUcoRXP6cUUbRJtEB/3KRCfHn0RccUNGttHBRdNdmUXRtYxE/+3pRMrZUUQEG8pEPXgDRl/s0EV1vytFxk73RDdAeUQd3QFGYrjTRXMQIUUyPqVEUXFnRf8+HUVZcRtFzPGURA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 3+SPVnjAckAOD6VTDcFyQOj6izdvwXJA9OoaL0/CckBHS3YTqMJyQOa1vJg8w3JAJRbblsfEckDHTMjzQ9JyQFtoYr9J03JA6GUKgtDfckAWSHZYuuByQOySTvtP4XJAhGk8AFHickCwY0A5j+JyQNaMWxAl43JAaRgGFcnxckCwFPcZuPNyQIlnrR+k9HJAe6yaZMP/ckCc03ALZABzQBiCsTb4AHNAzCFfnAwBc0Acwz5iSwFzQHYAOz2LAXNA8hzeatACc0AwgDYv+wNzQI67ox+GEnNAAHbmxrwSc0DeNJGrBhRzQC6gEKRMFHNAOVu4Dn4fc0DTIdHLoyBzQDuseoE5IXNADgAzxWohc0BRVMFHyyJzQBj+nXYRI3NANNh3GDwkc0CcR4k9zyRzQNF63zBFMXNATioH4c4yc0Ah2HX3DTNzQNG+GC82NHNAPsdRpLw/c0Ci/3wP4kBzQDKODm14QXNAp8xfenpEc0CSs4F6llFzQCodxKk/U3NAE4MJH6NTc0ButoXPfFRzQJxjeyU7Y3NAuvgIpdBjc0AHFLDyUHJzQH/u3V66dHNAukuJZ051c0AQZTSKeYBzQFKYOb2mgHNAj2lVrQ2Bc0BUtw76XoJzQNEPV8CGkHNAzoIto02Sc0D4Lh1PYpRzQGWayTn4lHNAC+o2nLmgc0B40/YuTaFzQCy811JbonNANusl0eaic0COlW3NBKVzQABTJdfKsHNATnGModewc0DUwtNBtrNzQHdKmhsOtHNAnRISI/fAc0BmVbRk0MJzQGuWqkgnw3NA25O4ANnRc0AkhWfP9tNzQGpoRMLh1HNAIE/fX6Pgc0BSlPxxOuFzQCsPwD4Q43NAYuczqknxc0AIfrXBY/NzQIYOrfk29HNAyV70KU4AdEAm16Sq4wB0QPjBclF5AXRAFBewzaUBdECO4xAnixF0QLA2S2pME3RAnBTs/LkhdEBBr/RauSR0QMNIYk5YMHRAePU+VVNAdEAX/5Dvx0F0QAAqkNd4Q3RADc1dD/lUdEAaBAT9i1V0QEfD3Oy5YHRAzWI9IwhidEDf9v9YTmR0QKltYfgicHRAn97vy0FxdEA5G6i+OnN0QHS1nko3dXRApgq3E/mAdEDd5Mp9T4F0QBroX3SSgnRApUXEXBaQdEBCdgLQ0KB0QGS32pk4oXRA3ohUzreidEBmUYRrD6N0QG3TYn0Rq3RAmeyYhAmwdEDskmNA5MB0QEPWof55wXRAbXitNCXEdEDsVSw2ecR0QDRyZXC4xHRA6hDdxf7OdEAGQoY5PdN0QMev37vi03RAUl/g6s7UdEDKTqgDIOF0QHRFOtW54XRALNh50MvidEATkKPeUOV0QC3xiQOM83RAtqe6DqUAdUCKxHgfYQF1QCZsaOpdAnVAPMKzLZwDdUB8wHQgJBR1QBIU1NudInVAxALUKugjdUA82LJRzDV1QDdRo4eCUXVAdO/Zqk5UdUAUTIy3dlV1QJBfUibgWnVANOW/5g1gdUDXTHmTN2F1QLKqg99qY3VADh07y3VydUCipbWdjXR1QAgoFS1re3VAD9n5NniBdUBErAB2rYF1QDsiD12mg3VAgjoNopmEdUA/1q+avZF1QMBatO+xknVAdriKrz2YdUCTq14huZp1QMJg/OKYnXVAypHWEJSgdUAWkMBmuaF1QHRDQZGAr3VACC+IsmPBdUAuWbEy+MF1QBL5SIzj33VAykdVqQ/hdUDW06yaCOJ1QJSiFVFIAnZAOtF5gNADdkDEyCfpCxZ2QEIh/yGJInZAfcEKCZEkdkB8ApJ3Syt2QF5PS/AfMXZA0PyYjJ00dkBybYRuHUF2QGJbgLwTRHZAQCGUBnpEdkCVmb9OElF2QCo+lGvNVHZAUrRng8xidkAFvR6b2mR2QNxhxzcmaHZA49qrl4FtdkB4qTfiZYJ2QESHYkWSg3ZAyGsBe56TdkCkQmXSoKF2QBeBw8S6sHZAcv/phMGydkBiNFYterN2QPDGlBoNtHZAnFdV9sLAdkCIc96MGMR2QCaQJP7OznZAsAvHRfThdkAN9piJk/N2QMY29Lg0AndAlLdkxVENd0Cr8AQiAhJ3QK4A5VKrEndAuNOdcQUYd0Cjx9CuDiJ3QE4Vw2VzIndAMogRhw01d0AFj1TmAjp3QIim8+ydQXdA0vXEJrRBd0BnUFucG0V3QJ6RJ1FKUXdAHOm59ZJRd0B2VS3r8FJ3QIeE4bQqVXdA7lpEBY9hd0AS9U7hPGN3QGDm51cob3dA6h1UEBV7d0CyVbsZd4J3QP45CsN/g3dAht48pAiSd0D0hNMwaJ13QIKcFubBondANJnICh2od0BXBiDtcq13QH6xwj2atHdAZRscMo3Wd0CSUx8cI+N3QKg5va8r63dA47nev03yd0DmqdpBTRV4QPZ/UqtuInhAQq1nvyojeED7v26iiiN4QKi+0DulJHhA9tPWSQtCeEBOS3R1ekV4QDw++x/LUXhAcpVoDJVSeEB8MPYWiFV4QM5nTcTvV3hACFMOgDZdeEA+97fi+WB4QJaHs8u2YXhA5qlP5K5ieEBiuI2gi3R4QLS3ZgewdHhAREjMb4V9eEBcpQo7p4F4QLQXI3S4gnhACFntzpmEeEBNsgmKGIh4QKT93dKXkXhA4fPrmaeUeEAHhOjRraR4QHaGh1NUs3hAeSJ9/c3AeECy9SeO9sF4QGw+pKLSwnhAdPmeFAfFeEA2jpUXudR4QA5DgKAB9HhAoVevMI31eEB6Xq8YmgV5QPR95RyLQnlAuj6gSPtDeUDNeRY3zFR5QBqRgtnZZHlAvGdkk8CyeUDCh8YzQtR5QPIt6vbL1XlANrAmqVDkeUA+9hoi/AV6QMxZ7pusI3pAb50HOAw1ekCZz8Lj6EN6QIzYNfIaRXpAFW52uCZVekAggu1QOWV6QB3wTZOMcnpA0lGPJe5zekAh9IFSM6x6QKUXpJkMtnpAwnVPlizDekBhD2ELHcZ6QBdehX/Y03pA1ys1FU/UekAC3bEDN+56QADHoauC83pAIWN3yIj7ekA6IAs+RwN7QBJSJPOgCHtASuhxECkOe0BqR9l2TRV7QAhqVq1aJXtAVIWQ1FYwe0CEDlAGwzN7QAwpvpZbUntA0Cm1mOVTe0ALnG28IpV7QPytMQ54xntA8Ic5L/7je0Dw+6XvlvF7QG1EcUaM9XtAfMaFrJIBfEAmxaQ22wF8QGDTlb+YBXxAgNmR34kRfED8v2I40hF8QIzUJqN7EnxAEhUnpM1BfEAADsuTDmJ8QGLf/aIFc3xAU120g8CyfEAr+28MWOJ8QNaCyQkX8nxA1HzOnlfyfEAYR8XYAAJ9QMQ3VgVMAn1AslcyZkUSfUDSecxwPiJ9QDpMtqZms31AMSci/bu7fUAfsa6rLsN9QDQYEGRq4H1A7vyHSpD1fUCuMXZP+vd9QFK5tDxbAH5ADtFu+EEvfkD+G5xxQj9+QCipwdnFV35Ak88cKeGQfkC4Z7LN1u9+QEo1cCrG+n5AVT9Zrh8Af0Dk1frdt3F/QNbJJwSzgX9ANJDlAqaDf0CPkFqaqoR/QEyU1I9jkX9AtLpmfa+Rf0DJmS/fk5N/QCz6okJeoX9ApwOGJ1ixf0BRBdGdOrx/QGmoa9x63H9AHu+APH/kf0A393bRiux/QJTlVPgeIoBAIY0X6d4pgEAE89lX5y+AQHL/G60qPIBA4FkEt9U+gEAwcjum7UiAQCSeqsXmUIBA1iygHRVRgEBFrGwxDlmAQA6KEIgfWYBAM73RLilvgEBfAvA3H4+AQPFGVvdqkYBAflpbmByUgEDUCepTyZaAQOwFEQAfl4BAR7e+6OuhgEA2MIijh6mAQF2c96FSwYBA6kiFnA/GgEDKZRG/U8mAQBjYDT2pzIBAAxzzx1XPgEChvEVdLNGAQI6MijpN0YBAB2rAiwHSgEA5o/N9S9mAQFH9IQsZ4YBAAtrgHUThgEAMB2/r9+iAQDk6BThE6YBAyASMdkrvgEAUT66xPfOAQKfLHmU//4BA7kLyVEAHgUDKv0zoNB+BQLC4MEU1J4FAwAm/DvItgUAUpLJcvTGBQNo7Q4WeOYFA5Kf2aaE9gUA0+iLRpkGBQFOnuP7zRYFAEyZzBvhJgUDgzfE0XFiBQIaXsFNUaIFAaGenZlaPgUD8eg+WVpeBQH6uPxXooYFAlIoROm+ogUB0dmGn8KmBQPvHxHpKr4FAeH3SdwaygUDrbW+TCbaBQHCY9rkOuoFAfnykJyrMgUAwu+we186BQMeDFs9904FAoJFu7UrqgUAC9iYVT+6BQM5vaJOF8YFAKhpYM1HygUCCMEWiMfSBQKEImgDb9oFA/X7xxAUJgkCHlTzf2BiCQGFbDXXWIIJALlUXIdEogkBOUW76oSmCQGlEctClLYJA5rXBgZM5gkDLvBX55zmCQBZFkBfrPYJAniUXNstugkCcDEztBYiCQJQYZpBDiYJArGkLf0SRgkAQ4BZ8PZmCQF2d4l5WmYJANZ0rdQ+hgkBKGBIHPKGCQGg854AOqYJA1D/MvjOpgkBe9wWnSKmCQCjKq4UJsYJA6iyjNa/5gkBlQ6W7eRGDQCB0AA3GFYNA7Ki7vXoZg0AxWNqNcyGDQOri+PhyKYNArxbSFGsxg0Bq/tGwljmDQJA7O/FrRoNAWLuI5W9Kg0C2rt2mcU6DQFoPFQbjgYNAdrt1uUmDg0CCbgt5lfiDQPyymWL/aIRApbrgLgBxhEChz0po+HiEQAD+Q2SOooRAPmmzrmrZhECr+K/GauGEQLOCAmlj6YRA/7VOtDXxhEB2j4ooY/GEQEBXb5g1+YRAZiOihVn5hEDcyhuCoGGFQAsOfDShaYVAZ/QA3ZhxhUAepZNPtHOFQMZVdPeZeYVAiMTv9JCBhUAwwi8cooqFQDybZkOpkoVAVCYMApaahUA+VJWjr5qFQHgVCtI3IIZAxDDSria5hkCof279J8GGQGRObtoQFodAKotiF5Eph0AscJkdkjGHQGIR9p+KOYdA3gzS/F1Bh0AVZPVBikGHQMR9oqjbdYdAUDAJvsexh0AKS9vIxrmHQMDS9XzBwYdApTXFQ7zJh0CaWSmh4l2IQJhP31rlYYhAGviGeelliEAnV1LL4GmIQJ7Mzaw0gIhAO+lRLeKCiEAqy0rzjIWIQA== + KBZXds7jZUD4qwju5sJuQJ0RHYnYgnNAw7CYsIuSdUDgAVWb4yJ5QJ1v+dwwlHpAhGFOCcmZgEDO5mqYxNKAQBKqYz89G4VAdNtTeGtqhkCh0sE0aeOGQJ8F1nq3oohAoQGwXhVsikCfNMSkYyuMQKEwnojB9I1AZmBqtM8zj0BlmBIsapaQQH0gB3gTnpFA9MBwIZZekkDHENkVP6KTQIPpzhbCJpRAzGsP4+KClUB4ksCKaK6VQLCB4uoYB5dAKqklma46l0CUl7XyTouYQKaYZTDKBplAFK+sB6VPmkA1wcMl9s6aQKPXCv3QF5xAtdi6OkyTnEAfx0qU7OOdQJnujUKCF55A0d2vojJwn0B9BGFKuJufQGPDUIvse6BAwa/LCy6+oECq1/+FAmChQOantNpDwKFA8euugBhEokALoJ2pWcKiQPurkDQdEqNA/SqHrXSEo0C7Nww/SPSjQL22ArifZqRAe8OHSXPWpEBIQaO4svSkQJ9N30Z+SKVAcH6dcJxapkDEn2RU22imQDAKGXvHPKdA6ZdNI/Fqp0ANIqUg/NynQPCVlIXyHqhAZq3XJx+jqEDBxlKvEDGpQD5uS+IzqalA - + - 8VB5RGTUWkS9SzVFGu+9REQu1kTzV5tHVViWRGhW+ka98bhFu8u7RDlrwUTxKZVE+7UORSXkBkVDbZ1E88MYRRGgikRRf41Es8H0RP0fjEXNNmFEnXg8REVudEQC/VNEpH/9RO+bAkcLCodELM8+Rug4XUUO/VREtLuBRFWkYUUHktFGhOc+RPBvakSxNpdEiqWgREWLhkWcPflEE/lRRdKlgUR8x4hE8FxjRBZdw0QQ9mBFLGf/RS0QSUTSqlREu3NRRTefSUR8YuVEqUhxRCper0QHW7VEKUIJRU6E3kbVtZ5EgF6pRG7kl0Sp0hpFLTJER41Ii0RVMkpGV/b4ReLQiUQoPNhFfs8pRrAaBEVvUVxE91JdRJA8K0Uxu+pEDxTHRCExkEWk0ZtFNqXwRAnKokQH6IhF3t5bRPqa2EU35YBEl9lBRBxxhkSxW89En9dzRJzgmES7Y2ZG8OmbRDfLkESGST5F2ecUReNpWURjzohEqWFpRE5JnkSQ45NEaDWxRK4E/kRkpklFyJNHRW7Lp0TzNpRFOZJAR0VtQUUwV89ENxoaRSsq4UVV3OJEp7WLRZFxgERSjJhEO6RaRKXz8kRt/QRFP4zGREra20T5f51EekV4RHFBXUS3XDpFOnuFROhwVUTUv29EAXO3RLFmVkSTliFFcGP2RPTreESHHqFFIQCLRNh5gUSuWatFYax2RNTjA0VTMTlF52ANRUwrNUXHNn9EWJBwRGR990RHkplEZr2pRAnsB0XIbr9ELajfRN7fC0YGxlJE4+u7RLPlokWIIwZGJyrJRLoVg0QzE+tFLdGXRQluAEVYt59E/WTDRBxPxkQaiJRExtFyREm68UTsRF9EuoGARNCEFkVtPnBFKZDdRPOCpkT/9IxEWC/tRXKC0UT0Cr9GnD20RJ1znkVbCoBE1TRMRVibc0UlLzJGknz2RbrF6kRnTyxFBC+CRPPpaETIgzxHKRWtRV3dd0Ron1dEw8MHRcL3BkWBvIBF5ymLRCrBWETyByVFPkK8RG9n9EQt9OVEOXT3RgVhiUayaEVG08pvRX7YKkWtLMZEoXHfRytOckSf86JGuSpfRdxRo0YNBFBFfYOFRt9/hkRT3b9EwdlJRWYypkVDHntFA8ZfRNSD+ES+LFlEnG+sRFGHl0e9axtHOHH+RXng0kS/A3FECVmVRH5XdUWjNMpEl2VuRJXLY0Qv6VpF0hyvRJxhc0S6a4tEjtW6RDfVGkZzl6dFZ+GsRlM7IkUz2z1G5YQ8RUmX20S+ailFCkpTRKqyTElRHdZF1wOhRNf8FkXhnnBE5apQSPn/dkQQaY1Eqe+aRmefTUS69oRE/PQJRdJckERRLmtEYpeIRPJ65ETYJ29FsOkIRq3f/0Rfzs5EVDRlRM02y0V2o6REKnonRT6RxUU4Pw9FQokXRct+4USlO8VEaWDxRx3Gk0R0af9GCNU2RYmQk0T+gZ5EXkdfRQ7qeETZxrdF0tZjRAm8YURCtJFEoSPIRGO+1ETFUAVFSAp/RJsJjkSrDZJEdTK1RDZwLEZ6IxBFwgHhRG1PtESG+WREK6GKRCvqBUXubKVEf6GTRMYqnEUlQ61G/QJ/RIHIW0a85ZNFE3R3RHL1iEXO6W1ET1+KRVJQgER4SIJE583lRHPg7UfwMv5EJBcMR9oR8EQ00dFGsSmCRTP8AEUQLXFEPyNpRIH3mEQJZOdFnDfxRFEZUESRIblEr5CCROFIUEQ8lThFAQ6RRGmbgET5uwBF0wEIRUpzjUXpZcxE3Zq2RNhYfER2yCdGYEyWRF/wVkTCanNFbcfeRM2zsEQTHdJFz5nfRAiMd0SWqE9E3ZcLRVjQdkRh26dEcQqzRCsOlEQQFVBFXwCRRihKkUUt7N5EK2rJRJ9VQEWuO5JEkBlgRJBqYUR+v4JEWgpbRCHb0kSzLo1IiNt1RB9wCEh3GZpFOYkjRXs6skTm5ZZHh1ylRPdYfEaMPYREbkVlRY6RzkQdh5JEz6uERJldnERjxxJGg0AiRUH0C0ZRPytFC4FxRBTO8kTrImRG8uagRZNdm0Q9/RZGlEOLRXKOlkWr4ItEd++CRWNce0SGz1dF5ncDRQ5qTEQhpxVFUVzdRoxmTUaXBoFFI7IzRU9UFEXm1WhEj5hbRb52JUX6nx5FvWaQRGcmx0SjPW1ETGmIRBGYIUZJ0EpFCGRTRbyLqEX+XCZFIZe3RJihrEWFoRpFtlKYROTFfETqVQpIC56HRyIHHEcsdg5FxwHERQZdNEbfQQhF4o0pRfvftUQNxMtE2auFRDaBE0hslGNE/tieR9CzJUftyjtGSaF2RTKEWkRULddF8qUvRZpyrET8iJpEwsq2RKKQvESiGdFFsHkaRYEBFUVyOFpEj74jR3cOpkaEaDdG4AqGReLpqUXTxMxEDpTfRKHcGkedD3RGs2cDRrlLpUQR6XJFhC+tRE9Wv0fE0NNG+3k0RQyjeUUna1FE1Rx3RAkJakRbkllEyfEQRjKgtkVUHHtFhquBRAv8vERf84dE0kAWRoIfrkU+5zlFXH2BROD7x0Wz449FPF39RArUgUQWuTdFce3vRBWf1EQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 8P1s927BckDQfNbpUMJyQI+Ba4ymwnJAkFUdHujCckDc1pRaPMNyQOYaQxLExHJASTnr4ljFckAbAovRQ9JyQG0QXLJJ03JAStJVkHXTckB444DEzt9yQOgbymu64HJAo/DbSk3hckDIkEX/T+JyQNYWW36P4nJA8DHSSbrjckBIlXkIwu9yQGFP3XSl8HJA69nkCMrxckAVdwmRt/NyQFDXQ7Gj9HJAyhRlMMD/ckCLwzBlYwBzQMB6g+CNAHNAEPBNLfgAc0B6fT6MjgFzQEABPzHOAnNAizNTOvsDc0AujMlYIwVzQOXpRCsHEnNAFh5B8IQSc0DQKpDlvBJzQPhOKiQGFHNAgmM6skwUc0AqxEDIeR9zQEZvpUC3H3NA+1W8XqMgc0DIFahzOSFzQAB5G0BlIXNAIly2gMYic0DeQXY/DiNzQEikVpTQJHNAsAWJl0gxc0CarF5bJDJzQIaRVEPOMnNA6WBGCgszc0C+4Fd4ozNzQAB5Jtg5NHNASvlCJvc/c0Dfwg9S40BzQMqhsGZGQXNABreO9nhBc0CWr1/qeURzQJQRyzicUXNAWOhzOkRTc0A8gzbIo1NzQBxaaiaCVHNAaKEDSopgc0DXxMQ8OmNzQOAJgT+zY3NA/VWLR9Fjc0DGVmNWS3FzQKk6BZNkcnNAhODcdbd0c0BzSMt7THVzQPjlD255gHNAuF2eraSAc0DOlVPaDIFzQHIixBtdgnNAkLwHMX6Cc0A229VlhpBzQDeRmDPUkXNALImrjE2Sc0Ade/JRzpNzQJRFq/5hlHNAfyWAhPeUc0AwKmkvuaBzQGbzIVxaonNAaz5TUoyic0D71m7k5qJzQE4JbwYFpXNAnsICX8ewc0BmkI6yNbFzQKmwxg6AsXNASpelFvSyc0Dx7cPTt7NzQFAr5hQOtHNAHt0XePfAc0Ag6QWMz8JzQOKxSUImw3NACAPeedfRc0DwzcDrMNNzQF/3zpf203NAeiES2OLUc0DeJjxUOeFzQNIZfelm4XNAgPm5AOThc0BYBRn9P+NzQNkPxyLu5HNAfS+nGEnxc0CfzR4EYfNzQCH3lf429HNA1r3EJI30c0D2IRvA4wB0QCQbwlB5AXRAF6Mz2KQBdEBbhCTRihF0QC3TYHZNE3RAOLX+hOMTdEAONxcveBR0QM5HNr5KIHRALPOrgrghdEAeSxbrUTB0QFnPRnXUMnRAzNRlc3lDdEDkWohS9lR0QJCmecqKVXRAmlao6bhgdEAcePFMCWJ0QHS6+HoPZHRArvbvbk9kdECEx91aInB0QJK6N7BBcXRAjLR82BVydEBULfocOnN0QErFTReidHRAVLSUPDh1dEAmk0hMa4B0QOAgSyD4gHRAkSa9ak6BdEDmwJTrkoJ0QCovGIAWkHRAdWlqiM+gdEADQzhcO6F0QGSHZNu5onRADq4qMc+idEAK1RpkDqN0QMY9UEMQq3RA0uccSwqwdECC1P+ux7B0QKRoCCUAs3RAMS8TcePAdEAarsoyecF0QHcc2+G3xHRAgjLKrP3OdECm4TxU4NN0QNBrB/7N1HRAirKxdrjgdECmQwQeJeF0QDI+3nS44XRADE9KkcnidEDxVZjeGeh0QChIt7rA8HRAxAhpiI3zdECmiFCuefR0QO7tPY3PAHVAlRe/U2MBdUDO1xeH+AF1QKsKDxVdAnVAEmZGm5oDdUDutdZxahJ1QBdca4IuE3VA0AU5cSQUdUAC2lUWDiF1QBDD0tCdInVAkUbcTecjdUAg3XHS8jN1QFEvKSDNNXVAnAglkLRBdUA0z3U220V1QHUnbeaGSnVAEvY7f/JPdUAGst7Lg1F1QJMVqnFOVHVAvmJEJ3dVdUAQguWE4lp1QJHuFpmiYHVAGlKQ1jhhdUC+7F1yZmN1QJrQt7V3cnVAEq2xwI10dUC/DU0oant1QDMbo89XfXVA/LruQXiBdUALGWpgroF1QMRr81emg3VAXqrGoJuEdUBg+YL4upF1QHpKNO6xknVA4O1Ylj2TdUBKJpbcPZh1QLAjoQq4mnVAOTH7rZSgdUBwdinpuaF1QMC/tRDxonVA1+tQ5H+vdUC+bIzg5rJ1QAOWi1t9s3VAxCE2qmLBdUBjJEYv+cF1QILtgrTk33VAv9rnLAnidUDePyx1OeV1QIv9EDFJAnZAoCAJLtEDdkC7FZj5TBR2QETXvrsLFnZAxCqFFokidkCItntEkSR2QCFh5tdLK3ZAiAZEVSAxdkDGdvoClzN2QE+6LPadNHZAMBj2Zx5BdkBI4yv2EEN2QIhvLEITRHZAsghh43lEdkD4w2U9+052QFhsfCvMUHZAJOcSaxNRdkAbHiiXzVR2QF/YGkTJXXZAitYDhCFhdkAeb/fGzWJ2QNiL3E/bZHZAic2RxiVodkC29Q0MkoN2QPDR1lqfk3ZAisGEwLawdkCm7B0lw7J2QDIyZQ95s3ZAxmloCg20dkCrIGVisLR2QG+eDRN2wHZA7LCP4b/AdkDiIi6C0M52QOISsbDD0HZApojKtNrSdkADVYvH9eF2QFSCZFSQ83ZAHogqOTMCd0CFWrw7UQ13QNx+CxcCEndAvzGysaoSd0DvcSrQBBh3QCzXwe4OIndAingToXQid0Cq1GV6DTV3QIC+VZP/OXdA7Iu+QRA6d0CIHIqEnUF3QGwHypUbRXdAeDYmX0tRd0Dyphi6klF3QMKhKNMrVXdAD407p0lhd0DYkAtRj2F3QOEjz149Y3dA7L6G2I5jd0Az/+lGJ293QGKd/Ec/cXdA1jeykYVxd0CWS/RvSnN3QM3o6OORdHdABEyOlhR7d0B1cPAzeIJ3QHB1yEt/g3dAPoYnwAmSd0AKKi4KTpR3QL1TYH1onXdAROKFEZChd0Ab3si+waJ3QJjiIZgJqHdAwGlhRh2od0DCM9i4b613QDhkOSKdtHdAOIST0orCd0ChHYw/NsN3QI6B8NXk0HdAkKBy643Wd0AfiXDbIeN3QF8Xo2wp63dAqlRx607yd0CgwLKqkxJ4QLhFuudNFXhACCczC28ieECASgzmKiN4QA6kFbJ9MnhAWF3Oag9CeEDtsOjhEkR4QPNc3DN6RXhAXTC8estReECM+xEolVJ4QKHNIQSJVXhAaI3+jO5XeEAmiit3NF14QO7NiKtLXXhAHZT7zvpgeEB6Rg5/tmF4QKwAd0ePYnhA1ngkcK5ieECjJz+fSHR4QC4ay01cdHhAqoUv1It0eEAEQfDtr3R4QO3oGNXDdHhA61sLXtp0eEA83Pg1hX14QI+O4f6mgXhA4MYTQL6CeEB5UJznmYR4QN62RVS+hHhA3qJFSxSIeEAAvkTimZF4QOZx6r2nlHhA+imyW1SgeEB+NYU0saR4QNMC9hRXs3hA7k7z6c3AeEDMGtAouNR4QL7JlhkC9HhATHZRPoz1eEAMfjVREAR5QORjtwGbBXlAjP0pjopCeUBLO8SR+EJ5QIdO/Fv8Q3lATHble8xUeUAjSa59RHN5QHw+msi/snlAOM6vFczCeUCS0QSgQtR5QJ1uvN7O1XlATA4dX1LkeUApHenI+gV6QKIqQg83I3pADrILTgw1ekDsaTZK50N6QIqjip0aRXpASKujCSlVekBE6b/Ri3J6QGbjtG/uc3pAkiwPmvV7ekCGPpH866N6QIJKDWrtrXpAGjNO6wy2ekCjHhPbK8N6QHrRJIwaxnpAHMo1MlDUekBWUkx6Ne56QCadt0iB83pAvCarHkQDe0CCchZJKg57QKEY5vpMFXtA8sKeg1sle0DsBszbVDB7QKpAPNNlgntA5hCTQOyQe0C+sbFNI5V7QKlx6mF8xntAdJExmbHRe0D3W8eHl/F7QIhwFlmM9XtA5gxMLJMBfEDScCMT2wF8QFmvCbSZBXxAYjNd2ogRfEA4+8t80RF8QMICxN7UF3xADM4CE81BfEC8EkUg2lF8QMJEKcUMYnxAtb3fcLNvfECEBRA4BHN8QODyIny4pHxA1CRMyr+yfEC5i9D2zdV8QL7GV8FX4nxAheuZ9xfyfEDkmJ0MVvJ8QNbyd88DAn1AbhM5TksCfUA8iA7H/RF9QBwIb09FEn1AiuS4X2USfUBapefGPSJ9QFUZQtSiMX1A0M0esmtRfUBt0w8MZLN9QNavbMO7u31AIClCGmvgfUAkmU8N1eJ9QCxDDyp58H1APEV+PpD1fUA8o+Ol8vd9QC8RroNaAH5AW+CkD7NRfkCxqqSJxVd+QGQNeeoTfH5AP1Ry9SGOfkBg1pnaF9N+QGvOGBvL335Awtya9cT6fkDpajjIHgB/QFJ6wSm4cX9AaGp5GqeDf0DFhGMMY5F/QD4nFoenkX9ASjWU8ZOTf0AqgKUVYKF/QP6Eyb1VsX9AtKQV+jm8f0Ci5naQkMx/QNRP2bV63H9AljGGy3/kf0DMXVxp0CGAQMQHcTveKYBAAfdZBSo8gEAUOlwV2D6AQMDW8/KCQYBAGMmcgvJIgEBeyQXL5lCAQD6c0KcUUYBAvuz3k+RYgEDeBBBcDlmAQJJPUXUMYYBAWHfYMChvgECbRUgEJXeAQDh7f5snf4BAtBAzGB6PgEAivdV0a5GAQBIpLZ0alIBAnUmncsCWgEDI/RJN6aGAQLOD/EWHqYBAvc4/mhSvgEDogkXaNL6AQPssU4RSwYBAufNPPhDGgEBV2pyIU8mAQD7pyCypzIBAEKagz1PPgEA8o8scJdGAQO8D0QQs0YBAqPWdtkzRgEA8pkgs/tGAQCLvDxZL2YBAAJ23hUXhgEByGRSM9uiAQOAPltFD6YBAGGS8A0zvgECIXgiNPvOAQJ7pQJk//4BAms/xh0AHgUDczWy0PA+BQGmmORo0H4FA/o2uIjMngUAswjqJ7iqBQK01BOLbLoFAFLHnT70xgUA6DJa3njmBQHyb9+qhPYFAJIkNhJxFgUCcvdSd80WBQBw7Xm6ySYFAopSPQ/dJgUB+QUZsW1iBQAJ7L5zMhoFA9nVdXVWPgUAGSkmFVpeBQCvQuSXooYFAXkuH0W2ogUAorMd0Sq+BQHuYSTIGsoFAgKgXmwm2gUCHFep9DbqBQE7EmIopzIFAAjNXStfOgUDOy86sfdOBQMOMb20U2YFAY64zsUrqgUBIRTknhvGBQGiOsmlR8oFAdlkoagIJgkASfHGf2BiCQLKnO3nVIIJAFbJLJtEogkCaX/Y9oimCQNomG+ymLYJAxnMFZKoxgkCoADqClTmCQJzFVFbnOYJAwciWwuk9gkB0epcA6j6CQMVb8kdzaoJAygnHSkOJgkAsdcPjQ5GCQG+mk6DVloJAMgyypDyZgkDykfq+DqGCQJT7frs7oYJASNxlsQypgkCNL6bTM6mCQBwUN5gFsYJAHxGMqzexgkBM4nUNBbmCQM2Iydx104JALLwUeXkRg0AIM81PyBWDQNmGAUp6GYNAIgw5GssZg0A3CRR8zB2DQMwb+gxzIYNA907ljXEpg0DkFMv3azGDQGJ8mgOTMYNABa92MUE0g0BuY7BRbEaDQKYWKedvSoNAhTO1c3NOg0B+R765lWaDQBXwhAvigYNAOEQzdJX4g0Cah+Fa/2iEQIwkYSH+cIRAOm4PgPh4hEDQxh9iatmEQB49Rd1q4YRAVmOh72LphED6DutmNvGEQG70Gm5j8YRA0N2vPDT5hEDcR9JuWfmEQNCQTHMqAYVAdN82dV0BhUDdqGpqoGGFQDLLleKgaYVAjPA9LppxhUDAPWWFmnmFQDIV7CqXgYVAw0h6DqKKhUDmSvcrqZKFQKzmekWWmoVAxqwJjq6ahUB9SsYnnaKFQHRVV/QluYZAxdafryPBhkBBY25RDxaHQLbdTzKRKYdASD7UxJIxh0Cq/UnYijmHQJbdVrlcQYdABgbdhItBh0C301/JX0mHQDRhc47gdYdAAfLNVMexh0BQzFZkx7mHQC5xJJ3AwYdA/UHzUL3Rh0B5myVv4l2IQKscLSrmYYhAwuR5HeVliEDpeMBi4WmIQKNzDU00gIhAhgjjX0eCiEB+qOOw0IKIQBgcDnmKhYhArI3ZwimIiEA= + NrgMGZxjYkCmvpxNHCRnQEMdzoN8QnFAeiAWnryic0CZcdKIFLN1QA== - + - Ry55RS6aj0QggwFF9x5uRD3AkkeA+ZlEWzmGRFfk90aTw+9F6GObRFyOCUXhOtVELc7KROjmPUV/SwhFXDxnRHoKUkQxB0FEbZqBReP4p0S/3Y9EGAmpRC3YoUWat29Es20NRUpZWEQS1ZdE7mUPR1lAa0TIyWBEKJifRP4dMkZQWY5FXRlvRHhaxkRYYUpEvjxzRXGD4kYNAZREXbiDRC5QiEQTZ4FF1dVuROVPOETF4olF9KRiRNiyOkQeHWhEb4tEROL6lESsDFBEqA6bRfP+FUbChX5EugOfRH1Rd0UVJ4xEd07FRJ9zI0XCQUtEmz9qROvDkUQrkllE1RaFRFReKEWEofZGofQBRSy72UTENcZE8ZszRIYA/ESTQW5E57VOR1nqfUR2+7dEDxlNRgzUBkZEd9pFygE7RPOLRUaxqf9EKZiTRCQ8cUSrLHdEairRRLBBSUX93Q9FHJ9uRMUXnUXkMKtF7bvhRCciTkQNhLhEZnSgRe2e10UZ3nBECVxZRAjPYEQxjlNEB6FYREFcJ0WLiBlFpaiKRBaNxUR69m1GTi6KRCYnhURRml1F+8xTREmjikTwDn5EueMORWg+QkRoSYhEywOVRL0lxUTzJNNECviLRWIUPkUBM3FE/OhxRNscsEXHdztHL11BRH5UTkV/soJEaBycRDiGRkQhZztFbkfYRawRuEThSaJF+lfYRJmmtkRHsclEz8hNROBlz0TtswNFi27TRKelOkRCrF5EuQqvRLB0/URgcgZFfC6KRC/jgETNbNJELZhFRGpEjES8nQpFF679RPaGVURxpVtEKTetRSV/hUQ0yYNEg1+GRNiaPEQnsMhFSwB/RKxjk0SGyDRE4IUMRVR8TkTdcAlFIFNORfx/P0T38uNEGw5eRJsZlkR6LjhEVvK5RFNBckQC7HpEOeXERDtyj0TxWERE7lHxRI0eHUW+uhdFo4b6RcS3kkSrG+xEDKi+RCDXvkXZL9VFH3zWRCgTYETxbKVFi9SdRGh+BEXcx6ZEbyrDRHWBqkQHbphEL4CIROqegkQ5fZdEI5ORRCRiIEV81MxEUaYURUhnjURJAItFkFu+RJ77WERLu4VECb23RJmg9kVctQdFjOzARtYMW0SzvF1EpQibRdowYEQUKdFEMMSBRRcKUUSFWnNEal81RZKaE0ZFj4xEucBQRBNRnEVD5ftEtCtHRZ4Kh0cvjAhGj1g1RFMMrkQ+BCxFEjCfRbSQZ0S7dFNEn/9+RE76JUXpmEJEm/txRJyScUT8qJ5EeDYGRbluBEeTmopGdyxwRog4VUVNJF9FvIKpRFsv5EeZ0i9EjTVPRMV1tEbA8shGKTR6RTAIc0aWBPVERI55RCjnEkWUuOhFJeY9RBodYEW83klEKcA1RImom0S2toVEaWSaREUPEEUgOIdE82m2RMXbbkTMz29HD6dHRG8sz0YZnL9EE+EDRp86bET5s05EA1WcRKthO0ScB1xE9ZlSRJMKhEVPLNBEQgPZRGiP2ETzk5FEgqh5RbmG6UTxOWpEks6iRBN2kERGIjBGZyyeRRJc1EYl8chEL+hDRqlIMkVZtTxFQp0ZRdkf4UQRMKFETAm3RJ5v8kRAqotFErdASW7omUXOIWRFAtegRCZZkkTnVQNF/VSVRBIuRkhr969EHmpqRErGykQsyIhG6VtDRP/HdESOReVEV+CyRPGiBUX/cZxFhIbmRYGCvkQwn+VERa+MRGckTkTmNYREgFGaRe/NokT9q0ZF7jxmRADavUUO++1ERJ7aRP2XnkRa5IREfY3DR+DfuEQslfZG+ZIcRQqouEQLv41F/osqRSjqP0Sk3a9Ejo3BRb/MhkS06otEYsXARLl2qUT5sIpEYJpWRD3c70RV2idG9ao/RUgNKUXP2K9Ekq1+RDH82EQ6DI5EFlwERT9StEXqSJRG94CuRD4yb0Y6Y4RFJi1kREwroEV36oZE+wLbRQ3YgUS8cW5EJBKpRGebRUQc3ElEhfuNRJLFnkTAItpHkgouRbOR4EZ7Nh5FX7iuRph6mEQlw4RF+cqKRAzElkTdeLVEJCmTRDNogUTMiVlEwAgvRsALw0SPSrhEdzvKRBTHQkS0htNEdng2RIaOzESXWk1EVQ9xRL4OfkSN6GtEA1fxRKriYkWHuppFDE2fRN+wKkYS+z5EiFY2RAr7QUUqwBhFxI71RLiCh0Q2gHlF5+C3RHWfRUTrE85E4L+GRNiGikRjp2JE6mYBRYe2SEVyuoRG9RJZRCZhrEW+kZtEPik4RfsndUQvunNEAo1PRaaYeETALZpEmt5DRN5CpkRIHglFGMGARGtyV0Tn3nJImTG1RD849Ufc8UhFNXPFRF/nVEQIb3hEmi9yR5fsRUS4OWNG5TSGRaiosUT2HXhEJJ6aRDnHr0RssiJGAjdwRUUzpESzGBBGoOW7RDLVkURWOcFETlaeRFlePEZJC5FF26tNRBYPF0Z+fTBEYJFURY75YUWAZn5ESAmqRUOK9kRrvglFnlkVRSceTEVhVbNGpMcpRh7BQkW/oxNFjSUIRbnIyEQsEPdEXYlERRI+FUXODUpEIV1oRBlgOEYVzYxFbnM6RaMinEWdMdxEMrNuRDNcnESrC81FVQ8gRfwCZ0S1fHlEXFPeR3hMVEf/AlJEFLLkRr/Y0kX6/exFhSDgROET+kS34+JETD5pRAuJT0SY/FlEHUzYR1UdA0baV2pHZf4nRfeGhESrqABH35wMRtc3J0WBlphEAANwRCNDDUYVxnZFbL1qRGAnQkQyu2lEq9RSRDFipEUmnS1FmvHzRCoED0cCkIBGmvk8RpItgEX4/IRFT08FRVn/rUSj5plESsc8RGRnAEdV4kVGYu0ZRgbff0XNt39E943gR7CU80aSNk1F1p6VRWyyrkRLZwNFN9hURDFMlUSlhx5Gc7eoRYayQkVxFrhEnp7fRGE8bURbpERE1uQERvvuk0U7kFVFE8RDRNC1rUWlGolF0IPYRC12pETxVIhE3tRjRNJ18EQZTbREoevZRA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - iKUN3HvAckCw3UGbDsFyQPDup2JvwXJABG9Oak/CckBmc9tvqMJyQPVROVs8w3JAeFHWrcfEckDKvE+zW8VyQPpWZe9D0nJAI17fsEnTckB+OzT5dNNyQE+ZR0vS33JA0YOIYrfgckDbkSzNTuFyQG5CXCtR4nJA7mtP4I/ickDNk5ywyvFyQHtbWWB98nJArHaR27bzckB2PaYxD/RyQJpS9WSj9HJAqi7F4sP/ckCjiJ+JZABzQCIL9GORAHNACWiFKvsAc0AgIM0ZjAFzQNgztgDRAnNAx9vDHPsDc0Ap1iN9DBJzQAcBZG4oEnNAbHf/M4MSc0AArIzAvBJzQNTcE0UHFHNAzr1QhXgfc0BmSrMppCBzQCI7jcc5IXNAKJgUUsYic0AEIW4oEyNzQPVq0y86JHNAFLjS384kc0B2nWoXSDFzQDAj5M7PMnNAjk30/Awzc0AMu9UXNzRzQDSpnpI/QHNALMXFNORAc0DshT6CeEFzQDK22NMjQnNAQAhha7tCc0AcorYve0RzQAXvFBxDU3NAlFcDrqJTc0B+uSsmhlRzQJ4ngz2MYHNAOIl+rzpjc0AurjhcTXFzQDpxJ95QcnNAxnIVfEdzc0AA2VRcuHRzQBaaJpxMdXNAZxVjmml2c0DcG3EteYBzQEyDpAilgHNAqr5wrw2Bc0CPP9VuXIJzQHk0opqHkHNAjl1CafeRc0CR1kCvTZJzQMjwqcDOk3NArthoR2SUc0DIqAQG+JRzQG4Yj+i4oHNAZitN0U6hc0DY5H4ZdaFzQMhItE/goXNAMSIUmFqic0BejNOT5qJzQDI2UI0FpXNABnd7uNiwc0DaoM2bfrFzQIjjUArzsnNAyfpIxrazc0D5lQ2GDbRzQCiTKnr4wHNAy+7pfdDCc0BW3vGCJsNzQOAR2QAexHNAPT7BftjRc0ACzu5o99NzQDoO5aji1HNAIKDeNxfbc0DwITBspuBzQLAx2v044XNAdJ4PhYzhc0CwcVN9D+NzQKgNm+tA43NA6Tbt5e/kc0AIT4E4SPFzQBgprKHO8XNADHfndWHzc0BrFUjWpfNzQOTSpvg39HNArGukzI/0c0BvO3iiZvtzQK1iFSHkAHRAekdLS3kBdEBA6mxapQF0QGLVLemHEXRAMtZovEMSdECSJp70TBN0QHAdaMp4FHRAQjnXNkogdEBCmrRGuCF0QE99HuRTMHRAUp1CZtkydECohvzHU0B0QKD+Jhj2VHRAEI42iYtVdEBM6y5WuGB0QP5TI10IYnRAn4yXWVFkdEDYQbj9InB0QEApdn9BcXRA1eO9RDtzdEDy4Q7wpHR0QFdXnZA3dXRAKntPM/eAdEAtTJ3OEIF0QPhWq+5OgXRAcqxc05GCdEB6Aok+FpB0QAKLtLNrkHRATPpRes6gdECPE6HnNqF0QG77E7a3onRAnW281c2idEA4mgjrEaN0QCj7Im9jpXRAs4Wo/xGrdEDBB6TdCbB0QL6vZ8pTwHRAaB+Q3+PAdEBhLCJWesF0QGd9LkLrwXRAsVZv5hHDdECMTNNZt8R0QHTdES+dyHRApYupj/zOdEBYz5Nz4tN0QCI7PcjN1HRA2hCcybPgdEDlLoASuOF0QJ8vUivM4nRAd0Eya1DldEAgv3/qvvB0QBNuWpmM83RAZGvIqKMAdUA81Ni9YwF1QKIvJIVdAnVAYmg5kpgDdUAXYAwxJBR1QPCsgWaMFXVASOsXmp4idUA4/ftf6CN1QAL8mU/NNXVANH9EiSRQdUD7pPmSgVF1QIQxoOhOVHVA3dkAXXdVdUBqtXI34Vp1QPmsxhcDYHVASqmVwzhhdUA7DNz6ZmN1QA4cHep2cnVAUZRAEY10dUCaJkLuV311QINv5oN5gXVAZFCvja2BdUAGaK/or4J1QO9+X0xOg3VAM3UOJaaDdUBimKfUmoR1QIieZPOMkHVA0Vt1sL6RdUAWia2abZJ1QCSUBXixknVAGtuY+DmTdUDEIJhktJN1QP6ALBk9mHVAeNy5sJmddUC4H0dOuaF1QIalkh7yonVAMovCxX+vdUALmYw357J1QGwFCSx9s3VA/pjVFPnBdUCyGTxWzNN1QMxCZiEP4XVAUi/9pgfidUCqEin8SAJ2QPhJfrLRA3ZATJTze00UdkAuZRjECxZ2QBEKxvyHInZAOMSQyJAkdkDLDBohSit2QCPTu7sfMXZAaqE475s0dkD8VyzHHUF2QF0lkF8SRHZA6z3wv3lEdkB544WYylB2QAqNIVUTUXZAGnHXeodUdkCgo5dczVR2QLD2KIPHXXZAzEfN491hdkDqRM47zGJ2QBj4AksmY3ZAifhrNNtkdkAwJgEcJ2h2QNQR5UdngnZAgmksyZGDdkASa04Gn5N2QF1y9YC4sHZANkClcMKydkC5OoKIerN2QLKi4fUMtHZAIuH55M7OdkCKKB/q2tJ2QGh5FaD04XZAnv3GrI/zdkCKwO6eNQJ3QIqFLFpRDXdAdlepiAESd0BcPBvDqhJ3QBKtiDDwF3dAMHvsQQYYd0BoiYh+Th13QM2gG1gOIndADMJ5VXQid0CcZHrDpTN3QMgNm0gNNXdA0QX5Gp1Bd0DYkve6r0F3QB4Gl0gbRXdA+PRDQUpRd0Ah8M6QklF3QF/H+E/vUndAPegWISpVd0BjC1JnP1t3QBYtD16PYXdArFKDdzxjd0Bag1EpKG93QJW74CFIc3dAYhb0qPZzd0AUeaKVj3R3QFDw6A6MdXdAgJ2CFRd7d0DOBmmYeYJ3QAKi9+EMkndASlhqTUuUd0Ak7fGxaJ13QJxyAI3CondAZQEvnweod0C9/CoFHqh3QFPxN8nLsndAsL8OGZy0d0BSpA0xisJ3QOa5ALOK1ndAPSlDou3gd0DILH5yI+N3QLQVfcgo63dAE+oCZFHyd0CfD+a1kRJ4QLi5oLZuInhACAJU9ykjeECnpZpPiSN4QIYKMSB6RXhA5JzclMpReEBgQFfalFJ4QEbGZkWIVXhAGLrjBe5XeED8ehZEN114QME7aZ75YHhAYKYV5LdheEDqLERklGJ4QM7M54i2YnhAtGpwi+tneEB323CQQ3R4QEFbVYaLdHhAwGDVw850eED+NKGv3XR4QCoHolmngXhAmhe4HryCeEDWCdeUmYR4QKQiMgGYkXhA7ivyZqeUeEA1UFg+tqR4QNDiA0JVs3hAcn6VTszAeEDmoJK99MF4QFpcLCvRwnhAMu8nILbUeEDT7Ds1AvR4QM54j5uM9XhA0q08249CeUC+M+v8+UJ5QKbEb6rMVHlADlbCCdpkeUC4juhNQ3N5QHLpJ6L0gXlAVKRvqziieUDumeEnwLJ5QPClLMpC1HlA1lau/MvVeUDSiH0QTuR5QHWv9Ef5BXpADGqk8zkjekCmjHB9DDV6QK5aI9HnQ3pARbl+1BpFekDmSZY8KFV6QFQM53A3YnpAkIm+J+9zekDisoKP9Xt6QHEMfwjwrXpANDVoKw22ekCvFDFWK8N6QGriuPcZxnpA/vpu10HOekAmH/9eTtR6QF7O7EY27npAT5HK1CsOe0AVv0FMTRV7QCQ+iblaJXtAuFZaz1Mwe0CuRmscxDN7QC+IZG1sbXtAhAR/2e6Qe0AQrD97IpV7QGhxioqs03tA/j/S/ADke0D2/YBbl/F7QPoMBh+M9XtAU6Er1doBfECqCXgU+wF8QBZC9GyaBXxARPrpX5ERfEBRlGsy0hF8QNRBYRt7EnxA5PJAQqkVfECwPmti4SF8QDB/jAvNQXxAFksxzdtRfEChKNWrfFN8QBwjbisMYnxAAxhkBLJvfECCqD2nK3F8QEw4WGIFc3xA9JxMkr+yfEBcugek0sJ8QD5LZJHL1XxALPLqKFjifECSN3n4FfJ8QF103zJW8nxA8oGBGubyfEAwXdi6VPN8QMq5yoYAAn1AW4FoPEsCfUBEd6QBXw19QAYxCSNDEn1A3Nde82MSfUC7sWBOQiJ9QPEDwUKAIn1AB6gtLmhRfUCDSl0oflx9QPoLFNgww31ATZkLA2vgfUCaz8wWkPV9QGvjEBT+931AKIO9tFgAfkA8/XKUOh9+QEg1zRc/L35AXhAqqI1VfkCLSei2xld+QLaQSIkhXX5ArkNE3SFufkCIc+Ab2W9+QKzQoxS6tH5A3NRWGdjvfkCVIizGU/R+QK6r5orH+n5AYvx0xiAAf0CCpVSrMBB/QPjJkuYLIH9Adp3Mv7dxf0B6Lme3tIF/QF47HAalg39AjGULYGORf0BJeMVrqpF/QLOUJzeXk39A4L4qW16hf0AzW/HJVbF/QJ4IJ0Q6vH9AdFWr7Hzcf0Bm51OVgeR/QHyXGg/pL4BAMjyppCcygEDqRQ2l6jeAQEvlmU8rPIBAvjzs1+9IgEA2qULD5lCAQBHF1qcUUYBA/+q4MudYgEAYTBv5DlmAQBIT9t8KYYBAhqIGQylvgEBq0HNfHo+AQGJtUsBtkYBA/I0hqBmUgECeZY1QG5eAQFgk8guHqYBAvK5Ng4axgECYGpcm/L+AQCDOFrhSwYBADHgySxHGgEBAqMumU8mAQDbVWpGozIBANGKf8FTPgEC0hhvXJNGAQBYQUeNM0YBADDHJRGHRgEAMW14wS9mAQHqyx9NE4YBAWKpLpFLhgEBTaoDk9uiAQI7Wab9F6YBAeks7PkvvgEAUAFEuQPOAQEQMMmlA/4BAZCiuLDYGgUDvWnrGPweBQN5a+2I7D4FA7MfGrvYdgUD+Sn/25R6BQI6qfAw1H4FAb7MbbDMngUBgaBws4SuBQDR6rjHwLYFAbl1k574xgUBbWMjC0jSBQL2pCTmfOYFA6be6MKI9gUArAqNPq0GBQB6exRn0RYFA4lggTfdJgUAWf/V9AE6BQEwopnNcWIFA01JvN1NogUBUx40fYn+BQEjBjR5Wj4FAo8Cjd1aXgUA0F/1/56GBQMbPmORsqIFAACBNkfCpgUCKG1g9S6+BQHGNH39rsIFAACpehwaygUCEuDjECbaBQAUXlTAOuoFAVTxHEHy+gUBNLLS/KcyBQJwt4GvWzoFAftvhg37RgUASDAppftOBQCpNXjUs1IFA2vERnRTZgUD4ai9sFN2BQNaMOUFL6oFADFA3JU/ugUD5UsSphfGBQJo7pcMz9IFAmvlept32gUBr+slqBAmCQIUrDq3jFoJA8mPoydgYgkCmUV+Z1yCCQCBhJ/fRKIJAM6BlZaEpgkAu68BEpi2CQD41aZBfLoJAni8z1aUwgkCxoLrD0DCCQBCtT96POYJAQoxcwOc5gkCfTfB8PjyCQA6YvWLsPYJADrLavM1ugkAg2utze3GCQGKdU25DiYJAmYvOHkSRgkB6PvKsKJSCQERjrNw8mYJAVipM3A6hgkB7ps0EPKGCQMoxkbENqYJAdIZ/kzOpgkCRhehnCLGCQGpjvV03sYJAgnxlK8++gkDazDTEeRGDQEIlxIzIFYNARcujXHoZg0AQqu3YyxmDQHaraHO/HYNA58+IGdEdg0CqW8w7cyGDQK4KMK6IIYNA48OT+8khg0DUBaOycCmDQCagADpqMYNAIBHW6JQxg0CMVEpVRDSDQPBZ1jPuNoNAFp0E7WtGg0DsGosTcUqDQI7JDjlzToNA9j2FZuaBg0D8A1+0SYODQJSqNWGU+INAjbi0Rv9ohEDY5Eqv/nCEQKesFl34eIRA+CdHlI6ihEAxa+xlatmEQBSvxwpr4YRAIA5mtWLphEDsQ28INvGEQKtGqp1k8YRACJ1Amjj5hEBQa1uiWfmEQKpiOBowAYVAJuUgjKBhhUD7Cn6xoGmFQOxPSZ6YcYVAKkEXuLNzhUAcvIGMmXmFQAIZV+2hioVAQqfRIqmShUAK8WlAl5qFQK+eMxOvmoVAQoT+FbL+hUDa1kipJrmGQOzCcP4gyYZA4q52ZhIWh0DWX7kUFhqHQJcLaoCRKYdAYmH5+JExh0B0D1HaiDmHQCyBKGJbQYdA4Mn69ohBh0AqIRJmx7GHQBaBjIHJuYdAbo6amsDBh0BSC3bnwMmHQA4xZl/jXYhAZjDhmedhiED/PzDY52WIQDmfb5cygIhAU7g4atCCiED+onGCfoWIQL+Kf0ApiIhAJsLaotmKiEA= + KBZXds7jZUA/KJil8iNpQKPid1q/AnFArmsYctGickAxOsR5lxN3QDzDZJGps3hAMZigze8kfkA= - + - glA1RPEegERGo3hFdTm/RJqg9USJjZRHs188RGftj0SyGABHBdDRRZoZc0SiTcVEoX/ERGRrhkSoKlFFqrnvRPCLQ0XWIXNEcce+ROSTX0T1aaFEyV+qRPqqqkVJBlVE7/wWRRvsOkQ6xpREK9z+Rtx5i0QLVy1EWd2ORLjkDkYvfY1FAGm0RPN5VkXwdrxGUbSCRHOLr0TuJp5EJzGLRd2H70S/G6VFWTNNRBD8nEQ/jVxE7477RP4NmUWiwjJECaduRFNAAkbIs4ZEyJlfRaJFpkS6na1EfMPHROPYTkRyfWFEab40RIn5yUTcIBZFe6vYRJbOzkbMuPZEIKMQRTwluUSaHBtF0HJERBY+R0etvYVEcjOuRG0ycEZ2aABGYmVVRGz2OkQ3CE1EITXkRRLSN0bAtfBE3k6BROLlaUSeA1lES8pURRUDE0XGW89EnTmHRUFfoUXwUD5EdNMHRe2Iu0Qau5hFMqZNRHfwm0QymNhFf/Q3RN3rN0RQa61EyKF4RO+HoUSp309E3eNNRRl1P0QJydRE5No9RPVVg0QS0YREMT6BRgypr0R5/rdE5HNlRB+uX0VKyMJEfLKoRP6wCkVR3ZJEZm2kREbNT0TmdY9EfObFRDNjeEXzIkdFls2dREbzyEUV5DtHHdSARScAVkSabqJEWDNBRdjBOURzze1FKT4DRYLspEVvZp9EX82vRBJ7YUQ6FXxEXktnRAlvmERaJU5EpyWVRHCdbES2mYxEJxPyRF+l5ETTcKJER0ORRMqWwEQyjqZEaHW0RF3miUSKcBVFRYoxRCJpB0UcrMhENTWDRCs7h0QBTbxFCVVkRL/tykQhrutFRx1fREqf8kSdEDtE+gYvRVA0yUU7YeNEHJlKROlKeUQB4WREcw/XRPtk70TwdrpEdSjQRKkBX0Uzdg9FkCwXRqo/CUVmnL9EHCq8RUmRuER/yGlEeG4bRhn83UQms4pErghXRJRdTkSrWUxFGsNnRAeEh0TDFhxFzLiVRNeqmUTcJ5lE3c2XRNvX00QurI1E2pTgRLkch0RU72ZESZ4kRZWmrkUNeq1ELI6NRM651UQ1CYZEwt/xRR5xGkXpMb1GegZzROMVm0VQqwBF7HNCRemdkkRbwSJFg4BNRMysFEZCToJEmlCORCYd5kU7VXNEeY+qREOlF0UJZZdE7zahR4wMLkYCoZtEnaPQROyQ5kQm3KNFHwdmRSpHskQx3vNEB4f8RLVBukRt3OxGHSx5Rvw8akbND7VEkHg+RfHIDkVdCBtFT7eIRIfngUS5G+pHN/m0RvSXoEV5FcRGcAKeRaSQbkZG/HdEdP2VRAdVgkQVVBlFMkrcRQ5MXEXc315EiZNERP0wVUR4NUNEAko7RT4jykQWDIpE3Og3RBInEkfaz55GJXnVRPXJUEV0eW1EywOFRGu8KEVzZn9EKXduREyRJ0XbF21EvvmuRGW240RWnTRFomGWRJ9laUSUvC1G8BmGRS/Xl0apYM5ELds2RuGRwUS6JSlFbyM1ReXVSESWRoJEJaeARKnDq0S2tD9J/BGvRGVg1URsfx1FnGWcRBXVSkjOhfZEUTGoRhIymUQp2aREXELwRPp6jkTZrGFEmUs4RTztXkV9qsZFXhh+ROzwS0S2HldFcVR5RDfdp0QYPVNESctnREH4f0V40MZFBomSREjczkTE845EERdURO+pukdjVG5EmTHQRt41D0UIhWlEMH6QRV9ChUQvEWBEHiK7RShJekRSsc5E51qGRAocyERChNZEkRWzRH37IEbyNR9FiEPARN0Es0RL9kFEUkBWRI5HwESTj2NEyKZKROs6ukV3lpJGwhlMRo68hkS0t5lF91pNRGo6jUWemoNEgupPRPEeR0QcONhFDml3RHBfX0SgmqdE0JSHRO8TjEQaMHhEkh3mRKn+VUR9v1JEwETWRxBvtkRNT9xGZFhGRLpBVUTdavtEyk2gRp3DPURrGSdFv7N9REPGv0SzV3hExRdPRPNASERMpYVEgPsTRtzjAEUq93VEJ9jIRAG5TEQvqX1EIou3RHF060SSHoNEL+9oRFfiskSqKFVEB26yRBYcgEQU0rBEw4zERXGYSkQmpF9EPQeVRY1ZskQ9lqVEHMQ6RoiDkkRgwqdEmRQ0Rb31AUVkLL1EI0QKRRilrERqDVVE+fZFRJoobkRHw8tE3J6qRMsdWEXCdV9GZWh3RPhcl0VQ1oVEDmYERe8oZUWtLKtEe2C7REzIUERtocpEGlZTROFxVES/YlxI2D3QRMb30kfuelBF/GoYRVjaSUQanVxH3NAQResZVUadooBFC6YDReM+u0TsuW5EOCYJRT4yWUSTqStGLyGBRLRcJkUyEtREXaxERM5VnUToYQhG8EUARasmZET/169EfqVTRBcpkER7SihG/565RczEtUQJgitGdquHRQAlT0SeBwRFjNXARPIhUUT3IqBFDbXSRG5/M0UxcPZEptZjRKXlPEUbo4dEO2OhRhZCIUZsvglF1d05RBdVR0V4BzhFTXBURAWNr0R4gjNEB93XRGEHUUQBSaRFEqo8RT6RCEUYmJ1Ek+yaROAQf0TJ4llEnic0Rl72YUV4zi1FZ8lgRezqC0WByzdEeV6qRPnHMUSD6ZFEpIm1RbSvlUSlpgNFhxyZRIDxWUR5L8VHDSJUR5V6s0STXN5GODi5RQpRDUYWuyhF+2sXRTq22EQSDIlEqQdSRMjTukfB/dZGHKQ/R56DKUZ8BuJExSweRbD52Eb28eNEp6XtRPpV2EVFBQ1F3DWBRBWzsUQWG5ZEMYcORiZigEWXZQBFFA1hRCOiTERlGdFESfLMRaKdI0US7xBFFbRaRFZACEft94ZG/RwmRilKQkU34ZFFWSm2RNq+ckQcRmxEJuvxRmwdMEYw0wFGxmOyRIDqBUXFI61H8bS3RnaLMUWvvXxFTPdxRGZ+2EQ66VNE9yhGRGXLoERltSBGx0O8RdyVbUWAo2hEKd/3RLV+70VDBXhF+cspRT6Ez0Rh7Y9FeqVGRbnrmETOpxVFRJEHRVQRHkWUpsFEBQq6RA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - HicLq3fAckCDhXG4JsFyQJTDH6luwXJAqXSSlU7CckDceH3XpcJyQGbAB+s7w3JAsgh/XMXEckDi851qWsVyQJKk5o9D0nJA6iKmtUjTckBb7m6DdNNyQKB8L2vO33JA3JcOarjgckCKum3mS+FyQLVrITdQ4nJAgL7uo4/ickBM7oGaJONyQNmxZ2Hj5HJA8PbFN8rxckCgJXI4uPNyQDwgMsEM9HJA4n2beaL0ckDptgXowf9yQDgE/ttjAHNAQB46qPgAc0AZAOxBDwFzQELyDldMAXNAi6NuVNQBc0D+KMMqPAJzQJ2EWZ3PAnNAUJZsWvoDc0Dalj5TjgRzQE9xrmUnBXNAvK8V0woSc0DcMJKdhBJzQNxSbca8EnNANsqReQYUc0AaUf9vTBRzQKaeJ695H3NA6KfFbaQgc0BZIl/r0CBzQAQ23EY5IXNAApvTBWshc0CO6XahyCJzQIJ8yDQPI3NAKhaSaTkkc0BSpkYN0CRzQA1gRABHMXNA1i4zcVgxc0DlTRIozzJzQI62j5MMM3NA5k7JaKAzc0BS7oGkODRzQEoHf7TbNHNAIC4VgEJAc0CEf3kf40BzQFlO8JV4QXNA6Wh+xLlCc0BkY++bekRzQAasrsKaUXNAHMhi1EFTc0CA6U/To1NzQEIlim/fU3NAW7FUa3tUc0B6g0/ujWBzQB5b/NIkYXNASANWxx1ic0AcumriOWNzQCjSd0BiZHNAlsjfT1Byc0C0ar6OtnRzQLZjf29MdXNAztxIQmp2c0DBF67weIBzQEPBml6kgHNA9BOXkQ2Bc0BjaPb4XYJzQJ53QcmFkHNAhMWNLE2Sc0Be+ghWzpNzQBbxiBJhlHNAYh3pSveUc0DKPku5uKBzQPsFkvnloHNAC8gQUU2hc0CrOC5LWqJzQCYiiEHmonNAiTJbOQWlc0CJejIN2LBzQIjuHQA2sXNANAL34n2xc0D+dy/M87JzQH3DTFoQs3NA5jHgSLezc0AUaFIYDbRzQAwlRun3wHNA/ilIDhDBc0DPQttyjMFzQNhwUwTQwnNADqdXYCbDc0COUUXo19FzQNZI9kfd0nNAtED7RTHTc0A2lbBa9tNzQLkuYcPi1HNAhrNClDjhc0BS33eYZOFzQLYOmyHm4XNAbJ9HBw7jc0CK9WLCP+NzQHrpJhm48nNAiKhMIGDzc0ArqZznn/NzQPKwGZQ19HNApp5GpYz0c0CGXUQVZ/tzQD1fP2LkAHRAxibbqHgBdEAHzSY5pAF0QGBpU0qKEXRArLYXGEASdEA0/Lj2TBN0QMTMTrNLIHRAhsoFXpEgdEAsM/qfhyF0QDMpODS5IXRApBIXRFkjdEDbpxyVuSR0QLbVcudTMHRAjFXCxbkydEBiGobr5TJ0QLik2JFTQHRAZMjrMGNUdEBUYQXN+FR0QEd1bu+LVXRAkJViebdgdEBk4F9o5GB0QGywqAoIYnRADGXU9g5kdEAMsbMyTmR0QHqCppwicHRAFvkyCUFxdEDIXjScOXN0QIv5Ii02dXRA6wSCNfiAdED+MFHAToF0QNRgL+6QgnRAvhEMtymDdECoWtgoFpB0QN1RpvLQoHRAiqsW5TihdEAIHVehuKJ0QBCyyP3PonRA4NBqlBCjdEDY1NNjY6V0QP4UpK0Pq3RAfP66cAqwdEBFRlUWS7B0QBCyfbfDsHRACdgOdv6ydEAig+jF4sB0QBwDRKJ5wXRAlCyNYg3CdEBQ+JMGEcN0QJN44HUjxHRAN2W65HvEdEDK1f5zt8R0QIaNwHP7znRAyhf3qj3TdEBnkOKx4dN0QGoAqubO1HRALgg9pPrfdED7BuyZueB0QMKSG0Yi4XRAaBQcx7jhdEAmBuwky+J0QIR8XVxO5XRA3NRoVhvodEDy+FEFjfN0QDyvZbPPAHVAQE0/gmMBdUA6t0rb7wF1QOb4n/9cAnVA8Kc7j5gDdUCDX5jkmRB1QB701gRqEnVAnK8XuyMUdUBEk0G2nSJ1QH5k6tnnI3VAPwbdtPMzdUDMiB2WNjV1QOS2j2TMNXVA/3KX+bBBdUB6b7Nw3U91QI+LqBL5T3VA4unPbIFRdUDGVH/AdlV1QOwZNfXfWnVAaWjAXadgdUDYQTiZsWB1QMW7CY03YXVAjJzwMelidUACz473ZWN1QDRmN2d3cnVA3IPhqI10dUA81O0fWH11QDRi47x4gXVAvCT1vK2BdUDsZU1EpoN1QFBq4gCbhHVAtoqQ0buRdUBavEebspJ1QJ5T4oW0k3VA3mmEvmCVdUD8oFDlPZh1QMRt0KmXnXVAOr3Y5ZWgdUC6sbkRI6F1QCpDQeS4oXVAUwr+b++idUDk7viOe7N1QKCQA1bNwHVADJoDOGPBdUAE9RaT98F1QJkAKyzN03VA1kk/SeTfdUDklkl2D+F1QIqoFL8H4nVAWiTtUkgCdkB1Dk/o0QN2QCgC52xOFHZA3g45xQwWdkC0Rx0WiCJ2QMvxzEeQJHZAslgJSUwrdkCsbWWCHzF2QFRiiyVTM3ZAahTe5pw0dkBaCEXCHUF2QKdDDsISRHZAAo+O23lEdkCGugVJy1B2QMlMYe4SUXZAgl3yJodUdkBgBMI1zVR2QO6zJ6zGXXZAAjXbIR9hdkCrEi4WzGJ2QKRyO01SY3ZAyKMwSrljdkAWjj+A22R2QGZOurImaHZAPn9QzH9tdkCKgBm6aoJ2QCLuwOSPgnZASurBlpGDdkDikdAOn5N2QB5ehxygo3ZAVjXhX8KydkBMG8z7d7N2QHyTmrsMtHZACGPm87C0dkA6TtNq0Lh2QML9pvgaxHZAJGZARc7OdkB4VaTh2dJ2QLSFlAHz4XZAdzXfAZHzdkCiDcBrNAJ3QBAtdCpRDXdAuwjlQAESd0CaNfNhqhJ3QFLfjIIFGHdA/D7g5A4id0DKZxuvcyJ3QPBpShINNXdAC9nT45xBd0ARVGX4GkV3QAZ7TilKUXdAWJLogZJRd0Dgb5HeKVV3QI5VBHlGYXdAtIGbrY9hd0D9DdbXN2J3QKkH5oo8Y3dASDZcBCdvd0AcZKVQgnF3QIKwBC5Kc3dAzFcJ4xV7d0DKpqYTeYJ3QNzQ+l4hg3dAfgENW32Dd0AtjU1LCZJ3QJIjTPtNlHdAFg3FY2idd0AuNl+zwqJ3QKUgBeGlo3dAjgMayxyod0AcGg8Qm7R3QEB7izKKwndAKuguoeTQd0AoUJKBjNZ3QLaMrtMi43dAtaoMEE/yd0CsMtagkhJ4QEynr11NFXhAdhPRNW4ieEBYbnvqoCJ4QKTTdCorI3hAAW0foIojeEAkXFDZDUJ4QJIm7Hp6RXhAv5KBLctReEAf7n2ZlFJ4QBWVXcWHVXhAM2yXX+5XeEAlvZn4NF14QN4AhqJLXXhA2KiyMfpgeEBAerWJt2F4QCzBt6yRYnhA3p4xTrdieECUWqbHL3R4QNqcc3aLdHhAvuB0Mtt0eEAI1SyQo4F4QNcUVvTlg3hAJPIHtZmEeEAaB3lpUY94QM4avrOYkXhAqYYu9qeUeEA9qlgDs6F4QCy8E5i6pHhAVvn6dFazeEC2pU0tzsB4QBTnaqLSwnhAnhzdpgfFeEA9Pfgp1c54QFMHbQC41HhAQHxdYcXkeEAk+JgUyO54QMENf0kC9HhAxIpjzIz1eEAAbaw5DwR5QJReF1z4QnlAtAjUTf1DeUBpFVd5q1J5QAKLiXDMVHlABIsaC+hgeUCWrwet2GR5QOzY6IZDc3lAWp9XGfmBeUA6GPHE+IR5QAhBe/nAsnlAzBlASELUeUCc5JtlztV5QMrfwTK/4nlAaeXmsk/keUCCFZaz9gV6QKF/JXcMNXpATzCtxOVDekAoPA+YGkV6QLtsZ9QoVXpAPJINXThlekAU3tvvN216QLTyAqrsc3pAzCUUBW6rekB1ByBTDLZ6QGDaxu0rw3pAoMLqfBvGekBocyGiQc56QDMhkZLV03pAUqNs30/UekBU+s2O09p6QI5dnSN45HpA+0hr6jXuekCm0QJKdgN7QN/qJQEpDntAStnUMMQQe0CEu5U9TRV7QFUtoq9ZJXtA/l9qGFQwe0AucxQExDN7QEIRDu1bUntAMNspzyKVe0C4BnCPJ8N7QO4MGJF2xntAXmbmxiTSe0C+D1IwjPV7QJ8QCy2OAXxA0nVGAdkBfECInIbU9AF8QF4xxfyYBXxAWlqjVYURfECssp4x0RF8QObi2OHMQXxAmdTg7tlRfEBcPn2XfFN8QDABxpYNYnxAWGYg9bNvfEDO/qkzBXN8QEFkdQ7AsnxAgCdV5BC2fEAMrEBdy9V8QLacCbtX4nxAcJw51hfyfEBMEedjVPJ8QORADxhy8nxAi50Em1nzfED9OVsP/wF9QLA/I+xLAn1AS+EyCwgSfUC4FyhgRRJ9QHI00zs/In1AhtEN5IQifUC8FWtAoDF9QPDkI7wtdH1ABYUMgVeUfUCusDzxK8N9QC4a2Ylr4H1AgXEDotfifUAU4K2JkfV9QPqnhJNbAH5ANj3wMoYCfkDCxL77OB9+QKXItwdCL35ArlxeQ0M/fkBouVFlRlV+QOhUO+OOVX5AOuU9B8VXfkDEmg3sHl1+QAML3EDsb35AAM3lKGVzfkAVRbtVmIp+QMTDQ+xDjH5AyrRlQ1uMfkDGV9gHj7B+QPbYCU3K335AF/8W7tXvfkAVQAw3xfp+QHBylOAeAH9AEhVdl84Cf0BaQ13hDiB/QJG9BXu3cX9AIi0eRKODf0Aa+QwcY5F/QJ7LFh+nkX9ApLxzgpeTf0AW3GoLYKF/QHjZ+K9XsX9AEe4lIAe/f0B4ZXyXPMR/QOI2Uwl73H9APHM9mUcCgEDWveSn/RKAQGZHaTbdKYBAMpTr7eYvgECMfV0T9DGAQOLfE3TrN4BAmEPHuaA6gECAQsSeKjyAQFuBLdjYPoBARDjnlPNIgEDSFjvt5lCAQMNvAW0TUYBAwia/X+VYgEBiKyKcDlmAQAAVsB4MYYBAGEcY0ChvgEDrlioSKneAQML6iZIdj4BAasUNqmyRgED8TS0tzpaAQNerCgSGqYBA1qygWlLBgEBH9kmOEMaAQAy3mUpTyYBAcnPM2qjMgEDDiRVnVc+AQItSUTlM0YBACINcXUrZgEDOrkCOROGAQHrm/fxY4YBAarA1SvbogEDiME4iSu+AQNyi7vI984BAPqiSUT//gECtnz3iPweBQLj+TgQ9D4FAvvL/IDQfgUDujSqfrx+BQJ3pBSYzJ4FAnvfHSL4xgUBjT9NanjmBQKv1gMChPYFAdEdIdKxBgUBmK2MU9EWBQJSrN/73SYFAFt/cPlxYgUBicK4A0mGBQHPW6f5SaIFANqzTN1WPgUDIcXL/VpeBQJJo7pdAnIFAsFRlnlGfgUBeKf7w5qGBQCjKMkRuqIFAumT8WO6pgUAOkk5tSq+BQHLrNpFssIFAVAn82gWygUDwt5onCbaBQJL1th9Mt4FAd54ZpA26gUBNDUzGKcyBQEEWeHPWzoFAHO4SM4PRgUCSyMKJfdOBQA2DKLQT2YFAiXayCBfdgUDKDC8YS+qBQEj5GQZP7oFA0glHk4XxgUAMmH56MfSBQI53lLPYGIJAzB345NcggkAAydl80SiCQPsWAHOiKYJAkGYo6qUtgkCTz6G/0DCCQJPiUWiSOYJAegsTk+c5gkD2BWRn6j2CQGTvHULMboJA7RLZoSB0gkCP1ckbQ4mCQHLHNp5DkYJAjK9HyiaUgkDqspZePJmCQHSvZJkOoYJAmrQM/jmhgkCkklraDKmCQHhufHszqYJA3GLlfgixgkAp1iiDrfmCQET1N295EYNAPR0SQMgVg0BrhDrTeRmDQDJ+HejKGYNA04xvKNAdg0AGqo10ciGDQJR4NPvEIYNAThvytsklg0C2no8ucimDQK5A4VprMYNAULj+Spcxg0BAWiZy8DaDQKToPNdrRoNAkEoCv25Kg0DuoaLK5IGDQFV+R1BJg4NAFvg/LZP4g0AdhQoqAGmEQELz4tP/cIRA3Cje4/h4hEAopD2s+YCEQEvA0/1p2YRAKlp4uWnhhEB8wvWEYumEQELCsw438YRATIwG9mDxhEAqUj7ANPmEQIDWx9VX+YRA+DlnpS0BhUBmNRcDkzuFQIdfaT2gYYVAKOdg4KBphUDy+8v7mHGFQC7UYVmzc4VAnaMsp5l5hUCu6fy0kIGFQHf9/NuhioVA1KVgJ6mShUDtdj1pmJqFQDYgFfgnuYZACVSjUx/JhkDWF+otEBaHQIbK9U8RGodAys3m3pAph0Bk7WxwkDGHQD6yGPeKOYdAnEnmXIhBh0DKfH2TXEmHQFSks7fHsYdAqARP68e5h0Cj5er2vsGHQDqo1w29yYdAE2ZkAOJdiEAWQ0/F5WGIQN2xQ8fkZYhA28xUXkh+iECP2hFJNYCIQMnGvzPPgohAiPRAvX+FiEAZvdrzLoiIQNqw6wDXiohA + NrgMGZxjYkD1hHOUyCJpQMZtNYzMxW5Ancs7e+cBckA5Cx9LftNzQPjXhcaqUnhAAGazhJYEfUBT5M8RbqN+QJG32tqMOoFA8R2OGCNagkBY44Dq+EKEQIT+MVR6YoZAWBJvFKXLh0CELSB+JuuJQOzyElD804tAS1nGjZLzjECzHrlfaNyOQNxdRybUq49AcBKvAmUCkUCgxYghMCKSQIeVgdWVlpJAttrJIlY+k0DQF8KhtvKTQGjxLjGcypRAGgiUP+L2lUA= - + - bRKURKQKsESUbkVFPqGiRB12ykShzqZHXn7ERJBw+ERK/xJHFyDwRVh53UToQAVF2YHORINJZkSW7oZFAwJLRUeZgkSF04JEsj+HRe1SBEVR9JFEPBPZRAOD80SBl51FdbEbRTY4q0TEh59E0TGDRJO1ZUScExxFQW4eR5CmgEQYi1VEeNBVRA9NCUVi1YVG6ZquRacEkERfk+pEYVyNRS/6TUR7Y9lGXm1LRHIw5URs2qdEdeSNRFnG3UXxWu1EvI7ARFfQG0aDAptEfHhzRMXtuUQAMIFEhN1nRPVp8UTAUKxFsvKPRGRMKkZabH1EJxHFRNTsnEVEUHJEevuZRKe8sES0wYFEquiLRIuMI0XSMIFEOQG2RJ+IB0W0xB9FACTFRIddA0f+NuZEVTFARcnIzEQgBS1FTNNJRxu9f0TRBdNEhPatRi6/SkaO81xEGy+jRIAnBUZOLnlGRAp1RUL9Y0S94pBEAMyMRENjzkQTulxECRpnRQhmS0Uw5M1E6ZRiRIIKjUQQ4u5F20/NRV6ihUXWiq5E7AplRN4W3kTSZNxF+RERRi3GrURJQZNE0F9jRK4oPEWJI21EkvSVRQpkbERaQhFFbEihRNiSJUVZWNJE35SgRlRHDkW+j+1ENAa+RKj2m0UQqKlEhDhsRO8qYEQ5NDRF+iZXRIg3jkQcvM9EYEV/RLXTcEQHdVZE8iNRRFyfvUSkatNEJomlRb/YbETW3JZFZzyIRGiU+UQ8BvJF9F9kR1ths0U8n7pEwywmRV83CkbfrBNFAQOIRA82BEZMMc1EXU3lRF/znETeXYdEcwhCRU6Nm0R23ARFu/LxRJpIeES/voNEhlRvRGd+fESduaJEGYyGRE9lmUTzv9VE7Mq3REAagEQxNsBEe+OPRKss4ESbfSBFpBV4RP+fZUQeA5dEf+ErReH2iERCTb9EDeydRIWZCEaFO/dExX4IRUfCRESlafxFjaaSRA1Ye0TRdodEFZ0IRbUUWUWzkdZFCTlpRFfmb0SJ3lFFKE/FRN02tERowtFElB3jRLfOIkW76hZFoWRHRFaxREQlxd5EotJ2RDiRgkVt60lF+HYjRgoiOkWHGUxFDcLsRSnDJ0bSbiFFpfD3RJPeF0XfoKxEbi2XRC1iJUUp7MdEraenRPDpp0QdOgFFuKfKRHaVpkQD9opEX/OVRH4hIkW3QAtFY/SaRMbdfETWK2VFP5y/RS6/hURi+65EqqMSRVuWvkSwbkRGVs78ROai9kbaWZBE04fZRLQLtkWyCUZFa0+FRfShmkRhVptFjnBtRDQiKUbnyqtE9VBhRJg/u0VIhVdExnwIRWLB3UTHbyBFAQ7CRBelk0T7M1tEBLjvR3BMgEYqhapEdGY1RXikyUShy61FV41yRAFehUT+1chE16h1RX+iyEQ6HAlFfyX8REKE+0QT6AhH9jShRjbeeka++JpF8HSLRfWSCkUxLANI7fb3RjBp5EZrasFFIS+RRny6vET1x51EXKpRRV0QdkQbFB5GvVO5RTNNx0SL9qFEee+eRVNWA0Vw3sRE9o+sRA8dskTTstFEBmH/RpXGfEYi4I5Eq1JURYyqwES29JxFE9tNRGznt0QOWGNFz337RObvb0V8PY1EOKFsRRu1lkS4PAZFVFqHRD8r70SxumNGoaHORVfN10Z41CtFYE+CRiQJK0VxbhtFXOEURWadX0Wy6aJE8RlpRBKy+kT1DltJf245RY7QPkUhsKxEfQteSFYxpURibCNFs+StRp+EjkR/82xEh0EFRdMXDUUMaIpEjgdxRLTbpkQHumdFPleCRHlvmkTmzapF34aqRZMEhkTTi4FEXoPGRIDKekTmqpBFoNTgRNKrjkQ5fblEeimURGgZjET6yapFjJzwRfz3skRlUKpEuyUKRbcRm0RZSr1HRzHcRFbA10bP8dpEi86BRAfvokQ9MlxFe2xiREkY2UV2wqlEeynPRKx20ERLprVElVGOREK2bUQShoVE4WsMRf8MU0SaNgxFHSRrRDh2M0YWUDJFFosORTkokkTEOuFEdJt0RS0BXUSPGHZEL2wGRdQQtEZlLoNENtBVRjQHikXUdcBFaxNfRNbhr0UUNMdFdWS0RDZ9hUSI44pEIsLYRBSCpUQdNwRFH/V8RFzXuUR8Vu1HdGLDRKiu3kaY62FFN5R2ROM+HkXa7NlGkjNORDpZRkUq6p1EadFVRDUwg0QLiZBEM1GpRFt5gkTyfQdGFIqtRHDtBkVpIaNENdh4RNCt8kSm/aFEN0WKRPXlpURCN7hE70DqRBVIyETgDidFfpqxRMYroETi065EHhi4RETseESZnIdEpct6RKHkDUWyXBdGocyVRBPUFEXPaqFFZs+tRBCQakY0CplEvbGXRK/GYUXvR/lEG2c9RHmFj0RPKDlFuSVsRAmZiEQ+4WFEtq6DRHqGh0TAE4REPvKpRPKeKEWH0npErGABRQy0ZkUQ1FtG3qCTRGSu7kWeT5VEi7oURcvLckR5C2RFStDBRFvzTEQngCRFTf95SMBziUTjsuVHRToYRXi0DUVFyoRHCopXRuHWoEUc+pZEHkbVRAZmo0Rtng9Fl6YcRvmaTkXO1xRF4bo2RjWzW0TJcSJFTWnGRPUF/UXFHmtFr0uJROK+JEZ8soRFLgE+RQDczETUhLlEIk3GRQWV/ESWUXdEpoOFRI7SQUXyQixFxUSMRNu4Y0W9/5REct1NRqfmm0W5AG9ECc/jRMz7VEUtFCVFMBN2RBQ9ckRNfh9FrtKvRE8aoUUvu+pEeGslRW3/8URKt1pGBx+GRaWzV0VwoZ9FnaAlRf6oiET2/XtERsftRRIKLUU8T75EG9lzREvX3Udd7UJHo8ejRKhV/EZPE75FrPjoRQAaGUWUofdE4HUFRax7AEWe19FHZM+rR0KRPkdBCTxHn5sXRqyQ1EYfsHxFKdfSRFfqBUbGeDtF2FkmRTwupUSv1AdGZhelRWAasUSLfQRF6sWrRN1A1EUZriVFNYYIRYzEaUSGuhpH/WCORv5QQUYJOmdFbauERUn4zkTe6ZdEQoGvROF6j0Sd8ApHzbKCRqevHkaSaYVEOWGkRZLFm0SZN0tHW2dFRgLTGUUrjOxEIDCERHKObUWL/NdErM88RvVP5EUAvrlFk/XXREWzgUQEWhlGg6eVRbhuh0VGtl9EAOGdRUje3URek59EeeWGREpqqUTlkx9FE5tdRWVCzESaSmlE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - MgpKrwzBckCj8ZUmbsFyQCO8UKKIwXJAtRtXvlHCckAHYD6NpcJyQJpbV/87w3JAurzQCMbEckAgFgmJWsVyQNq1JYND0nJAXElsj0nTckC+7t/zddNyQPcYCLth1HJAEysNxM7fckALwiIRueByQJAiS95l4XJA4jeOrVDickDDf54qkeJyQF53FFcl43JAQ/einsrxckCRth8e9fFyQEwiR5F78nJACHcEfbbzckA+UolPovRyQHrUc0LD/3JAn4jRrWMAc0BgZNeZ+ABzQExxHeWLAXNADtCugNIBc0DKEPnJ0AJzQLE3f9H6A3NAmUUbPQwSc0AiEi52ghJzQKhDEbS8EnNAdrPry/gTc0CWtoqSBhRzQIbj26VMFHNAYSJUAnofc0BEOPG4oyBzQO7I0To5IXNAfOw0Wcoic0C0FSOnECNzQLJbdMkEJHNAdKZXWs8kc0As99ZMRzFzQBzjpzhbMXNAAAug9M4yc0D+7AGpDDNzQAZTi1HZM3NA+dDeA/ozc0Budtvf2zRzQFYwQHLlQHNA3poaiHhBc0BcyzqlukJzQDUXssPbQnNAPuGp4k9Dc0BCW0xlekRzQAYa+W2bUXNAGrVOVkNTc0CMJnTgo1NzQA3HwgV+VHNASrHD0Pxfc0ADas3jimBzQNZszMU6Y3NAQBo4B89jc0DAWXmIKHJzQB7QK+ROcnNAwPfYq7Z0c0CS5ysNTXVzQJqPJM94gHNAfGfFfqOAc0C0C8AqDYFzQDvsswtdgnNAy0MOu4aQc0AvoWdETZJzQJIQB/XMk3NA864nImKUc0C4Jzer95RzQMS95TW4oHNAT/nqT02hc0CSFjNTWqJzQKjbQovmonNAAChv9QSlc0BIVWN92rBzQOy8HFs2sXNAsuzcvn2xc0AB1RIqXbJzQACVF0D1snNApXuA0rWzc0Ca7MmLDbRzQChjy0L3wHNAVMXkjo3Bc0C3Nvdx0MJzQE7EWEMmw3NAtI6Njz7Lc0BsVrF219FzQETbAsQ103NAfofQivbTc0ArFAYs4tRzQCMIcg6j4HNA2ILIezjhc0DaWLjoYeFzQDj1NakP43NAuA/4QUDjc0AnZ6tS8ORzQHC2kKeK8XNA88c8AmTyc0BIdJNBtvJzQDX7qbZh83NAHyVeODf0c0DMA7jGZ/tzQBGWrujlAHRAksMj83gBdED+OVWmpAF0QFa0rDaIEXRAvEK3lkASdEDQI63uTBN0QJj++zVMIHRAjPzXuSQhdEDbQCvMuCF0QKT5s3RZI3RAuTMSo7kkdEDpaTuSUzB0QKLTBdC5MnRAYIDz7dcydECCwffyx0F0QJho9qT2VHRA1CwW4IxVdEBysX9zuGB0QLrG12QIYnRAG7w1d09kdEDeIZmZInB0QMlIBg1BcXRAHvhlGTpzdEB0zvVbN3V0QBJ7rdD4gHRAOevFjU6BdEANfeZ1kYJ0QHY4lvgVkHRAImWakWmQdEDQln8foqB0QKgzgrjOoHRApq0FlLeidEA3KLVuD6N0QA4JGPsOq3RAsLRqJQmwdEAwB5cqw7B0QGFHfBP6s3RAQCksj+LAdECSrTYLeMF0QKawGBrqwXRAQKhJbSXEdEDiwq3NecR0QEUkd9i4xHRAnl9ONPzOdECeNMj8PNN0QEcC38Lh03RA5nKpknXUdECXb4AXzdR0QGTkr5e54XRAk643M8vidEC6MLImT+V0QOwt3CmN83RAluGN9qj0dEA3pgXbpQB1QJJpf1zQAHVA+hf8C+gAdUB3DMSAYgF1QHi2+dLtAXVADhuVcl0CdUBYM2bbmwN1QKgvqkEjFHVAjp0WhJ0idUBo+06Z5yN1QLpfe/T0M3VAyje6Ecw1dUAo5z5P4091QDpUSmIKUHVApo8Rk4BRdUCWTU2DTFR1QM68eSJ3VXVA62s75uFadUCmHvIAD2B1QLuPzrc3YXVA9u2YSvNhdUBmH3SPZWN1QGTCaRrnb3VAJZpVc3ZydUAEMglWjXR1QL7Uh3hXfXVAINCe6+SAdUB4cTKteIF1QDT6NwGugXVAQhI3bKaDdUDCidMnmoR1QKRgLLCMkHVAUvryVLyRdUAkzPQ7cZJ1QGylXPCzk3VArIDLhzuYdUBS3m7f2Z91QHROUJ2UoHVAoGqLUrqhdUBZmdpbfbN1QAoC1I3NwHVA4nuDW2LBdUASx3wC+cF1QN5TmIbN03VAxjOxMOXfdUDR4pZ7EOF1QGqcVGcI4nVApii8QSUAdkAAAG5YSQJ2QDCcxYrQA3ZA4n22PgwWdkCYUVBhiSJ2QAVqNCaQJHZAivdYlEordkCAkeerHzF2QFwbBcpRM3ZAAspyaZ80dkBQkrIKHkF2QFbp8KwSRHZAmk0kInpEdkAKJ4hzylB2QEFB5qESUXZABuyTys1UdkChCHa8y2J2QDDAV1i4Y3ZA3rRxzNtkdkDa8oOzJGh2QPyyXAuBbXZAu0E2MvuBdkC/Hf1okYN2QOTRNl2fk3ZAZP11kaCjdkBQN6Z2uLB2QIT9ZsbBsnZAqI3t+nezdkAimhS8DLR2QK0HySvjwXZAaCUh4c7OdkBkRQ3i29J2QH3aggn04XZAO98mGJLzdkDitOu+MgJ3QJZZUQJRDXdAdrgEmQESd0AalF0pqhJ3QDbU9e/vF3dA2gY6DQcYd0DCsK9vSht3QOgm9+tOHXdA2mPy2w8id0Cw2bzadSJ3QDa+mEUNNXdAxiBd85xBd0AIGZcvG0V3QEKrfUdLUXdAVkn7xZJRd0CkZ3tvJ1V3QKD7RptGYXdAdL6wn5Bhd0B/+RnmOWJ3QIhpmVM8Y3dAGUrIqTlld0Cc6hWAJ293QG5PnuFJc3dA2cDPzBV7d0BEGYOAd4J3QAiAlEUeg3dAuifEh3yDd0CxtUv9CJJ3QCBZ3TJMlHdAne3AuWidd0D0saFQwqJ3QMRzqfAbqHdAvUiBzmStd0AcePuLm7R3QDPI30yKwndAGhPu1CzDd0CyemYyjNZ3QEKov//r4HdA85W/3iLjd0CZHtg66vB3QKTgC25Q8ndAor5Wq5ESeECTmhNEbiJ4QAUZNnifInhAuCUAP4sjeEDcc0EefjJ4QArfGg4MQnhA/cHab3pFeECtfaVKy1F4QPLsNPqUUnhAHhaoOlJUeEANZSXIiFV4QPmkOVPuV3hAYEjvp0hdeEASK/iu+WB4QDVYC9W2YXhAE1LzUbZieECcP3XQDnR4QNZaUiRFdHhARr/Jkot0eEBU+vYAx3R4QK5VxOPadHhAIvIZagp1eEDgE+lMiX14QGeFgH2kgXhActIXoJmEeEBWqccgl5F4QB5h04CnlHhAbIFrLbakeEDZYorLVrN4QP5TkbnNwHhADNNIYtHCeEAkc1im1s54QJh98fC21HhAZMcpLMTkeEDdE1eUAvR4QOoEf7SM9XhA713Av5sFeUAJTObvjEJ5QDzbygr5QnlAbqb+T6tSeUDu4gpEzFR5QL19r+3ZZHlAcoW76ENzeUBBLpbFv7J5QOB+IDPPwnlAfg3ZP0LUeUB9mLhwzdV5QNVWW6u+4nlAhi9x/07keUCq3G8h+gV6QGAf5ioMNXpAVJRLfOZDekDsQZQVGkV6QP6AHXMoVXpActIBKzZiekCaZDtROGV6QEDl4DeMcnpALDpJnu9zekCC6mml93t6QBzyvOYLtnpAnn6i/CvDekBrhnN/GsZ6QBz+jcxEznpAgsoRQ9jTekD+j6y8T9R6QBqWf2M27npAGJgxQSoOe0DQBZ09TBV7QPq6TnFZJXtA3q6HA1Uwe0DW7ozVwzN7QMw7Zw0jlXtAXP9otHjGe0AQvl0CrNN7QKI3zub943tAEnLWc4z1e0BuqHtL2gF8QMh2pY34AXxAziaLp5kFfECeT1pQixF8QKPKNgrREXxADlvuYs1BfEAAsrzP2lF8QHScawYOYnxAnHcVJypxfEAolnagv7J8QLJIwtAQtnxASZNKP8zVfECyElTNV+J8QDOzzbIX8nxAIahenlXyfEAqbq1hRgB9QNJnA6MAAn1AqdMLEksCfUCEIwMSQxJ9QJTjKys/In1Ar3HfGleUfUBAtW+EKsN9QI2taYJq4H1A2kT2c3fwfUBuMsvekPV9QCX5wgr4931A75BJjFgAfkAwXA/QQC9+QGJfwElCP35Arjs3CcdXfkDgqEgHYnN+QFB5dFIpjn5AQ9kwmNenfkA+z1Sjxvp+QF6nkp0fAH9ANgsfji8Qf0CqFTixDCB/QPWwDqG2cX9AVT1HyK+Bf0B6Jb1EpoN/QM7S6o5jkX9A5vMGMqmRf0Bs4MCNXaF/QA7RsQFVsX9AFZp97Ti8f0Akni/+dtx/QH5BKwRROYBAwgvxjaE6gED+dqikKjyAQHQxjTvWPoBAs39sGIFBgEA3RB1y9EiAQLh4tOLmUIBAzFTq+RNRgEC6ksQaJlGAQHnh0+4OWYBAzf/gHyFZgEAkpoun4WCAQFmbSyYMYYBAElHX0yhvgECZ2+j4Ho+AQAvLaCZtkYBAzkoMrRmUgECg8QWhhqmAQHizTEIRr4BAQNWqdlLBgECKRTHcD8aAQMgB33VTyYBAr1kzF6jMgEBeAJloVc+AQHpmtNIr0YBAAfJWaUzRgEA4dEOzYNGAQHe+ZZZK2YBA6CNL5UThgEBvtlFvV+GAQF5zPfLx5oBAgGxaRvXogEBcVUnFPfOAQL6NG4U//4BAhOEZnDEGgUCmKetCQAeBQD284u49D4FADKlBHzQfgUCSFlH/5R+BQH7hYRc1J4FA8D4GGe4qgUB2TbwB9S6BQNgYGei9MYFAfKVVUJ45gUCo/kdkoT2BQIS1GuwnP4FAhKgLp/NFgUAdm2XC9kmBQEMi9PFbWIFAVvOl79BhgUBsnWz/1mWBQP4TB9XndoFAcCnocWB/gUAE98WqVY+BQJgT36BVl4FAgqz4vuehgUA05MI6bqiBQGmk3OpJr4FA/jyEkm2wgUBciLfcBbKBQFtIfIAJtoFAYnEXfg26gUBasyPCKcyBQC4r4XjWzoFAvZvKmH3TgUAgE8hxE9mBQOHXaVZL6oFAfXt2Bk7ugUDYz80WhfGBQPY5cWaz8oFAVWJoHNgYgkA1G38d1iCCQA5/xQ3SKIJAYuqrSqIpgkDkL2yvpC2CQKSbsubnOYJAGDvEw+s9gkBqoUu+zG6CQMbj7lxDiYJAH6yEXwaMgkDqVlXuQ5GCQFcjT1g8mYJAsHjk5Q6hgkDyr49APaGCQLuxXVcMqYJAHadLSzWpgkAcP6VACLGCQET4QIH2z4JAxIjFXqvZgkA4LvgIr/mCQGnn26d5EYNAciIgfMgVg0BQ3rZAehmDQGrZ7MDKGYNAQOspSssdg0A2DjO3ciGDQNvq6h6KIYNAUjQC38Qhg0AOVVjWxiWDQG7kubdxKYNAA0xOamkxg0CQ5krRgTGDQAL5mhWYMYNABKTTKkQ0g0DUkX0R7jaDQDZrwmZrRoNA4dnNhG9Kg0BG/vCgc06DQHxyN1DkgYNAAKC210iDg0BsnbdJlPiDQACXuTr/aIRAKFTNtP5whEA/HAI7+HiEQKiIYi/LgIRAI0cGHGrZhEClOuWkaeGEQBC4tKxi6YRAh5j0TzbxhEAObqJ7Y/GEQPOfPfY1+YRAdJDMpFj5hEBARhs+oGGFQB+nP1SgaYVAmvEtsJlxhUB8dE7JtHOFQM5puDGZeYVA5cyHNLx7hUAYYHe6kIGFQODNKOGhioVAO5wOW6iShUCkhjGVJrmGQEx3JQgPFodAdlDkfRQah0C3LJfKkCmHQFL2p4+RMYdAaodPHok5h0BY4dooXkGHQHprO4eLQYdACLaGdcexh0AE9TytxrmHQFAJ8+2+wYdAFECyc8LJh0AGdH7Ou9GHQH6xlsHhXYhAxEcDC+ZhiEAKKk/A6GWIQLLpeqLRgohA/EGzNYCFiEAirO/EKIiIQHeDhEHWiohAFERH63n3iEA= + NrgMGZxjYkDY/G+vNiFkQHJahe5LhGlAbFyUq/MhcUA5Cx9LftNzQGy6cP9LM3hAOWn7ntbkekCKCy3qo8N7QMW0BB9+qoBA - + - 0/jARIkbfEVjQWJEf9vsRJPcAkW2OqhHwWqzRANuk0RWgxFHNFbAReZutUTGBJREkcIXRWKYFUXwnYdEu+qaRdc5MUV4DalE2fl9RY+BcUTrn25EyvTNROTNn0SZKSJF92WkRUIDtETZSo9EdOq/RM1t4EQ5IjpHmGvGRL5LqEQkqJhGhvuMRa7Gj0Wj8nlE7tO1RLUnnUWlm9xGoFq0RJBKOEVyVHtEezSyRRvEE0XC+nFELnZDRr6nlkTAfoNEPK96RKq7bkRq3fBE0sfYRXgqk0Qhj75Eq/OSRP6tOUZs8+9EDo/gRBzulkUj1bxEFjxoRB3MoETYPglFgG2HRNoPn0TsNMtEY9jsROkfEkUXswNHlk8FRRRC20T3Q6dEs4dCRea9V0cVJfBEu0JKRdVLiEa6CTpG/yhoRFlKCEawSYhGo/lDRTaWrERmEJREf/26REJAgURm4etEdaRwRb0ERUUVvulEx1FhROCEu0WglM5FcsOCRAKQMEW8YWBEHfbURBTluEUZtbREIMD9Rdjvi0RBnMFE1/+uRZyQxkTqt3lE62GVRNHsjUTos5NFxjgeRXiQr0S+5YpESMSjRmQDCUVr9CZFKtsrRZugP0V8BZREX4NyRHqdb0WgOYRE/LJ7RHyAskR+l3pEGGDdRN0Pq0TrBxlFY8jcRLfwpEXpNZZFufS8RJ4H8EUrBk5HWmylRR1EGkViy4ZFG775RbGk2kQ5+shFWZSNRN0yi0QPIZ9EkYD/RL4PDEUIIfVEb0kDRYwWg0SXj4JEpkUERYM950RdIuFEIgijRFbn1EQtl0VFg/HFROrEfkQRf2REZczJRGjDxESmDWdFqbLERN5W+EReHAtGvottREvUlEQ+9YZEfqWVRBk1v0QYrYtEMLf9RbNTikRfk1dFtbRERb+s5kUf4qtE9cxaRfrDtURXFLBELeHYRLDQ5USMWCRF1LbwRIrNmkT7HQtFxCHARHjTkkX/4m5EuiTKRDu3c0bxZ5lFFxOcRDMS60RQr+9F7CM9RlbANEVD6ZVEWjSWRP/bn0R8UL1E94L5RKNrrkQLqoBENmOmRO/KxEQefoxEmiSuRN6zJ0UNAplEc2CdROj1sET60ypFNutfRHPGrkVzKdFEtJ7ZREiZ1kTzgCtGld9SRQZa5UYszbNEp+yDRFv9u0XZW+BE8M6BRZM3CEXkAU5FqQmURjqVokVYXeFETX0YRYA7NUVNJodE1+pzRHMkF0ira6NGGkvKRHzPt0SkxzBFCo2dRNoJo0U3Y3xEiVJBRUlpAkXdtrtEsKo8RVbKJkXdEhdHgbSTRtM0S0YCvsBE86uHRcXOiERbpZlEdCZnRZck9UQXU/dHC0rERgBJ30aWpqdF5WSYRgEXI0UDsdhEYpslRWlFbkRhIiFGitWGRN3VhkXonPxEbXTWReAi2kSQqZlE5mqkRMyvfkRmMphEIxzDRjoySkbzWIZFF5SVREZ9uERtgu9FMfGwRNCmqkR0x8NEkZQ6RUlKh0QSOCNFNzuARbogn0WiO5tED7GmRKetpERAkqFE/2tiRthAnkWk3chGh01oRLzvN0WEYYRGPqJ0RdpW8URT4klFQ5KcRGm+kERLtStFl7RiSf+HTkXQDglF9laZRIaRkUQ2Ly1Fb2NqSFu1KUVfALlGS3q2RIamxUQYYstEwwenRBvfoUTuZz9FRi+aRCNaikWQKxhG488iRSTfu0TUdXxEQD6KREIujEULidFEC6bwRHW/PEWcam5EmeYSRqUoH0XGFZpEAeoLRS557kT4f/JHxQK+RPiQA0chGExFfDWbRAQhlUTtFg1FA5iPRHXEgUR6HddFoTGHRPypr0RGWX5Ei82kRF1pyUQStNlEr1MRRcgZT0YiEyRFjAbBRC2vq0SxR9BEYUyWRG20lEQjRKJEo9fLRk/GX0boHQxFSWfFRSD1wkTkFaRFzgTvRdu5mERVIARF3XKqROaZB0UOE6dEtc2hRHUeA0hyoxdFdwsFR3167UTSJolFJiLaRte7bUXjy8JESXt+RMN7mkTP1Z1F4PKfRItJJkVb0stEX4OfRO2xq0Qj/txE0dz9RK43h0SjIZ9E7WZ4RG0PN0V64wlGsSDWRGuTIEWRKJdFmgXaRDVyvUTtNzRG/7HARISlbEUas2RFO8NxRMibwUTEMV9EGoS9RGF1EUVaf5dEufSSRLOj7US9JWVFlpCJRiHpCEUeGbJFhumsRGJfeETRYKVEfja/RESmcUUeeCVF9M7cRKb73UQYz4FEDneJSJCllUSGtwVI6npGRd36MEVuNrhE+dWQR5Z1f0UNC3pGwa+5RX+220Sh/29EimC+RKUi00SgBx9GIjttREJkLUXd/RdFfqkQRh0uuESMFO9EMbxvRODWe0QlULdE4++NReZszUTRIpNEGxfiRcO4TEX9VDZFzt5IRaIji0Q9AXtEkYCERJYukEWZJMNEdgdURcGHAEU0QEtF+IevRJMP7kXuF5xFfxoRRczREkU1vPdEw9YRRTedAEVFZAJFU2blRNmoE0Wfs79E6ghURnHMb0Vhl2ZFk+mAReQ1BEXwRoNFmjU2RVig60RF6NtHI8mkRNlFTUfcmd9Gt8fdRTs8CkajcBJFbE4TRegDw0T7HIVEsEptRFINyESU/u1H40s/SHUHV0eMGehH72HfRnt150Y+LC1FWgooRplhY0WLsQlGaLk+RZ1jnkSyhrtEIjSqRF9Ep0SSNwhG6dxbRcVddURhe+ZEn26/RKQ1l0Swp8BFEN0yRaKk50TsJ5VE41oKRxCveUbUozFGoa6QRYI+eEVBfwxFauazROpWE0d4TXNG5NxGRo36o0SglE5FJ2WAROLItEQ1VYVGCCKURVMtlkSDYSFFbgamRMqCUEYL/a1FR9igRe+7z0RLtdFETLApRijmiEVrqlVFiqvFRDkvgEQn+B9FX32vRNS4q0SFxpdF0siSRev0JEUCsZBE+GaRRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Wl0Y3nnAckB6fKsEJsFyQDsnm+BuwXJA7mKJ31HCckCqGTGRqcJyQOrOQfE7w3JA6p1ZJFrFckBaU3dPQ9JyQL3vxgVJ03JA5kybQ3bTckDknJy8zdNyQCV//Wth1HJAVEVaHs7fckBzHrmVuuByQAemEQNN4XJAcoJN71DickDy5+JMj+JyQJLRmMsk43JA0qsZDcnxckA9pBdi9fFyQOrN2gm483JAJFy84kz0ckCeE7wOovRyQHbHamHC/3JAqdX6eGMAc0CjMktx+ABzQAimg0siAXNAwx9dykwBc0AIrY20jgFzQOhAS3bTAXNANMgmmNACc0CLSQSu+gNzQMrRV6fhEXNARpVQOQkSc0CZnUotJhJzQJAp0lKEEnNAVhdzlbwSc0A94mn5+RNzQCz9nBFMFHNAuuVlf3gfc0BW6Lt5pCBzQMZC0285IXNA1tIWReYhc0DqKi42eyJzQOQEOcAPI3NAMtq5zAQkc0CWCwvdziRzQBhUCNFGMXNAwDCA184yc0BjWINtCzNzQEKZqeM4NHNA4fsOq+JAc0DaeSACeEFzQILMRmy2QnNAGgycS9xCc0CV51smekRzQCbldXuaUXNA9i+4n0RTc0Bwl03Yo1NzQGq4Dw2GVHNAan7bk45gc0DdXw66OWNzQLDlsjZlZHNAi6u2bydyc0C+DvNKUHJzQMRY06qQcnNA1JTJVbh0c0CVUFPdTHVzQLVxHAF5gHNA1MjNq6SAc0BWgqpDDYFzQEylsD1cgnNAq6RU3g6Ec0B25/KmhZBzQAgqvy9NknNAgkxhNGOUc0CdNYNx95RzQMxJqCe5oHNAIFTGL+Wgc0Dk+CRfWqJzQPj4axKUonNAgetai+aic0Be8v/gBaVzQGYNtKR+sXNAylDc2Xuyc0BfWiNu87JzQBqDvHO2s3NAgpcHdQ60c0Bi/Kf9YcBzQKaPpBj5wHNAAL0q+s/Cc0AAM24IJsNzQB4YcMvW0XNA5PTRhLvSc0BsqF19J9NzQPHZCP7103NAREsR5OHUc0D0EFVUF9tzQK4KZMCk4HNACZH4jTjhc0CC1dQGZOFzQL8FWRzo4XNAEqnuXEDjc0BEW1qi8ORzQO7pq6BN8XNAHgDyry7yc0B/wauMYfNzQPrKf+o29HNAjopxM4z0c0DVblTq4QB0QAY00op4AXRAoLh93qUBdEDOJMJ1iBF0QNoU2W5AEnRAt7/wWncSdEDYDpLJTBN0QCjHYwt5FHRAtL+Bd0sgdEC3QzLjjSB0QDCUPD64IXRAcFruplIwdEBDwswU1jJ0QELVPtblMnRAzosyi1NAdEBcvlQvxkF0QPiM9Yt3Q3RAJt2/4fdUdECYwnLhi1V0QMDrojq4YHRAWg89KghidEBQ9w0ZI3B0QNyxpwZBcXRAgoCeKzpzdEAeC51SonR0QDQ6aJc3dXRAUI4bWGuAdEDGMeFn+IB0QHq9wn9OgXRAVpHmZpCCdED4ajSVFpB0QMnHEtDPoHRAqmPUyzmhdEAwRFDvtqJ0QHl1mnnSonRABBz9gxGjdEAafV12D6t0QDbCb+8JsHRAZAdP8UuwdECNhj3248B0QNLHwPJ4wXRAoMEnp+nBdEDvVdwYDcJ0QNQmGCwkxHRAH5vGRbjEdEDwOcDt/c50QM7qinnh03RAwyaTlHbUdEAkzHSozdR0QNyj5Re44XRAgInLXh7idEAMpXsOyeJ0QOhzFfyM83RAOKOrLqUAdUBu6vGuzwB1QDB9tOBjAXVAVLmRt+kBdUA+4c5PXQJ1QIjFg02aA3VALCnBBSQUdUB67HusnSJ1QNfLzJjnI3VAyyJje/YzdUD4L8/VyzV1QAQN0pHhT3VAHLBOX4JRdUB2nOlieFV1QPqAG5zfWnVA1OizODdhdUBCCKhRZmN1QFKkSnR3cnVAwIPlso10dUChtw04WX11QGrfHll4gXVAciVCOa6BdUA6wiOue4J1QLyJCI6mg3VAjfDnyJqEdUBwPZ0yDoh1QDZ52mG/kXVAu5YlLmyTdUAMrFX+s5N1QAp8lp09mHVAhygzbZeddUD9UZuJlKB1QHgKLsa3oXVArD6wMu+idUAhzbX8N7N1QI8zveB7s3VAhRgiQWXBdUByHbcT+MF1QKyrinLM03VA5Kecaw7hdUBxnCLEB+J1QIgHLTdJAnZAFEUqJNEDdkCm47qeTxR2QLxNinsMFnZAklv+JokidkCUUCpskCR2QLr5ux1KK3ZA0k4MuR8xdkANt49EUjN2QAQ3176dNHZAiBnikOJAdkA4+NuGHUF2QERVnIYSRHZADDKzuXpEdkAkf3LPylB2QA1+u5ERUXZAjvXdls1UdkAKqycqImF2QBS645PMYnZAIhkfprhjdkDSWxQI22R2QLXtMjcnaHZAhpfMccBrdkDgzryqZoF2QKSm6FmRg3ZAmu+KWp+TdkCy9MqooKF2QPwzTW+go3ZAbgwLs7ewdkDQIeGLwbJ2QGqB+ax3s3ZAjO2TjQy0dkC80P8Mc8B2QF6dixHBwHZAaTyNIBvEdkBqis70zs52QBAI3DJ+0HZAPEBPZL/QdkAUoqrL2dJ2QMJXCeWQ83ZAA5zt+0v2dkAuNiscMwJ3QDUje7RQDXdA9n0dlQESd0AOTkF9qhJ3QApsdePxF3dARx6muwYYd0DcM4QaDyJ3QDh8Fjd2IndA7FACxLkkd0DkDxFcpTN3QCi3nP8MNXdA7I/n7JxBd0BcOuJEG0V3QHLLR7hKUXdA9KUFsJJRd0Cg7JA9KVV3QIS6lylIYXdAvgZoeZBhd0Ah7/sYPGN3QG6/Nyw6ZXdA2sxMwyZvd0AyUc6RgXF3QGp+zOpJc3dAq2t2spB0d0C7Qlg7Fnt3QJBLWLh5gndADcoiMx6Dd0Cr2n3weoN3QP59EvcJkndAGuMJCk2Ud0Cd00+BaJ13QEX7oHbBondA1jEZCB2od0A1IiH3mbR3QKs+5W2KwndAHG1jVJnSd0CzrHhXJeN3QKYWdhRQ8ndAyWDr8TMDeEBold/SkRJ4QH1eOClOFXhABZVRZ28ieEBQe4i0KiN4QLYrRYKKI3hAcr35/6UkeEBQn/TdezJ4QFbA3JDpQXhABG0Q1AtCeEAhDy5uEUR4QBz8BZB6RXhAiHsUCMtReEDmd8m/lFJ4QEZv1/2IVXhA+N/AgO5XeEDi4BeKMl14QCr9d7tJXXhAUC70L/pgeEASWPGAtmF4QAp68WGRYnhA78qJablieEDSMjkSuXF4QCk/ohoudHhA00KpAlp0eEASgmS3i3R4QEx3/G67dHhAOaTr/KOBeEDYDuTE5YN4QAizK7eZhHhAJ4ZNxVGPeEAFMIbIl5F4QHSD4CGolHhAUEyymMzAeEBdhw+21MJ4QOKLNX+31HhAPe5y/sXkeEBAALEKA/R4QHpGVVSM9XhAqBMCL5kFeUD0YMt0i0J5QMbh2Yz5QnlAeiasJz9DeUBwAQFnzFR5QKTkkAdFc3lAIhbZY/WBeUBTpQaK+IR5QPii0IpvjXlANfuz1MCyeUDsr5/GQtR5QLjuJ/nN1XlAkG3pM8LieUC4ifLGTuR5QPRvX+2T8HlAhPZ6DvkFekDuh909DDV6QESGLR3pQ3pAjuOiaBpFekAeTGhQKFV6QFp0jzqMcnpAwtEtMOxzekASOH8z8JF6QKR/lR/MknpAKusTJqKUekBQUpPyDLZ6QOawC0osw3pAVmrW8xvGekC222ATT9R6QB4JNaE543pAwOxsAzfuekA4/2l1ewN7QDaqyR8rDntAo6NnvUwVe0BuQm8QWSV7QBASaetRMHtATbhn4sQze0BeNMR2/E97QO9tjpQilXtAEo6pyS6le0B22OTbesZ7QB5ZXRyn0XtAvFvvqbbje0C1xBLqlvF7QIYVPPGL9XtAhtfZIv34e0BcA9AG2gF8QFQ6O6yZBXxA9mtID4kRfEB2zNVT0RF8QPyulaJ+EnxAAD3xds1BfEBShbYrC2J8QDnahUyyb3xA1FvczfykfEDs6j2YwbJ8QIS1dcpX4nxAhdMrhRnyfEBc47TxVPJ8QAcxNmdy8nxACgPeA0L0fEDsrVqxRAB9QJCdDCwBAn1AEHypT0sCfUB65vnFARJ9QM4YTYBEEn1ASL/Wsz8ifUD7Q88jozF9QKrGTugtdH1AWERC51iUfUCM7o06LMN9QN7zS61r4H1AMMu/zdbifUAhhvLEkPV9QLzmmxSdBX5ApiUxWUIvfkDGfOPDjFV+QJRFM0DGV35AF7LUsR1dfkB8pBRBgKJ+QAwYYSzQp35A6c8GIEq1fkAuDEZcx/p+QEoPjxYgAH9AftM/fy8Qf0Ab6tnVDiB/QJ41e3+3cX9A6AWaIrOBf0AV3w93YpF/QMYcxaeokX9Agt8MCmChf0AkQHIkVrF/QCizfKM7vH9ADMBmD3ncf0D1yEIchBGAQPzUgJvsKYBA6OxeAfk4gEA/BjEvKTyAQL/g+NbWPoBAJj83F/VIgEDmO2MQ5lCAQMtuQ/cTUYBAHmnPuyVRgED6OrPADVmAQNWL26ggWYBAzs57UwthgEBurDaF62aAQGQ7K3Qpb4BAyMSqYx6PgEBVZZ2Aa5GAQKXXzpqGqYBAPxhXAROvgEA2gqqKgrGAQOMNynNSwYBAHpysSnbBgEB7p7avU8mAQPKhfPinzIBAiUkQg1TPgEAQNfC5K9GAQCLMtnhM0YBAHAsSO2HRgED6j3ALBdKAQN73PZpK2YBABFfxGUXhgECc5m4IWOGAQBqTJEX26IBA/vHajEHpgECaGonwSO+AQDpvejg984BATIHMAUD/gEAcJ1WyPgeBQEIvflQ8D4FAUvPYjPYdgUDukLSPNB+BQJZfM6s1J4FASLv7S343gUAIIfVknjmBQFYZoorzRYFAynd+IvdJgUBEQHmAW1iBQK23ExrRYYFAvQMpMtZlgUAkDjcvw2iBQHHEMaJhf4FA4EEXsFWPgUCSgIcVVpeBQHVqobPnoYFAWGA/fm6ogUCcLUQMSq+BQH4EBFkGsoFAnJHV0gm2gUBkodkAKsyBQJ/fTFTWzoFAmHNaxhLZgUCATvF3S+qBQMKT9LSE8YFAXEovMjP0gUA8QIRZAAmCQG2jcQwCEYJAXD2hN9gYgkD+PvvK1iCCQAKtToDQKIJAOKlg8qEpgkBQ859mpTCCQFAVtxaROYJALhlmquc5gkA3HT8p6z2CQGqryHdDiYJAjqZ5d0SRgkDKlBcKPZmCQBgEYnRWmYJA1Hc/3g6hgkBify13O6GCQCBmtZcNqYJAUHmxGzWpgkCoEQ2rCLGCQElDQ1Ow+YJAhJg4qnkRg0Bm5WFPyBWDQOLQ+VfvFYNArQCc2noZg0DGgOdryhmDQG3/aKfJHYNATgaA6nIhg0B+KGrsiSGDQJvdPj7HIYNALNKyC8olg0Ctgs39cSmDQMCGKinDKYNA2iEqN2oxg0CAm7+SgjGDQJhbL+OVMYNAV2Bm4UM0g0AUp9ih6jaDQGOXcxBsRoNA7vuaeG9Kg0CRMW1ooI2DQJYraAyU+INAjmVxdf9ohECakC1O/XCEQEztwxT5eIRAKfxC4miVhEDw+o0KatmEQHBjX29q4YRAbr6H6mLphEBeRhiDNfGEQFgB45ti8YRALJKEkTb5hEC+VcfaWfmEQChhZlOgYYVArtJ2faBphUDUxGT0mHGFQEOEvi+0c4VA0ST/MJx5hUBNYuu6kYGFQFfiDUKhioVAaonrDKuShUA4860sJLmGQCfZg4ElwYZAy4JbfBAWh0AOV+lRkSmHQO65+xiRMYdA9ucFcIs5h0BiyLSWikGHQOf/02PHsYdAJic0h8a5h0BWTD0XwMGHQKyH0Xm/yYdAA6ReA+JdiEC6k+aw4mGIQLiGPlTVgohANQMbXn+FiEDkWEqoLYiIQPbn643XiohAWH7JYYGNiEA= + NrgMGZxjYkByWoXuS4RpQLAuKNpy5GpAW7ZEKKkyckB6IBaevOJyQJhx0ogUc3ZAWxQhfAFEeUA= - + - SDibROx3pkR+C2NFWFHnRIkEgUQzI8BHAU+RRH4+EkeC8gNGsWOnRFpWo0R69I9EkfYfRUmAxERHJJxEss6RRX3hA0VNq3REzqGXRZgMfUTp6MBEvgOERGye7kRTFQxFNKCiRTRutkR1YoVEQburRP/bh0SF439FYkAtRYtSIEeQG2xEMNKNRAb9hURvPwpFYGBXRswJu0XehLtEv7ztRPOQtUWNVu9GEfiORG6Ng0TyUdpEZlJcRGA6oEVgHwVFr/aORsENskQSwgtFkVf9RNEBhkUmVJ9EiX3/ROtQC0ZxVIJEx4bFRPwYwEUiQ4pEwEubRB1FAEUpyX1ECItzRK1rDkUedIdEKObJRCMKSUVviwlHgRHBREM0TkU2y/1EpsC+RMHFRkXaZExHCOjkRIh8iEamrBpGrg95RFi77UV0R25E0VjKRgCFLEXmscdElXl/RARmGUV+voVFTy8yRb4pe0TvmsZEf13BRZ463kWcLIhF7DyHRM75ZEQB0IBE8RvaRf8/c0QSQ9ZELV8tRj9iqkR5s4ZEzMO7RXls80QI1lpEIk+DRFyYbkXsNShFMp+qRGxKykSNhJlGfGe9RHVNnUQLQaxFG9KdRBp5eEVY8rZEP1DgRGxYokSVoC5FOO25RGCmg0SDY0dEw/HKRLV7rETKi4xEfwPoRMfpDkWHhKRFUmGlRSfFykUVBC9HBtmhRQLmyEQ0TghFyjN5RAPJVUXy+gpGjisLRZS92EXEEAJF3iSKRHWngETrAZ1EHebBRNPuGUVp2rlEsQOhREhk50S7TsFEAqCTRG6hr0T+o35EDfwWRU1bBEXNcMlESvyMRA4060RehXtFkhyMROi14kTWmftFh62tREOB0ESjdQpFYrDFRPCEDkaZE75EAUIjRYLZHkUFbwlGtE+ARFnAXkWy04ZEDk6QRHqjBEU08QJFp6cDRe4h5EUN0w1FFLhxRvI3HEWxyyFFXVq4RWh1nEShSFpGuCEpRVdDgUS7Z4JEXweqRCXWu0SPDAZFIJ63REmen0TeKLBEKuuYRA7jwERyxsNEfYa5ROhoRUUR08xEC3zBRIWQaUWkLOFFZvXoRFok7UTwwr9Evie2ROGc/UV3bXFFyQPhRv9Q2kRVz6JEhoeGRJDTzUVbSyFFxvZcRRN5B0VweY1FwLyiRtpbfERqIlZFhXibRWNDcUX7SjhF3OkLRbvcekTw/U9I8ZfMRviNaUQn4RBFUheQRI3TUkVCqLVEyMC1RTU8nkSbBLxEFU+VRKltd0UsX31EsAfIRKqQUUWLXBFFmy6CRO84KUXg2hJHAgSCRorKfkZ6YUBF4bt0RbqzNkWJK5BErEeGRJUF/EQWF/tHX3LYRkGR2kYpscRFlQ2gRv70uER7yb5EbsJaRR1UP0b1rIFEXIKsRbGUhUT648pEFViZRJTCmEVSg+9EflEcRepn5kRdudVEkKrLRLtusEaBtTRG+eIzRaZtmkQnnxlG2ZudRGm8vkT4jPJEN1K+RAkNk0XSKohEFm4mRTP9lUTRJtJE1ayeRAbri0RNeW1EtoWrRDlFwEQz2zVGRxapRQQyvkbhqzhFDQ92RkZx60TNE2VFXeJaRV6pNUWPf75EPKqPRMaMdUSLHwZFdUAqRT2XSEk6lG5FxBkmRdeDhUTbkkpIpIyeREX3lURkiaRGxtLyRAFjmkQyiJhFZFmKROltfkWx9vFFSV7KROisv0RxW4JEuqJ2RMJFjEWJHNJE7yOFRDRAm0QE/KZE7wV4Ra/6t0VEOt5EY9uMRJyvm0SnKcdEgQqhRAeo7EeoxANFCDX2RjvzGkU9a5lE03rURCjt10QYI31Eq/KIRM8s5UUJr5tE1QjqRLWOp0QZ31ZEJakCRUDrkES2QdJE4e0yRpXXRkWAr9xEvpnARPLsikS+GYdF9q2TRMjL2kQIuL5EdnKLRIDLukV5Wa5GtPpzRM+OfkbC+qlFK8hyRHrMvEWbtrpE6FfrRbOF+kRktuhEJlSAREOOBUX20vFHZ90zRVic40b9tD9FCEdsRO/VK0UCff5E+Aa3Rt9dckQjX2pF3Y+sRGD/qkSBoNVEMw+HRPQW2kT983xFzKDARAAVEEXrP31EFBGJRC6VFUVeM7FExOrsRCNMb0QxOYdEUpVpRIDdu0QcQ0JGcDWARK/TSUXB+dVFSCj/REgESkacvshEBOlJReHnNEXBCddEW5uIRLPsl0QiCK5ESGq1RN01KkV1M4ZEeAohRbrUXEXel6NGX4YpRb/yqkXHkuZEJQiIRPseh0Rh1NVEFtFmRdc3ykT5zRhFGcaDRI/MZ0SOb5RI3/F/RNh2CkhXrvVEco2ORJQWwESpzplHONt0RT02i0Q7zqBG+0mwRYcw2URtfyBFfB+4RClcsUSl/r9EWrc5Rsk+GkUoccZEnRN2RDsyFkZkphNFOOiURAhRGUU4NBFGYU+GRU5xeEVnPFxFHsDMRLavb0QP4MBEBxDGRZQF+URtwDtFpWNYRbJDX0WnYBRGhZ2vRXX3tkQKJpRE9G0TRe6xQkWftwNFnXgaRaBXo0TmSJlEoexaRrbgoUWL1DlFAlm2RYS1v0TlYMREa6myRY1TXUXNxjVIbTOyR2QdSEcwjStF+3TERRwfaEbivBdFqnu3RXodG0VM45BEockdSCZLnEgDcK1EAT2sR9NiSEjklZdHTNo8R7S1X0WOoJlGlnepRVlVKkYlYKBE2IyMRZl84ETM9stEvmv0RK28e0TbhbNFW/taRf6tfEROf45EsR7TRQl2YkWNR8xEAT+SRNI1UUdQFstGXNVlRkVDoUVeM55FghnsRF00m0S+3C5Hjj+TRk50RUYvT4REnihzRUQh0kRD/rJFMQetRBlB40SETKtE9CMxRX3ESEZMa+1FliakRSUmBkUTrBZGQf/LRbx4IEWNKeBEsBw7RQWO/ESdkH9F0VOERSrXGkVYU8lERoB+RA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 2llMe3rAckCfNgXjbsFyQNpFDzRPwnJAwntbYafCckAKpfbg5sJyQG/Gvf47w3JAphjTcMnEckAce1/qWcVyQMLqtZxD0nJA4hdku0jTckDvcDfCzt9yQCStiR+54HJAWIKZ5VDickCY//+2jeJyQJiTHpvj5HJAhN/DFsnxckCmi3f2zPJyQPKI9Re283JArh5l3w70ckD+jHQaovRyQFtlmojB/3JA3WDppmQAc0CoZqmu+QBzQAL3asuLAXNAjpWwYdQBc0Btf+HI0AJzQHQC3+L6A3NAYo6f7wgSc0C8DNNBhBJzQCL1H928EnNAbG09evgTc0Di9fEQTRRzQH4hOJF5H3NAdnMH/qMgc0D65UVU0CBzQHpljzs5IXNAeU74hOUhc0Ar979SySJzQFhRgX4OI3NAwSa4bc8kc0DOx9WiSDFzQBYyhZwhMnNAMM93HaAyc0Bc3EdbzzJzQFdFBVcKM3NA8DXocKMzc0DuI67O1zNzQMLNsC03NHNAPmpYW+NAc0AVbwTteEFzQIzWx3m6QnNATbjpvdtCc0DORayweURzQHfxpi2cUXNAYvHXzKNTc0AU/Pinh1RzQJI8FLaIYHNABYA2ADljc0COa93Hj2NzQFt6OgbSY3NAfIt2fFByc0B+d+oqt3RzQLgrNgRMdXNAQjAPLnmAc0BI8xw7o4BzQPpeFIgNgXNA1BbaZV6Cc0A8brBUh5BzQA/Et//UkXNAHj9zN02Sc0AFb1u8zZNzQB5Pv59hlHNAv46Sb/eUc0CyE03Ci5VzQObCHR25oHNA7SWsX1uic0C2JHHy5qJzQID9fRsEpXNAEKm1Azaxc0Dw7eAJfbFzQJLnTerzsnNAiZ2fVRSzc0CrD7fFtrNzQHwo9+ANtHNAIfZ422PAc0C+1KrK+MBzQMJbnKTQwnNAyN+EfCbDc0Cj00yKwsNzQCD64dU+y3NAdCZG4djRc0DyYtOMOtNzQM5c6OJM1HNAbmBga+LUc0B8/kPmouBzQAC+0Qo54XNAbUNzamThc0ASeWVIQONzQGDGq5lI63NA4J0bKkjxc0CycZq3i/FzQEz4WPEu8nNArMR/bmPzc0Cc3g+tNvRzQKc+gWuO9HNAacY2fGn7c0AlhPP5eAF0QEL+NrSlAXRAa0aBbQwFdECl26kxiRF0QGJVSkhBEnRAO3Wj03sSdEAn3/TETBN0QEyKPN94FHRA/NPNwksgdEAaahltuSF0QMzZ7SZkJHRA4CFqPlUwdED8Uiku1zJ0QA6XHdZTQHRAkEsH7fdUdEDq1tpBjFV0QOUA+mq4YHRA9A1L1ExhdECcDvWaCGJ0QJjrLtxOZHRAYJyhSSNwdEA6jKGRQXF0QKy9p5bxcnRA5ExPLTpzdEDQsdZAonR0QPqyZp83dXRAmsNNz/iAdEDqYTCaToF0QIiorZWSgnRARkhWyNKCdEDee4DAFpB0QJL89JhskHRAEgJ7F6SgdECy/Dj1z6B0QEIlZJA4oXRAnP9yZ7eidEC+9FrxD6N0QPRZh80Qq3RAFmow2gqwdEBipA4048B0QKpaKyV5wXRAAE4JF+rBdEBo6Wu8FMN0QNQhAm8jxHRAcOaybbjEdECW36hj/M50QHkQ57Q703RAag4o6OLTdEB50Q3JdtR0QHbXz2fO1HRA04D/kbnhdEBUVeIjyeJ0QIJr3SlO5XRAaSV47cXxdECw1rc+jfN0QPp7hWpkAXVAohfbkeoBdUCIB8sTXQJ1QJfhhmObA3VAEBNRnmsSdUC+yGODIxR1QK3M7AGdInVAV95PuOcjdUC2gB6oyzV1QGJMNKgNUHVAXgTND4JRdUBc8qSSd1V1QFJPGeo2YXVAsJx3iGZjdUCY+XrBd3J1QIp00PJ0c3VAFLXMmI10dUCptXn1Vn11QJANOrR4gXVA16tYkq2BdUB6YzrHpoN1QJbtVsSahHVA0yXyFY2QdUABhnuGcZJ1QNvANCuzk3VA4pgAdT2YdUBDhOWYlp11QG4JS2yXoHVA7QhuALmhdUDbJWjrObN1QKNez/d6s3VA4qyDDs/AdUBobwQb+sF1QCQIdwXN03VA0yZ9oOTfdUDs9KI+DeF1QFDKBpAI4nVA8DtipSfvdUAbWOaCSAJ2QJQdTdnQA3ZAO1xiEE0UdkAc1GPoCxZ2QEjMVPmHInZA2HPztpAkdkBi/uDjSyt2QCGig+AfMXZAWssUbiIzdkAYXhsPUTN2QLykDc0dQXZA7vr44hJEdkAKv3r8eUR2QLVY6+v7TnZAzjG4LRJRdkCoDLyvzVR2QDTpfgfeYXZA/AEyS8xidkCFTEDyuGN2QFIesNrbZHZATRJxVydodkD2jtNewGt2QJ59JLx+bXZAApWTQWKBdkA0PZ+Pb4N2QDjiH06Rg3ZAepIFfCmTdkDPO1isn5N2QCrZHDoQoXZAmb3MvKCjdkDql6UIt7B2QBONZ+DDsnZA2pHkUnmzdkBFH+mvDLR2QPD4IqTOznZABKR5DtvSdkBYGAPn8eF2QMT3TxDq4nZAPNehQJDzdkDKauvFT/R2QN3rDvfJ9HZAliPVhDICd0CYRpLRUA13QKwcXhsBEndAuK1O5akSd0CB4Eam7xd3QECeEDAHGHdApgyTJg8id0Ccv+NldCJ3QHCwm2+5JHdAFFpgAQ01d0BgTsnXnEF3QErvBz6uQXdAelnTGBtFd0AecZr7SlF3QDrwOuGSUXdALCUcyClVd0AN+rQAj2F3QHz0kSY7YndAbP6icTxjd0CxaKfJJ293QES1qemFcXdAtnHFXEhzd0CLhdX+Y3N3QIRGDw4We3dAzf+DtHiCd0BnsaiueoN3QJrqNP0HkndALJsSuUyUd0CA+FP8Z513QPkksEnCondAWhJHJx2od0C5Krd+mrR3QLAXrnqKwndAYt88ZC3Dd0Aomxjj49B3QBDftKRx0ndAZjN+LpfSd0AQlAfK7eB3QHkjSjYh43dAIirTLVLyd0BIlRL7kRJ4QIykECtuInhASomscIojeECGCqekDEJ4QGzhWDIQRHhAvvUqZXpFeEDeR4l0y1F4QBh2hVyVUnhAtCE1kohVeECGLlFo7ld4QN16C+xLXXhAoIHzhvlgeEDsWC0RuGF4QISg4PSNYnhAQOR0S7hieEDgZ5iWi3R4QNKk/36pdHhAVvM+qr10eEDwrz94pYF4QLPBUbGZhHhATl/yxZiReEBEICUxqJR4QPdcM39Xs3hANtyeGs7AeEC/nd3X1MJ4QAw+ls621HhA5/Aru8LkeEDq4qJSAvR4QIsQdNKM9XhAhq+vIJsFeUAIHyM78Td5QHZuehr9QnlAeOiN0q9SeUCUkhMGzVR5QAgTwavZZHlA4gto2ERzeUCbytRQcI15QC5hI7DKknlA5p95g8GyeUAM8T00QtR5QDqgTMzL1XlAcJjl+r7ieUAsTaVrUuR5QEaKTWUi5XlApVv1sPsFekA0fqmlOiN6QGAxkGEMNXpAKOTX+yJCekAyIvsK5UN6QEYzfKAaRXpAFCk/YClVekAxvJ/P7ZF6QDLdNkINtnpArqL1cRfGekCTk/BNQc56QPTyVh827npAXrJrzSsOe0D1sI31TBV7QJ4uimNaJXtAYOLTwxwue0Aw9uL4VTB7QM0/ghhdUntAWkBunhZoe0CoqOMK7JB7QKHqwgMklXtAmQRUSXnGe0BvNH8XsdF7QBAngp0r0ntAfLfjKbXje0DM2tXn/eN7QIZ6+FGM9XtA0Jrqi5MBfECUsRqc2gF8QMYg1LqaBXxAmGMRf4sRfECvUVBu0RF8QLZF7K7MQXxAfPQCi9xRfEBw2VV3DWJ8QN7f7v8qcXxAaEII7MCyfEAGQm/KzNV8QDACZ+ZX4nxATIyHLhnyfEAJcvKoVfJ8QKCz80xEAH1AKghEawICfUCCjBKCSwJ9QA6QenW8A31AqMgcfP4RfUDgImwnRhJ9QEK+Z14+In1A+r0vL6ExfUBL0LtNADR9QH7UqrEvdH1Ay+uZbFSUfUDIDFJQLcN9QBUQrelq4H1AaLYBB9bifUDODrTXkPV9QPgiTJVCL35AGix7to1VfkDnhfj4xld+QB0lY9MeXX5AtLpGPpaKfkDEMqE+f6J+QEJfm5SLsH5AbhVrXGLHfkC2aeaT1O9+QPlq6d8fAH9Azg/2sX0Df0B4mPMOLRB/QL9p92gPIH9A4GKeHblxf0AKdnRMtYF/QN6eDNWkg39Am8GpY2ORf0Cq2mKqXKF/QNBDEyxVsX9AKiO5O7mxf0AZyvpngxGAQP5QOiQvFIBAOI+aA9wWgEAli5mM+DiAQP6n/8KiOoBAg0MdEio8gEDAKc281j6AQGrpz5/zSIBA3Iewg+ZQgECjv4/hE1GAQFgdaYnsWIBAsM+1/w5ZgECKPEK5Jm+AQEjUGfUdj4BAzdWFgWuRgEBHaWQWh6mAQO3pAv38v4BAcTDJfVLBgEDSmDjSAMiAQMhq5IlTyYBAlDQX4afMgEAFqqS0B8+AQAdwCKVVz4BAm6PUNC3RgECSlhaTTNGAQMbPxqVg0YBA0pyZ1krZgEADmEsbReGAQKpXzcv26IBANNDwGUvvgEDQxcDiPfOAQO5vcrs//4BAdD9pCUAHgUC4Spf/Ow+BQCcSwU80H4FALhseujIngUBhm4Wa4S2BQOJG/Qi9MYFAYJ6kh545gUAC2wj74D6BQOlH+tEnP4FAfRKS+PNFgUD2EiZr90mBQPqWyID8TYFAulK7CFxYgUDOAQ656lmBQNNTTVfRYYFAsw3V4dVlgUBM/HyeU2iBQMN6v2ZVj4FA1BKfCVWXgUB54Kq5Up+BQC1w53PnoYFA1iC8OW+ogUAgCK1FSq+BQGl52x0GsoFAlKq5vwm2gUCGx7mwDrqBQEqDGuQpzIFAHJbGVtbOgUANQEOnE9mBQAQaZI5L6oFAkMbbLofxgUAtuXAEs/KBQMi2zPQx9IFAJHqvftn2gUDOxs3WAAmCQHiCucLYGIJAUriWydYggkCl65MQ0iiCQCyM76iiKYJAFXjCk6UtgkAgcpkT0DCCQNyeuPzmOYJAvRP/oOw9gkDqNe7de3GCQDIw6HBDiYJAplNbGESRgkAS/I/BPJmCQI6J16BVmYJAgfl9Mg+hgkAAsik1O6GCQEDafqUPqYJAaScp8TSpgkDAlF20B7GCQNV70KjoDoNA4hp97HkRg0BUl2WpkRWDQCpyDWfIFYNASJ77+XoZg0BEZZC0yhmDQLPGpnnJHYNACqa86XIhg0AeTSLmiiGDQHE/hjbHIYNA7Dk7bLYlg0BQDvgMzSWDQD3l6L1xKYNAQqiIbsMpg0AQttdhajGDQBsfEqCUMYNAhpaoO0M0g0CfGmpb8DaDQA0J21xrRoNA4gSSAnBKg0AvGqdt5IGDQOaFIDhu6YNAIdcfV5X4g0CwSIEE/2iEQIAdLiL+cIRA3oHZPmrZhEAqzzRTauGEQI/9Iuhh6YRA2hEz3zXxhEDeor0DY/GEQC7tr6w0+YRAtD19ty4BhUAwFkmGLAmFQBIyMnugYYVAmhCQqqBphUAkdip+mXGFQLTrsqqZeYVA5oDT2eJ9hUDcg2ec5IGFQFTOXtqhioVAeP4BuSW5hkDeDZ7MEBaHQChjGT6RKYdAwbZG2pExh0CMPkC+iTmHQOhu5cZdQYdAseW+Mcexh0DS6XmDx7mHQAyi1FDBwYdAsDkOjD8WiEBtUCfl412IQBfaDu/nYYhAotKredKCiEAj7eETfYWIQJABCQYtiIhARvsrJNiKiEA= + KBZXds7jZUBmiwPJSGNpQBTpB48/A3JAsyNeuPzCc0AUR+TilxR5QLOBOgxV1HpAb1MuLltlf0A= - + - XOWFRJGiVkWEkglF4HIERXKWekR0+q1HhntbRELiwkQ5NyZHigfkRXEq5USlGEFFP3eoRY7I1ESFcF1EIy2ERQpGd0SWO6FEqMmCRAaBxUQs5ARFdh2NRUz4vET2Uo9E9EZkRZ2v5kTETiBH5DzJRPzuE0UZyTNGKDLPRazft0TpK9xELsySRV7taERkQ+9GefKJRBuG3kSoa95EXT+oRVWnpEQ4LGdEW9nBRKGRqUY0FpJEP3GRRF4doES56YlEW6GoRNOruEUlsG5EZXwIRXmxEkY7L6JE7KTDRXVBxUTzPJhEsQcBRT3NmUTueIZEPg7rRN8G/0SCcS1FnJnzRp/avURhxgJFASylRIV8AkUkfIpEqwhIR9VgtETUcSlFDrqMRqF2sESXJ+pFWNDkRY3QEUdlvTVFKUmQRGI0jUSB5CxFJUOnRHRxSkX0ThpFV3CeRDzcoET5Y5RFlSPZRQG/j0RbPa5E4mc8RV5NZERIKXBEEU6lRT8m5UTQbgpGHzGURNgOfUXd6ClFou93RCdaV0Q56LBEXZ3OREsPZ0V22cNEv2FpRImTnEb1WNZEdR95RCIOz0SWX6pFBCeARG1iOEWM3KtEDP9zRKZTAEXhd5VEms3CRAHtkkRW1KZE1izdREa2AEV0HKxF7MZ8RFvLUUXugrxEKJboRQ0COEfZ4mRE4UW/RUfvz0SRDwdFuj9ERYJAtUU79ohEr1NhRAi9tUVPCvREHPmeRFfRk0RNWL5EOHmMRGpJEkX2KjRF7DeRRKeHrETvq8lEAtrLRBbcY0QI6MhEbsESRQ598USVjaFE1428RMOlikTGeRBFs9H/RCwMhkTjkdpEaEJ5RMBjvEXnvcNEuNGuRFY3CkaEy69E2B3ARIa3IEVQvmJFkOa8Re8zLkV3qLFE+LinRPQGBkU/ZxdFxoQYRuHo1US9TWhEkheoRvIVc0XCDd9Ep9eiRfZ+RUZxToNF1TOIRGKUmETUR/tEZdNlRQ91CEXl0YZEOST/RAA7iUSdZJZE0gaGRImqQEX2P6FEQ87mRB8crUT9pThFu8iARF6KpkUN2NlE9bK9RE5ojERc5BBFDtH6RYNBoUUdFL9G6/qcRCqtpETYWJRF+d4QRV1mX0XJUb9EqfBJRViVzEZW8I5El9mpRf+pNkZC95dFOIPfRCzpHUXnwsJE9/FhRP7EkUS6VXNIlQeIRMocEEdt53lEXLAkRU3I5ERpxKxElL/8RDP1iEVIeDxFtjyQRSrGekQJOIJE+b4fRR1Bc0Sm9IBElZbiRJ7FzEZ1/YVGW5F4Rjst0ESrDvNEwzEyRX0FoESWYpdEuLLyR2aY0Eates9Fs7fJRtwQw0UMNW1GSOIQRbX9SUVaiYxEccAZRi7VgUVVTINEYYbfRN8ZeURAcoVFrbi5RNf7/EQmydNEPnzlRC9IhkYvAyZGLi9/RStwq0TvmN5FFUyCRKv/jERRIcVEhT2NRKGAkEQWyOxEsbPdRLPvXkWSCg5FTj6VRD+IlETCTG9ErS1FRuhVtkWZqrhGyZ8YRW/2HEZUSO9EiIomRdN7RUUQPqxEy+nERGMSR0n/detFq7o4RdO9BEW5201Iig4qRTGSj0avRJtEFu0+RRzyeUQRlYhF/nWsRGsvVEXgTgNGvVe7RIdwg0QUD5pEjOScRLsfaUUAVppE6hbtROY8gUUwNqJEJ0xuRSKW00VzHcRE/rPVRGiVvURSkLBEnrufRFLa/kQkQ8dHTVKmROlk0UR9SuBGRO4KRdmHvURe095Fpz+rRHkFrUS56Q9F0K0EReE/Tkb0myBFhPGhRJ3PrkQtEYJEQBl0RHxDZkSX51JFVeioROEsuEQZD51EldKzRKHrukQB7aFGiomMRO35XEYqw2FFWvCTRIQbmUU88sFFF3e7RClKE0UarHREvP6iRPt/ekT9me1HZUBARSOV4kYSl0hFNX46RVFQwUbwS3hE51+QREuakEWS66JEz+2GRJAgmUTHs4xEMcWQRJogCEVmGQtFjynMRIGvEkWKMX5EcCI+RSAHjERILrRErwbCRCSG6ES14ohEMniSRNRjkUTkE2tGGySQRGwj40TE5BFFJyyhRe+/uER1K+5Ek8BkRogHJUUKZi9F2CteRJZWEUbqBcZF7eJKRfEOs0TfBZ9E1YYkRYTz3ESv6gxFX8RSRUmVg0aoxY1EZerCRUWVAEXXT1ZFuH4URVPFA0UgDa1EG4ODSDlkn0SGDfdH7TK/RfUWgkTah39FKSeTROBOgUcrBypFQGxbRtjLl0Xsuc9EvEfeRAYArkTKBxNGdMdiRf9ImET/BxxG+ioVRWxV3USRpddEKzCvRGyMgkQoxppEHBoDRrsWX0UEncFEIcYJRXdDcUSdEnRFsGsTRcPqd0Rtr9FFcNkFRQFhckTEIYFFXBrcRAb7kkUJswRGhfedRY5ss0RcB8FEtICqRETgI0XkBLZEpbMFRfVfhkSx+hpFJ66vRKeUvETrSlBGvRZ/RRXzQ0X4jzJFti8kRQCfc0QMC6pFLOGgRMfkjkRaY+FH9rtpR+bW9EY5PhdFMeK4RcMrHUZw0AlFen0hRSX67UQwNrFEXDveR6T5gETovs5IQHNIR4DybEh6JOlH0eX+RhKbTkUF2L1GQTCTRONopEWBYQpGjSjGRKnQQEWXV5BEjhu/RLBavkS8db1FSWUuRbzYhET9oJZEJPDKRLBJBUYSoQ5FUjEoR0YZl0bpvj5G8TqHRa0ThUUHL5REjimIRJiyjUQYbQtHjI2ARiqkH0bnioJFCe+HRAz7jkTHOZxEObibRMTBtERTj2BGnhfXReTsdUUNuaBEBNsjRjTVwEXJPnBFqMqIRMUDiEW+MZ5ElLYyRcKBvUWUtgdFQEXBRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - qgkO4grBckAdokn1b8FyQHbVY0NQwnJA5KAqt6bCckBK8wtUPMNyQEZ3NUl6w3JAErSMwMXEckBQmY/2Q9JyQCble/q00nJAzm4+EknTckAiCqVYzt9yQCGrRH+34HJAN3QSAVHhckD0gta1UeJyQK4tP0eQ4nJA1NqdO8nxckA9kT5guPNyQPixnV6h9HJAuCsKDcL/ckDncDWCZABzQORWJlv6AHNAJphCUEoBc0DJziRIjQFzQLjZ0L7TAXNApE6F2dACc0BPZEoR+wNzQHWAI4cKEnNAHK0CEb0Sc0BYqIi7txNzQCDUBYMHFHNA3i3+5kwUc0AxVwgeeB9zQOZPNGWjIHNAXjT0Vzkhc0CQg9VNZSFzQAk4VIwQI3NA1pAQws4kc0B0KDx/zzJzQEKRNMQMM3NAJOGa/OZAc0CgX7MyeUFzQJ8P0mnbQnNAmrwEN0xDc0CsrpgmekRzQLnVvD9CU3NAbv8fE6VTc0C2RJlUh1RzQFiymYM5Y3NA9f5Burpyc0BMu/SjtnRzQFq43Y5NdXNA6nGX7XiAc0Aso/wkqYBzQCAfyRMOgXNAWBl0KYiQc0DXOqO+TZJzQHqFcrJilHNAhHXje/iUc0D+u++IjJVzQBjFCjW5oHNAzhgNJ02hc0D2smOeW6JzQKBqQEDnonNAToMSGQSlc0AqQAwvyLBzQCViLtt8sXNA8I7pzPOyc0CGyGhNuLNzQAlB9jENtHNAOuF6WPjAc0BlOVpw0MJzQNHdaBgmw3NACbeFAkLLc0D5llS/19FzQItdIFMx03NAnDPEzffTc0Cn5hyH49RzQF1fXXsO4HNAzpIJ2Tjhc0DtuDpFYeFzQOQWeaFA43NA2Oecci/yc0B0uHieYPNzQBpbamk49HNA3Icfyo30c0DyLRzzeAF0QDYLp3elAXRAVARwNowRdEDSySo0QBJ0QHoJ+RlME3RA1GZ8duITdEBQ32mOSSB0QDHkDhy5IXRA/Hcxl9kydEAKE83w91R0QBzTgOCNVXRAGL3ytrdgdEBQh2ZJCGJ0QDto+WROZHRAKmwpKiNwdECPJROpQXF0QPn/4TvMcXRAYCDijXtydECJbeycOnN0QGQxaSk7dXRAfyivm/iAdECuKcnCTYF0QIlbFDiSgnRAmA2cFxaQdEDUuZ58a5B0QPgPzgfRoHRAeE26YzehdEBARneWEKN0QNJ5xXMQq3RALio4XguwdEDphCJe5cB0QM43w1B6wXRAx9YfFyPEdEB6kcIFecR0QLuWHQC5xHRA0HmWnv3OdEDprs004tN0QHJDILnN1HRAtAOZ3PnfdEBTetcSuuB0QGRsqJO64XRA0Si3WIzzdEBmW6kT6QF1QOjy7HVdAnVA+A33tSQUdUB2F5RtnSJ1QEwS7QLoI3VA7n7L3cw1dUCYl/G1ElB1QKtx7dJNVHVAnNagX3ZVdUD3xC76D2B1QNXT8Vw3YXVAW++MdmZjdUBeWp4leHJ1QMFVpUBzc3VAanB8RI10dUBIlPXSVn11QMOYdpJ1gXVA0Hu+7a2BdUDBSQovp4N1QPy9Z4+chHVAW21k6byRdUC5Rj54PZN1QNAeY++zk3VApyVroj6YdUBQJtpC3J91QFYeJ6W4oXVA+VDiw++idUCk0OcgLLJ1QEFp3nLMwHVAVgo45PnBdUAlK/t9zdN1QIzqoLwO4XVAvGKxlwjidUBgQ/GlSQJ2QAES163RA3ZAEIOU3EsUdkCM6t34CxZ2QIjF8Z2KInZAj0IqQJAkdkCYWz7wSit2QOhktOMfMXZACA2m0FEzdkAuin+snjR2QILpzHIdQXZArT2yvxREdkCQHFVZeUR2QIvCoVIUUXZActhn6c1UdkAVaqZ7zWJ2QFCiDIW4Y3ZAkgqTltxkdkA4vmyCJmh2QCgopRHAa3ZAFDuB82eCdkAXNWRskYN2QOoSoK+fk3ZAJA00AqGjdkAOTatQwbJ2QAMIbyh9s3ZA6tAtEw20dkBKVNX+zs52QEirM9ja0nZAVA4KGfPhdkCcWj54kfN2QHYaHiI0AndAJHVtr1ANd0DYC8n1ABJ3QBxrJA+rEndAEpP0cfEXd0CK0rLZBhh3QC5bXlwOIndAyqaG2nQid0Cyh306DTV3QDpxDB+dQXdALiQEdRtFd0BI5GHYS1F3QArZvAaTUXdA3JB6tCdVd0AuZek8SGF3QMjnSPuQYXdAJCwhmDxjd0AGwY8uJ293QOBy1J48cXdAEP8OGUpzd0DCIv0keoJ3QNpA1uF7g3dAD3+MaQmSd0CQw24OTZR3QIxwflVonXdAWOLbAMKid0Daflu5HKh3QIgi785zrXdAyG4vz4rCd0APVI0KLcN3QBptdM3i0HdA3C3ywZASeEAa8cPiThV4QMTgJ+BuInhAOCbReQxCeEANaudrekV4QAFWNlPKUXhA8vcvE5VSeEDreSKTiFV4QDjz51TvV3hAsFVf4EtdeEAyQkAS+WB4QK27IKm3YXhAo+4G4LZieEAGbzAwQHR4QBQsERJddHhACpxFh4t0eEDM99kmx3R4QJB+Q9vkdHhAINVkiKKBeECQo5S1mYR4QH2GP7yZkXhACrZWCaeUeEBu1T6MzcB4QMt3eEy31HhAGk8XfMHzeEC6xhVaAvR4QL6Gp16N9XhAMZ9hT5oFeUCEH57a7zd5QIZx/pfMVHlA/45kPNpkeUAI/jheQXN5QCoSe/1wjXlA3vYKacuSeUBPmWQ7KZh5QOJLqpjBsnlAEpuiI0LUeUDlHdXDzNV5QNxYEqpP5HlAahm2mfgFekBcUe1NDDV6QJXcbcshQnpAFPkGludDekCAYzh8GkV6QBUcULAvUHpAAaMMPChVekBSuRNijHJ6QDrXOHkNtnpAocbamBnGekDezkn4Nu56QNxokt8oDntAbNEAr0wVe0CWzSzRWiV7QHqQUN9TMHtANMQnaMQze0A+QYoSF2h7QOgOX/ZobXtASu2IHCOVe0DuRmPNYrt7QH40hAoA5HtAdfPsxZjxe0BWcZozjPV7QGA3zdz3+HtAlqBwHVb+e0AciAVIkgF8QJgdbrnZAXxAYvl9bfUBfEBAuUoWmQV8QGaDIIKJEXxAcnagg9ARfEA2AM7KzUF8QD676J/aUXxAurwwDA9ifEByU+HdwbJ8QBq+ILBX4nxAhZEhehbyfEAUNqsrVvJ8QE6WFBBGAH1ARhVITf8BfUAyOrpJSwJ9QKgjyndGEn1AWqW/eDsifUAJFiVvnzF9QHoME459Nn1ABquoWS10fUCOMCglLcN9QLDHpqYk031AXoyv02rgfUDpsQDSkPV9QJ42ZCL5931ARri93EAvfkCEl/9YjFV+QIkcupbGV35AKinH1COOfkDqTR9w0ZN+QFZCnSWNsH5AXKtVikz0fkCcsWqvHwB/QIDjs6suEH9AFjTjhQwgf0CM6ZkxuXF/QL/8egSvgX9ALsTC7mKRf0BpgbU8lZN/QN8tcSdeoX9AFqMzJFaxf0DOPfCBSdJ/QKAUataDEYBAZTLHPTAUgECXuSkC3BaAQGp/yvCEGYBA1EuPSC0cgEATtXpSojqAQLC3oDQrPIBA5JO959Y+gEDoxpr26z+AQKgZxaTnUIBAlvdrUhRRgECiqO915FiAQMTjLUoOWYBANuAuPA9hgEBQP5JCKG+AQFXYFNgej4BA5lWhtBmUgEBLPoDs+6WAQFIVBLGEqYBAYOGhdVLBgED4y/uFU8mAQCUsq7+nzIBAkpmujlTPgEBPQi25TNGAQINApCcB0oBAvEdlU67UgEB70EqiSdmAQPaLFSZF4YBAiFNyKffogEA6xzesSe+AQDYQFqA+84BAScO8vD//gEDa0vuMPweBQIeGQfw9D4FAhElOxDQfgUBFaFUPOCeBQCL4URfxLYFAhIbWCtwugUAj82XWvTGBQKGiZcK7OYFAyDcgh/RFgUDDcsHA+EmBQL6TqwpcWIFA9uuQrtJhgUBu9+aeUWiBQGiCGGlVj4FA7JXg3lWXgUC61aVK56GBQO3p3J9tqIFAabkJe0qvgUDUQHsRBrKBQE27UTsJtoFAXqxvsQ66gUDOucwFKsyBQPPG+ozTzoFAWlfwEX/RgUD4ckK8ftOBQDDDINYU2YFAttuB/xPdgUDMpZSlhvGBQJ7d89kx9IFAgBV+rQAOgkD0AEeJABKCQFaoShTZGIJAfsQau9UggkAY1lF40SiCQHC4CKyhKYJAmKuNpKUtgkDmHytWozCCQOBxmNHQMIJAEpgL2ZE5gkCDDEut5jmCQG5IOx/qPYJArF8ciUOJgkBSP/ghRJGCQIG2tJg8mYJAjYTwCQ+hgkD4Cj4VPKGCQGzoLh8NqYJA2OJEKDOpgkCqvvDTSKmCQIbToGsJsYJAEGm9B6vVgkA0GDmGr/mCQCjgU2jnDoNA8cR92XkRg0Bc+I+XyBWDQEz/jnN6GYNA9DHxjsoZg0CK/uuhyR2DQLsJ9+dyIYNA8gAgwsYhg0CQqXynzCWDQB/HWcgNJoNAuKn1+nEpg0BCTEA4DyqDQHLmdRxqMYNA4Hk3f0Q0g0CHB6Q67TaDQNzlt4BrRoNAnVAZyG5Kg0BUA9WU5IGDQBrs0auT+INAsNh8kP9ohEA5VWEh/nCEQF33zCv2eIRA0ir7UPWAhEDfUb0vatmEQIMX1Q1q4YRADtQi82LphEBb4wgxNvGEQCTL1ndh8YRA8YVosTj5hEAgSPapWfmEQGSq4MotAYVAvrfoUqBhhUBxGvXWn2mFQNqXA2KYcYVAzIYDCph5hUAWNroakIGFQFJ6w9gluYZAQcDcUpEph0CeuqdxkjGHQHJ9HFCKOYdA9PIY0IlBh0B9tVOghUmHQN79ATjHsYdAOqSQ+Me5h0AUKml9v8GHQPil1khBFohAyM8/PEIaiEDWpOKl4V2IQGJDdJ/lYYhAwt0mV9WCiEAG/kcdf4WIQFQIQcgniIhA4UXUPNeKiECXnyLngI2IQA== + NrgMGZxjYkA/KJil8iNpQI8BR/y9MnFAlLmMQumSdECPXyNQFkR4QA== - + - eMZtRA5lKEUILKBE7riERKKYaUe3IVtEXxZbREOx/0a+TExEIIKQRYqnqUTeqr9EobmGRDP5UkXUhYxEJNtMRZg+pUQTpqZEqHcERalMZEXGcZFE1zJvRBueiEQbki1FotfURCQZDkegjJBEoxsTRue3W0QRKoFFov1yRDO1mkThNC1FRxyzRriQWkSx/GNEKHZ/RVeG10bZPGBEeLSIRFQQS0WYAQtFaUc8RFarvUX0oKhEPG1cRWD1ZkQlZ7lE+hdWRHc8lUQaTcpE4PvFRvBktUQa3OFE0Ve3RLlbKEddR71EtX00RnoGd0SIDNpF8/KSRByAo0UYg6JHf3S3RHwBWEQWm29Edh/LRf3M/ESpwglFbRSeRBgxf0V1JchFmKD/RBK2/0TfS0xE7WGcRE/sS0U2WF5Eun38RektlEQW4kFF1bgERRUYE0VhAMJEmDqCRGm4UEaeN4dE1q9BRCg6xUWEGApFPpqTRE50Y0SlkBtFMndaRFWLiUSq1otEtTlHRdlLIUUPiotEftuIRRuaJEeHq2xE2qBxRDXhjUUG4FxEDBwXRdZipEVuL6dE7A6XRZHTaERL1LREL/eJRCsKnkQhSzhFLhqvRN7ei0RNnZBEiItyRMZkn0Syqu5EhanOROX2uUQ1S2tEhtV1RP0ikESFSbREBHiSRev3AEVEBM9FU0AIRWDLA0W+CEFF74cqRe87f0QDF49ESMmnRCW72kQE0tZE6VU+RlQNuUSe/eFEeqARRorcyERpyrlE7wGIRc9lIkbFVQJFEPaDRIq4UkTdF7RE4iMKRaHxVkRnE8BE1BGNRBKWaUTrx05E7FP8RPvejkSlGoRExIENRfcNiUUUCuFEPRigRFZtrkQ+HclEXd/IRVZ5k0UlJbZGS/7ARECAd0RdcIZFgwh9RCv3QkXSke5EiJ4tRs/KGUXzeo5GLPjkRFo0AkXjP51FLIGFRCEMnkibrSNHkiYnRW747kSD+oBE4JKJRXGtI0WYxYlFXCKVRKrI00R5Nw5FHbrBRg94VkZTOCRGQ8XGRArr8kTEMVZFIhrNROCr40dY6KNG6PW7RjdvV0VLoYpGjlvyRHz8cEQXowxF5YwaRtluPkWfkXVE5c/rRN2Wk0SK0stELEW8RIzHtERHbRBH3uN4Rme3BkV+rbFEx26LReKuikSh1nFEh1+yRDhtgURfemtFpy5gRAbpBUZW/oZFsvJgRmue4UQ6HgFGi4kWRQgc2EQSb/dEk6pNRFcqTER4aBNFC8A2SdevEEV/MZxE8pEpRTzhQEi0/7dEhQmFRrHvx0Tb0klFtUNaRB/hRUWXc+JF8BbPRKnXj0TZVIRFJTOoRHypnkSzSLxGc/0yRoWdJEW4UTZFcbvWRZly/EQgx9JE+oytRPYUwkfbo6NELE5mRHNoskYX+XJE2rowRejrnkRVucVFpuKoRF6DHEV9DKREu/kHRtiZCkVj6cpEZqVYRF9RXESyAsREYIU1RRsd2kQlBXhEqpOuRZoYlEbY5alEw8ylRFo0fkQ8eipGSbcBRVZAiEW2uYJEl72LRTrz3EUs7atESRKpRCeZtkQZUdtHtcscRcmFx0Zf/2hFaYHiRM7YlkZXBD9Fr76NROBNjkQtToVEpaiARMiAp0SEiYtEJ23kRGeknkRRFYBE+9GBROgGdUSZaa5EgkNyRERVWkR+hkpEDj5oRBzQbUYhdsxEEb46Rc+TjEXHSI1EDt8uRqn4ekQgghJFIU0YRRY8r0RluiNHLzjrRgZ7K0bWrYtF8tWMRP40SURv+cpEKt2UROVjhESnMCJFYnB4Rluek0S4CrpFtVycRKgC5ETLqVhFv62wRHW1bkSnt+hEHbxiSE2W2kcQdFFFFgzZRJ+XbEfvosFEhJVsRAziQkasnI9FLN28RHq1kkScfZZEbaAcRgVEEEUwQtFEXfgNRlMq6ERuE61EY16YRAYxoUSlW3hEblD9RdTSb0WNjCtF+B37RH6NbkTYCn9FVfCsRNRBR0U4qOpExdwtRSm9QEaJCa9FmIXDRJDPPEUh3rNEd9l0RCXUh0RO3i1FkRVsRIOe5URUe9hEU1cqRTHctURoxzdGLwdBRT2dOUU1S2dFFyqyRPJVfUT7+oBE3+p8RLQzjUWOQulE48/XR6MATEchNtdG90qfRb5Sx0WdtvxEpy+8RIsFoESjk85EnkiERCjitUQvB6ZEbYW/R/zWgUiQ4zVHJqUbSCm/g0c11cRGuRWCRo8GQUWBaXZFcaG4RUr+HUVqjRlFQA9cRI5ykUQJ0QFFwxe9RIsVoUSfyWdEpl7KRSQcIUUoZ9pEiGFmROihGEfl641GGH9BRsFfhUXCbGFFJ2WuRLBqkkSgROREu+UARysLbkYCUv5FKYphRWyDWETM/xNF/eZBRjL4wkU1uYRFLvW7RPEOg0RZfO1FSWSyRfRVYkWJdg5Fa98HRfdGekRtc5VErmy2RI2fC0X2ZuREKj2IRHZ4h0Q= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - GINEanjAckC0XYJ7b8FyQDLz9b5QwnJAQK30VqfCckAqp+1XPMNyQI5iBCLGxHJAqf9uV1vFckDwDzWVQ9JyQFITLCpJ03JA7gIyDXXTckD+kOHbz99yQLq5A5m44HJA+O1Tz0vhckBqVW16UOJyQD7S8NSR4nJAIIcgMyTjckAkLow/zPFyQN5Kn+S283JAXEivoKL0ckCXLHXvwf9yQCqSlZhjAHNASt6u2PgAc0C0xCOjjAFzQJGd6zXUAXNA5NfQQ9QCc0DAsb2D+gNzQIxYIgQNEnNACq6/9IMSc0AXqis6vRJzQMB8pw/7E3NAzqo0tU0Uc0CLqqWYeR9zQJJHSCSlIHNA7L56izkhc0B63VyjZiFzQGz0vxbKInNAl4TVvQ8jc0CEA6dnzyRzQCDPIUJIMXNA5DBuUa4yc0A5AneQzzJzQCo0qZsJM3NAZlJC3KMzc0CW+syd1zNzQNLsKfX6M3NA8MPVMtw0c0DgmpAp5UBzQDYAKwd5QXNASVrbQ6JBc0DWh0zd20JzQHSt+Nl6RHNA5gqyRaRTc0BvjBZKhlRzQO9gQniLYHNApmjC0x1ic0BCuQp6O2NzQHBxKDxScnNAdscNBbpyc0AEEXVruXRzQBR04M9LdXNAr5u0TXmAc0DTKHzZpIBzQHimwr4MgXNAYxkIzl+Cc0D//dj6iJBzQBd+/ltNknNAvrI1SGKUc0AUREMM+JRzQBIsQ66NlXNANHXQSbmgc0CuTJ2IW6JzQGpI/tbmonNAo9o8HwWlc0DAOJgj9LJzQMoxr/q2s3NAwB2aJQ20c0AKv1k/+cBzQCGQZhXPwnNAMrYEsCbDc0BYJGh5PctzQMyh/QPZ0XNA551SsDvTc0Acq12O+NNzQCPsJ/bh1HNAuegXczjhc0CuCnAEY+FzQC5Iq1Lo4XNAdnONaUDjc0BmgJw0SOtzQGKGpN0u8nNAHu3Pgbfyc0Dsxe4+YPNzQOhXkNs19HNAd9ysleMAdECk2QIeeQF0QOKp1iikAXRAMux2l4kRdEAs5Xk89xF0QJM+XYRAEnRAHB0EZ3gSdECUhz5gTRN0QIPFFlV4FHRAZ5m0zbkhdEAbgFtNUjB0QDwXeXR5Q3RADAxZifdUdEAJz8M/jFV0QN7qc8y4YHRAeLf15whidEAWisIcD2R0QEe+eCpOZHRAbJ9E7CFwdEDK0/QQQXF0QAQpuMI6c3RA7/4I9zd1dEB+LpTu94B0QGrTIH9OgXRApF30o4+CdECS/tqLFpB0QDSP+CPQoHRA4/XbbjmhdECnqlPzuaJ0QG7UuzgOo3RA9h3GJ2OldEAcIDqsD6t0QOIzAfILsHRAO5o8Af6ydEAqxwd048B0QLIG9xQRw3RAW6/+pyPEdECYpmt9esR0QFNDhAi5xHRA3K0Px/zOdEBX2EOm49N0QEbtiV541HRAOIJgdMrUdECJU1H0I+F0QBiI4Pe44XRA785L5xzidECqsLHKyOJ0QKjWIllP5XRAvjw+LI3zdECySfhBevR0QAgirLRmAXVArlliJ+kBdUDU/JdzXQJ1QI7tHRhpEnVAgDrG4SMUdUDASk7ZnCJ1QHKSdKTmI3VAZq6aBsw1dUA0EbbLtEF1QHC25ZiCUXVAHPpxzHZVdUBoEz0WDWB1QDAYFfk3YXVAmFf7+mVjdUDczu87d3J1QHtgNgF2c3VAujDtKY10dUDmO49yVn11QG4ev5F6gXVAGFMXIK6BdUAtZ3Z1poN1QOAZyrObhHVAn4d75LqRdUD8tihkcpJ1QEtYFA09k3VAjgdk37OTdUDaE6+EPph1QN4rDQ6aoHVAFl39a7ahdUAEV2GQKrJ1QB6D9KQ4s3VALrM+gWPBdUBaE/VZ+MF1QAx2Rd3N03VAJts3iuTfdUBCXdztDuF1QGIQAvQI4nVAStyqE0kCdkAxkIhf0AN2QFxYOTJOFHZAevg7vgsWdkCSqjfniSJ2QGfY07WQJHZAOYGgPksrdkDSYwb0HzF2QFYO+TxUM3ZAFYIICJs0dkCmhWfzHUF2QDNsa7UPQ3ZAyCllvXlEdkBihw6jylB2QIqfVh0SUXZA3quLxM1UdkClx9IIzGJ2QNRLara4Y3ZAkK1KTdxkdkASu+kYKWh2QCluUdO/a3ZAPD7bWmaCdkDjOE7x6YJ2QD9GPe+Qg3ZANPOiaMKDdkBeE/ZQn5N2QCJLqN64k3ZAvGjzSKCjdkCEOQt1wLJ2QAYLHjQMtHZAwohsEM7OdkDrqRjA2tJ2QEslQezx4XZA+KFBuI/zdkA2X2zBMwJ3QOBXylhRDXdASqtT+QASd0BU9uEUqhJ3QFbRmQ8FGHdAMqIBSQ4id0B8UvzScSJ3QNvi+A8NNXdAZjnSPZ1Bd0Asq+76GkV3QPJUzsZJUXdAtOvnpZJRd0AOEi2XKlV3QATvglBKYXdAoAcl4Y9hd0CSUHTPomF3QFDF8407Y3dAnmVY1Sdvd0Ce8tA0PXF3QJSmRYhLc3dA9vZwVXaCd0CkoauEeoN3QDI8YO9LlHdAcIPHgmidd0CI9mSywaJ3QMYGd9QbqHdADKjUyIrCd0BWVx0/5NB3QEaJWXNv0ndAvQUdqE/yd0A82/huSxV4QACib1ltInhALX2O5aQkeEBWBClADEJ4QNglUCcQRHhAKDy+Y3pFeEAAZTIcy1F4QFLHTyaVUnhAPUzC8ohVeECGWZyy7ld4QPAvU2o3XXhAUPXzLvlgeEDD5YbCtmF4QDskePUUdHhAwkk3kkV0eEDad2DNXHR4QNqhBFyLdHhA5gIbhr90eEDCs70n23R4QLzKXCukgXhArPUWRJmEeEB6u9/Ml5F4QGPW7fKnlHhAeg3827qkeEDSokiVU7N4QAorgU7NwHhAt47qkbfUeED+nVPkAvR4QNhKFJ2M9XhAsidKDJkFeUDq4mpN9jd5QPhEfBDNVHlA3L2VYttkeUAK7Dw+RHN5QOC+iBxxjXlAzmOFYcqSeUAv2s3EJZh5QNQjBPFtnXlAeJ3AA7+yeUD//0fWQdR5QLgVT3vM1XlA6uuVMr7ieUD7oo9ETuR5QO/OGUUMNXpA+U9+iudDekBANatSGkV6QIlxdgcmVXpArXI+OzllekAxu5wzDbZ6QFoaBTotw3pAnEw/PRvGekD/dfE5Qs56QIgfGVhl4XpAeJRSgzfuekBQGSZcGPF6QD1v54dZ8XpAbrkPsCoOe0DeQtxzTBV7QJvitzJaJXtAiG0VH8Qze0A+0caTIpV7QNoRrecxpXtAGQ36o2G7e0Am/rnsK9J7QC4QLsj+43tAIU1dLYz1e0AO6D8NVf57QF/4t0qTAXxA3jP3stoBfED2kXzO+gF8QCac6RuaBXxA7Kgb+YYRfECCqjpM0BF8QA6rtiLNQXxAJx+Q3w1ifEA2eihBBHN8QCOpCSm9snxALm+KYs3VfEAsZajXV+J8QBzZOWEU8nxAwMf/61XyfEDGjb0XRwB9QACWOwUCAn1AjEbXlksCfUBV40X0RBJ9QAzJ01w8In1AlFh9S6IxfUBM9E8yVpR9QAnipTktw31AnOax62vgfUD4Fp+SkfV9QJIbaJOGAn5AXqfDzY9VfkBW9t0leKJ+QDZDFlWNsH5A911+99XvfkBqQ493HwB/QD5+QtAvEH9A3IHChA4gf0Dh7rYBt3F/QJgn+a5jkX9ABFh0WV6hf0AGvF59VrF/QBy8MxtE0n9A5tOF5IMRgEAYoNU3MBSAQFIKryTbFoBA+iI+K4MZgECSQEXILxyAQBQ848DTHoBAl9fX6uUpgEAO4d4n6S+AQMgyPybrN4BAZNFaryk8gEA57Vc52D6AQDwO/6f2SIBAqFvqEOdQgEBdte2LFFGAQD6bRosOWYBAlHUiig9hgEAaxGZkbWOAQI6eOrcpb4BA/kW2cSh3gEDbJUoRKH+AQFRToF/7ioBAPAGEWR6PgEBk/J4gbZGAQFEh2eXFloBAhYPewYapgEAP36KkEq+AQH6XlZlSwYBAw2OtlA/GgEC/x0SUU8mAQFIf4gaozIBAMvWzwlXPgEAx37UgLdGAQMCNL6NM0YBA9EFkFGDRgEAO95SlAtKAQKKXrBdK2YBA1dEV/0ThgEB80K4g9+iAQHJXpYo+84BAPNnchj//gEBnuFk7QAeBQKZacrM8D4FACHusoDQfgUDKV+t1NSeBQEaf4gi9MYFAVv+sm/NFgUBaznzc90mBQPVu3TX8TYFAemEPgltYgUCMuhW20WGBQGZXgltVj4FAkCNmU1KXgUBg258156GBQASbB5htqIFAfAdXaUqvgUD4euNrBrKBQEz9Os4JtoFA5ljjDA66gUBfZa2QKcyBQH29inPVzoFALoDO4nzRgUCmHKqiftOBQNOsG9QT2YFA46HghBfdgUCon9dcD+GBQGyz1E2G8YFA0ud6aTL0gUCA4c2K/w2CQLgU1fIEEoJATmAtstgYgkCc5rh01iCCQNef5xfSKIJAIhSIl6IpgkCCzWHFpC2CQDkUex+lMIJAamhKv+c5gkDUa3uF7D2CQNwHAqvMboJAr5qTaEOJgkAn7c4FRJGCQD4xIw0fmYJAiNEZhDyZgkDS2DRtVZmCQBJ/Og8PoYJAVzKJUDuhgkAA+PGAC6mCQAgF6RI1qYJAO4tH7635gkCmFzJCOwyDQNCx/e15EYNA7AqJg8gVg0D7gLmEehmDQJzFbw7LGYNAMUs/y8odg0CYzNLuciGDQLQjbpSKIYNA8MUvPsUhg0BKapoZySWDQBiGnCsNJoNAK2Pqs3Epg0BlfqzqESqDQMSru4IXLoNAym9JPWoxg0DoBXYClzGDQH7aPnprRoNATtnexW9Kg0BQWf/I4IGDQLK+/6uU+INAgL6RFShZhEBohn2o/2iEQIJNXTv+cIRAMEhqd/l4hEBhiZBCatmEQHbh5Jhp4YRAfLq51WLphEAsA6ahNvGEQOVDcR1k8YRATvtihTb5hEAIK0BnW/mEQOqFe+suAYVAyEgoaS0JhUC/XwBdoGGFQGbgaKWgaYVACGEg4plxhUCHmtEEmnmFQGwL/wORgYVA3EaNuiO5hkBOrJ1kkSmHQFzzyqqRMYdAzgs0u4k5h0CosIKTXEGHQMbKsHvHsYdAUjaWrsi5h0CnuZS6v8GHQG73qL/CyYdA6MVdUEAWiEAMn1zkQhqIQH43hojlYYhAB5z4heJpiECvoe8t0YKIQHuGlPZ+hYhA3HYIXCyIiECMm/oJ2IqIQA== + NrgMGZxjYkCzxYFkpHFwQEMdzoN8QnFAQh3Og3yCdkB+v0ZZLGN4QEJ7qtfUk31AbH1GtpqTf0BbkLVjYsqCQPoBHAJGEoRAW7+jjQ5ThkBeL+Ye0qqIQFvukbe624lAiVloIR7jikDs8hJQ/JOMQEOsSBmW445A9pAAPVQOkEChbZshITaRQHKAQNRv2pFAt4LcIkdSkkCJAxOnoG6TQAFzrsByVpRACRsKvPYylUBenJ68rlaWQLsxb8o8v5ZAELMDy/Til0AYW1/GeL+YQJDK+t9Kp5lAYksxZKTDmkCnTc2yezubQHhgcmXK35tAIz0NSpcHnUD4d2l6IKSdQKNUBF/ty55AVaFZdlykn0B2a6IVBxSgQDVbzTtBYKBANvcdIDL2oECO5v9CZIahQPaCmSpd2KFAXxe+bIKYokCll5Eoe9iiQB0PXjiQfqNAZSMNM6a6o0BkIw0zpmKkQFeu9jbBfKRAiRv2AbxkpUCwOSk+5KKlQA== - + - ONZgRMKeHUWMdI9EhhjGRBKvQUc6ptNEO/xTROOHEkcQlIBFGH+rRI0PMUX43+hElOKLRB1bREVu9DlFXapaRPGDUEWQCnFE65bzRGcl50R3DBhFBgZpRHili0RUZX9FfiGqRDRfBEfEOZREdKdjRPL4MEYmsztFKIjHRERxlUSN2BJFQHq4RofqWkS4O7pEYtuuROqMi0UGO75E2viURF4aAUfyPIZESw5yRGukmESwVHxE47pRRMYcqUSXXI5FXdFfRBOgPUXpUxlGaHiVRTszxUSb05dE0gV1RPE+/kSCvI9EIUrXRGj7tUQgrNtEccPbRuHarESqi9FEKEaRRDkVGUXbUFVHwYPpROu8O0aFJZlEhkwURoQ05EUBDPhHatQHRWibTEbyiiRF0n8lRU5rhUQPO5JFqsiwRTgFT0UmjP5EUQRrRHFdnURbapRFgd39RQXYgUSkjmREBYoSRTb3k0Rbk01FWSFyRA4wfUQvyYNEGTimRKoTkEYBaM5ErKW1REupfETBBLRFqAGdRJ5nN0XV2Y5E3DYBRYZ6Y0T+c6VEr9GlRIwF0URSYpRFh4JeRXMrakRPHvdEiwCkRQZzQke5k4tFf7rFRHaEMEX9jPdFUNCIRE9f00U4bARF3j6FRN4VyEQlNaVEA3KIRCQHKkVZ/5lE8gCPRNOChUSJbm9EyACmRMoVjkQ6pv1EVuDTRMD0qkR8bHFEfwj3RCCyc0T6j+9EAxOsRN5gh0Tbz+5EUP3nRbTggkS1N9VEeEvKRLTd1EVtZuRE/QEKRaixY0WOdqlEW2YERTq5c0RY0Z9EHED2RENkqEQTRzNF9YKFRirXC0VDAwZFgQsDRuRiwkTS9tREii6oRcKNKUZdpodE/N2WRL3to0TMI5REOYXhRCFFGkUr7UdEQ/SlRO5tuUTVz3FEOeRkRC4M3UTlGI1EZKxvRBQ8g0T6ZxxFYuWBRUsq10S++ZpEBinDROfM6UTy7w9GC8OZRcHDtUYAIcFEEVVqROl8x0VhJIdE2D1PRdG1s0Ru0jVF3oIMRp97HEUopH1GRLabRAch1URJMYdFSsesRDo1j0TkhrJI4CCTRAsVVUd8dddEjSlSRUvhC0VXCYdF1yroRJ3csUUZhqNE8eD2RL2GEEXyXblG1zScRrnNU0Zzw1tFobFtRY9trET8n+tH+FXBRox2x0b8xpJFgSd7RtUVt0RmzGdERlkqRVoJu0QlDhpGw5NqRX3gW0T4ecVEhNxlROTArETEwIlEiCk9R3rEzkYQvMhFC9zgRJnbfEQGGK5En2aORJUbpkSyx5hFHlNrRD9dCEUQgn1E8Ek4RlVEq0U2SZ1GJ8gVRcjVHkbJEQlFL8/3RNpoXEXvP4BEzXMHRaYJVEWjLkNJcDoSRREn+UQJPgNFPXlISIvqrkSBbIxG+5WKRM+4iUTaDvtEeQ2JRWPkVEVuNLJF/W/KRB/yakRQRqNFUPTDRK5etURz8R5HugmuRnkj/kUwmwNFwtdfRf1EvUVI7NZEmON8RE4RqkRdxcBHhOaFRJlWu0bXPvBEDKGARO+VrEXJk6ZEKYquRKFJtUS6zeZE0GYpRXrCAEWKI65Esha6ROXRK0anTjhFjN90RNDqT0Xyk6ZEUTwIRdR7QkTUUJlE4UmSRp77mUSMo5xEwVdURsbfukSXfJ1FrDqKRLBMYkV2KedFeq6xRN66gETuu8NEvddpRC8i1Udrug1FfqPaRvVyYUXe8SdF4XevRmLKYUUH4ZdEGed+RBbLj0TnfoJEtWF3RHg5/ETQCF9EA9DgRDafjUTv7mpEhS5dRKehMUb+9t5EwsBVRQIshkV2SDhGdhNARaLKAUWHSqNE/96FR1+zREfuWYtGLnL9RfffFUUXT8BEH1LKRKfUWkSc/XxEfhKkRAAF20Qrd6BE181FRXAWfkaQioZFaimXRB9fZkQAefxEzyCORDtkkUR203hEQDE/Rb63G0WE/1tExeLqRHz6r0QNVXZIHBN4RA9h6Ucur5JFxTJ4RbQgkEQ0d29HiNYqRW1bA0VP/iVGvD+VRU8Gg0SvJbhEmo8HRq/++0TnkOBE4NMPRqH21ERLPNZEreehRUs3OEXIc25Ehi0ZRV3/lUQlSbFFeWSeRD6cTEXpuwdFB24oRUOZgkax191FF9jcRMsCrUSnpZREWo2MRJ3xf0SkO0RFo2jzRL6ziEQQavlEiIQHReF6fEWISftEo4FBRu78YEWQ/i1FC7FbRX/2kkQnwXNEaTVXRfJd50SOPKRE46zKR0WGSEdtlDxEKlbXRvHB/USDHtJFVo/rRduN2UQrLiVFsj+WRNOPikQ0MdhHWTI3SO8KPUcUbsZH4G8KRxOf0EalT/tEG+8eRmhaTEU1QbtFTRgCRqnOh0XwmdREPXYhRfaN1EQZ0vtEOWCpROuPhUTpPtVEDOtbREjP3EWJrTBFsQrQRDHkFkdCFXZGJx0mRjMJhEU/BIlFBQl1ROK43EQleoxEuUuaRED19kYynYFGd4sMRm7teUVKzItEZPjDRK+YL0aHQKxF4tE8Ray+n0TkKORFHSF2RT2dKkUsgIZEVr2aRQauZUW1P6JEZ4ZwRIOYdkXbaWRF3aXSRDWTlUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - XpU2xG3BckBHv6QmUcJyQGbJLy/jwnJAZsTaODzDckBqWAQMxsRyQHBTBbxD0nJAYcj53kfTckAaL5Mrd9NyQEiYl4zO33JADUb5crngckDf4nBuTOFyQKybWQdQ4nJAjB7iYo/ickCw874pJeNyQANGOqTK8XJAsx1l97TzckAG0OQ1o/RyQLlh9RVkAHNAA33shfgAc0Dl62Q1SwFzQAyHegyOAXNAMKJuntMBc0Ag9PwV0gJzQMF8KdT6A3NASnje2LwSc0AaQdHgBRRzQFhdPmpPFHNA4re4KHkfc0D6rIKVoyBzQDIPmTo5IXNAoZ9x2Moic0C4YE2WESNzQCojabEEJHNAiJ7sAc4kc0B2f3P4RzFzQFS9GopmMnNA1okmUM8yc0BVRiTZNDRzQMijtDC4P3NACW7rpUVAc0AssZ9o5EBzQIK0vjt4QXNAfvXyG91Cc0AMTn7+HUNzQHStP3p6RHNAXAdlu5pRc0BCb0OHpFNzQNayCAyHVHNA1BhYWR1ic0D/ihUtOWNzQCJFJhhRcnNACNDdALlyc0Ai4K5nuHRzQMGcNKJMdXNAll3aFHmAc0ASWLeBpIBzQIIVqiwOgXNATO+oBF6Cc0CiN+w4iJBzQPzv439NknNADt2thWOUc0A4rf2u95RzQBowXfK4oHNAg6m2OHmhc0CCPv+6W6JzQAiWitrmonNA7IOY9QOlc0DMR3Fv9LJzQB2ZcBC3s3NArv8K7wy0c0Bn3fm6ZMBzQBLgMg76wHNAyOCznNDCc0AhUt5x9cJzQNT2y8glw3NAAc8AoT/Lc0AWrfLg1tFzQADo4i8603NAM+Vg0PXTc0AgQDmN4tRzQKrOV2A44XNAtgy044vhc0D+GpLTQuNzQPq30IDw5HNARdIWDYvxc0AIMKyXL/JzQKWCdhC38nNAIYCIPWDzc0BkENp2NvRzQPHLXw15AXRAFNuoMqUBdED3V0rxihF0QM5AwTZAEnRAtZGpIU0TdEBGe7BNuCF0QBDu+51TMHRAGJpaSFNAdEBGiYg791R0QBxpi7SNVXRAZb+I9rdgdEA+YzQsCmJ0QAi9oblPZHRAa/sPOyJwdED0QjNHQXF0QOhJPss6c3RAaJJE5TZ1dEBk3B/g+IB0QPh+RvJOgXRATo6vDCaDdECUQBNhFpB0QDByPs3PoHRArGMyzreidEDeAQC1zaJ0QCZ47kMPo3RA2MCjJRCrdECOya5MCbB0QAQ5TioYs3RABhnR6uLAdEBUW2NQecF0QC6VPZokxHRALGxfBbnEdECr7FHW/M50QCxUsxHh03RAGOWtzMzUdEC6/Pgx+990QLagf6i44XRA1q4Uih3idEB0BTCpyeJ0QLzWrMtO5XRATBsqFgPydECQbSkrjfN0QCLjRKvMAHVAJEuKamMBdUDvM3kC6gF1QLiDCU9dAnVA/1qpyWoSdUAA9OH2IxR1QD0mK0GdInVAiTxQvOgjdUCdhE/OzDV1QMzaNoKyQXVA/AIHbU5UdUD2kwTOd1V1QBZipZA4YXVAjl1ZtGZjdUDdJxybeHJ1QDIvJ3Nzc3VA+ogivY10dUC6iFHTeIF1QCFvS+WtgXVAJP2S9KaDdUAASWdBm4R1QHBPoza+kXVAs9UMq7STdUAI+KUrPZh1QHNAHHCXnXVAsKx9NJKgdUDIbSDntqF1QOAZqdaVsHVADjaib3uzdUDWIDcz98F1QBQshOLN03VAfjeUyQ7hdUCwnV99COJ1QHPMTSFIAnZAQpp3rNEDdkBIJFGd5QR2QALjPFRNFHZAR0CGHQwWdkAISsbNiiJ2QIiZxryQJHZABHLDTksrdkAV+i+lHzF2QPgY3tNSM3ZAxLcEnZczdkADnhK5njR2QBC9T3odQXZAae4pD3pEdkCTCq/Zy1B2QFaDqm0SUXZABl7iK85UdkCwp3eszGJ2QJRppIe4Y3ZAbDEDgNpkdkC4og+cv2t2QJRAIiw/gnZAaf2TAnGDdkBs9dj+kIN2QDX4Knyfk3ZABvb7taCjdkA+FICWwLJ2QMgP1cd6s3ZAfAfw8Ay0dkDZ9FNAz852QDQDO+va0nZAqAmLFPPhdkBDO4aU6uJ2QBo+mSWR83ZAVaTdXjUCd0BwPzcPUQ13QB0ZaaMAEndAri1UuaoSd0DOasOe8hd3QJw6svwGGHdA09rn8w4id0D6kZZ5cSJ3QLfcYhcNNXdAX3TqT51Bd0Ch5XcFG0V3QO0MhMVKUXdAYeK+15JRd0AlOczuK1V3QMC9bNSOYXdAtCVEZqBhd0Ac9cKoPGN3QC6cjL8mb3dA74Lx1klzd0D0hblGeIJ3QGqNtdd5g3dA6YUQE0yUd0BARvJNaJ13QF7ob2DBondAWyIQ+Rqod0BHHY5GZa13QMALOU53rXdAv8z85XDSd0Css+Ml6uB3QGAsfH0n43dAf/apu1Hyd0CmQPpSbSJ4QGB2+8wKQnhAuDepqHpFeEDe2Vr9ylF4QDNQNFOVUnhAKPCArodVeEDY93x/71d4QIoI+V43XXhAVijA90xdeEBc2T1i+WB4QPxO4H22YXhAJJjqhyVieEDMLyukZ3R4QI0eg2eLdHhAgHCwBfJ0eECCGM+npYF4QPaGILaZhHhAHOQGqpaReEBUMKWnp5R4QFI1io65pHhAqOJyrtOyeEDbIwjay8B4QCY1In73wXhApn02IbfUeEDgOd+aA/R4QFb/UHmM9XhA5GjKCpkFeUDwgHW3jUJ5QH5D+U/7Q3lAX6ShL8xUeUBGpyIMQ3N5QCixdipxjXlAmOQ5WTmPeUDMTpFnypJ5QA4GVCommHlA1sM/622deUA/GFrDxKJ5QAL88HzBsnlAhpAA98/CeUBdZKPzQdR5QF6KXdvO1XlAcD2O907keUDqmXISGuh5QGZsllH6BXpAYxyuNQw1ekCSUvek50N6QJLbVnEaRXpAm61mtiZVekAWGc2SDbZ6QAz2Wgwtw3pACpYUixvGekC4YXYwQs56QEeyGJDZ03pAKI+z59LaekCGhNfQNe56QFBgDp8rDntAdK9+vkwVe0DabvymWCV7QP26H8tTMHtAtIAP5MIze0B856fCXFJ7QOIB8cgklXtAfM8+Xzuee0BUPl5gYbt7QIx7sLJpw3tA3jXXqb7Re0DGH9EJueN7QPTLuFP/43tAM7Fn8pXxe0AbhzhJjPV7QFh4Ta/7+HtAgMATgtoBfEAnsyw4mgV8QAI6RBOLEXxADvekI9ERfECycb2GfRJ8QA7Xjq7MQXxAFr4qxA1ifECoo1fZv7J8QIp1yfVX4nxASyA0gxjyfECcJyN1VfJ8QMOchG9GAH1ATNiaAQMCfUA8/IoqSwJ9QMSiDaxGEn1AhOsNsj4ifUA5+bvNMHR9QCoba35alH1AAnzBDi/DfUD61O5/a+B9QH7+j83Y4n1ApOgZKZD1fUC6ttZlQi9+QPTDChqOVX5A3TZCc8NXfkDSqNmwIAB/QCLgQWr4A39ABQKT2g4gf0ASAAvguHF/QEEMXm2kg39AyXETJWORf0A817JTppF/QBpHVr5goX9A2LPBXlWxf0AytJWSOLx/QE70ouODEYBAmsQPEDAUgEAd8eVS2haAQCYWV/eCGYBAXquX4DAcgECgVWJmLDyAQJaCr77XPoBAwM0nOeo/gEA9zrZp70iAQLOB4crmUIBAyqyUQhNRgEDlqpzk6ViAQGbJhwMOWYBAoB9IJyFZgEAQD5awKW+AQIioOk0ej4BA6lPYIRuUgEAMF0F+A5WAQLyW9dz7pYBAvvkZJIipgEDSB96SUsGAQCYKCp1TyYBAsp5iHKjMgEA/gnC3386AQOopBKxWz4BAaJMuAizRgEAucoWITNGAQHfJBK1g0YBA1qHY4QDSgEDi/Hx5StmAQNWOdeJE4YBAmggqpFbhgEBGoyR49uiAQEznkXxL74BAuaCU5zzzgECo4NjwP/+AQMxDrdpAB4FAmKT/8DwPgUCKTsOdNB+BQJAGlPw1J4FASlQioe4rgUCyegOS5C2BQPzKxBXcLoFAoswbpvRFgUCO6lZl90mBQLq9YxxcWIFADmGKvlWPgUBhG9ZWVpeBQMSDfitUn4FAfNVMGeihgUA0J+ACbqiBQC5oc0FKr4FAIh4rWgaygUBA+9ufCbaBQKOumroNuoFADUpD2yvMgUCrEV7N086BQKgH/7J90YFAVNb2MH3TgUCm2F12E9mBQHCtDVoY3YFAov8+YIbxgUB3M4Z9AwmCQJOWXdj/DYJA/zghqQMSgkD+YMa22BiCQKLpi3rXIIJALgdrrdEogkCbMuRNoimCQJJSt12mLYJAQvQuaqQwgkA2ZHk96DmCQADHfGXpPYJAcgQr+KdngkCErJQjOWmCQCIMo39DiYJAMyjb2UORgkBsunprJpSCQMhI/9E8mYJAnqZqbw+hgkCpY6aMOqGCQNJ3NIcOqYJAeM0fnzSpgkBNGdYPB7GCQPBQfoYuzoJAln5Ol6/5gkAXbmPUOgyDQNzosy7mDoNANlMO6XkRg0A66bupyBWDQKgmUYR6GYNANvuF2soZg0Av4qKgzR2DQNKAXwZzIYNAhNHLzokhg0B2SWCJxiGDQMId/gjIJYNAdlZJWQ0mg0Dof1l4cSmDQKFtOsUQKoNARuYhpgcug0BQWf+DajGDQOI4HByQMYNAzThyYg8yg0A0pbCrakaDQMQqujFvSoNAmI0uIpdQg0DQ8KVw5YGDQHFoySRKg4NA4b2OreuZg0CGOLMRlfiDQOTWqhwAaYRAqrr//f1whEB5tNsa+3iEQHoB6Uhq2YRAnkHgUGrhhEBw30zgY+mEQJ7RIDA28YRAZ5O/eGPxhEDKFN8VNfmEQLhIbFBa+YRAgHvNby8BhUCn20+GoGGFQJQqBVmgaYVA9rI97JhxhUAkvf45tXOFQJORlj2ZeYVA4miRFii5hkBYkKfJ1eqGQP4lXUKRKYdAAtWq15Axh0C8MFIXiTmHQHD3NFddQYdArg7uh4pBh0Be+IQByLGHQOxwWvvGuYdAZDpy37/Bh0D8ub9Pv8mHQKAKdL4/FohAscg0GEMaiEBGmYEBQx6IQLCBO8rjXYhA5u5DYtCCiEBiJ32BgoWIQJFxQ0IqiIhAERn44zGOiEDkWqiGOJKIQA== + NrgMGZxjYkDOIQhxcmNnQI8BR/y9MnFADtLLr2fCc0CPXyNQFkR4QNUsYOl/83lAHbdvb+5UfkBqRZ4ebIKAQI4KpmEjs4JAMXFELtiKg0DyN3B+r8uFQDGgMliEE4dAhhgUugbUiUDr8hJQ/BOLQBcdlVJIjIxA - + - 9YBTRW2a0UQr63JE2eItR7OX7ERBagdHNpdSRWNMiUSECANFCYciRYF7VUR/r2xFTsoZRauTk0Tf4mxFB1OGRPj5ikQVzglFl9f5RGnGt0RoRrVE7lHtRNot2ETQpwNHiTA+RqWSe0UYWXtEnUfrRAOUSEUigr5G0iSBRKBZk0QJBnZEu5uARYtq40QKT7lEJtUNRzSmo0SxC2hEKqp1RMXKzUR805lFOjZxRT/PTERradhFmpOVRDTAeUVo7KBEuE1TRPkDKkXpj65Em02LRJNfg0S0aPFEy1H8Rrs2DUWMNGxEfo6oRC9hP0XE0TxHVnb+RE0wY0aT0hVGArBDRBFX2kX+VipI4sD/RIFUm0aSgC1FBC0jRY8rdETaV5pEV9GMRSXlr0S0/Z9F0l3ERQPTGEUTgJlEMO2NRJsHnUWuUMlFG99mRKuO6UQt2mFE5WmRRMbUuUWJ/4JEYDrXRCQmrURhfHZGmiCNRE/AW0SpNnlFmVEkRaSM5kQgvIlEfI6CROHwlUR6GbtE2EOoRfEiCEVBBvVEuRbhRSi1MkcNNpxFRVfGRA9nIkXuCMlF6iGIRMjfk0VJ2+VE4D6RRLpQUES0SNNEi3ErRXI9u0QuSIpEDnKcRHn1sUSlj2VE/ggEReyA00R0vYJEnetdRHZMgESRLDZF28JtRL0TtkQ7/YdEre1uRGb25EWlA1tEDsmpRAsN50SgY9pFmPCHRNqiIUWe+V9F40WWRAa5LkU+pW5EydqaRLkT2ESFqQBFpkmZRlLiy0TfevREVSqWRtnfwUTRYrhFeScVRpJVP0UTi2BEwfCERFNYJkWr08dER6yARBrbn0SxPF9EY/LvRNAmwkQxtMFElbuERKA1AEVtNHNFLK58RKgFUURQ5uZEJByCRGx3jUQi18pF5ve5RXHP0EY36xZFdS6CRHeilETtWZxFO/hPRe/yn0RdgyxFO5ykRvNHTUXJg1RGQUx2RQv5U0XUVFhETF3uRMkrzEhoKnpHKEaCRQjRDUWwZ8REXqOMRYgCNkVQkvZFhiiMRE12iESIwwRFZ/0URXVeA0d+hadGVL4iRoru7kRprU5FJTMbRUPzcUSYNOlHaRSsRuqurUbOYotF4458RqM4qkRsySRF+y3PRJmRA0YVO0RFq2nXRJnd+0TfEodEbqmNRD/giUdusQJHO1UIRlhApURZRBBF0B6ARC3K00TAxodEYzmZRP7wNUXkxqFE6VsZRkjmjkUp0ItGj8YSRZPvFEaMHRdFFd/WRH39NUUZXBhFX5hvRN8rlEWfxDtJpimRRD8PKUVSPERIAWG+REpWnkZOi4xEH6WSRIYiy0Tjc5tEMIgvRQvXSEWXarpFPTLWRNletERQz4FETEWkRUT1jkQvUHVHLmdvRKblLEcfX+1Fr7gdRZEik0RPa4VFu2pYRAvXw0VFfaFE/s78RAO4kESespJEq9bCR1pYf0QhLs9GDmYPRaPXpkUXHIhEDAezREQcg0RL7IxEj+GBRFQ0hEQJB81EeyUrRv/oGEXh4YVEI5TERD4mg0QHQ8FEb7kDReZ8jUV1WJ5Ek9YLReu3n0TweIpEjK2xRapto0arvcBED/dBRrREukWV6sREhTxqRZMpXkSbANJF36SwRJLLAkWcn8xHSdYLRb5azkZszG5ForQtRVEBoUYoRopFTRydRCG0pET5j+ZEnEOwRO6EmUStm6xEgAwORQLurkRZVIpE0jKORHxGJUbOCYtEvoTXRGcykEWdzoxEWos8RkoxYESpqExF2LRNRUetY0RAhsxHoXaNR0/jDkcs+zZGToSZRQrcmESN7RFFBKiTRB83yEQnrWhFqA5LRhiGTUQhB49F/gBwRL2AAkXbpEdFVWJrROCCXUTNWaxEZJXbRGoZaEj0cN1HvKG7RWQcZUTg+GZFI/uiRPJ0Y0daWI1Fwl5uRAujO0YufolFSYSEREiMokRng/dEnZaCRPj3H0YWNiBFai/VRDa3F0apkRRF6WaQRDw1lEQ802lErtbZRbbsfkVcdSFFzyqVRV65nET+laFEIMxKRTVZEEWCNCFFj06vRkW8LEaEcj1FbzlNRao6e0QwsXdEFdyBRLExgEV1PplE0d6yREg2iET8mKtFJ3QLRZjqLEY3z4lFpvRGRUTaa0WAowBFC2hiRNTsLEXH8cFE8XhvREm0sESJk8JHYVU3R3CclUQFEN5Gq7O/RZ4L/0WcUxNFVE5cRSNegERlLodE/UKDRFWysUR3iIxEadjFRyTE5EdeKilHU+1/RzKfT0apIspG8tkdRWPfzUVg1I9EfdRfRggv3UUQngNGeaTXRMiuIUXsK61Eb0ZgRCxk0ER8A6BEevtrRF4jjkQExHpE3haBRIborETF3fJFmR5KRQ3Gl0QfnglHDleNRux4HkaYeGlFfetRRYTc9kSN96tEtffWRLZg90YwiWNGMWvXRQM/fUSZ7l1Fmqj4RLivjkQbyiBG2TuuRdcgSUVMYYdEzE2lRK8E+UXmxXFFweRCReghtESqjPFFXL6NRW6BBkVSHXBEWoOxRMfxAEXDu8ZERXViRHYHWUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 2qCuaHnAckBWms1ScMFyQF9/dU1QwnJAcEFEGabCckDSqyxnPMNyQBrNk4vExHJAxBAwf1rFckBUO+m0Q9JyQDjJ40hJ03JAJdZWUnXTckDqA+Njzt9yQPrRCmu34HJAromRAU3hckDe4vo4UeJyQGt9LL2P4nJAfO/b+yPjckDUnzpLyvFyQFsubDP48XJANhHxu7fzckDWhneKo/RyQLKrqM7B/3JAGBonr2MAc0Bkh7OT+gBzQOwhK1RRAXNARhoeeYwBc0DMR1TN0wFzQO10Ga/PAnNAnCqny/oDc0DowhY8BxJzQEwkwswnEnNANg6bHr0Sc0BUTIGz+BNzQDtcg3RNFHNAbMpPKXkfc0AIL/LvpCBzQDYcbiU5IXNA2qaq02Uhc0ADusHmDyNzQOYPLoTPJHNAOsnveEcxc0BKagS4WzFzQMJml2jPMnNAchLSQaMzc0DQzEQoNzRzQMiO5k7kQHNAvUiUhHlBc0CY10DW3EJzQIx7LrN6RHNAZv5M/JtRc0DY7HvrQlNzQALP4nCjU3NAASiUZnhUc0Aq4z0KDlVzQA9wK3mMYHNAwqG7nzhjc0AYn2dskGNzQEwpGmPPY3NARqRSBmlyc0D+514hTnVzQPmgUzN5gHNAjdHNnaKAc0BK0B2oDIFzQO24aO9dgnNAvYn/SIiQc0DcTqewTZJzQJTYMaxhlHNA/Ket5feUc0D2xtFluKBzQK3CeV5NoXNAsKOZgVyic0Dom5rH5qJzQJpoFp0EpXNA0qEFxXyxc0DIwCbk9LJzQMjmmZ62s3NAJPSLjg20c0AYTbrd98BzQC3H163QwnNAXhgSOvTCc0AAG1t0JsNzQAIim7k+y3NAtLjS+tbRc0CMaJEmRdNzQOQxDdz103NAAPiHc+PUc0BIfSfIOOFzQMogXizm4XNATi/C0z/jc0D23BMiSOtzQOZ6AYAv8nNArTD0omHzc0B1Vh3fN/RzQBbUz8+M9HNAxW4frOEAdEB4DBP2eAF0QPZfpiilAXRAXDPpPbkCdEDMJX/vihF0QAdQ/ohAEnRAdgLMo00TdECvd8yzdxR0QHp5O6xKIHRAVK7NBLghdEDzS/unWiN0QIw+7P3XMnRAGvGZqlszdEAZ7sevX090QJTEUpPNUXRAJBBA7vhUdEAfqJqWjFV0QO6wiDK5YHRA8NFOuAhidEDuapQeUWJ0QI4QfK9OZHRA2KGy3yJwdECeYcN7QXF0QNaDU0rLcXRA8gA23jlzdEBV7mEeonR0QByeCqk3dXRAri546/iAdECMDU9hToF0QK0KnIwng3RAbm95aUaDdEAwb3/XFZB0QIVlaVDAknRANm+ykqSgdECecDFV0KB0QF7FOWw6oXRAjI5hjdCidECX8+8zD6N0QOYrmjEPq3RAbkfKoQuwdECjAKz8FbN0QBrZIWCPtHRAW388HePAdECUWa5aeMF0QMJUgUvrwXRAKnQWYw7CdECA7jGAIMR0QDX47xK4xHRAvpComPzOdEA4aSW/4tN0QGswhiLP1HRAgOnl1bjhdEAuYmGhxfF0QHrZc+6M83RAuG9eKGQBdUCuYwxQ6QF1QKPdMvRcAnVAOtmTmWgSdUB4jmjrIhR1QPxV5TGeInVA9uUz6sw1dUACr7nUskF1QLj4MtEKUHVAKLX96YJRdUCtKssKTlR1QKKvZXZ5VXVAS4YpGjlhdUAqxKf9ZmN1QGXa4TZ1cnVAul4D0nRzdUCqYn3VjXR1QKRkblRWfXVAqCLTS3iBdUB+ZWU7roF1QPbmNhang3VAISz4c5qEdUCEsX8JbZJ1QBRLHjm0k3VAhDDS0UGYdUCAYwheuaF1QCJXIHA8onVAYaYmji2ydUD2Xk20fbN1QMB3Ob9jwXVA+y6GPPnBdUBTUVC0zdN1QDgc1wPm33VAJKT62gfidUBGqPJrSQJ2QKyaIWLOA3ZAPKta+00UdkBEB0VDCxZ2QGoj7YWIInZAUswa3ZAkdkBhldJtSyt2QEjVytMfMXZAFpYct1MzdkBEqXs+nzR2QFnbUIBYO3ZAUWX9EB5BdkDE2ZnSeUR2QHzONtXKUHZA3hPaBhNRdkCemnW3zVR2QBJF+S/gYXZA6OM0Ss1idkC8Oim9uGN2QLacuWDbZHZA3lZzmCRodkDUQSVIlWh2QE79pP+/a3ZAfilpY6tzdkCEbwZJPoJ2QNsHl8ZpgnZA4JF4126DdkBkn9FHkYN2QCDldom5g3ZAQI00mp+TdkDGMmXNoKN2QALChUbBsnZAUoC1cnizdkC+6dotDbR2QC470xnUuHZAwv+jr3bAdkDUxkh3zs52QEYWw82A0HZAnK5UJdrSdkC6D6ob8uF2QHAWyc1J43ZAYiHGu5DzdkDA49QDMgJ3QKjMdjZRDXdABOYB3QESd0AQPEBpqhJ3QO34Y+7xF3dA2dhRkAYYd0C4trRyDyJ3QM4GHu65JHdA90Hmv6Uzd0AIVSE+DTV3QKA8vQmdQXdAkDIBffxCd0Cs6X4QG0V3QDhy3gZLUXdApKlSo5JRd0DyDRjbKlV3QIJJZycMYXdAvLo3h45hd0BN45xWPGN3QG46UweWY3dAVRFjzyZvd0CIVmwtTHN3QIaXwUx5gndALZJIRHyDd0D4rUZTCZJ3QLgnKChOlHdABzn8YWidd0BBTTRQwaJ3QHI+FxQHqHdA/tNUsh2od0A6dtbYYq13QGoNGaW/sndApd0M4uHQd0CKn2sxcdJ3QJqSd68i43dA5I1aVE/yd0B4OhDRMgN4QJNdfRtuInhAokmpUBozeEAQllzkDEJ4QFmiwER6RXhAvA3btstReEDOPYD+lFJ4QOqiHR2IVXhAGCHlRu9XeEBFqNv1NV14QCazM4RLXXhAnNmtC/lgeEAKkC8BuGF4QJR0GqMgYnhAVlsd47JieEB4ZEA4AnR4QF8IAtk5dHhAah8XOGl0eEAa9Va9i3R4QFkl/Nm6dHhAzBCPDdN0eEBdKqhLN4F4QJGwfaelgXhAlMeOBnyEeEB1wzQPmoR4QKKosBmZkXhAnEmkxKeUeECkgAEYuKR4QJtYOu/VsnhAggO+LszAeEBhDqq39MF4QKs+wwAFxXhA+lGRSrfUeEBaHljsxuR4QKLcknaP83hAVM+jkwL0eEAsenAajfV4QGroyXCZBXlAtXaInu0jeUAqs7fd8jd5QFWsAef5QnlAXMWF2stUeUBukehA2HB5QOajpkxxjXlA++QV5MmSeUDa+GCrD5h5QGJSO/MmmHlACW9jGYKdeUCgLkpYv7J5QNF4/SXRwnlAn8GewELUeUCtNlOKzdV5QNh/edzC4nlAmJlixE/keUCNaVYd+wV6QB6LaZI4I3pAEHBLWAw1ekCeyJ3M50N6QAP5UzgaRXpAbMMwrydVekBmwQ0xi3J6QGgVZGC8gnpAcpbMkaKUekDBW8cO7K16QIZcBtUMtnpAC1617yvDekA2GCJtF8Z6QB7n1VQ47npAZ6/RxVEEe0DkTIQqKQ57QP+RPz1NFXtA2Fw1Plole0CYjZuRHy57QIrjp5lVMHtAK7KrewJQe0DO7BVpI5V7QMocJLyZo3tAxrDXvjKle0AWx/iTYrt7QOOr11Fow3tAUG3l9//je0B027cYjPV7QMyTaMX5+HtAA6fwTFn+e0C45KuUkwF8QHhS1vLaAXxAC0S00/kBfEDscGWZmgV8QLhzpg6KEXxAJ7X9s9ERfEBRDjYkzUF8QDbUsmLbUXxAjr0e9g1ifECPDz4vj6V8QPzNH3q/snxA3tulkMvVfEDOVlQRWOJ8QKYjvH8V8nxAcyQCOFXyfEASzdxL9/J8QGqjG1BGAH1A0PXxKgACfUDM942QSwJ9QKkMisJEEn1ANVVxsjwifUBYx0z8fiJ9QDxI7NifMX1AT68px1eUfUAg0hnDK8N9QCy2qWDY4n1ATD5K9JD1fUC+nIPXNx9+QCgI5FRDL35APutjUalMfkBiBRqejlV+QDSL5qvFV35Adq4VOulvfkAiG5XnYHN+QNDaTJOXin5APL8yTySOfkARBVbifKJ+QMVsqAfU735AaDwuBCAAf0CAi7VELhB/QKD9v6cOIH9AjfBURLhxf0DJ5Ub+sIF/QOYTEwqng39A/InJXWORf0B8mw+GqpF/QDd8lcRboX9A1ESmCnOhf0D23ZI3WLF/QMwxRLSDEYBAcWQiTDAUgEAQJneZ2haAQPQTi6iDGYBAGta4JDEcgEACmZNnLDyAQCNaRaCCQYBAx7ORHfVIgEBpjM4z51CAQARgYo8UUYBAQS3/xupYgEB+oU8RDlmAQADKEykpb4BA4Nf/zPyKgED53SSfHY+AQBrAa6lskYBAgCrCXxuUgEBKZ7ed+6WAQH6tyL2GqYBADhUYgVLBgEDI0xiSU8mAQMRcm4CozIBAMOh6AFXPgEBbKoPATNGAQCAZX4Vf0YBAIR96LEvZgECkBLNhReGAQJayUaP36IBAHIMhGk3vgED/JAgZPfOAQF2knKk//4BANvOZekAHgUC3gd5BPg+BQH0yB23kHIFAzlDkuzQfgUC8mQIYMyeBQDBlwD69MYFAbJX1DdQ0gUBypNUZ9EWBQJX4oBT3SYFAP7Zd+VtYgUBU9JYCVo+BQIxCs61Vl4FA/XEFVkCcgUAsDS7v56GBQKwt/7VsqIFAr0AQM0qvgUDmd6syBrKBQDsfpEkJtoFADge+rQ26gUBEAMe/186BQLlQ43R904FAlgQpTRPZgUAe/ntIF92BQKgISoKF8YFAeZFiegQJgkDIb88IAA6CQDhs/WcDEoJAOY59WdgYgkBwZYYw1iCCQMSu9GvPKIJAaOMC8KEpgkBKFc+gpi2CQML5hVLRMIJA6IPRR+c5gkAEuVeS6T2CQHhWPTnLboJA2EHbckOJgkB5Buiu046CQC4ohXdEkYJAJti8yzyZgkBgTjEJVZmCQPJYBMAPoYJAGLv+1DuhgkDHLzPkDamCQNQaivk1qYJABIzU2wexgkCCm2BEr/mCQJ4W1GbqDoNAAUelt3kRg0AujNGdyBWDQBDrdil6GYNAqI4xpMoZg0DY2faswR2DQMzNXVdzIYNAsEGgYsUhg0AkAlfHDSaDQFZ55x9xKYNA0hX6qBAqg0Cg0lenGC6DQKKbuvNpMYNA/K5G+pUxg0DuxB3obEaDQCUBcWzqmYNANsoYQu2dg0CmhVmvLsODQCCGp7WW+INA+Ki1M/9ohEA66yc6AHGEQGn3vrj3eIRAx8sxKmrZhEBJxmM1auGEQJTFQElj6YRA3WfNWDbxhEBnvSDqYvGEQJ7h7801+YRAEvtDrVn5hEBsNRndLgGFQNKgkgpgAYVAgudsd6BhhUDBYpAUoWmFQDSzdoiYcYVAIs50Vph5hUCZMYsrC9KFQKQw+VmRKYdA/suzCJExh0AmLc6ViTmHQLDLW4NaQYdAiohPHo5Bh0BarePsxrGHQEbqQljIuYdAj+ktPb/Bh0CqOtW3w8mHQMZkMos/FohA8jlTxkIaiECuhVd7PR6IQNChr8tHWYhABJiUCH2FiEA= + NrgMGZxjYkBOGswAeMJsQBu6YmAmQ3BATs6td+pxdkBCe6rX1FN4QHWP9e6Ygn5ANB55p0EygECypvqlg9mCQO5wWZ+5MoRA3dB8qM8RhUDun0fJZbuHQN3/atJ7mohAUs0R5vHTikCkKxHi56KLQBn5t/Vd3I1ACFnb/nO7jkAMFNMPhbKQQATEZBQQIpFAISkUEavOkUBh7VQQTCKTQJ0YVKjGmpNAq90mrncmlUDnCCZG8p6VQPXN+EujKpdAMfn34x2jl0B15e9g+e6YQK3oN3s5b5lA - + - ujiaRHgmPkXTHchEcZB/RBVdL0cho9BEx9CaRJVED0fRf0pF4hZ9ROUwCUUGB+tEEZGbRDr2bEU7SRZFW4SyRN0ASEWn0IFE4sbMRF4stkTXy5pEqcwzRTpQ+UQrFoREZbydRHyHHkXp67lExE0DRzv+j0Qrk6FE5V0ORmtskUXeV9xEINAORfsDHUXvqbxGqeSKRGqctUSxvI1FOr/sREGmiUSDpUBHF/qtRBCbwERBMbhEIzKMRaJaqkX/8P1FA0uqRIj1iUTjvL1FTsocRVHdiERxWrFEfkXSRLQ8iETenqFEk0ekRNh4OUVOMttGMnupROU3AkVdxbxEgpwjRZmbNkfWGNtEUYB3RgtpAkYxL51EHozWRWfNU0ipP1FF/POMRAX52EZLoIhFBREARY5+zkT9w21FzcTGRMUOpkVJcVdG17UFRSvSNUUU6bhEJQ12RZ/97EXHpaREWawXReaclET6vNdFgWG+RAOrLUVfSLRENNyNRLo3gEYz0atEt4OJRLkOpkTbcW9F8TUuRUOqqkQq4chErMABRQu/tESoqGlEmkOJRM43Z0QwOIdEBtmpRLTP9EQGpp5Fb7+KRZASokQgJshEL8q5RSIXQkdmT5RECpnkRYaUvER4mt5EQXsMRUB46UVDhKBErS+NRNwYuEVi8LhEyBHHRKlX5UTiBI5EmN2RRG7qtUQYkP5Ey6q4RPlz20SxSo9Er42fRB+jzUQ0cJpEsK92RGJfjUSCrbJEVGy2RK/G30ThitZEVF4IRYb/sUTvy8hF39G0RMnp7kSsRyFGpc20REhRIEWwJnlFDkRxRb60jET9o4dE4k6FRMkAh0SFW59EoLAARW2EuEYyZJJEdoArRUxKeEaFFbxEpmEdRfQ6jUWOnUFGWqAwRZwyeETw2KlE8XXtRElUkUR6XadE3trARAvjikTYNs5E03sMRdgguUR3+LVESJY8RTRcskUSgMxEjX/aRBvXn0QJwU5FPanHRUl94kWgMORGup8SRW1xh0RjVXBE00/FRYsBckWXvK5E1DZORcmVm0aC94NET1eZRR7cgkZxIFdFGx0dRXklg0S1gSdF+uaXRDH69ESY7IREeF4PRdWy80hlxgRF9q2LR1EqkEUqP/pEMu8CRTI3UUUIY4dECuSARDwuPkVqzolEHGsbRkcfhkR36b5E/u3RRJvLTkXw7clGN6uORmCVN0ZbYwhFXOgyRdOxQEV8/3NE0xvmRCt27ke6LtBG8dyYROsyyEbndqNFi/qTRjQtDUW53oVEdvzvRG+d9UWOtG9EERdcRV7KnkQILa9Eyk7URPOXmETY1tFEc7qtR3gzN0edtSpFbkn1RYE28USic65EYa2pRFE1kUQACuNEeNLMRAC4y0RYjU1FfnBnRKGEqURxZS5GsaO8RXevlUYpPhVFJmELRuwaEUVrJgBFsxQeRQ0gT0XBbI5E/biAROKo6ESCntFE3oeVRYWjQkm3q2lFIekLRfl3iUS88WZFgmGvRMmUS0iGcxtF5VqbRkzIsUQceCJFCQ8BRX1+qUSbx7tE32DARTzD7kRV64pEnUeoRVJvy0VvpgBFLw7HRFUp3ERPyoJEFf9/RQ2pX0T3lMxHaQVYR5Zfy0WMLjBGScowRXS/d0U8bZtEzfW+Rf850kTE/ZZEmQjYRORBuERD7apEWEnBR14pf0S5e85Gqfc+RQGpikQH05ZEtT6MRMnLzEQZT8dFyV6MROw8r0SI2QlFiwqTRBux+kQL2z5G4YYxRbrzekTsOJNEua52RO1u40Vd0olEiHL7RHsFnkXhfhRFQ2yHRHLnokZ66xNF1oigRFkF7kSkW2dGezX5ROP1gEWDEctERKacRQxc10UGSOlE2OGfRKdhmkQyFwJF1cidRPlkxUeeGNFEkkveRgh6jkQdJndFjyYTRVjRn0aw2llFnSKGRA67jESZKehE+6YwRXUuk0SIRJpEUUKsROz+okT5ZYFE2idsRFuMPUU3vw9FTbeqRJ9xp0QvK59EEOjERFkrjERXLoREYqkfRv5qk0S24SJFPaunRQzpsUQq87JEsCxDRrXt00RIcQNFEC/IRBsl70Tz1f5Hvpe4R0ebNUdHlWxGcoNARYTu/UTHAGpEg1cFRV98OEV04J5GifnJRD0k2EUQvRFF5bfRRFloeEWc4B9FXKKKRP/wvkTmIwZF4o6ASG455EeuAKhFPIWURZ0WiUeF6GJFw2ZpRoAlpUWB49NEnMOfRDnQpkS1DDBGxRVURQI/2URhiBRFxi4URmNr4ETjAK5E27ONRNV+DUZmbo5FGAjTRFssvUV/v6NElYCYRPfpREWe2gBFZPyTRSDMF0evO5JGWY+PRfUEzETFiKZE9k+6RTExMkUsOgpFb2r9RGCTp0XaCCpFnOFWRm5GhEVDRuVEqxCTRZo3r0QDaYREdYfcRQphTEW0AoxEPgAuSOcQhkREELNHP4MtR4U2TEX6oLJFOsh5RuiBB0UnhIZFm267RJZqo0TtsnFErVQSSG5vnEdyD5RHdkgkR0dQ7kU4FDZHC3uERS0uqUb/bFFGGFY3RqR46kTTnlxFFsvYRFJ2/UT6xgZFX5HERJsa00TmELVEwhbSRVhuK0XnRhZFf0FRR6Vq00btIXtGeM1lRTR/tEVCG5hEDLnKRNOYeERhlZNE4ckaRw09jkZYmSNGgYSORU4XjkTN2HBGyM0ERk499EVwsnJE7XwjRZD8EUbUu5BFEioURaHV2kS02zFGNC3KReIiyUSuj6FEINXVRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - jtLNfm/BckA+3tkYT8JyQKywET48w3JAdwEzBFvFckBt28D8Q9JyQH/88Y9I03JA2NCeh3fTckCAv8gfuOByQKisPYJQ4XJAlvF/GlLickC+SoBRkeJyQHhwEcEm43JAAkjX9svxckAprndXtvNyQHkxDOui9HJAwFCJBGIAc0BGb3rF+QBzQL7vf3oPAXNAkqCSv44Bc0CwYlQh1AFzQIyoeTjQAnNAEheD8foDc0CCii1lIwVzQFA93fcJEnNA7g3NKr0Sc0BTcLGe+BNzQIr/u5R5H3NAh6vtRqQgc0CNeN5yOSFzQGZdCDJkIXNA2DhEdMoic0DqdKJ7zyRzQLRXU71HMXNAzGamDJsyc0BgXY2hzzJzQJtkiM0MM3NAXCKelKIzc0CO/+oN2TNzQB8NoQA4NHNAuVY5FeVAc0CuwFoseUFzQBC87qncQnNALj8V8HlEc0Bn8WgKQFNzQEJ49bejU3NApNSyLXdUc0Bae1ftjGBzQGKluSE5Y3NAliXysktxc0Alb8tDVHJzQLg9R3C3dHNAcDBegUx1c0D7G83ManZzQLQi0zx5gHNABGiHw6aAc0AxaIhxDYFzQHbes1VegnNAhiSTTIeQc0ANKR6NTZJzQOPNeFJhlHNAqyeZP/iUc0BPYFYuuaBzQKKs9SnqoHNARFyGlVuic0DutomYkKJzQL5NrufmonNAcnyG8gSlc0AR/WxZNbFzQNAKms9/sXNAJY6EkPSyc0BqP0hcuLNzQGnc67cNtHNAnAf4tqG0c0Cafk0T9sBzQBjdMkDQwnNAyh1cTfXCc0CV9CIMJsNzQALNHrcmxXNA7GWXEj/Lc0DdOqFz19FzQKxowN0t03NAa5brEUXTc0Bm8pkq+dNzQC6x6Rbi1HNAUEcNzDjhc0BW3PKIQONzQJ7C/XYw8nNA3R81qP3yc0D2TetFX/NzQMLCifM29HNAotbuYOMAdEDE/hjYeAF0QCIN5+OkAXRAuubxOkESdEBUkwNtTBN0QEZntvK3IXRAydbQ91IwdEA+w2l3ujJ0QKil6xL3VHRAOG8lZ4tVdEDTnMzhuGB0QKyuoyAJYnRAfxYzP09kdECkCvuZInB0QCarKDNBcXRAVHtCPTpzdEAj4/PHoXR0QMdC8a83dXRALpU3j/mAdEA0YqtYToF0QIkgZokXkHRA4A3rz2qQdECq3Xuiv5J0QNCv28fQoHRAK3May7midEB1Zdutz6J0QBrwWHUPo3RAcyzDLA+rdECV0t1mCbB0QDzyBbb9snRAdlEWEOPAdED9R/RpecF0QIIBQeC4xHRAwqR8o/zOdED0IOSrztR0QG9nTYq84HRAFhhlwSPhdEANlobxt+F0QIFQVUDI4nRA0XxB307ldEC2pUEqxfF0QHks7BaN83RAGlsIn6YAdUBoZ3DgzgB1QG7PQs1jAXVAvUIMLecBdUAqwhdHXQJ1QHIsZiGbA3VA9nO9ZGoSdUC4dDubJBR1QLoytwSeInVAartgJ8w1dUBAuWMP20V1QOyMwZvoT3VACj+5wARQdUBKn9X4TVR1QOYU84B4VXVAVnu6iQ9gdUCKLc29OWF1QIDI5+r1YXVAS4wej2ZjdUABIhQxeXJ1QGXYCXhzc3VAAFPZ0410dUDVvRJReYF1QGr+qLCtgXVAf4Yhl6aDdUC6/J6omoR1QM6gfoyMkHVAqEhPlW+SdUByixBrspN1QJibsLA+mHVADArwqLehdUCReuSzy8B1QJzDTa1iwXVATmFE0vjBdUCkOqx2zNN1QKKYKKvk33VAHG1x5w/hdUAkN9XwCeJ1QDRE1XZIAnZAAk2iEUwUdkDlvK1pDhZ2QIlI9NuQJHZAqouUJUsrdkDmnx6rHzF2QDBVbvpRM3ZAkCtLtpw0dkCSajaWHUF2QGqoD855RHZAOc3dL8tQdkDt86CUElF2QDkZyAXOVHZA2LUNtx9hdkCqiYsIzWJ2QLqUCKq4Y3ZAteGdB9pkdkCSUSFlJWh2QOSkt3CVaHZA3Qzf/L9rdkDXQN0MQIJ2QP7JUqNeg3ZAGkCw6myDdkA4tZEgkYN2QBnJ8Jt1k3ZAzNBlwp+TdkD2IAULoKN2QAp0fVfBsnZAh1JZvXqzdkBetqsEr7N2QG4lqRgNtHZAYGvHSr7AdkA+CiBGG8R2QDamS6nOznZATHEx/X7QdkBBvLur2tJ2QNQho1v14XZAnbc9mJHzdkA0NRjkNAJ3QCROwn5QDXdAwIL5yAESd0CsO/tMqhJ3QKSmAZHyF3dANhp7qQkYd0BXSjLHDyJ3QO5xMPdzIndAQWAXIA01d0DC2FEHnUF3QKLeFLwaRXdA0VW1E0tRd0AyDWlhklF3QL7FcsYpVXdA0ldIaklhd0AacwmXkGF3QEzW7ws8Y3dAm9RVkTpld0AKEMKrJm93QMtG8ZVKc3dAFpk74neCd0D2dB6I/YJ3QMC9fw19g3dAGgCJrQaSd0AyQsJbS5R3QIaMqhtonXdANKC4uMGid0AMs96mG6h3QARagzBgrXdAPMV7V3itd0CcIt4lctJ3QGhCntg0A3hAbI8GdIsIeEBc3VrEbSJ4QF5GAJiII3hAuIDiXgpCeEC0iZJiEkR4QBRH5ip6RXhABN31pMpReEDaU6dclFJ4QLxlIACIVXhAUOF4H+9XeEBRFhemM114QEh5Q9hLXXhAto6Dr/lgeECczEF6t2F4QGz85KtRdHhA0r3JkYt0eEAU6vb2znR4QAYr27qmgXhARDJexZmEeEBOGnXrmJF4QJri2XGolHhAkm7MAbekeEBwWdQ91bJ4QKXO0ZDOwHhAwOYSZLfUeEACXDQwxeR4QDaXfqUC9HhAzpKh1oz1eEAf3tRMmgV5QLAWQqXvI3lAigkvzvM3eUBmGFv5h0J5QO6i/JnMVHlASKd+0EVzeUAAST7AcI15QMbpyi7KknlAFmk93CaYeUAUhIacbp15QFIVhC2GnXlAAJvp/L+yeUDxfmKJQtR5QKqFkhHA4nlApYXU103keUBWGjHeOCN6QEG5kIoMNXpAPHCVvOZDekAuJTc7GkV6QOPXQ4IoVXpAMZllD41yekBk6L7hvoJ6QFh6RqwNtnpAmicdNxzGekDS2HwBN+56QP4PCs0qDntAIBRQYk0Ve0DHlGonWyV7QJ3dmgRUMHtARglkQ8Eze0AgQ+peXFJ7QIAKaS0UaHtAXOOyiSSVe0BiC7ZMO557QAHCFyyTo3tAtkLpuWG7e0AwU+cBaMN7QAl302Cn0XtA0E+5QK/Te0A79WFXjPV7QJw32ZX4+HtAAO/a55ABfEDk/0rR2gF8QE6Hyq6rA3xAEd2tV5oFfED4bUC5ihF8QGJZWOzSEXxA6afiwMxBfEDmHPpXDWJ8QHwfx7MrcXxAnKzwKL+yfEA8Fdh7Q7R8QEoD8h/M1XxAAb2DGFjifEBJXC/ZFvJ8QMBZC0JV8nxAlhFHrEYAfUAu6SfBAAJ9QPQsPcFLAn1A7fzX7/0RfUAExO+IRxJ9QLTrl0c8In1ACDCy3liUfUCO/vFOZaR9QGxOUUgsw31APIiwIGvgfUDBTc+g2OJ9QD0zISWS9X1AeUHW3DcffkCOrEnJQC9+QKAflImMVX5A79+bV0eMfkCkqOxC1o9+QA7noYuQsH5AdSoZujLcfkA8+vpngfJ+QEBUMqsgAH9AD5aPZfYDf0AEst6XDiB/QMqd/nW3cX9AOuOn+LCBf0D+adi0Y5F/QIwPgb6skX9AWHrR2l6hf0Djh+/EVLF/QGgfYUpL0n9AZHFyvYMRgEB85TZ34RGAQI56Ah4wFIBAoYPTktoWgEAy/lTwhBmAQKp2Ro4tHIBAvj5V9tsegEC6P2GoJS6AQBk94xnrN4BAjgj0CSw8gEBMutFq7kiAQPoaypoxSYBAwL7PLudQgEAuri1lFFGAQD54D7LoWIBAjBv+aQ5ZgECwiGFy4WCAQCS3msYob4BA5bMVex6PgECZNUtRbZGAQCtpRr77pYBAPEO/x4apgEAWHlE/hrGAQK5lx5wlwYBAtrq5/TnBgEA9z9mVUsGAQBLBKIJTyYBA53Kx36fMgEBS4iqZVs+AQBh30Y0r0YBAwHe4xEzRgEBgfrQhYNGAQF9uZS9K2YBAyAVzg0ThgEAaRYmS9uiAQAL/DgpL74BAhKJi8zvzgECxhQLFP/+AQOjpPzhAB4FAtua6JDwPgUAZoNJZ5BuBQHYGWfz2HIFAV/8EiTQfgUDAWD6V4iKBQMbct6cyJ4FApLcI9vMtgUDsxKP1vDGBQOGm8MP0RYFAvaG2J/hJgUCKXiopXFiBQLCsYdIaYYFA1GA2qF9/gUB+PUc2Vo+BQDgAQfNVl4FAHMjNmAqhgUAqee/v5qGBQP+neHxtqIFAl7xNAUqvgUAWRbpqBrKBQMmmmKcJtoFApGIJow66gUAumepuKcyBQIL8RlTWzoFANCtL8H7RgUCWQDYZfdOBQJo008MT2YFAFr+PlxbdgUCGOgA+hvGBQPzKSH8y9IFAgBJYoAEJgkAoEK9VAA6CQP7EIUEEEoJAU4jtSNgYgkAfLOM8+RiCQFdK1mfWIIJApKsaedEogkCuKzFQoymCQG3haIikLYJAVUex1Og5gkDwV9XI6z2CQOLwmxQ4YYJA1tMabUOJgkA6BF1cRJGCQM4QAVM9mYJAoXxaJlaZgkC2gFGODqGCQJyz6q48oYJAuFiTMg6pgkAkY4EmNKmCQBCuWyQIsYJAgHD+z675gkB6Uk58OwyDQM+XkpN5EYNAWv1Go8gVg0BIFEqpehmDQM8DNnLLGYNAiwOg178dg0DIaeD30B2DQCBIH0pzIYNANkQnqMQhg0CcojCpDSaDQJBRbhRxKYNAArCrBBEqg0B8LBE5Ay6DQPwMLpkWLoNAfraiZ2sxg0Av/Z6CjTGDQIQDCKAKMoNA73ru5R05g0DERyThaUaDQNb+3c1Jg4NA8309VuqZg0Asv6Cl7J2DQNRLsZbGnoNAbTMFjC7Dg0AZxPCKr+aDQMzEV2j/aIRAZBhoJP5whEB1xjkg9niEQPL+k2xq2YRA7zGgl2rhhED5QsbdYumEQBZqGBB76YRAX36yzzXxhEDa5FIeYvGEQNMl5S81+YRAenK8pVz5hEA/cCDBLQGFQAjEt3WgYYVAlnH4mKBphUA2VdPbmXGFQITr7NO0c4VASOwuFJh5hUAkIGt/4n2FQNgdFw2TgYVA4IbOqia5hkCErAIJJsGGQP4mB3LW6oZAwB+IbZEph0DuirOxkDGHQGzuUOWKOYdAJLuJRl1Bh0B9fXtijkGHQICMiGbHsYdAWT7CCsm5h0CS4wsBwsGHQBosMt+/yYdAEuAc0D8WiEDKjNgpQxqIQAn+3JhDHohA/mjtB0YiiEDa1nL+4l2IQLSgqqLPgohA6HW/S3+FiEDGoYTSLIiIQEbNPKUxkohA + NrgMGZxjYkCO7m7sniJrQAoahmk8YnBAYG6KbtTSdEC7HPhlP5J1QJsQA0SE83tAqdr3wq3CfEB4soMkDjKAQBwZIvHCaYFACbcEvU/qgkDWawLpOmqFQAnm8ub7coZAGi/7j7OyiUBq6cHQTouKQH5cxaw/y4xAl+9mdrCzjUDxxMfk5bGQQBVoBdkD3pBAXHy00xnCkUA6RwixBg6SQFBcSbIsKpNApmyGcUXGk0CXcPisQg6UQL3vWER2WpVAe4bLtHiSlUAtnTDDvh6XQAfgKuKhXpdAdh9xj996mEDr9f3p1+KYQPIOsSb7RppAaw31/i2nmkAdJFoNdDOcQDz/gsQmS5xA7hXo0mzXnUBnFCyrnzeeQG4t3+fCm59A8gE2od0BoECpIdl3/I+gQBZDVgfur6BAb86IDhF2oUDOGcJGEpKhQGFZchIsOKJAWVsrsCpcokCF48kPN6qiQBBuahBKOKNAflMUf0Beo0Ci3Wt8S9CjQDSvinZa5qNAx9VUS2HSpECNOr19fQylQFIXvrR5nKVA5sXvhKDSpUAq2DFvjqKmQLf2ra6+5KZA6mOtebmEp0BlC6as3OSnQA6lzd/JMqhAV5aPsPemqECZL27g3MCoQBWOL3wFjalA4EMd2/KkqUBrzr3bBTOqQMOiJ3ojjapAKcZdpxMZq0Dn40fgMzurQA== - + - 9fQ3RXFe4kQESSRHB0iqRMIBDUeWn2RFNN6SRG8y7kShM3ZEPUF0RZuTB0VBSXZEgqM0Rd/afkSTtdFE2XoERYIRIkXEkY1E8LjJRND920RfZblESFv0RhjDkkQOirlEtxMmRq5ZrkWShaVE9Nk4Rem4uUbLYpVExb+mRHExw0W2175EAXSURP5JQUed3GNEqAOQRHYvbURJyKZE/QvtRArBZ0XN8DxFCsgNRtiSiURP+EdFHPyERJD8iUTJmPdEtv2URAZJdkReAwdFNfIrRZRgmkRVxN5GBViaRNRdPEWMpJJEjcQERZXlP0dE6/9EpwZ/RldWDUYHc01EggHlRRSDhESl3zBIOUEzRTndokSXO5FEcvSPRmU2eEV6jw5FQD+PRFT2zkSkqp1FnGmZRMA6t0X7znJEJcDDRiHRakW9rVREToLTRUWnv0Q48KdFQrHxRU7AnURbcaJFn1GURChJikTDQhBFodXIRJtihUYbQNhEoMwcRWGweEV2arpE5VmjRPoB30SThpNEp92wRCQChUV6xURFlOK+RFGSr0VYs0FHVEl/RXwNukRaH5xEdivwRK5l7UUwip5Fp2CbRKBp8ERqt+hE6wCgREFSeURD3tJER5ayRL+/10T36rhErO1+ROZddkSaqbJET0ScRCPw/ESFHWhEnF+IRCXfCkUIRYNE+5vGRBZ0hkSd0ABGsI+ORJdZtkQk69tE3UyyRFeEAkYA04tE8RS5RIj8HEWx511F2NQLRXxmUkSlLZBEqKN5RDWkdERFQBxFFiV9RI2/LEUQ6XREEtPARj+pvET3QShFJEkSRhJrEEWVn6xFNlAVRgDg5kTRCaREYjahRJfekETdb0xFJqgJRabubEQ4MXpEcWsYRTg8yESca5ZEeJK5RNsZG0XnMqBFK2MFRRVr3kRdm9lFSc7+Rb/01EaK8yVFQUWsRGD2yEV41TpF/OycRIXASUW1nARGh61zRCpXYUWmuy1GRYUBRS/brEQ2qYNEt1mCRaM5pUQ+Q9pEBzjaREv47EggRUFExyuMR07egkX70ApFYcavRGNMiESbmU5FcPxsRDrYhESSlU1FizR2RN/qE0ZHV4ZE1gmlRIwE8kQ74cNGFEaERgZLWUY6ztZEngiaRJGuZ0XzreBE0FXVR/lkqkaSJ59Gn+2rRQHfbkZyHQVF4HmMRJ4M9ETRDgdGmvh2RDdKS0W7K7pEn7kCRQsp90R4wcVEH4iIRIGSkUTt/6BH1fQkR28oCkY15ZFE2133RIa4xURSvRFFgNZZRFd3ZUVyoM1Ew6nBRI8B0kTMui5GmKe0RTkmg0Y/fBRFaUYURs1C0kSMvhBF2T0ORcFmB0VchEBF2pwySe31A0VpoXBFYHA2SGY+pUQKfYFGtvCjRH0hjEWPxQJF4sOCRSyniETAXFpFYtOZRaa0gkQD2/tE/uzRRA9SikSNbnlFP9+aRKR310fbjoZHF8g9Rpr5iUVRqPxEdcE+Ra55p0XzNZBENtCGREZmr0TaKqBHqL7BREs5pUYgAeVE7xq5ROCPhkTm165FmVe8RAJuIkUaPp5EotIsRvN0BUWKDqpElnaHRNYKgETSg5NEWHSERRfOJkXSiItEWcPQRShQI0UXj6hELfyDRLMof0aoTh5FUP+mRMHGWEYe3qxE7AqBRUzEoUS2LJVFJwS0Rfagq0Q7+aJE3qMKRa+Tg0SSW4FEQE7OR6IEu0SejMZGebp9RU1kS0Ufc5tGu3CjRAJ7g0XFk81Edj6ARVt0gUQe2LhEawOURMk92kSyFwpFc1FyRGZs0ET8khlFz3CmRJtnoES+fIRE4KuERDFTokQGZbNF80nSRGabv0RkHL1Fm1+ZRJ7sS0b6EaJEBmJVRauP60QYyqtE0WjtR99ijURX9q5HK8kyR/NdlUZQTwxFa7vSRHRKhkSGSW5EUdPTROdw1EQR7KhEYRYnRaDNjEZarotE1TvERXQBW0R+BxdFp5xDRdA8vER09nhEsokeRdlhl0Q93YNEQ2VyRIHRiEhjQANIy2tmRSDdWEV5q7lEgy6NRxv+REXJfFxGVQ6wReYgtURYmKNENBCiRErKFEYDHlJFge0URbJfZESYGJxELq0FRrbfgkTSM/hEESOSRKd+7UQx1aNF4FKIRab92ESsDdtE1WJ4RL1dpkVoIL9EQ01xRAnIRUVI3wNF0I5jRegm4EYvQlpGTQhVRakjKEVQ/ppEXXmORObIpkQkQHRF9VCkRNrPSUUikL9EpwytRCK3sUWZKyRF84c5RmCIhkTfuIVFFUZORbMV3kQuz/tEGE8URWyWz0Skw4ZEEa0dSE4FqUfZEztHXOowRTWTw0UEsUJGnTgARYIyd0XoRq1EPddxRO1xIEXvqiBI7xkvR4C6pUdDHqZGB2BfRXV1lEVBFiVHUT8VRdEJnEYlkUZGG/tmRl+ViUS/oAhFJ6CeRRCeTkTsywRFjVeXRH1NtURHf3lEtIdDRSZRJUW0zo9EI3fyRM23fETq9ehFcvMqRfaJkkTGMERHGKXCRhrsN0YHt7VEDpBxRWUUjUWhdrhEztjiRBhj1ESrzhdHyMagRqmuPEbGd5dEmCloRQzlWkQLy/VEhXnsRLV7jkSwG5BEqwVPRgK+yEVqooJFKE2aRKuL0UTzUxVGFw+VRXMijkUGG85E1x/FRYDWzEWEqyJFWsluRKQQZESGY+VE2Pe+RB7rmUR3koBE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - bHFf2HfAckBuCpjsbsFyQBzSVFdOwnJASMvHT6fCckDcs61DPMNyQJEt+blbxXJAuMm1xUPSckAoKWn3SdNyQM+yC91y03JAbm2TKs7fckDEqNZXuuByQGBrcRhN4XJAE0LxU1DickAaS5I1kOJyQBjv7PXJ8XJA/j7u8fTxckAm1U+kf/JyQGLDokm583JA4h2yMQz0ckAkhzQCpvRyQI0n+XvB/3JA1JdXqWMAc0DA2Jpo+QBzQEk1jXnTAXNAK/22k9ECc0ACU+Xv+gNzQHa274siBXNANm+VRQoSc0AxO+b/vBJzQAz40axgE3NAovzTVPgTc0ASMQDlThRzQKqUyZ94H3NABBmi1aIgc0C8zOIuOSFzQHzcSqLJInNAPs/9eBAjc0AIz9+NBiRzQCy57h87JHNAsGRB2s4kc0BXJHHqSDFzQKdowTBbMXNArNbxcM8yc0DBX68GpDNzQH2DtMg3NHNAGk5XY+JAc0Cg1w/3d0FzQBD617/bQnNAdrjHUnpEc0CLy99QmlFzQEqZ1s9AU3NAbUALjKNTc0BmoTHV41NzQIKdDSp5VHNAaIJTA5Bgc0DwVcXwOmNzQOoi/3dRcnNA61A1Drdyc0B22aEEtnRzQIwtojVNdXNAVCrXzGl2c0D0a27jeIBzQE24xpkMgXNAaNgP6VyCc0D32wtmD4RzQLY51j+HkHNAaA6Cc02Sc0A0K6yYZJRzQA0+exf4lHNA0ANLWbigc0CY3V0CXKJzQDrkSczmonNAguty/gSlc0DSMpuLxLBzQN/ffJczsXNA1x7zZX2xc0B7+lOh9LJzQFzbO+W2s3NANh7n0Qy0c0CJj3Yq+cBzQPwF8h3QwnNAhvE1PffCc0AUYLM+JsNzQGLFauw+y3NAoUY5CdjRc0BO1gWnvdJzQAxqQfxF03NAHrqy7vXTc0BeGyj54tRzQFjr70VL23NAdhZB96Tgc0CanryhOOFzQMOMSb5l4XNAbPhkgebhc0AHwPeJQONzQCQKDluM8XNAxQ2qjS/yc0AI69XXNvRzQOgB6/yL9HNAcoqDQuUAdEBTQcUyeQF0QEQlI4ukAXRAtsHAOkESdEAgI1s7TRN0QAcWuYlKIHRAGj7xRrkhdEBIuALjujJ0QL4mS/Z6Q3RAdFUcAvdUdEDQFh4SjVV0QNZ0rHS4YHRAm83XmwlidEDwI0RdUmJ0QPZ1lChPZHRAk7FroCJwdEBUasJKQXF0QPNg5CZ+cnRAWjJdzjlzdEDz3toMoXR0QIYyza/4gHRAw409RU6BdEBa/vhVkoJ0QOirpPwkg3RADEzvCReQdEAp2Fc7a5B0QNLhQYfAknRAaAMXvqKgdECwkX5BtqJ0QGZ1JSfQonRAEC/NFg+jdEDuWJKtCrB0QNJ15dTDsHRA7tfLv/6ydEBEvBIL4sB0QEMrlVF4wXRAYHxS/LjEdEAZ2qnW/c50QODW/Bni03RAMsJR1nbUdEDuhtVYztR0QN/gyYG34XRAp5C3hcnidECw9ioWjfN0QOjz+silAHVAEJcXOWIBdUCXSHt36gF1QMRpb4tdAnVAMTn+72oSdUARtDMjJBR1QMhulJGdInVARYdqM8s1dUA2r5GR9091QHNMX0B3VXVA6A69+w1gdUAwp77DOGF1QKTuRoRmY3VAXT8eKnhydUBIBKObdHN1QG2gwdKNdHVA/HozsVZ9dUAS6ePweIF1QP6QtLWtgXVA1J6dlqaDdUD+TllImoR1QAJbuPSLkHVAYFF3ELyRdUCMtFsnO5N1QDVyY6Szk3VA1gwZUT6YdUAiVNCxkqB1QF1KVrwhoXVAj5w/DaS/dUA6WsNc+MF1QMDoJR0I4nVA+sScCUkCdkCkinNP0QN2QIKT22UDE3ZAbkRxj00UdkBM+Yl4CxZ2QE2k3eqJInZAHlXe1ZAkdkAQWNsISyt2QGXJ6+gfMXZArK3G21MzdkBKhqsRmzR2QKu2L9YdQXZASp9HBnpEdkAyhC76/052QAzuqdwSUXZA6gbk/M1UdkAMo1a/IGF2QC5DUMHMYnZAz2MxAVBjdkAMcadCuGN2QKQ2T0PbZHZAVAJJW8FrdkBCsp6gP4J2QAv02N5og3ZAGk2uJJGDdkDX4/Sln5N2QD70v6eeo3ZAYrA3b7GjdkAJ2+ONtrB2QLwJ8RfBsnZAkt6EpnizdkC8b8jHrrN2QOZyGT8MtHZAeBCdg3m0dkCw74KDzs52QLpk7mza0nZAkr2gX5nedkBFdq6G6uJ2QNo3AE5L43ZAPGaDWZHzdkDOCk0qS/Z2QDkYXsoyAndAocYlSVANd0BDgr6LARJ3QMwyCzmpEndATm1m9QUYd0AkJWVmDiJ3QHJsPZx0IndAEqPc2aIzd0AGW3nNDDV3QMMaPASdQXdAeHQWx/5Cd0BO9SFRG0V3QNqjOaxKUXdAfv/3jJJRd0CD2WAfK1V3QD+/9oSOYXdAEvpx2Dtjd0A6wyicJ293QPV0TwlMc3dAALlNp3iCd0CJ2HiK/YJ3QIQpfZ97g3dAjBF8QQqSd0Ah5BStTZR3QLrSdfpnnXdAkT2oNJShd0DgRJ15wqJ3QPjAaGsCqHdAHKKvKRuod0AiYrsWeK13QKWnmf9w0ndAwCG3hYvWd0DOJg8P7OB3QMijrXsj43dAHthK5E7yd0C87EyGMgN4QKISeJuPEnhAGLk1U20ieEBw+gvMvyN4QP4TjBV7MnhA7db94QxCeEBqvmZkekV4QB651ODKUXhAP6qjppRSeEBGkLs0hlV4QKjTldjuV3hAVusky0ddeEC29nL5+GB4QKzem8u2YXhAFVJOkJdieEAUMzWf7md4QN3UTlyLdHhA915VkKd0eEC4nDRax3R4QICd9cGlgXhAdcCumryCeED2ufa1mYR4QMJ4r9WXkXhA4oamjaeUeEAROQ8ytKR4QOo1HRjVsnhAF+ws3c3AeECsO+qPt9R4QK1K++vC83hAnJX+kwP0eECuFi4tjfV4QA6QcaSaBXlA3hTxO+8jeUDfxm3Psih5QPbs2tXwN3lA79IX//lCeUCkTgg4zFR5QDQ4E4dGc3lAbvFBa3CNeUDuhKy5yZJ5QP4a1lMfmHlArv9kFW+deUDHpVh4v7J5QLGyqstB1HlAdoylhszVeUB/BpYHUeR5QH+7VXgi5XlAjNeuPAw1ekD9sODZ5kN6QMCPg2IaRXpAtLrpHSlVekDy9kaUNW16QH4vcs+McnpAyPUaBr2CekBbg3T3oZR6QHyf6qHurXpAY1Y+hkSzekDp1crgDLZ6QPIjfyMrw3pAfFFyqhnGekCu7nB/1NN6QCLGoZXU2npAF1PogjXuekBiAnx9egR7QMkeh5ApDntADuJKoEwVe0AyJuYOWiV7QEkGGfhUMHtAcmF9iv5Pe0AYEqVnYFJ7QA4lf7kilXtAhM1pSDuee0AKpsazlaN7QG+mOolhu3tALO992WjDe0DUzykXe8Z7QHeifjr943tACDHU5ov1e0BXMCcRVP57QP5nwf2RAXxApXVB89kBfEA2eC8OmgV8QBQrcabREXxA9UrJe30SfECfmgxQ5Bl8QIwxvUi5I3xA2rOr481BfEBqlcyq2lF8QOQ5K6PAsnxAAZllBEO0fEDO8FfEV+J8QBKCgkQX8nxA9qc89lTyfEAWZPFGRQB9QJMLgN0AAn1A2p0ddksCfUCSCBmKvgN9QCnABIREEn1AmdqqJz0ifUAWU3OonzF9QHu1NVZtUX1AJkbHwliUfUDFpLJOKsN9QOpUC0SP9X1A+jxkDI1VfkBmeXczxoh+QD53sz+Lin5A1YCH7NWPfkBk4CEe45B+QOhZfyFj1H5AQuR41TPkfkABAwB1HwB/QCrsTULzA39ATkwGEgwgf0AaDYfLt3F/QLr2qIizgX9AUpfa9GORf0A3qkVtq5F/QHqxt9ZeoX9AjaW/Jlexf0D89ZldRtJ/QOP+5yr2CIBAnh+D3eANgEAhyLO/gxGAQB/f3D8wFIBAcLRAGdsWgEDHkyqFhBmAQI6hgEkwHIBA8oKbG98egEAjn4fceyGAQLgaipQqPIBA+tGBM9g+gEDG4UQ99kiAQBZ26jzoUIBAes4uORRRgEBEraNmDlmAQFv/gfIfWYBATfzuygthgEBdE916KG+AQEcZ88UDcYBAhNc0lh6PgEDZwz0kbJGAQM0cOSeHqYBAvYS4klLBgEDmGOYiU8mAQARYIOuozIBAxBfblFPPgEDyq+OTI9GAQDbOl7pM0YBA4mDQ+0rZgEAoF8C3ROGAQGDxj//26IBAADZIUfLwgEA3ZkHvPvOAQPsMR9k//4BAZsaG9T8HgUC2G3WaPQ+BQN/iMtTzG4FAcASywPIdgUAifi9Q8x6BQIGl0iQ0H4FA1jUWLjIngUAeZEJe4y2BQITG57e7MYFAH4sVPCc/gUDlgfNT9EWBQIJVF1X3SYFAWu5kUlxYgUDY15BMG2GBQAZSImZhf4FAomWr6x2EgUAE3TrPVY+BQIIzBi9Xl4FATiMXJgqhgUBTRFED6KGBQGy7tmxuqIFAqR6sou6pgUA8cgWGSq+BQBjdiqJrsIFAXIn6IgaygUAiVcpsCbaBQDLtluQOuoFASCGU2CnMgUAaH3vh1M6BQJ7/Rb+A0YFAKklvVRPZgUD+dYH30OKBQAidbaCF8YFAzH9k3QEJgkCSuD9a/w2CQEjx7sMCEoJA+PwHsNgYgkBVFGwT1yCCQAFgMUHRKIJAOFEJgaQpgkA9WnSRpy2CQAFvIYLnOYJA972QQOk9gkCA21xiQ4mCQMyHBD9EkYJAdsmrySSUgkB8bP7GPJmCQNVOP2pVmYJAFDJxWg+hgkDol555O6GCQNyofYcNqYJAEFHHbTSpgkCWtwgxB7GCQIB9uiU6DINANOlUVuYOg0Ad6zq5eRGDQH61m63IFYNAElqlVHoZg0BNuOeiyxmDQCjCwr69HYNAziXPT9Idg0Dgf0vuciGDQInbRK6KIYNAJpPj+cchg0CmGfBlzCWDQKhYspANJoNAv7B8SHIpg0B2xN6gECqDQM4fMcgFLoNArL3RjBgug0CCQ2ukaDGDQHJj5rV8MYNAOutM0gsyg0CMMfmURDSDQE3SJnhrRoNATHRyHkqDg0D44alz6pmDQLYBtrzrnYNAfvfzU/Chg0D5HU+wL8ODQMf/WTqU+INAJLyGt/9ohEDwNW5m/3CEQCi+tIv2eIRAWn+SOWrZhEBkT7nSauGEQIDzauNi6YRAN9rkHTbxhECKWxU/Y/GEQKzxoPU2+YRAmdi5DVz5hEAm01F9LwGFQPSDCqCgYYVApoQup6BphUBmTogpmXGFQKjWP7yZeYVA3A+7Bye5hkC0zqzkkCmHQEFXg62QMYdAvemBzYo5h0DcmAY9ikGHQF7cFHXHsYdAA278RMe5h0AOYRtawsGHQL6RCEzCyYdA/6tBNu3hh0BXO2hNPxaIQC6MjsVCGohAQViA5EAeiEBagIIq5F2IQDj1a7HRgohASBqiaH+FiEBiesRHL4iIQCBq3wkykohAwfS62u7fiEA= + NrgMGZxjYkDOIQhxcuNoQFRnpVdMhW5A - + - eiSjRAFIO0UmCFRE8siARBTVD0eEmY1EGNEIRyv9P0XiJmpEMOutRAk0o0Scc5hECtI3RdMCykSCE5pF9GqoRKSUf0Q2T2FEY66DRAYch0QqSYtE9NwZRbTwxkTUrLFE6Em6RGZi3EaXvE1E+wCRRK8cDEa2rWFEYL2QRSynmkRWZZdEwxwiRamE20YmjspEs4eGRCE0jETbBZJEV0J6RQvqCkUc0m5EwhEzRySCdEQ7lrtEnKK5RDy5hUXgPIJFjoDYRWpucUQDVZtEZD6IRUPJgkRFIoxEqquTROyq+URxAllEUdGgRMUPskRKQTRFRoOWRLR94UbbtUFFxGTCRECIYERIqyJF4kYpR2JGvkSHn1pGy3jHRQHX20WPTQ1IzX4aRb/ofkQLs1xEYxNcRFLZZ0aUFExFkOdERdSOxkQFWkZFztyXRFNpv0UH0Z1GUO4LRYDOa0Rh+sFFsiHcRK0xp0VCEYNEJASWRKeiBUbEsJ9ERk2ZREbtu0TPt21EK1CARUiK8EQOsZVEEAiIRA31ZUbX0r5Eb+YTRaGAQ0UXtpdEJf3+RLwzjEResHFEcyS3RMiq8kScCrRFik84Re3DpESW4NFEH0iyRS+0OkeWtV5E1vK2RQnftUTbzblEUd3NRUJpkkQ4tX9E4GWJRUUUh0SOFYBENqyoRIrUoUQMgNdEqZHURFoo0kTtB6FERqY2RRw5dERpIb1EcmkoRS+jgUSKqOZEQcV/RF6cDkXCqB5FMGKRRJgEpUVSrYJE7nyqRNFcUER3bxZGRD2URAgJJ0VGIoRFPJ4sRe+IiESXGNtEiYGRRMxeF0Xm/PhGfYwARbGEMUVevmZG6TqDRAvX+kQgcJxFmDotRghqGkWRorhELS6FRF/Sf0TeiK5E7feXRE7zn0RlIYVEVU5ZRBIN10QEPyRFMRrFRQYX1kQftG5ELeWhRIr8lERnhNxEngW7RQ/Hr0Ws78ZGsb0tRRkPlETgK4lFAD0LRXBOikSsNkhF6suLRgKfZES6wTpF2AeVRF8eE0ZXJQ9FjVrCRKHIA0VeZKhE2ZvlSAAciEdibVpFJl6qRDAGgkSEUitFpIfyRF2DbETIdZpF7ZZnRLl79kTZ6RpGmS6IRLjWhESdUs9E0aDSRFazXUTzQRxF8BDPRhFDcUYiAyxGc4jVRGooO0WGT8pEHg9aRH5m5kczT7tG7zGaRN6Fu0YUV4pF8/yHRqHHzkQgECVFisPjRfNsikVz1Y5Ex8DuRLSaDkVyqdFE/5eaRFtQnkTGq4tHfeRNRMv150ZmS4RET4rgRW5ayETuLe1EEleIRHBbgkSNQplEiVilRCwzAUVNeE9Em2xFRdq2jkRs+qFEZvaFRK2oJka0RqVFaw6jRhcdDUWEi+BF1lJpRbgS9US+gjNFHlZ/RLkVXkTywzxJAFS7RV0N2kT9LEVFw/u3RFkcOkjRLbRErUyiRm+wbkRA3nRFWD3qRCe5o0XfA6BEkf4ORfYjh0U9KqxEKqemRBLHjET85slERShjROnsm0XFM6NEhG4ASBiHlkdp1IRGk47WRaKle0XvKfdFLlnORMVny0TPKotE7z26RyD75EQ5KcVGwpAdRaOfnUR8IIZExROURGQgkUScRHZEsZ6IROOMykV9gnxESyiaREWXmkQGZJNEL6rDRAD4lkT2DexE6qI4RsUpdkURpptE2ySxRFQDhkTzu5NFspgfRSPsj0Q2EAZGkwCFRcDtvEQ+VJhEITqgRmeZ9ESo2Z9E/a1IRob1oEVaBH9F561jRPAGhETeZ19EQymmRZ4jgURvdNdEGpJ7RJUWzEexAOREPT/JRmHWXEX2dy9F1daTRntjlEQLtTFFqKjJRGcyzkQNfWZEGJWNRWEce0SFd5FEPMrCRPHg4USjcUVEEhCLRK26c0QE1W1EPQWJRL40xEWfetlEUVt1RFRSr0Vz2eFENHxQRhTb1UShd1NF0KMNRd78l0SBUVBEh5gFRcwQxEc9GYJHklMAR4JKQUaeNiRFMoPWRNfbT0RmQ69Ef8LSRGaSzkTw+mVF7zGNRjlH0EUwoPNEZzG4RNZIL0V24gFFSn9eRS7140Tp49hE0ydlSOjYz0czepdFrhACRVZkW0QuvYNHCzdcRggaQkXSBKlE5J5CRGjQnUQvKhtGmHwoRXo5z0Rs+ZBEiorBRGvIoURAFgZGFpUdRZKmnUSb1qRENEmNRHOfxUUmd1pFDSeURDujA0UppWFEMRSuRPyXn0VkPtlEuGLYRLX5M0UskwlFNwiqRICEJUWabp9E3ljMRuhUSkbiYi5FaLoLRWiMskQ8ovVE8EeJRXOBkETvFLZEkH4BRbvegEVDqgNFj8pRRqG9kEVuuoVF+34ORZxj/UQNim5FXkEFRYXVBkjhfoVH3rCjRKGqG0fuwW1FcJ6iRfRLN0bZtxlFzsluRXGWykSAaxdF1YGzRMyV00fukvlG1tZQR3Y9gEbAkwZFBglVRVwJBEffQUlFWYOQRNPigESawdVGFsENRps6YkaXITVF168iRYwF30SzmqJE6ynfRBbAj0RuPc5EgwBmROH61UVhwFJFtSqeRHvT80TOf2NEeJbYRQ2ldEUsggVFVnosR0s9jEYcBlRGokyARc8js0URN/JEf2jXROF3q0RuIP9GTdhgRi1+Dkb9S1BFpIiQRJS3WEYexN1Fc2mERR9040TI0gtGD5lgRSZtIkXUMJlEyG2SRNsyB0bbPqRFLSkLRcYytUT9WJ9EFbkRRd/y0kTAf1FEM56pRA== + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - iIxhp2/BckDh6B8JT8JyQKpulVY8w3JAlbut78fEckDq61IHRNJyQGQndQJK03JALH6J+nbTckC8puRMz99yQC6mnDK44HJAwZtLqVHickCG5NhDkOJyQEYQSTDK8XJAJOJU+3vyckDiAeYcufNyQCooqkej9HJA/cF/hcH/ckCqcSVgZABzQKB8LTH4AHNAdMczG44Bc0DEUof21wJzQIhwjSP7A3NAirJHsgoSc0BdpMN+dxJzQAHbvsq8EnNAwoCTPfgTc0DoLPOfBhRzQI4oD2tMFHNAZHF3GXkfc0Ce0wuHpCBzQLB7pjQ5IXNAiyQjk2Uhc0ASR1UHyyJzQJ5aTgARI3NAZnHiS88kc0DWLRjPSTFzQFaI+HjPMnNAX7v9Jzc0c0C8skaWuD9zQCxvQwHkQHNAWkKAcXlBc0CIx+x53EJzQD2YN3Z6RHNA8vZnW5lRc0DmifmmQ1NzQGxkalWkU3NAzoBFmHtUc0Dof0tniFRzQGSE8taMYHNAeDnLyjxjc0DaRbpsUHJzQMDzmxm4dHNAcIguAEx1c0CkjCeMbHZzQB+UXmZ5gHNAZsCi36OAc0DyMKncDYFzQKl58tFegnNANKMxa4mQc0BIsuqmTZJzQILFUKXPk3NApswdhmOUc0DKIzYx+JRzQFx8emaMlXNAWWX+Wrigc0BKOBHwTKFzQNIreG9bonNAed/cA+eic0DnaOf0A6VzQF5B+ufIsHNAYGZN1nyxc0CAtzQZ9LJzQNQGHXG2s3NA/ACniQ20c0A8j1WH98BzQFaVttfQwnNApEXQISfDc0A8Cyo/P8tzQAoSE0nY0XNA4/MiMi3Tc0AMVnd3RdNzQNRqMgz403NA6pGf2+LUc0Cn+0rUOOFzQA6/zyNj4XNA7E4+5BHjc0D7v8j+QeNzQBLPcWTw5HNAdE//IEnxc0DyQEf2LvJzQGVClUI29HNAZteFn+QAdEANPB04eQF0QMrYOwSlAXRA6tt4AYsRdEAMbtOFQBJ0QLgLUvxLE3RAuPtnNUogdEAOHP/GuCF0QKZC8F1UMHRAdh+QGlNAdEDwoO3GeUN0QL+kSfqLVXRASAXJ/LhgdECys1FyCWJ0QNcTKS1RYnRAdAOrBw9kdEDkkM/sTmR0QGJIjGQicHRAchS+nEFxdEAyT6cGOnN0QFihKLM3dXRAhqhx0fiAdEAMIkd5ToF0QEBMvCeSgnRASNSX1xaQdEAMbrO/apB0QGzZ/iJkkXRA/Z5KXr+SdEALOr/lzaB0QKqAtq28onRAy3ii29SidECT0rlID6N0QOhwqmEQq3RAsudGtQqwdEA8Qf37/rJ0QDFmKAPiwHRAytRp4HnBdECqQxfS68F0QM6k3HUmxHRAPcjbT7bEdEAOXVvx/M50QNZNhjjh03RAEvEywNDUdEDSiOznt+F0QP4ITorF8XRAfg1Vko3zdEBIReHgpAB1QHQkLtbNAHVAF5h8X2UBdUA72qKRXQJ1QJQL7y6cA3VAnd2OIEwLdUAm4IJkaxJ1QAJOa49QE3VAtD/s2SMUdUC4CruhnSJ1QHYbEFzNNXVAdsODEYFRdUBEi0NrdlV1QKccQi85YXVAAij5CGdjdUDL+HvD7G11QHAo89h3cnVA7J8hXnRzdUDUJlCgjXR1QJjZhe54gXVALWxN8q2BdUAIO/DOpoN1QIid/jGbhHVAKm+KFDyTdUCoFZsdtJN1QMMDa9Y9mHVAmhIERJWddUDhCx4guqF1QOiQH67RwHVAgkVK52PBdUDdvjXp98F1QEgL3Q7N03VA5yFapOTfdUDOV5PgCOJ1QCjJ0m8M9HVA3imhL0gCdkAs3EGB0QN2QOrBYtNMFHZAeE+rBA4WdkB0RH+OhyJ2QNC6HxCRJHZAgbeOt0srdkCmSg9oIDF2QCaOxQdTM3ZAcxVpXZ00dkDOXl7CXDt2QJkldEQeQXZAnAXs1HpEdkACGdT1E1F2QDAvStjNVHZAsO6Uyc1idkBOXgwMuWN2QHAlDe/cZHZAJ8g5uChodkD4iLSvv2t2QCxxEuM8gnZARgXRmmuCdkBiERpNaIN2QIq5nliRg3ZA3pigD7KDdkAkuVjCn5N2QD/0Z5Sho3ZAIfvSNMGydkBuUoWMeLN2QOXQnSWvs3ZAakRwrQ20dkBZ+j6nr7R2QG4xQq7AwHZAwzDs1c3OdkDuUZOD2tJ2QBp8WDLp4nZAOiw8hJLzdkCcrBpiMwJ3QHMbbHdRDXdAFrwQswESd0Bjz0kPqhJ3QCsIwNvxF3dA0RWVywQYd0DQ+V6EDiJ3QDwCpkR1IndAdjRNaA01d0Bi7RoknUF3QD/yXWO0QndApn3RgxtFd0BiVTroSlF3QJTUrMmSUXdAynvo+ylVd0Abxn/2RmF3QPCJoO+PYXdAFrt5zDlid0DEiyspPGN3QMi+hCnRY3dAGD4vvidvd0A2DUE/S3N3QLd90Xd4gndAHJ0/F/2Cd0BV+3aEe4N3QG4rYckKkndAYh18QUyUd0CN8Y+ZaJ13QGNMDgDCondAWM4uOh2od0BoXI1Jcq13QG1tg4SZtHdAzlVoo3HSd0DIEpznjdZ3QPYlmb5P8ndA21GvciACeECo0A6eNQN4QO7MX0FuInhAplijiIsjeECMraKNDEJ4QKYkvGkRRHhAcqgJtXpFeEDwQeqvylF4QFwUr22VUnhASG5hUYdVeEBslV1X7ld4QPC8eTk3XXhAEDY12ExdeEAvftyT+WB4QPJF6uK2YXhA+VcdX7pieEDgxfAvNHR4QGRLJhhcdHhAtWCyzYt0eEA3/czi3XR4QIYC9vakgXhAMHmI2pmEeEAGat+QUo94QNi/cfCZkXhA+voWQ7CReEBYhYXjp5R4QIr5nU6upHhAaf2fvtWyeEAC7hW4zcB4QJCyAWP4wXhAp0tt+wbFeEB6ASSIttR4QHnlmzjF5HhAyoKQgMHzeECQx0D+AvR4QNTavqOM9XhAbkLakRIEeUBUfv0amQV5QFSMoiHwI3lAQkcDLkk9eUBTB3L69kJ5QP5JONTMVHlABkkjEtlkeUAPWcvucI15QNBh/g7KknlAVK8nISGYeUD9brVHb515QLYTYqGFnXlAzvy2OsyieUC2CEbDv7J5QHLibShD1HlA9of9dMrVeUCMtIaIv+J5QLHYiDFR5HlARj+cs/sFekA/xM1bOCN6QBzo0oEMNXpAIf2JghpFekBmIqN0KFV6QKJQGqo4ZXpAfdndOIpyekA4HORTvIJ6QAFfNl/srXpAGjJz1Ay2ekBqlqREK8N6QFLEhBQaxnpALW5CvkPOekDWp9eo2NN6QJKu2nF55HpAgQHzvDXuekDarkDbLg57QL66HcBMFXtA2nC8Wlole0Du2DUJVDB7QK0M8279T3tA9j8uOWFSe0BpO3fYFGh7QJN4LPlrbXtA1xWs4CKVe0AglgMVO557QLreQ6kwpXtAbacGCGG7e0AgGp+paMN7QIYizJp5xntAgiykkG7Le0CkQSVX/eN7QEho1diX8XtATHbSLYz1e0CbTTlvkgF8QP41NrjaAXxAYhcy65oFfEB7tuiGjRF8QJ7O+NnQEXxAQGyei81BfEA/7t2CDGJ8QM6G3l35pHxA/QZ/B76yfEAK6sQUWOJ8QMUPo9Eb8nxAKAUy/lXyfEDIqt0vRgB9QFZjHzEDAn1AvGx6iEsCfUAAAQxKRRJ9QFi4L4o+In1A4gx0BrsqfUAE9rANWZR9QNQ4BA9mpH1AR+44ajHDfUBQRvND2+J9QN76+TuP9X1A0gNTSTgffkDSEo00jVV+QBJb3szGV35AuLNm+suIfkB2uNQWXIx+QKoXSzIjjn5AJoO3LY2wfkCuWd3sKtx+QF2W+pPV735ADs7xsyEAf0AQ2M5HEyB/QJV1ugO5cX9A3Bd0J6SDf0AiQuGaYpF/QJ6QRYZfoX9AHnQHv1axf0DKkgdz4A2AQLa8xtaDEYBAhNFPSuQRgEChqABKMBSAQO0LbmraFoBA9LyK0IMZgEDh+cZcLRyAQCY6n3PUHoBAEKxx6uwpgEDS2W2IJzKAQLLfzS/rN4BA8JNkKqI6gEDUTCGtKzyAQGgMZNbuSIBA56tnouZQgEB876hkFFGAQPUrtnXoWIBA7cchYQ5ZgEB4jaLDKW+AQGJSIjoFcYBApsiYVB6PgEBQv/iSbZGAQMYhx8SGqYBAlNpj2S/BgECIYU2WUsGAQLaCrMNTyYBAScCE2KjMgEAU6l7+Vc+AQDB5aqAs0YBAsCixCk3RgEC0JgJeAdKAQIQqXfhK2YBAcKDsx0PhgEDQhAqhTO+AQJv/sRw984BA83IAprz8gEAudSvwP/+AQArxwbxAB4FAuY30hDwPgUCciR8s8BqBQC75qnQ0H4FAn4YiO70xgUA2Fi6680WBQJ+X4u33SYFAh9glN1tYgUBswFaAG2GBQCw1DcZVj4FALOoebFSXgUD+tpwqCqGBQIr5FZfnoYFAvsNE/W6ogUBrPVJwSq+BQEQqNVgGsoFAoBOxaQm2gUDAAiVBDrqBQHrzAAIqzIFAVPbdCn/RgUDhHPn+ftOBQI4G8NzS1oFAqJUQgBLZgUCoG8mhFt2BQERBvIEy9IFAWzGtXAAOgkDF7Xt82BiCQPSrQLLXIIJAzp7TytEogkDTTyO6oSmCQPXXRgqjLYJAQHadYaQwgkCc7nmF5zmCQC5jI2fqPYJApvx9IkZ0gkCQB5lwQ4mCQETM7hNEkYJAmEFoBYCRgkBTFfaqPJmCQEphAbJUmYJAwL9u0w6hgkAM0dbKOqGCQDA/D04MqYJA6B0oVzWpgkCEds6KCLGCQAMe1d88DINAaO6Y7HkRg0ArtJ2OyBWDQDCKW5V6GYNA2rnDK8oZg0AayGEawB2DQPeT+NjQHYNAjA153HIhg0Dc8TjKiiGDQFBK5cANJoNAQHArYHIpg0C9RfqqECqDQFUfKZcFLoNAqFprPRcug0Aa/yasaTGDQExOvMV6MYNAEPwxTg4yg0DHL5/PcEqDQNDD0KnjgYNAK7G8MuqZg0Ag86zP7J2DQMhxhJXwoYNAKs0GEDDDg0B2aAkolPiDQMqmGnH/aIRAHcQ9zABxhEC26bKA+niEQNVT0Glq2YRABi4txmrhhEC+2VM2Y+mEQDCrPp018YRAjYAemGPxhEDQYjv2NPmEQAqIvL9d+YRA1IsX+ywBhUBbSFapoGGFQG7uxLWgaYVA6jlsrplxhUDD8p7ns3OFQJWviYuaeYVAGDsfs3BqhkDo4S7sJbmGQJAuHqyRKYdAtvLSj5Exh0BqrsHDijmHQLFeY1hfQYdA7KKLvIlBh0AGLd6Mx7GHQMidFBbHuYdADyASrMDBh0BIejVwvsmHQJjNp5UC/4dAeP0kZEAWiEAPbXmGQRqIQDKFNsJHHohAcEUsNeNdiEBFWcwjldqIQBO2lfhA3YhAQvKHKu7fiEA= + NrgMGZxjYkD1hHOUyCJpQMZtNYzMxW5AooOBwRKidEAKeGK9lHN3QGneFfsq03pAMTmqNEOEf0A= - + - F3ArRQA8jURgCABHVauxRB/QAEcvI9hECfmPRKjT90TRb65EOkR1RSuSEUVScjlF1OmARCHZg0Sz3p9EvcaLRIKr4kTJzqZEDvyTRBbujEQAov5G1olTRFRfhkTXn0RGFhtkRX7NfEUKOmBE7xOPRMHpBkXDZbpGiBmPRP++gkT/s2VEpQOSRRBvBkVe+xFHBhydRD88YkSewMxEDVRvRUVdiUX1+gVGelihRO1Lj0TeAoFFfmtwRIMde0RTK0hEqbODRCGbhETk3HpEGeG+RG6JlkQJ5dxGOouURKNK50SeibBEIuwNReDbPEeeg4tEVSOOREhmVUZNO0hE8bcYRgt7ekTZ5tdFguC2R3J96ERcLFhEG4fWRLWUFka1llhF+X8kRd2ssERPy4RF3wiDRZoRqEb5iTZF5QE+RBQMkUURvIhEv0qQRfhb/kVF07NEHr6WRG4EoEQ/lIVEDAldRFNjLEWSbAlFEI+WRMeZgkYX579EjJV3RIgQuUSDWiJFL3yZRIfpC0WgDodE1UtcRC+lhUTH3rpE80mURdv1SkXAtY9Eea1PRP0RX0RYVbRFa6YyRydKlkVuNtxExgEZRcAsx0U/CV1Es3eORZxMfUTWnaxEMc7KRLZ5o0QvFIlEJkRWRKEqH0UFGExEfkH6RIiSMEXRzJhEZAuuRLaji0SWjIdEnhmARGAww0RM4dxEmf1xRBSPFUUdOWlEXCDIRTXDnETbv4NEBvjZRHlX/EVhnJVEXS2LRE6PlESZ2ktEVzksRdSWZ0XxbC5FeOyMRLWtDUX65CBF89zPRp+qvkTXerBEXTg6RY39/EUqGBtFROTERf5DIEaE39JETo9gRPPPgESSBRhFaV9tRGTigkQhp19EZ9iGRNaO00TJfmtEkCaZRHBVo0TQTVFEVRmlRcHX0kSRRPdEsvSORK8tp0SQc+RFFLbIRdretkYdJh5FiNqrRAKRUUSLFllFGTFSRUpkHUVwrB5G6DQ3RdR/xkUgP8ZE+KqoRLyZt0RAHrJE83eMREZiCEWFANBIYiEXRcH0eUehHn9FBKoSRV/4CkU/vXhEYbmYRQMjfES893JEA+0oRWVTukXLqkZEebe4REzGxkQqrMxGZw+SRs2TNEbLudNE7hjSRG5XYEVpPGtEF2bXRyVnvUZuxnVESvq+RvFWlkVkDYBGyxroREHlrERxcllF7QZEREjK3UU3pYJE5nkWRYqho0RRA6hEWx3hRHmUtkT1BahEiT6jRG/7WkdDwNZGZN12Rdh6tUQl3VdEDR5zRNJLnEQ0kZtEs5lURLPwp0TdW2NF4aR2RG2ij0SUcKJEih8fRinUf0Xxx5NGDDcSRZ6T3EXFG8lEa1m7RKNVPkXxZjNFsp6SRNx3pkSNZ4JFI7c4SdgfrUSy/RFFuww+SEayZEQXPqJEQ+uIRJN3jUZ3aDxE+DIxRWnF6ETKUnBEo394RL8gUUUFhL9E8PpmRMVkOEX/FJxFdoSGREzco0TSg4xEo71dRFvhkUSxyXBFeVi9RCSnA0hiYqFHLoOZRgq2vEVP5NNE1K6hRGCngEX3DLpFCVGyRLQYe0T3/p5EG66fRB06ikSQJ7lHDjq0RtNIBkV73HxEWieVRCWFjETwsZ1ETVyhRVl3gUSZJLxEfGGBREhBl0SbW5FEUFuoRMavj0QqNT1GFh1IRfV7kkSjoYREFs2DRJX3hkTLG4BEWakTRWigBEUdkW1EmkcrRhREQ0UzXI9EQ3GbRDOmtUTB8ZxFBDeURlOhm0TFHztGMP6SRbhwkESAooZF81fKRRZLh0R5jo5EFs+9RFQF10ciHrNEn4rSRmIns0SqqSNFtaCbRlPKZUVZDtREOx+qRDavc0Xok2tEt2JiRJsWhERXSgtFTbhZRN3jqET5DXZELsTFRB0MaESxSFtEd8qTRI4S9UR2cpBEUc9zRYy/h0QZU4tFWd+JRKlATkY1A01FPV/kRCqEBkVRp7NHTt+TRDq9hUceLvVG4aY8Rk80QkWsuJBE3uFZRKeQTkSZgVpEnCl4RMduYEQzk65EvgNNRY4Aekb54WlEeSurRc88BEUs8vFE4YtnRUYMDkVK9wJFCj2sRCv4a0hkvuJH65mPRcDzG0U7/I9EwL97R7NMiERb7F5GTQ1rRfQepETgMX5ErxZbRHTpFkZTxVhFcakVRcGfR0RUkQxG7ovBRJQ5iEWN11lFI+Z3RHrEXESyjodF1t+sRFUGe0RpLtlEo6ivRDJJVUWW/IxGdCjTRcFYFEULhO1EuxJ4REhJlEQrMVtEAIeDRR9vEUUZi6tEnniERYhTSkboJZNFwgI1RZHfLUWQv5JEONu0RA+bLEW/V3BE68N3RKIXw0cl1zVHZEabRDUXvUZSPRFFeBG5RWWq6UWjgwlF4T8eReGjvkT1IJtE567QRxRDo0aV7lBHVYY7RiSEdkRLkBpFTHzJRnvQJUVrM+ZGYlLVRXCiZ0bHPcdESbc4RZeyFEXfflFE5bLeRAklR0T4YZJEMZv3ReeUmkU9P09EWCQERZn6r0T4YMdFd6gARQKfWUQgswlHVL+KRsU4F0aqmXZFJkFsRYrFyUTpYQpFPYiHRG+r+EafumZGlMoBRmixZkS0tDtFeutgRHCDrUSORCJGUZSeRYtkXEWQ3JREKsrLRLs64kX1KJJFejkxRRR0hkQXWVZEMnmzRWQxWEVP1NpEEuZeRJkMLUUVDkFFNgXBRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 2npb3HfAckAKZxaYbsFyQN5abeRRwnJA1DjuejzDckBWMaYKxsRyQMI19QJaxXJAalOx4EPSckB09fEySdNyQLa9qcF203JAQk/HKGLUckCyKStAz99yQKi9EXa44HJAeUvXs1LickDib4WVkOJyQFZ/kQHL8XJAhFbO4PTxckA6eJIFfPJyQPipJOMT83JArobemrTzckC/QQZoDPRyQKpg1JKi9HJAg6CnOsL/ckCiZJDaYwBzQCJtUWv4AHNATqEmJE4Bc0CcKX5bjgFzQFCw6o7VAXNAenx8i88Cc0A6J+fx+gNzQJacpHwLEnNAdVyGPr0Sc0AQPfvZBhRzQInir95NFHNAPHvsYXkfc0BoiGxTtx9zQGw2v4WlIHNARMM+uzkhc0AkB9cyyiJzQIJfwbkQI3NANrCouc8kc0BpW19HSTFzQJ+XZ0QkMnNATKcZbs8yc0AQz5CuCjNzQBTa68c3NHNAQKH369s0c0CkRav8QkBzQDqlW7DlQHNAcg0M8HhBc0D6UMDbJUJzQLsgVXK6QnNAzJnOctxCc0C0DEwM+UJzQKK5wn56RHNAG/qdxKNTc0CgQB7ah1RzQIgUGv+MYHNApx+0gjljc0AG5Bz7UHJzQGed6ba4dHNAXmGk2k11c0CylZRkeYBzQDh+awekgHNAi6PnMAyBc0BwE+3kXIJzQG5N9A2IkHNADogHUE2Sc0AoB91K0JNzQCQvHdZilHNAus+eG/iUc0DKMAE0uaBzQGT+DH/moHNAWkpm/Vqic0D6H1Ie56JzQFqkxYQFpXNA78/qu8iwc0BQvBsV9LJzQJ6srv+3s3NAFv8CIw20c0AsGUj8orRzQJgInNH4wHNAloRHmDvCc0B23Rim0MJzQK2rHekmw3NAnsAnkMbDc0DMlu8hP8tzQLr4yS7X0XNAMJxX6ETTc0ACf8J/99NzQLQx6kDi1HNATraIeUrbc0CNtjpSpuBzQMY7AXg54XNATx0HjWThc0ADOKoEQeNzQJk33OYw8nNANslR4jf0c0Aq2SYvjPRzQM50NG/lAHRA1aKCLHkBdECUhRsppwF0QMTkLbiLEXRAoSNEG04TdEAwan4PuSF0QCImDimNVXRAtGwzurhgdEBolxa0CGJ0QKxAdBpOZHRA8JLbCSJwdEBM66F+QXF0QHSYZg86c3RACFSgUzh1dECegV15+IB0QNIEBrZOgXRAA105so6CdECOB/9aFpB0QG/NPqVlkXRAJn6NNMCSdEBaEE/Az6B0QA5dpw66onRAQPu8U86idEDIRDQzEaN0QAONQqsKsHRAGmDf6cOwdEACCNllTbJ0QEx2cE4As3RA+AuIqOPAdECOmXInd8F0QNd9B6YNwnRAWuKJ57fEdECISW+f/M50QBohrUXh03RAkrfdMM7UdEDmrXSQjuB0QLrGfQa14HRAQkNxjSThdEDgynlCueF0QHB34+SN83RAThcb5aYAdUAodPIqzQB1QDZdrB1lAXVAHljThF0CdUBz3qy7Swt1QMCLT0JrEnVAtH+NeFITdUCGE1FjJRR1QOH40z6eInVASOOLQM01dUCSvFtDs0F1QJiej/oPUHVA7KozMk1UdUDSLD5kd1V1QEpUPxM4YXVAJMjA1PJhdUDqpcmjZmN1QLb0lhF4cnVAXBkhrnRzdUCEu+/YjXR1QOO761dZfXVAoiEW0XeBdUCN11/MrYF1QB6MLb+mg3VARmXYYJqEdUAEf5Luu5F1QA4xLFY+mHVAWQY7S5WgdUDTN9HTuKF1QG0nUPu5pHVALSXJCmXBdUBoIyCAzdN1QLe4uKPk33VAYkG8rxDhdUDv5pUlCeJ1QEkOAyFJAnZAQjivqNEDdkCv+DETThR2QBBA0TUNFnZAfNv16IgidkA+7DgqkSR2QKBoqjtLK3ZAHhIxASAxdkCaulOHkzJ2QJeFmJpRM3ZAapPq3J00dkBWuyl0HUF2QEiUEhB6RHZAd+hv0vtOdkCCB7ayylB2QBLH3aITUXZAonNNX85UdkD0fZs0zGJ2QF90vUq4Y3ZA9rQi6NtkdkDdK4XOJWh2QCxVkVOWaHZA8Ch8y8BrdkDPNzDp9IF2QCz6nXc+gnZAMiN7bJGDdkBMj2b4woN2QMyIqiX7hHZAGHUPsp+TdkDDuDfQuJN2QCblVXygo3ZAe/D7HMOydkBWJ3GGebN2QOM19vUNtHZA5hWbH9O4dkA3FxCAvcB2QFq2QqQxxXZAjLKl8M7OdkAYkSTjfdB2QJC3hAPa0nZA+ryEo/PhdkD6EEHY5eJ2QEKjQqeQ83ZAKq0/WTUCd0DOwFHMUA13QOyGKuUBEndAD9Iv86kSd0B1YnStBRh3QH1Et31OHXdAOI1cKw8id0BQlqLmdCJ3QNy9uu0MNXdAtuXeSyM+d0CEkj9CnUF3QMNbTCL8QndAjN8dRBtFd0DyT5sqSlF3QPavUsOSUXdAUN8INytVd0AqKgwlkGF3QLxhLEg8Y3dAagUoWNJjd0AfBxvfJ293QJZIJ4tKc3dAVfTHHXmCd0B+qvR1/YJ3QGl9d6l8g3dABKPAAAqSd0DyVlByS5R3QM8MbXhonXdArEJNwsGid0AAqoE/HKh3QJJ6QUJ2rXdArBQmsXPSd0BW+S5o6+B3QOk3dqEl43dA0I0RDlHyd0AowwssdfN3QGCXIPeOCHhA7artxm4ieECCLyvpDUJ4QIFurPx5RXhAelIUy8tReECQ8E3AlFJ4QLg4dEyHVXhAHlQ4YO9XeEBQ7PQ3NF14QOC0bUD5YHhAWhA4cbdheEAtgsqvkWJ4QOvsPC63YnhAQkOh6VB0eECOwkPQZ3R4QMhJhb2LdHhAoAYuy7x0eEDNhx2xpIF4QMp3OeqZhHhAccPCuZaReEAMbwMIqJR4QCj0dU+spHhALYIajNiyeEBD8HO5ttR4QL6SGdsC9HhAEOtFo4z1eEBGv+yaDwR5QNczKOydBXlAUHe09+0jeUBsjTqWSz15QHQ4XGuKQnlAiDmlcc1UeUAr2rIE2WR5QF4mu6hDc3lARqkVyXCNeUC4Cr0eypJ5QLSuS4UgmHlAq9MH/22deUDcmeBfhZ15QJbFROrNonlAXOPj4L+yeUCGPuAlQtR5QFVI41XM1XlAtj80ecHieUCwNBdUU+R5QFwasuz5BXpAJvB3Jgw1ekAy4LWP5kN6QLb4I9caRXpAJc421CZVekCydSDnjHJ6QAbql2+8gnpA7JmN9Q22ekCgPk/oK8N6QOsvb5UbxnpA1K2QIkLOekCSPZ6n1dN6QJx5x0Z55HpAqigttDbuekB6LgvgKA57QOLPFNpMFXtANjPRvlole0B6qPO9WDB7QIaYcSeaSHtAUp+obP5Pe0ByhHCuXVJ7QLRsyXoilXtA/iSg5Duee0Cux+uelaN7QCuOhXdhu3tA8u5uMGjDe0DiGHM+ecZ7QBDnk3u/0XtA3VXIo5bxe0CV3Xbvi/V7QKUwdu2RAXxAVjGpEtoBfED/6Q8b9wF8QMeLPVyZBXxArkJ3GdIRfED5KIlWzUF8QHvU9Q7aUXxAxkUFr7mkfEBTXKEJ+KR8QIyLOm7AsnxAWUJib0W0fECetun3y9V8QNTIxMhX4nxAmBTclADyfEBruxMIIfJ8QMYcLWFU8nxAktAveUQAfUAxj9fdAQJ9QA5LW49LAn1AKlo8N0QSfUBClOIyPyJ9QASk79G6Kn1ATkxGQ58xfUCGbeUXF4x9QAzYL0FYlH1ANA6KEmWkfUBxkJxULcN9QMV30yDY4n1Aikf1zZH1fUB07wfdOB9+QMlGW9M8L35Aap/OoIxVfkCgH1fzC25+QJRZ9ZBcjH5A8jEJAXuifkBIsR7hYLN+QAEgbe4u3H5ArVuj0CfgfkC2BVB0NeR+QIz/kxw07H5AeqVVwNXvfkDROgJgIAB/QKZWCJMMIH9AsEx2VLdxf0AVyMgkY5F/QALIsfunkX9AQsvHHZiTf0CEsFnQX6F/QExnNfFWsX9AuBjNWeANgEB6dHawgxGAQD6H4CvkEYBAENPsbjAUgEDPX79U2xaAQJOIEdOCGYBA5U9CsS4cgEC72CIf6DeAQNQq6TAtPIBATA88u/ZIgEDnC63x5lCAQGYk1NUTUYBAOwIMdOZYgECCEcYoDlmAQGigZpcdWYBA6CqtMAxhgEDAJzW3KW+AQOyTAFQEcYBAcAogQQd1gEDgRPHgHY+AQKg8E/NtkYBA3j2Ltx+XgEDSRlbh+6WAQKYS98eGqYBAkFQlPhKvgEBixpU827GAQJw5I3lSwYBAloPKRBDGgEBMmF+SU8mAQMqwPrWozIBA+o6ZtVXPgEBUfRFmTNGAQDdJrJxg0YBAKPTj4AHSgEBcBAAgS9mAQEI7u6BE4YBAzB9R81PhgEAavAgv9uiAQC9nEvM984BAX84s57v8gEBGKxGGP/+AQMaiV79AB4FAonuXkTsPgUCo61tB9B2BQK6Umps0H4FAILXg1jQngUD88iipvDGBQDoHuG4nP4FAMHMvXPRFgUDLodYf9kmBQPAKRngrXYFANhjUehthgUB2LGjaVY+BQMI1yOVVl4FAXjxGMlOfgUDgRylnCqGBQHwpIyvnoYFA7BmLGW2ogUCCcbZQSq+BQIA0tEwGsoFAlJxT+gm2gUDWgwFSDLqBQOIEnosqzIFAzJDXbNXOgUDJIoNwfdOBQFwC6xQU2YFAWuYWBxfdgUCQ9kcsD+GBQKNgxRSF8YFA4ghsYzL0gUDs59wsAgmCQOO6Vsr/DYJAthQr7QQSgkCx/kk/2BiCQCKASXHWIIJAZu1ngNEogkDeL+q8oSmCQESrvwSmLYJA3IRLw6UwgkD0g89YlDmCQPhEMnfnOYJACELqies9gkCWaWQWanSCQJ4TfFNDiYJAhPQQD0SRgkCkVLkf1paCQBUNm2Q8mYJA2mow2w6hgkDqVrwtO6GCQKyAXywMqYJA3Bn7qzKpgkAC0Rr6BrGCQKJXHaEEuYJATFizKDsMg0A+dPOS6Q6DQHTX3TDLD4NAxQQUtXkRg0BoUOxxyBWDQETWZBt6GYNArtL3/csZg0DJ2dzCvh2DQFiF/yPTHYNAwYfkEnMhg0BJ9tY2iyGDQAbKCpDEIYNARaFI9w0mg0C24mRScSmDQFoj074QKoNAQNw12gYug0CEtGxyFi6DQMq9ATVrMYNAJEkdtGlGg0BdMknta0qDQGD2V7+ojYNAEJHE+emZg0CQivza7J2DQB3KQqHtoYNARXzqOS3Dg0Aym/t4/2iEQI180B37cIRAjdx92PZ4hEBozCxPatmEQCGGj81p4YRApUtoX2PphEBP4j0UNvGEQBgLSbJh8YRAE4IbRDj5hEBuJvY1XfmEQBOzaKMvAYVA3sntdqBhhUAQlPZVoGmFQEHxCA2ZcYVAPoD2VZl5hUCoqb4gkoGFQPgxSQV+qoZAUrh8ECe5hkBqbNFuldKGQL623dab1oZAMK1lApEph0DNrckdkTGHQIsBlfuJOYdACxCIholBh0D0YBrlxrGHQB05s/DHuYdADoh5zsDBh0Dsgr5Gv8mHQAGCiQdAFohAisDOf0MaiEA2T01WQR6IQMrSN2ZGIohAptM1UeNdiEB2vrYEc3GIQFpruTJ/hYhAMBbiSS+IiEDOZCvkldqIQKRyXmRB3YhA4tAj5uzfiEA= + NrgMGZxjYkCEfuNfSOJlQBu6YmAmQ3BAMH3xjJIhckBShvO9FZJ3QOIU95k+dHlABB75ysHkfkCM8MP7lmGAQPlt/BOYCoNAjB+yJUPqg0CKcn2s2cKFQA== - + - yHnLRGHrYkVOp8JEmSgOR1gTrkSvJbZEXGYHR0ETgUV0/KVE+iWIRALaGUUPzxZFu6pzRRJ1G0Uu7oRFk4l1RJ7Zo0RQ2HhEMUCGRFSDWURpTt9Eq3gDRSBsNUWRw/REa5x5RFyZtkRdsbFEV67sRK0kEUfFR7hEL/kbRukkrEVk6oREBfqbRATRZERYyk9Fw0bVRumAp0TlPI9Ee2aSRSUC3kQ3DI5ERNIlR8jEj0QAVZ5Et6uFRC+PjESNFKdEnyB0RfP0nES6cXpEx5JbRUGHWER38CRGZ9aIRdOV4URXgdRENAAoRWHXj0QOoaxEuk3jRJz0BEc5WqpE5y4ZRcx6i0QwlBxFWZ1UR+AZrEQTpclE/7CARn6FCEbynJBEp1/mRTU9dkdVryhFItzSREA2rUUBXU1F7twXRbXikkQr+qNENKJuRH4+skUCEupFYNaFRDUaukZUby1F83qURaOVmUSq469FCQmsRACJpkRnZOhFKGW8RD0HKEU217RE2VrcRGL+oERo329EycN+RqxwjkTvQ6pEVEldRb6uC0Vc6/JE6eevRfKYgEWm0rtE5GaMRRyQNkeY7o9FVraTRD9nJEUz0PRFvbG2RNlBpUWG/mpEE8GnRH4pu0Q7ybhE7T6ERGFQ0ERmW6dE1z2JRPi/m0SHG3FFtFCJRLW5xkRHyolEW88YRWrj5kRD1KREJVr5RNulikQ9DpxE43l5RLG310T8i7xFdkXCREfRmEQyIq9EiMEWRggkI0acBcBERYEjRdQhykQwM39FVK4GRYqVlEQ8RIJEUiS1REvL8UQYVR1FeIipRLFpzkZvmMZEOv5YRf+dP0avEZZEJHcURWrft0WmVx1GPMEbRamXq0SDnkxFoUriRMjKAUXVZnVEf4SsRLsbukTQ13tE5y63RML4D0W6/qpFbfoIRT8zpkTQa5tEE7gKRQQz1kVgcMhFDtrMRhYuA0Ul5AJFaZC9RABWskWS33xFOeqxRGnurkSQpj5FDPBPRlXnRUUdgKdFzh8rRZhUvUR7lI9ED8bERJEIgETaI5dEZ9jdSEbarkRMb2pEXEGMR62imEUWro5FMhv4RHs0SUUTybVFQ5f7RIvgd0Q9JYZEHqVDRYF4rUSjhgBGkC7QRNdLeUSofSVFvIKJRB1h4Ubr9KRGj8MxRvQgPUV+5JJEGqtURTgz40T4OP1H4qyPRFYwvkbGzVJFtWrIRiNXpkWRb2dG1bn4RIc9M0U3GQNGFLipRN/Pp0VBDuREm6UCRexV7kRkFRhF9UmCRGbRukTLNDFH/YSjRlntr0Wig85EOMGvROClukQN5bREC//0RIeMm0RszJ1EaaqHRcbop0SLl1lGgkuqRRPap0ZiVBtFWrPiRXe+zkTMpO9E8bFuRcb/qUT3BpNEG+cGRUgikkVY3VRJcRJHRfjNFkXWp11IVG7fRAcFoEZ4Y5NEfrMvRdxUaEXYfodFXDLiRVv8dUTcHJpEl2+kRM+wtETCjbNENjWdRZZzkkQitNJEdTgCSOH0qEfSgKxGYAToRWLGrESOBTNFtz5PRWIKBUZWcfBEiljlRCPhgUR7xMlESSXXR69O6URZgONG5AgnRe6ryUTJ8KpEMJDSRUntj0SGX/pEWsCmRKRPiES405xEORcbRQkzrUSZ8T5GfSI8RU2Rc0T365VExIaHRB9BjkRyCRpF9649RR7W8kRU3y5GXkNJRblWh0RPRA5F/QCnRa9RrEaFkNZE0RZQRkJAMEUGbLNFVqSiRQ6ZtEUyRs5EybuxRA9qj0R0KAlFaDimRHq/l0SyXtpHy86tRC4BwkT9hchG0ou/RN0uDUU1EbdGqOs6RUix/UT0NcFEffXLRGuC1ER0/GpFYWlyRFZu3ESv5IVEbX0IRXrOoET+LIxEyvTDRBKftEQezp5ERzzDRIEhkURlxm9FrjiFRDv56EQUu4RE+GmORO7chkWl2n5EdA9qRYtUIEZbZ6VE4iq3RMPkU0URzYtE34CwRKP1yUcGyNJEcbyOR3UE6UZDLBFGW3qWRe16k0QcoIFExz4IRWXmNkUZv4FGDRmtRDNkjEXfOOFEHS23RAnz9UQ2Z0VFtWaNRIEUgUU60vhELcZkRNbVe0QMwRNF+1eXRChw1URv3nFI4cKhRMm640c9OUVFuXMzRT2lYUesp31FSVGpRLV/XUaxsHhFLA2GRMRE5kTAca5EKza2RCTuS0YnDF5FMNYKRcU/kESBNhlGU4AgRXyMtkROydVEhFckRruvl0WN8ptEz/7ARPPRj0Uzj/VEtn56RP5usUQ/E1FFaaEmRSDTpkVbg3pGJeMKRigG+kSwOfFEipXIRKbLoERk3LlFxvWsRDSpAEV11s5E//baRO49o0QAoUVFg08ORbqIXUaWxopFm3NBRVA9NUVubwhFh4WARIhMiUTdMG1Ftx7sRMIubURH3OFHb+NLR3wxnkTwG/tGE7DFRUs6C0YJ5gBF/eu7RJm5xURDcnpEUqQbRYarkkTcwKRElR3KR6cKlUbavC9H5vIZRkbf3UQiksVE8HLgRgNRDkXzx6lEBTcPR73g9EWZPJ9G+XUjRd+JJUWQsTRFAnShRFWPZkTIi4hEFVoqRuxNlUUoIulEtUu/RINmx0WOAr5EstjKRO5PEkeHfJBG6DQ8RjcmlkUg6kxFpEjbRGgJFUWsbLhEFNntRmH3SkasqBhG4iVURc7mj0QrnZ1Eko/QROFgzETIUJZEMMA/Rk5HvEUkIqBFVyelRJC19UWcQnJFKnsORaiqxUSgnNhFTzpcRT+B2kTeXn1ENo2ARA/AjURGI6ZEAjl5RA3sWkUFBolFyyv3RA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - hBOZZ3nAckBC0ik/DcFyQAihX7slwXJASqC0KW7BckDL1/K7UMJyQMQCihyrwnJAg0nBPDzDckD0x8I2x8RyQA74tR9cxXJA/kZbvUPSckDuckPfR9NyQGrx2it303JAxZGz487fckBV/YNiueByQO7lmipR4nJAeX2h5I/ickAW/0biI+NyQE5nxRnL8XJAkBejHrbzckBylkFXovRyQBCqOW7B/3JAlSbz32IAc0DmzDOE+gBzQLUDBGhNAXNAw4TnzY4Bc0D+c5QX0AJzQEgCDQr7A3NAVhsVtgoSc0D4FElLvRJzQPVImM34E3NA4c3EkQgUc0ChqMZzeR9zQBEjDre3H3NA7t5V2qMgc0DQyHxHOSFzQAyc+FNmIXNA30k+jsoic0Be1WA1DyNzQDbka24FJHNAXKNZ5s4kc0B80kssRjFzQAHukAlbMXNA9RcOvpEyc0AuKz8yrjJzQNCaTibPMnNA/J8RE6Izc0BoJGEdODRzQFi40KC3P3NAxuUcOkJAc0AE9A9n5UBzQJOn3nZ5QXNAuTyPpNtCc0CA8ABEekRzQNT+zVCcUXNA2vuz9KNTc0BO/f+J41NzQHS1TCCIVHNASxMj2olgc0C4w9bzOWNzQLsqTPevY3NACCSRj85jc0C2uRMQUnJzQFJPlBprcnNAgElLrrd0c0AMeaIqTHVzQPLNHCh5gHNAcmbEIKSAc0Aw+cCSDIFzQH+XqdxdgnNAxGrfq6WCc0AijeSbEIRzQDiblxxbhXNA9Ah7MoaQc0CRQrBTjpFzQNew+HJNknNAQv/MeM+Tc0BUgBhLY5RzQOYMAOX3lHNAXt6g07igc0DW983EWqJzQA6LLQ/nonNASijgTwWlc0C/zRG/NLFzQPKy97nzsnNA5UWyI7ezc0Dqe3GbDLRzQKBR7d1hwHNA5hpGs/nAc0BIyYmkz8JzQJPLUbgmw3NAjrn+Gz/Lc0DSnSa62NFzQPhNXUFF03NAKrjrI/fTc0C286vo4tRzQEpXHAyk4HNA7lzsGDnhc0CqQq2qZeFzQNQbSIuM4XNAvg1LmGTzc0D8YUVFN/RzQHy6pj2P9HNA0NIq9uMAdEAeEqwEeQF0QLji9AmkAXRADfRzNgcRdEC8uFJ5fRJ0QPY3Ha9NE3RAPvGsQuMTdED+G+leeBR0QEeXnjFKIHRAjCEVTLghdEDRdXEBVDB0QF0P3pF3Q3RANjB0s2VPdEACjnMJ91R0QKwpX9GMVXRAVl1UT7hgdECA5tukCGJ0QN3ZL65OZHRA/jc4LyNwdEAp6xwzQXF0QM+FUJ06c3RAH+uHEKJ0dEAOszQV+IB0QOg04aJOgXRAawHLkxaQdEBq6YVXapB0QDhum4hlkXRAXqeed9KgdEDOJtXROKF0QJKisKW5onRAwJtbQNCidEDYTLJ5D6N0QCnCzSALsHRAnrzmrMKwdEAicJC7/rJ0QBTk8zUFu3RAbuAF1eLAdEDBbTaAecF0QPr46RzmwXRAjEbMBSTEdEBIn9ZRuMR0QHe05Eb8znRADuQ5dz7TdEDU0t5p39N0QMYZQQB31HRANvMVe8/UdEAFvsb5tuF0QFpepxXK4nRADWa6vU/ldEDSCBy1wPB0QLG/CLGN83RA83xtmXf0dEAKufZpZAF1QEpjws1dAnVADh/spZoDdUBu0ohtSwt1QDeH6zpSE3VA3XP6iyMUdUBF/7VhVht1QNBtEoWeInVAE6V0IMw1dUCAN2htskF1QJnryMaPQnVA+Ka/h35RdUBEc4zYTFR1QCbtF1V4VXVA4qTj+gdgdUBuiSD5OGF1QMCitjfzYXVAeEAgtGZjdUDMcc72d3J1QEgvRdt0c3VAHhS7vo10dUABmL7teIF1QOer7xWugXVA1CPOmjSCdUBAH7V6poN1QLa88siZhHVABBf9D7yRdUBWLSJobpJ1QBmCw12zk3VArJ7qjz2YdUAgdR21IqF1QCAWlVDNwHVAhU9GRmTBdUCc4k0P+cF1QMTkbO3O03VAErHeZwjidUA7nhlwPeV1QBEoHDBIAnZANnW+A9EDdkAvSLz9DBZ2QHmAHDKJInZA+Et/g5AkdkB6WSLwSyt2QHvvxdIfMXZA4fYA5o8ydkACE67MUzN2QC4FhHMeQXZA7CfuKntEdkBSa1PEzFB2QJQwp3wRUXZA8Ayi1M1UdkBA+qhhjmB2QLjfM5nMYnZAwy8+UrhjdkAi69uk22R2QPscub0naHZA3NqmRcBrdkAorEeOQIJ2QCDLN9FngnZAISuw14uCdkB2hmMikYN2QAa7UDmAk3ZAfrX0l5+TdkDOCTzcuZN2QDAQKDsJoXZAB2v1S6GjdkBPavBNuLB2QIGKDrzAsnZAuItFM3qzdkDF51rpDbR2QOyWmMjTuHZADSwZnL/AdkAcQLP0z852QPYIRKt+0HZA9CwQy9rSdkAyM1dw8+F2QKyzYq2R83ZAmMqMuDMCd0DIjrCUUA13QFJ1+TEBEndAdYOYFKoSd0Cp/l5k8Bd3QN3WZyoHGHdA2O1V/A8id0Ay1SQxdCJ3QHB8CbwMNXdA6pytGp1Bd0Bf8Niq+0J3QIIWhxUbRXdAmtF2OkpRd0Ds22ybklF3QG61yXkqVXdAoZkMoUZhd0CpJj+/j2F3QGEV0CQ8Y3dAwLXbldFjd0BxKpnXJ293QGCoPMdJc3dA6rMnGpB0d0DoASBIeYJ3QMz8MWT8gndAGZh0S3uDd0BaGC+dTJR3QBBUspZonXdA2sv1BsKid0CK9Rc2Cah3QEaszjQdqHdABddxpZu0d0Bw+zi74tB3QO4ddLRy0ndA3KVF8IvWd0BmP1lIUPJ3QGS9pcl083dAuInnVzQDeEDxQg1+biJ4QH7RwjiJI3hAKpmMCqQkeEDSBrRtfTJ4QFqPa9INQnhAaYk3yRNEeEAf6fuEekV4QG3RcDHLUXhAJBT1yZRSeEA/QsRCh1V4QEafIYTuV3hA+J5hWTVdeED4gOW7TF14QPLNCkL6YHhAlMIPcbdheEAYn5vBs2J4QMQbHPRFdHhAFFYPkl10eEDKUg15i3R4QK7YC0HGdHhAlWHQPaaBeED21CbQmYR4QBkXV/ZSj3hAkTP+05iReED8DjgYp5R4QIjbJinNwHhAXZC8fPXBeECjdU2Ft9R4QNjOEEMD9HhAooMQz4z1eEA0oGpVmQV5QAoji81uE3lAxPGH2/E3eUCMdYJhjkJ5QLi+hobNVHlAtQLba9lkeUDicHAESHN5QBYY1uRwjXlALkemFcqSeUDV9F8DEph5QOpfrcUlmHlA1ogtQmudeUC+V6MSOaJ5QJC87bXAsnlAlgvFKULUeUCAor8YzNV5QEzL41+84nlADoIkoVHkeUABvHtGDDV6QDoi+S/nQ3pAxrvvLxpFekANUtrzKVV6QN5Y48ARnHpAPtbFC++tekApLvuODbZ6QM5nFNMZxnpAzqY4hEHOekCkAToiNu56QEJDEtx2A3tAUpJCVykOe0AoRqrUTBV7QM5Ik15ZJXtAKpAzk1Mwe0CsnWgkEWh7QMaIEZAjlXtAOkC+wTuee0DwFqjgkqN7QB10wKJhu3tA5t5JL2jDe0AgtCovesZ7QGSFzQ2M9XtANPzbvZABfEBGyS2H2gF8QDnoS8H0AXxAog0oEJoFfEBWy0oy0RF8QFcTstilFXxAElxqvcxBfEDOaZ89DGJ8QE8iRhUCc3xAJS5GarukfEDiTH6kwLJ8QLWO93EStnxAPorcY8zVfEAkPPboV+J8QGoolfxo73xA6Bi6IBryfEDGosLqVfJ8QFRYSEZFAH1A8f4prQMCfUCUmLBPSwJ9QAJ+3GpGEn1AqAnfXfYhfUD78wRwPyJ9QDQ0cpy7Kn1AaO7bAKIxfUCcz2abwjJ9QKGjm8YVjH1Ax5nGKFmUfUCyndxxLcN9QJlpKpJr4H1AdJvhC9XifUDYol7lj/V9QPbs3nY4H35AuUxm9Gu+fkAgsUqktMF+QMvnxhYu3H5AAoTplczffkAN5dUB7OB+QGz3FVQ15H5AFBNzEiAAf0BofsluuXF/QICFOSRjkX9AZ8PswZiTf0DbGjHQXqF/QMk+vFdVsX9AnDeZ0OENgECQ7jmngxGAQBhY9zUwFIBAIJqpsNoWgEDB0//xgxmAQDg1fi4xHIBA+qR8Jvk4gEBaHqAiKzyAQNZ7Bfa3PYBAEIrGVtg+gEDaqRD570iAQITgh5vnUIBACmap9BNRgEA2Lm6n5ViAQDYg44AOWYBAkYwbUShvgEDmkWq9BXGAQA67SxYIdYBAhSLBOh+PgECpBO/tbZGAQF5lkDMZlIBAELP9+4WpgEBCnkh8grmAQIWamW5SwYBAzsld727BgEANCeVgU8mAQH6taFl6y4BAkrviQqjMgEDhH9RQU8+AQBomV2FM0YBAvMu1JUrZgEA0JSpKROGAQNxPycNL74BANDzDfj3zgECWIWMXvfyAQKP8InE//4BANrfkUxsHgUBcMuErQAeBQCDVTko9D4FAf0zgUzQfgUAU6a6nNyeBQKDrRgf0LIFAynOSRrwxgUDzEwZkKD+BQHPWNG70RYFATPkNV/dJgUBkAoj4Kl2BQCmDLLMdYYFAWTn/FFaPgUDqC6CDV5eBQLeshBXooYFA5mvsvG2ogUDQtdf87qmBQMh4nYpKr4FA9leH+wWygUAkbfx7CbaBQF4Hi+NLt4FAGvA2p9bOgUDRy3v6ftGBQHyfj85+04FAK0qlABTZgUCI7Kq6AgmCQAgk4dQADoJAYIpMy9gYgkB8O1mH1iCCQK1UjnHSKIJAMmWNHKMpgkBOq/y+kTmCQEywX5rmOYJAw3soyus9gkC68oZTQ4mCQNY/TdZDkYJAkDtqcDyZgkBf4s8ADqGCQKbtVF88oYJATBWTaQ2pgkC3vAslM6mCQDBiYiEIsYJAG0z2Aq/5gkBeDQ7DOwyDQPBnoFLnDoNAHOFFp3kRg0Ci/5Y4xBGDQF5HmGLIFYNAdQhT7XkZg0DIqn8EzBmDQFwppdO/HYNA/BeYrtQdg0CGfAW1ciGDQPpv9oMNJoNA37IET3Apg0C2rZrtECqDQFpYdpYFLoNA7xHiIRcug0AWpf/cbDGDQLUv33MLMoNANfasnmtGg0BBpKI55IGDQDBi+sbpmYNAiuL3He2dg0CCCHB/5KGDQFzXfG0tw4NAfIClPpT4g0D0AVnG/2iEQEyPMvP8cIRAvBicQfd4hEBkVtw0atmEQJZqwW1q4YRA4CKvRGLphEDnZ5LsfemEQHrTDAE28YRAJQobY2TxhEC2hUgmNfmEQL7K23Vb+YRAdC6nMj0DhUBd/SuKoGGFQMaETrGfaYVADMs5lJlxhUAWckf9tHOFQD/ooZSZeYVAbA/vXii5hkC24PkHlNKGQEm1uMKa1oZArpCnSZEph0DgH1wCkTGHQBIfNOaIOYdAhlPgYVxBh0BCk2WciUGHQPwUAXDHsYdAXuLn8sW5h0Ay7zQjv8GHQKzPIHDAyYdAiMEvZj8WiECGSq8HQxqIQKO8dltBHohAmOj/mOVhiEDqpRZ91IKIQHry3AYqiIhAWyuhq5XaiED/ow9eQt2IQKgSaVTx34hA + KBZXds7jZUCwLijacuRqQG+XdYaqQnFAsyNeuPzCc0DKo7/RbZN3QA== - + - DKeHRCNaaURvy5lE+x0vRWff30R0LYpEISELR1Sd1ESKILRENysWR8vRO0WbBrxEBtAhRV+uCUV8yJJFCnAFRQECrUTJm1pFuQ3oRDvs30R6yPtECqnaRHz8F0U7+51E+IwDRRX6/ESJrChHW8K3RPxUikZo65dFfye8RcBv9ERbUZpEVLAyRUCs4UZOWG5EBygNReJ5hURSjoxERF3SRc7tHUXcjZVEG6CDRDEBckSabRVHRHnTROlD3ESWQJFESZKgRKCzqUSWU8FFaz2IRRz4NkbOP3xEnz2gRfyHl0QtqA5FS2ycRH3880QZMIBEEquXRHVMwUTu+4FEz3LGRPxyOUWHV/5GN3WzREV29kQI8M9EgJCJRGrEskQAFbxEojJfRYgmjUTL+XFHNb+ARC7Q6kT6VJRGEkQpRqesN0ZBRTVH9/tORS/enkRok2RF1ti7ReV+HkWyb29ENQS5RBi83kV2mQBGdxiYRm+DQEXAQ9pFsKPRRA5iikUC451E6nQGRqW0sUTc4YJEGTaNRN3PLEWRvZdE5mu7RIl4mkY1fPpExIWURK41h0TAHC1FsrakRDG5sUQhn7NEYyVIRW/XlkSwKZFEIrWYRGFT2URxHAxFsbSqRUH8jUVrD7pEO1jFRRjnY0eAtIRFdoiGRHvhV0W7kBFGEDTzRdBSwkTTaaZEeRjLROQBuEQECgBFiq1wRFn5M0WmKatErwPJRG4hk0XJt7NEgwiWRB8G8kQWQ3hEg3DPRMBTE0V/+A1FE+GERGUSiEQ1B5pEFdHYRCmcA0VHPGtEqpq6RD6yk0S/5ONFXBqSRP33uUR+fhhGaDTjRFte2UY2+QJGQaBNRVzHsUSIOVRFqvVXRUlZu0QicndEKnmRRIOzyUQecTlFr7HDRNqHQkVkmMBENWK7RpTmOUXF0VNFRqFLRv2h70SG/N5FoBOKRGGhNUZiQChF4ZriRCnUfkQDp79EPcf1RM/ylERNuL1E4gTkRO5pB0WLycRE3NckRUkniERhqbRFC1LKRFYnBkVDBJZEjwH/Rd949kVbStxG78YBRT2y5kQIM3ZFWgaWRbkjrkSULlxF9PJ7Rl/JmETHK3xF7VOnRd6vV0Wwu/ZEO1/BRAV7lERUI7NEDBe6RCr7w0gwB45E7zFwR3jCR0UQDGdEenlVRVANkEQHQhNFGdWcRaAHpEUqCctEIeyqRNg7MkXNwIZEkRrfRRfSDEXZCyFFm8EORczw6ka67JZGfGEaRtQDyEQnxjNFh5RSRXwV0UTVWwNIt8XIRkZfo0VPsfNGaMaPRbS0gUZhQfFEacOURKSWIkXaxcVFSqoBRdpPdEVnWIlES8GgREA5s0RuwO1Ez062RE9zAEUjRN5GhgeeRsw8jkRaZK1FpNnCRKShrkTmXrhEdY2BRDDftES/9bpEXqraRD+2jUV7d9xEumKVRCtyhkQMttREV4OxREj4eUazorpFw9mnRi3zKUWOYwdGviQVRctzH0XnZkNFcHxNRZj6qUS2pypFu2dxRXcUW0ml5CFF42MiRSDoW0h1s8NEWo8JRd2Lu0bLCslEIPJ+RCIUREWpnJVFXQfMRRLqyUSxNm1Exj67RI2dsUQKB4pFwoqNRJNSoESEQwFICrGmR5+/Bka6OIFGK2ydReXtjEQg7EpFNlHoRQxa70SFst1EIpmuRIMC3keaL+REDATkRu7yNEUAI5VEyz2+ROn080UDrftEr4i4RJ4/DkUeDpFEmS75RHzuQUZkoVZFxFJ8RGi0HUWQpABFqbufReFpCEWkz5VGY3mcRdbG4UQuX6JGhVb/REHeX0Yd/T1Fb8K7RTfWxEXq859ELaq7RcJ9mEQzCMdEM1p3RApA4US4m3dEI6rzRBC37kclzZVE1/jtRIMgBEcTIJJEwjKMRdO020Y7JbZFaj2hRAY4rUQxFldFUCeURMz5kUQVFR5FiPo/RSgfsERN4QdFulu7RMOHIEXpAdREPOWCRLHRkUSBRbJFM9qKRI0t2URmIPpE1qtaRXijZ0VMSSpGIHqsRP4mhEVs1DVF5v28RNahzEdO4JBHLbkER9y0XkYo+mxFe2aRRNmm8URXBXtEYUWURB1b7UTYfo9FyniIRo03kkTyN7hFImWeROhBWEVgf9pEo42ARYCBAkXb0qlER9okRUPPgETCVYpIXmTbRJOZAEg71bRE+VU9RcbNF0VjfYVHsSVgRoSMnkVaGt1ENTjyRCM8C0XNUhpG6ZQKRUYZHUUE8s9Em48JRvMoGUWHUnNEIBEBRWU0a0QSPtlFUgStRfuBLkXOSNVEiReuRTkDIEWW4zxFAPkYRfzLv0TcVFZFP6MyRgFcsUXmoHJEJKnEREfJrkRf87tEUqYqRW3RukTLJ01FmMtjRprUrUVbSTlFs0xpRWu5lUQL1jNFrSjrRFmN3UcWz0tHCwPmRphG5EXANwBGyH+yRMKLPEX4HwpFZifSRKWEtERsIrdELX/fR8t+mEQYl2lGlR9WR4fq1kX3UZxEGA+sRJ9X8ka9WudGOk/9RYnRhEaHiSlF5ioDRalFeUVh6fhEjfWsROElrEQlVzFGwgzIRU4VvkSQpaRExWCyRJf70kURKlZFy4fiRGOQHUf254RGzXkZRpIgvEQ94oxFJi+pRZMfL0UC6bBEOBOSRKJ+C0ecTGxGy2kvRmLtC0UOr5pFWtONRCgNiEU7BQtFGW5VRjQvu0V6ZHRFhwuNRAUoBUVf4RlGo2qlRRWgT0V+TuJE/i4FRuRQm0UJq5FENy2NRPTwj0R3Y6VEh4kHRQvwvEWEt0BF + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 2H1d3njAckAEVHTYDcFyQCg+lSpvwXJApqlCaVXCckAChhO/p8JyQDX3mHA8w3JAmHZaaMXEckBegoPkWcVyQFSDPLxD0nJABiABmUnTckDFFuaAdtNyQAm2mFXP33JAC31uyLjgckAuKpK3TOFyQMCnqN1R4nJAl4MKrY/ickDe/ERNyvFyQJxZFdx78nJAVKDi+bbzckB4Z35wovRyQJcN++rA/3JAStov7WUAc0B29Gqb+QBzQHyu6R2PAXNAziHX0dECc0AI4XUX+wNzQNRAz9ckBXNAxJJu9woSc0BEfA8VvRJzQPpF45n7E3NAZVHaIwgUc0C9d+2wThRzQA0Nv494H3NAwAVWvqIgc0B+K6+rOSFzQGSkdSplIXNAxLuM1soic0BITSs0DiNzQFb1DS8HJHNAmTWEYM8kc0BOQnKqPTBzQPzKWN9DMXNANteIqiMyc0B1AcXomDJzQLGWRW3PMnNAKNZHc6Mzc0DQ3zSE2DNzQLIpHJU3NHNAOylCNdk0c0Asc2Wzuj9zQOjPwIvjQHNALWL05HhBc0B8gm0nukJzQBZK+bDcQnNAUNFCBntEc0BSkbCWmlFzQB2sUpOjU3NABhIVdnhUc0AkDoT6iGBzQF5KtDI7Y3NAi4i4es5jc0B8ADzGVXJzQEruvgC7cnNALhz7J+lyc0DHShPKtnRzQPk4n/NMdXNAxl2Tpmp2c0DEg2w2eYBzQEB7vMKkgHNARIHX2A6Bc0AeT12bEIRzQPZHtymJkHNA4Ja4j02Sc0DyWjx3ZJRzQMY7Bmz4lHNAbOk94bigc0BVVNnCWqJzQEi1ix/nonNA3O+0PAalc0AM7lEbx7BzQOJK1ybzsnNAIFjSELazc0A8MiK3DLRzQEG+XZFkwHNAsA30S/jAc0AqzQ39z8JzQHQERFUmw3NA9qUkUz/Lc0DW2eVv1tFzQPS/MXZD03NAMJbiYPfTc0A0sb/x4tRzQKpsn+lK23NAwDd1gKTgc0DmLaz+OOFzQAaG6elo4XNAG7FM4ojhc0CUYw8DN/RzQI7jePaP9HNAbrc0WeMAdEC1DY9DeQF0QETSHYijAXRAsl5JgLoCdECtqjoGiRF0QAmAqhFME3RAgtjyW3kUdECWd1fpSyB0QEaDwcmQIHRAijSLKSUhdEAYjRxyuSF0QJDJnn9YI3RAKrH+BbokdEDeeoqNUjB0QD3G9QFGMXRAE2RKGLoydEByM6Vt1zJ0QDB4rv/4VHRA0jWpdoxVdECZv/h2uGB0QPBiWtkHYnRA+DeAZ01kdEDuFhp6InB0QHrpJwvKcHRA9Lo+hkFxdECySzl+OXN0QGaYC205dXRAtMPC8C6AdEBOEZ5I+YB0QIusYpdOgXRASQn4uxaQdEBsqlplbZB0QEQBdztokXRA7LfM6MCSdEDoOPKTpaB0QBI1syPOoHRAWuiFSb6idECyMpELEKN0QGF2ny9ipXRAkB64zwywdEAQBXCkwbB0QAr6b+79snRAp8EYqAW7dEC878ei5cB0QJAApyt3wXRAD89Sz+vBdEArvfsVC8J0QHBNL3MkxHRATrCKP7nEdEApbFUZ/c50QOCBjPg803RAQqje0OHTdEA6sr0oI+F0QFv4sRG44XRA5H3eFcnidEDKRQ0nT+V0QGC4D9SM83RAct+8uqn0dED0UTm8pQB1QAYeKp5lAXVALsO+zF0CdUDszbnD+AR1QNWErtdLC3VAAqkhnGsSdUA+xNgjUxN1QOzmnAojFHVAQNJrZVgbdUAtJdR8nSJ1QEOK5HLMNXVA0vVI8LNBdUAfnEQG6091QHj1BbJ3VXVAVBEraDhhdUAc1JvRZmN1QPWb7M93cnVAstioMnRzdUDs2vd6jXR1QNjTQtV4gXVAOcw4Lq6BdUAeKDLlpoN1QPT0voeZhHVAuF6//LuRdUBowlw2O5N1QFdvVVC0k3VADHSpfj2YdUCXZ6SGlKB1QO49QMa4oXVAFiZVpjmzdUAwaTfPfbN1QFts/NJiwXVAqMdsC/nBdUCy09Zny9N1QG5fj0Lk33VA7AjDfAnidUD9JfrQOOV1QNpssEslAHZA7Zeg8EgCdkCo/Qco0AN2QDYhT4lYEnZAw07szAoWdkBuXjHlhyJ2QPIt756QJHZAFuG8AkwrdkDL626GHzF2QCBrrneQMnZAMaDnffUydkDsiIfFUTN2QBws5JodQXZAQFGkhnlEdkCQxrBZy1B2QMT0YcwRUXZAUO/8G6FSdkBEbcEpzlR2QPKE+GsTYXZAsuL7PcxidkBDpasVU2N2QF+rmnO4Y3ZAoPlswdlkdkDxOwJDKGh2QHipVF7Ba3ZAZMcPo2iDdkBK4O2EkYN2QLTVwkGzg3ZAfJZI5PmDdkAhci24t5F2QO1Il7Ofk3ZA0A76jLmTdkCBkhVkn6N2QNX/irewo3ZAniJg5L+ydkC0ko+3eLN2QJJZPbUMtHZApy5u69O4dkCdnPRDGMR2QAdYP3LOznZAFtwQY9rSdkCYsfso9eF2QJIncvqQ83ZAXC1wZjQCd0AJniVVUQ13QLIkmLwBEndAE+o2eqoSd0B1hMKA8Bd3QBIWGIAFGHdAj/fjXE0dd0DA6YbpDyJ3QATAdyG6JHdAAGNR/Qw1d0AO5lA/nUF3QPinhgH8QndAehTvGBtFd0Au+lbSQ0h3QGLET6VKUXdAgtFqjpJRd0Bc+i9HKVV3QCsCHj+PYXdAtLJ47Ttjd0AqIBrf0GN3QH4o4e85ZXdAcpIaZidvd0AIbUG+lHF3QP5k/yZLc3dATV8eNOOBd0BD682EeYJ3QLmEpUt8g3dALonWEAeSd0A8rWYNTpR3QPDBHo5onXdAUzxG0MGid0BorIoTHah3QE6bUeN0rXdAtRwYxpu0d0AkjA3s5NB3QHDN0LaK1ndAYsnoS+3gd0DW33xcUPJ3QMz6u/t283dArlrXsH37d0CQ4glCbSJ4QPifkZSMI3hA2hQllMAjeEBiaTgOfDJ4QID5iEsMQnhA/o4lyBBEeEAU+4osekV4QFK3XHnLUXhAbs5NTZVSeEAeB6StiVV4QMnMBcjwV3hA9uqe1jVdeEAqfTqWTl14QINKaTL5YHhAUB8Y57dheECGcPNgk2J4QFCwiYn2c3hAtuEe+jB0eEByXvFiXHR4QC+dP5mLdHhAA3SLwtt0eEAQxJ1IpYF4QCrv0duZhHhA4oncRcOEeEC2T4qxmZF4QPqbwJ2nlHhAr0773LmkeED4V4X2zcB4QIKRGab0wXhA0oRck7bUeEA+BrAUAvR4QNP6RhKN9XhAxp1t3PE3eUDX/akOTz15QAG446b4QnlAVC10QcxUeUDuAtyo6mB5QGgwuOZDc3lA26JyyXCNeUDcV/DXyZJ5QPh9W3wkmHlAZqKdNG2deUCwGiCIfZ15QNx5bTLLonlA9IH7gRKoeUCwJbcowLJ5QFBHnX/NwnlAamwjskLUeUCy58Gey9V5QI5dG5pS5HlACX+OzJPweUBWqXNiDDV6QEAe1DToQ3pAc6y5lRpFekB4cwXcKlV6QGqilryKcnpAKHTeLsCCekDIJ5ekoZR6QLUOhHHurXpAetDcYg22ekC2S7AwMMN6QKa4GlYaxnpA3zNM1DTuekAU4WyYKQ57QPYLuEFNFXtAch8xRVole0BW6q2qUzB7QNU/ayHFM3tA2YOUWZlIe0BIIWx/8U17QBHYpshaUntA8TkdoxNoe0BjV4qzYoJ7QFZT480klXtAId311zuee0ASUeM5l6N7QHBCe1Vhu3tA8Few0mfDe0C9hzxBeMZ7QMSEtZdty3tAcC+mLrHRe0A6pNN0rdN7QLuxeCb/43tAtNPeLYz1e0CaNG7F9Ph7QL7ARh6UAXxAAWcZo9kBfEBq1VFs9AF8QKRY4IaZBXxALk8569ARfEDxV1WSzUF8QJC4BJwMYnxAsOrhfeGCfEAu7j0wwrJ8QOzIe/dX4nxA2kq8+BnyfEDN5zb8VPJ8QEeGWmoDAn1A/KBPAEsCfUDLgXDgBBJ9QNwXHedEEn1A9TNH7T8ifUB4mX8iuyp9QFb0Y3ygMX1AiryI5sMyfUCA624HGIx9QBFyHIFXlH1A+jZucmrgfUAShuDa0+J9QA4zsMOP9X1AISc3F4YCfkDs0/VFNh9+QHbv6tBCL35AYB79/o1VfkDI8La/x1d+QCBtm08Kbn5ARk1xAuOQfkAryKTdLdx+QNJgy0/K335AP/bDwCbgfkDwBmKX6+B+QBQnDLw15H5APV1u/SAAf0Aq35dYt3F/QEjs6eGygX9AIxZWX6KDf0B1ANCNY5F/QJWJvhaZk39ALudzHgCXf0CWnLQ3YKF/QNThHGtTsX9AgsLehU7Bf0DhOXu3gxGAQI7aWTThEYBALKd1UDAUgEBaSQsk2haAQAkZxB6EGYBAcvgeLzAcgEBYatXB+DiAQFuTQK4pPIBAfRxnANU+gEA4wz/W5lCAQI2kqV0UUYBAeCd15Q1ZgECuhwd+HVmAQNoDzpPiYIBA+UwEmgthgEATgL2hJm+AQEBU9eMEcYBA9T/BSgV1gEAB0rhUAIuAQBiMcu4dj4BAMbXHg22RgEDyJRHFGZSAQG63WGcel4BAcdEBtIepgEA676FxEa+AQLW6j3hSwYBAFA0xSw7GgECFm4N2U8mAQALVUBaozIBAm32B51TPgEBHo6i1LNGAQJjW99JM0YBAjxwOggLSgEAaJBdkStmAQN6DlaBE4YBAFhS1TUvvgED6/XbLPfOAQA7lRGK8/IBAQ8fDRz//gECMFCOBav+AQE6Q+nxAB4FAdhGWJj4PgUC/KTOZNB+BQJin0ozmH4FAZEFSNzYngUAbBycf8CuBQEID/+29MYFAN0j5lPNFgUD4/77a9kmBQIYaKs77TYFA4hIduitdgUBnZfX+HGGBQHPyIlRVj4FAulUj4leXgUDSqsUhCqGBQAGEmfXnoYFA/pMpXQ2lgUCj1olVbqiBQB4ckyRKr4FAHLGzEG2wgUBgnzb2BbKBQIUhsS0JtoFAiqK6Y9bOgUB5FAe1ftGBQPy8wW5+04FA2Pu7KhTZgUDuMeDOD+GBQAg7IviG8YFAXpLAyDT0gUAyFGqMAgmCQPyeHIcADoJAanNW2wESgkBuzOiC2BiCQLVUSdLXIIJAyr/zMdEogkAGd0nboimCQEK18/unLYJA/idAK9AwgkBrUVGM5zmCQFZtX0XqPYJATCx/njxpgkCQIHxSQ4mCQDSWBOnSioJAupuglESRgkB25X4005aCQDZlXss8mYJAfjZx21WZgkAzSdfzDqGCQFTO8/s5oYJAgiuicw6pgkCGhX6ENKmCQNQNov4HsYJA+H7nEa75gkAicj+SOwyDQMhBB5PpDoNAhnoJw3kRg0CWErZRyRGDQN4vya3HFYNAxJAiZnoZg0BjWQbayxmDQNyIGjDOHYNA3PCd43Ihg0AOIF/TDSaDQDvGSQ9xKYNAksLs5hAqg0CC/Y1IBS6DQJIRATQZLoNAIupt7Woxg0An5dj9CjKDQOdghylvRoNAUup8HeKBg0AM5jVFS4ODQMgDE4HqmYNA77YUl+ydg0DtQjsr9aGDQLbnd5vppYNAmCH3GS7Dg0Df+F/ulPiDQPFBUtD/aIRABporQv5whEBA3sF0+HiEQNpnLn/XpYRAXh5yIAeshEBQLVFbatmEQBDtbrhp4YRAvF0R02LphEAclA99NvGEQATt2P9h8YRALDzklDb5hEAlFcLNWfmEQLqBWtIvAYVAZSNqdDwDhUAOUW2VoGGFQMpnrlOgaYVAH1H2O5lxhUACD6+Ls3OFQChyMe2ZeYVA4gYrDMtWhkCP7MCtJ7mGQDoSPUGV0oZAQnUPIpjWhkDGUfGtn9qGQIZ/iDeRKYdAbisvdpAxh0ArNOilizmHQFD/JKRcQYdA4CP9xI1Bh0DfMx5kx7GHQMeGCzrHuYdA4EMCMr/Bh0Dq/WH2wcmHQJzw01i90YdAJxyOEkAWiEBS7vE5QRqIQCrfgcpGHohAlpfZ7M2CiEDEQuFCfoWIQHjdboAtiIhA7su7HJbaiECqDa7dQt2IQHcWitLz34hA + NrgMGZxjYkCPTWWFSwNpQOJgFSPMRGtAjwFH/L0ycUDHBI8W/pJzQORVSwFWI3dAj18jUBZEeEA6qk8G7pN7QIEC8h+DIoBA - + - LrmCRHZ2gESJgz5FUNhcRDgBm0TP9e1GI/yrRHe8mkTbjw1HKN//RHAsj0S4BZ9Efx3QRKmsa0TL9p1Fgr6XRMLwXUW8R3JE7ejORDvLXkTIr2pE2KysRC1s8UT9+4FEZZeRRK2qAEc694dEsunJRI6ePEbQB0RFm/psRVpmnkSgDdFEH3HjRHPPsEZvUk1EtfWCRJjnikQ8LXZEzD19RbYxQ0TMnppEP+h0ROjHNETL3dBGoHWORE5Ym0TLXpFE6uMiRGv2pET0L51E+6uNRc1ilUS4lCpFFGYIRoFQq0TSNptFfO6GREvpm0QiCsNEnZmYRN5Zt0TT0W1EHBVTRPQblES6hvlEJdOFRNvD60YdZWVEvcrKRMvqXERKvfJEr0tIRygzg0RXhntG3VXyRYxn+UVgBsxG+xb+RDRQQEQPmBhFMWhvRWz5H0VNhlREvlHLRMWefEWB5M9FeHtURmUlA0V+Vy1Fof+0RJhufkUtwVZEfVmSRONGC0ai+D1Ee2lcRFI3BkUFbWBE1TDcROE2lkb7U8BEqYxMREGg0ETX9w5FzI5DRL/JyUTlyXtE77pTRMXhMEUVcDVE7lFORPgkakTPR2BElKxsRCYby0Tk965E9zW2RGmQfEXbczJFhht8RGiznEXuX25EBhQ6RwsVeUVQT2xEeOZ1RIc3HUW37eFFuu+2RVhGh0TgcWJEU26BRHmag0S5pptEzM6SRDlb0UQD1HREv/C5RIN1Q0RLCElFoOuMRDU9j0R9G9pEpl+URJZkTETF5VNEy1GFRCqLqUQRPUpEFruCRPdfb0SliS5F7SCGRGEGhkQPqLBFvJM3RN5Hb0R3lJxEr5TiRQiPXURS9nlHsQ+JRFlbiEaNCP5ELEM3RWqiO0UaJN5ETBZvRGgV/kRpasxEWLZHRV8nn0b1lAZF5tDBROfM1kU+W9xEEaCVRW9JHEZUJ8dEktNmRJ9vk0QL549EyKgRRdinKUQQzJpE1stiRExDkUSPkZJEtGoURcA/bESn9opE99XTRF2VXkTQeUNEpHqgRbGGsESgPYNE42OPRO5wp0RSOgRG/2fHRZzvwkZq6RdFM86nRG+A1URpSJlFWd1eRbohgERWnhhFVX5PRBEED0ZTPjZEWkgzRSGrkEQULY5FegepRNHRwUSjLddETTXPRCAGlUhbZ8VEaJyXRODDXERVgjNHeR45RfU7B0UACcNEDJrwREe7/kU3AYZF8R9hRVQPekRxJyJF8RyfRXatmkQcNyxFK8MaRaifrEaSRIlGYvYdRpFipETFBhVFxt7/RIKiNkX5p4JEPG/lR9owtUbCxp1FpFzGRiMbiEQxWJpFpEx5RgE07EQjNtxE7nfSRZMRgURQ3FxEIx5kRUYYZkScaYhElbWCRGFEukQlRaFEQUx5RMhel0Q83/RGewdZRnGdGUVK+lhErhWURHUjUkS1QGVEEE5jRETFskShZQJFE/qYRB3QYkWAnW1E6F6BRD1PdET8bP5EzWVARCtHKUZRbYlFcn6MRhlK90S4LQVGK9X5RESBqETuPiVFtwJVRXEfn0QKFWBE18yuRLggW0VSETBJa+a5RBaOCEUuYDtI8qVzRPUD2kRP4YRGw090RNjSwkSAwXZE359qRYZIOUUG4ntFMPv+RCpSoERb0c5ESJFuRb6OP0RnNMtErVvSR+DVhkdHnHVGZqVlRRjyEkX5yG5EVjxBRM4tRkXFBJVEEjHXRXd3bUQIGllETS5vRIfHm0e0C9lEyr2CRnjqA0VQaINEX3OHROXmSERmSYdEUVCzRb3pbUSMtbtECFrARFjo30ThGDBGE7gKRS3UtkRCJIdESAD5RNMUpESCcHhEzVd7RN2tTkT3eUtFzYy2RUrDJkXgFJtGeuHwRa89rUQas4ZEEdLkRL1pbkSo/adE72JiRjlCT0TFd9FEfygnRpu/+kSiZFRFiECPRf6OvEUj6L5EDvYPReCHeEQPztBHkXu+RFK5wEZFkU1FiJOTRiayeESgg1pFSUqURPAvS0VX5oxEsD7PRL88I0X2L9ZENTA0RS/ifUSoPC1FCNyIRPWrh0S43pZE81XCRFMfd0TASm5Eyu9sRNQAOUXHLj5EwmFcRN9gWEU7TwdFBkMBRb7NSEVBF55EtCOaRKfuIkbOou1EFxOBRCPAPUU8YyBF2plPRExAwEeNM49EQCyQRxQGMkcpIiNGIOynRVLetUSLYdZEL52iRGdqPUVtWXBG0qNzRRhbgkRsIF9EiOF5RKJPAUV16whFOdhmRDmKVESRkIlFBJEPRcuwvUQrv5NExfukRL4GVkSwSXFIs2l8RK0O6UcN+V9F7lorRfjjhURCIHRHB8WxRMoLQUYiooVFXj+aRHkkpkSFYTFFE9QmRvMovkQ4/x1FbSwlRWX0D0YEiHJEmpkIRZlpUkRSZqFEukCeRaiSlEWU/55EeJLKRCbq9URB44JF5XBHRBrIEUV4HBZFHSuiRIgd5ES/xzlFlwOKROj5IEaoqIRFrdZYRLSk/kT+ZYxEi6/7RPebf0So/rxExaGpRBl8YEQq3SFFx1k/RJhoPUYTD4RFuqkXRWtcZEXcE8FEbMlrRHofAkVeoGBEFoyARENOyUd1+l5EOGkwR/+4hkRGBsFGH8j1RFWJxUUTYr1Fu280RbdgGkUEAMJE+U2wRMqplES2AJhE1tHQR/iWV0RVPv5FznhDRxq1n0VLdIFE5lbhRu/wpkZywv9FxbMwRgGZAkWIdRRFSj4cRVysDkWSXUZEIABxRDQgjkRzGyhG+jzCRVMXoUQMS45ENO6QRPJCjETqd7VFMV8iRcfY+ETnP6tEQDxFRG9j+EYLpY5GsQYlRstlgkWvU2RFqd3aRLaul0SOx59EQvVMRZEu/EbG7mJGM3IFRqLAY0Tx5WZF9BdRRDJ0tkQtggpGcjvhRcuLx0RWBDdGbU+gRbVMQ0W0b4ZERonURCmGC0a/TodF9WhARV7MsET8jj5EWoy8Rc4zi0WBoNFEa8NmRIBo0EQ5jZlEwKNFRXkTckV5LZ5E + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - MFTvNifBckCSZiuMb8FyQF7p81hQwnJAgsueq6LCckDQBVY8PMNyQHrrJ7dD0nJA1OMTR0nTckBuavzuzt9yQEJmMb+44HJAShO+U07hckBsLy2FUeJyQH6wk5aQ4nJAY6VXGiTjckD2uV0ByfFyQFS+8Rp78nJAKl3fsrjzckBKgUC6o/RyQJwY80XB/3JA+pVC62MAc0Devh9m9wBzQM4BlxONAXNAsJIa/zoCc0DcktlS0AJzQApnzgj7A3NADKm7kgsSc0C+h755vRJzQKRgEw78E3NAmALglE0Uc0DKJWw4ex9zQPAI5dqiIHNAhqF+zzkhc0BtGCsbZyFzQMQbitwQI3NApiE7RtAkc0A2U+hCSjFzQHC0uiDPMnNAU0v/Ng0zc0AmzRp2NjRzQJoRg1q/P3NAGg/BxuNAc0B2d2jUd0FzQKTkFFq6QnNAvO/6NtxCc0Aa7d7HekRzQAQQXqpCU3NAYFogaqNTc0B787YphlRzQDndOACNYHNArIe2czpjc0DyRjzAUXJzQDz0ZyFncnNA7NvSlpByc0C4Afco53JzQAiFKIS4dHNA/LBWBkx1c0D5AzoZeYBzQOMe/RuogHNAhohwdg2Bc0C3E7KBx4FzQE15VS5egnNAsgXGz4iQc0AawyyHTZJzQBbOkpjOk3NAvLw/LmKUc0ACDU6395RzQGaFtBm5oHNAw0c1Pk+hc0BuBt6OW6JzQMYFGhPnonNAQcQhZgalc0BbJSfR87JzQMIutci3s3NA/eKzrAy0c0DQr6Dnz8JzQEwNKE8nw3NACth4ET/Lc0ASISqd2NFzQO9DU/pE03NA7Nui0OLUc0C6/hSRpOBzQMp3d8044XNAi0vBb3nic0BSYLqJQ+NzQBxF2hK38nNAt0r+9jb0c0AuaqG8i/RzQIxyLTB5AXRAFzbnUKYBdED8HdTTjRF0QDbAsPhNE3RA2J1P/EkgdEBmdr2xjCB0QA/zmTq5IXRAFlnIQ1UwdEC7FJoL5TJ0QA7on2h7Q3RA9lK2FvdUdEDB4bqYjlV0QAiY0eq5YHRAciDbMAlidECuce+HTmR0QETjlg4icHRAolHWokFxdECaewERH3N0QM7ju2s6c3RAyUZyFqN0dEDOcitqN3V0QDdNV0IygHRAlJY8FPmAdED4ySVkToF0QIMFvjOTgnRA1Fm6ThaQdECDx6vjz6B0QCxAx943oXRA2cy3ermidEAIGwJb0KJ0QN2SGhkRo3RAPlbQEAmwdECgEGVowrB0QFdsgLn+snRAEDzEZwe7dEAT6C+h5cB0QDQORrn7wHRAnPKZN3nBdEB+buBmDsJ0QKnpovYixHRAoCuUErnEdEAQF1GI/M50QOq7pSXi03RAuJA9KnnUdECL8kThzdR0QDB21zWN4HRAAkoZ6LrhdECQkuxSwPB0QLjF6vyM83RAnjbYtNEAdUCaR9kjZQF1QDnUK3NdAnVAEjUixksLdUCg9mmvUhN1QMZY3aojFHVAZEnWP1obdUB2wFrqnCJ1QNLdl7HLNXVAmeknALRBdUC7FCJiTlR1QCZ+mrR4VXVAxW0jsjhhdUBasgZ78GF1QGQb45xmY3VA6ZHE/nZydUAjVM+eSHN1QJr9nKpzc3VADh9ua410dUBKwZzieIF1QP4Cc0WugXVAEPLzI6eDdUB9Jsqvm4R1QMhkpqq8kXVAZikVpzyTdUBMV+GyspN1QH+QHzs+mHVAXIMDY5eddUBoudlAkqB1QEBl3schoXVAINFY6bihdUBZsAhDxbR1QALfCuzMwHVALNWS7/fBdUAMjRN4zdN1QG3cQlIQ4XVAGfSNsgjidUAcOeLrSAJ2QD112TzQA3ZA+lJzSgMTdkBC+kzvTRR2QIYkrqULFnZAaAR+ZIcidkAzUEhlnCN2QBrSsVORJHZAfE8niEsrdkBAwjTfHzF2QOjfEm+PMnZAMIcAMPQydkB4jq38UTN2QM4fcQ2gNHZA1uK8oh1BdkDKsZLneUR2QEKDs839TnZAoPoSKMtQdkBQc3VlE1F2QMy8NQHOVHZA//f8q8xidkD416YWt2N2QB5c0IfbZHZA4EbAByZodkAS1jfKvWt2QIwDT1ZeeHZAQBQyyFZ7dkBhnSNwkYN2QKJBApSfk3ZAyDj6PbiTdkCKNEtcoKN2QNIkoWy4sHZApg2xE8GydkDo5vZMebN2QA7PVZoNtHZAjOBAKbG0dkAyQfkM07h2QOls1tsrvnZAPBgWW8DAdkACCVOqGcR2QD4e3kHPznZAMOqMctrSdkBO0Ez18+F2QEPf9rhS83ZAIu4YOY/zdkBA8CiIMwJ3QMyo3M1QDXdAugyTyAESd0CUYZjnqhJ3QAA7LM7xF3dA8AmW+AUYd0DaVPwUDyJ3QJf0FklzIndAas3zUw01d0A2Yb8VnUF3QOhrSGP7QndAZ6aVaRtFd0CqY1UtRUh3QDq1Oa1JUXdAOpWKRJJRd0DehCu4KFV3QIBINYSOYXdA4jt52aJhd0CbW0ccPGN3QARgJrQob3dAfsBOz0hzd0DKYfAnd4J3QECDxs17g3dA29uNIQmSd0Awe2cWaJ13QDa/ZVjCondAnCRZeh2od0DGzIuTcNJ3QBz4HLSM1ndAxp+uEVHyd0D46du9dfN3QDJfMyp9+3dA40//1W4ieECs7j4eiSN4QNKVppC/I3hA62Z7N6gkeEBq/UWWDUJ4QNp43nkSRHhAinAHKXpFeED/sIRWylF4QBbi1kiUUnhA12uW/4dVeEDJFgem7Vd4QNiAtqczXXhA1NjDP0pdeEDGDnUy+WB4QCUS8Gy3YXhADOOuVrdieECc+iyii3R4QJ5a/zrTdHhAqCk1AziBeEBxdtWYpYF4QFIx48KZhHhA3LCdklKPeED4Vjo6lpF4QDS2aYinlHhAGs9OtLOkeEBG/iM/zcB4QB/35U71wXhAO6JslbjUeECmBoAiAfR4QGgKhDKM9XhAKGRhHxAEeUCkpgGtmgV5QB6dOeDvN3lAtMACg4xCeUBU0Ya8+kN5QOad7NbMVHlAhK8okNlkeUA7s09l84F5QAABTMpwjXlArq5aysmSeUDVkETXI5h5QO7p9bRtnXlApSFWuoSdeUDT0TldxqJ5QDB4VDq+snlAKgkFL0LUeUBM+k0hz9V5QNoVtOvA4nlAlL5rDVHkeUDEp0XP+gV6QIRUw2o3I3pAE+W9bww1ekByZRoG6EN6QMg0UL8aRXpAmJzN4YVTekCXRlqSKVV6QEZfKl05ZXpAwKPLr1KiekDMZlC3DLZ6QHpr3+4rw3pAZOmomxrGekAiVJyBRc56QKif561A5HpAGpjnDzbuekCqaAguKw57QAQPRaVMFXtAeS84FV0le0AY+9nFVTB7QKxtxoOXSHtArfdFMfNNe0AKTaq0XVJ7QEFOD3hNU3tAKAqQbCOVe0CmCGP2PJ57QPYqmduUo3tAZjPTafGoe0DhOBuFYbt7QKh1ewNpw3tAoYKnuXvGe0AmbGGTcst7QPjhtz6a8XtA6zDsEIz1e0AWt+nf2QF8QFLPmGj6AXxAHpC3i5kFfEAkf3oahRF8QGKoSeHQEXxAbHKNTM1BfEDcu7FFDGJ8QNR9BeLggnxAw7IqYMGyfEA89S4FytV8QJQAWstX4nxAukrukhryfEAen9DbVfJ8QDy9PLsCAn1Atu4deEsCfUDqrku+RRJ9QPgy0oY/In1A+qAmmLsqfUBEyNmgwzJ9QGiwxesXjH1AjBnfoFmUfUBpyXNQLsN9QMzlNNRq4H1AbHFohY/1fUDKrLOcWgB+QFUtXf07L35AJM8PK0M/fkA3/iXPjFV+QEiFZdFcbH5AlX6MI+5vfkCVOpDkeHN+QIzlT/pAjH5AxnOwa+KQfkCwye65I61+QMXLksWOsH5AXDGZyy3cfkD3aFHty99+QOeSuGHr4H5AS7fSADnkfkBz1dEn1+9+QCaHqu4hAH9AJ5mfVbdxf0DchHjPtoF/QDYQs5BjkX9AhuGksK2Rf0D4rc2OXaF/QDaV9m5WsX9AwH7ysoMRgECQqkYjMBSAQIJjo5jaFoBACNU7xIMZgEC0K19oLByAQKgctV4pPIBApU5C/9c+gECqU7dw8kiAQIS9IoXmUIBAf/RuphNRgEBUL9ty51iAQByMXqwOWYBAZkCLWyFZgECwkt66KW+AQF35tTUFcYBASBKU16F6gEDmrpoAH4+AQKAuRUJskYBAsYqsahqUgEDFVksyh6mAQMgbNX5SwYBABWVJeQHIgEAHJsKhU8mAQPiRRYCozIBAxHF9/FTPgED0pfwNTdGAQJW1tXn+0YBA0M9D0ErZgECbtqHrROGAQCIbLKD36IBANL/0c0rvgEAwO6maPPOAQBDvhmC9/IBAeMEU0T//gEAMIV3baP+AQHC1cQWSAoFATnC5IpMGgUCtYpsSPweBQOaJs7Q8D4FA7qpsPjQfgUDYgfCfNSeBQIYIwkm2J4FAtL11CfEsgUAv8V0w5C2BQKyddP/oLoFAfj7Zw70xgUDaPYb880WBQP5jdnL2SYFAnO13ovhNgUBUf+9MK12BQNcAytkdYYFAdQcqFVaPgUAY6rquVJeBQD1b2nAKoYFAbBwwy+ehgUD7qiwhDaWBQMi971tsqIFA2mlXxA2pgUAC3qJlSq+BQGaRZ3sGsoFAuO1H9wq2gUBByTK3DbqBQM7JBSF+0YFA3DhyRH3TgUBRPaEWLNSBQK250ccT2YFAcj9DZYXxgUASq6W1IPSBQEgIDMw19IFAh7YfZgMJgkBhjFdN/w2CQJrPl5vYGIJACLRhPtcggkAi28n80CiCQK5AhGajKYJAfjBmNKYtgkDMaqm6ozCCQODMHRTPMIJApbCr65E5gkDm0ZHH6DmCQPtuYJHrPYJA1wYeXEOJgkA7FXuARJGCQIC8vvAnlIJAHC9cjz2ZgkB4H2IfDqGCQCjwO1s7oYJAeteWNw2pgkA0Ne6JMqmCQF8MHO5IqYJATf9pOwexgkDfgRJbMrGCQKBKwsyjsoJA47tg2675gkAlrkM46A6DQJQvmox5EYNAKC25/8cVg0CjqSalehmDQBTsp7HLGYNAMoWPKtEdg0DK+awlcyGDQK5DuuQNJoNAGjBH63Epg0BV0dTSECqDQBD76d4DLoNAo44enxYug0DuJ/uRazGDQP/Zd1WCMYNAxiPOiZQxg0BgGYFo6jaDQMrN5+FrRoNAVrXn9+WBg0BUfard6ZmDQFz2JeTsnYNAgdmAn/Ghg0BpBl1FkgCEQOyf7QL/aIRA7ETq8ABxhEAuYDMF+HiEQMbgK7DZpYRA9p5oKmrZhEDcaeR3auGEQBJQ2hJj6YRA8SInUX3phECWwNxyNfGEQHaooK1i8YRAfIbnSDP5hEDuL7hfWvmEQA7AppEtAYVAfOIEsDsDhUBmKZ7pQQuFQIv0pmOgYYVADFiESqBphUBWbYGbmHGFQEXhtRGyc4VArHcQdph5hUDEJktNkoGFQGBHSBIouYZAxAM8xSfBhkBQVemJlNKGQCzxJ72X1oZA3uam45vahkCkKOAvoN6GQOgZ5xGRKYdArC9zp5Axh0DUKC7giTmHQBglNXZeQYdAxPRoWItBh0CW6Szxx7GHQDLXTuHFuYdAB12aU7/Bh0AfJePpwMmHQKIKCClAFohAfMS5PEQaiEDOhFt+RB6IQBjw5OjVgohASVcZcn6FiECQYwCLk9qIQCi1DnhD3YhAKPKVG+3fiEA= + NrgMGZxjYkCO7m7sniJrQBu6YmAmQ3BAuxz4ZT+SdUAbGD+0flR3QLt61LmXo3xAj73/o25Vf0BdbNgGeNqBQFq/o40Os4NA - + - fjEzRHPlQEXMTNZE2a5cRLG3z0a1vvdGiXcRRcKT8ESqXw5FfKunRDGtdEWPy9VEf+KWRJg1JUUrl3hESsaIRBWVd0Sk2phEgUazREl71ERBK6dETCOVRBXB20TbiRdHU2WlRLUCM0YY1I9FNQWLRJ8/mkQW4SZF0hbbRt/udkRFRqJEn0BiRTi6p0TvRqRGO94zROdxmURpKXBEa6QLRXaejEUuJmREbb8XRbvPDUamPwFF/Ak2RW9AokTLmW1EFF4BRcJKe0SvaKFEMShURB316UT9q8xEGYEcRUik80YKmq1EmvS2RJIBYEQujNlEdujWRB+mM0fyVYdE0lrVRF5SZ0aiKvpFjIeqRGsfwUV2TM9GCHgIRYgiBkXX5lZFo6j3RHdygkW1AutFLgwBRgB6JkVFYxVF2pqYRbM0ZEQ7cPZFW81PRHAEqEToTsVEuegcRfTdOUTWE4FGgrGFRFUIV0SVpihFPjWsRPUHikTYGcpEnfeHRGvvoURTOGdEnAuvRBjOEkXdMlhFugVARbpJhUSzSYdFtsU5R9aFSUSReJdFUDOoRDPgpUSGF4JE8eEmRbzYsEX9mVtEDYK2RQNdhkSws51EWa+XRLboZEQRhqxEyfbCRDS3pkRWHhpFL6uoRFyYqURTp3BE1veTRMGnXkS4wHVEsp27RLI6s0Rt5IVEmg18RNGWsETzj2xEr60qRT7dW0Q4SZVFgn9PROJoDUXR5QdGQLHfRzWwCUfSu0JFUVAjRZslbEVQbxJFCP2MRKGTokTuj+pESI7gRLKgb0RGnYRGeXyvRBjUWUQuDbJEukEORkKSB0WmY6BFg7LwRSclyERXOmlEapyHRAiNh0SvEtNEM7JZRE9gpkSxVmZE/6+9RPPnSUQQHFVEvr/7RIBAlETrRmJE+NQtRQkymkU4q7VE9Sp0RG3GmkQ9XYRE2RvkRF4PnUQOscVFY6/XRbbrykaU3wVFSSmqRCit7ERWsoNEh6GKRRS2X0W5C3dEvz5nRPATP0Xm7C9Gnm5RRacsMkVJ0BlFeKPGRJpokkTwWXlEKFNTRAvbeUjbBA9HJnGtRDDQ8UQ0BH1Es8cVRTd6OUY8OWdFEWvJRIvAw0VV0ABFTD2hROUHX0Q2oBRF+9V7Ra7L3kSKPZxEPGHwROj68ET91LlGRB+GRsq+DkbR1NdE9aQXRVjtb0XtdLtEDrnjR0rvwEZRUIZF5PWtRo4ht0RAGYdFUYJRRlsq2ETHu/tEfoeeRDFnoEUlr1dFqTlmRP77CkXwN5RED86BRKZf10Z1qApGIflRRdKSg0ScLYJE1pFaRAaCEkW5EJVEp5lKRbhSgESFMGdEXwh5RB4Ik0Qcq4xEFzYfRl+1ekVJ71xG9/IuRSi+DkZBELFEmjTlRJYsEEWy4xJFjgWQRAV6N0mVa6dE1qxsRDmuGkVDGzxIHVyTRMDMB0WP55FGRiltRP78D0UHuFVE/zcbRZ8fiEXApLJFhQRKRLDnx0QIGfVExoqzRLT1okSBXItFj5SHRGnlX0TOzLBHFidqR0juJ0YXW2FFC1uzRD9cZkSHKTNFtomvRQGpjUSflXpEBLS/RJaeeUSJXahEsuC5Ry1Hi0QAJKxG24yZREeJCUXT/2JEpK1xRI28wEVXa6REXz+/RDewQkSyDW1EaDz3RKX1V0Sb9Q5G6JU1RZF2j0TdGxpF5d00RRRuq0R7PaJE44L4RFIF8UV7K6pF7EQBRRrzjUZj2ARG5TSbRMXWikSZmI5FkdKERuU2OUa27LJEjM2kRZUSY0Tnc5tFXY20RXp+sURYACJFW6SARCUAhkTPwNhHj0oSRbCwzEYquhVFMhq7RrbZgEWatqNEMIIYRTolWkRO7DxFXwazRPOtoUTFXYNF+FjqRKyxhESCIqhEoRNMRDKF0UT9ZZNE0k+EROShhkSK1IBEBlVKRKBzbEQ1xoNEC26ORT3Up0TIqYNFf4mXRLetekS5+9pE+Q2wRUyRsUShHidG5DriRHdXMEV+sxJFhaufR990d0er47VG8HY/RmbqT0XKWZVEjkiHRPlZCEWNgQRFwadyRoCJiESmMb5F9yb1RKg7D0VhzwRFuP1RRJyJekUdG8dE5FzLRJHQ+US9T45IFE1SRGPfAUiK/oBFM5kWRQgWnEfuvI9E4utXRqpsnEU6OttELNrRRCRVgkQANthEfGAWRu1VxUTD88dEccaeRL/qKUW/DyxFlS4TRgnyKUUo3n5EXYuPRD8mhkTr6JFEOScWRTOX0kVG6M5Fyo7LRCWySkVRGShFeTqtRX0llkTnsHNFuJsGRUxMw0SXcO1E9lBcRCw1NEVwhPFFARBwRSPTdkQnGRBFmQ62RPKunkQfOQBFH1guRf0BdUT5W5REl9/VRGxT5ERfRi9G4g+KRR0TZkUM7gpFCEEARdefmkTyzYZETXOSRAAJJEWxwWxEqKweSNFCoUdad3dEoqoyR0N6o0Wh/lRGZQf7REeTU0XscstEVG6pRK2GmEQpoHREGDODRCPluERDnR1IzKkYRrRYq0cRTpJF7Q12REbZLEfQkYtGhelXRmNeIkZ17JFEN0gpRfrpmEXERZNESCQ+RMMXXURWpKBEz+yGRARqHEafTIpFwyKbRAGDgkTs2LVFjW0xRbyz50SuispEcWwlR3RLvEYD/FtGk2PtRLibTkWF/JJFtRvhROOTk0TfHJ9E05TSReWu5UTouhVHx9ifRngLVkYTS49E7puERVU1tkRDkItEP6V7RP4wf0aQSSZGJ4ZzRUNgtERa8DVGFQziRWjMVUU06bFEydngRGS3EkZudY5FsM9cRbiV/UR5PZVFZxWLRek+L0WuFXxEjkfGRI+OeESrNCVFygmmRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 2ZTWQ3rAckDtfbrVDMFyQJi/Jh5vwXJAVP7dlVDCckAAYSUNqMJyQAIu3TY8w3JAhkxpTMbEckDt+AJvWsVyQOrsr8BD0nJAHlWieEvTckBIWDZ6dtNyQIKmRf1k1HJAnMVC+8/fckBUg2GiJOByQMY1yr624HJAUKAO2E7hckBhmRssUOJyQF+6HOaP4nJAGtLPYiXjckAibEoVy/FyQMgIfVN88nJAPgaZjrbzckDG47DIo/RyQIzJon7C/3JA0OviD2MAc0DO7onu9wBzQIKNa69KAXNA0lR87o4Bc0AE3aiZ0AJzQIiq4b36A3NAhGhAP48Ec0AsEXAIIwVzQK5GDKwJEnNAhD+FX3oSc0B2J7XWvBJzQIB+v7n5E3NAEpdBlwYUc0BI0dZ8ThRzQEO+Wdt5H3NAUvztI6Qgc0C6KJFkOSFzQCZ0FS5kIXNA6X6YJHwic0CquoZYySJzQHpVppIRI3NAuQJOTzkkc0DeAP0q0CRzQNrcQaRHMXNARiEPJ14xc0ABYwUyzzJzQPQsXyk5NHNAgiWR4ORAc0Bv2NwueEFzQLD7m/gmQnNAQE3/JN1Cc0BE5QU7ekRzQIAwg5CbUXNAwDlwU0JTc0Dl2X7colNzQBXvvQ/gU3NABnlFeIVUc0DqrKvQOWNzQBDrG4fPY3NAjBj8BEpxc0AahhB0U3JzQCS6nk5qcnNAopIbwLtyc0DQN3G35nJzQJ+jNQS3dHNA/ELCHE11c0BCoHvleIBzQL5U2e2lgHNAXnf6OA6Bc0AejWnYXYJzQPIn6HzlgnNA1GzCyoeQc0BoLq2C1ZFzQCyfEEVNknNABPdQO82Sc0DwIrXnzpNzQM7a5/BhlHNAZXgzwPeUc0BtL6BluKBzQLpWdwnmoHNAnAibV1uic0DQQEsF56JzQOCDaWAFpXNACAYXA9iwc0AqE8p2frFzQAiJjqNasnNA0GHOb/Oyc0DIU03IELNzQMYWVCy2s3NA0Ioo5g20c0CHvt9VZMBzQH4YmKH3wHNAHg9hL9HCc0AQ3XLXJsNzQB2+NQ5Ay3NAjP4We9jRc0DybMsERNNzQNShD5X203NAFIwkWOLUc0ASc/fyOOFzQFto3NzO4XNA0NY8kObhc0BJu877P+NzQAQkgifu5HNAxkpAGkrxc0BYAkMUN/RzQD5Lc+qL9HNAgPyi4uUAdECD3mYUeQF0QNL8tgulAXRAoO7jEbsCdEA8SLE34wN0QB6GRRZ6EXRANT0q4osRdEDnmnJWTRN0QETSVLfiE3RAUIBmfXgUdEBHJDeuSiB0QAJz+n0lIXRAnE+Ky7ghdEByfRYQLCN0QPpqRLu6JHRACJOrlFMwdEDIBgel1DJ0QABeutpSQHRAhgdSsV9PdEAa1eph91R0QH6mPBSOVXRAexyj0LhgdEDxuxR5T2F0QPhkg/sIYnRAtjrJV1BidEAOV/1jUGR0QPX+9BwicHRA1Ld8LEFxdEDw8wNOOnN0QAr/4VCjdHRA+PdjQDd1dEDAzeh/+IB0QEWJfmNOgXRAnBUWdQuLdEAmJEQAF5B0QNWvRbNqkHRA6TU4AaWgdEBccFcW0KB0QBDM1vg4oXRARiyq7VKhdEA0SDYJuaJ0QEbozgfPonRAniWx8BCjdECWptkBZqV0QK147moIsHRACwN8iv2ydEBdGAZ+UcB0QJTViTLlwHRAPAVEF3fBdECiwlhOJMR0QFZ48FK4xHRAShCXOvzOdEDK1x/k4dN0QBKb94x31HRAeDGKPtDUdEDeWs6juOF0QFzsq/DJ4nRACuKEmk/ldEBCIPQ4jfN0QMYFZjB69HRA0gmLX6QAdUAeHpB+YwF1QNILjI5dAnVAq5bDoksLdUCYGhe5lxB1QFhgBUhpEnVAfJIGSlITdUAAD2YpJRR1QCACHlNZG3VAH3Srq50idUCAUH4AWyN1QAvaN+TMNXVAP6kQrbNBdUB6IvpS/E91QBKjqtELUHVA0pIkP4BRdUDwhhtSd1V1QB+jXy6jYHVAVSIN7zhhdUBR+TFWZmN1QHYxVgZ3cnVAmnBLfXNzdUBWMsnMjXR1QOwyqJF3gXVAm2/U5a2BdUACihhApoN1QPKShuiZhHVAd6C1IYyQdUCabREDupF1QOTgLbY6k3VA3HzW5bOTdUCXgHG4Pph1QAjAkVC4oXVAWJijj++idUBkZIwwu6R1QABMy6vFtHVAWtRMLs7AdUCf+129+cF1QAIV6jXL03VApR/6n+HfdUDQLqYdD+F1QIIdMFwJ4nVAyWlh3UgCdkBQx9oC0AN2QNF1bPBMFHZADiIMtwsWdkBKhOdbiCJ2QHNqSeucI3ZALjKxRpEkdkDsevgASyt2QNx9V/8fMXZAtI+64ZAydkA9TgBi9zJ2QH1z6sJTM3ZAE7MBVZ00dkAoLgTKHUF2QJb+KR16RHZAdJJgustQdkAl7Mn8EVF2QP2QOKCHVHZALK0Kz81UdkDkQakNzWJ2QEIHJwy3Y3ZAgtCGTtxkdkBs/hCxJmh2QLDSEFaRg3ZAAhOKTJ+TdkCmDgy3uJN2QMwc+ckOoXZAzdBi7J+jdkAC5T6ft7B2QLLtZifCsnZAxxO35EmzdkDaVJereLN2QEELiocNtHZAs0QrQdO4dkA+F8p6LL52QNVHF5t3wHZAlLHKTZzAdkArmCM2vsB2QAW/PEfOwnZAsHEPQM7OdkCYVeHe2tJ2QHwhnCBS83ZAQJJ28ZDzdkCSe1f5MgJ3QMSTV3VQDXdAfnaBYQESd0Cuit28qhJ3QBqzVeLwF3dAceemowQYd0AwCid9DiJ3QMFAj7VzIndAZOZb2gw1d0Aga2kLnUF3QBbDU9rpQndABsYHQhtFd0B6VCDiRUh3QOz+ZplKUXdAtKZFgpNRd0BW7roZLFV3QGRkekRIYXdApj1liJBhd0CbPpDjPGN3QJUOJMQmb3dATOA9Bohxd0BAt+I7SXN3QCIzyVR5gndAPjutrXyDd0BR9+oECJJ3QA6MYfVLlHdAgxuHLmidd0CnkSwSkKF3QGz5xnnDondATjbGJB2od0AH3dOQ4tB3QPCT9Jnr4HdA+lzib0/yd0CqWnypdfN3QHfwQRccAnhA16/BSUwVeEAUSE2AbSJ4QN4S9WsOQnhAz7xIbRFEeEDtz0lvekV4QJH2juvKUXhAht1qq5RSeEB9GQXFiFV4QEDiGfLuV3hANM60CTRdeED+b3hrS114QDigArn5YHhAxN8YDLhheEA9gR+noGJ4QFa+4FGzYnhAvQGvyQ50eEBEAIYpRXR4QKLz/pGLdHhAL5rYxb10eEAJu4SHOIF4QO2lDJ+mgXhAJUr1mJmEeEAzDp6ClpF4QAYx3wSolHhAyB5PgM3AeEDNkHoKt9R4QHSk9ngC9HhAcB57V4z1eEAGvGE/DwR5QIUBu7qaBXlAhAeVCe83eUAoGDZd+0J5QHisJwU7VHlAlklQQc1UeUAZRpTV2WR5QL7vbiFDc3lANIOvqXCNeUDId/ysypJ5QClMC+kRmHlAo2+lzCaYeUCwjwn6bJ15QLraw243onlAzo/eH8uieUCuTlkgwLJ5QGG3RQrOwnlAPj1fVkLUeUCDsB9Cy9V5QOPoH8294nlAOK98n07keUDMq2+C+QV6QDBHOdQ5I3pAWlwbOgw1ekDsnRuJ6EN6QPzRAq4aRXpA/d/mXSdVekCU/IcnjnJ6QPjiVfoNtnpAQ1JiwxvGekCmZh+QQ856QNw+T2B55HpAklehFDXuekBQPT46KQ57QCx03RxNFXtANlMti1kle0AZCRgXVTB7QIJivAWZSHtAYuztoPJNe0DqGhYxa217QJXQvBjtkHtAGixzfSOVe0D0OwssPJ57QCSPT/CVo3tASki3be+oe0C3Qh/6Ybt7QBh5JV5ow3tA2JScNnvGe0DvN6cQcMt7QIobt1L/43tAnIdct4z1e0AX7dmekwF8QJS3lxjaAXxAaGpVSvYBfEAFfME7mgV8QNiVFGGLEXxAjK8cmNERfED7ssRG4iF8QE5TVvDNQXxA0TV/TNtRfEB+PMgyDmJ8QPsJd6YscXxAImzc8uGCfEBxSkwqtZ58QFWDTeu/snxANiN1zhC2fEAqN4zXV+J8QNYerQMX8nxAIui2Z1XyfEDWIcMsAwJ9QIr0yDVLAn1Aku6hEwISfUC+po5gRhJ9QCZc1Pc/In1A3Z1Cw7kqfUCGe9U+oi19QNBggEifMX1AvkRZQxqMfUDE2ATmVpR9QETg3xkqw31AJHVHU2rgfUC5G7bs1uJ9QLDlXbWP9X1Ak9WTJVkAfkBQE8T2hgJ+QHf/10RBL35AIPsViI5VfkC+xeo8x1d+QAjy/oQibn5AEs1djCSOfkAmqJvbLNx+QFKl9GfK335AlEUFyevgfkD0HtmlNOR+QNhrMP7U735AH88htyEAf0DSGSJb1wB/QFy+mMYLR39AKIVbRbdxf0AkT3aPsoF/QHWGr7FikX9AD4LwqN6Rf0D77DcDm5N/QPZpJE9foX9AvKm5RFSxf0A+rwQlSAKAQEr0GJuDEYBAYDa1QDAUgEDvFQp+2xaAQE9lR86IGYBAnphdozAcgEDmXSEa2B6AQDa8PLs3IoBA6CgfhuQvgEA+C/z3LDyAQK9SIYb0SIBAoV8cw+dQgEBmCvloFFGAQOfHaerjWIBAqGe4iQ9ZgECMwScMDGGAQJr1Hioob4BAutDKfwRxgECe61VwKXeAQDqeKa0pf4BAiFkeNB6PgECKeSc5bZGAQPycQ2GHqYBAhhvfExSvgEDeEtRpUsGAQIDnfppTyYBAjI0fbqjMgED40BW0Vc+AQEmgc/Qj0YBAZjbNrkzRgECFinrnYdGAQMLxmjNK2YBAHmujAh/hgECeynsFReGAQMps6pVZ4YBARArq7PbogEAMpchCRumAQBjHZNtJ74BA6pVWJ2rxgEC37XUEPvOAQNvavpC7/IBAKNqWVT//gEAtmidjkgKBQPDoue+VBoFAZu6MuEAHgUCU2WXtPA+BQGYkiSvlHIFAMq5wbDQfgUCao74BNSeBQIqGG4e8MYFA0Gzs6yk/gUAltgZDlUGBQDAepXPzRYFARnSbL/dJgUDQWkQD/E2BQGtt+ZgqXYFAVusDYBxhgUAQOzbnVY+BQPYTTghXl4FAKiBi+AihgUBmFEBe56GBQFyr+fENpYFAtmJvYW6ogUB02vGjSq+BQPZI9iAGsoFAStunTgm2gUA0uNLnK8yBQA7b4jx/04FAQcOzBSjUgUD8h80vE9mBQJE+WEqG8YFAypoyggAOgkCeOeBOAxKCQDkIB1LYGIJAhyURZ9cggkA22zVQ0iiCQJy7PRKjKYJAxkz1ractgkDYE9jDojCCQFY9/sLnOYJAOAzDYuk9gkAsTCZBQ4mCQOpGIXtDkYJAtJHlTtaWgkA5CIeHPJmCQAUVf1NVmYJATuz7ug6hgkASOIt8OqGCQLp0TbULqYJAEEMC6jOpgkDgTjjFBrGCQDRzwTswsYJACDimdK75gkCIJRrTOwyDQDxOVhPnDoNAKmDOoHkRg0DmCe3QyBWDQJZ3qNR5GYNAnPdU9csZg0BIOt7VciGDQHtlKgWLIYNAk1+0uA0mg0D0PBdycSmDQIZZZzARKoNAj7t5IAoug0DLJeAuazGDQER017NANINAvPpBYmw5g0AG8hZVSYODQEOPNnfpmYNAJL2qae2dg0DssxSe36GDQFd/YdbzoYNAUHR4Qeqlg0BGWG/Kk/iDQGzdH0L/aIRA60jabgBxhEDbMEch+HiEQDwb9ejZpYRAFA9hDNyphEA+0mhBatmEQJgaSRhq4YRAmVT/P2PphEAMFLeufOmEQL17Y4k18YRAClylCWHxhEB4+gTLNPmEQOhuxo1b+YRAbXadrS0BhUC0dP3TOwOFQGJ990RDC4VAzruwZKBhhUDNfJPNoGmFQHWdvrSYcYVAmkGmOLRzhUB8/fvzmXmFQPjuBjiRgYVAKLRXNN+NhUBvoD4745GFQKBKGua6SIZA1Oqw2ii5hkDIl5cEJcGGQMeC4qyU0oZAiLLoBJjWhkCc2RfgmtqGQP7SX5qc3oZAOO4OGpEph0Djd77+kDGHQNft9+uIOYdACtW1WF1Bh0CT2TSph0GHQCTgyk3HsYdA/dkhBci5h0CWk4FRwMGHQJCgIf3AyYdAJ/oNnlMKiEBMEjb+Uw6IQIOz2Pw/FohARiIbRUUaiEBkw+3WfoWIQGD2ov6U2ohABjxpd0PdiEA= + NrgMGZxjYkA= - + - RyyqRFKlj0T5GIJFXpqCRJ/zgkTfFOdGiCuMRBYZsUQUMQBHFv/9RHLOmURPFI5EutIcRdiPXUQfBuBEdIuSRM8VoUWY9jRFn7W+RIJ4jUVsh49EsMKlRCdMzUSh0ypFt+kARRX1m0RA+5VE5+p9RBC7GEX7xyNH+5+BRLYlhESpfIhE0ipDRMqEUEZaF4JFt52FRVwDwkThWOBElWUSRUwN8Eb+kYxEeVaERMnN70QuINhE0o+MRONQk0UhxApFiLdlRM+XlUY7fnFE/WCzRJpYn0XhwHNEnTwMRYDkNEaRgo5ENgoMRSJWa0X5ZHxEx1OvRD9O7URZ5opElec5RMbS50R89bVEHAjFRK+rRkXuFgNFed9kRfhB4EaqCuVETGYaRe6s0kQLXFpEITvzRPgFfkQiXmdHgrNMRAl7lUSqp+5EXJGIRiGnH0YpuZREaOoRRruamkaBhBtFhBF+RFt1akQJ92VEEbwARX4qg0TEJVtFyCJMRWR7f0TnbqxEI9iQRZlR3EV1hwRG0XASRVQuKEW77ntEqEXDRSMmBEaUEIFEEBuNRFeufUQ3ZoxEKiZ/RCEoG0UD2YhEFZ21ROF5oUYNmdVEwVt+RAlDd0QOJJxEOz+bRN6IO0Vz75ZEs3+FRK6lkETRomxEGjJLRScC4ERlPIpELxZ5RMBWlURIYl1EiKJTRBvOsEQsZBhF1XGKRcRuc0Sdh41F5bqmRJK0+EQTgLZFFeFYRwRRdEVqh6VEX03iRDMZckVfpBJGsFBzRPqbw0U1f2dE8neCREEDkUS5VopE/olURE7AtETH20RESnUfRc2BYkRezOVEtFYQRTnndUQ1ybNE73TFRNQujkQ6ZttEk0a8RPV6fURxxZ5EWEIFRbwnAUUuEUdEhe2fRHG39UVrOn1ED3yZRBmbzkRg7CVGBoMASApBoUTABY1E/O0YR7r5BUUEB5BF57GVRZOtjkRAKz9Fc+qIRCkmZUQnc0BE+cDCRHxu9kToGU1EdAYDRcHoZ0YgKQRF7efiREzrOkYjqwdF7vPqRRYIJ0YKHg5FR1G2RAeVqURbT21EL5PcRELiskRrn/ZEFc25RAUgd0To2mNEaAh9RF9A+kQrd8FES16LRAO9jUT8xylFeDy0RZMK7kTOrmFEd0X1RB7aEEUPQoVEzeEPRt+vG0bA4s5GjtHoRDY8akXN1GJEgciNRD+Pr0WE/4RF2AGCRGW8GEUn74hEUT5JRpsCIUXOfHVFQCQERRM1s0RCgVZIl6ruRo3Op0TvVYBERd/eRH5cmUS83fhEx69dRJThkEa9mrVFaHdBRim3OkUzcZFEcAR9RMzakETH9Y1EdFI7RayBakVgcOtEfjQJRbs8o0RkgNFGwE2NRq2GKkbRWLNE6jaQRYDMcEU22t9EjFgASBh3z0b7RWZFm6bnRgpkwUSlpdRFGemYRk6LqETfx5pE4ohTRct1x0V7yZFFS7+9RFzbhkRe3OVEu0kJRQT+wUSQL6VEX6+XRjPCXkQrnNJFKG4wRYcNlkRDYnpE14jnRKRgaUXULXZETe6PRKNoj0X7fZBEzNSkRMRDdEYVb7dFQoiIRiUfL0WcuQpGxD6FRN+8lkSwRTNFvq5kRTAcqUQBe6pEuc6aRElD70SwAlBJU/m8RBSrYkSv8zRFN3xVSHJOAUXs6q1G4z7dRLJBckW93I9FAH/SRQ1YfUT+QrtEx4LQRPnXe0S5zXtEHZ11RVWqsUShZ5RE8AWiR/5DRkf6IaNF7wUWRlfylkUb/ntEBQB1RGAYlkX1IYdEpqnkRVPq+URGarBEIhT1REintkRpcYdE9C/OR+0Fw0TiU8FGQjjSRIwbp0TMq9lFJqsMRds9oERi2bVEltMARf4i/ETavyBGChBBRVei/kRtaEFF/YZbRSmXp0SQpXBENDg6RboAEUY16cFFCTgrRZPJnEbpk8JFrfqMRAf27UQbrKtEljKNRhD9nkQjP05GOx8FRclTukWIs55ESq+IRe2SfUTIkJ1FcIKiRFUPmkQRVJlEkMPqRJkIeURiFPtE9z1rRNmD5kcHQuZErdHPRkJqZkXZ8b1Gznx/RGYrcEX2LG1EyP3lRDvgXkQKSZ5E/b4hRZku0ETTXrxEIqxjRTPmoEQBF+BE3W57RC2rkEQM5q9EM5ujROl6n0S254lEYX6URBH98kQ4mVxEA/qdRYQVwEQ6ZcFEtcYZRZrMh0QObVJErCWaRdr/tkT4vldGssBnRBE9wUR44XpFq+pBRU1rV0R9EItHznZVR/eyoUYmusdF6lo/RToNoUR8r5JEDrqARPKjiUTmsulE5viTRff2e0YG8YFENRjORWQWn0RM3BhFitqeRLoqi0QXDXpEoGVyRYLGNkUmrAdFcyqVRO1LeEjy1vRH+5V1RTNCFEUUf0BEbXeGR3QYdkVQkGBGp5dFREgijkXOR7lE73a+RFrAhET1Y3pEaeKjROE510SZJc9Ex3w5RqEtEUUZ+9hEbfJHRTxW5USOe15Ew0URRp5QD0X8cKZEBpKeRAlecERxhsxF8FyKRbGYxkSDow9FTH8SRcAGtUUx/tREIMSiRZCwJEXeLClF2LXbRPr8c0X3hfRFxoM/RTxakETAsZtEMo6WRCvzuUThTrJEyP8cRYCUgkRw/TxG4h6XReu/NEXej31FuzidRJokjUSxjRlFD81DReuz00f/GzxHBA59RKjG/0ZVPxtF3aDDRc4TA0ZRt95EckkiRZF++ERgt3hEocGjRNyAdUQwDatECVjRRxKh2UV6PkhHpTNqRcI66kbD/kFFXbZqRsg/90Wt0RtG2VPbRDDrGUVeoF5EiMFdRJuqakSOPRFGBq6MRVzFhERmhbREetSIRGGyjESy3/NFAa8mRZK0BEUx0AdFzyCERKMQGUdaxIdGUTo4RvJJcUQ5sJBFOMBfRSn6FEVp/OxE9vq4RKZzu0UuLUZFioHqRhusZUYBTBFGOAOQRIcqXUV935REc5YPReMzYURLKJ5Eb+IMRWULgkToYo1GIq0hRiuJjkWDDaNE8UU1RgPS0kVvRWJFqCWFREg68EQr3vhFcwubRV4JQEXM9qVEfun2RIUFjkTlIHhFylKsREbWdETlNYREBtWzRA== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 9Km+lW7BckCQsxgzUcJyQDINjb6mwnJAhZWA0OPCckAqW1dNPMNyQMarbBfGxHJAjdI8Tl3FckBMLI3nQ9JyQIxuLEhI03JAUA1LMHnTckA6iRtT0N9yQLrGME254HJAeu9jwk3hckBvJq0tUeJyQJoEMoeQ4nJABI8HRyfjckDQvOlMyvFyQAC4vA/68XJA0BfS7n7yckD6fnmXtvNyQOozjQmh9HJAeGed2ML/ckDCwzIMZQBzQLJoxK/3AHNAI2S4LdACc0B6jt7E+gNzQBKVTFMJEnNAhdHqIr0Sc0COPN8kBRRzQEb7UsZ6H3NAROQRIaMgc0BmvhzoOSFzQO7GtSdlIXNAB0WMVsgic0AlkyxlDyNzQMJl6UE6JHNAdH/KJs8kc0A6ACuzTjFzQAh/kMUgMnNA5PCLd6Ayc0ANnRJJzzJzQKrSxMEKM3NAMvo3t6Mzc0DWDgytNjRzQDDvPc/lQHNAd9RwqHhBc0Byjhiw30JzQMr/G716RHNAFNqIsZpRc0AnpBCCEFJzQL4lnNWjU3NAOZhJhYVUc0Ce7eVVjGBzQHI8yVA5Y3NAvkCKJFByc0D+QdZWaXJzQET2+QuTcnNAoJJlfLpyc0AbYC4Q53JzQDIWimVLdXNADdwJHHmAc0DfOOOSpYBzQGIB7QQOgXNAAIWP/1uCc0BmC4YdhpBzQGMbG19NknNAPWOJmGKUc0CgKsbS95RzQHgZRAaNlXNAXrE0/Ligc0BsU45h4KBzQCtkDrFNoXNAXlJuylqic0BKFQrn5qJzQNfBjO0EpXNAVLSjaGuyc0D8GkQn9LJzQMJ3ES+3s3NAUD4KOQ+0c0BK84LF+MBzQL8o+97PwnNA5nq8/ibDc0AMvAWSZMNzQBAip9A+y3NAvmRL8djRc0BvRr9FRdNzQKRbCcT103NAEpzNOeLUc0DfoJIso+BzQAur+VQ54XNApCyRTmThc0DA1fsQi+FzQEbob/4O43NAVaqNFvLkc0BoBagzN/RzQGkj+/bjAHRA3nnNDXkBdECK+AARowF0QIlFfqIMEXRALCxhXIgRdEBamtRATBN0QOgNfEDjE3RA+FcDtEsgdEDjK79UuCF0QNmfy6EsI3RA0w6CYmQkdEBVl0p+uyR0QF3ZfhRTMHRA/4RVs1RAdEB8iPivyUF0QB7hUC/5VHRAO8EDP4xVdED2L05NuGB0QGxecEkIYnRAFo3gmk9idEAq1SK8D2R0QLjb5xZOZHRAxsQPmyJwdEDcFZN7xXB0QEIIgi5BcXRAvrgzLslxdEB4W8p5gHJ0QEDxBDw6c3RA25Xd/jZ1dECzIe7q94B0QJ5mGYROgXRAzzmN9s+CdED82f2CFpB0QHDRamRrkHRAEZabi6KgdEBAW90D0KB0QBSgGpDQonRAooUnARCjdEBSFYF/CLB0QBWiDNf9snRAKlOi7OLAdEBW02n8d8F0QELzGqnrwXRANnXscHnEdEBIWsXst8R0QJyeJs37znRAzjCupzzTdEDnrHmK4tN0QBVY05PN1HRAUdJhwCThdEBKnSm4ueF0QJZ5b7dR5XRAAVU3jr/wdEBmbDYqjfN0QMt0v22mAHVAYcHfuc4AdUBMSEYaZAF1QPiig+z4AXVAFMcAt1wCdUCGZTM/mQN1QIrYEppLC3VANhmov28SdUDmM6rdUhN1QL412xsjFHVATLiDblkbdUDGL6xBnSJ1QHjbVko1NXVAWI2yY8s1dUA6p5Oes0F1QOiK8tCGSnVAVyTHxtpPdUCOt+v4CFB1QLqUJRmDUXVA24FD4ExUdUAOnEbwd1V1QKpuXGk4YXVAKiFEw/NhdUBZNEzYZmN1QBTtBwR4cnVAgWO0nXNzdUCG02YQjXR1QCi3h1tafXVAtsJW9HeBdUC6aiwKroF1QGd7IO+lg3VAPsWdcZqEdUAcPQ5SjZB1QD8H6Lw9k3VA5t4mHrOTdUCKsolUPph1QC7otri4oXVATeHh7fOidUDjhCdelbB1QPAXhk9kwXVAjqyVTvnBdUBMiMpozdN1QEp6vVnk33VAzZzIAw7hdUA88OkoCOJ1QGyFGKk65XVAUsjQdEgCdkCOUtVA0QN2QJ47VXxVEnZAmEWyr04UdkDkct12DBZ2QPgPUpiIInZAUAjaMJsjdkCHvh/wkCR2QPkulz1LK3ZAnueCIyAxdkAM5kj6jjJ2QDa+aDD2MnZA8v/ZMVMzdkDw8zTgnTR2QG4O2AUdQXZANMGUpXlEdkA0IR6kzFB2QE74A3USUXZABALCVc1UdkAjRuubFmF2QCESq23NYnZAQn5o9VNjdkD4nat8uWN2QO5SjkTbZHZAdvAJ/L5rdkBJTP9PkYN2QB7z65Cfk3ZABi3CrRChdkAWJFl/t7B2QKxqUoPCsnZAQs2hH3mzdkB2t41oDLR2QEI+tDTTuHZAEtuBXy++dkCuC9tkG8R2QKoX2VDPznZAoOfTN4DQdkABO9RG2tJ2QGx27nfx4XZAFQHKilLzdkAO4eMlkfN2QCIXexUzAndAtjPWOlENd0DCY80bARJ3QGroMa2rEndAPkNLYwcYd0BjufaADiJ3QDo5F11zIndAVyrI6gw1d0CkNpQznUF3QNSW0gHqQndAy6rL+xpFd0AfqZcNQ0h3QGyzYgZKUXdAUtkv5pJRd0AmdJgVKlV3QPp+rUJKYXdAuAErTI5hd0D1vD5YNmJ3QHQfUPs7Y3dAq7VZgDlld0Cs0mqYJ293QLFO6MOEcXdAQMQKl7hzd0AkW6aikHR3QPrXz9h2gndAgPtsnHyDd0D+UXOeCpJ3QDh0c/NnnXdAFAtzy8Kid0CGHJ8DHqh3QBO4kShyrXdAmE+IZwmzd0DwyKY0mrR3QLgTkI3j0HdAlosas0/yd0B0YL/gefN3QM5BOtF8+3dAhim+MfgBeEB00EGtMQN4QPR20itOFXhA1n1HcG0ieEBRFmM5iyN4QDAJZ2WlJHhAsFrQdg1CeEC2MBgXEUR4QDgwNqR6RXhAiKO9X8pReEBZdf/qlFJ4QBKna22JVXhAnazN4e1XeEDccCnXSl14QBq9KET6YHhAJNh2/bZheEAKkfYxjmJ4QNj6SxG4YnhAwtq09LZxeEDSd9hWi3R4QDjhP8TOdHhAgSCjgdl0eEC6ZLEbpYF4QOZ1IMCZhHhAkPdgmlKPeEDuFGGSlZF4QOF+1H6nlHhANA0+y+afeEChHMHapqR4QIRv6ye5pHhA8fi2Gs3AeEDORqOR8sF4QNbtFjsHxXhA7lnDD7fUeECm7nYMA/R4QA63gDCN9XhANH05fpsFeUCCjQadkkJ5QPTTXYT2QnlAtDD8X/tDeUAofVrA4FB5QMPs/rDMVHlArAPqGt1keUBkfIEUcY15QFCY2RvKknlACgWI4Q+YeUC26hqJJph5QCITg4RwnXlASMgoTIadeUCwemEezKJ5QCLY872/snlArFEjad+yeUA6L4/1z8J5QB+2JJVC1HlAGOicBM/VeUDojhmrv+J5QM4VPohQ5HlAsbjoBiPleUBuGku4+wV6QPZS5/KGG3pAQV5Hgww1ekDnwVEt5kN6QLzbZXsaRXpAxNjxsChVekCXsAhginJ6QEPo2owMtnpA2HbDODDDekCog70pHMZ6QE6i3ulCznpAhnaLYz3TekBok3tFaOF6QPfBWvs27npAPoQV5hbxekAkLWjEYvF6QG59IgwqDntAjK11uUwVe0Bwi85IWSV7QAgZe3maSHtAmmEs2fRNe0BcU71gTFN7QFxPXBVsbXtAVj14jyOVe0BSHQAlO557QIZzf/aUo3tA2SNrJ/Coe0D1A/5AYrt7QNxXbwdnw3tAeJ5Lr3jGe0CqppoXrdN7QPMn0br843tA0JqafYz1e0AB/HHi2QF8QDQD26j1AXxAyqqqEZsFfEDCyLPA0RF8QBT7ErjNQXxAL7F9HdtRfEBNR3rGDGJ8QEAdydnfgnxAjlYxpOiKfEDTk5UnwLJ8QOymYbIRtnxAtpyh0MvVfECGEYPRV+J8QMrq/0AZ8nxApJQmjVXyfEAioqMKAgJ9QCoMYkBLAn1AGU/GuUUSfUCG2fjWPiJ9QBhfBNC7Kn1AyKLGF6AxfUD4Mdk6G4x9QKa3tkUdlH1ACkTT51iUfUA4CJ2ULcN9QCZnM9Bq4H1APCFQctTifUB8qxQ7kPV9QCnF2qTFAH5AiFQEQJ4FfkCzl9PsQT9+QNTTShSNVX5A0snfjMFXfkBPVrIJs3F+QFKcvKEKxn5A7rR2OuzGfkCm3ECmfMt+QABHeIUu3H5AIj4KMM/ffkDG5rkS7OB+QMI88bcgAH9AgB0fKdsAf0B+qkANDCB/QDjbHg+4cX9AddJDlrSBf0Dmh91PY5F/QOg0/PmmkX9AmAvoM5mTf0D8n57Vkpt/QHjrMMVeoX9AfJ97o5mjf0C62J6BVrF/QFaXgsiDEYBAGLPvf/0SgEA4HR5GMBSAQF6e79HZFoBArC4+p4MZgEACOFIQMByAQB6J+1E4IoBA6LUkl+spgEA8Q460/zuAQLbAay8rPIBA9JQso/BIgECIWaAt51CAQLyZUVkUUYBAjn6yD+VYgEDYlW7pDFmAQKbRVjUcWYBA9MMAtAthgEBa+fJoKG+AQHX7y7UFcYBATL9aKx6PgECqaXjNapGAQBrP8s8fl4BABNL/LeqhgECYA+d/h6mAQO9SOFz8v4BA6oibnVLBgEBnPgNoAciAQL+NzNRTyYBAxjTkEqnMgEBgq9K+VM+AQLalbYss0YBACGl3vkzRgECma/kVYdGAQDz+p+tK2YBAc9lP1UThgEA/YblI9uiAQAA7DDZL74BAvEAVxT7zgEC62O9xvPyAQAbC2B1A/4BAjbL7KxYCgUAsbW/BkgKBQH7/6xqUBoFALxGfK0EHgUBu1vykmQqBQPII9Hg8D4FAovyRU/QcgUBmXijp+R6BQCrQmOU0H4FATKDHWvUfgUAKsPIhOyeBQJwg5/fkLIFAv7qWIeUtgUC66EKSvTGBQCiiUk4oP4FAxgM1eZFBgUD29H7rtUGBQHxlFB/0RYFAyN5WVPdJgUBJMNtC/E2BQComHzksXYFAIt0t1hthgUBkPmSZVY+BQITqtdJZl4FAeCOJLlOfgUD3BUBHCqGBQBJUjtDnoYFAR6ygCA6lgUDOmokdbqiBQEqhZkgDqYFARmdO8EmvgUAAomX5aLCBQMS1hCcGsoFAqGnSaAm2gUAXwRcRDbqBQNFcfNLWzoFAFCAnmH7TgUDCZXByhvGBQEgYNNYECYJAW0LUdf4NgkBEolaC2BiCQCo9NP7WIIJAPrBaoNEogkCOfrEqoSmCQKLCwiilLYJADQHTxKQwgkBM0jWH0DCCQLKW+zLnOYJAZu/sB+s9gkAeNmKCQ4mCQC9hj/NDkYJAJ6+bc9qWgkDURmSyPJmCQLoNwiYPoYJAMuQRAzuhgkBi9KfrDamCQJDFGu8zqYJAfO0jiUmpgkD0BMC4B7GCQOaC4PsIuYJATMi2ZbD5gkCS7dpzQAyDQLRvU0znDoNA+s+NynkRg0ARkF4DyBWDQKND8mV6GYNAJBGni8sZg0CWOCn0wx2DQL7W4d1yIYNAuB7CHoshg0CsiVQn0CGDQKD0rkoNJoNAwPHDwXEpg0CORQ3aESqDQA5YjVgELoNArnBzEhoug0BcwZeqazGDQEz1LkWTMYNA/Duipgoyg0DCEhuI5IGDQPXglPNKg4NAMCvnlOqZg0D6DQPy7J2DQPbngsnvoYNAdt/0pZT4g0BCfFIlqh+EQE8o6Jb/aIRApu3Cqv5whECAlk8n93iEQHIN+ej3gIRAKFvRx4mPhEDEiYxx2aWEQPQs1KnbqYRAkuX2tOCthEC9XR1hatmEQBKeqppq4YRApghviGLphEDUi2h4NfGEQDAgwF1h8YRA9tpFVzb5hEAUVmbbW/mEQKrB+aQvAYVArF/W6TsDhUATPTp3QwuFQPnc+7qgYYVA9NmTuKBphUDG5pDFmHGFQFQKjuK0c4VAb2cHUZl5hUB9Deaa342FQMKXy+oouYZAqsKRNJXShkCAITqYmNaGQMKBoJOb2oZA4E6XI57ehkBINzSGkSmHQJBsEBiRMYdAmqumiYk5h0D+DSzoikGHQGnD5YN+SYdA8uRyDsixh0BMsD9wyLmHQD3Pdu7BwYdA1KNeOMPJh0DyUGv17OGHQFItbTBRCohATsAP01UOiECQXQpOPxaIQEC7A05CGohAHJ6V40EeiEA9l7McPyKIQAp//erUgohAWD7yyEDdiEA= + KBZXds7jZUA/KJil8iNpQFAtpBCXEnJArmsYctGickChLbKvvIJ4QJwpGM8/03lAv35umhQTfEAyQlYELAKAQIxF3PLrMYFAMnFELtiKg0CMdMocmLqEQLeeTB/k8oZAMqAyWIQTh0CWzfx0ECyKQEp/8Fo7+4pAjax8o0fEjUDeX5SWkgOPQMZtteZ5ppBAb0dBYB9GkUBGhaz7z2qSQO9eOHV1CpNA+JsRChb3k0BMiChxsQqVQIfEb/9Bv5VAYZ1pctcmlkCc2bAAaNuWQL7GWW4TJ5hAHPGnFb6fmEBN77djP++ZQKsZBgvqZ5pAzQaveJWzm0D1CdioFWycQOSJgUvGR51AdSHPvWswnkCVC2nA71OfQFk3osWhtJ9AvRAe5BJsoEAFpwPqc6CgQEy7suSJhKFAFpxQ6zWSoUA6JqjoQASiQPrPquKnhKJA+B1ItE7qokC4x0qutWqjQLipw755zKNAwocsYro4pEB4NT/JpK6kQIITqGzlGqVAgvUgfal8pUBCnyN3EP2lQEDtwEi3YqZAAJfDQh7jpkAkIRtAKVWnQO8BuUbVYqdANhZoQetGqEB9rE1HTHuoQI+hmkgODalAbzc3S2c9qUCBLIRMKc+pQEf4qgV8Q6pAQbj/VlSxqkDSORRvlA2rQGaw6CVqs6tAksWPeb/vq0CtxJcggJesQNnZPnTV06xAbVATK6t5rUCI7jZy89OtQPjasyu+B65AE3nXcgZirkA/72Im1OuuQMKNz3AkYq9AmHqVLfexr0DBjKW9JyKwQCuDCBwRSrBAoVLjQj2TsEALSUahJruwQLPOVypIFLFA6kQWhy0usUCWiq8KP5GxQMVKzBFTlbFACpAcklzcsUB2UO2PVAKyQOpVWhdyTbJAVhYrFWpzskCw9g5MfrKyQAJcxJh71rJAwru6yoPrskDhV5R+gkmzQMebqySGUrNAWh2JAJCqs0DrJQMikcSzQDrjxoWlG7RA - + - stQ/RWUegkSw11NEHbZEREF4wEYyB1NElZWBRNi3+EZnz8ZE5NeHRPXyxERS6M1EI8KKRPiDe0VngcZE6NmFRMNvT0WbL0pExtxsRNL5jUQfxJdE2caTRKXNiESyrAJFjY3eREvCA0diBKFEcENIRmKdhEVLsrpEjZsBRRs4z0a7C5REVSrLRFu90ETb735EM7WoRRhHXUQs8ElE1201RPN7aEZxQ0hEXVclRAQBnETNTKFE4jeNRZlGd0QJfOxFrx13RDRrqUTXdWRF3PaSRDxekETqErFEA6iRRPLTf0R5mm9EvYpPRLtpAUXEYgNFPPfGRjYanERbPxNFfMayRCCUGkXLQDhHNvreRFOfWEbrsk9EvvTuRTZPV0QAcXREVLb4RWyjakZ81fVEphQ3RHrUFkXpVhZFWBUlRfiXl0Qr75pFxVyjRSWwXET0U25FqwrwRFwCs0SazIdEjPqVRcZgYkSJ/thFt5VyRAawg0TtLztE6AJ+RNEZ3ET5LYxEp3FtRnOZoUSLsmREtFeaRJVjOkVp2WJEBKulRCYgGkUwPJ1EFatRRP5RX0R1ZT9ENAiLRCocMkRYGpVETAX8RGDrhkUhHTJFxD6BREE7V0Tf9aBEEXPFRaYETkStA0VHvAJaRKRQaUSSDnFFLfy9REH77kT8sd1FG+47RO2yjEW8EJtEOBU9RJgxakQy+3ZEgubERPbAwURrH91E1pvPRISjxUSsb3pETGdEROGmlESUCJBEIchLRPuVQEROIcZEUNxwRDgvAEW0woVEAdtgRORFvkVzoEFEqnCXRBMlx0TG6E9E3Dn8RfRXgEQGiuBHUt4uRBn1BkdqufREUXetRU/NWkV7FFtEkBn4RPtnoUTLsnpEeQNTRD+HlETnkpBE7gRSREmJsUS1w/BEA1hFRHk3NUY5p6tEK12hRJOIDUahtUtE4ESzRC3InEUfT8NFc9G8RBsiekQvADpEtWpXRKRSuUSBadBEGzJtRArGTERVI1JEl23cRFwGXUSKVDtEZoA4RKuSB0XJaFNEy0aDRSkKWkT6vWZEmIKoRNicwkTapQhFudV9RJoP+EVlmQlG9226Rk/ElERKcS1FYieIRLp1VETC6Z9FfJllRVqmdkRUN1FFGzECRqeaPETy+TBFbVCORPP0UUWGz5lEO8GMRKEXJEjuZ6VGyUl5RC0vl0SdDC5FnPfLRuGEekWc5l1Gb5+aROeinUR9gwhF6fVJROa1M0W9/IdEev4LRTeQyUQar/RE6iK5RspkkUbJ3NhFgKUSRTW7YEVbdqBEBy/mR6Y4sEYv9VtFyh24RtXaqETG+ZVFhh1lRuXe1ERbNbREsZHORIiHOkQoOqpFylKDRGxMHkUf8FJESig4RDJdnESJ7JhEd46EROo3nES8qJBGf4n4RcW6ykR8j9tEH9qVREgWkURneIdEWP2SRALiuER4QHpEVzJvRPtzUESWF4REOBBwRZG+ZETUp1BER6uWRAjhXUTGBChGCP2hRWaocUaoPBpFdzcPRpI+3UTzrOdEWew0RVZtkURps5hE3kBrRBnXNEmmq5hEGRBqRISrAUU9ZzJIgKtkRLVqxkQphHhGb893RNgSI0R73YxE0RIJRabNhUT7vGFEyTkeRf+VfEUY/IZFyO9dREBBikQmf2VEdLFSRPsUiUSdGyVF68djRJ/iZ0fkwRpHMWdmRftAC0ZVCuNEeJV5RAnemUSKF3FFwupBRKQ2VETJVs9F241bRPq9RkSHPnlERyFUROLOXkTxDTpEeBaoRzD1yUQQe7pGqJDVRMMOUETJyOhFJ0dqRKIXtER7x5FEM3YxRCFD1kQT/udESzHrRG1zo0Q3hqlEqEA+RlZJD0WCkiZFNp1NRYhBR0QFmUREhbn/RDdwxEWuMzdFjbEsRW5/d0Z2r8JFWcR1RBbqM0QTOYFEbhKORvMBLEakKzBFUTNVRX4uiEXJ4MpFxoh4RES4f0SRt4ZELkR1RDp94URR/lFEi4twRG2Y0UdiX55ElGXhRgNlvUQKu6NGyQ9NRexigUSEaF1EDRh/RKq7T0SJQ6hE/eqZRDT8rkQ14ERFFBNWRE2JBUVtFDlEpDdXRO57VkQQfNVEHxqLRN/4n0QihUVE2qEvRJqAOkREc9VELOhvREjDmEVowQRFHYrORDfTOERyAIJF4PPeRAnHQUbaSp1El21/RIZvqUS0VE9FK9HWRDawK0U2LnVHH40lREHuQEe1nYFGp9OeRZ2BNUVsvMFEKzRERKo4J0SpMnJESlLvRKo9NUWE8U1GefGSRENKdUV3LLJE4deHRCUVIEVY1rhELyWKRSv6f0Szl4lEf0lYRBCoIkVD31NEHvZVSKslYUSCrtJHQcsgRft8zETSoapEtNhgR9dGEUViZjNGMoRgRQ+4n0RPOZdEJflqRKw/w0QgqBdGfeVrRJd0RUVj/JREUftpRSAES0QcpMxEGG4+RCEOiUR9VSJGNhdmRIhCmUR1Zj1Eo6eMRONwl0T8k4FE+4pJRENfT0Q2aq1Fx8aCRfd2sUTjICxF2EOoRJ5toEU1MIVEEUFmRAe+lkV3b1RF0FgeRRg3I0UVVp1EekFSRXhvekSkVvNFguwFRcI8W0RiVY9ETo+PRBdXvUQjcWREB5OARHPdPkZSWD5FG2UjRVW5JEXw589EM0qZRJYAckTSMghFEyPqRGeHyEcHoCxHsHVaRBGP5kY6AL9FvRjJRdLCGUWB105FepiCRH4d9kRmTnBEiSm3RD6LZUR9s4ZEIqi9R2fEA0bSXTVHn206RaQWZUSCMsRGg7cQRVCpT0Tdz0lGXCfzRSva40X7HIREFIiHRGHcPkUuuGBEgzBHRBfKf0TJP3dE0wHsRbkuX0XiNghFop1MRG5xaESeAdlFMKVlRb4inERrbXhEUmdLRCgLHUUA9q1EZKVWRPs3EkcTlXJGc+ocRi7BUEWR909F1omkRF7j5kS/WlpEpomqRfpr0ETf/edGO/ZKRsEf/EU1xzxE5HlJRegx/US4a+RE981WRj/dLEZdG3ZFttSHRGAjGEZp6sRFHls6RW5D/EQOBjpEGj/sRXjFk0XCdzdFJ9N4REQHbURQawdFWL2tRLTUgUURk/BEspC6ROtATUSfD4FEOemGRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - GtX/9HjAckAsZo8HD8FyQPpLh5cmwXJAbN11cW/BckCKR455UMJyQFXh00OnwnJAdi4B0eXCckBE/kHsO8NyQM5ER7jFxHJAAR21l1jFckD8lAqjQ9JyQNkI/oBI03JAlI4bkHbTckCu+j1gzdNyQMcOSlIN1HJAKsC6T2bUckCc2Mt5jt9yQLApVIrO33JAsaSk6bjgckAZKVVZ/eFyQHgQColQ4nJACJ79/o7ickCQMlSh6OJyQGGlzvbJ8XJA8KFFbPXxckCHyMTotvNyQMqyJs8N9HJAvIcnVqL0ckAcrgVfwv9yQEve28ZkAHNAchmWHvoAc0D04mtTDwFzQH+hKPlMAXNA6ZgQII0Bc0Bwd7dbzwJzQHC3J8T6A3NANw3rRAkSc0BqYXFhdxJzQDpz5CC9EnNACCF5sWITc0C/RIgj/BNzQIzuVvgFFHNAxHGCpUsUc0DO25nBeB9zQFbKyrekIHNAALvZODkhc0CD8CUZeiJzQIynl+rGInNAgMBS/zokc0C+ra/zziRzQFAof85GMXNAvocrBFoxc0C8SsrvITJzQGRhV9/OMnNAlVsgogszc0CBz0nqoTNzQGc7snHWM3NAdyz2Zzc0c0D+fpI+2jRzQGyE3GrkQHNATPx5YHhBc0CaCiSpvEJzQDBKptfbQnNAE+5lOnpEc0B5JOClmlFzQFevzodDU3NA6pGeH6RTc0AsJMSp4lNzQKwugp94VHNANF+lQ45gc0AcRf3dHmJzQO6OMxY7Y3NACLF0kc5jc0AWxXMxSHFzQJtCyxdScnNATvu4G2Zyc0A/1nHLuXJzQNBaeEXocnNAutY6wrd0c0AUuKPqS3VzQJBZNJR4gHNAwJ+KS6WAc0D4MZrEDIFzQNPVib5cgnNAHrAkE4eQc0DdeO7vTJJzQGo4n+LQknNAcq/B8s2Tc0A9MKbdYZRzQMiaGL73lHNAHo3jJ4yVc0AorjKZuKBzQHQc4QhbonNAzp0mXeaic0DqOEwiBaVzQDMTpykzsXNA+3CCVX6xc0BmESL5NrJzQFYqWjB6snNAwfx23/Syc0AQtOvbtrNzQOyfL+QMtHNAemCVdWPAc0AJEUNy+cBzQHCmRl1MwXNAMPvGrovBc0DKQZ5R0MJzQHVR9A8mw3NAptlGgMPDc0A4A7sQP8tzQLcHx4XX0XNAs324gUXSc0BuaMVGRNNzQJwUou/203NAfujzxuLUc0Ac7mAMO+BzQAD/Wcyh4HNAeOYEzzjhc0DqsxT5ZOFzQAU/NhzP4XNASRpUR3zic0CLWtBBD+NzQJ7gYpdA43NAyvCf6/Dkc0ChjY21afJzQAq+1ak29HNAuHJxH+MAdEByss3/eAF0QJ7o/u2mAXRAZFBfcSUCdEAm3UXUugJ0QCeNWgLjA3RA3+0NCQwRdED8RBy4dhF0QM23ZaP1EXRAXO9pO00TdEAfbttF4RN0QLQ4HzR4FHRAL+ugdEwgdEDmE1I5jCB0QPPejLsiIXRAhLxAW7ghdEAWibBmKyN0QCCGnetUMHRA+o+8O7wydEBYWLlzWDN0QN4Loc1UQHRAZQirdM5AdEAGax6wzVF0QAbCMSH4VHRAsvGXIoxVdEDTX9wyuGB0QEPGIW1NYXRAZcgtbghidEAkh8UmUmJ0QPIAxCFQZHRASO4IlCFwdEBPoMUUQXF0QC7ErLbKcXRAHjEN8npydEAIw0CAOXN0QD8lXy+jdHRAeIspYDZ1dECO8z2k+IB0QG8UbtlOgXRAVN2hrI+CdECC6XN3FpB0QHCJBOZqkHRAxBbtVr+SdEAqwQ2so6B0QKacSsDPoHRAdoLt+DmhdED47928eaJ0QDDERLW5onRA9I4iStCidECIVQ6MEKN0QLLSwgIKsHRAhG069UqwdEDUEB5FxLB0QEbiSxn/snRAZC401JqzdEBmGLlOub90QG5RuhbkwHRAQz4aOHnBdEBYxRe96cF0QIgCswshxHRAjBusvHnEdEDUdZX7uMR0QFTE73z9znRAA4zMjVTSdECWy/VY4tN0QLYE1U7O1HRAoqCKXvvfdECO1aH5I+F0QGm47dq44XRAJIadKMbidEAz7k+YT+V0QMzbNDW/8HRAAkhs1ozzdEBQSh5jpQB1QERN8t3AAHVAEHb/e80AdUD0fnOwYwF1QKQMYxVdAnVA6kksLKYCdUAR3EdHmwN1QAzSJ2NLC3VAWOyjUlITdUBaZsL1IxR1QENbDUBZG3VA3zgf+ZwidUAAorHfWyN1QC2sAj/MNXVAdeHaP5FCdUCArAK3glF1QFbYtoZPVHVAiinEEndVdUBoeu6DOGF1QOq+w+TvYXVAkkiRdmZjdUDMsJtCdnJ1QLBPgfN0c3VAqxpEWI10dUDqkz0VWH11QBrCNgLjgHVAmlg0t3mBdUADy0hTroF1QMZvS4emg3VAvg7lDJuEdUCefJQxupF1QA9GPtqlknVAtjc0iteSdUD+PxXutJN1QChUcBI/mHVAWRDFipiddUCF2V6Pt6F1QOqgHvP8oXVAorjZr/CidUDWa185OrN1QKTYLzd9s3VAHLI2683AdUCHfe+QY8F1QKYLih75wXVADqXJD83TdUAo2VoBCOJ1QHzqmxCB83VAILIi9Ij7dUD7ZY0vSAJ2QPyMxFrRA3ZAhK5KqEwUdkA4obeeDBZ2QIAzzseIInZA1n59opAkdkAKduplSyt2QLnRvZIfMXZAs4MJ//YydkCAl8hdJDN2QBmORMNSM3ZALI+oA5w0dkA5L36U/jp2QKTnaIQdQXZAKg2PPXpEdkBNGX7m+052QPpl7g7MUHZA/JURHBFRdkAo+HarzVR2QGTHTegVYXZAbondb8xidkBuc5HOUWN2QGgTU8K4Y3ZAlqMBNNtkdkADuMGNJ2h2QPtLYZr3gXZAc67wmmeCdkAC7uIskYN2QD58aPC5kXZAtlGENfuSdkAQgTVCn5N2QPAwORe6k3ZA8JBF1QuhdkCEMio9oKN2QEhj3rK1sHZAQaShcsGydkAavAzbeLN2QDXSKqUMtHZAncMcRrC0dkARP00007h2QJ52zsksvnZAai19jL/AdkCVSmHLhcN2QNRAGVbPznZAkJzR/NrSdkAQUx7dUfN2QDbrgwqR83ZAgguSs0j2dkC8+yYTNAJ3QIDjy8OkA3dAmF+BTFANd0DOHvFRARJ3QICKzCupEndAlj/Qh/AXd0DfgHy5Bhh3QNbmdi0PIndAyG6EaXUid0CksBz2pzN3QARy1/4MNXdAOvP4/5xBd0D8kn3PsEJ3QHqVgJXnQndAbOMm8xpFd0CqU9UBRUh3QCA8eHBKUXdALEmumZJRd0ASGAf58FJ3QFhH0wkqVXdAVvU2U5Bhd0BBs/CCPGN3QK6htLHPY3dAZkO3Fjpld0ArZ8IJKG93QLDQ9Q9Oc3dAAP3s/HiCd0AwrlWweYN3QFurmioIkndAnE2Dy0yUd0CtEnbAZ513QCCc5ezBondAmJhiVB2od0BmcvLcmrR3QK42vk3s4HdA5dgpJezwd0DIG5dqUPJ3QPBzEFt383dASgmBzUsVeEAxhVkabiJ4QEy+z1GJI3hA6eZ6ksAjeEAMOD0jUUF4QGLqPUUNQnhAFC/zrRFEeEBzMvRlekV4QKV4l8bKUXhAtMM0tZRSeEC3ve7lhlV4QDkEMC3uV3hAZhd18DRdeEDkm4hxTV14QBwHkWL5YHhAD5xA5LZheEDOZEtLt3F4QKePxPNCc3hAU/DI4C10eEBEPw01ZHR4QNCP95+LdHhAeeRdn8N0eECl78lbpYF4QAZ8jBt4hHhA2BZo4ZmEeEBCDgJHmJF4QOZ9Z8anlHhAxGutT+ifeECwu0IBVaB4QHahbsqvpHhAwojbMszAeECypLMxt9R4QLJunajE5HhAAL9LLQP0eECyAzvAjPV4QOdyBMubBXlA4yeC47gzeUD7xMez8Dd5QJxN8n6NQnlArFkmW/pCeUCS9yZM4VB5QNDBML03VHlApCatjcxUeUB4KePA2mR5QFi6twpGc3lAogIJDnGNeUBm2Zi4Oo95QApWI5rKknlA422LcxGYeUDsXkNRKZh5QIjcvMKBnXlAgQVrdMWieUC0H/W7wLJ5QHLBL7lB1HlAyqRxiM3VeUAKxemrvuJ5QFIYVeRR5HlAAdYeLiXleUC+Z4ZQ+gV6QPkgUlcMNXpARYimr+dDekDmCvtYGkV6QCrWxm7PS3pA5MIgaSpVekBsMNiQp5R6QCr7zZWssHpAY4FW3Qy2ekD+IItdG8Z6QBHWuy3X03pA3FKz1/bjekBBgIKANu56QE4z98QpDntAWmDUMk0Ve0BWMincWiV7QB735yVRMHtAUAZ8mMQze0DUHpGNl0h7QFa3kEXzTXtAoo52eltSe0DSCTeV6pB7QBitptsilXtAUYEdkDuee0CwlfFVlaN7QOIjEaUvpXtAJXn2Jo6oe0Dq7xmg7ah7QLDaYltGrntACk2ge2G7e0C5rNkfacN7QBR15C56xntALL/WqqjTe0Dx0Pdf/+N7QNLVEV2M9XtA07i8DdoBfECUUhe+mQV8QNOU+WmNEXxAjRa6sdIRfED8ag5AzUF8QBzNjiTbUXxAsoeqW0xcfECFev/0DWJ8QAHCE5Bpb3xAgvUVrypxfECDsIVKBXN8QKrLTAf9pHxAQdgrE4+lfEA4Wou9wbJ8QNz4uRXL1XxAtl7G3FfifECce7hOFvJ8QC+TNMFU8nxAouC/kHPyfEBOYROrRQB9QI5D1OMAAn1A5evlbksCfUDQtN+vRRJ9QEB+F9HzIX1AzBnooD8ifUAgc5uYoTF9QACPlltrUX1AP63QWhaMfUB65VZ25JZ9QGAUsEgtw31AUrjJGD/TfUDULIxYa+B9QBSVIC5W9H1AwpETf471fUBUmBCwPy9+QDS8pNyNVX5AOmehBM9vfkAJLsjU4pB+QEZk31DUk35Apnhr/ZiyfkCw4UzCab9+QPTuj3vM335AXvES6OrgfkCyfiLuz+9+QKqKSJxO9H5ACQhY3iIAf0AW1ibF2AB/QA5dj3ABIH9AYDgWlrlxf0CYFsy6s4F/QPmX17cah39AHGtqZGORf0BecVdekpt/QKw8KFhdoX9ATCn3Y5ijf0B1B5I4V7F/QAxuUI6DEYBAKRGjUjAUgEDqvDLR2xaAQAbMxj+DGYBA1xYzGjMcgEASkrOA2B6AQDR+oJ82IoBA0MZwct4pgEAsNFRM6ymAQAXYPUkpPIBAAvAaiNY+gEAoW2RU6z+AQAgTyl72SIBAKPj/dudQgECWgr7FE1GAQPAUwDzpWIBAIJJ3tA5ZgEAVFZTAC2GAQLNV7iEpb4BARnez6wRxgECf4nh+BnWAQHbt0lxEg4BAF5oiih6PgEB79TvqbJGAQD5RdI8ZlIBAmlT09RuXgEDSUOUdh6mAQHZJ7MERr4BAesEgtxO3gECDAkJrUsGAQEFHXLcRxoBAoqvbCVPJgEAAnRXU1smAQArzcqmnzIBAmQ6VplXPgEAa4rtZTNGAQLkc8hrg0YBAf+H8HAHSgED7kegKmdeAQGWDQIhJ2YBAiTxCbk7bgEAUAMmGROGAQPiL1K1U4YBAaAlabfjogEDOAeSFSu+AQCD3eiU984BA4tmOCr78gEDO72DUP/+AQMxQqRCSAoFAtL6gJ5UGgUAEG97QPgeBQDGYWcDiCYFA+vZU5TwPgUAIabio4h2BQEwfNlr0HYFAnW+DTTQfgUAWRRUUOieBQP15co3uKoFAnL/zyLsxgUCm8Ah+jDeBQEX0EkcpP4FA8D83LvRFgUBCrPhO90mBQKQTxIArXYFAtA3rzRphgUC2W+vaLWGBQGuHBqxVj4FAEhEW5VaXgUD6adheCqGBQI1ip5vooYFALuzAhg2lgUAcRrgCbqiBQEhNT9DuqYFAMjiXN0qvgUCWwcjIabCBQB1HKcIFsoFAjiPZFQm2gUBiqtXqKsyBQIO5f2h90YFA2lIdD37TgUAa69OAhvGBQJzuwuUk9IFATEahVQIJgkDAlUEe/w2CQKxS/l/YGIJAAjzYBdcggkBNN34k0iiCQPxoKK2hKYJAsBDTGqUtgkAXxpRyojCCQCJuv4LnOYJAURqBIes9gkBQUDEERGmCQJQpHlwOfoJAdjLwjLN/gkD9QF0jQ4mCQJDwrWBDkYJA7lpJPzyZgkAsHziNDqGCQO6GN7w6oYJARKOfi2iogkC2zcO7DamCQDVn1Xk0qYJAqLmseAexgkA0O36KwsyCQMTuosuM14JAK/o+VK/5gkDCsgTMOwyDQNL+Z5znDoNAqrxyj3kRg0Dy+tScyBWDQDkUdHZ5GYNAoqySIssZg0D0aduL0B2DQMZoGi5yIYNAHCN4sw0mg0DFEI99cimDQGzYrPMQKoNACPkQWmsxg0BUw/CHFjKDQKAx2xHqmYNAABFC0u2dg0AxMx7q8aGDQJ6EItaU+INA7H30+f5ohECW6Crd/XCEQGDdWor3eIRA+j1+ZPeAhEActV+s2aWEQGpgsq7aqYRANTQBUGrZhEBww2ENaeGEQHQG7r5i6YRANmrXZzbxhEB5efUpYvGEQFoDc281+YRAvLw7plz5hEDKAB9mLgGFQF4OZWM7A4VA8YpoakILhUDbMcRboGGFQAA0ELSgaYVAhG0zFZlxhUAIwrIMmnmFQFVu88jdjYVAliPFieORhUDBG8g0KC6GQLY01E0rMoZAfMWm9Ce5hkBsePMKI8GGQPi7IQsiyYZAEK2OqpTShkAXR+avl9aGQNoWjBCa2oZA3V9iIpEph0DgwnlfkTGHQIjvePyIOYdAXuaH2l1Bh0AT+5h3iEGHQBh2tKuESYdAsBoT2cexh0CAZpjgx7mHQJiWSUq/wYdASD5zvb/Jh0BEjbUm0e+HQJp/ehJVCohANLAExKgViEBkGHmBPhaIQC5loiRDGohArBgFsD0iiEA= + KBZXds7jZUBxWoXuS4RsQDtMc7KVAnNAk7mMQumSdEACpwfsrTN5QLp61LmXo3xAFLSnMS6igEDBarT5V2qBQEG6TNePyoNAVEtYNa9yhUBB6ToBPFOHQA== - + - mRWyRJkAsEQ3kJ9EcT6YRVSM50QK8WZE4eyNRCng2UYczL5EgYP6ROCwJUc6S4ZFFa7xRBtOg0QthlxEVl2CREHKf0RmJdlE0g7oRIOGbURWq4pFetE4RUv7hEQUFKZFqtKbRAa3/UQPrplERPIQRQCWBUUxev5EZ7oGRYa0pETBouVEdnqMRNzmUkV1eSVHVenQRK1MiUTrSCVGrShxRM2anUW136RF+AeRRPZLEkXikIhF7/P9Rj5GpkT27F5Elm/0RHWEyEXm39tES9e4RAggwUSqVI5GF4bXRN/coEQnX8VEFjfXRFPxp0QMvQ1FQoeXRS//xERD0AxFyDA/RqIRuUQcIw1FMrO8RTljhkSkvbFEvzFjRGMry0T2c/REns6MRDRIoES1cddECHanRG39mUSuFDVFX9jcRLVEj0UjLwtHAkm9RNQcQ0WoKK1E0RYPRaFceUebJ3lERJeiRE2JF0V8aZdGAKC7RFqWBkbQbwxGocONRizpOkV23ahEWyGeRFuZhERjLJFE53YhRUuOq0XVlSRFT1eBREjnEUUvy31E2RJ2RI/Rh0UddspFvxyTRLD4v0XPu4hFG/dxRPFsI0WJWNtENiiyRS3NgkRQIY9EHgYHRh+Lj0SjlrxEyTWaRPq7mURvDvBEIWe1RKzHjURnyn1FcJ+nRIxgg0bvk9JE8gZ6REuWvERBipxE4fyBROtwdkS2cI5E4VimRWI3kUThsq1Ed1fVRHGCjkSGAJRE/aYeRTmdzUTjxgRFWEO+RP0VQkSSbKJECKuFRH0PfkSttQNF1zscRdbgg0Wgy4VEtHmrRej4lERIGuBEkiSdRRmSWUf/goBEk5atRHBJi0VUDp1E5swVRU3BWEWz8flFMESYRNxowEVuagFFJCKJRA4GvUTLkA5FZ3CURPj9jESHMKlE6D+dRE/wFUUaJbNEtuFqRPAjlkSqwOFEiZFCRNWQjERqPL1ECuP/RH+mzERsOIlEkWuARFfhI0Vo2/ZEjZVyRN7o+UQh1LlETmWURPvwr0SUhDBFjTuPRCk5v0TsNq9EnOftRV7170T6PXVEtjygRBPE8UThlGNGN71qRLHujkRH2s9Hh/beRoZMYEUwOo5Flou6Rd2rfUQxBoRFE9DGRFOvp0Qkq5dEgJYrRepeVEUqk3BE2Ko6Rt8QWEVBQuJEG8F2RgsojkSN1cpEQxEwRcRPokXTixpGvsI6RXRjpET1yY9Etz94RC8qDEViHflE4hfpRGHklkT1c1tEnbKdRJEKZUTfK9BE8WS5RNr540TVqAxFW5HDRMNpX0UhieZEXrvDRIQM20VUeApFPCkZRe1+A0UxMgtF6M8LRlDHNEYJnutGZpiORTnci0TTu3dFKN+VRIbBvkSGP9NFF2qORUz4uETkbotEeaOSRaKWnEZ7mklEDyOBRVW810SHY29FM+yARZhYA0U7V4VETszSRGeGJ0i1P6REE0tYRBrNwEZHAohEI9qSRI2ECUV/BrNEZzwhRbJoGEemcMpFhOSmRJ18jEbnzpZFIimFRJBCl0T5wYRFuJo0RSqmTkWUJb5EAsqARGApQUUUE4ZEco3VRuu3rEbxcTZGcP7iRIc/UUVIdIhFpl/5RFm/pESorARIINzpRiAFekR07BNFpi7kRqABiES0389FFRO5RhJhvEQARghFZrWHRQdju0WKDaRETB56RBlIgEVoZolEYYcpRUX780RfRw1FwxAARc/TikZ1wA5GOJkRRZ0g1URRNI1E3gCJRF0AAEW56kBFaeqlRL2ImEWFF7xEWXeqRGnRQUTMKwRFYqzUROPzWEYA5tRF7Qw0RspFF0X8PhNG+Wm2RG/62USN8TRFG/A7RYx1l0RVp4VEehebRF2OVUWqPGBJol5HRekhd0X3+mpEhNdqSEqQJkXj/sFGkbCKRLZQWEQpj25E3oImRagBo0X6PLNEjViiRS+X20WEsaVErpehRC6eDEXD9ZpEKzGHRLJka0TA8YZEoTmcRXaVkUSxroZEBU2UR0qzwkS6ljFHZNzQRY992EWLYwdFGeTSRHYog0Uo4uhFaTIWRbcPukTpA+BEzrWTRA3S7ERqGdpHDbDQRJEB+Uamf3FEeUQkRV+2jURUqYREp1PsRWkEykRHeYBEOZyBRCp9JkUMvgJFAy0xRiYZR0V5i7NEsmeNRPT3iUVr4i9FdJe2RIkyF0VmI3xFvLf/RZWsdkX7B4tEtnhmRGp1FkXubIREKQ2BRlyTBEbNyLNEgzGSRMGJp0TqI8ZGQsiERtraqkUIRKFE4Xi+RYY36EUm8MNEJ+loROp1t0SfonJE5rYoRbJQd0RaCHlEJZKdRFRPCUWCHdhEewDpR9iPFEWIrfVG81NVRUBUiUSdDFJF/PeoRp8kdkVjNqtEaoMTRZcZ0USLeB1FfxLZRLyhSUT+kY5ElKlsRO8uKEUub2FEng3qRGsTBkUHVTVFgvztRHPMc0SIU25ENHSDRLfUYkTVAZFE34nGRe82fUQsXIdE3qf4RK+jkkSdaldEebnbRUHVCkW9vHxEC1VbRuLPoUV9M1VFVLkmRccdO0Wu05NHlX5HR9OkeUbXjulFlpAxRbO1nkRf3mZETXlcRFA1eESwAr1EMD7BRMJHikTENOFEBMxsRcGehEYC6rJEGgu+RSHH/kQz4glF0E8RRTfisESS1pZEES9tRQhBF0VV7o9EkcF6RL5ZE0XrqpREVz9VRB+ndkiUMotEU424R8WDmkRlCmpFmsGLRGLfcUdjsmFEfoqgRO1oY0QXzzlGP2iWRILTsUXSfMBEjEeCRAHMv0QJLodEpXODROkrJkbcootFzTATRcuhQkXWAHVE1eWtRD7omUQ8kwNFR78/Rt6Z6kReuJNE4RvpRADyYEQvcsREhcX2RSi6kEVXqZxFAQDYRLp8uURqgPBFcxhJRRQ+50Xnz01FKHHwRJ5DG0WwEdtEKhucRRz+m0SSkxxGQVgJRYz9nUTI5phEVQyORH1BvESDOBtFAjCiREd02UScpIFGt51+Rf7Jb0VOMhBFNa8gRTmTkkRxsohFjc71RClGWkRhdm9EEinGRDFl+0c0Q1dH9VkOR0kq7EVpAA1GhPyLRB4lNkUBmDtFwRvIRJ2VaESJLYpEqNa5RPpqtET7h+pE5nfHR0nz/EXGTBVH9oRmRRv6v0TptbhGHXOQRltsyEXchxBG6/UpRTmSZkRnPL9FVkYaReO4qERlgQNFSBAHRo8eUUUSJg5Fox6hRHe3DUV0O4lE/sc1R9IPhkbfhjlGu8xyRR12lkV+9hxFIUq9RPrqx0RwMo9FZH4LRRXB8EaqY05GMhkLRt8fO0UCzDtFs90ERUPavkTK1MBEJg/nRDlzhEQk5alEcMVkRpANMUY5wUlFA+17RjxQ7EVI0I1FxpiQRArT30Q/bXBEmssURsD9jUUjAUFFXF7sRJfNbkQ7JDxFGJF7RF2yhUXseUBF4geZRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + - - - - - - hbXqcXfAckAi177MCsFyQGqny5NtwXJASjCr6E/CckBXoFVLpsJyQKYOwUY8w3JAEiHUDsbEckCSuv9ZWcVyQOh3VgBE0nJA4cfxuUjTckBO6DdRZdRyQFJBtb3O33JANaKhhbngckCD765zTuFyQNgxaLVQ4nJAVpq2wY/ickBgIjVz5OJyQNRtw1kj43JAuf5+UcnxckD5oABwtfNyQMbbNeKi9HJAAM+g7sH/ckC7jBvbYgBzQJRiuln4AHNAt+ZsRE0Bc0AQsUPdOwJzQB6XGAvPAnNARUZp4/oDc0BU//44ChJzQOBvr968EnNAQp3GdPcTc0DMPgkPBRRzQPATcaZ5H3NAMr8F0qMgc0AmpEm2OSFzQATWp1rHInNAPjOT5A4jc0AzdClJPCRzQLoH6UjPJHNAdF85Okgxc0AEe3RSJTJzQPi5Z2vPMnNATJXzPA0zc0AQxRm1NTRzQCxUM6TkQHNAkuLjP3hBc0BYtktzvkJzQDZBrkJ6RHNAKIujaptRc0BO5q+sQFNzQMTFz6ykU3NAasucx3dUc0CuxP32iWBzQHYoS0weYnNAQ6koWTpjc0BqOY900GNzQKCmBdVTcnNAAY9cR2hyc0Buly9Z53JzQPEaj522dHNA/Qt3Zk11c0B9ZF08eYBzQADSNcmkgHNAYtwheg2Bc0AEQnO4W4JzQBKtzJOIkHNA7hAvaU2Sc0D1/eYEzZNzQHoTCB9jlHNAlfBL+feUc0BW/GnjuKBzQE4hqGJOoXNA66vJ61qic0A59AG25qJzQPbiRpAFpXNAqCxHnDWxc0Ai6jXD87JzQGlOL+G2s3NAf4YcOg20c0C2yEZUYcBzQBKT15r2wHNAKtxMS9DCc0DQIYHhJsNzQKtnvzA/y3NAUNf9YdnRc0Aw12CIRNNzQDHC3IH203NAji0xNuLUc0Am+l6LOOFzQJj585di4XNA0iD62Xvic0DSEHTLD+NzQA/gAZk29HNA0o7F2ov0c0AwwUky4wB0QPqmgIx5AXRAfhWzq6UBdECT3eroTBN0QD6AufrhE3RAuEdyUHgUdEBmZaCTSyB0QMZBphG3IXRABpWIYbokdED01spRUzB0QO/8Y0leM3RA0pCjsHpDdEAhHdbG0VF0QKB6HCP5VHRAVgC96otVdEDYc6I3uWB0QArCOxoJYnRAmhUnw1FidECG4i51uWN0QKTmnWdOZHRANLLeMSNwdEDqInKGQXF0QC6xn7vIcXRAnOZMOzpzdEBOKwcBNnV0QEwlwqxmgHRAkrLyF/mAdEBE+adDToF0QGAabUoWkHRAIcBM5lGTdEDwbHjGz6B0QAP/N2A5oXRAcWRDTbmidEBXn34o06J0QM5IxmYQo3RAzND4tgiwdEDl0BpSwrB0QFo6ui38snRAOu3LUeTAdEBq+6e0d8F0QEyZverpwXRA5LFQAyXEdEDuHlERucR0QHD7zuX9znRAmh0byc3UdEDojkcNueF0QBL/o9bA8HRAeDCMSY3zdEA6mxzvpwB1QBd3knZkAXVAup/t410CdUClS2WsmwN1QE3djeNLC3VAft+Ym5gQdUA4p2SrUhN1QHxZjvUiFHVA0rpFwFcbdUDYNctSniJ1QJQVXdfLNXVAn3GElLNBdUCkJpag3U91QPiyCzEPUHVAKENHV4FRdUBswaOPTlR1QPhn/Ul2VXVAqCtZ5Q5gdUCTG9k8OWF1QCa5NLVmY3VA0nTu63dydUAc12dcc3N1QNLcwJ2NdHVAVCoaKuSAdUAYuF9deYF1QA+cVNGtgXVAwDvluqaDdUBorLmam4R1QOicbCO7kXVAqO3alLSTdUDcWMyam511QECH5Si5oXVAaw5XEXyzdUCwk3y8+MF1QNJBQyrO03VAd4HYbuXfdUBkvGb1D+F1QMBXYHoJ4nVAUnl924HzdUBd/TM0SAJ2QFRXT3nQA3ZACZJ10E4UdkCW4RSVDBZ2QJS49M+HInZA/mtg9ZAkdkD+RTYuSyt2QB3AnMIfMXZAGaf6OfcydkCvN5WYUjN2QErK/HCdNHZA7CsoEgA7dkBgrqNjHUF2QCCchWHHQnZABmGrXk5DdkASq/tzekR2QKigGCbLUHZAgzr/jhFRdkB4cz46jFR2QEDaV+rNVHZAVMupSh5hdkDuFhQLzWJ2QPLNffFQY3ZAwQ8zULpjdkCmvSLI22R2QHvniQQnaHZA9fPRx2eCdkCERgy1kYN2QFaDgJb3knZAst4eqp+TdkDpQ42soKN2QJDMzAq5sHZArpNYbMGydkCK6Ay5ebN2QOI3CB8MtHZAjFoma9O4dkBUMyTtLb52QE+8t74YxHZAtvcR9M7OdkC5Gx64wtB2QDBl7J3b0nZAlFPFCvThdkAVgOIEVPN2QBK2ffeP83ZAKDvqnTMCd0D77QwiUQ13QDAM7L4BEndA5EZnMKoSd0CctVyj8Bd3QKvL8icGGHdAipJMFA8id0B4YzB/dSJ3QBTULUYNNXdAzGNxC51Bd0ATqd5Ir0F3QFa+3UfpQndApcXMOIlDd0BSOGNRG0V3QIBGiWNBSHdAuIeZOktRd0Bwt8i5klF3QELp25YqVXdAfLL75I5hd0CS7ubhPGN3QEgq1ZPOY3dAvLl5fTpld0AX738rKG93QNk7EZB4gndAkGy1YgiSd0De4ax7aJ13QLKMlLWOoXdAI6Dbc8Kid0Cxgn6/Gqh3QEUiFekKs3dA3Sfqzpq0d0Cuki2pLsN3QD5DsZbf0HdAzryL4Y7Wd0AYdSkY7OB3QCFPrwsl43dA5pldN1Dyd0D109DIdvN3QNxXeQVNFXhAZp+Nf24ieEA0FSMjiyN4QKokl5wMQnhAy2yTWRJEeED6QknRekV4QOPPhWPLUXhAtJRm25RSeEBCgZ3wiFV4QHhjdZbuV3hA4P9w+DNdeEBMbfldTF14QCDCzXr4YHhAHgqOBLhheEDtE47ek2J4QPJ497S5YnhAeFEgrN5ieECYEBzjInR4QNqMkbGLdHhA1qgelvR0eEBQvRdP/XR4QIe9irCkgXhAE8yUsJmEeEDrw4/el5F4QHpcCPGnlHhA5AvTMbSkeEAQgk7RzMB4QHhql5+31HhAiqxdPgH0eEA27i2Vi/V4QKg70DwSBHlAPpTZZ5sFeUAm3tII8Td5QOu2A86MQnlAyEDUrPZCeUD/CQgT/UN5QJwN8hDNVHlArPto6eVgeUD45vLC22R5QOKMLSFGc3lAQz3/ivmBeUDk7sSOcY15QMFw1zfKknlAWJi7aw+YeUCy5tk1KJh5QBexeE1qnXlAs4mCP4KdeUARFITfx6J5QGuhLmbBsnlAkqEYAdDCeUAMvS+FQtR5QBtJi1TN1XlA5K2EOVDkeUAIG/zL9wV6QFQ1DpE5I3pADHikaAw1ekCU4t7h50N6QI9HE6oaRXpAHZTalylVekBdEHcGOm16QJ7Z3GWNcnpAUsjyxAy2ekDRB/LdLMN6QBazQn8cxnpAZAgDX9TTekDffnQAeuR6QDjwIhY37npAGN21dSsOe0DBaVs2TRV7QFjI1B1cJXtAlHwH+FQwe0AqbRL4xDN7QIc1otGYSHtA/v6AjfJNe0ByvCeGYlJ7QAr1gOMUaHtAo4XnUSSVe0DKC9YlPJ57QFtV6hiTo3tAx9qQj+uoe0DSYnqKYbt7QD6aFMRow3tA1pl8z3HLe0BT28Xql/F7QHhq1AiM9XtABpjp0JEBfED8gJHv2wF8QCpixzOZBXxAJt0rj4gRfEBQ7rqj0RF8QKpYmA/NQXxAlu9e0dtRfEDWPWTVDGJ8QBYEPvoFc3xAPPYv/b2yfEDCYpS1EbZ8QFB3vMFX4nxAnz0lfxbyfEANwm03VvJ8QE/V2OYCAn1A46NJ60sCfUAq6+OLRBJ9QKLG5tk7In1Ae75TpKAxfUBcw55XGox9QAK4JzhXlH1ArSjrJWvgfUA++vSA1uJ9QBBrkEFa9H1AV/pH+o71fUBU6eEtoQJ+QNK/8RBXE35AnIHdyzkffkAKkzxXQi9+QIZbwMpAP35ACKgWqIxVfkDV4uRSCG5+QIAOJEi5iH5A9CB0YJKKfkB2Ql461I9+QLO+aegSnn5A1htpdrewfkBmhlkSmLJ+QOi9sn/q4H5AHCp4wtfvfkDa8axKUvR+QL9BxwnH+n5AZRPoZB8Af0CgZM4DuHF/QPpOpHyzgX9AfwcI2qODf0A36X2iY5F/QOY81uiokX9A0gun7JWTf0DD4uQvkpt/QID5+AVfoX9A5lBN5Jmjf0BO93WiVbF/QGnRUKiDEYBA0N8OJTAUgEAgjMxw2xaAQEReZgOCGYBAvGe93zAcgEDMGHvw8TGAQA0MVYvYPoBAeYDEku5IgEAkvj0J51CAQDO5ZDgUUYBAMRFpcdFXgEDIpzzI5ViAQJgO5rEOWYBAlOuKGAthgEBfEoqIKG+AQPHjlmcGcYBA5IBShx6PgEAYoP+QbJGAQMaGZp/OkYBAmNEZBBqUgEAZ+PlQhqmAQPHWsvUSr4BAR2GzjFLBgEBPMKGzU8mAQGDsJQWozIBAfC1KSlPPgEDhwyKhLNGAQFAxZZVM0YBAor/zFWHRgECCfmKcG9iAQDyKpGtK2YBAIgeuT0XhgEAXuk83QumAQK4/ttFL74BAKCzw/TvzgEAgk7WyP/+AQGA80vBo/4BAwtRAgJICgUCE/4MdlgaBQDdr2ZA+B4FA7vnjPj0PgUCUkiW69R2BQN6GlY00H4FA5B6Ly/QfgUAwCVddNCeBQA/DSFjwK4FA5UysJ+UsgUAWf74R5S+BQCfAsM0nP4FAdPOMrJFBgUCXwf3X80WBQDw0peP2SYFAXvqep/xNgUCuY/UfK12BQIqy/EoeYYFA9M7xVyxhgUAj2hlUVY+BQFjguUtZl4FAU5l08VOfgUAG+MxuCqGBQG6WuzTnoYFA/BxZ5A2lgUAkAtZ9baiBQMQTyK9Kr4FAOJRww2ywgUAtRRaVBrKBQMwSkgMKtoFA4Pq1Kma4gUCsjSZGEbqBQEKn8qcpzIFAzcSQY37RgUASSCGxftOBQG4nFGgr1IFATGWIpyL0gUBaNyeEAA6CQDFBFLcDEoJATFh1stgYgkCcaPJN2CCCQMEV5VXSKIJAyGL8naIpgkAUYBqupS2CQJoDqG+lMIJAnrXzK9IwgkCBKPkG6TmCQGEb0QzrPYJAQMc32NZ2gkC6kS1PQ4mCQBAGTBREkYJA1ES5O3+RgkBcgPbGPJmCQMr1K/RVmYJAfl6B13aZgkCEgfwGD6GCQNTw3CY7oYJA7DZZBw2pgkAFB5XUM6mCQJYaUk4IsYJAq/Rllq/5gkCYmsqVeRGDQByTvV3JFYNABlCLCHoZg0Bg9DNLzBmDQEbKYh1zIYNAchh4m4khg0BUIUSRDSaDQEOrk/BxKYNA0HTOYBAqg0BIx32kBC6DQA+LBDsYLoNARL8WLWwxg0ARrxi5lDGDQDJ/6WBrRoNAKdjrveWBg0DuSSKTSYODQHpM+1bqmYNAjrhcNO+dg0CYX4tj8aGDQAuzI8n/aIRAjLSorv9whECI+xfG+XiEQJ++HyHXpYRA7E9+rNyphEBg2QwnQsqEQEBuvUdGzoRA3qqGY2rZhEDeBq9sauGEQDqjavli6YRA+tlghzbxhEBk4GoFYPGEQPh8q+4z+YRA+7dupF/5hEDehVlsMAGFQBWWEhU7A4VAkiMulKBhhUAqlLwxoWmFQJ5MokGZcYVAH75WprRzhUCmcToYmXmFQPSRu33hfYVAtg6qwt+NhUCW16JC4JGFQNqkWx8mLoZA4Se4LCW5hkBAkAYtldKGQAxgmnKY1oZATuL3U5zahkB6wtjgkCmHQKTxX62SMYdA0iRjBIs5h0AyMexlXEGHQNi0Hr2KQYdAuOBwW8exh0AkOa1HxrmHQPRKiWnAwYdAtZsy+cLJh0D4MM+C7eGHQF2H4Wzz5YdAunsZJ1IKiEC/Za4cUw6IQBz5fKE/FohA3qML1kEaiEBWZZEiQx6IQKev9MbiXYhAnvezUOFhiEAVF0YVzYKIQA== - - - - - - cQWKRLRIa0SWyFxFuP6tRJoOZkR9T8tGjUNLRBg8p0SIOhxHAMwBRcLsUETLWrJEgkuYRN20nUQOZp5F9gbIRITXZET6DZNEaeRrRfPw1kRqw6JE4xsLRUbD5kSiR+lEM6ehRLHmh0TE885EwYIIR20wjESUzgFGLjBVRavQRUU0qPtEsVs6RUM9yUYV5aVENjDbRPEqpkQCGp5F/fe8RLPipUTXYxxGSHeRRObvrEQhgbFEORQmRclIQERu9yVGsIuIRFshuUSDt4dFR+enRLcQnERM4l5EDtbgROR6h0SCRqJEfmyBRObayUQ/dNhE8MI9RTB180ZQ839EcRYPRTdhk0RqrxlF221LR4VJd0QDlKVEIUZ4RhV64kWMcnlEnXDtRZilZkbWg0ZF2MeTRHAt40QPsVVFYwUERRqZW0S+1I1E/AdiRToxt0XpsIBFwC0eRSxcykRm2IhE7mibRTrgBUY7UZNET76ZRALzaERsVY1EwspXRCTd5ERThnFG7H/aRO6hfkVVpoNEStukREezsEQWorZEgqlqRFlq2kTk45lE6sZeRFuhpkTadYlEL8ezRAs5gUVfh11FVySeREkKVUSg0PhEMsu+RUgxTUdjxmREhWZhRfv9v0RsEp5EFkMiRa/yAEYfaZ9F1LlNRPLqAkWKMZ1EOhqkRCwOdESeMApFLfTvRDlpVUSNQuhEaIblRAAa90QixZVEHD2BRCx0M0W+xNdEvNWPRKnW6kQri4BEqJbiRatlf0QyvepELE8kRja2XkT6WmBHJlClRA0nV0bm4y5FLQ8ERXGVhkVVWypFnD6PRMAAvETkmvpEoXGYRJArn0RICOJEu4adRBP280R9wRFGNFkjRe39oUQ68rpG1oJFRM2N+kR5wMRFnp8WRvI5W0XrwqhE9xRxROHRc0Rnr8BEXxx0RMfvBEUKud9Ec2tfRJSQUkSWGRlFFx5VRX++sUW4mwxFQMuqRO8gdkTHN+pEipHbRWHIQUYKW8hGKNA5Rb3UFkU/3oFET9xyRAZrlEUlGJBE04ZxRLw4E0WCGINEfAUxRagqYkTEiv9GHLZuRKQaBUXw0nREnrq1RMwytUVDt6JETG+cRNYs/0f0e19FPxGCRsWglETzHYtELegIRT7TAkd3FndFAPF3RlsvTEXKXnZE25ggRUi/Y0R1Cu5E9tGLRKlIt0QNjM5E99ARRUCst0b/nYlGP1Q2RiibmERd2wJFJg49RWnlqkQ+0ABI8VizRgSQx0VydzdFUdZBRBd73UZrDaZEckGfRRTtcEZUZSlFhX0IRejLo0Vk0otEP7yyRK2XfUX5A/pE3fu2RLp4fUYifl9EeIT1RfqqBEX/bU9E4PB8RG6xY0R3h3hEmBuZRMG0e0QZEIdEKF6ZRLdE5URch4REDQGXRbaYfkTGA7BEeJuSRAIiKUaFIapFTHRFRqu2CEVLRuhFUqmhRK7vB0XDEilFDLk1Rd0CpUTpdJpE+1KIROyFzkQhgVRJl1OjRBbnx0SiTktFqApaSM1j8ESYZq9GOO3aRBQJCkVHcyZFYl5cRcOevkUBZJREytbHRGH0w0S0iFdEF/aSRNkIzkTtG5tF6wd0RKkvyEQl/ZdEnStTRIf5ekedvgBHuPWYRU4y9EW9AOREqYQIRYlpnkTpTFRFEpd2RCZJAEY7LgNFJIoARcA6hUQSc2ZEZfTbR2UgHEX5bPdGWkUrRQXAikSMxcBEe/rGRbBBmkTTiahEvzlVRF1PdUQ73+hEkNEERWVzREZDNB1F7YCERGnfbkSxK9pFmY0aRSOEkkSYmshEFpMORUSg0UXg5D9FB/+SRETDbEbrQsJFjsKpRFU2r0XJxq5Gn0DkRCVJbUZr8NBFQaCiRC2hpEXw8QxGSl2PRPfaZES7nmBES+gHRWAiWkTRottHSoCoRFXV20b2cDVFX1OuRgvLgEUYKq5EQOSdREg8yEQFKZhE11PxRAuUoES2WpdEkFLPRDsVO0QUg0NE96yiRGCfwURA/n5E03aMREzynURfR41EjwW4RN15iEQna2tE6d5eRLUIo0RVZf5EOhi1RGCiskQVCqhEHLStRAAiX0V2LYVEU+yzRHGePUYTwKFEJgN5RKo8A0aNhSJF67tSRV6MJUV2cpRHE9xWR5ZvpUaF/bhFKox7RZo2TUQJhYZEchn0RDN1H0V5TpNGJt6FRP+3n0T10sJFA++NRM58QEX+Z49EHDmXReUL0ERCOmNE82fTRENSGkXfC4tEZ/dvSPml00c6sIlFWYKnRHHZiUR833VH+epgRZlQwERED0xGPWynRXEImkS/PalEPaSJRAsjPEYoyKNELqmdRWVD30Qc1TdFPncwRZT8ZUQJAyVGcBlTRBla40Rm/LlEFrmRRAcuVUQkuI5EIaqyRF5UykWPGY1Fr53oRP69rUUiwAxFP/QMRZUhpUU+/ZREmDysRFnJh0XsKFJFf8ziRH/VBEVkuldFUh1tREot3EW03i1FTTFvRCFugkRhdt1EXPegRIhEpkSMhWZETPamRF/kB0Xm66BEdt5YRiJvhkXbBWZFNsERRa7jzESJspREeReGRLsUakVzwO9EocaURM3t2UcSJ0xH3jyxRBKm6Ea5QQ1FwpeCRNATp0VNXAZGLUa3RDJEJUXm+YFELEB/RBhw0kfzqbZF0Y1AR9m8QEXE5+ZGS3QGRdVxRkaEhB1GJ5L8RbZbg0QyiLBEvOYIRa+0bkSXaIZExouRRDp+jERYy7xFYHE1RUYTkUTNOdRF5qRDRaN0DEV+lKJEQmOcRORxiUQtko5Eq9UVR3qikkatnSRGCQqXRdYSbUUnfAxF6I/CRLLcrUQUIztF/kD4RrQLW0Z4jRZGxLOXRLYKfUXJPHdEIFwyRVf84ETU4LpEEzX8RJLkREbcoe1FSNcoRXqwWEYf07RFInl6RT3lQ0TOm81ELDfmRfbDcEW3TF9Fy855RIluxkRM0YVE9+S1RHfbBEWPNqJFzT5/RTdQ4kT5tH9ECVaHRJ07f0Q= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + - - - - - - okbdCw3BckBOceoOb8FyQAxhICaownJAqgHEQjzDckCcdS8PxcRyQGxc6PFD0nJAfugB20jTckA5I0JieNNyQAhzKkbP33JAHE2D5rngckDCeyEAUOFyQHypubBQ4nJArxYHfY/ickB6GuBqv+JyQFiuiXAk43JAZJTrWTrxckAE9kkJyvFyQAGcl7H08XJATDTuOrXzckAUd6L1ovRyQGER1v/B/3JA6PsfUmQAc0DYB+Zb+QBzQPhjuokUAXNAEFf1jY0Bc0CtepI80AJzQFKMGuP6A3NAQCYS/SMFc0CX2WOGCxJzQPA/sf92EnNAGIzzXr0Sc0DxxZ5jBxRzQHgAuUNRFHNAKY1ipPQXc0DRWGfleh9zQArhXt+kIHNAgLm4hTkhc0B55iqHZCFzQK6VYR58InNASt4YTsoic0Apq9vRESNzQLCoLNYFJHNAoqFHazkkc0AAKVs4zyRzQKpvyRtHMXNAmiU1Os8yc0Cyl/+CCjNzQIxuTALVM3NAUoL09jc0c0ACwf2tQEBzQFPc6pviQHNA/+7YRXlBc0CkanUI3UJzQE6SuAN7RHNATGq/xptRc0B/oiHjQ1NzQPiHIbOjU3NA6tiHZHxUc0BpIVFhiVRzQC8w4I2MYHNA2CNS6zhjc0CMt706T3JzQPwcM++RcnNAN3eWtudyc0Dc/RhBuXRzQBhNm2FNdXNAbmrlO2t2c0B+bXabeYBzQN8He+KkgHNAGK3xOQyBc0B47HhuX4JzQPHaOjqHkHNAvpX63PeRc0CtYHZvTZJzQIqTnzPOk3NAo4jyOmKUc0Aayw07+JRzQEoipF+4oHNAEAlg3lqic0CsvjaLj6JzQJyBc07nonNAQqvefAWlc0AIENEdNrFzQOrGt9T0snNAOSNQKLezc0DyZ2KWDrRzQLg9f+7Nv3NA+KyzY/nAc0BczT5LbcFzQPigR4Y8wnNAhSPFtdDCc0AyG5Q6J8NzQHjEjvaQw3NAGkzCOz7Lc0Cvanpt2NFzQLDK7JpB03NAqM+atffTc0C634k749RzQILYQOY44XNAEKRiBmLhc0AqX8E+8eRzQLrfEso29HNAHbpRBoz0c0As+m1BeQF0QNZ78POlAXRAhiNAJ3sEdEA4ryoDiRF0QLAfhTBME3RAGIqgxXcUdEBa98C0SyB0QBQgsYu4IXRApfcaP1UwdEBe3bG7tjR0QA1Ld0hVQHRAcTp1qHtDdEC1x0oJ+FR0QG40QtmMVXRA3PDcNblgdECtlxujCGJ0QMAbO+VRYnRAMqFgfw9kdECXDpg7TmR0QIAfA/oicHRAppzroEFxdEBlnhAROnN0QBYyHEQ2dXRAocVinfiAdEDUyLXqToF0QO84SDgXkHRAgGiFamyQdEBS1/aNz6B0QJexOc83oXRAcrHO0LiidEAENnUaEKN0QK3BEaMKsHRApmFu3MOwdEDIWVNk/bJ0QN4LdS3jwHRA8UjtdnnBdEAamj/l68F0QLTpwAp7xHRAwhWzILnEdECz80lC/M50QP753JLi03RAMhIFFnnUdEAu50OtzdR0QONUhK8j4XRAebh2+LnhdEBZOrZlHuJ0QALALPpO5XRAWlnARcDwdEBP/2VTjfN0QI5QXXB59HRAbvUdgaQAdUB+6fwJYwF1QOqGWqtdAnVAYGFE1ksLdUBsOyHaOxJ1QLdO4GJrEnVAPmqDm1ITdUCVwa4sJBR1QFMhmMRXG3VAqlGlH54idUAs14VjzTV1QHC9iKC0QXVAeXjNqJNCdUBCphMrElB1QAo25LmDUXVAMhcce09UdUB3i2Tbd1V1QDed96UNYHVA5G+qszhhdUCWF2gxZmN1QJ69bjbeb3VA3M0KZndydUAHfNSdjXR1QC9awmp5gXVAgNWGu62BdUB20Gr/SYN1QCKt2/Kmg3VAcuWa45qEdUDsqQuAjZB1QBoLks66kXVAOMxob2+SdUBG6kjetZN1QH6gnBBAmHVASj+75peddUBqkGhI2p91QBzs0wO6oXVAe6IfZLqkdUAcqm/2e7N1QKwDpDhjwXVAnskdyPjBdUB+sjKozdN1QFZLiV/k33VAksFuhQnidUCtpyhQOeV1QBZcLIA483VA63JMiYHzdUBPSV1diPt1QPpww0JJAnZABAWnltEDdkA6L1otBBN2QMXbPLNNFHZAM8TSfA0WdkCSGyVPiCJ2QHDwILOQJHZA0GP0dUsrdkDRBNKXHzF2QDhQBh32MnZAePQGpVEzdkDXVdrlnjR2QJ0iaPUcQXZAsQPeEHtEdkCM7Dvv/E52QJIjEybIUHZAEtDW3RFRdkBvm+6LKlF2QM5dxBaIVHZAokcD4c1UdkBch/mkI2F2QJK5kZfLYnZAd5AVIrljdkAOSoJo22R2QLZlsWknaHZAGnlxnb9rdkA4/oDyZoJ2QMZ5vcORg3ZAfnCjVPqEdkCohfmgZpJ2QA6hR7n2knZAQAnxVp+TdkCVVh5I/5p2QC8tgfo3onZA9qTZVbewdkDTcie8wrJ2QIZKO3F5s3ZABtPhZA20dkC7F7MfebR2QAoPoELTuHZAJHJl7S2+dkDhSCDPGcR2QO0MJSHPznZAUqbA1L/QdkB0q6po2tJ2QJarvwiS83ZA+BZqgTMCd0CgVXfoUA13QID6BA8CEndAdRRBWasSd0D9JWoBBxh3QNApdi0QIndA2twOUXQid0BKmXU3DTV3QNjkcmKdQXdAJkkkteZCd0B469ZgG0V3QBSSe9dDSHdA+KKd4EpRd0BUNCl1k1F3QMj6FCcqVXdApVqO3kphd0Aljkxsj2F3QCQRjSU6YndAXjgj9zxjd0DWSIe70mN3QIjrMMknb3dAIkGe94Zxd0B99VJHS3N3QHZpih6SdHdAmeXhuXeCd0AdOIm2fIN3QJ4Uac8JkndAvrr/VUyUd0D4lW9baJ13QKvKWWfBondAEmY0fhyod0AKsQXfm7R3QMVoeKfh0HdAkqAy4+3gd0BCfF4W6/B3QBSKTCVO8ndAn9Btp3Xzd0ArbyuMThV4QGr94MJuInhAqr3AhosjeEDweBTDC0J4QAyCqcx6RXhA3E4x0MtReEA6cyo/lVJ4QNq5+xWJVXhAwoXXeu9XeEAq5IcVNF14QDSceEVMXXhAxpFFhPpgeEDGykR3uGF4QFqSxAOSYnhAnIbn+dtieEAWPNWGO2N4QDohk+G7cXhAjsSwMs9zeEAuujipRXR4QEbzSu1edHhAVHaF64t0eEBungymxnR4QJcm45Y5gXhA0ReMjKSBeED9wTwPmoR4QORZ4VmYkXhAePxlkqeUeEAKqNsQVqB4QP6BvE64oXhA/O8v0aikeEBwCqE6zMB4QJtSM1QHxXhAiD6oz7fUeEBrfckVBPR4QNnug8CM9XhAcBc+fpoFeUD4Lb/j7zd5QIrXcfxKPXlAvOemT45CeUBWKhqO+0J5QH6Th4n9Q3lAXLK3scxUeUBzCdhx2GR5QCVczi35gXlAWnNIQHGNeUDJ7AFiypJ5QG2dOsMSmHlA+znr1ieYeUAT7el0bp15QHGs8vXJonlAcDRx48CyeUAiKkiwzcJ5QIDkzt1B1HlA3dS44s3VeUCkdof5TuR5QO7VA/A98HlArDC8FPoFekCMpq6lDDV6QLgvfN/nQ3pAHqJUvRpFekAiBqlcMVB6QEzwj/4oVXpAblj2jTxtekC+wxLvDLZ6QH5VlFkaxnpAiB6d6EHOekB0yZ51Ps96QLOHYis+03pAQFYmrzbuekCiZ7AEeQN7QNSeNKIqDntAihQodU0Ve0BqJvrPWiV7QFcH94JVMHtAuM6bK5hIe0DiEgq08k17QFrA2GddUntAMqrNiU1Te0DO9woEw5R7QG5yflAllXtA+IgAKzyee0AElMFGl6N7QAnLd9Zhu3tAzPF72WfDe0D4hLlqAOR7QIb/XvWL9XtA2vmekdkBfEAGQ5TAmQV8QDo3XQyDEXxAdpaysNERfEBmbQ/vzEF8QKHtaobbUXxA4IDCBwxifEBnKYip96R8QLkiRynBsnxA/mCMQc/VfEC+pJIBWOJ8QGitHsca8nxA1NrvVlXyfEBamkmCAwJ9QKYti4RLAn1A3Igq6GMNfUAFZkgyRhJ9QIZETcOgMX1AVh71pmlRfUBWhNkcGIx9QDItTVdalH1Art7hJS+pfUBhcUFC1uJ9QFQwNRCP9X1A5LqnTD8vfkBvhKBFPD9+QJSMS1kmVX5AMPm3P41VfkDF+efXdXN+QPAhsr4Sjn5ANqVWv3iifkCmH32ex/p+QAAkA7EfAH9AsLTO6s4Cf0A+fzDHuHF/QIJcs4GygX9A9MZtoKSDf0CGYQ24YpF/QCRaSKyrkX9ALbvjBpaTf0Dg/+LEk5t/QIg+zeFdoX9AhUB09Jqjf0DFx8rcVbF/QHLV7huQs39A/tLkw/Pzf0BKHGFE+/t/QGRQStyDEYBAW/teMjAUgEAmb+Er2xaAQHzJDm2EGYBA6AGh5y4cgECQkZ0b3h6AQHxzn1FMJoBAe8p+7ewpgEAADIvjJS6AQPzpjKq6OoBAzCZQbSk8gECsRzIT1j6AQBcV85j1SIBABH+CWeZQgEB8bXtKFFGAQBDp6X3oWIBA+wEaqA5ZgECvYvp+DGGAQIx+VsUpb4BAaqQlKwVxgEAvYRP3CnWAQMdi4wgej4BArZMfi2yRgEDoUSm5GpSAQASiNE2HqYBAtHAfnQaqgEAYIHvIEa+AQG0JJTVJuoBADWdrkVLBgECEJ/VAD8aAQGKPS11TyYBAw4wLF6nMgECaqlg0Vc+AQCAMATQt0YBApiRUrkzRgEBW7MxiYdGAQJs3sU0C0oBA40NatxvYgEAubZBVStmAQCBynMNE4YBA2sJqZUrvgECK5lmpPPOAQBFcPwpA/4BAbGt5zCUCgUD4DAbCkgKBQFT34kpBB4FAVpadjjwPgUDsBl3c4hqBQPGFCtz0HYFAyCNIseQegUB8Sz9MNB+BQCgBrrUzJ4FABPBa47wxgUDRmobQ5TGBQOMXCD+8OYFAOLZ12fNFgUA00ThM90mBQFAoS9grXYFAhGNQ4SthgUDdR03cYH+BQKTmqwEEioFAwMPTNFaPgUAedv7FVZeBQHic1XFTn4FA6hoWngmhgUCwOYFy56GBQN7XG9oNpYFAgclZdW6ogUB2CB95BamBQHBDsGz1qYFAhPIz4EqvgUBYFpcjBrKBQPxXaFwKtoFARG5Hgn3RgUAEg55HfdOBQPXSVKAT2YFA9oHIYiT0gUDECANO4faBQFBDxFgADoJAUJIzdgQSgkBY8UF92BiCQM7Gu7PWIIJASsGVltEogkCCz1sToSmCQP7wUfilLYJAaXG4Deg5gkBM8uKIQ4mCQGie6D7UjoJAHNeaikORgkD5bWk9fpGCQL5jbLo8mYJAkuSw/FWZgkABKt4rD6GCQOKqgNU6oYJAfOrYPA6pgkCksPGqMqmCQPaFy9wIsYJAa6AhMK75gkAmSDAfPAyDQG5KG3voDoNAnsv+onkRg0BaLhCZyBWDQMg8U2J6GYNA9sqLlMwZg0AmuIuuciGDQAqnoTSLIYNA2jkXuw0mg0CZ4cAlcimDQNxxLhMRKoNAovcfkGgxg0Cv0QL6lDGDQPm7dfVANINAfzAycWxGg0BPjzcl54GDQGDT8+rpmYNA8DCl/eudg0DA+9qrlfiDQHbqPJH/aIRAZiRduP5whEAMWCyb9niEQJn16hLZpYRAgKQpYmrZhEAsk9RxauGEQLxrEOli6YRA2CWNDTbxhECVUzS9ZPGEQCSWF242+YRAWu0wXGD5hEBIywbDMAGFQJ5B8Wk8A4VAbLpOsKBhhUCBRROloGmFQJCwfTKacYVAO/SgN7VzhUDtLl0NmnmFQKLoWDvgfYVACI8V5t+NhUACFwe145GFQBcu2Nzl+YVAHgdE7SguhkAkcy63JrmGQGJvbfCU0oZAZFqor5jWhkDU79VxmtqGQPJu5W+RKYdAfqZuxpAxh0C+INIjijmHQLb1g5KKQYdAhk7oSVhJh0Cmcu9KyLGHQBuaOBPLuYdAQ2pxPb/Bh0BIDoWWwcmHQJQLB33s4YdAwMWXHVMKiEC8qjyXPhaIQHLHm5ZDGohAT8PZu0MiiEBsXD29sYSIQA== - - - - - - kgeIRJdfWUXivtNEnQzORocinERekhNHt9AMReZ8v0SKWzJFumQFRVjl4kRJKoVFOAoPReDoeEQ5uZNEGB9fREZkj0VTG5VEDTzMRH6QFUXG5PVExWv7RCuSDEVyIFtEzwqsRH/hDkWCnTVHFnOARFFsrETgdF5EO1xIRtYpsEWpc3VEqbOYRFsTr0QHt8ZEL6zuRh4oskSRBsRE8uZvRJVsqUSunKNECxZ5RNNUqUXYewhFTBwORhBHp0R0eaVEMzG7RNLcr0RyVAdFJmCmRQLDp0Q66CJGs26YRHcH3UQErphFgMyERCtyj0STAcpEI0vhRFqDnES3Xl5EM7OqRNGxAUWJ2RtFMTnKROUkBEf91rZEsdwsRaj12EQ/ej1FNVVaROhXWUegWoZEQevnRA3wmkZevwpGnd7qRT+01EQC7U1GKM9WRdGqmUTpW9FE2e5oRRtFFkV+MndE5yXxRH61YUQ8v65EFTvhRVR6oEX+gclEPbdDRXZ3LkX3U2JEqkLARNr+kEWM+glG+7BSRCBRkETNjChFQeGURF+gnEb7UDlFJCBcRLuj+EQy8lBFwYCERPA45UTOpE1FQt+SRHtTeUQbdZxEHYeKREWHvUQpnb9EcbGRRU8fXkWwWphE7HqFRBCmq0RKoPtFH8ZKR1m9XEUrM9xEiJBWRRtUAUbESttFuQWuRM8u20S8DI9ETZB5RIQ8JkUfmRxFrUaWRJVDnUQFS99EZzjxRKvjkkR9n8BEWdkeRX1RiETYG+NE1b6YRO1Hv0Rqf79ETAInReRcmUTJtqZE7960RFkCr0XxbIlEz5u4RKi210SQNTdGOz4BR99bjET6u/JET5P3RUoWHkWUXt5EdFWZRYzfHUWSvXREQ/aTRHc4qURODIREWWmBRIFHOEUvl7REm+8cRYSOFkYCJ1VEm/kBRezLdkZktZ5EZ4HyRQzNiERerDdGy4QyRSqNlkQz3p1Ep415RNxJl0RL7GVE5feIRFMZi0RYPpJEIcKCRMbEjERb3NlEO5ERRfkl6kSo+J5EoJgdRZyZiUQyaVtEyViyRZhaCEWCjtBFlkjqRLyLSkQhLO1Ex5KfRJht4EQd4RlGRlATRn82z0blef1EIXvfRN9OqkTqOmFFU0KFRXQgs0Rh6YRE69UBRR9fSETc72ZEEyqNRsxghUQN1RJFxVOrRKrNb0XPAaVEoAFfRMamiEQiX+NHBHCOREopkERDh1pGi7lbRsr6kEVuLm1EJaCiRHMlu0R5lsZGozLJRdmpkERBjF9G8liWRVEqhUQs+mZFDFmkRGm78kRd6S1F4CYFRTRmv0acspxGP4YVRn3rvESm0mFFxsDjRA5z8UeJ8+dGQhQVRTdj5EbKoplETuCkRcOxkUbTdAxFvFazRCqFOEXOv49EfTziRfO1vkQ7rZ1FWQORRMSXuER2PLREOjrGRJ14gUTHVa5Eqym9RKCimEYrN+1FuYkmRcaJmESkNO1ErHJhRE4o3kSyu7lEBW7uRGs6yURmDlxFCfPURPOxvESFCE1G9leyRcXRmUaR/ixF7S0LRlDOj0RgeTJFI8wMRVN0cUWgVJZEpdqWRPrDYUTeCk5E4QZ7RL8SE0XPGkVFcHRaSUG6TUV6QKBEAvscRUjrXkinRLZEaUKvRp61Y0QVXJhEzjeyRHATDEUIAY1EBLdSRZcTeEVwtvNFOM2pRPurxETKKKBEOGm8RNL1iUSui61ECEWyRc5akUTQhZJEnxdXR956EUcX4JFFptfPRfn3L0VCi4JEyCxKRbLCyURPmuRFH2UPRUWx50TV7V5ER0GnRK4k3Ee8wH5F0qDjRuoZakQ6Q3pF8peCRDlL40X0c9lE42rLRJjHbkRyQYVEe3snRY9hkUQnPNJEye0tRsjGPkUSSa9EK8HQRVpRlkXxq2RE2cp4RGPjf0Svn0lFmaqiRcSjskTmmytGgjGORWNbjkTOYrpG/EhWRtrMzkVyqH1Ei0OVRT8E8EX7ea1E5+GNRFRMjESFjvRE4Z6GRIOc7EdRibdEz5fsRifeMUXdp7JG/raARCbqjEXJXclElMSMRM3nDEVoSo9EciuGRAkvdURLSwtF4c6oRL25hERxIodEq2WARGuIbkShJT1EJQRyRPkONEWnbQNFkm2CRJghhEX0O7REwqCKRCELRUaAbHhEoa96RFEeREZW+IpFUuqfRUqnK0UDoZBEGmyvRIDud0THYrZHUv5uR3qus0beYkJG4fP6REP7AkV+Ct5E4u3iRAwLZkT1iaBEwMqhRGc6jkSxWhBFeqxFRdqDgkYVychEI5LCRYj8hkS7n9BE5r1qRZAhsETTeExFTqynRJaptETvCCFF7KMiRSmzgUQBiYdEI7l9SK+mtkSrK/JHIqTVRNOdMUUDQa9EN3R7Rye5akU6RZZEkDXRRKPCXUbeObdFDiunRHxqBEVCNjxGy0pjRItgY0X3PzFFxkf9RG9riEThaK1ECexzRIoYHkaVqJ5EHybKRAXvmESNYGREz0vFRXeUM0Uvu6BF3xXtRNZMiESENaZE61ujRfTEz0QLhLZEhiesRbtjM0VfNR9FqrgbRboI5ET6VHxEQPw4RYWzl0XX/iJFnQnWRIQa1ERSPQpF3V3gRDA4uUSudjlFqn6mROtSPEYn9X1FskxeRevE+kQT95lE52xpRfV020cbM7JEHelTR8KsgETKZQRHxc4MRSQtCEb3Jv1FXqMhRW3c40TlR69EDb/URA8zw0RoeZtEwgbZRw6tnUWJFVVHNFMHRUWv3EZOYxdFo1YhRtP/CUZN8rFFR9ABRexwsETgxIdEY6mhRIalkkS2cFhFR6/TRNkwXkTpjvJFTG9ORROY2UQsSghFKW0WRw+ZiUbXwyJGnBeIRWC0q0VLj+9EiACYRKx5mUQly8lE68UJR3q5XEYCzhhGfR6aRExWW0VWsK9E2vuYRfr/H0X1EIVEb2sHReKHG0Wy5xpG4mWbRRM7g0SnsjNGbVXTRe05VEVqTARF2vVwRDqnBUaYfl5FKqoRRUgLkUQPx9VEppS2ROIEukVFT4JFAmGVRCBCZ0Q= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 6+NqTQrBckCYDQllcMFyQGwPeZpRwnJAOg7bHjzDckDI7Nc4wsRyQDr9UMBYxXJAUCVJRn/RckC030BLiNFyQPY0rqVD0nJAhlGtzkfTckC6OFHEdtNyQCa2INYI1HJAsm+IM2LUckBqa7Tuzt9yQJyacCS54HJAMAxlo1DickCuAdA2j+JyQFTekz++43JAcrZK7uPkckA+KYhrUPFyQIjGw3vK8XJAlVEC9bLzckBXCnaADPRyQKrYmhmj9HJAjg5hs8H/ckAmepq+YgBzQCJLWEL4AHNAdPdROE0Bc0D0A/5n1QFzQIQ1ZErQAnNAQoF53voDc0BWfFc0DBJzQJjCCBMoEnNA88Tg37wSc0DEdbKiBRRzQAqGyvBLFHNABMOwRfgXc0AeAhePTx1zQNN2ly98H3NAYSWhN6Qgc0CHS3R9OSFzQPjF7wZjIXNAPKzE0Mkic0A+Xz28DyNzQEJBH0nQJHNAQleBv0cxc0Aj6U6tWDFzQJRwPgDPMnNAyj/Yjwozc0BC2u4SpDNzQECvvIHVM3NAkilmaTY0c0D+sl3a3TRzQBU+Owu5P3NA90pp7ORAc0DWqy23eEFzQIVHn2InQnNAyz/eRXpEc0AU8Ohvm1FzQGnI1poSUnNAtonKhUBTc0DI24VfpFNzQIL26iZ8VHNActtY4QlVc0C601LOiWBzQBWfC505Y3NAEXJUjd5xc0CEejydUHJzQJxOtxi3dHNAUoWeHU11c0BAGrqoanZzQGk9bRZ5gHNA1G7epKSAc0AqNOktDIFzQARi7wlegnNALmtYloiQc0C2pbKBTZJzQA9RY33Nk3NARMFydWKUc0A0iq/U95RzQGREgK64oHNAyhyGLeKgc0Cqd++cTaFzQAAxnbpaonNAxEZmXpGic0D/Uojw5qJzQCXz05kEpXNA3l5cPsmwc0BOClk1fbFzQDKmgQv0snNAsGx/HLazc0AQALowDrRzQBoVms33wHNAvkQgM9DCc0D4ObDmJsNzQDIgIG5lw3NAInqgIZPDc0DaJIdhP8tzQNTD+CrY0XNA6ZxknUTTc0Bf2lZn9tNzQK4C/FpO1HNAjoHv9+LUc0CHV7HsOOFzQDCf4pdm4XNApYZOgIvhc0BDC8IUN/RzQB5epoPkAHRA3mw4tXgBdEABLYbMpQF0QOI8FRIKEXRAMCi4E3oRdEBbgD1+ixF0QMvjA7xNE3RAJnEszeETdEA2+wjWdxR0QDrjDS9MIHRAzOuYACIhdEDGXZm6uCF0QAos379TMHRArtGvZvhUdEC58rDNjFV0QN76k+W4YHRAGlChXU9hdEAE2RaCCGJ0QBrDv0hMYnRAAsIOAg9kdEDMJDF9TmR0QGqsU2sicHRAzOOBW2JwdEBb6ZSmyXB0QM6DcWdBcXRAyJWFVDlzdEDM6xjUDXR0QMqCzXqidHRAYGquZTh1dEDaG7k9+YB0QKKUIzVOgXRAGA7EnBaQdECm1OJbapB0QDL5toW+knRAlQbJGkyUdEBV4BZ3zqB0QB5fhIg3oXRAkPparrqidEDXKv+8EKN0QLZCC4QIsHRA7I7yDk6wdECP+qF9/rJ0QAZ/j+DjwHRAQuTSxHnBdECAYk5d7MF0QFpdJswMwnRAtviogrjEdEBqpETY+850QFzaaZNW0HRANKdBOXfUdEB92ykYz9R0QJysEWG64XRAwFylRR/idEAcdBLNjPN0QO7HYSCmAHVASACm388AdUC3z7LNZAF1QCaNx2P5AXVA+zeYHV0CdUBG4FIqnAN1QNSUmpNLC3VA/tS2cJkQdUBSX6TGaxJ1QNp581RTE3VAgHd20SMUdUCAeUOKWRt1QJTUgQqdInVAdrdIMWIzdUD0TLRszDV1QArcQUazQXVAQF5RxZBCdUArgN5a3k91QPxIVJeAUXVAFfN+Pk5UdUAOoMFbd1V1QBouWNw3YXVAzb0B3WVjdUCD6uAgdXJ1QB7gTwt1c3VA6p/soY10dUAW0i6ieIF1QC7MDWKtgXVAD3BdaUuDdUBYZcDspoN1QBI6rbqbhHVAAJMD2YyQdUB/MQDWPJN1QKoDkW20k3VAOULctz2YdUDNZBf3mJ11QKxloyC4oXVAUIo5sZewdUBOHtiZxbR1QE5P0ZZjwXVAP64NQfjBdUBEOVp9zNN1QCJMdDnk33VAx2kR/wjidUBY0BX+OuV1QIJ4qNmC83VAetmmXor7dUD2v4TxSAJ2QOLVoU/RA3ZA5q4Vj04UdkBYHGTfDRZ2QH7VamCIInZAHDQGPZAkdkABkoRQSyt2QOxbQOYfMXZAtnKllfgydkD3x1szUzN2QHiART8eQXZAgGf+FnpEdkAa0rO8/U52QAx7fYnKUHZAz7Gr6RFRdkCHhxq0zVR2QLuNHQXNYnZAxnd8FlJjdkA+trRNt2N2QPZrqlLbZHZAGo799yZodkDdr4hMaIJ2QMW1Xn2Rg3ZAfJYHQPeSdkBS59wbn5N2QKa6ShD+mnZAznckvgKjdkDuaHIdwLJ2QEaeo0F5s3ZAFnx9Yw20dkACPnkg07h2QCmhqqwsvnZA3shq68LAdkBYIgvFHMR2QPZ2FprOznZAbuxattnSdkDnwwGJ8+F2QLFzVN9R83ZAiBQqB5LzdkD8M1ZuMwJ3QJTAD1lRDXdAaOdzawESd0C+h4X3qhJ3QCCi8fH0F3dArjaS4w4id0CjqIIncyJ3QJAV8wUNNXdAhrqjFp1Bd0A+KHjX6EJ3QOo3KlIbRXdAkJGcvkpRd0BAnVHrklF3QM6ddhQrVXdABqEdvY5hd0Ayb4K6O2N3QKR2PNHQY3dAVr9dGidvd0C8FmoAS3N3QFDn7XeSdHdA/NTnGo51d0BegnEgd4J3QHgxS118g3dAKv6EnwiSd0B8hZR2TJR3QKfZj2BonXdArEaaLMKid0DdyP65Gah3QHZrN/CdtHdAfqYd9t/Qd0BqqcKAjtZ3QFkQMQ/q4HdA3yoFZerwd0BAxBnabiJ4QECyj8CHI3hATpY25aUkeEACz6YIgzJ4QGAJ2F4LQnhATWa2rnpFeECpurZ6y1F4QHq4YQeVUnhA+zqhQodVeEAI8Rd671d4QPH2M4M4XXhAcH6U2vlgeEBujUd7tmF4QLPmmWDdYnhAYad/1rFxeEBN5pCSXHR4QCxGhX+LdHhAjI2eYrB0eEDMo6ndpIF4QKL7KbuZhHhAjPoLKL+EeEDG5rC9mJF4QAiEHiiolHhAVJC+rM3AeEBlWoZp+sF4QJrQ0k+31HhAEIHBJgzheEC2mHbwpeJ4QKjxfOIB9HhAvFR3AI31eEBzvXp8mQV5QBz+rinyN3lAuh6vd4pCeUDmZ+Kf/EN5QJISWMeaUnlAdH21Y8xUeUDqhnpB6mB5QKhzwGraZHlAPoiwRPxxeUAKZMAURnN5QMMhAhv2gXlACJivFHGNeUC8K2Ery5J5QP/RkvYPmHlAD19z2SaYeUBF5Rl8bJ15QGD2BArEonlAwhCcO7+yeUBQxN+gQtR5QFuWKmzM1XlAng7yvsHieUD53NTATuR5QLbDPjr7BXpAwuVROAw1ekCwulEp6EN6QMzf35UaRXpASpJHyz1SekCG3AU5KlV6QAiLF446ZXpAb8vHZn9tekA8S0K9nXF6QKBUeqCNcnpABs0yL6ywekAyHyj7DLZ6QMbA3eYsw3pAMqE6ZxvGekCW0QlxPs56QEk4pV8+03pArhfHl3rkekCkFY0VOO56QHDlAyMpDntAkvW1ck0Ve0Ajm0BytiJ7QKGX3C9bJXtA9i/VPEgre0BAAYi8Hy57QNDxrkZTMHtAbkGEEJhIe0AfwUjE8k17QC5MPbpfUntApquefExTe0D7MoC465B7QCaBW6MklXtA+pBxzzuee0DNPVellKN7QNGPmNjtqHtAEphAuWG7e0BaIXlUaMN7QDRoZN5yy3tAboQGc7HRe0BSmGjp/eN7QILDfbtb83tAWX0ybIz1e0CsxLR1kQF8QAThkHzaAXxA7+avXJkFfEDWKrbpiRF8QIzzfU7SEXxAuROSZM1BfEDIAEvD3FF8QLJmQ2cMYnxAN0Qn5itxfEBmBdUjBnN8QGgLAmwCgnxABJ5b8vmkfEBRBm+pwLJ8QM6w9CnOwnxAyE6e8czVfED74MdTWOJ8QCAevrgY8nxAqO+yxFXyfECIDFjWAgJ9QIZi3hJMAn1AlmwPAUQSfUDB1J08YRJ9QNDZlbc+In1ATGv4XGlRfUCtIe7tF4x9QMIXGctXlH1AVJR5JTLDfUCTBxu/PtN9QCo1Cf5t4H1AHFWModfifUD7d/4ikPV9QFWFHxs5H35A2o+ASS1xfkCJIORCRIx+QGLF7MlYr35ABmnC2VXCfkAN7OHDyPp+QPa1TAEfAH9AH2u46rdxf0DarILur4F/QHRBmfBikX9AkEXBl6eRf0BMKuwHk5t/QL0fqClfoX9ADPgcJpijf0B6EhMkVrF/QKCt4f/0839ADf0UEUcCgEBDFUbGgxGAQFqez0kwFIBAIpBMetoWgEDe8+dChRmAQClmp4gzHIBAcEOXk0wmgEDKUAZ49UiAQEAz+PXnUIBAsFu0bxRRgEDItG0+6ViAQD7eRHoOWYBAHUW6CilvgEArX/10BXGAQGhn3DYfj4BAnze6h4ipgEDil+V2BaqAQJ7SaaeDsYBA+jJdlVLBgEAP00SzU8mAQPT/t8GozIBAmAZ7X1XPgEABRWS3LNGAQNCWGcRM0YBAIoXAeRzYgEDcdjyjStmAQIAI93pF4YBAyhAW81fhgEBEWp/f9uiAQO6h1+FK74BAqdqC0mvxgEBQaSYAPfOAQAIckaW7/IBA8BzbBkD/gEBILezpkQKBQCRFggCUBoFAUA50Z0AHgUBAypzgPA+BQElAZRrhGoFAHKdiRTQfgUAWgO6NNieBQNjce4i5J4FABohlY/IsgUAsfS4h8y6BQDqrGC6+MYFA5qoHLvRFgUDcfrm/9kmBQAJaxjhcWIFAaP0jJytdgUBUFD+SMWGBQDytj80mZYFAwM5JHStpgUCkEVJroo2BQE60hRJWj4FASi38NlaXgUADSD4RCqGBQKxd4VPooYFAOaLOxg6lgUA4ijWGbqiBQNwRyqUCqYFAuOk7FPCpgUCCRlA6Sq+BQN1JG2oGsoFAznKPBAq2gUDQEWe0C7qBQAzyPk0ozIFAYKXuG33TgUD1ZNchE9mBQHVN8Zp534FADPNGDIbxgUD6Bm5nAgmCQAQaH1X/DYJAnR/D+AMSgkCKPMuI2BiCQIi8R6/XIIJAqwHkZ9EogkABZAhDoymCQDIw4imlLYJAlR9LRqUwgkAEPp1W6DmCQPe8/tHsPYJAC1BRa0OJgkA2Yss9RJGCQAR3mwU9mYJAfoGZ+VWZgkDgoJlCD6GCQALFE/87oYJADsrj5A+pgkCfcT7GM6mCQKoJ3xcGsYJARu/O1XkRg0CuVmfryBWDQIV5Dwx6GYNAspEm/coZg0BKQNbKciGDQHhUXlWJIYNAzJ0++Q0mg0BAQRnVcimDQNIo+WcQKoNA1sIG9BYug0CmphUqajGDQK66EzWCMYNAljuSfZkxg0CvFPRKQjSDQF5sO9pqRoNAnKRGquSBg0Aacd+TSYODQNxRRNTpmYNAcmpcCvCdg0DN4Au68KGDQDyPygSU+INARFrTiv9ohEAoFZ5l/XCEQMhYsbf3eIRAG6OK63Z6hEDyw+zl2aWEQP4BAHBq2YRAQobRJGrhhECKhhKmYumEQOb7uoF96YRAXhFeqzbxhECp0/s1Y/GEQNb8mbk1+YRA3OIkaC4BhUD7eOqcoGGFQHCp01ihaYVArhbaQ5lxhUCRU9HOtHOFQGkHDiGaeYVAO9FFZZGBhUBwj5NA342FQEx9LkbikYVAKnKpKub5hUBwkkbJ6f2FQDouWiQnuYZA8sWhm5TShkCGeVR7mNaGQOA/EqOe2oZADsmfX5Eph0A8kKGXkTGHQB4WLPiIOYdAZ6OLI1xBh0Cc4MM4iUGHQPashsLHsYdAALy3Lcm5h0CYdLQywsGHQAzShTS/yYdAYUfZn/Llh0CKqDJPQBaIQPPFLvFCGohAhjD0NkAeiEA= + NrgMGZxjYkCPTWWFSwNpQI8BR/y9MnFA - + - x7ZeRGgGTUXTjqJE3vC7Rv75QkTH+8dEM8FRRBDYTEQesBJHbNS0RIudh0Sab1lE9whoRNruCEW5BA1FN06SRZ3rBkUnVZRE5ZxJRDw+akQlsnBFbruPREDGgkQ5tdlEpQgGRUC2oEQtCQdFz1OHRFCgjETbDhRFrY1MR+vZj0Qgh0dE7G0rRhshr0WFdnZEArnHRJ3OgETO3Z5EPywSRWY/0UZWIY9EaNkDRUY/hkTTxKRFAU0CRYcqh0R/GtxFiRt/RENNm0QGP4VEsUuXRAFVj0R3v5pE5l/yRNNDWEXN4UtE5ZUVRibtS0R0XIhE0GvMRA+PXUUWs3VEWoJXRIF3o0SHtB9F55SGREjy1ERVu9BEaDQNRdUAbER/yQFHwCvHRNeC2ETZUu5EZQf+RLSvPkcxh79EkVDkRDG1WUYdYBBGioRsRCfQckQmhgJGSyNqRKQnGEbzf/pE7sOjREM0WkRVfHpEX+RRRW+kJ0VpkONEsEqSRawun0WBu3NEBaCbRGSQgkW8sBFFAJiFRHAUrERa1lREydOxRY4yCEa/x6ZE2UZ7RJY+9EStGGFE6r6CRi1noEQF50tENmZ1RDXzxUR5w3tF4IOPRFTG2ERYeZdEBMRvREMePEVCErJEt/WnRNys7UTCI61FTxppRHL0lEWdplVEhXpTROjsy0RtTJxFWjdsRG+6fkTuf0JHbP+FRX8DQkS/sZ1Ep4yGRIUFMUX2LddF7PKaRcNBa0QOfEFEz/dnRGU0bEQLerlE9U7ARFbzt0TY/MhEBCxdRCKnzURXOJZEOahzRPyCtkRlgIdEqPk2RVTsxkQCwk1EAvCPRLu0p0QV/PREaNRaRDjGzUWqVE1E4iWCROQgtETkpTREgRcpRiX61kSl3nBGQyCFRFm8skR7VGxFsZo1Raa5yESkRXhFhT9SRJbrKEWQBcBE9gSKRESrnkRFF4pE6UN2RLRDtUQbPwpF7/3mRUuct0Qf+nRENBEzRlfJBEV64K9FRnCGRACW00UQgBdFGrN7RHbKhURMIU9ETHIpRXJvk0SUK85E+AaTRGkaW0Twx21EakH0RAiCgkSpNaFEIVFBRTPYs0S8y6pFN5myROZ7kEWjQIlEwvKRRNCUikSjEARFlrPoRcku+0UKk8ZGSk7pROD6G0WomV5Fb7lWRXTEi0S144JEaZw7RZsZREZWMFJF8seRRGdLJEWfyjNFeKapRBUzjkRVHrVHMDwSR14XMEa/2jVGB62aRHTW9ESt5bZGMDmpRb+FG0YtTHpFseuSRPXpXkSyTUVFdDpvROrdmkQsm25EynAPRTF21kQ2iaNG+Vl3RsTmxkVUBwVF+39MRUjmxES8OehHBFTDRj+ByUQ9sMhG6caeReZNakbX2LBEgUwURfTSpkVulAhFEUJGRdIrtkTk2WBEyXV1RBvqrERe871ECYSXRKYsXkQJCh5G2JekRUk0rkQm64ZE1vptRMr4WUTY+2dE4XdVRLJxZ0UPspdEXSODRCf2SkQH9JJE77IwRo13vkXnH4dGupLfRDnZy0WFmzNFR5IvRZr0OEXCaLVE+0ZDRIeojUWjWVBJpJaYRfryTEUdu1RI9lymRCNcyUTpyKJGGMv8RKKFikQF0Z1EqDtdROUte0TO/odFbtXgRbmYAkVGX35E/6GtRPx2YkRgBJxE+yCfRbUqX0QHzm5EI/CxRMUAgUT/hWtEUzVGR6aY9kYYHQxFClSWReYaZkXZFYZEhjVFRaoK60VhOR9FjKWsRH9B/UQayadEzpncRxB1S0VNT91GrCu4RP82EEWDfphElU56RAgEh0StT59Ek+LRRN5d5EWjr65E7MGnRJdQj0Sn7LhEPNyjRB0M80Sv7a5EUrM6RsFWVkTsfUZF7zVfRJe9VUQnRbhEf3DwReIRL0UxkYREhge3RDazV0XwB2xEtouWRY9lGUXQP5lEGr0vRro1fUUaN5REMpbdROquvURyBk5ECmagRnpArkSPcVFGZT2uRVJ3q0TwdaNFCpLCReifz0T1hqZEBp9wRZkEr0RCkUNEBvueROfd/ES5jZtEMJCEROkV6Ech08dEv6bXRsr8MkWtQ7BGi2JIRSvX90TJG49E1NcWRcoGu0RLloNEFbWHRPilxUQnp41EcV+NRHdI7UQglohEVx+ARJQkDkW9Km1E78V6RF8O3EQsb+REQL23RTfR1ERlGkZGB0ZcRCH9OUYftTNF9T+tRVHaCUUgH8pE+uttRK0LtUeNG3VHYLbwRiGTJUaJcCxFfaUNRSGvE0VzADpFkeqFRiG3SEQT2aRFYbEeRf6DbkWY+ihFamzPRLtAsETJym1EJTGDSP0w9kdBMCVFPCE5RQQzvUTbgW9HwFKyRG6CUUZ9F6ZF0aByRG4kdkQkJK9EKHhjRAJDq0T7XJxE1iwVRtdXK0XRvKBE1igrRXL/2kQqVJhEew4mRiOKDUVtfFREFIu1RJntTESzBfBEax2/Rc4Sh0W6GJBEi8KWRVvBpESh1bVExEo2RAFf7ETEHLBFWqL9RJkEi0Uz8EFFH18qRcri90Rq35JEgnJ/RLAyIEXEDK1FPQQQRTlLjUQrRVpEYQOtRO7nv0Q6LF1EOwqnRFqmskSzthdFaeLWRBnEN0akppZFjiAvRbGIIkUln79E6uaBRO0nE0Vx96REPNjLR6qEV0c5LN5GlST9RARZ10W2agJGH8WqREVRz0TGa6NEPdvSR433ckXS7UlHY7sSRUKexkbruQBFYxIZRg2mC0ZM9qlFtPSyRMhIFEXu54ZENLhfRN8DykTYdqREq0+VRNJUnkSGNEZF/yHbRMWajkTGaGVED5TiRV/aJkWOGRhFMAKERPl5ukSvIApHmJSERgxqMEZ3T5lE+nJjRXDQeUVjgf9EozWgRKiw8kat7mdGc6ooRkg1ikRCEzxFfL+fRLHSh0WIHYlFFAeeRApq3UT4SqNEkDHJRTc7nUVMmSFFd/InRh8+20V2gjhFzW+ERNNA2USA5PdFXvpuRdk4Q0VtbnlEnOhXRBPLvkWHZQtFX+XoRA== + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - A4y2/HjAckCCCpLNDcFyQNBBcvNuwXJAGiDxWVLCckDBlFotp8JyQEpZ2ZvkwnJASOLY4TvDckDJFI12psRyQFai+InExHJAFfG6AFrFckAa5/oGEtFyQD1mH9dD0nJAx/bzu0nTckDIEG6Pd9NyQAwoHEPP03JAGWhWfWHUckDsy/j60N9yQOlfHTC54HJAYWsPW07hckAqzLjbUOJyQMhokMqP4nJAA+66ecrxckCSH4479fFyQM3olaO283JA0KbGzw70ckDtJhMEo/RyQOh3yCXC/3JA6Qd6iGQAc0CzXesl+gBzQEVKLQNMAXNAHk/bwYwBc0DM1JV4zwJzQHCQ+iz7A3NAgepILwkSc0AcZ9ZmcxJzQF7jfTS9EnNA/7kQDvsTc0BcNYMSThRzQFJRX4/zF3NAko7ihnofc0Df8XABpCBzQH2roVI5IXNA4DDddGYhc0ASjUOC5CFzQEZwp/HHInNAFQvvvg8jc0ClDFMdBiRzQPDz+xY6JHNAK+63h84kc0CSsIPTSDFzQFrvnIIlMnNAfFTxcs8yc0DjdF67ojNzQBmLsWc3NHNA+xhXodA0c0Cza5NDuj9zQEA8nIjjQHNAYp+XIXlBc0BNf2JvekRzQKJnILCeUXNAyCHC40JTc0A2zov1o1NzQGq8HAjlU3NAKlfmmoNUc0DCbQMsOmNzQOCWSnJVcnNA2pSv4rhyc0B8LeiNuHRzQKPqEv9LdXNAkizjfnmAc0AJdG1PpYBzQMKuw+YNgXNADxnKEGCCc0AaGREAEYRzQEZOW3+HkHNAFCjEc02Sc0CuENC/z5NzQJxsWG1ilHNAHLrjjveUc0BRG0AhuaBzQCJopn9OoXNAagBfO1uic0AY04ZqkKJzQPcAGmXmonNAA6GSsgWlc0BwZsgMfrFzQEyA2Jx6snNA7OduHfWyc0AfS/lUEbNzQJAlCwi4s3NAkkx03Q20c0CQYr+n+MBzQBV7d5LQwnNARtfruybDc0BlEniCksNzQAZpqGM/y3NAdL8hTdjRc0CqXeuFMtNzQM8xvob403NAtgONh+LUc0C+ZYfxO+BzQBpGGHSi4HNA0w61mTjhc0BQ/vGjZOFzQMBmJUXo4XNAZDIxSnfic0CKnSJTQ+NzQHWSfdPu5HNAK7YEFDj0c0DfFqtY5gB0QJwhE3J5AXRAgnDVsKUBdED+FEh5CBF0QPqoov3zEXRAEDt8Sk0TdEDaCTlE4RN0QJXk3wZ3FHRA7JsJXEsgdEAZIoG3uiF0QFCzpAPVMnRAAnHV2lRAdEBuHgjA+VR0QOPORgaMVXRAUFHqKblgdEAw9+PiCGJ0QFrEAjAQZHRAqGEYtk5kdEAy1wFIInB0QBKOGDJjcHRA6GC3gEFxdEDI13uAOnN0QLSeYvGhdHRARq4ISTh1dEAe3A4g+YB0QDZsoU5OgXRAOSGXobyPdEBEV1gaF5B0QC66xttqkHRA6B3L19CgdECIybLNOKF0QKquRr98onRAQKv4aLuidEAeTWqV0aJ0QOZpjI0So3RA4s8iegiwdECuMbJa/bJ0QL5h1h/kwHRAjqWNwPvAdEDoFjgreMF0QMySnNTqwXRA3jcy/h/DdEDWrSCtesR0QJ6PSjW5xHRARmWaffzOdEChg9OD99J0QGTl5Sji03RAANWstnfUdECULpJtz9R0QDLEJzT433RA4xdfwCXhdEB8WH9luuF0QF+lAaQc4nRAOEPdlI3zdECpJRX6pAB1QDvOkdTNAHVATG0qL2QBdUDESl5wXQJ1QHDlWg+mAnVAuL0LSpsDdUDIBKM8Swt1QDiondFpEnVAsCHC+1ITdUAqPPhgJRR1QDxyqK2dInVAnFc0xOcidUC0KvMOzTV1QOY/H2+UQnVALHo81ApQdUBXGVmpglF1QBRKqzJLVHVAqGp+F3hVdUASI6K+OWF1QCjFjRtmY3VAjGhBqNdvdUCuo8BCeHJ1QOnChpmNdHVA6J4GpHmBdUCwkvcsroF1QGs1CCWmg3VANqmOjpuEdUCM6j/lu5F1QGguz1K0k3VAbT4ZWWKVdUDmeV1FPZh1QICPtDGToHVAuNg+rLihdUBwgwz1/7J1QFXfw6XOwHVADmU2W2TBdUBc23Mh+MF1QNDX6P/M03VALMUJeuXfdUB7r/siDuF1QGRpW1UJ4nVArU6SATnldUB3HQqJaPN1QF/G192B83VAl/Un1on7dUBiyrObSAJ2QHiLHnXRA3ZANBkuhU0UdkCxvSAPDRZ2QI+R//KHInZAJrTZJ5EkdkBWuuF1Syt2QAapNd4fMXZACuqEkFIzdkBC49pJmDN2QNJZI7acNHZAY/+unh1BdkAfPUGsyEJ2QJ94QwB7RHZAMgnh+vtOdkAHJq8dy1B2QA6s8G8TUXZA9LsEx81UdkDkH7/FzGJ2QAS+lx9VY3ZAGsBkJLpjdkCbeUGj2WR2QCivrqQmaHZAsCqylcBrdkA6gFDeZoJ2QAS//c/qgnZArqvc15GDdkAwLBr/9pJ2QBEOSNCek3ZAebc9i/6adkAPBj/RoqF2QHSZDPMEo3ZAzb23BrewdkCAs658wbJ2QIw8B8h5s3ZAzMt+QA20dkAOHBbX0rh2QFxhuK8uvnZAGFzIPs7OdkCkNHSW9OF2QGY809aR83ZAGFTXCjMCd0CUi7JuUA13QCwvUycBEndALCZ5TKoSd0Bi4Ic8Bxh3QIRy0hUPIndAvu1/oHIid0DEUoeBsSJ3QBgu5hwNNXdAAOgq5s1Ad0D+aMk5nUF3QOmxysCvQXdA6SORB+hCd0AyzckfG0V3QKaer6lKUXdA3iqCo5JRd0Bi2jYZKVV3QCkZZe6PYXdAUOypHDxjd0DZ/eRZ0WN3QKSkBEwnb3dAh0qJb4Jxd0Avse9KSXN3QMdpxK16gndA/cPca3uDd0AmAvbsCpJ3QMBcAwNNlHdAynI3Bmidd0CjUI11wqJ3QPLrm/0gqHdAzcFhqZ20d0BM0MXD7OB3QBFfei8l43dAWO4FE1Hyd0DhlR+vdPN3QIrEbVBuInhA4pYvfogjeEBEvAHXoyR4QCm59w8KQnhAeCuHkxJEeEAcJsiDekV4QFj4xlDLUXhAlOkyVJVSeEAYcPgMiFV4QDI8lAHwV3hAPN4Y6kxdeEBVd1uq+mB4QKBCuIC3YXhA1qZKYiFieED9iSDWtmJ4QFY0S+PeYnhA3MpyCrlxeEAIqKdIVXJ4QFSwEulRdHhACp6Kpot0eEC79kYKvnR4QClZ7CLQdHhAQsmA9yN1eEDmb0FQpYF4QPs7j8SZhHhA87ItIZmReEAape1uqJR4QKRopZyzoXhAQlGOX6qkeEAqqN+szcB4QMyKo/X0wXhAK3jfNbjUeED9cLCvDuF4QNI2QrUC9HhAEId2ZYz1eEBI9Zot3gJ5QOy3jBWcBXlAiz2YD+03eUAsaEPyjkJ5QKAf4436QnlALbOiJPxDeUCbYuxk4VB5QK6QhgA2VHlAoPwT+sxUeUAaDjBU6WB5QEPzyp/aZHlA0N7u50RzeUCaJM9hcY15QC5W8r3KknlA/Zc83hCYeUCPaQBNKZh5QKD01w1xnXlA21kKDsiieUCqWdoEwbJ5QPINGcJC1HlAI4F3IM7VeUDO+S4PweJ5QL//Yi5Q5HlAEkZrSvoFekCbVRKFDDV6QBs7IHbnQ3pA3vptoRpFekCMQ7hv0Et6QA544kD3U3pA9TTxfSlVekCA/2B9N2J6QBVsikaOcnpAjglclaKUekCcCk347a16QH8DLWoNtnpA1LhjLDu8ekAGXeBcLsN6QDSoniEcxnpAmBWfbTvPekCl8OhS1tN6QEL0laFD13pAUB9OXTbuekAE8NVaKw57QGCiqdpMFXtA55jjU1sle0AqdNsNTyt7QBnyy4RTMHtAWus0qJhIe0DW40sd8017QNA/hgxLU3tApiaFQiOVe0AoGbi8O557QAiDsFSVo3tA/Do6/WG7e0AupfwXacN7QO406qB5xntAiKmM/CbSe0B8aivNuON7QLvd6F7+43tAqAN5TIz1e0CG0/Qr+fh7QOz82BTaAXxAqy6uv/YBfEA6zd0LmgV8QFfms9eJEXxAYOCUDtERfEDWbtIlFzN8QH5NGpHNQXxAeHQfW9pRfEAqhZVnDWJ8QHCppRctcXxAzBgVW1iZfECC52Sdtp58QCzRvwvCsnxAeoQ+NcvVfEA0dZ/zV+J8QAnL4boa8nxArnMKbFTyfEC238XJQPR8QCRTxo0CAn1A5iTe80sCfUAkqcnXQxJ9QBr9m0g+In1A7phuaKMxfUDS3HHxaFF9QGSA2HcajH1AdrBDDVmUfUD4wp0gP9N9QCg1JusG7n1A7q22jlf0fUC19XEgkfV9QNIU5zKGAn5Ase4UWjkffkA+BEF/Pi9+QFCtXCaNVX5A5NNUa8dXfkA2e+uzRmx+QCB3ejlabH5AoSfzgthvfkC2iVMKRXV+QJ6zmhXCm35AImoNCHuifkAf3hJoUsJ+QJEddE7N335AuHSFksf6fkDJ2PPZ1/9+QHhig9QfAH9ANc55sLdxf0B47PkLsoF/QEDxHiCmg39ACsLyI2ORf0BoiC8Fq5F/QE5cikKak39AyJ863JGbf0Dyur5iX6F/QDxjhue+oX9AUDqb5Jqjf0CQO7O4V7F/QOw3dfZRwX9A/P332+HDf0Dkyv6dwtJ/QDCS/Jb0839AED+P2IMRgED8ScWHMBSAQKyXsVPaFoBAKnZQ6IMZgEBw+rOTMRyAQDbfJMbdHoBAYT2tx00mgEA6cL2GUSqAQKJVaavrN4BAKu+XEPo4gEAp6VHkKzyAQEuRiEz+QIBA15gWtO9IgECuD9JD51CAQDWlAaQUUYBAYH5qgedYgED6XpZCDlmAQPY49P01WYBA4i4wbCpvgECBNHZMBXGAQDDOLsMIdYBA0zgXziZ3gECQvjxBHo+AQKJlLs9tkYBASqMXmBiUgEBe6bfTdJmAQNekY22HqYBAvoIUygWqgECe/KKlH8CAQARSmIdSwYBASDjlm1PJgEDqXWjGp8yAQBpbFeoHz4BA+jNcP1TPgEBhrR15TNGAQIKFsqJh0YBAUkC44gHSgECc+rPcG9iAQPJmecBJ2YBALmgmbUThgEA6n+wBaOSAQJ/2pkz36IBAZw7Ft0DpgEAUzoY2S++AQO+U3bds8YBAvskVfbz8gEDaW6vuP/+AQKtBqEmSAoFAUD1LVZUGgUCVV749QAeBQOB6mBA9D4FAHj8UGvIbgUA+rjgUNR+BQL4726TsIYFAZtKS2zUngUCg8XSq5SyBQHfLFTK9MYFA7tMVXCk/gUAm0rNL9EWBQA7/0tD3SYFA82PKkv1NgUAw0RQXK12BQHCBYDYwYYFARGJolgOKgUDSSaKPoo2BQHS9MhhVj4FAZTHphVmXgUBILI6cCqGBQLr04oHooYFAZR4V1A2lgUCktgBlbaiBQK7msuIBqYFA5KPDKQitgUCak6GKSq+BQMKSVCAGsoFAkhq/Rwm2gUAZyKduS7eBQC7fO2UqzIFAIr05DH7TgUB0o8UPFNmBQKRAv+jP3IFAm32d04fxgUDsq739gPmBQB1sfwQADoJAIMMrAQQSgkBbQFxy2BiCQH4MUu/WIIJACMDXo9EogkCS8cvhoimCQLml2FWlLYJATva/2KMwgkAW0/5f6DmCQOhjedjrPYJAgthzaEOJgkBvf3X3Q5GCQA+egYk8mYJAVFi7Jg+hgkAGPkXIOqGCQBKIVQwPqYJAiuibHjWpgkB4xKservmCQEP2V2E7DINAnvNgp3kRg0BX6pSbyBWDQFKDzmR6GYNARHYwM8sZg0ACpiQbcyGDQOV5VLyLIYNAbqVGng0mg0BKPtwCcymDQCJFjkERKoNAgJ62ABkug0DDlYFJaDGDQNBFyyl9MYNAGIFCf5Uxg0A0FDol8jaDQJjiXzBqRoNAQhHc9OmZg0BCWPyM7J2DQM8tAkGV+INA4tq7oP9ohEDf1sRAAHGEQEpti8b4eIRADmjb1M2AhEAobaPk26mEQMKS2W5q2YRAyL3HUWrhhECrU50yYumEQNKDbE986YRA3rnu+DXxhEAUm6gHY/GEQFwoaBQ0+YRAc+ZUzlv5hEDyn9A8MAGFQAT3M7SgYYVAyjNoWqBphUArp+8TmXGFQCol70CaeYVAlmWypuF9hUDX6E6LkoGFQMzVQULfjYVAvhvHo+GRhUAc3A4F5ZWFQGLfDn3fmYVAISIRpqqlhUAwFajX5vmFQMAzXTLo/YVAMCAwEecBhkAX9eSW6IqGQLaRgO7tkoZA8I+Sdye5hkAwTtEpldKGQDh1kJOY1oZARSRiwJzahkDGLSS4m96GQKZjti2RKYdAzpsV75Axh0CeiduXhzmHQHyHi+uJQYdAGpXSzX9Jh0BbAMBOx7GHQGqIjOvIuYdAeg5CssLBh0BaP9SowMmHQMKPaeA/FohAFx2nTEMaiECSrXdSRR6IQG3aPVboYYhAmnlh+CqIiEBEB/PetvSIQA== + NrgMGZxjYkD1hHOUyKJnQHzKEHuiRG1AeiAWnrzickCZcdKIFPN0QNB0GqNUU3dA78XWjaxjeUDQ0vb2rGR+QH0dI62EdH9AX0j7qY3KgkC1bRGFeVKDQCZ0obn50oVAtZz/riXbhkBRniO8RQuIQODGgbFxE4lAfqTIYaczi0Dg9W/bHZyMQA+pSfro641ADfwUgX/Ej0A= - + - zBlqRIxYeETfVEZFZMqYRO9tckQqOVVEuVifRhfDR0TJ6KFEDjz2RHrJVUQ5sRRHZVUNRWADxkTteYpE96J9RDnDvETtgg1FeWlwRHV2lkWtxhxFvupeReR6kkR2nqVEpyBpRMxXsESCrc9EjrHeRPan40S2qWpEPtiGRMqDEkWMOCBHGoG9REpTN0SL9whGHH+URShwi0TZpsFEEc24RM035kSM0OBG+lucRJfzckQmNZlEhgfQRD+kQETeHJdEfDZ+RdlX7kT1llFEcIa8RbFBfURwcrZE3QV9RJVsdkRGQwFFjo2gRaWBAEZ/CnREjvfoRGcllUVmCDdEO1ilRP6HLEUzEY1EOkOMRIFymUReJkxFo+DqRkvo30QckwdFLqCoRPQ3mERTUBlFZAhMR+Y6fESKZaREPq9fRg5o6UXj1WJEAmvURTmvm0SB5yJG0NgfRTtUfERu2ohEvHh9RMz6aEQCIVNFSlUyRVkFw0TJIZVFFEagRc1qBUXxJyZFI8MYRX5XIkSeXatEYjCcRadoPEThQY5E6y8JRp2CWkTqNlpEwBphRPGiZURpI21EbmFaRZfNokRsA5RGQIy+ROCLeUTULk1Ex5yLRWSBe0TGy5pEon60RD+c0USgIHREfx90RPlyUUS3079ExXWRRUSLWkUnylREzaDSRFc+pEVccIBEBl48RyzNiUWb3ZJE9USJRKlGKEUtm+JFp7c4RNgZrkUydYlEpEroRKUvaEQk7zdEim2URJ5Fv0RbomlE5jCcRFrtdUTgSYdEuJFQRGU4CkVM7FREA6oyRP0NsERS/eVEUZ7ERKwuUUSt3KhE7m2UROjr8UR6R2pE6HRvRFTB1EQcyq1Eue60RVmKj0RakGhE0uMLRcICQkY9qz9EQEyVRClw+0WpJatEwmcxRR3KDEUn5FdFgkg/RP/vKEXp7nBEmVJ7REd4ekQ/OKBEPp4TRSlcNEUaO59FLxdDRB8WG0XsWwxGm+cTRZgHzkWTX/ZFy5/ERF3SaUTO6YRE3oqGRIIVEkXxmrVEaWjdRMhYhkQrTFxEC4SjRHR7AkV2obJENl22RFrbtESkXilFhr9ERDzwUUTDiLhF5tg/RSesjkVxDvZEje7FRH/XgUT7cABFF978RUIAJUaXftRGph1ERc3mW0RIeGBEFy6JRY3zQESTUWBFE1FzRG78kETImylFAFUsRk45gUVOTWpE8qIKRZ2tvUQ6T5JEU9lbRDmJOUScs2REL1KrR476rkf7NyFGNWzVRnwPeEQEpVJF6gO+RM9xBkWubbNGfjOWRf5pE0a1y6hE1oM0RUCHh0TAVudEZu8nRfYY0UYPU35GW4/+RQesCEVl7ERFRYOYRMv2LESum9JHL5pgRBhV2kbDRdBFEWH9RORfxkZkL8lFbmx4Ri7mwkQl4khFLg7ZRXi9a0VoeV9FLwZbRKREZETer69EUAqXRHJQg0R+QMdE1okhRk5qN0Umo3tE0CeJRIt8hUTLRkJE3QnmRAOdWkQtUHxF3jOZRMpUckRdM2ZEzqO/RBblMkbP975F1OR4RnnH/kSRprVFmX5wRHSsukQZHjlFKUhoRPpGKURu7OxE85aERLcvZURngjJFNGw9SVpVEEWj6hZFgYm2RG1t0ETlNEFIwbIDRYqeh0Z2+01E+jLnRN6M7kTv/J9EZFNnRf3qXUS0835FSz3dRSk0+0S9oJxEI4CARMgVXETEvYtEbIefRJi2YkT6vklEdW6RRWK7j0QD7nlE1UPfRGXOTUcXxvpG4jyMRVGFYkW2gWdFq6eKRGgCgkWrye5Fd+TgRMzRkETOfelE5gXORBL3v0cT/N1F9qzHRibAukR5TYBEq0EORbS7QUTyGatEoudLRKKGkkTQ3KdFF2DlRIWpR0QXr4tE81OyREuGXkTikZZEYWD5RLRzskT5cy5Gz5ppRYWid0Ru1WREp+EKRltu2kUfaaBEP5VKRe2XZ0VapBRFfbjmRcp3IEWW9ZBED+SSREu+U0SSN5dErDKaRoefmURcLWVGFrxgRbQ5dkXhdZhE/mjSRTE1W0RIIcFFxoGMRLb2wkTUVptE7peMRG3iQkSPuwBFr3d5RLAK3EcMGaZEq2zBRp2ieERC+CBFT5e5RsbjIUXe1u1ElB+IRK5GRURI4ZFETDq7RAm+a0SoEsVEdGZnRBUc80TPT0lE+j5/RMjnV0QF5ttEP41dRLkpZUTOpGZEvi2ARKp3jkTw7GtEH3l5RPWscUR2Z3ZExEocRZGEX0SsObtE9ymPRYytcUQhz1NEE387Rv1DzETNRIpEBxceRjRSRkVEQ3BE7WuARZHbIkUcKFBEmvhtRLeUlkRF2YJFT5ajR13VhUdQQflGTe07Rva0NkW4uExEXp1QRQWulkSgwWxEkBqlRAA120SU5TpEwE39RC9dZEW6+YtGJUSDRCg6xUXnoLlE3c4LRUfrjEUGAoFEWxVTROVMm0XC2NpELiLVRFqkZkRNNKVEbUr6RKn4WUQu2WlIwInlR0mHj0W8uz9E524cRZjkZUfLfkNFlHKMRN37o0RqhDZGnW5SRRz2TETYoqJEv+p/RMnlakQXX0NEEouGRE2nEkaBIyZFTCFMRE+rQEXClABFlHh0RBckEEbrFGpE3mPsRMpCUEQ0AMtEYiWJRFLpykUTuYNFjVaORCk2nkUeOehE+ndQRPivcUSz1LFFxvCcRCmQ7EXtKDdFeqcsRQ0aDUWF4t5EMlV+RNnbIEUvHY1FY3dFRXrzRERqpqxE4gl1RH0ZjkT/Wz5E8o5YRKmfbkRWBtVFV7IpReCmUEY+N6xFgghiRdtXK0Wa7YNE75/ORGiifUWvptpEJGvjR6ayT0dNSvZGteeHRXAD7EX41BVF/nJRRbJ8wURKz9BE1vzWRx10MUVy/UpHO0QPRd9630ZGGupEorItRrlQ6UXcXIxF7ZmbRLhLvkS/erpEGtWSRJFeNkRuBaxEXUg0RVwqnEQ752VEjR0ARqM5QkUmvQNFqAF6RHnSbkQOBxhHST2MRmHgLkYW6wJFakCNRUfEnEUMf61EjI67RIfkh0S/SvdGF/qARiGqEkZII1VF662vROQfckRQvbpFIKt2RaRnh0RZxVdEXi6ERAaJcUVq4KdE3oSPRKlKK0VJnpFEC8O9RInEXEX29J5FHrogRcAvgUQu/jRGOK2sRWNVcEXkFyVFb/tHRJgKCkZf2LlF63N1RbvDnUQh4ZZFJRghRX9tkkTgVWNEZitnRKN5aUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - DrQ2ynfAckC1rxCbbsFyQM6wH6NPwnJAcEAOj6fCckDdNW4pPMNyQIK/4fR6w3JAKBNZpMTEckDoUuSNWsVyQNIiWK5D0nJA1e+96EbTckBje94LdtNyQELjW2hl1HJAnSEl4s7fckC+u3WUu+ByQGiVHKdP4nJA+8bj0o7ickCUhdjtUPFyQOihGf7K8XJAX/+3F/bxckBa5w22t/NyQKasPrBL9HJAUl9uwKL0ckCF+Wy/wf9yQNhN0RVkAHNA+OZ9AfgAc0DeR4hKTQFzQKTIMceMAXNA0IReVjoCc0A+bmOi0AJzQGYuL9z6A3NAQkmJ6I4Ec0D7ITD9CRJzQGx0jV+9EnNA4fTTkQYUc0Code8d9RdzQIRoOkpSHXNAkc1/xXkfc0DA70HvoiBzQEQplYQ5IXNAgFmJ8GUhc0Asb54lyiJzQMNl7IASI3NAGtdVFQUkc0C2Glc1OSRzQBsP7oPOJHNAYA6cNDcxc0AFBv1kSjFzQL1LFOTOMnNAOW4E9QUzc0Co0igmODRzQHbLLFThQHNAzQMXQ3hBc0A/7OT3vUJzQPBZL7x6RHNAfNEQu5xRc0B66GmEQlNzQBh2Md2jU3NA0OQAxodUc0DOdlndjGBzQPnW7v45Y3NARO+/i1Fyc0Btet0XkXJzQEHjzFq4dHNAzguEIkt1c0CIH0kgeYBzQMIPFIalgHNAN5X42wyBc0BWeY1vXIJzQEgSIryFkHNAFkdbf02Sc0BkGTp2zZNzQMC9ZOdglHNA5cWh7PeUc0DgidKtuKBzQNZ+VBBaonNAgwzcUo+ic0C2be645qJzQGou7zQEpXNAvjRYw9Owc0BOu0dVuLNzQApHbgwPtHNA2Jr6VfjAc0CC0kzFz8JzQGLVnBgmw3NAgKzFNWLDc0AQImyCk8NzQD0wDyU/y3NAQHBgBNnRc0Da9DT8A9JzQOWXzBP203NAhNhxmeLUc0D0mtQfOeFzQFbZf6l94nNAamGJrvnyc0DI/rfnNvRzQBCxyVfgAHRAaH5aRHkBdEBCqMbMpQF0QJJF4KK6AnRAns1QmggRdEAZlBeChxF0QIXhQQBOE3RAtoOtpOQTdEBlCw9MSiB0QKbe8He5IXRAqBchDFYwdEBkUBMoU0B0QBodDMZ6Q3RAwBLv6n5PdECgOpIQ91R0QETbMViNVXRA+eG7NbhgdEBglYUeCmJ0QFOazFVRYnRAqGkouk9kdEBMjFqSInB0QPhhBWtBcXRAlG8x4zlzdED6o1pGN3V0QDZwXnH4gHRA8VYyZk6BdEDWvPI2k4J0QATKDVYWkHRAhxlkIGuQdED4CmvO0KB0QB4GrJs2oXRAp2r1FLqidEAUne4wEKN0QPq0imsLsHRAJFBKGMOwdEA+o/3M/LJ0QLQ51LnjwHRAelmh93nBdEDA7itf68F0QLCk7voPw3RAbgsjlLjEdEBWoDgc+850QHKAk1pA03RASA54kcvUdEAXv5uj9t90QPgf+pq44HRA4ET6lyPhdEAGCuNAueF0QHkeaTPN4nRAvLx6t1HldEBI3RtljfN0QIaZgPKkAHVAXuNJHGQBdUCwN5+JXQJ1QF/uwmtLC3VATMVevW4SdUCCh/WRUhN1QEBxIikkFHVAKYGlcpwidUAClT1N6iJ1QGbqbOatMnVA5DGKf801dUDD8/IDs0F1QHjfLaORQnVADl7UdX9RdUBiAE54d1V1QHim37sPYHVAnEMC0ThhdUC+uj5GZmN1QCdUKMB3cnVAeoeV9Y10dUBe3Z/TeIF1QO3zILGtgXVALAWumqaDdUDAGLqxmoR1QDbOocaJkHVAdiik422SdUBa6QCKPZN1QP06g8IkoXVA/Y+vuLmhdUBozHKFAbN1QDdUj882s3VAGmvBvHyzdUCPqRx8CLt1QOhtTQXNwHVAp4Ert2PBdUDEBu0s+cF1QKbH+8XgwnVAhueqj83TdUAa3Z/eB+J1QDSwzAqB83VAotdmmIj7dUDd4NceSQJ2QM8eXjHWAnZAiuqqm9EDdkDJgrk4DBZ2QPBFRAaIInZAjDlRBpEkdkAqwg2XSyt2QLVlodMfMXZAWoYKGFQzdkC1QrsInjR2QJBN1bEdQXZAnmcUqXhEdkB0RtTDylB2QFoXFPMRUXZAEDxXI2lTdkDv42S+iFR2QOxmFHPNVHZArQkHSiBhdkAiMUg4zGJ2QHWwz41RY3ZAnRST57ljdkAQndWG22R2QPQ37+claHZAGAZOqWaCdkAMYbzbkYN2QITN/OD2knZAMUZ9aJ6TdkCbnET0/Zp2QOFLtvADo3ZAMpkhokCrdkDoycXCt7B2QN4XlTzBsnZAZNmTL3mzdkDvfWBFDbR2QNfITY2wtHZAOU+EqNK4dkCQrhOjLb52QFwGrnnjwXZAW6/+HM/OdkCPpDK31tJ2QDyC3njy4XZA+13+0h/xdkCaimadkPN2QJZ4r5o1AndAS4+POFENd0DKBKZYARJ3QFH3IAurEndAUxVD/fAXd0D2P2JrBxh3QEQS7YcPIndAigd/oHMid0AxXcREDTV3QFsCwSydQXdAXRcEPedCd0DsuaseG0V3QMgVzFVLUXdARhjs4pJRd0D+e8myK1V3QMNFGSuQYXdAGOi/UTxjd0DGQx7Q0WN3QDwE8RYnb3dA3jyMqJJ0d0Don7xPJn93QF15RLZ4gndA+B3Z8QaSd0BCcdlgTJR3QCBa9bRnnXdA9zl1UMKid0CMSOf3GKh3QEAHIS0Js3dA5sPxTuvgd0AKOVcCdvN3QPBEZHlMFXhA9s8wN20ieEBcVzfSiyN4QFzPGrQLQnhAzC9BbRJEeECGiRVtekV4QHwtCMDLUXhAIpxtUJVSeEAyj4Xxh1V4QDRDYSnvV3hAYlF2UkpdeEDyuoeF+mB4QOBcOSy3YXhAoH5IvbhieEAH4j/u4GJ4QG2e9ws4dHhAeu7rF2h0eEBosFDDi3R4QB4zL1bkdHhA9vLhkKaBeEBCDKzBmYR4QIoHwdZSj3hAz8KMy5eReEAA+lRlp5R4QPJTHCLOwHhA4p0o1PXBeEDUfWUyB8V4QIaLLe+31HhA4ICBcAH0eECwE9cGjfV4QD9/veHeAnlAmpGrbA8EeUBWoO1qmQV5QNyvdNjnCnlAocgsE9gSeUD2Iucr8Dd5QJ9K25uMQnlAvX3TQflCeUBGpBpu/EN5QAxCvUTMVHlAUvqL2ldbeUAmJSCu2WR5QJcsyvBGc3lASZ86jnGNeUBxztIZy5J5QFCfUdcNmHlA3CoKwSWYeUDKHYF/ap15QMRoITbBsnlAeI2Nb0PUeUBwyLUUy9V5QPC1cJy+4nlA2BTQwk3keUA0kYe9mfB5QHYYsw/6BXpAHJi1Zgw1ekDW1oIa50N6QIso1NYaRXpAZmBzg/JTekD0NOk/KFV6QDiMidGMcnpAhDWWnQy2ekAWOT9fOLx6QJzxH7Qtw3pAFPLMxBrGekBXp3Tf0tp6QFDYLSh65HpA7KewPzfuekCcQOVSKg57QJ9y2LhMFXtAIgmFeFsle0ACKDMsUjB7QKhHitdNM3tAr5w6QMUze0DCAIEXmUh7QCKfXvLyTXtAhjZ/2U5Te0CKbr4VI5V7QIs5ITg7nntA8JYNOZeje0DirbI1Yrt7QPnsT2tmw3tAr0FInHnGe0BIKkMqndF7QK/rqZ+/0XtAxvXug4z1e0C2E0A3kgF8QAHErTjaAXxAYlC+ZfgBfEBonxj1mQV8QBoaw5qIEXxAa5U8C9MRfECZDpzezUF8QLjgXi3aUXxADYC2rwxifEA4nK2QB3N8QNxgd6oBgnxAjTa5g92bfECMrtETwLJ8QE0UFwoRtnxAwH2fgsrVfED+G1r7V+J8QEwolOgX8nxAXxSRk1XyfECBlnuaAgJ9QKCvuKRLAn1APL6iskMSfUCCYP7bYhJ9QF8xvkhBIn1AUOoofaExfUAam7jiqGF9QOGMzONWlH1ACEKBHdejfUDRQPT2L6l9QNhCA9rY4n1AQqN4cY/1fUAyKnVhQS9+QKS2GgKXan5AMi9p3ZOKfkDvx41+Xox+QCK6ltwMjn5A/rGVBN+QfkCeZj0ll7J+QFpGFRJVwn5AmNPfv8X6fkB3NuS0HwB/QBYc7Kq3cX9AzkbE5K+Bf0D5/3KOpYN/QAVCmHVjkX9ArAk6LquRf0BLIbKikZt/QOAU9TpfoX9AbFYkUZajf0CUgVnIU7F/QOQ6ttzD0n9A/rmwb/Tzf0BLDZTMgxGAQLTWDlYwFIBANobUPtoWgEChLrkPhhmAQJghC2MvHIBAeFLsm00mgEC2nYpOUSqAQInOQ84pPIBA3DwznIA8gEDS+dpS2D6AQBZD0ML2SIBANlTfs+ZQgEAjDBdUFFGAQJKMmCjkWIBAND550w5ZgEB2wr1cIFmAQN67cAU2WYBA6ay8kwxhgECNi58tKW+AQA/z++cEcYBAG3L87Ah1gECyIFRfHo+AQKsEckZskYBAazZ//BuUgEDw6lpUHpeAQIvuUs+HqYBAMNEa3geqgEA1qjbdv7yAQMhP/XZSwYBAse7ZtRDGgEBYdv+lU8mAQOLTc/mozIBAjopkb1jPgED1mZ01LNGAQFDHE/FM0YBALpWuYWDRgECkbzuC/tGAQHi5BoUb2IBARphp4ErZgECWkMOCROGAQErF9ydY4YBANrrO+vbogEASq5Q9Su+AQGhB4Q4+84BAmY9JBED/gEBSJA13kgKBQLwhRYKVBoFAHLB9CD8HgUApat0t6QyBQOL5xuI7D4FAkoZ2l/QZgUC5fjXsNB+BQGRZmkQ2J4FAKMgJ1/IsgUAynb3ovDGBQBuEjRL0RYFAfEguWPdJgUA8ErknK12BQJwUJ70tYYFATaRhogOKgUDKmyHeB46BQOfwiRZWj4FATD12plSXgUBMNmYCUp+BQPxEIKcKoYFAFZIDWOehgUDcg9wMDqWBQPrHcURsqIFAVPF43wOpgUBAShjV7KmBQO5jRX9Kr4FAW68EsgWygUAqbofUCLaBQBiC0PgpzIFATVf2YX7RgUDumlBMf9OBQJYbxQYR2YFA+F6SK4fxgUBM4NSBtPKBQPLkuH0k9IFAVXOQQ9D2gUBMyDbnAwmCQPJn2xcADoJAks0NogMSgkCsveFs2BiCQKbfRRTWIIJAtW+AHdEogkBmGclboimCQFIABHykLYJA3rY3A6UwgkCRVfQS5zmCQK+1d0/qPYJA7kFNM+VFgkCREotPQ4mCQFxchPxDkYJAnieEdDyZgkAwSltYVZmCQLETPIwOoYJAtJfljjqhgkBC8JHBDKmCQF6bvwY0qYJApnrSfwaxgkC7r887r/mCQFaSWGA5DINAT0g/HekOg0CxvrqteRGDQFhTi6PIFYNAboeKWXoZg0DpvFYLyhmDQOWk1U9zIYNA/iNpNA0mg0DFHPz3cCmDQM5kOLkQKoNAc/pMARUug0CkV7CoaTGDQAciNpWTMYNAtFMTjkQ0g0AQNBnTZzmDQHw64MJKg4NASsg0DumZg0Ajmc01lPiDQIz8xPX+aIRAHDrvvv9whEBpVAK+bXaEQLB2Dxb4eIRA/0XJn8yAhEAEJvV9yaWEQOolZEVq2YRAFIkFW2rhhECYXXKUYumEQFrKhjo28YRAhuBrpGLxhEC0j6VnNfmEQLH+PcRZ+YRAmup9Xy8BhUDwi8+QoGGFQJybFHagaYVAiKC/S5lxhUDC0j8es3OFQHRt4EKceYVAdObNrt99hUCaNSse342FQO+mQdnikYVAX9G7+OWVhUACAOrq5vmFQKHuU8Xq/YVASvG6ZOYBhkDZebsV6IqGQG2aSr/ukoZAiFiy5ye5hkAIszoKltKGQPJDm7iX1oZAdotyz5jahkBmYfECkSmHQLquCUaRMYdAW+K3Yoo5h0C43e6ZXEGHQIxrLa6JQYdAadx5IMixh0AkWrkWx7mHQM5y9Ce/wYdAPDS19L7Jh0CDpU5UuNGHQMllk8Y/FohAtvesmkIaiEAePawXRR6IQA== + KBZXds7jZUBImCMySWRuQDeULWxqYnBAsiNeuPxCdUD6mss/EJN4QLKBOgxVVHxAHKTNcJMDfkCgbMOVljKBQJ/W51ALuoFAMXFELtjqg0DM3Iz2bOKEQPic6j1E84ZAw7sMJaR6iEAjx2xAkCuJQFTAjb3lMotAhvQ2XRzEjUC47VfacUuOQL9p28UprpBAWOZrhNTxkEDY/WKZKraSQHGAQNRv+pJAWBVaroB6lEAjl6XitYaUQNgsUcPWPpZAo66c9wtLlkCKQ7bRHMuXQCPGkwxiD5hAo92KIbjTmUA8WhvgYheaQB/NyrjTn5tAuElbd37jm0DR4y/HGSydQGpgwIXEL55AGmZwkzqInkB/dQGH6kufQMsqWBUrKqBAskVqRxBooEBWbMF+Q/SgQNaGiq0gFqFAeq3h5FOioUDIEXSxO9ihQJ7uAUtkUKJAiJ3vu2a6okB2r3UFeVajQHoo2b+BfKNAmvCVa4kEpEA6tFTKrF6kQA== - + - hi+JRFITj0UO769ENnNQRCRnlUbeIUlER5qFRDf5h0RxvAVHzD2oRIIkbEQlxItEt+y+RCXW50RxwWtFLw68RLJ5lkR83YJFjReIRPHIhkQT/oFEtu3MRFEs2kSXnI9EjmEIRc+FPERX0HxEvpBORKt1D0WOvyVHM9CARBblg0QKBVpGhfybRQ4/NkU6UoNErgO5RBPtAEWGnclG0Sm9RKHjtER3tntE7QlKRHNDtUTlk6FFmBB7RMMym0Q5+J1F7PNkRL9Sz0RT5YVE8xCzRb7bW0RX3PRFxFnERLYTsUSozYNFWCi6RCsHgEQy8tZEbhiSRFG5QURZSZVEq0wnRVCU20bsqWlEsMerRA0LsEQHudxETy9DR9jMiUQuDtVEtCl1RnJs1kUrIuFFANC4RH0dDkY+mLtEGE6ERMNhYkVZtPFE6jvJROIBhkUX6YFFyEp5RDcMrESthQNFdQeVRHI9QEQAWKBEKW6ORVEb10VcST1EeZdCRGrQqUTY5DBEJrZVRjrugUSrP0JEQpenRML120RkA1VF9Pc7RGJCiUSV4RtF6453RI+8bURQFaRE2A5uRGqqn0SDi8JEqNigRRsAk0U4cY5ER7hcRCN2rEUTG0RHAlUjRR7vf0Rdzy9FPabwRcz5WER1Sp9Fn4l9RLXJwETzympE5xeoRNn0DEWzuIhEVJCARFiZc0SWf/xE7cOoRJPVi0QM2EREkjkaRZsKiERAJDZEzVfDRFVZe0ScNFdE+hWBRJSAOUVjjnJESd2kRIeQyEWIXLJEP0rlRJbGKUafIqNF4dVFRAAdwkTv+ApFTbKVRUzzu0Sdw11EGREORb7qrkTGKYxEeQaBRHjX1ETcY4lEsCMRRRFjs0WtfABFoAwXRqO/+0TVacdF2Z3SRV6jxURoXnNEjW5DRG2zhETJbFJEOeKhROKSHkb9iEtEU+t4RBAG8UQMj5VETVqVRBVGzUTO6TJE45u5REl6/kTM2atFOuWqRIevrEXhDWFEzuIDRTcvdUTINwJFs2vURc7IwkWa3bFGhOMCRQUXhUTKtZRFS85bRXrqbESYCiRFrxBKRDg/hkRQkDVGVPY7REznLUW0mLxEJs35RGhg00SkIahE1idnRCALikdYqh5ITGQJRhIVS0e63gxGbxuTRECHVESr+wlFWJFhRm5xhkWNfndEZBffRVZsJEWJsVREqqYRRYZuk0RMmcFEPKmBRIq2AkXUsZhEAEyfRqkYekb+oQ1GzLepRCenr0Q3vFZF6wSDRNop40c+OqdG7cpARBJ0x0a255hFtWaKRtMLmUQGvxZFANyGRS4MEEWkTklF9/tVRDI+bUR/YOZEDHSHRIUXhEQoSidGIzqlRT/ji0SMekdEcER1RInzaETOt4REyX2dRbH8XkTAjlJEZZuMRAAyTUY4tpNFakBiRpkIGkXdscJFI1DURDBQIUXnb4RFuA6URD6d90Q5nqFEwSqYRQahQ0ldZ5hE7m4SRW0CSEhGP2REA9bvRJCOl0Zi+KNEDy+FRNTIUkSO2YhEF+93Ren8xkVwNQVGmQidRP6ln0SE2INEfK5wRJx2lERbsldETrOKRBlJ8kRoo2lFhV2OROcZcUQaUmNEExguRz3tykaR6fhEmO+ZRVKa4kSi6kdF2TrRRYlz6USYgoBECDK6RMyIYkQ87p9EkrTLR2hrDUYh3tNGNQneRGjgI0Usv6tEaHTPRR3uV0QuanxEVBHuRBNxbESJOalE/4vBRIa/t0QYrCpGBxxFRUemn0SRTFdEthiCRD9EB0a3XKFFxhayREfyrETIpn1Fx2KcRKm7j0XhJNpE46q3RJqANUSSTflEeFaeRr85iERdMlNG/KznRLpPj0X3tdFEMZeARQps60VGUeNEIQO3RJRUg0TrxHZERGVxRDrkzkRXc0VE8sSSRAYl7UdofdREELv2RnG0IEXWRdBGfdE4Re/To0QNwINEAVSXRB6WgkSjwr9ELHClRKNjf0Rn5JxEdOD5RPJQ2kRBRXtEpjyKRDpbZ0QS7ZVEXvacRPOajkTksQ9FF4O9RPlt1ESnhZhFkiCCRByNj0Ss3SNGi4OrRH8dj0UsOVxFpFkYRQ1GCEXX2BNFOsBcRUOBq0eL6GlH0TnYRjMDxkUzNTtFd41ZRZ006URbhX1E1MivROrssUSzlBNFf9YSRTN9eUbWc31EY96YRYexDkW3/dtEEcisRNMPDEWodSVFcbkYRXwxPUUVD61E60BtRK4DkkQ4MbpEmJBMRRsCokSlj4dIFC92RBPD+UfjodREYoycROkY8UQaV4VHeTJHRTVIcEQZ1vhE8cxvRuYxkkVevK1EFNOaRExVd0QDRZBErO8JRsxqxUS9MWpEZUE2RT8kT0QjLLpEn5s+RJnUC0acE7pE+3nVRJEJGkVwPM1F3nY2RXcYrkVpiBBF2u9WRNrvikSIbXRFqH+LRFU6WkQ8qg5GelNdRWyHREU6xARFeqoGRVBipkQx/G1FabmKRQhDxkRZ5lxEG+1LRKOufETPFn5En1WbRLxDi0QWU6xEXEZCRAlqq0S7PxFGe/WaRXOySka4bHlFepo9RWyQEkW8vXhEwDJVREw9NkUB7FREuA5FRMf42UdoAEpH9l32RglcHUX3MdxF8J0HRqu/L0UVPg1FE/nfRLmAekRibKJEzc53RKap5kczBL1EpUthRwYF3ERzqQNHs6cSRkn1E0bbCYhFECqtRADQMkUR9ltEwc5wRBzkgkTWdkpEw/jSRFV7cUS2E8pFtRjRRONYZUS+hBVF8aqKRHDCQ0S0cgxHXS6JRtJEHUZWaWRFEP5XRW+oE0XApKBErPehRE9L/UY+cndG9NAjRkEEl0Sbe3dF6+apRFOb3UXaU7ZFZYcbRYnNi0WRKi5F0rCTRIgqfUVPKwBF2rTSRKRdnEWZGmtFkWKPRDY9QkaRQKlFI0dRRQYtlURTDM5E0wQFRuXVaUVe4w5FNjLXRLoAgETZWJ9FJAM1RTpxCEU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - ipO7QXrAckDvb2rtbcFyQHWu8BFSwnJAiIjuDOXCckDzR1XrO8NyQBZWDITFxHJAYDkpJ1vFckCOuAbhQ9JyQO6Fhe1I03JAVN1SOnfTckAIfQL6ZtRyQCUY/qDP33JAfSL14rngckD6t/3OTuFyQFK+zBRR4nJAePYMnY/ickCQT4l8y/FyQCY2d6C383JA0pjFeKL0ckCaFqDvwv9yQMnfafNiAHNA8pbaP/sAc0CwLlEaSwFzQByCSv2MAXNANMZOXjoCc0CfeAyzzwJzQI24iRv7A3NArAmB8wkSc0B83HxJvRJzQFJi3i/5E3NAQnjyivUXc0CwKq94TR1zQMNyuAF7H3NAUE+Jpjogc0C+fK4KoyBzQCy0L4g5IXNAosG+kWUhc0ApMYII5iFzQDBDBuKoInNAUO2fwMgic0BBo1kmDyNzQCyhlEs5JHNAA3jZqs8kc0BwqQX5RjFzQGjtqNggMnNA9gU3J9Ayc0BuGUhdCzNzQEr79nY5NHNA2ke7oNs0c0DGSrIQuT9zQOgMtpLkQHNAQbL+enlBc0BiL48BJ0JzQOSv8ch6RHNAftr2D5pRc0Ava8n6QlNzQPAm1dKkU3NARowbJIRUc0DToS/li2BzQKYztpQeYnNA0Ijr4zljc0CkU7IoZ3JzQKKCfZ22dHNAlG9zvE11c0Bj4DvkanZzQAqZWD55gHNA9UgmIaSAc0DSw5ROD4FzQAoBqtZegnNAzMmTfYiQc0At5+qGTZJzQDAO9CJhlHNAMmbFa/iUc0CCZEheuaBzQOWossBPoXNAVjriDeChc0AI2QPmWqJzQE4p+GWLonNAZkk97+aic0D4avYGBqVzQHaut9g2sXNA+MPH9Xyxc0DMY07it7NzQNRP97MOtHNAZDWXs6K0c0BwG9KV98BzQAeWgXHTwXNARB3leNDCc0DgS34/J8NzQGYCWq4+y3NADPwUdtXRc0DgsyggQ9NzQPwSe4L103NAafEZRePUc0CsAzLqouBzQOzS4GY44XNAsFXnFWbhc0DSypfn5eFzQMwZR5U29HNAjNXdhuQAdEDWQFVCeQF0QIrLkb6lAXRAVrojdIkRdECQQCKwTRN0QLyGXfV5FHRA6o7nWEkgdEBuOcrMuCF0QNshRq9UMHRAonhya7oydEAyq/zD5zJ0QF/ypThTQHRAqk1MgchBdECRVOnd+FR0QFjId5CMVXRAClrWfLhgdEBJtKjeCWJ0QDDrrMIPZHRARail609kdEAIDmcbI3B0QIXnc+/DcHRA4rqQjEFxdEDeygBA9nJ0QBrKiH84c3RAwR3fmjd1dEA5H9Vn+IB0QDQ0ertOgXRA4lWMZheQdEBwCdvlz6B0QIF8xq28onRAXGODNRCjdEDWzwieC7B0QA7C1BDEsHRAqLI4T/6ydEB+anHn4sB0QPfgtSZ6wXRABrOXpw7CdEA+bsa1t8R0QAwcUu2eyHRA+t2i2P3OdEBWuMOZQNJ0QHzX/kI903RAe37hXuPTdEC+56MazdR0QOAGBIO54XRAhK0aTtrkdEBRS/QbUeV0QIEv/DuN83RALEtyXaUAdUBdTmMhwAB1QB68sYBkAXVA/D7gVF0CdUCQ9wvKmQN1QBZwkRBLC3VA5Bp3DGwSdUCXl528VBN1QCC55qojFHVAXgugaJ0idUCnbtDi7CJ1QI8PYIj0KnVAxH0zFs01dUBdsAnmAlB1QPOYVPuAUXVASjcPAU9UdUBfVxYVd1V1QGIJ4czqX3VAhjnXIQ9gdUBabkMaOmF1QCm+XP1mY3VAwufnxXZydUCjnWp3jXR1QMGzl9N5gXVA5JaqWK2BdUBJm/ikpoN1QEZLLiObhHVARjltooeQdUCv8tAwvpF1QFx7i9g9mHVAsChWbbuhdUCUgo3uAbN1QORsr9Q1s3VArmjqagm7dUAm/tUiY8F1QF4vPNT4wXVA1IMrGQ7DdUDy8gJPzdN1QC58/aMP4XVAJqrGOAnidUDqRWTvgfN1QCF68p2J+3VAhivppkkCdkAijcIz0gN2QKpN+D9VEnZAoNt3QgsWdkB+6cYhhyJ2QCzMvniQJHZAhCkzr0srdkDs1MPVHzF2QAjfkVdSM3ZArmeDPJ80dkAw6BqQHkF2QLoNixh6RHZAzh13iftOdkB7xUfZylB2QFzIcWgSUXZAUumM981UdkBQEDB9zWJ2QM9RNt1QY3ZA1kdQ/LljdkBrvVwa22R2QG7cz6ZmgnZANL+LA5KDdkD1FWDW9pJ2QFNIeb2ek3ZAlCeuiryTdkCShROZ/Zp2QGr+7YkDo3ZABn90iQardkCqO3ZeQKt2QAaDKhbBsnZAy/C38XizdkBQn+V4DLR2QKxh0xrTuHZAWu+dxS2+dkCOxKK6zMJ2QG7WM+MZxHZALerPo87OdkAZkCb48eF2QIYaCCaR83ZAQe0f6DQCd0DdS4KJUA13QKDTD2oBEndA1pakjKkSd0AxrCC0DyJ3QPb2MhV1IndA1qdo9KIzd0BquRjhDDV3QJ+8kzydQXdA0VZa8uVCd0A2VLASG0V3QO1ygABLUXdAcxS8zZJRd0D5QGttK1V3QONYB6qQYXdArgIEPTxjd0CRZgEK0GN3QD7JOoMnb3dA1dR4gIZxd0AfobxGSHN3QKzIPpl3gndA3N30A2mdd0Ck13I+xKJ3QJLyP3YNqHdADFM5xJm0d0Ckaa+9LcN3QCYUvr9P8ndAyCu2LW0ieECxhQ87DUJ4QGTaPpcQRHhAqsdU3XpFeECspm//ylF4QMtHOUGVUnhAhvxJMIhVeEAmzgcj71d4QDd/tuFLXXhAFOKtcfpgeEBCTzm7tmF4QJVJ55bfYnhABsLtwP5ieEA5gGKlUXR4QMSfOdlkdHhAWaHxsot0eEAG8NBRvnR4QJaOeO+mgXhA0jAVqJmEeEBktefeUo94QLojGSaZkXhAvJrJqaeUeEAWWqYb0MB4QDyvccq31HhAeYRkAjjieEAIn+wFAvR4QICyZZ6M9XhAt7vQD98CeUA87ikgmQV5QGct2avmCnlA7lcxh+oSeUAo9FWO90J5QGY07YXMVHlA7nJxYFZbeUCyjpP2RnN5QAYE3FZQg3lA3NFjilaLeUBkk4IdcY15QKyT7bjKknlAlvYdKRKYeUBMZt67KJh5QMp8D8FsnXlAeyWzQMCyeUDi4y9czsJ5QOkHcgBD1HlAZvAiic7VeUDshQG9wOJ5QGLJDPNP5HlAUM18lZjweUCA6EwG/AV6QC12CeM3I3pAgrtsXww1ekDLf7Og50N6QFdeNtoaRXpA7uUTIfVTekCWPHSTKFV6QIj5qDWKcnpA5JkokA22ekCK7pclGcZ6QIpacZ/V03pAsVEHuTXuekDTbojcKg57QKDUP5dNFXtA4P1B21sle0D2jWNRTCt7QF8WFEi/M3tAamv0kJhIe0AKEBPw8k17QKoYts1jUntAvm8llkhTe0BgazebEGh7QEpIxhTClHtAMnLUhyKVe0CTfRDdOp57QLacKcOXo3tA/DqHfmG7e0DBYu4YacN7QOC5+WCM9XtA6kdGr5ABfECy7n5B2wF8QNbeIM+ZBXxAV7TcfocRfEARbE0p0hF8QD3Ag8bNQXxAGgLjTtpRfECtMoAFBXN8QFd6sONZmXxAJQ6bSd+bfED8WOL+wLJ8QCa6gwZY4nxAXexPnBjyfECxTBqCVvJ8QBRBJeL48nxAK1y51wICfUDGtQH+SwJ9QNCk8nj7EX1AYjh5H0QSfUCg5ff6PyJ9QKUIOYqiLX1Acmdzx6thfUDQqcQxGYx9QJ/O4jtclH1ARAyfjNmjfUA2ndPrL6l9QHBDEf8yw31AkkLjydTifUBEv1iej/V9QKaccB1BL35AdfwHz0A/fkDIM2XMkVV+QBbmNuPFV35AStHE9LhxfkBiFDPFvoR+QCz6pMq3iH5A4rmdWAqOfkBKvRw8lLJ+QPBv6WtXwn5AZMTqLdPvfkAl6fMO+/N+QGZ14cnM+n5A4MhPxSAAf0AmItdkzwJ/QLB+hV4jDH9ARllt/rhxf0AjwVWpsYF/QJ61UOCkg39AypNxomORf0B+KInwkZt/QGV2tHZdoX9AsJJ9vZijf0ALrp2fVrF/QA5YMTbG0n9A+9oq5fTzf0DAJM72+Pt/QByCStaDEYBAvtgFeDAUgEBKbwEt2xaAQDKde8KCGYBAzphg7iocgEDbggMkTSaAQIJJvK1TKoBAXEYfo+gvgED4Hik36zeAQH1hmDn+OIBAZ9iDnSs8gEDOHOh+9UiAQJeIGULmUIBAF3QvbBRRgEDDjeOu5ViAQAiL5G4OWYBAtE3h5jZZgEAkkshwC2GAQADb03w+YYBAtG99gSlvgEDV/mVUBXGAQD4ssGsIdYBAaMwC9Ch3gEBid5Ld/XiAQEurac0of4BAQkiWXB6PgEAq+G2TbpGAQJJUjZiGqYBA/JW7kgaqgEDI3Hi7Ca6AQE52zFv8v4BA1qzhmVLBgEB+mC9xD8aAQIRch8oAyIBAp6p6nlPJgEAeMNvap8yAQMIvbEFXz4BAnJfiCCzRgEAowc3/TNGAQLZfDQP90YBAkoXu7BzYgEDmlSkSStmAQJIok51E4YBAkrbADFjhgEALJQyP9+iAQJDP+OFE6YBABtVtc0vvgEAp8quJPfOAQFaOl4BN94BAjjoJrT//gEBTwRSHkQKBQPlY03pAB4FAetP2gesNgUA8ib0sPQ+BQAlAdZfkHYFAujn40jQfgUAcQzWQ8iGBQIuLksI0J4FAXn1iu70xgUAkmovtgDeBQDIrEA30RYFAfHmgIPdJgUCIm6AbXFiBQPgmjaIrXYFAFSevmSxhgUAAcVveVY+BQLN6c0ZWl4FA+hl9UlOfgUAI2/5ECqGBQPYo8zfnoYFAwQclAg6lgUAANUkrbaiBQJq6xxMDqYFAmuocTAitgUDgOykRSq+BQAiOE9UFsoFA0mL/jAm2gUBiQLxgL9SBQBImlWGD8YFA1GguZv4IgkASxgxXAA6CQEJEjMQEEoJAupjz7gcWgkAu5/J02BiCQABemZjWIIJA8A8s5tEogkCZiAW/oCmCQHBuUIWkLYJAjwJKCdEwgkBh69v3pjiCQOQ86rznOYJAcOSayes9gkCY6w2NQ4mCQMnOakBEkYJAQInzKj2ZgkDC1ERaVpmCQM5kElAPoYJA3cH+nDuhgkDi3XREDKmCQKYjSCI2qYJA0VS5ewixgkDYXvRkOwmDQCa0UOrlDoNAIsJCxHkRg0Bll1VoyBWDQKjT8Wp6GYNANoLP28oZg0AWc/x0cyGDQJKFc+iJIYNANiukVg0mg0C0XtSxcSmDQN9dn9kQKoNA5ttTDxUug0DowwccaDGDQAmF8X+CMYNApwV2SEiDg0Aq36lN5omDQCAuVQLomYNAKGGpI5T4g0C7qR+L/2iEQKiyG1T+cIRAQlwAAmtyhEDYQl3RbHaEQARl8Ob1eIRAzrAeHPSAhED7QF5latmEQFSSc4pq4YRAHAB4L2PphECqK/C2NfGEQHQ8BFNj8YRAJS+wCDT5hEDaHr/JWfmEQFIoDLEuAYVAMwCku6BhhUDD2pTkoGmFQBY0sK6ZcYVA1Eya1Zl5hUCJUq52342FQBK8u/XhkYVA/aTT19eVhUDbliJV65WFQD72bfnhmYVAxFsB1fGqhUCKetNP5vmFQBzJglvs/YVADE154OeKhkCQbdmd75KGQOT6zyAnuYZAmI8kTyXBhkDEziF9IcmGQNKWCWeV0oZA4EfZUpjWhkBqWpuXnNqGQICWQ2ORKYdANiUYSpExh0BQZbafizmHQBBGB8phQYdAps/b+4xBh0Bdl/PCjUmHQGhNck7IsYdArgq7yce5h0BWdB3YwMGHQKrl6R7CyYdAOhazET8WiEAGeu1BRBqIQHGPZRxEHohAc18hxkEiiEA= + NrgMGZxjYkD4qwju5sJuQK9rGHLRYnNA6hME1OGRdkDRdBqjVNN4QOpx4Cc6o31A0dL29qzkf0D1Z949SVqCQPxJH7et+oNAIJJgQJWShECQKsPyBAOIQLRyBHzsmohAu1RF9VA7ikBIU6i3Q6OMQLuDMx/9w41AJEHL8PcVkEBd2ZCkVKaQQG3DC70YcpFA2cjQO3BykkBSR3CWWf6TQGjxLjGcOpRA - + - RUlORMkTbkV5p2BE4KVbRJmtiUYu5odEBpMqRPXYBUdBb9NEOceYRFHwQ0Q2DwBFeZTiREUGKUR2lzpFYkIbRThlNkW8O8NEki+2RFT9k0TnMKVEB38QRfJSbEQfcWNEoNZGREvFfERYzQtH5WzVRDeVLkanr5lFmvJZRf1bnkTD+9hEGHlQRHd0AEUW4LdGm6NEROgKQkQUPk1EG16WRNRSq0RPXpZE8uiNRTlEukRESjNEteN2RarPbEQJaEZEmiVrRLTYZESd9JxEOt9QRe2VSkSbJtdF3XhjRKBYgEQFtWpF6RirRNn7hUQkvzlEQ1fwRCjHBkWWJK5EqZwfRWSKhUS9/dRGJniRRC40x0S6WqFEmkgmRUSTP0czAalEGlxpRu+47EUCZ4NEzsU7REGG4EWC8IdEHvvCRUAO10S3wtVE1ix3RI4ZM0XP6DtFLJI1RHvXskTzdspEKwaYRW4mmEU74SdF6x74RFWmMkScQr9ELIONRS/FZERmBgNGeL2FRINdekSDChZFQ3WyRLBFfUYOeplE4HXMRCY3NUVIv2JE2dOiRDmuHEWk2IZE5kU6RHMRN0SKs4hEE0+URByvbkQyUqhEE05zRRFZLEVmMoFEsUe4RIoSs0XRQDtErJc1R52AJkQzBEBFS+qvRGVe6ETyWvNFQ8q9RaWJuETUJ11EvJ0URYIpCUUICI9EtXOpRLAErUQCCrJE5KpHREwdn0Sj4Y1Ef1GjRGCZK0XUQDZEospDRGrk50QqvABF6idWRL9xP0SdrK1FAVSTRPpBj0QdR+JE96EdRinKe0RSPYNFE0PcRIsyXUQcqj1F8NkmRWOYd0U1sJFEiHVERXl+iURcVrlER6d8REZeskT3JVJEwcZxROUd5UTpcI5FE+CaRJqW/kXqjvFEFcSmRQ9m8EUavplEZWkmRCHXgETESulEefRiRJUNyEbsh2pEBQYNRlRPUkTAltpE0IpoRMUbl0T+moFE2awORUQelUVoMFxEyb2MRXjHzUSqlGpEAo1JRGcJ70SRYvRFpmSyRTfMwkbODDRFwtp0RA5Dm0X0Z35FHa2XRIV/fUR02yFFGwgYRlWAEUVd75JE94vHREAP3kRJEl5EshZ3R5GSS0i6ONZFZc2BRLi1iUfj9CZGzviURCWvkkSj/s9E/cU9Rr18c0Ueur1FQo+MRJcvMkSDtFtE8FlDRf4PkUQS3Q1FBp6oRONbhUaVxoJGUY8aRsj1gkVQcZZEV4VjRKlz5kePtKdGxYW6RF/kqkZ5YoVFxxOERth3s0ToCydFDnmcRU3s9ET4fEpF7RY9RC4xbUQosoBEFfkDRhGmdEXJPYZEANOQRPM3TURJhYVErNhgRaH5hkTMy6RErE0pRsgcfEWUElpGZQUWRThcyUXY5iREiuciRYEGIEWdp99ExnxcRKGo6USc+yVFctwySQ3WJ0Uv0gJFXDg3SJS2V0Tln7BENUaVRl2zc0Q5dQtFJlkwRLmHb0W7lKdF+1CKRnJnY0R8D4VFP9tMRHM6tURTv0tF1B6DRLaoVUTULJVEqpxeRE4OHkcuTatG/0JfRZBmOUX0Hg5FQw1xRfljeEQLwZlFTY2BRIQKVETl7NJEmr9jRGL7f0SF42JER+qvR6VPSEZWjrlGfh7ZRDzXJkWLk2lEdpjPRQD7hkTVH4JE6KfqRP8FiUQA/B1G114iRZVpikS9nHZEcTwkRsCRoUXZBzNEEYSlRGeASkQe+EtEqo/2RDbrJ0WHQNFEw2BwRXuIfEQq44pGH+yZRCoXQkaa+opFZaqDRJkUiUWO68VF6bheRPTlekQgtJVETKmFRPxu8URlO9BHNIDZRAf75Ua44G9Eud4YRaPqoka0noFEKW9KRdKmqkQiEz9Ebyd4RLAZtER1bJ1EpngzRZyqtUQYI3lEnJh2RPHtukQkn6RELAaBRJ8+YkSAHmpEouhQRFssX0Rs6SpETudTRF/1oUQAHMFE/9FdRMW7h0TYmGNE6ESKRIo9OERbDm1EAlaQRVMChUS9z4xERTk9RgqbLUVO8T1FxgHcRM1wJUWt8+9EIe+GRQ6R0kRwWJNHqW1IR75sv0ZxyddF1QGSRI5XoEXJHO9EpfdaRPUHa0S6yONEFeGDRF088kQBzzZFTJxmRorpZUT996pFKCkXRU6mYkR6hTNEGJjHRHs8HkWv+JhEJT86RMVZgESOnYdEW2NbRQh6wUSCVhVFe17WRLq93kRIFEpE5TVpSHCnWEQJZT5EuhHjR7tIEEVLCehEmsWnRJ2hc0clzixEBlOTRPnxO0YLbIFFch6aRNsvsUTTuopE4xedRAw1vkTB/jlEufYgRr/JC0XF7EtF0ZB5RCEZskTZ4s5ETHwfRndizUSsRwdFpRAURSpIUESYT8BF33MfRdZNQURYs7JFeKsgRbMHkkWL1q1EZLZjRNJ04UWuhFRFIbOARdad2UQ+Kr9ExW9RRCb0OEUo9V9FEusdRR+ThkSF6XNExftURBEHW0b7CqhFM4XyRDqnQ0b+MnZFXpYORdjmBkX0oKpEpTRERPl/O0Tb81pFbtp/RKNt2UctT1ZHuUntRlO+BkXS4rVF9SrmRZ18BEWGVFBFX1XKRPvzP0QXQUVETPTQR2SX3EQFyUBHhh9WROmM5kZj7gtFQZ0mRn0s10Xgto1FcYePRLXC30S9UJFErQJxRFJ+LERWYZlE5E9ZRCEuyEXsR1dFX6x5RLOHVkSl3aJEHklfRNtODEeumHNGGpc0RhGMjEWiSGBFvnndRE8/kkTRn6tEV2kDRydwckaRQyJGVcFfRYthKEbh2u9FrG+hRAHLzkSY5n9EiD1tRJRomUW9UBNFdLPHRUXvjkQBVJ1EJGSPROPXUERPHBFFg7FFRcGpp0SsCxpG+qzDRVBFjUV2GldEuQLdRK65JkR2DN1Fx9uNRfukIEV57ZtExSt5RTvBHEXAkNVE/UB9RA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - b+gRbHfAckAQzNGrDcFyQPrX/UxuwXJAkvkDAVDCckCBkYlJpsJyQFgiKHnkwnJAsrZ1SDvDckARQRQ+xMRyQFgYa3NZxXJA1SsAuEPSckBwwpVf0tJyQJOCjxJI03JAEhOWz3bTckBqtb17YNRyQAq8zN3O33JAhLEt+7jgckD2+eXpT+JyQEreKDSP4nJAxEiwqSPjckAxUo6DyvFyQHZ6WhL18XJAWESwzBHzckB9EcMptvNyQGBFlvii9HJAtEGbCcP/ckAwRxn0YwBzQOUJ1Fr4AHNAfeXK/0wBc0D+y7sXjgFzQBRs4v7OAnNApLZjkPoDc0Cy8BtqCRJzQDz0NhR3EnNA2q2MrrwSc0BAkpIT+hNzQGAzrd0FFHNAlB+EZEwUc0D/qP9O9hdzQMa9JsF4H3NARNd0uaQgc0BCuvZjOSFzQFJXmBhlIXNA/YQnX+khc0DmX/BVeiJzQKD3mA2pInNA8bOVLsgic0AegnrSDiNzQHS1fUnPJHNAcnZUKkgxc0D1aC6YWjFzQGY2R3AkMnNAUhmIeM4yc0Bl/9OgDjNzQLw9msyiM3NAwrrlU/ozc0CbpAbSNTRzQKOxUeXZNHNAnkUFikFAc0AB+lb24kBzQDCNW0Z5QXNAYtULQSdCc0AmZ+JdekRzQASJOARCU3NA7jir2qNTc0A6Nta2dlRzQGrnHq+LYHNABgUUqx1ic0DrsQOCOWNzQICGg4VQcnNAm5pVoWdyc0Bf7ukHtnRzQN8iJnlMdXNALc5bD3mAc0AQWTrfpYBzQHZnZ4PKgHNA+FyKKw2Bc0B+O8gAyoFzQKB89TtegnNAmSEdZQ6Ec0BQjCsDh5BzQEWApYbVkXNACHOKMk2Sc0ARXsCHzZNzQGIalUtjlHNA4l5DifeUc0DNAbBSi5VzQCg6s164oHNASso/QOWgc0ARrJG7WqJzQHK4NI6RonNANwEsfeaic0A+XdKTBKVzQHBkFWHJsHNABtTq+zWxc0DyqPdK9LJzQBAazFcPs3NAk982S7ezc0Aadj+YDbRzQAhTSvvMv3NAvg2SOfjAc0BGKLsH08FzQDwgiTPQwnNAmilIkibDc0AUXj7tZcNzQCVEjMI/y3NAXMQRH9jRc0AKSGje4tRzQConSqY44XNAodIzqWPhc0BNUKNKEeNzQHaGQFVB43NAtKpv7e7kc0Bbh804NfRzQDcV/bF9AHRAno8NZOMAdEB7Un41eQF0QNDSOHqmAXRAGDylC7wCdECqV9g2ChF0QLisslJ5EXRAyltueYgRdEDHyKHaTBN0QHRCTnx2FHRAsIla/0ogdECIIWZEuCF0QABQcxdUMHRAWJq1RflUdEDM7vqpjFV0QDhwR4u4YHRAYNwygwlidECkyk6jTWJ0QEjoFBATZHRAyk0nmE9kdEDMi6/LIXB0QNySUpZicHRAmiiqcUFxdEAI/774OXN0QJbkrec3dXRAdqrUFvmAdEBPJkpIToF0QKoli1dJg3RAgN7XhxaQdEBKHxAHpaB0QAjqYlDSoHRA0S5BrTmhdEC8T2dbu6J0QH4aWx0So3RAWIbuDAqwdEDRrJBmt790QAjaSwnjwHRAVpvGhHjBdEBFBBv66sF0QI/+oWMOwnRACUwVqRTDdED8me3eIsR0QG1gfVJ6xHRAVgL51bjEdEB1BuH4+850QM2aoKRA0nRA9koa3OHTdEAEQ67MzdR0QDL/NsIi4XRAqnZBk7jhdEDU+EhIHuJ0QLoIYfxM4nRAcFfWsk/ldEBM83FlV/J0QOy+H+WM83RAAoqdCKMAdUC0GFNavgB1QFqZKDvPAHVAAluG22IBdUA+f5F0XQJ1QFsX1z2aA3VAhQ/KDkwLdUCFNOgMbBJ1QGyc7ndRE3VAAoMyoSMUdUDJwA/QnCJ1QEgxd/7rInVA+A5yPPIqdUDCkzBDzDV1QFYAXLyyQXVAZBUjZ5JCdUCqga5C2091QA19AuT7T3VArrvtIRFQdUBuuEbWTFR1QNhZJHl3VXVASrLtTzdhdUAi3sM39mF1QLCPP79mY3VARfIBe3hydUDoWwtdjXR1QHZFXn14gXVA8+K+kK6BdUBEFjk+poN1QLrj4PWahHVAYn6+rr6RdUCIHfKNPJN1QMtF2d3an3VA1+zP2pSgdUCtmlvVIqF1QK1I/NC4oXVAeoq4gwGzdUCftmWwCLt1QMsBIcHuv3VAdMVgAdHAdUDLHvg5ZsF1QHo1LLf4wXVARtppDhDDdUC01FByzNN1QP7sxPTk33VADDN1+Q7hdUCc7PQ5COJ1QGYKJk065XVA6mwAsRDzdUC27inIgfN1QBJi/Z6J+3VAoyQEzEcCdkAcZkmK0QN2QLHjb0ZNFHZAbTc0vAsWdkCIA+0GiiJ2QHySAQSQJHZAzL/hnUsrdkChCzGZHzF2QNQQYGtUM3ZAw54tAZw0dkDspPbSHkF2QA0asuoTQ3ZAzBCMGHpEdkB2P+WTzFB2QEZcjMcRUXZAR59NnYZUdkAok23+zVR2QIOaGlwgYXZAWgXbLsxidkCCLZgYVGN2QLGqpM+3Y3ZAO8KKx9tkdkBe/dJDzHJ2QKQ9gZRlgnZAKOx35pGDdkAqI++i9pJ2QM/6UfWdk3ZA0y8JY/2adkCYBvJPA6N2QGhyMFcIq3ZA6EUdrT6rdkDGOXd0V6t2QHGNWXS2sHZA6wj8kcCydkAmQLB6RrN2QLLvT4p4s3ZAche/nAy0dkAwtxF50rh2QH3ZY1HAwHZAv3JMshrEdkDjrUTyzs52QNp9CiF60HZAMP7eAdrSdkC6qiB2kPN2QIoM/TQzAndAK1YR1VANd0Bim5wHARJ3QNPhcM2pEndA4naZaAcYd0Bnh3vaDiJ3QAhjOqtxIndA2Go/Wbkkd0BG+XhppTN3QHUiYN8MNXdA9MNqHiQ+d0DRSCkSnUF3QBBX0Uc6QndAHwWw8upCd0Cx6aG6fEN3QNRHkkkbRXdA4PeZREpRd0Bic05aklF3QMerJJ1xUndAk3Otxe9Sd0DJut2GKVV3QFdVY1BJYXdAe7CVFZBhd0CQfr6QO2N3QM8yqmzQY3dADpN/PCdvd0Bihif4QHF3QIve1NhGc3dAQgPia5F0d0DfUXwVeoJ3QPxVqNJ9g3dAYAmKSwiSd0CobQvITpR3QOKlTTRonXdAsI59YsGid0DzQLgeG6h3QKYHd+oKs3dASKIvaZu0d0CwUtoz7eB3QKoGrO0i43dAQh4cFk/yd0AmqoilTBV4QMTcVmpuInhAT7j6IYgjeEDTVfoODUJ4QASbGEB8Q3hAKkoKLRBEeECyL8xlekV4QJKkwHzLUXhA6yGmkpRSeEAQWxkeh1V4QOKnNdPvV3hAqgGsh0ldeECgnaAm+mB4QJIHC4+3YXhABhi6NpJieEDCCR/BuWJ4QKCWqcveYnhABKJXH75xeEDk9JW5N3R4QKZ03ktbdHhAV87mf4t0eEDv3ckVw3R4QOI1PcykgXhAPBh5jJmEeECakIGFlpF4QHkRv3GnlHhAzKgssbekeEDx18z2zcB4QLrLYW31wXhARMi+UAbFeEAEpeE+ttR4QJKZCo/D5HhA5hBDqwL0eEBsEbJxi/V4QI0tWW/eAnlAl/9Wr1oDeUAosnESEgR5QEKTD0mZBXlARBRlxeYKeUBr9OIV2BJ5QEmKyg7oEnlAZy9yw7ojeUCoR+SeikJ5QAjMHQT6QnlAXpAl1vlDeUCbwoedzFR5QKKQLxZVW3lAEA6RNdlkeUDiV+h6QnN5QBRFPRhxjXlA8lQUDsqSeUDGRuSQDph5QKrX3n8nmHlAUKCEnW6deUCk1Y8hwLJ5QOdQaS1C1HlAthKGLc3VeUD+qBQDUOR5QLUdgJAj5XlAluXYQPkFekC7DrkvOSN6QBhMBGAMNXpAifTMQedDekAw86SmGkV6QKIVrBDOS3pAyAdQbi9QekBOH86H81N6QEUysVwoVXpAkfoXuYtyekA+Rayg6616QCXxs9AMtnpA1mddgjy8ekAmQke/LcN6QAacwmcbxnpA9GurXkLOekC3gy2C1tN6QMcFYS0K5HpAiOClKX3kekCmSq2DNu56QHGevp4qDntAUE16cUwVe0DmIvKOXh17QE6TZbaQI3tAUZm95Vgle0AisBOKTSt7QMuExd5WMHtA2BPXDcUze0CHsSOZFEB7QEJ+BZKZSHtA7H1kWvFNe0C78XzG4FF7QMBpSINPU3tAFTjze+uQe0CKEet0wpR7QCBbITAklXtAfCjj4juee0CkbweLlKN7QCI0DNIupXtAAOQaivCoe0C2zxSZYLt7QBqK1glpw3tADlKLE3rGe0A7bJEFsNF7QGEGxLAo5HtARFxvy5nxe0C1+tdcjPV7QBHsZJGUAXxAHhXliNoBfEAmudVd+QF8QGlZi02ZBXxAOpcdX4sRfECWREiW0BF8QDyVP+zMQXxAHbTkSNpRfECkXm2+DGJ8QPE7jGsrcXxA+qwxsneMfECKfjccW5l8QAbOe2Dcm3xA5mcC+r2yfEAagRh7ELZ8QKQ/ysLM1XxAVf8sCVjifECg0LQ0GfJ8QMz8f4pV8nxAYlsvPgECfUBKcNh9SwJ9QK/C2UH/EX1ACOqTWkUSfUA4vP0hZBJ9QKqmYvE/In1A1eZleqIxfUC+S42pqGF9QKakqZNXlH1AOPZvx9ajfUCSDNFqMKl9QFLYFywww31A0v8+Lz3TfUDMrMiVbOB9QLmTD0+S9X1Awj5SNoUCfkBz0qd8jVV+QDp6Af98in5AVw1K0t+QfkBoXkafjbB+QCjGVBOasn5AdipgQVbCfkAzl+Vezd9+QDjuIyHW735AWjo2C5bzfkBOFW/29vN+QNk7FyrH+n5AfaeiUtT/fkDZYJYQIQB/QJheweEYBH9AslFXiSAMf0CPitG5n0F/QFwFAEq4cX9A6OReRrKBf0C3WLwfooN/QF3Yei9jkX9AezEgaK2Rf0DcziihlZN/QD8FAnePm39AYKkUCGChf0BU8ORymqN/QPCtAKxYsX9AWFQCBLHKf0DUIq0gwtJ/QCQ47KP0839AOwgnwvH7f0CiR6y6gxGAQAZCuCMwFIBAgbLb99kWgECY1aDfgxmAQGwwfawrHIBAFImZDE0mgECKNQsiUSqAQEQpTI4oPIBAY4OySfZIgEA/O+ag5lCAQCqxCMAUUYBACb9TteVYgEBkYc54DlmAQBad1ek1WYBACjGuwwlhgEAiSzKYKG+AQPoYtx8EcYBAAPU+Jwt1gEBqGmQ6/YqAQHLBXnUfj4BAZpA66myRgEClr95VGJeAQDZCbQ6HqYBAGKfWOAaqgED3eC/aCK6AQPywyGwgsYBA6S9ot2a3gEDy20S6+7+AQH43rIJSwYBAogitplPJgECOI78KqcyAQIxkicVXzoBAeHcr5VTPgEAO1kn9LNGAQKjaGKZM0YBAhKC+ogDSgEDkmXXzGtiAQOfB6NdK2YBAzoISukThgEBPgf/i9eiAQM/FxCe8/IBAEocu8D//gEBc/AbTkgKBQECMQHCUBoFAmId4IT4HgUB6qZZLPQ+BQL6JNvg0H4FAsWTJ4/IhgUA9clDi9yWBQMikpPU1J4FAkHXjg+QtgUDwyOqo8C2BQIA04Ee8MYFADjvoon03gUB4aTkk9EWBQA4HCuD1SYFAWnbBVFtYgUDIA0Y64FuBQNcqBtcqXYFAudr1Ay5hgUD0qJvnYH+BQEIQr2gEioFADmlDh1WPgUDKPPPaVZeBQHQBytBhmIFAaniDuQqhgUBCVddD6KGBQJQFcxENpYFAhwimjG6ogUAeK1oNA6mBQGKPO7xKr4FAkJcZJwaygUD+Op5DCbaBQG3NS2lNt4FA5FNKDg66gUBiD7ntftGBQLb4GgF/04FASgINhgEJgkBLHRM+AA6CQCnBytIDEoJAlnyhmAoWgkB1gC1i2BiCQBRZUDnXIIJAeHlCJ9EogkCFA7jyoSmCQKhLnNikLYJA5i1YLuc5gkC6CRFZQ4mCQP5mnx1EkYJAtHNcUxeZgkB2hUKYPJmCQHSm915VmYJAkLCY9w6hgkDUBFmmO6GCQNSTz1QNqYJAXk4mwzOpgkA4ruPSSKmCQNynjQcIsYJA8oIGNwD7gkA4BriCeRGDQACVIfPIFYNAAC+j43kZg0AEj3XLciGDQBC4CvANJoNAmrRyenIpg0DAK6lgECqDQI6TUQgDLoNAEJ0Ywmkxg0Cct0RpRTSDQGV1mlsSNYNAQLrUTR05g0AYlOZk5YGDQLsbQjnrmYNAZVTkGYj3g0CcV8rElfiDQHKev6n/aIRAWOa/XP9whEDkxUXb9niEQPj6fK/NgIRAFFE3R2rZhEBgVdjtauGEQLaExMVi6YRA1wdEYXzphEB6CyjKNfGEQEfQ7SVh8YRAwuhM7jL5hEDmrq0kXvmEQFF9yFGgYYVAVq8eQKBphUCkwc5omHGFQMV3wRObeYVAOF77y+F9hUCMW5ZhkYGFQGz4cTPfjYVAYk7bDOORhUBZuEIu4pWFQDcpzc3gmYVAYbVRP/KqhUDhRVft5fmFQAfFXmvq/YVAokAq4+sBhkDm2yYz2lCGQLgzhrDoioZAwHWyGO2ShkBgL/gfJ7mGQErAo/f00IZAu3bHO5XShkCOKAEAmdaGQEa/xg+Z2oZAsM/OY5Eph0Akn1fpkjGHQNbaomWKOYdAe9hfJl1Bh0DIOo2pikGHQOLT8uvHsYdA0mSSL8e5h0CuOt8iwcGHQOFFcUDByYdA1t/iQFEKiEDmruP5PhaIQCLZ1u9CGohAsI4hSUQeiEA= + XBt4PPKiZUAoFld2zuNlQIkw7CrX8nJANpQtbGpic0CrOe5bWmN4QF1VdeMYc3tAq5fKr7J0f0CmiTqgw1GBQMwqZYaQUoNAprgoym/ahEBgCwnC51qHQDe9qWKxkodA8Q+KWimTi0CkzgFpYKOLQM/4g2us241A - + - N5WlRJI6gkRqDzxF2b/CRBOFP0TnP4JE03aSRg/n3UTaYa5Etob8Rn7NlkSRh9lEPzC+RJxXbUQye/JE5/YPRQuFckVwGwpFCiZPRNECPEWGfnxEtJ9HROlDokROsZlEhJYFRSxDuUQXx+5Et96WRBTflUSzJxdFUCkOR9yl3kS7bVdE9H8JRtXBfkUFmIZFZN/GRHzbOEW0q/NECYvGRJy/6EY38WZEmkFdRPRXWUSOAYhEQ/peRJX30USgOItFBczWRIvKc0T3PINET5vIRcqEYEQdFoNEznaBROAlYkTshXVERMpSRKVHxUQFIYNFThpXREKIEkbL+PBE2y2BRSfe2UTj7atEKIuJRLSpH0Ua6ZtEHaCtRI2IYkQQYi1F95L5Rm2QiUQQVUpEbPrWRGZbX0RfkMZE0tBHRHTZIEUI0IJEcow7Rx7WT0QsG7hEikpWRvTlb0QrggVGsMyERL5O5kUavYBEdH3+RWNKVEXWM4VE9CqKRPnMdkQ4xFFEQ7l+RcwEKkVhrnVEiIWwRGdybkVtaYVF9aCJRXWJjEThCz9FjEYVRdY9jkWLF8BFB2w/RAMeT0Qj8G1E6r+FRNwq2USdnFpEI1zMRN59akZ8N7tEakaERBhLiUShY1FED6GKRFuWgkW+57xEW9W+RJUvAkU91YpE8anARHYfAkVoJmlFlG9lRWpZgUQ4715EfdXDRAbX1kVqsTtEOIc1R/GcmkXv4p1EG0QxRbJF7UXjWUZED7GwRRuunERwZ6xE4zirRDrAh0QwU8NEt/jfRILLOUTDEH5EunoVRbeJd0T/WzpEz+xWRMYqvUTaf4BEEVfDRK4QlkQ8MplFGXbFRM0vy0SPQYVE1hEmRY2GWEQIKEdEs0itRMgVU0QXWbFF3R5mREeIVkQkrWdE9egCRQRcTEZFvoBEHwApRb9Sz0Ri5dRE9xYMRRvsn0UyjSpGPqgrRdvdJ0XPoZhEeXLtRMeRY0RaBphEJ/quRLX5xEQI3ONEnhnuRGKCkURcwIdFOn7yRJBiEUbiP6BE4HhQRZQ27UWQpQdF1fhkRMwJhkTNBV9EHXBWRIspokSM18RE0NBYRxAXcEYDEUZEPAF2RFVBbUQp8MNELgTnRAB6xkTzkb5EBuZXRGUqGUWU7l5EXcWGRL/qHEUMFYlEV5DERRgaI0WDsblEEwOOROOj80T+UN5FY/3BRX4dxUbkutxEseefRF9gTkWReW9ECZMvRYlQmUS0qVBFGkd7ROrc80VOdnFEGyLTRJF0VUSiXupEQWIARTUShkR6MVFEi0pjRz/mWUiS8NRFoimIR9cCN0Z7ySRFEmzlRJkAdkTSsmBEQ63IRNI9uESy+iVGHPKPReVOxUUgdEdE4DWuRBgXRUU0f21EEfJgRLHAvETlBA9FK1qWRs3ohEafqCFGyRCyRP+uN0VsFI1Em5FQROvgk0RWFN1HmoXZROKzsUZnOYRE4jzLRH0jVkRSkLBG0DeHRYHwgUZAbIVE7SeCREw1/EQHHFhEDaVQRYcnmkUFIAhFooZzRQprXUSBtUtEKRheRDd1kkRREaREc094RCsGqkSitQVG+N7JRSy40ETs+7JEcRNmRPvTRESkpVBEuSWBRKOLl0S9Ni5FyOOjRGPZlESys1dEyJy6RL2GJUZSjpVFViM7RvkwGEX72oZFU3fiRLyaK0WBDVBFxIWLRAj/T0TOnf9EOZhCRH0IrkTubZxF3flBSaXxQkVlTS5FA5pISOoTDkXYirRGAPiNRMawxUQ6NodE16yGRONuUUVruY5EXvtwRXVNuUWRMt5GDYhIRJH3UUT/+6ZEIw8ORnxJb0Qs3V1E39ZOREhzaUQtdU5ENVPTRIP9gkXs751Ei9ljRCeukUTiXiRH63ehRntuE0UzCHRFsVw4RTUpMkWAKuNFM5vDREI8wURQwGlEf8OWRCaQq0TzxcRHiPSJRrAi4UYT/W1EYVdKRHxbFEVZE31FHVajRJACsER8HeVFEJ9fRAHMlkTL4b9EMKCBRNA2okQ05J5E0USGRGHJkkS3BAxF1kErRs2UhEQhXbxEfP1GRR2GoER+nYREjLJ4RGT+fERXxShGUVitReuQYkRXmtNEj7eDRI9yU0RitllFW/sBRTwhBEWTPpZEhY6VRF08hEU9hZxEdFuURE6bGkWiznhEbuKyRer8p0aoQrhEi21zRpJ2CEWQBKBFpspqRD0jp0U4acBFU5KRRF+nsEQpBeNEY889ROSqkURVqXNE09TXROSHWEQV9rFEGCjbR22IN0WTY+tGV/oURY78qEYJHEtEhSOMRXmaoUTpucFENx2KRBhjs0ScaKZET2QSRSdiMEVHwl9EfBqrRLKoPETzkuxEOC1hRKNYzUTp6M1E+2tqRL/EVUSsbr1Ewi37RMeS0URUvltEUYBeRP7lrkTqveJE5XdfRF2zjEQk8yhFUK27RJALPkRgCaVFyzWgRLOsdUQXTThGeqhkRCu5pkTj/BBFKFFVRXxGc0RB5h1FPTJARPRh/0Tg/jNF/lU3RLjPfkdrMEJHdB+bRjBC60Vq7tNEVElPRcxg3ETDkmhE47aVRK6FJkUGfYJG9E2dRPztqkWEgYlFIKmFRCQMDUWLJwxFdHBpRIUNaUTxlUBFetopRcPnPERk1ZtElM0dRTbdEkWAWXpEHtVtRAy1VkQPomdIrj3dRxNAeEX63oJEpCbuRPqKe0SsJWxHULacRLBVRkSRMUNGChaoRXwWuUQQ23FEzmIZRrklAkWDnUtETcooRd5qA0VkUSNG1ETkRKY3SkRp3wxFcfo7RKIDVESDlJ1EShlpRGLa8kVeWFlF+TY3RM72fUQCDI1Fc9qORCWebEQNycREfGzKRTTgoUT9g4FEWt/URUpYQkWpaixFJMkqRTJogUQv+KBFcQy4RVoGEkW606hEk7CTRC+gyESzvZVEFFyQRDZxakYE5I5F9VCfRJklSEbvsJJFY/RkRQM5wEQgLZ9EHbMkRZ3q5UeVUWBHaiI6RIIc1kY0gPVEYmCjRdf0B0bnJzdF/ig9RWp1ikR7MbpEs/BkRH7YvkfUWMNE2905R5Hv00Z5R+tFs0PCRQ4hgkX6j41EFl3wRPAAl0QYyE1EpHlfROXvTkQhV6ZESNRHROmgj0QEy8VFDMl3RTOJ8URkdINEFZIdRzB7gEYgYSZGvtWXRPGNjEXHf11FrrPdRLSnjUSA7+FGu3xeRvxZCkYL9XdF3bliREeiv0Q3+mdGSIgERiJFWkWMu4dEV8+8RHebU0UInApFA3q6RB+EhEQoWrRFii6wRJ8L90TlRklE/strRVYLh0XrNohEovRVRuHJxUXs33hFLgCmRGLg7ERkQvBFDcaBRQGnS0WkgJNEVx0ERe6XhkV23OJEnem6RA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 22y/yHbAckCR1LQub8FyQCJFlSBSwnJAmsAzF6fCckDuyBoOPMNyQF8jDP3GxHJA43VJtVnFckDCHWTHQ9JyQEq4pr5I03JAAHKHEnfTckD/53JlYtRyQKrdyVTO33JAnP57GbrgckDiBrbPTuFyQKSSmBhQ4nJA5FmOT4/ickAwEUuKUONyQFLEq5bK8XJAIFy25bTzckCs40yuofRyQKj2C7XC/3JA4saJoGMAc0DQF0Do/ABzQHD/C+mNAXNA3J09rNACc0CyAFxA+wNzQDSKYtj7EXNAGqNpeA0Sc0DgXNATvRJzQMKGKTv5E3NAlvn5AQYUc0DVu34sTxRzQBZKwiP2F3NAXLZeyE8dc0CM5uLzeB9zQNWzb2GkIHNAAfXygDkhc0Ay6ThlZSFzQO6jO9J6InNAWCTfmM4ic0DH9j1EEyNzQMbrjYXPJHNAvjt6NUcxc0DuONM3zzJzQPdjaWY1NHNAEe3s6N80c0B69QLaQUBzQF1+IlTkQHNAEusXp3lBc0CdFJBVJEJzQH0NIYZ6RHNAIhPG1UNTc0DW2OUNpFNzQAs80Bh6VHNAMPMfYIZUc0Cg4fWzjWBzQMLLa5M5Y3NA3meLFFFyc0DtWX+RaHJzQOpt0ei4dHNAIFQCJk11c0DrqKh8eYBzQM6LPICmgHNAGNTK5gyBc0Ci+OWaXYJzQFTEisCHkHNAxgyxXU2Sc0ASst7tzZNzQIbI6UlilHNAfOIouPeUc0BqxHJTuKBzQB+u0r5aonNA+s6bW5Gic0A6MSEI56JzQAEQhyEFpXNAJWwBjTexc0Bwa2kEfrFzQA6A99S2s3NAdDPstw20c0CzE3S4/cBzQHZQ5k3UwXNAmKu+HNDCc0AYAJiuJsNzQJ7TVEFkw3NAj9jAtT7Lc0BjvriF1dFzQCTpQN+70nNAmsuCDDPTc0AP0ZzJ9tNzQAoadqVN1HNATlg60+LUc0DW/KuyouBzQDtM1fI54XNAHP8FAWHhc0A5R6YUOPRzQMQ8fXGM9HNAVtOKSuQAdEB2cmSteAF0QEf7X/ioAXRACv1qHowRdEDss99ITxN0QBRyJRLiE3RAkAvatUkgdEDWgRvKkCB0QLCQ2yq4IXRAUH8CtFIwdEBMxFzGuzJ0QAp3THHXMnRA2Fc/1FwzdEDiznKUyUF0QFxwZfjQUXRARv8sh/ZUdEBDXjy1jFV0QAp+Uh25YHRA6D4A5AhidECfXwnsUWJ0QBRQH1YicHRAtjQ1wUFxdEC2Uc1zOnN0QMpX3QihdHRAJuFaXzZ1dEB8Lr/694B0QEQFDBBPgXRAzmNtNRaQdEDiRQHia5B0QH88OxbQoHRAjmLQzzehdEAt7gBQD6N0QHMZ+SYLsHRASlE3lMSwdEBxd93jZbJ0QBrbyJv/snRAFyElYuPAdEC690UjecF0QI7eK9rrwXRAlH/SGSXEdEB0Is82esR0QA5ohhu5xHRAxGUvKv7OdEBOozXiP9J0QERrbIri03RALuaseHnUdEDnwkehztR0QP5NsDwk4XRAMg7tG7jhdECEpFmNHuJ0QPnqmlpO4nRA0gKuuE7ldECKolxEjfN0QN6YroalAHVAIIGY/dAAdUC3+F7CZAF1QP6LwV74AXVA6C0eFl4CdUDMw5s2nQN1QMyUUtVLC3VAUo6CijwSdUBK3d8QbBJ1QJqxBZEiFHVAQBUBlZ4idUCaSnck7CJ1QCT9i+DzKnVAAPkH2/kydUA+bXCGzTV1QCjNUGC0QXVAfs0XyOJPdUCWt6cgAlB1QEA/pBtMVHVAfA5OW3hVdUBKdlj5EmB1QAe5wv04YXVAgn6dDmZjdUDDrbyRdnJ1QEBfA72NdHVAXGmNxXmBdUBw4HC9rYF1QKbMntWlg3VA/bSvEJmEdUByq3DTjZB1QFPFLCo+mHVAPCQoa5WgdUC8MPKtuaF1QIYy5iSWsHVAMCRx4gGzdUD4RYwSerN1QFTlzOAIu3VAtNJvg87AdUCCDGczYsF1QG9UuCb4wXVA18EEVxHDdUDeEDx9Fst1QKhZtOzk33VAtNd276HhdUDPq2cHCOJ1QG2D6JlV83VAZp3eV4LzdUDKnh8sSAJ2QLIfEy3fAnZA8kH3ONADdkCK4J73TRR2QBxOMD8MFnZAGktwuYgidkDRkML4kCR2QPzdgfVKK3ZAhqBTPiAxdkBkod/sUjN2QPrYAP7iQHZA5FKPNx5BdkCucbMIEUN2QOjQJ0l6RHZAnObg5spQdkCu3JF8ElF2QPgBfIhnU3ZAmRDV5c1UdkCatEgGvGF2QO2u5T7NYnZAgpStO1VjdkC2DrviuWN2QD4cFLnbZHZAXDg/mCZodkA0TJJAvmt2QEGreDlognZAENozFpKDdkDAE9fz+4R2QLk4P1pnknZA2GN7o/aSdkDez7q1npN2QHyOj7a5k3ZA+L1POv6adkDoMdOGBaN2QH9MhSBBq3ZAfgAKyLawdkBGuekfwbJ2QBpI1sNKs3ZAVpGApXmzdkD7NqeCDLR2QNZ5JJHSuHZANQObfXPAdkB+C8n9HcR2QGqIIinPznZAdSMr53vQdkCixx9u9OF2QFwA7HuQ83ZAMOx2GjMCd0CMvWwvUQ13QHgI/cwBEndAVEfukKkSd0Dhx1LYBxh3QGQCBdgOIndAEmlf6nIid0DI/BoPDTV3QJ4w+aYjPndA8j6ts51Bd0DQ5Rzb+EJ3QOLjh6EbRXdA9oommUpRd0DqrVUOk1F3QDxjdWMoVXdA7I5ph45hd0DysTwjomF3QGtOyuk8Y3dAfjDq4tBjd0A/QZOTKG93QLBwyplHc3dAblsrQnuCd0ASl/tfeoN3QIqufA0JkndAtNi3Hk2Ud0CSPbmxaJ13QFLHs+DBondAnJ/R9xyod0C+4zC8mLR3QDklBw/j0HdA6moETVDyd0BenTcx+AF4QDrvOSZOFXhA+5f8vG4ieEAk75vvhiN4QGKmmc4MQnhAOK4t3xNEeEBN+8FzekV4QFE9N2PLUXhAUp4DLJVSeEAVDSjliFV4QL0pOnDuV3hA1q7nEjRdeEDwHB3/S114QN6W/1P5YHhAbjCBZbdheEBEiFWQkGJ4QPgiczDfYnhA4NUZx5ZzeEBsrsVaqHN4QBYMJNNedHhA7Omovot0eEB/lrwJuXR4QEWD7742gXhA/66NaaSBeEBQLKirmYR4QMzdrYeVkXhAmtjwiKiUeEC+eDBly8B4QPleIoG31HhA94kF9AP0eECQib49jfV4QBobcI7fAnlAHfW9C5sFeUDxrKLb5gp5QISq++jREnlAyPnM7u0SeUDq5CxKviN5QDrHoNj0N3lAvjgNMo9CeUDCZCiq+UJ5QNBcHQD9Q3lAcKnhfsxUeUBgZpuy6WB5QCVh+WPaZHlAAn6vJNhyeUAuLlDTcY15QNq4c8g6j3lA7PnsAsuSeUC1+0GDEph5QLX8X1sqmHlAxshHomqdeUAgKUVgv7J5QIbNo59C1HlADY5/W83VeUBgenuLUOR5QChfGNaY8HlAno7EGO4iekANxpeRDDV6QNhvSpvnQ3pAPCx5rhpFekDAS8uV9VN6QJH1xesoVXpAcNuRBjplekCC6Qlni3J6QLLqZesMtnpAbWp+OxzGekA4Dp9pQ856QH7nqicS5HpAzGZ2hX3kekCy5H+/Ne56QELy3694A3tAqOXg1igOe0Cy5E+zTBV7QAY29IKQI3tAJGIRzVsle0DZXpSrSyt7QO7uC0uZSHtAh8A4uvJNe0DQZYkfYFJ7QHVx7oxOU3tAhDpdeSOVe0D4o6H/PJ57QHdhCv6Uo3tArpxPQmK7e0AwkaPEacN7QAJR+px7xntALo3nU7LRe0BQbYAhwdF7QHY/ZCIj0ntAul0gef7je0BNJ108mfF7QMH2UL2M9XtAtGwT8ZMBfEC+hDOH2wF8QOS8uQuaBXxAfu5LPYkRfEBKB3U/0hF8QEfQjWDNQXxANug4NdxRfEAcoqEL/oF8QH5us2t6jHxADN4QVVqZfEBV8ObAwbJ8QPiXmr3M1XxA6z8RRljifEBdVzB1G/J8QFbQn19W8nxAHr2GWwMCfUDWnYMVTAJ9QFbbx01HEn1AIHvUYDsifUC6THSaozF9QPrnPTJtUX1AV24fi49TfUCMw9e7qWF9QGaZaBMajH1A+pcafFiUfUB4JdQ11qN9QND43KQxqX1ADeGqqzHDfUDcLdbN1+J9QJROpMGS9X1AeFD/+fn3fUAoPFMxhgJ+QCdoSck3H35ArkmRGkAvfkAqW+uCs1F+QI7xs7uMVX5Ayi4Mzb2EfkDVski1fId+QAbWFgIKjn5A25Os2n6ifkCVTn3Jl7J+QGaJGV9Uwn5AlMikQRHGfkBXjfQv1e9+QIzJRR/9835Afzd3Csf6fkCsXbGjHgB/QN6yOFEaBH9AHKmgebsKf0CaDPvEHwx/QJ8Vixi3cX9Aod6vsYNzf0BekpyGrIF/QK4nQERkkX9A4FMEhKmRf0AAnHDAlpN/QObFm36Tm39A4lCB516hf0BayDv8VbF/QAbShcDE0n9AznQ/grLzf0D6JgPq9PN/QAMEEwf7+39AebBY84MRgEBed5G1MBSAQKgNgn7aFoBAItS9yoIZgECVRyXNKByAQGOEEBw0HIBARMmq804mgECUOaZ5/TiAQOk2T809OYBA8iLFTkY5gECTFExr1z6AQCrVuYH3SIBA4kmGqedQgEB3QDKHFVGAQG6J7p/lWIBAiuZD4w5ZgEAWT8lkNlmAQDELRn8+YYBA5NjK2yZvgEDRfkEvBXGAQH1DVt4kd4BAF1fjEil/gEAubEIDH4+AQEyoIz1tkYBADRTMBsWWgEBqdYK0H5eAQDTYUb6Gl4BA0elv/IepgEBgSxaoB6qAQKwMJ58KroBA0GZ7Yje/gECsQLbOUsGAQI9k4OtTyYBAHNPuJBPKgEACMbfJqcyAQNdEINtYzoBAeiK/91TPgEAPPSQwLdGAQNZfxB1N0YBAkrzyBB3YgEAkdABNStmAQHCZuiFe2YBAfhuFqEXhgEA+++6t5eGAQGDDlsP36IBAWAeOckrvgEDuKaWFPfOAQEzoPW5A/4BATiFsOZECgUAaJiU6lQaBQGQZbFxAB4FAFs0tg/MMgUAUoyhnPA+BQB6qLMzzGYFAYWsJ7eMegUDw8/efNB+BQC4GvFv1IYFAQZM+GPYlgUAiPPXCNSeBQMqxMPvkLIFA0UFrseUtgUA0CtU35C+BQAiXNtq9MYFAUfBu1yc/gUBwRL4z9EWBQApYg3P4SYFA3rKUdPxNgUAU6ER4K12BQEINAo4tYYFA6lKMzYqCgUD+0Kj8A4qBQJrOMP0IjoFAXHTfaVaPgUC0/KraVJeBQDnnPhRUn4FAUTQhXQqhgUAjjL3n56GBQHhmkboOpYFAxLNskm2ogUDcUjKuBKmBQOrqvKhKr4FAS3ATYQaygUCChsrcCLaBQJbrwBdKt4FAjsDITn3RgUCKZijUfdOBQFybC/4T2YFARqJRc9H2gUD4n/YaBAmCQGTBnqEADoJA6Te04wMSgkBM+3PEBhaCQGTI05/YGIJA/qL32dcggkD0HYbJ0CiCQGzp5PmhKYJACDWmAaUtgkDsfte4pTCCQDjqa7zQMIJAbE4qL+c5gkAw0Mg87D2CQLgjWiVqdIJA4bs3tkOJgkBe0f4iRJGCQMzFJwA9mYJAcuZZW1aZgkBs+MqID6GCQEus0QM8oYJAsiIGtA+pgkBnZMuUNKmCQMwQisEIsYJAaG9b+Qa5gkDlW0Bkr/mCQHqxIeC4AoNA8kKd8HkRg0CwjPooxxWDQMkPjSJ6GYNAfkAdsnMhg0Ai/UaNDSaDQM5kkKdxKYNAyX+S0hEqg0BZeKPjGS6DQLxbkQ5sMYNAHkDp744xg0BC8eHs5IGDQId/VcPtmYNAQP5w/5T4g0BXim+r/2iEQJK+aHv+cIRA6KzmrW1yhED28y4e+HiEQP5jc4Zq2YRAJDAfeWrhhEBQI0K0YumEQP44ZN018YRAGNXaw2LxhEACrC8ANPmEQCLEhVta+YRAWj5PNDEBhUC7xkAqMQmFQFbuZg2hYYVAZEAMwaBphUASS03MmXGFQImYlo20c4VAuBO6yph5hUCm5FCrkoGFQDxvE7zfjYVAnH3tYOKRhUAoR4+P4pWFQMlinx7yqoVAfi6NGuf5hUD3Qx3L6f2FQIjvJl3oioZAYHEbAfKShkAyI6AzJrmGQCwQcD6V0oZAfktKn5rWhkC8AwlRm9qGQEq14eaRKYdAKNV3jpExh0CsxE3iizmHQGUQOlZcQYdAeGXeBIlBh0Dn2tAwx7GHQIR1q2PHuYdA0Vc2l8LBh0CbR2Oaw8mHQD6cubFQCohA1x65Q1UOiECgApzjPRaIQNlJhkxDGohA + NrgMGZxjYkA2uAwZnGNlQOJgFSPMRG5AChqGaTxicECYcdKIFDN3QH6/RlksY3hA0xNLXsRTfkC5Yb8u3IN/QKTcBSdaKoNAcJEDU0XKg0Cbu4VVkQKGQJu7hVWRwoZAxuUHWN06iEA= - + - 69JGRFolVkXCE19EgDh0RDycgkZAknBEV6KYRHqlAEcqepVE5xayRKm/kESoNdFEvIbkRNLMQ0S9oEpFed8KRYtKR0Tk/xpFvRm2RAfh1URXd79ENNNzRNJzrkQn2HFEOtIeRb7HF0f0lyJEqHmQREMjB0Z5n1ZFwIBeRY8qVkTseaVFg22ORD9RrkTrut9Eiu3VRkwzg0QsC7ZEkidlRKYMg0RjyKNFY7jHRAIlj0WvL1pEQ7QyRIngb0S4W5VEyhhqRXlpYkR60+pFkjalRFBub0Uxw2hEQi1xRGd9U0QXkPJERewsRNLMw0RME3lEBVUfRauQ5UYmR4pEEmPwRFMtu0TUifZE90kqR6ZUiUTYpKRET3U1Rvf4wkWhgdBFTmqERKAgzkX0LgZFgACERI+ihkSzNDNFA3kFRXeRQ0TMi4dF+skuRUZKqUWJ28hESHXJRMTFREWpbDNEouJPRMXsgET0wIRE/jCFRdpKv0RG285FGaRLRB8GGEWmdkNEx3qcRMUDh0a17KtEpJivRNXKAEXp44BEo0+KRP2ogUQVPQJFSvk/REJrRETNNY1EU4FjRHvgNUQRl09EhlSVRAXC2kSXs35Fpk1lRWTEgkScF41Fqv0iRx0RTEVnKW9ENYWeRKzQz0QE8tJF+VaXRXjUr0TdodNECEd2RIUqD0UV6K9EY5CJRFPrVkTTmLxEqy/MRB7bkkTMaqZEHbIwRPx9ZkS9Bi1F+vOnRF4cwkWCgpxEEheXRMJB6ETU9XpEZbPvRODKXkRKd4REAiqgREwIj0UmcFFEw/FZRJ4SokSAL1RE1mA/RrwbYkQKcAFFCJWFRCBy10R/E+JE7rlvRQUzgkbDqXNF6b2MRJP0H0WfYzxETeaqREjJjkSKqGBExHfkRDVuiUTrY8xEoReEReOrVET2bk5G6K+ERONBfUWFRaVFfavxRMn4i0Rj3q9EJsN/RMf4e0SWD1REMFOtR5gEe0QYHq9GWS54RD/Yb0SqceVE6WhFRWdEbURyQ1VEyithRBKNEEXq16ZEp3YNRVfVpEVACWZEup5VRO9DrERIX7RETri9RJ4YqUXE4ZFFkTOtRleLN0Vy0z5ES+kzRT6wckRAZDRFwdGDRFTqO0VQJ5lEqkdyRt5NSkTjmhhFb+6gRCg3+kTobDBFQCRRRPqGMUQBoFREMNVGRzUihkRslGdENQYuSMdls0XpPUhEK41qR5LuCkbJBxpFyH9ERBA3C0XH2r9EYh8URqWjaEWF4axFXCBaREs8RER0gSdFQ5WCRCDttkQcjtZEutHkRHE2oUZG419GP372RTwY1EQARNdEge+5RK8A10fHHYZE8OvKRlYYREQtdbZG7uunRVERg0bKwptEBVa5RKB+j0SEHztFzF0hRSbWS0UZxTtEiCi6ROVQQUR4pD9EzcmZRB+sE0afgDFFkq6PRA7mWUQLEnZE3fTTRNzIYkQ4cTpEBPU4Rb3KpERmfVFEFtSQRH8mBEZqCphFQC5KRvCtp0Sz9sFFIluhRHRZmERi7gBFuDFCRZhLzkQ0V7NEAPBgRH0lQERrd1NFMz03SbQMTkWmnGNEZ5clRccnPkjbgIdEUPKQRqAlr0QCCgdFJ4I6Rd3Dq0VY8eZGj9PWRIFZDEYqDT5ET3HcROhOh0TRXk1E0q42RE1OkUQCt71EYIy7RTBNQURzpoVEROWHRF+dGUdDtUlEEHmWRkB4YkXRc0xFqXS9RGyIbUUr1rxF7sYIRSMFqUSCTTRE4XhZRPWF0kcxPqRG7q3ERu0rOEVo7ERFS5pDRABFSkSmIK1FBiNcROKpoESpDa1EGgVRRPEQykTvQ7VEpLR9RDppO0ZxeLVENcctRZxSkUQGsR9G2CSyRdTHgkQDTrZEtWAERVzRSEUAqQNFeLxPRT63bUSjCHpECj3bRBRDAEUd+95E6uKBRCTjoEVVcJ5GmS1lRBppg0a0IJdFy8iJRK+ykUUuuKNF2wGGRJFAeES2Y55ETX9FRFRX8US+Rm1EYu3VR1c78ETvGuZGrrIERewTpUZ65z9FNA6TREv/okSGnEFEeJGcRJDEyUQ9REhEX1CjRLnAD0UAva5EleyGRLYSnkRYwLlEvb1SRGTLhETFqGlE5b5ZRGAFOUSbg8NEt41DRAyTgkTSi2REgqpYRBA6d0QvGddEWLs8RPRzj0SQ/2VEbQoYRfr2lES6EVRFEHRjRDyyEUXx8IxFNVBLRKYkikQc5CxG0yh8RMOPX0QfJ9REfNklRSCrJUVfw4xEETNrRAiCK0UQXDhEREuCRwdUDUdEH4pGZd2NRb6DgkT9/WpEqysbRVp/tkTZ35JEVzg/ROYZW0SB8MpExD8yRXNEkkaWfqtECSy6RYngUEXb+mREi1PuRDiOAkX+0GpEOnxRRI8mikVmwQdF6UepRGJWdkRinWBENXjpRMHMhESRuUpEUOpLRMpbWkimptRHXTVoRMerZkUr0VZE+ENLReK+gER5NmpH9MGzRJfeMkYLSLtEg+uERW5S6kTKpcVEHZTERJuSVEQtjTJGMC+aRIA6jUS1txFFfAO4RPua30TZnU9Ee1myRAy1GUaGu+JEyuuCRGDc70ScpU5EcluFRMamX0Tvt29ERx15RGGOn0XwJGBFrVxHRDuae0XgubREfztVRHCgdUTV3W1Ezn5/RapRyURMPUxEWV9URcrgPkXpT79EaDEKRa5OpkSceVNFrnyMRRysskRPpFxEmWlqRIfpZkRt1JJElu+iRBKDjkSINE9GmqV0RdN/AkUMPDVGimyNRSg3IUVEjwtFc9eURHZhZURSck9EnUk6RVWktkQ3t2xEXh7UR0ZrQ0fwUNdG5inrRHBUpEVTwtNFfJ0HRcfY90SxdZ9EUmdjRET3k0RC07NEAHzAR/IzgEQJVylHrG7BRkhw60Vpu+VFcByXRfJpkkQtFvNEhpWCRIKWvER2EXBEs/J/RF7GtUXOlQpFOf2ORNzK5EQpSQtHnDd4RgPOK0Ys4GNFZZleRYOhjkRICKpEV8ZfRA8NgES2t8xGqxhkRiwE3kW+CkBEEdBMRaxDhETvI4pGuZEdRowdgUULOCJFNps4RUB8/kQuP4dF1AnZRPWujERz44ZFezLuRPJGoUQUHRtGPvmuRWNhg0XLul9EupGiRCokykUipYpFXK8rRStDX0QAZMtEQDrERCAgRUW0SQlF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - fDMV/3jAckDuw73oDMFyQD7raettwXJAqk1dCVPCckAEhtGEpsJyQPxyqS/mwnJAuqbFLzzDckDC+bN0w8RyQEOLCw1bxXJANEnpwUPSckBUBpFuR9NyQHIparLP03JAaNlviGLUckDSAxIFz99yQARchye54HJA6tltR03hckDSQa7yUOJyQCAzfR6P4nJAzfJiZyXjckBUPsd9TvFyQLh91+LJ8XJAG1s7URPzckAIfZvJufNyQKyYZzAQ9HJAAwE/caL0ckDAt/YGw/9yQIbFFxhjAHNAJC2E0PkAc0DQ5fnESgFzQEBD/yGNAXNAiOd14zoCc0CWtth30AJzQGSWvdz6A3NAaH/oYiYFc0CcZv4NHBFzQGCYiI36EXNA8FRjSAYSc0A6k1TUjhJzQG6TUb+8EnNAGmC8bPkTc0Cvy5SqThRzQAsNWzf1F3NA/NjNZ1Adc0BGLs9FeR9zQG0v0EqkIHNAk9fcXDkhc0C5MXQoZCFzQKIuqXPkIXNAS+yBZ3wic0DYvhmMDyNzQCDzbwEKJHNAaNWQZM8kc0A0NgtwRzFzQJD3JUEhMnNA7pX5Ac8yc0DqhgUXNzRzQNBqvzO5P3NAxWjp0+NAc0AyXEEZeUFzQOF9PEUkQnNATeQO63pEc0DUqzHfQlNzQBROclejU3NAJgr8QuNTc0CoNykbeFRzQBL9QkcPVXNAnORKd4tgc0C3KEkBHmJzQMK+yg9qYnNA9hwupDpjc0BGGI78zWNzQAtngUZVcnNAkLCkA7l0c0CAsaj5THVzQJJAsuBqdnNAtpK0V3mAc0DqHXmCpIBzQLUZzXgMgXNA3ADwhV2Cc0D6fwRuiJBzQEYLKXaPkXNAIod/r9SRc0Dr/xxdTZJzQHTM/crNk3NA6oddj2OUc0AwlNG695RzQG5XNU+4oHNAIOI4hU2hc0D+n+uCrKFzQMhWcOlaonNAYnj52uaic0C6QDsVBaVzQDJwKz3SrnNAiOFn2/Syc0Dq+VRNt7NzQCQrjf8MtHNAABuziKK0c0D5N4hO+cBzQGuoDvvTwXNAaOzN6M7Cc0BFMGHmJsNzQJxvr3Nkw3NAACm8XybFc0AGTuUHP8tzQCEVsvfQ0XNA2db14LnSc0C8MvwXMdNzQPJZ2Lj103NAiFQrruHUc0AI+lT4ouBzQJoJch844XNAMjYH2dvhc0AVnDA3EONzQDDlJVhH8XNAh/U2Ulbxc0AONWC+t/JzQJxNcMdi83NAklh06zb0c0DdoQTLjPRzQCgiUw3kAHRAhF4QHnkBdECkjwZApQF0QCr0XLK5AnRAqItY0kQEdEBSc3BRdhF0QIrr3ICJEXRArlkKZk0TdEBA5vYTTiB0QOBR/OghIXRAHG/c0bYhdEC4+ZVyXCN0QPb9edxSMHRAdlkRt7oydED87NFHU0B0QLq7mlLJQXRAhhFGI01PdEC809v10FF0QGX7ybT3VHRASGsFzotVdEDs5YgduGB0QKF9ImMIYnRAcDmkh1FidED8bcpmvGN0QNVTV0NPZHRARNbmKCJwdEDSTz+ayHB0QDp4DVFBcXRApNfR6s9xdEDfyshuOXN0QAZoAqGkdHRAyKkM2zZ1dEB8DkBF94B0QEdD7rlOgXRAtr/HxJOCdEAMAiPeFpB0QBIZmBFqkHRA5vDvHb6SdEBuR0UmoqB0QA6sJFPPoHRAsJEcNhCjdECmJZqCCrB0QEBkqv5QwHRAVJYzHOLAdECjPnzoecF0QHBTHAvtwXRAIH+yHXjEdECeEmJKusR0QI0orjj8znRAMsu3pkDSdEDa74j04dN0QPz78a7O1HRAUGTQJ5HgdEA6YOGxueF0QIW7xEsf4nRA7s3f/03idECheZd/TuV0QN66s9eL83RAf5KdfqT0dECouzKOYwF1QAjxjOFdAnVAsrYZb0sLdUBGVSroaxJ1QKsuVLIjFHVA+gdHz50idUCdeJwt7CJ1QGiIoRvzKnVAj3Vw7qoydUCUixz6yzV1QA62sJazQXVA4OKor91CdUByY7kN5E91QBhYf0ROVHVA0bEAJndVdUAYhB7YomB1QHNFeIU3YXVAHOfB19JidUBBamQNZmN1QK21Vph3cnVATcKhh410dUALn8T1eIF1QChsCqCtgXVA6fEqiL6CdUCbtblZp4N1QJh+bqeahHVAuQTWRbWTdUC28Ui3O5h1QKo3uA+bnXVArO00l5GgdUDuy4ARuaF1QKSrgcqUsHVACUXwAJ+xdUBb7ZqdAbN1QKK5QoEbs3VANk/M+wi7dUB4fg7KZMF1QDhNWff4wXVAQmYG7w3DdUB2pvGcy9N1QCB6SbTm33VAhgH2zA7hdUB6inySCOJ1QNQsb3nP83VAtmE0OEgCdkBs8LZd0QN2QKoTSQxVEnZAsu04Kk0UdkAxluE5iSJ2QHzIVTKQJHZAQqEFdUsrdkAAvq7kHzF2QMWltDtQM3ZAS/b5qh1BdkBGlwpoEUN2QJ6FCRR5RHZAanoMZPtOdkCnWYIrylB2QK0K8ZMSUXZAV3KFiGVTdkC8w0SFhVR2QJvK9srNVHZAKv+IBM9idkCges10+2J2QFV3kTK2Y3ZAwf+UsNtkdkBqmyrqkYN2QGVLvb/2knZAX6TYBJ6TdkAs2rVFTJV2QKxiex3+mnZAp9FCMhChdkBcUAomBKN2QLN/pjd2o3ZAOBBBtQmrdkCI31LyQKt2QNZO4yTCsnZAhBiNm0izdkDl21HheLN2QJ5lef4MtHZA9qdMG9S4dkD612D9LL52QKxsuMx1wHZAnspIbL7AdkDscknOzs52QOjr8oT43nZAxV5dX/LhdkD17xDQkPN2QEIkJ2YzAndAhJfPDVENd0B46sFZARJ3QB52EmCqEndArnKEKAcYd0ACjyc3DyJ3QK2XM7F1IndA+62DBLokd0BiMssYpTN3QLAb9h8NNXdAnjbPXCY+d0Dmck00nUF3QP5mb348QndAdtUfjupCd0DapyckG0V3QNBnHhNKUXdApy/kEJNRd0AZW4ueKVV3QPqNGllGYXdAtGBOcI9hd0CYygFwoWF3QMaL43Y8Y3dAQeAcuNBjd0B64xszJ293QBziiyk9cXdAKHv3VpBxd0CIH6AceIJ3QM4qAHZ6g3dAVZJ+zUyUd0CqQbPdZ513QL6ok2nAondACI8zY+PQd0BqCYRh6+B3QEgSvCA18ndA+RmN0FDyd0DwMSGKMwN4QPCl7j1uInhAQu34vIsjeEAI5kphDEJ4QK6dY18RRHhAVH+dd3pFeEAszPAFy1F4QOfFh8mUUnhAFpl9vodVeECQJ4bI7Vd4QCCxP0D5YHhADHGtEbdheEApcK+YIWJ4QDIo8hy3YnhArvMOCgFjeEAVyyUnUXR4QJp3HtqLdHhA3mZqM7x0eEDE16URz3R4QMTkpL8JdXhAtj9pkRV1eECqBxKRNnt4QEbRFQGlgXhAfEiNKSaDeEC6JP4ZmoR4QG54KreYkXhA0p8QnqiUeEA8Ti3fuaR4QOHlICHNwHhApmKpGPbBeEAGinQMt9R4QCwuktPH5HhAdnxA+QL0eEASEd0NjfV4QAKFBjffAnlAGCr3D1UDeUDcl2dOmQV5QGTn82/mCnlAfk74bdASeUAWsXVL7hJ5QClw7Ae2InlAjLbFW70jeUCQuygO+EJ5QDLJTyn8Q3lAkINjWeRQeUDKl9UOzlR5QJouGtHbZHlAvs38rNZyeUBOrS8GcY15QEqdfPrKknlAoCzl2A+YeUB4HfszJ5h5QJ7PuZl/nXlAzEcJkMCyeUCuZ1XW0MJ5QFrNDIhD1HlAniV6Cc3VeUD2d90SvuJ5QGyopBRR5HlAu2BnOjcjekCFaBOKDDV6QC0DMZznQ3pAPteMlRpFekAgnMVJzkt6QP/QncH0U3pAM4becShVekCWwF1XjHJ6QA2H/XuhlHpAySHBRw22ekCQ7rlvMcN6QObOkuVDznpAZ3te4djTekAWFCWDDuR6QBjkP6185HpAvtkJDTjuekDk7srrKg57QAglhapMFXtAHnw9c5Aje0D36txPWSV7QAwOUy1NK3tA3vd40A9Ae0DAOLx+mEh7QKP4XG/wTXtA9qUj6zlOe0DMUdt9XlJ7QL6NT5hPU3tAeEBM7yKVe0AuY+m/O557QLi3DBGYo3tAioztXWG7e0Ds4xs64+N7QHSk/hv/43tAX91d2pbxe0DMXltEjPV7QBZ+brHZAXxAvU1bXfMBfEDsCFI8mgV8QDYcmGP+D3xAlMw3yYkRfEDqWgGW0hF8QIXrovimFXxAht1zZ81BfED7GVLZ2VF8QLpuI3UNYnxApEVlsDx8fECKhV4odox8QFHJKSTCsnxAOIzN98vVfED1yEPwV+J8QEL3MmsY8nxA6LxzBFXyfECcHJy2AAJ9QIaEaIRLAn1AblVnWEYSfUC4T3p0OyJ9QKB89AmgMX1AlSaeo4xTfUBTYU7KqWF9QNowaXJwkn1AmloImViUfUDeq+WG1qN9QOo0MLEvqX1AEBsovinDfUCy2+PUauB9QAsr02Xa4n1AtjNgnZD1fUBwDPN3+Pd9QF4uiTg/P35AKa1dhIxVfkDk15ZISWx+QN2g6Y5GjH5AeCmZ9VaMfkAwpg3fzY9+QKzO9ruXsn5A+tnXeVbCfkDgKItz1O9+QKumJuZJ9H5APi3tEsX6fkBColOyHgB/QAJI5jAbBH9A5uv2YCEMf0Agwr5m5R9/QEJ5Eya4cX9ApJzR96+Bf0AURIeAY5F/QJB4u9yrkX9AnPULrl6hf0BCS5ktn6N/QNtYgApWsX9AfRruosHSf0BZjDjt9PN/QEqNxduDEYBAW5ITMTAUgEC0hTgG2xaAQITyCxuEGYBAdv+PJjgcgECAwdHlTSaAQO1vujAcLYBAGz9N6uo3gEB8rQQwKjyAQF6rLOjqP4BAaHhdd+1IgEDGTwH651CAQKgoKb4UUYBAjnJ9nOpYgEBwMxq5DlmAQMHmuEI2WYBA6YxZAQthgECwzOR5PmGAQPDAzeYpb4BAuvMAogRxgEARx1+lHo+AQB+TGI9tkYBAIgCvj4WSgEC4bT4xhqmAQFpZeQkGqoBAyoV+ThWvgEBiMf+ser2AQG4uz686wYBA2Ry7alLBgEB2EAzEEMaAQFQkvJlTyYBAjA4HUKnMgEBMWXQ/U8+AQPLA0bRM0YBAsnm1EmDRgEBDVYEBHNiAQHwO+MtK2YBA9hIX50ThgEACnJzE5eGAQE6XAsP26IBA2N9Tp0rvgEBmtaoCPfOAQFeB2fU//4BAOruv/pECgUCqsEp0QAeBQFbHT/TiDIFA3sH3rT0PgUDLbQmT8xyBQIbXpVk0H4FA1leJ5fMhgUDfHi6jNCeBQHSwLIjvK4FATPhVUvQtgUCzfMAs7S6BQFhSkSO9MYFATBO7KfRFgUCSpSUa90mBQNxch2cqXYFAYdGbu1WPgUAK6m2HVZeBQOTCyyYKoYFA9GmBCuihgUCsMtsvDqWBQPWdHD9tqIFAuYVPD0qvgUDh6pbVBrKBQIUaLfgJtoFAlCgSwEq3gUC4mY37KcyBQKo4GVvIzoFANGQFAwDPgUDLusfMgtGBQFInFYkT2YFAVUiNlSD0gUCIzGBPAwmCQFJAkkkADoJAzIxRqQQSgkAlwUFP9xWCQBpxLcHYGIJAu2TlONcggkB7OqfI0SiCQGxAI8OhKYJA4he6mKEtgkBm4u+PpDCCQCO/eSbmOYJAkm8+Wuo9gkAIEHWAoGeCQKYxiFNDiYJAkfLQYq2LgkDEPzJ9RJGCQIzscI3WloJAkihqhD2ZgkBgxWRQVpmCQD4jgDQOoYJAIHfElzuhgkCEYVrVDamCQBCYr1s0qYJAVoRX9kupgkDgDE0ZCLGCQFQ+nuQvsYJAoGEp1P76gkBfZvuHuAKDQFdIvtPkDoNA1+VVjnkRg0Bs93sYyBWDQO7zs756GYNAmlFGgXMhg0B7OYOajyGDQHDJ/1sOJoNAZIPU7XIpg0DYm5CNECqDQG/UOrBqMYNA31PoOJMxg0A/88RlHjmDQAgDWytoOYNAZg5IsZT4g0BWnI0TAGmEQH+Yp2f+cIRA/t9g5mhyhEBB1ZJ9+HiEQI5/ZUtvooRA3KtmOWrZhEA7g2/iauGEQF+W0YRj6YRA5+7VXDXxhEAa7CueY/GEQBqyYqQ5+YRAsGMYyVv5hEDvD68HLwGFQLBIVw9eAYVAnqzjOqBhhUAHFKpMoGmFQKZtHLyZcYVA9DAGMZl5hUCWBUWh3o2FQAdrwg3ikYVALgQ69OKVhUAAzTA22pmFQMwTI0PyqoVA+N6dR/myhUBg3giJ5/mFQFx8Eubr/YVAynNcc+iKhkCmyYON7pKGQHKMFCwouYZAQr8+DCfBhkA+sHJ4k9KGQN7dXm2X1oZAiL49qZAph0Agpx60kTGHQCq0k2+KOYdASqt9hFxBh0Ab12iPiUGHQELn5nSESYdAvrdK+T5dh0DggJocx7GHQAhWUZnHuYdAmEXLPcDBh0BntTcFvsmHQCgW1TVUDohAWBM0wj0WiEA8jFQPQhqIQCPDealAHohA/o2dNONdiEA= + EnhTK8ihZUAoFld2zuNlQPd5qXJSAXJAFOkHjz8DckBPi4Bk7yN5QGsfamJCAnpA02DxG3mRgEBhmCCqb5KAQNOP30UlGoRAWHeg2KYqhEDnn/7N0vKFQA== - + - bd4xRGQ6k0R+sl1FPSBtRCRKlUS/81hE/fWLRv6Y8kQ9T5pEaDoJR2e0zUSYWVxEJZV/RMe32USURupEqY2ERGSrdkUDns9EodvARM/sNUTnCYJF0FpSRD8WTEQ4gWtE9FADRR2y0EQJw0xEYMwGRUmtnUSc6MlEoqiDRLhw30TOHxdHGMxWRDJAYkQDyFtESRFPRFUiUkRJAhZGKlKURag4qETdMUlFC8K4RDJwtUTbxyNF83DrRhkSgkRuJJpENIR+RGd0zETeTXVEqxWWRWRSBEVRgZZER+mKRd3wp0RpzHBEYMjxRDWqlkX+mWpE4SUURr2PtUSZS4VFbW9nRP/9eESU1nVEXOOLRNCSoUTV6WVEOBMDRROmgkQE8ldEfOd2RO7PeEW3joZEenTzRs45rUQTft9ErC7URPXeRUVqhE1EtqdbRP+PIEfOLUpE+27PRI7sZEY43gNGBcTXRMsFSER36sBFNW/YRRkWIUW9Q0lECLaFROsKRUVg1BRFCao8RD+C9kQI3yFGT3BJRShMeEXFZe1EmhheRHctLEXA2clF9eanRDTON0T0sIpE1xCURfJbz0SHcddFhiaQRDw/jES8hIdEWxRFRPydQkSY1opEo4Y6RT25iUTZvrREZbSBRoE2HUX0Q3lEQKF5RDRyY0R1e75EkfNFReUxT0RDvoxE3IqxREvVh0Tl5IFEHntWRJxNVUQQL0tEf0ppRPMMY0Rt24dEZqO+RPzVq0WqaZpF34urRIU2d0TIz4VEk8iSRSLGhkRaiBFHX4tdRMRuvkXbLjpENLWTRNlFBEU0mKdFRNR2REp7okXIbEREkrRIRMWykET6wrxEfGfuRPxjCEX43ZtENnZcRLH5BEWpCHREHHiiRMW1j0QQw+hEkPBqRqQmu0TBo8hEMrZVRHY0y0T+S3xEuqPbRPBam0TuFZBFAgdMRNgypURM6nlGM+4KRUg8PkVW8BpF0RefRaZV2UbwV+FFL0dhRKdCPUURtYVE7142RH8nbEQIIpdEO/rVREowgUQMPdZEmWVnRGpXmEV9cppEAy4hRtw800RtgYdFVlJpRFgH20XLjtJE8BI+RGrjmEQkTkRE37owRKHlBEVr2I5EtZ9qRHYM+EeSgoBEO7odR8HaikTY9vlEKhXxRYevXES5e6tEBq2hRFSjKUUxIEpEWlK9RdymY0TpZ0tEP+8ORV9TykSMpcZFJg21RSQO2kYrSzRFyi+tRYXiqERi8lFFSvJkRIZfVkTwnIdFOmSoRI+/SUSk5k1GvBgBRdetVUTWaNVEP8wnRd+mS0e9NRpI8iC6RdIJRUQnwjNHKm9LRGVHBkYjJXhE/YJHROdZ9URvYhNFdtSSRPfDP0ZQJJNFgdu2RYJnrETJiHBEug3MRAk7iUW0oo9EL7xlREhqWUSESAZFjPukRv1sVUZjxyBGed+hRNO0E0U/HwBFvCVGRJJ0zERGe8ZHU1UFRSXx20a+PoZEIrcARSDbskZq94RFFtKYRinnCEV5DY9EwNs2RTzmf0TzA4NFa98qRS4FeUVkV2REBis4RCdBrkTuWJ5E9QHCREvcIkaeCDNF4flxRAM6ZkSWWEFEpZjTRP/+RESfYRdFlS6DRM8Pu0SBK+pEk7PxRRlJi0UrG2BGxl6wROolI0bbkj1FIjg7RXc5n0RUg0NE+FGHRC98hUVN1SlJ2YBTRbO5C0VC3nVEs1VzROdm0UQ+hUNFHHYwRNONJEiPrQdFmUVyRotTWURGyQxFVeCzRJgci0UoCKpEti5XRSxcsEUfAfhGX/uDRInE4EQpIg9GAJ90RAnEhkRGmz5E8/62RBCwwkTH1cxExuxnRBkKQkUbGYxEi5yhRCp8KEe8qI1Gey0ARUNImEViXUREyb9ERTI5QkRZ1pxFh0DORPZ5g0Qohh1FPUbLRAC7xEc6A+NGLH2/RrQ5gER8hJVFoF8uRVnJZkQrI4hE/oHLRUY1XERLwKFEkOV4RDhTJ0VUFGZEq2QMRcTh2UQ7gR5GQKiDRLABFUVltKlESwlyRDpMMEYkW4xF8AqRRLyZkkTiqKhEYkOFRWhtzkRSx4JEj8BURToNmUSLp5xEZmeeRUd7fEYZwUpG9DI5ReerpEUzG1hEWNihRJkQtEUEn3REfQHTReEnj0QN/PNEzxdpRLRSEkUhmMNEV65SRFbxzkc3A/5EJ7WxRvNLBkWYHp1GzeCVRcgUy0RsXLVEToHfREDq3EQhEz1E6Lx4RBUNqUQkeO9EsQCvRK98i0QUnUpE3Dh2RFZbhUR/B4hEBCI9RbNZa0QSJzZEKtA0RDdwQUTlIPtEuy9qRKfLl0T5XmREdskyRX74tUSoB9xFKJtcReupgEQrJLtFGr7ERIviKEZpGaBETy9hRRZOU0SKLx1FBxjnRMmy20QgaVxHiLMjRyLeUUbof/BF4WyqRNMJiEToW2tECSZ3RFyN00TSwYxELU7TRN18V0U446xGtQGUROT6AUZnyYZFUfuFRPu3U0QICQtF2EO2RIvEbUX7GK5EsS1qRMjqH0UWYaFEizGEREYUn0SACctEJYCOSFRNaEQ1QAZInwDjRL4nR0T0TpVHcwYqRQn+20SqDIhGF0HMRV8e1ETbScdEoNy/RBwAkETUNkRGySqERE19REUXx2lEzF8VRfIBm0TzJjVGE6vaRCrIHkULZaNEfcnIRJXNJERI2K1EWsOyRVGHGkWLuztF9j24RVhq8UTjyH9FQv8KRWfeuUSmva5Eu4R6RdLjeEXjPQhFRpFbRHYytUTbOqdEczVXRLMrbUTv7eJEoMFARDr/BUXjG01GqxSXRWqshkTunVBGcFuiRfwIaEXnjlRFxXG6RG1zhUR9tPNEOCIWRRW/tUSWD0VIPnRVROIa1EdvvoZEtyRfR+6VZ0UyeZZFBwN+Rq0WEUXw8aZF1UAFRZgVXUQRH0VEbRRNRE2PpETL7j1ExKMvSDl4G0XRksBHUuFTRwaU0USLWwJG3B10RiPSmEUFEp1FmTmURIEGwERVWnlEARGlRLhHqEVvGx5FBOpdRJTV9kRCJpJEbwpNR/cO0UbH9oBGuhJoRR3DvEWeeY5EX5XvRMOFXEQ3VF9EMFMgR+yAn0as4k5GbfeSRZ6yskYVaD1Gwz6QRX+O0EQiBJ1FlH73REw7HkWcBblEOwNVRSPz70SDzvdEnLyFRO8mUkUYUQpFyMNGRu7/40WSL59F26iZRLvz90RpfG5Ei/VkRCnf+UV2zIhFP45HRXSvxETd6OlER+aYRf52YEVDHZxElUOCRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - kpG05HfAckD2Z2+lDMFyQKD4BcdvwXJANskDauLCckDwa6sePMNyQGT/mKDExHJAvkNUqFrFckA7rkuoQ9JyQLo00blI03JA/gliO3bTckD4Yzm0zt9yQFaINIG54HJAgGweYE3hckDeNn6TUOJyQKo8wh2Q4nJAs5c8TyTjckDKkfo35eRyQGD+yDzL8XJASNpbZ/TxckCWKhzWtPNyQNs8JHKi9HJA2XgWbcP/ckBagasyZABzQLIDkzP6AHNANq3DJk0Bc0AO67nHjQFzQPrM4lA5AnNAVvJKh9ECc0AM+0/e+gNzQG+8VSeMBHNAchKd+woSc0Bl4dmoeBJzQJGHMJO8EnNAsv3rZvgTc0DyiObWBRRzQHEP/sb1F3NAOAyLyVEdc0C6b/MueR9zQIP9pkKjIHNA454FZTkhc0CYvxuuYyFzQPq5sNbmIXNAgI4j68gic0Bqd2JEECNzQCAdpTA5JHNAbtQaQc8kc0BMNkhPRzFzQAY1L1lYMXNA8mv0lCEyc0A4vquezzJzQLNLsMcNM3NA1GjcSdYzc0B8bthr+DNzQFbiank3NHNAAAoYTrk/c0Ce3NYNQkBzQICGF2biQHNAlEVgc3lBc0CxjHJtJUJzQElFcWt6RHNAMOW0fQ9Sc0Cgkv/gQVNzQCIvlEqjU3NAotb1N4NUc0BmpRpEjGBzQNZEDDYeYnNAegwEIDpjc0BkONDdzWNzQIwi2NFRcnNAVBjrmLZ0c0D4/LJPTHVzQIk/nuB4gHNAMXI+bqaAc0C6txYqDYFzQCDi3fhdgnNAICfBcoaQc0DUXLc6TZJzQDpqIZvPk3NAmM0wg2SUc0DckZ+c95RzQI8tk6e4oHNAnhmkXOagc0BOWJ6JTaFzQBhhlY9aonNAeGGYWZGic0D14dcG5qJzQGwnQM0oo3NAzVWJNQalc0BWlrvKe6VzQKxTsKnHsHNAs169PNqwc0AYJccogLFzQAziRVe2s3NAJpOuMwy0c0CM7Wdt+cBzQBK+AOnTwXNA7Lo63M/Cc0DadnO9JsNzQNIFZNtkw3NAbsHZZT/Lc0C+G1Z80NFzQEg1VQbm0XNABMYr07vSc0CgY2MQNtNzQM6Wm4z303NAW7N+qOLUc0DuQUMVpOBzQFOOrDs44XNA3jYwsmXhc0ChrpVUi+FzQIhM9unc4XNAqAYiTRHjc0CuUQUH7uRzQBFke+Jg83NAu9jOSzf0c0D6SSQgvP9zQHRGeGflAHRA/OHoG3kBdECSQJrapQF0QFYePkeJEXRAdI7/7UwTdEBLwE4adxR0QBTp95xLIHRAOss4WSQhdEDy2WNXuCF0QNDQFRhTMHRA7q9AuMhBdEAkGjTYOEN0QCyerEd5Q3RAOmMZHWJUdEC6S9Z/91R0QM0OkG+MVXRAwDsIxbhgdEAMd55P5GB0QGwNDDRNYXRAoCQKGAhidEDAouhrD2R0QMhrcGBPZHRAiLsCfyJwdECYyjZQQXF0QKZkGOY5c3RASN6MHKF0dECYT/JON3V0QI/Kx9ZngHRAzKKqTviAdEAmZztJToF0QJUhRvIVkHRAjIpwdmuQdECG+rqdz6B0QNDCYo43oXRA9C+Ls86hdEAGUcyiuqJ0QKVdx4cPo3RALFy22NKjdEB8MInyCLB0QJwq5ILBsHRAB2JR9CCydEB2UCMf/bJ0QEceoIp2wXRAsEl3TbjEdEDMrmOV/M50QGxoNPtA0nRAC7Hot9/TdECeR8gwedR0QGUYdZzO1HRAeBZfcLnhdEBC/Ir9TeJ0QCzuwh9P5XRA2t2mzYzzdEDiSWZ9zQB1QK300ApiAXVAEgg+EF0CdUBmMtjTmgN1QP5SRNX5BHVAGlFHakoLdUAwyyNmahJ1QARK8UYkFHVAEJgGK54idUCKN2Ts6yJ1QO5wvI7yKnVAVuYoXcw1dUBSkVC7s0F1QOiH+XOPQnVAmJLs9ddFdUD80z6v4091QCn2AFb4T3VAKAPFfX5RdUCUIDXJTlR1QBZK6Np3VXVA8msL8DdhdUBIhy+V82F1QOAOhRVlY3VA+suIGHhydUBOiOO/jXR1QITk0vZOgHVAmtINDXiBdUCsTW6nrYF1QD3R+QWmg3VAwlRgxZuEdUAYQNb5vZF1QOBYQzGpknVA+D5VgLWTdUBs+rttPph1QECzmToioXVA8I/k6LihdUBY1Xolfq91QP/n31MBs3VAxlLKejKzdUDuuVT4ebN1QHO5trHFtHVAeI2+4Ai7dUBqA8DsY8F1QDSDqdL4wXVA4ID/xA7DdUAUMipFB9J1QGDBzt/L03VA5L6rOQ7hdUDKFaOiB+J1QBBvSXQ55XVA/1Yqrg/zdUB8qWUlgfN1QErMfnQmAHZAxNBK1EgCdkCJhC9H0gN2QPS/hYFVEnZALN7pLuATdkBmXVaoDBZ2QPDz3lyIInZAlO7wZZAkdkA1CVpRSyt2QFhqiH0fMXZAhIgO41AzdkC0fgfSnjR2QJ2bdPIdQXZAKpa8yxNDdkAMGcZMekR2QJ6xhXcSUXZABBvCiGVTdkC+2VxhzVR2QFZkhD3LYnZAvJaekrljdkBo/Qz82mR2QOL+rgPHcnZAHG2VmWeCdkCw3f/jkYN2QEW9lKz2knZAWCaCuZ6TdkD+K2Eh/pp2QAQ2HoEDo3ZAXG7amEGrdkA6d72jwbJ2QCVBoCl5s3ZAJoBPJw20dkBuzIgpd7R2QOhg9xextHZA+rO7yNO4dkBerDHULL52QBZCo37AwHZAGC9ENxnEdkBuLLOhMcV2QCy2XJTOznZAbwu3M9nSdkBnfrHU8OF2QP8AXeqR83ZAirhDDjMCd0Df2cGcUA13QLRSlRwBEndAfus9ZqkSd0BFGfIgNxN3QKY5UJcGGHdAX3sp8w4id0BE4p3TdCJ3QCugNskMNXdAvOkMZiY+d0B7QOs3nUF3QGgzSIhAQndAxMN+N+dCd0ByAc1kf0N3QG5gMF0bRXdAPs9yr9VId0A3Q7KOS1F3QA3fKlySUXdAYxtkHe9Sd0B/Mrz0K1V3QIBhaYCOYXdAaEjc+Txjd0DpZATh0WN3QL4eH5Imb3dAiLawpYBxd0Ay1zskkXR3QEbWv3J4gndAqEtci3uDd0DEcjrzCJJ3QE3ZocRMlHdAAtwbE2idd0DUC5GHxKJ3QGA48rYZqHdACD7sU5u0d0CMQMl0UPJ3QDSG4Ls4A3hA0nk87U0VeEAUSq5XbyJ4QOfAxGsLQnhANCLNUX1DeEAX2miJFER4QHDg9MV6RXhAKkMrEstReEAvayoOlVJ4QBVvJOuEVXhATAwSt+9XeEDBbYVi+WB4QIQd5hO3YXhA7OdMkrhieEDf+4plUnR4QN6zhUxddHhA+yfPlIt0eEAsfhUYr3R4QKfuBn3BdHhAkDRquuZ0eEDSPLQBOXt4QCLNPe6igXhAJqHYYT2DeEAwaZVfmYR4QMbLcG6YkXhAwahrlbGReEBG0Dx7p5R4QBrN+ID1wXhAIItNZwbFeEAGbbz8ttR4QNVgMYEB9HhAxi7w34z1eEDDnX2z3gJ5QGa4o/KZBXlAK7WO5uUKeUCRKdI71xJ5QGBfjaDsEnlAvsCHfbwjeUBZ0ryDikJ5QFeAHt76QnlAOmQWJ/xDeUCE1AdJ4lB5QLTsgtLLVHlAYIz2zVdbeUCO4GiZ2WR5QNRokrXWcnlAWeQDxEVzeUCJW9AHcY15QG7qtFDKknlAIJsTqxGYeUCUau5JKph5QMzsJ4ZtnXlAALoLlsGyeUCSNDYXQtR5QL7k273L1XlAFAMKwU7keUARgAXH+wJ6QK3NLQ74BXpAqmNthTkjekB2m2AeDDV6QCi1bZrnQ3pAUeYXPRpFekD0GaWQz0t6QJ4pZab0U3pAgmexEipVekBwaIoYzmN6QJo51L42bXpAbzDbxY9yekA6qudUDLZ6QKqs/qgaxnpA/yGlhELOekAe8w3YOeN6QBTVbuIL5HpAPhHeSDXuekBs9rgUUQF7QEw7p14aBHtAZGLldCsOe0Dgz+cPTRV7QFMIfouSI3tA4GTKS1ole0DliszFSSt7QPwaHQXEM3tADSu1rJdIe0AAZBSP8k17QF+xV8silXtAVRUm35Sje0A2YuND8ah7QAYMbuVhu3tACviDtnnGe0D1WWQcstF7QIZxXRsW0ntA4iEBUgHke0Bnl5/dlfF7QMrZ2pmM9XtA9L4q0JIBfECAEU062QF8QOLJdjmZBXxAC6OXbP4PfEAIQf9mjBF8QEXWXYbQEXxA5CVSzKkVfEBKqkCW5CF8QKKZ0fLMQXxA2C4B9dpRfECMlcqwDWJ8QODBzIMCc3xARgyNFLOefECy0xsg+6R8QNbbWW2/snxA8N9NcbPSfEBFC5Fxy9V8QKByPZ5X4nxAq6W8vhTyfEBILMd8VPJ8QFjU2sgAAn1AmPTIB0wCfUDivEYbABJ9QIyPzvVEEn1AULkspjwifUCNqp4SmzF9QC7W/7SRU31A2OfMoKphfUBQONFiV5R9QN4cp37Xo31AxF3tZDOpfUA66kmQLcN9QC/PosHZ4n1A0t7rIWDzfUAzjF2fkfV9QABPJW05H35AD0MPHz0vfkDRKhoOi1V+QJq1NrfFV35APH0iv5JxfkAJczI0zHx+QFt9bt6Sin5AP6JBg46wfkB5hnmalrJ+QMEM1U4Vtn5AndCzjc/vfkAqMfr1+fN+QPk50wDG+n5AgpOBZiAAf0DWwESwGQR/QHATorQgDH9Apni4vSkUf0D/XbFYuHF/QD4a1PSxgX9APKCutKWDf0A+/0gWY5F/QFZtptCnkX9Agn3jDJWTf0A+FkgolJt/QDOwruFdoX9A3LXDslWxf0A8W0JrUMF/QOJDS+zz839AwjeAroMRgECsIGe3/RKAQL5rty8wFIBAENtvRtoWgEDKRdyRgxmAQIUce/4xHIBApaZeEespgEDiYRe4+jiAQLaUcFUrPIBAcAoJ3vVIgEAkSLx551CAQNZN6xQUUYBANoCM+edYgEChwvBuDlmAQEz01iY2WYBAmITs1ddZgEBcN2ocKm+AQEaFAzEEcYBArA4iHQh1gEB8hdvaHo+AQAKCXzmGqYBAtzYW7waqgEAxhXp0UsGAQOLUd3NTyYBANyDgfajMgEDFrYoTV8+AQNRZDawt0YBAKCrQdUzRgEBaJxZcYdGAQEcMb28C0oBAiz2AChzYgEC4ep7NSdmAQOJPcshE4YBAtI3+79HhgED3aS5JMOaAQH4Ckkr36IBAXs7HqUHpgEAyMcK2S++AQGaFZNM+84BANY51yz//gEDgozRaQAeBQHPx7IY+D4FAviheJTQfgUCAK34QMyeBQDlTVwfuLYFAyJ1tL70xgUDky1899EWBQLO1KYv3SYFAKgi7Re9NgUCFfMAyXFiBQDl7jTwpXYFANE4Cdi1hgUA2JOGrX3+BQIw9cNVVj4FA1Jydf1aXgUCI7rjiUp+BQKgOnh0LoYFABJNWyeehgUDlz4ZabaiBQGir+XbtqYFAW+TZBUqvgUAuGdI9abCBQKKb/CIGsoFA4/MygQi2gUAcT0ZRTreBQGRFELnIzoFAxOTlyH3TgUDWZcZEE9mBQJCbFFoX3YFAWDt3R7LygUAw5R+tAwmCQMQwAncADoJAxHBhXwQSgkC1j4UYBRaCQBRabEjYGIJAaI8BAE4agkDrAqam1iCCQG7GM4zRKIJAEjgVXaIpgkAgFT8ioy2CQNYMiQPQMIJAp55d1ec5gkCModvN6j2CQJh1Z20GWoJAWN5lJEOJgkCoxaCIQ5GCQBb3qF88mYJAdPZQ5Q6hgkBOetRWO6GCQEWEgH8MqYJAMgyCNDSpgkBeWcU7abCCQATvFrwHsYJA+HgdEq35gkAF0V5OuAKDQO51lbjkDoNA680ce3kRg0DeEOolehmDQMLOBs9yIYNAYH8rXYshg0CAql23DCaDQJjaKXdyKYNA2m8pgg8qg0AJa9qnajGDQFIUqBFFNINAum2HF5g5g0DqdzsJa0aDQJAUsX7jgYNAlJl5QJiNg0DJB73BlPiDQLZ20l//aIRA6g1y9P1whEAaLrhk9niEQIw9G0Nq2YRAAHSDFGrhhEAknXZrY+mEQBwFx4U28YRALteLumHxhEBM+L43NfmEQFCmVf4wAYVA/GSRWaBhhUDMlHSXoGmFQE5ygDuZcYVAy1FEfbNzhUAK1p2gl3mFQI4jJZCRgYVAKHvUot6NhUA+Iwjt4ZGFQD2LE7LllYVAuHq3xeKZhUDYG+KI8aqFQAAiQlj5soVAHAyiSOj5hUCiFSQF6IqGQJg5Ck0luYZATkCFAJbShkCKcDe/kCmHQKBrL6OQMYdAYDZ0tYs5h0ANREfTW0GHQF4WKAGMQYdAcLhAO8exh0CixOFqyLmHQFo69+DAwYdAlShj7FQOiEDaxZgVPhaIQN+Rv0ZCGohAsOPnh0MeiEA= + KBZXds7jZUDAIFw1+IJuQJ0RHYnYgnNAYG6KbtRSdkARt914yIN7QNQTS17EU35AiApdZpBKgUAuTR7WWnKDQEJdPV4IS4VA - + - EzSURJUQS0SWtIVFuPOoROdYlEaISeFEbei7RBkkDEeORstEvuCWRCreL0X+nd5EwITERH97e0UqOzVF662BROmBrER0+V9FuKfURDdxnkSeu9dEdJ4SRRJ3pUSaVyFFBveORMbOsUTM+ZBEm5a6RPWlN0dLeYJEBPq1RB9VekTImoFGBrOzRRLknEXB8xBFlJ4CRSuolkTz1CFFXov/RhKyjkRg+WxEnDmYRDPGnETj47VEEwkARitxC0W8AXVEqWRuREcIi0VQ4HJEVxSnRCzc2USaodVEMU6wRBzNkER6rPJEXNC2RUQ0xkTfMzVG4aXVROI22UT6RtJF1puURIvF8UQ/cnlE01E/RSgJqkR1jOJEtV+URG4KYkV8lQ9HL2ulRI59AkX2GgJFm8haRQp4Y0ff2I1Eg9DLRPAei0bDVEFGpVGKRBsyf0QxOgVGstaVRLPOsEWQNWpE6yAiRZPtc0TJJLREChlTRBALt0R4CJhFONE1RVZKjEQi9ThGQwGnRYnsl0UCPAdFVbL5RAkRI0aNg3BEWtB9RHrCX0SaENpEvSS5Re73qkQldwRGDgreRATksERkfrtEzwuYRMp5mUQa75RE0uoaRYGNgkQ/QalETPShRpCkGkXQaMhEAAhcRdZFyESsuepE3c92RP9TQUU6FYtEV9eMRHTGbER+Ss9E5LihRJd/vUQU0StFPEa3RbHkdESjkoBErzx0RTJ1hURkMqBEmPnHRbITPkelqEpFCpunRKp+HkVST5BE0/hZRZ8D3EXFp95FQ+x/RBQ5AUVIwapEtdWbROli20TpNGdFK29nRCQOCUVlEaFEDeldRG5Ej0TMkSxFY4w5RVfyJkXD74pGSnqjROz1kETLud1E4E8qRZ3uAkV0bqVE+zXWRXi2mETLyIxE3UFfRkj0l0Sl81xECH7XRJUUxkRcMwxFxwuGRcnnxEabMcVF6tBxRRCR4EQhP6JEc7KKRNODtUQB4oFE8WmQRBpQ10R28A9Ftk8RRcG0kkRvjZ5FPXYARVxkhUb7OY1EPt3dRJ561UVFpfdFtL1JRZDZo0RgMXJEYNKGRNC47kQHTIBEdUUFRSV9gUSdyPFH9KGFRDcflUR5ho9EWjgdR7sOjUT8D+FEjo/jRauNakRZJsZEn6WmRGWlO0UVT5BEprSFRNahvkQEq3dE/oS6RVxpk0ROWYFEpBKCRFks8UQqjwtF5uAfRgBT7EV4SMhGMJ8URSKNkkS6q59F4ZeCREWAoUX/0hZFA47cRCjRokbhjrdE8rABRWuLiUW+FFVEBgiHRCZRPkeMhcRHDq3IReFq9UauuFVFZWEXRXg7LkXuE1VGt3ObReD6e0Ty0opEBFyCRYYDmUTVfZ9EhNSYRKmtr0T82B9F0BuURKLAvET4ejRFB9vwRM84w0ZMlJRGTJUsRqX/kkQfNzlF0KZzRSjwskS0sAFIW62PRR3M40ZsiYxEr8G/RNUcUEVN3PJG+suhRLvLoEUEsYZGxsetRHA0v0R89g1FpkK3Rc2OlUW2WplFfzadRLUvrESaGcNEl5x9REadf0TDO49EAnTFRdIrnEUbeZpEj7qjRLOQzkTcVnpE2QqURAvddEUY1vNE0COSRKFugEQbh1dGyEaSRasjhEY2mdZEgj7aRSi/BEXK7GVFeEJzRGRvJkUloZRFb8piSZzM60V+GUNFfA6yRNU6rEReRCpFPNOCRAtbcUg+5NtEWuRrRG0Zu0b6rJZEDduxRHSyLUUDxbpFCY4uRvbQr0bJgd9ELXkGRvyrqkRljLVEKusVRZgQqERBzLBEG0fgRE0YkERnTKRFJ1CZRHEKxURTgaxErPy6RGJ0NkeFYrBGLVaPRSMtR0XQ5QBFIHFuRaPFCkaLFRdFZOqkRGgNb0QlSihFj6SLROMj90cfPBBHuqECR7mvkUQIeopF374XRea6jEQGKIhE9sLERCQ4v0XbNIhEmoexRHOcj0SLfidFkzAYRSQ+VUSYj45EPPYSRaARRkbCiehE63pQRVIJ1ETE8c9E+SzwRe0kzkXAX+9EUIEsRRDLnESUaoRFwIGLRMdxzURNgjpFGbyDRNoXrkWAzsxG+B2hRDYoa0Z4LfNFcnZkRPAu5kRw9qdFq2x3RMENtEQAYvpFwLClRIRsB0Vbzr1EY6arRMRq9UTw4+9EzieIRDFYqkQ/7wJIru7aRMad+Eaae15F3UXiRogAfES/8ZJF5mkCRVf0hUSI4Z5EDEj1RE6H/0RewfJEpqmPRPaHvUTMJNVEvPaKRG1sI0W+ZIhEve+lROIoo0QnmnZEVIWBRBj5jEQ9uKNEJsKoRLiOukSZH3tEs/ZhRHnDjkRWwt5Exln7RBcO40Vlxd5EkLSARCa5g0Vb35JEHSmPRAXjVEa03LpEyTWcRLohh0SSqi1F0uBMRejSnERzfxxFFmBgR1C9b0QvlxBHqDSLRlONzEXh6RBFwGupRAhRq0Rzr7FEVQWqRMpMoEWdP3NGS2CcRIo7tUUwv5pFH96MRJdyzUTsTMJEggTTRBAtckXJ08ZEKLyuRPDDj0iNxwxI/U9RRfYP00RQ0bREytOWR6R/hUUzUItEmQ4nRfQwYkYHJLtFp+JvRBwSgERVEKhEmHegRCF3pESPu+tEJTscRl1QV0U1cCdFtakORrTCEkX0YadE5vMRRSTmnUWelTVFOW2hRMI+7UTpKOREuauRRGpHjkS04MBFl/YDRVgwh0TafXJFw1QeRdtoHkUxQLdEsHeERa/HfUSToYtFSQKpRHzMdkSVDOBEsY36RN31KkWGvKlEV2KERF31uEQX4gVGlg1FRaPz7ERcQj5G/SyuRIVxkEUqbCVFFrQiRWA470T8TJZEP/X5RPUiyURw/bJEQ+zeR/JLQkf+79lGtn7uRWEEDUZr6yBFTjkXRUfC0kQ+7vlEryC4RM39pEQey4tEkwDxRxm9VEcKQAlH3nYoRbzrw0W88ClGT+A6RX6yPkW9BIBEtu5lRJc8YUTdrrxEx7SHRO2Mj0QJcu5FaA9FRdmgoEQkHQVHewqRRjsKO0YOIJVFanFwRVH/v0RzyvFEnK4WR6WRfkZptShGRcHKRFsUPUUxcbhEk/2uRhYifEaX45ZFBXn/RFb8oUVxT+BETLPKRBDN3USmJ99EFsUYRfjLR0awFapFoq9hRbq8h0Q8o/RE/6goRv6Rs0U84mlFGlCrRCtXHEXhZAlFCVyuRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - AWXHBXjAckAMMlBeDcFyQGAoCsMkwXJAoIW4WnDBckAKAIJfpsJyQHG8Idc7w3JA/X22L1nFckDyZm3HQ9JyQJNP2XNI03JA3lAYRXfTckBTWuY/Y9RyQHYMWanQ33JAE8CbDr3gckDSG6C+5eByQAoU2LxQ4nJAxJ49z4/ickBCVQntD/ByQAoXkbDK8XJAi6MGm/TxckCcwxyptfNyQCDje38N9HJARr+A2KH0ckBgfBcQwv9yQD0sHOP5AHNAa2Uk+4wBc0Dcp+TYzwJzQMNoSvD6A3NAAHT+iyYFc0B07aIwCxJzQFGjl3wnEnNABMj1Ab0Sc0D+7ekrBhRzQBvADv/0F3NA/MErHk8dc0B2nZE2eR9zQDvkHn84IHNAuiWQWaQgc0A/Q9BUOSFzQAJXCvRiIXNAyAW8K8kic0B+xmqrDiNzQBOi4Eg6JHNAvk/u288kc0DI4ds9RzFzQP52rV1aMXNARB0IQiIyc0DGIpdKzzJzQEz6nOcDM3NAM2swJKAzc0DLZ81dODRzQPgHra/jQHNARqZF+3hBc0ARSdYXJUJzQM7PGRm6QnNAndzZnXpEc0DD4ulbmFFzQFjBRYhCU3NAfjJqoaNTc0DqYzGAh1RzQCOEVsyNYHNAzOXTMzljc0AQGk3hU3JzQAQiAiW2dHNASOUo6kx1c0DmRdgveYBzQJjOxRykgHNACQc7Hw2Bc0BcVPmryIFzQAqc3ZNdgnNAuk1mUg+Ec0CVNz2rhpBzQK8C1HRNknNAflE4QM+Tc0DemBANYZRzQPphSu33lHNAOqcZwrigc0CsIT5+TKFzQJgT4Q9bonNAQICxeeaic0BUMvsWBaVzQGavIKzGsHNAm6uQ2H2xc0DsxR9r9LJzQD4BbdW2s3NAHkFnBw60c0CSHDNdzr9zQBASxwBjwHNAAiaaZ/bAc0CSJx881MFzQOgWM37QwnNAyQPjlybDc0A2TshqZMNzQHHz1KA9y3NAze+ISdHRc0CUgjxrJ9JzQM7BX8D303NAMGf3JOPUc0Db2VLcDuBzQD47JTik4HNArhI1wDjhc0DhoA1TZeFzQIgvHIbd4XNA5eexlA/jc0AhZk8mQONzQFs0v7K08nNA3M5Z2jf0c0BRj2FieQF0QLiup3+nAXRAEjepsYcRdEDm/lQhThN0QC+ygTfiE3RAJCXcJXYUdEA3oppSSyB0QDK4znO3IXRAPOQkVVMwdEC8YF1quTJ0QJibOM96Q3RACm49Ow1EdEALhDx09lR0QNoSJMuMVXRAYRvDwbhgdECTTL7xCGJ0QBqmP3BSYnRAT+b2oE9kdEDJ0AEvInB0QE9Awy9icHRAtfYui0FxdED2TY88OnN0QKN8muGgdHRABBLnNjl1dEDaTtQn+YB0QDsJM+NOgXRA8gdB5JOCdEDTdPHUFpB0QPwxRTxskHRAuq9uSdGgdEApVv2pN6F0QJdfJli7onRA1NxXAA+jdEAjczMzCLB0QBakiZfDsHRAOF+ZPv+ydEAO36wg5MB0QA/Z15t4wXRAZO4D8OnBdEC6HMCRfMN0QCqfQmh7xHRAEnpIe7nEdEBUXp7J+850QH1jv+NA0nRAJubOxODTdEBSG1s+ztR0QD/L5vy54XRAEhVarE7idEBaibyzwPB0QAosiASO83RAdH5WpKMAdUBU3ih4zwB1QLp9NH9kAXVAcE37ql0CdUAun64smgN1QJgyRMRMC3VAqkisCyUUdUC2AG0vniJ1QOb0/ETsInVAusiPSfIqdUA68RzvqjJ1QFEvIhb3MnVA5Dgfps01dUCYMTXGtEF1QPJx0CKUQnVAeL5ajfNPdUAYmqtBF1B1QCx75lh3VXVAnE4QZQ9gdUAeHMA0OWF1QMhKeDpnY3VA8DV8i3dydUBR27/FjXR1QHiKKvpOgHVAtnBPqXeBdUAdaAZ8roF1QFoxjs+mg3VABhdVHZyEdUADJmyCjJB1QJp34la8kXVA/JofjbOTdUCHxyl2laB1QMMl4h25oXVARjR25H2vdUDmSTHDAbN1QMlEB4A1s3VA1bXp4Qi7dUC75MY4YsF1QBBzTAf5wXVAfQmtvQ/DdUCwDT7WFMt1QCYnC+nL03VAVr1nSOTfdUDkcAAoCOJ1QBDQ4KNW83VA4qXaoYDzdUBJVfE1SAJ2QD5kNMzQA3ZAGgSKowsWdkAUKL7miCJ2QPg/nG2QJHZAUEhpVksrdkADX4/lHzF2QJXIlWBTM3ZAajQZq5YzdkCaOtYonjR2QIbkdYIdQXZATLWtIRJDdkBiVxnvekR2QLiDB77LUHZAXqL0mxFRdkBCitJhZlN2QG44bkaFVHZAco0Uzs1UdkAS5DzjzGJ2QFGWPONSY3ZALC++krdjdkC+IKL52mR2QGdCDllmgnZA4sO83pGDdkCYjB8I95J2QHTAHgefk3ZANINSrrmTdkDDFLt9/pp2QGjIRdQNoXZAUh7wIASjdkDcTh7eQat2QJr16UlWq3ZAoOnsmLmwdkC3jRqWwbJ2QCCyjQR5s3ZAJbaOsgy0dkARVj9n07h2QEj0amAsvnZA0OFrAuu/dkBpkHfWcsB2QERwnWVPwXZA7FzKUzDFdkA6hEcqz852QJYLIhzz4XZAFMZp/wvzdkANZYcVkPN2QCiSXL9M9nZAsmlddTMCd0AMRfmIUQ13QKwJWGABEndAfKkQEKsSd0DONN8W8hd3QBlFAc0EGHdAjnIKwg4id0AWS8oudCJ3QI5vvDINNXdANEFOyiU+d0Dmblw8nUF3QNqiHR3pQndADxYKXH9Dd0D2zuD8GkV3QKQOEmVLUXdAaBgMdJJRd0As1YddKlV3QEYQuEiQYXdAEx29MTxjd0Biocmw0WN3QH4JxoY6ZXdAr3M5Yihvd0A1O2yjeYJ3QHBplA1/g3dAAu9uqQqSd0Ayod29TZR3QFM18LdnnXdA1IgZ5cKid0Crf6vwGqh3QJYhvAkJs3dApjGJ/Zu0d0DM6Wut6+B3QMzqYNdQ8ndAa327k0wVeEA5zwJ5biJ4QKqC6eWII3hAVIuhpA1CeEBxlMZhEER4QGvXOQd6RXhAXabe88pReECceBxRlVJ4QOH7stCHVXhA5aktnu5XeEDSJqpSNF14QNSSnTNKXXhAuB1wnvpgeEC5mm6Ht2F4QCQrmFdlY3hAQspCiot0eEC34vxhw3R4QHY7O1jadHhA2rxZojZ7eEAw/4RKpYF4QFiW6+iZhHhAFMyUIZmReEDS68IFqJR4QPoeIwmppHhAFm00WMzAeEBF374I9cF4QFcWTwO51HhAwdV+IgP0eEAAZxyzjPV4QOySYMTeAnlA85WMgBMEeUDAQD0SmgV5QKCJDG7nCnlA63NA82AjeUAecPbEvCN5QGTNZYf6I3lAR0eiJNhCeUAynv/l9EJ5QG6H7Ov5Q3lAhAAR981UeUC42vQx3GR5QGiBME1xjXlAtIO4d8qSeUDJClROJph5QCg5FUBtnXlAMrb72MCyeUBYh7xfQtR5QIRkiufO1XlAzApAuLzieUBpa0X2UeR5QGjrzfuS8HlAFrGnGPoFekDag4mcMyN6QCq2D3EMNXpAUS2CVudDekAcYdBUGkV6QDcwu+P0U3pAQztceChVekDzoye4OmV6QFEsmhANtnpAUEkYHhvGekCqPm1WZeF6QCszqaYM5HpAbwz5ozbuekCWw4q1FvF6QPoxCAph8XpAk1MgbCkOe0A6FF3WTBV7QLDQuFNcHXtAZzgQ7ZEje0ASD23IWSV7QPAJ8f3DM3tAntiTDJhIe0BQxiSF8017QItBG3tdUntA0JTqEEdTe0D0+1iylFh7QHXrdodya3tAADfHnsOUe0BCBJ7OI5V7QH6Gxg48nntAJTDDzGK7e0DH/LjbZ8N7QMwthhV6xntAxFlZeoz1e0A6Pfzl+fh7QLN3c2rZAXxAbN5U6PUBfEAWC6snmgV8QI75oMCMEXxAzqL7atERfECxrWztpBV8QPIS2T3OQXxAPgVBMNxRfEBUcG1h/IF8QLZpsop3jHxAotZR3ViZfEDUalHx3pt8QNhV1X/4pHxAXqoIe7+yfED6I6NwzNV8QO5n0NtX4nxADJXGMRvyfEDHQZtWVfJ8QIhGFR4CAn1ACmAZNkwCfUDqTptUAxJ9QIpRBG5GEn1ABmmk9D4ifUArTLlqoTF9QIDCCISXW31A3gbZUKxhfUCMJifmWJR9QFM4syXXo31AMvoq3izDfUAcP1Bx2eJ9QHWUf/CP9X1AcvoRBD4vfkCubjB+LHV+QHhS+/25eH5AFvg+d0CMfkBWlaqruZx+QLyF78e5xH5AKsdSOcvffkDCWFV/UuB+QHLFNxnY735ACy8Z3PjzfkBQrbqa2f9+QJYM+CcgAH9Ag6bg0RkEf0CIRPnCIAx/QGJkM8u3cX9A4rjdrGORf0ALzUFlp5F/QO8dv5SZk39AEiwAZ16hf0CTAOQWV7F/QKoBsIlTwX9ApyAhvMHSf0DnZ7JI8/N/QIZHMOGDEYBAMUganzAUgEBoiJ6F2haAQBDPsqaBGYBAi+L/Py8cgEBpSPoXGSmAQGVPkpfuKYBAnnx40Pk4gEAar94Y90iAQNy4t6LmUIBArG/UgxRRgECMuiiyD1mAQN9iPe41WYBA4DS1fQRxgEACrFEdHo+AQFUV7aFskYBAXM8ekR6XgECS+fZth6mAQNE41CMIvIBAblchsnq9gEAR7/VwUsGAQI40w/0AyIBAyBq4d1PJgECuPSVGqMyAQD2C1kVWz4BA+5c8e0zRgEDS55njYdGAQDMn8KMB0oBA+EAtTxvYgEDpbkR4StmAQKLH6XdE4YBA7Qs7B1bhgECwhv/N5OGAQLI5ivL16IBAiLnTmjzzgEC/8imKP/+AQOzz0gOTAoFAKJ+SSpQGgUBWxHC2QAeBQFSnB3U9D4FAdnW90/MbgUC23NdBkR6BQGVjuHI0H4FAijAaZ/MhgUAwJUNqNyeBQA7gXIvzLYFA+Pvex+QvgUA5uVkLOzCBQAbmN9S9MYFAwqiQSpRBgUCIbMW380WBQLJ6Ffn2SYFAvN9yKFxYgUCCn2PQKl2BQGgkEW1SaIFAde0kn1WPgUAcmzBaVZeBQDJlFZAKoYFAvP6S/OahgUCGtys/EKWBQE6HSYRuqIFABu6tZ+2pgUBGEPTbSq+BQG16a/AFsoFAmH8jbQe2gUAiORsVTLeBQG4K0F8rzIFAKAOqNH7TgUCX8fhbsvKBQIzqweQCCYJAZiymyQAOgkDkuozSAxKCQOACcjUJFoJAKMDMTdgYgkBkLagsTxqCQIjpegPXIIJA4v5N+EYigkBk9ztX0CiCQGz3snWiKYJAHlq2Z6MwgkAv9emsMDmCQE4Rsd7nOYJAu1dn8+k9gkAHS8hJQ4mCQBqxZAFEkYJAas2R9yqUgkDW0plmPJmCQBXxcwMPoYJAmjIpMzuhgkBOd6TFDamCQE81HoEzqYJACsIdBWWwgkA034aMCLGCQLUJeHOw+YJAri4DXLoCg0D08cBzeRGDQBLoSWjIFYNA5eMeMXoZg0DWqrigciGDQG6qTCyLIYNApuYS2w0mg0DloGEdcimDQCBpXqQQKoNAPJVHPgsug0CQn7kWazGDQE1LWtlrRoNATQBGAuOBg0AwGttVlfiDQAlRVFL/aIRAxg0ETP9whEB2ftgn93iEQPgF1zHyiIRAL1BsPGrZhEBoAGDLaeGEQGxXsw9j6YRA4Mwb0jXxhEC9sP+QY/GEQM6h4wA6+YRA1K/82C0BhUCD69JhoGGFQJgOsaygaYVAlDoumplxhUBXFt5AtHOFQAautrCYeYVAiMacmY+BhUAPc9qg3o2FQKCcZ6/hkYVAoOUmqeSVhUAX8cMY5ZmFQHPadT3yqoVAol6c5PqyhUC6fFnI54qGQL46pWInuYZAqUeaB5XShkAU4HDkl9aGQBErv/+QKYdAIttucJAxh0BEFBoXijmHQP7og+tcQYdARhueHYxBh0CUcpkHx7GHQPjhVkbHuYdAhu3+77/Bh0DCqkRGw8mHQNnOAidSCohAGqUZ6z8WiEBel6xQQBqIQIpxYR08HohA + NrgMGZxjYkD60UzrnGVsQBu6YmAmQ3BAGrpiYCbDcUAbGD+0flR3QOEU95k+9HpAG3YbCNdlfkBwuel2ywKBQCsMym5Dw4JAZ5hppQKbhEC+7G2qmsuGQIXpJZBaK4hAhRgUugbUiUAY+bf1XdyNQHVjK//8+41A1X4cx09KkECex2iHNIKQQB7fX5yKRpJAh5WB1ZWWkkCe9lax4AqUQH9SBA3nfpVA6OYoTwwPlkDce/QII3+XQEUQGUtID5hAJmzGpk6DmUA9zZuCmfeaQKaDvbukR5tAJpu00PoLnUDv4wCR30OdQAqxh9gwkJ5AOGZBXQCgnkBBq4n9FVKgQAE3BQhBvKBAMzZzATEUoUBIS7QCV6ChQFguXNBGFqJABkNUzmSGokCfQgvLXPqiQMbOz9iPaKNAX86G1Yfco0AfWgLgso6kQB9aAuCyvqRAQ+RZ3b0ApUDf5X3q3aClQANw1efo4qVA - + - Ytu3RImiikRux3BEJWhcRVXshUSskHJG/RGoROYeE0fph9NE9alzRAgKkkQXMshEeSiaRB9ah0QpEqVFn9NgRYbxg0QAhplFQHWZRKGmvkTKuYBEW4jpRDsQGUUCTx9F9JjORKDyFEWnMD5HaNyIRF60wUSoNI9Ez+19Rjm7vkX4DVpFT4yPRN76EEVZUmNEUDcMRUtR70bCzJlEhj7rRIqx80SAIZtErEXERdD0I0WGVtdEcJ+SRNUatkUSxolEu052RPoCBUWKbiFFANm3RX4Zn0T1gYdEkcQvRkYzb0RK8MpE+ARnRRpe70Qwr7lEH2QNRS2YvkT4E69EEwcvReuKD0dSE7NEo+H7RGDPekR6arxEunWSRJ3xK0U3OFpH79KYRJqtq0TCUoVGV/YpRsnkskS8SARGeTynRR/cC0WChqBEvryZRAjEmEQB6qZF0ZZaRWdifUS8gIBEBvf4RP+keUYlvJpFAJ6ZRRUED0WZGfFE+n1eRuAJaEQmi9FELfvIRYy5fkR+Z7tEHykbRvENqUQ2KkxFPaq2RIm6g0SXbGVEnrwLReusi0Znd8ZE5Yr1REs+dUXXGK5EIHmXRHkZAkW4rAxFtJruRAUylkT7L8dEI2mQRFzPlUQuXMFEZQm1Rb67c0UXtpxE6Hb9RH2zz0VFeaFEhodER2YzekVqXp5Er7DFRPH2VUWArfhFSjmpREPmykWC0IpEttabRG/rm0QU2e9E3mpJRXJLgUTIBXpE6kyXRPKCs0T8mL5EcZmZRASPnUQYsrpEA942RWwgsETP7MxGfVuNRFXaNkVJrTVFvosrRblugURFQMFFWv+yRAUKt0T3TOJEo95lRiQtmkREmq1EIygXRUMuqUWz/qRGeyHkRVFZl0QnKKRERjphRapPy0RDyZxECCeBRMdfu0S0TBRFMy7fRGalEEXzvZZFb7TnRAwQZ0YFQbVE1GjaRNIWtUWPH/NFczX+RHDqrUQq5HpEsAiSRCXHpkT1WfFEkdW/RIGt+kdyAK1EwHoTRyO+o0QcPPpEGyqGRWyOkETr76dE8zbORPOAakVcRqpEOOSkRG1tqkV2pw9FmIesRI4i+UQl3SBG25GJRUH5xkY6isFE0KSaRFnA4USP8p1FBgV/RAY6oEXCi65EgAh1RRiQ4kQ4BHlEBF13Rvk1y0Ssf2NE0GySREr2V0We1JRENZNDR2Glk0eKkuFFwx+AREymuEZO+ZhETq9GRd5r7kR7w85E/gzDRCQryEQh5C1GSXaWRU6/vkX4KZ9EFlu9RJzQf0TbV5dEnDS8RCmkYUUBJetEmEGGRC3D80RkBG9EGgkxRRqBrUZ0t7dGBBATRmODpEQIJT5FH4FuRULKu0RFXPNH1AsERjwT10YOOs9ECnlsRXDG6EaGDqhFcsaQRrbcAkWrR2BFbDSyRQjgpEXkRb1Ew2GTRcV3AkXjFZBEFZWlRFHurEQ0MAVGqE9jRT4h4kTTpoZE7juMRAFzo0RQJt9EQrqeRDNPd0VIRJpE4+gPRcsqeER8nihGoYqTRf82ikYksnRF/BT6RT75okTYHeJEM8czRbk7SEX4gmFErBJnSUS/F0VvEhJFHA0vRZ+ZcEV7YmZIwn/LRLVLqkYocHBEbD2rRGv7rETEpDVFygu4RXXRCkZqgnJGC4GyRH5lsUQggWFFKk6HRFNVNEWEaHdE9Pr0RDFwY0SJdv9EmMmwRZ1rKUWTphdHSOy2RviuzUXjBQ1F82RcRfG8AUaHcOlEqlqSRAuL0EQ2mHNEVWyeRJNifkTPTv9HN4ohR7k1C0dw/dRFsncyRcLIg0SQs7dF9VLARCwm1URUTB1FeOzqRHbKZEVYV5hEUWu8ROB2REaLK7RES5HDRC9wP0Uc+IpEuvApRhWss0XksYNEXsdwRLXLiUTOGPlEbBWGROWIBUV/VJZEo6JrReIm8UTEwYNEKQ2zRoWmzUSPHWxG8MI3RcYZskUi6IhEIzu2RfPshES5Rd5FeSvURByEs0SVxrpE2dLaROJ6hkRbF4FETEccRdko0kR6yQZI+SkDRUqF7Ubd60lF0zzARgeXtESqcjFFHnsBRfiEn0Q/v6JE80nPRB8JDUVMN71E72raRBzZvkR8azlFm0jWRBx+ZUQsYWtEWUJyRLbKh0R6S4tEwq+pROlshkTf2YFEO0ydRFPNqUSQ8BpFi8drRVaePEXrzo1F3+pMRjjRkkTG3aZEDaiKRWnsDEWHs5REMgyXRMSAJ0WqdzhHkx4LRy1SNkaGtIBFO53yRDjmxkSfgZhE0gy6RD8zyUQQz3pFfC6kRhljB0Yy8ZdFCsABRRJvj0Vcrp9EixqQRPCLG0U/d4NE8x2IRATblEhv7XxEse8JSOmBFEXgF9xEOwCaR+LdQEVNw61EntTQRBqnk0brAqxFuQrmRBQhpkSppu9EaA6vROJjCkYUqK9EokdyRLYGhUUPnhNFo3SsREQwVkThTyZGDB7bRJc2GEWtrblEPy+XRDwuZ0QOddpEWZiPRIBZskU1mcRE6s2nRf4GA0UHVa5EwYLLRW95uERTNL5FughIReXV4kSWwBlFirCVRPe6UEWuMZBFKKikRDz1j0RTZIdEVSANRYlZiEThWKREOysfRtNGpEXv+sFE3vVfRilNMUWsv4tFoy08RA2kXEXHxjBFKrnZRKWhXERVdC9FRzkHRYS4EEjvrHxHbkONROKgIUedZutFv1c2RvpV9kQ7/YNFAL60RMHwi0SH+HhE6PzPRD46EUgQ4K5E22qTR3zBDkcdwiJFRrAqRguXSEY13k9FEnKkROlMcUV1n4BEr6ijRInIz0RvtqZFsSgwRbSU80RZZ5lEeXo+R3Y7mUaqeTBG7DucRVXqnEVQ67tELJvZRMU3HUeUr4NGV0hIRs7jl0RLjJlFV5S/RD4C0EYE31dGsOeTRRJEe0R2SYJFbt3YRE+XvkTY8o5Ef5RERaAqB0VrRUpGpVP8RbU+rkW6dPBEO2L1ROoBIUZAsKxF0eSLRb8b8URUB/BEZVATRWMDlkS3lmRE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - eGroFnzAckA0MiynDMFyQMvRGk5vwXJA7Brs8cfBckDsboqQUMJyQDZ5KfE7w3JAcLBEjsTEckBjBu6WV8VyQAaZIPZD0nJAiaL0H0nTckBePFyjd9NyQOg6zNrP33JAxmO2y7jgckCaviOsUOJyQIAtWfKP4nJATmMo08rxckB4enaE9PFyQMU1COm683JAPWOK3KH0ckBURzOwwv9yQB4sD55kAHNAydMpmvgAc0CoepXjjgFzQBbm5c7PAnNA+RUi3/oDc0DcAeVgjgRzQIrOBOcKEnNAeDuAY70Sc0Ba1uLUBRRzQMw1yINNFHNA1bbIvPUXc0CWsYr+eB9zQGyLW3qlIHNAA1dKgjkhc0AkQL/3eyJzQKXYHMvLInNAXMzgLhEjc0ACDI9AOiRzQKYFeibPJHNAIAyaFkgxc0BIPtjkzjJzQG10XtsJM3NA0cRRnaAzc0ALYFQ3NzRzQMPQFtHbNHNAUmdHX0NAc0ATVjPF40BzQLooFAB5QXNArA25rydCc0B0n9TXvEJzQN+c0mF6RHNAGJeI1UJTc0A25K41pFNzQEsljeDjU3NAmhWNNodUc0AKr0n3i2BzQBKuLcJlYnNAPC1f5Dhjc0A6JBywSXFzQL5KcbZQcnNAwyXR22dyc0CJTqi1tnRzQBAek8NMdXNAmmCrTnmAc0B4vv3KpIBzQCKAq4EOgXNAJBUk4V6Cc0BuHIX+hpBzQCqzEZJNknNALl/x/WKUc0DWMg2x95RzQEOl7wWMlXNAlKh2/rigc0A7oAD0WqJzQOfIdM/monNAKkdVZQSlc0Ba70OXx7BzQNRPsUM4sXNA4FtP1Lazc0BSy4WtDbRzQLr3Hr74wHNAhm6HGNTBc0Bk7P2wz8JzQBjjRGYnw3NAbkLLHGTDc0CkUpmwxMNzQNBU2EY9y3NAqfhU1NHRc0DPmX8e+NNzQIzGIKTi1HNAsa2N4Tjhc0CYX1IzZuFzQKeaPQre4XNA/fBWKxHjc0A06Tz3PuNzQA4fYrS28nNANO9AZjf0c0A6BAgU5QB0QIp2Uhl5AXRAjca1z6UBdECDiOT6oxB0QFMNkHSNEXRAvOZDVEwTdEAgw6VNeBR0QOhKzr9KIHRASJlxHbkhdEDyKwp5UzB0QNNhLDfkMnRAaGtfL7Y0dECEYojreUN0QEydDHb3VHRAXbU+L41VdEAUr2q3uGB0QJSHFE8JYnRAHc16ZFFidEDOYFKMumJ0QEApmQ7jYnRAhpjCRU9kdEAmk5FZInB0QCS5v5VBcXRAPotw4jlzdEASwGjxNnV0QLpampH5gHRAsBen3k6BdECAAkXqSYJ0QIp2dqkWkHRAUKarv2yQdECSi+3p0KB0QFrHgIe6onRAtbqWeRGjdEBIQsEv06N0QAvmd+oKsHRAI3fQB+TAdEDwCxk9ecF0QEV+ZAQNwnRAgOAVjLjEdEBUdiLc/c50QAgwbAJB0nRARn1M5eDTdEAOgI8k0NR0QHGFqwP533RAJE59+bjhdEAvA2/ETuJ0QCjUkyJQ5XRARBDrLY3zdED0kaBtpAB1QLBz5SnOAHVA24DA510CdUAaaELJmwN1QNVGteT4BHVAnd8KqEsLdUAoLY/nbRJ1QPgPdTwjFHVAqPCZU54idUAWhqc27CJ1QDb2MsTyKnVAfm8iQMw1dUAUG+4Lk0J1QE5gg4L3T3VALnye24FRdUAZ4bBrTFR1QFS3Sy92VXVAcXBVAQ5gdUBfMrNVOGF1QGr7JKxmY3VAlnI2q3hydUCUboXIdHN1QETCSNiNdHVAaJE4XHmBdUBy0jb1rYF1QBnGl3i7gnVA6Of3I6eDdUCSJvStm4R1QOv0shq5kXVAquHS9HCSdUBDtkD1uKF1QPrKCsm3pHVAXyY8mX6vdUBgHO7PAbN1QPzXCrDGtHVAwfzNLgm7dUB8t008ZMF1QEFN/wr5wXVAv+anwg/DdUAZf2rVzNN1QMDFYnXn33VATyC32gfidUD8o6uiO+V1QAeSsbpHAnZANl5yXNADdkCOGGi1CxZ2QPY4iVKJInZASLO/tJAkdkCac7OhSyt2QMRJZcQfMXZAgncbhlUzdkAktXe8ljN2QN7ciQKeNHZAviqE1B1BdkBsEGN/EUN2QBRb5YgSRHZAJIKXBHpEdkCtnKFJEVF2QCzh8WhmU3ZAVoZ/uM1UdkDJnI3hzGJ2QM4jWTxSY3ZANp3iJ7hjdkCIcBNl2mR2QCP2qVUkaHZAt7fnqGWCdkBCKX4mkoN2QNRllT73knZAkktytJ+TdkDcWWk76Zp2QGwTclv/mnZAG4lABEGrdkCKhBd3t7B2QAfx6FTAsnZAnIsMx3izdkCCwg8TDbR2QIsIVeXRuHZA5vFLtCi+dkA026Fl6r92QL6qi+e/wHZAutRpczHFdkCESRnrz852QMIQeZW+0HZA28K29vPhdkAwFox8CfN2QLJAoxmR83ZARHZi8kv0dkBsEiyhNQJ3QOwm8fBQDXdALBQyCQISd0BItc+WqhJ3QOLmok0IGHdAWjkbEw8id0CWKLbYdCJ3QLoRxnYNNXdAv5xDSCY+d0Bwl72enUF3QGXIh5X7QndAigpYzYBDd0AQXWYtG0V3QDCtHTxLUXdAypFDB5NRd0C2V44rKFV3QKK/Y82PYXdAIOI6WqBhd0CxLudkPWN3QJC8vlfRY3dAdrThCShvd0DULGH+gHF3QEB95y5Lc3dAx3CMeXiCd0Aj47OUCZJ3QGYhb9dOlHdAgdykOWidd0DYWmDQxKJ3QHynfyiko3dAgvEE3pGzd0DCdSeFmLR3QLXtMkni0HdAHlKeR43Wd0ClonN86vB3QEaSRZ5R8ndAeM+BvTEDeEAFBq7QTRV4QEcdjdltInhAMGCAsokjeEBEuw3OfDJ4QHAMZNcNQnhA7rlWtBNEeEDMgrzXekV4QDUyrVbLUXhAWJM6aJVSeEBhWLP8h1V4QOHLSHPuV3hAo8HPdjZdeEBGG0U5TF14QNa8BmH6YHhAsRnfrbdheEB026qktmJ4QMKUBYoDY3hAFNUqdrZxeEDYK+0eXHR4QCyOau+LdHhAsQu9Y7B0eEDoy6LIx3R4QN9ivrI3e3hAjdye36aBeEC8L6XumYR4QNMt8W2XkXhARgexlKeUeECAhF1jzsB4QDB4pPEFxXhA9AMMErjUeEAuLJUXA/R4QDTq2NiM9XhAMoIb/d4CeUBvcBzdmwV5QICTHS7mCnlA1kzImLsjeUB8ZerQ8Td5QJaggWaMQnlAQjUt0NlCeUCUNFiY+UJ5QAx0bXL6Q3lAIqNp7sxUeUCVJxBP2WR5QGY/vNhBc3lARrBMTvyEeUAyxhGecY15QIiKsmXLknlALK3dxCWYeUBQ2zeNdZ15QPvFC+bAsnlAfPrytULUeUCx7pvwztV5QGqK/gZR5HlA7DFT87gDekBMRRFz+QV6QFod6a05I3pAyMHGfww1ekCKRD3Q50N6QFAzRdoaRXpAhAGPOodTekAMZalC9VN6QGzC10ooVXpALhezRzllekDYtF/zinJ6QD60AWxFs3pAPq+5VAy2ekDoebyZK8N6QLPxIywdxnpA9GibpEPOekAo4pHD1dN6QFiMLWoL5HpAys6563rkekCME7wiN+56QECAtmB7A3tAcAZ73yoOe0AWnpUqTRV7QP5D27WRI3tAFrD1gVole0Aou1n2ESh7QGnygeJMK3tA1MQKdB8ue0D+XgAHxDN7QJhJJ7gTQHtAhs3F05hIe0DShAtv8017QPTKKlNfUntAgZec+UxTe0Dipt0gdGt7QEfyc5p8c3tAUXNmqMOUe0AE75eYI5V7QIDFNFE7nntAQIpDVGK7e0Du7wLfZsN7QIYLPTp5xntAb+4lXMjRe0AtRNeTM9J7QChC/Qf+43tAp5hBMpfxe0AgRRvUjPV7QNK3kefZAXxATlqGe/UBfECOYzZqmgV8QFRjzE2JEXxA7GXL6dERfECwhnJwuiN8QItB2EHNQXxA6uU7bNxRfEBiHf8YA3N8QDCbwSm/snxAY2WQ+DvTfECm43hPzNV8QK2/0QRY4nxAxxzzHhfyfEBWAeMlVvJ8QPx18BACAn1AjV9Lx0sCfUASch4CRhJ9QC5f0j49In1ANpjJOIExfUDCjS8DnzF9QDBL2WSrYX1AHJaBzFyUfUCA7PHlLMN9QCy93uXa4n1AB6uy5ZH1fUBYbYAThwJ+QJf7Mzw4H35AvMmKz0AvfkBkPTKgsoh+QKo4k9WUin5Ao7df/6OLfkBL2f2n4pB+QMOfHdGpk35AaznglrqwfkDhJOBKmLJ+QMpRMyhm1H5AJfPopMvffkAW96pI+/N+QMuBuf7V/35AoPwF/CAAf0B489SXHAR/QPD1vDcjDH9ApnKo67hxf0AQS3RPsYF/QOrmA8Cig39ASMFyQ2ORf0As9dsEq5F/QLTMjKBfoX9AyC3AF1ixf0AYt1eI8/N/QO0/fQP6+39Ava89yEYCgEAp0FEGhBGAQMgdy4gwFIBAwOkIdNsWgEDc2RakhBmAQIDR4ucxHIBAtB+dFus3gECCbRazojqAQC7C2pL2SIBA5sea7eZQgEAGcPmNE1GAQDbxWwUmUYBA0vjiT+1YgEBOX5rQDlmAQOZAw242WYBAbheMOuFggECA0ZenC2GAQAKPBFkqb4BA+17vcAZxgEAK6VxJHo+AQL4kbPNtkYBA+8ZwV4epgEAhbd+1FK+AQIoWaWc5wYBAp2OaklLBgEDHgnencsGAQLfNA9FTyYBAaB8saKjMgEAj3wZsVM+AQEvqACss0YBATuxkykzRgEBOFmq7G9iAQITO9NZK2YBAJk0F6kXhgEB+mpuZ9uiAQPqi/A1E6YBAlmhw1UnvgEDOkBjnPPOAQLo1RRVA/4BAJOdMgGf/gEDogvG+kQKBQNS1uw4/B4FAyjMrQeUMgUDApPgtPg+BQF4FjhDiGoFA3FHQJuYcgUBJK3JxNB+BQE4PFQPnIYFAOG4lhDUngUCESEYS5i6BQKhYw4a+MYFA2UuxOpJBgUCIRMk380WBQAY0Tif3SYFAwOBZc1xYgUB2ht5CZWCBQIxIoXBUaIFAzKqi2lWPgUAMd+r1VZeBQJq+ETQKoYFAe3ADbeehgUB8uMs8DqWBQAIu0t5tqIFAwh3mYEqvgUAQDd9hB7KBQDwSAyhLt4FArNu/g8nOgUBOPD/1d9GBQBJcE8l904FALhub/f8NgkCUDAVYAxKCQI4PQ9jYGIJAQUBru04agkB05B0O1yCCQNWvLCXSKIJAHiMpl6EpgkBc5vIPpTCCQMRVwLLPMIJAipwbwec5gkC/s/Qv6z2CQKAbRgshaoJAFwWUhUOJgkCKOWUDRJGCQJgy1mk8mYJAlM7MMQ+hgkCBfrGgPKGCQACorpQNqYJANQ81WTKpgkB6rifYCbGCQImOqTa7AoNA5KkB0nkRg0BpaOuFehmDQCC2AnG+GYNATucS9HIhg0AaFdfZhyGDQHo76AEOJoNAJa9xM3Ipg0CMnjU5ECqDQLewm9UXLoNA3hgko2sxg0Bq1ONOHjmDQHL8YXNJg4NAmZyaiv9ohEDASIak/nCEQNKJ/Nz4eIRAYmoRJhvWhEAGH7eEatmEQO6KFtRq4YRAkK1r5mLphECsC/p9NvGEQOnGJ7pi8YRAqlE0ljb5hEDwXhTfXfmEQCI1zXcvAYVA9ojToKBhhUC4Z5OJoGmFQBgwyAiZcYVAvF1DH5l5hUDQRh/z3o2FQDbqDmTikYVAU9tGXueVhUDhR6WY3pmFQHObJ27yqoVAknrNvuf5hUAghgsWJrmGQCnktPe7yoZAMN/o15XShkBo1Gwsl9aGQLKxjk6RKYdAZO4n0pAxh0AYwupliTmHQGbhA1OKQYdAUT6Y78exh0BCVTvCx7mHQAQzYLzAwYdAQFyhrb7Jh0DAufeGPBaIQHkgeSJBGohAWNpU2rX0iEA= + NrgMGZxjYkBxWoXuS4RsQAoahmk8YnBAjgFH/L2yckAKeGK9lHN3QLXCjnNsw3pAMTmqNEOEf0BakLVjYuqAQMNG15xt+oFAUW81kpmChEDhl5OHxYqFQA== - + - 9vumRHDMZ0RzDnBFUgGqRK0phkRyE3hGuPacRPMKkES7+glHmmCvRHmaakQHrwdFpE3XRLkyYUXoFg5FrY1dRRhUkEQkOWdE1VirRJxRTUVhW5REzeawRD4ahUQY5OxEG5gnR06KcURn4rZEpq6ARqzmlUVpxGNEpj6HRZu64kRLddNEXIXXRs/alESsFqxEbeaXROwWyUQwVKpFy//VRPhNr0WfOFVEU5qVRD9D0ERlC0ZEkSZvRCPZz0Tf+o1FVqScRCuSkUSv9DhGEAvfRJKLkEXVc1tEY/rJRPkhzUQf9VpEoSkpRYn+YEQCO8tEcRiYRPnSj0T44hVFGp4XRycH/ERJnwFFvRKcRMgsUkUnal1H2cTjRNy+gkaAOoBE8QImRq/SCUa3EpBFgdcIRbhOtUQjHUREwVaRRVIUQkXctsJEAs5aRn9UmUVZG5JFdPTSRGxZhkQ4J6REaIpoRqfX0UQ3e49Fy+bJReEQrkR3tQxFnmV3RMNZi0THY11EvbSzRJuUk0RBia9Gjt72RCv8TUSTE25ESQZpRT7rWUT726FE3fdARXYrskTXD4VEvvN/RNFMs0R+LrZE7ggMRUH+gUXzhFVF8BrnRAsbfEQzSIFEPRQQRUoyp0XCalNHPPkpRSPj/UR2YjJF8Kb9RcnqXETXurFFvYeHRODBgERNTadElIgIRVIUb0RvBytFUNfBRGRv5ESdp4VE1KoORYi78USQl55GXZTvRBx73EQXsI9ETGwkRa7OCEU6TKNEGQjQRUdW00S5mIdEz+c3RjcZ6ESkyp1EsqTRROk2iURRvyVF9t5TRb3GfkZdjZtFhskfRaiHikRm6YNEuve1RNUF0kSed8hEfj8XRXa2LEU8UpNFuRT1RKejhESz6iNGdD4BRd1s2EVGOWdETCXMRZNi90RFzplEpg2GRNFE/0Qp95VEh6sgRbuDs0exu6dEr+nPRhxHzUTbQrFEp3pSReCb9kSlnJVEmHbqRKuQkUSOo4VF3M70RAtOdkR+K+BEbeEkRnSA0EVjQ8hGyv70ROeNnkS8lo9ELRSQRegVoUQKHJFEQkx6RSxIQUXkk7lEIzpSRhce0ERCRZpEsdsDRYdmEUVkg5REAuOQRI/VJkeDoTJHyNenRTfsxkQjizpGCUz9RILankT2OAFFPRMhRt5UnEVd7rlFpG2ERMHv5EQID4lE2+ddRErOIEXpHHhEIWZlRCi/B0UfTiZFS5BTRFBC80Qs0ZxGIlifRjRDP0YGKbJEDShvRahkjkSHKvZHATcARsdq0UYvYKBEIwtzRcyf5EYkA7NF7HuDRqDxKUVNyNREvy6nRJwEt0VoOnFFqwQzRdW6fkQ+o4xE1RndRKxUa0TEs3tEkw8ZRrJTIkXC2ZhEEjh6RFPylkR3Y41Em+CnRAl+m0TFM7hEtsduRASdq0Q62pFFVUvRRIxgnUSxG/hEIXjHRGIFOkakMJtFKgBQRgh5JUWsZRlGc0moRIP0ikST7RdFuzyCRX/n2kT4y3JEazhzRJWlXkVvCFRJSMaSRc4lX0UFB7NEJ937RBdvXEh2x6lE7S+vRpllzkSGt39EiccrRX7hu0UMw/NFogLbRWGWEEVhL8hEa+pKRUcPh0Qect1EPK6qRIZwiUTcpNBEqe2gRcYXW0TehrhELl1xRO2VDEcgb4BGMb+rRcO51ERLcHNFm2XbRQvH3kSK19hEjwPeRGSwBkXgS4JEUUzgRwzxF0f0m+lG5vuFRKeAqUUS/SdFHteLRNEjYEQIe1REf5jpRZgDakQnwNREqE+pRB7KZESb/txEw8LKROjd+0Ty2W9EkUq9RBbeW0YcZ6BEaih1RUZKc0QoM5REXxhdRBLVpUS0A3NErET2RQqZL0W2vqtErPsnRag78EVA55JEWSNiRL2VCEU/WKRE3TCbRdXItEQlYbpE8hRXRbD4uEQ4DdxEbnKeRVbnn0YD5y9Gx3zXRHGox0XUSYlEoFaoRcxeWURy8rdF/WnARI+ppURkXhZF7iSERBR0V0RcFPlHLXvSRPzkAEcU/zZFru2yRg4rgUXe6NFEPK5RRJeIpkRulQBFv0KkRLwelkSdX51E0v0IRYibY0Rfz3VEYICSRPVBiUQnnpNEvpwMRaPDl0TwkatE8bCKRDHYm0QN9a5Eo6yAROzwsEST+UlET2bmRDT4B0VSbH1EiUV6RbKcrERRQGxEFh9aRjxx5kQs2SBFcKMDRU5EskQRS15E5SuKRNtULUc06tNGKrIpRpsjlUVvFv1Ez3mORH/JWkRmWrZEgGaGRQLLY0Zt3uVEPnvNROXdtUVIbE9F275uRLVUlESzTq9E4MiVRIgpd0XDvPpEhNMHRVWFgEQmSYpE2n2FSAoNhkTidglIlV0oRUxxfESyzNhE072DR02MskTYSWhGSQKsRSScxkSkHZlELFOfRMD47ER5MRtGYr2JRIwo2kTSeCVFfkCbRB/42USiKVREQvJcRKsK90WK1b5E7dMcRQOAg0RG7B5FlUZ3ROxHg0VvGPhEdJkcRjT7qkQo69FECe2dRX4MuETiL5pFKdc8RasuJEUkWBNFiNpqRSmuQkU+nWxEWBO+RG1zckQnqthE3cgfRs98WkX49DlG9fkaRS3XiUVCzjlF9XfURLC3pERGNolERMcaRcyesETPqIxEh1PUR70ESUdvDORGuXjiReaZ20VcJv5EIVEKRXintkSPpqdEW73mR8i+eEc8zTlEoT8GR3qoCEWThtJFyKcZRhTGlkX77lhEqXYkRb5slUQihoZEq4CuRfAKREWQV9BEnbNzRBPuEEe1M3VGECQhRoCqnEWvYoxFRibERMxikESK14VENS8UR6IBckZxXBZGp49HRcAV3UZBiVhGlrSkRR88v0SlszJF7R7WRIgTw0RuALREzxHeRBeYG0UxehlG+kKYRRLMSEV0Aa5EKmEfRkDqn0W/SzFFK2jwRIo+p0Tc7LFEOvFiRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - A5JZDXnAckBKrAP1bsFyQBBw4ytPwnJAedTFHDzDckDFj2w+w8RyQLQ5GXZaxXJAKDze20PSckA8yHliStNyQHp4JJB303JAo0Z2MJDfckDBVfQ70N9yQHxHtTYj4HJAbrw1tLfgckBmmAbUS+FyQLSQZtJQ4nJAbuOzHpDickBCOkgSJuNyQL6UMOS743JA5cylssnxckDi+1ll9fFyQMS+PI988nJA3UGMQ7bzckCoLtj2DPRyQGDH1k+h9HJA8IygfGIAc0AM/Z0z+ABzQF7y29MlAXNArPpwto4Bc0AJc1fAOwJzQPRkWFjQAnNAKid6evoDc0Bgig43CBJzQHAxzER3EnNAAv7htbwSc0AwkJd8BhRzQPRPOX9NFHNACN+YxvUXc0B9cPVKUx1zQDyileF5H3NA0Eg9Q6Mgc0AJxxFzOSFzQMp9XvdiIXNARgTdW+chc0CyxArZeiJzQNbaRDEQI3NAxqxUEQkkc0DCbWdWzyRzQCJ2GvJGMXNA2t0oAFgxc0CIJK4cITJzQDjR8TTPMnNARISd7A0zc0DRsjgeNzRzQNhhYJPNNHNAF9LbhLk/c0BPY9fg4kBzQB6hGsV4QXNAfU8loiVCc0BE9g1kUUNzQEr+tQV7RHNASqStwRNSc0Crg49rpFNzQPT49qmHVHNA2kpOhoxgc0ACrDfwG2JzQJhe9OdnYnNARmzsxjljc0CkTHVQSnFzQASD0cxTcnNAuQCFq7tyc0BWA1o4t3RzQCgQmaFMdXNAyvpizHiAc0CmNUlUpYBzQJdHp6sNgXNAbuc2ll2Cc0CY2p55G5BzQJsoquqHkHNAp/t3bE2Sc0Ay+l3mzpNzQDONnFBilHNAAtHnNfiUc0CIEJq6t6BzQDtsM2zhoHNASnHVYU6hc0CuzXlUW6JzQCjUc6vmonNAvzR3IQSlc0BgJ5Fc1a5zQDw4C5F4snNAkNasRbezc0C0/wbSDbRzQPJXWA5lwHNANdhvTPnAc0AzbVaBi8FzQEPRd3zUwXNAaPFENDvCc0AoJMbGp8JzQNyBWu/OwnNAxSkhOifDc0CM0T7fY8NzQGbw0z7Ew3NAVq++rT7Lc0A9FDj10dFzQN3liF680nNArJmUJ/fTc0Doh5aT49RzQDQ/tdqk4HNA2Beipjjhc0DWiMT4TuFzQC343Ylh4XNAvLEKxtvhc0CTB0f2DuNzQE76iD/773NALMKMP2fyc0CKJrcbNvRzQOsdS4dPAHRAAhUzxHgBdEC45inWChF0QDYT/MOMEXRAMuqrik0TdEBDe73Z4hN0QFYKK392FHRA76KcZ0kgdECPL7NEISF0QEytsV24IXRAstOR7WYidED87ef1UjB0QFiKw2zWMnRAFIGgHOgydEC+sDonXjN0QO5OpPdVQHRAFzg6OhBEdECmqsLKiE90QMBVwhPPUXRAz6ilSPdUdECyZn1jjFV0QNtHyfG4YHRAMaSUoE1hdEC5fn4jCWJ0QF4jEnpQYnRAfPkEJbxidECX5ryS52J0QDzlgCFPZHRAZgZTL3JvdECPrM9bInB0QHbt9WnHcHRAgzVYZ0FxdEBk0BEMyXF0QEQjSSE6c3RApbey9KB0dEBK5SoMN3V0QDKejFL5gHRAsllmYk+BdECwAgpGJ4N0QAz56bBig3RA75R9XheQdEAEZstrWJN0QLF7RAemoHRARjfFU9CgdEBPs6TaOKF0QIayGD64onRA6Vp6n9GidEDGpTzNEKN0QG6U76z7r3RASPgh602wdECoquYJxrB0QGDjrnFXwHRAvsgZAOTAdEAUdDpXd8F0QMjy0rQOwnRAYt9ywbzCdEDyyR9JfsN0QMb4wet4xHRATO6Z0bjEdEB+aFRa/M50QMyhZBJB0nRA1GD5Q+LTdECEV2Uwz9R0QPCxW4Yk4XRAU6GqKbnhdEDqEYTdHuJ0QMR/cMxO4nRANJj6dPnidEA9phjccPB0QICgfNe98HRAli1xVI3zdEAGagTlpAB1QPgwGlDNAHVA/JGg62MBdUBoE+iWXQJ1QKxaSaBLC3VALIwQjJcQdUBJb9QRaxJ1QIHBwIfCEnVAjNkBuCQUdUCr5XdliiF1QArsPA9NInVALdbsWJ0idUBigbQn7CJ1QIA8jFDzKnVAEEbv46sydUACt/nY7zJ1QH2ty7rLNXVAuOwlULNBdUBwzWC5kUJ1QCRGROTcT3VAueUBof1PdUCQGXPKTVR1QIYitLR4VXVAx8ldmelfdUDaY299DmB1QGgWqYmjYHVAxETlATphdUCfLXTvZWN1QBZgDpnnb3VApItOAnhydUBSsp/BjXR1QJO037NYfXVA7ARNduKAdUD+jTB3eYF1QBV1JB2ugXVASPKpibuCdUDmw1jcD4N1QIys8/alg3VAoNaQeJuEdUCVzWcfjZB1QHzlDc+zk3VAWBssCD6YdUDdZ64Tk6B1QGhYmoC3oXVAklAD936vdUCE/9p5lbB1QJoQA4fqsXVAYlAm5QGzdUAJZkT4e7N1QOlUkNoIu3VAcPwrHM3AdUCfqRk/+MF1QCwg5GsQw3VAfpoWumzPdUDCHKD5y9N1QCsx2cfk33VAfIpwhw7hdUDCiP9LqOF1QNDOK+EI4nVAArWK03vydUDOBcRLOPN1QI98bFVIAnZAdHhMeY8CdkCwBZH20AN2QLEJxbxVEnZAYkf2Tk4UdkCAHvtDDRZ2QDKgW7Y3InZA8q5hbogidkB+jhxQkCR2QKK7T7JLK3ZAjvWa/x8xdkAFZn3BUjN2QH05bcjiQHZAaIMjYh5BdkB0Pa2yEUN2QIZLha4SRHZArv2OhnpEdkAb/yN3+052QHacapHKUHZA6qAYyxFRdkDkafnQZlN2QK9wCCKHVHZAAtmh681UdkCmxd6XH2F2QFgzwo6/YnZAMHtd5cxidkAuqUyFUWN2QCdyLpa3Y3ZAyo8gsNtkdkA2SnEpJGh2QIC2dVRaeHZAHkZfj86AdkBQjUqdZoJ2QGYp8og6g3ZAZDD61JGDdkBqBPgC95J2QArBPWCfk3ZA1Odxrv6adkB22m0KBKN2QIKNDdJxo3ZAxFN27kCrdkAUX/bCu7B2QKTpzCDCsnZA5EtJuyGzdkBctLwwSbN2QPTr8Y95s3ZAkl1IOQ20dkCi7ayZ07h2QDQyL0wtvnZAJILv6uu/dkDjn8nndcB2QCA8qbu/wHZA8Vf92U/BdkDqkdPGhcN2QOqTsOfOznZAigWwj3zQdkBq0khG8+F2QOCust0K83ZAzMQEbpHzdkBJutxtUfR2QJRFrelL9nZAiCAyPPoAd0BGO45VNAJ3QB75ZApRDXdAjEgvqQESd0DKtyo+qxJ3QP1wV4QEGHdAfGOZ0FIdd0CMdqZQIiF3QODBbtkNIndASRwrJ3Mid0BInAIyuiR3QMg4r3iPMndAAT/+bqMzd0BGkFctDTV3QIw7HI4lPndAstYHOZ1Bd0BXTe+N/UJ3QIwzp9x/Q3dATD3kGhtFd0AkWBAF2Uh3QFhGRY9KUXdA6AICQpJRd0Be0uoXKFV3QOrGb4GPYXdAHFE1sKNhd0DvXWBYPGN3QBptGRTRY3dAFCXb3zpld0CjlY0+KG93QLrIOHOKcXdAYNRWMktzd0DG9Vr9J393QJR14+h7gndAsFQM73yDd0ARqX4gCZJ3QEnpaP1PlHdA9sMVl2idd0AgIzDUw6J3QHuJUSWYtHdAZXPEz+PQd0DyfIo/jdZ3QPcaWwbq4HdAIvAky07yd0A6xbDzTRV4QA8aRiNuInhAJpBpp4sjeEBeziLrYDN4QPZTinCXM3hAZxCk9XpFeEDf9/OuylF4QG6scNqUUnhA7Z6YL4dVeEB465mX7ld4QHrYZ9X5YHhAe6HWgLdheEAyVtHk2mF4QNGHMt+2YnhAVPCnDmVjeECHOfQHPnR4QIZAkX1RdHhAoHKAxYt0eEDPfbmApoF4QIDcUP2ZhHhAvHlGNpeReEBgwrLnp5R4QKxCcemopHhARdrR//OyeEDmf58RzsB4QMpbJMTSznhAo0VsH7fUeEBwpP20xeR4QBb5Er8C9HhA2GfZYI31eEDQBpKv3gJ5QEMEzfQTBHlAhxEnyZoFeUDoNkqJ5wp5QIBXe83lInlAmoSesWcjeUCyTtC+vCN5QOIaXgC1M3lAJXqKjswzeUAd5wnO8Td5QD5Lt7vUQnlA/HuZ6PVCeUC+jgnC+0N5QAbt8mDiUHlAhpAUK5FTeUBKzhUWO1R5QM5dszvMVHlANni+7qFieUAGZ+0l2WR5QI6QzHVCc3lAcZF/Q9eAeUB8eRU6cY15QOABIXfLknlALDi4Yg+YeUBEvHTFJ5h5QInRU67AsnlAyrhD987CeUCNXP25QtR5QCT6oWnN1XlAVH7IgL7ieUBlJmU8UOR5QCRH79n4BXpAd8+hbgw1ekArQ+Cz50N6QKrctJsaRXpAiLLByM5LekAIWrEr9VN6QB6Q/BQnVXpAqiV1JjdtekCdR0ABjXJ6QHYMSSCoi3pAVkIxFqOUekDFInWx7qN6QMXcsi0NtnpAPPUXyxjGekA8McXOP+R6QN4S5CQ37npAEoLgXXgEe0CGd4ziKA57QJxOgdxMFXtAOB38BVwde0AQ3rf6kCN7QPSkNPhaJXtAFCf8KFMwe0D+th6LqzN7QB0PSZi/M3tAlieYx5hIe0Akx+Sz8k17QOgzJf1gUntAYvstLlNTe0AhkaKNc2t7QBbXZ8x8c3tAkrjUt+2Qe0BSsLSiI5V7QDPi9Yg8nntAmP4Ci5Kje0C1DQQwMaV7QFBrvb7JrXtAk4BV72G7e0DkX7hOaMN7QOWo1It5xntAgpAkBm7Le0CdDlY9/+N7QPjHpCkn5HtAcqg1nZjxe0CMdSgxjPV7QPC/tmyRAXxAxQk359kBfEDykr4c9AF8QEI1+6iZBXxAlIIVJtARfEAA916B5Rl8QFgCCjPNQXxAUopayC1xfEAaMey8B3N8QEaV0ahZmXxA5FbdU8KyfEABe9c5tMR8QHBAApqaz3xAApkckM3VfEAYeYSxV+J8QNj9bBAX8nxAo1U3wFTyfED4GinVc/J8QGl5PMgCAn1AM0f9pUsCfUAaVmBRABJ9QJyCubNFEn1AzPwSdLAbfUDY0tpYPyJ9QInTqKefMX1AmsFVFlRCfUA6u7sHjlN9QNid1DurYX1ADnKWrFaUfUCOqySm1aN9QEr0690wqX1A+tn4WirDfUA2e+R81uJ9QCT+VE6S9X1ALvxfy/v3fUB79CKSOR9+QHyWJO1AL35AWhlfOT0/fkAtAEUQjlV+QPnFV4TFV35AJvF/sJFxfkBSuvpARHV+QP5B33wZfn5AzL4of/+GfkBkehVwo4t+QOMyFSfikH5ASCD5JquTfkAM0sv0lrJ+QMYqGNRMyX5AD0EdECPOfkCKfMEIZtR+QL/9hZoM1X5A7mz2+9jvfkBOD7p/+/N+QA2TqbxR9H5A6A6RMB8Af0AFkeHZGwR/QNy1VZQCT39AUHur2FVYf0BULVFWt3F/QEpWDwCzgX9A8JloUqODf0D6rE3/YpF/QDll/ieokX9ADI2WCUKSf0Bg8KXtlJN/QPY6VltdoX9AqPUyHoijf0BDh2GVVbF/QOX89+SP3X9AqNOtSfPzf0Dy3+Sj/ft/QPA2uJ+DEYBAAWqS4C8UgEAIz0Ya3BaAQNKuswuBGYBAZOvNhy8cgEByypKn6C+AQKAEeRv3MIBA81/rOus3gEBoqVEA70iAQC66yXPlUIBAApX01RRRgEBEyZfw6FiAQE7KtKsOWYBA85wSwzZZgEByu4qb1V+AQNtzW6o7YYBAfSO6GyhvgEBKMOl2BHGAQDQRKpwof4BAwNTxsIt/gEDb9W52/IqAQPAVRacdj4BArWzOzG2RgEAyQ74PGZSAQNAXiJ8hl4BAyicO5IapgEBQqT3eBqqAQJ2x4OsRr4BA5JQhv2iwgECenQSCV7OAQLa8HKFIuoBAnGlCG3q9gEDL3NxzUsGAQK3otlsSxoBA+OYI9ADIgEDKIAtoIsmAQLbhnzxTyYBA7JeRl6fMgEDxj4JGB8+AQOdEMQFVz4BA3DOTzSbRgEAhbwf2S9GAQPk9sg4B0oBAEjdomhvYgEBPXnqLSdmAQDZqTTSp34BAeIS0vEThgED2g/JO9uiAQEhLtS5F6YBARFKpL0vvgEAcfG6OPfOAQMwISKI//4BAWCHNM5ECgUCuBZxNPweBQPaGR1A8D4FAHoOjceQcgUCPEGuCNB+BQLh3nww0J4FAOfFyIuQtgUDy5p/D9C+BQMbwC+nkMIFAAL3N3LsxgUDt7FdgKT+BQKHgL8D0RYFAChqDVPdJgUBwM+/lW1iBQFSeuk1jYIFAEhxtUlNogUCFqSQKYH+BQCjVFuDSgIFAhLPR+AKEgUDZLWYPVo+BQO/qo35ik4FANDUCj1WXgUC/xPLB9JeBQGs2nl5Tn4FAgfepsAqhgUChTDSE56GBQGg88ukMpYFAEKsEmm2ogUBiprWZAamBQCDIAeMTqYFA/kkCfO2pgUDcgj9pSq+BQCBIiGYGsoFAehQUmgi2gUAay7/3SreBQLLWXDVmuIFA9z3uRZrEgUAgPOCpyM6BQI90mlR90YFAEK+rTSbUgUBiVtgvhvGBQKpP0bQ/AYJAYFR8VwIJgkA6VLxfAA6CQI7GZxGhDoJARzyd7AMSgkB0BI7ZCRaCQP5DbZfYGIJASHCzqE4agkBCKoHF1iCCQA/pgCxVIoJA7NyR4NAogkCO/GLFoSmCQPIHHJqkLYJAVFTOXec5gkDD60bF6j2CQLoCtfYfaoJAA+jmMkOJgkDc7U71Q5GCQHotrow8mYJAWiwmN3mZgkBAM7SZDqGCQBwuiCo7oYJAaIBBBg2pgkBtU4pVM6mCQJzqSgAIsYJAWsAajP/6gkCsgq3TXv+CQJmsiEmp/4JASm6a9rkCg0Bs4NGdeRGDQAfRzIt5GYNAcY9fcbkZg0Ba/lC4ciGDQGiO79SKIYNAVgY+Mw4mg0AGRacpcimDQHQGdDQRKoNA+OIaFwYug0AvfQywFS6DQPhTRlFqMYNAXN44tYoxg0AlCkeBQDSDQFbKcJ8eOYNAtZBSJUSLg0DEGEa8k/iDQDSv4K7NGYRApvLr6NAdhEAhmXdjfFeEQNG63Z8pWYRAh6lxZ/9ohEAyeUq8/W2EQBKz6jv9cIRARnNAEm5yhEBQoF6v9XiEQNf3nkqxmYRACaPlWLjNhECEkbyyG9aEQOjIiktq2YRA9sKeeWrhhECAxLaFYumEQNG+VVF86YRAaGMeWjbxhEBrmT9dYvGEQBTN5sQ0+YRATvyMolr5hECWhaVEQxuFQD8Tp1OgYYVAiKOB9J9phUDSYunRmXGFQLg3jnyYeYVA2n7kxJOBhUBlSZjt3o2FQCqiDdPikYVAfDT/4eOVhUCnq9fi55mFQKR2p9fhnYVAUrVTzvGqhUCBKSLp+rKFQGiwlZXl+YVAFqjr2+SKhkD42UqPJrmGQIz762C8yoZAcvuo7ZXShkBnJ87Il9aGQEAJRvud2oZAYWGo8ZAph0AGShq0kTGHQBC7GfmIOYdAwnKJtFRBh0BSjxqBi0GHQBqSmm3HsYdAeK8mMse5h0Ber+ldwcGHQByA9zK+yYdAsqvEOUAWiEDwTzNuQxqIQLStHNlGoYhA + NrgMGZxjYkCO7m7sniJrQEMdzoN8QnFAR9UTyqeidECUHdwiorJ3QJjVIWnNEntAlHu4dvrDfkBgyzTwvZGBQFtC3dM+GoJA - + - 21WuRJokjkW2Jw5FMoykRgnGgUTKacFElXUtR3NNC0WilM9EOXZiRAZc9kSexYJEm91KRQWhkEQgt5xFf48VRcgQi0RioYpEgUFCRQYwUkQ7k4REton5RLAKdkSFJpdEpUkLRbKUYkUgdWxEImPBRKOMYEQwDgFF7pToRkmvekRVEG9EQ8G6RRz6l0VDpcdEypwsRQUojUQGoRFFMYf2RHLpEUcojJFECHiJROnZlkS85p5EOc9mRNwOkUWGaydFLDLbRDaPrETlyPBFsB1kRKnN0ETwjJVEY8ClRDh56kSXuYVFxIa4RLsZc0QnVfJFDWKMRAoJPUU4COFEdNTFRJmImUQY0YpEYgwIRY/HUUQUOmhE3XSMRNhsEEWj4E9FAtvxRiH7WUQQtlJF07QgRYL/U0T97EtFZXM1R9+mv0Q7ooNE1HtQRjXqtkWsu2REILVqRIHttUXkUcJFDiIZRS9FbUTRKmNE3y9TRVNoPUV1VJtEf3/mRPP5lkQasdxGecNPRJfg20QmbkRFS1zDRfYWu0QB7ZhEpxYhRT/OyEZiXlxEpWuaRF/VkkVdRbBE8FkMRqyAsUROpKBEWCYJReu/zkTTsF1EKd60RHwZKUUlf49EJIFCRjhqeEQdXnVEoWlURbO9okR8w5BEzEK1RJWlV0Q3hsFE8ah+ROgcDUXLDopECj18RGyzEEUU0c5EQdhhRD/BRkSsZntElCH2ROOEGkUm5qdFemt7RP2+hkXfl/tENL/JRJWSUkQlu+pE/XFPRPMBqkWwSppEUypCR9qQZUT2ZMRFMymSRMZ6lkQzBgJFww/9RaUjYkQ6oUVEUp7WRZAvUkS1CY1EiGUdRdOtxkTWasJEWUUDRbc0ikQxaaREajmJRA2wj0QGS1dEhBCzRLL79UTdXY9EvyJwRNOLoUSOD3REWsQoRQsT5kQjiCRHiZoeRcFrAkXS3HZEwOq+RC/udEQW/XlFpN5FRDWjSURqgFZE3milRWGtzURpgqREpEMDRU7TmUZnx+BEAzCQRKnhPkVMxWhEThYZReSmlEQsG5FE2lTNRR7VmkZ/h5hFed5hRFaMpURVlSVFSucBRRQyv0QC0b1EpMBxRDgDpkTI+AlF9ROBRFdlQEVf05RECW0bRV4pikXJg3FEwVCpRE+f5UZraoREpaWKRFo3G0W6V6NFr7JxRCEGakQS//xFlA+GRW9aykSAn8hE9ulORezYi0Sg5sVENSyjRXAehkTKvGxEBn+wR+g4uEQ6h9hGsbd7RBAx0USd+0BFQl+qRJ5WmkRJQrpEj9SARGtkRURMDztFG6+bRFXjTERZ48xFlrevRKlhAkX5b5BErT4ERRXUzkTFkHVEFOofRWYSx0W1ffVFbJXxRgHN8kQibodE2bWvRZir5ER9DwlFssRMRRrnuUROVOpENcR7RdW+y0Rx33xEbK4IR8eoZkTKoaJEX+CrRK4wR0QD4QpFsATJRVj9k0RDmY9EaOZXRP8uVES884BEOHZCR4mEI0cJmKpFU3lFRtIoDUWm9UFESGUPRb5ilkR1ewJFdShwRJx7YEQ7MFVGH66NRXkl60V9U/JEog2BRUmjuESh7M9EfjevRIIP6EREuIlFIwSFREPlBUUcuoRFeCrFRI2YW0R2ooFEuoRVRHQBG0VGBbdGNwWZRvAyMUZ4pH9FFo5SRGFZikTjj29Fn73gRLqHhkSQapxEnAaHRENqAkimHT1GqU7tRltvQEVtHMZFXNjdRvetC0XbWahFxamNRuBZVUUhYB9FiibKRCO2FEYExo1FmEHeRGSXw0U2VF1Evs2+RDVhg0TBR2pEJoC7RK3bu0Tdzp5EHnoaRgCLb0W/Z49EPgTaRLH5nESSCYdES/D9RBhhzERBlz1FhByIRC7Tn0SveYJEJMw1RoCWsEWtnK9GJgH4ROOCJkaaiGNF1XLxRNGnVES+CntEEGlQRFTDm0QNPhBFQsVPSZRrUUWXr1pIqSpXRWbHrUYRN0JEs0rDRDPZWUVlxnVEwT/7RdcIvEQc3oBFDBMBRt/QhUVVZ+NEg2sgRX607ERJCn9ECYTARDnJkkW/IIJEX++ARCd7gEQVSp5EnZ1dREbzHUXm4a9EoWxhRCqTVkT9QrNFs3U5RDDptESccYpES3JcROfeEkcW/6pGeXJRRRupj0U5aHhFT5yfRFuSE0aBGtJEDloFRSehAUUUyKFEPkzkR3ylVEc8xdJGlTZjRMy/EkbK9D5FXUOoRC/BB0UfnJNEN1wNRVLck0StzQVGHq8+RKYCbUQovAZFLjRPRAaA50RDn05GD/kXRdwr+UQVEWBF8UeMRH+xOkSeQ1REQrUaRjPue0V3VcVEO3uWROozZ0a707dFy31oRMUn6UVImSJF/9KYRLXKnkQSLG1EnHUkRst+WkXJo2NE5XKZRMfZ+UQEmHVEevjJRWcrx0bU5phEPI1xRni2BEVYwJ9FUhqRRWake0SE1CBGknOBRDq9Z0Q9TLRELcLERBlFhEQNp1xEcIzBRKtixkdK1RVFM0TQRhb+PkVF9BFFI4qYRpKnX0TbDDpF0PqeRNAA2ETuOL9Eh9WDRG0Ra0TaVCpF2qVARf7CKEUTRyVFKgt2RBR+mkRmhIpEMOuCRMsn3USFwbhEKIKBRNR/dUV3nrRE0v6ORBJYvURkREZE+hauRMuEhUU36YZEqKPiRGUX5ERd5JFEa1pxRPiMYkUFwGREqZitRMg10EQEaH5E28UHRZ1ORUVRCGFEuuxYREyBg0XERo5ENCR1RAXtQEa2zphEX9leRFGFk0SM7kBFV1hfRK03WkXMelBEVZRSRW+4G0XGUVlHMXscRxHaQEZKkIxFc4rsRE0EzESpxT1EcsO3RG4LNUXWdNhEhjigRpPjmUTXcd5FldnpRfK8e0Q/VdpEUKscRTii6EQfrWJEYEVERLN94UTtI51FXB/jRCen+kTVCrBE7TMRRTMIpUSKyWVEBn15RLkCTEQw9ahEzeJVRMscWkgZHXBEX5+ZRLV6dERkjqhHqnOwRXkKrkSHP8JEKwWERDGOW0c5OlpE9OfuRAFiOEaX98ZEdeayRT004URS6odETyyGRFKYhUQteFNGyy2URPBPjUU9N0RFWuhzRIIkXEYjqEJFNcRjRFVoWkRqRZJEtwvJRI/cmkTBNdVFmI5yRSfVj0ap8htFxgpaRe4tgkR240REIAZYRK12C0auF2lEs+UARVpmZkT+w9ZEK+ZJRhU9O0WJ/sBFZsUKRRrVoETaY6hEPyJrRLBiu0V2LtFFC1muRLiWmkQeAIVEW8hERAMq2EQ9dg5FwmyTRALPt0RebX9EcKWsRHAaRUbdplJEWrGbRW6N1kR5bWxG06DIRVjyrkWAHgNFgEgkRf4uQUUwnPBEuLBfRbYvvkTt2fhE+FwUSDW7k0f5NyhHFmV2RItAgkUkFDhGeYeMRBnAckWmi7ZEHXfMRNh/ikQBH5ZEEDIKRaEO2EdUHSBHwUVeRMMm50Zm87ZEpVAsRiGqJEbU9lxFU0KjRJ0XnERRqztFonVtRB7HiESnlpNEkA1vRCPu20RvyQZFYuKHRHTskERbznJE1gnZRXVjpEQvljZFEUuRRIkcB0Wf16xEKhllRKlKi0RdSEtHkCq4RoyEbEa1etZEmYeHRVzZskWpIdtEmhbbRHGXf0S2g/1GIWNFRlvxDkZWgTxFwT+uRENgJkeQ5s5GMmcARnx1P0XTY3JEb68HRTg3hERyXvZEOu1sRFRNCkUGNgpFfRMlRaT4O0XDDppE+0BoRnzm2EXJbpFF2SxVRM9gBUU7H/ZFq7FYRZ01EkWlMbREvCJ7RW/I7USbk1xE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - K4pWUXnAckDkC4aeDcFyQNSFoO5uwXJAxkzhF1DCckB4lDUnFcNyQNrdbRw8w3JABVY1WcbEckDmze1fWcVyQG6vx4xD0nJAE8KteEnTckB+RaVndtNyQMq/6J7N33JAMv9/HrngckDW9tl5UeJyQOKg9jiQ4nJAEw/wYMnxckDlb7tHE/NyQDhNsly183JASZMOFAz0ckAE2hWpovRyQFNDD0HE/3JA7VV632AAc0DvzMvo9wBzQOGzVPtJAXNAWm+phY8Bc0CSyiBq1gFzQMrC9JXQAnNAqhXH0foDc0DG7o16BxJzQGK2cKK8EnNABKi3BPgTc0AKE+7tTBRzQJZrRJ7zF3NAbm+lxU4dc0BUqig7eR9zQHRCXCILIHNASXvYpaMgc0CmmE85OSFzQLI1CppkIXNALertCnwic0AKVjXYySJzQDLe0+UQI3NAcC30es8kc0B8CvhlRzFzQGyzAnBcMXNA1n15DGcyc0AmGVVszjJzQDC0qtujM3NAuix+nzY0c0CTRK28zjRzQKXZkGzkQHNAOuuPgXhBc0BQ06E4JEJzQOAXAJ+7QnNAPmpgYnlEc0DAnk24nVFzQLaTDcijU3NAPgqqmOJTc0BYVmqHd1RzQF2V5AmJVHNA6OTXmDhjc0DAdcEOzmNzQJKtCb9KcXNAmCfsPU9yc0B9QXQ1ZHJzQFbl54+5cnNAJLJXo7Z0c0CGtOpwS3VzQKciPyZ5gHNAHiyGr5+Ac0DSqlK7DoFzQC/RPIfHgXNAgpzQalyCc0DayaDeDoRzQIAU4X6GkHNA/OrjBo6Rc0DS02m3+pFzQHB+PUVNknNABrCavsyTc0DUDdU7YZRzQCYsMor3lHNAI0w1O7igc0AQHeaETKFzQMV0x0BaonNApMtP5Y+ic0DcwPUD5qJzQKsnGbwFpXNAqLf8BDSxc0AanCzuf7FzQD5qJP1usnNA0jkTZLazc0DGoZKcDrRzQIW+fIyitHNASGcjZfjAc0DwIy2D1MFzQHIZk2vQwnNANGqntSbDc0BMZww5Y8NzQATdOxPCw3NAbMVDvz3Lc0DuXIVn0dFzQAqiQIW90nNABskI7/TTc0CGG/OC49RzQBmAXZQ44XNADrgl3WThc0CTQfK2iuFzQD47/+jb4XNAkaOgeknxc0DG7tDHNfRzQHJJM6uM9HNAXNNG/XgBdECxf2znowF0QB1F5ewGEXRAYofAL4gRdEAckmoLThN0QGJVB4nhE3RAeKeBkEsgdECTnRxpuCF0QNRNNf9RMHRAbARJB7sydEDkJRRJU0B0QGjYoyV5Q3RALBBxxZZPdEDC1ECF+FR0QDVIJtKMVXRAaMnKQLhgdEBsw5mYCGJ0QMRZgudQYnRApnOgSk9kdEDyUA3EInB0QFLtElxBcXRAPiifeDlzdEBklqg/W3R0QDIbIm2hdHRA7jMZGjh1dEAqqvQ094B0QAhSSW1OgXRAWgoXko+CdEAYCBsqFpB0QH4OoT5qkHRA2hgXj8+gdEB89ie5N6F0QMBlSP8Oo3RAjuizZQmwdECnG2N5+MB0QPDL3uV4wXRAuQ3bcOvBdEB0NeUPC8J0QMb92Ex9w3RAwABsF7nEdECkKorJ/M50QOC167NA0nRAMPydnODTdEA4FpiPddR0QMGzlkfO1HRAc79JzbjgdEBa/jnnuOF0QMeNo9Yc4nRA/n1hS07idEBR65rhTOV0QF1ktUu88HRADKtynYzzdED+o4g+dvR0QE92d4KjAHVAhDA2Ms0AdUCu8yF3YgF1QJKfFYxdAnVA0PFvJJoDdUDmb5sbSwt1QIkUpkaXEHVAvrmds2kSdUDsdlmLIxR1QJJJA6mdInVAjBxVW+sidUBJJnPz8yp1QHK+U+zMNXVAcIqt+bNBdUDINHh0j0J1QAZNHyGCUXVAnI7YdExUdUBebGv9dlV1QHZhD00MYHVAEjK9YThhdUDKmKFrZmN1QBKdAEv2b3VAYcksE3dydUBmnVHNjXR1QPAnQdd3gXVAePajwK2BdUDDwNQ4p4N1QA49o+abhHVAIoyTk4qQdUDu/Gb/tZN1QKKP3axglXVAhluAWj2YdUA2wTVwl511QKwQ0CiVoHVA2mYMsyShdUBQBq5huKF1QEQd+n26pHVAiOmDS36vdUBqU61kAbN1QBqg2UN7s3VA7MP70Ai7dUDTFPGOzcB1QMQZknH3wXVAoGtZTBDDdUAS46zBzNN1QGSzF5Pi33VARbyzqQ7hdUBEiJuNCOJ1QPgCaaY54nVA3nay5jvldUCgAFIegfN1QACTdAxJAnZAqoDZqNADdkAAcc4xThR2QNLWVjwOFnZA7eYYaooidkC7jC+EkCR2QLdUmx1LK3ZAblWG0x8xdkDjVDKMJTN2QE76sOZTM3ZACPXL1540dkDIyuiC40B2QPhw3UYeQXZAgwXGPxJDdkDsX2L3EkR2QIP3nvN5RHZAiO0YT/xOdkDePSvNEVF2QPGz6YdnU3ZAZgQ/VM1UdkCQu1pXI2F2QCGdPKK3YXZATwgyh8xidkBw3S8iUGN2QMBdDje4Y3ZA1ZL8btpkdkDKuhoikoN2QB0SWtj2knZAIBrHD5+TdkBcLYrNuZN2QHBozX3+mnZAVj/oqwyhdkAs8WtOA6N2QMDNirVBq3ZAetae48CydkD9mC4jeLN2QMgorTYNtHZAmuD4ydK4dkAetGt+6r92QKBblvJ2wHZAgltItsHAdkAKOmFlHMR2QByicVLPznZAT9J50/LhdkCu4hjDjfF2QJhzPI8K83ZA8knzR4/zdkB+T6DKMgJ3QGQu3QRRDXdAvNovhgESd0Ao2ZgNqhJ3QAKTv0sGGHdAp87SWw8id0DAMsXndSJ3QJIOSvWkM3dAMRQh0Aw1d0CYwk0/JT53QLfXzM+cQXdAA1AjELBBd0CGMSAD/EJ3QB6BW85/Q3dAYuaWNRtFd0D8A7Xy10h3QNdEaj1KUXdALcicB5NRd0DXUcaxK1V3QMyByBABYHdAJOSUBUphd0D026BWkGF3QBiUEE88Y3dADw8lWtJjd0As0ZIlJ293QHQXTJuCcXdAMh2RXEpzd0DK9EQzeIJ3QEqhs+V7g3dAIwKLAEuUd0DIPHOKaJ13QNIfClDBondA+jcLTwqzd0DSJBcum7R3QAg/pxbj0HdA+f36A47Wd0Bm7s3M6uB3QNSuorRP8ndA5mcTOk0VeEAYSttGbyJ4QJxv+PN8MnhAMX10yF8zeEArVUoMDEJ4QALx1r4QRHhAwGECV3pFeEAiYHP9ylF4QNcI8xyUUnhAamxjg4dVeEASUwHK7ld4QOUYV0NMXXhA+x8sDPlgeEAur3mgtmF4QFqHqZu1YnhAbu93omR0eEBr4ex/i3R4QLcOCfupdHhAlAaQnLx0eEBKBzk753R4QJw4t0Y3e3hAPsW2UKSBeEDK9azwmYR4QGLvDrJSj3hAjHo7/5iReEA2BNDSp5R4QFV4riGzpHhA2qj+gp+7eEDCDagZzcB4QFZBopC31HhAotGhFsTkeEAxjLv8AfR4QFuVVmWM9XhAmdsfFN4CeUD/wJQX5Qp5QHJE+ha2InlAfHHMhWUjeUCE4L7nvCN5QPitvkiOQnlAuHHXZdRCeUBU6wJ/+0N5QAiFklnMVHlAZK7T8+tgeUBWwILZ2mR5QP26YhhGc3lA4s/493CNeUAMpZp6y5J5QDCTD9YQmHlAMs7BAiqYeUBev2CVgp15QI5Zr+u/snlAcLxwDkLUeUBInkAyzdV5QIIoZoa/4nlAKvev707keUD+isprDDV6QOIh93/nQ3pASRHKZxpFekBGNqQc9FN6QOAI8WQpVXpANtgR8aeLekAOddy/LpN6QB7k8kANtnpAT85A7SzDekDeQGhXGcZ6QB1BFDtAznpAPzPbw3jkekD8qyI2N+56QNg/XwAqDntAizqQWE0Ve0B7WISHWx17QF9e/06RI3tAyDp96lole0BelPhmVDB7QNuMeKeYSHtAwnRvyvFNe0D2AZP3u2l7QDZfxRp0a3tATEeqXHtze0BIf1VVgnt7QKDdWykilXtA3nWwIjqee0AW3KXglaN7QOjmVHAtpXtAfE9Ub2G7e0BBV5yzaMN7QCJ9WsZ3xntAAMoSdG/Le0CKwo0JLeR7QIBJ+ieX8XtAEKYH2ov1e0DQAL5rkAF8QAR6davZAXxAYkt5rvQBfEBY3k/amAV8QKpSC7+KEXxAhTq1VtERfEByGapwzUF8QKz7r//cUXxAHK9R4gxifECUqlQDBHN8QM4v6ZxamXxAaI/CgL+yfEDoPlsLPdN8QKX9OJBX4nxAdLhFEBjyfECU3NEmVfJ8QKpQZFAAAn1AShk4OksCfUDcPeIWXQ19QK41gy1FEn1AqqzuDDkifUBt0BPQoTF9QK6OdRurYX1ATNVoXVaUfUBTo4ot1qN9QBYhogovqX1ABE32ISzDfUDcH0NH1uJ9QHFkz4yQ9X1Ad3arcT0vfkDv/3FXaFN+QOEmcWmNVX5AuEGUdwBXfkAAPyaMbWN+QLb5kXyli35AzVcB1amTfkBuKV6jjrB+QGMrz6CWsn5AGGWMcWbUfkAu97FKa9x+QGm3DvjW735A2Ca++fnzfkCauRx3U/R+QKULWNqR/35A7B0pqSEAf0CClqB8HQR/QE3AiwK4cX9At7CHPLaBf0CyHXXQpIN/QPLMhT9jkX9A9L545F+hf0CAO8/VU7F/QHS+KIi8uH9AiFxAn/Tzf0AM6Bzo+/t/QHw0S7eDEYBAjLS3KDAUgECPOplu2haAQJTKfyOGGYBALgnaoC4cgEAK9UQWLzyAQNoQ0SzwSIBA6to4tedQgEDCs92tFFGAQOibx8rlWIBAGbtWFQ5ZgEBAkepJNlmAQP34OswNYYBAskoDdj1hgEA+r1O+J2+AQFb8YgvcgIBAff6LGCCPgEDGk2l9bpGAQMAtA8mmpIBAt+oLNCGpgEDEdn/ahqmAQIB4YcQfsYBAB4X6c1LBgEDOB1b1DcaAQOJzHYFTyYBA2SbnxqjMgECcD29XVs+AQExG/2FM0YBAJo2H1WHRgECfEshaHNiAQJUKno1K2YBAkhe/NEThgEBWSa2/VuGAQMhsZXj26IBA8iq1dkrpgEAKLQGBSu+AQDcNf8w//4BAtJ0MED8HgUD43Y9r8guBQAGmYZw9D4FA7eyYvvQdgUAQG3o3NB+BQAx0T5YzJ4FAuiRloOMrgUBUQ07h6iuBQAlvHAzmLoFAJqpigrwxgUAdHQoU9EWBQGECCA/3SYFAc6zjgu9WgUBHzSYuXFiBQO7JQJ5kYIFAcN9weVNogUAYdEv5lGqBQGrvbDlWj4FAXiXh9FSXgUB8TBEuCqGBQOZRKz7noYFAxt9PFQ6lgUAt5AgXbqiBQNlaRxcEqYFAs66io+ypgUDgQfZPCK2BQBXVktlKr4FAMIBZ4QWygUDCB9EpC7aBQG5WgbAMuoFAHNs4BMnOgUDH9kVfftOBQJh4zvcT2YFAnqqMijX0gUDFs4z0NfWBQKabBRt8+YFA3jWMLVQGgkACNUpsAwmCQExOMhkADoJA7EGlUwMSgkBOgR41DBaCQNLa13zYGIJAHhO+Pk8agkDfpGmC1yCCQCwePUNVIoJAlsXxQtIogkC69oFBoimCQK6+biCjMIJAsSjdAug5gkDioB+Y6T2CQPEENUIhaoJAOvO0F0OJgkBiLrBHRJGCQAqndDE9mYJAYgKH2VaZgkAE6KDgDqGCQC4YOpk7oYJA0vmAcQ6pgkD/Qn18NamCQBK7fScIsYJA8txxlDaxgkAqNGPUrvmCQLQYJr3++oJAJvk7XnkRg0BkLJQXehmDQKucJvyyGYNAjosQPHMhg0AWhgdHDSaDQJZfAMFxKYNAeEjouxEqg0BVqLENDy6DQEH36rlrMYNAw7rCGJIxg0DwJ67BaDmDQKqXCeHjgYNAETaqYJX4g0Dst50yzBmEQEqzHCTRHYRAOs7BXLVehEDco9UCAGmEQA5P7Lj+bYRAftNV1/5whEA2R5cf93iEQOjGLKjMgIRAqAG0cK+ZhEBGwqXXHdaEQKhvczdq2YRAJlfBMWrhhEDM9vvBYumEQF6/NyB+6YRAULtjSjXxhEAKQkXOZPGEQEou3Xs0+YRAqJUlMVn5hEAKyllroGGFQKbjWymgaYVADE2ZHZhxhUBrQztetXOFQMS5xpOZeYVAVjs8i96NhUDOQYsU4pGFQE6Mb5vklYVArolkV+qZhUCA0zPW8qqFQDRCgZrl+YVAGsfu4yS5hkBTIYsRu8qGQC77bACV0oZALLaCscfShkBl3uhKmtqGQBKAXBCRKYdAXESBnJAxh0DuiOdWijmHQMnpUD9eQYdAujnL94pBh0DS8YYXyLGHQF6d0RjGuYdAH19Fw8DBh0CfA14xxMmHQIBz55ZIAohAJrCU+j8WiEAmpucPQxqIQA== + NrgMGZxjYkA= - + - zGfcRKGlqUSEkIRFrXjrRGCWz0Tv9HVGi99kRGsHnkTR3wFH4QTYRAyNh0SqvKdEc83VRFDJgkUVZRtFlVpkRV9sgER8BJpEXc1jRBuH00Q9NPVE0P1WRMYZ7UTfW4VE4xVMRE8RWkQrBOREFsfuRuV5h0SxlANGeNOERYBSlUR71v9ENIuIRIy6H0VUCEBEcFMIRfQlzUa0V5REcRxDRBYUoESpd6lEwXxyRYpIJUU4pEtE8f1rRFQRXUVsZElEXf3kRL7OO0RKmcFEz6d5RTsycURrKLREa/jyRVkqrkRBPWVFgp2OROYPs0SaX51Esaa5RNUrbURRzEpESLmiRKNNkkS18YdEAjeeRKyZ0ETyydFGX5iVRKcwKEVELFBE03LkRAz8q0Rg6CFF5aZ0RBILO0QGQjFHlkutRP9ojERKnmNGYq/LRSOclkS7dbxFXa1BRC/UiEV3IyJFeFSRRIUpgUQreEtEWCx/Re8BIkUS7WNEptvoRK/adEYzUmFFdM2uRSbESkQcblFEuJTwRJUwcEZW9L5EhGR1RD1TakXdywJGDyVkRIdvhkTo0NNEYp12REolCEW1pUhEAoR0Rp+OhkROul5E2Ye1RD3+PUVZuJNEJWaiRAGD60RVmYJESzSNRGnCWERTO49EIO0tRIWkn0Snk7BEfeaGRSo6T0VjJGJEIiiaRJOlvkWhzzpHy2GcRX0pMUSCK4NEPvG8RLWnNkXGzf9FPwaERIuvu0VxFbFEWvjHRHOATkRge8BEIHanRJnJPERBaNlEweR6RG2lNURPsK5E1scRRaB3v0Ty5shGx/T7RDvwU0QgSuRExkN0RAYRBEXeUpZEUQ47RbJKZkR3sUlEURrURUFAX0SbqZhE4JN0RPuf/UTAdnlG/W6CRMuS1ETSCnZEcuQARZ9CR0U1Um1F+8sERs+cTEXm8yRFjiaARF5xgUQNO4hEnv6ORBVF00Qbw2BE9oEZRbtzREUZtHJE48vwRExAPkZTYKBEskeGRRKD7kX8DSBFq+6ERCxyYEQ161JEslOGRKbBhUSNtTpETXeXRKK3v0QTElhEHdicRbviRUetvX9EJS1cRk4JUUTVOrBEmdaKRCFqkkQ7p4ZE6KioRL3rB0UriU5Eyui5RLpI0USJsbxF0o0yRWyb3ESMJNNECR6sROUF0UVLcWRFu4bkRkRXv0TM4JdErZ1kRHSyg0S5N55FJIftRHo030QfyxhFmTOARD06HEUnY3pE3FNqRr6DVERzl2hEdU0lRadbXkSMc35E9xUyRfFOGkefiMdGOdqNRdj1c0TrPPtFX/uIRE10wkSj0+1EzWMhRU6CGEZ+SJ9FQfB/RTj4P0WbM4xEibtgROuFnER+YGZFixKdRLoZT0ShXBNFYni+RBttD0WDhKBGBLCVRoZHAUaRDxFFMXVeRduFlUQ213BE+8bkRxU9JEbIn9FG7yKsRUVK5ETclqhFD7LERgTquEQ96ZZFSXeeRhpIfkR+tHVE0h9jRNKRSkWTlrdFzCYNRShukEXeurJEgyejROnisERFJmZEPSPFRKkflkVc2IJFKkB+RFqp00RaKJBEpZmWRIPUa0ROiuxEZfOFRMjBSkUcg11EfZuzRCAsmEQP+EFEQzkURhOanEU//21GaWAXRQ9FwUXXVaFE17kPRTPgN0VVGu9EwkwxRTEBO0kGB4lFcH4kRZUWdkR5pqhEmnSIRaMrPEjjyYJEKd7JRObyjUatjoJEDtVaRI1p6URAMK1FxzuRRIbHeUUettRF4bYBRf2jSkRA7V5ElIi9RKPXI0XUYYBEvI2pRM0R6kRREnRF1+pMRJPSg0Tj5J5E0sTvRstIckavNRVFyYkHRR7u7ERD7I5Fd1HjReRc1kTvIrNEL335RAUSvUdmHilHVG7ZRlkyykX7OwFFpb9iRF5Sf0S0LMNF6ACFRDfK30RAJoFEBAyGRFnGBEUuWOdEdYgnRg1Lb0T8tJlE6wcwRQBZjETkv5lFx9toRf2wRETAPmtGZtvURRqNqUSG9ZRFmcytRBDEyETbsrFEQuA/Rg23x0VV3nZE9K3RRJCPS0S/dq9F746cRnV8g0RlNEBG1FgvRZjjmUV0gV5E3ku9RWmsz0V7S6ZEV4GpRH+FhkS8+XFE8fb7RNVoJkXqHsVHLYYHRUTxvUZ6wRNFYU2dRiM0VkQcJBxFsFBgRFrldkSMkbNEKFbaRD4ZYESsxF5EY/BoREkxmETmGqhEUGiIRM/jaUTx2hdFjdRDRDduTkRPBHlF9eU0Rf8Bb0TXJatEpo6eRe5z5ESi3I1EC3rMRGxDUkTfRX1ETjHLRO8MdkSOQa9Fwe6sRL1FaUTtrjlGDOiBRTNMDUUbAVZEh9crRUMOnkSgdg1HgRTjRrdyKUbuwGtFeNjHRPDuWURJsSdFX34GRU9bpEZREbhEfinJRWHbc0Wwx8BEemO5RJG6HEWYbXpENhJlRRb4mER8GUFEsVaARKOkAkX/TGpEuEVqSAKkbER0kN5HBr8+RfTXLkW1a2hH7fM1RbX/ckRU+3FGG9GBRVWThkRViqdEgFAvRInxq0S8oxlGox5bReqBP0RfO+5ES5G0RL41EEaMoSNF32QyRHgLM0QzOTdE9nTqRDxMukUCQPFEokJWRG7MjEauB9hEmnSeReGbvET1g9pFXGifRAygFEYV7iRFu5wyRSxOCkVwOelE3OORRBCSg0QiSmtFBp94RW1TCUWMrYREI7mlRNLhUUSE/WtERK9bRPRlOEQPnFZEtUWeRGOCyEThmelFQuRORffZbER68kpGHoHARTldgEW6qGdESCE7RbcV2UT748VE0XdaRZYICEXrNddEbd8pSGPOrUe+2jVHYx4LRaBWrkXQvWlGYtgXRQW4gkW+SqREfLeiRAMhr0RlTVFEsOIFSJrqgkebap9EPFEYR3zc6UVFqB5GqElIRcr5PERoXGFFCEtORJ3XfkRCRI5ECAmSREcPFkWlpmNEkhc0RBMi3UXQJqVE8VdkRT3Q20SM5EVETkjHRLBSGUVzTEBHhI/RRv32YkYjUMxESY5gReU2o0Wg+MNEIpXPRCUoEUdCo4dGILv6RchjV0QJSUtF9Eb4RkHNskYQbgZGKUobRW0F8ERO9WNE7lfmRKkpFUWKlIlFORZJRHJXukTEhWhGQurZRfjEcEX86JdECPQ6RSVD30W6aXRFi+JYRatxykSzDkFE+2kURSrSDEU= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - yCbZt3fAckAA3Zkwb8FyQJAAur4Tw3JA7cNSnTvDckB87QfMWsVyQLAJVGhD0nJAHn6qe0nTckBxDtq2dNNyQMgBzYrN33JA+1+PvrbgckD41YFUUeJyQH9ejk+Q4nJAqAfrn8rxckDSa9LrEPNyQBA7xiW383JAPnB8/6L0ckDw442JYf5yQDUnq9TB/3JAknYkT/gAc0AWI7K7TAFzQDyHu6eLAXNAO+v2/s8Cc0DkmiBw+gNzQAGZU28KEnNAbKlZ3bwSc0BGY+Zn+BNzQMMEVCj4F3NAByXIkXgfc0C2DwaZoiBzQKIcMrY4IXNA39IUxBAjc0DQkGNgziRzQPiZeBRHMXNAK/LoEVkxc0DLRkjwzjJzQFirRjY3NHNAKbUpS3hBc0By2Xf1ekRzQHpMVoqjU3NAMjrOen9Uc0CbKkD/hVRzQH6IRvw4Y3NAO1yX8lByc0AtBtiCtXRzQBSIfh5LdXNADEnHs3iAc0AyasUapIBzQCaD3hAOgXNAwsY8x12Cc0Ac6o1Gh5BzQNgj1xpNknNAw/m/qPeUc0C/ogB1uKBzQFxKQOlZonNAMsvDdOaic0DMcisFBaVzQDiHumW2s3NAIl7xpw20c0Ds4PqP08FzQGxzmMzPwnNAjn3H8iXDc0D2tiSmz9FzQG7x+PX103NAagHhKOPUc0CIgJkAOOFzQB2FWaNk4XNAqHmpDg/jc0AeuMewNvRzQK5Ak7l4AXRA1DG/7qEBdEDySWxsixF0QFeWxfZKE3RAfK8a844edED+eFZBuCF0QLhNClJTQHRAEa7/KvZUdEDesVv2ilV0QAHq6Y+4YHRAgqELvwdidEDGugKWInB0QCFrRPhAcXRAiEGXnTlzdEC4sXQSoXR0QPhW49I3dXRA3O+xUfmAdEALyKNzToF0QESCRkKSgnRACJd+IxaQdEBcov6h0KB0QDwsd022onRAusPXBM+idEACn6AXEKN0QEqYrRAKsHRAqPFm5+LAdEBQ6KiieMF0QOig7kvpwXRAugH22CTEdEB8M6c2t8R0QCfmnYv8znRAzSM+akDSdEC2teVoPNN0QGzZxefg03RAJTfDd3jUdEBGLLfUzdR0QPxjZEG44XRABBwLTU/idECKEUa+TuV0QA5UG3qN83RAqkliuaMAdUAIarusXAJ1QNXl/6pKC3VA6jdGWSQUdUDEF5+1nCJ1QHSTZC7rInVAGT8wr8w1dUAW7ftiBVB1QHw+1TcKYHVAVItqsThhdUC4dihzZmN1QNJ45iN2cnVAh+Mjwo10dUC1aMNh5IB1QMpz7iN4gXVApSMkhq2BdUBWbNripYN1QCSYTUmbhHVAvPZFKT6YdUALnVlUkqB1QETTiPd9r3VAPt1vFAGzdUChzG91CLt1QMb733j4wXVAHkeWSuTfdUD8kAp1B+J1QAahjAEO83VAtxQ2U0gCdkAdAbVZDBZ2QJAwEBSQJHZANpcaSUsrdkD7WvijHzF2QBI3bzJTM3ZAbMvKSB1BdkBRgyuhEUN2QDxSmsgSRHZA+HSCSXpEdkBKxPRNylB2QDQTwioSUXZAEpejMs1UdkAsgYO9D2F2QCLhKYfMYnZAoBrNvLhjdkDKfi9C22R2QCxZ+ImRg3ZAYO+zbfaSdkCHr7BsnpN2QCmW0RS6k3ZASwffcv6adkCamEF0QKt2QPPyBnjAsnZAhOPxYHizdkBRns6MDLR2QJWI90zTuHZANvZ1yCy+dkCUclgUub52QJdFE+npv3ZApGCDVs/OdkBRLzQw+d52QINp5DIJ83ZApmvQGez+dkDZF9xZNAJ3QJ1XPHZQDXdAvhKGLwISd0CJelEWqxJ3QFk4SkwFGHdAXLcVVw4id0Bab1elciJ3QJ6qfuUMNXdA7R5XpSU+d0BMMMTCnEF3QDfp2mb6QndAf2TbroBDd0C+YfXFGkV3QJ4u64tKUXdAKJ1/65JRd0Dmul3ZKFV3QOUgxomQYXdA2tlD5Dxjd0DrRCBKz2N3QFaHTIonb3dAp45JT3aCd0CQTYoaTpR3QNB1b7NonXdAbpWwgcCid0B27auU5NB3QGCB+1FQ8ndABONLNW4ieEA6jnkviyN4QPalpVMPRHhAgpdKe3lFeEDi7w36ylF4QA7KPyCUUnhAoIZSs4dVeEC6L2kl7ld4QA8bXv/4YHhA8tmMjLdheECFWUy+OHR4QESt7llQdHhA3mqkh4t0eED4qOnTpoF4QAkjHLiZhHhAOgp8+peReEC2vPYJqJR4QE6ugTTNwHhAUIUN4bbUeEC0A6lPAvR4QAxPk3uN9XhAlP1bF98CeUALEikRZiN5QOIgv4O7I3lA7zuCbfZCeUC6lo7b/EN5QPI54CHNVHlA70DXjkNzeUB6IbMpcY15QCG1L9XKknlAinj5txCYeUDcv6ibJ5h5QLM3rwBvnXlASKUmN7+yeUA0zdOWQtR5QPJhwFbN1XlAdms+DU/keUBK/91MXRF6QGI9O5YMNXpArNqHL+dDekD1pIVSGkV6QDBXFQT1U3pAVV3BnCpVekAAbPboDLZ6QESo7AU37npAYpPBcnsDe0Dtfv1LTBV7QBbQswdZJXtAQCOZMJhIe0CUxTIL8k17QIzzM/dza3tAvj1zBntze0BW5JbigXt7QK1vM7gjlXtApUUNKTyee0DO6u5vYbt7QG2rxlBow3tArB9vG3/Ge0A48oEWbMt7QPDl+m+M9XtA1wKdtdoBfEDiRYNKmQV8QMcd8PzQEXxASEfurMxBfEDeooQLD2J8QACXIUrCsnxAYMeWTD7TfEDGYnmtRdt8QIBH0NtX4nxAfkbhdBnyfEB3xH4kVPJ8QKr2SJ1y8nxAB9y2IwICfUAODA/wSgJ9QI+1fn9EEn1AnM5ckKlhfUABd+nTV5R9QM7mHXArw31AVpBKa5D1fUA0Rta5jVV+QC8ILO2ji35AkV+VQT+MfkCWcKjHqpN+QLAFUBNm1H5AFqRTI27cfkAqp+1p1u9+QEjKwmTN+35AJnZkVbdxf0DSq+uFsYF/QBunlRxkkX9AnJyedKuRf0AiT4ZgX6F/QOSF785YsX9AuLkh/PHzf0BKvi/w+Pt/QH7EwyyEEYBADE51oTAUgECCwxrF3BaAQPv4DsGEGYBA+WhWd0I5gEAu6wJ+8UiAQDCip1nmUIBA4Mx9ABZRgEA0JTEy5ViAQK7PQ48OWYBATCZeBjZZgEA1JvXqC2GAQOYGP/3FZoBAo3kHqSZvgEBPqtabHo+AQP9INzdukYBABhCSdTnBgEBZaJ9NUsGAQHzYRsxTyYBAqpi21qfMgECfwY6NK9GAQAZhIMdN0YBAWA9lZUzZgEAe9/uzROGAQKaaoxX36IBA+nm6ukTpgEDLtlV6P/+AQD6m5PmSAoFANt+uPkEHgUDogvtwPA+BQJUTSPMzH4FAEr2xflEhgUDeYiyJNSeBQN4y1f27MYFAGePkSfRFgUA4CGXF90mBQIIOwQ1cWIFAah3Lk2RggUAU3UCOU2iBQNsNf7BVj4FAeNlCVleXgUDESsJ7CqGBQF0XD0DooYFAbsW3Nw6lgUDAfIoPb6iBQMz5UAAEqYFALj5lUkqvgUA0Th94BrKBQO+U0fYItoFAKlPk8gIJgkCc2adrAQ6CQCyMOZsBEYJA6BlhsQQSgkCsw3/i2BiCQLDcSS/9GIJA35TYp08agkBVFJdG1SCCQNud2uNVIoJAaa1119EogkDQR1nWoSmCQBOq4mznOYJAu3mPqOs9gkC2PoVOQ4mCQO7HOc1EkYJA8JDpoj+ZgkCdeiv5DaGCQHRtPgk+oYJAdj9z9QypgkBhKjGLNamCQJl2p9NMqYJAeBvp2DOxgkBKXDs0r/mCQB5FBtxbEYNAybiGRXkRg0AmIMQAWhmDQPzcPmV6GYNAnt0a+rkZg0D9dTi1dSGDQIYqUfEMJoNAQp8wxHMpg0Ass/osECqDQDTdsRFrMYNAzHkSjIIxg0CibXYaHTmDQOTXzgNpOYNACqM5mXlxg0Bhybwa5YGDQNiS/S/NGYRAmNgxX9EdhECq5Rl4/2iEQIQckL0AboRAkOrGof5whEDwk6px+HiEQOSyXh+xmYRAUBsgHGrZhEBrl4YQHtqEQJJOEhZr4YRAsbgCXWTphECU7pBSNfGEQFY91pZj8YRAAltn7zP5hEDR9skVXPmEQB4qY60sAYVAPwjEJVsBhUC04wA/oGGFQMCzaWWhaYVA4mw6FppxhUCEXGZbmXmFQIl22cqSgYVAKpxGK5OJhUAC8Ei63o2FQO0yDprhkYVALxYMP+WVhUB+0R0w6ZmFQDqv7VrzqoVAnGgf1LvKhkBsWuDWlNKGQM6jvl6X1oZASPN9JJnahkCYJWMqkSmHQN9w2XaRMYdASGrkhoo5h0CG0lK2hkGHQAtoZIHHsYdAFc7hg8e5h0D6o/zywMGHQDyYyEbAyYdAZ1y54T0WiEC5PDAlRBqIQA== + NrgMGZxjYkDiYBUjzERrQEiYIzJJZG5AcQ5nZb6zdEAkKu7sfEN2QH82ODhAlHxAmM+u3GzEfEBtIcHBgXKBQPlt/BOYioFAJnShufmyhEAAAmX92HqFQCajj+OlO4hAADFTJ4UDiUArW9Up0TuLQCbSfQ1SxItA - + - /PqNRJpCUkX/WhNFYx6FRsQ/u0QHXA1Hkx/ORF8ptkTlLeFEO1vwRF6GgEWpTBhF7qBVRSc3H0X6Hu1EYoDWRAb850ST7NhEK3S3RBtvp0Sl7M9ENrLFRNi/FEcE3KlEl/gKRm0cvkWuhU5F737ARGIANEX3CdNGHfWhRFuMl0VSsu5ExQuXRAlPokU5UvhEVXaNRfhaBUazUqRFTc+YRHzlmUQ1mAxFYt8RRa/7ukQ2rRBFsUTcRnVt0USsnihFFA/FRMMXVEUk3DFHWumBRo4E/0WnyrZFateSReePQEVj+XFFnPX7RKTrhkY6EaxFmxLCReEg60UYuNRESv2URQGn9UUjb9JES7rZRBeqHkVQu5VG8bLqRNBdlETsMUhFAvvxRGl7LUXpyLxEtYwDRT8x5kSfbLJFDxOYRbt41EWshThHebyORUrE/ES0i8lEz4QMRbmf5kUQrapEEvqmRbgY8USq15ZEWp2gRLvwAEWoERNFQvLfRLDZ7ET2xbdEqCPFRM+9s0QKB/NEGqSmRgSsxESiKq1Ee/GmRBsIuUTiki1FRCA1RYpu8kTIMsVFDnzjRCG8Y0atWbpE5fu0REcrqkX+PcNFilJLRRynq0SsAcBEaIDwRJNkRUVrj99EHipBRmqWnURrDxZFxMnARWY9BUY3OAZFB262RIrBvET7QXJFrv8AR+0p+EXHyTtFPTahRPslG0WO8Z9E276vRTIKGEXoxQBGhLjARd5uWkeQhflEkVoPRt5IDkUFc/lEdL2FReztTEXP4rVFUeF1RmNI9ETdGyBFs+SzRG8tOUU3Bw1Hj0+yRkTwdkX5xqtEzqfCRSBUBkUz5zBFG4UtRuUOqUUhdsdFSAUvReRvp0Trih1F6j0VRVW5RUXYWwVFBlQTRQon/0SzMoFGeGeMRteMMUYrxERFrkBtRX/vvES6tuxHxtUGRj4NxkaVCT9FqziTRdyUr0YA9ctFPs52Rl96CEVuEE1Fp5jhRWZVAUV4S35F3nzmRDikzESkIbxF26cqRXG7ykQv38NE83dRRVJ4vUTlB+5EkLBKRim9uUVZuBFG2yUiRfur1EViLRdFhKp5Rd7bFUUdMBVFtR86SdnmSUXKoj1Ic1gFRQihlEb7RdVEOGNcRWOJdEUOvKZFkU65RCW8/0SYpw1Fd6QeRYhiv0R+tEFFiIfBROexEUffaGpGlwcSRaJkaEWXlgdFBS1cRTavp0XluLlEG9/ERPyS5EQxzaxHf4IrRxWgpEbBa8NFmr8PRZ2e40VF5xBFnTSYRKc4D0ax1S1FxiCpRSESp0V3NYxGUuO8RUbAyUS/yRJFP1fLRLSNwUaDMwpGDXioRGEnBEWltm9G71ZsRgfMj0WKXX5FrH+9Reeps0R4mP1EirZaRQzJG0Wg2t5Hs448RWi2xEbUe4RFx/xKRWk5q0bNApJFmcLqRJ02rUTezrREkpO+RAIwB0XLacVFd/8ERR39xkTZ/jlFMq3ZRFNdt0TXeAxFxrlCRsx/IUV0TyRGkp+4RP4SfEWaF0lF/tY3RbKBHEUomxlHUjnNRg4WEUZ+vWRFFUMERWdacEVNL8hEQ4BER5vjtUSyAEJGzNonRSTE5USisb9EkEsLRS1PQ0UeH7FE1qF1RU0+EklpCJVImW8eRae9TEWuZSZIhrQkR1zCNkbNOjRFc74URR2oMEblwNREUfAFRTI+HUV8KhlGJRSGRdijCUVk0g1FMMLPRcKheEXeJpRGQsIfRXosr0U/jqpFKW7mRBnHBEbPehFFdEoqRcvl9kTuT1xFEvksRWokjEUiRdRET27KRZH8/kXSu1VF4quJRRvHW0YOSANFAQeMRV7tSEXbe6lEaH4lRS5zJ0UUaztFgEDBRKoXGEkkb69IyeFeSCbHukWBz4xHfv9BRVEWnUas8GBFtYuYRYMR0ESDz2xFHiccSUHTkUQLX7FI8/7bRFT6eUiaX7tFVs+dR2eUYEWokZhGupyCRV/XX0WSkINFRyr8RMcNs0SeI4NFJVgBRZ+I60WTD+REOrtARbz/MkXgrgpFpmoQSBDgxUT2Gq5Hlk87R6T2j0X9IIxGVeYCRSSNsUW9lNpEcdvzRObM/kc9xpRH14UqR9zNP0ZOWKRFiooIRXWVK0eea7NGgmb+RSZLDkXpac5EJzcCRYASkEVW3iFFd0WjREE61UaAIlFGsv4iRlGcVEWeX71GxgI4RlPn9kWVnWhFJngTRRs5O0U= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - U5y+Xm3BckCklk0oUMJyQJb0EdUSw3JAaCeoWjvDckDqzaUvGctyQI6tEDFD0nJAEVAMAnXTckAL62QOUOJyQBYckRKQ4nJAvPTe9sjxckAuP7jeEvNyQJLU/plh/nJA6MBPvY/+ckBY1MrbzgJzQGjIr3v6A3NA9MgIxQkSc0BTA2Q+vBJzQJvrxjQFFHNAGCY6XU4Uc0Dyx5+59RdzQPJnmUeiIHNAAnyP0jghc0A0D/TpDiNzQMQsjFPPJHNAtBkydEYxc0ASFGeQzTJzQJzt01ygM3NAo4paHDc0c0DKF3mP40BzQEatECR4QXNA0pXtDCZCc0D0g+CIeURzQKaTt8hBU3NAxhWcTKNTc0CowckoOmNzQHxdqwtTcnNACjTYAbd0c0DMWpFiS3VzQIkH97Z4gHNA/dU4naWAc0Dq4lAeDYFzQEsdoCxfgnNACXeKPYeQc0DgKQkUTZJzQE7am/v3lHNAdsyU5regc0CZVObSWaJzQCNpTNXkonNA6/OXIQSlc0D65QNrtrNzQE5kswIMtHNAagqtRPjAc0ChpZGx08FzQHwPKM7PwnNAZlo+wSXDc0DRJL+C0NFzQGhx8rn303NAdnMWMOPUc0AxCcvaN+FzQHu0/CA49HNAUxjVr3gBdECI5IhypAF0QIi/PmhME3RAeRYoYo4edEBu8+/ItiF0QOLgShCDPnRA6kc7ULhgdEAoAJkYCGJ0QOqxerVPZHRA2i2hLiJwdEASop8hQXF0QOKQgNY5c3RAZoYhaDZ1dEAGtWDv94B0QPJIPVJNgXRAnBm9y5CCdEDgI6b3FJB0QFS8KSvPoHRAInJjcw6jdECXHO98ZqN0QOoOGTN5wXRAMFiDR0DSdEAOh/2Jz9R0QJGMULa44XRAgJWeOE7idECavu8RjPN0QMCvOCVdAnVAxWIrDrcPdUA8XMlwahJ1QPgK0rMiFHVAtSPm550idUDSX68C6yJ1QHamk1LyKnVAL+rYtcs1dUDATmrlOWF1QKSySktkY3VArSye0HVydUC7fRI9jXR1QLTtwAR4gXVApF4eM62BdUC6+ssnpoN1QJnDROaahHVAT8yIS86OdUAgCRU+k6B1QCbDeS64oXVAhuaNtH6vdUA4pENBAbN1QGqgeDcIu3VADGdDlPjBdUCUkI+/B+J1QMUfjR1JAnZAHvdmQJAkdkAqjW4JSit2QIKqT6QfMXZAAKghrVEzdkCwmEbDHUF2QIxYMiYSQ3ZAmP2XrHlEdkC3flYRy1B2QJ34lsYRUXZAny5pVM1UdkCxGj/7y2J2QP49+jRUY3ZAHtr0LttkdkCu6PeMkYN2QNuzBAb3knZA1BO6Ep6TdkC6X44r/Zp2QOYnpoTBsnZAC4bLnnizdkDWOZ+6DLR2QJiK05/SuHZAZjI7Muu/dkBsnhubzs52QLoi+DD43nZAeBZt3R/xdkCJNxO5j/N2QASUKcnr/nZA3lIgVVANd0A0xPTsARJ3QHJp4capEndAlojjLAUYd0A+tIarDSJ3QIQA6QMNNXdAQlnw3SQ+d0AuNfqanEF3QIy4Jpz6QndA3mXt/H9Dd0DKHoH2GkV3QDZ0/S1LUXdAmsmRoZFRd0DYWaVOkGF3QC2/E4Q8Y3dAENkqZc9jd0AITN0IKG93QA6/DB94gndAPVQ7qU6Ud0A0G1RRaJ13QNaVi53AondAm4LoQW4ieEDtHeSveUV4QK1xOC/KUXhAtG1me5RSeECDvFJfh1V4QDC3I53uV3hAEBmxnPhgeECyJxUyt2F4QFstEwlHdHhAuPa13GZ0eECknRl/i3R4QJbmR525dHhACmBGu6SBeECfg660mYR4QFIIjFuXkXhAEKk2EKiUeEC2uinUzMB4QKYPSaO31HhAAJ5O/QH0eEAm5Q40jfV4QBsu725jI3lAyxySm7wjeUCGd5zV+UN5QOL7p3zLVHlAXMB2wUNzeUDB8ozucI15QJ+kQTbLknlATCG+2xKYeUC2z1KiLJh5QNDXqCHAsnlAUOWfuEHUeUDYJq+eDDV6QBHfdO7mQ3pA4KfPGRpFekCa7YMU9VN6QEsAt3AMtnpAailOojXuekCWRXbUFQF7QCb2IboqDntA1AIl+kwVe0DYJIK1kiN7QFckbXJaJXtAsuktx5lIe0Dxpo4E9U17QDpHkehza3tAEvxcDntze0DQL/7XIZV7QPqtDh46nntAJhPnEmG7e0A2WSstacN7QPB75u1ty3tAEkC2boz1e0A4LPH22QF8QK5JoRSZBXxAUgO0ldARfEDq6o2wzEF8QHgFke3AsnxAPoJiaD7TfEDGHM07Rtt8QPf94elX4nxA9t9NYRryfEAHfHToVPJ8QDZkhGICAn1AQdtMeksCfUDMjcOKRBJ9QFA9C66LVX5A4sNKzaSLfkB9/EfoZNR+QFLTGx5s3H5ASA4tOMr7fkBqwMwqIQB/QGIjB6W4cX9AQP6U8bOBf0BbZyfmYpF/QOzNAoOpkX9AMnj4bF6hf0C2fDbcVrF/QHp4Grz1839A18c7x4MRgECTQj/NMBSAQN6tYOrbFoBAohBEJoMZgEDyr8/UADmAQEZlq8D4SIBAaa81neVQgEBm4gtFFlGAQIcL5ccOWYBAqILLySBZgEDshaehNlmAQOKlnNcKYYBArRQWhcVmgEAOB6SHcmmAQGTSpPUnb4BAwql3kh2PgEDksMkaHZmAQNTPWPuGqYBA7aX28TPBgEAuzd9ZUsGAQNyMiY5TyYBAuduOo6nMgEBYW0OdVc+AQNo1cO8u0YBAeGQcCk7RgEBQaZi1TNmAQPH43bFE4YBAkJXWDljhgEDZov4f9+iAQHBWtow//4BAKRmicEAHgUBSbguyPA+BQECZNiU0H4FA/DEsylIhgUBSUgJkNCeBQABGGfHiLIFAmulG8rwxgUCYeclx9EWBQDxpVbtbWIFAkq6wZ2NggUA/d+xEU2iBQNIOaAlVj4FA4VboLleXgUAAAnCKCqGBQCBYfcLmoYFAeRM0qw2lgUB2B+bFbqiBQGwTjkxKr4FAUCWVWwaygUBYmCwvAwmCQMbDXtIADoJAFwoZngARgkBLHJmmAhKCQGob4ZHYGIJAa52JEP0YgkBY6hP+TRqCQH5QO2PWIIJAckut79AogkCmkMt1oimCQN69aMfoOYJA5npn/SGJgkBnytdeQ4mCQE/ZiKVEkYJAq4m3cnGRgkDcqeI7HJmCQFC3YfE/mYJAiAhkQw+hgkDBhrZnPqGCQKoRssEPqYJAWFUM1TWpgkBIN4OSTKmCQD6Ni1sHsYJA3YKjZDOxgkAKlO0AVBGDQD3uIR55EYNA43EZdKURg0BkMcJcehmDQOze2IBTIYNANR9i0nUhg0B07+8fDSaDQN0cPFB0KYNAlIPztQ4qg0DCU0APazGDQHBp3mKBMYNAQR5UdD80g0CunKtFHjmDQLFDIyJpOYNABobyvHlxg0DiobrB5IGDQDQJzU3NGYRAQFYKzM8dhEB0mPypKVmEQGBY6b7/aIRAwuNApPtthEBwH89A/nCEQL+wueX/cYRAtsIfhPd4hECQ/y6Lr5mEQAQPSVuxnYRA6jt24xrWhED2sIfhadmEQHNFGTJr4YRACc8ZV2TphEAUcsRHNvGEQKzshfNi8YRAcLzWBTb5hEA8P83xW/mEQCNaWu0uAYVAfeBNMFgBhUCQD2w5oGGFQGy8Az2haYVAImLhr5pxhUAKzgm6mXmFQJyyb1CRgYVAiOf34qmBhUC9TDGf3o2FQMlxYpLhkYVAJFmrUOSVhUAaifwo35mFQBRQgtEkuYZATvoRMrvKhkCgK8bHlNKGQNVyWO6W1oZANuCbHZrahkDL3mCokCmHQGrFRqmRMYdAMlODQ4k5h0BMg/U3i0GHQGuJtkmBSYdAvPvYMcexh0CQZ873xrmHQHfZY/jAwYdAJJmRcMDJh0Di5OIKQBaIQA== - - - - - - ZEIzRYVQwkTw3rxFgWhWRvgx4UQong5HN2zGREb2nEW91ghFjxuBRRFrHUUJutBECezLRPSC6EQ1RwlHwAWuRH0TSkbOEYRFsy7LRLCu1USaV+5E+fvBRukSAkUiYKdFvKgORad1UUU4Ls9E0/3FRDYoDEW+eqtFmLfORGH0/UXEed5ERipeRUcDy0Tt/LdET+nrRAFAVkUcLAFHV4fbRLW8PkXeuapEKOAwRV+PWUf1SUlG68YBRj/Y8kXNi4hFxEzqRGRKZEW7HS9FJvjCROvYPEbi6ctFZviURcg2kEULa9hECAGeRSgUBUY1iPhEgOSLRuG5EkUFFHRFidIZRSdv9kTKy+REw26+RUMoaEUmcdtEmtWlRX/mREfIGohFjUHqRM6jN0WdRP5Fpb8XRWXdl0Uoq65EqBUGRYC9rES6MhBFcWGIRvO/ukSqkw9Fb0YvRa/XtkUglVlGqJv8RKS9y0RRlPlE0DJhRXkRmEUJy9tElS5YRSPlDEXCZ1ZF5BvYRKoWQUagAwxFkS+2RbmX+kUKUwtFT2oERbPeuUQ2S79EuVhQRapIrEap2cFFxErHRMnLBEUX/6hFUEDuRbLxmEVxgVhHwiQGRVrhH0YmyyZFWkmHRWkueUVJldxFcdFkRm3OKEUtg7ZExT0aRTM2DUda9ZtGDjlYRa6wvEXIxutED74oRt6Lo0Usa45F6EAPRaIhUUWjqKZF6WY4RWVGxkQ9sUlFZMyjRv6alUY0LxpGk7cqRb7gW0VQ5PVHvv0NRjTBv0b74h5FeyNiRVBo30Z7X8dFtGSNRusLNkUUnAtGGcM6RV4/e0Vn9RhFZEm5RNu280Vw7y9FuKxkRcwKVkZp76tFpI9vRtjsLEU0DL1FxQMYRR72NkURgMNEoj7LRf4NM0lc04RF5DonRbFhN0i4ajhFZSyGRq+L2URxyHBFeBkkRTrIs0Vp3xxFegBlRf+/H0VSLkxFAr/kRDOyE0dnzIBG63yMRZqjEkXILXtFlkrXRU/JtEesUxdHN4KnRn/YvkUY/KNFzf4eRfGg1USgX8pENT4/RlMlvESEAfhEYWjFRaQj+ETAM21G68RIRXpqWUVs6/pETq48R4luq0bsdX9FyXBaRiJiM0Yj36FFs6OCRdyGsEXgtNJEieq/RSwE40SisdFHc1XURAyuvUbz9jNFb52KRmm5MUXgQwpFABR9RTfOAEY90vhExcdjRR0H20RPIn9GH/hQRYqqPUaRrhtFkEpRRT12D0Uf41hFQWoGR5GNq0baYxBGOAZtRW/3s0VbKJlFvk0/Re2nUUciSFBGs3NPRd2hFEXfjyBFbD49RSH2YEW59+NEq3dhRdC2rkTsXQVFM02HRYJPIUkceKRIQsjERPKg8kQpP4tFB8NFSEvUOkfWqj5G400iRWF4d0XBPBNGib1KRSJg7EQOCwtGI6SCRSS77EQhbbpEgqHaRHGUmUU2ESpGHXULRe1THkUS8n9FoCHgRFCu10UDsD1FGuVARZMAyUScFjVF1ppVRRAqEUbrFvlFWEMlRfWjikV2FGZGM54FRdQP/kRonpFF4DtXRUQwCEVB89hEOK+PRZdNM0kjQtNIObQfRS1sQEX2ZI1IzbGiRWxVzEceYw9FwTW3Rqrva0XE6uBEKbSBRSpQmUWVnTRJYpddRTBa0EiFqBBF3n6WSFkkwUV8T8dHtcVARes6okammptFBHrVRJH5TkXzmYlFaMYKRVjH90Qq2+ZFVOWBRRw1OEVQx/xFB+nxRDgIK0X7qMJEqaQqRe+EUUVZzP5E68fSRCBoK0g4ENVH5cVkR00QmEUJOIpGtnkMRQ4CqEUaY/9E7VfrRM5kFUjM8a1H7vNLRx2EnkZxY6VFhNPfRPZCHEdSo+BGRt0WRk6OFUVW6fBEdo/iRFOXBUb3AudFVCYDRdvyAkfGF41G+oATRtgsmUXKaOpE0svDRhYZWUaJrxRGtd4zRewG3EQ= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + - - - - - - BDtdV3fAckByBdboC8FyQJ70tIduwXJAEtDpyVPCckB/FxIVqcJyQB/Eh8rjwnJAMCAA5xPDckCqB8k8O8NyQMSasMTDxHJAH0PAL1vFckBkruzhF8tyQEa1dcBD0nJAWIrCFUnTckAE/aU0zt9yQJCNWjK54HJAoi00y0zhckDsvv4bUeJyQIDbgPSP4nJAS1ppOybjckDI74UGy/FyQJTBqq/08XJAxhE9FhHzckBbV7LXtvNyQPRBfZmh9HJArYynj8H/ckAwGg1gZABzQBE8gJL4AHNACntC3SQBc0Cew3vYTQFzQDkXrKGMAXNA3h0W2ToCc0Dcp5TnzgJzQHAmS8/6A3NALmLBuQkSc0BZ8RQbvRJzQNYbeAH5E3NADuz4UPMXc0C2OWRAeh9zQDFL6xCkIHNAbcx1Tjkhc0Co2UJ4yiJzQIjhvWQRI3NAcD45Nzokc0B8JGbpzyRzQHzUszBAMHNAKi2tFUYxc0AaqcRuWjFzQISGlKrNMnNAEC7WHQ4zc0AQ7j4OpzNzQA9YyJPXM3NA9BjnZ/ozc0AcLcdJNTRzQCRWHn24P3NArDrttEBAc0AHvANd40BzQN7PTBN5QXNAckH+4CZCc0CWKO6Uu0JzQOSXJ5fcQnNA/W7q6nlEc0Cy36n9mlFzQHSvJpqjU3NAaAclwXdUc0BO6lmAjWBzQN0vDT85Y3NAJ2ZL29hxc0ASngQ5UXJzQFpB9A5ncnNA0qK+Lbh0c0A4tOuNS3VzQBc8lgF5gHNAXC9iCKKAc0ASB+kcEIFzQDM7TyhegnNAC3BgaTuDc0CWkXZpDoRzQABWm66GkHNAFnOTNdORc0DcbGooTZJzQD+PUHXMk3NAzhKP71+Uc0AmDWVP95RzQIPhFRCMlXNANNh/Yrigc0DWDBJ2TaFzQJklGzcQonNAz+7T9lqic0BjYS8U5qJzQJ9K3N8DpXNAJv3NwMmwc0Dh5fv+NrFzQIo/5G99sXNAnC32giCzc0Dbp5P6t7NzQOCcI4oMtHNA6veSbfrAc0BI7Qb508FzQMaav/Q5wnNABA2vNdDCc0A6KbGXJsNzQCDv1anCw3NACKvlFUDLc0AkpCkKztFzQF78klO70nNAz0XwIPbTc0D+NzlK4tRzQKaBQQOk4HNAc3wOuzjhc0COc2EeZuFzQCrBgByP4XNA5lkyIOPhc0AM4p8u8ORzQP25hjc39HNAlvuIn+QAdEAqig+deAF0QFhq/nOmAXRABg9pNwgRdEDnlkuriRF0QDxOw8unEnRA9jz4H0wTdEAoQ9arSyB0QMecE/eOIHRA3HIkgbghdEBmRyCNekN0QBovdKNQT3RAPug3FmRUdECSFuQR+FR0QGfk/nWNVXRAvNsys7dgdECQ0bqwCGJ0QNFmPS9SYnRAuFAWZE5kdEAQX09SInB0QAonrGJgcHRAVkAJG8ZwdEA+p80VQXF0QAYhKbDxcnRAGKy3rzlzdEAUdykKo3R0QBBsTpQ2dXRAJMPBrveAdEAOdzXiTYF0QMBt31yRgnRA5EcoshaQdEDaCd8qapB0QL/gVk3PoHRAFzpRqHqidEACcV9rtqJ0QFs3vtEPo3RAAoi4iGOjdEDOlqSzYqV0QP7vdLcJsHRA0pbaAsWwdECAKPR8+rJ0QKkazSziwHRA+niGS3jBdECMDWcC68F0QFb6GgNPw3RAEAWEaoHDdECoW734I8R0QOXni4F3xHRAro8sd7jEdEB4aWzQ+850QG65hLdA0nRAMOZTKTrTdEAOl8ek4tN0QBFb9Cp41HRAlSbxos7UdEByu6XgI+F0QORWYLS44XRAwIykKx3idEBBSwi6TeJ0QEo9OEpQ5XRApodu7b/wdEDK4cmqjfN0QOSvUiSlAHVAwM5Z0M0AdUCO3NRbZAF1QBt/6LddAnVAPBvSk5wDdUCBg76YSgt1QObm0D6VEHVARHWKxzsSdUAU+dgKaxJ1QCrbAw8jFHVAk+72IZ4idUAQDnzM6yJ1QDIxszylMnVAGLfNSMs1dUDUc+Vns0F1QC55TPSPQnVAum7vj+JPdUByDRI9gFF1QMSFuX1MVHVAdK6PmHZVdUCaweFlDWB1QJMbVCI6YXVAAvgfIWZjdUDM9Tt5d3J1QAYPzKyNdHVAbNONFeSAdUD2xmYHeYF1QD1VJbStgXVAMKVAAU6DdUBYyQtjpoN1QIRFVrqahHVA7l4cYW+SdUDoX0+htJN1QP40cMs9mHVAoySf2dufdUDhGTTFlaB1QNnGLS64oXVAyjW73n2vdUAU0rGHlrB1QJhoJPwBs3VAbaNdMDezdUBMa77ue7N1QMd1PZgIu3VA9J8HetDAdUBNhWBc+MF1QOUUOboQw3VAVBL9j8vTdUDl8xyY4991QEhieVIO4XVAb0UAZAjidUDNs68sSAJ2QPQbBUDSA3ZA0VWNzVUSdkAObeM1TRR2QCZi29oMFnZANInx5ogidkBmhkR2kCR2QMND6qVKK3ZAZBgNwh8xdkBMnwtdUDN2QGSevieeNHZAcjdE8BxBdkCW2leCEEN2QIgj79gTRHZATB6pFnpEdkC/cIB0/E52QBIyjiARUXZAUDM5g4dUdkDaR21PzVR2QJJHaubMYnZAbHQXEgpjdkBUMKCdUGN2QBZt1Wa5Y3ZAPmWEJ9tkdkCdr+nbI2h2QG753gCSg3ZA5h1tCPeSdkAoJN1Dn5N2QDfNmAm6k3ZA7GbMEf2adkDcoYNWQKt2QBcs+ljCsnZAcjN7I3mzdkCrm/Y7DbR2QLoh5ynTuHZAGH17ii++dkBJVxhr6792QN0q8XN2wHZANHQTgVDBdkBrPu5wGsR2QPOkUcrOznZAcIaqUcLQdkBLXwz8f+B2QAI0Fizy4XZAKAyqi5DzdkARiu/0N/52QLqcVmIyAndATIAueVENd0CkNXODARJ3QOteFMSqEndAwXEytgUYd0BmlAx+DyJ3QOh/WdF0IndAsvxm2KYzd0Dw1N3aDDV3QAksq2gnPndA0KlnMp1Bd0C+BLJw+0J3QNHOz2J/Q3dAThO2AxtFd0BJ2AZU20h3QLzicoVLUXdAvPhYkpJRd0CA1/D6KlV3QDmaDBWPYXdAYAwJuTdid0Daik5+PGN3QOo9o8jQY3dACIIE0iZvd0A+rlPHiHF3QFHbCaf7c3dATsUHNEuBd0Bgm+7neoJ3QKxL9GF9g3dA/FHnUUqUd0DAgsguaJ13QFeyf4/DondARM4O8NW3d0AU5QXH5NB3QFauZU+N1ndAjCMryuvwd0CMm4H1T/J3QBVC5alNFXhAIBOM2m4ieEDIdiQ+iiN4QC6rdHp8MnhAWeWCGQtCeEBUcN7lEER4QEJu8it6RXhApP2NwcpReEAW+jehk1J4QL70j8mHVXhAIMW7/u1XeEAy/bemN114QJf2AYr5YHhAbBGisrdheECma6YpuWJ4QJNRf9M5dHhAhjbfmkd0eECmexVxW3R4QCKfZJiLdHhARZ+YesZ0eEBnNwQg23R4QDGGg4YgdXhAFn80faWBeEBsRYejmYR4QHrfOzxRj3hAdkSjN5mReEB/qTzLp5R4QMT62jTNwHhAcAODGffBeEBiwrGcttR4QHa1i8rF5HhA2CbKGQL0eEA1CW4hjfV4QDQkwzGaBXlA5LPUg2UjeUD+XgW/uiN5QNaTexb8Q3lArj1c08xUeUB40MC4RHN5QBfSQWxxjXlASR4VF8uSeUC6huBkDph5QAyBDuImmHlA9oWTF26deUBSfYyewLJ5QO8bIwzQwnlAzKkyUUHUeUCYtET6y9V5QNwUpwO/4nlAs/n6QFDkeUDubGPl+gV6QGJhWkg5I3pABNLbUAw1ekCuckVmfEN6QAJSN3DnQ3pACoFnfhpFekBSjwvp9VN6QBTA4TopVXpAHMhBsIxyekDbO1IWDbZ6QE78pMMYxnpAor3rNEPOekCzjRgwNu56QFBViy96A3tA3+kD1iwOe0AOLpRGTRV7QPaEvZ5ZHXtAar2BupEje0B49EZ3WSV7QOTvTutSMHtAkhO3bsMze0CupiXQmEh7QJoDQj/yTXtAjGwFJUZTe0CNEZnec2t7QF6F4+16c3tA/oPJViKVe0DwuV6PO557QCKbMNSVo3tAwiZQ/zGle0CT+KZrYbt7QAarHKdow3tA6PTavnjGe0BLQXUibct7QLwWCbbI0XtA7qZq7zLSe0Cm7yjGctN7QIb2nDn/43tAKLe/8Iv1e0BkdB/6kAF8QBz5I0zbAXxAjE0htZkFfEDW4yB90RF8QKrNuT7NQXxAfgD/X9xRfEDnWu4KC2J8QAjB5ckDc3xAogNTYVqZfEDkpdAu3Jt8QNIqDj2/snxAwUZqHT3TfECuA/vlytV8QEGLim5E23xAMic84VfifEAsIQICGfJ8QJRLDvFV8nxAAvfONgECfUBIHOkuSwJ9QObJm6VFEn1AeF3FGDwifUBBPk00q2F9QEjsNxRYlH1Al4KLxdmjfUArgekzL8N9QH7wtMSO9X1AeNddcEMvfkCQ9s7TQj9+QJHArIONVX5Ag491p7lxfkCW5YEfpIt+QEtNDffhkH5A0FbTTKuTfkA4rUCGi7B+QJSZHeKbsn5A/OS//lTJfkCatGiXZNR+QFjpgsZr3H5A1GVj48vffkAey6EF+/N+QA6gg6VS9H5ApNPMG8z7fkCGHLENHwB/QORclYbTA39A5jj8NVIpf0Ao7oibqi5/QAHS0E+4cX9AQuxux7OBf0BQLH4hoYN/QFPxk4pikX9A/th1LamRf0BsEvREXqF/QP5ejoFXsX9AUBP+TfPzf0ArKDrh/Pt/QNZF8LODEYBAfj0VbzAUgED57ssD3BaAQGOKczaCGYBAtJ1e9+wpgEBC/aGi+DiAQBT7vFRkPYBAqJViZ9c+gEB4ZtEQID+AQHQz9QT0SIBAIW6MWOdQgEBoEJ1uFFGAQKVfZNDpWIBAufZvqA1ZgECeLRiHNVmAQESB6XYOYYBAGnlxfx1hgEBoKFA4xWaAQBv3D41yaYBAAsOIBB5sgECjeHb9w26AQHxUf9gpb4BAWDBQvB2PgEA2SWidGJSAQKW2bDHdlYBAoL5E3oapgEDx99JIHaqAQPMKI+sgroBAeExmFRKvgEDwREp6UsGAQGo7lSiox4BAZgHPj1PJgEB4TCQ2qcyAQI6RWJtVz4BAGPOTyizRgEC8bnrVTNGAQJhVbJwC0oBAicneYRvYgECIoLTZStmAQOJkTN5D4YBAOsqVqvbogECf3zMBPPOAQFHb42dM94BAEhV7fD//gED2fJWgkgKBQIhtiR0/B4FAkqPN3mcJgUB4hz6fEwyBQENnxP08D4FA8iBMdDQfgUBWvdLHziGBQBO3on/QJYFA/FnwhDUngUD4swfruzGBQAZU2WgpP4FABv/k3vNFgUAmHuxC9kmBQJiqwwdcWIFA8KyX8WNggUA9xpfWU2iBQA5iAUJVj4FALviU6FeXgUAW6mEUUp+BQJCmpWIKoYFA3LmkYOehgUCsjPAeDqWBQFzNs2ZtqIFA7FmT/UqvgUB4CzP0BbKBQJudXdxJt4FAVoOxY2W4gUAMnAxcys6BQK09w3940YFALRePRH7TgUDWyppmEdmBQKUlnCYl9IFAqmHgzAEJgkD/tig9AA6CQNmMVlgEEoJAvuv79gYWgkCR20XC2BiCQMDmxqVOGoJA+J55RNYggkAC6lto0iiCQCIlTSOjKYJAxs8X1KMwgkCX644/0DCCQDp+O/XnOYJAlmUhUus9gkBSI3pYIGqCQFwIxU1DiYJAYkaLLESRgkAPhbsoPZmCQCBSuEgPoYJAML+j5zuhgkDaFZeeD6mCQGpBIHEzqYJAi2mxTQexgkC2vNkpvc2CQEZyPHev+YJAqKYB1v36gkDSQKKFeRGDQLoFZDx6GYNAbkBYhLcZg0BQh5n9ciGDQFGGuEsNJoNAqDnJEXIpg0AXoVPjECqDQPr4kdNrMYNAytP3lOWBg0AWEzuxSoODQIgTgzHfiYNAXFimApX4g0Aa2tcJzhmEQByv1LLQHYRAZ5aBCMQhhEAUqEx4/2iEQMTLSQL+bYRAIkpcz/5whEAYEtr693iEQC7bBmX1gIRAXeSAILGZhECbVIOasp2EQD9pC1Jq2YRAsjMACWrhhEAU7uPoYumEQOQ+tBc28YRAclWGUGLxhEDUDAB+NfmEQNL5B2xY+YRAstcmIS4BhUDpDVWpwgWFQPp97IigYYVAE2jEmqFphUDMddv7mHGFQMHeP5u0c4VAoHgh0Jd5hUAEQW1skIGFQPjoQf3ejYVA5GNYH+KRhUCkQY/j5pWFQAaZPtDhmYVAdxDH/eP5hUCq8tkGvkiGQPibfoGYkoZAwJLumCa5hkAlRABCvcqGQCAj8DiV0oZAdAJ5wJfWhkAqQvKkntqGQLRqP7GRKYdAYEvEnZExh0AM24hTizmHQE7SaEGIQYdAHoNN+saxh0DaXQTQx7mHQAsSwgvAwYdAPPqVOsXJh0Ae5uAVQBaIQDt6Ah1FGohA - - - - - - qoqoRHGdjkRa6YVF3RehRPtpdkQk6H5EhL4KRqPSWEZ6y69E/dKDRHTa6USU0gZHTHrdRKLfr0TlXNBEYjdURA6pbEWrQ95EbO6MREooZUWvXzxE014fRdimwUSfjKJET76kREb/hkSRlf5EdSApRJf3iEQxbodE34BJRJCh0ERcJ+FGZ1ysRJnDJ0YiaaBF0CquRMS/i0SjVu9EbOq4Ri7knkS8+YRErme4RGDVnUXO50tEenX0RICGlUQsWoFF7J2XRCmZVUS4IThE4M07RPaJj0QuB2ZE36WDRB7ZlUQeFHFFiwA6RB4egEQ6qD1EimIFRtTcqETd+qBF+HiXRD7SgkTwl9pEDcZARGBQrESSf7ZE7m2QRAvV8ERKdeJG+zyfRNKf0ETcJLVEHEJvRJZ9b0SowhRFZLk5RLj8Ukcb4JtE33KyRMkNPUYy+GNEi8UZRtbdWkRA/StEGOnXRfW0jkWRZ+pEfot0RALjVUQADkFESqUURDLLZEX91xlFxNHSRF6oJEbvelZEBZSiRXgodkXgOJFEKkWgRFWcNUX4nzpE4OeURP5CpEUNm6ZEjeT3RQSqRUT87C5EhESMRKgmQUSt3d5EPxSWRITkhUY3KalEW+54RI54h0Se7SJEjEJMRXmbe0RmRpNE+eQ5RXcnf0RB9lxEq5A8RPrJxkS6NKxEFkaQRaEMPUWhwJVEQPLKROXyqUWuO4xEu5U0RMY/NkewDC1EHPhURVByz0SdbtdEH4oPRYEVxkX++GZFvdKlRTnthUTYw6tEzlMiRJElg0RTK+5EY6bjRJFjVESDqb5EoIlURPYuKkSDzKRE+qEGRe+pykRBsm5Eoys5RMDXVESDvzREqgW7RN45rUQue3tGr1dbRDe74URPX4tEFdylRB2EWURRvhFFdgJ9RNkxu0TF8HBE2T1NRDUly0VwfWxERUg+RDGhbUSqjhlGPsxzRHMvtEQu30dE7/1oRJZmo0SWOcBETN+DRQrMM0XHbTpE6GUNRSmAY0TaAK1EBxlhRB05pkQFPqBE6IzKRCvbt0QS8f1Efa0/RcpmIEVeaxRGlWRRRMMH1kQYOatFtQ4eRMoZxUWOfctElfqZRM9FR0QkZ5RETP1PRD+sKkQHGcZE8Pr1RKGcWERF8lFGsEtSRByQrUSz1H1F8FVsRBCiCkXgmWBEVpHkRNoFfEQn1XhEV6QURQswg0UZ4HxEGgWGREb2sES+F8tE5ViIRIB0+0Wf9ZtFMavSRll4xkTJJT5EF3GkRVRvNEVheX9EiKRhRTtuYUR/QSJFcjp5RM/JRkYgOulEb5gvREmcjUT+tKdED6s0ReGrikQQZvpGmtNZRpPyUUXjGV9E2cFjRekTwURXR+dEHRuqRaw9wEWEYDhF2MCHRMnxrkRMr49EAr5eRC0bkESg+xxFchV9RO7PPET7Z5lEftziRGM2QkR44PhEM56DRj2SjkZbXApGLiGiRAe/c0XZHadEHpFWRM2P60ch5YdFxm3JRnfwDEWA8ERFQ3C1RkiHmkTcGJFF51BrRiMetUSflxJFJ81SRJff3UXNHetEwqWCRQCvlUQtJUtEcNhDRDTyQ0ROvrtEaiNvRGrEnkVxaRtF/szNRJ1FU0Q0LH9EAtBMRHpPwESGf2pE2tpbRWeUjETOQkFEVN5HRG0qrETHoDRGiZaNRWvMO0Zh/PxEeRiCRWeV2USHkwJFElE8RVJ0lkSq04BED+UgRZtRUEWTmzVJF/WDRTShykRxqVpEqbwIRUxbNkjqgXVExAXvRA/8jkZkyf1EpR+eRImeXUV30qFE/KloRWP3gUW1GHVEREk1RV4aH0XYphdF02VrRSeqVUTcRsRGVXiaRoCIA0WTxZNFuQQMRQRKS0Ub319Ea0O3ReQC6kTQQFJEHVOZROeHYkQFYOREXXG5R7lKRUToRRtHnZ68RsL6mUXYzdVEfnK8RAC9z0WVcLdE8SBARIXu8URdaotEuCqyRKvqI0YynD5EIEywRJfVLEXg4l9EvyVYRFIGuUVgoQpFEmmDRKhLE0YsjDZFDNRCRWmQq0Q39tBErnc8RORclkekJulGlHGuRK/J3EVZJiVFqwTuRA6OzUSZqp1ERVOMRsJ5u0RCHStG1+SLRWevnEXEG6xF2qSuRIpFu0Tv42ZEu5hkRJwbVkRhV61E/qGZRa10RkQW4c9EXfzGR4yHA0VL0stG4VrmREcilEZ6iz5FhYmaRO8GikRmfbBEWq9PRElIekQupMNEMqNFRDkPPkTycttExYNCRMbcjkWr2TVELHUSRer6oUQdt01ElTg0RFr9BkYAez1FM4SBRLrqs0QsokREOaaCRdJ9tURd8aFEL7COROmOP0QvK65FfKHhRA02iURyLzJGBMaSRL/WREXVHBpFfOJ8RbjkMkUZAwNHSvfQRmJK+UXcIHNFoN9oRCIYcUQ9TEhEbQk+RBuDMkRgfNVEL109RXgqhEbv0oFEzMmORcFVGUVN65FEX/UfRBy7G0bD4K1FZ9cWRZB6mERmeQ1FXQliRYh3e0TQkFpEqn7XRBqT90SiVJhEyyGfRNa/f0jKjj1E4Aj4R3eBXkW7SIpEkgyoRACUgkcLG4ZEJxVMRE9AY0Ye22FF4IuuRDoHrESrdDtEyu4bRngaeERI1CNFNNJgRGxgYkSODsVEK58NRk39CUW0V09E5gwGRUYq2ERNFp1EQrScRYtFL0VqYQ9GAeFIRD731EQd4W9FrcPCRKj1cURX6IdFiO4nRa91PUVHOBNFVvVwRXk5BEX+AEhE4Xc1RAmJSUQIYnVELn+KRA9KWUTxjpdEv3eORGalsEUk7R1F+q+ERJUfLEbhNvNE0z+IRcUpU0WP1/JE8A3ORE5mh0Rpxh1FLO2FROUgSURxrttHk9hiRxq690ZzYbBFENX9RSCsKUWNgy9FScTHRHmqNkSawodETbygRIWQ6EfaV2tHByZbRCY++Ub9QsNFnKAIRtf7a0VAQWFFpg5tRAshO0T5JlJEJg9WRDE6AEbg9kBFi8WVRFAKykUWXiBFNZFJRYN64ETFQFREfcNrRdmf90TukhJHWlF3RkwQD0bRx5dFDvKPRQdjB0UhTZdEUQ6kRJU7i0QwDvRGEH1rRh1PJ0ZqKGJE0ZJbRW0jeUQngCZHbvXTRtu6z0WIxgVFKRg5RL3iLESQy8JEe2iQRM3upUQS3DRGFLEQRpFdGEUo1R9GVOTCRbIMgUU7T7ZEPrjbRVxGt0XDjF1FNj+iREpErUQKZEBE - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 9ejKMG/BckAZF8x9T8JyQDoS5MQTw3JAw+G+zzvDckDG0cOgxcRyQEoiYbIYy3JAHrVDjEPSckCGMk7zH9NyQH5//6BH03JARe+8VnfTckDhs9MQzt9yQDbYFHm54HJA3HPZ7FDickB1H0RAj+JyQDoeJYkl43JA7BuoHcrxckAwnOdAEfNyQMR+rQK483JALkPCeqT0ckAU8QK1wv9yQCK1QhFkAHNAYBKEcfoAc0AO1yr1SgFzQEXoQSWQAXNATCqiD88Cc0DIAEyp+gNzQCnAXK0KEnNA7tRw/LwSc0DoQzu9+hNzQDZ7luUEFHNAeE1mL/cXc0CVo5tteh9zQAxEhUqkIHNARku5YTkhc0BaXhEAaCFzQCDd1LLKInNAYBEMsg8jc0Ano2Ix0CRzQGRlal1JMXNADs9pvyQyc0BG/w21zzJzQDrIeX8OM3NAKYEEbPszc0AO8I/fuD9zQB6hBipAQHNAGfj8guRAc0BfyC9veEFzQLR1zwUkQnNAIF+x8LpCc0DYIhm5ekRzQC8V0vU/U3NACmYxeaJTc0ANMX3Uf1RzQDCNloUfYnNA3kulKDhjc0BOdE28JHJzQAYHo11TcnNAVEvzcGRyc0CaDFIJtnRzQCquRxBMdXNAN+Ls83iAc0AmClvvpoBzQHjKn+gMgXNArTTyeF6Cc0A1a6BNh5BzQPF/5lZNknNAdNwI9s2Tc0A68VoeY5RzQP562973lHNAePMeYbigc0CRz6HT5qBzQAZ8ShdbonNA/vL7j+eic0DSCHziBqVzQDzBKxCAsXNAZmkmqLazc0C8xMrcDLRzQIcvDvr6wHNAmQBkWNTBc0DzpSsXOMJzQIT1qwfQwnNAOzm/+SbDc0Do8YpbZMNzQMthL449y3NA3MBVhsvRc0DUzRcp29JzQGyrFaj103NAcmMYeeLUc0AGR0ejOOFzQNoAlghl4XNACRUijQ/jc0D0zOjOt/JzQAA8SdU39HNAuhzlb430c0BfLqyzTwB0QPaUYZTkAHRArIdB7XgBdECOwG49owF0QFl9ZYnmA3RAOJDGO4cRdEBeLJ01phJ0QJS/2LBME3RA4nAdl3cUdEACljnZSiB0QGbdHaK4IXRAR9ggfFQwdEAUVBaR5jJ0QEj4ck54Q3RAJ0Frt/dUdECGr+k3jFV0QKJmgsK4YHRALxGIXwhidEB2oCE3UWJ0QKEQROwQZHRAw0098k1kdECcu5E/InB0QAFiLiRBcXRAuJwZ7MlxdEA/8jIFFnJ0QF6l5tQ5c3RAxy/+O6F0dECcLt5KOHV0QO3eCCn4gHRAfVkUYU6BdEC3fwFgRoJ0QCiHPouRgnRA5C7sQRaQdEC2dK0faJB0QE6CP9RYk3RAeNkCbdCgdEBrxf3ROaF0QGRQdwu7onRADYexytGidECYoD9UEKN0QDEnEsljo3RAMxEe7AiwdEB+fR2m+LN0QLwVF4riwHRAc4OunXjBdEDa03YST8N0QBLiQgMmxHRARE5EEnnEdED8H4cIuMR0QEoCzDb8znRA7nsdkEDSdEBehafY4NN0QGNMYW131HRAxNFs7MzUdEDa9uJpuOB0QO9Lqvu44XRABqIiuh7idEDO9VamTeJ0QLoO+zlN5XRAClr6KbzwdEDguoarjfN0QGR2gVt39HRAptw2nmIBdUCsffU7XQJ1QDTscrE8EnVA/71gxWgSdUDcWpSzJRR1QNiKT0+eInVA4gppTOoidUBYPExupTJ1QGMJPszMNXVA2mqOO7NBdUCzsignkEJ1QIilFiWAUXVA/JRFSk5UdUDSQyzPd1V1QMobr+oKYHVA5JhvnThhdUAKzERPZWN1QOYNF8l1cnVAel6jkY10dUBEesJWeIF1QOR27cWtgXVA8CQumaaDdUBcTq57moR1QAMl4H0pi3VAe6BM9IuQdUCsaNE1vJF1QFrkCN63oXVAwrb9uH6vdUDANoo0AbN1QMUoqoEJu3VAVMGwSWDBdUDlwrG898F1QFgKwxPN03VABr4HexDhdUDrlLBaCOJ1QM3if7M65XVAQoNE8g/zdUDWUv2LgPN1QLW07NVIAnZAEjmZHdEDdkAnuNbkTRR2QBBYtIMMFnZAYGr+7IgidkAMg3j+jyR2QIjbWU5LK3ZAPnHxtR8xdkAcZBqJJTN2QI5g/npSM3ZA1BlSKaA0dkDkpH1DHUF2QKs9FGHMQnZAmAg8YxFDdkB0nNSsFER2QBbwCsp6RHZAMrqT5spQdkDQED1PElF2QL98ZlTNVHZA8JgGnc1idkDEc6Ex22R2QJq9Zc2Rg3ZARr7gPPeSdkDCvwlln5N2QK6FlYj+mnZA1Ofv2kCrdkC629AEuLB2QHw0LsLBsnZAYiPr1HizdkAzlFY2DbR2QF7zr13TuHZA8JVUIC++dkDFcwu87L92QN667kHEwHZAwtYpDIXDdkAeK87eGsR2QJL4V3fPznZAtRhbKH7gdkDkQRzu8+F2QKhcGreR83ZAnFh2wzMCd0BIeWxYUQ13QI8S4PUBEndAePrbzKoSd0D9BFsk+Bd3QJrRl10HGHdAvH1Cr2Edd0AM41i8DiJ3QAcZVt1zIndAncMKJaQzd0Daqgb9DDV3QBi1nvckPndARvjYPZ1Bd0BcRyIz/kJ3QHRp6m1+Q3dAviRaBxtFd0AMyj4/2kh3QOQXQA9LUXdAyEfBhpJRd0Bo9DgQ6lJ3QPDrkbQpVXdAkPmVw0lhd0C0w8tgj2F3QGpGAGg8Y3dANvDO39Bjd0BrckhzKG93QMAObmRKc3dApkZg1XiCd0AynV44TZR3QNkZusRonXdAUsmvNcKid0DakfK6mbR3QEFUpFbUt3dA2MYzAuLQd0BCaoHCJuN3QBHx4FlS8ndAmtqfW0wVeEAWIk/8bSJ4QIPxnW19MnhAhpEi2wxCeEA2ECz+EkR4QI7dClN6RXhA9iY3o8tReECLOrPFlFJ4QHp7kv6GVXhAZjpVJ+5XeEDrU9k9NF14QFX+KO9JXXhAnhF2bvlgeEAiC2xouGF4QM68gPm3YnhAlC0boVF0eEBijItqi3R4QDNTuuq8dHhAKu951qWBeEC442HNmYR4QCTM1wuckXhAmolBoqeUeECK2WYftaR4QMO27/nLwHhAN8cIf7fUeEDdrM25AfR4QOpQI4WM9XhAlVTTRVwDeUA89uJkmwV5QP67SXprE3lAxqFmgGUjeUDrg/HxvCN5QE7hONhJPXlArgUh3/tDeUA/oOhIzFR5QOiDBFFXW3lAYu/Cg9lkeUBi9K2ScY15QFA+UnnLknlARtFKyBGYeUDq24E3K5h5QDBPSeBtnXlAZwJd57+yeUDqQy39QtR5QILuKWrL1XlAOA/bWr7ieUB8W2lYTuR5QMzWODD+BXpAtscI8jcjekAEsiuPDDV6QF7DBIvnQ3pA10f9hRpFekAowTd/9FN6QHB7/6oqVXpAaOR+ZTplekCovlWUo5R6QI5zv6cMtnpAUDHethnGekDNfoOzeeR6QOcjoPU17npAXLe6CnYDe0DOBFnkKg57QEsdzbNNFXtApSlZd10de0AOfQBzkyN7QJxfqo9aJXtATDp5OUMre0CuQ8IGwTN7QKplWTSYSHtA//FTNvBNe0C6sESkdGt7QMwXhaZ8c3tAbjhTZOeQe0AF2S4cI5V7QAyl6+g8nntAvvrE+Vyhe0DWzJvBYbt7QHYJEjtow3tA8EnNJW/Le0Cnszd6cNN7QDxzEKaW8XtAWMhAQYz1e0AQgHVxlAF8QPTUxfDZAXxAE/mYkPYBfEAnmA1pmQV8QBaCKi7TEXxA8TFoQs1BfEBEpNZj3FF8QAQ0SJEQYnxAnR3TQcGyfEA0v4OKP9N8QHwv3tXL1XxAbv8uMUTbfEDzMdGyV+J8QEwicS4X8nxAlmwKTlXyfED0IJBWAAJ9QPaTd9BLAn1A8SWGuwcSfUBeGv7FRhJ9QE7Uq5c+In1ACDJn+p0xfUB15CTHWZR9QDCCWYPXo31Av3ezmS7DfUDG0ueL1+J9QAhUrHSS9X1AXOtxuo5VfkBKqAfU2m9+QEbjk/Kki35A0FvMgQuOfkBIN5OFJY5+QHTN/ZWpk35AfrhAzZayfkCsbdnoV8J+QNBGjHxk1H5A08DjtmvcfkCZkQMf/fN+QPs92RHL+35ARnOf3R8Af0DivAJv0gN/QKvO4VpSKX9AUoC/8QI0f0DmqqIxrGx/QEzpEMi2cX9AvJW/5bKBf0B8mnVfqIN/QOwzjARjkX9Atzhd/l6hf0ClvvYgVrF/QMF8gcvz839Acvayr/37f0Ca1LPEgxGAQFz2GmIwFIBARkYhd9oWgEBK6XzIgxmAQKvH9NXuSIBAtL3K9udQgEAaBHuKFFGAQBhWt1jqWIBA3vsjIQ5ZgEBYzHOoNlmAQKsAUAnGZoBAVyhA8XFpgEC2M426GmyAQMDiCLfMboBAsoTQGChvgEB1jClnKn+AQMLppY4ej4BApmI0zBqfgEAeVxSahqmAQNq6D18cqoBA4pJrFSCugEDYu1pvE6+AQD5hTtUisoBALjpMdFLBgEAmSUN7U8mAQKoGVyipzIBAivYQXVTPgEDQ7iC3TNGAQKOOQAhi0YBAJLEGxxvYgEAqynQHS9mAQMJkWE1E4YBAM6v0ofbogEAZTjZ4Su+AQMd/0AE884BA2ZDj6UD6gEDY4DnfvfyAQHyxH8I//4BA1oOrA0EHgUDMYtBh+QmBQACOCh8WDIFA9AhRbTwPgUCjw8NIBRqBQISCV/XzHIFA0BI/VvIdgUAAe0jZMx+BQGjNbW3PIYFAY9d+WgwigUCUVZcpNCeBQKKJzb3wK4FAQQnEkuMugUA+fQg5njmBQOYpIRspP4FAVlk4EPRFgUAgqkDY90mBQMjzrYX6TYFAtMFv0VtYgUACv5HhUWiBQDFuzYqUaoFAyoYHeFWPgUATA4koVZeBQIyZ/bYJoYFANPptFuehgUCwfsTuDaWBQAzhpnBuqIFAhK2rUwSpgUB8JVEv7qmBQG5vgshKr4FALr1ZaAaygUD8hOpkC7aBQANOlSxMt4FAAiqhrsjOgUDjamfWfdOBQDdtIgkR2YFAbR+Bs8TdgUDMbnw7AwmCQC4SSKsADoJAtNWplQQSgkAvgEN12BiCQLizulDWIIJAISQOP9EogkAM/B3KoSmCQBPTNGvnOYJAcv9Fs+o9gkDaoudbQ4mCQNtS2ijUjoJAG6Fi2kORgkDY57r4PJmCQJCv3PEOoYJAVOHfbDuhgkAVLV47DqmCQIYEUfkzqYJAjHy2gQixgkDMS5vuNbGCQJaaPxGv+YJAFosN2xn6gkDpbLmaeRGDQOxoi1l6GYNAm4ie2XIhg0Den7xSDSaDQLRUd2FxKYNA1A5PrhAqg0ANsjEvajGDQPQI36x+MYNAyGYWhyE5g0DAnNuPaTmDQMjIoVFJg4NAhAEnkCTyg0Anm+H2zRmEQLmAw7rRHYRAbkHKd88hhEAKVhmz/VGEQJjRqWj/aIRANBQsQP1thEAejgxw/3CEQHHTXI//cYRAlqdoV/Z4hEBFbpHNdXqEQNagvyqwmYRA8nyGw7SdhECbMOXvq6GEQHhr7B1q2YRAZsETzmrhhECvRAcrY+mEQEAPE/w18YRAT06Br2HxhECkbm2RMvmEQIocVC5a+YRABk74+C4BhUD8+ZGioGGFQMGMOgmhaYVAcjgjw5hxhUAYrPKytXOFQAQEsjmXeYVAg1pulJKBhUAeSroM342FQHYQGP3hkYVAprfF6uaVhUCeP9Bf6pmFQGYfEuXmnYVAHuyG0ub5hUBumHUSmpKGQFLTdZsmuYZA+veB4STBhkCC2Ro9ldKGQCajLFWY1oZAYm6QzZnahkDc1HZ/nd6GQPPp1c+QKYdAiPcSF5Ixh0D0FW0oijmHQICkbU+IQYdAWqrohcexh0BKPKoJx7mHQF9px+zAwYdAAoDN5sDJh0BOBTg7QRaIQNTRlTJCGohApS3GYySaiEA= + NrgMGZxjYkA= - + - P/iYRQeN00TX0oFGSL9qRsqWzkSmAihFTSsfRyt6qkRGvZZEKsm9RDtRB0UGUN1Exo+WRbVSHEXk5qZEzll5Rd+8i0WrPwNFpdLYRPbEp0SilqlEBwMHRUZshESzqO5EIsD8RGyqBEeivghFidNFRoYBq0WHjadFvaiZRIzXs0T2GiBFSETvRikSp0Qpv7pEPkagRH6askWLE/lEociZROcicEVBT7JE7EWORKhTBEWISoFExPr9RLCisEWpLYhE7eWKRGD7BkZyM5ZEqTlyRUeAqkR6J4REQB4SRYUuskQGd+pE6sDqRBI3XESoZQFFAj7mRvolGkUglgpFYFcGRS/FYUUJ3mRHpsHlRG9P80RkE35GAXsARvUDeERgswZG/9DQRV8jR0UkbYtEH2xhRZFz80RWDrJEhPMGRjmYfURni6RF7QyPRZWpbURi49REVhKWREQsckTUBfhErza2RfVlEkYbtKRE4V+/RD3CvUR6GiJFSC+CRBloYEQdzgFFaBuORuMxKUXPzJJEdmrSRMFzdUQjrYlFWUi5RI831kQOJx1F4cDtRDOxf0RgbJREveO3RBIv6kRmWI9F1iGBRXO0wESnmHtENn7TRPF1/UVefUpHceZgRBoTdUQi9ZxFnt3YRAghvESb60RFomMBRomRk0T1RRhGttvdRYEbjERNfFZEWdCsRDInl0Tf2r1Ei6KoRG6t/URTHN9Ed128RGuwkkRg7qZE2uksRfVzu0R8sK5EMR+qRO1vPEXLZM1EvrtbRt4Jp0TmMJ1E78HkRECsfkQxckdF+wOmRMNMwkTSNrBEBcpcRPv05kWI03JEufWCRIyBSkbZPXxEYNnCRFpHBUWv6XRFL1wZRZDLvkQvPyxFdpemRFNd0kSIPKhEHJLbRAwMPkV6ocBEnN9KRdUQWEUw18ZEHMJ/RsrH6URz4eNFXqkERtvdQUUW7pdEV9zJREnEm0SZJM5EFt4DRVaCb0babjpFEnWXRL6MPkVO8ApFgK9/ROR1IEXh+YFEcNKKRFOkqERvaM1FpLPCRH4OyESrS6FElCPCRLUD60VuPL9F4a3URjRnYkSOMQtFiGWkRDMV8UWamIREPmKERW7vmUREtpBFNU60RFE6YEU424JGYD4ORcOVQ0XGN/lGb9c+Rn3lcUVPY1lFnmzqRP790ER1NKlEXbocRuIQoEX1CppFrX2JRBWSsETD/6dEdedsRE3pg0SmcjlF8euBRB+B6kQhI0lFWrLMRLzupUYI7mRGiPEsRhpm9UQK3gxFvnJfRPVhgEVJ0gxFzxmPRFsQAUh6xY9FeSbhRgX5kUQO6htFrPXrRj3TpURXfcBFxBCFRuK2gkTEHQBF1jKiRKy1ckXhrDJGpAM1RbEBhEVI7A5F+eefRE++00SGzrNFUIeNRQwkrUTYk75E+SiuRANSmUSVPt9EInWvRGqCe0WeV4tEtOrgRGygvERSMV1GjFu4RYDGXEbgTV1FrfbbRZZhjkSdfrNECNkgRezPQEXU1LRE34hhRTqHXknOH1VF9sxxRcOrXkiMjKtEymWsRovUgUSXt95Eq8WoRTglQUVoj/9FRcmMRHglCEUbm0hEBqtGRa0vakXwuJREivpGRSoa0kX0TqREkVkRRTy43ka3D41GyR9CRThb9EQVG+ZEs0dQRZ9j60X5Zx1F3HLbRPYol0R1CaJEYcCiRO8q4kcSeQdHE1cDRxiNrUX1MyZF44iERDM9sEQBQAJGElGURC6kkURDg7xEhAytRKzQzETlMThG/9WFRLqp2ES7KGlFjiWERKoxbUQ5wO1FrAUpRVKc6kUDPq5Ekg+kROODN0UE4CFF1cRhRKxjJEgKyYZHr5JpRv0+OkV6/r5Fp+aqRvZIkETasl1G+SxCRf0S8UWrjMBF3DbFRfXXpUR4FL1ELN/gRPoFQUXcvIpE15GRRF4F8kcSTvJEVgDfRvRIIEWuU6hGwQSTRADOnkXhtJ9EKOqeRB9S/0SEIoVEoZPLRLeh3ETAyxZFjFC+RMJ+k0SNuwpF+T6WRButf0TBkqdEOz+3RJgXb0S6CtNFOyhvRcyfrkQLCV9GrgbGRFRAYUXb6bREZGZaRGU9ZURm5LVFkufCRN3QokQV1FdGHieWRVjrTEUrd35F9tLGRDyrDkfP4eBGPdjGRWYAgEVTuQZF6G94RTB1kUbr73xESZbiRXXfLEU4w9BGw2+ORofpz0V6uSJF9Ne+RAevgUT4qnxFUNRURFzdv0Rd8edFR1KJRVLxnERzwrVE+B+QSE1PCEicDPlEbz7eRCRPlEdl8htFU9GERABEh0Z5nbxF9sfyRDIuAkUUb7ZEsYuTRJeEdESnyhBGknh2RcoXp0Sw5rxE4KJFRR2utERuqZlEwTKPRJvBNkb3yvNEm7aJRKXdD0VmIKBEd7W/RIu2EUWxzI9E4OSxRf1FCEWYvMlEk8ynRaa1u0R/OYxEHcmwRW/TrEQhL3JFYVtxRe/T4UREPRZFPkmSRPkVs0S/wXNFV5j9RDAOsURrz6REJeuDRDHllESFxptEy2SpRBNi2ERPeP1FKTJ2RYdlbkaSq3dFngEtRV6BtkSJ82FFTZXJRCFjGUiwmJZE04OQR+dzN0djHPRFDtklRt0/KkUowEdF73zoRCr3k0TnkwBFnF58RJ/wEkjW+41HmC8tR3Zl60WysT5GN/ctRWeYXkUxa4FEPFl2RP7tikRIjYVEK7p9REqtP0bgwa9FjBB+RCe+dkRz9OhFmS4eRTDJWkXl68hEUcraRKIDiUQRRoNF+RUTRbCCs0SPdj1H4tScRp9JP0YxoIdFzfaPRWfamERPl65ETZ8GRbhaHkfLVnhG9yIsRiRDmET6sG1FlCjsRPxCOkeBf+dGt+0ZRpaP/ERH8ZxEw6abRJ3vJEX30AFFv2uTRGBls0bHn3pG4z1PRcXu+0Tmm1BG2ngARvYtvkUvZwxFYSQTRppMwEUY1oNFl07MRGaepUQEa7NEWwWCRA== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - GOPmI3DBckBeE+VcUMJyQEm2sZjkwnJAoCnw4xPDckC6++9dO8NyQNfK0U7GxHJA6OqwAVrFckBq2MinGstyQGy+hXZD0nJAtgdGwB/TckAWpP7wSdNyQBRFsXx303JAOEEY+s/fckBqW7/Ot+ByQKGaGHRR4nJA+B2BBY/ickC12rTgJeNyQCI21zHK8XJA3zN00hDzckDGqO/FtvNyQFlbziOf9HJACqjxrsH/ckDNNK52+QBzQJwoJfiOAXNA8Mtxk88Cc0Bo0Sq3+gNzQC4TbsMMEnNAFn56gScSc0DVRcRdvBJzQG8zHS0EFHNAQnnBEEsUc0ChW38M9hdzQChw+9J5H3NAg12XoKIgc0APY1R8OSFzQPcMbBxkIXNApP7zKhIjc0A0SsZcOSRzQCTmXXDPJHNA2EZibkgxc0CMcOcPzzJzQJi6U3ahM3NAYPCF7vYzc0AGxCp1NzRzQC4bwfjaNHNAJVc1F7w/c0DgW8En40BzQAa3wUl5QXNAB+4ESCVCc0CnbfqdekRzQA/YWtmaUXNAh3axzkFTc0BjdB+vo1NzQAwmqYmMYHNAjxGVJR5ic0CE4JN/OmNzQOq6wbzOY3NARIh3PyRyc0B/RQeuUXJzQEAnVr5kcnNAaxmOSbdyc0A7eeW9tnRzQNq40CBNdXNAfoDUyniAc0C2VIP+pIBzQEeUGiENgXNAvmn78FyCc0DgEC4gh5BzQKIr5BhNknNA+v7Y98+Tc0Da8tScYpRzQG1lfan3lHNATsFFRLigc0APW8WscKFzQEBIk4taonNAMlUHwuaic0Di0qkIBaVzQH6kmg3JsHNAJaaNeTSxc0CswmZDtrNzQGB7ks0MtHNAEWzZ3PfAc0D2Hf5y08FzQFAY4uTPwnNAObgxdSfDc0Bt3qLnYsNzQLgJedQ+y3NAWmF4CrvSc0DiKw+R+NNzQKwZ3tfi1HNA2jrcejjhc0AACtW0ZOFzQJSkvSo/43NAhL5d5PDkc0BSaYp+N/RzQL4HcATjAHRA2HrAsHgBdEBwqaNOpgF0QDJLttSIEXRAmFlLZkwTdEBz4u6Y4RN0QO+mE29KIHRAeDtEBSUhdEByr6jHuCF0QMLsqglYI3RA1BWPkLkkdEARFtgqUzB0QDpMoYpSQHRAhiCAEcZBdEC3p6Pje0N0QImC8oJwT3RALAPsttFRdEB0YAHm9lR0QHaFiLKLVXRA/1X8urhgdEBrKQwXUWF0QMSFR5cIYnRAWtVzc1FidECFUQS8TmR0QA7kSY0icHRAOLZ7OkFxdECszKk6fnJ0QMFuxFQ5c3RAfDUvRaN0dECzWSiHOHV0QKidJRj5gHRAdBJ3sk2BdEDeP7djkYJ0QNXgr5oVkHRAVMpZXGqQdEBWaFqCn5J0QG7uZOFRk3RA3p0VddGgdECAZUE0OqF0QKSzohx7onRA1nafq7midEDw/9Im0aJ0QOCPiD4Qo3RA7KGtXWejdECMF1TeCrB0QOjlNrXiwHRAGbst5XfBdEDmyFHUTsN0QBzxPlW4xHRAPNnuR/7OdEBvFvjl29F0QLz2osxA0nRAyuIBud/TdEDrLN7oz9R0QIiumiW54XRAZHwqklDidEDIJTt1TuV0QBAgFb2M83RAJO/tDqQAdUCogKzO0AB1QDBghtxjAXVAgpbLUfgBdUAijUWBXQJ1QHD4ah6aA3VAnsERYjwSdUBousClahJ1QKcmumcjFHVAcOKhR50idUDaV19Y6yJ1QHFoZa/yKnVA3hO6/aQydUAGHNsFzDV1QAD7RSGzQXVA8FNKCZFCdUAKC06vEVB1QO0NbumCUXVAMwHtOblSdUAgQhqVTFR1QNMzDBF4VXVADI0r4g1gdUAnrjiLN2F1QPGo5+hlY3VA1s1dh3dydUAPpoBojXR1QI0R2193gXVAAC/bEa6BdUDTmBA3poN1QFowlBmahHVAOhHGQYyQdUCICCyku5F1QDbgQOs9k3VAVHvhbT6YdUDiFzcZlKB1QByJwxS6oXVAGjuZXpawdUA7hX/IALN1QJR019IHu3VAc/qdNM7AdUCW8uf4YsF1QBzV9zj3wXVAQt4ub87TdUAQCJJe5d91QJqkOS8I4nVAtKdcQRHzdUDDxxmhgvN1QDaNFFvP83VADm632kgCdkAGNK3tzwN2QIoz+bpUEnZAtHXdRk4UdkDuTXtiCxZ2QO/LySiIInZAoLxdt5AkdkD892zHSit2QLKsg8QfMXZAmn/q1mkydkAqWr/zUDN2QLLQG46dNHZAg2+hZR1BdkB1+S9+EEN2QBxFNjh6RHZAqqlgavxOdkBZuQI/y1B2QKP0hAsTUXZAnEyAuc1UdkAOga1KE2F2QNL0Wn/LYnZAf+jmqU9jdkD2VFeLuGN2QKlYoynbZHZAKqTWMGeCdkDijYXSkYN2QP/KRwD3knZA4GSmqZ6TdkCIVyTtupN2QCrANa/9mnZAISNms6ShdkAmMSPqQqt2QCC1FzXCsnZAAsuZVHmzdkDwbjpADbR2QK0S+jV5tHZAiNpsYtO4dkD0l7oi6792QM6Tw67AwHZAajsT0xnEdkBc8nWGz852QPMHstS+0HZAwCT2jPPhdkDVchR5kPN2QCRbyG0zAndAsswSflANd0Dx+fI4ARJ3QJBPBIOrEndA/BY9xFEdd0DaTzZADyJ3QLUQCKR0IndASCe2Ebokd0B1VHnrDDV3QOjR7A8mPndA3NyDJp1Bd0BociDRf0N3QA3/nTUbRXdANOrdKNpId0Cva3ySS1F3QN4H9buSUXdA848DaytVd0BGAwBRkGF3QFJPRu08Y3dA8gRjfdBjd0BQj8KNJ293QAHIaGyFcXdAI0AdUEtzd0B4erODeIJ3QIpg1Op8g3dAjMQyrk2Ud0BKZZF9aJ13QEArVwrAondA1HP+QRyod0Clg0kj1rd3QNRLy5zj0HdAW419T1Dyd0BwaVNKbSJ4QIVA6WuJI3hAjQPRIqUkeECra7PmCkJ4QPzgMRMRRHhA0CAc9nlFeEBgko+CylF4QBmCgJuUUnhAriJIa4dVeEAg/rus7ld4QIMwm2dLXXhAbngsBPpgeED60eyetmF4QIZZFM0mYnhAlJIO+LdieEA2AgNBRHR4QKqWca+LdHhAkmJbodh0eEBKuV8SpoF4QBRbJOyZhHhArCXMYFGPeEAIkiJRl5F4QG87v1+nlHhApskmOqekeEAJGVtazsB4QNrsl171wXhAiHXOK7fUeEBu6masw+R4QPTWXmsD9HhAsD6LBI31eEBGans+mgV5QMJJXF5mI3lAvikQibwjeUBGvHWdtDN5QPpyFjz8Q3lARBZDjN9QeUBln7dCzFR5QGj+a0rqYHlAJLfWpOFyeUCKEEr9RXN5QGRazl5xjXlAIhNXwsqSeUAuH0EHEJh5QFiE9DcpmHlAYOkVAW+deUDUKGzgyqJ5QIzeEfG/snlAAjMcqkLUeUDOzq2fzNV5QMiy/FhR5HlAsiZAzvcFekAF0uJdDDV6QPz73D3nQ3pA+FcHlxpFekDy9uaxzkt6QAnmhHn0U3pAyfirnyhVekAZqDBRMaN6QBBSiiXorXpAFRPF+Qy2ekDsxw6IF7t6QMx4xTYsw3pAajq5lD/OekAYvAA4N+56QAAqAhgsDntAPLjLZU0Ve0BxV2g0tiJ7QKbBmleUI3tA36gnAlole0D8hqB4Sit7QCFQj/ceLntAiD3lp5hIe0DyPw/L8k17QMgIHw9NU3tAIO86ynNre0BubJNBe3N7QOACLgsklXtA+iwkazuee0BAQbOQk6N7QEvlBn9hu3tAhBj/b2fDe0C40Y8BdcZ7QPW+3oJty3tAFAed/XHTe0CM5eSl7eF7QB99G50l5HtACF5Ytpbxe0DdUCva3/F7QJGNDU6M9XtAxCUDgJABfEDKl2nO2QF8QAjw35+ZBXxAcsvIBogRfEDgyR+00RF8QLzZfG7NQXxAZCnBZdpRfECsGKtRDGJ8QHp0EKICc3xAd7OknMCyfECfQdVXPtN8QBqdGEvJ1XxAcx8RuFfifEC+VL/PFfJ8QDZ514xV8nxAqhFcigMCfUBkLR5+SwJ9QD5Uax9EEn1A7kSxVT4ifUBkVHWhG4x9QASCBEVYk31A0l/oNViUfUAw0Nu8jJt9QEVgLZ4sw31A7eRQA9nifUACfBaPkvV9QKh5soXFAH5AjtaChkEvfkDoZGv2Qj9+QIrAvT+PVX5A8IvIr6SLfkCm8JbfO4x+QCasR3JUjH5AA1GaZAqOfkCuQwt3zo9+QEq6kmGbkX5ASV6q/qiTfkDCIlPul7J+QBxS8GBk1H5AP+RHz2zcfkC+P70n1O9+QK1wIuH4835AIny88Mr7fkDU/nsCIQB/QFjkoGTSA39AgtQC/lAcf0Bowdc9USl/QGTe21maQX9AtrMV4LZxf0Bqf74itIF/QDbYEqekg39AVuIXRmORf0D91SQuqpF/QHKzsxleoX9AonFKy1Wxf0D2Bp4B8/N/QEbao6+DEYBAo14lKjAUgEBKOwrZ2xaAQMWHG2SEGYBA4Xf2s+0pgEDiR/Kg5y+AQEz+9Hz1SIBADu938OZQgECGT4pTFFGAQFJNK9TlWIBA4ihSzg5ZgECbcwGFIFmAQBAFT441WYBAPubG58VmgEAUon09cmmAQLf4ifcabIBARc5D2sRugEAzYXr8KG+AQOQtUzJxcYBA47gamR2PgECeEIxPbJGAQJnjCXLBpIBA6P3KgIapgEC/7YfQHKqAQKZbeN4froBAgCTpUiKygEDGD4vKB7SAQOULfl5SwYBAvGmGNADIgEBOJxCtU8mAQIQYKpaozIBAxdmX9CvRgEDSplqwTNGAQJziazga2IBAdzR2xErZgEC6B1L7Q+GAQOytTqz16IBAipbJPEDpgEAu6esKSu+AQI64zF0884BAfi1hzkD6gECjq6CNP/+AQBpEWz4/B4FA5vM4dGcJgUCmFexy+gmBQIxUDcTnDYFAwnV6JD0PgUD+3MgOAxqBQACxSL/zG4FA2a1TgOQcgUAVGadVNB+BQCaQFcf0H4FAe3niW88hgUAWFB5INCeBQDw8x967MYFA5s3mlJ45gUBN01XcuzmBQNqSg+OhPYFA2/6yH/RFgUBxGoQ790mBQB4QL1v8TYFAEPTBXFxYgUAOLriVUmiBQP+m4ZZgf4FAz1XXJlaPgUC2K6hAVJeBQLI7HEJSn4FAMMGUJQmhgUAqWmhf56GBQNIkxZUNpYFALaN9smyogUDLofo3Sq+BQMo/43NtsIFAuubjUgWygUC1pp+QB7aBQEDvk7p904FA4ojCQMTdgUCsOm89AA6CQEIQIUoEEoJA9hM6jNgYgkCfrgGu1iCCQEAGjMfQKIJAOiPG4qMpgkCcgdIMozCCQJ9mUJDmOYJAwdJ69w9egkBcQ8BLQ4mCQMjcDylEkYJARr+GuzyZgkDMDMM2VZmCQJ6DnzUPoYJA9IDMVDuhgkB4a50yDamCQMXknBc1qYJAoTh8VvmtgkCwmYF2B7GCQA5LdPKu+YJAAkz9h3kRg0DIZhcKehmDQLFGNL1yIYNABrtxYoohg0D8FiVmDSaDQA5QhC9yKYNAnhxJ/BAqg0BdOYPGajGDQD/iYYnlgYNAFaaWPZP4g0AhPh12zRmEQOvKUcbQHYRA6PGq6sYhhECAeB5N/2iEQB5MbBT8bYRAfvOG4f9whEDVHMw793iEQHi7DLyxmYRAKYp0yLOdhEDcGM1VatmEQKd/Tzxq4YRAz3KoZGPphECPjwLHNfGEQP4Cm1hj8YRAm804DzX5hED7A3BLWPmEQBmRiZYsAYVAxOttzisJhUAmHVCSoGGFQIdcj1qgaYVAGj1PB5pxhUDoeTNutHOFQI6NDdWXeYVATuwRYI+BhUBGpkDI3o2FQOLE+TbikYVADtoSnOWVhUCiUlsl3JmFQGh+1bPn+YVAmNwk1+v9hUCc/wl5vUiGQHT9476YkoZAjZ1VppyWhkDCJVrcJrmGQDI2jgCV0oZAUBMl5ZfWhkDCKNaDmdqGQP3LHcyd3oZA7kru/5Aph0Bn88PSkTGHQMSfbSCMOYdABll0I1tBh0Bvvi1OikGHQErOwxFeSYdA6glTScexh0CwmMD1xrmHQJ7U+aXAwYdAZAQZAsLJh0A4nj8rQRaIQOYjaE1BGohALefm7iOWiECZRlkuH6KIQA== + NrgMGZxjYkDYkZP9yKNsQEMdzoN8QnFA - + - pQB4RdQTdUTGw5REJYaLRkriXEYbIOBE7zOQRHWJY0V6Qv1GniGnRP2VYkSb6IhEzQHeRDSdtkRjlE9FKh7TRAZK2EQ5LmNFuFVeRXgRmkSjzHVE0mrvRDFNKEWL64NEi8AoRZ4PCUciNclE341VRFM8QUY6v49FLcOQRG8ymkQsAbREOrfgRPTB3EZytWFEfgOTRKsxnUQWsp9FriHXRL1NjEXz4KBE5WhEREXirkSahYVE/cNoRAH0BUV7cJNFf6+WRCLZIEZBXtJEFOebRPAxhkX2UalEd4NFRKgFCEVmFH1E07XVRP72tUTNollEnohZREfrBkXigBhFi5zoRq1EsUSbVAVFNEjCRGeEKEVoZ05HideVRMSvxkQeslBGkuUPRmUCTkQKGghG8WeARfxnL0UiiWtEDiWHRJxETUXfegVFu3XHRDQq30VijY5Fe7BYRTLHcERenLFEk0CURMczmkQXpKFFN0fSRd/FhUQSArVEX2ZKRJYTwkS9qJlEtxyCRta/tkRKT5pEVUlaRXBwg0S54VxEsCVMRMJrPEWvKFlEL9tSRJoAnUTSlphEOzt/RD+NjEQQZmpEY1F7RC10w0QPoRpFV4qHRd4YWES9xmxFPLGkRJ7j+UR4r65FYhtERz/Wa0S2SoFFevF1RIfaxESKlU1FGVXrRR9WgUZT/q9FgZ64RLtI5ER0ioFEkfGwRKhAkkTVqHNEb33KRKlQj0Qx6B5FIkmvRJpssUS8W8NE//e9RJkT4kRB7xpF3QHNRIG1rUSHyS1Ge5CrRLt7sETM7w9FATB2RLpWwUQ3kd1F6RScRK8HVUTG569EYV57REASR0YWqIhEs/2nRLNFoUT4KgxF/651RYNZB0VwBZREggRJRPWENUWmIZJEPsupRInlh0RbX55EbIR8RKagtEQItO1EgVL4RIPWN0WkHTdFZw3bRIUML0ZIKBZFBUu0ReqwAUa8Kh5FI0lWRONksEQo14hEtaOiRCX1Z0T6eZJEEf6QRBx+GEYpTQdFkDqORGCCcERQudBE6OyxRCUQpkSMBQBFn9uURJ+3tESKRUZEb124RQI0wkQjyWBE4JIARSG5jkRnEdFEDhLxRa/Ts0V4V8hGDalURFun+kSAtLVEGYGJRT/6YEV9rYVFNCHbRMGF0USgZzNFZiJgRu92a0SdlSRFaniORNqXhUR6RkZF506DRBVq30ZdAGZGp9YnRWJxxERLw3FFypKARE0Ri0TQSKBEAwcFRvl2k0X9UnlEpCaZRWa1qUT8hLhEE0RRRNMzOUU7hoBEY8mYRLQz5kREfwdFnZ6ORgTFhUbYVPBF21BvRIaxbEUH+49E70JXRO1r60fisaBFmoy0Rm9oQkUDP7lGB9hoRNFqwEULrYRGGAAMRWyA20SICgNG0jT3RBdMgEVNcU9EOkmoREIk5ER0F7ZEIdTDRP2/f0UxBs9EKlywRFaQm0RX5GVETAbERMzVZkUDZZBE22JXRGn1ukRNt7BEFUQ9RlXeo0W354NGvbHIRK8t2EUrKZVEViPlRFBQL0VyMGBE3RCeRBm9AUXspkFJACnBRJTBOUX7/EdILXWgRJRkEUWPtqpGN+GcRGdICkXeJMJE2vaKRT8kX0SMCxhFxCnERQIS7UQo+udEk+UmRSpJZERxRAFFKlhoRMSAh0XCnztEXZ1URKgJiEQtjuVGtS2BRplpA0XDjCFFfoAGRdqWTERPm21F/dfYRbjQxkSnJr1EsqWPRN4e00fyYPVG84XMRgJZhkQlcmNFXYRRRbKdlUSLzV5Ei7LbRbHCYURSZVdE8ippRLS4q0QifJtExA0vRpBwTkR5FYdEyOomRUZ4GEWrTpBEs+6tRTO4c0XrKYpEj+4FRZ+jo0RdClZFlPLEROIBr0QF9IdInEvrR+nLj0SN2c5G68+JRYKYEEirbX1E8XO+RXP7nEeMi5BGrEaPRNxpM0YuHqdFGih0REYYdkXZvKlFcLyFRHPKjkTzVX1Eji/xRJRxnkSJ/JBEMY3cR4hYlUSwReFG1RgURTsgtkZlK1dFO9OJRCZfhETy5qNE6ae1RGA3dEQCV7BE8CmoRLJOtUTvnYFEkMaGRJPNZUQ/WcVEHtS8ROqGq0SR2KVE4iRYRN/ziERX7YdEreRQRBjTqkTXKJpFEsEBRXxBv0Q3795EJfBtRn4FFkUiEAFGishNRHSKNEUYoVlEv/OERUSKxERoC5FEtnU6RjHyzETqV2NFzoIFRZ2jJkXjmMtGzE29Rup7yUXkDklFtDqIRDKqdkRsBKlEe9xFRUxKgUbZ2JZEbuufRYDzvUSk4u1Ejo4iR0xZ5Ea1KhtGMRKeRcDeAkVy4fBExpCLRWbSrkTCwG1EO/nZRDhKOUb6uL1FAcimRKT2YETFL4JIr2hrRH2M+0fQGSFF3CiqRDy3hkfl2HhEGTtiRifFikXS2ItEFl95RH1iYUTDJX9EyKiFRK74FUZBvDBFMM1mRBJyZESt52VExMgcRY5gV0Sbj4RExX1nRNb4FEajj1pETKIkRSUm1USw+KtEHtiwRfa5RURitQ9FqsyfRXpaDkVXgHNEtSSKRWeyl0Th1mFErYW/RecFwEQOqKtEXHk9RemZSkXemp9EmkjcRAZLd0VPwHZEmOLsRFwFu0QTC6FEP60pRQW0yUWX2iFFqNE5RuHBcUVR6EtFeO6SROk7nEQqAjVFSZRgRJd790dhq2pHS68IRy2jJUUVgsZFCJsLRmpz/ESBL0pFHlOfRGlkukTNOHxEl6n4R8RCaUeVYgJHByUnRadUiUWIRh5GUqFRRQkCUEX6ALJEeWe1RPORAkaVOZZFUeXcRP0Aq0UUPWFEQMgwRVfVuURu5olFeVHnRNa/HkdyyptG/VY0RgG4gkVhZaFFbk7HRJ9jjERybpFE+8RtRB1ZBkfT6XdGLG4SRpmnbkQFxoNFQcSxRAFyG0cgQ6dGb2PuRRhfHEVbBPxE1r1sRImSY0SR34FFpOg3RUgL00RYzLdGSMeHRjKyyEWpVJhE+DMsRq+N00W48SZFSA5NRJZ5+0R6Tl1EIgH7RXMtnkXQLRxFZlcRRb6FykRfqMpEYK/6RCdRb0Q= + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - Uix5zm/BckBXSupYUMJyQNNFh1ynwnJAlS0GHubCckBhvVsiFMNyQFtfxjk7w3JAcu5Oh8PEckDgp+ESWsVyQOb9p5kZy3JAoLefyUPSckCumMsCItNyQONrbidH03JAdToWWc/fckBRLBtxKOByQNEqEAO34HJAZpRl1k3hckAkP83GUOJyQGyIT1+O4nJAMpt+Z8rxckBa/5ivEfNyQCZz23W283JAvMxMo6L0ckBVPsY4wf9yQMBjeoBiAHNAIpiajPgAc0CL5cRwTAFzQEkhVyqNAXNAzqMyBTYCc0Digf930AJzQB0lTMX6A3NAa/SCbwoSc0AGN66fvBJzQIH6f98EFHNALlw1Uk4Uc0AvYWd9+RdzQL9La/t5H3NAKgfyZw0gc0DEZmzaoyBzQNgcLAE5IXNA4mZiThAjc0CrGTxlOiRzQFculh7PJHNA2IaUoEcxc0AvssydzzJzQIr+JuOiM3NA2l7pjDU0c0B22JAw40BzQDXPYCt3QXNAQNSdSyVCc0DAeQYxe0RzQP9Fm6ucUXNA8KcWykFTc0Ac8c8+pFNzQCQ7oF6DVHNA4sH1BYxgc0BHxGq4OmNzQLLiM02vY3NAQgwMJ9Bjc0BWiz3L3HFzQG/DDPQjcnNA+eJ5/k9yc0C+i/FYtHRzQPzwJLhMdXNAyqR7JHmAc0DmoKXOpIBzQGjr1JsNgXNAiOAIEF6Cc0DXJNAbPINzQD5aIEGGkHNA1SJEhtORc0DKTkc4TZJzQOQta7thlHNAi7ArG/eUc0BUViQnuKBzQMAtG/BNoXNAXmBLpFqic0CeJKuF5qJzQEgCcFIGpXNAXm7qA9awc0DiriL/fbFzQGNqenx4snNAGIfFbbezc0BmRHeBDrRzQL/JZUamtHNAbr3S3GDAc0C8jIuR+MBzQKRuZ6DUwXNA9DgDAtDCc0AeE1HMJcNzQM0aYOLCw3NAe1cejz7Lc0D6WAww1NFzQBfJjmL203NAGFuaZeLUc0AcUSDGDeBzQHolOhCi4HNAYsohhjnhc0A39IrdZOFzQBJS0naL4XNAJ4IsrT7jc0DIF7EY8eRzQE7JBWb78nNAcO8Guzb0c0AkLguKi/RzQNzI0L1NAHRA+GquF3kBdECfQnaXixF0QIk9/qZME3RAoG5YUXgUdEAyO+sYRyB0QG4ExrO3IXRA8DSOJFMwdEAkMaQ1+FR0QKavQgaMVXRAPXClR7dgdEBsf9Fk52B0QJOdHEZMYXRAIl0/JQhidED4A5l5UWJ0QIpDm7MiY3RALsaLBU5kdECNp5WsIXB0QFAAikJBcXRAziuLCsxxdEBazb4cOXN0QEdoOouhdHRA8Lh8bTd1dECWJfmE+YB0QK1T69pNgXRAWMtGgZGCdEDaR7fSFpB0QFH5GQ1qkHRAJN65LJ+SdEB1eCl8UZN0QDCj0gDQoHRABPSICTehdEDEeJcsuaJ0QDjM7A7SonRAiHAe/Q6jdECUGb+LZaN0QPiAxd8IsHRAXkPcU+LAdECs1dUJeMF0QJmdzcBOw3RAdFMwgrfEdEB1kwcz/M50QGUdQi1A0nRAtoY8iuLTdEAua0GbzdR0QBBDrZ8j4XRA7ezSErfhdECEzDYKHOJ0QJbikr9M4nRAzigb8sjidEAGzORuT+V0QOSKkPmL83RAYLXsdqMAdUCkw3nWYwF1QN4A+QxdAnVAooRP3JsDdUBObcWZSQt1QOJW2Ik6EnVAU2tym2kSdUA5Tq06JBR1QMo82VVMInVAB/q69pwidUCwMNT17CJ1QNaZyn+oMnVAD631pcw1dUCeHf1gs0F1QBuo5TyRQnVASOLJmABQdUAmvh8fTVR1QBgJFgl2VXVADVrBFAxgdUBTGd/aoWB1QPgBjHY4YXVACGGggGVjdUCDXjgWd3J1QJkrvEmNdHVAt7tmh02AdUA7AybheIF1QKJAmCeugXVAHNjGZqaDdUDqn7MTnIR1QMLwfIKuk3VAgC7rCZqddUBmIkBc2p91QD6cllOUoHVAbltmabmhdUBYmc6Qfa91QADWhiQBs3VAxOCC/we7dUAl87IgY8F1QJrk3wb5wXVAxGNIycnTdUBM1MJ25N91QBBRSxwP4XVAdhWlswfidUAftOmyZPN1QCJG7r+B83VAOghx7Ij7dUDK2bghSAJ2QCyqkLLPA3ZAq2hdt0wUdkCSKqUmCxZ2QBu2uTWIInZAqIFAxo8kdkDAUzp5Syt2QNdx+BcfMXZAUOsnXlEzdkBIDwfZHUF2QMALiPEPQ3ZAtQVZC3tEdkCuECsI+052QAz7/xzLUHZAPB4IJBFRdkApO4CIZ1N2QJtU8oHNVHZAbr6HcyFhdkAbJacOz2J2QEtcn0a4Y3ZAOwFqF9tkdkBdB1UoIWh2QFx+0QRognZAKiZsoZGDdkDypGKduJF2QHH6z9H2knZABxjuWJ+TdkCh1qPGupN2QFjb9gcAm3ZA9XQ/GRChdkCyA/jaOKJ2QOIxGeFGq3ZAhb9NO7awdkC+WK8cwrJ2QK7055d5s3ZAdrnQ1gy0dkCQKOk90rh2QMj1aDvrv3ZABHWAsnXAdkACT/I+wsB2QPRJAyLPznZA6mszqL7QdkDuiJG1odt2QOhH5SL04XZA3JypVpHzdkDoNWqSMgJ3QPrwicBQDXdAOqlE7gASd0BmGhjFqhJ3QK2kw14PIndAWnm2nXIid0AUGjQMpTN3QCtCA/cMNXdALiP36CU+d0A9odHsnEF3QBqrcwTpQndAePUWRH9Dd0BP5lGrGkV3QGZ5lpzXSHdAbTFjLEpRd0CRzLfDklF3QBqNdNspVXdAe6tY0Q9hd0BXVytmj2F3QPxYXSw8Y3dAmgoez85jd0Dc5gXzJm93QPr6X8WKcXdASMV+s0hzd0AqzKckToF3QCmtzFh6gndA6ElQVHuDd0Cck1JZCJJ3QB4SENFNlHdAwuPCuGidd0BMJKstCLN3QOJUaiOZtHdAh8JdNO3gd0BTaTy2UPJ3QOSgWl4kAnhAYOx6Om0ieEA33Fn0iyN4QCT7Q9wKQnhANg+lNhFEeEBamJm7eUV4QMKudyTLUXhAmfL3d5RSeEBFPAkQh1V4QOgrYgbuV3hABpfVCkxdeECEvB6f+WB4QJfhBEi2YXhAcCdspLtxeEAcL/EUOnR4QHB+bBxQdHhAwIG+tW90eECSZUh8i3R4QB7+8mjTdHhAyBkf2aOBeEDD+qIUzoF4QGaVnICZhHhAiMQn45aReEChD371ppR4QEzEt+O6oXhAGndoDD2yeEBdRwIBzsB4QL4bkz0HxXhArnGfpbfUeECE51vix+R4QEw8WXcD9HhAoARyj4v1eEA8JvHNVwN5QKIc6m4UBHlAzWmq3poFeUB6DcHbYyN5QLhDTum7I3lA2Ri7wu83eUAiCIGRi0J5QBSjEir6Q3lAeFM6Ds1UeUBgYJJb52B5QEIjLMraZHlAxuxqJ3GNeUBQY5jwypJ5QLX5ar0PmHlAgMsIYyeYeUBKeC+bbZ15QAoCOIW/snlAbMHPMELUeUBCPZ4cztV5QMSdiXlR5HlAPhY2NUAjekDCEXJRDDV6QBxwjDHnQ3pA3q45EBpFekCiLIx881N6QJMFre8mVXpAIq50G4pyekC04etLMZN6QMrc5g4NtnpAezftGxjGekCSItF1N+56QJ4Zo2goDntAOvSJvEwVe0DzjD4tYR17QPoTkWK1IntAZL12Tlole0AHqjnuSyt7QHsnLktVM3tAKvqbL5hIe0D+3qfS8U17QGQUY61fUntAik90iRVoe0D6wA0FvWl7QEo6KvNza3tAvom46+2Qe0D+EVyRIpV7QKzy2J85nntA2ONEOCi7e0CqRfN7Pbt7QE72fDlhu3tAk/0fYbe7e0AIAGTxZsN7QB6GHTF4xntA1LMQSW3Le0AvG+kmxtF7QFRp0iZy03tARIuHg3jbe0Bc9iLH7OF7QAA+Ozr/43tAeCpa85bxe0BoBIA+3/F7QLq8fXqL9XtANpCaVJMBfEBCBtCc2QF8QC1TogL6AXxAytrBBZoFfEA7FiOW/Q98QDjNscfQEXxAAMGAOsxBfEBcYPBT2lF8QAXBjLEYYHxAumfNxQxifEAoShW+K3F8QOix9TBZmXxAJq/umL+yfEB2kMJ+xNB8QKLLMdE903xALnMklFfifEDrgHIHFvJ8QBDWfvBU8nxAVuIt/P7yfEBRwQGqAgJ9QOtegMJKAn1AmMj+UkQSfUB6z0R/YxJ9QFiirBs9In1AHBcdemlRfUAyPD7vqmJ9QKCGyBJskn1AMuQwiViUfUA65LJCj5t9QBqy51CS9X1ANadS2MMAfkAeJkLFOh9+QHS3O91CP35AvJn4Zo1VfkDS7PwH1Fh+QLw8Ac2ain5A8Zz42aOLfkA6FsXYrJF+QDD7IYOVsn5AhGxCu760fkBOA4fEZdR+QKzpirpt3H5AYh5HFdbvfkCmSOE6/fN+QLSZ5SnL+35AXnmRQNb/fkD1iH8qIgB/QEfZT8LSA39Ap489sd4Lf0Au+vrPUil/QMmDkuWnLn9AtKBUUrhxf0BuhDPTsoF/QHcqwdCig39AvceE9WKRf0Cu826SlpN/QHzzc+NfoX9AFoqJfVOxf0Aq/aGY9PN/QIKk+qb7+39ANJTp0oMRgEAs635uMBSAQNKcdbPcFoBAHk0vxIkZgEAyoUv9MhyAQOK9bKXqN4BAydgUBuw/gEC+SBrK7UiAQMVg33/mUIBAuPsdjBNRgED7ayqb5ViAQCg+2PoNWYBAX0y2vyBZgECUbETdNVmAQIDxGikKYYBAR+9I3MVmgED5Qo4QcmmAQG5hApUbbIBAOllkTcRugECqeqBxKW+AQILax1QGcYBAk7h5q3BxgEC2POcjFHSAQCYxFHgdj4BAxJR6u22RgEDONHuRhamAQNDH0PocqoBAGM3C6CCugEB4n3OIIrKAQOm5TyIktoBAJuL5Hfy/gEAc2PZiUsGAQJ5sAahTyYBAKlR2tafMgECyt+LuU8+AQD4vsXEs0YBA5Bxgm0zRgEBW5xdHStmAQF4yltND4YBAnfHu2ffogEAeYDE1Su+AQKZUqb1D+oBAiNgL8T//gEAsjh1VQAeBQDCaokY9D4FAfKhNAgcagUAA17qO8xuBQFIlNlUMHYFAsh+0tvUdgUBKTwRFNB+BQDaS/n/OIYFAUOrextMlgUBoUWwnNieBQCqszmfhLIFAUHjfG+ItgUCMSgZfvDGBQJIDm1OeOYFAab8zxqE9gUDhNH3xKT+BQLfVTnGnQYFAyEcay/NFgUCUHcWx90mBQKRume1bWIFAAvJCmSldgUDSTbWoVY+BQJvuXx9Wl4FAd9mcrQmhgUAoEkpL6KGBQOkN30cOpYFAFEj8tm2ogUB2QoiHSq+BQBbNIzUGsoFAtik4Mwe2gUD2PwmLfdOBQHvEgW7F3YFApq7eD8jhgUALbifK/w2CQBxlnyoDEoJA+uh4RdgYgkCKRrby1yCCQFBvscXQKIJAfW0rVaEpgkBgyj8gpi2CQFLC22XnOYJAhtWw/+s9gkAm31bs3maCQMCjPUQ4aYJAahULFUNqgkBGr/9EQ4mCQP4lpZHjjYJAstFYd9GOgkA335EDRJGCQFxBHRcqlIJAu2VI/jyZgkAWalpiVZmCQHK4DCgPoYJA4P/JdzuhgkASeJGoDKmCQAR6pkY0qYJAnwnjbAaxgkDY0OGdrvmCQHZUZHl5EYNApHT1LXoZg0CqylgWcyGDQCCq6jwNJoNAzH0r+nEpg0CJbgk6DyqDQISG8vAULoNANLCiO2kxg0Cg+1kggTGDQFZhyvPjgYNAiq3yu5b4g0AU+/mizRmEQN5NXE7PHYRAFBzFjMwhhEBCrdzRzyWEQHsLx2v/aIRAHpl9x/xthEDHy7RkAnGEQAfkNhNqcoRAQmP9efd4hEA3gK4OsZmEQA7Qgtu0nYRAHEVTEmrZhEBEZQVsauGEQNZnG7pi6YRAbqdIeTXxhEBB8wynYvGEQHw5mm4z+YRARqcYIFj5hEBYo2dPLwGFQCRgw87EBYVAK6ujLqBhhUAqc9ZroGmFQIIhBuyXcYVArjCMma9xhUDsSb0HtXOFQNbbQViYeYVAwMcFwt6NhUDogZYO4pGFQAnNNkHllYVACMRle+SZhUCAfo/P5/mFQPMkrXLs/YVASj+gie4BhkCXaqSamZKGQGRAaRucloZAnXJY8qOahkDI1dMCJrmGQMUqkOomwYZALA408JTShkA4W+Xdl9aGQNAHR3ub2oZA/G0hJ5/ehkDEA7XbkCmHQHLLPpeSMYdAooqGfIk5h0BgWW9RXEGHQLiGWFiLQYdAJPk0Bn1Jh0AxKnktx7GHQIS3G+nGuYdA9jwcsMHBh0DWSx94vMmHQP0tJN1AFohAKKoTFj4aiEDAngISOR6IQDqUz/QilohAAcMCqCeaiEA= - - - - - - Np45RalruUSdr4VEKy1IRH4WwUbYtD1GezyTRMTvZUSvS6pF/4sKR2YZpETvAKdEohCeRMdLWkS5ccpEIqhhRM6YY0U2uNNEKChDRUSNOEVkYrlEVRmNRPXzkUTREHlElcOxRJ63ZUSqpo1Ew9lFRHvOsEQkqAtH8YeERJ5R9EXv0ppF7CJhROO4P0QQYLREbxJ1RAGGB0WflLZGiXz5RHEGVUTNW5BFTjqdRIlVZ0WfGkhEIe5eRFAWz0T34FZFwIe5RJC19EVeK6BECJCLRPI3cEWWkXREAuJjRJL63kTbAU1EqhqYRGKJZETldNZEb4ZaRF++VURjCUpFJO3LRo0zU0TS1wRFwJPlRMqQRUSjbyVFABhQRLZ9L0dNrr9EVZkyRrJOzEVVIolEvC+eRekDRUUlMhZF1ySDRAKThkTyNDlEcecNRRs300Re3khEzF9jRH0h/0QNRMlFVRRzRSLaj0Xr4pVEytLRRL4jy0QVGapE4nB5RR0vSkR1CGFEM3/dRTRgsERrTkVEPx0SRfdnikTBVXZEBtr1RIDMdERxWUtE835zRro3dEQ7KSJFM3aWRJOkjEQ2RdlEKqm4RInHiURuYcREchZ1Re4qh0Qm8E1EG4eaRdrCIUUeUVNE/UEFRZqHikV98SVHCe5QRMnAmEX9L4ZE77WtRF1gEUWjmqlFQYqLRlpMo0UKvnFEl0kORUWsQUS2js9EDXZ6RLvRh0S1rX1ENMMBRTH93ET/tcREdnuvRL1t4ETPN71EyxnfRDBRyEQ3qzdG3ZTHREKqwETIcpJE37DtRCt0hkQ4NmJEW1VRRGMEcETTHJhFUrydRFphn0QyN1NGjVtfRNHPkkSkB3JEIM94RF53BUV+RINEqX6fRXnFq0SdVKBEEJAbRaawWUTO3rtEtxFmRP9kg0QQJ7dEbe0CRdhlWkSfFQdFkzUVRQbsokSfIC5GFBGVRI9C4ER9zXhFzmPARclRs0R8VlZEraxjRKJXcUQD9VJEJit6RM2iqERjRRRGlstPRV/Fi0QjUvJEwnqRRObBuUQzNopEb0SURPuQQkQ2n8VEvEWSRM3KkkX/I8ZEKpD8RL2kkUQ1qxVF2wCnRQ2LykU3YMJG/3LnRP/ZnEU39nhFA90bRUCglUSGCMlES84eRW1XaUSOZ0BGXId3RFJr0kQNjGBEAdLqRHVQf0QT1aNE+IPcRqOjjURm2gZGwFVMRdjpiUQCUzNFwyw7RLtYY0Qfj0JE1I5fRCiNAUXsDeFFob+IRZ9DhkWWg7FEwymLRHKXX0STrzNFc2tnRPcLkkS93JdEhEGURJ8oEUUZNLFGp/hhRoudBUZlEzdFsfKyRDpHhkRppOFHrSzWReDztUY8+4dEsPUBRSdfs0arqoVExxBuRZ0bg0a7zoVEoY9WRJ4ZJEWJ/h1GJJj9RM1bgEWJAEZEYdiBRF1cUETlvnBEyakCRTerh0RvcHlEkbeNRdp7mkQgSl1EjJfqRDqovURkBjpE3MzpRAMGU0Qe5ahERk20RPs4G0Yw1rRFwktZRlYqMEVCma1FoA2VRD+BAkUzbShFBqBgRP1qzkQeuplE4qLdRfGULEkZd+tEyi8MRQopOkQNDTVIgUw6RXVRkkZ9fmJErfFrRKA0t0QHYD9ERNdVRWJNiUSXMEZFmHOdRWcDcUQXnnFEkey4RFNWC0UUaihFcWdPRMLjkkRP0e5E1ex0RVGscES7Y4FEvifvRplIhEZ3WgpFPXhuRZ4Dk0RhV4xFiHPARYWdwkRt++5Epu9PRKhosUfb3dBGe0SuRo5nb0VEs8dEGR6iRABNT0SobL9FPvu4RBw540RQ3bFEI5QkRpSVc0QMVElEn6MsRXofKUVHa+5EyixgRQK8bEViashE60piRJSnkERVMP9Ehu2gREMggkWfMbBE+OrSRD/FaUV5BNhIi2G4RBCTSkhzT6tELnhZR7RLLkWDp+FFxRKCRMl+Ckgk6IhEGgmdRZdtn0eymHtGrc6CROlyK0ZFpMJEcUSjReEQgET1wIZFJOCfRROXkEQ0llBEvLysRIQthkQxktpE/jScRFoIS0QS3ZJEklLER1b2w0RAIr1GlS1RRAAQD0VXoplGxtwvRWU7oUTSgpFEYrqHRNWsl0Rkqm9EAOjTREQLZkRmKtVEIHBWRK1QqEQUPnVEqjUbRXk+kESpcHVEJ15HRRAag0RSCqhEyzSkRITXjkWa/ihFnXSBRNEbgkQB7H5GyjZURBo4W0QibMZFd5qARCRo5kQs8ZhEIpCuRUC7tUTfEE1EJR0xRpqAgkQ7qoRFh0LuRFA9mkTdF71E0b3sRhfypUaV4+9FtIXzRDxjdURfEFNEmqJ/RNbftkT/kQ1Fmgh+RhYVbUTrq5JFpXC/RPMR2UQpMYREqFpXR0ZnHkf0BIxG07/SRblNIkXam0lEUsXeRCE9aUTDJpRFpBTFRHK3r0SzYIFGzrzHRRicAUXlPoBEcshJRDSZWEiq/tFHHHEERcYh2EQyL4BEHMhbRy9aPEaIj3RFt/XWRPhBv0Q1JWBELQ0uRgQCH0VSCx1Fr9JLRIOviES0ZUxEDlyzRGu0JEbqNDhFX0FyRKirFUUbOJxEAe6hRLGTtkRKd5FGFRLqRRmNlUQHxsJEqyn5RaWINkUi7idFjePLRDsGkEVLFCBFF3X0RHDM3kTxyE1Ek+LQRLtBSkVA9nBF8bBxRIfjT0Rx+r5FbHYWRW3NqUXv2pxEqwxORhqnVUVhEy5FcN0qRZNPqkTpYBtFbu6dRIt2y0QymI5EK9yhRA036UeCsq9EPPZpRDiNgEeZzIBEfmUIR/noj0Q+uZhFJqcCRqdqzUSN201FzOQCRc0eiEQyZM1HFfhCR3Vp40a4N81F3e3qRV7ZWUXxcZtEA/YIRV/WlEQqYblEIjCKRD2pIEbmipJFHeiORALQl0TnpctF0momRTv1IkWIc4FELsEORaC+DEV/KvBEXXgXR92sgkYa/DJGSW9rRYqYqUWDlZFE/HeZRNUFfkRSe0xEPyfrRjbfSkbjMdtFSuedRAsoX0RyjlVFXxUWR0LZ00bph7RFCYUbRdOXPkWJ/mZEGG9eRFMj40XBT4FFaKryRI+rykQu83lEE1q0RkahVkb1T5xF3d38RP79IkYkD71FrKReRRf/cESxvg5FnWJTREK9BUZe6mlFuloMRbB1sUR8RjVFkJpDRJqrbkSHWQ5FohfBRA== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - qzZ8wW7BckDTJkDfpsJyQIPPWtcTw3JA226igDvDckC08tPNWcVyQAI5y/sZy3JAfu9anUPSckBkM0mW0NJyQAtKNsxI03JAeeNG387fckBnUJjKuuByQOeEc9VM4XJAuNdydFHickC+oyZZkOJyQBaldj8k43JAqqhbDMrxckCgl+/xEvNyQFCPFCC383JAwHO6aKL0ckB0hRwV+ABzQA1JqZpNAXNA0a5Nvo8Bc0CmSRLkOgJzQD4GiAXSAnNAPqpdt/oDc0A/mPT8ChJzQNaz+qK8EnNAx/Jf/AUUc0AUr9V2TBRzQH60XIr0F3NAXGzgknkfc0CMTaM4pCBzQOKqNz05IXNAIuEOZ8kic0AAEmVRESNzQC1EMRPQJHNAtpug9kUxc0Ag3yLgzzJzQHa04KKgM3NAChjtdTY0c0AqykTs40BzQG9z58B5QXNAIE/wbiZCc0BafkQWe0RzQPbRVr2aUXNAuC9zzaNTc0B2unsGeVRzQHAtvP+GVHNAYmLT04tgc0CEqMDROmNzQP3oD7wjcnNAhiGdhlByc0Bt6nYIuHRzQLnPGDtOdXNAagytBnmAc0Di9ugopIBzQAjsE94MgXNAxtLIc12Cc0DBX4klD4RzQNL4N7aHkHNAA/z7AtWRc0CMz3c+TZJzQBgRsv/Mk3NAnu1OlGKUc0DzIBCb95RzQKfU4Uy4oHNAKA5Gp0yhc0B445HqWaJzQJ8jn3bmonNAIvHNsASlc0BsXcaKN7FzQGc1TPS2s3NAEypa0gy0c0CCE65k9sBzQMZNPOjTwXNAiKkDw8/Cc0DOHFdJJcNzQGPW0mk9y3NAeh7OqNbRc0AkC0wR2tJzQE84FS3303NA4JFtpuLUc0CuApo1DuBzQLzSGden4HNAgTDjlDjhc0A1UgoRZOFzQHptqrE+43NAvGHEdDf0c0C8vlAa5QB0QK3UKER5AXRA27FgrqMBdEDTU4dwiRF0QJcNH+RME3RATFRNCOITdEC63PAyuSF0QA4ZSvG5JHRA4np9yFQwdEBO3WVJZU90QOz2Oin3VHRAmA01fI1VdECttH65uGB0QPS5MkMIYnRApnLKS1FidEAAT2CATmR0QPpUcp0icHRAygPJS0FxdEDasDvKOXN0QNqFcN+hdHRA2GBEPDd1dED2DKFH+IB0QEpdG+NOgXRAyIiwnJGCdEBwgMZDFpB0QFxy0p1rkHRA+AHjz56SdEDFlqK+z6B0QBa7DXU4oXRAODSm4r2idEDIDd2FzaJ0QGT6TXcQo3RAOFdvf2WjdEBArvIVCLB0QJzcQaD8snRAyvBdCOTAdECKw2WJeMF0QB288ORPw3RADn/dhiTEdED0CQ7Xt8R0QOCYODj9znRAthObmdfRdEAeBSHDP9J0QCbQgKU703RA/LCRvt/TdED9/SLYeNR0QLxk4nLO1HRAakHnfLjhdEDub1xmjfN0QC7cwz9dAnVAI1uQc0sLdUByTZU0ahJ1QIJD+TsjFHVArbDpPZ0idUDyO56W6iJ1QLzjKhqnMnVA2utJe801dUCRRk8lskF1QHBowy/kT3VAcOBMtABQdUCStSFUgFF1QACT90F3VXVAQB8sJw9gdUCKSA3XOGF1QB49cp9nY3VAgpg7rndydUDA5vi/jXR1QLIxtOF4gXVA4ZaHw62BdUBkh/PxpYN1QKTCsbSahHVAiv0xu22SdUCLe2hSlKB1QGN6K5EkoXVAiKbikH6vdUDEQnrClrB1QIp1aJcBs3VAkluJ3cS0dUBlSHygB7t1QG5QpIX4wXVAlJFocs3TdUDq2I0TCeJ1QHXurnlIAnZAFCqUUNEDdkBLQ8AmVBJ2QDLTYjZPFHZAmqWnQwsWdkA657uwiCJ2QGZNCdOQJHZANk7FlEsrdkC2gXWAHzF2QGK5QLkcQXZAfocOqg9DdkAIBIkVekR2QMpiz+PLUHZANHBXXhJRdkBarohpzVR2QB4z5HDMYnZAlDD/4FJjdkDXjmgnumN2QHSMn+vaZHZAJ02RuSZodkAEjhwWkoN2QBQZeP/1knZAqEBRvJ6TdkC17/0k/pp2QAWknSPAsnZADp/HnXizdkDHK/C+DLR2QMiyphbUuHZA2r1eCXTAdkAanqwGzs52QJYMc73z4XZAdl7CwpHzdkBECfriNAJ3QA+EmyBRDXdA7nfBfwESd0A9pWDAqhJ3QHyVuYsNIndAcJS3knMid0B6uMUFDTV3QGW/on8lPndAzHHEJZ1Bd0DLnFfHf0N3QHQujPMaRXdA2JvP1EpRd0DEfscoklF3QIKKhHkrVXdA2BgNyY9hd0BttMJFPGN3QEDncTPSY3dAus2FjCZvd0C0z73HhHF3QNxNV75Kc3dA4e9IFXiCd0AVE+WvfIN3QGifZWMIkndA4DxL90qUd0DGb88QaZ13QCOWrsXEondArax+rpu0d0BmRu65UPJ3QDi1uuy9BHhAta7PyE0VeEDIb6h8biJ4QET/WlSLI3hAninHpAxCeEDi9W9rEER4QIYi1pl6RXhAtGetOspReEDyFOoQlVJ4QEa8+mCHVXhA4Kuy8u5XeEDM+v5rSF14QPDsri76YHhAXKoWS7dheEAqLrJJt2J4QEybdRpodHhAnMSksYt0eEA5a70ZpYF4QIPpOdOZhHhASS7w/lKPeEB0OFtpp5R4QCiU3NTzsnhAZBhPic/AeEAEfk+At9R4QKDg4ZgC9HhAZkZg8Iv1eEAKm+fqmwV5QJf5FGNlI3lAwPoFDL0jeUAXFfUD+kJ5QOZHMn/7Q3lAlnJbceBQeUA8ixB6zVR5QEigUZrZZHlAHTBmZXGNeUDOQcxpy5J5QMz7bxsQmHlA/lVUqyWYeUASCgq0cZ15QPRbfHDAsnlAZok8RULUeUCK9LQ2zdV5QLb2PXFR5HlAeBnAUycUekAWdVSwDDV6QE5Y1qznQ3pA0G1cpRpFekDPxZ4Izkt6QB4Hon70U3pAvjXXcClVekCKLc2JDbZ6QNwJMJH4wnpAthfwShvGekDqbl3qNe56QBYOH8woDntA3uxmfU0Ve0COWvXMkiN7QBrnwxJaJXtALIv92Eore0AqWCNyVDt7QGnERt+YSHtACvIlOfJNe0AmPMODRFN7QN7uBGlza3tA+dO+PmWCe0AvZyWaIpV7QM7iQFs2u3tAglCVe2G7e0AJq54wPcN7QH1gLCNnw3tAcy9+YnfGe0ByZ4tsbMt7QEe7DWG/0XtA8ELSLXLTe0BPx6JVeNt7QHLH0MTs4XtA3JmQFvzje0AN8bfmlvF7QNAqqT7f8XtACjG+g4v1e0Aey64JjgF8QBqaIB7ZAXxAKoI+85kFfED6cBFlihF8QFjyrdDPEXxAHNj30eUZfECWSioqzUF8QNc8Qmqzb3xAcC+7DACCfEAkoPjRvrJ8QC8QLqg603xAxA63uVfifECAqYmAGPJ8QCN+36xU8nxAPARi4wECfUCc3HihSwJ9QKjCBTxEEn1Arp/5oj4ifUBEsABHqGJ9QFK64QJZlH1AwE6rSi3DfUAAFUwskfV9QN4Uo0M9L35ApII/OYxVfkD17sKjmIp+QLmn/kami35A8OW+DVmMfkCWnMaIp5N+QKpMOpmOsH5AAGlmzpmyfkC07PNqUMl+QETHFSll1H5AoqufLWvcfkAVXWozzN9+QLGz3O3W735AfvcJyfrzfkBW4SBSy/t+QNzAVzshAH9AWOEY1dIDf0C0Ttr33gt/QEs57ZxQHH9AVBhdFFMpf0CRXP8NsS5/QMp67mS3cX9Agkqoa7iBf0AVf34to4N/QAm+AURjkX9A+s1YRl2hf0AQkYVSVrF/QJ7p2Ybz839AL7c+t4MRgEBCkrZhMBSAQH9BWG3eFoBA/uby6YEZgEAslleO7CmAQB7WCsj1SIBABpEnO+dQgEB9DZPCFFGAQNrGpicPWYBAlA+SICBZgEBq+xIgN1mAQCDa8ufFZoBARuDmgnJpgEDEG4uVG2yAQLz1aMXEboBAuZGOFipvgED0GYknb3GAQCq6mucZdIBAsIi4Dh+PgEAh58Hjh6mAQG4esPccqoBANtTkkCCugECOSbHuH7KAQCR6K5hSwYBAgXVxo1PJgEAo/86BqcyAQEH6GdlUz4BAPQd4WCzRgEBcaU+tTNGAQKri9L9h0YBA7mtYvkrZgEAOAOR9ReGAQByBemH36IBAFwcRS03vgEC5+93MP/+AQPjzHJdAB4FAqDpECGgJgUCKnVtbPQ+BQGg5H/ABGoFASmpptvIbgUCiqs5PBhyBQD9RCGo0H4FALXzzfdAhgUAgBTZPNieBQGxRMXDkLYFAHkCEqeYugUDWLJc7vDGBQNT/lKCeOYFAKCXX36E9gUBVlsOgKD+BQId3PIumQYFAs9BZ05tFgUB97DBE9EWBQJBkAQf3SYFA3iZ0nVtYgUB+FovxKl2BQA+9QXpVj4FAlEXFx1eXgUBR74pmCqGBQCcUIbjnoYFAKKCdfQ6lgUAILZyybaiBQAYCTa7sqYFAhs6+ZUqvgUDnBAh0BrKBQDppS9UHtoFAoAMBCX7TgUCojzujxN2BQJMlNxbJ4YFAZHkbcM3lgUDge/0SNviBQABzrjsBDoJADBzBdwUSgkAIOuJn2BiCQMbSfevWIIJAb4OJHdEogkBMXAmToimCQD8BfJ3mOYJAaTkJG+s9gkDCNYJ8Q4mCQJ4pbQDkjYJAYslfL9OOgkBi5J35Q5GCQOYyivHnkYJAONq+1zyZgkC4TEubVZmCQDPmP8EOoYJAOIvoFTuhgkBkh70tDamCQPRHgBQ1qYJAjkMYLwexgkChCewsNLGCQBubdJev+YJAFtuTunkRg0BVKzlRehmDQDy0cTRzIYNAMOHnHw4mg0AnvuUJcimDQILhB0ARKoNAbMX7z2sxg0B5Ga2Q5IGDQPQfQ/3MGYRAKuaNxNAdhEBYhd7JsCiEQIY/fp7/aIRAElHN0f5thEBwah1dAHGEQHGVSEwDcoRAiBDZIfp4hEAcL4o/sJmEQKzX9F9q2YRA0NOOnmrhhECix/13Y+mEQE7LA4418YRAmSyf6mDxhEBIzVeqNfmEQIIEieguAYVACL7WdKBhhUDOHktLoGmFQOShH3KZcYVAPMR86Jd5hUBkxAIZ342FQE6VdpjikYVASVPf4eaVhUA+pcoZ45mFQEj3bE7m+YVAxZPgCur9hUBSA0Uym5KGQFISA8mdloZAG2XdxqKahkD+cjZiJrmGQKqrgmCV0oZAnMiBM5jWhkDVNUadm9qGQIoo+56b3oZAUs+NZJEph0CgD/K4kTGHQKxGWxuIOYdAFG2kxFxBh0DWUujDjEGHQKyamIFfSYdAfb76xMexh0AkpolVyrmHQM41epi9wYdAHcLgNT4WiED3pf1FQhqIQK/nwYEjlohAzt0aSSWaiEA= + NrgMGZxjYkBImCMySWRuQEMdzoN8QnFAS41ZENNCd0Bq3hX7KlN5QA== - + - 6CGKRVSoXUT+DZtGUp84RtNxnETJXapF1mnuRlOeW0ROatBE/Zj6RFEx30TgVH9Esst2RU7I2kTC4IVEpKVQRZdd5EQ1gIlEC1vQRMZZDEX1DYNEQACYRHrbjEQYD6RECMgrRy9I2EQp2RNGipuzRXP8V0SbZrtEM8LMRFwZ/ETcp99GXxO1RAArtERtDpVFYFvGRFhKVkUYxoJE+EGnRBh+w0SLJVZFrBaWRBTZ/EXyQ4tE7fGTRRO5h0QLuo9EYH6WROsGDkWezAZFDOrCRDex1kQkczRFFSfxRsGXnUR/G+dEhFrTRJmxmEQsqCRFwweARPcZNUcMeL5EIK3kRBppUEbf3wtGY5p+RNG+60UMUYVF7JkDRWoUi0SVs4ZFX2pRRV00zUQMe7JFoHKURaXCbUVxzsxE4Z4qRSpvc0RKR4BErDOVRa0ybETxO1xEc7rMRcOka0RuB0VFzHoLReJyhUSOF4lGyhi4RBQ8jUSRl1NFClOZROc87kTGxldEOjWvRFiMiERns71EGqEDRTs2vEXG1kNFLR+gRHYjwURTj6BFuFY4R/00W0VTna9ETIPARBtuIkXOINpFi2qVRtkcn0XqHplESeIJRQgc5EQC1alEt4qHRM+zuESB5NNEGLjMRJBhxUQXbZNEhwLkRHx4oUQuhg5FdkZ9RB5/50Q59r1Evb6DRGoz2kViY11EhpWYRMGfckRdWAZFCS4PRcSYr0W3KEhGAqKvRKe2zESi4v5EueaDRaoBvURyHtVEqgQkRW7ImkRvs6tEL/CWRLeXnkR3psVEOlUDRcV8/ESBzhNFnQYURUDgIkZgOBFFsBCnRSai8UUtpQFFzMVsRKS4d0T6345EmseLREOkbkSNHvRFkoqfRHx1rURZ6rZEz26SRBgtqUROBYhFJAnWRJomj0SEkZNEAiehRNOD9kTFNNJFWDmXRZXkxUbmLp9F3bdHRQSMU0XFxHBENVMwRemHRUaJTfJEyHG4RJyWlkTgmw5FE4NrRJOIvUY5SvRFfCw+RY+uG0XV8OVEylLFReimj0WvJShFP22QRDd3M0XNUp5Ew9XgRAbLzEQ075VGGLWFRrLw4EVusXBFwKvuRLPC5UdV8shFVnm5Rj3960S0LddGW+52RR6FTkY/9OpE7MoPRSy3E0YdhSBFnMJpRRl2jkTT07BEK2WpRFRvwETQ9qdEhl1lRAucOkVmEklFpP+pRL7ru0RA8ldEPDKTRLHrVEXQ1sxES04BRXXInUSEozFGZmGZRUODc0ad8QhFIs/URQ9QLUXS9QxFmTE6RV8Oc0Ra8axFj+s2SQW3DUVY+TdIr6KRRH2kkkZi13ZEt/26RMudM0WjPotFj0iMRfli20T+JLpE7aoBRUkneET5Lc1EIGmNRE94M0UalGhEXErJRteuYkYHz6FEQLQvRXjUGUU5GoFF7C6lRZtpukRd2u1ET9R6RGZxpUdwjbJGHGypRgGLLEXTNElFjxfGROCHrUWy84dEF3+FRMRUGkXHKcVEw9hBRnRnskQNwwxFK9jKRSsRkEQM2pVFjZ55RbPMZkSxZZFEmmFwRF2k6USAh49FpVkXSWqMz0QDU45IfuSgRPCMnUdFmQtF/8U8Rpm2h0She+tHAEyVRJHCjEXmxItHwSRXRuo2lERATBJG/YWdRdinYkR7JGBF0+SDRINAr0WYV5FE9KSRRNPZr0S8qoZERefSR+/16UTLnalGSLHuROZgnkaRtRNFuSuXRH9emkT63d5Eyl60RLptqUSqW55EuxmaRBthlUQdVu9Eh4caRRlKjEQSMolE6wmORPs9oESZTIRF5F3CRHb5ikS15o1EKue1RBrKXUYJfKZE90zDRVwTjURdVndEGIEuRe7utkSHyY9F+npdRLIKlETJfBtGPJAMRaugA0WYcfVErg0CR8AmhEawYeFFXNVfRehDg0QTutlEelw2RXKJcEYbFp9FL3nZRLRNfEQKO2lHHiAvR0Qxj0akD/5FQxfBRKVXCUVHIbdEqRRjRfICx0TwvGhGWIq6RQHNgkSSjV9IXh3RR6n7NkU9IBhFYxSxRDahWkcjLk1FZZpMRiQKkkXejqVEpLiORM02FEarXixFG5TBREcCF0U8+HVE+55oRAZ4Z0Ta7RJGfpa7RAICG0W2hJVEy1dlRPOYu0TDaQJHYqWoRqvRe0QB5IVFET+rRHtqmEW8+gpFxVwHReDU2UROCIZFbfzSRNXDa0VknCZFqui6RHCsD0WX+JtE58SBRS0bGkULtWVEC1eeRKHlHkY/SXtFEhCTRJ8Cg0RNbJxFLODkREizQUaMdodFNQgjRelBvkTClk9F7OvaRFmZwkehmd5E5CdpRIcBMUe7z4hE8NPHRp/vBUUDrqtFSgrWRccxrUSdCThFz4XXRA84l0TmRaZEU/zLR5kFPkcqJOJG+06oRTkH4UVWKTFFgKYyRd+WjkR1+/JFQmyTRX2ugETKhtVFnRjWRMIkP0X805xEAIomRbUE70RJqvlG3D5oRvLDHUaL9INFPxVHRWbmuURkkoxESJz8RssVVkbUjP5F1CIgRe7H8UYc64RGnUqbRaJT60RU11JFrtz8RCm20kU99I1FkFmpRMK170RLvoZGm2IpRu5KxkVbubFEgT0gRkcbpUUiQidF8w1+RIyJ0ERo7F9E92fqRf58c0WNq9ZEn+zkREX8vUTDwiVFw5CmRA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - BgS6OW/BckBJTw+6T8JyQHSkt68Tw3JAdHoueDvDckBH2h9QGstyQNLW65VD0nJA1IKauHbTckCqdq5Ezt9yQGa4Miy44HJAf3vboFDickCqEGU8keJyQNBxDhPJ8XJALitMhrXzckDen2xS+ABzQAhI82NKAXNAxxlwHdECc0BSzBXb+gNzQPYjMI8IEnNAmH6f3rwSc0C6k8Hk+RNzQHJsGpYFFHNADMFEx/UXc0AG3se0pCBzQEKvkS05IXNAQpLC8Mkic0BU7T2jDyNzQLhPiHbPJHNAk2bT+0cxc0CuB5IizzJzQOm9rxM5NHNAzuS9mndBc0ByJlCRekRzQLbrmXauTHNAVtYKPxFSc0BqZQyjQ1NzQNXDoV6kU3NAvNhVkDpjc0BGr1YPJXJzQA9j3lRQcnNAtjmbDWZyc0D6cQp/tXRzQAq4RU5MdXNAXoVVBnmAc0CC93aKDYFzQOqDlIqKkHNAHDPzfU2Sc0BhbLTU95RzQNC1i264oHNASD+Po1qic0C6co3M5qJzQHCn2ooEpXNAVROB3sewc0BguHJUtrNzQCIGodEMtHNAHnl45tLBc0BaQI+Zz8JzQDqM+eclw3NA4m6C/j3Lc0C0s5qw2NFzQOjQKFL303NAdv4l7uHUc0Ai/vdWpeBzQFRPJPg44XNAkM4Bkozhc0Ah5y+WPuNzQIwUMqk39HNA1N5HeHkBdEDQA4ggpAF0QD2B4A+IEXRAOt/JS00TdEBuOYiKdxR0QKhWKpy4IXRA9FY6Lo1VdED/0qZouWB0QN/bO1cJYnRAug1YblFidEAIEEeVTmR0QHEqH3AicHRAuDBmdUFxdEAh+CtROnN0QCpjpuk4dXRACKoub/iAdECkD7AOT4F0QH7Av52RgnRAtk3DOBaQdEDQpVpsn5J0QDiJkK/PoHRABvfdmriidEAej/9FEKN0QGwedKtmo3RAnL7JiQqwdEADMN1DeMF0QNLZHNlRw3RAxBYScyTEdECag9l4uMR0QK669kj+znRA2N7XxEDSdEBvZggwt+F0QE229xlQ5XRAE6PpFY3zdECM8sORpAB1QLBAZZdkAXVA7DlYrl0CdUBWUTDgmQN1QNmNtXAiFHVAg/ereJ0idUCLMw8uzDV1QN5y3uSzQXVAT4pz8XZVdUAcgaVzD2B1QKE1ulA3YXVAcn8yRmZjdUC3el8EeHJ1QL0mb8+NdHVA3sCjB3qBdUB+Tb7GrYF1QL5Yqn2mg3VA2iMNjZuEdUAGzN/JALN1QPOgEKBjwXVAIJvlcPnBdUDS8xl2y9N1QHipB5sH4nVAHC/GukgCdkCQe4zT0QN2QCvftt9LFHZA8VkoUAoWdkAvAkIQiCJ2QH43I6mQJHZAtjB0ukordkBTRTf4HzF2QAgPjhFTM3ZA916dRp40dkBT3bPSHEF2QAJwGFcQQ3ZABwUDInpEdkCN/UeJy1B2QGYg3R8SUXZAXBBu22ZTdkCfQT/QzVR2QGjuZhDNYnZA2W3A+lBjdkDwE2Kb2WR2QNYz07+Rg3ZAOMr3TfiSdkALsDWfnZN2QAHXt+v/mnZA8jZtIcKydkAU5gVkeLN2QITq8OoMtHZA0MUx4tO4dkAMnkuSz852QKgbuXiQ83ZAm88HUDMCd0BoxbATUQ13QCecnZoBEndArAQS1aoSd0D+oNizCBh3QKmz1v0PIndAUL5yTHIid0Bp5IQmDTV3QBh8TT8mPndA5R1vDp1Bd0BE6L8yfkN3QNIuJAwbRXdAHLNbX0pRd0CPQBhXklF3QLb91NMpVXdAyCnYko9hd0B8XdZUPGN3QH3vquHQY3dAoAlbfCdvd0BA8wRdeIJ3QFya7ZdonXdAAAzshsKid0AicBbsT/J3QDghtA9vInhA09MTbA1CeEAi+KF8ekV4QBZu1p3KUXhAfkMd+JRSeECYAcsGh1V4QKC8zY7uV3hAzykbC0tdeEAWkSgM+mB4QJiVA8i3YXhA3FsD3bdieEAaU7psSnR4QD5iuthbdHhAnVcb34t0eED4Z8kMpIF4QLg9J/qZhHhATorUGZeReEC1xT8YqJR4QMhA9XzNwHhAJpILi/TBeEBim3Hit9R4QKFy6Z8B9HhApZ9Mh431eEDdUqEPvCN5QBL2FS2OQnlAEG3lM/1DeUBMELQUy1R5QNh15JNIf3lApH+ky3GNeUAMLtERzJJ5QDRw0N8mmHlA1jDRDm+deUCnc5TcvrJ5QPf0brFC1HlA/S5HlVDkeUBqp1mfDDV6QGVY1dLnQ3pADj9fdhpFekCgXZl0zUt6QIy9kmDYU3pAubNGy/RTekDK7WNXKlV6QDPTDCeLcnpA9FUc0yCbekDDTRNKDrZ6QDC9SwEsw3pAtoL+VDfuekB1qKKIKg57QErggaFNFXtA2nybT5Uje0CurZ60WSV7QO4qoMlKK3tAOpqXAFUze0AQbtUewTN7QALfX9uYSHtA9v1CH/NNe0DiIJGuJJV7QJq0ueM8nntALaLOUie7e0B3lCVHYbt7QIRWapKnu3tAwGIwnWbDe0AJwkTAa8t7QJE/k2Bx03tAiqcIAnvbe0BKUEt57OF7QID9xjKW8XtAeNcF8t7xe0A4E/0Bi/V7QBKgPOfZAXxASJMnkpkFfEDUWCEe0RF8QLojlO3LQXxAG/H0bw1ifED6XQXa+YF8QKnX4+S9snxAIJWJqlvDfEAQHWBBO9N8QBZCfqZX4nxAYDGdRRXyfEA+/+TiVPJ8QNt1Sr3/AX1ArvSuC0sCfUDPkFvYRBJ9QAgtybZYlH1A9FeftZ6VfUBQvUvo16N9QG/xUNUqw31AqsILeo71fUCskVntjFV+QMQmvsKgi35A+KyW01iMfkDInjlrZtR+QDNJl4Yq4H5AXtMDO8z7fkAzdpISIAB/QFRWsJzTA39A6opdg1Ipf0AuEHoorC5/QARAfCS4cX9AqjmTRLGBf0AuUNcTY5F/QK8G3MdfoX9ARtuGoVWxf0Ctset+8/N/QDyPONqDEYBAbTX/WDAUgEBNE33f3haAQKwlu6WAGYBA5OM3Eo0ZgECG5EE+80iAQEq3Fd/mUIBAkKtzBxVRgEAGGO4w5liAQPwk5icOWYBAAeKMnTVZgEAcfqfexWaAQNg3oTtyaYBA8ieWjhxsgEB+6mdmxG6AQHaGxXQpb4BA0Udzih6PgECuVIo2xpyAQLEBWeYcqoBA4GG6MSCugECk17CHI7KAQOPLwHRSwYBAqKoqhFPJgECiKd8AqcyAQACIhJVM0YBAqOrMM0rZgEBQc2d7ROGAQObok61J74BAZXBVwj//gEASt8aSXQaBQKoCpJE/B4FA951U2zwPgUDGyHV6NB+BQEosTU00J4FA/iwQw7wxgUBGvdRbnjmBQGxfBaChPYFAysFARJZBgUAsmocNqEGBQPmYF6iaRYFAbePvoPNFgUC+Tn839kmBQPDzH95bWIFARLMOkypdgUCHLrNuVY+BQETa6f0KoYFAbD0DtOehgUDUleQIbaiBQOqmqdnuqYFAuyJyF0qvgUBYyYZIBrKBQHqks+sItoFArrnaZcXdgUCHoV1gx+GBQGJKGcP/DYJAqDSl0QMSgkBICrOm2BiCQIWMoszXIIJA4uyMZtEogkD4OXwroSmCQBycwQnQMIJA8fj8oeg5gkCE444/Q4mCQP4YHZLkjYJAMmqwPESRgkAQ0tkP55GCQBbILYY8mYJAPbdZY1WZgkA5u8f/DqGCQCwMyrY6oYJAaBlpvg6pgkDzOxbqNKmCQDgL0jYHsYJAqoXcm675gkALnf6FeRGDQJb/F296GYNAO4XHUnMhg0AsRfS5DCaDQHaGxhNyKYNAuGTtjRAqg0Cn0v0QazGDQE6eJjvNGYRAIQ6Qx9EdhEBCXxXgzyGEQIJIm2T/aIRA+EFzI/1whECPgQn+93iEQPDJrKiwmYRAFlYNSmrZhEA2SuJjauGEQFdZAsNi6YRASElK6DbxhECUM4QVYvGEQJSETDA1+YRAmr6aq1z5hEB2iItlLwGFQEUB8Q3ZRYVAwgg3aqBhhUACF2hzoGmFQB8kLZiZcYVATH8gi7VzhUDc7Py7mHmFQNn1Fa2ggYVAcEMBfd6NhUB9MHsX4pGFQHC98UrllYVAzhoagOOZhUDQqsjy5vmFQHr4Gpzp/YVAqoggfZmShkAwffEanJaGQGEKZR0nuYZA4oqXrZTShkAVcZLSl9aGQH7Tkk+a2oZAxtOBXpEph0BpUkTekDGHQIF+p4CLOYdAHJ2oBItBh0A+MFFlx7GHQC06vOjHuYdA/P0H88LBh0CSLtu5PhaIQLG9XBoilohAYFn3/iaaiEA= + NrgMGZxjYkD1hHOUyCJpQEMdzoN8QnFAooOBwRKidECZcdKIFLN1QA== - + - F6Q6RcdNykS1mGVGJbM0RjaLMkXoEf5G/R+xRHyZzESGG75ER0OPRQjasUSPvWJFiKavRMeS4kSMy5ZE1VypRLXTEEfVIu5EoVh7RnYVjEXm44xFgFPHRDuc50TLvKxGOD2oROJ7v0Su94xFFdn8RJ1E70SH7L9E72h1RbYPHkYwC5JEbA2WROf3kUTcIFVFiDUQRZau4kSrx5xERU27RLh0oUQNWBpFIRLdRjO+JEWI+ZlE+wdDR9KNQkZAIyNGldjMRXEEWEXQluREieCaRFixWUWMEQZFxoNWRVxcikXkyUhFoYiVRPpOAEWeRppEBYGTRSHuqkRRwAFGCLybRGZkHEVYLwtFDBd8RuMatETC47hEYnZNRewWikTtORpF+hQDRXLglUWH/GpFNl6PRCuv00Q8/6VF3fpER1ETM0VfYcVE4EcbRbgw+EWRsWBGhcmwRTAPDkX+VLhEJu28RMcPFkUx9QRFRlLCRCXtuERiIhxFM5awRKTmvER5uo9EPAWpRQM4/0Qoh+JE0VjXRQj0nETMq6lErRk1RmXKqUSwDQZFD0+SReSyO0XlhMBEi1EFRaddEEWFqBFFWFoTRc5s8kRMoxZGwM/bRJ8CwkWqHOFF/wUERc0qk0Xn4KREJpUARfLL50Q+mxFF3mWNRfZmgUQeOotEzcGsRN0/00RR1+tFzMOCRTi/0EbC6xxFrPuURKXKokWpAB1FP1h/RUPNlkSHPGFFPcytRD/LMEb9p8dE3062REsy3UTNJbNGftu7RYm5IkWWIBdFScMbRaEDB0b4HpdF7xxURWzjV0XnNKJES4DwRFbgoEbVO5pGeGHfRWcZmkQQcz5FwnKiRCNZ5UfCdZZFhEWvRiYPyUSNQcNGiwShRQvHY0ZhU9xEtloPRcAx9EV16u5ErdRtRbAO2ESec8FFmCEuRZw/mkRBtFRFbtGWRJ6mNUabybBFOQAHRswb6UQj5r9F5vyiROc75UR3aStFmOSHRBBj6kT+x4JFpYQwSfxxJUV+eDlIrlbzRMoyj0ZupNREHCKLRIBKMUWhCWdFiiyRRUUbEUVWTohEvvwkRcQDJEXQ+5FEUiG9RiTZSEa0YWhFJ4zNRF2BMEXzxLdF2Oy3RKSUoEfL95dGUISBRo10v0TvBJZEhuoaRdF+AEV+44tED/iYRBC6o0VSLZJECA+/RL2BvERdgShGxFyhRINWI0Vi5bZFx4dnRV+zqERxsZxFcC/GRPNL6kTdpZFEPxCRRR8YXEmCMpFF3tHJSDLc6kd50KdG+GrRRG465kc0Da1FcQ2DR4/HWkb39A5GhuSaRQbxSUXrH9RF8fyNROg3i0SxPKxE6RXBRHYYqETrucNHcJDuRK5owUYBLw1FvKyYRp/LUkVFFuhEP8yVRLjzyEQyhppEwR7oRJGvq0T4w9NEFNerRLm2AUUkUsdE+m8NRq6VGEVAmmtFgOocRbJ10ERni2NFz0qkRAIWH0awEyRFCIUHRcC9yUQ3KNZGx5aTRoqEoEX21Z5EiJ21RLmMBkW+8klFfaSARvtbmkT1t6RFvEGfRD+mNEfBVw1H8CRzRpmPd0UTwN5Ep6dVRTbTokStADNGO36xRZsk80R3jXRIu5XfR6NH/kTdFYNHcrF+Rs56gUVM/6tEOj0cRmbbkkQWNRRFqRrrRARxJUbwvxtFUekKRZSznEdlaBNHVKCMRcpus0Vaf+5Erm1kRcAmH0WK6NpETlNWRQfZk0WqIaJEdzYqRQdu/UR1wrxEEPVFRXIpvUTx5q9E8Pg6RhoYk0Xt9H9FcyUGRQwMLkarq1hFXyBTRck26EStRZVEkHjtRG9J60c44wdFrd50RwHk5ERnzQJHsyshRTRjzEWHbiRGo7H9RF40SUXyxtdEgYO5RDTqA0gLYo1HO2knR9KhgkW8c+9FMQjmRCYgS0XFEBFGPQiCRWhIlkT5WM1Ff5IpRTeJBUUMLeFEWUAZR1KXoEbJxz1GHc+ART6Sg0UgXwtFP8zURCcPmkSbWY1EzyIJRz8ShEYsoitGBCCFRFeqiEXWjHpEER+aRmeSMkYQXTNFvivBRBsthkXqy8FErmGbRbexAEWcQQZF1N5DRopFMkbsTF9FSZw1RutX6EXqyldFNkPrRAT2A0Y5P11FgHVjRSyf20QOeipFSJDeRA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - BzzmPG/BckBvFuGvE8NyQJR8U3U7w3JA9D0CLBrLckBBFvGDQ9JyQC6Dub3O33JAhBZgX7fgckB8JlxxUeJyQMb7Z2uO4nJAtQZ/pMrxckD6DbizEvNyQPcdQwW283JA1CGMM8L/ckA06LuQ0QJzQEVzhgT7A3NA5PNcCr0Sc0BqxeCE+xNzQIIslL4GFHNAD/kSaKIgc0BKBRaGOSFzQIhJjcDOJHNAOgWsa0Yxc0ASJ75PzjJzQEP1t/LhQHNAwHXiz3hBc0CX81uFekRzQG6wu/riUnNAU5eVgkNTc0CeR/DHpFNzQJrhenqHVHNAWIqQtjpjc0A40RaLI3JzQD6EjM5MdXNAakOk5niAc0AutfLCC4FzQCFASyCGkHNAmRxEhU2Sc0CihXgAZJRzQJqYTkz3lHNAUGXebbigc0AqkpSXWqJzQAYyVX7monNAYt1vZAWlc0Dsgqgwt7NzQCYfJMwMtHNAcuqZmPfAc0D1VVia08FzQAZR+u/PwnNA2/fnMCfDc0Des21qPstzQJIq/zPX0XNAOKEv9uLUc0AQU4FKOeFzQK4JSzNl4XNAPl0/Bj/jc0CcV/2PNvRzQKbCLSN5AXRAgJcQN4gRdECI+nlzTBN0QB9TNXS4IXRAAl2zhYpVdEBKk2FsuGB0QFqvW/YIYnRA1k1/sSNwdEDevU2kQXF0QKG0R5E6c3RAIo+SOzd1dEDX5S6y94B0QAp06WJOgXRAf4XWc5GCdED+3UxlFpB0QLSorufQoHRAqijgYw+jdEAwG9ZSZqN0QACh0c4IsHRAErjyZuLAdEB6nOmzeMF0QHdZ1kq5xHRA7uz/r0DSdEB8yuFGueF0QGp8pumN83RABt1xNl0CdUCQsztmIxR1QCAI8UaeInVAmgJz3cw1dUDkI6M8d1V1QHZSzvYNYHVAsDforjhhdUB4ADc3ZWN1QFY1chaOdHVA0fJjsXiBdUAGYstoroF1QHESFZamg3VAQ9WZvwGzdUBO/yEa+cF1QDg/KEYH4nVAJOjq+UcCdkCxKrqL0AN2QPCzqTSQJHZA0N/ie0srdkBWJs9qHzF2QGj5hJocQXZAHZe1Og9DdkDY+/OgeUR2QL6a38YRUXZAxDgEX81UdkA9RAa7ymJ2QEjG6BHaZHZAfgLyzpGDdkChF9Dm9pJ2QCJ4b5Sfk3ZASmRzasKydkD7GAVFebN2QMpSavoMtHZAXg6z/dK4dkBQ3sXrzc52QBHaYfOR83ZACmdVQ1ENd0DWHEDrARJ3QBoGWsCpEndAAki+0wQYd0CQVVecDiJ3QDa0PFoNNXdARlzRLSY+d0COr0BynUF3QAoEuwt+Q3dA4U2TERtFd0DZ2fkQS1F3QCDIT4SSUXdAKNwmN49hd0AMpZ3jPGN3QI67E6DRY3dAyMBenSdvd0B+XSgLaZ13QIAo133BondAiqVDN1Hyd0AmgQl/biJ4QBBWQy4LQnhAwnD7dXpFeEAGAblty1F4QB+MlIaUUnhAjDZI6e9XeEBI2IIt+WB4QG18vmi3YXhAcag+QLhieEDtW2yLaXR4QCA8yteLdHhAYDcIXrZ0eECGi8GzpoF4QDJYZAOahHhAaH3+nZeReEAGMrW9qJR4QLqBMYfMwHhALwIR6bfUeEAmAqm3AfR4QPCTdoiM9XhAwXIXCJsFeUAu7p4PvCN5QGofu9f5QnlAGjdqUvxDeUBUpP3YzFR5QPxc3WRxjXlAvMvfOsuSeUAR9cilKJh5QCHtWtG/snlARgkWw0LUeUBEOyEWzdV5QFivmDZS5HlA4gkc/gw1ekDmMU/v50N6QJD/26YaRXpALiMLKc5LekA4CTWo9VN6QGIauB4NtnpAsq3C8U0Ve0CAAfdQWyV7QD3cGU1MK3tAHyhIQFYze0BsLICaUTt7QEpvOb6ZSHtAf2DbffJNe0C+PNxqJJV7QIPhgt04u3tACOMrJ2G7e0CkweCAlbt7QNbg1WNmw3tAbi+IJZrDe0AWpvu2dsZ7QBQZYYtry3tABEp953DTe0CgUbycdNt7QPwVaELs4XtAhRSYvZXxe0CayPnF3vF7QJMHSnkJ8ntAruW8OIv1e0CkXbGU1wF8QEyeH8DxAXxA61Y4WJkFfEAXQrPKzRF8QHjOJlbLQXxADKHxLxrTfEAR6ENCV+J8QNPB6eAW8nxAFu4eC1XyfEBM9KJjAQJ9QL/AHRZLAn1App1DF0USfUDilIC9qmJ9QDZIY3Cyan1AWoji+1eUfUAsLbXg1bN9QFNyfaCR9X1AlJGeo2PUfkBhv7WQy/t+QC5QObQhAH9Aztm7jtIDf0BaiBHOt3F/QOp8WQ9jkX9ALL/FQ1uhf0A9sfqCVLF/QGBstj4g7H9ASAU/nYMRgED3cgUYMBSAQKxLAm/eFoBA2DeG54IZgEAABYrF5lCAQHz6yaQTUYBAAGBBkOVYgECNKuzXDVmAQJm++tAxZoBAXJ68tsVmgECi7+72cmmAQK2WnToabIBAXWMn5cRugEAg76Q4KW+AQMBSbuhycYBA9abR2R6PgECeCgUahqmAQBsXydgcqoBAorGDeyCugEDF66VTUsGAQM4ZxnpTyYBArzk/aajMgEBuS2xxVc+AQJ9N37RM0YBAI9kS+UnZgECkqEYyROGAQNMgkoc//4BAvnHOBkEHgUDYqsIGZwmBQGItjnM0H4FAhrwTtzMngUBqLDFMnjmBQC7JH0ahPYFA+Mt0B5NBgUB4fHNvpkGBQEHRlT6aRYFA8QZP0vNFgUC3cHS09kmBQJeo4YUqXYFA8FDtN1WPgUD2go7z56GBQFfyUhhsqIFAzbba2EqvgUCgFexSxd2BQDIn29zI4YFA3rA6KQAOgkBsf0U22BiCQGXKuoHWIIJA4BJpqtAogkD+Ww3C5jmCQACU0jNDiYJAlq2h6OONgkAuLuSdQ5GCQK6zlSnnkYJA2WkdlTyZgkBnjOP9DqGCQKINFaI7oYJAYCt2bA6pgkBQ2JUvM6mCQPIdum8IsYJA3EI7V3kRg0BCe9IzehmDQA2YWU5yIYNAxxpqIg0mg0DQv34ScymDQGKjN8MPKoNAiRlWtmkxg0CuZmh5SoODQAWStNvMGYRAD+yWotAdhEBuJAxi/2iEQAsTSa3+cIRAKK4gHmrZhEBtghAWauGEQJFBMphi6YRA95DOLjbxhEDCIMMfY/GEQHmO3M00+YRA0emwddhFhUCQFCNjoGGFQDovFeifaYVAUw/ecZhxhUDu2W1tl3mFQKgMjGzfjYVAnqQq9uGRhUDWV/vu5pWFQBSNTFrm+YVAktTrxOv9hUDup/PlmJKGQLyKz3eiloZA3gKKXCa5hkCvLhXwlNKGQGGGD1eY1oZAnDWj9prahkDCQe6/kCmHQDj/0QeRMYdAao5iB4w5h0CuNIu5x7GHQIQ/K8LIuYdAoEPJgr/Bh0AyZCVRJJaIQA== + U6vsr5viYUA2uAwZnGNiQP9T9bnLw2pAQx3Og3xCcUAis/wNadJyQNF0GqNUU3dAIhHZYcHjeUB4Zd1mWVR+QPg1YhoDZH9Aw0bXnG26gkBQkxLvgzKDQIpyfazZwoVAUMIAGTC7hkBRniO8RcuIQBfupiicw4lAfMilvpEDi0AXHZVSSEyNQEP0S879C45Ab6QdMVoqkEAFEPnuNIqQQIYn8AOLvpFA6SXM9moOkkBqPcMLwUKTQACpnsmbopNATlOWE/fGlEDkvnHR0SaVQDJpaRstS5ZAZNZo5ifrlkBIfqocU2eXQEjsO+5db5hALJR9JInrmEDIAzMDtDOaQBCqUCy/b5pA9L8jNPXzm0AS9ASh3zecQCcJRqIFVJ1APrD10SD4nUCnID23WxifQCLGyNlWfJ9AeNG+QT46oEA2W807QcCgQANcX0JRyKBAjub/QmRWoUA= - + - SBNrRSYx5EX6Vz5G5Z8XResNC0dboTNFFWbkRLibeUWHeedE1F1FRbycw0Qc7dVE97fyRMpLHkXbGQdHmKQtRhp8jUWLaZxFIircRB0iukacvKJFw+IARb75GkWBEr9E7F6NRcuAHkaaVs9Ec7PmRDuILkWNcrxEV2cTRUsV30Rpm91ERb79RjDr6EQXoFhF4gpDRxQu7ERDxmRGlxoDRrRw1EUMKF9FmrESRZOTQ0U1MyNFt0b7RGBuGkW8nZNFNwx/Rd4v1URfsB9FAXKFRW7u9EVXQslEOHgnRTs+60SMfIpG1D/VRGunUUXKtDpFrpTERNAOskXZ3kdFQD6wRbbwLkdTR1NFysbVRH3z8kRyGQJGWNQKRtPxuEVnPcZEA8IIRb4TDkWprrtEwPvDROm35USpUCZFbxVRRZz8GkUAXM5FTnwxRhbqJ0Vu2HdFTS0cRZ1xAUXOlxFFbxoqRZYlLkUZiTpG5TYIRd/sd0XcY9FFDcSFRfB9/UTc60FFhmuuRaRP50RA8BJGMCLnRYFkwEa8RKhFfcq3RDCClEX4CC5F/ClnRhswDkWYkDFFxIOxRoMU8EXmcCdF2rQVRXK4mUW7aqlF5VNrRVI5HEWThPhEusa2RiDXg0Yb7hhGjKklRSajX0Xoxt9HlsiPRQwxv0YJhP1ECOm6RujtkUU1pn1GMkpGRWjwwEWzqRxFA99gRRbmskXzf+tESK/IREmzTUVm8QdFs98oRgW3hUVKHCFGAMuiRbwQ/0Rz0T1FLh3RRNHdyEVjB0FJY2VCRTqbFEWAakhIWy8rRRqedEazqAtFl/swRfvkf0XpedRF7bz3RJdk9UTSp9dEKKYzRU9rg0XmUbZGfT8/RqYeQkVzuChFxDeWRWphL0WZWdxEETe7RxFYUEZX99dGtDBlRalxE0WfHLRFULgTRpd8CEWkzlVGjGTCRVuO9ETkaiVFhI4QRa9TCkXINCRGzlGsSUsXqEW1pB5JfI0fRXmCs0TIEjtIst7pRoOMKUWRQ+pHqiaQRRT+ikeFtwNF5ySNRpM1DkapCQ5F52KBRR2/H0Wz/a5F++j7RI/Rz0ctZN1E7H/PRtkcD0XgJphGWYWURaT7aUXzaP1EKgLgRLQ7CEWBD/FEOhXfRJj7t0VEQItFIfM3RQ5toEW5ZDlGT10YRTO1REX6RfxEVXLFRgrDYEZQ56JFG+A4RRWEdkUApFFGlv3IRK70gkWOONREnsk2R0uo4UbzC1hGfvqbRT7440QnkmpFlzuJRYaF+kRpiQdGf52YRdwuekhYR+pHju8eRRNG+USFQH1Ho5stRjw4i0WmtwdGOTMbRY2R4ET/rhtGoXPJRHGf3kcyDXtHtyl0RYTvY0Z1JVNFKqGLRc9+MkVmirpFuY+8RbZjHUVpNONEyARYRY+VMUYNMYBF4GaLRb2EO0bSNm1F6sAgRXy1C0UwZdxHIzOWRWGpREe+vANFEjT0RvfnxUXW4BZGmXzvRMK/DEWzS81EC5fjR29fS0e1O+lGcsNnRYfsEkYU+BJFHSElRba7vESZ7AhGGyN9RZnhwkWnDklFrRMJRww2hUap8RlGLUeURQqDckV5x+tEmTsPRcD9+kZAR2ZGeiQNRmYbWUVvtFNGO1atRSTgL0XPsHRFGInnREC3H0UsKtVEHJXTRP1XG0ZYzM1FhstGRaFNREaQ2cFFvmuARXKH10WoNp5FIbFDRQI+3EQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 3ElgFnDBckC4V23cE8NyQLSSzu46w3JAngh4S0PSckBEHm8yz99yQICa5VS54HJASYVvOFHickAutof2j+JyQEZarI7J8XJAZ8SSssP/ckDo1m5S+ABzQOySpGDQAnNAEl79sPoDc0DEnYcAvRJzQLqA3NkGFHNAUJy9/jghc0CYnp3tDyNzQMiQxL7OJHNAWr3E4M8yc0B0MvobeEFzQOBWEVN6RHNAgJXw4aNTc0ACC/DaOWNzQNE3egZ5gHNAoPSvOYaQc0AqdCYYTZJzQJp9mnr3lHNA+IngAYycc0AWS3ZnuKBzQDYOxVpaonNAru708+Wic0ADcka1BaVzQM4YJY63s3NAnM4TuQ20c0BS1G2uz8JzQECWz88mw3NASCufG9jRc0AXm9tB4tRzQNNBD9s44XNAhjwcrj/jc0Cq7sH+eAF0QNpja0tNE3RAuzSuWbchdEBgQeyTuGB0QMgNQeEJYnRA5ARUDCNwdEBzFJRKQXF0QD6blYn4gHRA6C7TlE6BdEDl2t3nkYJ0QMzFhFkWkHRAAljrsdCgdECFsNITEKN0QPgtM4Rno3RAIohb7eLAdECGosYbuMR0QEoCJJi44XRA6n+kuYzzdEDSMYbvXQJ1QM6ApjhqEnVAqPG1+SMUdUAOu9XGnSJ1QFJ5DGTNNXVAfkY0LLRBdUCyffBLd1V1QBM6mqI4YXVAIgIuc410dUCC6ZXGeIF1QCoRMxmtgXVA0I8PsqaDdUCgG90om4R1QLc3LlQCs3VA1tWHMfnBdUAiT1T3COJ1QLxeyf9HAnZACNUXPpAkdkDg9XLISyt2QFq4uM4fMXZAEC3K+h1BdkBoygbSekR2QMs8AyMUUXZAdImz2c1UdkBK2hUS22R2QKkOE8eRg3ZAWjuGxfaSdkCu9f6FoJN2QKyeRFXCsnZA3tRWuXizdkCAlezaDbR2QGy/oNHSuHZAtOrwhs/OdkBQxp6RkfN2QGBc4OhQDXdAMBDIoQESd0BmKb3ckBJ3QFqEcvapEndA/vAQgesXd0D63LWqDyJ3QMJno0MNNXdAhirMnSQ+d0DE4TY8nUF3QFqArFwbRXdAUBVVcUpRd0BOPl3EklF3QB4RogmRYXdAbH0hAvlid0C7Sqq4PGN3QC7F7cknb3dAovKHNWedd0BGSgjEwaJ3QD8Rl4JuInhA9U6EhnpFeEBKdwBfy1F4QKy0FsKUUnhAZDhIBIhVeEDeVxh97ld4QLnHr0+4YXhA1L8QaTF0eEDWJ/n8i3R4QLDtqIq6dHhAmEz8FKeBeEC+bU4smoR4QB/STtOnlHhA68s2RrfUeEB4wm0dAvR4QJxVqg6N9XhAEJc3VvxDeUCSsE2PzFR5QJiDf7VxjXlAELgnlcuSeUAWHbaqE5h5QBYy9N7AsnlAeMs5z0LUeUCRKavXDDV6QG/fkAnoQ3pAmPAbQxtFekDy/gHJz0t6QCmx6k4nVXpAly2QdA62ekCEb4RjTRV7QKM35dFcJXtAfNAFPE4re0CSWflRVTN7QAbGQ61TO3tAymGFoJlIe0ARrkf88U17QFJ4HY/zuntAYqNqZmG7e0CBzHgUmbt7QJhJzh3Gu3tA6jFZJty7e0Ceo72KCbx7QPAuyClmw3tAhRIE+GvLe0B799tXcdN7QET7xtt123tAbLzuk+vhe0BkXAPdlPF7QI3CtwHf8XtAgWx3nYr1e0Cm/4Q01wF8QLJtUS2aBXxALqeqvc4RfEAMbig0y0F8QFSwQwoX03xAkE+dSVfifEB6vNZJVPJ8QBTkItoCAn1Aps+x8EoCfUBUzlNzQxJ9QGIpIA4+In1AeUAMZKpifUD/yoCv1rN9QJqy26bJ+35AqNA75h8Af0BdOlJa0QN/QK9y3nm4cX9AxFmAaWORf0CZwYTEXaF/QHUcRrCDEYBAqoPtVTAUgEDjt0vW3RaAQPAXScCCGYBAamAijkZQgEDaJdpJ5lCAQCPFUKoTUYBA/q5Bag5ZgECoGXPJxWaAQFx6CztyaYBAnIhq8BtsgEDchWpVxW6AQHSCr/BxcYBAEsYOwR2PgECKUS2CHaqAQGTFvy0hroBAKAk1bVLBgECLDQlcU8mAQErSldamzIBASgR9R0zRgEC2u5I9StmAQDcxR7hD4YBADNDhzD//gEDlP+lFQAeBQOv9WP5mCYFArPdZvjwPgUDwT4xhNB+BQMlcfDOeOYFAkSHmQ6E9gUDcOlrHlUGBQPSNZBSnQYFASp2KCPRFgUBIHVoi5EmBQJRbGt/mTYFAhBOtMytdgUCGUFw3Vo+BQKuA8ATnoYFAHLYUtkqvgUAyDIixxN2BQKoXffrI4YFAej3fHgAOgkDgnnMO2BiCQMCatVjWIIJAm9cTKEOJgkCPzwgT5I2CQBHaoIlDkYJAXDYIqDyZgkC+S0AND6GCQJdMCls6oYJA5Jp5hg+pgkCWA+GfeRGDQG9EpCl6GYNAxMii13Ihg0CUyiAfiiGDQD4L9O4NJoNAC18lKnEpg0CQJIaRDyqDQAQz8lxrMYNAjLsv5cwZhEAUx9QI0R2EQM+/de7/aIRAHJYMf/1whEDmEy/S9niEQKxC6trmgoRARuySMmrZhEDogiLbaeGEQK5jX21i6YRAkr3MBDXxhEABjheQYvGEQFV7R2GgYYVArPyqdaBphUDIWYu6mXGFQO07kc2aeYVAkR0GPN6NhUBa3f214pGFQDne76LllYVAxxZMX+b5hUCUO17xk9KGQGg+ZIaY1oZAZLL0cJnahkDy1qCakSmHQMZhHEaSMYdA3nUhQIk5h0CoNuT0xrGHQKBRr1nHuYdA594rFMHBh0DKIOrZvsmHQFGQStMilohAqo2ASCiaiEA= + NrgMGZxjYkA= - + - d6NLRfI3nEUT9ChGDjIKR7OgJEWERCdFtn+uRc1IOkWkR45F/FAKRcO0DkXRv3lFzUQfR7rahkYq8LdFvrTQRkPREkXbkaVFfQcvRR10xEWJmjJGiKmuRZ2jKkVHJPtGj9A1RdOva0cEg4JGPU3qRJ4CLUb9dhlGELJmRSQMCUWP/rFFhbczRUgxwUXjlJBFa1A5RSbnrUV6jAxGMH1pRZGfnEYEFmNF1Ps3RXGttEVktoRF0czNRSgxZEcjS0FFbocCRrBQe0XPrchFjBgLRbV9G0WaqRBFODkqRWoUPUU8M1VFaVLoRfr8QUYMohNFlYYYRUuCkUVK5R5FAgkPRaCpKUVY1jhFXu5iRiaGCEVpMtFFgr0WRkpOSUUq1lZF21koRbKMFkVH4KFFEzwnRn2j00W93rlGzzaxRVu9h0Wqo3tFfx+QRkbhQkWNkKRGBUHIRXkRGEUXhTRFStamRec6tkUThYtFrEdIRVe9IUU7faZGzwGYRgGgGEbYtv1FMMCuRQFZmEXgkO5H9MJoRfy3zEadyNZGACObRX62jEZBoR5Fbx4LRYVUi0WDIKBFQshcRSAgFUWB4ZBFDCSBRlkZrEW+OSVGeJIrRTS0/kUn9XRFligVRaMXWUmd001FFq4mRfwFXEinyp9GoA5CRQMgkUWdvPRFPzEkRUNFpUXsz5xGbmxbRgdrn0UDA2xF2wXoRbgj00dT0i5GU8fORh/ZzEVG0ixFLvKRRR+tGUaM3gpFJlt6Rp51sUUsNw1FOzCBRTdKIkWzAqlFkaX6SSix50WfwodFhR56RS4N2kQe62hJaWKISJ7UJkdBc7NFEHLTR/0Oi0V8b4ZHD81hRrp6EUZ1jpJFtrYvRb0maEWtTy1F4K7fR837+UbNjTZFpIOmRqH2aEUnVARFiPSfRacTUEX94nhFWXO3RedwKEUn9JdF5D40Ri1IXUWHmK1GJIuWRogTmEWACVRF4RkORXfDeUXlAWZGBqqgRbCqj0frs1RHUBLTRl6qMUb5z0ZFgRyERScUsUXZkz1F+VCJSBXxBEigMTxFIT+KR+uFX0bCzqZFVrUPRtzQU0ULswtFO/0TRdeTG0ZUFdRH3IV4R9Hrf0URuDFGhJhjRdsg2kXNiV5F/FmpRdL8j0VKRF1FhE6JRVqv20VCSThFxtg2RX3hT0YsB55FfP3UR1Xnw0WpNzZHnIHoRr6k70XfxMtFs9QSRSi46kdW4lhHCKb6RmgQDEUB6Y1FJIMHRuIjhkWl5UNFMBClRS3tH0Uiv89FETIxRe7hHUWCphdF2iQUR133gUaHURtG5cJ4RVzEqkVyQgpHIu+FRtmJLkZaOXVFZRY5RjmFZEVRgCtFHdcHRTpQ/kUJ1dBFdKQWRXFiKUbyZMRFe/BrReiHKka2i65Fj4JLRdJsHUUel4BFP0IQRQ== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - qivw+m/BckBu9k5VE8NyQK3zLQs8w3JAXN5J0UPSckAgVId2UOJyQJDT2yvL8XJAFsNYGdACc0CB5KgF+wNzQIzWI+y8EnNAv+22XfkTc0AELlk6pCBzQHgVl4w5IXNAXeu3vc8kc0BI1TljSDFzQLJxBw3PMnNAkn72B3pBc0Do2haPekRzQA4JQvGjU3NAookN+kx1c0BgBc1HeYBzQJL3W4INgXNAtwMRA4eQc0BJI6eXTZJzQDZSJOv3lHNAufNMeI2cc0BivmZOuKBzQGKVln9aonNAviLIZeaic0Bc1t5+t7NzQGpHCG/QwnNAVhZK8ybDc0AvDjdr2NFzQLKMHGri1HNAFKZ+Yjjhc0COmGYeeQF0QLDzNmRNE3RAsBujQ7hgdEAP95CgCGJ0QLYuF94hcHRAcqkeTUFxdEBrv8UMOnN0QOU4mKZOgXRAj/XgLxeQdECHSc99ZqN0QKKdIkGN83RAst4p910CdUC8pZAonSJ1QHWDrLbMNXVA85/jmI10dUBBkm1WroF1QKwLvLCmg3VAXJiGpwOzdUBukqbUSAJ2QGoxL6CQJHZASqRA10srdkCqVnGmHzF2QB4xZcQcQXZAivhch3pEdkAWRXSMzVR2QKKNzwaSg3ZAetwoyPaSdkBFs0Ocn5N2QM7lGLl5s3ZA3I6lkg20dkBZC7tb1Lh2QEgcVB/PznZAher4pFENd0BmGBOtARJ3QNCTjBKREndAaPxCVqkSd0AGkBb56Rd3QNpSCplGHXdAQpCkcw8id0BYJPSUDTV3QApRTkydQXdAHJaxfBtFd0AQ2VgcTFF3QBrhLk6TUXdAKAQIb45hd0ACoFOx+WJ3QEdJ3bg8Y3dATmxCxShvd0CCLPy0/IJ3QBpKLWhonXdAVkdwyG0ieEA5bShvekV4QMAlFrjKUXhAKHYpt5VSeEA1STf171d4QB3K5MS3YXhANN1eFIx0eECXiRh7moR4QPQnSpyolHhADKPGqrnUeEBo2hgbAfR4QIxmszCN9XhAoiDg4/xDeUC+T+cnzlR5QJZKBSVyjXlAaARK0suSeUATPa1xKJh5QOYwb1rAsnlAHDr/rELUeUChniV6DTV6QInDtqHnQ3pA9G/fVBtFekDeRy/iz0t6QExjCJPZU3pAlUwxbA+2ekBKKbJ/ThV7QBDcU7ZLK3tAIruZClQze0CqV7nou7p7QPzkUUEMu3tAhxUy4ii7e0CdulpgYbt7QA4WWsymu3tANj8qwM67e0BqRT+eMsN7QNE7W1Vmw3tAnn4Z7WvLe0BWm18DctN7QJKaHN9423tA9OfKpOvhe0A+czUcmPF7QB0Z8Ove8XtAoJ4Z44r1e0CcpHLC2QF8QKoRcLmZBXxAHu1xGMxBfEDYvNJhGNN8QOx5UKRX4nxAaDB8cFTyfEBCAUL3SgJ9QLNzHRNGEn1ANjeX3atifUAWU+SY1rN9QLJNjPpk1H5ASATUqR8Af0D2Mw2CuHF/QCQQtBRkkX9A6VDQfl2hf0AE7PPdgxGAQLj0hcIwFIBAqmsr19wWgEAafO2+5lCAQOSmZrYTUYBAA3XS9w5ZgEDICSbZMmaAQC6aFf/FZoBALvOSenJpgEAPIu7qG2yAQFfzrjTHboBABP3abHNxgEDMWHTuHY+AQF+vECUdqoBA4zwTpFLBgEASTwN2U8mAQMKaNT2ozIBAXj8eh0zRgEDr80p/SdmAQD6NDy9F4YBANnxMN0D/gEBuIQkNQQeBQLL8uDhpCYFAsq7Vlj0PgUDZWz3DNB+BQCbWs52eOYFAbnZ0zqE9gUAIAmoJqEGBQPC6R+XzRYFApxImI+RJgUDknW4r502BQCiEro4rXYFAR9K77lWPgUC8gj4W56GBQMAr2mltqIFARuoE3UqvgUCocdyDxt2BQI6nbo0ADoJAUGNlcNgYgkAYiMSe1yCCQIGnCvjRKIJA+vUEkEOJgkA4b0RV5I2CQJwOKbZDkYJAtAqdzzyZgkD5BN6OD6GCQOQy0jE7oYJA+dPBVjWpgkB+0vPBeRGDQKutagR6GYNAQORkVHMhg0D4NSkqDiaDQMXlYxdyKYNA1KlgZREqg0D41igEzRmEQIC1DrH/aIRA9oxKfmrZhEDaa4DuaeGEQPQ46FZj6YRAXJYCajbxhEBJh7wWYvGEQEsVw9qgYYVA9kmofaBphUAm1bJ6mXGFQAS8KymZeYVAwq8u0t6NhUDA3IhU4pGFQC88ISyV0oZAmh69mZjWhkC7M/5pkSmHQGq+jK+RMYdAwIVny4g5h0ACPjMUyLGHQE5HlQTIuYdAz0yCFsHBh0AKRqjPI5aIQPCeL8QmmohA + NrgMGZxjYkB8yhB7okRtQEiYIzJJZG5AlLmMQukSc0CsUgPnFcN3QFsUIXwBRHlAIPjD1gXEf0BxTQlleeqAQKEA44NEmoJAAlKK/bqig0Dlw9sqveKGQLykavUyo4dASfGlR0n7iUAAaGOcq+uLQHQbKEqVM4xABSCp4tbrjkAAl1HGV3SPQA== - + - 0WVZRTtRhEWnwyFGgbsERykwZ0XOgmxFghlSRRV5+kbP6zNGnHBsRZGVRkVV1uFG08StRQ0aK0VKoy5F6PigRf1FHkZ0qotFxmY2Rbvc9EYhDENFltFQRTceQ0ftdXtGy+4cRQNiCkY/y9RFSul+RcVbe0WpCZ9Fe/NTRbjwJ0XQpcBFRqIIRmsYkEa/XlpFiRuZRSStV0Ur9+NFntUzRxB7gUVS2NFF8ynDRX1JQUWzy8tFWHVpRoclpkVvxnNFq7IXRjEaqEV8qu9FP5UbRfhfqkXOPvpFM17+RU/jykafzJNFf5lzRRbBY0Ynq5NG6qaTRfwhVEXBy8xFT6OsRT4MN0VfGWRFPNtxRh0zXEbmKwBHmTkSRk0wXEbAZGxFzW6ARXKT6kdlQbxGUTLHRl8blkXD9YRG8VsmRVOXV0XK15VF78E/RaM3U0UgKEVFlXJXRQIID0azp6lFlqkfRrUwsEWcoWBFtSlDSVRxREjkMp1Gwf9QReJIiUVAp8NFe84lRX38lkVs47RGIRkfRssXlUXT5VdFy27WRcgssEfjaS1G1CGuRq79/kWBimtFdYOxRTy5A0bGiMpG04QsRoUUf0URmZ9FQL0ORkiqGUoVGq5FOlujRXjVPEVuIo1J3zikSBKzZEdZsIJFKxC2R5jobUVfxmlH0ctNRgs6EUbX0EhFsiCfRZloe0VAysJHCG69RhWCn0Z8ZklFRLcGRi+RUkUtXipFVXAGRq0IjEW3sDBGa9stRTo/tEbyD4ZGFvbkRZOZJkWVKGNG1L21RY5BK0UtH9JHszKaR/CLDUcm5l1GyKSGRfbamEWv3chFNJZqSKmewEeUlzJFSHNlRw7dGUZfM39FJwQJRlycM0V7RzFFHYE2Rd60LUZVcbBHxJwfR78lAkYzimFF5p6IRlicIkYorVJFvRqgRRSwNEUbJC1FMPsuRYFMZ0XFOIdF0Q1KRuXXjkVL5HdF4PjLRwgIr0WTVj9H4jnURuEUtUV5VvFFAkiERWXix0e8/yJHFmbaRqU9r0UBBgFGciofRWvnm0VyT9RFw/oYRz6CgEaN6TJGMnBzRQwSjkXoYuBGT01TRnLq5kVGCF1FFI6gRTSsc0XKWARG+tioRT7yHUaaydpFohGBRVVvCEbXgIVFvTk7RU78x0WeYMRF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - uNZ/sW7BckAyTbt6O8NyQJ4HKGVD0nJAKYGGjFDickDGnby+yfFyQCiWYvlCAHNA0r23uvoDc0BSFBkyvBJzQDL+GaAFFHNAyMFE7jghc0BYqoh4zyRzQIXu73fOMnNA1HENfnhBc0CqWNDAekRzQFDBjGCuTHNACa1ltaNTc0Buu9AKeYBzQELpFCdNknNApBBOO/eUc0CicUkkjZxzQFtiL9i4oHNAoDQzh1qic0D4dWXa5aJzQIAG3nMFpXNAiPybprazc0AKuh3wz8JzQOd1a0kmw3NAqcsXZ9fRc0BmXY/Z4tRzQEzXdzA44XNA52ghyz3jc0BGh/nveAF0QMidJ/FLE3RADg7Cc7ghdEAAcq8SuGB0QKnr/zAIYnRAQUCiYiFwdEDuRyHxQHF0QBmMgwE6c3RAh9ouK/mAdEBKFTSmToF0QCqNuHkWkHRArcF9LI3zdEAIz151XQJ1QOKgVBCeInVAmKlgAWdjdUCpDjNojXR1QJ6zk+GtgXVAakr9KaaDdUB4SoXTAbN1QI5XTxtIAnZAecSKK5AkdkCcSxk2Syt2QIpE2sIfMXZAysx9MR1BdkBLXw2kekR2QChJ2K3NVHZAQy7J4ZGDdkDTfDUY9pJ2QFMVvR95s3ZALEWHMQ20dkD2BPDr07h2QNroJljOznZAaDr0yVANd0AAUEVaAhJ3QFzRaNCQEndACTTQgOkXd0AIdyYcRR13QFqmnpcOIndAhrs7bQ01d0B4FGQWnUF3QPIb+NqAQ3dA43NQvRpFd0AAw0cCS1F3QIxzBDKSUXdAItNGMI9hd0DOZ0DBO2N3QMg5oRInb3dA+hA9Mf2Cd0DaS2iLaJ13QIYlRwVtInhAkQa8jHpFeEDN+rsfy1F4QAzdGTeUUnhAXC8Ctu9XeECsn8HYbXR4QCKtHt6LdHhAAKAZUaWBeEAYH2DtmYR4QJYpYzSolHhAMcAbewL0eECUB4jrjPV4QFZK7D7MVHlAouJNZXGNeUA6M2h7y5J5QI6YDibCsnlAURInnkLUeUAKW31dDTV6QLBPrFHoQ3pAFvttCBtFekAD0G49z0t6QCNByejWU3pA6JoOiy6bekDe4zvPDbZ6QJIVql437npAnP8RtCwOe0Cn8xDaTRV7QLhhpp5NK3tAHPCklVYze0Bugo9KVDt7QNyYsWQOu3tAlN6sJD67e0BATh8nYbt7QI6x+ba/u3tA553nRmbDe0BimdZ0a8t7QKJh2iFx03tAPqxmNHTbe0CXZWbB6+F7QHyTk8SU8XtAng1ukt7xe0CyUNO9ivV7QIF0NyjYAXxATv8cm5kFfEB49PFfzRF8QDCFVIPLQXxAsO3KixjTfEDampRfV+J8QAHZ23lT8nxAAOkrEUsCfUD9JdsmRRJ9QCyb5aGqYn1Afew6DNWzfUBAmtgkklN+QMK6bAggAH9A4vIVSLdxf0BIylnTY5F/QIJExFdeoX9AFJVbICLsf0CE+VFkgxGAQIIEivIvFIBAdNgWANkWgEDE0N1BFFGAQEpyn3AOWYBArl97tTFmgECENNu2xWaAQLV6l/5xaYBA0DEH+xtsgED+P9/TxG6AQD3bw51xcYBARHJGMB2PgEDetUx7HKqAQMBzoHpSwYBAbKrqO1PJgECQh3FrqMyAQIyZxTpM0YBA0rad2EnZgEApigGPQ+GAQELHebM//4BA4h2svD8HgUA2XnwgFAyBQJYMuVM0H4FAo33We545gUAtNEiZoT2BQGvD65qnQYFAZmGt4PNFgUB6c8EB5EmBQAVpg2XnTYFAvi5Z9SldgUBOLWz0VY+BQFhHRt4JoYFAjugkMOihgUB8HjDRSq+BQH3IMx3/DYJAVkMBetgYgkDcMF3D1iCCQOq/qWrnOYJAINj0VUOJgkAfSfXPQ5GCQHMGFR/nkYJAkHK/cTyZgkBsYUjcDqGCQHjn+HM6oYJAglPAm3kRg0BjZ5DQeRmDQJxoud1yIYNAniCLtw0mg0BGVqAycSmDQENh7RQRKoNA+itlD2oxg0Au2fskzhmEQBhYp5MEM4RAsbYX6v9ohEAIumoh/G2EQMIVojxq2YRATMm/ZGrhhEBupTfkYumEQCIKKfs18YRA+EJttmLxhEBmRSJMoGGFQL4BdcqgaYVAoCDUSplxhUB0mw6xm3mFQORGbLnejYVA1LkpLOORhUBehaK6lNKGQDQvC06Z1oZAoDheT5Eph0AUlfkZlDGHQDmM6cSIOYdAvHnPZcexh0DNZ72PyLmHQJBL7LTCwYdAMBy5qiOWiECdQeHuJZqIQA== + NrgMGZxjYkDOIQhxcuNoQOJgFSPMRGtAQh3Og3zCckDMvNRcKfNzQJhx0ogUM3dAWxQhfAEEekA= - + - 1H2ARc6iSUZs9uJGxoKCRdz5i0U520FFdEMnR7s6LUZt68tF5fLjRj7/lEUwrDJFoSJzRQmnAEZIVUZFoxOfRYKo1kbGOD9Huj9aRhswT0WuCRNGzbYCRqeja0WMwDBF9GplRRjwsUUStZFFGG82RV9BrEXl+BdGRDUxRQ4/lEYTEjhF2Y1gRY2ZnEVajHhFqhOaRSOmPkcQCW9FITJDRSlRDkbJrpRFKhvdRQSvZkYpKZ5FhERNRRVhREZnfaZF0foJRvV5WkWeaKVFWGDiRWaM1EVc5dlGQmKDReCxg0WhanJGyQWwRkVrkkUAwt5FwNq6RdUuYkUo3UpFBhGIRo3IakYua0RHkTikRgSyiEUSa4hF2a3kR6vmxEYokDdFCNDLRrJ8qUWP9HJGcuRJRUHfYEV33IlFZhJoRWgRREXm9E1FeQEwRqfVj0Xugz5GsxWjRdXMFkaHYkhJogtDRYceSUjXtZ9G0RlzRYdoGEYcK6xF2eTARlssRUan5E1FoJ2wRdlh0kdHSwRGgm/WRqdQL0ahYlVFdmxGRfY0qEWBfp9FtECBRQeXEkZo7sRGXSHzRQOeW0VoQtxFeN34RpVQKEoydMNFyhWXSbAJrkixEFBH54LxRXE8tkc5y0tFmGplR1HbSkYfSeNFmq2PRfZyOkURUZhF1UDkRcSHvUc0YblG6TOYRn3BLkVwAiFGQ3eMRb/BQkV+RL5Fc3GGRcB1LEbJkGFFE95NRW0isUYlZ59GW3CCRaeFa0aBoLZFPbFMRRC3Cki/BMlHCMhTR/tHxUbq/yhGbxaGRbnYfkXeS3JIgk3TR+MQTEWDCGFH5nA/RjI8fkXqbSZGE4tMRVNpN0WumzlGyMeFRwqIA0fPz8xFPNjPRRmQDUeZGHtG8507RdMbuUUDEIlFTbNERfZ8fkUA4CVFqLUpRsEDTkVgglJFda/WRzNFQUcOXD1FmPbORh7zw0V4exFGbzPCR23yKkcjCcdG4o6wRRs+30W3vVFF5Ro4Rc07qUUhx9NFIm/LRTiBPkWkwBZHvTaXRj+SK0aI21RFZZKFRXvVAEfrjGFGDO8gRngoNkVaqbFFfgMxRT/g+EXSupxFkxExRmGeoEXYlVVFSjrgRUl0lkU9Y1pF7eUaRuMV9kU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - bMle9W3BckDWAeqyO8NyQIpWsWZD0nJAtzXpWVDickBS0YruyfFyQEz4fH5EAHNARNOvx88Cc0B4NE6Z+gNzQKfKqge9EnNAcFEKAwcUc0A4dHH4OCFzQPIpAo3PJHNA6OJRU3hBc0Dw7eU6ekRzQGip0gujU3NAqJiVUzljc0Cxgk/9eIBzQOICfEtNknNAILJByPeUc0CkLVUeuaBzQH2qHv9ZonNADNT/A+aic0DpRvUSBaVzQNw9aa22s3NA8p6fNw60c0A0Zi65z8JzQHL3Tikmw3NAKwtsW+LUc0AMpFuWOOFzQH68Jp14AXRAlkDwEU0TdECK1B6Yt2B0QIjhLEQIYnRAynnqPSNwdECrjbtoQXF0QGBm5ek6c3RAnAOfp06BdEBudZNTFpB0QCcxWLWpm3RAGJcoZbjhdEAI1bd7jPN0QP6cFX5dAnVAZJnGCJ4idUAGJHkZzTV1QPLud5iNdHVAaAUNFq6BdUDKqa50poN1QLCXOtBHAnZAzGQijZAkdkDMS4HSSyt2QCK0cMMfMXZA9NXGvB1BdkDqN6GXeUR2QEE/ijsRUXZAOT8jls1UdkCPTnDukYN2QPx/e9T2knZA10ZCRHmzdkDW/3wiDbR2QMr/ijXOznZA9NkGhFENd0D8fzymARJ3QABHK+yQEndAIEkyD+oXd0DH/zIjMh13QEy1xxxGHXdAbj0n3Q4id0CngapEDTV3QHZqADgmPndAMJawN51Bd0ApqPwqG0V3QM7xABtLUXdAago/jJJRd0AURkfRJ293QIZ9PyD9gndARPn+HGedd0Az6GCabiJ4QLS9sCB6RXhAFedn3cpReED3FeMLlVJ4QLoQktXvV3hA4DtABox0eECmSc2IpIF4QOCDHjeahHhAVWxp8piReEAijO46qJR4QNLn6bQC9HhAkhYFPo31eEB4qtmk+0N5QPljhbPNVHlAQFASFXGNeUBCq+SqypJ5QCC8eahC1HlA88rqLw01ekAn7v2f50N6QDwWV9AaRXpAaqT6qs5LekAUTp1l11N6QJqvYIwNtnpA8LV4+E4Ve0AIQzenTSt7QASamaxVM3tAOPrXg5xIe0AA3ZyGAbt7QJpSB/tgu3tAoDMzCbO7e0DAmmnPZcN7QM/HyNdqy3tA0xd4Z3HTe0Dk1uOLeNt7QBwRHbLq4XtA6KHmv5Xxe0CXhlZS3vF7QKHHbVSK9XtALOZpIdcBfECQgL8mzxF8QF0hM0bNQXxAOqvAPxjTfEDwkDklV+J8QFoNyHrz6nxA2G4/51LyfEDs42eHSgJ9QEbRLEZGEn1ArUEU3alifUDnXI89sWp9QM5VFD6Q9X1AGECHDx8Af0CRH7fduHF/QCoKfvxhkX9A67ThbIMRgEBGw/g5MBSAQNLZo3bcFoBA/hpVCedQgEC3RBRKFFGAQJZXTWUOWYBAlIcesMVmgEAMOq04cmmAQFCI3YIbbIBAWB9m0sZugED9SXeBcXGAQG5HfzWvcYBAkZaiyht0gED4h5D3HY+AQPas7D5SwYBATT2A6lLJgEAcHg9uTNGAQHJ8URFK2YBAXR7VzkThgEAsysBpP/+AQE1RK48/B4FAUD+MLzQfgUCLPtZpnjmBQGdaLimhPYFAzNL63vNFgUDQdi+540mBQITvCJTmTYFAbPVhR+xRgUCIvmw7VY+BQC762MjooYFAYP5L2UmvgUDHFFNABc6BQNO3EcgI0oFAxvjQPdgYgkDMQ9U21yCCQBafZ5XRKIJAgLvy5uY5gkBRvgFAQ4mCQMtt6ItDkYJABDtaLTyZgkB74h12DqGCQAYzZao6oYJArHb2e3kRg0BSofXAeRmDQB7RUwpzIYNAyDDmbwwmg0Dk3n0+cSmDQMuoX9AQKoNAO6xRxwQzhEA6WlUWCzuEQCRz27T/aIRAPpmYjOOChECDtX0uatmEQFQbwF5q4YRATvNgxGHphEAAEroRNvGEQCGKwn6gYYVAWGLZyaBphUDw/WgmmXGFQL93EtqYeYVAQC7kQN6NhUAjh5wAltKGQCJAXeaX1oZAyJ3CV5Eph0Bcq4+XkTGHQJBWwkmLOYdAKJXlxsaxh0CeVke/x7mHQJOdxTi/wYdAEEphRCSWiEAqoA3rJZqIQA== + NrgMGZxjYkBo6vlh9UNnQHJahe5LhGlAwkxJ0NKycUDBMzRFF1N1QDbyCcDCs3lAT4uAZO9je0BY+wvxRSR/QKXfhGmH1H9AQN4pNHqag0BmUGbwmvKDQGsIrDbG0oVA91TniNyqhkAyNFJGMtuIQLGnx4BUq4pAdvdK7aojjUB4022QwLONQAUgqeLW645AgqdLhkHakEA= - + - BOpPRVODOEZEG+lGbJN/RWjqhUXUn4dFcVRwRaDNNUe2ZZBGlfDMRbkgzEahPY9FVtJuRUD6IEZwXpBFz1BCRd9t3EZUbUtHu8B8RnnwF0ZaAtJFk3qKRTmwd0X+r2RFHFaFRcrpo0VQrFlFirvbRWnKEEY0+5RG6vGLRbi3oUWlu4xFkuWmRbjER0cRrTxFvuzKRW3t8kVm0pJFMZRTRUK+4EXh1DlGnA19RTYGO0XdvDdGULzMRb07yEUChqFFsIYNRsVLSkYiQ9NGVT3XRXPPgEVG1FRFxShbRnnXkEb90pJFkjy6RRktpkUUET5FenKGRhGyg0bSnqJH/dg3R5qVyEUQ3BRGClxrRZNl70e+zaRFit2tRtUlw0YUgZ1FHi9wRohrVUV4fpxFwhKVRfe4cEU8LzVGTCCfRZKRLEatpctF681MSTVDQ0XJXlJINNdBRU2vpUby2oFFg8sXRmicM0UU9IdFabnQRp72D0YsaK5F15LERxlxskVvRtdGAZ85RplNhUXXN69FP/fcRd9g40aGdQZG0u1TReOWq0VAeipKkcbaRcW6l0mwSbRIjTJzRybe/kVQM7BHletVRdR1VUcRGndGbx4KRl6kP0U/Y5VFTWlJRo2E10f+bkFFEs+6RkijrUavBYNFI/PqRZmxjkWxRzxFa/a8Rb3tk0XHw0NGvzndRtB3U0aF0qxFIkg3ReEsi0bbAJlFmbopSE3zCEgQn5pHFZ3xRuCjGkbeDlJFlzQsRWNzgEXyCYBI+azhR6u0hUcoZ1tGtGdoRTgVJ0Y1UkdFRRQgRhZysUY2DFNGSa6CRaKgR0fbyqFGbuO3RbMJjkUQNklFBYKDRcObkEY/awxGUI07RnKZi0VoFXpFnzOARUZNy0cMf0NHE37TRsOB3EVsqe5FA8zeRzPORUfS0gJHauqpRSc/A0Ym4yxF2htLRvINSUW/lb9FaOxbRU/RE0dThXtGdQMXRhmjgkXRkwVHHq9jRsi5GEbys4dFR0tFRV9fxkX6iZtFGjsfRi0Kq0UPQ2JF004URujRgUWnCEhFrNIkRpkG50U= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - g6p7TG/BckBWaz3DO8NyQP4yr2hD0nJAIzJlDVHickBxg6yXj+JyQMJW3xHL8XJATE6czHzyckD6Asn8RABzQJ3lSXfQAnNAbtqS7PoDc0Boq56mvBJzQCFg4uEGFHNAzFyrQzkhc0DYpg3VziRzQE6dqP13QXNAeCUba3pEc0DaDKqtpFNzQImEQ+N4gHNARbraTE2Sc0AgaB/v95RzQKG4KxaNnHNALGKP77igc0BdikqwWqJzQNwSSBjnonNA/Ido/7ezc0BMpy2yDbRzQPp+ZnDQwnNAcC1BqybDc0CE4bBn2NFzQNz1iy3j1HNAfBUgSjjhc0DCQpkIOPRzQKq+0Qp5AXRAYm9dYk0TdEC4zG9fuGB0QAZS7ZcIYnRAf87fpyJwdEARHW8sQXF0QEtVp6I6c3RAQrQBfE6BdEC8YKhvFpB0QHahfmuom3RAiIVQaxCjdEDlTrGljPN0QFAwKm5dAnVAbJbWbZ0idUAwcJ6LzTV1QFOSW2KNdHVA/MpF+ayBdUBswTNepoN1QCYwP2cI4nVAg1pgI0gCdkBm4clpkCR2QCLytsFLK3ZA6OIq3x8xdkAgRhHYUjN2QHmOHC4eQXZAOxlW4XlEdkAaeo79EFF2QLhO76zNVHZAkob7kpGDdkBynVhr95J2QKzxxId4s3ZA6QLo4A20dkDf0tX2zs52QOKPSapQDXdA4ELp4QESd0DcrKCRkBJ3QIa7CNTpF3dALOMYt0Mdd0BeEng4DyJ3QDZOTCGLIndAWmHmWg01d0BxsWcQJj53QMqrzBudQXdAVfq1ua9Bd0DopaQ/G0V3QMjio/xKUXdACILvdpJRd0CLb68FkGF3QHrg4So8Y3dAUFk3Gydvd0CYAZvf/YJ3QNxxI8dnnXdACDPx928ieEAVbcskekV4QGA1cTTLUXhAEhN1R5VSeEB6pNWN7ld4QKqi6mi3YXhAiMDs24t0eEDKMGlmpYF4QJ7lMD2ahHhAQpI/FKiUeEC23dnft9R4QIQ/MBcC9HhAppqU4oz1eEAg9nJKzFR5QCLHBBlyjXlAtoeOYcySeUBWlSaCKZh5QKg3wYtC1HlA1ZK8Bw01ekBWfgBO5kN6QIRXvO0aRXpAHtdEks9LekAsSj4xDrZ6QD4CCP9NFXtAknCzPU0re0DJFYtLVTN7QGBIsk8jlXtABdzQn5G6e0CLWBoa8bp7QGpNuq0Lu3tAKR1h/2C7e0CNSsNWnLt7QOqBM83eu3tAUHb17CW8e0BdlTbhZcN7QBswX4Zry3tA8AOz53DTe0Co1Ihiett7QILXnh7r4XtAGg788ZXxe0CJjRNo3vF7QNkQBaGK9XtA4FZEBtgBfEB8G6jUmAV8QCokKa3QEXxAAA1sNstBfEBQdDqXGdN8QDPnBmEe23xASv8sR1fifEAanwv59Op8QCaV4HdT8nxAKDg5S0oCfUBP556MqmJ9QAAgvtmwan1A1HzIMYxVfkDsIBGpHgB/QFatj/W3cX9AnMebgWKRf0CC+K8+YKF/QBf7z6NVsX9AZyZpWR/sf0DypXypgxGAQN8d0/0vFIBA5UR6Rt8WgEACGxyU51CAQGR/yycUUYBAAlsF1g5ZgEDgXfTuMWaAQPDUM6/FZoBAoB7O7XFpgEAUSIOkG2yAQNPnyELGboBAxHDl1HJxgEA4THglGnSAQD6KdDX9ioBAqc9Uuh6PgEC4kJlYUsGAQAwHrxpTyYBAsFp596fMgEA2zl1QTNGAQBjInN1J2YBA7g7h8EPhgEBHJPW3P/+AQBD15/lAB4FAHlrnyGcJgUBD/2zWNB+BQDqiGTYzJ4FAMJfPlp45gUAacfceoj2BQLYc3XQVPoFANse8RfRFgUA3GQzt40mBQCBOimzmTYFAf7oH7OtRgUAs4gj3Kl2BQLdOR8VVj4FAXgitW+ihgUDGW5f7Sa+BQEyV8YUFzoFA0vyzOAjSgUBSxBS2DdaBQMA6dyHYGIJAcqFF69UggkDWxJsuQ4mCQLgZYgxDkYJAigkRJTyZgkBnbqC4DqGCQFT+uY07oYJAGvgah3kRg0AxKCSJeRmDQBzOgGlyIYNAIqyNkg0mg0Ajcr4EcymDQOpWTvFqMYNAiSX4fwQzhECqkQRDDDuEQIQZIV7/aIRAjEuyKOSChEBOoiEnatmEQJzb1A9q4YRAmMcQ+2HphEAE9O3aNfGEQN2tPV9i8YRACbrDPaBhhUDKsYn9nmmFQO4diQGZcYVAleM39Jl5hUBE086i3Y2FQPZOId6V0oZA5DAME5fWhkDemOH6kCmHQDhCbDeRMYdA0IQjyYs5h0CYX+XNxrGHQCSOZ1jHuYdA2gu0tSKWiECm4hPLJZqIQHZ2kNYjnohA + NrgMGZxjYkByWoXuS4RpQJgT9jS8IXBAYG6KbtTSdEC6HPhlP5J1QLp61LmXo3xA1BNLXsTTfEDpuBNZjvKBQBeQytRDUoJAer2U8c+qhECqcG4Qm1qGQDmZzAXHIohADp44LSeziEA= - + - hydnRSdGOka9B/9GaiVnRbGlN0XdtW5FTC2aRXI8g0VSDf1FaTUOR3d5JEb+bLdFZtGyRlV5ckXZNJRFBZUARmSjpUVkJsNGSbNER7HJWkZAxGFFrInIRb8S00V0Di5FOAFsRaHZRkUoTLFFPIprRXNZNEWqfphF7z8GRtihKEWBYHJGQShzRZHvlEW/9HFFUqqmRUJkQ0euU5FFI5n+RW7bxEVdXDdFu/YlRYjW/UXtrmdGMqOnRaGwMEUKeRtGa4+URWNJ/UXuMkFFWe7DRXig6EWnv0hGd060RjTymEXxvMlF7sZ8RWVvMUX2UQ9GloCaRkvrjUVphZBFoWJ1RRowO0VZ31dG1LmJRv0DoUctOQ5H07xXRi4QcEWOKV1FJg/kRxEkaUXC77lGrlDJRf+cx0ZqmLdFjheoRiK/gEW6E2VFVMqYRZkD6kX0JIBFrhxPRcnrK0a4QY5FNm0cRupK0UWpTDRF3kxCSQyWOEUXuEZIVC+URltmsEVRHH1FaiHsRQvOtEWlJ6FGrkwVRuwrR0UgerNF88m8R/FUZUWFn5pGgl1ERh3kj0X9HhRGrgacRnWW9kWWiXdFsPRIRQU660XQaPFFvYIfSrWYMUaPTbVFT0SDRSvbkklydqpIWvI7R5NGUUVUzrRHuxRURczSTEc2fThG6R8DRrfcbEWXm4lFd+mWRWRphkbVAwpGJR67RyZHTUUSXZ1GGDNaRrReykXB52lFe1ZTRRGOWUXRyIxF7bhHRms/dkUHWlZF3C5JRSIqqkaCg0BGXPGgRVkDNEUvQoFG6fSTRVVvdEXnZTFIhAgOSC4MrUd1BPdGjNcRRuxxgUX1rjxFqJdxRQxMYUhyvrRHbMxhRTiebEfsykFGwh1/RaCfJEZ6Jz1FPmktRd0SI0b3oj5FGMSIRuql5kW4Ij1Fe1+KRfUgfUduPuJGLN/LRSpyOUX1+IRF5hNgRYMqV0VopqNHFQBMR1IiF0YwkENGtbRORTsvzkeYhjBHJ0PTRlkhr0UWqv5F5qzIR9EMIEcdw8dGZmfERdY96EWI7C9FzGB8RvBynkUG1bdFOmhERf81EkdBRX9GREMWRq+KbEWV9llFwbvqRiKhMEa9/QlG9kRqRdI8dUW+yQBGq9xYReVuQEb+pZtFPjKERYgj8EWhbYtFJfA0Rl7H6EWr8VZF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - IsN2xW7BckDO0aCOO8NyQFwgdHVD0nJATHnmylHickAcRqAwj+JyQJUqibfK8XJAIsmME33yckDK4bfoRABzQOAO84DQAnNAQOtO0voDc0Cbf1M3vRJzQPfphhL4E3NARHsN/QYUc0ADI2xuOSFzQEnzCVrPJHNA4JK4rHlBc0CEuWz1ekRzQOyZJ5ivTHNASB77yKNTc0AUyWRZO2NzQLTpx+14gHNAxNQOoYaQc0Bc7RwYTZJzQNJI3t/3lHNA1mdyJbigc0DuSK4bW6JzQFYvSRXnonNAtnvXN7azc0AIW0e+DrRzQILvD7zQwnNAoZwenCbDc0BKBG5e2NFzQI62pdbi1HNAqNn1xDjhc0D+wzcrOPRzQG83XBd5AXRAq9IJjIgRdECPhfOmSxN0QAzx4Ym4IXRAiK3dXoxVdECf6XwWuGB0QA67jBwJYnRARAt61SJwdEAKW+BAQXF0QMRd5To6c3RANQrwgviAdECBUt69ToF0QJtwX40WkHRA2CEDXKmbdECWl20tEKN0QMIK2SyN83RAfJxbS10CdUDCMjIyIxR1QJ2kyaqdInVAetV628s1dUAY3KNMN2F1QO7CCt7RYnVADV1DhGVjdUCSgkEJd3J1QPrJ+OuNdHVAkaXG/q2BdUCw04QLp4N1QBgG3mu3oXVAWCl+mf+ydUAVpI9WSQJ2QE70gd7/EnZAbOBympAkdkCUjLgYSyt2QEyqO5gfMXZAlAC8DFMzdkDoBTL+HUF2QEJv7jl6RHZAAvX0ghNRdkAdZZSRzVR2QIsU6wGSg3ZARIYZ2faSdkAZFgQiwLJ2QOrgfUp4s3ZAm0rYig20dkDGnQo1z852QFjBPIDqAndAmp3BhlENd0A7GossAhJ3QE2PR6GQEndAAPabMOoXd0AysHL1MR13QNCvHctGHXdAVF9bRQ8id0AQWClODTV3QFCR4UedQXdAjeCGLBtFd0AgJNo4S1F3QGwUUe+RUXdAr0h81Dxjd0BCfKZDKG93QJTf3BX9gndAbCRQAWidd0DMtfaSbu13QHsbIWVuInhAHgeJxHpFeECgH5qMy1F4QH8Zk+GUUnhAK5TPO4lVeEA49bbUt2F4QIK80OmLdHhAFjy066aBeEAuzWyJmoR4QINhMV+olHhAgKtZKbjUeECLuRfoAvR4QPprdz6O9XhAAdR788xUeUAufpjGcY15QOwohmjLknlAPJ+qYsGyeUDFS8ywQdR5QMCgKUANNXpAxLlQcudDekDu8R/NGkV6QBJT1azPS3pADHgdo9hTekDUEm22DbZ6QCRQdRRM83pAVe4d6KX4ekB94PvGTRV7QMQaoBFMK3tAzndRllQze0Az9JWJTjt7QE1+vNiZSHtA6PY0vRq7e0CqMlckYbt7QGwN546yu3tA/mtEImbDe0COLvJ+a8t7QPYLIuFw03tAbP9XK3Xbe0CFIB8M6+F7QJKJa0mV8XtAevong97xe0AiCH74ivV7QISnDV3XAXxAbk5ctJoFfEBX076hzxF8QJh4EPfLQXxAn30plBjTfEALTJrzINt8QOzsNVFX4nxALPQgcCbjfEAy62OpU/J8QA9kBh9KAn1AADA81UQSfUC27eZtqmJ9QDg7yu2yan1A6JkEkGzgfUAfRfrug7t+QBEnJEEgAH9AtDXILLdxf0BKaw9bYpF/QAYyj4VdoX9AgFcJooMRgEDZBZEHMBSAQCCPUWfdFoBADAugQOdQgEAt0VBdFFGAQAwec+MOWYBAvoWufMVmgECs4r8HcmmAQG6ePucbbIBAGmGJbMVugED22uw2cHGAQNBR/SQej4BAnHzAblLBgEAJUooqU8mAQA2cmSlM0YBA4Sza6UnZgECY9PiuROGAQEqdhNM//4BAUnoR60AHgUCkDsaFaAmBQImBosM0H4FA4sYYfp45gUDY6vSMoT2BQNFDdOMVPoFA6qizGPNFgUA+20/n40mBQCjxRgrnTYFAUDPb5u1RgUCwDPRNK12BQMzB0HpVj4FAePByUG2ogUDuYXsYS6+BQKj9Wk0FzoFACaj3zgfSgUB4ubWlDNaBQNIHDqQC2oFAR0v/HBHagUCkCP341xiCQJiWwCvXIIJAwPRySNIogkB73m4vQ4mCQOdpdd7ijYJAKnsIJkORgkC0WejKO5mCQFhlTQpSmYJAM3Uzww6hgkDKdtzFOqGCQFi3C1IQqYJAD7dWKmmwgkAs4Bt1eRGDQKdFytp5GYNAqqo3hnIhg0DuSFYdDSaDQKo64jJyKYNAC9C95BEqg0DKQhZdajGDQNv/x8AEM4RAF9w9Bws7hEADE3pX/2iEQPKYqgL+cIRAhcdnMGrZhECqFS1BauGEQH6B439j6YRAlCgjOjbxhEAwY0GtYvGEQE49+RGgYYVAdM004qBphUCedtEzmHGFQMhPsP2aeYVAqynCFt+NhUBooscm45GFQEMwbZ+U0oZAUvNQbpjWhkDPWHNNkSmHQKiTlOORMYdAMYGzp4o5h0BaWk0ux7GHQJtVLQ7LuYdAWQuIHiOWiEAk+mU/JZqIQA== + NrgMGZxjYkA= - + - nnsjRWt/P0bPhxdHx82PRW67OkWIe4FFHN7zRSrO4UWNGQdG+HcmRzetd0Zgw39FPHyfRcRlx0bek+NFb0CeRdzmL0bAyUhFshu8RZgfL0WOl+tGMLNzRehPeUdjMm1GquooRp1PEka9pypFI8KaRcvMbEWiANVFhQCJRRcqPkXVvp1FW9MYRsu0OkV+kJpGAmkURb/oYUX+gjpFLepMRS/iw0WP25NF9ADtRQ5QhkdMimhFJTtqRWvCDEYcJO5FoC9rReYCRkUS+/JFmZV3RkXEekXIzJRFJV2CRRZqTEUZkUhFMhkpRe+aNkVumhpGYjj6RQaABUbqHS5FUGcpRZ/ksEW57l5FjVEkRrMvgEbNX+hGtW6qRat+3EV3tX1FvF5kRVSoD0YTjJRGVYx4RbFfL0VYePZFbL64RbBMhUVzAmlFAK1BRjjt0Ub7aLRHI8YjRymAt0UgleNFaMyrRV1qCkjeLO1GXc70RpMsw0We9JFG9hhSRbBhhEV27AdGFh6dRUYyNUXMGohFSid4RhJ5jEU/IAFG6JwXRRsoSEUdrU1JKdlSRbQzSEizzZJGgB57RQFqfEWNlD5FHZA8RVkM7UYeK0pGW4KHRRfJ2UWmV51HAZCVRQqVgUapy09GnituRWLPv0WtUXNFqp+dRZTmMkbFvMJGj5j5RbNyK0WJAXpFxDsERg1ZE0qOCghGISWDSVOTmUhatjtHDpu0RX4AtkdxA4tF+ZBtR9WHOEb/+PNFEsg9RdEBPkUYCYVFd4fgRiTUz0VcwctH25Q5RfESykZhR5ZGN0+URWX/8EXkUVBFa0A6RbU+M0V3nIVFnbZ9RYPtbkatIWNF1CKlRj+4L0Z06o1FOFhKRWNyiUbklZtF2gMxSM9z90ff7IZH0hsFRy9X2EXNIk9F1FWBSNkd5kcttI5HIMlmRscsoUVIryFGqoReRShAVEWy1yJGbKoGRlO6ekXp9z5FkaU8RUSPN0ePOq9Gd22QRYmUlEUYGqZFI0IsRdKUWUXKgn9IhCMeSFYT30YDhq5FJhKWRRjvO0buSY9Fl6eMRa2m4EegT0tF4mc/R/zg7UZGzUBFLuXpRQrA/kXYsyVFU3g7RYbp+EdwgVxHqKv7RmVraUVZyiJGmlQzRdMUb0W6oVJGJt5YRRgdzkVjzz9FKbEfR2Huh0Z2LS5GuweyRbuzhUVD6w9HSNl6RlhPHEbgLYBFilk/RSKgR0WRWKpFA6FDRWRLJUb6IbRF+0pKRRX3B0ZWPGhFAdPqRVQkykU= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - 8Bqja2/BckBiRaRfO8NyQPAyzrBZxXJAbg1zS0PSckAwEv8v0N9yQF5hAepQ4nJAktr2n4/ickAxccI6yvFyQKzHQeB88nJAXAG3abbzckD0V4oGwv9yQO0Y1iZEAHNAr9GacPgAc0Ao8pEm0AJzQAWcq276A3NArIyIMrwSc0AFyhIo+RNzQFw2LQo5IXNAWbVgXMkic0B6DpoOzyRzQI7DzLbOMnNAWtIQMg0zc0DHSBI+5EBzQJI2+cJ4QXNAfD2SI3pEc0BCMMQJo1NzQMFQU/04Y3NAewKEPUt1c0BwK9u8eIBzQK605BFdgnNAzAX5DIaQc0CmCN0ITZJzQKSbSFX3lHNAKf3B67egc0C2fUo+WqJzQFQak5fkonNAKBQ2Bwalc0BUbs3gt7NzQJdf3N8MtHNAkgeOKfnAc0D0thYe0MJzQCzvwlYmw3NAsFZVrdfRc0Bgw9uf4tRzQN8Z67444XNATD+933gBdEAaV/0OTBN0QLzftkm5IXRA+VSXOGRSdED48gE8t2B0QMQlR0QIYnRAbvVjwk5kdECSwYP7InB0QKBkhOhAcXRADl7nHzlzdECuzgGvN3V0QFIJ0bL3gHRAwPOgc06BdEA9+tvgFZB0QFbw64VrkHRAlcxVy6mbdECc37bv0KB0QEn4M9cPo3RANpWCtgiwdEAkDrl3ecF0QPmrTmS4xHRA2Ltt/M3UdECwHS7puOF0QKZRxW6M83RA0YKmPV0CdUCwqM0FJBR1QLpIJGGdInVAHFZ2acw1dUC4lCoYeFV1QDStjGzRYnVAKKqZNI10dUBsQf+beIF1QM5c88KtgXVAntwSEqaDdUB9MiCvmoR1QPLKaakBs3VAEbgZSczTdUBMen9ySAJ2QFACF44BE3ZA0INCmQsWdkA09RgAiCJ2QEtR+yCQJHZAvpLJZEsrdkA6TT9oHzF2QFhDcWBSM3ZAYKqfPB5BdkD03/VneUR2QO5+eiMSUXZAfE4mYs1UdkBRrU6Oy2J2QD0AW4SRg3ZAqr9RJPeSdkC0ocZXn5N2QLTC2W/BsnZANdxWOXmzdkDeL3KZDbR2QM6BMzfPznZAHHIbNZHzdkDguuvA6QJ3QAyNpYZQDXdAtf7F6AESd0DUZXc4kBJ3QAJzbWPpF3dAvZ15WzIdd0CIBE1HRh13QHItw2gPIndAswpex4sid0DnqFLPDDV3QEpxVTElPndArcvPn5xBd0A8m3xZr0F3QItvxukaRXdA+jByMklRd0Cu3BWrkVF3QFB/03Q8Y3dArI9BKtFjd0D8ODW9J293QNqCtbj9gndAJuqIP2edd0AjjdPrbe13QCTzeQnG8ndAfdnBy20ieEBIqULueUV4QFa29B/LUXhAfSHW9pRSeEA8QH09iFV4QE4AkjzwV3hASKAt0vdgeECMdQwouGF4QN7vJfJndHhAZDOLmot0eEAIqqIcpYF4QO5FbAuahHhAJKCoLZaReEBhwYakp5R4QNSWXqS31HhAftozpOvceECHqdR0AfR4QMC/vKKL9XhAUKY53/lDeUBx4+xQzFR5QPwFoF1xjXlAuImCP8uSeUC4shTPJph5QM5vLWHBsnlA9cSL1kLUeUAc717IDDV6QErBrkHoQ3pAer+6MxpFekCQZm+ezkt6QJI1QaomVXpAXiBsoC6jekBivH8wDbZ6QFpvl1FL83pAurXEe6X4ekCljgmZXAN7QIy+WYlNFXtARA7V9Vole0BCVizfTSt7QErfIYtTM3tASEMgZZlIe0A6WMnt8U17QPyfyIEjlXtAtKomaxq7e0CSMssaNrt7QDYaI/lgu3tAboU07GXDe0AGvGCla8t7QDpNSdxx03tA+z2xLXjbe0ClnTeh6+F7QLD5DuCW8XtA3FS9ut7xe0AgEKoqi/V7QME4537YAXxAJi+QM5gFfEBdrnHn0hF8QEDDV0bNQXxAis+OpMCyfEAGYvyyGNN8QDChMKUg23xA9HNwO1fifED4zC4mEeN8QIJyvZAn43xAVKa/4fDqfEA9xcJnVPJ8QAgHh54AAn1A1qdE20oCfUDMYMh0q2J9QOJwCbGzan1AKLb8AWrgfUBUy1xwkfV9QDBtliUcAH9AmGwSKbhxf0D+sl9QY5F/QPDTTa1eoX9AuLdK/1Sxf0BssB4+gxGAQOjQ9JAvFIBAgtho+94WgED7uYeigBmAQPBkAlMTUYBAvFdoSA5ZgEAfPJtYMWaAQOgxXKTFZoBA7XD+C3JpgEAmfwJ+G2yAQBt/vjvGboBAHDDZN29xgEC8XL/6Ho+AQLAm6GJSwYBArjBpFVPJgED7XEXSp8yAQGzErQVVz4BAEl+QIEzRgEDZv1vCStmAQFiqimBE4YBAjgpWB1PhgEDkCo7cPfOAQDj2P80//4BAhG4SXz4HgUBCGGJ1ZwmBQOjFmI8TDIFAqPRJYDQfgUBe7PD8njmBQEIQ3iMWPoFAHQVFdvNFgUD+8G3f40mBQMTETjLnTYFAanrice1RgUDKyL/DKl2BQODGJ4VVj4FAXNU9BFeXgUDuv5Ni5qGBQLt2OldtqIFAm7ONEEqvgUC8Ui4qBc6BQP7Z6KEH0oFAJIB7gAfWgUBuqvv7AtqBQPgRF3cD3oFAUqAeExfegUAuW+Y8/w2CQHIwbzrYGIJAg+MLhdYggkBmJ9l+0SiCQJp1HBZDiYJAtI2cjuONgkB2jkYKQ5GCQDagDM47mYJAkLsVYQ6hgkCYWsUxOqGCQDBF6zBosIJAJY+pR3kRg0BEEMiIeRmDQCv32FJyIYNAhQd/rg0mg0BMvxmQcimDQByeDwgRKoNAJG5dfgQzhECqjHLV/2iEQCHhZFn/cIRAGD+X0fZ4hEDMosf5admEQByeRMJp4YRAS6MNB2PphEAT9p1oNfGEQPy3nCJi8YRAiDSqV6BhhUDM2J3un2mFQJ7nXRqYcYVASfaTVZd5hUBClc0m3o2FQJ75D9KU0oZATAUstpAph0BGo2IvkjGHQGLEkFOKOYdAi3fZRsexh0BYwNQGx7mHQDTQ6a3CuodAHLK7qMDBh0AmKGDoIpaIQBBrz1smmohAuBVnlSmeiEA= - - - - - - 5rF5RT9FPEZUJzRFX84VR5U2/UQhvXtFkUgcRQfYk0WavPVFCOQJReihHkXdlO5F9p0LRT8ZNUZ8/BVHjPaBRtSjm0XOVspGjGUsRUnkuUW7JApF/lEARd3IIEUZm8JF/jAtRnjLmEV2RTRFmbseRQuYDkcErRdF3T53Rf0rYkdB1YpG/ZgyRh0CCEaTDRJF/QZiRV2NakWMAVlFXk0QRYm+2EX3Y3tFQllDRcXX0UW2lABGOTSYRjoSq0ULix1FJHYRRYpFkUWw1pJF/U8dRULpvkUbfmpHR2YkRXP9DEWybG1FmkcaRoSlpkUR+e9E1+4+RRxCA0W8qhlFfGPkRMXSGkUx6x5FTPIgRdIpREVBY7JFDjxcRnzpOUWdQJBF3W9BReYsMUVK5bBFHcIuRtzxDUX1bflFCGURRqaTDkVDhBRFQoonRS8oj0VQVaJFru/+RCKhEEULA/RFVN2IRrVw0UbZ+ZNFEi26RdjUVkW0bH1FHQ5PRuB7LEV5H4NG/BGTRWkZKkXdSWdFIwrQRfympEVbJSJFcUFbRU16JUUTH4tGSzekRjFOh0dJeP5GcTpWRcfgxkVx3k9FQ/1RRbIOA0jCTjxFsZbMRvx810VI+NRGrVmrRV34kkYlKylFHeGJRYduckWDPaJFcEeyReEjakX3MxRFuS6gRS7FRUbUwbtFit8WRjQJI0Urkp9FajBBRQUSUUXErYhFeptRSYViMUU4B1NI9S0IRTj5tUaoiF9Fj9b/RHR2hUVzbedF4kQ1RcRLkUXC0aRGVrFARoIYNEX/pkBFZCO+RXMztkfS2KpFaJCkRle0EEYd5PpEUqjyRIUz2kUGeotGkHkkRhr+L0UNqiFGquFWRYBjn0ZXAA9GNoVSRdKYEEWjaDxF86a4RQjaDUaXOuBJl/RESUlnbEgyjhxHr7GhRf9e2ke0hI9F/Y2GR+eMaUaPbhRG0pOSRXGdkkWVOa1FRvwqRaU7GkeR7jxGR4jbR7OREkUNxC1F/rsSRVaq1UaRolVF0ECNRri5ikUpxg1FJrl9RTxSI0VwWAhFulKmRa0+QEbcqHNFJY49RVbPyEZEjENGDByBRcG1HEVrUHlGHHTGRfTjHEURSgJIt03cR7E9MUf+U4VGc6AFRuZEkEUiFX1I+izTRyukV0WHDhZFJs9yR+MwbEYbrI9FQlTfRBYBKUVZPSVGMzBCRaODa0UNLnxFbxssRodP9EVEMSVFYLt9RSHvB0c6nVlGsDtKRRpoOEWD+sRFnn4JRVEuH0X00yFFJj1hRSsACUkFEJ1I5SHLR2HZlkYjaz5FyCAhRRrmFkUq1ldGnPuiRVHrUUVBZ8xHLe4aRaTnKUfut+hGwxXgRcH32UWEE4FFcjDkRxGCS0fUG/NGX4aSRYhg3kVn9BFFRY0pRszbvkX38lZF1ykURZjsFUdw/5VG9qIwRsTCq0Ve8m9F+1wCR/ssgUaT6QpGI0sqRaK8A0VFjDhF2Yk/Rms1r0WCmnpFuXTwRU+BuEV5iRFFzsFLRWlnGEaitIJF0IprRQ== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - mCKIJHDBckBwFwSsO8NyQN6br1ZD0nJASCqwP1DickBwh22oj+JyQGhdMGfK8XJAovOT1XzyckA0lnIiuPNyQJAK2INEAHNALDWLQvkAc0CCztTrzwJzQOL76Kf6A3NADPPxg7wSc0ASo7lMBhRzQHCK97Z5H3NA5xAp16Mgc0B3YhwhOSFzQF6y4tjOJHNA5iL66UYxc0AMsofweEFzQDemBZB6RHNAhv5Qlq5Mc0AgJ5Flo1NzQCOns8w4Y3NAlYinXE11c0B5ypEjeYBzQFDP4vtdgnNASsc5F4iQc0AUEygMTZJzQM4k7ZD3lHNAooGpXrigc0ACbgoCW6JzQIuu+CTlonNA33SkYgWlc0Ck6vNstrNzQGYop8INtHNAapg88s/Cc0D0QiVTJsNzQK4tWU8/y3NAdD3OW9fRc0BCHI904tRzQJlCh5I44XNA374KDzf0c0BMfyiseAF0QMDRWBBNE3RA89+PyrchdEAXzzJw1TJ0QPxPmMPdTXRAIGkcrmVSdECDbW2rjFV0QATEjbG4YHRAKtd7zAhidECwzMAMInB0QATOlSZBcXRAiuSYCDpzdEBS1/HY+IB0QKprqJ5OgXRAhnDJzBWQdEB4mY7SapB0QJp5xWy3xHRA8F1/L87UdEAasIZ3t+F0QAQaRNyM83RAH9PqmV0CdUD2wLWUaxJ1QHh/wIUjFHVAiFMwQp0idUC0Xc1/zDV1QOVynJsOYHVAvQhD/DhhdUDIW1150WJ1QCpeXpxmY3VAkr+xaY10dUDQtVGMeIF1QBieX9OtgXVAyG3+t6aDdUDrCCComoR1QKjZyYEBs3VA+4rQ3fjBdUAO+8OqzdN1QPt6QkMI4nVAdDtucUgCdkCA+Ae80QN2QPLG2RUBE3ZAMJAgQ4gidkAU+vhwkCR2QPdH6TpLK3ZA6DAF+h8xdkDEj3afUjN2QMyTdHkdQXZAVKR2LXpEdkDPowXbEVF2QEeLhaHNVHZAXjraktpkdkBa/4uTkYN2QFr0LL/3knZA+EVWAJ+TdkCKvvaXw7J2QJpmXJp5s3ZAFFJFKg20dkBizShp0rh2QDyUY+/OznZAPFiQlDUCd0AwmI/uUA13QPAPI7MBEndAZIfLs5ASd0DEyRGX6hd3QMJKyDdEHXdANp7ajQ4id0Dy/KVYDTV3QJyVM3smPndAXgE/HZ1Bd0BoIbx4G0V3QJpkFBZLUXdAousyo5JRd0CsLka3j2F3QEEIrGU8Y3dAmA6U6SZvd0D0MTOf3HB3QDiWh3D7c3dARi5fQ3eCd0BcZg53/YJ3QCz9xUhonXdAWsbqUW7td0Cttu8abiJ4QJAj8EoNQnhA9YtUGBFEeECVAZ2+ekV4QLFDWtDKUXhADKVdgZRSeEAh8Gtkh1V4QOwOJxDvV3hA5tttprdheECq/dsFjHR4QNwn8JKkgXhATmKFQ5qEeECcVEJaqJR4QNPUcE251HhAp/PqHwP0eEDcC68EjfV4QPfucr/7Q3lAajHz38xUeUB+1slhcY15QJjbmajLknlA8Lre0g+YeUAHx5WAKZh5QI+OhdHAsnlAxNR9IkLUeUA+E4co+wV6QHlfHjANNXpAMPZc4OdDekCCmeUAG0V6QOgNOZPPS3pA18yepSZVekBQr/6cDbZ6QEeoW0EW8XpA+K847ErzekCyNlO7pPh6QG4nf/T+/XpAElDblkgDe0AmTvWVTRV7QCNIjPlbJXtAtAkTNE0re0CFpTQlUzN7QPr/FIWZSHtA8OMQamG7e0DGHbPNZsN7QNyG4tJry3tAZ53/63HTe0D2upn06+F7QBvKHRKW8XtAYvQgKd/xe0DhPzcCi/V7QPyflhHaAXxA/a86kZgFfECMWqlp0RF8QABBHBjMQXxAmMvJrxnTfECAdzcYINt8QOkkDpJX4nxA3bx2fQ3jfEAlCsheJeN8QA7wO/AW8nxAYME0S1TyfEDMH+xEAwJ9QHIeZa5KAn1AxrYK0EQSfUA14ejZqmJ9QLY9WKlq4H1Ad3arbY/1fUAoTt4yy/t+QFvRC4MeAH9AT7f4rgECf0D1kOhNt3F/QG6wmedikX9A0lJ1/Vuhf0COyqVtUrF/QAFGhyyDEYBASv4l+C8UgEDsvoWU0haAQHIoHSXiFoBACvUl+YMZgEAe18DFRlCAQApfIOTmUIBA3ZwyKRRRgEAc6/80DVmAQNpAssfFZoBAzs/yPXJpgECWbyp6G2yAQFwyK6bFboBANbIVTG5xgECi5jSSHY+AQLidHYdSwYBA74ZLTlPJgEDEQy6sqMyAQMafR1RM0YBA9lfOnmDRgEBqzcQBStmAQPXTc1JF4YBACgkeoj//gEBPNMdNQAeBQKQA4epnCYFA2qMQVBUMgUAIWFGhNB+BQHLiyIsyJ4FAp1svRp45gUAa1s8KoT2BQC+pqPrzRYFAHjoYPORJgUDUvkRf502BQLK/igftUYFAdHI5J1xYgUCPG6y9Vo+BQAlga9LnoYFAIpjHuW2ogUBOKj9RSq+BQNX35rIGsoFA7nAXMQXOgUCRSeimB9KBQOuwpI4m0oFAzuIBPn3TgUB2On717NWBQF8VCWoG1oFAyT6w4AbagUBQlZ47Bt6BQNTA5cEN4oFAQtNludcYgkC6xzzB1SCCQKrjCbvSKIJAwsCjb+Q5gkBcfx0iQ4mCQNwZ3hhDkYJAZgSf+juZgkDxX9M6DqGCQO/k8lI6oYJAXtL+YAupgkA79LhfM6mCQHwrTJtosIJArCuCggexgkBUWBBieRGDQAW0KaF5GYNABMvChXIhg0AKNXMiDiaDQD2UF6lwKYNAGf2AfhAqg0CwffgcajGDQEZJBKhvMoRARYIrggQzhEC0b7/VczaEQJGGcLh2OoRA5ETZJP9ohEDOpaY3/nCEQDj4jv/1eIRAjDtzMmrZhEB2AnmeaeGEQGhA5DRj6YRATDmQlDXxhECRF+wjYfGEQNJgTpQy+YRAA/G2MaBhhUBUeelvoWmFQCB8xj6YcYVAQiGHMZh5hUD4FZB0JrmGQBgemr2S0oZA1tGsVZjWhkAo5eNDkSmHQCRERFORMYdAIGiZyIo5h0BQ/goljUGHQEw4jfPHsYdATHROgMi5h0BnQCjSv8GHQOGSCY4jlohA+FaFJCWaiEA= + NrgMGZxjYkCEfuNfSGJnQBu6YmAmQ3BAncs7e+cBckBxDmdlvrN0QPMfQIB/cnZAzBqxsIEEe0DzfRzU14N9QPlt/BOYioFA - + - JpNlRWu2IUYnxu5GlfgkRbqfMUVM4xtFo+3lRQkiAUUaXvRFq5c4RbnZaEY4jhdHX5RARtkftUURaQZFBy8ERSGU1EZ09rFFes/XRMnzpEXUTCpGov7YRApvokWeig1F4c00RfX76Ea+XBJF51pYRfnZYkd1fltG6RHwRSxJB0a/NVFFUXoIRRUskEW9k0dFKuDCRcFcGEVm7QRF7AsWRR3mkkXqOdZFWTUyRTvAbka6FGdFpUQ9RWZ13UTTNgFFE9eIRfIyDUWjIM9FA2ODRZrx5EUskj5HHKU2RbJmJEUxSvdFsA6eRRmQ20SO6vFEVycNRbRYJUUGBgRGlrl4RvsfC0VGzupEg+eKRdlGFUUuPvpEuDIsRRMZ4kWQ7RxFcEg7RmfoGkUBA79F//kIRvB4I0U9rydFmZsERb1O3URmzR5FtTfPReAN40T+fupFrsDdRKwcA0YGMbhGKI66RmPwqEUivqlFooGGRQ4VVkVDUnJGcOZRRdIwhkb2oTxFVp0oRfuMB0XwpJJFdJyqRYPUJkVKvpRFnDz3RJyRgUbRbaNGkUw2RzjrhUbxtylFCu5tRUU6+UfiUVtFwH/gRlZX0UZ3jbtFNsyLRm6zMkVg2zVFF6k7RXU3EEVSvhZFQybiREPZmEXlzH1FEKMqRbvFmEXwphlFuLsfRefPS0bqd6tFqnskRiJzGUXdwL9FPW2GRUfyRUmFzTtFCRJHSK8zqkYFAd5EMm6lRVlE3EW1tRJF5GmoRUixv0axsCpGEN0KResCHEV6RJ5FyHXfRSiPAkUSP8JHA3aWRRZb3UZHEr9FXHJPRXE610VVHeJEjZt5R2+cNkdgAWpG3ldPRe4mKUYLnBRFPC47RiMo1EWTjnVFdsWYSe3lDUnwdxpIqfuzRgDJ6EcOl6NFw9ybR4YsZkYlYkJGBTSZRZETgEXru51FzlkdR4Dme0a+r95HFaAvRbOqGkXuyuJESKnKRp/hGUWqmZ1GS7NjRfq4Z0WefoJFnUkyRSXFEEWj+B9FohAKRZqunEXA2UNG12UdRW4OUUWoDoJG1gxFRuqdU0UwyTJF+lntRAtxHkXBqzpF+1xyRsQwkUWlEN1H2FmiR+egNkfdSJVGKBt3Rc9tW0UT3HlIKNPaR5nah0VSAltH2a1mRadoUUYdkKlFy9oPRk1kXUXAN5FFd2gPRWnpIUZpad9EUvdkRSgzS0XUSYJFdc74RsfnXkYO/kBFg31uRaZMqUVeziRFn7oDRf2JdUUIERZF6hSBSRWCFUmy3nJFOifvREnuk0WyyotIdLdER42+NEZzKsNEN240RsMAX0Vf8UJFN6IMRQQM0ke1f0dHIu7pRnTzxEUqbvdFlhIJRXT2G0WmZ21F15wcRYZd1Ecm5DhHbQbgRgyul0U3yhpGXFp+RTL8RkUrl69FG4SLReTQlUUcAilFguvORXtuGEWI7v1E444KR6kogEbbASRGTfJ5RSvZU0XFb+pEh+r0RlLUg0aj2gBGwkdLRQNwGEXYtYdFMF8pRfHKMUb3oadFv2lARettEEXQwQtGX1CZRSsMS0UrxMpFDPqeRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - 1MyqgW7BckDEnMDmO8NyQA/mCLtD0nJAThI3C3fTckCSMNEC0N9yQGwCJZJQ4nJA7CIRRo/ickBE0XQtzPFyQPDLD7l88nJA8dFBZrbzckCOSXkQwv9yQBxYh9VDAHNAVWsxhvkAc0Bkzya/0AJzQFJ0jOn6A3NA5urPxrwSc0AFRhJj9xNzQOghYNryF3NA8p1fcXkfc0DlTNsspCBzQIWZCQk5IXNA6G/qNsoic0AgLJXxzyRzQCQKHalHMXNAZIgNgVgxc0AQvmxqeUFzQNcV1ml6RHNAsla4iKNTc0DOycLDhVRzQJ5UFMA5Y3NABDakg1Fyc0BAGF7+TXVzQAAEhK94gHNA+G/ndgyBc0CiWH0rXYJzQNvH6GSHkHNAdHp1cU2Sc0CaSZR195RzQBrk9XG4oHNAmEDNgVqic0BM6dqP5qJzQILoq+cEpXNAMrVRGLezc0BOMyRBD7RzQH4q/KfPwnNAscb5QSbDc0AyOwCTK8hzQBSQ0CnY0XNA2CweQvjTc0AMMh5N49RzQAgpSzU44XNAuNUEwDf0c0BQEhczeQF0QBwrqomlAXRAes/2T0wTdEAdq6aJSiB0QLCmp1y5IXRAYrJUsWNSdEBEB5Zg+FR0QJLG9GSKVXRAPKDhfLhgdECvJMXxCGJ0QCs2YvcicHRAhQBFfkFxdEDC3xvgOXN0QGrOXzw3dXRA1psNr/iAdEDxmuEkToF0QP05CjQWkHRATqC1HdGgdECA1S1j0qJ0QPUb+2V5wXRAkPmDdLrEdEAvm2aKt+F0QKnK0WWN83RADJoVtV0CdUAWOnEinQN1QF2HIp8jFHVA+HoxFJ4idUCBTQGbzDV1QFn7bPI3YXVAlxFDttFidUAkVApBZGN1QK+FYK+NdHVATq/e1K6BdUDs5vRtpoN1QO4oYa2ZhHVAYE0+EfrBdUBMcSOACOJ1QFVLkEtIAnZAD0RjXwETdkBv/q7cCBt2QJYu6FKQJHZA/g3PY0srdkCxpMWkHzF2QAy46UZSM3ZArUauvx5BdkDr3hSAekR2QI7b8K0RUXZApqf3p81UdkA2X9qVzGJ2QCIYmt/ZZHZAxqYF8ZGDdkBiSPuL9pJ2QIM66Omek3ZAIb9NrMKydkCs54YyebN2QOiKNS4NtHZAV7GwlNO4dkCZIDJ9zs52QCTD6l6R83ZA76KLjzMCd0Aep8UoUQ13QKQPb3ICEndAKv+8m5ASd0Cgz81M6hd3QKwBwYZEHXdAmhmL1w8id0C0e3ckDTV3QP/jYRYlPndA1C8GxJxBd0D+gW4PG0V3QIZcJENKUXdAzthYyJJRd0BZKq6vj2F3QKLCEOo8Y3dATMCk5Sdvd0B8t/0K3HB3QMiWRW78c3dASNoU8Gidd0CZtr7Iu8J3QCYc4mNu7XdArnQOf28ieEAwALvSEkR4QGDCX5d6RXhAeKWcbctReEDqK/zMlFJ4QJ6UnHeHVXhA3Lujle1XeEDr1rO2+GB4QAqG66K2YXhAsgfRw2J0eEDZ98z1i3R4QJi6f2ulgXhA5fZIMJqEeEAWLBh0qJR4QKR1ANPMwHhA4nHxx7jUeEAhpops6tx4QD2ClspH4nhAmGcI6AP0eEDruCFHjPV4QF4WeY7A/nhAvMtLu8xUeUAPXH0XcY15QLLgpvjLknlAZK/UPxCYeUBiw5mYKZh5QPkzodxtnXlAUJlg9MGyeUDE2Ej1QtR5QIKRAn5BMnpAHqUG+Qw1ekDg8d/c5kN6QGLvfskaRXpADzJSItBLekBE4Yg211N6QLXuDA8qVXpAEnmpTA62ekBwHHo5N+56QBpNIz9K83pArXmxc6P4ekB5S7GJ/P16QP5XTXlIA3tA3JNxHU0Ve0AUBeWnWyV7QJcf0WVMK3tALHw9tE8ze0AVE9qDIZV7QIQf9jdhu3tAK3pOk2bDe0AWkmU9bMt7QG59pMtx03tAdiGeU+zhe0BnKuYVl/F7QApKpDrf8XtABjTlZ4v1e0BsX9cE2QF8QK5P5+yXBXxAmL3ozdERfECE1c+0zEF8QAImVU2+snxAXkiFSRrTfEBK0z0iINt8QFD9UZVX4nxAdZfUbwzjfECejBS9KON8QE8hA4MX8nxAMCAHLVXyfEBCmPmuAQJ9QCMLCYtLAn1A9Il7RUUSfUDMn/khL6R9QGLARCNr4H1A5U6YE5D1fUAvRaReJI5+QGU4MGvL+35AwMT7TwMCf0Cag7QG0wN/QChUMTtTKX9AcgKlObhxf0A4RUKzYpF/QA/OeG5goX9AHeyDBFaxf0AueEgmgxGAQOgSAGUwFIBAmo7/c94WgECSnMaWiBmAQBlU2I7mUIBALHL2JBRRgEAD5nFtDVmAQE3AFPLFZoBAHztHVHJpgECuahVVG2yAQPCo1CTHboBAMJWqUylvgEDUFHpMcnGAQIKjLTMej4BALFUJmVLBgEBwzCRqU8mAQDxOtopM0YBAuPQLwUnZgEBg08WNROGAQEJk2t8//4BA4FhvsT4HgUDNj+xaaAmBQLa6F60VDIFAF4iHdLwOgUDen3SVPQ+BQP6jpJ80H4FAoY2kXzMngUCZt0c0nzmBQOblyxj1RYFAtkXxY+RJgUA93uen502BQLCFA1JcWIFAbjTFRStdgUDcqiLOVY+BQBJsYf7poYFAlBx6YkuvgUArAcxCBc6BQHKasHwH0oFAFLtagezVgUD2EuinBtaBQBrDllUG2oFA+uF37gPegUAXXMVrFd6BQCItmtMH4oFABYPyIdgYgkBCkRyt1yCCQCwED9nOKIJAdHD83EKJgkAPpCplQ5GCQN4Xuk08mYJALnEt5Q2hgkC+1Rk/OqGCQFWFYNoNqYJAIl1PrDKpgkDMAfIBabCCQLJ/K0Z5EYNA4P+K8HkZg0Aq/+17ciGDQKxevfEMJoNAHE4OjXEpg0AXWh7lDiqDQD7iDUNsMYNAZ/nlFUqDg0BGF96UcDKEQAJx049zNoRAnqobsHU6hEDHbF+t/2iEQACRt8X/cIRAgx9NL2rZhEAbykWgaeGEQGp4lQNj6YRAnQCJ8jXxhEDMx2CMZPGEQBGdAJM3+YRA+A+XJdZFhUAQwHOhoGGFQHRvdx+gaYVA5QXmR5hxhUCgtaKsl3mFQMesrTnwmoZAcBt9kSe5hkDJvqCklNKGQBHadZqRKYdAXHlAcZExh0BofYFpiTmHQAk1EWWJQYdA4i7AD/WVh0BKOxT085mHQPzK9gDIsYdAyBH1/Mi5h0CwEGE/v8GHQJie9WEilohAK1bEdiWaiEA= - - - - - - 6QhbRXarIka4vwFHy8nJRKwEBEUWmENF2eZQRX5PJEU/ctVFUVLORLd2FUXkPfJFj+oGRfWZY0a9ZghHjyVhRgbvkkW3IP1ElYEHRfgyzUQ+UdRG5znvRMAKo0UGxOlEoSPlRPrWlkUnPA9G65eLRSqP5kTG+hZFCSjuRODVJEUxlP9GsCwNRRdd3kRoLzlFdIRNRxFbZEZ9OvFFvHjdReEbDUWZ4B5FaZAqReXsCkV9hZtFxhmDRSti8UQjDjhFrzEIRVEvc0UaIw1GqopHRb/TjUY6sA1FdmxJRYWr5USK6yBFc3FKRRTm/ESAUQZFJ8mXRVoQMkUIzM5FGMA9RydqQkVeleFEtUE9RdXPu0UUbcZFnqzoRNP960S1sdRElrACRX5nAEVnltxFvZpQRhyIAkUWFjxF7LtZRa6tY0UNjxlFarfdRemv+UTYpA9GwTvARQ2QAkZmOvJEtLjlRG3JA0Xj9qxF34PdRTXYMEUtfQRG5f22RpWnwUZkDd1F/CahRdbWjEXuSlZFQwAxRuG++UT6WvdEHDtTRua3NEXK0fhEFbf5RBq24kV9AZdFv6NBRYs+bEV8+f5ED+BSRWKpn0Zv8oRGQIwgR4IIj0YdhnRFdQxeRW9D70ewkjRFNDuvRoN210ZvSrlFroJtRsKSEUVZ7utEeUF3RWlZEUX2CsxFlfE9RQzqhkXcpepE9fFIReGiNEWj0TtG7r6KRTJPQEby5P9EMiS0RRg3JUXiF/FEjegHRVM6SUmakxFFAzpGSJzckUa3SxxF0M0gRZb7UkW0QE5FDG13RW+R8UU3QPZEXa+QRVtVoEbnHFNGjKoLRQENPUWN9xFF97UtRRn8wUUbsAJFnr6/R4rIZUUre7FGzkvaReK4IEXC7xdFpQ/kRV+pBUU8FBZIpKHMRzxS+kbfW81FrzUmRqlYPkVXsThGPAfmRBYm6kRYt09Jy1q6SEMMxke3Dj5GAv7rRwMlsUXd/pFH51qORladGUal1pNFMwqcRWLr50Vs2upETncRRzWdSUafh9xHwpbuRHW3LkWuWvZEGz7CRnSeMkU1PaxGoMJlRaXUF0W9P3FFdE8YReKU8ETJ+AtGRK0ERZ6iSEVO2+hEnxqKRV0XIkaUYIVFclAERXh/g0Zs/BtGDc2ARRDBF0UIQxtFldeKRiLJmkVVgLpH1w2UR8ZcIEcBwmNGMI08RUGzQUWjF5RFFzZ0SPSk5UcQx2lHhi9HRp8WfEU1+BFGdsMbRYxFhEXIKElFubPsRPvE6ETjwBVG/YgDRUGodUXO8UxFtZ2kRvKcDkZgWAdGioLiRKPrp0WbLeNEhNBGRbSlnUkw/zJJjZF0Rc/ep0gOPodHtPUVRiv4iEXlC05FtQ4jRqVCX0U6TPNEQO7DR6tAJkdwd81Gq7WfRQJz7EXB8g9FPzAURYjPQUUfwthH5fZGR29Ay0atoYhFc3v6ReD3AkUgjxJFGJvXRODDiUbSQhZGXo31RBy+1EWpQkJF+MoOR6H0XUY7gCZG2kKNRVjrMUWuo9VEJZQzRYCNA0dCBlBGZxv0RRnaXEVGCBJFMrYQRaKbVEVzazVGT8SvRcsqa0WLJwZFDa4SRRfr9UTp4+1FUxOKRbQPPEUBGalFbMCKRQ== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + - - - - - - vp2SMm/BckAQlnq5TsJyQEzFsuU7w3JAwNpPb8XEckBr7aCXQ9JyQOKFLwt303JAk3CDmbfgckC0x7AMOeJyQIS7FhBR4nJAtZeyGcrxckD0sZHRfPJyQA+/VvWh9HJAhGyBx0QAc0DMFH93+ABzQE6LoeTPAnNARJVwvfoDc0CCoLdevBJzQCKDnKTdEnNAbfG0fPgTc0CnqCFEOSFzQP7R4hAPI3NA2hvjo88kc0CcCqNoRjFzQAQaT3nNMnNAiu/R8+JAc0C2E6e8d0FzQIo/uNR6RHNAQriL6KNTc0CBDgpijWBzQMYeMK5nY3NAfN6aq0x1c0BoL8vheIBzQBbxlL8MgXNAi3HQQoaQc0DXY/r+TJJzQIthAdJjlHNA2vwoKveUc0BezBCwuKBzQMYRey1aonNAcrKe1uaic0Di9jTzBKVzQGXjQrK2s3NAyHxbdg20c0BVDhAW0MJzQF/Nm7Amw3NA4BFh8CvIc0AsChLOPstzQAHqfx7X0XNATs6BK+PUc0BGNrGnOOFzQNwxZ6s29HNA3q4+33gBdEBexJbgTRN0QHJMOtNKIHRA3u9NbGRSdECFshu6+FR0QD49/fK3YHRAIpoevAhidEBERFfxTmJ0QH5UhK0icHRAzqVXEEFxdEDRPCUwOnN0QO//qt74gHRAHk1AKE6BdEDK/8+IFpB0QDqD4ZjQoHRAOMNifdGidECwf4D0CLB0QKIM5kvjwHRAIG/3ObjEdEDeO5zczdR0QMvfF5W54XRAEZPM2YzzdEAsc7MKXQJ1QHTCYDU7EnVAuMUo1Z0idUA+/QBvzDV1QMM8e2cUQ3VAH8h8I3hVdUBqeGB3OGF1QIm5udjRYnVAbnDBR2ZjdUDRdo/fjXR1QFbOjqZ4gXVA+M7oU62BdUDtV6A+poN1QHhXgET4wXVATolPFwjidUCcCNkISAJ2QDe2DuAAE3ZA2DtfVQgbdkCbysyuiCJ2QKz2Ns2QJHZAhXIVNUsrdkCWxvnYHzF2QHCyUnVSM3ZAeYBYqxxBdkCjucBheUR2QMTnmRESUXZAtCb6Ts1UdkC2KbsJzWJ2QFXhEBxRY3ZADSdyt9lkdkA+zftvkYN2QBG5JCD4knZAwDQq5Z6TdkCpiEQIwrJ2QA3b0jd5s3ZAev7v+wy0dkAeSrfI0Lh2QHd1ddPOznZADOWX6TICd0AYTF/mUA13QA+ydLIBEndAtI65gZASd0DYTS0I6hd3QHr4J9UyHXdAysMnYEUdd0ARhrQoDyJ3QHj5LRoNNXdAZE7s3CQ+d0Bt+pbgnEF3QPyTV0QbRXdAYMGdp0pRd0Aa33JzklF3QCV8i3aQYXdA3umcIz1jd0AAQ3MLJ293QJQib3PbcHdAnEc07/tzd0AtDozT/YJ3QCRYvg8JhHdALt4IKWedd0AG2B+7bu13QPIJ/mxuInhAwqdLcw1CeEB+/ohzekV4QGosmSHLUXhAdMIXvZRSeECq8Kw9iFV4QCBmywruV3hAgYnkqUtdeEDEmzVt+mB4QBSRyrC2YXhA37N1n4t0eEAahEyYpYF4QDgL7/aZhHhA+nX5qB2NeEB0ilT+lpF4QCikU4+nlHhAMobctLfUeEDjwGkJ6tx4QPhloIwB9HhA9TfhHoz1eECKUmdjmwV5QIDpXlH8Q3lAopI+PMxUeUDt25D3cI15QPhok+zKknlAAD10CcCyeUAoYc89QtR5QCBCrv3L1XlAAsgTR0IyekAkPEXNDDV6QIiOoRHnQ3pANnrvghpFekBc7D1Pzkt6QOpQbGcnVXpANgTW5A22ekAcePopSvN6QPi+vgZ383pApQmCRKP4ekDdJ8NK+v16QJcJPIVLA3tAYkXoMZ4Ie0C9G10lTBV7QCK37UVaJXtATlIE20sre0DTc3Z1UTN7QMe42ZKXSHtAZMsiwCKVe0AATGs7Ybt7QGs+QNVmw3tA4CdOfm3Le0D4gywoctN7QNKMCRHt4XtA8owyXJfxe0COSON23/F7QAQZg6uL9XtAIPklvdkBfECQUSgOmgV8QFlxLDLSEXxAfuIrwstBfEC80eOb2lF8QF4YaxS9snxAgvtashnTfECHi3fGINt8QHrZ0O9X4nxAPlNO/AzjfEDEDLkUKeN8QMLCMnkW8nxA54tRtVPyfECw4ypSc/J8QJjiTckBAn1AGcm1YEsCfUBS1EBrPiJ9QK6bwOhYlH1AvKgu0S+kfUDYweTsa+B9QHhZ4CmMVX5AxDN13yfgfkDNrnaCy/t+QCY2GZICAn9ASCuv6tEDf0DgmejotnF/QED3A6hjkX9A2APvyVuhf0AfRouVWLF/QMJUE2+DEYBA0DEdEjAUgEAECDw33xaAQNxxB6SDGYBABTHc6+ZQgEB+R8ZcFFGAQJBcSJkOWYBAdPskKQxhgECars75xWaAQKGgtityaYBAgD8KhR1sgEBCfECDxW6AQO2UlmBxcYBAWn6W1R6PgEAYUC9ZHaqAQA58IbZSwYBA9HVkP1PJgEB4N7igp8yAQC4t6ptM0YBArNobEEvZgEBREfecROGAQID9+BBA/4BAkRe+L0AHgUDBpAHDaAmBQH4SqG4UDIFAMmTV0j4PgUBM1N/a8R2BQBRpvm40H4FAcL6snTUngUDNvbK0uzGBQJVm3oOfOYFArq4iEPVFgUAQa2Wc5EmBQKdF/r/nTYFAFpSNXVxYgUDGgHdnZGCBQLN1zsZTaIFAPJhXllaPgUAAftbZkpGBQCBWVkCWlYFAEuJy3aqZgUDkl8HA6KGBQA5cf3RKr4FA+i8AeQaygUAXNnxXBc6BQEEwlFwkzoFA+LUmpgfSgUCagyXkJtKBQNLGC3wG1oFA0kXQbgfagUDKcwsdBt6BQMvcbNf/DYJAyNo+ONgYgkBwjBRd1iCCQDivihnRKIJAolIer6EpgkAYyuIC5zmCQPs/MAlDiYJArLwrYUORgkCG1bcAPJmCQNDOdwkPoYJAU68u1DqhgkBCPt8ZD6mCQDosQxozqYJApOkvAmqwgkBD43bMCLGCQKLCptCv+YJACmUCe3kRg0Au67HTeRmDQETFD6ZyIYNAgsRBzw0mg0CUODbecSmDQHuSdIkRKoNA/VO8vXAyhEBsHBnBczaEQPqawKF2OoRAPABfq/9ohEDyG5fO/XCEQLju5rr2eIRAVOopAxjNhED6qeYbw8+EQCHxsjpq2YRAGt5HaWrhhEAuKxUyYumEQGCyuFs18YRAyZjtC2PxhEDwEOfpWfmEQBpRc7LURYVAAKpdSqBhhUCW3TL5n2mFQKKpVI2YcYVAvcZ3X5x5hUDas0Lb8JqGQGz9BikmuYZAwWv7b5TShkATFol7l9aGQLvpxMKQKYdA/qb5RpMxh0DKzdcvijmHQKigdZ6JQYdA+v+ojPKVh0DqZ8rx95mHQLQZe/jHsYdAsmUv1Me5h0CCutuGwMGHQGjjhgQjlohACHM53CeaiEA= - - - - - - L6R3RVWm1kR2ew5GKdb/RDRTAEd1R9NEjqPyRDzawkRD4YJFkgZfRfwrhkV13SNFfn74RbJ0HEUlY0dGsvf1RtFlFUY7YQNF9WmmRWHtzUZVYQ1FfQygRau+F0VPBgxFA5H2RNZqXEX7UPpFkLtqReL810Ru47xFiIcZRYTr+kbNmOFE1nsaRTx4Pkf0efhEIzZxRnqs6EU0K+JFtNI4RZSwL0XBs31FpUsnRYo7iUUqCTVFUtYURSU36UQDOWFFfla1RZBl9EXnQeVEIs1uRvDdPkVROc1EcABFRQjE5UTndH1F9LyMRd7pA0XKOZJFojQmRzQ3pkWnN1JFfku9RRzEhkVZLAFFYIAMRWOPCkXwD9xEqZsbRW+8AEVTnhVFTAzLRXghcEZtJNlE7yNaRXvyPkWKt0lFNBzuRDnWD0US8cpFmsD+RAYKIkbR6QxFw8acRQUg90UwZA5F5HcJRc8vvEWobANGuANfRR3S4URvcdNFgHqiRpDL1EYIgwBGUzifRQV3K0VK/ytFxXg6Rv69CUXOKEFFrMJGRQdzgEanH05F7VEaReJrAUXwvopFXTiqRT+FJkXAGVhF0j8ERURlZUbHcG5GwYYCR1cVhUY1mBNFW45sRehaU0WT7tRHQTcWRb1ewUY1zbpGJvKwRQ37gkZyCgpF324ARZrbWUVr2CVFhA9PRtsP3ETWqhRF8g5OReokRUWQsy5Fknf4RLIxDkbQN6ZFz4ozRoQm7ERjbalFmVkERcmDHkU2hC9F2SA9STlBLEXMCERImfL/RF9rL0Vqt6dGIhVzRehyDEX6TGpFa62rRafr30R/IelE41JyRTmwlkYEmAxGUqsnRU42wkXL3NZE58xERYZCrkdqDk1F75i1RjpPskVwgEFF/UjNRQD4kUicriNFHUJGSHW3hEcgnmVG+21LRRnqA0Z6ATJFgefBRc2JIkVxevFEyLY3RXDABUlapWxIHqJXR70YEEbmcwFIpSyLRcGSlkerLIBGruovRrARdEV8jXZF3Xm4RaS69kSxFsdESm4WRwmrOUZCechHwGwVRZJsCEX2afNE8NmqRoUHWEV93hdFEQSURrHnAUUSoAdF2qSeRVenMUVYHhBF9ij8RBZWoEbI+QRFUy8KRn7zukXUAShGK6QtRSNIG0XhMHdGJl5tRgbcd0WR0EhF0z4hRZWwWEZ/+sdFab3zRNmDtUf4WZJHbDAOR897YUbd7ZhFvWxqRX8M1kQaT05IyTSxR+df+kQD6VJH1Gg5RnUUM0VrDD1G+VUmRYlLkEWVjaFFLNEfRd5iG0WUbhJGLTk1RcjC+0QtITJFmNF3RZh0qUaC8glGhiloRmbG8ERQzUpFoU3NRf+fgUUZ++5EgY3VRAFiKUXMpZJFIWLuREFVpEkrPQRGmQY3SVfmk0XrrbBIDZutRxFLXEbBDOFEV48mRrauoEW2zBJFoV/cRNksW0X3ydxHrSIyR0iB6UaLtJ5FHOsCRjtD6kS4fkRFN+/xRPQX4kSb6N9EOkfIR9RfMkftcb1GWFOaRTcN/EVo7gZFdVXdRlucgUayP5VFC+jhRW14AUXXte1E2yriROqUJUWtBypHtIeVRoWlCUZGk2ZFhJ1LRYCz8kTGEghFOLrmRnmPdkY77fVF7hqBRfAjLEWpffhEEad6RSF61EQ4QCtGgJ68RS0XWEWRsCpFkKAXRZGF+UT9g/BFudaYRcitSEVoLchFjORDRQ== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - NLdyCm/BckCmFAYNPMNyQHt0UHJD0nJALmwHaM3fckA+75J/OOJyQCo4vPRQ4nJAaPosCY/ickAzu8TfyvFyQHLeXVd98nJAhcntrUQAc0Dl7G7D+ABzQCRvTXPQAnNAy0twu/oDc0AYqna4vBJzQIbSUHjdEnNADC1ddvkTc0CV7j+G9hdzQM6/FYhQHXNAaM7zk3gfc0CsEiLsOCFzQHredibPJHNAho/B6kYxc0CIDOCjzDJzQMQYyTviQHNA+i0hOXhBc0APPTcAekRzQGdYWPCiU3NAHvki6Tpjc0CwJN3WZ2NzQIqrK2pncnNAMoZdwUx1c0AwVjnxeIBzQDf4G+8LgXNAOgflj16Cc0A5cY97h5BzQLhPHnlNknNAC9QUSGGUc0Awee1/95RzQMgqxsi4oHNAmFWoCVuic0ACS2MQ5qJzQDwr7r8FpXNAvIWHccSwc0DG9Port7NzQB5YLW4NtHNAMFrv78/Cc0DnGORdJsNzQLhbIGYpyHNARRF6HNnRc0C+3E1u4tRzQIijVpk44XNA1n4Ifjf0c0B5kxt9TwB0QH94uLF4AXRAcqjpaKMBdEDeoEwkTRN0QB5GFJO4IXRArJq3WWNSdEBQU+ACjVV0QDhaOZK4YHRA08xLpAdidEC3BwTIIXB0QE0AlQ9BcXRAq0kkmzlzdEBe3sVI+YB0QGQZMEBOgXRAnDDuzxWQdEC2jEDy0aB0QIxoMirRonRAXpVH1RCjdEDDv+QNCbB0QEIU3Uu5xHRAdIPNd+LTdEAuGyR3zdR0QLeyFmS44XRAaNo2Go3zdEBSnPzZpQB1QGzxlUldAnVAsllX32oSdUDDwLu0IhR1QAcEFeWdInVAPhzQgMw1dUDoxPiLEUN1QEQCUct3VXVA1C3d4DhhdUCpmCnR0GJ1QDaw/DxmY3VAIaHSHI10dUCyCkQSroF1QDDkf7Cmg3VA+gVv0JmEdUC5y1HDt6F1QJ65HmUCs3VAgMluuvnBdUC2ySHQRwJ2QPZxaaEBE3ZAq9xrzAoWdkD1S/FSCBt2QGhjzrKIInZAth/zp5AkdkCAJ5lISyt2QIHqSXAfMXZAOK3lRFIzdkBt8PTLHUF2QNH2tyF6RHZAcHQONshQdkD8FP3WEVF2QChieCzNVHZAJrTfGc5idkAnor6qUGN2QDazGLnbZHZAnmPsFiZodkCS4vZ7kYN2QCI1yQD3knZAln1MJp+TdkDOHaq4v7J2QMZvXF15s3ZAWv/Q0wy0dkAxxYVsz852QGVlEhRQDXdA+Z9cuwESd0Bc9jcikRJ3QB6Ds+bqF3dAOFJ2RUQdd0C0PPRaDyJ3QEjv8gNzIndAphmN9ww1d0A2ZUFhJj53QJBJCyidQXdAT9YrUrBBd0CWUBjPfEN3QNZkhf8aRXdAaOeiM0tRd0B1e3PYklF3QAajNfIqVXdAvW3je45hd0AshXJWPGN3QBBHH1wnb3dAak/t+ttwd0BwPR5j/HN3QI4zyv2NdXdAZDYuvgqEd0BQcpvGZ513QKSweElN8ndAJMfC0JADeEDmr9LzbiJ4QFq/ZkYRRHhAsIwlxnlFeECk4amty1F4QOqN1vCUUnhAvpqVIO9XeECxeI3J+GB4QFYoYVm2YXhATHAoCVpyeECT0uXZRXR4QL7kAPxpdHhA7YHxqIt0eEA6vofMo4F4QCrWtguahHhAOBhfkR2NeECSKOfelZF4QMTGZ6CnlHhArJ0XhmyjeEDoS1VTzcB4QIinaQS31HhA/+l8GO3ceEDQobQLA/R4QFAz3oKM9XhAn6JHg/xDeUBEXTaUzFR5QAD4krxxjXlAFjT2OMuSeUAouEzMKZh5QGSsVIK/snlAYtPMq0LUeUCWI8tkSft5QDaCunNBMnpAipuxKQ01ekAq+ifY50N6QADv2M8aRXpAV8v14dBLekAEVjR0J1V6QGMvE+M6k3pAMlEg2pKYekA4mITjC7Z6QNxL9yc47npA0b2IIBfxekB+92RcX/F6QBepjgBK83pAgBBWqqL4ekDw3y4u+P16QAKkMyxMA3tALyc+DJwIe0Bmu5GrtQh7QPYfk4/4DXtAXsR7oCkOe0AFtZamTBV7QKVjCutJK3tApXMcNk4ze0Akn2mPl0h7QETK70gilXtACOZqwWC7e0C7vnr5ZsN7QLwyf6Nty3tAFjRKDXTTe0CCi4yQ7OF7QCzE8dOX8XtAQEg+SN/xe0CCY9bSi/V7QEREZEraAXxAIEcAlpoFfEA7FyTh0RF8QODLDgjOQXxAYjHB38CyfEBsNcikGdN8QK1Vy18h23xAtDr/hFfifEBaRGucKON8QF83S7EX8nxApojckVTyfECWrq0kc/J8QGqJ9Cz/AX1AX9dLLEsCfUAsVRbyRBJ9QC68D40/In1AdsSQmS2kfUCnasl6NKx9QLgMA74sw31AvMaKL2vgfUDJXbMgkfV9QLMcY1Y4H35ASkB/SYxVfkAm+PUgJuB+QEv5c5LL+35AMKxzBtIDf0AuyJs72Qt/QIYZQMW3cX9APgH1nbKBf0D0yk0rY5F/QJHF6aeVk39Aqu/3Xl2hf0Cs4DEEWLF/QA6CZNiDEYBAJpXBaTAUgEBE8n8A2xaAQHkEqyfwSIBAfRVovOZQgEDcYsmpE1GAQEZyJ0oOWYBAXOY12MVmgEAIkcFecmmAQKhkGIobbIBAUidkA8VugEBS45TFr3GAQKDHszS0dYBAz9RPkBmDgEDsJFhTHo+AQIyykn9SwYBA0Laxh1PJgECkJbj6qMyAQELJm19M0YBAkLf5sUnZgEA6RWCIROGAQIKVWQVA/4BAPqruHUAHgUBv8z1UaAmBQJ4PbBAUDIFA/7Gl6LsOgUDiK/Z/PQ+BQHJzHag0H4FANpGSIDYngUDtLLyqnjmBQE4W1Cn0RYFAECaVguRJgUBf+Gvg502BQMRKQIFcWIFAMql0emRggUAhj3L2U2iBQA4bko1Vj4FAJHlNJZKRgUBUO2inlJWBQOyhqqermYFAEKtyyeehgUC69pL6bKiBQLzkC61Kr4FA9qMnKQeygUBQfJcNyc2BQFmqjjIFzoFAUrp+cznOgUBQwXKgB9KBQKbXa24G1oFAeGNKZwbagUA0MOhGBt6BQL6xdM4b3oFAajoYGdgYgkCEsPUp1yCCQALwFRzRKIJAEGC44+Y5gkCKD14DQ4mCQDmOIV5DkYJA5MQPlzyZgkAovb8JDqGCQAF+Zw87oYJAfo8H9DOpgkCes6QlaLCCQIynblx5EYNARvpe6nkZg0C49wpfciGDQNk6fRoNJoNAjJdHeXEpg0Cto3PTDyqDQAR+iUdpMYNAjfpYpXAyhEBaVeFAczaEQHpHoRp3OoRAgnoC420+hEB890UoAGmEQCff4B7+cIRAFqShTBfNhEA2uCSPw8+EQO4BOuQe1YRAh3UCMGrZhEDVYCU4auGEQFS4VYZi6YRAH7yMSTTxhECu85cNZPGEQKIqlGmgYYVAcTeQaaBphUACaV5bmXGFQGpbuZSYeYVARxpxQt6NhUD+rwBQmPKFQI/NBZvxmoZANbczkZTShkD/FDdel9aGQJec+jyRKYdAXMGYW5Ixh0BIz9naiTmHQEzilq7zlYdAt0QosviZh0Dm9I+6x7GHQERb4bLIuYdA5Fe8S0IWiEAkWVXNIpaIQG3nlHcnmohA + eg5Y0/EhYkA2uAwZnGNiQJe98BGiQ25AVGelV0yFbkDMvNRcKbN0QA== - + - T7U/RWE1IEaQnwZHJ9bwRAq/D0VS+EBFfQjYRE0MIEWmLDtF/14ORmzu10S6+zhGwLEJR/ceCUagssJEeDOqRSwRQkUXmQNF2iYMRZ35rkY20ndFBDk/RZWc1kRuxM5EsJYcRUFg90WfvYlFWMsqRW61Nkao2epEMpMqRSJAuUbpYtVEQiUARdV6E0WyhjJH7IsLRW46fEZbAs9FPevWRW76DkXlvwBFI/TYRPmQdEVYYPBEDQ1MRbYDjEXYXjhFgV8VRYwFjkVnT9ZFmWgURYGzzkSmYD1GYV/aRCkdWUVQeOJE+LraRDZBCUXlNZdFm2VxRbzdnUUe+StHcMi2RQ8OO0U08+BFtJeXRcy5BUVpngxFlqS2REBU1ETBShNFLQDcRPiyK0WtueVEk4OzRUcDyETJAI1G0jPfREd2FUWgALxF02E1Rbbyu0SOmsJEmM8+RYzmlkWRLRxF8IwqRobpkkUus+pFaVrfRB/03URrrfZE7/HQRBTyokWludVF8//cRKeWF0WNmwZFtdjERSoevkb+vdhGTQbmRUcPtEXeOxdFSKvjROjLMUXFAFJGLA/jRBPCR0WUOiJFdQ7TRNPbUEZIrz9FzcD9RFqL3USRNE1FMEKhRbPAYEX/TohGl0RtRvViuEbddTxGsdJFRb5WdEUYdw1FFlXjR3JiNUWhketGKQ3QRb7p20Ry7MBGDymURbxyo0YmqeBEyZtMRdSIKEXmcXFFFTEdRRTNxUY67ONEXeh3RRo/N0Wmw/ZERnAoReI8JkW7a8dEedcgRthsuUXTnRZGfgf4RYCQ70SndCVF8O36RBRETkUnn0xFUhw+SbB+e0V+6EBIMMkgRQhi5kQlRKBGDdzFRNY0/ERv2IVF4kGTRf0VTkXAq8hFyHdCRbzTUEVJZ7RGN7w2RmNKP0WrECNF17e/RSlGLkXP/31Fh+WjR76iY0XTXqtGfCRtRb/dEkWh29REb60IRZS/W0XGmghFSIkNRURb30THq+lItlmgSDajEkh2rfVGnkedRQicXUUInfNEia/gRLQDAkatZ2pFuMfZRAqOAEVnUlxFa6adSPR4AEgwP/5GJ5GtRcnSA0ivV8dFQYWZRyjAhUYS6TpGYYB6RW55jEVOOtRFO+DZRLYDIUdWxVJGlUC+Rw/WGEUP9bFEjamrRt80TEX8ZuVEcbuIRr0jSkV7K+dEimPiRcnxMEW0LdJEE4wNRexkxERNzsZE3gDZRJEOCkXI+0pHPOSbRlqpaUVht6pFtQfeRCGyIkaCHb9ENmWSRQgYAkVqGIVGhnNURhZvMUXrxBBFIdoLRduEdkYNfsVFLJuwRwgOhkdl+uhG77QjRg9K6kVfbmBFf6YTRYpcnUUMT1hIw+G2R8NkDEUu51dHJMQbRo6YPUUS+yhGyWkORWqYUEU4ZTpFGKXQRDwPE0Uw6xlGhLHQRCmOX0WMjZJFLgefRmumF0aI0tJG41drRRyTtUX456RFbRnbRbLZPkXzyB9FywQBRSERAEVqh2NFAA8HRZOafUXE24xJD5qTRdU6GUnsY5dIvfVFRx+EI0Y4IgFFHq5bRu57SUWe2BhFY3F+RQV3/0e9d2NHxyUGR4wmeEWAdBVG8zoURXnsA0W2adpHdw9NR27v0EYNlIFFaCT+RZ0iMUVrTRFFs2ZdR1U9BkcPnTtGMJIyRc1W3kXz8GlFPpEARX6VKUUK5tBEIochR0mkm0ZI9zRGhitNRQ19hkXyfNpGTDZsRrqR/0Xr4jxFJWLuRLIRF0VWwzhFcAowRQHG40Q9YR9GCl3JRYXHm0U7Am5FYwvgRHuhAUanGT5FN07mRIvQvkVo9xpF + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 5bYfhXjAckBmRVjabsFyQLxOc5U7w3JAS3cDKMjEckAVkDpqQ9JyQBIF4eh203JADhAzR87fckBOy6tAuuByQE2cw1g64nJAhgGpeFDickDSkWbhj+JyQHXVQaok43JAVPmWROTkckDAGU8vUvFyQDOFjYnJ8XJAWidv1nzyckB2/+eQtvNyQEzbBbCi9HJAXOSmTsL/ckCy+2UjRQBzQOWL8jn5AHNAcwIy4EsBc0AcHgID0AJzQEINXsr6A3NANOXI/E8Qc0AqRUbSCRJzQHfOrJC8EnNAvJBI0QUUc0BwiNnyTBRzQHOebkH2F3NAgO8TrE8dc0DIopBKNCBzQDJJIfakIHNAdjTZMjkhc0Dye+/zySJzQL7jfFjPJHNAySZkQ0gxc0DKpDyZNzRzQMzkJMBCQHNAJhSwguFAc0DwD5jMeEFzQNCPXsu6QnNAHXDh2HpEc0BEjkW5mlFzQLDAoqajU3NAmTsah4FUc0CESjRjimBzQALjDy45Y3NA8gY7vmdjc0DMKl/ZzmNzQCbBtaxRcnNATkuuXWlyc0A+E59nTHVzQIQcOPJ4gHNAVtmApqSAc0AQXTndDYFzQDbeJW1dgnNA8AEEHIiQc0AULEAsTZJzQD3DCBZjlHNAKIzZZPeUc0Auk1zmt6BzQIykgHJaonNAgsd2Tuaic0CrdqlSBaVzQBT9U0XQsHNAOm/Bxrazc0BuFfM2DbRzQFoLZN34wHNAsZRYss/Cc0BOwTj/JsNzQDAOH+QryHNAvt2DT9nRc0DCjrtrvdJzQIq9ss7303NAUeVNsuLUc0BwBCyYo+BzQFg/GPs44XNAfOGR2Tb0c0CirbCCTgB0QPZF8yF5AXRAebcnGKUBdEBKyPRriBF0QEAdkdtME3RA7IWEz7ghdEAk5na3VDB0QOEAQyaMVXRA9OdvsLhgdECy12CWCGJ0QMYOEINRYnRALkNuQyJwdEBqoAcIQXF0QMJxvfY4c3RAYmLo6KB0dEA4tnCaNnV0QLD/Cgv3gHRA5BjoB0+BdEDskmFvFpB0QKb3C6m6onRAXEZIhdGidEAVMKYpD6N0QMS4HDIKsHRACjwNC8KwdECidSsY5MB0QGQOU/V3wXRAnK/073jEdEARS66oucR0QGbbdiD9znRAaC2kjXjUdECJ+PxuztR0QN4k0pS54XRAgsScrozzdEAsJJ+MXQJ1QEEY3CA7EnVADocCPWkSdUB807rfIxR1QOInjgOdInVAEErqRs01dUAO8chEtEF1QOmopdiAUXVADuJ/SU1UdUDs/4pXD2B1QNA6x/A4YXVAPpif0dFidUCkDq95ZWN1QKDRDAN3cnVAeCUuKo10dUDO3XHIeIF1QPo0NBmtgXVAhiK/YaaDdUCORL0PmoR1QNhBiKS7kXVAxC/2TVyjdUAkaNtuY8F1QKoftuj3wXVA1uC6aczTdUCyIUZ8COJ1QPrLxdBIAnZA9DAM8ocIdkCEAL15ABN2QIh0nxpPFHZAMiZI5wsWdkBQSWkviCJ2QPFvbS+QJHZAOSHoaEsrdkCei2tJHzF2QPCKlJtSM3ZAhu7ulp00dkDY1qZcHUF2QE5mWp56RHZArqi98BFRdkB65MhKzVR2QAZyJU7NYnZAvkJVflJjdkAbIYFC22R2QN4YMkyRg3ZAA0NbTPWSdkC6opx/n5N2QM5KJf9Cq3ZAlPiwrsGydkDVFLhWebN2QBAA7TANtHZAaHnmrtS4dkDznSHFzs52QBg9edAM83ZACRHvR5HzdkAgIhpuMwJ3QIsZ0UxQDXdAsDnicwESd0AiPPUkkBJ3QKk4CXupEndA64AJq+gXd0CuzhzbBBh3QIUPeG5EHXdAqY+CHA4id0C8E9fwDDV3QMI0V28lPndA2YoN65xBd0B7KgBMG0V3QCEPXm5KUXdAfYd3KZJRd0Bfnxof7lJ3QCW5vc2QYXdAeNMUvidvd0A/FBJn23B3QDBOkZn8c3dASJG+qI90d0AG/Qb4eoN3QBAdUhsKhHdAOG0rBgqSd0D0s1qXaJ13QPglabnBondA2jt6Cpu0d0CIELTwusJ3QHzJSVMsw3dACAsxnm3td0AFfkRUUfJ3QKacp9qQA3hAYjkH8W4ieED3ekTtiiN4QGwxliULQnhA6oWHVhBEeEB64SomekV4QKZXEvnLUXhAtDWTopRSeEDE9Jy5h1V4QHSX3ITuV3hA0VIbyfhgeEBGeXDvtmF4QO/5VudWcnhACb9ak4t0eEAGXZFDr3R4QFiLsiamgXhAWEJi8ZmEeEDq9fZul5F4QFbjW7inlHhAAEcosGyjeEAqVV90zsB4QAoi3fT1wXhAKuC5vLjUeEAMqoU4VuJ4QOQb/eoC9HhAgDhE7Iz1eEAYtnlynAV5QKK1zxz8Q3lAWuC9W8xUeUALbDKwRHN5QF6leURxjXlAiNKKWcuSeUDMu2RqwbJ5QDLlxA9C1HlAzj/5+lPkeUB8LKFSS/t5QLzY9i1UA3pAJvRfr0EyekAGRQ/PDDV6QArfgJfoQ3pA7IERVBtFekDQPskfz0t6QJcK3NvZU3pAUeaZdytVekAQl9Q2jHJ6QJ8+fyI7k3pAypkXYpSYekBUCduO3p16QG7ics0NtnpACiRdyGThekCXPYW1M+56QK6dpJgX8XpA+AoonRTzekAVPkj6SfN6QJuDVqii+HpAL5v2iPf9ekCaJHxYTQN7QKvAUumhCHtAHFyQASoOe0DJZnWcTBV7QEtokOFZJXtAy3fjckwre0BMzUcBUzB7QBwtyMUUQHtAkv1u7ZhIe0C48a6H8k17QL33n7ghlXtAylX/8GC7e0CwywV2Z8N7QLIteWF4xntAfIuSEm7Le0AYmOwAb9N7QBYMx2sf83tAxNgAvIv1e0B8uDzc2QF8QBz004b6AXxAqYQtZJkFfEDsQ9fX0BF8QOIEPQ7NQXxAy7RHAytxfED7KwbaFbR8QCyCdKgZ03xA5EiqiCDbfEBp2J23V+J8QN6GIyEL43xAIUK3kyXjfEBOpQIXGPJ8QBp9555U8nxAiBn99AECfUA4BH8xSwJ9QH6e2F5EEn1AbhqutyykfUAevLQbNqx9QPauHPstw31A/oeAl2ngfUAO4ldty/t+QLz+ok0cAH9AGI7FGNEDf0CUXPj8ugt/QJJfuNzaC39ARQjvsbZxf0C++ooSY5F/QJobJHlfoX9AUs2AnVaxf0A8s5pruAGAQG4RUnODEYBApu33gjAUgEAMOLF22BaAQByDrKKGGYBA59XVqO4pgED6mO/651CAQJ73/x4UUYBAC/FUyg5ZgEAbNvmjRlqAQK7ODBQMYYBA5ryZ9MVmgECCmSKScmmAQJZPHJIcbIBAeDmR4sRugECQbQvAc3GAQOvlDMqvcYBAgsbfFSF0gEBeWZtBs3WAQD77nqi4eYBAcI6dVx2PgEDEdhG+hqmAQAZKFQrQroBAXLCTSH6xgECVA+l4UsGAQOLlu39TyYBA0tM78qvMgEBCodBZVM+AQHDdd5ot0YBA/NVnP0zRgEDP7RmhStmAQC4dYNJE4YBAFcD/xfPogECkIT7ZPPOAQN/bdvA//4BASo7mIEAHgUBy4J2FZwmBQNfyzVIUDIFAQp51PboOgUDKo/e/NB+BQO/3PZc2J4FA7NVZquAugUA+miy+uzGBQDhRtAyfOYFACJXtMPNFgUDG77hA5EmBQJzqerLmTYFA8uBgVVxYgUC55KkEZWCBQG4rWttTaIFAROQSq1WPgUAkWqaBkpGBQOJ244KWlYFAXFQiSVWXgUBCMrDbqJmBQLpTQjmsnYFA8FTgauahgUCBYZAnbqiBQLdFvexKr4FACpEySAXOgUC0mY3FB9KBQEDcmxUG1oFAP5uq7gPagUA0nB54Bd6BQMY4h68V3oFAHlHT3AnigUDZBQxc2BiCQK38DnTWIIJAvETDgNEogkD0UJqooSmCQHoHdQNVNoJA2/hQcec5gkDAqWWWVjqCQMZRw8bqPYJAOaARuyFqgkB+PSE7Q4mCQIgI6yxDkYJAOCtb7zuZgkB8L4kFDqGCQFSVuhs7oYJA98d40Q2pgkBwNWPHMqmCQPKNEI0HsYJAgByZta35gkBsU1t+eRGDQHS9Wit6GYNA4PRnvXIhg0DEseYyDSaDQJj67HpxKYNAxPxHIRIqg0CbWbMpazGDQNegHC6T+INA9m5rm3AyhED9j7acczaEQEaR4d55OoRA+i5NiWw+hEA4eCelfz6EQFYAAhv/aIRAOsz/J/5whEBUf8DR93iEQKeePWQYzYRApGZVTsbPhEDdfaxpcNKEQKqXlEtq2YRA5KOs+GnhhEAcg5RUY+mEQJioVeI18YRAnlx28mHxhEAgN7LhN/mEQA4NUa7XRYVAvCntZ6BhhUBk43rRoWmFQAIIJTGZcYVAzt8txrVzhUCh2kP1mHmFQEb0ZxKY8oVAUpN9uJiShkB2VYHs75qGQOqkQpkmuYZADB5D+CfBhkB4aRWFlNKGQJpTe3OX1oZA6hnjFpEph0AkgbPHkDGHQFJOlQ6KOYdAxwkrK11Bh0Bse2uF85WHQJDApXvHsYdAkjzMxse5h0Bkwfefv8GHQCZR/Pu/yYdAokd7rCOWiEBgGTOpJZqIQI62v/4knohA + NrgMGZxjYkA= - + - XqSzRBM0kkVX/jhGLUa3RPp5GUdqjelEZVsGRWB+A0X7EwtF4AuYRYiCHUVXFN9Eo2LDROkirkSRwY1FKQruRO2ht0R3iBxF9QEZRVzaD0a1DBFFCc61REg8FkZLfz5HeVSMRKfKHUUTC31GhvORRVEBtkQwmYZFXM+8RGJFxUTyH/hEIQraRrUfs0ScZ7pFa2a+RDM/zUReEKhEWxq3RCpPukVApMJED3sdRn4PxUT2BbFFDgnvRGPdrER5Rw9Fau8nRlxOx0Tgt81EI9nZRJUqQEVN2QpH/v29RJPh+ET1//JEkwFjRbrgWUf/LQZFg8OHRhO2GUbz5OpFp1g6RXODOkViCpZE9vVpRdhrM0WYnQhFRNW6RZibc0WnKmxFefswRemRp0TPJKhEyCWJRb9VrUROBxBGX5kGRYwDwkR2/KZGhO4XRZkADUXvW3lFlSQHRbdEEUWB6A9FB9OlRWX5iEWnIv5E4NPJRby/VUeyvjxFfzi1RKcj7ESi9QBFP5YQRr2+zEW4aRlFXzveRLBnXkWaW7xEFIemRPrryUQRnvJEwM/IRL0M10TGPQRFce+fRJOk8kTrpSpFQpK8RSA6bEY0i8lEUeLvROXiH0W564BFk3AoRfxjvER++d5E2dvlREJBBUWHmdJEJJvDRG6dAUUaevpEx9cQRsjFrUS/YfNFefTtRSp/BUWMiMJEId1ZRRrW1ERJpxBFHcL8RIb6GkX5Yd5FjhTBRCTVo0X/2tREIcm3RC8aukSFgyFGbM6vRn5fxUZ8ftBFER3vRPdSoEWgVpRFmwcuRZO3HkbOl/NEMhIoRThiL0XEYHhG/3bqRBLnBEUZ2apEd/U2RV3UgEUOdKlFQ4onRW/YVUWEcL1E5m9TRTFdEUWvknBGPyiGRs/x00bzucRFMDEjRnd8FEWI8ONE7RV2RVR7+UfKAFBFaXu3Rmrmz0bUEbhF/uRDRl49uUSZXx5FmY0yRdMZUUXGlq5GgpmxRMh4vkTOUGpF1HGvRON4GkVgTtdEs8+2RP3uukQQZdREctALRRlPAUWdZt1EX36DRdpi5ES1a+BEaJv+RB++WEYhN6xFT2pARpbaK0Xq/H5FWz1NRQ4nhkUuEd9ERutBSQWShUXe+zpFkpRBSMHbHEWc85VGm5kpRYpI/ES1dcFEht8MRS28y0T2qrNFD0KGRfv4xkRtkEhF/bVLRb0aDUWkbtVGelqFRlPbS0UXfMlF9DyXRKDwgkWgNwJF1jncRbItpEcrxlFF1A2iRmBtwkXd8tBExpoDRaSYtUT0PJpFaP/XRLd8tkTwLMZFtQzRRBegrUS4pLZECbYGRRceCklrMrVIcx8qSHFe7UZbRANGj/ADRUL7NkabITdFqDwsRVg8y0Ro3KJEetVTRYiT9kSyaNJEbtQ6SAqCo0dWQK9EwS6TRnbsGkVT4bpEfSiHRnOWL0aC/tFES9dDRSHlj0WPge9FYBT0RDWqF0WPZ9lG2xQyRh3W4UfdgyJF+Gu9RILMEkXvadJGMzwTRWlCo0Zz24pFtmCVRYzyAEWkwMdEBLnkRCg9l0cjFKhEEn3aRsx3B0V5iMVF4PB5RQZITkZoTRFF5zP6RCdyCEXdpH5GzIoQRjjWQ0VIxFRFeMKbRPf5dUWqAk9GGhSxRZKcxkQlvJNEgiSgR+lBhEcVfaNGcn7mRSo7hUWTo7xG23u3RPB9Tkbr3xNFeGBmRUrO3URAoT1F2bLJRMIzeEjChNxHA9GZRLsO8kTc2sZEgoRwRzbCc0a3hnlF55K2RORZpETrvgRGdEj3RA4ASUUmQBZFi3EPRY6COEbKZEJFeYEPRaLPykQwjyBFVr1CRZJAXEaeCfVFPWfNRrPLDEVi5MZF+wC4RYCTE0YfMBlF3/LeRALrfkVb7LNE3MUPRVi360QCOVhFX7s+SX6k1UjmVUZISKPtRoN5AkYynQ9FxUn4RHYZSEakjYNFPlnWRPPeu0QhN75Eh9svRV81o0QtjctETGSmRBYcykdlViJH1QrXRjhDrUVyi+ZFib0ERZtfuERP5h5F8dbSRL+H2UdajlFHakLORkRYbEWVXw1G03A7RZgaR0W/a+FEE+VrRw8FDUf1pgZGyikDRe8L20TBX/BFFGs4RcSJJUXAWihFIRQxRYu/v0R3eBFH9c98RvUoN0b2MJ9FeC2PRdGp0kRMVRVF1SMMRzfHekbAKgxGXeK2RGLsQUXHmV1FGoKzRHELBEVu/MVE3TLCRDb7JEUIw/9E+nxYRnYh7UU7u3NFFlm1RFRfKUUfEwVGWY+hRZsZPkXSVfREZ/GTRXxeO0V4gA1F + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - xx04nHvAckDVcpP2bsFyQOana+RRwnJALR68WqnCckA8Q3iEO8NyQKmfVzrFxHJAN2g0mkPSckBULfLBdtNyQGyWaYLQ33JAymfgUbngckDyTTs/OeJyQJB7nwFR4nJAbvMgmo/ickCsG399yfFyQLaetp198nJAfO1joqP0ckCo/AAnRQBzQPAbqmn5AHNASHU3YkoBc0Dod7dijgFzQPSuKAbRAnNA6BNpAvsDc0Bajvm9vBJzQDditpViE3NAQov64PkTc0BC0pun9RdzQAoWmphPHXNAYHX7vnsfc0AreqbToiBzQCdwTP44IXNAcE2ONsoic0DUgSZdDyNzQNT6za7OJHNAMgNJ5Ecxc0BglWo1zTJzQKJMSlE4NHNAgg2YLXhBc0CTETpDekRzQDl0mX+jU3NApAnO6nZUc0Be8V2ThlRzQBbkXcA6Y3NAtsj9/2djc0B4EwcqUnJzQK5HYpFlcnNA6HTdY3hzc0B6LoTtuHRzQBw1GSFMdXNAWD9c1niAc0DiMD6GpYBzQMhOqVMMgXNAvLwdXl2Cc0AXh8qVhZBzQABpZwVNknNA4t1gms2Tc0D9fCRtYZRzQASQztX3lHNAgMK3qLigc0BUnMOXWqJzQLRZkM7nonNAnIlo5QWlc0CDHov0fbFzQFJweNC2s3NAx7aejg20c0BXy1aO+MBzQCo707rPwnNAhw/jIybDc0DohEoGw8NzQAj7NDQqyHNALoInytbRc0Asr4Jl3dJzQPitKKb203NAGNNVNeLUc0C5rzj9DeBzQJQFdVyk4HNABvXkgjjhc0Cc+4IDjOFzQABmohY39HNAFZnAjk8AdEBE+dR04gB0QOUQNLd4AXRAyLY5EaQBdEB6g8hXihF0QI7ZEcNME3RAtC78W3cUdEAMIvvHtyF0QOuv2f5RMHRApvG4FdYydEASrbDTUUB0QAZBm+D3VHRA+tdOw4xVdEARaOmpuWB0QHtxXZkIYnRAJrWFyVBidED3ZLeuTmR0QH00tL0icHRAXPj3F0FxdEAmZag2OnN0QA/0fkT4gHRAL0I9RE6BdEC/ArajsIF0QKCxb1EWkHRAMBK5c8+gdED1j/r7zqJ0QPTZMSsQo3RAdlH5vmejdEA5xdRvCbB0QIyW3gnjwHRA0zRDOXjBdEBOBIfWt8R0QDB70z/8znRASjngdOLTdEAEZoeNzdR0QGjiBSMk4XRAqX7CU7jhdEAZ2Uf1UOV0QIlxLv6M83RAbhApMacAdUD4TkVHXQJ1QKCU6BdrEnVA52v1zSMUdUB4LozNnSJ1QG4UocvLNXVAHKMZybNBdUCjuCiLdlV1QDR+N68NYHVAPEZpbThhdUCvIl020WJ1QF1O9E5mY3VAMIhq8nZydUCzNWlDjXR1QEeXgI14gXVAQi27DK6BdUCI77c2EoN1QD98qqamg3VAAPIy6pqEdUDgx5UbuKF1QETD0k1co3VAqv8lKQKzdUBaD0VNYsF1QN4fauD5wXVAvA6CVc3TdUDECk2D5N91QHhAvlMJ4nVAEuBZmUgCdkBQG1Sl0QN2QC4w2bkAE3ZAZsdoagsbdkD/2Y2eiCJ2QEwab36QJHZAdG2rdUsrdkDmRrCBHzF2QLSioNxRM3ZA6hCfCZ40dkBC/yEzWDt2QPhcdNgdQXZAYI5xK3lEdkD60kjL/k52QPkVagXLUHZAnDZJ6hFRdkDIDLsiKFF2QDC7is3MVHZA0KMnMFJjdkAx4EtU2mR2QD7YzUqRg3ZAn5XchPeSdkACnM0YwrJ2QBS8O4R4s3ZAnhs54Qu0dkAqGU1s07h2QJpNijN1wHZAnBcQgs7OdkAGYh3hCfN2QPuoN+CR83ZATfBXjDMCd0CSZiBhUA13QL8ed2kBEndAj5XAgJASd0DeDZCYqBJ3QPc9PWfpF3dAvRQRPAIYd0AJYF6dRB13QAkXIjgNIndALZxIm3Yid0ClX6txuSR3QIRbbwoNNXdAlt3Ltic+d0AcxDUSnUF3QJ29awMbRXdAR4ut3ElRd0CB9nRQklF3QIIydZ4qVXdA+hbiu5Bhd0BcyOVVPGN3QNJiTGUmb3dA3bEwsdxwd0DKJTJK/HN3QMyxHqp6g3dAwoVdlgmEd0CQPGHkaJ13QIGld/7s4HdAouwGIJHjd0CBBlYhbu13QPeIeN1Q8ndAAHQ1lMryd0DUgUAvqQF4QLPdCiiSA3hAuKEg6m0ieEBe1eDfCkJ4QJZQ7L0RRHhAdIKvG3pFeEAIBvshy1F4QGkjoDWUUnhAXNLktodVeEDYlb607ld4QLyg1In5YHhA1GG0i7dheED2pf1TV3J4QByU3YOLdHhA8ITfvTeBeEACJoKeo4F4QJg24riZhHhAmOGk0BeNeEC8Ni9ImJF4QK9OEeKnlHhAfKZ7n2ujeEBny5grzcB4QNAGt9i31HhA4E/A3OnieECGq47jA/R4QGaXmVqM9XhAhCaBv8L+eEDaJGUTnQV5QIiy6tONQnlAktKGZPlCeUAgf+yc+kN5QOL7ykPNVHlAPIRlQOlgeUDET4b3cI15QORBAOPKknlAinI22RSYeUDcKQ/RwLJ5QGhTtzFC1HlAavbgT8zVeUC3GE8ATPt5QIQmk45SA3pApWLfuEEyekDBbMkIDTV6QD7bN+BOQnpAeVBijOlDekAq/uD1GkV6QDIvKlbPS3pAlFTmiNdTekAoXPt9KVV6QDaNMUE8k3pApBvekY2YekCK+5Bz5Z16QGQnNH0NtnpAV4vWHmXhekDwhi9JOO56QBbzPkgZ8XpAstDdWQfzekAgBHzLHPN6QIBoj2RK83pAV+ug9Hf4ekDCJ3LUovh6QKhnAMT3/XpAlLMG2U8De0D9t6wcowh7QDeBY8X2DXtAtGFHyCYOe0AW2G0YTBV7QDZr3IBYJXtARc6JSRBAe0BKP0K8l0h7QETEeWvxTXtAyfwuX+yQe0Ck6bJGI5V7QLLJ3wRhu3tA0Km5AGjDe0DYGiewd8Z7QHRT7QNwy3tA+ijg0XHTe0AwTCmG/+N7QNeSV94d83tA+2YQAYz1e0Aggu2w2QF8QBWCpFL1AXxAka3IOJgFfEBcCHS9zxF8QCI6C8/NQXxAlkD8hN1RfED+iesmDWJ8QLbPENIqcXxAubsykb6yfEAKjzoqGLR8QLDRH1ggvHxAVJDvWBnTfEDcY7npINt8QH3gUcdX4nxAEAKRXinjfEDwTD6EF/J8QORp1DlV8nxAamqbwQACfUCY1wzqSgJ9QOz7HmZEEn1AFmSweDwifUCQBjUNLqR9QDTI8UU3rH1Aza2Awy3DfUAf3gjkPtN9QECkeY+Q9X1AxdwSc4xVfkDOYIYvXGx+QFRp+ECFin5A2S3iisv7fkAKvEEAIQB/QOLcaQ3SA39AoJ6gvNoLf0CBtMjgd1x/QDQ1ta23cX9AN6l3ObeBf0A2LileY5F/QEnfILGokX9ACPhdN12hf0B3KDIzV7F/QBoX1mi5AYBA0ijXiLsFgECNKsp3gxGAQHUoyUMwFIBABJcF0N0WgEB7Z54+gxmAQPDVmp70SIBAiNHu8URQgED2F8LT5VCAQPCD58gUUYBAbkpK8Q5ZgEDbL54hC2GAQCiLTSHGZoBAMJFLPHJpgEADzqnKG2yAQK/pb5DFboBA2B7+pCVvgEAcBW9ydXGAQAHnfBOwcYBA8L9uXyF0gEAq2NVls3WAQC+pKWu3eYBA3cVCkh6PgECuJ8ADhqmAQHMRJ+QcqoBAdi0ijdCugEAYX3mXfbGAQIPL8GkrtIBA6FFkmHi9gECrHBePUsGAQPC87YtTyYBAsOPwYKnMgEBHpFtCVc+AQHR0pYYs0YBA7sUc30zRgEBmKARcStmAQKLVUKFE4YBAuLeXU/fogEB3AVfGP/+AQBok//w/B4FAHCscJWcJgUA0N39MFQyBQHWb6yZTDoFAcPz2Ib0OgUBw4ASQPg+BQIGBIpzyG4FAoE2T6+AcgUByt8VTNB+BQOvVcqI1J4FAlmizofArgUDk9WpSvzGBQMJ3LwSgOYFAEDLXSSg/gUAQ6JHE80WBQJkWbzDkSYFAQioaUedNgUCpM53p7FGBQEV5O2xcWIFAwAJkdGRggUCE4h88VGiBQF1hp/cBioFACoJw3FWPgUCY6f57kpGBQHgv/9CVlYFAWG9TJleXgUBjVKb6qZmBQGIgCo7ooYFAXiGLwG6ogUDHow2VSq+BQIsvaFEIsoFAgCzCpLXAgUAsCv4L5c2BQIIjgnQFzoFAfCLkfefRgUDAaoXJB9KBQMz9DY0G1oFASmxcqgTagUApCpf+B96BQIRQIz0CCYJAhO6f1tcYgkABZmTL1iCCQFo/lZ/QKIJAGr4zmNAwgkC1Gl5/5zmCQIA9CjxDiYJA+N/2H0SRgkDlDV2dX5aCQAe365Q8mYJAWsAWTg6hgkCYAoR7O6GCQMOUxH8MqYJA2CfvYTSpgkDyTbInCLGCQPFNmXN5EYNAXDMCBcgVg0DUEV3yeRmDQE2HgP9yIYNAXvA4LA0mg0AOMrb+cSmDQKzQqMIQKoNAPZBbyWkxg0BY5QmTSYODQD4/xpOU+INArsqPx3AyhECABfupczaEQCDf9054OoRAnqxBtHo+hEBmjeJx/2iEQMbv7Rn9bYRAz7QPj/9whED3+5aw9XiEQN58WkEYzYRAMNghJsXPhEBCHE0FcdKEQL5O20Fq2YRATetzPmrhhECh+7iCYumEQIl5XQE28YRAJBL6mGLxhEBabwu8NvmEQM5OBl6gYYVA0mwGiaBphUBjlF0OmXGFQHoiNoiZeYVAemfXjo+BhUAEh6ca342FQHUVeszgkYVAhCViMZnyhUC1Ojk5mJKGQPPybmzxmoZAlIpdJya5hkArqzM0k9KGQOwAp5KZ1oZArmI4XZEph0Bthu5ikTGHQJKMwyKIOYdAVPzqhVxBh0BpDBIVi0GHQIkxo+TylYdAUHyNVMexh0DrU6UcybmHQND+i8fAwYdAdh07rMPJh0DMAGPeQRaIQGokOmXYSohAm83FGyOWiEDQx1f1JpqIQA== + NrgMGZxjYkCEfuNfSOJlQHJahe5LhGlAvyBcNfgCbUBW/v7hfVJwQH1hagXUEXJAeQcBEwHDdUA= - + - 6JyFRKyAjkVkrZ1EAqOfRDOOGEYopKtEkLEUR7Iyn0TR1/hENDi0RFSt8URKdHlFWVoVRW9CMEVy7RhFX1qqRB9PDkYhQBJFY++iRGGvtUS7ocJF2lYOR0ZTGEZBzpVEIgSNRR2M1EUMxwpFy9XAROnzBUX3+cJGeK2aRNGvrkTWsnRFUNQgRZym5ERohKVE2CCORYilBkbQQGxFxrKrRN8uiEQNVbdEckcpRrsuz0T5eaVEP9m5RE1Om0S0fExFwzDwRp3nvURZkkhFB2v/RJeqFkVDxkNHVTrDRGCF50Q9UUNG65QJRizL+kUeJAVF5Bo5ReWji0TplERF7SonReO7sURgN7VF3dGGRXvumURbUw5FGlDrRAKkl0QOoZ5E9H6QRbxDnUSVrrREgnEGRnbVhESD5gNFuQPHRNj97kT3LHJGxbHJROBX1ESkwGZFLdWbRC0R/UR1Ap5EQXumRFpv0ERqt7hEMKbDRFaJbkV5rlVFaBH1ROwX3ERsdJpFJQw8R4W4j0Wqr0BFIfW7RcHYo0TEzF1F/C4JRavlsUQzQPZEWWbhRBxLD0XuwKFE6xLiRO/tCUWXeOpE7J3uRBfb9US8Ta1EdcUVRf/vwkQpyspFeLaiRGW5bUZgX7BEE5wdRWDobkWmnxRFzMSTRFDTt0Rs8tpE8egkRVjCtkRM6gdFuQfBRElhKUYtDMVEETCXRWYlzkQQXQhG34IuRQbJE0VXlhVFEcunRHF3lURUSrdEHLG0RK1Ki0TRrulEdQigRWIgukRhmCJFrsiVROgFzEQdR+NFtgt/Rk6Z20brgp1Fpe2VRKgHu0TPIbhF3TAjRSB0rUSeF7ZELnBxRfnclURztR1Gq/P/RDmcuUSmiGVGkRYWRUasMEWd8bJF4jyJRaUdEEW7KqtENC5eRRbfrkSyY65EL3q6RC9JU0Z8ol1GfQvARt6sIUafFwxGmvP/RKi9HUXGpSVFWVuwRIXOqkQp+95HE9EIRQmnukY6HMpGMS6XRdOhiUZ6bwhFeU5ARfyd+UTSbllFMQ5URbS3uUYThqtEcNBRRSljCEW6YqZE2MASRTEWnEQ1eMBEUUKURN/TAkXD2dhEzf5PRfFR00S+gedElIkaRoXLkEUa9ThGj4sERamCB0ZfSPtEG0ZuRXcjDkWVJj9J08ujRAXjgkXk+UFIZrGeRAhG5kQwXo9GROweRbeKCUUr0FpFEoKSRG4HV0U4DO5F6mC7RIq1q0QfjKNED8HPRFlUDEXe5mFFu5y/RKG4o0bUxARGDg/ERIMrIkVR7L1Fw4zcRHVhzkULrMlExD5eRvcmxEd9nApFL58VRaNPxEbfloBF9UjJRAIZAUVT6xtFX010RZQxLEXb6aRFbnfxRMidxUTis9dE0ashRQYXgEVuMAtJ7YYhRQ3guUj9yDpIcdQdR7LzskUR/NlEr17HRAfnAUY5/yhFGoi8RIS8L0Vn4QxFRv/TRMYuJkWCNQpIONBoR/R6qUTpVxxG/uYeRecho0S9ld1EsBF9Rv16NUYLq+lEYBCbRQUGk0X4uLJFl3i+RLUloESl2DtFm3vSRCiGgEWqsthE2ZCORlu88UV6FtNHnvX4RAnxCUWGONxGtCL8RGTOpEa0BUtFPdCqRMQk3UVJZMRE4AW8RBwypERXq85ESO4QRR3p2ETeRoZEdJKtR2282UQP7BFHnfnQRUW8oEQL7L9FE4C5RGDeGUbs/KJEmZQfRY4m/0Q6t05FsvoBRXbWXUYW9RNGEeI7RSPf8US2tNNEKKaLRNJ9J0WWZohGJvfZRQ/6uURvFY1Hg+djR5KLzEaozNNFLRHIRIN39UTScztHS+eyREgzrUZfcdJF/8tNRXwm00Q0x5dEFYkNRbfsYkX2pt5EV5GXROXogUivNedHsa4RRTJf5kTZSptE6zuBR/JhUEYzGbZF/nanRHoMIkbhwDBFkMCHRX39zkT2fS1FQzvOROhTLEVwAq5EY9+URFGmJEZ3ewpFoLiORIN8l0Ruxd1EofamRDDWqEXfSWdGsi3YRbzVLEUjgqdGYKo8RdyQh0VnCsZEgXCmRd7JykW1LkhF5LTARDdeGEUKFwFFOWcMRTSQjEVQ77xEdEOQREJrV0V6dxJJjcLuROjam0gkFw5IX+vFRvSreUXX+tdE5swqRoiNZEUkAC5FJgieRHbRFEUFPRFIrwaVRwTDkkRzyCdHsSi0RQCmOEbJcxxFo+R1RdPik0R4QAVILdvXRDLVfkd5nBhHBSmNRVAzHUbqXUJFAnZZRcbWu0SaA8VEmv1yR7+4Eken0CRGIAkTRbWjt0X9SaRE3KgkRdlLpkQ6ojhFPAVnRYb4uESKJilHGgCjRp8ONEYji4FFgGOJRQ6N50R4mQtHw9aGRhiuIUY9cHtFkvayRFeyxUQ8yQRFwpJDRcQ9v0TXdzZFAxatRNPDaEXOmvtE999ORhXR5EVBAHVF+231RHeTHUUqDw1Fg74IRoXqhUVkB0FFTPCyRLgMpEQGV51EJmOjRaW0Q0U= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - hluqHW/BckBc02frT8JyQHxChPanwnJA6n2sfeTCckCeJo2vO8NyQAnumE3ExHJA0ainoEPSckAmbt9Rd9NyQK2+T3pi1HJAILOldc7fckA669lcuuByQLAZP4Y54nJA+un+3lDickAulv/Xj+JyQA4j7sq/4nJA6WwvdCXjckCdsoH7yfFyQO509T188nJAF1TfMLfzckBTnAvyovRyQNjggIPC/3JApghH30QAc0AhK7vY9wBzQLH/xjFMAXNAdrBBiI0Bc0Bw6FDm0AJzQOPkBM/6A3NAiKgpHFAQc0Ak6b3/ChJzQFqVITe9EnNAl5PlgPcTc0Digd38BhRzQL7JYrpNFHNAcxeeXfUXc0AHgtUAUx1zQE5k4Ux5H3NAEUMJe6Ugc0CdyOwNOSFzQNaOJmBkIXNANgGkbXoic0Bo6TJ/ySJzQIxSKrU4JHNAGkAKe88kc0CMEPRkSDFzQFZxApfOMnNAY3oocA4zc0Dazkw3pDNzQFFJb97kQHNAAkm24nhBc0AA6ROBekRzQONiDAabUXNAtii82RBSc0A8R2J2pFNzQIazq8mGVHNASNWNYItgc0BkqcFqOWNzQOq1uHRnY3NAjJE7oM5jc0CHlldbUXJzQLhBt8hmcnNAOhDPO7Z0c0Cmzng9THVzQAbxSf94gHNAereMYqSAc0CCmOXax4FzQCheex5dgnNA4Om6vw+Ec0AaHbI6hpBzQE2sIkZNknNAJGDtq8uTc0BhUrjfYZRzQGF7Fx/4lHNArGFQzbigc0DEqGnl5qBzQM6uLOtaonNAsDuEOeaic0AgmrOJBKVzQG9FIN3JsHNAL31K1NSwc0BcCdCtt7NzQIjHVJ8MtHNAUKfh8PfAc0DOC5lM0MJzQNbo9qwmw3NA+rt/hMPDc0C4AMvzKshzQCAiVGGEzXNAGbdVcNfRc0DJtETbvNJzQHDDuJ/403NAYD+exOLUc0CGq320pOBzQIy4zkY44XNA2h3KJ/Lkc0A49kz2N/RzQMjSDu2M9HNAVOG5S+IAdEBeAbr7eAF0QHTWFo+mAXRAREk5tk0TdEAV6rjjSiB0QIIpXqW4IXRA4K3kobokdECKhtTx3U10QKlZAuNiVHRAxgIZb/lUdEBkXaU1i1V0QGrqHqa4YHRAYqDxqwhidEA+ujTvUWJ0QBqVu6hOZHRA56884iJwdEBY/BJRQXF0QHSOT8I5c3RAgH8eKzh1dEAYZ7fr+IB0QN3WWIpOgXRArwWhLrSBdEDAj8xLFpB0QB6vhw6joHRAVkTqcdCgdEAysz50N6F0QDzqDSm5onRASka8NdKidEBiaUgnEKN0QPIF0vZno3RA41JlgwmwdEBJUDXuxLB0QDCvjmrkwHRAhGb4kSHEdEBkXIPKucR0QGDATHX8znRAVG0Th+HTdEA6XfXnztR0QPMK25u44XRA/PMy+03ldEAY8OH+jPN0QKA3jZKjAHVAfnuw02MBdUBURdR0XQJ1QKm8C7OcA3VAhA8QBzsSdUBVfftJaxJ1QPZ1d8EkFHVA00ZqZZ0idUDacf0jSyN1QAwtqHbMNXVA3HBbt/hPdUDsS3oYg1F1QGw6hxZPVHVADKMJcnhVdUDd8XMHOWF1QE9Xt/dmY3VA1KJL7HhydUC4jqeSjXR1QGvpm7ytgXVAmLZKJg6DdUCKTDPTpoN1QGy4maubhHVAH68CLGmTdUCT2tf8k6B1QFpyRVtco3VAWtNTzwOzdUB5SIRYZMF1QP7tdXT5wXVAPo2Pe83TdUAXrjXN5N91QJhy1fUP4XVAeBPHSAjidUCgbjoTSAJ2QKgdruvRA3ZA0JVQYAETdkA+oZZ5ThR2QNw1SSgMFnZA+M5QqwgbdkB4nPW7iCJ2QHyf6quQJHZACEVMR0srdkAQ1NPpHzF2QLtV4LBSM3ZACCDzw5kzdkBaXRNQnjR2QIYtvl8dQXZAUFcYyXpEdkAOJkQMy1B2QOeFv6YRUXZASLVSo81UdkCVBxSMy2J2QIBwQxpQY3ZAYpRmQbZjdkDc7XCT22R2QLpWubSRg3ZA/ig5G/iSdkBoR7HBnpN2QGmkrT7BsnZAKBgSz3uzdkBTeFgxDbR2QAg9GdbTuHZAPBdz7jLFdkB8Joumz852QJl7qnyA0HZAoHNQgj3SdkByyMiuCvN2QFi/0haS83ZASS3x2TMCd0BYlkt9UA13QJi/8NsBEndAZx2C5ZASd0BeD8xC6hd3QBpODHpDHXdALKVZow8id0B1zGlydCJ3QPh6xDkNNXdAfIrCriQ+d0CIXS1GnUF3QCzcCygbRXdAdjBD3UpRd0D6o6VCklF3QKqJ11MqVXdATCrwvo9hd0DeCtfGJm93QG5M1oTccHdADqoaSotxd0Bo80RC/HN3QCuTF0aQdHdAzofrOHmCd0AFfVIHCoR3QJjB5h4HkndAnFWbl02Ud0Ao7I6QaJ13QICxnhCatHdA7jvpRszdd0BcKIvS7OB3QKDWUHuQ43dAYFVpc5vrd0AofuU7bu13QKripr5S8ndALo7Jvcjyd0Cmflq0qQF4QFfTqRtuInhAOM36lqIkeEAU5YURfTJ4QKSwyMcOQnhA1nM9VBFEeEAL6T6xekV4QNXZuH3LUXhAMJCtu5RSeECSyNKziFV4QKdB9kXvV3hA1uq6XTddeEDsMTlS+mB4QG8PRPC3YXhA9J0ZRVhyeEBRNCyKInR4QEJHZsGLdHhAIrqI4u50eEB6H6brpIF4QCwk7POZhHhA7owtcJiReEAuZ3cwqJR4QIy9fkxro3hAahcK5tDAeEBCCPbeBsV4QPWJ8xG40nhAfPrE47fUeECCYuTB69x4QIT02qRL4nhAK0zhPefieED/8iK+7up4QBLV6UMC9HhABIWWpYz1eEA1Q5gBnAV5QPevnnTTIXlA4iV4+PtDeUC/AQoJzVR5QKg6jKzaZHlAFkNuOUNzeUBk+eDycY15QGjyCmTLknlA1MMqDRGYeUB/FAZIwLJ5QKMBrnpC1HlAqIV/hkv7eUCC2DfEUwN6QP9OiB02I3pA+OlEg0EyekA0TsH7DDV6QMA9HaxPQnpAu0SIJOdDekDQ5Hz2GkV6QEaSTAzPS3pAvOU3tfJTekC2Unj3KFV6QIoI4NOIgXpAZLC99Z2YekAbJSQX4p16QLRruW1Co3pAynmIDA62ekB3lNioLMN6QGDzfJwaxnpAlF84cUHOekAK8E+wZ+F6QC9s7Kk57npANgAKnxfxekDgQWNgHvN6QA7RbC9K83pA/pbE43/zekD2VCzZovh6QBiz+Jf3/XpAeo2Zl04De0A0yiJ/ogh7QLaalecpDntAEBx6j0wVe0C8Kwa4WiV7QLz96g9SMHtAnjzA6xFAe0Cz4hcIl0h7QGv/P6BeUntAzELtACOVe0BWqx9pYbt7QLtH3Ddpw3tAa3XRvHjGe0Ai09i4bMt7QEjVQ0pv03tAstN2PYz1e0AjxMXa2QF8QN5+gzmaBXxA0uvy2dARfEBqaQQmzkF8QJK9MBrcUXxALggHDd+bfEBsSoGZ96R8QIrvwPq/snxAOEoWjhe0fEBfLDRbH7x8QGKYKK4Z03xAHYME9CDbfED2W/ENWOJ8QBodRcEm43xAVoSEalvrfEBpb9v0FPJ8QD78ERlV8nxA5ljPGHTyfEA+SxQbAQJ9QGrPG4pLAn1A5sstamENfUDOCqcYRRJ9QKAFjyI9In1AVlNghC+kfUAao3WeOKx9QMi7byUtw31AxPIPsNjifUDGRxAMh+t9QNkLqp2R9X1AgkaomJ4FfkBh92pWk1N+QChdGBCOVX5AcrZ46ztzfkAiFT575ZB+QC4PPLj+un5AfMudosv7fkCMMH12HQB/QCyP3+XRA39ACox3hroLf0AfNTXw2wt/QB0mYjXhE39AhLzhcuEff0AYnJzLuHF/QOypmhu0gX9AR+QilqKDf0DI8rRzY5F/QHxgsLKWk39AnNXFhVyhf0BQyG1UVrF/QMQGvCa5AYBA4gKhrrwFgEC93bf6gxGAQDBSx64wFIBA8kxGCdwWgEDCXK6U6C+AQGi6j5n2SIBA8AhD8eZQgEBuOgEUFFGAQHqFoSMPWYBAL88kNgxhgEDK/s4KxmaAQE6qt3VyaYBASs5SzR1sgEDECiLhxW6AQIM6YIoob4BA+miWGXVxgEDUWCRpsHGAQKT/Q16zdYBAFSrNibd5gEBbvNP1HY+AQKAhzqmGqYBAGrIWXdGugEAi0uNdfbGAQA5Q2h0IsoBAhbtborWygECH5fGRUsGAQJA5mLlTyYBA9JcAXajMgECR3EnRVM+AQHdv9u8s0YBAeObjvUzRgEBNjaecAtKAQM8txpxJ2YBAWArERUThgEAZcphrVOGAQLrQmh5L74BAph2oxT7zgEAgrur6P/+AQO7ih4Vn/4BALBxbdD8HgUBybMVraAmBQOhxGDIUDIFADiGp8FIOgUBToDyNug6BQMQacXI9D4FAPohNumcRgUAKtNssVhKBQPXmQ8I0H4FAEKcWxDYngUC0GsLg7i2BQFh9wE7oLoFAvIu3VPAugUBSZwkf5i+BQG7InQi9MYFAnpCUJFRFgUAs+/1T80WBQLkzqRdYSYFAObkr6ONJgUDwPrj15k2BQEynaMSqVIFAYC5fPlxYgUDgsS+WZWCBQCQzHMtTaIFA0X8XtVWPgUB+f0XRkpGBQLeAG3+VlYFAXHh/hVWXgUD2I3JBqZmBQPtakwNUn4FAQ0u9juehgUCWJAxHbaiBQOBOGLtKr4FAAf7XQAWygUDGrDyDk7WBQLZs03cFzoFAGby9AAjSgUD8KUr+fdOBQLARY2UJ1oFAeLOnFwPagUC2elQPCN6BQCzXb5PYGIJAvsdLxRQagkB8iXcO1iCCQCT7vNPQKIJAXl8PAqIpgkAtVfbiUzaCQNytEvvmOYJAzOpGUkOJgkCVB5f+442CQFCUTpxDkYJAvLfskjyZgkCRioUJD6GCQCRDEm87oYJAYmOV7Q2pgkBdRezmNKmCQLSMSq15EYNA6nav73kZg0Aqqz00cyGDQPB66OWLIYNAVqh9Pw4mg0Cu4tgWcSmDQCji4ZQQKoNACM7uKGoxg0B+7nXPgTGDQG6OCZOU+INAW7p2qnAyhEAa2rw3dDaEQM8GqKJ5OoRAOFuLd20+hEAMsCFu/2iEQDKTSrT+cIRAXmwGhfd4hEC0DIu2KbKEQAjxHCwZzYRAPFLopMbPhEBLR4BMatmEQLy8UZ9q4YRAAMXZ12LphEDKKuQnNvGEQLoBY8th8YRAg+v4FjP5hEBOMuvdWvmEQNR5p8YtAYVArPXapaBhhUC2va++92KFQCp7tqagaYVA3Et9LplxhUBUB3kQtnOFQFYab/WbeYVA4Z3ceZfyhUAQ0hi5mZKGQAB9fwvvmoZA9Fnb/Sa5hkBK80wrltKGQLkqi3CY1oZAFM2hypAph0CeL5eIkTGHQOylRaqLOYdAjkyiHoxBh0AWH8bCx7GHQARf3gjJuYdAkl86psHBh0D1fwSIv8mHQPOuBzgklohADFAznyeaiEDAzQ+NKJ6IQFyKLGqtyohA + NrgMGZxjYkCmvpxNHKRoQMZtNYzMxW5AGrpiYCaDckBxDmdlvnN1QA== - + - 4FGRRdPZrERenZ5EhqmpRFkaIUYlmAVF9eoCR08g5kTz6YhEm3sMRTdHtUTvQSVF9n+pRaXIi0UYp4RE9ACURId2L0X851VFNHe4RAfS7URc3P1ELIsLRpiZhUR9WNlEgxi7RD900UWmbSNH4xutRAeeq0QyhYVGPvyuRQpIgkW3MJ9EPLDHRbs64kT7E+9EuIkIRS8fzUb5GqtEJxCrRIx5ykQXKYZEp7i6RV0k50TTGcVEGkmgRDTfrkSXcNpEyvrURR3XMkZ97n1EfJOQRImvdkXowd1ERHTQRHHWykTrqKFFUAiYRDXxDkWlEZJE2/TQRCWhQUXb9AZHVCwWRXmltEQG/OtEZhmTRM5+W0Xgll5HgQm2RMJ3A0VrCIJGcVQNRvCyhURpRBFGLCogRQbuUUUCDLhEPAq7RFcEh0Urzg1Fs24FRZzQo0XMYYxFt7eURMuqSkUNvJ9EUN4rRVVOr0TnpMlEI5eqRV3U70RMnhNG3hKLRKp0PkW4PaxERWvjRBqUoUboGUZFmzNiRd3U+kSIRgtFMfORRCLy00QhTL5EBJmnRNKhHUW0tqJF4duKRSCZ7kTkmdFEuYKbRc5JXkd4FYhFROC/ROLaZUXYLA9GhavLRKavxEXgSZNEx7KoRBhIm0QXRwdFoK8FRbPmAEV50qpE+MjZRMzOmkRraZFEK/WWROUQ+UQbp/NEzDgRRemL9UTSNDVFB+a9RAwdv0Ve1p1ECBu1RFTwZEaajZ1ELXgDRZQ1D0UNzjlFmviZRUPyPUXVLm1FTAqZRAh1l0RHGMRE0Y/rRNkeCUXiJhBFD8waRRVEOEaUxNpFg9WWRNIQB0ZnLu9EuYyfRDTrpERWJvhEygqPROrSj0SkVwJF3/T2RA0SokTEf8dEoBo0RckVAUZrQLhEvNWLRfsAuUS3HclEET2MRArqC0WqWxtGwuePRoXfyEbfSqxFdoqkRE5hykQgHq5FoMWuRbtZrUSqT4JF9oRVRmXIn0Q5TxxF/vyuRANt4UR7E1xGVX3ZREEuB0X4UB9F4jYaRa79kEWGphRFe2mzROsrJEVWepBEt8m6RMzwDkXyWg9F2hrdRDDjbUa1FqBG0WnYRve6J0aonwFFdKNRRdhc5ETZ7flHens/RVKt10ZgQdhGv6GHRbLqj0a9WAhF/S8eRcgmc0UYMxVFffKQRFj4a0ZIcKBEdDwDRcjPMEWEaLZEEdsfRWtB8kRJXK1EJX4JRQsEw0RDOChFVVWfRC9nH0WTJcZEe+umRESyx0V2WqBFew6fRA5OjkRnT9xEhSqkRMnYUUZ4O5tFiOYdRgRsIEWhxRlGLmUeRerlvUQKMQdFJnX/RNI3/kQJXFVJcHufRA8QT0W7WVVIpJMtRTWhr0a6kTNFlR/JRKyOmkRcUsJExs5PRZxyj0QogrFEd2/ERPh3vkQAp7dFpBQKRsyk1ER9OtVEWwIWRVmss0Wo0o1ERp2pRHSNnEYTITxGxsf0RIy1jkU3QexF0XkPRsD7A0Xg3pFETmTqRosnyEeF2IVFU0wYRSgUykaJ3JlF+RODRLeNJ0X3kQdFaM+bRJci80QQ9ZtEO4nxRdCToURnaNFEVi6QRAn9yESm1rFEc90CRQR7hkU2GgFJevFGRatDokgaNipIHknyRhD7tEXGMsVEERAURlPPOkV+BQBFWhdSRVrzcEUWv7hEmSlVRRJjtUcOdg5Ha42sRNPfCkYRbs5EwlylRkTVVEYfqrtF4NWnRWpip0Vzd5FEcpG6ROv+mUTgHLJEoXCqRVPi+ES68WFGIeiXRV8N5kcRB4FEF2+RRNX4O0VmH/lGKz50RaAXTkWpSZ9GfoKtRDl+QEXRtMREOoCGRRVL2kTmL6BE1LWpRJeJikQB7a5EmDWVRPoI4kSBwJdEKv2NRK2+r0TzPK9EPKSkR5aftETXjwFHHpYbRaIhpkWgisxEo3qKREeqf0URGZ1EJ+q0RIGZFEZYrpdELJJkRRgUXEUriJFFeIcrRTAxhUYR0g5GnXixRc1uvUSU78hEsEg1RceegkbMdvBFhN+VRCNAhEdW6TlHvU1qRvvBC0YK8NZEXif3REt9w0cDqDxHTo88Rm7VZUXy1ZxEstXmRVmMMUVt0ZREFBy4RGsLgEhAseRHerusRG45xER+7MtErfCJR6odkUSq4VhGDq+YRTG7jkQTmYpEOSvRRJYfDka8QIJEiXhNRRHSCEVPSatEje53RScNuESAZzdFljWeRPk1BkX1YS5GXb4CRW6AnkQYzYZEWHSHRM5kGUWD2ANFptsSRXdCd0W2/85EACxKRgoc9kU9l+dEpOODRsga00SYnHxFDp/KReelnUX/v/1EEuUmRTYhn0ST5pFELNlhRQcfCEW50W9FOu3ERIhGDUVzFrhIFd5GSHpeqEQUplVHiycxRnB2IEWVeUxGv174RMJBcEXxiwtFbRzGRLxDxkSVCQVFW1DQR2m/mkT4Pz1H3LDyRmMs0EWDvAZG27bfRPobV0VtC9dHDOlVR62v80bZAR1FmIOaRcAXEEZrd8dEBmgXReYfo0SyOq1Ea+5oRyik/0aouehFmxTURCdl10VdLhVFsiv/RNvfo0RKES5FbokzRbOqDUf03YdGhI0KRhpJj0Ue1mZFyYflRJnO3kRa9M5ERNIKR2CDrUQv6HJGYbkHRtMArURCaRdFKwqnRCGwTkXZv6BEHirvRNEa8kTqsvpEkq46RhVlwEVtqnhFzjn0RLJyA0YjcpFFa4ZmRXfduERKOmhF6Jr2RB6wy0SWZrJE + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + - - - - - - wITs0W7BckAAPYx5pcJyQMDo9Xg7w3JAuxw5z8TEckDDZcaJWcVyQK00aW5D0nJAOisjpEnTckCsZQbVddNyQKz6R2vO33JAaOAua7jgckAqMS9yUOJyQBQwRHCP4nJARivKh8rxckAAEafyevJyQGo4Odm483JA4+g0jgv0ckAzVtIXwv9yQGwYCa5EAHNApKkeBfYAc0C+tjDpHgFzQGCzQ1RLAXNADlaOG40Bc0BYQUw3OwJzQIqDPC/PAnNAhMXHmvoDc0C70oBoCBJzQO7IPeO8EnNA8k8qjgYUc0AJo1299BdzQKiG2adQHXNA2tzfDnkfc0CJ41lcpCBzQAFxhDc5IXNAgCl1Z8sic0C0kO6jDiNzQLzJBFI6JHNACq+P2M4kc0C+9NSCRzFzQOLPko8kMnNAoHKKxs0yc0DFj3axuj9zQBUjHx7jQHNAevnemnhBc0CFf/wFekRzQDpYW3SaUXNAMwSCywRTc0CIcksHo1NzQP2dUpeHVHNAWGk3lYpgc0A2J+VoOmNzQJIHy3VnY3NABE7xi89jc0AK5nGKT3JzQD4yvuu2dHNALDFfW0x1c0AG+RgseYBzQBy/38AMgXNARHFAYV2Cc0DjLQ/kDoRzQCES88uHkHNAUHXPa02Sc0BEEV4kY5RzQF5z5oT3lHNAGolBvLigc0C2jN0KWqJzQMUk9VrnonNAc5GnwwWlc0B+kc291LBzQE75Qax8snNAWbEgDxCzc0AcymAatrNzQOYgEr8MtHNAGiZ0WKK0c0AivkGcz8JzQMTHVDwnw3NAFmyDdyzIc0COf0r/hs1zQPSdslHY0XNAZmx1T9zSc0CK74DB+NNzQMijFr/i1HNAp7HgPTjhc0CYDTVGeeJzQKwYTifx5HNAkZEFLjj0c0Cs/WDq4wB0QKpaSeh4AXRANWb1o6cBdEDW5lgpTBN0QKpMM4x2FHRAXLM0hEkgdECW4E2WuCF0QLj13Uu6JHRAHlH/0FUwdEC31jaZuDJ0QDL1IPv3VHRACIh35opVdEDio/R+uGB0QFKxqNsHYnRAkLtfxU9kdEAkagmwInB0QP4FpDhBcXRAFvrbPcxxdEDSMc3+OHN0QDIt7C5qgHRAOnwjfPeAdECcicabToF0QE4jz0oWkHRA72Joms2gdEBkZ/EFuaJ0QFaXCoTQonRADShgJQ+jdEBSccYhZaN0QK7v3VdipXRA6ZW6iAuwdEBhspkGwrB0QBr58bx2wXRAgIDBM+rBdEC6WiOKfMR0QMzwI9q4xHRAzHB+DfzOdEAeX4/R4dN0QF494CrO1HRAwYPejrnhdEDaVRFTUOV0QMSA01G+8HRA4DDsR0zzdEB2RRWyjPN0QBpb4hZiAXVAWOmwX10CdUBhCHpUmgN1QPhcts6YEHVAzn4G+DsSdUAEiPbUahJ1QEhd8qUjFHVAxKKCsZ0idUAsBT+tSiN1QGiBtzPNNXVAOd4vALNBdUC84GeAjkJ1QPoHxlXyT3VACHwWRoFRdUAIvZiH5FJ1QG7bVBF3VXVAuBQH6wpgdUAKGeslOGF1QBi9aH93cnVAarAcPo10dUDWN5Vtd4F1QFX/RtStgXVALSkbABKDdUDW9X1VpoN1QOQ29seahHVAyiGXqrqRdUAF74tKbJN1QHJOQheyk3VADiqNvjyYdUA6dqMpkaB1QDtn1+y3oXVAUPpIwlyjdUAmW/kZ6LJ1QMpXWNLFtHVAjjPfCWPBdUC5tdr3+cF1QCaoyKnN03VAs+1c+AfidUBDMjUqSAJ2QJg5KOjQA3ZAMNfEWFQSdkCs84I0ABN2QHFDH4dLFHZApvOECQwWdkCAw5vqCBt2QPy/6VKHInZARtZTKJAkdkDzkbc2Syt2QKB+UrwfMXZAccTE/FEzdkCWDdy1nTR2QMYSrGQdQXZAoDCf3g9DdkDOuq/keUR2QCpoIU/LUHZAUmRkxhFRdkC0+BMFzVR2QAgmf63MYnZA2NSzAlFjdkAPEbBzuGN2QHZYez3aZHZAD7H8LxJydkBAtsVTkYN2QBKNjq2fk3ZAIEwSf7awdkDtBWehwrJ2QBQ+gGN4s3ZALU3GUQy0dkBV99wh0bh2QMatl5qtvHZAu365JcDAdkAmeFmGHcR2QC0IU9vOznZAYysXBD/SdkC4TEZ8e+B2QAT8LlLy4XZALBO6BQrzdkA8YQQYkfN2QKRyxRU1AndAc+Jv2lANd0CYhHNlARJ3QM40WIaQEndAMHevdagSd0DY5owA6hd3QN4nla0OIndA2yVw23kid0BeyGYkDTV3QAMU6fclPndAfmk/XJ1Bd0Bd0JB150J3QO7o2o4bRXdAjF7DHkpRd0BerQCdklF3QIhJMe0pVXdATixwQ49hd0BsVZ1kPGN3QJQYt1Inb3dAYqiuv9twd0AIZ7f9+3N3QElWCr94gndAYShfIgqEd0DsNC2rB5J3QHhUkmNonXdAk9Wvz8Gid0AxF2M2mrR3QPQscOCN1ndAWYQCGMzdd0D8Vp92JuN3QBCs41+R43dA2Lfngpjrd0DA3Pembu13QJ5y74NR8ndAOl7PyqkBeECWeomNuBF4QPzepi1uInhARgi/CYsjeEAGNk1upSR4QGBvlkEMQnhAdBGXb3pFeEAAHrEBy1F4QKKVntWUUnhAOMNeYIdVeEDMwLpd7Vd4QDcAyg1KXXhAdc0hx/hgeEBvAfaJt2F4QBLWCWq3YnhAcl1CZllyeEBuyRD3N3R4QCo5cp+LdHhALi0N1Lp0eEC6brLg2XR4QDRHxZekgXhA0DWdqpmEeEBqvcIPmJF4QPfLQMCnlHhAmr2sNmqjeEBE8gMdz8B4QCgT0srzwXhAUiY0RrjSeECGNdAWt9R4QKZd/SHp4nhARggzFwP0eEBq/qIajPV4QH5PFWLB/nhAAJ6m79QheUBoh0JF/EN5QOdP28LNVHlAYviHivaBeUDsdszYcI15QFQXPxHMknlAuE6OZg+YeUDsEDiDKJh5QDoQs1/BsnlAdl1kbELUeUA+woqtzdV5QMn+xmdQ5HlAxHT1NEHweUDIKxpOS/t5QNLHc7tSA3pAQJ1fXlkLekA6/A4YOSN6QIwSr81BMnpAYhCJrQw1ekCYca8rTkJ6QC3ongDpQ3pAjkaWhRpFekCoV4hPzkt6QIgVz6bVU3pAfCL2jyhVekDQAPWWi4F6QNwfeXc9k3pAY5+TDOadekDGdkQFDrZ6QOxFrZscxnpAFHmg12jhekDlJ38YN+56QIgWM6sX8XpAGRtPx1zxekAMZgUAFPN6QPvf/AVK83pAIL/wgaL4ekASnTq82Ph6QHpR7oH3/XpAlhH4KU4De0CFhDV6oQh7QMKYnp8qDntAMLzwUkwVe0AC37HBtyB7QMOnUBpbJXtAsIGRcUwre0BviCqbVjB7QKghxxERQHtA4p/Mo5hIe0AU7AMp8017QKifmC8hlXtAr4OSFWG7e0DeUCGbaMN7QKGOzOZuy3tAbiXscKvRe0BdjMizctN7QN4Iqnca83tAgM7VOIz1e0DOG+nH2QF8QJpTIcb4AXxAiKIqp5kFfECeqjg6iRF8QJbIpGfSEXxAJs8SUs1BfEAhWTSyDWJ8QEQ3VB7CsnxAGAkuNRm0fEBamlDbHrx8QEZ0T67RwnxAaOONABnTfEC4BNgnzNV8QJSQ2/Ee23xAvrSUpFfifEAcvRhGFON8QLpHSKgT8nxAFGSOJVXyfECQpScpAQJ9QFa7FbFKAn1Arq1Sz0YSfUBYvbbvPSJ9QNYMwoWgMX1AxDa8P0xTfUBq1cdeipt9QJza4O4spH1AUPv5YY/1fUAmjJvoNx9+QBTZXwBBP35ATGnWl2hTfkDpuJCAjVV+QHldGrvZb35ARJcUs/26fkCmdcM8y/t+QIsW6rvU/35AoCQQBCMAf0CW8pqG0gN/QKRUqLq5C39AtoKmkNoLf0C2U1Lg4xN/QCdQ0E64cX9AUykmTLGBf0BOOo5vY5F/QN64QspfoX9APv1OPlexf0DyItiBuQGAQL8xDmG8BYBA+gQwaIMRgEAyKAl5MBSAQAZ4aHjdFoBAGD8vioYZgECa2I5f1j6AQJAXKkH0SIBAp33+9udQgEDwQRlbFFGAQLmYbyjpWIBAKaOoDg9ZgECuR3v3SVqAQI6rOx/GZoBAckqYVXJpgED27SAmHWyAQI5yoi3FboBAvrQrtCdvgEA0HJC1cnGAQGChtzCwcYBAZm2uG7N1gECiHPUbt3mAQBvPAkS8fYBANq/w9R2PgEAcyPxibJGAQESpAUEdl4BAtAv4mzKegEBgPhQWhqmAQPlkoKvRroBAlOTrHn6xgEDWoF17s7KAQC6oBiEltIBAED1saFLBgEBKOQCAU8mAQLJ4iY2ozIBAyJBRY6DNgEBuKvelK9GAQJPeyK1M0YBA3aUzg2DRgEBsuN7ogtGAQJUXCreB1YBA1PlgukrZgECWUhv9Q+GAQCwMR35K74BA7ExQkEDzgEC0dJ5WP/+AQMSM77dAB4FAphgG/2gJgUCumzI4FAyBQEDo7ktTDoFA9b0pA8AOgUAwhqeePA+BQLZ5GyxWEoFAPOaTZOccgUCg4eesNB+BQMG6dMkzJ4FASgY7q+UrgUDIZAJJ5C2BQNkyHKrjL4FAcWxGNr0xgUBG08PonjmBQCgPyoZTRYFAvMeJ7vRFgUDwYAgzV0mBQCSdicHjSYFA3pBt51lNgUBdeOsU6E2BQADLD5AxUYFAi67BIOlRgUATS5QnXFiBQKwhMQN9XYFA3HRsjFNogUCE2OKb9YmBQAIhvCpWj4FAyyL5rpKRgUDYEyRtV5eBQPCoShjnoYFA/Q6EM26ogUAqgSRmSq+BQPS4X84GsoFA+oAv+pO1gUAeWzoKB7aBQOIZ5k0FzoFA2my/4wfSgUAQb/5yfdOBQG5psWIK1oFAat4wYwPagUACUI7tBt6BQGrEzKoDCYJAQ63uCtgYgkBA0G+XFhqCQIB9W7sYHoJA4urxHNcggkC6TZZR0SiCQKoFHeKhKYJAnLz6Fuk5gkBgTjG26T2CQDjQvYgQRoJAVNjNP5ZggkAUMaBbAnaCQHRHl1FDiYJA/akttkORgkAVRvcFPZmCQDrPTuIOoYJA4EjmxjuhgkD2uPzDDKmCQADFjjo0qYJAJGuZ0QexgkDiYZmUeRGDQLLVoPJ5GYNAUJUmIXMhg0CVTsKCDSaDQJicVnlyKYNAxPzY3Qwqg0AazmPYazGDQP7vSAtuOYNAnLvbs5T4g0D/TiL2cDKEQMwewn5zNoRAlA6buHY6hEAElZCBfT6EQEsLcRcAaYRAjqSr2/9whECISEF393iEQFhcksgXzYRAstUkScTPhEAB2FIdatmEQDY8e/Np4YRAXiHXgWPphECA70D0NfGEQGl4/oVi8YRAnJ7hwTX5hECySxvhWfmEQPpC4CQvAYVAAJT3c6BhhUB0v8Ug4mGFQMLlbfmfaYVACJVQuJhxhUAvKt6es3OFQOUTFBqZeYVAmaastZfyhUCAYLbnmJKGQDwII0+floZAhj/XYSe5hkA+Uh62lNKGQD7XCj2X1oZAwIHAcpEph0CqQTqzkTGHQHafRI6LOYdAaqnGy4hBh0CK6i0DGV6HQAymFPrylYdAmLSqwMexh0Do97nix7mHQK2fqQTAwYdAQd7AtsLJh0AKT+LUOxaIQPjJgwYklohA+hvwryaaiEBpaUFIrMqIQA== - - - - - - uq+SRT2LmERPdSBGAgeyRHgNsERo0fxGqv2KRKkJlkQam+1Eg4XBRNglOkUfhQZFO66ARXsUqERvqoZEQwuZRPvFuEQzmdtFsDSgRB7aW0QWs8hEwfWhRHnLY0RAfDZFDVbxRtargkRPqT9G8a6KRaR0zEVZUw5FTJXwRLTS8ERljMpG7LmuRM3Fu0Rlz4dEh5+XRd95CEXkM3ZEOrekRKsflURbJgNF2TqSRVbMEkYtUKNEEvxzROCDbEUtZwRFJWbCRKQd9ETWLIdFShKiRFEtwkRv+pNEG1PdRPCT/UYOAutEKOHoRHUKa0SC6UhFMPxHR3ORxESSB21GBeUWRpLr60XbiQdFVXAURWg0gERge2dEk4xdRJp5RUVGsyVFFvtoRLgZnEWZfmNFsGbWRD34hkTQuExFc7e9RJa0mUT2EYlF+T/MRWoceUR2F4FEhroKReCqpESe9ZtGSCCGRHyTdkWaJZ1EuQCXRFe3CUUxtH1E7F2ERNyldkSWZcNE0iuqRHUxpUVouGdF7i2sRD66sUUGpEdHpH9zRFiRikVKPX1EA8wJRTe790XtoIxFCtKNRJQKhERZlJxEpTwGRcZwlUQkxYBEDAqkREBRi0TO1rhEdb2GRGc8gET/mbZEngz7RBIpYURCAP9Ecf34RFSes0T0G4BEIpmGRElT4EVEs+pETnY5Ri5TwUTQ03ZEZjW/RJt8+kTm2fdEqJlqRclXb0XSNhhFmm68RN6clkQNupBEwD+FRL6ip0Rnjf5EimawRJp8+0SIFS5F6EjvRcXbzkQkhYNFq1HeRJ6sDEaZAMlEZ+hdRBsVkkREy5VEz5OvRIA8jUTN1b1EBIuvRI7lhUT1R7xEEiRuRIbjsESD2+tEvT/NRIZipUXd/+ZESlWQRE3nA0Wp/opElQmnRCBmj0SE9NNE41fBRSs2a0ZBqL1Gp0SURQhthURrF8FFjJWKRJ0FUUXcJI1E/UJVRVTiCUb9i4xEy49pRdpOikTtuo1E5pOHRJJ3LEbEAtdEBDeHRAoM60TWUphFa+45RWxVnESsLg1F2TubRHyDrkRTw1pFM2ufRGlId0Q/sqBEvMYLRVxfA0VaJK9EphaTRmGUj0bZ7pxGTSnmRVxVzkUnByFF9aV/RIPI5UeNjRNFXnDaRhSFtURYDbNGsYqORVZnfUbJCB1FtdY5RVBdyERB0UdFEN5YRUNaHkaNeqJE0ObFRN9swESQLBVFMhFcRNBKr0QvbXZEIpwCRee8PEUOuJBFNf2DRNmX2ETVk5xEackGRtEU40SjJjZF/xKdRMOph0Q+1JdEQ5ktRsMEnkWsQUBGU1gjRXx30EXsqNxE5wL7RGwFU0WhO3hE1KZuRIIC+ERJLT9JL8JiRdVO/URO1QBFshFPSBem1kR1cIdGhBK2RFlhuETCLm1E7hypRG0DXkXi+i9FcHegRe8xoEWDOf9EuG0RRRrKG0UA2GtFD0+hRGOWh0ayCBZGZlm8RNfn6ERiz4hFA6e+RfFouUQiC85EFrtwRLHLi0XWJadEFMqRRAcihUS9SmRHHXKsR1sS/kX69jRFtBGfRmtyQEXpNmtE/+glRSUkaEV208REG7uoROn/sUXQU5pECv+5RH853kSHwt5EW5DoRGrgikRAFdFI52iMSC9dzUSlLxRIMALqRqXVYEU6IulEboMoRivugUSjS6VEdsl5RIylbESHuRZFCOYkRVk/00SoVRVFzymPR3b4ukYea7hFvPeeRNvznUTkN+dEQqiBRlVsKkbazLNEDO+eRbJFhUQFYTBFLcfORS+ec0TDzZFE81uiRdWqBUWcimxEsSk3RmU/lUQ1u4ZF42HVR39hgUR1w+tEiI7BRlPGEUUmf5lG8DtnRfald0TSUWtESUhfRHqJnURavm1FbHjqRLqcgUS8Co5ED1BrROGppkQTNJdEKtLKRItOcUePlXFEmyrERJQ+vEa3vAtFiK+bRRX7pkRv2ntFEqrMRCITJUb3PixFJekVRX1y4UXfoZpFApdnRosoHUaz9VdFXfO4REYunUT6NL9EyrYXReOCbkYjKXtEvhmNRRhioUQ+mHhHgDwnRztPokbKOtZF65oURdNXSEVlLO9H67J6R/xFdUYaRTBFpAabRWTF3kQWw6tEbOKVRGw2wERKXcRF1jQhRb79mES9T7dEg7lXSDpByUdEBThFRe9xRDOB2EQkcl5HQ453Rd/Wg0S1x1NEzupKRoOkakVk4KdExZSMRIaBNUZSGiZF5YRdRSCMPkVsB4tFeZHdRM3TAkUhPhtFgYqFRCxHCEahJRBFtWSKRA88oESK93pEsmLXRLinzEQKRUVFPtaBRQaQ0URUxDZGasp1RC5lp0UDpFJEGwgaRYuwLEahPrBEtEgQRdXaa0S26ZlFLrCBRfgNs0RHPRhFB7/yRKDYUkVhlw9Fc7ijRBfRskQft5BIVoodSACEhETTHB1HkpAYRluY8ES51LRETxYtRine/kQv+gNFOsBNRZewM0Wj3QJFsUBQRWZ0bkRlj15EKjGDRI6Ra0SwqsdHNrIzR4Uk3EY4hL5FarDbRZ5nAEWz90NF0JSuRFSHw0c8pjxH6ErTRh5Xh0UMFRtG0f+eRJLeSEU+PHxEopaBRPsKI0cYmMpG+joARp5D3EQqDt1FPztFRSl4+ESSOupECUPCRDVVBkcmHoVGL6wmRlQRgkVmVGpFoHnmREkZlURG9qhEuaD9RvN01kQtXHNG5ZffRVRyqETp72lFF7rKRBVu3kSvbgpFTi7TRHtdEEU+dexEb40iRnJPs0XfaqhFvMC4RGOpikRrGKdERZ4hRo8ijEUsAjJF0aCERFiJkESFS2tFTZw9RYv0r0Q= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - lcxmaHrAckC3UGMKDcFyQADXpXluwXJA8H0V11HCckBahqrIpsJyQIV1gHHkwnJACg1bnjvDckBJE8YNxcRyQDvATIlbxXJArBEaRQHIckCivEJmQ9JyQPBOa0RH03JAlD0gUnfTckCKhF0tZdRyQNKwUz3O33JAtMD8qbfgckCLXxTAUOJyQCSB8C+Q4nJAPRL4wiTjckC60NgRyvFyQCpy2M988nJAcByKlLnzckAxtTYGoPRyQEvUBCrE/3JA0sys50QAc0Aa7A1I+QBzQF59GAGNAXNA2tQTXdACc0DyNY6y+gNzQMIl9egJEnNAxcceUncSc0DWyVTovBJzQPoo4bwEFHNAOgDYrfUXc0DcFzAyTx1zQBIRvmF4H3NAmL0VsLcfc0CcKip8pCBzQOAe3Uk5IXNAr+k9iGUhc0CQspQhzSJzQG44y8YPI3NAOBQ/KTokc0BOnChh0CRzQOd9hyJHMXNAYBT3Mbg/c0DwxyU54UBzQJQsFxJ4QXNAVjsUzXpEc0Akmm5XmlFzQE6RORgFU3NATEHFLqRTc0CJc/+MglRzQL4aoHGLYHNA8r1WwDhjc0CEuivtZmNzQKoRivlOcnNAdFSeG011c0Atz/nceIBzQH+t6iqkgHNAJP0+dQ6Bc0BS7ek3XoJzQFI+iRkOhHNAEGH0Q4eQc0DwIkc+TZJzQGivtejNk3NAgKyC2WGUc0C6ehN595RzQJ3b8Fe4oHNAwATvVFqic0A+bR3L5aJzQBWj1ZgEpXNA3iUOmbazc0AQw32PDbRzQFKUOj/4wHNA0MCRas/Cc0Dg2J8LJsNzQPz+wJQqyHNAtkM58tfRc0DY83juL9NzQFhl35ji1HNAziVnTD7gc0ASsKEgpOBzQG8QzQk54XNAwPMorGPhc0DAFLUdieFzQDW+3uNI8XNAAvDivrfyc0CnyCRuN/RzQNNS3Z3jAHRAgLV78HgBdEBpN/aIpQF0QIiMTRwOEXRAmN9EL4oRdEC+ROROTRN0QO7SeNtzFHRACv9SH00gdEA2q4P2ISF0QDj3Gm+4IXRANHrOaFIwdECmE2JoXDN0QLsvsA27NHRAfJADaVRAdED4GxgpO0N0QGKfqVT2VHRARwl4y4pVdEACUIMguGB0QAT0408IYnRAr002z1BidEBcFcMNUGR0QIyp7hMjcHRAPA2f0kBxdECm2ssvOXN0QP4LP4Y2dXRAEWh6cPiAdEDUVcrUToF0QLYyaSuygXRAOFeKvRaQdEAyu9hu0KB0QAbThmE3oXRAuWN5AbmidEDAhp2L0aJ0QAmHkQEPo3RAB5gGLmajdEAuaXRTCrB0QNfXz4dJsHRASOPGN8ewdEBcgkjR/7J0QDKKaTbkwHRAItZULXjBdEDSMQ3q6sF0QHwzD6C4wnRA+W18lSHEdEBd08Z2uMR0QIA1AG3+znRA8oqvOz3TdEBoCkE64tN0QFMrhunN1HRAG496DLjgdEDnSOnEJOF0QH4kvnO44XRAGpPzH0/ldEBq+PguwfB0QAbGGEqN83RAlPoQZXb0dEDakKKzUPt0QBuZMk+iAHVAJtMdUM0AdUD/MNR8YwF1QK/yPy9dAnVAcvITMpsDdUD5dVZ+mhB1QMe94iw8EnVAAgmbEWsSdUCsYQRGJBR1QJAbcFOcInVAiBXTyEojdUCOE0U9USt1QH7475TMNXVATEOclrRBdUDJ/hfaHlB1QDRpJY2BUXVAdLAUwHdVdUCYCgmEDWB1QBI0dx45YXVA/ESH6GNjdUANQnwxdnJ1QJgn/JCNdHVA6Beq6HeBdUAuwB2brYF1QPLp492lg3VAhqbN55yEdUCAvZSsbZJ1QC7LJgFrk3VAIOKO67OTdUDmtycxt6F1QBuet3Rbo3VA/5FNIASzdUCY/RCaxrR1QMStazdlwXVAb7SkvfjBdUA8uj/LN9N1QJskuEwP4XVAb6AVPAnidUAYLQmrOeV1QFzObDVJAnZAyFiwlc4DdkCCrWRKAhN2QCJmW4FMFHZAECqj9wwWdkBeUf4PiCJ2QB9QeVuQJHZAQJocxUordkAuZ/pZHzF2QMoQzvBSM3ZASqRAl5YzdkCqck7N4kB2QPTiDBkdQXZA4sNGZphCdkAwBMOBekR2QEp23FUTUXZAXW3vkM1UdkCE84F/IGF2QEauJDBSY3ZAfvyY4tpkdkD+KDJRE3J2QJL4vxNfc3ZAk+7o45GDdkBALRSN95J2QKio7caek3ZAWhzCvMCydkCUH9wteLN2QMoBtEINtHZApoXfidW4dkA7wxIOvsB2QFqXFzHPznZAhuLF8grzdkByTjFQkPN2QF5r988zAndAvSR1ahcDd0B0cta4jQx3QEx86NhQDXdA0Q/2ZwESd0BqYGVmkRJ3QMLWJRGpEndA4oj4AuoXd0Ceim/hCRh3QNrn24JFHXdARrFufg8id0CVp+yOdCJ3QHQeFJ6NIndAkKE6Jbokd0DS0o70DDV3QE4LpeMkPndAqqJSAJ1Bd0CsM0dPG0V3QCgivdVJUXdAKEEky5JRd0Bk/xfpKFV3QJiV2/CPYXdARYZgPzxjd0A1el4qJ293QFhQhffbcHdAOkRegIVxd0BGfLmm/HN3QFfC7haQdHdADpMSwr19d0CKO0ZteIJ3QPzLVD97g3dApkR37AuEd0ASyJTraJ13QLBVJmy3ondAIOsrYwqzd0CSQGbGm7R3QKSE7u7L3XdAvNIGeOvgd0DschA8JuN3QGLWPSKS43dA6hgFMYTod0AfMAinlut3QAEiVfKpAXhAMaXuxLUReEA3UHsybiJ4QHBGJ1ANQnhAbAi42BFEeEDLClEdekV4QO25ZibKUXhAuKOeg5RSeEArN+sEiFV4QHEzlXLuV3hAbn+O70pdeEBsO1h4+GB4QLNetzC3YXhAxuU1Z7dieECg1ViQi3R4QJwzcX+lgXhAMK24pZmEeEDzg4gmmJF4QO7lnL+nlHhAdX/VG3CjeEBstnnbt6R4QHKj30fPwHhArZTjErrSeEBxYWxft9R4QBwuIejn4nhA/Ec1TQL0eEAs/uJdjPV4QHWiN8OZBXlAk+yCcdQheUCm9XaUCTh5QKhLh0z7Q3lAJDCWljlUeUAUSOP3zVR5QAJbnU3aZHlAshC7BkVzeUAXzPPOmnt5QKR6e9FxjXlAMsP2mcuSeUAqMVmfD5h5QNQ2xBUpmHlAZkhopnOdeUAg8fmqv7J5QEE8ltjNwnlAKH7VCULUeUDGJlgmzNV5QMPIom+s2nlAZkeKR1LkeUBn3yhbS/t5QNxBwlpUA3pAha0xi0EyekBGRDliezN6QE5wfMAMNXpA4kAjT05CekDpAACk50N6QAAJBDobRXpA0rukEM9LekAG9yefUFJ6QGEUfJMoVXpAirz2+4mBekAScfC5NJN6QGx+feWMmHpATJp1R+SdekAzRD53DrZ6QGxvfB8uw3pAgBHP6B7GekDtLQNoaOF6QB7m00t45HpA7mglijjuekASK3cuFfF6QEocJg1K83pAIuyMa6L4ekCuDv9T9/16QDI6QjlNA3tA1qzDHqEIe0BIWVz9KA57QFKV6UlMFXtAH4KQeVole0BNmSKjEkB7QFiTMYqXSHtA+12q8vBNe0Ai6CkpIpV7QN7/hXphu3tALDrvRGnDe0AY1e+KecZ7QIVpaopvy3tAKDtTJYz1e0C0s6CN2QF8QBXl2q71AXxABgyWAJoFfEBkirWPixF8QNZm3LnREXxA6t8pKc5BfEDEUFxi31F8QJpWRmwOYnxAHDyOfgRzfEAPj6q/+qR8QAHGKkDAsnxAOvuhvhi0fEDM6682Hrx8QALpfCca03xAujlb/8zVfEAsaUhrJNt8QIOIBMNX4nxAqFM3Rw7jfEC+10ykVet8QAKb/m8W8nxAQt5IbVXyfED2dZJqAwJ9QHI4NSdLAn1A5NeGLGUNfUBw4jUtRhJ9QIKpd1g+In1ArNiIG4sxfUC3Tr9192t9QPQz7IsupH1AeNQDtTqrfUD2w4NJbOB9QLEm9suC631A3kV01ZH1fUBfAH6gPS9+QAgH6qhFVX5Ai0FF/iNufkBspUHSOnN+QFn6TBh9c35AtjjxwRaefkA/plkll7J+QEDkAGVys35A+k2IFgG7fkDqIWkBBsN+QFAmtEQo4H5ArOb9msv7fkAid5cEIQB/QP0xnQ8EAn9A+ZTGZ9IDf0Cei9eY2Qt/QMKBowhTKX9Apyizfblxf0Ai/TRrtoF/QN5TqsFikX9Ajo0EfZiTf0CMV6UAXqF/QCj/ec9WsX9Ah+GUqrgBgEAgwR3wvAWAQPQKoZyDEYBAvLrZeTAUgEAWB+O+2xaAQLZQ8slfGIBAdCRGyYMZgECQPagB8kiAQDRzQvTnUIBAGbAbiRRRgEDssJ7yDlmAQBrB89FNXoBAkmJoRcZmgEAgnPYncmmAQJDgVwsdbIBA0qcztcRugED6m1B2KG+AQE0V4WJvcYBAOBYENbBxgEADK1IvIHSAQLXWvVezdYBAMHffVKV5gEC0tTq0t3mAQLbp8KC8fYBA6Nwrzh2PgEB8Ch+C1JSAQHErm0AxnoBAX/8JAoepgEAC+Evo0a6AQGpKR3N8sYBAQ1rIdLSygECB0SDGKLSAQElhFUl+vYBAzFCtglLBgEC9HMStU8mAQILNtpLYyYBAjn/soKnMgED9TAt8Vc+AQJ2wsSAs0YBAWEEIp0zRgEAIB+HkANKAQPrljqVK2YBAP6fgxkThgECHGJGSVOGAQDhfZflL74BAJsA5Dz7zgECEAXutP/+AQBjZF7k+B4FAz7DHP2cJgUDGi3DmEwyBQHOxjABTDoFA0r/8Fj4PgUBdMNNiVhKBQOxQ4JA0H4FAtoW+DIwhgUAAsqhwNSeBQHy8nL7jL4FALXlJFvIwgUC6QUtnvDGBQK5HVflSRYFAEoSyZvRFgUDCJ5dCV0mBQLpikurjSYFA1i1BeeZNgUBe5RFt7VGBQBYiqzxcWIFAcgTRIlFogUBBCgDqVY+BQFqJfcWSkYFAwiRcc1WXgUBu1N19qZmBQMF2wTbooYFAtLXYy22ogUB8xhLd4a2BQEaT8YFKr4FACq+/YOSxgUCleHo+BrKBQBQTULiStYFA/DopjJa5gUBGw15aBc6BQPOyc/QH0oFA8InH6n3TgUBkUVQYDNaBQJDvT7kC2oFA0BW0JhHagUAcFIWCBt6BQFE42uNV5oFArTAGkAMJgkBaXBWq2BiCQNYztcQWGoJAmEXlahkegkCkEOzS1SCCQDrbyafQKIJAEAEYraEwgkB5/JyNUzaCQF45e4vmOYJATgqu821cgkCWVZceAnqCQAGVd2NDiYJAXJNzk0ORgkA4l2xXX5aCQLio8XA8mYJAujDyLA+hgkD8t6xDO6GCQKJdleYNqYJAKDnzHjSpgkCgLUlsCLGCQIOJQrav+YJAjmBlnXkRg0Aftqr3eRmDQCwdjs5yIYNAetOV5Iohg0AsnX8GDiaDQDA4251xKYNAfJ+xaxAqg0BYvxaBazGDQAhiDhDlgYNAAGkEpJT4g0CBz6qTcDKEQFqbFfBzNoRAKwJbtXc6hEDKJQGqcD6EQCAcM0f/aIRARisyd/5whECcO/KR+HiEQAjHENYYzYRAQb4b3cPPhEA584yqctKEQCJfqhpq2YRAMHNG2WrhhEACCkURY+mEQCD9a6s28YRAA0acDmPxhEAybQ5jNPmEQNpbZIYwAYVAGUfzlaBhhUAm3PrKoGmFQAZ60BuZcYVApXFFX5p5hUAMegvukIGFQE5Skr/jkYVABprgqpmShkD6Z/KSnJaGQOTeJI8muYZAFOK8tZPShkDQ2gSEmNaGQCq+UQiRKYdAuoPkm5Axh0C2yKCcizmHQHotHCBcQYdA5nBiMolBh0C28fGIHF6HQIq5FZ7HsYdAsl92IMm5h0D9l1aowMGHQCajpSO/yYdAPAlc8SKWiEBfM2PRJJqIQG65DNasyohA + NrgMGZxjYkBcG3g88iJnQARiQCMRAnBAG7piYCZDcEB2xqyr6ZN2QPIfQIB/MndAFClCsQKjfECxaCWBmbR9QLcaRv7ieYFAWOOA6vhigkCu+cUsGhKFQCLrSZ16e4dA2/9q0ns6iECz78o1vDOKQGwE7Gq98opA0UCHIBTEjUAzMJJ6KfuNQMsursvaiZBAspAVrjXmkEDgQ+/MAKaRQDKoDMOLqpJAYFvm4VZqk0CyvwPY4W6UQBJyS/Cc9pRA/K/VdQ1zlkD2hx740nqWQFOxDvQOe5hA9GxYrV5bmUA3x+H7RP+ZQBvdtAN7g5tA2fC8hp/nm0C9BpCO1WudQOGayUHcg51Abx31nBv4nkDFsJxJEgifQAzFS0Qo7J9AeBr22DheoECqI0aIJKSgQNGlKOBbhKFAzxsvVzqmoUCRMaTqhmaiQPQTGCZQqKJAg7yN7qEoo0BwctnBeBykQFt9Aam2LqRAyf0LyZvipECAdep3zDClQLw/vjW8KKZApW3TRuIypkAVy/A83+6mQJf4vEr99KZA8IPvUSC7p0Bc35839dKnQOIO2VU7fahAgdeIBgvVqEAHB8IkUX+pQHNicgoml6lAzO2kEUldqkBOG3EfZ2OqQL54jhVkH6tAp6ajJoopq0DjcHfkeSGsQJnoVZOqb6xACGlgs48jrUDyc4iazTWtQOAp1G2kKa5AbtJJNvaprkDStL1xv+uuQJPKMgUMrK9AkkA5fOrNr0Bb4Q3qEFewQPXltcEGerBA7QEeHRmusED/xsmbHuewQNWr80Yc67BAeIy+HSxIsUCB8YzKLU6xQPq2gUw7r7FA6rtDbUTIsUBjgTjvUSmyQPPX2oJLUrJA3EYtcV+KskAzUSlwbgqzQDGHu9BfDLNArBYe8ntrs0BDAzC4ao2zQFhct3WNzrNAI8ltPYD+s0A4IvX6oj+0QAOPq8KVb7RAfWdFe6yGtEAprd7+vem0QBULIKqg8LRAonLTgMtKtUA5lXenq2K1QDST47PTobVAy7WH2rO5tUD6M5jo3wa2QMTW4BDEXLZA2S9ozuZ5tkCknB6W2c22QJ/QHAPz3rZAMfEsNvs1t0DIJnaT5D+3QI7HKsjwpLdAEO38GwKpt0BVMk2cC/C3QG6NaE0GFrhAzvdBHhlRuEA= - + - Uw+8RL0KkkSigY1FqXS7RFhenkUftn1EpF3vRU9mi0SHMZlEwHESRQnaBUfj3lpEvIWHRC69g0S6CP1EAF+hRBiDZEWBPRlFfHKzRFMtXkUDQetEeJR9REaMiUSkxq9E7PP+Ra+C20S4ArBEthBDRRnJEkebLqpEuOx+RCRIX0YnPZxF3d/pRbAI8EQB3tZEqy9bRI9/BUUwi+xGOQZ4RE1ixERtSv9Eafq+RFCVikVrpftE/X17RDgEi0QfUpdFpjEARqezpURvznRE3euLRSFLq0Qd79xEfObwRHJ/FUVoy5ZE0xEURaI0BEcTAdNEZ4sJRY9P0UQ2/JpE6roxRaH+U0fs29JENC/kRMZnhUYGwRRGu9PdRaBwOUUIgyVFC0SURTNqPEViKiBFH+V2RWkdREUWBihFZ8BIRQ7aeESdzpdFJ6psRMl7kkSRQwFGpk7RRBZxhUTEgoBEzMpiREVwCEXEhcdEaoZ0Rody+US0JpBEDZvCRLkLT0WBAINEfTKJRBvJeUSYAzdF7baFRPVKhUS/cVJECvKvRH6mgUT8krJEf+XNRH69okUgmYdFa6OlRH5u20QvbcVFV4NLR9JZhUVn6bNEoocrRSZXAkYfbYREKJS5RTY49ERK4HVEz4rwRPq1vkTeDlJFTOz9RH7I+kSxdldE97CERDewUUSaNe5ELh/wRAMUqkQNEaVEIH1oRJrXx0SSLo1En553RKqEmERko6NEgX6QRAuno0R7jUxFsje/RDjZgURn1tJFUV95RJ8Wg0SBMWBE62uURBDpo0TZ+2tGnPPkRHCKZkTwEBFFF/K7RFi+40So0WtFCX3GRTZdGUXRW1xFxZa3RD5EbUQVq9NEQNMARTQ+EUWqPAlFOtGURKP3FEWjAiJG1eztRGJr3EVh8QpGmnGsREP3tES92spEYSavRHofvkSrkaVENGCmRL6EjURK56ZEbyu/RPudckTZlYtEQzAMReYErkRFd7lFbtmcRObqP0VOadREvNXdRJjxF0XpF+lFp7c9Rh6Hv0bIEGhF4riNRE7QnkT0F6NFbqV8RKd6RkVs7D1FaNsjRvHvaESsXolFs7S9RKh5pUSklHZE6QA+RqDjEEVelKpEClQNRSVpg0U0wKpF0WSORBNGdESyBk5FVf4vRaVDEEVMgR9FcDNfRIMfcUQMbItGI/GiRoSidEZjCQJGcrUVRqn0ckSeQMxEe/Y6RSqz2UTME5NElsqYRDFx8kdwKPZEW2qrRkagy0Z+KYBFcG51RiLGyES6RDhFAMUGRQrNV0X2ijlFotaIRBOMwEUQtINEwsaLRB6qukSKP4xEuxqLRNNvUkXYXF9EIuaGRMbhoUQcidhFczO7RJ+5uEXsisJFWIyMRKhfCUUetYZGa04LRffLVkUBeeNEw2jcRKp8RkYIg51FNng1Rpf6FUXNoJFFnpfERLo/GEXCD1pFWOx8RHoQREmvpSZFthNASNDv+EQ6sJ1GkySaRAjdo0SoH7FEQFPrRIEfLEUCsVlFcdWwRRG0pkVf59hEUBmQRV4UfES7sNpEYs2URL0aYUVPZ51E2wi4RMAdgUTjHI1GDqL2RWe080SVMytF3XefRIVYjUWa7b1ENZayRS2vgUS36ulEZUqiRHoaMUVQpOJElQq8RzYioUR3UapHWk9CRlvPIUVISKlGmLdbRQM9hETWqyVFSh+aRTOIBUWdVglFsDq0RFbJokVukZFEoqSQRPBsyEQoa3dElXffRFIV7UTYU79IAlpwSJQ1+UctR8FGM4unRXI9okQCADVG6eYQRRkY2ESi7VNF7grDRAOpBUUPnVpH+4qMRjwFwUTVjjpFDtmGRuU7JEZZ0SZFBmSdRSTToUSJJ25FlzuoRVczg0SonIZEgFR6RCpoj0SqS51ESW6TRW1sqUTr989FUUaJRPm1xkQGK9pHWKRwRExtsETMsAtFgzPbRj3640QRC5NG5RpsRFXNW0XP4LpEXO5aREZHj0Q14vtE1i1qRHYOZUSSBpBE01nTRNUmkURsxLxEOBWFRPO3XkR4EG5EwM/FRBx4n0TObIBEfKiVRMMYu0S2OadE1H41R4qkg0RWbKREy2ukRktUhkXANoJE2zVORQK/tUQI41RGPAXXRDEYPUVHFTNFKrkURrPflUWayWhGPf/8RWlhVkXd+6FEjcrmRJE/l0QC/F5Fpu1VRkRrjUXZwpJEJpN/R2hDMUcnk4xG1SXxRaBJEEV1jtNE6hkESMH/gUSM54JH2B7MROWKaUbOBypFGX1zRfZwbUTz955ES6exRFTVuEUtzmVFEqN6RL47jUQJv2tEMAZySFWE4EeTM4dEunAnRUueskSeQppEezt7RyfoekSiO19G2cGURWcwH0VfjNREnvGhRI8EN0YuXRdFDhAERcPkWUWIRcFFCb0JRf06MUX+cydGEQi2RJIOI0UkVctEfpeWRL3Pw0ScHftEPgaURcng8kS44RlGgVrERbNxpERLlLVFDnCERJxShEXj1Q5F7UrIRCAJWkR2wx9FWFcMRY/GqUQ6f2NF5xN2RNqxvkTpzkFFlNGsRJHjXkgO3uRHjdazRHGT00bAzXRFtX9rRVZ8IUWeaJlEOh2JRPNZS0ZPvRJFlbe2RCLkhkXglUtFi4aNRLclpkREpj5FxC6CRGNuaUSGh8RHVzcyRy4lskRpF9dGYyq/RSWQu0UKfxJFlwY0RZQX8kQZ+GhEfLDXRxCMNEebG9RGgYAQRffuLkVk99BFWTEMRU4/OUUtrZJEeHR4RNXmF0f+36JGjzHtRcw2xUT39s1FuAI+RVs5/USqZZVEE9KsRBYurURvnBJHhW6GRkG0FEatmoxFvpVWRTN92UTfkqtEpUoGR2DlbkZ9Qg1GhnWFRUTwv0QrmWFE615kRZbnCkXomQpFsjqSREMesUT5/jpGaUy1Rez+nUVlWYpE7BuFRIXHX0T64R9GC4uRReKFQUU/NrtEuYyQRRWK0kTWKpVE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - IyO4zCfBckCCBoLNb8FyQAGNV/FPwnJAdFVa6qfCckDFt+gK5sJyQEfyvt47w3JAlEtWy8TEckB47qGPWsVyQNG0VGkByHJAPNL/WkPSckC4/qrER9NyQGkXcCF303JA3mIIPM7fckDAMDINuOByQFI/5ohR4nJAYqhAF5DickCwW3ucwOJyQOi3avUj43JARGbGuMrxckD88TMDfPJyQGbn702383JAcpvGLaP0ckBbs7tLwv9yQNBJu7BEAHNAUC1SGvkAc0DhmN+AzwJzQKKLi8r6A3NALY9E1QoSc0CTI8nvvBJzQIJwpvv2E3NAkFGCUwYUc0DUtSu5TRRzQBIkyMX1F3NAL7pYyU8dc0BpXQCNeR9zQEKzmAqjIHNAoi226zghc0D77d1v5yFzQAcRQid5InNADFfuI8oic0BU5Mg2ECNzQH0fwHLPJHNAhPBibEgxc0A/6nybzzJzQJhgWacNM3NABLUwqaAzc0B1a3HB+TNzQHDSkRo3NHNAnmQj89w0c0AUrVxruT9zQFJLfpjjQHNAtfohc3hBc0A0KXDeJUJzQC45hp65QnNALjeeWHpEc0AcziXAmlFzQAgvNKVCU3NAuuXclaNTc0BslQUqelRzQD4hCWaMYHNAGFVOOjtjc0Cwf3zTaWNzQMptZTTPY3NAN1/zLlJyc0Cooxllt3JzQNlpePy1dHNACWD/lEx1c0DsiWPIeIBzQISprd+lgHNAaQTLbwyBc0AAcBaAX4JzQCCxHCCHkHNAWMstCE2Sc0DXcTcVzpNzQMYOnJ5jlHNA7334+faUc0A7HZ0quKBzQPAnZiVNoXNAWuHy4lqic0Aifohe5qJzQKRyQq4DpXNAlz+FYciwc0DYQLZiNLFzQJ6BBKZ+sXNA0q8pY7azc0CnqgIXDbRzQHpl1DJjwHNAlAqy8fbAc0CEkXGEjMFzQBebgVc8wnNAqKWeMNHCc0DC3SLZJcNzQNvFb3/Ew3NA17/kUirIc0CMdUGT2NFzQIhxeVG80nNA4v+Cc9zSc0Asu4Sw9tNzQF6hZjzi1HNAoMgRwDjhc0A0bhVWjOFzQEiyVDJ64nNAGur06e/kc0AiblwkN/RzQMIqwtyL9HNA2HNB7E4AdEBCXM1b5AB0QMVT6bF4AXRAisoBKqcBdEDofE5JlRF0QFcEsRdOE3RAnt+E+uATdEBkMdUwdhR0QBZU+i9KIHRA0r0LxrkhdEAUlPsEUzB0QLHURFddM3RAkngLAFRAdEBMYscPyUF0QKhS8BJ4Q3RAWzWe4G5PdEDSYlYM9lR0QMbPhW6NVXRAHzbSc7hgdEC28hOiCGJ0QMieo6JPYnRAkLfNVr1idEBQcJj6D2R0QNgy2QtOZHRAbiJNlyJwdEC+f5MZQXF0QKD8jKU6c3RAnM95fDh1dEAxGy1UbIB0QLax80T5gHRAOGOsWU6BdED6D7o5tIF0QCxkX6JIgnRAHn+I4hWQdEA3ZaCSaZB0QCiVM7G6knRANTl7HzOTdEB8FY/jt6J0QOQxPrYOo3RAzJs1EWWjdEBuAyCmCrB0QNLqdhj/snRA9wKyE+TAdECyKTkvecF0QI2OPfAOwnRAH7ytHrjEdEAiApyT+850QODqF6zh03RATgOQd83UdECqLprhj+B0QDp9s5O44XRAZsSH703ldEBeI9feS/N0QPRctPWM83RAAD4C89AAdUB9rFA6XQJ1QF68jq07EnVAxvBS4GsSdUAWrRoaIxR1QBop42mdInVA3m4Ba0ojdUBYilkIUit1QKpf+SCvMnVAYAge1cs1dUCxHeCktEF1QJCpjqj3T3VA4rQ2+oJRdUAAKpNY5FJ1QIMpOvBMVHVAhpB+WnhVdUBSC3moDGB1QAeAP645YXVACnJowGZjdUBJ/r1vd3J1QPA3TNaNdHVAaku80EyAdUDgtWhJeYF1QEzOTJCtgXVALBNRBBKDdUCwesZxpoN1QOcB65OahHVArxUBnTqTdUApolXIPZh1QD17ix2VoHVAIKSxLLihdUA6UdyTXKN1QPhNme65pHVAtJxrnWWrdUAIXutq6rJ1QNZNysUAs3VAguGx+PfBdUCxhmLIzdN1QIfKrOIJ4nVATlb63jrzdUAgHJtvSAJ2QM4tcI3RA3ZAEo2kBwETdkBqgh/qTBR2QASWO+oMFnZAIkhtAwgbdkAoWa0KiSJ2QCp1nd+QJHZACFsBTEsrdkCudPheHzF2QCdLFzhSM3ZALMaDhh1BdkDaxt4DekR2QEbkOZLKUHZAHQIAexFRdkD56JOXzVR2QKsitFUQYXZAGEXIas1idkDwodXJUWN2QBZ+ZzzbZHZAOPEBY11zdkBxqreUZoJ2QEztMvaQg3ZAyKgqZ/aSdkBEI0/CoJN2QBKkvRi3sHZABqQ1WMKydkAoKr05eLN2QGpqUv0NtHZAZ6twA9O4dkA+VcQxrLx2QI62TZ4svnZAGS/s5nfAdkC8EetswcB2QDpZE7NOwXZAOoso3RnEdkA6gahPz852QGa3DPjy4XZAjK5LhgvzdkDGCOwNkfN2QGMyz2UzAndAaimAQlANd0AakgqSARJ3QNrPfFWREndA7P6LGKcSd0BE4ZiD6hd3QP4YZ6ICGHdAElDiHzMdd0CYAlL1DSJ3QEcXIddzIndAmLAl9Qw1d0DQOHwrJj53QJDMrvWcQXdAmqiSV4BDd0AyIvksG0V3QBT9zm9LUXdAHP2J5JJRd0DQ6M36KVV3QLx3AfiPYXdAw5Zoxjtjd0DMwrVYOWV3QCtzJaMnb3dA5kYKpttwd0DB3foO+3N3QGYFT4u4fXdA+L5ymXeCd0C8u7iJfoN3QKN3NCoKkndAIOYbm2Wdd0COI2ysCbN3QPr+d9o/w3dACa1nQePQd0DUADzdy913QLjIlHLt4HdAIlUEH+Hhd0CSfnzdJuN3QKjvAuaQ43dATUAF/Xzod0AqJ96el+t3QARnZiJu7XdARJsDWVHyd0CRgFy/qQF4QNtBnda3EXhACxW9k24ieEAWJvNHfTJ4QKDougASRHhA4aeqPnpFeEDTxNEWy1F4QKix6diUUnhAZ1ua5YdVeEARbHT97ld4QNAHS1tLXXhAdKZ5SvpgeEBjECf7t2F4QOxTTRiyYnhAXklv575xeEACWNbVRXR4QHxHfm2LdHhA7jzHcLB0eEBqyAstpYF4QAKPKLGZhHhAOsq+f5aReEAqHAB+p5R4QCXW6ituo3hAYkID5c3AeEBb6gUsuNR4QJ96F0Xo4nhAKNYBRMPkeEDSq0fPAfR4QMC8pcaM9XhAdkX57L/+eEAy+hkCVwN5QKtOYhWbBXlA4gpME9QheUBeg59E4jF5QPDYM2GMQnlAspup1vtDeUCs9DRdzFR5QDaC7m/aZHlAH6s1LJl7eUDyuf2KcY15QNCO4OTKknlAxnCRZSeYeUBXgIt1fJ15QMJQkwfBsnlAUoum3kLUeUDsjIspzdV5QCWhbZ6r2nlAqny6yVDkeUCgacHQS/t5QEhm8lr8BXpAbNHmDEEyekDrIe1uDDV6QOHf6MVOQnpAausEV+dDekBo+wBhGkV6QJYokxjPS3pAVhpy3VNSekAroGSqKFV6QHTr+DeOcnpAUngzYYqBekDCVDTZN5N6QDuTCpUNtnpAMJ4VpSnDekD4JpOhGcZ6QNDNldJEznpA/yIC99bTekB5owcbaOF6QJ5naj847npAWrgrzBjxekC+qLWjXPF6QK43dJpJ83pAyPqmqKL4ekCoANU9+P16QFJ/ZqtNA3tALrsfy54Ie0D08hyHKA57QA5GUpNMFXtAmrQ2vlkle0CGlIF3EUB7QFgBCbWXSHtAjG3TwfJNe0CMBf/GXVJ7QKC/8T0jlXtABSrxb2G7e0CKvQ5gaMN7QDpAFbN3xntAQei5d27Le0DU9+XEAOR7QI42X98a83tAL9E9Aoz1e0BiYhFX2QF8QKN0uYn1AXxAtvw2spoFfEA0RSbbhxF8QF6C15nSEXxA6Gz6v+cbfEBUkLlT8CN8QPDzTQ5ML3xAzOMFgsxBfEC64iV621F8QO7g+QF8U3xAX+GfOg9ifECIiDjN3Zt8QK1lEZ75pHxAU+N8qb+yfEDMAlIMGbR8QCK0+pYfvHxAV4sS+hjTfEC+41QJzNV8QDK6Dt5X4nxAHtO3ZhfyfECuFfwJVfJ8QCBFIYly8nxAdma1EAQCfUCoPRd9SwJ9QEMJGcRFEn1AgaEWnzwifUBKDGc2oDF9QCESrp1YlH1Ar1RybS2kfUAC6yrCO6t9QGQsygIsw31AsO0LwdrifUCL0KmPgut9QBSamD2R9X1AjL/eyDoffkCWhCZtjVV+QM0TD4g9c35AcEKs9NWifkAWvqdulLJ+QNJZsrIMtn5A/EM0zsy8fkBlI94RKOB+QCT3I2DL+35AlODLkB4Af0AE10B4AgJ/QLrYhJXSA39A9C+6udkLf0BteTbtri5/QADEiE24cX9AqOwIOrGBf0AVU8j1o4N/QCMpCXRjkX9A/q8MaV+hf0Des+L9UrF/QCo79PW4AYBAT1oMmbwFgEC+q0IHvAiAQAymv7CDEYBAgIYIfTAUgEDQg8xU3RaAQLR3gGxhGIBAE/0xWoMZgEAzT08r7CmAQEvgJVn0SIBAKwfOY+dQgECCHNUbFFGAQA1AhL4OWYBAWfUMGcZmgEAmRSTIAWiAQEeU8FhyaYBA3IS9JBxsgEDE3+/QxG6AQBRZWW8pb4BAckJ/KW5xgEC4HOc1sHGAQDDiBUyzdYBA5hTfd7d5gEAl4+G8rH2AQE4rHVe7fYBAqrWMLB6PgEAyLIJtHZeAQD55fWQynoBAd6qHKjaigEAW7QLyhqmAQKQbGUodqoBAFBab5dGugEBgBUWrfrGAQPJU2om1soBAUlmlBCy0gEBZ9urBC7aAQGwSL39SwYBATMyfaiHJgEDmSR95U8mAQDhR5qSPyYBA4lqjU6jMgEBw8P76Vc+AQIgitXlM0YBAFenvFmHRgEAQkM/UgdGAQNZfNHAb2IBAjbpgUErZgECW2xADReGAQFS7UH3U4YBA88H2vvbogEDIW86NSu+AQMHGHQg+84BANN2zzj//gEB4pRtBaQaBQPYr/Zg/B4FAxqhIKmgJgUB09ZwoFQyBQClXsBJTDoFAz2wFhMEOgUBIPHU1Pg+BQJAjvDdXEoFAnMX9dFsWgUDmF4Ml8xuBQFt64xXxHYFAWjZwVTQfgUBqk+7j5R+BQNZ5AJGLIYFA2UW2mTUngUDyjMHO4y2BQCe0nW29MYFADqH8TKE9gUAaw7EJVEWBQENRWMPzRYFAvqWtG1pJgUD+93au40mBQLqqVRNgTYFA3VnUVehNgUBQAbb+7VGBQBhFY79cWIFAcNFMNFWPgUAoCJPakJGBQGKBIQRVl4FAWHZax+ehgUDoXdaZbaiBQHYxzMvvqYFAlLf7guStgUADrZg6Sq+BQGhUi24FsoFAtDmzNpK1gUDAGXhClbmBQNy1ypgFzoFAbvmr2wfSgUAmh3unfdOBQI49KaQL1oFA3pd5EwDagUAmnGRCFNqBQHczsaEI3oFAskDmTFHigUCp9T23UuaBQIxVMHwCCYJAf7iKotgYgkCCFjdKFhqCQEiTZocZHoJAoqcvWNcggkA0f+nW0CiCQD5bAZ2iKYJAfwt90OY5gkCmMF0v6z2CQAJZGWBDiYJAr9SJf0ORgkAu6R/gB5aCQIVcUVE8mYJArSEjDVWZgkAcgy8tD6GCQEDdPTQ6oYJA00YYfAypgkCG1+ICNKmCQMI8CRRJqYJAJjX9XwixgkA4lfwssPmCQLt83MN5EYNAoB4+z3kZg0DF8VshcyGDQI3Zja+JIYNAL1fhcA0mg0DsOpFNcCmDQJb7wtUQKoNAK/QJd2sxg0C+ym+DSYODQKb6OnV2pINA2ggIcZT4g0Ds+9ezcDKEQKZCggd0NoRASuLkOXo6hEAjaRvieT6EQE7vuqr/aIRAitby7vxthEAvcCsu/nCEQLMsCmT5eIRAkj2abxjNhECs+xcWxM+EQB7c5hR10oRAFvE1R2rZhEDcg9M9auGEQPDAtAhj6YRASfAhazXxhED0ULnOYfGEQHG2GNI2+YRArcl1Ry8BhUBWY5yNoGGFQBiD97WgaYVAN61N4ZhxhUDq+eX2tHOFQLP3sceYeYVAzHmTdZCBhUD+mFIa3Y2FQEoBcEaX8oVAarIEoZmShkDDelrDnZaGQKA7qf4kuYZA9SwNu5TShkC8pjRGkSmHQAccJw2RMYdA3Osz5Yo5h0ByUVHJXUGHQEQfZ7yLQYdA3O4YhBheh0Cah9eDImKHQLk+DcnHsYdANekK/ci5h0CUujuuwcGHQMtWG9bAyYdApIH+CySWiEAc7IQlJJqIQMfdmJyryohA + KBZXds7jZUA/KJil8iNpQBTpB48/A3JAH3KoplGjc0DbQ5zIVzR4QA== - + - DNyGRDVRT0U6HrhEK2uJRr/hv0R0hx5GGXTHRJaV0URwB4pFFuEFRwmIg0T3bOxEIY7hRAgg+UQpkWRFkeMIRcUy3UTbKYhE7OZeRVN7vUQJcsdEfPHZRFHPAUXtHhpGACS7RNXnQUVDNRJH2mDsRPfURUZXqDxFaG4xRWxTcEQP+b9F1mgDRcnnrUSBbu1EFVjGRhwMhURchpNEeYvJRI2phkQu7q5F38rhRJScq0QBflZECGeKRGpjlkTBA5dEZI13RHxPlUTwEfpECwWNRRfCmUQzqJZEGQ0IRudhtURTTN1E/nLJRSmkwES0XaVEuY4GRZUegkSzmpJEoOiGRAnGhETMu6xEFqQPRYdl0UZyJZdE7f8WRbA700Q+0zpFn9JwR4m4mURczM1E+h5NRqHYDka2wmxE/38LRotsCkX4LuNEGkDARFF3dURNT5NEmaBkRbU2NEWg76hEAVDXRAispkSox2VEKDqaRZLHiUXpZnZEBlIKRffcN0UhhYtEOO2xRKZbAEWNnYVFnVb8RfAXWETC+qtElAmhRHHdL0WGtKlEEW2GRIQI1kTdTIpGlZPoRNDlk0QmGX9FnweuRBALs0S0wWxEKmUXRYluBEX7BWVEaoJlRBqAhURgdJ9EJxd1RAWRsETGOOtEssicRR0GlEXwBaNEIPkBRSqqeUQmhIdEHmK+RfkAVkddmFFFwO+/RMtBhETEvjJFdm8JRnvz0EQLBaFEJk/gRULBl0R/pYZEyHaORFa77kRGVN5EL7eKRMl+rETtqKdEfe7jRLJm2USTlIZED8QuRd1VukTnHrpEWUXPRLZpi0SaQPVEij+iRG6NTEV3UOVFhnlZREmBakb0RZ5EYFsGRbaXI0UZ8nFFPe0wRkVekkWSrohE0tZARbMx2UTDAYZEEd7VRI3dCEXfTKdEXRgCRWuRlURPc/5E7EQNReuwF0VveXxGfZlpRPWbDkXfBNpFMDnARJC0KEaD5/lEzGyFRNeMk0QE6rNEaPayRO3UiET6dpxEMnpeRHV4WERsNOFEW8CzRIMgvUTFcZBEDwN6RIL50EWuCs9EiQkWRV6Eu0RaLpNE0PaXRL70FEWQiNxFjRdqRo06w0Zj4opFPF2RRaQlb0UTrH9EizwuRWzckkZtjmhEgxnXRG6OAUYim0xFe/ufROu0eEQmzEtGIkrWRAUerkTd0odE3Ij1RO3IVkWSblBFRnGMRAzPHUVAe41EuDRtRKl7gERdyIlE0heoRETJC0UndJJEoBwPRTq54UShcPBEedtiRv4WqEbETXlGCnAJRgQzXUUtzAZFm4p1RNminkX5d6xEspsBSBo8t0QiV91GygnuRMeY4kYcr5VF+sp8Rpr77UReIytFHEAFRcjVjUQ2NE5FWSNvRX4ER0VcbutEBn6kRJ24jER+b4FEUrKeRBWFrUQQkWZEAeiwRGtRG0Z7xnpEwYyHRGOBiEVyP+1F5QijRJBqO0VU8oZEZDygRInI1EZpxW9FTXWVRRuNdkTfNbVEraJCRszblUVwIFVGVYUqRXybxEWul7NEeJdKRXKvbEVUqV9EGm+pRLHUL0VkZUxJM8GhRbzmHUUb0lVIZWsvRdm4lUbmgb5ECNT7RCcDUkWt2RJFCD91RLzxqUUoR8pFXluQREFaUERFobBErCHNRSrmiEQEr7FEXVNARYzCi0Wa559EscHlRGA/kkbgfx5GubkSRXIxjUShbWJFV0/5RR/h1kTvFiNF+5/1RKhsUEXKTYdEok8SSF8qwUcgxbJGHaX7RDDirkZjMTBFVPqpRLRyPEUpHN1EGdYURg5NXkWfx+ZFnXW0RNVRwERm43NE7U6URIxIIkXMkN9EQnq1RISGpUQFY6NIhXVaSBRD0Ecwi2NG/iCLRY8W3ETS5hhGxB33RDSnrUTvKtBEn4fPRPwFhkQ7Yg1F/DM3RwgTWkZkU5ZET2MsRYDyhERBXXREiGqdRqQ7MUZVAD9FXO+iRaUvnkRLuYVFn/VNRRGukUSYf3RECau5RdCHnUQXOWdE+7W6RErVjEScF6hEb27LREPNWkVOSrVEiVaURRl9lETOYOFHkfYNRaKpyEbBvjNFyggDRc4smkb6qVZFvAykRJyJiETR8o1EIPooRaM7kUTzxLtELMZ+RLF/yUSSmeBEvVWlRC3Br0QWufhETT99RFHIr0TxUIVEtdBxRB0X9UQ4sxFHPiUFRZ214UTXsUNGEb+aRcmskUT42HRF1RyaRD96j0T2GGFGkI0sRTEJ9kQ4AShG746hRb21k0RiS3FG8FodRj+Dl0UjyKZEQk4JRUQOoUSlCNZEbOw6RdncVEbIWbZF0bNnRxK5hESawCZHV7JrRnokC0YLqgNFuMcCRfRC9Ef9W3lHPGQ/RtpG4EQn/41Eic9gRaFfsETsXRNFXz3tRPjB6kSoA9pEdY1rRQIsekX42MVEtuWcRBuLn0QoaW5I0uXARGMJ1UcwxXxEiqAiRZHr0UTx52VHwo1ARTVpx0SeqLdEvzpiRoTvsUWvpsNEG9V3RJmn7ESwNrxEmAwqRgCIvURztTpF0DZGRZEjBkVD8uJFhKT2REnC5US/8xtFwW6URIZnW0QMMclEYnMiRmaa1UTQHqdEHVH1RHwov0ToqqxEqMpaRAnrKUVUIOBF5fECRT6pTEZXUIBEkwTqRaGCJUU/IIlF5j7RRXLctkQGo8tErRw5RY2rHEX3TptEQlmKRJJgTUWN2AJF6ApyRf/p3kTKDzBIrxvTR4r3qUSp9LZGXICTRdPaVEVj+6tE5dMURUbEw0TIHIZEcClQRndGa0Xsdr5EWjWbRWY1VUVHSghFOMECRU51i0QA4c9H+jkuRyJFWkTihNxGcDz7RK7gzUX477NFh6gLRcsjKEX9zKlEwBnjRDD2w0RcoMhHq2AtRyVQz0YB6cFEkdmFRYpI20V0rR5F7AEJRYCjiUR4wYFE0XvbRN+cDEfVa55GcGCkRTaph0QBN+FFIRGtROiQR0WuRwxF+KzERK9UA0UT+xNFz6IMR9mth0aIvSJGKxZeRX93iEWN8wBFt/LXRKSW90ZB1F5GTfP0RfinlEQ8F2pFntiERBZcX0SVmKhEcVqLRX6AwETfifFEGREXRceyLkbyesZF/RJLRWuCvERMH59ECtN8RGBsqUQ9rAVGyHZ0RQlHCUU0+JtE7WepRZ+spURO9wRF + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - KmAkgnfAckBMJqQXDMFyQISx6XFwwXJAKsBrQE7CckCgCmyYp8JyQOWdvCc8w3JANBPW88XEckAQbTsmW8VyQDv2aSgCyHJALMk8yFnNckBIAtiV/tFyQPL54bhD0nJAKcWm4XbTckD3z5cgz99yQJl5OkS44HJAJMLBblDickB7UWHQkuJyQE7TOxYl43JAImzbbsrxckA6uHb+evJyQBzuRJC483JAMB0ckaL0ckAOGSAEw/9yQHb+zWZEAHNAjIRNTGIAc0CWZpVC+gBzQOZXAWHRAnNAqqcMBvsDc0DRZG07IgVzQFfTRFVNEHNAHeqSqQkSc0CaZjqRvBJzQHqElyr2E3NAigBUqwcUc0CyW0or9RdzQOmUc65OHXNA775qOXofc0DC95hLDiBzQDpcU0KiIHNAiCmMSTkhc0AtZ5uI5SFzQIahWKx7InNAkPnKYckic0DJmTb2DiNzQN9E3mLPJHNA4SeNo0oxc0A5iI88IzJzQG9sl8LMMnNADhV3lQwzc0AsqSoi2jRzQLGdRiVDQHNA3laHd+RAc0DxAp1geEFzQFbvAu4nQnNARA8eL3pEc0DM9iBLklFzQN76CVekU3NAeluw7HlUc0BGWnqZHmJzQCLXFsNlYnNAqCC2PDpjc0CZIMEeS3FzQLpNxhpRcnNAFASDB7l0c0DiklLyS3VzQC4/zhV5gHNAqvkP/KWAc0AitAelDoFzQHLx8yLKgXNAc2IOBWCCc0BJc6iKiJBzQMU50IFNknNAyGLQiGCUc0AaaUqv95RzQDIziNW4oHNAOiP+blqic0AskAAy56JzQPCoW9QEpXNAaoW+Ftawc0BW0g2At7NzQEAVkigOtHNAxigH5vnAc0BbnR6V0MJzQChBmUwow3NAkaO/psXDc0BIDMalKshzQJZ6BaDX0XNAhnUXx93Sc0CSdMHA+NNzQCXvqjHj1HNAqAFl0w3gc0BuL/c3o+BzQI0OaFU54XNAxnjajaHzc0CyTBxHN/RzQPTKMHyP9HNAws8QkE4AdEBf/19R5QB0QEKzcqp4AXRA6on5o6QBdECuShbfiRF0QGy9//JME3RA4yjiA3YUdEDkRqPASSB0QH33igm5IXRAas6tMlMwdEAmYB/E6jJ0QD/XnTO5NHRAntaer9w6dECsQpONekN0QDDQyCr3VHRAi22TvotVdECigdnAuGB0QMAVcHQJYnRA1ByZ+FBidEAKwQDmvWJ0QHbuTqFPZHRArsMRLSNwdED+D2KPQXF0QFKRdAU5c3RARyVnATh1dEDaoZ5q+YB0QFJuHTxOgXRAjQPZsbOBdEBHSefZSIJ0QOoWGTEWkHRAKhNth2qQdECi+AhcpaB0QDbxtCrPoHRAhGuC8jehdEBWweIkuaJ0QHxjxxDQonRA/5ZD6g+jdEA9nzFTZqN0QKBAwnAKsHRAesD6buLAdEAsY4MT/cB0QHYWVZh6wXRAjURj2iLEdEDyIMZYt8R0QAS4G2f+znRA03DklOLTdEAm7Myud9R0QAhAJVjQ1HRALgkfIZHgdECxzPZeJOF0QF5Qad+24XRAUDwtPU/ldEDa3cdzwvB0QFXlEddL83RAmkJgRo3zdEAW71caefR0QGBwflw5+XRApA87g238dEAfUtZJogB1QIz/lJbOAHVA8ujmc2MBdUDys4PbXQJ1QHrNVHOaA3VA3QH2EzwSdUAE1ZMaahJ1QIw2qkIkFHVA9NUr5p0idUB4hDhqSiN1QLTBfXxRK3VAHv8EHc01dUAuJlJptEF1QKgNehCRQnVAOFYwBvJPdUCIYOJaSlB1QDnJCmjlUnVA1jVpgE1UdUDwHIIzdlV1QGRbuo0PYHVAxlDCfjhhdUDa7iM+ZWN1QPC3IKN3cnVAVrbEXo10dUDqpKxseYF1QEpey/utgXVAkGLnMxSDdUBI59h2poN1QFtpHVCahHVAUJLN8IuQdUC1Y94lupF1QMCX3kS0k3VAyEAJwpWgdUBQFhXlI6F1QNhmh/YAs3VAelUy8jezdUDEt8SPo791QJ7jJEhnwXVAig/OufjBdUA9RS8uzNN1QLi+5fvj33VAZSdjNxDhdUAUU6bSB+J1QHQTTpM55XVAyJ+7OUgCdkAvgM6H0AN2QJwhXV4AE3ZASj4WfE0UdkBYUUZ/Bxt2QFql0x+JInZAka4MFZAkdkBYzte7Syt2QMguO5QfMXZAXHRZA1QzdkDd98HUWTt2QO7Vb2wdQXZAvHJWeXlEdkBqL5x9ylB2QOjrjXcTUXZAxB20ks1UdkBPHH5AzmJ2QD6mgspRY3ZAPqvvddlkdkBoM9mbonF2QH4VesYRcnZABMVFDuZydkDWHi8AX3N2QCwPFDJngnZAuebhxZGDdkDqqH6D+ZJ2QMxE4G+ek3ZAFjF1H8OydkCAil5RebN2QHQCtkcNtHZAgFqcXtS4dkBoGRuLdsB2QMgDfj2/wHZA/tyNPs/OdkANBtYteOB2QGo7B+MJ83ZAUj1ZWZHzdkAmwpyEMgJ3QIaQYPRQDXdAbtHqLAISd0CeJNkSkRJ3QHxRj8mmEndAziY9PuoXd0CSziQqBRh3QCL6pSwOIndAwj9Ie3Qid0BYDU8IuSR3QIQOvD6nM3dA6prBWA01d0B0BNSDJT53QPqDQ/6cQXdA3nahw3tDd0DwAgqSG0V3QC7v9ZpDSHdA7DctNUtRd0C2AGTbklF3QA6yjbEpVXdAjlA/N5Bhd0ATgopMoWF3QOu/aL06Y3dAAbrsmzpld0DU6pFyJ293QCJ+XcjbcHdAHt7o6zpxd0C8zPvZ/HN3QDcQLeK4fXdATEW6vXeCd0CAJzLseoN3QEohgkcJkndAfyMT+02Ud0Ctm75vaJ13QEShanPFondAyN2MHQuzd0D6/UY4m7R3QKZf9sSN1ndALsm058zdd0D3yLtOJuN3QAlTeG2R43dAe1pGnIDod0AGvfJGmet3QOAQ1XZs7XdAcFvIVlLyd0BzdZfyqQF4QNRV5xO4EXhAc+WKLG4ieEAELcbIiiN4QOxBiz17MnhAEv1KEAxCeEC+LyI/E0R4QHX9oyB6RXhAbxqRwMpReEBcgpwylVJ4QPlp0aaGVXhAwt0TXu9XeEB16WMDNl14QFyHacxIXXhAKEbWVfpgeEBeDWrMt2F4QCXqsSy4YnhA3bixITxjeEACGDuyi3R4QN3Ci3m7dHhAOArRKKiBeEAd/C/KmYR4QHeC9A1Sj3hA/K832peReECkSb/yp5R4QEqnbhtuo3hAsA9p6s3AeECukRHiNtN4QA7jCiG41HhAgySbjOjieEAa2sDF8Op4QJ5qi8kB9HhA4Najkoz1eEACUuEmw/54QCRa3ZEVBHlAaJfaN9QheUB00FbT4jF5QPTmYov7QnlAg2allvpDeUCQ5VDmy1R5QJR0LUXtYHlA/6ZlzdlkeUD+6saIQ3N5QFB1aQ1xjXlA/3tW+8qSeUBRfA61E5h5QO6s9twsmHlAiO5v4L+yeUASWT1iQtR5QCbCMMip2nlArKu8qBXceUAaUyTYxOJ5QCZ6CcNK+3lAcHrR1EAyekBSeNmYDDV6QPRfPayAO3pAttDkGU9CekD8/K106EN6QDKA784aRXpAN1nlSc9LekC6paaBUFJ6QMnLcQ3XU3pAnHrvwihVekBOH+kAinJ6QCpecFKKgXpAfmLW3JeRekBvsrf3N5N6QGRwF1CPmHpA6mzaWg22ekAD17V1K8N6QM7qxpIaxnpAOHmqqkTOekDl7aCJaeF6QCxCN5w27npAupv1UBnxekAAl6+ISfN6QLOg2Iqi+HpAnhBglPf9ekDuU0UDTAN7QLz/WBmjCHtA7AhfEvoNe0ByHFV7LA57QEd1gGtMFXtAcNMFWVwle0CymY/eVTB7QCHVy52XSHtAUnVvBvJNe0CPcs7aRlN7QKi+VFUSaHtAUYjm/SKVe0Be0U4UMqV7QAYzj5Rhu3tA+Rhc4GjDe0BuGNT9e8Z7QGSu3Hpsy3tAsMmfx4v1e0CoE+JekwF8QEYCFZzZAXxAzE2MHvYBfEA07lvfmQV8QAK57xqKEXxA13cCN9IRfEDp4zsm6Bt8QMCYdpPKIXxAoDcNLPAjfEBkEGJwzkF8QPZZknkKYnxAohedjPmBfED6/gQIwrJ8QJXIWVEbtHxAfH8zFhG2fEAejIURGNN8QDKxS81X4nxACPolzhjyfECdqGw8VvJ8QBjyYOH+AX1AXoFTuUsCfUBegNf6QxJ9QMZFhWo9In1ANlt08PswfUAwcyI0b5N9QLVIdz5alH1AcQRwhjCkfUDYZNbuLcN9QM1WxG1s4H1AFHbBStbifUA8qcCmg+t9QMA4UrOQ9X1AJ8N6GZ0FfkDw33fXNx9+QI8Vh2STI35AJKogfoxVfkB49Z/mX2x+QLukSMs8c35A5MFLNZWKfkAkJHORV4x+QPF+MwnXon5AN+6ZA2KjfkBx8yUDjrB+QNDlQ5v+un5AXSfg02HUfkCsWIAgKOB+QJIaGEPU735AjAUpM8v7fkBG2duxHgB/QDpPk5wCAn9ANpU07dIDf0BUdnHy2wt/QI87JqfKE39AyiaDkLdxf0AWpRpDt4F/QLIqYaSjg39AsNivpmKRf0DcqNVzqZF/QHRGrruXk39AG6NdsF6hf0B+7zIQVrF/QOA4Lw97039A58huFn3Zf0BcTBrmuAGAQNYjZni9BYBARyZopiYQgEB8eliTgxGAQKJb70kwFIBAxAjv0NwWgEAUHvRgYBiAQPuaH+wSG4BAY/hwXOspgECYq4jspjqAQLhJn9zzSIBAxU4db+ZQgEASNARnFFGAQF3rtPYNWYBADmAGZkdagEDOn3394WCAQAKAHGscYYBAenRIOsZmgEAMkb5NcmmAQJ6eJ10bbIBAX5avqMRugECwG+JYKm+AQHzNNRRrcYBAzkQaIrBxgECOMblYs3WAQPqs7Ha3eYBA1CJ88r19gECNei+wHo+AQFy13J0ynoBAVTrV6zWigECIywOahqmAQGY9kI3RroBAlLtvkhOvgEC0UrcUfbGAQGad05K1soBA19K48iq0gEAivoW6fL2AQGS21ppSwYBAyCCpYFPJgECeLrzuS8qAQHm8g5OozIBAKryH7lPPgEC1k8f5TNGAQELuT9sD0oBAERq6ZxrYgEBVMaH+SdmAQDaibBpE4YBAbdW08VfhgEBMcsnU0uGAQPAYyzbV5YBA0GRMC/jogEBbrl613OmAQKrf5P1K74BANkoCiT3zgECfmgeUP/+AQK5FiuhnBoFAxLDmOUAHgUCiZmgWaAmBQDfqvmoUDIFA7BHYD1MOgUDzemvqwA6BQONzY3w9D4FAmK5k4FYSgUDkyDES5R6BQOZNoGQ0H4FAhT+43jQngUD85sOG4yuBQMSLOQqdLYFAaJSybO8ugUAkx15h5C+BQI78zgW9MYFAkOqaeyg/gUAWv/jXU0WBQJg7s6z0RYFAamEQBVtJgUDC6dY55EmBQKHREqDpTYFADa2kk+1RgUBlqouWW1iBQA+accJ7XYFAMjcrYlNogUAK+MEfYn+BQOpDJMZVj4FAnCdHp1SXgUBGnt3oMpqBQNyPZcU1noFA5ism8+ehgUCNU+RTbaiBQGVJ+UDvqYFAeCaw3eKtgUCQUngXSq+BQNrad4gHsoFAL88NiZK1gUB0+Z/+S7eBQGV5yeKWuYFABbmYHdvJgUCgefSQBc6BQAzkaEwI0oFA3mWbYgzWgUAv/t5aFdmBQFgHmPAN2oFAyQdk10/igUAkBPE6VOaBQK18DVDYGIJAlHpkFhYagkBYar1FGx6CQMSNxHLXIIJAqrP7U9IogkBIS1sqoymCQJqIfu6jMIJAIg9J/s8wgkBOujyM5zmCQLaiIZbqPYJASj9lsUdpgkAa2GZjQ4mCQEB6/a3kjYJAeYzWb9OOgkBg3SvuQ5GCQCiGVcjokYJAwzzdTxiZgkACTXAQPZmCQEdyIhMPoYJAIAy54TqhgkAziqzgDqmCQLh5GMk1qYJAMNd6iwixgkDEYonDr/mCQGJ1hax5EYNAzPNeBHoZg0C1L3nNciGDQCcCsy+KIYNABZgi6A0mg0DSwc6kcimDQCJzGPEQKoNADJJbHGoxg0DWsgnyfHGDQET1YACU+INAKGIp8HAyhEBkS7SlczaEQJJXSyF4OoRAZor9PwBphEAb5ORxAHGEQJlu3zH4eIRA7ofA3PWAhEAKKE6JF82EQJIQw6vGz4RAdggzW2rZhEC3BX+yauGEQLp0dxtj6YRAboKvYzXxhEC4ildbYvGEQCOO60g2+YRAmWB4Fy8BhUAQj9VyoGGFQGffON2gaYVAQtS0m5lxhUD4r5R2mnmFQHaK1HKSgYVAV/4tlN+NhUDCgHaymZKGQBwcCsudloZApLgo2Se5hkBMwqlhldKGQFNiD4yRKYdAPt618ZExh0Co2qRtijmHQI6UTxZdQYdA3g3uFopBh0Ca0ALleVKHQI9pCft6VodAECO+RRpeh0CUDPlGx7GHQEDXWdfJuYdAVbPgYL/Bh0DaHCozx8mHQJBDhDs9FohANH4gJCKWiEBeEqkuI5qIQE5uUcQmnohA6F9A36zKiEA= + KBZXds7jZUAKI3ffzmRvQBTpB48/A3JA - + - QKpjRGBVMUTqOkVFB+p3RInMO0e4SARGm8iYRNyUgUQJIXlGmuoiRfz0OkQDX/ZG+WKLREqjY0SV/7VECf1LRaN3qUQU8WZEcmxrRfBbtURjm41E0aB2RGcqkkQh8t5F5HykRJRw2UQZjepEoP//RqHbWEQ7h0pEL7xURIX+EEbnRm9FUr1BRTdBqUWlVPFE9UaqRLxCR0TYaA5FbnjMRsU0T0RTKlVE29BuRP14cETSzotFq1OZREbzTETlerlEF1SYRDoBWkSGj2xEHZnaRD2cdUXCbz5EG1TsRVHHI0STTnJFJYKLRIA8XUSOOJVETpbfRMTxdUTwM39EjxFTRFO8+USHldpGMabcRJnnsEQ/24dELIetRG1IBUU1FkRHRwoYRV3rPEb7h9ZFliraRbGm+kSJZBFFSnZZRMwNUkW5x8REwTCpRCGIjEX8bitFfkGLRHMEC0WeDH5E9mxiRMf9lkQZUopFy51GRB8jdUTt2OlFAL86RO6a4UR+ioJEQuylRKgMokQwvl9GLeCWRAIUe0QUhjNFyopPRBlrT0RkOB9FOpCvRPACPET4DUVEmmdARI40jESZtatEIv+oRGe7ekUj6VNFKSCXRIqUFEVqdq5EDWuCRQeNOkcd+ZlFxl5zRKgrLkXHFPZFT8FrRAkskUQA7KlFzdtPRDpcPER5DItEQ3mCRJ6apkTYCOBEpE2AROcRkkTWgN1EsLlaRIfqTUSn6XhEwmigRCgWkUR9wNhEiHu2RM7cZ0QdbZdEv+s+RGNSWURVrd9EaE2zRLYZfkQtGzJFciqQRQp9X0SVqWtE+sNkRIbwO0SijFhE/WmIRJp6bEZ2qYFEQ4DzRJceEUWQvfJE8NloRbubPkZSCVpF/D8QRYrWo0SYLnVEd0ihRMy3akSGpf1E1xNzRLZJsUQLXbxEnAwORYjpr0RJ2SRFup1ORmLYxESp0ZJFnLCWRANvJ0a+USJFDNJvRFABUkTkP4xEilRiRJh5VERP1XZEQgxbRP9dQ0QOszBE/QXrRChmmERusEBEjrOLRG+h0EQ2VHxEwM+wRcS2bkSqs9dETPjLRHMBpUSdY+dE7IIHRuJrK0asea9G9+1NRQ/ToUTTz59FFWs5RbUyf0RfOzJFlL6RRtX7z0Q0jwVGWAlQRRtgQURyJJtEAmxKRL57pUQ8SaVEe6s+RhRWS0R85t5E6l0vRY8Ar0VmQ59FOePiRBznSUS+eJ1EUTowRbuvNkRqVaBEWo0MRTaW3UTG/1FG1wR+RiF2ZEZBx9VFsif2RdACuUTG/SxFNL7KRGm6RkSDW5NEj17jR7SF0kROTbhGZR3UROLAtkbDcVdEqQQpRbCsbUYCsO9ETrLuRC87ykTu12lEUtmERJOKJUVWGptEfQNVRNwQAkUi9l5EXz/YRJ2Nd0Qpxl5EJGuZRATW60TNuMBEwIeLRCDpkkSHbVxE64MsRrfYz0UoAv5Fnn6+RCHtDkVqiZxEBYmDROhEFkfZVZJFC5RKRd1PX0SwTndEzf2+ROaL1UQWQR5GVZ9uRXcpQUZfB69ECrOMRW6k70Sw4ZhETpXXRANZBkWetoBElm9dRDN6K0kKrvBEF6btROCWMUhLfYBEH5QaRdMceUYrPI9EEXzcRHYTNUQwX45FKKwnRTJHo0TqZGFFrddnRSZ4a0RkGjxEEOMFRqs/4kTvB4xE1E3jRIrSSUVgFnpEzE1tRENPeERvcpxGQyHsRXrh70TWGJtEfnVRRRl2pUU2volFeKnMRCSRkkThbdtEzPM+SNJRmEcPnUFEWrrrRib9v0TMsoNGviU1RW3KDEXg1qxElXS0RLL7VUSvaypGrSyORDJot0Qeqn9EgDyqRbdtRURS9eVE5rtbRN7960QTyJ5EHCOcRETue0jlKypITwecR579L0YqyxdFgGi/RDgcrERuzRBG3VIURWoZVUTFe/JEAb/dRGgVVUTeOutEr9ZfRVYtSkT9DhBH7fBcRqqdwUQ4WvxEmU5rRvDsjUTxthxGERIVRV5uiEXASSlEGBVhRUrApkV+oW1EQyCuRFNvo0X7SnlEJcJVRKBmfUSDxohEII1zRHXlD0WQ2cBHtYPxREd72EawfwxFA82SRth/OEW75YxEwLteRO7RI0RxApNECwIaRSKRmkR9SEVEeplmRCq9k0QdELtEjctCRGnoe0RHIE1EIh/QRJ7qkETInXlEhR3FRApZikQgpNhEsxc5RNr5m0Qj/ZlEKvs9RARvvkSizVREun25RtkNz0T0sbNEP5UNRmISuETpeOFEK/SfRWten0TOklVED9IjRucgwkTdgZ1Ev0Y3RTkeFkUL+FREeVF1RCUm8kWoQlVFxxVNRHIfS0Z/Vj1GcZ5oRd/M+EQ850hEA6JaRKuKQkTi0b5EV6jrRM8uZkZD9kdF516lRMAaVkQEIH9EfTtaR81lJUda2ZhGv1KhRZHY6UR+pvxEo16hR+Z9GkdNkANGxliyRPwdiEW7l3hFlkyFRJlXw0RM5TtFZYiBRIp9DEVWLI9E0o3TREOJW0SVJlhISVfIR8MXVkRdyhhFcc5cRBbmXEcJ3FREvTWYRO6hLkbQ54RFYUabRKG2hkUYvchET6t3RDkzokRGGpZEJherRLQeD0aCqP5EtmggRYvzOkW1Zm9FezWQRVNdwUSoAepE/f4bRcMYV0RWIDZGsQcJRX5+u0SUt0lENid8RCvMgUTcjpNEocqORPfvPUWMPGZFEYqTRP11E0YjHHdGxprDRbURb0XJst1Ef16ARHQQhESDAH9FTuDQRApe8EQmHIxEghVVRR3d6kRU+cZEwD+7RB5OMUVodV1E4AwRRafVT0QzFqpEoJBiRAZTB0h0/pdHmkdbRrrRZ0QFYEdFkFAuRavNkkTXeSVGmc8zRfzq8UQlQ1VF4glhRXE/jES201tEWHpnROUlEkWdXqtEPaTjRDoKwUfV8p5EOh1TRICsJ0dAnY1EGOtmRKeL10akF7JFAjS5RdW7xEQTlxBFVN2XRPfYzURKqrZHojwwR+slskbJgg9FyX1TRQUk20U0oq5EHlj7RBGzO0T5ApNEVP3FRt+kbEYcL1pFx1/SRZ/cGkVyJBZFWqCKRNl1lkQMs4pE6UXyRiEGgkZftxFGfYCKRXnXOkXPsqxEty2KRBW3v0Y1sGpGsygPRlytTUVQ+6hE7QjARNELmERtU9BEBBS6RMhXkUTLhiZGXNajRX8ZNkW8HINEFtrWRACPXUQTpkFEpDNoRKIi/UVee2JFnWnvRLigjES/oGJEIYENRRBr6URHC7ZE3aSeRA== + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - qK2vxiXBckBfwxb5bsFyQPMIhz1QwnJAdo0zTKfCckAAvu3SOsNyQGpCClTFxHJADtZI3FnFckAqOFLtAMhyQOD+gzVazXJAfhcxWkPSckBsE+9OtNJyQA+7PE/R33JAo5PuFbjgckA0/30EUeJyQJQvCJ+P4nJA9co/1cnxckCEowx+ffJyQOOOIrG383JAbN6Hlg70ckBljO1vovRyQNBCtu1EAHNArcglSmMAc0BVJ0RG+gBzQPMDkxVNAXNAFEwys9ACc0Bht5WO+gNzQEChgk0JEnNAzMdqgLwSc0AkB1yPBhRzQCS3ILxOFHNAhkawvvUXc0CzFY3VUB1zQJwV2wh5H3NA3q/TGTMgc0BsQcJipCBzQBo5ZfQ4IXNAzqPNY2Mhc0AvVbV45iFzQFxheLN6InNAr/oSVcoic0BuUN1l0CRzQGKfDTZHMXNAD01YFVoxc0C4iF+GzjJzQJ44VIf2M3NAOt4NdDc0c0Am5SFhuT9zQMJnX2LjQHNA21B+A3hBc0C0kz7aJEJzQK4r2vx5RHNAvmlFUUFTc0DkRCWCo1NzQGrcvXJ5VHNABDrRtYtgc0A4goGBH2JzQCEkNWM5Y3NAnK19FFJyc0DfqLnTtnRzQKmfqL9MdXNABhLo+XiAc0DUkM6lo4BzQKOjaekLgXNAXRO8scmBc0CubU1TXYJzQK+rgtwOhHNAvjlCBoaQc0CRfkEY9pFzQKIpmy1NknNAsKEQ9WCUc0ALhPFK95RzQFbtUTC4oHNAJomNJeKhc0AfGbVcWqJzQDnzTEHmonNAvuPDhgWlc0CG96OINbFzQHBjHit9sXNA19XkOrazc0C4VVNlDrRzQJ4auEihtHNAak2a+EW/c0C2eG66zb9zQI7z8q73wHNAzsXz+87Cc0A2RaPWJcNzQE+gLusqyHNAIjuuLNjRc0AepE8T+NNzQIhIM2Hi1HNArD26o6Lgc0CE6Vv2OOFzQGbsKVNp4XNAlu9OSOPhc0BBU4BmD+NzQNSAR9/78nNArCpGyTf0c0D4/2yI5AB0QGu4/b54AXRAYVl9nqQBdECS8lqxCRF0QIIzQrB4EXRAQY5ePYgRdEDpzgtQTBN0QH8HlRNKIHRA7N1mGbghdEAEEj6HuSR0QM6UPNBVMHRAUk27ursydECxtjlj1jJ0QP7t5Iw7Q3RA3ugPT3lDdEA4Q0B49FR0QMLGI8yMVXRA/KnHv7hgdEDa82eSCGJ0QLowu5hRYnRAtAKK3b1idECKxbwUTmR0QFDk/OQhcHRApvsXjmNwdEBgAYsAQXF0QFTCDgvJcnRAMOoKpzlzdEB6EPypNnV0QHp46jz5gHRAwXvH6k2BdEDYWEeLsoF0QECFvGRGgnRAfraq7xWQdEDjQFF1apB0QBBwf0HQoHRAekiHhjehdECoRWfvuKJ0QOp9cCfPonRArmsaWQ+jdEBqfL4TZ6N0QL5H+jsLsHRA0pr8G8WwdEA3ryyf/LJ0QHqRBBLkwHRAIwRfjHnBdEDxKfCp68F0QKjF1U95xHRAyAC1mLjEdEAfSApu/M50QI7xwOvg03RAU7UEIHfUdEAChzdDztR0QNJBDcm34HRAvSbSF7nhdEAzNOOwY+R0QPpylQBP5XRA+FTDlkvzdEC88KKajPN0QH5HjbBjAXVAaDC0j10CdUB0TQUQmwN1QKhtQIo7EnVA+i+tUCMUdUDD5fVnnSJ1QGb6KYRKI3VAbWtHiVErdUCf3BymzDV1QPi18qyzQXVA8D8gpPVPdUDc9vtw5FJ1QEaA2mdOVHVAG+M5hnZVdUBeIdb6DGB1QIqCEsA4YXVAbFyQoGVjdUAgwCsvdnJ1QD8L7p+NdHVAkvKxMnmBdUB0nE6arYF1QISuuWoRg3VAWH2yaKaDdUA8NTthm4R1QD7qEA6MkHVAFLIA/7qRdUBzmG8EcZJ1QM4mNXxok3VAIDgGXbOTdUB2k+sU3J91QAl7Sne3oXVAJEXzLF2jdUBc0hePlbB1QFY977MAs3VA9fgews7AdUC4H25nYsF1QAi9zcb4wXVAyrDuUc7TdUBqgMx9D+F1QGAPAB4J4nVAfYtfnznldUC2ZxaLSAJ2QEjvTkgBE3ZAD3CC0E0UdkB5ElFqDBZ2QIYn2fAIG3ZA/dn3fY4gdkCppRTqiCJ2QC6jBuePJHZAentlMUsrdkCdGnuRHzF2QHYtczxTM3ZA2v7hEZ00dkCflD8kHUF2QENjoex6RHZAJgFpmPxOdkDVOYwxyVB2QHSD+v8QUXZAAMTBks1UdkCx49FdUWN2QLZ7yB3bZHZA8tRCH15zdkCMZ0zWZIJ2QChnopSRg3ZAAe8h3p+TdkBnWBh5wbJ2QEItCat5s3ZAbOxE5wy0dkAkJRj01Lh2QBiXaUS9wHZA7AFT0xnEdkBeAeYzz852QLpdbln04XZAngeFfQzzdkB2L01WkfN2QDlZBBY0AndAmuaiKVENd0D9ND/SARJ3QCB4StSQEndAuvEGiaoSd0DsYGjh6Rd3QLr3ivkCGHdA6LThDUIdd0BghqGLDiJ3QNLz5vx1IndAIkgWUKczd0BLSfMADTV3QPN7ibkjPndAAz/YEZ1Bd0B4vlcJG0V3QF0BkxJLUXdA546ixJJRd0CjOMROKVV3QIRgDZiPYXdAouhcgDtjd0AYsB+RqGN3QKyENTUnb3dABSSkvtxwd0CkfT1G+3N3QPlWnRF5gndAp/lW70uUd0DszjZzZp13QAxqBYjDondARDa7ggqzd0CgLdlSm7R3QDhgJW7M3XdAxoWwGSbjd0BIwfD1kON3QGK76NiB6HdARAMahpjrd0ACNdVENfJ3QIHhq8dP8ndA0uFb1akBeECMknXhtxF4QDLCinFOFXhAEm8u5m0ieEDu7d/5iSN4QIcoqOekJHhA4Bx4Hg1CeEAcGpCDEER4QOAQl7h5RXhAHng1j8pReEA5hDUplFJ4QMSxGfyJVXhAsoKqvu5XeEAr4PhINF14QIxOgAVLXXhA+inHxflgeED+hAppt2F4QO/ReXzMYXhAFKI4nLhieECwoKbHPGN4QOFFvkFQdHhAhWUemot0eED0JsuV5nR4QL6ow6OlgXhAINsj05mEeEC42kgZl5F4QDBr85qxkXhAO958DaeUeEDLsygWzsB4QO4Zeuf1wXhA/pavmrfUeECghCxb6OJ4QEAFWtTE5HhAXi7++QH0eEB+HMdDjPV4QH6B37XC/nhANEGzcQ8EeUDqDwp1mgV5QM+D2onUIXlAyu7PDOExeUD4yeEsjUJ5QN6Pf0z5QnlArPVDnfpDeUCktWfpmVJ5QEI53HnLVHlAUA988elgeUA019xc2GR5QEgOlxhxjXlAbqDppMqSeUDgniIuKJh5QCP3Xe41onlAOpve/L+yeUDEipzMlbN5QHQxSGRC1HlAKF/PyszVeUBB97KFq9p5QGPSyaSw4nlALDno0VLkeUC3geMvS/t5QIE3e/5AMnpAdqjLLnwzekD3yOBoDDV6QGvogWB/N3pAGSAx7U5CekBsWIaH50N6QBLSON4aRXpARLYQUM9LekD/MAreU1J6QAwoO4zWU3pAOg0V3ihVekAeVspxj3J6QKxhkvmJgXpANK0ffJeRekBXmVciPZN6QLztaI2LmHpAWfpFvaeaekCfXh4xDbZ6QO8NgJ8ZxnpAVRjtINPTekBAPAQFaOF6QEQfc7437npAQAO5axbxekAXSPWHYPF6QKr6EsRJ83pA2utINcrzekBqzsmVovh6QGC3y0D4/XpAJOmMN0gDe0By5OWBpQh7QG7g9sMnDntAeIrJ7IASe0BMMZ+LTBV7QL8dQ2RaJXtAyNI6F1Awe0CrMJCUE0B7QCZ6QeqZSHtA+1RDzPBNe0Bq+gwlXFJ7QI0c5zMilXtAjtfcKWG7e0CwhVHLZ8N7QJRYVjR6xntAiIvV32vLe0ACon6Xv9F7QPvoZQSX8XtALOT05Rrze0AhLqxWjPV7QIxjUsSRAXxAvsrrPdoBfEAL/7ps+QF8QEkGn+yZBXxAIDhyKIkRfEBSBp830RF8QNKEr57oG3xAxpm1FO8jfEBcHAnMzEF8QObpXEgNYnxAiCGpZvmkfEAygOuzwLJ8QPLlSEkZtHxAwOhdViG8fECQp6BuGtN8QO3HQfXL1XxA0scg/1fifEByG4yqYe98QDl696wX8nxAwMmMHVbyfECsWWSS/wF9QE5krB5LAn1AZJXZZqERfUCYllnPQxJ9QKr26ftcEn1AnvCITD8ifUCf6W1zoTF9QNJpNwcrpH1ANDEX4EOzfUDw/wHbNcN9QED+e1bb4n1AXkXIKyPlfUDm6hqwgut9QGhI4taH831A6QK1Y5D1fUDBteR7kiN+QBidWhmNVX5ARLqAckBzfkAcQ01Unnh+QE5EeufgkH5AQo0YRdeifkDOY5fcjrB+QOR/0XuZsn5Aee1iHwfDfkAygrKnKeB+QNwkiFjV735AOvpnXcv7fkAia1DmHgB/QJVLcoECAn9Af+/XWdMDf0AoRKAN2gt/QLi3kqbLE39A9gu4vOAff0D4YrJkVSl/QIIFK+K2cX9A1sc1r7KBf0BFFlUqpIN/QKkzWrpikX9ARGzhw/qef0Du/urbW6F/QIS5IftUsX9A7pCm58W8f0BSL5oPuQGAQLL+tiG9BYBA9kjDJLIJgECOjCLggxGAQOLjv7IwFIBAMe7qV9wWgEAkQzkwYBiAQBzGExB0GIBAW2Ge0oEZgEAqInVc9UiAQGG19bHmUIBA0kbv+xNRgEDzV9wEDlmAQAURpt/FZoBAO+JDZnJpgEC0vUf8HGyAQO6pmovFboBARiEGIShvgEC0AY4vdHGAQGhARiSwcYBAjKSvdrN1gEDYr9Vxt3mAQH5J2UAxhIBADUrDtN+GgECwx0HyHo+AQHVPCm4XlIBApipN4R6XgECwly7PMp6AQFPdZvs1ooBAMPPyAoipgEA/oQly0a6AQLrz3ft8sYBADM6BV7OygEC2J042J7SAQJD8Pn9SwYBAWnl4i1PJgEBIwH4KqMyAQKj0BJNUz4BAFsrgEyzRgEBoa7mrTNGAQEeuUPlf0YBAat6tihrYgEA7IcSwStmAQAhtS+ZE4YBA4l/AAtThgEDOVsDl1+WAQKkppH/26IBAs8AsoUrvgECwXbcd/PCAQBWp2mI984BAZjUZ+D//gEB3aatLaAaBQFhpnf8/B4FAk/CKomcJgUDW2+qWawqBQCjvS5MTDIFAxuDvl+UMgUDAEZyBUg6BQM4hk687D4FAzLm4lOoRgUCmQdtwVhKBQOYP5jTmHIFA8jDZe+YdgUDOu+uDNB+BQNlUo/vkH4FAjsN6YecggUCGe2LENieBQEkGF6m9MYFATr9e8FRFgUA4ZhW19EWBQKjYFkXkSYFAijAoFupNgUBEFeVK7lGBQKRLnTPzVYFADImHC1xYgUBQOcpd8nWBQHxcTQ5Wj4FAFfQMqFWXgUA+oHwiM5qBQDts3kk3noFAwKFAo+ehgUB0ua1JbaiBQIkmE3jirYFAROlaM0qvgUAtpEVFbbCBQHSEkE4EsoFAdIGfqJK1gUAqLo9cl7mBQJzZllXZyYFASawZXAXOgUCY4P1ACNKBQDyc6F5+04FAIxcMNg3WgUDE77vlEtmBQNZE/20E2oFA6i1f6AbegUDbpogpUeKBQForTJBS5oFAAoV5DND2gUAK5zwCAQmCQG65xmHYGIJAMGb0kBYagkCetpiRGR6CQKKkyWTWIIJAdgV4N9EogkAf9qPwoSmCQNOmMQKlMIJAOIjB4Oc5gkAtjwI5oWeCQF7cVeZAdYJAEgtVQEOJgkAdvp3WQ5GCQAgVOoI8mYJAfD9Uv1SZgkBafaomDqGCQECswBc8oYJAyFhpFQ2pgkAQG4ysMqmCQFhGPChIqYJAqw0q9AaxgkAzVbdtM7GCQICDaIh5EYNAvMdhBHoZg0AQWkC/ciGDQF58IJiKIYNAbmKJZA4mg0CySki9cSmDQOBzjKwQKoNAMEeBs2sxg0B2VVJwlPiDQNub4odwMoRAxA07QHQ2hEClZLPWeDqEQL5iCmdrPoRAIdsvNv9ohEBEeNI7/nCEQNg5JV/+cYRAwiUff/h4hEBixn2dGc2EQPIG3Qdq2YRAWgJAbWnhhEC4i3rRYumEQLhV5DV66YRAZoxnIDfxhEBWlfBmZPGEQBbkunIx+YRAefQ5om36hEAs0phdoGGFQGpaR4ugaYVA0tkMuJhxhUDFIokutHOFQLmEn7aZeYVA0MSjH5CBhUAEPiR6Ka+FQIjUt4CZkoZAXP+XOie5hkD4O4AflNKGQGSgLdOW1oZA6vn2PZEph0C6+rnUkDGHQOR2LsaJOYdAsx1zBF5Bh0Aem1Q4jEGHQDX88lZ4UodAao408hxeh0DVScYqHWKHQB0eLnPHsYdADrwHasi5h0BOsQURwcGHQMTK1FS/yYdAVMCDeiOWiECdXicpJpqIQOi6cBy29IhA + KBZXds7jZUAmWGpEdaJuQBTpB48/A3JAh9H1kSpSd0A7qk8G7hN6QA9Y598b439A59zwtXgigkA1spiV7xmDQOcL398kq4VAmd9isnsyhkCZDlHcJ7uJQLETqJKmw4pAxDjT3nPzi0DcPSqV8vuMQG42jF9PQpBARyDOyPqFkEAgTfFtlc6RQMc3xd1QSpJAN9DDQMZik0Csuym3kdaUQNkxQJQCh5VA9qv7VL3alkA2WzCQPoeXQHbD8mkTn5hAskpwJ1pTmUA= - + - QNJuRKZ7f0WZNQNFBqjQR+NuAEZSEZtE5uaRRNOfPEd3ptdFuGjvRtGLFkXz//NE+rkPRWGgmkUFQCJFSnuLRRET20QE28REEKqURDWgg0Sbzd9Fw4KJRJ1G60SJb3NE7v0/RT7qB0fztqNEZAtHRkFagUVnpYtE9jpoRWubHkWaQeBE5/uORMV7i0TeIOVGp7OmRMKqbUSsHmdE1WPQRL7Rl0XYPQ1FdA+cROXgsURuU1tESbGjRCf/kERK6htFJBd9RSASm0QTJxNGbtKsRNcQZ0XeaJJE2izKRPWlnURk8wlFKNuWRO7g9kS8qElFPaYFR6mFvETLwMREuoNpRDN++kR3rqNEIHVTRbS1VUSc50ZHF8ynRM6iaUZwxAlGDAyBRMSX+kUcMPNEkh0xRXr/hEQwiYpEt2iCRaxXFEU9WHNEhjd2RB34bUQk0M9E7LSJRQWGb0VgnhpFae8jRdqSzURKLYJFHgKQROP6ukVgrGtEWUZrRD98nET6r4lExhbXRPzT2ESbFIlGApABRYoueESb2YRE476jRBHpbUXASmlE/aTBRDgpdESm7FREJqaHRLyjh0QBq3NEzS+dREXpU0TapudE9wN+RQOgoEVMkNhEnfkgRdRtzUTyhdNF39JfRCcQVkesHWJExjehRTVw00TTDAxFZuroRZ4KxERNLZZEjjDcRcwrpkQqwaxEz9aoRIlA7kSqi5pEtoocRfSaEEVjZmhEZVt4RPvuhkT0TPBEBWnZRE97pkQpX9NEKRTYRERiw0QT2YhEjtliRIFT60R2jnFEeZzhRCOxZET6C6REBeVQRbnTykXOSPdESRWBRqfHi0QiUpdEg3g5RYk/jkUdhztGTfh6RS2JJ0Udj7lEn6+FRBDiVEXLIG1Et74fRQvn/kRniBpFKMwVRZpEm0Rg6ytGGzHHRPmazUW8r6xEZphSRo1d7USUDoFE96OPRCZPbkQ5qZVEJV7gRKYvZES5h7REXe/8ROM6VUQfq5BE7LqaRAHGqUQC+h1FIYaQRME7e0SJ1DBFo7OXRAd+1EXk9vNE51utRGBenkSg9OxEYqxTRJNaikT0IttFh34pRqGbuEaR1IhFC1WHRJljlEXDA3BFi8asRKVTykTp5U5FrVeCRrpASEZy2y1F4jfMRJtOi0SEUm9G/6jHRD5F/kSnP6dFfQ+fRSE8CkU+5m5Egb+bRKVYaEXrlXtExH+FRAztKUWNaBRFfkyORmwtlUaiModGNHsWRuCXwkVWiuxEp6SlRHKBM0VC7JtEItSIRNmN8kex2/ZEbrTNRqAYvUavhrhFcKCXRvhj/ERHXixFe6HxRJ71skTw0IpFkEYzRXhdl0T+ivFEgVTJRL/1+0RfO6BEAgehRAmul0RDhoZG5lEiRugvE0Y6ccxElwEeRbIqZEQgpeVEn0RFR9mS7kXpQYBE19pZRRh3lEQPR4tEKfmYRHeHzURUAUNGQ0ufRd8iYEbMyxdFyozJRaaOq0QBQM5EkZA2Ra1LQEWj/G9E8NmYRBRRjUR/TQhFrNtLSWhutEQ9ETFFC61MSIv3vUSrmFpE89q1RqjhlkTv9Z5EuiGARajwR0XHfLBEJjBiRTj210XihWxEywpkRJNa+kSzF15GofwCRX7gl0QlDZBEOkYaRbOTT0TRYnhF86dHRBFLh0TEh5FGzIEwRiiCOUXQIo9EbyY9Rfs7ekQ4SLBFSOSeRDXAiEVkGBpFL0+xRJ9gqkSoQ21I3bOiRPcGv0dnCKBEC9IWR0PsqURMBMdG4xPxRPZBXkU4w2pE7kAfRdDnsUTyX0NG2EMdRSFR2USFF8hEyLN6RKWy2EWZqcFE+hBLRHFRO0UeWJFExl74RDJ8jkRIw2FI8aGsRM0HHEinaX5HQZ0qRt5hT0VZWpJEqzKIRLqCKEYVWRlFS1CTRBNvg0R9esREZmSbRLmJd0TXPjJFQAvhRggiG0abkHtErk0LReGW/EStQ6xF3dfgRB7/jUaZmtJE+KQzRl+BB0XsyrJFmv6GRMTJekX2dWRGZdfHRTpf8kV2Kr5EZopVRGDGEkW8grtEM9eNRKnaCUUuIYtEW/XbRx8Ua0QWTPZED4LiRi6qKUVN15pGgp2DRF4l/US62tdEg5G6REjhtUR4JvhEAISdRNyV00QpIIhEzOlNRHTOS0VevK1EvDb2RNc3U0QH1+REwdeVRE0Of0R184hE0LVBRQKZbkQrcI9EB9x1RCt4FUVeGqJEXhqYRoBjrETBVa9E+QrSRb7up0QKLIxEVfpiRK0Gv0SWxopFrmGfRObYmUTKK0VGli9qRFL9KEVuCPREvkBnRPYEJkZUOkFFjl6BRAGYVUaMEPpFVn5oRStsKUVabpZE+iTGRF2WvUQ45zhFmuZqRndyo0UY/F1HIgIeR5YJiUaoLhlGQzkARbiqa0Wc8k5HVfyiRrd/VEUcA/lE3C2jREDHj0UXCltECYalRI1W3UVvI31FPVMIRZbZdkV09ZlE9M+TRKTt3ESieHVIbmbjR2LWdkUugZ5EBwOpRKtld0dsbGlFm/urRCkGRUaVncRFbeKURfBDI0V5dYBEhlWURBOwTUTQha9EIJMyRnLV8UTM8SNFNXOcRZb4oURqJ3FFKOuzRKb5rEVFtP1EP7ZVRJY5zUQGq4lE2nvVRF5RIkbML11Ei0mAREaNFUW95q9EkReRRA/BekUzxxFGwlfIRoO+EkZp1hdFRiV7RejBRkT7I89FdvcGRVlKMEX1xKdEvzxLRcbrGUUbSZlEs4+PRUL2n0TuEcpEt3wLRalmykQLnxFFSizzR2zOiEfsEL9EwlhARkN/gEQTl6NFvdCJRKrOY0XcDxxF6KpYRBWHqkS73DxGGOgrRUYhiUQ3LoJF2HMuRbL280Sv+IdEeT4pRZAG0kQaGmZEpafKR9tuOEd/y9FGBLQXRW53jkWIRu1FJ5YrRfcP9kQ278VEIeXaRKOqlkTnlNhHcOw5R3Pf0EaeLARFPGkbRc3z+EUQXNpEI6cwRcxnW0Ts65lGnldgRrfuk0VRgqNEYwm7RWfDI0UnZ2lEX2oARZrJnERlhA1H6PV9Rqr7N0amsI5EDtJ9RRfRQUXKq21Ed3iJRCjyBUf/7UpGJp0YRr5lckRQv2BFXie4RPXEZUT1RQ1FrTgiRQrK8kRd4mpEKo0kRqAnsUURpXVFdUWqROW2z0Tl5r5EUE0YRTsxo0R1QgxGDOd5RQ0/X0UWUMNEvZc0RRmCCkXl6FBE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - eLneP2/BckCtJJdKp8JyQPCsJmvfwnJA/KRHIzrDckBn/j3IwsRyQIwoTi8AyHJAuqJGUUvNckBsJdqcWs1yQBUfBiVD0nJAFlFFj7PSckDIs3elctNyQL7BJikD2HJAODc8j87fckAhw6Igt+ByQNaQJNNP4nJAJvkJx5LickBAF6eeT/FyQPmMCYbJ8XJA/VfTDKH0ckCA4SehwP9yQD/ACppEAHNAPeqwR/oAc0B2h02MTgFzQGaXvpHOAnNAZAE3SvoDc0COA8VfURBzQEChmtQKEnNAcsJOsrwSc0BJXQgo+RNzQLRZPEZMFHNABlHMG/QXc0BoSngUTh1zQFALtO93H3NALNEcrKIgc0CeVwLeOCFzQILYGvR6InNAj8kXLMkic0Dij0XWDiNzQO6Q2OnPJHNACkLRMlgxc0CsP96ezzJzQJaXFd78MnNAFMhH2jY0c0CUA5yi2jRzQMzphcK3P3NAvuMCluNAc0ASkgh5eEFzQPzkp196RHNATI77mplRc0BZNBUmpFNzQEiMvBXjU3NA/AvcnnZUc0COqXEZiFRzQEONdt44Y3NARR3YZc5jc0CYqzCkUnJzQCMEcAtMdXNAFlXY6niAc0Bqg/2mpYBzQH6wYWUNgXNAxjZK48eBc0AK2H64XYJzQG1a0iwOhHNAthdNvYeQc0AG42At+ZFzQB5jDwJNknNAhOk5ZGKUc0Ca+jxR95RzQNZ7Eme4oHNAwRBB1lqic0DAUUvm56JzQDP/ca0mo3NApihlKQWlc0B/5eZud7JzQGv0cni2s3NA2dZ1igy0c0AGW7we+MBzQK6KRmXPwnNANqnR4CXDc0Dvg+uswsNzQHY51RPX0XNAevPzALvSc0Dwh/A+4dJzQC0G7s/103NAJtnbruHUc0AM7XgGOOFzQG6FKnaO4XNAEtbz2nvic0ACXDKf7+RzQBa0x2b88nNApGDGfzb0c0AX3lqKjvRzQCq/+oFRAHRAdoepEOQAdEAZUHqheAF0QMQf9nSnAXRAG1a184gRdEAJ0QugTBN0QHLPHR13FHRAmnXSBEsgdEAkTplPJSF0QLIDenW4IXRAIFH48mMkdEAKlJvwUzB0QORCrIjIQXRAdDYDCnlDdEB02diq2010QDLKdwRbT3RAvOomz/dUdEBEGnxjjVV0QIklMYS3YHRAZAW+oghidEBnSvAWUGJ0QK5K47y9YnRAQAQOc09kdEC2e7+YIXB0QLQyi53KcHRAFjoDTUFxdEAWM8ckOnN0QASRr3U2dXRABsdilveAdEDgfoqUH4F0QFVzRBZOgXRA6MishraBdEDETjpZSIJ0QG5mYB8WkHRAfH0Zj2qQdECCGjuLz6B0QOhvjm67onRA/J+OAtCidEA+cqXvEKN0QP7X73pmo3RAMNZfMAywdEDB00ol+7J0QHSLK3bjwHRAOMUmBnnBdEAJLOu0D8N0QM6fCRIhxHRAogldErjEdECUbBZS+850QDT56C3I0XRAWirs0+HTdEBqn4goztR0QIkzO5m44XRAQmcIk03ldECyR+sqTuh0QJ7v+W9L83RAnmCYeY3zdEA1EZgpOQB1QHZnyWGlAHVAJPy0GM8AdUCw3tb3YwF1QKCCI6ZdAnVAneHc4psDdUASD6FwlRB1QA265SxqEnVAfhKm5CIUdUAzD2bZnSJ1QF85pVtKI3VAzEncXlErdUAb0JTMzDV1QH7tMuiyQXVA3C1Sj5FCdUBKA7LQFUN1QPi8PGz2T3VAk1Gz3wZQdUCMXcE+f1F1QCxTqPjkUnVAbBgXc3ZVdUDdxBhiCWB1QKw8X9s4YXVAH8zNcWVjdUC4wsgLHHB1QC50ffV2cnVAwvO31Ix0dUCWfqzid4F1QP/tViqtgXVAeKC8RBODdUBGkKGYpoN1QFhjnxWbhHVAuEWDYEKLdUCEGwy6vJF1QGVqgXm0k3VAE7MWH7mhdUCkh1vzW6N1QNREC/02s3VAJuCYu/fBdUAMp0YBzdN1QJBscTUO4XVAbD7BawfidUAxovC1OeV1QMQv1DVIAnZAuDlOPdEDdkDMWRW3ARN2QIVoWIJMFHZAVzhAdgwWdkDXSuhmBxt2QCNJXDKGInZAMhKFPJAkdkDwjUKQSit2QNLv940fMXZA9IO6rFEzdkBuRCiknDR2QK+eUhYdQXZAfACcFstCdkAlFgaTeUR2QMiU6Dn0R3ZA1AZe78hQdkDg87jfEFF2QMA03whlU3ZA0PIq24hUdkDAuVxHzVR2QPDNQFrNYnZAfWBpeFFjdkB5PSNVtmN2QDBCqXjbZHZAzvc2mF9zdkCglofxp3N2QFpfZnppgnZA/ireVJGDdkA6Tkn99JJ2QCdmmISek3ZATBfOe8KydkCngISDeLN2QIrtnpYMtHZA45qUc3i0dkCCpcsQzrh2QBILLpcZxHZAE9DvvM7OdkC2NQMU9OF2QErtavSS83ZAt6MzfjQCd0CoHROLUA13QPPIrGkBEndA8ySw+ZASd0DeRFVlqBJ3QKW50O7pF3dALADr+EEdd0AHGaR2DiJ3QADwZ8VxIndAz8lcJw01d0AcfOJlJD53QNNbh9+cQXdAFpsuzn9Dd0C8OooeG0V3QL28ssBKUXdAbeu4eZJRd0A1LEwAKlV3QACqd/6OYXdAgrauxzhid0DqK7dWO2N3QNowfj86ZXdAyiMBqCdvd0Al5kKK2nB3QNLpM8ySdHdAPvhKK759d0DMyEZgeYJ3QDHliQuAg3dA94Q0a2qdd0BUrLOzwaJ3QLgZpYCctHdA3RpyrI3Wd0BeK4k6zN13QGCaX64l43dAOuOw0pHjd0D0YpqEgeh3QFxdJFCY63dA4757h1Dyd0CU37flqQF4QFBULXS3EXhAHpnnyW0ieEB/kuV6hyN4QMmi1s8LQnhA9I8KoA9EeEBaKpP4eUV4QLQ247bKUXhAxeTRP5RSeEBee9WQh1V4QIqU0X/uV3hAxMrnbUhdeEBC/bf592B4QLgbH/i2YXhAZN9Mm5dieEDwv7sPvGJ4QIZlumO8Y3hAZlJ9tFNzeEB40H2Ii3R4QGD4RbnZdHhAep74vf10eEAkyEpwpYF4QGJITnaZhHhA3pJu9VGPeECUqvrMlJF4QJCXrtKnlHhALAr4BrqkeEC3FXyfzMB4QPZb4agIxXhAeii04LfUeEAsDuRG5+J4QD39e0MB9HhAgZUgwYz1eEAiO+OKw/54QKrG+GiaBXlA/mwZQNQheUBevZat4TF5QMRgI+GNQnlAkt8d6/tCeUAYfueE/EN5QETswyCTSnlArSsgrcxUeUBeWB/H2WR5QPrSp7BDc3lAaOsrXpd7eUCcDtKQcY15QPQ0XzTKknlAOO9b/w6YeUAeW6TOJph5QLAvzmbAsnlA3NPrBN/SeUAMhnQfQ9R5QMRQ0wTN1XlAjIAh66naeUBCZ8X/T+R5QDjtROik6nlAULob3voFekCQK+MbOSN6QAMg45dAMnpAC2XFfgw1ekDx1EsgT0J6QLsGglfnQ3pAUKIGcxpFekCQ+zbKz0t6QBrp0bpOUnpA5qRmY9dTekDYLsyDK1V6QGjDCCrNcnpAvI80kIqBekBmv0Gkl5F6QLYlYeA6k3pA/i8bsgy2ekD0IkdrLMN6QNbsv9gaxnpARPxnaD/OekBZd4sHZuF6QF5IW8R95HpAaGVYDTTuekBMnrNaFvF6QEUvinFf8XpALKGez0nzekAsWkNnovh6QIA37i76/XpAAF8uTkIDe0C5T2oXXAN7QFKOk6CeCHtAHqNR7SkOe0C0IltLTBV7QO2gotNYJXtAdY6UqVIwe0Ds9QgWxTN7QDClwOqYSHtAh+wj1/BNe0C56UcZIpV7QDx1GCFhu3tAoFfbZmrDe0AKmwLld8Z7QBN5MKlty3tA5AnWssfRe0CSIxSp/eN7QENoEAuX8XtAhsx9A3Pze0DMbJ5PjPV7QNiAgLXZAXxArOsJhPcBfEBVi4QfmwV8QDQ77seJEXxAoFY61NIRfEBSktlY6Bt8QNYzGvvuI3xALdsB5/UrfEBWFLY9zUF8QCIOYG7bUXxAzMKOAA1ifEDysIFB/KR8QBzJoPnAsnxAfkldTBi0fEAM1s68ErZ8QCWiRrhX4nxAeSjnelXrfEBmb60WFPJ8QJpRpxZV8nxAgrMzFAACfUAACWHeSwJ9QBzqrPRFEn1A9A8YQT8ifUA66oICLqR9QNh+jh8yw31AhCRXzNnifUCK/Nmfget9QEQz05WI831A4MZdCpH1fUCQ4MUYkiN+QFUuX77zVn5AMAa0t89vfkASLpe7sXF+QEyVVt49c35A1KUIBntzfkBH816Tl3h+QP7YfpnKiH5A6tmaTdOPfkD45Ea94pB+QPiiVPrXon5AyAgl2/+6fkCvmCUJKeB+QLjbN65N9H5AVnLvpMr7fkBPWXW9IQB/QFpwyD/RA39AMDuF3skTf0C21Rp8rC5/QPI137K2cX9Aclx8F7SBf0BCRuKIpYN/QHMtOYpikX9AOnu8eaqRf0AuGyl2lpN/QPQQeE1doX9AjB1BaFaxf0AxM93SuAGAQN9rnYS8BYBA1PUPgoMRgEB+DA+3MBSAQIQwtGTcFoBAyQfFXV8YgECQPx/QhRmAQE2SMMH1SIBAccJR4udQgEAi7vfKE1GAQLlg3G7mWIBAWlZy9A5ZgEByJu/wCmGAQDHR5tnFZoBA/ThLDXJpgECcq92uG2yAQJgmnLXGboBAHIF8yilvgEDaYnCUb3GAQDghOeivcYBA1r+HnxV0gEDcpUZus3WAQITds/q1eYBA+k1OZCh/gEASuJiTMISAQJx0iQLehoBAuAPnrYqJgEDqvDfAHY+AQDxH2GsfkYBA5tSe6hyXgEDy99ZVM56AQIcmyJs2ooBA9E2oWYapgED3rfha0K6AQALbYVAUr4BAgxV6xxC8gED6Ov91UsGAQB779XdTyYBAXsoy45DKgEDYcsM6qMyAQGBmsStVz4BAyPuK9CvRgEDuLRWcTNGAQIjPCOkA0oBA3sGBNBrYgEB1RIpPJNmAQD3S7xhL2YBALPwJSkThgECuP85H0+GAQHbSbPvW5YBAaYcMGvbogED0oFNoI+mAQMxQckTc6YBAcUsGLUrvgEATRkovPfOAQCDDV0k//4BA7oggeWcGgUBEE4dkQAeBQDXSR55nCYFAuOtNIGoKgUBG8s00EgyBQFJmTUBSDoFA/NqKmMEOgUAuAe+OOw+BQPQwlHVnEYFA5EZ2ifUdgUDM27IuNB+BQCmt/g/2IYFAeb5b0TIngUBalME98C2BQE2NWCS8MYFA6KSxICk/gUDcngWL9EWBQNS5Y7rjSYFAkAKJIepNgUDQRDV47VGBQJ6E+knfVYFA2DhVLfNVgUC02zAGXFiBQCDAYd1Vj4FAf6NpGVaXgUBe77MSMpqBQL18G4Y1noFAbF0Al+WhgUAi2/Z+OKKBQIJ7+qNtqIFAD2zFkOCtgUDktCl7Sa+BQP4VEZAEsoFANI1IEJC1gUBsja862cmBQK/BnFAFzoFAKibSGgjSgUCa9wAhftOBQGZcaIT81YFAHZUtVw7WgUCEQoVyAdqBQHw0150T2oFAk+ToJVHigUD8DaZeVOaBQBuXPW3YGIJAkj+mGBQagkBoZCZeGB6CQH5+DkbWIIJAfkXJodAogkCJDfdIoSmCQLhWgRenLYJA46AmbaQwgkBmdtfU5zmCQA3SBOZuaIJAIiSkOEOJgkBWA97K442CQJXQkOpDkYJA4YlFremRgkBsSXYqPJmCQCROWdpUmYJAtmaiyg6hgkBNob7COqGCQK3yxPEMqYJA0IxoVzSpgkAnld6LB7GCQFw1XVV5EYNAae5JHnoZg0BSkpZxciGDQHjk00qKIYNA0tN2+Qwmg0BEofXEcSmDQEGQiMoRKoNAqJhUeWsxg0Cg2CVqD2qDQDAqTF3lgYNA17VN/EmDg0B45p5qlfiDQCtC5V5wMoRA5lXUEHQ2hEAhCIbByTmEQBuwlV14OoRA9Q+Vg/9ohECC4EcA/nCEQOCkLJ7+cYRAPFkzMfh4hEBXF1cqatmEQMR/ZZRp4YRAgoVOY2LphECgLZreNfGEQHssvRVl8YRAl4zLs7/3hEB2t5ErNvmEQFZTejdc+YRAwFoj3y4BhUBjTxtiOxuFQBpIXKu5LYVAMpE/VaBhhUC6NQNEuWKFQMKOKJigaYVAkllemphxhUDCly3OlnmFQLY684aQgYVA/QXa6N2NhUAqSI2PmZKGQDaMz62eloZAsPJVH6OahkDYNmzMJrmGQJ4TULGU0oZAFDDDrZjWhkDugH7AkSmHQEhFKLiQMYdAsjXJLoo5h0Aw4bbHi0GHQCtkiOJ5UodAfHfPx3tWh0BoICWkGV6HQI3d7AYgYodAJm4vsB9mh0BBbtyfx7GHQJ5pdUXHuYdA3qCtbL/Bh0AZAndzwMmHQH4fn5gglohA + NrgMGZxjYkD1hHOUyKJnQBu6YmAmQ3BAQh3Og3wCdUDiFPeZPnR5QLbCjnNsA31ABGufiHbCgEDuQWt1DYqCQL69f4DuwoRAUm81kpkih0Ai60mdeluJQFKeI7xFq4pAs+/KNbwTjEA= - + - dO+HRfithkju4MxEaBK8RW1ll0Q4mwVI8Oy2RdyToUaWJNFGQetQRbR4VESB+mZEnC0RRfstgERZHVdFSr+vRLlWjkR523VFEeqURLHBAEVsJLxFC52pRE5moURWvupEOa8bR8cjPkSzY9xEYyxTRmU2ZkVNQW9E5TVSRRD79UR9jMlEAh6ORPr4yEYi/k9EbWO+REOOpER1mbJF/jyTRNVfpURobDhEhtyjRPDYiUSkU8ZE5cmpREfypUX+rQtGtk9jRAeggEX7DVxEH6RTRDSNukRFe+pED6KGRIHAl0QhV+1EDVvfRtK7j0R/wshEiUpyREW12UTuPGdEHngwRcPFWkQ2KldHobSyRDJJY0bVISRG30IFRgmu4UTbmVNEmKoMRf2JQUSi0I1FfFIBRX48nkT3oLdFWHxzRT0lakToxSpFbM6iRJnua0SjtOBE6taDRTX1BEbwK3NEuBOaRFbxoESKlGdEzrcTRY0HbERFYYZE37FlRNVVgEa67hVF1xblRKZ/hUWu7oxE5Ti4ROW0bETAeEdFb5tlRHkEyURYF5dEikyuRPKGmERJuEREsXvKRFJz5ER9qnFFnDJYRdQmtESp1f1Et3fARKGnlUXLhmpEIYRiR6Mio0U2pclE6plwRW6Ym0TL7+hFcFWAROicvkS3pqdFBq2kROuk0ETWr8FEc2lKRCFSBUX7xQ5F9nLWRGH7aUR8Ja1Eq5/SRFo3X0Trhn9EikELRSi+3ERuAIJEudNTRB1Pu0QUUONEXkCQRBjRg0RCrtpEWtPlRYZ9cUTKN4FEe3uXRA3mf0T5TmZG/pSSRATjjEStlxFFr0v/RD1iREW+HSJGytZPRaYTGkWExWhERXyGRK3PSkQmf51E1f2SRLgkyURak1hF5IbsRAZX6kSKyuhEbJGsRI4VUURVQUFFSWEnRo2nBEUIT+BF7MCHRApYYUaMgeRE3uJ8RAPCkESfhqVErjzMRG1p6kT28X1E2x0hRXHLskTfQmlEtFz9RNEtq0Q1/KxFyd0LRSn0AUVxG6ZEga/ARLBbxUQ7dtJEo1AARh8aBEYu4NFGGV0MRS2lBkVK8atF9jR7RKO8YUULJVJEP9BtRLAZOkVFq6BEdRmnRCSzRUZWpxFF8WUtRu0HkEQZHFpFu62VRAd6cUTch5NEvfozRvzickQxgnhEbcMQRflZY0WIMJVFyNxyREOUf0RG4YVE/mUURcmQn0S6zehEIKS+RMT1mUZfA6FGLfVlRuVd20XnYd1FGZidREtNeUVDzYtEdnz8R6WNyEQqIa5G0NvWRDm+0Eb4q3xFpXSCRtNF7kR+0xFFoIuzRLyLeERRVmlEUxRrRWxhnkQqQJ1E+heaRKAO5EQuzXREE9oCRbcpj0SoAa5EfaaKRH91hUbJyhNGqpKVRSGe8kSLVxJFXhbIROsRXEeFTMZFKqOCRbjllkT1iaRE5DHZRB7MPEZdQKtF/L5CRrKI40ShHLxFjV3zRNNPx0SR8glF/kOpRIJOs0QwSJtESHWQRLBsQknNFqBE2nHYRLONJ0VCjUpIhcefRGDhxUQk+qZGQuJrRBMbjUTTVGtEmpvoRBShikVdS4tFD7fNRadPaURdXm5EqaFfRnCiy0RpCKZEiTKKRLjs9kSzloBEzmuIRWa2hESUV7tEdOazRLOiY0aUmylGGjC8RP6TP0WqBmZF+/BoRHY9vUWdouFEIJK1RU/RvkTDflxEzgOaRItefEQvmWxIWqW4R0r4GkcXVwxF7RLLRvm2I0WOWQlFxKOZRB/h8ET4s1REoAlPRl5c/0S48/FE28HYRa1VvUR+bZtEXB+GRKqs20Tr2olEgdO6RKWL/0Q1BtlEeyctSHkq+keGVSRHqkiWRebFtkXSwu1En5wNRTOdJ0ZvJBVFnge3REiBh0SrF99E/equRCVN7EQuUbBGbpTURedLkEQ47t5EkswIRQ3ymURjDZ9Fx/1+RJPeqUYMOixGmVMJRWreqUU4z4lE+XaKRSOpF0cyGoFGC1UeRTiYykWOiaVEt72SRIlvgkR6r69Eda6eRJdQeEQuNOFHfPyHRP7UsUTseelGIP4hRWWsr0Y3+XtF+nufRAcG/0TA/HpE+SOmRO9HwkXcdLxEiu/dRE3NiUSt9X9ENx6kRASsVURFls1EAmJ5RLLmf0RsIZ1EfqG0RF5LXETle2tFC/SfRIwh/USwFopEunYyRp9fm0RL9WJF3EiDRO58c0QLw4NFBzW+REoLjkTv1TZGDDqIRNF02USx5jxF1sUIRY2UlkWFv9RETtAoRi94MUZRJjVFoh4sRViq+ETlLqhEW/VWRZTcVkY1W45Eq36MRf0mgURqI0hHW7YLR8L4K0bih8NFMlYYRd2xjkTTTh9GbwbIRPXZKUWWFxdFFbGARFS79kR4FR5F4HCDRGCfckUdlGVExiWkRMTYrkWh5ihFB4vcRDPft0SlL4VEmoFeRJ+wfEgB//RHckWjRCHK/0TyBZ9E6r+dRDohg0d6toNE1s50RNtGSURlYnhGmzGPRZmZTEZxocpF2694RLTEp0SWyZNE/h/qRHdzwkRXaBJGB7YNRdA3LUUhc5BFry+kREon40RMI/9E9kqhRGTl2USagoxEPFJsRJ2lIkYHp5BExwrXREcSiERGiLFELi2rRIa7ekXQ2fBFAWYzR+ZQoEbM4QRF76LWRa4hvEXis4xFSrn5RKFsc0VrQOdEUiQcRU0ib0RzWS5FLOW4RGHklUXo6NhEpJOUROPMXkVtrrFHNIk4RysiikSH3ZRFJK3NRU6O2kSuftlEnDQlRd0G9UTjhDdGKDuoRHfvg0QNWIVFeWA1RXBIA0X1yZBEChSIRMJsJkW6bohEuum8RxItG0X4Hi1H74SaRAAMu0a53wRFvOzQRWtP80Ud//pEX/D8RD4W5kSLpuRH5c1QR1890EZK5BpFWvBERR0CCUZh9CFFT1EcRXFsg0T8j1pENNVYRFaotUSe94ZGBdAXRhSgTkTE3S9Fxhi+RW6f9URrK3ZEIEXwRNH5A0cWL4lGCVQNRsGggkWX/j9FIJaARIHQ4ERgZaBEoYCYRCB3wERPYGxE1F/2RrItUUQ1a3dGvVYFRp1ALkX8ZJdEnJPERHZm6kRU86JEftGbRDHknETZpTVF2rtnRMAKHUazCqtFQeVgRY4+0ER4x5FE0UdaRAa9REV+/SZFe2GHRETBIUbyPaNFOSc3RUGms0TeKc1E + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - tfqXynfAckDJinYRcMFyQDLSIVynwnJA6N8tyjnDckD4dLI0AMhyQJrLe+lZzXJAjnyHQ0PSckAkVAA1pdJyQDpxMQOy0nJATEcufdTSckCYbehNdtNyQMCLTR5h1HJAXx441/zXckASHBJSz99yQDyXgBu34HJASDCK81DickBIfByQjuJyQEiK4DbC4nJADrdILiTjckBv7waox/FyQOLD9hV98nJAZ/gdSaL0ckDQ32tIwP9yQCIvQ7pEAHNAnPsPvP0Ac0CvWhcYDgFzQCdkJMkjAXNAxjyD/Y4Bc0DnnwmoOwJzQBbedrLNAnNA4UHqpPoDc0CBasrVBxJzQGyEB8a8EnNAul4BLAUUc0DX+Lh29BdzQCIu6CJOHXNAeqff4ngfc0BLEwzuoyBzQDp8LiA5IXNAziK6dcYic0CP7TqDDiNzQHA6FofOJHNAlK4c6Ugxc0Azvj6QXDFzQEz79sfOMnNAo2PyuQ0zc0Ckybx4ozNzQM4keSf2M3NAfbdGJLk/c0BchuBWQUBzQJ9cPhflQHNAasEnsnlBc0D/2DsiekRzQMQUU4yaUXNAxj2kbEJTc0DuHEbfpFNzQJiJSvh5VHNAM4F9T4pUc0AG10rWi2BzQKyerno5Y3NAQn6dH09yc0ADpyRwZXJzQNAxrue7cnNAvu2+obh0c0AENaf0S3VzQDW+29x4gHNAEer06KWAc0AoGqDyDIFzQFr7M65dgnNARqxyAYeQc0D+lH8dTZJzQOMKfMHNk3NAYDh5u2OUc0B+sHv295RzQN2ZiVy3oHNAKqfitkuhc0BLe3rwWqJzQN26u6/nonNA3zmFM7qjc0BRF3rTBaVzQHLJ6FIzsXNAI5kL27azc0DvtzVEDbRzQMpwVe9iwHNAd3nyTffAc0D958O2fMFzQNwiZ7PPwnNAlGCytSXDc0AybGNZKshzQFzlx5LY0XNAMWdvOt3Sc0ABr4mG9tNzQJiPE5nh1HNAHOVHq6Pgc0CB1ZfwOOFzQIrGA7dl4XNAEPpATYjhc0DDSQ+k5+FzQJ2Z0UxD43NAsdDYrzf0c0BJPsHg5AB0QJC9sIB4AXRArIlTbqYBdEASW/XSxQJ0QOmU3LSLEXRApoVdRUsTdEA+SJcLeBR0QB7koQNLIHRAJl+YuCMhdEAQppGTuCF0QKB4YC27JHRAAryVRVIwdEBT2qLb1DJ0QIpuSStcM3RAEKfmGDtDdEAUlv6dVk90QO4r/gD1VHRA3WlrEYxVdEC8p68HuGB0QNYYGv4HYnRAM0W4gVFidECay2TuvWJ0QEotfwxOZHRA/sVdjiJwdEAqyDUFQXF0QOTZ5So5c3RAjs/12Dd1dECGgamt+IB0QLYwavxNgXRAOYxUfLaBdECSUGnHRoJ0QCpvpk6SgnRAEvbfuxWQdEC1HcGcoaB0QJ13r4jQoHRA7q/lIjahdEAEAB/xu6J0QJooswDRonRAH4QUPQ+jdEDHGi7eZqN0QIpEOsAIsHRAjI4R9/6ydEBSI15dt790QJ+rY43iwHRACgOgYHjBdEAA1FlE7MF0QFxp3AgMwnRAzFJ4rubCdEBi+0MwucR0QAqoUBI503RA1nKT/eDTdEBAfjjUy9R0QL/gAxMk4XRAZGTdYbjhdECGXzrLS/N0QOA8CdWM83RA2u0DKqUAdUA6JyAezgB1QClSB11dAnVAzlTSq5oDdUByzRipOxJ1QDZojJxpEnVAujiEaSMUdUCibbmenSJ1QMht2JlKI3VAZBEPR1IrdUDyPAdAqzJ1QCh2p/jMNXVAFX8a0rJBdUBgO5Bp8E91QEpk+mPlUnVAE2AUPHVVdUD4j1aEDmB1QOmuLJw4YXVA5rInJ3hydUDW0Yiz+3J1QDavJ0yNdHVACCdJSE6AdUBCxn0ueIF1QDiWGHutgXVAilOIyQ+DdUDwXFKmeoN1QDReuzCmg3VAsHViUpyEdUAQ7mYfvpF1QGAs+MdtknVAUjXubbSTdUCm2e/EtqF1QLTHjVooo3VA22A5GACzdUCAjvsYY8F1QIO3a234wXVAEBCYXsvTdUD2vDZP5d91QHXnii4P4XVAt1VJGAfidUDulpC9SAJ2QOI6/ezQA3ZALnNsqlQSdkDiuc0ZARN2QBaNx5hMFHZA5MIOlAsWdkAgWm9qiSJ2QMipPjGQJHZAYzIxs0srdkBK2jWKHzF2QJo0e+5QM3ZAwDM7z540dkDApoiIHEF2QLSDjWh5RHZAUNJAE8pQdkAFtWf+EVF2QOB/H3xjU3ZAy6Hfd81UdkCk/s4hUWN2QHjDyX/bZHZAPKInQWWCdkAjDQTCkYN2QCpuQQv2knZALj/2+J2TdkD4pPbMD6F2QIERVtNBq3ZA7D+jYMOydkC+Wl0TebN2QHE6DiYMtHZAitTZgNK4dkBos8AFGsR2QIqTxgvOznZAXht+GPPhdkD6IrJ/kfN2QCC4YH8zAndA6j9VwlANd0CSuBbEABJ3QF4gMkaREndAVppAiegXd0Dw7o8ABBh3QKqsKApDHXdASifhww4id0BJU84mcyJ3QMAAiLEMNXdAypD6iiQ+d0CqilzlnEF3QPQJ556uQXdA2gl3ZuxCd0D6sx7VGkV3QNhHv/FJUXdAvG05T5JRd0Bw1nZuKVV3QFqqI7KQYXdARe5htDdid0Dzn1RmOmN3QAH2OYcnb3dAWoDOg9twd0B2+SuGhXF3QGwGuJd3gndAMYGemgiSd0BCXnhBUJR3QNWAegJnnXdA9rcEywizd0ADLx8dnLR3QEE3lE3k0HdANoBuxcvdd0CJ1rx46uB3QPPISgsm43dAlfU5tJDjd0CmBvQTgOh3QOHXy9+Y63dAcn9iylDyd0C779DfqQF4QNATmBqUA3hAbsMosrYReEA+bUpFbiJ4QBD31JwNQnhAPfkfvRFEeEBpiyHQeUV4QPNyXS7KUXhAMBP3fpRSeEAHE4Xlh1V4QD9h4BvvV3hApPM6ZEtdeECu5HbC+mB4QOvpL4y3YXhAtfkja7hieEAQi9WrUHR4QDyGi1+LdHhA4Aeytvx0eEDDNLcppYF4QObOz8nOgXhAegRhuJmEeECc+27zmJF4QLZfaoKnlHhAgQUxKG6jeEDmjnGPsaR4QMDZAqfOwHhAlx7EAbjUeECISbA46eJ4QB9k2k/w6nhAqjo/MgL0eECWXPPajPV4QDc5kdTB/nhAoMzPWVwDeUBrLzMPmgV5QF7goUrUIXlAgmVmn+UxeUCTCIxJ+0N5QMDN2+I2VHlA9Lk1lMxUeUDQmO0G6WB5QHOAWvldY3lAGl2HTkFyeUCMPvhdQnN5QBbRbmtxjXlAlDFudcuSeUCAiyrtFJh5QL2N6BgqmHlA+57z626deUBA6DeUN6J5QEGe83fIonlAPk7NHcCyeUB+weN/0MJ5QHhyNcBC1HlARm3nb8/VeUCxJOBkqtp5QBLk6KRS5HlAsKy+cvkFekBQ8+hVOSN6QFrktyxAMnpAjJMqbQw1ekDpaSiYTkJ6QPZ9TMDmQ3pAwtPrwBpFekDn4Vtrz0t6QHt2SsdZUnpAMk9afyZVekBqCm9WinJ6QHeB0jyKgXpA7sxjkpiRekBayvraNpN6QBb2r0gNtnpAlcJvRhvGekD9U0/PZ+F6QMviinky7npAaXMe0BTxekAW8zRKYfF6QNgSOGtJ83pAIIS7IqL4ekBUHVg4+v16QFM8m99BA3tAyj4TnloDe0DhPiQjoQh7QOoB37dMFXtALl8vv1kle0BwupCNVzB7QEgZIgWXSHtA+1KJg/BNe0DR2uleUlN7QPP3cCQjlXtAcN06k2G7e0B8RkUJaMN7QL5z8u93xntACk5kAW3Le0B4tSIjAOR7QCHAPOyW8XtA8LyZqWzze0DIuYqzjPV7QFQet6d1+HtAlHAlHdoBfEDB4gQh9gF8QP+ATK+ZBXxAUPagzdERfEBetdspqRV8QBK4oVXoG3xAEp2P1e4jfECqRm1o9St8QMwws/QANHxARfOYq8xBfEDK2MEj2lF8QF7fxGbdm3xAysBjq8GyfEBOijMCGdN8QErRHItX4nxAC/+OrBbyfEBKpUBEVPJ8QLzG0Or+AX1APmpnHUsCfUDQ6TjY/xF9QPo9mvhEEn1A1K8AjhgUfUDadQKNPCJ9QBp7BsgxpH1ALljnAEKzfUAEV/LnK8N9QBhbJCyC631AlC3Me4vzfUCzGkftkPV9QPTGd8aVI35AeLcyZkIvfkDemHkWQT9+QPF2fuaOVX5AbIunpBZufkDAGLiJO3N+QJJzLDZejH5A5PTOXeePfkAcIca416J+QKKbBRCMsH5ASeWeKpeyfkAKa15+z99+QOLg4wgn4H5Atkj0U8r7fkCuCn3nHwB/QM8KvdHSA39AzncWbLhxf0COJWuuroF/QNjVIrhikX9AaMfaKa2Rf0COm+5HlZN/QPRfE6BgoX9APpO09lSxf0AS2ec/twGAQAYhqzm8BYBAbd0ETIMRgEAmOY0sMBSAQNtSYAfdFoBAzMaRIWAYgEAKe+3ChBmAQBB57L3oL4BAlpVCn/VIgEC0g/fJ51CAQB4xOC8UUYBA2K1ptQ5ZgEB4awD8xWaAQDqzb4FyaYBAYNAQDBxsgECCrMnlw26AQGHrFoAob4BAgLye8HVxgECO7Y/ksHGAQIxv5t8gdIBA05U1dDGEgEDiD6HY3YaAQFSGJZoej4BALzG16h+RgECyGjSGbZGAQEDVpAQkl4BA85J3hTKegEAs3UwSNqKAQKWHJS2HqYBAggtUJNGugED2f/NwUsGAQMOdsHlTyYBANiHFwanMgEBddL7TVM+AQEc69J0s0YBAMtZqo0zRgECM3wyTYdGAQE6/OKuv1IBA6sBr3knZgEBCbcuRROGAQFln+jLT4YBAVkAGdtblgECEX5Vg9+iAQPyjgujc6YBAarpgVEnvgEBucesnQP+AQIR8IGBoBoFAuYb2tT8HgUCg9arSZwmBQPhIlogTDIFAyXRyvVIOgUB28mJYvg6BQD5OARQ+D4FASBjiOmcRgUCe+/qq8R2BQJ+OgFk0H4FAQsBkUtshgUCk1xWCNieBQJMPqhnzMIFA/usuzp05gUAwtXg43UGBQBReoQj0RYFAMqFZv+NJgUDuQNkT6k2BQNgzykbtUYFA8K7NP6pUgUC9XutX31WBQGj8hh7zVYFAhC3dKlxYgUAzLpik5lmBQJg/C7HqXYFAml5OPVJogUAI+UY8YX+BQIlL1KtVj4FAWilUqVaXgUB+Gb+AM5qBQKSGjmQ2noFANNwZelOfgUCXWZNJ56GBQFygzYgdpYFASMUVeG2ogUDKwUEi8KmBQBpio1hKr4FARR7F9wSygUA8jq1p2cmBQG6fXdjfzYFAhFF1QQXOgUCnbTx3CNKBQCj+GPl804FA5nZM5wvWgUAODtD1AtqBQPQbNWlQ4oFAGE8kSVPmgUCs6o5H2BiCQN+buNIWGoJAirzwCdgggkCYGa4l0iiCQLz8SeihKYJAMPepiaQwgkA1RMJQzDCCQMguGXrnOYJAe88eyOo9gkDWSAMu8YeCQA/dxVNDiYJA0qPzXuONgkDEaKdDQ5GCQAeD0r3okYJALKdF8juZgkCmTQTuDqGCQPwhJxk7oYJAoCWVCw2pgkCPUrNbNKmCQOTGCsUGsYJAg7PzNK/5gkAEauaceRGDQFlNQlR5GYNAIscxkHIhg0AQzPuqiiGDQKQUpoENJoNAv6zfGHEpg0D+mprBDyqDQEzitjRqMYNA7eXp/OaBg0D0ReybcDKEQM68d31zNoRAtgvd1MY5hEC54Sj+eDqEQIymGlrKPYRA34rb/9FBhEDyfhoP/2iEQPbrCdX+cIRAEv1NQvd4hEBsiL5UatmEQHquXotq4YRAPAjvOWLphEAsS7V6NfGEQEzhyj1j8YRAyD/opL/3hEB0bjw5NfmEQA7Tai5Z+YRA5wmQDHv7hECQfkEwMAGFQIy7dVigYYVARmd97J9phUBqRI2OmHGFQEz5ju+yc4VAKsQI35d5hUCT2mMWlIGFQC5J22Dn+YVA7vfOS+n9hUCQ4bZFmpKGQOSwXk6dloZAVpf27KOehkC4Q570JbmGQMC3aqiV0oZAYuuH2pjWhkD29QWcDxGHQHrMXDaRKYdA6su4GZExh0Cq8NmBiDmHQEanWbaKQYdAeFMeXxteh0AHNl94HGKHQKDswobHsYdAkPpFPMi5h0BdrcpfwMGHQOACD0nAyYdAQNSVR8ppiEAN4Oq+IpaIQFLgIUAomohA + NrgMGZxjYkA8VWQoKMVvQKPid1q/wnFAjOgxcQITd0CRoHe3LfN4QB/4w9YFBH9AFG8jv/Ojf0A= - + - DwaARCA2QEVXWN9Ie1frRYwOUkhM1ypHrVntRtQJpUUb6I9FPZtXRM5VsUSXbIJEyZTZREFTxkQRQIlEqL9LRXmoFkWBm3FEPsmnRKc4/0Ry2I5E0feIRLU2b0Tuj5pFEICxRInNakR6HG9ENUx5RLhCiEQdOvFEhsb7RndOtUSMailG+B2EReUDPEV/pqJE9jq7RPYe5URH495G9U+ARBefo0RMWmJFBfjWRPcDe0RPzotE3bJQRKUjgESGroxEs/mFRKg4dURO75RE8S+PRQzwBUY0YGdE1kWhRIdbLEW0BktEFnOXRB3oz0QqYSNFje3ERPj6qkQShIBEzRDhRForD0Vead5GAkqpRKcJ10RsAelEXOtRRVO5N0d29nxEpzqwRAtIYkbwdvZFb7uWRPcl6EVAsMtEjWaAROGrLkWmYapEhClDRUnGBEVvLa5EhJcGRViSYURV+Z9Fa7pVRX0MhkTJuw1Fv2e9RBiJZUSgx4lFTTC7RBIN80UpSaZE5qWSRAgXYUS0sF1EnhoFRYfV8kR5/X5Gh83NRLlJg0SEtoREaBQYRY9gk0QMqttESnSNRASqG0X41XtEsjWfRA+baESSi4BEqBtpRFoERkRZI5xEUtjHREtzjEVsllJFUb/QRNlSREV6B+dEn6KxRa6vQkeX9aJFgd5nRG5bY0X6YOtFPsSKRIwUw0RZroFE5c+mRaBnpkRt8rFEZ2aORHYIfUTTHpNEaG34RGu0LkVDNb9EMSyYRAr3YEQt6oBEJp3/RPOriURWtqNEZ7xlRGf34ES2BoNEjy/HREz3EUXjHZZEEcsjRXGIk0QrR71F0P6lRHrfk0TpI2VG636XRC3LjUSGJg1FidzjRKa2YkXACdJF5RnARMrlfERCZQpFmtaiREL+n0QrlKZEokreRJ5XDUWmTA9FyyrfRDV+s0SsZhpG87SkRGTz1ETv26FFcx6rRPrib0S8ikxG+ZDzRMtAjURkLG5EVecLRdH4j0R6+5lE0gSARGQhvUTyuRVFzEemRFYOmESj06lEACcVRby010W/F95Eg5B8RGFv60R7hbREb4vCRJzp/kRHp+hFWywuRnESuUZM1DhFHep3RHA5kkXRuEVFUhHORLEMHEW+OR5FsgFJRtbi6EURBO9Ex0WPROXQJEZD7sVEPksDRUNBdUTTzKNEvv0FReXZpkXVTbRFyjomRZkmpESRhVNFUQ6WRB8WD0UkLeBEsRKDRmLnhUZEIk5GPUvHRfyiIEXiO45ELaNARfOpkURzculHGB4hRfKawkb2scJFO9BmREAsvUbZWJBFAGiERgXWrEQiJlRFFi2mRDy9oERnw4dFPG8QRf6vZ0QU0eVE39C0RItChkSHWRFFFCTHRPiexETMc29EPPeKRoMynESptg9GA6YDRv4wEkXW1wZFbYutRD1YOUcrDotEqpq5RQxdRkXeRsREFDrfRKgtFkZRNJJF6/AwRq0N2kRHzK5F9w7sRGeBAUXJlj1FQ2aHRHRJJEUOSDpJV5aNRBhZQEVFOV9E45I6SDJp50Rok5ZG/FpxRIcwiETEwpxEKldqRYKtREViArBE1X55RZzaqEVqQ4pEYBRtRBKZvEQOxCRG9AayRGOnI0XJ2pNEwJCDRVxulkSFOI9E/FIIRT87nUR4NoNGRpUBRsoimkQBvaREpcXtREZsiUTh+qVELiBnRbMwiETAxsRFbie1RGyYf0WLXvdEU0yaRLDDekSdwH1IEXi0RzTwD0daQp1EUrOxRkx3M0XC9jtFcYDARJmZZUS5Dm1GOeETRT7I5kT4SatFgknXRJueA0U2RHtEc9+WRCPXt0SrVyhIHJHbR2mnEUcmepNFwhnhRZoRs0Sq+SZGcXecRB23j0S6OBpFJw/ZRJz5hkSwTlZFfgWuRn4c/kWOl2ZETC7/RPXalUTEGqtF2N2gRBtqbkZlRrlEEChSRocN/kShXZJF3wOBRayRdkRM9YhHSAfiRoHEpEXHYJNEsdzWRRoHx0S5nJlEIxz/REKGb0QN++BH88QNRS3iqUavcsVEjdqkRhc8ekQsbVxFBwyHROHG2kSVhA9FVICNRH7klkRgrPpFxmfpRF+y2UQC4bNEoy9hRGqRf0S/T+RE0aCERMPO/kQqAH1E1BajRKN9MEUr2G9EQwqRRP9azUQr2QBFe1cBRpMp10SZSIBFawyYRWMImEQ0/0FGQh+JROoKlER+3JFFkjD6RM3RAUWXYspE4tVkRoonO0bb/VFFlv8lRWYHj0Qa71tE/FCxRPWiPkXyKIlGlei9RdbYSkd8IhlHw0BaRmUIi0VkBEdF6rOeRNRp8USv0mtEKZy9RSRMZUU7iJ1FWHFoRP49o0RF0YVE7ax4RQTsNUWPztVE2QTYRGnAakgg295HYx5hRTsyjESa5clE+biDR85hE0UBBZpEbnU+RtgIjEVUSnFGYQTVReSzZkQMrZxE2Z20REnhMEZpVSpFIY9ORQSyPEXN+1tFObqXREdwqUQ0VxtFkKeERDdAnES9FjZGc61WRFDa2kQtuotED3aDRJXIXEQrGUhFntj2RWN9Ykex/MtGs3neRPPDA0W4YqRF7GmwRdyNjETs121EeZrbRDSBgkRW66ZFpx/hRPQvNUX7dbZE+gGnRCt5DUWjFmJEmf8gRXRui0QID4dFYdqZRJpeSEU8BBlFbYSWR8saHEfXLsNEbnIQRnyWN0WslhNFLqhkRAgeO0b7DNFExlBbRYuZXUXvw7pEZdmEROqhkUTEgwtF2kaoRP09ZkRdHs9HgtuHRTaXN0d50J9ExrTIRlwErUWvIeVFREQfRd85JkVPd4NE4JrvRJ5Y1EfcNTNHy53LRoKsL0VPLzxFmPTrRdTG4UTjjB9FjhttRAZ/b0Z7PhlGgPRxRaC0E0V1VS9Fc36TRAv5z0Xi/xVFpyjZREhRCke5vHdG6HcVRsB6R0X8UIVFAWtnROtT9UQqq2NEB7RmRDJMqkR/cAVHv4ltRhrM/UXlOIREDlc9RaTOpkRMfYhE5e6vRMkbcEUP70FFZNxpRODouESD85NEjOBlRCULnERAfDpGy1LbRQIlUkXOXM9EkE6YRD3Yl0TefgJGqMhyRUIPIUV5FKREiTmLRJEqG0UwttpE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - UKBol3PBckBIK6emp8JyQCiZUTE3w3JAIr1KbADIckA+TKhwWc1yQHieWW9D0nJA2/83yqTSckBUm4lFvdJyQCZPnZ9503JAUJoe283fckDFn/FwuuByQD565p5O4nJA7srd2JHickCh5fbAyvFyQIMSrd2283JAumZO9qH0ckDZiKFyRABzQKlEPzn7AHNAyqPMuM0Cc0CV/kNd+gNzQLy+giG8EnNAen7QAfcTc0DyLU/lBBRzQG44+Yn1F3NAiJ4hjlAdc0CwRGJSoyBzQLQdUEo5IXNAyM4t3qgic0AcZbUxzSRzQNChD9FGMXNA3B/V7loxc0Ag9Zes2jRzQPFLvAp8QXNA8Pa9J3pEc0B2Vph4E1JzQLQm60w/U3NAvFMyZaNTc0CcAkwWelRzQHS8LRQ6Y3NAyJ0ALFRyc0BAmlhIZXJzQAbR1slOdXNAnrQphXiAc0DcNGeJpIBzQLhxDhkPgXNAAFG+al+Cc0AKheyAiJBzQCzk40BNknNAXD/QCmKUc0Cjbx1r95RzQBTeCY+4oHNA7gg/2Fmic0AUBGSr5qJzQBZ8DlkCpXNAFpyjsdiwc0AD06dltrNzQNIEuUkOtHNAPCf34fjAc0AeakHTz8JzQARQQm0mw3NAI1GrpyrIc0AZ+hwp2tFzQLTScFm90nNA9214DPXTc0DWJIdP49RzQGyZVX844XNAnOmGhD7jc0DW/ipHNfRzQMyNQ6DkAHRAgv8JaXkBdECCsyjWogF0QBnGtm2KEXRA/i1EPkwTdEDmXMtjuCF0QNgVUvDZMnRAKsz4kPdUdEDOjNqei1V0QEOks6+3YHRAdIEZrglidECEoarPTmJ0QNlF8+K8YnRA0ArxV09kdEAr4lv/IXB0QPyzCINBcXRA9kBo/MxxdEB4o7seOnN0QHRWxmw2dXRAnKbYbfeAdEBQzp70TYF0QK6f6tSygXRAshcjhUWDdEBtAjqyFpB0QBNwdZVpkHRAHqyXws+gdEA6VZ9m0KJ0QMiF/ggQo3RA2ldSaWWjdECsc/rlCLB0QFXaMcjCsHRAoL9cfuLAdEBq+hNIe8F0QKEe4ffrwXRAVrdwZrfEdEAi3hHD4tN0QCwPcZN31HRAAqExLszUdEAADBs7uOB0QKbmgt+34XRAHt2VOxzidEBoLAiTjPN0QNZRqdilAHVAjtYjzs8AdUC2/eo5ZQF1QPbBjyFdAnVAQ/kaDmoSdUDOX3UTJBR1QBVmzemcInVAjzCaAksjdUASSKaPTyt1QGKR6CDLNXVAGJOcuLNBdUBgbBMK/U91QNZjx9gLUHVAdtLADeVSdUCOZ5LSTFR1QJWy7Ip4VXVA9u6qTw5gdUBlmWL9oWB1QNjQSyY3YXVA8GUo+GZjdUBKdUbGd3J1QH3vtZCNdHVAVBd7z3iBdUCT10XErIF1QFSd0K4Rg3VAaBOQSX6DdUAMFhlApoN1QBJssTGZhHVAxdwOBLSTdUAoZZZNuaF1QKCG6s7lsnVAmlN9swCzdUCtEQh8e7N1QKzN5FZjwXVAXv/efPjBdUA6tZ7r4991QIBiQPoO4XVAKj4QWwjidUCr8xy2SAJ2QKg14lHQA3ZAwbv31ogidkBUdfuMkCR2QKIqSSdLK3ZAoJvRESAxdkDoVbWTUjN2QACEanKeNHZAs6dyfx1BdkDeuGwLy0J2QMOOo495RHZAQvAncf1OdkDOU0BOylB2QLZ94dsSUXZAHjOjHWVTdkCCA2Y/zVR2QJK2qbHMYnZAKwLbVlFjdkBHHBUO3GR2QKAx4wPFcnZAItsuaKpzdkBi/y5KkYN2QNRshhn3knZAY9x/dZ+TdkDs23zUPat2QKyJ2PLAsnZAWj5IUnmzdkDoDzQzDbR2QNzm5zHTuHZAOjCdWs/OdkBgm/laf9B2QBwXLSL04XZAomVgyJDzdkBx1z+IMwJ3QBh6wfEXA3dAjiVgtlENd0Bh9V4HAhJ3QDhpMJaQEndARfnc3akSd0AVahM46Rd3QOzFSe41HXdAQWv76g4id0AmIZJcdCJ3QBNPoUENNXdAhGJE0SU+d0DS4VqHnEF3QFL+Gg2wQXdAhxz8jBtFd0D6+DZhSlF3QNcAIouSUXdAa3skmylVd0CXhpuHj2F3QFgQ6gI8Y3dAzPelMCdvd0Cx2qBh3nB3QFSP6jx4gndAKG4JEguSd0A28liYE5N3QARsNoJNlHdATtCJcWidd0CKs3y/B7N3QF7fC0gbs3dAjnlSLszdd0D658dJJuN3QFaBzx6R43dAWoVeyoPod0Co/3Wvl+t3QC6wi8lQ8ndAnIeQKMvyd0DGFND9qQF4QEWW7YqSA3hASq49ybYReEB245ceTxV4QNoQ1W9uInhA/67GrQxCeEB6O/ryEER4QFT2qTF6RXhAAtaFXMtReEBmfnGglFJ4QBp2tC2IVXhAmqWx8u1XeECnEj6C+2B4QF5EwEK3YXhAVujUgbZieEAm9AS6i3R4QNawA6+7dHhApM1+jqaBeEC2Rp/ZmYR4QAx2FiyVkXhA04f8wqeUeEBnKTgRzcB4QKkibEW31HhA0maRgOjieEAIuq5p8Op4QAJOwNEC9HhAbjE2z4z1eEDgsHvBmgV5QHYG/JPTIXlAEcliI7sjeUCuGoz24jF5QCBBN5f8Q3lA8M+9n5NKeUBEb1qcy1R5QCjcKzBbY3lASpnjVkFyeUAYDnqncY15QPL7vOjKknlAyYUwUSiYeUBQNbdPwLJ5QExAmDZC1HlASHrHYczVeUCfVq7hqdp5QG/vcdFf3HlAVGvqDU/keUDy7SFw9wV6QB/40Q17K3pA+UrClUAyekBv2KskfDN6QGHeD5MMNXpAEUT3VU9CekBmyJM96UN6QATf5UgaRXpA1l7JHM5LekBk8fkZUVJ6QNW8yYcoVXpAEIGfY4xyekCYSBddioF6QJZq60mZkXpAUA4s9DiTekA0v9Mj8aN6QF7K2gINtnpAOmLKKRvGekBnhzyxZ+F6QKQaRRg37npA4+F3EhbxekC3rdViYfF6QOBT/vBJ83pAMiuaaKL4ekB6xGwO+v16QI+DVWtCA3tAimPE51oDe0BETTmipAh7QFJo5r0pDntACAdURU0Ve0Di3ZcUXCV7QHXznCxSMHtAgI9Dl5lIe0C0mFAi9017QP3EQxvrkHtAbp5aVV2Se0DEv6GawpR7QBxYDgollXtAHMLVRWG7e0AWEwdKaMN7QN5WvBNry3tAyPvxhhzze0DyZgsyjPV7QMANYdd5+HtAmP/YnZABfEA2o6RX2QF8QIyPTKz0AXxAjvz+X5gFfEBEHvcrihF8QII6lnHREXxAmIJJ6aYVfEB+zAtH6Bt8QGLb6lvuI3xAdp+nHNkrfECoSRgo9St8QJFEbGzmM3xAtGv3VcxBfEDtaER2K3F8QNhoXJfBsnxAMtdk5hrTfEAbwwFYzNV8QML5aZdX4nxAw+7+zRXyfEDe/KiWVfJ8QOQff/4CAn1AXwynW0sCfUBuU8gLRhJ9QJTjZ6oWFH1AEtrsQD8ifUBwRt+xalF9QJGXSAw4rH1AOp5XtdfifUAwLI+0g+t9QGTQjyyK831AlV5wN4/1fUDErkb0Nh9+QEFGRQSVI35ACge64oxVfkBlnUKWoHF+QHn2XDF9in5AqDC/HM+PfkD2bBUz2aJ+QGw2dWcm4H5Aok7je8r7fkBngv4YIQB/QJhAllrSA39AepbiQlIpf0BGDqhAuXF/QEcKg1Cig39A3wOklWORf0Chw5K5mJN/QG5WhAteoX9ADBYdjlSxf0Bwd1B/uQGAQIqYxHQ2AoBAodEbYhQGgEAmnWR7gxGAQEqiGB0wFIBAbPbXPt0WgEChSzoMYBiAQCNrTtKMGYBANubeA+s3gEC88T5IojqAQHV94yT0SIBA1a9CGOdQgEAGXe6bFFGAQL9Jy1PnWIBAFq0Vew5ZgECe+mp5C2GAQOeuddnFZoBA8fazS3JpgEBe5nMhGmyAQIjyTFnHboBAJpCIdylvgEDWZEPTc3GAQOTz0Z4nf4BAVgqnAjKEgEB6SaeO3oaAQOJdMyCKiYBA/k+c1R2PgEB2EqxUMp6AQNMPaks3ooBAVvyrLoapgECUxuko0a6AQAz9VbwTr4BAdn9L/36xgEBYauN+UsGAQKi4zYdTyYBAnp2G8KfMgEA0lP3hVM+AQHAEIaos0YBAPFIjx0zRgEDULGSxAdKAQMhqK+RK2YBAqKjYZyLdgECsMq2JROGAQEQHfkbT4YBALGOxW9flgECFfnhF9uiAQMD3CqE+84BAqqGXyz//gEAFPeq1ZwaBQFr15XJAB4FAp7DBC2gJgUBMCdAqFAyBQLV7rqS8DoFA6iLfez4PgUC2LGxAZxGBQJuA2LDiHYFAWFjzRDQfgUByAGI5NieBQCTQm429MYFARPHgWyk/gUDyYi9W9EWBQO4T4UbjSYFA9uFZAepNgUB8ltfb7VGBQJl11abhVYFA9lCMjPRVgUDG2QegW1iBQPY/banlWYFAAKOpwmNggUCA8il2VGiBQObaFtJVj4FA89KfilSXgUCAJLJ8MpqBQIt6S9g1noFAslbRLlafgUBwypN156GBQISWIxNtqIFAAl1asEqvgUB1DdQna7CBQNJ4axQoxoFApHAyW9nJgUCHtuKdBc6BQPjBH24I0oFAYsYDnPvVgUBtpyI+DtaBQEVXeWkA2oFAHGTwCVDigUAhaWqTVuaBQOaN5UjYGIJAHNLrmBcagkCIOJc5Fx6CQB6vyY/XIIJATqyfvtAogkBWa0y7pi2CQO7Zm6eiMIJAsxMzGtAwgkCyU7ce5zmCQMAJt3nrPYJAhbMJbdF2gkBq4eJRQ4mCQHW3uMXjjYJAmxw+J0SRgkB2A2WZ5ZGCQPDksFQ8mYJANj5mcVWZgkBY2FSQDqGCQPmM6Dg6oYJAWkt9UwypgkDgsiGxNKmCQBxsQUFHqYJACU+4XgexgkAwwWr8rfmCQC71VaV5EYNAfGy+5HkZg0CsrE8bcyGDQNz6gO0NJoNADigNCXIpg0C50MfRECqDQCy7DTwTLoNAKPi8Wmkxg0DlqitSaTmDQAmsCZZwMoRAaHbfcnM2hEASaehU1ziEQDuYK47HOYRAGagn+3Y6hEBt3LRsyj2EQDlgfky8QYRAMoJfPNRBhEBcBXJ5/2iEQCgy2qT+cIRAPsnwa/h4hECX7EQaxM+EQA74ow1e0oRAw5EBWWrZhEAQd79aauGEQDJuzr9i6YRArOcrNTXxhEANU8OlZPGEQB7wiEs2+YRAyBseXjABhUB6DES5oGGFQAq9pymgaYVAJ8cT1ZlxhUAJVMa3s3OFQATSq4yYeYVA5kFAXOCRhUBgBbMampKGQF7XcxqdloZAQX939qCahkAUJ8eXqJ6GQJx++L0muYZAnEYvyZXShkBGJU19mNaGQG5b3Obl74ZAOBkwwJAph0AY+o1qkjGHQAZEeVyJOYdAHOUhJV9Bh0BOl9OCi0GHQByImhV8VodAGIEZzBpeh0DLPaBzHWKHQPcNmLzGsYdAKI12i8m5h0BknwPnwcGHQJmKegrDyYdATLEH5s1hiEBCXx311WWIQFqsV27XaYhAX5ocCTWOiECkvhGdJZaIQFOiX/EmmohA + NrgMGZxjYkDAIFw1+IJuQOzQoK8iBW9AnSkYzz+Td0Ana0JUlHJ4QO7F1o2so35AxOpfRu6jf0AijW1JIoqBQFnUr1EuaoNA3N9NQZqKhUBQsy+AZQKHQMxZU7A8W4tAQC017wfTjECGrDOotFuPQCCukQzaLZBAWOtaVQDKkECcndGj9fmRQNTamuwblpJAGI0ROxHGk0CG8f/6YeKUQPyi5EJHSpVAFRpe8I2qlkB8uttXnQ6XQF6cnryuBphAxTwcJL5qmEDes5XRBMuZQFRlehnqMppAwslo2TpPm0AGfN8nMH+cQD65qHBWG51Agmsfv0tLnkC6qOgHcueeQJeAYMBxZ59AHeBvDuRVoED7VCje1rOgQJk+MaoMyqFAd7Ppef8nokBXNtF1GrCiQCXI4XcdKKNAFS5xQSiWo0CwUoJ4MLajQAnetH9TfKRAOiZaED6YpEBfHkPfU5qlQGJp54Z2oqVA6l+sSGxkpkAgYYdShIimQA== - + - Ox0TRd/g/0gQpLdFUrCCSDRNTEdQD7tGjR6QRSLXjUSXg2VEOtfbRLDnckQuwv5Er/TJROqaC0UqCmREoJ6YRNgdXUUfso9EoG6vRKRnA0ecoBBGgs5hRRrYUUXcAHVE/szlRFKQx0Reg5FG/yF+RHVjbUW/CINEq5aFREoOkEQNdyBFQ+PaRdOOWURoa4xEiHBbRUleVETG+LVEtBphRLxVc0SRz9tEHcmwRnbKC0VdSapE3HaJRNh1zERHqCRHHwSlRCn3NUZ+r+hFzC7QRWGCE0VkbdhEQ/5SRIuUHUXWMNpE7pqiRMsSRkU3ETtF7TeKRMTU+kQWEGhELKWPRGfkdEWigNZFKvQDRfyxnEQpN5VEKwloRoIWjkQVa4pEp5ZGRfTiEEWFb4lEg/CnRLTwzkTz/oNF9K4eRVk48ETKs+xE/Au8RNsYj0WnjStHvLJ/RBVGj0UEtJ9ENu3BRNaFqEXUhcZEqtt9RMg5kEVQNZ1EgWO3RLWFi0S+eN1E3v/cRMk6x0S+0WdEU3ONRDQngERLu2pExRDqRI/ZgkRvcoxE+uqhRI66fURddgZFHNmeRLgMrEX3vIJEEpl8RMgnkUTnOGtGfY78RFHC5USEMHBFZHWxRVRmpUS1WSRFyN6lRJpnX0Sh9oRE2+yPRL3keER4o6tEIdLvRPoweUQ5ZOdEmK2jRJwt70QLDgxGQEsARQxtlEUP54JEy9EoRb/WbUYCBNdE4PfrRNLIA0WNaZVEc7qARHS2lUTgRphEM6v4RIYtqETiOJNEPhQDRf5+u0VKcwBFULDaRPMW2kUEsRdGIIi9RtfPPEVwJpRENpyMRTUKY0Q2DUZFJad8RJ4OkkQBDPREoEVwRUylPUYBqptEHmJuRQhtD0Wr6k5Ecra4RF0zHUbwXJhEL3fzRD5hkETbPRtFwwxIRZwJsUXsMyhFA+0sRRW5kkRGzIpE6PfARGZa7ESdj6hE/0JsRn//l0YfvzNGuEDERcr7tEXPHo1E2NpDRXbfqkScO+hHun4aRQ9EkkZn75ZFWM+wRuqlaEXsLHZGREjhRNy7DUVoTKREwOhIRarHp0QimJdEkIygRMm+fkTc7qBEHOf6ROjRhUTHXKJEkDxERmnQ6UW45N5FKryxRLFABUXPnGhEbNdTRFzYFEe4jS1FsVyHRWoSj0SbE1RFGq7MROIaukRdhitGBxmBRV/xNkYcHMVEZky+RXneFUXHLnRFGzZtRDtsMUn2ffhEO60SRWIlNkgZCtJEdO6TRlbg+0T04TFFa+qaRZ4JlEQd5mtFOkCcRWSheUSWqvVFaSViRBFam0ScNRJFZQW2RE3XiEXZh/BECTmyRMOtnUYhkhdGsZLmRJp6FUWSJa9FUj/YREr7CUVBBmtEaYiXRO9ZiESF1qREdhRCSKRjl0SMbKtHKtXmRvBcCEXeF7RGMInXROJCJUVAFbdEs4yERA1+VEb08ZpEt9bTROpJgkT/8alFn8m7RK6JyUSojAFFwpmnRLYahkT5fRRIS4XCR7E8C0fqcoxFHMejRU4ob0S+k8dE3OPbRcTzDUUFKalEirApRRBIckT80aZEJAuQRIqiZUQx8CdFmiy2Rh8XFUZEV6tEmT37RNmdj0bMvLtEoFW5RLjwMUZe6kVFaUKJRUGNnERQjHZFcWRmREVztUex4h1HKbrrRCUt7kUgkcxEG7uVRV8Z1USQ7N5EJqqERHLoj0QKgNFHqjYERb4+yUYolgFFK8OrRuXYVUXuJWBE6gblRMr9j0SdE4NEVraQRKAEEUY8YHpFT53CRJV/wkTusQpFA6e1REpeeUTIgZVEzlJ3RPUPNUXaOp5E7JPHRQ2cBkVCszdFtmeIRO/qlkVGLJtEjsggRndwo0Q2TVhF24kqRfWizkSXgYtEh82ORG3LakaSECBGE7Z0RZjrDEW0YI1EpwtyRN1qXUQDFuxEXbM3RfwpVkZNA6pElE+aRajrkUS//1FHK5wYRyfcGEYRQ+pFW0QSRYub7kRKIYpE6rvRRbOyjEU3dg9Fp7F5Rapd+kRDiGlExPvxRPA2R0U7k6pENH+ZRJzQakjtJeFHLo9CRZW29ET62ZpEdW1sR5EWjUR+yE9GA3rARDKdl0UuD0JGb67IRa+ZikSGeq5E4/sJRnKuAUXw0ldF5gKgRW2jpkVZK8dEOCDhRHQBo0RTco5E1ZoyRnv/MEXKSuFEacqLRAwOH0Vt9epFrW1cR7SOpEYZH0dFb56ERRTwvUU6DJhEBppgRAVVs0SsPY9FNTygRGa7CkUQ/ItEwbJURDW/T0VTTiJFOY97RXSrkEQnGe9EwQHNRCQUckeTv/ZG6pgSRdwuxkU8vMFE7AHxRFHDlkSr1ilGjQLqRBlWhESTf1hFLLhVReBpikT0Er1Ek8KCRAEIJkVYiMtE69eLRFFcxUcXFYxFXjc6RzyWukTPAshGKlXsRCHduEX92chFjFK7RJO1KUV7gYhEJkT5RLdbkEQGdNRHOolKR3TZ3UYtk4xFrvcKRuv/3kTA9MREtnEZRXH3e0RtmpNGFGX6ReaRYkQDWDRGdY4dRTQyvUUihoVEFt2wRBX2oUWRtj1FX6zNRMePk0SOwG1EG6UHRzE0Y0byMyBGTAJKRcdPYkWzJdRErFb3RI51/UbF4HpGuNIIRpKeaUTncVxFYMePRHxXxUZee45GGlPjRaAerUTCepZE8lO3RBhMZ0QVTKdEuZMNRrk+xEURXGtF4UqiROc72USA/HBE3PcYRV8nBkWr8gZG9nCPRYvwVkVTWuVEPfHGRG+iwEQQtaFEcN2rRPg4A0WKNC9F + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - cpijxnDBckDq5NK5WsJyQP7B9BqnwnJAFiPwvsbCckD6BZHxN8NyQKBV9nxYxXJA8izhLwDIckDswdB1R81yQDwOPNhYzXJAKNv690LSckC+AOGGptJyQFxmIXG00nJAGZbu7nbTckBNkx+U0N9yQEb+Cum24HJAZv0jw07ickBkXETGjeJyQCq+bvvJ8XJAWB9b6PDxckDvA28ye/JyQMYX90yj9HJARCQOKcD/ckDcAVScQgBzQLXInxX7AHNARLLrFs8Cc0CE9kdV+gNzQBUJ5agKEnNAltXWTLwSc0B1su5hBhRzQENoA7fyF3NAFMxIAU4dc0CKBsQcfh9zQAKqyhilIHNAToakqjghc0B8eE1iyiJzQFXAAQPPJHNAUktir0cxc0DfCG7FzjJzQLbLROL7MnNAdQ+tFQszc0BoZDAMNjRzQHDo3dviQHNAIY/rkndBc0C6kDVJJEJzQDzFxdG6QnNAOIc2KnpEc0BY5keom1FzQHSiPpVBU3NAxW6HXqNTc0DU2EBZelRzQAZPyNCNYHNAPXXVKThjc0BdnLWRzGNzQDSXE39RcnNAApAh52Nyc0DlYf66t3RzQJIHlFVLdXNARKCYYniAc0AetR+0pIBzQAUVbMALgXNAem9T8MaBc0Da3hFPXoJzQByATwmFkHNA7GFltUySc0Bygln1zZNzQCoQHqZilHNAFALEaPeUc0Dk2qmcuKBzQKwLBJhNoXNA2laLglqic0CGUVNE5aJzQIbPaPUDpXNAdMhMD8mwc0Df1PTttrNzQL9ScvkLtHNAnETSTfnAc0Cs6BmKz8JzQKqgzu4lw3NAcmglJ9fRc0BKfbyhu9JzQFBRP1P203NAmpDwY+LUc0D8BCAqOOFzQAVRQnFk4XNASjfoij7jc0DMf+1k7+RzQMweTf5J8XNA2iIF5Tb0c0A3pcuEeAF0QC+m8x2kAXRAvwokP5gRdECVpBZcTRN0QAb21yt2FHRAuLmOS0ogdEAKjpGytiF0QGSAfCxlJHRA0uQ+VlEwdEB8cSZAXTN0QIrLzEj3VHRAtJk+vItVdEDzC70cuGB0QGhEJxcIYnRA4KXGkFBidECbYmrru2J0QDDT3DzmYnRAWGFLS01kdEBdQMmOIXB0QCC6wslAcXRATqhRDzpzdEDsZOPbNnV0QGr4ZAX4gHRAXmRQdE2BdECYBSiesoF0QLx4lpUWkHRA2fYbnWuQdEA6biWmWJN0QBw8tUvPoHRAKlfDMDehdEBllhnPu6J0QFpur/HRonRAOjL3YQ6jdEBSy6WtZqN0QDAHAHcKsHRAcvcruuLAdEAwcVBtesF0QArh4wvswXRAtlsaHLjEdECwgWzLydF0QPzeW8LL1HRARfsKM7jhdECQVSGeUOV0QFYWyddM6HRADnAWIYzzdEBaoQm1owB1QCwqaovQAHVAtN2KJV0CdUDOFLL+OxJ1QNEnBW1oEnVALBuYryMUdUC3M1oGexh1QJM27yycInVAzo59l0ojdUC/6hbLyzV1QPIErBB3VXVAbFw2Dg9gdUAa/E50N2F1QM7FXxNnY3VAvuEmpXdydUAITkUjjXR1QDzbNVR6gXVAqwmqia2BdUC+Q+OOfYN1QIIxJbulg3VAQlIalpyEdUBCAUwJupF1QEQmO7mzk3VA2xKPiY+gdUCYgsOAuKF1QPaFIuI4s3VAfFy0FvjBdUB0XbBazdN1QAIYQlcO4XVAjjrdhwfidUDCBGl+afN1QOGV3GdHAnZAmmfBt88DdkA8R9/7ABN2QIeAalwLFnZAaKLX8ogidkDmeWHnjyR2QJ4uMVVLK3ZAh1t9oh8xdkBMiBr/UjN2QJuTAFCeNHZA/BNfHh1BdkAJ4PXJmUJ2QM9FmHvLQnZAmd9egHlEdkBW1vVvEVF2QMxiOrlkU3ZAKCgBSM1UdkDv5qjLHGF2QJi7GvbLYnZAnGPoiVFjdkA04PnXtGN2QGYjZ3rbZHZACuX0sWmCdkA+CkklkYN2QIZMB/b1knZAo/Nf256TdkCGhhTcPat2QPddZQXCsnZALlY/e3mzdkCVIOshDbR2QL5szhawtHZATfGMznbAdkAn6m0Vzs52QLJdiC704XZAAocKGJDzdkAGEbXIMgJ3QPxvG1NQDXdAkO/oqAESd0B+1gTMjxJ3QK/j1I+pEndAVKTB7+oXd0AoPrObMR13QPBtarJIHXdAtuoXhw4id0DUxK3vDDV3QChsZColPndAmM5VaJxBd0BGL+Wlr0F3QMejLmx+Q3dA1KaKChtFd0BkOESYSlF3QETRp+aRUXdA5rz4nyhVd0DmeaWyRmF3QLL3j7WPYXdAmJ2qeTxjd0A4dJeGJ293QE63kO3acHdAv0CsmneCd0D10Da5fIN3QBpTWZYPk3dAWuHdBkyUd0A21BvoZ513QBQbR+Yas3dAi779fMvdd0DA3Ym+7OB3QAxQm8Al43dARORiqpHjd0Co33y9fuh3QIrc9pma63dAfr9Thm7td0Ao7+V3nfJ3QOxpWRuqAXhA2rAVKpEDeEDuJQUJtxF4QCBeT+dtInhATDvk+4ojeEAxjnvxC0J4QH5idxcRRHhAuA8U/nlFeECiYXAxylF4QOCLgzuUUnhAcD7gLodVeECmEFL47ld4QPTLjBo3XXhA/z5S6/lgeEDmIJ1YtmF4QBo0rnyTYnhAFr2cw7dieEB2FDpqaXR4QFekAWWLdHhAbFHVhKWBeEDHPxaTmYR4QCBcsumXkXhAkDdDWaeUeEBpXn8wuaR4QF5YDBXNwHhAaNJ8MLfUeEBQjXST5+J4QDAhrErx6nhAFhwgPwH0eECxAtjajPV4QHYCO8OZBXlAeJynQ9QheUBV6kKa90J5QGzHwNj7Q3lAhPP1FsxUeUD40wGiXGN5QEOXUp9ja3lADy5hrUFyeUDn9HQVRnN5QPoy3EtxjXlA99PYacuSeUDAf2dyD5h5QKrLjcEomHlAmMe6HsGyeUCHODJyz8J5QFC8PH5C1HlAUrEXYczVeUDK0SwtrNp5QNzDGOBh3HlAViS8pPsFekBUaH7qOCN6QLRnccB3K3pAIFT1tEAyekDUFu4pfzN6QPgkiAUMNXpA5CbXuE5CekAMbjpW6EN6QBMdzWgaRXpARvjkFtFLekAKjiSyUVJ6QAy3hB4nVXpANKTS0omBekB8KRMLj5h6QDCH0/kMtnpA1k0NsCrDekCC6v3LG8Z6QAxwP/hl4XpAWRSgWTjuekBa0vc4FvF6QCQCggJi8XpAJryxu0nzekBwr+HXovh6QNjUTQv9/XpA+mL+rUYDe0BGuIoXXQN7QCpmmDkqDntAsNkUXkwVe0BS7z99WiV7QAolidNRMHtAWTu0lJlIe0CS1DTb8E17QJtsg5BeUntAVIrL3CGVe0BiiKR5Ybt7QFxxEZhow3tAhdJJO3nGe0B400FVbst7QBb9JUlu03tAvvb2/xrze0Ak+RfCjPV7QCqI2cV1+HtAtSoSE9kBfEAmiwvomAV8QOaIZF7QEXxA92er9ucbfEAnOW787iN8QEkVHLjaK3xAyFcUkPcrfEBAUj7j4jN8QFXtonPNQXxAzMPWrAxifEBSMCaWv7J8QOKPNbXL1XxAwuC/jVfifEC+Q5ERF/J8QHX3LsZU8nxAUMt2pwACfUBYf/clSwJ9QOwB5YEAEn1A+n9bAUYSfUAgvR+oGBR9QBeHBNA/In1ABAo6PuwkfUC2u4kBnzF9QKE89UlsUX1AWajt9iykfUDYxInEMMN9QE6zKzaD631A1ZGlnonzfUDguiJhj/V9QGSaJYw9L35ALhbml0NVfkCXpI3h629+QADP7FhBc35ACnxGAtF4fkB0Gtd0k4p+QJLdvVPXon5AhLJ115qyfkAKp2rVyt9+QDADBJzK+35AHALXjdADf0AyMQ1+t3F/QNgFVNCzgX9AHz3EymKRf0D6ShOfXKF/QG6iB3xWsX9AunbFdLcBgEAqozyMgxGAQO4LTSYwFIBAznL9cc8UgEA89oEK2haAQFJQevNfGIBA8Ir5voAZgEDIIF0YMByAQNxfypPoL4BAVHcFl/ZIgEBWflwO51CAQNwUJ/kTUYBAqCpR8A1ZgEDeZlLTC2GAQAoKh7HFZoBAqPAeQ3JpgEBfXKP+HGyAQNCSuNzDboBAGq7KMilvgEAq6/3CdnGAQODdFHHnfoBAk2l1ujGEgED2zZnw3oaAQAoDgumKiYBAAxUQs92JgEBHsfECHo+AQBkaosEznoBAfdkhFFmjgECwYnh0hqmAQBLh8IPRroBA5sfLNhOvgEAf2QnCfbGAQGQTZm9SwYBAEPFvNFPJgEDy5XnXp8yAQJaUX5As0YBAnDTdaEzRgEAiW8mMStmAQDuYr60j3YBAEJ5KUEThgECWdWQN0+GAQKnns3nX5YBAHvHxhPbogEA61c8HSu+AQFhqgXE984BAFoon+T//gEB6Z5PnaAaBQFJ476JAB4FAaqwvR2gJgUAEeQpxFAyBQO4S2urDDoFApB9r7TwPgUBS0R8HZhGBQEHlKz40H4FAsrC6WOgggUBuOBvu8SCBQKxN7LU0J4FACUGkI/QsgUCUny0E5i6BQEASL3rkL4FA+ucd+rwxgUBxkR6l80WBQCYbBcHjSYFAFLM+IOpNgUAy3hnI7FGBQB69hkfiVYFAx/yAxPNVgUCsprY8XFiBQFRUGHnmWYFARtPPc2NggUBi/KH3U2iBQGih63MWcoFASTfXhVWPgUB80L+E9pWBQHrVBvxWl4FAWkW02DOagUCL61U956GBQLrQyFRtqIFATjFnYfGpgUBGsH2FS6+BQBRcy4sFsoFAedtrVinGgUDIJOm/2cmBQK6iy/gtyoFA/EkV1N3NgUAYjcNTBc6BQCFTgY8I0oFAbnVMLn7TgUAePOtoDdaBQHpBLk1P4oFA0BHmmNgYgkBPVOypFRqCQHhFCAvWIIJA/ZQp5dAogkDi1lmH0DCCQKGv7OfmOYJAm6goUUOJgkB+o4Dt442CQAK66LpDkYJAojDjg+aRgkBu9HGJPJmCQLfGWksOoYJAdv82NTuhgkDoZM04C6mCQBY4YvwzqYJAVkxbcwexgkAmFVdkeRGDQEZiZvZ5GYNAEJtL43Ihg0CW24cCiSGDQEZdFt4MJoNAvWys4XEpg0B0OGiZESqDQER6SNBpMYNAtRtXdOaBg0D4rX9JSYODQAnUQ/qT+INAaiZPk3AyhEA3k4T0czaEQGz3JDbHOYRA2jdcSnk6hEA6g/Z2yj2EQFhm+Ki/QYRAYKaUaMZFhEDCNJcj/2iEQDh3a3z/cIRAlhWULPh4hEDs9B0batmEQL4Go51q4YRAD29DvWLphEBYOAAVNvGEQHTknSJi8YRA8Az57TH5hEDNUYxvG/2EQNCzjLq6LYVAqMePpNNJhUDE481LoGGFQJqE7gGhaYVArqdVG5hxhUCKWj9vsnGFQIzL0v+0c4VAskNd/Jl5hUCbsoU0koGFQGAYsWTl+YVAoxsT1ZmShkD+wnrvnJaGQOqBqGKfmoZA6kL7O6OehkDBT7Gcp6KGQOoAsIcnuYZAZi8sT5TShkBNkCN4tu2GQBiqVfyQKYdA4rQIZpExh0DBKVzWiTmHQBKSehlZQYdAaLzyLIxBh0ARxE5Yx7GHQEEj2uLGuYdAIn6Wy8LBh0A93SlpxcmHQAxyV7jRYYhAeIWQWNVliECG+Sfwzm2IQHxOnWo1iohABTDGBCOWiEDQ5fvvI5qIQCDO7PEqnohA + KBZXds7jZUD1hHOUyCJpQIkw7CrX8nJAeiAWnryic0ARt914yIN7QAKnB+ytM3xAiApdZpBKgUA7JuTtThqCQBzrAKLnUoVA - + - fSs4Rf02xkT3Bx5JVONJRQl+ykWrXahEhayVSJoewEV3E4lH4WrHRrGt4kV1W1dFJ/2lRE223EQcuKxEQ+ZgRRJs3kTWVz9FDkCJRGfmhES7YH5EbRrTRD6SdkV65LBEb9wCRRYsRkdK6pNEpVxHRjXLxkVBbRxF2pvJRGAZgURfRAFFBTjVRnD5gURVzJpFfFqbRAjgkESeDJZE3KSMRJ2ekER+G9NEC4q0Rc2ijERfOo5EELL6RRv9k0TT8AdFbueKRTiDrkQzprZEx4BLRVEeqkStw61EKfkKRZBtg0QJOT1FzW7yRo22ukS59qJEGrjDRNvHDkXF5g9Fw9lJR06ilURfQQVFTjpyRj4gE0bkcYtEF7EBRkFHEEVTrCVFTyC9RK+BakXcM1NFFoh2RN1XrUW3bV9FMJIgRRh2iUQcX7ZElmOLRZDr70WLsrtEjtCZRXH3wUTfpI5EyrvERIPhhkYyMNpEJFOCRD+DZUWYurdEOLfARGMbBkUaVZxE8MXERLv5ukS9J7NEX4elRAz1s0VJaaBFTbawRGFivEQ3y5JEilAGRSvakkXSQz9HynyyRQmWB0UB8E9FZy7PRWM/IkVZGOZFt1fSREsOc0Qp4dFEoMGRRF2Ap0T17MNEBMceRZxxDEUGDLhEs/GiRH/gk0Tsq51EnBooRRzsuUSCvQpFdLdCRWOy4ESRrOtEEkO8RUAm/kQtYppEvx+XRqUl2UTh0J5EN9NDRUkRlkQ+k1JFQC9NRezbQUVLQzJFMZ++RLkzxESTUtlEL7HCRCt/NEYl29tEyoeuRbTmkEVksJZGKWzKRFUEjESWz/ZElUOXRItB70QKOZdEgljZRIt0lESOYa9EUrUQRYBRhERSdpJFUbD+RB+sG0U+SLBE1ZYURWDs3UUiNgZGdjfJRsYLHkVZg5JEBktmRcL0HUWWVodEyBODRbj8O0Xw8d5FWVo/RlZ1mkTxgshELJEZRdEImUQ9QRJFb2CaROQgSkZNDN9EWQjMREoTlUThvRlFWXORRYN3w0UTR4JEFRmcRNozLEV9drREL4UiRV5JvkTs11xGMoyIRmEWREZAQOVFN0ueRb0JwUSREptENHN3RW6k6Ec5nDpF4k6oRv3470U5WeVEoWnWRkU9lEX/8oFGxWgORZcs8EQJnxtFV2muRMW6iEXEyOBEBrgaRQPcx0SLbqdESEiURFSRM0X1hgFFL+tERlRYqEQet2FFxSETRnS1+ETKYNtED7GQRNzvpkT6lt5GIoBARQPmVkWgEG9FR4WjRGz3qUSxxR5FlbxBRvZgikWbQmxGfHfoRIfigEUqDPhETOkhRUscNEUinuREF1XTROTJUEWSuFRJuPkwRRyDVUgw1xFFMjOiRvgRxURnmNpEeoT2RBg1mkV+hQVFnvyWRTY2/kXyzwJFlVztRRNawkTcfUhF2Su3RSwODUWg6aJEtoG3REdJuETijIJG8+BBRhELAkWSx85ElcA3RRBvpUQNirxFgAjgRBHcBUVgbLhEAcGmRInuwES7wiJFQqYYSLgn6UTwqd5HjGbBRvdQ00TjpvRGgRkGRZ5hH0V3ij9FGoAPRjjw0UR489VFzLXVREnEnUTSt+tEMJ7yROXJEkUcG5JET9wXSCRVt0fsgdVGoz+7RbwecUVoXLtEcXFDRvAjNkWICKFEAN0lRdPGtERdRqZEc4HfRPxl1UYCQwRGDjwGRaY4rkTCvZJErQZtRZ9GuEZRnxZFjx9NRqR5tkVzHZJF8v/VRzXULkeh0jxFjm7hRdwmkEQHo65Fw0PoRHzmvUSBYu1E6ZT2Rz7CAEWL4uxGDeZNRQQVxkbeq5JET3V8RbsisET+v9tEoG/FRKjWokRX+JVEKHa8RB2jqkSMqkpGQylbRfLj8UTx851E48OyRCCGA0V/SapENVuSRLhdmESP0yRFy1LIRJZaxERB/btFHkvjRIMQfUWMO8JEBNg2RrxmJEWKhytFAW4mRRwWV0ZSpx9GqKmoRG+XQkWuqOxEBL/eRF3qkEThJq1EAiq6RPheYkVSaoNGM/S1RY+TjkTHWEBHpokZRwxWN0byqS9FpBorRUu1nUTqiYpEBkPoRb8qlEWjHrJEXc+pRDYvcUX01vtEH1qHRJWiAEUM4FxFrYG0RANvikR3I4xI8Mv2R8RSnkQhu6ZEauGFR3WbWEaAf6VEMqigRfHhOkbV09VFOPO3RGbOvUQOxeBELAYpRucnoERJUmxF/MIHRn0Rm0VnS+lEfubMROe8lURWPjJGQRaERHSfjEQe7+REjM2ERD3ou0TEgQpFYgvURO04lEX9uRpGlJRAR3uqnUZdwRRF0qA1Rcvs1UU4oKVEVVjDRPD5z0SfB/NE1n+pRUZxnURWps1Ec5YBRVdUK0WmrdNEIhhxRI2zZkUsLudEUqLZRBr8GkX8I7NEYGjlRNYVYEd9tLlGsLf4ROTOaEVA17JE0y9MRoMMP0X2xktFMocsRReJnkQRkz9FjwLfR303rEU6dkJHFKZ4Rdxf6UZtnJtFrZcBRlZ3EEWmuQxFx4bURCHS7kd0zFdH08MGR48GFkV30pVF7IwcRo1cC0XSoyRF7M6TRA6/s0R+h99Eu49PRotJ70U7AdlGEEoMRX5cP0b8EVVFnMBERWwsrEUjZyBFwUeVRPv/FEciWI1GIzEoRo9TjEUkA4pFyWCoRM5sgUSqmoxENymjRLCPDEehVWlG8dsTRtON1kSUzo5EKNpuRcMLkUTLZKhEUXm4R2R1eUdhLcJGM+PrRdyQy0RaIr1EDBSpRP+IhkSzbDBG7ajCRYeKY0V+oqpEILboRIlvAkacXo1FgBBhRT9htUT5Bc5ErR7URNEMlUSkPQtFxQxARbB6zUQMkotE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - vnWUu27BckDkPYP1ccJyQAwvYIunwnJAN6nM49bCckAfZOVM9MJyQGwIS0I3w3JAnZ6YJwDIckDLKBpPWc1yQPaPH3dD0nJA+BBBpaXSckAYIJXFtdJyQBrnAx/813JA4Y66cAzYckBMNXchz99yQJrJJz+34HJAX3uY7U/ickBglwoEkOJyQLAOtnPK8XJA/CvAM7rzckCBVUYZv/9yQKgfgsVDAHNA9MX8ml8Ac0DQ76H19wBzQEbuVFPNAnNAPBdEzvoDc0AzfNFbCRJzQN9I9DK8EnNAQix3xPgTc0DAwqWA9hdzQLBwuu94H3NA/MiHczsgc0AuaJmToiBzQLbJl6s4IXNAgiZMKckic0CqhlabzyRzQHnAf7RGMXNA5BYj/uFAc0D+D7oueEFzQKIKt1Z5RHNAwQe+jJ5Rc0BgFs6pQlNzQB3B/tejU3NAiGKbBo1gc0AGImN+OGNzQJCACqtncnNAZwH6XJFyc0BxCCDnt3RzQHxoNVxPdXNA7ruNqXiAc0AeJsBip4BzQHmaKzwMgXNAMvVFMV6Cc0B21FYXhpBzQDwB6Q1NknNAZNofYWSUc0BRSc2x95RzQOqzYH+MlXNAflPCMrigc0Bgo9GZWqJzQNTasJvlonNApq47YASlc0BEH1xAtbNzQJ9JuWMNtHNACuFNnc/Cc0AqKTf9JsNzQHwEigpnw3NA6CcDddjRc0CAqXZW99NzQCTBR07i1HNAqHT9KTnhc0BMMGJ7euJzQBeOXsk943NAKqfv4Tf0c0D+fdSZ5AB0QOf36dp4AXRAYDqBnKQBdED9RMc9TRN0QC9Iu2xMIHRAwN42MLkhdEDJm7LyUzB0QLzy3Wz4VHRAKjhQxotVdEAATZJNuGB0QFM1qgUJYnRADim6VVFidEBau09ZTmR0QD/iyNkicHRAgtAecEFxdEAsAAI9OnN0QNZubRn4gHRAw5lWHk6BdEB9iUf6sYF0QEwZcktIgnRA5ZeO6RWQdED8KIkMo6B0QEypKE/PoHRA3pAWrA+jdECmyV2NC7B0QBwWBvzjwHRAmlBWTbjEdEASC2Zy+c50QNqpYNzh03RAckSFpc3UdEBxox6Qt+F0QLLTg3xQ5XRATlbw38DwdEBrh6RUjfN0QL72lIqlAHVAwHq0T2QBdUAGDo03XQJ1QAdN3G1rEnVANDkABiQUdUBmXk04niJ1QM9IvgVLI3VAwNGOccw1dUD08Bf7s0F1QC7Qnx8VQ3VAihqVLoFRdUD/GDD6eVV1QDHMKH03YXVAxA6nXfNhdUBEeo18ZWN1QHBSUNl0cnVA57BZMo10dUA2cbcmeYF1QAWp+uWtgXVAHuIgH36DdUDeb5rwpYN1QAIfpq6ZhHVAyZFuCbOTdUA2GLNguaF1QP7cCx18s3VA6W/g+2LBdUDM5UVh+MF1QI7/eCDN03VA8nHjhQ/hdUD4/1G8B+J1QF6PEQNIAnZA3DvglNADdkDOWvDHARN2QPtvrpoLFnZAvuIyzocidkDCiF3TjyR2QHDzkKxKK3ZAN3d9VR8xdkCMR8bbUTN2QJZXHrScNHZAEzP04lBAdkCB+LT4HEF2QKCuCLuZQnZAU40yHnlEdkBcYi6kyVB2QAwbp70RUXZAWFhgE2VTdkBolCbEzVR2QHpvixvMYnZA27jFglFjdkBzqOIQ22R2QLBIwV6qc3ZAKGi8xpGDdkDjT8VQnpN2QGUEjKHCsnZA6BpPE3izdkBW6V9HDrR2QM6hS1TSuHZAkZRhn8/OdkAN5SljCvN2QLBYlaaQ83ZA8+5NBTQCd0DQ1DuCUQ13QO3Hw8YBEndANkoABpASd0BwfU0KqhJ3QIS2wenpF3dAAndbIA8id0Bo2J7PdiJ3QFABaZ6iM3dAXx1fNw01d0BAFe4KJT53QDNE8uKcQXdAdl3O+oBDd0BgM51kG0V3QGf4MYxKUXdADZy+8pJRd0BR3UxZKlV3QMlYgzmPYXdApjsU1CZvd0BZ/xKY23B3QMqw6c1XcndA1CwHNXiCd0DMQt8UeYN3QLr3CFYKkndA5EamwWedd0C1miBHwqJ3QPToK6WZtHdAYHIcbcvdd0CycqaeJeN3QGrZQzCR43dApmK2E5nrd0B6VeBub+13QPDHBqnr8HdABBSQBaoBeEDMT6TJkQN4QCjP/265EXhAxO/yf20ieEBBWSagDEJ4QGxEhuoPRHhAEGEpBHpFeED0L6a2zFF4QF4gzauUUnhArn+K6YdVeEB6rPuL7ld4QClHAcr5YHhAUGv3mbdheEDMe7V5D3R4QBRIpSsldHhAJH0UaD10eEAwRsLCUHR4QCeiy8iLdHhAOp8a56h0eEB6mChj5nR4QO778iv/dHhAGHLTc6WBeECImrDCmYR4QJqXHDiXkXhA9AJo/j+TeEBblKAXqJR4QO67KHi3pHhAwD3ZIM3AeEBEnaQAt9R4QMgeAH/o4nhA4CFPKe/qeEDxH2MHAvR4QPLlzHCM9XhAKvWO8pgFeUD872jG1CF5QHi6xZGJQnlAMNzdXvpCeUCcTjw5/EN5QMo4wgGYSnlAa5gSI81UeUDaAcpBXWN5QPjUJH5xjXlAhsa/NcuSeUD6Xrk4JZh5QCIl5HBsnXlADxBA+76yeUBoRYlqh815QDtQhwxC1HlA+Kbf6KvaeUAmqn3RTOR5QJwFExP6BXpA2L8o83crekCuE8kJQTJ6QHrhfEYMNXpAUpxjsk5CekCVoyTb50N6QIil2W4aRXpAVoXNfs5LekDiuxUyJlV6QBQioWiKgXpASoRlReqdekBv8mN6DbZ6QHJNt0Qrw3pAxomqTBvGekCwFIj6Ps56QK4V0+dn4XpAe5uNMDbuekC2KsaxFvF6QBLW0Cld8XpAdTQiCkrzekC2DIa9ovh6QEzi7K77/XpA6BH7kUkDe0CKF7Rxmwh7QKtqePQpDntA8jOKgUwVe0DMmP1/WSV7QC22yuvAM3tAmgQoPZlIe0DiAy5x8k17QDpIE8YnlXtAZd4rdGG7e0DWIqSIaMN7QBIlhVlvy3tAKNlW3Brze0BRLo4TbPN7QDgFAsyL9XtAnGEEInX4e0CQRNcr2gF8QKLqS/v3AXxACnapq5kFfEAtnEuyixF8QGYhmQrREXxAemqab+gbfEBiwiOI7iN8QPw9/zv3K3xAaGtrY8xBfECjbzpwDGJ8QHKuKHkEc3xAC/+8zL+yfEBGJhPtzNV8QOhtypdX4nxA9xTH7hLyfECONKvgVPJ8QHW3s14BAn1AeKo2EEsCfUDbsc9dRBJ9QDHK4l4YFH1ApACL0j4ifUAUagUhL6R9QNvXzYWC631AgnY/0InzfUAIskRxj/V9QOSo5cqO+31ANKDsN3yKfkAeonTP2qJ+QOSPsYfL+35ACHi2SNEDf0AM4SM3Uyl/QKgvvs1YOH9AQv4BMLY9f0DA0yE+EUN/QJpidmBxXH9A5hJW8rZxf0B+uQa3soF/QEiibDFjkX9ANh1uQ66Rf0DoNRjYl5N/QLqJVqdeoX9At4ubWlexf0B83RT9twGAQNDyes2DEYBAaqg/3zAUgEDlUdXS3RaAQLhMWQlfGIBApg2F6n8ZgEAGKZlM5S+AQP3VYqTrN4BA3sHhtedQgEC6QoiBFFGAQCj5XYnlWIBAAvdYag5ZgEAYwPjUxWaAQFSrfylyaYBATr1O7htsgEAxBPU+xG6AQGOBa5kob4BAxInG5HBxgECWMDqMMoSAQFLcpMPehoBAAOngxYmJgEAigBCmHo+AQGT+zGs3ooBAOquwvoWpgEBqxEav0a6AQIgMUzt+sYBAKAvCsyy0gEDv2exxUsGAQObpLpJTyYBA1uPfiafMgEATRPNhVc+AQB83zkos0YBAm7y9nkzRgEBUSGUOYdGAQBLVyBhL2YBAV5mN1CLdgEDmr3yoROGAQCwL22nT4YBAm2QUkNflgEAa/em09uiAQGKn9CNL74BAqBIodD3zgECJavBRP/+AQEw7BbSWBoFAGI8hwT0HgUDqSXuyZwmBQORtqBsUDIFAinXhaL4OgUAA1ZgrPg+BQJLczeZmEYFAmmFyS+gegUCylPxRNB+BQESP3Ps0J4FA7EdjP70xgUBzBgL/80WBQCfrqRvkSYFAeKtv5OlNgUAqViCo7VGBQCB8c6DfVYFA2/IryPJVgUDCxd0uXFiBQE6FZXxTaIFA/WsUrBVygUB0hNLlGnaBQNXGiDRWj4FA9gvSDfaVgUAzf86+56GBQIxedmhtqIFAPBEHqUqvgUBicDxZBrKBQP1jy04pxoFARu8HcdnJgUCETNK8LMqBQFJLaIAFzoFAhplvqgjSgUB0o3x4fNOBQABYPukO1oFAKNJS+QLagUA4im1QsfKBQILehFHYGIJABaLBaRYagkAhdKXyGR6CQA5J5PvVIIJANMHfjNEogkC0pbF8oymCQG85KWSnLYJAPVOSq+g5gkAXyDrp6j2CQIIfH1pDiYJAZsr8XeONgkBa8o28Q5GCQF6+Jt7pkYJA8Gml/zyZgkB+jsI+VpmCQCtWPpAOoYJAJCRXTzqhgkCUj3nNDamCQA9kyBQ1qYJAYhbQwQexgkBcufstr/mCQMtf5ZB5EYNARMRloXkZg0Dwpay5ciGDQPCzdmyKIYNA4F2qbg4mg0AIEp88cSmDQMYMj8oPKoNAkd37/n4qg0BeRMajazGDQPpZjcVwMoRA1UntN3Q2hED+a9F6xzmEQIQLBpF4OoRA6i45oMo9hEBw71DizEGEQNS/RgnFRYRAFjrmnf5ohEA095QZ/G2EQLRq4lf+cIRAKHboxPh4hEA08JceZNKEQAbLVVtq2YRA+DgNL2rhhECHppVIYumEQFYI/Zw28YRArgcSj2HxhEAofWoeNPmEQNl3f94uAYVANlblyLkthUBGfSaPoGGFQAgoZxGhaYVAlBfJIJpxhUAvHm0AmHmFQAF4GJ2ZkoZA4/70n5yWhkCQJayCnpqGQLzjgJ6hnoZAuf3h7KWihkBJ7ElIn6aGQPGeY0MluYZAQhIWF5PShkBeRQyZkSmHQG1VuDeRMYdARxoXI4s5h0D+xymfWUmHQCkWzjB7UodAZdqoNB1eh0CxsOK7rYKHQLk64AazhodAqF//fcexh0BjG0XMyLmHQOiUOBfAwYdAnko7f8HJh0A21iZk0WGIQMgryr/VZYhAxIMx5DSKiEDANNClOI6IQEjkwW8hlohAoNcMHCWaiEA= + KBZXds7jZUAAVPW5y8NqQBTpB48/A3JA7mf6OVSSdEACpwfsrTN5QO7F1o2so3tAniTA4C4qgEA= - + - pQ01RanlrERbXhlJog0cRaHzwETfa6hFq06USNOtfUfTmtpGuaSHRbe/BEUCPqREg8joRBVMrURuAbVE2a8sRercGkUm5ChF5ZiaRO13ukRiTVtFIgh+RLesg0RtPb5EPlfwRs4YpESbKRdGe06BRTU3EEVRCJhE6jeHRNzv3kTSwqNGnKukRB0QkEUyPOBECvylRCtNhEWtgvtFnmSPRJposESaHGRFHnmBRO4NC0UJZsVEKASORE9GlUTw9vVEEfLURoXpi0SofydF9Jb6RN4KIUWOqU1HYpmcRPtEWUZJb7NE/RASRk1A9EVa1BlF7+gRRRAMSEWQ7gFFrIhyReFzU0UqOoFEaG4FRWMa/0S6+IZFsFXqRRa4k0Rz2mRFqs38RBEjmESIw4RGLou6REHaEkUn/6FEg3kmRR8FqET0R9ZE5sLNRNXTkkWeXG1FwvCRRJkhrUSG9cBF5Oc+R0AKt0VvgTNFZqH4Rbva+ESE/X9EKx2lRfVQrkQaes5Ei6vhRE7jvkT0p+pEtgjwRKsbokRPx4REAMfeRPsTMUWnqJ9EwtukROw1nkUT8ZREu1LmRFf4hUZciABFTVoQRTTFb0WMYFhFTwYqRaL3pURwRJhEf8GaRGKbvkRJlg5FuHKjRNNl40RH8LBE46AgRs7l+kQD6K1FtziqRd9chUbRxstEZ6IfRWXwBUVA36xE4WKHRHLQnET5sLBEgryBRIO6H0V1avJFvlDURPj1E0Ul3dRE9t/ERB+r/UWHzyJG0Hy+RurmI0U7q5NEk2x/RE/ap0Xjc+pEqUoTRXFz1ERfUmhFK02dRWOiTEZjV99EUFT3RMXlDEVDLQVFhVYqRs7wq0RJvPhEzRygRcBOkkV5m1lFyrQvRXqgCkWC/tBEOvIIRa8/aEbta6RGpfteRq5Iz0XE1fZFH5hkRZpChkQ2u5dEmJvuR/5g6kRYELVGcC/ZRHsL3Ea7E61FQ+FcRu/8oETxZDtFhZiLRZFZlkSGoOpE+broRDFtqEQeTQhFWnAyRTrngUT87Y1E/hsHRnq4tUWotQxG1IE1ReJWDEWDF5xEqhybRpqhHEU/sxdFUHRXRWJcpESyCxhFQn9GRqLrh0XufDxGM/sdRYkwmkVzCAJFTxQeRePtxUR3cZpEhinGRIT5AUX7Q0xJ428oRupC0kSeo/VEbQpYRUAoWEhe/RlFKxKQRAwEpEaG57JEnUgQRR+6AUUUTI1FOJekRJ7ciEVM7PVFNl/mRElSjkU9AZREP52vRGZqL0W5QLFEFl2sRU7EfUVvr7BG5JwgRukFI0Vio8VEnOkkRYhYxEQO19xF/NrrRP1SjEQd6r5EHLjwRJTW3kcl0chHXwJjRiQI3UTmP9RGP9sQRW+nOkWgU9JFLI2WRNU730Xl35xEDbr6RJytiUSBneVEICMNRfNln0TZqLVECsAFSBqSu0dSgONG52vNRV/TxkShSu1EubchRt9+KkU2T59EjQItRUx7oUSiZ5dE8uUAR7bQHUYTRx9F5oFwRRI1oERJHJpGd0joROBwSUY9cBdFgC6TRUxriUT9+2FFRDfOR7NQKUfUVO5FquiqRZfPv0QrdY9EVxUFRdB+lkS3IOdHi2y7RB+i2UbbUP9EBRm0RoRJSEVu9JZE16qWRNPl7kSFPB1G4DBcRfXq60TqNqREOQuwRLoDw0QKU49FGT3FRMZAnETMCLZEdPC6RMevsESfRItEzaiORYOCoUQ1FRxGK9iaRMWE1USQE3xFfaBKRdhMkEQOJBxGTvATRj9XNUWwXadEdSkURSth1kSfUo1EXNyERYP1h0b+YJVEzzKpRYHOKkdv/QlHiGFjRikNukXJ59lEb2UkRUePx0U3+qNF2OobRYDZm0VEfZFE78rfREroS0UA7aBEfJ6OREWfgEgzZOhHnUAHRTUDHUWw7t5EcDV1R9YyUUXRT2JGgQzmRISgvUVaBMpFyxhZRdsshUQmG55EEJbKRFnFLUYsrrxEl1MTRSDR+EWvX51FdMhKRZqnEkWkMxdFOMxkRNafF0ZJ/CZFVd3lRIZTi0X9GsVFPeoAR2d9QkZZ8a1Eo/NSReZNzUVhSPVE+W8gRb9H8ETOQ5xFMG7hREQFbEVB3R1FwG+VRUsU8USGpklF7T8RRXse70SjbjNHR0OZRpH8mERxGGZFU/AMRVmHm0SU4iNGSEAFRcb3IUWml29Fi9BKRbQ3t0RcGIZEhdE+RSFq2kTEy8ZH66GXRe6MJkdzpPZEQbbeRsfS80SzGdRF3UbqRaRzzkRNDz5FEzPXROAGp0T2gNRHGIFBR+D03kYTu0tFe1tRRcnTEUYtgidFUHCTRPsMC0U2BIFGMVfcRdDpEUcu0/hETKaZRnQs5kV9ENZEuYHPRbPMmUSfH+FEhL4ERVU/kURsSBBHgeiORsC6EkbiFoVFtrxyRZKCxES1aO9Es/y0RJft+EZoKXxGSJMGRslFUkXBFINI83BOSPYsqUfbILtGdMpnRWObvkRAssBE7JmaRFc3EEamzbxFtCNiRad7i0TlDo9ECXyaRJJhm0QQcplEq2YERqfBiUXO4Q5Fmva4RM5yEkWkt9dEzHFbRWBLL0XliBRFQs+SRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - /rRt8HDBckAsOh8EesJyQMjSwjCOwnJAqp+lLafCckB4WAh3zsJyQLKkB9rdwnJAoBKb5DjDckCnzvXg/8dyQHlP6c9YzXJANjs5fUPSckA4D+RnpNJyQEgG7rOz0nJAzkdLK0XTckA33qvTddNyQC+FY4XO33JADuMMu1DickDDDHsOjuJyQGRNqIrK8XJA/gnqaEMAc0AurMQE+wBzQCn+3K7QAnNAtLl8bPoDc0CMNr/KBxJzQNiLXEK8EnNAnguMS/kTc0BGMTlT9hdzQMfwzC5OHXNA8z01q3kfc0AeoylPoyBzQByvvcg4IXNAzCPxag8jc0BM/Rup0CRzQLFbR9lFMXNAFSvlmc0yc0AsOJG/5EBzQCNcpq13QXNAKPKz5HlEc0A31j5dnlFzQPE2YUCjU3NAUtNO8ntUc0DgkAjwOGNzQCbZy8JRcnNA0hxV3Glyc0B+8n8junJzQGqSJ8hLdXNAkpHkr3iAc0Bq3yC2pYBzQOLd0sENgXNASNthY12Cc0D4ntLfhpBzQHyqhdhMknNALGF1DM2Tc0BM6EQsZJRzQDNJAjT3lHNAHzm8j7igc0CwunoNW6JzQHIwLuDkonNAgqM8WgSlc0BWnfW1trNzQCcLZzYNtHNADMpN3fjAc0Ai2Dsh0MJzQChpaIYlw3NAsBC2DdfRc0D4ze0L9tNzQFht87bh1HNArlYf5Tjhc0DbxKKCPuNzQJwv+Cw39HNArOvI7eMAdEBMiuKveAF0QFBKjaCkAXRA4BQWn4oRdEAu0vxATRN0QDnsbttMIHRAhvvRnbghdEDDLzfEt2B0QIMProMIYnRAlJD6kVFidEDCRA0rTmR0QCAIwU0icHRA4PtgAkFxdEBQjTQWOnN0QJbXg502dXRAErkITviAdEAg3B09ToF0QLmgEq+ygXRAE3qHFhaQdEAsy+pDuKJ0QNbHoG7SonRAeC3y8Q+jdEB0b7zoCbB0QDDlhWniwHRAG2KiYXjBdEB8619nI8R0QOKt3kr6znRA3IerjVHSdEDSMDgZztR0QFoFtj244XRAavDA5EvodEAjEXacqO10QCWZNzOM83RAfAgBNV0CdUCuJUUUaRJ1QJipYtEjFHVAmI3kB54idUBTGucwSSN1QCr/3OzMNXVAnDjI8rJBdUABgEhWd1V1QLUAm5sKYHVArKVJZTdhdUCnEGFud3J1QAibsTWNdHVA7ERxaHiBdUAMy5KVrYF1QAqmGLwSg3VAWG4u6n6DdUBZ0H5hpoN1QOgSzmyahHVARvfFlrKTdUCElsy4uaF1QLTneh75wXVAqG27Bc3TdUDOzG5zB+J1QCZolFZIAnZAZNidb9ADdkDT3z8UARN2QC3ASYhPFHZA+o5NbogidkA9RfVKkCR2QB5laG9LK3ZA/IOptx8xdkBqhUg3UzN2QCAmpDydNHZABr943RxBdkAcyeiBmUJ2QPJSVzN6RHZAc7uQo8pQdkBZT7+sElF2QAxCYBZkU3ZA9RXaks1UdkDunXhnzGJ2QCJRYm7cZHZAlFM4SGiCdkCisH8ekYN2QOx7PEnBsnZACVWAKXmzdkBKSJrnDLR2QBbBM1zTuHZAkiG4h87OdkB6T+ncCvN2QKPhGXaR83ZA8iQZxjQCd0C6o//XUA13QM6ENYEBEndAVrqCRZASd0Aip4TsqRJ3QBLzkJ/qF3dAxgr0lw4id0AGfFzEcDJ3QCjZU94MNXdApH24sSU+d0DHt4qcnEF3QOPwbfIaRXdAeijuzEpRd0BaRLgzklF3QHDRckYqVXdAOk414o5hd0DMqUA5PGN3QB3q8R/SY3dAtKGz9Sdvd0DApB49XHJ3QIxlPJ5bdndAHKLnOlt+d0DeGYqpy913QJr2cTgm43dAGJQB5ZDjd0BhVp4cguh3QG29QJyY63dAJjKrLVHyd0Cs26VoqQF4QBRRtDyRA3hAV7Q8ELcReEBdH0d0bSJ4QO4mcEELQnhAxHG9bhFEeEBHhGdVekV4QKeuKGfLUXhAuB9P3pRSeEBis/nCh1V4QNMi5qTtV3hATHcJdUldeEC2jKs/+WB4QAHzrOC2YXhAOOPKp7tieEDiY7jaSHR4QOKzC8RpdHhARsh9b4t0eEBUJ0SsxnR4QPc1Xf+jgXhA8E1VipmEeECwrLz5lpF4QApUBYSnlHhAlpO0Ys/AeEA1j1Kn88F4QJsSVOC11HhAvg153efieEBgOhYZ7+p4QMgNPXQC9HhAMNO7Poz1eEDQ1gW+0yF5QFOQUVf7Q3lAvhEEos1UeUD5FIc/XWN5QPi5qt9ja3lAPBreZ3CNeUAQu0/rypJ5QFXN9mQnmHlAW+OyLb+yeUBCduflRNJ5QMuIiEVC1HlA7DcrjGDceUAo6vhVQTJ6QCQO+lYMNXpAzTM4K09CekCYQlIL6UN6QGD9y2UaRXpAWcsNus1LekBVAxceKVV6QMTQJJOPcnpAmDb4UYqBekCK7LzDOJN6QLQu+XoMtnpAvzntChvGekAcMXh7ZeF6QIUM7dR35HpAiinl9DbuekASUY24FfF6QLJEIZVh8XpAfiT6kEnzekAOvDoVo/h6QFgvskL8/XpAuP2PtFIDe0Caku5nTBV7QBbrxmtZJXtAhyEl55hIe0C6rpYP8U17QEgqZNj/jHtAjgqMhmG7e0ASRSpYaMN7QA7Hd79sy3tALM3Rk5nRe0CmlH5fstF7QLIfaTjI4XtAXsNQ95bxe0BsSM+kG/N7QFiEHjmM9XtAMDYH0Hf4e0A0OifK2AF8QPLojv/0AXxAOGXMV5oFfEAHKumm0BF8QJkHwSToG3xAw1qRLO8jfEAC0ZT22Ct8QFqm+zD3K3xALinSIcxBfEB0GnNdDGJ8QCCUZIXCsnxA+oRMuVfifEDiEC1xFvJ8QJ2SvuFU8nxA7SU/dgECfUB8HkdTSwJ9QOQriiNHEn1Aj2sUKjwifUC/v/okTC59QAV1eHOrsn1AphdrsSzDfUBgpViwg+t9QFV68ICM831AroWIz4/1fUDISnevQC9+QNznh8wjbn5AbtOfIJ1xfkDsItz2J3V+QK4+GmnunX5AKsxTmYzofkAAfUww6O1+QGqAxGvK+35A1VKoWh0Af0DWug9NWDh/QJr5ijq5PX9AE2vLYxJDf0DUAh+2bUh/QFJxUOa3cX9A6ByVrGKRf0CI/FT2W6F/QI7PpnZUsX9AMmHdTIMRgEB0aOxLMBSAQAIf+aHdFoBA5CtlVIUZgED0CMA38kiAQOnddtXmUIBARl5XbxRRgECHDy4V5ViAQFLgxjMPWYBAqGQO7R9ZgEBXtXamxWaAQK8spFZyaYBAzLNC2BxsgEDyQ0iaxW6AQHRUVQ8qb4BAMgYlMm9xgECiTZ6LMYSAQBj7fxPfhoBA3B2jSoyJgECKxInw3YmAQODVSzYej4BAnvTTdYapgEBkrc6B0a6AQH7g2G1SwYBAVNy9eVPJgEDx28olqcyAQIaHcNRTz4BAbIR5m0zRgEBIFMn1SdmAQPZJ01FF4YBA6oPX4NPhgEDUvEtJ1+WAQEaIWnA+84BA4AlewT//gEDJzT95PgeBQAEgOU1oCYFA1ALdWRQMgUAraae8uQ6BQCh+FTw8D4FAtUinsWURgUBwthzu4xuBQBwGvLo0H4FAMnHkOOofgUCFLffzMyeBQEZ8BC7xK4FAatpAOLwxgUCONeFw80WBQFh1thnkSYFAKBoI8elNgUAQ76tb7lGBQNCQ4LZbWIFACGozQRZygUC6twuqGnaBQIZfZV1Vj4FA2uBEMfOVgUBcl7U/56GBQBLnRBhtqIFAzJP8CUqvgUAZiogubLCBQBRe4oUoxoFABFV28tjJgUCWAzN2LcqBQGb/+U8FzoFAbO5VTwnSgUA0TPcN+9WBQBqw9PMP1oFAOdn4tFHigUDrgohWERKCQDpXYmbYGIJAFlyyRhYagkBWetDr1iCCQBLkklnQKIJAKklk8Oc5gkDyqjUkQ4mCQH3C+57jjYJAYeMlyUORgkBuWW/W55GCQJzTUDc8mYJAZGR0Gw+hgkDZHV2BO6GCQKCRZNoMqYJAO+qwjDKpgkBQ2gAUr/mCQCS2Imx5EYNAY4Rd73kZg0AUa0KYciGDQOgsFxCKIYNAqvYsXg0mg0AWmwkecimDQLLMwjoSKoNA0iWf9Wgxg0CjCeZ4cDKEQOYMimR0NoRANFxGXsc5hEBxOjhkyj2EQCkrXYzMQYRA+dG+W8NFhECtnhq82UWEQJX8LdD/aIRAwMAE+/9whEDaxTLK93iEQEzR40Zq2YRAgj00AWrhhEAc0bBjY+mEQJ5ZoN018YRAepMGFmLxhEC6D0HlNPmEQOJrttkvAYVAwF0/kKBhhUDkg7tkoGmFQJIvLfCYcYVA4oSShbRzhUBQuiL+mXmFQB4548iPgYVAFk88HxhChkDma5+pRZKGQKQvs6pbkoZAYK44QmuShkB5c1J1mZKGQP3zNXbikoZAQ7ohG2KWhkD12aX0m5aGQCdMX/ecmoZAsMYhfZ+ehkCVsLsppKKGQEoqE5WkpoZAzsrbD5Eph0AznIWYkTGHQAFpaPCIOYdABu+6rYtBh0BzFIeieVKHQGosHJjHsYdAcSpbHse5h0CYciEQwcGHQAtSsA3TYYhAUMIXrdNliEA2OyvqNIqIQLLx6N04johABIOFXDuSiEAqPAKvIZaIQA== + KBZXds7jZUA= - + - QMZLRZ7vI0X9AZVFpCwISTltU0UFN/5E75K9RQaXgUieaWFHppHVRoq81EXHs8RFtmeLROvgr0RlfZlE7XxMRf1uAUWGVTJFkNguRSOkskRDcQFFFU4AR4E6nUSKcGhGQCuZRY5a6kQrU8REpU63RJ+s4UTido5GPI6qROuLj0UQvchE00alRGS3uUT2HZhFROQaRkNIkUREfXtF8qOXRF14+UTTsgdFxzgIRfw5mETNNR5FSXDMRu3520TVecNESYrPRO6qXkVSh0tH6uWeRAGQtkSNp49GVjIIRji8zUWr6dZEZswqRb/eNkUohDFFOcWwRLHolEXRUYNFMvofRRr8nERlVqBFcxj6RctWjEUF/89EW6vyRHtxcUa7xRFF2ZmxRKQ9QEUcg7JEtHQgRQkWn0VejHdFiEEFRSUDuER9FLtFz3BRR3XkuEXF3ppEkoU9RRSEAUZ/zf1E5o65RUdOvURY5AZFsUK7RLEf7kT6F8xE2TnWRP7dw0SjhsdEFk2bRBGnukQg9xRFuEoARfip0USDHb9FzE6ARjiG60Q/NgBFEQmDRaEE2kRHwQ9FDp7qRKDgqEQihfdEffsiRVRx30QsO+pFX7QYRbth6kViYMJEwv/KRebkjUZHifZEzpX9RCXHuUQOZNlE64jcRH2ItUQ8R6JFjgICRVvgEUUtzaFE9FYQRasJ/EXNQhZGiDKhRvsgNEWrW89ETPKcRctDBEViFJNFwIXORIyjI0V8K6xFNOcIRuz3ykTEeqhEM3+wRI2iH0aGngdFNDOFRRgAm0UL3y1FgP01RZ2jy0RIIyxFcs0FRfwQjEZRE51GRF8eRtzR20WsG45FHtxGRSXpMUW91vtHvmx5RYTcrEaE5NdG8inDRTnlh0aAFtREkaokRToAxkTi65xE36qIRSJqVkVgZLZEwwe6RDtQO0brQJ9FZvsmRjlXx0Q+3ItFiTKZRLelHEbbCgBFyga2REu5ikUPCr5EZQQDRT7RSkYYLZBFY/RoRjiODUXMD7FFEkWwRIVSL0VvpIBFxauoRFh9SkXjqL9Fri5ISQOngkXrF0NFyJRJSJqm3USpgpxG/T2VRJvqnUSlCN9Eqj6JRVZmJkUetXpFbHyWRQO3JEUrZPNEc+lgRRaadkUcVBpFutKKRu+6QEajhwJF4TGVRWmMsUTHWQZGGzbkRKsccEfbWbFHakwWRuOw4ERDGbpGGR4JRdRZ6ESI96RErBM9RVBBmUR1YdpF5u4sRWTr/kQzz6hENCHURMyX9ERPRqJEWv70R1t8pke8Hb9GaIOpRYXFSEZmRFZFQNcdRXQprEQAY+VEcLkbR5xeTEYDbW9Fide/RLQ4r0RFDY9E1oCoRXyvlUUQ3IxGIj4IRUcuFkbtJz1FgA+URUzSgEUOQLJH5agAR0dpCUWtxbFFq9DGRaHoz0RyNqJEtzrbRzHVEEXBhstGYbVWRf/InEYghE5FU0CfRCoBvkSAZaREepjeRBHm+UXgVxdFzzIXRdYMpkTfBAZFs5vPRHhZ+EQBM6dEfKkTRWRLt0QxGYJFX7DORLytl0UyebtFYQpDRV5onUQd3JBF8lwzRpTMBEW3cFRFcYA9RkZBF0Y8RzxF7nvGRFDh70RFglBFqbZuRjcFwESkKadF3j4CRShiGUc+6f1GqPQzRgg9zEUc6/dEf8WsRMtGk0UTU4JFzXqtRPwSK0XTuYZFSGnYRLUgZ0UhSXBIn0TlR7PEIUWbcspE5Cl/R0zrRUaetJ5FU+uwRbBUKkWtANtEocQPRs2lLEU2AdNF0brPRX6lAEWh2NVE8IrARMhJrEQCGCFGlQ2XRGrbBkWusrtEjZb1RDLoj0XhbNlFno6+RhfNG0YflbJFlmzQReWaAUUzJJJF9vKkRE+E6UQLhvZEGxxiRWZExkQ/XZBFK4DtRGMx3EQcuCBHu1pvRs8NCEWpB0tFQtC8RO1sl0RZdhxGn0RLRTIRsUUjOxFFJnUKRTcix0d4gllFVWMfRy6utURCxL9Ge//ZRQJeykWNs/tE1dnyRFWzn0T9PMdHqFE0R3Sz1UY+wCBFfuZzRQsPBEbiTP1EVqnkRJtdMUaSBeNFBUB3RxjvIEfA2AlGRTY/RSq+wURID8JFSjEHRdQX9USAPApHRPCGRjJcJUbGqqRFagZ+RciAGkVCpepElNP6RuDUS0ZvduhFW/b+RO9fekU1jKlELx7SRLpwMUVV1jVFKSVdRYL4MEkgHihF1t3xRFOkBkmrUIBIOfalRxDYc0aTTHVF7P8pRp61s0VfHnBFBMMFRSjH/USNSxJGHTe3Rfo4MkU5RjlFWBQlRU9e5UQ3Wh5FwtGkRIC84kQ= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - OjtxTG/BckBejiRSp8JyQHH6W+M3w3JAR2HYMADIckAVrrl2Wc1yQFgJ15pD0nJALAwvxKTSckD5xN5LuNJyQEIRDFD813JAZtdPvc/fckD9T+feUeJyQMJRWpzK8XJA84uBV88Cc0AI63ar+gNzQEwXACq8EnNALtiItfcTc0Bi0UdHoyBzQAYgyds4IXNAxPTp1skic0DiLMB8ziRzQBZF0vbhQHNAhPxDaHhBc0DcWALieURzQNcEJOGiU3NAJgS0c3lUc0BxUxs0O2NzQGTW2m54gHNA7r3rYg2Bc0AoP885h5BzQAh05wpNknNAKrfk42OUc0BymQsI95RzQFYCkLm3oHNAUBAgilqic0CMTXHx5KJzQILnApwEpXNAbCbWhbazc0D+hlI7DbRzQBcMbtfQwnNAIsEXbyXDc0Cfxbpx19FzQL56egji1HNAUO9KQjjhc0C4RW8jPeNzQCyAuOM29HNAPo0mZHgBdEBSxc/ApAF0QHKhnuNME3RAKtucwLchdEDC/eDm91R0QF4JFe6JVXRAycdkmbhgdEByRKVYCGJ0QIW3pFEjcHRA7oh77UBxdEAFVZdVOXN0QIBzUk74gHRAtILk+02BdEBSHhfoFZB0QEg6ytbPoHRA9LQD7A6jdEAwIwfXCbB0QCojZO61xHRAiP3iUbfhdECt9igeTeh0QFUakV+M83RA5tqHKV0CdUAcL1Z7ahJ1QAY8lxEjFHVAyONR5ZwidUDbDeu2SSN1QChIt9zLNXVACLCYeXdVdUBSgsFBN2F1QO3TPPuMdHVANWs8WniBdUD6afJirYF1QKwSd8QRg3VAobPhqn2DdUDRNPflpYN1QBLqk+yzk3VAzrNs1PjBdUDCKxowzdN1QLQ14uYG4nVA1FN+XUcCdkBEHC/1iCJ2QCMSBmyQJHZAjHsTZkordkAcV657HzF2QJx7bt9SM3ZA/DlJ0xxBdkC8sy6jeUR2QPMaw6IRUXZA8VI112RTdkDXHCWAzVR2QJbLmUfMYnZAolX0dNpkdkBSmH1CkYN2QN67XrzCsnZAgYC1tnizdkCmYmy6DLR2QFIBbb7TuHZAytUYAM/OdkDqRs2ekPN2QO5Jo+SM9nZADE4Gq3z6dkCciLj9MwJ3QBjzNehQDXdAPIbOSgESd0AOMUKjkBJ3QKBfpnyoEndADF0bkukXd0BK9ceYBBh3QACiGDoOIndAmhew1nEyd0DCYoAMDTV3QLzsVVZ1NndAmDjgbiY+d0AAKtqGnEF3QKqEDYyuQXdAeuUftRpFd0Asa57vSlF3QFBErOaSUXdAZrUa7yhVd0A2D479kGF3QJJPkCRabndA9BezxChvd0C1MQPNU3J3QNjEw/pTdndAEbxrult6d0CCEv6QdYJ3QIxdLVlonXdAMiyIcMvdd0C406PxJeN3QLDpNRuR43dA+b4ZKJfrd0B57tv/qAF4QPx5nOCPA3hAjQZKQ24ieEBePJKViyN4QM226ZAQRHhAs17L9nlFeEAnOUh4ylF4QHIAfcGUUnhAq6+AhohVeEAGrNcm71d4QCn5pm23YXhANLkciYt0eEDXKtpMo4F4QPSy+3OZhHhAoq5nWZaReEAUukYRqJR4QEQluO631HhAKrD6OejieEDrCzt2A/R4QJw9l2yM9XhACZJqmZoFeUBswaUa0yF5QJz43O37Q3lAhNCiScxUeUDtb9cuXGN5QEJ5yJtFc3lABkXwnXCNeUBK7h+ry5J5QO/X6gPAsnlATLL7BkXSeUA7HtCZQtR5QDLTkOlg3HlAbOagjEEyekC8aJBODDV6QIDeF11PQnpAKheJEedDekA47YlSGkV6QI8hDfHNS3pAIdFnoShVekDpXrnQiYF6QAwii5ENtnpAYkkM+zbuekBqtbezSfN6QAFscJ+i+HpAThsilvz9ekDGWenxTgN7QEEM6CRMFXtAhE9JX1ole0BRKidGl0h7QMb8LP3vTXtAiA64vv+Me0DdJ5e2IpV7QDpKdrBhu3tApw3nqmjDe0AnaIxFb8t7QJJ/OjKX8XtADvRluRzze0AYgAuoi/V7QDQ/gAh2+HtAc7dlDtoBfEBIHG4nmQV8QIek9szREXxAzpUrVegbfEAZSgqO7yN8QGwCn3D1K3xAh8VwQ81BfEBCaaXCV+J8QCAPrLcX8nxAUaKIQFTyfECU61m9cPJ8QBulpIj+AX1A8NP5N0sCfUDTSdgDQxJ9QBc5iLyD631Am1rKt4nzfUAE07wekPV9QF4CUWzvnX5ANANpeingfkBQ3QKDi+h+QOSdnWrn7X5AVBgAr8v7fkBOlGWUHwB/QHpp7qaiCH9AyCztTgAOf0Aow5qtXDh/QEbYp9W2PX9AAiqBcg1Df0AOvD+QZEh/QFLVQ/e2cX9AJLFxvmORf0Dm3XmFW6F/QG3INmBVsX9Avp+bb4MRgEB0EuO6MBSAQGWFmzzWFoBAMS7+tPJIgED2F4vb5VCAQFKvF74TUYBAwm0g/g5ZgED02lrhxWaAQPuVsjByaYBAtuZR8BxsgEB40TG/xW6AQKrfy6Qqb4BAkAvnEm5xgEAQZQAKM4SAQKT38/PehoBAUlEoSx6PgEC+WKea0K6AQF5OPYhSwYBAMrgdV1PJgECsajNfqMyAQP6dxrgr0YBA1nH2mUzRgECmOL+rYNGAQNpBQaJJ2YBAv0ZweUThgEBSh64n0+GAQFAjW0zX5YBAMK3GsT//gEAntRGoQAeBQM0SIDNoCYFAeGK2aBQMgUD0H4uWNB+BQLbNyn00J4FAXLntVL0xgUBuGOCz8kWBQJDYm4LkSYFAHKxO+ulNgUBM1Sbm7VGBQKjIohJbWIFAThy+MxdygUD+bQKtGXaBQPqZv39Vj4FAJEw2ZeehgUDg6uUBbKiBQICL/NVKr4FAJoXI4SnGgUBI9dbPBc6BQHog3GcI0oFARFsKRw7WgUDgvW7E2BiCQJLX+QAWGoJAimPcZdgggkBPomDy0CiCQDnjlVRDiYJAS1d87eKNgkD/YuXiQ5GCQH7Gz+I8mYJA4BOfAQ+hgkARHdqZO6GCQF6/GhgOqYJAaJa0rXkRg0C5BpHieRmDQAJJ9eJyIYNASPsg4Qwmg0DyCpZ5cSmDQBZmHZgRKoNADFF9CWwxg0CI/LqhcDKEQNhe16x0NoRAdZ/focc5hEBzzRNByj2EQLCvUDfCQYRAEa9D58ZFhEDryeFty0mEQEJbvM3/aIRAhhVZaf1whEAgNP8tatmEQAC5Up5q4YRAwGMf7GLphED6RHM6NvGEQGT9mBVj8YRAuCOcgjX5hEDftUHla/qEQHpc5uC5LYVAgrgntqBhhUCcLLlMoGmFQNoz8zKZcYVA3tAu1Jl5hUACVrh5mZKGQIcVPC3TkoZAI168v5uWhkCOcgShnJqGQPCzB4ienoZAF2MyMqGihkCYoAvGpaaGQEEuQCkmuYZAKrYV2ZAph0AxCOYUkTGHQK/sm7mJOYdAZqLzvTxmh0BhtyO9RWqHQG4NSgrHsYdA3zGYZMi5h0Bc1dP2wMGHQD2SxcHSYYhAthU1xtVliEDhBTPON4qIQNzmMoI5johAtCmjsCSWiEA= + KBZXds7jZUDUvl+A/sRuQN3+1P+6wnJAWZ0vne2SdkDLvNRcKfN5QKqdPTwTA31AZY1Y2ECCgEDU/QzINQqCQI6N36dTuoNAy9yM9myihUCFbF/WilKHQLCW4djWiolAu1aSZQ9zi0A= - + - i01oRXI87khvTbhFQFJbSPzrW0cmVuJGrnAkRaemAkVigupEfrUnRSubN0XlHk1FvyLmRJOpDkdE9DFGFoCHRZt40ETTK8NGXAy/RHXZ4EV8jwZFhw6YRS2NHkYahX9F5Fa6RGmbC0WM5fFGbXATRad3QkX5H0hHmfvWRHv8W0abrANGKg/sRaSh50QPxxRFtRmLReRBJEVaJatF4rFaRaOZ+UQQ/IhFE/zNRQmQIEVPpiNFDgKORom7/USMN05FUmQLRUto2UR8UthEFHSZRUMgWEWfWK1FTgdOR6XpuEU121lF4iDuRSrpvUURJOhEuxvMRFNNC0XntANF2QXhRDcCH0WzjdpFtQ+VRmTR5kSzORtF7TN0RcX6E0U2vy9FXFEQRRkRCUVczilG4NcKRT4RsUUfjd1EJxisRVUgkkanthRFlOwWRQOS1ESxtt1Ecwe8RXz8I0Ua8v5FWjMbRlcuz0bEoBFFJTCgRYPOZ0XHIw9Fi01FRfBoKUa3ovZEIioPRWsuHkbYAwxFJimpRZtYuEVKldNEq7EdRfExAUX28+lEO+0KRTPh/USENWxGwFebRgw9Ika2Z8RFZvm0RR3OAkW3OlNF5f98RXe27keqLZFFWqr5RCYpq0bx0q9F5orBRoAfUkVU4EhGk3MTRb8PN0Wqvm9FeaFWRd5rqEUejA5FtFnqRKtI3UTyG1JFRoQjRr4t9UWiRDZGETRLRZtIwUVnh/lE11UxRcGv4UTfdupEKcNARuQtqEU1exZGWPEdRYVPqkUW15dFCFRHSUWNQ0U8N1BIjT4FRdEOm0agYiFFBnZKRVwtC0XaX/dF9Z3zRJCgHUWELWRFMSiuRRpxckUVkOxEIdiYRvCGEEbwgDpFFBIzRTR11kVHtVlFO8gTR0LgwkcJRZJF4A3LRKMo30Y4GzVF+AAZRTqSKkV+otNFS1zJRLAU7kcUp6BHsta6RqL+BEbF5jJGYzM2RS5oBUXuJ9lE5W3ZRD0AQ0WRuCBH65R7RlQxHUXnkalFEd6FRWeko0adBvVEJMwuRmuNqEV8wp5F0NKWRz2EzEZjBd9Fy+nNRWFf30eDhg1FSbHMRtvcZkU0z/9EHJGmRiNFMUVhp9ZFmRSYRXrzMkWH+jVFnS8WRZJ5ykVAT6xFJ+cxRacf70RZVTNFK5MMRf/cQ0bPHklGzaxmRTr//kRB9Y5FamE4Rie6HUX8PBRFmeowRob4v0X85RVFkZwBRXdSH0UplmZGbAKtRe53JEeMmNNGOHM7RpkvvkWRJQxF6JbtRHTzeUUlblBF7quJRS5KfEWVVHRIxfTZR5gMOEWqh+NEO7luR9OCXkWgjzNGGiSqRQLQgEX6BhNFTxAuRnnFJ0W86qRFRyjhRWGmD0bM4fJEwUbyRHQZVEVriKlFWktwRlwL40Wuol5FubqlRe9gaUWWZJ5FMM5ORb6rzUQnSF1F0QaoRVxPB0e9AmBGldYzRdR+R0b27hxF2FwqRbqtP0VxzcNHQ/BORY8yLEfVQOhGNBrSRZ0h0UV5HB9FoMHQR2v8R0cLG+VGL8MgRaDHDEaSMfFEna07RXSDJEZRiaxFaGWKR3MRJ0cBMi1GqzihRYA3NkVLBrBFg5QoRWdEAEdEhHFGaiQrRirkgEUGs5hF8YLQREuj/ERCWvJESWPhRuwzWEZ32R5G2oFERVAVm0m/y3NFhINtSfZ24UhMsSNI5M//RmRclEW4+MtEZY8CRmBAm0UsWFpF15MsRU74AEX7UgJGxP2GRbb9PUXzXQhFExcZRfmLE0Vop/lEH8IURQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - UCXqum7BckCizpVzp8JyQAIE2QM6w3JA20edfADIckBdR5FTWc1yQEj1xSpD0nJAqroJ8aPSckCKfJSatdJyQKr9g4LJ8XJA3Ekmg/oDc0DcP9jXvBJzQBAmN6YEFHNAtvUAKzkhc0A/9uBwzyRzQDQdMtN4QXNAIFevfHlEc0CAO1ddo1NzQCcZgfZ4gHNADshcXoeQc0C7O7hJTZJzQNTlaV33lHNABoyBKbigc0Bikc3ZWqJzQDRiCtm3s3NA+sGkmc/Cc0A+u4FdJsNzQI4QZwDY0XNAlmL5HOTUc0AqlaiPOOFzQGkIhZ029HNAHoguAXkBdEDWDsIPTRN0QHxO86a3YHRAdP8rVglidEBgosJeI3B0QLw5ZEhBcXRAbOhsFTlzdEBmpSKPT4F0QE4LsIsWkHRA5rV2BE7odEDiN1FFjfN0QLdNKpFdAnVAZhCN3p0idUD6YUxQzDV1QHDC5LCNdHVA8iYc9K2BdUA49URofYN1QAbB9SGmg3VAysFlQJqEdUBO4skMtJN1QPhfIjRJAnZAcPR5aZAkdkCPJKZiSyt2QGC5m5wfMXZAU24IjVAzdkDqgI4aHUF2QJpVe915RHZAS2HRnxFRdkA5NFlkzVR2QAAsBB3bZHZAwFUbLZKDdkBWvExsebN2QFHxSKoNtHZAwkabX87OdkBN1JY8UQ13QIZQ08sBEndArgkRC5ASd0AlJpBdqhJ3QIybYSLqF3dAfhXxag4id0BQmWsecjJ3QGZHp0MNNXdAKC4BlXQ2d0ASiQfnnEF3QOBqiTIbRXdAvu+d3ElRd0CoW+iRklF3QHwJNj9dbndAT3+s1yhvd0Ciky5bVnJ3QJyRTTBZdndAqiCXXcvdd0CR3CxTJeN3QHxBamWR43dAHMrgKKkBeEB2HvebbSJ4QOz7m+15RXhAq6XNrspReEDsPytWlFJ4QM61dDbwV3hAFPZdILdheEAiYZiri3R4QP9G4e+ZhHhAVtNYbpmReED6ScAFqJR4QO42oaC31HhACqIjjQP0eEDYWQf4jPV4QOI0mtTLVHlADPba21xjeUCKmDTAcY15QJU0AX/KknlAfr/FXMGyeUAHyUAERNJ5QKIFjpxC1HlAWsCGtmDceUCcvMLgU+R5QAx9q2JBMnpAFCR3mgw1ekCQ1nKqUEJ6QJh5v2saRXpADEMITw22ekAyL/caFvF6QLDcttdJ83pA7n9ulGf0ekCJnOsHo/h6QPyaxBj+/XpANiUFIUQDe0Cisp4iWwN7QHaM7mNMFXtAnmRu61ole0DnM1dvI5V7QCJy3Lxhu3tAKIV1yGjDe0CyfDYKl/F7QNp2pK0b83tAUOSoJIz1e0DJBmMm2QF8QMILylCZBXxAwjhSjtERfEA2be156Bt8QAlVMBDvI3xAoobCtfUrfEBUGgx8zEF8QNr46+9X4nxA9ILXQlXyfEDWwTaaSgJ9QJkAj9VHEn1AyA79XYLrfUA2mIWU8J1+QL69Us0o4H5Afotb4YzofkDwUMEV5O1+QJCoPwjL+35A+0iOIKUIf0Dc5X1KXTh/QOKc89W2PX9A4INQUBNDf0DxLX/vtnF/QByAi+hikX9ATmbPjYMRgECT1pSQMBSAQOScgQ0UUYBAQsufmA9ZgECdJAzlxWaAQDKDShByaYBAhU2xPxxsgEBF2STtxG6AQPgQt09ucYBAqDEbeDGEgEBajlJqHY+AQAE2MPTRroBAiF/onVLBgECq8pxYU8mAQCEX+IyozIBAxZqqhUzRgECAhsHqSdmAQOaqY+JD4YBA9Pc9lNLhgEBegLztP/+AQIZf/6s/B4FABsL3IWgJgUB+bbjKFAyBQH5Z/Hg0H4FAdYRMf/JFgUAovdxD5EmBQKHoOlTqTYFASmIdqO1RgUCT0kGVW1iBQE68IWgWcoFAKr6JARt2gUC4fMo5VY+BQGAHoSvnoYFA8Arit0mvgUCgxD0XKcaBQJSVqFAFzoFAmf7uiQnSgUBI7hFvD9aBQONyfr/YGIJAuJaQWRUagkCU3Eoh1yCCQMbxdIdDiYJADBpXu+ONgkDOt2ZRQ5GCQNE7kaA8mYJAgAiL7A6hgkBl3mBqO6GCQKWnHrgNqYJACDgewHkRg0Ca4yghehmDQAh11rtyIYNA4w24/Q0mg0Cs/UAOcimDQG/GmeJwMoRAFocSO3M2hEAekcDHxzmEQErb76XKPYRAXEFD6cxBhEAQQmg3xUWEQDzexZv/aIRA5Wgoef5whECDeCGRatmEQBkEVaVq4YRASlYOQmLphEBkrg8HNvGEQIzMhuBi8YRAL94C1aBhhUCsS+Q9oWmFQMDe8FCZcYVASshrz5p5hUAehY49TpKGQPQRwW5hkoZApDc9rZmShkCIF9Jfx5KGQMiaOv4Wk4ZA1tE/lpuWhkAKquQwypaGQEBn95acmoZA803zHJ6ehkAIqUzIoaKGQNjL0E6ipoZATrxXvpAph0A/eT8+YyqHQPohk6eRMYdAytbMj4s5h0Cuy5T5PWaHQKhrv19DaodAxmIslURuh0CgB4HvxrGHQBzNCjXHuYdA0TBP9L7Bh0DIncFx0mGIQGi7lLI0iohA - - - - - - pHKJRThrwkjZiOlFA74qSALPH0dNmNtGRbxERXdhU0U4FnhFLQERRwmv9kWhHZBFlbK5Rh07b0VeGX5FU27uRdisPkX3i/JGKFU+RdcQP0e7Aj5GLorzRdp5g0XPZlVF49RpRbsIVkVpXB1FsfWLRZIg30UuqCBF4pNaRjsuWkV80I9FsfGNRQApwkWonyNHM/sMRn1ksEUu3OhFEE2BReDr2UVwEX5GeXUfRX7OLEWAJ5xGpnCvRdNvvkWe2aNGEPGeRfT2HkWm39JFRIHsReD2SUao6r1GyPJORWqjr0Wnw2xF4VtMRTHb5EYIiJhFoUcxRljohEVyVTpF8qUhRcW8hEbjZGNGmqIhRrvviUWeDnlFkKMRRRsrSUYDePRHevXURahUsUZyWL1GYumnRQccjUb3U9ZF6ldDRRjBMEYyzAVG2sc8RhinrkUdTRFGsi8wRdY5dEUKbgNG8dc7RXljJ0YYrLhF+7RYRbHjQEngkkZIPbIbRYS3kEaZKXBF2Np2RV8U6kVMwpJFEklWRdQOj0a9UxpGgSpCRajQSkVqCs5FCCqHRS/MD0VYhptGAn3MR6d1IUV7N+5GARbXRa+WHkX1IuJHtVcnRVXQlUd0bqhGzq5xRXe7j0XZzhlGj2VIReZNjkXYRDdHkcF5RkzFmEUr3sBFJUKaRkMmQEYBNJdFzt6mRWWvgUdCH65GCLTRRU1np0XnrsRHWo7JRl+piUYDeH1FBg7oRelIkkXRQnxFWJM5RlUCXkXEPS5FIbE+RUz8WEZhKZRGibc8RjKQg0VAvSJG39QMRjIK0UXMKVZGZ2PCRZ2WKkdCT6JG2yMNRmVau0VhNyRF71/MRX3FbEVapjVFBNBbSF/OwEdl0FZFO4lfRwULR0ZbAXJFLBwgRf+6BUbT2DxFfm0JRgxk00W3fQpGI/44RWsE1UVW8StGZj27RX5vKEUQqP9FRZKLRQ/nr0UYyE5FoiqIRZfdPUWWetBGEuw6Rv6TNkV2/yBG8lIeRdaMi0WAFdNHWVddRUAeG0dXFupGhgHFRbCQCUbi90BFFlS6R6v3JkeB37RG4KF/RWxHAEbBkTVGm2D4RWmKq0dL+05Hu3Y4RqL6mkXiTMFFBrgiRYCrDEe0XY9G+/bvRcKGckXjUZhFMEfkRoLPVEZzdvlFgGRBRYnsgkX/ag5GD3T8SdZlaUYMR2BFv7O4SQahTkaMzDVJSdqCSEiTOkeXgtpFxm8XRqWgEkXDH8VFANY9RXgoi0XeBF9FyTVTRZjkA0aEE7BF94ozRWmceEWE/BpF - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Pqp7XG/BckCeFx9Wp8JyQKi3S386w3JAqhxt/f/HckCMVZZGWs1yQKYEnilD0nJANtH+trTSckAa8BopUOJyQCZcNp3J8XJAskdMVfoDc0D9m0oxvBJzQO92DPn1E3NAcbZERKMgc0De6aAOOSFzQN7fogPPJHNARoG0nHhBc0ARVLzYeURzQH8XvcmjU3NAwuN4lXiAc0CVS906TZJzQEvXwPP3lHNAkrRzobmgc0C6pGv+WaJzQIISkSMFpXNAIMvSJbezc0AmiUw9z8JzQMHpaT0lw3NAEM4fNeLUc0CUtwS9OOFzQOSOB/R4AXRA1HnljLhgdEASC6U5CWJ0QBob08AhcHRA1QE6XkFxdEBYGg1OOnN0QGWf7r9OgXRAtPiVEBaQdEApXeQJS+h0QLd/RZGo7XRAg5UV2ozzdEButH06XQJ1QF3VBR0kFHVA0k5oLp0idUDSR2ZYzDV1QIh39zeNdHVAdDek3a2BdUDN02dcpoN1QN5TFO2zk3VA4tEEf0gCdkBjkVJSkCR2QI52/49LK3ZAgvAVnh8xdkAgerHCUTN2QEjLDYgdQXZAMKh+LnpEdkCMBr/3EVF2QMIhSnHNVHZAiS0ksZGDdkAAietAebN2QHCN2SMNtHZAAizmKM/OdkDoRRdli/J2QFKf2G+L9nZA5ni6PFANd0AwMQyLARJ3QAZp15aPEndAlJpOR6oSd0CSaArD6xd3QMasu1kPIndA5vFCI3Iyd0C2SK86DTV3QOYyRFZ2NndAWLKgpHg6d0C+ZxX+nEF3QE5/h/waRXdAKBrxA0pRd0DCRWVoklF3QOCUz1SQYXdAFk9jclpud0CbQ9+tJ293QHonhJtXcndAXEB2wlV2d0CKsBn2y913QLErlpon43dA9UVoiJHjd0A2exOUl+t3QH7bioptInhAwLr/5XlFeED1AC3KylF4QEg9RHWUUnhAjoIdne1XeEAiKc0Nt2F4QAiV0rSLdHhADzYOxqOBeECeD9QJmoR4QIqQtSColHhAuKpVZLjUeECQQOHMAfR4QP78J4GM9XhAEAeq2MtUeUBw4ZHDXGN5QJMqVmtxjXlAyxoiF8ySeUAmsS0kKJh5QBhVm/bAsnlASalQ10PSeUAiCyD0QdR5QHSYmv9g3HlAHkGE9mTkeUBYceFWQTJ6QFyBf8UMNXpAXx/CQxpFekB99SDMo7N6QKRxBPMMtnpA6wtkxknzekD8l/PTovh6QPqVUbP9/XpAkI6EckMDe0DuBa6nxRJ7QBCE/+BMFXtAPM0XQlole0DEUTL9Ybt7QIBlG2Vow3tAt7DoiXHLe0CiymbEi/V7QEek1KXZAXxAnMU9WJoFfEC41tFZ0hF8QPiGSWDoG3xArveXAu8jfEDUXhRT9St8QEwEzCXNQXxAz9+j/FfifEBqX716VPJ8QNpsNuVKAn1A8qtn6kUSfUBbXcpvget9QC7aZb3tnX5AqgFmwEmjfkClzuQ4J+B+QLd/pzuM6H5Ahycbs+btfkB1r9SBPvN+QPGAS1rL+35ATP/h4KIIf0BIrbVEWzh/QPrBHym3PX9AvEwlXhFDf0CEBPtwbUh/QFzAECG3cX9ATkCvr2KRf0DdoikiX6F/QLDlV86DEYBASNfRDDAUgEB8k8NE3haAQB6wpFUUUYBA+HAqDg9ZgEBmbOzgxWaAQN41wANyaYBARmEbGB9sgEC0sB5Rxm6AQFaJu7UxhIBAtD5ORd+GgECgsKCEUsGAQJjev2BTyYBAPGDRXkzRgEDW+Nf4SdmAQFcLqBhE4YBAjAkxwT//gEAXaY8qZwmBQMyPE4YUDIFAonzVTTwPgUC6Tgk5NB+BQHL4mJXjSYFAwki0EelNgUBWYDzO7FGBQPidr54VcoFADz00hVWPgUAGRbZf56GBQIZVLrtJr4FAT134IgXOgUD7TrNFCNKBQAa09+oO1oFArusJjtgYgkBSrDje1iCCQO4tqQ3oOYJAtUgHXkOJgkDA5JSBQ5GCQEik0XE8mYJA+BULIg+hgkBA4d92OqGCQGsZWYposIJAD4/UrHkRg0DrG6rZeRmDQEwIcZByIYNAanzf1A0mg0DLKU+TcCmDQC7cahRxMoRAauKNcnM2hEDoQuqDxzmEQG6jPWfKPYRAuodfm8JBhECALc2sxUWEQOnjPxH/aIRAZsPfbWrZhECQj3/EaeGEQB4yKkRj6YRAlK1x4DXxhEBoLOuEY/GEQMDWKnm/94RAVHM0cGz6hEA1iCqkuS2FQFicy7egYYVAsg7HraBphUAmuXIymXGFQITzRmCZeYVAW9GLwjWShkCe6Pu/RJKGQJGZZsdbkoZATTzihJmShkDX2MtP4pKGQPonk500loZAQ1a8YJuWhkCzvXlsyJaGQFsJH17lloZAibv4IPyWhkBMfyk+nJqGQGwpPPqdnoZAblMlCqCihkBEurnEnqaGQKAHwUqQKYdAgQdiR5Exh0AaZcTXhzmHQLS36GM7ZodAz7GqnkFqh0Du7H7IxrGHQA== + KBZXds7jZUBML328ejFwQDtMc7KVAnNAooOBwRKidECv8TOihQN7QMlEyTjBsnxAatm9DBqKgUAe9USU2FmCQJUDQA9mwoNAstXozy9ihkAo5ONKvcqHQA== - + - M24zRSSHlEhGQeZF4+ILSON8vUYzVLhGxOeQRb6DdkVUWllFAxwJR4/kGkZGXUxFSqksRXSNs0blUqtF2ERlRW204UXPmp9FyHDXRlT4T0e1bUNG9pziRSbI10VwflFFzx5JRdL8ZEVRrFZF9LSpRWur1UXkJH1GTX+XResfW0VZxqBFhE85R29N+EXVXfBFQ/B5RZkQREVLOYBFFwPTRSGmjkYxrj9FGWl0RdnWREV6BSJGp+qdRb2Zo0Yy30NFbFjnRan5BUbZ55ZG6/vKRj2W7UVrRnpFc1R1Rb9WbkXjBk1G2wAaRiPgk0XmRZFFGSpGRXegT0UxvitFxmNvRqhQnkbEmQ5GrP2rRTJ+wEWHSXVF62IFRnGf8kf4XvJF386FRacHrkYU+85GE3imRWoGhEaS6TtFsE9IRshbkUVosE5Gbmy3RW0jO0bKMpRFQSXfRRo9QUXDrWZFCCosRga9m0XpRkRGOBa2RYb5UkUtKElJ7+k4RWDTR0gQgrBG29g2RQPfW0W7hwdGD6atRZrnbUV8vpRGDAT7RZyfQkVXBk1FI9E9RVDr90XpdWpFCt9BRWpuskXnWs9HabfVRrHjMUVcFuJFVhrfR/tfkUdF2ZZGQlFyRXbMzUUCvD1Gn+NsRbpKNkfUnWZGYkIkRWdCnkYdg0RGGAuWRZLfr0W7DiNHjpRTRhpCh0XByqtFsC7WR+6zzUbhCJhGQqmGRWxFlkV2TGRFwM2GRUPykkXL6k9Gw0QFRmAeSEVTrTxFshmcRQLHqUY5m85GoE8wRg5xSUWIEZFFLu0rRjltZkWuNjNGpZbFRX/IOkXOOW5GN7W2RY9RIUele8BGGHUNRgTZwkXJ5qRFnW5cRVoqa0icuN5HBgZrR7dANEZJb6VFbucXRk+e3UWbktRFb6EuRbZ6KEZqjbNFSIYERhWSSEWWmo5FGhyZRXi7OkXEp0pFg429RoXgI0Ym00ZF6DAzRsOZg0XbFSxFq3jVRwGFJEfKT9RGeC3DRYrbDUYkv0JFwqfJRylhMEd2bNZGzkBkRaPD60UyeTJGbNSCRYvYmUddvEBHbxdKRgwvpEUZ6N1FlI0MR3BWY0YjykRG/PxbRem/a0U2pIxFrvWPRY9cMUW7h+pGt+pJRqFP8kXnfV9F6YG+RUEmrUWpjeFFlEQPSixO6EWCCHFF+kzTSXMFHEYlv5ZFBw9NRby/TUli55dIEx1zR5dBFkbVXxFGf1iJRcNnckWw3mhFgXCYRe57AEY= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - AO5aPm7BckCELo1Zp8JyQEBLTOM6w3JA4DQzMwDIckCmtOFBWs1yQLJbJj9D0nJAcJub0aTSckBEmK7Ds9JyQKDD95VR4nJANkEknsjxckAk/b1n+gNzQMLykvy7EnNAHiCotQYUc0A9fVPvOCFzQP4wo7jNJHNApC5xt3hBc0AbDCapeURzQMCb4f6kU3NABein/Et1c0AxAi/veIBzQBqVoQWGkHNAtLcwME2Sc0Dw2iuS95RzQAImvMu4oHNA4oMf9Fmic0DRdSC9A6VzQLed+O62s3NAWO8qBtDCc0D+nXkIJsNzQOIF1vzW0XNADgUdzOLUc0ClDPaqOOFzQGSjkMJ4AXRAWbRG6UsTdECO2VFTuWB0QFDBfhEJYnRAKKYphSJwdECOpr0BQXF0QIjYUoU5c3RA7uoNBPmAdECYqJj4TYF0QFQVnDsVkHRA1zByUE/SdEB+BkFBTeh0QOpRDECN83RA9hV9VF0CdUAsO7UkIxR1QBHf2gCdInVAbnuQNsw1dUA+okEjjXR1QPmwPyCtgXVASD+nRaaDdUC+FkQAmYR1QMkw04dIAnZA+OrxUZAkdkCVGd3+Sit2QG+RRJ4fMXZAFbf5LlIzdkAq9isTHUF2QMAybEqZQnZAjgJFmnlEdkBurKxbzVR2QA4OruTZZHZAPD8UEpGDdkBUTutMebN2QNF5xLkNtHZAZCw3h9DOdkC3gfVWUQ13QEmUrWYBEndArjfy85ASd0D/L3iVqhJ3QG1HkzTrEndAbF4aMOgXd0C/XOMTDiJ3QEDJt1tyMndAWlwW3ww1d0Donfv9dDZ3QLnzEo8lPndA7a21uZxBd0A4RpbdGkV3QIDkEj1LUXdAMnJkRJJRd0DiusyRWW53QK5ZJJgnb3dAphElCVhyd0Bd5a9SWHZ3QEoo4X5aendAP4D/3svdd0DGYeSOJON3QJILtH2Q43dAitjPEW4ieEAsvr/meUV4QASTATvMUXhACEA89pNSeEAuCS1R7Vd4QASTsY+2YXhAxwM2UIt0eECyCfT0o4F4QC6b5XyZhHhACA0db5mReEAw/Td3p5R4QEpPwmy31HhArMYIowP0eEAkLLIejPV4QAokZa/7Q3lAu5JntstUeUDehhUJXGN5QD/NQyBxjXlApFQF78qSeUAfRcIOGph5QCrbaKfAsnlAF2cG7kHUeUDF74lDX9x5QGZ0Y+BBMnpAMG1xXQw1ekCYRg0iGkV6QDwjiyiis3pA8fNtdQ22ekAegkBsFfF6QA2/4aNJ83pAFmiPnKL4ekA+cSoQ/P16QGAwcKNWA3tA7G5hNcUSe0AqsSC9TBV7QAKPlrwgGHtAUr49hyOVe0BwkXcCYbt7QDwV9ZFow3tAxUX8VmzLe0CxTotUFdN7QN+Ft3lz03tA3i6r75Xxe0ATKcKsi/V7QAyfBnjZAXxAafvqIJgFfEBe4Aw30BF8QK6W1r3nG3xA4LK05u4jfEA/NsKn9yt8QNJxIi7MQXxAc+24u1fifEA6Sc3xFvJ8QJCKiThU8nxAtG9UIksCfUC+8YRrRhJ9QI6OBl3vnX5AmoOOMyfgfkAOGd2LjOh+QCRnaoDm7X5AX4c2uVs4f0CxJvXttT1/QCpUBocVQ39ADEwU/2dIf0AEACZ7t3F/QDfoacpikX9ALtTgqV6hf0BkUOlKVrF/QHLf6jiDEYBAWqprlS8UgEDWNDS+2xaAQHjftm3mUIBA7iMz/RNRgEBaDktaDlmAQMn3F9TFZoBAQtUf7HFpgEDo7So3HGyAQPp9vejDboBAelAWPjKEgEDar2S2Ho+AQFrA+PmHqYBADMw7VFLBgECy1TE5U8mAQB68i09M0YBAvlq9OUvZgEDAihacROGAQLpPDfY//4BAanLM2j8HgUBZu1PaZwmBQNS5Mw8UDIFAvbe2ST4PgUCOBmdENB+BQPOkcco1J4FAmrOYavRFgUDQHFkv5EmBQNOj4pvpTYFA9HPzexZygUAh87TgGnaBQGBGWJZVj4FAXKNJJuihgUDC7cKqSa+BQN2e8CIFzoFA4K65WQjSgUDH+iEuD9aBQKMXlHbYGIJA4ppJ99YggkBiZwFOQ4mCQKEz4qNDkYJA6mGLojyZgkB2GC5WDqGCQGokg+A7oYJAWNx6XDWpgkDwosjyaLCCQNILAn55EYNAGI69fXkZg0DcPJcAuBmDQDLGoThyIYNAMG51FQ4mg0A6tR00cSmDQCZAAp9rMYNAAT42QXAyhEBE7LyFczaEQKWSs0LHOYRAllyyA3g6hEAil3c1yj2EQMAOAcTJQYRAiPh8ZMVFhEDNSTjP/miEQKVv6y1q2YRAKswMfmrhhEAQ83VxY+mEQODT23M18YRAw6acgWDxhEDI1U5Ov/eEQHB/iKhs+oRAtNW3iBn9hEA7gcWYoGGFQC5Oqv6faYVA7VbxTJpxhUBcCkS9l3mFQGC6+FNUkoZA3BmHSpmShkAim6VQ05KGQJgz/FGbloZAzE3rtb+WhkAq1rohnJqGQCxs1RyenoZAVi+p2qCihkB04fLso6aGQKKI+nOQKYdAKuaGhJAxh0B2MwrCiDmHQK+qq+A8ZodA7h3WnUJqh0AYr20Kx7GHQFpMRDDGuYdAuRIt2r7Bh0A= + KBZXds7jZUDXkZP9yKNsQFAtpBCXEnJA6yam0jxjdUBQi4Bk7yN5QOuEgiaVdHxAOybk7U6agECTk/19osqBQGZQZvCa0oJAJnShufnShUAgo0boEtOGQLd4IlI7i4hAgqYV0mXrikCn8ifB3VuOQILVA/wRdI5ACm1CyimWkEDTEIv1RPKQQLyDp9hv4pJAMDp78YDykkCsKbuInL6UQG6aDOe1LpVAw6yNW81SlkAQ/Ig68lKXQEPEhHAjF5hAitgzazn7mECfJOcvHhuZQDtaG+BiB5tAUKbOpEcnm0BS3e2yk5ucQGcpoXd4u5xAA1/VJ72nnkAYq4jsoceeQF+/N+e3q59AycOZjvQ3oEBwaxf+BrigQJr0V7gSSqFA+6yAZx+CoUC5pCAzLWiiQPN/ir81cKJAZ7kYMUtoo0BMC73GWJajQHBM3SxpRKRAJ0WUO3ZKpEAw2Fg3lCalQKOjVdeevqVACJnM8agspkDH5HU9r2ymQLatxO/GLKdA7NxeDMVup0BBOGXw2bqnQDPxDQfbUqhAZjBOv++8qEDzfIkRBjWpQCa8yckan6lAswgFHDEXqkBt0HjEMIOqQHEApec+/apA - + - 74dwRQ0dbUhKC7FF/v3jR3tUi0ZQHOpGJyVDRZW5SEXDzAlF9e1XRZ1Q8UYeZvtFcmJNRZsA00ZS111FRFo0Rdh9AUbkZ35F4CVCRRT4z0b/CRxFSKQlR0lnU0aIsM5F3obsRWEhRUVM/m9FQdxvRSLSJ0UoU2dFafmoReav1UXexWdGiPNcRQPgd0U1i1FFDomlRZzCIUeyEN1FAus1Rctot0VkFr9FT8g3RbTvSkVixrdFejKKRioyJkVjTmRF6XElRa3PR0ZbVKNFlyKPRvv4HUUFCc1Fu+rWRSBuEEenGLhG20EVRplhz0XTMztFKbFYRc6yekYQnDNFtVAaRgfuj0U+Gz1FjHpVRbdpXEZM1k9G7L37RQxzxUWDtCdFeoWFRaHsLEUYdfNFTgrfR0ejvUUZ21BFuuPFRmMEwEZCSaFF04ZsRlsVD0Y5Sn5F+6cXRnwra0WQpw1FnAITRjK1BEYj2OVFhuxGRUP6P0a7TZhFHGEVRlDD3kXUAQ5F/dQ4Se+vGUXNwzxIgj8wRdMmikbvA5FFNso8Ra8k/EUD9B9FQKqfRRumZkWkkKBGp8UwRjLRMEVOq2RFqH7qRfqczkWys1VFG1KzRw+ryEbTrDdFBwWtRTzTOEVq49BHeUGGR/a+WUYszTdFZoEIRmqrJkZQpdxF7yt2RYGyHUeEnFBGYmA1RbPMG0VsSxpF7fqLRXqPp0a2kDxGqK6GRZdGVEURoBJHZBFhRi4QZEXJ5JdFrv3AR7HHHkXUqLJGx9qURnkEgUVdc1hFdVysRVjaJkZr/tZFZZyZRniLk0azQaFFjTV6RXdEfUUlyjpGhlg+Rd6vH0XOTQ5GwB0LRnQbT0Vg3RVFNMdmRtcauUV0IP1GKI+qRnRyCkZKZ2BFJISHRSMhaUVbZh9FQZVYSOtbuEdLLFNHmpQ5RtH5cUUg9wpGklglRbB95UVYM5pFZcxMRVD9IkbcCxJF9eiJRffu+kWliL1FZKVoRZtdHkWGWaNFugQeRRRaT0Vnc5xGJ9ooRhSIOUVtPjRGynlaRSQa30cpPkFHyQbzRluRlkVHdQNGGwcqRV1uMUUN1LpHEEMiRyFOMUWybMlG1caHReN7xkUXcEtF6xAPRsstrEVfDXNHySUlRQNMEEc+cAJG2xbORWIZx0VZsxlH1OB1RufQO0ak2TxFbkNnRQ9YpUUTMNZF3ueHRbKT50ZtFDtGrXTyRVb0J0UkumlFQEjzSaARt0Wbm7RJ25QMRkHOKkkpdHRId55XR6vJDkbZrR1GYT+tRbW9i0UsxoNFW4RwRY/k7EU7h1xFHmMhRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - juS4lm7BckA2RXdcp8JyQKz+yJ06w3JAniEvOgDIckAlo8E3Ws1yQFJfQUlD0nJAwAGidqTSckDrcyHWstJyQJy3Z9S24HJAJkc8XU/ickDYj+yDkOJyQFg6/nHL8XJAAjOuzfoDc0D9Ztl8vBJzQB5aVHAEFHNAXxU3APUXc0Dtgm7poiBzQBA34fA4IXNAog/Swg4jc0D8zln2zSRzQP7ZKGzhQHNAirTyGHdBc0D56+qfekRzQICYO37zUnNAd16i/aRTc0BmM4a1OWNzQGQHtJ5MdXNAlrGf3HiAc0C15oZGDoFzQN/PzIyGkHNAH1/lGU2Sc0CjYt2R95RzQMetxYG4oHNA3DENB1uic0ACbZZeBKVzQDarUle3s3NArf3mcAy0c0BuG0RgzsJzQK4O8qolw3NAq9CjjdfRc0AT+WJB4tRzQE4SW8844XNAFnXWKDX0c0CWa5pieAF0QLaJFXZME3RAEDo0B7ghdEDmMOd1TjN0QGX6FoA6UnRA8i625bdgdEADCXEDCGJ0QHASVechcHRAH7duakFxdEAHnSW7OXN0QO9We1X4gHRAHWIcpU6BdEBGdvtRFpB0QLyCCrbPoHRAxPvtoQ+jdEBJKUHHd8F0QJZzhNW3xHRA+PgLyFHSdEBMzNtdTeh0QPLjWAeN83RACrW+AWQBdUDOw0RUXQJ1QH6nDgxrEnVAHCSMLp0idUC8Xr33SSN1QHgS527MNXVAiJv/7DdhdUDQOrI4jXR1QLgI1MR3gXVAlA4GoK2BdUBxuyFypoN1QBVqEJSbhHVAbDvWt7OTdUBOqhFT+MF1QBJ4VNEI4nVAVPbV8EgCdkAJTF0X0QN2QOuzFgyQJHZAAoF+D0srdkBSMBS2HzF2QMDok0NSM3ZA9zpbbFg7dkCqNqDNHUF2QHnuHLWaQnZA9GgwjHpEdkBW1wHVD1F2QP5jmrTNVHZA0scNntlkdkCD/sCSkYN2QApUfuDBsnZAFrAmyHmzdkAm1+ZCDLR2QIaUzovTuHZARi1b6M/OdkCAYxxWi/J2QI7zknczAndAqAOo9VANd0DG3k1lARJ3QPpBHo+QEndACVuJr6oSd0DE5rvr6xJ3QApoGKXpF3dAuIKP5vMad0BSduSYDiJ3QMDpjs9xMndA1tNIFQ01d0BJsOTKczZ3QH4AvWcmPndAFicXEJ1Bd0Bkn+jEGkV3QGRvmdZJUXdAqPKuYJJRd0CYqYaIXG53QP2jEeEnb3dA/FFlC1Fyd0CaHVy5WXZ3QELtopnL3XdAIj0lPyXjd0DNZ/otkeN3QNjZSwFuInhA2Obc5XlFeECF1VUFylF4QKDwcNCUUnhA2paAWe9XeECgxo4J+WB4QGjaBRe2YXhAnjzNcot0eEAT+wf/pYF4QOzDJneZhHhAmB+xiaeUeEDEnHJ0t9R4QKDcwWMB9HhANmGEKoz1eEBeQ9iQmwV5QAWRyiD9Q3lAisuvAs1UeUCbm6koXWN5QNzljP1wjXlA4SLxIcuSeUDI8sn+IZh5QES2CTa/snlAzLY3zojNeUDGgGBT4tJ5QHOz4l9C1HlAjOPDXMzVeUBIaDLJX9x5QHKOfFT6BXpAKkRBTww1ekAmwKnk5UN6QAVclWAaRXpA9ISlpChVekDVGBWxorN6QGx1FeoMtnpAxonWhhzGekBg3FtRE/F6QJZHm6FJ83pAKmUYOKP4ekAcamML/f16QDJbEp9FA3tAwi9U7SkOe0BytEKQxBJ7QAK6e6pMFXtAsAgN7R0Ye0AmSAr7ZR17QPDdd6hZJXtAPrZvTP6Me0Dfq/Q3I5V7QIQconlhu3tA0FeBImjDe0BmB049bct7QNjSb7SW8XtA7kzidhrze0DkioP9i/V7QJ1hfT7aAXxAxA5FcZkFfEDKkBzp0BF8QOgbTIPnG3xALXUkb+4jfEBYIxZb8yt8QKJyu6LNQXxAuuHmbcKyfECEeWmoV+J8QATmvVMW8nxAVLnW0FTyfECGh+RFAwJ9QNhYFC1LAn1A9T1bdEUSfUCWrbZgkPV9QEHR4pjtnX5A9EXVqkyjfkDeH6WaKOB+QOqeXC+N6H5ANmeKbOjtfkB0w9YYQfN+QMRBeNhZOH9AVHcKa7o9f0C0OyYtFEN/QHCogM1mSH9AYExY6Ldxf0AoC1hnYpF/QES82o9doX9Amj3AOPnrf0AajpjdgxGAQBYofEAwFIBApLw25NMWgEBURiIA51CAQHIzi+ATUYBA4vvJQA5ZgECQTysIxmaAQLD2vSpyaYBABLoI+BpsgEBkn9psxW6AQKA/4qAob4BAZhnOcnFxgEAKJXPVMYSAQGrKdBDdhoBAjBq12h2PgEDIS6VtiKmAQIAoL+nRroBA1qgXelLBgEBJI1lqU8mAQOibQU2nzIBAuvZIgEzRgECu/2pYYNGAQDZrG19K2YBAhVHch0XhgECWcGS6P/+AQE/ipw5AB4FArpd/CmcJgUBGmkzgEwyBQItTbh+9DoFAOp0f5DQfgUDMzXebNieBQOLI2Ei9MYFAhhGsTvVFgUB6F23J40mBQKKYxNXoTYFAAufn4hZygUBCZpLDVY+BQAXeljJWl4FAtkWLm+ehgUASULm4bqiBQOrABAhLr4FAI698VAXOgUA96vs+CNKBQOyEBbS04YFAlGwq6LflgUC3u7Cifw6CQEowmzXYGIJAmh8BP9cggkBsOr8Z6DmCQMfz3l5DiYJAvijq8+GNgkBiXsqsQ5GCQPYoHss8mYJAAhehUA+hgkBte2QlPKGCQArZfg8LqYJAccBobjKpgkBli/JpabCCQJpa0J95EYNAn95IJHoZg0Ah+msduBmDQDxnOrJyIYNA6u3bCYkhg0DgwfNqDiaDQAd9TV1xKYNAvCtTzBAqg0BoCiNBzRmEQDaPKVLQHYRAxuLRaHAyhEAmIUpwdDaEQCyacEHHOYRA/w27GMo9hEBux86ewUGEQFS1l4nERYRAK1iLWg5KhEAyM3cU/2iEQE7g5bL8cIRA0lfnfmrZhEA8ShNPauGEQIz1/Ztj6YRA3lqVCzbxhEAoWaPdZPGEQOEv6TzA94RA3Ne92TX5hEBGlfCQbPqEQOHmlcwY/YRAitUpCsX/hEBOqGrRLgGFQEpcot6gYYVAUgy8CKFphUD4FmxPmnGFQB5XlPc9I4ZA6xbOeFuShkB94IJib5KGQCe3r2WZkoZAUw/VmZuWhkAmkub5dZqGQCgc/6OcmoZANMbgXJ6ehkB+IWA6oaKGQLPnNlOjpoZAluFoxZAph0CDe4YtkDGHQKU2l5KIOYdAMU9UuolBh0C+N+NKx7GHQKMFWnvIuYdA5PggJb/Bh0A= + NrgMGZxjYkDs0KCvIgVvQDitQvclQnFAZCbQtP+ydkAma0JUlHJ4QNjLkKTvs35AgXeMn1fDfkA= - + - u+NiRecbU0hCuuRFJkvPR5yvmEb53vJGF/AARXM8JEUbxAxFYvdDRSlL6kQWxU1FbyvsRnEBIkaRmDxF0d3oREqI9kT/TbtGv4IYRW3FNUXW5+9ElpJRRcs/00UWERlF46+GRVfB9US+ECdFt7rKRhp/3kTga1VFrNMvRyf/Z0YrYNFF/DPaRf1w/kQs/z1F71gCRaIGjUXi/FpFA7IXRaFhbUXhkeFFriX8RO4Od0bGZGlF6brXRE256ETUJ/dEdVtmRTW1HEVfLahFtjA9R6yEzEU8BUpFqragRQGBzUX78uFEiRLyRKLf+kQYgfVEEMkfRWNjLEV8mqdF1/HURPItgEbf8D5Ffuh2RcDeCEWLIjBFjLoERZBdKUZwl/VEAx6tRbismUYG+epEhjorRU3u3URJCgNFIJWlRUdQy0SLubFFbJCVR7i1xEaWjqRGk8s4RTzUgkWp2AFFNElTRZLgQEUHPG9Gu9AxRWmpEEZPAeBEJphDRSdzXEVzOiJFAWtLRQTXCUWJzN1ES8xgRpkPjEazxAFG0jXyRRc2l0VZ/5dFqCQHRY9RVEUzJgBGy3/fR6efDUVZRepE8xK1Rn3st0Y6wI1FlSNYRuuUTUWfRC5FB/mWRX2cMUWDuCFGFm9GRbpGo0XVVzNFXvYQRhM4hUWBd9BF98HcRRJmKUVohxRF0507SVMYHkXNLk5IcBqJRid1RUXAqGdFX4HPRcW9AEW7rzZFzKaMRSCLI0WfhpNGwHpBRl4dAEX+T2ZF/X1WRUZ9GkVlhcJFjX8HRSm7T0VBpNVEHRLJR+ET60TnY8ZGD942RSIg0UQrB/pFEVzYRDNo0EQz1sdHN7WNR/HwbUaWooFFTe7lRLkPhEbZJwpGGtsJRv/jEkWP8iVFzEciRYSoNUVsFxRHMX9mRkTrHUX+5JZFNHOZRXLplUauSktG1POpRRWPmkUhDeBGEiQURtikIUWpEtNFsvIDRYAt0UeynhhF2Xi6RskJzERlSpRGjIBeRQvC3kTskFJFL0soRc9ipkUVZ8pFm+c2RStH1kSE3xNGXe1QRlbggkUkBD5FOWW2RQzxLkajLElFQjjLRLY1BUbYBelF0enFRHcmO0V1KVdGLeG1RUIREkfqi6ZGZW76RVEYUUXXvf1EU7zHRLjuXUW2vyZFtSyeRZm4zkRt0kxFUghdSJWbvUdQDPdERsJiR0VMU0X1EjRG2laGRZjxBUaoXjdFC6+qRUsAXkXNuARF3ioWRstkCUWwHOZEvi+ERR/15kUcC5RFT/ciRdOUn0V09i5FZWkqRRYHJUVPJE1F6H+jRnSVFkZumZtFjxH4RCkIy0R5rSpGupmNRU8aAUV+aN5H4FoFRYqEPkd7gtpGFIynRYnA3UUrMPVEqHsURQcE5ERZyr9HKzgxR62f8kRjTNJG074MRYXQU0WlmQZGERbtRASKRUXU7tBEWe7GRZjGt0WlxiZHfyevRunHyEUxO5lFazYGRZWbq0WEyxlFyzoSR0YsekaLJjxGpl9qRULSUEVe9ABGH3nYRF3JBEbjAUxFmKU0RVRv2USg+OBGpalMRqJ6I0bBeTxF9H9fRclcn0XlfK1JKvJ6SWNQU0UU3vBIukAtSGPp/UaPPQdGKGQCRjggv0Ud3jZFe/HcRHWtE0aT6B1Fh8sWRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - /lu7+W/BckDq6WVbUcJyQF+HtXmnwnJAKpV7E9/CckBumMqTOsNyQPsIpo/FxHJAMkjKiwDIckBouh5oWs1yQC+XNFJD0nJATqkU5c7fckCs36TMuOByQJ6jrNRR4nJAnh+QBJDickA2HAAEyvFyQP7pE5vD/3JAl2JE6fgAc0BibKO+zwJzQG42PGj6A3NAcPIry7wSc0A0K/Se+BNzQKG0roKiIHNAHydZBTkhc0D0rwoLECNzQC4BHPXOJHNAUOpFg0Yxc0Atp0lU+zJzQFKil67iQHNAiFPEHnhBc0BXSuc/ekRzQHYTMxT1UnNAGCQ+mqNTc0BMOx2vg1RzQLrj+I2KYHNAVqS9Xjljc0DNWaVcUHJzQDiv4/NNdXNArKpgmHiAc0DGq++rpYBzQMR322oNgXNAFE7i0caBc0CO7tRDXYJzQK1fCdCGkHNA4Yy6E02Sc0DWB/NUY5RzQGhKk8X3lHNA2rtPXrigc0Bu92VxWqJzQFygeMfkonNAXPmkDAWlc0AWnsp4zLBzQBd+S2F9sXNA6A+OzLazc0B5laiQDbRzQEbQPBLQwnNABct8tSbDc0BJqMDu19FzQNZtrAj203NA4ugsHeLUc0CwGaRIOOFzQG5JzHNk4XNA6AvbzjX0c0AAgWy/eAF0QAH6ijJQA3RASpB46IgRdEBWuCUOTRN0QMQGAxJ4FHRARNv4X7ghdEAMyRWHUTN0QFKpF3VUQHRAszfgwTtSdEAsPP4DZVJ0QDLF9GeLVXRAN4bSz7hgdEDz+IO3CGJ0QJip+RhSYnRACnzsHU5kdEBrtjuqInB0QChW9CNBcXRAlxj4pjlzdEBgAFS1OHV0QIySf5X4gHRAJAY6kU6BdEAYcjMNsoF0QMnGCUcWkHRA2CjC4s6gdEDesfWxuKJ0QMgIBJIPo3RAcxNvzAmwdEBW7BPT+7J0QFdQ29B4wXRAgqDSriPEdEAuSoTPt8R0QDByobhQ0nRA2FkgLbnhdEBPG6RoT+V0QDclpHdM6HRA0ylFMY3zdEBGlne0YwF1QHbJRxJdAnVAsumdXZwDdUC3h7UmahJ1QEPaKX0jFHVAqBSkzpwidUAAKXBGzDV1QGxBdJSyQXVAPCsg8yZDdUA4XSVKd1V1QBhD4xoHYHVAHP7CVKJgdUBu9gnJOWF1QFa/36XRYnVAre9rwXhydUD0Xb9cjXR1QEecUid5gXVAOCgkHq6BdUAOxvW7EYN1QDRekDymg3VArVMAcZuEdUB0c1mBupF1QJI+MA61k3VAqEIzvGPBdUB4Dwzf+MF1QOyRY53M03VAylyMiOTfdUDG9vOfCeJ1QPY1mN9HAnZAKtT7LdEDdkDgyBaIDBZ2QJG1e4CIInZA+hA9xpAkdkCE5xa0Sit2QDhgzXofMXZAapL/BFIzdkBiDyLDVzt2QKB1VXMdQXZA3EDdippCdkDpooeBeUR2QMgyZsz0R3ZA2Bse+RBRdkCisNWczVR2QG4Y3ChRY3ZAw3RnZdtkdkAmZR6XkYN2QHC2S/HCsnZADR1Om3izdkCSDf84DbR2QJ7rGhzSuHZA4NZ+vL7AdkAADrQWz852QFKi3/+R83ZAJ9bYdjMCd0DAQ3yGUA13QBjJIIwBEndAfQI0y5ASd0AW86JFqhJ3QMYzQkPsEndAU2G2xekXd0B76iJ2Ahh3QM8Aza3zGndARTVzuQ4id0D4el/iuSR3QPIO+tJxMndA5iv7Dg01d0D1wpbmdDZ3QFAX9fklPndAdOnV1JxBd0Dzo8gjG0V3QJyP3uxKUXdAOYS89pJRd0BPY2p2K1V3QFY3+SSOYXdAcQhbM6Bhd0B2TLoUXW53QBwWCpUnb3dAZqIAFVdyd0C8zQ8YXHZ3QDpfQ/Z4gndAN+KL+EuUd0Da8w3eZ513QDJz9jCbtHdACikpqcvdd0BujstXJuN3QOLm7H+R43dAcDkV720ieEBzCJUSejJ4QPZalgIRRHhA2HJ0tXpFeEBueA87y1F4QMmIsZmUUnhAuECYq4dVeECqmnkx71d4QJTb0Jr5YHhAqgHnS7ZheECQaxD4sGJ4QBSeFGxFdHhAAJImqYt0eEBqqvNQ23R4QCLopVKmgXhAQAqBuZmEeEDg/k2ul5F4QCnxW6anlHhA/qrlaczAeEDH6kEpt9R4QH5/lEAC9HhA5LNa4oz1eEC+mT4mmgV5QCQF+G37Q3lAPgLm7stUeUDOmg6tXWN5QI+dYHPbZHlA6rSkVkJzeUDosZLDcI15QGpfs4zLknlAOmsF4CeYeUDYBk4GwbJ5QBxz3puHzXlAz2ZpuuTSeUAQhVeGQdR5QMgXJsTM1XlAdxtFD2DceUCkDHRfUuR5QJCgqYz6BXpA3zRcKgw1ekBwlahI50N6QHLaU3caRXpA0AzVB89LekDY2BJfKlV6QMIn8x6ks3pAO6vqfQy2ekBe5ZDGK8N6QAbhyvlo4XpADpRd/DXuekAiyKrDFvF6QPheQcxd8XpAApL3IkrzekCiQc7tovh6QANXogT9/XpA6TUBv0QDe0Aq1OOyWQN7QLYzEBApDntAblupBMQSe0Doz9p9TBV7QOLduoseGHtAi1gAl3cde0B6SjzGwiJ7QOd7NHZZJXtAbujbu5ZIe0DE+s0cVpJ7QIbRUngjlXtAGmO2emG7e0DMoZsYaMN7QEiy195wy3tAeuCvPRXTe0AYfFm1d9N7QGZCD4p923tAumRJ/fvje0DSet/6GvN7QFURFmaM9XtAFjMHr3T4e0BIABbV2QF8QOWUO1KaBXxALuD1LNIRfECI6GFg6Bt8QDpGbbrvI3xA/wfj0vMrfEDH3rFnzEF8QB4sW0XM1XxAQWl0oFfifEAca6YdF/J8QKjftVtU8nxADHCGSQECfUA+kOuQSwJ9QFzwezNGEn1Adz6MIJD1fUAG5PEqQy9+QIAsC9gShn5ArPYxRV+MfkAvSCPu7p1+QA1zN+f9un5AgulmvifgfkCAd+qMjeh+QDCXbbDk7X5A3kpSW6QIf0CoYJPUAA5/QBKt5EFYOH9ABOewdbY9f0DYrCi4FkN/QBXIWJxlSH9ASArenbZxf0C6g4NVYpF/QCvFCuenkX9AstzBG12hf0Dvhqh2VbF/QAc90b6DEYBADsKsRTEUgED+aLS53RaAQFLZYRH1SIBAKLnKfedQgEAuoTeqE1GAQEdvOJgNWYBAVrnvrcVmgEAgVhk3cmmAQFVj380WbIBA18n0GsZugEDK/5zRa3GAQOTuT68xhIBAKBxFAt+GgEBJDjydHo+AQMaUWDSGqYBAcGLoF9OugEB/9MV9UsGAQPL0B1FTyYBASn1qg6fMgEBrP5hoTNGAQPzxQjNK2YBAZoC0GEXhgEB6IxLXPfOAQFHc2tw//4BAeEA37D8HgUCUXrqjZwmBQJQ7Ee4UDIFAopwGcboOgUDq3yRnPg+BQIaWZAVnEYFAEhqMy/AcgUBlS5t7NB+BQDrKYWs0J4FAO3L+IvRFgUA6Tvuj40mBQH5suCXpTYFAr5zElO1RgUBfCPBIFnKBQBrLp6NVj4FAvtCdQVaXgUAPJNju56GBQAyrSGnWpoFA6/K8zm6ogUDM/hreMayBQIfC5URKr4FADPkXKQWygUAmAmoVBc6BQLThFlEI0oFAHw/Uun3TgUByQaQkteGBQLwVBQm45YFA9ksGPtgYgkAq2RdL2CCCQPQ8CNHRKIJAVshFp6EpgkBOH2hW5jmCQHJqY/4cdoJA93yarx56gkCvkdPNo3+CQPbcxzVDiYJAgLNSHuONgkBSiJq2Q5GCQMo2/o7mkYJAyQs8jTyZgkBu0YuuDqGCQBRNvyY7oYJA9OfoJA2pgkAWq0D8MqmCQOJZOMdnsIJALHSvCQixgkBue3pUrvmCQE3ppIJ5EYNAJnshM3oZg0CatNXitxmDQL3609xyIYNAf8z6I4khg0D5kGb9DCaDQJwiBStxKYNA7RNxvmkxg0AlOa2RWaCDQInwdBzOGYRA54l/g9AdhEA0C9lwcDKEQJC3NktzNoRAYIveicc5hECCLE+tyj2EQE6rMjzOQYRA5FIzisRFhEBWN5NfC0qEQIrsLBT/aIRAwCtC0f1whEApp6NEGM2EQMzuSifGz4RA/iCUNmrZhECzK2JQauGEQKWl1u1i6YRAKBocqjXxhEColKfoYvGEQFxwF+a/94RAg7Gd2Df5hEAX3gYEWfmEQPSIu5ps+oRAGp1lfhj9hEDej9orxP+EQHTp4pWgYYVA6IlHv6BphUCrRArZlnGFQI4usZmZeYVANOyPIDwjhkBhjKUzj0qGQDzV2/ZOkoZAH48GiZmShkBq/Atb05KGQJjV0XU+loZAgTG28puWhkD7g5Qf/paGQHSMZt2cmoZA5MAHbJ+ehkCcztzyo6KGQGRxK6ikpoZAIoJFpCe5hkAo6851kCmHQEICGJaRMYdACi/Fy4k5h0DRJuLViUGHQAg+k4s+ZodANmedMMexh0BVuUtzxrmHQIhkYJW/wYdAgH1HqcHJh0AM958T0mGIQA== - - - - - - DsFIReBI8UTV40hIJCeuRAjq3EXZdvJEdKa9R5VgZUYtJfhGHvIrRWt/EkU+b5dFUkMTRWHmaEX/fcNEvLzsREoq9ERJvw1HQQ16RqtVnkUGatZERKDcRmVf3URV88dFRiYxRR9vtERZ/xpFP1G4RVdzQkYT/95FMTKeRRIhnERQ5s1EBGP7RD6O/0S9Q/REjgUCR3pu50RUmNJEnOfERP/+GEVnnSVFdxtlR8peyUTyBIdGPIssRs06G0a6HvZECW80RY3TlkQDgqlEGpF5RTBJLEVzs8lFzmVfRWKOUEXawOZE7bK3RZa1AUZaw6hENM0JRag9lUYiiCNFQWT9RB5oaEUoVPlE3MwoRd975USb4cdEpEuMRdSEBEU72QJFQtKWRdZNp0VfsA1FAGHyRG42y0VRyGdHWJn1RRDJ2UQf+hdFnJUHRmr91ETRLL9FKK3bRKMw3kQAngJF3jgARfokzkSCCsNEw2nSRLiqKUWz1MREG3wKRd+vzUQHyv1EuircRWwI5kTv145GY1KuRBct2kRWjydF8JFoRR3ZY0WbTM5EmIHYRC/q30SckbpEsTe8RHFcI0UMm1pFFoMLRRk+NkanQxxFOI/KRZNsxESLKYpGWd0IRY0mCEUHNzpFxxfjRBKYDkXqUNNEPc7PRMJCD0XCVs5F5U63RNdKyUTNUiBFnOAeRlxHKUgGN8lGHnZaRzKnDEbPx5RFLJAuRey7cUXcI71EJd9cRQZxPEb88d1EmcoTRWLg9EW9BRNFgPq5Rel8xEXaX4BFqDy8RLqATUX0+i1FYls6RWYnUkYsbL1GToBURiNb8kWAPAxG5i2YRc1XDkVbvWxF0o9tRc9KtETuX6ZFd3IDSLfGC0V6ySZFMFC9Rk7R20Ygt5xFdcqnRlWGxUTbzRRFMCneRAloCUXQlUdFHPB9RW5aDEWnwe1ERYTORArkKUUNOcpE1JURRh2Be0WtIKFF4h2KRXt+y0TvBElFPQ5XRoe7ykXIMURG3mt0RduTtEX3vw9Fv21lRQizn0QiMhdFRSdeSWxBI0VmxBxF+BtkSKngKEVqm7tGieX7RHyGcUW96NNFE+T6RXIH1ERllRBFEhyvReNzE0V4wcREZea1RPQHjUbOsD5GrDUzRVGKekWew4FFVqrbREhnq0UwzcZEDo5sRYRk/0TNB95EnQbkR0o6s0Qei/FGLAfdRAGB9kTePbdEeADzRUtt/kQQ2w1FY4IJRWVlEEW9iCVFnni6R2LsikeWz31GE0hGRZDUVkXieeNEa4WwRvJwWEYheHNGlxweRX92qkT82YRFO1xoRTwe3ETpeRVFDA7xRm+BMEYr30NFDdfMRJsvMkWVqMdEyki+RD31N0WxpaBGjHhkRQOFekasm7dFm+WkRaX+7kaDg0hGHSMKRauF/0VJa61EOH3tR0IF9UQDrexGEGkhRe0fuEbzHaNFP5LsRJCMvURGFbBEUfCyRHdxFEX68NpEDWSFRevMgUV/2whFenvrRLIWz0TkcrxFZ03mRfnmF0VLo+hEBVifRT46T0Z+U89EINs6RbHtWEVSbTlGHykARrDsKUUIB/JEye5WRbGka0as7b1F51LoRqy7t0a96slFt0amRfRvB0V9xI9FUCiaRQRsg0XoCxFF3agWRfwjg0g6zPBH9CkCRQ5hhUe2yW5GnarFRdkLFkXhiRxGm7BhRbuakkWjSI1FKRk7RbLQGkXJVvhEkZOdRIKXNEYEVgBFP+c1RSQttkVBAKNFcokpRe8QBkX1FsFF+8HgRLuaHUX0qgFF81IcRZX92kTHc5dFzQHCRGNVcEZ0/hdG2v34RP1XmUW4G49F6/NjRvnWf0UDVwBFzDC8RL1U30SUUlhF28rpRAvjrUQSZtlHh6VYRXk8NEepYkRFqNztRiER5EV6mAFGIrcWRYwbOEXg7BhFuoz4RCLkC0WPjeBHoUZXR+7Q00RYofVGruQKRS9UAkVhDAtG9dYjRXs4DEVecGJFeB4JRUt3FEbdBHZFY1AGR6btWkYUxnxF8j0cRYKCNkV24ONF+MnvRNbS1kQF3O9EQOAdRwj7hkY7EzVGBheARcxhZUWE3h1GxTIQRVvUrUQpEBFGJsmXRaqsB0WDAAJHKEJpRlBO3EV96ZVFfMOZRQVotkSZGTJFZq9tSTfaI0VlVrxEz5UpSW4ByUSLaqhIS62zR/sLhEbhvIBFsUPORAAYNUZw8rVFFKaFRQlO4EQxfgRFap4uRqihe0Vftf9EdB3hREzF2kQ= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - YrIz227BckBCsYtap8JyQIaZzJvewnJAcGiIDTvDckDiAruCAMhyQOC2PJlZzXJATs9rZ0PSckBdVTens9JyQP5OK8p003JAGmtke9PfckDEG10tt+ByQOwA4WFQ4nJAnE8e65LickBsxUBFJONyQLAM3jHK8XJAp35+aML/ckCAaBqMTQFzQEDvJ6CMAXNAxPWanzsCc0Ds3ZMO0AJzQIqWpaL6A3NAQJ4NEAwSc0CrOfzpvBJzQJKh+4L4E3NALpzESAUUc0C0XQ6NThRzQEBvC0J5H3NAIkhe4qQgc0AAc/T9OCFzQLQPkVrPJHNAuUAYakUxc0DQCO0buD9zQMrcdavjQHNAeuKLvXhBc0B3aDoqJ0JzQPrjjjx6RHNAKB+n5PRSc0BnmlbJo1NzQHaIsFx4VHNAi8EYLftac0B2X0tMi2BzQB32K/llYnNAqJxDxThjc0BFAZmLUHJzQGxlwQlLdXNAFsEfqXiAc0C4WraSpIBzQE6VzhcOgXNApDSoBMmBc0B2yzB+XIJzQIQ+wd+FkHNAomtp7kySc0B9Xf/RYZRzQE60xYr3lHNAyiMC4Legc0AsUbnSWaJzQBx4J0HmonNAkNtYDQWlc0CNISLrM7FzQIRlbwS2s3NAg8oXyQ20c0D1iyfQ98BzQEJPAFU7wnNA1tPR8s/Cc0CRbUn8JsNzQKhaeZ3X0XNAVriQYffTc0C2bPCI4tRzQDAY0Tqj4HNAAopLYDjhc0Cikl4EN/RzQPsXh7+L9HNAFYDZ9XcBdEBIMN76pAF0QFaRFzhQA3RAdmEz+0wTdEAwA2KJdhR0QEbfB4a6IXRAyK/GJE8zdECC5khFPFJ0QDjrPHtiUnRAiN3Bu4xVdEC/7ThhuGB0QKEixucIYnRAIEfFKFJidEDICca8TmR0QD3HjAEjcHRAmm+fGkFxdED0Ee1MOXN0QCDQ16o3dXRATuDeX/aAdEAAK+QUToF0QKzk4Ey0gXRA6sOZoBWQdEB6QOBuo6B0QLbKDIjQoHRA6PGgkRCjdEBIVaHD+7J0QNoQPWniwHRA2nI3VHnBdEDS2Fnht8R0QIY3MqhR0nRATmfFvuHTdEB2wBQsztR0QG52O0K14HRAwK8zx7rhdEAsEVRjTeh0QLu/1Pan7XRAlFkIMQrzdEB4+y+3jPN0QNPmOc/MAHVAWsMj1F0CdUCCId8TPRJ1QBNwKv1qEnVAV36aPyMUdUCmWIwmnSJ1QGDOtVBII3VA3CyabMw1dUDkfaRWskF1QIqgGRjbT3VA9DneTvZPdUA4dI6odlV1QK0WjygKYHVA6ntgrjhhdUC3c6po0WJ1QLZEpC92cnVAkMN1m1JzdUCLtue1jXR1QIFGgIx5gXVASEkX7K2BdUBS6VRgpoN1QIxKwBabhHVAtaef8rOTdUCYkHXP+cF1QG7bhGoJ4nVACdTh1kkCdkDk7Cm1zwN2QFmJe/6IInZAtEIk+pAkdkApccySSit2QGAE3IIfMXZAGGxqN1EzdkD4imuQWDt2QLaG4DUeQXZA3bh5eZlCdkDa+9KoYUN2QLV/aHp4RHZApDVeYvVHdkDgfAmox1B2QOrFohoRUXZACoF8GM1UdkCVjEoHUGN2QENwxx7bZHZAgnZc7ZCDdkAUGJcJ9pJ2QCyq69LBsnZApNkL63izdkBsM8NSDLR2QPzy8bTRuHZAxJ7O4M7OdkDiPSV7kfN2QDPVdAczAndAdkCFWFANd0A/IsuOARJ3QAbqCWmQEndA2jE4FqoSd0AEsJVR7BJ3QAwk8v3pF3dAdjacUwUYd0AePXlY8xp3QCpWbrJDHXdAq65YRg4id0BwkZDscSJ3QKbKEpNyMndAfL8RjAw1d0B4BLPYIz53QBkZj+KcQXdAekcKqhpFd0BYeOJmSlF3QMdAe8mRUXdAX6ExmyhVd0Bu0c6bj2F3QLOeltFbbndAMPBA/yZvd0AmRt/tVHJ3QOqQ3Mp3gndAdtGOkgiSd0DwWrL9Z513QMR24GeatHdAnM+xCsvdd0DkczNJKON3QLoVSIOQ43dAdA+/45brd0D4YTogbCJ4QFmU1coMQnhAmEouPRBEeEB2YPS5eUV4QAoWi1bKUXhA8dQnp5RSeEA0CaUSh1V4QJwE5yvuV3hAYeDif0pdeECkstbs+WB4QM4eRgO3YXhACqhqmb5xeEB8sJ5IaXR4QBGa7jKLdHhAsPY5ALp0eEDm/COZo4F4QGpBoGqZhHhAxDYFd5aReECGY8sXp5R4QIk7WqHLwHhA2DBRz7fUeECBBUmRAfR4QD0BhGGN9XhAaobiwpkFeUCsRwlMlhR5QAIJ0qf7Q3lABZsg/8tUeUAA3z722GR5QAz4oRFla3lAWPGA6XCNeUDusDpky5J5QFyIa9XAsnlAtElQCorNeUDuDBG+49J5QGdukwhC1HlAZgDCqMzVeUB7t55+X9x5QITox8RS5HlAGqgOqvkFekBhYl5H2iF6QMhLlDMMNXpAdooNbxpFekAwHTC7KVV6QGIQUyo7k3pAVoEt/JKYekBrW7PEDLZ6QF76cPkZxnpAywFGWEXOekDKMvLhZuF6QNsoTQ427npApv3+SxbxekBER+6+ZfF6QMuhTqRJ83pAwLt956L4ekDoaT/x+/16QM7KfBhYA3tAepJnp8QSe0B+zgE9TBV7QEC+HgseGHtAnaJr5Xkde0DSl6bdWiV7QHIadhWbSHtAVqvbUGBSe0AgMFqwIZV7QN/mciJhu3tAsAbLVWnDe0DUgPPkdsZ7QL2a0DNsy3tAWqWlHMHRe0Drtt4QF9N7QOkEwH5103tAqNQsPnzbe0CIGh4FXOR7QKxGpvKY5HtAjNFyRZbxe0Cr7t2KHvN7QE6zJNyL9XtAd2L8jnb4e0C8R+QLkQF8QCyLE37aAXxAMvl+7poFfEAUO1CW0BF8QB7tTQToG3xALoys0u4jfEDt3gzD9St8QFKiVMrMQXxAJPJKlwZYfEBwpL1Fs298QBAxlwTCsnxA9rGrllfifEDSFZEUGfJ8QEzhZv5U8nxAfCUUdAICfUBAACUOSwJ9QJI1OvJFEn1AQK92+DwifUCVpZ6SLsN9QAxM+PGQ9X1AOXsHvYtVfkA/gAJP7Z1+QFSsU7NIo35AOUn3Wf26fkD7tsnPKOB+QJpzdCGN6H5ATEOnMePtfkAudEwhPvN+QE8O6LUfAH9AxJy1clk4f0CUyzU8uj1/QDQqpRMOQ39ANp82iLdxf0Csbme+sYF/QIRL09mjg39AsGfkfmKRf0AAmdM5rJF/QIzD8oNfoX9A4lKR2lSxf0AO4Wd9gxGAQApLG6UwFIBA1qCXM9UWgECMv9p8AjmAQJQ/vhL0SIBAfkRBm+ZQgEAyLGO6FFGAQPqHz68OWYBAzq63ySBZgEBf312lR1qAQNcW5+ULYYBA4plPB8ZmgEAe9kRZcmmAQFFw59UcbIBAnKK+Y8RugEBZOoaUJ2+AQACYlGcyhIBAMFHY1d2GgEDTOfe/h4mAQA8Iy0wej4BARroNLCWpgED8/8BohqmAQMKq1pvQroBAwixTjH6xgEDJFnimt7KAQDzTdFIltIBA8R7XYVLBgEDAOMKBU8mAQJ8+JQOozIBAkls94FbPgEC3EHl7LdGAQEC3B5dM0YBAqqKLqUrZgEDcW9muQ+GAQNIuvQL26IBAIpwHYkvvgEDE4DWsPfOAQI3ifSRA/4BAbqRrvkAHgUAqNKZWZwmBQD+C8LgUDIFABDea4DwPgUBmy/v1ZRGBQKH4H04hGoFA/IUPIzQfgUBqk9N0NCeBQKgqD3XxLoFARkjQErwxgUAgDWrDkUGBQN8dT+jzRYFAGXxkzORJgUAGIqB46U2BQFpwwrt6XYFA5h7+xMJ0gUC6LKHVa3eBQB+uG1xVj4FAtsxjRlaXgUCPmDgk6KGBQOlg7wzVpoFAhF28wm2ogUC46hJKg6mBQAmK7YNKr4FAShdrTwWygUACsiatBc6BQPCnFJ8J0oFAv9h2ZAzWgUCK2BxttOGBQGnZbYG45YFA4JIbMwIJgkCiUW+ufg6CQPK7j2zYGIJA5RvjwdUggkD1wrm60iiCQIj7e8ihKYJAm3jS26UtgkD5WC6b5jmCQDOtyP/pPYJAqhSKLOhNgkDzffNq7FGCQKq+Dm8bdoJAYxkCWyJ6gkDwmXgjQ4mCQO6TJoHjjYJAvLBd80ORgkDKD7Vp5pGCQHyTSQ89mYJAkedKEg+hgkBUbJVZO6GCQMxh0aMOqYJAJcdM9jSpgkAu3v7AZrCCQILLz6cGsYJA7OQ3oTaxgkCP1An+rfmCQMiC83J5EYNAwOH7GnoZg0Bi+rkhuRmDQI4RHVtzIYNA5lzpFQ0mg0CUgq0lcimDQDzjMCQPKoNAu6KoEGwxg0B+Fct8bTmDQLSvaRZYoINAmgRKJM0ZhEC9QCua0R2EQBb50yZwMoRAmW2ZEnM2hEB4otcdxzmEQMZDplzKPYRA3ujjt89BhEDsxxiExUWEQOrw9O4MSoRAB5Z07RFOhEC6lFec/2iEQPzvnuP9cIRA/VLakfd4hEBvGXNmGc2EQLhy3fzGz4RAjBvSD2rZhEBWsqpEauGEQBm4Ye1i6YRACbXxCjbxhED0XwdsYvGEQN7m+2HA94RAyCsSvjX5hEDtl62zWfmEQAzUdHFs+oRAynbtDxn9hEBaCIb5yf+EQD7IdXOgYYVApv+jDKFphUBDWr50mHGFQHQvB6CaeYVADoMJDpKBhUASxcccPCOGQLBF20lEK4ZAI6SUyGuShkCi9iZMmZKGQK63XcvTkoZAY2oiwnCWhkDnHt/im5aGQOJjPNqcmoZA8F7Z2Z+ehkCUPVN9oaKGQGbr/safpoZASZrOpCi5hkD0ZCXVIB6HQBYn+vaQKYdAT5a1SZExh0BHfcS1ijmHQLF2lVOLQYdAvAu9bT9mh0DvGBEbx7GHQBhFYKHHuYdAukYTKr/Bh0DA7TixI5aIQATrlLAnmohA + NrgMGZxjYkD60UzrnGVsQHzKEHuiRG1AcQ5nZb4zdkBlJtC0/7J2QF/MZsIsZH1AKC1uiKXjfkAiP5W5/jmBQPpt/BOYyoNAErmaKKEKh0DEdcXGGeOIQNzAY9siI4xAtO/KNbyzjkAhjJQV9D2QQFNkFkfSnZBA0g18ih1KkkDPU1be7WmSQBz+TShJTpRALH1G2ilqlEBlgI70aaqVQKyUPe9/LpZA - + - UmpuRVbFEUjbGNREaDe6RWltjEeICStGMUfpRqI3rEQ4usZEEGqnREVLrEQAXGVF5LUGRWEIjkTShzFFfkjGROwckESvNdJE+yieROl9mURWry5HCjyhREOuB0ZSOItFDymERY/0w0SJurZEG0ABRVQm1kbbPmlFJsDIROxKikSL0LhEd2w/RTeNnETUMP1F8L3SRVv8aUWi9L1E9U3ZRAa7tkRo8ZZEp2beRO4WoEQmfE5F96e4RnpvrkQvJw1FTtDkRIUIlkTe+PVErZw2R9WVy0Q2LlRGNj+wRU4PyEV+JwtF7lLzRPgMk0QcZx1F52THRGRzvER/zIJERLmNRRIXhEVbWzBFOY+2RKEzjkVu/bxEIPfCRXmR1kToA6xEaNlwRs10n0RmvkRFqlhURQWmp0SZ/chECdHdRIoV0EWM3NVEvbOYRCMCa0WRkJxFK3y+RGjGxkTwQrRFx8ZBR7qQlkUMhOVE2tINRYn7/EWY2QFFAGyPRSw70ESQNIlEqrnBRIl2s0QBiMJEFLWPRB0VQkXMrhFF3IOFRNd/6kQCObFEhATqRDQjE0VYVJNEJKSxRG6Q0UXnI5BEdgylRggEqETjiQ9F0y8GRQvwh0Xj6BxFLf8vRfWyl0R2r4ZEPualRJhz1UTaI8NEWo7yRJI9NEXvu+1E8Gy4RKxFKEbjL+dEg4eWRU7yhUYi9/tEtg2jRMmp0UQ99r9EoEqsRYMU4URvjSBF9LPKReQriEg/brhGYGjBR8jWjUa1MmhFKub2RCLlsUSSZhxFNgayRLVBm0SbbzRFbo0dRn5uzES+t8xEX8z4RanOnUTz1itFzJ2BRUOlpUXlSdtE1x9LRW7z+0Q50BJFVo1KRqQYmkYb+79FJIOFRVXhBka2LKlEu36tRONyT0X2DY1EhxhoRa8jqUTl1vhEp1XjRzREN0XzD7tGhjCrRg5oekV+hFlG9ry4RIybJkVVFNVE+olmRQz93ES1QvNESOWZROAzAUWSlI1EromqRa84/UTblSdFx3y0ROlwZ0XtbMJEIfHMRPN1LEa8d5ZFcjcPRpsjDkURcZ1Fd8TJRDeuGEXJTy5FyxPGRIA1vkXYOjlJPqNWRUCbL0X45DdINYAlRWiekEZz8t5Eg7anROwDjUUHy85F2/bpRAFwx0RJXQJFLp9+RY7dqUQbaqREluyORtmyEkYE+YdFK7YPRZASCkXMoKRFNGjFRNO2MEUhp5BEJibTRKctjEQoSL5H4nfHRiGVEEV3woxEznjjRE7Yo0Ub2gVFdqWGRPFcu0TtlNxEbx8ORcgjlkTQcaNHLoNdR/lOckZcVoBFF/SRRnmPLkZ3zRxGQkAHRc1sGEVKJRFFZVbsRKLt0UQrMrdG6OwDRuIpl0SNLyZFEF4hRan54UQdGUlFHWrVRPqHokSA+ppE5KiMRSYoTkW5UY5GBIHgRLVjwERX3lZGRqRuRXUzoEUoPrdGcd8nRuHyGUXd6M1FAjDGRPaIkET5k7REFcbOR/7kBkUwUdhGQivmRFSinEaHqH1FNQPVRLIiwUSfj8FEv4CvRPjz1ESrhoVE+XXHRHxqZ0WxkUxFUxjLRGlo4kQHOdtES5CFRVVXrEUBn/hEVbnARUSV0EQnf6JEi/Y3RhbFBkU6DH1FrRkQRUf1OUaz99RF4mfEREHb4kTT4wlFxMIqRTy/rkaUlO5FyGTtRPchoERGgKFEOBjsRn95pUaviO9FIWh9RcYw3ERLsadF6i/0RGl940R9SHFFazGLRIstEEWgwEhFUdAgRSwHpkRq6K9EiHGCSJM+80cG4DhFqF+hRMAhtERC4IpH5zpgRhTsg0VGKOlE/YfHRE0xs0SjjipGnHhKRUjJdkXXyVdFSG3WRMlgy0RvKp5Erx9FRo87E0WVRpNEJsLURHV+oETajlpFuY+uReLTrEUKy5ZEQOtIRTojDUV1h5VFQ8ACRVSGMEUc6yRFjy1IRcC3R0X6eIlF4kmxRCRiakZ5f6tFYwlIRcAruEU8hU9FWWcMRW/l9kQjljlGPB1oRWh3NEXMYWhFDpPLRGLpAEWKFN1ExQETRbvoAkVJ4q1FD8gLRfZMJkhM0otFWi6mR5+JOEUC30JHZA7LRU1FZUZx3g5FiHKKRbmb1kQlHeREw0rORMhl10QgkQxIkOGSR3v190SbFCZHvwd4RfcoNkZJZyNF0hemRQQPn0T7ZnxEuXVVRTvX8UTcDgJGmDeLRXQKnkZqdTxGMwIyRTwgAEUkvwtFMYafRMWuzUURJBlF0kPCRJGK30T9fLFEbnVIR7LpskZFdFxG4o5WRT2IpUVjtYxFXVfjRBHm5URAB59F7XgrRfjc4ET0EwlHjSKPRidtJEYGWVJFcKm2RNSDLEZ90mpFaoCeRbK4K0kOJT5FaOVuRf45/EjvYXJIHZKPR2M8X0ZK2CpF12ipRPvMwESw6zZGxVTvRQA8g0Ub0glF1s2NRAtvF0ayHapFkf5JRUVQUEXsEtxE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - HefbnW/BckCe9J6up8JyQL2B40bewnJADPPuljvDckCUgu3dAMhyQOiNt5xZzXJAre1HlEPSckCyXlH/pNJyQFjbIPC00nJAQkpvPnfTckBUSGH8z99yQLoc1j+34HJApYIzHE/hckAKKNkVUeJyQM5MBBmQ4nJA1jTTQsHickDUlFzAyPFyQO1upnm383JAbzV71wv0ckANe/kQo/RyQB7IgNjA/3JAE26ObvcAc0Ao8Bwa0wJzQOydx//6A3NA9ldjBr0Sc0A2jWHt+hNzQJHpfb71F3NAIv+dR3kfc0BOO4HroiBzQDOFJVA5IXNAahRzLA8jc0CCBlESzyRzQOYl7hNHMXNA37cdfgkzc0DuK0sMODRzQGB0D1N5QXNAh2P5uiVCc0CRSvNzekRzQDr3Xab1UnNA1T1+A0NTc0AUdFW8olNzQCoAs097VHNAsz9Twftac0DLSsa2HmJzQNZCN/M6Y3NAY+a6eVFyc0ACta+Ut3RzQLqYvxRMdXNAtF2eJ3mAc0C2fmIIq4BzQFfQCN8MgXNADjRzPsiBc0AYsD9tX4JzQIlHZ3GHkHNAWr1P5E2Sc0DKt6UVzpNzQCwakWtjlHNA0mmOBviUc0CmD51VuKBzQDIovpZbonNAGATUSeeic0CMwNPLBKVzQC7U7NW2s3NApAgPKw20c0DKy5Fs98BzQESHXS3QwnNATLU2LCTDc0Ac1dEnw8NzQIl4+X3X0XNA8h1CYvfTc0CWXCoy4tRzQLimmos44XNALKNGsWThc0BYu/395+FzQBIbORjx5HNA3HqO/XgBdECaNAafpAF0QFzsM6lPA3RAqFsOz40RdEDStik7ThN0QNsh2FLlE3RAS4r9vkkgdEB4B3aDuiF0QBp0Yr3mMnRAgAByL08zdEAOJqjyO1J0QBLWpvplUnRAfRONy/dUdEDAPBLwjFV0QPvqU/q4YHRALxOz6whidEA4zljtTWJ0QOFB3a1OZHRA6+syOCNwdEDeVhKfQXF0QNvOj845c3RApjK0GvmAdEB9YGnFToF0QN/yp/2zgXRALLIlCUuCdEAl5QgIF5B0QHauLp3QoHRAK0r5UjehdEBLKMkvCrB0QMyfy77jwHRAFSD9EHjBdEDQad1SJMR0QKDyY3K5xHRAAK06ElLSdEBqLw9+zdR0QBGpsB264XRAfe51NU/odEC25QIxCfN0QB930kKO83RAwSs/gzkAdUCOyuntXQJ1QC5ZBQc8EnVAdHrpUGsSdUC/hOs7IxR1QLiZjk6dInVA26UjQcw1dUBZ52DCtkF1QOxvZKNNVHVARFDqeHhVdUCpp0KbDWB1QANPe5c3YXVA57HtZNJidUDsbsuDeHJ1QERWyHNQc3VA6eRjGY50dUBv3OoDeoF1QGCAGiSvgXVAxNBnAqeDdUCEaBmjmYR1QPIh3Di7kXVABqxKRmuTdUBpi4iBtZN1QCgXdi35wXVALt4RPwnidUB6oQs1SQJ2QBCfcH3RA3ZAKEn0dgMTdkDNLtljiCJ2QDyuYK+RJHZAZcBl9RkrdkDiSNM2Syt2QOwmEBEgMXZABMFDeFAzdkBVq1q4nTR2QHZIyvNXO3ZAJelMZBxBdkBcyaifm0J2QGnxOIfHQnZAIRzrj15DdkCOSVDleER2QObGftDKUHZAFv736w9RdkByUwMhzVR2QNd1E+RQY3ZAZMfZRNpkdkCgjKHJZYJ2QAC9dXKQg3ZA84HbdLawdkCfKy1NwbJ2QGSeYXR5s3ZASx+L8wy0dkAqHdFaGcR2QDlmIyTQznZA5DnfeyTzdkACoiImkPN2QMZn75Y1AndAC9+OzFANd0AcOaY6ARJ3QBRkLMuREndAwI9X4+sSd0Achs+T6hd3QKKwOUr1GndA9BhwGg8id0DcX8AADTV3QNcrFlYpPndAdvTa65xBd0Dy4XGNG0V3QN7ZWFFKUXdA8wIrYpJRd0DosTuUKFV3QM39eW2PYXdAOgxM29Fjd0AK/4frJ293QDifNKBUcndApuQ9bXiCd0BG5pE9TJR3QCCdO9lnnXdA2llLIuTQd0DXvKm5y913QPokZZoo43dAlLKfr5Djd0DyKfzlmOt3QHSM1ayTA3hAWrvod24ieEC4jrldDUJ4QLYewrERRHhA8qCZP3pFeEBoxZMVy1F4QARFFciUUnhAFo9WmYdVeED4tfWK71d4QAxppKM3XXhAfQufzflgeECIJZ29t2F4QBRr/1BddHhAzVfQi4t0eEBJ+2e6vXR4QPpnW7fPdHhA1qYYtqSBeEAz0rPnmYR4QIwf1pGXkXhAaHSna6eUeEABgFc3uqR4QCBamNXMwHhAMHtyEbfUeECkp93oAfR4QFvbvC+N9XhAQpLZAZwFeUB16CamjUJ5QKJAqqz7Q3lAfIKQWsxUeUCG9aQU9oF5QBzIeclwjXlA1vT+FMySeUCcBDJUEJh5QPpzYLMpmHlAQPDW0MCyeUB6898hiM15QLpttOhB1HlA7suhB8zVeUD09f92X9x5QEJOeUNQ5HlAmWol3PkFekCgmQWoLDN6QHpExS4MNXpAV2ftpy43ekDmwSG5NTt6QGYDy0HoQ3pATxuD6RpFekBc1DpoKFV6QAOL2cs4k3pAbkoTrAy2ekDizgnBHMZ6QOY9e5Fn4XpAUkeFNTfuekCZOjgDGfF6QAhNcmRZ8XpAfEvKlUnzekCzL9T5ovh6QILzqsj//XpA94FloUIDe0BWqnG2WgN7QLiUqXUrDntAu11risQSe0AjQFqYTBV7QFq5bnseGHtAHoRGn2Yde0B8sFMOfh17QM5hCJFaJXtAlRqikpdIe0Dq12E4JJV7QOTFqa9hu3tAmvd2q2fDe0D2DTDjFdN7QGowLo9203tAmRbOcoLbe0AH5v5OWeR7QEegOsyX8XtAuHNg/Rvze0DekSjgi/V7QLz7Rod0+HtAsgDIjtoBfEAmhyAcmAV8QPoZ88bREXxAtDHuWegbfEDoOW6G4iF8QMg2GirwI3xAJyCLlsxBfEA+Ac3kDGJ8QGhg71vAsnxAWoK1x1fifEAO7ci/FvJ8QDBxQWhV8nxAMCSq0wMCfUBkdmpSSwJ9QF4mjPBEEn1A5lT+5j8ifUDB7DY3oTF9QCConYgupH1AxoK22zurfUAmPRPykfV9QBRPNHJEL35ADasF2ItVfkB2JVsj/7p+QPAvbWMn4H5AJG9cq4vofkDWXuFAHwB/QPgbTD/SA39AZF3fc1I4f0DSagA+dDh/QMzBODa0PX9A1id+jBFDf0A8hmj0tnF/QOeziwWng39AcOZONWORf0DJQjT7p5F/QFi9BLtdoX9A1Che81Wxf0A4Hho9gxGAQAbXE0cwFIBA1FnYo9MWgED2J+9V3xaAQIKaM64CJoBAnxj0YfNIgEClH86Y5VCAQHwfw+MTUYBA/N92bw5ZgEB35N0CIVmAQGbuT5YKYYBA6SN9v8VmgEAFrQ1ocmmAQMqcWlwbbIBAhmfTaMVugEDa8gGXKW+AQEMZYnxucYBAKqa3cid/gED2v1vMMYSAQOsTdpLehoBAzO2MVY2JgEC8kqJ0Ho+AQOohLVSHqYBAf/r4RgyugEB4Rgn70a6AQDgGs30Sr4BAIopjtH2xgEDUatsEtrKAQI6iGmhSwYBAUpA5hVPJgEDmjrBFqcyAQAgU/aNSz4BAGCXH3CfRgEAYhUy7TNGAQANTxl9h0YBAQBkyIkrZgEAq+dWTROGAQEkvekrV5YBA/vZOgffogECdpPfyPfOAQGpC96Q//4BAQVOHmj8HgUDdZ7UgZwmBQMD4hz4UDIFAtAxPKcIOgUCc/1+fPA+BQAvYZw9mEYFAWnAIYPMegUA+ATg2NB+BQKgYIJ81J4FA9FwELOYugUCOigHmKD+BQLCBKdDzRYFArKSLauRJgUDumruO6k2BQA6hnOjtUYFABDj4b1tYgUDQg9vgwHSBQDvhqM1ud4FA/JRcSBd6gUBiRARWVY+BQCOOX1xYl4FAJlGcMeihgUDukNvl1qaBQBz14wBtqIFA6dUYVoOpgUDMsr2RKqyBQA5WI71Kr4FAe13PKQXOgUAsvLfVCNKBQHxKpXZ804FA2nQJkQzWgUC1P0AFteGBQPK6D/e55YFANFkehX4OgkAgLhqO2BiCQHTqOZzXIIJAwuhr6tEogkDWnElQoimCQKofEabpOYJAfHwqp+k9gkA9sT7G6E2CQF6zGVXsUYJAapoLQPJVgkCQwUno5VmCQPiX3AkcdoJAVOtPOx56gkCm2fJGoX+CQAxmhEdDiYJA/GBYmuONgkCiFEjyQ5GCQKgJVjLnkYJAccxpaDyZgkASuNCbDqGCQM5cM6w6oYJAE+l+Zw6pgkDiiI2wMqmCQBoWza1osIJALDLK+AixgkC6C3SbeRGDQEjQsiN6GYNASKHf/7YZg0DkskDCciGDQJsnB7SKIYNAY4hJ8Awmg0AOlO7jcimDQPaeiooRKoNAyDeAiGsxg0Cqg3u63EGDQKb34ivhRYNAKNy4ikmDg0CMH913zRmEQFbcIHNwMoRAVla/F3M2hEBwsrGyxjmEQBxsnGdxOoRA2uxWx8o9hEAgUEkJvUGEQHoOgrULSoRAqQU0af9ohEDF+1eh/3CEQLQZHGH5eIRA3hkt/RnNhEBwmaXAxc+EQPLoKB5x0oRAbl/GuB3VhEAGoP9JatmEQJj2qR9q4YRAhFF72mHphEDSSsigNfGEQOLKo5Vk8YRAKvmQasH3hED7c0akNPmEQOT5ISdb+YRAOG24jmz6hECEJgzQFv2EQGyVlYMuAYVACgcPoaBhhUBRdQB7oGmFQOkPpEmZcYVAzPuz1Zh5hUDM1uFdkYGFQMhRqRE8I4ZAurZtrEMrhkA3q4x0SjOGQBp5/o6ZkoZAnNrFU5yWhkDURA91nZqGQJwuKa+gnoZAKpe8rKOihkA96VF6nqaGQEyMYyeRKYdAF+TM0Y8xh0CswX21iTmHQI4I90xcQYdA0Q5LgopBh0DQjM2beFKHQIaERXvHsYdAZMmuNsm5h0DmtFriwsGHQNoPuLO/yYdAvj5RxyGWiEBnBVFCJpqIQA== + NrgMGZxjYkAYxSyCnGRqQFf+/uF9UnBAU72qemZjc0BFvP4+7IJ3QHp+8vEUdHtAbH1GtpqTf0A0HnmnQVKBQBls7XdZ4oJAUm81kpnihEDgl5OHxeqFQA== - + - 08d7RRTcD0ivQxlFc928RTG0XkcpfgpGUIEAR2t/tER5/HpEFY+XRG9Py0TQCJdE1tTKRD+AYUXk/wZF46GWRPtNF0Vi/odEOK+RRMCDhkSH2JBElpXoROippUQlrAdHllElRtr0LkUUZBBF2weTRBuX5kQfm7BGkoXFRMzHjkVzmsVEykx+RAEIpEQxUWZFohLBRDuqwkXw0gpG3MWGRK+QWEXROV1E1bzwREoQ5UTaqN5E64iNRJRwrEQmAgFF3eq0Rq2qd0QGceRE1KiiRBlSg0Q6FzRFQk08RwOgjEQxoJVEb+lNRlegxUU1nOxFCtrkRPhHNEWyU0VF08bURBHNukR6iohFPu8vRXwnokToFe5EhFe2RKPCl0WVjLFFMnm4RLlEhkRTu45EbiZYRpi5pER1JYNFTgSGRBS/akVwgpdEYCuBRHIOxUQbHn9ELaicRHCdbEWChgNFf+yaREflk0SFeptFzpdMRYVpekSrKZlEGBmcRQ8AJ0esw5hFpiUlRY6xw0VoAuREIHaiRJYsqUVHxqBEWvqNRG00hERpIZlEV+G/RM3glURucSlF0+rARNOMm0SylLxEjb21RBDwN0Wy77tFaJlxRMdnfEZKgRxF89j6RC+7DEX+v1VF8GgMRaAQokSzB8ZEeF6qRPda3ESu99NEjNSiRYvSoURVtKRE9utPRmsMr0SoY2hFBz1lRk6kH0X8nptEDgmARTNF+0Sa7rVEeKLmRKO/o0XdOpZEH82eRG6rDkW7X7VFTWr+RENlD0l/Fp9G5sNWSL91nUSWBBJHiCFIRTUDyURhDI9EHKxuRTe+OEXfI7xE8jAWRT1AfUags4lEjt0eRcKYl0Rfc+BFfSeRRJOC4URLPjhFotSWRVJQjEQAqUdFuljGRKxZxkQwhoxEhB4VRhBCg0ZunsZFMxwYRvaDEkU20QlF9/TpROey4Ecdeb5E7+fFRsGZ0kYHj4FFsDB4RqIH30TCwOJELpWjRN/aQkVW5r9E1924RDDMlkRIBOtEec2PRL/pLEWliwdFi50nRVsPnES4F+dEKGMlRX3iiESgjwBFv14oRjMCmUW2TUpGBf3tRCj0n0U2a/pEceU7RbwuPUWOJiRFQjZBSc90E0V7FrREE1E4RVsPR0gnzdBEV1CuRh16m0R/m71EDeIZRcp3gUWf3uFFSfrSRCcHjkR3DkFFsN6VRau3m0QByYZGYG3ORXSe7URW3P9EJv1VRfCtQEUbFNhFWWIHRVbkFEWxbpxEMjXCRCThV0VWdNNHPBSBRczQiESUJopEPSjIRobSJ0UCV5JEIpezRWj0lETWJsJEUTrjRPJUx0SCE8BECDqcR6lvV0cPLThGzRYkRXDm5UTSVbREvORtRjRHMka9mAVG2stERZfOo0QC2SxFQvQJRTc54ER+RFhG6iVQRbOdikTXaJ1FgDMkRXu/RkV/jKVFKC6LRU45pUYfRBVFgKNcRl7dgUULva5FPW2kRp7ZlkRxJLpFl7esRbEMxURGp81E1NXKR3/eI0XLVthGQZOrRL5Vk0Z7N2JFn9+0RAudgETG581EJauMRJge+kSBTYNEh7GIRHkrEUXVkQpFCxfIRP5WvET3555EIKn3RER8/ETrv95ErOqhRGirn0WoJsxEJ7UsRgnki0QsUDRFASk0RTq7PUZdcKtFjhCaRJPZv0TIUeBEzWQJRRaj1ES8SFhGISOORa6dFEWRN7dESFTkRo3CqUa51tpFjvJ6Rbb87ES/At9EiBPORDjljEXsF25FUI18RJcjmEWkO7tEtrLJRCncK0Wf4JREXaUWRa/l1kQjfGNIBFvZR9e4F0WCBrNEjYLURO3yYEetX3VFof48RsOpgEVm0YxEbT+hREVGv0RAcBlGwUUgRdwBi0U0l0xFRgGZRCF+FEVfSapE+raXRKlmTUaUcipFO3qWRPbnr0RSYARFNp60RZJ4eUU06LVEnFPORDQR9kTMos9ENvWWRIfKnkU+MshE2Vw6RYQml0WSkhZFbhaYRTPjk0Sk5pxFec4+RuJZrkXvea5Ec7K+RGvr60TCQ5dEp4EYRfvmPUaMKo5Fff9XRaAMTkUq7gBFwf2sRD7xzUYjaRdG0d0xRfnmsUSWe+5F9f+BRZ1MqUSE4NNHPSSiRZESKUelDBJFDCDcRmW1uUUKqNRFivHrRJgR10QIjtlE5R2QRM9PyUdhvjBH6N6/RGl7wUabevNEqSxyRWnZy0VOPxxFkMQ+RT8svEUwyAFFN0CRROBILkUMKNxFqvqFRRGcLEYN04xEkXG3RTKhu0S5fwJFBSTeRYmjLEUKvtNEXdGvRMnhAEUpZhxFdxKQRFbkDkffxYlGHr8LRsUVbkX+cVRF8J9lRaLB4UTUNqxEhTArRXkd5kTDI55E6UDhRhpTWkZUiwNGd5SARQ712ETQSbdGZCoTRvQMo0Q4bL1IgBOMSP6A+keLZQBH95e+RRG300Q+tUxGQ43VRV/ygEUUaJdE0z7JRG+5/0TD6fxFgQBrRYdMIUXK+t9EG0bjRAPGuUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + - - - - - - gqtquG3BckDrZeq4p8JyQE7YDzE6w3JAjAQvwADIckAC7A5PWs1yQLe/H4tD0nJArFOHFVDickBYN3dKj+JyQEqmgd7J8XJAP81FSvoDc0CYVf71uxJzQKIECMf1E3NAjR+4vnofc0An93+koiBzQOfPp/o4IXNAwjyusg8jc0A8dYJdziRzQPYLe9x3QXNAiRfKvXlEc0BGcedS9VJzQFAfHf+mU3NAAlZc2Ut1c0DQhEpfeIBzQOFU+g8PgXNAQsD2MYiQc0AWNtFnTZJzQKf0rkH3lHNADgwsXrigc0AqAcbWWaJzQKJKB1AEpXNAqFYVKrazc0AIvNnpDLRzQI8/wqrPwnNAbtpYOSbDc0DOmab52dFzQOltTizi1HNAVOS/mDfhc0DUbukyN/RzQF42t6J4AXRADciGnE8DdEDuoLNETBN0QNBCcJeNHnRA+ZiAc7ghdECDKKq9O1J0QJSv/Ra4YHRA7BufMwhidEBMcD6wI3B0QAN6phhBcXRAqn0hQTpzdEAZCOc7+IB0QD1DIENOgXRAOr6Xd7KBdECOV1JcFpB0QCzhgssOo3RAA6s/AuLAdEDNXcu6uMR0QA8995/d0nRA/j2IRLjhdECW0HLuUOh0QFVsIPYJ83RARBwAO4zzdEAVQe5WY/h0QCw2kuRdAnVAqplYDD0SdUD4WOlKJxR1QHYzs3ieInVAGvwn5Gg0dUBWAIbdyzV1QCBsBFV2VXVAqY2MPjlhdUBhaKPA0WJ1QNZ3pXqNdHVAm8fCba2BdUBWUbJLE4N1QD5Zktamg3VAsc4iQ2qTdUC5Qah4CeJ1QAqrQrZJAnZAJBIuIooidkCe0CmkkCR2QPNFzZgsK3ZAc3CPLEsrdkAaDTrKHzF2QG8oyKJQM3ZASEnPylY7dkAuJKiAHEF2QNL9sLRdQ3ZAWOMFMHlEdkCuwB/4ylB2QMZbeLMQUXZApnY+t81UdkDsE7paT2N2QEoju8aPg3ZA7wQGfcGydkAQCSLtd7N2QP8sTDUOtHZA4A2Xw9C4dkA/ZB4qzs52QC7VssL43nZAUviNsyTzdkDKYED/j/N2QD4xIwzr/nZA2lsneTMCd0CEAHwZUA13QAHFnEICEndASHKo/Y4Sd0CwZUD6qRJ3QKMpl0frEndAikihvAMYd0DCjeBt5Bp3QJ5CvLEOIndAep898nIid0BQaVoEDTV3QEb1s1clPndAt8WLbZxBd0A2AEq/GkV3QGwAvodKUXdAL/D06JFRd0CG8kVUKlV3QI/RFDuOYXdA4SWPUdFjd0DSc0JOJ293QLzqYvf6c3dAOJIHV8zdd0BI5i3mI+N3QI7BzHyT43dArWWpk5EDeED+DCklbSJ4QMVGARMSRHhAVDlU73lFeEB2h2SsylF4QPPmfSaUUnhAFMdx0YdVeEDAgiMH71d4QDDgj4P6YHhApIMTprVheECaZnL8ZnR4QP4sG5WLdHhApB2JI7p0eEAGf2EopYF4QKB7NNKZhHhAUTPph5aReECTcrCap5R4QEAZTsi11HhAe7+PwufieEDxBcrAAfR4QB9R6eCL9XhAX/7FIpkFeUDGY/GWjUJ5QA41a1T7Q3lAhMdZmcpUeUA6IFFpcY15QHz+ACLMknlAQQySyCeYeUDb7eJPwLJ5QBIdzG6LzXlAth6TKUPUeUC21Or7KjN6QMpOYoUMNXpAlnxSxi03ekDcElXO5kN6QBxaVrkaRXpAPF5yo89LekAYplFZJ1V6QD6hCg4OtnpA4H00J2jhekAUHsTuNO56QEAsjScX8XpARLOzIVvxekC28kYKSvN6QAV1l/Oi+HpAHiGJgf79ekA+uWgDWQN7QEp35evDEntAdaxoY0wVe0DczcaSHRh7QIJNOTJbJXtAD70uSZhIe0DsWwaS/ox7QJ+g3c8ilXtACs8icWG7e0AYB7StaMN7QCeQ325403tA4CkpsVjke0BCcP/QGfN7QHpJsXaL9XtACu//53b4e0ANvUI12QF8QKKt1sOZBXxAbd6IidARfEDjhvGE6Bt8QDyMiOjvI3xAeIe1jcxBfEDNuVGVDGJ8QMTF4Fu1aHxA1BsG0WB7fEDaDKidV+J8QOonvgUW8nxARrUZvFXyfEAeYXwE/wF9QJLTQDJLAn1AxGDGo20EfUAWZyWsRBJ9QMRDf3Q8In1AdrVw74/1fUDWP0rt/Lp+QHyxDdAm4H5AgrA7yh8Af0DM1BhBsz1/QEwKoQq3cX9AYAiBLbOBf0CqqW+fY5F/QHqEroKskX9AxngqxpiTf0BGTBsVX6F/QIYAU0JWsX9AtAS6soMRgEDTemfFMBSAQNxzcoPfFoBAbFXDWAMmgEAUdiHyBSqAQJk/uw4BOYBAsv51yvFIgEBZoDvf+EiAQM4J31blUIBAfJfBQBZRgEALUY4JD1mAQNviH4ggWYBAhMWukgthgECYLZWuxWaAQLz2r09yaYBAHAD6chtsgEAg5tloxW6AQIa9xfoob4BAAkXv7DCEgEAFXmw+34aAQNHrTRWKiYBAgFFZ5R2PgECMF7hxQaaAQCLL4SwOroBAQEuYtXyxgECaK8rxs7KAQNsPI15SwYBAVbQau1PJgEC4IYl5qMyAQE0a2QQv0YBAMW6l4U3RgEDzm6pHTNmAQO5Q+DhE4YBAlxCSzFfhgEBSomRD+OiAQLzTZ5w//4BAqh0x2z8HgUDEdC2pZgmBQJ41FL4TDIFAkbkixTwPgUB4vKxbNB+BQNlIYDZRIYFA32QHsTYngUDdRFMavTGBQBNiaUryRYFAfJbBbORJgUBaofR46E2BQBynyhjAdIFA5kKH+1WPgUC+3DBT56GBQKS8ORnXpoFAHutwC22ogUCGcHSQg6mBQPGojF4urIFAT410qEqvgUCcxEl5Bc6BQLrzPzgJ0oFAP+NGugMJgkBqvn+M/xCCQGF9LS6BEoJAIm8f79gYgkCGNQX01iCCQE5x8kbTKIJAJBqylKEpgkBaib+n5zmCQESP1s7rPYJAhmFhaOlNgkAM1GdB7FGCQPIihkfkVYJAXCmJledZgkAA8cC66V2CQBZpnZIddoJAgpeWcx56gkBg1/bQHX6CQHLyh8QeiYJAwJzDTUOJgkATORB9bYmCQOh5XyXkjYJAT7g6pkSRgkDe0FMd55GCQAdrX3scmYJAnCT9zz+ZgkBcWRznDqGCQHD5OsI9oYJA5F+SsxCpgkA2k9SWNamCQPU6gSExsYJAvIpQaFMRg0D0r5MmeRGDQCF2yoZ6GYNATKm9t7cZg0BTYqGvTCGDQGSY35h1IYNA8j68TQ0mg0AqLToldCmDQHnhMbkOKoNARBOQ7Goxg0Df/lbvfjGDQN7isuIcOYNAvuR2b2k5g0D8/G+420GDQHncDGjfRYNAlm+tMeFJg0DeX9sHzRmEQEhfTs/QHYRA0wpsXHAyhEBuD7pSczaEQLMrt+bGOYRAeWcya8s9hEBuZuy0C0qEQPhpMwIQToRAaYz5LStZhEBFn9VT/2iEQIbPYc3+cIRA+NoWzvd4hECoMKtuGM2EQMCfj+nFz4RA3a1VwXDShEB8Ang3atmEQIpMWRBr4YRA3lbm+2PphEAStWPcNfGEQEDT9CBi8YRAM0WZHcH3hEAyGrexOPmEQDqqOspa+YRAivzoVG76hEA+W1tvoGGFQBrydUKhaYVAamwIB5pxhUBE+qE3mnmFQCfNAvuQgYVAtw4s+SnmhUDL0yfjOyOGQDQWMDRDK4ZAkPkPuEYzhkDVxTB8mZKGQMArzDacloZAZj3kE56ahkAY10ronZ6GQO9ISRCgooZAXNOV4KOmhkAbbDInJ7mGQELSYLWQKYdAORjyOZAxh0DfelYPiTmHQLV8rxCKQYdAqpKBe4NJh0DqtPPExrGHQAZL5P7HuYdAJuRHocDBh0D4KugIwcmHQKI943AilohAeAmWJyiaiEA= - - - - - - BiFFRVEVBUgoYJdFMZBdRzL980UlZvJG6K9ARQ358URtKwRFAIO/Rq/nBkb76ElFQISsRHI/80TUu6FGpFzARD/KiUXfZipFuAfGRSz2FkZx4zJFm53fRPRMoUZ/CuxETLbtRPo2LUefTx9GL+zhRfOdqUXOYdVEiDMsRWUQ60SihmRF71Q9RRdjykRgXWJFGnOXRbaKCEUaJkBGwEObRZdSA0XS8blESrz3RFzgJEXAghJFqLpDRXsoY0WbQBRH/BOBRWCWHkWKba5F6ZzhRHZQRUUNgMZE4sGoRA10wUT86pVEF006RXp6wkQKnTxFz0aARVXQtER1019GCb8KRYLdykTdfUtFRb8uRUVz7ETBRsVEjmH1ROdGGEX5dwhGibqiRSeIx0TWI3VGNqH1RY8tvUT4cItFTKbrRCFVqkVTgJBF02I0SQckM0edSIdI221aR97m0UUzeV9FxGBYRVDYAEVK8INF1zkDRgADC0UkbcRFrAH5RPlcf0WLVkZFns7YRIOrCkXanxNFhxx4RRPsx0THtMZEh5LERAuWNEZfL1FGKCv6RapwW0Wqd/JFbyYbRUCRk0T04whFm7DYRGEL2kdvhNdE60yfRqDmnEZhWKtFTuM+RtmEtUS0YOhEr07bRLwMWEXNE7hEnAQhRYFD8ESAoAdFKf0zRUy3VUX7NQhFDh0SRnMVmkWJCRtGlJC4RDAy2EWmx85EzsjyRKzJn0V7xytJyUd2RSCIVEVVMCtIt7X1RNoDjkYbsfdEtK2zRCSPQkWJNq5FpP/FRKpflkSKckFF9/gwRVo0ckZo4sZF1pjDRKgfWkWWQ8pEKg6SRarpY0WehaNHwlRyRV/vqETj4otGLHbVRMfjCEUSlpVFRdQlRZafs0RqCSdF/FobRfYBj0dF8UVHOsQ8Rp6zO0VCnj5GIfYKRhiG2EVyVA9F3R7oRDIcuERkOBJFXlu2ReoeJEX+FT9F+KWdRXuphUWDqklGv6nLRMBxIEbGY4ZFTARSRXvClkbemQVG43KSRfXa0URcLdpEsojERLNm1Ud77eFEFPjPRqZp60SehZ5GsZmVRPlDXEWT3L5EqWWvRGtxE0XB9DBFoYuqRDwX6ERLEWBGEYWFRVlnMEa6dgNF38kLRWvQUkVvdexEfK8ARiaFqUWlFv1EcMuWRUd5MEXh0GFFOEotRbZIP0WQBLpEX+AjR2KTMUazLxZFyITkRNnaxkZcpapGncXSRRcxZ0W7YApF84xPRTy4GEWU9+lEbzGNRXCSrkT4LapEyznzRDWWrEQUE/RIopF9SMJb80R0xDhFUeEPSKMPDkdsPfxFFmrjREo2E0WUKTZGMNxdRenxmUXqNalF7GjcRNrDCUYq9R9F+cEURfd0yUQV9VNFBgCBRTKhHEXOcSdF/xFYRX6SAUWfU+1FjCEFRe33k0XhxANFzcyFRRy/GkZBvqlFXai3RakI7kQiKsREo18oRrLLYkUutCNF8jMFRarGJ0V5ltlE5+LzRxhNikfP7WVG+Tu1RfjH0kQgsNRF2cZ3RdCpjkRLzQVFytQCSfNw+ETZR4ZFW3iXSOQuG0XaSgJFy4JSSLnbn0VTBHhHEW0KRf21hEY88xtFu3Q1RSn1/0h95pNIg4BQRffHwUQaXUdIv9BHRdLJd0fRJbZE9RdmRh6WNkX9LQhF08BgRZfPV0a9efBFzeYTRQnA3kQgRdtETnPGRe2QikV0GARGjDK2RWVMqES1v8ZE4MDHRPlWvUXM51hFPUYURemUR0WzCWpFASjGREWC+0e9SIRHYxcaR/+rZ0WZFUVGinbyRNZb6kSLWoJFRBkGRSIK0EcxsF9H7mADR5g1SkbBV2JFxDTHREqZ70YtnwJGOI7BRC2Df0iftjNI/4CjRz/tiEaqQ4FFDgSlRKpYt0TSJ8pGPCo6RqME4UWKbntFVXzlRNLPg0YxdhtG5tPARR1/+0SXgRlF05mzRA== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - liAAfm/BckD2rzrgp8JyQMhO7l87w3JAaxO2QsbEckA2pRXDAMhyQNT+gaRazXJASODbokPSckBbjb6ktNJyQMTpp6hR4nJAykHM6I7ickAoOCP5yPFyQDVF3OS183JAdBcZaqL0ckChMBwX9wBzQF7On+nQAnNAWo0K7foDc0D5YLBOvBJzQPI63z36E3NAQL1OQk0Uc0AqiHueeR9zQA1aV9KjIHNAoUNd5Dghc0AaIeCtECNzQMBsifYEJHNAhlz0tM4kc0Dub1TPSDFzQIDJKpE2NHNAK9u6CL0/c0DSxKEo4kBzQHA60cF4QXNAbuG7d3tEc0CPtmNa9VJzQLbjXUajU3NACeC9UYNUc0De5rav+1pzQLYIMVI5Y3NADoyz42pyc0CEgechtnRzQLVjwyZMdXNAe2Y4UXmAc0DE4menDoFzQCiNiOKGkHNAkl1nr02Sc0BXmWprYpRzQCJE7uT3lHNAXGXKOLigc0CIBydsWqJzQOGKkxbmonNA41gnpAalc0B6Ctn3trNzQDxd1bMNtHNAUBlRQNDCc0C+Lx46KMNzQHgWpovX0XNA/euxe/bTc0AISN4Y49RzQG1w4ic44XNA6Hp+73gBdEBFqhb9owF0QKxGl0NRA3RARnCWLE4TdEDsZis9UzB0QGmLivK5MnRAXj1g4lIzdEAS1PNbp0N0QO8RCaKNVXRA1LecNLhgdEDay2PFCGJ0QFcdk8pRYnRA1oqCUU1kdEB+20OfIXB0QIiFyUlBcXRAwlnnXzpzdECwk7o9oHR0QECbscP5gHRANvSf4U6BdEAO0peWtIF0QIohqKYWkHRAT3PaB9KgdEAneUnBuKJ0QMtYpdwOo3RAdTppisKwdECkWDVI/bJ0QFogbszqwXRAyFxqAP3OdED4dHRk4NN0QBOEdA/N1HRADQvBw7jgdEC6t/QRuOF0QA59IuZN6HRAFWm4zgjzdECAD5uhjfN0QK9ODBSjAHVA64hUJWUBdUCHS4GoXQJ1QGSbyQecA3VAlMTvPz0SdUDuu+NbahJ1QB6smZgjFHVAoGhaaJ0idUCAZtPPaTR1QJS8ZGPNNXVAgP6S9bNBdUA6fBKOgVF1QD84IQ1OVHVAiN63x3dVdUByylgpNmF1QDmeZp7VYnVA+5rmd3ZydUDm4TR5jnR1QKKgw694gXVA0s3ecK2BdUAIihsBD4N1QBDt3uKmg3VA9a3/HpuEdUD/O19la5N1QFgFjfS2k3VAm0yH2HajdUBpLkMV+8F1QK7BRegH4nVAhihZp0gCdkBNLkS90gN2QNpYkIRNFHZAbgVi8YgidkDNKMpCkSR2QPgdsylLK3ZAYK0x0B8xdkAo5cBtUDN2QNWjiSlYO3ZA7G4ARx1BdkAz1IvxX0N2QIIOuAR6RHZAnoGjDPtOdkCgl9Uty1B2QMQJB+oSUXZAcfN9Tc1UdkAQZNzmUGN2QIgn4gPbZHZAQyLHQZGDdkBAVdKXwLJ2QFSUUV55s3ZAAjRQBA20dkC/NsEG0bh2QNwZkjjQznZA6U4E0CTzdkDgyp7ykfN2QL4IlLZQDXdAVqFwggISd0Dc4PWUkRJ3QNCmQySpEndArpIL1eoSd0Bma5l16hd3QPJCgvAOIndA4djVFnMid0BqhHr4PjR3QDDPowoNNXdAuvHkmSY+d0DMEiFAnUF3QFjY0LxNRHdAajaAAxtFd0AkhMKwSVF3QGASE1+SUXdAwpDK+SpVd0AuBKFeSGF3QIo9MUGPYXdAmN8wg59od0A7gEBxJ293QKajj1b8c3dANlRaeHaCd0DsI7VIC4R3QCgB20hNlHdAQY1gDmmdd0Ci1XlYwaJ3QHquZnIsw3dAFjz7D8vdd0B/eVpxJ+N3QJiS326S43dAyClGE1Dyd0AwBfCUkQN4QJWC9XVtInhAADC6VowjeEDcbAS5EER4QNuMvjt6RXhAciNJKstReEBo7t8elVJ4QGWev9ruV3hAnLv4v0ldeED4H56H+WB4QBmqbCC3YXhAS5iDeGh0eEDemNXNi3R4QDyUMPOlgXhAQAy465mEeEB4FLiZl5F4QIdoKN2nlHhATFjQpM3AeEABql2Rt9R4QAAidMTJ5HhAA205swL0eECmAGAajfV4QJqX4LWaBXlALgLoDPhCeUBskaEJ/UN5QIbWoMzLVHlABOD+mHGNeUDqruiWypJ5QCD0W6MmmHlA9/liCMGyeUCFUphsiM15QF4M99ZB1HlATIgoBs3VeUDaCWvWX9x5QHq8Jm5R5HlA8KMMFSwzekARKYXCDDV6QICFTyEuN3pATN6Suyw7ekBe8VoI6EN6QLLWO6oaRXpAq8g5gilVekByf5mvKpN6QEZbACGllHpAH2I3+6maekBs4/5GDrZ6QAdr+QMdxnpAeFszB2nhekCoS7r2N+56QGrzK+gV8XpA+qYhyV3xekD8X3BcSvN6QOyUbPCj+HpARiPe/v79ekCrGG9nRAN7QEPShPBgA3tA0nh4bMQSe0AsXpLmTBV7QAQ8GcUfGHtAzEn7b1kle0DUfwLMl0h7QMZFBshdUntATEqSH01Te0BJgmo5I5V7QNiOeeIypXtAltVuvGC7e0CKVk6ydNN7QGDeupNa5HtAcDXjc5Tke0Di+lW/GfN7QMFj4TGM9XtA4nzkKJEBfEDigIDD2QF8QEpHhvD3AXxAd+hQFZkFfEDExNoH0hF8QPwnzp3oG3xAcMcgFvMjfEDB0jWC9Ct8QAdSBG/NQXxASfOeZ1ZSfEA+dAw0zNV8QD9kO7pX4nxAbhRJfxbyfEBwD3xZVPJ8QCyEK+8AAn1AimilFksCfUCgoU9jRRJ9QBKDP4I9In1A7BTF2aExfUBFuZb2KsN9QLs3DEA9L35A2IKih41VfkDcHvuHmmV+QP4zw1vIiH5AOLXy7n6KfkB/XWaXy4p+QJASkkP/un5A/PtItSngfkBcgw9Ujeh+QNhMdH0hAH9AbF0/tHxkf0Ar8q3kt3F/QEApHN60gX9ArnhKh6ODf0DAdD0lY5F/QEQbBximkX9A8DIsZJuTf0AYQiNxpZt/QAjrAzlfoX9ANHSS4VSxf0D52jKO3QGAQPw3NOeDEYBAgoeCYjEUgEBGDVAZ3RaAQNAHpxwDJoBAXmKkTwYqgEDmdCC4CS6AQCyLPzP0SIBArEOaZeRQgEBwWfc4FVGAQDoGkt4OWYBAYnxrxkZagEBG3rZESl6AQPLikb3FZoBAKgyd6XFpgEAuYykeGWyAQBRWIf/FboBAZOMDMidvgEDcWv5ccnGAQC3xkFAyhIBAnDCMfN+GgEDiU9CIjYmAQI/KrKr8ioBALkuqtx6PgECPkLAMiKmAQEhE8abRroBAy0tXJH6xgEAG9fTN4bGAQI63tU+0soBACFqidlLBgECD7oLFU8mAQMSB/Awt0YBA5Hwp4kzRgEAwUWvvYNGAQFDcR2BL2YBA+Z1rmEThgEBwtIj39uiAQPJyheFJ74BATlH1JTzzgECgwIfiP/+AQBvEF7k+B4FARHBDtmcJgUCCds0WFAyBQFSdZEfjDIFAU2bREr8OgUCKUYOuPA+BQKVZ4Zk0H4FAIhT/W1MhgUBOKOdoNSeBQOSy+CC9MYFAHDNY5fRFgUC6JPcW5EmBQNAbFtfoTYFA3b6pDDRSgUDDOFxAwXSBQEYn5mhwd4FAyry311WPgUD9CIgCV5eBQH+eg/znoYFAPwGKPtemgUBAYJHubqiBQG9rd4uDqYFAMuorwS6sgUBpHeXD1K6BQGTNXtxJr4FAGpl+Pk+3gUBrhrepBc6BQIv44aAJ0oFA16VcdwMJgkCvLVBIfw6CQEAcD7nYGIJAOk0OmNcggkBBx2RB0iiCQP7O/NihKYJAVNiw/KYtgkCeb+cg6U2CQKrvfKHrUYJAproJgulVgkDyNEZC6FmCQOOoQcXqXYJAeO/S8dJegkAW2yuWGnaCQOzxjFYeeoJAW4eDD0OJgkBVMTZh4o2CQDjbwmxEkYJAtaXFPOaRgkCIUnfpPZmCQBbk3M1UmYJA7jYDPQ+hgkBDDZw0PKGCQGzKuh8PqYJAVIxRDTWpgkAJPQRMNrGCQN6d5lF5EYNAdUeaqnoZg0BQhhFNtxmDQPxuc0O6HYNAaCllU3Qhg0BEELUbvyGDQJ7WzcQNJoNATarUSXMpg0AqQlkUDyqDQKag/p1qMYNAptbgroIxg0BI8kbAHDmDQKL1AipuOYNAtbEY5dtBg0AjUN323kWDQHyEsrPUSYNAr9RgGeGBg0AcU+Fv0B2EQGa5ic1vMoRARDExlHI2hEBPkfngxjmEQCMCFH3JPYRAYtryHP9ohEBaLGeMAHGEQF5zj7b4eIRAOpF3xxnNhECH2ZqCxc+EQIZlZqN20oRAYejuHGrZhEDQQdzPauGEQDMkGtfN5YRAeG2PYGPphEDKTy9DNvGEQHXBrrhj8YRApZeYt733hEA+SGZNNfmEQCY/cxZa+YRAH9kucW76hEDiuRPWLwGFQHSC6ISgYYVAlqKju6BphUBUo6q3mXGFQFssIICZeYVAQMOYR5CBhUAi+eXkOyOGQI4mIYpDK4ZAFHP2x5mShkC8H0yNnJaGQOXXLQOfmoZAmCZqoaGehkDMZv+foaKGQMRS1sIluYZAEmmcO5Eph0BmjbDpkDGHQAalESKKOYdAkuHZk4pBh0AW9qxjx7GHQNIuRqvIuYdAYcQq+r/Bh0BF0CznQxqIQKFvoVMklohA + KBZXds7jZUA+KJil8iNvQG+XdYaqQnFA - + - 1EuXRXEB5Ee8E9FFLE6QRO5qK0dkwcRFpWXqRokUvUReMk5FbeTVREkPa0UyouxE0h/XRPAJxUQZ8oVEsWTTRsdXEkbd4ldFhImoRJdp1ERDBfxE+MC6Rtrbw0Rs6qJEqT+mRfPlMUWtMf9E7siLRHUZ8EQO0k5FPL3wRapErkWTeXtFksOzRFLhr0QxbwhFyWTmRD8gq0SCsxpFVp20RsZR1kRdkiRFXrEdRyX+zkS9XEZGoFe/RR+jzkUCV8JENpksReUSfEVN0uJEdxtBRbZ7PkXBjrJEWqiiRGgxj0U96M5Fm8VZRvJe1ETMWBFFFg3+RDCmmURE0bVEJ6OLRG5150RJddBE97J4Rd3EQUUJ9LtEnsngRJRSy0U/ti5HWxUHRg4akkRYRxFFLcLBRa+0yUQe7r5FVvSrRHkBwkQ5O55E/beRRGmWs0QeA5tE1rvNRNGDsUSQJNBEjn2dRBnyLkVadQtFZTacRQmFl0Xv/7BEgF+lRFMfjkYvD5ZEyx+KRYrg6kQEtT1FrA9QRfA2jkUqTyRFMuCkREjupUQmZKJEs8UmRcxslkQXdI1E58HhROUXc0YhvK5EB/aARZXtokT7T4FGf34xRZ/JiEYNdf1E6W+ZRDznFUXKs8hEBBu1RWD9t0S+pupEGCsIRQoNoUUwTBhJyNjhRpGabEjpKAtHcYetRUXoJkV7tFdF/6CORNLf70Th/mlFPu2JRo57WEVDFUBFMJjlRVk+pkSDakpFFuifRSIsKUXBlWpFFJxhRVpY30TJOwFG4fB3RiQYv0VAk9VF0qFcRQVvXkWoW0NFeA+tRPArMkbL6dpHZeWWRA1ZvUYpHa5EYmKqRvNNeEW/L2xGD9C9RLYIoURwdSVF23GRRHVcVEUxWQFGzVHfRIU2pUQDy91EzCa/REe3mkSAIqNEeBuRRbNr3ETQOe9EGo/ORIV2SUVr4CdF+T+lRCa2vETCwBVG+nGeRVQQJkYK24FF5HYSReRLGEWL+SNF/KF8RX9CNknueEpFcCYzSPVNHEW3/mFGP4UyRabJAEZ0E5NEaLxhRSri1kWbssdE1xbXRJ/kkUXH24FFI31cRmicHEYRPt1Ezo1xRRe560RC0MJFSuOxRDdV3kTJUOJENYxeRXMMs0dYQ4pFKOunRNnntkQg67VGKsMsRd53g0ReULhErCO/RMvsdkVk5rhEBUH6RDavn0RwgrZETyoIRas2kEfQihlHlglARvDLDEXelKhEM/QdRnSGLEZUOotF260BReUiEEVfusVEz2bIRBSc5UW6q7FE10NJRX6cpERAhH9FVKPCRG2GhEVvVYFGfV3URG80LUapegpFiZKVRWyEokUPKGxGLKYvRVv4oURkrKtF+wjZRFzsmURR9MdHxtQMRU+PpEbo6BBFJhGcRgeKSUXtgY9EkM2lRM7Lw0RSbLBEKTSJRdwsm0TcII5E7OrORPQHDEXQySxFi79XRV6VmkRdurFEyuOoRD0CGEah5RtFbbSRRExPIEZzjfdE6g7dRbafT0UqMC9FBcseRQiQuETtFQdGQeKKRdOJFkXXmlNG7MaNRR2RuESnCzZF7EH6RNj+5kaCTi9Gy/KbRNVyiUQgBLFGFeuVRiv6yUXpmWdFQh0PRfjGGkU/LWNF73FFRYWjrUS4Q81Ed+44RelxqEQceQpFCVcbRSb6pETtm61ESZStSDwYKkh+s9NEDIiqRwrtbkVU1bJGYqrFRTy+HkUYQZ1EOUjIRMRFIkZdjvxEvsY5RR5tZkVj+r1E2Wi3RGhmwkRcVhlGyX3iRJu8EUUt9OpE/EwMRbm2n0XNJx1F5FrKRHnOOkXt9khFrYGyRVlnAkXnzVNFUQkgRjOq3ERuu4lFOFCDRaPwxERHpW1FQmGLRDuq0EXkpH1FkOc5RTJApESKrkRGkA+NRUZfMUUQ3ihFud+dRBid6EjI/oRIQ2oBSKlTv0YrH7JFS1mfRKqBiUV8OplEojORSHHpfkWi3x9IaiHJRAIer0fMI1hFD7eyRRbT4EZAfq1EJQTkRaYhIkVuN4JIUXkOSHTm0EVExHlFNrOZRyIKhERlmWVF+5W7RrxL90SDmdFFYNTWREXDykSii/hEqsOURnUQFUbRqCtFOHGVRCIqpUSR9thF2DRoRaLSj0VDJktFLHTARUicC0V6z/ZE37tPRX+PTEUvOJ9EgMyTRz3oEkdFMQVFJjyqRrAYlkUODxhG/bXzRBT/ykRpPlNFPv8BRT3uq0Sx8GhH/ozYRv+chkYIVMJFFCPkRDvSzUYx1fVFj6EjSOC59kfkdTRHMcYTRipjMUUUxONE5geJRukdAkZHS6tFLu72RB9iM0apk5pFFBSDRXQ3o0QKlwBF + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - ucdvonDBckALSUtap8JyQDpKF5c7w3JAhqU18wDIckCQdZB1Ss1yQDJGZEtazXJAlyE3iUPSckC0EnOssNJyQECD7At303JACsxK+c/fckDOoMMSUOJyQCriLaeP4nJAqPywO8nxckDnlb12uPNyQEYsEUzB/3JAa/8i0/gAc0DQJPTP0AJzQNaph9r6A3NADLXzEQoSc0C0DXUtvBJzQJQv0q4GFHNA4rqoVvQXc0AsILnFoiBzQGpp7QA5IXNAAPc9/hAjc0BKFtsTzyRzQKZLOHdHMXNAINVOQM8yc0Ctb6HboDNzQE3vT7g3NHNAWRMaALk/c0DbM6ll40BzQBJnasZ5QXNAud8P4HpEc0DtyJp09VJzQD7qBfijU3NAPjwerYZUc0BS6QoPOmNzQBi9Qtu1dHNAIKSvekx1c0AtTbX6eIBzQCQIDrikgHNAKMhyAl2Cc0BuRzIfhpBzQHiOjXtNknNA9344OM6Tc0Dki9l3YpRzQNRkFNf3lHNABBcLIbigc0Am2V00W6JzQPUZWJnmonNALbmZQwWlc0CA7v4Xt7NzQNkJfCMMtHNAdh/9nWLAc0Drz0SV98BzQOIAYE3QwnNA8vbTdibDc0CWGUOD19FzQJN5Adr203NAtoJTseLUc0DgMIPNo+BzQCWnL9M44XNABNn/X2Xhc0D/7/zhN/RzQJScGg15AXRAf8pdo6UBdEBeCVaqUAN0QH0G9IRME3RARP1VSUsgdEDiXRvEjSB0QOqS5F65IXRAvjtCX6dDdEAQJ0Djck90QOx6bIC4YHRAdCC7zQlidECMlrX6TmR0QEYBo/IhcHRAFj6zdUFxdEBkYu/OOXN0QDbG4ig3dXRAZIijEPmAdEAiVys3ToF0QJwA4vWzgXRAbLX0lUeDdED6LZb9FZB0QFFVGLvPoHRAiUBoSrqidEALCHBaDqN0QLRxXXcKsHRAEKGrRuPAdED4gVTIecF0QFmkDia4xHRA2lNaifvOdEB7hqkS49N0QEu+t33O1HRAth7cSbnhdEBuToRmTuh0QDkroMYJ83RADq0Fx4zzdEBoiV7zYvh0QMA7yGWmAHVAXgFdwl0CdUDwVDdTmQN1QArb9zE8EnVA8JxIZGoSdUCgUmpuJBR1QGjFV7+dInVADPn5e2k0dUC2Q6RyzTV1QPQi5ZU4YXVA3VqfL3dydUCWlrL+jXR1QLjrPBJ5gXVANPEPvK6BdUAojlK3poN1QK5BIEKahHVATDsUBGuTdUAI/bdKs5N1QMaWnLB4o3VAQrTkM2TBdUBV1F5C+MF1QKIuBkAH4nVARKclYUkCdkAys9RpTRR2QFbxqKaIInZADyCmWpAkdkCfVdrjSit2QDi9YN5yK3ZAdoTNzB8xdkAhFstaUDN2QCdH6hxYO3ZAPth6Px1BdkCyyyqvXUN2QFj9wrx5RHZASD+b0vxOdkBNTW87yVB2QBLAs4sRUXZAtnuaWM1UdkDheq04y2J2QOja7f5QY3ZAXokXGFJkdkBeJ0B72mR2QKrc4+eQg3ZAdqh/n7iwdkBq+D6hwLJ2QN64blZ7s3ZABAHv8Ay0dkB2JGN/0bh2QO4e3T0ZxHZAbvnD/s7OdkDtvcYFJPN2QNfJtMKS83ZALBQUpzICd0DHQlWzUA13QJ5n8kgCEndA7bbB15ASd0Dq+ii3qRJ3QB4lr4bsEndAhLBeeegXd0C2mKh+Axh3QKaujykPIndAWNIwU7okd0CLTe6XPzR3QHnZzSENNXdAVHMDuCU+d0CuS5gEnUF3QBoklDZMRHdATZPFMBtFd0AL7aZYSlF3QLkjYKySUXdAzYycDipVd0BsK4FZkGF3QMfe+zc7ZXdAps7/+Cdvd0BCZGQc/HN3QLghmPR3gndAtKz0aQiEd0BQgvCmz913QNAuR4Im43dA4rVRuJDjd0BRsBe2kQN4QDT6kPBuInhAhs5JTg1CeEBcE4DuEUR4QM4FxCV6RXhAbGSEActReEDNLhoNlVJ4QC7TwgWIVXhA9rFC0u9XeEDkKArs+WB4QDb4lPq3YXhANsdbqLhieEDbaXW4i3R4QEKkq1ilgXhAIsirHJqEeECIiEnnl5F4QLf2tvmnlHhAXwARRM3AeEBk96iFt9R4QOShG0nF5HhA45JZzgL0eEBAdW88jfV4QLAHI2CSAXlA5AlUv/tDeUCKhipVzVR5QBlIDYlxh3lABvKB6s6MeUDSDS26cY15QCaifwrLknlA6bNAmeSieUBOSHRQwLJ5QL4v4u1C1HlA5mWQRFDkeUAvlvEpKzN6QPid6ZwMNXpAFpIizS03ekAY8UKCMDt6QBlALfboQ3pA4+MamRpFekBc7sJfz0t6QEonIvUnVXpAjFRBDA22ekD8BTW6Z+F6QAkbtrQ17npATHrYCRfxekAp/zlISvN6QEt/Soaj+HpAhjjqVv79ekDMMr3xRgN7QOvsG9Z1A3tAXtqQECwOe0C0/8pdxBJ7QMB67w1NFXtAeIUXHh0Ye0DNLJpYvyJ7QPg3OCdZJXtAfmUWL5hIe0BGIxW99U17QKa9etZKU3tAjo8cNgCNe0BaPAJhI5V7QJxPov9hu3tAZlb7NVvke0AOgKLFG/N7QDRMaXSM9XtAl59JlNkBfEBwAaaImgV8QPs2mgLSEXxA47+WcugbfED3BvV97yN8QNJT3vH2K3xACjzxQs1BfEBO67SwVlJ8QCDKar/BsnxAdueJ6lfifECHNwpSFvJ8QFeGtG9U8nxAGomCuwMCfUBDDIBQSwJ9QIIgMuJ4C31AaPCkS0USfUCB174KojF9QKAw6w7c4n1A2eY9100UfkBxth5/QC9+QMpGsIKNVX5AQxwzwyVufkD0YGMy629+QBx2d7WVin5AsizG+wyOfkCGFn85KeB+QHb2V5Gw7n5AbM+BN9fvfkAwGIbyJAB/QHv8BZxaOH9Ak0T5Lrhxf0A8SkdFY5F/QAJTmmenkX9AuiCAcpyTf0AyzPYmpZt/QP6EW8RboX9AZq1AJVWxf0BIahXXgxGAQEjKl8wwFIBAKLM5+dUWgEAy40zwAiaAQFw/j+YGKoBAutoi2OcvgEClyUie9EiAQGmIkESGTIBAr4oMn0VQgEAwjZ++5lCAQIDEQyIUUYBAO4J7ZQ5ZgEBYBiSgxWaAQGw6HmpyaYBA2LZpIhxsgEB3se3ZxW6AQI6TL7Yrb4BAdkxGxSh/gEDQQmhwMoSAQOsCF8jehoBAFV25WIqJgEC2E3/zHo+AQLQI+8bRroBAjk7u6X2xgEA+dxQstrKAQMlVOIVSwYBACi0Qg1PJgEBmIsNeqsyAQONVjnIl0YBAeOJLoCzRgEAjKZq9TNGAQFLHOs1h0YBAleqgo0vZgEAU+n3OROGAQDjIbvv26IBAhO/EHEPpgED97haIS++AQPZdco4//4BAUncmUT8HgUCypS/kZgmBQP/S5kIVDIFAY+T5C8AOgUAvwFBnPA+BQLWOftsYHoFAnopE0DQfgUCRMW+35yCBQEzdt9kzJ4FAv/2+4fNFgUDUyn2Q40mBQAf9bX/pTYFAxqzSpjNSgUCI9hs1NlaBQJg6dOHBdIFAxHXQvm93gUAUKAL7HHqBQEB+Lb1Vj4FA/Or/3FOXgUBWpscKU5+BQJqGEOfnoYFATv4FoNamgUDz9JkucKiBQNhye1CEqYFAdNdELSysgUCAjUFv2a6BQFHJ/dlKr4FAENVH1wTOgUC/MHgW7dGBQH7oQn0J0oFASfgHXX/TgUCAEmflAgmCQNd32sfYGIJAax72t9YggkCQJohDoymCQCt6tX3oOYJA84vxJOlNgkBoxz6uEk6CQKk1opPrUYJAOR/FJelVgkDHiVJr6FmCQPz090rrXYJAWl+VcfJhgkDid1YWG3aCQJeHymcZeoJA0gruI0OJgkDImy26442CQMLbC0hEkYJAsC5ixeKRgkACebC3HJmCQHqJzEs9mYJApJ7/lA6hgkCoI2DnO6GCQGqEtQEOqYJA8AAExDSpgkD+qWxICLGCQO7zKfc2sYJARB5dD675gkDHX4FreRGDQHqAoLJ6GYNAVmnEwLYZg0BCvUdRuh2DQAEGShR0IYNApZ3UHg4mg0CckKZwcimDQMKVuPQQKoNA5aasEmsxg0BmKHfqajmDQGiACCPcQYNAZImAnN9Fg0AwtOJC2k2DQN6ZsIhKg4NAwbTfYZX4g0A172fFzBmEQJT6XhbRHYRA9hNBS3EyhEB0t8PycjaEQH5Pvx/HOYRAfrTw13Y6hECyioJDyT2EQM6WkXb/aIRAPPpArv5whEDe0KVS9niEQIGq6XEXzYRAkN0m3cPPhEB97OiVc9KEQAgdvzxq2YRAUjkioWrhhEAvp8zWzOWEQGMPxHhj6YRAejkEajbxhEDaoVVKYvGEQLY7DLc0+YRApIaShVv5hEBAmMXIMAGFQDCgsbmgYYVASImZI6FphUDPsKFImXGFQK6puYmYeYVAv2mcOZKBhUCPA94OPCOGQHeLVUJDK4ZANB0H5JmShkBtjk7gnJaGQLP2EMqemoZAeHJOaKKehkCYb7TxkCmHQErljTeRMYdADAayZYo5h0CFPS9cXUGHQG5EGViLQYdA1EprVMexh0De2S/MxbmHQDBsfZvAwYdAMAzEN77Jh0A= + NrgMGZxjYkAYxSyCnGRqQHzKEHuiRG1AjMDylKZDdEAsI4iav9J1QFMbh86+dHpALIFk7hfkfEBk4CNf1zqBQFCTEu+DcoJAZA8SiYPDhEC0wNwLEIuFQFvukbe6W4hAtO/KNbwTiUDs8hJQ/BOLQHsbcUUoHIxA - + - cjKGRUhe/EcS9AtGExhCR6HvjEXLQZRFwu8OR5MeCEUAO8xEFp7hRIQ2jkXsKSVFrLRiRTbK2ESYXA9F2wciRRURF0XHcupGVjToRBgQJ0av1axFg/QKRaeUH0Vzw+5G5zkCRR6UxkU4MDBF94XYRPxWvkQYBghF9sWfRAT7+USdwZNFR+MIRmvwmkWssX9Fj7IDRROkWUXFxrlEg0Q2RZdDDEdceslEi+39RP+dZ0Xa2EZHjTzqRJjeJkVZGYxGtIshRiEn4kUaKQJFL34YRd8qYUWecv9EnmjARF/XFkWor45FapVqRcdb6UTEXL1Es9OwRSGAs0Q4pA1GuaafRIOCC0Xlw4hGHPf7RCKIU0WgBW5FnTu0REQ9sESdACJFnmkgRa9OukS6gq9F5jWHRYeFEEXahdJFWxg7RzgCJEYpfhFFy0svRRld1EVN5hJFOxjmRAa6qUX2cABFsX7WRNICGEWzDtZELus4Renb6USz7AtFLKSwRJVP9kTc2hNFF08DRYWXEEV0A4lFZFH+RYIO00QD+bpE4a2ORmL0sETYEbVFensKRU9z90TKAm5FfMrJRYafGEWrEApF+AniROBthUYAaQZF27+zRelEqkZfjy9Fwwq4RqtoJ0VKUjFFWKb7RFZZP0XN/yFFO4zRRbF7CkWdw01FUPnmRRhhFkn2pyZFifveRm1JY0hJPgpH5lHMRbdgg0VorE5F4bzHRPuB70QrLIxFKEmbRhwvDEV1FaRFdOQ+RZqggUU/ot1F0e/tRIwZ7ESOoUZFYYmpRcOPBkXqtbtEjEBXRQmoN0Vmn/dEY7kKRd37gEZG7W9GFdLBRRhonkXrtglFzBx7Rcg/VkWw5X1FJ7LYRCTfnkaaqvhHxkICRQI47EYIYFpFHyHMRggKpEXL2oZGTxoeRbuKgUXoGwxFxRR0RaoSdkbvqNxEeC6rRODAJ0UcAttE6HQ4RQaviEWBQlpFFgPIRM7CNEWv5E5G5be8RT72W0bBJSBFGqmuRabWNUVNEjdFAx2bRMIYSklX5odFXqhWSFkvQUVpk59Gx7YzRcpCzEUvJNdEl7qqRXvw1kUZsNxEUy1gRYn+qUWRsu1EsxknRbnWYkY3OhNGVzatRPf/KkVm1wBGDR0CRR3QzEUtnLxH/ActRUqe9ETHatxE1HfYRmkx9EQzxxdFuAq2RW6AOkVhv91E3W78RIswmEcwxyZHffZlRrXZMUVfmLtEPn/ARCwqJEbiHhhGmpPdRa0wxEQpAx5FBn/zRKvR5kRlOuhE5LzIRG1e10WGEDJFsTEURb7KsUVbj5xG61h5Rq9ZrEXGg6VFTqJ7RmtMq0UdDg5FZ0D1RR9R4kRBwuREMMHTR+YBNkVlGdNGhzZHRfdjmEZ2iv9EsqxARcYHskS3lbNEk1zGRJ5u5URQEH9FpPmARSimsEREENZEEPrBRMM7SEU8V+5EpgHORIqMo0ShjvpE6tfVRWjZOEZiR8hENwY6RkirJUUyB/lEjFFWRcFbEEbnlr1F7KkBRex5PEbkP6ZF6DvCRFHUUkU8jrFEh9niRNf4VEW2WbVGQWn9RQ7YtkZtbqBGqGcORnDDyUXwPbZEfSynRIqkTUXXwEhFEdPKRE5Te0UHhIpFm5q8RM/rBEW3ucVIIo07SKKEBEWNjbxE/ezWRAdCvUd/IYhF7gm8RqgW+EXEiLdECS/yRMBm90SFvj5G9ix3RaS9qUVo4zFFxab+RNab8kQDjbhEa/UwRkxZ0ESjtChF56GfRTtOk0W+sfVEMrPuRHgBAUUg9dlEBmfoRAf320R6n8xF5166RJdlpURP3HhFhnBWRljq1UQBuetFjHIFRVJT5kSGnItFA9T1RZLj40T2UG5FuiL/RB2+N0U5ukNGgG6FRaXbbEXnzNtE2o4rSf2NEEWCZsJIGgNXSLx8J0fUfDlGaz4bRW1/hUVBf6BE7qp+SF7dj0XcwQhIwPvLRHw9tEQGmZtH1p6/RUo0uEbk9fREryLrRaicrkSL7PNEWaP5RN50n0jbljpImzarRalwT0XqNMxHyiZHRUBP9EY/U0RFXFclRiLv+EShD5FGubYARvr28kSoXLNEWV7WRKpd1EQweqlESijWRZRzT0XLccNFEYMWRa+Z50Re3bNFq6h7ReTMxUT/iDdFbANYRfn/DUUMG5BHijQER10A0URsqqxGX1mRReOj8kWBNCZF8YA+RTW9KEVLwY1H2swQR9nGnEZ+vr9FyqMyReeNvUbKygZGq8QUSKvgz0fMxCZHxIctRr91cEZXjAhGopbSRdK1+kRrwVhFLJxARnur7UX1M6NFVSPLRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - SjXN8nfAckDu7O3ZccFyQH5zJmCnwnJAB0ivbzvDckBGYhkZxsRyQFu0jTEByHJAKMhkUlrNckCUC+rLQ9JyQETIjuWy0nJAVyUh1s7fckBnH0MoUOJyQGPTQKGP4nJAugtV1srxckC08sGWuPNyQKggnIWj9HJAviv2w/oAc0CcYKHCzwJzQFJNg8X6A3NA8YwI6AoSc0DwKuRPvRJzQJKspSH5E3NALpvi43cfc0BMV6daoyBzQBpXQEk5IXNAXkNb7ckic0DQvzw6ECNzQPF0NpLPJHNAevjiiEYxc0DfJO+VWDFzQC7mV3DcNHNACNGlquJAc0CLYL5GeEFzQI4wFlZ6RHNAVk0CpZpRc0AJdNX29VJzQHbeJydBU3NA5l9tF6RTc0B1uP9gd1RzQOx+F3E5Y3NAdEyMsFFyc0AiKS6yZnJzQBzmj/6QcnNA9opR8Ut1c0DqnAPKeIBzQAeGnZukgHNAWvY0cQ6Bc0A3+O60XoJzQCrnqcuIkHNA5DsTQE2Sc0BvxH+IYpRzQJyVe6H3lHNADM9dqbigc0CZklGeWqJzQCIwFhjnonNAvLrzbgSlc0BKQiCst7NzQIVHg40PtHNAMmQeSvnAc0CB+XhPz8JzQFAGmvYmw3NAWDmMVdfRc0Aji5+44tRzQE+TYc6j4HNAakdyJznhc0D0wxKBD+NzQEuJLBQ49HNAf8L0oOQAdECkfp78eAF0QLFQ4etNA3RAqvEkbEsTdEC/la/wuCF0QMRcts1SMHRAIEaBpvhUdEAD1XAMjFV0QOiwIo64YHRARruNaQlidEAwA8B4U2J0QLjet7wicHRA5mu2MEFxdEBuwsWAOXN0QE0dVhH4gHRAsMq7U06BdEBq7DYztIF0QJqWkdYWkHRAQhIYvmqQdEAq9RBo0KB0QB5YyTwMsHRABJ2AqePAdEBapJKJd8F0QIj0tq+3xHRADU/pf/rOdEDzSJB04tN0QOI3vxG44XRA1p56ek3ldEB6Js65/O10QH40siMK83RAi230eozzdEBwjdvIzAB1QOTMGjZkAXVAetUHaV0CdUBFSeewOxJ1QPBH2kVsEnVAzBTKSSMUdUB+9hhTniJ1QIobNEZpNHVAIupoqMs1dUDQMAB9s0F1QFzV0TR3VXVA/A4DlzhhdUDCc9pd9GF1QGqob21nY3VAInZQe3dydUBUdUg+jXR1QBZJYNV4gXVA6uiR/a2BdUBufSXYEoN1QPq6Yr6mg3VAWg3JV5uEdUAUvFepapN1QJhStJizk3VA66cEpnijdUAUdZGg+cF1QMBMJsfN03VAOtioXA/hdUDSonRcCuJ1QOSKGk1JAnZAmts+hlUSdkByPaNwiCJ2QPqBXUCRJHZAbHh8wysrdkBzGzzpSit2QJg6pytyK3ZAlNLYsx8xdkAf2VqKUDN2QMogr9KeNHZAovqyb1g7dkDKSb4tHkF2QHT0hfSYQnZAkDvqSVtDdkA8bc0eekR2QAJmfrnLUHZAfWNy2BJRdkCUpdXdzFR2QJq3FrJRY3ZArJmjmVRkdkCieDM52mR2QM8QIuOQg3ZAkTJluvmSdkBcp/SewLJ2QCu3Gct3s3ZA8CigNQ20dkCSo4H1TsF2QNi6xITOznZASKF4yiLzdkDpl/CYkvN2QB0zu881AndAloEsblANd0CIvdKCARJ3QPcUFaWQEndAtpoVEqgSd0Bep7h97RJ3QK+pdzzsF3dAasWJQA8id0CouhtedCJ3QNA8oYM/NHdAg8KF8gw1d0CQ8YBrJj53QEjdNOycQXdApEQSon1Dd0D4/B81TER3QA16Q9saRXdAARpRqUtRd0AsQhFmklF3QMcWP3wpVXdA+NvTsY9hd0A0ARGqJ293QFZVIwL8c3dAXOKXjnuCd0DgaGBdCYR3QEo4BmlnnXdAmDvzHszdd0BUFWJhKeN3QOowchOS43dAY4vYN1Dyd0DNgYyJkQN4QES7mZ5uInhAdE9ruLUreEAEeeMREUR4QABuN1d6RXhAzuwFMctReEDXl43JlFJ4QPgCDtGHVXhA+LwiZO1XeEAQwhB0+2B4QJ4jusi5YXhAUYA7rUJteEAE3CCLUHR4QN4KoKeLdHhAbGTTJLt0eECSqPN9pIF4QLZZF0l4hHhA7Oba2JmEeEDo5yrtUo94QGo7f7mVkXhAQYu7G/OTeEAUdH4uqJR4QMKRvPixpHhACclsf8/AeEBawBlWt9R4QEV8CCEC9HhAbAM0KYz1eEDIGdlnlAF5QD5qML2aBXlAtg20xPtCeUAEhvqP/EN5QDOkCB7MVHlAeOxo5dlkeUDGNkT/bYd5QE6tjLHNjHlArqpgl3GNeUCUz0ehypJ5QCZ2wBQomHlA2Q68Dr+yeUBN/pyLy8J5QG2LwCSMzXlAWplQhc3SeUB2tK6v4NJ5QN/+DW1C1HlAUiSnc8zVeUDltBCKYNx5QCWGaTZQ5HlABKoLHCwzekAduHGADDV6QLZz8SUtN3pAoKxs7C87ekBMDgueGkV6QDY3LrcpVXpAUG2V0o5yekBdv4+ZDbZ6QIhUYjEdxnpApzRrxDfuekDcih5RGPF6QOzf8kxg8XpAlKb3r0nzekB4q+sHo/h6QIyIZjUA/npAeGx+uVgDe0BTeaxhdAN7QASxBCOfCHtAouNbjcQSe0BQdbsPTBV7QCDKBBwdGHtAhJQQqVole0C6m3zBmUh7QGaGyaj+jHtAEGxUaCOVe0BDO37oYrt7QLR35Th4xntAwiHQk1rke0AYwqfyGvN7QIS3AVyM9XtAM+9CtHb4e0AZpLNc2gF8QM+HjdD1AXxAXrC15ZkFfEAQaGbU0BF8QMb41xnoG3xAHuLuM+8jfEAE1mrwzEF8QBjKw7VWUnxA8r9WRbJofEBETtp2vbJ8QPz6de5X4nxAwlzCqhjyfEAEGLBMVfJ8QAdd0rABAn1AlP+WPUsCfUDVh073cwt9QBNWWG1GEn1AxVo79T4ifUD9xDerK8N9QEBXOYuQ9X1AVFM4s04UfkAc+YDqelN+QH6ptvZ7in5AchbmzcyKfkBi42szArt+QBJWvB8bAH9AJUjW8bhxf0Dy/fg3Y5F/QOybvnCck39AXTxFeqSbf0CxKbv+XKF/QDdan19TsX9ACoFYL90BgECBqME+gxGAQKhHj7gvFIBAoFcJwtgWgEAI2ynTAiaAQChwSnkZKYBAtj3aLQYqgECM2wUxGy2AQOjFfMj0SIBAIHfHCudQgEAL1AWAFFGAQLDrv34OWYBAItS5KUhagED4MWeQxWaAQDbcLKVyaYBAXjo64R9sgEBUn14Mx26AQF5J7Swnb4BAtEpYOjKEgECWHEcO3oaAQPjOTa4ej4BACP9ZYIepgEAwQUVk0K6AQGm224ATr4BAcPUoQ3yxgECuXfr/NMGAQGQPy5tSwYBAXoqJx1PJgEDxYOjOqcyAQI6IpDFUz4BALNWz2EzRgEDmEp3eStmAQIe2dXRE4YBAhEPy4UnvgECG3L+OPfOAQGpgxLI//4BAj4aMwEAHgUBIHryBaAmBQGId4ZMVDIFAwAsebT0PgUDga5Q0Fh6BQALl34HjHoFAErDewTQfgUCpFI+BNCeBQKyXGMm9MYFAeO6LN/VFgUBqz4//40mBQJhSmqPoTYFAu7f9xTJSgUCrVt+2wHSBQA8moWZud4FAsFaOalWPgUDsVqNxUp+BQH7ZXVHooYFAeoZD8NamgUAgWLLrbaiBQOGU51GDqYFA/AuK0i+sgUDWY627166BQCwHcURKr4FA5FQtDQbOgUDk/BhBCNKBQJCiA5p904FAlZs/JQMJgkDO0wLX2BiCQN7jld3XIIJAvtpWmdEogkAb1zU5oymCQHAYZhKoLYJA5sE5Vug5gkD54+vSs02CQMx5JJHGTYJAJjv4+OhNgkA+PUSOEk6CQLjlOXDrUYJAmHP7ohVSgkAAzjua6VWCQHLFHe/oWYJA5YaZhetdgkAmh17z6GGCQD0P27UcdoJA1wTKBkOJgkCLVTm9442CQM6MzPdDkYJAFzXfDuSRgkCQiA1VPJmCQIwl2/sOoYJAc1VOIDuhgkAgDwypNKmCQGYgg22XCoNAmDmEdHkRg0DocPdLehmDQLsoHue2GYNAqg2l9rodg0DIJCgZcyGDQMzrlz8OJoNANJ5O93Epg0BgBv2WDyqDQPocRfpqMYNAK5oR42w5g0DcB0Dr20GDQEtToEzfRYNAwvFsO84ZhEDxIECBbzKEQER6jAxyNoRAzsaNWcc5hEAqYXLlyT2EQLn64d7/aIRARKsSoPtthEBc2vWd/nCEQHI4y6r3eIRA3Be2phfNhECLcqBmx8+EQJn2B2Jq2YRA7vNDMGrhhEDa2Kx1YumEQATjFVY18YRAHU/eDGHxhEAQC3GgwPeEQMZto0A2+YRANriZZlv5hEBW1cXCa/qEQL5VkVBp/oRAROZAsS8BhUBdNlFloGGFQERs7jihaYVA2GI2e5lxhUBhCPu5mXmFQEjuXSc8I4ZAtvJDO0QrhkAFPlXyeC6GQDoET7yZkoZAOD7iAZ2WhkAs9s8Zn5qGQCfIlaminoZAqBGecqOihkAk4oK5kCmHQBiNtT+QMYdAEEbFhIg5h0DwC6POiUGHQD7Xp6zHsYdAzu4prse5h0CJ2ELWwcGHQJgm+9i9yYdA + KBZXds7jZUBOGswAeMJsQBTpB48/A3JASRZoMb/Rc0CIjsh+LwR6QHDXr6ht4ntAqpfKr7J0f0BJ8NhseKmAQGgsiZOwwoNAA0O5ZPCphED5MAos8nqGQANyp46cMohAF4LGFkoLikA= - + - q2qvRPsEgUXwjt1HoZLoRQ5Gm0SZmj5HGaXwRXbn+UasliNFGJIZRXI0i0VwP3pFoNNPRUTLykSHeqNE3ffFRDmDQ0USFRFH1AqmRLKtIEYajcBFeAz4RHMgPUWgzMNG/a2xRP/xBEW4PJRF0XvFREBRoESbe85EhhuyRFqaf0Wjdf9FTNqkRG9BL0W9z+JEttOHRXCQkETJzR5FKwG+RDwa4USFYJRE9EMZRR8t8kZ8wfdEwTgLRSNxAUUclNtEkmJLRwDA+UQOUXJGHO8LRjfQrEUgRABFBXwORauEUEWctwlFV4C0RAxWwkXsU3hFc+tNRU+KskWYnsdExiTpRfwqrUQSyOhEdUGfRI7BfUYeuMtEyc4xRTh5AUXtWqVEUdXKRCM12UQr76JFsklvRcf+tUQNELxFGuY1R9ON3kVFQCRFs5/2RUqEHEU1cchF9l6sRIDemkRt7MFEMFrNRCRmr0SM7hpFBFbFROASv0TpggpFeXOmRMoQrkRUD15FDLSfRYIYukTQhqBEdQ2CRjIdf0Uj2eNElZGnRPhwVEX5iS9FZDtMRddj20Qyyx5FI38eRaY8tURuoqlEwo/LRJ+XKUYCgNdEpESPRS561ETOfJRGCmkSReiCh0akLjBFaZEbRewU9URcVZ1EymGnRHgmEkVTWdtFyt2fRPdZC0VGjOdFjIYgRYz9zkjkgCxFHGfARmP5FEjpc6pE/xGwRsfpi0WVLftELVjeRJPzZkWW2bxE+wiFRXCSWkYGb6pFJz3WRJFsLkVjN9VF8yeKRCCe9ETktLZFEWadRcupr0T+ZWZFeWgRRd+P7ER54CNFxOaBRl4zZEaCdNlF/dGTRYxjAUWHNOlEMwdKRWhpzETBCAxHIlPZR9BJFUVg0bhGM4HMRN7lxUUm+MBGvZ2NRVlahkb9vPZEmDw3RXoXYEXa76tG4+7MRKaJP0UHf/VEMo5xRcFIBEVb8bREEpfeRGhtNkWjfSlFAZwQRV9wEEUnUzlGkjqVRbVwSEaF4BtFVD/zRQpbK0VNliRFsasCRZVoS0XCdEpJYeeIRV4zHkWeK/VEWjJJSM9zmERUqkFF8nzLRALnoUY6rblEPNefRNDMGEXx349F8Rb5RXUMWEUfBQ1FDtP5RMY2kEUpCZZFOVa0RNdpFkX8G8pEpheSRmEIGkZC2LFEG1hJRedfm0TjMuRE+/KRREKDnEQ9HtNFbiOnRAT4xESPzMVEY3p2RWkq2UcacG1FYeEARY6m20acug1FvW3NRABzwEWdY9lEK5e+REeL7kQBl+lE4GJ5Rw+IA0cC8B1G6yo5RVIomER/luJELSoHRg3bQkaGqqBFmjf1RFKgsEQrtOlE8fM0RQMEzkSF97dEZCn4RJXTHEVZHZBGGzscRfjxUUb5fjRF1M3BRcRXikUJPHhGDk6bRVDCm0U/xKRF7I6bRIJ9oUSMhfZHAR83RcxP2Ua9+TNF/7WmRtEsvEQ4EGFF0kqeRB2MrETv3L5ERgFBRejWtERImJdEA3IbRfDwqkTD+9hEZSKwRWeeK0ZYGT1GEqKwRU4CD0XqrwRF9OH8RD/FE0bbIHRFd/O/ROY5BUbQ5etEtUiZRToGBEV2e/REJj4jRbbnj0bUS8pFmnLGRBTyzEZf9qZGOyqSRSABRUVJxARFLsKURZBgUEULoJhFamr6RAP6BkVGucNEEbIURYPP/kQdoJBIDR8HSHRsxUSJy6VEJp6cR4vlckac3alFsNjwRI9R4ESwSSdGzNtvRQZFmkVPynpFH/ZJRYnPIkVYFqFEGiYtRmfREUXuQbFEuyQ9RYeVPEUN40xFVvFqRWPCR0Ug80VF0QR7Re2QzER2FkBF3dk+RsEnxkSSMyJGlHc6RThXQ0WeHkpFMve0Rd0wRUVw9rtEFlm5RGF8PUYhlpRF2XslReKkGkUtuqZEHS4SRRzwRkXFNolFWilFSUB2akXFt+RIGYf2RH4agkhINW9HL8hORr+yG0UHvhFFlQ4TSFyqJ0UvsptHbG+3RF1TE0fwFb9Fmf9aRqjUiEVcUNtEX6wfSDt6nEcRTa1FYbDyRKcuLkdMvRFFP4hLRj3y7ERhrI9F6k3FRGAsaUaIKvlF+DQERf/6wEWZS25FWIOlRcx/DEU0G8JFCm73RFOlO0UvIslE+VKzRH4ew0QJGTFHxtqoRjJtLkZ0XV9F8s6ZRWY42kRqktxE85PcRM6JLkW/c8xE4gLYRKq7J0err6hGaYxCRll5hEXgz31GFPWgRULdC0V2bthHK86UR7J34EYIMQNGzBckRZ2eL0bLg6dFQCWCRUwGRUUnURZGI+S3Rd9Eh0WqzcFE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - zmra+AzBckCY18jkbsFyQK50tXFOwnJA7skfZKfCckBLqLLd4sJyQCpgk706w3JAohcM4FnFckDkVm4lAchyQBbyuQpazXJAWEO5W0PSckCa384opdJyQFqt6QWv0nJATMzgTLngckCc63RwT+JyQLqiE9OQ4nJAPVMa2MjxckDbUvOqt/NyQJPfPCOi9HJAGMk+jmIAc0AODa1++ABzQG/weho5AnNAIjbHONACc0BWMJ2c+gNzQEKU1HUoEnNA5IXDlbsSc0AIa75f+RNzQBCpUMtMFHNAJEDw+3cfc0Dafax+pSBzQJzp3aU4IXNA8MtjH88kc0BY3LsWRzFzQGY90r1ZMXNA8wieC+VAc0DOHp02eUFzQOuvnSgmQnNAT9RL43lEc0Cs8+uQmlFzQKV897T0UnNAPgmY8UNTc0BeQEgCpFNzQAvrKTx7VHNA6ns8SYxgc0BKI2rQOGNzQDRJCdNOcnNACKQMELZ0c0CdTxPdSnVzQIjT67d4gHNARiIEAqGAc0B2joYDDYFzQO2Lu4bHgXNAEn373FyCc0DwNqJ3hpBzQEgfyxxNknNA5BghwGOUc0AI4sRL95RzQFg/ZXS5oHNAjNWw3Vmic0CXAVF756JzQDk9S5UGpXNA2nchVciwc0DILAJGtbNzQPKfNh8NtHNAdDGW9fjAc0CQQ4xmz8JzQFqq3GEmw3NAbiuKJ9jRc0BApCPc+NNzQDxZpuTi1HNAh44d4jjhc0AXZWqCNvRzQHwUovh4AXRAxNsvI04DdEAYJUe6ThN0QNzfRK+4IXRAjERQJVEwdEB/jeZeuDJ0QLKJkcf4VHRAVK0YfoxVdEAUEvUwuGB0QMivJEYIYnRAcFrV0yJwdECKXhMaQXF0QJh4R8Y5c3RAlgd4QTd1dEDQGnWm+IB0QFTpSmlOgXRAbqRpSrKBdEAw0BapFZB0QMRjruM2oXRAIkUg5XjBdEDwVU+Q68F0QMfgOF63xHRA8v2jM/vOdECYV++X4dN0QJbRbfLM1HRA+vHlbbjhdEDIEXpH+u10QKVly0oI83RAavxj/ovzdEBnMo1dZAF1QBToAGJdAnVAdDHw+JoDdUAgJ9QXOxJ1QBo2NpprEnVAHMEZciMUdUAURnzpnSJ1QA4oiMBKI3VAtG3pEWk0dUBESkStzDV1QLpflaklQ3VAcs5BqeNPdUA4m63MgVF1QDGPvhZOVHVAkLkbnndVdUBkrSIgOGF1QKGvTBf0YXVAB53Bh3ZydUC0bLe2jXR1QIZQqYN3gXVA8itkq62BdUCKuAWSEYN1QBQeOnymg3VAZYTVYpuEdUDqXUiNjJB1QHMQrJtqk3VAGJmjbbWTdUD0c6jnlKB1QGWd67i6oXVAoKNI9nWjdUDpz7JBfa91QMNFqgn4wXVAGacZSc3TdUAR2CfcB+J1QKSHyslIAnZAOxii7s8DdkDmEfP+TBR2QGRmp0aHInZADOOqMJAkdkD05siySit2QDqNseIeMXZAzKQnrVAzdkCLwZGHWDt2QFAInFQdQXZAPLKbtJdCdkBKEp1jyUJ2QKV0xjVgQ3ZA0u2No3hEdkA8gqibylB2QGm9iNIPUXZA/S2lNM1UdkB4WcN1UWN2QHRcRfBRZHZAAFm+VNpkdkB4wF36kIN2QDCpukAWo3ZAdOKrbcCydkB6VI39d7N2QGd4fo4MtHZATO7d/tK4dkC4f5czvsB2QHapJDYaxHZA5h+56s3OdkDYlwxc8eF2QNzBDkMl83ZA4m8DAzMCd0B455XmUA13QEoRB18BEndAd0RpIY8Sd0Dy+MAnqRJ3QM7pgYjoF3dArIJ3DQcYd0BKTn26Mx13QJ7A+90OIndABUQh5HMid0DHp1WwpzN3QCoBEIc/NHdAjCmznAw1d0CWI9E/Jj53QMwhjbmcQXdAjO42rvdCd0CW6PKbTER3QApko3gaRXdA2n1PVUpRd0C23PKPklF3QLga/xIoVXdAEilFe45hd0CBgFWLJ293QI4wLxP8c3dA5Ax/MXmCd0CyvkMDCYR3QPjM0dgIkndAfQjtek+Ud0AcJWCJaZ13QKhu0UTL3XdAsaegr2jhd0BqF2eaJeN3QIKRN2SO43dAEjeIZJjrd0AYuk4uUvJ3QOCwZFmRA3hAWaSED24ieECCfsNmtit4QOkIoKwRRHhAqTeND3pFeEDHABrBylF4QJZhM8uUUnhAnSinnYZVeED+8jf/7Fd4QAaw5m9LXXhAql3uxPlgeEB9puIit2F4QHLcHf2+cXhAFG7eOYt0eEAdqFfDpIF4QF78Ga+ZhHhAu1DBr1KPeEAc/qUimZF4QNx/jD/zk3hAQEtw2KaUeEAu1byFzMB4QMJjlxW31HhARqJ6JsXkeED885LUAfR4QJxOyX6M9XhADRLkd5MBeUDq3iYzpTd5QPub3dX7Q3lABlGNQsxUeUAmBYd1cId5QL36PWLMjHlA/CkzfnGNeUB/Hy+3yZJ5QEYe2KcomHlA6qh6K7+yeUAqGxCqi815QC8DtijM0nlABpMROELUeUAHEzc8zNV5QIzn1FG/4nlAMPujiFDkeUDiGsyoKzN6QFR8600MNXpAnwtmtCs3ekDQ1sFNLzt6QM4cZFfnQ3pAcBUORRpFekBhUGMr5FN6QLcKNcMoVXpAjh5msOlbekBMUyPUinJ6QLqvcZY0k3pA2Dj45Ay2ekBmMOQtZeF6QNSip5Q17npAOB1Z5hbxekC9VHfzXvF6QPimyfBJ83pAmDxsJKP4ekDDaolN/v16QJLZ1WA+A3tA1kw/XFoDe0CgPDMmoAh7QJTX7JbEEntAwlBPa0wVe0DPk3lbHhh7QHFEd59hHXtA+YlMuFcle0A4wlopKTJ7QMZ2zKuYSHtAo5bR9PFNe0CHkzpP7ZB7QOE7wUEilXtAXGjYbi+le0AUfq3yX7t7QOZzmtd3xntAcREmJlrke0BUS/mBl+R7QB4lfcqX8XtAR5EhbBzze0Dp9cjai/V7QALXa+ty+HtAGMWEaNkBfEBLhsfXmQV8QHgavOfPEXxAHNAonucbfEDKpQk/7iN8QDGtcGfNQXxAjCQN29lRfEAFzQCKVlJ8QG+uXx1mYnxAUJHLj8GyfECtco5/V+J8QPLK1fkU8nxALlkJSVTyfEBszfImBAJ9QAC+/ApLAn1Auj7VD0USfUC4hmZVPiJ9QPwLiHmfMX1AgrlIUS2kfUBOCAy9O6t9QKJAstIrw31AJmrJIk4UfkBuDWezQS9+QF3nfNaLVX5ANQYp2QhufkDM+eTmPHN+QMhjyXKPsH5A2reMOyfgfkAkvvHvIQB/QA2rLDhZOH9AwTSBSrdxf0AmjrBvs4F/QBK1Ofejg39A6gDJsmKRf0C9iMGGrZF/QGZ3z4+bk39AqB0q4qObf0B6NyOkXKF/QFp38QdVsX9AqfXKYd0BgEDywCs1hBGAQGQJLCswFIBAmPJxmtkWgEAp8CpEgxmAQFzw/qICJoBA/uAb/xYpgEAux5CHBiqAQFB78YdFUIBAeISKQedQgEBQlMCUFFGAQP7jDIEOWYBA7BYFjkdagEDsUxVrS16AQOgWQrjFZoBATLMaAXJpgECW7dHKHGyAQNbPDvjFboBA617ddSlvgECk5CjmMYSAQKYi1eXdhoBAvKYbY4iJgEB4R+MtHo+AQP+/41iFqYBAZO3ZWtGugEBJS3kSE6+AQAba5XUttIBAG6fhW1LBgEAtjfZHU8mAQOIuyM2nzIBA4tiW0FfPgECI7PdTTNGAQExmfxtg0YBA16F8OEnZgEDW5rtIReGAQF5Mpqz26IBAbu3nXEvvgEC4C1pyk/GAQEZ7CYw//4BAdRDMpj8HgUCi2l+daAmBQKDT6hAVDIFA58tMVxYegUD+VIK5NB+BQFiIS381J4FAdsDDPrwxgUBSK8VAQkKBQEoE4ef0RYFA5mXLc+RJgUAScfTR502BQBzX3cIzUoFApqB13jZWgUAEmHdGW1iBQFXuMXLBdIFApK+Gm293gUDCJN05Zn+BQHsSn5lVj4FA8G9jPFeXgUCPdpUUU5+BQHw6vALooYFAV0w/n9amgUBiFqVbbaiBQKBJsLiDqYFA8tcUfS2sgUCFgswq1a6BQDxQP3xKr4FAkoenhIKxgUD/HdXPBLKBQB4j4soEzoFAJfLbngjSgUDy/WIq2RiCQGsXSYPYIIJAX7/Q1tAogkAk9CLpoimCQNTrGQXoOYJAauE43uhNgkCI1qAV61GCQMKO74/pVYJAZG4FQelZgkDcRGgg6l2CQGxTDZ/rYYJAOpYBShx2gkCtxfTaQomCQNLog7jjjYJAwlzPmUORgkAjIBJN55GCQCRee/UemYJAkrwpPzyZgkCUhLLcVZmCQMa7mi4OoYJA2nlSWDqhgkBkKrMfDamCQFMbN3UyqYJA1q29gZgKg0A8lq1IeRGDQJGWv6J5GYNANxteubYZg0Ckj/MQvB2DQFDrWbtyIYNAHHNzOg0mg0DDFdR6cSmDQIpt/QIPKoNA05wkgagwg0DRCCTt20GDQMJkf6DeRYNAG2TLatFJg0BixroI6UmDQD1TOWHaTYNANBKCSMsZhEDAVsQhcDKEQFo3hal0NoRA3a7zZcc5hEBn/HztyT2EQCqNtlj/aIRAhuG2A/9whEAYr7ev+HiEQOohBtz1gIRAlJKz02nZhEBGEOY/auGEQKDGHIvN5YRAjCvPK2LphEBZYlRJ4e2EQPIVc1018YRAxaZckWPxhEAtfTTEvveEQJQ/QSc3+YRApAnBnln5hEBwLhcSbPqEQB7tr0UvAYVArsa+U6BhhUAI3cJ6oGmFQMrXBuKYcYVAMs1bi5Z5hUDug5yDOyOGQJvxvwdDK4ZAnhSdY3guhkD0NRIgfjKGQGQSAZeZkoZANqWOtZyWhkDH2rsPn5qGQDbGfgCjnoZAFLO/UaWihkCQq3/GJbmGQL5pr6iQKYdAXIjZIJExh0Aw1gVgiTmHQIhRDXqJQYdAiPoqz8exh0ByDd+Bx7mHQBya+gu/wYdApXFpEyGWiEA= + KBZXds7jZUAYxSyCnGRqQKPid1q/AnFAjMDylKZDdEBqPQyU1zN3QFMbh86+dHpAapvo5y9FfkBxuel2y0KAQHx5mgMEK4JA - + - ev+IRHj2hkWvoqtEbdHIR40/q0TtP81FsFOnRFTNIUeyOOhFFmgCRx6Xu0R2hZtE36r0RDBQgEVLTdJEHsEgRcjb6ER+Ev5EjCCPRFSR+UT5RqZEqdg3RY8HEUd+nopE1XftRcD3fEWZH9pEXYoFRTuavkRe48BGGWNERWcLukRUWL9EIMXGRJptGUVq2tNExU2/RfR4nkRReBtFkZvTRFGEVkWIF55EeQerRHPy70Q5T6dEfW0ERS2IRUW2iNlGfLWHRGMoPkVQnpREqGbZRIa4NkVTwydHJwCkRNSoa0Y9i61FrL6RRWwfqkT2wflEn4SNRP38bUU6EBFFJpr2RJeedEV1BWVFspgcRb+Er0TCO2BFChjWRTGf7kTozU5G1k2mRBdSNkUNddNElhasRJLF4ESk/NxEpI/RRMzZo0X9UnFFAzKrRRbTNkd7nTVGEH7GRPoVGEUActhFj9QnRc6Gk0XI3JNEUu3BRG+hu0QdsMxE91/FRGaexkTLyeNEQ6j5RFEZC0VnXF9FLozERachrUTu/ZBGniSgROtHFEULxQlFzMUDRYQWd0VpJMNEU4E5RTmcGUWoWLNE0Y2tRKAHpEQRMJdEkRS5RGmHMkVgn/JEU9r2RM81EkYLWr1EwHqNRRBK5kSGgblGfUb7RMZfnUQvdYNGxkQxRdWilESC1ONE50YTRYoau0QaFfNEkB6yRC6pEUVNzL9FdTjzRJnvCUXuJj5FO2W0RcWyt0jiLb1G4oD5R8IFcEboUZxFJySpRJoyq0RqUENF1I0xRawPzUQUaCBFlewtRoccq0UhR6lE/hM7RfatEUY/rsNEpQrmRJQlg0X8Z45Fyb/+RMVnk0RSDZ5Edzk0ReEXtEQZ3dNEUJIbRc5wVUaUr2RGTRDXRUBziUVUlChF47+7RPnfrkSYg1JFVyfdRJXWwkRds0VH3+beR6+AGUVa7MBGeYSTRAwG00Wsh7hG68ehRbE0i0Yt1R5F10FeRTn8cEX1gqxGtm6qRHA5EkWVMwdFbZTZRFZLvUTDZmFFgbfARN1vskTHFrlEiLKJRPlzqkTv5lRFazZWRdKmVEW58idFUXohRormikXNWkVGkyoeRevdUEXkR+FEpJoHRVmM4UQTRMhEC5g5SRtkIkXPQkRITameRHmrCUU/XQVFwniZRiE040SM8apFhdWjRKnoikXn09RF2BOZRboZkERBCJpFquN3RRECiEV4tuhEYRGHRsvFDEYJjctERvtRRXW1tURvQu9EqC3JRcNP00QXor1EMWMLRcUK9ESGEcZH321LRXpeCkUICdtEsO3CRjytz0Tn0DNFrwXjROt7x0Q+nstEtLy8RQmRC0W6gwhFsCPKRP9h5kTXZmhH0ZYsR24yMkbpxc9EBD8uRUKrrERcj/RFPwsLRm8rikVrUKREVNUkRdZbqEQma/REwcbcROYwmkRcN71FdQv7RCD8JEV0iqRENfDHRCDSoERfmMBFHGxIRZRYlkZChKBEg75pRs3KpUUDtZhFfQxLRo+1l0WAcMVFZfiMRLLRBEZd3rdER2ypRMiXzUdAmv5ExziuRjAF30QdAJRGy7Y+RVDpuESS8aREkhDGRCXxl0SVK69EFvDVRKX5pkS/R2xFxjWkRFUV0kQEHp5EYwjYRKfFnUTRztxEiBumRQoa2kQHTsZEDYEvRm/Es0TFUU1GCoCQRZBUTkWwuiJF7LYNRQAivEVcc7lFr8HNRPjns0RzrQhGa/fZRFi5ZkVAo5dEqUIkRdG6mUajT8hFRBMHRbO9sUSkPPFGDnKeRoGyFUYUanJF4JH3RN6Z1kWDYHdFn1DuRORVr0W9XM9E78UkRZ14rUTq3cJEwBdbSEqWxUeh4VxFiPScRIKXVkcUHjpFFsgoRhP1dkUVtNVEnq4BRbbjzkQ1ji5GuqF/RfF3hkVbXvNEfsfVRAeZI0Z3vTJF/Nj4RPR7DkXKsZFFbJSDRT1Sa0Ut3XdFwwXIRALNtETFNklFz0hyRfulkUSrUcxF87W2REUC0UQL3SpFpPA9RipjA0VzWB5GdW6cRUBJJ0WPSZ9FUa/SRHqulUQBiLZF0eU0RSPIP0bHxZFFdsMuRf7MW0UeqSZFpY1NSYHi6khJx4FIuAh/RxlgJUaqY+JE738XRQzV+UdV1BhFZM1wR3wXEEUzMJREdCsDRxEtCkVLTIZFlxEkRmsPykSRfFFFQ/DZRGJSy0f4iSdHZbOHRRVf3UT72NZGkxpTRUCgF0a5mxRFUQ/VRL86SUZt6PFFyVfnRNwmvEQCVuhEyx+wRAAg3kUkYVFFTzaiRfmE2kQWkNhFL7FNRe1UBkXmUZtEztUgR+/zmEbP59dEfIQkRjieukRN+ClFTEiSRdM+E0UwCq9ERYzLRKJd6UQilrhEph3ZRgCWKUZNqAJG8KEQRS7wYkbiVJxFh2VaRc42CEUMaMZHtmaGR/pXukaq199FL0qYRMAz0kTvoUVGzAS2Rcpbd0VE8MdEScb4RaUJhUXRBdhE38oFRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - rrAJkW7BckCisQWBp8JyQBIRmUQ6w3JAlb2hhlvFckCPlRiHAMhyQA+FeM9azXJA6B/IW0PSckC2r+5FptJyQFwAe+pJ03JACAu1n87fckDYNvxFuuByQBvTUZBQ4nJAJipAxI7ickBud9nZyPFyQKz7wh2383JAkv6q0KL0ckCkhOLOwf9yQOxN3hr3AHNA9LqCbU0Bc0Cknmzt0AJzQGy+C6r6A3NAA26njrwSc0DYhkYB+RNzQNKKN0kFFHNAtdg2lEsUc0CQbuCXeB9zQGbQRsCiIHNANmtaTjkhc0Dy/snZECNzQBCp/RrPJHNA/zpR8kYxc0ACjdRoIDJzQHt5fDykM3NARvkaoHdBc0AlR7YSJUJzQLpKmjp6RHNAzBiyLxBSc0BqwWbh9lJzQMul5tejU3NA0GVSHIxgc0CwSqBbOmNzQK+6Ds5RcnNAsgv/TLh0c0B4zzoCTXVzQCp0eUB5gHNA0IFf4KWAc0DpQ38+C4FzQIimb+pfgnNA3g2wW4aQc0Day9tSTZJzQF6BPP5hlHNA+QKtm/eUc0D7C/yXuKBzQDp8lXJaonNAljhYT+Kic0A8lBVxA6VzQIbh4sV/sXNA/j58jLazc0DH3u29DbRzQKBtD20gu3NAIb9ohPjAc0Dcujxqz8JzQGZoDCUow3NAYFLT1dfRc0Ck9Zdd9tNzQHQ29c3i1HNAgMbKXqPgc0AwcTgpOOFzQNkbkrYN43NAKOEKUDb0c0CUajY2eQF0QIDcJRqlAXRA0vv3BU0DdEDy+NcyTRN0QErabLxNIHRA/tuJDrkhdEAVMqaaUzB0QHp2FBm6MnRAOgAeOchBdEBpjTep91R0QJhGdoOLVXRA2gP1DLhgdEAxVlGeCGJ0QGTLFn1SYnRAo16EWE5kdEDHIDRCInB0QNX6KYBicHRAdkr0bkFxdEBl1B3LOXN0QISzpOf5gHRAzihLn06BdED0W3VMs4F0QJDXV0FIgnRA/vz12EaDdECURH+dFpB0QPhVtVdem3RAUkLBstCgdECPC5YeNqF0QGTE0WURo3RAdHtoLGajdEAWdKibZaV0QJyO9awKsHRA7Irsz8CwdECYB5zn48B0QJHgcRF4wXRA8NyM3bnEdEAkLn44/c50QIKnqL3g03RAlpFqLs7UdEA0xAI0ueF0QEGZiC9N6HRAnPdMEPrtdECGbSjBB/N0QCNJE0aN83RA1iaHgaUAdUCWJghmYwF1QFzjOJZdAnVAvy8Z0ZQQdUBZjmehOhJ1QDpr3UxqEnVAfch9WCMUdUDQ7BXTnSJ1QOFy3oBLI3VA9VvM3Wk0dUAUzOuSzDV1QARS4ZEKUHVABX+Cv4FRdUDwn/WTTVR1QL+UG5d3VXVAql3DdgtgdUD024qzOGF1QGDIB+LzYXVAWenVXGZjdUDe63Bwd3J1QA4XR/iNdHVAt0A1UeOAdUDjVm2TeYF1QMRuMY+ugXVADurepBKDdUDH9Q26poN1QOg2D6yahHVADOEI0mqTdUBCBnJIs5N1QLVfDW53o3VAYhEtjPfBdUDEeya/COJ1QEKMI3pIAnZAXSf+3M8DdkBDBEbaABN2QAyh54FNFHZARthsVwwWdkAWey+JiCJ2QL23Z0KRJHZAeNOpGEsrdkBmPPeGHzF2QLZLihpRM3ZAOse5Mlg7dkD8vsg+HUF2QBRRUUCbQnZAGD0b53lEdkDArJKs/E52QHhe2XHKUHZA9XrtBBJRdkCExxkQzVR2QNDFXjDIYnZA5KQ5lVBjdkAXRnd82mR2QHbd44xognZAuvj7o5GDdkDGFYp5nZN2QJB7TXsQm3ZArgQQHsKydkARuMZ6eLN2QECY7oQNtHZAqivE3NG4dkCgb9CM0M52QLXhivob8XZAP4E9y5HzdkCUtbVsNAJ3QKQYJJtQDXdABAlCTwESd0Dq5Tf1kBJ3QID98pipEndAgGaG6ukSd0BVC8ME6Bd3QFXC08gJGHdATayGbUIdd0C48GdODiJ3QFLNXOR2IndA0WjY6aYzd0Cm5+TKPzR3QGIJuNsMNXdAcrMcMCY+d0Ae+ZY5nUF3QAxLAj5+Q3dAUNmWYExEd0DzF+JsG0V3QNhbnNBKUXdAtMCzTZJRd0Ac2HErK1V3QIBselKQYXdAo2cRmDlld0B87xL3Jm93QOZfCiT8c3dAHGLauXiCd0A0AQJQCoR3QCxZEIZMlHdA7ADbpWedd0C8+z1PCLN3QDiLGtwtw3dAfAkyNczdd0CUPOuaauF3QOhT5nAk43dA1nHJRJHjd0DKd86Hbe13QHxB9O5O8ndAFgpvSJIDeECYVzl2bSJ4QDC8zG+3K3hA+QLeZxFEeEBtcNVvekV4QFvLsXjKUXhANh4J/pRSeEApCT7hh1V4QMpSX57xV3hAyLBsbvlgeECH7YiOtmF4QHwAcElGdHhA4tL52Vt0eEBQoNB5i3R4QFIw14yudHhAxic39sZ0eEDImVK32XR4QAculkOlgXhAQOeFs5mEeEBVnd/HlpF4QFBCMzOnlHhA6HyGibOkeEAclF4BibN4QDQxdf/NwHhAGbNn/LbUeEAIAwpBxeR4QDAg65kB9HhAdmKkroz1eEAyQUIVlAF5QBGC8f6ZBXlABxdW7vtDeUCi4tLgzFR5QNhC+4Fvh3lAk6//AoeHeUDvpUpqzIx5QNi/JBdxjXlA5g8PccqSeUD97TGPEph5QCqYKf2/snlAFORKAozNeUAHh19sytJ5QAOdsdlC1HlAwcnTFs7VeUBgiJeBUOR5QNWJ6DQrM3pAICnXaAw1ekAfPuBPLjd6QDZWzKkwO3pAGu18sDI/ekDedsyd6EN6QBBKaasaRXpAbGfJxc9LekDWBXhH4lN6QLfHmp4oVXpA0LE1AyBcekBovTi+DLZ6QLCodNkZxnpAftmZhGnhekAeB368Nu56QKqkWhUY8XpAiFDe3UnzekDUY849o/h6QHz8a0r+/XpA1Iob0EIDe0C25INxXwN7QCj1Xml8BHtAMOB3b54Ie0DY8m7jKg57QED2PRzFEntAhXoIbUwVe0AANpcGHxh7QP73eoXKIntAJLGaDVole0AyWZ4BLDJ7QNFLJh5cUntAOSv43VaSe0AN47RxI5V7QApr6SVhu3tAPBN5m2nDe0A7KoHj6cN7QEw9+5R6xntAgsOjHVnke0BSOSXjG/N7QIRXRA6M9XtATSyK89kBfECUSbkimgV8QN/pCeDREXxAs1GEp+cbfEAPK++K8CN8QAEukI3NQXxALtRMfVZSfEB6L5+YDmJ8QERmyF7CsnxA4IwbxcvVfEAScRSyV+J8QLKEptwW8nxAGqqGelXyfEBCagXkAQJ9QCbEgz5LAn1A7shdXFEEfUBHwUEPQxJ9QNC4bXk9In1AxGMtdZ4xfUCNpxmeLMN9QBs8sTHW4n1AAkO8+JD1fUAYPcIPTxR+QCa3UR+MVX5AHde1znGjfkDcdCdTi7B+QBfKtsv/un5AXkdgEifgfkBXmr0ITPR+QGhMW8u3cX9AyDcOSWKRf0CYXid1m5N/QNpb7Oiim39AP7BMx1+hf0BqvsODj6N/QPY8eMVXsX9AVJQ0VdwBgECoV0z/gxGAQLRV804xFIBAdEm+At8WgEAkotECAyaAQNzDFS4YKYBAmKG20QYqgEB8HDus6jeAQAIQ3UD3SIBAjIJxB+dQgEAEr1KwFFGAQFr8igroWIBA2j4zQw9ZgECgbdGMH1mAQB51LUhIWoBA5+KGtMVmgECemZMVcmmAQDCKgzMabIBA8J1VeMRugECCmpfdKm+AQOjbVjRycYBAOrBTMjKEgEDu4gsj4IaAQIKopLGJiYBAalKYlh6PgEDI3xdUhqmAQPwHZRDRroBAqokGUH6xgEBYLDKUUsGAQDaRuIVTyYBAxjx6w6rMgEAcn6VFVs+AQBZQc0Es0YBA3A72b0zRgEA+5PorYdGAQO78h0NK2YBA+RV3IEThgECRt21O9uiAQHbFj/tK74BAXAdjy5LxgEA261Q6+f2AQOKVA4w//4BAiwuvckEHgUAplJmsZwmBQMib4rYVDIFAhpMGvD0PgUDKyH7HNB+BQJikXuEzJ4FAxuSlq+8sgUAEsw0MvjGBQPTFGBRDQoFAxMtQgfNFgUAIwWGg40mBQEo82RLqTYFAEay2KTNSgUC4oBMxNVaBQBrypslbWIFAMdNGq8F0gUBiX+hpcHeBQN6rtaIceoFAXjIIUVWPgUBBxyqJVZeBQBT5fDtVn4FAhjvueeehgUCM6E/o1qaBQIIljW5tqIFAwuMyz4OpgUARw1eNMayBQHbxuDbVroFAmkLP/0mvgUBr3qgQBrKBQMfQhuUFzoFA2qcPAgrSgUDaMWfjfdOBQNhkdYjYGIJAoLUoBdYggkDl+YK50SiCQMRHSYGiKYJAYOnMsOc5gkCQbEQI6U2CQNKIew8LToJAuKUCXutRgkAsnlr6DFKCQPgfPkrpVYJAbrex0ehZgkBF25kf6l2CQDiW4gf/XYJA3OUEn+thgkDZAF6dHHaCQLM89AtDiYJAMY5LIeSNgkAzeJKBQ5GCQKvl62bnkYJAME3ISTyZgkCwgtT8VJmCQEJLN2gOoYJAY+8NHzuhgkB6yF4UDKmCQBX8iGszqYJARrdDsJgKg0AMRCp0eRGDQNWAA8V5GYNAiXi2dLcZg0CktF5sux2DQGxMiHlyIYNA0LOPrgwmg0CCnAftcCmDQDibogMPKoNAZXuzjagwg0B6HWNtajGDQLWoHenbQYNAqtjtaeBFg0AS58XG0EmDQIDA9z3nSYNAwBdrzkiDg0AYh3tUlPiDQBR+9FNwMoRAqOPiS3Q2hEDJdBKKxzmEQAWPWbt3OoRAABqXAso9hEAD/kFf/2iEQF4wsw//cIRADmwzS/h4hEBgYR4MF82EQJzy8C5q2YRAELKEA2rhhEC8fNGMYumEQBLwv/018YRAVOm5G2LxhED4orOSNPmEQLwh9O1t+oRAtohhOKBhhUAaf/eGoGmFQJHtez2acYVAMLo8V5h5hUD7XfOydqqFQKEMlUI8I4ZAfE13e0MrhkCMeyyGei6GQPawYLt8MoZAYEUVAZqShkBPPg0FnZaGQJJdbVygmoZAmh5SzaGehkB+KKuDpKKGQBu9pCUnuYZAH9RtYybBhkAsE4atkSmHQKl0lgeSMYdAfsU7uIs5h0B2aIfRXkGHQJRyEQ2MQYdAFpHm+nlSh0By+9X8e1aHQBzMuvLHsYdA2bXfr8a5h0A4wEvUvsGHQL7eBa3AyYdA0jcdmCGWiEBfJjQoJZqIQA== + NrgMGZxjYkA/KJil8iNpQFRnpVdMhW5AH3KoplGjc0DDqiUkK0R3QEF7qtfUE3lAUQJyQwNVfUCgbMOVlhKAQFUHXkfj0oFANE1n0e0ahEC5NChkb+uEQGFTDHdPQ4dA5jrNCdETiEDFgNaT21uKQHobcUUoHIxA8oZ7OT2EjUB6Sl9v1KSPQF3ZkKRURpBAhifwA4sukUAjl6XitUaSQAY/5xjh8pJAB6146uvKk0BPwSflAU+UQA== - + - +kFlRR2DwkfmZatFRAWFRF0kFEeZ+c9F7dYFR6Kdo0RuIpdEpsrURI9UnETbCn5Fr4QPRW6KMEUHpt5ELIWBREdZ+0R5W4ZET7aHRNRWe0VCxtBGUPsoRsdYV0Vo3VZF3tOQRHsgt0T5eupEe3y9RiIyvkTZ+YpF1+LzRPjdikRG8Y5ETul2Rbj8DUWXuf9FRMiQRB8S9URvKnhF+ojERPXmFkWrvN1EuTKURCLfBEUMG9lGKLvoROf7LUWTNnZEORYoRZwcUEdEo71EM9JiRqBAxUUUUNNFISiERDCHGUWZY5NEWNNYRcXkDkWRN5pEQg2NRB+PgkUSVklFfTctRVHduUT+QIxFzj+SRKE690VNaJJEmv/KRJudi0adBcpE8/mPRINCPkWFKnxEVo2wRL0yw0SDnKlEogGIRNs5nUTKmNtEqX9JRXPQWEWPeOVEeU/YRFqAvEX44ndE9JA4R2fuH0aLeghF6TABRvNfwUSDvX9EbH6eRIy5p0U6VsBErfqkRINDlkQ2vLtEiIOMRF1AhER4LPVEssqlRMnZ6kSXQb9EKAS0RHRQ20RMZPNE/YekRGdVF0V8LO9E/OfERO5wIEUVwrhFtEKORIYtkUTWLZ1GcT9vRLPWrUTgAAFFhFcaRc5Pf0XfippEz0IDRcLGPEWNJHtEkhiKRIF8pkSvULZEwdOqRO8yOUWxpNFEhMmeRFHvAEV5TAlGfm2CROnj3ET+J2BFByvlRNYW3EbVJLBEzdo1Rtw2Y0X5MLVEf7HaRH5sF0WRw8RFajkPRVmZv0TB6B1FcvWuRKb9BEV4dtZFDciKSPr2vkY2U75HNDpKRgR0jkWc3ZdE1jJhRanMkkQWq69ExsgXRcxSGUbfGJxEDcr5RTD650Q0SIhEvka5RarKc0SEhpNELM0PRbjUAkUc1YpFTYhBRdaCHUUjwYtEDbMdRafqpkQvIDRG65yIRqmh10VO2eJF1HWFRC5YFEXOHI1EWP2/RKg6M0XVAolE6SqnREouIUf+19hHfzkVRQAnx0YRTrdEZgq8RRS4rEbBsH1FfVWDRmVr3kRwVS5Fz0CWRLYVQUUuwpRG6yKpRF/qJUUIZMREwrCdRITenkSWhIhExAWFRQjPD0WBfAtFilDORBeE60SRvNBEvVZMRWiKQkXfRcFEjgtBRVUuGEagXpVFwQoNRlHDCEVBtSNFa/UGRTsCZkVUgQFFyqF3ReJuO0nUdI9F/YkuRc66/UQEi0VF/ftCSGEHLEXGGZtGAxB1RPRtm0SMtqFEUgadRZIOx0SROUhFko/VRVreoEVtoq9EQ/SFRRX4ZkXJceREuaHARJ8Hm0SC7m5GXFPJRexjwkRXzJlFelGuRFzJlUV8xMhFqaywRMaIn0S+7JNFW5u7R41PJ0Wnd99ERufHRMoD1kRvNtNGyyHBRB1vGkWi1ihFV3yRROPtvkVFnsJEibD5RAhDoET0oehEwjt0Rw0QC0coWgBG9y4cRWQf3USjFH1EvhS0RHLHl0RLTQZGSBAqRhP0iEXL2JJEGfAZRf/go0SwLJNEFO6GRPdejEXOtxVF326kRHKyb0Q2C9RExVDNRP1TRUU7/5FGragmRgajkkV8XqpFWIxTRiW/YEWBWNNFBuMMRig34kT9HNNE9nGIRFyZxUe/iqlEbk/GRhaj6kRLo5JGDeR5RI7zD0UWiXREktWIRI61v0Qfw/REK+/YRHKi00RJYSNFYpaVROptd0Sc2h1Fb2ujRNIWiETKYmZFOJQ6Rt7pLkZc0ZtFRng5RQ/inkSAyxhF5iHvRPNW9kU9CYNFiK8sRRsps0V1X5xEt8EXRdsajkThxe5EiStFRZcqkkZinr1EQB+xRdrSEEVCwxpFprS/RtmRl0alUrpFXWJZRSlY7US2NcRE/8iIRf/LDUVKhKdEu2uARQiY1UREM/hEX8e4RF/6W0jFvMRHjcAFRRNZuURKdZ9EYzdOR10YU0XWQDRGbYtwRZfrs0TF/alEWL6+RFybg0T+GyJGaxc9RUSuU0U1iDRFmiwMRaBYOEbOT9xEnD56RLoOoETr6SVFhnY+RdTamEVT68lEsQWbRAVF0UTvWa9E1icJRVdh1kRY+8dEXpSMRaMly0QKfqZEABhgRVsjLUYaOCVFsNsdRszTlkWtD81ElHSMRZEvB0XLwL1FqUUWRTNNmUSIUiFG+kBtRYotckVD8vZESd/8RIVgIEmxqIRFCSiwSKZhGEXPw0hIfohGR2CyGkZHZJ9Et/kRRYt6FUXBNslHs/dIRVodRkcSO4JEFbTRRo8kHUVDbLdFSOAGRk7RDEVdkD9FP2iARKFtykdImjpHlpjiRBbMlET6NcdGQRSERTr87EUkWQxF1wtORV0sEUVpVwpGkwjARVPtmETOybZEfoSjRODXgkQ7fY9FMbKMRROvIEXMuaFEyGQDRYwTtkVeRN5EipYIRZ9vnkRn3RlHy9yQRqkYHUYpKExFPjiCRZ8AuURLaapE06faRusUXEaDNexFHgsvRRYdW0QA5i1G4+k/RR7dgkXs7BdF4g+YR2dlXUe2e5JGP2uhRVR7ykQ8nNtE+GmTREgTLkYQ76ZF39eIRYlOu0Ry5DpFXXi9REWQy0TY98VFTaqLRflWFUVbwbdEYEKiRNkP50Q= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - iJBIlAzBckAaBAsbb8FyQEhhVPRQwnJAJaE3eKfCckDMfDLg38JyQCStBgw7w3JAyG6sQsXEckAKcQlzAchyQN529IhazXJA5nckd0PSckA0Q8QDtNJyQEAxRmh203JACOCiLI7fckCuKfoY0d9yQBccn8K74HJAEexD11HhckA6OSeOUeJyQL5ed5mP4nJAdEj3DMvxckA3v/3GtPNyQCajo0bD/3JAKeA1HvkAc0Amdv4MjgFzQLzqLrvPAnNAbT6WH/sDc0DgKoVFvRJzQEIk8mH3E3NARrkBy/wXc0Bd5eR9eR9zQAiSS/WiIHNAuOpz9Dghc0AuSEtUECNzQCVYptTOJHNAhvk6b0cxc0DQKK3qWzFzQMyUe30NM3NAfvbLlKMzc0CqcAMLODRzQJL1i265P3NATNxmMOVAc0AaHiVseUFzQEoFyD4mQnNAOehb9nlEc0D+hi7anFFzQEyV3gf1UnNA3CV0t6NTc0AyHwxbe1RzQBuOZ4aLYHNAgrutNzpjc0BS1cQZ0WNzQBr2JSZRcnNAGgddD2Zyc0B0ngZRuHRzQAirk/tLdXNAWkDnXHmAc0DbGE1RpIBzQD4codgMgXNA52XO7V2Cc0DE+FT4EIRzQDk1KVuHkHNAC3j0eU2Sc0BBI1bbYZRzQNiw62T3lHNAzOaOqbigc0DE4NaiWqJzQNTfrt7monNAtkYnIwalc0Bgic2bfLFzQB7Yfvq2s3NAJHC3Dg60c0CfTE4398BzQM0F7fzOwnNA8pXEGyjDc0C+uSOl2NFzQALptSD203NAZTKK+uLUc0CeLGC2OOFzQOb3UoZm4XNAPMEQZ4vhc0BmoAQnD+NzQP3Vqm/w5HNAAl62lzb0c0A+mg1XTgB0QKzFk8p4AXRAVw0JiKYBdEC4AsmWiBF0QAZoeQtNE3RARGdnpeQTdEDsb7fEdxR0QOzhsqy4IXRABtn01WcjdEAEgjDqUjB0QLAQuAO7MnRARUsbm/ZUdEAq1bQhjVV0QNqmG8i4YHRAXrMo8AhidEA+L5T9UGJ0QBbEHAgicHRAZ+ktb0FxdEB6Mm4POnN0QFtCKgj5gHRAORHc+06BdEBak9pQtIF0QNbMGjVJgnRAkjPc9UWDdEBQga6fFpB0QMCQTX9fm3RASujG08+gdEAqisPjN6F0QAzJoYy4onRAKJ0+OxCjdEDIKCT5S6t0QE4MJKoKsHRAON1NiePAdED2SlHweMF0QKPK9+e4xHRATvo2v/zOdEAlLW764dN0QLg6E/zN1HRAgBhgL7fhdED8jy5zUOV0QAuD4TD77XRAU0ye57/wdED0AaYwCPN0QGu/Fj2N83RA0DXUZXr0dEBLJ/+OpQB1QKI2qF1kAXVAro+Bn10CdUCboGnmOhJ1QCqq6nFpEnVAdONvVyMUdUCd2YQwuxh1QLBN+KidInVAdHcWCWo0dUAI9jvBzDV1QDJfbneyQXVAV6OlCU5UdUDKVzyieFV1QDaVZYY3YXVALnLZRfNhdUDalUFqZWN1QGhIYZx3cnVAChUhC410dUBeDX7+eoF1QMZ76COugXVAWKw3FxODdUDl0YjjpoN1QHoeKyuchHVA/DUwM9WSdUDoRhFhapN1QMTW0CW0k3VA2DbeiJSgdUDmkt+NuaF1QNwLoWXionVAXsJYUfrBdUDJ7W1izNN1QDQirVUH4nVA1Hlx5kcCdkCMFAUh0QN2QPZ5/OcLFnZAEBQRB4kidkBRGxlkkCR2QBq/C0RLK3ZAZkzSlx8xdkD+rQUhUTN2QIGnhmZEO3ZAHm7TpFg7dkDUZcurHUF2QD4aGiibQnZARMWxF3pEdkAW7GV0EVF2QL0uMynNVHZAHH2KilFjdkCASRz22WR2QJbhFPcmaHZAyGAxfWJzdkBIt9aLMXh2QCnPtY6Qg3ZArCt4Y56TdkCIDbFrEpt2QCQ5fQ24sHZAzq1d4MGydkBuqXKbeLN2QB6VPwQNtHZADMXBLdO4dkBw3W6/z852QCXcB3ol83ZAPyrEyJPzdkAWbnaMNAJ3QLCz4PlQDXdAINGurAESd0A6c0UQkBJ3QC54hJWqEndAOuHvcukXd0De+WVpDyJ3QLBONlkoI3dABvV1oD80d0BgZzr5DDV3QPRKtFQkPndAYIcJ+pxBd0Ckeb2cfkN3QAyK+VJMRHdAauA+BBtFd0Cq4P2YSlF3QK76ueySUXdAMogVxytVd0CcS7uKRGF3QNaHedSPYXdA4lfQdaJhd0AeunazJm93QLwgaAGGcXdA2Ns/lPxzd0B2m5lPeIJ3QOcxq8oIkndA6KNOq5q0d0ArRxQkZ9t3QOj3mPvM3XdA+8+UgOrgd0CZc9QyauF3QPp5c7yS43dAlk9JMJEDeEAH9mTsoRN4QNCHqaBNFXhAgToh3G0ieEC4nOYIpSR4QDjMMuIRRHhAfzLDh3pFeEC1JgcLy1F4QE6gH1SUUnhAjWIb3IdVeEAdv29T7ld4QBzVpHhLXXhA3gmwGPlgeEAtGtKut2F4QNAO4pG3YnhA5fZNolt0eEAoI2i1i3R4QOgL32SvdHhA7uHaGcd0eEBuzFhJCnV4QKVVZT+lgXhAaO+CnJmEeEAn+PwdvYR4QIhJhf2WkXhAcMYud6eUeEBwA0UFuKR4QNgcRoONs3hAmC0QjM7AeEBT5fbSt9R4QHuMTQAC9HhAnol1p4z1eEDXOpTikwF5QFUQD8SaBXlA7dAtKaIReUDY28ZEjUJ5QKDd1NT7Q3lAzGAf3cxUeUBp8gyN2WR5QHALtphBc3lAjKrR72+HeUBPMo71zYx5QDxatkJxjXlA7yH4NsqSeUCMYTIoKJh5QOQ6sT9tnXlA1/KmpcCyeUAZuSC8hs15QB8NEdzK0nlAxsOp/kLUeUBOBddZy9V5QDGZl1zT2nlAKpM1MWHceUB6tgKFTuR5QAjiMQL4BXpAEsZgPKUjekDuOgoTKzN6QA4PslsMNXpAVCcxRS43ekCurR83MDt6QDQxNFcaRXpAPHKM5M9LekCaprJOhlN6QLx0GHviU3pAwHXzhSpVekC63yYs7Ft6QJaehkeNcnpA2k5JnamaekAU/g6+DbZ6QGhQ+SFo4XpANplArzbuekB7I4iOFfF6QLNn3L5g8XpAEKt/EUrzekD4hORNo/h6QFQG2DD//XpAPphXQUgDe0As/j5MWQN7QBKaSGwpDntAPqlYqcQSe0DospcHTRV7QIIzP5MfGHtAwHM+a1ole0CCFRmmVDB7QEOrjFsrMntA/mL87sQze0D69UDEmEh7QLwkGxbxTXtA35gWUSGVe0DSpDfrYLt7QNZ7tih5xntAbbjvFVnke0AurDgzmPF7QDz7hO4c83tASK5IUoz1e0DmNHPgc/h7QFwlCvDZAXxAIC2XUpoFfECmk5iMihF8QKpp7xDREXxActnM6ecbfEAwncjI7iN8QEjXzKgaM3xAksRcEc1BfEBer6wu3FF8QN1xN4FWUnxAsDtjtH1TfEAsMjmRDGJ8QKD/sqdkYnxAerTo+gZzfECcAAyZvrJ8QDIvUp9X4nxAYSGPJhjyfEAYt6uzVfJ8QGgXJ+MBAn1AT1ZEg0sCfUCNyRQOUQR9QCJNZ8pDEn1AhJxPcj4ifUB2WhfoK8N9QNtEzeeQ9X1AbnIV6EEvfkDiEI3UQj9+QIUdIhkvVX5A2h78oyNufkBmDHrF7W9+QLBiVENcc35AO78Kyb+IfkC4uttQWpt+QNS9LeX/un5AHOXgBNDffkC8FeAZKeB+QJIlWadT9H5ALlK4Hhf+fkDQi+ScGgB/QCGtzsRSKX9Aumm1+7Zxf0Cu8assrYF/QFiOjbCjg39AJM2DRmORf0BguhHyp5F/QG7FAcKak39Amn2AX6Gbf0BMl3q7XaF/QL+ATmdVsX9AIs8o6twBgECglSRUgxGAQH9xEr0vFIBA9ogZH90WgEBl7+1iAiaAQLuTOPgTKYBAl/44rwcqgED0RvGSxzWAQDOBQKegOoBApEgP3bg6gEDexAtL8EiAQIxJmGnnUIBAAvEfRxRRgEDqRK3qDlmAQH9eqvZIWoBAaa5aiExegEBeJeuq4WCAQKY48rTFZoBAbqryunJpgEAd4h2FGGyAQK1CMorDboBAOtZmkipvgEBuvkZXc3GAQERvmZwxhIBAhau7w96GgEDtS83EiYmAQM/kMG4dj4BANM1axR2XgED4q6s4hqmAQG7jyXl/sYBAzHRBiRq4gEAM6HpDfL2AQOXOcJWIvYBAWm+rcVLBgEBMbVSIU8mAQJ6DBaSozIBAVAxSNlXPgECPTPKtTNGAQFBDBK1g0YBA2fLRREvZgEA0JVPHROGAQIpeuV336IBAYoYYBj7zgEDFRXG7P/+AQGT71KdAB4FAXJ+RemgJgUCjHZrHFAyBQJCsel8+D4FAEAB9d2YRgUCMTcZKFx6BQAJfuQLkHoFAAL9/qjQfgUBqZ8jn5CCBQEMcnrw0J4FAlvy9ZOQtgUDUFXSV8S2BQKLa/+a8MYFA/iybS0FCgUB4jFuc80WBQAiWJB/kSYFAkuDfkOhNgUDem8HiMVKBQNz06RBcWIFA9qb+M8N0gUACS5l9b3eBQJgC0tAceoFA5Eqw9lSPgUDerRGK56GBQASHw8bWpoFAbM/Yg22ogUB0VoZjg6mBQModhhntqYFAor//cS2sgUBGoOWY1q6BQGsyzY5Kr4FAUik1cW2wgUAUmoICCLKBQPZBR1UFzoFAAmbG6wfSgUCeDluH2BiCQAfyPMbXIIJA2uYpc9IogkDgnWSZoimCQEQn/j+jMIJAut6B1Og5gkAitQeS6j2CQNTAyg/pTYJACTqZdOtRgkDQNMZ16VWCQFCjx3joWYJAxrxM4T1dgkDECQuH612CQODjxWTxYYJA7F/g5xx2gkAZKUeeIHqCQIBlMhFDiYJA+rAIc+KNgkAiBVRwQ5GCQBX+D0w8mYJAV9tHDA+hgkDGqdykO6GCQHmhCtgLqYJAkKfaQjWpgkCYOxECCLGCQHqeQIWu+YJAvZQ8dnkRg0BczHsJehmDQGJFKGS4GYNAS85YvXIhg0DU8+d+DCaDQAx3tGJyKYNADrhYdhEqg0BaU9TIqDCDQIY+lxRqMYNANlNRmWg5g0AIwk943EGDQNA+NE3fRYNAFHZuF0qDg0DeKkiKlPiDQGSFQ9hwMoRACgRvIXU2hEAWHQcuyDmEQMjaiRjMPYRATvVnnP9ohECdybDh/XCEQGZPGIv7eIRAJFq8OPmAhEAg9xPuw8+EQKCqCDdq2YRAC1GGUmrhhEAya04jzeWEQBX/hmhj6YRABxiHKzXxhED4vHwOY/GEQC40XKu/94RAzTXSVjj5hECgNFPJXvmEQAY6bMlr+oRALsJfbqBhhUClx43toGmFQBBmGkWYcYVAY1KLLrJxhUAuVs8XmXmFQKoMG4uQgYVADgp8cnHmhUBoKeKEOyOGQCBG5PBCK4ZA7EQjOXkuhkCmUJfffTKGQOTMAzOANoZASOGLApqShkCGn8NPnZaGQPCRwUagmoZADJdUBKaehkDoPY2XJLmGQMwlcFeRKYdAuHFG8ZExh0BON8pHiTmHQHzUz1JbQYdARxzkpo1Bh0DGq8Gpx7GHQJ4/lULIuYdAzrdsB8DBh0C8zfaLwMmHQLR6bWwilohAWJT6EyeaiEA= + NrgMGZxjYkA= - + - mSiJRLYtTUWu5olE6mTRR6HPmETHv9pFsIfJRKcwHUfQMMhFEKT9RrGhCEWtL1ZEba5kRJ2V0kR87sFERT52RKJ0V0XQLAZFzQoSRbCru0QDZtdETmb1RHV7fERkualFpQcJR+A4R0ZlnHFFgJiYRHPvoESG7dNEdezARuxuxkSsBbdFy9OxRJGWrETl9oxEHluXRH9wvUTOSMtEA4anRFd7cEVQVh5FEyPhRfPf3kQmjdFEQpZAReyVSEStEKdERGARRSKmYkSyjrpEjpyXRH2sq0R5Iw9F+qX1RjzRs0QVo+RE5mi4RCuxhkTqAAlFIXNLRzA7+UTmZINGUWQARrWA7UXalvBEcZ9QRTNtfUTIV1pFMxgZRdtAs0SL3J5FmRBBRUb4QEWC8PdE5EKERTJo3UVN+pBE1WF+RGRMi0T0d3VEFaOTRI4Rg0R59FlGNVvkRFY8x0SZFjRFsaqBRPYOZ0QsLwtFU1Q0RRKXaURpg7pEk9ebRN3Bp0TSGmdFsMyLRT/ngkTtgqVFhidTR6lgHUbaOBZFNATTRaFGC0VkqopE3cWeRLFivUVoBhRF7/aWRDjnr0QySo9Eue/VRMD7xETz3cFE5IjERJY+vERBRQZFvmG/RHkCfkTA+gBF6O8RRaQywETesRVFf4SFRG4i5ETim6pFBBKWRKeRh0ThHb5EJYuFRuJdc0RklsBEBwIJRTYWsUQSVo1FvkeFRAjYNUUO/3tEjzORRGIN10SN+vZE2hIuRZDljURtbCpFI6AURri5s0RKndpFIpb5RFHdK0dY7rZEmZBtRHLyoUU4fpFFrjhXRMCd2ER/zOBEsiCNRMYYrUQzTP9EzIOrRbQ2mkSom6VENQsZRWvsA0YgZ2lIs2PBRkO1qketfnVEbLVLRlaHjEUQ4oFEqyJFRe3NE0VNKTFGen0uRsfpEkVQ2oNEWLaORAdEBEUH1OhF3kuSRO1cl0TQM6JE5aL4RFaSXEVMbppFRTViRQVLLkWu4YVEyGm4RJkJ30TcBzVGUtuSRiFw7EXtM6xFBs0hRQTIiUWTMZpEz8/LRt/6+0d0kvpErpm6Ro7zbURXVWxFZOTTRqx/lUX5knZGdUYLRSQ5mkSj0vBEa0h7RMxtIEUX0Y1EXyEfRiYK4UR7/J9E6buJRIDvkkTtMRRF0RCaRB/Z0UThW+9EpRQwRWyFd0Th6ntESgV2RU3HgkTyMTxFqY5ORgIbpEXx7jJGr8JHRbmWvEXPD8VEMoPDRPpxP0UgoZ9EiTeBRb0oTkle2ahFaKBSRRA4t0TMCjFFvC9YSJnXpETYGCVFHq+MRj6BgkRc1N5EIqebRCoHOUU5ilhFYz2zRTKqzEVDr6RE/IWERKi1lkTOmIBFkFSURSqTrkSASqlEiH4LRVCDkkQqz4pGjNEkRp1aDkUBvBVF+XGHRXF2kERU+q5FE9DARe9z30QbzOFESzuTRAjS3ES9kMVE9FLMRBEeEkVLFMhHhnKURe1Lu0RJtOZGApmXRBk9bESYp1xFvrm5RMSTnkSu27VEuQ6FRC3ZtUW05ABF67y+RI5vDEVO9pRE6sJkR/5oEkcwnCxG0ewiRRdxKUVo281EPDndRTrhLUY+qWZFQ5hpRaPEl0RAyalEUZ+rRBZ8FEW27MxEWnT3RE0ExERu48BEERPcRC7MqkU32QtF4PuQRu4PokSleChGNe2KRcLkbETkYYNFdQ0WRo5/kUWL0dtEo+PSRffJvERL1EBGhaDKRCX6mETlNrxEguuGRDyx90SOItlHWG4NRcww1Ea9ZPpEFsCkRklMcETss3RFM6VrRAamgkTu0wNFrmWJRAvRm0SeHHJEC0e3RJz3BkXGvI1Ep9qZRHQIcUSeMv9EeTmBRM6pzkQngmhEv3KcRBWsmkQx145E+Q14Re7HqkSyj+VEyQs4Rr26oES8kCpGw0mTRW35LkWJyEtF7NfRRBDE5kUcWKVFEjArRdxYKkWXRXFEElO3RCMFaESM55REhVGlRDc+9URqKEpFTcJXRvIJoEWkmU1FjZbcROvsa0RdE7FG3y+qRohvpEWdWGFF1c4hRb1cCkVPm5ZFHB0+Rd7I3UQZbYdFUqGPREjQC0WxgoJEDjSQRAhEuUQzYLpEp7dzSK+C40fQsRxFpZO0RK+saUegvS9F389IRgBMYkUG8oBE+36xRIlkC0ZuuW1F4HpmRdQDNEXN0gBFzzSjRM46kkQWa2REbKo0RshlwkRJKgVFgeyMRA9Re0TJC95EwzqZRE4rPkUs+phFHpkoRUTfDkVmRqhEk/nuRIFa0kTfoqNElyyMRfYIGUXHvxVGsWAUReLFHkb5Z3lE70ONRR4GM0VgQn1FFRWDRPMMlEQ0p3ZFfTbQRGUrQUZsXKhFqWEXRQ8SHEW9U4FE2wfmRBpJrkSk5uFIyZJ8SHYrB0j4AwZHwzaeRBJToUWKAJJE1wn8RLokvER6fb1Hed8NRaP4KUfl7MRGFYvPRQZ1zEXgx/9EBWr6RNFcokQSnI9EoLDYR2H8NkcgxIZEtV7tRoZrL0XpFwxGKHnCROMpf0UdhThFwROERFMFwEUNrKRFlw52RNE8c0SUG4NFAa8wRe513kTr2qZEBdO/RWlhDUX7Dh5FpgV0RMhk0kTq8xJHcIVlRlzhmUTPgCpGO8iZRaFCPkVZdyVF9NmdRO2RoERzj9NEcdIER44QZ0YZ0uhFvMhfRPopcEXVdL5ET7V4RIxdIkb4ZlFFn6/RRYsOikVdc9ZEGDZzR/gwCEfMNTxGMPwyRXDi1UQWxCRGjQilRfhyV0WO269EFJCNRGXUCUYHiXtFTdQ3RdT0nER1edBE0oeHRA== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - DBi/wTDBckDBdzu6b8FyQDDJvfNOwnJAwlGkiqfCckCeEL5PO8NyQHcqJfDCxHJAWV1EpljFckBsjCpgAchyQL5v29NazXJA14t4hUPSckAD8xBDTdNyQFL1hG9203JATiL09c7fckDrTC/buuByQHChPZBQ4nJAxKAohJDickDSkix8v+JyQB0g2OPJ8XJA+mMcHvXxckA6mblAufNyQFv8vLmi9HJApnnqt8L/ckC6oQyM+gBzQN5zstdLAXNA9etnN40Bc0AkjCaJ0AJzQCDv7sL6A3NAHDBRewoSc0BUczflvBJzQCpYD44GFHNAAEPDME0Uc0BFpoZh9hdzQE7nC3R5H3NAu4kp6qMgc0DNYAPaOCFzQKZBUY9mIXNAX1Dqsskic0CImVfWDyNzQFyAXtY6JHNAqB15384kc0BwJQOVRjFzQIWpu+NbMXNAFokSdc8yc0Dhzz5BDDNzQOSBEMuiM3NAoS38pDY0c0BSm2iz2zRzQAtTLDO5P3NA6BP1XOJAc0C4/e4HeUFzQDHF7ukkQnNAXwZjvHpEc0DEuNt6mFFzQPpg2g74UnNAZibLdEJTc0DahFaqo1NzQK1GQjJ5VHNAav5W64ZUc0AaQH2ci2BzQKM7m2I7Y3NAOE0Sx09yc0DQeWrQtXJzQPxW5H23dHNAc7dzOUx1c0A9IDHmeIBzQFVhwYakgHNADhX/H8uAc0CEppqVDIFzQLDxvjJdgnNAoIO4Xw+Ec0BSmgc/W4VzQJY6pUuIkHNAbEXyCU2Sc0BJ+2EGzpNzQKSd+pZilHNA6Arf2veUc0AL6TH9t6BzQBLmlAROoXNARELCclqic0AJR1PE5aJzQLdEBdcEpXNALJ5kP32xc0AiPKIntrNzQGpFNiYOtHNAWoqn/PfAc0AEl4WSz8JzQJL3S40mw3NAWf1yqsPDc0CGJI4v19FzQIIEgBEK0nNA0oAH2LvSc0Ab1GWf9NNzQIDe0Jjh1HNAvtLQcqXgc0ANseXDOOFzQJCa2ypl4XNAAdIbhTf0c0C0oDHLeAF0QOlQHhulAXRA0zkJuIkRdEDi9v29TBN0QJRCI0DhE3RAavy6bXcUdEAQAI/USCB0QJM0apm3IXRAGjeo/2cjdEBNoAWYujJ0QJ9L22HnMnRAKFIqChI4dEAc3aXFeUN0QALLPtj2VHRAtHXy8YtVdEBeWYaHuGB0QEhSGt0IYnRAcWy9eVBidECCrjelvWJ0QFbyNurkYnRAVKjWAE5kdEBqhhlFI3B0QKJpHxBjcHRAUgr9KEFxdEDGhenSOXN0QFDKVro4dXRAKBETjPiAdEBaaXtPToF0QAr26cKzgXRA9KV97EmCdEBuGPAsR4N0QEbqxcIWkHRAtgVzrF2bdED1bsmD0KB0QA7UTGO7onRAVfOLENKidEDrI7rpD6N0QATO5sJipXRACJpOv0qrdEBsU9XeCLB0QHCrL5TEsHRAXCoCS+LAdECS8op8esF0QDiyWN8ixHRAMDuXMn3EdECfOhFPuMR0QDQB7Xn9znRAt6qU5z3TdEBiKYzJ4NN0QGVI15p41HRAQh3OEtDUdEDK3mh6uOF0QOhyayaQ43RABN84J0/ldEDKQZhn+u10QHdBLmkI83RAsMexg1TzdEDiAB9/jfN0QIh5vLvOAHVANyDME2QBdUC1jg6pXQJ1QKyBa0SaA3VARkca8GkSdUAaNGt/IxR1QAAUtVidInVAYPFOcc01dUCAByYsJUN1QLSnS5qBUXVAw+zKwk1UdUC8+/d9d1V1QIB54tgLYHVAK5q4njlhdUDJbyGz82F1QBDIU4oQY3VAsbNonWVjdUCa57VkeXJ1QNobCWqNdHVADn6e+3eBdUD+lhJ8rYF1QALrIcIQg3VAlDmliqaDdUDoVu3im4R1QLGpYCO8kXVA/cDY42qTdUAwmYfKs5N1QPCuWI64oXVABlZPxd6idUAMlCf9X6N1QD/XOQiWsHVAN2RUB/rBdUDYSiGKzNN1QMg5IK7k33VA9o7sZw/hdUDN1awWCeJ1QHYuC35IAnZAglfsPdEDdkA+pcA5AhN2QADHoLhMFHZAYkxjRgwWdkDc7YCBiCJ2QDyTun2QJHZACtt2skordkB469TaHzF2QFNgMxJSM3ZAL5R0lpIzdkAoJzmJnTR2QB5qte9YO3ZAuAKXbx1BdkAGnk9JekR2QIJWnKT1R3ZAqxHGm/tOdkDIL8rXy1B2QAlAYFoRUXZAtin0OmdTdkCwo+yCh1R2QFXvNqvNVHZAVTJm4CJhdkC4dkRGUWN2QDBf/GPbZHZAatvAal5zdkBmLVvakIN2QJSVfzmdk3ZAisfSKMGydkA0gdx4ebN2QMM9jiUNtHZAfkPfstK4dkAeLSiHwMB2QD5fBzQbxHZA+rmp6s7OdkBPQ9MVftB2QLDYTWKQ83ZAWnoT+jMCd0A7z/qqUQ13QBZ+IckBEndAIzt8uY8Sd0AgJ0plqRJ3QD57B7HpF3dA1wiMKAYYd0CU88N+DiJ3QOgxzf11IndAyOvtDCgjd0CERHDWPzR3QBT8Y/0MNXdA537F0CQ+d0CKpbIVnUF3QJZoRVR4Q3dA/PRNmU1Ed0AER1caG0V3QBhmXBpLUXdAWs3noZJRd0B+mftZK1V3QG5iOVaQYXdAWjZUYShvd0CsaYICPXF3QJ1MHPT7c3dAXtbk53eCd0AyC/ere4N3QA6hj0lNlHdANt3UyWbbd0CAfXc4y913QE/W7ndo4XdAikf0MG/jd0A4257rkON3QNhNEOt+6HdALjGlt5ADeED3v72obSJ4QFwgSKeKI3hAMOHKIqYkeEDKIITWtit4QHSlTdMNQnhAM3MYqxJEeEA1uKJkekV4QOGB45PLUXhAMIZhAZVSeECRY5cSiFV4QIozB0fuV3hARuXWzEldeECaIQBO+mB4QPCDAt61YXhAiPi5I7lieEAw+gfbR3R4QHYdVXhcdHhASA53iIt0eEDkTmLRrnR4QF9tNvY4gXhAnw0qGKSBeEDfuSvNmYR4QBTHvpqXkXhAjJ/bM/KTeECS5GdTp5R4QKJq81K2pHhA/sxMIviyeECsGYrjzMB4QEcLsG4HxXhAvCwFDLnUeEDSwyp7AfR4QBbYm0qN9XhA6D+9AZQBeUDcBofTVQN5QKj37KWWBXlAMlKJgvA3eUAVdxlfjUJ5QJM6VWD8Q3lAOt+zM8xUeUCxrup62WR5QCrmlnxDc3lAuwlDfPmBeUANrPt3cY15QA1QkbrJknlA21HEKSeYeUCMYegKcZ15QNuq/LvBsnlAu9Qh28rSeUCEfamEQtR5QNWkiHTO1XlAiW+XT9HaeUASb81YUeR5QJTj+HT5BXpARN6zLDojekBsOexOqCN6QGap7kosM3pAyG2gZAw1ekA241I+Ljd6QJqN0a80O3pAdPEEiBpFekAHrVkjz0t6QJDHgSrhU3pA7sdeyShVekCgw2pV6Vt6QPZUxZwhXHpAaq7SfItyekBU+am7HpN6QEQ4fjwNtnpABLcVhC3DekBO773cGsZ6QEI+301o4XpAzej5mnjkekDaPjunNe56QEXHqc0W8XpAmVAeQWDxekAUZW5qSvN6QI6jGOCj+HpAkFnnsP79ekD7hFr0RAN7QLRLS5AoDntABh/sQcQSe0CK556VTBV7QHSYpysfGHtAuRJ3C8Mie0B0yw6GWSV7QKUOfeJTMHtA3ZRPKysye0A6VzS7xDN7QLjvzgOYSHtAJeDVS/JNe0BDGwKkIpV7QMzRsvWks3tABFO3l3nGe0CyVfjbAOR7QO0LbXpZ5HtASN5hRh3ze0D8w8dtjPV7QKymltCNAXxA/tqSIdkBfEAw9uPd9AF8QNEfKHaZBXxAREAxmooRfEDufWKp0hF8QCZmXDLoG3xAqogJhO4jfEB4XkmeGTN8QO7XTR7OQXxAirr3w9pRfEAjM8DqVlJ8QF7ZEAl/U3xAimJPIA9ifEDR4BMIZWJ8QFQbWb8Dc3xAyh7iKM+xfEDoDX+AvrJ8QLDycVLM1XxAAReu2VfifECuJEsYF/J8QKR+qCNV8nxA8goWkwACfUAeJLv3SwJ9QHYa3tJRBH1Ach6sD0USfUA/6VHSZBJ9QJR9SQhAIn1AqAAq/mOvfUCHsbWgkfV9QPzrKYBMFH5Adv/xt0AvfkAsua/mmYN+QCjg0dNqo35A/F3XUf66fkCJwH5MCsN+QNC+cWsn4H5Ab7xjVxT+fkA0ILUmIQB/QJL2yh9vA39AVpY91asuf0DW/vL0t3F/QEQep3+ygX9A8ldhe6SDf0D6VL6sY5F/QJSOS8eqkX9AdmpYrcKRf0DKoNlKm5N/QEp7tGmim39AiBL0ml+hf0BjqFsPqqN/QNwBgHxUsX9A1xvPGkgCgEDLRpF7gxGAQCg+FsIvFIBAs3GfwN8WgECgX4aqhBmAQPxLRQgDJoBAhav6tRgpgEBSbN9t7imAQPL7/DD2SIBAqOP6pudQgECIL2mIE1GAQDCpNB/tWIBAIE11tA5ZgEASCd9Q2lmAQHQ/vhtIWoBAkEsqAE1egEAWgFgExmaAQH61xIByaYBAst7GNhpsgECuoDjZyW6AQJElLPMob4BAso0BBCl/gEBPtNpPMoSAQDzfpp3fhoBAZKALCYmJgECAeJtGHo+AQNF96YGGqYBAuuL+t9CugEAoXoBJFK+AQK0Eze9Mu4BApWHn3Py/gECPYPqBUsGAQEOjbbxTyYBArA4nSanMgECUyVSMVs+AQPx/4X0s0YBAEm5Dl0zRgEDS6prTYNGAQIjxBIZK2YBAKOzEOkXhgEAKvhI09+iAQIIxGSVL74BAAmR34TzzgEAWS1z/P/+AQOScqS9AB4FA7n8152cJgUDs+ysnEwyBQGh+QDjBDoFAEPkWTTwPgUBP+DrhNB+BQODePyI2J4FAaqMj2uYsgUDQuYxuvDGBQEj4B95CQoFAYvnE6PJFgUClatJS5EmBQLb1XoHnTYFAk2mi1jJSgUDi0qtCN1aBQKNWHFDCdIFAqq/B/m53gUBoPY0vHnqBQKYj3OFVj4FAyFecNVWXgUAnhyLhUZ+BQL8/pU/ooYFAGxlkV9emgUAoh/hTbaiBQFiIPXWDqYFAQN4/sC2sgUCF3WmE1a6BQD6I0HdKr4FAVk+V5AaygUAiZ+CWBc6BQOnZdEUI0oFA4KSfx3zTgUCgY/ptsfKBQG4k7I7YGIJADMJ7HtgggkAywT1k0SiCQNDNzCahKYJAmMLISug5gkCkQFUv6U2CQPxNxZLrUYJAopSScepVgkDooGZ551mCQB8q7ovaXYJAchCQVOxdgkCO5Zd+5WGCQNUY8KIbdoJAwl9SVyB6gkAlZpY0JX6CQJ22SDRDiYJAv1JlFOONgkAYhsNpQ5GCQER9em48mYJAa6yibw6hgkAudPHpOqGCQNqmMHQMqYJAptihBDWpgkC05L2tCLGCQOnQ7LKt+YJAMNWfhnkRg0A5xCoSehmDQLpnVAVzIYNA+AfcTQ4mg0C4QU8NcimDQLiBDKkOKoNAfnTRJ6kwg0DkDOh2ajGDQG5+3yCyOINAy19Zb9xBg0AA/luZ30WDQNuYai3WSYNAtO/bakqDg0C+0tXCvQGEQGdgeQbABYRAiLIJTnAyhEB+8S2cdDaEQOJ3wzbHOYRAvkxhGHc6hEAEXJW//miEQKayszn+cIRAdvJd7vZ4hECPX+MtIKWEQAphCzfDz4RAjhORI2rZhEBuC/lNauGEQOac3CNj6YRAmtcNmDXxhEAM1AYLY/GEQGR0rqa+94RAsJlOJjX5hEDQTnlLYPmEQCXpD7Zt+oRALl9UaaBhhUBkn0G1oGmFQKRSJviYcYVAKwBJTLRzhUANLM0JmXmFQLY1yzKQgYVARdKr+m3mhUD290cYPCOGQJg6o3ZEK4ZATd4QpXguhkBCHjDJfTKGQAJ2xMqZkoZAOJ82Kp2WhkBpjGmboJqGQKC4tJCjnoZAWq1D15Aph0CIuOdUkTGHQORJW+yJOYdAGZq2TV1Bh0AYEZ0kikGHQOR7C2vHsYdAZKiIc8e5h0AF7xa3v8GHQDn9RtfAyYdA/xFYCCOWiECUGB37KJqIQA== + NrgMGZxjYkDOIQhxcmNnQBu6YmAmQ3BA525gjBHDckDiFPeZPnR2QA== - + - WQZeRLQpnEWrhIZEhIK0R4jpBkZdKYlEfUXERC5wKkcoX+FF4GgOR0qzf0QM7OREuqU3ReeB80RTFVxFLuxtRWaGrUQy64hFJByMRB/koUSOGBBF3lwxRRKZ5kTPMJNEy9PnRGAaCEYw/x9HEv10RGPHkEYErapFIPWURHUqjUQmvpdEllTRRCKG4kZp04FEtEytRBhGMkWf/n5Ee2WWRc0SSUUrO/hECBqtRExxgUSsQYZEQ4qgRA78h0ReL5BEDByRRHvFw0VxnDVFnCEvRr+ZlETQUgtFzEWwRPZotUV+X4RET8yARDE9x0RDsB9FyEPBRDl7g0QiUa5EGttHRflUEEdMDhlFAJVzRLcsCUVeaqdE7nyNRJMjg0Q5NoNFO/ViR3SvnkRhcJZEqnGgRo2EIUYn74BEbjjmRfSJ4kR0+ktFQXGHRFfDqkX4L0tFMLeURDAQz0WLa1FFl5uZRNcOLkW55JpEKLIGRUfwnkRTuKpF7931RBjG5kUZxp1ENTTrRIW6okaoqAZFkaKaRBI6ikW5uWtE9q6aRHqzxkTG0ENFYCSiRZakmkSYG4BEon0LRa16vUSfjq5E7DEDReo3mEUGom9FUD+sRCWdmESl9ZpEzk/xRAlmvUUdF3JE/uphR1dssEZzmrFEEz2ERVvo8UUmLzJFyFBxRMsdHUVlR5NFZzLwRG/Su0TRlIFE2CV6RJG/OEWI04FEAxq1RAYBzETAQclEBjPQREtSqUTK7bJEqIuJRMl4PEVjQ5VEaul5RA0UqkS4iYpEUzSpRGm3dEUMtKdEhrXWRLUuCEWOzelEbXGdRIGowkUkCuhEYzOkRLNcjkbsYLBEjwPzRDppPkWBk6RFUsomRaqzYEQDmHJEuk/gRAucIUUAq71Ef4slRWkWEEWyEoVE0TiwRPcCrkRHZS9G1V0aRYBt/kUx7GFFlv2XR2gFw0Slw6REqr1nRVLl9EUJtrVERdK/RBZWtUR2/2JEFqYLRWcfHkXwN4tE8Hh0RIRjLUUsUQNGN9wERWW0nES0qqxE1bmuROP/OEUI+hBGmstLSDBjvUaBKIlH8KWARKYAykTwxzNGTcmtRfh/UkVsUoZEoUedRNSAkkSrdzhFSl2LRMzRi0Q8XjxG+LqiRPRofkYhVRpFz2rqREFg60UU9a9EpG0jRaGXo0V/KJhFO9oaRTwQiUTEN7REx9cYRYLE40Rf8CtFQXv/RIPXP0Z0E5dGiesJRgDfqEUCCjdFq9yqROIphEVLgJNEGdI9RTQLYEbq9P9Hbc1YReWyzkanwHFEvq4eRYR1ykao1ZRFJLV6RkhLAUXlrGZFDyKHRai0gURaMrNFkdCuRIuil0SFSb9ELqqKRGkJ4ESuWRZF3vFbRP2Wn0TvCoNEgRzlRNMwmEXprHxE8KxpRIvd8UTC0Y9Ec90rRQ8qUUYpaLpFxBI2RjTpFEXxOWJFZPYcRQ2N50QK0jhFc8SURBdyH0UoKo9F6ZleSW33wEV7oKlEYd0dRcprbEi+1MlEh22ERITyvkZ6PBFFGzeBRDCgvkQ86MREMb7jRD9io0VhkthFxpIeRiGNhUQ7volEYZdfRMlw4EQopqFF5/m5RYPdjUQBqsdE3LWYRI2epEZ6sQFGmBdzRdpmn0RngD9FSeW3RYVOzUXPBhVFwwMERYrxyERQjfREy+SsRGmspkRK9ohFB97sR5CANUU7A1JFPy7rRtc2tURIY4hFQVHURMBH6UTH+QhFgYmPRGgGdES+rMlF4NWfRHZJB0UE0yJFCN/dRJLlDUVW5gVFFR6pRCf4dEegSR1Ht4nwRR0JokRE5sxEfNAbRvK9PEZZ3I5FVEuARPqNXEUXQYxEkZm3RGbHlkTOr/REy076RCqAAkV206VEqUrjRFqreURlhJ9EheQfRXZ9q0YTCI5EobhFRmXef0VYnMpFYU2mROzEoUVAYSpGmjA0RS0Wa0Ut3tNFaLeYRPxzPUboVMhEidCURPIRHEUuIJZEk6uGRHS2CEUIwKVEBZLuR/EIMUXwGvRGoyUSRWW3t0bsmIlETupxReC+uERQ8KVEh91qREk14USP2Y9EvIfMRNo7ikQO4NNEuIAvRTwXnEQNbxZFaDawRJMg+ES5s59EnZuFRBJ1pEXFALlEvBaqRJnbNUYpHaZEL32qRNWvHkbLCXRFeUw4RRsYhkSQHvlEJK+ERBqxA0b2kLtFy8rURCn97kTA/pBFRQlxRMxvskR4U8VEOxaGRWFhaUY0c4NENk+/RS4QkEQ5WpdF7ybeROXpzkZB6odGa6DoRU3ALEVP6QNFSd9sRL8djkXOSTRFaOerRGj9qUWWzdVElYknRWrB+0T1qWpE7rOARNSpiUj/lQNIj14jRYW5xUTxXthE/XWBR5ZacUVqflxGIhmjRVkTx0R/pN1ExzPORBiVGUaYZQdF+nqCRUPKRkWdIoRE7aUSRXGGGEZXJgNFUDSyRGJu4ETdfNVEgnYtRTvFlUWFGzVFPnjpRLIj30RNp15FErX6RNrMjURyvqJFSznBRMozjER3vzlFZLTdRcWGIEWi37lFSmVnRf/oC0Va2hdFCG2eRIoAiEXnp9JECQ/kRApOi0SVhkFGpUhJRWFyVUU1z8hEOa4VRapFpkhz7jxIDo1HR+1lmUb7RalESz1bRQGq4USM5IxF4qf+ROPWjUSAD9JHjmssRUbYKEcBeddGteraRRaPAEZihAlF1exXRcT6+ERPm81EPxTaR0/WVUccr/ZGmlUcRahp90UbkL9EmYiRRbrsK0WlHYFEX2XBRahrJUXVX55EMqJ9RGacz0S+ef9EKSatRX1KIEUScQ1FVVmnRDn+2kU852hFVm/HRBPEmkSKqXdEn8oWR1aWiEaayRZG0QyWRbHyfkWuq9ZEPfjWRHgWnkRSf51EwJMERztPf0ZDry5G6xLLRF52hkW1PaJE5Wm2RGYP5kUwmQ1FJWCmRV93T0U+7i5HcOsHR/8pSUZ3a0JF7TAuRmgZqEVxxG1FQ1q2RLHbL0VUUBtGKWCoRYNkbUXQ0d9EIf0yRWVrlkQ= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - ltgg2nrAckCALnsqAcFyQHbd3AgqwXJADh7YsnDBckB8wRO0T8JyQH5vzX2nwnJAPwcaDzzDckCiXR10xsRyQJRRRUddxXJAOIN2fAHIckBA2lBVWc1yQKJae/dD0nJAiURaaqbSckACDtLdsdJyQBIK/E5I03JA9dA8fHfTckCjUqqQz99yQOMohjS34HJA8A9egVDickBfrx0rkeJyQIRerKgh43JAeIVHwsrxckAUDnckyvJyQLsCy3m583JAaDqbW6L0ckDCQ3qPwv9yQIYKVp/4AHNAEDm/JEsBc0DQ4XtmjgFzQMCGRhnRAnNAHJCs9foDc0Cax4uBDRJzQM6SYm69EnNAtHxTiloTc0Ajjmlq+RNzQFY6J+FNFHNANLJm6Xofc0AoPwrapCBzQFYVWZw5IXNAFIo6C2chc0CFRvOHyiJzQBeGE78QI3NAp+tqrdAkc0Ccj+qZVzFzQKo/gzJoMnNATKtCJtAyc0A71m7i/TJzQG7DJaakM3NA+Fn4rTg0c0CtcacSzDRzQG4nOO66P3NAs52WguNAc0CO0QiYeUFzQPAwe3+kQXNAMDBI6iZCc0A4MC0HvUJzQIYU+fx6RHNAB7c8MZ5Rc0AmQts99VJzQMITmvFAU3NAZKKRsaRTc0D6BuYmhlRzQEpgQx6LYHNAhG4vGR5ic0CXyfyMPGNzQIGNBMfOY3NA+k+eTFFyc0Dbav1DZ3JzQOqlQYKTcnNAWwjU/vhzc0BJBtzATXVzQCjQTk95gHNAIK3th6SAc0CGOCsJD4FzQOovFu3HgXNAjHfuNF6Cc0AG7JaThpBzQDT6AltNknNAqycVxc2Tc0AS03psY5RzQC2rwvX3lHNAOUnupbigc0CeBp8STaFzQBqhwnJbonNAgQuAleaic0ADuR3kBKVzQOgKGgzHsHNAMmZ8ujWxc0Dc9xERfrFzQCKK7DS3s3NAFafdOA20c0CbrmbSpLRzQHxegDtkwHNAp9EqjPbAc0DUD3/9z8JzQICZNvAnw3NAYAuULtjRc0D2mEfZvNJzQO1ANJfe0nNAAdGF//bTc0BID5Ar49RzQFz1ZSqk4HNAT22vGjnhc0AhR6M0ZOFzQKNmFTd74nNA8IL44PLkc0CmK5l9ovNzQGhlnYM29HNAFqQn04z0c0CIO9eqTwB0QDRAtQPlAHRA9l4pOXkBdEB5gPqrpQF0QB6tiWSHEXRAmwGnFE0TdEBec+a34xN0QAkoV9+OIHRAbtOaebkhdEDoIzk+aCN0QAIEnVRTMHRAAN+H77kydEA8tvlzczN0QFyr3/EROHRAWdV/r2w9dEAs1jf1eUN0QAhUD92kRHRAepNOQPdUdEAvTzbNjFV0QGQu7A65YHRAdlz2hghidEAMoQxOUWJ0QKAnNOZPZHRArOXq3yJwdECS1wI5QXF0QL4Q/HU6c3RArC7E/g50dEAI2avdonR0QO7PVmg4dXRA0JcJbvmAdECefaXtToF0QJa5J1yzgXRAsp6dWJCCdEBMyYLZR4N0QK4fuD8XkHRAStxaZlOTdEAV0AEFXpt0QKezWOfQoHRADyb/FDuhdEB5XLmXuKJ0QKs7p/oRo3RAhCqqUGajdEDm+XbgS6t0QOS0socJsHRAu/ZxPXSydEAVXs8H5MB0QIwxHC54wXRAEGcIG+rBdEDWi8MxuMR0QEL7XmX7znRAOlvFmDrTdED76Z/14tN0QF/S+7XO1HRAhy3DyiThdEBomxziuOF0QOwsfSlN6HRA7gMDRajtdECoyOUP+u10QHtZcwIN83RAhgrw3lfzdECWHDnWjfN0QAXW7z2kAHVADo0cfWMBdUC41MTYXQJ1QE76GJGbA3VABWapt5oQdUDiHTrXbBJ1QPobD5kkFHVAwO0Hr50idUBkr2dkzTV1QIKRmln4T3VA8LPKp4JRdUCL9v6p5VJ1QAgF2hh3VXVATCoCGgdgdUACZ8LHOGF1QGIE8d3yYXVAFVcFsndydUBOr2kyjnR1QDLszSp5gXVARDBxsa6BdUAy1Zk1E4N1QCC9Sa2mg3VA+S5tupqEdUCIaFY9iZB1QMsfdX1sk3VABrIYt7STdUAwWRhZuqF1QLflQ6Fco3VAsqj3lH6zdUBOtcBV+cF1QAwznFXw0nVAhDfhKczTdUAGl+ydYNR1QHVtwBsQ4XVACtFLYwjidUA6d+HTOOV1QJJj4EFJAnZAo2uWmdEDdkBUls8BThR2QPA/9VsOFnZA8imhZ4kidkDf5VOmkCR2QKdwTSNLK3ZAYgQprR8xdkDhtuv1UTN2QMQ0BZSfNHZA/zM0hlk7dkCah3CFTEB2QFhMCTEeQXZASUNaB3pEdkDYAd4h9kd2QK46UiTOUHZAo37vTxRRdkCOUUCzZFN2QJAa3EfNVHZAcHrI4hlhdkDCOg6sUWN2QMPjJorbZHZAXFNneF9zdkAYxqeVNHh2QGSkY3ljgXZARKAVk2qCdkC2yfTA54J2QKOa/5uRg3ZAslW8IxGbdkBAAehOwbJ2QAl75FB4s3ZAVLsC9w20dkDCstdb17h2QJBI2o3DwHZA6ob/WhrEdkDYxP/czs52QI9qaVTy4XZA6aIyk5LzdkBskbF5NQJ3QD88nvdQDXdAnL26lwESd0CQGB0GkRJ3QNfUEPLnEndARyluWOoXd0Cu7lpsBhh3QHwsmmFDHXdAJ8xoFA8id0BgKwpJKCN3QBfsjqw0M3dAKYzQJz80d0DK3O7mDDV3QL70Xl4lPndA1sApGM5Ad0DhLK15nUF3QKfN80MbRXdA56Od0ktRd0B3ZnuhklF3QDNyn+vyUndAWArovSlVd0D0K1llj2F3QG4Pxuo9Y3dAEsCRdSdvd0BtBhHxhHF3QP6HnVH8c3dAnrEFOHmCd0AsPkxACJJ3QBB+iw1onXdAhCJ80Zu0d0DiQg07zt13QBQ3Lzxp4XdAJiDmQCPjd0CeW7uTkeN3QE4CDjXr8HdAxDVdBlDyd0Cm6VNGkgN4QGbWvN1tInhAWBlA+7UreEDWMYgDDUJ4QJ4JX8wRRHhAUuC8jnpFeEDCHCoYylF4QAq308GUUnhAPhkG6IhVeEDYRhxq7ld4QIKHyKD4YHhAoF/uN7hheEAYb6vMvnF4QJ54ZaoidHhAmkkQhIt0eEAwgnx6wXR4QGoLsALQdHhAQbvjqhd1eEDEcPsspoF4QO/zW07rg3hAiaZY4JmEeECJy27smJF4QPi3eu+nlHhAhN3kOc3AeECgfB4H9MF4QOeKvqAIxXhAcNMh2rfUeEDLjmOvxOR4QLIde7UC9HhAPYWtkYz1eEBUYV5YlAF5QE6zPrKaBXlAa/cmv58ReUCWCDIk+kJ5QK3oFfX7Q3lAUsRQeMxUeUDHBy9LcY15QDPNmWbLknlA2tzngyWYeUCB38CNwbJ5QB11i8nL0nlAhsACTULUeUB3RHaZzdV5QC6XpUzU2nlABC5TaFPkeUAQM9wtmfB5QCxvS1dF8nlARvOTbvoFekCcNT18qCN6QHaaeyIsM3pAYBc70ww1ekA14GW0Ljd6QE6VgNLoQ3pAYsg8nhpFekBJ4dw1zkt6QDY84yqIU3pAROgbtuJTekD+i6zSKFV6QA3Icp7nW3pA9th/LR9cekB2ojlEH5N6QGraWlLtrXpAkjBnQg22ekASQgzVLcN6QFHcRX4bxnpA5n1moCfWekB4VePBaOF6QJyrDVA57npACQPmphfxekAc+yvYXvF6QHjPTxBK83pAtrUrSKP4ekDctNPh+f16QB9dRj1WA3tAWDc1CKgIe0DasXmdKQ57QNpRVCPEEntAHkE3l0wVe0Be/ETVHRh7QEEWhOVjHXtAX2IjDVole0AHm/JWUzB7QNR5fBgqMntAMsLHZsQze0DCHX3RmEh7QDQobulcUntA0EY8TGZ7e0DRGEx5AY17QLaim9UhlXtADHFFGqSze0C8lRXoY7t7QBKwRiV6xntAXL8GZvzje0BSAqrDWeR7QLBxE1Md83tAyXcXc4z1e0AWuj9L2QF8QCyzyNj0AXxAuDs06ZkFfECMm9WA0hF8QBgyAqnoG3xACpTHH+0jfEBaeWr89St8QAwHnSQaM3xAFOBdQ81BfEDy5mkp+EF8QAYoL/LbUXxAXjKgTVdSfEDGJhB4f1N8QIpIP3HUWHxAYF6wtmNifEDAYh83w7J8QALMWdtX4nxAemx6o2LjfEAWSda2FfJ8QFivqtpU8nxAf0e6MQICfUBWg4G2SgJ9QOqpfPRRBH1AqqbyBQASfUCmVJDERhJ9QM49LDqMQ31AIkNQGCzDfUAJKLgu58R9QDr/sUDZ4n1ABN8lBknrfUAmYe0akPV9QFFxl781H35AkKR8uitVfkAEFy3UjFV+QGhsMhVdbH5A6slNN9NvfkBABzE7QHN+QAcDI1oodX5A+Jh9LZR4fkCY8vq/z4p+QPnCIQoAu35AF7QlGc3ffkAiiDuBKOB+QBaHcCNP9H5A0UQwUhf+fkAz3UAQHAB/QO45tDeFGX9Ahr8MclQpf0CK8/2TJ2V/QM0D/m23cX9A704v3q2Bf0A4ghWlY5F/QJLr7K+pkX9A4uXe3JuTf0DG4e++o5t/QI6PABddoX9AMXzv74ijf0DG3/ThVbF/QD30tB9HAoBAZSW3VYMRgEC4JwJEMBSAQLihvjDeFoBACv7B1YQZgEAWReHbAiaAQGaz0SbvKYBALG28FwcqgEDmy06j9EiAQDbAvTToUIBAd8YfpxNRgECanAkV6FiAQDC5HloOWYBAEDZw7UhagEDkmkjwTF6AQGRZylrgYIBAdgZ49MVmgECC0DN3cmmAQJaYexgebIBAAjyEg8ZugEB2gbwxKW+AQNfWJT1ycYBAYE5N0St3gEDSaWjDJX2AQGcLSXkxhIBACvXFNN+GgEA6RBc+iomAQN7Bwssej4BAJGqvUYepgEBiwiX80K6AQCFrLWsowYBArlrXrFLBgEDFKPB8U8mAQAhTiYoHz4BAvMl5vlXPgEC0S2NqTNGAQDJqylVh0YBApjFFqkvZgECvPrPzROGAQP7NXzFW4YBASoMKm/bogECv07WuQemAQI4vWSlK74BAZqZwxD3zgEA8fkH5P/+AQKcjYzRAB4FACvHJrGcJgUAkEb36FAyBQGRnoSTCDoFAwFDvJj4PgUBzSJZ5ZxGBQJw2HVE0H4FAcZmNfTMngUDTyfmltieBQNkF4dfjLYFAvB7RIb0xgUBSggVBKD+BQNytSSH0RYFA1P9VN+VJgUBSGQxt602BQJ3QZa8yUoFAo/3brMJ0gUD+68w4bneBQB6+hSZVj4FAv0LTulWXgUBwvX3RVJ+BQP7yqm3ooYFAoh7CkmqjgUCGlWfe1qaBQOZosv5uqIFAeu9GWoOpgUDxl8MJMqyBQMLmay5Kr4FA4nF3owWygUDhRMuZBc6BQPEuIjgI0oFAsNdF6n3TgUA/8avLAgmCQIiHlnzYGIJA9ghuHNgggkBSGAMk0iiCQFeH8RahKYJAO9HDq6MwgkA2VfLG5zmCQDegKz/pTYJALkrkxutRgkB0w91e6lWCQI+NgEPmWYJA3PsXu9pdgkDjsPxK8V2CQPinIRUcdoJAJCBF6x56gkBGV8qwJH6CQMiEKmlDiYJAp+HVOeONgkCYyYdfQ5GCQLP1xSfnkYJAJhV3WTyZgkAIJ4FND6GCQHz/FqQ6oYJAwHfjHg2pgkB8WrbuNKmCQJdnUVoHsYJAmOuvc6/5gkB+6kyGsgGDQGpJ6pJ5EYNAZjywF3oZg0B8oM1VSiGDQHoHqJdyIYNAXkAeZg4mg0A4LPfKcCmDQLYxwmARKoNAV0TqPKkwg0DCmRqaaDGDQCDitK6sOINA1Kq8pWk5g0Ai0ebioECDQP6ZrP/bQYNA6pi+tZFEg0C9Q+No3kWDQKI+OfHkgYNAaOp7uUiDg0C5kF9rWqCDQPpqT2bevYNArHv9M74BhEBY62ccwwWEQEDvTdu4CYRAyMf1dnEyhEDmY36BczaEQFQBk/b/aIRAatgkJf9whEC84CGf9HiEQEfmKmn6gIRA3juPAZODhEBCAppJy8+EQNiJx8Bx0oRA0OOOWmrZhEB3kukAauGEQBqYQqxj6YRAoQzp5zXxhECwWbOXY/GEQFq3fvu59oRAjP6DusH3hEBW9YtRNfmEQOiVaDtd+YRAoh1L2W36hECzPAmIMwGFQH5XjbgKS4VARoP4UaBhhUBJUxdloWmFQGm5SiyZcYVAKhVpArVzhUCAwHKomHmFQLTrQi2XgYVAUf0nijwjhkDEuSiKQyuGQDzWd6d6LoZAtozIznwyhkB1b0XimZKGQD0YBL+cloZAePaHuJ+ahkBa+pYko56GQLvJYvcluYZA0m/cUJEph0DdCPVjkTGHQHONKT2JOYdAsXjY9YtBh0D2PBkkq6qHQFMou2DHsYdApq3aOci5h0B6Ul79v8GHQEXNU2HDyYdA70NEPCmWiEC8ODvCQpuIQA== + NrgMGZxjYkA= - + - njiHRNnXhUQAu0JEQjmHRVQGn0T9+6tHedOuRSz1wUS9jsJEPAEOR8QKkkUTFBdHKmmHRP0Xs0TP04NE/kcARTzEF0VlD7pEZIxLRfrWM0VhUptE+NpkRVk0SkQYtYJEwpfLRAalHEWbuNtEniqORG2koUS8NLpFwoASRwRlu0QXdIFGJvZNRG2DkUV36PpEWU0CRY3hpUSEhuFGG/uWRG3G5kRgqdFEuta5RVpsz0RW8YZEhY2VRHf1qEQbek1E5rgDRbFFZES4gbREQTrkRO3iqkXtZJtEnFgORQKvlkQFzjVGdViUREag8ETQcJNExu6URdJVwUR/Va9EI0uTRBFv4kRJ/6FE5HL6RFr5jUQ/Um1EPUYTRR23NUWNIA5HnszbRGFo1kTC53dEz7PPRB5ZNkWMyltH7tqXREUjtEQfFINGoc4mRnB4qUThk/pFW3jBRF1NMkWvfGlELaSHRP6gkkSmUIpFo86VRc9mhUSLAQJFVMKPRBS03kVaVIJF2JMjRe0+JEVkwJtEDRLwRBmyqEX2k4hEzNsARng+kUTnB49EfeSCRCSvYUQyLhlFQjlqRPRAeERDcaZEyziLRk9VDEWCRcBEMaGJRVM0kUSIDYlEAfc1RStnxEUTnKtE4VbkRE38eESX+dBEww2/RC6/v0QoendEuHHORIbI10Sa4adFer6MRZRgAEW0i9VEX8y3RT5ZY0cTjRZHnLNcRCtIfEStM3REjOtBRfZy/kV3wRpFZDxqRCh6jUWfwsRFsWpURMsYKkXISMdEqz2rRJnU/USAKDdFIaC7RD3j2USYhNlEqdl9RNopokRyBpNEKmilRJnowkQGxYZEfgmoRB71f0SPpfVEEUuLRI/7TEUAG9hEll7KRMN0o0TVGYREgNXERL/P2kUq6KlEI9XvRBxzhUbo8IJEVGOWRFlk30TjBTlF15xgRd44MUVbkaZEJMiNRA7iEEWTKvhEvJesRF1p+ERq/ylFG9/7RCHlHka4fBxF3kK6RaoWGUVr7QBITpPkRPj2bUSbOYtEYRmGRtjNpkTVcStForSKRM611ESQootE2/niRBJLYERn0HJE8cf2REehlkRy1/1FIyy5RFcciETFG7ZE5zJERdwxH0Ylby9IwRSuRhzHc0ds86lEmbQXRnXoe0SzP5lFl3ptRa6+mkTICKBEObn8RJAjnUQFd1FGel9fRELsqUaeBSNF1YJRRUFbbkXGxHFEw7B4RO/aqETXWeFF84XKRLJuNUU42q1F7XZ5RZ8cqURMNohEQ1SwRHklakUDxIpEMlpZRTMhAkXT8IRGfTOdRusPGEYdql5EJbpCRRRUjUTvr8JE4lh0RdYff0VIFmVEKWzTRRDR8kd1llhF4JtYRN00w0YtRs9GUaSVRQRCgUZidZJEsAQQRYqXYkUa5ohEaluBRSz0qESyQzRF6QDpRJWQqUSHH9VEYGCaRAcZL0WaBQBF6uciRakC0kQwi31Eo6yKRMSOmET//IFFr3yvRMKw30QFh1BFZQJqRjEKiUWDAR9GKCCORYg29UUdlxBF7eE7RUSri0SPDABFa2xVSZMiFkXvYclEkuG9RCSERUVVKmZEj4NgSPJK3ERTRqZGhCCkRLe8tUT/gXlEC1YpRUjQbUSdkp9FgDznReXCC0bMkoJEeLulRJPEv0RiiMtFeBGbRQx5jEZYWulFeuUJRd4UYkXMK7hFviXNRX2lo0RKRZlEOv4FRY/KokRiFYFEPYnqRJ9Tv0Qsn5FFY+e+R1OyT0X0JpRExxe1RuOB5UT/7olEOaNaRXPKC0VejAxF45e9RBbttUTPjJZE4mJrRxzpokRF0XNGuJIBRZ3T9kR5zwNF2tARRSK17ETIsV5H19cMR1V420WSNxFFUTLJRMfbm0QEUhVGqXdARpS/aUUQtJVEG61FRZ7TjERB+ZREUpucRJyuskQBnV5Ea2+URFHkhETgbfdELWzTRGGhokTBpTpF62eSRAhFSERR7U1FG+ChRtOYKEYw/g5F8q29RVW4rEU1c0hGROOVRS/likREAzZFvVC+RWygX0TSOJFE/Lw9Rm+INUXJ7n9EVNTBRIPq5ERUceNH/smGRKfxA0XkH8dGgRYcRYIhpkYK6b9ElazSRDf2nEVt+ntEGHbURMnSb0QiIo1Eu7esRBb06UQ6TZNEp+eIRPkejURoZ5REv7vyROvZikRIeZFEmM+4RKNCe0TFB1FFxcaKRGGOHkXhR6tEWUCVRJiZ5kSQvJBEmlJsRKbohkThW2JF97+uRCkMPUYvyZpE68z+RSitTUVYskFFdlmdRHzvJkUv729E9Pe4RdSj00UpIghF6uqWRAFI/kS/rnNEaJCDRGDav0QctFtFBWk3RulF60TqpmxFS/5/RVWRHUXqpaFE9VrkRqi6iUb0hshFG4h8RT4RD0X436hEGoqPRJXlY0T+vYZFSgcVRfwVg0TBoYJF0WYHRdBRhkR/0F5EgJSCSKKB50cEN4BEElq3RPH7eEd3R1tFQ2WJRvAzpUVaZhRFhtuuRIcklES7D6xEvbLRRD7BIkYh7ytFzPm/RRFRSUUg37xEU9c1RY+LrUQPFiZGnHUCRad5lUQRrxRFOlIBRSYJnERxyTtFMHZLRfr/pETsBOtEijIGRcsxD0USEbBFVjzkROglwUSDPkdFn5RYRIseCEaQ6PpEUzDrRV5DSUXyBXpFegJ4RO51V0V+/AFFVb7XRCYSXUTU9jJGmfCERRY+CUX9aKBEIcSaRClTHUWMTWpInEoISM1w5kZz+h1Geke8RNwMF0X1U81FhWQ3RU1rcERCashHOhYuRfAlJEeG78REaenJRo5k1kU78+RFDOTtRF/uLEXEUQFFmm2cRMNyk0ROx+1H0tNLR8iXcUQBk+xGKlFcRQjD4kXNe7ZEkDqpRVNfHUXJK2FEHGW4RJkHvkS3iMtFlld8RNkyXkVG0clEooWWRPun+0TIkZVE0aEIRqwgRUUnZdxEiBKORXLZIkV7F/5F92IMRSBYtUR154NEEZqdRLCThET6onpEDsERR96Je0bshB9GRgXIRZNqYUXqXlhEvZQGRWXb/URP9pFE9LuQRNKCskQ9d2FEp2ILR0xUi0btUh9GA4foRLyZekWbMpdEbibuRQNi9EQp8R1FhsqyRHOzE0cpCcdGpw0TRvj5OUVnQhBFxxwlRoCJykXbjXpFHa3iRHuFH0VokRZG+i+RRQsnOkWDqtZEfESCRNemkkQ= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - iLMCIQzBckB4hxLGI8FyQICbJfBuwXJAAHLnDU/CckAXFUJFp8JyQIQAXQw7w3JAWu1ifcXEckAuiyVTWsVyQNgiCUYByHJAwqIjDFfLckCYzD7OW81yQGHb7UND0nJAduJvOKXSckB65uxQtNJyQJ9E3o5J03JAYOJaQHXTckAMlFuszd9yQO2juFO44HJAABpBflDickB6VeBej+JyQFL4hFcl43JAnOYbllHxckDCZN7hx/FyQKvzNOK183JAlojcjaH0ckCkKIBJwf9yQHvUI9j5AHNAMD6F7Y0Bc0Aawi8l0AJzQL7TjsT6A3NA3hd4oAkSc0B6VZd2vBJzQG44haXeEnNA3vLoNfcTc0AqWVriBhRzQNTJutZMFHNAwG3HNfUXc0Ao5G7xeB9zQF5460ymIHNAlXMVVTkhc0C8MgP1eyJzQA6xBO4PI3NAOmdv/s4kc0CoQu7eSDFzQOQq4tckMnNAXEFvRgwzc0A8jM3EojNzQC5iJF42NHNAxuQ8oeNAc0Do+TkMeUFzQI5EF3MlQnNAXOkm/rxCc0BG7KVPekRzQDAg1yGXUXNAFIkteBBSc0DWMT639VJzQH8dHg9DU3NAn8nMSKNTc0DawUgKiFRzQOKxjzQ5Y3NAuMY0RUpxc0CiNJJKZnJzQC2dKVS5cnNAXB+EIbh0c0Du4h0zTHVzQOK1PgV5gHNAvLfhnqSAc0DGsdb3DIFzQG6mjp1egnNANkDdu4iQc0B5sQ1hTZJzQBuKpR5ilHNATEK4MfeUc0AK0U6buKBzQPj2z5BaonNAbK0BDOiic0CK5xOTA6VzQJQ44W7YsHNAuhQ5Y7azc0D7D1SQDbRzQKiENFhiwHNA9tQWXvjAc0CJjbDJ0MJzQOYz/X8nw3NAvcb1d9fRc0AjAe3sutJzQMyeSFPe0nNABhBqSfbTc0BDjHDN4tRzQLkWcQ+l4HNAMovNYzjhc0BSeQazZuFzQKBOeJfk4XNAKsJYUnnic0DykUJ7D+NzQHL92ONB43NAP7cFYfHkc0DGkRUG/fJzQGLwpdk19HNALJkryY70c0C4u1Kw4gB0QLivWtV4AXRALmeWhqIBdEAD07MbChF0QKhOT4eLEXRA5ld3+kwTdEAghyiq4BN0QGBGa2l5FHRAsDyglrkhdECna5eDaCN0QH9nr8xTMHRA1NEzcLoydEBOYLIz6TJ0QHD3GiVyM3RAGDZ4yBI4dEC6NmN5az10QCDfjbRSQHRA2NRFrMlBdEBV5WG99lR0QOeiV1+LVXRAGiRtYrhgdEAHMUEYCWJ0QF4d5etRYnRAUuxTgOZidEDvFXHCT2R0QHYtW+MicHRANvbQaRBxdEBqUh1tQXF0QGlmZlvKcXRAcztQACBzdEDxhWotOnN0QAvP9Bw2dXRAy4SnnviAdEBTa4MWT4F0QPZrSgqygXRAzgkd/0aCdECKyGa0RoN0QKaB31QWkHRASnEVn2qQdEAwTr8bupJ0QEyZ4Bpem3RAjKrdms6gdEB3P4WxN6F0QCYITNwPo3RA6vnpzGejdEB6Asu5oqN0QJwdK+8IsHRA20iRAMewdEDs2PZubrJ0QNAJXLROs3RAjwr5Vsq3dEAcgnFo4sB0QJmz7u94wXRAQTjHkunBdEC7fSxsIsR0QAx5paO3xHRAKyVl6PvOdED/h5so4dN0QMTnt6F31HRArYlyV8/UdEBO9R7xtuB0QBKrwRG44XRAJkSF+pTidEDaiuCzTeV0QJV3F3xN6HRAguo5dfztdEAXTZ7mjPN0QJFq7UKlAHVAcCz21WABdUDeFz/hXQJ1QGo9tOBrEnVAQoTXDyUUdUAQOG8qniJ1QIAm2ZLMNXVAsOfEe7RBdUBNgY0OJUN1QD6gXQvjT3VAvkL2vARQdUC/3gTlgFF1QNFeEXjmUnVAqoq7nE5UdUCMwuMYdlV1QERtk+wKYHVAbJm7DjlhdUBuRvFr82F1QLmTBIRmY3VA8M61vOZvdUAYc8S8dnJ1QNaHod2NdHVADDL93HiBdUDwvFggroF1QCJgu7oSg3VAKVIJXaaDdUDZedSGv4N1QLbmuwWZhHVAPjebu4uQdUBM17kebZN1QLqDV4e0k3VAlsldXpKgdUBk2NIXIqF1QK8d2bnhonVAR85kB12jdUCbxR6ftaN1QAX0gXDNwHVA+udxwWLBdUDYHcNj+MF1QDrgo33v0nVA8Fbu6eTfdUCYmnBICOJ1QJyAS9tIAnZAX8/BlM8DdkDG22PhTRR2QPRU+B8MFnZABpAiWYgidkDzzlXzjyR2QNreYxJLK3ZA4GXKkB8xdkDa4xn2UTN2QCDAl1icNHZAfIoOV1g7dkC2CsJWHUF2QOcim/LHQnZAPCrOQ2FDdkC46mZOekR2QHx1AFP8TnZAMtm4WRFRdkBWouRrzVR2QHRRLQZRY3ZApZzeltpkdkDoOBfAX3N2QCvrhLYyeHZAsoEtlmiBdkA6Rf/3Z4J2QNncEBzkgnZAaW10pJGDdkBwST8PfpN2QJjJW4uek3ZA7hAMshCbdkDKYPaLuLB2QO7kfpaasnZA+qXVTMKydkCkGoajeLN2QJxABRMNtHZA7JjelbC0dkBOiaTU0rh2QPiPZAZ1wHZA4DxaohnEdkDgzpWdzs52QD5sEyqE0nZA5LW8hPXhdkC0Ge2ckPN2QD56hfUzAndAIlZFxE8Nd0BC/WeiARJ3QGj6EruQEndANd4QlqsSd0AU2D1O6xd3QB2vXcEJGHdARtix9Ucdd0BkwUrJjCB3QN6qEJgOIndAaUowS3Eid0DYYOwYJyN3QMDurP+5JHdAQONy+qMzd0DuT2cePzR3QDqPIRsNNXdAKtBRcSI+d0D4Dy/cnEF3QNxD775NRHdA8puz7hpFd0C/AR0XS1F3QLiquWKSUXdAYsUeUvNSd0AQStgjLFV3QBaz1XoMYXdA3lEFN49hd0DOEXqHJ293QIx88gc9cXdAqGVl4Ppzd0BgQrb7eIJ3QGSsK6x4g3dATxm7awiSd0C2INvsTJR3QKyFZiQLs3dAcOTTaJq0d0DHWp1g49B3QMOxFXaN1ndAxPQ9iszdd0BKDKCeZ+F3QKQmU70k43dALr2naZDjd0AcD/5I1uN3QJpY7gJQ8ndAVKEylM/yd0D+i8AqkgN4QN0eDRttInhAC62yY4ojeEAj5mewtCt4QETxkl8MQnhAwn1R5BFEeEDx+zsXe0V4QJNbEeXKUXhAaOyDzpRSeED2F0PNhVV4QIpPzDLwV3hAhi08QTVdeED++eR9+WB4QO8osD+3YXhA5Hl+0iV0eEBESF9kUXR4QHSTkKiLdHhACI0ZzKl0eECynLwWznR4QEIU+irndHhAZr57O6SBeEAp6wNxFIJ4QMRhGIWZhHhASNdGq7eEeECH5/k/mJF4QAm86ImnlHhABekZ6GyjeEAW6msFrKR4QGi07avOwHhAFUq987fUeEDzj2ANA/R4QOJ025eM9XhAFl1mU5QBeUD7JYIsnQV5QBAw7PSKQnlAUgHWVvlCeUCYvyoy/EN5QLXosW/kUHlApnDmtQdUeUAK9pAhzVR5QDP2q4nZZHlAjGM9hERzeUAk4dqvSX95QFzKlc1xjXlAaNzSAoKSeUD+hWKQypJ5QCj6ATYVmHlAaIRjiSmYeUBUhBZshZ15QPklZVbAsnlA8nyoIcvSeUDWiq3wQdR5QKORXbHM1XlAe/h/0dPaeUCYDRhbvuJ5QNguQKZQ5HlA2isZ0fYFekCaaaArOiN6QHQbzgMrM3pAKFDWbAw1ekDSAeK+Lzd6QNNZUvoxO3pAICxtM+lDekB+gObJGkV6QDPY+zTPS3pAID/mnuFTekC+JuBmKFV6QKA+GvXqW3pAM7C/qCFcekB0Xrg+NW16QBjoP72LcnpAJoWVVTeTekDUs2dhpZR6QIVwG5immnpAljnFJA22ekDFU+/FGsZ6QDyOFOQ/znpAUvn5F9TTekBc4AobZeF6QBDOYng27npAIwagKhXxekCEFwNWXfF6QCZ1fO5J83pABM4OcaP4ekAcwaYU/v16QDbQr1BDA3tA7YjL/l4De0ACB6xepgh7QIy9/poqDntA3jT+bcUSe0BgkNz7TBV7QIg00G4gGHtAsmas7XEde0Aeo9q0WyV7QNZsBe1RMHtACXZsiysye0AIcs+/vzN7QNQt7LeWSHtAQSnbOvJNe0CkNdBx65B7QMjOBXgjlXtA2AUJep6ze0AKDzf0d8Z7QPGN9SZa5HtAwC+X3Bvze0D0fmIgjPV7QNCqxJd2+HtAfsczxtoBfEDI5TkJ+gF8QMa4J9aZBXxAXr2SmdERfEA0z2umphV8QFHDRTeeG3xAIpsl3+cbfED25ibu7iN8QAboMGAZM3xA9jvDz8xBfECif3Ly21F8QONuktVWUnxAhD0uqn5TfEC0vyMw2Fh8QILDfwFkYnxA9WRlSrJofECmg+JHK3F8QOhjEhoEc3xATnYNKMGyfEAIIhXuWLN8QMP2A5DO1XxAJtRpd1nbfEBpQr3nV+J8QJwuyh8X8nxAHMGBPFXyfEAeH46nAQJ9QDHjWzNLAn1AxAsh3FAEfUAq8q0lABJ9QA65vJFFEn1AM1lM1mQSfUDyGHE0PCJ9QAXNfHqgMX1ATGLtJqJVfUAWhdeJsGV9QBDtEHMsw31ADDzc6PbLfUCjk04aj/V9QOKZ0sc4H35AjBHXZT8vfkDcogVw4jV+QGxRmbTwRX5AacsAFCxVfkBMNvnzilV+QNaWNT+ccX5AlvsgqpOKfkBogkJ0c6N+QBANfmEBu35AzOGBzwbDfkD+z3rbb8N+QIAUlJZA0n5AZoQVXSjgfkAktlQ+1O9+QNyuLL4Q/n5AACZPsx8Af0CT8a7oIhZ/QCrCT2YwJn9A5RArNA9Wf0DQBwvbt3F/QPvB3BCxgX9AXBG7eaeDf0C+EsX+YpF/QFBR1QKck39ArEYPfaKbf0BlWgPVWqF/QMOQjTNVsX9A8L6dyIMRgECru/AxMBSAQAAoL+vcFoBAcpf/nYAZgEDh6Y4GAyaAQEz+N3UIKoBAhrLj6vNIgECO0or+1U2AQPRm7vHmUIBA0MMwtBRRgEB9RS3LDlmAQKvHEa1HWoBAp82O70xegEBixkBz32CAQE5D90QMYYBA7hrhnsVmgEBukRAacmmAQANfb1wgbIBAI6ueAsRugEDtK+2jKG+AQDhutRrgdYBA7ALp6CV3gEAYPhqPMYSAQDxy6uLehoBAW5zI5h6PgEC+Bg48H5eAQD7DEpzQpYBAGgZsr4epgED/xyrd0a6AQCbL/SISr4BABJ0Hfgi0gEB7P+GQUsGAQLhScnFTyYBAkAJGm6jMgEDyEIwqVc+AQEZ+d3wr0YBAY51Lp0zRgECyT1FTYdGAQAUTckRK2YBAAGuVokThgEBagDVE9uiAQI6N/oZL74BAjG7s3T/zgEAyNnjwP/+AQMyqe7tAB4FAIKiwcGgJgUC3w0M9FAyBQF4svqD3DIFAA64HdMEOgUAvUVGXPQ+BQNWCTwnoD4FA4oR38GQRgUCDAoe0mBGBQNmRQ7HlHYFAgJSZqDQfgUAi9xYDMyeBQI+/1+S2J4FAbroY2PEtgUBPZK0L6C6BQIxCcCAxL4FAfrWXY+QvgUAcQpKZvDGBQKCHRVMpP4FAys6U+5FBgUDhLXmk80WBQMztf7rkSYFAwPKZuudNgUDeLPAKM1KBQKTRPkfCaYFAUMZwx8B0gUBC1BpUbneBQNgcWpIZeoFAkFA0p2F/gUAHs/riVY+BQLrh1olWl4FALnW8dFKfgUDWdl7Z56GBQBiUxwzXpoFA0lyIOGyogUBOrwtMg6mBQPn9Vp3tqYFATLHj6iqsgUBI457p1K6BQGkXiqNKr4FAOOhuPQmygUAgIqWsSreBQODqxOEEzoFAQi2IbAnSgUCeKCNWBAmCQAZ28qh/DoJA7QkC0dgYgkBVnVlB1yCCQLaT5QLRKIJAHmK6TqIpgkBQOVicpy2CQG6zh/ejMIJAh2D7FOg5gkDSzeb66j2CQNkIxSzpTYJAJFvsHQZOgkCKGSq861GCQNCfuXjoVYJA+BHiyOVZgkBt7P0U+lmCQIgat0zqXYJArkYluAxigkDtitkpC2qCQNK1ZrIbdoJAkWZ2ECF6gkDMynn7D36CQEYv/NUogoJAhC688BmFgkDMAO46Q4mCQBqPS0LkjYJAAFh6vEORgkA2Tr9o55GCQMeNw4s8mYJAq95XSVWZgkBuhLAwD6GCQAD5Ts06oYJA1GJxKw+pgkC8Q14zNKmCQCAPK6UGsYJAY/dVqZ67gkAsdgP9rfmCQOOq3bZ5EYNAJPKzbXoZg0A3QqBgtBmDQBGD0kpzIYNAAnSER44hg0CdGJrSDSaDQAbIPuFxKYNA9kfb1xAqg0Dm2/fivSuDQBq22lKoMINAfhZrhmoxg0DmKR6ugjGDQCB6AKbFM4NAiOz58Z1Ag0AGnjSR3EGDQEI1V/zSQ4NACnBAK99Fg0Bi2O9N5oGDQPL4ls5Ig4NAvif/qMaOg0CmUcoG3puDQP1ZARNaoINAyCsMReSjg0CyKgFn87ODQFZPD439u4NAcGFTiN69g0Co4x6llfiDQBzGitm9AYRAVj7kCMEFhEAncL0XxgmEQFqjKy3+C4RAZGwQ3LYNhEAtL3nDyg2EQKpW3LgEFIRASDgDnsEhhEAGJX37FCSEQBNzGrkaLIRAnH12MXAyhEAkVsrVczaEQOhRggnGOYRAStwc8g1KhEC0mDVEy1WEQIj0nZv/aIRA45JEb/5whED9JsPM9XiEQN42a8nKgIRAkgJR9feAhEAMT/uZ94GEQNz72XBhiIRAP20lizSUhEB0mQJ/cqKEQFon9v8WzYRAVre8JcTPhEDaL64patmEQCh9tvNp4YRAHCmACWPphEAxIgGQNvGEQM7DGhhj8YRA4gpRZL/3hECAfAXPMvmEQDC/R5RZ+YRAlvD7E2n6hECqn+iAoGGFQGoYMJegaYVAENsh05hxhUBi5fLLmHmFQAR96LuQgYVALoBg323mhUCgxFyAPCOGQCTTXDdEK4ZAOpmubHouhkDWVMWKfTKGQFy2gPiZkoZAktvERJ2WhkAylUq8n5qGQHay55ygnoZAFGQidia5hkBYHTqnKMGGQHulQ2iRKYdADPIF8ZExh0AOumFIizmHQET3TipbQYdAjfWGG4xBh0B4YPcEeVKHQOwT7o99VodAtppirKyqh0BclctQrq6HQHAtqVXHsYdAsOmRrMe5h0BYDrFKjL6HQEYiIpi/wYdAuh4xHcPJh0Boem0MIZaIQCLHmQtEwohA + NrgMGZxjYkBe4xb9Y+JuQEMdzoN8QnFA6hME1OGRdkAx283g6nJ4QAwdBgVlAnxAhy/S5YLjfECGPXGs3omBQFb4jK4YeoJAGh4V6DWShUC6JVfLpBKHQDhv0dKNIolA2HYTtvyiikCcnJvvGTuMQGl7lE4+W41AmL6flbghkED+LRzFyrGQQOFA4GHZfZFAsESB0xA+kkBwaT5XBUaTQD9t38g8BpRAIoCjZUuSlUCJXbFmaAqWQGxwdQN3lpdACXWoe77Ol0CChbYEnbKYQFL36EffKplA/nT2m7h+mkDhH0c9C/OaQEhlyDnkgpxAXQ+H1Ca/nEA= - + - fxdSRKqNcUSUfS9FDn+aRJy/qkf/FbBFFTB6RBuHkUQvtBxHdxphRJIo0UUeiQVHIV5iRH0raUQ5JnpENLqERDVTuERCRsREhztIRX4O4EQNnYlEV3tVRE/C+USuK4dELdNwRDejnETP37FEvneSRGZ360VbqvZGGBOORNU3BEZLa0dEKj03RR89XEXRY4JElBi5RHIE7UTd0b1EuK/BRk4ngER/hK9EbAClRSvEC0XhdDZEZdiZRAL3V0QU1odEK3nZRDqHb0W6RShFv0I/RGOb4kVNCYhEet2QRLmg6ES6uhRFeNO3RYlhoUQaTvdELZZNRDbCnET9OZFEYB1TRPrc/0RTY/hG4vRORD5+AkVvUrZExpYDRSbJLUdoIsdE1vMnRiEIvkUwodRFfYl9RGtyFkXipkNEVt1yRf4BJUWC96BEvASeREH2hkV4wltFehIwRcHSz0Tos1ZEhirJRE54gUUArtpEmOHpRWnjl0Q+ZbNEwfZcRDy6mkSKbnhEVIFwRP2fVESQOBZFodJPRJaTm0R0AVpGAL5TRDChdkQg+kVEYRw3Rcw5XETAMoNExOANRbCpzEXFn7NEIMAkRYf9gUQZrnhEx6heRfqm60Saqk5E0N9YRG/bg0RFDLdEG9+aRTQJbkWLZf5EuA1iRI9T50RNGtdFbR1NROmkIkfZX6lEM6Z8RIHmeEcVNdVEnL64REUKo0V1BbVESUWCRFi80EXEXqBFs4iqRHUcWET5JBNFHo+YRG9vp0TS3MtEsTRiRKv+V0SgMKdEkd9qREp6SEU1az5EmG6QRPILqESyEMlEo/lURBEiakRp69NE6u4FRXGdtkSDio9Ei7ixRGQ7QUTZnRhF2bI7RIvHiESiF2pEMjrWRN28skWkeG9E/A2bRJJEkEZa4cFEiiLeRFMhfEWRCBFFBrZFRFSXZ0SosldEftGERDJVVURc4cxENjiOROiRkkTH91dElmLLRJH2HUVH3LVEEcU4RLLHwkRgeiNGPHfTRG7RjkWmpD5FgStASBUkA0W57aNEiwuRRJhpnETK4tBGxblXREPMakRUI7RERzHLRKYQt0Q8sFtEsJGFRCRumUS+ORVFnXB5REVQEUVzkeJFlOOoRLjRiUShyXVE6XxORfUosUV04jJI61a6RsDcUEfJ42REvfnrRd+WakWDdpBE9uuARBqKUUVZ0mJEqAA0RaXhNkan1uJGfukJRcQrVUXBsvpE0flNRAxhgUSaAD9EKXygRR4FOkT/5KJEDvWpRHMJiUQ7l6VEq7D6RNJ1hEVHGIRFR6t7RJFxEUXU53REFB55RLnmVkWDAWpEsuZpRB+p20Srn99EAEFYRuW1dEb5q/NFM8KfRYfJN0WyXsBEfRBQRFzZXkQ0f0JFUDNCRFxHg0VSV3dEjWW3RPjHVUVoV+ZHDMGbRF0tt0ZcS4xEZLmwRhBWNkWywHpG5xdTRF59ikToB15EsV/7RBmNZUU1pVFEQHmrRFCLfEQhqltEtL5mRFs6m0QYNbdEJNtTRHttvERTFkxEo/QlRfV61EQ5aahEFwXZRKOqNkSjFapEIIl9RHUCoUSsqSRFSlRgRNawmESIffxErUhaRdW2D0Y3apBFcBRcRj2Q0UQPP4pFP1KZRNScNUUdsAxFaayuRGtpAUUq5ztJPar6RaMlq0R/VuBE0hZtRX1hdERD/j9IQxgGRTSSCkXYJZxGq7ZLRNTebkSu2bRECtFlRRxThEV8e+VFdfC2RQzvm0ThEpxEOel4RCVBtUW9sVlEXJ1CRCP+h0UW901EGdJ8RF9MQ0S+35ZGxEpVRA7VFUaTnclEoKOHROQpbEQiIYtFWF1+RSkw1kVuw/1EqT5JRD86j0Sx/wRFP7F7RAXpZUQ3myBFxgvBR/vJDUUAT9tEJF+FRJAovEZ6vqdEohJLRRup+ER5ymZEiLvgRKt+iURn3KtEUvq6RJVEc0RFXNNEzph2Rn2JjEUh8sRE1vdQRMJ0vUThTQFFrge2RIwOsER+qGlHy0gORy/0FkaHBB1FQwaSRB8kc0THFnxEg6kBRgrGHkZHd4hFuhBnRJzKM0XLhdJERnjlRMrgfkSFKCBFnnZkRFcSdkT91xtFgHFqRH4SrkRxJ6dErQNyRUljiUactblEazRLRihT0kTIGJ5Fk7R4RZzjcUQKKkREtotNRgzsxUVpLG5FxejERR4GxERi5BZGD791RYFGukRVMtFEHZt0RHTuVkRmXYVEYgucRFSkqETZAaNEQxS/REWHx0dKrb9E3FTIRuePCEUSC7FGBVhIRHSam0QCTnlF8qKORE4o5UTR35pEGCb1RVm9mETLcnBEeONZRLnmjEQz2GREd7S9RLifaUaQ9zJFQ9uLRHkO00RzeF5EYrPaRFQVR0SJOF5FS5SPREYHn0RIEH1EpnY4RVXFZ0Se1z5ErXn7RKHMDUbWojFFcFReRExEd0XKnu1EPdC6RN+LMkaLGOpFExsDRUiZDEWmxhFF58PvRRdlgkVTVyFFWJaHRBMbA0USHI9EOnGwREv0XETYeQJF8eWNRq00lEVifttFX3YQRWgMdESsnIlEw7naRpTKg0ZWGKpF7nwTRVnXH0V/qKBEsNt9RMOBiUV/3CVF2f97RXQ4kkS0pklEH/S1REuHDUV28pBE1lVlRDgnbEh05MxHLQBFRe9+kEQ2XbBE04BbR0KTSkUo/zxGE99NRYriy0SDj7NE4Z9qRB1VM0aY+k5FnBV2Ran1GUX6zXREAE/XRCsa5EQ5NmlEW/zDRC4+XkSVC4NEQ/lFRioH+UQ1F3lEiGx+RHuF/kTNC2xEpetvRF392kSbJdNEkIFrRKwrFUV9eahFp8JRRQbfzEQ+PohEIaUjRX49BkVnuZJEFQhDRD0yl0WJ0qZEXhNeRGMbaEWL9QRGieABRbOx1EUzCZBEjhsSRQyLuEQlJ1ZFltfURPoyYEQcxUNFpKkBRUdXqET8nElExGlFRpM9UUVKZjBFJHfNRBQbk0RAOshEPlwTRXqi/USEo0JI9bivRPwQ5kejW/FGBHgZRmBtOUWH1T1FftJ3RKT6y0TPZQtGoCwLRTxymURzXWBEHo5qRI1i3UdXXl5FSbRAR4QJjkSCCd9GNRj7RKOXsEXAIvJFLmTYRNqsKkVpEl5Ep8e0RONNj0Sr4MtHuTM/R/iDhER7felGwwS0RKB8XUUBQsZF8ijiRArjkEUPxpdFtXsnRd1TlkRfwAtFziiQRJjN5kULoHxEusUNRc40f0QvPoREjqZGRNnP6EVTw/5Ekw8qRWLBKkWILnBEAlh0RDxzmUSz3pVG1PgjRu98GEXijJ9FsCF2RI60SEQoYMlEMnlFRPQeK0U32aNEtBaZRX8KVUUJC8JEjediRLszZ0QFE6NFgj0xRbyWz0QI7mlEhkyDRHOmDUW3wFtEYLv1RP9frUQb8o5EbUrqRNvyGUe8sY9GiN84RhDMf0XxpFxFCTq7RPQKpUQ84JVEX3aSRPfu7EYnc1dGRzsQRo87PkXw9ZxEmU+/RF6HxkU/d9ZEe/u+RE8l1USSfCBHOc64Rr1hGkanBh5F5aKVRLqwdkSl0EBGFCWpRUaKbUUOkYJERvTuRA9vdESnDUtEh0FtRRllDUVu/g1GKs91RVpZYUQ80yFFuVirRN3raETpNHtE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 3Ezc2m/BckAMp/9RVMJyQNjQ6GmnwnJAVODfGDvDckAGtL1xxcRyQI6lugFbxXJA1UUVmwHIckDBXpqmXM1yQP4/t8lD0nJADsMyDHrTckDiYpX5zt9yQLrwABC44HJADvhZN1LhckBybY1+UOJyQEGd4w2T4nJA3DGxUiTjckBAVeWUyfFyQBIxaax/8nJAGK47ObbzckB6lv+vpPRyQAzJ3zzD/3JAdEKOQfkAc0CG1crXTAFzQOLsCAyNAXNANd/pitACc0AQXigk+wNzQNjwdPYIEnNAq/waK70Sc0DMpECh9xNzQFyW/5IGFHNA4F+GjEwUc0CbUiDBdx9zQHPBGsClIHNAVMlOPjkhc0DKLWT8yCJzQOwNhYwRI3NA/toL1c8kc0A11e9IRjFzQMSCP41bMXNAyigIuA0zc0BfAtVEozNzQALfvmI4NHNATmxSOOJAc0DtX4jMeUFzQPx/P3MmQnNAzsyd7npEc0BLyj0NnVFzQORwCpDzUnNAltfdiUJTc0DCoz0NpFNzQOgDFsOKYHNA6LJzZjljc0AQCZXyU3JzQNxt/2tncnNAjV4o6JFyc0Cx8JXTt3RzQPcmQmZMdXNAshhKVXmAc0DWwEqupYBzQJJBZdIOgXNAoFq3Vl2Cc0DGLgCJiJBzQKyrfS6UkXNArhAMpE2Sc0BmrGezYZRzQB24yrf3lHNAB3mKgIyVc0CAQ0mEuaBzQCzhG9HkoHNADpnmi1qic0DKqksz5aJzQAp+nn0io3NABDf/fgWlc0BFMhqAxrBzQADh8wu4s3NAVSi7FAy0c0CLsKKnZMBzQLvD1sf4wHNAUrumI9DCc0CQgih8KcNzQDrtevDY0XNAlsSUQrzSc0CsT/7O9tNzQIxyMRTj1HNABEk9SKLgc0DmTesGOeFzQCRLfN7w5HNAzHv5UaPzc0BK58NkNvRzQGpvzN/jAHRALY0o/HgBdEBo8brPogF0QJMznh6MEXRA27Ix+EwTdEBVrkA5TSB0QEKJCHu3IXRAZHprSmgjdEAEd+WdUjB0QP7zw2q5MnRASBcvfOoydEB2n3+WITR0QCtluJoUOHRA0n5NRG49dECEsKTvek90QCwQ+i74VHRApFM2xoxVdEBZA6cpuGB0QEZLfbpNYXRAl3FSXQlidECCALBRUWJ0QGc6gVIOZHRATBz8D1FkdEC4QEeFI3B0QGd9nWe/cHRAdKdz1kFxdEDWhfu1H3N0QDY4UXM6c3RAUuah8jZ1dEDkfeTnZoB0QIBL/yf5gHRA5CEC1U6BdEDqKxMPtoF0QF5vzxdKgnRAJ/Tld0eDdEDXqcZWF5B0QHuhhJdqkHRAXl1E586gdED/dFadNqF0QDR5GoK5onRAYrSDIxCjdEBE4pyuTKt0QDjfeaUKsHRAIk/tHsKwdEAsISxbcLJ0QPYnJV3Kt3RAUhQFB+TAdEBULEdneMF0QKFqOVYQw3RAEOg35iPEdED6k/YUucR0QPrgrZH7znRAIkQvZc/UdEDVWd/WueF0QCK/eT9Q5XRAUMfHRE7odEAIBQ8K/e10QHK770i/8HRAOAKh+QrzdECYo+dTVvN0QDRQSHmN83RAWlh5uaUAdUCIyDQqZQF1QLSf8HhdAnVA4wXmi5sDdUBFIKPMahJ1QAps95QkFHVAxciyg50idUB1trgMzTV1QO55wky0QXVAoG4Q1QFQdUDccDVNE1B1QMD9KiKBUXVA3u4i2+NSdUAqMdiATVR1QJtr3WR3VXVA3QFCQApgdUBC/aEgOWF1QCQ2JI3zYXVA2XqUQnhydUAEIhdojnR1QHp5Hrh5gXVAUwYFY66BdUCT3nqTE4N1QMwdJdGmg3VA6Giam5qEdUCG2kBtu5F1QGTsKrW0k3VAD80co7ihdUAEYIkVXKN1QLDmxI61o3VASvqUw8W0dUCStDh60MB1QObKAgP5wXVAKcKG0+7SdUDQZpWzzNN1QLx8SiLm33VAAoNcrQjidUDIqzMOSAJ2QHwHOm3RA3ZAPzT5ulUSdkBCTOkgThR2QJfsWzcNFnZAEZja/IcidkCa5CvhkCR2QHZqiTJLK3ZAOapDAh8xdkCSA6B6UjN2QAyy4NlYO3ZAhATRsB1BdkDGGi1NnUJ2QF6hTcTIQnZAyAELeGBDdkBp5bS/eUR2QGLe9iHyR3ZAnFHLLBJRdkBOzN2njFR2QDLyzm7NVHZA/MLYkCJhdkDqzzrDUWN2QHQTYv/aZHZAEBfCSnlwdkBnFf1QX3N2QAqeyZYzeHZAHj/qMmiCdkBI7T6u5IJ2QCiKvdyRg3ZACC+PqhChdkDIqnxembJ2QHB0n+TAsnZApFLVD3mzdkA2ZmHrDLR2QAteywDUuHZAu8mLCxnEdkDxFf4Vz852QEj7Y3CF0nZA6Hxt65DzdkCsLthtTgB3QCiRm6wzAndAoTZ+/1ANd0DNwvWCARJ3QIy1efWQEndADwnrTKoSd0CE9may6hd3QBUfBq0DGHdAqulY9UUdd0D3FKzJDiJ3QCqQbjZ0IndAuHzeGSgjd0CyezlfpjN3QOlMi+M+NHdAzCReLA01d0Cg65W3Jj53QApsvISdQXdAgr0Q5ftCd0D8+pViG0V3QGbCyHdLUXdAatu70pJRd0AAU+QSLFV3QJD61l5KYXdAeqKMOY9hd0CEP1wyNGJ3QFaH7kAnb3dA8ppODvxzd0By2BOheYJ3QBbn1mdonXdAriYyqTDDd0DvX/amzN13QJKCX87s4HdAtre6Jmvhd0AYfeIBKON3QIroyv+Q43dAovQmiFHyd0CAYjovbiJ4QJQ3vZG0K3hAAhkEuQ1CeECUHmSMEUR4QGQEq6F6RXhAJktxzctReEDSGReClFJ4QEoFhN2HVXhAlCB0R+5XeEDOgtycN114QE3G3n35YHhAgEeZsLZheEBb1WQyvWJ4QJIeMBC4cXhArBikcdJzeECGqngZaXR4QOyeWNuLdHhAWnLP4Lt0eECYlKdzpYF4QNKrzdaZhHhAZI9K5JmReEDIiGk0p5R4QPvPZ3iEo3hAmWlrarakeEDgEoHEzcB4QBw7eZ+41HhAmlFMvAH0eEDfF0VMjPV4QPZ86tKTAXlAFCuyFpkFeUAWfF4NoRF5QHlqOeT2QnlAWFojTvxDeUBqlEelzFR5QBoRo5naZHlADmBMUEJzeUAcp85FcY15QGHiAYPLknlA+pB5biaYeUDq05BywLJ5QO5ZwwLK0nlABhfhhUPUeUA8IFijzdV5QE73VJth3HlABpJIuMPieUBhzGLmUOR5QALHBfX5BXpAHx3rsTgjekA4l9xYpiN6QBNtlo4rM3pANLTCgQw1ekD66EoiLTd6QKy6DP0yO3pAdNtmj+hDekCgkX3vGkV6QFqNkCTQS3pABOBnlORTekBUN96kJ1V6QN4/oZQhXHpAbviYK4pyekArKlV27616QAZTA1sNtnpAzjApFSzDekCKFZhnGcZ6QNRKqO5AznpA5iUlttzTekDcmJ7vZuF6QKl7MY437npAG0rvGxnxekAEEkZlX/F6QNGVT2tK83pAAErQK6P4ekCU6+Kq/v16QBG6uGhcA3tAOpYr2H0Ee0AYtSd3ogh7QHHoOqAqDntAKK6RVcUSe0BC6MUQTRV7QMJo0i0eGHtAWxNkvNAie0DWTwmWWSV7QL5fj/RQMHtAqRe11sQze0AwtQU0l0h7QIJ1wznzTXtAYguAxFtSe0Am3nDifYF7QLghU7kilXtAHklTGs+de0CpEgO/++N7QAAyI7aZ5HtAYtJHaBvze0DeQJmHjPV7QJtdRfh1+HtA/Qg5X9oBfEDYkb209gF8QMgvjNuaBXxALYaEeYkRfEAibsTi0hF8QETS6r7oG3xAKnRrnbkjfEAm4ZY47yN8QGiilkj2K3xAOTn2DRozfEBrp/nnzUF8QDwt9i7dUXxAnDRbz1ZSfEAmGbVvflN8QNIExCnaWHxA1O2lmw1ifEAmK4elZGJ8QLp9NygLc3xAYF62ocGyfEBiuc40zdV8QFa7ES8n13xAgvpotlnbfED8KjC7V+J8QG5fqxUP43xAxt4A81/jfEBeyBdBF/J8QJCjyjNW8nxAh5v0vFvzfEDeqyOHAQJ9QFLtNYBLAn1AVOwEdUUSfUA3NmhBPCJ9QK7FndGgMX1ANbYvpS2kfUAgbNH/KsN9QFqLMvDV4n1AhLOls5D1fUDYPrNsOR9+QObbCynjNX5Afnb1O1A8fkC+1zoTslF+QPKmbn3Min5AGl86al2MfkDd4mZi/rp+QFQHDKQFw35A2ahqdz/SfkCBy6YbJ+B+QK4uVB7W735AzcFu4Rf+fkBwbXCPHQB/QKjKnR1VMX9Ae8zrKShlf0DGiNGHtnF/QNqMieWzgX9Au+GW66SDf0BldVXEVI1/QO7CsP1ikX9AdaAgN5uTf0BYrRlzpJt/QMoRLGBeoX9AMKw7Caijf0AQwHiKVLF/QInpC6WDEYBAyhR83y8UgEAbLLbZ4BaAQPqna++HGYBAupJV+wImgEAaaMPk4y+AQLhCwjm4OoBAOpnrBZZCgECA4nWh9UiAQPYt2/LnUIBAijtnKxRRgECaBJ73DVmAQNIxeNIgWYBAg20wOkhagEDusJXfS16AQMhoc+xNYoBAjEvUxsVmgEDglfYtcmmAQK61ojYcbIBAto6s9MRugEA3mrU/KW+AQG6Zi5xpcYBAUDgYq951gEB59IuKMoSAQHJLxJ/ghoBALZmR6YmJgEAZ4EDyHY+AQDZ1d4mFqYBAAhxgVNGugEBxjlO1Ea+AQMSf1fCzr4BA6gcKTX+9gEDfSfh6UsGAQJHjZKlTyYBA2PzAxqnMgEBAJPiyV8+AQM3Yw4Es0YBAOX2H6kzRgEC21nOsStmAQFb1/8FE4YBAsmMrBVjhgECW/Z7C9uiAQEhzYrxJ74BAOp9sWz3zgEAeYoo8QP+AQMD+pHc/B4FADjBf5GgJgUC2y5gHFQyBQKnSD0C5DoFAJK4zqTwPgUB4ljSE5B2BQMuxv3w0H4FAWvHquTQngUA80kw2vTGBQEOq5AopP4FAIIEX+UFCgUAb5GzW80WBQKmIk8LjSYFASiLcyulNgUDUIrzVM1KBQFgpOxHDdIFAuAoDTm93gUAjWdHTVY+BQORt39VUl4FAt8AegeehgUCbI7ma1qaBQK7rmThtqIFAbgI/GIOpgUCgdHv0KqyBQD+pC4zdroFA2MgV5kqvgUDA/Eo4abCBQMS4dOlKt4FA3PnZPAXOgUBWkHLbBNKBQOzoarh+04FARIpGTtgYgkD3+HQE1iCCQEOBrqXQKIJA9uDr96EpgkBQfJfcojCCQOla0VPoOYJAONOvSek9gkDavVYy6U2CQEW1M7vrUYJAaM/1GOVVgkDcY4Qb5VmCQFj+ohnSWoJArKCxtexdgkAU+EdNG3aCQObZf64feoJAuNucAhd+gkASnx9ZQ4mCQCol+FTkjYJAGr+VFkSRgkCQFE2vPJmCQJJH3NxVmYJALKs3aQ6hgkCyh6orO6GCQLo19QMMqYJAwQOI8TSpgkAz+Qtzr/mCQPLYNpF5EYNA/phtK3oZg0BWH+k+cyGDQEZZxUcNJoNAUO5nLHEpg0BM9XD0DiqDQLZhv+KnMINASObbemsxg0CItZl23EGDQETkKIvfRYNArHSIIthJg0BN42rB5oGDQGSJcDxaoINAsnkiVd+9g0D6PqQ5lfiDQPVMIha+AYRAbJ+PpcAFhECK+MMexAmEQDQk8DC2DYRAJbBs78wNhEAkVQe4xxGEQBxgcupxMoRAhQBAm3I2hEBadA7oxjmEQJCYc4j/aIRAu2NLxTlthEAE2eIUAHGEQHLYSID5eIRA/1/T0suAhEBLSETG9YGEQK3x8QAXzYRAmKhTxcbPhEDgYsY9atmEQE64mkBq4YRArGYH3GPphEB2OMlKNvGEQBYAaHlg8YRAGiKayzT5hEB/LmBZWfmEQJMzQdwV/YRA+h9h1C4BhUDAgauRoGGFQMI4zF2gaYVA5Yysi5hxhUCE3e9ysnOFQLAaYriWeYVAs8C0RzwjhkBiA3WQQyuGQA6a78d6LoZAIDFyqMl5hkCPnbPTmZKGQBvusROdloZAeDu6mZ+ahkBGmbMCnJ6GQE+O/BUnuYZAXM1QGJEph0B7KUQikTGHQKlcfBKLOYdAFC1nTF9Bh0DlEQ8Dj0GHQLxV7POrqodA2HID/q2uh0CO3YpayLGHQIenAd3HuYdA+He2a8HBh0BYjsMBwcmHQEAUDl0glohA + KBZXds7jZUCJy7y2HKVqQIkw7CrX8nJAiGz8LjSDdUARt914yIN7QHYq/Iuis3xAiApdZpBKgUBoG6PrMoKBQBzrAKLnUoVAWJWoWtVSh0BHFYOkM4uHQHI/Bad/w4lAEuiIUk1Ti0DWbM/DC9yMQMw6aUrFU49AHDjPVi96kEB8snWmCMaQQMU0tnIpIpJAvplLqmuekkBFTK2Hf+aTQAccjHaM+pNAWmHuiKUClUC5MvGE0oaVQAx4U5frjpZAz0cyhviilkBV+pNjDOuXQE9fKZtOZ5hAmOFpZ2/DmUD3WxC3SA+aQK32qmiV35pAqN33K3IbnEAKIJtk0d+cQFr0XDq4p51AcAmeO97DnkBnSYtgDeCeQIYe3zwE4J9AMAMHTC/koEBoh1jtF/KgQLtEcLVHrqFAKBPU90LUoUB5PBCBVZSiQPlDkiFh5qJAUf2DO2qao0CoWIoff+ajQKqItkKNYKRA - + - R/dyRQ9GiUTklJtHsyHCRR6XjkQwoplEWq3PRtFcqkXYNgBHaQOXRHrvskQdCsBE37JiRJdXPkUFDr1EEoVpRETrK0VvooxENkGJREbOl0SRcuBE+VzERAUZXUSU9rJEZuWCRVeI/kYzjphExDNmRpReOkUQDlxFcTyRRH8/iUQbXt9EK3PGRuTOdURFsrlEqSuHRU1ly0RM9p5E5x+LRPxzWUScaVlEHUvERF10b0W5lgJFOePxRe1BdkRMULZED6mKRCS/bEXtbqVEN5kcRdxX3ESren5Eq8mNRHdwd0Sph+9Ey031RsEXzEQi4Y9ETF6WRH7wGUVbQFJEOZNER93o/UQwbU9GIJlTRIuhDEYNAIZE8IPFRWsL5ET5SFtEdtQMRdXYh0StVnlFAq0YRcB4skQymbRE/83KRV5EJEWVgBdFEvm4RHGyhkR05YFFo4yYRNd3uUV+aqRESi5yRMudz0SWgH9Ea4ttRoIMp0T746NECC8bRVM5kESisjJFvC1nRRR9ekRPORNFPFBDRImZYUSzQ91EGH6IRF/9dkRK3HREhZzkRHStiEXLg15EAM47RY9/z0RVc4JEETqaRFu8qUXoCEFEkSgtR+n4pERjTMJH2efTRBpmTUQhwzpF+mRuRddmmERQr6tERSYZRnbgsEX2w0xE0aepRDSwUkRD+sJExeMGRXVSZ0Rax71EPbtERGzOrkUtgKFEzsS8RKh0hUQ9+WxEnq9tRGUDGkXTK5VEqBykRGib+ETwBW1EZ8ejRJW0e0SKflhEvhXARGJsoUSlCs5FUO9jRLvemUQsWWNG7XqGRPEfoUQA8s5EY5OGRXPrHEWVjWVE2HlHRNS/V0S+nYVE+Sy4RExbzETUetZENlCARNBdBkVDMQhFE52eRJJLP0YrUb1EaSC1RUrrfEUA6KVImHMIRe5mokRPqz5HVKPORPKEcEQO0jpFQb+HRNZriETQ2sBEuRqORTJR2UQvRZRE5UWYRIyXykWJxBNF7guZRGSZnESDca9EiuI2RXIwBUZwvAlI/Ji0RqzQPkenRuBFiIiQRc2kyETO4WREpL6JRJolbEUqEY1EWxYpRdaiaETw2oFGeUFyRHl6FUe9yRtFBDlORNGeV0WEghJFoiuyRA+aakTeJuRFGqJGRBK9dEQkdRJF2wpjRUWbfkUbgqJEC6x1RFUn8kQHh/JEs9gIRegEbkRL+L1E2GtlRkdBj0Zv7d1FGtfmRbA1WUWvqXhE3IDJRKYUK0VqJp9EOG5YRfyQp0SGS7dEZ0bnR/3fAkWmqrZGh81yRKju3EbnGItFbUlfRhj82ESJ1mxEdEcwRW+WVkSTpzFFmh9fRKGemUT8f2pE4K1mROgrJEUXAIxEDzuKRD/qxUTALqhE5ifiREnCjUX+W41EkcFvRNykVUVQvS1G9HtkRbJZNEa4twdFN4kDRiC9zkT1DflEGHczRZXlM0Rwv7REN700RD9DiUWpH0dJRwCHRZQGJEVo5U1IcUTKRLDMx0bwmDhEVcSdRO54/ET/lBFFhuxqRXQn8EXBColFoTauRHVxV0TKCYtEV4bMReVbjkWI6bVEL8NjRFvBVUbguABG/24ORbkAbkXz1jVF1n+2RSek4UQuxJFEPBC5RA9+tEQ+RPdEiTaeRMROo0T/wi9FjEHMR2G4g0XecZhE09aTROn2z0bBDB1F5IqkRBBGOEWkYllEyouTRF+8SkRJ9E5GXQFgRE2AJkXBO5JEuH6FRG6zE0VhPdBEDAG2RBBdkETtfDxHuKEARxv4BkYE7SZFC51eRJ4YmkQrvWJEEw74RdnNIEaQxpFFip1rRLQ3GkWGUWFE5lmFRF1R7URr5b5EOvKTRO26hESBXidF+8SLRCQnfUTFkzVE1zEsRW5LoUblJexED9orRow8EUWi84RFO8drRIo9mEWshChGXqo7RGkpekWye6BEfHQSRR8EtEWW9r1EqpqsRcGo70SFWIJExiyQRAChg0TdVZRE9PQKRWui4UQ9/nVEFSaaRXUA10cXEWBEoExIRZbNx0RTk+5G1AJuRBx6+UQiW6VGigZkRbSesESHPohEj2RvRNRwokQSu6xEp9kFRVCRtERNpo5EibxtROvqP0S9GgZFoeKXREAvQEW9xaFEOFHURImfWEX1v2BE0P2JRM7O+0TXHkNEF1HTRFxMcUUNXKZEujejRMYVVkRSlTNGt6CTRb013USC9URFR5BQRAvXFkX7G89FD4wnRUodoURa65RE4dMaRUUaTER/oVdEyqWWRCgGAkUyM1ZF+alJRrdYlkUn4fxESuUKRhgGmkUWFNBEidavRtgvgEbRFMFFZENoRQNaJEWtSIREjnkdRaVuYUXexy9F8hZiRK5LlUUjzu1EZ7eYRPlxm0QJi2tECgN5RGfWeEgcWPlHnQfORLe/ekQtNrtECNGBR9YlhEZ8xJtFjcvjRNiYi0Sj0Y5EJfD9RL2nFkbKfxhFK4QvRdQMGkUTlV9EkuMARcdXrUQ7WDpGe/4ZRSCHj0Qjr2dEQmmIRJphR0XQiT1Fdiz6RFMcmUQ//YVEWIUJRbxxrEWjDMVECbpLRcVBCUa9ge9EGnywRSwY+0Q3msBEfOmEReHLTUTl0YtEo3A+RUVZ1EQsPZpE7lQ+Rj2uR0UPUjdFDXSbRN8zo0Q2iiNFYcvGRKfM9kfIQZNHb2tWRj6rokVTj19EHMyzRPB43UXi/XBFnkmaRA9Lwke636VEVJQ8R3tB1Ua2YMpEbU7TRan87UVLUghF9XTsRLJpc0R4LdtHnhlIR7ZJ/EaJvxNF8dYPRosLvERaCHFFBHZERfCfCkZnMJ5F6AWERCOaVERKclFFNjRYRO+/X0TDIwtHueSgRuORlkVb5tFEFOCXRByPk0Q2eYRFbwQ5RX1PokRz2cpFGSmKREEVEkW6BxpFkmODREGgCEUpm2xEMW+LREMwCUeJJnxG7ocnRhxPfEWpZEdFmWbPRD6MmUSQyG5ElxHIRAM1CkciMn1GNx0lRgeamURBAQZF9EWsRQv8r0QAcZVERY2QROcExEbSnlFGimHLRWy5jUQiGslEBF0PRuor20UtSIRF8jN8RNQI4EQwnINFRzxPRWKB+kU2wnhFlLswRXrk0UR3iKpE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 8M/K2W/BckCOj1fIT8JyQEhY322nwnJAZk+sqDvDckC7A8m3xsRyQHo9/5UByHJALqJ0LFzNckBOqPiFQ9JyQMVK82G20nJAAFvCDXfTckCyi4bmzd9yQIAIFea54HJAnmIyKFHickB80+FLj+JyQPwv8KAk43JADLgpPcnxckBMhGHeuPNyQOWt8Ryk9HJAUxD3wsL/ckDE6kde9gBzQICvv0FLAXNAll5y+Y4Bc0D2OnT/zwJzQJY85Mj6A3NA/imlfgkSc0Bs2HzQvBJzQLSgsE/4E3NARqwrQU0Uc0DvB6/2Tx1zQPw9Ead4H3NAiZ6ti6Qgc0A0+Q9tOSFzQLZfBcwOI3NAUqFehc8kc0CCOetDRjFzQCl5H2tcMXNAcK2vPc0yc0D0rEtGNjRzQJ6xxwvjQHNAZGlFInlBc0B5GAsPJkJzQFh0hCp7RHNA8gIPspxRc0B66J5LQ1NzQHS0OyijU3NAjCANKHlUc0BSe22Bi2BzQG7G9qs5Y3NA7tr4rWhyc0BSrE8UTXVzQBSVU1B5gHNAmMIp+6OAc0DC1zzCDoFzQNquFEdegnNA3tbNPIeQc0CUD2RCTZJzQPQlXHxilHNASFrg0PeUc0Dx41AjuaBzQOxEgHJaonNAgqpBn+aic0CaXQJyBKVzQPwaQPc3sXNAyEwvcrezc0CEWAS2DbRzQOqzBwtlwHNApjZ9vfjAc0CKUFOc0MJzQP0pwyMmw3NALI4x9NfRc0ABy5M2vNJzQJFhiPfZ0nNARedsFPnTc0AWw5ge49RzQF7dodak4HNA4pwJxDjhc0DaX9z/ZeFzQKYeLQPn4XNAok6rQ/Dkc0BuWszuNfRzQLCtb6fjAHRAHpVpF3kBdEDUhsmiiRF0QAo/QstME3RAftB6kkogdECorRW3uCF0QApB67loI3RAztQ9aFQwdEC6IZFiuTJ0QIjAzrjjMnRAfu4sMRQ4dEBw94ocbj10QHYOXVZSQHRAC+MkanpDdECqXEvr9lR0QISS9LCMVXRAWhvNgrhgdEC3H4aDCGJ0QPbRbXxQYnRAXVJdiU9kdEAFt3bOIXB0QKqTgrxBcXRA6BdSWhVydEAtymcaOnN0QOoSYJSjdHRAlOj1XDd1dECqzqgi+YB0QL9TalZOgXRAdkNW40mCdECRbZzWR4N0QLTVKJQWkHRAKnMgUmqQdEBZP6k/SJN0QBEx28XToHRAixww0LqidEAan5pi0qJ0QGJgG5QPo3RANKJV+8OwdEBQ9OFHcLJ0QBYpzF/Jt3RAIiz/9hK9dECYIVUWJb10QNq3CsbjwHRAGzvBzXrBdEDCvvY9uMR0QDd8div7znRASro+UOHTdEBEly7Wz9R0QHK6MXwl4XRAS4zmArnhdECLVZvVTeh0QDdJNSyN83RAUJ1nh3r0dEA6crFJZAF1QOgmRXddAnVAyQIwNWwSdUAXvghyIxR1QCwQ/1qdInVA+Rgg98o1dUCkY631s0F1QD6hROL5T3VA1gqNYeNSdUAG5J4yT1R1QFc4RoR3VXVAUKW0bQVgdUCyglCMo2B1QIixI5k4YXVAXjV8J/VhdUAXme9SeHJ1QIMRvRmOdHVAXF0JfHmBdUAIrJnNroF1QFQHf1kUg3VASrW+KImDdUByfdRHpoN1QLmMVEu/g3VADqNc3pmEdUCAG9AajJB1QHl32oW0k3VA3pmSZrihdUBWDsxvXqN1QFY5WtS0o3VAs0S8U8SjdUCQClwu98F1QC73yjvw0nVAapWeBszTdUCuAMnSB+J1QOhOV9j64nVAKIOQwEgCdkBuv4u00AN2QH5syutUEnZAWKifCE4UdkBhN3UciSJ2QFqqDRqQJHZAU17ymEordkAL0V+IHzF2QGIgar5RM3ZAGgviv5EzdkCiIu8/WTt2QDneM/cdQXZA7XTvdsZCdkB1CyePeUR2QDiwPZUQUXZAojJgv8xUdkDacR02H2F2QCXxodBRY3ZAIx4Br9pkdkDE/FGgX3N2QMif9Ok0eHZAVIR8H459dkD4oL/LaYJ2QPYoHzuRg3ZA/XN5G/SSdkD0pJwRnpN2QGj3aMxIsnZAuo3vspyydkBSq41ZwbJ2QKyugUB5s3ZAAMysXQ20dkAwn8SFLb52QBAePRLAwHZAPEGAkBnEdkCWiRb+zc52QObwHfB90HZArtpPnYPSdkBSHngAkfN2QGEXGTczAndA/uS6i1ANd0CFgw56ARJ3QNSH1/CPEndA/Awd16gSd0C4wv/Y5xd3QGsR7rAOIndAMp9FK3Mid0Avrc4gKCN3QB+P+GK6JHdAuN2XJqYzd0D3tstwPjR3QF9qUwQNNXdA7P5YHCY+d0AZQssVnUF3QE4PhaCCQ3dAEN7T6RpFd0CpGzg5S1F3QEXRUJ+SUXdAp3kK3ihVd0DuHPIoj2F3QDa8rmwnb3dAQM9Q0XmCd0AhCAcOfYN3QGAJua0HkndAIwadXE2Ud0CIB+QBaJ13QLWvC5yP1ndAtJrZiczdd0DQXQD2JON3QNYz7kSR43dANlfoyaftd0AlYyT2TvJ3QCyaW8NuInhA7gQwWYwjeEDGHCfUEER4QGJN9Bp6RXhALv6PispReEAb2NpolFJ4QNgtZiyGVXhADizTp+9XeEA12nVdM114QFRjVLL6YHhAgG0zdrVheEDE4MQ2aHR4QNCZoHiLdHhAfsoQzKl0eECCLm5HpIF4QIzuFKaZhHhA9inmBbeEeEAeFtmWUY94QOZCR16ZkXhAYrQoRaeUeEAdGJqVzsB4QMRDiQS31HhAyxUJZwH0eECCOvXcjPV4QOgw1IKTAXlAwDo/YpkFeUBOPPYYjkJ5QDTqc/X3QnlA9kKp9vtDeUCtghnszFR5QF6vA/JEc3lA4IcpIHGNeUCUvHlnyZJ5QA4MC00PmHlA+OoV6yeYeUD4WKIMc515QIaQ8Qw5onlAQdC2tr+yeUAicZqFytJ5QHjA+dxC1HlAqr52GM7VeUDiaj4BXtx5QFfB96jC4nlA6rfsVk7keUAQ6ykH/AV6QNSSPVk5I3pAAgwLsywzekCvxX1nDDV6QJJCg58xN3pANgnFZjE7ekCzTzBB6UN6QO6GKekaRXpAaz83HuNTekCz7JG8KFV6QCUM/+GhlHpAMKWzc6SaekABQriHDLZ6QFKJjqcbxnpAY+aqtWbhekAThiN6Nu56QJRGz2Ve8XpATNMGP0rzekCiLvPoovh6QIJ0OK79/XpAaG3an0YDe0AoqE62XQN7QAyQdalyA3tAfE6mvioOe0A+vuxLxRJ7QFAyytJMFXtA/zuePB4Ye0AY5duUex17QCd1bRVbJXtAbl17LZlIe0A0g0HCXFJ7QP7VuQ1/gXtA+G3F/vuMe0Ds/6mEIpV7QM7AzZdhu3tA6E2/GXjGe0BYdUb/vtF7QJ3egFYc83tAwujT1Yz1e0C8vo4AlAF8QBRjsLjaAXxASYoPMpkFfEBQTeHQ0hF8QHCR6NHoG3xApy6DjOAhfEAOkQDm7iN8QMT3CzsaM3xACm9bTc1BfEDcKQMV3FF8QKETh5FWUnxAPr/O9X5TfEA9m5PU2Fh8QO9JpR1lX3xAcHUW+QtifEDiyc8vAnN8QC92Yc7BsnxAAuKLzFuzfEA2Pc51EbZ8QGttNHla23xAocEKIljifEAew1FAX+N8QJwzzqAV8nxAwFWV+1TyfED34dcMcvJ8QELIEsAAAn1A+JQeGUwCfUD2GmdcUQR9QMJANPZFEn1AmAeNOaAxfUA9VGacMMN9QAaoDCPY4n1AAF3R9pL1fUBoOhfaTxR+QM/Q3981H35AifnxED4vfkC5OkNKj1V+QEQDxXrVWH5ACr4G8l5sfkAAyPyoC25+QE08tCrJiH5ADf7mWcyKfkBWFzf0YIx+QGrJH/DVkn5Aq4ybHmyjfkAIqIKP/7p+QJ5f16oKw35Ao73p30HSfkBcYpGPJ+B+QLaD27UV/n5AtFGKTSAAf0AYRU9ylAN/QC6+v1olZX9AbpLjxrhxf0BsTb52sYF/QFSpNe+jg39AIjHzj2KRf0Cg+/hQm5N/QOI0UM+hm39A1ANkmF6hf0BQbgMnVrF/QOqJlNtHAoBAs1GKboMRgEDVWwdiMBSAQK603W7WFoBAJCF7bYAZgEANLhgiATmAQG6dyfv1SIBAqI4K4uZQgEBULAD9E1GAQKje8a4mUYBAfBE4LepYgEAkbpzmDlmAQO4a+HJIWoBAyidDzktegEArOHt94mCAQE+KlGcNYYBAvqGOXlBigECSlyInxmaAQNDe/VlyaYBAYh/32hhsgECsPt1ev22AQAuvlYPGboBAJymYeydvgEAcLU42cnGAQFgrFbHfdYBA8OZc4iZ/gEC3VjGnMoSAQKKQTQLdhoBA3EbeoYiJgEDIfPMxfoqAQD3X6vgdj4BAyjlFH9OugECySwTeGrGAQDpHyEQ+voBAmbVEilLBgEC2JtZ2U8mAQND+SSinzIBAP6G6ogbPgEDSbcCUVs+AQIOWmSkt0YBAp6Tl4EzRgECwFjPaStmAQJkglFki3YBAxMGle0ThgECIrBTNV+GAQOq/zQv26IBA/nG2LErvgECIZP0TPvOAQI/2zM8//4BA0OIST0IHgUC4rq3qaAmBQPKkkaQUDIFAzqzkPr0OgUC/7h52PQ+BQG4ysCPnHYFAVgFOlzQfgUCyQFQ/NCeBQHY1DE/zK4FAAkMzdjEvgUDCmteavDGBQAahwOoqP4FA3GH8qUFCgUBTElX480WBQJcAVj3lSYFALsPeuudNgUBIwG48UV6BQKKnusvCdIFAOMNOoG53gUBKaB8AtHqBQByVtZPCiYFArKdl7VWPgUAiIz3dVpeBQEOP6qXnoYFAIsm6f9emgUDadoGXbqiBQPYC/Y+DqYFAxwkd6O2pgUAOzdPtLayBQLIkhzPVroFAflxlSkqvgUBE5nCfBc6BQKYxQiMI0oFAMnnjNH/TgUAoOAmq2BiCQLV1OeXWIIJAIjlBq9AogkCWkI5UoimCQAemLpvoOYJAN/JiKuw9gkAKevxl6U2CQP+zGhjsUYJAzv1WruVVgkCyqND+5lmCQO4H66/pXYJAYHFksBx2gkBzMDXQH3qCQMzakNIkfoJAvN8HkUOJgkCsSaRp5I2CQFAFzENEkYJAJJnXuuKRgkA6AhydPJmCQOmEeJhVmYJAbcDjKw+hgkB2QAjiO6GCQBL7gBoOqYJAjb4CwDWpgkCoWo9YB7GCQJqNpaQq4oJAohZBKq/5gkCtuEa9eRGDQFg02GF6GYNAqRTKBXMhg0A4ixrlDSaDQKBdxclyKYNAgosiOhAqg0CyZyGtqDCDQFO5LGZqMYNAcAQwN/s1g0C+znVZ3EGDQM6yiZvfRYNAFue/UdRJg0AS3aPF6EmDQJSuwl/dTYNAMQADneSBg0AQheNeWaCDQImxKUCU+INAnIuBOb4BhEAC7SQuwQWEQLhnU6XBCYRAOntscbwNhEAIn1MqwxGEQKgpbjK9HYRAeO+YgXAyhEAZEgk+cjaEQMgFkRnKOYRABEsclP9ohEDehH0FAHGEQKhh20L4eIRAHbPHI/aAhEB+vkuk+IGEQHbn6VyUg4RAIA/1Wi6FhEAg3UXbw8+EQFwjJwtq2YRAHRcPXmrhhECLvwfnYumEQICgKbji7YRANwfv4DXxhEAwTUPhY/GEQDTN/T+/94RA5nDjRzT5hEBcJOpqXPmEQPI8qddt+oRAx4CvxBf9hEBMThQQLwGFQErL0JegYYVAmAqxfKBphUAE+bEXmnGFQL5uFLKXeYVAnhXrFzwjhkCkpIbDRCuGQNKLiDJ6LoZA802T+ZmShkDsbTdXnZaGQIwmodCfmoZABIS4HqOehkA6+NlXJbmGQLKUjEchyYZARCiPPpEph0BHatNUkTGHQD30rYyLOYdA5240kIhBh0D8+Pe6q6qHQD+hKWOtrodAjsNvGsixh0C51gLcx7mHQKIpZ+HAwYdASm3GJcLJh0A= + NrgMGZxjYkCAI9DqN6RuQEMdzoN8QnFA59KvbMpid0Bq3hX7KlN5QA6U9+N4c39AyM8uueyxgECaqp+tE8KDQCrT/aI/yoRA - + - zc5kRTLvwERYHp1HOEu7RbJ8qUSFfvZGyCFpRV7IB0eYBa9ElL24RK0fpkQUi/pEPyGCRd+oAkUBx5ZE32FARTXuo0Rfj5VEMcy4RDblq0SIhXlEkLyBRHVmZkUNB/1GbgXARA9xCEY395BFbUmCRFRjqEQohFdEnmzpRMkjvkYzA8NEermGRWtS5kReGOVEwdljROb6kETUyP9EmElnRZF2R0W+cAtGnxKcRO7XnETcPXhFpsR0REG6jkRuZtBEU2F1RDEay0SM7dJG1uClRDnFvkQ5N91EIbgoRV5hNUd7lqBETiZrRu3IAEYUwtJF8gjlRLaw3ESx5VNEzo1IRWF3+kSKmnVEp82gRBHGqUUYf1pFBUUSRZE++UQQv0hEC5GERI8KlEVKjoJEJo/vRTgYjURMsoVExed7RDGM3URhn2ZELAVjRppcuEQc0EtFz/qSRCQg1USQRA5FrIuNRKFDHEUjyEBE6EcGRfMekkR/5VpEjfORRJ4nmkQzbP5ErfqLRUqRc0WRkr1EmAm6RKAHf0Wr5ShH+OFJRJ3EHEiL/Y9E5QWeRA4FLkXf4ZxF4vF/RC6Ot0aVf4dFyYpeRMDzwURKAmdE0dx1REDZiERmU15Ev4W9RAxSeEZye49FoCuURMC+hUTE6IlE4uOURNAQsEQwGbdEWl5fRC/Xp0Tt1XNEySXRRMe9tkSTW55FSd9hRHpbY0RqjntGvL3sRB3o9UTY+mNFm40RRf/Ta0Q3CYxEXN/PRDkWdERUNIhEGM5oRDb3hUSsOQZF9XEDRUp27UTJ8RlGweKyRDFeokVvY59FJ0ZhRQS0AUlcs7xF7TOwRIxbeUTrr6NHvO+iRMd9pUTxlnZFqfQERY6kpkSTCNtFVqq0RHib6kSY68ZEH3bcRTzEnEQOQEVEdmGURILoR0UqDuBFX4b/R3lemkYoMTZHzbZ2RJxYrEVb8VpFGDyXRDjba0WTyBpFcnsdRtNkPkSYOABHlMHLRAoRb0UdBtBEhXm0RLZ2l0SH+NNFm+tFRDVnjkSb8eVEyMJ8RMhHCUXMHm9FRnNvRbxAAEWTX5BE1lRwRFkzGUVf8FNEiUftREEd0URsOQBFWkomRnptg0Z2ysdFegxfRad2B0UyOVVFBUuMRAPtI0Xea2JE00OiRM1BqURKZ9hHYQ7GRCIopkbWZpdE9RO1RmstfUUCpWZGPH/VRM/EAUUEZkRFI1+UREXOkkQCF4BE2ImhRGMqWER6oGJEhhxIRcCzNEUnx8pEw6aCRK+L7EQB51RF4EODRIrbGEUorTdGGHqIRe+0YUZU2/FEsEyXRbtfiERrbNpEx+71RAQtqkWkKz5Jt8IFRsMXO0WYI0JIL5cNRTDEdUQ53o9Ea/eCRqT6l0Ro/DxFsv94RQrHkEWecCVFJiS+RPVNi0QJFbpEsK28RaNdOUViQ9FEVKN8RiGUyUXidaRE5kE3RXCJnESmZpFEdGZTRQ3nF0XGz8ZFOomaRHEjiESZu41Ewx+oRBSnjER3WIFE1mcURQZGvkcs1Z9E7zqjRIQSsESm7LlGR5UZRbQQGUU71IREXWxyRGVzB0aWQwhFhvYKRU9BrEThTxZFfBZnR6/iC0ePKwVGfGoAReou5ETyAGhEyJm9RLk2D0bItyhGRYGgRRTu80RazCVF+PWbRAesf0S7IexEDV+dRIoeBEX++mxE8PFzRLKlGEVnZwNFwuyMRpgVk0SQKy9G3SmRRXUJhkUq8jhGJUq6RBqYP0UsGbtEZyXIRdixxkR1pk9FGR5mRe9Qi0Sd4XFEx8qmRM/GZ0SbCuxE4xxzRNb8cESxFDlG3iTVR/uyfEXBzOdEu4DBRqo9S0UG0N5ER3ytRv064kQ4jndFzwheRNGxbkTxeqlE+RwKReU2qUReLItEuKCBRPPTvUROpahE1nKMRLSrr0QR12FEk9eERaHLaETpgwBFwEeoRJz+U0XICZJEgJqCRWgB50T645dEzh71RKiiz0QS/4hEtXCPRXbfjUReVW1EcbY5Rh2XkEU7GP1E1dNGRbyWGUVKVGVEe2jYRRHecUUje6ZEXiqURKmLuUR5q95E7PwhRcpRaUaAqFRFRMxcRDZinUUH+D1GvKanRfSgUERSbLREOGqfRBSH2EZGSohG6ol8RTl7vUQQg3tFlI7VRPpr00THMgJF/E+fRDuD/kR8+gdF8KFSREPIZkQ9FpNFxCm6RPdCl0RcPo1Efj9dSAuNykdwFYtEl+ZzRDhCikSEN5tEuyBnR6IlSEa37IBEVsZ6RfxUdURKQdBE9k/jRLZNmkR26RZGN5I2RRJ2iUU3JRlF2RT9RHIrF0Xz8JZEIl86RqioFkWDublELp5hROMLxURSy9tE6C2FRNdRLEUFPGpFRaf1RG9HZkSs8LJEHnTBRMu1YEQdGo9EVqCWRYCawUQkc/9E0ZXxRQlnBEXxhwFGT+67RIfvCkViJBdFsG9TRbS5C0WVS8hEgpyWRHbXIkZ8OYRF41cWRfPTvEQqJk5FdI/JRDd71Echg2RHg8ksRrPLvkV0ngNF41DmRdfdY0VCFoVEHnTBR8wOD0Xx3UVHk8SYRDNu3EYvTQBFc2TMRc5i+EXHMxlFWPZCRbGCcUR9g2JEmJ64RF6Qx0d6tzRHnB7sRrSDhkVKnwZGP7LqRDEdNEVfxwpFV/h6RHp2S0br7RJGCevnRNgE3ESioNBEbvmnRDnQF0Xma6VEwuVNRzG+BEchI+dFI5oYRcMpd0SqpJxEMHRxRTXIo0SClG9EwWTMRW5QA0VuLehEKUGGRKk3qkSR5KNE37/XROiUlUS/MwhHTep/RtwyH0bNWapEvFOJRR6JckUbawtFTaQHRWkxo0RRua9EZGbiRIK/q0QhJOpGeANbRl4zEkZiTGdFX7GkRXSx70TiEXNEIOqzRpjwcUY7A7VFORLcRJKV00R5wXZEd24wRnPHlEUzkz5FqGHzRFLhvEVa3i5F7uLRRTAgcEUSERtFWoSbRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - +vf1kG/BckD6zHHYUMJyQG+Pq5enwnJApNNCVjzDckBCLkA+xMRyQEKjzLoByHJAFNZfWlzNckC/pUHSQ9JyQPq6L3/O33JA4yRhULjgckBwaXYeUOJyQKBLuGiQ4nJAgqWfz8rxckCr9t3WtvNyQDz4JQ+i9HJA9Fle8sL/ckCMsvNXYQBzQNwQR5T6AHNA7HIAR88Cc0ALh1vS+gNzQFAT1bW8EnNAeIYfJPoTc0BAvKOlBxRzQOTaWUB5H3NAjhItbjkhc0BC+ldUZiFzQAv5Wm3MInNAJFIv9M0kc0C0owubOzFzQF67zj9IMXNAZHPH/1cxc0A8N0zhzjJzQCGC1RzlQHNArF5UPHlBc0CyytWNJ0JzQEQ4JqS8QnNAkLDBUnpEc0D8SkQ1nVFzQG01qiDzUnNAdPYul6VTc0CMYc3ceVRzQCK9U7OLYHNAh5/pBzljc0BB9tIwK21zQHAQGNlTcnNANFv4pYZyc0D0YowGt3RzQHGL1SNMdXNApAs1FHmAc0CyqOD0o4BzQNI6KZ8OgXNAEZw9bQ+Ec0AaBbFniJBzQPSZypJNknNADmgD42GUc0BA9DZY95RzQLQLn1K5oHNAGSpvGluic0C5p5pV5aJzQAI9tQcGpXNAi4a197azc0Bf0t9AC7RzQIaAknNhwHNANPxVbdDCc0CWggvYJsNzQDTx74nX0XNAzebU+77Sc0CGt7CQ+dNzQH5nvNPj1HNAFROuKTnhc0BdE/dSRvFzQJ5HHN049HNAdEERQOUAdEA4SKRXeQF0QH0jEXSlAXRAGl1EAk0TdEB+lJLsuCF0QFpsSee5JHRAejXihlYwdEBl9T2PuTJ0QA6ZrR0ROHRA+GtBDflUdECV/sBFjVV0QFJON0i4YHRAbNbPwgpidEBHg75VUGJ0QO6u3htQZHRAChYSHyJwdEBmZTXKQXF0QCjnvlQ6c3RAtOzFXzd1dEAUrriN+IB0QA2jMY9OgXRAuBtAp7OBdEDk2QIrSIN0QGTbK7cWkHRA0pUDWmqQdED2XUkSSZN0QN3NwI7OoHRA8mEAsTehdED2mN01uKJ0QGDa+w8Qo3RA2NDJTwmwdEBojOURcLJ0QGzBnLvJt3RAaMmTCxG9dECq1Uhv5MB0QFowMV94wXRAcr7nn7jEdEACK5BM/M50QB4U4tzh03RAmCyYIc7UdEDtWdSJuuF0QFy+FFf+7XRA+Jy7OY3zdEDkF+Jr0QB1QBImqr5jAXVAkjquCV4CdUDSUSoKaxJ1QDA48YkiFHVAToyWS50idUDmOie1zTV1QCCi/dSzQXVA8gvuzfVPdUCQbHl8glF1QCKiYOPiUnVAHinYa3dVdUDgK+ykN2F1QJMhAB7zYXVA4rNstHZydUD2XYY5jnR1QL7J8mp4gXVAu4BrAq+BdUATucwWFYN1QBDCM0Z/g3VA4mycV6aDdUBJS7ghxYN1QCKf7AfTg3VAkGyWT+iDdUDh2W9fmYR1QDjzUb20k3VAZt2H8LahdUDAS5ZxtqN1QLptvITv0nVA7Y+I4AjidUC4FbEC/eJ1QOpvhOA85XVAOLTiPUgCdkDsoe3BzwN2QCatvAoLFnZANKVCHYkidkBIFW8JkCR2QMKnzcpKK3ZAgIa9OSAxdkDxKPETUjN2QLQVeRqcNHZAm9c3EFo7dkAs6OUCHkF2QDReJgLIQnZAyhvoHHpEdkD6B1BvyFB2QALrQQsRUXZAIuxR/cxUdkAOtC1qUWN2QAy/mffkY3ZAGmsINdlkdkDKjqYhX3N2QJgeI1+Rg3ZAqHgGVEiydkAIPVsUwrJ2QMQh0nx5s3ZAJ4bR0wy0dkBba7Xn0bh2QKSK3UrOznZARib6uYTSdkDmeuwCkfN2QIx/hv0zAndA0tDhSFANd0CwkBCtARJ3QLrAF22REndAjJPV96sSd0DWuThh6Bd3QEChOLoPIndAeFSi43Eid0BcKRwlKCN3QG7l+9KlM3dAOjvIDg01d0CMjB6sJD53QATZkYCcQXdAoGKONK5Bd0CkNaaUf0N3QCQij8oaRXdAmPLbFUpRd0Dmd7nnklF3QHSwe/EoVXdAHINMDpBhd0BjxLfZJm93QObb60g9cXdA15qFh3iCd0CQSThVCpJ3QMSAFV1MlHdAfyyCb2idd0Cnfieryd13QFj/HttuInhA0lpM7osjeED2Ku9bDUJ4QP81JG4RRHhA+oWZT3pFeEDms7vdylF4QAyT8SaVUnhAtOZZDIhVeECEpJlR71d4QF3cAP75YHhA7G2OKLdheEBwowTwuGJ4QMz2PSRcdHhADk9GZIt0eECKNsc2wnR4QBymiSLbdHhA2pfq2KWBeEDnFtWZmYR4QDm6kQuYkXhADgE/X6eUeEC8m9jrzcB4QKYOQ6kHxXhAUru5BrjUeEBS4MB5A/R4QBeHrE+M9XhAVGLPV5EBeUDCxIQHmwV5QHZgitmzKHlAW37LR49CeUBZIYe2+0N5QAQTpSjMVHlAdNgMSNpkeUBKqkDRRnN5QD36XMtwjXlAh+KU68qSeUAVa/5hFZh5QM46Q1HAsnlAu+nITcvSeUCsTR8KQtR5QLNOJUfM1XlAsJPl0FPkeUCHwyGc+gV6QCQK+Fw4I3pAuK5vPSszekCOFiZ3DDV6QEql7bowN3pAGrQxHPU3ekC8EeC0Mjt6QOQIxBxNPXpAcCRhfOhDekB6KUt5GkV6QGRZvEjiU3pAVL/3BShVekA4CFAXDbZ6QGQS8CsdxnpAygJGh0HOekA6y9qTZuF6QPH4YA155HpAIMn7nzfuekBliSzuFvF6QJSpYCFf8XpAMqyx8UnzekCJsMako/h6QLhn9VLq/XpAhB18+f/9ekCUnhToSgN7QIpsYFfEEntAxaJNjkwVe0DSNTLJHBh7QIqelKhoHXtAGABji1gle0BeqSjBmEh7QKgAv0x+gXtAeHAwKwGNe0C7p73PIpV7QFZhrfPOnXtAYP89CnnGe0Aa059osdF7QOSDdjgu0ntAAGEYKgDke0BcLROyG/N7QJLitDeM9XtABBwZq9kBfEBIix0cmQV8QJIjUZLSEXxA8m837OcbfEDK1w8h7yN8QIDMrn8ZM3xAWiUS0s1BfEAMBsso3VF8QFIP4wRXUnxA+fTQDH9TfEAGEvm4DWJ8QJJikx3AsnxA1L8LNFrbfEBGSJL5V+J8QDmLZDcR43xAE0f6rGHjfEA6skueZ+h8QPULMnYV8nxA+ArfaFTyfEBqCwnHAgJ9QID4CLtLAn1AFu2Pp1EEfUDYLIFaRBJ9QBDSkv8ww31ADkUXy5D1fUAUaD8wPPx9QMr+GNqNVX5AoRPykQtufkCEEfdqyoh+QNSDMd3Min5AuGGYgtSSfkAU+WMijrB+QP3CuT8Bu35Ay79Mh0HSfkDyK1C6J+B+QHNuEz4dAH9Ajk7n0I4Df0Ahgr6smgt/QFJ01pC5cX9APFwmwbGBf0DkWq42o4N/QKv3Vp1jkX9A9hBq1quRf0DvMu8AmZN/QMJl949doX9A/mRujVOxf0C11Z/eghGAQBrzPVowFIBA1ZAddd4WgEB/HsBYhRmAQBgvwQoCJoBALLHUTzk5gECuppg76j+AQPYQx53vSIBA8mlCl+dQgEArd6kMFFGAQGzSnjUOWYBA4mLZcUhagEDQy7Q2S16AQIphPUFQYoBAIPyJmcVmgEBY/ypWcmmAQFGm9zshbIBA2E/j18NugEAqcMIcKG+AQNa/CtngdYBAQRueXeV5gEBpVldpNISAQDp5g7jehoBAgM2iux2PgEAAasCphqmAQG7/0PTSroBAMmMnd1LBgEDji8MqcsGAQPb+MltTyYBAzGoYGajMgEAG4n2LTNGAQI4E6vn+0YBAhFrjFEvZgECYz9wjROGAQGmojXdW4YBAuqkLr/fogEDsj62BP/+AQBeYT2RAB4FALPqWYmYJgUB6JunlEwyBQLoeeHXADoFAkLr7xT0PgUBZNVenNB+BQKg51T01J4FAE/WHBPArgUDUn6AhvjGBQNCU4Db0RYFAAdt3guRJgUDCn7sx6U2BQGglAAzCdIFAnJkfUm53gUB2GYSO442BQCsCU7VVj4FA/LxhHleXgUB7lJ635qGBQM/CW4TWpoFAYIPEFW6ogUBiO2SGg6mBQMz+es0qrIFAdAyFPEqvgUCw/YKvBc6BQGoIMLkH0oFA8G7qoX7TgUBqmZNo2BiCQCrGzhvXIIJArfKtz9EogkCWngvk5zmCQNUd/nXqPYJAjMNwX+lNgkCq8Fou7FGCQNjhEh/gVYJAT06FsvNVgkCShNC25lmCQBm10vT6WYJASOu83Bt2gkDQjTuuHXqCQHiiElBDiYJAsOhvJuONgkC+8YC6Q5GCQA53L8E8mYJA5nZSEA+hgkCmTIBVO6GCQIi8H3EOqYJAKLGiADWpgkCUIkJ/B7GCQKKTCJt5EYNAX26ZbnoZg0DS8FnrciGDQAA5PLQNJoNAlW4ZdnEpg0Dww6IuECqDQHguseKoMINACoLf1mkxg0BtzPU+3EGDQAgMTcrfRYNAWgX+1dVJg0DVwvu/2k2DQFmtJ9PmgYNA2OGS40mDg0AgpkfmWKCDQBCcpUHi7YNABWqvIr4BhEAcZd2OwQWEQHxHudjGCYRA1rUdSycKhEDeMjkyvQ2EQKoId+W+EYRA2KACbb0dhEDAiPc0cDKEQCx7mUx0NoRAeFaUiv9ohEBKaRcS/nCEQOTgVBb2eIRAY5QuLhjNhEAqTLZaatmEQIgslV1q4YRAdHIvR2PphEBKLv8lNvGEQGxFPzdj8YRAbwW5a8H3hEDiuBVgNfmEQCrTKddZ+YRAxXWQGG36hEAKzKxsoGGFQL4KpX2gaYVAMb2CMJpxhUA1mKP2mXmFQIkWx7D+kYVARnepWDwjhkBorq/7RCuGQJzR/QzJeYZATLKkgJqShkAeaL0OnZaGQPkuMjGemoZA/F6CTie5hkBe3QQvkSmHQJDh/ROSMYdAvpltPok5h0DUuHBWiUGHQIvyJVmqqodAZEueOa+uh0AbMQD7x7GHQMqdmR/IuYdAHCnTPcLBh0DPUpXZIJaIQA== + NrgMGZxjYkDAIFw1+IJuQFRnpVdMhW5AmHHSiBRzdkDUtW4KbEJ3QO7F1o2s43pAYg27KURTfUC+jpFWQnqAQNywXxfu4YBA04/fRSV6hEB44XFOunqEQJq7hVWRgodAljIuORILiEA= - + - eoFoRexjs0QKP6RHAtvERYwcp0TEAOZGU5y2RUHd8Uam+JRElQ7FRKByRkXs7hlFKkGBRfqhjESsyM5EdvGcRHyRkkRa+dVE790YRU5WEkc65jNGAxtURc1CbEWCMYhEigbKRqwle0T1B6dEkuV4RekZgkSt07FEf8bGRG8siUT9589EAUKYRXD6JUW0Jp9EBB8XRgIDl0SSktlEXn8aRf9ffURGXI9EFY34RDGlMUUGutdERGydREtRnUS6LwpFAZ/sRmABq0QGeRxFF1CDRAgjJEV/NEhHzCrPREJgS0YXMdZFw/blRZu/vURcfwZF9GNjRRPYFUVHKbZEZaqkRWyiI0W7RCFFwtrjRLOT2kRr4JJFY+vFRe3HnETb4+BE09h1RBDOgkbsepBEgCtPRaeE9URQpJJECA+ARCEg/kRlKvpEGsh5RKZE/kTMRG1F1roDRURvj0TvHNhEVrumRcrQMkdhPXRIodKWRHZeHEUVXMJFDGnMRNqlEkepfpBFXnGfRCpm2EQSpolEEFGPRKivn0RkXRhFmxfLRLEXiUZboedFbrmaRO/HoERheqNEUDUiRQhH2USdudJE8DmYRLAJIUVEvIxEBdqoRZVQgESeHgNFSXJORp2E90QmkOpEalxyRWM33kSMHLlEWJdtRI3lokTeZthEYt73RMhQCUXroRhF2Wq5RG/0BUY3cKBEsTOPRaxZv0WWb85FMq1FSSOW2kX6C1FF4NPeRG/YzUTSu/pHt7SXRA+L/UVF2z9GACfNRHqi80R3VYhEyyLSRbGJ2EQSxI5EgPInRaSS9EXn0NVHT5uwRusXDkdcrpdEd6ZqRZPxKUXendREuk0IRbMlukTXCzpF/f0sRoC48UYfCbdE2z8VRfAZUEU/lv9FW1+wRDA5BEXXloxFo9CBRfPS+URvcjVFL5g+ReY+xETsZ8REEfImRi4yh0aXq7pFY3qTRar1QEUkWmNFRzqFROUBHUUZ8tJEM9nnR6rP+UQrVp1GzGPkRaBDs0R23L5GhOGFRZVoZEZID9ZETPzsRFSiMkV+p4tEtTMARSyiB0XxSKNE7lOPRKV1pkRWEVtF/YiVRMalgkRQtjVFHcA7RojQUEWI2CdGYgAERdf/oEV/cAJFHKRpRVtggkS1dLxFJoJDSRmMREUHZgVFplIwRdvcRkgs3A5FTlOqRiG7q0TEjpVEv/pbRRDMY0UMP8FF3Gi7RGFDrESf0plExzaHRPe+zEVmOFxFZ/GMRB9grURzMpNGHxEgRuil5UQGf2FFpJMBRc00v0WF2hBFmrmGRBdz3UTfOItEuOw2RSj7u0fQ9e1EIPKsRJ7J40QCHMRE4Xm9RE0Yz0ZNuAJF/cv2RBH6EUYyPchEQqqvRDegzkRJzo9EaofHRKDa2kQPdOJEwRtZR4ygCkdaZWlFw1yRRZLayESixCRGzccnRt+aykV+qp1EehEpRbd/IEVPHC1Fek9wRBbbFEVISBhFvgTaRBzmNkWWEKtEN6+ERPpLIEW7OZZGq6w+RvINtkWek5lFjs40RjItkUVCl6pE61KlRbJP9USmBhdFmhnxRG4cCUVGFedEETknRuZ33EePATpFS5SCRX4blUTLcOdEgeLNRsZYLEXW945GsnmVRO9kLEUX8YxEPg4BRSpUmESRe/REMz8MRZDTqERnPZNFNMH7RKe+hkTNaj5FJOIDRunmrEQXKKBEbsvhRC0DkURm/YFFJeTLRBp2qUT3MUdGBPaqREtqOEVddWBFNJANRUWw0EUD23RFdZAPRdtwjkRqkJBEHyMaRZRalETseedETRJSRbopf0aZSZlFMVrARjalHEauFx9FirzKRsW/g0bvEJZF7hFMRbIDLEXuHmhFYJ/gRFuWNkVreB9FlH+SRWuBCEWRnH5EpOCDSH5NzERfOfZHQu8MRa89gkdDp85EUHmBRqBzgkVC0d1ENBONRFAeKEauvHtFRqMcRd9sB0UdMqREnM38RExRPEb2NyFFrSSLRLYrBUWdRTlFvkR/RcBrAkVlX/ZEKJn2RG35pEQ2PqdFAnPERPK4QUUPTgJGuO4eRZBbn0Ue9AlFYluIRag+C0UGXdNEbNbJRCtwK0Yu8g9FZ/xKRZQxG0WF5bxES2evR3JMJEeR1OZF/2MBRjQ9e0VweaxEmkizRXDTv0QWYOxH/o2SRCbRV0fRBglH1vmZRUHT6UXnvghF8gZJRUGY3kQ+7vpHxRFfRxZCDkf4SlhFXQcFRpgi40T93RBFAwM2RWVU4UbGqT5GUugeRSEOxEQCPrVEPlqPRIrI/kSONZFEJ4RGR0oU1EZm5qxF+juARCAOSEWFK+hEewueRIJaukVMfTZFlc3ARSiyD0VgWtpE7+CJRLWNIkfzkIxGUBtQRpznjEXeVGpFKNwURZAF3USSFtlEtr6rRIoREUdb8IdGKX5CRkIeokUwwndE3DBCRekssES/56xEgJGaRnjPLEYIcIdFJB/vRCTYK0bYV9xFjtaERcBPoEQAdjBFnj8PRdTdKkYUkKdFq6mERYk1r0Q= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - G8zG2m/BckA0t+J6p8JyQJWPPG07w3JAimhThcbEckCYrF3qWsVyQNguNEwByHJAhDYbWVvNckD2F0DYQ9JyQHfKw2+l0nJAuQlUIHfTckChLKcBz99yQJHKGnK64HJASGDUWVHickD1L264j+JyQALr1HXK8XJApiAHQLfzckAk2Pkt+QBzQEpQYt7PAnNAH0p86voDc0C2uV8ovRJzQGJrEJf4E3NAiK3OYQYUc0Co78Qm9xdzQNeTzQ97H3NAdAC1WKQgc0B8oc9POSFzQGAuB50PI3NATmXoEc8kc0D6J642SDFzQB6hmSdZMXNA6EVv9TY0c0AiI4pruT9zQD7Y8IPkQHNAb1WjMXlBc0CI/zTWJUJzQN6O2556RHNAZNksGaRTc0BYE92xhlRzQOhSRZsbYnNAOXXowDpjc0DIDEvXK21zQJzrIe9RcnNA/p04BYVyc0CRcHpkTHVzQNryAeh4gHNAiEaGyqWAc0Acd7GdDYFzQKRmxfhdgnNAc5WHkz2Dc0DQbzCqhpBzQEo+fpxNknNAnFn6DmKUc0B7eCLG95RzQA/TdlC4oHNAIjLyy1qic0DKKYaL6KJzQKJx5ZMFpXNA9lLDLn+xc0AV9BZduLNzQGR+q/IOtHNAcadG2PfAc0D8r0w+0MJzQNyebj0nw3NAFiT/T9jRc0Cgos9CvdJzQNVdzZr103NAutx7gePUc0DXD2T0OOFzQDMq8Hs49HNA0me2XHkBdEBebnvRTRN0QALmo0l1FHRAeNZuzLoydEDQ9DDvEjh0QPAMBuyLVXRA7pHq4LhgdEDI3qHjCWJ0QOlg7+tRYnRAnf7cAyJwdEAWAFHxQXF0QKS5Fhs6c3RAXiRbezd1dECkHbEA+IB0QHJbb+dOgXRAbsiyI7SBdEAcmEsYSIN0QBDS07wWkHRAyvyLtUmTdEBdJU/KuKJ0QG32bxcQo3RAauFg/G+ydECgTcWAyrd0QJvw49cRvXRA+Nn5aiW9dEBHRuA848B0QH5YxdZ4wXRAtl54ELnEdEBGtbZSuOF0QKwiSYZP6HRAhKOYYo3zdEADdfuFZQF1QPqJKHRdAnVAzmj8HiQUdUCGHcELniJ1QLrWMpvMNXVAtVqLjINKdUB08y8w4E91QBbpZ60LUHVAgchJQeVSdUC41rgyeFV1QPAvOaY4YXVAVpn47450dUD24Yf3d4F1QEhOcnSugXVASalaoRaDdUAKNtP3pYN1QA1q1nvFg3VAxky2K9WDdUBvEAVv6IN1QL9mrgOahHVAIgAXZLSTdUDO+0Yjt6F1QC8gQ/+2o3VAIKH+zMKzdUCeDyBR79J1QHj8LBQJ4nVAll0LlPridUCi1WrjSAJ2QEi+OEqIInZAN6w1LZAkdkBCHJuLSit2QMICoqEfMXZAJSZmkFEzdkDqVpFnWDt2QFgU2q8cQXZA0FNdW3pEdkBCoMYGElF2QCD4+SfNVHZAjvyIW1FjdkCutsOt52N2QCdSTqnaZHZAArjImF9zdkBIagsdkoN2QFCbPTDBsnZAP2QF9XizdkAw8waQDbR2QBaw/6HSuHZAwrPRo87OdkBPscuahNJ2QHAdGM6Q83ZAFTeRjVANd0D88fxgARJ3QI4zMaCPEndAgI5IFKoSd0BV/5vnDSJ3QJk+7CwoI3dAYBvk/Qw1d0BUbz94JD53QA+unPacQXdAkjKz6PhCd0AcdbUyG0V3QCvupFdKUXdA14gBXpJRd0DU+l7rKlV3QANyB9SPYXdArMv4bSdvd0DeSUGed4J3QD0jZC7L3XdAenY+4ibjd0DYHh/4kuN3QNCemWJQ8ndAlis/824ieEDzDBg6CkJ4QMZ0S0oRRHhAshFrG3pFeEAIglDWylF4QMDuzJSVUnhA+j0leYdVeEDexjYV71d4QHsaMJtLXXhAbZUQt/pgeEBAELXVt2F4QBRqRGCLdHhA9xO9g7B0eEAaR4gEpYF4QLUcfeaZhHhAGHhd+JeReEAo8xXrp5R4QGhKPnDOwHhAZpojBrfUeEAcGwIZAvR4QJmhUl6N9XhAq0O1wPpCeUCcM6w1/EN5QLh+LfHMVHlAU3xuxnGNeUDp1HnrypJ5QComOBMpmHlAYFPbCMGyeUCnriKrztJ5QAihYgZD1HlAWhrcnPgFekDabEbAOyN6QJrd6QMsM3pAoKfxkAw1ekCB1OIvLDd6QG4Mmc0xO3pASA220xpFekBaQordzUt6QIq1kxviU3pAx6FKnShVekDcGfayi3J6QIr+hHcNtnpAp83iPBrGekB+CjpWDch6QDHnjExn4XpAhgUjAzbuekCE726vXfF6QKS+4jpK83pA1vbZUaP4ekCs0EQI/f16QLWoFiVWA3tAdMWUbcQSe0Ak8d68TBV7QGS82u0dGHtA3Kyi0lkle0DKcaGml0h7QN4FqXGAgXtA/xT37fuMe0A0aco0IpV7QAqL0qrOnXtAioNYgCeje0A0Tzqjhah7QLiHceQa83tAvohuZoz1e0CH+sRskgF8QKSKkTLaAXxAlm0OfvUBfECmWga1mQV8QA5ULAvSEXxA2j9Jy+gbfEDK5ciM7yN8QAZfwlrNQXxAvJ2mRH1TfEDCPcLCWdt8QPIWMeNX4nxA4EtMQBLjfEDkorF6YeN8QLqGVZps6HxAtL/xlxfyfECyAIQNVPJ8QPR+Zir/AX1AOIj5P0sCfUCXv7LBRRJ9QEgTkBSvG31AYni26RayfUDUJD5Zj/V9QIoKMIaNVX5APKB/qztzfkBmpuDkzIp+QPTTwfrQkn5AWsDThv66fkDqF2JZQtJ+QBg+BpBO4n5ArrqLipgDf0A6BOiIhBl/QErKDcKeQ39AbyTKXrhxf0BpVi51YpF/QGxQelqak39ANjc8q16hf0DioQeeVLF/QN9lZfyDEYBAxLAxPDAUgECgvYZ82RaAQLqA+fLuSIBA4qjDK+dQgEBzy7QIFFGAQKQpHHUOWYBAgmOoh0hagEAkEFpDTF6AQISy82NPYoBAyBBQ5sVmgED+yzChcmmAQKbj4t4bbIBAOA9dxMVugEAysfjjKW+AQLwd8+jedYBAkyvrJ+N5gEDoTb7pMoSAQACJjTrghoBAHhmBMh6PgEDzAVHrEq+AQIyu65dSwYBAgBdtfFPJgED6z11+qMyAQJui6z9M0YBArAr00QDSgEBhozZ5SdmAQCKjod9a2YBAD+W8mEThgECEMDe99uiAQL75GDpL74BAkFhE+j//gECsClgSQAeBQMKB4bBnCYFA4FYJtxUMgUDI2Zd6Pg+BQALeVDk0H4FArcs9gzMngUDRPq7qvDGBQBCBTdEoP4FAqF2oM/VFgUAI6cap40mBQEjwgNrmTYFAvFEqglxYgUADPQ6FwnSBQBIeaPxud4FA4p34qlWPgUCxtymuWJeBQEmgkADooYFAQjNyT9emgUDcRofSbKiBQKAn+CmDqYFA/lGfcymsgUAij+bN2K6BQN5RUdxKr4FAf4R7DgXOgUAsxbY8ftOBQF7Qia3YGIJA3Gki09UggkD0fvuc0SiCQHKvnTPpTYJABB9JUexRgkB0wGzj4FWCQMyynRTzVYJAvg3p3OpZgkBD8BSD0VqCQMwnAasbdoJAPNsWXkOJgkDzwFPWQ5GCQHp7pJY8mYJAygjsWFCZgkDIhc6ADqGCQJN9rDs6oYJAKhxwLRCpgkCOHrc3NKmCQOo29aF5EYNAOGEBC3oZg0COclVfcyGDQIgfeh2LIYNANNhesAwmg0AKV6A7cimDQJ+z4PAQKoNAkjYztGoxg0BOZseX3EGDQG2X3FTfRYNAvFvEZNNJg0BiO5Ck5kmDQDVGN7HaTYNAJ+EmbFmgg0Aaxkd1lPiDQIJbwAK+AYRAUlBax8AFhEBlTJ1nxgmEQFfRRILCDYRAzF9ZFXEyhEC0KJLuczaEQOAwW0j/aIRAUEVkjP9whEC/PdFgD3SEQJoF+opy0oRAosrAXGrZhEAJWQngaeGEQLsmH3xi6YRAYZI5IDbxhEAqSZgeY/GEQNLkZGDA94RA+0rc2TP5hEBGCgjebfqEQEyzkrKgYYVA3OYb4Z9phUAGauZXmHGFQCJyEgeZeYVAGtk/YTwjhkCZbufSmZKGQAUaloKdloZAuhFvNZ+ahkDqtOt1nZ6GQJB1Z3yRKYdAfXAJZpExh0ARyenWiDmHQJPj8WqIQYdAzHwHD6yqh0AVwqrrx7GHQNl+d7zIuYdAaG55t8DBh0A= + NrgMGZxjYkA= - + - pLN7RfkynEcYju9FFd68RFkh/ESG5BBHDE2sReXEHUeoMhJFOJrwRLFPEUXHzfJEgXhGRQsh9ERCFH1FZfL4RIyNAkX6pulEUxQKRxFiJka2nI9Fj0yIRQwetES/4Q5F/E3kRLTq3kYrPD5FfoiORRY3C0XyirREOjP3RPjX4EQ+zdxEFmJyRStW/US7CdtFPiF7RTsV0UQtodZEn4U5RSajRkb+Bs9EoL1ORe1qAUX1gdZGLgK3RINQ9kQ4XhtFUOYCRcp5N0VCUklHSOsDRQaHeUbHI+xFOZH6RcCtDkV31wtF7O/pREvKE0V2TiRFfCnXRDFBnkWhC4tFVjVRRRHNGEWsd95EcROMRcds3kWZwQZFSydRRvnhgkW/tbpEKhoURYRq/USYjMtEy5+LRauKbUVFI6tEApaPRR95OEdYD8hIj0j0RKpBI0VBd8RFaSXwREdGa0eQwK5FdDOCRWydskTAHNZE1W+MRh6DB0YF9M9E6bjpRM+X6kTfLgBFljzhROqUBEXBrhNFzFKrRbEcx0RZfXBGTAvYRIe1ikXzJSBFBBuyRHNH1kQD8fVEI0QeRZ2WAUVYRlRFE0n1RRZ6CkXDFKlFR9XkRRXQo0nnuv1FhgRwRbDBgEVBegJFcKROSPPO40SwYj5G2BbVRNYw3kbf/uxEstsaRU3U/0WwxyBFf47aRYey1Ec+zctGoI8RRwrVmEVHpINFTwlRRdbwSkURoA9GshLiRquk10SLZhdFabR8RcPTG0YAyvtEQXO0RZiIiUVactlEZQKARcVj30U5rTZF+LOcRt9nk0bVmNRFHXa1RSMthkUbEWdFMePoR/hz7UQ/fb5Gxa6qRBblsUaF2IxFHUiLRjURD0ULCiVFw7GXRRVo3kRNAElFPGQCRduguUQoDQVFlfUoRYSEy0RWXmpFtwIzRq7PikUK+fNFnq9DRbVQmUWdENZEt4cpRc5gxkRkqEhJnZSRRdaeZ0U/CkpIfrj0RNAYkkat3BVF/amSRStXcEXN/tNFiOzGRIqjBEaDVYNFgR+WRrJKI0b3aP1EcT+bRX0iwESt999FMfPERDaS4ESGfW9FB7nGR/I0TEXBpNhE2nPZRp019UT5oxhFQrUpRQy500RWlhhGZvgrRYaSIEUaaRRFBcrbRPsZ1kR/LGNH090YR+DaDUZLJxhFA0YGRjzAMEaXFv1F8OU5RZV3FUWXuoZFa3r/RG72WEUNpyxGZgn3RdLd7US+WyJF7lSURrP22kSRuDhGyco9Rab1c0VVMI9FAPIVRg7uVEVQ++1FdbdWRR3MS0YENt1HqPYORXxtfUVMKA9FVCIuRY83vUa3NsNEr1ubRl2fPEVcNNlEp+vgRI//4kR6Z89ECJLFRH8EoUWG4SVF2km+RDlBYEaGVDJFX043RUrH0USNJmpFp4+YRaJlRkaRZ4JFiDlORUb26ETbH+JFRGS+RegVKEVM5AJFfQtHRXkJmUYLCe5FMs4LR2EjT0YnpDFFTR7CRkrvfkbDyuJF3Mg1RZmx8ESFx45FugnKRABfEEXs28REjNCnRb/TxkRrkIJISOzeRzrXEkUFnoFHHc8pRXOtMEahRzlFyIeHRSKt7UQJ299ETekjRiaxY0VFaDRFyi/yRN7UH0UioG9GqnZaRfgBIkVeHuNE2K0SRW3nzUVlcQtFCRbXRI1EBkX3b8tExuPLRfh5qkSOuh1FLn7rRagnbkUhA41FKNbXRGrat0TXWIhFQZwYReS14URx+StGDLB1RYkZgkVSh65HdAosR7eZxUWMNPZFAn1UReKf1UTNYk1FBrgGSCh2ZUcFOwdHa1tERY+XxkV9XhFGHfMERYA/VkUgVgVIpcldRwsODkdgziBFHhtWRYgrE0ZqdshES3heRcxs4kYXznlGQ3FoRZ8NgUV9go1FI9q3RPMPzUTn5lBHQ3zVRi0m60WJATZFTEuURd4zOUURxtxFIEQbRb12uUSCftxE7W43RxBvhkZXGiJGYAOrRbeqpkWWYhxF2FPYRE9V3ERIbABHUQ2HRqLED0brYHZFWAx4RcM2hkacuS5GpqNGRcM3vESUMTJGl9ijRYGiVUUeZgFFx+cLRX4+DEY41IhFjyYWRQ== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - XsDqbG7BckAcFHvGp8JyQMZG9B87w3JAiGd+RQHIckC8OiwbTM1yQLvIGR9bzXJAGlmNVUPSckCA/s++zt9yQAZrBxW54HJAvRmPOVHickDcnL99kOJyQMSg7YbK8XJANpi/5voDc0AoHzAnvRJzQPjukeb3E3NAijFyMgUUc0Cae3ODTBRzQKKApit5H3NAWLm4fTkhc0AcTVQtzyRzQNSVSiZ4QXNAfGRC9npEc0C78M0HpFNzQG6VMkMsbXNAlNGN0YVyc0DeWW5iTHVzQEYv1AzQd3NAbLhUbd53c0AG/gPReIBzQPjbiEikgHNA+kgYHA2Bc0BRbMigTZJzQMbTjYj3lHNAazOatbigc0Byax3OWqJzQGiB/iQFpXNAzJsa+razc0DKGym2D7RzQACgPEPQwnNAi9C58CXDc0D/1B9j2NFzQMwYhVa90nNAmAUWZOPUc0A0pLLbOOFzQHLh1f429HNAUmpstnkBdECEeJwmpQF0QGIbiC9NE3RAumc0jLkydECGbQYbj1V0QLZ8tTe4YHRAGbIQTgpidEAVMAj9InB0QEy4Kd9CcXRAQgY33x5zdEDVbpEDOnN0QECfCuVRc3RAM8w+G/mAdEA6UjVBToF0QDnQ44RIg3RAtF1S/xWQdECqkjDMR5N0QMwtQEtYk3RA2E0/B3CydEAUi2xSybd0QNNRUu14wXRA0QeRfY3zdEAUSNmAXQJ1QD+txawjFHVAihuJ8J8idUDZILMszDV1QAJKas3kUnVAt/CQe450dUD8eDIir4F1QNWMRmkcg3VAvBl8LViDdUBmj91GZYN1QPlxNj91g3VAal2CEaaDdUDXbnJjv4N1QEqO3l7wg3VAPAoQD5iEdUD3NpJLtJN1QBe/2ky5o3VADBioisSzdUA43MQV79J1QM6kLrb84nVAOKo56UcCdkBPkWa3hyJ2QKoVt3yPJHZAYmhU1kordkBWNJEfHzF2QNwoQDRSM3ZAACXZzFc7dkA3VK+xHEF2QPc9+rB5RHZArBuYFc1UdkBh9vXjUGN2QJJk/yblY3ZAo5xr315zdkBIsCVgkYN2QKDawjvAsnZAP1BCHnezdkCgmWUIDrR2QMXnq8nOznZAZRy/n4TSdkApaBX6kvN2QPjz319QDXdALceaRgESd0DTi5yDkBJ3QCQhFrerEndAoz/xnA4id0AR7BS7KCN3QJMgmCcNNXdA7BDkKiY+d0C9z8IunUF3QBLv0AIbRXdAdetb6EpRd0AVheK+kVF3QHqvtjmPYXdAxnF8VSdvd0DIuKDwzt13QILtAD4m43dASH/aZpHjd0D4qFptbSJ4QOwmY1ARRHhAOqV9lnpFeED67Mj/ylF4QJBCDpmUUnhASBMmW4ZVeEAYz9287ld4QNw3Cjn4YHhAFEZk/rdheEAQVQqGi3R4QBoC5oSpdHhADOVRO6OBeEDqd9PEmYR4QGyV4U6YkXhAWvMfKKiUeEBx5cwAzcB4QD5w5ba31HhAemYBBgP0eECQm8hMjfV4QA4UcRT8Q3lAD6+WiMxUeUBikzGDcY15QKZ2DILLknlAKgxizyiYeUDe954ewLJ5QE9YYUdC1HlAfbkTkaraeUBwpI2GYtx5QJr6VG8tM3pAs8luhAw1ekCeJqDILTd6QNIetV4aRXpAUi2tE85LekDuNvcfKVV6QGHWgdYNtnpATRwfzhnGekBZh2gDDsh6QJChSfllzXpAf5GNLGfhekC7eo8tSvN6QBSJJy6j+HpA1qaq3+j9ekBbMT6nAP56QGY9wtNYA3tAGAyQ+8QSe0AIt8PRTBV7QCPm+mgeGHtApoOgrFkle0CGNoQvl0h7QCqHD7Z+gXtAdHFRgP6Me0B2f8BNWJJ7QMbECtshlXtAqRQ1Uc6de0DwLc6LKKN7QJZpzoJxqHtA3r14Ksqte0CaxDxklvF7QOMp3o8b83tAgW0JpIv1e0Aul++ld/h7QHr5UW7YAXxAWNwJoJkFfEBG3/a30RF8QHRIdo3oG3xAbv1MWu4jfEBXrdf0zEF8QK0Z3XdZ23xAysnb71fifECWvwxgEON8QPINoFBh43xAEg9UPG3ofEDgk1CHF/J8QH6Cd0hV8nxAXMrmFQECfUAeyDFgSwJ9QIyejN9EEn1ArQ0joK4bfUBKUUBttyN9QAjPnkGP9X1ACoBuYTkbfkD8sekMtHF+QIdPk/zMin5Azho1ndKSfkCsXUrW/Lp+QHaxT9pB0n5ATE10sE/ifkD0f53gkwN/QMqYqMGeQ39AyuaEYLhxf0BMh8o3YpF/QBJfBn6Yk39AK/1+GmChf0AbScY+VbF/QGUKQzaDEYBAASHYHTAUgEBFuq0Q3RaAQGSR8eDySIBAvDYHmuZQgEAUqziDFFGAQIRy80AOWYBASDCIgUhagEAUfMrES16AQLoU0tZPYoBA1vDgx8VmgECoJUs2cmmAQFmljfghbIBAzAegHClvgECILKl+4XWAQFbuo83ieYBAKOb2yjGEgECyeK3hHo+AQLvm1WdSwYBAojGqR1PJgEBOIpLyp8yAQHUz1rhM0YBAti5jg2DRgEA0oAW4SdmAQORPJ49E4YBA5u9hjz/zgECB/SjvP/+AQLRfA4o/B4FA8A/WSGcJgUCKggI6Pg+BQILHg3Y0H4FABEQSBzcngUCkfZJT9UWBQOVb46rlSYFA/km06OVNgUDpQAqRVY+BQHm7eU7ooYFAofAtZdemgUBxR0qNbaiBQJDBL6WCqYFALj8lYy+sgUA9fUF8Sq+BQB6rrCMGzoFAcj91rdgYgkBlH1Yc1yCCQOB+pRXRKIJAYpJhWulNgkCNiCDd61GCQFKbgQrkVYJAlzyfj/FVgkApDYdU51mCQJZKzjpDiYJA1nNkT0SRgkCgqxjyPJmCQAPcnB8PoYJAqmKW0juhgkBI3Q9yMqmCQJR1eQQIsYJAzRPdmHkRg0B+a78yehmDQPu5GBRzIYNAhTIjf4khg0CCbx6NDSaDQJ55hzRxKYNAJ3OdG2sxg0COQJN/3EGDQFTV46jfRYNA3LysVdNJg0AAPvZ650mDQLh1ie+U+INAT8fKIr4BhEBadW34wAWEQKTButa7CYRAAI1pZHEyhEB6XKrZ/miEQExdDgVUsoRAJHn1KWrZhEDCSZ2DauGEQI8z6Jdi6YRAnWeSNzfxhEAKDfnzYfGEQJbm8nm/94RAfCieGTb5hECCgGmta/qEQBeCtQ4b/YRAmi3Gl6BhhUDaFo3tn2mFQK2SOfaYcYVAKEYwV5l5hUDBmgRSOyOGQPDZfRCakoZA+V+3Np2WhkCqFowFoZqGQLIBO/eQKYdAhYJpcZAxh0CR94NWijmHQOOqMVGKQYdAQmSQ9saxh0A3HGIHyLmHQGJMiAy/wYdA + NrgMGZxjYkBcG3g88iJnQFf+/uF9UnBAIrP8DWmSc0CtUgPnFcN0QMujv9FtU3hA5bma4Q7De0ACC1fMZlN/QEfVrtIJQoBArK+taP/hgUAAKI/KgUKEQMoAalNXcoVAx1M12u1Kh0A= - + - CdV8RXPjjkegsa1FAgvfRh4lKUXKT3RFy2L0RnWa4UR0/gNFPhFgRZS9MUV+Em9F6dv9Rht1KUY0PWxFd7lVRbnZ30TSUAFFaMG5RqtnhEW823tFyVziRQ5vSUVQAldHu35zRqhF30Tt8RlFWJwxRR7Itkb+3e1EE0oXRTlXOUdyiEpGrTbVRZWW2EV0JvREHoxaRWHy/UR+BnlF3gkrRaeZFUWaLgVFcOCPRUfbv0XiGOhE2Wg2RrIsAEVEoAhFSoXxRNYrBUXQUUVFFKQ1RVMqlEU3CxtHaCiFReTbCUmhGFRFCQv1RApfmkXVBKdHzbZ7RaLka0W/TyhFnNW1RmY+FUbCz+NEEG2RRailO0aHmdpEGcKAReJeAUUke/lEfyAJRn5dXEWXrf5F0b4gRY5JmkX9AtBFJB7YSesRRkZ9aC5Fw6UURdHriUhsnpxGAc3xRPoY50a5A25FSHW1RZ8lbEX35elFSpSnR4aPqUYI58lGCyGQRZNooEUqIhhFXFs9Rqhhrkab1QdFc4IYRc1d/UVxTBFF6bkSRRbbYkV5gB5F7UzvRfeg8kSC+htGdQ1iRsJBuUVTEqZF3xhNRTm5gUWnq9pHS/vVRH+5wkYfPrRGvNSFReXOYUbLFzpFnfVsRRmU9UTM3ANFDmL7RKwhR0W02TlF8KQdRljQoUWuNytGRBD4RI5Op0UbahNFlqJVRUEDQklWfr1FzQ0mRS+CR0juijpFhBOLRqdEC0Xq7xFFn82FRRTOx0WemsxFl9w+Rcgbk0YSGr1Ff5scRfz7WEUW3PtFdKVrRVEv70SE4TNFr8PCR1PTKUVlBsxGsBgBRY1hLUUl/8dFtzIaRTQXBEYd4IpF+JEpRStrTkeoS/1GxXdxRRECkEVAOP9E+LNMRvkgLUYp4cxFyU4bRcuj0ESHja1F03pERdOz90SOqQJFpvYWRzdkyUZfHqJFx5gQRd4mkUXNVUdFjKyLRn+T5EQ4RypGlraZRQKhYkVE6QhGiE+HRTkd8EXtcN5FCu7bRwJmQ0Vi/ExFyO52RVghIkWpw/FGaiInRX0ArUaVKhRFYnfxRS9HKEVh+xJF5d8aRWFr90Qa71JFJeHqREfy2URhWGBGVSIJRYPCLUURUx5Fl4mYRQUoJUYRcWZFQQUjRXPTJEXnSuRFE+SLRfJWEkWXLwJFEQ4NRTt3hUa4vq9F1yFDRyuIjkY8nJNFK8yxRkV3hEZJhppFAnomRcUc40QOo9ZE1cuKRbAVpUWWG4RIESD2RwOT+kQdX3ZHuGiBRedGTEZ1kZdFoyHwRInwPUZXtylFBIJQRf8cUEXK70VGQ6/1RBimDUUf10pFARI1RagklEX68DJFTnC2Rf10DEW3YKFFvOblRPcDdEXT5BpF2GMrRkfLdUUUA1VFknG+R4ewSUdhi/5FPkULRnfjmEWI1wBIoeJkRzJ590b5IMZFOGULRou9O0XHBulEw+cDSC1ld0fIXgxHbxQqRVi+OkVlmglGMWiVRb1jA0fLg4xGLKpaRZvmW0VpOthE9xDgRkBWi0Yl8yxFoe5jRRF0xkUFu15FQOUfR/ztjkZMdU5Gm5p3RWipjUWEdZJFKRMARRdAi0XBfyNFCDUeRyLqd0ZmxyhGQsaeRQ3dekXDFzBGZJTfRbX8AkWQwDNGb3+uRYtIfkUcjwZFOdQBRpn9pUWJDzFF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - WAyJi27BckAzlaOUp8JyQJrIYR07w3JAq2lD+wHIckB41LBwSs1yQHNHCL9D0nJAIHsgMbHSckCClPeAz99yQPhL0bpS4nJArF6AnJDickCLnY/2y/FyQDsqCTz7A3NAAjSBrLwSc0CAXLzr9xNzQGgx9pYIFHNAQL1CyTkhc0AOooNO0CRzQAqq6Lx5QXNAWNQTy3pEc0D8n8wWpVNzQCITEQssbXNAmqDYPYZyc0Bwu6Y40XdzQFynPrThd3NANI5qtCh9c0AzP1XveIBzQMLvM8dNknNAWkmrLPeUc0AjmWCSuKBzQBmCFyxbonNAzrcrW7azc0D8ZnOu0MJzQFbA35Enw3NABFqZqdjRc0D2buBX5NRzQPZTHyE44XNAyTNtR3kBdEAkxwB7uiF0QGZ/hxm5YHRACCmiYglidEAy7GTnJHB0QFojU3NCcXRAL+MtbRZzdEC0vTDXOXN0QDYWC81OgXRALgkFZkiDdEBaTlbBFpB0QPaSGS1Kk3RAY5rUC3CydEDIo4mTy7d0QAiBy6yM83RAxcqvGl4CdUBUYHGVniJ1QAS0at3mUnVADGENgI10dUDcVru9r4F1QOBAqE8bg3VAWLT1yn6DdUAET8bjpYN1QMl1BtDUg3VAHstihCyEdUBqr5gGtJN1QBpTFpu4o3VA2OjWde/SdUCc2VPV/eJ1QHPMeCZIAnZAFhH1d4cidkBmSp+7jyR2QDIc/rZKK3ZA6HAm9R4xdkBd226EUTN2QG0nZ15YO3ZAjHF19RxBdkByZyjqeER2QGuGi2MRUXZARhbGUc1UdkA67SbtUGN2QHqMzt/jY3ZAjl9OF19zdkDgJS6YkYN2QAAqrD2/snZAcr99rgy0dkAkY2yrzs52QK6l2NmE0nZA6qAR2JHzdkDUg9U1UA13QE4Sz0sBEndA4oi1SZASd0AS8F8tqBJ3QOjjEr7oF3dAAif93Q4id0DaE2M0KCN3QP7v7s8MNXdAjvEdz5xBd0BYxu6nGkV3QPRyW09JUXdASjL2WJJRd0DRXxbzJm93QM7jv0ltInhAEMON/AxCeEANSlM/ekV4QKgNZf7KUXhAmoFeLpVSeEB0JEwsiFV4QKgaJKntV3hAjpOMg/hgeECcLlFMt2F4QK79uHeLdHhA3T7jz6WBeEBdCXHgmYR4QHab0p2nlHhA/t45as3AeEA8SQtMAvR4QAP/tkGM9XhAOIHuxvtDeUDaDYV8y1R5QIwJOuJxjXlAE8Zx68qSeUCYBf/eIph5QNnEFzbBsnlABndDRULUeUA9uNl3qdp5QOQ8zqUrM3pA9NpdXAw1ekCKrX0tMDd6QPRShuUwO3pAgC2TdhpFekCQtSt0DbZ6QCA1WikNyHpA4+qrmWbNekAosPrfZOF6QPKd+gBK83pAaRFK4KP4ekAQDqsdAf56QOksNi3EEntAen9pVEwVe0DuZlv/Hhh7QIxWboRoHXtAzr+LClwle0D0GHWduz17QFkQesh+gXtAE/C23/2Me0CO5uwZzp17QInNs40no3tAYOOYGYKoe0Bs2Rns1a17QP66sgeM9XtA3kwPkNkBfEAmCqEe8wF8QNamRCCZBXxAoRFOBdARfECqCYJx6Bt8QBj8A+rvI3xA+9NPUc1BfEDWTJyIV+J8QFWv8XkP43xAjvBl61TyfEBgd6ayAAJ9QGY8fZxLAn1AaNrqt0MSfUBg00pPrxt9QIABDL89In1AgvxLuLUjfUBk1SV+vSt9QJtm9iSQ9X1ANzyo2TcbfkDUucg9PGR+QH7Kd1HMin5A4gXNNkLSfkAJiVg7UOJ+QJ0NQgifQ39AxmwXbbhxf0Dqoo7+YZF/QB4QroKZk39Aax/dAYQRgECs+RPGMBSAQEqJxytCSoBAJmtqHOdQgECJntZJFFGAQLBUgqoOWYBAAkkKR0hagECkwlrmS16AQD4SzhBPYoBAhlULtsVmgEDIBV35cWmAQLyFuk0fbIBAJHua9MdugEDW8vXQKG+AQKVChugyhIBAtjSZwx2PgEBzPmxiUsGAQHf3yD9TyYBAWHyUfUzRgEDelkiGANKAQMdAgqRJ2YBAZp8MsEThgEDQinXjP/+AQKDTF/M/B4FAxnAR5WcJgUDSg7GuFAyBQD5vY349D4FAUAJ7rTQfgUBal2bkvTGBQJFLZ9XzRYFAXj1IpONJgUAX83cMVY+BQKj0l27moYFAURo4R9amgUCqne6dbKiBQOTQbnKEqYFAw/yTjNeugUC6OApLSq+BQCz5C6XYGIJAKAkBbtYggkDVo0Rs0SiCQPYyCvTlOYJAbHA4/ehNgkCsBu7U61GCQPWWRSnvVYJAbNb/VuVZgkAVEGkwQ4mCQPhL8fdCkYJA9glASTyZgkD5aryXDqGCQOCAA5k8oYJAwJQxnHkRg0D1uh/QeRmDQDC2M4xyIYNA4AHW/w0mg0CVBiVwcimDQDY0lPxqMYNAA/hmYdxBg0BOSf9v30WDQIKsTXDSSYNALixz9+hJg0CggFQ+vQGEQNrEpwzBBYRAd3Sbm7wJhECBUSxwAxKEQL7iaNNwMoRAfrszaP9ohECk+nfM/nCEQDIfzl9UsoRAhs/yg1a2hEDIqqiCWrqEQJipwvpp2YRAvKlDemrhhEAm6ph3Y+mEQGjNZi418YRAXqwqsWPxhEC531O1v/eEQPXWQmtt+oRA/xRXiqBhhUAkyXWKoGmFQPxIDxGZcYVAIPIdBpp5hUBiP1iMPCOGQBjEWmSZkoZARPR/PJ6WhkDWu4XhkCmHQGot5ZeRMYdABPSQ+4k5h0AeGrk8x7GHQLSZXdbGuYdAwPoBGMDBh0A= - - - - - - NqmpRT2MgkfFartFwKbCRgBvK0Wc0NRGiD0BRe9dEEXcwzJFo98oRfs6NUWFqz5Hbi8lRr33hUXfQ4FF8jnBRliXgUVQW3hF8bsURgJRS0VUoQ1IzKtSRw/4DkZZ+rhFYiAaRenC1kZVrT9H5bpBRncmCEaXbdNFuOcuRb1XYEXIvx5FO5chRecOVEVJC7hFdgA2RojoI0XsOGhFOq1hRWQni0WAiyNHCPpKRe3pLElVRKNFVNLPR0X7ykVqfrRFzrqORhPrr0UajpVFYv4sRjNJEkUp3kVFVuOjRWwdj0XZHARG0uswRmc1CUrsDBhGVKVfRRMGr0h++dxGYMsfRyU+kEWGQrtFPMBORTAO/EXtSqhHpJaGRv5q2EaA36NF3YxgRbqNTEWxWDhFqfrqRegkqUZfCx5FsqEgRaPi4EUekhVF6pqNRb4JJkXouuZFUi8fRc8IL0YY+ZBGBW6bRTAnpkUEHzFFHxuMRYdKekWky9hHfaG2RkyKrUZOnodF2sJRRuLsJUUboYJFEw8bRZYVM0af+I9F8AgeRrLDMUXJTmtFTD83RVjUWUWBO05J4jk4RdUsTUjAgaVG8zQzRc/Bp0WbJvBFn7bdRQVXSkU8O1FGW8gyRlZEKkUE1FtF3xj4RZolIkYVYyxFQb/BR5vSI0XZcwxFshDSRuXl8kXdfUhGPHTXRbaVLEVFnDlHbkrFRpe+9EUBIBtGogwqRkE7EUb9DBlFoCseRYOGNUUn87hFwC01RUg4v0c2A4pHjvF6RjvEkkX6ZoxGQHRKRjOsIkVydKlFKJONRSI3CUZLozVFyg7CRUFA8keLBWdF6azxRqzaLUVyqMpGJ6JvReQCvEa3RRZFhOUTRrHtN0WguRdFXmsiRTF0CkUwtmlFIg1kRrRlL0Xmj35F/LuLRfp2M0bLc1dF5ttlRVFPjUV+XyNFTy8lRTUCgkYTDyNFfleVR4aK0kYWyvhFLYfNRnU+bEZVm4hFEK4kRSfIJkWusiZFFu2PRXwrh0h7ZutHHIuCRyRYHUW0ZE1GA7iVRXdUGUaQz4RFRE0cRRPmKUVeATNFfsY7Rr5tGEW4M1RFWSmKRTdMekUcXx9FLcmORUkmKUVUzCFFvPcgRVd3iUUhq0JGO4ZCRSFiT0XZWSRFQa42SFYGzEc6OKtGAx3XRZe31kcGhjVHqTPkRtl6u0WHfPRFdxbmRxmwTEcOaNtGKOVoRYn4IUbUjWBFuCD2RiUXg0a33lFFvdNrRf2MikYikkZGCQYuRczKREVrXo9FpIikRTuFIUXG5+1FsuyYRey2MUVPvh1HJuZPRmzPH0ZK329FTWucRQC+t0VCG8FFcxkQR5aCV0ZUWgxGTVGdRf3jNkV8lx5GQVXNRSMzJEZT079FmH9qRbAVE0YV57NFdmtQRQ== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Ib4g2G/BckAfBY2lp8JyQL5H3uQ6w3JAdlrmUQHIckCUQFdZWc1yQP1+1KZD0nJAVvrmqVDickBCLix0keJyQClRzRTH8XJA0h0srfoDc0A0YMuTvBJzQBj0bkL4E3NAcDMxqwUUc0CiTXoheR9zQDBpaqk5IXNAZLfR3c8kc0BewzHZRjFzQCC8wGl4QXNAqDKQgXpEc0A4XN6fo1NzQOAs5yQsbXNAEIu8/YRyc0CqVtirzndzQITp7S/fd3NADkAMkil9c0DMouRtOn1zQOTGErB4gHNAvvxUWk2Sc0C1YX9e95RzQG9uJ8i3oHNAhL0uzVmic0AxnJDN0MJzQP5Xzl0nw3NAKH09juLUc0A2aI1jOOFzQNoIQxJ5AXRApf12Kk0TdEDc33aNuWB0QPpVGu8HYnRAEBqkyiNwdEAU8f6jQnF0QJTsqcI5c3RACJErBPmAdEBoD/o9T4F0QDQ5zIBIg3RAzc0XORaQdEDKm+gTSJN0QNdoW4hak3RAOyUcNXCydEBuIxkLybd0QBr2DrSN83RAEB+Ls10CdUDD3vVcnyJ1QFx77fjkUnVAXpalNo50dUAyDZiCr4F1QJyDDDMcg3VA5rBtxKWDdUDzBbrHs5N1QHx6g7u4o3VAbI/j9sSzdUBDZuA279J1QHuuP5364nVAWdgDm0gCdkCek3a6jyR2QGhLQ6FKK3ZANb4f6x4xdkB/OVm1UTN2QEZIZWJZO3ZAVoWcLBxBdkBWQLdOzFR2QL4G7O5QY3ZAQ3wtHV5zdkD2J8ZNkYN2QN7JjmV4s3ZAor4JhAy0dkAd6Z/ezc52QCn0R7aE0nZAcCjhB1ENd0DaYzyiABJ3QGAj+LiOEndA5LnZbKkSd0AFhMNMDiJ3QIc4xCgoI3dAYXv66ww1d0AplavonEF3QCOUtdUaRXdAWtB2fUlRd0BvLu8IklF3QLbkMWEnb3dAd9hwT3mCd0CeqKPCyt13QAwI9nltInhAYvGCIRFEeEBSeD3JeUV4QPzTYjHLUXhA/3t7AZRSeEDU3dK171d4QNBDRYCLdHhAkISPmaSBeEBwdrXGmYR4QIctW3aolHhAMKNzwd3BeEBQ5Aq0uNR4QMyNo8MC9HhABqXdlo31eEBge3qt+0N5QLN8ru/LVHlA2Cbb4HCNeUDMkzzgyZJ5QIHLgx4jmHlAUpSbwL+yeUC6pkllQtR5QEbNvQqq2nlA3Mu3UbLieUBnItSfDDV6QMDphykaRXpAwAyqgA22ekBTqxFnDch6QOyVMP5mzXpA2JouI8PSekBme/AFSvN6QGyBpIGj+HpA2tJ/GOz9ekCJBbtkAP56QIpVedfEEntAxHmurUwVe0CiylddHhh7QMnedIlZJXtAaCJWX36Be0CnlscN/Yx7QDxXgctZkntAhlg5RiOVe0AHoeIXzp17QOWi8Ykno3tA7AgDtn2oe0CkEbugza17QMiS8HMqs3tAIPS0dZbxe0CcoBtjGvN7QGO/ldWL9XtApIghlNkBfEALoGYkmQV8QNF+Pr3PEXxA9vZuQegbfEDAYTVM7SN8QIQlCu3NQXxAM6LCz4BTfEC2r75dWtt8QAP8fthX4nxAFg5h/BDjfEDkunuHauh8QGA1BsBT8nxAJtNUYHLyfED2GptUSwJ9QLC2VqtEEn1ATkQsM68bfUCAbfzKtSN9QNBohDKhK31AqxK8TL0rfUD2ckN8OBt+QM7h1QY2XH5A1FW1hUHSfkCwFBhrkgN/QL7YDRK4cX9Az/9RQWORf0Cq+1N/mpN/QBziWhJcoX9AHlNkl4IRgECGNfeyMBSAQHWIc3zwSIBA0hipJRRRgEBa38d6DlmAQJLLOKJIWoBATqd4wEtegEDQgpRCT2KAQJKoiSdPZoBAQRMERMVmgEC/3noRcmmAQOx1WRQebIBALkZc9MdugEB8up7zMYSAQLQVQJAdj4BAqMMXjlLBgEAexOJmU8mAQCrSrl1M0YBAtJtSFUrZgECmn7kdc9mAQK4GFnNE4YBADjUTxD//gEBocJRiPweBQBMciutmCYFAjKradb0OgUDq9Q5XNB+BQMpifLY2J4FAACfTSPVFgUBUoFMi5UmBQNDvmFxWj4FAhoJgNumhgUAuEnhV1qaBQMP6+1CEqYFAShT1jyqsgUAKFEiKSq+BQBWdyHMFzoFAVdKGi9gYgkA00fiK1yCCQFx333vSKIJAcgTfGOlNgkAaO2qK61GCQPJd3w3qVYJAurlnT+hZgkCtk1jX6V2CQOiAlEdDiYJAmTIh6UKRgkCeU0ZdPJmCQOb6rmEOoYJASeeJEjuhgkCuV5qveRGDQJybb+R5GYNAmr3/SnIhg0A+WI4ZDiaDQNRW4RNxKYNA2GIgCdxBg0Blb+tc30WDQDHfGgHVSYNAA2jt2OZJg0BcY+G8vQGEQKHPxXnBBYRAei4Lq7YJhEDgql4ayAmEQA8O1dUCEoRAL3Aa428yhEDB8v2j/2iEQMgAEEdUsoRA6FAL/Ve2hEB2+AMRatmEQBpKQhRq4YRAtp+M02LphECQQkUFNvGEQF86vbBh8YRAlJkKlr/3hEDDHee4bfqEQDyIMQQY/YRAWbgKSqBhhUDINBOmoGmFQFLT/IiZcYVAaW10c5l5hUBK9KmCOyOGQIwQwgWakoZAFkEmjpyWhkAI/VjkkCmHQBZlTyiQMYdA+nOXaos5h0CfJF5Jx7GHQNBddf3GuYdAdGeOM8HBh0CKEVrvvsmHQA== + NrgMGZxjYkA= - + - AQtgRUc4d0e7BMRFMv+zRlYqrEUF+PhGSHNbRTCwE0WAA0RFEvMNR9CwGEY5cGRFWqdXRdVaFUUxEaFGWTGaRe4/IUV9J21FNQDrRY5/R0XA8JtIF4wgSE93DEZQDbpGJFf8Ren/UEXHKqhGRJwhR1drKEYuAvNFEL6WRb5rg0Uh0T9FReVtRXaAw0Xi0TZG5J4cRarQSUUfvSxFZVSbRV3oBkfVeipJOTYLRbknuEUU19NHKEGVRaMqw0VNaUhFqfOERlKA/UWyRplFSLUVRo0MWUX9+UFFcTjVRQgca0XLdBtGPrQMSuOxrkis9uFGEaZzRRb1MkdCKJZFA6iLRe/HmUXSn5VHH+GcRs8uv0aVNq9FTEyGRTyhAUbqD89GTd07RT01Hka5QGFFDbCKRTIMLkVziSlG3EYuRtE2j0ai/JpFlc2xRU+KWEV/tZRFSTjNR/XamUaQmrtGL6iERQNZXkajUFhFgCVBRXFCKUUUOoZFN0ZSRVdIL0Yt+mxFTtIqRhAdDkY4gjtJ2vFPRXWRQEjJSoFG8V8wRYVILUV9KopFH87RRWfe5kU8VZVF8qCDRlLCFkZaAiJFedFbRV6oqUUDkINGlcKKRYLjtEdP+bBGSVS+RQ/WxkbTbDlGweWgRYJ3UUf+oulGayAVRdVmsEXFcYhG46EbRjJkEEZfHzJFvqyDRYxVg0U1ABlFvk4/RZtMKUiCB/lHQW49R436PUbX7BtFtA2VRROTgkV6C45GhFlQRsxJY0VAbFlFw3AdRg4ah0V0qsVFPnQeRfqBUEVBj+VHyxToRRFwPEVnU75Gz85xRQxvn0bkl1hFXOJCR1Q/sEZjs0BF97yDRc0qO0Vl51NFIM8cRgpNF0VuXphF8pUfRhe9T0U511lFoGrZRQEklEUwvQJF6ixbRrk7pEWn08NHyisiR0enD0YiFBhFuGOfRsU7gEZ/021FIxRuRbH/iEXkgopFzA95SF7z10fG4G5H8DdARhVlJUXYoYpFbmRRRpPKQ0VQ/WNFwlIYRU7YSkbX0SxF09dmRQjuNkVKm9RFyRYNRUkf10W8CpZFdpVDRb7Ki0V85pNFHv46RjXHm0UaaTVFqEypSEcySUiFNI1HkRSpRkfUpEWSx8xHpmohR1pa80b94MNF8N3RRbUn1UcJQjZHHTnDRsIjkkV4A+9F+AcPRxDjo0ZTX39F5VJIRVEjAEfNtoVG7uEcRY9/YEVpiHdFeaqjRXTr0kXazFVGocEtRgkkBEeHGFRGOiwjRs7GUkXwFmJFt6LfRTxEfEVi34VF0Wj7RpzsP0aB3AZGkkIqRfdWL0XTPSJGGOXpRRcRLkZjKb5FsS5TRabA90V8sYxFVYE1RQY2JUU= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - 9I8MhW/BckCTOzLdp8JyQOqOPpk7w3JA/p1NeAHIckB2yeLoWs1yQPVo3MND0nJAANau1lHickCE45THj+JyQBRWrhTJ8XJAOro21M8Cc0AvoIEO+wNzQEhm8rC8EnNAkDRl/vgTc0DbXvT6OSFzQIgrxsvPJHNA5xJaf+VAc0DyjJyCeUFzQPUERJ56RHNAtor0b6RTc0D2egUFLG1zQAL7zemEcnNAQGgVzc93c0B+IuYE33dzQF6s8ywrfXNAHqhOqHiAc0CH9y+kgYJzQJYLvJaHkHNAKqQgdE2Sc0A6JtTD95RzQIy1sSq4oHNAfnIDgVqic0BE/JE1trNzQLSEEU3QwnNAjxhi8yTDc0BP4ev+2NFzQABBEYri1HNAKAq4UTjhc0DnBaRxeQF0QHiEzTJNE3RAfFZ/X7khdEAdhtDQuGB0QA3C9k0IYnRAMVJ2TyNwdEDrkhTcQXF0QIuhsfw5c3RAEer2KE+BdED5rBI1SIN0QAdRZmEXkHRAvU45TUiTdEAg4Ptjb7J0QJqe3RbKt3RAiH7zj4zzdEBqhtguXgJ1QN6hbo0kFHVAMwJejZ4idUBrqmo5zTV1QBQPXskGUHVALOfFxuRSdUCPXJ2cjXR1QI1TKiqvgXVAdDbGyBeDdUDVMK1hRoN1QMuWqrJPg3VA1zlgUoaDdUB2wAP9pYN1QATN4aDyg3VA8NyqqQWEdUAcBdmol5N1QOC8bfCzk3VAEIUJBrmjdUADQkaxw7N1QKgRG3Dv0nVAecQ1wfvidUCt8EHCRwJ2QGZ31eKIInZAMt2TnpAkdkBEaYWqSit2QEaECeofMXZAMhyB2VEzdkAkz9LKWDt2QMqCdlkdQXZAOLp0rxFRdkDgU79ZzVR2QKaCRzxRY3ZACSOjrudjdkAiSurv2WR2QKIVOaBec3ZABIsbBZGDdkDuKMASeLN2QKO8+oUNtHZAOn0mD8/OdkAK+hEThdJ2QLxKHBlRDXdAHN/gegESd0C5rOIRkBJ3QEoQV/OoEndA0IqiuuoXd0CSN3VOECJ3QCYGlhYqI3dAnE7BAg01d0B60eAcnUF3QM65ba0aRXdAuiqgr0pRd0AEUjdAklF3QFTO+AyQYXdAKbTR9Sdvd0ADQNZWbiJ4QNRlC2IRRHhAgy1PdHpFeEAuZwUJzFF4QGg/driUUnhAxbEUKYdVeEBPmwBK7Vd4QKoPo6b5YHhAl+5MErhheECKHZgNZnR4QCKUkXWLdHhAmpC6/6WBeEDElPgBmoR4QBLxZUuolHhA8WfOsN/BeEDNC/GSuNR4QGnXGqsC9HhA5imG+Yz1eED46ZwU/EN5QBy36E/NVHlA/E3eyFd6eUAILEVVcY15QDwbOZ7KknlAaOHHhMGyeUAr/nSzQtR5QBotqF2q2nlANdrtIrHieUDLpq+jDDV6QLBicZcaRXpAde4CHw22ekA02PH9Dch6QDYbPSBnzXpA6OPQp0rzekCEF4EwpPh6QK4ZBQP//XpAXDzlB8USe0AFtgcHTRV7QBwWahMeGHtAIhYndVsle0Bbj9kGmUh7QMgn0ih/gXtAAAofJQCNe0CuNvwXWJJ7QIo2Tp8ilXtAkyoPWM6de0A4/FImJ6N7QGpeIsp8qHtAMgXYHM+te0DKDSs1JrN7QNZ+fHKL9XtA/SPQQNkBfEC4R++xmgV8QGaW09HQEXxAj1aFKegbfEDV0Y3h7iN8QAjwdhrNQXxAGtjAAFjifEC4J+yXEeN8QMIjhO9u6HxA5e0tmFTyfEAhMvMhSwJ9QGxG3HxFEn1AOLSRF68bfUCTwqFQtiN9QGSR8hyjK31AvMSrTb0rfUDSLOLVOBt+QA1dRa84XH5A8ktS9kHSfkCI1/j8mwt/QNQhT+C5cX9AMkMnZ2ORf0DD2/Til5N/QCqHFZRgoX9AYUmKsFixf0BNOwXKgxGAQAw4MYgwFIBADEyItPJIgEBmP3YIQkqAQChDu73mUIBAoimwfhNRgEDurYPjDlmAQCP6DF9IWoBAzNVL30tegEDwPw62TmKAQKjDp4dRZoBAtgDc3cVmgEAM7OlXc2mAQP/0pCMebIBAWmqpNMVugECTPsZjMYSAQKEfhQMej4BAR2OxiVLBgED/TOLuUsmAQPWVRCxM0YBAUyMRrf7RgEAWuRfKStmAQGfyoHtz2YBAHDpNFEPhgECGiGefP/+AQCJteWU/B4FAMI6SYGgJgUD+mEVaPQ+BQLngS5g0H4FA4nyJoDYngUAOjX1l80WBQEoTDtLjSYFAJ+k+KlaPgUCXzfb51qaBQKyayAWEqYFARIoCk0qvgUCKOl2WBc6BQELI9jsI0oFAtKdnsNgYgkBkBr+e1yCCQBJ7Zz/QKIJAEGYQG+lNgkBOwW+X61GCQCaI7dHoVYJA0r9wguVZgkCEIYFd612CQLtJXT1DiYJAqmySTUORgkDQVd6QPJmCQNZDzA1SmYJA1r9DNg+hgkA2nEjBOqGCQA2+HUQ1qYJAHt6dv3kRg0BFqf3eeRmDQED/U3pyIYNAAnIeWHUpg0CTb/1V3EGDQPCTIonfRYNAgwC+HtdJg0DdfSu2102DQGAhmvS9AYRAY/y1bsAFhEDRYjmkwwmEQH9mCma/DYRA49mfUwMShECWEb3ABxaEQPGxpuxwMoRA14Pn1P9ohEAsn1rX/nCEQBf67V2xmYRACXJvLlSyhECvBa11V7aEQD9iqTFbuoRA5QcBLmrZhEAea38IauGEQBYcSRxi6YRAjk+F+jXxhEBbMDvPYPGEQArsBe+/94RArW2+PWv6hEApD9KVoGGFQBpTG1ygaYVAwFDF3JhxhUBGsa/JmXmFQPxaKe08I4ZA2msTUJmShkBwdeBJnZaGQHXBq+SQKYdAjM1xgZExh0Dccn3QijmHQFH01xKLQYdAMiFDPcexh0DCcypOxrmHQAwZNVi+wYdA - - - - - - 2jyWRaloj0dWwPdFUBrrRjshWUXlq/tGB8o0RbJ8EUV/eT9FvkUURf3/50aJvShG4kCGRQuF0UYDwJ9F0LovRY/ikUUcWwpGx+laRemP9Ug8aHZIGVwJR2WlEUf9wHtG0nfgRjXEgkUDbCVFVxYrR4VLY0bLnwpGGVXURbnhYkU5o5FFaoo7RfoTJEUcA6xFl5zLRaxmfEb+en5FztsGRWdvZkXPv3VFd7yRRRQdMEe7lhpJhNbgRZtRv0fSU4pF1RyaRVbNhUav9+hFM/p8RUTSRkYrIxhFm3ijRUeiLUUKWhJFDOSmRThZ/UVRTo1Fa5UoRjODP0V3M5lF0aIaRt3S+UmixKpFPshmRR3xUUWDTptI8Yy2RlMSY0V2aR5H1DyqRX0J90WajT5F25WjRcI/okdHFMVGvYCiRnNuPEU38LZFjLt5RROIFUaFU9tGH/0rRabRGEWIKkFFtXslRicNdEXp1cZF1xMgRS+aHEZKWRlGz5OGRlP4j0VddsZFfKpQRYxxRkWjqldFpR3+R18X00aQaLxGjv+fRcAdpUbhBmdFEz2MRQAuF0XlgJBFPHpRRvqUsEUm9SBG6lNKRaQcTkXUJ05FxzsyRf+Vl0X2a1NJ32tmRRTPT0j63KNGwF4uRZG4iEWSAaRFxwvXRSCO/0XPEZFFReqWRZm8l0a6efVFP5xtRYMQDkZzcZ1Glly/RayXwEefa8JG0vTURfOjr0ZxNJ5G0R8uR0phvUb/0vpF7OSHRoIWPkaTHwtGl4dxRVmcOEXMsG9F3S7ARRMnV0UY+WRFPBh1SE7RK0iPAZFHcRXLRjK2v0WPG5RGU8hLRhdEkUUlJnxFWdImRpGiaUUQlcZFjAfcRyNFXUV5XRhFa9L2RgFou0YGID5F146eRwk35EbgSs5F1JTXRbATgEVtKn5F3e38RWuZFEUkzZ5FEppORoVnK0UJ+4NFNkBERdJaiUX7mi5FxrkNRV4HIEXqIylFTaOBRm92pkW4vgRI1tNXRx0SNEb+HXVFCOmpRvl3g0a5S9RFsFkvRU8JVUX626BFeut+SDdQ0EfGn2xHYAJWRT4YXUYRjEpFsWmNRaCVE0ZJkodFzX2DRTSeHUVHKWhG5TFDRTbkX0U9Z6dFUAueRcj1tkXO8oRFj3Z1Rb+qx0UmWkdFAv9jRtzsmEWwTktF02HjSMF4gkgqK6dHQ3h/Rv5Il0W8HfhHedZORx5NB0f+N1JF/znLReLeEUapukxFZhH1R/KrSEc/BvFGHbjhRWzAJ0cquMpGnDqzRVayK0Wc3klHUmPKRjLEuUWIGYVFGo+eRQJBRUUF1l9FNiHTRU3kd0VvCWtFbZ2URsVzDkbhqClF0bQoR32UpEY/DSVGzWCERRtrJ0XjKGNFjcqkRW17C0fc+IFGcvkMRtrYjUUT2T5FSFi+RWHHnEUL01pGMhnWRe9hmEVOYSNFVs4ORrmKwEU4ljlF - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - XFhqJG7BckB4u067p8JyQL7HEkY7w3JA/LjHeQHIckCkdiYvW81yQPyJmWJD0nJAaI5odlLickDelDohkeJyQOFR/jLJ8XJA10rQmaL0ckC2uQ9zwv9yQMiRgjrPAnNAvKhJr/oDc0AU+Pp6vBJzQJB4CD75E3NAfYwYtvUXc0DIVsa/oyBzQBfzwLg5IXNA9ue/AM8kc0AyNO8XeUFzQEuxON56RHNA9sac1qVTc0CUz+CwOWNzQNTTaJQrbXNAcKalTYRyc0AWrewpz3dzQOnHmE7ed3NAhnEqBip9c0C8x8rTeIBzQDukbiKDgnNAK9wYoIeQc0AMeLsXTZJzQMCg6bD3lHNAXpANLbigc0A0YLx2WaJzQGh27RLmonNAIoa/cgWlc0AUWO5KuLNzQFxeWk8LtHNAy723KM/Cc0BdkJtrJMNzQANAdjXY0XNAk1QSjrvSc0AwgK5m4tRzQBAtakE54XNAHM26WWThc0Aw/oGoNfRzQFTIafV4AXRAdBsX2kwTdEBcSsqBuCF0QPj9T82KVXRA2gc9+rhgdECYJmTdCGJ0QHD+PXMjcHRAZN6eekFxdEB76Ah2OXN0QC0HLfX4gHRA+ih/3E2BdEDoIHOzR4N0QB5AaEkVkHRAU+zxQkmTdEBqaLkbb7J0QKAufg7Lt3RAE2TRUYzzdECSE/f4XAJ1QOO6j8AjFHVALvWnWp4idUCOvElyzDV1QOq9y9/kUnVAui8CJjlhdUDJMlbBjXR1QM51jDCvgXVAP7H5/BWDdUDZyhWGpYN1QMWWdhHcg3VAW4KiYeeDdUCZa37+H5N1QEejArWzk3VAuOY1p7ajdUDQbDwS79J1QL2OAXn94nVAyI1GPkcCdkDQv/xshyJ2QOe7ONuPJHZA7xsFwkordkAyXQ4RHzF2QC5U4vNRM3ZAojfQh1c7dkDe3eAfG0F2QMq+87B6RHZAVA5VwxBRdkAWEQglzVR2QLrTUNVQY3ZAQ7ojNNpkdkCAtLQZXnN2QKxainqQg3ZAqACZhsKydkAd/GDxeLN2QJR9ZYoNtHZAwNiNm83OdkD0xw0whdJ2QDI/J4yP83ZAzjySzE8Nd0BaJorxABJ3QBilKFePEndAuEpVBKkSd0AtxDtD5xd3QBYMHOEOIndAT0oLzww1d0DcUV4CnUF3QEyy1NAaRXdAXViJ7UlRd0DCH398klF3QB6ihdiOYXdAvJsaPydvd0Dw4TxNy913QAI9Gk5tInhAwuJzrxBEeEDS6U0EekV4QKKc6yXKUXhAq8ZfVJRSeECMaP+EiFV4QBh93yHuV3hAQCM8XPpgeECAlVWetmF4QALvPW+LdHhA6KvNU6SBeED+l/m2mYR4QDq/ZCyXkXhAaZ/cJaeUeECAfGxU4MF4QPNTWPy31HhARVQ2ZQH0eECoc3MIjPV4QPqilcL7Q3lAcV0qBc1UeUCbWNTYWHp5QLYK00VfgnlAXLrHbHGNeUBgNOJpypJ5QGDAWZTAsnlAVDdeakLUeUBdXTdCqtp5QF5dwyGx4nlAgdgQ40zkeUBtqNmbDDV6QDD/ZHoaRXpA3N7/us9LekCqBnZCKVV6QBa5H/YMtnpA/qQWgw3IekBycY/5Zs16QCRyxtqr0npAAayFDcTSekAg+AF9N+56QPlAipoV8XpAIgGVFkrzekCocFOYo/h6QN0M9d/9/XpAZAcAj1kDe0C6S+TCnwh7QJyqiGnEEntAPgnJZ0wVe0AAZtofHxh7QJiGnWlpHXtAZW3QnVole0BT7kBefoF7QDkbHsP/jHtAsq96dCOVe0BLjzWMzp17QA7gdQwno3tAsrd7/nqoe0C8W8a1za17QO9I7jsls3tA8lJwCpfxe0Bw/rB7HfN7QGuqZOmL9XtAAlbZe9kBfEDbTxUXmQV8QII0qpPTEXxAvEQ/7egbfEBO8UlXzUF8QCSw0bNge3xAc1Z/E1jifEDL1MtFEeN8QLTlRXlr6HxARixgjhXyfEDCK9xQVPJ8QGA2Eylz8nxA/oIdSUsCfUC8ZF6QRhJ9QA7AUgevG31A2mJV/T0ifUDuH8Y4tSN9QNRHoSCjK31AS8LPncArfUCIphIwrDN9QEPZIiWR9X1ATr0bRzcbfkDJs1CQQCN+QKGOUxs3XH5ANhJRRs2KfkCOp0QwQtJ+QIIGNoufQ39A1uzx+7dxf0AIKug0YpF/QLBiG5ack39Akcc5e1exf0D53UZggxGAQNQF7XkvFIBAXhQj9eVQgEB+m+1aFFGAQMNQvRsPWYBACqucaUhagEDJPh6iS16AQIJJf8xOYoBA+EKGPVJmgEDApumhxWaAQEDgdb9yaYBAPdes3B1sgEBTYEBIyG6AQN4nDQ8ob4BAVlhRut2GgEAlBRk3Ho+AQHATrH1SwYBAnik2S1PJgEA/CJd9p8yAQPWr0ytM0YBAfwSJXUrZgEDJFOGAc9mAQPmCCBRD4YBAzUJpFkD/gEBShW3oPweBQDrxNMhmCYFAkaceXhQMgUANfRYZPQ+BQLmrGDE0H4FAXk0nS+YfgUAUJHApNieBQL/NOZC9MYFATrvNP/RFgUCrAaEZ5UmBQMRhzWNVj4FA8h+8b+ehgUAwoLwm16aBQHBrdeKCqYFA4PDR9iisgUByFUVg166BQLv5ju5Jr4FAEE1YXAXOgUAYk7+lCdKBQMRpyo3YGIJAV5B1C9cggkBQPpdj0iiCQPPL4S3nOYJAFlTSBulNgkDBqDxq61GCQFdLawjqVYJAJfXl9OhZgkDC6rWG6V2CQOiEzxpDiYJARMIPkUORgkAx59X7O5mCQEwkxdMOoYJAqKwAGjuhgkBSriAUD6mCQEBmsjE1qYJAAUh7gXkRg0BWvXBaeRmDQE3vHIByIYNA8Qwdew0mg0BmywDocSmDQILTUckQKoNARTwA+Woxg0D0cFdR3EGDQI79MeDeRYNApHJcltRJg0BEknBy50mDQP4/eVvbTYNAYggeiquVg0B4tUAFvgGEQFYvnvrABYRAEXxvFMYJhEBqHMSeug2EQBJtIlMDEoRAmO7x3gUWhEAAIlMIcDKEQGoE5lsMSoRAam8GNv9ohEA7+iOS/nCEQKLooXH3eIRA3+sMVq6ZhEDwbCkVVLKEQGD5ffpXtoRAXEGFeE+6hEBqNutlXbqEQLrIyhRq2YRAA/M+SWrhhEDlJnYIYumEQB+3UTU28YRA2OtxtWLxhEAAwdoTwPeEQHCtgAVt+oRAlm9PXKBhhUDhiNV2oGmFQDgceNiZcYVApMqWiJh5hUA41/LlmZKGQO+Vn2+bloZAQspbxJAph0AVvrl6kTGHQFR1qiiJOYdAZr7vusexh0Cn9RaTx7mHQCDxLYW/wYdA + NrgMGZxjYkBmiwPJSGNsQFRnpVdMhW5AQh3Og3xCdEA5Cx9LflN1QA== - + - u0aTRbOLiEc4FK1FIXCyRnBMhEX7msxGhpY2Raa0FkV6YR1F4crURDJrA0X+UQFF9rrVRtQiEEYXPq1F6jLfRKdp8EROq7ZGocFLRXeFYEXkcQNGZSlMRaWzBEU1LAhJefSESFfFr0ZkcjBHBURwRr6Owka1QklFYMoMRQIqIEdXlDRG1ljCRagBpUU0kRlFHBbyRFdtAUVvPAtFN+uRRZj9OkUE8A9F7d7/RCozj0VncahFTl3jRLfK+0SEt01GLrs7RdzBEkVyeOBEvv1yRVzTYUX/Za5FdOsjRwrQ3kgsYAZFilGNRXHzfkcdeqVFmmBYRWmIb0bBqnVFzbbPRac/P0aq2RtFdVeQRdrL70SraKdFZ2omRe0QCUYHx4dFJ4g9RmW5s0kfh3pFuvQtRc9w6URXVmBIq4VxRkNl0kZ+A0JFx4ALRq59PUUv99pFa1eERxz0uEb4votGGAGzRWXlWUWnJSVF8gczRQ+SDEZUjMBGtWEORdZpkUWpVt5FqNTqRM9gTkWk5JJFT8w4RUQtwkU9vipFXZxYRrgoXEbhUL1FK61zRb4neUVqAA5FL/ncRxWe40a+1p1GOC57Rb/rmEaIlz9FFBd6RT05AUVi6EdFN6F0ReuLPkbKRKxF2e1LRvY1/kSO9uZFJsg6RXfnP0XvqThJXZEpRX2TOUjT1PlEF2+FRlZjUEXKuIlFfS2XRa4vpUWDY9RFesxmRUkWvUVumu1E22BbRp3A6EXNczRFjIqqRZk9TUaYS5FFZtjnRB6HqEcU8p9GVaEWRULKIEUoSOZFSXIFR/SavkbwTx9FgPnRRUm27UQQOu9EdrEpR2Cls0aK0/ZF0hwkRVFJIEVT8oxG8ecLRspM+EVcUy9F9JoTRZhZ+0RFgspFvoRQRUfDjEh44EFIXpm+R2MHoUYMT5hFXCabRVyeZUWuC3JGXHFDRr9+iEXx+jdF10ILRuRdvkXG6EdFVcfVR/mzkEWgGHpFcRsyRQrevEZ3z0RFqzuZRqvIgUVteL1HNWf6RF9RHUfhRMdFBx6bRfZjEUXtUe9E0f48Re6KAUVBHg9FSkwCRb1zokWNjepE9bCZRUlMQkaMKvtEOlsYRQjAl0Wfs0pFvSs0RfhRjEasrKtF06sPSJgfjUekaa1GP+gwRd7LjUYvRgxGqrGqRUh7F0VRDzJFN70OReJNrkWCGWxIJXbfR1lnAEWSQXRHr/FSRk2GcEU0GmpF/Go+RtjyYUW7I0BF8mINRUksEEUBDB1GjYb1RES5QUWs2wJFSUF8Rd8KTEVC6atFtVMPRWbdj0VwjpBFBIYUReAXKkWgHZxFPKAERjexYEX1+DdGVd+JRQm4WEWzeFVFneHaSCa+jUjfu9lHqUasRrjijkUWL/tHSc91R8dE4EabY7RF+1UCRmSK/EQWWkRFBHDnR8qzNEfcrulG4KwwRWb40EUI1eBEVktURTnbFEck4a1G2T+hRUb+WkVcemFFUyBaRQfcZkfIu+JGXp3lReiFcEVPV8BFjQeDRfcppkWXZeZE3tTURd7j+0RFSwlF87pRRWuNv0ZKWDhGO0c6RcZAUUWukxlHCkulRiZyGUZ3nVxFl6eWRXsuz0VViKRFTEAAR9GVbEbowjBGwPuARULin0VfJE9FFacgRiTht0UnelJF8TkORs7qnEXN5zdF + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + - - - - - - GKslS3DBckDQvvGlp8JyQAy3SPbiwnJAOcta9TrDckC8XIQYxsRyQIi59yNaxXJA7Xj2rwHIckAUn3dnQ9JyQD5rN29Q4nJAYzjNTZDickAurftqJONyQIDIQKbJ8XJAL8po6cD/ckByHZTt+ABzQLlcW5fOAnNAHIpW//oDc0D/6+jRChJzQPjp5Je8EnNA9l7ZcfgTc0BYGgM+BBRzQIyWhYL1F3NAANDN4aQgc0CStkeLOSFzQOxUNmLKInNAFvxlSM8kc0D4B4T/RjFzQEtCysB6QXNAKv5lIHtEc0CUbcc9pFNzQP89dUN6VHNA3sRqmx1ic0BcKLN5O2NzQDyLLt8RbXNAFscFmSttc0AMB00mXG1zQC7a5EKEcnNAcrj+ltJ3c0Ayruu5KX1zQBYgZLI5fXNANfSOeHiAc0D8AXL3C4FzQAD86rpfgnNAHt3xe4GCc0CoTKoVk4JzQEw8UZyHkHNAtMKGDU2Sc0D6e4w195RzQIzpogq4oHNAN7USHFqic0BEvpiS5qJzQF2nAFoFpXNAl/dGy7Wzc0CYZV2CDLRzQKdsWjvPwnNA/MGZ3CfDc0Cw8/Z81tFzQLR6N+C70nNA5bXJ/+DUc0Bm32TxN+FzQHWJrWw29HNAgpxlw3gBdEDJEDrlpQF0QGjHAulME3RAoazZO7ghdEBQXW4QCyt0QFIyNsq5YHRA3Go4RQlidEAXKv98TmR0QGSqCrkicHRAcvg8VkFxdEAl/bIgHnN0QCgfSoI5c3RAfNbZKzd1dEA53MdI+YB0QODDdIlNgXRAFrtRb0eDdEAoSgGeFZB0QEiXr8RJk3RAGKa5xM6gdEDOhMV0b7J0QN4onfbIt3RA4ze8prnEdEA8u+0tzNJ0QAKYg6644XRAeMEP/ozzdEDmnQwkXQJ1QGZ9X/9qEnVA7h6QfiIUdUC2KLz9nSJ1QGSZjdblInVAwnmPDss1dUBomAOMtEF1QOmw8YrkUnVADN1zgXdydUAOvxHgjXR1QMj0aXmvgXVA3PQPZhSDdUAAO+VLa4N1QPDQLOOIg3VALEAOyqWDdUB0rQxBv4N1QJ4SQyHdg3VA/CV/07OTdUBCm4vwuKF1QM+p8lG1o3VA7PjO5cSzdUAwQPnU+MF1QKTd8Drv0nVAs+5aOwjidUBQ+qfG++J1QAoqbYRHAnZARq0Df1USdkCGTQlniCJ2QN5+xfGPJHZAzobPs0ordkDeaYw4HzF2QFxpaKtRM3ZAwbCDWFc7dkCQLvUsHEF2QBKgJOZ5RHZAy9MffBFRdkCvMvsuzVR2QMig3dRQY3ZAIKF7mF9zdkBJfT6dkIN2QAZEh6DCsnZAujdedXizdkBGedJ4DbR2QLAqgWnTuHZAgJRceE3BdkBCyjHNzM52QBod/9yE0nZAYKTlZ5HzdkDY/44CMwJ3QDS2/9ZPDXdAVFqFPgESd0DQ9n2YjxJ3QIH/xaarEndARqI+R+kXd0Dy4JqGDyJ3QDamyuQMNXdADJQFzSQ+d0BaWgGlnEF3QLzBXe4aRXdAoBYt2kpRd0AEz/ZAklF3QP7NDwIqVXdAMlx56I9hd0C/iViBJm93QNY6deh4gndA1Nj4LMvdd0CkEN5HUPJ3QBXw+9ltInhAXMO4xgtCeEAXpdVPEUR4QHi6Whp6RXhAc/UW48pReEDctTiilFJ4QG+9kq2FVXhA8tPLsO1XeEDmN5RC+WB4QBwZFnC2YXhAqlKT0CV0eECZ3rQRaHR4QNZDA22LdHhAxMKZdal0eEDf6550znR4QGsOuG+mgXhA/JM/m5mEeEBz2lTUlpF4QDhnoWqnlHhARH7AMdzBeECGd6VfAvR4QOX2SKOM9XhAcGI14ZoFeUC0vzCe+EJ5QGefuxz7Q3lAlilKfsxUeUAQKbdZQnN5QC4BbRRYenlA3u7+Fl+CeUCtBiuazox5QMaUhP9wjXlA02uke8mSeUArBxZpKJh5QFfbLzPAsnlAysxydULUeUDJw/O+qdp5QILfOz2x4nlA+leuUlHkeUASc4JPDDV6QJYc1Xb3N3pAj+WAXBpFekB4VmXoJ1V6QMleULjSc3pA0jPINpabekAEAH3ODLZ6QKCWmBcNyHpA4z743GbNekC+UWN5q9J6QBly47bF0npAInsDLgvYekBoEEmEF/F6QIrhIhJK83pAxQhoM6T4ekDDA8ng/v16QBkzDOtZA3tAamIZS6UIe0BXoeNtxBJ7QCKFAJ1MFXtAAAa2yR0Ye0CchaT+WyV7QKAO1L6+PXtABqXqFYCBe0DA3kDg/Yx7QHpKT1vOnXtA0ozvQieje0Dccv+beqh7QIb60uDKrXtAyGDlXSWze0CU51kci/V7QLrzabjYAXxA5GF7CPQBfECKzhntmgV8QFUx6h7SEXxALZd8nucbfEDLXC8c8CN8QLiI0YfNQXxAcL5dDWN7fEA4HFt3v7J8QKQG2bxX4nxAQogv+A/jfECFxJAIa+h8QKbqwUUX8nxAq8BQkVTyfEDAkcPoc/J8QD/zdlcEAn1AfJuBk0sCfUBCo5KtRxJ9QG55B82uG31AXYcx2kEifUCaE7BitSN9QPzQVfahK31AlNHDa70rfUAwyPrkqzN9QCCuawrDM31AENlTpo/1fUBW6QQqOBt+QEhTljUKbn5ANJeJXP66fkC0D2POQdJ+QB6kdUoo4H5Ao8KOIrH3fkCM4TKlsft+QE7k5RwCAn9A6pOfLpUDf0AeKk92mgt/QLvxKA63cX9ARPkU+WKRf0CqPSEzqZF/QF6LUdKbk39A3d3WtF6hf0B8JOOVVrF/QCYL3luDEYBAhZYhsDAUgEDXoKAu9UiAQKgNJ+XmUIBAmJEjihNRgEBvqekH5liAQIELwf8OWYBAysnvREhagECxIyZXS16AQNgceDoMYYBAYN1SFk9igEAWPqoUUmaAQC0HMJrFZoBAfo+ZiHJpgECyg/yRH2yAQO/SuljIboBACEA6VydvgECs6GGdMoSAQBZ5S14ej4BAPBaEYlLBgEDIrXlEU8mAQMv9QkKozIBAytljZUzRgEB8tgHPYNGAQEs5/DBK2YBATLd+anTZgEAgflTFH9yAQByXtuPF3oBAUObEJUThgEBE4LNlPfOAQMQ6JMY//4BAjpm8Cz8HgUBKic5KZwmBQDnsUFvzC4FAQgTu4xQMgUAEX/kquA6BQIEHWjk8D4FAX0rDTuYdgUCUr+pQNB+BQJw6a8YzJ4FAf+xvDb0xgUAyJklg40mBQIIsPyXoTYFA5HeQc1aPgUBcyIt356GBQGDtn4nVpoFAH/gCqm6ogUCEIKYQg6mBQKEBO9worIFAvI1sBUqvgUBOjP7CBM6BQI/CheMJ0oFAuDYh2H/TgUA9Aqay2BiCQKCjDRPXIIJAsmMB8dIogkDmQujcoSmCQL1Y75zJTYJAe8oL6+hNgkA8ASwxBU6CQE5gIE/rUYJA6msdg+lVgkCxXMhu51mCQEx5iGXsXYJA+gGtE0OJgkBIUmtcQ5GCQGWq4oI8mYJAYmCjYA6hgkBqLZCBOqGCQAXHjhwPqYJA2idRhDOpgkDeggtpeRGDQCQ1w4t5GYNAGuQBoHIhg0Ax5stkDSaDQPRlw99wKYNAvngbBmkxg0AOvbcd3EGDQK7HrrzfRYNAKE1kbdRJg0AWqIHZ5kmDQNDY2unYTYNA49uK6quVg0CzwXg/rJmDQIxY1+29AYRAhMuxGcEFhED5a7AcyAmEQN55AOW5DYRAyIX/ZQIShEA05kIwBhaEQDxaPTAKGoRAmOkzI3AyhEBODFFQ/2iEQHPq1Gv/cIRAEAt+JbCZhECzjafEcaKEQJ4g2iFUsoRAqARbGFe2hEAycR/QWLqEQCQE8ERUvoRAdNvCP2rZhEA7WThjauGEQOjFdHJi6YRAQg1z5zXxhEAYLfEUYvGEQBSZKGrA94RAQdFnLDX5hEA+OqNlbvqEQAKCQDqgYYVAm3vhz6BphUB4Uv4smXGFQFpE77+WeYVANrUbnjsjhkDmB+F9mpKGQBDzVR6dloZALoOglCe5hkBXAMbskCmHQBCpDz6RMYdA4psjCIg5h0BYzZzuW0GHQD646u3GsYdAKPVxt8e5h0D2GMy1v8GHQGjKImPCyYdA - - - - - - 5xSIRXWkhEeSIQJF5WOvRQV3ykQE2tBEr4TJRuV4+kap1WlFVD5eRbKy70SUcXVFKyfaRNHY60QVysZE+WUQR5Fz3ERWNmxG2tyIRbG/i0WBO8VEnqXpRNVGrUYKUMhEzo6dRSwa7URTYo5FyOf+RVE+TkW06bpEZ6m3RCxe80RxaI5FA3gXSbGEEEVJSZhIUmwiR3UzJUY875FFbq+4RgX/+kQQHeREcfFjRY7zy0SGZgpFiP0/RytqNUZvkgBGRDH1RdQdJUXkBStFcuRORbzXK0W7G5pFrPgaRbWeGUVccB1FNz+JRfjctkXpauREGuF8Rpjn5kQhBE9FxJIxRfi+40S6jHNF9fBoRR211UQP0oVFwXw9R2m2U0U/lpdIZcbfRKwaI0WO8OVFIywvR85Tk0WOkBJFmWUQRceAk0bsQvVF/e3URIWzG0WjxBBFMQmXRYSXQUaE2t9EQHAVReD6m0Uzil9Fsz4ARWauzEQAxNpFF24HRdSI70WggcVFQAOURgyFDkXkbuRFLyKCSSU7MkapAC5F/HkfSDBb0URvjh5GIRHORCmbB0UlNGlGtofWROqPAkWI4gVGXozORIZ/VEWGeShGU0eOR5hp0EaI8MVG6GtJRRclkEWhi1BFwixJRcbj/kX+HsFGypRaRUf/3UXoJgNFPP61RccOgkUYQf1E+r3CRJXdJEUVUZBFmRkiRRDxNkXSjShGmMR3Rh3C6EUVYlJFofRJRWibckXiwe9HBPQ6RaxEuUatndpGhnbRRSZbZUZ1gg1FxssuRWYQgEVWhBpF1ldDRQdV4URigZxFncXwRLFMbUUSaVxGboDERb47RUbaIDNF40zGRUxSSEUyE0VFdXzEREVQtUXSv0tJEHgRRlNZ9kSNMlVF0pNPSAEt/UT8KrBGrVAPReDhYEXSJs1FlUgaRbl+wURUnt1FAzN7RRKrIUWN395FBaIXRc3wzUQkUIBGySoURnIYAEVGlGZFWyHYRRHfWkYtCYNFUK7WRPfgx0cD1sxEdrrHRuG1KEXMsNtE0KsIRZyT00Wu5y9HdAXTRjwmk0XXALdFdKUJRb0tDEXrHjtHhqHSRhZr7EUraQNFZkzeRKXwfEbbwStGD1YyRrvLJkXaoutEsfTlRJc6gUWLBpZIstdZSHmI7Ueb7JtGj2mPRSt6mEbQgj9GB89jRR6/rUWaVm5Fx1UCRiE7dUX9QeNF9V8hRYpfNEUQhORHKw+6RSblcUVL9vBEJ0XsRv5UWEX/bwBFZjS0Ruz2j0WTA7dHsjUHReV9FUfKSORFjacPRk7zHkXd5gJFKBgJRdOCYUUgocNEiN7ZRJNhM0UbhyVFXk3/RO42VEXDqx9FzFVeRbqX1ERBFptFaxIoRhih9ET9KkBFu+A4RfD4IEVkNGdFHXZ6RUkfFEWtgk9FHpJmRlUQzERusb1F0ZQSSN8elEeJktNEv1iLRvJkgUU8tJhGJMhMRiVihEV+Ru5EECw0RdKAWEV66JlFHTWFSMaz7UcPkkpFO+CJR8Vor0Xx22xG52jDRUy7a0WcDvRE3x+xRbHp30SK3htGOVN5Rf0bhEWX7vJEbmrmRIGx30T7Lh9FzPwSRd8aTkZKeiZFUe0cRXv1XUWc9QBFbUeyRe2aWEU/LjZFdEcdRQK3aEUZ/9JE1NydRXEfJEZc34JFN8j0RE6dRkYrRY9FtQ4WRS7P4kS2fPdE0yXTSPBaZkX0DGxIa/HMR5Ss6UYo3D1F1u/QR8maF0eCX9tG1oTfRU2C10Wp6vpEJqMKRSot4Ud9qy9HTkT5Rqoz20T41wpG5mogRWDnPkenn6hGv81sRd+mPkWq3gdFQk+RRa2c60SDAnJHxVoKR0eGAUYtUzxFC7DtRdK4VkWScMZEe4R/RSOgyUXsuA5FE+BXRTXu4UQEF7NGXlR7RmNkXEXhOfVEotMGRwTDj0bHqApGgbuWRVCGhkVgappFZF8YRU1X/0Q+bRFHL+dgRp5QJ0aArVJFXWgyRTJcukVS/5FF1ZjORAffOUbWN7BFhlwzRasNykQl8w1GW8CSRRIWI0X5HOBE - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + - - - - - - ihFABG7BckBOugOMp8JyQKwAoQzjwnJAcD6G7zrDckAmUbsMAshyQFR496VbzXJAIYcLsEPSckAGDbaB0N9yQJsOyzJQ4XJA2k4Hy1DickDi9YikkOJyQDHs4YvK8XJAqdL36qH0ckD2HyGRwf9yQM3Rdlj4AHNASEfJVpABc0Dsgpj1+gNzQBpUw5i9EnNAXEuxuQUUc0C7Tk+2oyBzQG9MdHo5IXNAONX4JREjc0A8zOfQzyRzQKtNTNZIMXNA9eN/qDk0c0BKug5ceUFzQOOLrgd6RHNA1tLrlEBTc0AEic2upFNzQArf5BSOYHNAmSbw8Dpjc0BU1LuoK21zQMySkHlUbXNAxj0Y+lxtc0DGmgdeTXJzQE32u1aEcnNAP0xhrUt1c0Ar83r1z3dzQHzk+n/ed3NA0VNjLSp9c0AqfVbwO31zQIR7E8R4gHNAnjQY7aSAc0A2R6e7D4FzQMSAQgSDgnNAHNTHlqmCc0AUCGlih5BzQBxHPzBNknNAUNvJsfeUc0CyCTI1uKBzQPrUGjeToXNAyKuwn1mic0DCfVl15KJzQEtu6g0GpXNAfHOwAMewc0Dm8PbmtrNzQAj5t8cMtHNAZpRw7s/Cc0ASx/5oJ8NzQDLQ6iLY0XNAJrgfqL3Sc0B0oYMbUNNzQDw9Kjrj1HNATwfpoqPgc0CX11oCOOFzQK+X0Ug29HNAaPD0DOUAdEBwotySeAF0QBlFdJOlAXRA4syMZk0TdECah19xtyF0QLgh7GELK3RAVwknto5VdECWJ457uWB0QJp0fKQIYnRAhNfVAyJwdED2JGdDQXF0QPiM09wYc3RALhhs2jlzdECWCGDc+IB0QPyCy7pOgXRAbpLn5UeDdECseWROFpB0QFY/WjZTk3RAqO1DWtGgdEDVbWdwuKJ0QNfK10wQo3RA4osF9G6ydECqPrinyLd0QJ076U4TvXRAzpvlO7jhdECMECwwCvN0QGCJYvmM83RAyGwAVF0CdUA4Z64DJBR1QHJZB3meInVA7EcIoOYidUCgeix1zDV1QOhoKRr9T3VAh3vtG+VSdUAEo3cDd1V1QKytyD85YXVAkgN3U3pydUAmbD1yjXR1QHJijuF6gXVA+ANyiq6BdUCsgDKNE4N1QNE3vKB/g3VAjxwgAqaDdUCgaudqmYR1QJCyS1Ehk3VAfGQRFLSTdUCOYcKjtKN1QKRq5x7Go3VAxs0/NPjBdUBKBc5T79J1QDnEZrXL03VAQttghQfidUCuAxAeSAJ2QIBK9QLRA3ZAvpEbnYkidkCRER/UkCR2QKM3fcJKK3ZAHgOvKB8xdkAS00iAUTN2QEFXNraaNHZApI5s4xxBdkBWKQD+eUR2QOpTW68QUXZAGpoaqcxUdkCsT+YyUWN2QGnP0cjaZHZAYOdDEV5zdkBoHgPDkIN2QPYBUUTAsnZAhQsSunezdkC0mUneDLR2QO4a5TfTuHZAtlQhVc/OdkCNjQtRhdJ2QGb3wmWQ83ZA6jHem08Nd0AOeazYABJ3QJdSysyQEndACm33H6sSd0CQYRdU5xd3QOTFx44PIndAkKDt2HMid0CjBwGfDDV3QOl/nf2cQXdAGfQufhpFd0DTlvnMSlF3QN0pVt2RUXdA5Jt91o5hd0BAIz5xKW93QE5VqC93gndAQLN9TW8ieEAuXQj6EUR4QBSph7B5RXhAkDnOhstReEDHbh/3k1J4QEae1u6GVXhAnl8GCO5XeEBwUyEY+WB4QKSjnXW3YXhAZIKlUlx0eECb9JZCi3R4QPJ0uzbPdHhA9hQlDaOBeEAK0bDhmYR4QEb5GEKYkXhAWev3EqiUeECiZvsXy8B4QHJuoWm31HhAmk1nVgP0eEAuJyW+jPV4QMa+PzzCI3lAgEb0svtDeUCLM7rjzFR5QFqT483ZZHlAf8fd2kJzeUD8HWDoWHp5QK0TFsRegnlAQRtvMnKHeUD289YEcY15QCvtN4nMknlAVEY0VSaYeUCo90XIwbJ5QPKlEqvJ0nlAYwv0n0LUeUAQsc3qytV5QJrkiOip2nlAQPhJnbHieUDk0QkoT+R5QL6cYlE+8HlA151bHagjekBLCWoAKzN6QE6M+IMMNXpAZLUUPi43ekDlrI60GkV6QI2xm9YrVXpAwvEzMCJcekDcPG52lpt6QApVbP4MtnpA0ucnlg3IekBaurt4Z816QE7+3Eyr0npAjpDnJMXSekA24Exn19N6QELRU64G2HpACIfrWCLYekAWJnalY+F6QNwEr9M37npAciM0hRbxekD37BTtSfN6QE6Nwemj+HpA9iypNf39ekCaGhg9RwN7QP02dVDEEntAUZ46/EwVe0Co96j4Hhh7QBy13bl8HXtALNeWllole0AYD+9WsT17QBhROCltSHtA9lLonZhIe0D7GvBrXVJ7QCxS2tb/jHtAzSYsT1iSe0A6qA+eIpV7QAJwzkXOnXtAHqt7GSeje0CmQxO0eqh7QC6SvG3QrXtAhs3HaCCze0D4DLU+frh7QPCwLRCM9XtAkHucJtkBfECB41KE9gF8QFIhvCeaBXxA+S0qDtERfEDaG12k5xt8QEoAP2ntI3xA3tqcWPYrfEBm4n9AzUF8QDycHajaUXxAXFrRZn5TfEBi9ND5DmJ8QD0KQEa2aHxAgEGX3A9ufEDjVybvYHt8QHb4UDdog3xAliJM3L+yfEBwiB9KXNt8QBdiWJJX4nxAP7odDBDjfEAwl7GSa+h8QAAY9+MU8nxA2t+uqlTyfEAUqUsoc/J8QAYZQtpr+HxABtlvuwICfUBwZAjuSgJ9QOgFtI9FEn1AIBdW664bfUC3gVqStSN9QEL8uS6gK31AZkVlqb4rfUDgboMErjN9QHostfAqw31AJdG6MpD1fUAgEDPiNht+QAgmQl5BI35AbV7M1TZcfkDEm3kKE25+QNQy5Fy0cX5AlOFVUfy6fkCMB5ApJuB+QPjt+3Sv935AVMo2BbT7fkAuyQvQrP9+QJ0aFIYDAn9A6Y9a7ZQDf0BfAHXXmgt/QC7dJCm3cX9A4W+r7bKBf0BIFmQfpIN/QHhvlbBikX9AOFIJ4ZuTf0CwRPQ3XqF/QBAsqExWsX9AwJo5HYQRgECzY0PcMRSAQBqyqyrnUIBARNB4QxNRgED1aDIGD1mAQJT/3l1IWoBA3FrnP0tegEBo6GMtTmKAQBBMAGZRZoBAushXksVmgEBQzEAPc2mAQGUF4v0dbIBAfUrgHMVugEDe7nJ7KG+AQCZYC8IxhIBAHf/L0x2PgEB+sulbhamAQEZyrWxSwYBAXCC3YVPJgEA0xX8fTNGAQFa9Hx9h0YBA2J8TVknZgEAdc7PWc9mAQJTIVjsh3IBA7yxQlcnegEBc8fB4ROGAQFmNTCYj5IBATrTE/z3zgEDjwb97P/+AQG4ckaM/B4FAxpXN8GYJgUBGvOagEwyBQOaksOk9D4FAycj9OOcdgUBMzzEoNB+BQGgiDLk4J4FABGQq8L4xgUCaiLU3KD+BQJQfqmv1RYFARxROxuRJgUCQVK5e502BQDKheHxtd4FAar+m91WPgUAgqJkPVZeBQExlMiPnoYFAIraS9NamgUBHw21IbaiBQLaK466CqYFAzOn2IjKsgUDX5QJISq+BQF4oS1gFzoFAFFHpbQnSgUAMhpUHftOBQBBtPjhE8oFA8OD7cNgYgkC9sL7v1iCCQC4HVqHRKIJAlDw99qEpgkD9sFqy5jmCQLYKxMomRYJArfHj2ehNgkDXoZx761GCQDWw1PvpVYJA5JpyA+dZgkBCsXSl7V2CQHjzUBBDiYJAxlLgukORgkAuuK/lO5mCQKyR60JSmYJAzia5JQ6hgkDoqHBSO6GCQKO+GvQMqYJAdO+HKTWpgkDpeUSCeRGDQCrF1855GYNAS/sCq3Ihg0Am1oIHDiaDQGju/zhyKYNAzs7NaQ8qg0AucR4UgjGDQO4qGIHcQYNAuGHSW99Fg0BaRVV71UmDQFjIDujZTYNAmXFzOquVg0C0gQKVrpmDQMNncCu+AYRAZMw5sMAFhEB4zcgaxQmEQKK3TyS7DYRAJT1J6gIShECNbTeUBRaEQAOWZagKGoRAeEWzpHAyhEBaMEaMdDaEQOckB0EOToRAJter9f5ohEAiD4Ev/3CEQLDMpyCwmYRA0ZwRknCihEB8ZTU9H6WEQK623S5UsoRAAuMdLVe2hED44skvXbqEQHy5/iFWvoRAaqbDqxfNhEC0iTU2atmEQFjSq5Jp4YRAADPzFmPphEA8Msj2NfGEQOyPywVh8YRA0kX3mL/3hEDC3HT/MfmEQPEmfY1t+oRA/CMbbaBhhUCJiFJhoGmFQGBL3VqZcYVA2czbgZh5hUCI+z1KshqGQH23DHU7I4ZA0EZ7DZqShkCf6mmAh5aGQPAhVSqfloZAS2t4GI6ahkBcntcKJ7mGQNI92sOQKYdA4vMduJExh0DuEBI7ijmHQJ5VaUaLQYdA/mhYWsexh0B4W5ajxbmHQGv9j56+wYdA - - - - - - fLy6Ratfj0ezb91EU4XgRR8X9EYQKaVFKGwXRyuWAkUw4/ZErZ2nRd3dOUWRmWlFqfreRKatAEU359VELd/yRGxgF0doJ4ZG4UmYRSRZAEWdM9pGRyzPRDVOs0VDv8FEF4/WRF81gkUYGOpFxov9RL3MeUX6XrtE1vjaRHPqL0lQATRFv0khRbA5FUVWRK9I4kALRclpBke6IUBHzUeIRuckb0Wie+xGk1fbRP75A0W+6lNFkq/RRAsVS0VJ6EdH4qZ/RhyZDkZP69BEO+XERXlickXQuyRFEGnPRI3zLEUzWhZFLfK8RX7S/URc8mZFIEAqRWAVw0SmwpdFGCrtRPpm4EWQsgFFNBzARNV/ikbLnABF1TGcRcvDMkULHZpFGjfnRErbiEWGWj1FcZrHRXLxS0dqZQNFdoBESCeWTUVmzOdFGIXSRn0YtkUi4LpEMpLnRB35/ESNzAhF1XXQRsg+L0YDJ25FnUBQRYzj1USiCM9FSs8vRtOM3USGTaVFJDWpRYLsRkUnM+hEYBKfRaePK0WiKS1F06YuRamlHUaK9SRFVTC4RTnrnEavjF9FwyU2ST5xH0VARvVE+JjjRxAnsUWT3kVFv1ogRW9JNkYT8QNFKgAORThy/0VU19dEJQ9LRXr3KkZNd5VHV0jGRt8i2kYmxbdEvISLRentRkXrUGNFs7kcRvUPz0bWjtJEkMgpRQj9DkZ/0CRF2RwzRaQdv0WXI/xEZL5CRU1EVUXYihFF9AxURuyVlkYvHsZF6cnfRYQ4FUUfDTVFYi/gRDwy90dDEdRGJtOuRgxwlUULPohG38IcRdTpdUWM08hEPzCDRUcjYkW4JkZGpanFRRC/XUZD+DdFRTHARcA9QkVnTIZFmo+eRXJxXEn3QxhFUEo3RZMTXUjuL2dFdfmLRgGazkS/6VdFjfKSRZ/o/kUZdfhEcrgIRrQ/l0VxQM9EyPf7RDuHI0bl7g5FhY8WRRBso0YSj/tFNqJYRZMwIkW9GGNFYwu+RWyJA0V+ihhGOSNIRX7IOkXejdREK54lRTtjFEXH7cRHZ03PRCqI3EajfO1EiO3GRO8D2UThQeFFImc6R0hH9UbxBY1Fs0cCRg/+0ET+9hpFelMeRV3tPUU8S+tESswxRXk9Q0e2Le5GRkr4RcKsNUWvMZVG4z9BRoDdA0byfQNFW6ViRWzn/UQv0NVEOCsZRfsHtkTmIiVFCLtMResmCUVloc1IwDmGSNjlBEiacPlGrpWnRfIVGEUqSZBGaPBRRnRLFUWDi5ZFgWuhRawXBUZ3toFFwN/uRIGNz0VbzMNEAqjURNE+50QtWgNFJmvURJb+g0VshR9FLTYQRblP8ESIQvNHrzbRRc8RT0XrF91EoPYARw7sNkXuwd1Ey/hyRfTLqEawIoVFz1UDSKnROUd14aNFPFz8RZwb6ESGRcREznwYRQQ5fEXiRNBE6pjxRDI120SdqxtFk+UWRcgTKUXgjQtFcw4QRYsG0kQ5/P5EMcdbRYhQHEUcBLZF/eXYREHk9kQ15DtGlVUKRSIQekX++BxFwR66RSi8WUXYCRpFRRZ7Rm9qv0Xk1EpIEb/JR8OUp0Z23ZlFBTeyRsz6VUb3xHxFBRxBRXJqBUUdyFlFKwdyRQgdC0X2l5FIBYUASPI8jEeFG51FFgxKRk6FE0bQulxFX2oERbCLi0WYucdEmlIRRWmNDkaLsG1FyBdfRarIK0Uh9i9FT6rQRL6EeEZWWfVE5bP1RGaFFkVvrh9FckZNRZE6zEQIaf9E7kf/RR9dC0UjwBVFKMniRX7QDEUPCDlFQRsYRSZ8gEV/PkpGlvK6RRgRF0WuR/dEftNJRgpTnUV9F0lFuJX1RBBY6ETPNstEBWrOSAMTZEh7wn9H/HifRjjQkkV0UN1H3UUkR1830kYwvzZFHTbcRQe7C0bmbUJFnBMVRbeY/0fEe2NHefnlRurtZUX2fhNGnJUMRcxs1EQYaDhHTN+LRlweukW3vUxFdmb2RbyPT0WE1XxHtTP7Rrp9JUZkZrlFpG0hRiLX1EVaQNFE/Gl5RTnyVkULfuxE+j0GRunAC0W8GjhFS2drRU1+5kSs6wdHbtWNRtihukWMAElF6j3RREW7Fke1CpRG6agdRrB2nUWDGo1FTaUrRZ4N3EQBofREd4kORzhGkUbitFFGAMWuRaRw5kQ560JFmVidRaZ9c0VZk1hFImkPRWATzUSBjTVGKpmzRcTJn0Uqg7BEWpj2RTT+mkVnnCpF - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - ovLkwm7BckAoY+e3p8JyQHur4WY7w3JAfVirpcLEckBmqPlsW8VyQK5aeYgByHJAuiIfy1vNckDNpT7MQ9JyQHfJweXO33JARQwI87fgckCqZTGKUOJyQGr9alGP4nJAF18TicnxckDSjrSmT/JyQGtcTuP6AHNAvVyndYwBc0BGQy3p0QJzQDH7jtf6A3NA5t0U/rwSc0C/hoCQ+hNzQDAw0i5NFHNAfp5nNngfc0BQ/5qboyBzQNaLE2k5IXNAExYNmMoic0Bg9jXrDyNzQBP5DVrQJHNAapE2rkgxc0BKq0Dy5UBzQO7VD0t5QXNA59hcXnpEc0D6WqFEpFNzQAA3LSCMYHNADWvakDljc0AmaMCpK21zQMgx6TFHbXNAXqlYeoRyc0CsguuwnHJzQEJ9cke2dHNA15WzMUt1c0AsANtl23dzQPxGPh8qfXNAiU8tsXiAc0CIoTi0zYBzQJbXJdcKgXNAcnr5aVyCc0AsYKe9g4JzQB2YO6qkgnNAcPkMVYeQc0DItJP4TJJzQGJun0DKk3NAlPBlWmGUc0CH+BoL95RzQC3pU8m3oHNAloNZoJWhc0C62XyfWaJzQOh+ke4DpXNALOq1hrWzc0DzYkSZDLRzQIXaUkn1wHNA0Ojrq8/Cc0Ag+R0jJsNzQB4w6JHU0XNADu8zZ73Sc0AO/WZm4dRzQEY11nyj4HNA8oLGoTjhc0AZng6ceAF0QJHL4i2lAXRAy40xBY0RdECDUIC5TBN0QIjEcqlJIHRA7vv/4LghdEAq/e/aCyt0QDVGclkVM3RA6PfzlvdUdEBO05EcjFV0QJyOBe+3YHRAyvJiyghidEA6KzB2InB0QJpLAFxBcXRAsKxsxjlzdECWb0dqN3V0QGhRfcD4gHRAWudxZU6BdEBEAqU+JoN0QHiQSiNHg3RAcAkeVBaQdEAFzXeBapB0QBoEoOPOoHRA1LvoKr2idEDtFwAWEKN0QJqnRUcJsHRA08niVW+ydEBeCZKhybd0QIZoNUkTvXRAQlD/XXnBdEACHC2uucR0QO4UMHQj4XRADJNdGLnhdEBgVjm3TOV0QEZtzraM83RAYmXXkKX0dEASMxveZAF1QEwQqERdAnVAMz/hTpoDdUBDSoslniJ1QCw6mmTmInVAInjsGsw1dUDMTnmUAVB1QAp4QEDkUnVAwHm0RXdVdUAefht/DGB1QCgEj844YXVAVLfrP3ZydUA6lrNYjXR1QOcJBGmugXVAaaw0mRKDdUBC9eL7pYN1QA+zQtOZhHVAYf+tgrqRdUCy1V7JHpN1QCa3+Qq0k3VAwv3GqbehdUCYsGrktKN1QBoLYsv4wXVA7kUhs+/SdUBIe7rFzdN1QKHRDqrf33VASrkAYQ/hdUCCGlP/B+J1QIKlRNlHAnZARlPt29EDdkAAi1kaTRR2QKxkdroNFnZAAK8kt4gidkACd+sZkCR2QPT9pQ9LK3ZAGm21gR8xdkBRyVjmUTN2QEKS7cGcNHZAjrq/0Fg7dkD6ls2uHEF2QP4ETKqZQnZAdKKTSnlEdkAYRmTeEVF2QFfvEMzMVHZA3LCBqFBjdkAChb9E22R2QGQWXSNfc3ZACFVCMZGDdkC9HoUqv7J2QLKF0md5s3ZAo3/FUA20dkCPyc/Q07h2QJQ4uUEaxHZANj6/r87OdkDiayE0hNJ2QBiENp+R83ZA6un9uDMCd0C9su7bUA13QGAPS8IAEndAWm25dI8Sd0BwvOliqhJ3QDQnH73sF3dACroIMw8id0Cegw4RcyJ3QNqe8eC9I3dApCHOAg01d0CvqcATJz53QOTyWNScQXdAji6P8BpFd0DqKn1mSlF3QC7azGOSUXdAiooruipVd0DKyZ7Sj2F3QKiESoIob3dAyVSgE3iCd0BjJ1ZSmrR3QGrrjDHM3XdAQqc1JFDyd0C8jFT/TRV4QI5w641uInhATDJ5qgtCeEBdJlDqEER4QDPi8HV6RXhA/Dy9t8pReEB6d7fNlFJ4QJCFTnKJVXhApsZ2qe5XeEBumBBCS114QIJfOIP6YHhAFqZ7kbdheEBCrWVji3R4QArdUx2wdHhAV4VR0aaBeEBtkXWamYR4QN4XkSOYkXhARCEIIqeUeEA+VwwYz8B4QBDyWn/xwXhANud0X7jUeED+4WL2AfR4QGGwsEGM9XhAav5CdQ4EeUCAwEXsmAV5QL5tp6e0KHlAjzF9GoxCeUD2qh/2+0N5QFz2YEsKVHlAAk6uXs1UeUC4eGHT2mR5QPEpGXtCc3lAcg0VTFh6eUCgfeZYY4J5QOnm2xhxjXlAJH+4zsqSeUACSAzYJph5QDmDOKFsnXlAiKaBD8GyeUCUlUDBytJ5QKj3pYlC1HlANitTbc3VeUBk82Dpqtp5QMStG4yw4nlA5F76J1DkeUBKWvqyOCN6QKScWKSoI3pAVMuBTiwzekAwzcaCDDV6QI7tyucwN3pA7k+8Ri47ekC+B02/GkV6QPFyzIzPS3pAvVRDnSlVekBwzKyhmJt6QBAFxaENtnpAYf9Xby7DekBlQYtHG8Z6QCqwpboNyHpAdVanoWfNekByQ6mUvtJ6QGzfdAtl4XpAgnNkajbuekBzOUG5FfF6QKAGHR1f8XpAEsH9vCrzekB2jE18SvN6QM+upKyj+HpAULxvIf/9ekCYEcbUXgN7QCQK/oorDntAz973ucQSe0B7iKYpTRV7QDZHRCwfGHtAHBKfEH4de0AilQ2dWiV7QEjt2qARQHtAqfNGHRdDe0CVnv4AnEh7QFBUOjr1TXtAsBOiU/+Me0C0ZMwh7JB7QHMFHfVXkntAqHevfiOVe0DqtWm5zp17QDLKTSIno3tAOEbVRXuoe0BCWT+Xz617QMT+rUYks3tANFcrPoC4e0CWg9f4zL17QAXE1PZ5xntAySn+TJbxe0CUDZZ5HPN7QKrWvMKL9XtAdv2RjXT4e0C6kohl2QF8QHVaiar1AXxACr9AEZkFfEAVjOkw0hF8QD5oQl/nG3xAHDFk1u4jfEA8WvMPzUF8QOyvJqHZUXxA9+qrFn5TfEAbAsHyYHt8QAjrRZRng3xAKKwJs8OyfEBCgUGlV+J8QNZzJr4R43xAdFsk0WrofEBdBSv+t+18QN2aJfMW8nxAXR3El1XyfEDg1UJ3AwJ9QIUPpLBLAn1ABCvUN0QSfUC8WjHDrht9QOT0SxtAIn1AgVhR17UjfUCA9gmXoCt9QOxJBpC+K31AAMFDS8UzfUC4cq1CR7l9QNApWJIsw31A9PnVb5H1fUAQALN0ORt+QA88ONNAI35AMxPgAk0/fkCUkquwjFV+QKAzRLw7ZH5AIH2gA/+6fkAkm1doKOB+QP4X8Piu935A2199nrP7fkCBnRjRHwB/QJ7GbU8DAn9ANEsc85QDf0AeG41GnQt/QCIpdYFmE39ARaWwn7dxf0CsyChysIF/QPJpXDxikX9ADCjcopmTf0B0MWkHXKF/QNQ66QNWsX9AGxD8qoMRgEA0BtywMBSAQJZBZd/uSIBAnNM0neZQgEAxMP3xFFGAQBTHiVAOWYBAO0OAYEhagEAYgEVJS16AQJC3QT9OYoBAYCzbxVFmgEAsEg+NxWaAQJxeNVRzaYBAmJU9fBJsgEACvCZ5IWyAQBrCDbrGboBATb0bGCpvgECpbze4MYSAQLKcdFQdj4BAQhGeYnulgECMK7jOhamAQIcnnxEVr4BAsoIYaVLBgECDW5dnU8mAQDbd2XOozIBAtCsjaUzRgEBkJQrAYNGAQPEc2JT/0YBAom2370rZgEA+lSOfc9mAQOY1nnkg3IBApkpc7cvegECsxRG7ROGAQEAN4+dy4YBAhgNitUnvgEC8vf8iPPOAQIxO5d8//4BAXIEeLJACgUBs93uwPweBQE4qAMBoCYFA6kGPBxQMgUAwvem4Ow+BQEpjR2vnHYFAir02gjQfgUDanVc0NyeBQOmCN53jLYFAqFP6xb0xgUAr6akg9EWBQDfT9PLlSYFAUVBOPlaPgUBSXQ9SVZeBQIQgfHrnoYFAXbad7tamgUC+BfM9baiBQBYRyvuDqYFAeGfFjzCsgUBegXNh066BQAhmZ2JKr4FAtD7ufWuwgUC62VWWBc6BQPZBiOkI0oFACPMdq9gYgkD4ciMo1yCCQBHDcfXRKIJAcqXag+c5gkAMMHUQ6U2CQLxhJ1vrUYJAflmXiOlVgkCCUM2m51mCQPYpEqvrXYJA1NjaXEOJgkD28heEQ5GCQJSOCzY8mYJAQP7vYw+hgkCCrr2COaGCQOhapPkMqYJAGT5F7DOpgkAOKDp7eRGDQDwCptt5GYNA9nH49nIhg0BC+5u8DCaDQCH9AxJyKYNA0o6bDxEqg0AkzgxfazGDQKGcQFDcQYNAzuXIf99Fg0BWBQic2UmDQDNs65nZTYNAO0ZU0uaBg0DwyM10rJWDQCRpPWOumYNAm21mLr4BhEA6azJBwQWEQEKQ3wPHCYRACCfG77wNhEARIhIWAxKEQOqktFAGFoRAz+NJhgwahEBqRDa7cDKEQCptYT51NoRAUxUWjQxKhEB6/d+D/miEQJg+Ujv9cIRAOrU9Hvd4hECxNStusZmEQKKlvchyooRASnKfR1SyhEALROfAV7aEQCLSVZpauoRAvPzA+Fe+hEBqphN9ys+EQEKoFDtq2YRASkA8IGrhhEC4/2SBY+mEQH6WJJE18YRAGBPFaV/xhEB3q7r8wfeEQOzyEaUz+YRAGMCr3Fn5hECtCFqzbfqEQERUYk8b/YRA/jY5U6BhhUAgB54SoGmFQDLxLPuYcYVAGr49y7RzhUDRdrFlmXmFQEV0PAiRgYVAEAoD/bAahkDK/nTXsx6GQHxKthg9I4ZAjL95lZqShkBb4SLph5aGQCHydV2MmoZAtB3YwIyehkA8CPrkJ7mGQCRUYhQfHodAbgZnsyMih0AYaF7akCmHQALpGTiQMYdA4ssnSIo5h0A842WfXUGHQAZHDgmLQYdA1MMitsexh0AtDujBxrmHQJB9L0PCwYdAhrnRjsPJh0A= + NrgMGZxjYkCYE/Y0vCFwQAoahmk8YnBAhtH1kSpSd0Ax283g6nJ4QA== - + - Th6MRe/7f0dagbJFJ5ysRBxiuER0p59Gdn22RDSi/kbVbP1ECxK+RF1IekXGRR5FsU1SRUO5pETBBqhEWS2tRG11uUSvDjBHp0mERpwHjkVpDKZE6bfjRDzS80SiD7xGnCOgRAmExkQUxJ9F0wnmRNzhuEShPLBFF4EVRmqwYkXIhPpEQInxRKweDUk7B29FJY+RSIH4w0TcPupEGnf3RC1QIkdHMoJGC3nVRniWpEQHKv9ErUSlRLDuxUVRngFFuC4tRQVxQke2CK1ED9O8ROqsfkaJPwlGU88KRbfxAEZD3ThFAadBReanAkXV2JFEXkB+RYI2H0UEZBBFfMwGRS4fkkXkS81Eu7jtRRcCmEa3tdxEJj+YRNihLkUMsa1EAoNHRUwWrEUhRbdE/Je+REwxy0RrkpNF254XRbaNjUUOBEJHSkvHR+Ij40QbcCxF7YvhRR+A10SS8jZGVaalRWtXo0Sw6cpEJUvKRIFyD0UWrAdFJ8LaRtrdE0bnSVJFy7a2RGN2DEXssa1ED57cREqnmkS96sFFMO2iRDuitURQgSlGncLJRPMWrkXCqKBFw7FNRZwFuUQKvEhFrLr9RFZ0CUUvZfBE9BrWRDT5Jkar5stF8pm0Rs3LtUjlOx1FX3vPRA9iAkUxM19HTejzRKb1REWzGb1E63WoRc3B60TKCpFEeRq6RP+pz0SPfdtFB9UBRVuMxURsXcBEor5MRTtCE0Y/voFHy8KtRs3EjUbFZfVEPbomRdUMpEUu8d9ENtGCRRiz50TRPBdGPcSGRkoYyEQDYPVED7O0RXs4H0WpKltFjPKJRU6YTkVdtKpEWz9rRWS2l0RetVJFa3jwRCsLU0YW15hGqXfHRUNDiEUIuyxFBbNeRc25qUS54rhEJSryR+T93EQ5FK9GAVXFRhmVmEUrl19GRBnkRGTACUVL0FVFzHDwRH0EqkTWoLxE06gVRVfnokTciJ1FcYYDRVrJekXYQ0NGM2iORT1RNkZr/VhFgk2SRdnTz0QkaeJEx7gxRYE/Vkml6qxFJoUWRdBaXUg4Yj5FsM60RhxKx0SSrbpEq0ciRRUlbUU4IeZFcoacRP4l60RHqtFEzMThRF9vOEbG1whF5zCTRavgpkQiI6lE4wgBRsNpqUT5O4JGFmrsRd1WN0XqAN5E3n8fRYZ6gEVfMc5FrjLIRFJFykXXfAVFJOTeRBF8rURxhQhFrLRMRR0L3EcB8K9E6Yi5RNPgwUZVzflEWXVGRc4UUEUVS99FFjvdROBD9EQA52xH0a0NR6CI20UAOyVFxEG8RIJs0kRGlK1EoFKZRINsIkc1+NRG1nz0RdYwmER2krZEyytMRgoGHUbXTiRGA48fRdSyP0UxOspEsb4GRfl5mEQaL/lEaYkVRUxVnURGMLVE5roYRYHCyEi7AZBIen8XSP6wHUdCDMdFbf7rRBbl3URVubFE62JzRdm5DUVxGphG7IbLRAuNGkbSpSRFxu2fRfl3V0U+wu9FvONBRS3QukWm2JpEdxntRJXzvUVxJGBF2TvsRGzK70fU4wxGEky3RevAtETtYcNEaOnaRj2eREWVj75GdZ1ERXHLpEfu59JEZroLR6EckkWvx6BF81jiRPgH80RAhshEMm5cRSL2aEVXK7xEWvGpRJebuURV+LNEQtz+RAcZkkWBGe1EDMwHRcYFuER/VChFg1MzRQDA+UTgQ7BExeCFRWJszkRMOzdG3xkXRWOUTkViOM5Er4WqRXozgEVGqPREIhcfRbhcg0aLNrdFxj4oSBBHpUeILrZGByNKRYR7dUa4T1JGlpU3RUfqS0U2evdEGoXxRAhWLUXQJ6hFJk66REWCx0TZo6BEcbeUSIq7BUjHtAVFrv6PR3MTlkVURgVFXm2CRoa8GEbP57VFZyUoRdskz0VxqZlEVyayRAq+zES7dSxG3JWxRMc9XEXWKxVFYQ88Rby9/kTxtZREWa5RRhmnJ0VecqZEkwAURS3+AkXhsXlFwNytRXE03EQn+hdFd4qtRe+s00TaX0pFNob1RCpYoUTJRJdFFPC/RNne7EXvFoJF+9QwRtOckkUa80tF7FrXRL23gkjh9QtI9RoaR6L3W0ZEfT1FCcy9R1MIGUdeNs9GnAUCRnR7wkWqomtFEnYORZ9lAkisOlRHKTcHR0SHDEXwWSdG7D2RRLNCL0WIPPtG8cGARhSHhEXbBwRFJzukREcGxkWGRzpFyq8qR99F1kYRcq1F/gCoRUGnB0Y4EqFFmMfrRB63QUXDftlEoQ+oRCcFrEUm3idFafMBRbFEzUR1icxEb7MYR2ZFwUYk1aZF24n1RG9eu0S2sg1HLU+BRlzDEkYVtqVFcNc/RevI4URX+9BEUxC5RC5jwkR6bdZEtNgZR45bckZMcj1G12DORCD11UVLUrBE7Tj/RKoivUSbxwZFDp+3Rf4A0kV3Eo9FwMboRGzHpkSKeVhF5HtKRVm1L0YjOLRFxiJ5RTrhF0W3RqxEILgcRlSGt0UEN2JFmFatRA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 8BQQF2/BckBoZp1zUMJyQMq0krSnwnJAbkpuXuPCckDpR8vmOsNyQKYP6HQByHJAF7GinUrNckDniMK5XM1yQPJ3cbxD0nJAnNn3/M/fckAz5dUjuOByQHDVa9hR4nJAGzVvUI/ickA0QgwJJeNyQGQEN8bK8XJAVD3vBk7yckCQM6GHtfNyQJr0eyvA/3JA5taV+vgAc0DA7mULjAFzQPP0gJjRAnNAPK4JePsDc0BArLTOvBJzQMuP1IEGFHNAjSftck0Uc0DVJlH9eh9zQMVjapOmIHNA3kxSCDohc0BU1MHnxyJzQDwmTkoPI3NAu+Cmys8kc0D2lYPDSTFzQHhgGnDiQHNA8xJr9XhBc0D4pP9sfERzQJWrso9EU3NApiM0nqNTc0A3eRzLeFRzQGKh2CY6Y3NAWI8LnhFtc0CQ8OjuK21zQK6RI4FHbXNAf25G74Ryc0BIGW5WtnRzQNL4/DRLdXNAPiu1qs93c0Baus/F3ndzQIqOfCorfXNAfbus63iAc0CwUuH2C4FzQPtzzUFcgnNAkSCyWIeCc0Dau7uMpYJzQHSQOPyHkHNAcngRaE2Sc0AgVsgU+ZJzQMCh1jP3lHNAsriiP7mgc0AgECoDlKFzQGEfy3laonNAMWOiJ+Wic0AC9TcmBaVzQJiJVJ23s3NAlvz6Og20c0CVfODUY8BzQFi+Wv/3wHNApGSoBc/Cc0DAVIjBJ8NzQFxPs7LW0XNAuSqcMbvSc0BodH1s4tRzQKJ4Co444XNAEuhsrDX0c0BuYlD94wB0QKhOFf94AXRAPOgSdqcBdEDUhfvoTRN0QHUwnXl4FHRATib9TEogdEBWZ6qAuSF0QFZ3xW0LK3RAi3iwQ1MwdEDw5flRuzJ0QCT4tT8TM3RAalXDpGAzdECuReJfaU90QGdzTMuKVXRAmr4KvtpXdEBKQNY0uWB0QM/GvjIJYnRAJs58jFFidEA+iS8jvGJ0QLthmN5PZHRAwNdLYCJwdEDsmQmlQXF0QGU4CGc6c3RAk2leSTd1dEB6FkM/+IB0QBSY1VROgXRAX0qBFUeDdED8SesHF5B0QNTw8tzRoHRANG6fereidEDEHsIuEaN0QA/vAzoLsHRAVGwn+v+xdEAGh8p6b7J0QGIiKyX7snRAGrfO8Mi3dEB8Y6VyEb10QBYWJowkvXRA+8WUg3jBdECiBRQCjsF0QC4hCnu4xHRAIGQ+V/7OdEC+g/vSzNJ0QJoygH3f03RAFqS8DM3UdECiaD6pJth0QMyPga644HRA6mbpHiXhdEC2ztubueF0QI/rRc7A8HRAlk5hFo3zdEAWvgZ7zwB1QJ642p5iAXVAhCbLtl0CdUAuI2exlhB1QNbcbp1qEnVAfQ6zZSQUdUAu33xOnSJ1QEkSLfnlInVALrAK8cs1dUBFgvBmAFB1QC1CmP+CUXVAeHhT4OVSdUBxNXGEeFV1QAvsj1U4YXVAvu1ozGZjdUDOdDJieHJ1QDGDJteNdHVAYiHmDHiBdUAKzLEvroF1QDhXrKASg3VAPlVOjqaDdUDPiEbfEYR1QCrDONmahHVASWvix/OSdUA2uJgmHpN1QBqaHl06k3VAY5yWrLSTdUAWgxKRIJR1QNF27He4oXVAnKZQ1CajdUDk7T7j+MF1QJKhe08q0nVASnSPQO/SdUA8j2jhydN1QMIymLbj33VAErz+nAnidUCke71MOPN1QMkqsmdIAnZAwmr7/dADdkDYgZcqTRR2QIkRAMsMFnZA82mwTIgidkCqG6XskCR2QLbDRdhLK3ZAebW1cx8xdkCISwsPUzN2QMDosBOdNHZA5gRMJVg4dkBIj0uXWTt2QB3enKUdQXZAuIK3WHlEdkCSKpmCyVB2QLAXxNETUXZAkG4EB85UdkBQb6v2vmJ2QNo+7hDOYnZAV5dsfVFjdkAW/Ktr2WR2QJemGq9fc3ZACKSZQ5GDdkBGfr78uLB2QLRHosPAsnZAAPcHCXuzdkDEQZD8DLR2QDBbjyzSuHZA+XE9iM7OdkACCOlChdJ2QC6Rs6Ty4XZA2M7c95HzdkCmLRLjMgJ3QJZZmkxRDXdArjMAMwESd0BIkUSMjxJ3QIsYbnSpEndAci72cgQYd0CSFHrBDyJ3QOYm9Ja/I3dAxu7fV6Uzd0DOa3MYDTV3QPgUIrYmPndAUhkJCZ1Bd0DokY5qr0F3QApkvM4bRXdATlN/AUtRd0DAIZyOklF3QDhF28QqVXdADZ2iUpBhd0B0ZdiZKG93QD9ycl+DcXdAS/8MjXmCd0Cq1PBHCpJ3QORKKuZLlHdAVtRK9Wedd0BvOyAsmrR3QDaFi+Xi0HdAsbSQ/YzWd0AAwQhLzN13QCMusp4m43dAJ4ol+JDjd0B+x1tqUPJ3QFRq4pZtInhA+r15VQ1CeEAYtxd9EUR4QHiDWX56RXhAKsnvpcpReEDy8oeulFJ4QNZcNWKKVXhAsufnEu9XeEDgYBpC+mB4QHLA3f+2YXhAMB19V7ZieED8jxQNLXR4QNBngLyLdHhAfDP966t0eEDO4vIay3R4QG/Oys6lgXhAK6qW/JmEeEDYOx1uUo94QF9XH3GXkXhAIKnHkaeUeEAkGUQ79rJ4QLL2ge/NwHhA+or9hOHBeEA2PzoeutR4QPF9ULot23hAceb0qgvheEB8fkjoAvR4QDueyOiM9XhAzPhneREEeUCPjJj5nAV5QALax/H1QnlA+uy1bvxDeUAq0ldNCVR5QLpwXTrNVHlA6qYdrEVzeUAOJgmMWXp5QHR3/pZhgnlAJ25kbHGNeUCnpxyny5J5QL211Y0WmHlAiFnxQ8CyeUAqvEnjydJ5QNoXv7tC1HlAgVXpAMvVeUBWjg8qq9p5QEZZWB3B4nlAFvtHFlHkeUDkwzeEpyN6QLzSJJoqM3pADmymv7czekBarFzKDDV6QIpz+UYbRXpAtvAEmc9LekAgK0l1K1V6QPEF3OwhXHpAhteezYxyekAGElONl5t6QG59HxXfnXpArkkO1Q22ekCJqzDJGsZ6QAiUyREOyHpAJtdGGmjNekD0dR5+Rc56QETW8E+t0npANfVZhsbSekD0XdjsG9h6QDKuuFk47npAPlIqyRTxekDwvODpSvN6QDqGc1Ok+HpAa0AGbv79ekA2IMr1WwN7QCSkO5fFEntAugsH0E0Ve0BmwpPOHhh7QGz/XNdmHXtA3cw5xVsle0DZwYSbEkB7QH0Xe+EcQ3tAnspX05hIe0AIHtxr8017QB7LaqFTU3tAampuu/2Me0AkmuKLI5V7QLa6xVnOnXtA0CtAoyeje0C8yMY2e6h7QKqlPuHQrXtAdEbItCSze0ByDos5hbh7QJhMFT2W8XtAa6cTGhzze0Cx1o1AjPV7QC65R312+HtA2k9OSdkBfEDApvVCmQV8QNRdisGFEXxAUEn4mdARfEDs6YwV6Bt8QEh+CzTwI3xA5ltOPc1BfECSMU40fVN8QMG5cswMYnxAyJPbmWB7fEC1XkwhaYN8QNfi13G/snxAunFuDMzVfECqtMrnV+J8QKp/C1oS43xAYrpasmvofECc1OL1xu18QHgnwJAW8nxA5nftQFXyfEAnko3t/gF9QA4Y/OlKAn1A+LNqqFQEfUCFXJh+dwt9QOWC8MBFEn1A+nHkWK8bfUCp/jzQPyJ9QLZAtJ61I31A0soaD6IrfUBmuuFzvyt9QBpWjn+rM31AGnodxcMzfUAaZaprUTt9QKihqfdIuX1Aq37306O+fUBCIezE+sN9QM5ekhe95X1A5l9TtpH1fUA2uE9fOBt+QHDSZZk+I35AeZxDu0I/fkB4HGckjlV+QHP0Mfq2e35An1zuo8GDfkAQtPJmzIp+QL62MsrOj35A6GGCVeGQfkBWvz3rALt+QGgV89IIw35Awg68aijgfkCwpvyd0+9+QGqo/hG0+35A4A4JdhcAf0Ay5naVBAJ/QKqBR92VA39A3tlKu6ALf0ASiZWK11p/QGfnSJ3eYn9AK8kLGOlof0DOEfl6uHF/QJLHs0SzgX9AJIKuMaWDf0A4RFxRY5F/QMzP/ZOck39Abx+8nVyhf0B9jZqJWLF/QEBSeeOCEYBAfBMOxDAUgEBEfkIi1xaAQAaq5tr1SIBA+PpfCehQgEDITsuOE1GAQAQYJaDnWIBAfIGJrA9ZgEA1uOOLSFqAQHliP3dLXoBAhhJhZU5igEBud7QxUmaAQMrKT83FZoBAZJc4GHNpgEAlJm6qDmyAQC7OVQ8ibIBAE4IsfsVugEDbjxjRKG+AQMSpTPUxhIBA0ukFYt6GgEBJq+kDiomAQF+izKMej4BAYFwne4apgEDgDd7Tk7KAQG5HUr9Mu4BAf2npkFLBgEAYdgJkU8mAQNtMC4mpzIBAJJyw1SvRgEDg6f2YTNGAQCqswzNi0YBAwsPnWP7RgEAqUHJUStmAQMsJfMZz2YBAkCA10CDcgEAjwQjwyt6AQKQ2fDJF4YBA0skg73HhgEC6HKUF9uiAQAZSFQ9L74BAxKEBDT3zgEBF/p77P/+AQEhquVU/B4FALDe0MmkJgUD1pRtMFAyBQMe3QAbBDoFA2HCdEz0PgUB+2IR/ZxGBQNbpEo40H4FA1prtiOMfgUAYV/v6NCeBQNAF5oW2J4FAg5xjQvQsgUCkR55ivjGBQFWNEc0pP4FAbpVCovNFgUBHdA8x5kmBQJ7iOe7mTYFA+EDxklWPgUCUA8OJXJeBQPvbaNVUn4FA6sz4tuehgUD6iHxX1qaBQKPd6uVtqIFASuHn7IOpgUA+DTj2166BQCgKqWpJr4FAmu+TO0u3gUDSfTYjBc6BQPz08AcG0oFA0se9RX3TgUDK0XmI2BiCQPK9r6jWIIJAlpo0eNEogkCOLgKeoSmCQHjuLoqlLYJA8i/W6KUwgkAeMSwi5zmCQDlKVkPqPYJAkmRYGelNgkAGc7qV61GCQJhD/VzxVYJA9u3uyOdZgkA8WHit612CQGgCZVdDiYJA6FAm9UORgkCG8y+tPJmCQIZWKgRWmYJArU4oPA+hgkAk5d8JPKGCQPcXmdkLqYJA1RxQ7DKpgkC43M99CbGCQJrkHdZ5EYNAzKBVEXoZg0BqcAsBcyGDQBonRzwOJoNAGeqnAXEpg0BAe4fgESqDQLzLsdlqMYNA+PSemNxBg0DWN9pM30WDQGw16WLSSYNA1NS86+VJg0AQC4iO2k2DQB/JpKqrlYNAXAs13q6Zg0BY36wbvgGEQG0b2zPBBYRAJAO0fsYJhEDUgkiNxw2EQPVQbF0DEoRALkxx/AUWhEACoQNPcDKEQPy2vdsQToRADnypkaNUhEDIJx0WAGmEQCxiUfD/cIRAaqRC8/h4hEBZiseTsJmEQC2NPICznYRAD8xBpG+ihED3U3yxH6WEQAWX17tUsoRA2J72xFe2hED/nzVTW7qEQBCEQtRPvoRAFp8yPWrZhEBCqCUOauGEQHociJhj6YRAPgToZDbxhEB9xHrdYvGEQGZhFxDA94RARi4qaTX5hEB9CDHybfqEQKSOwGEa/YRAhBJkE7sthUAMVCOSoGGFQKBIL5igaYVAQParsJlxhUDNDmKTtHOFQIWectybeYVAeEx/MrAahkCPVzWxtR6GQBLXjgw9I4ZAqlqTGJuShkASFe+QiJaGQKuWDjyMmoZAaCr/BpKehkB63bDLJrmGQJflmpsgHodADpo4BiQih0BkLza5JSaHQKYpo5ORKYdAykmPLiUqh0Acc5MHkTGHQIwwyDSLOYdAyq5JoYxBh0COaL4fx7GHQMAoHTjHuYdAxLnl67/Bh0BkJnB42xmIQECdccIjlohA + NrgMGZxjYkBK9xnL9URsQFRnpVdMhW5A - + - gXFQRSrVsESeWGtH4ryuRAn/lEUBKLhGTp28RC/uEkUvCd5GMjeQRFUdzUQiVkRFVGMtRbvNk0QE+n9FvNf2RFVVjUR+kO5EQ1YWRWcfgkTEkaJEDq4FR0McBka8lHtF5o+wRAr0t0Q+i5tE8Ce4RoAolkQdbL1Ee8aQRUt10EQsIL1EEVaFRTY23kVjzW1E8WRFRTc/v0TypMlEJ7P3RHjLw0h+z8JEd2NPSGEPo0QDsrlEEJiVRuRG9kY19D5GAHbBRpdL/0QREMJEfhieRL+8HUVtZRFFLKcyR9MAYERUACtG4QTJRXvkq0Top61FOVAGRVrz1kR2hABFWRT1RDpFgkSfTbtEGTZURSh6O0U0MDhFEt+/RF5Bh0W6oOJFQcuvRNLmq0TJ1WpGSa29RC0oGUXiPJBE6NaqROsR2ER1cP5F4c+lROZIqkTH0u1EcK2bRG3JX0RvsudExCltRSg/rkVXbklFUX6SRKoBrkT8/6dE5P+hRVhmNEcNEYBHUKaORLoJAEX++KxFazzXRVpaaEULbJlEdQ3YREsNhUS50OtEK1fhRBRlFUe7T4BEXeSORknV5kTAFhBFdKSnRB6NZkR1gBFFY+2tRIy9tESrL6tEfK/UREuEsESaO5NEA2yFRFSc7ES+SqJEcq6pRfKC4UR4mcFEvfNiRnEZkUSPiAlFFQrXRItjs0U3XbRFl/UXRf9j5kQHjYdEfkgURUN68kRBJTpFdhSnRLCiJEUriipG6vj2RPCKbUWj5aBG8SlQSMdbz0WPaOlEDgiNRAoqxkSynXJEBv7sRiH4okQLUbpEswKlRBdO0kQwufFEHfYlRaZjmUQ4vqdE9hwTRRjrm0RxlO5FWLLRRC3tokRFAaVE9QN0RWUv80VzD3BHVFezRn3LnUZmUpxEcWScRLcsTkUlMJRFhS8lRUsRqERIUB9FTvdCRvTGakTP+YtEGekwRvLHEEXfxo1Ec2e9RYlCkESPzQFFh6YmRf1sk0V6j7VEealHRVu8jEQb4YVEsDrGRC4qz0Q07xpGBylgRnf2m0XJrJZFVcrnRAFDaUX8kNZE0knVRCdq4EcBnMpEUlqnRiwvt0WtH8VGLP6SRUs8aEYwlrpE2nclRbi3bkUwrZRETGGzRBAgvURyhLNEDDt6RDQjm0QU7qZEwyGrRMUzOkVHoNJEx3G6RArlCEVDqopFIkmSRBNiWUUIME1GV1KHRdLrIkZNcNlE4AevRS+u/US6n1BFbTasRHfBmkRGh0FJhI+YRdQxoUSJyDlFiTY+SCBHiESuSFBFb3mYRgmNnkT+mrxEO9vCRMGgE0WL7b5ENv9uRDa6PkVnYdNFftCpRFYNwkR1wZVE3AWyRjl6K0VUaItFrdi3RMR1ikUwm7dE2upMRhj00kUCcKdEBZpKRXzTskVdi9hFiebNRGKPSEUl45xEOsusRFkieUXXewRFCqWNRHMbwUdD/LJGR2HWRPLW6kTtGIdEkhqbRCdAH0VvFINEIJacRfNem0SuQDBH3BuzRhQYgkT9nj1Fnss8RTxmx0TJ35xEnGCkRCXJKkcv4NFGm8nURWcvnEQM6ClGW6QjRmwupkXOl7lEjPIrRd2sW0XXGVZFJ3AFRSPyg0R+gHtEPNG0RBNLMUV58sBIDX2FSLhTGEh4bvlG1kwARgb5+USpbZFFYtCsRGYlhEYuxfNEOqsbRohPr0UlepdEZ9R+RdJx4kVz40tFO4TCRWbKrkRe2txENYnsRY/kYUU/+JxEAFWKRGRTx0epqgpGVU+eReCo20TDPyRF1SjZRpLW8URUY5NGvJrBRAvX1kRoOH1FfNqNR82qmUQhAvJGtISPRYZqykWugxJFAnWbRNcUgEQU2GFF6L8zRapjBEWmYmlEUD2zRK/Dc0UMf7xEuU2ARC/WzUQznoFFBSYYRYk/qUS02W1El9KfRFzeM0VktJBECimoRRZ+4kSM6oNECm2uRCkhIEU8UY9FWIqqRA8R4UQgh4pEKV6nRF3UYEXBJadEDa2rRC7SX0Y8tf9E06AsRRI4C0U2ZltFBs1YRSnRm0RansREkt0WRXIVRkYoUuhEJ+7ERdQgJUhDYKhHjW/CRr/+rkW6KotGZcpeRiZVHEWP6lxF5QBORcsdFkXFmg9FNNemRGOP1UT2LIZFAVs0RWc+oUQDYIlEagxoSEVU1kd849ZEj9jSRDV5XEcjpiFFMkmtRNh7H0ZmO91F67ieRZ+8UEVqka1FJjvPRA+kpUQj3t5EGfyJRC7IO0YDL3hF/zlORYl350SMK5NEP0AeRTnJhUSSCUtGEHbKRG7cWkU6hNJExWegRCn130ThCO9EJ5VaRfgMhUUsaMNELlnFRdxxv0TYeNhEg25lRbxzm0WUwBRFsVCuRbHmHEUY1aZFslSZRFK2v0WkniRFG0jBRN/aPEYl5k5FdvkoRZ8w90TdtZVEWQWEROQGEkXlPqtE300kSElBtkcCZ1lG9+zKRd/ClkRQEsNHhfEXR4BK2UZ8St1EpenGRREkzUUg+RdFI14MRQ4vr0QF28BH5ysxR3Vn00ZyA4NFZeC6Rf7GyEQ4EyRFjpbsRo82ZkbDqylFtz0oRdtd1ETOEL9F3jcmReamuka9ozJG3Z5aReNXoUTWLNxF7vDURYiZXkXBSbNEDwaORB21sEV9ZD1FeaSxRJTctUR5caxEDNJGRUmHvUSAcDRHABjBRssrBkYu2RhFdIsDR2bwekY2hSJGpeN2RTQgU0VdJxpFeOblRFjVoURJbZxE2cyERDWV2EbJvGFGl2gaRu5qtERKph5FYqILRZklgETLTShFX6+SRaecHUawCeVF5/WeRHX8yUTbR6lG0bdpRk7PoUUOYCJGnsJPRaDipEVzdVRFJU22RGeiCUb8pZtFay0ERQGbxURCpNxE + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - DD25ZijBckBKUq5YbsFyQK4YElBQwnJAK+YjpKfCckAFREO8PMNyQHyMbFTFxHJAyPaIylnFckAA//caAchyQFLX5vdMzXJAHMAOglzNckAxELHgQ9JyQJXNdKam0nJAdofpjLPSckDg2Otgzt9yQEyt42wh4HJAwUOu3bjgckCkgqjhUOJyQEYhjVOQ4nJAs5wW7cnxckCextvqTvJyQAxsJRK083JAnFlhPBL0ckBQf2moovRyQKQ5zcnA/3JAKBs0KfkAc0BtFAiyjAFzQGryYDHPAnNAA8VAH/sDc0AWq9xwChJzQHoKRjAnEnNAtMIRi70Sc0AK7KPnBhRzQDQyDvb2F3NAZsTPo3sfc0BQJkf0oyBzQCbdlWU5IXNAn5K0zsgic0DkKztq0CRzQBW3nahMMXNA7khTAAwzc0BET7OioDNzQNyEGL04NHNAizHUrOFAc0Ck2skfekFzQIDr5SYkQnNATrwyBXtEc0Atv4ocRFNzQEZqdeCjU3NAPrVn4IdUc0BEP0pPi2BzQFRTXQM7Y3NAFjUwuSttc0DsREsXTG1zQBO4noJlbXNATF4dw1Jyc0DYdEIKYnJzQHI0jaiEcnNAfspHM7d0c0B0XOHGSXVzQDXCQkxqdnNAQrMCHtB3c0C3x3H333dzQDBSqz8qfXNAourlfTp9c0COunffeIBzQMHRvzaigHNAcOp2qAyBc0AWXZyFXIJzQFaRZdN6gnNASPFaHaaCc0CnXpXnhpBzQKvo0fdMknNApIC3aGOUc0CGBgHN95RzQMTLrHS4oHNA3Lp89pKhc0AHg5ivWqJzQFx1z57konNAvnMJRgSlc0AA4+gYt7NzQETYy0MMtHNAsEpGXWLAc0BNi+EI+cBzQKR82xvQwnNAP+sSqCTDc0BTc/ud1tFzQMXikC680nNALqmhavbTc0BlAJ2E4tRzQNQM12E44XNAMIHZdmPhc0C2HiNgOPRzQFYYWGbK93NAkoORNnkBdECEjFUUiBF0QIbLaapNE3RADJGL3UwgdEAo+57MuCF0QBZKYQsMK3RAXEx6jxIzdEBJgOlze0N0QLd5wEtZT3RA4nx61YxVdECSCOES3Fd0QPZ9hhU2XXRAhH4axblgdECl2qBGCGJ0QCyDUZSPYnRAX6cvZ09kdEAbTYwB7Gd0QGlUODohcHRABKiEQkFxdEB/xq18OnN0QDfYTFL4gHRA5C5BkU6BdEAuiOJvR4N0QLJNwMwWkHRA7tB+OmqQdEB3u0+hE5F0QDfeOvdJk3RAPWPcLM6gdEAidHuJOqF0QPIAEJUPo3RALOXwqQuwdEAo/LFWw7B0QI183t8AsnRAsvVY0m+ydEB8F9z9yLd0QIy/LvERvXRAq16tViW9dEAo7/C/V8B0QITtYULhwHRAm9zn5XfBdEAXQpQMbMJ0QHiz4ja4xHRA3tmUl+PTdECc1pZRzdR0QDXaLA2O4HRAZECDK7jhdEB3zJ+TT+V0QKtzq1iN83RAohWxcKUAdUAPZ1trzgB1QBoACqBiAXVAUJWVfV0CdUBPfh5xaRJ1QGOg3owkFHVA5HZ6lp0idUCRMUx15SJ1QIv+NTapMnVAapzLf8w1dUDf++1MglF1QG7r4JvmUnVAbTReNXZVdUC+sn3GomB1QBS4p1g4YXVA3Syi6GZjdUBNdIYieHJ1QA4/Po6NdHVA62pFgOSAdUD9EFcHeYF1QEh5Ac6tgXVAJHmdMhKDdUCrQI6NpoN1QDg5IFUShHVAdg0hQZqEdUA8IEe8bZJ1QN3ta1Yek3VAey99P7STdUASXMULIJR1QG7o7Z27oXVAPMGIhcGjdUBmrEaMObN1QMmSforOwHVAKMdAR2PBdUDcTohN98F1QIhWHOIq0nVAIToMXvDSdUCsMB9RztN1QB4B+4kP4XVAIMpBXAjidUCmR0dkOOV1QHQK380583VAHjUl0UcCdkCg5YQWkAJ2QJrEEq3QA3ZASDZLFlcSdkCOw5J1TRR2QDdV/WYLFnZAi9ibp4gidkCOhZ1bkCR2QLqecTtLK3ZAAnB4eB8xdkCYTNYzUjN2QJCRpn2ZNHZAvuEqm1o7dkCJTJwQHUF2QDyFiLDJQnZAnV4OJnpEdkDqVcKG0FB2QNLMu20RUXZAcCh1SypRdkDsuvdqzVR2QH3n0tVQY3ZAyR1HUdtkdkD1CpkWXXN2QOiWZNSRg3ZAIKZ4/MCydkDcYuHCd7N2QICj9dkLtHZAirhoktG4dkA4hY7mKb52QI7Us4W+wHZAibYNxM/OdkC4azWAkfN2QK6em9hQDXdAfC7fhwESd0Dm4OxtjxJ3QK5Y2WisEndAJFdYFukXd0DWbXmXBRh3QGYCa8MOIndAHnc/gXMid0BkiicbvSN3QHZw5Du7JHdAvEV5QaMzd0B96NfkDDV3QLCEexEmPndA9kUT/5xBd0Az5VbQ50J3QLy8IzAbRXdA3uVgukpRd0BFVg+SklF3QMx/PyArVXdADiz620lhd0DXfiQHj2F3QFDS4jw6ZXdALDJfDChvd0Bqx0CmeIJ3QPhUjr0IkndA3T8aakyUd0Cw+mWZoaN3QETXtQKctHdAgsly9ynDd0BOm5jkyd13QFpkHSrp4HdA7lPqGibjd0AXnX6ajeN3QIgXg3lQ8ndAjNaBa24ieEAwqw2BPiN4QJKjkACMI3hABYxPTtIjeEBTv7ODDEJ4QHgqY+kQRHhA9J6kanpFeECoLRgJy1F4QLhRN1uVUnhAsu0y0YdVeEDssqvb7ld4QEbroJn5YHhATro6YrVheECK97fYt2J4QLJECFc0dHhA2+m9ukR0eEAN63VnY3R4QPG/Bn2LdHhAzG8bjaeBeEBVeCPemYR4QNrJVGWWkXhAhiwx56uReEDMleOZp5R4QKgxysPOwHhAArZHRuLBeEBaUjxn5sl4QCjjR5rXznhA9t8bYrjSeEDEAVjlttR4QJClhEbA2nhAs7qWxC/beEBCEyzuQuN4QDzwaSEB9HhAeyGe+4z1eECcaz13egN5QP71w7SbBXlAtJnJZuYaeUCc8xXkPT55QIutLFaLQnlAxpqcYvpCeUBEedM5/EN5QGRYSYkJVHlABFJMg8xUeUAmHvdM2GR5QEKTYwFBc3lAEgz+Glp6eUDGWylBcY15QAqJAj7JknlADG0lzEKTeUCuUvOrKZh5QDLMuGpvnXlAQCShF7+yeUCvmUDGyNJ5QHpFMBFC1HlAVIUkV8zVeUCfBTxhqtp5QAqDWMdN5HlANIruFfsFekBm8Pv+OiN6QDFMXO6nI3pA+kEiOakrekAjur9QKjN6QMZbTGmxM3pAlgpYoQw1ekDRo9pHGkV6QNpLdxkqVXpA1gnUy/NbekBArJjxyW16QMCxeZ6Xm3pA7sdK0Q22ekD+J9nGG8Z6QLSMDtMNyHpADmq8YGfNekA4jsrLwdJ6QF4IPwYW2HpAuu7wHWbhekC8KrisF/F6QFSWDLde8XpAOCqc20rzekBhRCPXo/h6QHCQwOrm/XpAzJGZ5QD+ekA2vHIkRwN7QBNyH3haA3tABLYF3ncEe0B1BV0exhJ7QPOJRThNFXtAOOxygh8Ye0DwhNPVaB17QFalbC5aJXtALAFMWR8ue0AAqmxBEkB7QLHPAKCYSHtAdfFTZcBNe0C+2+yf9E17QGvD6OY1Y3tAFGfvI/+Me0Blkte2I5V7QIbUQvdsnXtAfG2ifs6de0DCvv0FJ6N7QLoM5dl7qHtAU1bGxM2te0C0BtFtJLN7QJ9DRyh6uHtA1engZ3nGe0CGwXoblvF7QEz3QDyM9XtAzLGQqJIBfEDMGDyz2QF8QPzdzqL3AXxAKEo4+ZkFfEDrYoBg0RF8QBjF6dNjG3xAOzF/xugbfEBs35NI7SN8QJCGHSLMQXxACqk47n5TfEDzx6Hksmh8QK9p7Ppge3xAIGNq0miDfECOw9ky96R8QKQrFNC9snxAXcC1V8vVfEC+TB+9V+J8QHxw4soQ43xA4BS0hGzofEC4QA0sse18QILcdQMV8nxACftoqVTyfEDriszECvN8QMoXtMQBAn1AJ7WEFUsCfUAzyraSUAR9QCQSb/lFEn1AFA2G564bfUDsVV4nPiJ9QHvZbgO2I31A1mBiBaMrfUAWpYk0wCt9QJ5u4FWuM31ABO2yG0e5fUBMGFKnpL59QDpiBF3a4n1AohGorZD1fUDBiYLROBt+QKYvEb48I35AznjN1EE/fkDiCL0YeFN+QIKbKWaMVX5AvJLFP7dYfkAZW3N3YGx+QEwQVH4+c35A/LFE37d7fkANG0CPvoN+QFpfAWfDi35AydCFMMqTfkCGuUTS/rp+QDIraSYFw35A5Ht4PyfgfkAWIw2YHAB/QAQnKmYBAn9A2PdBWJMDf0BYBGVunAt/QOabJfTXWn9AISPY99xif0D0oQYFuHF/QKb72w+0gX9ANOUyoaGDf0B83cyIYpF/QIi9CWutkX9AeNmgrJuTf0A0pFmfXaF/QD/xExNSsX9AIkK11WDyf0A4drdAv/d/QG+XvEMlEIBAxCnJX4MRgEDITUjdLxSAQJQgL2v1MYBAgnUmTD85gED4/de69UiAQOUSvlzmUIBAOrIipxRRgED4aL345liAQG7cgwIOWYBA8nzcYEhagEB67gIqS16AQIAnC+MMYYBACJ1gD05igEAZ0yt9UWaAQNg3nY3FZoBAM7IlFHNpgEAyJDLRDWyAQDYIlSIhbIBAPuldd8JugEAa8InxJ2+AQCJ0kEspf4BAaK06zDGEgEBke/6Y3YaAQFJAR+wdj4BA/iNNeYepgEDUn0WoEq+AQKxAOEjZsYBAaJTAZ1LBgEBWS7JqU8mAQLyqz+qnzIBAThxBtQbPgEDukKXkK9GAQJAubZNM0YBAkMY+HmHRgEAs0SG8ANKAQDpeHNVL2YBAYjrpvXLZgEAsXzuoIdyAQHRV+8bS3oBA9Xx1GEXhgEAtBTzv9uiAQG+fPxpJ74BA/CBhxzzzgEDUPOq8P/+AQNFWWYU/B4FAIxz58WYJgUBSuODEFAyBQKI7LaG9DoFAILV0ijwPgUBTr39p4x2BQFjEUoE0H4FA3I/gljcngUDwymUcuCeBQHq8neLkLoFAxXHGk7wxgUDsw01VKD+BQAwXbnbzRYFAsFaxFuhJgUA/IUY2xmmBQMgz5M3kaYFAe1qCmcJ0gUAXT4hScXeBQCp+WoBhf4FA2Gr34lWPgUD07yaNVJeBQOhUcRZUn4FAZNX0RuahgUASuQy616aBQDBylH9sqIFAW92+oIOpgUDU7H5lJ6yBQAj2bt9Jr4FAGsEM0FeygUB9uWQuBc6BQB5Q+JUJ0oFAtq/dD3zTgUCZARdXAgmCQOS/J03YGIJAbKdXOdcggkCUXzMPLyaCQNLs7jDRKIJAouFHeaEpgkDi5+Rc6DmCQGx52B/pTYJAhh+o1+tRgkDQmiE241WCQEGHZ2fmWYJAmLiSbv9ZgkCobB1wnVuCQAgC45TVaoJAHtVINkOJgkDZwj6uQ5GCQEPQ9yAdmYJATnbEizyZgkCqKE1kD6GCQK2hsx86oYJAZnTVXA6pgkDkae5lNKmCQH4zvYZ5EYNAWLspP3oZg0DkW8q8VSGDQACgCA1zIYNAeiWJ3Yghg0D6Mo2MDiaDQFALVtBxKYNAbp/F5Qwqg0BQo45JajGDQGO7iOccOYNAtCk3R9xBg0DLnI3l3kWDQNIGZaTTSYNAuYGqj+ZJg0AWHugR3U2DQODfQZqrlYNALFFkMb4BhECYUJ22wAWEQDPmDmjJCYRAUhL1tQMShECslB+5BRaEQGJvQUFHKoRA6IwNMHAyhEBIGekoczaEQILfkM8MSoRAXw5B7v5ohEAWN6pr/nCEQPoCtlb1eIRAAjfnrvOAhEDU7FRMsJmEQHIy8DpUsoRAWMTit1e2hECOlPOGWrqEQNJxButSvoRARAjVUFfChEDMLlaKFs2EQNpFMhLBz4RAn7xyP2rZhECZv+5hauGEQFDEUtBh6YRA1g7FAX3phEDA0QoNNfGEQDQr/Ctg8YRAGLDprb/3hEBDAfHUNfmEQETlj4BZ+YRA1BWyjG76hEDkqwmFLQGFQIDiVFy7LYVAmtFJ909ChUB2NoZkoGGFQMOE+6WgaYVAgg1DRphxhUCOYWSQtHOFQHQCKtGaeYVAkgntL5CBhUBbPwvrRqaFQB5pm2V9E4ZAtkObNDwjhkDOJfdomZKGQNA3EvCIloZAhnXph42ahkAFCvCakJ6GQF4GuOomuYZAEvfxbiAeh0Cs7ndtIyKHQBJdexslJodApdon6JAph0D37a8LIiqHQHCY0EglLodAzGlVnpAxh0DEnIx9ijmHQIWQOqqFQYdAGNfkK8exh0ACLU2Ux7mHQE5vKmXBwYdAiLz6aL/Jh0Cx2F8n1xWIQFb4SfXaGYhAdtBd+qzKiEA= + NrgMGZxjYkA= - + - BM5nRMWnjEWld55E9ldqR1AXsUUFl51Exo2nRLzMqEaNFCdFrqj9RO9oB0cfb5REI5KSREfH0kSjcXZEBfOqRNsgM0Uu6SdFXHMrRatceERlq41EC6uNRCzLkkRHVaJEPPS7RJZum0SxJwxFeknyRkF+q0T9YoBEPHIQRlt0pUU/NpREHHqiRAcQqET6CKlGHYjGRERqkkUEQwBFMSqCRIBAjkRlteFEVB6cRDG4eEWqO5NEg9UARmmktEQ1DnJFAk+ZRPJZwkT1o+RE1aWiSKgru0Q55JlE2/2sRD1Nr0Ru2iFIiVzVRHbyhUTw+LBElfiWRtO6lEb1rtlFBtQjRfZv3UZStolEBJLaRNjSoUTXVlNEFPsyRey3C0X2JDVH76izRJ8+OkbJv99FZwQaRVhwv0VtKvRE3jbbRFgFLEUojQdFWXF6RCWuo0Sku65F+icrRU1QukR55whFqePIRPFvp0XeoeJFZK3LRK6/4kTMi2ZEQJtmRlRnkETFuyxF9jCnRCoH6ESvZ7dFUJaxRMiUnkQ2O5JEMKyZRI+ZhkchUgNH8ApTRcW/P0UmlyxGfbvlREeiqESJ3phF5yc4RzLmLEcJ1V9FtMK+Ra9ohUWwx6VF+aaRRJTqg0QcBXNEtrmkRGNAikQXecBEwJ2cRMlxh0Qn1/xE1C4jR/RamkajqzZF0gJWRUUDckSsWaFEbdjAROIsAkXxxQ5F2LRwRELL6EQaD6ZEuiMIRb/ItUTs9LNF4lCFRKipFEVKbJdEvQFURoOcnkQQ3b5EfOSORVI5U0WLCHJEoVIoRTtgokTuO/FElGv1RIKuhUQNbh9FXrSsRNE1+kQ2k7BGKAGCRKkRlkQJyLxFWqeWRoZHEkhHcrtG8vR3RbQNpkRHnQxFFHK9RjgxUUW4QahEIxCcRLuahURGOIxEyT15RAn3AkV9fgdFM6vxRID+mkRiZY5EB38ORS9tm0SBBZFFsNvCRR8FmUQ1dKhEe3WgRDZNpETQ2bVERYM2RQX+3kWyAnVHPU/ARn4af0bHmWBE7yYhRf6OV0VNxslEuexxRaH+e0QX1BlFf6VhRAj8AEdK6tdF0NWKRcIjkEQZj65FjCvDRHt1n0Wta4RFCpibRD1tuETwEcFE20ElRdZNLEW5/jRGL4NlRpq5nUUVelVFmD4ORcZKjESpDltFcEegRKGhrETLp5RE2RW2RDq38Uc6UZdEpgaoRrXPh0QBG8lGs6ieRdtvbkZwC7ZElDG2RNxaHEVmlI9ECPJDRb7n7kSVPItESg6RRHzcbUQ81qpEgN96RFPYQkW3/ZFESCIpRY8rf0T/5shEM9FDReH8mkRRX6REYtP6RHN6iERR2IRFZG1GRqzdqkUJlyVGCxsPRQePykUg5xhFHR0RRVRe2EQqv99E4j05RSZNJUU8hD9J72IZRe9CR0iqVOxEtxtRRF+DlEaTWe9ElXE1RRrYk0Rs7nFEtG8fRUjrSEUYPJVEIUqoRHa77kQrSEZFNsrLRQEQbkTtqqNEZW5zRDzVjkRY//xEllCMRL82dEdwKxFGraNIRdBlt0RH0adEwy85RVAjbEbiUNFF9kqdRD39v0SCOLREzp8YRSzsGUVonbhFqMLYREZxsUQ4zKJE/SiMRKb3vkRwn4dFM6RtRKPWpESF4bRE1wm4R37mskbII+BE2KDQRDnG4ETkMKVEHyzRRTypzURpBSVHeNXTRpKzykU7k69ErVwCRW+xBEXinZpEZYAoR715jkZ+5gdFadCoRdKFj0RLUBFFQ7nHRMu9MEZI1R5GdgbCRZcG8EQMTv5Ea0WBRO5CY0XgAf5E/3iARGao50SJ8pJE3/0uRY9FakVEfWREW2+ySBahbUjUmgJII+bMRgXkskUqF4JEMq6SROpalUUmWGRGp/fjRJ43IEY/G9VErw91RezrZUX9WZpEjJHhRYa+5USjNZxF9O+UREufmkR5nOJFg0/IROSObUTC75REjNePRB2O1kdiPN5FrSCBRSJJoES5egdFb+yxRm78m0QhOiBF4sx2Rv2VkURc1VJFLr49R1QKiUQZ+a5Gl8tGRRSBUkXYfMpE+WHoRJ4gCUVpcYREMP7eRJm4eEVNTehEVXSIRMvCjEQVoQFFkXmHRDwNU0Sn5ApFFzmdRzEpJ0dOUwtGh87aRPoDHEVvha9E7y2eRRKKIkVpPaREdsi6RYGGK0UEOotFBghpRHSNskWlqvNESASrRFlfN0Zmd+dEM4PuRLKEGUXjvgNF8t34RE2BcESfStdEqn17Rc03aUUO0H1EXNimRLSjr0Qrnw1Fqb6IRjl6oEQJKatFmtruR3aabUe6ep1EiHBhRuYKbkU5RF9G9vM8RiDjNUVXZjFFlvsZRR0EDEXDSHJET03uRHsOskRvmKtFPVOhROYOkUQ1y41ExrORSBe7Bkil2QdFgeiORDlEBEX0rZdHwdE5RRl2oETDEJhG6H/cRd+kvUUqJOZEY5K/RXvM6kT83KhE0RPERAcgLka1wlFFl4nNRKErAUX/Q6lE/K8mRQiehER1blRGRGMlRc8mg0Sg+zZFd5qeROeUcEQtrwNFthoYRSUmdkRmtIdEWqvARGr1ukQf0G1EFeylRUD1lUQHrIxEBPYjRcWVj0Vg4EpFzf9vRR4CpERofo1FA+jERBIjdkUvKchEGXqnRGRKpES8yD1G/GZxRQm6oUSIh1xFwe6FRKhj+ES63MpHLBxSR4egLkbpmYdF5Ip/ROWjukTS4bpEsX/8R3DYZUera2xEhyoHR8Ez8kUFcBJGbwgQRdljUkUv9xlI0i6dRz03p0Qw4SVHFigzRYzEeEUSn0pGDImBROw4iEX/7ZlENNDsRgJYjkaLAShFqB02RcUA4kQLZhNFMi1eRiPy20Xcv+hEYsf2RXpvU0XKOGVEIUp3RQj6BEXPCYJEXafLRU/4HkWODtBEnbV6RMkqlkQidQFHq6a2RqmazEUpbxlF5w6GRPvPyUTCB5FE8xolR0IIqEatAhpGghn7RDsod0WJ4oNFW93ORJDPKUUf2LFE1LjeRADR4kSp1c9EnZ6sRFJELEfTYqhG908bRs3An0SWUqFFrbXMRHI4n0TcImpEFvAURZmtBUUG2gdGly0NRo0FwERvYbtEwnCVR+k/S0fJ9qpGtqE7RtQEskXsyDlFbQUHRmObjkUqgp1EdDw5Rm7MvEXPpZxFcE7sROgMUkVOa8lEBNUCRQ== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 0IAHM3DBckBsH9WUp8JyQMKNFBs8w3JAncGVFALIckD5R++1W81yQBo1JshD0nJA9hrbxc/fckCPctZAT+JyQC4oX56Q4nJAtIBvCcvxckB4Z9N6n/RyQE4o6vTC/3JAv60iE88Cc0BoXzsK+wNzQDFrTLy8EnNAOCEz9/gTc0ARPw82ThRzQHIK7aV5H3NAJK292KMgc0BStrgjOSFzQMKHpxbQJHNAJNJXZ0oxc0DvBOfzeEFzQHZZ+qB6RHNATNEa66JTc0AArAfsOWNzQEs+olUsbXNAnKSNeFpyc0BY1GrYhHJzQJL6m7dKdXNAwEDOIdB3c0CfIfNv33dzQMAFn6gqfXNAH1dbzjp9c0BgRxEheYBzQEx52ZalgHNAcOH48lyCc0CcRpevTZJzQJauQJZjlHNAGFfYSPiUc0Caf1pxuKBzQC0AvMqUoXNA3r+UYFmic0B24/mEBKVzQLBdiOG2s3NAxN/ynM/Cc0BifqrHJ8NzQDSyPQrW0XNANOXcVLvSc0Cf2A0e5dRzQGaD4IU54XNA6vVbSWXhc0DiwW2HzvdzQJTxkB16AXRALhW7m6QBdECm8oDoShN0QC6Hdei3IXRAnBFnuQ4rdEA2UJ9wUjB0QPAVjmm4V3RAltQ8StxXdEAVczg+NV10QKl7+fu2YHRA7j4n+wtidEBA7pFRjmJ0QNaLvUnpZ3RASi+bSj5tdEDd9lyMInB0QKx6d3xBcXRAykLuAjpzdEDwbt4l+YB0QA+Ev6VNgXRApfsIeEeDdEAc86d4FJB0QKLJ7XdvsnRAWbpS8Mi3dED5gi1BFb10QOO6gYMjvXRA8uGttXXBdEAuL4ypt8R0QFffsBq44XRAOKqoSo3zdEAC07cjowB1QBiHw5bQAHVAiOGJnl0CdUAI71M0JBR1QO9diZydInVAcg7zzeYidUBzx6c8zDV1QBZd9992VXVA+MdIVTZhdUAYMKZnaGN1QBJhZrl2cnVAmIMov410dUBRrJIor4F1QB1yq04Sg3VAxgmVtqaDdUAKRaidEoR1QM7zhQCahHVAGs7f4RyTdUCoKtFPtJN1QOI/9+YglHVAxwQNM7qhdUAFCOHfY8F1QIXdByP6wXVALrtXoSzSdUDODK/2CeJ1QFOJToE583VAOdOdvkgCdkDuMEFSRwN2QIyX1eyIInZA0jAhVJAkdkCAJAY7Syt2QEjMb4sfMXZARb9jzlEzdkBsmhwoWzt2QGZOx8IcQXZAfMF7ocdCdkDSvxuXeUR2QMAdh+zLUHZAhmJnChJRdkAXqedwzVR2QFZqr4ByX3ZADlYDVVFjdkB4C8Rb22R2QO86fKGQg3ZAhD+3O3izdkDh7tLdDbR2QGDdqBPPznZA7rNrYZPzdkASs8+iNAJ3QMdKf5xRDXdAJE5U1QESd0Cx8+kPjxJ3QLmiurqqEndACCZdB+oXd0BfMXcupTN3QChz/UgNNXdAhbgNfic+d0BgP7M+nUF3QKoQ5C8bRXdApLjWrEpRd0CyJC+MklF3QO67uTvWWndATknskY5hd0DQdQX/22J3QHJeg5H0YndAX2/7pyZvd0DgGio0eIJ3QKSTu9oIkndAstMX9svdd0Ctc3hiJeN3QNZSn1hQ8ndA3Bqr5GwieEAofpgU0iN4QBcaXasRRHhAiZba9XlFeEB4uJjRy1F4QJaXjU6UUnhA4fHiSIhVeECK2wsp71d4QDSLLrv5YHhAZAA+lbZheEAK5txetGJ4QLRVasRcdHhAYh8E5Yt0eEAJdJM0unR4QJIdEimlgXhArYAgF5qEeEC7tr1zl5F4QGJc5sWolHhAVEY9fMvAeEBPCE4v38F4QNKG2FW50nhAc62ei7jUeECPxr/AwNp4QF96kdpB43hA4yzUFwP0eED+BJ/ajPV4QFY/eWm9I3lAjFH86bIoeUB8xClV4jh5QLAcvN37Q3lAVsYvLQpUeUC4ii/ey1R5QL0QOBMLZHlAeJjsFkRzeUB0vbIkWXp5QFDat9AVfHlA9N8t+3CNeUAMivTMypJ5QMpQiyRDk3lAnYk8TMGyeUDmdokYyNJ5QJyN8qVC1HlAOEFv/E/keUAELLvs+gV6QIB7tu2mI3pA0twYI7QzekACxEWMDDV6QNcbnvf4N3pAhPejoBpFekAHGcXSKVV6QDhjo78iXHpATnUlh8JtekCa1r5wDbZ6QPH+wBwOyHpA5kwSzGbNekCx2nvow9J6QPCNOCMK2HpAX/MRk2bhekCgeChBF/F6QIrwNlNi8XpA6jr40ErzekAO3nGLo/h6QFrTBZj//XpAIgMGRMUSe0B0jst8TRV7QByOLrMeGHtAF8SaJHcde0Dk15X5vCJ7QDqgEvxZJXtAk1fvO7o9e0DcmEofmUh7QLNK6jQAjXtAZ+iHQ+yQe0Bu5hanJJV7QMMznDfOnXtAJeQYSwGee0AlUHJIJ6N7QMBYheh6qHtAgKUOpc6te0DxGQPQJLN7QLAzJzqW8XtAV1Nt/Rnze0CrlrXGi/V7QHjlog3ZAXxA9RWrv5gFfEAIGe1h0BF8QHa4JljoG3xAFh/Ta+8jfED17hGKzUF8QHsPUhQPYnxAW9doeilxfEB+VzakYXt8QAIOpu1X4nxA2M1yyRDjfEDxrt0Uauh8QFCkPsbI7XxApCryMRfyfEAShcyqVPJ8QKIDr/Zz8nxAnClh4AICfUBOoJ0dSwJ9QKizeq9RBH1AeAhnXkQSfUBao5gzrxt9QKqsv262I31AK6iAGqQrfUAKhaf7wCt9QJiE4C7rZX1AhvO9mZD1fUDGYfTROht+QKS2MPV8U35AhpbU1YxVfkDSXb4OdXt+QN06fJ23e35AkrzfvPZ7fkBKN/MneYN+QPI2Bty8g35AeBsTYviDfkAbErIewot+QGZHeHLIk35AfGq8pNGbfkD5fDJk/rp+QK9KiPwm4H5AjvkecJMDf0BqQA6Ymwt/QO3T5AfWWn9AemQXyrZxf0DFdXPbYpF/QHP/YMGak39AmkUAmV2hf0DKJAj/VbF/QFvVcYQoxH9AVHIDhWLyf0Bf0vVqvvd/QGNJcxQkEIBAaCf+UIMRgEAo7Fp8LxSAQIIEQnL2SIBAe6q3WOdQgEAQLIWeE1GAQIac3eQNWYBApBfsUCBZgECk1AdYSFqAQJUCbuBLXoBA/jchsU9igEC2YogwUWaAQJq+kIXFZoBAGg6uc2NpgEBX+hEzc2mAQJQPUZEgbIBA9MJV+slugEBwfXExKW+AQHK18qIof4BASjxOzx2PgEAKAa1uUsGAQJYIzW9TyYBAGBhpsqnMgEBkPydbVc+AQNj8IFlM0YBAPzfncGHRgEBXGGACS9mAQGqhJBF02YBAvXQBPyDcgECW30uDzN6AQELKHgFE4YBA6ifkfVPhgEB3ukda9uiAQDUfC8NJ74BATUCiYzzzgED+HQ7XP/+AQDKtdJg/B4FAch8TemgJgUD+ClbcEwyBQP7Qymm8DoFAFjfUtT4PgUDehX8cNB+BQLG/ziQ2J4FA/tfNpLwxgUAUibOFKD+BQP1wGwb0RYFAMGvG1ORJgUDYoxft502BQN6oh3zDaYFAumY4XuRpgUBKoUJs6m2BQPbs2WRVj4FAcn0fR1OXgUCKBeuO56GBQFLI2aPVpoFASEXwuW2ogUA3NqKlg6mBQPkJridKr4FAut/H2leygUDcnq7QBc6BQMN4tv1+04FAwIzLoQIJgkC+LccbPRSCQBZPnGLYGIJAQNJdx9YggkCS43ge0SiCQNePJ2zmOYJAacLLNelNgkDur1xN7FGCQLIGb9jwVYJA9SsK2uNZgkDAltEE9lmCQJL3RPIOdoJADPAKPUOJgkAyG97+Q5GCQLtHdQ89mYJAl7vK3VaZgkDY8fC+DqGCQELQsbY6oYJA1PNYeg2pgkAS5f3ZNKmCQJqlgAgHsYJAf6Nee3kRg0AeuRVtehmDQE2Z+kxzIYNAIx3CUQ0mg0DWTmH6cSmDQKOCLNZpMYNA9xD8yx05g0B07u4a3EGDQHSpeMrfRYNANKUahuRJg0B+TWVw2E2DQCLUtWGU+INA8MPNf74BhECCC8kmwAWEQM6z2L0DEoRAbsdtsgUWhEBy/LpqcDKEQPvKMr5yNoRAXKrl9A5KhEBsR+2O/2iEQLFq/l//cIRA69H0pPd4hECClqj7U7KEQGtccW9XtoRAxCvp+Vq6hEB2sIfBUL6EQKYKIy1q2YRA+wL/hGrhhECtXEBZY+mEQGNDSIc28YRARJkc52LxhEAkW5HWv/eEQAk0/XQ2+YRAhJEoG1v5hECMqd5+a/qEQD5553pPQoVAwNF4aqBhhUC3lg+UoGmFQCsXev2YcYVAq8eRPZh5hUAExM6JkYGFQIGEiBd0boZAxittXXZyhkDBjBcAmpKGQEf8Dw+JloZA7HOHWIyahkB+lvU6kZ6GQD0Oj/wnuYZABoheXCAeh0AeydRbIyKHQLS9xjkjJodAiI2U+ZAph0D8eV9jIiqHQOB12EwoLodAt4LwzI8xh0BIZiEYizmHQDzXWZ3GsYdAkdAR7Me5h0Cwx19cwMGHQE0+QsvXFYhAfOBbRtkZiEC02J4/1x2IQB/EOb6qyohA + NrgMGZxjYkBcG3g88iJnQBu6YmAmQ3BAPGWIPVGicUBCe6rX1FN4QP9rJhH30nlAmM+u3GzEfEBVwCoWj0N+QMuWRZji6oFAvkC5xh4qg0DpajvJamKFQF536dM584VAFnHgbsyKiEDyV40PkfuJQN2chn44k4tAH14ytfIjjUBBylCbxKuOQCayay0qJpBAoHyfYjgakUDYyNA7cLKRQFKTBHF+ppJAWODHUMZ2k0BpFtdDrzqUQAr3LF8MA5VAgJmpFuDOlUDuDABnQoeWQMqJe7QL05dABZDSOXMbmEAbpRM7mTeZQBR6TVI315lAZZXl2MQ7m0CUkURnjZubQHuqJtrqV5xAqqaFaLO3nEAsLA5PFGSeQPSWVwbfu55AEELhVkron0A6V6eNGkCgQPorWi9AtqBA - + - ktFfRWjjWEfRubRFn9DxRu3vcEXvaOZGwNa0REVpT0WusyNFzZIxRSi3r0RGsfBE747vRCZ/D0eoQhhGqtyHRbK5v0RbZMBEy2vyRBvpp0Ya2ZNFlbj7RLfJlEWLB71F5MsrRbjiFEXeF3RImdjFRLEP+0dFsNJEx7uLRkddgUbT+7BFCxvYRA2gvEbpLKtEZ9CzRGL0FEf6XsxEoqswRm8IxkWva+NEb56zRWwNu0QwZRtFxVNlRTljFkXjiPREm+ylRKeuOEWTk6VFFo6iRG4cB0VUYTtGO2LPRD34AkVYau9ECMQeRUfLq0Twy2tF8yUMSUXvlEjSK3NFm8rMRGTYyUdW7UxG/A8HRSpJhUWT7BlHp1DiRkvs/UQJx2ZF/7K8RBfJL0Wa7A5HoHNaRjWQW0UVtHlFu1DBREPpK0WrPtBEGUaIRS91xEQ+behEYd1ARuwfHUWXGZ5FJYwFRQPn40TeC/NEyF7YRDlQ80Tu1M9Eyv+CRvopekVMNYdG6i/NR/5OHEe5CdNEB2vQRBRUO0aAZY1FTWIDRfe7uETUnQNFkn8ERUMnz0Qm7EJG+Df2RSvqPEW5QShFQc7URf7CUkcuZrdGIzZvRsvQCEVAKI1FDubGRPU2dEVWYLxEHl9TRTFir0ZOpMdEKhjDRaiKkUVt9rJF/IM/RT9SfEW1JjtFh3rNRO3G60TJasZFcxJYRnxD1kUgIllFSxBgRRUM5USxmd9HOAnfRO/0vUYuxKxG4utXRcBsgEba1HVGZwAARbsCF0XzV59E1CMlRf7mDkXxoMxEc/ZVRUw7uESRtCVFDJ0xRUcbQ0UXBXpFoSwtRkQehEXHJB5GiAEGRSIH3UWGcslEO58NRYm9u0SoAI1F6n8+SR0zaEVGMxNF2A5GSA2aG0WB7IFGt4nTREOdEEXZvbNFQ+1BRYiK+0QpiQpFYNliRQ4v+EVU985EopjaRHn69UQalw1I71OZRgAVj0VBCQFFLLHmROGJ7ESlExBFPdCARuZRB0bCyeZErn9sRcgR50R8tuZFnWniRA6NzUQD9OJFBtXBRMo9v0cLn9tElDvORtDoO0WmecFE2GbRRBA8lUWdGjBHEZO9RnyNjkWrkx1FOobbRA55A0W/LMdELugGRyJngka7id1FV1r8RQ9EJ0Z9lL1FQsGhRGgOwER1rhlF/bMURS3Fw0QNVxtFv6afRDRq20SkI4ZIOLfeRJaLO0hc/bJHgqOFRuCcqEVW23FFzXAARZ4lgkZ13ThGUj9yRaMNcEUelxFGAShmRfDQsUUNvKVE9SjaRN9iWkX5JM5HZH8cRqo4QUUIfPJEMJTARD9PyUZnWStFgVwURUG1k0YzirdEjPXHRE/xFUfIdXVG0/MsRTPPMUW8CwpF6UexRLzdQkVgnPlEC+a5RJKaiEX6IERJuVlkRazjJkX9dttIL8khRdv/BEg1P65GT60gRUDZfUUQ2ohFIo2bRexE1UQkBBtF3XZ6RT2BOkbxdQ1FkCMRRdRKD0WOZ8BERrzkRBb0wURNv79EVcG4RV6mI0UmkItEJTJDRRb0d0Y7EJpFJ30mRRWzqUenGhZHKxAeRn5+zERy5oBGPD99RRyzI0ZtLUVFw6D8ROOcN0XTz7xEM6ONRbMuk0iRhg1ISXsHRbRBAEWsU4pHwyCHRY92YUawKglGiMLmRXlrKEVKR7pFfUANRRQ4JUXaWb9Ex9vRRHtzLkZRYjJFmcI4RSUHyUR2gv5EYAcBRbJ8QUYUGgVFvR8HRZ/Gv0Q9YtRE1xUwRTHIAUUhw8tEe9HwRDlopUQ+fs1F+li4RPHPTkWDIxxFCenORHvANkXX3llFZ+p5RbTtGUVSVrREoIHlRCHUtERvhUVGshCHRdkwPEVDNPhEg1+LRwtlHkfIXtxFaUzDRKULqUTOl8VEV7gmSAcPqEdGRDhHAdshRaoFoUUe1iNGx4D8RPocbkWGV8pEh1k0SCrQrEeKbkFHx2JRRVPZZEYvaIBFuQjIRNGa2Ub7s15GHcdxRbv0KEWPLrVEyEXTRdUbWEV7IvNFE4E3ReByhUVW1OhEhYi7RD/elUWp7EtFwTDPRFjzxEbn/llGDEWmRcA+HkV27DlHptCyRtPmO0boqJJFFDiiRd4iDkUQq7pEIYjQROz/4UTCgx9FJAZBR3Iok0ZGkkNGYJyYRaeP+ESQFJZFmcgIRbYTK0Uyvc1FYbYURfYgFkVlz95Ez8TgR9PtnkckOgVHGmY3RgYGD0Y3LVxF9KO+Rfo2UkVa2AtGCxGQRes8WkV/7jxFt+oaRcGbt0SmA5FF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - m78Vg2/BckBHBXROp8JyQOS9EsQ6w3JAzGsrRgHIckAUVyFqWs1yQOkfUf9C0nJATPuyCbjgckBspLxYUeJyQGcI1pnJ8XJAtGjUofkAc0Din5yD0gJzQBiOnHf6A3NA/rKZdrwSc0CGjvorBRRzQH2tG/84IXNAOiFPMdAkc0AOR3nUd0FzQB+UwpZ6RHNAoqa6FKRTc0CMsp4qLG1zQO4kpRiFcnNAVB5s5893c0AvSjZR33dzQESZOvEqfXNAnJJ923iAc0B2NK2diZBzQB2JqmVNknNArq/jT/iUc0BkVxSNuKBzQDq5uRBbonNAZIQYDQalc0DAv3GktrNzQIqzLLPRwnNA9sWoJePUc0DSyuDNOOFzQKQYJ4jO93NArp7UP3kBdECCkTgvlVd0QPmy7Ba5V3RAqtr18ttXdEAnvc1XG1h0QKQRGp40XXRAdvXQDLdgdEDs9rOLjWJ0QCLu79DmZ3RA7jgZD0FtdEDcrRvLIXB0QEPBcbFAcXRADxUjRjlzdEAyPni4TYF0QOx6nTUWkHRA2pihe26ydEA+NEmMybd0QDMfyuKM83RATmmLQVwCdUDcaOg0niJ1QCVXsReNdHVA1uNd1q2BdUA8u2VgEYN1QKnAXF6mg3VAnlNRTxKEdUBkgD9Rs5N1QCC/ZhMhlHVAZsheZPiXdUBEcKwd+cF1QJBdBoQ583VAXPZ5YEgCdkD1UBRliSJ2QN8c+lqQJHZArPMxEksrdkAsNHe1HzF2QO64yQ9SM3ZAZmGAlVc7dkBD5Sh+HUF2QLaiISJ4RHZA5GdPCs1UdkCy1RHmT2N2QF5mt2qQg3ZAE+A+J3izdkBIFaa+DbR2QLxqGzTPznZAVhvqvJHzdkD/RsorUA13QBRRPCIBEndAXVcR7ZESd0C4EaWpqRJ3QH7BoLcNIndAEeV92ww1d0DgKArhnEF3QDcFFfAaRXdA01LZE0pRd0BHAacKk1F3QBtZlI3VWndAavBJ7JBhd0DCgj2Y3GJ3QBZbA2b/YndAHtc2giZvd0C0PJS9yt13QFYHQyFtInhAkmXlttAjeEAAg6e8EUR4QLbt8rp5RXhAGFZnrspReEBVtcb/lFJ4QAZNvkXtV3hAhKe6N7dheEBEwc6Wi3R4QK5Xg5CkgXhAbHT16ZmEeEBCzw+alpF4QBXom0OolHhAXfNktrjSeEC8CcxWt9R4QOgZqAUD9HhAis4sJ4z1eECY309u+0N5QD6wRvMJVHlAu0HDWcxUeUBB3cznFHx5QNxfhLVwjXlA3ICXOsuSeUA/4iHEI5h5QFjCn57AsnlA40VMLUHUeUDOzKDWpiN6QDeL+14MNXpAEo947BlFekAEbxxbK1V6QG7/e7kNtnpAFzI4jA3IekCOhkfmZ816QPaJPUHG0npAYKtjaUrzekDeNESJo/h6QDsRJfEB/npAYH5insQSe0AaoqnuTBV7QPMpwPYdGHtAsRM/0Fole0DagxgWl0h7QLTo06UklXtAmUdoY86de0ANUS1/J6N7QNbnn0B+qHtABEy/PMqte0AhqiJmi/V7QCDkj03ZAXxAK1kPr5kFfEAac/Pb0xF8QHWbhFxjG3xAZua+I+gbfEDfB+TEzEF8QF3TSCRY4nxAQ/PHURHjfECaWmXqauh8QHRyHnFU8nxA+mS6REsCfUBmMcAtRRJ9QLeMBGevG31A7Ggjz7UjfUCf6jFVpCt9QLJSwwW9K31A0F+A7jh7fkAMt6I8t3t+QGyyHGQtfH5AnvRbQI+DfkBKPXIhvIN+QCYqSrHBi35A1j9xFseTfkANgtWvzZt+QOappoL9un5AEKgIuJMDf0CUuhaX1Vp/QJSFJr21cX9ABoPMO2KRf0BuNeQhXaF/QItYbVVXsX9AU3JqpoERgECwW0385lCAQNqxIqATUYBA1Un97A1ZgEDJ5etLSFqAQGFsDXdLXoBAhgMhnE9igECEftdDxWaAQNQhvzliaYBAgArmsXJpgECXz5eIHo+AQKR/7jxSwYBAVmqqA1PJgEChIl8UTNGAQLBhQtVf0YBA0LiAj0nZgEB5pW2Tc9mAQIYYcswh3IBA/hE7o0ThgED1CZdsP/+AQApg+No/B4FAmhXbnWcJgUB+R/SXPA+BQOp2H+/xHYFASmZLODQfgUDIDnkKMyeBQHuaRK/jSYFAI78ZIeRpgUDgccm6VY+BQAqPsSHmoYFA0IsgedamgUDb5cO9Sa+BQDHXLhxYsoFAY5+nQtgYgkDRf+qW1iCCQEVRVd3oTYJAh6wq0etRgkAmNXt031WCQIjHMs7yVYJAUNR5MUOJgkC0WaEnQ5GCQIhtWA08mYJACqSxQQ6hgkBwGC34OqGCQPAujG95EYNAcj5dl3kZg0B5j/y6ciGDQFvfM7sNJoNALklC0nEpg0BHbTtEajGDQLyQHEncQYNAjCE/6N5Fg0AVa7NlvQGEQERwFCvBBYRAkEcltwIShEDMezTQBRaEQIbgCKj/aIRAeIhKDFSyhED44Q2kV7aEQPgBp7hcuoRAmCTQ/GnZhECYcHrFaeGEQFwA3uZi6YRADG9AqjXxhECqVvY2X/GEQFAjejy/94RAUIIvbk9ChUCoZXOmoGGFQKQEewOhaYVAQcaceJhxhUBUXcopmHmFQN2Gkit0boZAGGzFFnhyhkAwfKKliJaGQJbYM/KMmoZAZB0GKyAeh0BVsTMjIyKHQM4UabUkJodATGRAGpEph0DLqPtrJCqHQCjg99ElLodAoByVZZAxh0AWzEOOijmHQHKqxqrHsYdApn1kMsi5h0BAgirQv8GHQNzQOQbcGYhAWsLUwarKiEA= - - - - - - fMJ7RUDJT0foQ5hFWz8yRrJTH0WdaN1GC7crRW0OaEW3yVpFYhU5RTJDKkXq2/BGI4Y6RtjXikXHRZRGvsGgRSq+TkWgRf1F4tGARQ0jSEgaKLJHXuFMRsjuYUaPyl1FWS60Rl6EFEV2hzRHo5RERv2e6UXVZ69FMv0cReqsRkXjbUhF3JpyRUUzrUWybe1FwpRTRm2/VUUGH4JFUuKmSV8wOkUcqS9JUvw+RccIakg66g5HN5uSRaq8QUVvLApHhCBwRm4FhUUN2YtFHSvRRvcIEEaRr5FFPRQgRoTLhUVlrUZGmNrVRV8NYEbrBbVH5cEDR921MEbXWI9F6b0pRZRnGEXtbY5GJ9f9RWObgEUH9ARGyi42R7ysm0apfF5GRWUeRXsAUEUSwVNFNJ1/RhCMrkUvIJNFfsx1Rc+ZgkWx1CxFw2cwRaRD2kX5d4xGb/c5RfHaZ0XJqjZF5prjRy/d2kaxeshGgfCJRcDyeUbg1itHC2EgRWt+L0Yr3idFibRFRW7deUU/3ItFERPnRU2OgkVOQTNGk4GMRf7760VbYKlFrtxERZYtT0lSeDdF9yRPSLkHLkUP+55GJMTcRZ6sjUX+pZhFiq3SRdEAUUg+XgBHPtmURRPTTkWmWIxGlHHFRctuLkXUkopFFoadRYmE/EVue8dHqIXFRneJM0V18MhF2NMhRwPYuEZDapZFwxAHR9rexEa9ZK5FlVI2RjbBK0a9YcBFfLU3RSNEFkUv0y1FMfdYSGkSC0itUTNHqfI6Rn4CjEZ5+DNGXbKeRc+ZX0WSrBZFmADjRQStt0WaONVH3c7RRXwyc0U2SbtGADqgRkcdgUULXtxGaPkgRnyaU0VeMRBFZkp6RWcD3kkfp3hF05iHRRpeckkqlJJIvOhyR+Rs7kUjb2VFep5IRWO9iEVdfpZFRsYhRhKEb0X4qRlFCUOARQhUJ0X6HHxGMSefRYEwekfK/QJHrbDfRSKZlkbyQXtF70wXRlzDw0UsTI5I5NwDSE/fhkdnpcpFcW6BRjurGEZUzX9FWwenRQv/K0Z6ME1FxpU2RWxIO0UH8yJFRIRIRhxwMkWd5E1FeyCPRQqZikX/DThFnXWFRaI/lUW0uJtFhJZERvt7iEWFEF1HzubaRjpVjEUUrMxFCgrbRye3PkdhQOxG3SivRezZF0auowlIJ6NXR8KKFEfLXDJFquUgRm/AZ0UF6qhGnB4vRixyckWAamVFH/LdReZhLkVv879FFQOtRlM/U0YpdIhFgDMHRzS6jkYrORhGLZKKRc2NVEWkKxtF4iraRXFhEEdmBpdGqhIyRpgFkUUyrZlFYwduRe64pEWLUWJF/5W0R46jcEdwHbxGu0I6RiI0A0ZPUz1FhCbnRWedWEU6gQxG2paGRXa1O0UGUDtFcRqbRQ== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + - - - - - - vjrBP6fCckB1n6HjAchyQHa14YhD0nJA9B7RxPoDc0Cd/zrPvBJzQEZfSBv7E3NAEnymxTkhc0A6d6Zxe0RzQDy6JGIsbXNApCA89YVyc0BI1BCw0HdzQMJhDPPfd3NAohZSgXmAc0AEju9WTZJzQNEcJ5P4lHNA+ldRcFyic0ACn/PWzfdzQN/iG8Un/XNAqmmnknoBdECkWU4/v1d0QBYGWfrbV3RAPlrwLP5XdEB44/nqF110QB0hBLs0XXRAcpQleI1idEB1nl8j52d0QMAh3btAbXRACiBd+T9xdEBPlVLYOHN0QMKnusVusnRASSLbCse3dECST+R0XQJ1QDwJmLuMdHVALT0hMBGDdUAIRkd7poN1QD+F0DoShHVANBLkrbOTdUBlW93AOfN1QBho/cJIAnZACv9zFZAkdkBY1sAASyt2QA5g5gkfMXZA7+rpVFIzdkAjmLlhzVR2QARKcr9PDXdAdhGRlAESd0A2AH9oDTV3QLLaJMucQXdAEtoy9RpFd0C6V27ySVF3QG4yXRWSUXdAdnJw7NVad0D2C74f3WJ3QDdAkQ3kandAVH/0BdEjeEAZacp5ekV4QMGcKq7LUXhAuK7j95NSeEBuhyn0i3R4QKbVGjmahHhAivY3D6mUeED5PyOIutJ4QL7KnX5j2HhAqgYCGYz1eECEgSt5+0N5QGQ60RAKVHlAAJ72B3GNeUCaP63Sy5J5QP4GZlFC1HlA/LNrw6YjekD3smr7DDV6QBD4AZkaRXpA/icj4Ay2ekD1rrWQDch6QFrKJElozXpAri+uXErzekA+wXv+o/h6QAZM8t38/XpAzsVty8QSe0CQocCLTBV7QFh7SX3OnXtABLRCRieje0C/njuvgKh7QMyO+L7KrXtArZZ9hYz1e0A8GPkv2gF8QAhup87oG3xA/nKF68xBfEA0DZlxWOJ8QBCvtgoS43xAUPLwFGzofECKkBNcVPJ8QLxPYWhLAn1AbgIJ3K8bfUDGCmAatyN9QNCQLWK3e35A0NKb44uDfkDUHuzmu4N+QCCQUVrBi35AkCUbD8iTfkDE4FHs0Jt+QJYFANu1cX9AqUU4pWGRf0CSY0oagRGAQB53GHMTUYBAOIV10A5ZgEBY1aBbSFqAQCI4Xd1LXoBAsLLI2k1igEC1C+TcxWaAQNCFfgZlaYBArqUOex2PgEDArAZdUsGAQCgQwxZTyYBA7AhFBUzRgEBwdg3USdmAQP5CCjF12YBAhuq1RT//gEAGFrArNB+BQM4EsiJKr4FAfZJkP9gYgkA/ylYI6U2CQIiU/kfsUYJAesYFj/BVgkDyMSJTQ4mCQFg2MGRDkYJAxSEtpTyZgkCmXxWUDqGCQP6IEVQ7oYJAeG53ew/GgkAJ7GiPeRGDQCYVW/Z5GYNAEkH0u3Ihg0Da1EwkdCmDQGxjf0ncQYNAnHTt8t5Fg0BgHN3vAhKEQFZ2cioAaYRArgGbXFSyhEBGzdUpV7aEQEIOTkhq2YRAplfV1GrhhECRgxELY+mEQCY8/Kdk8YRAGIP/y09ChUAMlPB9oGGFQD41TyOgaYVAOQPFrplxhUAZ5Vf3lnmFQHtI13p0boZAMhFP0CAeh0Dmh/QSIyKHQDaOz7omJodAjBpjgJEph0DL9H6WkDGHQLvuo/LHsYdA32AvdMi5h0A+eKoiwMGHQA== - - - - - - ml0lR6zPS0bVu7lG2HLMRoVMPEagNZ5FdC2WRgLX2UUmWy5InWR8R7j8JUbVvjVGUw+tRtVp6UYtk0ZGZ52yReZTqUaS8OhFA6ArRhggkUbxfjJKK4KARpHsOkaWWrpJswzsSHxGzUfsPzZGf9q+Rrz4G0a4d3hGtbzYRXtNKkZoGSRG72VHRgbwm0eFw6VGGBQbRp1gyUZUE8FFSCS7RY4aIkeuY/FG6vsyRnqlfEZlMv5FnBxuRoAA40cC4NxG0320RsZi7EV+OnZGnVPTR+ADDkfUWsxFPPlLRjdQN0aSK75FQPwcRs9fTkmcykVICiPDRggfzUWW8KBFZ6DURVIWsUjSLnZH0+lLRrkXzkWOMchFMwwMRoDMy0dTsL1GDUvQReS9/kYxAndGX9sTR3nEkkZzqOhFrXP/RTu1BkbFJjBINaf2R0FkAUc9cj1GfA+FRtieVEaIIgZGsGLDRedk4kcWMj1GaYoGRgf+xEYn1aRGOzDtRoWA8EUuTWhK2PZWRnej9UnahxxJEGDqR0Y+PEY4mbFFm1c5RmftH0bs0I9G7HvHRSWiUkc46qRGP3nkRecYRkbnfhZG+kmlRSzbm0gIqgZIk4SWR8bTlUbdHt9FOOVfRsL8QkbElqdFgTVGRvQwUUcNHqtG7KPARXLJG0jJXIlHOGkkR2ak60VUNFZGPbTKRXScLkh0XpZH7tkwR1bpb0bGlcxGlpn8RbNN90Ufvf5F1ZqmRscIVkYdYElHGoPCRlBQYUYQKbtFsBjdRSV0XUcV48BGYomARq4Dx0Wf9QxGldQxR75Q2UY1YEFG2jBoRn+ywUVHHD9Gjy/8RcsKo0U= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - zsLvRqfCckDxUnWvAchyQCg7aztD0nJAlI5AX/oDc0CSTIoTvRJzQIbQOXI5IXNAiBC/+XlEc0BpZpx8LG1zQFt19xqGcnNAWriav9B3c0CUYcnf3ndzQJZfcf54gHNAVnGx8E2Sc0D53x3w95RzQAA4vce6oHNAhbrUD8/3c0DUXqObKf1zQCCWNnB6AXRAfKCAydtXdEBxxBt5NF10QECrlxiNYnRAaM8m0+ZndEAWcqG/Pm10QMSisOE/cXRAeqm57TlzdECSbPzobbJ0QGIBW+bJt3RAvndfSlwCdUDay0b9jHR1QPfMgJEQg3VAlFz0H6aDdUCnw2daEoR1QAar8Fyzk3VAYLC1RznzdUDzPZ1ASAJ2QNinQz2QJHZAS3nYTksrdkCDYQR0HzF2QJ0utbZSM3ZAQrax/BxBdkBI1wdMzVR2QI5PvGdQDXdAG/MorwESd0D7Ee9GDTV3QON1xRGdQXdABj0+txpFd0Ae5ELrSlF3QKQ51LCSUXdAvPitcdVad0Aay58D+Fp3QCVUiUbdYndAcHoBZ/lid0C7Hhp60SN4QBLZ3KEQRHhAXLZUSnpFeECqPHPKy1F4QP7zbCKVUnhAOY85+Yt0eEB+XlSZmoR4QG5cJaWolHhAG3QBs/tDeUBl8JcnClR5QPTNz0xwjXlAiRUz2cySeUDIeQcQRZN5QMpHMWRC1HlAlF613qcjekBoDATfDDV6QFUWEQ0aRXpAumnPcA7IekAIR7VgZ816QCrviUNK83pAuJ9UBqT4ekAVUeR5xBJ7QL1njipOFXtAzpBwBs+de0De/AvMJ6N7QO/EEqJxqHtAMJu7PoWoe0CS37BBya17QKRKVp2M9XtAV/3rP9gBfEDxYO/e6Bt8QJue8NHOQXxAOrJB61jifEDAldVSEeN8QEsdrn1U8nxAVtd0+0sCfUDeMsevrxt9QHD4aJu2I31AP8X5hLd7fkBeeVZe+Xt+QNL79ApIfH5ARgMZJ7yDfkAyui8sBoR+QAIO3m/Bi35AzIa2yMeTfkBA7a78zZt+QAZLVZC2cX9AJ1NXRWORf0BD/4TYgRGAQKWAPDcUUYBAQgikJw9ZgEDNpS86SFqAQGD/AntLXoBAJAA+/U9igEA4vH+0xWaAQLR6B7lyaYBA0xbAclLBgEA2GrR2U8mAQPZt7ItM0YBADksHgUrZgEBf1llEctmAQP67DepD4YBASJAWGUD/gEDlpjyxNB+BQHDve7HYGIJAuBI/aOlNgkC7nv7H61GCQHToq2tDiYJAoiYuu0SRgkD2O0QnPpmCQOhSUdI8oYJAcDLuFjWpgkD4xbOmEcaCQMq5Tpt5EYNAfKFY03oZg0DqMAXWcyGDQAo4fFtyKYNAG1kvy2oxg0CTMCCb20GDQHKptKDgRYNAqS5QlgBphED5SHSJVLKEQM+++dlXtoRAQll1VGrZhEDWRx9EauGEQGJX+f1i6YRAaEAb0GLxhED5DZ9mT0KFQDSkm5WgYYVArqXFKKFphUBKflQWmXGFQB4sJySZeYVADrxE+HNuhkC078npIB6HQJK0dA4kIodA5ihCdycmh0CI90NDkSmHQFA9jqiQMYdA0VGxz4k5h0AvPOvwx7GHQCE1QxzGuYdAWJMf07/Bh0A= + KBZXds7jZUDAIFw1+IJuQBTpB48/A3JAYG6KbtRSdkA7qk8G7hN6QA== - + - umoVR94NaUbe5edGukfvRtxsVkbKO59GsmT6RTMHDkjLSnlHclgKRgex0EVGi5lG8P/XRjZHBkbgKcVFuCCvRrun+UWPrRFGKktOSuKl4UnAQhdJjJjNRxRZ4UWx/KNGktAPRoUzlEZcy+JFowYRRkB9VEZCijFGDyOBRw88NEbOav1FKQQTR1ddEEZcpd9FfI8sRxRTJUeAJyRG++3bRdWXmUb4QS1GDupKRlw640eHLdZGI0asRmI63kU3p5FGhFwCSLvAGkZI3S5HONG3ReRLYEYV+9pFhVA3RlCIxkUliDVGguMvSUv/NUhQoIBG/HzRSB+ihUccPXBGcbbMRbCE8kVIWPVFwiYXRswFvEfTCbJG2nLiRo5ugUZOChVH6DefRv6mAUaP0QhGjtwWSOGezEeANYhGmzO0RosDBEYGS4tGbOgiRvv210UiKd5Fy0W9R6lVWkaJKrBGd3ihRmMmtUYRnjRGh1GKSixgNUYfWexFFS8RSjs+1kVFPDdJHlMOSBOvdkY2UDtGamRMRks3G0YnNwZHcxhORkJIMUcqxo5GHve3RW1WcEaJx0FGy88ASWDlf0jJVghIM9DyRjDyA0blcwJGXhRaRoiIXUZ7wYtGQgAlRw/LokZV+gVJrz+SSEPlIkgmck1Ht2xnRpTk2UUtDfNIhkKHSNspC0jIyihHkcs2Rg+DT0YsyvVFTx7fRRqQY0YAF/VFAPLuR37phkd7iBNHQBNdRvVHEka83+JHwVpOR9j07UZyRVVGKbX2Rb8BIEezU9dGWawmRu+yyEaG3UJGmwgcRi7cm0bkkApGCMb0RQ== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - wmfnmqfCckB1uZv7AMhyQIJ7tSdD0nJAiihYTfoDc0CsLi3ruxJzQPRraPI4IXNAaSaLOixtc0CoLZfMhXJzQKRNR9TPd3NAuurwO993c0B8l2hReIBzQKgqAU5NknNAvlVkbM/3c0DU5nT5Kf1zQFYe3qV5AXRAWg83icFXdEAG9knZ21d0QEj3CakGWHRAqYO2OBpddEBhZDZqNF10QDTSgxCNYnRA5/Y9X+ZndEA7UD8mQHF0QBTq8/Y4c3RAhGJvCW+ydEACKqppyrd0QPRKM8hcAnVA2OuLEI10dUBoETzjEIN1QCjsYEOmg3VAtgtl3rSTdUDhFROVOfN1QPeiH8pHAnZABFbgOkcDdkAwAa4DSyt2QBGv6YUfMXZAQseQhVEzdkC0lP0CHkF2QBxQsyLNVHZA/Ce/R1ENd0CFfGVXARJ3QCuScVwNNXdAVtxQFZ1Bd0DaRKgBG0V3QBAsBUCSUXdAamSM4dVad0DLTtoE3WJ3QPGs+oPRI3hAqFyqTXpFeEBf8e8WlVJ4QJkVoAiMdHhAxOpybZqEeEBpWnaKqJR4QErXFtG31HhArrUWWvtDeUB0EnoNClR5QPRoHVUOZHlAtUP+XnGNeUCdT9Sly5J5QCrn0hxFk3lA/2JkgacjekA6EgavDDV6QBneatkaRXpATHBv8wzIekB0++kYZ816QIybHFZK83pA4P/Y3qP4ekDYblF6xBJ7QMpugY1MFXtAchUHps6de0BqUOmCJ6N7QP02WjGBqHtATaa3Isqte0COP9E0jPV7QEAd+rbYAXxA0p9huFjifEDW63IwE+N8QNuqxfNt6HxATXb7QVTyfECQyOR7SwJ9QKLVJVSwG31ALlV95rYjfUAtoB5jt3t+QHjwfaRTfH5ABt7Ry7uDfkBpJw9RwYt+QCKT2QvHk35AdEQWCs2bfkDqZ1R6tXF/QNIgqI9hkX9ADp10UYERgECoce9uFFGAQMyV58UOWYBAgbmRM0hagEAejGOqSl6AQLSb7MHFZoBAUkT1rnNpgEAavfo7UsGAQC/DzGFTyYBAG5aiYEzRgEDWpv/OStmAQO7XEPFy2YBACPxBZEThgEBN/QtsP/+AQOArxkc0H4FAEA1XzNgYgkAAqjos6U2CQM0nGgftUYJAQgrtLkOJgkDaknttRJGCQPYj9dA9mYJAgiewATyhgkCTCKISNKmCQCieXJ8QxoJAm0hCWnkRg0ASUSSlehmDQDr6W7ZzIYNA/o2ny3Ipg0CCXTkqajGDQI5V+vHaQYNAYm+oON9Fg0DgXU8QAxKEQFy019tTsoRAVaVTHli2hEByKV8datmEQO6fEZ9q4YRAUez9XmPphEAWo7jeYvGEQFZxDlVPQoVAQk7efaBhhUCcDo59oGmFQKSlFymZcYVANFPoepl5hUB8dJGOHx6HQJi0UkojIodASOXXbJEph0ApG4tzkTGHQOd0gYeKOYdAgzMGq8exh0BDD2whyLmHQA== + NrgMGZxjYkA= - + - UUApR/EKf0b3S9xGsdrxRklIH0Zqm75G5CAhSOJYekc7QwNGMc74RQ5O00bHqA9HKLdhRjtK+0Ww4RlGKW3LRgNHREr03RVGYo4wRor5ykn3twlJTD+9R8RnskZuPW9GjGOPRh9X9EXpqGBGUT4uRjj9KUacsZNH1zwGRoWTNUcFvwJGOc75RQXcGUeMoTVHwbI2RtalIkbhZVtG0UILRk1RoUaEIvVHQKTkRtKvt0bGt4xGiojlRyF510aeM6lGODNYRmusFEZUMEFJmZ0ySElSkEbsmwJGFlf/SEIdqUcA++5FRSAaRh+MKUbTnyxG3KBRRsN30Uew3rJGUMLRRuljhUZCvB5HRHd/Rg9aA0aXbD9Gv10eSMHz4EccA+9GpuoMRuXViEZaAyRGQc7MRwpwW0ZNShtGYuCfRo/OhUb4wr9GUmAxRvc5vUpdVwZG8NJISg/rfEkHaldIy6CtRp0BL0YMrjFGSClERkVFM0coK39GXkw5R1fRl0baGZBGiMcVRnNYGkkYQZdIBAgdSJa2C0fbiPhF2rsYRonMFUbzsHRGgs10RlfwFEe9FJZGmkAUSbJtqkh9jDBIT7BCR8VKc0ZxlhNG6h0RSWv6oEiklilIDL5jR3iJh0bFxpNGoFgLRpz8EkYwIXdGREYdRgD0BEisdntHeFMRRxwQYkaqthBG4HDzR80OZkenyg1HKoAwRqL/5UbQZK5G/vK8Ro0mQUYjCglGGyOMRqZQDUY= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - KNI8fKfCckA5pVY7AshyQABO7TdD0nJAIErEu/oDc0DQkj1VvRJzQLIoDio5IXNALDcxgnpEc0Bw1nBJLG1zQNwo8iGGcnNAdLUIp9J3c0B+rbvX3ndzQJ5Lasp4gHNA8uiRik2Sc0DrT0tk95RzQAfD3F+4oHNAnETTWVmic0AuUxpkzvdzQHNYiZN5AXRAmnkzmr9XdECiK79721d0QFq5OWr0V3RAue/GHCxYdEBQlkfAF110QCmfDRI0XXRAKWNqo0xddEBCpTY8jWJ0QAdnkoTmZ3RAQpxVAT9tdEB8EsmfP3F0QHsTSp84c3RA/5XboW+ydEAPpr77XAJ1QH6LzCMSg3VA8kdKG6aDdUBM9/F0s5N1QMCrc1E583VAWrHF8UcCdkDECe7vjyR2QPK/oTFLK3ZA2jmmPh8xdkDOXOxoUTN2QEwK3nHNVHZAQ4bMLFANd0Bd0eeHARJ3QA/Tnh0NNXdADDyf+JxBd0BNqJ98GkV3QNQGIrGRUXdA5GlWWNVad0Cu3G003GJ3QPR0xU3RI3hAzCrumHlFeEAHEedQlFJ4QKInyJCLdHhAPsAYWpqEeECCThR7qJR4QA7F8wj7Q3lA+zktgQlUeUBKd6ItDGR5QEhs7KNwjXlAjriZKcuSeUAAh6tIRZN5QAXuma2nI3pALBW1Ugw1ekAnb3SQGUV6QJpJE6INyHpA1WQFxWfNekDTuypwSvN6QH8Td2uj+HpANBf8TMQSe0BdkkcQTRV7QFjHuM4eGHtAvqmDZs6de0D5X7nnJ6N7QBrVH6Z0qHtABl8DyoKoe0CG0XJSjPV7QPD/xrnXAXxAblUN0egbfEBV/EMEOmt8QERanJVY4nxAaDcAWRLjfECA9UFcbuh8QMhY/plU8nxAkOXQIEsCfUAkGZvijQt9QOE6FaqvG31AhHE4oLcjfUB8GTB0Knt+QE1M91G3e35AjrDXGkV8fkBSJcfzu4N+QKxVzmDBi35ALhSZW8iTfkDceeTyy5t+QIckWb5ikX9AMdFzfoERgEA3i4JhE1GAQGBuGkgOWYBAptirMEhagEBOM3oyS16AQCaLwQXFZoBAehvHiXJpgEBy7RVPHY+AQFT8pFtSwYBAI5OQclPJgEDN3FIATNGAQH6B16JK2YBAquRDZUThgEAoVXG5P/+AQChnMkw0H4FAOJUiYFWPgUACvKRo2BiCQEDRMenoTYJADgJbj+tRgkBpjZYlQ4mCQAGyvg1EkYJAfBctajyZgkCKCaWnDqGCQO6KStY6oYJASbDvnzSpgkDCdPXwD8aCQKimc1V5EYNAqhySL3oZg0DErfoXcyGDQCysMN9xKYNARs+sKWsxg0DgtP5y20GDQPTApolTsoRAXe0zZVe2hECThcALatmEQD2k4lZq4YRAmkhem2LphEDQ/q59Y/GEQAx3Q1JQQoVAzmIIE6BhhUAOQrIsoGmFQOFYjeOYcYVAeGOGR5d5hUAyjOojIB6HQOO+n68kIodAgKugP5Eph0DJl08ikTGHQHOleQLHsYdAYO/aAMi5h0A= + NrgMGZxjYkA= - + - WxZXR2lXNEbuYQtH+NPgRtmLbkbzEJ5G0owGRn6kAkg0LFtHBDlBRj86SEZt2K1GYdcHRzfUN0brlxBGNp/hRRfX0EYiIThG1J+9RtQ1ckqxqtxGprnnRY6vNkb/VPtJCkFYRutLHUmF9vhHaTU3RhdZs0YNzhRGxFGZRriMF0YGexJGo1hsR1seIkZ7hi1HAn8GRljLGUZiVQZHqS/mRuG2VUYEeu9FARZPRi47jUZMT99HOb3FRlIirEZnk2lGa5n8R+6kKEfxPZxG3m5FRjzMEkZ70DBJdFswSJQxZEbymQtJy+ixRwroBEYLiV5GohwLRn4yJEb28xFGFsydRzJUmEbVY/JGANSdRtFSGkeenZpGsYb4RTRXS0af/vpFwAMSSA2xvEfuIINGmB6NRlHQikaVkRlGpjPyRV2T10VSkt9Hog2CRibNAkZWWcNGzDiCRn6aU0ZknqJGtyEQRlYEG0YYB5BKl/EIRmqVF0p4pzxJ81EWSGpPwUbfaRRGSEEMRj5NzkYw8yVGlgAXRwj7kUa5CKBGQUAMRv9l60WerQBJI85uSByJ/Edk+NtGFrccRiVtMEbxLWtGVvEIRjRlgEYP+ONGoYsuRpiiqEhqzxhI6RKzRwgNAkbPv7RGc8EGRv161UWpCdBImFpjSJ/C6UdRYwtHPZwfRlz1NUZXQWxGvyrvRYJdmUdS6BlHUMCyRmiABkZE6MtFzxOUR0u1BEcwW6dG2kfsRcydjUbfX0ZGMcCVRo0hC0YIWW9GODbnRQ== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - LaN84afCckDYUwREO8NyQM637A8ByHJAYhg2SUPSckASrELj+gNzQELyO9S8EnNArOPz5Dghc0DkY0+sekRzQLtY9IEsbXNAZoZzzIVyc0AOlXb73ndzQC5FHDF5gHNAUEHwoU2Sc0AGag7K95RzQHcfeC24oHNAyeP+5jjhc0BxpOWuzfdzQAeJV5An/XNA6V4ey3kBdEDy/rm/21d0QEbG4RQ0XXRAIOXNBo1idECXP2RE5md0QAacPgk9bXRA0HHkkD9xdECBJkPJN3N0QNNo30RusnRA7ORxhsm3dECmNUWrXAJ1QBDsofiMdHVAIb7tcRGDdUC2Shl+poN1QEXgqfU583VA61/dZUgCdkCKcxIqRwN2QJEoAQZLK3ZAxPF3Xx8xdkACO2zyUjN2QM63VaTNVHZAiPgA3E8Nd0BWfA3DARJ3QPREfZGREndAsJkLbw01d0AccDYVnUF3QMh+6lQbRXdALiTd6pFRd0C2j43H1Vp3QH6VlgndYndAAtL2qfhid0D2opTC0SN4QEayKzN6RXhARjhK6JRSeEBUjp1n71d4QM4etf+LdHhAuciToJqEeEB4twxKqZR4QHAbskf7Q3lAOKO1DgpUeUBKAI+HCmR5QLsjs5VxjXlAvLpwoEWTeUCd+QCqpyN6QGqcNbgMNXpA3FBGjxpFekAWxeeLDch6QMKE7d9nzXpAFtTWO0rzekDxbmnQpPh6QBcBvdrEEntA9Y5FB00Ve0BGJzPczp17QJYuakUoo3tA/n1Il3moe0C6Vca2yq17QMotk8+M9XtAur5PQ9sBfEB6NGeo6Bt8QH5oO746a3xAPp7lNlnifEBa/tIGE+N8QIajVN1t6HxA0VaEelTyfEBL11+dSwJ9QBajQGyOC31ArlrIdLAbfUBjsJ0+tiN9QFysqO+He35A/BLbdrd7fkBPFwgzvIN+QGj0lNPBi35AHoTyNMiTfkA2ATStzpt+QFBHLguUA39AUfNxTGKRf0CV1ltYgRGAQPAMQ44TUYBA0A7vZUhagEAg7Sm/S16AQEASdcDFZoBAhFbpLnNpgEDgbw8KH4+AQI8+vYpSwYBASizEGFPJgECkr6NBTNGAQGTneGhK2YBABWCQyXPZgEA3g87lP/+AQIsoEAs1H4FADihCttgYgkCsjgNf6U2CQEbI/OnsUYJA0m7Ii0OJgkD0+85RQ5GCQFApGQg9mYJAH/UHnw6hgkAytiMiO6GCQJt09/4QxoJAyDXICD/ygkCkKi7CeRGDQPxsRMV5GYNA8kVGx3Ihg0B/qPGLcSmDQDmOMxTdQYNAQNYyBAIuhEC62gsWVLKEQDKfh3xWtoRA2lcSH2rZhEAuti1VauGEQLwOcVJj6YRAJjOTsaBhhUA6njUFoGmFQOqZQRWacYVAKj5OHiEeh0BEK8N/IyKHQJzmm3CRKYdA2R8efcixh0A= + KBZXds7jZUBML328ejFwQNvlv3T/InRA1LVuCmzCeEBPi4Bk7yN8QNQTS17E039A1EvlV1k6gUAVtKcxLiKCQP91Z1qlcoNAQN4pNHpahED/pFWEUfuGQEANGF4m44dAkoX5v6gDi0D6X/hVnuOLQCZmnfv/C49Ar0ZhORU+kEDFyTMMRtKRQPk2M9dAQpJAIvMjCILSk0BDJwV1bEaUQKIKGx3YlpVAwz78icIKlkC3H1we/rKWQNhTPYvoJpdAzTSdHyTPl0Dv1g9eGbuYQE1MlDR6k5lATAAAWlW7mkDvrRCItrebQP4WZWibB51AOZ7iJeK7nUA= - + - MupQR/8o3EU6I4lGqx4BR43aJEc2rS1GqtWdRgPRBEY02/pH1F02R2bwRUZoAbNGFdgfR0rqHkZC/cFFYbTGRfOSjEaoFe9FL7A5RrpKOkqwycJJSfn2SOHlwUeTqx9GqYu8RrauN0YehodGww8VRvVpJEZUixxGsiUiRvT5a0cqijVHND7fRQl91kU8/9hGd2K7RpdwG0bqhj9G0KQXRv0DjUYNN61FU4LVR1yVyUaY9c5GWpN1Rl182Uc+bxNHtcqpRYUDr0Y2cDhGW8wuRl2R3EVRRipJuY8uSKLEjkaAcA1JdmzER+gfzEVhrVRGdQsORlBIUUahr6NH8S6dRvceBkccdUpG3QkqR3citEbshP1FwjYtRrFYD0ioRp1HLg2yRiBA10UfOopGAk5pRrtD+UXZsiBGLVXPR5AFjUYPPhJGCWS5RtYugEa1XIxGlhGwRs8LLUb7Fr1GN2aGSvThDEqDUjdJINMJSAWpqEbpILBFxRowRrNZA0boXnRGjPfzRiVBR0YuTWlG5JQpRoF21kX5lpNIeCz4R5RejkcfaI5GHLHQRUtuL0Z6XERG1K0nRi2l5kY6PV1GHdwBSBHyUEdrwxNHOBb1RYlyBEbp9gpG7ADlRdi0Gkg3KpZH90ImR4pTKUZsnyVGfNvyRVjcS0aS5e1FcJUUR4lJfUYm30VG0CcuR9aag0a7S2JGdo1+RoYl40UM/hZGeaEKRg== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - ca2Xzm7BckAWXOD2p8JyQGNMFyY7w3JADJwKDAHIckDQgXTGQ9JyQIaplalR4nJA9K+0SfsDc0CWYF1uvRJzQOaPuaQ5IXNABfXqf9Akc0BfwGr0eUFzQIzONl56RHNAygs9mCxtc0AyhlZNhnJzQIzFZbrPd3NAtPtm83iAc0BTo+LRTZJzQFiONmz4lHNANtdyjrmgc0DyzEDiW6JzQFxgQUM54XNAxuFF9s33c0BUtZACK/1zQEwgh995AXRAeBBLlbBXdEBYz8a8vld0QAxbT1HcV3RAJmKL1P5XdEBWw0zBNF10QASX/AFWXXRA5KzVpo1idEAXPzFn52d0QO/V6kw/bXRA35tjpUBxdEDUIeA4OXN0QEj+Jz5NgXRAtuMyaBSQdEAqwBfpbrJ0QH40V6vIt3RAeYuOyIzzdECOdMOiXAJ1QOz/mqycInVADd99QY10dUC2kqJlrYF1QITpLG4Rg3VA7kofwKaDdUAj0Ydbs5N1QK7VCQE683VAj40gNUkCdkAuXCQtSAN2QJRiXEGIInZAGtZQiJAkdkCE8dEoSyt2QIGDj1UfMXZAJF3qPVMzdkBcWorYHUF2QP53ptPNVHZAMu1iA1JjdkAOZGmsebN2QGfp8dANtHZAYB+9SVANd0DkI5rtARJ3QAKsHxgPIndAuKdOOA01d0DulyusnUF3QGboIDMbRXdADJdPK0tRd0BQK2nwkVF3QIjfUCbWWndAJqfv9v1ad0Ao2Kh13WJ3QPgwjPwnb3dAANE5Om0ieEBg++jr0SN4QMFqu08RRHhAmyPUI3pFeEBn6hGRzFF4QFLModWUUnhAbPlD0u1XeEB0H+e2t2F4QOjPlf+LdHhAcAZUmZqEeEDqEynqqJR4QAleP2+51HhAyIaDco31eEBh96sl+0N5QLho4DsKVHlA3gKFZ8tUeUBX5SAiDWR5QNxXw6hwjXlAgbYZYMuSeUCYzGB+RZN5QPKzsKO/snlA7uMbRkLUeUBMvNPEpyN6QLjJcTJBMnpA+/+r5gw1ekBs8YnWGkV6QLtYdvsNtnpAvaMFHA7IekCGUT8saM16QJrYLkxK83pAODpvtqP4ekBimA4oxBJ7QKadHWtMFXtA4423Xh4Ye0AcSLSMzp17QErWaXsno3tAy5TGmICoe0AynJjvy617QDsOft6M9XtAgVDoHNkBfECIk6TTmQV8QKhKGCfpG3xAguCP381BfEBUCJnOOWt8QNpzDfhBc3xAIoypPVjifEAAGeCiEeN8QKjwBsRr6HxArtzp+lTyfEDQ+MipSwJ9QDZX4oqOC31Aismd2ZUTfUA89lXfrxt9QCZeSwS3I31AiIo6kbd7fkC4ObJXvIN+QOQN2vHBi35AtqvxIsiTfkCEwhjZzZt+QLo+clO4cX9AGvT0JWKRf0CBSip+gBGAQPMkGWaMMoBAi3LKQBJRgEDZOhbZDlmAQMHaslpIWoBA8Cho0zlegECchhDPS16AQEdauvc7YoBAIgA0fMVmgECQp5TVcmmAQGRUpsgdj4BAhwnna1LBgEA6a/c3U8mAQIDKJjBM0YBAcIyGMUrZgEDTIAsXctmAQFQQjx4h3IBANLWYLEXhgEBvzGazP/+AQN4K3AZBB4FA88cfJycOgUDYG4WuKxKBQAUTm3I0H4FAe2GGg1aPgUDDzsts5qGBQPIM065Kr4FAi1VnenO4gUBoh1dm2BiCQGPKegbXIIJANsi8v+hNgkAe/ZzF7VGCQKHLPVFDiYJAQI8wHEORgkAS0m5gPJmCQK3XDJoOoYJArNZr1jqhgkBYoFWjD8aCQNmKg8888oJABtzyrHkRg0CSG2v7eRmDQLItFZJyIYNAN2aUW3Epg0C9JzCR3EGDQMSx/0ffRYNA/D8ObAIuhEA281fpBTKEQHcc7olwMoRAMzMshAA2hECiIPxe/2iEQBVp0+pUsoRAZo85cVe2hEDMl9R/atmEQF48FP9p4YRATDTWPGPphEB6MIOvNvGEQJw1nYxk8YRAC2dfrKBhhUAONFaCoGmFQFKoHyGYcYVABFKx9Zh5hUCORaJuiJaGQPd60pMfHodARIamNiMih0CtoozckCmHQIYnDCeQMYdAfAb2U8exh0D6uP2dx7mHQA== + NrgMGZxjYkBImCMySWRuQBu6YmAmQ3BAJCru7HxDdkAbGD+0flR3QCSIykDVVH1AQtmGKy1lf0A= - + - Ba2DRVlnM0eWQahFl4x+RujC/EaLdYVFa2/QRgokPEYOIppGPxaVRRzag0X2IelFmsDPR6yuBEfhu71FiCm5Rr4bBUehECNGtU6zRTd8EkYXNKFFKvNORiUVtEUDHhVGhk8CRvDiC0ajwxNKSpAPRoWbmkmZ+n9FJKHISNiVe0frt+RFcvPeRgWO3EUWBotFNsyERbyR2EYjGURG5yOfRaYBNUbCxJBF8uv7Rf8I9UVwwchFU5FGR2Rh3kVxsU5HSdP1ReDtzEX0J61Fm9QbRkdO8kb4TKxGs8YURjQBtkU5nSZG2Y+3RXKnckWTA8FFdSNARho+jEaHmIVFW2D2R46/uUawI6xG/CSyRew+aUZJK6JH1T5yReCw0UZEvoRF+KR8RVji3UYy7sBFE1ZJRk90m0VMnQpGbmeCRZFqdkUXvUZJaPpKSNT1kUahaaNFRd6lRYU0CElYRK5HYziJRa7/20XvwmJGBjLsRWnrMEbcC4RFQ+jsRbJ5DUZFop1FATC+RxK12kbm7tNFkmy7RnVUYEYO8zFHBUSaRuicK0as/SRGSdyWRUzWA0h/JK5H2M+1RjHq1UWixpFGpOIQRsGTlEU3jM9Fi3PaRT108kUrtKhFdsDRR3TPckaQbitG6IbTRs42oEbLSKxGjOHQRVdMTUbIWp9FnxUnSrY0sEnzgtVIRpOhR4On+0WKPYdFfIwxRqIPukV7EHZFotA/Ru7fqkXXX+tGw7oQRsViU0auwbRF4S1SRmFuJka9zbRF/rOXSMxM/EctHY1Hw0xlRpm8t0VgmJFFIBGaRVOaUUa8aYBF+vHvRU5ZhEWOwE5GO+mrRXnChkUxY5tFVM+wRZvAXkaCg65FUn2+RqfOP0ZxoOZHEwA8R5/k7UbVyxJGSiEBRgxJikXllrhFXDgTSKxjfEf3cRBHlSMeRsGlDEYcb8tFj9IaRynRn0Z7EKhF+AGlRblJ7UWpny5GF/n0RSRIBEedFYRG5ppSRg3wg0UCdpVFuToTR8vYgUYdawNGgp6iRcBZnUXsnPhFCj6sRbMpKEZrx7NFaU8qRi+en0U= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - S+sx627BckAKk25Zp8JyQDhYjiQ7w3JA7O0zXwHIckBmgieFWs1yQBLnbyVD0nJA5iFmYlHickDk3OH4juJyQKj18cnI8XJAaTx/vfoDc0AmbJFXvBJzQNHv7v4HFHNAfrfHcTkhc0APRvDdziRzQFjMQpV4QXNA+nKnd3pEc0AssWwzpVNzQO4HyhYsbXNAGpisBoZyc0Ac4inHz3dzQMCmP5rdd3NA5vwqvXiAc0B/TWaJTZJzQGytk6v3lHNA+nBVlbigc0C6ISkwlKFzQNIuWcpaonNAqz1NstDCc0DPJ0cD49RzQMBezoI54XNAfE7YeM73c0C0QPHsLP1zQBB2gT16AXRAvvA/M04TdEB6BkDL21d0QC0u+OH4V3RAAhwxwg9YdECaevG5NF10QK5J7xBfXXRAti/PErZgdEBYVI5ujWJ0QOxYHAjnZ3RAICernUNtdEDyh3XOH3B0QD5vKCpAcXRAqivJLTlzdEBEROp3ToF0QJJm6ooWkHRATKCEFu6fdEA65o7w/rF0QOB1IUNusnRAslel0si3dEBN8YUgE710QKFYPqOL83RAdgM941wCdUCfgO4hIxR1QIKGsTWdInVAutcmgox0dUBk6XOTrYF1QLjnIksRg3VAT87xNaaDdUD9+VeZs5N1QARke50q0nVApsICcznzdUBYZlF8RwJ2QBCsG5ZGA3ZA4OdKVYgidkDGAF7ojyR2QGcyR/NKK3ZAkzDIXh8xdkAAUyL6UjN2QJ+9DqEdQXZAHLGnuXlEdkDIm5K3zFR2QFGE1JRRY3ZAZOqA9JCDdkCqPJQeebN2QA5/u+wMtHZAX7sBa83OdkBObEDYUA13QATGglcBEndAWmRGdJASd0Cu7GP2qBJ3QAXw/LUOIndADnwtCQ01d0CkwTnpnEF3QOKAOJ0aRXdAEGMYbkpRd0AVhOUSklF3QOu9MsLVWndAFQB1Ct1id0CwsEbOJ293QOJy3HltInhAoD9RXdEjeECMtZAB3zN4QHhrBOERRHhAzlVgXHpFeEAWUSK6yVF4QIaILfWTUnhAnHCYkodVeEAgKtmJtmF4QE3crNCLdHhAcGK9SLB0eEAbSx7EwnR4QIA0ehWlgXhAdqMD+ZmEeEDwmDFyqJR4QOIrUJsC9HhAkDtG/Iz1eEBMH21Zsih5QPLGWfT6Q3lAYUD11AlUeUDvvjktzFR5QA7bRo8NZHlA5Q3L5nCNeUB+KsKjypJ5QOp/nK9Ek3lArenKZEPUeUChZHOmpyN6QOpMAEc7JHpAtH5kCUEyekD021lTDDV6QMErQcgaRXpACnggIw22ekAa0tRiDch6QPbJllxnzXpAkqu4/VfjekBSUYNCSvN6QOhLWGij+HpAVmcwEP79ekAMvOU0xRJ7QLPrhtFMFXtAZtmqRB8Ye0ACoU3rWyV7QFxvxPvNnXtA+CREeieje0DEsnmWgah7QH4c8tDJrXtADkUiTIz1e0B2Atbo2AF8QHpMEP+ZBXxASXkMLdMRfEADQXXL6Bt8QFAh6RzMQXxAeHmvBzprfEAewE0KQ3N8QESFzzJY4nxAbEb0mRHjfEC5Alnpa+h8QOCNz3ZU8nxAvb/drEsCfUCs87D/jQt9QOa/3PqUE31AQgRdZ68bfUDXZSFttyN9QFC0s8V0e35APqnwR7d7fkBLdonU6Xt+QB7oQxwGfH5AFGnJo3eDfkBhYls9vIN+QPjlL1Tug35AAlTir8GLfkDBD2/Ux5N+QPDwzRzMm35ASiUf3ZMDf0DWXzKutnF/QOLFSDBikX9AdoH+moIRgEA6NLK5LxSAQPpaFE2MMoBAp6XUDRNRgECkU+4XD1mAQDJdagVIWoBAYGijgThegEB2FXfQSl6AQJJEX9xJYoBAmPcfzMVmgEBhzqq5cmmAQJYf3iIej4BAmq6AT1LBgEDyZuAxU8mAQGylZkFM0YBAfiuwy0nZgEA8cAiWctmAQBeJlTQi3IBA9NMTNj//gEBWHtoyJw6BQOInRX80H4FAOuSziORJgUAcejg2VY+BQBbYy/TooYFA2tnjVWyogUDQtWs7Sq+BQJK6tfdzuIFAbNTgd9gYgkCGb5QH1iCCQM4Ln8G3QoJAUn/AHelNgkCComVb7FGCQHqnFjJDiYJAUy2o0UKRgkCwmyb7O5mCQIzAUv9QmYJA1pKp7w2hgkAFTErCOqGCQD68eJJ5EYNAvNful3kZg0B4bkWUciGDQKy17b1yKYNA6l18UttBg0AUTguW3kWDQCzwBHkCEoRAINc5eQIuhECB6i75BDKEQB5eFK4JNoRADi180gA6hECbZAhs/2iEQOsCRqVTsoRAwXlaZla2hEAmwXctatmEQCxq1Cdq4YRASgWKpmLphEDWtM08NfGEQCoN0Pxg8YRAboY+c6BhhUABmMjEoGmFQGxGIIaZcYVANOKsDpd5hUCGRKLiiJaGQFJabVONmoZAiuuXcyAeh0AshschIyKHQHUfCHGRKYdAMq8BRY8xh0CiqxcyizmHQEzd2NTHsYdAwBxC9Me5h0A= + NrgMGZxjYkA= - + - x5ypRX3LYEfndrNFpM16RuGufkUrmwJHx6A9RQP5pUUJpDxFFJIlR8FdK0YxcoZFUCm5Rp9DyUWD4aJFka8MRtzrhUXuSNpHybXvRqI7x0WOfgdGlmu+RvN0MEfdVWZGcL3pRf67iEXk2tpFLh2DRQMrU0U218tFW8IORveqW0WCP1xGyXRARai1x0nuzy9GtvZZRXyWT0kAVG5FD1tuRQgjhkhimx5HxnOtRWTwRUUl+wBHSnTgReUvuEVkcoFFxmqIRV3HhEU+6ORG/PuBRnX4W0WI+bpFYBJKRmpBSUUTE41FIbMQRhF93kXlywFGab88R/5o4EXtCGZFifE+R0qU20Wzyq9FjWZsRfOJE0YclA9HD3W9RrQHFkbgN7FF2ciLRZkqMUZkbZ1FiwOlRXKQo0VrobVFZW6ARWLDIkY3krJGafFuReAWSkWFHm1F5hH8R7FB4kb/HttGDIWpRd15gUacdB5H3PlxRvK6WEUCPM9Fx3/MRkE3Y0WOGa1FMS2DRlCusUUmHv1FmjpMRWBLZUW09V9J/eOrRclhN0UMK4lFKohuSF9UvUZx8c1FxlkhRoBwn0WjufdILAyjR7syX0W8f81FI01mRvJe5kXYH7ZFTij+RR/OLEYw4TJFeq4lRqQe8Uc5J/VG333tRTHX1EaE7ipGyXotRRChGkfurrtGCmefRZnz8UVIz09GvzVzRb5EREUnMNxHuDi1R+X+c0a7TNNFNAHBRsPQLEZIl8VFM+SlRfOP90UW6sxF/FALRgWpVkU/FfVHnKMgRrtDAkbLwPFGjRK9RgH3tka8Uw5GBIp9RoiMokXcZjRGLqsQSmxUeEb3geZF1D/DRcK/lUn64tRFVAG5SM1yjEeJO9hF95LBRVn7aEVtgTFGMrlqRZ9aiUX8sD5FDMWGRuRG3kUCd5tGMPImRu/YJkaRNZhFQQJFRsoqRUZmgLFF27SSSGAaAkg0oI9HMm2QRgh9iEUxCV1FUOUtRg05ukXULDdG/KeURaqgx0W/SmtFVE03RR+wiUUzxghGWFhVRvcogEUL+1RF0meQRoD4KUa2k/dHv5kxR6/g70YSplRFmuXARZSkCEbxSQVI3AZrR/esCEcxaQpGY1u9RSAtYkVgIpZFsomqR08hFkcNFzZGywi7RUcdqkUA9Q1GE/2iRQ60GEc8DotGnAU7RvS/lkXyDGdFdmogR1WKgUYBih1GZ9KbRRPtrkU4bIdF4sziRf/zpEVcuRxGt7+lRVtDmEXPfx5GVFW7RQ== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 5PIDEG/BckAWv0WAp8JyQASrrSE8w3JAmjtGGQHIckA7Zd2UWs1yQAxW895D0nJA6nUV88/fckCNhNmfUOJyQBZjvmjK8XJAT+XgqMP/ckDItYPY+gNzQK2NUlC9EnNAp+nELAcUc0A6gfqOOSFzQJK8IBTQJHNA7BxdQUgxc0CvOhD8eUFzQNCcGR17RHNAY19D66NTc0CKvYQiOmNzQM9J71AsbXNAGEcCuYVyc0C40Dzp0HdzQLZCK+Tgd3NATOllnnmAc0Bg/ugbTpJzQLEQZ5f3lHNA5JM9Sbmgc0AF5M/xlaFzQDi2zVBaonNAMg2fa9DCc0BYs9B/49RzQAA8a6c54XNAf20LKMz3c0BKhjTXJ/1zQDs+CqF5AXRAveRGHk4TdEC6zlkY3Fd0QGuTDvo0XXRAuC6VlbZgdEAkYSmyjWJ0QJl6CRjoZ3RA2IfQUz9tdEA2h3UWIXB0QEkKA4pAcXRAj4bXNjhzdECLdG7cTYF0QIgUxKgXkHRAvttPtO6fdEAaGoIxb7J0QBml18PHt3RAn2quZhW9dEAFKP6TJL10QKwV+5GN83RA6NGKU10CdUBUlTPcnCJ1QKtPvqTMNXVAVLQvxI10dUDnYR12rYF1QDnTKS0Rg3VAOiginKaDdUC04kOvs5N1QNeCCD33l3VAmYvjvTnzdUCZQpPqRwJ2QML4IJZHA3ZANqyPcIgidkACGfXIjyR2QJ5MyBxLK3ZAvGcHkh8xdkB7DpARUzN2QKSHrAsdQXZAav110HlEdkDmTWb8EFF2QBbVjlfNVHZAgiT5XlFjdkC++Wpk22R2QLwwewGRg3ZAfltVVHmzdkBVZUSfDLR2QIxorb2R83ZA6vrhelANd0A0+CuDARJ3QHZku0qREndAGknWnKkSd0BqbYMODyJ3QGYFg1MNNXdARnZHF51Bd0CWGmrWGkV3QBpzr15LUXdAtDgjEpNRd0CaugD91Vp3QH6LWfHcYndAzCBXaQhjd0An8p3mJm93QE7fS35uInhARku03dEjeEBKO9W/3jN4QBAMAOYQRHhARqQqSHpFeECX+eVMy1F4QLYNzjqVUnhAKV+waIdVeECYWoGs8Fd4QFh5Vqu3YXhASFIm94t0eECWPFG5sHR4QKqHjX+kgXhA1rP1b5qEeEDW/q/8p5R4QCzTrWG41HhA0qgVDQL0eEBqXbS8jPV4QHqo8PKzKHlAeyXctqIreUC1ZQLSDS55QDko1uv6Q3lAEvfI8wlUeUCiGN66y1R5QJmcknQMZHlACOS2TXGNeUA1rRhhypJ5QAbvM9REk3lAHjUkWsGyeUB9bVzyvLN5QNSitolC1HlAJMyEnqYjekAStrBdPCR6QLoKRsdBMnpAlpftyQw1ekCyh6+cGkV6QIG6xyUNtnpA9DvAqw3IekBEYURSZ816QFyGt7fH0npA/NHlXkrzekAmKHIro/h6QLrhBoAB/npA5o4XosQSe0DY5LuWTBV7QCBD/iofGHtA69TQFFole0AZHohDzp17QGTWUSgno3tAZAfmhIKoe0DCzH9azq17QFvXDoQms3tAoMBQRIz1e0AGQriV2AF8QEbllZiZBXxApo/xZNARfEBYZK6E6Bt8QKCbsATuI3xAvQcKw81BfECLpZ67OWt8QM8wlz9Y4nxARJGqChLjfEAZx8t/a+h8QE4rQSEY8nxANtNPelXyfEBc1rddSwJ9QCj9tIhQBH1AmBqT540LfUD6rumbRRJ9QOrOSGyUE31AR7VMja8bfUA+jhGRtSN9QCg5bEyS9X1Awa74AdJvfkBoIF5eDnt+QLZbLo63e35AnhUd2Ol7fkBSD9lvvIN+QG+JtwDCi35AOBPdXciTfkDGXTDzy5t+QNjZNpOUA39AGMa3zpkLf0DI2ZJJt3F/QAb2HR1jkX9AUErbIV+hf0D4T+eSghGAQBNslUXnUIBApI36uhNRgEBYMqotDlmAQDwMmT1IWoBAQJc/oThegEDoZEXtSV6AQF54kCk8YoBALjQwwMVmgECOBIjKYmmAQPfCPXFzaYBACFJfYw5sgEDs62xfIWyAQKwFa7kcj4BAYLXwgE27gEC8r/ptUsGAQJ4lnTVTyYBAtgI4cgfPgEDEhllsTNGAQOcKVrlK2YBAfi5jL3XZgEAayV5EIdyAQFTtmipE4YBAcGIKBED/gEBabcb8QAeBQJiL2cUmDoFAZBdIWT0PgUBawe2nNB+BQNoCfh84J4FATP3+uORJgUCmiOS/VY+BQPoRhG9Kr4FAcJWzFnS4gUAWCL5Ga8iBQLNgrs/YGIJA7UXbitcggkBcBE0HuEKCQOtOMPLoTYJASJvMvOtRgkAATltqQ4mCQPvf5j5DkYJATR6cgjyZgkCQD0jgDqGCQCqm/9A6oYJA3cFh6Q2pgkD8GcdqCLGCQKPT6KF5EYNAQogUB3oZg0BaPaD/ciGDQCMnwv4NJoNAwiWPLnEpg0CGgysgazGDQDpoNYfcQYNAEAAGSeBFg0Cc9DXrv8GDQFDa0DMEEoRAT9JXyQIuhEC8huptBTKEQJD5fH9vMoRAcgaGt/81hECYwkDJADqEQFik7SX/aIRAlR8cmP5whEDUrl8uU7KEQHAqA5FWtoRAFhUPPGrZhEDfwE4qauGEQG7oubli6YRATeiCRTXxhED4CQpxYPGEQM4ozZSgYYVA8pG94KBphUA/ZKtOmXGFQKnnHy+YeYVAeqJ0yomWhkBAz8czjJqGQD5VPCQhHodAo1GSgyIih0ASw2+JkSmHQI2hgKKQMYdAJbDaSYo5h0A+nqwDyLGHQJDLNtnIuYdA5iW7VcDBh0A= + NrgMGZxjYkCmvpxNHCRnQOzQoK8iBW9AqbPSK6YCcEA9w2SRqbN1QKkRr3/+E3dAPSFB5QHFfECpb4vTViV+QJVvICG4+oFAaJhppQIbg0AoUMRcDwOGQF936dM5s4ZAKH+yhruLiUBfptf95TuKQCiuoLBnFI1Aw9OhGnJUjUBT2CKzs0yPQPhsI+BpPpBAqYOI7q9qkUA= - + - PV5pRQr/REcvocNFD+BpRli/OEVjO/5GYHsHRQfKPUXDC19F08cZRVZkBEcnc0xG5HCTRUfZjkZKtqBF/McZRWukhEVwWwRGOIo7RRlcIUVqYNJHwbQSR7PFvkW+pM9FirLARsS4K0d8/29GBmwCRv32JkVwm6RFwz5iRTdsZkU616VFMmniRWYjekX0rmdGoj0qRbo1s0kt0D1JVsdZRcxFcUhzeylHwGdSRXnymUXIWQpHdIKrRUKUikVyqJJFAdOrRdVhFkdsnmNG1e46RerGEkX/oIpFk5UlRg9cokUF1j1FEFb8RR2tlkXZxrVFMLkoR2Yrn0Wv7W9FtXAoR+Hb5EWqTJJFRJ1KRZOEDEYQfANHjwjFRhnkEUY8sD9FUKiARRdkT0VHugBG8sy4RefgI0XSHG1FYwVLRXg5fUV+eyJFfpQCRvYglkYcEsBF5DqYRZejLUX+/uhHSf7DRo7LxEa8l4RFmNScRp7AOkcKin9GMSgcRQFFf0XDbXpF1JuhRnunHkXD67tFy7lARoPIxkW2SxlGiOkhRQ4zhkUmaDlFh7lPSZtB60VDNC1FMYJYSEtBmUZQXolF3/lVRaWnz0VMr6lFjvZBRYJKH0XExtRI8maUR0PeWEVuJqdFe3KLRpkFq0WtrNFFjrY4Rcc3T0UkVtJFEkgLRpa/SkVGOQVGCfrFRz4v20YyR9VF0dadRl5oNEYN3C1FZgsUR1Wdd0b6pZFFIDUDRux2JUbVs01FNsFyRblc80eeBJBHXOpjRtqXAEYM3EJFN8iBRs8kH0Z+GKRFM2SIRVW3jEWtmihFTOuiRYhRtUXs69dHlVoYRkRB+UUrtwhFEt3WRhXLmEbooiRFUse4RiZnWEUwFv9FwWxqRs9fc0WN9iVFEA0fRY9/FkX4Es5J2IdyRsxcWkktQ4ZIjW1LR8OVj0Xrg6BFRW4URXnUXUXw9y1GmFpxReINjUVNW3ZFmB5mRo/KtEVfgJxG6W4CRlEg4UWnVpBF03gtRrb0g0Wxn8pFYlBfRYDiPUWfdoRFLj8eRSbAj0gkKPxHP2sdRXggfkc62VFG2iZ1RRg8r0WVR4lFSgslRot5VEUD1VhF+uYYRQH1N0ZYmx1FqjMQRWDVr0WgpodFrbkSRtN3IUXk7TdGrJGYRRHgPUV5HX9GUh0TRkg2wkfFQhJHG5K8Rg6L0UV2nvRFqN0kRaZQPUXs/P5HLgRSRw82BUcQ0z1FnAMCRkXcUkUpyLtFBdhDRQD0hEXwmG1FuKLOR+E8f0dKECZFa6BXRo1nHUb4pKtF/+J1RSej7kU0qetF3RgBR5+oiUZoKC1Gj9qDRcRXWkUaOAxHmPiORsxdC0aC44BFJbHsRZsxQEXdVYJFMTI9RUC1C0Z5hIxFLlSRRb3FGEZSn8JFZgGRRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - WkVv+m7BckD7OF8yp8JyQNcojwg7w3JAtBr6qwHIckBgQp55W81yQJxkVb5D0nJAcFtdRE/ickCaKQDoj+JyQDXLaCvJ8XJAgXRryfoDc0AK1//zvBJzQM6TLUv3E3NA/kqXcwYUc0AQsBNNeR9zQPKa+pk5IXNAoqB7Ys8kc0AE0TbdRjFzQD4qqZ14QXNASDYVgHpEc0Bm5ubLo1NzQI8KHLI4Y3NAAyH6Lixtc0AG7m0GbXJzQCeLGRmGcnNAgiMDlM93c0DwXfKW3XdzQJyIsd54gHNArKoXHoeQc0DccwGKTZJzQAfdiwL4lHNAMQobs7igc0BDnbknlKFzQJrq6oJaonNAxDBzts/Cc0C4byFG2NFzQE71xhrj1HNAdKJJWDrhc0BJWeQ8zvdzQIdMDcwm/XNArwQTgnkBdEB77DB5TRN0QNzjLgMdK3RAIM/I4sBXdECTv1b321d0QDGI32wUWHRAwIep0TRddECETwL6t2B0QJCDanMIYnRAZvxf2I1idEDs1LTH52d0QLV5M7pCbXRAbOBHEiJwdEDCkE3OQHF0QKZ01QM6c3RAUustaE2BdECiQt34FJB0QJyhVovun3RAPkr/1AGydEAZHjqZbrJ0QIBj/eTHt3RAkiMDzhG9dEAeeuyaI710QL7UUMyM83RAZDTX5FwCdUDGXR3enSJ1QI7PBYrmInVAtckFTMw1dUCipQ23jHR1QJ87+LetgXVAqECtbxGDdUCm83ZnpoN1QBJC7u2zk3VAxx9dOSmjdUBRG9p++MF1QCoJpI8q0nVAHWLVygfidUBRJAbNOfN1QDFIUSdIAnZAJOuj4EYDdkD4V3RPiCJ2QEi0lGGQJHZAbBlUB0srdkBmzvcjHzF2QEec4rZSM3ZAGpxExhxBdkBAfaHqeUR2QBsJIV3NVHZAYnci61FjdkDoly3KkIN2QIKIl4PBsnZAKIc+z3izdkBp4dxaDbR2QHq0wY7OznZAKvCeq5DzdkBGHNECUA13QDLlAY4BEndAnqmt144Sd0Dd015VqRJ3QCJRfvwNIndAqjSa8ww1d0A4qIFFnUF3QGy3oOkaRXdAxhkDWUtRd0AWymDzklF3QChI+t7VWndAp6enk49hd0DMV3XA3GJ3QHjfYGj7YndA4qAzdStjd0DTQ0ZDJm93QGvrnAV5gndA7EXR9m4ieEAe7/KK0SN4QND1bfreM3hAG3NM+BFEeEB/7IhrekV4QL9d0DvLUXhACvy+fJRSeEAU9g1TiVV4QGuibmfwV3hAlMGlvLdheEDU3WLIi3R4QN5KrOSjgXhAHdaS+pmEeEBuSghkqJR4QK73Dwm31HhAtFWnKwP0eEAy44vWjPV4QMAl+OqxKHlAHJgviqEreUD9x6P9+kN5QJ7/txwKVHlApmAZwctUeUDehmbcDGR5QGLTw+hwjXlATlrbUcuSeUCa4dfMRJN5QBqOroK/snlA2mAz5kHUeUCEaCDNpyN6QGi310E7JHpA8GGw50EyekDCxWxXDDV6QGQUpQ3nQ3pARC/1CxpFekAkRTYZJlV6QA4N1h4NtnpA5pomYxS3ekD872M2E7t6QOQJefANyHpAmWjqBWjNekC6G2Rrv9J6QCr1KGhK83pA6y+VPKP4ekASk+c8/f16QJqfm/7EEntAozLi4UwVe0CG7icpIBh7QELhRVAilXtA9pMTc86de0AU6YMXKKN7QJnNr+GCqHtAuO9Tccqte0AEgmyTKbN7QABML/CL9XtAok5s/tkBfEDeQh4nmgV8QLe0NkzSEXxA2DcKzugbfECqGJgs8yN8QECnjIfNQXxAhKw5MjtrfEBEz/6503p8QF25bcLcgnxAgNGkDFjifEA+XKTZEeN8QPJ2tFBr6HxATVlHmlXyfEBJCR8MTAJ9QKCRFShSBH1Azcpwdo4LfUDYAgtIRRJ9QHK5L+qVE31ArhB5e68bfUA+cRmttiN9QOTaay6R9X1AA7aJK0p7fkCYZbVXt3t+QMC2UCYcfH5A3SU+GT18fkDiO1YYLYN+QOUKB2G8g35AkIl8z8GLfkCNeFq1x5N+QGiuv2vQm35AJ/VVsZMDf0CiDvHXtnF/QImpfxFikX9A+pY3r16hf0C2EPWTVrF/QF1zoViDEYBArR1BEqVJgECEkPoT51CAQL/KVMETUYBAmJSrjg5ZgEDSvnQeSFqAQMjAeCI4XoBAvGW+iUxegEDqRk7wO2KAQFwP29VMYoBAYiWT2MVmgED3Q4+sYmmAQF6VGYlzaYBAlF+IhxJsgEC+XDWnKG+AQOB1JEkej4BAIuzMW1LBgECRcN0fU8mAQNz/6hinzIBACeSuWgfPgEB9MKUWTNGAQITMTIJJ2YBA5NfP23LZgEB+64g9INyAQO/jm4FE4YBAudDe3j//gEBPaxj5PgeBQDZ7xtxnCYFAr7d97CYOgUDws73QPQ+BQFkZ3gg0H4FA3D2qAjMngUCuXOBT5EmBQCawlPP6hYFAl0Ho3FWPgUDfDV/55qGBQK0UFL/WpoFAMpy6RGyogUB8/i5XSq+BQJHBSmVzuIFAlHOuY2rIgUAIIiOFzs2BQLMzr1L10YFADkvFm9gYgkDevCac1yCCQJsJ1u/RKIJAktZVTek5gkCmKs6+uEKCQCCILvXoTYJAsMnVVuxRgkCIT6EwQ4mCQDiqWlZDkYJAdHCOMDyZgkARDa4gDqGCQNwnkwE8oYJAXDDHUg6pgkBsXKuaeRGDQKI98d15GYNADIeQyHIhg0AsUxQDDiaDQF+pShtyKYNAAESCOGsxg0AJLiXB3EGDQErMPx3gRYNASoyk3b7Bg0Bt5lcqw8WDQKXDi2ABEoRAshj5igIuhEDeIXBzBTKEQFiKvudwMoRAqSmcpAE2hEBv6Y7C/zmEQFHcGx8AaYRA3oW5Av1whECC/7SpVLKEQHT/nmFXtoRAkoKX7WnZhECgfbGXaeGEQFSs/c5h6YRAKKFmajbxhEBmedw9YfGEQBDLYOU1+YRAGje8IqBhhUBcDJu/oGmFQOAjHEGZcYVAGu02rJl5hUC2Xg874RmGQKpU1MviHYZAWxcN04mWhkCiHt/TjJqGQODHosEhHodAkpxKoJEph0D6chpzkDGHQMpyxyKKOYdAsjTPvYpBh0DwMaMlZ1uHQCfru57HsYdAnPWAQcm5h0D68tXXvsGHQI7AJ5P+3YdA + NrgMGZxjYkAYxSyCnORoQK9rGHLRYnNAeiAWnryic0B2xqyr6ZN5QEF7qtfU03lAMkJWBCxigEBqRZ4ebAKCQJVvICG4eoNA - + - dH/ERXxKUEdNTaFFIYpQRkyPb0Xy9QdH3nxfRaeGOUVhRWlF7t4MRyEAXkbqp1FFjGdTRUDU+UQy4JlG78ifRTU2+ER3poRFVHYzRuB8ZEXQ7RBFoZXTR5IT6ESiIAlHVvPGRQNrzkUJa8xGn3YVRW2zNUck5mFGZHXqRQC9S0WCE9dFfVaORZqlMUVl9JRFm26fRZSorUWUI4VFLD9eRtjwEkUTnhZFTxWHRejcjkmPljJF1oMWSeZdNUVn6wFFNv84SH1NGUentlhFw2pDRTP1DkdcEt9FWk2hRTF/Z0VLuPdFeiYfRW1zEkdyQI9GDn5hRRNFKEXMuaBFgEwdRguFyUVSBwJFkGwaRdNVEUaSU/dFbbiDRaG2KkddvLFFkMsqRbm+LUXVlhVFvsUeRS4+BUd2mcdFrwShRZcojEUCl9hFxOr7RmdVuEZMIxFG6RqKRVTnZUWTPjNGlzXQRZxxdEUmVxZFmbVTRUYCqkX8VHhFXBoxRcygBkagPYdGw/iERd+ibkV4FGhF1vTuR0klzUbw+bNG7g+VRQiXZEYqyBFHeXUmRaNzJUbgqz9FDWc3RbM9UUXSjRdFzERkRRZRn0bQWV5F8nmhRZG/IUZSaphFbYkBRqJuYUW9GURFQTo2RW5cTEn2L2FF4TNRSFdMlUYpzUNFfWg0RQhe10XSxOhFoUZQRZB+uEi1bnlH3r6RRU6wlUW2qklG0zMQRsR660X0FldFBITuRWr6E0bwaWRFK50HRsVUxkf2uBNFro7JRvdrB0XrjJxFPjgwRe+wKUVF0bZGyS4bRuA8oEUE3ANHDnOnRtulJ0UZ8QVGdnQYRkOigEWRcUFFmZndR7L9jUeXG3FGB0fGRWFtfEXz8oFGZp80Rnh9fUUs8qxFQHL3RepaK0V9gOVFBP1MRYncjUUYdB5F6h3ZR0JaIUZHR+5FiIrTRkO8nUbTeG5FSieKRgIHVkXlmr1FhNY9RlkSr0XzcgpFIu1DRSYRxUmK3HJFf/MQRdhuJkUsbk5JQKV/SJTxIUfPBe1FW1ItRfkCiEXvHENGK21BRfrlJkUubdBF5LSkRdLfKEUftWpG9pXNRbkeiEYWkfhFU0jwRSjxYkUfGWRFh+yARjATXUUxY9xFd06URT34U0X+vYhFJhyISNE850ezLw1FjgkVRRVndkdJrlFG8aBwRQ4MckWhrp5FPHkxRviKVEVS9SBFFvBfRW5TFUXBIlBGzc4nRQ+pL0UlAllFL6LhRT6BVEXKRixF8eohRZ9InEUMv1FGxPEWRWIBsUXvpS9FXsI/RtiBskVkqjxFmwUdRcOfIUXoLIRGB0f3RXQb1EdBfjFHMmHPRoAb+kUwmQlGDWAgRSWH60fU3EpH14/lRs9DKkV6MxZGb/dzRXdtsUV8r4tFhra8RWmIhUVsxYxFlUXdR7evh0cPWVRF+lqbRpPSCEZV+sRFdFIeRaHVD0aQnJdF/JcMR5wGXkbXIRFGCKmfRSQOc0WIzhdFyzkKR31fbkY3QBVGldOARbBrTkVPKAdFJ78zRTdUE0XZpBxFkOErRuR4rUWDX2tF3zEDRcM6XUUCCwtGYmeZRRcZSUWfpRZF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - f1Toj27BckCqkNN5p8JyQJnZFls7w3JAoykyTgLIckD8ilcTWs1yQMoE55lD0nJAex8Z9c7fckA2VFG8t+ByQBapN8dR4nJAjzsGso/ickCAd4b4yvFyQGKQyI5N8nJA9jRubNACc0BiMATG+gNzQF57rDi9EnNArnCyQPsTc0C5FZgeBhRzQME8SH55H3NA5mwzyzkhc0CtdfB5ECNzQIcfmcrOJHNApwzWH1oxc0ABRK/DeEFzQAB5spInQnNAKPHvoXpEc0Co33vSo1NzQKQYlC4sbXNAzrqDroVyc0ByotvHTHVzQLiAAoLPd3NAeMyMGuF3c0AYu4lZKn1zQL64MT95gHNA4Fi9bwyBc0Axw7U+iJBzQAkKwY5NknNAtTKde2SUc0A6T7lN95RzQKTrmHW4oHNAHsq5DZShc0D+5HCIW6JzQHjC2QAGpXNAJBO/lLizc0CqvZJODrRzQMWiN2vRwnNAh2V9nifDc0Aa//Xv19FzQNuH1mDj1HNAFIpWLTnhc0DQD1I8N/RzQMbF7XnL93NASKKyPHkBdECaNz+dehJ0QDa56GlNE3RAjOc3HBsrdEACO5rquld0QGbHhUDcV3RAgBrYVPhXdEBsRaQ5NV10QDgAukFRXXRAQEUfybhgdECwM2T9B2J0QP7l/YGOYnRAtmt39+dndECCbMOyInB0QDAFwSZBcXRAhmhmLDlzdEBmYzyq94B0QFjfw1FOgXRArb7L+yWDdEA+mMVQFZB0QCmud0Hvn3RA3aHUPwGydECubQ6Zb7J0QKS5vmbJt3RAod00TBK9dECECwF5Jb10QNbiKzH8znRA1S8OVIzzdEDHuoYqpgB1QGT0gfxdAnVAuIU692kSdUB0fV/mIxR1QIBKZ2OdInVAePlZeuYidUAacz2wzDV1QKG3WfU2YXVAGKA1Co10dUDOvBq7rYF1QFTRlT4Sg3VA45udsaaDdUDGkn9itJN1QMqqD0Upo3VAhgaDQCvSdUC4jV9nzdN1QFoXP60583VA1nb1XEgCdkCmCpOTRwN2QPqUv1OIInZAqzcy5pAkdkB6zwSQSyt2QMJVT3wfMXZAXHHxZlIzdkD6KKcOHkF2QDzu5KXHQnZADBWXSXlEdkBoX0BMElF2QET55r/NVHZAm0mbcVJjdkA93Xo022R2QPE8iCKSg3ZAeP5LmMCydkBbIXd5d7N2QBZ+KhANtHZABreUJs/OdkAXd7wTUA13QBF3xo0BEndA/UH5KZISd0DkCHwOqRJ3QJ72z4gPIndA/sUbaA01d0Alq0BLnUF3QCI/obP9QndANvcN8BpFd0BtCEH4SlF3QGhG23GSUXdAb0pXCtZad0CspcScj2F3QIXccCXeYndALR6csSxjd0Dmx/ABS2N3QNTXyN8mb3dAAmNFQcvdd0A9xcUfUfJ3QIbTFaLRI3hAiEfIwRBEeEDWqEV7ekV4QNIHqsbKUXhA4ZCUsZRSeEAEUVsDiFV4QLqUS2XwV3hA0uWDI0pdeEDi9CaM+mB4QC4UQWa3YXhAw7S+Bl50eEAl43n3i3R4QBM9j2awdHhA2Nf2ZKWBeEAig1hbmoR4QJZOeumVkXhAyTVlxaeUeEA8ln8TudR4QCzrn07z7XhAPLsYKgP0eEDKl4DnjPV4QCbw/9CaBXlAdmsuWLMoeUAkAdYhoyt5QBZbzlQNLnlARHclb/tDeUCinT5BClR5QO9LwFPNVHlAZBCeDA5keUCqaFKycI15QOiJTgfLknlAImR0mkWTeUDf7IwXwLJ5QEiwX6VD1HlASIq1us3VeUD2YxxcqCN6QBPoQ6Y8JHpAcKwLP0EyekBjrMXTDDV6QNr8U98aRXpA1rTMtidVekCCoWTqDbN6QEh5CqQNtnpAhBHfPQ3IekBk/80wZs16QONIDzBQ43pAxxjOvDbuekDdW8jAWvF6QHOfcspK83pARE2qNqT4ekBuat9UAf56QHi5QgBXA3tAUnz/l8QSe0A+OPFyTRV7QMB+wP8eGHtAkJ7g3Fole0BaBCCIzp17QCqGtuwno3tA13TpXoGoe0DtMu4Kya17QC2Ej0zjrXtAAiJLjSWze0DUsLp+ydF7QBph8iiX8XtABJJ6LIz1e0Auwbg72gF8QFxAdI+ZBXxAbM2oC9ERfEDgDe7R5xt8QP4nfc3tI3xANsnLOs1BfEBgBGeV03p8QFTWiMHcgnxA8jL/oljifEBSel8ZEON8QIyZdRNs6HxAe01CJcjtfEBiKbTuU/J8QKRpmaIP83xAlgey/EoCfUDSf2q7UgR9QM5SRE2NC31AZlaxJEgSfUDQOQcXlhN9QKRzXMqvG31AnbLcS7YjfUA+n9A8vit9QNiA6RBLe35AaI8BI3Z7fkAoBzeWj3t+QBjMmoG3e35AfXipUel7fkCSszi7B3x+QLClYX28g35AAtHiK+6DfkDcHJr9wYt+QFfUnHfzi35AOCxNk8iTfkCMCDx10Jt+QDzmrzKUA39AHK8JnrZxf0BaljmBYpF/QFB3M3uck39AQzNWQV6hf0CMIFwUVbF/QKwCAPaCEYBA3X6dmqVJgEAvJml0qU2AQHcVkb7mUIBALCrsEhRRgEDOBIvzDlmAQAJO8whIWoBALhiqzzhegED2WOJRSl6AQLQFiMU6YoBAlqW3eUxigEAesJwNxmaAQMxE+RxzaYBAYscWfCBsgEC0bXxNKW+AQAYJO7cxhIBATvdPoN6GgEBAig/oHI+AQCrn1jaIqYBAI4qGMhGvgEBKzdZ4UsGAQKpz/y9TyYBAOCndTQfPgED1kfgUTNGAQGQ5rnVJ2YBA6vaT73LZgEAgoOcdy96AQHe7DrlF4YBARCrfNkrvgEDQhsOVP/+AQIkOowRBB4FA0aMHK2cJgUDw3VqRJg6BQLL2sNs8D4FAoEGsUjQfgUB3XQa2MyeBQIJhDgX1RYFAFrKDW+RJgUCbjESZ+YWBQG5GZ89Vj4FASLLIoeehgUCKrRkE16aBQDAkJjRuqIFAhpfkuYOpgUAoLwgESq+BQDIRNb5zuIFAC20B/GnIgUDBte0asMyBQEYYHA/OzYFAzl0XVtHRgUDU2vhJ9NGBQGiOQJLYGIJAYib3S9cggkAgJTSo0SiCQD9Yw36hKYJA5pcHBOc5gkB1fmrluEKCQMTJSx/pTYJAwjUXHOxRgkADYr1mQ4mCQGZt1VNDkYJAyn+ldjyZgkDsbnLWDqGCQK0VOVM7oYJA5pBk2g6pgkAW80W3M6mCQG4vNjTMzYJA2o99CM/RgkBOdk3sfdqCQHqmN0aC3oJA4nhap3kRg0AScVuyeRmDQAx49KFyIYNAKiOEnw0mg0Cgf3eVcSmDQP/2bHncQYNA16bSKuFFg0CBzH4CdZ6DQJYChtlXoINAgXlVob/Bg0Aomk7Jw8WDQERbN6+9yYNAPna0wQMShEDyZqFyBhaEQDxxx6kCLoRA9dPv9wUyhEDnvI3rcDKEQB6YEOf/NYRAdNHXzQI6hEDos/z5Bj6EQNzLK47/aIRAJul/vf5whED+B1YFXIGEQLRoB5hTsoRA8EHDYVa2hEDblf6YWrqEQMEmNyxq2YRAdIqsKGrhhECSUFFvYumEQL48NGY28YRAfejBDWPxhEAvAEBuoGGFQLbILU6gaYVAaIkQAJlxhUDvuuWgmHmFQA8xpIvfGYZAcgwtiOQdhkCiHls+h5aGQPJ0MOsmuYZA5pBU2HwSh0A5T7O+Hh6HQCO2j1mRKYdApNH9zZAxh0BEx4uBiTmHQD747h9nW4dAJJuj225jh0DgWPn+xrGHQBbGwO3IuYdAzJbFzb/Bh0A= + NrgMGZxjYkCAI9DqN6RuQEMdzoN8QnFA59KvbMpid0AGJGxXInN5QA== - + - 8Kp1RbpZUUf8T5ZFvFcwRhPo9EQHnxFH0LL/RBQmDUU+MG5FLho8RVq9dEUS3wlFHVsSRfPqykYUUMNFxbaIRY7ljUUkkgZFl6WyRtjb/0ThTpZF4R0TRWuET0V8S99EJzXCRSjlkkVD2cFHYfIQR2N1NEUBzoNFqkhoRVR4UEXHI8lGxhosRadS/0RjMjNH5NLuRPp9Q0ZtwYpF3Q53RZPnxkWTfQVFydRVRa5cCUXG7CtFfXhORZhr9EQmM55FLGkFRmKXPUXV8H1FcR8dRp71L0UWcjhFrRY/RbA7R0XmbgxJa/+4RVEbi0iNJkNFYA1JRdKQBUXTKLFH9aeHRobGQUWoGTNHXq0eRojlHkXcyMpFT5AORfT6nEVt1hVGuiHFRSAdAEdzCWVGfg4sRfXOC0XHBBFFGWCdRT3y8kSGFnNG5Ag1Rd+BGUU94NVFhjbORRXfNkVJ4SRF45QkRjW0lUURKXZFp7EhR2eIskUnFsNFF2qrRRtd70RGmftGuau9RZEPs0XSm3hFNmmxRW5v2UZbqcxGYhcYRvNag0W14BJFYS91RbKDZEXiB2NGVw3mRawPOUVUzZNFhecaRQ/idEU4aqhFfkSfRW/YBkYJUJtG3RRPRR6GRkWmf0dFI2D/RzD2yUYL3P9EkVfRRpoDl0X7m31G6/shRjNIOkWgCl5F04yxRQRcaUUuj1dFenrbRNL2DkX5nm9GNM6oRcbEIUYAq61Fm9QhRqWJMkXzzY1FRQXvRGm1H0UiyHFFjRCaRX8ZTkl21PVFUG9zRV6RWUiQYOxEQ9KrRkWp+0Q43gtFJdinRXaguEWQ9QFFc4J2RbXdBUVzivJEZcONSCwnOUfAnGdF0VBsRWPjEEY/SQFGe03ARZiMVEV9Z/tFNS0NRXPw4EX3eRBF4Vs1RvHO0Ee09cJGe3kRRce9aUVYjvVFq4qpRoyO4UXcVPREBwUxRakG/kTO5QhHXdCwRi1+e0Vw5C1FJ6/cRfRFFUYk5idFArE1RfWOy0ezmH5HkrePRjB9kUX9GVFFaIwgReEglEVfMsNFdKaVRmZZYEbKW99FJ7mQRUx/2kWLfS5FPtz0Rf6XykVbRG1FwjC+R5ADTEZuT8VFqg4oRbhxpkZuXQ9FdCxvRo6UBUaay2JGFIRXRXrRn0XvzW5G96HsRVjz7kRY7xxFDOceRjj3kUYj/85Jgg53RqnKs0W+AVhJB8gDRtqLjEiCgixFcos8R9KBk0VTHrlFBrSwRetEHEaYiQJFkVdkRYfsD0ULXp1F68DMRT9BT0W4FyZF7y6HRjSEukWTW4VG9PS7RfNSw0XqLj1Fumn2RJfbNUZkEgtGAHRCRcxHNEVBkiBFtEQJRaVLt0UEjw1FJIr9RG7dR0iLyqxHFQoMRTWrQEfi/jpGsVNsRff57EQM+U9F1scSRQ4QQ0YKolRF1QzvRPECNEU6oCNF8yxDRq+sQEUhbQhF7HqxRc/fE0WXo9xFy2NgRe8PKUXYYTVFre9HRXSlkEWXUDJGQxsbRZ5ZGkW6n1FGQFCjRZUfsUXgqFRGkVKRRf2BPUVIzhRF9IIkRe7wqUWA91BGgnvDRfKm2kcIBT5HlMr0RmFhwkVq0cRF2mP+RI7CHUXmSDlGlGqxRdATSUV3iw9F03SsR0yjEEfstrJGP2MqRWDaykXiYgJGVjiIRYK1IkVG02ZF1WgaRqgEFUZgPBJFQ1eVRTl6CEWXQbRHYfpRR5m6K0VGioJGzgOfRWuvD0VH2uBFb9EmRfuo2ETaLzJGKdWaRUJj/EQtDBdHvQltRncrMUaROXhFqD1DRSO2zkb2LlNGsp7zRWv/P0XKu3JF8CX/RIKbFUXD//VEsxcJReuwHUVj3C1GVweWRWerYUUCOKRGGgrJRQTm5UVnrX9FXUMZRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - F0YQHW7BckBBHUU6p8JyQLQ48LY6w3JAbs1L2gHIckBmhTlCWM1yQO8xjmFD0nJAe6aqNrngckBKVoJsUeJyQNjCfCKQ4nJAVQG4ocnxckCknlNmTvJyQJQNKZb4AHNArmLqGNACc0CTGRVi+gNzQCaRh4y8EnNApiywtgQUc0AueKx0oiBzQIy0PC45IXNAauL//s4kc0DKpAhQRzFzQFkKN6x5QXNA3iAMyHpEc0Bo1NiDolNzQMqVeQk4Y3NA3jGFLSxtc0DOoPzkUnJzQNzgbDSGcnNARJyQP0x1c0AmIfMb33dzQIC48jp5gHNA6lUxVaSAc0CTlB7GhZBzQPT81mpNknNANrx+7GOUc0DjrxmG95RzQMw/MSS4oHNAHINxFZOhc0C6wjMaWqJzQFbznegEpXNABFiwtrazc0BAQwt+DbRzQHsHNdPPwnNAOuIlDybDc0Ca68O52dFzQP2Kf5ji1HNAQN3npzfhc0CYbhUUzvdzQKX6vSzlAHRAcoPPxHkBdEDgNQIYeRJ0QL4yp09OE3RAMDzqdBwrdEDwUE3/21d0QCyA6tY0XXRATLoxArhgdEB868scB2J0QDxlI8CNYnRAMI1wnudndEBwCAeBIXB0QBzC/qNAcXRARNRrLThzdEA0EuPU9YB0QMdNmMxPgXRAJ4DIxySDdECy/cSIRYN0QOxIpjMUkHRAYtFndu6fdEAJuzm//rF0QJ615gFvsnRAp5P44ce3dEBMTdY8I710QEaYR5G2xHRArtETM/3OdEAUkvSVt+F0QAawTOeL83RAFOgBDF0CdUBQEf3uaRJ1QJhk3somFHVAxDHYdJ0idUCWIloh5iJ1QNBOrejLNXVARuo4w+VSdUAKcUNIOGF1QOBdzf2MdHVAEJDiynmBdUAAkODcroF1QApHTFsSg3VA7lRaj6aDdUB81QQStJN1QMB2Yk4po3VAPLzmAjizdUDLeoCo+cF1QF8PuHgr0nVAY+J+/A3hdUCiDOTDOfN1QMZ8qsVHAnZAZ87SgkgDdkACKszE0AN2QKC5pM6IInZA2AM+uI8kdkDHkBVbSyt2QDI0omIfMXZAVUH/H1IzdkCU/r6xHEF2QMhhGht6RHZAWO+LUspQdkBtq6YNEVF2QOyfa0LNVHZAFjYrY1FjdkAsDkuqXXN2QOgt7eqRg3ZAhRphu8GydkBwzy7UeLN2QBlw1BQNtHZAViM80dO4dkBW1AeVzs52QEQP33qR83ZAPWK87lANd0CuLmR2ARJ3QNJz5DWQEndAeqpiJKkSd0AMUeSTDSJ3QAZJuz1yIndAh9+kKqMzd0AiPV1NDTV3QFXHZiUkPndAZNfr8JxBd0CpuV4d/EJ3QDBY3vsaRXdA2Gz1ZkpRd0D4KrKjklF3QNq2054oVXdAgn9Dq9Vad0Ci+yi4+Fp3QI4fHzaQYXdAbmwDD91id0C0neq1/WJ3QC7cEZwsY3dA9/Ov5Uhjd0D00BXBdWN3QCBV6LUya3dA/hINXk9rd0AokW/PJm93QN7q4EAm43dAhM5FBG8ieEDA91Kp0SN4QMZKYpvHK3hAqYCOQt8zeEC3+QlEEkR4QG6qKAp6RXhAoog5dspReEAAajF1lFJ4QE85cYnuV3hAm+IcEflgeEAyaouWtmF4QNTJGdpudHhAbqINwIt0eEAcrp/lo4F4QITWsDGahHhA3pW/FZiReEDpKCQHqJR4QPq35LK31HhAEQ+Kr/LteED9JsiuTPN4QPyzLegB9HhAIh+c34z1eEDt2NR7syh5QNJl2ub4QnlAkDhIYvtDeUCFaqHqCVR5QIGOGuPMVHlAEtUpSBBkeUB0Exq/LnN5QPpni6JwjXlAQsCFbMuSeUCWy4XnRJN5QOrrjHUimHlAYpugF7+yeUAlTrbkQdR5QHLU3MGnI3pAE57ArzokekARqaWzQjJ6QIKlrqgMNXpAJtVflxpFekDcIcDBKFV6QMD2/KQPs3pAw8eCJgy2ekDKfOtPErd6QHc9OMcXu3pAZGgSTw3IekDo1nJkZ816QFo2wyGs0npA1kbW6MbSekBmTQPuZ+F6QD4NlR9Z43pAwJHavRjxekCRdcb8SfN6QCLn2qOj+HpAAXJ1cAD+ekA4VjyuxBJ7QPiI8iRNFXtABe0dMRwYe0BtQ4LDWCV7QOaKKmCYSHtAWmg6OCKVe0DB25zkzp17QOwXwl4no3tACs1PuIGoe0Cuxympx617QAtnk7XirXtAZNxiEhvze0A/+LtRjPV7QJjI/uDZAXxAwXQvy5gFfEAKCI1X0hF8QOpaexHoG3xAVIeDw81BfED5o8xp1Hp8QJbqTaXcgnxAwAJIXlqZfEC34dlUwLJ8QKhC+D5Y4nxAoByf1RDjfEDyTHfia+h8QDbQpQRV8nxAerWTrwECfUCUR6rFSwJ9QDLsnOJRBH1AnT0mko0LfUDQ1Z9JRhJ9QBp9Wo6UE31AxAHWg10UfUD4GiJ+rxt9QLDb3kW3I31A4+srYKAxfUByhXB0kPV9QFynZMZBL35AzliofGt7fkAAKxRMjHt+QEhGYm+3e35A/f57hryDfkAEfVKa84N+QKC5G9zBi35AIkrg0ceTfkBmJyzjzpt+QKzK4OyVA39AngSvrOcRf0A7FQEF7hl/QNIk5VO2cX9AEB77t2KRf0BNl6rOWqF/QHFY/fFVsX9ABCqvFmTEf0CzMD+QgxGAQJZN3gIwFIBA1PQRmHkfgEBkhDp4JSKAQPwZe0n1SIBA4W0s4KVJgEC/w4uPqU2AQKQCszbnUIBAvSjrPhRRgEAOaWJIDlmAQF7NF8dHWoBAGAHF5EpegEDWRvcpPWKAQCMqiVBOYoBAOLnNwsVmgEB9IXUbYmmAQI5hgUtzaYBADM01bxBsgED+r60eKm+AQHbqC+/ehoBAGm7tKR+PgEACEll7UsGAQHfsOmxTyYBA7D22kAfPgEA796CkK9GAQOiz/rNM0YBASlW2XUrZgEBQ2I4TdNmAQInERuoh3IBAQb2hZEThgEDv+PqC9uiAQJDnIcA//4BAzz8gm0AHgUCcd+/UZwmBQAyFl748D4FAYMbzuTQfgUCzyAh5MyeBQDgN5pa9MYFAto7QJvRFgUAG9ZaJ4kmBQPiDlGNVj4FA3P7+YVWXgUDmt6qj56GBQGIfh+HXpoFAHDBqX4OpgUDmYKrvSq+BQBv7zr1zuIFA1bXaNgPKgUDT1+w+sMyBQHL19RDOzYFAEGq7wdHRgUAiwUq19NGBQNe294PI1YFAnOg0kvbVgUC9H10rhuWBQFDA4AcCCYJAUInlb9gYgkDhuiIR2CCCQDkwlyTRKIJADjjnU7lCgkDsCTUK6U2CQPsJdgjsUYJAkvVDkOhVgkAC/7AWKoGCQAUrJFdDiYJA8nH9ZUSRgkBITNg8PZmCQKSBPbEOoYJAPkZLIDuhgkACGCkND6mCQJS2MDU0qYJAU/t8rczNgkBm1IRmz9GCQHYBuAHI1YJAsIrQ/crZgkArWOHdf9qCQHA6Ro55EYNA6Cpmp3oZg0C0beUScyGDQLCmM6QNJoNAvRNBgnIpg0D0f5cyDyqDQOppeh9rMYNA4MDoMNxBg0AqE94S3kWDQPzSo5xboINArNy/KsDBg0BMtmhjwsWDQKTeRXcEEoRAq6GMwQQWhEBYNd2DAi6EQDKqHZYFMoRA/C1HrnAyhEA0NaDz/TWEQH2fPmsBOoRAqDC3a/9ohEACDaCy/XCEQL786yb3eIRAYLijplSyhECxG0a1V7aEQCTezBhq2YRAsA4XM2rhhEBnxCB/Y+mEQPzfis018YRAED3mIWbxhEBQsXNKNvmEQAKn355s+oRAwlCnY6BhhUA4UZNioGmFQIsDdCeYcYVAnO3iuJh5hUAY9TAP4BmGQFQdmr/mHYZADvh4q30Sh0AijNE1gBaHQKbOdX+RKYdAmEA2+pExh0AwFpIfijmHQHDEBr2JQYdAGeZCHGdbh0Bg4VBobmOHQOKh6ad1a4dAuGvOp8exh0D06p/lyLmHQCya+rbBwYdAmLeQncHJh0A= + KBZXds7jZUDd/tT/usJyQDtMc7KVAnNA+k+R6hJTdkBZnS+d7ZJ2QFn7C/FFpH1AIRHZYcFjfkA= - + - hrWdRUefZUeWQ6RFVx+lRvW8/UQJNRBH87XqRMsShEUTFyVFFe12RYjVEEX4ogxFZCUaRdu9/0b32xpGMoWkRT4b/kS92rxGT1OnRcUgBUU54YBFqdMBRmdISUWluBJFMzHPR4D24EQwlBZHL0nqRGzFwUXh3uZG++3dRHBEC0Wt8hdHGtzXRLy/REaC7cVFOZ2ARU7Dm0WxS9RE4C4bRbcV90Tpy4RFj98sReIPLkXIHYVFx+O8RQerp0UrI/FEb3pbRiC8L0XdWAVFXSynReUwUUnbnuBIuDxZRe5v+ETrE/5H2D9rRu4zSUVuzQ9HIg8DRh+3BEV0Ep1FzypFRQQt8kTvzXhFLYoLRl6YJ0Wepg5HHBowRm6uL0V46+JEp7nORKiLW0Ucgo1FiStMRlh80EQ4V9tE1F4FRq4wI0YqahFFLIjWRMfa7UQjqAlGV7wZRTV/e0VszGRFATIiR5p/sUUYAstFLVUJRVSvCkUbxU1FQH8BRT0JokY5889FoTI8ReLA6UTg355FPOvzRSO22EZwkt5GQXAdRm9SlUUXsa9FjW7KRG92PkWWmydG3+JcRrmXAEWEWb5F4UXfRJL2UEWozoRFzBvqRIP2h0UI5iBFNjYoRsJWgEaAFFRFU2eFRZPuR0VIj/xECJDvREQE6kfK+etE/0bIRi9hEEWUWr9Gg0KxRRYhckYLBRtFpoCpRsiVHEWG20VFQ//DRUfuwkRYdklG6cziRaYXGEUtoHJFeicgRbQRnkW5ID9FZaoqRd63XEZRKWpFHYUVRb/3vkWUvA1GOumRRS9nJUYhPp5FJzz4RPjIhEVjFbdFU+pHSWd1MkX9SUZIWVcVRZ90rEaHC01FC71wRfcW7kQcWndFH0bZRVaSVkVd//FEeQtaSMKKHUegbXBFz38sRS2Q0kTpgXxGUmycRcTHpEWqe1tFbekFRdOM7UU8qAFGjWfvRKN6UUVayb5HCovWRoIdQUWH8nBFIqqqRaIUVUXKXwlFNkGLRmkKQUZS/ExFLoZSRYQOBEV6Pg1F0xrvRDZYDkcwMslGRLShRcb4VEaUIilGnt20RcwWXEWqtxFFCdE1RdXN0kd3QI9HyT9CRlT4fkU5VERFrQBZRQLBg0b96DBG6Xt6RRGJmEWGAABGJ9EARoW8V0abakFFyRfhRE/iD0UabdhHnBZNRjhfB0Zv/rVGbV1lReQujUYpl1BGDwAnRjYmoEUY949FmFQcRTDYfEYava1FnSgNRUT+BkV+n8lENMUkRSAE4UViw59JtSYjSfxmWUXelk5IKh4DR9p8S0UsGplFk2MDRoWeNUWxpMVFPrgJRhnBIkWMMBRFXIvjRLJ1P0WCoC5FVjj3REEzFUVEphFF8OSxRdkOB0XU/1BFB5iWRnDinUWXOVFGTiTYRbyxHEWW6xxFBnNFRhXwNUXGRRNGbGY2Rf09HEV2MOlE1FLzRRsXokg2OxdIOnNbRYQxBkXD9KtHfUiQRm2dk0UwN+9EEMe/RRKF20SBel9Gc52GRRM+J0XMUS1FyldURsdrAEWuNBNFIfZlRfSNBEUXNN1F9FYZRfgZjEXHNC1FjYAZRTv+vEXJCYBFFz8XRcNZNkU7L7VGcNQMRqvjqUVTYyhFJYf4RAN6HEVbnP5EBBhURhOQXEXlL01FRMh4Rf+2G0Z/08tFoKQpRSHTAEWMhS9IqYSyRykQZEewUbtFukpMRhP1/URWiXpFltxoR9906kbcp+9FxTR2RZRhA0X5JFhIXH3aR1AlaUclkCVFoguSRpRsAEXH1cNFuxehRRbOHkXoZjJFosBQRlSLk0W1lCpFLJr/RE2LgEehvgJHfNKORQD48kWQlW5FUrLIRR7O6EQnuO5EolAGRpzYokX57EBHGPeqRpg2WkYC21NFb/2MRbyoDkVuAzVFppNFRwi7v0by4EJG7iBmRe2ziEXoAQxFrfSlRTD9E0V2gEhGEkfVRYbckkVdINlEtd4cRxcfZUYEMBVFlcIsRsnCq0U7Ao1FgJ8sRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 5oDPG2/BckA833LPp8JyQNf97Cs7w3JAQJp3YAHIckAIC0fJW81yQEoo+qxD0nJAsW5JTs7fckDACoyzUOJyQMaHSdyQ4nJAxvNj/8zxckD8VpJltfNyQHhyyQDQAnNAAQ6Q2PoDc0DkNWdWvRJzQMEuWL77E3NApvvEpaEgc0DIt4GIOSFzQB9AKDnQJHNABgZZWXlBc0ADI2juekRzQO5BqcWjU3NALkryJoVUc0DaiH61OmNzQPhPyDMsbXNAvgaDTFFyc0DkFK+AhXJzQMwedFfQd3NA2rZpUt53c0BCmnBJeYBzQI46SxsPgXNAa1adF12Cc0B3AUaNhpBzQO3kILxNknNAGNV4WGKUc0D8bi3r95RzQMjUyJK4oHNAku1+YJOhc0A8wImkW6JzQOCECkbmonNASns09wWlc0B8btJCt7NzQJHIvs7QwnNAvsNEkyjDc0DvouWX19FzQE5lMln303NA8J0kSePUc0BemkaYOOFzQEODWaHs8nNAyEpwTzj0c0Bk7rFKzfdzQOy/InUq/XNAXMJPqHkBdEAgyewcpQF0QJQG4nx7EnRAuCjN2k0TdEDKH+artyF0QDDsM2QcK3RAZoUB9ttXdEDQzAHR/Fd0QMp1mtc0XXRA5vLeGbdgdECXcBpVCWJ0QBoo5LqNYnRAs7dB4OdndEBuFN6AIXB0QPmk9cBAcXRAwpx+ETlzdECmOKOZ9oB0QAJQJ3dNgXRABn5WIyWDdEBl/YEaF5B0QOK3sdrun3RAjNPw1w+jdEDIUW2w/rF0QA7PWIxvsnRABLnP3Me3dED0uTZvEr10QHLhJ34jvXRAQsGbLLfEdEAMHQZD/M50QAFCeSq54XRArd9X3JXidEAo/NVYjfN0QD5K8QJmAXVArFtBQlwCdUDcizPkpAJ1QOpWHsIjFHVAqDF7cp0idUAfF9xC5SJ1QBU+ly7MNXVAEPeJeilDdUALm7Aw5FJ1QKooi8oPYHVAgqAKPDlhdUB85VPDdXJ1QGjZI32NdHVA/j5f9XiBdUDn7nN2roF1QDKrOjYSg3VA4pPPb6aDdUDWoK6dmoR1QJUgYGS0k3VAkxitOLmhdUB/byCfKKN1QC58LXQ1s3VAmc9FsmPBdUDuoycNLNJ1QGpSaNXN03VA3q36iAnidUDgM2X1CfN1QP52UM8583VAnw54/kcCdkDoLyg6RwN2QKS8NS+IInZA5in/tZAkdkCuOKSdSyt2QH8SB/IfMXZArU+S1VIzdkDDarOJnTR2QHDg0OIdQXZA30tqB3RCdkC05hEUyEJ2QIhbr1F5RHZAptsmNhJRdkBg0e0OzVR2QFehoJ1RY3ZAdIHdeNlkdkAujWOdWGh2QCpWGVxec3ZA4uBqrZGDdkAhCXPwwrJ2QK5d7x94s3ZAExYtqgy0dkCZzdT9vcB2QO0OvqzPznZA2qbo5vHhdkAcxU3SkfN2QEg+xQFRDXdA/jfjFwISd0DQZiv/kBJ3QB2nhqGpEndACDOSMg4id0DLU147pDN3QDyzrSQNNXdAMLlXDp1Bd0A/rnOP/EJ3QGT0kQobRXdAXoF6yUpRd0CYcrumklF3QJrl/A7WWndAeGhcIZBhd0DEqZUl3WJ3QPyWB7ssY3dA6/k/6kljd0AoDB28dGN3QNhclaPVY3dAV39/qjNrd0BKfn94T2t3QMiXd+F6a3dASm1K2iZvd0B3Etr9CbN3QNBG3dzL3XdANgFCzSnjd0Cqq6JAbyJ4QCnlJXXAI3hA3uNEB8greEC7EE9gEkR4QC634qd6RXhAc94fE8tReEDiV7kElVJ4QE6r8F2IVXhArUoUC+5XeEARpFkKt2F4QEIz+VxfdHhAvKDQqYt0eEARYLlpsXR4QCeu+9OjgXhA2n+bBZqEeEDGeqh7l5F4QEwJjx+olHhAEzMQabfUeEC86nMH8+14QDo43rNK83hAXNg9RgP0eEAcEhQujfV4QNZsElmyKHlApgFgjgwueUBoTtMG5jh5QCp6W537Q3lAvuz8lwlUeUAcww0azFR5QAB8NBbaZHlAgjVBYkJzeUCyZXYtco15QINk6aHLknlAmG/e8r+yeUBY3yE+QtR5QOdafx7N1XlAVP4Cr6gjekCKiiDhOiR6QM7dZnxBMnpAyXWtdgw1ekCsaXfNGkV6QGJkpa4nVXpASpEFPA+zekBbP4fGDbZ6QGRYdh8Tt3pAPEBouQ3IekDygpvPZs16QLCQVRzF0npA7oX1PTjuekDq7+CWFPF6QPi3Dk1K83pATmHGuqP4ekBVndfx/v16QMCy5MtTA3tAQz8xIioOe0Asob+dxBJ7QEabPBhMFXtANC+e6h0Ye0BNwaA0WyV7QDJ2vfWXSHtApsy4D/JNe0AS52Ko65B7QKYKEoMilXtA9KmEws6de0BWkheqJ6N7QJnwYVKDqHtA0W21Nsyte0CzzoquGvN7QDgCzU2M9XtA231qTNoBfEAwwcls9QF8QBSkvm2aBXxAAJuL0NERfEDGdHGe6Bt8QJXps2PuI3xAhiKcI81BfECgMMFe1Hp8QPhICRDbgnxAamy2JsKyfEA6UzfgV+J8QAIZmFkR43xAyA1qTmvofEClMxfZxu18QBFntWQU8nxA2129fVXyfEAQimJgEvN8QGZGa2j/AX1A0qARSUwCfUCbtWE8UgR9QJKSWGuLC31A/eYHBEcSfUA60sVolRN9QCbKWcVfFH1A2qsDm68bfUD2VDnXtiN9QKrOVHWmK31AwvLh46JbfUAI5eDDNMN9QCBUyLU9031AXOhgzZH1fUDnMpmmmHh+QBofyKq3e35A6lxCMSN8fkBQ0K/geIN+QNn4AMu8g35Awl7DQMKLfkBd7sWoyZN+QNoGHpjPm35AaBMPC5UDf0B0+XsWmgt/QDbABrfnEX9AJ7L9Qe4Zf0DAfVFf2SF/QG55K1K5cX9AivK5wWKRf0D8I+JcXqF/QEkf4mlWsX9A9vzOlIIRgECoF/mNeB+AQGMaHtYkIoBAikb6zvZIgECeC3s0pUmAQIKZzqmoTYBAYMXwJelQgEBcmkr8E1GAQL6bH34OWYBAMBOAKR5ZgEBPYyRmSFqAQKAi3zlMXoBAh2h+Fz1igEDaPPvSxWaAQDKMbUNzaYBAjcfoNSFsgEBNIsJNyW6AQLeZyyUnb4BAg2ztmx6PgEBSA1MMAaKAQBahKlhXooBAyzwcos2tgEBru4iXUsGAQMZRbYVTyYBAu417WgnPgEBtuO9/TNGAQOCmZsdh0YBAJNpyeErZgEBrJ0dQcdmAQKwVzxkh3IBApsNHGsnegED2JvonROGAQMiPIi9C6YBALAvq20nvgECsjKDWk/GAQPoYki+W9YBAfgW2EED/gEAt1rdGPgeBQB61HUxoCYFAO8skShUMgUDSPjUCJw6BQACwCwQ+D4FA3ZuTjjQfgUAYuD9YNCeBQBM2F+rxK4FA6J3s1fNFgUDdywCn5EmBQINm4JVVj4FAtOMZ+lWXgUCsdU+U56GBQEeml6DXpoFASoaZKG2ogUB6FIqhg6mBQMb+XSAvrIFAtD2yBkuvgUCq4X4rj7aBQNHV32B0uIFAhJG0sAPKgUAQCXfKzc2BQMDsuUfS0YFANEj7OPXRgUDYxcvTctKBQMovtL7X1YFApvToUoblgUDmJcT3iemBQChjdbXYGIJAjiDssdUggkBpo9zC0SiCQA1vW1TnOYJAQ+ul6LhCgkDgIo0xIEmCQLiUBrXoTYJAePKTJOxRgkBDGMyLQ4mCQEYx/txDkYJA3m7JnjyZgkBrYIyfDqGCQOhD/l46oYJAPmFZIg2pgkBX5JhQNKmCQIDEjC4JsYJAqIN5f8zNgkAGURNnz9GCQAADkvPI1YJAZo4zNMzZgkAKhG/6e9qCQJyHuJx5EYNA5+KB/nkZg0AmyNnBciGDQK4sWaEMJoNAH2D03HEpg0Agx2BuajGDQJEoZbbbQYNAzxk8Bt9Fg0ACpsm+WKCDQITn1ou/wYNANgefw8LFg0D0hAObAxKEQAL3RGgHFoRAnhlu1AIuhEB3acGVBjKEQAlr2dNwMoRAW3acbfw1hEDSzr2yBDqEQH+QNcH+aIRA3nB0Vf5whEDx91WUH6WEQBmv3fpUsoRAtCl0X1e2hEAqmgr/admEQG5ONVRq4YRADqQRDWPphECCY7ZcNPGEQMNWlbJi8YRAYKFyWr/3hEDtxeKUoGGFQMoTLx+haYVAdvMBbZlxhUAM/dd1t3OFQFJRDoKXeYVAp1u9UOAZhkCOrcGePSOGQL6E6GOkVoZAyh1gzIdahkAa4O5Kjl6GQGi2UHknuYZANrPa83wSh0AoR7HAgBaHQISsGNB/GodAgmAoaZEph0AMor4akjGHQJQZnriJOYdAzBzLQYtBh0By9T7pZluHQCxkEYFuY4dA7HbGk3Rrh0AQkAAfx7GHQKQWdujGuYdA4o1XXr7Bh0A= + NrgMGZxjYkBDHc6DfEJxQJEaXId5UnFAnikYzz+Td0DMvNRcKXN4QMAyGgDDA31A+j4O6utBgECKQ4+CLbqAQFxC3dM+WoRA7EZebIDShECHbF/WipKGQIAnAqjX2ohAGHHgbsxKiUCeeL6SL2uMQEV3hRQuc4xAnqesvNvzj0DsqxSowj2QQA== - + - R6V4RWwzP0d2X5pFPYe1Rhyrx0Q2nBBHmqPRRMggoEUQsDFFRwcsRcx6wESXDQBFNEwOR8aDRUb1TWBFFIbkRNNIp0Z9HrBFmTFPRbV8DkbqcHJFEomuRHDwvETxHbNHWR69RMStC0eI/mxFj12JRWsP+kaw3wRFH2fCRM9NFUUzvy9HPIbqRO+xXEbmegZGpb1hRRZgzUUW2MhE1vvQRPv6LUUerItFucXaRMJE+EQLUcFEp/FpRZBMsUVVtN9EgHcMRRZzn0VGlNFEBrpsRt8T4kR2KihFEj8HRapEBkWrC6BFuFdKSYwrjUVqtctIRNxhRck7x0QUqwtIn6uqRoDXhEUS6Q9HnwftReqk2kQ7jnxFuSeORZTjiUWMod5FcaEPRQQMGEVpnANHDlcARgk54EQ0lCVFVsXHRE/h40TvGA5F6yHsRLAigUWmQs5E061bRrAD5ETAwNNE5UHERbEpDUYuBQJFRVzLRGOPhkWaW+JE0Xz9RGIU1ESqz15GTuYGRTQbn0W+SC9F4ePwRv64JEUuYIpFaojlRNTH4EUeASBFmoy3RAMBGEWnqstE4IC3RKNosUTU5FBGReTERRPCzUS2Ki1FhX3TRedut0YBtbxGeZEHRoctBkURT5JFUhO5RMFN70RRT0RFgFM5RdPqdkbXudxGGDQGRTb0b0UE7itFuWyqRUjG1UQelFZF4SZqRTLlvkSpeRRF5trCRGBxF0USIMRFvKNjRlH+g0UIuzpFK6ODRf4wsUT2BtVHH4epRlvPYkVqCcNGB+eCRQ4gdkYzx41GvqIERUIt1EW7SJhG0ccDRjgtqkVVdMtEkIVxRc/OB0XRJ9BEHM07Ra0Jy0Ti7MhEgoHURMpEd0VrzZdGrgTSRWVrk0XfFhBGaw5oRScOP0bgvDhFk7aqRXjGckWzryBF9Rs7SXNJTUXiSFBFLc08SDjzCkVU8HdG19sVRT+M2ETspy5Fp7dsRfA3t0XmhBZFtG7fRFa1wkRvrhhIeB+7RlwFPUVw+bBEBXL1RBY7UUY4q8dFdl5ARZ8lt0Wpte5EfL7AReCTIUVeZ/REEIqyRzaqsUa/jhdFeK13Rc7TnUVpMxZF+sF6RlLNUUYyRQ5FQEr8RFCvx0Qa+ABH8jKXRpykskVNJtZEJAHbRLSKJkbY1hxGNs+ZRZBHLEXJuMBEIkjHRJ/Bv0T9IC9FwHq6R4l9h0cMampGIcDkRYZx50Qf5HpG/6c6Rvf/10RdgYpFwbGKRaPgqEWbsD5Fx2DsRTqSOEYYxJhF/njiRO3PyUedDkFGZNYIRjbu5EQ7tc9EWFPaRo7bxkSuHvxEtDCbRmE7n0YApctFK/16RSiVrkRD/UxF4csbRq9Kj0WWUqxExSGkRNAynUQyfcxEuSfmRM+DwkTmcWpJyiAKRWOOAUXM1vdICYAbSKNCzkav8zBFLV2MRbTm1ERokYJGKWHARSv6F0WZ/2tFykVBRlnrX0WOeitFKAIvRXEGJEXCtSVFKoYbRbXy9kXZ+AlFVLMoRQfQYkZrRW9FEoOcRL3zLUazOoBFpJ3yRJYnZUYQ/A5GmPIFRVN50kS77fNE8eakRVxu+kR7bI5F5bGsRJ6yikiDSvBHzn1gRVyKg0f1Zj1FFO9SRoUvEUXZ4j9F7gYjRUZzn0UqKtJEi97JREsyNUV18RJFDbtERkZVG0Uv4tpEbUARRa0HCUWsxhNF2ZNLRh8lNEWRhcNEHXPlRH35Z0Vdk8lFw/zsRDZOYUWwFyhFcNcRRTl/AkVontdEPo6gRWngvUQi8g1F+I0bRZKVukab3wRGJsNWRc0VwUQ/yRZFWULYRffdeEXNzkBGEdNORddrIkXB/etESlYURYMou0SuJflF8golRdkR6keC40lHWpoDR3e6s0X83w9G+HIzRSNUIkWNBsJENq0bSMNtr0fUY9BGsI07Rt886EQ2BgBI3ux3RxbG90YV2j1FhJwbRmLIMEVPL7BFFpk9RWWW+ER+BiVG+nSLRSlgrEXQSspEWtAcRxe3l0acto5FfJPXRQ+RGEXk3pxFCT4VRVzvBUUJPvhF2SKqRb31CkcLm4RGT5wnRm7lPUWmXm5FBKUORXbcA0e1PodGm4MiRj3gzkQV8IdFh4guRfsytESJOMxEkXshRfJ93EQitM5ENTjARSKJa0XxXMtEdyoFRstvmEWThB9FvUS9RM2tO0e3llNGj18uRQIoE0ay/6RFP7RBRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - uGjIGW/BckDoSstkT8JyQDduKJ2nwnJANL9PazvDckCgnCIqAchyQHp4f61czXJANZbxlUPSckAo3Hlid9NyQMJpqAi34HJAsqzhL1LickAeWYEOkOJyQKAv3xLK8XJA1alg0k7yckAbWX9itvNyQGfsM1H5AHNA9CKGvY8Bc0CE+HHtPAJzQO7vxQXQAnNAdYCpbPoDc0BbG7YSCBJzQDrXXBC9EnNASPF/yPcTc0AyiITJ9RdzQCp3DiN5H3NA1dpn26Mgc0BX5Qc5OSFzQGCf56zlIXNAysNlU9Akc0BMjohFRjFzQHu8IWOgM3NAphlISHlBc0D1xAmTekRzQJDEa8KjU3NA9LqBv2Zic0Ca7g7jOmNzQJCzeAYsbXNAQBqp2Ghyc0AonVVbhXJzQIdHZ4C5cnNAyNdCAEx1c0CSD76Dz3dzQPJYk3zdd3NAYACjGSl9c0D+3Y7qeIBzQIJhrDwMgXNAh1exTIeQc0B/d/FUTZJzQKXJs7xhlHNABkHRkPeUc0D2BPukuKBzQJhN6tCToXNAIKXZPVqic0Bid3K85qJzQHahuVEFpXNAPJvxpLezc0C7ZZpiD7RzQBLhLWbQwnNAa2CR+SXDc0AFQ5hq19FzQJCF73Tj1HNAsPoelDjhc0AkkOcrZeFzQCpofZrp8nNAPnlelDf0c0Br68GreQF0QAxW6b8HEXRAqmjnDXoSdEAoyAj4TBN0QJiAfX5dI3RA3o+K4RordEDSt0pdIjN0QA+BBsP1VHRA4HNlGdxXdEDl4rM1NV10QNB4F1e3YHRAwV5nMAlidEA0wyExjmJ0QLSMBi9PZHRAuybF/OhndEC1W4qWIXB0QO4MoEFBcXRAFa1xqzlzdEAgO9qmRIB0QGRmiExOgXRARsCYtiaDdEAF6LhGR4N0QDdnheEVkHRAOPmu/O2fdEDaavkbz6B0QHyOV0MQo3RAiEo/9f+xdEDYl9zobrJ0QABC0yLJt3RApoXHNRO9dEAYpW1I58B0QOYMb+8OwnRAelYON7nEdEChGOrd+s50QCD2pojh03RAhtFgos3UdEB4gzaIleJ0QJQ1CvuM83RAysWmj6QAdUBK/0hlXQJ1QPJUSvOkAnVAy895fGsSdUAnLSoqJBR1QKHpMvOdInVABSnDYeYidUDPVawTzDV1QHIMlFolQ3VAf9tY6IJRdUCcQ9X25FJ1QP8w7NJ3VXVAxKA3zTdhdUB61wVUd3J1QBF71IONdHVAOuUyU62BdUCwEdQCEYN1QDIjUpmmg3VAxLmQSZuEdUD3/q7Es5N1QFtdUuzMl3VAChwTJrehdUDyCT7aKKN1QKb8Obx+r3VA7FtjzSvSdUDqGIK8COJ1QD7ZwWt643VArjkplTnzdUA28+HqSAJ2QFgr2eNGA3ZAGqz+0s8DdkBlKHg1ThR2QCfjwNCIInZA2L77WtEidkDsreAVkSR2QAS7MiBLK3ZA6a5Kmx8xdkAeyHU/IjN2QF5y4pJSM3ZAw1GSph1BdkCwYIVVc0J2QJej+lPIQnZAt3smX3pEdkCU5BLY+052QOLWiRgSUXZAPPrPKs1UdkBpQ6bDUWN2QOY9yDzbZHZAbBC5s1ZodkCeYhXXsm12QDL/mTNfc3ZAmIsvhpGDdkBChUdQebN2QFbpVlUNtHZASu1LdtW4dkBXo4mOz852QMkIhgs0AndAuoH7gVANd0D2utaRARJ3QDz2kh2SEndAgfFTjakSd0BE8edF6Bd3QCz47rMOIndA1OJhHqUzd0DE87tYDTV3QGJilOsmPndAHMZnOp1Bd0ABEsQNsEF3QF60aNb7QndAqkbA/RpFd0DKgTpESlF3QFPDu/aSUXdAqmWDLipVd0CWVIci1lp3QLQx0FyPYXdA7SNJn9xid0DKRYbtLGN3QGaCCjVJY3dA7Ddv7XVjd0C2DQrnNGt3QEK1qh9Ra3dAxvOE2ydvd0Cm0TVDTZR3QGJdxOsJs3dAHFA1O5q0d0BLpvhwy913QIhFH/vp8HdAUmXOeD8geEDEKmUGbiJ4QEYjhy7AI3hA/ffnJscreEDOOxpiEUR4QKCEkp56RXhAYsIgUcpReECYySNhlFJ4QNZ5J2WIVXhAIriaK+5XeEAXDg3ySF14QPXk+VP6YHhA9GFmR7dheECGwVPwUHR4QDIib15odHhA5qpt2It0eEBLFfaqu3R4QFQnymykgXhA+y0RGJqEeECbwFtbmJF4QGg7XmmolHhA2pQ3lc3AeEAaEmeFt9R4QOM6WmzE5HhA2+Fb2/HteEDB7WMPTPN4QBYjfmgC9HhAQVCQOI31eEBpHTEHtSh5QEA3TBr8Q3lAfHwq7glUeUAUDJaOy1R5QOJL++wPZHlAgljgJNpkeUBb5DREcY15QAxxGCLLknlAkD1XDEWTeUAEUWvGJJh5QCBGYEPAsnlAEALWsULUeUC4aNcEzNV5QBd9Q5KnI3pA1v9LFjwkekAy/nyBDDV6QJRgx/sxO3pAbfizcxpFekDPw2h/zkt6QKc+G02AUnpAZhRTeihVekBiu+j9inJ6QPYahm6tg3pAiOXg+w2zekBoRvn5+rN6QETWRVMNtnpAVgZIXxK3ekCUcFg3GcZ6QNaHkIoNyHpANLFFC2fNekCp7ocyxtJ6QGzqFg1m4XpAv3M0Sk7rekAq+HX6Nu56QPZT5PMW8XpAuGw86VzxekCyK+6OSvN6QPHbtbWj+HpAwqDwbwD+ekDqeuQmSAN7QBQhPJ4pDntASyA7k8USe0DriZfLTBV7QJzumnMdGHtALOL58Vole0BMmsUmHy57QJYPL+ITQHtAotbUHxVDe0DV/tJRmEh7QJQy9/QjlXtAAHqS686de0B4ttbxJ6N7QPS8/3cxpXtAeS15dIOoe0CoRIsUya17QKQqPufkrXtAGsJK0iize0A2oiqxv9F7QJXlD2KW8XtAiKVIMhzze0AuzWpli/V7QMZ6jSHZAXxArs8GQPUBfEDeufLnmQV8QHZjC6DSEXxAeaTyEOgbfEDmv9Ee8SN8QMBmdyfNQXxAotFvkAhYfECKs2LD1Hp8QDlIaJnagnxAkwVfdDeDfEDb+VMDy4p8QGpQ22lamXxAKGRLsLSefEAoeOaAwrJ8QEvdXULN1XxA6suxcljifEBEbtdUEuN8QFx6sThs6HxADmkYYsvtfECrzSMQGPJ8QPbDS9ZT8nxAmiezPnLyfEDCOlcPF/N8QJlrNnVLAn1AEs3jZlIEfUBdG8Nfiwt9QBRTYzZFEn1ATB/fwJMTfUDY/QRSXxR9QFYFgJOvG31AYBHAMDAjfUCCjdvvtCN9QBBrkJ+3K31A0zMeZpH1fUA8YXcaYlN+QEbHQS6PVX5AwKmM2pd4fkDcrL83hXt+QFS9hby3e35Am9rN9/l7fkBWAIyhRXx+QAZUbfoufn5AVlCRy4iDfkDHXpW9vIN+QECyMUXCi35A3uemLcmTfkBSWe2kzJt+QOL/5SOSA39AttpIpZoLf0DjEZzW5xF/QPdNzgrvGX9AAE+rJtwhf0Aur+Y+t3F/QNBEfPSvgX9AtLTOXGKRf0D6ZSdHXqF/QDuGSyZVsX9AyKMn42PEf0DQ2FtGghGAQCoctDB5H4BAPIWhyiQigEBkQ34a9UiAQLb1TMukSYBAxiehlalNgEASZLS15lCAQHxFK3AUUYBA3PiToA5ZgEDUrbncR1qAQOZeBeZKXoBA5Q3gU8VmgEAxOlRxYmmAQCez9QNzaYBA5qB4aSJsgEDgHPhLtm6AQNiVer8qb4BAihj2DTGEgEBahddp3oaAQEBzJzv9ioBA3qulcR6PgEDyE/W4H5eAQDyZLpACooBAYMHRYVeigED8b4jBWqaAQBjtZEyIqYBAmEkeFc2tgEASQXUpE6+AQOL5gTPCvIBA2CiAglLBgEBceqv+UsmAQFB4wfMHz4BA3Igf1lPPgEDK5+BFTNGAQLi+joRK2YBAqpPlQXPZgECeulEfI9yAQL2sGfjN3oBAcwNVnEThgECIysRtTO+AQJLlmyRd8IBAzihtw5PxgECX4rohl/WAQIx/gYib+YBA2LYZOUD/gEBDZffOPgeBQFdULxdnCYFAaLcT7xMMgUDMlbmGPA+BQEi3d6/nHYFA7rsevTQfgUBLDA0VMyeBQGoNPW70RYFACFLIfeRJgUBE/xOG602BQAjx9vkXfIFAbMlFwPuFgUAo96JjVo+BQEhquwZVl4FAaGcJj+ehgUDEWx2A16aBQDYegwpsqIFAxDOO1IOpgUACGc+JSq+BQHRyyW6OtoFAgMhmSJG6gUCw+Pn6zc2BQPQHb/7Q0YFAFtOfg/XRgUB1s3fQ19WBQKiPy2CH5YFAFIskIIrpgUAcI1Yhj+2BQIo4gM4CCYJAj7zpjdgYgkAy93VT2CCCQHZjmO3QKIJAdmOYg6IpgkBqowmR6DmCQPCUBMq4QoJA7WwKzCFJgkDR5H3I6U2CQLK7pJDrUYJAboIeMfFVgkBG93scgWmCQB5X73YtbIJA4gYxhUOJgkCv6WPwQ5GCQGVSba08mYJA2saT5Q6hgkAhHnfsOqGCQN5kxMIyqYJAcm4llczNgkAbhgrSztGCQGBM5+DK1YJAbLcHT8vZgkCEU7XBv92CQMertyTS3YJAWvfdhXkRg0Bq0jEneRmDQGo/E41yIYNANJ/ttg4mg0Bm3KadcCmDQOLLIGcSKoNA5O42k9xBg0C46LD83kWDQFPv2tJZoINAL2zk2r/Bg0BuwTg2w8WDQKf3pk66yYNAOHMqYwIShEC+NYTzBhaEQFq0b3ECLoRAUt0eTAYyhEDQqeMocDKEQJTmhBT9NYRAEq4NRHQ2hEBih+OzBDqEQP93n2P/aIRAbYk7t/5whECSGSrfHKWEQOLdv4NUsoRAHbvDW1e2hEBuASAxb9KEQIKI3z5q2YRAZrdzK2vhhEDUF8uuYumEQBYeYbI28YRAPsOM22DxhECaOQLToGGFQNv2Rl2gaYVAXNqUkZhxhUCU9KfAmXmFQAn3TkNHpoVALEL4ruAZhkAYM6L05R2GQI76b5uhVoZArXFfeopahkDcc97Qjl6GQHyeY9InuYZAZ73RWc7ahkDM328IfRKHQIunjc6AFodAhfZDKpEph0BsXKRnkjGHQG6OrlKKOYdAADtQrV1Bh0AJApGijEGHQMq+uyZnW4dAeBrO7m5jh0AY2vPMcWuHQK73KtnHsYdAIqYd0Me5h0AAl11dv8GHQAiGfmEA3odA + KBZXds7jZUCwLijacuRqQNS+X4D+xG5ARtUTyqeidEAyOsR5l5N1QA0wqAPA03pAIPjD1gXEfEBjhKwIWER/QD0CB5FkioFA - + - WoAzRVrc6kT9O0xH/BV1RY+NYUboloVF8SwJRyHox0TVRzVFwUxZRQvjHUXRfDdFPme1RKUQoERDAABF4beaRGbr6EQAYidFMWKwRiK2pkRNh6pFrKiNRTXewETW5eJE2WKlRMlwuEY9DbBE/bVdRWUM40S7QLJEW2NQRVZtp0XKAZBFj5WuRM2NB0UDF7NHceQUReruJ0dfzkZF2PgXRYNIrEU4Ep5Fi/slReAAwkZRAfVEY5MXRQxJI0fKKcBE0ud7RpD1ukURz0NFk6mtReZpv0SIbQ5Fx/hSReFmx0ShqyNFihAcRajYKEXNon5FYp+pRW2+o0SCDERF/RgKRS6fIUZbuvREp8RqRffCI0WZdaVExw1vRUpf/kQMrb9EDVLCSENFSkgPlGRF6NUTRfiLXEdjOsJE4G7bRfGviUVPcydH/WFXRn8LGEWY/4tFybreRW3Un0S4XpdFMoqnRTvCHEWnGqNENeq9RclS00ZPjltGJDk5RVYWs0STbbNEywfoRFKD3kTjMuNE+y3YRM8Kp0TwRahFxuXsRNe4dUamiQZFYlynRM3wGEWMm+tFQ7TPRQynG0UA7sVEZ+bSRJNDQ0bKbgpFTy4FReaAJ0UYRjpG+GVdRYDXSkXn/OZGXv/sRP73HkXkZi5F4I7URAfW90UXbKJERjJ9RfKfCEXV5fVE01RvRmad/0V9LBRFpKEHRVlY7ERqvJBF7FK7RNBIoEURa8hGqjbfRkNvt0SD6PNFzQmgRRWcQ0VMmwdFgSczRf8no0SNOFdFADZCRlC3VkdLkjtFHhBvRX7pGUXLpbxFzNPKRRW1UUWVznVFa/kVRboTQkVO5eFEPYbwRQQIiEZ8pkBFFsBIRSMM00QYGWdFNOEpRTCR6EeJBjVFNSoPRxAkB0ZaWWJF/bzLRglplkV08cNGA93vRLWnEkbpuJRFxDw6RRszrkYZ9hhG5G4lRZNNxUWRLlBFFvRgRQ8O2ESXfr1E3MfHRLc75EQUvrJElGzIRP1F/kRkPtlGuhU8RqYvzUX0aeRFCHL8RfJM5kVu8xNFFnjmRYjT70Sy6CJFKhfIRK+fEkX6/4RFhQc1ScuilkXF+HhFqNQ7SDxqPUXqaHxGa7LQRAq91kWdpPdE1qAPRciCEUWZ7YtFmvTDRcC1U0VdWttHyL2ERpbteEWGQd5Ew5mcRIzSVka3H6dFY6cyRQa1FUUfni1FExLuRZZQuUTqgeZFfvOWRdIFv0coFbhEVXWvRmznqETAWhNFlNztRPVW70T4Vb1Ee3M+RVYi60TA78RFYwcuReGDwkQ5TnVGzBpBRoW96US/huBE/ZLKREKLMEWnxgNFgsgTRaDDAEfJop1GRfenRXtHGEUeqQFFj1TkRbvsFUZtOGhFfWU4RdRuxURamAZFvxqhRBInrUTWpu5FammiR1//ikf3QBdFHvxBRr4scEV+tQtFoBVDRYowI0VcMrFFmjwBRdRFj0YiLVlGzfF4RYJ8k0W266BFiOzXResnT0UmL8xF4KnGRCJzTEaprpxForizRHORz0R2pAFF5Y3ORPYL9kSSI69EoqOXR0UedEbIhudFiqq6RJoov0Qv8GVGXqddRY+8sEQPAGpGqbTCRjsSJUVygSJFR3DBRLIKjEWhXzVGGmQTRauCjUUtPttE7feyRFp/yUQ5YoJFRAOsRFaz8EXT1I9JQgPURYjh3URTjtJE5d6LRYcPG0nQ4TlIYSgER3bisEUUo0hF3EX7RBIalEZ/ruxFVPchRYYXrUU96eBEzlxVRrmQbEVBpTFFQ0W1RHx0ckW36i5FodQDRXHu/kQrLrBFUYniRAOt+kRLN6FGbuOyRfsPJ0aTzN9FpVo/RhsqUkUwq8pF+ClgRROU4ERz4/BEdS0mRarkxkRCb6REK1aqRXeFlUQEWgBFkkoNRhD1bEX/CcVE9I29RIxnA0UgLLtEdAMtSNcnhkcvYPpErwzURLF9HkeVcOZFYGeVRa3OAUW2auVEUBQoRS4B1UTym9FES+ODRjCYAUYl0w9FklAqRmgLgEV/6xlFJl4NReFrJkUl7LJEBb6NRpuuOUWBEidFYUX7RBQLwURV9fdE2EjHRDJE4UXaIfhEjJ1IRSpyTEXg+AZFFQooRd6jsEUJ00hFbm71RE24SEav0vBFV64xRTDf3kTMUQBG6qmGRfe+xEQC0gJFWR9SRk9+f0XRTD1FVQzNROZSHUVDaSJF5FbSRDHy7kUjI2ZFit+1RKyDx0Tu1g9FvJv+R0tSXEeaUvpGPGyoRY+HH0awvzVFJ+dwSHSXCEh7gFdHjp2URi+E7kTBnz1FA7ibR5jpE0cX95pGs0seRdK1wkU22edEo+y7Rejf9kTyYyZFzpJpRm44tEX3SuREyRZGRaifdkWI9thGYOV3RoOpQkVioZNFUQQBRUEW0URIteZFdFkxRcFdBEUNrQNGW7mqReSusUTTZh1HqrGURhnBIEbgBFtFaBOTRYUrs0aqBSpGfrX1RbpEBEX9xtpERJLIRAI0wkQ73xJFNL2TRWFrxkRHEu9Ez/MuRTWXmUUDjYhF/HkwRoYH+kXEt5xFsmS+RIzQGEVDgSZHqspBRudNBUWo7ctFfBwsRVgJ7EQX4ilF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 2AadaHfAckBc7baacMFyQOLZcz2nwnJA7uY3HTzDckCVM62GWsVyQCY+WV0ByHJAiJWhPFrNckDId15yQ9JyQFK7RZXP33JA1gZt2rjgckBLW2pgUeJyQObPJIeQ4nJAfIJriMfxckCmPuAEfvJyQGzUWBGj9HJA5C07qsL/ckCiMuz3OwJzQC7jCB3OAnNAHJ5DkfoDc0ACd6GtCRJzQFGARO+7EnNAfCAU3AUUc0DgqYU2OSFzQA416+POJHNAkyO8bkgxc0AIsUlS5kBzQEjsjjd3QXNAACASiXpEc0Ahnc7RmlFzQLVfFJSjU3NAfIW5wnlUc0CCj0nfOGNzQCbv5vUrbXNAEi0zi2pyc0BkxmkAhXJzQI7eYXG5cnNARGTcek11c0CcjTnaz3dzQB+3obvfd3NAXGDF9Sh9c0A+8ri3eIBzQJl59LQMgXNAEpYIN4iQc0CUOFZeTZJzQF5DUx73lHNAGuAJ4rigc0BqVJZHlKFzQCj+xyRaonNALjb6bQWlc0Ao2+OHtbNzQDTJzHcMtHNAzjIyE/nAc0Dq2y7Pz8JzQNYYSNknw3NAca4SD9jRc0Agbrll49RzQArSOy054XNAzk/DZ+nyc0DtUCIVJv1zQNsfA+Z4AXRAX1Lg8HkSdED8VnbKThN0QHD1g3S5IXRA5KIqIBsrdECyiea/jFV0QKKkU7m4V3RApsmAq9tXdEAuFz+++Fd0QLa0KugOWHRAOlMECyJYdEADcGGgNF10QD3vnDS3YHRAF3dcrQdidEDSz/6ajWJ0QMXe+/3nZ3RACktm80BtdECqup+xIXB0QGqZQr5AcXRAqPLbgTlzdEBDPKH39oB0QL9SxRFNgXRAjDQo+iWDdECAmW2vFZB0QOCHk4Dvn3RARHwuILiidECctN/DDqN0QMMiodEIsHRA2silfP+xdEDYvRqrbrJ0QEB9aSrJt3RAytUhgRG9dEA84lUHJL10QF5AKBx3wXRAiKB1mbfEdECggqjt4tN0QKxh0p7L1HRAfcNNDrfhdEDaIa34i/N0QCIWOgyjAHVAUKGK28wAdUBgCr/dZAF1QNrBOy5dAnVAt+X51moSdUBmx5ypIRR1QANA0HOcInVAONo+t+UidUDLBelAyzV1QH7KC6MmQ3VAZkoTJt9PdUCm1XUg5FJ1QCKpskULYHVAWKXMdjhhdUAaLDV68mJ1QFgOfaJ4cnVAfDVeTo10dUAE/tYeeYF1QBl+zUutgXVA/WVwbxODdUAoqpBbpoN1QPozLx+ahHVAMn4IGG6SdUCuoO0KtZN1QKjM9rTIl3VAwGNoVfiXdUAvPhEqJp11QKAKrry3oXVA0x50piijdUBO7cw6ObN1QIASsjH3wXVAWNnycivSdUBI/q+TCOJ1QIgS7gl743VAAfVHWjnzdUB1d8dLRwJ2QFQTAR1HA3ZAyG/m6IcidkBOWdWRjyR2QGpPxvNKK3ZA3JL0qh8xdkB92+g8UjN2QO5RDEseQXZAG7YDG3JCdkAu11fNnEJ2QDiATuLHQnZATrW9h3hEdkCLxpL1EFF2QIiMejzNVHZA8hK5DFFjdkAmVxAP2mR2QHh60QFXaHZAAOO0dLFtdkACFx8yXnN2QCC6psmQg3ZA3QHKG8KydkDkzQqweLN2QLNjhR0NtHZAPLrWT83OdkC0jierkPN2QATfAl1LCHdAIGBGk1ANd0B4LWQspQ13QDpfnEgBEndAAjeWqY4Sd0DoKnjIqRJ3QKepQRzlF3dAXuL/8Awid0BwTTAuciJ3QAanyPSmM3dAhJFCuAw1d0BcsGW7nEF3QN/DFAP9QndAZTjXgn5Dd0CQwjXPGkV3QIagLrdKUXdAFgwXvZFRd0CccUGa1Vp3QAEuArr4WndAeEX82Y9hd0Cw9mrt22J3QLLYCrQsY3dA3INe20hjd0DKcVGDM2t3QAQxnyFPa3dA/Ubm8CZvd0BGRlA7eoJ3QKptj8IIkndARxh0DJq0d0C4jN9lzN13QCYV57tP8ndAT539iG0ieECAMj3GjCN4QBfTP5K/I3hA0mMd0McreEAkSgE83TN4QEhj24AMQnhAzzVhzRBEeEDTKiMoekV4QFDSzinLUXhATlJ4a5RSeECIVGZQhlV4QKK8aFDvV3hAw5UdVEddeED+7ypJ+WB4QGDrRXC3YXhAjJEZ11x0eEC6PgpQi3R4QIxCX7iwdHhA1t0ZgMN0eECSVHAp/nR4QHEu6KqkgXhAhmUE55mEeEDcFEqBl5F4QNIa7hyolHhAJEPpes3AeEBCVgqjttR4QAbvCtjz7XhA2ACzpUjzeEDm65Q/APR4QP6uWXCN9XhASbg2VZoFeUA4WgU8syh5QL7hHLT7Q3lAAFShZQlUeUCeDgCYy1R5QEqZOHMUfHlACFgEGHGNeUCUMVg/ypJ5QJH/7cgPmHlA4xtm0CmYeUChfzZAwbJ5QDRNe9hB1HlA/d638czVeUCwi/jSUOR5QDhjHH9nA3pAAEitb6cjekC0eTsVPSR6QHXZ6ScMNXpAggttIBpFekCQ8pHjgFJ6QAJkdZ0oVXpALgMq5otyekB48X3w9YJ6QPQ1ESSug3pAr/r84AyzekBNbe3W97N6QBSRfw8NtnpAwJY7whC3ekDNxHQ0Dch6QOggGY9ozXpAoue+D67SekBR0fnHw9J6QGapFxZH43pAjFjM7jfuekDnx+5EX/F6QAhlwpBJ83pAAC+oHKP4ekCHPrY/AP56QKYk+djEEntA/HtjIU0Ve0D2ogAYHhh7QDLzettaJXtA53A4oRNAe0CKW7szIpV7QHUHhHjOnXtAzljweyeje0BIUZaaf6h7QM6OjG3LrXtAfkMfuR6ze0BUVJ9NecZ7QMX1LLgl5HtAiN8SPpbxe0A14wHRG/N7QBHIUhmM9XtACNBV9ZMBfEDkDLtz2QF8QNs719qaBXxA4km0tdIRfECC58Xu6Bt8QPiKOJDuI3xAI/WrpcxBfEBxptx83FF8QJM9QhrUenxAAkrYWNuCfEB2Z3mSVpl8QA8uqv++snxAdFlV/lfifEBw00rWEON8QNdAr9Nq6HxAZiFZt8ntfEBYAnu4FfJ8QGIfpwhV8nxAgZosdQECfUC2Kg45SwJ9QLw0bvdRBH1AUsjSL4wLfUButQmXRBJ9QHDXeaqUE31ARj9OR2AUfUAH1ZPZrht9QFrXxwo+In1A55CE5TEjfUDCPzsgtSN9QC3CsjEvw31Aojmq7Y/1fUD28W4WjVV+QGNfVE7UeH5AlWXUZ7d7fkDgZ20/6nt+QIz0OQYLfH5ANXGVpzZ8fkAMqyJ7Vnx+QGXiLS0ug35AliBAjbyDfkCSwP257oN+QAO4Kh7Ci35A3uSW2siTfkCGNjvVzpt+QBj9M5CSA39Atn7eRp4Lf0BvsTai5hF/QHS8/t3uGX9AGELVPtohf0CyQdETt3F/QEcV87ilg39Al70FfGKRf0APwRnDmpN/QDSg0C5eoX9Avg2J/FOxf0BQTR7cgRGAQDLEgFMvFIBAVAV8fngfgEDCe9bZpEmAQMZZS/CnTYBA940FuOVQgEDkitzmElGAQNhn51QPWYBAJj855UdagEA69f1STF6AQCxndy9AYoBAHshsBkZigEAjIrOpxWaAQKIobBFjaYBAm1Jl4XJpgECEI+FsDmyAQM4zuykhbIBA2BhEJ8RugED8HrSkKW+AQDgfi34fj4BAh1QCVh6XgECSDUCcAqKAQCcOlItXooBAKCG+1FqmgEC06qPfhqmAQLWQQ2leqoBA4Aogkza+gEC6hMlfUsGAQIC2NS9TyYBAxJtML0zRgEBNMTz/YNGAQFrLfUBK2YBA8hDYHHXZgED3jvMiH9yAQAAXrlFE4YBAHAIIaFThgEA6dpEj9+iAQKYBPGFM74BA/924kJPxgEBbxK9/lvWAQLs+1M+d+YBAngV9xD//gEB40NIaPweBQDLooFhnCYFAmg7ivhQMgUAAVLClPQ+BQE7INublHoFA6nnTrDQfgUA8Xk1QMCeBQDQ2nKInP4FArGMykPRFgUAHq4zE9kmBQGCTtZlhf4FA7hbbv1WPgUAIesQdVZeBQBpIYlfnoYFAQPMpitamgUA6B7ZUbqiBQI6SvcOCqYFAxo2TeUqvgUCoOxHtjraBQHCYonSSuoFAxAcRQQXKgUAzodhIzs2BQF/3s/7Q0YFAn2UMHfTRgUAT8Xa7fdOBQLYdoibX1YFAWTvnXYblgUAwrPb+iumBQLEl6UjYGIJApOBVNNYggkC6+cPjzyiCQOghbtegKYJAGIv68ec5gkByGVFgt0KCQAekudToTYJA5LeNnOtRgkDaFXiVgGmCQBUbRUcsbIJAlmdpwHl0gkBoy/dZQ4mCQHtKZ3lDkYJAXQnsrzyZgkBM5KXmDqGCQPzsB0k7oYJAqP/GXg2pgkDgxtG9MqmCQGwLm30JsYJAkMS2YszNgkDPvtv4ztGCQOYMAO/M1YJAC4uNKMvZgkCS2r7jzd2CQKZXCGh5EYNAwtJ8xnkZg0ALEfbkciGDQHGi5NYMJoNADlU5u3Epg0DQPDpFDyqDQMPsawNqMYNAVO0NwdtBg0AYESZ330WDQBAzEydLg4NABoUeL1ygg0DCaIP2vsGDQAgtBQvDxYNALhH5PE0OhEAAaSV0AhKEQA6o7fUGFoRAkg6zNgIuhEBYQRa/BTKEQIRYtCFwMoRA7lh2Fv01hEAubc8pcTaEQHwQVLj+aIRAG1YR8P9whECOkSbYb6KEQKDHn9tTsoRATU6GYVe2hEAeQyRKW7qEQPhIf2UYzYRA0EZY82nZhEArxioBauGEQOoLxthh6YRAJXCKwzXxhEB+GDn1YfGEQNwDwaG/94RA+4Vf+jb5hEAG/FZpoGGFQE4f4ESgaYVAQxOdoJlxhUBiaCIotXOFQP5+h1mXeYVACuBpI5GBhUDkE1p4R6aFQH6Pr77eGYZAC5NeDeQdhkDlwQZMolaGQJGTxsyKWoZA2RyqlY5ehkDsCgeFztqGQGIEOqF9EodAIiCpWn8Wh0AerFxgkSmHQMEa36qRMYdAYwonFok5h0AxbrfEZluHQJScpLZuY4dABZu1+nNrh0CLldKmxrGHQH1SXLDGuYdAwPSOkb/Bh0B4BREW/t2HQA== + NrgMGZxjYkDs0KCvIgVvQBpDcYES0nJAmHHSiBTzdEAaoU3VauN5QPN9HNTXQ3tAILFKpgz6gECMH7IlQ6qBQE2370tuIoRAjE6gT+8yhUDeu3Dkr9qGQNARmfZne4lAC8IVihEDikA= - + - pQjIRFEVfUXym1JHy9SiRd3p2kSjkZ9GVRYSRZaFFUfmYrVEsS0URXFLlUU5/PhE2eA9RYaR4EQXYdtEVNHVRDy61EQ2c/hEV3H7Ri7g50Rvb/9F3O6PRUrVtUZ3/F9FKKmgRNLWqUSLyp1FtCfxRcFMukS1rJRFaXSmREy8BUUCOrpHbD+6RMQRGkdChedEXpj8RLFgoEV7XclFMNoFRSUa2kbgvNtETYMSRUUNPEcZxD5G7ubXRb7makVZmeJFKO4IRTTLQ0XNNBhFsb3KRHopgUVVBUpFvws2RTEUp0XY7uxF1SLwRCUj6URnXnRGeBInRfZGE0UYE99Ei7drRRLx40ROxXtFmm8hSXWKlEUB4xBFc34DRVqBo0iwh0NFMDX6RFtQxEe5AIZGvV47RX0qjkW8/CxH+bHtRZM5WUXv87lFA37iRTIkskVPA4xF8rPVRMf09URVUbxE9W5pRblp1UbIKCZG330ERb1Yy0Thpu9EjiAQRe9mv0SVj9dEgiQARdRvnUWSCeZEDu7FRCGDs0SCOX5GvU0KRbACCEWb4KlFDofjRfFzAUUg4hBFmhjQRCaUa0bcQdNE2yANRUoevkRvLA1FBRNERh/41ERgM6NFq9wbRYdjAEc5VBtFAxW+RD/5jUU6vbFEBrmwRM6XHUWA0LxEeO/oRdfCs0RRTP9EbjwRRWSA8URHMbBEaX8NRs1mu0VKKN1E80SIRfnJBkaYKr5Gw0+1RtHLnkVfLoJFgVMaRb7CtEQcLxBFn/88Rds5HkW/VHtGY1fJR4dcN0VIv9NEjHsBRSPZJkYy8AdGZtEcRbGvrUV3vZBFmaNuRdRGQkUXowtFL+0MRl/ywUTNN5hGNCpSRU9HSEWLksJEkmUyRTke30TpsvtEh+H0R/darUbLW0xFyWndRHTVukbTZLlFfbpxRgCzSEZq5elEzFBmRermu0Wjj65G/grVRRoYx0WqqBtF4BRKRTRK0ESuMQdFXXWzREuYDEX5/NlExkmTRUe88kTo+fhG0Y42RhYLskTBgMdE0jupRUEQSEYV52tFC50xRsv1G0XxnsZFv3QYRe2eFkW49zBF9deQRSGzTUmW4tRFR6cYRaVRDkXwmnxF9zpQSEcvIEUvEJxGtlQyRWJ2aUUijQRFP6wrRS9Qj0U7ztVF297GRM56B0UJSclHrEpsRhvsf0UrsMlEgC6JRm6VzEW9xu5EHIgBRbqPeUWsrvtF93rLRL0P+0RMLyJFYMzJRYv4m0VqbtJHJMrSRrNa/0TOLvBEto24RJoECUXwwstEuSiCRc/vuUR03sJFmHAGRYZngUZ1PApGRC+5REzUCUWLDtxEkosVRYy83UTJihRHS2aqRj8kvUWakiNGNgdQRqNctUWkjx9FFz0YRdzbX0UPTLVH5gh/R56qWkYlRqxFFKjcRON1sUTa/s1EfPaXRcSr+kQxdJ9G/43BREIBLEax3KdFt02WRaF58EWxum9FJtfDRdDxwEQBBD9G1LAyRYkIEEXQOM1EjzvWR/jGYUaphh1G2GsxRd9KGkVNadZGbk9WRelWpkYglPNGctwdRSKldUXPjLBEH9SkRW/ATUZ4MslEdEdsRdx0p0WAe89ENkv3RM0Qy0RSxt9E3LBrSWGd90V+1g9FpwoTRRLKFkWQc9BEOKzySDJsX0Vrkh9IzLT+RmP0SkUcb5BFcnTDRJPVlUaZv85FFnszRUgpk0W1fbxEJXUIRkwa2UQurj9Fs7EWRVyqQUVfHQlFLwtCRed2l0VClUpFCjp1Rd+lWEYv2aFFloIkRup6mUU/OLRE6Ay0RJb5SEY4lm5F4cMDRnSAIUV5zRhFYVJARcc8gEUjUbNFjeLxRGqk5kRpdh1GSfGoRe/83EQCfQ1FEI4FRS++gEjbtfNHi7CAR6PBbEXKw15GwXJcRTk/6ERRqoNF4CoWRZHB0kTSKhFFsM/0RjszLEYFdg5FIsZGRl5+RUVT/URF7FYGRfI9VEVqpS5F68J4Rs2dC0XG4NZEydhMRd4V90RlN7FE+T3lRavF+EQA1kpF1jgxRYxn50SwN0BF+GWrRVmyZkVTxfNE0AgHRfSJJUYgG/NFQI/lRLvczkRXVsxEY2lzRRMPT0W6LzZG6JiOReUCDkWfjuRED1IRRXWfA0WxacJFGIF5RcrWFUXWNCNFHCTLRAIp0kcnLTRHFDLdRjNF4kX3r9FFua8JRbbJ90QRKaxEJSqHSJ4vF0j0qWNHWlmZRqNYz0XQnOdHG8tCR2Tk+0bSEXZFPk8JRlM8IkWV3ClFwSDhRXslb0XryatEwUoCRbaKKkaz5RlFDw/qRNWMaEWjyO5E5OO3RjEcWkbwBhJF1luARUkbx0QdFMhFzzRPRYtoz0T3PSpGkHauRZPyzUSyw+9E8kABR2i1bkavMhBG5fVjRbH3ekVtWvJEC9ovRTd7B0c2RVhGVVgaRsXus0R1j0lFtc7DRGdVykQhGSlFFxGxRKk19kSanZNF4QjcRDmAV0UdWoxFAYrQRCu1L0ZwVY1FDyJuRTgJvEZ95QJGXv7SRPWqAUa/2KBFbtU+RZOoF0U= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - kLAjj3DBckCU4g67UMJyQHh2ws6nwnJAX6vbOzzDckARTRMGAchyQHoheMFYzXJA4jF6aHvRckCqa9tJRNJyQCvnz4J303JAusvsu7jgckB1lz8bUuJyQCerIguQ4nJAQntF4snxckDCz9qYe/JyQFAnOgGi9HJABGMDw8H/ckA6NBgh+QBzQFbHD6CNAXNAdxCjr88Cc0BM5PAR+wNzQBSa+NUJEnNA8qOaF7wSc0DNtnxIBhRzQBhPc7ikIHNA3K0uajkhc0AUrZo0yiJzQBIGJXzPJHNAnCT+GEgxc0AyppP3eEFzQJjx8iG9QnNA3tgyyHpEc0AYFd/qQFNzQCq/MzikU3NAMDs8BoVUc0C10Z2MOmNzQEEOLDYsbXNANBUUpWhyc0C4xY0EhnJzQHwGi8W7cnNAaVrGo011c0DG+CZc4HdzQGx9hJUqfXNAINXkBXmAc0BOCT0YD4FzQAqVa4pcgnNAJkEhToeQc0AEcxroTZJzQBCf3ZFilHNAFD17aveUc0AlJbS8uKBzQI/jThWUoXNAAoICC1uic0DqX0VB6KJzQALfH50FpXNAFjjGa7ezc0AnTL8NDbRzQCiRJBXRwnNAdLwchCbDc0DMVc9A2NFzQBK59wTj1HNAVeZgTTnhc0Dobdsi6fJzQFpJNH039HNAr1KuRs/3c0B1PSvweQF0QBf22CylAXRAC0JaHU4TdEC2tUfAuCF0QGe0AE5dI3RAs99jERwrdED94xzRujJ0QFfN8ateM3RA5HecCNxXdEA4oib7/ld0QICB1fs0XXRA3GjaRrhgdEBwI+EtCGJ0QBlfSOCNYnRABqHOnU1kdECgI0by52d0QOiPmtc/bXRAipXslSJwdEDE6XMKQXF0QOCjCRA5c3RA2+NrLUOAdECWG7mL94B0QKSq1wVOgXRA8SO1WyaDdECdwlgLFpB0QPOgjqJQk3RA9rFK/O6fdEDcJbrnzqB0QGXuWT+4onRAy9iA8xGjdEC6L+ebCbB0QD0ZlzP+sXRAJBWx7W6ydEBAa3gjybd0QHiWVnESvXRAP+q7wbbEdECazSDDPdN0QOQPu0Lh03RAIgB6lbfhdEBWMtbsjPN0QOiMZuBdAnVAzEgNJyIUdUAYy7OenSJ1QD7brMDnInVAsIaC3cw1dUBE9cOEJkN1QKFYXRDlUnVA0vMhPg5gdUAcvU6bN2F1QGDmjM/xYnVAKracZmVjdUCC7XXTdnJ1QJR+k02NdHVA/DSos3iBdUCi8b6JrYF1QPbHOosQg3VAZvfMqqaDdUAIz2FSm4R1QHrhrGtuknVA4zJxkLOTdUCyovdVy5d1QBuuxJ35l3VA5khLuymjdUCsRx8SzsB1QJTzOV76wXVAHvrhbyvSdUCpIFNhztN1QK1JNO4P4XVAmAKr6QjidUDCBFK7OPN1QCqLJJRIAnZA27rgJ9EDdkCFyZDkDxZ2QMZ9wHSIInZAQZZXFZAkdkAaJRNDSyt2QFoYwNQfMXZAZu8WvlIzdkCyVM/LHUF2QAiEccdzQnZAWlddaslCdkB4le9kEEN2QOyv/AB6RHZAgPv1mBJRdkDmW80MiFR2QAgsedLNVHZAZOuXC1FjdkD+AIfO22R2QELfiJlWaHZAyGeyebJtdkDU1+ooX3N2QAKYg+drg3ZAVYTZnJGDdkBIM4kHoJN2QJWKqPENoXZAhrQxY7iwdkDIIMWQm7J2QLrJh1/AsnZALTtBcXizdkAOmGqYDLR2QAYQf27SuHZAvrQJJM/OdkBYQ0zWkfN2QIIbb4w1AndA9ipprEsId0ABmk99UA13QC5+TyoBEndAc+BmfJESd0Bs0eTuqBJ3QEVVVvgNIndA4ETK46Izd0DsrRYiDTV3QHwUyx+dQXdAXkmQx/tCd0AfcR4OG0V3QMHt4whLUXdAkGgru5FRd0D330T51Vp3QCxHvkKPYXdAn2/+0dtid0A0eGeE+mJ3QGuTHCEtY3dA7GQHm0ljd0DqdLo/NGt3QBb6QelPa3dASgn0fShvd0AW8SGgI3N3QH4pV+B5gndA2t2bujbDd0CkTZhT6eB3QHogOKJuInhAJHsxhb8jeECDSXMlyCt4QEqpxs7NM3hAEt4N2BFEeEDkmHVNekV4QBDEne7LUXhAghTG6ZRSeEDoe1ybiFV4QBbkllTwV3hAsfSeXvlgeECm5C6AtmF4QI4D9Au4YnhAH2CzgYt0eEDNdCGKunR4QFhPcKakgXhAGxcTDpqEeEDCTpOFl5F4QIwoAdinlHhAlo9veM7AeEC4lNeI9cF4QHiQQbO21HhAcK9vJO/teEBozsvpAfR4QJBJ8V6N9XhANKCC6JwFeUAg6hjisCh5QK4/64HgOHlAYPKAqRNCeUBRbZoui0J5QEPkbif8Q3lA7pcdyglUeUCKbXtwzFR5QF1Rgl5Cc3lA+SFb63CNeUC1cG9kzJJ5QMT+s2somHlACv9bMMGyeUDq3H0JzsJ5QMrlibNC1HlAu2mOoszVeUDw9upCUeR5QKrU2RtpA3pAOmwD9PgFekBurgk1OiN6QKl1LpinI3pANqXDuTskekCo1TaQDDV6QHxpU3IaRXpA5hwkKoNSekBqgjBHKVV6QHKOENo4bXpAnvoDFItyekA8LSCL9YJ6QMLG0LKsg3pAz7k+1w+zekDsEeAk+bN6QLBJHtEMtnpAEOPQlBK3ekBWxBZDLsN6QL0UPdsbxnpACjP2xQ3IekCNS4vYaM16QEBF4F/F0npAAea8O23hekDQ/GaeW+t6QLxfe1Y47npAAabkVBbxekDGNQevXvF6QCS8rItK83pAfAneeKT4ekA+GAfL//16QIQwNTFIA3tACIrjj3sEe0DS3Le5xBJ7QODAb7RMFXtA3PdS0iAYe0A64v6aWyV7QBJUT7W/PXtAxfN0UBNAe0B1R6L+8U17QOC45L78jHtAN5lE8cCUe0CZJZLWIpV7QL5h2tHOnXtALw1d7yeje0CMKs6xg6h7QNoULtfKrXtAxKhszN+te0CV3NhFJrN7QETkbRy/0XtAsfs1YCfke0AtaOXFG/N7QMMzgQqM9XtAqlVqt5QBfEBIFtz92QF8QCMOOYL1AXxA7XRFxZoFfEC4kvW10hF8QDRK5R3pG3xAon1WRu0jfEBSWNewzUF8QKpigrl+U3xAj9zg6A9ifEAoQJ241Hp8QND+jCTcgnxA5blvNrCefEDOSMFhWOJ8QLC9L9oR43xAIyG1V2zofEBNUOXcwe18QMRS23gX8nxA1B2EwVTyfEDTEj7ndPJ8QP4hp0IK83xANIBCRAMCfUDq/Wq+SwJ9QAQcN/pRBH1AggLalEUSfUBZlb7IXxR9QPa6vZ6uG31Ar7bZLjIjfUDKH4m1tiN9QGCu8VYtw31AylK6OtnifUDwTPA0kvV9QDRYN/ZCL35AznOKeLNRfkB+GTjujFV+QMDujcklbn5AMsrIM0JzfkBlZjhLmHh+QKeIMofVeH5Aro6VEIZ7fkCixP3ct3t+QHvC+6/ge35ArFlYaDB+fkBvnaofvYN+QNqSxSTIiH5ANW/9RH6KfkCC0jCOwot+QLxrN6jpj35ASKIWa8mTfkBMH//h0Zt+QM03gO0hAH9APmJFs5QDf0AG2lfG5xF/QPoqTUruGX9A3uFaWdshf0Der/8v5Sl/QMxRjc62cX9AtGsb/aWDf0DzaJ2pYpF/QEDsuuNcoX9AjLXa7VSxf0BVSqrmghGAQPa/z3sxFIBAaRQ0w6VJgEC/Z73lqE2AQDyI04DnUIBAvSsaRBRRgEB0k6EgD1mAQB6nKTVIWoBAILkcd0pegEBoG+JCPmKAQGtl2MlNYoBAfIXCzsVmgEBmmX8Bc2mAQCogL1S2boBAjlzk5ihvgEBNkQRSbnGAQLY5T8kzhIBAzlE2Vh6PgEB/pwITAKKAQHwxvhJXooBAqJ62HoulgEDYkM66W6aAQMaJaE+JqYBAJp3Gil6qgEBLi9yoEq+AQBIzyI1SwYBAnhcIkh/IgECVKghoU8mAQMbEHdunzIBAzDKUtQjPgEDnuL0lTNGAQGRYhtBK2YBAIl4WhXPZgEBIzxB+INyAQHdyh+ZE4YBAqvpGWvjogEAAiBXfTO+AQJC0q9CT8YBAghJUXj3zgEAl4QMUl/WAQA1IeZqK+YBARejyR535gEC0gcwfQP+AQOjvlyQ+B4FA6uYNuWgJgUAuDWHLOw+BQE7jd7E0H4FA2CviVDcngUAWdYtv8CyBQAQ/JfC8MYFAAKstekdBgUCwjtNT9EWBQN6ysWzkSYFA2LetPGhRgUBwGZriVY+BQAWkM0VZl4FACoWheVafgUBvsR/f56GBQAWnQPivooFAIgLpFtemgUBCnQtHbaiBQDiy36qDqYFAdO6qeEqvgUBAmodpjraBQLruo9RzuIFA+2W/5ZG6gUDCuPOnzc2BQBChV5DR0YFA0mNbPH7TgUAv/jgbh+WBQDQ1pnmK6YFAejIf57HygUDUTqPT2BiCQBSH0xrXIIJASHNBbNEogkAY3alj5zmCQCt8zm+5QoJAXUriOulNgkAyn2Mv7lGCQI7zrCkVaoJAim1+9CxsgkC9U4SJQ4mCQNEFyz1DkYJAyBEAjjyZgkA8My0tUJmCQOydcWQOoYJApWYIDTyhgkB+SxZ3DqmCQH6jIIk1qYJAqYE0yAexgkAXK+WTzM2CQK5TXwLP0YJAp8X7sMrVgkAwZGMby9mCQDM5I7jP3YJAThKRpnkRg0BkdBzFeRmDQNKDFwxzIYNA/uAkWw0mg0AmxFYycimDQM61OGxpMYNAegDUadxBg0D11EkE4EWDQO1GWvPZSYNAlt0AOFmgg0DHz3AOar6DQMgtfru/wYNAPH+YyMLFg0CKBuduvsmDQEbl0ae+zYNAViOzE0oOhECiyrXvAhKEQDXbg9QCLoRAsTqtxwUyhEB9GqKKcTKEQOpVN5kNNoRAk2Vws/9ohEDisfDW/nCEQBfEIF33eIRAGocL+R+lhEC2QDHzU7KEQEKbDHGxtYRAyQIqdle2hEDhGv9IatmEQLETsRBr4YRAAo+VhWLphEAWp0+RNvGEQPBQ4xZj8YRAxjcgTb73hEBvVNORNPmEQKQXGeNv+oRAYDJWWB39hEAHiZZcMAGFQPRmu8qgYYVABB8CoqBphUD6qbmkmXGFQIhAU4G0c4VAOC/POZx5hUCG3sGMkIGFQBn0AvuiVoZAOQweFotahkBu7F0hkl6GQFBl6g3O2oZAPc2913oSh0BKzTTckCmHQJH2QIeSMYdAGyX9M4o5h0D+7DN6Z1uHQGY6RIVtY4dAyz+eT8exh0B5SrhcybmHQEDNxIC/wYdAxrsVzb3Jh0A= + NrgMGZxjYkDiYBUjzERuQBu6YmAmQ3BArFID5xVDdkBWXNs11mN3QHOtlyAu9HpA0xNLXsRTfkDXJwj7bgqBQOm4E1mOsoJA11b2JBuThECzwNwLEMuHQDqEwEGnK4lAs+/KNbxTi0CesYpeM8SNQET0S879C45AS0iFRjWukEB/IxbjOgaRQJU4V+RgspJAyRPogGYKk0DyYUfgnLKUQEUDKBiC1pRAO+SHrL0OlkD3GY0myCKXQLv7fsET05dAqTDyNA5vmUCgf+OaVF+aQClI6UlkM5tAIJfar6ojnEC4cEc/kPucQP+E9jmm351AaoesTdYnnkCOrVQv0qefQPmvCkMC8J9Ah+IlIhS2oECrbH0fH/igQA== - + - tfaTRbYD/kSZ6jpHexi7RVv3jUYgHRhFdI/JROTQJEdpQKFEQJ8mRS8VdEU84ApFRxxvRQzYBkWKXNlEPgrCRN471kQccblEFlSARWsRC0fMHtdEfTQzRge8YUULRcdESsawRtKEvUQO4b9FW3rURDS9pUXsptxEO8QZRpOaskQ0iXdFF2HDRDxi3ETB5aZHZrYIRQJFJ0cpaKREe/IDRVzHA0Y0vtpEAi0CR70nF0U7NQdFZhMURdiRU0dCQLhEuY09Rq1pAEYoql5FhoXFRazwzkR4EC5FLeBERSNB20Tcd5RFErkmRZ58WUWmPHdFIrDURTysCkXHGAhFQBmaRWaRjUZWAMJE8JE7RcpjB0UmBuBElbc1RWoCoUTNHs1EdUEhSR3ObEVyDqVIFwSEReQOskQzdclHRTq9RE25i0YCGtZEVQuzRQoyOkdRnhlGLiV0RUKbAUWJvupFabldRV4RnkUUIt1EO/2VRVsVv0Rej6JEszCpROm+vESk8kZFeyvHRi3cFkYkIGxFUAWwRHLCrkS+PMlEaDMVRXiQw0WiNGtGY8YXReufpEUvPSdFOMYiRemPIEX6SPpG8zPnRNSlJ0VoxHFF7pq4RGUbBUUFEwZGVlLtRPfaz0XbBSlFriAcR8NHvESJ3b9E5oeWRYNtC0WaIbtE8pWbRaW/o0TDP7ZEGY0rRRmpqUSo/wZF6qXbRJGiB0bDl7hFTgrBRPkivUSzwYdFY37dRT5+nEalNbxGpDvlRaXBtUXp5kdFiydTRUtR0kRj8lpFfnQ+Rc9SrUQgECZGEDNCSNi1tURtmHJFAAVvRcDN3UbWdedE/X8WRno2qkS0aKhEkI6kRLALiEWNv1BFiHSLRaHGmEUf2h1F54pCRXE0J0XCRg1FxF4YRW+nEkZsd4hGQXB0RfsPlkWmr05FiOfTRHPE8Ue6W59GXD/nRA503EZX0cdF4FVxRhrgdUa5KAxFVQmeRaCCiUQyTqxG7i/qRYa92UVf2YpFdnEXRTPQJEXUhuREdGqNRC16vER7F3JFunzZRmBf1EVMnPlE1UHVRUfMQkZMoXdFfhTaRe1r00SvhlJFqNUoRfgd1UQ3P6xE5aJMSatnc0VlUBdFiEhVSN+5KkVP27RGxJQMRYzC00QmfqFFqaDBRCpmhUUyfdtFcsydRLaeWkVmgK1EdwO1RPG4zUTs/6RH6LUdRuDPg0VCkN1EcIdbRhvgk0UCXDdFq8o7RVd3w0St59JFEQ7ERMKoHEW7LvJEOLjYROJsukSrCMFFdIfIRf64vEdDw8dG0RIDRbzHEEXBks1EcGqpRAxLu0VcatdEAxaCRftjXEX51M9FgN4vRTVvrEQdowBFfvqVRmB+3UUUaz5F6SzvROVluETBc81EWWq9RIo200Qe5AhHAKyeRtM4Q0VvzQJF/H7BREqE+UXitCVGhtrzRO+YCUXyQKBEAjPbRKx4tkQEbMVE9xrORJVsjkWsW6VH2hpsR6IePUZ3uFpFzaI7RWBQ2UT2nfFEZ6wRRdFi0kSf2ZFG3m/BRBN6V0bQ5KpE9PaIRc3yfEUOydNF6LE6RSmLC0bVALxEz3wFRd8Xx0WYxTxFXhPTRGOH1kewvXRGUGcORvQRzUSxckJFI5rjRgCnREV/iCBFz5pbRfAKokYOOAJH601jRUaGr0Xq+05G/SErRZ+Mu0VcNuBE+e72RAx8yUTw2LJEBCbERLoTA0XAvAhFbzUBRSA31EQetPVEVYKFRbWuQ0mE5tlFH+vhRFsGykhiLvZEBRW5RAEC90f0Pp5ERSCSRkz0W0Vdzg9F9q9PRQ4qiUaXasBFj8R0RbUx6ESPk1pFvaC0RO8uRUbadTRFer0ORXqGgUXoJLVEaTGkRf1n6kRXiVxFYqmFRtPNtEXRwZ9FquNGRYuelER5KaBE1lTsRVDqKkZbOcNEU8spRfOj0EQgkwVFFbmiRUSGz0Qg7SxGZG61RFTcz0XXGrREziJeRYSYtESOuIhIg5+nRFeS8Ud/m8VEYAcHRS73g0e0skVGQI9aRfTx4ER3uGtF+LywRCg5/kTddDZHN4ydRPrxj0b/cB5FEa5lRdHjSUaEjThFpz7ERLNnI0VOc4ZGOWd2RW0M9ESNEfRERJy0RMScAkX7gi5FFY/mRC+NzEU/2+REtGK3RCu6REUxu5xEbVUpRaDM2URiYTFF5E+ORRgnoEWqa/lE+wATRYqnEUbwbi1F1wICRfGWaEVdmFhFh5imRPuzM0Z4NotF8wI9RWNXIkVf/g1F8IjERdKR4ETo4PBE+eYLRSjjzEdP/ShHvv/WRjvFE0WpUspFYVP3RZ15K0Xb7FlFfgfERJd/dEifLwFISZgaR/VakkZFQ41FfhbrR6znMUej7vxGbAlARQmSF0YQkRxFgwUtRsoIbUWL3+9E/xXRREKX0ERYmytGe/uQRcXSmEQvasxEDDLKRAjyCkXYc35G9oYjRrxaC0W6VhJFjaryRd6M9kSjTvpELVS6RHem6kXmjsNEniqPRR5jEUf4NYZGyuEYRuiIikVgGHBF3OL1RFP0KEV45vZEOpSoRNUMtkTFIhhHL4GARgcKIEabIb5EgjFyRXsCw0ST/QRF11E8RVJjw0Toh4NFaGnLRG1GK0aI+r5Fd8mCRXWGwkUwINREieglRjFonUW9D1ZF+4/cRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - i99H027BckBIH2pFUcJyQJIatmGnwnJAPGcVrTrDckC12RuLWcVyQHQ4hmEByHJA2iYDh0nNckA6pDE6WM1yQDLK5IRD0nJApHfm16/SckDiTQ6Gzd9yQNBP6wy44HJAxDO/TFDickDI66nAj+JyQOnU8WEl43JALf5aqsnxckAq1itgfPJyQKFfKPS283JAOt0TXaH0ckCWPhAFwf9yQJNAWeX4AHNAZuO6RjkCc0DUjSob0AJzQBYLzMT6A3NAUghYXQoSc0BOoyejvBJzQJ5KbnsGFHNAJOPGiHkfc0D6cixepCBzQBtFvLM4IXNA5ftFLsoic0DOxb7BBCRzQHLAzsrOJHNAGotGSkcxc0DaBjgszjJzQPxPnms5NHNAK8NifNs0c0BajYAH4kBzQCw8wnR4QXNAM+PBN3pEc0C7Shv3QlNzQGCOtMejU3NAjjz4IoBUc0DeYaTtOWNzQLah0scrbXNA5CobOFFyc0Aw8ifghHJzQGCddGK3dHNArIj6nEx1c0BiNfUd0HdzQPHZSsPfd3NA1AlChCl9c0Cm2Y6/eIBzQGbPoYikgHNARa2sSw2Bc0C9KfhZXYJzQHeQK06GkHNAcnQHUE2Sc0DS4oegYpRzQIYGQon3lHNAmGIHELigc0Ce15bfk6FzQDTVTl5aonNAXrgyFuaic0BIiUlae6NzQOAmjQcFpXNAE+fpAtWwc0D6wXtltrNzQD8rse8NtHNAUadyFvjAc0DKc8qSz8JzQNvJ7OMlw3NAIltkENjRc0ADH1aeutJzQP68Rtf103NAxP8ZNuLUc0CSwQDJouBzQGJq41g44XNAyIpD/+jyc0Bko01WOPRzQII58B7L93NAQmEE6eQAdECCIUxaeQF0QPzsht+kAXRAXkLWj7oCdECi9HGWiRF0QEaICWdNE3RAxE+pCbchdEC4oEEFGit0QC9/HwNTMHRAOczxc/hUdEDW8F5Ij1V0QLMNU164V3RA5F6IvdtXdECZIVH791d0QGpUgpk0XXRAFt/AObdgdEDqev/7B2J0QPp3GLiNYnRAYyescU1kdECkw26b52d0QBiP6OlBbXRA8EgfAyJwdEDYVXvtQHF0QK1QCrbLcXRA9q7hZzlzdEDlgWieRIB0QHUrBrv3gHRAmj0rIE2BdED8J6tCJoN0QFcrxLMVkHRAYBWtDWaQdEC4m6uC7p90QCJUEabPoHRAzOfLYbiidEBSxe1/D6N0QECJlTQKsHRAUCPYFf+xdECAkpHWbrJ0QMZN9BfIt3RAK1xvgxK9dED4IDYfIr10QJlegu7cv3RARmh+9uLAdEADKup7eMF0QK/prqnowXRASUo5ZLjEdED6VmP54NN0QChFDRx21HRAOAPGF7fhdECDj3eHjPN0QFuMQMrMAHVAYMJTbGMBdUCs2OvnXAJ1QFAf1bSXAnVAtbKtKCMUdUAMHLHvnCJ1QNQfK5XmInVAuGvt6cs1dUAto7/XJUN1QKdNuvzkUnVAkFai1zdhdUDn1+wT8mJ1QNBowPd1cnVASVqkyY10dUB+bIszeIF1QC6Nby2tgXVAykIcxxGDdUCbt6d2poN1QJr71naahHVATXsIILSTdUDvrUSTy5d1QIJtXP8nnXVAjMh2eSijdUDGEUIAOLN1QDq5jtliwXVACOCgEvnBdUA8r+E6K9J1QCYhCpTk33VAtqcysQjidUDyVo+5fvJ1QIZZ5fY583VASr01V0gCdkCUdboW0AN2QPCWGgSJInZAXh3Vc5AkdkBX4LeFSit2QFgrEWwfMXZAfvf+xlEzdkBuXtQMHUF2QH7sPMZzQnZA6O8ea8lCdkCRb8czEUN2QKqlyUR6RHZACotD4BFRdkD+ggubzVR2QFwqROBQY3ZAezq+F9pkdkBs6YC6V2h2QFSehKCzbXZArFYxnV5zdkDzNc7pXoN2QCQYxMGQg3ZADFEo3ZmydkAiAvYMwbJ2QJUf8JJ6s3ZA0FAJhAu0dkDYTLZL0M52QEP/Lrnw4XZAH9q1mJHzdkA6k7jqNAJ3QL+nyMNNCHdALIr+XFANd0B1Q3PdpA13QGCZhjABEndAEv7McY8Sd0CeqkEiqhJ3QDjk7RjpF3dAoebs0w4id0BcNz54AjN3QE9eC8elM3dANlcC9Qw1d0CGomrBJT53QCodBp+cQXdAMj1aOf1Cd0C1lijCGkV3QHfdeDhLUXdAoJ/1zZJRd0BIzI7MKVV3QKTkgpTVWndAoYJAzPNad0AcwBhlj2F3QLymyqvcYndAmY7v+ytjd0DmUaabSGN3QLE8PYs5ZXdA9m6SJzNrd0AhGaelUGt3QB4j734nb3dAPIjRGXiCd0ASqrKjtqJ3QKJXrDIwsndA+fVEp0zyd0D0rWTx9gF4QB2ht/9tInhA5Puv9r8jeEDtWzY0xyt4QNV4cnXMM3hAqk1fywtCeEDi+e54QUN4QMqomksRRHhAHYv1IXpFeECSjKBPy1F4QMOVfk6UUnhAPPa0JohVeEA4qgHi7Vd4QCSOUXv5YHhAqaQ7D7hheEAorXAGuGJ4QPXVOdNbdHhAjkkd1Yt0eEBMf5MbpIF4QPb6n9mZhHhApsBxvJeReECQZ/gFqJR4QPzgyC22pHhAyOmtMM3AeEB0fauUBsV4QICqvOS31HhAvnIN6gH0eEAs+EuvjPV4QLbLZOHkAnlAxd2qWZsFeUAam6+r5Dh5QFiFdjn2QnlAvgdf+/tDeUDEenmACVR5QIDnPHDMVHlAMMuvGUZzeUDsRd8hcY15QOIYo0jLknlAkJc/+GudeUDqNi+Qv7J5QAu7UdHKwnlAMjn470HUeUCCjB0BzdV5QFpKA6xP5HlAivZfyqcjekA+TTyGOyR6QKCyS6osM3pAFkksg7UzekBOcldDDDV6QLa96FsaRXpApvPvin9SekBbCJoCJ1V6QFLEHbX0gnpAHPKENayDekDL2CnBDLN6QJjnDf/4s3pAYrziaQ22ekBEDVrTFbd6QLoNffYUu3pAfBgKMi3DekD53b2xGcZ6QFZ/M1sNyHpAyKcxzmbNekA+F2GYP856QPVuDREM2HpA7xRKUmbhekDAMIh7feR6QKzj7KY17npAB8dOKRjxekCw65AHW/F6QOIOifNJ83pA4isvlqP4ekANzE7OAP56QC5os6t7BHtAmkeZeioOe0AYY6epxBJ7QCV7uKqsE3tA5Grg5UwVe0CLIAUJHhh7QAj5LjFmHXtAHQ378Fkle0DBysCREkB7QKf+JRdqSHtA3HANtZZIe0DfZ93nIZV7QM4gpsvOnXtAG1SURieje0Ber3e5g6h7QDDabVPIrXtAXGkngeSte0BFeL/QJeR7QGu1Micc83tAPsj6Koz1e0CciCHZ2QF8QD+gp5OZBXxAhO7BW5ERfEDI8Yi30RF8QGbXJBXoG3xAwhxMzPAjfECSn+rpzUF8QKXU6LPaUXxA1Q1SditxfEA17mIW1Hp8QM68X19XmXxAkxL2srOefEBNYFSfwrJ8QLbDlz1Y4nxAtSah+xDjfEA0sOxKa+h8QO7QUky17XxARDBXGhfyfEAUMUBnVfJ8QJj0ANWZAH1ACKUf2wECfUCg8rJtSwJ9QFZSNQxSBH1AXngcc0YSfUAmXpZXYBR9QJQoF6KuG31Apt4DJUAifUDc+0TMMiN9QGCdl2G3I31AqJQ4aKAxfUAU/LNG5cR9QD96fbeQ9X1A6csJWzoffkAwSx2fQi9+QBybS807c35AMLJRKnR7fkBmlux9t3t+QMnfFbG8g35ATBKn5QqGfkByzdc5wot+QE+Kra/Jk35A2Fg5tM+bfkBoxRl9IAB/QDQKJqVvA39A7AFWt5cDf0DQqIc/5xF/QAlff3HvGX9AtFereNwhf0CmgABT5Sl/QBRqqPa3cX9AHLJRrKSDf0DODg7BYpF/QFYBCtSak39AFIIsTF2hf0AfqKKUU7F/QMFWbPaCEYBATyfua+s3gEA2DQIo8UiAQBzG4HClSYBA/hbi2qhNgEDIKiFt51CAQKJoq5YTUYBA5PsOReVYgECkW7DDDlmAQDkYGJhIWoBAPP5rbktegECrosDpPGKAQATAyMHFZoBAuNYMHXNpgEAGOavtEGyAQNm56nshbIBAcMNblSlvgEAIkxIKKX+AQKkIc0Aej4BA0phanFeigEA4q2XcWqaAQFwUKNuGqYBAhvzsZV2qgECeXrh3FK+AQCa+v5l8vYBAWHhpfFLBgECUTh5eU8mAQKpHUukHz4BAS2hxaEzRgEBkBPkVYdGAQLbmtVRK2YBAYv0LmXPZgECE5201INyAQEAv/N1E4YBAXuBqYPbogEBmi4M4S++AQAZX3beT8YBAIAwWrjzzgEAAYr27lvWAQKs1xzib+YBAybgnuT//gEAMNSzZPgeBQHgT0BBnCYFAg18pURQMgUBSsT5z8g2BQEmqxxa4DoFAY681Ez0PgUCCHs1d8xyBQMEHG9U0H4FAJC1SbzQngUBGu9FkuzGBQAvsZCrzRYFA8FaxLeRJgUCUUvUO6U2BQNCKMm1qi4FAO/DzrFWPgUCYoreiVZeBQHpdzBLnoYFAxBFaN9emgUDR5faObKiBQNxODyiCqYFALffkDEqvgUB3kXVnjraBQD77XnBzuIFAVkVwUpG6gUDwuOR0eMCBQJZ26gI3xYFANqxGlwXKgUAONPJ/scyBQARm/FDOzYFACKZmgNHRgUAQIDV6h+WBQI4Rpdz58YFApw9zBv31gUAnYfkV2BiCQFONo63VIIJAbiYNZdEogkBFUnyG5jmCQHgv9zYfSYJAitghDehNgkAfbIPL7FGCQKTEXqJsaIJA1B4DXUOJgkCsfYjOQ5GCQKCrmHc8mYJAi0krHQ+hgkD+sRA3O6GCQORVm9gNqYJAEgcFQDWpgkBattxVCLGCQIuIMn3MzYJAYouDCs/RgkCg0d6ZyNWCQLXLYGXL2YJANrO/e83dgkDXODB3eRGDQKrKptd5GYNA9khFe3Ihg0BTAYUhDiaDQP7s+aRyKYNAlBuSUxIqg0A14Z66aTGDQOLEDxncQYNAJE9EXuBFg0AiEKO100mDQHknghQSYoNAENlKHeaBg0AYpaHyWaCDQKJYirVqvoNA3ASSl7/Bg0As9+NFcMKDQH/nqqrBxYNAPkCMU5T4g0DEYipiTQ6EQBbb8IUDEoRAx58OTU4ShEDyBPROBxaEQLc7wH8MGoRAXQACRQIuhECq4BiTBTKEQAa6v7dvMoRAaNcisAI2hECruYp8czaEQHBpIe8NSoRAfhecQP9ohECnL/dA/3CEQOVv4hP2eIRAitSnrx6lhEDIkksvy6eEQPpuf9tUsoRAUG3UaVe2hEBuN1K+W7qEQKBoyoTIz4RAsnWHMmrZhEDRfsR8auGEQEXLS9pi6YRAtHqvRjbxhECSVmc1ZPGEQAr85lG/94RAGusbYDj5hED29WpEbvqEQLCY64OgYYVALOJ2Z6BphUDnNdd3mHGFQDJ/Zu2zc4VACmiGNph5hUDiUUwmoVaGQBdcB06LWoZAU9ca8aFahkAIllWsJbmGQMcIi57O2oZAwKN8XHwSh0DBEXx1kSmHQOxMfrKRMYdAjflDbok5h0BiIAkaXUGHQHPEEkloW4dA+p+qksexh0DO0m//x7mHQOD5c0zAwYdA + NrgMGZxjYkAYxSyCnORuQEMdzoN8QnFAGrpiYCaDdUAKeGK9lHN3QAh4Yr2Us3xAmc+u3GyEfUDLZ1duNmKBQJOT/X2iyoFAkpP9faJqhEBav6ONDtOEQFm/o40Oc4dAY9Ifod2ziUDqwyQmUCuKQGMBDsuJPI1A6vISUPyzjUD0BY9jy/SPQPqCx7FlSpFA3piauZt+kUDemJq5m86SQMKubcHRApNAwq5twdFSlECmxEDJB4eUQKbEQMkH15VAIrSAYCNTlkBY26XXTWOXQAbKU2hZ15dAost3dXlnmUC44Lh2nyOaQA== - + - ppC1RUH50kQ/1VRH4Gt6RcCW+US5OY5GOAUERZjgBUX27S1H6TPGRGUxDkUVJQlFE4W0RagJOkWqN8VEWxlhRabOSUXg6b9ESgDyRErk+ERjlxRFDSvXRGOxQkWZNxdHErMDRfgCWkZhJptFAdr8RKJlIUX1FNFGLHucRFRhp0Q3EbxFTvACRUo3nETDP6ZExVvJRDfE1kQd7bFF8l42RiNHp0S8qMFFsQWrROqxGkUt06VHSjLtRLWSGEfAKLJEOjcaRVEYYEVfCpZFhgQsRcLC9UYF68JE/7orRXDfykQMsv5EhtVbR/aONEUFpZRGHDwQRurEiUWZtfRFyU7/RFIZEUXAokRFto+ZROpSdkWm+wVF70CyRGDuhEX8CTZF6NkcRRUfxUR9Ia5EI5+RRT+qxUQmm+VFjy0bReRbBUXQp55FAyi9RK1srUbBz+9E7KbBRBRg9URpQz1FA7opRc1IZUXGAe1EmK6iRMwiuURgHipFi2MPSUObJEWJ14lIAvGiRUNXF0Vk56FHnRXeRIKSHkbHGVZFHDrSRdjRM0eXUbFE9ZYKRnXAZ0WErzxFm/nVRSyrTUXX1LRFR+GQRIYPCEYaFLVEOeTHRPfwzETVH+9EwrKPReJ4qUaSACZGL8oNRRaz1kQ/i6NE2YzKRHSP5ERtH6VEffUFRfUMtUSACtZEP8FRRQAJ3UVFucVEBUXORBdDfEb6M7NETGsPRUiHqUUMXz5FACdbRQhHQUVXuytH8fjRRPszvUVoeh1FJD81RmWm80TRcspF5NFIRRnqMUeu7xFFyPO1RbR3v0QaKadEAcS/RcOn00SenqNEqTjNRHujI0WwHPtEt7AGRVksqkTI4RVGC+jlRb+Pr0Sp7plFB1IkRsOy3UYIZsNGD/+pRSmPXUX0ZgdFCXQsRfxN2kT9BIlF6TfmRIJpdUZrwoJIF2MiReNrZ0UrzPFE59YRR/UhAkUbdOlF+SZ7RZZV0USSLg1FBNuvReh/UkUxFZtE6YIYRVxNmkRIOg9FyIcMRjUsskRmuo5GrSRuRTfJOkUqrbdEeoKDRYuSwURcxfZEuRT8RxhwUUX4scJGyXOwRJen1EayK+RFQZuDRkeODEW2+H1GEa8PRRDHf0UyA29FFBp/Rk6S1UVf0KpEb6oERrkJRkVks5NFfss6RUFGtETW3LREeu3eRAR120QOroFFbMj5RhfMC0YlNc9EV4oKRTIj1EQAOPBF/zJvRucZxEWbBERGqCmHRTnHrkXmURtFBMaGRchCukRK6pVFX0VbSd8DO0VXG2BIcEAoRZb0rUZdRs9ExjUQRcnMoUS/nT1FzK1oRU/O70XItK9E4F0PRaEoqkR3pddE8UyNRxaEJ0bJ2qVFFnbsRCNjjUaJz/ZF66CoRKlVeEXUf7hEU/gARmpmCEWEhwVFMD3PRYT4/0W6xAZFBz0ARecF1UcRiflGcZoIRWWHKEVj3SxG9zGlRNvVIEWYhFZFRdvJRWYxIUX1tOZEswj0RPC490QkdZVGr/4hRreQsEQ8rd9EX13mRJgPyUQRyWtFY+QQRQoIwkRZxx9H7KulRiXnqkVfU9dEMhUHRaYbNUaJbbxEqwpNRiocwkXSbydF31hiRVNOc0VXss9Em+PSRLq5+ERMR7dHojpaR2AZVkbr9YpFuT8SRfgtGUW8QCJFBIarRnumXEZUd69FaEiaRCt1rUXUSNJFUUGERfjN6UWfOcBEXHq4RHxc8UVgoAlFiIauRIKSwUT/LQNID640Rr+63EWVQhRFiRjgRGDpCke6451EexZwRTpHy0YxTgtHwIimRRiRu0VFWkBG2S75RDGJSUUHycFFVTm/RLXqqkRiIRRFEIq7RDlH0ER03elE+UWERThBUEmCotBI9yCbRLpS4UdONZ1GD4eTRbjf4kRC9qdEIfwDRWt5LUa1eYlFWd8pRX1eI0XFUIZF6QvhRFh0SkYKntFEYe9aRQBkTEVy8StFoBukRCO3NEW/SqlFcekWRTVtgkX9uIVGNM+vRJHl0kX2GQpG1/aFRd6IrkQxoFpGi5bpRb/G0kSHUDxFFsAURQC9uURxmMBFxodARv4yzUXu+QNFbogvRVN/3URNKLZE6quRSANxAkgIOxNF4nOGRzmXl0V6DWdGlp8oRWbk5kQ9QcNFA1bPRNQf+kQTVC5H1YfkRCGUpkZgVMBF7NpNRmJMi0VJGRhFCbeYRLxel0SUlatEY/sHRZPTtERdBFlGBV85RdXBykRbpHpF5HYcRc9iG0Uc0I1EXgLJRW/T70Tg6X5FlJAwRRLJ1kQq8gdFM0ecRSnMmEWRqo9FovJmRdf7q0RBjqFENCMLRVtN4UTY3PFF5X8wRbBMZEU9XC5FoNMORQmSU0ao6ZBFVbYcRV4j0ETAJqJEMfakRaZe80QVeC1F+FjdR+DtIkd6hehGHiLSRcBrDUastS5FfMYtRfsP1ESxWS1IoSbWR0iK1UaJdGVGChuARXgO70cim1FHbof9RvnnQ0U64x5Ghf3DRAk2DkWaCi1GWbmrRVWP50RsC71EwOChRK2Z7kQqb0VFcxQWRqpIwETk1ahF79LMRCcHEEX3JMxFke/LRDxsU0XZd7pE2HZbRr0bGUbWc8lEwLYVRU3C90Sh3vFE8OzdReUdVkXMVQtFQukPRQjUC0UXGaNFeI58RQ2q50RPwrxEMqkRR9bufkYU0xtG2UalRXUNdEUDDKlE+u4NRa+o8ESaSBdHU7eBRskBQUanWr5ERAYuRSC1HkUJvShFDXQeRV3B/kSh5sJEhIu/RNBfL0YuMJVFtl1gRa/XoUSnHEdFttIURp08qkUvuw9F + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - uj7DJm7BckAggQL1p8JyQC2FhAA6w3JAmN3WSMXEckBeXcuvAMhyQBnRSIhdzXJAAPR7akPSckAp5D0xstJyQEb7nA1i1HJAjIskL7XgckD4eBrIT+FyQLWC5IJQ4nJAF07d+ZDickC8v9GJI+NyQDjqVVTJ8XJAbkdJlbfzckAYi+Duwf9yQDLx8Dz3AHNAhHUJ840Bc0DVWXj4zQJzQKjjui77A3NAJ3o9s7wSc0Ba7l95BBRzQMA/JHZPFHNA9GOa1Hgfc0AvM/9pOSFzQKMjxVvMJHNA7QiB3uZAc0CCLlDgeEFzQJlymX+5QnNA4j6+DHpEc0BaF37bQVNzQLnUYJCkU3NAvFo/uXZUc0Ag8RXcjWBzQPzfu9M4Y3NAlkbWMixtc0CE+o/WXHJzQFz/BEyFcnNAvmLIt011c0DOL4SkzXdzQIsCCPrgd3NAipLr1it9c0AHE3RZOX1zQNA0Ngt5gHNAFABZiKKAc0BJmJBIDIFzQPj3lhKGkHNAbp76uE2Sc0Aj0N00+JRzQAn++Uy6oHNAgUV6r5Ohc0A22iGvWaJzQCyz15d5o3NABuwflASlc0DYBTLQe7JzQBITyM62s3NAflKgMw20c0AFtBwNPcJzQAavBULQwnNAkyuSiybDc0DnIufU19FzQK7TmcHi1HNAgF80kDjhc0DE9niYNfRzQOA/cL7N93NAxmrFV3kBdEAuvHDlowF0QEryHWaKEXRAuIoEqk0TdEAzOpOouiF0QBx2h/+NVXRAYBuxJNxXdEAOFn4qNV10QGTa/RS4YHRAYompfQlidEAcuzWVjmJ0QAevkwJOZHRAcudcredndEAFtfkOPW10QOKgJewhcHRARXGBRUFxdEA6Y5Tlz3F0QA5U7jIQc3RAySCd1DlzdECKxRifQ4B0QLPAoTb5gHRAeZhBtk6BdEAuHsyIJYN0QKAfF88VkHRALpG9Le+fdECmBnAwz6B0QLpds54Qo3RAyu5/T/+xdECeS5+Kb7J0QMfJtxfJt3RAhKWD0N+/dEDEnspddsF0QAoh/zMLwnRAFShBgLfEdEBULr1AzdR0QCYLURe54XRA8HwLCo3zdEDRXTsAzQB1QPDnWltdAnVAdAPezWcSdUC6j12CIBR1QDCqle6cInVAyNZpd8w1dUBCcC6DJUN1QPTodlnuT3VAVJ+meOVSdUBOYR8YN2F1QO9N7WLyYnVAGHOiPndydUBKvKDEjXR1QL7qP8Z5gXVAJo+qpKyBdUAgfjgJEYN1QNFW2tSmg3VAKiSoBJuEdUDo+2RFtJN1QIBm4zPLl3VAZrewFvyXdUAWranKuKF1QAa10Gkno3VA1QntRvnBdUAd9dIqKdJ1QLbc7Ljx0nVAhKrBNAnidUDfQF27efJ1QM61xKM583VAZLQ3j0cCdkBdC/idzwN2QA6B9Q5UEnZAEEmwhogidkD9ugXujyR2QG7et8RLK3ZAOEl+7R8xdkCD0ChhUjN2QCBYb2WeNHZA4wiiph1BdkB0C4dVyUJ2QNLVcIISQ3ZA3ATPoHlEdkAa/VDAElF2QLZNs/AyUXZAmnkSq81UdkAuAvTzv2J2QMRhIilRY3ZACDPlR21jdkAsZeiw2WR2QDfd4J1YaHZAwAp5p7NtdkAcwi0zX3N2QBaaGzQ4g3ZA2l61OWuDdkDKDHiUkIN2QNsAECaZsnZAWKNBZr+ydkA6mmEeebN2QKcNVKENtHZA8F6QZ8/OdkAsjnozkPN2QHDh/Fg0AndAci6US0sId0BlkTHSUA13QGCa9YABEndA+PjCIJESd0CqijVWqBJ3QGLbaf4HGHdAOjfg/Q4id0B4S8TWpDN3QH4JSTkNNXdAygRSAJ1Bd0A5oOHj+0J3QGsUjoGAQ3dAJAOrqBpFd0COgTgjSVF3QDiHpVaSUXdAmiIlxCtVd0BoukRv1lp3QDB1aJH2WndA4mfep49hd0ByXks/3mJ3QNzF4O8sY3dAPkDoIUpjd0Dj2BcTM2t3QB+Nq75La3dA2MZ6VSdvd0CLuyk+IXN3QApUM8x5gndABIXM202Ud0C8yGm9zN13QCj33gxS8ndAHCaoFHz4d0CcBaShbSJ4QEaGo66/I3hABNRWf8creEBmuYieDkJ4QArsUF/qQ3hASzY/ehFEeECNpamaekV4QILqDNfKUXhATshpUJRSeEAY7uyhhlV4QHFAScjuV3hA5zhedEldeECe/Pq9+mB4QDrXE+C2YXhAQlbPsYt0eEDeKlg7pIF4QJToJMGZhHhAwMK0mpiReECwASh1p5R4QOojK/7NwHhAmgXhHLjUeEAEXYEywuR4QBCZPS/z7XhAymrtIQL0eEAV/sM/jPV4QLyqkwCZBXlAYHC7M84TeUDyQXA6/EN5QEXJXRkKVHlAYyxvScxUeUBiDrSlRHN5QOjno21xjXlA2AhEvsuSeUB6ypN1bp15QAC9wO2/snlAeNJsRULUeUAwQXWYy9V5QMbB0xVR5HlA/N64UvkFekDGmJm8piN6QDU+e5A8JHpAmEoeUk00ekDeue5aDDV6QKbO240aRXpANh0I6H9SekCLGtaSJ1V6QKgjcWH0gnpANgdyOgOTekBWWPOTD7N6QNFw3BH7s3pA2DxpOw22ekBsx5sYGLt6QMdH/XMbxnpAGLeQ8wzIekDd1FBPZ816QOMfY5i+0npA7Tw2ptfTekD0HAgyaeF6QETDzrA27npAQDetKBfxekAD6zQ7YPF6QN48woNK83pANt6SD6P4ekBL+VNc+/16QGh0sUNyA3tArDDtlnsEe0CgGV5IKQ57QKha1wjEEntAas6uaUwVe0Ag1zjmHxh7QLBzqmdZJXtAShW3KhJAe0BqkBB7mkh7QEx1Xmv/jHtAotxbkSOVe0BObAbHzp17QLsN6Rkoo3tAe+gdKIKoe0DUHWY7yK17QOYiK6HgrXtALj0WriXke0BixyB6jPV7QNyk8gqSAXxA1kgeaNoBfECEVL9/ZwR8QNq6zFmZBXxAFdeW59IRfEBrMCMF6Bt8QJ8noPnuI3xAeJli2MxBfEAS0FXugFN8QIJp+ygMYnxAWu/80dR6fEDsfS+b2oJ8QPIGTZ1ZmXxAkIqjfrGefEBg7cLTwbJ8QHccbWRY4nxA2KF0VBHjfEAPmkYbbOh8QARwp1yw7XxAyBEMGc7tfED+GiCHF/J8QK+gQ85V8nxAgzKbfgECfUDqtSn8SwJ9QAw4MBhSBH1A7m/o00YSfUAFtyMfYBR9QB5aQyivG31A2XoXdj4ifUDiVOMsMyN9QCBJ4/C1I31AGVFAQSukfUCWjHoYMMN9QBhrXvvixH1AOO9YudjifUB2gXIa/eN9QNR+4u+S9X1AjPOVv45VfkAFM+6NPXN+QNIICWXVeH5AyyhSnWp7fkDg0x2lt3t+QAGO6a0rfn5Anqa1PL2DfkARJaYFwot+QKR7HUPJk35Af07Dbs6bfkCgjmlTz99+QHItbr6WA39AmywY/eYRf0BGMuTp7Bl/QNTxvIC3cX9AAFoOZKKDf0Ce5ZXPYpF/QPAYxSOqkX9ACs8qUpaTf0D2uU6IXqF/QHm9lrpVsX9A+PCe/IARgEDnnOHyLhSAQFgbsDmmSYBA8lPVgKhNgEBehVVq5lCAQAzGgY0UUYBAg75hNg5ZgEBKtWA7SFqAQGpO9O88XoBARcWPSE1egECiyfWtxWaAQMRm90ZzaYBAUebNWRBsgEAuI42mI2yAQHkSkTTGboBAAUbcMyhvgEDzB8C/HY+AQDwNFSMdl4BAyOXvUVeigEBklBeGWqaAQD638DiGqYBAqgmyFhGvgEDkxxWYUsGAQCSyVRQjyIBA94GYmlPJgEDGUKKfqcyAQDIvoV8Hz4BA6BwWRVTPgECN/ubVTNGAQPTh6aJK2YBA4IXRXnTZgEC4LynnINyAQCT7EwZF4YBAEAc/fUvvgEC+ckX6k/GAQEanjVE/84BAEp2O05b1gEAmy7jdnPmAQLx19SVA/4BA8vC7wj8HgUCmnks1ZgmBQF1eiwMTDIFA+0RKpz0PgUAX+RfN4xyBQGQR4kM0H4FAlSJh5jUngUBaNsqDuzGBQJ4g8ZYpP4FA/h4vu/JFgUDoNOHH40mBQKh40yDpTYFAfh38S8N0gUDomEY7Z4qBQG5Gw7UVjYFAmnde8FWPgUBiQiBtVZeBQExQ2xrooYFAUscK+tWmgUBF/+lGbaiBQKKn/AqDqYFAa1jhku6pgUBhnSD2Sa+BQHqVMpKPtoFA2Uar7km3gUDcGl2dc7iBQDqxW1aRuoFAnGML6WvIgUAkdqVkPMmBQCgzlbuuyYFA31sviczNgUAFG50D0dGBQIwVOLJ+04FALpoVd4flgUBMe2iRiemBQFzg2DP78YFAp2KCgfz1gUAjT1Ze2BiCQAJR6rDXIIJA/J+xNdIogkDCiFIh6DmCQAruYkO6QoJAWrvJph5JgkD/Tm+p6E2CQCguDTfrUYJAQJE7VIBpgkCgkXh3Q4mCQAq0vxxEkYJAyBl+yzyZgkCU7G+pD6GCQAIXhMk8oYJAD/enIA6pgkDUxVyJNKmCQG7/NLX6uYJAtzi+j/29gkCstj2/zM2CQAgEzBbP0YJAGBAZE8zVgkDjzbmkx9mCQMrenLfe2YJAenF5W9HdgkBm5NLTeRGDQI/a10x6GYNAABSoYHMhg0DcpijcDCaDQDjINLhxKYNA3Y6eohEqg0D0kxlEajGDQOww7ErcQYNAXuX35d9Fg0DvX/0Q1EmDQBkqGVLmSYNAztgfktpNg0D23OqUWaCDQDxEWGBrvoNAb4jRub/Bg0ACaU1pbsKDQCr0Yl7DxYNAYbs6D7nJg0BIct9FlPiDQIYphPwCEoRAYLtvME8ShEAmyxdkBRaEQB6af3QCLoRAyAxpoAQyhEAnvlAycTKEQLhUhWL7NYRAwgNliw02hEAY2U5RczaEQLxENuoMSoRAKwYyeP9ohEDeMYFF/nCEQKQHJZX6eIRAO1D9wFSyhEDuFKdXV7aEQHVloR1ZuoRAFIBRHhjNhEC7p4nBatmEQOIBiIdq4YRADDkgHGPphED6qqIxNvGEQH0DLrlg8YRA0EZAATb5hECuNOjsLgGFQIFjg5OgYYVAHvEC2KBphUC9IPUZmXGFQB+HTK+zc4VAJ+SQP5l5hUAS8WaydUWGQJ7pVtaiVoZAFnGi2qVahkBrjxDUJbmGQMi5Ib+QKYdAug6KFpIxh0BFPag2ijmHQHii9FmLQYdAtWAVY8exh0BNoy4yx7mHQJjuFpLBwYdA8qoMDcHJh0B+vKmQ/92HQMbPAohNPohA + KBZXds7jZUBML328ejFwQBTpB48/A3JAOu18Gelhd0A28gnAwnN3QFg+OQRB8npAJLAJHTGkfkBZpcEngqGAQBEHc7jE2oJAWdSvUS4qhEDLWVOwPNuGQIbaVPePUodAhglDITzbikBeOvfrk+OKQF5p5RVAbI5AGurmXJPjjkDGN8XdUMqQQGqeY6oFcpFARk+88qaOkkDqtVq/WzaTQF3SjsXXIpRAZqWaVncClUCk5j3A7QaVQK8n2yKYXpZAINZ9VwnTlkAvP9I37iKYQGrGT/U015hA - + - L4uIRUasIUd7eFdFoo+RRGDsTkaJ9btE9IjxRrhYu0Q1k6VEw+WFRCvKd0TskUNFELK5RPFZnUSrg1FFemCCRIOxtETht5VEW0qoRDgIFEU7pf1Gl8EXRvnPOkWopY5EptraRDzWsEajI01FV9SVRIB3JEXkUJNE7Kr8RRdzg0SIKHxFALWIROmaikSV47JEVaOKR5dngETsEQdH0qbtRN79EUWeRRBFroiHRFrOjUTAM7FGC4G7RL+RyUTOE/REj50URxNhJEZ6DLFFt6NeRW+hnEUHYQtF88DXRH+beUTyZQxFkXa3RNG6kERHWA5Ff8DwREic9kSwAjRFzRa3RfPRxURsMYVFuS5kRmFUlERNAbJEEdUGRcgDmkQDf2xE323mSKi4dEjZ+XdF4GEDRYf/m0cWEndEJUIaRu9nkERCXjpF17cCR4vKYkQcyZ5E7o2jRYVPaUWiBQJF/7JsRX/JkkQQVYlFNOznRV47qUTecOlEa74LRfQtpka0vANGSWuARKIxo0Ry0ZJEPW65RM+qpESXUNhEVvSXRTDYmkTRezFG+vy5RK6KDEWNeX1FSY3yRKam40RFspdEfzYvR2l23kTvm59Fxm6SRL4oBkYjf+tEroCSRUGb5ER/fzhHgEjCRIgRg0XsFZlEBOKERJWIgESm9WpFTAr7RJgfmURkvKdEoknLRI4miUSepqFFz+OlRVQm00SyOp9E8uyMRe+wz0XAxqFGhNSnRp1QkEV+8bpE9P17Rf9/zkQj1sBESxNJRUPlQEVHPqFEddNaRqGUtUTOdGtIJX/IRNCjKUWAJ0xF5kv8RGb1/kZcaoBEYMTfROGWAkaoeWtF2UobRQgiHUUck1FF1mBARZ327ER3oJpEJbqfRBwwwkWCMzhGVT6NRXx7kUUM8JJEpf0URehfvUS709xHskilRqV8xkSxjJ5EXtO3RiuFbkXRyVRGRinMRJ4cKUYUjfNEGp4RRaDkNkUmilBGbX6DRSkDZkWZoMZElJImRd3cpESNpo9ESOGTRAnd20QyacFExcV9RMZZBEUBc0lGMI7BRQMfmUTbgolEqGG0RbWBC0blVKVFHH0VRs65fERlLG9FpYyeRPFGzkQUVOZEzvg5SbbTLEWfjj9Ik+QaRemLg0ZtiYVEG5gvRaTniUTGuNRE4qJSRewn8UVs3LNEni6vRPEgOkfObONFSR+YRaQmpETqFIFGFyKnRTMZqUT/sf9EbDrgRbIy1EQV8stEpl/yRF1upUVNeKVFZlefRM210kdpasJGDxOWRL43IEVqzjFGbqfVRKFiDkWf3DpFNMKfReE5mUTJWZNEHi2GRpUqKEbfC0JFnOXKRMg3zESb95VElSrTRIC2AEVcae1Gl3aURorgm0WvoY5EGVKCREKAnUQ2m9lFWXYHRqn5UEXymiRFQYKERaWJp0SB8bFEzYgORUIZk0dB4zxHKJQVRqKeREUr5DBF9ykBRdgjkUY7Uo1EbTdURqehhUQjupVFXVyFRc0ElUULtTtFe5u+RXFqzUT7yrtEfTxXRRTQl0RvXhNFqcXRRFO0oUTQ18dHuwg7RiMFu0WZRqFEFWrMRPIx50TLBc9GhJPbRN9zkUblKARHzqhtRawrqUVIuRlGQQC0RNUIqURsr3lFLnqMRAhcnERPKXZEBsGNRE5DmERymgZF8c6sRNZrl0TBcxJF10aSRBnXHUlNnotEXGmnSD56wUenhJRGJ1ohRaFOnUQKFStFBV6sRdYz4kRGTohFXDd6RCBqIEawMadEJrLlRKuwC0VfUgBFTtr/RCaJqET+PKpFx90VRbKBIUURaV9GjbSmRaAUmUUd5pFE9nnJRNLvJkY76spFcrEYRTe/okQi/wJFFzgQRQccoEWYj8lEB5YWRjDchUUYE+tE9J+eRNvyekhc/alEuwTxRzUppkTbTQJFLILeRIokakeFlVZGFEhJRRJ/J0V1qahFUWPcRGYUzUa6eYVE3CMnRlT8/0TJqylGlnGVRQYmEkXtcI9EZLMzRcmJpkRyr11GecEjRaIQ2URekrdEVJEXRdzOHUWXH99EGyebRNuXx0Ro18xEznJ2RfaOxERoG0hFK9d/RP79AkXHC7tEnUvmRDaYkkWSSnZFBNKWRCJr2EWyn8FE4h/RRM4RiUTUAHpESQMzRbyV3URE/ZVEzbyTRXuFWkWyS4FFswO+RGftI0bhxI9F8iv+ROLJDUVhqHtE6bSNRPlvtEWkTNtEWEDtRKtsxEdo4DBHg+rORoTWnUVgEO1FUvYCRZc9EUXmi79FWPJCRcrQ6UcHo4FHbemrRiXXrUV1zhpFqHHIREfQ2UfkplhHAgjVRg7gJkWxb/FF4hqnRCfDLkX762dGWMIDRmpo3UTN7RBFG5/MRCDjIkU8rTtFn0seRv2pRUXiUsxFWKgZRd0rqUQKcghFkTu/RCNHrEQyjhVGjy6dRfwXQ0UlUqxE2FamRPkg1kTZ35lEUJ+3RY3lDUUJM6tEfybLRT6kbUVteHlE3sO9RFnC9kbsGYBGUPggRkoPqUVq8m1FRk4ORQCDnUQALPFGJJ93RtiSA0ZF+s9EGgdLRQX/nkSEvypFGobpRMuezURt0RVGlCKpRbvLh0UxbcZEOnYYRpUStUUVSj9F/oPwRNF4nkQK3ZpE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - NNVCHCXBckBIsCBib8FyQJrVlklPwnJAsgSP66fCckB1VX2SO8NyQJ7EO9PFxHJACMoAQVvFckCwPTXFAchyQNE86JBMzXJAbI09L1zNckDG9bfrQ9JyQCNLNUvP33JAKFSH1bfgckDEjzySUOJyQANKAn2Q4nJAwhjK/yTjckB8VjJay/FyQFTqGn598nJAjktF36L0ckDud1jkwf9yQNaJiEX5AHNA+8qeXUwBc0Dh05G+0QJzQMiiqfD6A3NAsL9SpgkSc0CkjeKUvRJzQCmtac8GFHNAcEqGtVEUc0DwIZv79RdzQM/y4955H3NAvKjsnDkhc0DhANbgYyFzQGzOo1PLInNAJjiBMM8kc0AKRmQFRjFzQCe8Y2B4QXNAFLp6SXtEc0D42KgUpFNzQAIeWW2HVHNAZ0rtWzpjc0AikhlgLG1zQEDnuPNQcnNADu+VrmZyc0A2lnNFhnJzQDGSLY5NdXNAXoboRG92c0BWuh110HdzQIgtWWTgd3NASlZpzCh9c0DOcMAueYBzQP6P4RClgHNAnm3OwQ2Bc0CaeNl7XoJzQC7U9iuMkHNArNOfG06Sc0DEZFiO+JRzQOwk2LO4oHNAyTEPGJOhc0BA6/CqWqJzQNAG/FbmonNANNOHgHyjc0BOvwd1BqVzQICG97cysXNACMBpZ32xc0AzYIVht7NzQCEXcowNtHNAbGch4PjAc0AA7Gnez8JzQI5pwConw3NA3kzaudfRc0CclY6u99NzQPhBSdbj1HNA7A/ZNDnhc0DUMlgdaeFzQLhhnDby5HNAyYhMijj0c0B6YywyjvRzQPqQ/TPL93NAAv9kUib9c0AEhJjU5gB0QA9Nd855AXRAISE15ocRdEBAga1KmRF0QJmp+8NME3RAwFeUU3gUdEC+eTZEuSF0QCsBG+ccK3RA9fuFV49VdECfaqdr3Fd0QAi7QO8BWHRAijaSlDVddECQzR6mumB0QMp7S08IYnRAj3UBDo9idEAytq+952d0QNtj72JDbXRA4KJ7aiJwdEBAoA+SQXF0QDjL+XE5c3RAWMCZijV1dEAhxU4ORIB0QCY9WAL6gHRAlFM/UE6BdEAYazwNJoN0QJKMhwkWkHRAoDNh6O+fdEAkt9mMzqB0QHvFirU5oXRAuHu7dg6jdEBmE2Mp/K90QLXlGJ8LsHRAGhBEggCydECXy9HCb7J0QMkTYRXJt3RASEYI5RC9dEA8hrti3790QG609QnqwXRAs0xssbfEdEDm95W4/c50QDK+r1K34XRAUC+LaU/ldEDexawzjfN0QIsPf19dAnVASiDs2moSdUD2LtVKIxR1QI81idedInVAAsGnCKwydUBCZRUIzDV1QER0IAYmQ3VA/9Ut0PVPdUAeNllc5VJ1QPAlYVZ4VXVAk8069jhhdUDedggf82J1QLkvv8N2cnVADiNo9o10dUAyn9P8d4F1QG5tQKGugXVA9P63FRKDdUBS0v4Pp4N1QP9QjhybhHVAhFd5LLWTdUC4PMG2zZd1QOJSe6Eoo3VACNvIXjazdUD6baSzY8F1QBGz5Rb4wXVAxqroUSrSdUB2DxsWM9N1QCEY3wEH4nVAeP9FOjnzdUDEZ2s0SQJ2QAfpgXhIA3ZAIvFEHdIDdkC6GrflChZ2QJzs41CJInZAeH1fW5AkdkDeDCmESyt2QLbrje4fMXZAip42PVIzdkCMtijUnDR2QDQEz+seQXZA9DWYuZdCdkCSDox4zEJ2QL7OxxQSQ3ZAniGdJXpEdkBErvoVE1F2QPV+NgXOVHZAzhrEZFFjdkCswTwD22R2QB4gWRZXaHZAYUdU5rJtdkAgDZYHX3N2QKADFDxig3ZABZhRn5GDdkB+8zMnnLJ2QGYUyG/BsnZAWA0bYnmzdkAeud0gDbR2QIg87H3TuHZARu5xbjLFdkBUfrAZ0M52QMhyXJzy4XZARs0ps5DzdkC7jNznMgJ3QIg7J0VRDXdAlHAk2wESd0A+uwZgkhJ3QCwxfzCqEndA6MzK1+oXd0AkqNAdDyJ3QFM5KSp0IndATQdIGaUzd0BscNxHDTV3QJgEhHsnPndAUIZUnZ1Bd0DFuWsD/UJ3QH79US1/Q3dAuFG2mRtFd0A+P4j7S1F3QEJu0jeTUXdA3A8TnypVd0AsroTU1Vp3QIwZOxuPYXdARBOKMN5id0CxOOigLWN3QFZLhmxJY3dAsPp3sDRrd0C8ZX3LJ293QCc1Wkdfe3dA/I/xJ3yCd0ARGZdHDJJ3QFCA9n4Ls3dAyP+gj1Lyd0CWuys6UBV4QM0ZE55tInhAtmdv7IkjeEAo/nYrwCN4QBrax2PHK3hAlJqKfw5CeEBEvtdG60N4QMatQNIRRHhAm5sJUnpFeEDhG8i1y1F4QK5l3DKVUnhAbvre+B5UeEBemem2h1V4QHUA7vDuV3hAVD3gP/lgeEDvtrnZt2F4QNkbVsi4YnhAAmxmJlF0eEA/ijA8aHR4QDSdiP+LdHhApjhGOqp0eEDa6cBbx3R4QJStwYimgXhAHjCyKJqEeECss7NslZF4QBmRs/CnlHhAMjNUivLBeEDZnqqJt9R4QBR43+4B9HhAarRegY31eECkjo2C5gJ5QLptU9yXBXlArwx5Ls0TeUDsyZEa5Th5QBH4seg8PnlAjD1O2YxCeUAuBLxS/EN5QCRU9k4KVHlA/SZtfcxUeUAeoVAm2WR5QBSsz35xjXlAGh6YwcuSeUDKvJBXwrJ5QJIGxsHQwnlA2TsT/kLUeUA4gJ1xzdV5QPzR8qxR5HlA5Je/Df0FekA0ByQfqCN6QLJPGD88JHpAcItWlrUzekByb0dLSjR6QG9J58kMNXpAkG9/qys3ekCUtMr1GkV6QJABFoDNS3pAgwal/iZVekBNDwn7jHJ6QHj7Q9v0gnpAfBrTygOTekDOF7NjD7N6QF5NTBb6s3pAKfTUOg22ekBgusAAErd6QEw6PbItw3pANBS+vBzGekD3MBU+Dsh6QA5v7mhpzXpACM3ma2XhekDj3S+e1et6QC2v5so17npAbM/0mhfxekBC7ComSvN6QNjbdh2l+HpA7P6qv/79ekCyYE3lUwN7QJ7mnyB9BHtAPNFNdsUSe0CoRMR5qhN7QO74nN5MFXtAfhvyZh4Ye0C0DeInYx17QDwfttxaJXtAU06ILVUwe0AMBPw2E0B7QPjLyuOYSHtAnlUmgf9fe0AKqRlCJJV7QOCxekTPnXtASIi7xSeje0D2027pg6h7QAF8Tz3XrXtAUripOXnGe0AVBxeE/+N7QDLpUDUo5HtAkKdtI5bxe0ASfTThGfN7QNKeb/iM9XtA1k1hSNoBfEBm+rcmmgV8QPIS3zvTEXxABjOWcOkbfEDqEVYq7iN8QN3rJzTOQXxA+gAmTWBdfEBSycOo1Hp8QJTs155ZmXxAOFX+9LSefEDMd5EGwbJ8QCwZNxzN1XxASkPKWljifEDyYVYaEuN8QMJ44Wtr6HxAJi1AQLftfEA2I3y9FfJ8QADZUoFV8nxAPXkAaHTyfEBKA9AdDvN8QLphq6UBAn1A+sp6G0wCfUC5qeApUgR9QEalTc9DEn1AAqWVlV4UfUCcE1aSrxt9QPOFL5A+In1AJ3SPCzMjfUAWSKtdtiN9QIhvQq2gMX1ApJdhreU0fUBMurmQArx9QPJwJ9Erw31AkDqRFZH1fUApQhn3O3N+QPbqFKfUeH5AnY8UXWV7fkDmePTht3t+QM0/sK0JfH5AKqFY+i5+fkAT9upYvYN+QN6HTajCi35A2KPWWsqTfkB2/QwK0pt+QJLLFxxN9H5A3pNwayAAf0Byu5wLlAN/QKuXpl/mEX9APljG6u8Zf0BkoVfl3iF/QKBwjfC2cX9A4hQeCbKBf0AfHFDuYpF/QGR5Si1coX9A7rdoMVaxf0DKESfmgRGAQCWZtT33SIBAhOYwxaVJgED+cpDhqU2AQHlWxsvmUIBAEMUcWxVRgEAd/jlkDlmAQCT+ga9IWoBAI2+pzUtegECIos2z4WCAQCSX/UfFZoBALkNyTGNpgED67FHvcmmAQHlqh68PbIBA5B5Y08hugEA051INKW+AQOLvnHIzhIBAgkr9Cx+PgEDVSgxgV6KAQNfZj1hbpoBAhPcNHYepgECOouxoE6+AQJshjK0RsYBA3oryLMC8gEAA3SmoUsGAQGo97AwiyIBAbqdq4VPJgEC4+hSkqcyAQI6aOYsIz4BA0FbWaVbPgECgcFL+LNGAQERH6whN0YBAFnwyfGHRgEAAh04yS9mAQOa7t01z2YBAkK295SDcgEBMSHg9ReGAQB4oXez36IBAYTFt25PxgECtlhynPfOAQHgcSyyX9YBAGvr92z//gEBkLn7lPgeBQAjPEBZoCYFAQ/r+uxMMgUCx+EYkPg+BQMJVIFHpEYFAzggCZvMbgUBwNENdNB+BQMLIaYszJ4FAgHdNT+8tgUDs7kkgvTGBQBQn2krkSYFAxN1KLmeKgUCiyYN5FI2BQC7eVBZWj4FAlH5uklSXgUB6ZqeSUp+BQFbSk1TooYFAhP60QtimgUAoXxRcbaiBQORe5HSDqYFAWnIdukqvgUDWeNlc97GBQGqD4xyQtoFAcNPUXE23gUDgjzTxc7iBQPKi8WSUuoFAiHprcmrIgUB+2+ArrsmBQM4kiF4EyoFAyAggl7TMgUCevWp5zc2BQPm+V8Z904FATHwcpIblgUCnyrNzi+mBQNitaGP68YFAligKKrLygUCrr+An/vWBQHjsl30C+oFA9Dguz9gYgkCSQbCL1yCCQNCU/NPPKIJAbN7KXKIpgkBhyI7Z5zmCQFJT+ckhSYJAMY4TiulNgkB20mLy7FGCQOxKLpeAaYJAD+Di/i9sgkASEHin2G6CQEzmsa1DiYJA+HwWdUORgkA9jtqjPJmCQAuHEsIPoYJAjF276jmhgkC7BBB5DamCQIQx5C4zqYJAiMfXlwexgkBec206+7mCQJaOzOb+vYJAW4gOF//BgkDOiJa/zM2CQGzOvLfP0YJAOpW4v8bVgkClq6IgytmCQFhDgjzQ3YJAvlWUtXkRg0CsVisMehmDQK6bV4ZzIYNAohRqSA4mg0BG091ocSmDQKjunwARKoNApg+tRUUwg0DDQdYZazGDQCx5t/LcQYNAYC6Iod9Fg0DG4xmS6EmDQARqzgtKg4NAFmCgNq6Sg0C4vIV8WqCDQOIi2TFrvoNASCogRcDBg0At5/kNb8KDQMQm4sXDxYNAUB8s4rfJg0D+ar7ovc2DQI4ua33u3INAet+Zm0sOhECg3eZUAxKEQGCVexIDLoRAGoxoOQYyhEBI/AhocjKEQKCcFQn/NYRA2w/YfnQ2hEC+GwVz/2iEQFDumUP/cIRAb9YYIPh4hEDYuHrly4CEQLTLxh76gIRASvXrBnSihECo26jdVLKEQJqT/ZVXtoRAepwjRgHOhED+EtKVatmEQJczBmdq4YRAJxRMumLphEDutuyTNvGEQESOsnli8YRAas4srL/3hECgM1g5NPmEQCU5W2QvAYVA/qs9zqBhhUD8ya/xn2mFQKDCJ8yYcYVAXFY/erRzhUDORqQhmnmFQJbjat5GpoVAWPujN7hIhkAtmyAfo1aGQPk9IiKlWoZAs1ThESi5hkAK9eVakSmHQMJ2C56RMYdAL2hd14s5h0Cc0DNkXEGHQJGjtWfHsYdA+X4kUMi5h0ACGG2mxMGHQNq+qZ92wodA4Ca7SMPJh0AOjeyeUEKIQA== + NrgMGZxjYkDAIFw1+IJuQFRnpVdMhW5AAAjXMD6zc0Ana0JUlHJ4QMMOdQTk43tAJ8keqOyDf0BYZrowKYqBQItDj4ItWoNAWJWoWtUShUDsRl5sgHKHQBdx4G7MqolAvMJyd2GriUDenIZ+OLOMQHYVU2/Zq41A - + - 6oaGRFHLoUVDWaJEUGw2R+SdkUU2AKlEPrSyRHijY0Z0KJlEoCgZRd6s/0af8+FE0VqkRHkYl0WWXhNFlJSORJz1i0WkmyNFNr2NRDbyDkUcz+VEm0WYRBI6IkXuURBHkfgRRWH1UUaw5YRFPSuERKbP10RLS4hEfHXXRhawv0TY6ahEUd6zRaw5G0UrjJBFkLMuRq4QTkUUtLtEBGvWRCqykkcXc59EWIyeRMiGx0ZrUStFYYefRKK3BkXsWZNFtT7jRIiG4EZxERNFffrNRAYdu0TnE3tEQmNVR0yVWEZHiQRGIbESRVNs7EXuc6xED8gKReA8AUWGObBE4V6MRB4mR0U0XjpFvxyzRMSrmEULtRZFwEk4RZQ9zkQWgolFkNS8ReFAn0Rim5BEWhIERdh0rkRvwhRFremvRIqXoERT3lJGiX+VRMz1jUSTfO5EMJSRRFp25kQHv5pEcVSYRCWvzkhdONdEoaRVSEjpbEXMDShFsWaMR20e/EV2j6tE7G+GRXjcR0fzW9FFUcO+RH+tWkWf9PdEHoK/RVyGzER945hF7ReTRigixETObblEu9btRCDW4kQix71E1R2IRdtCzUZpfvZFXaYORVTYE0UjJ51EB5jSRJs2z0TrFw1FHx67ROaTwkXttFRGz6/qRN7X2kQlvI5FuKe7RNWfwERbswRF1WHERB6NFkcbSY5EZtTSREbdf0UW8CZF539fRuvWt0Qlvq5FfMMFRbJpQEcCGEZFWoy/RSYvkUSqbVVF1rOkRAM3qkQpGhZF+xAgRWTgY0Qttt1EQ6HJRZaBvUWblJBEKb/KRFBCvkRj03ZF2RMDRk8ei0Z5KLVGQZS1RcPEtUQ7G65FSEinRDME1kSyKsJEWHuQRexjU0Uz8rdGubxKSJSoYEUUEn9Fwo8FRdCq2kaeqgNFdK/KRXCGKkWVc0ZF7ZBvRZfWskXxvN9E2XjBROqmJ0X0BaBEmj85RSlYx0S7GNpFhaCORrAUfkURmXRFnlCrRILyj0WggKZEd+/ORLVXAkjfjMNEdj7NRlAy/UQBOqVEauDORoYqk0XsYoFGqQsyRYHVGEaE9/ZEYz0ZRef3HkbvVX1Fq99qRb2qVkVTN4hEZJCWRFeHr0SFSKFEkUPBRDL9mESkcYNFm1/DRCfTP0ZOQ6dFsgiMRO8tlkQiUvFFXfZSRjx0r0WEqh5GCvLBRJcCEEWsJZpFcJU6RUDOXkUh6JVEgtQ/RYmkl0UlFVZJ8JHmRfw0NUWqU0FFVHNiSPf06URUl8ZGMtfGRL/RD0UzyMJFh8WmRQOxrkTLirBEo625RCaF5kSMC6dE9aPtRCPeKkeilJVFY6WTRc2dxERSFVxGNba9RSDSVEUeR6pEEKwDRtDQzESpPthEehKWRP24s0UWmPhFdzHQRDX/nkRJLd5HZpWhRCKkyEb54LFE9P4gRdwNnUSsxj5GgJDRRI2TH0WzY3ZFRVmiRbQ6SEXBjvBEm+y4RHVfjUZDjvBFAHrsRNQZIUW+gK9ERJIIRYWfB0cW4WxGSXqIRcAqvURN4qtEsdP0Rcb4N0VMmBdG5r91RaO4uERf4ClF7G+0RDCO0EWjbsBEDIqjRMUKEkUcdJBH0I42R9KCHUbXCX1FWyafRJxPqkTGgyZF+EGwRRJNlkSnrLNGSY89RitHrkUEg4dFzXeURSq+zES028RF17WTRPR5MUXphDJFdxPXRHVC30SB5KpEdErcR1E3SkZNtBFGv/wQRWlhvkS+5t9GFWt0RUSo4UQ33y5FCYepRiAKCUd6Yj9FcKyORUY0FEaghbhEneunRM+GUkXMQY5EG/iaRGCf1ESN0LpEw94wRbbxm0TmMAdFT3ARRWe+J0mvHfxEuxsFRZPrn0hsq8JHUGadRhCUBEU2tpJENu7QROlCWEU2ljlFbB/eRCmWoET/DoBFS7CmRH0sRUYapytFaXsSRToToEQUCcJEdoKBRf7fJUXFpD1FcctIRmx8p0WTBrlFw7kwRbh2kUS5ZjFGELMFRazRr0UVWNtEElXJRKUtAEVXH+FEtIaSRdPgGEauY5VFej4WRS6FIEWvAqlE+wnMRLdkh0ipWqxELsADSK3j/UTR0ABFmt7ZRD8lz0TfM5pHrcM2RQqoWUYKiEpFUL7kRHgAoEX4bZ5EI1knRkkh8kQ/OJVFXUMrRsTTZEW+eudEARbBRC8RIUVKSw9FsM/QRJMUXUayKAtFyKW5RGkGBEWhXydFAd/yRLNazkScpc1F0yLQRKGtoURvDGBFF/quREbUtkR5p+VEzcOjRcOrnUTysi1F2imgRA21+EX+texEZnTvRLjtB0WRsL5ETHOhRC9wV0W93ddEMyjNRW/0XUWzOeVFN/ePRLCtuUWKzPFEkwM6RspWj0UDESxF85yiRI90AkXybuxEJWSnRaBSGUXL+hxFATrzRFxrjETeb79HOl8rR1TUwkYWRwhGedmpRXLpBkVnuPdEeTq0RJVCoEZkBilGoQ8DRXdxqEcSUDpH8b4hRtUnv0WoCgtF7BzwR+C1U0dh5fpGNwkGRcJh90V6ZqBE8tu0RL4LFkV12nBG0YMPRv0nwET1c69EJVaURErTjUVEBLRFNp6ARltKXkV2IBNGPUn/ROu74kQDwr9E9wXWRCJGLUWxk/tF0rGDRenLG0WD7stEKcGqRPQ7mkXjCSZF5TUERZBRsESJ9bJExcbCRCnDq0WYqjRFFngIRckpBkc8hoBGQHIRRo8hlkVrbl1FDoYBRaI6/kST6gFFmlT8RkO9iEYxqxNGpnvARF2tdEU9bpJEmjWERDlECUUvxtZEqY+RROd9D0a3RMVFJR+ORWpNg0Ry/QFG6k+jRb9fAEWIU69ELU/qRIfefUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - HqBFRm/BckBSagGvTsJyQJPDZJynwnJAzaLj/DrDckDa6HPCWsVyQDKFAYQByHJAWrx/CV3NckAaPapRfdFyQAyeg79D0nJASqNUFnTTckB29bq/0d9yQPbmsOBQ4nJAkrk3O5DickCGBn5nyvFyQE1gP+h88nJAe4f2rbbzckDTmonrpPRyQCTEn3mPAXNA08yNvDsCc0COE3Zk0QJzQGGgozb7A3NANgafI70Sc0AeO3hV+BNzQKissFYHFHNA+/solqUgc0C2kzKEOSFzQGRXVs3nIXNAy/kjPskic0D4/E6YzyRzQLLoPMtGMXNAimauVSIyc0AFVsm9CTNzQCvRgZc2NHNATNems7k/c0DRDFb/5EBzQAD07Rt6QXNAr8xrqnpEc0DqPUfHn1FzQMYq6bxBU3NABMzcbKJTc0BAp+9JiVRzQN5RsBqOYHNAXyf1cztjc0BM+SV40WNzQEGXwnQsbXNA2pSbtVByc0CnxUA/XHJzQJrHg4CFcnNA9R9e2LV0c0BV7OMbTHVzQJuFWrTQd3NAhNqRNd53c0Bk7lO3Kn1zQPlG7RF5gHNAdgo+FaSAc0CW5l7YC4FzQKzlnEBdgnNA+kRZFYiQc0DSQ7O8TZJzQEBiZAlhlHNAg07fCviUc0CYe5g+uaBzQPfHAYKToXNAyqScq1mic0DOCmQje6NzQEkgEkYFpXNAJknt2V2yc0AQomBAuLNzQFGKPA8MtHNA9v7MO/nAc0A8yfLmz8JzQAKxkIMlw3NAvBnc+9jRc0C2lp0cvtJzQLAfmn/y03NAdMg5N+LUc0CWaLXNouBzQG2g+SE54XNAR7qHOTf0c0AwO57+i/RzQOkgKeXO93NApLyRLuQAdEAunOpPeQF0QAPQTSqmAXRAQPMEfE4TdEBwgm2LuSF0QMrenB1jVHRAHEVPC/pUdECh0wsWi1V0QEXQwBPcV3RAMfSciv9XdECyhDHrNF10QHLipOC2YHRAFpsMOglidEBrrL/ojWJ0QKgUR5NPZHRAOBXrF+hndECVJ9p9RG10QLSVmJoicHRAxOrjMEFxdEDWOikIOXN0QEQLPgk1dXRABQpErUOAdECUTowe+oB0QNBsYy5OgXRASjyz0EWDdECZgEu+FJB0QGAdjlFRk3RA1QSuAl2bdEAZLEVz7590QC/vHsfPoHRAirmgGDihdECa1b74t6J0QB+W0UQOo3RA8rkk5vqvdEDIIbZCALJ0QJYAsHRvsnRAA9vFTMm3dEAKilNQJb10QKIx41/dv3RA7BioJHrBdEDQ4rag+850QOg3Aubg03RAaMyhDM3UdEBsLtVNt+F0QArIDZxK6HRAXDHxnYzzdEDhQm1NXQJ1QADtnECZA3VAwERTKmsSdUCQMw2lIxR1QPZ9RiKdInVAGJKZV8w1dUBARZogC1B1QC8wjZbkUnVAIFGdl3ZVdUDV6fZqEGB1QLPuH2M6YXVAoOGAZ/NidUCJMoF2dnJ1QGxa8TeNdHVADIAtTHmBdUC+xPEAroF1QFTByZASg3VAhq6oVaaDdUBr8DnomoR1QAkVNSQMk3VAQqRX5rOTdUCW75S4ypd1QJrTkqe4oXVAGp2XpiijdUAs3Y+zzcB1QJLWplhjwXVASLBCb/fBdUAz6Z0FKtJ1QCdghcsO4XVAPkPuPwjidUAufhnKOfN1QB5Z4mdIAnZAN58bPtEDdkB+Q3ahTBR2QLSvvHyIInZAQ56B8Y8kdkBIM4krSyt2QBRC9aUfMXZAS+Xp/VAzdkC84ailnjR2QNRM6IZZO3ZAdMTxbB1BdkB4RtzQx0J2QBKg7EkSQ3ZA43u+9XhEdkCVluqLyFB2QHp0a3kRUXZAOIcrnc1UdkCgF8NDUWN2QIpLB9LZZHZAEqn/iFdodkDqiNL0sW12QCZTVlZfc3ZATiiqQ2aCdkCfUvF0YIN2QAMoiHOQg3ZAiHlS+JqydkCWGa8KwrJ2QGYheC54s3ZA9gJU+gy0dkDkeXX10rh2QAoEeYO9wHZAMgWQj87OdkDZxmHFG/F2QNYhJuWP83ZAihy7bjQCd0DKg0/7UA13QBgWhvUAEndAcpAO548Sd0AYsdmH6Bd3QFIRM0sOIndAZ/C1dHgid0D2BIAdpTN3QOcQ184MNXdAXkVQXyU+d0DGZ3fVnEF3QPax8oawQXdAkqSa5fxCd0A7faoTG0V3QJRa+v9KUXdARBol8pJRd0CmsZl9KlV3QDWbllLVWndA2iCAqQVbd0AaM6e4j2F3QJw+TUKjYXdACoXwUd1id0A28yrzBGN3QHsRSvArY3dA9hEuzTNrd0D8BD/gJm93QKo8N5GGcXdAWIdnUyl/d0BCZMQ+eIJ3QPxE5BYJkndAvE0ilz/Dd0CKHxULjdZ3QLBeqr7r8HdA/ThrNnz4d0A85rGSbSJ4QMM6PR2KI3hASAsM/78jeECHn9Q6ySt4QJ0yVWEdM3hAurMopN8zeED3Bme46UN4QJRxtpARRHhA1IggzXlFeEDmvSxLy1F4QP2St8mUUnhAnLmW24dVeEAGsbiC7Vd4QOrzzSs1XXhASlRTt/lgeEAeeTSGtmF4QOg3oHC2YnhAptzVG+FieEAWqFpjZ3R4QPrj2VKLdHhAZnE/u6l0eECAlaGJpIF4QPxafdiZhHhAeCxGIpiReEBmadFjp5R4QBukyILNwHhAuMGYMt/BeEC4UY4outR4QLJ8Fr3w7XhABXd97kvzeEDVNmlcAvR4QPR00GOM9XhAfLxCrtETeUDZTeEZvCN5QD/A3zXlOHlAitjYIfxDeUBFoLr8CVR5QA1PQcTMVHlAYEbfKENzeUAaXtH1cI15QO9CmIzMknlAwskdlBiYeUDpfZ/vvrJ5QC3ifJ9B1HlAHwXpIVLkeUC/78LtpyN6QDO9ut07JHpATLmAq0s0ekCiYE9nDDV6QD2AiDzpQ3pA8valkxpFekBIwZHezUt6QPB0zRMmVXpAWLz6NkFjekB8Y5JejHJ6QAQeS/z0gnpA4HgnMA2zekCY/Z3S+LN6QMAXTlUNtnpAYiHxSxK3ekDEhD4VDch6QMql57hnzXpALFasPsLSekCO5jswDth6QIxfLcpn4XpAxO0KFHnkekCZ8Gtu1ut6QPEJwIQ27npAiNsacRbxekAqGmUQSvN6QPAaDDzW83pAHsN6iKP4ekAmyKkn5v16QNxQUcgB/npAV1Poh00De0AsupoifgR7QOjakZLEEntAuFy+AKsTe0Aqa1EBTRV7QNb1WEIdGHtAAFzqUFsle0BYkofgwzN7QDLZpwwUQHtAEp9IdPVNe0A6L89bYlJ7QPJuUNsAjXtAFv4MKSOVe0BPhguuzZ17QBRpooMno3tAynfas4Ooe0D8ufFKya17QDcAa394xntAw3tFO8DRe0C+78f8JeR7QNyPyB4a83tATtcy0Yv1e0C8YE9N2QF8QCyu/e6ZBXxAXZg2Ws4RfECdOYz+5ht8QITjnvD1I3xAWrNSY+UtfEAFoPSBQTN8QBaSekecOHxAqPCu/8xBfEBb+q30fFN8QJiby+jUenxAID9+H1iZfECcL0HXsJ58QLpXBP6/snxAhPA3HFjifEBgptqZEON8QPaLrSFr6HxAKCKdVrPtfECoLamwye18QGg+MawT8nxAcuNAFFXyfEC6mucxDvN8QCbDHw8DAn1A/R1PE0sCfUDRKXScUQR9QPZz4JhEEn1AtkFzFl8UfUD6uydLrxt9QPdB73C3I31AU+WYYaExfUC+rxi1GKR9QND/0yYCvH1AKG8w4SnDfUBOCXqQCMR9QJl72LqP9X1Adp/K3OwdfkBozCwJRyN+QGxFlSdFL35AMAv73o5VfkAEirNMO3N+QCpycM3ReH5ANOJCgrd7fkDIrJX533t+QAT4HxMufn5AdPx/67yDfkDcesCBwot+QM4IC8jIk35AJlMhd9KbfkBkpShjlAN/QFLHj/XpEX9AovfQP+oZf0B+8yHGt3F/QHzHBq+jg39AQJ4EaGKRf0CCxoAylZN/QICnlzpfoX9AzPRUVlKxf0CwS8WqhBGAQPJzaxjtKYBA5fNiHPYxgEAMlrYx8EiAQKygJtmkSYBA6MavDKhNgEBGzFdE5lCAQHRvk24TUYBAQavqsedYgECCtHWcDlmAQPT6sAFIWoBA6eKMyEtegEBsVeQ34mCAQGTVZvwLYYBAEOdbisVmgEDYcd5+Y2mAQCDQSiV0aYBAePNaIyFsgECOU0xPKG+AQIOrMHbfhoBArHypch6PgEBMtN7QHpmAQDj7ujlXooBA/b1dulmmgEA8bCXOhqmAQIojcBtgqoBAfC0IsxSvgECq5ddf3LGAQDE2fqU4voBA0EvbZFLBgECc1D6LU8mAQGfubWSnzIBAeBWuLAfPgEBgSszILNGAQNIJOIVM0YBAqtSEJGLRgEDofgvwAdKAQJCW0gNK2YBAKoRFdHLZgEBG3EodBtyAQDzaJz0e3IBAZhsj+EThgEC0qV++Se+AQCdhwd+S8YBAXhUcXTzzgEBGWw4Il/WAQIStshJA/4BAuDtnPUAHgUA+UordZwmBQEbW/RoTDIFATU8OwjwPgUDQaOipNB+BQHG8aho3J4FAqrbgUeUtgUDJvkFovjGBQJyBE34oP4FAqDU8WfRFgUAAi6G45EmBQN5KPXnSYYFAVndl0WiKgUDg4lt5VY+BQPDcaBdXl4FAslSWWVOfgUDK5I2h5qGBQEoulSTXpoFAjiNnHm6ogUCstavog6mBQPkp0IZKr4FAxKmf6462gUDCuvmoTbeBQBSGWA90uIFA90AzgpK6gUAavXmfaciBQBh/9YKuyYFAVGuTG7HMgUCqcQ94z82BQJUZ2hV904FAyw+yyoflgUDTEsmhiOmBQEQ867X68YFAZF15kf71gUA8rSoFAvqBQFKFx6/YGIJAzqY5PNcggkBao8Ic0iiCQEovaayjMIJANIqXmuk5gkCCxXeG6E2CQP2r6UTqUYJAv3nWtS1sgkDaaeHrq3OCQAYsgFdDiYJA8sWxckORgkA6RMZ5PJmCQGH6qBdWmYJAYNttyw6hgkA0Ks18OqGCQD+OayAMqYJAMm05jTSpgkBExQX8CbGCQKKQHQn7uYJAtm0GJ/69gkDM/97vAsKCQMzdP3j4xYJASh1mEiHKgkDG5al6zM2CQKhE7FfP0YJA6P6a9sXVgkBEK+l1y9mCQDpSvCSv+YJA7Qa+fnkRg0AG/tUoehmDQHf0hyJzIYNAayfYRoshg0BO2+CUDSaDQLj2NhlyKYNAwDQJMA4qg0BOTdRsRjCDQFN/p0RrMYNAbGPMmtxBg0Cy12ED4EWDQDT/M+LXSYNAkhOntEmDg0Cun2iqWaCDQFro71JSsINAaiReTWu+g0DtINaEv8GDQKW8zOJvwoNAALq/FMPFg0CQJ8fIuMmDQEqDLmq+zYNAkfgDXJX4g0DCDlh4Sw6EQJ603zoCEoRAz+kvSAkWhEACrciiAS6EQPjVByIGMoRAGscT2HAyhEBS5yeg/jWEQJdMkRhzNoRACB01fgtKhEBIimzv/miEQLDcPDz+cIRA+TNyqfZ4hEAoCdm2GaWEQKGC3c5SsoRA/g49Yle2hEBHy1hsGM2EQDapARMAzoRAmaRAbQPShEBosJM7atmEQPqw17Rq4YRAFnCn7GLphEB6+IEqNfGEQJZgfbBh8YRAiRD7JsD3hECMQ1aeNfmEQJ/+sIVe+YRAyOjpUS8BhUANubfBYR6FQO5+JK6gYYVAknz0EaFphUCagmXGmHGFQGjTLKqyc4VACL+9C5p5hUD1/9zwkYGFQKjVCJ+jVoZASyA+qim5hkA6DUU4kSmHQHJcrAWSMYdAemOJvIk5h0DSPnF+sTqHQL5YzvSxPodAwmeWHolBh0DOYbNgtkKHQK8ldQXIsYdAXOhg98e5h0AnNRy5db6HQPXhdn3AwYdAY6RZd/zdh0CAs2j4TD6IQPQIvkpQQohA + NrgMGZxjYkA2uAwZnGNlQFf+/uF9UnBAG7piYCbDcUB1T7vM1eJzQDgLH0t+U3VAda2XIC70ekBzrZcgLnR8QLoFOjrDAoFA - + - 296URTC4nURPUjdHiKisRVF1uURP54hGEWRKRfGXkEQ9jSBHruKlRPfvtETp9IpFmrQfRVtmMkVcxAVFZHq4RGaguURrDIxE6AefRJy9wUTenSNHzDSDRqSIYEWC035FHSuuRDkMtEaqYI9EjYPDRJuas0W83blE5smmRPW6ikTlV59EKuSnRDKGsURUwqxFpEgRRknsi0QLQNdELXFuRT67xUSCh5BE3bL5RMQXkURFRZNHLIGqRCB3rUQonuZGWcGOROERj0RJlYZF0AetRfOrmUSvBARHoX/MRBgKtUSp2rVEJ/pTRXsNU0ddA9FEj4JfRmYHDUbMYDRFhTHpRTVEB0Wa6Q5FyqmKRDzMHUViRRJFvoHHRLvnk0VTeRZFwatTRXwb0URY2Z1ErgxFRVZkmkQrqfpFRBiqRPjMd0TtYylF2NCzREJGUUZTCu1E0OgfRVJVHUUWVpJE4ViDRPucyUSoAglJoiQURazQjUgVB3JFBWTJRLdcp0cy6aREK6MORlQX20SvvrpF7DUeR2SSqkUUb7dEg2ZkRZnwMkVCEaxFon+MRN9ubUW2I59E1rwTRZLG9EbyWJNEZPCIRChXvESEzcpEatlCReIfIkVQNq1GkqriRS01zkTuezlFA3aVRB02t0STTrVEU5yVRNWrKkWh4AJFHgKmRTtpQ0YcltxE6HK/RD4IAEVNk5BFw8cNRQ+TbkQY4opGlHUURZ0tgESMrK5EyqfFRF3c6ET4xAJGZ94ERayrlkUmnP5EZOQjRxt9AEXruMJF86SoRVYjlkQqEZxESpbkRDMukkTLp6JEX9LVRBPP50SETgJFvZz7RGhmjkWx89hF5yioRHr4vETXooxFu+wRRrnXfUaE+rZG6lS4RXAGo0RYfZNEvbeORdzR9EQmhdtE4ES7RXZhqkRDoTdFoNYPRuv76EcYH81EofMNRWscmEQF2nFGKx+FRGyM5ERn56tFPYL0RFRrCUVQO4hFIEyKRUR2w0SyVn5ExTx0RVCIfkSN7ENFmJiVRMNQ/EXrnIlGwieeRaDHDEVJ81lFtfR7RJUOvUQMRe1HlysqRV7UmUanl7BFmxbyRIiHuUaRkKlFySKGRlHIAUXs9h5GS/qwRO8SNkVhkr9EvXUnRXp4tkSO0R5GLiNLRRFGPkUkRYhEYpSJRCPZ+kQbULBEFvFtRGwfr0TN6ZZEb4H6RA/aiEUHZ8hEOZU4RsQglUUqRcBECtJwRNX5s0TEwdJFPkhDRvK9bkVu5cRFWzYARUkWXUUrJqFEW8rnRCOmNUXAZ9pEwwSPRO3YoUUw0ERJn0HdRWPGQkWCy0dITocARSrDnUa49t9Eghw/RQ+NCkWWPdNEO0yYRAFedkVVC4JFIj6vRM37iUQcw49EdpgYR//ytkWO5n9FgqnbRFnAc0b1W8xFvRKxRH2kYEU4R9lFsx+TRLbbBEa8Z91FQY+2RLmPsUfN+oxEqp6hRrn8ykTJeB9Fdpe8RMYHqESv3RpGTyRORYrRS0UplK9FDanYREHFi0aSoA5GFlZHRYj4nUSTD+1EDP3ORNZwq0XoA/JEsvbjRNoh/0YXhbZElNx8RnZsykSyTj9Fvc6HRKxEokSULPhFP77eRaFSJUbE9mFFHgQ/RZj80EQX8qRF4vWkRI+NnkTHVpNEU5sURZNhnEfEXTJHhR9eRpifXkXwd5hEQk/hRFSxL0VLpcxEg/GRRuGlG0aZKJVF6ZZRRWq37EU4n69EZ5iMRW3BRkUcNKxEi0naRdUE5EQXOxFFA48dRbzFW0WH1vpEioDjR9sQEkagDOtFhA+6RFwRCEURFh5FLhzURqjnjERmT/dE9nKMRmlXCkffckxFBlmTRan2KEZfJUZFJ/ShRB4+6kQ2cpdFhde/RKXspkQFmRxFVUgLRVMXmESEHo1E3C+sRDWy40RYXhNFqnQFSbFOskUkmthEqJGTSMy6pEf4xS9GPW8ARYWXS0VUGyxFI6SfRJPKkkUYDcpEoWYhRmT4gUQ00hFFW2QRRU9L8ERGJqxENkyGRNM16kSQ2YBFROnYRLP4TkW2sTdGm2OqRAY+fkXtsIdFQK41RZEJh0SeEZtEWHZCRjaoKEXsnVBF6ZsNRVlALUUEsJVExZ66Rergi0TxfcBFXDk/Rfqdu0R+MolEB6WhRIAi30QZShFFyD+MSOoYAkhoq5FEk4wARbVMsUSvoodHFUZJRQwvjES6flBGqFlWRV04AUV0UrdErsGjRbyOp0SBeItFjHG0ROVpZEV05SxGbKNYRfW7HEW6/KtEpFojRS/Bakb2ZoNFPELRRF9tJEUQ5alEDdfnREic4UTNBYJEWn/0RAC63EUBLaNEH66HRA0HP0UJ6hVFFMfnRLGNL0UA6aFFvmIQRfCJkUTLR6xFxbq7RBAol0QIuqtEE0ubRCg8AkUSKdJEFSi9RffjMUW8PRRG4mc6Rbwj+UTAPjVGDcB+RaivTUUtC/pE74KdRPG+mUUEAPxETXclRQupvUTb4btHd5MWR+UT00ZBewJFCiHERdqKsEXhBQVFrKkpRfqXCEWiVkdHwrrPRnNhjkUHcLpE2SCsRLlDc0eWUtRGWVsHRhHJe0WeTqVEg4/sR1r7Q0fSSAhHa+8oRc0WIkV9FOhFtwu0RLTOxETud2RFyMlgRlbDvkUX01hFmILIRPeSfEW+isBEySWmRfRrrUYIC05FzuEwRnnSlEVouRRFKuWDRDIkqkT42ChFVeKsRCUk50VTF3RFNqQXRVmRoEQljM9EOHfiRA/4r0WW509FFni3RHVppERt3c9F7Lx7RbAGnETtc0FFi5wERVy74UaI/3BG4oIIRokIrUWwsTJF30eNRE4rJEWv7J5Eh62dRBvVqkQsfh5HgU51RqWHHEarj9pEwgGDRULjm0QQFuRE/drpROaBFEZyo75FVrqXRVCODUUoDrtEKjvERCKg3UQg0hdGz6yoRfNxtUR8CDBF1QvLRBGPHkXuT5JE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - KtGOhm/BckC4pFSZp8JyQJgfneDiwnJAkGeq3TrDckDtrXYxxcRyQERmGXA2xXJAAhYSilrFckAQppFSAshyQN503G5bzXJAWAiBDUTSckAs25rmddNyQOh/CpHO33JAwP65grjgckBWZt03TeFyQLsJ7tdQ4nJAsP6KN4/ickDLWSRwJONyQCkFJAjK8XJAJEIEIn3yckBA+C6Owf9yQCNB8Uv3AHNAJPWzJs8Cc0Dw7E/j+gNzQMxN7cm8EnNAeBEdHAYUc0C8JYA3TRRzQJ52Cgb1F3NAtusQUXofc0BHnsY9oyBzQEmey3I5IXNA42QQ+2Mhc0CeCtZLySJzQFivX1U7JHNAxpBVrs8kc0Aio2yeWDFzQALUrRMkMnNA+sK78nlBc0D0KRNqJUJzQCZa1kt6RHNAImu5A0JTc0CaOxY0pFNzQInARDSGVHNACDu2/jpjc0AqsQplLG1zQOq8RkRQcnNAdHqD62hyc0Ad6Qx9hXJzQGwxPGu1dHNA8W0SZk11c0BqCQfsa3ZzQIFpC/XOd3NA8M5TMeF3c0D4SMOWO31zQPMO9ht5gHNAhXf6zaWAc0B8K22dDYFzQAqRaxZcgnNAOOSINIiQc0DQkDw8TZJzQBq0kdf3lHNAarcR0Ligc0C+NEKukqFzQKfFR+9ZonNALi+s/ZCic0DlMArU5KJzQM3FBCsEpXNAEuM2/n2xc0BKjBntubNzQPAf9fUOtHNA+imhsvfAc0D9vEyp0MJzQLAQXsEmw3NAqhMIU9jRc0DemD+8+NNzQMRUELPj1HNA3qbysqLgc0ApM1edOOFzQHQ7F+Bk4XNAcjGKLxHjc0BKAO728ORzQN/hHvE19HNAi5Lud8/3c0AC0dLZTQB0QC2UJ5/jAHRAbCidR3kBdEB0DOzHihF0QHT2EJVLE3RAt2Cvx7khdECu67YKUzB0QIrvyTLmMnRAgs0zRVwzdEDuOn8Fe0N0QOsYSFCPVXRAlUppOtxXdECrnS3zG110QITZ3ik1XXRAQrp6lbhgdEC+C052CGJ0QMSEMHqOYnRAwMCvH1BkdEDmAaAd6md0QJg/RHtHbXRAmrqh2iBwdEAjydo5QXF0QKJ/L4E6c3RAAtAWf6B0dECOd1hxNHV0QHZtK35DgHRAHMbVsPeAdEAKv9beToF0QGStW+Mlg3RAVsFQkhWQdEDVmGANXpt0QNLdWKDvn3RAsligmNOgdEDFCN3WsKJ0QA+sYAgOo3RApuu6rfqvdEBouaMLArJ0QExnzW1vsnRAPHXyBMi3dEBcqbTMEr10QBNj+qIkvXRAypMe/t2/dEBRF/5f48B0QDbkXzu3xHRAEOzCwP7OdEDqqOrlEtN0QPlgPMHO1HRA4JL8ArfhdECMK/PCTOV0QIImpiYD8nRAUBLm/YzzdEB8ujzkzQB1QMkAZ7NgAXVAJluoDV0CdUDWgtMJ8gJ1QLJajRlqEnVAas5nSSQUdUAipftBnSJ1QBb+5pbNNXVAeR0eGQZQdUCCfzjH41J1QGYCQrx3VXVAb+u42RBgdUDcIyK4OGF1QGddA2F3cnVAfgV9UY10dUCInEGMeYF1QPIFDrOtgXVARGE9qBCDdUAYYhmSpoN1QLUHTVuahHVArWIdIruRdUCUAhvgC5N1QEDbYV2zk3VA35/hzviXdUBxgzlSE5t1QMp8Ce+2oXVAgg7hIxujdUAooEXyzMB1QB7kja1jwXVAWLhxo/nBdUClJDWqRs11QG2kbG0q0nVAlDWhCqfSdUAf5/f8zNN1QOA/xx/813VA7kZvv+bfdUAgmBfWD+F1QGiw5bEI4nVAbsWZWTnzdUCok012SAJ2QP/TR/3QA3ZABPVuEk0UdkBgzkgsCxZ2QATM8KuIInZApClBStAidkCks9ZPkCR2QDCSpfxKK3ZArAvXcx8xdkBzRan+UTN2QE5jSyGeNHZA96i41Fc7dkDwvsyIHUF2QB6ZSCp1QnZAJKKXY8dCdkAIKok6FEN2QFbiJtx6RHZAkqr/D8tQdkAGIP+SEVF2QP/TnIDNVHZAdCwLhVFjdkAsutrg2WR2QHaC+XpWaHZAciGggQtzdkBOflayXnN2QL53XBKRg3ZAGO5Mf7ewdkBaUeDIwLJ2QCzqV5J4s3ZACj2miAy0dkDqngVE0rh2QPaorHdOwXZA+nOz587OdkBq3qy38eF2QJawfKaS83ZAkNjVEDMCd0DYCg9dUA13QDw1mzIBEndARnMoj5ASd0AMgOArqhJ3QGx9Z2HrF3dAdEah8g0id0CxcpD4cSJ3QFXq1yCkM3dAHJP6xAw1d0CgKWhaJT53QL6FJO+cQXdA9k8/S/tCd0DaCcUlG0V3QJrv6stKUXdARFixpZJRd0AMdzMcKlV3QIA7P9bVWndAeqp6vI5hd0CYj6lG3mJ3QELYVbArY3dAeYhj6DNrd0DdF2mPJm93QJ4drEeFcXdAAX06fpN0d0CONkuwX3t3QBDJl3h2gndAE98SqAiSd0C9dSQO49B3QNwGdtHK3XdAkPPK2E/yd0BOwtM7fPh3QDObO0JuInhALbf/XL8jeEDIjQZuxit4QMl/STAbM3hAECSCoMwzeEBorDHLHjd4QMp2qhENQnhAK0N/YBFEeEAPafNmekV4QKMqaNrKUXhAqmu2JZRSeED0fPYtH1R4QOdZC/+GVXhAjMTtju9XeECvBzpfQ114QOLyKfb5YHhAl66U87dheEDLcBCVt2J4QBojvGrgYnhApbFMY6ZjeECNA5/GaXR4QExBQY+LdHhAdOa74cZ0eEARemzbpIF4QD5xmpKZhHhAMcKY35WReEBkD/ZiqJR4QHhL1UiopHhAeCKTAsvAeEC9CaYJ4MF4QBHDfbq21HhAvMUzfErzeECk1OCWAfR4QFjwb8qM9XhAfjY/NZsFeUAGEAqdjUJ5QPAMgED5QnlAcjCGCvxDeUAsaSv/CFR5QIhDc8fLVHlAmNWwekRzeUDtziT79IF5QGTqULpwjXlAzniogcqSeUDxWaFvJph5QA31j2/AsnlAlO0kTULUeUDNdHcPzNV5QDordQRP5HlApAsBxPgFekCWsOFdpyN6QOTRw/U7JHpAnhYfx7IzekAYOy5MDDV6QKaGnycxO3pA4LV4LhpFekAHgyebJlV6QPPCqWJBY3pABHQdR/aCekAfQPoWDrN6QL2bcEP4s3pAVhPh5g22ekDMrl5OE7d6QNi94cEww3pAxcTJrhrGekDSQKDaDMh6QJb3nPxmzXpAX1Bt0sbSekD6xvAEG9h6QP/msTpl4XpAgCDOptbrekCC3xuRN+56QL16zLsW8XpATHnSPVvxekBa6LyISfN6QDpeq87b83pA4o4nP6P4ekBmK6mb6v16QF92FowD/npAHWunMlMDe0DgWM/p7AN7QHIiAlZ9BHtAokhD8ioOe0Dw8+rkwxJ7QF8VTjKrE3tAXovF6EwVe0A/ZCajHRh7QHIzQq23I3tAwBS8E1sle0CfbfeMVDB7QMNXlfcRQHtAUS8dcPBNe0BQ3NOQTFN7QACs3igjlXtA/qNbHc6de0BhjvEMJ6N7QMCgEeJyqHtAJpuzLoOoe0D6At5fyK17QGyVqAPlrXtARByl27/Re0CzzHE3KOR7QN70BO2W8XtAQ0/eKRnze0CgMlaci/V7QA4VapaTAXxAZLCwWNkBfEAy7bFQ9AF8QKHv2OpjBHxAdyaMR5oFfEBiv5H60RF8QFqLqhfoG3xAZCHEhfAjfEBQXcgf5S18QDBqoJk/M3xA9gChaZg4fEB5xwjlzEF8QPc1DLrTenxA4sVY71iZfEDrFsdSs558QDQS1UYZo3xADHWE/QmkfECZLRFdwbJ8QPk27bdX4nxACmOQEhHjfEAS2OZGa+h8QCwpWgWy7XxAFNfivsntfEAy3dqaFvJ8QCJkfblU8nxA3+2qaQ7zfEC621A+AgJ9QJ6NKXFLAn1A6vjkkVEEfUBGAtmiRBJ9QEDoA+1eFH1A+sKNq60bfUDGDfcVuCN9QNAI9ju9K31At48iQhakfUDJgng3Arx9QPqyCz4JxH1ALvXc+JD1fUB6HPez7x1+QNDRlxg1H35AM0NpQEkjfkDRvhxKPy9+QNKzyLNFbH5AAE9LzT1zfkCSBrdXmXh+QBnmhHXWeH5AtU60tlt7fkAYLQhIt3t+QM4CaQr5e35AxA1BLih+fkCkAKHRvIN+QFQ/6K7PiH5AbG5DVXuKfkCaBf0iwot+QO6+3mDIk35A00A5EdGbfkDUjmZ+HAB/QOd/1QOUA39AtjZjSrhxf0AAT5PDsIF/QKqdIiilg39AUJWQS2KRf0BohCNjqpF/QEKxxvOWk39AOBFPHl2hf0AuxSm0VbF/QOUw5E7Kz39A0p25NDAUgECK+KTiYB+AQFaJg30OIoBAqFqnKbskgEAsxwZFoDqAQPToE6b2SIBAebvoAKRJgEBM3DajqE2AQCQ+L+XmUIBArxml2hNRgECEB6bV7FWAQG7zXXEOWYBA2nq9ayBZgEAg2nl1SFqAQH6DGBxMXoBAVlJ12MVmgEBAkS6cc2mAQNzeLjIhbIBA9tpZZ8ZugED7ep6QKW+AQLPQY2ISdIBA9e565S+EgEB6ciyMHo+AQD0uygECooBAvu6wuFaigECQXpqbW6aAQGXYAUmGqYBAVyL73xKvgEAjvmDfsrKAQMhG2b3DvIBASL7xlj2+gEAEHng9UsGAQIf632lTyYBAw9OS7wbPgECW4xvnV8+AQIE9oAgt0YBAYIeaSUzRgEDikreyStmAQLT3mkFx2YBAtS1MnCHcgEBc2zWaxN6AQLrEgOdE4YBAvJBgAfjogECss8dISu+AQPCQL2+T8YBA1iEBZ5b1gEAgnUmtm/mAQLSvWMQ//4BAWJFtdJICgUC1D8zgPweBQBwqDURpCYFA/PKmFxIMgUAxn+g2KQ6BQCKvRmI7D4FAHjXjCTQfgUB+B/EXNSeBQMaj4Ay9MYFA9Rh0ECg/gUDFkt51IkKBQFJVoDnzRYFA2q7BvuNJgUCIkf926U2BQLDo/19cWIFA6EekUqRdgUCXQKEnw3SBQE+8ofkVfIFAKQ0SdGB/gUD+mRxRZoqBQNZCjVQUjYFA7Ff6gFWPgUDMmXorWJeBQO2VUBfnoYFAgPAKD9emgUAODv1PbqiBQKjbooCDqYFA4LPZw0mvgUBmisBfjraBQJiK1JxMt4FAPb7gZ3W4gUDcqKk9lLqBQEyN0IetyYFA3l/XUATKgUA3SXgossyBQJTKwGvNzYFAprD2FNHRgUBo0vNRfdOBQN6hpv+G5YFA+vWMI4vpgUDugEiKBO2BQNA7Zor58YFAsPz7Lf31gUCturAfAgmCQDhYNvXXGIJA2Jg6fdYggkDNKWq00SiCQO/mYqShKYJAkOQIFKMwgkB6oqo15TmCQH7R8FIjRIJAJt7OMtFGgkB0WkvNIUmCQDCro5ToTYJAeHr+++tRgkBs0Czr5FWCQMxJvSaAaYJACiZUsCtsgkAffukvQ4mCQGLvpaJDkYJARDZHjzyZgkDKZP6yDqGCQBA60h07oYJAHrBpNFiigkA6orv4DamCQJgQP+EyqYJAzv4P2fq5gkCQnSrU/b2CQIbXEpkAwoJARVksDPzFgkBkZ+lkJMqCQK/GJFPMzYJAsF07jM/RgkBax/TRxdWCQERjM07J2YJAU7oPbf/1gkAMI9xHA/qCQMYJr195EYNA9b/NzHkZg0BgTz3mciGDQDDBdvqJIYNAtr174gwmg0AT64MucSmDQOjTAqIPKoNAPgKvskYwg0BU72EkaTGDQHXDeNVsOYNAww/7DNxBg0C6H6qB30WDQG+S15LTSYNA8t9PjNpNg0D7I84Z5YGDQI7pLlJaoINA+DpPEGu+g0B0ogWGv8GDQFaMVoxtwoNAKONOdsLFg0BXkEyeu8mDQEYmyvC8zYNARaNkkUsOhEA7bLFyAhKEQLDlKRAIFoRAGqK0GwIuhEAAZm3MBDKEQFQaAP1wMoRA7CvSPXU2hECgK5E3/2iEQDhiQRr9cIRAyLaH4vd4hEDjjdW6cKKEQOlcBh8fpYRAg8Kt61OyhECSaLW7VraEQGvHj/5ZuoRAaM1qjxnNhEBiMmUFAs6EQNOs6VkE0oRABn7b42nZhEDO7jgaauGEQJ6KuqFi6YRAgoyyBDbxhECkCv5bY/GEQC+a64O994RAqNskszH5hEC2fjN0WvmEQLO606Rt+oRAzmsO3mUehUDG/x4OZyKFQPrJB0SgYYVAvsRI2KBphUBGP7RGmXGFQGezR9S0c4VAkt+ZVJl5hUDkmPWI/YqFQEzLXA1MqoVAVmoZDMiWhkDoPetF2uWGQPynwNWQKYdApn+RCZExh0CsN8jUiTmHQJK9soqwOodAhmIJx7I+h0DxzwckW0GHQAZYihmJQYdAz8ojgLpCh0B0yCaWkH6HQGxbRPsFnodAqDWpH8exh0D46fSgxrmHQD9VdefAwYdAjkYNXsLJh0DWUl3/Tj6IQA== + KBZXds7jZUA1uAwZnGNrQHVo0FeRAnRA9X42GSyTdkBjJtC0/zJ7QOM8Nnaaw31AMUJWBCwigUDVS+VXWfqBQDFxRC7YqoRAOHmvdOWShkAxoDJYhDOIQMxZU7A8m4pAKH+yhrvLi0BdXtRIflONQCiuoLBnVI9AvVfIGetxkEDGbbXmeTaRQG9uLSgx/pFA3fCHuarKkkCG8f/6YZKTQF0If84Aj5RABgn3D7hWlUDsMN3DLFeWQIYg7iQOG5dAbEjU2IIbmEDPoi7xLneYQLNcg9OY/5hA5iUBxF8LmkDK31WmyZOaQGY9+Ni1z5tAWQi0m/VbnECwLcp24dOdQOgwEpEhJJ5ADVe6ch3Un0DNo7vPMzigQEe32MM5zKBAvy6l0076oEDjb8U5X6ihQGyvwZJPzqFAKoR0NHWMokBeOquWapCiQA1Po5SIkKNApuI10J0ApECYkAz+oFqkQH6jqYqyBqVAWByICMw8pUBP1Ge00BimQClNRjLqTqZAD2Djvvv6pkABDrrs/lSnQJqhTCgUxadASLZEJjLFqEB9bHuIJ8moQDpBLipNh6lAxIAqgz2tqUDowUrpTVuqQF85F/liiapA2kw07Wgdq0AfxZIDjmurQDPYZvSLQ6xAztmKAaxrrEB67BXvoSetQPPRc9DBba1AwQDF6bcLrkCzXe/a7E+uQExCLlPQ1a5APp9YRAUar0BwzIVQ20evQGLgeKoVyK9AF6yALQMVsEARNnpaIFWwQDs22CoOh7BA8fu33zXGsEAb/BWwI/iwQLecbBRCK7FA4ZzK5C9dsUBj4gWYU46xQI3iY2hBwLFAh2xdlV4AskBtqKHtVjGyQBmNbchmV7JATKRx012kskArCeKvcdiyQCxqr1hzFbNA1057M4Nrs0AMMO3diIazQIOUFLeUzrNA7PUqY573s0BikOScm0G0QMvx+kilarRAkZKvfbHPtECgP8Xqr/u0QD3YSAHDYrVA - + - nz+XRevTM0c/YJdE9J2QRTpCckSnWopEm2KbRCPFdUaBVCtFHCUMR1e/sERPSaZE3AnfRP1gZkSHkH5FT9C7RAUxh0TUflZFnK1BRad/xUQhbtFE3wMKRTPGEEfgHTJGQC1/RVAgbESIxs9EPle3RBjGsETI8rhGPH6uRHFtikS1AIBEHVShRSkRj0TZPZZE2CxZRSvyp0SaIP5FfXK0RAR2TUVKeYxELIbZRGUglEe1T6JEjG7xRJYr20aemYpEcrvwRCtpuETHlEBFWio/RUODtURBn8ZGX8fmRF2g6ER/u8tE00oYReK0KEfoEylGb5jqRSEXIUX8qJJFoI+BRAfRwES2LSpFfsaFRLwwDEVN7INEkz/TRDCeXUU2UAdF6fkNRTMyt0TqPnxFwHmMRMUs00X7aaxE25yjRCZjakQ4asZE6U8vRcsbfkSE+rpEIBRQRu/pukQJJDFFNRnOREhGpERKXY9ERbKjRAflXETeQZdE4xHOSMH6/EQavVhINgkwRe0nw0RuGnVHjPqmRE6E6kW7UoVEWVygRVdUIEcuqKhFHyWRRHxWoESh5iZF+h4qReMNr0XPrZ9ElXakRSnDx0TNyEVHG/iYRI7Fb0QsR5JEEu99Rb6NY0UmdrNGRFvWRcH1AkVDHIdEK5HMRa1vlETt47lEmae6RNGdLUUtsadEyEsYRXaxjkTUU2xEXKe+RcuYmEQskZREsddwRsdYjUSXzqdEkB6+RGzMp0Us8/5EZhnvRBT650X4z6NE+eK0RGqpykR44LlEUd4tRmytzEQ+3aZF3dvtRG6l5kYGDj5FJ8GNRBWMUEea4m5FX0fsRKk2lkbENbhE1y7sRKEfrkQwlYVEed/QRHelNUVs0hpFMrYHRRsjskTDWrtEuufHRGCYoUR4xvlEeOeORT2nlUVN2vhEmpp8RLZZmEQMyaFFertwRHKG7EU9l0xG4EW3RulJvUUdFtJE3Gx/ROVyrEXbMpNE2PkKRbXqk0QInHhFkwecRFPyLUV+2lZGRxU8R+w+MUUnJ15Fy1+QRLMRy0UbzYNFcmTyRFHzCUXjnpxFvqeARceeBkUjv4xEBaAPRf6HkkS5VRZF1s6/RD6tFEbLGIdGN3RjRcR4m0VKra9E3aA0RYHTmUTmfPNEwpLuR1KNEkWWQrNGXHQVRWLfuEZyJ35F0lSMRs8K5kTAkA9GDFJURYTjqEQNAexFZQLLRP+mdkUYg4dE09CNRE4yc0SLELxEY0eDREhelURy3ZlED4jHROQXkUR0LW5FKQILRgumRkVyXoBFNwuHRFjb9kStl4ZETjbWRf/KVEYck5lFPD0gRuZfi0SBBAFFBsKDRTA+zUSzMzRFfLaFRQ66gkT7t7RETJiNRB7qsUU1CEJJyhtBRTzjYUXuVkxI9GwQRdNldUaTzINEhQy1RN0KWkVmtW5FZDGARJS+H0UII/9FfUSWROCnk0RfBZZEDnHxRnr6VEVzhoNFfHT1RN5Pc0RGok5Gf23TRdrSC0XDhnBFi+bbRZPtyETy5LBE6lOfRCQ/EkZ1Zo1FBojIRA+EvEdr0X1ELpW/Rj4OC0X9mBxFecxKRSGUAEWsmhNFMj6nRcMPXUVYOcZECZOXRF2BWEbSyD9Gf57FROIKdETdRfBE5a/yRb92oEQGVSNFj+6bRGSdy0avKwdFmKKcRkhFJ0WfsAZFITh9RK33iETqigFF7GeHRKOCzEWiXjpGPrEJRu2AekUGM89EpxooRb/6zkRH2zJFTEL0RJH+ikRMRC1FfnF9R05VOkfKA+ZFz4rpReczg0VtbdNEbW8URd3yNkV0AqVFdJPNRLUHpkZgC7VEzZMqRsjCGUVdFXJECzp2RYU2fkX/CK5FvTIZRV6+dkaOsK5FsrAMRcdIs0XbwK5EdFKNRciBAUUlbpREG8asRNyWv0S28ddHYRqFRgBKNkak4PJErSnwROk6sETQmMVG+rqYRGdsNEVH7IdGRn3fRr50XUWaEohFd+EARudURkV5sgBFlvxJRbUyzEUNDY9FT+7eRLYQ4kWi7o9EpEXNRRWGsEQQcINEzAH2RFxirkR6cw9FWu6hRM/MDEmGZQJFF0aURByTjkjqyq5Eht6HRD75sUeniUZGXeQCRak1j0TkV1RFiMFYRX1iiUQH0KBERVcpRllRgUSSKthEj3Q7Rc3JU0Xmx5FEpoyAREF9ikUPDiNFxdaiRCp0hkTBxKxE/o8KRclil0Shs2RFf+SKRsy18ETVnKRFahe2RMp/ikWKh7tE1QoCRuDii0Xh6LhERU3ZRBTpP0Ut3qlExZaPRNRMikU/AY9ESjs1RZ4Pu0SKxO5EDqGtRPnilkTWHblEvyKURDV5gUj+jvNHQq/XROv2iERqX+JE6GqCR9mFMkY+VBZF7SSVRACBm0SnfZBFhhx9RFcGs0TVYqdG8moYRnG1DEXODB9GMTe2ROzJf0VEs+xEV42iRKVblkSmSg1F02N+RnNeREXYHehEeG+YRHJ4gER/UAdFjo4pRQyvtkTvtZhEkqYGRYnfoUQf8PNEWGyGREmA5kR/tK9ETIjcRTTc8USvjVVFbklBRXP0CUVwTwZFkNCHRf9DFUU51oxENLO5RK9qmUTLerBEEGcwRS5rmUTwWgpFP1gFRUC/uUTr1nRFrW3GRLGHlUSoDRZGGiilRfi9yERVijpGLcyZRW9hC0Xb2IdEi4fNRLsZ20R+8vpEDlyCRHcN9URh8WVFNrgURWTegkQ4rj1FwlOhRAZpy0eCxyFHUhTVRuowxkXRw9JF5peJROBcOUW2mPFEmTl5R4qX8UZBFdJFLin2RMqlg0QOty9H7c+dRmWdpUXY1ztFT6iDReqtq0TUc+NH8vFJR0o890YYgRBFnfcqRf+nz0VZq6JESRAJReqz5EQnTZ1EanEjRhFmo0XrSf1EqejMRG5kuETHnj1FZZSrRewPtEaCOc5E5ZwNRnowW0Va4ulEv6iyRKZaEUUrnP9Es5uuRWPXJkUy7BhFTMWURFask0X98QNFJ5aXROtrpETR+ylFTNLNRWnTI0Vo/51EwrXpREuzSkUZOAxFmpUURyKigEZ8eyNG5kSTRZvLW0ULk8VE9BW4RPQqqERHlJtETPSoRFEvtkQWTRRHbCyGRmYDIUZV84JE/dqcRUrpHUWWC4dEGX0BRZJ+j0SfuRlGAC7nRSRRTEUwOrlFzbRnRSHwiEQF5fREpFEeRV7dmUSLwIFESuURRjL1sEXIUmpF6tXgRFB88kQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - QByDGCbBckAKWT/6cMFyQBVssLhOwnJAtLq7aafCckBfKoX7OsNyQAuT4AgAyHJAPAF+kFrNckA6X3rOQ9JyQD6eGDuO33JAZM9KvM7fckCGY3P7tuByQEBgUW9N4XJA/QkSflPickDcd5TTkOJyQBCecizK8XJAfgsvP33yckCsuYlLovRyQKyoSezC/3JAMiT95PkAc0BUpndWkAFzQFYUes3NAnNAKCWuKvsDc0DG/08sDBJzQCPT8bm8EnNAqwz95gUUc0AYryqvUBRzQDUSrTd6H3NA8OheFKUgc0DSmeuiOSFzQLRbrZN8InNAhAJyh8gic0CHCP3NECNzQHVs6nvOJHNAXaaxDEkxc0D2y3q5OTRzQPWIs2V4QXNA1O/GCntEc0AQriPuQ1NzQNCJN26jU3NAK4san4RUc0DkGfhUOGNzQDJIZxYsbXNA/AQsi1Nyc0BRC8fahXJzQBqDRVtOdXNAaxWliM13c0D4AVFi3ndzQKfmYtQnfXNA8EZxiHmAc0CfTEwTpIBzQPnK5jFbgnNA/vGE/IWQc0B+IMmLTZJzQKJV5UrNk3NATntPtV+Uc0AEQ4a995RzQMB7kum4oHNASHpa0Zahc0COIqLtWqJzQHwWKb/EonNAhhOzsOSic0AxIuhQBaVzQBURRrm1s3NAYve1vA20c0AM+zi8ZcBzQJAMVST4wHNA6TjQUNDCc0AGxhmsJMNzQGw7ZhzX0XNAA5/XxOLUc0D2zmq/OOFzQFgoVE1l4XNAyrz7fQ/jc0Bam8lCNvRzQDHaWLDN93NAWyqaeuMAdECMW8l3eQF0QJBcex+kAXRARmavsosRdEBmYiTtTRN0QPJ4fWO4IXRAovu4K1MwdEBC95Vd+FR0QLThZa6NVXRASioeMdxXdEBCnc8U9Vd0QEycxks1XXRA0KLEyrhgdEDARhjMCmJ0QC5azqmOYnRAPgvt7Q9kdEDGTd77TGR0QD5MUnbmZ3RAiybEcz5tdED2AHOHIHB0QPxUrgpBcXRAWB+5TptydECums08OnN0QIBmL9hBgHRAN0kmovmAdEBuRJdQToF0QNWpWc4lg3RApNxDTxaQdEBiyRZzUJN0QD4uzV9em3RA9n9cse+fdEC+CB6k0KB0QOZl4m02oXRADMU8hbyidEAipyjqD6N0QCWQRyX7r3RAhjEPn8KwdEB0ECUV/7F0QFQpi3RusnRAUYRkmMm3dEA+Mgy2Er10QFwfWtTev3RAzEip03fBdEAK9Rd/+s50QHS0syYT03RA8Sm0Fs3UdECpE1BhHNt0QDV017654HRA16F7ZCThdEC8bntfuOF0QOylClOX4nRALG8gD43zdEALxxi7pAB1QNaHRghdAnVA2hwWwvYCdUAnu3oQ+gp1QB53/19sEnVAxnss4yIUdUDSp14MnSJ1QPJVeA7ONXVATryUYeo3dUDvnUPXJkN1QJTx8IWCUXVAY+knXuRSdUD4wEMcd1V1QPY4sK85YXVAHsdkOXdydUCsSQqojXN1QORGGY6NdHVAtFOBLXmBdUCmvOb5roF1QOZ90JMRg3VA3J4vF6eDdUBe/D3amoR1QLTVTxW6kXVARUQ2pAuTdUDu80Ubs5N1QKiG4Z3Nl3VAT+QbyRKbdUAqbl5DUJ11QKTrXZYloXVAPq+aFxijdUDcDeVjN7N1QCo4jbrMwHVAKlHmtffBdUCozctfR811QKvw5Qsr0nVATmNdxKDSdUAIqApFzdN1QPQOdAX713VAt5I4FQ3hdUD2N7/dB+J1QC9/VCtL7XVA6EJc8DrzdUD8S1dgRwJ2QCWpcpXRA3ZAQgmuGEkUdkDmqAWuCxZ2QKbujE6HInZAP8sAU5AkdkBjga0DSyt2QLoPk3kfMXZA+q/7dlIzdkBMn5aQnjR2QHJWvtIcQXZAoLKCOS9BdkC6yDk9yEJ2QDQSjuulQ3ZA0OTJ23lEdkCsdWqdy1B2QKZWfuoQUXZAxErO+IZUdkDckC8MzVR2QEDalGxRY3ZASq31g9pkdkAiPh98WGh2QJrUBZRgc3ZAcXaPyJGDdkA8f6BBwbJ2QOXpsVN4s3ZAqhH3Qwy0dkCcFFaDeLR2QEZyKsvUuHZA7qhVXr7AdkCwf3cWT8F2QIgdLJXPznZAcAtzxH7QdkCbohxGkfN2QIQxhPEyAndA3Gd34E8Nd0DBzsEpARJ3QJVwS8GQEndAGj7p7asSd0BntHdW6xd3QNIAvdUNIndAOl99TXMid0BwOMIepDN3QJux/CkNNXdAqizZsSQ+d0Ci0vgVnUF3QI7qtPz9QndAbdtB+RpFd0Dfrp40SlF3QLRE2uCSUXdAHnkMEyhVd0De51oy1lp3QMZQ9o3+WndA0ltnEkdhd0AaYUh+kGF3QNTXvXTeYndAqnb06f5id0C9fLcuK2N3QIRWmwM0a3dA5lBtbCdvd0CehzKKkXR3QCArR514gndAwl6qbEuUd0CgLQVxNcN3QGRgZhfN3XdACQq1Q1Lyd0Af7Wxsffh3QFDYLB9uInhAVOsNNL8jeEBn3XMLySt4QMPXwol9MnhAARWCxBszeEC2ewAyHTd4QJirvswkO3hAHB+3jRFEeEAUWNQGekV4QBYdRdXKUXhAnI+J55RSeEC/aobjHVR4QL6rUe6HVXhAcJxoRu5XeEBg+EpS+WB4QNDh/GG2YXhAOMEgTNxieEDwpOe2i3R4QMTd2AKrdHhAPMcYgTmBeEDih5GJpYF4QHwfMeKZhHhAygZI1beEeEBD1EIFTJB4QG4iXiWYkXhAo+n3G6iUeEDEV0Lzt6R4QLKRBtefqHhAXghAsN/BeEBBtSRduNR4QC0Fp/024nhAtHjIVgP0eECC+Oa6jfV4QC464FqKQnlAZAEr1PdCeUBwWAgr/EN5QEEHJugJVHlA+L6Z0DhUeUCH6P0azVR5QBT2V1tCc3lASoj5InKNeUCSBwoVy5J5QJTyA/4nmHlAPLlkJW6deUCQImO7wLJ5QHvnKWtC1HlAQphfP8zVeUBlA/TrT+R5QM6N6Ij7BXpAfis7+6YjekB16q9DOyR6QBZkcy4rM3pAWu+biLczekCjFxGtDDV6QIKjMcYsN3pAXG8rZRpFekD+0mMNJ1V6QEruT7BBY3pAl/OU4TllekCqFpSfDLN6QHbRngL3s3pASoVYowy2ekBOCzGqEbd6QIBpOjIsw3pA/x1IgQ3IekDQk9bXZ816QEKw0l9DznpAHtOQR8PSekA+dxEnENh6QEQDB6t95HpA++swn9brekBMuBy/N+56QFY8KowV8XpAP6gig0rzekCcpe7e2vN6QFbGb2Wj+HpAHSbqAv/9ekDA/gSWdQN7QO7SUTHrA3tA8z8kORwEe0BWQzalfQR7QNiscVUoDntAxsnauMQSe0DA9GNUqxN7QJwS08ZMFXtAO6BhKR8Ye0CWRj9NeB17QKR+bji4I3tA+Jb/2Vole0C+j2OmxDN7QLidMqUTQHtAxsHKghRDe0DYHXZYmUh7QO+TDg39jHtAGDki3yKVe0D48LeBzp17QLgiUN0no3tAaekhVoCoe0Crr5hEx617QNhk3YrerXtAZnNlJyHce0BasZ+BJ+R7QDpmEtKW8XtAGgzzMYz1e0DU/DPT2AF8QNKfSyL1AXxAZP1wOmcEfECCgvS0mAV8QLRNdwzSEXxAGAohuOcbfEDQYrRE7iN8QAqV2cXlLXxAZusnDD8zfEBwj5AKmjh8QAAzz0jNQXxA0EDC59xRfEB+NR1FDWJ8QKFrfUQDc3xAdXLC7tR6fEB1PwHUWJl8QB7Cn1S0nnxA7ELZAA2kfEDQX1IdwrJ8QBaA4nIRtnxA0GR6Ye/LfEA2gfLmV+J8QORFnooR43xAoLiRsmvofEB276TAvO18QICCUMEW8nxAmolUq1XyfECIY0YVDfN8QHUXMnEBAn1AFKR+Y0sCfUBMmlu7UQR9QMCXbVMZBn1AQO8JfkYSfUAVxsZyXxR9QMYdNzuuG31A5Dx1HTwifUDR/fSOLSN9QAxZc/m1I31AThwiP+QvfUD+4c5RmzF9QKEkmuPmkn1A9j+FmBakfUDY470mA7x9QB4X+6MJxH1ASAtOrY/1fUD2c965hgJ+QNm8dsDvHX5AZih5j0gjfkDCUuvMoSh+QFQYhAzpLX5AHOUFU7pRfkCCVAhwjlV+QIwxJN5Cc35Aj2pggrd7fkDORgHaMH5+QLIOR8m8g35ACSqhj8KLfkB0sqQPo5F+QAixIv3Jk35AXEmPWs2bfkAohsQhKOB+QMBfwmYbAH9AcRNzrZEDf0DyX2sKmQt/QNwB02AOVH9A7wvpLLhxf0AcF0w1Y5F/QOJqN/CnkX9Ak/rv1JaTf0BNPtFgXKF/QCrOw1xSsX9Ac2aDT4IRgEAojkCtYR+AQF2tGmQPIoBADJGjs7skgEAsX8BH9EiAQK/q+RKkSYBAvo/C0MZNgECQMCfL5lCAQN6VNloTUYBAXNKvoOxVgECkPZqjDVmAQAR1VqYdWYBA5RSkmPBZgEAkzAXpR1qAQHnDhBU4XoBA5tvDvkpegEB64UarxWaAQJ7bxj1zaYBAhNiyHg9sgEDW5L6nJGyAQBbDm/jubYBAYvYSKcdugEBMwuUWKG+AQBpasIc7cIBAgCDrV9uGgEC0a6zdHY+AQMghww8an4BAvNJeNgKigEBgbXjKV6KAQNbia+yHqYBAH3IcqRKvgEAmwxJntbKAQMujQ0c/voBASKIpeVLBgECitCz8BMmAQGuV145TyYBAZtNheajMgED0GEWdCM+AQNc4asxm0IBADBT10UzRgECgLHVZYdGAQBQDMxxK2YBAQMUoTXPZgEBT2iAsROGAQFSytYST8YBAjI8vuTzzgEAiuKKGlvWAQMN/oBiK+YBAKcmnN535gEAUWbDYj/2AQBTVBkGj/YBApghhbT//gEBGAWWhPgeBQGON8DBmCYFA3M8tFRYMgUCKsJ/56A2BQEpyeBU9D4FAWNy9reUcgUDxVW1TNB+BQOEFVXD0JoFAJfr2YzQngUBMLZ0/vjGBQMhIHp4oP4FAUvtud/JFgUDO/Jxw4kmBQAhB9FXnTYFA4fI8MmZRgUDiXE8Npl2BQMc0eabCaYFABnXns2F/gUC2lkUMaIqBQJLZrLISjYFAzKysvFWPgUAoJINCwI+BQNOGZQZXl4FAaM526FKfgUC7gg515qGBQBIjPEXWpoFAGEofG26ogUDv7SSVhKmBQIFCfYTfqYFA5swpTS2sgUB6ohd9Sq+BQMgubTRqsIFAmHRy9I22gUBw0RUDk7qBQB0S7Ck3xYFAepdXLzzJgUAce3rurMmBQKKnkV/NzYFA+r1p44blgUBG8ICCse+BQLaPC7j68YFAIA3o9/z1gUAAMAW+A/qBQCTzlevXGIJALkuOjNYggkCiAoR00SiCQAnsBZaiKYJAWnHjl+Y5gkDGaxYNJUSCQMZN7NroTYJA/FKsZOpRgkBmCCrmJViCQAysff43aYJAAkaJtoBpgkCYeSP1Z2yCQIpPdSzYboJAs89wTEOJgkD/Sw+LQ5GCQDL6oEk8mYJA1hT/jlKZgkA2v4egDqGCQHN/zHg7oYJAVNfq4gypgkD6RrfuNKmCQCwm6KYHsYJAQUMJDvu5gkA5Xkkr/r2CQJOtmgUDwoJASin7aPnFgkDmpgFfzM2CQMuEwyDP0YJA2HnlLsXVgkCKBt3z2NWCQFLAqf/K2YJAZxMWE//1gkBQQXgZr/mCQHCUVdcC+oJAU0vAV/f9gkBWVWN0eRGDQOYoubl5GYNAvlSANHMhg0CSVtgwDSaDQHIHJMtxKYNAFypQbEcwg0CyanPXaTGDQGE9lEDcQYNA260+Ct9Fg0CfYK/MS4ODQHwMlF1aoINAIXlPNGu+g0CDSBTpv8GDQEJ0+s1uwoNAXxXUScPFg0AUIayMusmDQPSq9SvAzYNA9wCk6QIShEB2B+RrAi6EQB2/eFYGMoRABQV1vm8yhECM3+UEADaEQDxC/Xh0NoRAFpOieQ1KhEAgRFHy/2iEQCobtPH8cIRASIlZGvh4hEB8X4EvdnqEQF38XhH6gIRA6/DP23GihEAOhXyzHaWEQNAloFnIp4RAuByDF1SyhEDdTuK2tLWEQKRqudJXtoRAXFPIEBbNhEADVC8EAM6EQFpcLPRp2YRAzJush2rhhECge+0vYumEQGL0k7s28YRAMzkZrWLxhEACC2SevfeEQEqHuKo2+YRA2B0w+C8BhUB+kh9LZh6FQJ6u/JhqIoVAHfO0d6BhhUDS/AQUoGmFQLJRawCacYVAXCuyIrVzhUDOEPXYl3mFQLSD2xaQgYVAhD0Ss/yKhUCU0HlrA5OFQOw30Y08I4ZAmFV2n2yShkCeC8r9cpaGQO6ao1rDloZANmmsFie5hkAaCr/ffhKHQJCj1+KAFodADWImfpEph0AMic8ekjGHQHQnm4qNOYdAoDREorA6h0BAiZdgsz6HQIad0YZZQYdAQAvBFoxBh0AQL9wUuUKHQJhtjfqPfodALBT4IpGCh0BqKsDmlYaHQNvFSN0EnodAoHe1awaih0B4uBWZx7GHQHwXb+fHuYdAtRo4eMDBh0DeRQXkecKHQPZ+PYLDyYdA - - - - - - B3uNRDEMfEXZ9ZhEYywtR88onEWjclJGMBRWRQUBJ0eX/IBEcEOcRAms7ETENYZEKbU/RScQDEXfLIRFIfxCRX01sUQyjK9EpdWWRDSQgEQTHvdEWqccR3fOjkRLnltGds1WRXrujUT7j6VEn2m9RMrbtEaJX3xETgKhRCjkZkQ8aIVFcg8RRZbvYES9c5FFkgrmRQ72ZUSBZFRFDvPfRFbFCEU/coVHzjXwROAHBEev961E0kUrRVqmgkVcQOdEHFvlRmSI8ERAb8dEGrb6RI6rOkdp58dE9dOcROhOGkb4NwRGXE7LRKj0v0Ur80RFBB6NRPjL3kRjDgpFfl+yRBePmUQtNbZEACSTRQ5WDkVEMh9FxM6WRVZR8kXkTbRE29ynRFCk4UQ8Z1JFpMXNRCwFh0YTU4BEsqCARCGtB0Wg7uxESqqFRCgpjkTEeZhE2GvsSGM7ZEXdGmdIrXluRYoVCUUnm41HXJppRLFB0kSXvShGiCt+REeZgEWGaidH+txpRMxemkXu2rlElpsxRaUuu0Xjz59EhE5kRVhJmkSAHo5E+tlbR1h2sERJQtREyOmQRJtCBkW5UTZF5mp/RH8gHEVVf5xGi4TjRaC/BEW6G71FL46VRHp6eEQbdVxFqijfRG7YqEQsMY1Eu155RPE1GkVGoqxEQSmdRZklrURC9D5GZ9ZaRaN7p0RU8IFE0BfwRNsgqUXInbhEzvC/ROeIpURNWn1E0ERrRcJQqEShgvdEAvm0RPs0k0QBT/xFWOLBRFHlvkXh8u1EoAy5Rrho1kQMLY1E219RSA64CUVKWJpEoJyOR/7foEQLZntEUDMaRvnMlUTQD8xEUtQURRDKFEb7zQ5F2XaORQUji0QZtghFd7HfRC2HBkWb8NFEVutIRTqkw0V0i4BELn+QRH38ykQY2S5FCJ4QRg9yjUZIwatGrPC4RXBLtUSko4NFskfcRLZ5AEWF4JdE/nVVRRgbyETQRjlFaoa4RGk7Kkal5sdG8k7DRKpSEEW8shxFMzmdRTmDK0V5CJhFKnSXRYugkURwEA9F2u2qRFuTmEQ3BEdFQPJ7RJveI0Wo975EK/PLRQ5djkZanmlF3RhtRbFoKEVFRFxF6MKjRHoS5UTF8epHUFsgRdNquUbHUeVEPlXJRiDvl0UX/VJGOHIKRZruN0ZMyx5FFX+hRIezJkVgziVFcI9kREXki0XdbKBEP9qKRTjRiUSkjNREaD6TRBWeSUTmEcBE3u+jRAjAOUX1xHJF2Q/DRfCh+0QTVclEM0gQRuR1R0XV4U9FBTMERuEZS0Y686xF83lARiYJzESuJ/xEgg1PRT55B0Uyb0lFW4zoRJfQMElhHplFAZlbRO2WXkVTMjRIIjXMRPwIh0TXqyNFdm93Rq4rukTRFeJEChvwREVTFUX1eXVEEIdPRYTMb0W7V5xEJlGrRDrr8kalxYhF/OmQRCy6O0VcEaREZB5ERnxm50WZWQxFY6mZREKEaEVbachFKuuLRBAnsESMXoFEB1MVRsyHMkUwn61Ewc+1RMd3mkce3plE8O2fRoUUzUSa2A5FWdeLRHSD0kRzsH1EuvKeRXNt/UTG6IZEne9sRldj70XGz59E5gobRWq9gUSFHpREgAzpRTEt3ET7A9lEhdAER9PNo0R4f4RGF2GBRbmNoURN6WJEpFPbRJsk5kQyAJZEx7kMRgEYkEaGrBJGPYGIRWYrK0UjQBJFekwhRamguUQ8EQ5FhtCgRP1LAUX95J5EMN0LRYabj0fF6DxHGUFJRjmTSEVjZBRFk7DkRBReY0WsYpFFmWxlRujZH0YKqT5FKiWwRDyAg0XGHGVFD2DIRaUtAEVYtJtGJYQURiFmnEWNe69FdEDfREd6iUTSDJFEUL6xRJLKtEUQHGFFtBK2RFoe8ERnHHpEWk2PRA1JzEeB301GXqD7RWpcH0X7vAlFhR/JRprsrkQ1kVVFO5KbRvKX10ZL0XVEguRiRdDcYkW87jlG5Em6RGPBmkTXYYRFDPFzRGwfiESgLoVEHUFARdPO40Ua2HlFnYYZRZpNmkQBGplG/U0PRqGgb0WGNxJFdqaFRLKA6UQ7cKxEG37+SCnDi0RbzX1IOS2qR3DmlESXpxZGs2ejRMvLR0VJ8WlEtZ4bRUpYhUS3OqNEBAOBRcnDKkZkL41Em+2pRNA0IEUnUt5EU48ERZnr3kX7y5BFVnzNRKF8qUTTzfZEacibRCD0WEVb4jJGOP4/RVBQXkUdFwdFepLRRHgOnEXtDvVE9LIERaLIM0bSTthFFpbfRGUSjkRoF5JEBzwARV73V0X/cgpF74KGRFlaxkVi1Y1EcvevRNb2Y0UJ9cxEyA8NRVijh0R6sG1EzcGDSE8DiEQw6vRHRsTtROWgEUUn/rpEHE+FR96dfEXNLFZGy3xCRUbQqUWk4ZVHq9utRAU6E0eG3mJFzESuRUy2nET1w4ZEcWlqRkOQO0X51LBE5J11RGDpr0QpMxNFTjzZRLbcgEbxmIBE/sN4RVZp80Th1M5EuFqkRKIgs0SIMLVERmS3RK4va0UscaFEOuFbRJ7E6kTu8Y5EXsuyRZiQ30TDJfBE4K7uRHDFI0X6Zh9FdychRZSAc0QYjw1F/7N9RErHhEUX05NE+Vz1ROrgnUTfqM9EcRGKRCy9wkR2KQNF+kAkRXMavERAUphFcQNFRZxFm0Q6E0BGTlt8RRrJQkXpKLFEJqmtRHaBuERkFDRFxqObRGxXgkTvgKhEYqC1RLumwUSZxWxEW73FR+7uKEckgMJGEjElRXz400WUgNlFGQ//RAB/IEWLV/BEVv0qR+lNuEbmjaFFG7tBRR6IDkf5vJJGsm+oRY4c60Tit/NE0GeCRvqzlURqI/RFcUe0RB0T6UdMPT9H2OIURwHeJEUwqwFGTdwDRZ0sEUUMGyNGljaWRcP8kkTy1y5FtSFKRTi9bEYDAt1Ezj8nRkRgEUU5p+dE+HkRRSH5vEUlXEZF2Oc0RQxbkURrJKxELznsRHxylkVqwQdF3nWeRL/iZESjZWJEO5HxREmo+0Timd9EwzDqRQtulkStLDJFRi7XRK6xm0T4vgpHG41rRjA8JEZ2oW9FOUSBRY9OvEQyAShFzJuiRDQsTUXQQXZEByodR4caeUYGIBpGPHfXRNiigkUwn6RETJICRs8yAEXlnm1EkvuSRL4FwERrRY5EYQUHRaEvUEXQEeJEGYskRg1ZlUXETRFFUQvvRYOqv0V7+ZVElqfERNyovER+orRFnjSnRSXNw0TDacdE/cbhRC7uD0bQvJJFLQiBRb+toEQXR5pE - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - hiTU9W7BckBYLUHbTsJyQI/lMHmnwnJAgmVsuOLCckDKAS58PMNyQNjofGbGxHJAnhWJy1rFckAw7ZLKAchyQAQTOShYzXJAarg690PSckARLJPLz99yQBfynlS64HJArg/vXU/ickBexcBMjuJyQGIVymzJ8XJALxkyBH3yckASSx7Yo/RyQDyERwb4AHNATKIZQs8Cc0BDtOvf+gNzQEQZTLgKEnNAnoMf3bwSc0AeOvLnBhRzQOY84Ez1F3NAGEyHe6cgc0BkYeRlOSFzQJRih6DnIXNAhd5joskic0DuXqFvzyRzQEzjIdtUMXNA/ZXpW/szc0AY1SCYeUFzQD3ydTt6RHNAQqC6x5pRc0B5RkPyQ1NzQFReIeijU3NAhBYYIYZUc0AcIqtZjGBzQFq/QaT8YnNA4La6wjhjc0DsxEDqK21zQKmZ8tdWcnNAdhuvVmpyc0B6Z3lihnJzQNCaTIy4dHNABAQe1kp1c0ARVYFPbHZzQNyHzS7Qd3NAsa0o6Np3c0B4F5LEKn1zQCpDOQd5gHNA1hRePKaAc0CUdVnqDIFzQNZzZD1cgnNAZwQ9/IWQc0D5kTxiTZJzQB+4NNFglHNAAlpIKveUc0DiY5OuuKBzQM7vnpKUoXNA2L1Lklqic0AqjdCNxKJzQMRn+qx7o3NAGdsknQOlc0A8G0oeH6hzQAhve6a2s3NA5aN1DA+0c0Dp1PX/+MBzQIh53yTQwnNA31dq+CXDc0DExqaAvtJzQBK+Yyz303NArLlAGeLUc0AM9tcpOeFzQESDxyNj4XNA+Gb5t0rxc0AGo7pdN/RzQFZQDXnN93NAaDYSpyX9c0Acm0op5QB0QPZNZUZ5AXRAfvG+o6QBdEDyQY9VTRN0QCggcEVKIHRATqzvubghdEBfzqKWuiR0QKx2b2zkMnRAM7619PhUdEAqJ6MS3Fd0QIQ8EzA1XXRAii9pR7hgdEAmdcvKB2J0QBbADl2OYnRAEqLyEelndECMoiblInB0QM+cjDhBcXRAPuDZDjhzdEDwNszUoHR0QEV0p7z3gHRAKvJEJ06BdEDu3fuRFZB0QMZYB+3vn3RABOVATtCgdEDAIM7DOqF0QPySUkUPo3RAC24javyvdEA25/bTALJ0QNbZLn1usnRAZPEKWsq3dEB9nCV43b90QHsubex4wXRAzJdUhf7OdEB6zXQ0FNN0QPDmgmoc23RAWAzpa7fhdEAGNiClTuV0QJwYkK+o7XRAmTfmz4zzdEC+QtPKpAB1QMpqjdJdAnVA3vLHAfYCdUCARi0p/Ap1QJMabEFrEnVAkQ/4ZyIUdUBuFWmcniJ1QEnJ193MNXVAGThlX+NSdUBHP2t1eFV1QMLwh1IRYHVA4hMeqjlhdUB4b0V6ZWN1QD75qjB3cnVAqkYHjItzdUByyDOPjXR1QMclcoV4gXVAasm+Tq6BdUAkVplEEYN1QED2fJumg3VAyrCr1ROEdUDKKNnMm4R1QETgXaMLk3VASCaulLCTdUBOIbrV+Jd1QE2Aelz3mnVAkqGGFBGbdUBAEzinGKN1QF3BU/Mfq3VAY1pv8czAdUCmLJuo+MF1QA7Na2RHzXVAaPjlAi3SdUCu1Od6odJ1QNK0HUTL03VA6QSizf7XdUBqfW1iD+F1QHYwiCUH4nVAJMmYAUztdUD2CEZcp/J1QJ5Mc8U483VALLEDh+33dUB9CHcKAPh1QN69PSxIAnZA4g4l09ADdkBxsnOjiCJ2QMDWxJKPJHZA2UKoAUsrdkBe0T0/HzF2QIraYNRRM3ZAWpI1sJ40dkD/ZCmjHUF2QMAHlm7JQnZArA0IrXpEdkAYbccBEVF2QFhpd1TNVHZAEbeWl1FjdkCzuF312WR2QIrEvVVXaHZAGVukFGBzdkCstj0Ck4N2QFsz7hLDsnZA6Yx3+XezdkCqeIDvDLR2QPreAXTSuHZAsIGoDxrEdkAkn59ez852QOgZQx+R83ZA2+LYZDMCd0DEXdZDUQ13QDCFGKwAEndAdt9zfZMSd0CSw2/9pxJ3QP50zm8EGHdAECLLuEMdd0C9NTjmDiJ3QDTOWsJzIndAZnkVOKQzd0AAr738DDV3QErpQw8kPndA6vuoFZ1Bd0Bynzut/UJ3QMiRF+QaRXdADw0TaElRd0CHpRXSkVF3QL0yxIUrVXdAMt8FJdVad0D4Igqp+Vp3QKNxnBePYXdAw+JhSNtid0AEYRhCLGN3QKXXxvsxZ3dAKApfTCdvd0DcC8NGN3N3QHb7WxB4gndAHiEE447Wd0BxxqQxy913QJyWtn/p4HdAIvw9uSTjd0B+jmHvyvJ3QJoF7sl9+HdAY37hv9b9d0A0urYjpQN4QBT8lcRtInhA/ua9+okjeEAuPQcuwCN4QJhxilLHK3hA3Pl6SRwzeEC38XwoIDd4QGYb4b8gO3hAL3TNPA5CeEAgOzpaEUR4QDAmuf95RXhAEu0PuspReEBmX7BGlFJ4QKztYtOIVXhAupFR3+1XeEBmXDcR+mB4QC6oKCa3YXhApO8qmeBieEDA6B+Ti3R4QChwzh+lgXhAJKI+ypmEeEDOFtwZl5F4QNh/sl6nlHhAODhXHeHBeEBaqG84A/R4QDiHq2GM9XhAqFNyypoFeUBrfeYo5Dh5QP8U8OT3QnlAtFAXQvxDeUBU+Ub2llN5QARBDeIJVHlApD58+MxUeUBpujVFQnN5QFfvbQVyjXlAOKGMsciSeUBqjgRzKJh5QLyp6NXAsnlA5gSZUkLUeUBAox0uzdV5QOi88CxQ5HlAMG4LrJHweUA/jmFA+QV6QN9ZBLmnI3pAPpvcbTwkekA87ANcDDV6QCfOcMkaRXpAeZKPGypVekC2bPCoQWN6QPZ8HYMNtnpA6Tj5dRG3ekCXIz43LMN6QNoSRa8bxnpAiKr6aQ3IekAA+akaaM16QNgSqV9DznpAymv4abTSekDKTm7RZOF6QOgIabXW63pAKgjYnjfuekBo1f+6F/F6QNBa/ixe8XpAfLKRSkrzekBp7GVL3/N6QK+0UACk+HpALGIl2AD+ekDoLTqmRAN7QO/7tDh1A3tANCoI8hoEe0BzuJZufAR7QLm+PJHEEntADF3JJasTe0ABI9AVTRV7QDoM5LYdGHtAteof37gje0Ce/bkaWiV7QGCoKHrAM3tAXyjYUJlIe0BgjrDz+E17QN7Y71IhlXtAqt54T86de0AoRfbOJ6N7QN4LxGGDqHtAcDDSQMute0Di/krKJLN7QEU00B57xntAGjPhwiHce0DemsuDKuR7QCbGo4Ua83tA/CfbcIz1e0AJ1slC2gF8QOrmY7n1AXxAKLBnuZkFfEBnLxWW0xF8QKrNOufoG3xAD9t8o+4jfEDkX72o5S18QBUYRGo/M3xAfxrDaJo4fEBi6LHHzUF8QCrg7T8Fc3xASnC3tNR6fEAew5Upw5J8QFrPCkFZmXxAgK/G3rCefEBkPFHOCaR8QAqSGdu7snxAAgUn+VfifEB46tbXEON8QHAFXTRs6HxA220lIxbyfEAxu2KMVfJ8QCZ/WVkDAn1AB6YnhksCfUCFwCoVUgR9QCZraOlFEn1A0gJLMl4UfUAe5WFCrxt9QHtg4Je2I31Afpa6numSfUBqkMDfFqR9QLQ1AAwCvH1AAG6Y8S3DfUAKLWwKCcR9QDjditnW4n1AkECSwnHzfUCr//iikPV9QC6y5S/wHX5Ags1pEEkjfkD+a5+Jlyh+QLQk5R7rLX5A7pzA8TwvfkDyNMnhPXN+QABf7N3SeH5A7krClLd7fkBaZ1kPKn5+QCvqEka9g35AOmJ9IcOLfkCpJVixyZN+QMRFVBQo4H5AMNJIZB8Af0AUck54lAN/QAilssybC39ALrzrjuURf0AuHqASuHF/QBoyUrqygX9AnMsK8WKRf0BzdC8CmJN/QHJIyuVcoX9ATdnCXVaxf0CAT8DCghGAQIGi6R1iH4BAihCYOg8igEAktR5JvCSAQMpORSv2SIBAlsqll6RJgEDN/yOM51CAQK6kGC0UUYBANMD8k+xVgEDSFS3v5ViAQLjC6zwOWYBAMy+/sPFZgEAy2sG/SFqAQHCXjkE4XoBAxrkYyw1hgEBoVGnOxWaAQBTTC6thaYBA4GsS4nJpgED2MZdSH2yAQOEYSuHwbYBAir6zJs5ugEAyyrOCKm+AQOI99Rw8cIBAuGfz9jKEgEBGVQpmHo+AQLCdqsDYmYBAEruv8laigEC+echThqmAQGCVXZ8Ur4BAQ1nZE0y7gEDY3oqTUsGAQAEBoFPuxoBAbsFwYGPIgEBknD2gU8mAQNydWWUHz4BACAFTd0zRgED667BrStmAQLgygUlw2YBAkZvCXCHcgECmA7Vtyd6AQNXZOdNE4YBAgJeCoVXhgEBoHAzw9+iAQHnCBH5L74BA2yKXq5PxgECq2VsuQPOAQGnE+r6W9YBA6T9qCYr5gECzDm9PnPmAQPJ9IN+Q/YBAEHF04D//gEBRPQVtPweBQNnTGAxnCYFA5KnUZfQOgUDsUm9kPQ+BQAzp2t80H4FAxPE1yDUngUBeOlacvTGBQHbo8m8fQoFABGwI+vNFgUCFOo8RaVGBQEJ6ymttVYFAKm4Ue6VdgUD/Iqa4wmmBQDpLNwBVj4FAVQ8WylOXgUAaIAKUb6GBQDCAehDmoYFAUKCdDNamgUCGDlhpbaiBQLdHI8ODqYFAk8jKJd+pgUBn6QGK4q2BQJhvWY5Jr4FAPiJ6au+1gUCvDnDkSreBQErw/gCRuoFAa0RALzfFgUD8O8oEPcmBQGJebz2uyYFABYgX+bDNgUDiG4QdftOBQCLcC5n68YFASkyGk9gYgkBEe4Fi1yCCQBoi0tnPKIJAGNHDj+Y5gkDmqRR86z2CQBY53v3TRoJAwg84L+lNgkAQU+My6VGCQDgM6v2cV4JAyniWMztdgkCbnjfpa2iCQIAng+GBaYJABddBeqFrgkAI3M50LWyCQEB1hmhDiYJAj9vKL0ORgkCw1/o6PJmCQOQ5i58OoYJABThEQTuhgkA8wF13DKmCQDw3Suw0qYJA9yyFN/u5gkAJfhU+/r2CQARFhhn/wYJAquQPcMzNgkCH39Inz9GCQATDxR/F1YJAHr9uBNjVgkAOpJlHyNmCQC7eYZr/9YJASimSvq/5gkDeF3rGAvqCQAlupH73/YJAWQdyQwn+gkCiafcM/gGDQPR4mIl5EYNAsEuYLSAYg0A8iFgQehmDQIxFkZFyIYNAkot1bg0mg0Aog1BIcimDQIWkInARKoNAW/i9zUYwg0CmRUM7azGDQN6w58DbQYNA3cWnRN9Fg0DxFe1i50mDQE8arBFYoINAeS7b9Gq+g0CO9DbPv8GDQCDkhRHDxYNA0mIylrjJg0DKZEfcAhKEQPBO9tsDFoRAwU2pZgIuhEDGDJTKBTKEQOUT+6RxMoRAQBv6rnQ2hEC5gfBb/2iEQDbBFqv+cIRAnhkh9PZ4hEDqP/hdH6WEQCUFBmfKp4RABHcUy1SyhEBvKMaoVraEQEP+9FRbuoRA5zmIQ2rZhEAHnbRdaeGEQL4ApSNj6YRAqtkP2TbxhEBON1jpYfGEQO83ZHA1+YRApPFQWmv6hEDstfMBMAGFQLg09PxlHoVA/JeT82gihUAiApG9oGGFQG+Th9ygaYVAHFGw0PxuhUDudeVymXGFQJK/pFi0c4VAHNY/a5t5hUCSmdOx/IqFQEewj2gEk4VAN+1gXEimhUA6uFwlbZKGQDLGJ5xxloZA/pSa88WWhkDM9gw8yJqGQLB+TQsouYZAzAk0Fn4Sh0CiA/z1gBaHQKGqhtmRKYdA2vDe0JIxh0C8yj1fizmHQDSCwPyvOodAutJHqLM+h0ClEk8ni0GHQD6khlW6QodA5y7z5qNeh0AQWkKVj36HQHtSuRCTgodA6rgcT5SGh0AEmGrEmIqHQOo9x2HHsYdAUHL/t8i5h0AuyG1Pv8GHQA== + NrgMGZxjYkDEZV5bjlJwQI8BR/y9MnFAxMM6r+Zjd0CPXyNQFkR4QIsez+j+lH1A6mttm9mUfkBzlQwa4fKBQIiWWgnEUoNABJqNsiKrhECIxUgzcNuGQGadXJx1w4hAiPQ2XRxkikAtyQKs4cuLQBzV2phzbI5AjiGEDULOkEDYWj9qZTqRQHI3VxV4UpJAIksRCJE+k0DyTk4qzhaUQKJiCB3nApVA1mQhMgSblUCGeNskHYeWQFZ8GEdaX5dABpDSOXNLmECgbOrkhWOZQOqlpUGpz5lA6ly8grFnm0DiYih5+recQDRNjiDda51Axnj7gDA8nkC0ZIU1MzCfQDx98fosJKBAGj4+pUR6oEBgvhFhPdKgQD82J3RafKFA6/96ylWcoUDKd5DdckaiQESLrdF4YqJAigMM6J0oo0AEFynco0SjQMSipObOJqRAOBgE5rsopEA= - + - rX2sReoGnkS71jJHXuONRGVSjEXkP7pEEZ7ARMZtYUblcwBFd30YR5NY1kRdcZpEBsVvRVxdAEX+ImZFzFmSRbeEhUQCUtdEqRtVRSfTVUds9LhEQn9sRuly4kUlXylFucCkRD6HykatbQRFcEvgRFNQnkUeHXtE/c6RRCYbuEUzzSpGlKOKREhrqkQ0l0RF/WPXRPjAzEQHctdE9RMaRZt1jUcP8qhEYI4aRa79qUYN3LRE0SE+RYp32EQOsaRFVCaaRamRCUU4ldZGoXHEREMZ/kQUUtBEDUtYRXanXkdn1pRE6gdZRhNn/EWb3u5EybAGRmMTXkU50SRFEvL8RDxOy0TRcy9FTkktRWQ5BUUOT4VFAl4sRf3nskSI6JNEM2mXRVG3DEYUZq1ER9+pRLf8GEXeB/5EDY3HRJwAy0S4XaJGcRsSRaIEV0XMw6BEuhnsRNQnskTRYOFEQjSzRPudvEjeiUhIQVWGRT31SkWZCE1Hcd0aRt5XnEXDy0tHW1WXRZkPtUQY+GBF2LazRSYDnkWby2dHs1f/RPL2ukSBTw9FMumBRR5sTkVca4NG9YquRU+c6UWQ+eNEuPC2RNSwpUWjxhhFBaENRfYKC0XRJ6pEt12+RaA/vUR5mllGOpBWRht5aUWYZd1EqzTGRENur0U+XR1Fig0GRYzcrkSRbqFElQy7REhWsESrkvJEh4G0RPD9+kUvXRJFCWDTRaZSukTplI1G1mjNRKkP+kQWURRJniIRRdXxEkVvqp9E+ldhSHHeLEdye09F7gyrRGHT/kRmsVhGG7HjRKXXrUVUlrREAKwGRRRr5UQi1QFFDxkvRo41l0Wr01RFpKDsRAD5D0U/9bRF04nZRHHhlUXiQxRG8TCVRhXUuUb0a+hFbsuuRMjclkUEAA9Fu75KRQ6RGUXtpCVGR+RjRsy31ESpxaVEOmfTRMAMjUW7NwZFub1ZRXF8oUXRm11FlRmxRIdAIEV9zg9FFl0CRYGa6UVmNaVGWyE7RdztLEVJjQlFvP+PRJzkR0VLIKxEq8zXRH7k9Ef86C9F5S2zRjzVAUXRLNFGCK6GRVcagUbyvchE1Tj9RcW0n0SFXD1FF2NKRafwe0WeBpJEuL6DRVJ5qETCGbFE0VupRLRr4UT2xpdEq0vcRJxDlURNlWtFjf8KRYK0DUUdyYxFWkbTRKWRkUUHGPFEDx42Rntq3kWNcABFF52yRNp+Akai6GtGHZWQRZKn4EXGvCJFuRqSRSHkN0VfOIRFUtbHRHCeU0neE1xFtaZXSDoRSUXM7qNGCzXpRMpZSEVEybxFgb7hROoj/kRyIcpEUMvBRpWTqkRVyKBFlVeTRdCqy0Rh3z9Gd/fwRU5wFEXJSG1FxUsBRkX5t0Q8t/1Ej7qNROMnukQMTaVFzvaFRSi80keNCNlGdXA5RfM14ESykrJFNvcKRXncrESOksREwcZRRjPYBkaMfPdE5TMFRUN1uUTtGoJFjXKzRNyVIkXx97xE42baRgsazUTSGpNGrCCgRdZh3ET0sJBEQ5KbRTYysESnVABGTotkRhIVL0bNpY5FmV45RehNQEU5I8dE9oHZRHjWnkRWqLhEXmOTR0CdPEelGyxGmDCqRUEG2ESFQaZEaOieRUSwT0WPQPJEIXWkRgT5akY3u/tEMbWtRaPliUW98KFFOlTKRPYvxUb0WmtGg6S9RZbpvUWBkpREOxygRBK3lUTkqBFGlMmlRb0zCkVOwPNEecz/R/dENUZ0B9xFzXgKRV4390aHejFFBVy7Rp20m0Ym5ZNFGTgdRY/2GkZHb4lFzP7fRDFZOkWP5pRFJuPeRMe1FUVJktVEAoaJRCBaAEWFpjRHW70NR3wk4kVuok5FjQLBRHhJ2kSRrPdEz08ESSHtxkSW0otIFuaLRyoCfUZ3RMhFZObLRF1EEUXhXrhEHDXfRAPxnUUzJqdEP5AtRpj21ERrB1BFa0QNRa+u+UQSXCdGSBquRXeAYkXgnbBEIK+bRG3qekXIhYBGWA8DRkkDnESEiZ9FNLh+RT36l0WoEptEYgnNRIQDFEZr4OFEoSGzRQ6/H0Wv/q9F5L2lRJGlFEWSPpdFp13LRCp/rkXc/J9EQhcLRdR2CUXz7L5EBGjWRM/4k0i9+thEhXcJRabzBEhVibZEthqLRyjQdEYNzQFFIno0RVkaq0T+BYNFsCrDRKwtkEShevhEt+cOSCbkn0RdVpxHsRnPRR+SXUbbVYdFW2c4Rl97TUUB/xpFFoDKRBXdQUWj001G6DI1RTQRw0R9KgRFwmhBRdeNAkWa2chExDUMRTbqrUSsLZpFdOPaRAK3CEWBTzVFlvr2RCWwBEWCRAFF+Z+ARbKS6kSKYJFFcjIuRTmTsER6+thEhXFxReRUY0XuPABFFmyUROeDm0RlulNFHok4RnpJgkXC3DhFBkzhRPLDokQkdOdE3sQ9RfSYhURfQpJEpKPQRJpEFEWC7c5Ey5TgROpfuUQcgMdHYiIoR5xmz0Yu/OhFSc6xRRxBLEUVsSlFSQWsRvbYJkYThjhF0JvQRmZ9PUboCHBFFmLkRPLJ90ShgEtH+VapREC/r0asM09FIJadRchr5ERxDPZHrvWDRE/pY0dh9ANHA1cyRWWMFUa/HbREVpgDRRJtc0Uk7/tFWaCfRVBPzUTXWyRFUmEZRWdjU0YFJMBF8ZpdRdmRU0WpirVE46mjRVvPBkV0zzlFbk0PRRqh1EVFAjNFN6CuRCj6CEXZnOJEOsesRWaTgEUFablEAu78RhURU0Zs4hdG7iuNRcv1U0UL7R1FbPeXREwguETRK2hFirseRaIOCEeRbIRGb6igRNgTR0YnAspEsgRfRdO400YXWwNGo4+8RIQpA0WYYBxFJ3/eRK8QwkRHVDZFaTXTRZSYnEVZZBVGsGa0RaL2ckUaKuxFGEO0Rc5mH0VGsRRFFAORRFl6zkal5pZGXPz6RdlnU0VvFCNGk9iORe3UMUU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - WBzu2m7BckB8I9O5p8JyQBbmbIE6w3JAhtgKiMPEckAmQ9bZV8VyQBBpHNsAyHJA9UydK1vNckAw3l19Q9JyQMgmRoHO33JAUG3dPbrgckD7xtv0UOJyQE4cD/qP4nJApC/3BiTjckCu+6H7yvFyQHKUjTd78nJARrIuMLjzckC8yB3FovRyQDiqJRbC/3JAjB/dsM8Cc0AwZung+gNzQPngR968EnNAeFb1bPgTc0D1ZZYGThRzQDLDhvn1F3NAsrIs+Hgfc0AU8noNpSBzQOxYpRw5IXNA6vmPruUhc0C/nPGLeiJzQFwGzU/JInNAIXYBOc8kc0BHLYB9RjFzQIjofA4LM3NAPD4yKTk0c0DGLGj2d0FzQFR8X8d6RHNAldYBrp5Rc0CBEGZhpFNzQLQetVmGVHNAAJuUiftic0DIawD3OGNzQGRid/4rbXNA1x4d+1Byc0B62UIghnJzQA6+3DW3cnNAUNl3+0p1c0CA0qCuzndzQLIImUHfd3NAkD+F1it9c0BW6DsbeYBzQD7pIjKlgHNA8/LPNQ2Bc0CAsuKAXoJzQFaCRcMBg3NA9kYKiYeQc0B0sQczTZJzQLvrCJhflHNAKdyGuveUc0BKBHUQuKBzQExM7LqRoXNAqLPOdFqic0B+NUxRw6JzQHaCatfmonNAiNcxrnujc0CeUXYkB6VzQHfhfWxgq3NAqJs3cbazc0CaP7iJDLRzQEgjvHTQwnNAXAN0wCbDc0BLApJ119FzQGw8lyH303NAUOBppuLUc0ACFbdSOeFzQPfM/Z0i/XNA/yHwQHkBdECyhwu5pwF0QO0OGKlKE3RAzuk6CrchdEDYmXtdVDB0QLTTEuz4VHRAVpwV+41VdEDeJQMj3Fd0QFWAjTw1XXRA1vwTRrdgdED+SL21B2J0QAgpSdGOYnRA7pB4ek5kdEAtw5705md0QMH2st0hcHRAcgovTEFxdECetHMIOnN0QCR+kRRDgHRAHhhKV/mAdEDvkmqZToF0QJtpQscWkHRAQZEBd1GTdEBI+kTYXpt0QAUMZgjwn3RAArY/9s+gdEDOrcrutaJ0QDa+6WkQo3RAQrRZp/uvdEBChD/3ALJ0QF6K1tdusnRA/E7y3Mm3dEC0iU9VEb10QMX4NcEjvXRANlfohN2/dEAeJtwJ48B0QF5rwod6wXRA6iHlWrjEdECtalQEFNN0QOCzB+oc23RAUafwaLjhdEAEsW8AjfN0QH4bjDCkAHVA4AM5c10CdUAqkGrj9QJ1QDQbNMv8CnVAB2U/rGYSdUDLC3JqJRR1QPbbvDOfInVArYvzKs41dUDyLBe+H0N1QGSUdw2DUXVAKnW9CeRSdUDBxXs/eFV1QFCw/bQ5YXVAFAl0T3dydUCLOQW+jXR1QHiweMZ4gXVAghpoe66BdUAy2L5NEoN1QOzCoRang3VASv7huBOEdUCu3QvRmoR1QJ47/oBoknVAopghlguTdUDgIXmOM5N1QMLjwaivk3VASu8zx/SXdUDS5yLqEJt1QIbGGnQYo3VARtdXLB2rdUAEgYADzsB1QCoy1AH4wXVA6KtE50fNdUCwm8ojKtJ1QKb/Uu+g0nVAytXgeczTdUCxb3XK99d1QNgcaDFM7XVA16sd0abydUBAALxFOPN1QB7gb+sC+HVAtMGRI0r9dUAfSC2sRwJ2QPY87gHSA3ZATVrazocidkDQeqFpkCR2QBbrcJFKK3ZArMqdMB8xdkByPsCEUjN2QOuA7FYdQXZAnNFTx8hCdkC5i2RzeUR2QEoiXtUQUXZAYnl1FM1UdkAZkS1+UWN2QLvKIr3ZZHZArX+DtV9zdkDAdRZbkIN2QEO+7mDBsnZAoiU+q3izdkDiR1i+DLR2QFC1KwXSuHZAAhi6ss7OdkDQZiDDkPN2QNrh0rJRDXdAFGJZEgESd0A4irfljxJ3QG81HQeoEndAWsynB+UXd0Ci6p+dlxx3QObPk1wNIndAcp2cyXAid0BQ9xoIpDN3QKanS9IMNXdA9EypQSU+d0CdGEcfnUF3QFxHHez8QndAfsDRvRpFd0DAiF/RSVF3QFe+WrWSUXdAifsrwStVd0CpiLGH1Vp3QIIEKrb6WndAz8O3fJBhd0CkW+epomF3QBjhXjvfYndAugZd6ypjd0BQlOyKO2V3QPmLrj4vZ3dAP7JSBItsd0CQKlCoKG93QEB+VxyGcXdAXnRFd3iCd0CYb0lFCZJ3QASZUf5Q8ndAZITRQH74d0BGils2QyB4QGgeALFtInhADI4IDIsjeEBwWLrfvyN4QGgUAsYbM3hAAxPCpR43eEBESCWVIjt4QMbJlMQnP3hA7CyJORFEeEDQulYAekV4QJgBFWHLUXhAhpmCcpRSeEDqGHsqh1V4QPzydLTvV3hAsdDQTkpdeEDTPJ7O+mB4QHSNSL22YXhAHbMguLpxeEDCCip7RHR4QCuW126LdHhAeiDA66OBeEBMhxfZmYR4QDAPwnKXkXhAkE1FxaeUeEDgaMTWRqN4QNUH48GypHhAZP6eIOTBeEDonOJCuNR4QPqQDYgC9HhAHp2IUoz1eEDYNCmaegN5QHy0cdOaBXlA6tqdGeA4eUD4wh6bj0J5QARaVDT8Q3lAncNbvApUeUCm0u65zFR5QL7JGKHZZHlAgi3Y+XGNeUB1UtlrOo95QJkBZJ7LknlASh1Y88GyeUA/1umPQtR5QJpTaE3O1XlAfRygDlPkeUDabDfjZAN6QCoQg037BXpAEgMW66cjekAfCvD6PCR6QIi36EIMNXpA2OHrexpFekDwqS6eKlV6QP5uZIA/Y3pAUBqgSw6zekDgTKox9rN6QDNwiJgMtnpAwsfZMhG3ekBqPpJOGsZ6QEYF01ANyHpAYGaZ1mfNekB0WXm1rNJ6QEwT1b/I0npAoKtMl2fhekCjP2O21ut6QA2XXKk37npApqHrXxXxekB/aNBdSvN6QMRDuqvf83pAZCcbJqP4ekDOAa9S/f16QIz63PFDA3tAI4x/QRsEe0CBOvxLKA57QHYdwtzEEntAKmHuL6sTe0CcmZSqKRR7QIrleH9MFXtAttu37x8Ye0AQBnqVuCN7QC5NMclZJXtA1KpurcMze0DUQVX5lkh7QGpjORkklXtAwO7GhM6de0BcIS0PKKN7QD3Ptk5vqHtA5PgNxoaoe0C1zdwqya17QLQoBzPerXtA4aBhfymze0CiuNfcZNN7QOtVvJIh3HtAMrUDiCfke0Beuhk+lfF7QNoanDnr83tAvGwBCIz1e0AlibEXePh7QHYKVQSTAXxA+ljLztkBfEBSMWfh9AF8QHA2W4RqBHxAQscSP5oFfECrpLOHihF8QKA/pYLSEXxAvuWhcOcbfECIlLZv7iN8QHfixpzlLXxAkbvD1z8zfEB5pM3smzh8QOgkHHTwPXxA/mZw3M1BfEB0eEmTglN8QJlOakgOYnxAbaItIVmZfEBu3LOos558QHd2jGsMpHxAa66yd72yfEAc7JDqzdV8QK7WzwVY4nxAUMb+axHjfEC48p06auh8QJgHyUG27XxAzj9f2cXtfEDCu+zcF/J8QJjv7gFV8nxARQr4g3LyfEC7ZscaAgJ9QKqa0kdLAn1A5jnd1VEEfUDWqf+oRBJ9QAvNSxBfFH1AOon24q4bfUAuBi72OyJ9QMDDeli1I31A/v3hUl44fUA6x239GKR9QCr6r0EDvH1AxRh3sC/DfUCtqgG6CcR9QJRd1yKS9X1Ap3sDvu8dfkAOv57jNx9+QCxp9V1II35A9NDKRKMofkAknv936y1+QHNn1cr6LX5AGBxChUQzfkDjAtC9PnN+QOcrXpO3e35AaosB6ryDfkBkMuw4t4h+QLtKrYbCi35Amr1mWsmTfkBkGhbC0Jt+QDXWclco4H5A3R+czhgAf0BSoBOCmAN/QD0HYVnnEX9AvjevZLhxf0D4ZD5JtYF/QKrDqC1ikX9AWO7Fp1yhf0Al7hTLV7F/QJbBD/iBsn9A7sk3KmIfgEDha/NNDiKAQLB7SEW7JIBAzCrufrA6gEBiJuCd8kiAQKxUn+fGTYBAnKqdHOdQgED+6nseFFGAQF3gvPzsVYBAKgXE4eVYgEBk+FBlDlmAQO7GVsfvWYBAydKlp0hagEACsVWnTF6AQIKn9XbFZoBA4AaklWJpgEBsflZecmmAQNO5L+wfbIBAtobkk/BtgEBqYUfYKG+AQNvUfGc8cIBAZrscd/VxgEBK+UN1NICAQNVrDKowhIBAgwQhrB6PgECeq0oWWaKAQMgvgM/LpIBA5tSx9IepgECHLC90UsGAQO6F9G43xoBAdNvZWFPJgEBDvaD3B8+AQOCdVtdM0YBAthLIt0rZgEDRABYtc9mAQOb+rvQf3IBAOKFHXkThgECknVsz9+iAQAJgLflM74BABEdCdpPxgEDAw9CBPPOAQOKmV5CW9YBAZmMU9Yn5gEAOIrlznPmAQIOUO2We/YBA8QZ9wD//gEDuxR3vPweBQKYSrXoUDIFAdqjXSDwPgUA9cGpFNB+BQAYaRlk1J4FA3EQMzb4xgUAT47RPIEKBQFwIXSXyRYFAbftXr+RJgUAtZ8Ep8U2BQGl0t7xmUYFA4V4dTVWPgUDaZ+y6WZeBQI5mbaLmoYFAElqfXdamgUCUmnTebaiBQM59RROEqYFAMKHjBOCpgUBY7BQGSq+BQDuJnijvtYFATBEujzfFgUAxty/7PMmBQGy6cOqryYFAAs5ehX3TgUAUSbBi+/GBQMJ9jTT/9YFAPh43LNgYgkDak3sI1iCCQK0HEdHSKIJAilMYVaUwgkA1ma+86DmCQB7/qZDqPYJAa7eWaghCgkAy1KPy0UaCQDwbBgLqTYJAIwmwi39pgkBIo8xuQ4mCQJwkb4IRioJA9mSRMEORgkAY6nEZPJmCQFM/Iv9TmYJARcdR7w6hgkDcvkE2O6GCQM58oQUOqYJALkIONTOpgkDmaccM+7mCQJaSuyT+vYJArB66KQTCgkBdKt2FzM2CQPxCj/PP0YJAtjbshsXVgkAE6tNR2NWCQEouBZD/9YJAMMzNaq/5gkBeMZuXAvqCQLKDyRn3/YJA6z/eggv+gkAW9GAU/AGDQJZ1dScQAoNAwmebAggGg0CZw3SDeRGDQGwhtLN5GYNAexRO2nIhg0A2//r6iSGDQHg6gnMNJoNARGz2kXApg0BSoXf/DyqDQIRFKyBHMINAMUaDD2sxg0D05M1s20GDQHzhTy/gRYNAbpop81mgg0A091frar6DQPxXjYC/wYNACgBkbcLFg0AwmEpYAhKEQMrW+GwGFoRAriLNrwIuhECORADkBDKEQHTqwMdzNoRAyKBfpf9ohEBrN3OO/nCEQK6SPFn3eIRAHy3tZ3CihEBcxQ+EHaWEQJyl9/pTsoRADD5cu1a2hECwL4ZNatmEQHIroa9p4YRAiBp3wWLphEASEup1NvGEQJw6NWti8YRAAkMs8773hEAO8SmOM/mEQPnsB0tb+YRAutZSdGv6hECCHHzXZR6FQOl3eo1oIoVAwrrwVaBhhUAdDI7ieWaFQPbkK7CgaYVAbQC6uZhxhUA2kDn3s3OFQJKUHcefeYVAbvIrXfyKhUCsM0D7A5OFQLXbMO0Jm4VAIiWMM0mqhUD0Vh/x7dqFQEMqvfhskoZAg1Bf1nCWhkCLS0oSyJaGQJsFaNomuYZAYV0rY30Sh0DQ+6ZpgBaHQEQSh0CRKYdA6Bc7HpIxh0APAsyVijmHQF7N5uOwOodAwKygRbM+h0BbvOMgi0GHQLf0dYGPfodARK5jOZKCh0DrNqN+loaHQLwmBoKTiodA8IK6UMixh0ABoxN6yLmHQPi3PITCwYdAjpRQVMHJh0A= + NrgMGZxjYkA= - + - XgmdRZrjPEdPXGNFuTuwRLexlURimzdGvfj9RJS1AkdWNwNFvO8CRakfRkUwC1dF9MfSRIKHZUXPblxFREf4RKbPwER5fQNFttNURQXvEUdGiGdGltlxRVd51UTePt5Ey132RGHcwEQ8FsJGpIIaRdBDoUQLubtEsXujRTFMNUUFqJpE5p+TRCkXoUWkYgpG1wGrRBwQhUWy0uBE2UIDRfxN8UTdV4VHR7DCRJru4Ebcco5ECOJbRUsxOkWZrYBF+8jFRLID40Z0Tu5E6Mj7RKbVCkVsU7dEoAD2RHm1SEfn6LpE9ms8RoMp/0VhEuFEMwSyRdIZWUXi8ZlExwniRXuGBkX0MNtE99gkRW3CNEWHSJhF4MzWRHDjGkUkg6ZE4jqcRZwNw0Xr9slEc4toRh77s0Q6ZQFFNMEiRe7t0URGc59EuDHSRP7FqEhNiy5IqJR/Rfq6D0W2BDxHsTHGRDVRrkUZYZRF068zR7O1wEVah7JEAbjaRMn0vUXQI5JFlbPJRLVk4ERdGkNHLP8wReHkjkQEWwdFaW9URZUS8ETetohG3xizReKoCkWxl+dE/U3SRbdCqETVR79E84A8Raq3+kVSjMtE46Y9RcIEo0XKrMFEOS9QRsoglUaAFtBFw0adRHKIGkXRQYlFe9srRTSeiURkrdFEsQYPRT8iwERqUURFlrXqRK77d0aMWOhE0QOpRUIZAEXK+pdGMAbIRBdiIUUsvbFEalNESRpciEWhLB1F01iqRAehlUikRDxHmDyPRSP/BEVj0uxEgSCkRnX76kTQONlF6BypRGsw7UT9Bb5GYbE2RuxwOEUigK1E17HWRLzDr0WUa9ZEQ8xqRecU9EVS1GdGXhmyRo3Yu0XkvI5FcqhBRZy7iUVkIz1FCzmERumMLUby5WRF2m0QRfriRkXlBg5F9gKQRf0do0V7zNFEVG1HRVsHOEXlm65Fjzp9RhMXX0W/y01FH46pRALOmESa7FpF0NsDRQJEF0UeavZHLI4/RVSN1ka83/FEfHjRRnoul0XosJZGxZzHRGLAFUbjOdhEWf4ORQcks0Qmd8tEqRQZRX8aEkWkV/5E/A+XRGMrHkVnyaNEiNhCRR3LqESOc7pE+AnJRPNu00RE/JtFnjKpRFWVeUXwrNBFnl64RRfMT0WV7btECvT5RbXJWEY7BqdF1u4bRioQKkXv4JtFyOyhRC7yF0Uxg0BFWkTYRJrP3kRFuVpJ7ZeBRbAqXEjSzVpFEgqtRnufAEUkF8tEaCmlRD1dQ0UJKpxFeaP2RbTzlURCdRZFKFnURHuyokS8jrBG42pdRXoAuUUHqq9ENbs3Rmm+m0Sm4eJFkFhHRSof/UWSbAhFnE0BRZLajUSUKsFEPZE2RdF6B0VyDupHPn8ER3OrbEVgCv9ECpxZRVA9ykQK871FrNPARDBcyUSmOmFGk4vRRXqIz0QnZ9lE4hPORJBki0WKKNxEw08mRWzx10az+/xEj7CERs1IwEV8r8tEYNHLRZnx/ERnIQ9GXFhPRqBnpkTA4z1GIwYyRVF3EEVKqFRFHRraRDJalkTR4CZFKIGIRyZ4GUde8NpFzFbIRRZTQUX2ZvtEFx8DRU5V20RgMeVFqSafReBvrEXh8/dE9tCwRr5UGEX3waVEVD87RtuKDkVjybtE52zZRc7o3kQJR4NF5CatRdWOCkUaic1GSxhwRoP7Z0WmeQlFsTzBRcyV0UTOPZpEzj5SRv0m8UXKaWpFUge1RFcgwUQhD/ZH3Eo3Ri++Ckbe4t9EdBPKRLaYEUVqRfNGDvJVRVGxS0X31KpG8CBxRgNTYkVy0CxF00e+RQ/SrUSNsl9FNCetRJuoy0Rau6BFMRfURLtoEEVQ/TVFt09WRz1Bo0TcWhRHpCkVRk6qQkVL9URFVq8RRVvkwETu1/FIjeWESHhVskTOqpZHCFYeRpD/10Sl+AFGuNQMRUkk80SOdYJF6yqFRTvPy0R2EzxGIAAZRftLIkUpdBRFEhIGRuAa4EWNIjlFwXWGRKBfEEWl5YtEcaBqRf3HckZ5W/dF2N+oRKmguUX/yi9FLrcPRVxxRkWpkxNG9xv7RHD6q0V/Dh9FDWakRcgjJ0VCoMxFRFz2RCIy3kSmFfxElgfKRXmk/kSh4+lEhYHORBn/ikiTWKNE7S4ESGmbw0RZlplH+cNsRplaQUUc/zNFwz2lRY/Kn0SD98ZEeAkKSGUav0Sqv4dHT8vHRUgnSEaE+ltFP8A1Ri1WYkWtpOZEGYJfRZr9YEbZnGhFFW6lRDRTR0WYfBdF0kEDRVvvskRayu1EBhuwRe+0E0V/XChFbA8ERS1RLEWFUa1E9EWlRAnbykWvKv1ED2VuRdXTKEWZIL9Ebcv/RJ1UCUWuWcBEjnBPRk1Pm0ULmihFV72nRBJAx0R5I7pEElO8RHBM80R5ZQBFLBmnRKRiyUc9fr9EFsIdR9mqxkYo+yhFNwblRWoa70WxAUlFnZXqRMr3lkY3nQNGILUHRd+EskZPMhNGUBwPReJnuUTPMoVHwH6eRKxYBUeu8KpFiW+WRWi2S0WVdeBEV1+bRGJK7kfdgFVHaWPsRg1cJkW07uhE0AgJRiuquERA/epEqJkORVGVtEXxO45FJFhRRRbEF0Uf3BZGFXXGRTdGZkXz+qlE/g24RUsUjEU3we9E7k3ORYoDR0VhtM1ElOcaRVpVWEViVtJFRZhgRe4yB0cLLmxG4tEORlvQg0UJll1Fb865RA5280SWubdECwTyRJzILUVufrJEsG8cR7eD60QwmIZG+0oORrQSvETBSAFFi/ohR3T+S0agGuBES02/RCKW3EQ1bV5FWFgXRTBeE0WKa+VE89b9RULNlkV1ST1GtfTURQWtmEUPIsZFXhs1Ra4fIkXxoxRHVbLYRnAED0a/PCVFpTMARtgSpEXD6XJFB8EQRQ== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - B7ue/27BckBPChWSp8JyQKwtrak7w3JA3isGFwHIckBwBRNRWs1yQJHZJJ5D0nJAcA29pNDfckAvpOpgueByQMRKSPhQ4nJAImO2DJLickA5XgczJONyQCZq+mjK8XJA0Fl253vyckAwTigV0QJzQB5wvtD6A3NAzhQcOAkSc0AUQgBrvBJzQFAqK6/4E3NAauUohvYXc0BAZnpeeh9zQFHkNvSiIHNA78WTUDkhc0AGIeOz5SFzQK9Q2b/JInNAfMUVjM8kc0A24Z5KRzFzQB73QI7yMXNAEuXOwwUzc0A3iFtzuD9zQNZfooN4QXNA8hE8l3pEc0CeLAeFo1NzQDiHMqyJVHNA6d8uOftic0Arj5i6PGNzQObjx5wsbXNAhkBY2VFyc0B488m6aHJzQFWi6DOFcnNAWccJXEx1c0CIyxEXb3ZzQPpPj1DRd3NA0mgNxuB3c0AbcSFNeYBzQCRFWKWjgHNAZKMxdAuBc0Co/6oQX4JzQIrsO0YBg3NAjuevw4eQc0BS8lh3TZJzQA7n2tphlHNA1n43RviUc0C3X7B6uKBzQK3y6LuSoXNAqS3GpVuic0BUmT5GkKJzQEyL/CrHonNA0fX+hXujc0D6FSoPBaVzQL6NS5Bgq3NAEiiugdmwc0BmEJRaibNzQGnMImG4s3NAhHIwOA60c0Dq5S+Y+MBzQFAtRwTQwnNAqg4L6yfDc0CkDbZkxcNzQN7CdurX0XNAJ912X93Sc0CPKfVF+NNzQOKjgiRN1HNADCBTn+LUc0B3bw/VOOFzQHbE7vsP43NAQqaIXTj0c0DPv7+mzfdzQMNLfZ95AXRA192bMKMBdEAM00wmTRN0QJzhZHiBG3RA5APRGrkhdECvvN56jlV0QE10Bl3cV3RARoVjp/RXdECmMFx0NV10QFZ4asq4YHRARndavglidECE97mCjmJ0QBYYVvNOZHRAVO+bvudndEDwNyTxIXB0QIJ9TcBBcXRAznQtvzlzdEB+nPTA+YB0QLo7cKtNgXRA0B5c2yWDdEC4oEebFpB0QLkLUgXwn3RAm1VC/hCjdECsOfgj/a90QB7YTBUBsnRASKalmW+ydEAil4Awybd0QAIgRGsTvXRA/ug7Rt6/dEB3mPWm48B0QGA2dLt4wXRAng1EA7rEdEDumV75E9N0QM4qEUUZ23RAkNl92rjhdEAGiXRZT+h0QG5+fMyq7XRA0Oja443zdED7Hu3gXQJ1QLD82gH2AnVASturTZgDdUC8i36g/Qp1QCb0SHlrEnVAwN8w6SEUdUCQq6bPnSJ1QBpfQKTMNXVAkBFk1PBPdUAWQzfgeFV1QFir+mIOYHVAKWgB/DphdUDxzpVIdnJ1QGb1yU6OdHVAzP/cJXqBdUCzfJJeroF1QNrJkrISg3VAkvUJA6eDdUCflYiIEoR1QMEoyV+ZhHVAKJjszwuTdUDEKeBlr5N1QAbo63X3mnVAf2qZ6RCbdUAWq+eeLJt1QNBHpb4Eo3VAl9V7qBijdUD2OXMKIat1QE1/LYpiwXVARTsrUvjBdUDVTM/fRs11QBwtvO6h0nVAJFt92UvtdUABq915pfJ1QIHvbNI283VAobI30u33dUDyWxkBAfh1QCknl4JIAnZAyt+V4M4DdkCUzlMnCxZ2QAqAogKIInZAzKwMlZAkdkAs0XP/Sit2QAIabiYfMXZA3SDXkFEzdkDahhbIHUF2QIBRATfHQnZAFKyG+nhEdkAw9abEElF2QOUUfzTNVHZACmmMjVBjdkAEvLwD22R2QEWcvEhVaHZABm+by11zdkCe7bDxkIN2QLqUeeB4s3ZAeO7svc2zdkBjm+UDDLR2QDKqzXXPznZACnbYUNrSdkAqwM7dUA13QNbvRUsBEndA2q2/NY0Sd0CSFi7fqBJ3QF4tPLPoF3dAlFEBsA4id0DfVTr1pDN3QIoCrA0NNXdA+PrsfSQ+d0DIiMUWnUF3QI/U5Rf+QndAgwCIk39Dd0D4f02UG0V3QJ7snntLUXdAOBSUY5JRd0CeJ1Dr1Vp3QKTJy6D0WndAtAgZtZBhd0Bic/7v3WJ3QNTXdY0rY3dANjYsxDJnd0D//C+DJ293QPfWJx13gndA9BWo7AmSd0DAX/V3zN13QIDCIBF/+HdAXvbsi9n9d0D6nmU4PyB4QANQMvJvInhABtBFlb8jeECWIT3sxyt4QC4HcwIdM3hAsoMnjx83eECUJUXSHzt4QIqRxNILQnhAeKB5ihFEeEApBaMXe0V4QCT6KsnKUXhA7FVY5JRSeEBwdCPkhlV4QHDR1cPuV3hAtk19HPlgeEAO0P0RuGF4QCmcvVC4YnhAyOoLwot0eECJQCYPpYF4QMv9uwSahHhAlILkI5iReEBGK++Ip5R4QCbn3ly1pHhAGlzXaMzAeEDmXnig38F4QKgbizS21HhAj7jjPQT0eEBfWEVFjfV4QA6LuVd8A3lAV/JqTZsFeUDcYZvavCN5QLyox7GIQnlABcP2T/xDeUDcpveUCFR5QLr5xKnLVHlAILTegkVzeUAY9AJZcY15QDByL1bLknlAyqaxmyWYeUCyyILgwbJ5QNwbGdZD1HlAfatU483VeUB+qdETUuR5QCSljslmA3pAVWVdoPoFekBSLpPwpiN6QNbylQs9JHpACNbCpQw1ekBs1EgE6UN6QHAhZ40aRXpAC9kT1c1LekBbDS8oKlV6QHxhb5SPcnpALubqxhOzekAYlxr4DbZ6QAIHqO0Pt3pAeME8bA7IekBLJhAfaM16QL7oL6fE0npANYSJsxLYekBSnfxGZeF6QArCFEfW63pAJPWxWzbuekAhJ1/AFvF6QCyJXoJK83pAhJDHhr7zekBrR1X2o/h6QMCXOrL7/XpAGRVc8FMDe0DTT/0vdgN7QKb2O1UaBHtAbi/BtVUEe0CUPNrOKg57QHeknozEEntAyk1HJ6sTe0BBIRFZKhR7QCvwh/pMFXtAKhkkJh8Ye0CKeJFqfR17QCKGOgS4I3tAdBNbI1ole0BKEVFV8k17QGp63zYjlXtAhn5Q7s6de0CbzHjAJ6N7QJ6pBlCCqHtAREN1lsqte0CP6CrKydF7QPbs68Uh3HtA6FVMESrke0BdrdUsl/F7QHDkelqM9XtAtIb3xJQBfEDCPE/J2gF8QFYYvVubBXxAtLBwktERfEC3uTn96Bt8QFStOpfwI3xA5DpQ7OUtfEC+KPpUPzN8QPZrxFyaOHxAxMPldPA9fEDYyU25zEF8QPAdcG9SSHxANOxW/6tNfEAu0DXx9VJ8QMRUJa4OYnxAAskiWitxfEDKjv6k1np8QC5wNSlZmXxASkAQd7KefEDG4mvSDKR8QLg/IBthqXxASGeSEFjifEDbx3DSEON8QOzpbO5s6HxATuPWTcvtfEClbAfZFPJ8QCQrGWFU8nxAzWmMUnHyfEBAKufIAgJ9QMJq+39LAn1AJBOVdFIEfUAc1u5NRRJ9QG48V1hgFH1AZjoCVq4bfUCod8YptyN9QH9Oo+mgMX1Ad4NVj5WNfUActDOI8JJ9QCwtzLw9mH1A0PqQ2xakfUDWsG2LArx9QHwnolcww31AlsG54J3rfUCaq8Gsj/V9QAp+mtfvHX5AphJUQ0kjfkClVvDloCh+QJ0DiQTsLX5A7ELymEMzfkCdKJEzJW5+QNQYHwpBc35A/L5ZDtV4fkCiYwist3t+QCo0UUK9g35AZG2niOuDfkBUxvtQw4t+QC2txpDKk35AapwPQhOifkDWL8hEJ+B+QFOQOXkZAH9AGKBlbpEDf0CF6hO6oQt/QCJXK+nnEX9A5JCCLe0Zf0C6Rb4N3SF/QE52TNfkKX9AI3H4q2osf0DPC14JuHF/QJJmSvFikX9AlkoojauRf0DWwpdTmZN/QMJWgH1foX9A8N4FvVWxf0AZn8UogrJ/QM4axSaPwn9AzsCYF2IfgEDwNa5fDyKAQPwDDO69JIBAkr8pJfZIgEAbE7cbxU2AQD4PoZPnUIBAy/zRARRRgECa8Jvv7FWAQCBtPF4OWYBAZKSoXCBZgECsLQ+q8FmAQAz4L7BIWoBAxOcuMjlegEB4NhVrSl6AQMKlzGUMYYBAJiYzysVmgECSGPjfc2mAQIsKaLYhbIBA8XqG6vBtgECKGn4RKm+AQPk6L+g8cIBAeP78HPVxgEByQIzs+HWAQCJTnks0gIBAlOhNTh6PgECDO6WTAqKAQB6uzmNbpoBAG3moj4apgEDzXwQjEq+AQGD+17cfsYBAG83wKDnBgEDaNUSbUsGAQMz+G7dswYBALCmwfirJgEATlfeuU8mAQLJW2JVM0YBAMEV9zUnZgEDQOrF/c9mAQJVkDvQh3IBAEHBgMkXhgEDwlSUH9+iAQLPR6fRL74BAiLqQvZPxgEDBysl+lvWAQFvX8g6K+YBAxLFqV5z5gEAMp4xFkf2AQEiEmbE//4BATExpYEIHgUBkUBUOZwmBQGC5CukUDIFAZnNElugNgUDM+zEwPQ+BQIAKkYBmEYFAa5ULdzQfgUCEIcb1NCeBQJDFnjO9MYFAFxnYQyc/gUDuNSCW5j+BQEes9r8hQoFAAEgIi/JFgUDO4k9V5UmBQKDTPnjoTYFAbqdA6VtYgUBxmLY0ZoqBQNWIY3JVj4FAlnhajR+SgUBSNn00WZeBQKM0IPjnoYFAH/VIENemgUCmQhb2b6iBQIqFr0mDqYFARA5S0typgUDkAvbs1q6BQBZzi2ZKr4FAfJFXg+61gUCk0eWeSbeBQPZXch43xYFAYKb7azrJgUB6QeS0rsmBQE7jWGLR0YFAbig3rX3TgUD8frPPAQmCQJSGvrXYGIJAclFiLdcggkA4vTzf0CiCQHJcnF8lRIJApPfrTiFJgkB0H6TI6E2CQA+WsAqAaYJAylqnhNZqgkAgqGxfQ4mCQP4NIrNDkYJA8MYEWzyZgkD6UInQVZmCQEWqaocOoYJAms5V6juhgkDEETiDDKmCQBXgbIAzqYJAmg4AuwexgkDkqOIA+7mCQFTKoAr/vYJA6urwDwHCgkAQ5ICizM2CQMbwpKvQ0YJAHBYZfdXVgkDA+5K+//WCQGgW+5gC+oJArIEwyvj9gkBoQBAyBQKDQPCnZ7d5EYNAkLYrRHoZg0A8Qhm1ciGDQHSA2t8MJoNAkcZrEnIpg0DuM7ZPDyqDQFMwrgbcQYNALl5/GN9Fg0CGn675WaCDQK6vJt5QsINA/NHLp2u+g0BEh0TKv8GDQGo4koHDxYNApkGwe7rJg0C0p+W3lPiDQP3kGbdLDoRAtSzEVAIShECCWpIvAi6EQAjMb+oFMoRAksH+VnAyhECAVIUX/zWEQNpSBkV1NoRAWGXBqf05hECuAfGy/miEQOZ64hz/cIRASiSRN8t3hEDuMsuA9niEQOoghI1xooRAGwK3nR+lhEDiXc0PVLKEQMRRCLFXtoRAXyOWLRjNhEDyDxxuatmEQDriDYBq4YRAXIZ0RmLphEBy/hcyGO2EQKadE6o18YRAAIQLA2PxhEA+k2+UNfmEQGSaWS9nHoVACl35/WgihUBWI3xebCaFQBh+LZugYYVAipvt/Z9phUCW393wmHGFQDoYFiGaeYVAUfrVQpGBhUDKt5dx/IqFQDqjwRIEk4VAmoV/XQqbhUBGg2Beb5KGQF0ECRh0loZAUfGisIaahkBSJGJTJ7mGQBPjQal9EodAzOLBioEWh0Cfa20qghqHQO7jyAR7HodAcAACSJEph0D0S7IlkjGHQBC9W9eJOYdApFnhV7Q+h0D0Cd4sjkGHQNYLkMyPfodAviokO5OCh0ATV4o5loaHQBxK/quYiodASUUxaMexh0AmcCIcyLmHQEhaxc69wYdAUa9oGsLJh0A= + NrgMGZxjYkA2uAwZnGNlQAoahmk8YnBACRqGaTzicUDRdBqjVJN2QA== - + - znK3RRGASkfEa4xFEWePRntjNUXa3xhH5HXoRCsowET+p4dFzqIXRXU7w0QZQXNFcCeeRX+dT0XB5xJHQHjHRAt2LkYkS5BFR8ahRCsDtkQJPudEdaWvRjmvhEUPRJhEic2xReeKzkTM3JREDdKDRKHnmESfKDNFJ6UERg2QdEUMnZ9EZMcKReZH6kSRB21HFR6+RHjmDkX9WctGvRPPRMKzrES74FVFRzI+RUiJ70Yv59pECHbERG7L4UTGydZE/WIORR+RLUfdJ9JE5tpeRhajAkZZwwpFwjikRZ6hukRjdNlEbq/7Rdvb6USvtbZEq/aHRM/nwUTC/x5FE3YURT6Q60Qmg4pFqt3tRFFKuUTPOCBF0v3DRIaD70R1b5VEn4RcRccw7kXwqa1EVv+8RG+CGkWWXopGvwGhRP3VTEUwW6NENWAwRYf1rkSFbbFIzJJQRcLhOkjEimpF6cTFRF4lREdD8c9EzWGlRXMnwUV7Iw1HLLulRZlz2EQ5xJ9FFwu/RMhYlEUIjANHkv/0RPCFFUWZtutEa2qMRgmSt0VPChdF5+2NRSLTtkTWONFE7dL/RDuf1kXmENpELZYiRa5ZlURPE7ZEjpyNRVKAWUZUULJGVTqeRC6Iz0V0J9pEOwbyRD03h0VRggVFIJjgRKJwrUSNZLVEv6rvRCGdx0Tie7hF0cwERSAJkUVCTK9E931wRkokO0WC7q5EkcNiSZ9V20TJWxZFUymsSFEBOUWDhCNFoIBbRwAti0WaD61E3EwbRVq4JEab32VFyi6BRxI20Ubkoh5FiGyQRd7v4kUYaZxFnZASRUwSvUTLSl5FxugVRpuscUb78qRGAEePRcJAb0UVCitFw1cmRVv5vET+VypGrfIORjxCB0VYMkhFeo6sROIlgEU3G1ZFTtv3RKkcfEU/11tFxG+wRPYAC0ZNeWlGT4EcRXOytUSXauZEaW47Rdc8+0RyPtxHuhAKRTCEwUZM25RE3HOhRHV0kEZuQ3ZFB4xxRoubBkZWLYZE4cUxRdDFA0X09OREcPK8RER1RkV3z6JElxjURO1J2ESdlktFSSevRBhWmUQpP2pFlvWIRaGw3US3FdNFpXdKRcAg6UQW2d5EPTIPRmv8F0Z+07RFvpgRRgfhVUWp2JBF+joGRUzCREU6QrlE7YpESbfTTUX4gUdIXY8+RQGdl0b1eaNE36ToRLjXEUXgOnJFKKxURbGs/kUkThFFgp3lRCFf50RW5LxEabW3RhM2dEVOyVtFII21RIc0JkaTnONFZs8kRY3GQ0WgGahFQWbIRAfMyERCRNpEiP6kRHVBOUXbAzFFljjDRzsCzEQCKsdGRBaOROVTHUX+SqdE1IqhRDFYs0WrMb5EIuWQRmj69UUXQRZFISClRE8An0RKhLJE9oH5RIoqB0VsBeFGTeKuRLamhUa8mpRFnavBRB0Vo0RoFxZGGMAERXRAxUQjABdGzCLzRQTgtkSUcAxGMxAQRV/n2ESrcAlFwP8oRXVurEShLhlF07qUR6BFIEcx91NGvr7BRfv2g0UX6FtGxLkARu7MXkWJZppGFa/qRIYYV0biNo5FIHmvRaGL4EXkEdtEN44LRwwyl0aUBANGcEutRDRUq0Uht8VF9okoRfC7wUSYwptEjHncREKU4kScbTRGqKApRo5aU0UrBJZEp8/YR4ERHUawB/ZF/+TMRMh18kSexrxGSc+ARf8bT0XXqZpGrcs9Rk4+OEUEKwtFHiLqRUxHZUXKFa1EkNCBRVjK4UStDxlFQ7+zRODwN0X4375EoCSTRPc6REWF/1pH6wQdR8clHkYOGrRFMvX1RFVlCEX9rq5E9Dv1RHOz4kgF921Ibv8QRc9Mf0dFIjpGSDeoRAxrEkZzxy5FC08WRePul0RHuI9G7X3ARc6Yi0VYteNE2S2uRASaZUUWOTlG9SO6RBQBxkRewFJFNEoNRXJyyEUWgspE5l7URTJ8Z0VqBr5EnhrxRAYfzkTfEoBF3jZHRtCDFEbKepNFdN3ERPoAC0UcAkhF3uqcRMPZwkTW+bREX0gdRmNIn0VhnxFFxtdxRgen0kRL2thFXSmMRZjJ1kT6qvVEo8qlRRWYyUSVHJZEiC4VRZq5sER2CfhEMuvyROhVhUgu2AJF2GzDRAC2+kd9tX9HxblPRg0DiEWZGq9EILmaRdRTrkQJu9dEANOHR35E+UZBoUBF6aamRSjmwUQ0LGVG4GtLRSHf60QxoAhFM02kRLEWV0WZO6RENFyBRgafTkUPQfhE2dqSRBdumkTgCkNFsdsLRTs49UR+C5VEHxvNRMPbskR+iNFFn5YRRfnnwEQ8ay9FTvYCRfqaxERJhiVFHCisRIKdoUS4H5BF9D+ERaUTsUS85LpEHsW3RM5kw0RZt61ED9nXRP8KlEQ5OTRGfnlRRXYUKEWM9kJF4yLsRNsOxkQkXNlEMhawRJfpxEffzTBH3QTIRicz6ESLGbdF2PTtRUoSOEUt1PtEULS2RMeuBEesWYNG2nZ9RQMKj0anhs9FBU0CRaQJfEegRBxHd+DSRWTRV0UOmt9HHUQ/R5nV3kaXcQZF6hEPRlowwUSOkMVFsPUlReRIvUUzDZlEf1OdROVeSEZdIAtGnCz2RCj/o0T0hPpEkQg4RQft0kbEZohGuPwGRUjsmkXGgttExsv0RPcb3kWJ6ypFL6m1RGXEvkSCkoBFBNYXRUw5r0VXGGhFs7TyRJ6hE0ffb2hG8bMQRo8cqkRHRYxFMFRSRXwY1ERfd1tFYnRJRcGep0QayQVHAkWARj00GEbDdFtF663MRCKXREdHYG1G+SIIRctZj0VIwwdFmRTqRPP6r0Tu2TNGLZHsRZa+GUWmsJpEKOwuRuo5q0UCeV1F8V++RFla0kRlHSRHH2XyRrl2P0ZGjlpFKrwfRoM4nkUqrCRF4TLARA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Tky/vG/BckBKLL3wp8JyQHSYBeHhwnJAltyvmDvDckAY5/nyxMRyQNz8iEVaxXJAXLFvwwHIckCjmB2zWs1yQGQzCOJD0nJAwoi0uc7fckBe7rSGueByQPEEKKFQ4nJAAl/aBpHickCAB+zgIuNyQOSGle3I8XJAZu26hHvyckAzQwgYyvJyQHZLInYR83JAMkEuw7bzckD8TGfJofRyQLzBsR7B/3JAwH/Qz/gAc0DI81MzngJzQMGpJn3PAnNANgPY7foDc0BCHSCECBJzQB4mZBC9EnNAWDlH7wQUc0C4d7tL9hdzQJiewex6H3NAFhl+2KMgc0DeALtHOSFzQCD2KiLmIXNAglIJDMkic0BoS46oEiNzQMDALLzOJHNArnXQp0gxc0C6JgKc1TNzQKTD9nXbNHNAqNu/c3lBc0B+2EjOekRzQNzE9LFCU3NAHxUUlKVTc0AUFLZbiFRzQJYYdAiNYHNAlH/0m/pic0ArxW3OOGNzQOTuGPYrbXNAAmPSMEpxc0DJgXWGUHJzQJh7GhmFcnNA4+IxwUt1c0Bw1y6MzndzQDWa+Hzgd3NAfk1d+3iAc0Dyi9qWpoBzQGyUATldgnNA+o7EmYiQc0CUM4eSTZJzQFpWN2XOk3NAQ524RmGUc0DfP1Wn95RzQEQ1h2S4oHNAEFVpQU6hc0BPJ1f7kqFzQNrKnLZaonNAn6G0tcWic0Dmp9aSe6NzQBIPnQEFpXNAUwr1DGGrc0Cw7YEo1rBzQLCR74y2s3NAVb+JhQ20c0A0byI60MJzQEQuKyQow3NAf6gDo9fRc0Ce3/zUu9JzQORxB+fi1HNABMNpqDnhc0CW4ge/YeFzQFpcNE049HNAbJ9ognkBdECANVOLpgF0QHNMijOKEXRABiyMPU4TdEATnBAZfxt0QKoOFge5IXRAFi0kR1MwdEBmI1Eje0N0QPyAAbqMVXRAug+VZdxXdEBdJxibNV10QNjkrBS3YHRA/h7bDwhidEAIb8gRj2J0QEsiwj7mZ3RA5Ik8TUFtdEDHpGKJInB0QL6NXoBBcXRAbDgOJDpzdEB24TuyQYB0QPSCjAf5gHRAimq2Ak+BdEATPdaXFZB0QIMP/f1qkHRA0OjZMvCfdECk4HLxzqB0QJiiDXI7oXRA9JkWBRCjdEAINFWw+a90QETcZZ8AsnRANnhYWW+ydEDw8Bbrybd0QIQykkgQvXRAfRRYVN+/dEB8PbY048B0QD8Xv0B5wXRANipf2SXCdEDuwKB2fcN0QHBSG/W3xHRAHF3TfxXTdED4PjmgGtt0QNPBs4C44XRAWlG4zozzdEB6pNrxpQB1QOq0oQZkAXVAqPV/uF0CdUAt4x+N9QJ1QDh2kQv+CnVAkEF3AyMUdUDLFiDmnSJ1QLwyZnbPNXVAVi4xUeRSdUBNrIlSeFV1QLTXtU46YXVAmCHhxv9vdUCsIwmqeXJ1QJomRiSOdHVAVuThz3iBdUAS9zxFroF1QGSSwrqmg3VADUTWTRKEdUDu5RdGnYR1QNIRSAF5knVAzQCYY+SSdUC8zavlC5N1QDxBO9Gvk3VAnN1wU/eXdUDONi7+EJt1QOTUAygFo3VA7iBi5BijdUCf5PtKH6t1QCpLBm74wXVAwghE00fNdUCS9hh1LdJ1QJjZ7g2i0nVAOPN4Dg7hdUAQgJnuBuJ1QDTWLQNM7XVA2EPoj6XydUDCc2U+N/N1QDqnqJzu93VA2KHmwAL4dUDMm/eVSv11QMY5iBtIAnZAqIHpFdIDdkCmrRt7iCJ2QLSvA1mPJHZAcHrd8UordkA3tPU1HzF2QBSSvS9RM3ZA6le4C500dkAHuoIgHEF2QAD1/wHJQnZARx1k6HhEdkB8W7XhEVF2QCxKOAjNVHZA/S0DVlBjdkAgnb5ZvWN2QKKu7uLbZHZAXGOu81dodkAJzYBIYHN2QLLbU+ORg3ZAZ/BUQ8KydkBC/EHhd7N2QCMgKVzPs3ZAZKWvzw20dkB60Oam0rh2QN/iKNnNznZAoD4fdJLzdkCrmD5kMwJ3QFPLWf7oAndAHDxOYVANd0CwnFy/ARJ3QHxhw+yPEndA0Jb6AKkSd0AE+mmgDiJ3QD4c9pRxIndAUKsXlKMzd0BHK0ofDTV3QP6Hz0QjPndA9zvezJxBd0DiTJ6N/kJ3QDC3YzqCQ3dAGKryqxpFd0BHu4tbSlF3QJElKIaSUXdA+mjLQ9Zad0Ayd2p2+Vp3QMOc/qiQYXdAvpzVazlid0DQwfwP3mJ3QGC3DiosY3dAJ+3asmtrd0BuzS1yJ293QKod5cd4gndAUgSVyVDyd0A8V5Aef/h3QAvyLj/W/XdAFkVKkG4ieECURfOlvyN4QEZaEezRI3hAyG+x1MQreEB/LmyfHTd4QO3fecQMQnhApvOgQhFEeEDMUuZDekV4QFb6gwTLUXhAtiIIJJRSeEAfLGi9HVR4QOQMwoCJVXhAwP1Gle1XeEBXIbQ4Sl14QPDBEBH4YHhAhtghaLdheECULTD8uGJ4QLhUCKZcdHhAX5azpYt0eEATULnzw3R4QKbsstejgXhAcyTm7dKBeEC+0YjJmYR4QCha6PyXkXhAMIQReqeUeEBFndx6zcB4QOIvmjTfwXhAzeQ2ljXTeEB6ObRWttR4QD3zT0lL83hAnNWCUQL0eECmSFp5jPV4QNz3Vdh6A3lAmKVvO5kFeUA20W7ghhN5QB7qVEXhOHlAxA8u2vtDeUDR0LwVCVR5QO6bsr/MVHlA+qLpG9tkeUB2TxP7cI15QDBNvF7MknlADlL8qhKYeUBoPKnHwLJ5QHJ5tndD1HlAPC9crszVeUARRhpzUeR5QKGEHIQ4I3pABCHPl6cjekDBeJPtPSR6QGIv4MMMNXpA0oRdIedDekCWzK9+GkV6QKi8o3/OS3pAeIZ9D4FTekCWnjZAJ1V6QJ1UkB0OtnpALuX5VCvDekDWz4T9F8Z6QKa6Fn4MyHpAVhy7k2nNekDAcGJOw9J6QEqzQDfV03pAfvKEqWbhekDYZ6E+3et6QM9HjAM27npAbueQShXxekC20XsTXvF6QJn1sWBK83pA+BVB76T4ekCo0TZs//16QJbbLNNRA3tA3S51zBoEe0AXjARqKg57QEqRfyDGEntA6E0OqaoTe0DavGAwTBV7QBxLm/cgGHtA7Pe8THQde0D6EaJDWyV7QGTYHLLDM3tA1jURC7g9e0BWqPlqmUh7QPAeB4a+TXtActboeuuQe0BDPd6LI5V7QAYCkh/PnXtAPv6lvSeje0D6hpMZg6h7QMk6s8nLrXtAWpReEyLce0AYGNJ6KOR7QPzlRxIy7HtAMHsIIpfxe0Ck+Yvli/V7QHdwL+XYAXxAW7mZtvQBfED+qqyimwV8QCLYOF3SEXxAUQpnXukbfEAaocLt7SN8QCpgRdnlLXxAdH1Aoz8zfEDEgH3Amjh8QJwuSXnNQXxAhBvMjFJIfECOcrjYq018QDV8VazxUnxAGGznPgtTfEDgkxz2e1N8QAfViDpPWHxA3885xgxifEBqtXayKXF8QJk7uD0Gc3xAzQWdH1mZfEDE431DtJ58QF+1Sj8MpHxAnxjLr2epfEAkyPGNzdV8QGBgrRFY4nxAwLudGxHjfEAFK5fYa+h8QAIRaPKw7XxAMNnPCcztfECMuDXUFvJ8QPY086pV8nxALwwhZAACfUAsUgppSwJ9QHwnUFxRBH1ABUHT1kMSfUBmSBVQPhN9QGWfgomvG31A/6N1qj8ifUB0xy0uuiN9QJN+V7h8KH1AyqI9x+eBfUCiY3G5lo19QLXaSSjxkn1AeEOtbkaYfUCa/iTcF6R9QEDRUDEAvH1AUz/U5C7DfUAYl6Cv2+J9QM7n5DCQ9X1AwGaEHfAdfkD8BTE8Nx9+QLHiuJlII35AeMaTYKIofkA+o/e07y1+QJc7HylAL35ANOoo6rNxfkCxTbWrt3t+QNTGPxe9g35ARSXnmsOLfkD0JpQ/yZN+QKyCwzrOm35AXifQHxSifkD6+m4Q0LB+QJQp1Rkfsn5AssB1x9DffkDfLNOAJ+B+QKZr7l468H5AmgTRThgAf0C+T1/PlAN/QIgv4KyZC39A78c1E+gRf0DodTNC7hl/QC6jwBTbIX9Am/2QwpYof0Des8SW4yl/QKTqrs+2cX9AyPlOBbGBf0DgZUqjooN/QGDDk41ikX9AgBwFs5eTf0Dq7EPaXaF/QKIx5iGCsn9AQlDTbpLCf0ARHjUAsO1/QEAj+s7lAIBAVXm35IMRgEDmAEB0DyKAQCDosMX1SIBAWIIPcedQgEByK4hXFFGAQDf0pe3sVYBAtteaXg9ZgEAOMctR71mAQKeB4SFIWoBAlAtNlTdegEDmcz7WxWaAQGHtD3liaYBAuAgvYXJpgECB8P1dH2yAQLpTF4TwbYBAnHRAFsRugECDI1fXKG+AQCvy96s8cIBA3rDeZfRxgEAc3hIR/HWAQJS7Q/Apd4BAipkrve95gEAZRz5FMoSAQAolLvgdj4BADBygnoapgECI1MTyhb2AQLNIOn9SwYBAL7H+eFPJgEDa4IIkrMyAQMjxP9gIz4BA71tWFlXPgECyYqGNTNGAQKY8O8ph0YBAmks8sQLSgEBmQehmStmAQJhcE7pz2YBA+DRC8UPhgEC6pEVl9uiAQA2hc2JM74BAAtoUe5PxgEAmaSHqPfOAQMhxn1GW9YBA46yxtT//gEBGNEd1PweBQPL+92RmCYFA7GL3SsIOgUAOX5VFPg+BQHWXnXs0H4FAzg66nzMngUD0kbHX8y2BQJ4O1pDzLoFA7huvVL0xgUBssXLfKD+BQISmhbIhQoFAdbI1KuRJgUANrUSC5GmBQFF+J0Nhf4FAV+wj/1WPgUAA06nJH5KBQASdWJJWl4FAjxBgxOehgUA4vHDg16aBQHTOPHNtqIFAaiLfLYOpgUA4PtLBSq+BQGsVVqfttYFAxAduW/G5gUBeBEYdrMmBQAzayV1904FA0HTUpPnxgUBsh01W/vWBQNR6FDQCCYJACE13h9gYgkCnMLOe1SCCQAbzqT3RKIJAGuXUDqUpgkBMhfCqpTCCQJN7fMXoOYJABMtqvyREgkAU4Dk40UaCQJTbooAgSYJA0s2uLytNgkDsvI1jI1iCQFlDrIaeW4JAsa77c4BpgkDKFy6mLGyCQBBBjTY6dYJAMhglcEOJgkDwUfQJRJGCQHJatss8mYJAkvBWTXaegkA7gjlgD6GCQPrAr6o7oYJAdyfoUQypgkCXVxiDNKmCQHBfiPwHsYJAIjJnEvu5gkAAyhVn/r2CQPJt+WgDwoJAaRxK9cvNgkBExeAM0NGCQG5F56j/9YJAkEGujrD5gkA0ISt5AvqCQD5N3YX1/YJAgz5S6gr+gkDXUnEu/AGDQOkmemoBCoNAwdYTk3kRg0BgLLf8eRmDQCkpf+9yIYNAZGK6lw4mg0Aqgy55cSmDQIzzSxgRKoNA4oI9uWkxg0DmodoP3EGDQFDYVaDfRYNAqIftB+OBg0AabS7RSYODQMIGcAZZoINAAlvoTGy+g0BC3ipJv8GDQLYKp9bDxYNA63DVfsfJg0AuO/wsvs2DQMb0oTXz6YNAgAXSvUoOhEDsQ65IAxKEQLvk7phPEoRA1XkEHAQWhEB6nJV8Ai6EQLCKODAFMoRA1rgrR3AyhEDcwitY/DWEQM1gZ4d0NoRAFdiBmf45hEBEIe10FDqEQO4Qw/H+aIRArl4aLP1whEBgy5gN+HiEQOREoff6gIRACRekLXCihEB+zsWwHaWEQLqlZcfKp4RAdvjjuXqqhEDw/ueFU7KEQFvXXG5XtoRAAU5opRjNhEC0h3+fxM+EQLhcPVFq2YRARuT2M2rhhEBi+Lk9Y+mEQGBtixw28YRAaE7OYWPxhECKL3gdNvmEQBDVWTFv+oRAziG2qzABhUDG4bzHZR6FQJr7LGRpIoVAUoSlljcyhUDkBnNSoGGFQEgmeHagaYVA0eYyGvxuhUD6/Y2ImXGFQEwMi/Gzc4VARk6gXJh5hUA7rPpdkYGFQF7iESn8ioVAiHBEpQOThUBUWwFdCZuFQMScQTtHpoVASYsS6G2ShkCz71QodpaGQEgj1fCDmoZAEa17hia5hkC2/9PzXMSGQEYWwK90yoZA7+dZjX0Sh0Aou6MmgBaHQCzoB5iCGodAypw3YYIeh0DUlehgiCKHQNQQFrGQKYdAXwItL5Exh0CtBbSZijmHQE0B0aqxOodAfqH+nVxBh0B9oy6Wi0GHQOWysNGPfodAtDZ0GJKCh0CnH13ClYaHQEgrEYGaiodA2J+srMexh0AXYGGVyLmHQEggC0rBwYdAUOqINr/Jh0A= + NrgMGZxjYkCYE/Y0vCFwQBu6YmAmQ3BAmHHSiBQzd0AJeGK9lHN3QLbCjnNsw3pAMDmqNEOEf0CIZ2zfF4qAQI/71MhYWoNAiJZaCcQShEAeJDO+hCKFQLWc/64lO4dASyrYY+ZKiEAYysnLsdOLQK5XooBy44xArKptBwncj0DP6NN3ClqRQLP+pn9A7pFATwDLjGAek0CWFHqHdgKUQJiCC1mBepRAqym7iJwelUBJBPPNqoaWQAhTq4TYHpdApi3jyeaGmEC51JL5ASuZQLxCJMsMo5lAA1fTxSKHmkCeWPfSQrebQINuytp4S5xA+4Hnzn63nUB7K00SyjOfQEVyuWyqu59AFiFZEAjAoEB8RI89+AOhQKFiwnkgiqFAB4b4phDOoUDF7Bl3K/yhQMcRdLE7sKJAg+S5QjniokBSU90aVHqjQKjcohFP5KNAdt00GF/so0Bm1ELdXMqkQDZpsCKKzqRAJmC+54espUDlfaggqM6lQA== - + - M+SxRcOPHEd5t8ZESeOeRarbjkTH5odE/jpRRiJ0vkTIIgRHGjfLRCku3ESLu3FFeHYyRYt59ESNcGNFZNB4RfuruURLW99ETWSSRM/Nr0QbQ6xEnCTKRNFelkSy52xF8w05R+761EQ1rWRGRBWdRdyB6URNpLxEB4mVRGoNxUbUc6JF5O2TRLfHxET8Sn1FG7fARLPPjUQLEJ5EhSCJRRBnHUYT1sBEUHQ3RT913ERfK5pEFO8KRUbxC0V0O11HbJmZRBdVw0Rt87tG3okGRRQ+M0W470dFU+mwRhKr+kTPjABFFS8zRbDYTUeEbcFEiCMKRdxQPEbaaflFD7ieRA/ZIUWY5dpFjk7pRCLQ1kWPgFJFu/vkRBHFkkQtpyNFoIMQRR9ElkUdGQBFlJgbRQOxikQnq4NFFBDkRY4Do0Sq9OZEls2eRvXb10QvNNlELcEsRTdEJUUDMypFPxCNRFu7hkRM0LBE6oSzSHCiPEikn4RFKwEbRZO6S0dvBvpFRxYIRd10ekUd8SZHY7qMRYQCp0S9pSJFVKilRfEEqUW4jI5E+7uVRsgpykTVlsBEHHnFRAUs0ESx3c1EOophRmT7lUXjI4lE7g0iRaH1zkRUOf5ExXqGRJ+NkkRwWABFjkZJRed6ukQxemBFySmURatFmkS2qflEovwgRlx3UkZ7SqBFqg2nRBPvskViocxELJSmRDFMzkQUUSVFXfV/RKJM5EToHt5FJpy7RH+OvUUYN2FG9d3yRGNyokSDiuZErokvRbbUIUliA5JENX+sROZLc0jntNpEkEUcR5xidEWd2ZFEPoURRrOGnEQ4QoVFEInfRAYFjETaCK5HUYY9RxrR+ERH2sZFQ6LERaWpQUXeHapF+oiWRFo/TUVJqP5FewU7RlQqrkZ9O3ZFlXClRC2JkEXCEyhFTDpeRYoi5US7hxtGKmLnRbfHlUWRKdxEETDMREUusUR+8pxFh7XnRAHgD0VXTzRFwBCrRcA7zERUE1BF454rRRe02URUeM1E6IHFRQxraEallTBFwIFsRQQ4VkV6MqxE4qS0RN6y60ffxKVEUsyiRmtkmkQexLFEzISvRu10ikV8xztGrorCRXc11EQe+c1EiqSbRO0W2ERgFJRE8KKvRJqHRUWvjSJFyknxRI2uHEUrGvdEtZaFRUTQPEUxPA1FIUW0RIxTo0ShS5tEXXcXRmkvR0Zxj5JFhVgQRorSwERD6PtEpZnZRTrUr0QlUCNFf26GRaP5ukQEN3dF8RRSSf3pWkULsRZFYWWIRIXDUEhUZhJFSZGURnDao0TBCxFF+LKXRLBOEkWmrbZElKWJRQ/650UB55tFrKjBREwUgURx1KpEBaygRl6QOUWZDqdFBcS7RNT/WUb5LtBFY3G8RBR7XUXrvMVFnY4nRbu4t0QNv5FEfQh+RUDR9kTlsNRHW4SrRB6V2UYeotdEQy6ORPIRTkWNxLxFGvOrRA2KrkSrwmtG8x+eRXkAHEVC5LZEbNC3ROQchERydMFE7TSSRO9dwkSAuNFG4JdQRi27rUVtsJ5EqUK3RRm0rUTJ2qxFJdF9RaQ9O0auwIdFUQ4QRZhY/0QE88ZE+9amRAvhGkX5WoZEJlqOREBT0ERbn4pHE5cfRxmYNEam53BFSWe+Ro+AH0bvv9tE2luiRUb3qEYHxSNGsGU6RevylkXM2ZhFEb/1RXq1H0UKjtxGFg2HRnqhmkW+lehFv0gFR+I9qUaCIGJFBPpnRR42nERnZ2NFWSGzREsw+0RhC55ESYSDRnfwOUasvW9FHaieRBE+r0S+hPhHtRVNRkn9B0bmRKdE5urNRKYHsUQc0vFGNdUoRchZvUYofvxFYFVSRd+zgkRfohBGakfERCSDHkUXNulEa+T2ROdJpkUjo6JFAlPGRFHq60QwVD1FlrQFRThgmkTE6kFF92oiRwBqlkStob9Gb+seRnI0xEWG9axEsVe7RLdvxUhnUFNIbmd7R+4EJkb+6ulE9yUURVGrhETg6OBEwl2aRDYsMkYCDrREbgg/RfD5FkWlXZVE8LIGR1LUW0aXpOZFGJGNRJ82IUVUXpZF+26xRGqLskQ6Sy9GWnbPRB2OFEWL6kNGMsLjRGgRh0Qm2QpFF5vkRCKdxkR2EPZEy9FWRUX3ZUZyJJBFJGecRa+kF0UtaT9FUH8KRQk32UXEuR1FuERLRfRBGkW8nZJGkV2yRKvoK0W7JY9FGuICRgI+z0RzhJpEYW2mRLJeIEWxuJ5FtsSsREiz3URpgpNI8NAGSC+B3kSOoNBEFyy0RLfPhEdrr2hF8KjHRIryiUaE3d5E7UqYRXJbCkXuSO9EuIs1RiJHu0Si7JdF1wUnRhaidEU9ydxEWrGeRAFmPkX7PGFGaTwsRbHbu0Q0h5xElmsERQhts0QXXdlERlarRDm/kUQlzodELGSvRYrXiUVCOJVERR8eRarx+US539NEdEQSRZUbk0UiYn1FnIrvRPwp20SZhgxFRXzjRAmSqERTgbtESpEpRllpgEUsdg9F1y6TRF8ukERqJaBEnkdMRcvD7ERtcMZE6qJxRN7X5ERiY6dE5l+cRErBoESpCAFF+XHGR2EQMUfxoslG1QIERcYB5kWvQ81FHCsLRYzDHUVwtN9EValoR6HX00YAVeNF9KBSRhEstkUQtzBHkrGhREcWpUZBxT9FO5JURQcuC0VyDKVE1MrpR71QXEdijhNH/+swRWPCCEYClqlECiBARTlSiUXYQQJFTQqfRM9Tq0Ru25JF7fijRL7DYUYuRtxF4Un6RDNLmUSRePhEm1esRSUNTUVHwBxFgn65RF+yR0fdk9tGsJtGRVU2rEVNg7VEiqgnRb1kt0Qm759FOrwIRXqGvET0+5lEGoGiRUTd0UWFkPdE/LeoRG2ExUVk92lF1xIPRSVx0kQk3wVHzuZvRpxaHUZ+jIJFRYV3ReEq5kR7nNVEUpHhRFEFUEVZsAFFGJE+Rb0zB0cz3I5GehaZRJL0I0YmrptEN9yARTZf1kSU9vxG5AQwRoiGu0RzJLJEk4stRRSLBkU3L39EN1XGRO4olERCItVERMC8RzyEjEc9Nd1GWf7qRS3t8UTRUA1G7JWaRQRiSkU0CftE3v2gRF8kAEV25LBGVLZSRo+EtkWmYb5EwH4TRg47lEVIDk9FvtnBRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - dkX/U3fAckD+RBRYDMFyQBLj84FtwXJA/EMK+k/CckD6fHWKp8JyQMC4+us6w3JAxMKKmgHIckDXbGRtQ9JyQHorECJ103JA2AOqfc7fckB0vQWbuOByQLryVPJP4nJAjIX0k5DickCoTLLYyvFyQB5hajt78nJAEDkzwxLzckBXV/fetvNyQEP4o5qh9HJAYEvbPMH/ckAiehQF0AJzQOZ6nar6A3NAyPSZ9QoSc0CK26R6vBJzQKTSSsEGFHNAzUnEE6Mgc0AmAXkiOSFzQJJHzL/lIXNAekgPfs4kc0Dcw+YISDFzQEEtw3w2NHNAJbAkzeBAc0B6aen3eEFzQHmXi4J6RHNAQ9PWsqNTc0C+qHbOimBzQGy2XFX6YnNAzHPTITpjc0Dmo4DKK21zQD+zvAdScnNAmE9FnWVyc0AOA/GghXJzQLYK0sy2dHNANpW5wEx1c0BcljaUzndzQIe23yrhd3NALgW6oSR9c0AAi426eIBzQBErq3mfgHNAEEBWfguBc0Cy+SyIX4JzQLiYae+lgnNAxeLU/QKDc0DJ2a6vhpBzQIlz7HJNknNAG8mJtWKUc0AQ+BY095RzQNSXKgC4oHNAMDIn1lqic0Dgqarcw6JzQIwM/DPkonNA6gWV+Hqjc0A65AtQB6VzQIA26qBgq3NA8pXwssewc0AGlsp8trNzQFrCvGwNtHNAmDxGL/bAc0BxjCGCzsJzQJU1S/4lw3NAc/m8XtbRc0AG4pcdvtJzQEfbyl7403NAu7epa+LUc0BdTdvQouBzQPCKBYA44XNAcD2W1Df0c0C+CCQ3zfdzQLg2VHh5AXRAe4crvqYBdEBmJQs9TBN0QA4e3Hh/G3RARc/VbbghdEBQQCgmjVV0QN4URjLcV3RAWvNqIjVddEAI6K2zuGB0QBMlE1ULYnRAqEXq141idEA5ZBvUTmR0QDiV353oZ3RAKKt58iBwdECAC8BhQXF0QEtNhS06c3RARuSbXEGAdEBTvuqv94B0QCwmbtRNgXRAgcrKzSWDdEBMBIE6F5B0QLRMRcXvn3RA/ndQ3s6gdEDYeLghvKJ0QJiJiD0Po3RAmIq6/AewdECF+i6TxbB0QEF0ZR3/sXRAIqN7xW+ydEDbJu2iyLd0QGB4dfYivXRAN9c/s92/dEBQxImtd8F0QFSQXLwNwnRA3yuCpbjEdEBCP/w3FNN0QEYmGXG54XRAUJ5CMWnwdEDYNhYYjfN0QPtARdWlAHVAQekHcM4AdUAr23Q+YwF1QGJCllhdAnVAkaFquPYCdUC9vj1v/wp1QIx0Z+2YEHVAnm+qSWoSdUDUwXA9JRR1QATCDWWeInVAvpFMhMw1dUAEnUyYd1V1QEo4pOk3YXVACO8fiHZydUDelofUjnR1QPxhlkV4gXVAcIlC8a2BdUCz6pLvpYN1QPmEYW6ahHVAV5TS5ZyLdUDNVHnEC5N1QNkCQoQRm3VALeifTRmjdUAEDmALIKt1QBQs6vr5wXVAfPW4tEbNdUBoAuNcpdJ1QO1XfsEG4nVA/mM5H0ztdUCAXkUqpfJ1QJBhWfM383VAA8NO4O33dUBze4OuAfh1QKWbLvtK/XVA9i7neFr9dUB86LsxSAJ2QBRQyXmjAnZAF5W1xs4DdkCKgD8CiSJ2QIbuXl2QJHZAuHd0ZUsrdkD+oDFGHzF2QFQiK1NSM3ZAgPwKN540dkApThnYHUF2QKsnTCqcQnZA9PZhwchCdkAi3kYLeUR2QH6In4kRUXZATusFBc1UdkDoLdsRUWN2QH/QIpO9Y3ZALEqNS9lkdkDp+ntBynN2QEP2AFSSg3ZAPFL5vsKydkDePFdueLN2QAxQZ97Ns3ZAUnP0lQ20dkD+wY3SGMR2QJgAvdDNznZAkurE75HzdkDUsuNRNAJ3QPTL0yHpAndACotwD1ENd0BQ8UzSABJ3QMbI+6SPEndA/lK4uqcSd0BU3FX15hd3QCGLZ50CGHdARNTyyg4id0BUUgQycyJ3QIt2IsijM3dA7vm7+Aw1d0C2onUMnUF3QG7KpD9/Q3dA3p0U9hpFd0AC+8IDSlF3QNQW0auSUXdA4rgO3ipVd0BoAw431Vp3QAhY732QYXdA/sWoddJjd0CjeASeJm93QKJjM6t4gndAzByJywqSd0Drb2F3E5N3QCan/NVOlHdANS7moZq0d0CeAYFxzN13QDxBC7M/8ndAEqGgD0L2d0AAt+lUfvh3QADxHD7X/XdAa46GEkwVeECReHQ2byJ4QCL0Ata/I3hANcFVVRFEeEBApUikeUV4QEhOYibLUXhAVpys8JRSeEDcddZUIlR4QGyYZv+GVXhAzHSnkO1XeEBUTuMLSF14QEC8ldP7YHhALnDa1rZheED02ncxuXF4QDaKNnk3dHhA8FTihYt0eEDW09PHpIF4QLUZbLqZhHhAVQyHXpaReED6o4vVp5R4QM5QGZjNwHhAKATEKOTBeEAuapZ5t9R4QLTBX6gC9HhAkI/q74z1eEC+LtZYewN5QIKWS1maBXlAOqW2UY5CeUCzsxs++UJ5QEx/pOH7Q3lAoquc7AhUeUC8PGyTzFR5QO4RKHnpYHlA3Gq3B9pkeUCtKkyvcI15QE6H1ArLknlAPhx1niSYeUDSty3nvrJ5QIydKVdC1HlABlW6TMzVeUAMkzbuTOR5QEWungKnI3pA7B3g5zwkekDfzzGkKjN6QErMQ1sMNXpAN0KqCBpFekBN7Kh60Et6QDa3PUMoVXpAo4ouNA22ekDkZZ/JK8N6QMIglP4NyHpAoMcSCWfNekC8ropKRM56QICN0usL2HpA0oNABGnhekAQDrmvNu56QFDdhtoW8XpAnWQockrzekDGIS1Ko/h6QAhpk6f//XpA8ptS4lYDe0A5H46TGgR7QLgx6W1+BHtAH4PyKigOe0CK4avXxBJ7QDhqVOmsE3tAgIvlrUwVe0AEwiRzHxh7QFPV3nF9HXtAk+Y8Ulole0ACz2pZxDN7QCaOK/mYSHtAJioCoPJNe0A2ktFvH5V7QBx3JOzOnXtAsHR0eSije0A+UoMNhKh7QMsLZd/LrXtAuCMEryqze0Ai/K11Itx7QKEP5Lko5HtAYQipPy7se0DYavJnlvF7QJGLpJ4c83tADbCjNYz1e0AMSZDe2AF8QBTvU5fyAXxAZG6XLpkFfEDkK1KQzxF8QEbiIwbpG3xAcHqRm88hfED8ddL+7SN8QGoQV6LlLXxALgTGTT8zfEB4quEpmDh8QE7hyQnNQXxAK60Df1JIfEDPuQUZq018QMgWLoX8UnxAq4lxKU1YfEDfta4aWZl8QNIv+aqynnxA3kSIuQukfEDEZid8vLJ8QEmSuLNX4nxAskhyLxDjfEDG6sY6buh8QEX6723D7XxA4korGBfyfEBqGd66VfJ8QMaStBAU83xAgIimQAICfUCIpkBASwJ9QML9fb5QBH1ARvmYhEQSfUCmx0aUrRt9QGhhaeQ8In1AOKsfqLUjfUCMrt/Ieih9QHh4bHGdMX1ApUjbgeqBfUBHikHYl419QPxPQPfvkn1AeaZLEQK8fUC8j7b1C8R9QCdTjQ/X4n1AKzsj4aHrfUCI+obLkPV9QHC2ZufvHX5AXsMZd0kjfkDzE12Toyh+QPDjon38LX5AmFWpmUE/fkDMwZxdO3N+QDoaOoy3e35AV63cD72DfkBAnXYDw4t+QIffMlfKk35ASPRlGsubfkABchRHE6J+QMxg72mMsH5A501wGNvSfkCmgIoLJ+B+QOLYxcAbAH9AymvwzZQDf0A1kFmf5xF/QGdYBLvuGX9Aba8V4dwhf0BiYmXM/CF/QBg6Xt+TKH9ARwf0t+Mpf0AEu8zjaSx/QC7FczDtLX9AXq6F5s9Nf0CA1TYkuHF/QDJULomhg39AmJiXOGKRf0AjLav/EJN/QM7S+gZrmH9AbLttssWdf0Bu+fDIYqF/QPMq5I5UsX9AmJ/E9IGyf0DDcIzEjcJ/QDLJB9fe4n9AUs2IPzzof0CIxnQxmO1/QKZsHZTlAIBA+pdGjoERgEDRUIJrLSKAQLDET+XySIBALFmkyedQgEApBhaOFFGAQLir2tvrVYBAoYcwnuZYgECaTbZ7DlmAQL45Xk5IWoBAKQQ+aTdegEBsWK+PPGKAQLqUSiHFZoBAgDYm92BpgEAqp75Kc2mAQH6Cv34ObIBAtamWs/BtgEDGzGRnKG+AQFCe4es8cIBAhidZXvRxgEDWl9jy6XWAQMLo6yoej4BAndbfViCXgEBq8thCh6mAQCC1QesSr4BAHAJ7pAe8gEBg6XdfUsGAQA1Ph2NTyYBADtqndKrMgEBInwt3TNGAQD7NWSBh0YBAvPzzgkrZgEBW93tVc9mAQP3302kh3IBAzZ/K2UThgEAlr9lr9uiAQFpazv1L74BAtkDKFpTxgEB2Lr7zPPOAQLLJYayV9YBAEnspaz//gEDf3RiJPweBQAp2ScxnCYFAitxlFhUMgUCeoZc5PQ+BQDoFfEHnHoFANLfWQjQfgUCgu7cxNieBQK7PHSy9MYFAMUt1aCFCgUC/TBEs9EWBQEhHtHbjSYFA2BUjauZNgUCgANwrXFiBQJ6XhkfkaYFAbxT+2+htgUBYeiIDVY+BQLoA148fkoFA/P6ExlSXgUDf0Q5tJpqBQCs6sajmoYFA1FB4q9emgUACDEmibaiBQCr/6OuCqYFAZt7PSUqvgUBWNI0/7rWBQOzW7//wuYFAXK4Im63JgUAucQRRh+WBQD5iM9aK6YFAoAKYQgIJgkAgwCQl2BiCQHAZtaXWIIJAgyHN7tEogkCG3JZ8pDCCQNyDM5TlOYJAwkFcCilEgkDWemw2oU+CQD7a4K1wUIJAyB8ftiJYgkDaQng9PV2CQOa0F/B/aYJAK2p6WEOJgkBMlNN3Q5GCQMKGHH08mYJAWAjZVHaegkBsqop/DqGCQEMVdP48oYJA5pRYrnmigkDSwc7pC6mCQArYsqY0qYJA8E4sNAixgkCwnog8+7mCQG5pqt39vYJA/hDnuwLCgkAQagOBBMaCQGDZTUfMzYJAZIBsDc/RgkB8w0gg//WCQPelgJit+YJA+DxoqgL6gkCSyT26Bv6CQIGAHnb9AYNAqjF6VAYOg0A1sn2ieRGDQDRjXO55GYNAzn5TqnIhg0AgZ9lRDSaDQIF6n6dxKYNAHAljbWwxg0B2dsF320GDQE7ZvUPfRYNAJlJfcFmgg0A65ch4wMGDQPKcFiDCxYNAlD6RhbjJg0CKPjfv8umDQOAS2/6T+INA3BcOkkoOhEB2VElqAhKEQFHvzs1OEoRA2YG/vwcWhECmjfzLAi6EQKZXI6MFMoRA/EukF3AyhEA97sDoBjaEQMTvkfFyNoRA0yAErgI6hEBEZXs+ezqEQMiP8a8DPoRAAHzH4v5ohEBO3gU8/3CEQJ5sSdX2eIRArplu9nCihECU0fY0H6WEQN4QuYDIp4RAaoovl1SyhEBJJ4lhsbWEQJWJgQVYtoRAEenTiRbNhED2BpcLyM+EQOjCdz5q2YRAIMdpymrhhED3GM2xYumEQKSi3AA28YRAfMypsGPxhEAanKkiNfmEQKzzvQBv+oRAPimeLTABhUAedETIZh6FQN0r3SpoIoVA2TEceTcyhUDH/aUhOzaFQDSnHoneWYVAXuL2UaBhhUDQ77LXoGmFQGE8HAr7boVArBk4p5lxhUCKBdZVtHOFQOQTr8iZeYVAq7d8SJCBhUCrk311/IqFQC6rIb8Dk4VA/aAB9QqbhUDJh7ZEbpKGQFyIqWlxloZAyFHcUouahkCm3JIfJrmGQHmPD55yyoZAIM+g+HwSh0DgunJ9fxaHQKC9D3N/GodAdm4udYEeh0Bl88ptgCKHQGwzyY2CJodAQYPmWJAph0AAQv6MjzGHQLaafceJOYdAGFQvYlxBh0Aby4dhikGHQMeeI4mPfodAyQ+GeZKCh0CGxkWclYaHQNAgaswCnodAVLUZlMexh0D7v3KdxrmHQOYhwZS+wYdAhE7vDsDJh0A1x2xeKuaHQKbw/7+UAohAmj45+faRiEA= + KBZXds7jZUAYxSyCnGRqQFAtpBCXEnJAsyNeuPxCdUAXiDhKr0N7QO7F1o2sY3xA0m/CtEOqgEC+jpFWQjqBQNKesN7vMoRAvr1/gO7ChECZylbuWzuHQFKeI7xFy4hALKv6KbNDi0AZysnLsdOLQCza6FNfzI5AGfm39V1cj0D6gsexZeqQQHASrwJlMpFAiaslp5GykkAiKRQRq36TQNOb90S9tpRAsVFyBtdGlUC3scpM8zqWQA== - + - acKdRDDYlESpNl1FmSjHRC/cK0fC2JBFjp2GRtat+kZlSpBE6ukBRcKOOUWS7nVFZWMLRavuMUVUonJFkbSFRdcttUQKLJZEH2y2RD3crkU3NgpH2RusRAzwFEZrfGZFOR7YRFb31kb2evFFO7mYRSSA3URGWa9ELC+RROehd0VIPedF8X1KRTEOz0S32StFqyzKRITbYUfV5ahEZvTURBfRs0YwfqlE5ojeRAq0L0V2WfFEmb2+RCxKz0Zhg8FEq5+qRBhDz0TGqLlEjpWtREgx4kTyxTJHUIKvRAfMG0ZenAdGBW6wRZAmpUQroKVEC7WVRd4HokS0ezBFyv2pRJcWUkVv209FvAPWRNecTEUbiQ9FIVcERcYvm0SyDqhEoG2HRfwHmkQqzcBFkagFRRiOu0RNlV9GLNqwRHZ3/ERsGy1FssokRZScrUTXzn9IbXgCSL5MT0VqPd5EJGUDRyFKrkR+mrhFbftqRZUCP0fPpIlFXSyFRDoRB0Wkkt9FLn6qRDqIlEWlMTpGNeyYRD3plUR5UrJEDXyXRPt8jETuG+lEX3mmRhwpd0XmVitF1xjYRDVhfkTHD6VEURPLRAunAUUwIABF22+hRMGArkVOxPREDETURI0lnkSRZGdG5EUaRtRXzkT6X7VEJOkBReTO0kR5EYpFlMcgRbnAzERoPAJFl1enRH6XEUZ/q/NEz/GNRQy8hUbW1rFEWQjqREve10hu7A1IC2SzRvodGEVSDsxEe42JRVl/5URWSYhE4Im8RySpKUf82ddEhba1RVsWsUVFdMdEYAsJRZIjoEVqv3tEdLa2RFIvYUVWXMtFk78oRlBKsUZF661FoAi6RIC/nkVo3oNE4qcBRU8SM0U3AzVFLFNKRjdmCkYm95BGsmmqRNZ77kSsYElFAasXReYCXkU3C1VFPKskRWCeqkRoeDRF64wUReLGLUUPaQdFZNOvRcZohka+bv5Ef2cVRfGP6kQjkJJEWrlNRZTG00RWbURFkp7mR7chtUZS8hlFUu67Rle0o0XPc11G6nS5RM6Vq0VjDWBFha+bRCMjeEUcZMBEWkyuRJCBjEQX1KJE+z/YRF5DCUWLNtNEQebiRMB3x0RbfWFF1KeQRBFQmUV6xlxFhMEORqBQREZX5qJFa/v9RbhxoUTFrKBE8MOrRTgV5kRcHRJFxTtURd492UTUBbhEY0tLSa2RR0XGN05I+84XRQ8wnEaPHTJFb9PXROaO0USFs39F/nLXRQTiqEU5/qtEGp3kRBy2ikRb1JtGs9cYRc8cn0UupJZEhXqfRIASgEYKXMNFLkALRYWVRkWexuBFtjzTROLCoURXjmJFxzDORDoao0RqMsdHWA3QRtspo0TACS9FHH2qRffcsUSwW11Gs1fCRcUZjkTAhK9Ea3BCRYPhR0UeINxEsQjrRnyjTkYAo35FVLIZRRClc0WlbuVEE38KRfEk6UUSje5EwV5BRlC3P0XXkLxEtydCRQH4k0RWVd1EDyAcRVmIiUTNkH9H25okR5cM/0WzbSpF8keRRIec60agDF1GbWiiRKManEW5uv5ECIyARmd8I0YFR1ZFu7+eRW/BU0X8FLpF932vRDuCEEVv8KBGK8IwRkKFakUOKslFPYGjRzzxUUfPmypGNm3IRexCdEaZ6exFE15zRezKk0RZRtdHNTATRtNdnUVhJS5FkZbzRJGIykaBmNtEmXjiREd+qUY5zq9FIXMeRXvWB0bbmLdEXu9IRXhnzkQrC6tEQwILRe+ZrkU3ZW9FDYEPRRMMkETcf8xERVLCRJ+VHEUngwZHIuO9RuSp5UUT/YFFKl2gROyv2kTVq+lI5Xl8SFnvj0dpu0NGMSb+RPriAkWGzZ5EbkidREg54kV9eR9FgM9KRWtGI0cZpXhGqi4URt6rskSYUoxET15RRYNsjUQUlvFEsvyiRHxEVUX1W5BExO0YRpvbCkUo5O1Ez+GYRCUoK0XorkFFqgOPRnVwNkVz4atFn0K3RcBnV0XJEXtFjPSnROvlU0WdbptEigqoRfzuWUZuI0lF8xDaRMqyokUmJWJFzSoLRWnSC0VeZ+VFWWn2RD3ryEXxaKlEZQnDRgSwG0VcUvREYOUbRinB50TZKclFMuqqRJfvAkVS+M1EwHG2ROKgfEjnteZHkPmIRO9QbUep3YxF5PRORie1FEXZ9RRFU6+ORT76pER/a9lES8jwRJjJqkSDtqBEpOUpRvmvH0XZK05F6szoRA02LEUEws9E63iCRlwzSEVnZ9hEmCosRQ5k6USbJ1dFasq4REVRmkTRRpZFmmWDRRiqpkVOW8NFM+z7RA2O/0SrGflExt0PRf4PCEX2DANF15+wRfc6CUVOddBEoysSRaIVS0VkPh5FD2aiRGTZN0bF6IdFKRwrRcJIpUT6TddEqYa5ROJcykTlYaNEna/QRAVT6EQAFuFEwfa2R0BwIkcMIM9GkFQ9RRSIy0U/NshFJmeRRIlZA0WHcDdFl6XQRCQfmUeipBRHXqQQRh+SAUUPGjxGTKzARTklA0fStadEDodaRor2g0VmDvxE/p23RFN1w0e7jjxHuTrZRgUDH0VCJQ5GkdoaRaG7gUW80PBEdiUXRXZCQkYZz8RFU8wHRVyX20Q1h6FEwzkERt5vLkVzKKpFT3YBRX3DXkcJXgBH6pwoRWW880VFgAFF2PSYReWoo0TCNfBEo9bbRR53L0WSj/pEmee1RfWJNkXofCdFFMeTRWYfrkSSPeJEKPGxRJDIAEW5MQ1HpTBaRiJi/kXDzHhFGUVPRdGD10RSjfBEnMcFRdiVH0WXjMNE0jS1RRNShEU4/r1E9AUBRza/eUZNGK9ELkMKRhxSqEQixERFp+KrRJQqpEYo6NxF21C9RMiL+kQe1gZFPOWIRJ+b8UTZ1uxE8xYGSUD2zEjbkF9IegiJR9G0c0ZV8ndFBSsRRqJfnEWJiVZFXeyaRJ+RoER4pxpGIwbKRW4QMUXhaatET+kZRq1af0XO3xxFu93aREMImESbT61E8ZUCRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 5PZKdm/BckC8nx/kpsJyQLatr1I6w3JAUH+gSwDIckBaNuxxQ9JyQFwoGo9Q4nJATLHdOJDickB2cX7/yfFyQPacKBp88nJA3zwZYhHzckCy3sJF0AJzQCRAMpn6A3NAIME8LrwSc0B+USEo+BNzQJrysQ0GFHNA41bEFDkhc0CQY7HD5SFzQFTxN6TIInNAhB+0QM8kc0DeFoC7d0FzQL3Q7Pp5RHNAqq9/H6RTc0BU52fzK21zQFljwxWGcnNAXzvOU9J3c0B4cVNp4ndzQGTWCfR4gHNAFj83A02Sc0B6WJ269pRzQCG4mEO4oHNA5Oqu9Fmic0DEE+Ire6NzQIKJOy0EpXNAxN8AX7azc0Ct+TUEDLRzQC4+qpvQwnNAEDq+rdfRc0DoAiKU49RzQHumDzQ54XNAa7rLW8z3c0BJANRLeQF0QFD16nlME3RAFsC9BYEbdEDsixejuiF0QM3y3RTcV3RAuCIsCzVddEAYEmUstmB0QJYceWuOYnRADIo4IepndEBcd6CHIXB0QGRKsxZBcXRAvgxHQDpzdEBzPD2tQ4B0QHg1Qmn4gHRAvCViYk2BdEBi1FCrJ4N0QCbtMvsWkHRAfjluYO+fdEACWS6t/7F0QI9LwCJvsnRArluvgcm3dEC4HnUvE9N0QFS2trm34XRASqzRjozzdEAGj8csXQJ1QAAk9GH1AnVA98B2CZ0idUAmjna/d1V1QCYLmF55cnVAQrokCo10dUAmZUJneIF1QLcvC1atgXVAfn2jU6WDdUCEIgHoC5N1QC7//9Wyk3VAwRNWgRKbdUBjN+m2GKN1QAH7eEVGzXVAvgT9MEztdUBVkXhDpvJ1QNJtQKY383VAIr+KHe/3dUDi3DKrAfh1QPQwzPRI/XVAbRTJr0cCdkAww2TWCxZ2QC7p29CHInZAjkmP2o8kdkDRkZ83Syt2QHCfSywfMXZA6fytCFIzdkCkrrlfHEF2QPpz5r/IQnZA/jNDsHlEdkCm0cEgzVR2QOALOqRRY3ZAaQO2jr1jdkCg6Dy52WR2QDqCXtzLc3ZATISAGJGDdkAyHt1terN2QFmNjcrPs3ZArw0Klg20dkAXe24tzc52QMwqOlqR83ZAQgM6/TMCd0DWf78B6QJ3QLcauVpRDXdAzpIyAgESd0CmyuD+jhJ3QKsSIqOoEndAWN56hukXd0A4CJ4bDSJ3QFxgG2Y/NHdArLOQPw01d0Bz2DC4Jj53QLRF4QKdQXdAXjVgLBtFd0B+OlvAS1F3QKTPNGiSUXdATk+5R9Vad0AAHjUykGF3QNRGcY7RY3dAhYTe9ydvd0CczeauV7J3QCotG0tZtndAjy/sFz/ud0DTL2BVPPJ3QNwDqWo+9ndAnhTOZX34d0CgjDlyO/p3QGJOzIy/I3hAlowaXhFEeEBKFmQVekV4QLxHj87KUXhA4q0oqZRSeEDEzRWHh1V4QBcCCB3wV3hAhzp0n/dgeEDYEjgtuGF4QKJtBZ6LdHhA1OLfWKeBeECktyqjmYR4QOrLFcSnlHhAzOWBpfPBeEDgt2gBt9R4QLorymUC9HhAIrUQroz1eEAisghTewN5QNItzL7lOHlAEhUl0PtDeUDTfT7fCVR5QGBnZWzMVHlASxM4qnGNeUCO8AelypJ5QEJ5IWjAsnlAI9545UHUeUB14Ph2piN6QLwnNpEMNXpAPGT9DxpFekBH87xFDbZ6QKLaeqMMyHpAtFb3l2bNekCz/Z+5Q856QIw19O9l4XpATno+0jXuekDu/AZaYPF6QDtDk+1J83pAMrOxRaP4ekB68SHQ/v16QFd70scbBHtAsQcFSikOe0AW/btZxBJ7QNRQlrNMFXtA/o21pB4Ye0B17pqQIpV7QI7Bz47OnXtARkreHCije0AtevIHbKh7QL4wm5mFqHtAFiT39tyte0CSA++YIdx7QBJN6moo5HtA/qD2Oy/se0CuKb2hl/F7QDa9G/KL9XtAK7K/g9kBfECclGuqmAV8QLxfxevTEXxA9K6I2+gbfEBz5ZLI8iN8QJ7kE1blLXxAOFcoUD8zfEAONx3fljh8QGpdGbfNQXxAFgGrUlJIfEBaLLH4qk18QM32DlMBU3xAN1zZwE5YfEDIg5Hrol18QIQp7IBYmXxAmfVCvrOefED8P4AhDaR8QALdZp9X4nxAVH2nVxDjfEA0aRS5auh8QIzFTqwX8nxATE0ihlTyfEDguHemAQJ9QLoBzSJLAn1A0FLQplAEfUC9yZgzRRJ9QOtk0SuvG31AELFzFbgjfUCBHFvIeyh9QMhc+CDqgX1A0lIpApaNfUBujK0R7pJ9QNZw+FSi631AlJkGgu8dfkBdcD6uSCN+QAEVB6uoKH5Abvz+2uktfkAGF35Gt3t+QDyNOxm9g35Ao8LiBpWKfkAkjh4sw4t+QCz4hz3Jk35A1Rv9Us6bfkCGtfTgEaJ+QOBZK8Ym4H5A7JbLx+cRf0BO5Bl47hl/QOe2pXrbIX9A0BNU7pUof0Dw5twG4yl/QLrzSZd0SH9ATP/bQ7dxf0CI2CkyYpF/QIZOse0Qk39A9lmla2uYf0C5DFJLgrJ/QHAvLc8ps39AnJ0Prt/if0Dy2DkIPeh/QCw9EyiZ7X9Ailiuluryf0D0XlGo5ACAQD4m/zUtIoBAMvuvj/BIgECZgftM51CAQNYLNewTUYBAtLnCoQ5ZgECCyu1YSFqAQBLTQEQ3XoBAFBmvSEhegECl1qEaxWaAQMIHxidyaYBAOBqzXPBtgECGxXQQKG+AQMeOoIHzcYBATLw2jB2PgEC4yuvWEq+AQFKS1BkgsYBARp2HRFLBgEB4J5ASU8mAQJrMZilM0YBAKBVfOWDRgEC48lChSdmAQHw1lYxx2YBAONfD1UPhgECGQHWPP/+AQGyTNBdAB4FAgL5N2GcJgUCZM6wPPA+BQEY6mFk0H4FA/xYAZTQngUCWNxfq5GmBQDw+Q4jobYFATGTys1SPgUCBC0TAHpKBQPpzyCvnoYFA6CXeiGyogUB/G1MpSq+BQDhE5QSuyYFA/nHaDIblgUAYU3kZiemBQDuGHfzXGIJAQkJYo9YggkAgi5yp0CiCQFe7x7gkRIJAGrQvLEOJgkCoUulrQ5GCQKLl7eI7mYJAikOTAE+ZgkC8ru+Md56CQDJkDrIOoYJAY7X+kzqhgkAzjYcjEKmCQFBotH4yqYJAU4sa0vq5gkCNHsmv/b2CQD1OKicDwoJA9PD4AvrFgkACQ9utzM2CQMF79R3P0YJAsAevSv/1gkBUpd//AvqCQCwPJGV5EYNAWHxB3HkZg0AUauuKciGDQG/02A8OJoNA7mSvCHEpg0BEyOLhDyqDQGi19/ZpMYNAkBSk5NtBg0B/xeC+v8GDQIhsEhPCxYNAdLt96UoOhECE29uYAhKEQKq/P69OEoRABJ4gDAYWhEBRtZ++SxaEQMxwLHYCLoRAXNb1NAUyhECYRBeJ/DWEQBjafKf+OYRA6eH26P5ohEA4q8t8/3CEQGanRJBxooRAsJpswR2lhEDzBVO5yaeEQMO7xF1UsoRAMxQGX7K1hEA0zFgSV7aEQLSMSYcYzYRAH0P1YGrZhECUG3CHauGEQMIgXeNi6YRACjGNDTbxhEDx0PVsYvGEQOqVcqgvAYVA6uAv/TYyhUC639A2OjaFQG4AQj49OoVAE4KXYKBhhUB9upf/n2mFQGbAELeZcYVA9VPFy5h5hUDq+KWF/IqFQOQ3/pcDk4VAHJvLHnOWhkC85d7lBhKHQHsT22c/EodADEuk6HwSh0BshSfj6BKHQEKmvMt+FodAsZCG534ah0DyUGcPrhqHQDQeyvN/HodAAow49IEih0CKKxh+gSaHQBjoTfCPKYdAN06yAocqh0AW3PMbkDGHQKCWPkGIOYdAqg+MC49+h0DeQw1ckoKHQGLaCvmShodA6r5udsaxh0C63ru6xrmHQMYIb9l5vodAeYTelMHBh0AV2RH4IuaHQBDkS1Ik6odAj6tFZPaRiEBN6/5P+5WIQA== + KBZXds7jZUCYE/Y0vCFwQNvlv3T/InRAIJrngq2yeECiQFSuF1R9QCD4w9YFxH9AtE3085dCg0AQK1AVr2qDQEgumC/vSodApAv0UAZzh0BIXYZZm9OKQAg5vm2SC4xASIx0g0dcjkA2M0RFD1KQQManNhVgUpFA6EmpU1WekkAQmAizi1aTQA== - + - hjKYRfutOkcaGZdFI2lURuadC0cPKVVFev4aRdPfJkVWLlZF7xISRqAptkXF/BNHkkkDRigmW0UVmHVF2UGlRsMFYEWeTQtFrp6LRW7sr0WjTNBF4FOJRQy4dEey1KlG6fgTRV81PkWM3eBGrSIqR+qIVkYN4RxGOmCeRdAEjkUUxjFFtsoIRdTiCEVuUppFuEzdRObXTkVfI+ZFRmsrRbrWjkYdqkJFoiPrRN35GkXMfJZIyJQkSCC4g0W2wxpHOftxRUlNjkXWfCRHHnOORS3mD0UHOy5Fg3aNRZdfIUUx+a5FKLjlRSKm60QF04hGOfzURQSEEUX/tUFF9FHCReALZ0bU6bhFugTARRp790QDWR5FIhzZRfSjDkUveK1FzoNeRt1/hUhAMwpFIqSzR5DVP0Z95D5FXqavR7r7I0c8thFFyijjRSIs8UX71XBFRnGkRUb9BUUT4M5FJmXWRf6nXUYR8bZG5CeVRa1afEURJSpFVGliRQwfDkY//gNGKiEMR/YqGUUWZW1FhU19RQ6lIEWyjWlFsy1URdaJP0VJORJFqAUCRZPPIEUIPbVF3YB8RrRjIkXrPPhERYnmRKsqREUkv1dFJQreR/GVCEXeGbhG/yq3Rm76kEUwu4BG4JrqReESEUUoqgJFPy1cRZSwKUVGr9FFDyarRd+EIEaOTFRFp3n7RAjzDkU8XiVFZ1ZqRrwlLEYI859FfgMFRgfSE0VJqXxFh4wYRTzzZUWOTDdJrncZRZ4BOkjsyoFGScbkRMnQSEXyx4BF4BFARWjO3UUOugJFmUuKRnbvJUUb+j5F7lMmRvkNFkZggUlFfVGbReSIwEV526JHiNeYRo3aokVk+DJGKG26Rcoh8kQweC9F/C6SRVlc6kSQZ7ZG5pQ3Rl4lqUUOagJFT7JCRWmt80X3ziJGUK6LRfwoJEV8fWRHO8wmR+8vbkVBkP5F9yEIRVVC70ZsJlRGX4ooRSxdgkVug1dGEjL/RRtXekUpQC5Fyt+NRX9tCUWEpXZG7/AcRjn2FkXOJqZF0FfwRw8qr0eSOPhGqC1RRiAD/UR600lGD9DRRYWZMUXaqdJHSokTRiVDmkXVDQxFenW/Rtb9aUUlbqRGAQanRX2hKkVe4N9FRdcvRXopBUUGpQ5F24urRQg9kkW3HzRFnD/yRr8Ik0YTeytFBNU0Raz4vUj83UlIG+MPRRUvT0fwOe9FPOQ4RdTA60Th2pFFjGTaRrdD0UULoMZF9GEHRV2mQEVm2xlF0/aBRZNHHkbAFRtGm0PaRXRbFUbR8J1FN71bRrHxf0YYO+tFkMKERQ7fJkXpqSRFI0gJRfKVSkWAUGJGVplhRRjoFkWKY0FFMT3ZRBayvEUsIptFzN2LRkQPGEVyfQxGGrLJRQfYK0VVlxJFB2tnSIH00kdPBGVH9AKHRTTmOkbXcgNFgu58Rb5RRkYYwlBFMQMJRWPuEUXBpVtGKuAgRRhxWUbEXZpFjR2dRR+khkVEtC5FLEkPRUI5pUV0pjJFbJLwRXUIdEVS2CxGcdmERaSMB0WOje5EvDC0RypvGUc/F65G29wNReEaqEXBCrtF8xDCRbbn60RRETtFelORR/lP4UYc2dtFtwxxRVeBI0ZaMKpFmXydRiH9IUbQ2dFHzgYvR/1h3kYmrDZFETa8RTcxVkXtaBxFzCceRax0CkZE4ptFu8yYRT74FUUW73BFwgPqRHr37ERf4iFHzSDBRukJrkXoRnFFzYenRcwNOUXnQq9F+hyGRU4N70TPqYRFpTMrRROIRUUp8ylF5FXwRudRWkb8LP9FCNJPRXT/hEXylPxEP9ryRUmg5EVJb0pFfC30RsO2VEa4yO1FveFMRWtlNUaUMz9F39MQRctjIEV4ytpFB7vESf+QGUXm55NJLwElSYT7h0XkDolIfv50R8aYLkY4SNVFXZUURSMiiUU9iklF5M6CRQ8sG0XOkQlF+6v1RbdYkEVx5wFFx5A8RXsegUVykXVFsHgORd/JB0U= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 3FhrfW/BckAUhqYzp8JyQBz0tZw7w3JAYRnOcwHIckC6dE6HWc1yQJiqxXZD0nJA4ipO+1DickAmNbcNj+JyQCj4jVjK8XJA+pVRO33yckB44Xk4EfNyQGHmEt3PAnNA/Hpj8PoDc0Ce4AtTvBJzQAwEB80HFHNAzh0H1Tghc0Cx+pcK5iFzQOj22QHKInNAvnOqUM8kc0CM+F2HeEFzQBxG7bp5RHNACHOLwqNTc0Bee6mtK21zQBpDUVNncnNAyCXD7oRyc0BFTvo3z3dzQDRN3YHed3NArPZ6JXmAc0CHYXEAhpBzQFr/UBJNknNA7J9DV/eUc0BA2AQmuaBzQHOc4uRZonNAngqOisSic0Cgjt2Pe6NzQEK5NNe1s3NAtC7I5M/Cc0CMzS0S19FzQEndPF7i1HNAvnKRvzjhc0Do33H3eAF0QAKP5cGkAXRArtja6UwTdEARBMvpuCF0QKrOeMbbV3RAFgxyEjVddECWNfkHt2B0QEpVZsaOYnRAfCsfNudndEDMGxjaIXB0QBShbcRAcXRA3XiTxzlzdEDe1vtwRIB0QOwlF/9NgXRANnu/LCaDdECeV2hiFpB0QOXq4/Pun3RAsKwY7G6ydEAlWt4Dyrd0QAIcC10S03RAaIHYnbfhdEBBZJjFjPN0QByMXiFdAnVAysx9g50idUAywnX35SJ1QE5B9/yMdHVAZLO5CXmBdUAWe9xurYF1QARtMemlg3VAWKSXtQuTdUA8IaqqEpt1QMA1dZAYo3VA0K7V90bNdUBDQ50ZTO11QDbgsbOl8nVAGGwKnu73dUD5je2Y//d1QOrs/oRIAnZAnP9XH4gidkAHhyV1kCR2QBE5yoFKK3ZAgCIRUh8xdkAkw/5pUjN2QJQmVYceQXZAWsWkGHlEdkAYqRQVEFF2QK7Xl3bNVHZA+GxxwFFjdkDE8HaevWN2QBF2jBjLc3ZAMHyXvJGDdkDxINneeLN2QIjW/cLNs3ZANP05Mg20dkBq8YE9UA13QGvOQ10AEndASDe0WKgSd0CAbia9DyJ3QCRMOyilM3dAKbiZjD80d0AREssMDTV3QMTHgcglPndAEiN1+5xBd0C7o1nNGkV3QNeEseJKUXdAReSZLZJRd0B1cv8X1Vp3QEaVD0cnb3dAKF+Yt2tyd0Ciu5z7bXZ3QFreNPhVsndAAA8x01m2d0CSjbsRXbp3QEzIMjU+7ndAHN7XpTryd0A+wlWkOvZ3QLc2VO47+ndADk3Lkm0ieEB8pwiPwCN4QIJaf0MRRHhAGisX9HlFeECUUY3Cy1F4QJN+Jz2TUnhANJv7qIdVeEAqFDMm7ld4QNIZlVO2YXhAyeADfYt0eEB2jbk/pYF4QKDSnsGZhHhAsGKsz5aReEAjJ97gp5R4QOvrkukB9HhA6C4Vi4v1eED1gzAAfAN5QAAUl9b7Q3lAqnqO6ghUeUB8CMBWcY15QOwHQf7KknlA3B5zwcCyeUBIqF8VQ9R5QKK6mxOnI3pAzTtmvAw1ekBMZQ1FGkV6QJXl0yZVXnpAXanAGA22ekCM0A5ADsh6QBgjpAZnzXpAbKsuIknzekBeW/lqo/h6QLi3RCQA/npABPCb/sMSe0Da5gDPTBV7QN51AoLOnXtAmDWaaSeje0DSRq5whah7QJW7Xa4h3HtA5Rq/Uynke0DEH2p7jPV7QARKCqvZAXxAYjhOlJkFfEAOWnZv0BF8QJB60EHoG3xA7D6V/+4jfEDJ1Dpa5i18QDZLL8M+M3xAJx/8vZs4fECuWPVxzUF8QH8/66ZSSHxAjFJeEKtNfEAOIUR7/1J8QPcy7FJNWHxA7nZNz6pdfEChbjnUWJl8QAanrn6znnxAKDXpu1fifEDWINVxEeN8QASEHvxp6HxAwFD42VPyfEBr29hjAQJ9QJahIjlLAn1A+jeq4FIEfUBSyPSPrht9QLIAULSXjX1AN9wK06DrfUAjsvV47x1+QCFXNoBII35A89OTV5MofkDnSOayoyh+QMLSrqvrLX5AVXpHsLd7fkCid02JvYN+QHSWn0jEi35A+tSMx8uTfkB6VzKn5xF/QFImmwPvGX9A32TNgt0hf0CeKSLIc0h/QCyw4q7QTX9ArjRQ8mKRf0B0CvZ6EJN/QF/q79hrmH9ACv+u/4Gyf0DN+dj1KbN/QFg9QfSBuH9AjMOZmuDif0DtIK+DPeh/QAZzOHGd7X9A+hjiTe3yf0BpV4DTRvh/QJTUNRUYKoBAyDBMDudQgEDuRTFeE1GAQFSeascOWYBAbjunyUlagEBBgVksOF6AQCIl6afEZoBAjqwNOXNpgEDvSs4u8W2AQGTZoNDzcYBAIsH+gB2PgECe/V2CUsGAQPiFrV1TyYBAGCCdR0zRgEBOz+XYSdmAQDqplPlz2YBALQiBZ0ThgEAYvCbpP/+AQD9ebDhAB4FA9m3+3zwPgUD8TB55NB+BQMyCSV8zJ4FAxaFQqyFCgUCOo1CB5GmBQANLDFbobYFA+iQ5/VWPgUBQ0Qsg1qaBQKbdy1dKr4FA3kzQkYflgUB0IPECiumBQPqcVvyN7YFANtvr3NgYgkAWReYg1iCCQOA25l/zYYJA66c0TUOJgkDu5m0bQ5GCQEAV0fw7mYJAgmSR9XaegkBqpmAOD6GCQIWVZ1c5oYJAyDvEqAypgkBJvmP3+rmCQH2wwSz+vYJA+pVU9f/BgkByxou8zM2CQIq6nEDR0YJAzZokD//1gkC4t0pGAvqCQEYlH5h5EYNABefXp3kZg0C6VLDKciGDQAL1w1sNJoNAutDmRXEpg0B6qJltajGDQA7Zl4fcQYNA0rTNyL7Bg0BsviixwcWDQD9Kds3y6YNAlfvjbEsOhEBY3N/hAxKEQPBoQ2hNEoRAZh56fAIuhEBNsn7ZBDKEQJYzaRL8NYRA2cr3SQk2hEDhLQg9/2iEQATjqQJyooRA1FgCjh2lhEAtez/tVLKEQH21ksaytYRAiwYbeGrZhEDS0ezJauGEQBIjcDdj6YRA3ARHJTbxhEDT3zy6YPGEQMsB9SU4MoVAXGIUsTs2hUBnHGaYoGGFQHg//rOfaYVAWmWOC5lxhUAlkbvjmHmFQLqGcyn9ioVATHTFfi4Sh0BIBb9WThKHQDzmidR8EodAnCBKWbsSh0CaJwyKKhaHQKS8fItPFodAx/2bpH4Wh0DV9DixfhqHQL5ci+6mGodAKN7fqn8eh0Cc7knxgSKHQBZwmk2DJodAfOpgdJAph0CkmaCZfiqHQLSJGgmQMYdAsA/6uok5h0AcwZk3jn6HQGB54nPGsYdAJltKxsW5h0C7jnSrIuaHQPASezon6odAkt44kfiRiEA= + NrgMGZxjYkDEZV5bjlJwQEMdzoN8QnFAGrpiYCbDdEDXLGDpf3N7QAh4Yr2U83tAYvUvI/dRgUDOQ3oRTBKDQI0fsiVDioNAYiQeTaMah0DwTHxCzyKIQA== - + - s5SoRW7iJEd477tFTs1YRhUAVkWF3xVH5UiNRRQMgUWFqG9F+PyJRV12Tkas0fhFE3kmRyKxtUZhd6FFiP3WRt3XL0VRW0lFkQ3QRbaGwkWsXiRG2PqSRY2KcUfcSipF/P/vRiP/NEWMZoVF9+QCRz4EM0WdgWRHPz1zRlLKKEb3TBBGJnIqRenGtEWOTytFj5zoRcycbkXHkalFwMsHRsbBm0YKsUJFkQmHRZNpJ0XYM8FIBRdaSK3KXkURaFFHCUwPRujlukVL5FBHkrOcRRStT0V8TehF/14jRZ1qyUXwdBBGykaARvpYu0VbWDJFAmhORRZ8lUVkz2JGth2sRTHOZUXax+dFDDwkRZgqykWCxYJGhNw1SPEuYkfJvytGSBy3RQp4dUcO5/NG6BGVRdDm2EXcrZxFJi6YRZNdPUbvuT1GieuhRuA6xUWI+mZFH4OTRdYkOkUvtxRGyCYRRiDyCkczUJBFTa5cRauva0Ug1n5FI9+iRbdBYUVyXp9GoFuGRUvSUUWXyEdF21i9RdB6/0dRcUJFzjm5Rmwgy0bXF5dF/yhXRhwKBkZo1XRFA+aNRecuXUWtIhFGKLAVRgPTYUXl9xVGzpmHRi4wCkaKqUxF6qerReY4R0VoWYRGJsJTRk+7pEU8MCtGriI2RRkSkEXkgVZFB+xNST3BLkUVcVRIekJHRQ//rEbAqIlFZAavRXjh7UWhN1lGDdE5RQJ+Zka+iOBFTgCBRWPf3EX4zq1FNESuR9EGrUYouCVF2uXGRYGkMkbPQu5F+qavRi/wVEZOHq5F/PASRocRTkaDnlFHCKUGR2QsD0YWJOtG0+0rRgXdikadyjhGhQmtRebzhkU+Oq9FBG00RUpwLUbULNRFhQpMRWgQ70Xb2BRIfNLWR+g9Bkd37yxG2T6oRZWHXkYjUNVFw8DhRxYoBkaVh8xFd6+/RnWPakUkKqBGpit+RfsZ6kU8D19F2DdSRdkItkZ5T4lGVSY0RVj+OEUgRHxFJQqaSFfFJki0jSxHh1TbRS2JWEYIMr1FmKVdRdJ5iUVBsllFkvccRh8RSEaWcqhFCmFoRRQlbUWR+ndFAWzjRvBy3kZVjyJGIYedRZO6KkXjDW5FjilRRdmuQkafRJtFthIxRaF5hEUgadhFXWg6RfXsC0YfXN9Fo63jRZqTj0gy4P9HlOeXR7ArVUZMIF5F5mSERd7vNUZWk5pFkT8yRQ8HcEYw6F5F7huURRPXVkYIepBF8nv0RTgDQUXJv7BFaklVRhqIoEVFUkdFXUg1Rjosc0Wk0lFFqPnJR1YuHkfWuLZGX4KRRZVLBUYZ78lF1IVZRS/hNUcg6bVG9u9mRSec5UWzS51Fme2ERvC66EUCi/pHbQBQR0t5/UZFaD1FcfEiRk0iYkWHMlFFUQThRZvkQkXaBlBFswysRXeYKkUyWmpF9uvCRv2sIkZCUVpFr/NARX3/1EUlA5lFfqpCRaJdsEVh1lVF79/+Rhdgf0bsRjRGJDhcRaOKX0XPqWJGeT35ReljE0dcmYFGxogcRrVNUUV17tpFxGaERbiNWkaJLA1KUPQaRsXuOEUCXSpGDwTPSQjAZUkc8c9FeFa0SPCDoUdslqRGOKAKRgzDVkVEw7BFcJdvRRz5cEWmzgxGN71nRYNLf0VVmZFFeKNYRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - JyRq7W7BckB/qy60p8JyQJz9Nrs8w3JAQDuSiKjDckAwmHTeAchyQPL6iqlZzXJA7G2CvUPSckDI3z9sUeJyQCCyaW6Q4nJAIAdFo8nxckBTwlOKffJyQAC3BXAR83JAjLlLzs8Cc0Anb6u8+gNzQMZ9xHG8EnNA7VqPC/kTc0AOfze+OCFzQD4pnCTlIXNAOyjSOs4kc0DEh1zGSjFzQJokjVV4QXNAanAOlHpEc0DSjYx5o1NzQJaVMdD8YnNA5NfBcjljc0DCAo+tK21zQIbDv9dQcnNAhGf6wYVyc0Ao+9AnzndzQKx+Rargd3NABg5ZZSt9c0CErDumeIBzQAxdyl6mgnNA6vbj2v6Cc0Du5ZQnWYhzQMoW8L6HkHNA2eBxJU2Sc0Da58Z295RzQH7zVBe4oHNA1HmKM1qic0AUEIIjfKNzQLQgewkFpXNA9Cv7dLezc0A/gedxDbRzQJ/3kw/PwnNAidoVzibDc0BzLryM2NFzQNtTBeHi1HNA7A6rmzjhc0A2ZF0YOfRzQH4t7mZ5AXRABjos+EwTdEAuY6xVuCF0QNjJZAPcV3RA/nOnFjVddEDWuhh+t2B0QGCbY2UIYnRA8Ln/k45idEBMiP+z52d0QKA0I9shcHRACqRWR0FxdECuXFHvN3N0QLxHtENEgHRAbzq8eveAdEBGEsCRToF0QAZuTIclg3RAJpRGJxaQdEDJsPD77p90QKFuvUQQo3RAFmvyM2+ydEA1W7LRyLd0QAfCuMnM1HRAnMbi4rrhdEBeHvzIjPN0QHDn679dAnVAIBjDlJ0idUD8Ip1/5SJ1QHzzMrfMNXVA9sUgundVdUCcRU4QjXR1QEZmD5t4gXVAXEiDzK2BdUCa3DZDpoN1QOmMSMMLk3VA1jAzeLKTdUAsYasIE5t1QFZGrOm5oXVAIYAmpxmjdUCsxnGc+MF1QPDRL9pHzXVA12qecEztdUBcORJ0pfJ1QKTycYHu93VAuXSYIgP4dUBSHsLcSAJ2QM50Y4iIInZAEVJOBJAkdkB+huhRSyt2QJK4xSofMXZA6I5LtVIzdkBUbz2zHEF2QEYgwrzGQnZAMkKqeHlEdkCkDmoBE1F2QD9uZI/NVHZAet+jIFFjdkAEXxRzvmN2QJifcarLc3ZAWV2Wi5GDdkCLv1d3ebN2QBr3Kt4NtHZApr8SCc/OdkAf4luekvN2QGb+cXlQDXdAAm3WFgESd0C+m3UhkhJ3QJ5zv+SqEndA4oUJpw8id0AE4sYZpjN3QKxU9LY/NHdAYOvtQg01d0DCkUVhJz53QGRaCySdQXdA7ebjExtFd0AmlQkuSlF3QE6VjxGSUXdAFol+dNRad0BWCfoA3WJ3QOhPTxTRY3dArNN4wCZvd0Bus25danJ3QO7a5qxVsndA0jytUFq2d0COi5GTPO53QFaRo3g78ndARSRCuDz2d0DypmuCPPp3QCTLH/RuInhAB0MOQhJEeEBwjZp7ekV4QKEO8AzLUXhAYAGrqpRSeEDAuHSFHlR4QD0mBhKIVXhAfEVpLu9XeEDEbMe2+GB4QIu3jnW2YXhAWNKWtot0eED4r30CsHR4QE6VvKmmgXhAIKoU5ZmEeED+UUmnlpF4QO7TY/+nlHhA8FTpN87AeEBTUoPw4cF4QMtesdUC9HhAsgKfwIz1eEDaU+0nfAN5QMn+xzb8Q3lAXKeibQpUeUCA9wAYzVR5QESgzFxxjXlAgtTHBsuSeUDPhie9v7J5QADj0mRC1HlAoOrdtE/keUAqftnfpyN6QFKy8WU7JHpAmqapzww1ekAkZJdEGkV6QIDm8vtUXnpAZ95DorJjekD26ZlyDbZ6QIBCu5sNyHpAQYiWxmfNekD81EUxSvN6QIH9Qqmk+HpAcg/F9AD+ekAhgbV7fAR7QIxWt/rDEntA9D1fS00Ve0AI7dKfIBh7QEI08+pPI3tA7grUU1sle0AoN1UIz517QKDh5Scoo3tAsd5JKYWoe0DZjDYR3617QLCCu+sh3HtAgL1t2Cnke0D0LGdDjPV7QABdK5LaAXxAHRNnq5oFfEDqZWAe0hF8QEzc8a7oG3xA0iHUOuUtfED0e2QFQDN8QIZG25jNQXxAbGkYsVJIfECQaECNq018QF01da79UnxAnPguwU5YfEBqUXQ9qV18QCiQp/hXmXxALLnfbbKefEButCc6DaR8QBr4D9FX4nxAzKB85xDjfECcCfuyauh8QKcoaXRU8nxAWNPBlwICfUCFwq4YSwJ9QCPU3RhSBH1AMoJcyEQSfUDuhNmLrht9QHIf8xKWjX1Amhc/1/CSfUDGjaNm7x1+QPxczRJJI35A9GdutqAofkCa3iqOt3t+QGnjvBK9g35AAO7JQcOLfkC2AqvcypN+QMDVDaQm4H5AmpgokpQDf0DYXefk5xF/QF0tZa3vGX9As6fCBN0hf0CMydtAt3F/QH40xZHld39Avgz0b+d7f0B8uPHyYpF/QON0V8EQk39AzUc2xmmYf0Bqcr5+X6F/QIfuojAps39AMApAm4K4f0CEJhfS4eJ/QGnKTQs+6H9AojD/oZvtf0DYQ1Kh7vJ/QA3sZ5MXKoBACQWLgBsugEBK0d0u5lCAQBbepu0TUYBAQTvf/g5ZgEBs8RzPNl6AQMKzebXFZoBAuiFT6nJpgEBuQj2N8G2AQKhY6Vr0cYBAEr2ssR2PgEClyNR1UsGAQKIZy2pTyYBAWxRRbUzRgEBiGWidStmAQJbMJqpE4YBAg3PBgT//gEBg0W8LQQeBQBuxtlQ9D4FA3E7TVTQfgUBj0fDBNieBQEpkf869MYFABL7dWiFCgUDQ/pnr5GmBQLq3kn5Vj4FAHhmZydWmgUCI/RrqSa+BQDy0BK6tyYFAJvelnYblgUB/47NyiemBQBwE7MPH6YFAar4FptgYgkAntn9e1iCCQFmcR2rPKIJAVm3vf0OJgkBU+x6cQ5GCQCk5ORM8mYJAHACM9w6hgkD4jTZvOqGCQKQeF2MzqYJAnqOSZPq5gkCqc3rr/b2CQJjoQYgCwoJAYFYgPszNgkC0g22f0NGCQOTQQZX/9YJA8QQ4AAL6gkDK3lS5eRGDQNBikzt6GYNAdxEH8XIhg0B2jU89cimDQCrRe1rbQYNANl8rMr/Bg0CI+9HA8umDQA5pK+UCEoRA/AtdLE8ShEDH6KufAi6EQHKA3kIGMoRAlKyr4f5ohEA8hnTpb6KEQA4RoMAfpYRAhMphSFSyhEDTOqC+VraEQKot0XRq2YRAfVKcpmnhhEBwVz/TYumEQAmCYrQ18YRAENSfQmPxhEAJwMNnN/mEQN5ityk4MoVABonKaDs2hUC8gli2oGGFQPPsIoGhaYVA4sjhz5hxhUDYYEi9l3mFQB4frKD8ioVAmtaUCH0Sh0CuflAsWhaHQMfY19V+FodAYC217n4ah0AkW9NHgB6HQK6EJQSCIodAzlo0lIMmh0AtdepIkCmHQHw2TF+KKodAWKOeh48xh0AWpfAkijmHQIZ6EIiPfodAu51okpGCh0D4zh0Vx7GHQG4B+cnHuYdAPurSKb7Bh0AwJAK7IeaHQORB23dxBohA2lpa83EKiEAfALx49pGIQERgifP5lYhA + KBZXds7jZUD0hHOUyKJqQAgahmk8YnNAqZq9oOoidUBw9VHaAlR7QHy/RlksY3tAjUYOxVrkfkC+jpFWQjqBQNoDK56EeoNAtW0RhXnShEA+MfW6EJOGQGs3mmByu4lAf3XaN/vqiUCse3/dXBONQGIWGo+pU41AFSFgzwoukEAz569q6omQQLeC3CJHUpJA5GiX3xOWkkDLAqCKUO6TQGSAjvRpWpRA4Rfhi3YKlUDkl4UJwB6WQJMuRpq8VpdAyRvq4gCrmEB4sqpz/eKZQHsyT/FG95pA+MmhiFOnm0CQR5DybBOcQHjhmJ2pa51ApMdTWnavnUApY4AS03efQEYp0K2y059AlZ/RWvSroEBDRjiHB7ygQM6HofAfhqFAU5dxJgKSoUDe2NqPGlyiQMHJU11AzKJAN2QNlz0io0B/wfMoTrKjQFxc9mVTJKRAP01vM3mUpECA5k1jXpakQNlxgGqBXKVA7WFnMZeUpUDf7FA1slamQMyzMtehoqZA0Xc6Oc0Yp0A= - + - u1zCRWFrQUdxPZtFirOsRc2JcEbBNC1FEKclR1qYf0XBOTVFFQ8zRaZLpEV40fFFMO0NRuQZFUcNQFJGpYiiRa6a40aWwiRFdKi2RbDrAkV9GrdFFPFARtl/WEWg1yFFeC4NRXzYe0dzTSlFdHPLRgz0JUUMYZFF1cUeRT1090bNDoVFOG40RR4BCkUkqG1F3YdfRyUgU0aH3SVGZ5ryReF85UWvrTBFahwrRU0xgUXxF+ZF7J9WRfG7GUWzbKdFyigARmZlKEWw/plGHtwcRSstb0UhHqNIdZYxSAZgmUXz6CFFcdozRw8E5EXuQcBF4DhCR21XQUWKqqpF21xiRdB1y0XwWxtFMkWnRYyd3EVnoRxF0OFcRiqSoUUOnQ1FlKBFRTllmkUBdGRGQvkARirkUEVyhTRFuf8oRYsSEUYT4zNFpVi6RR6BgUY0cQpI0nU8ReNePEesghhF68PDRWHsOEWmaTtFE2lIR7Ulpka6VJ1FlQpERb1tv0Wa6shFJDoMRh/uVUb2weZGAUnkRVgVmkV0Jh1FaEKURR+6PkV3AjhGdIkKRpYCqEb1AndFW0d5RbIJd0UKW2BFDVhyRdLPEEXvNrVFViOVRnfJRkXV+UVFuMJqRYKInUXD+opFBibxR+JfDkVgCslGi6XFRq1xlUUnAjVGJXLORX/CGEUTcx1FrG4dRaBpWUWHmRFGWvDDRU5rR0YvX4BGm040RgIgW0UYQHlFwjTRRo+PckYL/6hFsqYIRgCNTkWxLyFFD4SQRdqqMEX0KlFFzWVLSQuAokUldWtFxQtPSG7ifkU3rKlGrwg2RX1hCUVJoq1FwCiJRa2G3kWfwHVGy707RZCMgEVnn4pGuPEDRv/GQ0VOVu1FulU3RRZQaUXugTNFweSpR5z0sEbh9thFcZI9RQIEtkXLzTFGgxKYRXOS4UbL/ixGd4mXRTDuEEWKjfVFyCMqRk1bgUWPaThFruxHRSAhb0dUYg1HRc0FRiKfZEW1o/hGdeMORpNXXEbAQk5GQKGhRbiKgkXDr6xF5LEmRi3ypUUBONJF0RL9RwiLrEedw9NGsmEZRi7KhkXisyFGtdwJRjypXUUudeZHP0zlRUWlkEU54chGQz4uRZ/In0Z3b1VFGqdBRTIVCEbxC4JFNZKFRb7ywkZlV3lGHlSuRTcmukiMlT1I0qNQR+Q6FkaEWg1FnqwoRbsvIUZNrRlFr+Q2RWdvskWn1HNFAGudRd4DJ0YW3u5FJiUSRqn5V0VTRTxFoipDRUbnyUZhA7BGVlz8RQ2LxkVapfhF+8FsRQCTFEVKYmFGagegRYvjgUXrCvlFTFhFRSHGCkZ4V6dFp1HCRVr+iEi9UvRHhTiJR8r5c0aj9n1FKuZERv9HWUUzj0NFRC5rRuYcQ0W7Wy9F09L0RaKB1EUEpOhF4rYvRTcCokVrzRdF0dAHRhncPEVf0B5FHa4sRqNPVUU0gDBFjC/GR87yK0ebdK5GVwK+RfcW6kWO5TBFzjyPRkQgN0acVjFFJJ/6ReDTZEX++zNG3j/DRQPH+EezhkRHvaoCR2Z4K0bMYX9F4iAARuOrSUV38yBF1MxLRb4InEbaHAlGzRymRVdoW0WM12VF7oeGRY/7TUXX6wZHS/J7RhE8EkZgYXtFWyKhRUU4G0WlcAdG8OioRbcBEEfZD3NGkg0hRkhPU0VdupZFdE4BSiWWK0Z7MbZJHABQSVNVoEiKhqVH8EQrRgPGBEbM8WJF5Tq4RdoFS0UBCypF20mDRa6+BUYo4IBF1GYhRc61dEW0lSxFJI8IRQaNGEVuyVRF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - T+DxtW7BckBOk/qpp8JyQPoIcP86w3JA6IR356fDckBkCwgjAchyQJQD6qRazXJAeQwtjEPSckAEENWmzt9yQD4VHYBQ4nJAmncBspDickB8OOUryvFyQBbVOTV88nJAOpZTwhDzckC6OvNmwv9yQDTw5Ar6AHNARk7KdtACc0AMxRrE+gNzQNxrUS+8EnNAuAeLXAQUc0Dgx8hjoiBzQKCw6xA5IXNAKKAUGeUhc0DYZKtUziRzQOJIpDFHMXNAYHvwSdgzc0AMT+7aeEFzQFCr51Z6RHNA2GA8daNTc0CAViPX+WJzQM28gAYsbXNA/sbSeYVyc0DtP3ioTHVzQNQO5rHPd3NAKBFV3993c0DaBa7IeIBzQOifGA6kgHNAwDRSjQ2Bc0C2YeiSpoJzQDbqgY7/gnNAtKi734WQc0DWM8hFTZJzQErIPHr3lHNA0Nz3Nbigc0AtP+zBWaJzQEepVJx7o3NAsDIi9gSlc0AbZTrJtbNzQDzwRM4MtHNA4pKAGNDCc0BsYw8J2NFzQNCcnUni1HNADI0cazjhc0AOmsA/NvRzQAGNy0J5AXRAScPHY0wTdEBWX6eOtyF0QMrTQNzbV3RA4LdZPDVddEB4nHvYuGB0QCLHcacJYnRA4RfYwY5idEA0lqOTTWR0QAneB0LpZ3RA+wBDBSFwdEDieXksQXF0QEiQamM5c3RAdK3P4UOAdECCpjgS+IB0QLb4DiJOgXRAkpAwAyeDdED284zDFZB0QKfKrzjvn3RAI4qvOrqidEDqtnhUD6N0QH6V4+BusnRA3JMJDcm3dEAbvZrHIb10QC6GW4F4wXRAfkI/ZrfEdECr83a9t+F0QMj28A6N83RAMGv7RV0CdUD2mvk5mRB1QJn4JjkjFHVAC3XuSZ0idUDZFbtByzV1QDZ+GMNmY3VAzJctN3hydUCtlp57jXR1QPYyHXGtgXVAqiYvZaaDdUC+JmTvmYR1QHbHHLQLk3VA4hRSwhKbdUA8+67UGaN1QJLAl3NRo3VADvBeQvnBdUCEqGV7R811QNZHPlhM7XVAmhmvAqXydUACYjfg7fd1QESPT9tJ/XVACG8syUgCdkDNkXOiiCJ2QMTKR4+QJHZACEfdSEordkAKmbeYHzF2QK4ilYtTM3ZAGmAVxR1BdkCOkvdiyEJ2QFopvHd5RHZA4ZwTYxFRdkBrMhrBzVR2QMJt5cZRY3ZAlnpqTL1jdkDa/QSey3N2QOrMcfiRg3ZAMN5WZ8KydkB5SkgDeLN2QLaN6uMMtHZARlbwYc7OdkCWdJcYkfN2QK6sVelRDXdAAuaqygESd0DHlKzRjxJ3QNSdjRuoEndAgY9MGA8id0BP2PoFpTN3QJ66H3Y/NHdAoEP+Pg01d0CGYeXhnEF3QElJWVwaRXdA5MvipElRd0D0OTf3kVF3QAJg1SUqVXdATdFsl9Vad0A8BJB1kGF3QI7opiUnb3dAIIc9s3iCd0Ca91COVbJ3QIwU2RRatndA1LMDhj7ud0ByM1nwOvJ3QFWwCI479ndAyGXCJ24ieEB+hhlp0SN4QOQoxbsRRHhAvQUL9nlFeEC219/yylF4QGDbPQqUUnhAdS7Ppx9UeEAGwIgQiFV4QGZkNmbvV3hAqgaG4/pgeED0jJyEuGF4QFJVCamLdHhAGdWWj6SBeEBwXT6smYR4QMB20tSYkXhAvoyjkqeUeEDSj35PzcB4QIN0G77gwXhAwDZpl7fUeECf4JroAvR4QDRrVXKM9XhAwoY+/HoDeUAIxPuLmgV5QEdYSHAnM3lAbNBmWl02eUCRIiaE+0N5QHyw33DMVHlAQMG2v3GNeUDPSYz+yZJ5QFJFYtknmHlAGH5dpr+yeUCPXySnQtR5QOUKloz6BXpAt0a4saYjekDqSZadPCR6QO7PGawMNXpAVAoWyOZDekCDSOpFGkV6QPKLpqooVXpAxuoSlVReekAopMhKr2N6QOAfdhINtnpAEg+DwwzIekDGKXxIZs16QAJEodFl4XpANFf/sUnzekAW3pOWo/h6QNqMiof9/XpAMlwlNsUSe0BOrLkNTBV7QE4o27IdGHtAl2UgTVAje0AIAN/IWiV7QFRChf/OnXtA3I9Kkiije0DAGqm9hKh7QHT+jxHNrXtAl+FeySize0AUTys/Itx7QGqNcwgp5HtArrxBaIz1e0AVkiYJ2QF8QGRpFy6ZBXxAsjGaf80RfECcFW6f6Bt8QAKow+vkLXxAnDUjUUAzfEBe4Bq5zkF8QDWhB2RSSHxAzVM7u6tNfEAjW0TLAVN8QLSun4pOWHxAY0zMWVmZfEAWpulbs558QHEIKmO/snxAKNRy2VfifEDs80SEEON8QIx4pBNu6HxAArkVNRbyfEDGBhxkVPJ8QIDq/44AAn1Aqv+uJUsCfUDQTiKLUQR9QHok8e9EEn1APcU7XK4bfUBq3lPltyN9QIV4KEiWjX1A+qEazu+SfUBgs8ojQJh9QNsTHwuQ9X1Aui/go+4dfkAKa2U4SSN+QLD68JeSKH5AxIWLcLd7fkBAMu8FvYN+QD6wYWnDi35A2T7+RMqTfkD0wmoD5xF/QDp9TXTwGX9ARBPqE9g9f0C0qkAcuHF/QB4V093id39ATE4y0OV7f0CaqJ8r6X9/QNFvknxikX9AVCg2MxGTf0BQIpYea5h/QE4syo9foX9AdK3pEVWxf0B2b+B+KbN/QPyHEVGDuH9A5R0OtpXdf0Cd1MdS4eJ/QCY+eew96H9AipGBypjtf0Cv/QgD8vJ/QJT9RwQsIoBAli+VHxgqgEDi9u4/Gy6AQGT/NbXmUIBA7mmgSxRRgEBMY2M3DlmAQAl28s1IWoBAXsj/+jdegEDFgrPrPGKAQIgL4N7FZoBAsOEqcXJpgEDYI2xk8G2AQDG35pcqb4BA3OVaFvVxgEBCOM8SHo+AQOmb8HRSwYBAnY8wb1PJgECal3xfTNGAQCJnTGxK2YBAzX9t7HHZgEAMxLcvINyAQHwvRoFE4YBAAFz1uz7zgEC6qkZqP/+AQMhVtKg+B4FA88hnZj4PgUDym8p8NB+BQLzNs6gyJ4FAsmXJESFCgUDgCACeJkqBQALz494EXYFAt2ZkA+VpgUDwb1fBVY+BQIq1jNHmoYFAryC5bkqvgUCUXsf9rMmBQNTH8qSG5YFAnq3kwIrpgUDqZGeA2BiCQLSlwovXIIJAwap5r+c5gkCpfsnoJUSCQEH7MhIkWIJA3HyyYUOJgkDU8Jm0Q5GCQK4bDUI8mYJAomTr/XaegkBk2UWBDqGCQCb44XI7oYJAJoexEw6pgkAc1oSp+rmCQIiulgT/vYJAtPUDxcvNgkB2sfQN0NGCQIzikZD/9YJA8CU4YwP6gkBgzSHAeRGDQMSdZh56GYNAXU0RlnIhg0Cxgt5oDSaDQNwoDNFxKYNANCpaIg0qg0AHyy8rv8GDQEgKwm/CxYNAyMSQU/Lpg0DsxJVtSw6EQFuW6TACLoRAcm5h4AUyhEBYM3hlAGmEQOCg6//+cIRAkQ6BhHGihECH661OyqeEQKLDSmJUsoRAbqz5Zle2hEBTxQhTatmEQOZE4Ahq4YRAKk3BAGPphEBvtJvANfGEQH74VNZj8YRAvlHGMTX5hEACZdHWNjKFQODiFGY7NoVAvB0Ju6BhhUA++n59oGmFQDSY2yGZcYVAgHFK1JZ5hUCW1z15/IqFQNiJIb4vEodAnidg/VUSh0AgnCz5fBKHQMLB9ee5EodA4Aps7zYWh0B8XefmVxaHQJgI4A1/FodAdBVExroWh0AoQ17zfhqHQLxgakCAHodAGy2FGoIih0Cs26gCgSaHQAq8E8CQKYdA5gNfDZAxh0BefRONiTmHQGR+OlKPfodATr18kZGCh0Av0WPzxrGHQGhEo2nHuYdAXzAyRL3Bh0CC4TyeIuaHQAg5Y2om6odAcrHBOXAGiEAQsf6vcwqIQJQORVP3kYhA0gYFovaViEA= + NrgMGZxjYkCmvpxNHCRnQMZtNYzMxW5AdWjQV5ECcUA8w2SRqTN3QFdc2zXWY3dAkhdplkGke0DLAZwlxmR/QC25/ues6oBAvOFc3diygkBILpgv70qEQOnnAYM624VArFtiTHtjh0Atq/opsyOKQPAeW/Pzq4tAkdjERj88jUAdJQCZVdSOQNYmL8dATpBA+oLHsWXqkECIPZTVhtqRQFest62h6pJAnVLV1qz2kkBPaTrl8oKUQLTVp6nd6pRAmOt6sRPflUBm7Ay4I3eWQBgDcsZpo5dA - + - ZvedRa1uIkeE3IpFpVFBRgFqb0Z7UERFhjwGR1hY+UTzpolFO28YRV8AOkVOQX9FuvbKRb8aBEU3V/hEly4iRi1uJ0fTg2lGHW2uRY5s+0QejuFGK6fjRHYIw0UusCJFjULyRExbhkWWOgxG7gFtRbpGGUWkf2JHHSjGRs4d/USYOF1FXtWQRRPL5kYXJO1EHMELRdDsgUVcOiVFG5cNRTRdVUfe11BG1t4rRmiywkW5LrJF6REQRX1HgUWtHFpFJstERRVAOUWpqYRFOi/URatJA0XMgYhGC+b9RL4+70T++I9IeSANSOS1o0UVw0pF6/IeR/8C7URZ6LtF3lK5RbsTJkcz27tFfa3IRZjNMEU/K7ZF+xE+Rat/uUVwEedFORQKRdsEE0W5nGxG/w/CRTa7AkUFRQZFQ34gRdFVT0XM1KVFC1w7RvWq30Ql5Q9FHzDiRZfUOEXiQwdFLRQUReelFEbXE8xFMdtqRkXQNUVjSPJH2N0bR8XHg0VuggZFh0LyRLptH0XTfSRHSbaFRl1EKEXWRhpFIAzCRZ9Ds0VVohpG1AOARhPVvUadidNFXNOtRYNEd0VTSoRFy4o2RSGnLEYBpg9Gn7NeRgV0N0VbUYhFrJlFRSd6X0UZAYlFzJeJRa/AKkWHDblFiLWKRgDkYUVWywdFe+d2RSk3jkUL0DlFVhDoRz7VwUYpFshGNWeURUZ6XkZm2QhFyv2JRa60GEWcPYtF7GX7RFXJ9EX9NDFFpdnYRWjrHUay1q9F7m6GRaZY30TN98RG9LhgRpfChUXStv1FimI5RZu8DUUaXD1FmHhBRf7lPkXGd01JweM5RbceVUgiLhBFTjylRlu5FEX2yv5EfnciRUGPkEXzVeNFXAXkRVXm7UTsEF5FRUI8RVXUWEatTaFFr1VZRqSA6UWIhBNFme9zRRjo+UWTYuZEGtdaRcBZQkUA8c9HESf8RI1wykbGljVFzDfkRbOSp0UGS8VF2dwURg0r7kUA+BpFZOu6Rszhd0Y9gI9FoEDeRQi1SEZwNiVF5tc8RTvVRkVZDF9HDjcdRxT7EEYqZVFFIysNRZwHyEaP5ThGfvGORnrnH0beIpxFkrcbRVxGyUVUHAZG5symRUFlokWcGuJHBuWaRzlAnUZp7BdGcpMQRgL5n0WmFxxFPsXlR7cWJEaDT61FRAjwRNs/6EbACh9FcKuxRjq6U0VL4FlFxjDeRa5oU0UsbKNFvihrRfquGkWzk/pEGyKgRikpP0boqkpFSRGxSBMXRkghfFFHCQEgRksQpkWM7TFFiO0VRSK9dEWMv6RFsNFHRSE9nEXp6RBGWiX8RQj6o0Varw1Fanz7RD9dYkWfPB9FHAIrRVgOoEYN/aZGIu/lRRlCMEUszhdFVcgfRoVeGEXfdTJFtSxkRuafkkVhODlFkb9WRW5o7ETZRPZFHNhpRZgeCEZMlyxFI2pQRQHPuUX1CoZIv9D6R62fi0fPu3RGagYIRV0AKEV7vKxFCx8BRfYFMEbZMiRFWDMcReMXbkb2qyVF8lD4RcUvBUVP3gdFpY4ARcfYtEVdM2NF0X3ARS0HCEVGpGpFWKovRXDYT0Yh2alFoHj3ROmJIUWRkUlFZOKyR/vzH0dCpchG9MlARYRrz0W+TdxFobNVReXfSkYAzetFFkXaRRmkVEXdOiVGZFq4Raxr5UeD901H1lP3Rg44E0WViPtF+i4TRYIJoEX6/YdFU2tbRf4jMEWDfFdGxF6wRaFMx0WSGC5Fo4cgRTMZA0WTrJdFpG5KRQNAC0c7tG9GRB7/RT7CmEWQ0HBFkbkVRRvqB0bDdG5F2QQOR6F2WkYxdyVG8WcxRbiDo0XRFktFQbVsRkhbzUk5f9VFnIsRRfnZCUbGXpdJLu6MRa3yIknHrItIUO9iR7WkGEYGBRtGUIKBRTCvLkXqhuNF7pmrRTuK7EVBaY9FcwUjRViAEEWfzyNFG3OLRd/RkEXqFZpFSyoJRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - DXw6Em7BckACM/eOp8JyQOfGbpA7w3JA/ux4eKjDckDs27v2AMhyQPBjlEBczXJAZFhWrEPSckD/iHxgtdNyQG31ub7O33JAllZIK7ngckDYDuAQUOJyQBF2d3CQ4nJA2izIFMvxckBxKzrAfPJyQPBVLrQQ83JAEDb8bML/ckCNRId6+gBzQBKCL8jPAnNArNFYrvoDc0Bm9rI0vRJzQIVvjWX4E3NAVHMJlPQXc0BSR7VhoyBzQEDqfXI5IXNAcWRUVOUhc0A9E/mQySJzQJV7SgvPJHNA1mL8TONAc0Dv3GTveEFzQGzyaMW6QnNA/Oe+dHpEc0DDgmyGQ1NzQOZTvQmkU3NAikHX8Ptic0AIOvIROGNzQDyvdWwsbXNAesEEiWdyc0AiTCV1hXJzQKoBR+q4dHNAasiVmUt1c0Ac4IZWaXZzQAVy9KnNd3NAxlJSYd93c0DmaUu9eIBzQILW+3WjgHNAlGrWNAuBc0AwIL7zpoJzQLjb7R8Bg3NAcJtZnYeQc0B+cQBCTZJzQONpAfZjlHNAODExXfeUc0A+GiCYuKBzQHBiZnxaonNA+DNG+Xqjc0Du9z7vBKVzQP5ggAO3s3NAhLUguwy0c0AGcF/j98BzQL1qsZDQwnNAazncMybDc0CkP7xf2dFzQEUEfDDj1HNA5MFgsjjhc0CKIhW6ZeFzQAJ5o+M49HNA8KrgZMz3c0DUM3hCH/1zQNHm9gDlAHRAqtKmXHkBdEBgc63ASxN0QCwfV+pKIHRAk/nXpbchdECqqM20VjB0QDZdFSm6MnRAlHzNXY1VdECOWa413Fd0QFxLR/Q0XXRASrlg/bdgdECYNA0tCWJ0QAQT1KiOYnRA3FbQSOlndEBm6kOGIXB0QLHu2GRBcXRATTx6kTlzdEAo8VfaQ4B0QNCefvX1gHRARlbwJk+BdEADa3jHJYN0QGw3dmcVkHRAxKQY5++fdEBgKJkRD6N0QB8P/j3/sXRAqiX0EW+ydEDDqw0pybd0QNnRgXC4xHRAYnQAZ/vOdEBmaSbfuOF0QNIwEf2M83RApqt0eV0CdUBKTJP19QJ1QFgbSD+ZEHVAKM4vQ2sSdUC6xKmiIhR1QOpSXnKdInVA4rEag8w1dUCqtAj3d1V1QAp3YKA5YXVA8IWaeXlydUAqtlpujXR1QMDPgIp5gXVABkCQiK2BdUB8aYR5poN1QDJ0Na+bhHVAQ/rm7wuTdUAaWOEgE5t1QEvm/B8bo3VADo3IhlCjdUD1Ut03+sF1QGxg1tJGzXVAFj4HBKPSdUD15SVDDuF1QDx9JOoJ4nVA2LYErUztdUCMBBt7pfJ1QOAi77M683VAFkcef+/3dUDR1GRDAfh1QOJzAQhIAnZA0/bIBtADdkAUeH0miCJ2QAeTaj6QJHZAdsWgLkordkAA5n54HzF2QADOiB5SM3ZAzR8XqJs0dkDmHYueHUF2QOBkFInIQnZAgDwjc3pEdkDmosUpEVF2QJqKTvnNVHZAYKr0d1FjdkB4KEO8vWN2QD48ewHbZHZA0YoJP5GDdkBcKzbWubB2QFnS4M15s3ZAVKbchc6zdkBuGvmaDLR2QCy87H/PznZAB7sqF5LzdkAgmgtxNAJ3QNSmpalQDXdASjbVAQESd0D2My0JkRJ3QAZxNSmpEndAeMViUugXd0CqcHlODyJ3QA73UAZ1IndADNtX36Qzd0Bkg3QuDTV3QLi0PnclPndAXsfUupxBd0BS8Annr0F3QEYHoQ4bRXdAyEMHU0tRd0DoIfqtklF3QE7HCrAqVXdAcOMKE9Zad0CYt+lOkGF3QJoKm5fcYndAmDEiJtFjd0B8pErPOWV3QJSvkbUmb3dAzsgl4HeCd0AEa4YoIJJ3QPTtSqNVsndA0hhMwli2d0BUJSrNyt13QJnHeXg/7ndALv8hozryd0CTFRFaO/Z3QB4L+8N8+HdAvRYXqGwieEDegfrc0CN4QM66/doRRHhA6adxBnpFeEBb8bwaylF4QLzzroeVUnhAGH97OR5UeEB9E0P1hlV4QDm2h9DuV3hAsrWa0vdgeEAQs9Kpt2F4QPpNY1hFdHhAMJXK54t0eEBd2sKopYF4QNrnbfiZhHhAxjjjEpeReECqAuaap5R4QEJsotLhwXhAhqlI97fUeEC+5wf8AfR4QH4ixhCN9XhAvkoJvnwDeUBT3PaHmAV5QLY3oHTwL3lAwkP5sCYzeUBYiqkfWzZ5QGsdDoWOOXlAdKulgo5CeUC9zpY+/EN5QEj2wKgIVHlA/veSrstUeUBU1ebQcI15QCqduY7KknlAx2zIisCyeUAKjn+aQtR5QLFqiBTM1XlA9F/Al/sFekCUxUv2pyN6QPZ2tmc7JHpAmsccdgw1ekC8D5CQGkV6QM5wzKooVXpApOjx/FReekD+4rutrmN6QD5ctMUNtnpAMm5hgQ3IekC1khkyac16QJDSicLC0npACEAK82XhekC8nSfjNu56QMVof6MW8XpANsA8BV7xekA6gP2zSfN6QNvI8tyj+HpA7NCUBQL+ekCE5H6pUgN7QGh8/5crDntAgh/qFsQSe0C4hGFlTBV7QCSD6TAeGHtAgTkG3E4je0DCJXJtWSV7QDWbG1KWSHtALqos/yGVe0DKE2HFzp17QNyvNikoo3tAg62qJ4Ooe0CYgi4Dyq17QDYeqEIi3HtAtIOjhAHke0CEqAomKOR7QFwU8/ps83tAhpa174v1e0DYSI7h2gF8QPaYa3FoBHxAZm8jkZkFfEB/6Wb5zxF8QOdTAz7oG3xAyLourPEjfEA+17iB5S18QFyG+l1AM3xAth5nmJ04fEA06MCZzEF8QO9+ylVxQ3xAyPKcv1JIfEAmU6tmq018QK0yNyn5UnxA4FJqnU1YfECCFOTnlF18QBJ4ak9YmXxAWHIL7bWefEAaRwWLCqR8QK0E54DN1XxARC7TMVjifECGSvlnEeN8QLRZbIdq6HxABMlAaMPtfEB6gfyoFfJ8QKcpKalU8nxAmF68vAACfUA1SsSDSwJ9QJnpdkJQBH1A2vWhNUQSfUB0DnWerRt9QI+K68K5I31AoLH58pWNfUBIBltA7ZJ9QMEu6qtGmH1AZiI6ZXyzfUBQzhWFkPV9QDXw5UfvHX5AGhNv2kgjfkCuiOswpyh+QBjkzZ37LX5AGM5Okbd7fkDj5rUpvYN+QBiOHUnNin5AECvlt8KLfkA+UqTdx5N+QLoJ4Y21u35A+OHLhx8Af0Dc4IgplQN/QAocIn7nEX9Aai9Jdts9f0D28DDadkh/QEieORq4cX9A+h4xwuN3f0APXTTU53t/QAPyAFTqf39ArIyDFuyDf0AaerCIYpF/QNsrCPIPk39A2Y7esmuYf0DrdHh+XaF/QLMTrU9VsX9AGkoxIeHif0DvkwvWOuh/QPKTNn6e7X9AcrkZD/Dyf0AQzIKvxgaAQPYFIj0XKoBAbTjLhxougEDa4B+b8UiAQHpyLf7mUIBAeOuUGhRRgEAtgWAtDlmAQLKflpo5XoBAajOJWkhegEAv1HPoO2KAQPhzoe3GZoBAtHpS9mRpgECyjpgYdGmAQDYCk4obbIBA8CczufBtgEC5oGrsJm+AQANJzb92cIBA8GYNNvVxgEBRpZG0Ho+AQNB/CGhDpoBAGDTpeBSvgEDahcQnY7CAQOccQIFSwYBAQP7qTVPJgECWGDY7LNGAQKnHiFtM0YBAYJGR0V/RgED4lNPUStmAQEnv9UFz2YBAvIb2niHcgEC6NesLReGAQNoqxxI884BAeTcj8T//gEDiZrDRQAeBQOL356FmCYFAdTzdgTwPgUBuDrtcNB+BQLrVszI2J4FA65Dex7wxgUBKnAhUKT+BQPyfwlMhQoFAYgzVNuRJgUDb4R4DKUqBQHm1dVqjXYFARpJHsqhhgUDIsQPpVY+BQOpcppdWl4FAwn1Ia1KfgUBYxipf5qGBQJ5dCDzWpoFA21z7B22ogUDfuzJh7qmBQB1uZqdKr4FAtp5s80q3gUAWuax1rMmBQNoGWtSH5YFAukyLksjpgUBebjFd2BiCQMNnN7XVIIJAhFzqptEogkAS/4RepDCCQOw4UD7oOYJAz8aKcyVEgkCM6yIo00aCQLhZq+h8SYJA6F9wLiNYgkDUO8WLgGmCQNtZ8JMubIJAsOuMhUOJgkC0sKq7Q5GCQFnAISs8mYJAaCe+5HaegkCBTeP2DqGCQCJtFtE6oYJA8vciXzKpgkDmDGfr+rmCQKwyEDv9vYJALGPJiMzNgkB8YkNW0NGCQHK1WXv/9YJAXEkYkAP6gkA9b96ieRGDQPTysxF6GYNAQ+sZjHIhg0BAR4y/cSmDQGCWZksPKoNAH/alH0Ywg0C8B9pgaTGDQNQMVTbcQYNAHBTfB0qDg0AIDVz9v8GDQKVeTt7AxYNADTs0sPTpg0C8nTmM9+2DQHLNa7WT+INA3GH+bUoOhEBW8NBLAxKEQLwEbVVQEoRAF8dX8wIuhEAwH299BTKEQKiTghNxMoRAKEY6Tv9ohEDJf5VM/nCEQCvKu8rLd4RALb0C4HGihECgQUQkH6WEQAYgzhTmrYRAdhGy+FWyhEBSwbB9V7aEQHYFrZRbuoRA3jt3XsTPhECALD5VatmEQHHcLl1q4YRAifjqSmLphEAS9dRPNfGEQEDTcHdk8YRAf8Ufszb5hEA1dRTjuyWFQA7R9b83MoVAeqlfpzs2hUAsxOqDoGGFQDJivpagaYVAPpaEN5lxhUDCN/RImXmFQEY3rAv9ioVA1JjJoHjihUC+Ot1XIRKHQLohRCV9EodAwFK5/toSh0ARDadkfxaHQNat3lN/GodAjB23uoAeh0CkqEvcgSKHQIQ7ydeAJodAyREPl5Aph0AGECgbkjGHQJr+7QKLOYdA3KqNj4pBh0BaVqIHj36HQJg0sTeSgodAyF4ByZSGh0Dn5cMNlYqHQLYkutfGsYdAqJy0xca5h0DmWpBfwMGHQN4lVOgl6odAquMaGifuh0DmQU9ycAaIQNrLZZ9yCohABmASInYOiEA01yjFcxKIQMl/fxr2kYhA5agN2fqViECaDUFE/JmIQA== + NrgMGZxjYkDsFOgHcuJjQHZo0FeRAnFAQx3Og3xCcUCZcdKIFLN1QATAHHdpE3dAu3rUuZcje0AmyR6o7IN8QL6OkVZCeoBAJGmQ7DeagEAkmH4W5CKEQFJvNZKZgoRAtZz/riXbhkA= - + - 9T24RUKcNkfb/NBFK7PuRg3kgEYE5f9EQZobR02DREXMBuVEn1wWRUPTmUXQ4lRFVPZdRRaWhUXpFRNFhNEDRWFRA0Vgz+BF2O7pRkzNNkbh8KJF/b8ZRcQGL0XWgsZGrEoVRYoID0UysmpFB2DtRDzfbEURmyVF7gj9Rf2k80TcoVNF/dhkRYTmEEWgaHNH1BQYRWIvtkZdfNBE0T08RUICHEWiJBhFy+tKRe4FBEc99PlEU4/JRB0fpUVyoJ5F6kMbRXokJUftir9EnR5CRvD4DEZyr+dFHx1mRcr9HEWbTmRF7NwjRWRB2UQiEY1Fb1E3RST5FEVEroRFwJPaRQL+1kRhmvdEKXPyRCcrvESOd99EcFZ8Rq7vLEUEZ+VEOJj+RMZAtESRgLRE4PfhRKfel0ihxyRISqWaRVrbDUXQ9iBHajXaRZTgkEUB5yVHTgupRT29s0WkgflE4XTVRVy0wUSKHaVF/zDBRfUkFUUjXvxEE/KFRt1TEEYhRQ1F0QDHRCJAWUWINdJFJ0t7RswgOEXMhepEDGH+RKWFHkVZ+b1F6RUYRf6x4ER0UcxEhxfwRCKW0EZqyA9FtLHIRd/HUUZcYmBFzh/VRwpTCEeSAYdFdv0yRduH5kTULURFXoNDRQxu20SyQ/pEtVwiRwHTe0YtGv9E76CiRfNefkX/08BF76bhRPZHwUUQjA5GzGdfRlXI10Z8BMBF3X/xRP3emEUWHjhFloV5RUx+JkUO+fhG8+AXRpyntUX7zbBFPvaGRZPP1UR0vilFPmK/RM0glEUZh3xF9CU0RYw1zESelIlF6TKMRiddnUV6tzlFoxw5Rel8SEUi+QxFq/H0RV8x+0dPwiNFh7apRqDT60Uvp9lGqr+gRcoPbUZpGPxEUze5RQkfQUUPwglFQNYkRQnw8USTKHNFMVYCRUWAQUWxImlFfJXxRGLa/ERLmJZFwAK4RUVFlkUZW7NEjD1gRRLe/kRgO+ZGzbVuRhC1jkUyAgNGNN17RSWlLEUocbdF/ddNRZe0GUXWaC1Fq6BJSX0sREUsrkpIXVM1RVeGpEaZWbpE//OARSbOhkWJvfxFMh2URYxr7kQ0YFtGeQcwRgBn3kXS7wlFqFfMRHNRS0b7AARF04yLRb54UkY57AJGEalIRd6GAEaM79VES/XXROX+DkVwOi9FFHTbR7AJ00ab7YpFTy3JRcK0vEUckMNFXR9PRjBT7EVOsDVFjTbPRJW4vEQY9BVFdFrVRNMuyUatSTpGgYuERURi+UQaNdJE/pXuRU/gPkbooZFFI3NLRVdUIEXuZhBFSnANReIafEcl4udGwGU0RlQdpEUorKlGDSqzRLa1MEaL7BlFbtiyRjGYOEZozSJFrLe6RRc9bEXJuthFlGkeRVsWAUbuvc5FbUq4RFTrvUVzu7lEkJayR3dGXEd1OztGbxraRdchxUTr1wBGevagRUuqzkQk+NxElHDSR4ViEkZMC7tF12rIREUqMUXy/tRGpqEhRTgfnUbAeRRFWzQpRdnd2UXhat5E7g8URkniWUVE+w1FtfMBRew8KUXJ8b1GAKhhRpjmQUVLM+1EWRKySE52QUjBsNFE30JXR294+UXYQbtELUgeRTakG0Xbo0pF0CzoRAQHTkWU2mlF5zCbRjuDYEZJSCZGB8RVRcPiMkblgMxFsjiERWLOQ0XZdTZF1exjRqW4KEZGMH9F0COXRTN57kQUYd9FbOJFRZiFFEWpfjZFU9yORnnYv0UONx1FnMUJRfdT6ETcrYxF3frsRDPCWEUMCQpFSenbRckDJUXl5L9E8PZtRQRFvEWS09RE9DrGRMaKz0StfIFIymzmRzpK50QKpn9HUnduRdhqSUbHyx1FFzcaRQ3UqEVVCrpEXVphRv58M0U2qNFEHVIMRc+dgUYn8j5F6/frRF6r/UTMlC9GDCoERfnxE0XSxNJE4bDLRETJ+0VkYtZEszvtRJokhkXhzB1FugFFRUxBBkXXiZ5FcuX+RCFLS0URzwNFPmUXRcFCJ0YD9TxFuUkQRVNKwURIrgVFPqc1RTNYL0WpsbFERuo/RYHo70SgNMhEIWreR63VKkd7ot9G25xqRUVk3kU9RghGF4sTRdhVzEXKZQ9FkPbCRROFZEVCbeRF7xWmRV/E50edxk9HgynoRsVWD0ap7dVE9dUdRSaPHkXtcRtFBhnGRETen0XAMhhFut0NRdgd7UReKgRFKNfvRAJW9USygfxEZoYrRqEcrkXgWQRFAcX4RSNfMkWJLNlEFCNZRek8VkULas1ESPeKRXy+REVnlghFh+v2RJ/8EUc+4IVG27QNRgUNfkVXi1hFoiT9RILt5ESTpelFXn6IRaCdC0dmbYhGIl8QRvKBhUV+qI5FGS1+RWMsLEWebJZJ5gH0RPSuXEm8cOlIRv9BSI/eGEeRvPZFmbsTRq8ik0WNZndF8+3SRN0SpEag7jtGQPCyRaYWP0UhKQFGgkacRbIdfkVPmkJFkoHORIDEt0amSaRGlu+mRdBhHkWvAItFlAlLRUZDykQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - iK58gXjAckBGRKk8cMFyQOikDhxSwnJANFj58qfCckAh6zYkO8NyQKRuT7yow3JAjmCAvcXEckCjh9DLAMhyQJD6kMNOzXJAtcD7+13NckDEDTaAQ9JyQNKUzwek0nJANtDcVLTTckDMrN+Bz99yQBIAIga44HJAhG5V31DickCgfylNkeJyQBwUmzsk43JAEh9ig1LxckDO4sDryPFyQGRl6ah88nJAesVupOLyckD8MRmLo/RyQBjHw+XB/3JAXnf29fgAc0AtO/D20AJzQNjWJsv6A3NAF0t1AwsSc0CtHlIfvBJzQLTRk5wGFHNAutBT2UsUc0Cy9gC+oiBzQOLCmyE5IXNAC1eF1w8jc0DL1mNoziRzQJ1pmFFHMXNA3LC4ldw0c0DwhtuU40BzQHMvHjl4QXNAKbcK2rpCc0DKE+3ieURzQNq/jlNDU3NA0aEjQqRTc0BsBVTBi2BzQIlvQBAbYnNA+c3Z6vpic0BcgdXXOWNzQDyaswYsbXNAiOEr12Zyc0CcX6XahHJzQCYu1jEKc3NAyqk+rkt1c0AghZcMeYBzQBOpUGgMgXNAHFyieF6Cc0DHcRBIhIJzQKa1DwumgnNATGDAJwCDc0AMjQO9DoRzQIzNXkaHkHNAlOJZSk2Sc0Cs7962zpNzQFrTjl5jlHNAis6GhfiUc0A9Wt/CuKBzQFDJRADloHNAzAZkXVqic0A85ooS6aJzQMSgwXh6o3NAjG2ozwSlc0CrY3XZXqtzQP57vTg0sXNAX02Hs7ezc0D2N9gXDrRzQAQhiwr4wHNAlkdTLtDCc0DtMsIlJsNzQPYv7+LW0XNA/AiaKuLUc0CIO69AOOFzQA5SGhU39HNAa3blGcn3c0AFh//xeAF0QKy3BCSlAXRAAIBqbksTdEAYv+9iuiF0QGwHkqVSMHRAHL2xprkydEAYDt6+4jd0QH7X5G46PXRADgqFPaNCdECMUI7D91R0QJI+iAzcV3RA/eViGDVddEDZ9AW7t2B0QG/nO+sIYnRAsTtAcY5idEAaqQQK62d0QEZWmB0jcHRA6hluXEFxdECt7TyhOHN0QDYhgow3dXRAEJ3YvkOAdEBSugWw94B0QLF12ydOgXRAtBoRHSeDdEAHT9oYF5B0QNfVSEFskHRALQ6ywFCTdEBYJl/V7p90QCrDa6/MoHRAqKZf+TahdEByar+WCrB0QMQZRv7+sXRAvpCLM2+ydEAEKa7JyLd0QHf+CssTvXRAOoSizSC9dED+/Y333L90QDKaiMjgwHRAlncLuXjBdEATKW1a7cF0QNBSNeS2xHRAApabC87UdEDngTX0t+F0QG5nikBO5XRARnCAok3odEAGT7RDjfN0QCI4yBWjAHVA/C0dZV0CdUDmggqi9QJ1QJ8qbPybA3VAEYCem2sSdUB8BnBKIhR1QI2PNfidInVAVlCQBrAydUA35vzQyzV1QKKCktyAUXVAUtmHDU5UdUCNpOrodlV1QNMZ6WQ3YXVA4pnWo3dydUCwiw2YjXR1QNZ5r/F3gXVAYTW4f62BdUDM43CkEIN1QEB1MESmg3VAYCJj15qEdUDsbJITDJN1QETfoWgTm3VANqPghrmhdUCaoz5YGaN1QL22oWtRo3VAtao6r8yydUBd2leMpL91QDbvYVzPwHVAgDcBU/jBdUCYWCDZRs11QLr90Y7k33VAOj32SkztdUDoWBDnpfJ1QLBz1p4583VAfpnbKLTzdUBmJNat7vd1QPJG+osC+HVA2wkRTEgCdkCcRCA20QN2QOZLH5xLFHZA8TgwUwwWdkCihOvMiCJ2QHOjnyXQInZAlr7AaZAkdkBOBP8VSyt2QAElfqYfMXZADjzElpMydkB8dxLWUTN2QO/8ueWeNHZA76BT8hxBdkBDBM3VmUJ2QFZBQF7JQnZAntMUQnlEdkBKDvNIyVB2QGDUQOkSUXZAcKsoCM1UdkBccKq1UGN2QEI4ZvDZZHZAdOHzZpGDdkDOV5VHwbJ2QHqvKsl5s3ZAZDIDqwy0dkBNuo+WwcB2QNX+6fjOznZAqcR8RS3rdkD2Iu6lkPN2QHaDaxUyAndAg4DfPFANd0B4tTh3ARJ3QBDhqbeQEndAZepdVagSd0A2+4Ln6Bd3QAYDqAeVG3dAE7SakA8id0BEpiBFciJ3QKhKtfSkM3dAhY3VKA01d0BiXb3HIz53QIo3HyudQXdAD2RXcH9Dd0DYgS1aG0V3QHJ5hShKUXdAOoEgapJRd0CCytG81Vp3QEXepexIYXdAP3t8KZBhd0A59vPI3GJ3QBsxfnrRY3dAxJ5h4SZvd0AY2ewteIJ3QFlstTYekndARkbw6O7Hd0CsXR/BjNZ3QPxQrArO3XdAsKszOj3ud0BssoGLP/J3QCTPNUE/9ndATpn8VW0ieEBwTSbPhiN4QBYg66e/I3hACjvr1MkreEBWlV01DUJ4QPoHBiQSRHhAZLhfWHpFeECennp/y1F4QCTfoAGUUnhAiSSMxR5UeEDK+XhIiFV4QGAsveztV3hAKWJSikpdeEAOuvjW+GB4QLqWy3O3YXhAHM4bB7lieEDFPG8lJnR4QApna7o4dHhAmqgkKWp0eEDdaaO8i3R4QO6SvtOlgXhAZiLoGJqEeEBiomKWmJF4QDy5w6GnlHhAYAeDfczAeEBYu7XE88F4QKyNOEy31HhAJiTvLAL0eEAY9h7DjPV4QHwtaVx7A3lAxreXWJsFeUBJ3E228C95QAtxGwMmM3lAEt9W31o2eUBj6qCK5Th5QMyl/YSSOXlAWPRbRT0+eUBonJST+z95QOpDlYL7Q3lA8KrKMQtUeUDI+fQQzFR5QECrut1xjXlAUEBt3MmSeUBODJRVwLJ5QEEjoZRC1HlAKltcO83VeUA+cMcmT+R5QOAQxLWkA3pA1rYEYPgFekB7L9YrpyN6QOkz+h89JHpA9N2JdAw1ekCjNOSOGkV6QOwYqfwoVXpAkCyFYFVeekDETgdzjHJ6QAS6KOEAlHpAwDMVYQ22ekA4WknmMMN6QG7UwToOyHpAIpVIyZnKekBY5TdkZs16QOQKiBFo4XpA/+nxnDXuekAoUqlDGPF6QEViYvBZ8XpAe0rWTkrzekDSXd9kpPh6QLMQh7bt/XpAYojqXP/9ekByG8DhXwN7QLKmvjV9BHtAPRZ3/SkOe0BCZaqJxBJ7QD6yI5RMFXtAGr9mnx4Ye0BIURmoeB17QBp9N1VPI3tAPmW3dlsle0Bi8m5evT17QDVDL4MjlXtALEdD586de0CaPflvKKN7QLNxyTdyqHtAXCsqDYaoe0Ch2qfOx617QCT6pfB5xntAqvjhRb/Re0Cj6xFWItx7QFhRUW4o5HtAdp5cTJbxe0AYhVuJG/N7QGN1RNxv83tAbkWxxov1e0DOVJrpc/t7QNEOaTPZAXxASLzP22YEfEDmKw/WmQV8QOcFZRGLEXxA3mqtFdIRfEA+uGNc6Bt8QPiMa3jwI3xAbQYAleUtfEBX52MZPzN8QJLI4oHNQXxAWAw1YlJIfEAQuPyTq018QB0ntQ70UnxAnp21eQlTfEASRNPWTlh8QOB1ljenXXxA4/S4wwpifEDHB3qGWJl8QFaeq9eznnxAtHI2X8OyfEDMH9j5V+J8QIqCwGYR43xAjFCf3GvofEBIfKvswu18QIhOWFAW8nxAcGbNE1XyfEBUAwhrcfJ8QLbHugAP83xAefkv6wICfUA85ZFBSwJ9QGZURalSBH1AIYsKnEUSfUDiCvZHrht9QHsYkUk4In1ARiwkWbkjfUA8Xwa7bzx9QFZdm2OXjX1A+2/VcO2SfUAEzM42mJ19QJp9F5PmxH1Atoucjo/1fUCOEBzP7h1+QHGxEKVKI35AjMzWZqYofkD6Nv2Wv0t+QMTVFsQkbn5A6RuPdLd7fkBGiEwvvYN+QOIf9K9ShH5Ahrg0W82KfkAhdrZmw4t+QMaTOQHKk35A4vts/ouwfkAq2jYdtbd+QFhfnT+2u35AuMdVWLm/fkCHd1/CU8t+QJZLDqLV735AVpcWCh4Af0AqJA8okgN/QN2iFG3nEX9AKBojUO0Zf0DQOpQ+dkh/QLotfv22cX9AVTcsCOR3f0CQFv7D5nt/QHhEuZbpf39Ak3PCQreBf0AUjMvRooN/QMAnywLsg39A31oDoe+Hf0ArvIipYpF/QPBu7tgRk39AxJV9MGuYf0D98CkxYKF/QIQcvpBWsX9AVtOTksrLf0B5xMnX0dN/QGS7HjDd4n9ACrbqjvrif0Ck9Xj3Neh/QNszMS2T7X9A3tMMH/7yf0AG37OALSKAQOyUUmgXKoBAQpP9TUIygECmvvGbRjaAQPiUXqrzSIBAIoxhxeZQgEDofm/ME1GAQJJEZxHsVYBA1toZ0w1ZgEBXrgtjSVqAQGBM4aQ3XoBAzsoHGcZmgEAIIFitcmmAQMimS5LwbYBA2SI0/NxugEAZfv4QKW+AQLyrPyP0cYBAznmMYxJygEAsGDaqMoSAQMgp+VvfhoBAM9wWfR6PgEAoYtl9UJuAQJoWLe+HqYBAkz/1fxOvgEC/jIJpUsGAQB6x3Qanx4BAkvE1JCDIgECuD5pfU8mAQCeLzccHz4BAk86fTEzRgEDGeTftX9GAQHLmCDNK2YBADTRocHPZgEAyNuyjINyAQHg6t5LO3oBAElVlgEThgEDqBlJl+OiAQFwvG7RJ74BA8+o2Nz//gEAG95plPgeBQOxn5+xnCYFAYrruCT4PgUDPa0N+NB+BQO6WHh40J4FAkkbfbL0xgUCuduvBKT+BQPSu3FQhQoFAMY6uX+JJgUC2Ar9OKUqBQL5OiaelXYFAnLMz86lhgUBNO3J1VY+BQC6wOVdZl4FASUA+01OfgUD/Txn25qGBQMsDFgvYpoFAnjiy5G2ogUCMSFLUg6mBQD7+68zsqYFA3krZBEqvgUAIci3KrcmBQKLVtZ6wzYFANEYQE37TgUAK4KPAhOWBQLS1o3a1EYJAxI+khLgVgkCoKAGS2BiCQBKVqt3WIIJAMogIENEogkDG84CtoimCQOaaIMTnOYJAB+9wheo9gkCIQv3qI0SCQIbc9CwjWIJA/RE4/W1cgkDFoEBfC16CQCSOth0ubIJA/mLyW0OJgkCsQ2ZyQ5GCQI7O60M8mYJAz0Ep3XeegkAvaGeYDqGCQCwtX9M6oYJAnP6OFA+pgkB4A6DyNKmCQDLCoL0HsYJANDiyIfu5gkD5oB98AL6CQAZkJtHBwYJAnWd8j8zNgkDcwfqxztGCQELNSan/9YJAxzFEZK/5gkDtYS2fAvqCQPi52qN5EYNAcM3183kZg0B0/Ld+ciGDQLbcjKyKIYNA5tBUTQ0mg0A+p11qcimDQLrUv6UQKoNArCHieUcwg0ApT8KqazGDQPbnI6ThRYNA0AbvLEiDg0AE3Rv2vsGDQAqDkLzCxYNADl2trPLpg0BZEGxvlPiDQCDH0OgBEoRASK7PVgIuhEC0sccpBTKEQCu6xkMKNoRA8EGLgnQ2hEA6dUHntz2EQL70eHz/aIRAfrixIP5whEB2KupL+HiEQBdR0spzeoRA4LHtRCN9hED/7Q7UcKKEQJYl6YIcpYRAOrPxKM2nhEDsZPMz5a2EQGac+7bosYRA8DfhalSyhEAlWuyD4LWEQEz9hS9XtoRAPe3g0lW6hEBnqJLDGM2EQBiwsZHDz4RADHZuCWrZhEBcStKEauGEQJaG2aJj6YRAcpridDbxhEBMZGmNYvGEQChMpH2/94RAiIOvjej3hEA4YxchN/mEQAyARExs+oRAUkfQ15X6hEDt6MyPG/2EQAISAHS7JYVAVr59lcAphUDxqWJ4ODKFQJdU9rQ7NoVA9DHrTzg6hUD+8tKOoGGFQBSe0O6gaYVAk/cy6pdxhUCyTEXRtHOFQPWTMKSXeYVAYzBQZJGBhUDQw0Cd/IqFQAJNF6J34oVAfkm/3YDqhUATx54qKLmGQDLSHid9EodAxj1c99oSh0B6V+94fxaHQBJ+xIZ/GodAB7jiYoEeh0CAfRU1gSKHQEU/niuFJodAQlqHy5Aph0C2G406giqHQM0EpYWQMYdAK8Vzwoo5h0CSxX69hkGHQItMdvqOfodANG3TcJKCh0CoPQCMlYaHQBpW0ZyXiodAJdBg6Maxh0BX/KX4x7mHQIKmdj96vodApl1mD8DBh0Bp5ySvcAaIQENZrPlyCohAAKsHQXYOiEDk6HNxdhKIQFDFE4/3kYhA6Oz13PmViECtMeMP/JmIQNs3P7x3sohA + KBZXds7jZUD1hHOUyKJnQNS+X4D+xG5Ancs7e+dBcUDBMzRFF9NzQPjXhcaqkndA/NWsGsfzekDmlYUjGcN+QJFL+sg6goFAHvVElNiZgUCtHaOJBGKDQCQsngSSioVAdElJmXBqhkDrV0QU/pKIQJ9zy5u8oohAfjjoT1WbjEAyVG/XE6uMQEVkjl/Bo49AY5qJibVZkEDUSCy+Jh6SQBWx7pf7pZJAHjn+W1IilED5xsGfMSqUQGgp0Pl9JpZAQ7eTPV0ulkB9PhH7o0KXQCfNZkWTspdAYVTkAtrGmECoaJP976qZQHG9OOO+tplAvX3U/hXHmkC7rQqB6rqbQDltFJYxk5xAStZodhaDnUBQ8OZoYieeQGDrqXc8n55AmXInNYODn0B2AOt4YrufQHH6swDSb6BA - + - jHmWRHQ9pkVnVphEm64mR9hvjEU8SD1HfRKkROqJeUbpIYNEfx7yRPrvDUe5DJtExNS3RVPz4kTFIeNEitR9RcO9J0WDP+lE6xiKRBDji0Ur/5VFr/ySRFyuhEQzFOhE93MKRffQnkVauBFHkTP5RAbFG0akx61F9z6cRBgWzUQ4Jq5GzuyfRJ9dvkXvtDlFmjecRPwZqURIwYpFZW8sRemYB0bV7aNE/MOERaUT00QGlJNEBA1vRQkawUSF/npHgGbRRDgSgkZ314JEIK1QRcJo7kZAihRFmuPHRAU4xURJdFdFMZZcRav5kkRVUdhED8VBR9AtnET25/BE2Q50Rg7LF0a9WJNEFRjoRalb1URBOcJEK1QBRQKw+0TKXp5ED2URRcUcQkVZdrVEXZd8RdWqO0VHYwFFgXSRRZ2YxEX18IZE3RimRKEIeEZTcupEMHYARVOsEEUAKLdEXkKLRGsxWkUD7ClF6laORE4HnkS7tW5IsVTvR8VPokWuzyxFs0EfR5sVdUUS4pZFgPAnR9G0lUXeUdREr3rTRVlCGEUrOuVFFpvvRJZsnUUhXKNEXVrWRI3ZmUXj0JREsOWbRE29wEQVjLJEzZRtRlxA+EWYE8FEyFS4RLeahUQsr7FE583eRKaKoUTjh8lETy+qRH9zM0WhCqREFA6dROVxxUWmbqFEAAtrRgSb30RS8JZEMpmmRI2wmER+rb5FAl6URFny0kQ/VqBEZ5zCRKK32UQ11txEdkMrRe2AfUaDQwRFhI/TRWoe3UQ2oGhGi8c+RWM3mUeR8LRGdL2pRBVBWUVvdx1FprV1RRePh0RQSJZEC3I6RaZWK0XMhJFEweoaRyneY0YDc9BENqbqRPElEEUS69NEXfrIRapFkkTMc5REb7OzRL3PwkUkwqxEZ2oQRtwPfUYPZ59GI4eYREHdSEVjg5JEfFmdRX4vr0R1sA5FnWFURbKxr0SSbTlFHr+RRo7pwkUsG05FatRlRfUrKkV2f0RFbZWjRfrZg0SNF2pFyOegRCfuP0WagstEKiekRWAiiEadm9hEDrgCRdcq00SPp5pEXkI9RaO9nkQXXq1FpHLtR6n4OkWgA9ZG5iAERUdq1EZzYKVFwJCDRilrv0U4B8hElYk5RZ5J/kRAvSZFC4aHRXVWykQFNhRF7QGFRL8WvEQCqtBEeUCERV9RCEX5MiFFsw+DRZ/vn0Qz0Q5FVE2YRGzypES7Gt1Gy0dLRkSRqUXgaddF9SVYRUSLIEWQaj5FSLnlRKsjEEWIv2ZFhWSpRMx0kUQx+sFE8zN6RSbJTUmLTzxFkApPSJcEDEW+6LRGRR8mRfmWiERbhi5FYSNoRV4QBUa6plRF2iEIRR8plEZipsBGVwrnRewtwkSQhklFAR7PRCG/h0SrYkBGd3jRRN+Qq0V2iUdG3KexRdF/UkUAC8FF0z3bROzbBUXqbZ1EVrvGREiKH0WAkT5Ff4PVRxmh7kYvwTpFANY/RYTBrEQ8oypF5UOeRUsPpESQxC1GpeavRK0bpkUw8yZFZn3LRG51EUXydqhEpMjMRsBWXEYnLPxErWESRYz/n0RtWMNE9zW2RGVZ1EUNKCtGAo+rRWOoOEUsfqBE6FY3RSWUj0SUTCZFH2BVR3y380YtxpdFgRDKRSC+K0UU199Ez1wHRa60oka8xRlG9XGmRex7BUWmtZ5F1mmoRoXNHUWZhi1GkLHWRN5LnUXyLZhETYF8RSDBwkV4l+5EFU+ZRbsWgkV+b8pFWjOIR014LUeCotRFPOoQRhGa4EU/JLFEThawREKFB0YId51FL66tRHnq4Ef9WwhG25O7RcQxDkV50AxF7bnYRqmSQEWoqMBE6R4JRRcApkZ7kzBFFjh3Rfj9JUaAkapEB/UkRXqUrkTaneZFFYJQRUXclUSYX5xEZFjqRLoeckY00hdGaMAaRVfmB0VOSwVFm0iqSMGYM0ivsLNElSlARRlDK0fEh/pFZcSTROrXFUVOXQlF/pcBRcY2pkS6ZMVEzK8ORR2mc0WVUjJFkiGfREKQpUT/NZBFHwa9RsULBEeRHkxGuti2RE3mqUSPNotFQhYFRepkPUZnmXFFOO8YRer+hUUdeOpEtRS/REGhkURTxKdF+bDpRPptdEXXzMJE8OyUROtTqERlgVZFpgyiRWilzETaSrZE2PdERYwEVkYdEsVE3pOhRVnL20T8JApFx3OxRUGAQkWZD+xFGUPkRA40KkX99ytFurT7RL3XIUVyv/hEIGqWRaJHp0RUobtEI0L9REUDgEgnN9VEVhajRKi39Efjec9EcfuIR3fkP0VFYIVGj4cgRTFz30SzNMREWZOPRVJN60RdWK9EIlxHRhhQRUXAAMJEd7HxRPDPVkYfzCVFUAfoRCXwvESwMgxGYcwDRUGI/UQcYjZF7TbiRHkq1UXYwQFFs2+yREe7dEWRdgJFw9ogRcWExkSVw4xE00mgRe9J3URXiZhEgYm2RDfdu0SjB3FFiijbRN7PHkYznpZFshIWRTdHoEQ7+elE/X+QRNurK0WcsLZEFFV2RPOqlkQhPYJEQD7TRzgzNkcxH8NGgnqTROnG+EWo07tFVOALRUyDE0XWAOtEyxcSRVW1mkQBFYlE5Ch9RU/4r0S1We1FwnK5ROFyYkUStutHt4lZR96C6kZ1uBlF93QdRc8980XVBwNFeOi/RLoLVEV5L51E2n2/ROKZwkWR3JxF9b4lRZdgl0Qf+hpFuQLuRW7ZX0VekKZEdDXKRKnuoEQxwrNF5eETRWGbEkVdd/BEpbq3RM2rMEV4sllF5knLRIAhEUYqPstFqHhwRcWuCUXzPn9FuKiJRNtj5EQ0srZEByANRyy6dUZ6pi5GnF6RRbtXWkVjN4hEqQrtRA4B0kTvHzNFhHAwRRKNokTc3n9FQp4jRXr9j0WoZoRFFYeHRFGx/kZq6GNGjX8ERiuijUTfaRBFyc+hRHc7S0VUJKRFL+PoRPHfu0SaSx9J7EGFRP/i8UhCA31IzAC0R6mCiUZVKYJF6p8cRhmGC0WGY4tFFiqPRQuqwkS5KEZHAEftRmH7fUYUYj1FlxsYRtHMpUVH2KpEdb6BRd02K0foAyFHSvdgRjGe0kUKUjJF4dA5Redp00SuA6xE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - ekc+JnrAckCYnYf4D8FyQM4T3oFuwXJAv/JDmVTCckAnzNFyp8JyQIzkjvw6w3JAqpnrwajDckC4TbXqxMRyQNJ7AasByHJA3DgHp1vNckBQ7kcbRNJyQJKm8Hqu0nJAu1smDrbTckDMTFd/zt9yQM2oX31O4XJAFkYgAFDickB+kIFSkOJyQFiW1jcl43JA8pl6ZMrxckC3DW+BffJyQGZymjm283JAnAk9x8L/ckAbUbb5+gBzQGOVn6qOAXNAIUFZmzwCc0AOaahkzwJzQAMFOx/7A3NAXOaltrwSc0CzJio9AhRzQHoVHhj3F3NAyHW7Inofc0BsiBVtoSBzQIpmf2M5IXNACGgpjWUhc0ABrJQIyyJzQMahQMLPJHNAcR6zKk0xc0DWqgRuIDJzQAwWEfYMM3NAZeTaHPozc0A5IuusuD9zQPXiK4zlQHNAXnl2vXlBc0D0JpcZJUJzQJaZKou7QnNAmmwAAXtEc0Dgi86Im1FzQJ4jeAmkU3NA4KesdodUc0AIDmZPjmBzQKopb0b8YnNADFdyXDhjc0AoXvEnLG1zQG5/DTVRcnNALAf1PWpyc0CUDxRYhnJzQLzv/BcHc3NA6MJbvEt1c0AuVFPszndzQGXKHuLjd3NAfst17zd9c0Ce/PQveYBzQGpr+eGlgHNA7qCd6QuBc0DmATeHXIJzQJwCm7GkgnNAWhSyxP+Cc0BeTmPVWIhzQPq1tJWLkHNAN3q6i02Sc0AArLvDzJNzQEest1dglHNA4sqvCviUc0CKG3xouaBzQFUQrAeVoXNAKkKbvVqic0AyRWog5qJzQCa0E70GpXNAkGakTWGrc0BcVnUFRrJzQHXib8q1s3NA8UdieA60c0BBkJ2C+cBzQFZl+ATPwnNASh9bXCjDc0A10fDP2NFzQD3hFwPi1HNAVyRpRqTgc0BalaR5OeFzQAI3Xnpk4XNAuEMHGBLjc0ByZ148NvRzQJykEOOP9HNA7tkt6cz3c0AyYaE04gB0QJr4u3V5AXRALD33aqQBdEAAHOVzdhF0QGKoR4qJEXRAHLz+A00TdEDCCcO4dxR0QKYIBXQ2G3RALFrNw7ohdEBjqQQ3VzB0QMKm427iN3RAPXLCYD09dEBYsqfhmkJ0QGBSmDz4VHRAHIcSqI1VdECWC5t03Fd0QHgA2mE1XXRA6fTfT7lgdECFkgrdCGJ0QCJsjyuPYnRA0MxfoktkdEAG7r8h5md0QK6+Pk8jcHRAB9exskFxdEDZ3QEcOnN0QIDG4a+gdHRAStoImkSAdEAiSMic94B0QH6l3T5PgXRAwClQXieDdEDEpslyFpB0QIoKP4NTk3RAfBB+e+6fdEDMoW8Go6B0QIasKdDPoHRA0lU/dLeidECw/w49DqN0QDu9VSAKsHRAbjGOPMOwdEDTY/BLALJ0QKS+JUBvsnRAeoxCLMq3dECLNpWSEr10QLyupPgkvXRAzTNF9Ny/dEAs0gzIdcF0QEBDqlO4xHRAZKUYv/3OdEAeLLov4dN0QJy9c0J31HRADgPJS83UdEAQpdK029d0QP5oH1u34XRAl2bskYzzdEBpOXG7zwB1QE7BUpRdAnVA56hGa/MCdUB+e6DdmAN1QJoJDmxqEnVAS82g9iMUdUB2M8c+nSJ1QJZn6X6qMnVAzswiR841dUAEQgy77k91QK5ufyxOVHVAnd+ug3dVdUAa0gmjEWB1QO0cWNs3YXVANsFSOXZydUCOn1uWjXR1QOeSHeB5gXVA4O/qBq6BdUAgI/e2EIN1QLi6rMymg3VAqqbGc5iEdUAuBf83DJN1QHB9/Gizk3VAJgfIkBObdUA8vxoclKB1QAFW8+K2oXVA5BUejhqjdUAqOvilzLJ1QBQ/e6tkwXVAfHBAIvnBdUBGMYOe18J1QH5dXGNFzXVAGG6tC6XSdUD0HkDozNN1QMrgbbvk33VA/lIGeQ/hdUDizbXPCOJ1QOxXhOxM7XVAACq0mKbydUDqsdj0OfN1QPzkvO2z83VAQIjV0u73dUDamdK/A/h1QAmLtM9G/XVAFmp3P0kCdkAAXDqH0QN2QBxqJP9NFHZA42fAu4gidkCs2kpgkCR2QD+JXhlLK3ZAigMblR8xdkACtHHbkzJ2QEhimnxUM3ZAHYqtlBxBdkCAfzJ9mEJ2QHSiiubIQnZAjATRB6ZDdkBrAQEzeUR2QHzsa0LIUHZAXFX5ZBNRdkASbdF6zVR2QERTpcNQY3ZAaXgWWdlkdkCgztZzWmh2QPjCJniQg3ZAJXh+QrawdkCKBrZawrJ2QChGD6V5s3ZA6N62Rw20dkDJMaDF0rh2QBZVk1cbxHZALxPcJ8/OdkD2lmWJkPN2QFf9jvczAndAAPR98VANd0BhL/7LARJ3QMjLRbOQEndAPgkWIBAid0C81UstvSN3QO7WUJ6kM3dAWNRCPA01d0Cz8OPdIz53QOsNw2+dQXdAbpW0HxtFd0DUA1YQS1F3QI6xvWuTUXdAn2vtwClVd0Dw7imC1lp3QLbYFQn/WndAKeQrK5Bhd0DHBzTv3WJ3QE87Nm3QY3dAcqMGLTpld0AgUaCpJ293QDZNa3R4gndAmg6ysB+Sd0C12kh0TJR3QPA5e/dXsndAils0OFm2d0CI2kP3y913QI544RE97ndAvM7QUznyd0C+Th7UN/Z3QLyJyMh++HdABikkjk0DeEBu0oR9byJ4QBjP3SaLI3hAlFCMIL8jeEC+sKrw0SN4QGIMt8INQnhA6lkltRFEeEAs4DZqekV4QDJRi4TKUXhAQF9B2JVSeEBav/eQH1R4QEaXeZSJVXhApBd1x+1XeECaS/teSl14QP3sMi76YHhA1JE/8rdheEDWYcc+uWJ4QPJsOreZY3hAlkxtpS50eEBWzHWLPHR4QHLIwNlcdHhAP8WHoIt0eEByc/uE4XR4QMIVbwukgXhA/Gs86JmEeEB+LSYul5F4QNx91a2nlHhAVnshtM7AeECiY3vBt9R4QAftfJ9P83hAep8U5QL0eECszOT4jPV4QFAYnb96A3lAnCvsO5wFeUCAiIhysCh5QDvEcwzwL3lA45pLmSUzeUCqMnqrWjZ5QFgC6zmROXlAjoADnftDeUAHfP9kClR5QKSczmzMVHlABGFa7EZzeUAyOV1d9oF5QFoWLD9xjXlAfgsgncuSeUBmv49fxZt5QHCEYRDAsnlAHrJNPkLUeUA+s1JUzNV5QAzbknlP5HlA/3MbkPkFekD33PJBpyN6QGxM1wQ8JHpA5il1dww1ekADQCdxGkV6QFoX/X/NS3pABqZN9ClVekBPIsG5VF56QARrXqM/Y3pAWu4DJrJjekAySTsQjXJ6QDbsHpUAlHpAgJvKSwecekDW/nc3DrZ6QHp+pXItw3pAlk4I2PvDekDyx3M2G8Z6QKJ7kBINyHpA1BPtmWfNekAMEonPxNJ6QKyNCrfX03pAPtZkXg/YekBibD4TZuF6QMbQQ/A47npAxHyCFxfxekACOO/0SfN6QKI2PXCk+HpA9mjmuQH+ekDv0sJWWgN7QJ3of6d2A3tAxKeMKX0Ee0D26wo7KA57QHFSwO3EEntAsg1n8EwVe0C6dzq+HBh7QKgLLdJZJXtAiKEDTVIwe0B6Sqc78k17QCff47diUntAaYEC1Qxke0A0r4ys/4x7QKnnALnejXtA/t3oLe2Qe0BGQVlHI5V7QATxxvXOnXtAqvztlCije0AkZmqvgKh7QG5WhCrJrXtArDJ/w+Wte0AGlb9YJLN7QBHjm1Z1xntAcGqSDiLce0BPXlNxAuR7QFI4jTMp5HtAjhZ27ZXxe0DqTAlNGfN7QHqS4GBu83tADLOFQIz1e0Bj+zNzdvt7QBKgriiTAXxA8DXxptoBfEAEipS9ZwR8QIQ0/k+ZBXxA2A2SDNARfEAXSpY55xt8QMmejcvsI3xAYkLrj+UtfEB38K9aPzN8QID08HqeOHxAghWitcxBfEDcgjjDUkh8QPmIsn6rTXxAmuornfVSfEBkAYXNTlh8QJKMBvusXXxArMhsUimXfEDa/dI4W5l8QIAgb/WynnxAEscD/T2ifEDmbCIEvrJ8QPb3zkvM1XxAzsY5m1fifEDPqMVyEeN8QOnpN/Jr6HxAuDXe9cPtfEDMlQQHGvJ8QDX5gT9V8nxAYtCgiwICfUAYN7xBSwJ9QIFmQBJUBH1AZtPy30USfUDoVyR1bRN9QGCnihWwG31AFjcWoSYgfUCKxJCDPiJ9QOUa1Ve1I31AjBZTi6ArfUBQmYzYlY19QDbzFHPvkn1AlxTKi0yYfUCKh+8X7aJ9QPDwn1Urw31AsrHxLdbifUAeRluqjPV9QKVnABI3EH5ADn+MBu8dfkBe4GPXSSN+QJK4XH2OKH5ASD/d3KoofkB8PcCl8y1+QKFcaYu+S35AhGU/ostTfkAMcP47jVV+QO6oZfCVeH5AHMxGmbd7fkBBIwslvYN+QJCfOfrHiH5A2CdWzsuKfkBGo8eUw4t+QDUxjNrPkn5AGwyLasmTfkAu7wtns7d+QPSByGu1u35A4vwJlk7jfkAeAWD9IwB/QEbcbAiSA39AKAzELegRf0CbRCwM7Rl/QCZi5UyUKH9ADIYWbLdxf0DAxm6p43d/QBZjo0Pne39AcxKlr+t/f0DBRYowtIF/QPhCYy6lg39AklTYG+2Df0Du1pIW84d/QEgksLNhkX9AHXufthOTf0CquaWqmJN/QCX4VCdtmH9AtNnNa76df0CZvtZZXaF/QKcWmitXsX9Arlrl5M7Lf0DWWZIt1NN/QHgE1Sze4n9A7H1qFj/of0CCjFndmu1/QN/y26TRB4BACqUAZxgqgEAn2AEpFi6AQPk9CFtDMoBA3OTMqEY2gED3rkH07kiAQMhRYgHnUIBAGqNDQRRRgEDO+1ej6FiAQJKkIooOWYBASBAYgkhagEAemb7MN16AQIIM7ugLYYBAollEOcVmgECx9C+fc2mAQMDhuXzwbYBA6nmsZCZvgEAYqu4B9HGAQFE1k+kpf4BAHpJ0ah6PgEDD5xPoF5SAQAGA0Ykcl4BAZ6IJwYWpgEAy9uy2FK+AQMTWtOqur4BAzAzOOG6wgECsYaBrUsGAQCjwUhkgyIBAQvtZg1PJgECYu2UaqMyAQIgFvYcHz4BAWIndvkzRgEBegd4oS9mAQHJJ/lBz2YBA7AxsgSDcgECb91CrQ+GAQJLDgRNX4YBAX2zlsPXogEDCgTM/QemAQJrRcG5P6YBAsREyhknvgEBotH0JP/OAQOogebI//4BAuKUfZD8HgUCKmL+rZQmBQHgnUWo9D4FAIewipNMXgUBRJ0XGUh2BQMqG5300H4FAAfjeAzQngUAGf1kUuC+BQKJkZjW9MYFAlAx+3Ck/gUD8IuVHIUKBQKw69gPxRYFA3uJmO+NJgUDwqVtoJkqBQLcS3kyqVIFAJDm6FqVdgUB54U6OqGGBQJhNIjxbboFAFGeNSmF/gUBmLJyOVY+BQOEZCCxVl4FAWLkmEeihgUBzPgVp1aWBQMgArcjXpoFAP+q5FoKpgUD5zmpO2qmBQJDOyyHsqYFApGAnaEqvgUCv6doKrcmBQHZv5cuxzYFAu5YzSPfRgUCqXzoEftOBQDxvYbWC24FANjIfiLURgkCY/tTMtxWCQEOfKYjYGIJAaBZYA9cggkAYyfMX0iiCQMWAOS6iKYJAXG6pAqAwgkBSm7Kv6DmCQB6vgAfqPYJAVkiKdiREgkDyCoxHfUmCQLxScSMkWIJAymjl155bgkA2dq8lOl2CQFiBn1kAZoJAutAC44FpgkCA8NHOLGyCQPNcT7c7bYJAMo5HQ0OJgkBOoYfHQ5GCQBY0Is08mYJAmGBFAA6hgkA9Xac2OqGCQCzeGzYOqYJAYCi53zSpgkD0QweiTamCQJ3IQVkHsYJA5FSv2vm5gkD6UPAIzc2CQKSNJtvO0YJAr8p6lf/1gkAqPjIkAvqCQJ6NA2d/EINANHvcjnkRg0DSc1SIehmDQFIMdOtyIYNAYkdaFw0mg0Csn8bHcCmDQMyXwzIVLoNAbi1RaWoxg0Cgm0QNfDGDQKyM+I3cQYNAoPtLPeBFg0AKmDY0WaCDQDSp7jm/wYNArI5mesPFg0Ct8Tk5tsmDQJk67Cfx6YNA2KCvhZT4g0DEcBc+ngWEQPTSNiECEoRAusGhSgMuhEDv0nbkBDKEQFpiuT9wMoRAnP07MP41hEAUiVktcjaEQElzCeiyPYRAxZTKh/9ohEDc6SWq/nCEQCp8Koj2eIRAeIWlCnV6hECA8EWUcaKEQOhCFU4epYRAMZaabMunhEC21z0X5q2EQA0+5MXosYRAdsG/pFOyhEADAizd3rWEQHhEAshWtoRAdol0aea5hEDqzbRhVbqEQOYjzBkXzYRAyTosPWrZhED8YQL2aeGEQMSPbQpj6YRAL8v2NDbxhEAEPFo5YvGEQK57OtO+94RAIW3XMej3hEB28lNYNfmEQPAS5QZa+YRA5H0JWWz6hEBDAqOylvqEQFowhyVC/YRAH/B9DLwlhUAFNpqpwCmFQA4uW903MoVA2Fs1iTo2hUC+9aOvoGGFQPR1hR6gaYVA1HIJvphxhUDcmFVytXOFQG3nqVmaeYVAcmOti/2KhUCgEdGN2KGFQLvZr31HpoVAUG7pSnjihUAu+9HNllWGQILfwT1tkoZAahTIQie5hkBSR0QifRKHQB7H6EzqEodAWpXWrH8Wh0BewCO8fxqHQOpKPs+BHodA8dzvtoEih0D4tcgEgCaHQJ3RJTWRKYdAoPcxB5Axh0AKZED3iTmHQFT/HqxbQYdAmGE104lBh0CkAzMdj36HQCIfKmOSgodAIi2YhpSGh0CfL6bwlYqHQJpkXWTHsYdAAOdixca5h0DYOvD4db6HQBYId1rBwYdAYzsEznAGiEDI/WVlcwqIQFCj+4l0DohAfgrfWXcSiEA0Ur+M95GIQAjDvef6lYhAME7QuvadiEAcNQwgdbKIQA== + KBZXds7jZUBML328ejFwQDtMc7KVAnNA - + - uEiARKILdERZYqJF9kyaRKC4FkfFIlZF6tRAR8RGpkSQb5JGGx0pRRqgAkeUvYlEdLs1RXF/7kTpc4REDzt6RYn49UQZx5VEIYpZReR9TkWc7J5EKcr8RJi1hUS7dotE3yXBROewh0ViFhZHxgMlRoxoWkVw04xEcue0RIk460TCW7lGPHJ4RCKoakTZZJpFveG3RI3ykEQVRH9EQBKKRKumoETXQpBEDGlqRcnUpUQaRItE6zbgRSuAY0R7K0FFkht2RK2BlkRCfsRFckHWRMcsYUckqdlE5DmQRM39rEbjU4lEUTAERRymEUXlUSNFviNHRFkK6UbGtq9Et7+oREgv7kQ6soREpiObRZCPmURje9lEZbo2RzJhmUTNA6ZEz4omRjVmqEX1M4tE2QDJRagTxET1kbpEJ4+3RMsutETB1RFFfFsIRUuF4ETtqTVFrmcJRZuKDkVCJIZFk1OVRL1l2kX3hoVEOFODRFuB1kRmO3hEv5okRZW1tET4um1G4Y2PRKVVmEQdeKFEwFIyReovwkRsH9lER+mqRIh6U0TuGK1FZ+EtRVeE7ES1p3ZEj3iYRFCwYUglefBHNJdjRXRCFUU73f9Gv3+NRMbGtUXnEVlFCroVR+uDdUVWH2dEguSRRa8KIkVq8apF3ey9RO9ipEV8P6REeWySReplhkT2R7NEVdRmRND+pUTsA99E6EyJRKJHqESDqX9G6H3aRceDgkRN4HhEGSplRFJJsESf6Q1FT+yQRKu5vkSvjXZEIqgnRSkoaUTp/QVFfpK4RQGvvURvr2xGKRoERZketkRI86dEO0cARU2rsEUliGxEdfsgRTvtqUR8vX1EEyUNRZQAzUTncD9F6yiCRBlOI0byrRZFo2SKRasOvkRvy1NG3yPIRDWfc0eKustEp2JwRkdHn0TyUfhEKhDLRNQH5EVgKYlETmADRe8sbER6WPFECRKiRNhFpETQKZ1ETSOaRPs3FUXvLc5GjP1jRpOy1kTDSMRE4dsiRR69pkTZMYdEYBC0Re2D+US36rxEAY/GRXSYv0UCGzpG9gqkRkdvf0RgASNF0N59RWjUn0TxlRVFTFOMRLOjcEVtM4VEKT8zReAtSUbzlKtF1cu8RGn9WkST9IFFyw2vRJ0L0UT+DZJFBICARRG870TIUKJEbF1fRZsqGEWyvhBFg/UxRdYWikZtyodF5E9CRYCR20SI47FFNGzkR1jRA0USw7FGdoa7Rhy6dkX9tHFGT5UQRT9klkUjbcZE7ckERb/WgEQUaCVFwJ2BRE6gdUV7fSxFsBC8RPEacUTrNAtFn4CvRNX8k0SjPh5FknP2RNHTtUTVqYBEETPHRIfnFEV8GoVEZr3rRPJLzkQ8tVpEQnfHRpkWGUb0669FpuuQRYHbjUXPsOtEzsQnRRAhhkThWAtFKIowRUPcsURF31hE3VT4RByRtkRAe+JE01JLSZvs40RfEyxFD79USCdcLkWHspxG1CrtRDylTkWmdo9EyRiHRUSDFEYgKwNFri3PRDN/jUTRnE9GzNuSRkRGEUaKFBlFQbouRpCy3USoNqtF5/qCRJBMjUTsklxGPrGQRTLDeUTp/ilFvNYHRtAW10Tc5utEDMe3RF9rBEWpxZtEu9LbR42jzEZDTqhEWSn/RGj1qESkeYtEOlGcRPFUzkQJz51F7ohDRV3En0XCZ61EdgObRAZTrUQmSi1GOKayRX318ETLhrNE8veMRMS86URO1OZESECKRM35uEZPZlBG5d+JRRMFj0RI/ZFE5rHQRBRzzER9YQBGMCwkRhB8mkUo7ilFYpFkRHkdkUS/Rm9EQtvFRKWF7EQwwXlE+VyLRP+TL0X4u05HTRDSRiZq+0Xw1yhFOAa/REycgkS/mJ9Eg0w/RqHZtUTsUMNFxzmARZNcqEQfD81F5jagRkwIRkVUS55EMDhIRpFQBkVhbZVF3uNcRQSCqkVARO1EJ9DfRVnWmEWhfqtEVNW1RWNqfUfsdAZHtGIjRv3YxEVE6dxEtYaERPLyokXAm25FyIyfRLwZwkRTU4lE3yfhR1j57EX64b5FRTWNRMvwkEStHr9G6MXJRBStr0Y3ObZEsjhxRbGI8UR9owFGBT1uRKNozEQb0yJFbm2ERLFekkXaoKZFBc7zROQVakRAWIVErZiIREaAjERdKWRE/kONRq10IEbmcRlFWIbqRJH0A0UubeREla+iRHwbyETdlq9Ei/2kSIfFM0hB7sFE/KcFRdBVOUdVTaNEPfXpRanN3kSJ/WREei6LREbFjkT7UfdEVP+dRQr3q0Q9nbFE//iuRTA11Ea4+L1GzTA3Ru/cmkRI+GZEiwFxRdCSmkRqrhBG57j8RLlPC0XVl5ZEYXaXRCLZQkXgqfVEjT+oRRrEaUWb1SpF311VRXrdGEW1Ao1EUfVcRXT/oESNXYRFlySORPdV/ESiDTVFsSVhRnpfy0TQ06VF7/jERKBDF0UM+pBEjjLWRashOEV/brBFqgkfRTyhUkXGF59EjkydRc9rWkSy3tpE0cDnRPfh8EQn5sdEYnPvRFy5fEiOLuFEn1vvR+HVlkQBuIdEIaKFR9z3hka7Wj5FthvoRFoBZUVdpZdE9ujLRDGzqUTlc7lE3MjuRIlZn0TsxS5Gxd6DRaWHvkSyEBVFhJ1jRG50k0TgGIFGaMaFRdtjb0Rl8QVF6JESRanxrkXqx3FEmmasRGExoUQq03ZEpXxRRWoI30Q4Z4ZEor+TRBiqzUV5iNREVHRsRV2lI0W7qTxFzkYERXM2okQGCaNEDReuRXfdGUXNi6JEUON9RA3cokSRgFREW+Z7RbYGB0XrAzhGQm9kRVxZ5UTxsGtEHidfREQk40Ssw7VEEFAQRbd/cEQ/58hEBVGxRJPLk0SJnldEOI/KRJAojUSpD55Er2/JR0SPH0csxsRGIDDIRSeuwEVuyftETscaRc0OiURagcRE+3cCRRdFbEW/LrBEeuOXRV/06kTrHp1Ep9XOR4obTUck3dZGQx4URc+h60X7WIJER83hRAd1kEQ84lRFRI6fRNhyq0R1dT9GvXCpRQCv0ERgJKNEyPadRG/dfUT0/yRFj0yhRR3VD0Ud5RxFrRN1RGrNoUTAfHlEmnq8RZRoEkWy8uBEkTEGRfSCYEXdLYhFAQMVRZfCp0bm4EdG7lI2RYcQbkVfpzpF/RQsRTt2gERWYbdECjkUR8n9e0ZGgxlGzt5dRSA4i0W9rAVFKpDVRJuG80Q0poFEuU+MRNHng0RbHtdECJsxRTSYGEUS25xFj3D1RM2DCUf8N2RGNu8TRsfGn0SrnXJFq47URFVbo0TxpIpE2z4JRUNlg0QHeJpE9c+yRHrN2kjyAHFEHO+hSN3ZKUhMYDBHr8Y/Rnz5N0UDygJGSKixRbl1gkVsbYVEpZNjRDoVI0dy4gFHmQI2RjjpOUVgHAVGVZzIRRpAcUTMbGFFCTlnR4FtLUelaaRG0iyeRcSEMUU8MdlEfSaNREgEoEQ= + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - KTqT5gvBckC47MAxcMFyQKrZlp9PwnJA6q1ZG6jCckAsqt56O8NyQIe+0FSow3JAUqkcbAHIckB/7TUwWs1yQD7JEc5D0nJAzqjqDqTSckDWkYhEtdNyQKgjlT3Q33JANp108bngckAKGcJkTeFyQC4IdmpP4nJA9eSMa5LickBGM6UBJeNyQJ4ybQTL8XJAAq/c4HzyckBxxhicqfNyQNbNadjC/3JAaEPl62MAc0BcdkX09wBzQPpICyWOAXNAkHFS3TsCc0CCxkjp0AJzQCptF9X6A3NAASZz86cKc0CBltS5DRJzQGvyJzG9EnNAZm3R6/oTc0CN65yd8hdzQJJwkdR3H3NAABNo36Mgc0DO4Qg9OSFzQEANTIkOI3NA0lIaxM4kc0CeAmDcRjFzQIZJQxYNM3NA3GyyJTc0c0AyfBTG4kBzQHGvETJ4QXNAPicaNiZCc0BgA/EzukJzQO5yxcN5RHNAfolMyqJTc0D3KvPgh1RzQGSaa3iIYHNAYgaCZvtic0BSguzYOWNzQEIQ1j4sbXNAF/jZ8klxc0C+E2LLTnJzQIioKKRpcnNAQZQV5oVyc0BzssTGB3NzQKhEcV64dHNA4nuBXU11c0AanbuM0HdzQPR++2bfd3NAnz9qpyh9c0DNANdTeYBzQLh6bG4NgXNA7ANQRl6Cc0BE89TqAYNzQP6T0+eHkHNAfLBjkk2Sc0BIrVudzpNzQFYLYBlklHNAIsGcMviUc0Ce6bWiuKBzQJ92s1JNoXNA3I4x4Vuic0CSV+U656JzQN4avLMEpXNA3WenYV6rc0BAOg4L2LBzQKCHQPi2s3NABrPeqA20c0A9XLK5oLRzQBbV+Kj6wHNA9oBiDTvCc0BF0Fg80MJzQO6KuV8lw3NAskqHYdjRc0Ccmqnd3dJzQLVomqv403NAPtLXZOLUc0Ac1xTfOeFzQNqNGPhi4XNA90BICIzhc0AiM2dRDuNzQBS0K0h+43NAovMYyjj0c0AqqngcjfRzQAOC3DfO93NA2hE4zOAAdEBKtURreQF0QApl4YbjA3RArnIsnE4TdEBZx9JZeBR0QATUc541G3RAQlgyJbohdEBHY38BZiJ0QB4vnwhWMHRAwD3+RF0zdECAYHXQ4Td0QJ5M2CU9PXRAWR4vwVJAdECO8X4lpkJ0QKgJ/U75VHRAu4lU2YtVdEBn9T9F3Fd0QDpPL4c1XXRAhgb9SblgdEBYX3XPB2J0QPmOolCOYnRAz7Xeo+tndEA83sgkI3B0QFSNRrhBcXRAFIMGITpzdECyaNvnN3V0QHL3hetEgHRAcLCiXveAdEACMnxZToF0QAPrvYMmg3RAMqdkVEaDdEBSopmJFZB0QGj3531OkHRAXr6tdbqSdECG+3yzUJN0QEnZOsLun3RAAtWkADSgdECYyVsh0KB0QNQjjik5oXRAoo1OzLyidECJqdI+DqN0QBteagD5r3RAVhL+TgqwdEAgYUQb/7F0QCqC9ppwsnRAGxxwk8m3dEAWJa2J4sB0QPruuQp5wXRAePJqG2zCdECXQJP5uMR0QBnGyj3P1HRA3g+SYbjhdEDURy8+S+h0QBxwXzuN83RAyXay06MAdUAC1hSyzgB1QFmXohdjAXVAPCHMnl0CdUAkZ8488gJ1QC/atij3BHVAKkEF1GoSdUBa6kEDIxR1QMhLVBueInVAYtbVIc01dUAcpznn+U91QGY1EdOCUXVAieIIOE1UdUDuDKO9d1V1QAxP4FIKYHVAMAsD3DdhdUDku4N6Z2N1QHCu03B4cnVAbPOzOo50dUBw/wK15IB1QNA1CA95gXVA+ikrQq2BdUDMdeG8E4N1QJMy77qmg3VA+2RUP5uEdUCz46FjDJN1QHiVZB+zk3VAQZ2hURObdUDzGr7zmKB1QAKUP2oZo3VAXJI65MyydUAeZXe/9sF1QKRfGyNHzXVAPcaofszTdUDQNKV76d91QBAoXKEH4nVAaddGiUztdUBG+EAsp/J1QF7/ErG083VA7t1RFAP4dUCqNwTdSAJ2QJ2PdyLQA3ZAisiXLU8UdkAQDuUnDBZ2QIrHY4SIInZAseCbO5AkdkAulOgqSyt2QMDH7L8fMXZAER73t5MydkAIB/EDUzN2QEIep5OeNHZA3k6F4R1BdkAABIeXyUJ2QIIWMg2mQ3ZA7glzUHlEdkD2b98ozFB2QOSFbagQUXZAUL0A7s1UdkDwiGceUWN2QETpbWzcZHZAXtin61BrdkC5XYjnsm12QDG0Q5UWc3ZA/ww/3JGDdkAAIWC9uZN2QDoIF0MRoXZAeL9L8LawdkC6pC+ewLJ2QCNu5zx6s3ZASvI6Pg20dkAML1c3r7R2QBpEnWfRuHZAvqbH8c/CdkC6HHKqzs52QAsn9UOR83ZADPz1PzMCd0AqjxhMUQ13QK4FEpgBEndA6UP9+KUSd0CyC7b3DyJ3QINM0mh2IndAPvhJib8id0CAZKV4vSN3QH2cNcymLXdAlF4fJKUzd0C2so1pDTV3QP7s2JMlPndA7E5zPZ1Bd0DtLdCEG0V3QBY358xLUXdAYC/AXZJRd0BS84sYKlV3QAKzbmnUWndAhjo+LI9hd0DiAgLr0GN3QKCj5+Anb3dAkFA9bXiCd0BM2RQ8HpJ3QODr/N1LlHdAC/Mb1iWad0CGX7+Lyt13QM+KG2wn43dA8Dlu3j3ud0BTzBBdUvJ3QHyYOj1OA3hA+iHd2k0VeEC2D9kEbyJ4QLPyNriNI3hA1I9EENQjeEAQuVFyEkR4QIxHd6R6RXhAnKDqD8tReECwvh4RlVJ4QHYkW3QeVHhA5q/O44lVeEDhTf7J7ld4QNZncbpLXXhAsDLbSvlgeECicL+utmF4QCTQIAe4YnhAwlQ1tmd0eECmbM/vi3R4QFq9WMyjgXhAMOvHBJqEeEAOcsTXl5F4QBh7M46nlHhA5pvUHdezeEDmdi5azMB4QMxSi9y31HhAJ1Hk8AH0eEBgomfKjfV4QFQVcxx8A3lAFvtetQ4EeUBQ13RomgV5QJxTJGblDXlAFuZUM+oTeUCaLHX0vSN5QCyd7zD5I3lA/tgrlgkueUAMTi8p8C95QPSFW3smM3lACgAxxV42eUCH4c4S4jh5QMwdLeX7Q3lA+mSbTJRTeUAkSjF6CFR5QOVoEkjNVHlANGptcnGNeUDCe4KjypJ5QATtzq4nmHlAiobtqcKbeUBZVuH9OqJ5QB7GmMTIo3lANhQeIcGyeUCXnEFNQtR5QCYUGovL1XlAckA4t1LkeUDaSEItmPB5QLyu7OXrA3pAUPvNU/kFekCqRw45XBt6QAgnRA+nI3pAayp/nEMyekDAIgKWDDV6QDDMK/YvN3pABgKwmudDekBKyd3BGkV6QNApBu3QS3pA3PVHWyhVekC5HY3JjHJ6QFrzGgAheXpAz1lo1wCUekCdDV/8CJx6QKOOOm0NtnpANjc1YfvDekCk7X3oF8Z6QEcbvpsOyHpA4ksVOVLLekC2HOWbaM16QFDiCmit0npAJgTeycTSekB5ophH19N6QEal2nsc2HpA9o6LFWfhekAWMWeYNe56QIaXPCca8XpApArSVUvzekDQqpRkpPh6QA5kNgXv/XpAN4eWNk4De0Ax7BQreQR7QOgKLbEoDntAKHM3y8YSe0CAvTVxTRV7QMU6iZccGHtAXs47NXwde0BOnBrtKCR7QA1thXlZJXtA3isaBg1De0BkmqIc8k17QITa0gldUntAwp3JXAtke0DKXkcNAY17QLz/k04llXtAQo09VM+de0Ae5TxnKKN7QHoFDDEwpXtAbhkRE2qoe0Da0szohKh7QOQG47PFrXtAgmfrHuGte0BEgBPVJrN7QKhnVx57xntAeAcuZCXSe0CEbKkRItx7QCeHQIMp5HtAE3aMQDDse0Dc2sR5lvF7QLCnAgkb83tAKeUnOW/ze0AGGv+LjPV7QH5GhAsh+HtA6uoq63X7e0C9xLXQ2gF8QFZtGyX7AXxAhtOZBGYEfEA2238wmgV8QIasJOmLEXxApOVOcdERfEC6Te6C6Rt8QG7Rb/3LIXxAXlZGZfAjfEBuBsph5i18QKYEXk4/M3xA7BmieM1BfEDbBGbLUUh8QEZksBKsTXxA5v38bdxRfEBz5ud6A1N8QEGqLXtOWHxAVRDKtqhdfEBS05TrLHF8QCnoyANZmXxAhoJ6BbSefECClCL+P6J8QByVGPALpHxAwPZ1EcGyfEAco7MSy9V8QDT73NxX4nxAKrB5QhDjfEBGmDeyauh8QPVu3max7XxAAMXCPRbyfEAY5NFbVfJ8QKjvIxQCAn1AvnygxksCfUA0qKNWUgR9QFIgLsBDEn1A/JOxk20TfUDo3zqSrht9QBweIzg/In1AjGnr/7gjfUBEmnCaoDF9QHDAH8CWjX1AF4RyYu2SfUClT7zjOJh9QOu8/oSpsn1AixPTuNXifUCseOTczvF9QDisaWiR9X1AP0wAnPAdfkCbChwQSCN+QErTqrKkKH5A9JWQQ+stfkDUpigvRjx+QAzXG/XAS35AyHndfYtVfkCQPpjluXF+QGQFx9Fkc35AO2/JYNB4fkADruLJt3t+QEi9BES9g35ACHi7tlOEfkBsXNCuyYp+QLMogSDDi35A2hh/WNKSfkCwaZEOypN+QH5YRqGNsH5ApyuOvbi7fkC0d6+yV8t+QNBCCLC2435A3LTsDk/0fkDeAax4vf9+QEpb7soeAH9AnhTZeZMDf0AKBGuR5xF/QBqWvOQMFH9AcLeJt+wZf0A4Ou77FRx/QM42iQ/DHX9AIyujbdwhf0CccJU1uDt/QC4yvo24cX9AclUx6ON3f0Cl5Q5y53t/QKI+Hdnpf39AXviSg7OBf0A+GWatoIN/QJPB+dbvg39AcqAbLmKRf0CGEKTsp5F/QECt5tAQk39A9pOuXZmTf0CLfsbrXqF/QBmduNPcrX9AJtRFyVixf0BdqwXVzst/QN71GazV039AcT4s6tnbf0BcUwrg8uJ/QFz0JoBD6H9AKto/qZjtf0AWmkOfgBGAQMBi72cXKoBAMrlBEWotgEDMIeuKHS6AQA5rNMhCMoBANOosS+w3gEANU+mqek2AQAq97mLmUIBAbDWIwhNRgEDiwwh77VWAQCD2zS3rWIBAipntog1ZgED6SI8q81mAQLpGo+hHWoBA88kzgjdegEAAO0faxWaAQHvzzFViaYBAJDFitnJpgECVfK/Z8G2AQAZ5ST0qb4BAkuKQyfRxgEBZnPJMKXeAQEHgWc4pf4BAcr3SER2PgEAtec3KGpeAQAmP29ECooBAGSgoB4epgEAvmpPpEa+AQOYZJwNKu4BAjYfxTcu8gEAo4374Nb6AQDLHAH1SwYBA3/hqRyLIgECzM/qMU8mAQN7hfx8Jz4BAGoFiMlTPgEBwg1T9LNGAQOT6hXJM0YBAbA1+qUrZgECIzBjQctmAQH+RY6Ah3IBAEXG/VEThgEB4reou9+iAQERps2dK74BAWjfdlj3zgEAOfr3EP/+AQI1/HFVAB4FADBibcRQMgUCK35r35w2BQI60sDo+D4FATHFX+MUZgUCEDoCS8huBQIiFr7U0H4FAQR0rAbEfgUDSj2YiNieBQAb8OHLzKYFAUYBdIuUtgUAtpwQKLi+BQED4E3q9MYFAWAXPKSg/gUDeq0mNIEKBQHrRD+bzRYFArFW/luNJgUDYzk/MJ0qBQI54JU2QUIFATnuYLaNdgUD7zUOwmG2BQCjsgP9hf4FAsqSZolWPgUDNa3aAV5eBQBy7NuZSn4FAfEdSA+ehgUAokhH91aWBQOaI2zHXpoFATC3o+W6ogUA1Y+WFhKmBQGIXVG3vqYFAPosPmt+tgUAS0FplSq+BQPjZ0zJMt4FAbS+cGa7JgUC0J9kIsc2BQFQKpfx804FARr9TZ4flgUAybqeSi+mBQLTzjfy1EYJACH6QItgYgkAWkr0w1iCCQO40eVjRKIJAmnhcl+c5gkCa9Bds6z2CQGCOF5UXQoJAvS2jetdCgkB4v8qvJUSCQFaoZk7SRoJACOUGHjpNgkCMtJwm3U6CQB4JL7gjWIJAdoYBowxegkD9SEP6nWeCQAIpR9uAaYJA4CsnFNtugkBo+u8moneCQO4exNR8gIJAkOQEpWqEgkC3FPQwQ4mCQFaV2vf3jYJA+XpC9UORgkCuciAjPJmCQLD3uoRUmYJAlF+9UXeegkAQmwI5D6GCQHNupJw8oYJApqrWCQ2pgkCJfEDOM6mCQDkgvwH7uYJAIOmXPczNgkC7GjbB/vWCQEaa39uv+YJA/OedXAP6gkCK6OYpfRCDQP5RicZ5EYNA51SABXoZg0COkE1KciGDQJBJuZsNJoNAvkQowHIpg0AXgJT+DyqDQJKDSl9pMYNAVq0AtbA/g0DoV3V220GDQMC2R7BZoINA1IeOXGy+g0C+VfcYwMGDQJoNco/CxYNAkkQk0rXJg0CcwLzOy8mDQF/UP269zYNAeix7g/Lpg0Do8EpNAhKEQMAfqs4GFoRAPOgXs2EqhEDywp8EAi6EQDiX+MYFMoRAAU4G1nIyhEDO2CWZCjaEQGwB4TJ0NoRAqZ5nenc6hED1Cv9P/2iEQDY/Db39cIRA/v1PXUFyhEBefmVHy3eEQGwaU8X2eIRA7IaDUnh6hECCiX4xcaKEQGBcDAMepYRAo+4O18ynhECuoiXceqqEQFgWFWrmrYRAkjHEAemxhEBrhjxHVLKEQCcKjXC2tYRArqBJzOC1hED4MrOxVbaEQMYV3xLluYRAYnqJ5RXNhED+7mpXxc+EQHGcRGZq2YRAJtmwqmrhhECW/t6OYumEQMIT0yo28YRAu4rX3WHxhECCbHZHOPmEQIqjV9Ft+oRA4HFBry8BhUBYu3feZh6FQK44vRW9JYVATXjuzcAphUBywE1VvS2FQNp2p0c5MoVAcDnRbDs2hUDeq2SjyTeFQIrdCP7WSYVAYu42xw9chUAkDopYoGGFQMgj8umfaYVAlCJA05hxhUCX1GZrsnOFQFen/FKZeYVAxggnCv2KhUAunmj/1qGFQCQTzoqFroVA9nLzU5qShkC44HK8b5aGQIjaDtmcloZASrDZzCW5hkDa4b1irNWGQEQ37SNPEodA7iWoIn0Sh0BsTsPefxaHQDBKfDiAGodA3tT/ZYIeh0CQFzGMgiKHQKYs8RmKJodAWuyxbpEph0DoFipYkjGHQI7xWAyKOYdA82z6e11Bh0AAzXviiUGHQKz+ooGPfodARFHeg5KCh0AY+qetk4aHQPqeWnuXiodAooSo2puOh0CCJ4uzx7GHQPxBGhfJuYdABOeJE3W+h0DpKPqgwMGHQEgMtP9wBohAQrczqXMKiEDmCgvAdQ6IQACe4PhzEohAYiioXnYWiEA4yVyU95GIQEsWGAD9mYhABP9e33OyiEA= - - - - - - FkJqRKT1kEXYt7FEnqgrR91vdUV8trVGUd50RpbsI0XxvA9Hr0OvREU1B0UCcq5EGwK/RFmcpUQSPEZFOJsaRZpwWETqDTNFLOG+RJblZkQ49vNEKHCARLv/yUTC+btESJG0RMyYJka/JgpHWFfFRGcPfkQBJeFFJlF4RfzubUSveLlE2qnXROJ/7Uax07NEZMFoRYBp50SbYFlEgLSMROUankREGlpFV3azRM83DEXoKg1Grd9nRR5CmkTAl5tEWUKtRaCB2kSxYUFHAExiREithUQoOrxEnQKfRmbnlkRdIGlEVR6kRIiuN0WuxVVFgu74RKwE2kY/29lEgMzVRErh30QEpxFFtR8+RyEbcUQJ4Y9EZpcmRifn40Xk1mlEc0mxRc1OoUT3wuFE5rqkRFJdbUQbqSNF1DQWRaYQmkQy7I1E+MiSRNjAGUWrZQ9FQaxRRVH7dESw4rNE5hmDRejYxUUk95pEKZdmROWOk0QbXn9ER5ueRB9QmkS49QNFdGV/RE/KZEZ883REdw8iRQpJo0QGXARFFcu7RH3bl0TA0qlE64iFRKYwlkV244JFkeZuREAZ2URelohE5sSzRLlAHEgofZNHSjdnRdxs/0R5GoBG/7TmRFqdcEV7+C9H186PRWJKzkTdKjFGeWawRI0TokW+BuxEL3x6RIY6ekUt4KdE2tGeRNhjvUQt3alFTDPTRC8hm0Ts3QFF2IRkRIwXsUT7Kp5Et3+iRPfenEQiomxG4ZnyRTnfiEQN35hE/ieDRHKo50RLYZVETfcCRcIxlURFwYBFHmObREzAwkR8/LdEbRqLRu/0qkTDR5FEcEYJRYYZAUWjhdVFCsYWRWTNnkRAYXJE/XG6RCbDs0SavahEUv8GRUYRg0T4J79ERQobRsIbaESSfdtEhE2rRdLlhERNYzRGtCPERH+GVkdB4tJEdJFvRm+GUUR3m5FEbbgCRutWjESCaNpEmA+ARLuAgEROy+ZEa1y6RjiQN0YQkYpExTknRTWr30W2p/hE7op1RGykb0Tv7qZFYnHqRZwJbEYG+LZG7eSDRE9nVkU1xpFET86ERfJ4DUWoK6ZELAxWRdxWrUSgbSxFtLILRtwJjEV0R8ZEhGGnRMR4gUSmqIVELxanRYs2bUR8XndEV0CARCAwI0XQrOhENi2gRS94ekRjJK1EbPV5RAd4fUVoe9BEZMAXRb2cNEWaOn1GDCIQRX77LEU/vX5EsUeERPcAZ0WtKX5EeqjXRYUr6kcVEctEOdmrRsInu0aYU45Fa9KFRudc/kTD9VBF6hUBRbsltESmDYFF9OrJRCx2D0X9/qREeOiiRGXTyUTSn8RExYqSRMdk0kR5DgRFu3LTRELoDUUM0clEzGLrRBhH3UZL7CVGxPCIRVhIA0YEJ1BF1trHRFbTdUUzEnREtxkvRVzkDkWvaGdERS3YRW/GT0khZxVFa6tWSG7FQUUeda9GwWrLRO+MmURIIxlFGguIRUZLFkZVSY5ER5CGRBcqwUQfQJhEfk6ORMN36kRdCpNEJjWXRMHVuUXOKIhFPDVtRd9l4US5izpGfraGROm16kRLG9dFD6EaRuTop0XwTqlEuVrNRYm1hETMZhtFJLhcRdC3+EWPqcNEbt3sRGKxWkTv6fNEb+LSRBZzkkS/js5EMpyoRBb31UfwvpRECLqQRPQl90YIlutEZu0lRWNQvUS0eZ9EoBkVRswMQkWlF69F1pt9RS/5i0TWBxxG+rSBRAls4UWGAYdEJavQRDBrkUQsuoNEafb4RCKDCUX0XZlERKWqRro2S0ZxU1NFAXWNRNcxxkSV6atEwRHhRVqRH0ZCmmVFutylRP5we0Q9HT1FFup/RMNViUQTvoVEoGSzRMkiqUS8VQJFF0JNR5+RHEdNP4RE9Gn4RKUEAEYKhwpFpaMZRTZu/kQUn4VE2k8MRTq6JUYKQcJFvjyBRFOAbEWYCYFEQJkHRhDmpUZ5vlhE/np9RYUKXUaOd7lEBygQRfXdkUWiVntEDEuERQqbwEXcv4FE4I/6RKzF4kUGjXtFpe7aRVj3PEen2dRGRIukRC5SAEZq+I1Flh7uRDgUokSoOOFF6zGrRfsaqkQT9q5EhNGuRDSVqkTwWN5H2IK6RVPLbkVDWKhEVUbkRDcSzEaxv7pEG+21RhvwpEQEpC1FA8WQROouEUaXC3BEjHI+RZdWh0R0EwxGB/RARbJBvkRel5tEz/+RROQZg0SdSLdE6rJoRiWc9UUHYXxFi1DMROEOcUQbBmpFvWKvRPN8WUSKFdlEXDGGRDsvvEj7qUNIR03PRBQbzUQfdFhHtbeJRH6lMUbEWXFE7GLsRKKF10RtrohESmOJRBGVTkRtja1EUMIBRVF3EkaDhwVFJYdRRexYq0QBu5REFxwXRdIxg0Q46VBFOcUPRkALFEb6MIhFgoanRAcwA0VhzQBFz/4QRtQVvESKuixFLKiwRCEpHEV7EopEvEYERS+/C0YvGHNF4r9kRLQnF0V/enVFMpHBRGI7qUSjVi5Fs0CJRA+vnETax5RFrol2RPZuW0TrBuVEiQd1RoeWpUSNwFBE4gqeRXztcURJ/RtF3HqHRIcBmEWNba9EY/xtRemvk0WOcTVFkMYVRdYpc0R0ZqxEziy3RX6SjkTq8INEx96TRKRyrERii+JEKoKOREBdd0Qms25ILkuSRKrq5UcFIZtEw0+dRHzxmkSQQmJH/85YRlYT40R8L6dEPVWlRUTbukQSmP9E9NKJRJn2L0b2BIhFIKu+RBrXhkRwlhpFX82uRGpLrETc1lJGMNSFRF+5iEU0X6BElV7JRFskn0RsyQtFqLKiRG8npEW2Z+1EpGlCRVsCskQJ5V1EqPm6RNAwikQPH6NEGejnRcFVDEX/EbhEz+NXRTh+SEVYsBtFYlMORb/ExURU4KpEgiPkRMvlp0XWlo1EGywWRZgt50TrgqJETYrBRKDMqkR686FEqoBZRu0QL0Wx9CFFZvIkReRYnUTXoW5EchxuRF9ztUSRowZFpzqERBqXUkQLwMFEypWLRMMs00SOUZlEP4SNRGKrzkSZEYdEPsewRKEGzkdaCH9EA4dER9O32EacEgtFIQyQRPwStkVdfcNFGID9RMvxAkUHcvZEQzUKRd1+hEXnH4lEno8URXsZdUTtOMVHnYEoR9NVyUak9F9FSzz0RWu7w0RJ0QxFAYByRE9B9kSX5cVEskWJRFl9S0bdL6BFjMbtRJS550TciLxE3JryRNylVkUsEZVEPv3dROc7i0VowilFPwEcRWmNmkQF18hEgUWDRHxsy0U+XzRFyDhhRA0RCEVE2wBFdSceRdEUAEZxIexFXLaGRRKCkUStd+9G5j1ZRmckrkW6HrhEidt6RdZSWUVDHxdFqF22RAi23kRJWABH/5KCRqUVEkZIt1xF+gFyRRmUnURmhjBFbbm9RP/cfURbH8pEsHjARP+IvkQjKSxFoOcdRbSTUkSLE85EEwxtRG2f9UbFXG5GsWMHRiLblURUrXxFs8AiRWdFw0SnyaBEfS3BRX6Df0QY8oJF/rTLRLZ5UETtntJEjRieSAnYZUh0u+dH2SQFRxQptUWPLtlEuTQmRu8fwUUpao9FIFKLRHtRjkS3KrlGMTuBRhYtsEXFw9dEFuhqRJ3O80UaP5hFDSd8RKloUUVrKzNHDc8DR1NdZ0bEBIZFrffsRLDVwUTGwY9EhcTrRA== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 4hd3rXnAckAO9wd4b8FyQAwlKpVSwnJAcLNl9KfCckDEeK3l5cJyQPDqB2k7w3JAY4oDSqjDckAy9OYkxcRyQFpd9MFaxXJAUpD4RgLIckCAngFxV81yQNgMl5JD0nJAUzgRb7TSckBqyBRcYtRyQBCilvyO33JA9uWq3s3fckAs5fw2t+ByQMC6X+dR4XJA6Nt/rlHickA6lRzNj+JyQGb5+BQl43JA3K5TPsrxckCSWgQ1e/JyQAzcCPG283JAAPxDtaL0ckB1TOnLwv9yQEAjdFT4AHNA1JUuN0ACc0DxBDJ40AJzQIis8P76A3NAEHspeo8Ec0CQvd5rvBJzQGZvXLPbEnNAdEtoLQYUc0ABiF8jTh1zQK7QVh18H3NAfqqkLaQgc0C66BpMOSFzQITGgGQPI3NA3bTRWM4kc0Cdm65xSDFzQFzggcRbMXNAaltIEAwzc0BiIYoXNzRzQG7r4F25P3NA6PKrnuJAc0CcbjDNeEFzQA6wj/UlQnNApE/ACrtCc0C+jVZmekRzQMfS+DacUXNADgIHHOVSc0C6USz3P1NzQNfXpq2jU3NA3tDtPHlUc0D+hy9vjWBzQKODMub6YnNAgm2+0zdjc0BJC4Y5LG1zQApoWQJQcnNAtPUxQWdyc0C4LRvWhXJzQDTnMA0Jc3NAvfAi9LZ0c0CO3oHoS3VzQBKNtc9rdnNA4ABvotB3c0D91K3H3XdzQHZMNFx5gHNAMkK+JqaAc0BqP9TUC4FzQOp6d2NegnNAE1ZIjv+Cc0CKdpBChpBzQPiyl6hNknNAE4wSgmKUc0A7RizJ95RzQJAJ2CG5oHNAEB+sTeagc0Dg4Z1kWqJzQAZ9Il6OonNAwuUdOuaic0DM3ohqBKVzQJ+08+XNrnNASmnzmsawc0BCHCtc2LBzQKJbRtZEsnNAs3txgnGyc0B3kwAWuLNzQC5SIqYNtHNA2tMJLvrAc0ADJ9JYTsJzQPb5oGDQwnNArKQDbSnDc0AA9GLg19FzQJi2dzH403NAjAt5QuPUc0BsMaIToeBzQGCVidM44XNAxRComGThc0BNWDH4D+NzQBk7soJ943NACF23Kjf0c0C6zJtf4wB0QGUuzHt5AXRA8iVWsKcBdEDEPhF3jRF0QCXfXuFME3RAUj9bg3gUdEBYRzVUsRd0QJkuaNQ2G3RAxkmwV7khdEBeD8NcZSJ0QCYKoZG5MnRAmpNx0+IydED+Lsw+4zd0QEYckP47PXRAwrzYMFNAdEDUpoqLmkJ0QCzfeE+nQnRAklzXUnlDdEBOPL8d9lR0QNiJE5GLVXRAigJfP9xXdEAdPxkpNV10QJlkCjG4YHRAzTDp9whidEA0CLhjjmJ0QI9sM04QZHRAEIWtoU1kdEBaWpLP6Gd0QJZm5xEicHRAbKFfIBJxdEByhstrQXF0QJbx5Mc5c3RAvj05izd1dEAoZEnEQ4B0QHTu6wn4gHRA48I11E2BdEC6X0juJYN0QOQwoLUWkHRAQ6jhaGuQdEDiB1usUZN0QMZ7Nh7vn3RA1Hw4uTGgdEDgPkvb0KB0QIaBRlO5onRAXm8+0A6jdECKuZlpDbB0QFV4oZlvsnRAJOsBPcSydEB51ROY+rJ0QHH9UQnJt3RAZefrsyO9dED+Jz443790QIx43nPjwHRA1N4fKnjBdEBYrY5r6cF0QG7ZRPh5xHRAInoyFPzOdEAIQOLTzdR0QL+zGkPd13RAAP3Ge47gdEAKUig1uOF0QJw6KG6N83RArNefBKMAdUAuoJqwZAF1QBJErdFdAnVAhoPMTfYCdUAgyU2slxB1QNv5AZ5pEnVABgr4ZCMUdUD9AiPLnCJ1QOCw0vCqMnVAbfXCxcw1dUCyxIyoJUN1QHG29cvtT3VADWiv9ghQdUAcgo2egFF1QIqRqbflUnVA5ALSDEtUdUCCLvBAeFV1QEBDhdEMYHVA9IBvtDlhdUCz1OmAZWN1QCgSCt3nb3VAAlNNRnZydUCuBPv+jXR1QGrvS0JMgHVAkgUbEHmBdUBvfBfbrYF1QJGtFyiHgnVAY8lxABGDdUCSDhyypoN1QB7DBQmahHVAF89swYqQdUB66VJNvJF1QAZZLKVxknVAtuTdTgyTdUAsc61WtZN1QPLeAJ75l3VAZDBRjBObdUB7MKYDuaF1QMMnIcQYo3VAStRTJLqkdUBEsLsfzbJ1QI2YP/A0s3VAArEWcMS0dUAqHtj90cB1QJXm5v9hwXVArkbGYPnBdUCI9mU4R811QGTE/vLL03VAq9GIZuLfdUC40rvOD+F1QAulz18H4nVA5gCqa0ztdUDS545Np/J1QPMROqk583VAso78iWXzdUCU0cJgt/N1QLxJJCkB+HVAkP7e6kr9dUC9mqlcSAJ2QGzAXF3QA3ZAwMKwLlUSdkDeYIIwCxZ2QCrcGmeJInZA+DL3F5AkdkDcmHNwSyt2QBLDTKofMXZAq922DFMzdkCwJiOqmjR2QNjyToAdQXZAGsV2lJlCdkAk6qV9yEJ2QGzjnwWmQ3ZAkgmQOnlEdkCepboB8Ud2QLjzKdXHUHZA5jqUWRNRdkDWYwrLiFR2QFSif3rNVHZA+Op/tItgdkD7W1YlI2F2QEZvqoRRY3ZA9sKbl7ljdkDOODSS2mR2QK7QvTJPa3ZAilqVy5CDdkC8FvXLuLB2QHSxVbvBsnZAnK35D3izdkDaESY7DLR2QPtYLMTSuHZAF0Gr9L3AdkA6uyXAGsR2QBxpuyDOznZAvms0FZHzdkCQIB4TNAJ3QC4kQe5QDXdA4L+P2gESd0By9cHzkRJ3QGNmQq+nEndAhp95hugXd0BsItl4DyJ3QPfLCGt0IndAxGcZ1L0jd0Bh5hQIpjN3QEB8Ih0NNXdAogcsvSQ+d0AY0XRHnUF3QOoqthL5QndAuzZPBYJDd0AwMugHtEN3QMY8dCsbRXdAyIXFD0pRd0DQa/GEklF3QL4EUYEpVXdAtDd6b9Vad0BCM8dG8Vp3QFYuEzuQYXdAzsnZrNtid0C8Hkgc0mN3QFk6eXEob3dAr1EFipF0d0B6txk0S4F3QFVjjbF5gndAT8FRHh2Sd0CRIbmCUJR3QDYQS1a4ondAQ5geuJu0d0Ay9J6CLsN3QO2Mfxnux3dAL+m/KeTQd0DoPpFljtZ3QI2ODRkp43dA4AM3Ujfyd0C8FkSFT/J3QApFYdp9+HdA4+FLQ0wDeEBdifoRVQt4QDzzmRVuInhAHnqZ+4gjeEBzGYUcvyN4QCgDSrTSI3hAcsD5MKYkeEBonE8nHzd4QKxtqUQMQnhAD4SIzhFEeECDJJVyekV4QOcqcOfKUXhAWDBiMZVSeEA43D8GH1R4QMhh7lJNVHhAC0xpuIdVeEDoGlY171d4QG543b9KXXhA3EFb3PlgeEB2+6gqt2F4QPwsZqK8YnhA9BmSqsByeEB0k087GXR4QP5PxBIudHhAUP0dml10eEBefB37i3R4QAgiXB+vdHhAE/PSFPZ0eEDXnXL8pYF4QPg4Q6POgXhARPI2+pmEeEAy49Q+vYR4QGn1WtOYkXhACrkNZqeUeECycooy1bN4QLT6Tvveu3hAvvJRKM7AeEB/0T5y98F4QKXlSg3iw3hA+YyEB7jUeEBII0HCKet4QA07CS0D9HhARDmFGIz1eECOqUlSDwR5QEmDrH6cBXlAHD43Wq4TeUAgmGbQuiN5QARylTuzKHlA/GhBJfEveUDYbLieJjN5QITd4WG2M3lAPk2INuM4eUBG3Hs/ikJ5QBC03GT4QnlA1Y3uV/xDeUAjGlf1klN5QDa7MI4JVHlA3gOJK81UeUAB6vxW2mR5QPi6VRpFc3lAwJMYNXGNeUDWGAKLy5J5QDLV60HBm3lAZp2XmzWieUB0dDFByaN5QIQnwOXMq3lAZnTwRMCyeUBV035ed8J5QIbG/bbLwnlAaLx8fkLUeUC6yUN3zNV5QPLQsExQ5HlAz885kWYDekCHuLmc6gN6QFjnPjJeG3pABo/7wzkjekCSjciWpyN6QMCPorMMNXpAhihOhSw3ekAIvMrJ50N6QHSpTu8aRXpAqtCHmc5LekAHpagOKFV6QF6hBlpVXnpAKKS4mI1yekCyS3ZIiIN6QAGlF1Y+k3pAdSFzZgCUekDvkEeOBpx6QHRz2ysNtnpAJG17xyrDekAa71Om/MN6QPuXmNkaxnpANREmBw3IekCkRXXuUst6QPCqr2hnzXpA3Z0gDcXSekCKdQJMztt6QDVTZzFo4XpAELCeSjjuekDKgIumFvF6QB5dS/td8XpAZHbVbErzekCUJ7bgo/h6QM7/Ssb+/XpA5DA1AV0De0BUSRnXdwN7QKIUveF8BHtA2oiPuysOe0AGT+oJxRJ7QE5CK5tMFXtAb1hJNSAYe0CO4ouRaB17QHUzUqxaJXtAwudeEMUze0BwOFfAC0N7QNQhfMiXSHtAf3Ab1vFNe0Cy/6dwDGR7QNo4FucWbHtAK2O5yv6Me0DjGCSFzp17QC7M3o4no3tAvtUFV4Koe0D+XeB1x617QCw68aDirXtAPeXCrSOze0B2Yb9Be8Z7QIIgbfZg0XtA1LiclyHce0ArXWyQJ+R7QNu8GdAb83tAqMThN27ze0CeFmikjPV7QCifrj11+3tAcNJFH9oBfEDORlpY9gF8QC6M5WxnBHxAikBZ85gFfEC29Qv6hRF8QF6fsqvREXxArDCt0ucbfEBo9IFB8CN8QGwS8G7mLXxAVIcn2UEzfEAkw9pp/zh8QB6B5ILNQXxAt2ALf1JIfEB+0RyDq018QJt+M2LbUXxAfSaIdgdTfEA9MFxNTVh8QGuqjqyuXXxAYAwwYw9ifEAiHGYnKnF8QHCT+jpZmXxA6u/6irCefECOzR+TPaJ8QCagkrYMpHxAFR+FlfykfECWjg0wwLJ8QBai+S/N1XxAzLwjnlfifECeyjq8EON8QLzAGfJs6HxAuayetbLtfEDMx+nC0O18QPAcSLoV8nxAHu9t8FTyfEAjQqT1AQJ9QA4wP4dLAn1A5vKT604EfUCksHeoRRJ9QHATwXlnE31AEQw5A68bfUC8ikFiPSJ9QPyc59y0I31AmOg7e74rfUCISB3coi19QL4MmKCfMX1A9tCUrZaNfUAW2f3e7pJ9QPjIe8mLlH1AEtMeENeVfUC0Xa/gTJh9QM7I4WKfnX1AKK2oUa2yfUCBeA9HLcN9QMJ14lXmxH1AgBXjNdzifUC/WkveoOt9QHIe5IaP9X1AzahMZu8dfkC+7fWYOB9+QE7kA1lII35A7LgCNaUofkAyEhy36i1+QBCgUEA5L35ACOKSB8FLfkAuUa76snF+QLgQor0/c35AW3jbord7fkCMysy904B+QFZka1q9g35A5CEz3lKEfkB+qaGkzIp+QPpD3U3Di35A3Oy1t9SSfkDSh4ocypN+QO7wmbjKm35ASoEh0oywfkAutuVvsrd+QC7y3zTR335Ag46JpSIAf0D+BYAWlQN/QBhTkLSbC39AI2KxOugRf0BFmp8FDhR/QJCPQcPuGX9AvjRuzNkhf0BqjbCS5il/QBic/CO0LH9AkG9sLbhxf0CjWPPo43d/QIPMVoPme39AhiRE66uBf0BbPo3tpYN/QMd0d5FikX9A+LVDMaiRf0BniBTImpN/QCJfhypsmH9AD3EkjVSef0DwlwkQXaF/QMAnU/9WsX9ArsSv2M3Lf0Dshict09N/QMiZHzTc239AeO2OXNnif0DwqZOAO+h/QCJO9+aR7X9ARC75PIQRgEAY1c+GwimAQBy41kPuKYBAXKuuWhYqgECsb/J8fiyAQA4xmvLyMYBAXJ4vfkEygEAhqjhlRTaAQGr9cyv6OIBAHYm7b/VIgEBGgo9UFEqAQOmRnADoUIBAejtf9RNRgEA0CNnR6FiAQNctuRwOWYBABHzWGUhagEAcJhI7OF6AQDQMO8E6YoBACzQILc5jgEBE/kpbL2WAQCBHg2XEZoBAkGHGD3FpgECwJB3vH2yAQPiBW+bwbYBASP4kjClvgEAlHgXd8nGAQEKl/5gof4BAUFusrR6PgECMS1Y5H5eAQKTlGSMyl4BA0IIU4J+agED/35imgZ2AQB5ysrQAooBAv2cbRYalgEC+RswXh6mAQDT5t54Tr4BAIgOHuW2wgEAr+KVdTbOAQMrKJTh+vYBAUCcGgxvBgEBqg0ZgUsGAQFvKygUgyIBA0ix6hVPJgEC2KGbpqsyAQMx6ux8Iz4BATgmoe1TPgEBU7IExLdGAQJKbsINM0YBA8pg2N2LRgECyHqFkSdmAQF60Xlxy2YBAo/mduiDcgEDkrjI/ReGAQKI/dHn06IBA/lv9d0HpgEAmPAgSSu+AQKKFf9w984BAqjTcbT//gECgGMCyQAeBQCNwMvhnCYFAeHSvlhQMgUBOGlwGPg+BQMbFgtvGGYFATrRwcskdgUBuA5aONB+BQCIaHiI1J4FA3ezxrr0xgUAehPtuKj+BQAgSwUshQoFAiqXhNvBFgUDW3LPRYEiBQHoLyIHlSYFAKnj4Z/pXgUB3quDsR2KBQDJHBIVVj4FAsNYYnlaXgUAs2vZyU5+BQLq+9E+/n4FAjgpvQeehgUByx7py1KWBQPipadfVpoFAQBBR3G2ogUAmehj5gqmBQFTbLU0xrIFANKouA0qvgUBLfDx3Z7CBQIyyTmsHsoFAFRFkOky3gUAWdrQNrsmBQH91Oa6vzYFA9qyhJ33TgUBsUvWihOWBQEaPZkqJ6YFArBl7m9gYgkDQj5Pc1iCCQEgKfw3SKIJA/g1xlZ0pgkBEsaTdpDCCQLza+r/TMIJAx7JH1OY5gkB2XfxiJESCQBr2URTQRoJAgiO8anZJgkAHn5zvO1GCQC9hLWEiWIJAUnVkRHVcgkAMDLNT8WGCQAN3qH0BaoJAVJp6+Hd0gkDiV3Q5Q4mCQMN2a4FDkYJAWn0KlhWZgkCTVfXqO5mCQBIcWktSmYJAhI8MsXWegkDws3PKDqGCQJJF9qA7oYJAWvhcY16igkA4grC6DKmCQCaOggU0qYJAPrsdZgexgkD2y5GB/LmCQCoS/sDLzYJAbO9SQdHRgkCwAgu3ftqCQAaU+n//9YJAhHGLyK75gkAtD3iReRGDQGTP/056GYNAZKG/43Ihg0BHoFcWiyGDQLEgZFYNJoNAGloE4nEpg0CkC4ImaTGDQLCQozfcQYNAeOWDxd9Fg0CMdBPh/XmDQJoqro/kgYNAsBsWcUqDg0DIGcckWaCDQBCWHuu/wYNAToWqGMPFg0B7MQhmxsmDQENKzo+3zYNADgiRnvPpg0CeG7S+lfiDQBz+SxEDEoRA0ux4hQcWhEA8nGcaZCqEQIdR5acCLoRApLn8MwYyhEAgrgqwcDKEQBG0w4N0NoRAwgvIxP9ohEBrGSuI/XCEQNQ/C3LId4RAEwQTGfZ4hEDyW5vid3qEQIpV3VpuoYRAPMxqAnKihEBsGaaZHaWEQDg70yvMp4RA+FNt8XaqhEAg0HQNKq2EQA4ZJTnmrYRA9RrZf+mxhEBMSs7YU7KEQIoSaH7ptYRAo5MzsFa2hEAX9LFe4bmEQF7sHLAXzYRAnLI6m8fPhEADqAZubtWEQK4djUJq2YRAPGl2AmrhhECSJhqEY+mEQF9F7JI18YRAuLxCpmLxhECckSoawveEQIV0xnk1+YRAgpwm91j5hEDwdYEFa/qEQIAusBN7B4VAssTFYE8ShUD3nGKYZh6FQJpmHSq7JYVAxr3ntjcyhUAyNV+uOjaFQKpzpbDURYVA6iH2/dNJhUDsRATCoGGFQEzn1O6gaYVAA6K/ZppxhUCqTJghuXOFQLIKh2uZeYVAU+jBk5KBhUD4qfRK+oqFQK89CT7YoYVA9BT+VdqlhUA3kTsZYfKFQMYksHcsJoZA2GdBa4lChkCJAUsJpFaGQHVp4k5vkoZAm+q6DpqShkD9Dh05nZaGQKRMxV2fmoZA2HE1OqKehkCLA1A6JbmGQEa9q1l9EodAcOZSBIAWh0CEsqo7gRqHQG34P5eCHodAcHQb8IIih0BMAIFjkSmHQFOySZuQMYdAd9oSros5h0Cer6ZPXUGHQHkC1N2LQYdAvws32I9+h0CdfnZRkIKHQGjo3n+VhodA9DK0CtOMh0Ag4+DRxrGHQI209VvHuYdAXA9YnL/Bh0AU+nNvesKHQOd/DsfAyYdAg9xY2HAGiEAjGqtCEgqIQNexmw50CohAaM6qPXUOiEC18uGpdBKIQFo3sPF6FohAAF8FVfqRiEA= + NrgMGZxjYkA= - + - kCuiRD5dpEVO3E1EWpcqR6dlj0TPeYpFW8UBRoZx30RfPqVE5t1tRmrIHUWc2R9Hb8FfRHqPgkSJUodEiJXXRFTA/0RkNkVEOdxXRSI8SEXyHKBE+4WORemBpkQU5OFEQDa0RDxuIkXux45E71VxRBeOFkZqEilH5CZ3RNRCT0bxQHpE4SOXRS5LgUS5BqhEC+MQRTSyvEbNo9dE7JS6RQTyBUUcPqpEpqGERNW9jUTPubREcU/7RJFou0W/n49EzSTVRG5wL0bGRHdE4/uDRG0LVURSIG5F+1XRRDphxUR586VFlrySRJaLKEdsnvZEShXtRDr4kka0BItEWAi7RNo9E0VqSIFEdtppRXTffEVA9QdH7Be/RN46xERr0e9E8x1oRSik90QRAlBHkmPGRPi4Q0Z10T5GbQNXRC9z1kVryXZEKQb8RBBr8URYzEdE0eBtRHnfd0Sm4FpEaZJmRJbhPUW4ovtEuHy9REUdcUTxLYtFa5/GRPrLCUVc2rhEmmxmRTTQa0S8ZtxF+xaGRNGfrUS1nAJF2lW8ROtggkSOGJ5G4DTDRFGsgkSwbUpFm/WaRJ5FYkRAKqREmKUiRbm/jkSzSXhEarNIRDNLqEXI4BdFUth3RPXHbkRTRYZErqadRJaPfETJ+ZNEmul+SO5gFUjyGohF5KZORaVyFUfY73REf5iSRO/BkkVSiI1FKvViRMFXQEe7MGhFFIWPRPEACUaD4kpFjAnDRTbOkURdh5RFicyERH9zAEU5czNGo2+iRIzAiUR5XOVEIQ4LRbBxSEQ++oVG4jp6RHYmT0S0ZNxFq2odRa/K7kTu6MpEb82rRLGKy0RjRFJEa86rREeJmUS++fZEqM1gRHMvJUXQj8JFqn5aRCNks0Q4GnpGac9uRLWJjEQ5CLJECOQkRWN31kX33FlECwknRQI6akSUllhEiNCzRA77h0St8IVEgAaKRAR/A0VPat5EjS8oRTI8e0SERW9EFKEnRVFKzUWKq5pEQ4ARRboD2UWHWXBEK2p4RFppSEbX56dEdXmGRPfqm0Qc85JE1cowRx0MfkTBAGNEApBTRvdKvUSxyZVEYXGERAlvjEVp9oxEcTCzRFvlTESHrr9Ed1L/RIYKCEU1DppEEWqERNlKlEQnFb9EfAymRuLBCkZXnJxERf9GRGSXUEQXX+JEeSuBRJyACkbe2fJEMUdiRBi7s0RmcrFFOZgWRrKvXEYY1sNGuLKMRRlplUQlmI5F06cKRarZLEXCa3xE1N6bRRHrXESfOnNEZeYmRYnYk0TlfyFGEshRRC49ekSdgoZFuFqXRH2c90Rso3RE3zWLRezldUSOHtJExiKGRcSgkkW11OVEQIthRFSKrERYTjdFTbg0RQ2TAEWwLXZFBS6kRm6LMEVio1hFikLHRBWFdEWKHJdEJn9YRWtnxUVuLfJHH3ogRba0pUY825BEW9WfRGRSeETiaMNGJ6OyRZSfWkYCRt9EIGnJRSYF6kSOSw5FBq6URHYSikQVEFJFOm6RRNL5T0QyDOlEBnXsRCVPi0TP3otElbSuRDMHg0TRUmlEB/ZsRFNkhkReesVEdm7ORArElEQ80+ZEiDYsRbWBtkRZqY9FyciEREMHrERMGKpEq1ObRGCvWkS42ANFATDYRnalSEbPlJZFtbX4RaX/WEVvWFhEdwAeRcx/g0XKQIhEprkgRS6ZZ0VL36hE7meRREVyCUUQYppEVhxxReA8QEnrarlFfskSRe43J0WO/3JEPYZISPvCtUQ9KwNFHVOgRrixk0XMA8BEYGHERAvZB0VZ/nVEfQgWRVLAu0S7naVFEV6MRcNlhETICYVEiZOORF99FUV+4CNFvW+iRDNA/kQnOp1Eu5XBRH+mlUQ6yvpENqQyRnQsB0VRXepEiodsRf01UkQ44KZEtGIfRkSdiEX2TC1HBU+LRM/EVUbOGP5E9e9nRcazbERZEGdEvFitRYtFn0Rd8cJEjttbRKhOwkQPgZBE3ZU3RP5JsERkSa1Hg0pbRDhLkUTFGZ1GrvaWRPIsI0U7pGhEsaSLRP5+hESQG5VE18ryRYHwyUTAJrZFssT5RHsNaUWBMNZEQSgnRiLMZkQAi95FgEWzRDCMFEV+c8REZHsKRSfN2ERmz6dEzXzVRnYthEbUFplFchiFRI+NlUQj7AtFz3CMRMINs0V8ZR9GTPyCRZ4IlUSxpwZFAidoRJfMTkWRFwNFIVO+RPLrv0S/UpVEkMOxRPaDWkdYhPVGTrUQRsNELEXslMtEmd+cRHvVvUQb4mpEwM0ARhEXN0V48MBEdWvMRS/de0b/GVRFsI0zRs/LyEQqxPFEwzGMRd+5ikQ5NTVFEeTmRdhwF0V0qF1FLDxORfufWUQPYpxFwzkpR0Wa9UYuKq1EQ0C1RZh9QkWvPMREgROVRIbk3ESiy+hFzdluRUpdoES0r+BE+qeBRKM1+0SSSnlEf9zXR20kDEZRAWdFSp6mRAnWlESWW+REzCPKRozfS0W1b6RG/dzOROPaPEVsm4JE3S/QRSJ5hEQrFzZFXPBzRNytgESbBLBE3fH5RYc9tEVpXIZE4K+qRBX3IUWAU7xEarh5RAcqeETLEY9Ei5p4RAG1ZkSORkBFS1hwRp1rbUSguBJGJX45Re8ViERoHYpEDAi/RApZ8EQD7KREQDqESPmRlkTYNAhIvwBfRDDTz0QXSh5HolrWROLbv0WuIWtEqtJrRGgWrURlY1dEbbSBRNA+lUQUXHNELB6CRrXIdEVuvMxFYiUfRcdl8UQW3plE0sRxRWiqNEXzOGZFMzLFRC5wY0R5tz1Gs6pbRBv+FkUJLsNEYj14RHGMV0XtQyJFYcCiRfmWC0UAHmpE30bfRK6+H0VBn+JEAjTLRD8WfESPVwJF8FLdRLvAO0RrQIFEZswJRTIOvkQnGpNEWlSLRNqglkQ5xU1FbE5aRpIru0RXGYRFQRmrRLiXbUQt3s1EvsGGRFdiY0RhV5lFMFnkRK4f6ERgM41FbeaKRcCI8ESGBI5EcRakRYV8yETXPmxEvi27RDWPakTPAI5ENEFCRFtaGEVcttlE7tuNRI0UVUQf3JFEoWBpRJMLh0jiwAZFHGAESPujhkSkGb1EsJNrRM9VqUR7JoJH2vpJRVDcT0YC8AFFKoSyRH2F2UWbZnxElMd1RLVg3EQ1Tc5EHUM2RrNPgEU5CgNFGeaRRHj8LkVwH7NEvu1mRA6idkadZTVF7DQGRdayk0RaPllFB9yGREYKskSWA4ZE+RqtRC/xaETznK9FfBpbRRv6gkQxJ2ZEtS0iRaM71US8V2pEOfJSRbg9OEVWwYxEJDWYRXZ9ZUSJ0oREjEiTRGvVFkW6oY1E9O7VRJUasUSnLUNETTthRgbdZ0XWczhF8aGERItCjkQzlH9ESuICRSJQ40RoxZREr6HNROEJmEQ56ltFiw+fRLxAakS3r2tETJPmROnbvEfGhRBHbc+ERP2EvEbIwh1FCayKRNIRzEVmY9hFDlihRCjjQ0X8MxRFTGTaRG11j0StBQBFbraLRDVpl0QdPihFOU65REs/9Ed2WWxHfnjqRnc7QEVBcUtFzyQDRv6kKEXSzuRErETQRNrsXkTOvahEFJHpRPy1FkUsohVGHt6mRd0d0ETKTVBEVJbARElxUEQcLN9EOHRrRCImtESfH49FVvjHRIiTI0XigLdE/8WuRZBytkRXiqlE1NeGRPI2+kRZcmBERfJbRokVY0aBiLVF08EjRbhgU0TskI9GONYvRuJ4l0VhhT5FnpYFRQ4i50SOAMBEkhi3RPtGlUQ+betGo7hlRisPJUYY455F5w9gRVyij0QJdgRF+gOCROBShkRl+otEtKKDREOwdkTwOadEbl1lRfGIy0SWh91EWfmMRKlbBUftcZZGq+w7RvyhZETU5ZhFuohpRDs+oURZiipFF8roRKvUTkREmHFE26mDRPnNkkQlKSFFuGSWRoekSkYnR5NFIfO8RD/1n0Sa/llIltgWSF9vhUeDbqVGqZ2mRdqlEEaSz7ZFINlFRWON10QafmBE+YAkRsHpmkUxo3hFY2qDRISH+0XWn7pFlChLRatjfkTlEPBE8izkRuTkkESwU4dGOd3YRaV2PUVaC4REln6cRA== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - DsCleHfAckB4wfmlbsFyQIgA00hSwnJAgKtf36fCckDuSEV/O8NyQGXPIEqow3JAVjUJisTEckA8j+cYAchyQEE6TeRazXJA9EFBsUPSckDEx21qStNyQJx75Nti1HJAFtPkos/fckCKhLJKuOByQJnYCulP4nJA5izgl47ickA04L0fJeNyQCjBcn7K8XJATgNcQnzyckAIode+tvNyQIyKl4ij9HJAGIlb58H/ckDQsXIB+ABzQDZPOTZLAXNALJzrhY0Bc0CvWRmszwJzQDBWssr6A3NAhICptZERc0AgG6jgCBJzQN7c1Qh2EnNA935rOr0Sc0AE0Mqe3BJzQLbjgSsHFHNAGLnbmfUXc0BjcvUheR9zQKaUvE22H3NAZlTvYKQgc0CEIKsvOSFzQC7R5vXKInNADW0ovxEjc0Byc1ulOiRzQOj0IhbPJHNAMfkgnEgxc0Aw0S1zDTNzQA4uc+E3NHNAyD/OXts0c0BU2l3cuT9zQMr1B0viQHNAcsjBwnhBc0CkANBrJkJzQJvYC7a6QnNAbHZFpnpEc0APPnGfmlFzQDoKI1RCU3NAFTlewKNTc0BuEab5h1RzQMpEeHWMYHNAVxlaS/xic0CHBJdYO2NzQMtdNuKQY3NA5AQ+a85jc0DQTnMjLG1zQCcSqgBScnNAWvLlEWxyc0A2pTN9hXJzQKqXBUIJc3NAzci/gbt0c0As86m7S3VzQBQmqBXPd3NA/HidFeB3c0BQmxQrLH1zQOybQC15gHNAVLaGeqWAc0BATkULEIFzQCIELYdfgnNAlMO63ACDc0Bk71cfD4RzQFqCPtpYiHNAJhmy34aQc0DIuV7h05FzQMgh1LdNknNAZGInCWKUc0AFp1/I95RzQG6pOsaMlXNAaM3tc7igc0DOh2mlWaJzQMPF5djponNA0G1JyASlc0BIJpxO2bBzQNG9ThZFsnNAnumJJ7izc0C+KyWqDbRzQNktbSz4wHNAFCD2LzzCc0Dc5ac80MJzQMOWvxAmw3NAHIJEVsTDc0AGbdsN2NFzQAQF5CL403NAlAQ0vOLUc0DoQZRuDuBzQEJJRdSj4HNA/FscxTjhc0DwWLtiZOFzQMBZRD/m4XNA39xS4g7jc0ASIaRHfuNzQABIvNc45HNAZm5AFPLkc0C2lkC5+u9zQOKQszg19HNAfR7N58r3c0DwEKqc5AB0QODWH115AXRAmE5i/KQBdECSfzqyihF0QDt28BhLE3RAEhjnBHQUdEAi1d97Nht0QJDI7TGPIHRAgcg4SyUhdEAYZ1UUuSF0QOim+FlkJHRAhmDySlcwdEDIqEcSujJ0QJ60xwQWM3RAvGvypuE3dEBmrUVzbTh0QCNXyNi7OHRA+jJDezw9dEC66wunlkJ0QFTe504/Q3RA9PqyyXtDdEDZEy2nqEN0QFJRU7jPQ3RAQjhP6fdUdECULXqAjVV0QDqFUgGwV3RA3tLZIdxXdECI5z1bNV10QDoA7o63YHRAWSF0BQhidEA0oZpljmJ0QHHdh9ZLZHRAyyvXGehndEAbJPieInB0QI0PjGJicHRACgLrbUFxdEAGUtaQEXJ0QBK9I1k6c3RAAc+R0aB0dEDEpc49N3V0QNtyBUFEgHRABKrS6feAdECW3DHZToF0QCye/JUkg3RAKzffyxaQdEBVC61x7590QNW/aEgyoHRAMRisudKgdEC4NgB4uKJ0QLIE3ywRo3RAcHmWefyvdEAsvZfYC7B0QIKtKNXBsHRAlEh6+W+ydEBqDgraybd0QIOMSFEUvXRAZkjhw9y/dEAciMBN5cB0QAZ+Cdl4wXRAleWJpuzBdEBxh0w5DMJ0QOBxR327wnRA4mombSTEdEDc847utsR0QIOi6dD8znRAgBYtGEHTdEAsQEtZ4dN0QPI7VQTP1HRAUPRNiNrXdECNPWGzuOF0QBoVhf1P5XRAXopWPk3odEBb1VMyjfN0QCYR+cymAHVAsjZbKdAAdUCgGK8LYwF1QDwkDDpdAnVAS6Mnu/ICdUAip9HwpgN1QLoSkz+ZEHVAbb9w92oSdUDcNrqNIxR1QGees6udInVAX42+9cs1dUDc/lfJI0N1QJwSNrfgT3VAOE5hZk1UdUDCnWcdeFV1QCfRlu8TYHVA6nmGMTlhdUC0OdQjdXJ1QHP7/1+NdHVASIlq43eBdUAorWzNrYF1QCb2OZEQg3VA/K/ZeaaDdUB5Jvqpm4R1QGCzwYluknVA3vp4GAyTdUA/2nUZtZN1QFgGe/ISm3VAr70BxLehdUAy+5sQHKN1QCX2U0rNsnVAXhxMRjizdUBycO+EY8F1QOqKjYD3wXVA/kov40bNdUCcb4EmotJ1QFgjhTvM03VAWtnt0eTfdUCWfufSDeF1QPr/CXEI4nVAVuC4/zjidUBMKNnZS+11QAhDVxmm8nVADhnoCTnzdUCOLlrS7/d1QM4b1L1IAnZAGA5LGtADdkAwxt/OSxR2QO2yosMMFnZAZrY+zogidkBwGKtZkCR2QOIm+mBLK3ZAm8TFvx8xdkAKTqy8lDJ2QOZw491RM3ZABuyLZZ40dkCpdkQdHUF2QJWsvmRxQnZABFNRDZxCdkBEhIOkyUJ2QNHic4F6RHZA8JcHzflOdkCipUDqxlB2QOxikboRUXZA9c+364hUdkAmqpK4zVR2QKfPEmhRY3ZAIic3etpkdkCqCvhIaoJ2QB1ywJFog3ZAvE3oeJGDdkAvN+q3eZN2QONW9eykoXZAowQXo7ewdkDYwd5twbJ2QOxjDt55s3ZAjBQdPw20dkAsuuNtv8B2QA5H6AtPwXZAvCyotc7OdkDux8n0gON2QJcrDmQK83ZA2LlpJ5HzdkDVlKnpNAJ3QMyWYdhPDXdAhcWRcAESd0DeYBxDkRJ3QOye2GKrEndAfitYIOcXd0B4lye1DiJ3QM7+hhp1IndAEMle/Lwjd0Bq8zOQuSR3QHa2tu6kM3dAnxOnXQ01d0AiAlCQJT53QN9x5CedQXdA6OXrCLVCd0D0C88+/EJ3QCQxebB/Q3dAPNIlIhtFd0BD0i9HS1F3QEdbZ7+SUXdA4p9ZTvBSd0A/w7+pLFV3QDAGzNPWWndA7ZxtYpBhd0BgrqBsomF3QFlhAxLdYndAg7RG4NFjd0ACpvx+OmV3QGJp7X4nb3dAalFweZN0d0AKSHoSc3p3QESc45B3gndAqkkjcQiSd0DqOuIWIZJ3QBAoJMkTk3dAx4wlTUyUd0A6RAADmrR3QKhxjzcvw3dAfjHr2+TQd0DwHVzD0NN3QF8rDK3M3XdApDzGAyTjd0Cx47l+NPJ3QEhpMctQ8ndAxg8kxUsDeEAm1l0obyJ4QAS6traLI3hADQGQwNMjeEAHWIUopiR4QGunkRENQnhAVsdTwRFEeEAizrteekV4QBBsu3rLUXhA21oXSpRSeEC1FeBtp1N4QHfimiAfVHhA5NlwQIdVeED6C4VU7ld4QPleh135YHhAON/MYrZheEBBolLiumJ4QPdf/qO4cXhAtnXfJL9yeECGDsGXJHR4QFB5uMM8dHhA7giiL2l0eEAvWED1i3R4QDPsLgu8dHhAWIPNA/10eECcObwXpIF4QISV8PbOgXhAENCgD5qEeEDUZ5QimpF4QOr6/sqnlHhAdpKlaqaheEDEiOnJsqR4QBoJDg/1snhAQAtCItazeEDMfMWp3bt4QIccC1LOwHhAPeUT5jXTeEBcrR8ht9R4QG6Pb+cC9HhA6MLJVI31eECz+OWZTQF5QCxJahp7A3lAsGPgpZsFeUCi6gkbqwt5QJQ43lixE3lAGZCntLwjeUAb6/VYsih5QLJxgg8KLnlAXoUpkO4veUDJjilVJjN5QKtd2uPlOHlARnluiY5CeUAVJ7PM90J5QNTnzE78Q3lAnqfyN+BQeUA8ctKSlVN5QGLn+v0JVHlA25PRH8xUeUAOn0ypnFt5QKLElDLaZHlAXAUfLUNzeUAF7olOcY15QCBAmE/KknlA/PkciieYeUD+fh3QwJt5QJQAs6DIo3lA8UGv582reUCqYrc9wbJ5QGuypkpC1HlA8i+jQs7VeUCNSBpNUOR5QHxYfJ/7BXpAS5myiDYjekDmd3GBqCN6QNr1IrsMNXpAdFIW6BpFekDQ3zsfzkt6QKbxj78pVXpArgWQwwCUekC0yR66B5x6QBDAVf8IpHpAfZ17gAy2ekBMfWwnFbd6QB6dTSwrw3pAWebK5/vDekA+c2QUHcZ6QOLjRAgOyHpA+KvT0lLLekDu9k3vaM16QPOtzEWt0npAss0mGtrTekCSUY0Xztt6QEwgXo1q4XpAvMM083jkekDdVpgzNu56QPYtQ+0X8XpAMDq+I1/xekAt6T5aSvN6QC5imPKj+HpANKeyrgD+ekDQuvD3fAN7QIwY0OHpA3tAMEsCK34Ee0AtcTYGKA57QNDgTHLEEntAFjv+JU0Ve0Cq1zuaGxh7QOSKTDUmJHtA7AK+UVwle0DIJNlFC0N7QMxJ5eGYSHtAqF4ZgPZNe0De+PfIDGR7QOIkYkMilXtAnjvQwc6de0BIOffsJ6N7QM01SgSBqHtAfUtnisite0Cy661LeMZ7QGQzHwgi3HtApLkkfijke0BO8k0GlvF7QLgYk+Ab83tAuxRYvm7ze0As74NYjPV7QNyHZStz+3tAqJI7jZABfECCtYa72QF8QIZnJMFjA3xATGIUmmYEfEA4yt66mQV8QCv4f+aKEXxAsLWCqNERfEDIfL106Bt8QG4tgonvI3xA4vcpf+UtfEAWKZ4EQzN8QO7qRHXNQXxAsmXOsFJIfECqBvPeq018QFFjzLgGU3xA3jZiWAhYfED2NA0HTVh8QKKeSW1hXXxABXtw4g1ifEBNLyCnWJl8QCS9CoWxnnxAUnShwD6ifEDNOmfGEaR8QFMfhnq/snxAAPUWuxG2fEC8CHz3V+J8QN4vCegR43xAptHWMGzofEBouw9Evu18QPw4zrcY8nxAslFZ+VTyfECoPmf1cfJ8QPPZjPH+AX1AWv+Qb0sCfUByEDPSVAR9QDx4QPn/EX1ANSm+DkMSfUDhDcE4bhN9QKRD+jiuG31AOikI+j8ifUDAIiLZtiN9QMS7DviiMX1AqICDiZaNfUCK1qau8JJ9QKn7scE0mH1AnmsEfk2YfUCkZ42Olp19QNiXhUSssn1AOrkFMi/DfUD2RVF26MR9QHzPfXWR9X1A2PzH9+4dfkC6PG5WOB9+QP8TIgdJI35A2Wini5MofkB0cMMp7i1+QGOXerFAL35AHgyqdMBLfkBIxxdqjlV+QJuTZnQ9c35AP2cLWX1zfkCs2gm3t3t+QJJWVEy9g35AMcxOqFiEfkDNPNubzIp+QOFwYjTDi35Ap7JhidSSfkDW3o9mypN+QIy+sTvOm35AlxXSuzXYfkCpQm1ttNt+QCqRyV3V735AFJ97ilT0fkCYZYvCyP9+QGm1sS4fAH9AuuqY8pYDf0Dp64gv6BF/QLSD8XMPFH9A0h2K8O0Zf0AK/RI+Fhx/QGJjApzcIX9A81MFvuEpf0AKHULh9zx/QA94HxvNVH9Ael4HRkZlf0AkihfVtnF/QD7zxLrpe39A0A7ySLSBf0AXPPUJooN/QEpItuNikX9A5S0E75qTf0AIuhKXXaF/QL3lfKdQsH9AYolkW1exf0CmLIiolMN/QOArhSnQy39AtHaUqPHif0BmjmCyOuh/QKCJM1giBYBAkEAjTTEUgEB/SAC27SmAQCwfi0YXKoBA4D4vW0IygEDS2UvYRjaAQP3UVP03OYBAUCVO2fRIgEBCswc75lCAQECM+NwTUYBA0r17t+dYgEBxYGhvDlmAQKmfMyZKWoBA2QWUyORggEDvgrdhC2GAQC4hHnHFZoBAEn03RnNpgEBRxBkdIWyAQIuIdO3vbYBA2L8VLcpugECzfxCWKW+AQPAvDQD0cYBAyc+1fjGEgECGmu2Q3oaAQLcBGWIej4BAjECB5B6XgEDeDrq8AqKAQHFuAwa9pIBA9BCykIapgEDOgBvqEq+AQJakyOjZsYBAjp412Ea7gEDrQ0dbUsGAQBbBvHQ7xoBAQGHHu7LHgEB83fRiAciAQEiMNDUfyIBAd63b0VPJgEBsFce88s6AQOimJYcHz4BAhh2YoSzRgEDZ0+SLTNGAQKjWvb9h0YBAU/uoSEnZgEDjPo3Qc9mAQB7+KzjK3oBAGpCfpUThgEBEs8csWOGAQGIwyZH26IBAJCX0z0rvgEAQD9g6PvOAQHzub6RO94BA1dOOhj//gEAoDVNCPweBQHRO7Fw8D4FAfFQPhGcRgUDoSd0eQReBQOOZHPrGGYFAkI3EXu4agUBGLy177xuBQIccOLM0H4FAFON/izQngUAED+dk8CuBQCh7OQ0vL4FAfvgTw7wxgUDGQAvnQjaBQLbaXbMoP4FArhyxeyBCgUBoN81g8kWBQEbYJNxgSIFABbaoqeNJgUDDy13i2VeBQMuyJ1/7V4FA/JyP8FhYgUC+xw3hMV6BQOJv+0phf4FAfT3dfFWPgUCWlzVHVZeBQOQz3QpTn4FAzzQYAuihgUBR8as01KaBQMJSCchuqIFA6N/N9oKpgUD579bR7amBQKYws7jLqoFAMonPkUqvgUCMua18bbCBQLwN73sFsoFASuG8vq3JgUAYgTJgftOBQIa7+CbYGIJAI9TbrdcggkC2LWHy0SiCQBybpyOhKYJAcE5q8KQwgkBOH2VT0DCCQGQr1BbrPYJAQo77RCREgkDYWOcJcESCQMyHv6nSRoJAYyNKPH5JgkAKMABb5k6CQGB0p8wjWIJAMmli/NVagkBfN6VGCl6CQDqQnJ4ubIJA9FTTMAJ2gkCSzjvjCH6CQM+3I4E3gYJAaTDKcUOJgkA2nSeMQ5GCQCBN2z48mYJAWr8etFSZgkD6dY/QDqGCQNgaSMQ7oYJAeE36rVShgkC+yvCxX6KCQJKrEfZjpoJAG6jfUgypgkBS//k5NKmCQCo6J6EGsYJAhdBkcczNgkDud8dAzdGCQMKwZnPH1YJAvK4qX4HegkAWmeup//WCQHPlFR+v+YJAiCFppgD6gkDbrvWheRGDQFT1veZ5GYNA5h9uxnIhg0B0nt8miCGDQAaIORoPJoNADMIk1nApg0BESSkZDyqDQFOmJtxpMYNA+LFT99xBg0BwavHxVFGDQL4uFzflgYNAtCO+CkmDg0BYZrr4WKCDQIqeKRfAwYNA2jgEL8LFg0CoiH3WucmDQGDj4fMDEoRAwkjOKAYWhEBEpYgoYCqEQEQyKf0CLoRAXyln9F0uhEDI2jLiBTKEQB/3bKdyNoRAAoKVJcFWhEC6jKTG/miEQLPnYcz/cIRAOkIcAvl4hECaYEIQdXqEQNWyTGMehYRASEBcGHGihEAWDL9vHqWEQJZYUPbKp4RAzP+1OHaqhEDqu7K1JK2EQPk8UjrmrYRAW3SCL+mxhEAAWkfNU7KEQOhmkUXetYRAj+vhdli2hEAaXpiS57mEQPjj6kZZuoRAJWmzIa69hEB4g/eT472EQDVw0NcWzYRAFsOZSMfPhEDCHcMQatmEQNpjOqVq4YRAhzDDgmLphEAON1e1fOmEQLSpoY018YRA2EsOYmLxhEDWUgE7N/mEQN1pcPdY+YRAaaOZfi8BhUCsXHrugAGFQMgeSZ+9JYVAXie/qsEphUCoVwkZODKFQDfKIFQ6NoVAVtHiv9RFhUCcT81noGGFQBg1tOugaYVAopUVoZhxhUCqFUwntXOFQJyD7XqZeYVAuu0KOZGBhUBuHjsw/YqFQCao0jDaoYVAZvgCX0amhUCc/lCiTqqFQGqXQSIqJoZAc1J+1ZmShkALuIRynZaGQEhARluhmoZArktVfKKehkAqd5ruJbmGQD48FmB9EodA/mp7JoAWh0CiLw6wgRqHQMLlqPeEHodAsSE9Dn0ih0AAfEl/hCaHQC5oZZ6QKYdAZo78wvQsh0CJFXlAkDGHQK0tjFqLOYdARowi1FtBh0AVpDxNj0GHQMxnMixZSYdAr0kfJo9+h0B6ypFqk4KHQKyrhFSThodAoiKOq8exh0B1NV+Wx7mHQB607iPBwYdAjrJFZMPJh0CVbmb+cAaIQEvviexzCohAzOj+kXYOiEBqiFn9cxKIQIsBy+b1kYhAmnzPovaViEA= + NrgMGZxjYkC0UdoP9eFsQEMdzoN8QnFANTU3073BdECeKRjPP5N3QFz2fkps0nxAjOcXLK7DfkA= - + - dDybRP1y10UyrZhEmMUhR45mlUVN6OVE1Qm3RM99ZEbmTUJFGTckR/U1XESTupBErcEQRbbf7kQ/24VFb4RBRTTg3ER714VFwye/REDMnkQnBIVECDPXRDSE80RuxIdE41umRI9eIUZfeBVHcyCbRD+0mUTHK2hEosqLRj0VUkTr+5xFRBlnRDISaER0IWZEhLkhRTLr0kaTeqZEq8y1RJvMuUQYTaVFRyztRIWxnkRJ9I1Enpd0RLpKl0SiuKVErCpXRUEna0SN5FtEs7YaRsp5nkSjf+VElkxqRYYDlUTvrwBF93ujRZGTM0UxrJ9E86N7RE2pTUetmuhEaDQlRWV2sUYdeIhEbxiaRJkC5ETklkFFMbQ6RbMuoEQQPgFHjAydRHcTDEWR7pBEzcXNRHidqURaB49E8eVqRWz3b0SjvVlHiyscRW64X0ZSaYxEk9YcRm0pyEUbRBBFoaoQRcLpbkTchINEvEdPRS4pDEXXBbNEbaiWRFO4pkVTjWZFRuyRRI9sTkU7JN9EVn+ERWJ/kkTGc55EIIvYRTvJ00SG8Y9EzIecRMzaq0Tef3lE+rWaRAxWT0QiofREE0WTREObsUT4uZxG8J7HRLSCwUQ5VDlFKFJURCqJkkRkJ21Er0BZROk4M0UqyWlEt422RCTNv0Rx3C1FvzyGRfMylkQmtIZEZwXnRPDhpUSSRnhEYJSiRAeKw0S+N4JEfI6vRMXAAEUnkK5EgDeJSGZaDkjxjn1F0DRIRUWO+kYGKMxEDAyjRdJNoUXovGhEFOQ7R5hKT0Sq43VFxi1yRGYMp0TuZuRFMqMkRZPfxkW79OpENKatRUeTuEYlDrdEiXjnRIERm0RwRQBFsoDsRNITT0T91L1Et5dHRi7c7UVMi+9Ek1QqRQ7V2kQOPb1EULyGRIbBjURPM4NE+SVuRAMh5kTQKuREdhqGRHgAYkSdtP9EXr6bRDfxFkUfMvdE4OePRCe0oEUDLr5EbkWKRIEJDkUyk2pGw5CxRPAJdESa0nxEDjrVREqzGkUGH/hFZCg+RbJ9g0Sg1txETotxRNQ9uURrm2NElY4HRdhp5ERnFidGioT3RF46wUWU251EwDlBRtM26USWZpRE/O0NR8hI00SXaCRGN/PcRLZb9UTn4xNFsKR3RC/SgERg8O5EuuX9RO0+GEWoorhEM2yNRLyko0RSoMBECERURLh7zEaRQsRF3rqyRIUISEWGDvpFynbwRJxLrERsaINE3eXDRT7iBUbjz1JGGiHSRkMGZ0QgqmlFP02xRKRAhkU2PaJEHvRzRPAWJkV38ZdF++GpRN0ac0QsMUhFGxeURO/FLUZK54lF4IzrRJipi0RY0rxEMIh7RTOmj0S+UINEeBGyRKIbR0XuVXtF6iCxRVXGrER385VE6Z1pRQwbv0QN3JJEGM06RYkc5kS3ckBFzs+QRsepVkWon8REFTi1RA1hREWQaX5EhlI4RVhke0QGDZpF6AfrR89Bl0QZ2LtGk5JgRMV5bUWy155EFpK7RjuHykUbLIZG7siyRDKNxESUTZdF3PkiRSER0kR83i9FMW7ARHhxjERusk1FGoyHRLHdXUSlu91EVvneRGNOvkSSnIFEX7HeRIBHgUT5t4lE7EybRFHob0TViHxERKpxRJ9EXUQBAmxESEd0RRJrRkW4QaBEaeWfRCaKsUR2yNBEOv7WRvPKD0bdg8FFoFnrRat4TkRI0UtFUMAMRUM0PkUxyg5FsuQvRTA7bURO725E4XxyRCCorUQ1B7hE5W6XRQ1XSUlKMFdF9p6vRK2vdEX5zWFEIeNOSBqy6USUnY1GpQ1lRKM3jEQCy5VEPyi/RYnpAUWnrQFFsyZ+RBN0GUVRSHBFfCG9ReOuWESoNphEMbapRCEmKUWcs/5EpkpDRc0QOUVrdg9FoZmqRFsntUTlxolEl6aaRAzut0Sv+i1GNQxbRK4UtUTKCapErm2aRSLpmkTWWXJE/cToRM+SC0Y8KadF7GDkRPSvfkeSfs5GnHGMRVjKcUUNlO1F9MyURJuk0URbL5ZE0+i0RIbXz0QCNL1HaYyzRjTsykTLk9hEQLWcRXVjzkRhO0tEkvG7RfHuekRY9IhEGf+BRbmO2EQE4yJGtGgCRftCzEVrpJZE1h6FRBkmzETxx7xEc47FRFFZD0VLEAxFUa6iRMWdsEYWlmlGTP8URbvPhkRDX8VEFrzKREo8rUR/lthFM+oURmbFNEVa04ZE38EwRZUEREX18XpEqeS0RNxOrkRH1hZFbf5NR8R+DUd32gRGwAwWRUjWxkTIMgFGcXUdRQAtmUVsVQhFKhOGRVB8kUapbe1Eug6aRPrIQkYMen9EoylGRS58mEWTDYtEFF+MRYY1lkVPyTNFCBauRWYXwUQURb1F06AeR4A360bo7dpFuVxzRJouTUU5gX5ECZW4RF6c+0WvnqlF3+WoRN+3yETnPdJEcL9pRM0l1UcYs8pFB7HnRXpyDEXmm/JEVd2/RmiFM0WvsvpEAYOlRntXFUVIm2REbRAhRXjVaETAo75Fyb6tRI1kZEWFC91EkXVCRgJZB0bGNMxErOY0RSVdxUS8R3ZE40WdRE3jiERoPzBF9FpMRv3ynkRaBi5GD3ATRfSUwUTFUYZEE5ecRAW3jURkT5REpOuiRLIdiEirAwdIeKZ0RIWVVUVnJBpHRe+XRNDYmUW7radE7fiMRMk5fERA9WhEgVB/RLXLXUQiyJlEGYEdRcriv0bvOH9FVP/rRTeigESFealFChazRIPOg0RfXnxEJD5SRNTNhkW00plELGawRKJ6p0T0Wh9GJLRORbsxJEWYOIBE7/UNRStvlUSQX2lFib2WRFA+yURynVxE8SBVRIFao0Q1rnBEXBYWRfRaj0Q1JKtE9gGNRKbEYEW6e4BGk/OjRGxvj0XiDpREY8NxRBMBuURwdq1F/CNpRdMpjUSNo5FFpCpKREy0KEUeGDpFXC6SRFL1ikR08L5FBkShRJ+oBkUzBuZE/1MBRUIXIUUGswxFXHGMRCfPiUgVVWhEI49aRONnUkRzS7VE6iwJSHYxM0TMYeFE/7qIRMjNiEf+qYtFuHhNRvGiiUTVHa5EIV6zRdqbw0QxHwBFA7DqRNBZ90RhwH5EMsFbRi6WaEV3BRdFRU27RFX0n0SgRY9EG1BMRDdXiETh6HhGdTNkRRfT7UQVcsxET3QdRYZ9p0Q+XiRFAOtPRcZQhUQwsJZFYmqDRCGuXESw1LxEEYYGRbuX1EQYHaNEwyDTRc2U+UToK59ESaZKRU1MuEQxT8hEbn/VRK5MrERPGl9E1fLGRZLsd0TcdZ9EwgQRRRa6uETShztGsSKgRTE6VkXpvXpEPReBRA/tk0TN0WlEX3sURUZRukSIl8tE0eLRRGqXaUTgn0tFLmRRRJG5CkWBJGxE/Cz1RB2jrUScw7BEj6LTRz5QO0eZINhG1cseRduSw0UHLg5GqFSTROf2IkX4B8BEFK8nRXX26kQnffpEEaJXRa2jf0Rv8G1E/VR5RFhFF0UIsLhEZ5+bROLn+Udd521HtLr9Rgw4G0WyBI9ErdklRleknUT6fBpFcpHKRPFtV0Rm6HdEZpOIRA30EUUDRP9F3YKQRcFYh0TlH+NEAi+pRPLZEUV/9zBFBFRQRO30qUSvIpJEWid/RChAy0W+gk9FclseRQass0S1h6VEg4GrRqw1rkb4RkVGf5paRVE7oUSd739GF1XcRaS0V0VaZ1BF67UeRW6LxURXZ2lEb6dqRDkVaUSww3VE9H/5REsLDEd7HHlG4RYVRvmRrURN+6tFxExhRcWlJkXvb7BESLm1ROKRTkT5dQdFpC7IRPJfokXY4TdF8z3PRMaUEEcs7oNGAKAfRl7LpEQIvIFFrPuYRL504UTgoyJFHEttRMYVtEQa8oVE4rsbR+CjzUYWvypG4OhHRYiUzUTxmyFIiC7xRyeMQUdV2UNGQlcsRWTBXEQw1BVG/d+CRP5Zy0UZCpVFnd2ERCPqYEQV6WJEJJSdRTIpiUWK0RJFYNwoRoH7pkXtcDBF0eekRPgjkUZkL0RGALyuRWD6DUVafYpE9ctrRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - CmHqNnjAckCBVVH8J8FyQOi1trNvwXJArjhIWlDCckC220qkp8JyQMd8/jPnwnJAZdV0dDvDckDCPz/Ge8NyQPZ8Vl/DxHJAOstx1lrFckB/+HhOAchyQObh60NazXJAOk7J40PSckDjdVUFz99yQNLvuqm54HJATCfF6lDickD5rkvFkOJyQLyWNNDI8XJApO98MnzyckAWBWMUuPNyQLbfGRuk9HJAKc2AXsL/ckBaEAhZYgBzQDPwhvn6AHNATsve444Bc0A0vkGtOQJzQE3VQXDQAnNABLUNIPsDc0DxylFHChJzQFLUs6C8EnNAhlFcXfoTc0DtOonHBRRzQCq9kxT2F3NAMEN64k8dc0Btvl9UeR9zQCy/37+kIHNAliF5bTkhc0CBjT0+ZCFzQFyDXdN7InNACLn3I84ic0B+HRMAEiNzQNzhxgkMJHNAR0fLFNAkc0ASka4eSjFzQOYgdcwiMnNAcG8G2dczc0CM6gDgODRzQJbjtsjcNHNA9b/Fv3hBc0CGwVuSJUJzQNk4iIemQnNAHMHVprhCc0B4eBP5ekRzQMYsuvKGUXNABCwcJp9Rc0CKBkziFFJzQLJq3x9BU3NAgAg3zKJTc0C4HkN5d1RzQCow7rSLYHNANPTO0h5ic0BopXpi+2JzQF2NZsI5Y3NA0/QnK89jc0AdXp8nLG1zQFahdtdScnNAAb0HF2lyc0DSW+ThhXJzQIrjbC28cnNA5qYN4gpzc0D7657HtXRzQMIi0tFMdXNA+iPkcWx2c0DsVron0HdzQKPeVGjed3NANEq8g3mAc0CAVPLBpoBzQPoVCTENgXNAPMKgFF2Cc0C+PMkEAINzQEqVEsmHkHNAAOD4htGRc0Ciwv5xTZJzQHALntdhlHNAVwF08feUc0AHjJ5kuaBzQHJFu15aonNAR5jh6I+ic0BjRrNy5qJzQKIG8BwFpXNAjCSVPNSwc0ByCM6INLFzQDabvR+2s3NAqV0R5wy0c0AycQv+orRzQLRKLlr4wHNAtAOT5D7Cc0BMXsTfz8JzQKynB9Mnw3NAln9YjdfRc0C6JlAI3dJzQMysiQz303NAhvT4fYrUc0BgzN1c4tRzQHWfFZCh4HNAr0Nl9Djhc0C2gD1vEONzQOROUUN+43NA3BHcbDb0c0BXoNXqyvdzQFTR/MLkAHRAhovG7XkBdEDAd7E+pwF0QNqMXWN5EXRAKtscJpARdEDhUBV8ThN0QOYt/MfkE3RA5B71lrEXdEAxQ5aCORt0QAKGtrVKIHRAKDKOkLkhdECkCnYMVDB0QN3TDhcTM3RA9ep7xV8zdEAiH5v25Dd0QFal/W25OHRAOGxFEVZAdECC/LfCekN0QH7PYz+oQ3RAJG2WpfdUdEAU+Xt1jVV0QPAg1W7cV3RAcdTcYjVddEDNcG9RuWB0QKZqNCkJYnRAXxex/I5idEBECmpRT2R0QN6NKNLoZ3RAnFbGGiJwdEAyC9qjY3B0QEJ7s5RBcXRACDJ9VhpydEDYT3ANOnN0QDjyWgA2dXRAhcVDLkSAdEB80AfV+IB0QB0QxghOgXRARPWjnyaDdEDM/JXISIN0QFTLF5IWkHRAQoluOVOTdEBkQynd7590QFRAiZSjoHRAsL7dpc2gdEAe5FGqOaF0QPrRdbN/onRAPoO/IbiidEAsXos1DqN0QFzrFSpJrXRABovgwfqvdECWSWrEDLB0QKrDSpPDsHRAROzIkv6xdEDbz8fKb7J0QJqhh4b8snRAvvYspMm3dEAU5R09Er10QHr8718jvXRARkWUld2/dEBHc9ZY5MB0QK44LIJ6wXRALpMnUOzBdEDFqaOaKcJ0QDgay8UkxHRAjwLbCrjEdEB4k0nE/s50QDRNAy3i03RA2wO9qXfUdEDOx8AAztR0QNXKmZoi4XRAYEwqXbnhdED4/To7UOV0QFghitmp7XRA2YpuOgnzdECuujnNjfN0QFJeyn2kAHVA0S/E22IBdUB6+o+uEQJ1QJdrSWVdAnVAjsBYI6kDdUAu94BVlhB1QOihIzBqEnVA2F1npyEUdUAqD+oKnSJ1QNzIJpirMnVAMMqdJMs1dUCYQBZFJkN1QAYNxNHuT3VABNMI7E1UdUCifUpJd1V1QOIRvm/2X3VAEEINRDhhdUCSaY0IaGN1QA5EBx2OdHVATFFPHOSAdUAkkxoAeoF1QJ9WJ+GtgXVAWtUhcTSCdUBuoQC4EoN1QNLESBeng3VATQ/OB5yEdUCfT5SPvZF1QL6fqkYMk3VAjjVT7bKTdUBdtVjkEpt1QICa6U2WoHVAAGKrviWhdUAASPrkuKF1QJx16kdiwXVA5ZZDkvfBdUCzK4DeR811QNYAbR/O03VA0yy5LgjidUAmW64HrON1QCZE9hZN7XVA2gCv1yfvdUCmdHIqpvJ1QJcm0Q/v93VA9+XRiAP4dUDN8Q32Sv11QH7KqxVJAnZAdfnkiJUCdkBg6y4F0QN2QBYGDeRLFHZAmGgS7AoWdkD8FfG7iCJ2QMAepoKQJHZADJLsX0srdkAMH9uVHzF2QCIvm4uSMnZAAOXf4VEzdkDkKkZmnjR2QHB3bDgdQXZAKswafC9BdkAIzNiXmEJ2QBT8vRLJQnZAND28sHpEdkATp3p1/E52QOV0dQgSUXZAEDFX5zlTdkA8/Qm1h1R2QNYAtprNVHZABuNw7FFjdkBQcvx83GR2QBbVyWFQa3ZAjFw9rGiDdkDNNW3fkYN2QLpmvlC3sHZA0vXW08KydkA2LdFherN2QFf3RjQNtHZAMv+E3tS4dkDysxbKwcB2QIh6Kn4ZxHZAxMc/ec/OdkAUrbaM8eF2QKwXKKqB43ZAMoJJaArzdkAShP/ZXPN2QCCgJLeR83ZAZMs/SjMCd0BSffMdUA13QHkNbJABEndAYlTPUZESd0DsJDKnqhJ3QGL6as3tF3dAeiAGxQ4id0BBJJnIdCJ3QFpXjTW9I3dA5NF16qctd0DKgTt9MTN3QOuNLrulM3dAyCIJeQ01d0AUzFUSJT53QKjbYSedQXdAC6VuO7FBd0A8yNl+/EJ3QGC1pC6EQ3dA6Ck6ILJDd0ANsoNRG0V3QJAlhadKUXdAjlM2XpNRd0AiflwZCFN3QDB8MzcqVXdA5quHbNdad0Du266vSGF3QCizX1WPYXdAUqQgbOJid0CJSv5VN2N3QCpKjw0ob3dAepvKvR6Sd0BGvQ9XTZR3QPiwxqYmmndA4hh755m0d0DQZ+ezjMt3QOdqQ6fk0HdAtqkt1GLSd0BFc75P0d13QNM67Qop43dANl4mX1Hyd0DisXz8fvh3QLQXiGZMA3hA09Fd7lMLeEC+cOzNdhJ4QKPczusiE3hAgi9EJ04VeEDD3zSGbyJ4QFuhPce8I3hAFONLnNIjeECe4tcxLjt4QDbHr/gLQnhA/K4ZxRFEeEBjz4aEekV4QLM9SH7LUXhAxJ0IowpSeEBShdy9lVJ4QFQB6VQeVHhAIgXG14dVeEBxGIfB7ld4QExVTWX5YHhArWAEMLdheEDWEhPUuWJ4QPye/sy1cXhApUZLBV10eEBwV0Xmi3R4QDlXwQmwdHhAdiISC9N0eEDD/CV8pYF4QG5KSO6ZhHhAAgUH+1KPeEAARZ7KlpF4QHzNyDSolHhAlVKUOPiyeECwZTt/1LN4QCgyb/Tiu3hA1GB99M3AeEATd/kSuNR4QHbhcnjF5HhAs5zXBAP0eEAK/UYtjPV4QEm5nnYUBHlA22+mDJoFeUCAsu0grAt5QMexyKa7I3lAk2EVtvUjeUDF1gOYsSh5QADV3SELLnlA9mTXCrczeUBS8RUP5Th5QGActq6JQnlAzOn/JvxDeUBjstt2lFN5QGS4+Y0LVHlAugKlBM1UeUALA4Di2GR5QF6THgdEc3lA4qcFZWWDeUCMKzvvcI15QIwMBxnLknlAlPhY0MGbeUB4dd69yKN5QBYCAm/Qq3lA+Ynct8CyeUAagdv40cJ5QFQr3BpD1HlAXAZN4czVeUCXntBZB+N5QDUYyt9P5HlAWgd8k/kFekB+4yRIOyR6QMO3o8gMNXpANgsPwi03ekBITl1zGkV6QNDtMETMS3pAD7XeiClVekDc9bimIVx6QM4JFxE4bXpANHkcbcFzekCHZ2MwAZR6QN9gFtGilHpA8g0r9QacekAEkMq6DLN6QLoJdmsOtnpArPgEXS3DekDCCBSi/MN6QPjYvC8cxnpAFJKNPg7IekASU+TIZ816QDy94atEznpAzE1kIrDSekDYzD6eyNJ6QB7GzkLM23pA5oLsj2bhekBBz4pqNu56QEKSkfwY8XpAn3E4Gl3xekDS4nLnSfN6QF4lqLmj+HpA59slfwD+ekC4tQ8peQN7QOiD+SMiBHtAg7qSL3oEe0B6Ud4+Kg57QMyPvIvFEntAZHckM6sTe0CYK7IYTRV7QOqfkpchGHtAEx6mFVole0DCuyUUxjN7QO7nQ4q4PXtAXr6nuQpDe0Cy7jKgmUh7QE6itPAYS3tAqNkokl5Se0BWjuJgDWR7QDxD3g8UbHtAOkkjy7Nye0Ac3P9O65B7QFJBv0FbkntAxBsp/SSVe0DA2/N6z517QLoOylkoo3tAjgp5Q4Ooe0A3OTYvyK17QIrZh2HirXtACOPOjF7Te0BvuChYItx7QIsKE1EB5HtALkvS8Cjke0DKbpXTlvF7QNpiAKwb83tA4desim7ze0C0DLpFjPV7QPDOVrp2+3tAehGkhNoBfEAagN5xZgR8QD6lQxCZBXxAXI/VLtIRfEA0xFbt6Bt8QPbbx6/xI3xA7VxZC+YtfEASn4NgPzN8QBHAqo4jO3xAJIBow81BfEBOzErEUkh8QOqR/rKrTXxA3YiP6fNSfEBOwTPJCVN8QDq9hpVOWHxAqgCpXmBdfEApagVkDmJ8QJJCimcqcXxA/wgR+wNzfEC6JD4evJh8QG1WJZ1YmXxAQICOMbSefEBHh5C4C6R8QNr+Y3jEsnxA3g4YBszVfEBG8SIcWOJ8QA79askR43xATBramWvofEA/3E1Qye18QNj4m1QW8nxAf3P8eVTyfEDlmgXQAQJ9QE4wbL9LAn1AbS5IqUMSfUCwGekPrxt9QGISEyb5IX1AEOIh/7cjfUDGbOWtwCt9QISqAoegMX1AlEFdFeJLfUDu55C1DlV9QCak37WVjX1AI3UGi1uSfUB5Ansx75J9QD5nduQzmH1Adnj7rk+YfUBUi8XXj519QA7TuqLton1ASgodSCrDfUBKsJ9CQtN9QNpe7qyQ9X1A+ABcu7n1fUDSk3JpFv99QPLH6envHX5ANvR5kjgffkDYUogoSSN+QCbnC/SgKH5ArmoAwOwtfkBuFtUpPy9+QOYqXQVAP35AToxw7r9LfkAy3reDjlV+QGofCLO3e35AtN6h9Ol7fkBfklAzvYN+QPCeN6XLin5AVP9ofcOLfkAOeDpWyZN+QKZHM2zvln5ALPZI6c6bfkDmasggTuN+QEJLsM+N6H5A2mF99NfvfkAOonbPsvt+QBgD/9GZA39A1B5bR+gRf0Cav8N5DhR/QIz4QmfuGX9A3xiG8xEcf0BM267t3CF/QA6nh+4sJH9ArAMgdeUpf0CrgdEnNCx/QE3OO2n+ZX9AbH6nf7Zxf0BwfWJC43t/QPq3H9W1gX9A5NFHyKSDf0Blg5mkY5F/QKzVIy0Sk39AyxOeR5uTf0CwMcm1pZt/QLCC1wxeoX9AOoTmiFSxf0BaIxUwzct/QOhgVqHT039AO2SNnZTjf0CyEJcpOuh/QBRcwYCR+39AuBcrEdEFgEAhZSh0GCqAQDqJzEhDMoBAma0PUUc2gEBkrQDAgjyAQEQ8LTXuSIBAqQAicedQgEBKTVjEFFGAQDzSrPHrVYBAYasN9+RYgEBTBEdVDlmAQDy2BpEgWYBA/G0cG/BZgEC+5YtRSFqAQIjyucQNYYBAShjAYDlhgEA3rZafxWaAQN5IRbc8aIBAoZRMuXJpgEDE6aN68G2AQGSwdw8pb4BA+5KCZPRxgEBeIJZhKXeAQBssYIyrfIBAfLr4niZ/gECW1o/6MISAQMfMV0bfhoBARHlu7/yKgEAO8TovHo+AQNrQ4/odl4BApKbq2MCkgEAGYsurhamAQHQAps8Tr4BALjlm9wa8gED53TsZZcCAQIhZLnxSwYBALLnN1CHIgECKozZ4U8mAQLbKj7vZyYBAErMp6y7OgEDYdFahB8+AQLTNe5hM0YBAFbyHimHRgEA21E0cStmAQHqyWB5z2YBACR3gFyDcgEDUUnpHROGAQMSvtihU4YBAXtoS7x3kgEBuKveF9+iAQIHnnIpL74BAWq0orj//gEC2flkDQAeBQFDYazwQDIFAYzIudvUNgUDL4L6QPQ+BQOg4PR7KEoFAwo9tX0EXgUDQ2wl15h2BQCgGOHI0H4FA9Lbl7zQngUCFcaaPtieBQIDwkYwvL4FAuWvJn70xgUCn0XBvQTaBQKSGvkwoP4FALuDMPCFCgUDyOvVb9EWBQDQvMcBgSIFArv37sORJgUB8EsNP6E2BQMZSDzFpUIFALtdkHvpXgUB3kk8EWliBQLb7hdRvWoFAZFDbDzNegUC6Dgqp6nmBQGDuLQxif4FAGlJQtVWPgUCa8fzjU5eBQGRqz25Un4FA7H2Hd+ahgUCWSzr41qaBQLgOLPltqIFAKub0JtmugUA6jtylSq+BQCW+35NJt4FAzenG5qzJgUC949AjsM2BQIsEgdV804FAr6FwVgT+gUBNcfqf2BiCQKrXZmLWIIJAxvyMy9EogkCgfiek6DmCQFFcWmomRIJAWjz8+9FGgkAqhB3fekmCQIR6LBXiToJAjwiqvCJYgkBUqrNdalyCQOc8GAM4aYJAFb+qUC1sgkByfQAKB3aCQAz0jFJDiYJApgH34vmNgkADdTq2Q5GCQNF+MhMBkoJAwWUrTTyZgkDomP8meZ6CQGqf9gEPoYJAeta5HzuhgkAiiaAZX6KCQJJ/EHVgpoJAPn419gypgkAyZQXEMqmCQOzUE+EHsYJADKrHMCHKgkDKrnM5zM2CQKCJsw3N0YJA3KoRhX7agkC9yvl8g96CQHiFe2QA9oJA8mZAH7D5gkAAwhaEeRGDQLrCTLV5GYNAy1UjwnIhg0DYNrtgDSaDQKqWt8RxKYNAXuqTBhEqg0BvBsp8ajGDQFaINsC+N4NA4Iyd3NxBg0BXhs8dZUWDQGa68sLfRYNA+1vMwgtUg0AmZaDR5YGDQPtnDHO/wYNAecLILcLFg0DP2s1musmDQFV/PhZv1oNAJRd3Z+PXg0DvKxlGk/iDQCAu5J4CEoRApnABSgYWhEBg1nPVXiqEQLVokF4CLoRA7GbsmmUuhEDIzcCzBTKEQC73IDtxMoRA1UUZ63M2hEDy3WYddzqEQAxWGFgPToRA9JU4FIxehEBGN8VjjmKEQACSxDWQZoRAWgg3+f9ohEAdqwMj/XCEQAB+YjzHd4RAwXhxR/d4hECH7WDsdnqEQIAG9YIlfYRAfoxKiXGihEB2Sn96HqWEQOqWhUe9pYRAGlYihMqnhEDYLbVCd6qEQOCaDKMlrYRA+RGG7uWthEA4v5PX0K+EQJsvS9jpsYRAjH++k1SyhEAVxkdL37WEQNgp+F5XtoRA7uG+aeO5hEDSQQA+Fs2EQPw2TavGz4RAviFaR2rZhEAE0w63auGEQJ9VeTBi6YRA4JQDlHzphEApwQW3NvGEQBpt33Fj8YRA4Goa9r73hEA2PbpgNPmEQI4OS81Z+YRAFFpJUW/6hEAOUFVcKgGFQEq5FRS9JYVACv1Zxb8phUCICgVSODKFQDmLZnc7NoVAuu0XLDQ6hUA6XNVr1kWFQHN7j63XSYVAnhsJlaBhhUAqcRMCoGmFQPkyv/KYcYVAG/ZHmpZ5hUCAMcPbkIGFQNrcJ73bpYVAfhx5QysmhkDU43D28VKGQEaiVfKhVoZATXzaY6dahkBzXIQKmpKGQLvdRACdloZAFlSStaCahkAmZkuHoZ6GQPg0nOoluYZAUSGotirBhkAwb/t5fRKHQPZzQyGAFodAjBp+xYEah0BrHhthhh6HQDayP8aNIodA9xODT4Imh0CkWCSRkSmHQNecSRSRMYdAjVSpHIo5h0DAzg7cXEGHQMROVFWMQYdAlOXCbltJh0BWSfxqE2SHQJ3Vy+uPfodAQpGITZGCh0DvleDklYaHQLCRNJYDnodAVLPwXgeih0CqEQtRCaaHQKBs7H8BqodAySQ0V8exh0AP9XJ6xrmHQERp7zXAwYdAg9Se8rzJh0CAkkqVcAaIQFARjT90CohAqxJ4VXYOiECu+PxBdxKIQB3WJM+PKohACCXa8JEuiED8IbUv9ZGIQNE2GKv3lYhA - - - - - - BPSBRHVbXkRFLIlFPYWmRCl/Mkdwpk5EkppvRUD1T0Sus/RE7AFFREIcMUYQ9EFFTfn9RlIR30Rd6t1E78VPRfNDW0Xt7UBF7JkwRDOV4ETkzfFEp9/pRN06gUTJi8JEGt6cRPjFp0SngxBGdOERRxWOsUQtag5GL/CQRXB9kUW20HtETj5oREEeAUWzN99EDsqhRptdhkS2xUlEjGRrRC093kRl3kREIxxyRQp7BUXHcn1EhNBMRIzblETKUoNEU8qARRFdp0Rh0mdEFrWdRE4VzUX7fWFENO90RId1REQSQt9EQcg3RQwZNkRYZ9ZEbj84RHscckWiiK9EwD1NRGZvTUesR6FEGS9lRYJWj0YzzVdEPLeCRO8+00SLKCRFwC2lRHZIIUUD05pFYqPuRqKgqkSzpcxEjDHBRJzz9kRqlwdFeDFERF5eJEf5MglFardLRo30p0UQnYZFUrlpROksE0WlkzNFBy9YREGcQkQ4LRtFHlqhROqnR0TnDa1E6+J8RIaE/UR4DLtEzxkwRQyXU0Q125pE9PM7RBWohkVjA51EB9DQRXt7BUVqPv1ERwPNRGG64ERCUrBEEiJGRr1dkUQIOolE70qYRKtcL0XayV1EU6BoRMyxjERs43ZESd2KRPb1TkR9RcREyyeIRGbG/0TOKX1EdP5XRGuGNEQlq79FUZt4RBGZ5kSvwiVINyO6R9gHeUXywuxEBWnBRuDJ4kTVroZF5SuYRb4bZ0TkKRpHi2tVRFpywkW0JpdEJ7HSRfZO5kTWoalFcfsYRYGAcEQX+lpFdmmORPmfBEfEnIFESiacRE4Ve0S9Ui5E+GhwRCmUn0TZCVpEZIMZRTH4YEQlJaJETyWeRAhwYkb6+V1EQ0exRQhSx0RKP2VE21NlRUn1w0Tx68pExeKSRFreVkSc8YdEAA7yREqykER5cu9EBMKVRIn0hUTVGIlEfskRRb3NR0Tv/mZEPBZ2RP1diUUK+oREcnfvRMzxNUQn3oNGC+WQRHm9Q0TTZJ9EWEqORFYS/0Xzrp1E1/ULRXbBTUQt4XJEo37KRMIqBkUsMTFE090EReS1jkSPI1dGo6t2RIhmCkUehmJF/g1CRGKjeETbQVBGCov1ROduWkSTZQRHzRTRRJF+AkapkaRENulbREFJA0XghmdEvZsIRVgPZETDK6NEZvHaRIAegURCwptG+AdiRJm8H0bQeQNFUKmORNMjlURPFgRGdEU0RMPZpUQuowNFkBGURHsgukXDj69FPc4mRmZzp0a944dElGsgRS2FikSrFoZFFGE1RAcL5US71g9FoP4qRdawa0S3lmRFCJI7RELzSkReuI1GPO0vRUBbDkU+W1xErS8dRYliWUU2xGtEcjThREIvEkUd+W9FAbvBRPLggkTRb49E+jhsRT2kd0RFAPFEzvvhRNeySUT5jwBFb4MHRbdBSkWn/FhGRSAGRUrEKkWD/rhEmWctRTtd+0QQr35EZteSRDBWS0RKtJVF4InQRwz/DkW1UttGusOsRWZi5UWLhEREdXWZRL/opUYGOYlFzEugRoA1n0R0jgpFObt2RX3lgESQNRhFwg5dRI2uW0T2fE5FUsLaRHRbtkSNrYREqWA1RPBtc0REVkBEYTdjRCBSWEQxTUdEoiu/ROD3gUSViidFpLlgRJpIikTwxTdEZaZ6RKq8P0X62Z1EJbPYRLl3nERjhXNEWVCZRnoPH0bJCaJFZcpvRLOnt0UG/w9FsjDgRJKLPEUQxCxFX6oVRc3xm0RnW5tE8gNWRdyrM0keBI1FtVu/RE0peEWN+TdIP35xRBC9L0UvCplGDgxxRKdcx0Vh41BEzej6RIwjnkXz6KpEkbk7RRGruEVDIDhEK3OKRBYCZUTbzXJFBzQZRRgmI0VNKcVExwGyRKTpvUT/L1tETf4TRsJxkUQmArJE69SDRQZAb0Qo3qpEFexWRCWuQUbN1spFO92VRveA5UUWEItE4ecuRYr3ekTbdt1FH/3MRLhGSkQbPtVEFgKkROlKjkS0ea9HYOlURO1ev0YF5q1EUt8HRc3XckRq44VEZB1NRIFoZUUvb5FEcCvHRFJ8iETg72tFSaCQRN7x3kSs2tVE6+01RsYnqkVpwJdE0SLhRI8TrETkR6pE4T28REDcHEXJSeNEqZ+0RKaM2EaIB0FGNYtaRUuWeES/KVBEGw/XRJU+2ETaIOxFW/BxRB7BCkZ874xFvLz/RA7DOESKlr9EN4CDRND1mUTQ3fFEWexzREkOq0QiNJFEkpthRGS3YUTYUVRE2lBWRYGiRUdXXAZH7II1RqbKFUUt97FE/6BSRLWoYkWy5YRE2pkoRbtEpUXj/s1Et+KdRduviUaI7AdFNuNeRhmaVEWG1qJFM1utRSk3yUXaYiNFNXhbRSzSMEXUoDVEdL+uRTC1IUctWqZG2BixRRY2N0Vq2ERFAdOhRIghXEREJ2JE6xo6RAf2PUTEVbxF0lN4RUfUXERNhZpEJemZRC7qykfuXf9FYhOQRQHAxEREzB1FwGmlRscsJ0VR25pG5fAFRaYS00WaXz1ENuB7RboNkESnnJxEhrqKRBOOSkT64R5G93xoRBHI10UPjrREoDsyRQwRyUR+iXhEe+3GREF/lkRppepE0TFNRDlIWkTvYFdGJdKIROoV90WG5HlFjlbHREqXW0SO+4BEB+PzRABMPEUUV6BI6mgIRSV1JUgGT2BFFCE8R4WD+UWhBjhEKxmuRP77Y0RR63BEKT5tRDUsQkQXyeBEetiZRi22O0VGV6lFqj+CRGXUSEWCzb5EgLqfRJPIsET75UREVVGNRQi3zUQvbqVEmMCSRNC4IEZwrl5E8o6oRbbpvUQnUVZFtJ8URZ1YSkXYldpEhBg7RKStYkRi4iZFfctSRJi8m0Qq0SRFw5+bRNWCbkS4SbZEfmEmRVx9c0aLvnxET/SORCeNyUWUwbFE3QxrRCcntURvRn5ET9xcREYlZEWbMTZEbcwnRR06jkXbCClFqHIORWBBVkQ9EnVEPCGvRB8WvUSXjcBE+il9RGP7p0XDXrREtu+gRPcny0SgQg1FOl6iRNOlyUQ5uWpINk18RMCu1EenSoREIVNZRCwnt0QLV2pH9sFuRWpyPUbd7SxF64KnROB8jEUOocxEbRV2RMA0mkTRAuBEI3dXRkiWM0WbBkpENNWLRL+AOUWyRYVEAgVQRAoDlETRq41GzDVaRf9ajUSjY65EuafWRP4ZsEQ+qwRFN9cJReolokTMjAVGnoCkRInWnkTrTFpEGkTfRAntG0VwtIhEEH6qRI4nJkSiI5VEqGq0RYhO90TXQaVEstE6RWYaj0Ru2ABFYziVRGbeskXqZb1EV0XNRFIqx0TMtIZEDFGnRI7rLka7IIpF96pARVhUxEQ4UmdE+GLnRCLHWUSZ2qVE0hk4RfOeWURViJBEQ+V+RB1n+EQF5t9H1bG2RLDWPkc0QJZEudnHRqInekQiZapF7rgLRnwwAEUtkIdEhSHiRBBHA0WVQsFEyOeSROGCXUQhnWdENo3nRGI1SUQ7JbpEhVWNRC5100dAPz1H27LfRnHjE0UPZAdGz8mbRNvnQkX9ImdEiAcPRUeaVUQ8BspERWleRGsUaERFHLVF9SpuRV6pxkS+UTtEeAVLRLUuX0QUVClFa8G3RDBWyESmqGhFzk5vRP+Wk0R6RrNEKA6TRMhyYURF0HpEensVRT4Iv0TP131EtIzfRQQJHkUVLZNEIlnoRJyCmUTU5TdElFTGRjEd10YKyVxER/s9Rle2c0UEAppE7KNtRhN/bUS0ZO9FqVYRRXgiGUWNQipFD6MPRe4O4UQMA75EpIACRwNvb0bO//tFX9H9RGKBhEWBDmpFZ8e6RDHSD0UV1MFEEH+4RKUrWkRUXO5EmNCaRJIuRkUyur5E3wZLRPsnwETce+xELvXhRgD2UEZgAARGIsFFRWfHgkQ2jmlEdW3jRKP5UUSlWoREbTRqRJkvPEcQdQBHfG1KRnaOLUU/l41ERLExRLUm+Edri65H53IKR6zNMkbyuQlFmcaPRIK9JkaIhqhFPkNcRX7Xo0QHr75EQV5XRP7mP0R4f4RFn19rRZ3lwERViOlFawZ9RRA6j0Ryf3BEKvMARsZDgkVXS0BF512ZRI8Uj0YIAz1G9rOJRWEgrUSKeeBEjeOPRNVnsURLJWFE - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 5qYr0AzBckA+Xw1sb8FyQKaO62dUwnJAZOEPp6fCckB1tgn9O8NyQDSCzc7GxHJAWOj1elnFckA5FgCZAMhyQOTNHVlazXJAdPncgUPSckBFWETmdtNyQITFyY1l1HJAnNmous7fckAiQ7xatOByQB79lWxO4XJA0ksiYlDickDDJkEjkeJyQDTtfIgi43JAiOzpVMrxckAskYy3EfNyQBKlCUm383JALBUMMKP0ckCUxGpUwv9yQKD5scOUAHNACFyMlvgAc0CvnJ25jQFzQFwRXV07AnNAbb+7A9ACc0DoT/7F+gNzQIHCPp0jBXNAo2Bj3QoSc0Amy/XXvBJzQJ03sPkFFHNASa1G2kwUc0AI4Q1z9BdzQN4/S0lTHXNA19K4CXkfc0B/Xi1ApSBzQKCjbTQ5IXNApjhYE2Yhc0DmP7uJyiJzQGUTYQcQI3NALSYwBs8kc0C06uUESDFzQMa2OuRbMXNAujirTSEyc0CojS+ayTJzQPRWBC8MM3NAJr6V0tk0c0AYMVLEuz9zQFIa48zkQHNAf8RBF3lBc0AUm2bIJUJzQPm5ni+qQnNA1K0l3kJEc0CgMMpcekRzQJ5ke3BDU3NAHhrcM6NTc0CnupYKhlRzQFQurVX9X3NA4b6dWZBgc0CUfb2u+mJzQFpMlU45Y3NAEnCiztBjc0CKy67oK21zQIXTBxRKcXNA/Guiok9yc0Dy1P8gaHJzQNrx3Y+FcnNA5C7VcLh0c0DYpmqbTHVzQCPae1JtdnNA2UhOCc53c0BiFk8j33dzQNtt16krfXNARDVZRHmAc0AfKvKmpYBzQPrI5tsLgXNAZSYbG16Cc0DWm96c/4JzQHwUQ9WGkHNAzqxHTNSRc0Ao1HtcTZJzQKLdv3rOk3NAsnnTQ2CUc0CwrKiU95RzQELjePy4oHNAuo0u+1qic0AmD8dT5qJzQBTC5+YDpXNAljy9GMawc0B8x4S12LBzQP1hysF/sXNAEFnRjVuyc0COQRkVuLNzQACLNOAMtHNAvDnVbvfAc0AWH9gCOsJzQIeQvt/PwnNAiouTrybDc0Cit3qZwsNzQETct/7X0XNApD2SzLrSc0AV10n+3NJzQEQifbL303NARczoDuPUc0AVdLl2o+BzQJyxMbg44XNArsWAbmThc0DFf8E9jOFzQOaTLBTm4XNA3jRuwQ/jc0CyPNshfONzQPpRWcDs5HNAOa7Dhjj0c0AWZwyrxvdzQDz+WXXR93NAG5NFFeUAdEAs2yY1eQF0QM/l5cClAXRAqDfRVYsRdEAcVjtQTRN0QKQ+V/pLIHRALWecDLkhdEBp1EofZyJ0QM4+kqFUMHRA2NlKfuUydECeS1SZFjN0QJzx3E7iN3RAgm8FXTk9dEDCmOfAoEJ0QNKYp0N7Q3RAYvmbHKhDdEBJ5bGEPVJ0QGh1DM20U3RA7qjWaPhUdEAOpD1RjVV0QE0nkiTcV3RA2mzBNjVddEAudw5quGB0QDY9pJAHYnRAsMpPhI5idEBa2MZouGN0QD56ooNNZHRAAnqoHedndECG8vOzQW10QDaKmscicHRAOmeTE0FxdEAwotQqOnN0QHrttbKgdHRA77v15zd1dEAcPPEzRIB0QDH0yBj5gHRA7ikChk6BdED2AetvJoN0QBwteAgWkHRAuIvCaWqQdECkckbjUZN0QJKu7Kfvn3RA2Gq2Q9CgdEA915CyOaF0QCmRx1u5onRABbdBdA+jdEA6Buei+q90QChmHERvsnRAaZI+18q3dEC4Ibs1E710QMjdxvXdv3RAT9UAkeHAdECg2ExOeMF0QOWu/Y3pwXRAOfTvpOrCdEC8TOexesR0QMH103W5xHRAvML6aPzOdED0ez2yEtN0QNXGq3Lh03RAkKo19XfUdECNRYV8zdR0QMKtUW3a13RAT1c4MfvfdEB7IQFZt+B0QEQyqAoj4XRAJoNB5LfhdEDEX+0YT+V0QL4xhBVP6HRAWDH92L/wdEBoZMmijfN0QMdo3JCkAHVADiz6PdAAdUAhYhiVYwF1QBNbmD5dAnVActTUAfECdUDarFZMqgN1QPLB7EFqEnVAOInKKiMUdUA+uIZmnSJ1QLZQynvNNXVACpOZPJBCdUDOrQo30kJ1QLMfwCIoRHVA3Mfq7vFPdUDsk16UFlB1QEKXijh4VXVAFzkS4g1gdUAGD0JEOWF1QOY5V3ZlY3VAVHL9U3ZydUBaRMWsjXR1QMp+NxF5gXVAtDnAKK6BdUAmz2tdpoN1QA42sdWZhHVAyaOzkbuRdUD+CIq+bpJ1QOIyEe2AknVAprKWEwyTdUARKJWYO5N1QDRZ7nmzk3VAVUYlGRObdUAKfAtslaB1QIYzkp23oXVAZlT+c7mkdUCiO7ytZMF1QI9+nvL3wXVAXukp90bNdUAwLcb1odJ1QP91b4HM03VAZBhcSuTfdUDJyQZuDuF1QP1bUwUH4nVAdN4d8DfldUAol181TO11QAxxZAum8nVAyL8zVjrzdUBfBptGAvh1QOYwoDBNAXZAuFktVUgCdkAxi43i0AN2QAyPjupUEnZAcMItVk0UdkA+NPsiDxZ2QM6uuHOIInZAJwEyX5AkdkCE95a+Sit2QMotV5sfMXZAElLGRI4ydkA4OlhDUjN2QHIQLgGdNHZAhK+ZTB1BdkDlmkZ8m0J2QCXGaiLJQnZAjuhFG3pEdkDeCUgI/E52QEaDdP/KUHZAlUTEIhBRdkCX2GngzFR2QKRHFW//WnZANCseMVFjdkAeRklI22R2QOzUEjZVaHZARYLMp1BrdkAFODJTaoJ2QBpc93tqg3ZAMU44spCDdkDbPSgI+oR2QG64dlklk3ZAEN0rprawdkCGPYAawrJ2QB6zCqB4s3ZARCwmAg20dkACOiXw1Lh2QG4mxvLBwHZAltX9iE3BdkAgLNESHMR2QEDdpBLOznZAkQ+ein3QdkBV2WNQ8+F2QF7RFhoL83ZAkj16rJHzdkBWjXALNAJ3QMLgbhdRDXdAjhMKYgESd0BM4v9JkBJ3QCD19v2lEndAtAs0E+cXd0B0wARmkiB3QMzaYF8QIndAMm2qCXcid0Buqj04rC13QN65pjukM3dAVCejCA01d0DQ6yE0Jj53QEjZ9KacQXdAm6CQNPlBd0BjbwUW/EJ3QCjVw8F+Q3dAbJRvfxtFd0BaI4uYSlF3QHgVf6SSUXdAbgBwsghTd0CUrNrDKVV3QFqmctvVWndAFk/eOkhhd0BEf+ddkGF3QOGz1W36YndAXMWymjpld0AROWIDKG93QHZK69c+cXdAzBo5W4pxd0AccwQleYJ3QGzZBdsJkndAGBVr8iGSd0BaTmkOTpR3QAj1+lyrondAmHDa0baid0CCsOBqLcN3QC/O81CKy3dAbLopO+TQd0Bg53Gqy913QDYPW3/r4HdA7yGY+yPjd0BWB94r6fB3QNsDYaw/8ndA2uVfeE/yd0Ae4tl/PPZ3QLJ0fXd8+HdAJ+CTzksDeECxSC4/biJ4QIB81oaJI3hA0S8Bhr8jeEASLR3pzyN4QHL7lup8MnhA7lsFTwpCeEAbW1QBEkR4QD+0tzJ6RXhA0VaHQ8tReEA0ofvklFJ4QDrYTj0fVHhAXJaPTYdVeEDY44L+7ld4QIjHCUH5YHhA7Cxz77ZheEAw63lKuWJ4QEWAYJS/cXhAKNUxB/ZzeED8sLyCJHR4QGq+DMCLdHhAQG2iHT2BeEBDQquHpYF4QNTwvKuZhHhAQIPCrruEeEBs9o+jl5F4QDQsxranlHhADPngbPeyeEDFlYrD1LN4QA+MTkXbu3hAiu0m+s7AeECnzdN89cF4QF7JzaEGxXhAltuWirfUeECcQKhLNuJ4QM2kIJ4C9HhAOGbrCY31eEC0fvakXAN5QApkf6F8A3lA9iPmuQ4EeUBwG//VmwV5QFwOiS+8I3lAqMS3FPYjeUD/mvJlsyh5QGTyoMr8K3lAdJewjAsueUAyXKQ0JTN5QHrc8OzvN3lA1NR2q+Q4eUCmZE5giUJ5QJBSopH4QnlARxG3g/tDeUCiNKkelVN5QHz+eXYIVHlAKsjFlsxUeUB6r0CG22R5QOcCrUZCc3lAZ17mkBF0eUC2Gkzo9YF5QJCC7x1xjXlAdMJaCcqSeUDCgicEKJh5QJL2lCTBm3lAfLt9WDiieUCnC3adyaJ5QAf87NjHo3lAgNeJOM6reUBvnUNQwLJ5QIiN4ITPwnlAarcmp0HUeUDeJVphT+R5QDfC+qn7AnpAY/eY1/kFekC1+V7LpiN6QE4Tbaw6JHpAfl6HwAw1ekCmzpmiGkV6QHFUiljOS3pA4NBv0YJTekDOktPmJ1V6QNS2PU06ZXpA5nIiU4qDekCkbx6gAJR6QCbgwCsNtnpAOVq+kivDekBSS6qlGMZ6QPaoqTMOyHpArP1LPWfNekDui8HCQM56QGptkTrC0npAsPK/iQrYekBU+WB49uN6QCnTw/l65HpAIfLpQzbuekDY3BjRFfF6QGg8SdJe8XpAbKSGN0rzekB1bkbno/h6QIpSOkj//XpAFEeqAVcDe0CTDkBPdAN7QOJk9FN8BHtA1PtdtioOe0AsW/19cRF7QEkciKXDEntAATfUkUwVe0AKbNdAHRh7QH55cFBoHXtAhKnbKXode0B6pfnnWSV7QAfHtwfDM3tAy9So9JlIe0AdILSlC2R7QNO1rd4UbHtACADDc1iSe0B5eWa0IpV7QLwqg8XOnXtANh35KSeje0DQRUFUgqh7QJjaBWvJrXtADH7mPOOte0CgwDZpYbt7QD0wH6Z5xntAa74Z/MfRe0Ap3sfyIdx7QCL68FgA5HtAaIDXdCnke0Do4pUTHfN7QAQUuTZu83tAXsxG94v1e0CCShg+kQF8QJPLQf7aAXxAgONNf2YEfED8AHgVmQV8QOwWcRyNEXxAJw12hdERfEAhtMf26Bt8QKUQ2S/wI3xAid+y3eUtfEARkt6vQDN8QJvCbv/MQXxAyEz9OFJIfECkruVoq018QLKRhQvGUHxAOjHi4dlRfEBTF4LG9lJ8QK24RvoJU3xAfg9RiQhYfEBEz5rNS1h8QDb9tjwOYnxAQM3wpgNzfEDSfheBNXt8QOzPqzAMlHxAwNudyFmZfEA+ctQOtZ58QIJjD5I+onxAtN8UvcCyfECMFc5JEbZ8QHav1w5Y4nxAKNB2FhLjfED8xQugauh8QLbYTWsW8nxAq8lv51TyfED86XZmDvN8QH1VEo9C9HxAI92EqQICfUDPTHa8SwJ9QEeiSB9QBH1A8OuT8kUSfUD0JZuFZBJ9QP6VVayuG31AIWuvST0ifUCd/K0ptyN9QMaTJxenK31ASUy2jM2FfUCihRxplo19QEWvbz3xkn1AjIlKzjaYfUBz+lp0K6R9QDB8R80uw31AZCt1weXEfUCGDL2v2eJ9QKA+/saQ9X1AJDtrRhH6fUDekNxpgAJ+QOn0/yvwHX5AgqeV0zgffkAK1mMDSSN+QHyhJmOnKH5AapciTNwpfkDc+ZB26S1+QHB0Uf8/L35ANDR++79LfkBG5T1xkVV+QG5+o2XoWX5AWIccrJ9afkD47lbfPXN+QNINyyCXeH5Ac4uqsLd7fkBs9Lw/vYN+QBTftXWSin5AusLBgsyKfkACLOG0w4t+QPbfMZnDjH5AbhAbGMqTfkCswpzNCpp+QJ7t4tHRm35AYm+wG7TbfkAeLzXW0N9+QMbwKmsq4H5AluH8GLX7fkDeWmDJvf9+QIwaZBTT/35AgOQD7yAAf0DUEGC/jwN/QGLosernEX9ATq34XQwUf0D8d9af7Rl/QJQoVCMUHH9AlV7zBtghf0A7l7pHLiR/QOb5IVOUKH9Ajjr57+Mpf0BajRNvUE1/QOoCDGe4cX9Atrxo5LWBf0BGLKwPpoN/QDAhLXVjkX9Alu+nwKKRf0DAVBk3mpN/QLqUJbGkm39AdCJB1F+hf0DAwjTvVbF/QKmyqSkts39AD44wVcvLf0Ao0Uhi5s9/QHosgVuQ+39AdlOZkVgAgEAgsa8EzQGAQDSh1KtHAoBA1U0YWNIFgECet/33yw2AQC5yUdvtKYBA5eVAW+cvgEBsWplRQjKAQCEFcg2iOoBAQkGPPe9IgEDWBvnZ5lCAQLp+D2wUUYBAoLoh+OxVgEB8gj005liAQNmZeHoOWYBADC6apiBZgECOJKmQSVqAQEuLx9gLYYBABlsq0hBmgEAxN9vVxWaAQFCyIYpyaYBAmimP2PBtgEDKkjVvKG+AQMgqrSD0cYBATpeXdyR/gEAwOccwMoSAQAjyTdwej4BAvtriWByXgEDJTOdvTpuAQHxQzxcGooBAgJXGMQ2kgEASbDaW8qaAQOpgbEqHqYBAEgTMMxOvgECkbFib2rGAQJgdvhucsoBApOCtPIG5gECSyTyBUsGAQBRouHwwxoBALm4Whf/HgECs0BeEU8mAQBzrJl0Hz4BAXFJF6izRgEDL0te+TNGAQBjDwf9f0YBA/9i6dhvYgEDpkEuLStmAQGIp23dz2YBAsOi/4yDcgEBspTEwzN6AQCbdRAVF4YBAwaIXGVjhgECV6PYU8eaAQCDZkxz46IBAVIAdlj/pgED46DSqou2AQBS4WgxM74BA7iXWpqbxgEAFYLNrPPOAQIPCOhJn+oBASvoRAkD/gEBckoymPweBQOxHYwlnCYFADs7xMhQMgUCJQmEAPQ+BQG7TkZ40H4FAbyekJDUngUAiq4mpMCqBQDzUdpvtKoFA+4SPybwxgUBvnL5pQTaBQBZ6uZ8pP4FAVOV8R5FBgUDyq16NIkKBQC1vdopgSIFAkN12wulJgUDATN7saFCBQPt3K7b5V4FAUIEGTFhYgUC2rxMLMl6BQPh57oBVj4FAsGsmy1SXgUAQeFzPU5+BQDRCTZLnoYFAjs/YlNWmgUA3welcbqiBQFx5DUrrqYFA5+Oa3EmvgUC8f5a1a7CBQONY9TZLt4FAwqebY8fHgUBW7ODVrMmBQL6JUgKxzYFAzEDvMbbRgUAftXxGftOBQC5hNIub14FACOURJLbygUDDe9iv2BiCQNOHUi/XIIJAfG/3jNEogkAqGB2cozCCQI39wDflOYJAFKQBk6VDgkBPumXMI0SCQLIGbVnSRoJAPHkUC9ZOgkDuTFh09VeCQImEamMiWIJAgJXMJG5cgkCkAVkYOl2CQGT1ShB0dIJAfijVYUOJgkAEJwDnQ5GCQEJJGTk8mYJArpHfn1WZgkCfOFgND6GCQH72WaE7oYJADHjk1l6igkBQLBtmDqmCQH4V+VozqYJAAnu4XgexgkAXkynWzNGCQJOsqeJ82oJAxXc964DegkBQByCgr++CQCbQ+QMA9oJAVobcb6/5gkBpUr6YeRGDQB+z6X5qF4NAkFCtXHoZg0BnOfUscyGDQLyURGSNIYNA4RHsOg4mg0AqmAzzcSmDQLpOxCMQKoNA2NDR/EUwg0BYptxLazGDQEKK4DpsOYNA2rld2eE9g0DQlkF4HUGDQPiPMvbaQYNAVJ7Kp+BFg0Ds6o+V5IGDQET5IaZHg4NAh/ubjligg0A8hrlU5q2DQJDaYIW/wYNAGqM458LFg0DRKDI8wcmDQJqXu7GU+INA3uHWegQShECHEKf+XiqEQD98Ty8DLoRAfhZbTGYuhEDyPpLiBjKEQHF6u+BwMoRA0IseMotehEA15ySPj2KEQPwdj03/aIRA0nOCWv9whEBPzZvNyneEQKplfKP4eIRABi7AA3d6hEDtTWgeI32EQP2VF3gtjoRALPN/UXCihEAMLKJXHqWEQHyO+onKp4RA0wSvyniqhEBifBApJa2EQCSeFSXmrYRAgNJu/eixhEDYZeN4VLKEQGEnRCbotYRAFOZY/Fi2hEAO0MJE5rmEQFhcM0YXzYRAg04ElcfPhEBMud4IatmEQFrJT9Bq4YRAAl/MLGPphEBp/HJVNvGEQCAdR6hi8YRAGJPuwsD3hEDHYAeWNvmEQPBTJ/1b+YRAZsRBJm76hEDTwTcbviWFQBM3YNjAKYVAUIfaUjgyhUBIBy1BOzaFQAzBEu4/OoVAajRAntRFhUBWciim1kmFQBFJfWrSUYVAMLM1NaBhhUDQkW7+oGmFQIji4TiZcYVA2mDC67NzhUAunFyQmHmFQJXtZsC7e4VAho5RlPqKhUBNaVrz2KGFQAAdBHfepYVAxpYknkiqhUDuy8ktDNKFQBy1OAzCDYZApmE8wismhkAPsdin8FKGQJhZxquiVoZAaBEC/pmShkAoghjonJaGQKwXzSahmoZAJSvKaqOehkC2AZyDw7OGQLwX0A0muYZABHAqjn0Sh0DL916ggBaHQALwhYeDGodASikBEIEeh0DS5X76gCKHQA6TBlSRKYdA5ljePpExh0A2JY6LhzmHQKTWVslcQYdAxj7/IotBh0CYn/pvV0mHQDadgVKRfodAgIx2PpKCh0B+PGPwkoaHQOqTe+dNlYdA18bdewSeh0DuwTYRB6KHQBC+sSMHpodAcqwLegSqh0BmFY10x7GHQG4aJn3HuYdA5uvHQsPBh0BOePTEvcmHQFoiIKBwBohAZkxMRHQKiEB8ZtRJcg6IQOoBOmp2EohApGmIsY4qiEADny6ikS6IQNCbNnuOMohAIDwcOfeRiEDxh3b9+pWIQEqNHEHymYhAEhLQA3eyiEA= + NrgMGZxjYkCYE/Y0vCFwQI8BR/y9MnFA - + - SYZtRJ+EiEXDNZxEvHYkR0qXiEXEhn9EkWh1RLV1WkZ5lU5F5L0lR9o5pEQ/KlVE3IMHRa5IlUTZ2b1EvUl3RVxzMEWwqLJEKYRCRVaAaUSWTJpEvui3RLdV/0RPyD1EAnH9RET1vUQ5vMpEyz6uRX3cH0cAR4JEMKS/RPwgk0ZjuoFFtoW9RO3/4ESEqF5EjDrdRBEC3ET5zr5GzxaKRH1+4EQlt7FEMwayRTOWpkTJ+ThE6kuPRJJUeESSFqNEOnGDRNhhd0TI3MREo05+Rbu5lESJpahE2k1KRDnKIkYlMrlE4tpFRZoVd0Qcg4xEYq5gRER3HEXeQAFFgyVPREETZkeWm2ZENi0CRRDeL0WKY5FGC61eRGG45URw53VEtV8pRfiSqEWtZRJF7/P+Rgu6x0SVEP1EYI/WRDYkzESfCjRFgCRaRI/7TUdKapZElmhVRLxihUZiexZGK2j5RVPBSEVb6wVFW7a0ROjwb0RC/qxE6RSTRKpuOkXCPChF1deSRNCDh0T1EahFmggcRTX2TEQDJjhF4HFNRJcnYUTyY4ZERmeFRb4eyERbHOVFJtGNRL3ljERJLYBEkVzuRIs41ER8BUVEPaH2RPS+fET6HHZEPxncRERmikZoGw5FZ/azRGHMf0WTEalEYtdDRcjTO0SOQoVEK6RCRJBt10Tz5jZFIpeWRNHeTkR6YNlEYp2kRuQen0TV/xNFzahDREm64ETZdYFIpg/uR1S3okWdGU5Foo0MR7s4NETD1a5Es/vDRaLKhUTJKJJFAGRFR4aimEV/6lFEjR2xRKC6gEVBx0hFQNfrRXwtoUQqEY1Fpkh2RECHwURNjiBHc4wARQEYYkREoO5EW5JNRa3lNEUJKE5GYo9uRe/vDEWa6LRFCCiJRNhevkRDAm9EgXo2RO9YvkSbP4BEJL+RRElIj0ToP4FEUfdhRPftEkUnkohExK5LRFKxQ0QE4aREaIwNRdfF00TQp1tEBT2URGHOrkV7r45E0siARBszk0TAW0hG6XA7RMDwlUTn2uREPLj+RE6W3kUcuf5EvQaERH6NTUR0KZtEcBxzRKfdRERlhOtEDaeQRI+WLkUBQ4lEoZP2RER6A0ZoUUJFCx0GRoOuPUYGuXxEqXOcROo69URudDdEZVzbRt8Ox0QGp6tEd5PLRa+zcESTIPBERdmJRMAClUTO+AxFGoxxRXdIeUR6SrxEC7OHRDG1WkRqo3lEmVxlRBY0p0b0ODdG99V6RJR41USDwUxEapwbRjWmxESn3VVEbfLGRKaae0SY+51FCFA9RmoILUY/K8tGdwmcRNHGUUVMHdpEhO6MRXvizETpgzdF9wWKRZgruEQR/q9EvqfURMJfL0bMUJNEIrQ5RUUW6EQrJqFEyqeyRDSAe0SAidZEj4xlRSWgb0QG7FxEAG5iRH28PEUjrYlFCVC8RaFngETjg1NEL5R6RC2KaEQotRxFId6HRF6srkSM269EHLgnRccKBEWGPohFX9uSRrQxZ0XpVBBFhvqSRJBARUQW6mdFWBZhRFiWR0QxSIBFlcMASPNaFUXaSZ5GYy9kRIYle0bR+pxEgvXCRsfeukVyqHpGYr7jRD0rA0Uct7pFqwOiRIPjCEVTO+NEHKGDRLtcQ0WWbIhEw5ZVRHNvpkR6tGFEN1+PRGL4mkSm3RxEgycgRFZyZ0RAoHBEPMRRRNBOCUV4+7dEIIqBRFZvXkTw97BEe7SFRE3LbkTiFBBF3+a8RN1En0URMclE39/7RHtur0QZjZtEQ9SERB85sEYmLn9GaZWcRcJKE0ZtrjNFyecXRffeJ0Wce0BF1hZnRTV1lUQk7ntEusKZRFhtkkSH8EVJH8VzRMqLPUWscUtITOF5RBgYNEWf+aFGFEhcRLR2jEWqcXBEbObZRGZNnESXDG9EW6RJRaWsZ0RYtY9FPmerRQ4bgkR3BI9EOLWFRFvUq0RLRhdFg0FHRYs2mkX6wuhEl70wRclpu0ROGjZENACWRBzOX0RS72BEOHMiRs/woETPg/BEV9aERfTokkQnmgJFnI1wRHpmU0TAGilGI5XARVHqu0RjFItGlCaZRGyQZERs0cVFvkqbRLp9g0XLBKpEXWHWRZPcAkW6dmdE77SIROBk3USADIFE9DitR9tWvUa6vrREjXKeRPxN4UTWGIRE1qB3RCm2GEUWFNVFpwKaRNBFzURFdQxGleueRZDxmUT05blEsN7CRDyqiERWev1Ec0PYRF+b4ES/JLNE4RWqRpF5cEbp5RFFfp+HRDPAQkSl/PhEylWsRLkFlUQ1kw5Gi7AqRr2QAkXaja9EztqGRHHWdEX1/c5EYBsPRSLJLEUhl4JEnqNJRG2sCkXqaVBHzyYCR3338UUHOExF1SfWRGHFR0T3LaBESsJORU7WUUXBz4JEZhhPRffKykSWIYlFEuGORrpMY0QVtEdGiABqRS2whUW4acVEskqNRSaJoEU1CqREgXqDRS0yEEXIBK9FElkRR9F+pEbQfIhEWd1RRDv2hUWLaIlF2Mp9RICiC0VgDolEny6mRPnMZUSXQ0dEHQ6ZRcd8UUU3srBE5RPzROQLnUTny9xH/KvoRcuTgUVLHS1FAwO4RpgOfET2835E/8iqRMzwkkbxkpFEC1tjRdDqoETUa/NFtx2FRPipD0XFtZNEteZfRCVJE0apjPhFBWrzRFaSdURJP4hEXdpNRAwm+0RVTTtF5ZGyRDxpc0TiVTpGlMGQRIOiJ0b/TE5FuphoRNFgkERhAL5E0PGdRNjpoUR+MnNEZddaRHT2q0REu+1ESDBrSJi07Ed6HlNEMokERQQM/kbkuYxExc67RVwrUUQq8Z9E42p0RILIbETl6cZEPjehRH1GOkSN2UJEODDQRNEnxkR1LTFGPycERbv9fEUlgIJEjHajRFHKtkSzY1VE8QCORGqTUURfUn5Fqm6xRKFHjkTXDDpGfsmHRP1tg0VpQ3pEg+ZpRW4xN0WzN3xEDw/8RNUFLkSfM/BE1r51RJrudkRN3HhE1zRCRAn8aEQYEZxEfVpiRPugpESt31lElr2uRFN3RkUr81xGlbKERIUNsETKwJZFNzfMRNWvWEQ9cX9Ety1URI6MHEXxz09F9S1ERf7xOUXW94hEgSx4RD/Q0UQy/s1FdBqeRHtVokTfJkZECls6RPMLXES5UYlEIPENReYtwEQsuG1EbiJ6ROugikje4nlEkmFzRMTYA0j5xL5EO0boRABci0cXwDxFcfFXREtSUka21QVF2RDTRIXOmkRyh8VFvsSmRBOSrESwMpFE+QqYROjs6kTPU9xEzIN7RI3u7kT4nY1EuVFRRuikmUXjRYBEN0eNRGQoDEXwN19GN3plRUDKXEQSSjtENlsoRS+cfkQcBK1E51RTRCNi3kQfrDBGT+dKRIiNzERAho5E0Ud1RQYluURXmOFFqQAORajhokQDfT9Fbz8TRVpRB0XWh39E/PCERY7MbEScsLREArxLRIDqtEQ52YNETwl6RDYVx0SPWnBEFwxJRAg4O0be2EpFynZHRSvn4UQcIZ1E49acROcZpEQ1m+FED72ARKHoT0QV/7BEFvDLRLNPjkSs9UNEf7iuR9WIKkeZ/bFGkCzFRD/s40Vh7OVFYF2JRCl1HkU9eRVF9J4SRRsfjkSRbIZEBiSnRP8sUUQexZlEqmd2RG4A9kf2Zj9Es29bR/hjGUe0/tdEFgkZReaMGEYcGZNEx2R8RAhWXEUFkIFENHpQRBOIiEQUSwZFNKxLRHiqwkS7bo5Ebd15RKSarURs9MFF1R9HReERWUQ5bWpE3l37RNQF9kTtY2JFvPZ3RMfOnUSuzP5ErGufRVhN/UTfcrdFLRMURe/6t0T+GM1Egr6SROyfmERTVVxEla+tRngNjkbWkRpGO2cwRd1xqkRDq5NGN24rRm1mNkUSTUJF1yk7RaQwEkUriZFEmlKvRP2OB0eVtFVGXwQlRtcvhUXQQUJFbm+6ROVIGUWf+dNEgjm9RO834kSRisdEnQofReTHrUT8PFNEggoMRU0BEEX5d5BE8kMOR0TEh0Yd4CpGMA6DRBIbbUWuKVFEn5mqRFXr8kSVmYVE8+GMRKlDi0Sci29EIVy2RBr2k0QKcQhFaGgAR+OTrkbceOpFUEvaRLM4gUQoMMtExum2R5GpgUdUeLlG4BPkRf/zEkXyqBlGQTWXRTFNH0V91I1EOYHuRF04WEQcONVEyGnURM1+UkRDWHRErU7ERlQTikaT27lF3087RYKPFEYLSK1FxoRFRWd61ETM0jlGL6oFRgLkIEW8jLhEm+Q6RQM3HkViZIBEerV+RalaPkXrjn9EPgaFRA== + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - lKLRu27BckCoB17JUMJyQEOSeXSnwnJAhFZqHzvDckA5iIMBxcRyQMpXZBtbxXJATKZIdQHIckCQ+/3CW81yQHWZARpE0nJA7tLND6XSckB4uODGy99yQPLJRca34HJAEneAvkvhckC4eRkJUOJyQN7f2XKP4nJAL2JhZCXjckBvVcSwyfFyQGwiDOK283JAFuAqK8H/ckAEWc5B+QBzQKqxkI1NAXNAp+z/+zgCc0CyZcxBzwJzQI1p8ev6A3NAfIVecwkSc0Bw1FrrvBJzQCqMfJcFFHNAUjJ/P0sUc0AcGQqceh9zQHE9cFShIHNAsVURFzkhc0CEocJxYyFzQGf67kXLInNA7HdBmAwjc0AaJcRxOiRzQNSkdeDOJHNAgLpQ60Uxc0B9iZnhWzFzQD56eQsCM3NA5pjrJtgzc0CuXfWrOTRzQAGTZ6+4P3NAH2Cf7eRAc0C2dBF+eUFzQEpu5uOnQnNASp8qEbhCc0APNtmEekRzQGIHra+bUXNAfrUORk9Sc0DyPQF5Q1NzQAa1QKGiU3NAakF8+YZUc0AGehsHjWBzQCjvY3X5YnNASwXULztjc0BAz7ohLG1zQEY8zxlccnNAu+Tkz2Vyc0CDvkk8hXJzQHLY9f+3dHNAQ1KSNUp1c0DAQkttbXZzQCRhFP7Od3NAMJETX993c0CDSwrgLX1zQCBHz0F5gHNA/nEp/6SAc0BeNNI/C4FzQFKbSFRdgnNAhjDARoeQc0BOYbk0kJFzQJZ0kItNknNA65u0q8+Tc0Dcf2FxYpRzQPpGVhb4lHNA9WFqv7igc0DxbI6NTaFzQC5mst9ZonNANWs6/uaic0AIAQ2MBKVzQD9LAsbDsHNAxAng+TWxc0DKzlIOf7FzQOxnSB22s3NARfErkAy0c0Cd8swd98BzQFZ5RK/PwnNAWJCPRCjDc0BOG3xj2NFzQLqSeN4n0nNAP0TKzfbTc0DcsCu94tRzQAhNss+j4HNAm/WUSDnhc0AOR+BWZuFzQFzzi5SM4XNA/EL+VHzjc0AFodYiN/RzQHMtPjPQ93NAEjeh9SP9c0B9ufJA5AB0QPQyOBR5AXRAv/6mA6YBdECdXazXiRF0QCtR9yhPE3RAsrc1nkkgdECmEvSYISF0QPAl/k26IXRAOmcZ8VgwdEDJSWr1kDJ0QGXc0LsTM3RAWAwgB18zdEBN2byT4Td0QLoXQRJ2Q3RAlglSbKhDdEBs3xh+PlJ0QAgu2D21U3RAZmHI6vdUdEBSk9g1jlV0QMMoviLcV3RA4ioVQzVddEC+Mf49uGB0QIDmtl8IYnRARDaiV45idEDApeP1DmR0QIjtOrdNZHRA6HQmvetndEAqvjo4Pm10QDqkMPghcHRANsAxM0FxdECYbqhuOXN0QPrTMFs3dXRA6ieZ5kSAdEDKOxhT+IB0QNAlCSpOgXRA/sf9sySDdECMWSCQF5B0QNZDK7VqkHRASnzIylGTdECWGVy47590QGkypyjQoHRAaGGpIriidEDsz6AYEKN0QC4yIaz8r3RAj+u+mMKwdEC67qyJSbJ0QIwsTClvsnRAwvFyOv6ydEDtoNYd+LN0QETtTK3It3RAMHKruRG9dEC2D/J3Ir10QP7FrgHdv3RAhyJv5+PAdEDuN4w3d8F0QHYOz+HtwXRAYz9wAQ/CdECNuSdweMR0QKP08ja4xHRARDELgfrOdECkGsUt0NR0QCLK8kyN4HRAVC3tRbbgdEAwMxkcJOF0QKiKAUm54XRADlJmcFDldEAObiD0jPN0QDDrxyymAHVAGIf7gNAAdUDv+BwuZQF1QAws6eldAnVAaLHeqvUCdUBeyKc3mAN1QE7evtmoA3VAWLxuspkQdUAMTKSZaxJ1QOakicQkFHVACvKUq50idUCw/plzqzJ1QOQOgODQMnVAUJcceMw1dUA+rNp+JkR1QLGyj/veT3VAzvanNfRPdUAmDIX3gFF1QKbiFUBLVHVAGDURgeFUdUC6PJYzeFV1QAmmXpTuX3VAlZCQvA1gdUACPqhpo2B1QLYiq3M3YXVAl8ag4GVjdUBoejlejXR1QLOl9ezfgHVArHsCPnuBdUBqtJmhrYF1QFAv4EKmg3VAkj0B3JuEdUCcFjtjjJB1QHgWCpVwknVAJtvGNgyTdUBqojVWPJN1QJIT9cGxk3VAel4QrhObdUC4JC+st6F1QGI1UxLRwHVAmiIA2WTBdUAdfFLa+MF1QOvR2VBIzXVAtXKahp7SdUARJig0zNN1QJiXmjwQ4XVAr9n9ewfidUDMGBqiTO11QH8Cwuel8nVAHcUC0u33dUC4nLwSAfh1QHi9BbFIAnZAoCi5utADdkDigleBDBZ2QHD5ouc4IXZAgsU+M4kidkAsUbfbjyR2QFrRuNlKK3ZA3pti+h8xdkDAKJurjjJ2QETAublSM3ZAfCMLrJ00dkBeiEMpHUF2QIB9jQeaQnZAVBEh6sdCdkDQ8KnyeUR2QFqYAnD3R3ZAJP9VUMxQdkCllpglEFF2QP3LiBPNVHZAtih49VBjdkB6yFNS2mR2QIP6UR1Ra3ZAGrUFR2OBdkD+Ciy8Z4N2QBqxD9qRg3ZA3ObNuXSTdkA6f4EW/LF2QLJ7GEPCsnZAIi6oY3qzdkAw1IDyDLR2QIAcALDRwnZA4JlwcxnEdkBUDWGkzs52QGzDw5zy4XZAyv7G6YLjdkDk9uAdC/N2QLKhjOmQ83ZAXgntfzUCd0Dg1a5iUA13QDS9xJIBEndA1V7BRo8Sd0DsaeZiqhJ3QP4dj1kPIndADEz7Q3Mid0Bi+HA3vzF3QOvYCLyjM3dAJFAxDw01d0D6Qi19Jj53QG6bMPScQXdA58/1Y/xCd0Cc26cmG0V3QICh9QVLUXdAXP9vyZJRd0Dco5kIC1N3QHBZrF4pVXdAdLxTdNZad0BQeJwVSGF3QIYTnouNYXdAbr0GQqFhd0Due9Sr22J3QIbYt9zQY3dABoLvjiZvd0CbpIQ1kXR3QGCkZUB2gndAKiqESgmSd0ASGcHCmLR3QCbYHSYuw3dANJtMiIrLd0CZu4m04tB3QPBbxhCU03dANsueFFHyd0DQScXAffh3QCfYOWpJA3hAjBPQ5lMLeEBSgisRTRV4QPsb9rpuInhA/vMnDo0jeEB6GXiquyN4QJ58HDq2MHhAcvAx/ApCeECdSRktEkR4QJPW/xJ6RXhAhRlu2ctReEDU6YI/lVJ4QNaqlk8eVHhA5/w25oZVeEAIreYy8Fd4QJZlIRT5YHhA0mEKy7dheEB4mauNIXR4QPamxME7dHhAGAZsAVF0eEBHAs7faHR4QGr+6KmLdHhAxvD4+rt0eEAXjyT3znR4QHgoNb/+dHhAw9seh6aBeEBvui+MdYR4QBxabMiZhHhALASrVJiReEDqgPqKp5R4QMj2HlTTs3hAdIrXoc3AeECT8R6s9MF4QEPMdF3WznhAlbAvVbbUeEA2W8VWw+R4QDsLa4QD9HhAPitX6Iz1eEBKwqCFmwV5QBoT/hu3InlA/J9VEvUjeUAMKCV2syh5QFwlcYL+K3lANsJD6gsueUAAt6sg5Th5QM7CsJeRQ3lA6DjLxvtDeUD8yBZBlFN5QIKGO7kJVHlAnPC7rcxUeUBjHTMJ2mR5QHSSARdGc3lAgkcWd3CNeUA3sWiyypJ5QGnd7hMpmHlAvFsilMGbeUDiKqfNx6N5QFFIO0vAsnlAnvsuXkLUeUDP2yyKzdV5QGTIdKxQ5HlAHD/VlvgFekAkEkuROiN6QA0jg1ajI3pALuMOzDwkekBCbXxjDDV6QHa0O1XpQ3pA7FGKQhpFekAiLEgHzkt6QCO5GH6DU3pAtpRoWylVekBo3LtBOmV6QCxqvN+McnpAyrykbgCUekBmvzpTDbZ6QKnTn8UbxnpAwIVnwg3IekDhs3MpZ816QL5c0vKs0npAHBTMasfSekAAGUhBZ+F6QHj5Jlg07npAEYLmtBXxekB0eyKMXPF6QHJ0sl9K83pAjLUE3qP4ekAsN7/C/f16QJQR+l8TAXtABsAlS1gDe0DY6v24egR7QD6HPFEoDntAHudLL3ARe0AslMzgwxJ7QP5oDgRNFXtA+CSADCAYe0BREhRVTRh7QMv4e+x4HXtAHYrEXaode0DSzhKqWiV7QGXUICDxTXtA0Jv0A6lTe0Cwa1VwDWR7QOJKukwVbHtANsg80xSCe0DJp9YbAI17QH18U/QilXtAXOiXXM6de0AI54hMKKN7QJ+gK1RqqHtAthYDO4Woe0DNLOOH3q17QJIiDDXA0XtA4ZkqhmLTe0AoSUknIdx7QNw5V57/43tA2TF4rSjke0ALJe5yl/F7QFpBLlNu83tA1ILj5ov1e0DXKdQUev17QHjya3uSAXxAFqAs3doBfEA6rtWZZgR8QOBRNBeZBXxADJNWlYkRfEDT6xHl0BF8QBpQQ4BzFHxAxhDhnegbfEAcrjP27iN8QBaskDXlLXxAYLpPKD4zfEDEiHojzkF8QPQvtFhSSHxAvidMw6tNfECgZPVK31F8QALs7PoCU3xAlnEu0WFYfECZd2KJYF18QB4skr4OYnxAVqC461mZfECNs6i6s558QDVNB5M/onxAYGcOSQqkfEA0t7T5EbZ8QA0COR/M1XxAigQX3VfifEBTlS9FEeN8QIgSsftp6HxAraFzgsDtfEBAZmWpF/J8QN4kUotV8nxAHgEbNRLzfECo/8gKAgJ9QNYuM0pLAn1A3ujDA1IEfUD6IG9qBBJ9QKpad6JDEn1Agkmpg68bfUAG8FJ19CF9QBBDgjw9In1AwsgnJ7YjfUDOCXGSpSt9QKK+RijfL31ASROS7paNfUCm8i/m75J9QBL+bQZGmH1A0m+DHpydfUAmd3d1rbJ9QJRUz2nl4H1AYkKwZtbifUBrPSabkfV9QHI9+VSv9X1AnqReFu8dfkAOA2sYSCN+QCVHKgqiKH5AblhmLT4/fkDGDIUyPHN+QFrjW9Hzdn5AXD5L14V7fkDU9zRlt3t+QDZOK4e9g35AUM/xf9GEfkCrpu/DzIp+QOTfAVLEi35A7rxd5CSOfkBMVSp1yZN+QM2jxZZ8s35AqPvuSCfgfkDstitiVfR+QKeJNpEcAH9AS3hDdZQDf0By7CJT6BF/QKDQ8/0PFH9AaGjN8e0Zf0AiVr/62CF/QLqVqWI1LH9AtK0BqUpaf0CbT/hZt3F/QJIiFhq0gX9A+pVoLKaDf0AkLpEeY5F/QK5yGtSbk39AEFah+KSbf0Botl1+XKF/QI10B30Ar39A2tmGYlSxf0ALZJItzMt/QEjZXU/b039A4D2yZJPjf0Aq9fWwQOh/QE7fExaL839Amr0e1ZL7f0CVFEi2ywGAQOLOaMQWKoBAJJXXW0IygECQdtZXQjmAQOShndmiOoBArgI0FSU7gEAX6XMB70iAQCb6/jD1SIBAwLJ5oedQgEC6CgJwFFGAQLwh90OLUYBAZtA3LOpYgEDyK6eADlmAQAo7nR8gWYBAVkkAzUdagED5jIlmN16AQIHNlO4NYYBAP/Oc5A1mgEB2mmmExWaAQC2Rv/5iaYBAJgpdk3JpgEBwMz5YGmyAQGYdrKrwbYBA9CUyDMNugEBvOIi4Km+AQKJHiRnzcYBA9azTcih/gEDqvHljHo+AQM592sgbl4BAskIjqQCigEDQbD5YBqSAQKhoMN/MpIBASmWbb/GmgECVz+FBhqmAQEKy7QoGqoBAvq3FShOvgEBTmF8vqa+AQKD/LK9fsIBAUOb1XNixgEAodlHlWLaAQIGASCVKuIBAZHyBwb+8gECK7FRvUsGAQBpjkoIMxIBAKio7varHgEB7FyWQU8mAQCUC7VgIz4BACwh/lyzRgEAQrt/QTNGAQNIQeJtK2YBA8Kr49nHZgECvm7DHItyAQDCpZHlE4YBAqjwr6fbogEBudH/Go+2AQFwyxtxK74BAIi36HD3zgEBwLB2DP/+AQGCNf1g+B4FAMLKcnWcJgUBeeBtcEwyBQAbM53ryDIFAos+QwD4PgUAQm/MN8w+BQOiHm8o2EoFADEaMWzQfgUAwQwiMNSeBQKhOz57zLIFAJDE6z7wxgUBbCo2PnDqBQE/q79IoP4FA+HiCAiFCgUDQJrS0YEiBQJbfftLkSYFAcSPdD2hQgUDE+BSTWFiBQISLelQxXoFAUkQW8mF/gUDu0FqyBo2BQIzyAB5Vj4FAfMeT2VWXgUCVY/uX1ZqBQIGqatVRn4FArXsqguahgUCvsS3V1qaBQHzZdAhuqIFAzohUJu+pgUAmQ0FZLqyBQOzGW+JJr4FAsuVgYEy3gUBWrbOarMmBQMaQDMWwzYFAkGhuA37TgUDwg9BCBv6BQCrISnrYGIJAoCCgl9cggkAb1Kna0CiCQN5YXSWhKYJAIaoKXaUwgkAAcZwq5zmCQPo8G/MkRIJAoRAIttBGgkDuKV4efkmCQAiGaTgiWIJArNEbQuBagkBcfxDIf2mCQF97BVVDiYJA5slwnEORgkD0trLrPJmCQPbykSoOoYJAfEEg7zqhgkBYR6aMZKaCQJSCKc4NqYJA+DNqHjapgkC8NTttB7GCQDidhZrNzYJAD104H4DagkDG/gL1gt6CQL2WbbQB9oJADcYYUq/5gkA07jYAfhCDQConTaN5EYNAvVwWLXoZg0DyEzsUcyGDQCzsItUMJoNA8xOdVnIpg0DEbG+aECqDQO6IzpFGMINAImac4moxg0A5QoZr4D2DQItjiZ3bQYNAKGflTuWBg0BqfuPyR4ODQB7SIJ3miYNAhM9il1qgg0AaPxB+5q2DQHB/t5y+wYNAgPVmosDFg0AiC7MNw8mDQHXxDTq9zYNAyKtyFpP4g0BpAxfwARKEQDt0iJ8HFoRAWrZYI2AqhECg/8v1AC6EQKQXWlMEMoRAcg/6KHIyhEC2mmfzczaEQLYTn2lwOIRA99JViQ1KhEDOvn74i16EQLC8IW+OYoRAMl+Lmv9ohECa3IKj/nCEQNkw05XLdYRAVPWb88h3hECG8vdj9niEQMpeDXrMgIRAbuPBvRyFhEAE9EhHcaKEQK+r7J8epYRAsr0L2MqnhEDKkG7dd6qEQEPqdBIkrYRAstZQKOathEAEbNjs6LGEQEW/X+JTsoRAlgBPP7G1hEA954N547WEQEYgDHNXtoRAmGqLhOW5hEAieNDF5b2EQPoZ/ZYWzYRAUF3aEMfPhECmyTkVatmEQNzFRHZr4YRAeNdC1mLphEC2RUhKNfGEQEgIKT5i8YRAabD3wr/3hECiNMvQNPmEQG5x46lh+YRA7UNeomv6hEBGZ9fhGP2EQHglowUuAYVAQClAHjkyhUAMMkC0OzaFQL1fEsbURYVA1LdlR9hJhUDvJ9Y6oGGFQD4S7bWgaYVAMD1ch5lxhUByluaQtXOFQOoHcxeYeYVAmsl8U9mhhUBNtwhswQ2GQD59U+3GEYZAu+ay+z0jhkBsSq3u71KGQHSJnL6iVoZAxjYIkaZahkCm+SbnmZKGQIZPYkpvloZA4OoFdpyWhkDNfmj2oJqGQFIZKpOinoZAxHnHIye5hkCVojspI8GGQKAAsKF9EodA1sl2+H8Wh0CtzrNfgxqHQOkmZt+EHodADo5qnIMih0AuIAtCwyaHQPQCOAqRKYdAAohvty8uh0D8rFW5kTGHQBS1R2qJOYdArC3+y4lBh0BAboWNkH6HQDCGNEOTgodAWpXEYgSeh0CiQ50EB6KHQLaq40wHpodA0d3dJQOqh0AdngF1Ba6HQD5oRqLHsYdAeCAEhMa5h0CywPj2wcGHQFbzUgK/yYdAJmRCy3AGiEASAdPddAqIQAMejqh2DohAT+Qk/I8qiEBkn5rWkC6IQNDYqgr4kYhAAqHvkPqViED66GKa+JmIQJhPnTD3nYhA + NrgMGZxjYkAmWGpEdaJuQEMdzoN8QnFAOu18Gelhd0B+v0ZZLGN4QDpLWW1Bc35AuWG/LtyDf0AH2+EZOvqBQGTRUsYMQoJAJSyeBJKKhUD4sfYBZEqGQLgMQkDpkolAFgOz7LvaiUBBLTXvBxOMQH846E9Vm4xAX37x2V+jj0DAM+u8ABKQQL7nVuLbmZFACSS9WiwWkkAI2CiAB56TQFMUj/hXGpRA - + - p5G8RQZ/hUSJ+xtHp3ZSRaIsZES8DZ1E5Q+NRkXy4USNywpHW32VRFQKk0Qu+/JEyAidRONzWUVD/0dFm/erRPaoYUUeddNEd+TRRHtUx0QOkIpEzkeTRDB2WkXFDDVHHFp+REejIEYxtKlFKH+ARJk8yUSB6sZEiJWbRm++iUR/T2lEVq1sRC6jjUTGA6ZFuCvcRFbVbUSSI4tEh62KRI0KZERI1GdEqTaxRJADm0WwPLZERQi8RCwT+EVp77tEXn5zRHTKkETkJTFFd1PXREZHvkTb3pNEcLv4RBdvekfbea5EIcCiRC6mnEbch7JEnfzRRIa3nkToEAVFzM4tRXRfi0Tuj/BGpbvjRBQZrES71L9EPIYgRSVPekTH7EZHdTzIRCUTp0TH121GuYwMRhCZd0SbH6pFUXJVRTvQGUUTvEZE31CGRCvWrUScqWxFvpztRLvnz0RwsZpFCinlREewLkXrQ4FE50rSRIh+ZEVUrNFEFlbURXMg0USBIENESen3RD3B+0Qe+oZEs+VTRK3o20Qle49GGSfDRFaMmUQc2UBFAwt/RLB6UERWWRRFUCeXRFg1bESWkplE/JaURFaPGUWSn3FE4GgKR2mxkURbC5dFpoCNRG7zikRAcVVIZYDTRzSlaEV/0ytF+eDJRmKLY0SW4shEoFMmRUJagESmVapFNlolRyIFREWjZKxEU3hNRZKYAEWe4KRFFoC4RLx/hUWi+WNEP6/FRKLjREe7KOxEeTaoRFYBSUW9Ew5FahCnRAWcQ0T7E4VGHyhkRBtdZETbNqhFZrT5RI2U9UTxLptFW2miRMQNcUR1XFhELm+TRF4YW0TCnB1FNMuSRPjesUT8HGdE0sijRLsoTESh4CxFgMqbRKvptEWr9ZVE6RSERJH1hERbcFhGN2diRKuqg0QSy9tEHWBwRDsNsETN+o5EiqnuRR5c/kQGhnBEPGkCRUyGQ0V2kV9EV2lhREnpA0UmnKVE7WhjRDDGA0V4dC9ESgKkRCYllEREPwNFM5KWRO+NHUZbD5hEg7WmRE51w0Xbdy5GNu/HRFmPYkTC6ItE07nQRtzAgUQ7b55Ep6rKRbbyv0RnYoVE2QhXRDrWN0XwK+ZEaCBVRMnMoUTyh7NEvKHYRLEjmkZnmylG5zQpRcS4FkUWShpG8fTrRC7EeERDxmFEeuSmRSKuCkYC3RRGjZ6pRgzZ5UTdT4JFUeGoRP1yhkWxJaxEB7I0RdUThkWfp5BEiCS3RHOQMUVALFFGmXtlRcMj+USR8XJEDqF+RCi5kETeWFRFnIB4RLw3YURO0wNFN2oxRW+iVkUwe0JEnqGGROUyVEUcQHlEwiaQRMEnoEQ7VFFFeqfbRGSRWUVGjnpGIEdyRYz1DUW1xFFF5firROzWbURlQ0lF3ljrR25i0EQL+qtGCYaFRoaswkbXZWlFaq5pRmZjv0SuEftEl5CeRZr0sUTGu6BEmQy0RKhU2UR0sfVEQmGERYBDiUTXVZJE8CeiRLyRXkRRz7BEiqAKRf3hgkQYSbhELmKwRG1BX0SWI6lEVCV/RGhcc0RI/zhFagm4RBEaZ0RqqFlEmP6XRJzGmUY9+zRG9MChRW7TnUU8Ox9FJTMnRf/zCkV7iRlFXEM4Re0C6EQJo+pEo6CRRfTGmkWTgU9J/deFRRYEUUVFxvNE2M0mRZC0rkTnplZIBb1MRV0ipkauaEJFIjj9RHE30ETdyWFEfL70RHRgYEToCGxFQYnfRdg30kQl1npE9RjURbtbikVfTPZEckTERN7Qv0TluHpEmp4JRtg2FkU9btFEydKFRS87lkRuGbVExSPaRVwUTEVV/p1EeJy0RQJeHkWYnVRFet4XRi7W7ER3hL9EM2bZRBYfhUSInHdEkjqiRIFd40d1/oBEFYfmRoxtrEQW7IREqm81RYGUXUQDiKtEHW+0RCQKlkXkfZNE8dUiRvm8yUUV5KtEFEy1RFvdA0VFk+NE1IYDRcknjUQHA7dGdOSIRtG/nEV4XW1EGQH0RABrHUXDqMhEuEn4RE51B0Y4/0BG9OOHRf5j/UQf1hNFj0eLRCsmQUXprq1EWwBaRN1FKUVl+4REoj14RJGZwkTygudEFahLRzmt/kawPVpF+eXVRUO4RkV7jPlEARJ3RMjBl0WCb65EooQvRXzPpkX0eRNFOXK1Rq5HekROwYhEh+lYRuTMgEX/qKlFbneORJxyi0VvBmFE9G2tRcEVWkUlsGhFeVpCRS1uyUVcFxNH7zClRreKjURxvelF0hXsRIjqkEQ21nFE30bPRZyyWkVRhslEMwoJRcSqW0RGCsZE4jL0R6Sk9EXQK9pFQdprRDpdJEU3M/BG1kHHRFc3AUVtAMFGg/HQRIWAkEQQhkFF4cvMRX3DhESvhNJEgAhCRfyFg0SCu6FE9UwXRqBnyUX1tSVF/6KYRKTzkETaiYpEchKLRBlb/0RaeFNEQ0pNRol9GEbqzD9FwgOERBJRr0R8WHdEzsqxRC62gEiVeABIIAWaRP/fAEVrXw1HUXZwRLEhmUUu6mlEFAVKRUQGZ0Sj+JVE9EHbRHYdD0ZiKxtFWhwxRVdRo0QD/HxEI8BZRFtehEWi0Z1E46O5ROGOLkbrgWVFfKKgRPgBU0WmbWZEM7vNREs6CkUotlhEKdVTRBwujUQm44NEGkZJRQ9ZpESB84lEZinpRPoixURqH6dEGdBvRKK1i0R1ZIxEM+dLReShWkYvsnJEv7SvRIiDqEUlQOlE0R2gRHlyZkRuCatEhGiERJ0QhEVvx+hE0LYkRRiFeETSa6dFpJG5ROZ2G0X9KSlFUCtnRLibvUXxJ7FE62nGROLGlER9sqRE997oRKpZ8UTvHm1EsyjHRHPeVUSrA59EcRWGRK0SgETuYJFEacmNRJB1j0iWCqdEQfBvREm6B0gvX9hEmBXHRPoflUeRsmdGheVyROp3SESnQrNFN9nARMguyURx9adEsfm8RLdAPEbuJo5F4pL5RAx8pkSV+dpE695aRfi/oUScDPxEoVZuRr5DWEWqNGhE/DMHRVhnQ0RE/wFFYZIQRfdpJ0bylANFVbPWRNt/IEUBTmJEPTyERG3jXET6B7VF6VnfRCf2V0SLZolEdjZvRbfsCkWdySFFRqmnRBvf1ESSbaFFAV1rRBvQ0kRImFNEnSeYRGAWjEQmXz9G7YFnRW5qN0UOqVFE6jlURPSCCUWpjeZEI8WTRI37iEQ4a5lEY0ChRMhrj0TqzNJHFStAR1h34kbZP8tF0A7MRcevZUQSlWJFlog2RcoouESoy4hEnx4ERdOMqER5i6dEAh2JRKP9fUSWLwBIfW9zRzg0DUd939VEuXUFRmK9qUS5b5tE+7NNRc6ntkSIcBNF9SV+RB3rrUTO8ldECXtNRA3o60TX/6dFCmOsRIeLhkRWzbBE+ZaBRFwlQEUAk59EzpKBRG99uETzQotEkhTzROM+0ESIOHdENEfDRKzRs0VKZkFFqxXYRSAPDUWIfZlEewe8RFtguETFGGZEfoR2RPmNUkYb3VhGgjMGRjfVZUUtMNRECzbYRqsSX0ZrR4pFgHPHRMO+j0W3QDlF/iMXRQzDb0SBJmhEWTkIRbNSDUdlFUhGnbAXRhFvoEX/npRFvIStRDt990QiG6VEiXC+RK0kiUTkc4REExsbRa4FjEQCHxVF5GT9RLXPEEfHsX5GsHIcRl7ll0SOioRFcxqMRKJKuUSOIqJEHX1jRGBpcUTHvQlFaTeaRJDwxkY/oMFEREOMRuFQnUUPjtRECnSuRCNwbUQotY1HmippR8kfkkbjWMFF3UwgRc5iWUQU/xxG7iaFRBvyz0Xar1RFztLZROittkTIVgJFhq9iR/ruEkc6b2BGIyrrRU96I0UqNxtG+qC4RZSSQUWjHPNEHXo8RhmxCUaA85FF4LqURXZHT0WXZoBF2DJWRTa3tkScRZ5E + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - OP4J2nvAckDQzvzmbsFyQKzoQLBOwnJA9CGGiKfCckC+bEfK38JyQNgYDO06w3JA8ofHYFvFckAa7dRCAchyQK6BZvlbzXJASE9X5EPSckCSKSRv0d9yQLAVWskk4HJAgQBF3VDickCiZMg2kOJyQMQhgy0o43JAkshQLcvxckCsU18ZuPNyQFbnkp/A/3JAQnB/UmQAc0AQSnpy+ABzQODZUrNNAXNAYkzqXI8Bc0BYYB/6OwJzQHJPp37QAnNAhv9T2/oDc0C6RP7cBxJzQMkuc9S8EnNABN6/afsTc0Dys2akeR9zQJssSAERIHNA3PONVaQgc0COhhofOSFzQEGHH8dlIXNAY4kfxXwic0Bv6TeQzCJzQKYxKkgNI3NApEjilwMkc0BJMY95ziRzQBXPUVZJMXNAFCXR0Msyc0Co3uSNoDNzQGEm10TYM3NAJCy72DY0c0DA4O+W2zRzQC8+2C1AQHNA6vbI1+FAc0D6wWQaeUFzQHi7fGilQnNA4DBQ5rVCc0AgDKB0bENzQLylq4d6RHNAxkp0/AJIc0CqSbHMnFFzQGgkNihUUnNAls1506NTc0DBeBIieVRzQF/B2XOIVHNAis0kp4tgc0BEEHoXHGJzQMbVfyv7YnNAyMHdRDpjc0DsKWr/K21zQAS0akTecXNAMJcQrE9yc0D6NcCoaHJzQCP9uaCFcnNAhtvyn7h0c0ACCpxsTnVzQHoVh6JpdnNA67hAtNB3c0AIspqY33dzQN6S7KwofXNAqCW8DnmAc0BFOrt1pIBzQPDCKtgNgXNAkbFK01+Cc0DufAft/oJzQMFnxdSJkHNAFivGnE2Sc0ABSXNdZZRzQHwBhy74lHNAFMVG57igc0AcOuFfWqJzQJiKQwflonNAxRYd9AOlc0Cgu1ZS17BzQM5Bep41sXNABGpFNluyc0C7PY40trNzQOIl+yoNtHNAP0mQ56K0c0B7z4NLE7VzQJng3mP3wHNAKh4FYdDCc0D+ytI4JcNzQAASubNjw3NAoAf9z8DDc0ASvdbY2NFzQHYxLdu70nNAnA/zvNzSc0DtIb9A9tNzQHguCaHj1HNAucB1BqTgc0DuR8YpOeFzQNonAY174nNA5oC7OhDjc0DKrM+4fONzQHglLS2M8XNALDxQrWnyc0DYITQYOPRzQNLfbObN93NAweRCR+UAdEB4Thh2eQF0QOTFRlKlAXRADXBp23wCdEB0F46eTBN0QCZDdejgE3RAiN/i4bkhdEC38rHEETN0QDi8M+tbM3RAJ8L0EOI3dED6hi0Nbzh0QGae+Nk9PXRAZjcX68pBdEDE6VXmekN0QMyc85aoQ3RAijXRJjtSdEB7wTB/olJ0QAgHUrq1U3RAaodhivlUdEC320QJjlV0QPbuGijcV3RApiqDdjVddEAsoi6YuGB0QOJpswMKYnRAaEjvX1hidEDeMw8qj2J0QAjMCZlPZHRAlhYStelndECeu0VQIXB0QNhNvXXIcHRAyNdFQkFxdEDWOit9OXN0QEq/laugdHRABr9/zjd1dEAIZhF9RIB0QLwr23D5gHRACp8c/02BdEC8wML9JIN0QFQRy9YVkHRADDLUcG2QdED4BYrhCpJ0QK5XAAXwn3RArr8vns+gdEDFG5aaO6F0QBKBz0p8onRAVlNZeLqidECfWo1iD6N0QJUnnHCko3RAiQeVRGeldEAKNosu+q90QL4Xm3MPsHRAbkrbbMGwdEAWRBI4A7J0QFJ87kxvsnRAP0/7Ecq3dEDU4N2GEL10QGiN/KckvXRA3FkbKt2/dEANShcH5MB0QJA/M9R4wXRAkqzmwQ3CdED+4m/Ga8J0QENQMI0kxHRAJ6nvernEdECifXg3/c50QP0VvvTO1HRAoqxmsiPhdEBaEkLIuOF0QFJNYY1P5XRAKl7UZozzdEB1MIVOpQB1QOQzAs3PAHVAak6EyegAdUCpZWL+ZAF1QMAD13NdAnVAcl3eu6gDdUAcPuMAaxJ1QDQYVzQjFHVADKzHiZ0idUCEkyqsUCN1QNx/Rh6rMnVAM9g1bso1dUAYJeiHJ0R1QECPV7ERUHVAERFgfTRUdUBD9fGTSlR1QCZIcax2VXVArpRQuA5gdUDmhG2nN2F1QCwquChlY3VAX31Ce3ZydUAk1r23jXR1QGD0Ckx4gXVAep2Jv62BdUAsfB8epoN1QK3+OmKahHVA7J0LfryRdUDYqC/lC5N1QDJnxso6k3VAjnDMHbSTdUB+YsKjE5t1QBgqb3+UoHVAsl0kX7ihdUDOCX73uqR1QJZXDRLnsnVAJHiK/NDAdUCYSKy3Y8F1QEDmcWP5wXVAHGJPmkfNdUAAsiUfodJ1QNsNj87N03VAuANMUebfdUApP+D8DuF1QIDks50H4nVAO5QxMU3tdUDcZgq6pfJ1QLw2Y00683VARuKRme73dUBCbPPeAvh1QDeqe1NM/XVAVLy4AEgCdkDw/61aVxJ2QOKS8Y1LFHZAI7CgRQ4WdkByD23qiCJ2QB+t1FiQJHZAPHGBy0ordkCm8auCHzF2QOrSMVSQMnZAhBsVdVIzdkBaRFFpnTR2QNunXQ1ZO3ZA+BpPvxxBdkDGt8wNmEJ2QNb1K0rHQnZAnAa5QXlEdkCm5azC+052QEzKsXXLUHZAV66FTRJRdkBItX9RzVR2QONcPxONYHZAJg/sobthdkBmntkBU2N2QHRyhSu1Y3ZAHky8dttkdkBoRnpqV2h2QH1RRYuvbXZAckoLGNCAdkBMZJJmaIN2QGdBWlKRg3ZANCxZUvqEdkAHTJMJZpJ2QPAhGgwNoXZAPhAYw3OrdkCmlJZawbJ2QExdXgx6s3ZA2EsuMw20dkCwMLXY07h2QLKXrGS9wHZAHNV+exvEdkBiYllyz852QDovcxzz4XZA13qiAYLjdkAoKau6C/N2QMqg5z6R83ZAyqC7vjMCd0CMecVJUQ13QNim3JkBEndAzTcGEZISd0AEE1C+6hd3QI5WSUAPIndAtSwoO6ctd0Ct6XxIAzN3QEG63tulM3dAynXHYw01d0CmaZR2JD53QHK9NnLNQHdAvGreZp1Bd0CG6gLG/EJ3QCWVd9aSQ3dAegNjdxtFd0D/GvQhS1F3QDgwnruSUXdAaMAeWwpTd0AoKoHnKVV3QLW5tO/VWndAwcqenPtad0CegIwKkGF3QNvr3aY4YndA+gkLz9Fjd0BE9XAiJ293QHDDdX+FcXdAWG2Z8XeCd0A6+LlqIJJ3QCNjTaxHkndAzJAMCgmzd0BWadI9mLR3QMSSZ5Isw3dAPvQH/YvLd0AuwFZnjdZ3QIz7GEXL3XdAfcad/Ofgd0AokSizIuN3QDWgZKJ8+HdAaCr6eU0DeEAGKwZwThV4QEFbw81uInhA5/ITXIsjeECe+aNdKzt4QNK7OSQNQnhApEmJKhJEeEB4NlE+ekV4QHUVu4DLUXhA5gzEh5RSeEAAr4ZGH1R4QOLTnTGHVXhADZ1eL+5XeEC2E2Js+WB4QDSn4GS4YXhAHJ6m3LdieEAa48LF3nN4QHgeybVEdHhA0HVsEVJ0eECAHWbNi3R4QLpSaS28dHhA1mZYkKSBeEA4kU8DmoR4QFRl54SXkXhAOzvIwKeUeECKSNTDtaR4QO6AYa1qrXhAqCipqNOzeEAU8DZdy8B4QDDEExr1wXhA2EU9E7fUeEDmZA5US/N4QN7xqAMD9HhAlIeW7oz1eECG2NpaWQN5QB7efMx3A3lAkN8cJhAEeUCJdwxUmQV5QE676AW9I3lAflPOafQjeUDif+oDsih5QPmHCwP8K3lAgErb7QwueUDuljw4ZjN5QKwWERbkOHlAnrGtBD4+eUC6zbDmjUJ5QA5vyYH8Q3lA5z7P2pRTeUD+cKVMCFR5QPvhaL3MVHlASBmAQZxbeUA2Nw/422R5QGo+XlFCc3lAHv4PmXGNeUCGmDway5J5QLaLBVspmHlA+NSIB8GbeUC6lVYwwLJ5QPom5iBC1HlASttX3s3VeUAQ3H+UUuR5QHD81jr3BXpAtPIm26UjekB6eBaZPCR6QLoEqrkrM3pAI1KRbgw1ekAHUPSM50N6QLbd9oIaRXpA5uO46oBTekDGtgfKKVV6QKoWG/IhXHpAxCO1/j+TekC5PalZAZR6QPhHT/AKs3pAd9QF8Qy2ekDCDqg2LcN6QGTtvOv7w3pAXSLLGRrGekC1EW/UDch6QLarqbRmzXpAcqwpqq7SekB9oRrrxNJ6QBYSwuho4XpAcAZjIzbuekB+OpbRFvF6QHKREsFd8XpA/g1I2knzekD2yygXpPh6QOQaD3IA/npAaiQjLUIDe0BfU9EeYAN7QO1uUFh6A3tAKDgpF3wEe0A2cs0DKw57QCSP8KpwEXtAvJAtFsUSe0Cm3WVqTBV7QAToSyggGHtA9r7kN04Ye0Bv0AlVdR17QB5K58wpJHtAiiDBVlole0BUUwnrwjN7QJeKcTMWQ3tANLZMa5hIe0ByLwWsX1J7QFWMpnumU3tAHMXgLgxke0CaZs9ZEoJ7QEpsLxUBjXtAGjwxzcCUe0CQG+pgIpV7QKOdte3OnXtAk3wNMiije0AuzpZNgqh7QFD0RhHLrXtANqbhkNWue0B8K2EteMZ7QPIgv2Mh3HtAco8Zavvje0DJrlC1KeR7QLqSA6GW8XtAfQP5Xhzze0BlYooHbfN7QHJvkESM9XtAWB6NmHP7e0DlMtYLkgF8QBpd1wbaAXxAyZqGt2YEfEDymidKmgV8QKBK9niKEXxA/uFq3M4RfEAu+GeZchR8QF4GIAToG3xALBh39u4jfED8cv9F5i18QFBzmYo/M3xAa+tpvp44fEB1z0Y7zUF8QBdmKcL4QXxAEw1yh1JIfEAm59D3XU18QEexR8arTXxA3yn4ltpRfEANkV0H8VJ8QJdeLX0HU3xA5tr5dQ9YfEBSOauCTlh8QKoVWPRcXXxArIpNmgxifEC4ScJaK3F8QCT3k38Ec3xAszZFDlmZfEBAxlGds558QAGcarA+onxARveipQ6kfEBsfdZ39qR8QLZWgtxKsnxA+W8ja76yfEBOLGfRzNV8QHVZpeVX4nxAatZxkBDjfEApFaLOvuN8QESRBNFr6HxAQEMsc7XtfEAWEf36yO18QEZlQe8W8nxAaFlzNFXyfEAwIL2UDPN8QFlqLtYAAn1A4MHIUUsCfUBOR71YUgR9QPzL/XVGEn1Al3mve68bfUDknNW4PiJ9QNJQNB22I31AaLGd154xfUA/wVx5uDl9QHi4kfSJOn1AGmLyo5ZCfUDHtghTlo19QKDfwQ3vkn1A/s5ZuDqYfUCg71MOl519QN5N/jMupH1ACnfVx2uqfUCCA3xMrLJ9QOXzen0ww31AZPHuDenEfUBaO7LX1OJ9QMg5MNlZ831AqpEDvJH1fUAYuT8D7x1+QOmaW4lJI35ALO5Y6pAofkBwTQfDqih+QHB0GrADLn5AbqsYRI9VfkBfK345WWx+QKKz0qKZeH5AZ29vLdJ4fkB4uEOut3t+QMIw/Ze9g35AqxplEsOLfkC8ijd0yZN+QEhHV++7nH5Ayv3SfsKgfkBbuwK4i7B+QHknvfrQxH5A5DLqurLbfkCK02RkKOB+QLvgdSjW735AfNDjjhkAf0BrE1xpkgN/QIyCZJnmEX9AOEBpyw8Uf0Cm7/rJ7xl/QKJLztncIX9A89KPLi0kf0Dyp6pGNyx/QNr69rriaH9A4oI+8Ldxf0BJvhGks4F/QPTJUWWlg39ApGTYnmKRf0CKgItVmpN/QDMtXwVdoX9AWu8G9FWxf0BKqvnKzct/QBALOrRm039ArAQr0ZL7f0Aw1HIWzgGAQAx+Ro+CEYBAtJVGG+4pgEBmdz5tgCyAQJTJgohCMoBAdGrcJZk2gEBs6jaA9UiAQKIaynXlUIBA0wBfXRRRgEAiBDkv6FiAQC5ChFYOWYBAT19qdQ5mgEAQHjXexGaAQJwRgx9waYBAJ3PSoPBtgEBgnYnpym6AQCqarLwpb4BAcIK55fdxgEBnGWjkJXeAQO6bDhwof4BA2sTewR2PgEAS4nQf0pmAQO/KVHBim4BADDvXKQKigECia80JQ6aAQAJc5NtZp4BAzYT1YYepgEBwiiNlFK+AQMQQWfRjsIBAKej8T0q4gECR5a1/3LmAQJuWqjMEvIBAbFO7eMG8gED+xghxUsGAQHEtbqkAyIBAIMP5u1PJgEBETtcS0MmAQPR/Z0YIz4BAnixgB03RgEDAjo0l19aAQDbchQxL2YBA2L4NVHLZgEB8ujW9HtyAQLRgrYVE4YBA1DGjb/XogEDG0a7nSe+AQObpU+4Q8IBARi9mwpPxgEAih+B/O/OAQJBUHM0//4BA5aAZfD8HgUAkSZ3SZwmBQF59JVg9D4FAWq7xwjYSgUDq6moxPhqBQERyzo00H4FA7ECojjQngUB+f04Z8i6BQNSI6+IsL4FAdkdZIL0xgUCOkhbcKT+BQCmIRu2RQYFADyhA4SFCgUA2DIR/YEiBQF0/sEtnUIFA0lqtpllYgUDkjfpoMV6BQIic7XEUeoFAfaVRhGJ/gUBqifinVY+BQHCp5JVVl4FAdKwJFlOfgUCakpLU5qGBQM5Btp1tqIFAojuAU4KpgUDkNKZjSq+BQFD+cff4sYFA8EKOUQqygUC87V5NZbiBQPFM1OGuyYFAjqOWUH3TgUCYFUC/h9uBQO9FFnoCCYJA9ebIQKQJgkDi5wBL2BiCQPnVNpr9GIJAzroyuTEcgkCScJu51yCCQNbm+zfRKIJAEwxxIKUwgkAw7/2EI0SCQJ5GMA/SRoJApkf00NhRgkCgTFOB21WCQOyzhEwVWoJAGL7TczllgkByGAQ8pWeCQFkRt1xDiYJAf8svG0SRgkCQs2k8PZmCQJLGVm9VmYJAPpOnPA+hgkCDDkgSO6GCQPKkwGANqYJAiVi6azSpgkBGcCtsQbGCQBXAcS8C9oJAxpIEe675gkBKas0zAvqCQNBLXXV/EINAFitbh3kRg0CNVwqtehmDQBzs5zRzIYNALLXhEw4mg0Bi723ucSmDQLpz5ncRKoNAFEwjjUgwg0AGIDVQajGDQBbjUOLdOYNAsYtbA+I9g0C1nAAh2kGDQOwwrHjfRYNACMbaweeBg0BrD6IBSYODQNSwVRHorYNACPpiZL7Bg0BiNWKgwsWDQA5i/UK4yYNAxFQVHszpg0AIaQrOAhKEQPzTLp5hKoRA9uyEJwMuhECq3aG/bzKEQHD8KaxzNoRAkKup4wxKhEBXm7m+Mk6EQB00UXOKXoRAaErMyY9ihEAGm4Nj/2iEQEAojcz8cIRAGt2Uul9xhEC080W/yXeEQLBUkxf2eIRAhAwHZHl6hECU5pviH4WEQAwsn0oujoRAKWfWfWWThECi+DfGcKKEQEFAzrwepYRAsozZaMqnhEA6+twa5q2EQNptN6PosYRAwy1VVFOyhECgDqCa7rWEQHJdYq5WtoRAfH6RCeS5hECyCbVBa8KEQEDPEK4XzYRA/aRYlsbPhEDoEg+9zNeEQD2Xb0Zq2YRA0jfBBGrhhEA0pfCuYumEQLBdUjQ28YRAvZj+F2LxhEDUohSdM/mEQBRf2SpZ+YRAa0zdmW/6hEDSqeXkLgGFQJJmPLfoBIVAwCJ/1cAphUCLpqmSNzKFQJopATM7NoVAOhaNUrs3hUAsEqEh0kWFQJS4z0nYSYVAREXYm9xNhUCrACTLoGGFQAw7o7ygaYVAyq8tv5lxhUBJRb6gtXOFQEu8YxmleIVAAk6MGZp5hUB+PD5Jj4GFQHS9O1bZoYVAbWGkzI/9hUCFinHZxBGGQFJlyO9TJIZAXcUO4SoqhkCWZQMGolaGQDh9rrSpWoZArgx7NxBuhkAzLQzpFHKGQFovMe8pdoZAV9bvv4aChkBC1gXUmZKGQHYPqOOdloZAC9zik5+ahkCmP0vpoZ6GQLKe29EjuYZA0AISkX0Sh0CbqNWOgBaHQFVshXaEGodAeOjyYYIeh0DKYKqzgCKHQHyLlOCQKYdAQMtEXJExh0BaRlOOiTmHQK4gEDtdQYdAAJIhAI5Bh0B/ZosQWEmHQFkjeup+SYdA6n09fJB+h0Bm7wa2lIKHQMSEFzWVhodALZnyBQSeh0BMiZbuBqKHQAiK+kwHpodARKkVjgWqh0AIoQOoBa6HQIE6dnl3rodAtj6oWcexh0AmeUpHx7mHQEHkU57BwYdA2qrp07vJh0Dgo3/FcAaIQMZiyCx0CohAkJeDgnQOiEAsW64JbxKIQAzY/emOKohAW8HroJIuiEBlVTRokDKIQFRwef72kYhA7pHoD/mViEB0wtLp/JmIQDoWNFF4sohAMLFpPHy6iEA= + NrgMGZxjYkDGeRuljWJrQBu6YmAmQ3BApsMrpuzhdUAbGD+0flR3QHYkif9BpX1AzYRzHZvyfUCUyF40ryGCQM5yaDv42oJAlPdMXluqhUAwdjclS/OGQJQmO4gHM4lAwXq4vYyriUA= - + - yGU7RG8DpUWALK1EOJY7R/Sqg0StsVlFBwpiRFQ5e0YY/SVFehwfRw4mpURCgkREoPeMRa00e0Ub6oFEACYjRVTGgER3rwBFZgPYRFa/tETNnkJEwDpVRNa8g0Sb1D5FCV8TRwIDy0RK30NG6aZmRYrQ20Q/eZFEwWuwRLEfvEbeP1NE+jllREGlzESsfY1E81uDRGy4okXSvKtEVNNgRJzOh0TzI5hE4nGtRC23QUQZEoREk0x1RMuRf0UHoO5Ew9eYRAlGikQ44A9GrAaFRHKCTkTkpVFEXnt0RYo3iUR8G6dEN3GaRKIQnEQ8wsZETHsERRzaQ0efjFlEDO3KRA444ERo1aRGd75YRDWxt0QJNkNEFvk9RSSmjkWeTQVFDPjmRus/pkTNWeRE0CbqROlBEUVxputEavQ4R7ZOmETMtW9GA4wRRimvmUXIcl1Fu6sqRR4Eg0SMHbJEay98RIg0S0V+FAZF1TZeRECkQ0RpYLVEbb+KRaygCkVlKHZEz7tgRLgjakUfb1REveqJRCdFZkSrSIhFBfy1RFBJ4EXrS4RE7D54RPSxJ0Xl8EREABZ3RFM27ESY3KJEvp3cRN87f0bR2YtE7IkyRKRcOEX/GWpEdfYTRSrt30QH71hEX71aRRTEcUQy/YBE9K57RJcLWERd4Q9Hjq3ERE7sNESaqI9FTFaFREed10QAaWZIbj36R9Jsj0Uz6wBFJPtQRADL5EaMGYhEbWStRfL4n0UXnmNEEkQhR+dYWkWoBH1EodxTRCt4CUUYpDdFZHGnRaA13ETFIaBFvBmPRMMIPUTJ2jZHj/W3RFaHTkRnSkFEA124RMo0G0V9wzhE/ClARLr2KkUrPH5E58GiRAFhakS0fDdGKRzGRaGEgEQXD8hEJFqCRWJptkSmm7tE2CR3RCixTkSUhMtEc1jARIEvi0SMn/ZERQR0RO3JAkXZxZZEnAa8RZpdoUR7bpZEHbhTRNVlbkQ8EEJGXxMGRQPuq0RuMRRFBoj2RRCfkkTf3ZlEtO4SRUCmp0a3NatEu604RVOLUUQ4CQVFkn2jRMVo50Tcs7JETavwRFTRBUYUbMdEfZitRb7/O0a1e7NEtQGTRBbHqUbOCqhEsJ9RRItJrUUVZJxEA/vcRFOTb0Rk64ZEnWV0RLENi0TC17hEJLLoRC43qkSUGnJEU0C/RF32gEQl6JZEERaDRt3LJUYnn6xEicQaRdNdlkR0LtpEVNEaRixS6kRqS15E+IWORJAookWS+AtGBtIxRjbA0EZtkchE2scGRSmZ0kQp0l1EWnyrRXnQsESBBh9FRyJwRamlf0RBM2NEQDVBRSuSG0Y/y0VE+d1NRNRnUUX2IoFEyUMKRX7ztERh6o1EkauDRPws/ERlw2dFSMxzRLp3SkRiYmBE7iKWRHlEKkWrgoJFpA5xRScrgETSw05EzaOHRM8bFEVpnIdEfu6vRFdrnkS7fApFR27ZRACzmUVXBZFG2Wo1RQWfekRn6XFFA6mFRNt8TkReA3lF4rviR/jJLkVEV31ELGi5RhEVi0YV0lpE21u0RhuJhUUZi3RGVV8IRdMBAEXco7ZFki7iRFV4C0Wh9X1E660IRfoMikWRQE9EEU3fRB8O60QVczdEQASLRDc9eET6mr1EzlkLRWXZfETkLYFE3iFRRGICmERXbWhE2EyfRP4BkERkwVRFK8RVRDQWgETCcYRE5IugRunfO0Yh0YdFdqjTRYftTUX6uwNFhl0uRbQUFkU2mz5FWonhRP9mWERlRxtFE38gRTjUQ0nLGpNFOF5SRWqxSUiy2WZFds6KRjbHckTsq0xEjqCJRIAUrEQEKpREIIbxRPbHoUT8g4JFNfrARXW7s0RMJI9EqVRaRHSxtkQUJLRESRmzRQrbt0W5fUxF3lPyRPrivUSGtwVFJ1EVRZTypEQL5wtGODhGRTEQekS7TmRFuB1MRZbwjUQmz+lEM6kJRrKTakX+u55E5pfxRBvVjUWHY91FpA2DRF2aokRFiaFEN2iWRLeHsETnjoBEsn+2R26bdkT87btGNi1ERHw+/URci4BEliCiRJanu0SPBqJE4+SgRZ8GgkQjg2pFhsDRRPwASUbtBMBFyshyRHC7xkRivDRFpLfuREei40Qh1dFEWMO1Rg4NcEbVQS9FmYW0RMJEYEQz6FxEn2D5RDCxnUR63RNF6IHPRSY6LUZGAEhFkqRQRJv3jERbd1NEv1juRIn1wEROLZ5Em9ndRDW2qUROeQhF4FUbRfY1wkQiv6BECD2TRMvHtUS8HEVHQYHyRn4n9kVO0G1FJMaGRKQrZUS3rHtFRtd5ROGo40TrpZRFnqagRCjGDUVB0o9G3mRuRMmGmES3ZThG+BupRawHZ0UbE25EDJovRXjMaURNhKRF8yQsRRUZd0Ub/iJFUt+lRN4pwUWNEnlELRIARxYNZ0RiyoJGCYKNRG5EWUVUYK1FO8BDRL54BkUVTZlEr1S5RFeWxkT2W2pE1HzvReluUEX/STVFU//8RCv5aETd21xEKLGgROq5ZUQIwMpHfrAFRpiwZkSUfmpFydRyRHnumERMF/BEusDBRsuMS0R/sDZFCCqVRlAGl0RnI3VFfcTbRYOukkRO4yFFrQpyRDGnRURPx3hEpbeQRA3dQkbdFNhFyfXfRHZbkkQY4WZEbkpHRDvJRUUqZJVEsuudRBliqERLWVJEt9wCRX7beEaGyfdFQPmxRCUi1UTIua5EO6GWROj+q0QNzH1EiHNvRDfmbkj3jQZIegPsRpVPyEWI9gFF94uERCFgWEQeAl1Eks75RGUqD0b9s3pEZEieRNT3m0QC3Z9FJYPURJFLGEWNx49EAzJkRIgLeETa2UtEiXCDRQ9+o0QbuoxE27FcRs7XXEUi80dF4cFORRYu1kQZ1llEgppuRVF2A0XHo5lEmc6NRP+qnUS52upEusZHRKSLBUUCuhFFa3OVRgwCdkQTl8VF8BTGRL9OQUVAkA9FNU5pRbZyQERFMxFFqqLFRJzBfEQMrLVELPeWRSKFjUSzkltEKx/JRMKvTkRF1MlEb8LhRKOICEUDGlpEAFh4RJnng0SzbONED6b1RJuIkUgtcWREMNcUSC5cbkQbqMxEa2mZR+IRbkSpn49G6wJCRV3jPUQNKb9F+parRDE3mUR5hV9EwTs9RLhzx0RIYjlGA7aARZEZqURLU3BF9at7RQCtbkS3tl5G2iEfRY+OSURlu3JEYt38RKaMyURJy5VEGeahRErXL0YgLLtE8AQnRaOwikTL5j5EnZVhRCfdtUUtnxxFL02bRIs1IUXsSbxEfAGTRLsFvEXYH4lEEzVvRByiaEQDfKJE0JqwRLJTS0QB9gZFJ8OKRCauLUbW3E1EB+JoRMBucUXO7zRFTJNaRHcWsUQqN6lEigYhRX2R3kRP5qdExRJPRNU2a0QVKRpIZgibR05nHkcIpPlE2J7iRZaYHEZJtcVEFNFNRdPncUQbT8xETZnDRDzWkEQ+P/REwYEhSD7jrUd0uD9Hi2HXRDj7TEaPan5EzTr/RBqGhUUUAuBFXSiCRSEKMEXeY5xESiGVREoma0RuNw1FwNNwRSRG1URdvYFEPvWZRDufwkSDhNRE2YfdRPIgmETt1adESUpqRNprB0XT4YdFUqN8RYDrs0XjxglFdceRRM1CXERJ2b1E/8QLRVPUlUQO5nREv/OwRFEYCUZKQRBG5OA3RQwEAUcICIBGEqxBRZCSo0UejFlFkSNNRYzpjkSgHD1FkxWqRFV7aES67jRHl5SjRtLlRUaza3lFqsiSRYYmC0WWjo9EPqe6RPUOmkTx/GFEkBh8RK0qt0Q5RcZEGfGSRN4y30STHM9E25B0RN2OLUcBE5VGhfAxRkVO1UTQwo1EuY+ORatpk0RPFL5EaRZBRKuxuUTuoXVE3nNYRCXVskSf1oREns+8RGIKlkRH9YdEjByIRBTwI0YChB1GGtBmRfhfl0Rl/L1EZ6N2RzRNKkfQnVpGqEBoRSkygUS+gktGD8a5Ral/iUVfOopEdOG4RBMYXkSeg2dEBye/ROXDwES354VEnGqaR/Bid0dlosZGpwf3RbwBFkUaoY5EyQ0SRpT8t0V5FTRFGyeqRGHUAkYmMJNFcZY7RfFkuUS9ZZpFfcgpRQ/Dk0T8vpRF7d5YRUMlDUWtZYxEaFiXRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - ynnxb3jAckDG9yB3EMFyQISflc1vwXJAqyTCzU7CckCIQUvUp8JyQOKB1pM6w3JAUI8Ll3jDckDkj5ToxMRyQDgC4LhXxXJASHA22wHIckD6NQvmXc1yQHznJcpD0nJASK0ap0jTckClYHW6ddNyQEKJyavN33JAqhv1wrfgckBGzqIoTuFyQBOtpAFS4nJAkhywO5DickC6RssQJuNyQDMVzqRN8XJA6rA9gcnxckC+PxPQtvNyQFLQecyi9HJAQh+ShcH/ckD4HDiyZABzQNA+q3f6AHNAxAIEmU0Bc0D09pmyjQFzQPzWqIXPAnNAaJzZvPoDc0CcHFmNCxJzQGQC8U96EnNArhYwybwSc0Cx4Kbv9xNzQO3PX/ROFHNAyrjNT/cXc0AmZqMQex9zQJyNlCalIHNA7DizUTkhc0BIBoF/ZSFzQMyarfLJInNA4q0fwhAjc0ALTAVOOSRzQPnKm4DOJHNAbV3yWEYxc0BUPgczWTFzQKyKzg6iM3NACpAA6tgzc0CkSToPNjRzQBZ09xO6P3NAxpcD7OZAc0Dcc6kpekFzQFFCJBWlQnNALcNorLlCc0DusR/kekRzQFZVqmxTUnNAtINg0EBTc0AU9k8BpFNzQAulf8yGVHNA5PVfm4pgc0BkqDYxHGJzQKqY/6o3Y3NAQFNnSyxtc0B2fbLCZnJzQGqnyVqFcnNAApgVn7Zyc0CAUsRwuHRzQMwsbAtNdXNAEy8hac13c0DqzvQW3XdzQFPOZ4IpfXNAon1mS3mAc0AblLmxpYBzQL5MiYUMgXNA//U+bF2Cc0CSbAL4/IJzQLM/4iaJkHNAKJiybE2Sc0CilDrkYJRzQBA1Kwr4lHNAiG8tEbmgc0A783gp6KBzQJdXPLpaonNAUrMxNOaic0A112lcB6VzQC3KEzXEsHNAughvl9awc0CCixZmfLFzQDMshh62s3NAPqDrfQy0c0CaFWdN+cBzQDvQMUTRwnNA/LrSPSfDc0CaESsY19FzQDqz7NVB0nNAqlkpS7jSc0BM1sF72tJzQNFzgXni1HNAzRVd8KLgc0DoGa2sOOFzQLBdDs9k4XNAyG8K9Hzjc0BuJtLcOPRzQJBSmLjK93NAGdseeeUAdEBMgLG9eAF0QMpaawqkAXRAqLb5EI0RdECg0Hv+9xF0QGphNMhOE3RAb0ZlJHgUdECuSXWVISF0QPGd4+q5IXRAc6/9ObokdEAJ5YNvVDB0QDBj+THbMnRASMQEluM3dEB5oAC6azh0QN1PCzc7PXRAdQq3EFRAdEAVuksCeEN0QIDHsjyoQ3RA+iDAw0dNdEA96mlPP1J0QCyB04S1U3RAU3+lofdUdEAtswMpi1V0QK4PlBDcV3RA7kyAMjVddECqBqICuGB0QCIj6SAKYnRAEPbXYo5idEDWssycTWR0QORInzvpZ3RAPuu2NSNwdEA+kYz9QHF0QIjKaVA5c3RA9l4wiqF0dEDL+Ze0NnV0QII2/rlDgHRApePQV/mAdEBCREO9TYF0QEYCOnAig3RA/sSykhWQdEBoRIHwaZB0QF/tw7/vn3RALKgWgs+gdEDI09m0N6F0QChV8f68onRANLFCdw6jdEBF21gy+690QJKxXrFusnRA4jToa/uydEAQ1Wb/x7d0QG1+UesTvXRAlRagyd2/dECkzGGJ5MB0QJl8scR2wXRAMhUDn7jEdEBStSU1/M50QJGaeYfi03RAPBoYyM7UdEAwb4VoIeF0QKK4/mu44XRAxyShnEzldEA02T34CPN0QFMqsbqM83RA6kmSQqUAdUDaEj9/ZgF1QDgfj/9cAnVA6FeJ56cDdUCV+PVBlxB1QPRnVltqEnVAzZOtWiQUdUCS4kP1nCJ1QHPKLjOrMnVA/ozjEMw1dUB++Q6wJ0R1QF1cQLHpT3VA1Bdj//dPdUDwXZ1HNVR1QJ7rvH92VXVAa7NCBwxgdUCqoUtEOGF1QH3j0VBqY3VAHG39NnZydUA2C94++nJ1QKHcwgeNdHVAm066PXmBdUDKztnprYF1QIsQ2JEQg3VAaSKbJKaDdUDyP3GJmoR1QCLYGE27kXVAuLckdXCSdUB3QVE9DJN1QNpRcYW0k3VAnjl7dxKbdUCw4ifdJJ11QIQGY6Aco3VAqg6Go2PBdUAGTxDx+MF1QLJ4wZ3L03VAJlobZ+XfdUC0+mebDuF1QHKbVr8H4nVAksQcJznldUASd3NkTO11QJCJ1fil8nVAMLa0R+73dUCees9XSAJ2QIZPC6eYAnZADec/EbUCdkAm2+DU0QN2QBhoviq8EnZAHnSfKU4UdkDFdo43iCJ2QHoPWnmQJHZAt/p6IEordkDohPxkHzF2QHwBaBeQMnZAUibm91IzdkAUgEqGnjR2QClnLcocQXZApkld0JxCdkDwEnImyUJ2QBmQ8z5QQ3ZAXdBzunlEdkBGwOMEEVF2QEYMA+GVVHZAtuDrNM1UdkAgoGHtjWB2QHc7FIxRY3ZAMmiUfbljdkAvPbM3oWR2QPNVMlzcZHZA7uuv51ZodkDaHJxrUGt2QJiExbDkgnZACOuWfpKDdkDfq2y5DqF2QGDVFzR0q3ZAHGfh/cGydkAkCddAebN2QJ7hWXgMtHZAbv7rINO4dkA+BWpHz852QHi1fszz4XZAMsL5WoLjdkAHydq1CfN2QKAu2G6R83ZA8k7enTICd0C25opFpgN3QKoE5HFQDXdAsgT2cwESd0DUAhXeoxJ3QF/FDxvpF3dA7sjZWQ4id0DemA1DcyJ3QLrmoMijM3dACojCmww1d0CoRAq7JD53QMkkZxWdQXdAcEM/SbBBd0ACpCX/+0J3QNTxyziTQ3dA2sZ//RpFd0D7OaQBSlF3QJ/7cYWSUXdAHD0vnwhTd0DrRokDKlV3QL6ibZjVWndAd5B820Zhd0AQZQ5ajmF3QAzKRgidYXdArqdGXd5id0Di9XeB0mN3QLqGTvAmb3dA3PzumneCd0Dy3CYxHpJ3QHUczBJMlHdAWSfpwKGjd0CoqXjUm7R3QCpYpfgtw3dAz/xca4nLd0CJ6DujktN3QM3gmq/N3XdAzAvUi0/yd0Dyp9yafvh3QAR6ML1NA3hA4iaWt0sVeEAiWfbmbCJ4QDLtvyKII3hA4wTUadIjeECYY9McpiR4QBX8f/sMQnhAlmpdnxFEeEDSBxxYekV4QAy3T4PKUXhAPn8PiZVSeEAo0B6v9FN4QNYf0NUdVHhA/J06godVeEBiNL5j7ld4QFse+sH4YHhAGIWjj7ZheEB8SNgeOnR4QLwJ7IdfdHhAuDjGVIt0eECGCivUw3R4QDo51fLXdHhAVladBqSBeEDEJMu0mYR4QEdd1++WkXhA1g4yvqaUeEDxaoxUuKF4QBRWlDLUs3hAkNJSi83AeEDkEFQ09sF4QKoLAHEHxXhA09GgJjfTeECwnU2it9R4QNoCM2Tu7XhAhPkySAH0eECXT3FyjPV4QGLRnIgMBHlAbsPaC5kFeUCAKcm8zBN5QNYuLAO7I3lAePFa7/QjeUDuJW/6sCh5QDpZiJD8K3lACUcC2QsueUCM9e3MZzN5QGGgdy24M3lAuhnrgOM4eUDwnr2E90J5QKexPSb8Q3lA0pWq1JRTeUBg0c49BlR5QNgCfRXMVHlA+g7pdJxbeUDGkAYX22R5QCW8a+9Ac3lAwR6bC3GNeUC6WtG+yZJ5QObJATPAsnlAsHcreULUeUBX4PGYzNV5QIo0S2FP5HlAglb28vgFekAtwoOspCN6QMCRJKM+JHpAHl700ykzekDG0htcDDV6QHp/o+3lQ3pA1nLZHBpFekBxEJl7zUt6QADPcronVXpA3lpGtPxrekDYftPeDbZ6QGAQHAksw3pARGypqvvDekANJXcMG8Z6QL7vZe8MyHpAt9XAFGfNekBgOYXnP856QLylGVLF0npAZ90L+GnhekDhwpi/eeR6QArD0RU37npANSUBzxXxekCKI0eEW/F6QAdxoKVJ83pA1IrEBqT4ekCufWm/6/16QAD9lhQH/npAz1r+IFIDe0CsOS06dgN7QGDElot6BHtACKbCWCkOe0C4r64bcBF7QEhm9q7EEntASF4aoEwVe0BCRm3hHhh7QHkzYihPGHtAtqFnc3wde0ApvTYQZiF7QLn3/qcoJHtAxEK+jVsle0AO4T6smEh7QHrbnE1hUntAopvZi6hTe0DqFcgirVt7QEZo6kcKZHtAFMusY/1re0CGGsN6E4J7QIZ1+skklXtAlp4G486de0BLDx5nKKN7QKBeKxeDqHtA5ntHR8mte0A8n3igItx7QFCc/ZMB5HtACuUwmivke0D96vfnl/F7QP+J6fEd83tA0gt2Gm7ze0Bp1H8VjPV7QFSWjfN0+HtALG/BdXT7e0Aiwu4n0P17QM2xzOORAXxAbo3v0tgBfEAf0CkNZwR8QM9nJPKYBXxAXtd2Z88RfEAAw8ov6Rt8QEBW6YvvI3xAYL/huvIrfEDMbiTV5C18QLheheo/M3xAPBs4sc5BfEDQjE8EUkh8QOBvXdOrTXxAKqDfZ9tRfEBKzsMf81J8QC5MW51RWHxA+WVY6KldfECAwFJ4DGJ8QGAj4z1amXxAW8fVe7OefEBdSD8+PqJ8QGjaVqsKpHxAx50e0cGyfEDApMghzNV8QNtbZa9X4nxA19bU6xHjfEDvR0BvwON8QOnqyn9q6HxA8Mnw6RTyfEAuTwxhVfJ8QIYaUqYCAn1ApoC33koCfUAo68zBUQR9QBW1705GEn1AywLnla4bfUC2UIogPSJ9QE6kXkizI31AjK17teAvfUBi0xNpoDF9QD6Tyk+WjX1AdI7Yr+6SfUAq8ha3PJh9QI7tgBSZnX1Ait3kofWwfUDWvys1q7J9QCN44LQpw31A0OpZPeTEfUAI4Pkoq999QAgef7Pb4n1AtHf71o/1fUB1VdXgggJ+QPqlnLHvHX5A6H8WKzgffkDvUZFXSCN+QPIik4uRKH5AkBmJrakofkAGEXYO9C1+QHaXsOE8L35AhGD0QGtDfkDIdftmvkt+QOzBRtyOVX5AwMuDYgBXfkCgA1Ool1p+QO7fqZSBb35Anxgbkbd7fkBAftsGvYN+QNmPMfzDi35A9pSZjT2MfkDgOWlLypN+QKBzoqfLmH5AI8qX4CaufkAf4s/ux7B+QBoe2WTOxH5Au/77xrbIfkAYXoZ0tdt+QBarnCy3335AOokAoSfgfkB/R1ZaOPB+QDZ+Am61+35ATEyxSyMAf0Do+3ctaQN/QIl/wfqWA39AcMB6g80If0DgpOC65hF/QB09Z3bwGX9A70MRYtshf0ABM7o4LiR/QMxuehaYKH9AbXO1Ibhxf0CdUgrYsoF/QICPq8uig39AxmUW7GKRf0B/Y0rYmJN/QI1Yawumm39AQ6Po2F2hf0AhceB3VrF/QLhU3eALtn9AfqD0mMvLf0DSpkb9edN/QLjvlhvQ039AChjvCZH7f0CsGjlTzQGAQJvwvFnRBYBAgI63JcsRgEDYylIwRDKAQLzQ3pHqN4BA9Cl9n944gED0/u7OnjqAQBS8ELDtSIBAfhEmK/dIgEDss2f4c06AQE7gLtzlUIBApEF9HhRRgEBgnpyliFGAQAY1Lp7nWIBA1SG9/g1ZgEDHvNptSFqAQOBEUgXiYIBA4jqgVcVmgEDUCRG8cmmAQLQNuL/xbYBAyb3Js8hugEBUA0TVKW+AQMyQWtzycYBAaq79EzSEgEBbbRStHo+AQDDuutDykoBAguLuvhyXgEC6UYbd0ZiAQPK/zr9hooBAOlCokAikgEDyeaRpW6eAQJhEAGiFqYBA6MdVCxSvgEBYKQthSbiAQMhatVN8vYBAznF7bji+gECRqc1mUsGAQDZmIxWqx4BAxF35RhzJgEB8X/KkU8mAQLMKFBoHz4BAbuIvby3RgEDisaCITNGAQHZ7o0pi0YBA5/5k0UrZgECjT2RZctmAQBhCv9NE4YBA9Cas/eDmgEAqXckD9uiAQLSTabdL74BAVD59YzzzgEDz5MO4P/+AQBzaiyxBB4FAtWkzSxQMgUCU7pooPQ+BQOoL+ww6EYFAln2cOjcSgUBS0/OKPhqBQFL3HE3hGoFAKplK1zQfgUBMtCQXNCeBQCRD2J+1J4FAjCjvK+cugUCkBtQPvTGBQAGjYIUpP4FAHCKGmCFCgUC2a2StYEiBQB7g7ERoUIFAhIUQPllYgUD5Nn2nOHqBQCrTYthVj4FAPslu4VWXgUBSR5JmfpyBQMRGmJBTn4FAmgVKeuehgUBmLOfY1qaBQOYyS3RsqIFAfCjsB/GpgUBFDllRSq+BQODjBZsDsoFAnFRIs0u3gUDqY5VjrsmBQEh7dWF804FAlmn4wgIJgkCWKrV32BiCQIH3ZL7WIIJANShiktEogkDyonRUoymCQApGXTakMIJApmDDGOc5gkACgUHlJkSCQL1CXOfRRoJA0An+rdROgkBO+NOd2FGCQHr8u/TaVYJAZv8Wld9ZgkAMhAPSn2eCQDhmk4Sja4JASJjREi5sgkB0nO5KZHSCQD5y0w5tfIJAsEWIqxJ+gkBqJfM5Q4mCQIpbcdpDkYJArtLNVzyZgkDaZ73WDqGCQKje9NA6oYJANvnt2g6pgkArbxAKf9qCQLgsW/ip74JAVPMXawP2gkBXSwAqsPmCQNjxT4l5EYNAGoE5+HkZg0C6izW7ciGDQKaIUveKIYNAUkakhwwmg0Cq94g6cimDQBqfqmcPKoNAhCwKnkcwg0D6o8uZajGDQIolpeptOYNA/FfLct45g0C2k64Z4j2DQO7HqbDeQYNAIG2/it1Fg0DkYWno44GDQJSAaHtKg4NA7jeuYOitg0CzZh2i6rGDQKL/1RrAwYNAXogkecHFg0BBC3y2vcmDQMYS97yU+INAkxGwpgMShEAlHoYjBhaEQNoRY55fKoRAHDck99IthEBYCq2DAC6EQHeAeZRmLoRAoKKXuXAyhEBLLIdEM06EQJJcvL03UoRATqTdfWlZhEAlrYfyi16EQO5SaOaMYoRArsoQ+v9ohEAUB/uu/nCEQJa4uQX5eIRAni6LQHR6hEAsoh/KLo6EQIL+PBNyooRA813Hth2lhEDcvUeKzKeEQC7cjpJ6qoRA/LtV9OWthEDuq7Kg6bGEQJhMavFTsoRAXMmCvuC1hEAoiyQ9V7aEQA+fEom1uYRAfrz7KuS5hEB+1TurF82EQDS6eqLFz4RATHHmImrZhEAaa+SpaeGEQE74SkJj6YRAACwy+zXxhECXc/XTYfGEQGXbc/a/94RALpS6zzT5hEDAK0IvWfmEQFxNVUe+KYVAKktGDzcyhUCuUiBfOzaFQGWFb/PSRYVA6yLL9dVJhUAE2uVHAlKFQHl8SGWgYYVAtRCbZaBphUAg0qn+mHGFQMv7yG+zc4VANCIoEKZ4hUAQ6ETamXmFQALRV/f8ioVAFGCDlNuhhUChtY1h3aWFQDC9hG1OqoVACMv0cv/ohUD8ka2O/ASGQGRny3/IEYZAM0DA1MkVhkColzU5o1aGQB56hXCnWoZAUhlKOhBuhkA9hNNjFnKGQDTTZOuZkoZAhHKx15yWhkBrSu+EoJqGQHLuCrSjnoZAuiqtnVquhkC0FVRvYLKGQMC/gGUluYZAOke/k30Sh0BQz6yagBaHQGQCgFCCGodAeKvLT4Qeh0AKiDYjfiKHQLxKJvKRKYdANA3LmJIxh0CGSnmGizmHQMBodlnePYdAFI3T8INBh0DWEM3kA56HQJwJsVcGoodAZGHYgAWmh0CulMD1BKqHQA8iodyrqodA0xfDaAiuh0Bm4ZxAx7GHQIv2Gcv9sYdA9HTKkca5h0D7SQT8wcGHQIYHgT/AyYdAbhBKXnAGiEBaqv81cwqIQGSVSEpuDohAWHyvso4qiEBqs99Mki6IQGD6uRSWMohAhhXnyPaRiEDif7bw+ZWIQM+K01rzmYhA3P6yAHeyiEBU2zE3ebaIQA== + NrgMGZxjYkAYxSyCnORuQOO2GkbmYnJA - + - tieNRLByYER/9aVFkFKdRFW7Jkcg5VBFLvZVROxkbERAH3pEZitiRsbyv0TSoSJHE7BzRD+hhkSdid9E2MyeRLq5mUQA+2dFNmJjRQs+c0RkRnhEJaxGRfThh0QpSYdEk72wRHbuZER1AGdEdJXgRO2MkUQ3yx5FvJYFRymBakSRi3ZElUKARq/3dUUOdYFEcLmCRFVSiUTkfv5EEY2zRgs0aUT9iqpEJ9eTRFhBskQKPMZFtPbARAhmskS23rtE5G9VRKDth0T8Co9Eh/akRIMJdUWq2uhEsNd/RO00HUZLj6NEScBlROk4TEVLZ3dEIm+sRH3tkERLErhEkKtQR5wDOEVWxK5GBJ1IRPHpgUQ1Wb1EvIMnRb3vG0WwnQNF+pIMR3q74URtk6pEJ8sSRTeLmEQa+g9F7UpKR+AljUQjZXVGIUcNRi5Ml0RgptVFmsVIRS4NE0VMJFlEHFprRBzPhkRwrF1FxKAgRaOdhkR0AIRF5RnuRNCpBEUgP0ZEdhNxRBMZhESyroRFfwTRRBbZvkX+7sVEaygJRcxW7URatPJEUw/4RMQ1gkbaIKJEYi85RHSrNkRhVypFGhBjRNIcp0QhbiZFxl5sRO8TnkRCj0ZEeF6+RHOTiETZ18tEh4R+RE1WeESzVNhGrc6LRLfM5ETxbJdFvvF/RMuHz0TRNVRIEFTeRzejnEXOEv5EX1DlRm4sjkSAUHtF1s3FRS+sNEf8PH9FAdV2RB1yn0RjmqxEDPIgReNsuEWUHr1EtDOsRXt1lkSNJBlHDwqTRLiti0SHUn1E66cZRUIlN0V1fXNGhWN+RFOwpUVoKCBFe12hRUUQtkTtrYpEiUkURYKwoESM7p9EmvLRRC51cURLmjVFf92rRNbEV0RPPpZFF1yBRDaQgUQuaEZGmA2iROhcckTeF3xEtdnJRMuJ7UUh2FdE0A1cRWilPkdQa1lEYpV9RAbtzUXanwtFqz50RGqa8kTiUIREtjCdROLjXkRYO0tGeOvpRPqesUW4BYZEdI4gRououEQmeJpEhFeMRHagokaeyp5EYG/ERaGPTESRYlxEIEyIRAVr7URp44pEcFa/RByuoUR0+hxFqEZyRN/QnUbSx/1Fc6jgRMXmGEaOBVVEeFdcRAYhpER/z15EV/ynROeWmUWEzOpF7MwnRkHYtUY06YREdWo/RR9tqESaoYxFjaOXRFqvCkUSWllEIlFzRTfhXkVvb3RFVVdZRl1fOURKn0ZFtyaRRMdpTURf/A1Fm9qBRGF5e0SBSZFEAchqRf6WokStuKNEvPLcRPotY0UEl2dFe4eMRM2nL0URWZ9E+99VRLeDwkTDgDNFgrTcRDqlo0RMnnFFI5mGRmtXoERSnZtERAUqRcuc0kTZLI1F3VjgRxGPB0Vd/qxG+FqHRT+BPUbQGVBET7+7Ri91nEWZIHFGCTzkRA8hu0QH75NFKMuyRObiyETEhoFEhCKmRBhAz0RU6z9FjWSrRM9QsUR9O4RER5NZRELydESs4rtEFsWzRPAjkUSCbuxEOK2qRH5olkSwhX1E1OmXRMC1f0XQHGxEvXaDRP/+g0Q9C8FEL7OTRqwiNEa1vIlFtpPmRaS8S0SKqRdF1SBeRTQmq0WTuzlFDeUgRTc4LkUr3RRFK/BMScXlEEW81gtFue+ARa5VVkiH3/BEaUSPRsTeiURnlI5EqGcHRS2KpESZIYVEorptREhWM0WKz0ZExAeHRcsCikUHYKFEHLCdRGyIhkT3HrdEKu0MRoVmuEXqWxRFlywNRfPEwERnT5ZETBbMRBFbsUTVQg9GdA3hRZ5XwkRok4xFTBaLReAzi0RyMsNET0HlRYngn0ViDktFOqMBRpunlES8oqBE53+mROmlaUTRg6dEFKerRNIBwEd0NqJEcCi1RlBVy0TaFktFkQ91RDdhv0UYP6ZEqgWNRWXJ6UTK8YRG7u2jRYpbeET/M9BE8bUERZx7wkQRAuBE60KIRCjvokTTHKdGKgdpRim6BkWURbBEhtxNROHXZURfYAtFB+HeRASfN0V9RMNF6aAeRvFHkUUhImpESs+oRLwgx0SwjVRENtYuRcv4lESNwYJEbTWmRYib7kRJoxVFEJVaRAeM+ERtytJE4oRCR6pW30bcCc9FEIogRYweF0UJo1FEDSrwRN2DjUUQ4gRFIFbmRDLDgkY3LK9EhQZXRHq6W0SUiLtEO+8ORnhNdkWVcp1FkdpoRZz0vkXP8wNFyMVzRMUqm0Wo0BVFONutRd1BGEeLPZVGXpyVROOxh0XLYXhFMvzWRF6K9USkF5ZF8pmPRUWdbEXt16ZE8UrOROpZi0RO1dhH5wb8RRXwgEReBKtFNUIFRcR/3UaqnypFHxyWRms8WESHam9FcCevRbiZTESf4O5E5xmpRHXCvETKuQpGE8+aRfqjSkXqboJEw5KBRAjGQ0W4+qtEZvjHRONDg0SS5pJEqV4BRYdfnUSZSUBGuLVgRFbS7EUxiftEjjL0RPugn0Rrp35EwLtpREqgikS4VsFETU5uRAKuYUTmW3NEf6JqSAY78ke30v1Ga7rARKJGjUXevFRE+nxvRCDfYkSsLZpE2F1RRGtkZURczbREpC0RRkG4qETY4XlE4zWFRArfYUR+rOBEHsaYRIcJp0XA4eVEQRt2RIn6cUS1+m5ErOxSRaM3sERJzMZEAktARpDPVkVoXmlE8npWRTrJZ0VHNDpEbuEQRSwJV0R85ohEHvmRRZ5bRkWSPnxErEReRIkWvkSqIrFEIemaROyJRkTnPXpEdpR+ROBcr0Qdd/5Eil5cRk9cYESoT4REaFWQRQ9FmkS4kq9EvBWNRRQHG0UFRFJFY5mMRH3ZH0VDjKlEKWF5RDX8tUWQrlpE2ceDRE16QkTJJpdEMlWeREmbhEQcrtZEQwS2RJgMoUSdK7BEqJBcRAsEikjB911ENktJREySBkgCAKNEcjSYRPSjjkcNXURFqCByRivpHUXAmbtFv89GRLFo1UT8P99EfJKLRAnfUUaYfElF99qtRMznH0Xza0lEZlGuRVBoh0R3mINEOjZtRvH7LEWVTXJEi+aVRCcY2kQZEs5EyGPHRFsqJUYr9ohEBQkNRb0Up0RwZNFFZjtXRfVaSkShDYhEm2E6RSUQMEVOEkxF1qmJRKjKpUUBfV5ETA2yRFYr8EQ+saFEGAVQRH+1TkZwgYdFdCZjRZmbk0Rj59NE2f+GRPWamUQOROxEVjNfRJOW60VnmV5FhtLyRMXdo0RksYJEUpaqRMM9TUQVP4VEZL8/RDuUw0d2bzFHH8e+RkEczkXhJ9tFXd5LRQvOzERmSFVES1ShRHEaa0Q96+pHTLdrR3Nm7ka7YSBFUnf2RIWKGEZoR6VE52L2RH5nUkUKREFE79VMRuB0wkXlmhhFVqwmRQRUj0Qt9XhEi8LPRA60m0SUz3ZFmkD1REazRUQqR6tEiuMARRcbakQL8SlFX35YRO6VBEVNfLNElMQqRQlwKkWLFTFFyM5URNE4g0WajhpF9QC2RQmaV0WKq+pE171VRGraqUQByv9FHlgSRkJ1RkXfcddEe+n5RkljW0aiRZxFmPW2RbqGUkUkXE5EDJVORefFWUTOd6pEMmb+RhdWYUbM6yBGAwisRX1rbEWUU4dEtYXzRGk9jURw7ZxEkILPRD7xhkRZXDdFGsXORA4KSETTZRhH+bGQRjQ7HEYzGMhEYYOhRMr5e0USnmZEhkDGRA2KY0TRRFZE67FeRJbql0RHlKZEpnFlRHgEBUWnbsZEBYHORGgrkERxtj5GPzjiRRAcBUVukYhESAl8RO/RjkQZNZhEN0Q7R6kD/0ZVlDdG/gRURQWPzURMWx9GOEO1RVBNLkUjuElE+PWWREWDo0dHjHtH/J3YRtMEDka0oqxEBXVFRQe9IEZsIptEzG2dRWjJiUVIeNJESH7hRfhdsUU6bLFEwIRRRb0690RIOo1Ec+9FRY+jLUWKZVZE1soeRW4igkQ= + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - jMWQxHjAckBQTWqIb8FyQFMLMPNOwnJAwhPrbKfCckAO2ZeTO8NyQASkW9XFxHJACOn/xVvFckBzabJtAchyQJ8Y1aNazXJAyHLOf0PSckBerp5ip9JyQMCOs21303JAnOm53c/fckDkZfVeuOByQHbswptQ4nJAUCJP+JHickA47m9SJONyQMYekTPJ8XJAcDaOwnvyckDA1BQdP/NyQA7r3vm283JAij8jHqP0ckDEsmHG+QBzQDpsdw9PAXNAwNVkjYwBc0AUsymEOgJzQEFo2f3PAnNA6EBi8voDc0AwbVX+IgVzQCDUkEF3EXNAfSQDz7sSc0BPOEJNBhRzQBhZqIP1F3NA18qdMXofc0AeVXPRoyBzQKo5Lmw5IXNAanPTG3oic0AX3LFrECNzQMUaUUjPJHNAVR6CnUkxc0C+q2i9DTNzQOxfQtOhM3NAbodlKjc0c0DsMABz2DRzQBtXor1BQHNAhuBZBeNAc0BBqJ0teUFzQAADRVUnQnNArdqltqZCc0C866Iwu0JzQE7m6o9mQ3NAIt9T53pEc0AAcrHrc0tzQOLbHcGaUXNAiH9N5E9Sc0DV5rU3QVNzQArzuUSiU3NAb5PF9IZUc0DtyRoli2BzQK5OgWAeYnNA9k57Mjljc0AsLqL9K21zQLjZgvBOcnNAkFjbsGZyc0Do3CU7hXJzQG4sW6C2cnNA9A8ypU11c0BO115waXZzQFKhNcPed3NAzBbL+niAc0BnS/Ahp4BzQI6P/HcNgXNAukQxdWGCc0DIPYOiWIVzQKI1PFiGkHNAD6mDb02Sc0CyIvj/zJNzQLC2shxhlHNAgo6cVfeUc0AUc5g/jJVzQOB6Ioa4oHNA6Z7qeFqic0DyWIZoj6JzQJSZeZnlonNAxJ68wgWlc0B29xe0x7BzQJxdJ1q3s3NAeocsIw+0c0DwEHyTZsBzQGDkh874wHNAl33RATjCc0Bfls2az8JzQK4g+D4qw3NAGnQkdvvDc0BYdKAiZNFzQISGocnX0XNADMBCyLvSc0ASWeFa89NzQO+4C5fi1HNALU90caPgc0C9b6yIOOFzQKlDFfd54nNAVkaVehDjc0C0hLK1fONzQAD3Gpkh8nNAtmgd9TX0c0DaMRUkj/RzQFSVEevL93NA91dajeQAdEBkPMzmeAF0QH2BNY+mAXRAxMSLpk0TdEDo554CSyB0QHOjNJ62IXRAJ0UUF1YwdEAYFjwbkzJ0QGQVhwkTM3RAhGgrCeU3dED0lSvkPT10QNkALZCiQnRADDW/QahDdEAgYgReTE10QO+bAzM8UnRAeufMPLZTdEBeVRkI91R0QEE8pvqLVXRApTsWF9xXdEDwD+GFNV10QDwa6gi5YHRAwv/YKwlidEDo+goEUmJ0QIKNTFeOYnRAoJunphBkdECg4YfE7Wd0QDbrnrohcHRAtQ3kfkFxdECI6KRkzHF0QPoRzk8dc3RANLGnVTlzdEBxuQ+MNXV0QKJFoVxDgHRAIm8ccfiAdEA8GRgzT4F0QJ0fGwfPgnRAWU3WbSWDdECGkTLgFpB0QKgvZIFSk3RACAvY9e+fdEAGZLSMz6B0QJAugzk3oXRALCCiYbqidECwUEOXD6N0QOHh1ZL7r3RAicd3g8WwdECXUnoZAbJ0QFx3a5BvsnRArPUCtsi3dEAnWOjfIb10QPrwjBTev3RAjDAnA+HAdEAAg3y7eMF0QE1afybqwXRA7xIM0SPEdECCideBuMR0QL5CctP8znRAU2N0K+LTdECMXcfez9R0QPJ7NfaN4HRAgOAlkrfgdEBQRiKmueF0QJecd+Qe4nRAt0NXE43zdEDCoCUrpQB1QKJhFNvPAHVAakVbimMBdUDo7wI4XQJ1QIbc2KaYA3VAsHP45agDdUBsKHEKbBJ1QG5FOZIlFHVAVFo1EJ4idUAsk+0srzJ1QDoDwaDMNXVAap4KByhEdUCf3fbq2k91QCC41ASCUXVAKGXalDVUdUCQx4/+d1V1QALZi3EQYHVAkOINBDhhdUD5NOliZ2N1QCpkSMRGZHVA8K0i4nZydUBe8ZUzjnR1QO2Nmnd5gXVANsr0ca2BdUAdQVd6poN1QP4T/gaahHVAbFjPsYuQdUAQhOusC5N1QH/0rRmxk3VA7kYOc82XdUAg/9vjEpt1QIxZOzm5oXVAkFY6H16wdUBqo1o4NbN1QGCQhHr4wXVAuKkVCUnNdUCyUC7tztN1QN6joVfj33VAvsfBQwjidUCFd+qUTO11QNopc9+m8nVAfB6xFTjzdUCWY1af7vd1QKLr8Q1M/XVA4HiZd0gCdkDOizb/0AN2QAbyk/JUEnZAHL1CybsSdkDuz5eeDRZ2QOjY1JmIInZA34rl6ZAkdkCifol6Syt2QDRiNmQfMXZAuQ6cQ5UydkAqRnUjUjN2QLiuD4YdQXZAPBbdZMhCdkC+gAdJekR2QDh1gdr4TnZAVA6C1ctQdkD65e1aEFF2QJaO2GuVVHZAEOOxw81UdkCUH7M8UWN2QMocPTzbZHZA3O+SJ1FrdkC4061waIJ2QDAj1ASRg3ZAxCNWqXaTdkDmLchs3KN2QLrqMcBzq3ZAaucC47awdkC4A/miwrJ2QAt5sVB5s3ZAzG3/8Qy0dkAuVoNo07h2QOb7iRh4wHZAdMVFZr/AdkCi8iF6GMR2QKBnIvDPznZAuErInsHQdkAwx+nFouJ2QHjV28QJ83ZAqzTF25HzdkC991ySMQJ3QMJWYh6kA3dA1C/M7VENd0BHcxJbARJ3QCY7SnGOEndAmMOjk+gXd0BYNj2pDyJ3QLaMEDJ0IndAiHkhh6Qzd0B0Ps9dDTV3QCTklTInPndAR7Qb8ZxBd0BWGB2y/EJ3QODYTNOCQ3dAp6hWaBtFd0DTJQ8RZlB3QBgKvINLUXdA+FFZ5pJRd0Ac7StiC1N3QO0jrGYpVXdAR6akoNZad0BoWReaj2F3QEpbRMKgYXdAlr1an95id0DijMHcz2N3QND6JPMnb3dABu8gizxxd0DQg8NmhnF3QIT98J7ScndAMqKUT5N0d0BtIXyfS4F3QABf7Dt5gndADs86ER+Sd0CMa6/+CrN3QA8gLhkuw3dAurTusIvLd0Bq8rBbi9Z3QEJdThYJ23dAnapeQu3gd0Codr2I6vB3QCC1fVtQ8ndAJHtQO0b9d0Co1Z+sHwJ4QGz+15OgAnhAgoD9E00DeEDaF8l4WQ94QIgH0EROFXhAPOuJsm4ieEANLwT8iyN4QAjaLYHQI3hA1JREBw1CeEDCAwnZEUR4QI7w9Zl6RXhAFPDqIMxReEDH78YWlFJ4QC+MiB0fVHhAyovM54hVeEDQK1VW71d4QLTbMQT6YHhA5hqjCLlheEDUfoPyvGJ4QHiuZeqLdHhA0Rv6WrB0eEAOtrkEzXR4QGcjprffdHhAeIlGL6SBeEAoQmAUmoR4QFzxh86XkXhA6eSV9KeUeEAwOshDs6R4QErwlqT2snhA+p84RNWzeECMuoDt3Lt4QAhkQWbNwHhAalkx5AbFeEBlopJ9ttR4QHUdTDUC9HhAbLlri4z1eEAGO+kyFQR5QKL87ziaBXlAFAUN7rwjeUA4d8yO9CN5QBnS+MSxKHlAcnrIpPsreUDHNmmNDi55QGx5/WhjM3lALjs7kuQ4eUAx4TmzPj55QKITn2v4QnlA9hNv0PtDeUCSLqih4FB5QNI7G66UU3lADwXErAlUeUD1NguxzFR5QGrD9UCcW3lAVbc2uaNjeUA2YUDA2mR5QEBp7jVyjXlAsrkWtMuSeUC1fyLSv7J5QA5AgBqOs3lAaRJQvs3CeUBpxLpEQtR5QEyn+c7M1XlAnNbWR1DkeUCc0NmGl/B5QFitp+75BXpAeD7J46gjekDJ7y02OyR6QE0HtPxCMnpA/AEKxAw1ekB+6LIMMjd6QH37oaroQ3pA9nWNHxtFekDWo9Omykt6QLPm+78oVXpADHXi1iBcekDIuSBt+Gt6QCLACos4bXpAjPjD3DSTekA0iJRwA5R6QNqf27cNtnpA3WJ4FfzDekCIB92zGsZ6QDj6aeEMyHpAdnzqvWXNekAQsEowQs56QG8/YO2s0npAYkXwmMfSekD+Eeq6aeF6QP4EDrZK43pANYuevzbuekAYFoc7FvF6QLYMc3Be8XpAF7shh0rzekDObFKro/h6QHRqokP+/XpAlN5nJ1kDe0AWbKy6ewR7QLekI6AqDntAlmEJUXERe0CIc5DMxBJ7QEQ/wpRMFXtABO0xgR8Ye0CSXNVGTBh7QL/obClrHXtApj2pgMMie0Bozz6PWiV7QJY0Ime3PXtAlFgccpdIe0De1jhm8017QP8PfkKoU3tAc2JZ77Bbe0CEYKKzsWN7QNBPjJcLZHtAQKkU6xOCe0DYq+1F/ox7QFiFgmcilXtAWg/Nw86de0COCIhLKKN7QOry/f5tqHtAbnrXwYioe0DfFSeEyK17QBn1ivbgrXtALjQ+Eduue0DzSudxYbt7QDpEAOY70ntAnvgUJiHce0C4Uyr3KeR7QIz2aoI/6HtAFA4NWJfxe0D/WBLdcPN7QGqU/EyM9XtAf3OIoJMBfEAfu9UU2QF8QHDpJJFmBHxAftmoqZkFfEDCtpbjjBF8QNozYBXREXxAaEpr2eYbfECMS2Ex6CF8QBjr2yPvI3xA0Ke22uUtfEDYgJvuQDN8QMQynV/NQXxAkn1PilJIfEAX50ieYE18QMwBV52rTXxAY+R2qblSfEAcyilW8FJ8QMZ0QKEIU3xAzlh6F4BTfEC6+nmxCVh8QIrTqXJQWHxA9wdI1A5ifEDUOotzKXF8QBMRPoBYmXxAPHssw7OefEBukiMQP6J8QJba7L4MpHxABFU9eMGyfED88+cNy9V8QFYdNAVY4nxA8u685xDjfEDerf9Oa+h8QP3eP5nG7XxAfGIPJRfyfECAcivnVPJ8QDU4hASo8nxAUWXfngACfUAy/Al/SwJ9QBCmLB1RBH1AnrdfVQESfUDnAJjVRBJ9QCJKvAmvG31Ae+SoRz8ifUDMqnXktCN9QOaFj9LfL31ArrjyWaAxfUCynIq2Jzh9QNJj7yuYjX1A5EZYDu+SfUDAi3+QS5h9QDse8xussn1AqBj5gXyzfUDqS4JcusJ9QGxCtoiR9X1A62jaZe8dfkAynUm6OB9+QF6PhX9HI35AlWp96pMofkCk8MTa8C1+QFQf6Xg/L35ActMLHMJLfkCcE3tcklV+QO9ePWrUb35A3BLC1j9zfkClfErBt3t+QLQbSCC9g35AIkEijZeKfkAy9aCGw4t+QFAiQlsVjn5AeA+lpcmTfkBsshe0yZt+QJPb/BmOsH5AMGFhsxe2fkB8xFhhKOB+QHUpC6RO435AVDvIxLvjfkCI49VT1+9+QJ/Gm7G99n5AKore6BgAf0DtAaPQlAN/QIbt4vbnEX9AnIZHvRAUf0DyJtqb7hl/QFmfjj3bIX9AYpVZH44sf0A/MTQ+uHF/QCmjYVSxgX9AnohJNKSDf0Ccv9RWYpF/QMjQs96ak39AlTAxyV6hf0DUVudbfah/QPCsd8NWsX9Aq1CTZc7Lf0CMzZm5kft/QCikDD7MAYBAnPrSWR0jgEDoMBYALi+AQBJA9a7oL4BAPpK0yOo3gEDuEJcw9UiAQOaRXX9zToBARFkGkOdQgECcpCquFFGAQMr4w5nNU4BAZt43W+dYgEAeBzDRDlmAQHhKmRBGWoBA+7jGOcVmgEBoCCoTc2mAQGznShnwbYBAnMk5EShvgEDEDokg9HGAQOl84V0ld4BAcUET9yd/gEASn0EnHo+AQB9uGlgel4BAETry8laggEAh4RydYaKAQGc1rdr6poBAJNOnq62ngEClkShahamAQCAu2YYTr4BAAnUYFxyxgEC50HeVSbiAQIRQf1U5voBAVCPYFv2/gEBMps53UsGAQBE/OEEByIBAJFWoRGPIgEDeQRJsU8mAQL4rwArZyYBAZIiiewjPgED5BZyhJdGAQGSQa3JM0YBAKHfLxGDRgECOq+sd1NGAQLKUaC9K2YBAiomPPXPZgEA6DwjlHtyAQL069F5E4YBAuMevTlnhgEBqP10s9+iAQLqb2A9F6YBAHUPABUzvgEAi6a+xPPOAQPjFTGg//4BAryDnwj8HgUB+XWBg9QyBQNqiVhz3DYFAopjEYT0PgUAeHwE8NxKBQKE6CuA+GoFAbkL6lDQfgUB+vx+nNSeBQGOxf18vKoFAoNdbdOUugUDuwPd2vjGBQFr+mXTyMYFAkgC57Ls5gUC8D8HWKT+BQJgjE68iQoFAlsZpxvJFgUBSCBdwYEiBQGRUHCPjSYFAoJSKwmhQgUByOzkyWFiBQFRSgeg4eoFA+sNLtWF/gUCECa74VY+BQFMSLnRVl4FAJBbcszOZgUA2j+goUp+BQJbFS83moYFAul2nOdamgUC+m+IObqiBQO3N6UeFqYFAaIU88+2pgUAGQtI5Sq+BQNTaaLBssIFAcBCLWku3gUAKCnaFTcaBQNg5fw+uyYFAIP8v8HzTgUDyb2Myj/KBQHWYVL/r+YFAFr97j+79gUBUlROjjwSCQKsH49cBCYJApLp/1tgYgkCoJYNt1SCCQGYyK5nRKIJAHuZM9v4tgkBgLwF/6TmCQHBXT72jP4JAtjec0SVEgkCzucGw0UaCQD2nCZzYUYJAsE9OpdxVgkDBpG5rz1mCQKh6PibiWYJAnILPuAVagkBW6lUDblyCQCtiiaCZZ4JAJnG4hWpogkAeiuaxf2mCQPJgR1NrbIJAjpCcBHtwgkD58zN5Q4mCQJtSWVlEkYJAjlGKGj2ZgkAex93mVZmCQCwQujQPoYJAlcHvRzuhgkAIrL/OC6mCQMtB6xc0qYJAflfUNkmpgkAKj4QlB7GCQGQuYoZ+2oJABCTjA4LegkAcKXn+guKCQJ1/93MD9oJANvRUXX8Qg0C602O+eRGDQD1d8kh6GYNAJBar4HIhg0CSEvDXiiGDQLJNBK8NJoNAdaOrCnIpg0CJsHu3ECqDQN44PCRHMINAphBKwGkxg0D+xOxGgjGDQFiCkG4cOYNAPofNpd45g0BuyMLU4T2DQHTwVavZQYNAqQ+HTt5Fg0Dx/U1GS3mDQEqVp1BqqYNA+9DJ8eetg0A2WYH07LGDQOvOKDrAwYNAj7iU9sPFg0CM0fjlk/iDQHlk8+kEEoRASjXzWncVhEC4lYTRBhaEQGmoZFpgKoRA+kSnYQEuhECW8F95Pi6EQEBGbMdiLoRA6TnJOnIyhECInU0LdTaEQMlCZ/UzToRAdI8K/DZShECwCrj+i16EQDrt1KGPYoRAPZpqev9ohEDawtmm/XCEQHhzEr74eIRAL3AN/1x5hEA+1P9dd3qEQPJgstlxooRAIkFIkB6lhEC9Uuc6zaeEQOy8gCd2qoRAsskZ6uWthEChUwvb6LGEQNKTG4BUsoRA6DPoheG1hEDg0oLGVraEQN4dD3rjuYRAIzsD31K+hECALk6eyM+EQBfdwFRq2YRACkluYmrhhEBCc0NNY+mEQADB+sU28YRA6S8XR2LxhEDm1sW2UfKEQGoMKbC/94RAYIqLQTb5hEBWz8wOWvmEQA4/NU4b/YRAVK+HDLwlhUAaudgywSmFQGogv3Y4MoVAzqaCD9NFhUD4HNuJ2EmFQPA9cF0BUoVA3AGYTANWhUDF4KZ9oGGFQHj1cX+gaYVADrT3IJhxhUCDTpBBtnOFQGrjXXeleIVAf17TT5l5hUC6FiCn/YqFQIpi50LYoYVAbY9fYd2lhUBcs05iR6aFQEK/DbbXqYVAHLJh58ENhkD2TISiuhWGQCApZ1b0RYZAgpaDN6JWhkAK10LMpVqGQArUEuURboZAGphnJZmShkBCd/jFnJaGQJ7gzIehmoZALD7nat6qhkARldEpX7KGQFgPWcdktoZArhr9gya5hkCxJL3mJMGGQDJxred9EodAN0+8ioAWh0BQOygThBqHQPbNE7WFHodANkqNuYUih0CAzIRRkSmHQKhczqaRMYdA6tSalIo5h0DeY2sR4j2HQCbh1yOKQYdABLQp9LNDh0BHGks/BJ6HQF7LaMAGoodAOMsCrgamh0BtKkOJA6qHQMbuayAFrodA9jwuIcexh0DOQQlaCbKHQIqhmTLHuYdAqEQu1cDBh0DiYIOLxMmHQGYOMXpwBohAuASeanQKiEBKC4F5dw6IQL4TsqVvEohAAgnfA48qiEDtZtpHky6IQBpYxGn2kYhAwuUngvqViEBM7ZKPdrKIQOoV9IZ6tohA1vxPinC+iEA= + 4jyZjTbDXEAoFld2zuNlQLaw0KihQmlAUC2kEJcSckCCGbBL/7F0QHI2pkEag3dA2G20UJcieUBg9KWeiLN+QKaJOqDDkYBA6kwzRzxag0CdaLrO+imEQBV3tUmIkoVALm07ZzzihkCoV1mF35qJQEy+91GUcopAOVzaHSFTjEDIhDgTTRuOQA== - + - pxDKRBHIhEVOGeREpAwlR2jloEX5XrNEPSJ0RAFlUUYEWIRFIq8LRztsXEQFG5pEj2baRL6XB0XU0oZFIGU0RTtMjkQfvVRFiHlnRIzBjEQRHIFEyguUREJf8ES/b4RE9cmARIIE9US/UlFFxV4jRw+Xl0TvFmlEUfPnRX8DiEUr1L1EXQEdRV8bjkR3H+9GeHqARBPHoESXNJNFH7GbRPKag0SwzKZE/SSwRGdwWUSULLxEqb+QRO1eiEVHnKxE9XMVRbmnqEQSdYhEpAa3RSnkbkRwOKpEAGfwRM8o4USvITNFlG9uRGqzikSW7MpEEHjkRBD7OEdT9IJEzdbKRAi7eUa3p2lE1ZrTRGwBoETd84FFno7aRhdTmET71UdFQJ/IRIC4YUTM2DtFf5M2R2PFw0RrOaFE6l1SRmqqaUR4kwBG4Q7hRevhckQzjIFFay8TRbI0RkSohFNFNULjRCZaTkS8C9JEHl2JRG0/dkUzveFEUIWGRB+tp0Q3uTRFcjGeRGV6SURiG2pF427uRMZm/UUUJ1lE3KqWRHLiDkUVNUdEuSvFRNmye0Th1ItER6HsRLxteEbECYBEGG9FRStHh0SlHppEW2yLRHa8pESamnlEBKacRIrXjUSmy4tEUKDPRr4Co0T/Oe1EozVTRSTvrUSpHPpEDuPvR/4AXUdOJUdFVr92RXltt0RSIThGJPuVRH07vURMpLRFztglRxbhU0QV22NEcm9wRfMJpUSDXEZFzzgiRaAdvEUNxFREeAOkRF+1okVIPdBEV4wER4WJBkWGVoREY6vJRMFs0UQmMCxFOIKFRPQts0QBb3FG8JfBRQmVGUUuRZ5FjerJRMcEqUQOcmhEuIicRG4QG0VOwpNEjySdRH4bv0QhFGxEOgCBRJ2BC0XPLGtEi6HERdvawkQAHqhEggUJRRFuZkYRSYpEswOoRDKKCEXlniVF9d78RVjXZkTw/yhFRr7ZR6HFZESToWxETTiqRsLjm0RZbNJEjhI8Rd2AmEST2p9Ewib6RMCXGUajkgVFsO6eRVVcNUZn4yBFbat1RGQaiUbdjKxEMr6FRLHapUWKftZEnHOCRGdecESD+txEpO7eRDzmpETi+6dEdLstRXJoUkagdgFGeUqsROc1sUTkEm9E+VExRmxWBEW2cAxF4HgTRXVvg0T2J6tFrP/tRZg+DUak6LRG73qWRHNvbkUchs5FfgZLRW54jkX2RopEP+dtRIrnO0Wdnw9GrvhtRnxSI0U/60ZF6aERRbc/l0RzpopFWGKRRC4otkTpGeBE9Oh6RMu4AkU7JxNFS8eNRZJovETXm2NE2ADCRIXMbkRZ0GZFH3WARBolUESBq7JE7JniRNPdw0QhgaZEjH1LRW4ZbkYrr+9E7EKRRKADakXJHcNEgdaORVWP60f4ewZFwPe6RjkMy0WBc2dE5jXERn8FhURbjapFZqiCRjYIlUQJnrlEFMDYREHSt0Q+g6lEpeFrRHcREEWNDG5FNC5zROT0gERRnGpEDa58RDb+VEStT41ErdfaRE6K20TZ5gZFABCQRO6JWkQGBepEEi6PRLmzd0RQr8tEy7Y2RQzyckQlDfxEytu1RONHcUTlznRElJoIRW2sY0R6lr1EeFWORAOPhkbe4RpGsgeiRZzix0XVMTJFWvTlRDR7E0UJ3EJFiQThRGbIk0QkG1NJIjatRU4IlEQeiGZEpa1YRXhnXkjjlipFsL+kRpt0p0SxLPREWuc3RkrniEV2KiBFqJVbRFJPEkWOeqZFNtL8RYF4gUTU8INE47S7RG2crEWFpoRF40nYRKE4okTN7ZREJOieROYKa0R8BnJEF2YJRpO3bUSmURBGoT6TRF4qq0XA44dFggSfRFVgp0TcWgZGX2qXRTGodUWwL2ZEQAiTRLTZ0kXCXRtFWwXfRK3LmUShpbZEe52mRMY+ZURs2a5EkPXpRzs3gUQnwX9E7+3qRiUFikT1eR9FhFprRBlfqUQSIKFE/FhXRA3Bc0S+87BF9ZbSRS39/kSxNAdGkbXGRWVeoERhEqJE1rHPRJ2EAkX4ClZEIB4QRa7C/ERMubtEAxnARvnVUEYxrzNFzJCNREsaD0W7TM9EDsogRWLk/UWV0i1G9rC2RcCmHUW5sptENBhrRJr3MEWE8GJEM1LMRIn4kEQ7qvBFRVcHRZEFt0SHYwhFvk4URV0UwESbu/NEc99PR6s53EamiYJFdHmVRZ3A3kRDM8dE/1GKRIGIbEQx73REDJoFRfeuCkXzK4FExXmWRY4S7ESmea1GRnSYRCKtSUaec4dFUE/ARWT/lESg+o9FqXu0RZgFVUSynBlFvjNhRSsfBkV0AgFG1Y/fRtbfkUQHMZ1G683jRGAFDUWN7aRF2GvRRJWMxERM9L9EQy2XRHYsXkS4XbRFSVIxRenRgkXUZPlEHsi6RM9l2kTft+NHWSWHRQEaiUX8L7BE1LdaRTRkuUa+DrBE1nIVRXHslkY5f95EVnmKRAqoQUWAk+RFJPXTRK9DBUUSEvtEIB0CRU5RbkRkFgZGgA2URcg1xkR6yJdFPSvPRAiOmUQ+sQlFyL09Ro30z0SQraZF1SrmRGVNikSZnZxE7k97RIMbe0Q2UZ5EzZR7RGvIkkhy/xBI1CDkRNGjI0cReaZEYpq6RQrGpET4f5JE97zfRPLBNUbSC2FEGemuRFxdgkSVRXRE1nsuRUeTvUQt5uRFAVPAREcCJkUenxVFn9FGRCTdkUWkn+FEcD7zRM3JMEZmNnNF31AwRYkZZEQNnw9FPeC0RA+NJ0YKtItFFYdORGNuhUTeS4ZEmxyORL7g20R5SGlEw+oqRYNonEYjUqxEDS6aRFaL2kXnHpBE1lFhRdR3JEXKoHNFwYMQRdcYCUUVeFpEVUcSRblwmUUo7cNE2+1TROYtckTN+ZdEt5ZnRHyTekRcqAVFrDikRNGqiUTnaEVEFxeJRFqwbUjfWHRE50ugRB0H5kfgdKREaOXBROWRr0TyAXBHmmI6RXn3bkREhV5GXpQORVmvkUSOwYBFxI2ZRCSP/0TI98dEUqAeRSMSpkR6D0dGfrd1RaVZkEQMipRECClRRVNf80WVhLFEWpJyRn0xi0VdNJBEPdrIRL1l0ET1H4VEgn1WRDqNE0WaD2FEYp2uRJeK+kXhRORE5vt9RDaxBEWCZu9E/J7FRB1WzUX8OgVFm7x8RE0QmEQS5BFFgj+9RPqGAUXU0XNEy6CWRBwXuUXnGKBESZ2YRMPKj0S/FbVEmNh6RC+YyUTm4ilFSMGwRG2ghkRmR4REoSRKRsW3f0WkIGFFk+xpRMpowEQMYotECtJ0RPgq/USUiIVG/6q8RX+rr0TLhBJFYWyWRCjPn0R/hIhEmXmzRCIPlUTwDF1E/LfNRH8MAkhr8XxHJBsGR2+sKEXA+rpFEawjRkJ+yEQS+GZF20DVRAfN3kQP1ypFZoIVRUMQikQPzZxE/+ayRDSI10fn91ZHPTHxRhiaMEVguAVF1PoNRj6Gr0S7AO9EbwQ/RTju00R0InREvPOyRnLdN0bzY4dF+iQnRaKfiUSUa1REtFr9RFnojkR6qYtFhjI/RR+UwkTMW/FEK4FxRPo9A0XxB+tEI37BRLa3kESoo09Ek+DDRFXuhESXiq9F7bZjReXjh0U7ePdENXDMRT70DkV5ALFEXkGBRAS3p0Q44LdFCrGLRXQFGkVenI1En07SRgesekb7qIdFVU5kRc5BLEW2/B5FUcxcRBWC6EQKdStHrVmmRnEKGEYNZlFFbg2ERTnaYEQhGbhEwXaqRG31g0RcNKNEwPgoRaHOOkSAM1NFdlagRKvvjUQWv2JFfNsoRQL+AEc4AUtGP/cCRhNGiESglL1Er9VRRVWQWEROsOtEZOGKRPYcc0THNoZEc3qWRAC+YERtDpNETDx4RZpMtUT7rN5EGnEmRqJop0VqfCBFwcBiRNNfzETrhopEmIobRUiVrUSV8idHLu0QR/FLMUaXS3hFjqjARBi2Q0Z+EcJFlGB+RQb6jkReYZZE0C+MRDXwnUcgk1ZH2Vi4RjYdC0ZBqTpFAyEDRvBa2kTJxJpFks9BRQAsvEQjk/BFPrK+Rd0fJUX29plExBGnRJFq9UQovYdFQgjERPxtGUU+PABF7oNVRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - JCanhG/BckAE2nmlp8JyQHowhmM7w3JAOFZ0/sbEckAYCrHmWsVyQJGuOqYByHJA0xchD1zNckDojw2iQ9JyQFQYOuN103JAHju3l83fckDmPciNu+ByQG5ZDftO4XJAoFj7ilLickADUwKDj+JyQBDyDmvK8XJAatDEBqP0ckAg3rzJw/9yQBSnYR/3AHNAEHK+GY0Bc0ClEVM/0AJzQJxPFu/6A3NAsNSEuQgSc0B7/IccvRJzQIbIfcMFFHNABWFj2fIXc0B4/OAofB9zQPh8tJmjIHNAlpNWbDkhc0Bo5Ld6ZyFzQJQifGLHInNA18hJlxEjc0DMwuJ0ziRzQCV55q1HMXNA3hihGFoxc0Co/JF2IDJzQO9hpsA5NHNA6op9irk/c0DCIysk40BzQN5Yc+x5QXNA4vGkca5Cc0DfDOsxaENzQOwPXWV7RHNARM/QJZhRc0BspV1UUFJzQGHT/jCkU3NAx9Y/w+RTc0AAGIprhlRzQCFPsW3+X3NAckGEbyFic0CxD8exOmNzQG0+T8IrbXNAkNXTHFByc0Bat1qVaHJzQNIFG9eFcnNAq20yqrdyc0B45SBTS3VzQO0iFY7fd3NASi7LRCp9c0DetH+NeYBzQJg+D8ujgHNAVUhOaw2Bc0A8OiZTYIJzQAI4ASMFg3NAaXNH0BCEc0ColE2niZBzQC4SNoVNknNA6VT3B86Tc0DmFMrMYZRzQFaIGTX3lHNA1s4Tf7igc0Cwvm8YWqJzQCxTWA3lonNA6IkfygWlc0CBX6e/0K5zQPcYfX3KsHNAnIqyLjaxc0BFFtUtuLNzQCLzw6AOtHNAx+QQYfjAc0D0jhDF0cJzQAirglEow3NADosu3tbRc0DyT/WCudJzQCJYzc4p03NAK4Ku7/bTc0DKkJm24tRzQHo4mxyn4HNAGjPV7jjhc0A7FZAHfeNzQC9oK1vw5HNAbhExCTf0c0DyZeB14gB0QAn5Xl55AXRAcKcZX6UBdECJNECnixF0QKXy0OhME3RATG+q4uETdECmSvtLuiF0QNxZnND0I3RAzNcWEBUzdEBuz0zs4jd0QB53pNa7OHRAaIyS1FRAdEC8LRdBqEJ0QLAy7pR5Q3RA0ONvLKhDdECkyvzBSE10QGj+ent4T3RA8MHq2j1SdEAi1KNi91R0QBwFvuiMVXRA6WzJWdxXdEBypTS5NV10QJd78Ou4YHRAcPMwpQlidEBkSPBHjmJ0QHwh8AoRZHRAWEWdCFFkdEDO1Dut52d0QN71BFMicHRA7lWtU0FxdEAOdLkCOnN0QDQMxOyldHRALi5spTZ1dEBOLeiLP4B0QLKsctxsgHRA5mdMcfmAdEByUi1TT4F0QKQ4scklg3RAXD/9wReQdEAl/iWFUJN0QIKnNvbvn3RAXBrhzKWgdEBucbrPzaB0QCoLkIc3oXRAJsp4E7uidEBkA1AcEaN0QAj2UEH7r3RAvi8ZGQywdEBFAv5tb7J0QNrnRJrKt3RA4mSA5xG9dEBKvc1r4L90QAr5gwnmwHRAxOgDOnfBdEA4js2v7MF0QIC8mTJtwnRApVVXQiLEdEBFQoN7ucR0QOzS4z/8znRA1nk6pN7TdEA+Q+Hx0tR0QHzV91i34HRA4hTOsyLhdEBm5qj/uOF0QAQxz95N5XRAIBkcU43zdECAoOoCpwB1QA92O3tlAXVAKhyIXBICdUCl7vcVXQJ1QGA5vSWZA3VAjveME6oDdUC8n07eaxJ1QDAbcpMjFHVAsDdL3J0idUCsAGdJzTV1QPKY1gEoRHVAd4BvLd1PdUAYOJzNEVB1QNpM8S2EUXVAxb3v0jVUdUBh+fPxdVV1QGJQGM8PYHVAeB/7hThhdUBs6EX+ZGN1QKIPn1pDZHVAL4vop3dydUDg8qD8jXR1QO7OxnJ5gXVAwibwEa6BdUBCkRC/E4N1QJalR9img3VAOW2jyJmEdUDdnqA7vJF1QOjqHOALk3VAJIZYObaTdUDM5vX1EZt1QGqNF+yToHVAMgLhE7mhdUCoQK8Uz8B1QOS7WwP5wXVABrqU20fNdUBSTkQEodJ1QCGokyzN03VAFMjkBuTfdUAlnGbmCOJ1QISmuPY45XVA2m9xrkvtdUDIYsvMpPJ1QAroKrry93VA3IdUd0gCdkCAo0A00AN2QB+6ZfvmBHZA2rOZP1USdkBk8JXkuBJ2QIxPyFJOFHZA8iQJXAwWdkCgetnChyJ2QOrEykyQJHZAooJmnEordkDk5sHfHzF2QNwIIfVSM3ZASL/KEZgzdkByS3ZcnzR2QNIWoyODQHZA9GM5cB1BdkCqdKuCdEJ2QB5Z/LbIQnZAdjHjIHpEdkCy0W3BylB2QKOV5METUXZA+Axq95RUdkBG8i4CzVR2QAxr6a+NYHZAyPxM51FjdkBo9c2homR2QEg7qQDbZHZA5a/fPVFrdkAC1Q84aYN2QBXnageSg3ZAbBT+0aKhdkCEWG8HPaJ2QA4Qfr3do3ZA3NAfRXOrdkD6PX14wrJ2QGxkvPB6s3ZAnPJsnuqzdkDWVScuDLR2QNA6VmRQwXZAWHqezxnEdkCWEVfCzc52QIZPCBiR83ZAvutSqzQCd0DSg9SQowN3QMQ8QzdRDXdABhimigESd0BWICQOkhJ3QHwE7LEOIndAoA+3zHMid0BNjuNfqC13QAx/rpM0M3dA1As+NKUzd0C7BjouDTV3QHou32MmPndA3466eZ1Bd0DQBgTB+0J3QNtq5XobRXdAj96F70pRd0DkuMbjklF3QIDp+jUpVXdA+p24v9Vad0CaNm7Hj2F3QLIuownUY3dACIi+Oidvd0DuBfU6RHF3QLivo+B3gndAbGuPVBuSd0Blspk4TZR3QJpttB8Js3dAwJtWWZq0d0AP+PPtLcN3QNo98IWJy3dAOJBjiungd0ALmLaVUvJ3QLBSPGtG/XdAZkIlH6ACeEBQ4vZoTwN4QGSgH3HpB3hAFvH8DW4ieEAXLiKrhyN4QAJivUnTI3hAO4o6sgtCeEBKR6edEUR4QGxQtD56RXhAmuvNCstReEB7pSSblFJ4QLupyywgVHhAvtSWQolVeECg/H7r61d4QOAUSU45XXhA3JFaTPpgeEASrsiut2F4QFaKF4IlYnhADuGvz7lieEDi0Zzki3R4QF1L6yi9dHhAZVj38tp0eED84tOupIF4QHgLrwCahHhA2jnPypaReEAa5GBNp5R4QIL2TpDysnhAyKuPTdSzeED8RjCA27t4QNDbCnvPwHhAaHDHqvbBeEBQLY084cN4QCza+tAIxXhAKPT40unLeECUW3QEuNR4QL/fCe9K83hAimO9cQH0eEC2LiaHjPV4QBf2cJWXBXlAihdSjNMheUDGDXrrtSJ5QCVqz+i7I3lAzLpdAfcjeUBxpoSLsyh5QMrTs3D8K3lAJEo+HQwueUDWArSqaTN5QIL1Cs62M3lAaOI4K+I4eUCm3wGj+0N5QIpjOrSUU3lAymU4YQhUeUBg5MV+zVR5QOBhExmcW3lA1tT9AKZjeUCwQ6oP22R5QBwb0opBc3lAEDj6gXKNeUBJz5ByzJJ5QOxKNx8mmHlAqkgOQcGyeUAcXKs4QtR5QKqWk9XN1XlAXjSgZlHkeUBwXl8xlvB5QIU+3pf4BXpAPj7VLww1ekDTynOoGkV6QONAQ2rQS3pAliHOUyhVekA4secs92t6QAS255s6bXpAlMi79YpyekCIjLqfAJR6QECh+kQInHpAoBZh0Ay2ekAr46/ULcN6QLCI8eb7w3pA6EM21xnGekCYRjSPDch6QCuYU89nzXpARtl5CsPSekCWfIVJZ+F6QJd/f2555HpAtagjczXuekCwdofMFvF6QHjp34dc8XpAKxxGQkrzekA3j+1FpPh6QJJ2YI/n/XpApKXxpgP+ekCLkkkoRAN7QD9BOxd9BHtAWtFmPioOe0B+FHeAcBF7QP4Qwq3EEntA/zvWWkwVe0BGDaiBHxh7QKADs+92HXtAoSzvrGUhe0B0zwq2JSR7QLePjUdYJXtAQDCU5cMze0D+FbJImEh7QIZzQweoU3tAxChqQ69be0BaPyMmFYJ7QAzAksdUkntAezjDkyKVe0B2HHlDz517QOQSZgUoo3tAXhat7HOoe0DEY2q+yq17QMaiFdx5xntA7tbBhCPce0B2Zbwj/ON7QA0HdtoZ83tAovob+27ze0C0X7pvjPV7QLonMPd1+HtAKCrIadoBfEDmNlip9QF8QCHtajxnBHxABWHPVJkFfEBMeX9TixF8QCSjyLXREXxAdCbZDukbfECU4fIs7yN8QBxOiYDlLXxAg0p4DT0zfECWEl1goDh8QNFp+oPNQXxABC+FQ1NIfEA8L+HpYU18QCoocpWqTXxAGw4V+9tRfEC+/zWjulJ8QK7ZFG/1UnxAhrNIpQlTfEDui4epe1N8QNypWS5NWHxADP+DxgNzfED0S/lZWZl8QA0FhBW0nnxAJdFJHD+ifECo+ZGECqR8QGuhToL9pHxAwGrqTr6yfEAM6QCEErZ8QCRZhOxX4nxABW0jFhHjfECeYdpsu+N8QId9Y65r6HxAMN8TgLLtfECE5EMDF/J8QFJ2jWBV8nxA0PLLpqnyfEDcR5M7AwJ9QChoYDVMAn1A7ou8wlAEfUB21bRdRhJ9QCXCrjquG31A3Gts3zwifUDqdZexsyN9QLziEe2SJn1AKkwE758xfUBaEg+zhTp9QPj7BqCVjX1AsknBm/CSfUBjDStrkJR9QCOYf5w+mH1ASuX/8aqyfUCUYsi058R9QElePdLW4n1AUKu8IY/1fUAdF4x97x1+QIx9yiI5H35A5oQDaEgjfkC8drh4oyh+QIQsgTzsLX5AJjY4xkI/fkDA07Lmvkt+QDBSxaaNVX5AlxdXdLd7fkAeJFtBM35+QKYPtEO9g35AhXwIaB+GfkBOS/x4Aod+QELzeZ/Di35AlBn0y8mTfkCs+yCn0Jt+QHweSD2TsH5AE56Dwre0fkAiHMFT29J+QFk8owkZ3n5AbTf28yfgfkCTYGO8T/R+QEJnNWMUAH9ALpV1fJUDf0DvpdXC5xF/QOa2jITvGX9AYL6RD9ohf0C8Bk005il/QPLEuW2YW39AFmIg9bZxf0DTJYITqYN/QAt3+kBjkX9AnNjEI66Rf0BcU38emJN/QGI245RdoX9A8IddcVaxf0Cykvvikvt/QHpo/dPMAYBA3Pwew6oCgECOGkNq0gWAQHaEsunLMYBAGuXRJkQygEAeawLrnkKAQAjcUqb1SIBAbtK2G+dQgEDXpps+E1GAQGb4GaLrVYBA8uA/au1YgEAqokbKDlmAQLSe3gQhWYBAfHWcHkdagED2IGA1S16AQKXFlKbhYIBAllgNOQxhgECFIMc6D2aAQM6oyRrGZoBAVgpnVXJpgEB+YUbmE2yAQL+IpSLxbYBAeCMVLyhvgECcNaBY9HGAQMbOTvgmf4BAUlNOEh6PgEDwLl/YAKKAQDW2dRBiooBAO3lhnYepgECzMmvcEq+AQFwCNTW1r4BA1sSMnuW5gECm8H7MBbqAQLOP9/GXuoBAsjQPEbO8gED9Nh1BYr+AQD5vWm1SwYBAxpeF827BgECVwxtsRcaAQJJcOqRTyYBAxS9ULwfPgEAhdHKnLdGAQDdYM5FM0YBAWAe9V2LRgEAqQnwCS9mAQAzbQIpz2YBAIkq8MR/cgEDr83ySROGAQHo85Ryt5IBApM2c8vbogEC4+Ou+S++AQIhhW5U984BAztuSWGf6gEBuoTDXP/+AQHXfURVAB4FAQg4KLmgJgUB+t0a/Pg+BQOLsXyM3EoFAoC1/GT8agUBeBoSyNB+BQESVqOIzJ4FA6AEhrvMtgUDSBj1tvDGBQLsF3dQpP4FA0bPcuyJCgUCGnsLrYEiBQPB9dd7zSYFA5LdVuOdNgUBw3j4MW1iBQBu5TNc5eoFA9mGGXlWPgUACLfS4UZ+BQOP4DwTnoYFA+KvT9myogUC1RUymhKmBQJaBEd5Jr4FAOP8NCAqygUCecILvSbeBQHULqhCvyYFArZrEYOTJgUBiMsU7sM2BQBvOcZjGzYFArK1hyX7TgUBaOg+N+PGBQHe6gRSN8oFAUhvzbu35gUBFn9G68P2BQDzK7vwDCYJAkibBU9gYgkCSCi+P1yCCQDRTdLHPKIJAm0CvOqUwgkAod/ct0TCCQBTl43jmOYJAOAXUyvk5gkCOT4A1JUSCQMzbHft8UIJA535BithRgkDmFWYj3FWCQHNRznnOWYJAEAejN+NZgkDkBgr11F2CQGgmKHJ/aYJA3DBFwfBpgkAcvEo2BGqCQIYNUbg4hYJAi3+DSEOJgkA2VsKzQ5GCQDLNZhKQl4JAwPud8DyZgkBWaBXcVpmCQC7K1d0OoYJAjh9JODqhgkB8u103DKmCQIT4sC40qYJAlP3ABQixgkA0mJI1ftqCQJSb1KuC3oJA2oMGdj4Bg0BQouiBeRGDQP9py0x6GYNA2heSHnMhg0BC5uxViyGDQIj9lHgPJoNASq5XgHIpg0D3R4IKRjCDQGSzUcZqMYNA/PE6r945g0C8bIHU4T2DQNAo5QHkQYNAOTRB/9pFg0AI+9eWEGKDQGTb/cwUZoNAeBJ4BH58g0CCVnlS5IGDQOZGEa2PqINAytL6677Bg0DY/+4ewsWDQGIBjKPJ6YNA5jvFvNztg0CuKqMSBBKEQGxRVlgFFoRAvf3KqV0qhECjfWKdzy2EQEBC7xtkLoRAGZ2XHHIyhEDQllRmcjaEQHgaf/sLSoRAYt9HVzROhEAIYSdjN1KEQJALBDA8VoRAufFIhf9ohED+QgZq/3CEQNBfOifJd4RAEhgPNPl4hEBE8k47bZmEQJYmVX1wooRATFtjmh6lhEA5jZUpyqeEQFCPbqN8qoRAG59V6eWthEC1zKTn6bGEQPj1wLlUsoRAFL1dG+G1hECxkyt7U7aEQC7+x3PouYRAjrC7f1u6hEAya1Vuxs+EQOkuwBpq2YRAgN866GnhhECWMSAiY+mEQAArzxk28YRAMsWtPGDxhEB2IPVxZ/iEQFMoBzI0+YRA8oNYW1v5hEDB4BhzLgGFQP5FHqsvCYVAQ3MYqrslhUC9yqsUvymFQNbuzJ2+LYVArH9xmzYyhUB8XA5HOzaFQDa7XvbVSYVAiEhgTAFShUCI9zv3BFaFQB4yZ38KWoVAXK2if6BhhUCCYBFloGmFQI+p4GyZcYVAkEF9ebJzhUDybfpcpXiFQJKe+4ObeYVA9YbVl9mhhUDUwaBi3KWFQBUFEYgpDoZAHL5edcUQhkDRADVJolaGQIeG2AWjWoZAohSzCBVyhkAINZuymJKGQDyjxwqfloZAxI3OjJ+ahkCQqxmJXa6GQAQvab1fsoZA8k16LSi5hkDg6e8pV+6GQMymwipf8oZAIEDXl30Sh0Bo+zuOgBaHQKQF6oyCGodARGA4H4keh0DkG65lkSmHQMY0NNaRMYdAbFq27os5h0DBy3wHikGHQCgdQjIEnodAsLcnngaih0BCMuFNBKaHQB9Z1tAGqodAxFSUzwWuh0C42Egjx7GHQOmXHlMIsodAXeheqse5h0ByYeNiwMGHQDWmApfByYdAjij88XAGiECgKPyqcgqIQL8jLcB2DohAGuB2rI4qiEBCwWHEji6IQOCYgYj3kYhAci1bT/2ViEAS05eLx6uIQC+xS6t2sohABZ8kks6ziEDiHhwPebaIQEnz7bjUu4hA + NrgMGZxjYkA1uAwZnGNrQBu6YmAmQ3BAPWWIPVEic0CjQFSuF9R4QMXreYtCs3tAxUlW35pEfkANTy1ymVqBQOIkq29NYoFA - + - eDywRdPRKEfQAmdFN2RlRL/gpEQh0UlGBwYXRb97BEduwI5Ean8bRQ/CuERFWJJEn692RcQwk0WacHJFOTOaRKC+3kRM6bBEIzmIRGpd2UTaBxRHWx6xRNzPgkaDbZBFPtOARJEG10RUH85EZ4/QRsijoURLAZNEBVKJRO06qkVGsOpEY4lqRDjDfEQRvXBEA3uDRLIv3UQdCbRFkjqIRH/kCUW5nx9G7spbRMnkbUQt1WlF5UCCRB/1wETp8HNE0liHRPISEkXZkjlHVNTPRBe8CEXC87hGMFyBRLo0CUWNUpJFUzsBRXTN+karPwJFB0wsRbJc1ETnmGdEVKWCRCUvF0UKHGBH5jeDRCpbrUQlDFZG19obRiEHAUYkXk9FOqwCRX/YrUS9pJtEKw6PRF51PUWBtyJFJBGqRG54kkX82AlFTqYYRduIk0TYLUpE+hqJRHV5ZEVs1rFEfLLYRZ0oCkV1eplE9AarROKpD0XIk2RGKzqsRIBGuUQvWDVFoPeiROIzAEVNEnNE9AKeRD5q+UT/bapEOimCRIpTh0SYyohEaeKmRQRk8ESSmlpEN2i0RBGJq0TzCcVE4MhFSCgN3EfXDWhFG1QwRfbg/kag04ZEHJ9qRHWtb0XTybRFk6hHR2y3P0X8f1BEvV2NRM29cEQRpGNEBLElRddM2EXtHrVE7BmXRU8ajkSWu6FGCHGxRAHcxUT7xoJEUzbhRBVVEEX3g65EA8qwRNFKY0aYgchF33+6RG3y4ERl3MBEY8mZRLCJjkSJenxEPVaGRNq6EkVJV59EKA5kRNt/g0SsOZZEbFOPRDUcx0Q+l4BE+UmnRUTqdkTp9s5EGL5lRH2bOUbgHolEhozPRPtqpURaYTJFH1O8RQ4AAUXTXn9I9ZOPRGNuu0QYP51E74NOR1sc0kT22cNEgZbtRC76tUTzBVVFE5wKRT7RHEaEauZEDz7URQVvckTLNCtG5L2xRHJBZ0QmkIdGN+rGRAkIj0XHhYhE32qVREKdj0RfWuRE2TmtRHr7d0SBkNtEBAupRCVyZ0RpWHlEQudCRlA8zkVKrPJEO/IURnHcF0VoNZ9EJxjeRMwWmUSf24NEUVjwREqghkVX4wxGGtUfRkrvu0bGtV5FMhp1RPLz3UTjsZFEIqWmRdwNqEQ7ngxFmiQ+RRIjk0QqCx1FvTq+RtWMVEZ7aXBE0CNzRHoMQ0Vp7TlFIwQLReYDlURgnBNFBaxpRNizd0SnOuNFE+YARTqZyURB8E5F6fmbRKyWXUX36GNENiqPRJiFQUV9lipF5Gm9RLw5kURjkfJEnO6ZRngvvESaTD1F5dLeRFwgZ0T03ZdExLlmRZyP/Ud1grxEyEmsRtGLJEXXfe1GvS2GRQArdUYaS9dEHiuMRWbQ6UTeQQJFovEfRR1rT0QGDYZEj3GNRKFzukSW0YdEyHJpRHWi+0SOP55Ee7NmRNIC2USykIdGA57rRaxydUR6/iRFnIRgRV+p5kQOVYJE11C/RD7TX0aq9lZGIv25RRLTu0U29CVFALg+RRj+H0Vg+FNER8IWRfMAckWm0XhEexbVRMULVEnNSghFK3LCRLMLUUX/iGNIeUslRQxKnUa3ZJ1ETTsqSJHJkEcGCtJEnBTxROYkNkaZtolESQcYRc6V40SNgbVEeQKHRagw7UXNiblEIrMERQ7KUUSClRpFT+BURa/Nl0UqlX5ERBhNRRVbrkQCEYREho86Rctp70XjultGslSbRBJUlEUhZalFo++YRCsFdkTblp9EBqcERpVMY0UjxgJFuxBmRQsg5UVm4btEDzARRXctmUTtWvlEy37kR+U87EZktctEUrdFRXScEEUGCIJEClVnREDEQkXhWYpEc0b1RZ3MXETizqpFr2ySRGJDD0bK0i1FEemIRIumEUVvLIFELzHCRAG1zEQrc7dEJmW7RkuxZUZ7Y4FEwbefRC5+r0R92wdFOS/hRDzLJ0VNjb5FdWksRqyf/kRzM45EtdayRKthmEQKhi9FMyGiRIxMDEVtg/ZFnUQwRYhE0ETiLYhEeTK1RMaPPUeA5sZGTn+ORazB3ESDJ35E93iyRP9+k0R3HdFEiB3tRA9PuUbF855EjOk0RlCgAEVLuJdF73ysRQ2AoERfjJlFixKTRZhCrERPSC9F8GGfRAKamUTpN8pFJVUNRzkcyUTC3Y5GdsfYRJdUZ0QU5oJFBz5mRcrymUS5xBpF7NvtRGdtlEX6J0RFDIOfRbERxkQbPHBEvkH8RM0QWkQ4X/xH7cnwRXrYfkQD+55FgWmVRGV8BkX9MetGeb6ERBVLCEXKt75GLfrbRAnnVkV5QItFujq6RPLoG0UE0n1E4Y7IRJgYdkQLMd5FQUaqRR94jETM4rtEb/2HRdyPokTdYmdE1CY4RVy0X0ZDu4dELwX2Rem6eUW5rqtEf6GWRMusiURpk5tE2m1fSClEZURJsttHhTSTRAZ9lETY2NlGhn7ZRQK6ekTnCJdE+W2oRHt1hkSPwpdEmhzaRb4Lo0SNefpEW2HTRMd/rEagjthFRowqRXce2kQ5loNE/12YRXgrrES+6iBGemSJRFxMZkXz9z9FR4M7ReBkZ0Y6551FVuysROC+3USQlG5EUWqMRFAkdkRUcO9E9uxFRZ8PVkZik2VEz0uRRBgJtkUHMr1E6F6dRLaUhEQNL4NEvT6LRBSah0QeuINFTHoMRTRAxUT2+y1Fh1MHRbmD2ESNEMFE67n0RVQElUS90nxEu5HVRKOsykTE2MtEV991RMtTNEUeQXZEWhQVRZMZgERIuaBIq+8BRYyTeETR8B9ILq4XRbrNp0QlfJpHIQs/RRfplkaYC6pEfCJtRJkinEUPdnFEcSfSROshx0S4qRxF0yV2ROvwO0YEAktFgxKLRJcSMEVx0rdFcwqGRDffWkagnwRFWZwQReeR4URGJOdEuregRJu0dEUKIp9ElWqLRPLc3kTOHsJElsHJRXNIwkQZwjFFO6jCRH4sjETrwpVFo3+HRAl8yUQn0rFEQPKNRH2BiUS6Xo9E5f2hRIJwvkTGCqpEEWK+RdMIfUXPa8xEC+43RhvTjUWkAAJFR+SfRANggUSL+7RENnhRRIm9s0Sdcr9EjYgNRxzOT0YjhyhFqdBbRfO6nURfh+VEGzVNRDtrlUQHmlxEEpkBSA7lZ0fgsYtEJcseRxf580Tz6O9FYHMORjtD8kTMIyRFm8LoREACzUR80n1E9vNrRAmKG0hji5xH8FgcR0xtSUXPesVEh69DRuBVDUWKiD1F/PTWRibBT0bleUpFZ9bpROjyAkWZsARFLf1oRL4unUSjSGBEc+0iRWjnAUUuK4dERjlORDrFCEWLw6pEZ+6oRJq6mUQ7e4FELmz/RNOkj0R6qq9E6U3URSGTYkWSn6JE5T7aRQgXzkQRpZhEqSnzRC3FpEQ3EMJF0kHrRd4j+URKV45EZyqKRjTjFkbTfmFFPnx6RWW5sURqAsNEWOG1RGU1+0Sn1B1HbA+MRvQFVUbFbqNFpAhSRbXWgEQCUc5EbtjWREJEw0R5aINEKvRmRRu+IEVsIJVE7oslRQLes0S5ZJBEPrsyRoBBk0UwAuFEbLMuRw0blUav0kBG1o/hRIui/USgh3VF8weNRLSDkESFU1pEFjVWRMfOJ0VWlA9FJhepREKtn0Ue2iBFy1i9RDJf0kUp4oZFZPDwRFt8g0SNIKFEOHvuRqXymkaxShtGAVoTRYpEREb6i9JFLlZORUlCB0XMLY5H3Xg9R6+RlEaEAx9GBx0TRVACOEZ3U4NEfleSRbU3iEWnAOlEf6u3RZQMV0URwwZFFD4NRSwHaURI+LdELHIRRaOdakZhsQdFH5OxRftfQEUFKcFE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - VNcUT3rAckAo/phMb8FyQOBP8RinwnJAOotNZTrDckDOguA+AchyQFKI705bzXJAny5NeUPSckDEbP5mpNJyQGAYzqrO33JAfLz2eLjgckBSgCuOUOJyQMoeB76P4nJAI9pUzMnxckCn1eiKtfNyQI59Ne/PAnNA3leAs/oDc0BMxXiMCBJzQC7XbA69EnNAXAUN6wUUc0DuiVMHeR9zQPEf48WjIHNAJdQM+Tghc0Bpyz+/yiJzQJzDlDIPI3NABDvgB88kc0B7Yd15RDFzQKqpca1XMXNA8cwIaw0zc0BmWWZid0FzQHrSdia5QnNANJXFCGtDc0AJiVdMekRzQAyT3wijU3NAilM8G45gc0AsPiKkOWNzQALMEfIrbXNADhO0W2hyc0BbggKnhXJzQHBhF4FLdXNA5h/Jx2p2c0AFilpFz3dzQN4Ww87fd3NAOhefDyt9c0B4ddvAeIBzQFS7WIMNgXNA7PcNYF2Cc0DoJBLLhpBzQNS3VURNknNAmgSfMGSUc0C+huKY95RzQPRBqsS3oHNA0hoMTVqic0CNxZqJ5aJzQPs0z2wFpXNAHJRmzTOxc0CW9/0EuLNzQKSj9cYOtHNAApXkWfvAc0B4Q60E0MJzQB3bybspw3NAlFwx19fRc0Asftzn4tRzQNBjFICi4HNAu4ndkDjhc0Dsc91wZOFzQL7YLXZ743NAtcGqEDj0c0B0usC3y/dzQFWhcYjkAHRAXriFyXgBdEC24o/FpgF0QBaSSA0MEXRAUv0lAEwTdEBCqCDiuCF0QOqQgWhdM3RAO7CF1OE3dEBY28M1PT10QC8Y5OymQnRAQgMRgElNdEBxCWlPXk90QFMkcxSOVXRAg3/kAdxXdEAWAsoaNV10QKw1NfW3YHRA6O3ShAhidEDjP9ORjmJ0QPg4FFVPZHRAPpY+R+hndECgq0DQIXB0QKYtBUVBcXRAZCkvyTlzdEDKyNmu94B0QBav62lOgXRAyioUgyWDdEDYRgzKFZB0QKz35cLvn3RAweGfWtCgdEDuh1vruaJ0QHyvOQIPo3RA7hGOKfuvdEBvp8O4b7J0QJpQhiPKt3RAdPzb6N2/dEBgNdyOd8F0QG602x25xHRAg7BlS83UdEBUvBp6JOF0QP7TOP234XRA/vE0wYzzdECYvWa+zAB1QNfss8JdAnVAvA9yKqYDdUAMm4iRaRJ1QMZXZrEiFHVAwqZNTZ0idUDsWYQjrDJ1QDgSua3LNXVA4CCriidEdUBummxSCFB1QDRdZO6BUXVAO6a2wh1UdUDb3xueNVR1QFoB1il3VXVA9ZQUrBFgdUA/HuxzOWF1QD6Y43xEZHVAjPVIIndydUDYZ9tAjXR1QJgCANZ3gXVAtAamyK2BdUD4ZEexpYN1QP0KsJmahHVAFM9wRAuTdUBt5UC5a5N1QASpzJISm3VAH+JJl/jBdUAuzbb6R811QEtmJ/wH4nVA9OWWjkztdUDpU9pdpfJ1QMDfAgQD+HVA8AQBaUgCdkDegYzfVRJ2QJ4HF05MFHZAWkFC64gidkCSC4GFjyR2QBTGmFxKK3ZAvGfVbh8xdkDsIpRKUjN2QBZW+aIcQXZA8ddOMclCdkA6yW2aeUR2QK7iQWcSUXZAmvupx5RUdkCjDwLXzFR2QNYtmXFRY3ZAAKy2oaFkdkD4qHi5Umt2QNY+reOQg3ZAJJomRN2jdkBEzkmMwrJ2QLw28Yd4s3ZAGE+B2euzdkCif+DDDLR2QGoT1s9zwHZANHjFz87OdkCGH4UoceN2QFTF1EiT83ZAzoHuZTMCd0CZ0Y94Ug13QK5ail0BEndAdotb+Y8Sd0Ayx8PfpxJ3QL5F2n/qF3dAjjDFDg8id0DHnUnSpTN3QKzf5UgNNXdALCmr6JxBd0CyYEhIG0V3QG65xL1KUXdA5g/KX5JRd0BeX9vg1Fp3QByLSp6PYXdAkCPnedxid0BcLSP002N3QNXiFJYob3dAZhILo3mCd0DCfgbsDJJ3QIwds39MlHdAPC965C3Dd0A+7q7By913QI4z3ZNG/XdARPTMVaACeEB1+TCz5gd4QMc3n6f+B3hANcf7MW0ieEAmm07otiN4QPFpS7VnO3hAqVULSxJEeED5HXjJe0V4QAfWI2jKUXhA/FRKqZVSeEC6+nlhIFR4QCORlW+IVXhAfETm9+xXeEBE0cTy+mB4QPQWoum2YXhAkuVEKox0eEC/MdEKpYF4QOS+H32ahHhA8FvYjpqReEAq2U/mqJR4QA62XdWis3hA8/oK3tOzeECyjWSetbt4QCKInWjZu3hA1OaHIBO8eED8gEDuy8B4QBr1qDDgw3hAj6XmsufLeECkMZk/tdR4QAjK+b8B9HhAlhZ0cov1eEA6M2mQ0iF5QACc6Uy6I3lARCn6XPQjeUDI7CNZsCh5QPzE8C0MLnlAOJga2eA4eUBCD2/x+kN5QBEGEimUU3lA0Pv8lApUeUDguoHzylR5QGIHA7ObW3lAAP/ulHGNeUDMM/uay5J5QIn+YXRtnXlA23qg9sCyeUCyIX8aQdR5QEq9kERQ5HlAdGpnTgw1ekA0DzhCGkV6QHjs+O7OS3pACjfjNCZVekAAeGldI1t6QG6clVj4a3pAMpiuGACUekBGgDAeB5x6QHaE8PQMtnpA+oRfvg+3ekCOMbhN+8N6QAHNcpQbxnpAUWIFVg3IekAFXH+JZc16QHmYmvpo4XpAQNLoXTTuekD/FNeRYPF6QATYc9dJ83pAttszJKP4ekB2dzAUAv56QEKY/fF8BHtAeg1WXSsOe0AmbXyzcBF7QLDJJiDEEntAknDPekwVe0A8pJZ2HRh7QKwiYhx8HXtAilqtn1kle0DqOrJFxjN7QPI+PH5wUntAnMjUIadTe0BOMdPQsFt7QNhZgmkKZHtAOgmL3xGCe0BCHZuCI5V7QHKVCrfOnXtAS8wvMiije0B1Xpk5g6h7QKPuwVXPrXtA61ebwFy7e0CWk56kIdx7QKIdL2kq5HtAvhkn9Bnze0AYPkZvbvN7QOf+yUWM9XtA4GRIz9gBfEB0LR7rZAR8QLQUfmqZBXxA+nyLoYwRfED2iNj20xF8QEiNisPmG3xAdmt5eesjfEAqOn9Y5S18QHL46nU+M3xAwstr1sxBfEBwYQ4NUkh8QCQJEMNgTXxAZvXRz6pNfEBWuYmk2lF8QHX9JrbvUnxA8GKBpwpTfED++eLnUFh8QKDSu8NZmXxANNQJZ7OefEBUOiuvPaJ8QD4gE+0LpHxAVOp94o6lfEDEJybYwrJ8QHvarLBX4nxAa2gZfRDjfECuGIjza+h8QCrd0v2d7HxA+hiCaMjtfEAiwQRTFvJ8QCgWdUFU8nxANN7K+3LyfEBavB01AgJ9QKJkN0NLAn1AQCr2dUYSfUD0uoY7rxt9QER57iM+In1ADBX4KLgjfUB/pCZnlo19QHRZCLbwkn1A9IlfDzyYfUAEAyXCqrJ9QNdWjPWQ9X1AWE1HwO4dfkBmyMEtSCN+QN+JC5GhKH5AIjeOzCw/fkAKas+PjlV+QGp7o9U8c35A/L3Od7d7fkBcBUFEvYN+QAwOndfDi35A2ufMYciTfkA4weWoJ+B+QAWf/ecWAH9AO2+fo5MDf0COcCkD6BF/QBxWSYXuGX9AiuRcGt0hf0CubEiK5Sl/QFZAW7i2cX9AMl/grXFzf0CcWHukoXR/QHQOTeqhg39A/qIe/GGRf0AsA7IJnZN/QHYyLXheoX9AJLoTrlSxf0CMdhz+kft/QFgyDgvNAYBAfgnOCe5IgEAU/sPe5lCAQETr5M4SUYBAZs7wlOZYgECA1hAkDlmAQHrWbldJWoBAIF6Yv8RmgEAN1Zvc722AQBEyAm0ob4BAjv7kFvNxgECCdBLkHY+AQC2qF04CooBAdkFTM6+kgEC4Zn4se6WAQE+97lyIqYBA8J3mhhSvgECb2rPuw7SAQB0tyS0GuoBA+JbfObO8gECJRtKPYL+AQDoThExSwYBARz2GalPJgEB6xSFFTNGAQGbg3C1g0YBAPHaZMUvZgED09yKQctmAQMWFkG1E4YBAmPvhjfbogEAYVYGHSe+AQM4SCfg884BAavKmGWf6gECM5IOCP/+AQApJYkA/B4FAMpsPqWgJgUA+FVcTPQ+BQOI54QE3EoFAWUK7ZjQfgUD41p+7NSeBQI4o1Zq8MYFAsSL2kyg/gUDluXJkA1qBQFFDkeo3eoFAb0Sx3FWPgUA8kHjLVpeBQPqVmgvnoYFAHmt1akqvgUAFZDn85MmBQBecB//nzYFA3OThuMfpgUCmVY6i7PmBQMkGSE7v/YFAjpeyjgIJgkCmcFJUjQqCQDJEbkHYGIJA2JnSVNcggkCMaeKO0CiCQFyuaITYUYJAVqYa9dtVgkAQ93NI4FmCQPl1s7GtW4JARUKzwtRdgkAHx72G32aCQJi1Zl4qbIJAWP86i9aCgkBHVCM4Q4mCQKjcLnlDkYJA3IbOlTyZgkB+4tAjD6GCQFbALes5oYJAht5Q8w2pgkDV2jgHM6mCQIo6aAp/2oJAOQH9/vH1gkDxE02br/mCQID8pFd5EYNAVbqrKnoZg0BA7datciGDQKA8Z3lxKYNAklwOBREqg0Bq+cABRjCDQP40bg5qMYNAAuokr905g0Dkk7SR4T2DQMYlyNrkQYNAT3m6d9xFg0AaER6+D2KDQHs3WCYVZoNAZ/n7m+WBg0AlFIMHAhKEQDoOr71dKoRAnLTTcP8thEBQCznrcTKEQFlabGIzToRA0gdj5jZShEAk+1v5/miEQL51yG7/cIRAPpjZ3/h4hEA47AX8caKEQG9xuRwgpYRAfcLVEM6nhEBQfq6X5q2EQAD+sProsYRADQ4boVOyhEBEXAS44LWEQLQlPA9YtoRALrjHXuS5hEBKPaIVGM2EQLSlPA9q2YRAYrMoL2rhhECwocPAYumEQKTSmt418YRAXq02sWPxhEBFwCTxvveEQOijKdM2+YRAkyX+8Vz5hEAWKIwjLwGFQCJK6b28JYVAfC6Ki70phUDkj6XuNjKFQCHlGWMBUoVAr0EGOQRWhUAxfj7cCFqFQD2RlRMBXoVAzqaOhaBhhUBOYBiGoGmFQFT6SbKYcYVA3RfDNrVzhUDaT+YFmHmFQCUbOWSQgYVAWqNIcqJWhkAEaHWNpVqGQOiZ/hGZkoZACm8+mJyWhkBjkRnrXK6GQD5gc/pfsoZA/h7KEv21hkAlaGMVY7aGQCo+vmwluYZA/yOnN1juhkAhrFs5fRKHQHpvkd2AFodAwjaZF4Yah0B/dSkUhx6HQOgiLB6RKYdAdP4nqZExh0AQS0R6izmHQCzRjoWIQYdA4uw17gOeh0Dgfo7+BqKHQOJs/hMHpodAhtQISQSqh0BjJBKUBK6HQIrQZRLHsYdAvoStF8e5h0AfJ/d5v8GHQMRwsepwBohAVghXG3QKiECpV9txcg6IQD73zkq4OYhAbpR6pfWRiEDKeoRAx6uIQDaI2112sohAluUGwM6ziECOH0JQeLaIQDtW7MvUu4hAMgt/ftzDiEA= + NrgMGZxjYkBImCMySWRuQBu6YmAmQ3BAX26KbtRSdkDiFPeZPnR5QP9ls4SWBH1AX8xmwixkfUCSk/19ooqCQPpt/BOYyoNAvb1/gO7ChEAlmH4W5AKGQIfFSDNw24lAuHgiUjsLikBHoYBHZ9OLQIf0Nl0cZI1AVWclsvk1kEDSovkjOnqQQNV+HMdP+pFAHJPLwWV+kkA= - + - gHOwRF88o0W3+CdHDE1xRV5OS0YWEYdFhoYXR6ool0SoRvNEx7j8RCOsfEUuw45Fr0FkRbQlrURHm0JFxMUFR4zW0kQihHRGZCqBRUtz5kRNTe1ENK/MRipb70RXmAlFQA6lReEopETaP9dEPzWfRG9cW0VK+59Ec2eRRQruD0YkvZlFmTinREeK40TFXVxHGyrLRELztEbW8AxF7FWdRI3IYkVDqiNF5CTJRP531EZQ78hEF5YeRQAe7kT5+z9HGdjpRLOVcEbdFv9F+ivzRYg4rkVN9DpFRPHMRFk7QEXaS9REs6KsRGKNqUXgIbhEUcMVRdCmc0UaVuREA7P1RRWJi0SJTjZF1MQNRVQgHEWuGSFF/GiGRtp7ykRq09lEnMkxRf1UMEWl1NpEaGpPReVXtESP5K5EIf2tRJrCuUQUqrRExYNHSOSI0kdAoaBFwXkBRYrF40bzE5lEPyaKRSdTokUKETFH5zSlRdzRSEVVftxF4BfXRNlLhkX5+nJGqpYBRfzQukR8pQ5F1B+7RAzcgEb3z6VFTOMJRdfA0UQJw8ZE+wKWRPXAokSWiLlEOECsRcYVokTo6E5GP8mxRKnA1UTGQR9F2WK5RXlEvESJDjBF2nfZSMIDyUQJdvdEqx1FRTgTtEe9arZEdkTJREC1tETU2qlFdBAERbek+0XryOxEWtasRShhGEZIt+tE7LZ7RuAR7ETI9Z5FWksGRYxK0kQU195EqvKIRipmvEWmVqBEevMhRs+Aw0Qg9cdEmMd1RQkF4UWHDy9GM6u9RpclKUW/7o5FHQk3RfcvP0XEVzdFo94gRwjiGkb5XxpFSr3TRQJnGUUin2xFKtw9Ro6Z5URoZztFsosQRQK2VEViiKJEKRplRROVs0QPAgNFvNEDRRdTJEX9qYtGkMsrRatZAUUGvaFEkqNNRRUuhUUgMNxHoyarRquAxEaFnopFJEteRmAAsUWLUSFFVBK2RA+0C0Uf1ThFEYK+RDKtpERgFq1E6bu2RPt1x0SNvBNHfTaURvgXOUWnFzVFV8WCRSu9CUW2mPJEcDNgRib8J0ZZuYpFjgnLRa1cDkUIxRRFFS/4RBUI80Te7gdFq74sSVT8L0UxrS9ItyTLRLXwdUZZOMtFTWaDSUB7CkV/uOVIWEMaRdtI7kSF18tHoUdPRpJEb0W+qW9F67qHRdROGkUPuYBFDsYaRRZJCkaPykNFHt7vRCegBkZKbZlGzzzMRPENp0UXZM1FhtUDRqqFc0UqT+9EFbclRc1Yx0Uc8rlEvYukR9/LmkafJ/tEWRkBRUAxmkQA1ulEwzuwRf/ArkS9qMBFlqafRC/sYUWTvwlFcu4ORped40WIuglF2FrkRP3qukRVVJtGwkN5RvEq70TmCd5EW5G9RBi/CkV3kAZG85MWRqtEe0X088hEhNAORXob8URG299EmUXDRb3CNkXtQQVF/OFARTdNQ0XHGjFHigb6Rn+I6EUWro5FFJgFRRCjdUXXjsREGu7tRGAYF0VG84ZG6bE0Rn3tsUWtQIVF0PLRRP2qjUUx1bZFGgAARa4uQkU7nGpFKPLVRe+n6kZRCQpFTZiSRmMhnkTFNU1FX8h3Rbz+ckUbarlFx735RGBkRkUXh7dEyQacRLZ66kTC9cdHupdNRpOd1kXCGrBEbu8CRVQ1D0X62b1GQRUrRZ6nZkXrnIxGJM4zRTEn6UXMAuBExPD4RHwbwEW7GHdFBz3wRDU1KUUYsRBFxVxFRq3/FUaOeKtEzrGbROJ99ERn3LBE5VNHSEcUzEcrAs5GU3iYRZ69D0bgXDlFYL1ORZXZ/EaIPh9Gr5PrRRVjHEU9z4ZFA5vVRHCC2ETc1htF04MtRnDJ4ERr3StFb1UDRTVhq0YEtvpFP5bwRPyiR0XIqlVG84zkRNs8yEVom6BEMArmRJ6Jc0XpXDJFk40NRcN31EWZINtEqGetRKpKCEVWL7lEjsDjRN4m00Q3aVRGNpIqRufYH0UHDY1Ims31R/QajEcYQoFF09Z5RswuuUQBeKFFqBqqRLp0E0UPA9FEPoCfRDpKVkbYD4hF7nICRRn3NkXU+pxFBouFRqlCS0V4nPBE4hfzRLO590T2VvNEI9+oRQIOwkS+Ci9FRCG8Rf7wekW6WEFFAM8HRUKsV0Ze2rNF3r27RGoSBUXylCpGZKR/Rd8hWUW9sjVHtuWgRj8xhEXfcbBETUARRXRttEQHCrdEbU/oRHTv2kcrGltHLRHzRqzxyEXHv7dFSlFJRQeMCEVtATJFzMvlRNT2mkRztwxIGZ6AR3w2HEfBokBG9ISjRAv2D0VFZC5Fa+TNRq82kkbH0IJFtG8+Rc07o0X0rjdFmWWfRIvJJUWt671EVVWpRInew0R1to9FxzMoRVhu8UXv7hdFceXnRDTho0UgOFdF4yQZRQxWX0bkp/BFi8J0RcpGYkVVzT9FFgkOResXz0TiohVHACOERoKzGkatUr5FITyaRU9xuUSN0adEbCbdRBJ17kRRFRpF4P0SRcIbA0WjA2FG26gfRl2KL0Xb0e1EFDg3RwsAmUZRbTlGS9bARDgBjEWDr65EsFeSRQ0YAkUdP39FYNdERYfeZEbEqrRFLO7ORHBDNkUnQwRFUmiaRGtn3UZU4opGfcOnReBdEEUeejtGEtjDRTMIjEXKmAdFa/qzRyBVhUezVe1G/GgPRlm8gkUB/B1GzWCfRSn3n0Xol8RF47J6Rb1Q20SHdrFEfyMPRf6JwUf9wrpEqQEJRxRxtET4ydtFaMCVRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - sG9mQm/BckDrVZr7psJyQHbXSBYByHJAp5ICj0PSckC8kcQtUeJyQMU5RqPJ8XJAOj57ffoDc0BsRH3kuxJzQOFk4jj5E3NA/TN6Rzkhc0CIxCokeUFzQM8ZCDB6RHNApsUcAyxtc0BSN6kRhnJzQJA+69PQd3NAdfrErtt3c0BWyV3GeIBzQMBn4RNNknNA3PYbJfiUc0BsIMz8uKBzQOKx1olaonNAWuBl6eWic0DUAOZt0MJzQHpIZHM44XNA9rVV+3gBdEC2kE7/21d0QBzqR5Y2XXRAedKMswhidEAkkkaAkGJ0QOA+/sIicHRAIstzakFxdEBvT7c6OnN0QAW5pU1OgXRA/kCBce+fdECExmsgcLJ0QJRwVLiN83RAoL160V0CdUC7wFMZnSJ1QKiWIqMnRHVAFEgZtTVUdUCzoX4gRGR1QMDB4RyNdHVA1eAF8q2BdUCmQ7ZbpoN1QIbZ7ZULk3VAbkvulkztdUBDNgGRp/J1QN7haehIAnZAKmQhJIkidkAikPAtkSR2QNa/3ORKK3ZAuCCX0x8xdkBCsA5kHUF2QNLBfh+VVHZAEp4nkM1UdkDK+KuTomR2QO0M/5fdo3ZAgrWc1w60dkB+bwdrz852QOaaBJEBEndAhRuWtqUzd0B8Im70DTV3QG78wKydQXdA2g7aRxtFd0Amnu5gk1F3QKIPAvJH/XdAXNyeoKECeEABvGVAwiN4QIpBsSoTRHhARfDTFXtFeEADd9J9zVF4QKxU5xqXUnhAXHsygI10eEDm89gHnIR4QCgQZUirlHhAKiuEo1OzeEAk76OljLN4QBAOIKqks3hAxAgCLdSzeEAEEjnPSLR4QGCf2WbZu3hAdYNBKP27eEDKV43N3sN4QDaFs/Hly3hAxv3SOOvTeEBCsGsQi/V4QJMadnOxKHlAqPtDl/xDeUDwhQ/Uk1N5QOyoXa5wjXlA0MHiW0LUeUABNTRxDDV6QIAlR3EaRXpAMjIceR1bekBaTGys/5N6QDdEr6wMtnpA9BGMTA3IekBE2CobaM16QJjHPV9K83pA/qFcsKP4ekDUzPRFxRJ7QLGoFjRMFXtAKk1Osx4Ye0DoTea3bVJ7QCfhmyjOnXtAdmoPsCeje0AALq2Khqh7QNL79s+L9XtA39CdLtkBfEC+d19jZwR8QAzrrxmaBXxABmG9RtIRfECJS4E36Bt8QEQF55rNQXxA6LZHrlJIfEBtBrlsrE18QErbstRX4nxAUknSwBDjfEBXKTWDleR8QI5lI3Vp6HxAQLsVyVPyfEDDJTqTSwJ9QKzOk8GtG31Ab335bbYjfUAGJk9HlY19QKq5sFTxkn1AVyCXYdPEfUA8xmgE28x9QAYK1wXwHX5AftJzGkgjfkBgIQ/dt3t+QAyHGIi9g35AtDKJk8SLfkAXvbVeyZN+QPD22e0o4H5AULHP9ucRf0CNNlLZ7Rl/QOxO0uzcIX9AJvKkUbdxf0C2k9d7nnR/QCDvXsJjkX9AezHVhpL7f0BWoVkCzQGAQJqZY1oTUYBAyEJt5A5ZgEAO4GeRHo+AQCTe6BqGsoBARXKVFga6gEBoj71Ns7yAQH65RgVgv4BALcSJl1LBgECzYZanUsmAQCRPYwhM0YBAcx6EO0nZgEB8ZIJaQP+AQAHHqsQ0H4FASleg9jQngUB77i+xVY+BQFTheBJKr4FAWufs9eTJgUCGqjsCyemBQML2Xnvs+YFA7f4yTvD9gUCJ4rVN9QGCQMST1JKNCoJACsyMvNgYgkBOi9Su2FGCQCpkFR3cVYJAGAWBXUOJgkC6bbrMQpGCQGSCGFM8mYJAf6qF4g6hgkAsUdcdO6GCQERR5Ah/2oJAlpFeoXkRg0CJYsjFeRmDQGoBpptyIYNAZAnpw24pg0C8MSV43jmDQCdEPzniPYNAago+sxBig0CYTImA/2iEQJyLCBdxooRA6mBPKB+lhECL1NCZ5a2EQBcfgiXpsYRAeG7hP2rZhEAWriqBaeGEQIDCjcFi6YRAQrgR0TfxhEDwCdmHAVKFQOIocXUEVoVAQxGqmaBhhUBwevVqn2mFQJ46R9mXcYVAVgwmyJmShkAoficcXa6GQKOjO6tgsoZA80faqf61hkDw75KDfRKHQNcmJGOAFodAUGa9M4Mah0AP1B4fkSmHQAIpXASSMYdA+N4n04k5h0CZr8IkBJ6HQAoULe4GoodA84Xhugimh0BMTpvJA6qHQAAjiTnIsYdA1GoIA8i5h0BRm7kScAaIQP9p/Cd1CohAhP7ZkcariEDja3wEzrOIQDp0aNzUu4hAG+Tbt9jDiEA= + NrgMGZxjYkDiYBUjzERrQD4omKXyI29AjwFH/L0ycUCTuYxC6ZJ3QI9fI1AWRHhAgXeMn1fDfkB9HSOthHR/QMBqtPlX6oJAeOFxTrq6g0BPkxLvg7KEQHq9lPHP6oZA3A48a0ZTiEA= - + - pxrURY0/20Z0j0lG/4kOR0mvlUVelYdFTOkFR85uzkXJA4tFG8+/RvH9l0WTneVFxcItR1lGm0ZEOoBFCNlcRcWXx0a3UiVHCi9LRnVor0Vsbe9F4o2rRTJwgkVr8PdF9BU4RmZqo0cOUx9HPD2DRfYPFUYNT7FF1VI5R1njl0X14q5FCrhORrIOY0a7wZFFotc6RoKgC0atVRtJxjX5RzCV8kUgOVpGEZSWRaF3Ckb09VBGiGMuRp/zuEWfvGtGB5OtRdo/qEWHfwdGe8WzRufOmkWsn19HLEyERjZ9C0YQzkVGx+uGRQ4IfkUSR1FGN0ahRW1Z10eCf6BGulu8RimAaEZBRfFGyPaLRofs1UUluUZGW8DWRW0MkUVmCKlFblUSSQW2EEjjs0FG4B/URRQFakYBpV5GRCxtSjwFvUWHu81Jcw/aRW6M2EgAJU9HTP+HRemmxkVCtoJF+0ZrRT6nA0Z+1M1FiUfiRfgUwUcKyNNGA1+uRZJNF0a5ibZFMSWwRS5JmEWBwYVG2REZRjxkrkX/oihGfo1pReWPFUZ1EilHiMawRurxsEWg5qhGMERERuhbiEWSiMBFrda3RYR5qUX+a95F9sCzRktddUZfQshHFj7YRfdNFUaKwqdFSaufRmSeh0ZbWdVFRJmFRQQStUVuKrxFHAgBRmHlZkVR1BRGPkoARlcFhUjcYAZIga34Rgb72kWd+htGsyvhRuPwP0bSSsZF0DKwRbcBlEXK5yhGowP5RkNaJ0Y2kV5GPWT+RfeCuEUwgJJFq4nGRlWejEbHkw1G47lPSAM3nEeamEBHc+QtRkDWYkZ+H5ZG+eGGRQJfwUUbosxFqGs2Rh8mgUVp5uFGSiNURm6yhEXRED1GH0xcRgJFFEdunYRGRTbmR+8ULEf1BeRGpFypRWUUJ0YNRaZFL6ylR14M9kYbZahGA+qbReAw3UakXShGAuPVRbUG7UUN7opFPa+7RZ5eG0a0E6JFiBocRwkDf0Y+cjRGJuRkRU7EjUagUSRGYFHERiwBOEZDJcNFJuSERT3RSEaHZDZGmVmVRRmj0UaO4GxG6XjSRfEgOUbaduBFebqLRZaQxUcSNHxH4wyzRnAmTkbbec5FtNp2RY7AFEYrQKJF4JnUSENRJUguux1HjNPYRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Y9/uum/BckBBtBZvp8JyQAT2GTsByHJA/J7f3kPSckAkaWi1+gNzQI8nyWO9EnNAo5EsPjkhc0B9aSLfekRzQM94w58rbXNAJZbNjIZyc0CToXzreIBzQN5eEMNNknNAimEkKPiUc0CBdGAPuaBzQIA5CB1bonNAVJRCCHkBdEDxCnVj3Fd0QIQWs0s2XXRAxk/I949idEDKpifLQXF0QAbii8Twn3RA5WyB62+ydEBap0M8XgJ1QG7UPWMoRHVAkA9gTDZUdUD8IUYWTe11QB9zuApJAnZAPhfWfZAkdkAruVu4HzF2QMxI+zqVVHZARVZGHc5UdkAMD0PT3qN2QKQ0TBQCEndAWjGsdQ41d0B3DawrnkF3QJYKH9EbRXdA+EyISJJRd0C4b79tSP13QIHPnAGjAnhALC+elrojeEB2tzJDFER4QPzp8aOOdHhAglkor5yEeEBYaa7+N7N4QFdy1tyBs3hAZEzBDa2zeED0yVRT1LN4QKzm2y8gtHhALn9nTtm7eED3UW8L+Lt4QCZagY7ew3hAHmbJkuXLeEDYX7um7dN4QMq0fJgMNXpA85NefBpFekAmCD17H1t6QKURSjYBlHpAVMDMJ0jzekCf14Evo/h6QLlWohzOnXtApnYSMCije0BIUnhdjPV7QHvVZXLaAXxA0JJXGVJIfEB9mUU8rU18QGHNYBtY4nxASh5U7pXkfEAmM8nrnex8QKZSs8BS8nxAgkggV0sCfUCeg9aY1MR9QGClg1BKI35AvM4Fobd7fkD8fvHWvoN+QHYpVQ3Fi35AKiLp4ecRf0DMzp8A7hl/QOox2mugdH9A3o0j4GKRf0C04Wk4kvt/QOQmR4vMAYBACGtJSRNRgECzgY+ahrKAQDJRAscFuoBA5P4R7rK8gEBh/9GXUsGAQFmUngRSyYBADIbePUzRgEByRS1fSdmAQH+R1p40H4FATvhb9eTJgUBc+/WB7PmBQHJG8LHv/YFAZola340KgkDiKJablRKCQACrJDnYGIJAhYu7kNhRgkC0vHRcQ4mCQEuDjj9CkYJA+kbB+DuZgkCKbwq4eRGDQFyzoZp4GYNAvSKSFXMhg0DDkM553jmDQKgKtlNq2YRADF1F/mnhhEDBFdaOoGGFQHqwVFqgaYVAOs+d430Sh0B8lu8hBJ6HQCprEzkHoodAYRLBSwemh0CokmAwBaqHQN4H4tjGsYdAKOZgfHEGiEDC7QxFdQqIQKJGAYLGq4hAmEt6Xc2ziEA+jMXF07uIQHjeRMvZw4hA + NrgMGZxjYkBxWoXuS4RsQBu6YmAmQ3BAYG6KbtRSdkAbGD+0flR3QO7F1o2sY3xA4nLT7ZaFfUCc42t5F/uAQPeR2XCCuoFAABE2lqMThECKcn2s2cKFQJTx2dH6G4hA7p9HyWXbiEAZysnLsROLQJQgyPumpItAffeT6D0sjkBbTG4LE62OQD4TQQl12pBAdxaJI7VakUC+Kjgey56SQPctgDgLH5NA - + - Ct0fRp9ID0fYU5BG7QnoRgB8S0cIUJNG+bLbRlQaYEZItTxHquVJRpANG0cj34RHRu2WRqrYLUZ5FiJGZ0itRmwtNEgAlZ1HqeuKRk4djEd9hChGChZqRgN7i0Y7zTxJP10JSNfUiEYQCktGIv04RinnqkYFz4hHULdXRvNAUUYdOaFGessASNw4vUZkmM5GlAUzRgopHkdYlJ1Gar1RRspSPkaqVBFJO6MFSKB7PkYqTvNGySMPRw3JFktd/Z1GpCuFSuiODUf65I1JQAEkSDmZUkbdurlH1oedRviGl0Y4NWNGAFF7RtOuSkbtnjVHYMfaRuv+k0aKL1tGrTijRni4ika11ARIusX5Rg4JWUYQ1dpGzJy9Rp3eu0b2ID5GkSlQSP4ZvkfF17pGBL2mRnirS0bEjpFGFQReRqYSTUcUJG5GQH6rRu7FbUZfDihHRC3IRnShnEhPua9HvLSfRxmcgkYhmn1GQ6udRjNmxEaOZipGnx0DRy8xNkbxpWFG5rytRiPA2kcUwABHLjLjRvh/E0hIokZHk6YAR5BYuEbHVxpHoSlnRp1eA0fszY9GX6eNRkE6ikdQDjxH6Ei1RjeFNUY7ajpGs7SpRl65O0Z79Z5JjcP7SPNv10dAypFG + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - StDgoKfCckD8Z2HeQ9JyQBwkIeP6A3NAshfouL0Sc0CSQUtOOSFzQJwzC4AsbXNAovNjt4Zyc0Dq/mpheYBzQKJmqIZNknNAOHu7U/iUc0CoVsGqeQF0QBPz8nHcV3RAkjzZazZddEAEpdHEj2J0QPvMwMlBcXRA8jnRjihEdUB2IONzNlR1QHwRFakgMXZAAIPgYpVUdkBqUTjaDjV3QDj9NBefQXdAGA7jahxFd0CXtbipSf13QJzGNJm+I3hAJMmU0L8reECQEDUHj3R4QETcQHudhHhAIBNRpUWzeEBiKX+qgrN4QJwFKa6as3hARnU9Qa6zeEBE+Hw41LN4QBi8p4f8s3hAglUpTtm7eEAitVqx3sN4QO4oypHly3hAsD1YVe3TeEDsbatmDDV6QKrGNkobRXpAoiMNLSFbekCMcDBLSvN6QNJpx/HNnXtASrBXJyije0DAFZK4jfV7QOuICD5SSHxAjrQvkaxNfEDxaapqWOJ8QC6dnyWW5HxACWGJw1PyfEAeZii+SwJ9QJr8pLDUxH1A6qEw1N3MfUDqbUb3t3t+QDHh45G+g35AMtqAW8WLfkBOCXl56BF/QDRGTI+gdH9ACFaWhJL7f0BOj67tzAGAQMpcBwcTUYBAvkY1B4aygEAmG0oeBrqAQG5B3yOzvIBAkYczt1LBgEByEoGtUcmAQCPv3Q9M0YBAWcSbv0nZgECRg/BQNB+BQJBEJSrt+YFAxHbMGo4KgkBW2vGdQ4mCQAxMOp1CkYJAgngY6DuZgkAz5oPpeRGDQDQaWr54GYNAyyGARXIhg0DS300l3zmDQOa1AwVr2YRAqLCzu2nhhEC/uQetoGGFQIhJQCMEnodAPVznhwaih0AUFCRGcQaIQOwJ0hx0CohAZ56fanUOiEBiHTF2xquIQD73Wc/Ms4hA4KbsudO7iEAJOMoF2sOIQA== + NrgMGZxjYkAoFld2zmNtQK9rGHLRYnNA2+W/dP/id0CdKRjPP5N6QNtDnMhX9H5AXxkNgOEBgECodC7co3qDQCkh1jJjGoVAn1OuCtsSh0BHcpIdu6qIQJ+CnDSHm4pA2HYTtvxii0CfsYpeMySOQNilAeCo645AGNuFezpukEBs6veEKjqRQKcD5HBmNpJA6Nk3HEYGk0CMh0hKp8KUQEUDKBiCBpVA1QmJFsgelkDFGh8t2MqWQFH5yK3j6pdAdzGEOx4XmUA2fS2HJHeaQFtHV0NUm5pA - + - POIyR/pUD0fgVAJHb4KdRvLX4kbFoU9HtfaZRnZrBUdfK1xHUHyMRrrwokaY40hIdAO2R7LL50YDr0BHxzcbSQxf6UdFTLpGHfdUR605sUeVkphGpTmIRlTRtUaNy51GHLV8RljR8EjnyttHDye/Ru4yzUaXyyBHgt83R1PENkshCWlHYSiaSlOvpEniYEdIQIWHRtkAqEcyqrBGRffKRktbhUZzsClHqKroRvcqn0bD99FG8DFcRu+m5kemTQVH08zfRmPDpEYk7NlGP5xeRrdOOUiobsFH0RPDRq2iW0YZR7BGEftVR9iruEYhpldG4IbURorOG0ejQ9xGkIihSNdMy0dzUoVH1Rp7RrVOjEbRyIxGJFUnR9YMtkdOyw9HV1+2RnT7AEgLtUNHJC/vRtSpcEYuugdHywKNRtP3G0fjBjRHx2TGRjk7aEeJKCBHx0dlRpKp5EkL2jhJPuQmSHDrs0Y= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 2eRKLafCckDgnde0AMhyQAF7RKJD0nJA2lzzHPoDc0CeRSHNvBJzQMHNjQY5IXNAQmMrfCttc0CDZABqhXJzQIYBeKt4gHNArpUv/EySc0Dqk1PD95RzQOoqOsm4oHNARH1h1tDRc0CYXpoMeQF0QHNdhtjbV3RAOs6V+TVddECGGsLdjmJ0QChOMhpBcXRAJ5/tzW6ydEBqmXZTXgJ1QPGmq/YnRHVAjgMbADZUdUDIvKntTO11QAKICjlLK3ZA85of8B8xdkDqoxoelVR2QOK4t5DNVHZA0NHg6wESd0DWEClCDjV3QMz76jieQXdAwrd9exxFd0BI/kOxR/13QM4hezK/I3hAhoVM4RJEeEBSTXpljnR4QNgLz7ychHhAStdCtYCzeEDK7jHC07N4QGs3y18HtHhALrxkPjG0eEBiMpbRu7t4QM7gcZnYu3hARL55Jt7DeEBaL7Os5Mt4QLQ/gZLs03hAytbTbbAoeUB4ZknlCzV6QNYtqgwZRXpAIpe3yB9bekDChS3FSPN6QP7IYRqk+HpAXKIFSc2de0DvQV59JqN7QLw6f4iL9XtAStZXTVJIfEConXpsrE18QMoiKZ1X4nxA8rRQjJTkfEAPdJNUnex8QHQT+3ZT8nxAZgfduEkCfUCR640b1MR9QFIUOyzczH1AFqcmGLd7fkAOMahbvoN+QAZMXjvEi35A2ITVoXPIfkCxYYeXzM1+QFS1e/GfdH9AFCPEpZH7f0BodAq7zAGAQPgqJEYSUYBAPg+Kx4WygEBCaUrTBbqAQAxf7LGyvIBAWpq/f1+/gEALhQFQUsGAQByAgSxSyYBAVo7h3kvRgEA/IkuMSdmAQD1m7j5A/4BACWfs8DQfgUDsCtJi7PmBQMyzlJGNCoJA4trgktgYgkBbfbARQ4mCQCYzfHFCkYJAsHCjfTuZgkBAFPF3eRGDQBVk4Zl5GYNAaCcte3Ihg0AtSFQxcSmDQDjoFzQBzoRAkClZTGrZhEDO+CDgauGEQCYJUkegYYVAbtZgMKBphUC/wJgBmXGFQPQ5sBQEnodAbEa/vgeih0CiYH2bcAaIQEoFLvZzCohALdYa/3YOiEAQv/bUxauIQG6tnETMs4hAUAaGXtO7iEByl8p82sOIQA== + NrgMGZxjYkCmvpxNHKRuQBu6YmAmQ3BAQR3Og3yCdkAJeGK9lHN3QJfPrtxshH1AQXuq19STfUA= - + - BmE6R4Sqq0bqGDFHUdcORyAvlEaFLM1GMyGFR9xxz0aobQlHZaBNRyt4VkaB/GlGpWpaRtLCgEYlGUBI2U23R0cpWEZmXRpHYrWcRtCdVkaJAuVIEoupRw6/OEapYVBGvuelRpN4D0fLjUVGtMtQRpWRsUdIZrNG96uWRhaI10Zf8YdG30U9RgOvyEiNlrVH2YrFRlsKLEs/NNZGK3nLRh6eVEfUI5BK4CGXScaySEh7u45GSKhORgo0g0c8UXhG1Z3HRsYapEbSdVlGMyRQR6nX6EYCOJdGXTrDRjKhjUYtM9ZHuH/lRtTOVkaQzbtG2XWVRhAEuEa5vYlGc5dMSKfC3kcTxcpGQCx5RnOje0YRyZlGxq2cR8xmE0dLck1GWkuGRv40PEebHANHOJ2RRnA9u0hxZfpHaXe4R2hUskY06nBGVxCRRox+pkanPT5HUoJORssML0gg44BHXMksR0iVg0gdSeJHgRKGR12ItkZv4XlG7ao+R1djr0aMTHxHrTnSRmfPr0Y/us5Gs+Z4RjHO0EcIm4ZHsOPaRjBE3EmEBDZJqTwUSD8KrEY= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - +iPfGqfCckASY+90AchyQK61SGlD0nJAxLHcffoDc0D+TNs8vRJzQBTlQRI5IXNA5PtFD3pEc0DQ9GySK21zQHAxW4qFcnNAjWM28XiAc0CRzow/TZJzQMorFsL3lHNA8IFdxFqic0CN/wIG0dFzQHI2bW454XNAyi8bS3kBdEBe66gb3Fd0QFu383c2XXRAFI9m8I9idEAx0a05QXF0QMaDEVrvn3RA0/WVKG+ydEC1QEieXQJ1QAorjjgoRHVASFQesTVUdUBqhh6MjnR1QD6Hqommg3VAqFc5PQyTdUAkJFEcTe11QNkUy1ym8nVA6Bts0UgCdkBQsd3QSyt2QHD1OqofMXZABrsAK5VUdkBzuyHVzVR2QB39o9UBEndAy5lqOQ41d0ABpMAFnkF3QPriwrcbRXdAs9t9dpJRd0CUWKlISP13QLqSfqijAnhARLWer70jeECN3Vf+aTt4QJ7uLsoTRHhADu6y5HtFeEC2PxX6jXR4QJMoPnGchHhA3PvYnayUeEBOWLPqdLN4QPKTQQuBs3hA2ohFn5mzeEBxb//i07N4QCJmJzIFtHhA5vtVzRi0eEB3p5HxLrR4QNZhxYVVtHhAlrd0a460eEA37f/6urt4QOFzt+jYu3hAZhMadd7DeEAMJRoD58t4QK86agrTIXlAdDuMm7AoeUC3QHQVDC55QOPy3a1vjXlA664gNQw1ekCAHeShGUV6QGeCOdAfW3pA2hhyiQ3IekB6GCloSfN6QKBxEcek+HpALq8Fz0wVe0CCWQExbFJ7QJUEfUjOnXtAdkccpCWje0B282ZLjPV7QOC8VBfYAXxATHB3HlJIfEAw1LQfrE18QOtJlKpX4nxAYmBnSRHjfEBGCWodleR8QNxmO4hT8nxARF+HOksCfUAURsxFlY19QPJOoCfUxH1A6BK1ce0dfkA0FS12t3t+QIYwtt69g35A4vVvlcSLfkDGdBjucsh+QKB4KK3MzX5ARwYvZ6B0f0D6dm/iYZF/QMENKQmS+39AHn8RGMwBgECPSC30ElGAQGx5heIdj4BAwGL41IWygED3zt5mibaAQLSzo6kFuoBAQsq167K8gEAYdgpVUsGAQOEijPxRyYBAGYZd8kvRgEAMyDXgSNmAQDhaKGk//4BArHXLrTQfgUAWx6FLhuWBQN5CKhzt+YFAIpxI7I0KgkCUuof0lBKCQPytqXXYGIJAvMxlMEOJgkBVyHnvQpGCQN5dytE7mYJAu7J1rjmhgkCl9ZXHftqCQBKTT2t5EYNAKB8FyXgZg0CsQXlCciGDQKIn84TeOYNADKHyewDOhEBI1jjqadmEQPD0G3xp4YRA92abN2LphEBgKVvqn2GFQOnEKK6gaYVACcYPX5hxhUCox8/hkCmHQEHWthUEnodAmNajBsexh0D4tB57cAaIQEJwqOJzCohAwofUbXQOiEBSA1C4dRKIQEgcOffFq4hA/BXE/8yziEDYg1iE07uIQFuepUHZw4hA + KBZXds7jZUD60UzrnGVsQIkw7CrX8nJA/caCySZEdUCJjsh+LwR6QHFsQ7kWRX1ARHZS6cOKgEA= - + - ZhgBR3CXMUaK/QhHtqwKR7B5BkagRbRGl/IcRnX9Bkdbg5dGHAy2RtVjKUdFF4RGHvEDRvyQlUZ9JgBGrbtrRrKRpEcycCZHBrpPRnzCXkdcUQJGfQhMRiWBe0bPVTlIs5wWR6Yg9kX2GAxGJ/cNRuOFEUbFtulFADhaRq1tCEbqLNZGBtJeRvi/DEakpn9GXL++R9ny1UZ/9JxG+U98Rm8JJ0akQQZGu34CRtHLIUZ+qUpGsxEARg4r70iKl/NH5kEERl15aka42m1G7zvYRkdK0kql/elGSy95RsMEEkbkUUJGwTUHRjpM6kbvKC5KTx8vSQDUlEfqTxZGVaokRn/tLEYEPANGcButR6CBrUZbAypGuFJCRsJUlkboTRRGUyEXRmN1lUY0jhdH2U6XRi5whUaPW0ZGM+mKRhQsNEZvwshHP3X2RQw1t0YzUr9GYwCMRmvGCEYKYlhGNPYrRhZ7Ukig3MRHmoC3Ri30jUYzABRGV3lCRjQ+PkYpD6NHGpkCRyGxikbZZ/NFHIIURr/n8UWCe8FGf5u/Ri84YUj++5dHAjhdR+RzSEaa+hZGjPWORlMRRkYDz2lGltC3RgqM3UUuxFJG+Sf9RyTaWkfrYwRHfY4VRqBUikbIe79H8v8ORwfW8kb9sVJGFkcwRhDOK0cKvppGfLI2RurY8kaD11VGEa0HRk6qREazdDtGhUUKRnWh10df2qRHGSkSR6y/UkZ1jVJJq3GoSOqykUfZpy5G + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - JFHZCW/BckB9jOBYp8JyQJqTxlA8w3JA5gwitwHIckAjWbOhQ9JyQMavi8iP4nJAdjk1y/oDc0DggD/VvBJzQJfjOQEGFHNAL48XNDkhc0BbqaToziRzQC1qwYh6RHNAahKV3Cttc0CeNMqIhXJzQEpancx4gHNAKncSQk2Sc0AwcOkZ+JRzQGQSHKC4oHNAyp1hZVuic0DQNyJy0MJzQMLhokjR0XNAnEQfK+PUc0BSPiSvOOFzQMONIvR4AXRAHodHItxXdEBpaZXUNV10QL+LWV+4YHRA3uk+gY9idEAW3ojbInB0QNJdwTFBcXRAqelBc06BdEDe0ZdmFpB0QEAX+nnvn3RAm9gqv2+ydEDdeAfmybd0QHa/OEOM83RA8DuDy10CdUDzMCQCniJ1QAafDggoRHVAgcbi0jVUdUDUZuW/jXR1QIJbVGCugXVAgCKkWaaDdUCBQS98DJN1QGtTW+1M7XVAh1WlxKbydUDk2avxSAJ2QMa+xGyJInZAZ5IC1pAkdkCsI2srTCt2QBCHV+MfMXZAhnJCmx1BdkC8sF0VlVR2QJR3xVHNVHZA2NJnzQESd0BSP+mApDN3QOu/N/wNNXdAORgTnJ1Bd0AmCwqpG0V3QHMsb4SSUXdAEtWc2kf9d0DmJ1qcogJ4QFzYfl7CI3hAMqtkJ2o7eEAs9mqYE0R4QCA/XCN7RXhATFwEDc1ReEBkVRc6l1J4QBxYCMONdHhA9Ut6YJyEeEAU8i0eqpR4QMRE59Ies3hAMwZTqTqzeEBYrH+MmLN4QJ4LjETUs3hAvTihJfSzeEBa8t3FBbR4QOSKZ2kZtHhAgaNCgEm0eEBvvPhF2bt4QHCF26Tew3hANlvrcOXLeEBvV38F7NN4QDvXwBrTIXlAaMi7lLEoeUAWEz2yCy55QMAOC8lhM3lAaOTRMULUeUCyONZ0DDV6QBZOATwaRXpALQTh2SBbekAzHJz7DMh6QCBv0KVJ83pANL6GNqT4ekDMtoxRTRV7QEgPNMAcGHtASvmSz2xSe0Au1zyUzp17QAgIhOIlo3tAShMoQmaoe0BFNOVehKh7QLhYW++L9XtAsgJ/ENgBfEAWajAuZwR8QGwEaBwYFHxApDd3+OcbfEAKJJlCzUF8QL56Uf1RSHxArMcvf6xNfEDmLgIOa9h8QMyUZaHD3XxA0iuu3VfifECsh7f4DuN8QGUxWSSV5HxAro9WlJ3sfEBDJ0WBVPJ8QJi53uhKAn1AuiGSta8bfUDSc8lql419QAi7Csnvkn1A9V4l/9PEfUAAtgct3Mx9QCIlYgLvHX5AqAF9EEojfkDGHeiot3t+QGqJ1P69g35Amr8yTcWLfkCiZQnYypN+QL2KOHtzyH5A1vcbBs3NfkAIMm5cJdN+QFKuQ2K4cX9A+VOYFaB0f0CnrCGBYpF/QBxDRUGS+39A0qYyUswBgECWcJQGwQWAQHYhkbTSBYBAWgAhlRJRgEC48FSjHo+AQDRsjraFsoBA2Ek7yom2gECK/tngBbqAQG/E+9CxvIBAx+7l/l6/gEAINt+FUsGAQMwCer1SyYBA6nzF5UvRgEB8t2cVStmAQM8MV8ZD4YBAxI9dPD//gEDy0C+XNB+BQGAF6PhUj4FAy5ETCkqvgUDsa9uPhuWBQMddMjKL6YFAJGH3vuz5gUBSVs6K8P2BQHsJIZSNCoJAr4xnqNgYgkDk8gxTQ4mCQNQ/iu1CkYJA6nUNPDyZgkBuGRUAD6GCQFZnRT87oYJAQL8IYX7agkCgVnvxgt6CQCEQ/rd5EYNAsI7lK3kZg0BwjuugciGDQNljAWdxKYNAk4qdPd45g0D5gbFz4T2DQDxeiw3/aIRAb4QEUgDOhEDukm+EBNKEQJXp15YX1oRAoOTYm2rZhECIl8DuaeGEQHAl1TVi6YRACmHnewFShUAbZmyNoGGFQNDOqbyfaYVAWDt+VphxhUA9GBff/bWGQKiDhIZ+EodAZYyuUGsWh0Cz6T1TbxqHQNR1t4KRKYdA6qnPgJExh0Aoxi3gA56HQGTnOn8GoodAEKbqysexh0DguRD0cAaIQLH33g10CohAqjSXaHQOiEA+Vf2qdBKIQDZtH3BuFohA1fVNTMariEAKR5NxzbOIQPoUaJrTu4hAEtPlqdjDiEA= + KBZXds7jZUCO7m7sniJrQDtMc7KVAnNAz/0oxEAidkBZnS+d7ZJ2QJZYvf1YU3xAR1sv+lvDfUA0spiV75mBQAX/vnYkKoJAw9r2ihtig0CUJx1sUPKDQCUsngSSqoZAfS3XgpNih0AcCx4zyUKKQOFaoZ8fe4pAqzN8KPUKjEAlHppGmMOOQB8KEDKmCZBAXP8ewfdlkUA= - + - u17JRWOJSkevFshFhveNRidiF0dBnpRF5idRR5fsN0bGdd5FDxrXRr4c40WkDiVGdOVUR/RZm0a72+RGQUxLR25aQ0Y7yyZG0icFRo0asEUvPp9GgDOwRd60QkYtf6pGOt4BSKBYY0cG9pxFib15RjkQBUYyNS1HjDjJRegG60Xfg6tFisFcRnOx7EXdrcpFx4CHRqYsCUb6XuZHwbmmRnc3Wka5WrtFr8QyRvHkFUYYeG1Gj1TFRVi1I0auzaFFVMoCRqs9AUYs1rpG/dywRaHxGUZtODxG7VBtRm7pmEXxWdBHcCCnRqH2qEYbIjRGYuyvRoDRU0avL+VFs46KRhDabkb3kglGRBuoRYZ610UCsfZItsD0R/vyLEbTh61FLYjeRf8EsEae76BK6XU0R87ctEZX+pJGHSA7Roh1B0p8awdJuaCRR4KSt0UjUi5GuXevRsP0AEYTkLdFCMyrRdntnEe5sY9GawoYRi6lG0afNaRG5qoHRkkkCkae8clF/QmKRoLKIkdIn9FGLsG4RZsS7UWwPntGsd9MRgB7y0VtEtRF8OgYRhH8/EXrhdhGKfNaRhWW+EVQhAFGFJ7iR361AEZN5hdG2mK4RZS3A0f+UqJG0xbeReUOIkbxLtRFUgNoRv/LpkWBUgxGhVC+RXFfZki9gupHGyqyRsVQtEWZtpJGm+aCRgRTkEXBd6VFCIIBRgESNUYmzgdIWoZiR1oT8kUo3SxGnZtXRtt0BEbVOrxFvKSaReZE+Ea4IJ1GslIoRhdDg0hlx9BHVuaARxXET0Yx6bdFToplRgh1iUZRSM5Fuv3iRf55ZkZ33bJFG31TRrfaBka7N2VG8zIvRkJz00ec9B1HxL7ARsvE5UVjkg5GgfilRvzmCUY+489HTHcpR2kg7UbbUfxFDlvMRquTY0YWALNFN78wRgy7AkbfVKVFfZPURryLakZXlhpGivOkRYHG+kaL1zNGAjAERioLt0XXMbpFNTE3RoJSAUaAXg9GptnfRa++AkauPfhFfhsCRmVW/EfBI75H0lIRR3HOPEZflqBFxyQrSfwihUhg5k5HBc0NRg== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - lNKa4nDBckDQLd/ip8JyQKcZUIo8w3JAMRwaFQHIckAOtz3IQ9JyQCPUphLQ33JABB4Ha1HickCOFSHqkOJyQPLRWs/K8XJA4KLtkPkAc0AC1Hix+gNzQDAoIr69EnNA3uzYtwUUc0AyhTY9OSFzQI56DaPPJHNAqxVB83dBc0A+bZt2ekRzQHgdhUjbUnNAOWGKJaNTc0CbTriyK21zQKxk2QKGcnNAJtTlCnmAc0BCV0F7TZJzQCLWx45hlHNAHF5Kf/eUc0B3+VituKBzQKIOZOpaonNA8kG6Arazc0CgJMfC0MJzQMwj/5PQ0XNAYKazLuLUc0B9IJrmOOFzQBy5QP9C/XNAmh4vV3kBdEDuo4qBTBN0QKfLhw2nQnRA4Gg899tXdECGTgtoNV10QLKQ5qC4YHRAixLzmo9idEBzgd5KInB0QAby7UZBcXRAhsz5DTpzdEC3M7NOQoB0QBCAHOb3gHRAgOIfGk6BdEBJ95YZJ4N0QK3623AWkHRA092+uO6fdEA6Xr9YcLJ0QBTPJ0jJt3RABN7bnrjEdECmrZNiueF0QDh7tYiM83RA2FvrMl0CdUAicaQaniJ1QO4il4LMNXVAqnA3HihEdUB6iyfINVR1QLdwIu6NdHVAt9uq262BdUC/vHKCpoN1QCKgI+mahHVA5TohUAyTdUAuhl8G+sF1QPHwxC1N7XVATLIiY6jydUCMaEMGSQJ2QCnYAn2IInZAfbMzRpAkdkCD1TOfSyt2QEtmlowfMXZACx/p4x1BdkAddqJ2yEJ2QJWZgHF6RHZAwMqeYhJRdkBgXk+uzVR2QM/7FwDbZHZAxqv+3b+ydkBittcHDbR2QA7mqtBRDXdAwF6vswESd0AGkJqZDyJ3QLyDUZulM3dAYJmV3A01d0A65V65nUF3QLL1cJ8bRXdAXA0i8UpRd0B+fZJ2klF3QIBtDB3XWndAlUPbhShvd0CLkJNlSP13QIF6+0OhAnhA5lIUEm8ieEAfgJ90uyN4QCwpCWVpO3hAPg4TqXFDeEAr+TfOEkR4QO2DBj17RXhAZkuymJZSeEB28eOgIFR4QDL1tQyNdHhAVnrtv5uEeEDQtA69qZR4QNxSpfvTs3hAoERKyPSzeEDQBuJ2BbR4QJKVztW0u3hAMG0ZLNm7eEBl5hvE3sN4QNUcGCzmy3hAQIBLoO7TeEDjOAXtAfR4QJqeAOeK9XhAmgtxtM0TeUAyfSR+0yF5QF8tO9ixKHlABhXG3AsueUAwSO2J+0N5QHempkXLVHlASM1N9HCNeUAWc504zZJ5QLP+ScLAsnlAv06sW0LUeUAzjjBHQTJ6QED1PmQMNXpAIRL0NhpFekDIIcv2H1t6QBIvpWCqo3pATMaGtQy2ekCM4oBz+8N6QIjpgKMMyHpAXIPXnGbNekDcEOwMSvN6QPvkBkui+HpAGy4xnv39ekD/Z+xtxBJ7QJ8jg5VNFXtAcvp8iR4Ye0C3KirIbFJ7QHUlpH0ilXtA9jS5Fs6de0CJjMYIJ6N7QEa/u3tkqHtAdJ4ZlYSoe0CkkitmjPV7QEgPP3/ZAXxAmpXvvmYEfED/cMikmAV8QA/uUo3REXxApjpWsRUUfEAy2aTm5xt8QHCv9rrvI3xAtq5c4OctfEBg3BsozUF8QEIqrIVSSHxA0rXJr6tNfECGmOBlBlN8QCqsrz5amXxAB2tQT7GefEA2X/cKath8QE4B2brC3XxAx0z90FfifEDYagGxD+N8QFYJUXKU5HxAJUHlW2vofECQ0/3rVPJ8QCch3KL/AX1APLf4+EoCfUBr+yu9RRJ9QJXXjYOvG31A2Gy8zZaNfUDInTou8pJ9QPJrpEDVxH1A5oTULu8dfkDSlVGhRyN+QPHChM+3e35AwdxTUr6DfkAMpGc6xIt+QJyXHJ/Jk35AnkLlgnPIfkCMGwvTzM1+QJAyRdQo035A9UQuR3DYfkAY1w4n5xF/QAZ+WBq4cX9AvAHUs2GRf0CyALPfXqF/QLaRfmOS+39AKIegLswBgEAwsQ5dwAWAQEmfHmfRBYBAUv3LmMYJgEDkyn5VE1GAQE0FrCcOWYBAUBhuyd6JgEBM+pL9Ho+AQGTpmQ2GsoBAeOt+o4m2gEAcPddRBrqAQIr1x0CzvIBAnoXjL1+/gECE1HaHUsGAQErLrURTyYBAdmQsRUzRgEAQJMeEStmAQIlyOcxE4YBAaKhjNFbhgEBR4OfvP/+AQHa5MLg/B4FAnC+d/D0PgUBivnhrNB+BQOTZN800J4FANOpEjmBIgUCc1ErhV1iBQJDZj/9mioFAjn7xRhWNgUBGfPPDVY+BQPoUscrnoYFAzzsSNUqvgUBm0tYXh+WBQLoQxiAA7oFA6k/vQ+z5gUD0IBGr7/2BQGgW/6SMCoJAihsAitgYgkAodutV1iCCQBOZtEhDiYJAdjGGRUORgkDAzuNlPJmCQMcbNqYNoYJAgBlTbDmhgkAoN3tlftqCQEcLUaiB3oJA4oTkr3kRg0AYdlYeehmDQHDBF8JyIYNAVctT/XEpg0D41wJx3jmDQL/MhgDiPYNAFNWl/thBg0CUOc7jEWKDQHfSnhhxMoRA/7iqTzJOhECs2k7aN1KEQDTfPb3+aIRAjKg27P5whEC7DTXWLo6EQAoBSb9yooRAKrNBWx+lhEAE3cXO5a2EQPhWNKNUsoRAwFfMixjNhEC9rIwqAM6EQPQXbLwD0oRAcrfv3RrWhEDja7U/atmEQBywwmxq4YRAErAnImPphEBgHX1ENvGEQDLsL3xh8YRAeNFsWAFShUCMZtxooGGFQAJrrbqfaYVAwMMqYJlxhUDutbpmmHmFQGy042WkpoVACHRa86JWhkDUIV3vfBKHQPq1szZrFodAYjtk03Aah0BkssG+kCmHQDZaC22SMYdAmremGY05h0As4mrMAZ6HQAJVUdwHoodAderuLcixh0D9JY42x7mHQKL+ccLBwYdA4Tu3z3AGiEA6hRK8cwqIQHcRF7F0DohAEtg2z3USiEASV3mocRaIQFbhuj9MPohAcErNok5CiEASnwFR9pGIQAZ/rmrGq4hAaE1VCM6ziECWZjok1LuIQP5xuSHbw4hA + KBZXds7jZUBcG3g88iJnQDeULWxqYnBA0BY+T/wBcUDF63mLQnN2QA== - + - BuW7RQKyNUfMWHxFK+hbRjCDF0dfUDxF74GVRQF2w0Wg2qZFUO42RfcBKUfnxHFG2LyXRaUc0EbPaPtFhkKYRTZ+F0YphLZFxlqfRfr/Mkc+Q4lGg8z6RndqYkeAFCZF+aKGRhBtIUaH+gVGqf4bRdWam0Vr2wdGlkGPRbY6C0aPLGJFH1+RRmD+X0UI4QpG3mElSKJgr0cmMK1FvF4YRhnaoUVeKj5HGkeKRZkkRkWpR2FFR9vuRciZV0V6+cBFZ1igRT15ckanPK1F9407RTmYOUUX+8FFW1JaRpyY/kUWUmFF5PsSR8YAyEXlkbtGdWHvRVaeEUYtToJF5Tz3RaIWNEVRbV1G1NCSRe/BFUbhpJtFUKDzRWHDE0ZwYMBGf2+QRZqfN0XrPZBF0SI1RY5X0UbAQqBFHq0jRf2Eg0V2O3FFNieJRoALO0UNdqNFsg3pR7Kxi0ZDncdGEhuTRSzgP0ZzJJ9FpxdTRdmysEYnziZGHqxCRYdxwEW71cpGBGfZRReRlkauKA1GO5ZGRat7bUXQkSFJAR4cSGqXWEb9mTpKRVe6RpmoGkab7gVGh06hSb9hlkidlO1G2BluRTudK0XA74tFEYlHRehwMkbhUglHPxOaRn6mikXL32hF1czBRWd5UEV2r1RFtdznRXM/TEWE2MRHomW+Rk4GkkVx3zRFk0yfRTb2xUUk5i9GOJ+KRaZjoUaAVkFGQvx5RTPABEZ9eyRG15E7RQxrE0bnD0BF1ns3Ry0OvkabyM1FA/K/RWZJi0a411ZGt8XGRbskmEUqLlxFKykxRmhLm0VeNjhFUSg2ReFUlUXxJtxGLn1NRik0okUCAoBF02BkRf+NqUbxEUxGkoXRR9AI8kVCAbdFH4bLRdf94kZDZkBF6SCSRpu+iUUx6epFG2zTReHbk0U9Y9VFj3ZaRjDhG0b5dCJIk92XRxW0oUZ4dtJFvKi2RjmnSkZbx7ZFWKVtRcg2LUWO92BFj3goRj+uq0XMDxxI8X9uR59z5UXwXVpGcuGYRe4rYkags9BFWrQxRQhh1kUQ60JFU/kuRQ1YyUYWo6FGrG8LRqNfjkhxufZH5BmSR6iea0Y/wJ1Fj0hKRcwrdUZGjJ9FjbxGRe1ajUbVbkxF2GhGRuAhO0WNj7NFbvGlRXpJAEaW+VVFxsy6RVmfr0VcoDhF1h1ERl1D1EXidrtFj4MoRvasUEWK6cRHaxoaR/hH2UZWN4FFsXrLRUdkekYXxxpGb8HzR6QRVUf/2AJHNTw3RlYrB0cq7ItGLtquRV7KoEUu5CdFYCmsRWkaNkUeordFaRo4RUiFgEW0AJ5FZl+SRXbinUXON4ZFFwxnRUPcxEXUsbVFxf1oRUs9CkfBEIxGVWQcRgF8t0Wq0DZFuEptRfKFDUdwo4dGKxE0RiQ4gUX/YEJFIq9URbkrU0UypSVGqvcbRm4PJ0bUmJBF7d5uRWTGmkX1WZZFTs8ERmbZmUWkDF9Fyz3AR213hEcJK/tGC/A6RvWjhUXnaV5F+f6jRSKVVUV7da1Iky8HSI9M3kY05YxF + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - MjgDqG/BckCwoSFJp8JyQNy6rlw7w3JA+AlLiQHIckDhFZA4WM1yQF4GulhD0nJARjsnZlHickDyFMYFkOJyQEbpT0fK8XJA9vukR7fzckBcnptWwf9yQFouN1jQAnNA+vmSgvoDc0DTIdlvvBJzQAIch30HFHNARy/FKDkhc0BLhmDcziRzQEzsCUg4MnNAPivTjOJAc0DMCKfed0FzQJphynF6RHNANF3149pSc0AjC+WIpFNzQCoo/YA6Y3NAkNzBuCttc0Altfd8UHJzQLZqWmBocnNAxubXroVyc0CAynb4S3VzQMxTTKTRd3NAh9134d53c0D6qtEUeYBzQDL6ZSiHkHNArPBWLE2Sc0BK5BW495RzQKy/J6a4oHNAvpePRlqic0A4UEgP6KJzQKLoKegFpXNAhmk8EbWzc0Bi/BEhDLRzQNY6DAb5wHNAjGeyJ9DCc0BfQD9rJsNzQJB6aVrU0XNAOp/jpOHUc0CM6lPaOOFzQCMmwEx843NA0LvegEP9c0BObVq2eAF0QCDVPFSmAXRA5d8DZZwCdEAynIjkTRN0QPZ5rv+4IXRAXhiZaFwzdEDaAW11pkJ0QA7cMNLbV3RAuY4iIjVddEDAHkgBuWB0QD/lyp0IYnRAbhuOUI9idECdwLHX5md0QMtvgg8icHRAlvuoT0FxdEDi3/F1OXN0QNqxXYJEgHRA7jjKM/iAdEAX56evToF0QKQXI4Ylg3RAfDALXRWQdECHyWoe8J90QOZ8JQ0Po3RAQBBkPXCydEBOKtIqyrd0QLxVuBETvXRAenKNprfEdECK7rlQzdR0QLWMCRC44XRA0ltU1ozzdEBAx03FXQJ1QDSp/iskFHVAbom2yZ0idUDDgw8nzjV1QDKmuXsnRHVATD6zPzVUdUBwqLD3OGF1QAYyy8BmY3VAGuPvWXVzdUBGoRSDjXR1QCLzGK14gXVA6qqCVa2BdUBsBW45poN1QEBc2/eahHVAJOmh1rqRdUDe8BFmC5N1QFbE2jHO03VAQsnc7gjidUD+JUw5rON1QEBaA4VM7XVA0QrEiqbydUALHNAxSAJ2QEdSMKOIInZALtHvj5AkdkAnJTuiSyt2QJCQha8fMXZABTHe8lIzdkCif7/YHUF2QKDdOZ7IQnZAbtldWHtEdkASgE3CElF2QKhT0h/NVHZAukasSNtkdkDINRrkkYN2QNE+EIfAsnZAoRu6Hw20dkB5hQZLz852QFCqiGqS83ZAFHbnxFANd0DANGfRARJ3QEZ2f2QOIndAxOs/fqUzd0DIWuGaDTV3QCICOaKdQXdA1SMy2H9Dd0A8XE5EG0V3QN4cJcpLUXdAkKvObZJRd0DSH/sZj2F3QHxiRGAnb3dAd5wouEf9d0CCA+ofqwF4QBl2DyuhAnhAS0Yco/4HeEDqiss7RA14QMQNK1xtInhA/F1vU70jeEAbudX1aDt4QAo0kUZwQ3hAMma+QBJEeEDVAnr/ekV4QMb45spxS3hACiijQcxReEDS5Y31lFJ4QESLL/cfVHhAAoZg8YpVeEACkZR171d4QNSbs8m3YXhALj6D44x0eECROSEYm4R4QGLaBzmakXhA8g/0SamUeECeg/GzjLN4QIbOaDCks3hAvDj+D9SzeEAarCeJELR4QGoE3BUjtHhAUYvtNLK7eECN2pdX2bt4QB64UPzKwHhA3tEuZt/DeECT4ujk5st4QN9nV6bs03hAwB6uw7jUeEAYcQhkAPR4QOOurzSL9XhAVGdJN80TeUAuhBoW0yF5QKiAgl27I3lAwvpX8LEoeUB/f3pZCy55QNLaaCFmM3lAbYmOA/tDeUCuybkRk1N5QLpt9kHMVHlAt3csQXGNeUDhc6N7yZJ5QCBk7srAsnlAuLXOiY2zeUAqCXTdf9J5QMRVgbNC1HlAxzXyCMzVeUC0NoE6kPN5QBFcbzn6BXpA3oyk2jskekCKkG/JQTJ6QIY0+TQMNXpAxK/iKxpFekBiRBqzJ1V6QMDkTgofW3pAZDj0DyhjekC7rGmnqKN6QFwUCqgMtnpACNUkyPvDekAGOMzIDch6QDF8N3tpzXpAqWaeoAnUekD1UPeaFfF6QBT3fdlJ83pAUPq+R6T4ekCo8PIB/P16QNVEgCh8BHtA4jeQfSoOe0D4DDEwxRJ7QJhweR1MFXtAhr0W1xsYe0DW1CbCWiV7QD5RQDFsUntA4edJus6de0B2U4miJqN7QG3KXExnqHtAHCBwRoGoe0DnkdBtjPV7QGxNXuDYAXxApxg95PQBfEAHMlUzZgR8QAETx3qaBXxAta+f+c8RfEC9Ur8aFhR8QLBeep7nG3xAUCzWhx0cfEBgTLUU7yN8QMkfUQ0+M3xAKfkyx81BfEDrskqCUkh8QCReOL+rTXxAHPAKmLlSfEA0Q49r9lJ8QJI9FqxOWHxAXk2vaw5ifEAE6dTMWJl8QNmX+Qy0nnxAYaYJiWnYfECOy+Xow918QNbvt6JX4nxAp5lf7g/jfEDWsywAluR8QPu/8PZq6HxAZJBWeBfyfECuHSuHVPJ8QEc/bzhy8nxALvD3nf8BfUCsrhuGSwJ9QPy3E3NGEn1AUHToFq4bfUAomXV9tiN9QLNk7HyWjX1AkDSwWO6SfUBmkvFK0cR9QLxyhIPbzH1AxpKxL9PzfUBLZ1EskfV9QJQZBxTuHX5AhSa+6kkjfkCCH/NUQy9+QCakfXiccX5AroBsjLd7fkAi0kF7vYN+QHEmJKXMin5AHQjsicSLfkAUa2cWyZN+QHPyr2tzyH5ABtNelczNfkBKo+BhKtN+QB59xMtw2H5AVi8CrOURf0Dkg75nt3F/QGLNmDejdH9AoFj+E2ORf0AmARuPXqF/QOYs3BhYsX9A6vGiJ5L7f0Bdb8YCzAGAQDZkagDBBYBAzr096NEFgEBEvIeXxgmAQD2kXZbnUIBA7AtxjhJRgEBk/KkEIVGAQL55SGw3V4BAuooX5Q1ZgEB9g9kKxWaAQMLUpNkqb4BAFlaqHd6JgEAI1R7yHY+AQDJpReQcl4BA8Je92IapgEAWJSS1E6+AQOCbXTgGuoBAgWsR0bK8gEBFKJzSX7+AQIgBJ01SwYBAXuu3NlPJgEBugG9XTNGAQB2fySlh0YBA7S55a0rZgECG8377Q+GAQJd63LD26IBAd1616zzzgEBYR++QgvWAQLJHk3M//4BAI9vxqj4HgUBsKJh+PQ+BQPIuUmk0H4FAsmZYfzUngUBQ/MxbYEiBQLLc/2j7V4FAkBBXW2eKgUDTWRXNE42BQHicsWJVj4FAC3yDUcCPgUCKNIWt5qGBQBw3zKxJr4FAYlxJQoXlgUAxkrje/u2BQD6Iq3cD8oFAw8NLm+z5gUByGSVH8P2BQHih2kmNCoJA0y7JlNgYgkBYgzWj1iCCQFSTP3rRKIJAwG4NBKNPgkCeW1VWQ4mCQEdphHBDkYJAMiFSUDyZgkBGgYPZDqGCQBE3jF46oYJANFPlggypgkAyzXDFrNGCQCpjyxWy1YJAagoR+n7agkAqhChPgt6CQPKiVm95EYNAGOJhbXkZg0CU7Yh7ciGDQHAXDh1xKYNAGZQxV0Ywg0C2k65hajGDQJSDfFHeOYNAcDaa2OE9g0CyIHjw20GDQApZwlsSYoNAnG4DDxRmg0AYiRyE4nWDQGiBP8zmeYNAbLdgVOKBg0BovV3OM06EQHIvNvY2UoRANNus1f9ohEBZ+LIo/nCEQDjAFTt3eoRAV6as9C2OhEBuhTf3H6WEQMzmTC9VsoRArg7pCRjNhED6D3dhAM6EQKaowz4A0oRAKS1wABvWhEDpiNsyatmEQEewuFpq4YRABCdRHWPphEDB5WSZNfGEQKpuKT1i8YRAIucEtQBShUA4A/5qBFaFQIzhsjygYYVA/IqEUKBphUDAHFITmXGFQM5JpR+YeYVAqLLWld2lhUB2IU2upKaFQMILzO6oqoVAdohDFaJWhkDshOGzpFqGQHQUAv5/EodAZGmJJWwWh0C6aBHNbxqHQPKsWr91HodAtGj395Aph0BfD+VSkTGHQENW+ECKOYdAQ1VQGotBh0Ai5qmlA56HQKLl56bHsYdApg0pysi5h0CshrWiwsGHQDcyYQZxBohA/TZWv3MKiEB+poq+dg6IQG9+DmhzEohA2nJ0PEs+iEDU8iPpTUKIQJ7ijIj3kYhAnDICcfmViEDNOdfPxquIQO4+Qd13sohA4ub8cc6ziEA4gPls1LuIQCQIO/fWw4hA + NrgMGZxjYkDAf1LOpONtQEMdzoN8QnFABwFx3oACd0Bq3hX7KlN5QC7CuFUvE39AxepfRu6jf0A= - + - tlitRXfOL0fNjYtFUnA/RgSGb0WLBRVHjX+URT8xpkVmkGhFGKzkRNz0CkW2BQZFkl8hR+kxeUYzEIhFFgu8RsWylEUk1yVFDwn/RHKqg0UobChGrQ/3RZDIskUIuElFqKhURxdHBUWrfUJFgnutRtp8FUVAToBFW5y5RTDD80avXB5FufhWR+IWW0Y1dypGXFUFRjscDkXdH+JE/+RnRYvzHkW1Q/tE0qe4RS5ZCkXVd4VFlvenRX98/EUECg9FxqtuRgknp0aaagVFcgDpRX4OMUWR/1BFGbPwRM9iGEYk7BNIsDaaR8M+d0U1fkFFg3hhRusAJUWziqdFv7VGR7m5UkXP9sZFLXB1RYgl7UW9VJ5F6yq7RXvlkUUQYABFf3w7RhuUi0U9a/hEcDA7RYHX/0RStPJEsV8CRoLUZ0YGUfBEfET4RQrDQ0VYcS9GQxIMRfpwLEUPRmxF0k8lRV9eTEZFMxhF1ue0RYasC0bME0pFWfHxRFh3B0ZqjwdFk5sSRYzYBUUsojxGIjB8RcBHBkZ4aJ5F5kENRu91C0YAlsNGCmRRRfpdg0UZ8XZFAaqXRSMvNkUgMoZGXFxDRUqahEUQDhhFwA2jRfajSEWFe2JFU9AQRXSvkUaOAEpFE820RcG45EfuVrZGROH3RB6ewEZYVGdFJK9zRhApNkU7qklF72cDRwhMCEXyzIFGw7c7RcEgMEUgiI5FgNmCRZR4BkcKHRVGS0LNRtzdCEYAxjFFw2CORRYgd0XTp2lFY6AYRYEfG0VuAg1FWjoySSYrNkgm3fxEriVmRsfOnEXDtL9FPnHwSRSDr0WRuCJFqntmRS8sTUkO6+JEwghASGktoUbfhpFFoC0IRcJfIkVn+MFF+J1CRarnFkap1OlEISHcRs/SdkbXiYJF+faZReqAFEWP5olFxKXlRXZ59kTmTklFFv8qRWkQ4ETV97lF0I00RXnJ6ERMghFF7+wTRRCoQUUB4eVHHKLDRj71MkXx3R9FIkb7RM2cMUWd2btFnTR3RgqPI0Y4L6pF2EU4Rdv93kQdF6BGhq4tRt43L0UMW05FUzD8RJJHCkbdrhRG/TJxRXShMkV9shFGCi42R9SB/UY6jhZGFQrdRZH9pkYtQzZGd4uJRQF2tUUHdaZFkiOBRWg5QkbCY4pFPJ/fReBV/USb6SVF7Ai+RYJ7t0bp5CpGdcYDRbw8o0W3KFNFx+faRDfutEXIdjxFYRaXRmE8S0a+V+9HdZBJRinwJ0UyEMZFobIARZpQ4EaJBm5FG1QXReqZsUYURIVFRlfzRfkrQEXXlzxG+o2wRTNvS0VSqfJEFHMpRUlKYUWKYOBFqlUHRpnf9ETlKFBFGlUzSOfhq0fbZlRFw6LJRu+YG0W3upBGLyZbRnnUAkVqUzZF8igLRRrpfEV4aQZFzGYyRncRikXzviZF1qwySF+BoEdD+wtGy7peRliksUUGkHFFyrVSRmZchkXuvw9FELyWRRYHC0WuBgdF+OwRRcZ61EXvkjhFwRQcRcv6EEUB1MRG2emIRo+mDEaWuJRIp9gJSBG9k0fj635FyCGERneWpUWJ5xVFW6YIRRCJ8kTQ1GBGAHZgRbVwLEX3G4pGvphRRevZKkYWGgpFZ8HCRvIXekaGb+9FDJKoRe0UAkXYEatFbeb1REHRkUXBxBtF2eZvRmCEDUYtOUxFYsM6Ru/0mEVhc1dFF0nvRC+SzkcCoSBHfuvXRlf920VFzdNFah4NRTeCVkVdRy1FFe8rRvhu0UUw+e5Hb/NER2a6CkcExPdFNNZpRb+YI0XBt6VGIz9VRv2FX0VV5YtFUUc4Rc0T3UVST4lFGT0RRbg0WkV1noNFwvTTRWidF0UzYzVFWYY0RRV+UEWDLIVFgSRVRSbUoEUn3BtFQcwDRV3HF0eMeYpG+2kdRl+EfkVWrWZFTdEWRVdr70TZ0QdHxUmGRg8HFEbYdqRF0S0URYwEKkUgyhdFJiXaRWmUNkUVV1lFk2KBRn/K5EUNAWVFWrAtRvwAiUVJlppFgAoaRVIogEWGVxFGtMGzRfpPgkUiZoVH80YvRxRpf0atXcVFqMiKRbdARUXQwYhFs7krRRuqS0gv/+hEJimWR48lakZpnUlF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - +F3W4m7BckDdnge1UMJyQFBut8anwnJA2rtM3jvDckCdRTkrAshyQP3m5WdczXJAPifFjkPSckAC/4PD0N9yQFAtw4W54HJAJnGdv1HickCLLNtGkOJyQDKVJ4nJ8XJAWuQJv07yckBgdspft/NyQK7H0DDE/3JAyBVtgfoAc0Bv22eY1gFzQPYhvLDQAnNASJb3/PoDc0Auk/R3CxJzQB/StPO8EnNAe6DHYwYUc0AbEeg88xdzQHeu4e95H3NASPDJX6Qgc0CuPlGAOSFzQFgTCGzIInNAgs08BM8kc0B14CR8SDFzQEBboTU6MnNAZoTI1eJAc0CJj2y9eUFzQDR242+7QnNARgR9RXpEc0AMG1SS21JzQPSEf6aiU3NAUGJ6Vzljc0B2Y0YxLG1zQERMEApScnNAsqSTfGhyc0BW59p5hXJzQO431g1OdXNAeU92Amp2c0DhfEo2zXdzQJwdOXned3NAYVGpRnmAc0DctM9dD4FzQKMIMhtfgnNAwZmiYoaQc0BGejl/TZJzQCp4EWX4lHNALMGT8rigc0CDg9IcW6JzQH4LYh/oonNAvNyh2rSzc0CitlgwDrRzQBmrdEfQwnNAHyhurybDc0C6uN4q1dFzQCmFfbDi1HNAgMKFazjhc0D1/4ikYuFzQEw6Gs4P43NAGhc6S37jc0DS3cbdN/RzQEBfAvFD/XNAJtAt0+EAdECOC0pxeQF0QP6T/cekAXRAlR+vxZwCdEAEA/NV9wd0QMpvbnJPE3RAx5fzWEogdEAvv+EFuSF0QJAScpY8PXRArpKj86ZCdEAs1Zgq3Fd0QNjjino1XXRA+rpZ5bdgdEDS7MVxB2J0QCTQmJWPYnRA/v3wRehndECmRoL6IHB0QBcQsElBcXRAm0d0uDpzdEB0mUZjNXV0QNx1yStFgHRAFnFXCPeAdEDuOmH1TYF0QOzmy3kmg3RAsCs9TRaQdEAS2WoP7590QFHhtio1oHRAGauWZTihdED2534dEKN0QNv5WKoJsHRAmHiWfsOwdEDIhtpqb7J0QMy/WX7Jt3RAYr140iK9dEBkhJLp48B0QPRFZwJ4wXRAHL3XHLjEdEBWQYar/M50QGP+Z1644XRAos+x6IzzdEBvyUF+zgB1QBioy1VkAXVAUCV3Ul0CdUCP6vqwaxJ1QIv5KKwjFHVASvMBpZ0idUAA1f125yJ1QOvs/CHNNXVAXTlGGShEdUDjyFmId1V1QCgi7gI5YXVAcw3X+2VjdUDWDKyKdnJ1QIQbVud0c3VA5m0QbI10dUAMVVtfeIF1QAhSEU2ugXVA/kl2iKaDdUBOoT+7C5N1QFhlRxS1k3VAFuZ8+m6gdUC0DIsluaF1QCL4rZLOwHVA8MN8iPnBdUAimq3hy9N1QB5fFthM7XVA2J12VafydUASFZ08SAJ2QBr5wOaHInZAii/NY5AkdkDItnWMSyt2QIh/ka8fMXZAPstfZlIzdkD8dVhNHUF2QNLAfW7JQnZACBx0PXlEdkAQlRG0EVF2QLLB4JPNVHZAdhMkY1JjdkBiwPmrkIN2QN0kSFTAsnZAQKeSh3qzdkA/Jt0zDbR2QO6DDYXPznZAYL+raI/zdkC0rqNySgN3QPneuvIBEndAoL2r05ESd0BKp0DADyJ3QO8JjfWkM3dAPnURSA01d0DEi5gvnUF3QD73KWYbRXdAcAfO9UpRd0BUV0gvklF3QKp/5wbWWndALkJ1QpBhd0BLxT20KG93QJ6gkoFOlHdA8kFdkMvdd0DWaFHRU/J3QEA5VwBH/XdA7C6IeKoBeEBc8S97oQJ4QNooScnpB3hAgHfIQQEIeEBsdnj1QA14QBwPoLtuInhAV59SRLsjeEAY4GQwvzN4QPCnVYxoO3hArsVXBXBDeEA6xxNCEkR4QHsX+hZ7RXhAVpp6yclReECg7xTNlVJ4QATxoRIfVHhAbdbreYpVeECe48HAR114QNBuh5b5YHhAH2PskLdheEBAsaRuLHR4QI5vjdJkdHhAwonlYox0eED2346ssHR4QICFKq3EdHhAglaAgud0eECew8KPpYF4QBg7rrqahHhAxJgtO5mReEBzLgHuqJR4QKIHPyg+s3hAzyVvzm2zeECcJwX7q7N4QDbN7c3Ts3hA+dS2i/izeEAsV66KGLR4QGqJ+rgwtHhAGvgEwWG0eECgs2t8bbR4QHgOgISzu3hACGzcH9m7eEAQWwOP38N4QKrcDU3oy3hANgveaOrTeEDyR7gHttR4QLKop3IA9HhA7vXZzY31eEB0xco5mAV5QOwwQ3PTIXlAAExKVbIoeUAkso42DS55QCJQgEFoM3lAzE8pTPtDeUA4mKvik1N5QNFz0xrNVHlAsIEel2+NeUCgB6wMzJJ5QKuexEHAsnlAzOO1oI6zeUARMJMJQtR5QIiHRnlR5HlAXb6fWkAyekB2it80DDV6QK8dYYAaRXpA7Kr5oydVekDIKiNGIWN6QDL1GKoNtnpAH+vznyzDekCVT2Po+8N6QJRjeZENyHpASHbUgGfNekD+TGg6CdR6QFjy9C5m4XpAHrVqoDfuekBmXlu9WvF6QOnoAz9K83pAJJC4zKP4ekBYHO3q8P16QGbC+2J7BHtAPSK3V8USe0DwzluNTBV7QESqC1kdGHtAb1baUVgle0Bp0CHlbFJ7QKUMSVgklXtA2vbNNM6de0DMMz0kJ6N7QPKJjdllqHtASB5m44Ooe0AIzx/Ar617QNIxEcwPs3tAoNOh6rjRe0DGBX9olvF7QE7QYjGM9XtANCj59dkBfED62bB19gF8QE9wWQJnBHxAcdKPNJoFfEC6J69u0BF8QN7odZ8WFHxAFPRwqOkbfEDfoTs0Hhx8QEZAT8blLXxAh3lcP81BfEBdh3PaUkh8QM4VeHWsTXxADx/IPdtRfEA3xtXO8VJ8QFWujrsMU3xAkn971q9TfECyMj+DTlh8QMzeDf8PYnxA2EqZ7/6BfEASnDUoWZl8QEswAxmynnxAPGE16b+yfEA9yYUGath8QMDr+JjD3XxALfx7t1fifED+WrqyE+N8QIlnSxXA43xAYqOhI5XkfEAE5acJa+h8QIhaeUoV8nxArje+l1TyfEDlfdzjAQJ9QFYYWgNLAn1ANB/y+UMSfUBfyGGVrht9QCz1UWxDHH1A9j/kQEAifUDM9OtntSN9QJ6YL3SWjX1A043FV+6SfUDNHZuIO5h9QJsdt6OUnX1ArJpxXS7DfUDLOo6dNc59QBLanLbS831ACGmp4Nn7fUBuWErj7h1+QFixzAJII35A0M7OJp8ofkDB5zB+t3t+QFjb1oW9g35A2wYGo8yKfkCMHPfRxIt+QB7ElB3Mk35AmIrYjXTIfkCyXbxnzM1+QAbTrinb0n5Ay/sa8xbTfkBAZaNBcth+QCDZXkGE835ATF5Oi5QDf0CeFKS7mwt/QBzECPjmEX9AAtD+ublxf0DiGwILY5F/QBBMOUCrkX9AH7T76l6hf0Ar9sv1VbF/QPlhi2SS+39AvnQzb8sBgECLD4Fi9AGAQBoqjSPABYBAWpDFHNEFgEDcNCz9hgmAQPZfr4nGCYBA2GHa0cgNgECszDVkIxuAQNNFlqzmUIBAHc1cxBNRgEADjEkxN1eAQPel8S8OWYBAklmVTR5ZgEAUYuww5FmAQMiGVBvxbYBAqAMC/ClvgEAEqRFj9HGAQGAbDOTNiYBA/IDhaR6PgEAmFiUgE6+AQCYxAD4gsYBAYHXBfE6zgEDiCWOyBbqAQGW8HeyyvIBAb/m7jF+/gEAOmARUUsGAQNz9jAsLwoBABgalCR/JgEBMKFZmU8mAQBB93GFM0YBA7wcZMmHRgEAw6bgqS9mAQFJ+RWRE4YBAm156bfbogECDx40oTO+AQCrM1OqB9YBA8sHJLCf5gEDQINXHP/+AQLoHioo/B4FAyh+eBD0PgUCOontaNB+BQMvNMyc1J4FAFLV+juAtgUDB+pULuzGBQE6FwG4pP4FA/kAuZWBIgUBa54IdaVCBQF4CKYBXWIFAiN09SKZtgUACukBaZ4qBQN+iK8UTjYFAuuxKllWPgUAnEBE6wI+BQDo11eZskoFACLSGq+WhgUBgnvCcbaiBQPClhFpKr4FAgpW+rFG3gUACpKL+fdOBQDVGHS//7YFA1JyzfwLygUAu2E+T7PmBQNopa/vw/YFAtEq9I+UBgkBGS2q+9gGCQGgULsGNCoJAN453X9gYgkCuIkW91iCCQJLUvx7UKIJADK+plyNEgkABTUXsIliCQEhEjFKkW4JAmKL3JUOJgkAajussQ5GCQBS/MA3SloJAWVbPDjyZgkBmGPA0D6GCQHLq+406oYJAhHvzoA+pgkAKEF3sMqmCQCa6ftgGsYJA4AR2GK3RgkCYsd33r9WCQOGpw4h+2oJAykz8+4DegkACj5k4qu+CQNcvCGx5EYNAJMT45HkZg0AHqINAciGDQEEGUW6LIYNApmJPbHIpg0CijD2lwC2DQFycjCJHMINAXM42j2oxg0DGLcfGxDGDQIPYjTLeOYNANiJM++A9g0CD0c0gPkCDQDAaxQvbQYNABSq0chJig0BZjyZA4nWDQERNRXnleYNAFH1p2tV9g0BCO5f45YGDQMrFeL1ZoINAKm8VoQMShEBmn6M0M06EQME9bAo2UoRAqn5t0/9ohEAiop20/nCEQKCoVU74eIRAvzsU2XZ6hED4XlHxL46EQJjmcMswkoRA++NJ/HCihEAoA5EPH6WEQFKloUfMp4RA9J1AZeixhEAWn+tIVLKEQLKHPpRCtoRAg91/aVq2hECGROhZAc6EQN9ZmyoC0oRA6q2W+WnZhECSbzVJauGEQLgXi+lh6YRAtjp2UDXxhEByAj0hZPGEQIbwaZS/94RAfKk/cjX5hEBbnXKhWvmEQLyVbmlu+oRA1S7IFQBShUDJiJZ6BFaFQOLt8XygYYVA9zK7VaBphUBW57O4mXGFQLoycL+XeYVADqC+ZKOmhUDu1tBgpqqFQEzrWEmiVoZADGvGwaVahkAoiuLTpl6GQDIWw3P/jYZADHIJ5HSWhkCcyYtNJrmGQIbQNwt9EodAEGUktmsWh0CAXax4bxqHQBSC+CdyHodAk+f2dnEih0CePFcIkSmHQFA7VC2RMYdABMPr9Ik5h0CcfEFqW0GHQLacZ5SMQYdAOtbahwOeh0DezGTlBqKHQEBIaoTHsYdAdFGv5Me5h0BMCFzwwMGHQGC7OlFwBohAUhsXonMKiEAMvM3Udg6IQAJsM8V5EohADnzTalgziEAFbI0cUkKIQPCGD3r3kYhAAvupr/uViECiBQXOxquIQF6qvBLOs4hA/iKYiNW7iECiO7rm2sOIQA== - - - - - - Z4G4Relc7kR6ZDBHoU5kRSnBgUbusRJFhTUjR9kX2ET23KJEQ0JURWo0h0UEBZ9FU7jrRK5uoUTI0vtEoxfbROh9nURfBANFCWoYRyL97ETIkWFG0dOJRb25pkQq3uVEZ9MFRbDMokZQrhBFPR+SRbj1uUTHXb1EMlrdRL7JfkV8PL5Eca8ZRrrI0kVdBHxFEuvlRBP7Y0f+gNdEv18KRYfYJka+5wJFjcEHReLt3URSGkJFvQ/YRuyg20Rgj/pEpBYgRfXIREeIUWxGoBkLRuxTuUW3VMhEnhFPRbUa3kRqQaVFTcEuRaLkPUXhI2JFCXYJRp7dtkQqLaBEOHUlRcNC5URDBwBHB+ekRIfOn0Z5WsZE1MwhRr7aMUW82hhFPWq5RJhMQkXCb8tEOMT/RbY4HEiBxZtHN7OCRXTyM0XaJGpGP8JXRQ95qEU+XTZHqUBsRfXAw0SA+gFGBYk9RYZep0XYk5hFNkSVRZI/bUWdWqlEGp/NRJy/O0UwQcdEiFmwROmEg0Z9K/NFb/XsRDm24ETSCPFEBxPSRNiIv0TswEhFkxWqRU9KpkRo1sVELsZDRgpN3USSnONEaGfPRZ+eIkUOvjBFKduDRYTX6kRi4hxFpnajRcye2EQigyxFt5TjRRXWIUV4U8lFsj8ORjGbuEWpP/dEk2+nRIgv50T5Uc1EwU4NRb9Z20RQuhFGpD6kRSOL6EWUOZdFUHgERgI+CEaE+7BGabQyRc+dgkV4TCZFYAuLRYkUMUX07RFG8l4sRWHzREUCiCdFdATuRBzRdkVrHzdFmokaRfwd50SK4Y5G3zP6RLGq7ETs9BJG29DMR1Zin0aBgLZGx3WQRYCJSUauydREsUofRUtgH0XnOb1EFLOxRG3OoUQjS05HmF4bRajp8EbIGMtF3A0yRQ+U7kRf/khFrTQPRVQO+ESDgQZHW88aRsELEEcEMQ1G2SJlRY7AYUUjKoxFl1ChRLvFzkRzjb5ECWE5RdY3yERRGy1F1lggSe/FhEWwHqxEbmbmRAOwEEWCgSVIR+jYRL6xW0YRGalEWmcwRVmCykVF8aNJOPITRoOzP0UHVXpFfG38RIrk7ERHai5F+j0JSa6v7UfIsz5GaHMxRTivG0W+rThFlQ8aRf5YpURZsw9G13qdRlkQL0YvlFpFTZeMRew6B0VWdjFFJRK7RXY9CkWwfQFFo5QpRWd8sEUkSBVFceUKRRMKpEeWTJZGw0IJRaKNmUSru3JFnoavREQJpkZjc8hF59wuRWUNaUViwBNFkHepRDrTtkSr84BGpD8IRoJMM0XEPSpFy6SsRe24DEZ7J6lFEjMyRQfGvkVIIUFFztYcR/Cg2EbgmuNFywegRf7sukQ5rOtECO6aRC9tgUWRTHVGboMyRiTBGUXKwtdF+bRqRcsvR0XwbFpGo+h/RSNszEWTmuBE9+rQRYO1wUYNcTRGw5zDRHjaWkV9UOtE1OXHRGubvERgu7JEQ8QFRVf3V0WcXlxFfMTsRKQHc0ZaKQxG6E7PR9M59EXz/8JELHwXRa9W5EWp6B5FJ7G2Rvg9FUVhB3lG1u8uRQzTtEV40LBEWMKzREkrHUU1LfNF8URzRdcq10Tu4L9ER2DRRCPc8kQZirtFHzQgRS22DEbLR8pFmU7XRFtJDkhEkJZHsa82RYo7hUYXQZRFPrB4Rh8hA0afEc1E2fY0RQ2tLEUI0blEr/ZBRZp65kToSN1EqZVuRVbyLEbi3Z9EbNQQRcsSDEWZyFFIXMjUR6GvpkR6lQBGmaOiRrf5t0TESbJFnboARR2I9UTcC/REW21dRiDeU0WnNXlFL1qfRNSeQUWjZUtFkhkiRYEfDUWGxRdFR/LVRbCpFEXcmANF6M67RDAAtEZLl4JGOJzKRYW3h0jQG/NEDrTYRF8S9kddz4ZHdBWARYNsZ0bqwcJFvzjcRG+CD0XAWOdEwk7vRJzDR0bUKmBFlfByRQK1jkZoRIhF5ajPRMQ3z0RT/AFFTepARkhGrUQaQ39FRo8FRfvUQ0c8wCtHYFO9RQDYm0ah1s5FCdJhRQiUDkXDB6pFPtyaRN6q70RlmMBFkRIoRRUGnkbxyRZGyvLJRLM+30S/GjJFD6wqRjIDQkVXdCZFqAvbRGeWE0Wv1qxETqvHR3VzIkdp8MJEsvnDRt+o0EWet9dF9zgRRTTs80QnmwZFGyEERjrLi0WLUhRG5mugRbJNt0QZcPpH9QBOR8qb6kYEnTZF9ekXRjXMeEUuB6dFEGUwRT19dkU24hVGf06QRcmi3ERyOTlFlq5cRfL5OEb+sYhF7ruvRA7l3USzw9dELZUoRYIQBEYHOIJFO82nRcZkMkXEJAtFhLbvROmqBEXN/55EZcFpRUieOUUx+wBFAZ2tRKmXKUXeos5EE4rERL7yAkVViLhEuyfyRgSqcEZ3aBFG1uiIRUENdEUxOP5EYrDoRK9yq0QXJgBFE0IiRYE/6kTzjgtHvkWIRriOKUbQu2pFUGMkRS5GDEV+KwRGMZDbRSPYH0XC47dE4uymRM5EB0V1EA1FIxT+RTUI+UVlv1xFCKecRK9WFEY7PtFFsDlFRRkXwUQA4KBEIBLyRD0gzkSqShxGhW+PRSFTIkV+QjFH9PnrRgBhQkb8RUVF+RjdRHuU5ERhACpF98rPRCoUAEjPwjBHBIsTRqiw10Q= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - xtRUN3nAckAmZ4nODMFyQJ5SZrFuwXJAhMdkdFLCckA4V3y9p8JyQOoHaWc7w3JAYLmh6gDIckDEteyoW81yQBM3y6lD0nJAjE4Y8kfTckCaIs84dtNyQKwFVXvP33JA4k3Xl7jgckB+R3sMUeJyQOLAr9KQ4nJAs4z59iTjckBikXzXyvFyQFKqB3JO8nJA+DdzYcD/ckBaN+i3+QBzQIQdNk7PAnNA9mk19PoDc0B6aMqGCxJzQCAupcO8EnNAPM+VawUUc0AQnBhX8xdzQHgSv9VTHXNAZLxWh3ofc0C3UmKipCBzQKYMtmU5IXNAPB4LJWMhc0C0+6gEySJzQPiA9CnQJHNAx2haFkcxc0BGQmY+VzFzQI7m0msKM3NAKJdqMXlBc0AO4l2ZekRzQMBWDk/aUnNAdbwOK6NTc0DuzzV5eVRzQBYg1wGMYHNAqIMv5zdjc0C3GKCRLG1zQO2tgIlOcnNAGGHRlmlyc0Dw9cMshXJzQHCUjMm0dHNAtAVl50x1c0A2FNYkzndzQDB6XLXhd3NA0lVKSCl9c0DU5VsMeYBzQK4nWlemgHNAIxxGtw6Bc0DC6UIfXYJzQCYTMRSKkHNAqqBIk02Sc0DZYCi0X5RzQO9E8In3lHNA4uhb2Ligc0BIHyAjWqJzQOYIMVnlonNAoDOG2Aalc0As5ALtprNzQGrb8K0NtHNAapDeRfnAc0AM79TJz8JzQHk88XYnw3NA1ldRC9fRc0Bsn3fpvNJzQFQ7o9rh1HNAtJmppzjhc0CENW9nYuFzQI4pn7Z743NAjktjUjn0c0BI+SjhQ/1zQN/txw7kAHRAfUC2/XgBdED+Q+H9pAF0QDj8CR+dAnRAQKkeV/oHdEC5Z4yoiBF0QOX9h9FNE3RA9AQyBLkhdEAn9DmFXjN0QHPOXCLgN3RANjJWiaZCdEDYtY4s3Fd0QHCQe5k1XXRAv23iTrhgdEA0WCtlCGJ0QL0j6OqOYnRAAgqPAU5kdEDP7J6q5Wd0QNmi2yoicHRATQdo4mFwdEB4R0JhQXF0QJsdwL43c3RAz2wnlESAdEB59WZ2+IB0QO03W1FOgXRAjvrhJieDdEAdg6bTFpB0QHDkVX1kknRAdrw381KTdEBQ7B1e7590QIpkVhzPoHRAYo+/vjihdECYDZ6EEKN0QApZCqYJsHRAtwnK/sKwdEDAg8Uab7J0QBCgc83Jt3RAmPxzVCC9dEBeH88Wd8F0QAu/5AO4xHRAbM4Ovv3OdEDcVH574tN0QACjJQR11HRA9j0zJbjhdECOiiQoTeV0QKIUnzH87XRAgkKOhYzzdEAetjcapgB1QLn+fHtdAnVAhv4YYagDdUBGOOYlaxJ1QGRUQVokFHVATK43HJ0idUBcJndk5iJ1QPTH9czMNXVAJ/qVq/g3dUD/kSllUz11QLRDzwcoRHVA1DP/QP5PdUAI4u1ndlV1QJRSUEE5YXVAng4wN2ZjdUDrg5NLd3J1QLrJVmh1c3VAwoXVmI10dUACsdFvfHt1QNDO6xB5gXVAwD48y62BdUDMDKJIpoN1QONk6vuahHVAaafZhguTdUD2ZLKjtJN1QMT5ZykRm3VAmvRCgnCgdUDmlEanzcB1QNQizQxHzXVA5GQyVKHSdUDyXrYAytN1QBxvMzLk33VA/TJ5mw7hdUDMEsO1OeV1QMW24+NL7XVAGq37b6fydUCWbFCr//d1QA7aCCRIAnZAKDc72c8DdkCExiqsCxZ2QO7So3qHInZAILMHCZAkdkBTqN+xTCt2QFT+mJsfMXZAwOI0WFIzdkBDFtVlnDR2QN4iZUsdQXZA6kIWYplCdkD6QAB4x0J2QEbAHul5RHZAK44WYRRRdkCSEtqvzVR2QJi+gMtRY3ZAvR3blbZjdkAV5f/h22R2QO7ZRdOQg3ZAlnkW3DeidkBoSa6xwbJ2QL//w7x5s3ZAGiF9OQy0dkBuFfH50bh2QGCt7UjPznZAxL9l0r7QdkC5sPc2kvN2QHbhzBw0AndAFOSdGUsDd0BagjfUUAt3QIz9K99RDXdA3GFysgESd0CIp4xwkBJ3QEE9zSEOIndAtqG8B3Qid0CejfZ/pDN3QALR2R0NNXdAA+0jUJ1Bd0B07kMxG0V3QImZ9+NLUXdA120IupFRd0CVspnXKVV3QFzZ7GPVWndAjaV+WI9hd0D2GslXnWF3QIQvIuA6ZXdAplON+idvd0Aa9rCXNX13QKoN3fV5gndA2GOFy5q0d0CycWCkjNZ3QOJtVOpS8ndARKszv0b9d0BatARApwF4QMocKBGhAnhAUIfzTOgHeECmXcVL/gd4QDANsWxEDXhAkOGDPW4ieEDC8uiMuiN4QNY5cXLHK3hAjJ29d70zeEDfRJCLaDt4QMbSlyNwQ3hA5zTiJRJEeEBWNbURe0V4QC49ETN0S3hAgI+GvcpReEBeAj4zlVJ4QAARiFcfVHhA3kMIaIhVeEBgtXr261d4QLUNqmX7YHhA7gozNrZheEAcQpTs82J4QOTbxsxqY3hAONbf/PpqeEB3lcSJRnR4QCW2/qJmdHhAtscsIox0eEDJw7BoxXR4QINJaubadHhAl+JHPqaBeECZGWKAmoR4QM/Hl8aYkXhAcjLbzqeUeECCLU+7tqR4QB6HoZP7snhA6BY8Xo2zeEBMReQOrbN4QC5j/KfTs3hAEsl3Ow20eEDyCY+lI7R4QBiPchTZu3hAIlV6UeDDeECaabsm5ct4QIuS+AXq03hAOI+9xLbUeEAUfDtKAPR4QC8l+7+L9XhA89x8PpsFeUDU8oph0yF5QPYvFSW7I3lAinaVm7EoeUDtMvf/DC55QJw8rnplM3lAcBiVEuY4eUBaoNh1+0N5QFhx8ASWUnlA/aCf05NTeUDgoyz5y1R5QPr5EChBc3lA7ujQPXCNeUDfPCOLyZJ5QM6HGITAsnlAiJNpyo2zeUBWfbypQdR5QHPrw3nM1XlAkkxofE/keUD+a2RrOCN6QIKJ/rRBMnpAc+clEww1ekAQqaXh6UN6QMxjnDoaRXpAdi6TTs9LekBI+OgkKFV6QDBkhYAgW3pAQFhpwB1cekBJvLE3roN6QEmjT3ENtnpAAGpWCfzDekAyMjhnHMZ6QFY8ugENyHpA1uVgEmfNekDgaWwWw9J6QP88mn3b03pA8vXO2QnUekDvzoWlZ+F6QPxtdOp55HpA/p854jTuekDsKdzDFPF6QHLN1YVJ83pAtuE316P4ekB6yUGK/f16QLblZEtXA3tA7v74D3wEe0DeTkN6Jw57QDtOhOLDEntAZN+BmUwVe0CUXbyFHBh7QDiwwNZYJXtAtphEDG9Se0C0vj7I65B7QHCU6h8klXtARSOgfc6de0B7+uyMJaN7QJ9mGwVlqHtABsHrFISoe0Azrn+Yrq17QL5mdn8Xs3tAbRPldP7je0C+EIfYl/F7QFyISLYZ83tAwmq0CIz1e0C7CJBie/h7QM24iFnZAXxAzuAmxPUBfECql7CIZgR8QKwm1kyaBXxA8tC+ztARfEA0x0MaFhR8QCk55qfnG3xAJilWuhwcfEAsnrFu6iN8QHp0QQjkLXxAFBd7VTwzfEAEcnIKzUF8QGUrxPFRSHxABC1UXl5NfEC/KQo3rE18QBRy4On2UnxA+2bx1wNYfEB+GeF2UFh8QCbhS5YLYnxADiatIipxfED0HqeUWZl8QMw4gvWxnnxAYPqV/r6yfEAhxQxwDrZ8QJqCQLHN1XxAWkv96GnYfEB85fNu+Np8QL153w/D3XxAIolJp1fifEDHGPj7DuN8QBp7xTTB43xAVPHnTxTkfECpn/G7l+R8QAK7x3Rp6HxA9LB6xhTyfEBY9W/hVfJ8QPgkxjUBAn1AHzZHBEsCfUAdRIrOUgR9QKbVYKadEX1ADCv9tkQSfUC6mNorrxt9QHbZZx9AHH1AbNa12jkifUC4XYZstCN9QPpfi01LJH1Avq1rJWpRfUCgIXdhlo19QGTfBHfykn1ArNS45g6XfUDX+wDeNph9QCa3YmJNmH1AjPnQrd6zfUBY+0jwK8N9QNyQfVg3zn1ArqMiJdLzfUBwld5VjvV9QKCP4M7Y+31AH8GIsO4dfkBFszSFSCN+QBp6t2efKH5AndwjwkozfkD35qVat3t+QJ4Ah7K9g35AvorQF82KfkCFcfIExYt+QFxwZifLk35AsGozis/EfkDBR7RQc8h+QARgXDzNzX5AnEqaMRTTfkDWm6bPMtN+QMlo/RRy2H5AOwWpnoXzfkA6xCsZEvp+QKh9OROUA39Ap5OZWOcRf0Bm2/WT1Fp/QK7hufB7a39ATARvPbZxf0ClPfcmo4N/QFcelXFjkX9AMoX7YpeTf0CYAjfZXqF/QBQPjEhCo39AKsa5A1Wxf0CmDVvv4st/QNxKxRrO1H9A9olxGZL7f0CWaPhvywGAQNrSqD/6AYBA2AoaLsEFgECQ2S5Y0QWAQIqdhQTbBoBAVm9qTcYJgEAqGeZ82AmAQPTRkTK9IYBA26KeVvBIgECHD4LL5lCAQD7HM0QUUYBA7E0IxTdXgEDd31sKD1mAQEz0FfTiWYBAYuYgYMVmgEAsiiZK8W2AQOjCm5Aob4BAmBYQAyl/gED44lhc1ImAQCaPX6Ydj4BArpjkBB2XgECkeqBghamAQM5P9HcTr4BA3FmJdtexgECWeX4hgLKAQPSx4DgGuoBAVZiBJLO8gEDopBZHer2AQK/gTBk5voBAaEla+V+/gEAECo1eUsGAQAAbdfQKwoBAFEEoO7nEgEDGNkBRU8mAQAyntk9CyoBA2o778wfPgEBW21d5TNGAQNZ5x3ph0YBA4B5WSEjSgEDWfb4oStmAQA7H42Fv2YBAvqTtCfPagEBMv0NtINyAQBW79qxE4YBA7G2KxkrvgEBFsjv0PPOAQBzUydRE+4BAklvq8D//gEAkAce0QAeBQI7ItBNoCYFA/yGA8z0PgUDu+NVkNB+BQCsneIg2J4FAvo6lafIrgUA0KZNqMi+BQGOSrGW+MYFAmgYZMCo/gUB29uHdKkeBQEHUCZJgSIFALhdrmOVNgUBswSB5alCBQFMDhZX6V4FANHLfGlhYgUB+XfLxpG2BQN+72N2ncYFAROulAmeKgUCSiWewE42BQM5tf7pVj4FAkMBhBcCPgUA8ZnZibJKBQMjsSrMZlYFACq06UlSXgUDCBsLHVJ+BQKg97ZHnoYFAiyZL426ogUBVrZjk7amBQKWoYhlKr4FA/PDTDky3gUAv3PZTf9OBQFIdWW7+7YFAiMHD2wDygUACyHdB7PmBQPA03oLv/YFAHtBQB/YBgkAsOZJcjgqCQF64ElbYGIJAeSKWOtcggkD6ZFE20SiCQMau7XWiKYJA0o4CBaYwgkAvDqOkzUaCQD5SU2vXToJAGpC4GiNYgkDScvhSNF2CQNsKezNBaYJAuOaUIkOJgkAGf6juQpGCQBREs1uykYJAPq9DTdaWgkD8d8T5O5mCQEWHwgRTmYJAOTTd9w2hgkB05v+nOqGCQJ8vBoMNqYJA+slBYDWpgkA7jKkQrdGCQJGnRy6w1YJAEv42WrXZgkA9oOMef9qCQDJCDLCB3oJAhnCNPnkRg0D64PrgeRmDQE6AyqtyIYNAnqMh8oshg0DQmbyCDCaDQFPfhrByKYNACI1vncAtg0B6icYJRjCDQPIkSPxpMYNAgHgx+sQxg0CplwkQUTiDQJmcuDXeOYNA46VFheE9g0BK01qAPkCDQPKu8ZTidYNA+rZ5Led5g0Bnauqe232DQNLf2onigYNADkoPNkeDg0CuO5mWWKCDQMIIPHztqoNA+FbZ2b3Bg0A+xzHq0y2EQMoTI0zTMYRAyttGcHAyhECL/yfBMk6EQFd8bWc3UoRAgr9oPf9ohEAu3f4s1mmEQDYYy+j8cIRA4bNz6Md3hEB5zVNZiXiEQAapZVL4eIRAyMphFHZ6hEBH3EtLb6KEQMVOspIfpYRAQuoFNs6nhEB5pSD8462EQFzov3xSsoRAgMwNAkO2hEBiW4yAV7aEQDlXpBFHuoRAXNnkaxrNhECY8G85xM+EQPTaJw9w0oRA2K5Pw2nZhEBwSr4IauGEQN4fFLhi6YRAsoQk9zXxhEADBNSeYfGEQGjEz4c3+YRAZDQawVr5hEBPsWJXbfqEQP/gyIw1MoVA7AWo8f9RhUC0HRQVA1aFQKQVIGWgYYVAEGZWU+pjhUDk6IWroGmFQLS1DsOYcYVAyFZlpLRzhUAruZQgmnmFQL//mvBJnoVANVVLW0qihUBgdEGzo6aFQFlWZlyoqoVArqdHpaFWhkCMR3qipFqGQCbeWJWnXoZAzl0j4K1ihkCLOUEy/42GQJIPd80DkoZA6r+1Ryi5hkBMbRoXUBKHQDNZuERsFodAr+c72G8ah0DyQmkEdR6HQBiW4NOQKYdANpj/UpAxh0CUDISHijmHQIycKw5eQYdANsRjxgSeh0CWH4W+xrGHQBwz0O7GuYdACPf4RcDBh0DfY3msvsmHQMsn1slwBohA6fq/s3IKiED+EchKdQ6IQECcU6N3EohAYJpuEFsziEAtW/C7xquIQHq/8pXOs4hAInYFrdS7iECc1lNhlPKIQA== + NrgMGZxjYkAtECBNt2JpQFRnpVdMhW5AcQ5nZb5zdUD2+5qEoFJ4QMwasbCBxHtAjl7xfacxgED3kdlwgpqAQKyvrWj/wYNAIJJgQJXSg0AgwU5qQVuHQGYCjmB3wodAIPA8lO3jikCTCDMG2eqKQILzC35A/I5A9jX9ImWDj0BBEf1TdkKRQIrD3IbeiZFA00UdU//lkkC9AD3rkQ6TQE81XeoaspRAboIkYLsalUDumRt1Ed+WQAFMwvhg/pZAgWO5DbfCmECgsICDVyuZQAF7sCINh5pAIMh3mK3vmkCBkqc3Y0ucQH3xZ5Tp75xAyKZWMnkvnUDGc6hgCkyeQEi+TUfP855Ao8XPOjAIoEB9atmqCqCgQGNRS0Vb6qBAxH6IpSCEoUC83H1MfhCiQJWvRs8+lqJAufBmNU9Eo0CvHjC5nlajQKt7UDlqBqRAh9+jc7NcpEA2vbmigtCkQHlqjXfOHqVAB+53zKDipUAErPbg5uilQJIv4TW5rKZA1dy0CgX7pkDruhM93NKnQJVoMBUw3adAq0aPRwe1qEBDfSgTTt2oQM6+kXxmp6lABNLBTirbqUCMtjFIdI2qQF1d9FVNAatATEKtUp9vq0Ad6W9geOOrQHZ0omebqaxAP4Rfv7+1rEA2AB5yxoutQP8P28nql61AwYq+ctkZrkC/m1bUFXquQIEWOn0E/K5AfyfS3kBcr0DtUDbCExGwQGxZAvMxEbBAf3FG9RtosEDYOTxQPJSwQCu333gty7BAhH/V0033sEBw/C/5NhKxQBag5QZWTrFAHELJfEilsUA6Kj0EYcCxQEzv6IJm+bFAiCID2lIoskCa565YWGGyQLjPIuBwfLJAvnEGVmPTskBkFbxjgg+zQFCSFolrKrNAqVoM5ItWs0D8168MfY2zQFWgpWedubNAaLjpaYcQtEDnwLWapRC0QBT+gu2Yc7RAkwZPHrejtED0w8ByruS0QHPMjKPMFLVA1In+98NVtUC4Ed0j1lu1QLRPPH3ZxrVAmNcaqevMtUBEHbQs/S+2QK1wlbPpabZAJOPxsRKhtkCNNtM4/9q2QNAoizUkNLdAbDKjHgZOt0Ay01dTErO3QHxuJLk1x7dAid1TUiEzuEBcNGI+Szi4QGmjkdc2pLhACHr7wVzLuEDSu3DsRS25QM4asPZoMLlAmFwlIVKSuUA2M48LeLm5QBEiGqNf87lA/NNDQIQeukB9AlQAana6QHWZOMKRf7pAB7pI9ZnWukB2I602ehm7QHDSJwqpX7tAImlGuousu0CUXH8HtNG7QAIvhD+hHbxAQKIYi8VkvEDi9MHEto68QCBoVhDb1bxAdBXS977lvEAyLQKP4A69QMsfzvbNZb1AEvM/FPZ/vUCr5Qt849a9QPK4fZkL8b1A0n67HiFivkBXK6X/9Gm+QDfx4oQK275AfsRUojL1vkCj0RziFF6/QF3AJIg5aL9A7+A0u0G/v0CCzezHG9G/QIk1RlymGMBAsUmVphghwEBf2BIeL2LAQOc5MtWdYsBAwihtOLWUwEDXHNGXKJvAQMf/b1qz08BA7i3rt7zUwEDKb2iHNAfBQADzljbCDcFAE4DwoLgywUAJMVGqR07BQHbQSrs+ZcFATHMXfceWwUCoiEHRUavBQAjWET5Ox8FAS6tpkdbOwUA= - + - jcCLRBGFgESIbrVF4X+fRCNFPEcfY3lFB9mSRqF2EkVayRtH9QbGRJmK20RrC5lEgC/BRL5Je0XzlnhFjWW2RMLkY0WAo6ZEdy3oRF4vuUT6HSpFa7JGR/zJ00Q8FnVGvk+pRfYRsEQe0qhE3A61RBMB30Ro6chGZc6URHPbAkWTaFRF9/LURHZKwURJ2ZBEkTiYRegCD0Z+tbFEbGVNRZ7nokTibcNE/OGiRPxBS0c6v49EYnl6RT5GlUYGDsNE7f38RCKv0kRGfZBESlbRRKfg9UbAmp9EMMerRLif0EQXrBpFmnhVR1d020TCTjdGYG0ZRoKbzkX0KfNElHAbRbHvWEX2FSFFhjQIRQ6uh0WRus1EhDX3RF0/l0RT7YJFiBbYRfF6jkSFDNhEjeOuRFEJMEemTa9E992JRmHKEkVHt1FGhJ3iRK2/o0Sa7wdFPBQ6RRG6z0TsNchETAPXRbIJB0hOPItHKZ2TRUmoXUUBe4VGMWuTRA8hTkV5fI1Fgr+ORNuqSke/EF5F1q9CRs9XN0Wier5FOWqVRc1LaEUSA5JEHhenRNIxQkVvzatEHRaSRLt0BUWFj6ZEcFquRJqkeEZh/LtFN4zWRLhioES4KR5Fj/QTRUTBiUQZ4ZlEY6ULRVM/oUSgLo1EBEazRcNg9ETKeDlGkaO8RH2SAUXaQghFM7LuRYg1VEWKbwhFU3vqRapHYEWITClFhlWsRBHWAkX+5BhFqvg7Rb9Pv0QK6yBFrTUTRqGelETksPNEsz/iRSqEBUa5Mt9EejqdRYtiukRXv9FEKJZgRembhURIsspE5NGARFPajURuXqxEGg0ARZO1lEQniy1G04DCRQemlkRf/s9FyHHzRI0FpURLSplF1RUSRoy3ykWuoL1GdwYdReZPmkR6gIpFXSmLRGU7RkW3HYBFqtkzRUQpQkZv2qlE+8iVRBRsHUXUzV5F7x/SRAqnBEUgTBFF7aGfRZjrw0Rzz09FhmuVROMjFkWtkdxEOY+bRe8R3ES3k69EwgF1RoP0AkXU8OpEeWnmRIGw9EUSje5HHAqjRqo4pUZEEz1FKXJORt1ctES0GixFVw3sRDA8hkTqTZNEsf4nRWXLt0R7tptEa8a+RNnxq0TAfr5ENzWIR1TSrkR2fgZH2nagRRkankUP35tFni5uRbr+2ETpS+ZENaXpRMZJQUdz515Gp7ImR/JbPkbVpjVFaPuERfOzkUU+R7NFG2UURdVsDUVCy6tE4ecrRSvXY0UMUKdEcjSrRAAfJEXrgD1FRyo5SVDHBEXERQhFcFkVRRMGNEjtUepE36ViRtLbtURN8+1EhohjRRiBU0VTDmpJxBorRa8kNEW/6sFIm5m1R952O0bGuaJEoJndRBmRakUI9MRF86XhRD4muUXEB+lES+ttRn5p8kV8F79EZWqWRBgW3kVLE5NEbw4PRcFSi0X3H+1EKplwRQEcB0VVmDtF1j28RZoksEVuVuhE6JXCRN1GskSOpDxFww+/RxPTlURtqL1G/3jHRHahN0U2iblE/yCkROLmsUSjWZxFW+TGRv0ZvUSrzvRFBMS3RXagS0W89qZEKYNzRUQI2kTMH6tEULevRCrM0URk51lGOQAbRnoPM0Xu8+NE4rpSRWDEjUTnnPBFYkn9ReifPEUrGhFF3fFkRV6460Tmxb1EiCIlR8ry2kauCwZG3VqjRe+wwUTEfIlEKX/pRFmBUUXEUtxE3hKKRnP0n0Q0HRxGXBgRRZ5qukXDNoJFM91kRfS4WEZ8Po9FAeq7RVLKAUVA9pNF2jmiRHzv1EXVYMlGJkpARZLvI0bOaChF+YegRJ646UTZFL1EYlvnRLd2mkVYzg9FZiWkRHrXoETtlpxEQrWcRqKj60Q3LTFGGjDnR3HaxEXgyJ5EbfCKRJvRl0TT/bFFUqHsRLcb3EYnOR1FYRauRtP1k0TqkoREQiV/RaXg1EWRVSdFnlCnRDN2d0UBFrhEHHWXRNdh0kUBqYxFYQiERPYhvEQPsZVErBXHRGb4zUTniiVFoODRRYBYF0VdVnpFaYMhRilmBUYKNUFFQZeURM2qIkjfJ4VHYF64RPoIgkYLmk5FxX25RMZ5XEZf9ApGa4QXRTXQskSoDaNE3jT4RNh6g0S+ZhlF7vzCRM7JKEUNAKtEQbScReLEsUS+FSNG/NjDRHxjWEXswd9Et4UPReE7xUSbnJNEB0ldSC0O4kcFGAZFZhI2RsSVc0b+0dFEHq/QRViKKUW2k5pEIQ0HRYdyaEX/YIBG8QlERfc6r0WYfwBFe1AGRSuJO0VvUOhEXeKdRK00gESe7c9F+8eTRGmLBUXelSRFWwqfRHXOmkR0+IlGfKpWRoaBiEQ9GKREKay9RbrzkEg7gQVFlwKVRHWsAkiDEwNFzqiiRMUtlUe+tVdFXOCiRPV6Z0YxddRESr6HRH9lBkUeTcJFsFwgRR9cBkU+KpJETmUqRuvSfEXnA7xEIe9QRYoHb0ZQyzVF/SGXRJJO1ESiftlEhNmaRERRt0QZgiFGgTh8RMiumkSD3blE6rcERROKAUUUusZEOqecR3v0aUfLKaRFQsjwRrTgDEZOmENFBp0JRenl8kSLOxdF66LARJlanUQOd7BF+prsRMd0nUTb1n9Fc0MMRWnp90ZdBHdGbyxbRd/Uz0QTWi5Gso6CRYTF4USyQ5dE9FK3RJedl0R795VEcytLRQ200kSX5HREwn/FR/QBKUclWKJEmxDfRMyLuUas/hNF3qyqRTrRv0UH1RJF1AMhRdXayUYeDy1G1DaCRXlcyEUx0JdFqIr0R2tIakfX3v5GXV9URari/ETAKApGOUhGRjE+nkUnJjVFpIXFRaBAsUR0UrNFnDsyRY7YzUTa+gxGcJ1wRd0t50SV4BNFDZynRL1h5URVd4tEaVmnRHIMrETbjbVE13WsRPGjekWI5idFAl+5RakbsETXbfhE6/m4RMtLikTGAdJEQwgERdSQeUWwvA5FhBOkRARyoERTvkZFBQy/RDx6B0W8KdZEleLxRLFTrkRMPelEDFDtRgxlXkagPQ5Ge6B2RZ0TGEWA6QFFnx2PROQCCEUD+K9Eq954RWcKD0UKoRtHXyOmRA2AekbIew5Gw93YRLEfg0VfXydFCPWURHfF1kTyoa1EHWFiRr54J0arlGxF5oK8RI9aBEUtOAVF+KipRGRaskTQ2FVGUrjARd1mJUXOmipGIdymRX1yCkUAQolEDrb6RN1RFUbXRIJFRgBlRT1C4ET6OOZGbw+8Rj19BkbksyFF/J/ARHetr0clp/lGXN7DRSjTqkQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - olJ2m27BckABURoSUMJyQNooVoanwnJAg7/QRuTCckAcgmCeOsNyQK4KVOPDxHJA6n5KrVrFckBCakq5AchyQC/3r2JczXJA8kUDGkTSckDw0nCppdJyQIlrtirT0nJAJJagfEjTckB45h7ReNNyQGwpFmb+13JAkurPC87fckBg1y/ut+ByQPQ3N61O4XJAMOkpfP3hckAX02FMUOJyQIou9iuR4nJAZPMPgyXjckDAoY2EyvFyQK7MyqNX8nJAlINmr7bzckDAtYagovRyQEYlzuTC/3JAlN4DTGMAc0AaIwNT+QBzQLo/T7eNAXNAiMQJ9c8Cc0C+04sR+wNzQGZnpn0JEnNAzSLC+rwSc0CIuqUdBRRzQPlj5NhMFHNALcCht3kfc0Cat0YaoyBzQKzT1Hw5IXNAoug1XxEjc0AX1KbdOSRzQNwwpeDPJHNAwgeELEsxc0A88QSJNzJzQFRoycM3NHNAWi2u5Ns0c0DSYYQruD9zQGRPjpdAQHNAivy4wuVAc0DF8zpfeEFzQELLS9e6QnNASt1ZxXpEc0CPrteMEVJzQAgo1MfZUnNAudvYa0RTc0DuIYPNpFNzQPR1h1J4VHNAFFr+9YhUc0BjAFKximBzQFKzjw86Y3NAQI/bLs9jc0D8wNoWLG1zQF4TOTJTcnNAHkgDKGlyc0CuVPFShnJzQCJn9ea6cnNAcMh2ebZ0c0D+WUyOTXVzQHjebyBsdnNA/sXZld53c0AHO1FMeYBzQIHnuJmkgHNAGq9w3QuBc0D730wYXoJzQBidc56mgnNAVef+QIeQc0Bwnr6mjpFzQOEzYstNknNAQMi8WWKUc0CCE0UA+JRzQKLBaRW5oHNAsqlwQE2hc0AJjqelWqJzQP1+IjzmonNAIrgIswWlc0AixOx31LBzQN6LMr8Ss3NAse3eh6ezc0Czd81OD7RzQJABvE/3wHNAEvvivs/Cc0DIWJIkJcNzQM72UxLY0XNAGNr6kPfTc0BiED7s4tRzQM9kPwGl4HNALIUk+Dnhc0D0swFNZuFzQEF+/bgQ43NA5E7XsX7jc0Bwef8yOPRzQOeGnOtD/XNAqLYPRuQAdEBw/KAceQF0QNa7PrCkAXRAfdjuCp4CdEAy+fOE9Qd0QMDeyZmJEXRAQrO+c00TdECdX67oSyB0QMrXqTu4IXRALkCPELskdEAZ9KtxVDB0QCjbxmddM3RA8Jv8AadCdEAd2Ale91R0QEghv9SNVXRA5oJNINxXdEDHZ/QTNl10QBTaise3YHRAvYAUWQlidEDSoaXxj2J0QKI+RcYPZHRAgbLbK05kdEBH0aCp6Wd0QGdvwAQjcHRAGVBRkUFxdEDeufSiOXN0QBQlOfw4dXRAjiddg0SAdEBMfkgS+IB0QNyGxP5OgXRAcD1gy82CdECy4GfEJoN0QKDfJ/cWkHRAPCD/p2aSdECW5KWBL5N0QCg/SpRRk3RAxgWRMu6fdEBUYz9G0aB0QDqYfqG7onRA/u7H2xCjdEBKuzzcb7J0QCg5zsXJt3RA1GtqjRW9dEA9eBbxJL10QMebrFDiwHRAyG7eOgHBdECipiJ0esF0QD5eLQ/swXRANiYoGiPEdEDmLLO9e8R0QJAihk24xHRA/DkjgfzOdECw/Bk5z9R0QORih4S44HRAmQfsP7jhdEDM6SLqTuV0QLDyTd0F83RAmBfbe43zdEAeK3YNZAF1QAJBDqVdAnVAkA7oAJkQdUBhlbp4aBJ1QKMs7AwjFHVAu4I55Z0idUAZfOrk5CJ1QCLr8wPNNXVAshQlcPk3dUDaU18cUz11QDbPOxuuQnVALqDatShEdUDMIYdZ2EV1QFydTp0IUHVAYJ9uV3hVdUAa7BYLD2B1QBJI+cg4YXVAEG2W/GVjdUCugKsIeXJ1QBDC+HB1c3VA+j9pAY50dUBeRodjeYF1QHZGSuatgXVAXGK1v6aDdUBOjBh3nIR1QGe2J+wKk3VAXAClyLSTdUDH5qE6E5t1QEOPcuFuoHVApp68bJKgdUBYQG1QuKF1QOMuCvV8s3VAajxelWTBdUAd0Jzz+MF1QGUP0zLM03VAy4309eXfdUC1U4fbB+J1QAorR9Cr43VAqOBj+TrldUB0Q9DPTO11QMNhdimn8nVAyBloxEgCdkD4Nh1B0QN2QDT+DFoMFnZAwEm8pIgidkAwtFTskCR2QBYkzpdLK3ZAHLI+iSAxdkDLtc1WUzN2QHLa6emdNHZA/nFDkh1BdkDCfavBmUJ2QLSPTefIQnZA1tPoUnlEdkAkdfhiEVF2QI3O8vTNVHZA9IqCMFFjdkBUEVxV22R2QAme2hf9gXZA29kEjZKDdkAisDNmt7B2QMoMRkrBsnZA8tNUpnmzdkAeL1hUDbR2QF7isjpPwXZAvtxgS9HOdkCologPgNB2QFzwAJ7y4XZAfwrqcZLzdkDJ8x0yMwJ3QIKpaSFLA3dAJ7tvl1ENd0BNtPn7ARJ3QKPQLsAOIndAtBYJuHQid0Busn2BqS13QCz+/lGmM3dAUhbKaQ01d0Dqil9nJD53QAKaRredQXdAStEnsn9Dd0DPShwaskN3QHFb9IsbRXdAgL9xqUxRd0ACMfDVklF3QIG6kzsrVXdAoQKLDdlad0COKc9TkGF3QCCqvlQ4YndAB5xX5tZjd0CgNAgYKG93QBPMwsY1fXdAVh2x+HuCd0BAv5r2C7N3QLLmgFlS8ndA3S6IRyf9d0Cy9QeoR/13QDzwvDqhAnhAtCWfc+gHeEDGAEMq/gd4QNwpZi1CDXhA2A5y520ieEDYdY3csSN4QI01ozfBK3hAHF0ztWg7eEBtd/MrcEN4QO56MYwSRHhALt++03pFeEDhk4Jjdkt4QBCArUfLUXhAoDy8I5VSeEAwQVskH1R4QGQLb3iIVXhAYbYKS/JXeEASK7fn+mB4QJVaL1a2YXhAqE1cirhieEAgFBPC9WJ4QJbG+GxrY3hAl3EYfmZ0eEDdYgxsjHR4QIqvKai5dHhA6pJOrKaBeEAgiKKw6IN4QIVSkqKahHhA+EZ335eReEC+Vwp4qJR4QDqaMYO4pHhAToXDZvuyeEA6RcECrrN4QJjUbhvUs3hAVhsn6QG0eEAJCP3Os7t4QCl5DLvZu3hA5JJMjM/AeEAO6m709sF4QDpkfhHhw3hAIjtL5ufLeEBH5RpR7tN4QMoocGS31HhAYFTVwgH0eEBLWzRcjfV4QHDVOj+bBXlAaBY3htUheUAMmZOjviN5QF4sHcCyKHlAhNAZQwwueUAhPrpO4jF5QOltgRRnM3lAIh6cwOM4eUAg2ybai0J5QJryr6r7Q3lAQGIPPcxUeUA3DH1scI15QElzYGfJknlATHYZb8CyeUAIWhwOjrN5QN4UTh5D1HlAd9O4Wc3VeUAwKb2FUOR5QHyidtH6BXpAuhhyUUIyekAWhAnVDDV6QGSTQJtNQnpA7syMyBpFekDhYKgwKVV6QEnfviuMcnpATzI+DKyDekB7Y7rqDbZ6QEgFR7H8w3pAOE+b0RrGekB/Kr64DMh6QJTJqjNozXpAAl4ixgrUekAbr1wpaeF6QO9ErVY57npAcHhq8BTxekC9btwUXfF6QCqiYNdL83pAiotDLKX4ekAK1WJX/v16QKwW7E18BHtA8hhi0icOe0DZA7TNwxJ7QKMZoi9NFXtAKYTsgB4Ye0DkbM3nWSV7QIw+juduUntAqCPoa+Cae0CJqTdbzp17QJ/57FYmo3tAy3KrCGSoe0BInl0rg6h7QL8u9/2trXtAKD8lLuKte0BhtDuCesZ7QFDsc6G90XtAdMtYnSbke0CuKV2jl/F7QEZzulGM9XtAZGCFcpABfEDi2PmS2gF8QMDsRTxnBHxAvCcwiJoFfEBGY5BBixF8QB9IqnfREXxATMOrjxcUfEAXlogh6Rt8QNz4Q78eHHxAksAjHvAjfECSjEm55i18QMT5UCfNQXxAw47rMlJIfED+ljcqYk18QJG8WsSrTXxAAvOLMdtRfEDCtGXiuFJ8QI5jh4DzUnxAPgmY1AxTfEBx1a+rBVh8QHDBvpZNWHxAADED1CtxfECMiCFLQYB8QM69L2r/gXxAPL/S5VqZfECKKaRxs558QPaFL1HCsnxAqg3nbg22fEAcvYUwa9h8QDa/tE/32nxAoqlVucPdfEAI4UtGWOJ8QI3cELwO43xAglP0xsLjfEBGMrrpaOh8QPqGISkV8nxA6OGHLVXyfEBW72iUdPJ8QJlR1lwR83xAzHjdMQACfUBeZD+ASwJ9QArSSTZ2C31ADtvQQ0YSfUCFje33rxt9QDg+uhxCHH1A7l05LoQefUB6xwmhPSJ9QFB1XAS3I31ARySNJkwkfUBDGNVul419QNpcPRvtkn1AOCw4W5udfUA4VTdv4LN9QASy7y3ou31AhQgO0jXOfUDLZYop2OJ9QAeMWix68H1AekonKNLzfUASAKg3kfV9QD5EqL7a+31AvlwkkO8dfkA6HPyOSCN+QHSe0OSlKH5AEaIMkj1zfkBlM9wtuHt+QNoSgMK+g35A8+Z23nWHfkCmbAYBzIh+QAwbwX3Oin5ATIEhhsSLfkD24o32Wox+QDpXoB3Ok35ABmw2kWaffkCO3p60lrJ+QEhxlRJ1yH5AnrEFfs3NfkA3mJFn29J+QOtaU+oS035AZnmzsC7TfkCmXosC6+9+QKgstJSD835AUr+Wqh4Af0DmOSuzlgN/QHXYAiA2GX9AxmRt4bobf0AkIHKh2Vp/QMAMnla3cX9ADysn3bSBf0ACNLCbpoN/QCym8a5jkX9AW/ehWGGhf0CEa84bRKN/QH5u9nqZqH9AioWPj1Wxf0C4+1R8vcR/QLG0/hPly39Aai8/DezTf0Ax76fWkvt/QJ5VTqTmAIBAttq/QMwBgEDIBIfc8gGAQCfG+7T7AYBArn4tJtAFgECuf+7oigmAQHfsg9DFCYBAcud5rtcJgEDiGp/6yw2AQIx/2Ij/OIBAKZ5QUKlCgEDImkOTN0iAQGKpHH33SIBA6jBMi+ZQgEDErz96FFGAQBok30I2V4BAmFgbYuZYgEB6QWGsDlmAQC/UG//iWYBAzgKWi0dagEAWV4RX8G2AQE/OM+gob4BA+KmmcDxwgEAc1P+FH4+AQOY5N5Ebl4BANnheN7GkgEAasMBjh6mAQNdJVgoTr4BAgkexEQa6gEBKtWbYsryAQAxpWbpfv4BA0mp1sFLBgEACv4D1DMKAQJnjAAQjyYBAJZebv1PJgEBb/PsaQcqAQLe7OGUIz4BAzxea4C3RgEB1W5auTNGAQGzcqE9H0oBAyjWnt0rZgEB6UgTfcNmAQGi6V4VF4YBA1NAogEPpgEBCTrb4Su+AQCTa6r0984BAQJArbWf6gEAXq66uP/+AQLpoULs/B4FAqCmTvGgJgUDyRf7NPg+BQEs6IQE1H4FA2G0aNDQngUBjHBOc7i6BQDWS9YsvL4FABuGIWb8xgUBTloBdKT+BQBLpdt1gSIFAdMr5TVlYgUC1YgH5p1yBQIzyRHoMXYFAhrmn1YRggUBoDvLTo22BQB05rq1nioFAxrbyjqqLgUCSdJr9E42BQJX4bepVj4FAGAhAxsCPgUAnsLr+bJKBQJBYwlUYlYFAviLQSVaXgUC2wQ9zVJ+BQM9TANjooYFA/A2kz22ogUDMqFZW7qmBQDKuhqpKr4FAATf2WAaygUByih/kSLeBQIghPbB+04FAUjoIc4jlgUCioIt6/+2BQMpa5a0C8oFAxXvWKLPygUDyjOD17PmBQHRwITHw/YFAPyLvGeIBgkAwudeZ9QGCQERVIVvqBYJAruPfLI0KgkAa3eXB2BiCQCortuPWIIJALrm1G88ogkC6mqR2I1iCQL68DLejW4JAUrllnmhggkDkL6ccgWmCQIjNhRgGaoJAuK6MRANzgkC781OgQ4mCQIh+peJDkYJA9JUrOTyZgkActC1wD6GCQKME20Y7oYJAmOu+kAypgkBwN+paNKmCQCNx1Q0IsYJAvNgktq3RgkDadLjVsNWCQD5feYak2YJAoAo5m7fZgkAcZeZaftqCQGY2zM2r3YJAuqLBHYLegkCePpd9/vWCQCLrkNqv+YJAgn7gQ+MBg0Cg1bXWeRGDQHJKrkp6GYNAjgsvXnMhg0BomD4UjCGDQOKR6gtzKYNAae0W18Atg0CboeMnRzCDQKqh/MtpMYNADNqtmcQxg0C5ZUSCtzWDQESvV+jMNYNAgEfWjt45g0COnfSb4j2DQDCO+/E+QINAsu9QfdpBg0BHTMhS40WDQPABK7ridYNApBfmoOl5g0DTwPzB7H2DQJpsMU3ngYNAInNuFkuDg0DNVb/vWaCDQIp7jay+wYNA4xvCkhHSg0AQo5BtlviDQOBW8soCEoRAwqkx/NEthEB+kfgS1DGEQDRphCLyMYRAkNua3HIyhEB67UXj8zWEQIYcObozToRAkkpQqzhShEBi9Gxy/2iEQDMYBK/XaYRADcvKW/9whEDu6PdxyXeEQDPCD5P3eIRAJMBRKS2OhEAqeLDdcqKEQLqWr4MgpYRA0JcQUbinhEDe4xHp5q2EQEYaV2hTsoRApp9r2EO2hEDYLJpsV7aEQExPAVsYzYRA9pLk6sTPhEBIj/hWctKEQAon10cY1oRAQBx+h2rZhEDZCx9XauGEQO7lEcdj6YRAdmAEWTbxhEAs4Yy/YvGEQCDLGma+94RAqseUBTX5hECxz690XPmEQI7xSaFr+oRA2/IMrC8BhUAOj64uODKFQIgyVm0BUoVAPAe3+wJWhUCeOhz+BFqFQDjtVKqgYYVAMOTwIKFphUAcgOVomXGFQIw5Fkqzc4VAf9sP/Zl5hUDBHLtEk4GFQJxyts1JnoVAuhD+2aSmhUDD5ciwolaGQLqJjSilWoZAEl+FeahehkCG3SLS/Y2GQOjfuE0DkoZAbypCKnGWhkAb4wvsJMGGQFQmON59EodAmtfWz2sWh0CCGRisbxqHQBUP50xxHodAUt82yZEph0DA/O9AkTGHQCi/EWOKOYdAtWaZ6F1Bh0CqFMqQjEGHQPzOGsKJSYdArBgMgcexh0BoinUkyLmHQM90zuq/wYdAdGmKGsDJh0CoFnOdcAaIQAap4d9zCohAuLRdVXQOiEDmb3w5dRKIQHxlp4bHq4hAWrjAgc+ziEBYvod31ruIQDej8IaX8ohAHXtp85r2iEDCoa43nvqIQCJk88Wf/ohA + NrgMGZxjYkAtECBNt2JpQHzKEHuiRG1AW7ZEKKkyckDeYiTgc+J1QH2/Rlkso3dAGQWdtSMDfUB9HSOthLR+QFaKl40TmoNAiJZaCcRyhEBWuYW3vyKHQKbnFvQbA4hA570GUAHbiUB25mRFLaOLQAoV4RCom4xAB+vl3W5bjkA1P2MT9NOOQA== - + - 9nysRUSh1UR98RpHD32SRLl2I0Wef3BE8uqfRImXX0Zl3jRFbScIR6QhW0RwemxE11aZRBz2r0T2HHpEJXsSRb4LE0VAHK9EXGVuRPCCg0WiT4hFJTj5RO8gPUUevnZE9qa4RNJ4xESz7a5EWsu+RCYHpkRR6I5EhjnORC/qHEeMzp1EOJY3RjdCn0WNip5EFuDPROZvq0Qaoq5GBpDHRMJHmERtM8ZFULTVRAhlk0Tu/5VE/peURIWQn0SiXYlEg67kRIcMiUVu5sdEeSwORpFYhkT+OrVEv8a6RCiVK0VmLZ9EK59uRNk3hUSs2npEuBuTRJK9MEf4NZtETPwvRbaefEYowo1EPRqLRO9DPUUeqMNE0c2BRSGR90Y428FENIvhRIQaCEUxXrVEUoU/RSrHkEQgQVZHKKQPRbFGTkYS5CNGD3x9RAPFD0aWjd5Es2AERQfUiUTYSodEGcOaRdMQ8kSkmtZEmD2mRfV3BkW0HDNFoGbARDWtikUJ6LBEePHzRRFsY0T1IYtExe++RIYg6kS1mOJGBHfWRGongEZT1c5EuBsFRlEUF0V6UJhERYcMRbzMykTmmilFBBOxROdnqUTN5nRE2OczRVNfykRGYNNE7EfSR2WIVEcrf5hFugFiRZGsU0YofohEzQrQRNqOBEXGiZNFVTw4R/ZiKUUmY55E+QQ5RlPVYEX3ABNGO0SKRJ6yjkW1M6lFCc3kRDcqSkQ7l+BEFpYVRa2k+UQWHuNEFxMMRX+SaEZ9+HtFJJ/pRLIjjETRf5xErxpZRHWvjkSFrIJEcAy/RBYUrUTggA5FNwqkRAdzoEQVkoJETC8kRW97gkQrIKJEK062RTIfpUSPBT9G/V62RAGgyETagN5E/+ihRcsSIEV85B1FTye7Rh5yEkZMAkhFxNnsRGlElUTRObdEySCyRIYCz0Sx8u5Eg7IdRXj3uESmhWtFRooPRtTUHEWPIeFFQOQRRi7h9kS/vnhFDJq4RNW/20S8BrxFi8OpRLLbnUTvAGVECRm0RJ+B8USEwNlE6S+lRMafEkWdXo5ELSqvRLJrG0Y0qzVF5/vHRZTKsETXvYNEKQF9RUdX90VDm+lFQn24RqXW00STbQxFtuCFRTycsESQflpF1OWTRY6aT0Uo/C1GNc3ARDO46UTST3VETB88RXHTdERCjexE35gLRSy6pUVwYJdEfhYqRflXmkT5cV5E1DxERfAH2kTSKnVF9aymRORTkEZEOEtFNyh3RGkIeUTX6stFkvTsR5KTiUTqr7NGsxuZRDF5kUQu/LlGZ/VyReB2UUa3V9ZEZAasRC6nEUXfXZJE8vKDRDGFUkWZU5hEw3a6RJ99g0SHh7pEU29vRC7eYUcdygBHTKKcRWHoh0VB6L5EaBKORSVADUVwmwZFcvY+R+DKUkYldgJHCV8wRmru20Ql1o1FrcGDRVZMk0WtHs1ETf2+RG0NEUXh7h9Fz3aHRCkiRkVezt9E8yntReIuOEn3pZdFPiFCRcFxoEThvDdI0GUXRQQShkbY/ZpEtR+7RHrbrUXS2ilJIFaJRWlLM0XqjY1IiWalRJxvr0SxG2VH1sypRUqgskQ4Kw1FDK95Re+o3EWbQKZErNl3RUz2EUV8lFtG3CLFRdySoURyW1dFV7auRDdgjET1zLJFc1mKRcOjZEVdgUNFlhpTRQp1y0VRD8NFSO+5RCdnz0SKe55EYQAcRTUIvEf4eV1EfVu4RnS38UTZj4xEmjHsRLO4vEXaTadGIPqcRCP270UnioJFMRF1RfMV6UTq7ZtE7sC9RPq+nERMG2dGgFsLRnx16ESGMD5FSJukRPzzikWUXSdGyBoLRZRhGUVBrFVF+7LgRB5yJEelrbxGPohzRVRUykUIkc1EtY6nRMUHskQkY0RF0KWSRMsHokUXYX5GpwWeRCj9S0b1aKxF43bDRXMJm0Stj6lFAddDRkxap0VADgJF6D4IRSKYH0UvUrJFaXefRqcusEQgsANGopKgRC7RmUTKSThFq9cRRcnZqkTFkwdFBWjHRIerfURBQxZFWxlrRfysBkUM4gpF31KKRObogEaBmsNEGOQkRnTz7Ed8E9FFZoeARONyuUVZte1E86nXRhVuXkXnP5JEKl0bRUUusUbTV3dEaUaNRUWj3kX6TG5FKqysRNX+xERwzENFtTXPRDS7rUWtDd5EgE6URGQFiEVt5OpENiFsRZiKkURtEm1EMv/8RcheI0W/VohFIuwVRl2B8EW7/gdF7AmQRJUEA0iDw4xHGRN+RC4piERdndlELNmYRpVshERmtTFF9eocRSN0BkW8+wJGj4TyRYyppkSTFSJFRCy2RNV80ETntgBFztKMRFpaC0W+KfFE4OCqREknoURHPoFFSdyRRPJjkEQGDhdGq3ogRUuslUXTrolEVYIcRRhMrkQT+rNF0Do6RbbVbEhRiYdEGjreR8wYlUTGHptEhzuxRobjkkT06rBFbWNWRXpXH0X2oBlFWsKsRKZJnUQlNQFFgHkERcy4iEYeWAtF02r9REFkn0XZUppEr3qfRGF550TtrQdFDegrRTUonEWesO9EX+2rREnl90QDtoZEKrCVRqhrN0bdAJRFgsCHSHfrLUW07otE0Cv+R4CVhEWxy55EYhfNRJ+4kEfb/l1Ek4V3Rnf3hkQq+61Fa2K2RG7j+kTKQaFE8iCeRDFRN0Z8UmBFzs2tRL3Wa0WwsHRGi49dRdlmmkRKj8VEXiXXRHsW7USgFABGgkLiRPDAlER2i5VEiU/rRCNjEkX+LodHtWJ5RLFTe0cuZ/NFfPK/Rv4Z5UW/r/JEAb4CRW8FgUSJ7tNET8irRFGZeESgw69FUGWLRBRCvESt5ftEmwmmRPQlSUXHO8NESceKRJqIqEYjxVxGvffERHd1JEVmm4lEt5CURFyPMEaslT5F968TRdY1aEWpk79EoomzRP2Pq0RwRudEE2CORL4g4EcSgk1HiMjURoMnzEVjsBNGduECRdELBkV9PLxEwEgwR6nkrUaNVE1FMByeRXs6r0X7tdhEoakPRZq+jURg7q9ExyG3RDqXAkj5kF1HUl8GR9tP5UQJrSdGKORaRjAEXUUEgHtF3UgKRk2aAUXDCe9EEk3rRdwIWEUbeo1E46riRLxVgUR63eNFb5BMRRTrpUTqH8xEu/yqRIoGf0QA94tEEJ17RMC9gEQlEMFEMOf0RNVmq0T0g6JEkw+vRGNTikTSgDFFvyTXRHIQuUWLhOlEbWc7RXKA+USTbZtEhtanRKpGb0XINFVF5tevRH8M1EQ/gINFsQ/hRJzN80RfvDlFoFXTRBcRfETxfNFEvNETRznQV0buFzJGrzKGRRAIjUUjyCNFCLngRAwpskQSyedEgVXXRPuB4kRGyalFQJo5Rd05i0Q/6gdHglV1Rvc3EUa8EcRE9bOVRQQUAUWyJzNFpgCNRFYwVEb0kAxG0feRRZPrKkV3odlEtmuJRKQOkkTfZwhFNMsjRngVtkUm5BRFAnpXRorYsEUROIdFD6eXRN3YHUUqNXdEq6EWRrufZ0XYRDdFtxrNRD/WoUau8FdGBU6fRSfB7ERGiFpHASiZRkmnWkV2cSNGyn/URbJIhEXBxYBE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - qzRbInrAckAa3vU8DcFyQO1r8epvwXJAsmDqdU/CckDlKdNfp8JyQJxqborjwnJA2peloDvDckB09TTExcRyQHZ6veBZxXJAxiF/1gDIckB6hEZ1Ws1yQHfU7ZxD0nJAy1iC3aTSckC2RZCadNNyQDjc6DmO33JAhPB0gM3fckBU2I4YuOByQOxCd19Q4nJAEHBIDZDickD05jUUJ+NyQD7c+iFQ8XJA/8V1ysvxckCHRqgZtvNyQJX4FOqh9HJAKo+adcH/ckCHGcOG+ABzQMjJrbFMAXNACFo/+44Bc0AfhPGsOwJzQHayGkvQAnNASK4X3PoDc0AQaiq4vBJzQJZDLakGFHNAulaFTHofc0BazTXooyBzQAfCOVE5IXNAYskr1WQhc0AyarmufCJzQHH0HmTLInNAhkwlKc8kc0AQ8HfvRzFzQBaUjvxaMXNAaBUxUM0yc0B+kMtrDDNzQD5V/CukM3NAL1dyUDY0c0AyLQgEuz9zQBkOiYjiQHNA+oIWRnhBc0BCEQ8OuUJzQC5+VS/oQ3NAvQtmVXpEc0A2cLYdmVFzQKg3DZlDU3NA+BecK6RTc0B5lHKXhVRzQHoIMriLYHNANi3uKYthc0BjVwczOmNzQG3S6dsrbXNALBAKjVNyc0A4/69GanJzQLImvtWFcnNAsu9U/bd0c0Bn8whVTHVzQAYLiV5qdnNAG29zk893c0ACjeqb4HdzQLbfY9YpfXNA3DfY+3iAc0AIFwd2pIBzQNgyYk4NgXNAgjohlFuCc0Ax65BeDIRzQDYhutk3hXNAioIiO4eQc0AYIPFaTZJzQAAwwbNjlHNAxqD/ZfeUc0CbHmj4jJVzQLp07IC4oHNA8o7JnOagc0C4ImZ4T6FzQHRmwzxaonNAE6dUDOaic0BOQ6OjBKVzQCiVvtbWsHNAvNPc6H2xc0CqDcntp7NzQM8fy9cLtHNAgJYK82XAc0BD1ERP98BzQFDgLQbPwnNAECI54yfDc0C6eQTF2NFzQHIWQ7TB0nNAmyp1NvfTc0Cul/6O4tRzQFJk9rg44XNAXBpg3RDjc0Cy3hzcfONzQLQhy9yg83NAHKWM1jb0c0D+K5mdyfdzQNwtFdxD/XNADH04iOMAdECirD0IeQF0QN+KtDmlAXRA4oLlrJ0CdECFPR2JuQJ0QJfhwtT3B3RA7DL9w0wTdEDCtZtjTSB0QBzWmWCIIXRA0kTDgrghdEABUfe46jJ0QIs0LvZbM3RAMY60VOA3dEB0xLlBU0B0QCe4iO2lQnRALEtd23dDdEAww6Tc+FR0QBSIPRWLVXRAmb/J59tXdEByB7C7NV10QAjX4aO4YHRAWpT6AwhidEBaVpDmjmJ0QBqWuUBMZHRAYkHCR+lndEBYf48sInB0QLoxkKpicHRAiDqiIEFxdECKifBqOXN0QAj+S9g3dXRAxNI730SAdEDEOVK4+IB0QASLU00OgXRAwpNC806BdECDsAE+1IJ0QDELiV0mg3RAUup/ghaQdEAXtCKUZJJ0QCDo3vxRk3RA+ifBee6fdEBzcdTqz6B0QO9wlZ07oXRA0uAbULiidEDVIKrJEaN0QPipdUb9r3RAazjV/wqwdEAATgA9w7B0QLKKR3NvsnRA+oHOYRyzdEA42XlGyLd0QNBM+WUVvXRAkUihPOLAdEA0F+7DdMF0QOQGp8HpwXRAOKCGTA3CdEDhA9mrtsR0QAxE1Os803RAtETUKOHTdEB7tpZTzdR0QJLAaEK54HRAeMWVNrnhdEBOh8dwfOJ0QFomGxtQ5XRAtZixjgjzdED8GbSKjPN0QIykoJqm9HRAVqdgRaMAdUBNFnduYgF1QGTH3Y1cAnVA5Pq0RqcDdUAUfTeFaRJ1QNzARwcjFHVAZEOZxZ0idUA6sPPc5SJ1QPjSa82qMnVAMjfoCs01dUAXNZYu+Td1QOPkbBFTPXVAYomeVa5CdUC8Tb2lE0N1QJQ11FDdT3VA/k3A6gVQdUBsC+7JgFF1QCFEsdVOVHVALPrwgHdVdUCUtDoyDWB1QCQVEXI4YXVAxOy2HmhjdUAlhYi5dXJ1QIhKpJ1zc3VAjDLBUo10dUAmvq0ljIB1QH7hV9h3gXVAZH4sIK6BdUA6hebIpoN1QJag7subhHVAMD+6a4yQdUD7TfpTu5F1QPTlPSlzknVAWX8RxwyTdUB6tmfds5N1QKTMRbYRm3VAnyJliHCgdUDGCotruKF1QJhbvDC7pHVA4JO3MjezdUCf8Dkxx7R1QHy14DnPwHVA0npTYGLBdUAmgATW98F1QLF9dCzL03VAZRzWVwbidUBYox+1q+N1QFQBBitM7XVAwsiHvqbydUDgpJPjN/N1QHSjZYP/93VA4Ed0Q0kCdkA32ggD0QN2QOLiOz1NFHZAICynugsWdkAiQYGiiCJ2QK144kqQJHZAGvSsxUsrdkCOfB1LHzF2QIqWO9mZMnZAZKupY1IzdkBO5dw1lzN2QEZ5DjgeQXZAlZz1vy9BdkBZx1Q0m0J2QFJhruPJQnZAZiWkLXpEdkB9QpXf/052QL4C1rjKUHZA6GZFnRBRdkCuCe6Vh1R2QChhBTfNVHZACjH4VRFhdkCKbCJYUGN2QFeYyknaZHZAo1hLSrFtdkDe+3xYe3N2QGKoIXRqgnZALUSwWJGDdkAGq8lSZpJ2QN4eMqIMoXZA9kYP3DeidkCONIfRwbJ2QB5dRDF5s3ZAFjcnrA20dkBK1bS/1Lh2QEUsKTlzwHZAWpCFMr7AdkAwoY2zTsF2QLJN0swZxHZA/IGqks7OdkAbsBOzkPN2QIGFlRAyAndA+pu3A0kDd0C6CKBtUg13QJmJV88BEndAzv0W+I4Sd0Auqe7nDiJ3QCYTtfF0IndAyHh0dqUzd0CWJ/k0DTV3QLIkhvcmPndA49ZVC51Bd0AWaDjos0N3QFdmtW0bRXdAUckVXUtRd0BeD5U6klF3QFz10WIqVXdATin8v9Vad0BwmIN3SmF3QGDtxb6QYXdAoiYdDzZid0D0qF9A9WJ3QFKeDg49Y3dAzJ6FMydvd0CMZIYhj3R3QPAy2Xl5gndAdIFcNAmSd0CGKn4OTJR3QE0/HiO9ondAcL179guzd0D+4B/XnLR3QJJT5vw7w3dAwmKMX8zdd0C+PuQW6uB3QA/MiRtu7XdAddBmLFDyd0ApJdF6ffh3QMax3BZH/XdA9OpM/aACeEBC/eRP5wd4QMxR+HD9B3hATuKSakQNeECHhgF2Ig54QKHSDqduInhA7RwHaoojeEBAxuY9vCN4QDh7m8/OI3hAmthGPr4zeECwt4kAaDt4QHjCxXQMQnhAOglxoW5DeEAqmDj6EUR4QPpj1U96RXhA+DfpnHVLeECi1cvjy1F4QPtF3kmVUnhANbcjjh9UeEA0En+Sh1V4QBS1x//uV3hAu7gmEEpdeEDGzWoT+mB4QLbWagO4YXhA5RlVHiRieECu/w4E82J4QJZphu9rY3hA5drmM/1qeECjTbQUxXF4QPSUOvPpcnhAP8njJIx0eEChcVhXsHR4QCwXKmzEdHhAzD9ts6WBeEBmrXx0moR4QLx+dx+XkXhAiqYY0qiUeEA/5OfVt6R4QNqWVvjTs3hAtnA9rtm7eEDUAvYe9MF4QMZp+Pfgw3hA0gGPigXFeECyhDWhnsh4QFI/2o/my3hAPvzxLujTeEAbPvimtdR4QNH9/pEB9HhAYJGFjov1eEBEHcR0EAR5QEjIRpiaBXlAYLRUfNMheUAzzZE2uyN5QJlPCu6xKHlA4oVcVgsueUBqecgKaTN5QI2y8HG7OHlAn2khWuI4eUBAuF+SPz55QD4PcliPQnlA09jZufVCeUDCxbvI+0N5QIZOjIGTU3lAw1Fxr8xUeUBiQ1e32mR5QHhmdLBDc3lAfGz/h3CNeUDCsrMNy5J5QOmNdei/snlAtJ9CY4+zeUDYD4MknsN5QBIVIohY0nlAEQ+cSkLUeUCkn4XAzNV5QKq6d/VO5HlAzgVu21LneUDAephIOQR6QG7Efkv7BXpAcxXt7EAyekBkO/6XDDV6QP52rKAaRXpAqsUy5s9LekC8j6rsKVV6QCfyme9OcnpAP4yntqaUekAq2THXDbN6QEGzpGgNtnpA1Rz/+vvDekBQM3yxGMZ6QMAaWQYNyHpAkihDomfNekCT6cjlrdJ6QFYC3MNI03pAVERL5tvTekCCqGooCdR6QCRYPQtn4XpA6jOB1PvjekDV2+cBOe56QPQTRdMV8XpAru9PfGPxekB+7LSkSfN6QIbjKHuj+HpAA0OnLh/5ekD0M/aF//16QKoqONp7BHtACJ/WRCoOe0CA4MllxBJ7QMJ73a5DE3tAxaZ4kEwVe0AgpIrTHhh7QL9YtA1mIXtAUJgQAFsle0AXbCXHxDN7QHwAEqFmN3tApYWHOJpIe0BMUUer8U17QNzgeXVuUntAjMI+wCOVe0C4Ld0Y3Jp7QCA0J5jOnXtAMCVVJCWje0AOr3rWY6h7QEoxjx+EqHtA9Y5Lx6+te0AnOwMaecZ7QORpadov0ntAyJybnwDke0CUZCIkjPV7QFgYEr+SAXxA9AAwgtkBfEBC33/oZgR8QFYg6LOZBXxAeMggcYgRfEAnxVtezxF8QAKQgU8WFHxAK06ju3QUfEBresvX6Rt8QDLuNDIfHHxAqZucMO8jfEDbO3OTHyR8QKK5bajlLXxAzpV5uz8zfEDnFIAWtTN8QEQUVG7MQXxAMv3gNlJIfEA67xcBYE18QHb/eBGtTXxAklh8xPBSfEA1ax1WClN8QK3TOyyAU3xAfFo7gGJYfEAeNjpJq118QDGYL9aBXnxArmV6BwxifEA+qa1H/4F8QIBGAdtXmXxAVLsyurKefEAYyh3aYql8QIjJmey+snxAyh5YV2rYfEAWMXZ39tp8QOyeCaHD3XxAMr7c0lfifEC+Hi6JEON8QC7NS4i943xA5r9UWhDkfEDqor7RaOh8QLjDEaHK7XxALT6tmhbyfEBFf0YKVfJ8QHxxqVsBAn1A4J5RQ0sCfUAxPA91UAR9QKQj5fZ0C31Abk1vOkQSfUDu1nUNfBN9QA67RRivG31AsGZyI0IcfUAcaGUrPSJ9QHW7a0yzI31ADsbt1UskfUD4dj/tUSx9QN+SapafMX1AumehxxRDfUBMU5cklo19QE7vvcjxkn1AyDqiJTWYfUAImOSvkZ19QIKh1fgxpH1AeDRoWt6zfUBaqJLh7Lt9QFS0M2AnvX1Al2ULq+vEfUBO05gtN859QBg5+VaR031AkBey4eTYfUAqXGyV0fN9QJXtbvqP9X1ABKXGttT7fUANl0Szrh1+QP5J/d/uHX5AT4QO+jcffkBI55oqSSN+QH+67tmiKH5Ag3a4anpTfkC4rFY3clR+QETrG2KNVX5A/oZpOEJzfkCIbIuV0HR+QP4/yk6XeH5AVPMG0Ld7fkA+quaKxoB+QNcHzKO9g35AfhyStMSLfkDRnVCSyJN+QJDHoqs5pH5ABU7h8UGsfkCxMOkdmLJ+QCuBOBfiwX5A3taN4XPIfkAEq3gzzM1+QNZcs5Ma035AQBL9+YLzfkBYkSlBIQB/QAJ75k2RA39AQLaRlpoLf0B81r7DNRl/QHujM5K7G39AMr1f28Edf0Ce/jxDGiN/QJbwJgW3cX9AGnc3qrWBf0D+TLNupoN/QHqxTlVjkX9ALsouy6mRf0BWxeEVl5N/QAAnU85eoX9AFPPz7kGjf0CmiqIBnKh/QE4q4c5VsX9ACkn8UeTLf0DyEKs269N/QKQzHJny239AxICfGZL7f0BqMau1ywGAQH4LDCz8AYBA9m6MTcEFgEC+AKG30QWAQJwnJTjaBoBATMFsCogJgEDQFPLLxQmAQPHNbb7XCYBArmTWTXkQgEDYNmbagh2AQKAeFOjkL4BAegiNYew3gEAo1k+E0DmAQBaHOm6hOoBAUfD8pjlIgEDc4Z3j7kiAQAlxhgHmUIBAZPCH9hNRgEBhlFp75liAQHW0KcIOWYBA/jYcv0ZagEBaaPXs8G2AQKa7Vfcpb4BAnKdpZDxwgEC+AxxhKX+AQKHJkLg0gIBAmIEKQB6PgEDiV2gGHpeAQMou1VsBooBASknc+62kgEAdPlYgwqSAQBdv1vw4poBAhk5yqIapgEBcuUPBE6+AQPqfXuYfsYBAfvcLH36ygECcFXkVBrqAQHySzCtMu4BAuPdHmge8gEDgDnJRs7yAQCZz+748voBAK4RaDV+/gEAMgIxNUsGAQICsaAAJwoBAh2oXoB7DgEBd95n1t8SAQAilZL+ox4BAmpiAXlPJgEAmJvA4QcqAQPqTX0cIz4BALCNgxCzRgEDmeng6TNGAQEKzuLpg0YBAtusTsUnSgEDzRl9YStmAQIZE8VFz2YBAHAYZ6LLfgEAUIrn7Q+GAQBzixhz36IBANnuEWkvvgEAMwJ6OPfOAQEHTcNJo+oBAuM1g8T//gEA4qpi3QAeBQNdeYtc9D4FA0kCgbDQfgUB2F+fcNCeBQHSAZ9j1LIFAqa8uRr0xgUCcLBfuKD+BQAFl8QVgSIFANADZzFlYgUAGxavhYX+BQKwUm1tnioFA+/c57BONgUDWcU4fVY+BQPzLuHjAj4FADuwdIG2SgUDkz+A1V5eBQOB+aCtTn4FArkipLOihgUDz+Z48bKiBQMMaFWVKr4FADpTe8Eu3gUDaiPc0kdCBQBcWtwl+04FAFyc0w/7tgUBinQVBs/KBQC4ARn/s+YFAljetD/D9gUBcpFez9QGCQGJvoCvtBYJAJl1zIAQJgkCJeNts2BiCQAvU4PvXIIJArT3rttAogkB6WtMJoimCQNRmuATDKYJAkO5zFsctgkCeBM0DojCCQGpDb+bQMIJA+GuZgkI1gkDdzvS1JUSCQDF2j3A9UYJAARDJxyNYgkDzncgwOlmCQKOVv3VuXIJA2Ub7vztdgkCy4WpLsWeCQJjgmf0aaIJAfaQRIDppgkCKD8pngmmCQLDFR0FDiYJAnkiBO0ORgkD2LN1wtJGCQPcItsy2lYJAOSkuzPyVgkBt+shPPJmCQKQI8DoOoYJA6rWK2jqhgkASmcBWDqmCQJ6kdbM0qYJAdDaAfQixgkB0Tv9LrdGCQARJvqOw1YJAbTAkhrXZgkDQv2BZftqCQGmZlbWn3YJAXKrJaLrdgkDJuRdqgd6CQKqHn42F4oJA+rBresz1gkDIAWe44QGDQOyrquziBYNAtSy7YXkRg0B+vSDmeRmDQHVtZOByIYNALHH93nEpg0C2nQX/wC2DQNLzQcVGMINAs+3N22kxg0CCfGRfwzGDQJwxdBK8NYNAzI6UDWk5g0DzcXgP3jmDQCQiaXrhPYNA4op1O9hBg0AuL5H160GDQAE9NzcTQ4NAJD715NtFg0Dze7OY43WDQMpIu0zoeYNANuv3Ydx9g0AMZ7ZC5IGDQKqeEeFKg4NAUMp0vOSSg0A/00vnVKWDQBm29s1UqYNAOAo/kVGwg0Dyk08d/NCDQMuHZmqU+INA8s309gEShEDAn9tF0i2EQHSv+AzWMYRAAtMV2+8xhEC0346NcDKEQOZyFSv1NYRAVJ4lDXY2hEAyzqp5Mk6EQPxWf6w2UoRA7MsEfP9ohEBGBClGAHGEQPiXMtbKd4RAIvGJWPh4hEBO15AKeHqEQGjivx0lfYRAYECVDvuAhEBibg9zNJKEQJhqwkVyooRASjVdwwqlhEDUn8R0IqWEQLRJtcu8p4RAasvF11WyhEDaezQYVbaEQBwdN8AXzYRAQP7nIcXPhEAOdqD/b9KEQBb1WpAd1YRAql/qP2rZhEDIUiCbauGEQHTNGaZi6YRAJJQMfDXxhEBcuP2nY/GEQCBFY+m/94RAomHl0zb5hEA0kGIdbfqEQFgmnggrAYVATIIQSDgyhUAH/gUfAE+FQD0jNzwBUoVAWe/aOARWhUC+73pzoGGFQFKsJ2igaYVA9pSwPTZqhUAzQVMEmHGFQGrXU960c4VA0N87d5d5hUBJIyiokYGFQFrh4EyEmoVA/MesMEmehUCgZDz826WFQI8J+Ggv8oVAzYooAqJWhkCWheUypVqGQHYFqW6nXoZAUnxQm/6NhkCWl+PUAJKGQKUhE6kmuYZA8NKZlnHKhkCDZKcpfRKHQDchXpdsFodAvPvhr20ah0BsywPnkCmHQF4u3iuRMYdAI0MbcR0yh0B6ZH3JiTmHQB7iMplbQYdAqp+/R4pBh0C2w2dFf4KHQPVyOmvHsYdAuMP+lce5h0Ca2x/pwMGHQDyHA+u/yYdAqNqAusnyh0D0+AfscAaIQIIMThJ0CohAU5n0p3gOiEB6XbERfRKIQMBM+fJ3FohAcHVjQloziECnXXOlqFKIQJKAZ+T5kYhAJieRKseriEDKCwLazrOIQJpTJCXTu4hA+5Fp05byiED+oE05mvaIQF0Qokmd+ohA+JGh/pr+iEA= + KBZXds7jZUA/KJil8iNpQEIdzoN8AnJAA0krmFUickAFJGxXIjN6QJdYvf1YU3xAW3hwXLqjfkDcsF8X7uGAQLxkliMJGoFA5WQd8xtShEA+tC4BQfqEQBCPn/VnioZAouH4Hc0SiEA9lUSbybKJQM0LeyAZS4pA9+ckk0GzjUDNOmlKxdONQHuLid72nZBA5rQrujiukEAtou7sPOqSQJjLkMh++pJArEtUMIiWlEDfuFP7gjaVQPY7Js6zmpZAxDy41MPCl0A/vmaa1PaXQIbSFZXq2phAdlMd4wlPmUAG6gyqQJ+aQL/VXa8qq5pAhgEEv5ZjnEA/7VTEgG+cQM+DRIu3v51AvwRM2dYznkAGGfvT7BefQIGaqZn9S59Ap80d0AY6oEAzD4c5H+ygQMzFBp8cPKFA1oXoUiEKokCMmrlAQhKiQC8RG1pEMKNA5SXsR2U4o0DvnJZkbxKkQKWxZ1KQGqRArygSb5r0pEBTxl9QrhqlQDqzsm+tgqVA3gfJucbkpUCTPuV20EimQGmSabrZcqZAc1JLbt5Ap0Br/1gx5U6nQJfcomvpsqdAj0B5l/X8p0AiZ0Ns/ECoQIKCKwQWQ6lA+ie3JhFHqUAeadeMIfWpQEB6y88jKapA3vRSl0zXqkA= - + - lDWWRBBaX0TmO9dFOQ3NRBzlLkdIR1FEidevRWmsiEQlG6JEDZ6BRnZ6TEVsoAJHJreHRCIjZEQRPG5EiEvDRNIr2ER7FopFzDCYRXEi7kT6Q4ZEAMZFRce7okTSkZpEGhTHRLSMcETVmKpEzB11ROeJZkQ4OhtF63EVR9omgEbl6pZFCTPyRJOB9US9uLRGHzOKROASg0QxP+FEOa60RaVc6EToA+VEMlKoRP1RhUR6T0tEKG2eRIBLv0RuhNdEfWWPRTNE1kSicJREysYSRsI3u0SyyaxErTFwRWig3ET/wLlEu2JyRMW/yEQvzklHnOPaRNOuX0WjjJBGaSDURGL+X0XjTpREj+opRaG5N0UwKgpF54EHRyEZIEWnrsNEmOujRKSrdkSB03BE2oB6RaBEV0cu899EBClaRiK+TEQATzVGL4B8RIRXYkT4putFJgvZRCFCG0XvYLJE0llsRGhEgEXk0wZFb8uGRCYE7URaxK5FDBImRQm2hEWtmIJExgcJRXI3akXXfdZFTyMpRX0EQEUF+XNEyEzaRHEAmUSWtthGNkq1RLyqiEZYxzpFWzUiRjHrjkQhEv1EQutsReWKjkRehYhE7/tFRXopfETgKl1EdFZuRFpTWETbL/NEbC6fRJ4RoESw/uxE9o38R33BcUeV2LFFTJd+RcJ1dUYssWVEuCN5RcO5vUUsHYlEQwJSR8Z9VUWreo1E5wifRSCHEUXCtGhEbEPvRR7kYUQCFpVFFn+gRY7Z+ETvpqlESRnmRIrJw0RV8nZExON1RNiYFEUtCIVENM2DRDl70USisVlGGCF0RPnf5UVeCRNFC7GtRHRMqERJlphEcFRvRFZQiURcsLNETIKgRBC090SKU4tE4O42RaWFp0RqI7REPRJ8RH5Km0UKqn1E3lZ9RMvRrEQgKxtG2LK1RNjSlEQ90cFEQtDvRWC7zUQUSaVECqwbRd14BUferzRGShrpRIf+qUTFroZEUsF5RC8vpkQe3nFEs6jMRAvCo0SbQQpFJtfiRGbdH0XOf9VESmHsRWZ7XUSoFjFF+5npRY6lD0ac/atExG+KRJK5DkUy1mdEANCcRUjYuET+K9hELbCjRdPqw0RStZREnhjmRBl3m0SdIqdETPO2RK1nz0T7FNlEtsLURDGwBUUskFJGtqijRZtpjERxoxFFPGPHRdEisERAM9NEhBKIRFRqoUWBjwFG1dALRpKdyEZns1lEDyL0RI/MRERRbYRF72ZiRHRDukQrJXZFgMOIRRp8bkRMEJ5EMV4jRS01nUQlBAxGzgOZRBT90ETrxghF/YqBRDqmnkQfwVxEiiAdRSd/bUScVXVEnzuCRPvk/kQ9DPZEhkCZRWTknkSjr21EW5FsRNIagkTo+W1E1IozRQ3/h0VvC7JE7lWHRKWCpUSXOKVGYqiuRE7QgkUHw8xEeeUERkKA7EecXyVF2XykRnjlVkR1WcpGX1iCRay1akaxcRxFxmwFRdNyXkSwhvBEFdOJRMTyTUS/n6FE6NAnRVBhh0S7dCBFANehRH29oETMtTlE1xqERJumh0Sp71NEqiN8RBBrmUQwXJBEV8SXROSNg0SZ0lpHIBHfRpOidUW/Yo5FkCQeRSrSyERavmJFoL90RPdOzUSfYrdEKAXzRIr6MkdawupEjnZZRmCSOUenJz1GNCDqRJawqkVlrJxFhsDQRfr2RUV66j1FD+OQRGgYBEXAv11FqTyFRBun3UUXMCdF4TQRRfMGkkRjC4pE+b0vSWVCV0X3c0ZF9PIcRWDBNEiHzwxFV7iRRoj+oESoqwdJCjhYSM53xkQC6DFHFrOERHH1zkQWxKhFsCaMRCXETkUF54dFgJOKRfe5a0QsTnpEa4VoRexZZUWbL5BGlHLaRVW50UQ281hEjOATRdZ1+kSH04pEEYloRL3Cv0U85ZhENvkvRSW9eERi66dEBqCtRey73EQ/eipFJLCmRdpWjkQX/lNESlPARXGB1ETcNudEFbZtRNb6iETzX4FES8+RRAsLqEdKbKJGfQIARWa28EQpJUdE/0tiRFuQBEUoaqVFbhB3RvW4mEQ9P/ZF1RC9RZE8sURdSmpE8sObRNbG2UQp7bVEqflxRG0yg0SQiqtENDGORJgVnEZrzS1GIwFfRMgsMEXFMB1FZssaRcqbq0VwK25EnlMwRsvkt0XGnrNERxQURc+GdUTRdaFEjR2KRKTbfUTu7RBFqskCRXZWpESorhBHVGC4Rt5btEX2SbhFNjYlRfzyjUTZULNEayipRMhchkZFUvhEiFAzRuimtUVFuHlFakqlRECBcEWJezlGxQKDRMJjeUVtPI1FDWzeRLwEpkRJaiRF40OXRKEJQkSDmrNFDRi2Ro5+vkR74AlGkJIBRRA4LkXi/sxEi3WgRDvmfES+GHlEaySJROAgPkVLtqpF4Ea5RGvbcUTiddJEK3GpRr0XnkQC/UVG9BrQR7iXF0aS9odEIUubRIOjsUVEsM9EaQn3RJb2uEZ8ayZFSsCDRoTtwkQMkrVEx8tmRVsIyURyZrJF0pUoRj+/xUQpAVdFPfxXReeyf0StdYVE2nBWRAghp0XEYUJF+GzlRHhbm0SzTIFE2VxORVEgF0UCDI5EOSeXRPQb0kSMAtREFbKCRKi3rUXNQwlFvE6ARL97ekRRmyBGJ5qDRKPfkkVB95lEIIRGRHled0Ro7qVE2qdoRCedekSDzpBEGbb/RwLGd0RacXVHkbdfRig+/0TL8M1ELzCNRKbRyEQzT15E77cjRv4/0kXkqkJFNq6LRA/XpkSKLQZFVe2rRCnfpERUFLNEJOGLRDFWlUSzBZJFQSWiRIQxc0Q46RtG7C2DRKLDs0QvtW9FIMJ+RQ6pWUV+5yJFxr3+RUcHXEWZVJNEddhgSLMW5keksXZEZ9BFRsP+jkZd0ZFEMhtmRKVll0XHwgFFjLVwRKrjykTO+09EhwpqRMA8kUQtwWlE6Rt4ROkhtUSuLw5FETNNRjDko0T/J55Fs1DFRHlGJkUuIhBFGgAWRfd9gkSx6HFE8nbkRdFoe0TIJvBEnfwDRVqmtERCOb9EXCucRIaSqUQRSA9F3MW4RM9LfUZ0rMBE+xyFRJ4CSEa1GL1E7x21RXwMhEiC3phE5zVoRNJQgkRW5MFEogcASByxikVImghFpyfVRKhFgUeCsG5FY4qoRGjnMkZaSklEnatlRILmj0Wl94RE6jrLRCvakUSIYLNEYd5YRh3OXEV9n0lFu2aFRn78okUrK1pEmYPiRNmpM0U0/c9F4o4ERcmfn0T7Bh1HRmcHR1bvxEVaKoNGKx2iRU0+6kRVBopExIkWRZzVHUUqNuBFDxfXRNv0cUQW5QlFeDkGRWtMlkTlyKpG0AglRtxEFkVnsrpEfX92RIdvUkZhC4VFCfsYRb/tfkQBF0RFPbXTRCIO4ESaAXxEKZScRLN8bES2fLJETfd9RQUuakQlH2FEOT+sRFYPXUROeaJEhlsURcSsuETIAb9HKIQiR4xWpURsB9JEWgRdRILbwEY6quJFp5zHRSZGLkXzYxxFsnQERXJfT0dKVtZGYov0RVoHgEVDDr1EuUltREMyN0X6waBEI31TRMaagUUWHBBFr33ZR8KDUkedQepGg472RULScUYpDENFmgIqRUkCGka70A9FJ3phRAV7okZAkzFGSpouRdUGwUT67GFE+nvnRJn4nEVtKFNF+6SRRA3TmUT2cVdEal1+RPm65USAYbhEtB1PRFxpaUTPAI1EORKMREWhD0Wtpf5ETWD6RHRtwUQHVMlEn+6DRPkmGkWHiYpEPEm8RfTCSEUffCJFheHjRAiEIEUJHIVE/viBRN86ckQALF1FS4/qRO14G0WZWqJEyjE7RRei8kQS8eVFMMCJRTx/kUUjQYlE1Zj1RphjikZRrgRGcr2CRebtU0UjjcFEzTESReiSiEQ/VJlEEkP9RL1YmERG2HZFmMcLRaVuC0f0s4BGfEGCRHtGBEZQ/8tE0qyJRU7htERFKYZEquDbRP6tkkQdgF1EqLY4RvvZ0UU6SSlFdQ/ERG8k4ETld5JE7gWqRP1/t0TkF9VFS0AxRaqCBEaB2rFFAUJPRO0fWEVrn6JEAqgJRfHmqURM+htGAcXDRViZSUU/88NEnvxQRBkxdkamHj5GecuCRRvaokRBfrlEZJrURDBvX0QUeZxEk7pFR5+4mUaQwIBFrXBFR+v0EEfKPl5Guxz0RQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - WcqqPnnAckACOEEYb8FyQMBTt2dQwnJApfO6s6fCckAC4fnrOsNyQANXP595w3JAKSGvOcXEckDbRbnWWsVyQCIE3u0ByHJAwowTc1zNckD1YYDOQ9JyQHiA5NGy0nJACOE3UnfTckDPjvlyZ9RyQByYjzDP33JAemaHBbvgckDMbLuHUeJyQHZwUeWP4nJATr6lCSbjckD/0XoxyvFyQPozUYLm8XJAGt0VDn3yckB7JwpAt/NyQE+Ij0Gj9HJAuuU+2ML/ckCsP4ya+QBzQHtTpCk5AnNA9Kz05tACc0BSlQMF+wNzQLZW8UYJEnNAvOYDw7wSc0DUZyA1BhRzQKzD5KNOFHNAIgvKVfYXc0CQcdyKeh9zQBeT9+GkIHNA5TNzjDkhc0D9euZFZyFzQOJ+gth6InNAKrSl+Mgic0CFWCU6DiNzQLK8x6Y4JHNANt3vHdAkc0AvHgLPRzFzQC4fMGM3NHNAzrP6WLk/c0AMMiWa5EBzQFqBjFJ6QXNAGAtqhbtCc0CRcvySe0RzQASunuTkUnNA4NcTpvRSc0CgD2uTRVNzQDd8vqmjU3NANiq6e4ZUc0AmNYUQimBzQOQ13WQ6Y3NANC7f9ittc0DdDGIxUXJzQO5OJJFocnNAIFyycIVyc0Dt2jcLuXJzQF8SHYa4dHNA5jxbAE11c0Dy4Vd60ndzQE344rDed3NArv8xSnmAc0C8tP0mpYBzQJfsxd0NgXNAiGMCS1yCc0DIFAkhh5BzQKc7gLtNknNAomq11c+Tc0DyXwJxYpRzQMKtRNj3lHNAegJXu7igc0AkZmmy5aBzQHKaog5PoXNAyG8XfVqic0BtjRH2xKJzQN6Mr/3konNAinQSfgWlc0DWQf2cNbFzQM52mB1/sXNARor1fxCzc0C35TMjqLNzQN4wtd0PtHNACyxw6frAc0C6Pdujz8JzQLbfkjomw3NAiiswTb7Dc0C+XzLS19FzQJcUQIO+0nNARu+0ltzSc0BWhRli49RzQEZnB0M54XNAuFEkf2Lhc0BOPQB65eFzQOvOyfJ84nNAx7xbDBHjc0Dffrd6fONzQEq2AhXx5HNAJmdX1fvyc0AuV3mhN/RzQGpdoeyM9HNA+DD/qUP9c0Ao8b1GTAB0QArj8LPkAHRAo46aCnkBdEBG/yYunQJ0QAmAgtr2B3RAPRD2q4oRdEB8lS2ZphJ0QJ38d7xME3RA76ObCEsgdEDCqPivuCF0QECCnfS8JHRAwDAk+VMwdEBBkPM9FTN0QMGjm7NcM3RA5Gf0MKZCdEDg51DW91R0QKxEDH+NVXRAXkdbMdxXdEDK1rsVNl10QKgYOvy4YHRAEoCwbwhidECi7ikcj2J0QEqhQbFPZHRAtI2CxetndEDwYyTqInB0QBleiB5hcHRAtGdUo0FxdEB/upYYOnN0QBqHP7s5dXRAlW7wG/95dEBYS9SzQ4B0QA/Z4pb4gHRAH/qce06BdEAUxguzJoN0QI4Uo/QVkHRA6tMx1lGTdEDiVj6R7p90QH6RMbXRoHRAyPXbkTihdEBirWTrt6J0QCEzrx0Qo3RAGHq2HgmwdECNm+aPxLB0QMLqM4RusnRAvJCapMq3dECaFuwDE710QPLtgLPiwHRAbLahanjBdEAqRMpnb8J0QEn8Uo8ixHRAs4zjCXrEdECBQ746ucR0QE5EAp78znRAZFkcnYrSdEDIBNUQ4tN0QLaZfajO1HRA8FQxNo/gdEBYgX+juOB0QIB4S2664XRA7s3NUI7zdECCrW5pd/R0QEbQs2GjAHVALmFfas4AdUDqSp/BZQF1QKdXDMddAnVA9Cl62psQdUAGsYX1axJ1QGB3MpIlFHVAHOyIep0idUCybFPSzDV1QE1yu1n5N3VANLvSsFM9dUDBDVMNrUJ1QBi6JY0iQ3VAMpXZpydEdUCo+zGu/U91QAA1qeV3VXVA+OzL+QxgdUCsA0Y2OWF1QFS0fExnY3VA25aauXdydUBk3IWUjXR1QOyG1VDngHVAMgK55XiBdUDSWVEVroF1QPZG6Gamg3VAOUSdC5qEdUA0fbiVbpJ1QHTm6ZcNk3VARnLh+T6TdUDWFbOWtJN1QN9xiPluoHVAYs4Av/jBdUCoXOwZSM11QBrzs8Mn03VAtd0bSc7TdUBYm8Hu4t91QEVcSWgO4XVAdBY9JAjidUAgd5uITO11QFgOYm8q73VAGD2pWqbydUBE9ozd8Pd1QPaY7Hj+93VAqIEmkEr9dUCsn9fVSAJ2QKD5EtLQA3ZAUgDf5okidkDBckuRkCR2QArt3lVLK3ZAcLC9LCAxdkA8uzjyUzN2QONWsf6dNHZAbPkNiB5BdkDZfu1jnEJ2QNZEKp7JQnZAVr/UgnpEdkDCXM809Ud2QNw1V5ARUXZAmC8Bxc1UdkBKmZLVT2N2QET4ccPbZHZAlU6S5+WCdkC3sRVfkYN2QOzMKS+joXZAkBuPNsCydkC25qqQerN2QDzfQ4UNtHZA/HFSH9S4dkDyXYWGdcB2QDxmrozAwHZA+j7niBzEdkBQgnk4z852QEgXiSt84HZA9u0zy6TjdkAiqp9mJPN2QGoI9EWQ83ZAAbuRJk70dkBB3mthMwJ3QLY7BwtOA3dAL0fzNlANd0CEkWPDARJ3QPFldLQPIndARrRLBXMid0CA6WdhuCR3QLlvoTCmLXdAhmzTXaUzd0BVD8eNDTV3QDY7XpQmPndAQa6fV51Bd0AyN4YOsEF3QDqBnK+VQ3dAp3ELvbNDd0AvASZ8G0V3QJMDbZdKUXdAxABOmpJRd0A/3VeJK1V3QFcqsKrUWndAxtYQfo5hd0AqZcV4N2J3QM6e2FE6ZXdAZGELGihvd0D2N+LqXHB3QBAuI6GEcXdANHCouKFyd0DkASh7KX93QB2wJ2JMlHdA7F5A/qejd0CApTIOmrR3QM44W7+Q1ndADvwV3Mzdd0DayK+PUPJ3QFIpszhH/XdAuZA6zqACeECyoyN96Ad4QCgu5mP+B3hA3CeBQMcIeEDiO6gnRQ14QEQOfN1tInhAtDUQ4IgjeECgWjgrtSN4QBIZRldoO3hAIRwLSQ5CeEDF1tlQcEN4QODjW3oSRHhASFTviHpFeEA4gimVdkt4QGD/qu7KUXhAfltqhpRSeEAIRjy4H1R4QOabjkGIVXhApjFYB/BXeEDN8KcJ+WB4QLwaZRe3YXhAqjJQWLtieECi7vGl82J4QIoITUdtY3hAQLT41vpqeECzjddovnF4QPOrFy+MdHhAuN5OnKWBeEDR0NqFmoR4QNe+WsyZkXhAfbFIllqTeECGkPvyqJR4QHZk/S3Us3hA//VXCNq7eEC83gWXy8B4QO4k2p/hw3hAbPVIyObLeEBj1N9s6tN4QJYrkWO31HhAoPvJSe3teED+6hxeAvR4QMII0eSM9XhAyogM+5kFeUD0ckQ71SF5QAj1OBi7I3lAelzp2LEoeUDOauolDS55QCysiHZpM3lAdz3nt8ozeUASD9NE5Th5QLM0xAP8Q3lAXN02xpZTeUA2C7TFC1R5QEjJ1HvMVHlA44VtkNtkeUBAglxUco15QPPGGUvLknlA8vogV7+yeUAmSf38jbN5QHm1EOFSznlAKIf26FLSeUCKeMkHQtR5QP+Rb2TL1XlAcHdtU07keUDi1h+UZwN6QFxalzz6BXpA6OoCw0EyekAgGe+SDDV6QL2iscxQQnpAxq3f0xpFekDq8Dtzz0t6QEjPwq4pVXpAVyw3wiNcekB6y0VUjHJ6QFzCDsnvo3pAJglqFQ62ekAwNzTA/cN6QDXml48cxnpARQTjLg7IekB2bn22Z816QCrl0jxAznpAbf98JMTSekDTTgqE1tN6QAb8veD543pAjmdQqXrkekB+lWAcOO56QMDN5HwY8XpA3vPsn13xekAoBPn1SvN6QBpRHBil+HpAjDYFtef9ekATolcJBP56QDTmmxl+BHtAADGm7CkOe0Bjob5scRF7QLho+0/FEntAmEJa2UwVe0D5scMiHhh7QIQZNrB/HXtAMf8Kt8sie0DAnZdbWiV7QPauyQqaSHtASuy00XJSe0CgqL/JIpV7QFkBXBDPnXtAbq8wrieje0ATvQwbZah7QN/Dt7aDqHtA2AbZwKete0BD2Aj3y617QJJsjejjrXtA79auhHnGe0DYxTCo/eN7QAhao4+M9XtAE+WUnnb4e0DSRpGkXPx7QKuPbPDZAXxADJdCcPQBfEAAnJelZgR8QETzFCGZBXxAuq/oUdERfEBWKMkCFxR8QMM8c/9xFHxAkJs/DukbfEAqU3riHBx8QMNe18LvI3xAql9bsOItfEClCbp0QDN8QBRGLX/NQXxASj/EV1JIfEAnI2vQYU18QD5HrFGsTXxAMBynytpRfED+Ec8Z8FJ8QFLb1P4IU3xAfqS4eExYfEDohLEsaF98QA4KHdwLYnxAxOMJL/+BfEC2dOdmWZl8QKT/m2mznnxAsGaK2kGifEB7A/tWDaR8QBrXwUS+snxAzmv6O2jEfEDoEG2qath8QJY8+bXE3XxAFLTZb1jifEBOzYAFEeN8QNTA8H3A43xAmaTpK23ofEDqUVO0FfJ8QK8O2vpU8nxA3FuZmnTyfEC+Fem9AQJ9QGtxBHtLAn1Ak36R0lMEfUAqblMzeQt9QETn4WcJEn1AiM4Nq0MSfUA8zuIBrxt9QP4W5jRCHH1AcFR2rEIifUDmi5rUtiN9QNCl2/FKJH1AgGufb8ArfUBGXhBuTSx9QATefQOXjX1AiuzIQe+SfUC8hQyxNZh9QNAVuJDgs31A1ZdYy+W7fUCMdKKbLsN9QMiM6zDtxH1AkrDX8dfifUD2cHspL+N9QPt6p1vT831AcEZviI/1fUA6dLJ72ft9QGmOkNnuHX5AwPlNL0ojfkBDUzyppih+QOrd2sDrLX5A5L8JhEAvfkA+KHufrTF+QJhccj5rVH5An4NaE45VfkAunw9n8G9+QAkUITAacn5A4LUkpT1zfkCRVYm7fnN+QKggiDO4e35AVifFQ76DfkDCKsLfyop+QGbBtT/Ei35AkDnmJyeOfkDMtD1wzJN+QARoib84pH5Aj41GUgmufkBgkyCDlrJ+QE+s9HRzyH5A+D83PM7NfkCmSX4A3tJ+QD4M2mEd035AQK6gPMzffkBOgwbK0O9+QD6JfOOSA39AOmVWEJsLf0BaDaoFOBl/QBizZ4i7G39AeZRUqJAef0B/MTcy5l9/QCbMCOGYY39AkteslK5sf0A+RHgLuXF/QApmEciygX9AayICyKaDf0BZpHNqY5F/QFoNUcuXk39Aso5Vnl6hf0DfN/C9Q6N/QDIJxL+bqH9AcgFzvvKtf0C+N7vTVLF/QHIgUQRJs39A6OAEl77Ef0AqmfJg5Mt/QODEkvnv039AlgCC4pL7f0CIstkizAGAQD6cqHLBBYBAnvS6NdEFgEA834DV2waAQD5/YVjFCYBAUZgybtYJgEAmmG6IzA2AQCjyYj55DoBAsaY5cOg3gEA3P8ZiiESAQCgpVEI4SIBAyJCEqO5IgEADVA8J6VCAQPxiG5MUUYBAVSH/6g5ZgEAcPHiKS1qAQAKYQvUMYYBApOfHmvFtgEDiYIKlJ2+AQNSukpimb4BAisn7ijxwgEBazgnbKHeAQLqBZxMpf4BAxNecnh6PgED6/+yDIpeAQM5SFSwBooBAdDMLfhKkgEBhdjmZ9KaAQLAi0iOIqYBA1sVkoeqtgEBmFdVSFK+AQHas1G6xr4BAOM3Yz22wgEBgglWAfrKAQAKtQzgGuoBAelV2g1i7gEBNJY7usryAQCiZEpI+voBANXbPrmC/gEDGoOCgUsGAQPo5p5XUwYBAhjpAwgbCgEAAazq0IcmAQCJkaYFTyYBAWnsYiEHKgEB00mvlp8yAQNh1vZ4Jz4BAzJhS1S3RgEAUOO6mTNGAQCjv7Z5G0oBAwNhJBNHWgEBgWDiQSdmAQGBY/Nly2YBATVWNOB3cgEDhroOdROGAQET2QFFW4YBA1EJqGvjogEDQ/RlHSu+AQHvA8aY984BAKkSGHWj6gEDYXSpgRPuAQHJE/hpA/4BABpaidz4HgUA29SECPQ+BQEVC8tlFF4FA2XkfwOkagUA6eKeQNB+BQBTegRw1J4FAmqpfKu0pgUDYOOsb5S6BQCDX3yyMMYFA8GyPE70xgUAsdlr0LjSBQGweMWkpP4FAThSYhxBEgUD18MSpYEiBQLLWx4FpUIFAI78qW/lXgUA7b/+9WliBQODhVOuEYIFAZrBfZ/VhgUCAwL/ysWKBQF7V36kzaoFAZPz2Q6RtgUA+mCofZ4qBQCwRPtIUjYFANiSuZlWPgUAOYK3owI+BQOq2e/NrkoFAgFVF4FWXgUDktk/RU5+BQL5RifrmoYFALqOilNemgUDDM1p+baiBQL7nXfOFqYFAYs/7+u+pgUDj8qcZSq+BQAzDW+RLt4FAFjS+GGjrgUBbt5w7A/KBQBjO8/zs+YFAoXXaFPD9gUACZUyS8wGCQPBFDTaOCoJAUS3rvtgYgkA/vFS51yCCQJZjOoDRKIJAGNka3qMpgkBqkXXmwymCQAxbkGelMIJAXv58LyNYgkCr1iNQalyCQEakDSKgZ4JA7Kw4IhtogkDkenT8bGiCQDVcMd9EcYJANSLY455zgkB11z83bXSCQIRcCG6sf4JALisWZEOJgkAoHIo0Q5GCQGBdAmWykYJA+OnfDgSSgkAcwQgrGpmCQNy223s8mYJAg1bSOw+hgkDudQCnO6GCQMYgb2oPqYJAytudKjOpgkCWDHtyrdGCQF5EyYmw1YJAiDNgg6bZgkByW3bgtdmCQJ7MK3x+2oJAgD0Ap6rdgkASoG8ngt6CQPi9+oCG4oJA3qWGDuIBg0B0GWhC5gWDQPc6yt15EYNA4iJE93kZg0C6AGzqciGDQPa7DpiLIYNAHs9RQXIpg0AwL8tGEyqDQFqx9e3ALYNAiKE8eUUwg0B8KAvpazGDQEDhVQDEMYNATo3k/MM0g0AOXH44WzWDQKI403+7NYNAU3xHHMs1g0AWq1LGaTmDQNx3O9e7OYNAY3K2hN45g0Ba7jmL4T2DQIKniozdQYNAThAbitxFg0D5mqzXPU6DQHOAJU3jdYNAdoCZDOp5g0DONA405IGDQN6AvMSdjYNAwN+yR8mNg0BQ07gg5pKDQGDJWeSDxYNAMNsz0xPSg0DP/7RolPiDQMEqT3UCEoRAXFyQlNIthEDypnQz8zGEQFBfrS9xMoRA7CEOKwtKhEAxXRXENE6EQKK8sZI3UoRAXCkWP7NWhEBquv2y/miEQHKganLWaYRA7p4pyAFxhEBq2R/SyneEQE590q33eIRAG6+yaXl6hEDbvH7H0H+EQKuWeFNyooRAPITUNQ+lhEBLRI45u6eEQJZZJ6BTsoRARNp5jla2hECQiJHLGM2EQF9Ee0rGz4RA4hbQQ3TShEC+sbFkbNSEQDtU1+xt1oRAEJNBQWrZhEC4pWf+auGEQPY6vEli6YRAKkvvsTbxhEDhk0iKYvGEQEji0QQ2+YRAuhYDeWD5hEBf8aTGbvqEQFjU1QQxAYVA5KF2SToyhUCd3RwEOjaFQPYwKRUBUoVArjjlkARWhUARugyNClqFQM9vqq2gYYVAcsnySKBphUAiUkFCmXGFQLjlMCC1c4VAVI1oY6Z4hUDUVwe+mXmFQJomvWiRgYVArv3tj/RFhkB+TcasolaGQC4PyOSmWoZATJG9nqdehkDZUPkx/42GQKZAe+MluYZANvB8bSPBhkDq5YYaI8mGQJizM69yyoZAemqIGVISh0DmpMJhfRKHQAtMYghsFodA03vSqHIah0Bztyy8dR6HQATihM6RKYdA8E6x7JIxh0C+C+/G9jGHQEiyWRKKOYdAQg1Js11Bh0BeGQ1BikGHQJSuXwZ+fodA/ou8lYCCh0Bjl8bihIaHQC4YAAWCiodAhiZW5cexh0BNhcygyLmHQOJIoWy/wYdA21e+2r7Jh0ApBBcRcQaIQAMo4jl0CohAnAPoaXUOiEB7IY2YexKIQKDpakb3kYhAF0h8qfqViEC4phB195mIQIk8zHHHq4hA/isu2c6ziECo8wt/1buIQFTfG3wxwohAAnV6BTrGiEDmMMA2l/KIQNDqBr+Z9ohAPuUw+5r6iEDxbjiKmv6IQA== + KBZXds7jZUCRGlyHeVJxQBTpB48/A3JA525gjBHDdUCjQFSuFxR4QOfMPOBp1HxAleMifoRSgECcZqW/R6KBQL7jqU2XioNA4CmeZsDqhUC+Eph3QxOHQKdVRHYs84hA6Twaeo9LiUCnhDKg2HuMQOlrCKQ71IxA - + - b87gRCRx1kXlIABFf8o6RxA9nEXiSWJEDWm9RH/gq0TBiIlGnZdVRQGtHUdqsJhE/Mi4RB8ZgUS7/hxFSS0YRYvkfUWklplFQvkURddeUUU8/39ES51TRAv0m0QEd6JEwqwBRXWLpkRvmH9ExgUrRQU5D0dB+75EZN5DRqi6l0VJVtJEL4AMRSw84EQ8m+JEvRbTRhbsUkTIKo1EjkO1RNoWeUSHw1dEsAGZRdXQBUWoRL5EuBJ/REAsBEVqHIdFJOqgRKEDBEZ/PIBEEtGARBiyq0STVZpFj+3mRBDHhkT1rWxEa1x2R4rU1kS3yaZE1h+PRpkJokSehqhEDXQsRSM7YkVmhnVFOFT0RpxookR9hehEQCTERMQUNUWX/F1HT0aXRI5aykTezXZGri/wRdfTkUQRW3xE/yzmRfVuikS3CRtFHvUgRZb4z0R6ZWZEas94RBj4vUWaVP9E48XTRCbhY0WGxy9F7SlfRED7EEVUDMFE0dXYRE/0e0WshMFF/IS0RD+RjUQ0OJ9ETke1RC9iSkWWEJtEnKxMRFUQGkWPfIREbakPR/BBhESM/5NEe552RklHYkb4JCVFvOWJRD1bgUQDJFdFSNHDRBUyBEX/XWpEYvmQRBQQXkSKSdZEMzrMRCzB7EQj8A9FLezCRyh2OkdcQ6FFTXxaRQkAMEZ7V5dEUC6+RByY00Xkdl5E2eA+R2h6ikXJ+JNErMCURCu8qEU5VBtF6WPLRbeJYEVByq5F6d7URH8mFEXRZKFEZPdsRCz6wERnmQtFC+oARdB7sUQmcHBGj3TfRVEaFkUb37lE1wLkRL/q3kSSiYREJyyERDMirEQZeulEWfJ/RAUO40RGtPFENpdoREuzi0TcVwJFftqoRa4wX0SO28pEndZxRNHLlETmJE5GlSuHRNs4DEVkbtxEptP3RSeb/ET87KpG+tRrRvjeN0WcHsZE1Cq9RPBZkkQFrJtEDEidRHyGKEWfhvJEj9v/RH3LVUaP1YRETcc1RZRIzkUFuxZGv7ATRcOufURoA19FfWSORMid2kTY2VlFnUK0RP61iEQN/ohETkppRBN2r0ST3KBEmjwdRdoKHUabEXFEws3DRVoPc0QhdoFE0x2lRPdO3UXDcp9E2XHGRUVh+0WUWQJGjOqvRpSMP0Vp5oVEZ7CaRTcLA0XBqIlFsMBsRQ9Nf0RktUBFibuCRiNfGUVXmThFvmSeREilTEVgs29Euo25ROl4JkX9DLVF6tCvRGv7vUQu/IZEO2f5RCEqdUXbzl9EInZvRIzNh0T1aDBFCa11RCVisURxZoJE+M2URDOMi0b2J15FZKcORbSDh0QzNKJE0nhLRlvF9Ucx2ZlEZYzERh5CvkU7Al9ETD2wRKQy1kZMMJVFyR6NRgcUDUUeldtEoGVJRaisoEQcuqNE8TlLReQCaESXtYpE9YXIRBYMhkQaLp9E1NdpRMcPtERQnXtE7krIRLB0tUTZ5EdHbFrFRmpdkkXJTZdFRNbFRNeekET3gUhF1w6zRC0tzUTFHA9HaYDHRCegLUYYNHFH+EZERurZCkVBhLhF8mFJRYlmFUbqfu5EjxUARZ5F80RBbjpFdeCTRFhiF0Y0/i5FTszmRMeLu0T0NUhJjogkRSU9Tkg/NSFFvBuQRAr2i0bUTgJJdYpUSOF7tEQOXiFHMSqFRc1zakRLYRdFzRWQRDnWeUXK+9ZFhW+xRMxPIkXwqelF8rs2RsTAh0X1eqJE8yuVRJw3g0RLGsFFxqTIRBsSlUTC6I5FJUC+REfNgUWzrnlFIa2CRck7zURK4HVEGcOAROzd2kVLMw1FZxqXRNy9bkRLIe1EcxxJRWbNy0cFVaNEqJXORgf8N0WsZPJEDdcRRQsNoES1PYREDwqaRZ2Tp0Un1pJEuIn9RRqZnkVno7dE6GymRDjVi0SzLqxEu+iQRCB6QUVbhM5EZaO7RPglfkZoAzhGTQWzRLiZBkX+KBxFkoYiRSMjiUTklBhGZ8Y0RvHCMkXxhoNEFZZyRFDrDkXNRLtEbpaxRJ1/IkW7iEBH9zcERz5xhkXGr+tFfbiFRE1jC0W9UH9EesaxROQQnURqbaZGBwKSRJGDakSwBldGfYXrRAzUAUYhCatF5hWoRVIrzkXZKKZE7X6lRV+Op0VWKW5EB2ovRR057kSUn7VFJla4RqnzhkRfFDVGdYPNRExOB0WNwohFS1qvRNZJZETKXYFE3GgDRaB1kEX2w51FC+GuRGow9ESwRcREWvKTRJkqeEZybWJGGQXMR86SA0ZIa7VEB2/GRW8f4USQl8RGEAEwRb+t9USwu4VGnVCIRMup30THxUxEDTQaRXyQC0YhcodGBH65RAE8s0VDtsNF6HN8RC6CzETAjcdFSQK+Rf8X0EQnqzdFKjDwRHSFpUSX/btE4zmORG1ibESnLcVFdcgJRbe/LkX7exlGexXxRS2n3kQHfrREumbHRJYPaUQafWRESgulRKfDkUTtroVE77GMRDcTbEQLmCJIcHWfR0sHl0QL36NGl+6ZRNgXgkVMv7JELA58RKSxAUVbqQ5GmFcJRlp3oETNZ95EH3+bRNWve0SmORxF6Y+NRAj/mkQuYgZFCBemRNhjnET1VZVE+IV3RCRic0UWp6BEIB2tRGatJUbDq89Eyc5yRarQBEY1FYZFp9sBReX+GkWr/LNEXlicRA+BGUZuZDNFjE16SCfS6Ud/QE1G9NKpRlia/kSXGpFFEH9gRQLnnkSpLYZEbwp8RN5qVkRdkfJEAV9xRDCKXkXBY3VGqalsRfBosETh6ZFE/3sJRSAjS0UKm3RExEYQRVT6kkTCaKNE0WfHRZQCkUS3mLlEjZVnRHf+lkRltgJF4sNoRGff40SnsItEoH2VRDNE1USPrKRGDXRHRIOYQ0YPA4dEiY/eRVardUi2wYVEGO3uRJ90s0SAQ95Hxu25RSGnU0ThIcRElXC9RFF+d0dZdrREuW92RMUMJUby/u9EWTfgRGmrWEVEZABFgEnaRDvl6ETeVFlEdm65RGkXgkQjYW1GU2NoRbM0FUWv8H9EW3FzRFtNlEbLh4NFRISRRIKo10Ql3LdEXdbBREvBIEXD1DtFKueTRHzm+0ULMIBExAGWRMJ4MkVokPJEvSVSRM4hikTEuYFEfJyrRMQzm0aO6k9Gfe/URcXqCkZaR95ENTYoRSvrlESGCk5FTMGORN7/BUU6kl1ELhPORO9N0UWFKgNF2OJ7RLWdc0Rn+blGRSlPRu4FGEVSC45E2tRJRiR2i0Xjch9F/U3HRKXy00T884xE+zWXRbOqvURXs3dEMPUBRZSGsUQ0UM9E2CeoRKi8j0QbKVBEmbHQR7NRLkeyzIlEj2WLRNkiekRnuNtGsLvVRRbh70XyiiRF4RkCRdRbEkfksq9G818wRVNBUEWC5dhFGgINRYzMjkW/PoZEkbuMRYuBE0XVnNNH4T49R97Q0UZ2kCdFBK3eRRxMiESSm3lGyY/TROsFPkWTqhZGlbKDRHJlakQ3UNxEUZzGRH/wdURsgpZEuB3YRluoZ0Y+lIlFlT4yRXZflEQHeEhF5d/WRHj+xkTHTD5EZBd7RBrPHUVAB59EYr+LRD60qkTjUxVFHeXiRJqAmERmsaZEHbqJRPKtDEWpk+ZE5hPWRKtdy0UmNf5Ef54mRXIW0ETjTOFEQhPMRIw0WkTZilFFaUlPRUO/LEUBFn1FJRVRRVHOvUWEAbxFZABgRRZHuETqLqFEy7APR/OBh0Z8OiJGblqSRchKeUVKqP9EU6aPRGRbZUSCia9E9FSrRImrmUQhKaZFiE9bRc4+jUQlT/JGQ+9pRn7G70UxnhBFpN2URAqhZkUjl51EL4t+RJzvQkbgjuRFTzxhRaiLvUSZLJ5ECZV/RBNPZES0KdJEUbGTRNqqjkSW5WJFkNUHRYtjeURaAR1GJWW9Rdz4hEQlYGFFDAuGRBN+zURnO2VGmKUlRscZhEV4UWREidnwRQdZpkXiVhNFeR7ARPEeaUYlRBRGIZYyRSPCn0Q0UflE3O6VRL2Zo0Qk0BlHpNFmRgoQfEVZHaJEuyJMRMKn+keuletHTXs0RzQhm0Y= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - kv96TAzBckCgIojGb8FyQN6jiNtUwnJAXkQ9z6fCckD7QoIJO8NyQLtcAE8CyHJAEv1wr1rNckDcHxfUQ9JyQA5x+b6v0nJAzikUA8/SckCbPj5lzt9yQPZe8py44HJA+HEtF03hckC4rVX+T+JyQC29NHCP4nJAgGYSeCXjckD0GWgqy/FyQKAq0vdf8nJAQqL137PzckC6GBgcpPRyQOcxEvjC/3JA/MJGSPsAc0CRW84Y0AJzQHJ4HSz7A3NAB2mj5goSc0Drkt+dvRJzQDmX6UsHFHNANccQX04Uc0Ati3VI9BdzQCPoUMd6H3NAMtDIyTwgc0C274wapCBzQEyE44w5IXNAOhJyRGYhc0CvBfOOfyJzQCAGcsvJInNAYQRZqREjc0CcVId4zyRzQNqXDvFLMXNAPCSYPw0zc0Dv3RXQ40BzQA8YHRR4QXNAqjwzY3pEc0DKPdlCnFFzQIpxiblBU3NAfqipaaRTc0B+sDDWhlRzQPozitjvXXNAIEykM45gc0CxF/cKOWNzQK+xGq/NY3NAKfwBVixtc0A1eJSeaXJzQMrxmAqFcnNAByZVt7Z0c0CU6uxZTHVzQMvMIl/fd3NAYqdetnmAc0B+d3CJpoBzQKKH1F8OgXNAEOK4Xl6Cc0DKv4GthpBzQNHBbkDVkXNAXr0Xhk2Sc0DASRlDYpRzQBv08pz3lHNAJOA3yrigc0BKeSUvW6JzQMh4qsfkonNArG3fzwSlc0AYSchheqVzQJZo6wvJsHNA1vnPXDSxc0B2Wx4pfrFzQDiNeNxbsnNAyMP9tqmzc0ChfKtnDbRzQGwP8Pb2wHNAkQeK4zzCc0Bu//6V0MJzQFTdQTQmw3NAuq864NfRc0CE7yC9CdJzQN2iV/H303NA2Fd3ouPUc0COglP9pOBzQNfK4Zc44XNATFx/buXhc0DisZqpe+NzQP+b3cPv5HNAAsD52Tf0c0AcUJvRQ/1zQMhYj1biAHRAJppFqHkBdEDhD/I9ogF0QOgKN6adAnRAp4yKwboCdEC5zeq49wd0QBeB0pWIEXRAMM1hWp4RdEBxOYoPThN0QAZU8bnjE3RAWNcAP0sgdECqVOqQuSF0QMogU9xTMHRATx5QAlkzdECXa3aXpUJ0QNDvrKuLVXRAqpyHb9xXdEC8XyCvNV10QKjSBD+4YHRAEiAfDghidEDxraFDkGJ0QDBfSW1PZHRANtI5ZuhndEAHWxf3IXB0QApAbXhBcXRANAWB3TpzdEBkGsWPOXV0QIoBVmX9eXRArWCQN0SAdECgSlDD+IB0QKjgLkFOgXRA2Dd2BCaDdED0FRetFpB0QCiui3kLknRAyheo5lKTdECY2SIy7p90QGnQr2zRoHRAUPYSIzihdEBs+7cduaJ0QOeg4UYQo3RAEMKiIGOldEB8+/0vCrB0QMx6lu/EsHRADUPIO3CydEDBmhZbybd0QFTVTz6/unRAbJoSNSS9dEDRACci5MB0QA7eqYd4wXRAps7EhOvBdEBD4RhWuMR0QAS++vL7znRAsbgi+MfUdEAigqLFt+B0QHbYgW234XRAQhB3N1DldEBiyg+hjPN0QLtk7RRjAXVAGRj/w10CdUAowyllmAN1QFKlrCOXEHVABrAJ9WsSdUB8fZY2IxR1QPT+DNCcInVASh8KvqsydUCI2znPzDV1QEGBfoz5N3VA7aWwTlM9dUA1GY7xrkJ1QPSUouQnRHVABeZDpvlPdUCWcbVuglF1QPM7/7ZOVHVAgurvqnhVdUAnVJBZD2B1QJcfKAM8YXVARNegnGZjdUDXMdYYdnJ1QDLNCwKOdHVAvIHhjniBdUD4CuXorIF1QMBavLumg3VAZS5ByZuEdUBk71yvu5F1QCzZndkKk3VASF5g7rOTdUB9GOQKb6B1QACPio63oXVApM8p3fmidUD+056/gLN1QNaluv9jwXVAVnWUckjNdUDNHon8ytN1QK/ptJUI4nVAugEeGazjdUBAgoNRTO11QFLaR7Wm8nVALCzqQ+73dUDuSXptSAJ2QL1ax1nSA3ZAwl6mSVYSdkC81YxuTRR2QAyBaBULFnZASCYyhYgidkDgaK2fkCR2QGIf0WpLK3ZAciMXqR8xdkCQd90CVjN2QG8gA06bNHZA5lB5mR1BdkCac/iAm0J2QKRowNnIQnZAVwQ6QBBDdkCoVBKHeUR2QIDwaWHJUHZAEFWn5RJRdkChw/uKzVR2QDibsB1TY3ZAVIT2uLljdkCf9zyy2mR2QO7WqEFngnZA2QhAcpGDdkBGe/tswbJ2QHGcoLx4s3ZAPEqQ+gy0dkCKBMQWeMB2QFDcK4MZxHZACj3+KM7OdkDhPeXgJfN2QOqoCWOR83ZAxhP7RTYCd0CWZtIDUA13QHE3YMQBEndAfAzgYY4Sd0ANLAkGDyJ3QFbUunalM3dAteMwfQ01d0Da1B9xJj53QJm1QtGdQXdA89GqNrFDd0CrEvd6G0V3QLEIvKtLUXdA9cLmeZJRd0CNvpKcKFV3QOVVOJbWWndAkGsvro5hd0CQTXde3GJ3QM4VVmc9Y3dAuhpHwidvd0AACpa2oXJ3QLa4TO/6d3dABW3/VTZ9d0Dm3eeQSX13QJRvEsp3gndAna+oskyUd0AqT5KzmbR3QCQkMI3k0HdALo+zKYzWd0AK6mco0d13QH1kgbVR8ndAABJeakf9d0DNGfWg+AF4QDR79BKhAnhA8lNzTecHeEDcRenj/Qd4QPojE5VADXhAEBRWEm8ieEAqVF2WiyN4QGYe3rqwI3hAqLMZvmg7eEC6xtubC0J4QD997xhwQ3hADqucgBFEeEDi1bieekV4QLfK0dXJUXhAf8qt/ZRSeEAj1DIIIFR4QBzkFhmKVXhAVmt7vepXeEAXJuBu+WB4QMx2ME+3YXhAKDKa+PNieEDGASuGbGN4QPagyBUpZHhAqAEi+PxqeED+NSyy7nJ4QMyKgON+c3hAzMc3oi10eEBHNX4+RnR4QJMAlfiLdHhA2DfI3cR0eED+7u3spYF4QF5EBziahHhAokdqRZqReEAs2kE2WpN4QMK7ObunlHhAVDom+NOzeEBxKqpk2rt4QCGrn5DNwHhAEGW7AOHDeEDY9hnR6Mt4QG5Qwgy31HhAUro76v/zeEDFybS5jPV4QPDt5xSaBXlACqneidUheUA+8+FpvCN5QAQ0RMayKHlABAbaTgwueUBAKOgaKTN5QL+//wtmM3lA8tkTqcozeUAGf7IN5Dh5QA7sQiw8PnlAxi2pIvxDeUCcOLqKlFN5QEY+EkkIVHlAkJbu2MtUeUDTNfEsRHN5QFKkMXlvjXlAdKb8jm+SeUCTuiw3z5J5QHjHG91tlnlAhAI5STmieUCkUFtkwLJ5QMJj7PtB1HlAfOiSe9DVeUDWflM8T+R5QAXyBd34BXpABv5UyzUjekBOrNFDQTJ6QCb4VXcMNXpAZIIH8RpFekBhzp1nz0t6QIpJfRgoVXpAEccpwiJcekCG5q/Fi3J6QLLeoP0MtnpARmLvkhrGekBij5s0DMh6QFl75atpzXpAuoyrzdXTekAeO0oLENh6QFuTOTb343pA3tgFYgDsekC8Ifv5Ne56QL2fJ1xK83pAGAHswqP4ekBGFR7y/f16QJ2muqV7BHtAOifs6CkOe0DmcP2YcRF7QLZp4AHEEntAMhjrZkwVe0B4PzIGIBh7QIr2PKh+HXtA4syi+eAie0AOY4G0WyV7QOTy4LbDM3tAWbFM7gONe0CAGNhXI5V7QJYlwPfOnXtAyZ+ZMyeje0AGwgIHZah7QGoxMfmAqHtApyvRV9Wte0BGuMpYesZ7QHytGjn743tAlQDZtpbxe0BNmE1OG/N7QPPbD12M9XtANIngR3r4e0CaUbhHlAF8QPiTS0naAXxAY6o2RWcEfEANfN/VmQV8QO5VYolmCnxAaLd2QtARfEAPUfENFhR8QDhAotzoG3xAYy7YMh8cfEBUDOFY7yN8QJS+zvPnLXxAp8WJB85BfEAZUMMDU0h8QBiJvmmsTXxAm2lSHO5SfEBMC2nnCFN8QJzLqLUPYnxAe27NBf6BfECGrbm0WJl8QJCGPaaynnxAmx2k5T2ifECRJLEKwLJ8QGyZwZX2w3xAyOqjVGrYfEDOlzbIwt18QBGcwAdY4nxA7lWU3g7jfEDHf3mWw+N8QCdy/PZq6HxAsRvZeLPtfEBmRK97FvJ8QKA34aBW8nxAHL7a6RHzfECGnFbIAAJ9QIxlNs5LAn1Aku38ekUSfUA8IQKUrxt9QFwqG6JCHH1AZRUuzjwifUCwa7gAtCN9QJovkMBJJH1A1Mzlr1EsfUDqF6SjYTh9QNBw5+GXjX1AZyVCpO6SfUAi6lo7Nph9QORFjOyrsn1A7f06XuGzfUD2Aypo5sR9QH/td8Ezzn1A8MKE0NLzfUCG/r6jk/V9QL2eCg7b+31Ae2yY1+8dfkAG0fYWMh9+QFAOH0FKI35ARA1VxKIofkAeq3Vh7C1+QO33EBFFP35AyXkUVZh4fkDMcFsMuHt+QJaIGii+g35AnhSCvFaEfkD+ws80xIt+QEQYSVkRjX5A7gcjucyTfkC0YiyszJx+QJwRE76Wsn5AqxYSO3PIfkBAHOTNzM1+QKIAl/Yn035Az9IBPp/TfkCpeCrDadh+QLCPXuDK335AqUgwVWD/fkAtLrcWHgB/QDa9iBSTA39AfkaagKALf0C0hu/wrRp/QKB2ItG3G39AXvN7abhxf0Cq2JRDtIF/QFkjY1RjkX9A+l/4LJiTf0Cy73G6YKF/QLxH+1pEo39AEmhdTZ2of0DyA9GXV7F/QBb5GvPjy39AHSqFnezTf0A+5hOuIOV/QFRmE5iS+39AGXPorMsBgEDDfJ6DwAWAQJicl8rRBYBAZFXpdaYJgEBUxyIrxwmAQBZz+nPDDYBAhppH4x88gEDaiJ8Bp0KAQKS9+Pv2SIBA6odnSudQgEDo0EvHE1GAQHxM8eEMWYBAz2tM4ehZgECWVQFBR1qAQK7jjv0NYYBAvkcGCMVmgECBxQfF8G2AQKBrY0gnb4BAObxapD1wgEAcrqj+KH+AQPZAbSIej4BAoO8kAh+XgEC1u+rb/6GAQPKz4hyvpIBArDZwheuugEBAXmLJE6+AQMQsrq2CsoBA5Z0/YAa6gECYqvGcsryAQLBVyaxfv4BAoHC0cVLBgECsCFDeCMKAQIDSOjAuw4BAPr5l0bnEgEC1y0KqAciAQD0fx6ZTyYBAzd+CvtbJgECqrU25QMqAQIoL2UgIz4BA3jFDUS3RgED+gRaaTNGAQOpI7mph0YBA2cLSnUrZgEAWmPy0ctmAQL5FRKIg3IBAIfdqx0ThgEBHk/0kWOGAQDIQtQpL5IBA1OjocvbogEBEknig9+6AQHgtkxBL74BAvvY0CT7zgEDu7MXIZvqAQLpOA7Q//4BA1+oH/j8HgUCqEPqolwmBQBjnGFQ9D4FAKl2XMTQfgUBfqPwBNSeBQNtwYizyLYFAEDRljTAvgUCbAEzT9DCBQGYetlEiMYFAYhhK9IAxgUC0Ev3juzGBQFzAlB8wNIFAE8UXxd02gUBkwC6LvDmBQORZmmwqP4FAtumCEWFIgUBI3mb0+1eBQOpf4OxZWIFAOjNsWYZggUDg7uvUZ4qBQEAqsYgUjYFAjnKKNlWPgUAIMtTiwo+BQPZ8Jc9Wl4FAmnqQFVOfgUDA+rej6KGBQJrf6prXpoFAVjQzyG2ogUA4VVfVSq+BQJWzrvwFsoFAnLTfJn7TgUCaVfoLAO6BQDB5nWfs+YFAVTIudPD9gUDEtUe76QGCQDSu9T3kAoJA9mI/z+sFgkBwJZwplQeCQLdv7RsECYJAREH2FdkYgkBM2T0L1yCCQPzhqt/QKIJAss8jBMMpgkBY67FkVE6CQARUE9siWIJAXNb6wKBbgkAVrb6oyl6CQOThCjIaaIJAEEulnYBpgkAQp6IrBGqCQGoz+lkWaoJAIVsx0KNrgkBoGOq+LWyCQOAwUYVDiYJApsfpfkORgkBsJ1niO5mCQJJ2NZ8OoYJAF5lriTuhgkAezqW3DqmCQBaF0hI0qYJAcXz3GgixgkAYWTF2vsKCQFpSAUGt0YJA3AbNsrDVgkDe5pBYuNmCQObOJxZ/2oJAltlth4HegkDQ+ATb4AGDQJmtCgDlBYNA8OCBoXkRg0DjC7nxeRmDQBzQpexyIYNA4IodnIshg0B4x2NWDiaDQF606LFxKYNA4+zT0cAtg0DNuufBRTCDQMzbF5ZrMYNA8Lh3H8Qxg0ARTQbvtzWDQPg04WfeOYNAvuDw1uE9g0AmaKNN2UGDQEreWwXeRYNA1q6vWON1g0CyljKB6HmDQNbVAijbfYNAit0w0OSBg0Bd8z4MSYODQNSHSD2pkoNA2/UimOWSg0CWkRpMBBKEQLZM7rvSLYRAfn5zGtcxhEDbzqMVczKEQL8zmYP/aIRAATU419dphEDsEwI93G2EQNZX6Pn+cIRAPjVGR8p3hEDXuSck93iEQHJY/yJ4eoRAcnSUjXGihEBfYziSJKWEQEb9t/O4p4RAqmimAlSyhEBk8pl9QbaEQBatrhhZtoRAwLpTIxjNhECuQBiWxc+EQDjixh500oRAxoPOV2rZhECtn83KaeGEQG6xin9i6YRAFJEi4DXxhEAGA7qSYfGEQBq8RC7C94RAC93pMzL5hEAGyE29+BmFQNhMsX02MoVADDAbVQFShUCCL6TqA1aFQM68Jl0OWoVAYOvHoqBhhUDQmP0AoGmFQHTVGViZcYVAhC+J2rJzhUCEaQdapniFQIZlz1uZeYVALlrv85yIhUB2N59XSJ6FQNic2wRMooVAZOqV6kemhUBUP1tsXcSFQL5WB5I8I4ZA3Dnb16FWhkDmuUuxo1qGQC+vxP6nXoZAQKYNR/uNhkCz6dZal5KGQK3McjsouYZALp0ltCLBhkDaC3zrfhKHQE5zkhxtFodAzsIOH5Eph0B/nUXRkDGHQA/CJhWKOYdATiHlRVtBh0CiQjJ1hkGHQBrkelNeSYdAtDjcC31+h0BWUYF9gIKHQOSaabmDhodA4AOFMYaKh0DUj8sphY6HQN58fg/IsYdA/eMSX8a5h0AKRq/GwMGHQHa9r7zFyYdAYyeaK3EGiEDKYRYHdAqIQIDLvxR3DohAdm5FAp2KiEAuQW+B+JGIQIRbttr7lYhAbIWRWo+WiECtIZxw+5mIQEgqWVTHq4hAc3l0vs6ziEBbGKCA1buIQFTTflqW8ohAk9JEgpn2iECcW1Z2mfqIQBVpkd6b/ohA + NrgMGZxjYkBUZ6VXTIVuQOzIyX7kkXBAJ2tCVJSyd0C82cpSRAR5QCfJHqjsw35AP3A0E3WagED1Z949SXqDQD+fIj0hI4RAXfDeJ3mzh0D+elpRGFuIQIr2g83a24pAxaYAYYRji0A= - + - oFp4REhGtEVyd39EheBCR18TiEUD8olGFU0wRWITDkduHKNEFT5uRO9D6kQ+X8BEakKvRAHffUVSOnNF0+d4RKRxW0Wnx2FE+xsHRVqZc0QpuM1ECYXIRPXkGEUdCA5HUwTDRMYaJkZ/f4BFccNqRN3fi0S6qbtE8Z6IRISx0EStw79Gs3lxRJI9tES5tMVE/pu9RLFNn0V9jwhFTWiORD5s20Si75NFF6Y9RmbUo0RW65pE4TUvRWOU00Tdm6BEIRF7RFVs1ETv3ZJEDWpRRwrcKkUAYK1GoRqqRGkJNEVIN0FFkhr8RidZB0WPOStFHgD6RCyeP0Ucf1pEMopgRxON10RBJVlGTv8NRmMH1kVxZ4BELiQJRdQ+ckTCKpVE6XKXRDJGhkRiRYdENTR7RY5yHUUbfK5EItxqRLLqgkU6ZCtFrb7kRGQriETCqY1ES5mHRTHNh0RcefxF6h14RObh0kQxCZVEinanROAFQ0eo1ZJEmJycRgZVpkS3s39GaeoDRTNcWEUUfcZEM1GBRLUkQEUWxppEGweMRJ34IEXI8HpETRZxRAT3o0Rpou9EI7myR20sGke+rWhFoD12RZAKH0a2epxESQsGRV18dEXXEkpHZYsrRX4Ll0QF7YpFILTiRMbPM0W/ZPFFQYI8RXWFmEUmdW1EP/2RRKbmR0XOkL9E7eWHRJBnD0WvAhpFcoWuROY9pERdPrtE26ldRivOoUVJAaVEEQO7REsngkSEcd1EJPgBRQFWSEV3GNBEMfSPRKdthkTCz+9EcPSrRDz9wkVr66dEjpw9RsfYm0Te5P1EUjPORMLwukSKPOdFkhJ/RMUnIUU/Q39GJMHNRUXFIUWlCY9E/A7SRFcU0kSv+tREAEeVRIdG6kRSV6NEOsPaRDoHzERGP4pGuLgCRXxk4UUSqflFbu4/RTPlaESkY1ZF+W6FRDan1ERMTq1EtGWGRJSndkSTBrBE676qRIZfj0QFpK9E+aLDRCMyRUbQj2dFKcWSRJwrz0VcdpJEs7ppRIP+gUTK/pdEG4OoRfArCkZ8EuBFF2jDRi3D50TbWahErwRrRcn5p0TQoSJFtoRURMimYUVDeJdEz/EoRbAvukZO3gtF9iCQRJW/rEW86WdERIFaRfq2TUWVQP5EswijRYfHo0TYdn5E5RRHRefJgUQ2oylFn96cREcje0RB+p9GXVyaRH6LaEVMfTNHwEkDSF5PGEW6JrdGPK2uRRi+5EZ8B61FYN52Rt07wkTqtxRFVezgRPrDfERYMaBE/r0PReN0KEWXmrxE/OGhRC9kZkSEWL5EvPCKRJ8ouUQpjoFEA3Z/RIshikSzUp5Es1zmRorsakSunp5GthwPRUEVX0W99axE1ASmRe07rkRB8KlEIgLfRh8000SITPlFcBhgSLh3OEboE3dFojgmRaj270b34wlF9EekRG1SGUX8yTZFrUHrRa/Qx0SkjOlEWE8QReMaqkTydM9EhHmnRKbjL0U8JVxJabYtRTwdMEVuVVtItUz2RIZj4ETP/JZG/AWtSPQeCEhzvbxEodvORq98QEV1UJtE9yKQRcMe/0XB9vtEpp6XRNhLnEbpchVG3gOzRRpGrUReuQJFKUsQRSkaNEUBnyVFwbamRb0wq0SS1YVEw4nIRdAck0SMFkpFHX+SRHTIuUQ1/49EBNNyRHTEgUUJKx9G6rDDRIaH1ET0seVE8ICCRBSLzUSA1/JHaNH3RgDpj0RK6nlFW/HmRDJqg0QWStpFrAajRErrvEWEDYNFaruKRG9YjERKT6FF2O4xRbJoAkX76ohGmOk2RpxlHEVJvitF7k/YRBXJmESVO8VFGHI2RqDrhEXVtnFEcXpaRJLcPUX2NopEuVPERPoRpET4aStH2+3MRl3gwEUbE8dFtT4ERUnqjUTFgq1Eie6ZRSd3nkQR37ZGSQSsRHFbmkSLf0ZGruAMRpvv1EWCXIVEDJ6dRQX/3UXRWKtFgdjQRPZ1GEWFKRdFy7isRWzjwUbPL1BGj4f1RKmxRkVRfG5Eu5LYRPf3lkU5xnVFdALdRC1500TRTWhEY/ZwRkXP+UXgQv5H7dSqRck9pUQdmJ5Flh/NRNtdAkU7DRJH1Mt4RFU1FUUm2MlGqzCORf2FpEWzzXxGeNelRAK6rUV1Qt9FaMh8RF8ajUSJL6pF0vxZRSp3zkR/39FENEuyRIaSkET1MstEuU78RZuNKEW+vXdFKVUBRiw5aETbCMRFptb8RILvl0TYc1tEJzmMRKDEC0hCeIxHmA+wRDccqUajOHxEdEwhRURfd0T6yrtENmNKRuh2iUUbivVEKrJkRHrfj0QJg11EZmx4RC/Sh0ShsAVFdfqqRIbMc0TSU5tEzD2XRaDNnUSInS9GhfoaRbZOgUX14ZFFDSQZRRp8G0XE2v1F7Lo2Rb+PaURaED5ITOm7R15ELEZoz5hGJplqRKIlrkWoHnFEeg2HROKXl0Q9cdZESx59Rbg+gkZx1HNFvbtWRFxUnkSMPt1ENfyuRJIGXEWJrF5FEEYNRW+4bUSOob9FaQeRREGnrUQtyYVEebJyRLxdBEUnpplEV2ZqRlM2T0bFU5NFjxiRSO1yj0TF0Z1EYvWeREOnh0QlggdIlNOjRJ1hHkUp7Q9FAaDNRJO5jkf1YW9F85WIRrjREUVeKcREQ7a3RTSsukRVE5FEKeCfRFFIhESe6LZEsgUORWd/w0TBEDZGYgAjRZHNmEQUEhtFHJR0RiITc0VZB4dEJHWmRHsOckR99mNEC5DyRCZpn0RMkhdFeqqWRHT/hUQ2oqREPG+1RVmKd0RsQANFyr/FREgkukWLiMhFCxXGRYxyH0U+8BVF1rKjRE9ELEVEp7tEnyHeRB1mv0Ujv6NEHwKnREoRq0RKpphGUIgWRs8Q30RhW45EAwPBRKezUERlm5REUzxMRvYAN0VrK0dFeFpzRLczYUTpur5F2hnBRCIdu0ROxqxEB4yZRJTLn0T4kEREIsqRRMCs9ETOS8lHsEcgR2kPuUZw7fhF7bnHRQzcB0WN+ihF7VXMRBafTkTsIRFG1YO6RU2tq0TU0K1F85AtRZZvE0U97OZEzl/xR/EWXEcaZRFHIpQORZBsn0Tm5vpFDww3Rn4zm0Q/xFpFkFHKRVv0ykTNi5tGD5gaRoqog0V6RPpE3fsPRUT1A0W7CnhEw6fNREIzu0Rt6hFFtRfFRNd7l0Tx05xEIIx5RHCKq0RsVaFFdY1zRJ5tlUS2mzJFzwECRT97rEQgGCRFgf9oRYA67kTnJ7dENRJMRV6EkkTIqqxEjyLCRRsXtEXcFPZEef4DR8SFhkZvYxlGrGqSRaRAdEWPvr9EjR3iRHQYukTxmiNFLyzORYE2XkWjiJhEObEQR7qndUafkjJG5mamRLEnjkW70o9FCHCTRCNKD0WFw6FEzoWGRAjopERzKalE5Tz/RSras0WrxQpFGtyNRDwWl0QiocFEzEyWRG6ow0QXK0FFeIMhRsWas0Un2DZFlJKPRAoYvUTq5oZEYNtJR53e+UY4gYJG0SqVRR1Ch0RdEAtGb3adRUpAP0Uq9plE8RkTRoMsEkZKgUtFKwtnRBl/aEVTRT5FlhF9RIn04kRIY/RGAVo9RsCrKUXpGzFIx3kOSDl8rkcp8NJG + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - PsDFmw3BckCe4mIDcMFyQIPhjKenwnJAqmouxjvDckCQHzrNWMVyQHgmhzcByHJACi2RKVnNckD5iC+YQ9JyQLz2NBfN33JALsBKK7fgckC/HoN0TeFyQKjEC/JQ4nJAssWt05HickCe11ZQJONyQLQ0I+bK8XJABJD5jn7yckA1SuNFs/NyQABXpy+k9HJAyKkHwsL/ckBT6ueO9wBzQOtjp0eNAXNAAojhrNACc0AOLaG++gNzQLYPnFoLEnNAzDn96rwSc0DGrwkYBhRzQIfNs4alIHNAK6O9HTkhc0Cy0SbqyiJzQKhwfEMRI3NAVN1hmM8kc0DuwsOhSTFzQN8fEJXWM3NAS4h1d+RAc0D0BXQaeEFzQAZIiikoQnNA9DBl33lEc0AMNxttpFNzQGBu6YCHVHNAZqRA2Yxgc0Cb1QwJOmNzQFgMMdMrbXNAzvTlblFyc0D99EXcZnJzQHss/ZiFcnNAlN9WgLpyc0AQIRd9uHRzQF8puA5NdXNABVEBK893c0Cg6etH4XdzQEwAtRopfXNATD407XiAc0AZNoVbpYBzQPQtjhwNgXNACNXOUlyCc0COAuszh5BzQN4mA2dNknNAJ93PP8+Tc0CSx1jXYZRzQEwU2ET4lHNACv42ALmgc0DIZTG9WqJzQLauf+x6o3NA2E+h+QOlc0DIWLfsybBzQMBv0wuns3NALlp+Rgy0c0DOgl1u0MJzQPjVkOYlw3NArHsRC9jRc0Az3+lz9dNzQKKLGpni1HNAUTMSvTjhc0CuIjE/feNzQOnAZ7I29HNAUMJAc0P9c0ANn9nX4gB0QBQDeRJ5AXRA/npQdp0CdEBteSDjuQJ0QD3vwg/mB3RAD3y0tPUHdECijVb0iBF0QFBN89RME3RAnOjn9UogdEDEPelNuCF0QB8ai2fiN3RAWYxw1adCdEBqVYGYPEN0QBSFi9H4VHRABrrB8oxVdEBxc5Ts21d0QCYmUeQ1XXRA8nMX1bhgdEBcsV1bCGJ0QKHZTdKOYnRAjsU4q09kdEBazbb76Wd0QDJ8lcMhcHRAtHpD+EBxdEDA34LcOXN0QBRcNlT9eXRAeZVe5kSAdEAcBPgZ+IB0QKBqbJxNgXRAWd1SnyaDdED2z/omFpB0QBA/CwFTk3RAOC0iePCfdEDJ2+HSuKJ0QP39BWQPo3RADqqfDguwdEBIX4k2xLB0QII/vy5vsnRAZU81hMm3dEBihnaUw7p0QDgMZGIjvXRA6TEP9uPAdEByahT4d8F0QMjjhoXswXRAns8zN7zCdEDJcjb4t8R0QJakRy78znRAFflf1KbSdEAmSOLCPNN0QIsJUKDN1HRAQjye97jhdEDwZDQ7jfN0QNE0j0SkAHVAFue2t84AdUDdR2FEYgF1QAmebwxdAnVAcHdACmcSdUB2Pa4rIhR1QBTRKwyeInVA5p1nKMw1dUBp67LA+Dd1QPP9Ge9SPXVAa+Yz1a1CdUCJhe5nH1B1QHT2FjqCUXVARItGJndVdUB0YTxSDWB1QJo9yZQ3YXVASi150WRjdUC5bPG/d3J1QIjJFQt1c3VAzDETkY10dUBwl/MTeYF1QLAopzGugXVA/GsdZKWDdUByVfxXm4R1QLOAQzC8kXVAvBDKywmTdUDQBTLOt6F1QDCuxf5iwXVAco/3xPbBdUC1r9hsEOF1QKqHLnoH4nVAVhIh20vtdUCIWFYXpvJ1QKRrYvRIAnZAxu5VpAsWdkDeMRr3iCJ2QF97vxiQJHZAqpfqJksrdkDKqo/mHzF2QAbBAw9SM3ZAQmLY3xxBdkDST/4rykJ2QDSnsSR6RHZAJnTsMxJRdkBNZi53zVR2QAQ+1iRRY3ZAqBu7BdpkdkDCUWmzkYN2QG5S6mbCsnZAnRMtP3qzdkDoC7LSDLR2QEhWoG2wtHZA8L8mtsDAdkBkJsIlz852QGsJqgB+0HZAn+lEtyTzdkALlXzykPN2QIKH97EBEndAeCKcqw8id0AsTzkEdCJ3QOvPvj+nLXdAuiioZKQzd0C1T8gjDTV3QD6BQyCdQXdAEXbwnq9Bd0Dwq/+8skN3QPtjbCobRXdA1RRkwEpRd0CPOE0vk1F3QLs2pWauU3dAPn9SRilVd0AvXAhY11p3QFNCrO3yWndAmpjkmI5hd0BQznL7Jm93QNrMwYyfcndAfg1wFPp3d0B0P5voeIJ3QFrAnEiPgndAlIiA2giSd0DM4ereTJR3QH5LkAJH/XdAIjIrqKACeEBIO9y75wd4QJaNcMv9B3hAzFIjD0YNeEDOmkhOUhN4QDTZ9/xuInhAgqTGYmg7eEAsjGe9cUN4QHSn3TvWQ3hAgiqReRBEeEA4VEdOTER4QEYrJtp4RXhArLR9zcpReECztF8olFJ4QPkjtHIfVHhAFDBQqodVeEAaeQAU7Fd4QFxtypf5YHhA1q8eLLdheEA4CFDK8WJ4QNIitxdqY3hAECHvOiRkeEDH80Nc/Wp4QBRCZ45RdHhAHEPgRYt0eEBWEmTjq3R4QFivUlmkgXhAIqeJ9ZmEeECQORkAmJF4QHLOMcFZk3hAzlKA3qeUeEB2muJYZ6N4QD4IG6T5snhAREXwitOzeEB28EFn2rt4QMqjNRThw3hAsD11UOjLeEDp2Gy8tdR4QDUei3gB9HhARiudH4z1eECMLScdnAV5QGtSV6W7I3lARldPJbEoeUAioAQkDC55QKR9pOoqM3lALE+SpMkzeUAYmLRx4Dh5QELiwUiKQnlAwn1qlvtDeUCDxQzyy1R5QDY6pihxjXlAKNebom2SeUBgk+8dzZJ5QCnGCdzuknlAfMVracCyeUC+yKNgUtJ5QGEjDO1C1HlAIdYB/FDkeUAWB+53+QV6QKqex8NDMnpA0CLAOww1ekBJXhiFGkV6QFyiUHfMS3pATJOdutFTekBWLMZNKFV6QDzwUTEOtnpAjCyeJyzDekBgli3TGcZ6QFAdMUwOyHpALvya22jNekC6k99IZeF6QB7YfPr243pAifcQAv/rekA3NXFWNe56QAokh1UZ8XpABNKAfFzxekBWkEOTSfN6QD+3/OoH9HpAcH+8+KP4ekBoeo2iAf56QCCragZ8BHtA+x4APSwOe0BIn2scxBJ7QKr/kb5MFXtAADTWJh0Ye0DQ5JsdWSV7QHpRt54eLntA3B65Mf6Me0Buh0Qt65B7QMsLOk/OnXtA4u00Siaje0B7XTPFY6h7QKjadtaDqHtARinnAtGte0CRjY7yHbN7QFt/S154xntAmpSLpv/je0AIKufhGfN7QHh8ekts83tAKvZ2qBn0e0Dm9CFCjPV7QLb0PhvZAXxAfv0akWYEfECc4shCmQV8QC6vVJTQEXxAalbbghgUfECbg29edRR8QPCR3fPmG3xABDcnMR0cfEDXjxmU8CN8QG8pwc3iLXxAaBDEr81BfEDk60n4UUh8QD0SLVyrTXxAuGqIItxRfEBTSTJJCVN8QGmKjWtWWHxAYHZMewxifEDIcXw2KnF8QAw2vk7+gXxALGwhj1mZfED0fjrrsp58QJb70d48onxA3DO0br+yfEB8pDGaadh8QESvHSjE3XxAeABTqFfifECU0fW4EON8QMJnHg1p6HxAzqDQ/MHtfECWh2bFFfJ8QLc5n0lV8nxAPuEUvAECfUCdBUoBSwJ9QJh9VRtGEn1AgjQkIK4bfUCS3bcyQhx9QM6Fy4A8In1AryV3jLUjfUBgBqoZSiR9QIbasdqVjX1AQx3jemqSfUCg3u/S7pJ9QGy/NSw0mH1AjRVOC6CdfUBIa93+q7J9QOmiAgTU831A6OXKOpH1fUCUwRXP2Pt9QO7+wbjuHX5A2kuItkgjfkACiz6SkCh+QN98j2RAL35ADoBupjtzfkB6Bu6kt3t+QL4IdTQwfn5A6nN8fr6DfkDiSi5uw4t+QF5dlgvHk35AyAdJwnWvfkD8R/IwdMh+QKsuwpnNzX5AJBR8xBDTfkCi2lZuKdN+QKBUMCGWA39AZvjDArpxf0A841yyYpF/QKTA6xOpkX9A5nhqKZWTf0BMEL22XaF/QPCfOV1Do39ACuOaw5+of0Cm5lRI9K1/QF7XJKNXsX9AOyT5ZlKzf0A6fvGMfcR/QBhlgULky39AL15Kyu3Tf0Ckye8ukvt/QNao8RbMAYBACCnC3L8FgEATNBeH0QWAQNo/uNbGCYBAnBzsbCIPgEDdAXXzzj6AQHgBb9vySIBA+oi5GOdQgEAWz+bCE1GAQFYL8XvlWIBANldYLg5ZgEB7c2KfxWaAQKTQnzfzbYBAhJ0BYClvgEC0/8EVJ3+AQFlofA4ej4BA+Aqd6YapgECi0QihE6+AQErUAsWTsoBA5uuYzQW6gEBw5hkKs7yAQJIBrD5gv4BAEGCeQ1LBgEB7NAFObsiAQG66gEhTyYBAc99gukHKgEA/IzoWItGAQIDSQm9M0YBAGvhsrEnZgEBRlwwEctmAQEiMfHRE4YBAcAMe7PXogEDemUihPPOAQKkUc2xo+oBAaZ1veuf9gEAHcCkgaP6AQBNqEXI//4BAMBMbFkAHgUB4HDaJmQmBQCl2N6g8D4FAPj1S6vIegUD4l3pBNB+BQL5ozqg1J4FAk83gtYAxgUCMABmNvDGBQNyfnUQuNIFAeo5PMds2gUAxwhI8uDmBQAAwkhgoP4FAMwGbUmBIgUAlZ5j8WliBQBgWEkWdbYFAqhCQi19/gUCSnbp8ZoqBQDT9gjAVjYFAlu7rmVWPgUDiU3vMVZeBQAqEFmHnoYFA+lvltt+pgUALYGuYSq+BQH5EpJJMt4FAzfp5in3TgUBI2YvH7PmBQGQsFWzw/YFApF2S39cYgkCtN+SK1iCCQMTA6v3QKIJANNL/dNhRgkCA1ebqIliCQMKKYqDeZoJADkYB6aFngkCwNvUGGWiCQCgwGs1taIJAJzSnNQpqgkAQx/0CpWuCQAY0IBVDiYJAHtS/LkORgkAq941oPJmCQJZAKroOoYJA3vuFdzyhgkCz1lgNDKmCQGqQWcw0qYJAJoVnywaxgkDw0SnDIcqCQFzCDfir0YJAnIxcvX3agkANWT3kgd6CQHxRn73gAYNACRzBb3kRg0BkVKd/eRmDQG8De+5yIYNA2b+Fd4ohg0D6m2OgcSmDQIJ5BGfALYNAuDsjt0gwg0Cn+p2YbDGDQNqz4U/EMYNAHPMulMs1g0AT4z+P3TmDQC71KX3hPYNATXU/V0dBg0BwhZiW3UGDQAE4srzidYNAZP53c+d5g0Bojx+N44GDQKyfqSTokoNANne4/xebg0BXzC9QvcGDQDrvaobBxYNA+C7aXmbqg0BNd2CjaO6DQOXcOAdp8oNAlk1mjQIShEBANK4wBxaEQOyhcANwMoRAUBqxvP9ohECzupQc/3CEQOtB8SP4eIRALuBHkHZ6hEDyJqQIJH2EQE8PSEEehYRAegfWI3GihECYmu9pHqWEQCLWAiRTsoRA1kXdiFe2hEB3ddbkF82EQFCd8yTEz4RAzcq7hWvShEA8WKznadmEQOwWqJtp4YRAzFAu6GHphECUEO0bNvGEQKCu9c1i8YRAlW0NZMH3hEDaG9B1NfmEQB6YPY5u+oRArDodmfYZhUAC6di9+x2FQGP9eCECUoVAepurRgZWhUCKg+AtAFuFQIzq+5OgYYVAqpbVYKBphUBnoGaCmHGFQPvNMyumeIVAsNsKOJZ5hUCxJM96kYGFQPD/u0GdiIVATB1XmEamhUCXUps/olaGQH9IOO6lWoZAr/y1q52WhkAwTQa1xJmGQEjTKzZpFodAoMGabZEph0CejsPjkjGHQG5vFUOLOYdAGge/QX1+h0BMcFQfgIKHQIhkqHaDhodAts675X6Kh0AmidlsiY6HQN2rRK7HsYdALkMAG8e5h0Am7CqvwcGHQE5tylBwBohAztalQXQKiEDOM40Vew6IQMA2KlhXM4hAKqoSQ/eRiEDGd0io+ZWIQICBRHLHq4hAYD+TD8+ziEAYj71F1ruIQNHtD5uW8ohAasaXUJn2iEAAbqWomfqIQLaT1aeZ/ohA + KBZXds7jZUCdFrCBNyNrQDeULWxqYnBAbFyUq/MhcUBV5elWwvJzQGy6cP9LM3hApuX39ediekCYYIfp+DGAQJz6xK31SYJAxWYsj1pag0At/0VGNwKFQPCQrpGmkoVAkCwQY8OaiUBUvniuMiuKQCExkfsEU4xA5cL5RnTjjEBCry2MyHWQQGqe/1oLWpFAWTIAX/kJkkDqtfZvYR6TQG9HQWAfJpNAIV6mbmWylEBqze2Et+KUQLHhnH/NxpVAN3Pnb4vOlUD6Y91L7iKXQLNiJwenmpdAq+XEwBcvmUAzeh4c/V6ZQCfVBFgz+5pAs5EVMVMjm0A86kVZWRecQMmmVjJ5P5xAvAE9bq/bnUBFlpbJlAueQDwZNIMFoJ9A+ws/H98LoEBcBDqNELagQCBNX4XvuaBARNe2gvoroUDnjtqNI0ShQEAaDZVGCqJABGMyjSUOokDLpK2VWZiiQMTurZdQ8KJAVuYW/3Fio0BATW8zeWSkQK9xSQaViKRAZI6PmYkSpUDTsmlspTalQL0ZwqCsOKZALD6cc8hcpkBIpGKhv8amQFB/vNnYCqdA0+XLCtiQp0BCwW5G+VCoQKumP8XslqhATIFQ+v0eqUBrMrvPF3mpQHALqPcIkalAj7wSzSLrqUCUTMhdGT+qQJl89IAnuapA - + - fd2CROJsqUXOUztHt46XRWR+nkSjAAhGCfc2RSDNIUf5ow9FLgjxRHDMmkQD9KtFE7tZRf3+1kS4L1hFOQ6mRFMj3URcmIBEjDAoRSAVm0Q0t8BEnDcWRQBRSkc1MapEwFUTRqwIukWWmuNEDtrRRgf0mETAeq5ExgvKRf/P+ES/BpNEPpkERTYch0XI0sZEYp4qRgxxhUU3WedEeMa+RA6bwkRE6EJHtffGRBeOckWoL41GHCSXRCy+q0QBwVBFi8UQRZF0EkV+nyRFcvoJR0EdB0V7i9JE4a69RNT+70TO0lZHEyL+RE0KCkVadj1GUDsaRttn1kXx/pJFBTnxRP7wt0RXHtxFafzORHJXr0VgC/9EUlg7RSDEw0SjTI9FCbcORhBP40R+r95EtPcXR7FGxUQRDHdGREx6RnNVNUVxBPVEvME9RZ/Yp0R/FTBFBu7oRC/Y0kRhkR5F2cuaRCZvkESAMJRE9UX+RHuavkfUTCZHjtpvRXD7oEVyFFhGOT6zRKzm5ESuFMRF4ORDR8+jK0V6oAJGS2jWROsTQ0X9NtNFYlpwRWr4wkWKT9hEy2jzRNNbr0TZmAdFLMSUROoxo0SLnopGtysdRlOrAEXFWsxEcseSRCErEUUum+BEZBaiRIzcCkVHIslEmXSkRMAQuUTla6FEMf30RDM0ukWRFq9EuAOYRNgGkUQbX0lGHX/FRGQSDUXBA+xFMow+Rb/EAEbhJ+NFJAEHRX7kj0SzLJpECUHFRPvL7EQUGRxFrV30RI/lEUXRPrBETlQ6RhdQ+URyNdBFTYj0RZT+5kRVwYREJkshRTXE0kTIz49EI2GmRL67skRkgvBEgrhKRnQolEXGX+hFv9apRP7loUXfQRxGKw0QRpTGukbKyDNFkR+fRaQ2TUU3dopFZlQuRcWFMEZHDcJEiK3pRNr6SUWnu+hEhEHVRMTviUU/0JJEgEfHRMBUckVGpZREPVovRZgK8EStf2xGzEI3RcUxwUTljpNEpZVESHwR5Ef5jpVGRriZRUQ32kZ/lMZG8HxWRVB5Vkar++pESGT7RF2Lq0QRq4JEURoJRah1QUXi37BFQFZ6RXDgwkSte7JEzGH4RCjPo0TyUwJH+4FDRlSnekVnZYBF9Mz8RKz8mkTfUT9FUaTHRn8Gs0VczQpFEoZPSWvSBUUlNStGYRaVRWmXt0WsxBBIRPDAREttBkWcFxBFx2IXRU/lukWiM91E3l4kRmeiBEVm0gdFFQVDSY4CjEWlrCxFt0NESDjzBkXJhRdGkgeWRszTtERKLpBEvZORSH/A8kdEtJ5GOI4ORT5I3UQzYJRFDznRRTWB4UQ12whHp5szRt0du0U+wwZF5YiRRSg+jESwE4tEi8XkRYGyTUX6YoNF/bIARU8N2kRdIFxFxEteRXPqyUSw1fRFWj7ZRIE770QGOdtEl2jBR5ho20bmt+xERraRRHlo/kQV15ZFMdOtRC0dr0QPi5FFpc87RUPKtkQWAtdGQE0JRmrYDUX6Z8BEf+GURJr9XEbLadpErkkdRnW2nkRx/kpF8da0RCajyEXVlBdGqt2YRUJXOkUggp9Eonv8RN4Nm0TItSxHhYe1RmnPbUV7erhFV5/+RNdxuURGVI9E19vPRLSEvETTyJdEtT/WRI9ZikaWLClGX9YzRsWDsEUVWYhFZYikRcNs6kQt+KBFsl3ARJHtDkWQhdFE4hq5RUFRtEZraSRGJaC+RHlGJUX3nOJExmsLRdW5rkQyJb5EWICtRclsFUWuMiJFROSyRCk6NEaaJP5FAxr0R3l1FkYFKppF61YQRVW9AEWt6tJGlSk0RSBUj0YVulBFD4j9RYHLSkagA/RE9/xeRdqRj0V4JcxFxw2NREQDk0WD9t5Ekz25RAkgEUXD4OhFyPkYRU+1kEXj1SFG+6S6RTHYuURLWdNEQrCjRH4QAkihvKtEZP59RwAifUbr/yZFhrCjREQSCkbb2YxFB3bVRLx8r0S7qEVFGxqMRXLUHEbKEZxEGT7ERJUfgkU5FtFFXHocRRwH3kT0txxFAM2FRJJlCkUIJ5BFItHuRFdqD0jR5ZFH09nhRR5pSEac8HRFuZ+hRG4mskQFZtpEiBxuRcUJXEYipeREqpuCRWZxvESIActEVLYkRYStzERoCOlFIVwORShtzkTROY5EG+pZRpwCSUYyEKNFfXOMSEtjv0Q/Cf1HWd/LRI4Ve0QYW4ZH3G1nRoFyuUR7ysRFYd/MRCm8yUS77I5FFY2aRKH8n0Tp3UVGpuWLRRPR7URRtTVFp/3URA09lkb6pqtFcygARfDa10QQi55F8RbhRM02k0R4bRtFH9EwRZ2zvURp465Ez7y/RCmsC0UNNP1Eg6vPRcDQG0Vp2ltFw3EzRT3K3UWuU7VES20GRexEhEYK9Q1G9JoqRuBOQ0XaGR5F1AbDRL2j00VHb6VEBBKeRB6ix0T++6ZE/seURGPEhURU68RHsSkVR+oZwkYGNt9FDTvhRbLjs0TTZDFFlPbkROK9oUSD2dREv5GYRaYNSEU/oNpEvZjaR1mgJkf76/tGSfPwRNaXA0btmeRFl5i8ROK3AUUA36FFKQn5RK1MI0ZbIZdFKj+RRCnFKEXiqx9FhcC3RAxl3kRycJhE90mRRMm+s0ROmZpEOeuXRQeVs0VWo5REHQvWRKAnmUQQtA1F2P2yRZDk6EQzcDZFozkPRZna6kTzS69EVSIeRTgzGEVrZlJF0nlMRZlZl0VnB19F8RuSRPNT/0YIan9G7kEJRuDxoUV4RTlFDCmlRP1FB0Wu585EjxhnRbqGSUU/8rlFoY4VRWZfnERUr+xGb4JiRjWP8UWWhdRFQ70/Re3jmkQvvTNFB2OXRHicrUV787pFS3GLRII5m0SIJLFE7OowRscGsUURlX5FKzesR72TgEcyub9G6qHQRScznkTRpApG9DCaRaq8WkUty9lFzRDoRXHvB0UZm4xE+58XRRWiJkVINapG+FDcRTn2t0Q4M05I524aSLQPnEdpK+BG + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - lAWEZG/BckCyjXCUp8JyQFNhUo06w3JA6NxdDsXEckBsh91dAchyQE4SrZlczXJAtsQtiUPSckDlDizhuOByQHCv2VBQ4nJABpSaOpDickDG8q0KJ+NyQNwoKbHI8XJA6A60hrbzckAsk8rvo/RyQFJLbgzQAnNAOWRj6voDc0A3fVVvChJzQNotCfS8EnNA2iQHMfkTc0BK2YV2BxRzQELopkF5H3NALuwtOaQgc0CWL0FMOSFzQBKmn77JInNAa9qmFM8kc0A0NsahRzFzQNl3J654QXNAwtfCUXpEc0DwPQi9mlFzQCY5MAGkU3NA+JK2znpUc0DwJHXFOWNzQBa9aLErbXNAZrWYaVJyc0CSODdLaHJzQCophuGEcnNAbAuv+Ux1c0DIUZxoanZzQOxZh1XOd3NAKhx0g+B3c0Cao8MheYBzQOlohz6lgHNAdCMqOw6Bc0Ax8tCNXIJzQG26NdeGkHNAwavYEk2Sc0DoMAfpYZRzQCrpTYT3lHNAtlDyWLigc0CWM7MWW6JzQGab6ZPmonNA5EYF5nujc0BqbkugBKVzQEys3/3QsHNAdKpwmFuyc0BIp67Ep7NzQBgRW00OtHNAI9/+idDCc0CG3uJMKMNzQGNcbt/X0XNA+kb6CeLUc0ACyISYOOFzQCwHep1843NArCHJEjf0c0BIGwWDCPpzQCykWX9D/XNAhGCB2+MAdEAK0LckeQF0QKT5mO+lAXRA0a/+kZ0CdEDGGp/yuQJ0QF5JGe70B3RAKsGUVE0TdECmFOe3uSF0QHQnIeyNVXRAEM1FGtxXdEBOI3CUNV10QEr1krG4YHRANGmztwdidEDyS3E5jmJ0QHK1UcjmZ3RArD0kDCJwdECDn5dWQXF0QCwPF5k4c3RAbKkvvf15dEAIILKj94B0QEwzqrJOgXRA8BTQoAWCdEC8Q3P+JYN0QJjT8fsVkHRAji/IZ1GTdEAq+q727590QOxOGaDPoHRA2lB71RCjdEBKdL08b7J0QI2FbXfJt3RAMcbmRHjBdEDS0LWJzdR0QLR5CsK34XRAPeP5+YzzdECMMv/FXQJ1QA6SQmppEnVAjAnuEZ0idUA+0WcZzDV1QEBrESf5N3VA2r0d3VI9dUAmi26nOGF1QAKJ6LF3cnVAaGn+X410dUD4YcTQd4F1QIjeyNetgXVAg4fIpqaDdUCMJOoKmYR1QOegs7UMk3VAYD62C7mhdUCc0WOWY8F1QGi/kjb4wXVAqsMFlkztdUBm6aLNpfJ1QJsV42r/93VAQjAYWEgCdkArWDNniSJ2QGCHNgCQJHZAOkVDZksrdkCo103GHzF2QORm+aVSM3ZAZigukB1BdkBNxH3dyEJ2QFD4CDB6RHZAhJd5OBFRdkDqsRXCzVR2QAJiFOtQY3ZAttN1VJGDdkA0Z8o4wrJ2QPrLVLsMtHZA8nKNMc/OdkC2xXplJfN2QEmGHTGR83ZAo3VFBQISd0BH7KPxDyJ3QN2irNN2M3dA7rz2kqQzd0BUJYJKDTV3QD4B0BqdQXdArzxTR7NDd0CUfk7qG0V3QKvbuDVLUXdA/cNhFJNRd0BBwGdusFN3QII73LHBU3dAWzx67dRad0B4QEEckGF3QMx9eoQob3dAzsizBqFyd0AKDKLJR/13QDBEeeSgAnhABp3G3/0HeED8BXDvxgh4QP4ezN9uInhAYFo2gmg7eED6fU9mdkN4QONDl62XQ3hACMfu+LZDeECkACAzzUN4QE3osajhQ3hARrO1XhBEeEACHYwgNER4QE4ZP9NKRHhAHJl02l5EeECygrkveEV4QDpNRFLLUXhAXcKPFwJUeEBVldnEHlR4QHwSee+FVXhAKghTuPFXeEB0KI8J+WB4QG7YvjO1YXhAxgpUdPJieECn2v+3JWR4QGoPA9z3anhAurYxylx0eECIaF5Li3R4QLaWd6uwdHhAFCGIvaOBeEAQ0r4OmoR4QKRjVveWkXhAfloFllmTeED8I82up5R4QDqX4Ztpo3hAUGEErtOzeEACcULx2rt4QEMecCbMwHhAir8sTOHDeEBuuDQy48t4QOK+lWS21HhAYfGywQD0eEBUoshRjPV4QHLjxL67I3lAaLkLNVAkeUCVURj4sih5QEBtAFQNLnlAcJCbi2MzeUAIZ5KKyTN5QJqQTSH7Q3lAk0kr58tUeUCkfaqwcI15QPiLJVXNknlAX2Qp4O+SeUCM9lujwbJ5QCvYQE9C1HlAw+lf5FHkeUDSlg9B+wV6QGZQTQ8rM3pAnCHwgww1ekAGozNiGkV6QPYpITEhXHpA3jQatA22ekB36j51LMN6QPZ31oEMyHpA1tuwqGjNekAugMUow9J6QNZR+Axo4XpALoV9E/fjekAvtA2W/ut6QFDmD/sV8XpAUM/5oknzekDk0aaPA/R6QEgAFGCk+HpAlK+Jqfz9ekAQ6+HmfgR7QBFzdJoqDntAfGgLlsQSe0BudbIPTBV7QCzBc40dGHtALoqKz3kde0B2O2JjWSV7QKTVVCPrkHtAuJwityGVe0A45o5Vzp17QNjXyj8no3tAy2+F5GSoe0CgXgAPhah7QO5ENf8a83tAfgNNHRj0e0Aa+KLIjPV7QA6tCyrZAXxAlllZm2YEfEAKEwd6mQV8QAtCrYbREXxAAhgiRekRfEC6tmw6FhR8QGtP1a5zFHxA5n24yegbfECP4YqH8SN8QLOZQrXmLXxAqJBj5UAzfEDEaMFDzUF8QK7JL8JSSHxATD0wW6tNfEBU+a0U7lJ8QELIbZwLU3xAsFzfFlNYfEBxIWsUDmJ8QG5E8twqcXxA5oRBXAVzfECkCCKB/oF8QN3HBaZYmXxA/rIofLKefED6l4ErPqJ8QFbptcVp2HxAw85TVsPdfEB4mlEWWOJ8QG75a/8O43xAXWR+n2zofEAOz3KaF/J8QDKctk1U8nxAky0/InHyfEDOD3tHXvt8QBOc9IYCAn1AjMtzvEoCfUAmgxFgaAN9QIQU8kNFEn1ADPSjVq4bfUAlyICCQhx9QFvATgM+In1AVID37bUjfUAgwVZLSCR9QOXw111sUX1AujpyK5aNfUAXO7vn8JJ9QNcOJTU8mH1Ajvthv9TifUCcxTnt0vN9QOh1YduR9X1Ay+Qj/9j7fUCKxTqR7x1+QIxa7ipJI35AHItFu50ofkAqOhe1t3t+QBF6G2e+g35AXTo3uVKEfkBy+FNixIt+QPaDKXbKk35AHCqeNXPIfkAcX3wrzc1+QCcXUmgp035A2OIT7ZMDf0Ae1nv1rlh/QFBAwpQJXn9AIE2c0bdxf0BeEAdwYpF/QLME+DeYk39AGQTmml2hf0AqE8IkQ6N/QPebolybqH9AEZUDg3zEf0DZrYxv5Mt/QLCJVCTt039AcEHffZL7f0DC509BzAGAQATE2zy/BYBA4tGS4dAFgEBcf9tTxgmAQMFpfZUaPIBA6KwJDeZQgEBmLkobE1GAQEZmPy0PWYBA9Av7zO9tgEB+tRTIKG+AQNCBi7Qdj4BAcBD9UwGigEANs3vthKmAQGltD/cSr4BAPO9mOga6gEAFFV5Zs7yAQEZBx7Vfv4BARgO/elLBgED+2SVuDMKAQL8TlYVTyYBAZgZ9bgbPgEC4yQyFTNGAQNYvPmtK2YBAZZzTI3DZgECpU02XROGAQLfZHUb36IBAea6vdEnvgEA0HyfXaPqAQGNsZtNr/oBAdO6H3j//gECBk4DLPgeBQEIYdBQ+D4FAzB20pzQfgUAeOcoiNSeBQJYYA9V/MYFA+qvCJy80gUCWLo9SKT+BQPyrcNFaWIFAeISf7GaKgUDO4+WlVY+BQIDf52VUn4FA4FVxLuihgUBGWcWGbaiBQJRfewbfqYFA54m53+CtgUDiQ9hRSq+BQNSSA87s+YFADtpscO/9gUBa3ldd2BiCQIAGiq7WIIJAtGvn7NAogkB1pS4T2FGCQMn7CujbVYJAaPInqyNYgkA0AxECGmiCQHsAp15DiYJAS/vrSEORgkC+W7YpPJmCQGDvNsAOoYJAO3lZ7juhgkD+JMifC6mCQFaTh3QzqYJA0NeHUH7agkC2sDWUgd6CQPpWBLx5EYNAmDblGHoZg0Dy9UJGcyGDQGpaSV5xKYNAuPaq7sAtg0AgkymtRTCDQIDiLudqMYNAalYfZ8Qxg0CEweTnajmDQMTXt2HfOYNAuPxnNuN1g0Cm/ohK5YGDQN7u7PFl6oNAKDPJlmnug0CqpTnBbvKDQMlmfKJzMoRAV4ieVP9ohECccgJt1mmEQFZSwDX+cIRAQiUQFcl3hEDui+INcaKEQCwxU/AgpYRASTZ0d8unhECxpF0TVLKEQAbABtUYzYRARcT9M8fPhEBrVz9DatmEQFAhvmBq4YRASDvRjmLphECe5Pi9NvGEQFvS2Elj8YRAckMeyjP5hEA2ZCHk9xmFQBTgozv7HYVA6wxzPvUhhUAMmysTAVKFQECrJigFVoVA1NIliaBhhUDkpx0ToWmFQNxioNuYcYVAguDrqbRzhUCG2dQhpniFQMRx20eaeYVAvEfHN5yIhUD8VFppolaGQKYdsJSlWoZAGpPuc30Sh0APq1JzkSmHQKyHDmCRMYdAJEHeJIk5h0BL8b6BfX6HQOMYfUaAgodABnjgIYKGh0DyNCbYhIqHQKLFAfmKjodAyOGCR8exh0Ca4j9vx7mHQJmjbb+/wYdA+AMnb73Jh0DIaoNGcAaIQKTWEE10CohAAJBLxXMOiECEtqpN+JGIQE6YRKv4lYhAJtj0o8eriEC0Fb1tzrOIQISuMP2W8ohAsmSigJn2iEDcSAkLmvqIQCHzm8ub/ohA + NrgMGZxjYkBImCMySWRuQEMdzoN8QnFAeiAWnryic0AKeGK9lHN6QAKnB+ytM3xABGufiHbCgEDkAM4SY7KCQJVvICG4eoNAwnXFxhmjhkBILpgv70qHQLlURfVQO4pAcS4f/wGDikDXpQHgqMuNQGgNny05G45AAFPE192BkEBmnTSl4lmRQEnVBKT+3ZFASrMHrRjekkDJ7Pu4VKKTQJM1SHk5OpRASQTzzapmlUATTT+Oj/6VQMkb6uIAK5dAk2Q2o+XCl0BJM+H3Vu+YQBN8Lbg7h5lAkrUhxHdLmkCTkyTNkUubQHbL9Mutz5tA3BVlmbKnnEAo4lna8xueQPCVKAG8Q55ApNGZcQ/on0A/X0P78wWgQN2ormwMwqBA/VbjxgHsoECImEwwGrahQDY04XMv6KFArNlslipkokCPvxN7Ug6jQGxl6KBVRqNAYPDRpHAgpEDF8BqoeGykQOt6cqWDrqRA6ugDd45upUCrBu6vrpClQA== - + - nCbKRfeMSkeQO5hFrcYMRZ3hhEYwRltFcIceR6qb+ESx7JZFAgujRZr5F0W24YRFGMvrRNJ/0ER9++BE3AspR459E0UtQLFGgd+FRWudj0UOrARFmYv9RAjHzkbxzBlFZLfbRW8k80QD7LBFeAsERt+p5kTX74tFSj2vRNwFE0XqT4NHg4LrRNgDV0WYlKdGGZkhRYY2IUV64kZFYgJNRZu39kYL0etEtugRRbQ08ERaCBpFTRFmR7AUD0VwuYRGNWYpRr1p00VGYvJENityRqiwREXnWcFEJc0gRTtN5kU+7T5FZYagRWnSEkUu/S1F1Tq5RYNJz0UpSuNEpQz0RKuO+0TwfhRHFAUgRTefoEartA5FMu5nRg5/YUXjK1BFY4JtRVwD8UScTvZEdEnrRzTMYkeChaFFxjR/RQn2TEZP7RRF1OXJRTRWQkfM9ExF7JcVRmpUbkVmA9hFDar3RJyXgkVY19BFpt0JRUdgQkXzLetEQA5YRYMNd0Z93SNGZFIORcFr70Q47QZF/ezgRebNQEYPpAVF2GsQRjpALkXbIzBG8yTDRTnQQ0USyhhF3rgcRvETGkW8BQhGsuYZRuTC90SNBm5FDHLrRBdH70Qy3xZFG4VCRvGxjUVuXDZFpgPWRUp9qEVnMB5GsqHeRVUy0UYRdwBFEgB7RXvLckWu1YpF07AaRbmcJEadmgBFuPhaReQONkXfEp9FiGBmRWrrbkWe0eFEUMSMRpFCcUUjIBJFL27GSK7B3EcnBqZGHhWCR4kW1kYSRXFFN+9QRrJnDkUigf5EcIIeRZcHDUUj0FRFz4i+RXG350YZEZ5Gx4x1RbKv9ER1IF9FxQq1Rifk9UULAPxEzbV2Rd7ywkU4XxlGLCTZSbUHO0b4NPVFqQ6URRm3IkbzGZVF30BAReCfnEjeHyVFxlAPRZCP0EQQDlFFXi/DRTuRn0aT/DBFrGNtRY5fMEneoZ1FWi0URRc8LUgfESZFnFWxRmbFaUYPSDpF8SuDSF1X0Ed0PwFF7UB4RhQRJEXx8xRFKalCRWt3w0UQ4TpHS2IhRdPyT0Yn/Z9F7nY9RRW9zUVioMRF2KuIRct4CEUYUzpF0ILwRWtSikWFSL9FJk3TRDvP+0S+0e1EfhfARyqR1UbcqNlEBWajRZqn4kTizBJG/8CqRa30B0U6ZShFBJIvRwzRhUaKHwRFNCtwRuMnY0W1jiNG5aweRVb1K0WexeZEHvkURoyqQkacMndFtCg8RQIJVEUYFu5EsnoERUfbPkep2OlGDIumRXJ5lEVvj0lFUvHyRMvQgkYu1ShGQF1uRlh5jkVUEiJFblTuRMdjXEWM9xBFpe27RRf+LkUPgSZFGUHzRFnO50WUuLhG5mMRRjL0SkWoXpFFsf0fRd2M4USTePdEU6D0RKEX90TrU91FhNVPRaODJEURhjpGVgXiRU8n20c2IR1G/G+7RV5g20Qdir9Gw2d5RSx+W0XXPERFv+6rRlWnA0W1cRNFB9rYRYTF9UUYQNJEuKNoRdbonkUCNepE6R13RXPxhUUtAPBExRrJRIFBJUYW0BRFAuxPRW7cG0a7FrJFbvI+Rb3B8EcQqlZH/cfgRGU9TUYW/+9ExL5QRhFv30W03gZFTdBARe5HLkWoeSpFaQWQRW+6OUa8Qw5FFJdnRUnYo0V4UmtFjSIYRRJ0ckWnBgZFntDyR341akd5yIZFlzZhRmQiZ0WpadlE2ZIxRXT7SEZ3/qhF9fpDRW30S0Um9NRF13s5Rdcr0kSoagtF8zeTRmqaiUZwgYxFSeCUSEsY7kQ9PQJIvBzMRHZ6ikcTzYhGHiUXRbJJ1EWmKeFELp7tRBeScEV/X5tFLsNNRrsfVUUgmCpFnE6fRsosdEXq2VBFsVuHRdAnM0UKpeZEZdJORT3rAUYrDApFYj1HRZAf6kSPR5FFscX4RBv3rEXkz1FG5HDeRVPAMUZefqJFqHlIReRcYUWAWU5FjeSqRb5E7ETcCMJHZeQsR8OPyUaamPhFOfm9RVSvFkUZrB5FkQJoRVN5WUVc8QNIw+t0R0GrGEf7tyhGaTwTRi+HC0UMYllFv3SbRSGUGUWIGa9FpGseRUqK/USq0KFGCpf2RR2Gh0Uz6/xESQXHRRCzLEW2/BRFqvM7RRd+LEWapmJFtGFrRVZSTUXGlIRFtCafRVhLEkfM73dGYrXrRWt4sEV2B3xFp2A4RZ8EDUYP2KRFxUkFReramkXrultF6ZkSR/flnkYT8UJG43/7RJbmAEaugZhFk7o9RdKU7EUB7jtF1qjURPx0LEaTGrxFC9udRXpUx0cOAYlHT0DLRqgW20UP8DxFKwUsRvvbgUUitQhF8RvXRMK/5kX0T8tFFbc0RaGiJUX6MgdFRMTQRmOaA0ZXyz5IBwYZSHgZnUekNc5G + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - IowD9G7BckAX9hhJp8JyQI5omlU7w3JAYjNlGQHIckAMUtBsQ9JyQN5wW8BQ4nJAFEITZ4/ickBeNilYyfFyQOIXHj3QAnNAFNbAmfoDc0AI4YfZvBJzQJBwdKAFFHNAZ56YwDghc0CsV+inziRzQK5SR+J4QXNAYCsLA3pEc0AkD1kLpFNzQG+OwE4rbXNA1rQjYVFyc0BlJ+iYZnJzQGvYpniFcnNAKXU+HtF3c0C0mBqN33dzQJR+zUx4gHNA2CLwM4aQc0ACuScATZJzQPbdUCv3lHNAg9vD7begc0CEXf1eWqJzQCpzlrd7o3NA1B7i3Yizc0BuGAAbp7NzQEo2VdQMtHNALB7plM/Cc0AcYfj8JsNzQL7bZeXX0XNAzMyNkuLUc0ApcFvvN+FzQHNE7Yc29HNAlDNiO0P9c0BY+h6teAF0QORW7E2cAnRAy5OZTroCdECG8rEP9gd0QNrWP2tNE3RAopqwl7ghdECZX1vRilV0QHT+96jbV3RAYB+7hDVddECME/iPt2B0QHpFljgIYnRAnEkbuo9idECyiSvPInB0QGxwqP9AcXRA2LLUszlzdEBo59p0/Xl0QAZBv674gHRA1tsGdU6BdEAZTugGJoN0QF7YwnsWkHRA5Ae3xO6fdEDcZaJMEKN0QFCIuFxvsnRAhsm9A8m3dEDcYVY5jfN0QIRJOaDNAHVAfqFyOF0CdUCSLvn5IxR1QGrW00mdInVAuFgnkcs1dUCZJM8M+Td1QE2UGbxSPXVALLlFZY10dUBydMNVrYF1QPAwlvelg3VAFXocwZqEdUCZRlgoDJN1QJQ/Zjf4wXVAXK/AKEjNdUBoJBSeCOJ1QC3fSq1M7XVAxmIo2KXydUBKnawJSAJ2QMoSg3qIInZAU4mDI5AkdkByVL46Syt2QM75xoAfMXZABGZZRB1BdkBa5jVXekR2QA4UHIDNVHZAdgBqLtxkdkADDdk6kYN2QFDJwc0MtHZABnQ9tM7OdkCvQa35JPN2QLeB/0+S83ZA73UnbwESd0A2ga/1ozN3QFO4q98MNXdAABxSU51Bd0Aw/43zskN3QPGXPQwbRXdAMfJikUpRd0Bi8iWwklF3QLaS8wG1U3dAzg97GNZad0BEOGknkGF3QPI9CSEnb3dAFth8uKByd0Cd9bSccbt3QEbLzk1H/XdAMpBp7qACeECyxSkwaDt4QOGx7kZ4Q3hAVtcCfJRDeED+KvL2D0R4QKYvKcYvRHhABkRiCEdEeEDQSLI2aUR4QEaH3YB3RXhABl9E0spReEBPkJJllFJ4QMc2M/4dVHhAEC6c7PRieEBA+rRnJWR4QHffdLoydHhAobJY+Ip0eEBWNRWLoYF4QFDW/buZhHhA8mHw5FmTeEDu+6/Jp5R4QGDJRyNoo3hAHqbVktOzeEA6Iilr27t4QGIgV4Lhw3hAkqV34+fLeEAeAdustNR4QOn55LUC9HhA0K4OfYv1eEDYTJ5euyN5QD4MCE1QJHlA2FD8sbAoeUC8ySVvCi55QFheLFlkM3lAJq6KosozeUB2rebs+kN5QGEneqHMVHlA6pJY23CNeUBiVtHMyJJ5QAuPCpnuknlANseHVELUeUAIlvtszNV5QOY5uxoMNXpAbZqeFRpFekDcu6pZKFV6QK8P+PE5gnpAEkpR8wu2ekBIGLPpDch6QBJChw9mzXpAWLUudWbhekDo2kme9uN6QL/wfFr+63pA/F45yEnzekDig6zsBPR6QHY4dMmi+HpA0iCoKnsEe0AYday1wxJ7QFkOFeVMFXtABEdubBsYe0CEPmiXWSV7QAyMt8QhlXtAyClGls6de0CsAgpzJ6N7QOa1fDZiqHtATHUsK4Soe0Ac1cLwi/V7QFn4EsXYAXxAzq/YXGYEfEAKLrKHmQV8QJzty1XQEXxA5yJdJXMUfEDr+RKw5xt8QKKpZgTOQXxA6hA3IlJIfEBdXJRNrE18QMVmbfsJU3xAJGg3/v+BfEAEM9sxWJl8QJSjYmS0nnxAlLVmrGnYfEAYC9Tfwt18QCxI+pdX4nxAPR1aPg/jfEA4JlcKaOh8QHLJHOFT8nxAUq1wcVz7fED46hVV/wF9QNExpLtKAn1Api+Mm64bfUAQ3c7oQRx9QJsSte2zI31ACLVn+kgkfUD2EpsulY19QKaSy2jxkn1A6341AtPzfUAAOlcc2/t9QCqskbXuHX5AlokkgEcjfkC24Zw8t3t+QARuwPe9g35AaP1mjsSLfkAXJ0TWzJN+QICzIM5yyH5AobxqzszNfkArRGeYtnF/QDQRaZlikX9ABBQsYVyhf0AaVApZQqN/QPSxB9KbqH9A0FNctFaxf0Cprr2me8R/QDCArO/ly39A2EbM6ZH7f0B6OxUezAGAQDiyWNO/BYBArIf1fdEFgEDOq7KExQmAQK3KdwzKPoBAW26X4OZQgECsuFgxE1GAQEWyZBIOWYBA7KoNx/FtgEDRP9YtHo+AQLzum+4FuoBAYb0WULK8gEBsh1k/YL+AQGaRzVFSwYBA7EDxAFPJgEC0AR1g1cmAQHKy8BsHz4BAriheIkzRgECdfZelStmAQGa2bOJE4YBASlfvzTzzgECvXBn8aPqAQBxkgLo//4BAVh8fXkAHgUDryiD9Ow+BQPBDr5w0H4FAIrfFSjQngUDFT/xVfzGBQIhXpWq7MYFARHhMQjQ0gUDo99OdKD+BQCwzxGVVj4FAAE8NBVeXgUBPft1qbaiBQAa19I3eqYFAPpV1ceKtgUAXpz92Sq+BQBSnxULs+YFADhzY/e/9gUCdJdDZ1xiCQA8Uzz7VIIJA0uBsKNhRgkAYrkav21WCQN2kr2IiWIJA0gKiN0OJgkCA9wnOQpGCQNoSDdU7mYJAgDeFAQ+hgkDAWp9LO6GCQFT3ToJ+2oJAmA9/rYPegkAjG9d5eRGDQJIoy1R5GYNAhet0u3Ihg0DcakP3cSmDQC5eH3TALYNA+Oe2+0Uwg0Dye8OCwzGDQBpQ/XXcOYNAVldG/9tBg0Bv2Y6AZeqDQMdIqA5p7oNAqnt67G3yg0DY4RAf/2iEQGoind39cIRAoOUoA3GihEDwJRO4HqWEQKaTqLbKp4RAxMCrEFSyhEDxPgXXGM2EQCJCixNq2YRAAE08ImrhhEBy0DLlY+mEQH4OvtQ18YRAPIQjvmLxhEBnFXG19xmFQM4TT+v6HYVAdgC8gvYhhUAJHZX5AFKFQPB1n8gEVoVASq3gYaBhhUCfQZJPoGmFQF/vo6+ZcYVANimIdrRzhUC9Kw8LpniFQC+5B+mXeYVAnHQdp6JWhkCz85QnplqGQGhTrheRKYdABg2bXZExh0A0grYYijmHQFnOmFN9fodAVH57s3+Ch0DgTLf+goaHQGi9hsaHiodAcy9cWcexh0Daq16VxrmHQECZmkpxBohAGhx1I3UKiEB7xVlC95GIQFbBU1jHq4hALNQe0s6ziEB7x6aqlvKIQPiN/b+Z9ohA6eW50pr6iEDKEjOEm/6IQA== + KBZXds7jZUCJy7y2HKVqQNS+X4D+xG5AjMDylKaDdkD/7sGlgpN5QIwez+j+lH1AIfjD1gUEf0A7JuTtTrqBQG+P7kOSAoJAmI91E6U6hUA7VdIX+0KFQJi+Yz1Rw4hAO4TAQafLiED86y1a3duLQDuzrmtTVIxAZt0wbp+MjkBe7/xDMPSPQGWFfcWV0pBAL4/1Nm6+kUBJm1DNy1aSQOGlWkW0SpNA+7G12xGjlECTvL9T+paVQK3IGupXL5ZAd9KSWzAbl0At4BH/rfOXQCnp92l2p5hAPv44a5zDmUDeYflz1/+ZQL4VMIDyh5tAkHhegh2Mm0A+LSeVSEydQBCQVZdzUJ1AJBAZ/3zsnkC+RB6qnhCfQOqsr1ViFqBAHUhuM0NEoEAO7s+7csSgQN3T6T1uJqFAADCCKJMKokA2XxxFkUyiQIu6IimmmKJA9uqXT7wuo0A= - + - qeKlRZnkWEdB649F8MGLRp5+HEfuN69FRLa0RcoZq0X231lFXvwlRy/lkEacvMJF6hXNRqID1UV7GLhFfWUlRpmFykWqJXtHp2ZKRSI8OkVgfa1G0BpdRRjYoEX5tgdHnZJhRYt6WUejW5NG81YHRotr7kWi9B9HyDGFRdZO8kViMTZF6a6HRW5GRkVzf1NFkb7DRQ2wE0b7aFBFmhfxRgm0t0b/B05GmZk1RWopR0VlKilFTjEyRUhxH0WIHv5HqcF7R0GFpEXqqUJFV/tURudZs0VJ/DFHZ/zURZNR0kWBQVNFIIXsRWePh0XIY9hFCuEsRZYPX0Uh/5tGe5rURWqNDEYBEBRF3HuERgKWKkXacRlG3lJORfTzQEYU6QhGcteORgFT1EUWxw5GOFRaRdIARkWNoltFgoo/RanoK0WwKmtG2LfZRSjcj0VYWF5FTWvtRZoYI0YEsc9GTECPRTvvmUUO5MhGCFhtRdfRZ0W30mpFOtk5RTLyWkX9oTJFxURxRvQkLkmjYdtHmKy0Rgaw1kd5zMhGgr5+Re7rhkaE7tNFdbFbRTBMcUWAYEVFSHihRdskPkV03w5HtnVVRvkpi0Z+HwxGPzCkRRZyN0oNRMpGGznjRZAKUEVvVjBGwQxERWRpl0VhGAZJWf+wRSczakckeYlFrqwySSqYXkU6fC9Ild9IR0X+ZkbaAqZFwXF6SPLKw0fPGIJGy/UoRVTeMUW62YZFRfLFReBtNUdn4oRFCZJXRr+/AUb8ZFBFtfXGRbPTMEZ7JrpFBsxyRbSlKUU33WBGVuS+RW3WN0V9ZOxHHmEER9XePUUXHiRFdzi1RSTyvUWc2OJFVrFARZH1lEc0nsdGWkt8RsTqpUWkBFRGhBGVRd74DkZGSjdG9zt/RZ8qiUV2A0tFxiE8R3JC8UZb+mlFFBvmRbZBzEag+FRGVR2vRugxqkUznaBFZxs1RZvq2EW8KNpFarrlRmwfV0aidHFFOoFiRQ9Ex0XNsoJFSXlARmTnukUuLfxHFzwmRmPDhkX5YO1G/ClVRf2xK0WvP6RGyewkRuR1H0YtUs9Fqrg5RaKK3EWYNrVFjTcSRsYlI0V/0lhGZt4HRuyPBkjKvIVHYcSTRiY1MUUOCwNGylufRZcqX0UVfUNGNS4xRYvRzEWFzmVFMb9RRcsFd0UGrmVF2yHtR8/NTEfCWp1FuhMdRoaeZEUxFiRFHyBDRVUoiEa9e59FpN52RSy2DUaJU3BGzDhFRuOkv0UoW5ZI9T0CSNmXOEWWARlFX16aR8OqW0ZQsMNFQyIpRYkNrEXqMJtGJh6oRSwbd0Vbbq1Gcz6gRThwl0WXG15Fq4w6Ra6CSUXgkihGHgg+RTVRQkWHLapFfNdGRcUe0EVBRoVGkvkcRlBmN0a7r4ZFlpQ0RkPS40U64ZpF4ajnR7EBNUeGB9tGeSAARgZ94kUatp1F2Do7Rfrm+Ud2+GNHVHMJR1kDLkZAUe9FzWIdRd7kSUU2eFNF1j9ERYYmS0fudeBG4bAdRh1Fs0VLTiRFSBXJRTMlV0WS/lZF99ZuRXCFSUWxRyhHSqKBRgJnHEYnA7FFXytwRaQqdEYLGSFGFNobRaRX/kXlc3NFDn8PRzGfo0bd9iVGwwAxRbHgnEVjJIVFGKrbRaZ5pEXYaU9GzX+aRRfTXEUO6b1HJ4yMR/7yuUboOShGskEmRvO1yUW2sAhG50ivRRQIb0X7zrBGaHUNRhWINUgYfQZIRIKAR5pMoEY= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 33VlDG7BckCKMAuCp8JyQIOfcXw7w3JAkKaE4ADIckDOyEgWWs1yQKSnoDRD0nJATMtI71DickAeAot4j+JyQIw7ChjK8XJA2v7gstACc0CxDkuR+gNzQJz07rK8EnNACNLjrvgTc0C+tpQVBhRzQFalhe04IXNAFEeMB84kc0Bw5JIzeEFzQLFWZ3x6RHNANmM9+qNTc0BxvCXcK21zQFzaGVRncnNALNh3RIVyc0Bs4wpR0XdzQBpsyUzgd3NA8MI4eXiAc0CYBFMoXYJzQBqDVGeHkHNAkJRXbE2Sc0BCmQuQ95RzQGGCyr24oHNA7sx7flqic0C05GLbe6NzQDauMPWIs3NAjUqjZKazc0BiC/62z8JzQIq+77Li1HNAdzxXcTjhc0A4SkR3Q/1zQCIQjjZ5AXRAZvpsZ50CdEAIiflCuSF0QA5XzfrbV3RAQFK7GTZddEC2NtKnt2B0QIZzGDcJYnRA2mvl4Y9idEBCe57QInB0QL5X6mZBcXRANM44UjlzdEBFDhEv/Xl0QD5lIxNPgXRA/MSC7CWDdEDSSzVeFpB0QFUYuwMQo3RAGAj/lm+ydEBIC7azyLd0QG6QRTeN83RATw+Wq10CdUA6XnPYnCJ1QCdrx2v5N3VA6EB04lM9dUB+KQ91jXR1QHT/xnGtgXVA8PT9raaDdUCNO/V+TO11QCrjUUGl8nVAANNM1UgCdkC42B8HiCJ2QOe4fYWQJHZAtBXpEUsrdkCQGr5vHzF2QGR0KhxSM3ZAORgGQB1BdkCtQarYyEJ2QHQiT7t5RHZAZHd33c1UdkBj9KQQ3GR2QIq/dg4OtHZAUv/32M7OdkAWwlgZAhJ3QIX6Y6YPIndAxPdYSKQzd0By7HL+DDV3QHqKWz+dQXdAXITx+bJDd0DGRc2KG0V3QETW4kRMUXdAUf5mxpJRd0BS6kNbu1N3QGS4ZOknb3dA+Jl1l6Fyd0B/QZkTc7t3QJ61xl9H/XdA5khJrJ8CeEAYrqvdbSJ4QG3KjMBoO3hAP06pa19DeEBCIc4tlkN4QLo8tp+zQ3hA/zTQ/spDeEAsicTQ4UN4QADgA64PRHhApEwlxDREeEBEovAHR0R4QNh4OFBfRHhA3izhF3ZEeEB5mBm/gUR4QFS7oAV4RXhAppdPystReEA+rNApllJ4QF6NCoAdVHhAZAjbrfJieEC7xwHOJGR4QBarTN0ydHhAthV/gop0eEBePpmKmYR4QGGX4nxZk3hA0nRA+qaUeEAiQIYMZ6N4QFTt3O/Ts3hA7BLtTNu7eEAm88gt4cN4QGQwqAcB9HhAydE9j4z1eEDaO/gwuyN5QJlgY1FPJHlAiNOearEoeUAkN6TeDC55QFV5RoPIM3lAQWgYRPtDeUAhIlKvb415QAIYgnnuknlAdqpSBcGyeUDghVUfQtR5QMT1piQMNXpA5Hvc2xlFekDia+A1DLZ6QMaRDgANyHpAZQgZ3mbNekC1jpYb9+N6QD7nepv963pAICeAu0rzekBoXVjHo/h6QJzfVbTDEntAImyQR0wVe0BvI6orHRh7QIDMrwjOnXtAuJDGLSaje0AxN/sNg6h7QIJLvpSX8XtAI4RzU4v1e0B8juPc1wF8QPLJd19mBHxAFij1gpkFfECkHiqgzxF8QBiNInVzFHxATj+A7OcbfEC+rjdAzUF8QCCsRRJSSHxAskZte6pNfED6RwvBWZl8QEgpgl6znnxA3rK+Q2vYfEDcSCuDwd18QLI67JFX4nxA6oQHJg/jfEAu4Yzxauh8QBBMm+BT8nxAlbIbrAICfUCqgDMgSgJ9QCyxLA2vG31AtctxiUEcfUAY0ctLlY19QJvgWFfwkn1AJujX/9PzfUAyYOaD7h1+QKAJyotHI35AYKZkSrd7fkDn7qY6voN+QEbHnNjEi35A2IeUA3TIfkD3N31Gs8t+QLmDFCHMzX5AtKS7x7TPfkD81kRnuHF/QOEsgE5ikX9AeoWG0V2hf0Ck/nl4QqN/QPgjw4+ZqH9AQMKv+5H7f0D/QitnzAGAQMZBQn/QBYBAwxrgWBNRgEDkRTpSDlmAQA5/Wvwdj4BANV9t3AW6gECWs7UXs7yAQJE3vL59vYBAElK5416/gED6eRM9UsGAQATbwg1TyYBAAKM2HkzRgEByVhjHSdmAQBAJ+uZD4YBAHKbcFFXhgEAaj8SQaPqAQDBkmsg+/4BAigXHvD4HgUDs6bys7hmBQHAOAXTyHYFAfulnQjQfgUB5y7jHMyeBQESiiipVj4FA13oJvt6pgUCK5iJcSq+BQFyIB1Hs+YFAfNiayu/9gUCouAHc1xiCQIRuku7WIIJA19MSmdhRgkBGNNWI21WCQL/hARNDiYJAjlwHz0KRgkAQr5FXO5mCQOTGixMPoYJAbb5NHjuhgkApXax9ftqCQFgEb8GC3oJAAFd2QnkRg0AMMU9jeRmDQIiLIJxyIYNABtrZgXEpg0CPcr6MZeqDQPoCrr9o7oNAKCb/k23yg0ApeEkQZfaDQKhXoKX+aIRAOron0W+ChEC0kcoQHYWEQDvX8EDMh4RAxsk5M3GihECEWlfgHqWEQMqtDgrLp4RARHl26mnZhEDmRWG4d96EQDG0sXFo4YRArax9c2HphEBOmLSANfGEQFI2Ob33GYVAqVQsM/sdhUAkuArz/SGFQMiv5yEBUoVAsImXugRWhUAMDYhHoGGFQJDAIQqgaYVAZ7XctplxhUCHCOQdmHmFQBGz19miVoZALIGiYqZahkD00nFpkCmHQD5s6J+RMYdABGd3Z4s5h0DG2bvkfH6HQDydS2eAgodAFoY0i4OGh0AQmZc0gYqHQInRWIPHsYdAcnthG8e5h0BixvmvcAaIQO6pntVzCohARonIMMeriECZPj92zbOIQCCxY5uW8ohAh0Evk5n2iEAu0duCmvqIQECQX4mZ/ohA + KBZXds7jZUCJy7y2HKVqQGS4z0t+BG1AxMM6r+ZjdEBZnS+d7ZJ2QBoYP7R+1HhAd+7rh0UjekDhctPtlgV/QJn37bjIk39AWyTVURCSgUBw6NegdwuDQLwnpDtjqoVAtKvQR/BTh0AA65zi2/KJQBavnzFDbItApdf9Jm80jUAAGosMiHuNQDbcfr+w7I9AsqOqFApKkEBigm5abtqQQMe46xUwZpFArHJA+JnekkBH0OIqhiqTQPOG7/KvwpNAx+fZP9zulEA= - + - dZzAReQyLUeRHJFFmp+QRgcXwUUZeQVHFItxRc8VhEVfnI1Fl+k8RYMJFEehDo5GK1SERfhfgkWsN6ZGTbylRb10g0UyyB9GAo6URW5SPUe7o1RFoJuJRrFBNUUD+XFFHxjRRr4tJ0V3b2xFlRVbR1SCU0YAhzJGasX/RTJAjkfn2exF+57cRR8/vUUqRm5FygHFRYPNQEYH1JlG4j8HRkRUZ0UQKd9H5ddSRySVoEV6LDxFki9RRncYukW45EJH/1eHRW5pl0XAkcRFsDmJRZdsrUWy2UJFy0l+Rhn9sUVIcrhFTccORl3kBkbOIzBGGoKkRYAFP0b6iMJFUQoARnvpFkZnvmdFUUnIRWzsikU1nRBGZ23WRXnip0bqw2tFrcSJRTFUeUUlcYVF5B5JRkonO0W175VFjHJKRYf3V0aKs0FFtD42SWrUzUdq3ItGvMntR/L2h0aPCERFjG8YRlRUs0Uzb1BFcyyERXz/pkUlntBGItQaRiJHTkWa9jNGBclTRUDzg0XV/ABGO/QNRpnMV0ZF0EVKdTyDRoFVL0Zj4PFFEeS5RR1sr0WrjflFOppNRSFZPUVO7A9Jg3BrRRCOjEdk97lFdtoJSR3fCEjrli1HBBEIRkpqn0W4qh5IdK5vR61CG0ZVRDRF3eI8Rd67wUZqUYdFHZH3Rcv0xEV/SEdFpKcORoDSZUUygVZGkk5QRQMqtUXLHo9HZ7WQRtifrkXDFLJFJLqKRb+zVEdZs5dGKstDRnR+BkaaVNtF0OssRjxFekW1lzNHTZ7KRrllBUYHpXRF9mRpRvMVHEYIVjJHx556RZLAKUUGY9xFQmqmRZsipkUk+cRGJ+lARtyUvUVZvHpFTFCfRXUNg0WIrMRHCNn7RfLPu0VkWtdGq1RZReN5ikbH93hFonChRRohm0VEi2dFfXRtRaP7Gka2sqlFzUXXR5X4P0dyYzhG1u/CRXfmhUV3kK9FwHeKRajamUWFOTBGE0lhRUaM7UW2CE5FzcqcR02c6EYGzfdFFkRYRppPyUUYj7pFsXVKRsiTI0bRT0VFPS7pRXXdjUiRHPRH16CMR8XIikZ1KsRFU6k9RYVhi0UlwUJGBAd4RYZ1qEWE7VxFKFZgRipXTUW4181FXFaNRdwNw0UJJjNGGCPnRdjUNka5TpBFkOepRvlCsUVfHL9HuSYRR5+QuUa6H+dFOr7URQZvn0XJT1pFpsT4R6OoWkes0ABH1Yb3RSHos0coOndHnPpHRjSjfkVoa6pFRzEGRjnqkkWItWBFOHmzRW+5l0X7skBFPCwDR/avh0VaR1NGUhrXRetwuUXYRKxGj9JERvSvTEXWc7FFzZ93RegdBUenr25Gz8xMRmpFrkXd6alF6Yh1RYJPHEbD7ppFdqlmRVVpV0ciZAdH+DNFRn8HRkUnLRxGHvqJReJw1UUygZlFwtZ0RvM560U1gcNH8vmVRxg1DUdieGxG + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - dvEGpG7BckDQzvqTp8JyQIWukqw7w3JAmcVrZAHIckDeOG9vW81yQMLLNmND0nJANuPdvlHickAhtGmZkOJyQCy8IP7J8XJAXKPBpvoDc0CWACT3vBJzQLRn2sj4E3NAWGIrLzkhc0A+dixhziRzQPOP7PN4QXNApDPX6nlEc0CpVR9Ro1NzQI+kshQ6Y3NAkdtaUCttc0AWBhjChHJzQOTZmjNsdnNAlF56ydF3c0BT+nv73ndzQBA/g/h4gHNAWpH8k12Cc0DmOw27h5BzQEYA1g9NknNAs/a9pfeUc0C1qH97uKBzQArBt5NbonNA6kNE73ujc0BsEbrYiLNzQIBj3GSms3NA25jHOQy0c0BkbUH5z8JzQHSo8pbh1HNAnEgUdTjhc0BQ7UqTQ/1zQG61H+t4AXRAonOUwJwCdEBn2ZX721d0QKTsjwU2XXRA9IsL9bdgdEDQGDA3CGJ0QGufhzyPYnRAFpuUVCJwdEAKfB9gQXF0QGx5hG85c3RAFquEL/x5dECEXfapQoB0QJqcQFn5gHRA0nKbEE+BdEAGaEgWJoN0QLA8JMoWkHRAjluHxQmwdEDVRYBJb7J0QBIRtL/Jt3RAoji6PIzzdEAqIL9UXQJ1QMULBlGeInVAkhzO58w1dUD4iDiA+Td1QBLDuEZTPXVA2udK1Y10dUDLVqaAroF1QLrVoyKng3VAPsaXN0ztdUA1MCLZpvJ1QKoEE+ZIAnZAhOpAx4gidkDYI8+IkCR2QPoFB7dKK3ZApmDelh8xdkAkzgw8HUF2QLkQos/JQnZAVH+3s3pEdkDrrCoUEVF2QNvpCE7NVHZAglE9OFJjdkCGvn252mR2QFRZxYkNtHZA+hlvBM/OdkB8Al6pkfN2QBC2LucCEndAGHeRDg8id0C4KtAepDN3QMS/PcIMNXdAfFO2l51Bd0A8SC9Fs0N3QB5NmRwbRXdA3Gpd6UtRd0Ciez/Fk1F3QPhUssiyU3dAVCUiH6Byd0DYIOmDcrt3QKSOv6FH/XdALNI/N6ACeEAUBqSCaDt4QPDG8iNNQ3hAr31G2XdDeEAht4fVnkN4QI5Pgwi+Q3hATLNpEeFDeEAylvz4D0R4QN5iKW0yRHhApTQRW0dEeEDEq+hGWER4QE4qdMp2RHhAnbAIn3dFeEDXP7l5yVF4QDAdvtMdVHhAPY6URfRieEAMSc11JWR4QO6nsi0zdHhAukLGFIt0eEA44dfdmYR4QARj68CWkXhAHLeZZVmTeECe4CJXp5R4QFauSQJno3hA4I3RZKmzeEDcGqvD07N4QKp8bH7bu3hA/yaMf+HDeEByKz1rAPR4QKxULHuL9XhA1mZv8LojeUA2uDkUsSh5QGo3X/IKLnlAEiICKPxDeUD2WKkby1R5QKCWMXVwjXlAc/xlRMqSeUD2JOQC75J5QDhMpQ2/snlABo2jTULUeUC7nh8/QTJ6QKAcfEwMNXpATr/wGBpFekBN3LvpJlV6QM2q6zIMtnpAJQ6VfQzIekDfgQDNZc16QICR/Xf243pALG6W/f7rekAEa0EESfN6QCq2jyUF9HpA5LcC3KP4ekC03/pBeQR7QAp1IWLEEntAzn4MNk0Ve0A51De0HRh7QL+2OyRaJXtABbz+Xc6de0C4EZP0JqN7QC4NDcqBqHtA/rb0IIz1e0Dk7HJ62QF8QPbME49mBHxAzgyojpgFfEAexva6zxF8QKi9Ty90FHxAttUH0ucbfEB6GaLDzEF8QEVziFNSSHxAhEf2eqtNfEAhl/DCWJl8QFbI9J2xnnxAatc2X2nYfEDuq5uVV+J8QHpgVFYO43xAjJvlMBHkfECwTJIoaeh8QDrknshT8nxAMnVZf177fEBWwDFJSgJ9QJll9xhFEn1AUIanXq8bfUAnV1CrQRx9QALJ5eC1I31AAN46+EgkfUC00WBtlY19QHsaTL7tkn1AOBmHmtHzfUAmfm7kdgR+QBOwNgTuHX5A7JSN9kcjfkBv3h5kt3t+QOqUL6y+g35AJqPQxsOLfkAoRbTRy5N+QFx2hx2wx35AJJG74nPIfkD6N8cusMt+QPDUVxLNzX5ApvXlEpMDf0C0wiIWt3F/QGVnCIxikX9AfM72sVuhf0BtlsMfRKN/QAAdGKbky39AstfYcJL7f0AofJo7zAGAQHq3ElDABYBALhvGLdIFgEBDj7KM9UiAQGAh3l/nUIBA1uwtYxRRgEB9lKlZDlmAQO6SeNMnb4BA3J2srB2PgEDk8+PeBbqAQLZUGH6yvIBAQLDeQ1LBgEAkzttgU8mAQGoagmZM0YBAAD/3hGDRgEAmTYsoStmAQPyk+FRE4YBARqz0X1XhgEBvBVawPOqAQAwgtQVo+oBAAPli8Wv+gECIQPyeP/+AQOJOzwk/B4FA7wnUtzwPgUAUOocR7hmBQI4uch00H4FATur7xUlCgUAcX4uQVY+BQGmGL1uwj4FA8ugxXOqhgUAbhjgZSq+BQP4ToHvt+YFA2KvnHvD9gUC+O0/tAgmCQOfp+h/YGIJA50DzCtYggkA9ZlyU0CiCQKQd1XLYUYJAujbzsNtVgkCmrOoHQ4mCQEakP0ZEkYJAszrN2zyZgkB43dNFDqGCQHAhyx47oYJAwtkx8zOpgkBER1P+ftqCQDl0h0h5EYNAQnkBX3oZg0CB8PBKcyGDQDyXjmdyKYNAVJKr08Atg0BdsD88ajGDQEWebsZl6oNArl0No2jug0AKAD44bfKDQJenZFxm9oNAPPJA/P5ohEBnIfJNy3eEQLor27J2eoRAxgrr3HCChEAgQArjHYWEQJpf8urKh4RAieAnZnWKhEBGeUllcaKEQHAkE4cfpYRAcEnrUVSyhECgehWmVbaEQPCtZkBq2YRAPsQ8enbehEAlpPmPaeGEQHwmCh9i6YRAo8onhDXxhEBQdMrYYPGEQE503Gr3GYVAfOt9dPodhUD+KscR/SGFQC7+wTgBUoVAmpypoQRWhUBm7UM7oGGFQHRZri+haYVAyhN575lxhUD7KfGOmHmFQDP/sZeiVoZAzKEXHpEph0Cfg0FxkTGHQIFhegCIOYdARIgaKH1+h0AO08qtgIKHQHLFaweChodATiq5iYOKh0Csu1JRx7GHQDTBpKfGuYdAf0DF4HAGiECZrdUkdQqIQDvnIcvGq4hA/Eg/Rc+ziEBM94vblvKIQDZM0sKZ9ohAsfDDEpv6iECgAPzRm/6IQA== - - - - - - CbXLRfoGMkfPfaFFfJGqRiosm0UTKAxHcalARXk1kUU0VJdFqnYlR6E6LkaXTK5FGHbNRhtAoUXLZapFcfTsRTnSgEW7pyJFP0JbR3oBpka+t2hFU9RaRUWNdUWpHdlGq9JdRQn0VUWWcjxH7+srRjKW1EULMtRFiIa/R6jTEUaBmARG771PRcqTfEVJBWNFSLn2RdxEY0am6phGSFjbRRNinUfRLBNH9b+QRaJe2UXl09JFFgvIRWqnQ0clK3FF7uFMRWpaPUVOKUhFnH7bRQZ21UUeFbtFK/YjRfE4i0bfQeJFjnyvRQc5TEbepgVGZ0A6ReJ+8UUN5X5FdQdHRv3RrEXsAdRFLlwhRoX0p0WL2BZGRpegRX6E7UXUMAtGoC7dRl06skUZ/0VFqnhxRX7hTUWo0lBGOChNRZItaEU3on1FKxdsRdr0OEWiiVtGR5pYRVlqO0n1JttH0JGRRuUm/kdu/5FGOk6lRayKKkZzZuNF7kjARTkpHkaC/5dGUJYTRmAVbkafcZRF5ozORSkkx0VYBO5FT8yQRh4nNUqdim1Gh6I/RtpUg0WDdcBFcJwORovyl0XykfxIJwc1RYg5Zkf3gJhF8s8VSb/0EkjtvFBFaf00R1m1QkZocsdFJTHKRQV1HUgCoGpHhTsSRnLSKkW46UNF5/GHRvUN1UUoRIdF4m4lRid8NEXew0RF17k5RWZFYEbBCUNF7+3jRXZjhEWTBLBHVg+kRhJULUXcCa5Fo4HNRd2caUXNfjNHDppyRu+Wfka0Z4BFxbPbRQlaQkWkIg9GJHIvRjaloEWJpVVFqrUpR26QqkZilPtFnOOdRsZKMUb6AMBHSruERVK/c0W3jZFGMR8rRnOd+kWucqZGlu4vRqCrvUU/CkdFTvrDRdD140fxFg5GF8VLRSR+pkXDZMhGPhOcRdgNs0YEv2lFF9bPRdnRMUVxZrFF0h87RaT0lUWd3HtFhfaIRaR6gUVGNxhGrq/9RYD0+kexKWJHDHSHRvtFTkUWW2tFVtoURraUfUXYlrhFsFeKRQ2/FkZ6Xj5GuXVRRVk/s0WfQ15FwpGIRxCPzEYFi09FHqusRc3fZkU5Qi9F4Oy7Rncn70W4LjhFCha/RdOpmEYu6kVGrKDHSH7iOkibBc1HRAl2RY6VyEZ3+wxGmqdLReLEa0X2ZplFKnkxRRwEK0Y/WY9F+gpfRQXB2EUsGKBG5shARZ6s4EWw8FVFxhcZRSlABkYVaVZG5gzwRWL5hkVMR0pGir23RbqXTEXdY4ZGZ8YbRuo7i0ggbhBIvOeVR59h30Vy/LJG23/YRd88g0UXOIpIDq8bSFIKrEfknqpGld1tRSwOwkU5eetHMEiWRylPikYko5dFLfTMRR5aVEWKwYNFNDxiRk+Eq0amHTJGodx0Rb4w5kW5AJ5FovqTRRzXJUUV2YZHjuOFRYJqy0Zoto5GV9GKRe9wpEU7bc1G+PhFRlrhdkVjHsxFcDNiRRrFakcG+NZGn/qXRqMT1UWTzL5FkOuDRg3GDkYj3qhFfygsR/PYyEaQgzVGEpGSRRV3YkbjvbJFtIKxRfxbh0UIrFNGOYecRWwBjUeBz2JHYU6xRorDC0Y= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + - - - - - - oNjS7G7BckBIQi1wp8JyQGAmMCg7w3JAHe/g5ADIckBWRU40W81yQOSJH5JD0nJAPjadk1HickBxIPjhj+JyQBjudmXJ8XJAwuctPMP/ckCW0/LX+gBzQN0cJ07PAnNAxJoEoPoDc0Dj6QLDvBJzQEXPC/YGFHNAKrc+wqQgc0DIjRACOSFzQCx5G/7NJHNA1Nfjxbk/c0Az8Iv3eEFzQPrE+/l5RHNAjBQs96JTc0BktnXOK21zQFKR7B9pcnNAGBO5pIVyc0BSxLhATXVzQCjh0fdtdnNA4nqtjdB3c0AhBfgg3ndzQEAFRrx4gHNAmowMJV2Cc0Cus78BiJBzQODuPTtNknNA5ivvmmGUc0BdwZZZ95RzQKYW9Ja4oHNAKORYaFqic0C6ry69e6NzQGjKxGcFpXNAnlh+A4qzc0CkFXj2prNzQDdXCjYNtHNAeJMxwM/Cc0CuFWvZJsNzQFRirdLX0XNA7g7t/+HUc0C2Y61GOeFzQJpmvFND/XNACwjX7HgBdECAhicwpAF0QGAaoCacAnRAYSVax4gRdED7lTw0TRN0QKWqUTxcM3RA7pFjz9tXdECd5m9/NV10QKp3RJa4YHRAQBCtbwhidECX+dyoj2J0QGvxzLAPZHRAAEnabSJwdEDcMsxYQXF0QJsG6WQ4c3RA9lsZe/15dECQvyn6Q4B0QMJqDWr3gHRAIeEGYk6BdEAIbGZbJoN0QEDDvfQVkHRA7yz85VGTdEBqIexlDqN0QCPYkj5vsnRAQTHq/Mi3dEAwuYvSzdR0QI7R7Km44XRAzLEfl4zzdEC/odYJXQJ1QB60pKedInVAMomgkMs1dUDKQDc0+Td1QAIASRFUPXVA2sQ2aThhdUDsdvYK0WJ1QGCyuAiNdHVABaxWyK2BdUBoc45EpoN1QCtTspCahHVArGj0AAuTdUCHS5Y4+sF1QHSyXlzN03VAJMRtLKzjdUAiBAfkS+11QKuNRDym8nVAYNys0EgCdkCM2gLJhyJ2QN5XgFeQJHZAFGSVOEsrdkDmc+22HzF2QKLmnSNRM3ZASPx4LR5BdkDq/Srax0J2QFip7Ht5RHZA3ZzLCBFRdkBxdS9JzVR2QFqKX/dQY3ZADopgStpkdkDgOyalk4N2QKpqgUbBsnZAqSJWRg60dkCeJ1ovz852QMjEZ7WR83ZAIG5u5AESd0DWbBmYDyJ3QN743E2IM3dA++MtEqQzd0AO0BE5DTV3QGTf2QedQXdAckOOzbJDd0CmwpwQG0V3QJD42j9LUXdAgqdmsJJRd0DA8TzesVN3QK4vXCnDU3dA7gem4tZad0AgjJYmKG93QEOQDrKfcndAApUUiHK7d0DWTkHYesN3QNZgZupG/XdApuBUEqECeECyAMWSxgh4QB/wHeBsInhAdF217Gc7eEAKE5nPd0N4QMd+aBqPQ3hAqniNk+FDeEDfqoAFEER4QMrZxPAzRHhA+qbM43dFeED3u5ar1EV4QGMaTvTLUXhA0HFLzpBSeEDKPAfkHVR4QEU/2cS0YXhA5vb2KCVkeEAUNbcANHR4QLr7xyRFdHhA3Pi6F4t0eECtTjDNooF4QAzAO7KZhHhAFSj/o5WReEA+jD74WJN4QFR71nSmlHhAEWW8fmWjeEAaz84qpbN4QB+dYNTTs3hAnC+Oh9u7eEA2/5CUr8N4QLtFlZ/hw3hA6T7+lLbUeEDcZTeAAfR4QJaaZLeL9XhA0lbTh7sjeUDelbjpUCR5QFQ8jSGxKHlACESc9wsueUAQCZRgyDN5QOZnse77Q3lAPG5tocpUeUCaa2+xb415QO5cxULJknlArCjthu6SeUD6VHmcv7J5QPLEYSxD1HlA5nV4okAyekC12704DDV6QIKB90saRXpAcItaX2t7ekDsweyADLZ6QKllhAQNyHpApPuVvmbNekBU+9H/ZeF6QPf8zQX343pA25Xx4TzkekDemz4I/+t6QE7nwYpJ83pAQCEiaKP4ekAgNlAjfAR7QNKi7k7DEntACBFWmUwVe0BRrNtfHRh7QIFnkE5aJXtAEpu31yKVe0AJZVK835p7QHyaGe7NnXtAUUJ0hSaje0AA08ebhqh7QIRV7GHcrXtAmCaj84v1e0Ca3JED2gF8QEKoL1BmBHxAdmVLAJsFfEBm4ewb0RF8QEad09FzFHxACjd9COcbfEAGDGTCfSR8QOwXUXrNQXxAR3vhH1JIfEAAB723qk18QEL6y0sLU3xA60AFwE1YfECakP0PK3F8QMwJXXH+gXxA6AIjlFiZfEAUtQULtZ58QN6NSyVq2HxAJV3Wl8XdfECSVvFqV+J8QFhFYzYQ43xA2nhwdQ/kfEBxau1dauh8QDgQMiRV8nxAblpz+3PyfEDI+McTXvt8QFNw9AACAn1Axq6k/UoCfUDxilH9QxJ9QH1XKDitG31AStdRtEIcfUDMxgsauCN9QBpUP6qWjX1ATgmh4O6SfUCEfStSOJh9QOSYQQ7U831AxIbN7HcEfkBd1jA77h1+QMobBJVHI35AL23xS7d7fkBUKIFwvoN+QGrTs1TEi35ATBNiJ7DHfkDqdWgdc8h+QPI2gIqzy35AEuq/wM3NfkCwCA0ttM9+QAm2uL23035AuPAZZpIDf0C2Ye4PuHF/QFBxaseygX9AgAT4ZGKRf0BWTkspXqF/QPt0qYJCo39AAB+FeJuof0BF04sO9q1/QJZXQP1XsX9AEiwLgr/Ef0AA8b7xkft/QPhJKSXMAYBAzGDnx8AFgECeTD2i0gWAQP3oE77mUIBAlCY+4BNRgEB62+5tDlmAQKIK8ZMcWYBA+KTXFitvgECoZNzWHo+AQMzPZikTr4BA+cEV2k2zgEDAg7q9BbqAQIJr2uKyvIBAnIOHaF+/gECyRaRAUsGAQNosrlEIwoBA1PZyRlPJgEBA1XQOTNGAQHfgEDhK2YBAbXfYWEPhgEA1KLSW9uiAQGQLR/Vn+oBA8uGibj//gEDmtIqFPweBQKHTkkw9D4FAqOu/2+4ZgUCsbCVLNB+BQKZnXrk1J4FAhutfg7sxgUDus/A7KT+BQLieLRBKQoFA3D7oSepZgUDZaKkFBo2BQICNl8NUj4FAl8JY0rOPgUBXAgxeEZKBQHaK8BDnoYFAXI0nbWyogUD0LwEPSq+BQLK2KgsR4oFAdFvPS6fpgUCWhq9o7PmBQEDTIL/w/YFABtb/AAMJgkCLsoJ42BiCQI2LdDPXIIJAfHVyHdEogkBI4IPG11GCQNfw3YPcVYJAnlLoFkOJgkD4gf8CRJGCQEiDz6A8mYJAgA6xqA6hgkD+tjcBO6GCQHMUV7oPqYJAxuq7wDOpgkC0Co+OftqCQMx2X0J5EYNA5FIFMXoZg0BCgdwrcyGDQMpwgX5xKYNAXRa4MMEtg0BdfbulRzCDQO7O9IJqMYNAAVc/xGXqg0BO4YKQaO6DQHzX1sps8oNAFH1hp3H2g0AIijTe/miEQKlP85T9cIRAACJSo8h3hEBUuriyYoGEQLT/1UZxgoRAGwmjOR2FhEDEF8CkyoeEQCwBdRp5ioRAnhbgKnGihEA8xPXyHaWEQFiUbTjLp4RAwscDOneqhECwBlcE462EQF4TMy1TsoRAPgyYCRjNhEC24NULxM+EQGSDbitq2YRAJqy10HXehECfYvZ6aeGEQJsxwM154oRAlSX/kWLphED1Ir2KNfGEQHyUKSRh8YRA5ibLrzH5hEA8nCyH9xmFQJ4fbr36HYVALnmXb+8hhUBeSmd0AyKFQB47lJMBUoVA6Elf+QNWhUAuQhU/oGGFQFUfqYigaYVAqyYfDJlxhUBOtwIPmnmFQA063K6hVoZAE+Nu7aZahkAWl1boJbmGQDRzpdGQKYdAoS6gbpIxh0CFSG6hhjmHQDCUwzF9fodA9sTfAoCCh0BucvgFhIaHQIb1vtZ+iodAV2gOHsexh0AdkYdByLmHQOQfQmLCwYdA5pZps24GiEANFX5edAqIQOkF7FbHq4hAWB3OSM6ziECwqZTXlvKIQFJY9teZ9ohARNuTVp36iEC6umRkmP6IQA== - - - - - - G4qgRUTAPkfrB31F9nBuRnPpAUUmLhJH1siWRf6aiEUUdIJFzDsGRUrCI0WmSwtFw8gWR1twg0YUs6xFqPsHRbYJu0aqBNJFMxb/ROnVlkWjiCRGFYVQRW/NXkeawi5FMuaSRg+fCkXSrPRE96Z1RQ1ts0Vai9lGssTqRJe/C0XORjdHUcsjRQBmcEZaaB1GIWHNRXX3rkdNsQ1FHCX5RSH6DkYs1yBFFRLHRTTiREUNHhlFMUqeRXvFCEbtg1JG+TKGRiOYAkWzaMlFWZryRM1qZ0Xixh1FFa7GR+7gLEfqMrNFS1ZxRfscKUYGAOdEeo+zRfOHNEcR7WdFsJMyRS7sDUVk4URFAjSyRRwXIkZVK65FxIcFRYTHD0Udk5VGwnUPRgiOFkWYcERFRF6RRZlDIkYsK/pFum0/RUP7HUZF2YFFywEbRXSg4kQzPCZGYj60RfhE0UUcxzpFZdb+RGlj8kT3khxFXOAJRcpWUUa7y5hFzLX7RRnYdkWo6RlG6FP5RWQwvEZpThNFrRqQRdQsU0WLX3ZFz5IGRbyDYEZjouVEQf0SReClEkUmHC9FTKalRfE6MkVT/QpFZC13RjqLJEXiJHJFPjLaSIWXwUcvgI9GwByRR6vNtUbDUYJFooJtRlpSQkVmMIJFpq0vRXFCDkXZLaZF6EpoRuFMjkWCo75GShcPRlcbn0VEemZFTDFTRqilkUU+GzVF04oHRmL89EkdxkpGyg8SRoIRAUU5+TRFC00bRV/CqEidlCVF0ozqRnTrWUW15SRFvt8gSfxALEVcDCJIDMMWRbKM1EZ8GF5Gjr+RRcBAIUZmbANI1348RwhuD0XI1jBGva9FRaWMjUUaWIxFqRdgRvG460S9Fw5GGBWDRXOdMEXodxRG1Dd0ReAyeUXIse5EFPTERbO6FEUb/75FwDgwRadsqUfUjZZGfHcdRYFEsUUBZBNG9DLARb4s50RvutVGUstNRZm1GkZ0KEVGOBT+RUCSd0U+3QRGd4QxRqUAikXIiUNFNSQwRVv+LkWnnDNH4FPgRjBFj0URREpFkmloRtm5TkbaiBZIV3BiRYrXQUXCkOlGPA+9RcszIUVOOrtFa/S5RmhvUkazkUJFwZoKRQdFBkXkAB1FnYClRYYPOEXRo9dFu/pnRVGz1UcsIU5G+y+GRTbG2EVjjOpGpiY8RZiojEUu+C5FxmCTRpA3J0WQDMpFA1nvREz1EUUPz99F6rWuRYrpjkWZ8+BEch2WRUXMGkZR045FcZ/HRz4kUEejBi5GEn+WReu60UWlsO9FUuNgRbLqoEUO4+xEKp0jRaGA2EXLNkJFr/JWRlOmKkWsU5BFKNAtRZBm9USoYf9EPjkRRQN/KEeRtM1G/pgvRbegLUXxrBFFdLiHRkKZ2UWDAkdFa90PRQMmtEUOuQlFS5//RJgvaUYclhxGkPCHRSWBoUjaZudEGC8YSIu0kUcPeHxGzdCpRZ5X+0TcE5VFaMRJRvtdeUVg5VtF5Sq7RVYRh0bmXm1FHX8WRYyGEkU3kwBFTF8bRcHmWUV/JtBFgOVFRWIgKUWRtD9Fk7EQRfFqz0X1ElJFhaxMRRwgF0ZJOsNF6PTrREWNKkaKOmxFNWAlRRKPYEYVcdxFRmAlSHrzmEf7tjZHZx/7Rbz8VUagQi1FFpdkRf8RYEVc/jlIoty9R93rUEcCKl9G7Nx1RdF3MEWcWK1FP0DVR4vqhUfBEqVG7vJhRQW5wUXHtUJF9ItvRbyM6kSgrthGTfLCRhqiOEYHaV5FvXQaRopzAkYI71tFfHlHRZ+yD0XjaXZFX38DRdsOJEWmrihHsspPRXyHlUYiCRNFaDdMRiQZgEXG54NFWjgcRekTsUaoDVRG78MsRbZoLEW369ZFZ+tJRWB3Lketca5Gdo9cRgRmo0VbaWJFbEAORebj/ET2/D9G5B7WRfDFikWPP7hGTgyGRpSX6EVrVxxFY+snRk+I1UVjXUpFirpQRZvUHUUyvzBG7h+bRcncZkdmWRFHMtNzRl8srUU= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - iCqHSHDBckDAcexlp8JyQPOTdng7w3JA+ASbAljFckATnBKrAchyQF2lQ3xazXJAZi9h1EPSckBeJhbbpdJyQE8ISSDP33JA8MF78LjgckBOLmwyUOJyQC2BU2aQ4nJAqnhR9yTjckAuYXTFyfFyQIivREK383JAYtJ2BKP0ckAiPoCL+QBzQO6QkJWNAXNA4LYn4dACc0AOt6To+gNzQKRBj0i9EnNAsDqIyAQUc0AqIicz9RdzQOO6rKN5H3NAbCHSj6Qgc0Dq6+ZLOSFzQC4XWE1kIXNAz1Hd6BAjc0DpJTmhzyRzQNbULj5HMXNAjIMx7c4yc0Di3XILCzNzQL7tz8q4P3NAUoiAneVAc0C6ylSceEFzQOiPXkt6RHNARn6KxptRc0CFyiPWo1NzQKozVhuHVHNApNHMa41gc0AVpaC2OmNzQE0+t+IrbXNARMpc1FFyc0DVjcTuZ3JzQHQ0CzGFcnNA7Eets7hyc0A3lBPPTXVzQI6c4dPMd3NA6gnU2OB3c0BoxOApeYBzQArhi/ykgHNAynXV8w2Bc0CojMCDXYJzQDiuIjSFkHNAikjVWU2Sc0CWWcmuYZRzQNjrC/T3lHNAQSGcL7mgc0BQ95YIW6JzQO+p/K/lonNAbDaXEnyjc0D0y95JBaVzQPLkkCTGsHNA3G71gzSxc0Dwpx1sebJzQGYAbDaIs3NAupRI2aazc0D/kIBwDLRzQLfqTBn4wHNABCs2l8/Cc0BWJP2uKMNzQPBnnWnZ0XNAMA4SiOLUc0CGUPUjOeFzQLBkv5eL4XNA7AfTCg/jc0ArvoCdNvRzQNaMb1ZD/XNAMk9ayeIAdECIdMMgeQF0QGYx+zWlAXRANt4A9JwCdECiUkNgTBN0QHJk43K5IXRAA+GyA+E3dEDScOkKU0B0QMBU0GSlQnRAtLE0LYxVdEBBOfRY3Fd0QGKFG7I1XXRAuBdLQLhgdECM+nR+CGJ0QI9yNDGPYnRA+H3QOBFkdEDmpOqA6md0QAVehAUicHRACOTJRkFxdEDm5zo3OXN0QNAy3HJEgHRAVEKzPviAdEB8IV4AToF0QIC3gIImg3RAy4t2hxWQdEBouxARbJB0QFpeh9Axk3RAFjgcx1GTdEAS0o9k8J90QKude3XPoHRAbaKDS7qidECh+OS0DqN0QIIpIcPDsHRAJkOfSm+ydEBQV+RkyLd0QJ887xrlwHRAcu9RNHfBdECC2oT+cMJ0QFsXHBrQ1HRAGNhFC7jhdEAucnQ+wPB0QLp4LTCN83RAjx3C/WIBdUB6PFu2XQJ1QHr/LyiZA3VA/sWDK5cQdUDyptdNahJ1QKp2v8YkFHVA/gDx6J0idUBCWSSJzDV1QE0jilv5N3VA6vwHWVM9dUACpqVHrEJ1QCoAjx53VXVAHT/JghJgdUD04U8zOGF1QJ701VnRYnVAUYq7YXdydUDSuOkrdnN1QLp4CpeNdHVAXtxw3XmBdUCorIiWroF1QNDEXlOmg3VAI/SpZpqEdUBhfQAMDJN1QCqS83m0k3VAyH1XSbihdUBdFA4BlrB1QCCRwJb5wXVAUgUdRwjSdUB5dR/8y9N1QK9Px7EO4XVAxNh9BgjidUCGaxNlq+N1QL3DcyRN7XVAsAKcjafydUCgw2+ESAJ2QKiFoVDOA3ZAwPlQjU0UdkA8r7ahDBZ2QIRueJiIInZA08tJqZAkdkBc+HK4Sit2QDodFNMfMXZAxk2kGVMzdkDegC/gnzR2QLIHxeQdQXZALtG4o8hCdkCUApbZeUR2QCYkSBb0R3ZAV8K9lRNRdkDMzAL2zVR2QEN/Tz1OY3ZA/sLdrtpkdkAz2nFl0X92QDx7WziTg3ZAbIROcbewdkCAQF2awbJ2QKdLhWR5s3ZALkA4yAy0dkAktisZ1bh2QGrC3VbPznZASfBYkJLzdkB6jjpxNAJ3QD5Cnn8BEndA4j17uw4id0BWuEsOqC13QHrZxXGkM3dAlmGjTg01d0C7ONOxnUF3QBFadr2yQ3dAR8dEhxtFd0COfEuRSlF3QKOeibOSUXdAkcH1dbFTd0C0H5MWxlN3QJ0P1qfXWndA2DAyWpBhd0DCi6jsOWV3QIjJLS4ob3dAZO5Er55yd0CIKX1r+nd3QDmSSrBMlHdAA6VMS3K7d0ANqXKxesN3QHAACEyBy3dATuNxbVPyd0By3ylfR/13QGJa63OgAnhAABDoV+kHeEButOh4AAh4QHZBEbvHCHhA+LsdvyIOeEAg6MeeURN4QNi378FtInhAztZ2WY0jeEDatpOqaDt4QNzWz1R3Q3hAVkRVcI1DeEA24fs110N4QALko0MQRHhA1MGVFFFEeED4FbNYeEV4QAo5lCPMUXhAYkuvI5NSeEBxEvC1HlR4QGoGR2qHVXhAGlFZme1XeEBhyMsd+GB4QJiwibO1YXhAFksoUPJieEAzB7AnJWR4QLtiKvgndHhAepQD3jl0eEDfaYNoi3R4QNwb/du6dHhAPLV8MM50eEAWJhEwpIF4QKZey/eZhHhAmnybu5iReECNcuzfWZN4QJKcxYCnlHhAVLyQsmejeEDeZvY9h7N4QMXL7zWms3hAkDn+CdSzeEA27Ffs27t4QCRAsxWzw3hAakCNGuLDeEBc1S1048t4QHrEcaK31HhAzQ9yOMXkeEA+CCTtAfR4QL0znWOM9XhAtniqhaMTeUDMP9akuyN5QMBryTqyKHlAmIkf/wwueUCZsJFTZjN5QK08baXJM3lA1R2ms4tCeUBaJUIe/EN5QMYldZPMVHlAdMqjSkRzeUD79FL++YR5QKJqX0pzjXlAdKTjRcmSeUDO6tqi7pJ5QJ4L8x76onlAJoj8xL+yeUA09CnmQtR5QF5qCTHN1XlAKhyESmcDekA0t4WDQjJ6QNZdB38MNXpALl++ihpFekBvLR+MzUt6QIJNmJ4nVXpAjgBT1217ekBkMhisDbZ6QKAaPrMLyHpA8g+rTWjNekAog0iKZ+F6QDmApfX243pAAoPXcjzkekDymADXeeR6QHBuJGr+63pA1rnsjjfuekAQbCfPSfN6QNhzCKZJ9HpAjNA4OaP4ekAkTZh6AP56QGoWbPJ5BHtAvAo3FyoOe0Bbp4kucBF7QPyj0xDEEntARF7q4kwVe0BFFOmxHhh7QILP1Xl5HXtAblawGVsle0D00FyxmUh7QMh/wTFdUntA4ANDTCOVe0CbT4IB35p7QMLeR9nOnXtAlGvm9Seje0A5JT8Zhah7QOBNua/LrXtAJQiZ1hvze0B3FEEFjPV7QI5HiRraAXxAOjfyoGYEfEC9aoMQmQV8QLbP/oCMEXxAeBqGV9ERfEAMYmHaFxR8QIAjadN0FHxA0qipBugbfEDSA+VqfyR8QEAssVnNQXxAxvw8M1FIfEBpmcSGXk18QJxkVearTXxADGH1CdtRfEBi2kGP9VJ8QFb1NX+AU3xAVKLFz65TfECs9v4MT1h8QEu6/jwNYnxAsyOzyNV6fEBlTS6F/4F8QKvKBk5ZmXxApqOyG7OefEBwUslSBKR8QFHbacb6pHxA4qyWQ8OyfEBOzlz8ath8QBxqTazC3XxAMGCovlfifECEY4y6D+N8QJkuAwC/43xAO5nJRBHkfEAJEEAEbOh8QNGse5e/7XxATkmQzBbyfECy6kyYVPJ8QNqKExoQ83xAVlyz61/7fEC7kYm4/wF9QPY8dGxLAn1AUfQmI2UDfUCLkTORRRJ9QP0Mg6GvG31A31oezUEcfUBLaZmyQiJ9QJhB22i2I31ACH8GiUokfUCSEJvpuyt9QOoTaRefMX1ApLXe2l44fUC8VU5O7Tt9QGJZw96XjX1ASBDiMPKSfUC4c9/tH6R9QNiIYPLoxH1A5nz7zjXOfUBEdwoa1PN9QERRzRyS9X1ACSyRg9n7fUBsb/rjeQR+QDrX64x/DH5AZQQDFe8dfkCkVnsESCN+QOxeVtelKH5AlHSnrO0tfkAQIuvRQS9+QKysDxOOVX5AKh2V/7d7fkDS8vJCvoN+QL8LXXVThH5AiHx67cOLfkCKhigizJN+QA6EsuWOsH5AmLCf1piyfkAq4X1qr8d+QADfxpdzyH5APDvJHbPLfkBQlSWXzc1+QOqamBO2z35AnqChRSvTfkBJ3oxuvNN+QKTdIVs12H5AXC4GIdjvfkDK2vIAkwN/QCaHbzmZC39AbNe5KBtXf0C7IxVbtnF/QIK1qn2vgX9AWp5vG2ORf0C2sxZwmJN/QNIJ0DldoX9AlUkorUSjf0DE3K7Emqh/QJB9PZtUsX9AT/M4+kizf0CSGpxFvcR/QOzNRr/iy39AkMmdKOrTf0A+QBSckvt/QKO6KIbMAYBAwns5RUUCgECIebvt0AWAQFiLpUbGCYBAYFVqxO9IgEBMjF+f5lCAQLECAjAUUYBAlGDGfOZYgECOY37IDVmAQEu+Ha7vbYBA2qAOhylvgEBGQiMW7H6AQGRmmT8ej4BALbN2dQKigEDUrXHwSKSAQPydhcl7pYBAPHjI//WmgEBpGo/PhamAQASqCrcUr4BABlTeIWewgEDN2Yhyf7KAQMjl6MwFuoBA40uE/027gEC0wf6hsryAQDYLPNVfv4BARqP6mFLBgEAc9sEpIMiAQF8Ij1RTyYBAe6CcZEzRgEA4xl9JYdGAQFs/fHJK2YBAQjhvOXLZgEDqpth9H9yAQHaNkOpE4YBAkN1m2fbogEAOYGu0POqAQOwxjrtB7oBAmkt1DUvvgEBleLSp8vCAQBiVMNk984BAFp6QRWj6gEDW0hrfav6AQAyFddA//4BAB4jcKEEHgUD8P/0+Pg+BQAbb117vGYFAlHw9y/IdgUCoiJ6RNB+BQHFg7LI0J4FAkFc6/LsxgUCo2oE7KT+BQLb03XBIQoFAHiuU7AaNgUBJJ6JCVY+BQPyZmzWyj4FAxdiA3+GRgUCODkpVD5KBQAKN8ptikoFAmt6NdxSWgUAV7mD/VZeBQEZd6N3noYFACO9OamyogUBk5cyhlq6BQBpFS5lKr4FApm7vyEy3gUAo3+QxftOBQNSFBQIR4oFAnAP/0BbmgUArnvdwp+mBQLpRfu7G6YFALEyQmqrtgUD/G8qj7PmBQPo9g9nw/YFApCXG8PgBgkAFy6ZqAgmCQFx6a/zXGIJA1FD3H9cggkBIB/Fo0SiCQIwL2JNdOoJAhSuUg9hRgkBW5jiH3FWCQPy1y0YjWIJAvKMAVjldgkBqryA79nGCQJmsRcoGdoJAzhhSSUOJgkCh2zS0Q5GCQBBIX0s8mYJAKHCXklGZgkA6xPWlDqGCQEn8zss6oYJA1mZLQw6pgkBkmOfyNKmCQF7gVYUFsYJA/Nfpu37agkAg3tcIgd6CQBbig515EYNA7jEVPnoZg0DY0ww/cyGDQNK0TllyKYNAkZsDbMAtg0Cx/rRmRjCDQMZx26JqMYNA5jWp6ttBg0DWbIDq4oGDQIIgJOBl6oNA1HvL7Wjug0ByK8lPbPKDQOJMkLNx9oNAeA1TQpH4g0DOx+878h+EQIYNDpudIoRAkpIV928yhEDfm0Oy/2iEQFuqu4TXaYRAsAtKcv9whEAKsoOyyneEQOFB8wH3eIRAjHiz9HZ6hEC47MnscIKEQEDsuiUehYRAiZK85smHhEAk0om/doqEQFiMtwMvjoRAGCt0rRGdhECTJanGv5+EQMyI1B1xooRAaAhl9B6lhEC5MEb0yaeEQPrm4xIlrYRA7E/hcuathECwrkPPVLKEQNRvnr5WtoRAePwpqBnNhECsOGOsxM+EQH5OMTRq2YRA2JzQzHfehEDFoBrNaeGEQIB2GeJi6YRAs4bysDXxhECcfnj9YfGEQP0uTII0+YRA8zb/dzABhUDhrvzORxKFQBCDROf3GYVA3bmz+PsdhUBY4PTZ/iGFQIwPEbf1JYVApXP3tY8mhUBW/s+1lSqFQNafGQ4CUoVAZJzxgAJWhUCaIK+HoGGFQE75TligaYVAt6bq7JhxhUDePlGtmHmFQJiBdouQgYVAEipSAEimhUCB3U1lolaGQIhW1tClWoZAishTOZVqhkDsGoDWG4+GQDZdlkSRKYdAs2gwiZIxh0Ar/L/khzmHQDYB+AiFQYdA3IDRmn1+h0C8jEjhf4KHQES4BbCEhodA6tETMoSKh0DKsLO8xrGHQHypCN1is4dArW6o+se5h0BPWnRHmb6HQA64jPDBwYdAVBnrf8LJh0CeRQsRcAaIQCpcg591CohAYO2blluciEAUdJdTx6uIQDa6Vn/Ns4hAIEp66pbyiEBoOEBVmvaIQKR4wFuc+ohAEQZtj53+iEA= + KBZXds7jZUA1uAwZnGNrQANJK5hVInJAdWjQV5ECdEAlUi3J2JJ3QNB0GqNUU3pAgF53FJzjfUCROhQhvWGAQAfb4Rk6+oFAIj+Vuf4Zg0CzQxZSQNKFQBDuXS0J24ZA9wYP+bgaikAQHUxXtWOKQPc1/SJlo41A2iQVCjd8j0CsHGYG3N2QQB4U8vlEypFAXjPLFCJqkkAQSjAjaPaTQNAqVwiLFpRAV17fHX7alEBQQk4d4dqVQJdW/Rf3vpZACODGkqfmlkCtaz4ZHduXQPR/7RMzv5hA7WMrbOhymUDZA1Ltc0ubQNLnj0Up/5tAGfw+QD/jnEC+h7bGtNedQC4RgEFl/51AdSUvPHvjnkBvCZ473uOfQHoek6joU6BA3I4mG/pjoEA1GlkiHSqhQNOpxa8LeqFAjqWLKUDwoUCrajlqIICiQGZm/+NU9qJAnqzr1kDGo0Am8nruf9ijQF44Z+FrqKRA9yI5GJ7qpEAbZFl+rpilQCA9Rqaf4KVAP6V55L5GpkASyC+quqKmQEllW5jDFKdAnQmZE9Nsp0DUpsQB3N6nQMFKuXnjGqhAX+gta/SoqEB/QllF8QCpQLhzYHIXz6lA - + - cVvQRQPWSEcEc4ZF2nbrRNv8okbNXZxFXQoYR4BzGkVp7LlEE/L7RPauhUW0DbJFgUq7RNrtiEWHr5REv9C2RLFmA0XCYQJF3MUKRS8HNEdgE4BGX+KpRaydC0XfLeBED4uURJf3uEajGr9Eqae/RNIev0X+czxFBjIHRay7oUQVlMBEKxjbROFbhkXrHRdGC/ywRHaNpUVKhh9FiyLdRDHKFEW2GXdHtVzRRBzuJkUFF7ZGGthfRW1pFEXExhdF09V0RbDhCUfx0OtETzQORcnI3UQZpEBF3NJCR5uo7kRNOmpGadwtRqCHx0V26wFFqZOFR0OYLkUuWdNEQnPMRBW9mUSxY/ZFThryRWJwG0U9+AdFKhO7RT/6JkXuBwxFo5CbRdYkzEV5vNlEoMCyRCbL9URYH5RGCGjgRFhpqUZNbBNFfayQRSPDN0WdaBZFtQPQRCTp6UT/wCZFoZ/aRDrkwkfqfjxH1QfHRZaQjUX8E1tG4OapRK50D0VzdaZFTUs9R2z6hkV+Te9EqadmRYaR1kX1PaNGWtpWRT26rkRVmflEOY5WRfK/00QU0hRFosPWRBWhHEWmieVElpKkRhbN+0VwEeJE+RrYRMYmwkTj7OhErSNHRb9js0Rs6NlFreLGRNNyPkZLO61E9uTmRF/IC0UDTlxFTwgnRnskQkVIbABGssecReLdo0RmZvVE7UneRBsmIkVCoAhFu8JSRUUbzESKmhZGidn6RLc3vEV7lhdGRvwvRQYA8kQ1CNhENN/tRNQMuUSUuO1ErkujRBECx0TtHhFFYDHWRLbwL0Xz7l9Gy7WvRXpi60XIwJ1EkPraRAT2wETDkKFFGfj9RaPkokVIksRGXQpKRS0lp0RI3ZBF9IgpRWLliUWzXBNFY3RgRSMZUkZH6ilF/lsrReiF1ESoQy9F8ausRKtuN0X4mVFFkTCORSEwqkST82BFMQc5ReG17UQJm3FG3kpdRVQWnkS9KYVIxSTmR6WKrEbWeCNHhEO1RqPkk0WO9lpGEWw0RWug4ERTur1EVxTkRNI+zUSq2V5Fy2KCRQZXrkXkIa9ERzzoRvdCA0ZQ6wNFQrK3RHZozkZh0j9GYl1IRcPr/USgGbhFnYcoRT+5v0ROWo1FNXeeROr5cUYeRzdFZYfORLfEo0XX4pdJlraRRalSO0Y1Un5F4+p6RdKiSkivrU5FuvvdRAZHJkVBtEJFb+k+Rao/bEZlftFEBHMpRTknOEk4f0BFRRknRepMKEXyQzJIfKssRXtekUYsYWpGkHFQRROM00T8S59GONwMSNuwS0c6dT1FVxkzRtck0ER8HlRFvcezRDf3aEU+3LdFju2nRJ3QuEa0HhFGLSGRRWNSBkVKuTFF63y2RBL38UX+S5BFBv70RORExETuDYlF0JvKRHy6kEUbMrFE8VE4RaBy9kVkhK9EibgIRWPmUEUZvs1HDV62Rhfd/EQxxU9Frkf7RH6alUVdPe1FCf0fRSgZJUVaBZ9GltMJRuP1sERWNO5FgGPURAq7eUaWGctE0/4nRtrACUXKQ39F227ORPKZ2kRDOthFoLMaRp0ciEUBXqlEhBh/RVNjvkRNScpEaYtGRYxM8kQ0tEBHI73eRvpdGEZmby1F6t0aRbdSlUYF8kpGU4yDSNCMk0V98MZELfagRalGyUQyxjhHpALwRcKUV0XlluBFhw6cRpmmpUTXv1JGMYi2RMJ3SkXM6ONEeic6RUm4z0RKYO5EZC1DRdq1WUVkNaJFYtKkRfa9n0Q49wRF/Ky+RM3sAEaT4JNFWqXcR7oOu0UG9dZEQCiRRbQCjEVFv/9EYbO4RFFY00aIyLlEQSfZRZV2JkXlS5dGK29iRagKUUVPExpGa4iARbbf3UTlJXtFfBmoRFD8/UQU4+BE5JHDRIc1m0TCz5VFRHpvRdnnjkTd7h1FBuYDRRhc3kQw+B5FfcXRRM6ns0UfqCBF7I4DRjcOsEWoQPxE0g3xRAm14EQwDtBEFTrkRwkJXUfasctEG0wwRk3V8kRSlbFEQ8GpREIoDEYwWzhG8WcCRjJ6gEUVZ7BFCCnoRL2fz0Tkpr5ES7CdRNNE6UQ3U7dEzJXqREDYi0VCBeZENbhMRqGLxERTHHNF89W0RRujzkSVIyBFtLm5RPenzkQj6r9EBdX/RP6iTUfk1rBGRAnHRDNaoEWKU95EuhAWRZCpRUWJO35GCj+hRMKMvEUvm0BFv8FQRYv2qUTIUfFFh8/PRJYpEEVMEq9ExBrURG4IzkQFTgtFDQ75RP4dEkW/UY9GTkO+RFlrSEZ0R9pF9jKcSFLbGEXlvAtIuSSPR0orhEVB7IhG45a1RDHy80TdgbVFOp8ARQqtB0XRI9JEGlDKRBlor0TCv6hEZIRMRQU0CUXgImhG8pxmRVbxc0XUsuNFdyLXRBF4kEaMvI1FNED6RJHhGEVLK/NEb02pRbqh7EX4oBhFst2aRIi0gEUgVbBEq3hGReQA50TCWxxF5u7fRLZ79UT+H+lF8zIORU4sqkSj0iJFdN0TRT3eFUZgPUhFleSbRYhkO0bjubJFgzP4RBYZykQ/2TJGPcN/RZbfCkU/dMxEGwgmRiAjl0XXVRNFTcXtRNBtoURMs+5EVGANSD3dY0cAWxVH2wRQRYfB+kUN3xBGqpM0RU+vYkU/pdBEU8yKRVy3/ETI9R9IV+6HR32SKkfzHEBGP2olRVdluEVN7GVFJBnaRGPrtkSoQrpH2/ZoR4Uml0Z9yXNFhwqzRKOTv0TfWNZEeiC7RH4jnkUk1AhFeUkDRRFeUUXBziJFRq4nRR9U50a2e9ZGc9xlRj1MHkawyKNEEnMhRb7FDkUNp35GWE6FRmWK5EWoq95EdK8cRQ5FMEWlJDtFDAq7RIu46kTonCZHtDOGRX6oeEa0zDlGjGGmRQ81gUUxMe9EylvDRLAdD0Vq/LFGGWMrRhZNi0UkUv1E0gVaRac00UTJErdF5Q1TRbX7K0esSaBGPJpURrK7nEVQb9xEmw+yRPU6K0Uxz3ZFUFvVRIItqERNzjZGQ9CoRY7/gEXNCNREJDycRsotYEY/dq1F8Fb3RImXHUZXZg5F5bCeRWlC6ETK9H5Ffe0BRfY7dUXc1wFFsfvCRE66UEa41oVFGTUyR7KvBkdGoHtGdqyXRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - mf8FmQzBckBQxgaVbsFyQLtu5C1QwnJA9v4ioafCckDCM74TO8NyQJYrEd13w3JAGFc2PQHIckBaYeUeTM1yQBOAWxVdzXJASjiwan3RckDE6TFZQ9JyQGTsKWS00nJARF0lmHbTckDcaB8zzt9yQO4XidK34HJAVJpLy/vhckCea5olUOJyQBMKueaO4nJA/Lc21SXjckCNG4TGUfFyQDRnbM3K8XJA5kS1R7bzckAUeb5jovRyQELjZXvD/3JAMusFLfkAc0BMb4llSwFzQD7Dq5aLAXNAsKRjLDoCc0AVoFJ1zgJzQHAnDa76A3NARx/efAoSc0DavR9uvBJzQJcJUaEFFHNAzt+j3Hofc0AQet1vpSBzQHIeQhE5IXNAcZNAGeYhc0DPo1R6yCJzQKaNkEQPI3NAmcTzFwIkc0BQRob0ziRzQJRa8ItKMXNA0vKvnGgyc0DfFN/tzjJzQMZvEzUNM3NANtXM7aMzc0D6sZZ+NjRzQK4DPGK5P3NAwEYTij9Ac0CqfKM+4kBzQMocJoR4QXNA7xYxzbpCc0A80m7IeURzQKDkBNibUXNAaAwWx0FTc0C96pgGo1NzQOLzM8eFVHNA4fsYx2Vic0DMgt4LOmNzQJlqw9krbXNAXr/y5t1xc0DSD4TxUnJzQO5j/vhncnNApl3a14Vyc0DaTO82uXJzQEAw4eNLdXNABHbRe853c0CPHtzI33dzQEjmKRorfXNA6tIn6HiAc0As51lKpIBzQHJzrcEMgXNAyB7yuF6Cc0BFLM72DYRzQNy4glBIkHNA9tAi2IaQc0BsMGpi1JFzQFCBuylNknNAcqmtlc6Tc0DcQ+PhYZRzQJErv0r3lHNAT9wZNLigc0AiFOhKWqJzQCZIpYJ7o3NABs7ODAelc0DcSHDby7BzQGZHsyI0sXNA/MR4I36xc0AIFlzDW7JzQL60ph2Js3NAaPNSfKazc0CIh7EAD7RzQJQDjx/5wHNA2mCyBDzCc0AWuhQCz8JzQHqHGMglw3NAPTkWbbPDc0Bow86u19FzQHSUMVwJ0nNA2IqoDL3Sc0B4K60J9tNzQIgSEEbi1HNAhgA6jw7gc0BMTSOTouBzQFQq0kI44XNAwcAAUGXhc0AmT4CZfONzQMRu6YHw5HNAGA2N4jb0c0B4TIFKQ/1zQHEKU614AXRAssvFZqcBdEBeowk0nQJ0QImGCRj3B3RAjGrQPfMRdEBFbtdkTRN0QBiY/XrhE3RAzHYucngUdEDyck0nwhl0QJxJ1+xIIHRA8GHLjLchdEA0iS+g4Dd0QBLtuc2mQnRA+vbTBXhDdECoe1Rh9lR0QK7cuoWMVXRA1sRDo9tXdEBK60GNNV10QDM8j9q3YHRA7jUjbghidEAX7tA4j2J0QLZRjpATZHRAR9RqQU1kdEABqCDY5Gd0QCxv/PwicHRABg+WYspwdEBoEhjDQHF0QLXopxc5c3RA8oForKJ0dEBmTOvuN3V0QHcoralCgHRAWBtFJ/iAdEDfWPI1ToF0QKyaap8mg3RAyjWhTBaQdEDXMR2zapB0QA0ueSQ0k3RAAidMB1CTdEBqH+Ga7590QMSbafykoHRAsmKGwdGgdEBEXgFsN6F0QPn695u8onRAerM5iw6jdEAMPCJ6CbB0QEXI8c3DsHRApTq0EG+ydEAGjBugkrN0QBtS8IjIt3RAiirHWhO9dEBWo5XQI710QDknIPjhwHRAOik22nbBdECWYRnW6cF0QAB219ZpwnRASrtdrMXCdEC+nvJCt8R0QHYz5KD+znRArds6XnjUdEAwbBvzzNR0QLhGlwS34HRADh6sbLjhdEDKJwPA+eJ0QJJcNwFO5XRAoj5h90/odEBeQqAwwfB0QDAYUvCM83RAnlvq76MAdUBmKR/TYQF1QCJHfMJcAnVAMkDLV5kDdUAcrIV6lhB1QJJF7GBpEnVA0G65/yIUdUBNJ1AlnSJ1QDz6zJrMNXVASnF0Pfk3dUC2jiHuUD11QPwHwSkmQ3VAlnwtPtlPdUAC4djmElB1QEjT4VMlUHVAD36+539RdUBGx583TlR1QLLQMgZ3VXVA4s1Kzw1gdUBymeIjN2F1QPbPbrXQYnVAldILMGVjdUCMPTT0dnJ1QFjStiqNdHVAig+RKHiBdUDFw8IDroF1QGw+RByng3VA1MUZHJqEdUCCqMpfu5F1QLD5sRwNk3VAR3MM2TmTdUDBYTcNJZ11QOWzA42VoHVAjds1YrmhdUA/iCQvT7J1QL0uwI17s3VAHOE9nzi4dUBJsyZD+cF1QN5u16/N03VA1dSuYuXfdUBowWuIDuF1QOkktNgH4nVAlAIHNqvjdUDQgX/JS+11QCary/+m8nVApYGR5/D3dUBMMTN1RwJ2QFLz3w/QA3ZAXnJcRlYSdkDcRAC3iCJ2QDwq21GQJHZA+t/YrUordkCy8H+THzF2QCN7KsBSM3ZAhPeaxJ00dkDoojujHUF2QPooPHrIQnZAaGij6nlEdkCIaUQl9Ud2QMpOcRTKUHZAhvh0mhFRdkCy6/5ThlR2QD9cAdnMVHZABJO1AVJjdkDgc0lF2mR2QCHwTwBYaHZAavUD9M9/dkAiSYhdYoF2QM2xVEqRg3ZAPTBI5sCydkAUamxUebN2QBGDxgENtHZA7wmAs3bAdkAcHioiTsF2QHaXPBfPznZA2Gez5PPhdkAySYVRkfN2QBrI6TYzAndAoLrQOQESd0CuFMqJDyJ3QA9h3WqkM3dAmARSDg01d0BKD005Ij53QM4KxCOdQXdAJvh6STdDd0BHYOljlEN3QOy7q2CyQ3dAoJ+tzBpFd0B89SL2SlF3QLo2nLmSUXdAxKP+W7FTd0BYJafLLFV3QEyEBxTWWndAFhauJY9hd0Dao76i22J3QKtEpNomb3dAgb07B6Byd0CFI1VFk3R3QKPofGz5d3dAwDcgfHeCd0CDsh9HB5J3QOLlyyNOlHdAgvihHpy0d0BM01Ujcrt3QPC9fdIvw3dA2Bn/hXnDd0C23+jsfct3QOKEzEpv03dAXamVVSjjd0AG7+1PT/J3QFCd/+NG/XdA0ZOn66cBeEAa4i5OoQJ4QLzoHvjqB3hAWr4agscIeEC3l4yTRA14QNamqRIkDnhAfLlKGU8TeEBIyzWETBV4QIFtgpVtInhAogKZ4IcjeEDOnvbVZzt4QFCKuuERQnhAagQ9aXJDeECSiMPXzkN4QPlbREUQRHhABNTXEUtEeEBv/yF9eEV4QDzOxLdzS3hARNjjwcpReECfIckqmVJ4QF4oOdweVHhA7cI3FIZVeEDEfbb57Vd4QHCAvY9JXXhAAOeQwfhgeEB4cl2WtWF4QCv/M8nzYnhAevHVGiBkeECkYDLbFXR4QF5F5ZJGdHhA7OK1JVt0eEC+dQ81i3R4QNchb4WudHhAw3Sb48R0eEBqqMkz8nR4QB1iFJkKdXhAWDD2LhZ1eEDLR52upIF4QK6fmqiZhHhAtYuFxreEeEDNXFXImJF4QDaFEahZk3hAqvKFh6eUeEBksiBRZ6N4QGCFjA+1pHhAx0PerGCzeED+UC3+pbN4QDnZcoLTs3hAzDNlldu7eEBc5JSxzMB4QHfP/0j1wXhAtpKP1LHDeEDht5sS4cN4QG78CPrly3hA0FSjNLbUeECesFs9AvR4QHgaq0GM9XhA08sMkZkFeUCiToML0yF5QKTiK2C7I3lAJnOcsLEoeUC63RWwCi55QGpmXSZlM3lApt4dfMgzeUBATFL65Dh5QA6AbkaNQnlAPD6Ad/pCeUCO+4YI+0N5QMr66jyUU3lAiDlpqgpUeUDSm4ruy1R5QMcEg9TZZHlApvZVBUNzeUBIDi+9cY15QBxkXd/MknlABVZ5CPOSeUCMUY3jv7J5QF15t8RMs3lAtAso6UHUeUDy4l1ZztV5QG38f3FP5HlAIsMd9WgDekA8cKBQ+wV6QEQLiP9AMnpAriY2Bgw1ekAqLRZgGkV6QNoBzEHNS3pA603dbydVekBGGbRcI1x6QL6zZGyLcnpA8g2Rr217ekC9NaKmDLZ6QNhqtTMsw3pACQM3+xjGekAhqWdUDch6QBHkuYFmzXpA4CvALUHOekAOXauHr9J6QM41RKJn4XpAFurALPfjekDLhNHaO+R6QGRC57H+63pAMK4MrjXuekBqPVElGfF6QNoc22Va8XpA9L7UaknzekCq/w5vBvR6QO7hBmJF9HpAzMaFjaP4ekBG7j+s/f16QEg1Ee18BHtA4ynRpHARe0BK7eL1xBJ7QBZ1MUlMFXtAJXDQoBwYe0AksU93Zx17QGuYweRZJXtAtilpAsMze0BQ631/lkh7QK6PNUXwTXtAxMlZjT5Oe0AY5+xyI5V7QPk69AHPnXtASH3MPieje0BchRVTeKh7QD47jc6IqHtAwOuqK82te0CoqobWd8Z7QJC9yDab0XtAMi3go/7je0CWbjHxlvF7QP6v9KUb83tAOuqIYYz1e0DmZ6LIdPh7QGy0afvZAXxAyAs6//YBfECnEVS0ZgR8QDoE5nCYBXxAJhZpw9IRfEDWKda7dBR8QEO/Vq6nFXxAGCgS0ugbfEDgJeLz7iN8QGoPb1Z8JHxAlNlaEeQtfECUnEV8zUF8QHtDJUZRSHxAmMx1t2FNfEB0NCQhq018QGxEqGLeUXxARNJ9j7NSfEAuODzL7lJ8QFyJ79gIU3xAxYYAhLBTfEBK9niCTVh8QEr5I55iXXxAbGHjSdV6fEBpjRfl/YF8QEDYa1fugnxAX2xKwFmZfECq6VdvsJ58QMTec7Dto3xA0xeiUBGkfEC6yHtJwrJ8QE5LsExp2HxAL92+1cPdfEBa9H+QV+J8QJQw5HEO43xALz7CExHkfED0MT1zpuR8QLS33itr6HxAyN+pXMrtfEDuTvvMFPJ8QBrpv8dU8nxAbvoq0F77fEBD4hIAAgJ9QFxR3aFKAn1A+FxBL2UDfUBkofXvUAR9QDej7KASEn1Abb09iEUSfUCT3w3srRt9QN6HtB5CHH1AWp4hNbohfUB2qw5EOCJ9QL5vOhK1I31AnoZ+8r0rfUD66NzUoDF9QMh45vSWjX1ALtOaZWuSfUBd3h7m8ZJ9QPKa4VdAmH1A4oZfP5CdfUCCVxc2NqR9QGVgzLQrw31A+s4QcefEfUBHqnaU1+J9QKiE2QTS831AmoU81ZH1fUDqAWl9eAR+QG0DWUiADH5A2aSVz+4dfkBoG10JPR9+QFm5aPhII35AeCqV0T4vfkBWo3lPj1V+QLwaWmcMZH5A4uhkZZJxfkB5TFbqt3t+QARd1V6+g35A4/ZF3L2EfkA2BPSHxYt+QAMvnETUk35AwhhBm2ubfkDAR7s5mLJ+QAJBn7LYxH5AYmFbda/HfkDUO7Ihc8h+QLrH7DSyy35AgnhKQ8vNfkA+I9CFts9+QG4N9UbZ0n5A+PrMVR/TfkDNyPbPttN+QDL442xV9H5AiHDhppUDf0A8OvlRLCJ/QLoCG3G4cX9AYeL976GDf0AL+YxUYpF/QIBQ9xOpkX9AZBdVMZiTf0BSjIF8XKF/QG/ZZ0hDo39AtNZQNZuof0DbXjhV9q1/QIYjDOlVsX9AiiZsrr3Ef0CClsObN8p/QHL+bOvky39AGGuAnJL7f0C2XHfOzAGAQCGifATEBYBAhHY9YNYFgEDuQFEQiAmAQA7cEgrKCYBAcimgaEIygEAv6S9WnzqAQI/ltOegP4BAlIU4bKlCgECaNpuq9kiAQJVivHnmUIBAEt+iUxRRgEBjuX1Z5FiAQN7wStsOWYBAXky3AiVfgEDwNecy4WCAQPjcMK8MYYBAXGOv1PFtgEBjqLEoFG6AQI6rQdUpb4BAtB2YdSd3gECIqOZbHo+AQFruhdmPkoBADwVguqWUgEA6QZd5x5SAQFZAt9ofl4BAjWRYkFGbgEBEUiv+DaGAQEfjsZ5KpIBAdOuhxfCmgEC0n4l6hqmAQPqFUxDVqYBAihBzvRKvgEAF39aYY7CAQKzxPe4dsYBAvO7D5X+ygECmJrI5V7OAQGAYlobjuYBA5q8TPAa6gEA6Zu1ITbuAQOfCV10QvIBAT1XjcbK8gEADm6RJX7+AQPTydVdSwYBAgDXrnQvCgEDAnyUr+MaAQHhAN88AyIBAMi4cnCDIgEBSSFOYU8mAQAS4tYYHz4BAeSxRsrfPgECQQtumLNGAQOjWG1hM0YBA/1kxQGHRgEBUjgg/StmAQOJUycJx2YBA+oqZs0PhgECiQe7alueAQNxkROH26IBAQb0kWDzqgEDWoZmG5u6AQIf5UFxK74BATFYk2z3zgED5lc+QaPqAQJLVS+hs/oBAJDvQfz//gEB4vVVgPweBQHyZMBvvCYFAFSSx9DwPgUDey5Ch7hmBQCizi/rzHYFAy0hK+fYegUCc4jE9NB+BQH9hrHdUIoFA/FJpBjQngUCGR9q44S+BQGHDDci9MYFAeiTWdSg/gUA2WhBgm0KBQAZwQMBXWIFALulU1fNpgUCQ5Brd34SBQLA3RyZnioFAR2NQOAeNgUAkakvyVY+BQCxamiC0j4FAXRRDHxCSgUAQbiDVXZKBQM5EU9knlYFAD4soEBWWgUA4wa4TVpeBQH1o+mjimYFASokX61KfgUB2leCG56GBQMabMW9uqIFA+wUvkUqvgUAaRvH8SLeBQMofc6v5wYFAWfEEn3zTgUDe3kAUEuKBQPA7fI6n6YFAsfb/NsbpgUBOeRfUqu2BQPwq3I3L7YFAA2288ZzxgUCs/UnksPGBQIDTtc2x8oFAtcSLp+35gUCjSx1s7/2BQEqMMQHzAYJA/vBhsQQJgkBZHPCC2BiCQPh3SUHXIIJAe/8s+NAogkCkTCCCoCmCQMT5zSsOMIJA0KGZ/aQwgkBYwUzICjaCQPyR8ehdOoJA7ctzjmQ+gkDGIT9g/E2CQLaD1ADYUYJAVFC2ldxVgkBpmQOtI1iCQBukC46hW4JAuuHB9XlcgkCRxngOCF6CQCLZva6fZ4JAL/2D1jdpgkDWMu03d3SCQJBuEF05dYJApJhgMEOJgkAU/vyvQ5GCQPkqYn48mYJA/P8o1lSZgkBMgk9ZD6GCQFRWuXM6oYJAHiGwIQ2pgkB0KXdTNKmCQDQeAXAHsYJAAW8Oh0GxgkAi4JGFftqCQMN54S+C3oJAWn1phq/5gkDpMHR6eRGDQLSnjA16GYNAVvrrLHMhg0DUCAKviiGDQKS+AtpwKYNA8UmDS8Etg0ALNBbqRjCDQHBUPF5rMYNAtN1SeIMxg0DgWIBiajmDQCM6y05AQINARLWx8txBg0BsflwJ5YGDQDcaIZxl6oNAQvubr2jug0C8RvnpbPKDQExQvbRt9oNARskH7yQMhEAavl3aBBKEQBvnxhHxH4RA7oZ9F28yhEDwMcyXCkqEQHpPSUr/aIRAHREJav5whEArNXfJyXeEQIdoAXD4eIRAoqACqXl6hEDg/2CuD32EQNxIjTO8f4RATHox2VuBhED0SV3icIKEQGC4KrEdhYRAv8gchMqHhEAIYJL4eIqEQKB6c0+8n4RAOJZ4JXGihEC0EbvFHaWEQDrm7T7Lp4RAYL504HeqhEDoTnEF5q2EQMo4a81TsoRAPOPYfla2hEAGm42jGM2EQI7menPHz4RAEOQVI3LShECuoEb8admEQBJ/fiR23oRAYk1lGmrhhEC66c7XYumEQNvH1Mo18YRAWghVOWLxhEBWbxZlvveEQIbt7mE4+YRAl4d+uVr5hEAGiL8SbPqEQIQcvOMa/YRAOpejI+AGhUBOj+739xmFQC3GCoH6HYVAsHhyFfUhhUDihUzD9SWFQATPyxSQJoVApkNzIpYqhUBkJ+1GODKFQNiJvToBUoVA3Nhn3wNWhUCkk1P7/VmFQGBRSDCgYYVAsikK+Z9phUCF8vJLmHGFQB74ybGzc4VAtprgXph5hUCmH4TokIGFQEZnk/FHpoVAgr0nf6FWhkDFIDsipFqGQJPH6H8muYZAidfFxG4Kh0AOz+CpTxKHQOSy1RSRKYdAJ5zz5ZAxh0AYOdqXiDmHQE7v7S5cQYdA7yXs4IpBh0Cm7R8wfX6HQGxmycWAgodAttQ8wIKGh0A9UhHOx7GHQIDLZhJls4dA0/ybVci5h0DeWIbsk7qHQMt6pAGXvodAvh+xNcDBh0BGUUrzmsKHQCFihpDAyYdA4Wi9K3IGiEDsWms4cgqIQAW27dtcPohAN9NLw2FCiEDdXGh6x6uIQMpwLdLOs4hAgjPPuDG+iECdqzEKNMKIQIy9C5qW8ohA7DI+aZr2iEDj500OnPqIQDjW2Aya/ohA + NrgMGZxjYkBcG3g88iJnQAoahmk8YnBAcRTa8R7Cc0B+v0ZZLGN4QOW5muEOw3tAIGNyFulJgEDqO02fvnmBQOeOGCZVUoNA - + - j/uhRFzRiUVCReBE/1g4R6vKkUVjIJNEvlZpRihopESKmP5E+fxbRFz2EEfCcZpErNi1RIyoAkWaSSFFIiiMROnDhEWdq2ZFtGeYROruZURT54FFKC1QRHqiqESlOexEy8anRCwtnEQcgm5E5tGpRFJBMEUQjRxHKI+fRPt/WkZ2A45F9lXqROqdqkRyK9JGd5mvRPqwnUR8ksREKSFXRGZpmEUmd/tEqz5yRPwCFUUuTFlEb/mZRAhcXERnNchEH8ycRLdGw0SJE5xFj3ivRMv+A0a+vKZEwzPyRCKxR0X7TLhEhEeARJSfFEXwMF9HxmeTROeIqEQFQJJErG6SRv4NfEWbNQZF0GInRff8MUUWs/NEKtLsRulk50QRba1EMxTsRFMGk0T6GfBEaNJJRbXZY0R6AkRHmrKYRH9rAEXubS9GXb+3RZXZxkXddgBHe3b3REd/T0SyDnREKpaqRBsAn0SQAkhFGmr3RdDnFEUasb9E/sleRJOojUXIvN9E+fqsRLmHKUX8cHtETaCJROnB2ETldqJF3lqNRPbBtUT+3cBFqcqmRF840UQiA7pEPsMSRbmtP0aXNVRGDBfJRPOPpkVJUcFESYprRHI7JkXop3FEUbCjRLORj0QvtsxEEJ4BRe8oukSz6MpEYcZxRKbzhUT0iRVFzq2fR/MXDUe5ea1FKcy3RYngAEZmE1tEUFcERZ6d4UQcuZtF1v2CRGPiJkdYdmRFwrPfRApa30Slb91ExJZKRXGowUUG6cNGJnaYRdSBg0SWmmNFxbpTRTOKqERTaJ5EL86pRLQRoERBmrZEB4LqROWFtURmmtNE3DCIRgOUXETHtMlFSefzRFrgokRXXNtE+EPdROJST0QveZNESWRORDTtAEUw/XpEP8WHRLvu4UQwxd1E7yARRbTPiUTE54RE7sChRCvfjUQAEKBFqVePRP+kx0R3fitGEoaBRLeesUTeKeBEYQ8QRRuaGEYcDwpFZaKaReXo90RnOIJEczugRI7Vk0QMsY5EcsmRROYQyURyVbREO827RDYtEkVcxr1EGmSBRAHQM0V9QTZG3PoYRU6rfEV36QdGTsRLRafXiURLzqNEYqKtRIKFZEQKHHpEHAmQRLj9XUSj+XhE0o69RBR9H0UAIMFESrK0RIQvl0RtpsBEyW2CRfdXU0YzLGhFKR2hRDnqDEac2q1EnByMRAoLWUXd0AFGeNzpRWb1zEbE1iFFWTyuRKQAVkWzc3tFjUWJRbVxj0RZmrVEXs9RRb/1c0S3yXZGrbXBRCTwb0U8+XhEYMTiREDhhUTEKh9FJ5JCRWcUJkXw/pRFT9y2RJjClkT69CxFq32DRAo53kTLcR9FvViGRvebVEVHkuVHBwHeR840kEQAop9GrCRDRAdfcEQHP3VG+by3RmuQiUXVdzpGeB1gREvXqEQPOphEGSf9RLYcfkQ4dFxFiCrVRUrzcERbHldFYZauRCZWwEQpZ5hEQ1OMRIVqQ0cCVFBE72JpRtAMPEVfVXJE5dXURKWHtkRZhrJGJI34RJNjKUYk+vBE/bD3RC8zqUSKgcVETnn9RL6+c0QzbSNFK+5sRDdkSkbB2nlEQS9dRRORFkVqFQFJzYVLRcgKGkbSGYpEQkyDRVQ6i0QhGrFHa2AjRbL1kkRfIKhEdQDRRA+KIkVbAgxFd+OdRYpj+kQJM2hFkeJ1RV87OUk2u4xFty6aRc/BhkSGE5ZEJoiaRNrKREXfXURI5gWmRI1ALUVHmb9FTpF5RilC3URS6UlEPz58RF3M30Zfc/RHadMaR95qr0RYGqlEKv2nRVAy+UVeJrRE+HZGReuxRUXWQf1FrnqyRN4VjEQRFqZG1UMERgxBV0W/KRRFj07URGIqHkWZBIxEyviARHGgtEWUC45EIsioRByfh0UmNYdEGEyCRMjwj0Ux+65EThjLREzZUUVTZ3ZETArORTg9w0S1cb1EQN23RB7oukReAqlFbw/PR/KQzkb4t41E9WI3RWQLg0Rzf2xES3a7RC+9kkXlVYVEa1GmRMoqkUVXE19FNH7BRO9Rh0S7301Fbp02RnBvFUawg5RFhn/NRDaFq0Q17JtEFLsrRiPzl0TvjaNEt83vRVMGK0U9mZBFqcZ1RG2RB0ZxLyVGheqKRT9uyUTEsxxF9azZRHnEt0Re14VE1215ROUiHEV7JhFH6Ei8RhxSF0XGOzpFVQN/ReITYkSYlpdEOtDBRIZGmkXEEpFEoIOORtDJ2ERjCzpGlOXXRD+9lUinQZ5FULI8Rcezb0f5HINEz3HURbm4oEQfJZhFR50XRfcr00Vso7lGdm+yRME/LkYI2I9EuTBtREQp/0Q4NUNFvqdlRYAHpER/gARF9+VERQoa9kQXo1ZEtrKyRVE2+UTjM2hETnzHRFwjyURfs7JFXaufRYwS1kdMh8xFxH3HRV/93USBgtpFJ66CRNvywERybt9GmiSsRWOdJEUKFaZGL2DWRMxlcUT5JY1ElwN7RdL7sEVYnA1F6q9rRDsRrETN3nRFMrYDRf8+8EQ7AQRGtcaGREsCKkXoi51EP0qOROxEFEUn+KVEWK8FRWIMnER+lUJFthATRQp9o0VGHwJFQjYbRq8pokQ907xF/taxRGASqERlwFREV5ZgRDrXz0czQy1HwFFURISfIUYqWJFEabBhRCpKFUXr8IlEjQjDRfq9x0WBN/lFrrSRRZAQWEVCNrREpPgDRc2yGUUqTY5EkcQRRWawYkQLY5hFZEnTRCuGM0ZjNadEyBfIRE5cF0V9qrNFFL93RS6bfERfABdFLnpkReulXEQfN/ZEygEaR/HxiUZPizlFHWm1RBA5l0QadJlETDF+RNCLYkROxGtE+eBwRHH77UT5TSBFP7V4RkiUmET4VLBFOBtbREWpc0TjGghFTowHRcU7dERc1TJFifODRP/R90XvG15EdRZQRPhWb0RC8cZEhOy/RCskhkSGfMhET/mJRMR8xURMecZEMyAoRQ4Kp0R0ZctE3X3XRHjxVUSbnIpEte5SRkMglURmwsFEj1lARvNsr0VUrYtImVyWRJG1YUSpWXRE2jsdRfKoBEg88r1E58x5RA8j90R/hIxHyIaRRf38Y0bOtSxF/DSpReztvUQ4n/5EtNzCRPZYb0Q9abVEQGnBRJ0QSkX86GVFGYNURtE9okX8ZoBET1JGRR48bkXgCfREOpG6RAhTiUbqwmZEBYNGRevdWUTN+A9FDnUURWKgY0Q5zKtEohCDRHitakTo16dEu84+RYs7wEU6rChFLpzkRffbg0RGW0VE8WFVRfn/C0XVwmtEvJ1+RMcAN0XqUjNF1MXERcnDi0RUNXNENpfCRDqL+kQvoSNH3XZkRQGFlUZ5helEYOUZRUCBl0VgX1pEsiEARqdIkkXUodpEoCDDRBkdQUZh+JRF9Q9ERdPiiUQ0Dm5EbturRD5AWEQeiOlEOijERMPfZEROXwJGtotPRUDNN0X7hJVECotNRLij6UQ/IW9EDb6TROh6jkREzrFE6Sb7R77kb0fTyhBH9rdKRcYUokUiWgxGBVfRREEkgEVy9BFFfXl4RCRilEXSulVFnd6ARHrpCUiJNXpHzjoeRywsL0V2GAZGDQcaRcFFh0X/+4JF3leMRE9MtUSrAJNE82vaREZVskTnxpBHJ2glR+siMUZ0gRhFrddhRDbupUTuBthE4gfbRKFfn0S90M1FrUYORRQaIkXK6upECvYDRdjevEQ1+3NERoOvREQ7zEYrHMFGi81KRnIGc0VZxF9Eg6a0RvOCt0aOtjxGL0AtRUZGrkTICAdFoo8IRdQ5oUR36ZBE3tSdRFWjCUclpCtFVk+FRm6POEaY7ZRFsSByRYxyiUR7HIdENAyRRE6E8kRrPZVEfle8RNzgw0Z2sz1GG0NXRbcUwEQooQ9FyLB2RIQp/USv5ZtFQlhURbkYpkSBlxtHG9NeRqwyJUbxk4tEz8CZRQ0l0UThXqlExuOPRa0EMUWeN41ED6Z9RCH0f0TxyjxGg8zgRZQQekVGHaNEkOy1RKfDW0YwtTtGfECLRd1o7kVIovZE9XWQRTAbxEU0KSZFBNlzRaiwu0RyELZEgtESRQ0dBEWb3YZEhaFyRK2qAkYfe01FQbbtRP6e3kRVS/JGiMKSRlJX90WAlU5F + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - wzrkoHjAckDEzvAcDMFyQGRLH/ZuwXJAbi8FME/CckApt5WMp8JyQH7ZOOUQw3JAsIfhczvDckC8ngxexcRyQJCKxT4ByHJAkqKmH1zNckC51XIeetFyQCsMbp1D0nJA+kQMh7DSckDGHc+sOtNyQIaffeR203JAnYX9CWHUckA8ErXozN9yQKFY/Ey34HJA1pLDySnickCkj/PfUOJyQIglVvGP4nJA7RYtOiTjckCC21W+yfFyQOzZDqF88nJA+dAxvLXzckBw/Nzun/RyQPbIr8rD/3JAJmHXL2cAc0Dg7NOB+gBzQDhPTUqOAXNAKFJYGtACc0BosfQR+wNzQBbXT+0jBXNArjxmNwwSc0AwkOl+vBJzQHjVnzf5E3NAelgC+ksUc0DhCLZU9RdzQMx+4Hp5H3NAm0PxrqIgc0BBbuxXOSFzQPgkt6jkIXNAmJxrdsgic0CG95VEzyRzQMpvlBlIMXNAMwakBCEyc0AYxNy2zjJzQPV5IS7WM3NAWjiHjPgzc0AuK3FRODRzQGUP44y2P3NAjlogw0JAc0CWhWsy40BzQEyuHpJ5QXNAkeUvtnpEc0ASeApzEVJzQGhbIxoOU3NAPGxeHkFTc0DupcIIo1NzQOYeP4eGVHNAspmVdYpgc0B28xf7ImJzQMYcLUJmYnNAXpaWIvtic0DK+ZdSPmNzQOtVagAsbXNAEh7SbGdyc0BP9U7PhXJzQPKFXgW6cnNAuu4KpLh0c0DQNYBETHVzQI72y5XOd3NAvGE2C+J3c0BqN8zZJ31zQPuqNyN5gHNAd8XGUqSAc0CGF7aODoFzQEb2Gl1egnNAou1r08iCc0CSrPK2C4RzQIpMgW2xj3NANIS65ESQc0BeNlaKiJBzQJT5ozlNknNAEAGiPWGUc0DcIjp595RzQKkCNBW4oHNAakjAOVuic0AkZRIakaJzQE+Jr4TnonNAyhHsIHujc0CBnAAgBqVzQNoJENZ3pXNA0NqOZluyc0AAfT1QiLNzQHCwtwGns3NAfqhhcA20c0Bk3HnlZMBzQJuB2G/2wHNAPN7DDdDCc0DC5Y6SJsNzQOzpl6qyw3NAqJIZYdnRc0DTothT9dNzQJpW0Jvj1HNABTA8Wznhc0DwoC/GY+FzQPi8SgkO43NAwLO610bxc0AX/H0sN/RzQKrFZsqM9HNAqFwLS0P9c0AIEmjOTQB0QDI2Ic3kAHRAMF3PI3kBdEC8W7FzJAJ0QERE6RmeAnRAYlg2aLsCdEBbzncY+gd0QMKFE5l2EXRALkJEwYkRdED8oFDWTRN0QKiygvh2FHRA/hJNh0wgdEA/Vdh2tyF0QMJ+z5NTMHRAnkbbSVozdEA3Y8dj4zd0QITsvCM7PXRAScT6CqdCdECwA/IkPEN0QCBxDQ73VHRABRVFOItVdECnV/xO3Fd0QCgVTkY2XXRAiuMjSrdgdED6l6BoCGJ0QNw5bmWPYnRAW3kmyrljdEC86B8LDGR0QKjtuW5MZHRAMpd2ySFwdECe0/pvQXF0QAgHJYLPcXRAPMwh8DlzdECJTcMgo3R0QGC3vuw3dXRAPb1xgf55dED7fx5/RIB0QCTuGEj4gHRAfOMcxU6BdEBOitdakoJ0QBu5J94mg3RARLBx8UKDdEB9yf3AFZB0QPhMkEZskHRAvLCrD1qRdEBKMaE/NJN0QFm0SLJQk3RATztAX+2fdEDJgNlu0KB0QPsIHOG3onRAOy+Cqg6jdEDs309lCrB0QGj9sYnDsHRAbM9PnUyydEBwLqKWb7J0QGTGN1eRs3RAsu6y2CK1dEBv8SKwybd0QBrEgo8hvXRAzZZfUuPAdEBmFfg/ecF0QDI/wGS3xHRA4N2Qu/3OdEDCvrq+4NN0QKCD8Y521HRA6cHkJM3UdEBO0Rrot+F0QE580RBR5XRApKksqkzodEBprx2xB/N0QIjfxXCN83RAWCBP5Hr0dEDUdLNnowB1QPCPGm3FAHVA6VsLqWQBdUDq1yWJXQJ1QCYWlECmAnVAVNmCjpcQdUCW6vFibBJ1QOBtv0OPE3VAmOsmdyUUdUB37vBsTyJ1QPiHcOGcInVAbNeemKoydUCoMaPtzDV1QLKSxzP5N3VAipHd/1M9dUAsvABttUF1QAz8TRzfT3VAHCeic4FRdUBiRKV+OGF1QNxTkvPRYnVAYkyIR3VydUD693hajXR1QDbBIz94gXVAaIzK/62BdUDuACIgE4N1QHLFNVimg3VAxuMIVZuEdUAyZBqTjJB1QC3Wj/27kXVA5PEb+guTdUBIJBKxs5N1QOQa4vJjlXVAyk4+/pOgdUCCLw5buKF1QOC99T08uHVA0y8kuZO9dUDaiExI+cF1QG6IRHlHzXVA19juzM3TdUDOFLZj4991QG0ASdED4nVAmr2hM63jdUB43W+vtet1QHUCF1RN7XVA7HCmu6bydUAOzjjYZPN1QD70Q0bw93VA/xAhYAP4dUCUeZMqSAJ2QHZvYlOhAnZA1iX82c0DdkB+1y0kVhJ2QL5kOItNFHZA5Dn2agwWdkAo9Q1+iCJ2QEvfkISQJHZAMADvaEsrdkA4hOvTHzF2QALi6NeWMnZANXJkU1EzdkDcWk9cnzR2QA6falscQXZAilb0eZlCdkCiIe71x0J2QIpWPVZ6RHZAMtKq4PtOdkCZKsm4xlB2QFiHXD8RUXZAfkJDmc1UdkB6ozlQUWN2QFir/FeOY3ZATqDPI9tkdkC+1z23kXJ2QCuziwDSf3ZAHoMa7qGCdkBRupWUkIN2QFZDQI8pk3ZA4o2V1xGhdkBW+ME8trB2QAj5u8bCsnZA7FcRwgy0dkAAYB9P0bh2QACe3FTAwHZAJEum2hrEdkC6xGcaz852QLCrp/Z90HZABBXkFJXQdkCUBEEI8+F2QM2riXQl83ZAkL0wvpDzdkA2XqOINAJ3QNns5915BHdA9EzKJAESd0C+XrLKDyJ3QADfAgV0IndAXozy+bokd0CSLALnWTB3QFCDtUClM3dASrTeNQ01d0DslRrjJD53QCZbmyadQXdA/rABcLJDd0CvATRUG0V3QAHaQylKUXdA0S1u+pJRd0DTaPTsKVN3QMJVJgQpVXdAYuGlntVad0BcmXe0kGF3QDf7zzWeYXdAo8mnADtld0CWrky2J293QLEtLfSLcXdAZuMC0Z9yd0CDwL82+Hd3QKrbVE5UfXdA6emuOkyBd0DCnBZPeoJ3QJc/8JsJkndAzM03rU2Ud0AqXnKilLR3QJT3xxFyu3dAx17Ga3nDd0D4zMC+fMt3QMbc6vAp43dALW51Qz7jd0DdO+ykT/J3QFSV6DFH/XdAzOZVO6kBeEAMbBS2oAJ4QP4Shav8B3hARPdIbMcIeECEVPv7Pg14QLPi83ohDnhAYq0k3VATeEAmPh045iF4QDY1gv5uInhAbisNamc7eEDIzqLzCkJ4QLbnbC1uQ3hA0tNp0hBEeEA+k+mFeUV4QJBPNbJ2S3hAyjZCkstReEBdDvyFlFJ4QMQ8cEgfVHhAgA3YA4lVeECoaeRf7Fd4QBTgJEj5YHhAXHOxuLZheEDYC78O3WF4QISmPIe9YnhAOlUs6/FieEDORXS3L2R4QEJOf6lodHhAJ4FEm4t0eEAgBvGHx3R4QBAm+YelgXhALLNO3pmEeEAE5qeZl5F4QC5hUUBZk3hAblDbjaeUeEDKt9WGs6R4QP/EB0Wms3hA+PCy59OzeECcQ4JL3Lt4QNf/61bLwHhAhh0RJ7LDeECyLKLd4cN4QKzqJQfoy3hAuoaNWrjUeED+tZ3WwuR4QKe3IQ4B9HhATP4Nw4v1eED01wc0mwV5QJcSIlS8I3lAO2SLybIoeUBR+8V+DC55QER+PetgM3lAxumLeckzeUAZCn7H4zh5QN1jEkYuO3lAAqgo+4pCeUAcS8uX+kN5QEuT/BnNVHlAqu35aANzeUCICTXLP3N5QLZx7Jbui3lAdF8WDHCNeUCeq5tVypJ5QDOp9HzvknlApN1HOzuieUB829/tKqN5QDah27jBsnlAiGiO/cvCeUDjw9LPQtR5QNB5PcrL1XlA3najqU/keUAYeiMIDvR5QIwVNMRAMnpAOD9lcww1ekDeoHkHTkJ6QExMcHkaRXpAnlpsEdhTekB+QauLKFV6QNCEOrsfXHpAprAwaDVtekDGY0V4jHJ6QOgUrTZue3pAEM5mnKGUekCCRHmbDLZ6QN8H40ksw3pAQgaH1w3IekAsFALyZ816QPZqnadAznpAgpbzsQvYekBEjGSdZeF6QIqC4Ij343pAnix8tTvkekDTl/AV/+t6QOYNfpw17npA4AAT9RbxekABG/2XW/F6QIvDJupK83pAsi2/tAP0ekBwh94tSvR6QIbgSlul+HpAWa3uf+z9ekAgmbMRfAR7QIIwJHcpDntAznhwv8QSe0BJE7kBTRV7QFQkIkAdGHtAaoqhu1ole0B4mnHDHS57QARi0D+iUntA1ldw6ZNTe0Bl9pIV6ZB7QPRQmH4jlXtAOoL3JM+de0CyrIF/J6N7QLKBgUIupXtABSZeB3Coe0B6CRS3iKh7QDoV66vFrXtA8a7SPd6te0D0WdGwJbN7QH2Kzkl5xntAWVwwcmbTe0BSR+ellvF7QDw1++sa83tAxOtb64z1e0DYWqadlAF8QBgPdp3ZAXxA6OvJZPUBfEBE9E2OZgR8QFqJt6KWBXxAT13it4cRfEBdCy170hF8QNVOs7d0FHxAfav7o+cbfECx1y3F7iN8QC7UJzx6JHxARntuheYtfEDIREYOPTN8QKB1SoWHNHxA9ibAlM1BfECEGE/BUUh8QBqdZWJfTXxApWywb6tNfEBCoIYC71J8QAvVFxIJU3xAYjbxD69TfEC8fRqmTlh8QB5fDZC9Y3xAYEn3Ei5xfECdKYb+KHR8QKQeofDUenxACGqZNwCCfEC8AoV32oJ8QB/gJvf2gnxALIgIL1qZfECmFZiCoZ58QFzycVL0o3xAaHLfpwqkfEDg9tNqv7J8QMadK7Bp2HxAWG9l2sDdfEDMgYCJV+J8QHi4N8kQ43xAcr4a+xHkfEBKZtbxpuR8QJDYg+Rp6HxAnnnC6VrrfECIvfAdxe18QPlv7lQW8nxAdn7/B1XyfEBk1MmeC/N8QFeW+OIf9HxAqljWzl77fEBofur4AQJ9QANvjjFLAn1AMEaybmUDfUCpN0coUAR9QLNArwNTC31AipWDlEYSfUDGh4xprxt9QMCM5+9AHH1AqNtJHUAifUC8sjlttSN9QNfLdaSgMX1ALLw7/VE4fUDnbRYbRVN9QIZfvcCVjX1Akx5zG2mSfUBU/1gT8JJ9QKxH0TE9mH1AVOgoKZKdfUCf00tTMqR9QJ651bGfv31Apr1RnC7DfUBCCJLl6sR9QJBHXhQ1zn1A6KGJzq3PfUCCOAbrh9N9QM2JKF3R831AZvofF431fUBK7Z4A1/t9QBwThyAQ/31AkllqdXkEfkC61c85fwx+QJCDFaDuHX5AKklsDEkjfkBUi0PVkih+QDJBENKpKH5A8mWI0j0vfkDgaK7djVV+QMNzq2u7WH5A6DBe65llfkBWosq9t3t+QHzQ/sy9g35AHmqiB8SLfkBCcdhv3pB+QO8qdu7Pk35ApULy3zOrfkDuy1vFjbB+QPUU+D2Tsn5ALhYI06zHfkDIiyQSdMh+QEKMwSixy35A9ljAwczNfkCAeeowtc9+QOrhguEa035AP2lZSB8Af0DElnFdlwN/QA1YetqWC39AtTC8irdxf0DyPPSxsoF/QGgluFdWgn9ApnVRcGKRf0DyW6w1m5N/QE5SKuNcoX9AAgM0PkOjf0CIXeRQnKh/QHJviib2rX9AUNn4Olaxf0AeNdEhvsR/QE5Uburky39AHzBJDu3Tf0B8i7BAnPN/QOpjSO+S+39AtQoEdcwBgEBTpJ6M0AWAQNwy2ArKCYBAK1sbJogRgECNYGnlgR2AQGiGfy0SIIBA1B/BheopgEClpkxI9zCAQECWIl5CMoBAx8tm8+s3gEB/yUu/9kiAQAjMQSdiSYBAtLUKROZQgEBaciAEE1GAQNwM9sYNWYBA51GpdUVagEC2jAiR8G2AQPRapVoob4BA4Mv3E1t1gEAy9jqQ7HaAQHRKpoApf4BAZNW4vvyKgEB7skCv7Y6AQFrWx2kej4BAdCemVUiTgEDSqtSoIJeAQFy0h+8BooBAqP4P66+kgECJfLFzwqSAQIBCmI+GqYBA6jSNV8GsgEBSrfFWE6+AQLvAxrUmsYBAVN/CZNmxgEDMCLSHfrKAQOy/mnGcsoBAjLVeGw20gEBMUjkTBrqAQIiEKg6zvIBAGCvrQvG+gEAS40k/X7+AQIztiMj4v4BABKndcWnAgEAi4waTUsGAQNyBqyQKwoBAG9Ni4/fGgEAkc5Po/8eAQHDrMnEgyIBA0KZ6aVPJgECMRg3dB8+AQLTgbA8s0YBAPM9tb0zRgED8xlN+FtiAQCAkMDRK2YBAqp6ngB7cgEAu5YYkROGAQJiQSR9W4YBAAn21+u7mgEC22exf9uiAQFBcWrk97oBA+iT/+knvgEBHToJR4/mAQNHfuW9n+oBA6/CbahL8gEC23eU/a/6AQBUfqao//4BAVC/IvD8HgUDa7Gk78w6BQAOpY6M9D4FADiNs6u4ZgUCY8WjIlxqBQGpXpQnjHIFAgPQaVjQfgUAI9qdosR+BQP7VUpxTIoFAVsvP3zQngUClAise7i2BQHwY/MzvLoFASjrIWDEvgUCQCviz5i+BQIwEzXG8MYFAknOiaik/gUDatHRSKkiBQK6GERDmSYFAmOp/VAFKgUAyxFBmWF+BQDilqXaIYIFAJhCoisB0gUB+euLFYX+BQOQGgmlnioFAL2J+HQaNgUAmK6djVY+BQK1uNlmyj4FA4BnVaO+RgUCaK110EJKBQBqfpA5ikoFAZba/thSWgUDEl+XCVJeBQErU8NoXmoFABKCPoVKfgUBExgF156GBQIvdo4VtqIFAuDdQdZiugUAxaukpSq+BQHCbZ+1rsIFAdqa/LZmygUBdrdfER7eBQOu2cTpxyIFAhkG/YOTJgUBQYwOcftOBQNAvSIsR4oFAJCtz0xfmgUByXYmHp+mBQLiE2vLE6YFAL9z8hDXtgUDzTFWNqu2BQGDZDsZD7oFAFB25Za/xgUDiQ5lDpfWBQHYRoMOs+YFAJKWdUez5gUDwbwgM0vqBQKLvgKTv/YFAUtOeyfYBgkCsBKbI/wiCQBJCfDwAEYJAiYu3m9gYgkCBRV9V1yCCQID+wbzSKIJAboX8VqEpgkAEDTC9pTCCQL61P2NROIJArfW5xl46gkDubjOPYT6CQJ4ZtTxOQYJAQs4+eWVDgkC+7ZDSJkSCQJ9vMTq9RIJAnnGOJthRgkBG/BIG21WCQML5aXQiWIJAauxvBtJagkAL9fDmFV6CQECWiNWpZ4JALJulVdVqgkBY0zBPcGyCQFil/6jZcoJAzonnmjV1gkDGjuLM/3WCQEhImsqTe4JAh9I0mfp+gkBAxOB0l4CCQPTu+O8wgoJAJlzn+MyDgkCsgJFoZIWCQHIs101DiYJArjaRgkORgkDtJ9xePJmCQEXnOwtVmYJAVCR98A6hgkCQ09ZxO6GCQD4i0O3zoYJAzVtZogypgkBw0lCnM6mCQMddOfAEsYJAyjZi/Ga4gkDgKp5YftqCQG9yWSyB3oJABfB/VjH1gkACkHX0r/mCQCe+Ig8N+oJAafTkonkRg0CQv8zAeRmDQDOh8RpyIYNANDBW54ohg0D+YwntECKDQMgH15xxKYNAmBR1zsItg0DCgGHuRjCDQKG2KQZrMYNAkuNiTsMxg0BSCkbXqjaDQNh7obnbQYNAoLSaZEVRg0BQ9NeBMnKDQOS6WCq0gINAUpPD1uOBg0B+rYz8ZeqDQAXL1Nho7oNAvnSiA23yg0B0sSWQcPaDQEWSJ/yV+INAnOOUj2X6g0CeoqfH8B+EQNR/80OiIoRAYm2Y5XIyhECjxcXUdDaEQOoKpzv/aIRAuAMPdv9whEDC2BNKH3OEQBanGETKd4RAVgaTEPh4hEAZiiePdnqEQB4FMHskfYRAmiTQr8iAhEDvKtIXcYKEQH1P7K4dhYRAmvNouMqHhEAaPPA6X4mEQCdEhJd3ioRAxkf/+hKLhEBwk8aSvJ+EQDXbqTlxooRA0Oa8Zh6lhEAkOYtTy6eEQA6J2ux3qoRAPmrufCKthEBaKqF05a2EQLosaeHosYRAJkXbY1SyhECVfRoZWbaEQFhXQ41buoRAym0hy8bPhECg5I+ActKEQEgcKi5q2YRALyJhtHTehEBibUIaauGEQByP2GB34oRAbNlxqmLphEBm0XnLNfGEQBw2s7xj8YRAvtnV3Lz3hEA6bVFRNvmEQJun8EktAYVAIitG4d0GhUChNU88+BmFQKKKnZf6HYVAiCC62fEhhUDZsZqH+iWFQIDri6iQJoVAA8B6DJQqhUCsMjs/ODKFQMaeNXUBUoVAs5pCAwVWhUDqSJ+WCFqFQGKcr3ygYYVAEfouF6BphUCQQ9Wkl3GFQL4pZce0c4VASY6QkZh5hUDgndA+fImFQGbQiw5HpoVAdrIaHubRhUDUp/MpoVaGQPyN3H2lWoZA0DB2B5NohkAHtAxslGqGQJtLRpwmuYZAuvR1HSfBhkDpGwqjfxKHQA6bi5t+FodAyILn9Lkeh0Aau8sqvyKHQJY1sEKRKYdAujb0FpIxh0AC2Ia8iDmHQJCI6RGLQYdAEirKNX1+h0DI3MBCgIKHQLBA1uuChodAvMTn6Maxh0AMIHKAY7OHQKrw1RvJuYdAMPdiu5S6h0Aa1sUJa7uHQAj/TLGXvodAVKY8e77Bh0AUTudEmcKHQEz70ibAyYdALuFc1XEGiEA0j8z5dAqIQJoi3y9XKohA9FwKu1s+iEAO7gBV/ZGIQNs3gB3Hq4hA9BPua86ziEAiZQJzML6IQAuioF40wohARIwuADvKiEBgvCSp0eeIQG8h6eSW8ohA+okNmJr2iEDTM4ItnvqIQKrLt+ee/ohA + KBZXds7jZUCJy7y2HKVqQBTpB48/A3JA525gjBHDckA28gnAwnN3QK7J9MUp9HhA5ADOEmPSgEA6ksT/oBKBQOQvvDwPW4RABJqNsiIrhkDkXqpmu+OHQDGgMliEU4lAq4pQdifsikAxzyCCMNyMQMnbDGF/fI5AGH8HVm4ykEBkhX3FlQKRQC8C2iifxpFAFQdlOr8Ok0ATGK0w1UqTQPkcOEL1kpRAxJmUpf5WlUAQoAoVJieWQESxi7pUG5dAkLcBKnzrl0DT2emvgOOYQBDP+D7Sr5lAt++8t7ZnmkAnUssRA0SbQDcHtMwMLJxADNYv60PQnUC3HqvhYvCdQF92yvxEDqBATtGH3VE+oEC4Af0DaNSgQHISqENi7KBA3EIdaniCoUAyniNOjc6hQDXOT3GbSKJA - + - oo5zRBzYl0SSHK5FYzgSRU0iVUf5I2tERpJuRfMUpEQaAlRG2RRgRRQCh0SDwRlHGulQRACvbkT0KKNEKDWVRCUS0kQ6CMpEmVpMRDJDf0V8t35FQEqHRCnsM0V4+W9E0sCWRF3lcURMCd5EIhWMRCq8tER6dY5EWNFCRfUb80Z+poxENBRYRKIYDUZaialFoqeARGOgykREJfhEUbDSRIi4tEYDK/ZEUCbTRONkdkV4VolEa2CZRKadH0Uc54NE1mWURDG2lUTYi6hEcod+RNloZ0QLpF1FGkf1RTYIVUTF7JFEDB+dRKf1pEWqLcJEmjRnRCp8TESujVxEJRZQRDC4g0Q6YXxHB6DuRDmYkUaMqNBF/gyERAeVAkVvQelE/83LRC0O2UQNrMtG4QuMRFCgBkWACOJEDRakRLQESkRFsbtEwPdGRanNz0QcgkBHGGcHRbqtTkacuLVFNtzIRSptaUTn1G5EnbJnRh2H10Q/iWFEjjeiRMvvhETbwttFEb4+Rf6wjEQ3udtEj3JnRamXwkTOU9lEKMsWRU8fo0QLNoxFMLquRWZzjETNKWdETa+gRDAGykSP6pdEPrduRuA2i0RiUZpE+tFJRnQnZkSCFrJFqDwVRTJ1jkRjLGZEZV2hRA1kbUVeCKVEeFeVRPA5n0QUx6NELn6WRHVg00THEIVExP+sRIyVWURmsapEgJGVRAhji0fZv+tGuhiGRZYUSkWB+P5FaH97RG6AUUQ5+odEWImYRf75Okds3Y5E0v3NRYS/uUS56IFEGg7GRPl7zESM6x9F9A3LRZoreES5OBlHKn5RRDCetEUle7JEu6ZjRI/RcUWahDdFIzibRISkmkQzP4ZEvIHlRIARn0Qp1wBFqOOQRITVkkal711ExGStRLK89kWQ6fJEIVdiRMZthkSsu49EFt7tRFcJrkRQdctEJ8aPRLRnIUW3bY1ELXCFRCllvkSn4NtFLlp5RJpnhkSLSGREBv/7RGC0TkZwJ55ElF5dRJdBskQFKWhEY7TpRHBAh0RAbwdGIP6MRPxtPkUQvddFdUsORZ2WTkThoYdEAbiIRIpLxEQxGStFkdh/RCL8kkaYEQxFCVChRT/2gUTzxPdFDBh0RdMYfES4IlVEVFDCRATfaESErWNEktmZRJyOn0TEe3xE1VitRKPVpES5yNlEvlaURMtVc0SYBJdEBBseReVsrESESy5GwQEERqtMQ0RO1JpEzPfxROW29kU94lVEhHiWRNtIiUTYjyFFlFelRPPIn0UdjMVFp+ctRso5ukaa4ZZEKhEXRckKo0R0sqNFcBTVRPfGHkWQdk1FSsmNRLzsk0QRyCtFCZDNRv8z6UTzb2JEDH+fRV34qEQS5bdECZZARE39S0UJdWBETm1TRC0RmUQGxLhEN6O+RT65f0TFHrtEtNGYRE1MWkXakDdEJPBAROa5jETeeYhEYIATRVnfo0Tpa1REQqlyRns/VUUBKoZEOzhMRBNBdETcinxHMVrxR1sSqUR+TstGKz8FRkZ1w0Zbia1FpkB2RsXPZkRf8NtEPvWMRJqW20R+Vb9EwUjFRHYUiEVbXFREGfEBRuwDb0UAdnlEl8dLRHSOy0T31a5EoD2fRDolQkRt7ZtHFs7MRo8fqUW+HZxECU2ZRJdtAEVL4bVGcbEBRQw/S0au+yhF7IECRf4QwkQ2TcVEdtFPRcPSjESCJmBFSCdfRvv+nUTcg15F9biNSAwVMEZm+WhEA+SQRRHcj0U8QTpHZVMfRaixaURCbtlEFKYrRdqcpUQQG0hEb9wgRToXJ0WI4XlFLGY7Sbt68UQjkVVFqFQ/SIoOVEWG975FtiiIRnPQfETeAB1HsXXiRw5rEketQd1EcNbaRaoOz0UNrn1E+3qZRfRupUQ6DmxFYTJjRXAAZEQ7S9JG4c8WRtzFo0Urk9REU1CIRfufDUW594FE4SiJRBY8kUUPsV1Fr5aJRGPm4US1fJNEzp0iRfJ3vURqEFVEQj9wRJqvZUR9iBdFEAJrROw71UWJQsxE6dHXRDn4gUTrwhZGO9OpRzojvESoL6FGjhRXRGLHL0UHzpBEtnSQRNvEZESMLr5EJb1nREXuo0UiemRE9fm/RWBgTEVjxwRF1mh2RHLhFkWqQUBGj5NNRjIBakXpzUxF8zX4ROU/uUTxAlRGT0WpRHSFDEXvZcJFW5qFRI6hnUUi9MtEHc61RaxMGUbacBtFbscGRTzoi0Q0gU1EWvWZRA8vikT+E79FRbpER5ehskbwSbhEpjQbReVnk0XlctJE61XnRAsQYEQ+2IlEuL5HRA2PjkV7WMBE4uFyRnq3gUSxvixG8MwhRYMpz0jPhJRFh1SMRNG3jUVUxKVHYkPnRW5+M0V/I71FiAzjRK2liETVOYNE3QSmRVQYmUZmw8FEpgpTRjgA90S4C2NFZan9RaFCR0WhXqVEyghkRIXqBEW5xARFcOEMRUaOjkSiiIZEzcanRbva7kSjJsNEL1nIRF5awUQ71uBF9wRNRaAxuEewzBFGZuzPRbQDQUUd+KRFbBtiRHOzIUUaPCFFyf65RrFDqESE6rBESW/9RQPMD0VLrZBGg5TJRH+GwUTiZY5EqC+CRcv2FUb0vS1Fx+62RB3xwUUvEaNErKIxRFjauEQA071FyIqHRCjOZEXdmp9Emc6oRCy0Z0QoTWZETnS+RPigiETY52VEIj13REFacURg+s5EBRX+RAoBokSYaFxE1rJ/RcMRPUXWU9BFnUPoRXsamkRnocZENFODRCW2jkXlXGtEYjxMRMGG4kcbQEVHfV9IRghBhUQ77aVEHk5rRECZWkQLHc1EYvrxRMp9EEb85oVFxl2BRX5YB0VSHqlEBhCIRFptJUVJAG1E7lSSRSYFQkUX/Z9EQopHRnDa+ESAH1lFPOO0Rd+CY0XfqgdFVfMaRQfhOEXtGhZF/in0RF8egkSCgAdHoXJ5RrGRa0VS+ZREU+RkRLZBtkTpv3NElSVIRAzGXETO8LFEnZxoRJ7qtET+kJ9EuzUFRRKmP0aE1ZVFwvtZRMYo/kQLQRFFGiCWRFp3VUS7ln9ETE3rRNC5aEThnOZF7uh7RAjMBUWknQpFz1vCRJGtx0QW5PJEem9gROwmS0X7QNREovBKRY/Zc0Sr8UxEsWlWRMYBdEaNH15GoupzRBvvt0WX3mlEQJR+RJaeYEhkFFBFy11kRAkemkSuWBdF08fMR9BgJUUYZshESWZpR9erhUQUYDZGrP+yRKe3QEWgc4VE/uNTRNIbqESic5hESR25RAAoXkRxXXJFektdRD+R2EQtPkdGq9FbRYgeTUQexn9FlQgMRZynakQY0G1E2omLRrpfaURrOpFEU6qZReI+T0QGR5FExIt8RA+R0ESKNr5EYRUbRdV+XURcDrFE5kOWRPpknESNg1ZElOZrRLD+j0S66dtE/VA4RaYI/EXHsRRF11HBRNUUC0ZOwNhEKb3zRdhUWUWoMbhE58+cRK92lkU+WBZFqy3wRF1420Xz5oNEvhaURIYlzETeGmVEFl6NRIQSsUSlBqJEPr2ORLII+EdnQ8tFdxRPRLW6h0e7oZZEDqxnRtfc10XHXudEwcI6Rvg9k0SzFsRFJzHWRH8GiESdUVFEUuwpRgtPYkWxGiVF9KXORFgcgETS21VEWdslRdqz+ESemkpEz2xSRNYLlkSDCWREhbDMRbyL6ERfq91EzPnIRN7wWkSYeqVEOmZ+RApsX0TuEapEoXLRRMkWfURJZ2BEi/EARQ190UVpA1pF9uDMREl8GUVuXNxHTwpaR5usAkd2MCpFkNvLRQIsDUYmqWNE0WwgRRy/TkUg05VEPvx2RMs5sEUrjC9FRxhDRNq+hURMyltEUBzIR+hAN0fpvbpGMuApRehOdURzaORFcyi/RPiTeEX1uOhEZld6RGvNPkQgF7VEshtuRBpQW0SS+VNERkNwRFIJc0dbT/JGWCQxRjkjMEWVEKNEWu2FRMTEZUQR4WVEfHR2RGnSjUSQC+ZFBJNFRcymiUSWmXFFwlDNRNSOMkWWktJEXqCTRFrefEaNeYZGn17uRaHqRkS0SlBF/N+KRJqAzkQgKBlHhzoAR6bVnEZPerBFCqC8RDsQCUXBCeZEhwhBRYuJikR2GHhEAFJsRZVagURaxhNH+xPqRBRGi0aVmoJE1yYZRopWfkWlZYJF2m+vROZFAUUAcKREKh6iRDglsEbtDDxG6HMWRU73rUTwRxBFxf8kRZKtx0QSc/hFfb9BRYcAu0SV+wFHCr1VRsORwEVKJMBEdCtMRbmickSnbGFEJamSRACZYkWd5EpFAWSgROSBqUQ3ahJFgjPPRAjwykTsNGVEoaIKRY1Md0RyKC9GWoDMRQleUkW3lCZF+ItCRgUhJEYYLJRF3McERkSGVUXJ6sFFOm0cRjogzEThaIhFXls0Rd7BJkXX9LpEVfw0RU+rP0XW96tEYEMlRWcTpURv/RBGlPRZRSJMPUU72QJF3ZqCRK37kERiIeVGaZGdRlUXC0Y9CUtF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 2MCyvnfAckCa0wLtDMFyQLpuQBJvwXJATTLJ2IrBckA9ByEFUsJyQBJiW2WnwnJAIjbiK+LCckDHpaekOsNyQLzy4kEByHJADj3YaFrNckB+GbGcQ9JyQDKZffO00nJApB0HwUrTckAVaXTEzd9yQPFOJ/O24HJAfF4jCVHickBuJd9vjuJyQNMuery743JA0sG1qMnxckDAs1Qat/NyQMrxskKj9HJAFK2s+8L/ckAv5KL5YwBzQABuBzn3AHNARKwyFUkBc0BzsrG2jQFzQB51VuM8AnNA+AJvfNECc0AtaID7+gNzQESXDR29EnNA7edwHvgTc0A6znN59hdzQNxxSMx8H3NAjrwXJDogc0BeSK1hoyBzQBzwviM5IXNADxuDreQhc0A2Y9/qzCJzQApAzYYOI3NAWGIGjQQkc0ADDjZfzyRzQKxNiOlFMXNAU/Wx2DQyc0A0MKf2YjJzQHlLzX3QMnNAYCningozc0AunsGMODRzQPQu58e5P3NAbCXghuFAc0CTjhjdd0FzQF5NVr8kQnNAbphHm7pCc0CCj3R0ekRzQDO+DI6ZUXNAVqOXvBBSc0BQTb7yQVNzQLhKrGukU3NAFidL63ZUc0DIRwwFi1RzQM5hH0uNYHNAhRc5Kjpjc0BWY6n6YWRzQFfjzu4rbXNAc+41x2lyc0BWVbEYhXJzQJ5m2Ee5cnNAs3Wk8rV0c0CJRP2HTHVzQBRKU0xtdnNAwv5t8853c0A04wt433dzQN7gTPQpfXNAkD+WBXmAc0DcZ06ApIBzQMIR1goNgXNA94f3+qSCc0AyP1B+x4JzQCxyeAKvj3NALqqCy0WQc0AIME2ShZBzQNaEbomQkXNAX6YwA/eRc0BsWklSTZJzQOK6TP8Mk3NA/ODqvNGTc0BoqBPuYZRzQMsnSYj3lHNAqNxby7igc0DojOEDWqJzQDECDqnnonNAEvu0gHqjc0Be1ZgABKVzQHbF8k4zsXNAYK/A54Cxc0DEeCSQiLNzQJD2JFyns3NA1oryngy0c0Dayaqxo7RzQIYMdxlkwHNAvkoz3fjAc0Be6rEn0cJzQPI4jtkmw3NAm7ug3GLDc0CBlspFusNzQMw7J0XY0XNADmEYSbvSc0BsVgeG49RzQIYmmQWj4HNANpuzajjhc0AX5vT4Y+FzQCbXQbKL4XNAEw40UA/jc0Cs1mU6fONzQBznAYw39HNAojU72EL9c0AgbdBO4wB0QGawZu54AXRAgAkdGKUBdEBGEp8dnQJ0QO5G60K6AnRANj0Aw+IDdED7YwFR9wd0QJ5MgtBADXRAEnmvlgoRdEAto4yIiRF0QCPmqx5NE3RAkmat6nYUdEBYLL/iSyB0QG6YNI+3IXRASFlUuFQwdEDJWYfdXjN0QBGiL13kN3RAhFrZf1JAdEBWX7qWp0J0QKuq0hwORHRA5meXLYtVdEBeTT4m3Fd0QOLx8tE1XXRAT8YcPrhgdEDo57msCGJ0QJu773mOYnRA6CoSIehndEBwbwSyIXB0QNTxgjhBcXRAIDHOtTlzdEDnMPETqXR0QMBYR3I3dXRAZnrevvx5dEBOiG0z94B0QProe1BPgXRA+PajsSaDdEBxvC3kFZB0QCm27BQ0k3RAmPdbilGTdECXzYml7590QPoHyHqioHRA7OQ85MygdEDMs6X8N6F0QLwxzxe5onRAbGMGrQ+jdEAWaNVzCrB0QITSh83EsHRAT2pJAG+ydEDYxVlPybd0QIDf53ghvXRARcym5lHAdECeGKT34cB0QGCTZgx4wXRAg+RLx+3BdEA0JjMxcMJ0QKAFdKQjxHRAChFxwLjEdEDxpWpL/s50QPwvcrpt0nRAMlcW4KfSdEDsdlm6O9N0QEaUnIjg03RAWD/+t87UdEDG77Mq+990QOzycgwh4XRAdXgbp7jhdEDAizT0TuV0QA6aoMan7XRAZl4RnI3zdEDO2BvPpAB1QGbcHnK+AHVA0Hwbss4AdUAiOgQhZQF1QNhNZfFcAnVAv+i30mkSdUCyolV6JBR1QJN3/CSdInVAkIVIb0YrdUCkIVG2rDJ1QPl1YLHLNXVA3Jrf6/c3dUBoQkIUUz11QG3qwabaRXVAtA7MUfJPdUC4e/p9TFR1QMwtZW54VXVAyLjrFPxfdUDKGaVLD2B1QFx+MMA4YXVAoXgP5PRhdUCMpb7Y0WJ1QEAzcBhoY3VA4N6X4XVydUDiqB5cjXR1QALn/Wp4gXVAWYmp5K2BdUCQ3SR/NIJ1QHCO64qmg3VAnuEw7pmEdUCFx+HTi5B1QMZ8wnALk3VA4mTjF22gdUA/HymmJKF1QEsGpAW5oXVAYp9sXM7AdUBwxlMA+MF1QF6QQP0I4nVAFBMbGKvjdUAYfvv1S+11QLXJ3rmm8nVAzOAj0+/3dUB5jTEHSAJ2QD7lCRCTAnZAMgaNw9EDdkBV6vGhVRJ2QA+w04BMFHZAiBMdnwoWdkDACU7OiCJ2QFxR7fqPJHZAxMpDEEsrdkDKl4HJHzF2QGFfVWFSM3ZAgK/mNx1BdkDCbrQ6m0J2QDI0s2jJQnZAhhTiEnpEdkBuTD8S/052QPqZH3DJUHZAIgQwghJRdkAoKt6XzVR2QMhPCdxRY3ZAQ3xvNbljdkAwoGwK22R2QK2dDxVXaHZAcAs48ZCDdkCH2URk+oR2QPsXGpbAsnZApJ5sx3qzdkD1qxtBDLR2QG0DmX0ZxHZAqzBdA87OdkCRBYRnwdB2QEKnLxY+43ZAEBZvHo3xdkDdRiGDj/N2QPZSoBU1AndAI7gje1ENd0B4pNQqARJ3QEI7dXUPIndA8EwhgXQid0CO6Bc2uyR3QA8WQjGlM3dAQFpERg01d0AtAZGlKT53QE4qj2idQXdAoC6VhbJDd0BOMRPDGkV3QKCvY6wWS3dApGdd40tRd0A2I22IklF3QPyr/JYpVXdAhHTgi9Rad0A8yp6F+lp3QCDPeGuPYXdAUH8yMTlid0B8Wgj2Jm93QB7P53ONcXdAKdWjkp9yd0BZ9JSA+3d3QP77BP0yfXdAJPiKHXuCd0DGt20hCZJ3QH6YRLhLlHdA1cAYHZGyd0CUBQNGmrR3QOJOTONxu3dAQBIOinnDd0CseNrd78d3QFbFXDp+y3dAZxrE4YDTd0AwPbiPjtZ3QC3TnEnK3XdA9lTA0ujgd0BccMdoJ+N3QDIfgwJu7XdAbKw4lU7yd0B3JEc9R/13QNRmJTupAXhAxjmWjqACeECelW6QkgN4QHXppo7nB3hA1OXLe/8HeEBq3Q4pyQh4QIKm/ztEDXhAsMOZTyAOeEBB9DWVWw94QFnEYrpOE3hAZRGRwk0VeEByduni6SF4QO4ghfRtInhAhAc5NjojeEC0Z4vwiCN4QELIIDvSI3hAqMZPO7YweED7TxBfZzt4QPC0UkVuQ3hAdQCRMxFEeEAebS7QeUV4QH5LMQfLUXhAwuCELZVSeEB+IC5lH1R4QPIUTyCIVXhA4vK7A+5XeEAfB3I592B4QFDE9t22YXhARpYSW8dheEB0Zf+EuWJ4QP6Gt9nyYnhA6IMRLR5keEDgb8Myw3J4QJJ8QSoudHhAuvJAg0R0eEB8kSwtXHR4QJKW5oiLdHhAEhj+l9F0eEDug4S7CXV4QAi2pQClgXhAgSyx4pmEeEDpZrr6lpF4QE84rMNXk3hAIDWD8KiUeEDG8G5ya6N4QNYGzdChpHhAnhBqsbakeEAXfDZEprN4QOxsk6jTs3hAxK50zNu7eEAWodcbzcB4QCKAPxb1wXhAAOdW0LHDeEC0A04W4sN4QBNHhvQGxXhAbKdCc7bUeEDWbkjTAvR4QIBLuTOO9XhAWc8B6p8TeUBchzfy1CF5QEB5DsG7I3lA/9UqDbMoeUCC5qk3Cy55QJAKs/bJM3lAXt5EasA4eUDOysa15Dh5QOMb2bL5QnlAiFwBzD5DeUBW6uF7+0N5QKh+IDvMVHlAlsXktdlkeUDkhBMIBHN5QJX/fINCc3lAeN6Q9OeLeUDexGrEcY15QCdBKwjMknlAefPhsoeTeUBy6B8zwLJ5QEEdjVfRwnlATYW2u0PUeUBSFeiHy9V5QNcyyxsm43lA7L5K8E7keUDq7oitZwN6QEiaI2dBMnpAxPw6fiYzekAGbgCGDDV6QPJ4l8dOQnpAJQPlJRpFekDL8AM4zUt6QOI+rqooVXpAOo+MgiJcekBWzMQ0i3J6QAO/HHpqe3pAXNcJxKOUekAOo3/6TZt6QML2KmsNtnpAjl5IUxrGekBMU2RWDch6QDDqRapozXpAqCor/yHOekBKOlFrxdJ6QJ7pMJNm4XpANkhHbffjekCI/W+WO+R6QNz57kr+63pAdKuApDbuekA+OruzF/F6QNwxDZxh8XpALJWgxknzekCZZC+CSvR6QPp2uC+k+HpAfmR82v/9ekBQdJGNWwN7QF0J8YF9BHtAPK7/2ygOe0BsxclWxBJ7QIuOBFVMFXtAZkfCuh8Ye0CmifS8fR17QE7GVdhZJXtAz/r1ylpSe0D8L6I9I5V7QLgPQQ7PnXtAHtlByiije0DDYmX+LqV7QBtGYXJgqHtALri2Aoaoe0DZwGmlyq17QJ52l+cys3tAafsFvHjGe0BmWEAQsdF7QDLrSm+M9XtA+0hZxtoBfEDAQL/5+QF8QCcvO3sqBHxAKvDkbWYEfEA0B6ppmAR8QBZ4SCGYBXxAAC1OwosRfEAUzTFj0hF8QN0Quat0FHxARWTjWOgbfECfkB+87yN8QBh8UQB7JHxAp3L1AeUtfEC8FT5ugzR8QIYg/DqXOHxAOFU2d8xBfEBExsPVUUh8QL4VIjJjTXxAZgGEaaxNfEDspKGl21F8QL9Jim7BUnxA7JcHSe5SfEBnxEDHCVN8QI6LjqOAU3xAnnAXcq9TfEBDiT7yVlh8QHZPca1mXXxAwRzFPwxifEDp5DbevWN8QEU92g0odHxAWoJ0oNV6fEAKzT0+AIJ8QLf7NwzMjXxAZCvnLyWUfEC0HX27WJl8QOhDzYiunnxAMOg1mPOjfEA4bIqw/KR8QH4h1RuNpXxA7RlyEkKufEAaZIipwLJ8QBabXzvP1XxA4rSbQGrYfEAEIY6nwd18QJ6Sd55X4nxA2v4cAxDjfEC2g4dywON8QPjJC0MS5HxACVRwfKbkfED0JLmnauh8QLa9GIvH7XxArMSeVRXyfEDvXWDbU/J8QHoRCyJy8nxA1uhDcyH0fEC/6XgXt/R8QCVmCvBd+3xArgqTOgACfUBcRTGYSgJ9QMTaSNZkA31A47OB4FAEfUCKW4v3/xF9QOA+p/xDEn1A2rBPEq4bfUBx1IlgQRx9QPR7U/u0I31AEoChZ70rfUAGtrbaozF9QB30rGNFU31AJgjtyQxVfUBcOQ0CeGt9QE53RF6XjX1AuUxVwfGSfUDXqZtpPJh9QLwnTqWQnX1AFr+lGjKkfUC4BMSb2LN9QISlj78rw31AzXgaq+fEfUCCO6DD2uJ9QPPWwtEK731ARj9LIdDzfUCgyyAJj/V9QKGQejrZ+31AiY8/VIMCfkAyoKuFdwR+QG2JS8mCDH5AC5Cph+8dfkAmVt4XNx9+QECh5zZHI35AIn/CSp8ofkBezyfEQS9+QCPw0z9BP35AXalK2UNVfkC8hhm1jlV+QO6ZNtaZZX5ApJqf3GtvfkCq/Sg1mHF+QCih+kW3e35AxGcZ1RGCfkBhojkYvoN+QFoaoSJUhH5ANGyQF8SLfkAo/MawW4x+QP66zOnKk35ASYqDoBGafkBgHXSBl7J+QBSQOEjlw35AoJProhbEfkDkKXkyr8d+QPjOZvZzyH5ARitVdrDLfkDuMKA4zc1+QAh1igSzz35AoItfA9XSfkAAuI6UKtN+QDNbT964035ARbl9JjLYfkCluxgzcth+QEt6Gj4n4H5Adp2mytXvfkDqFT1n1v9+QAaSsBiUA39AoPMAdTkaf0BsqbHutnF/QDTs/sqzgX9AtZ0DlGKRf0AIubKvXaF/QHmnbB1Co39A1rWCx5uof0A/6iV2eql/QLXM2Cn3rX9A/LM1zFaxf0AMW+nhvMR/QO6ppWvly39A4lLGmsjUf0C6QtXRkvt/QGqKMqHMAYBAVASsz9AFgEAN/qyj2waAQCt06gCDHYBArKL7by0fgEAU932vQzKAQLZ/NkgzNoBALFWDXiY3gEBl2EZP+TiAQJfSyPa3OoBAq3e8PKpCgEBGOShX90iAQKRDgezlUIBAKEXhvBNRgEBy2RDl61iAQD4cGyQOWYBANY7qP0hagED+CxvaSl6AQDvugmvwbYBAAZu90yhvgEAYlHty93GAQGHjQgj7ioBAFn1l4B6PgECHmZe5A5OAQPT3TO8Zl4BARMvk+JGagEDxsyz+CZyAQHqyWzWvpIBArINnWvymgEDZh0P4bKmAQKOwE/qHqYBAbEO5hZypgECRlxgOFK+AQKRNirIZsYBAiIyJ1X2ygEBaGgg5krKAQM+v7usFuoBAWAZjXhS8gEDQ4wTIsryAQNDNzAl5vYBAnCRQNjS+gEBGcg1YXr+AQKK7EHJSwYBAjzcPNgnCgEBHA/zFrseAQCZOnY0AyIBAdB4fMCHIgEAPI8+RZciAQHFKv5AhyYBAbqWuTVPJgEAmqHd9PMyAQCmxUJ4Hz4BAo9WI6c7PgEDaYuiXTNGAQPQUpEhK2YBAtj2T8R3cgEDsWNPHROGAQGiZdXv26IBA1hUvO0vvgEA83OEYPfOAQLxFzpFo+oBAPPKU/W3+gEAQCgAVQP+AQECnPdGm/4BAsEAFED8HgUCW0MsmJwiBQCxlO6hlCYFACycLspgJgUDSv3y5PQ+BQP1ZN3Y0H4FAPCEF+/QhgUBq2AcwNSeBQET6f6S3J4FAwP8nYiEpgUCwKF7rvDGBQEGPhXwoP4FAYIGONZNBgUBLMnBM/0mBQHA2G6VaWIFANGlSl+phgUBaHDICnWKBQHsqKZ9gf4FAyqQ9ebGCgUByWT4z7omBQKAi0+cEjYFA/S/ZZVaPgUC0aTQ8s4+BQFq19EQQkoFAprziBmKSgUByN93UE5aBQIJdO21Xl4FASgTOVxiagUAzLUAqG56BQEYyMf1fnoFAdzvYaVOfgUBQ55y+maGBQGGo1abnoYFABY7bZW2ogUCu5ny+Sq+BQGTLlNhtsIFAqv0aLB+xgUBVwVM6nLKBQJKtbAdMt4FAbSHC4HXEgUBE5f7q+cmBQChbsmKH24FA3mu7iKfpgUBZWLG5wumBQI0G6jCq7YFAarVOYKzxgUAa1YPg9PSBQKwce4mk9YFAeoKhg6n5gUCoSOIC7fmBQJDhg47u/YFAz9C4kPQBgkBggDCwAgmCQO6pWPNxFIJAfMybDNkYgkAyPMXP1iCCQIBcbu3QKIJAXaazz+g5gkAIjTfRXjqCQHhzbM9iPoJAJWvNbeFOgkC07a+KoU+CQBb12ZnZUYJA1tsrQN1VgkBYAo5PI1iCQJQXV30PWoJALtHfAvZmgkDId3oamWeCQIFxumkaaIJAAHPOo2dogkDpFah+pWiCQGKjxoMJaoJA+IT5rNpygkBEG+Gh+36CQA6wRlyWgIJAnK1fczCCgkDqS6Zky4OCQLTTWT9mhYJAxq6ftv6GgkBCD1s9Q4mCQHCASiYLioJA8UA9WLOMgkB6+4dyQ5GCQHITLWE8mYJAops5fFSZgkCfrVAWDqGCQJVi0xU8oYJAEOCb+w6pgkAE5vVFMqmCQOpIeJwHsYJAci3pBL3RgkCzZI+IftqCQCKdcyeC3oJAWOHvoVLqgkC/fAEschCDQCii93J5EYNAlogeTnoZg0D8ZlPuciGDQGBoa8WIIYNAH6CjE3Ipg0CaZtTowC2DQKS3sPhHMINA3vEeV2sxg0D4a91oHzmDQOjPjefeQYNArOhyyENEg0BuzReGJGGDQIK4AGVMaoNAqgqp7nuig0BkbBO7Xr6DQGBAwcRl6oNAY/3y12jug0CzoCbMbvKDQIxxJFpg9oNAK4+lAV0AhECCFEI0QAqEQAycBa8EEoRAElE/is4thECOmCG9bzKEQGbphPsJQIRAnALaIg1KhEDmtN91xGGEQLhfmi//aIRAzgwR9GJphED6lUPo/XCEQDR9LBzJd4RANHpFSvd4hECbkAyRd3qEQGJO8KIQfYRALoI/Dyh9hEDgmstTvX+EQLZ9OXZxgoRALmhEWx2FhEDE/m0OyoeEQP3CbgZ5ioRA+OYXOXGihEAeABfNHaWEQIIkxTbKp4RA+FX5pXaqhEDn7sTHI62EQIpCMLPnrYRAiAxny1SyhEBI6NRDV7aEQH2EjPEXzYRA/WDkHMXPhECDvGulctKEQKi44kVq2YRARrEw1GrhhEDq4s5kYumEQHw/Nl186YRAcnFbJTXxhEBAzbT2X/GEQFbssa7A94RA+mootzX5hECzx1S0WfmEQNQ+z2Ns+oRAcs5fL+IGhUAEV0EhkgiFQHrENUzjCoVAeF86p0UShUAv0lbI9xmFQFZwkv/6HYVAHgtyFf0hhUCiI35R8iWFQDI3J4SPJoVAeLLtFo4qhUDWEdfflS6FQJLRKDE3MoVApUSPGwFShUClC4eCBVaFQFGdGJn5WYVAOAw2bqBhhUDKIKZooGmFQIS3e76ZcYVAnKGIFph5hUAdgMJMkIGFQNCgwfri0YVATEfsjeXVhUDwU0qaoVaGQLjOZbCHV4ZAWWm5gadahkBGppHfql6GQLEvEHaWaoZA2NBnBphuhkDISRl4nJKGQBg27Y4luYZA5CXZNdjJhkDeYcaKe86GQO6ntor10IZAK7uywpbfhkDyw7aIfRKHQMiICvC/HIdAN3ZIurkeh0BS+DP5uSCHQPhMZKK2IodABiuPCZEph0Ddf64tkzGHQA/w8MuIOYdAFoWfD4pBh0BsE4Q8X0mHQNB1ktF8fodAktVj7YCCh0CMHJj2g4aHQKV0JHzHsYdATjoTzWOzh0AbKi4sx7mHQHj8q6WTuodAqPRwRWi7h0DYpIbll76HQNaN4kXBwYdAIxjcg5rCh0CTzvpLlcaHQDpe7dS+yYdAJANA/nAGiEAUIiRCdwqIQOJv9RRWKohAfIGJA15CiED+tItYx6uIQKVJBR/Os4hAn9dIGTG+iEBYjZSgNMKIQGdR5Q42xohAH+QdOu3siEDOta27lvKIQHaH6L+a9ohAQn2M7pv6iEAV5IEamv6IQA== + NrgMGZxjYkA= - + - hUGDRKCsDUUVDbFFzweARJ6b0EQPmkFHsLGRRBQHgEVvS4ZGIpo/RavCHUefMKlE7PNWRIdSiETX7AdFnc6URR75a0WFYYpETTWbRdjO6USL245E+OAaRQ7NukSGpd5EdHxoRC4AhUQFWotEsrpHRdQPEEfXrApGRJpgRX1leURHvhFF2maOROtFykQMK81G6gQiRbi1c0S0aJdEN3pBRL+Rj0VezeZEfFRZRBbQSkT6xwRFK9yIRJD7W0Qdzr9E9pd4RMVchkVV6XVEOq+5RAegykUge4hEBIOURPQBFUVA3WRF+a+FRK6upEQQDJVEQiWgRBr0YETIb3BHWqEtRQh4i0ZFjQtGxynmRMSiAUUoqyFF2DdZRTgqREUZYhZFqUfcRrCegESBfO5EXCN9RCuwaESMa4pEmKlLRebsMkXfSY5EsLJ0RHE9MEdE2z9EQH+HRPsu9UT/uT5G0Q7URaVtzkXUbSVFvwvkRS36AEUolFhEYupZRKx/cESktgFGMckDRdmzeETSYXREK63tRLf9NEVp1iBF23NbROgoVkTeJwhFgTqiROF8dEXBebxEDAMQRvLqlUT+XGxERpylRN7vikQE0MFEdYszRrdM1UTjjYlGoZLeRFGmhUUB/CJFAQJYRDdijERQOW9EQYeCRG1avURyyhZFIxtwRKaGokSUR6VEQlefRMRQnUTVgZlE5hZ6RC9blERUh4VEFUCuRD+ZmEf6LBJHY5twRQU0lEXpcgBG5xPlRLKbpUWiDDJHuc+iRad1WkSNw4xEEGYTRTP9GUXn975FbhuDR4Jaj0UvPsNFRshfRfzgAUVrxo9EcoamRJXdq0TkeLpENtaPRJV2m0SEgcFEWCe+Riwl30WVllBE3yhQRCrhDEXDlONEQ4aLRFqVgETC86dESxyjRBbS9USQXIxEUFSIRCMIoUSsTvdEGkD7RLgelER9gG1EKUkzRShWfkRIoFtEvly/RTiztUTS20xEsrJMRBKYyURH7oBGsNAJRWWjIkVN/SBGp9vARBsRqUR8HQZFyU/pRagPg0XELoVEUVuXRDSlgkSwXQFFbg5QREmDokQgeAFF8U9sRI4FEEXStTxERj8DRd8YKUZhuTFFY0GHRYkMQUTzzf1F01irRIuiYkSiQAtFPwXURAmQgUQTBSdFbVmgRMmYyUSyx/dEXkBiRZGjEUbIF7lFvxKNRJhOFkZrV5dEFAWtRFn6BkWm7w5FdWxzRJKnskXyDARG9+AdRmgPpEaddxRFsh6FRQAVFUXzr0ZFYA43RZhQaUTiWYtEij4PRR2MUUa++TBF1XxJREMVDEWCvbREjn9ARVFpfkRgLTNFewgCRZn1iUW1j2lENIB4RS+Xi0TnQtFEu7NjRBJdkkSaU+VEIr7CRO5HmEaU+ylFkJGSRNu9vkQZmShHMaLjR1nKmUTi/6hGLKzHRVNNoEao/G9EX5iERb8TUEYIucNE73mbRO+3ekRQes1EspJNRDU5LUV20YFEmzQjRmB1WUW1jotEUyPkRBNZlEQyy2REYLSJRGRWk0Tzr+RHJHQWRx8OkkTwNwhGewudRElIf0S8F9FEtkKCRBm1/0Qda2pEyGCERG7vpkY6X0hFWR1HRsNdX0S9LyFFexLERCtwFkXybZ5EAlUDRfdeyURKqmtFHaFjRAC+b0Smp1lF3XN/RFI3j0RpwIVEHYB2RABVcUYkEUJFGIdASMbjMUYy0H5F6JpERRZC8UZMixlFFW08RaHBBkU8JNBEsGdvRBl3rETCQd9EcD/cRDGCakTnO7pETQXURCGzSkXRjS5JNFLkRAd0gkR7TSZFjUUtSPnFNkUOqwtFWwaHRhlehkSL10REPj+URLEwRUflmM5H1wEYR/oO6ESvhntEZoD7Reyj6kUSSIBEDnHERbgnIUXhNIpFJZthRAEAyUR9Q/1G8eciRg7Em0WLvqhFbOhlREbOPEXLRG1EsAisRHRWlkU4JX1FSD9iRNdvnEQs6LdEF7V3RBOpFUVkkRtFI8ZcRHyIY0WWiktEqTWxRdBT5kS+lmZEVmriRATwr0QocFJGe9FeRFwysUfqQgJFprO8RtpU0kQlLhVFjGV9RPkyp0RKQFxE4IG9RAS1dUTLaLZFXwr8RJbtwUXjVWRFOVCHRHq9sUQ55QZFjnwNRv7vgkY84h9FQV1nRGyBz0QyWZRE4eJSRpOoIkVYTA9G2NLRRMA7rESPX3RFZb1/RAI2KkZnRhFGsqs/RaHeb0QVfjxFrlKIRFKH4EVrUw5HBr7ZRmAmFEWd4/1EEzvCRS64W0UyGFVEsdWDROdC00TQU4VGHLceRnua6EQbXM5EvD7vSIppIUXo2Y1FwKCHRJIzj0WanbdHnBShRTauKkU+SflFQScqRRcG20Sv5WtEoRy7Rc9QjkZxz71EQcJURgU+i0T6OHtEeYAZRWXMdEWStl5EFAUgRuv2p0Qvlm5E/SqdRPghf0RyHChF/XdPRTRM1kS9U0dEZVeHRE3nmEVm1kpFY0XeRNWpaUS1YbFEvxCARMxo5kSOD3BERIS3Rc3cSUUo98hHBIMdRmg+s0TuTNxF49xXRfwPkUX82OlElVnuRKJspkYLjDpFPB7ERD9igUSK89VFT4wNRRG0k0a0MJVF1w6eREHma0SvKB5FJIm9RcMR2UTdLYRFKrWERKthhEQnWBBFOE6JRAWeXUQjzc9F99B5RbVoIkWYjYJErVupRFm+pUSVumNETcX2RFc4j0RChWdE93EZRX4VykRBlpVEMshgRJ/reUWzdKFEreEGRjfWv0Qf7nZFSFkTRXAmwERAKqxErD4MRdnFdEXKw2xEG7d+RBnOtkTnNMRHs0tURKFtWkfQl3xE338PRiFP6kRE9QhFcspWRLfxjEROQJJE/ehORNhHNkWVzcFFvAU7Rcegk0WeHOFEYzxZRAUqCUXnqZhEV9y3RECZpUQKVHZESomARK2yxkSLSM9EckuMRHiWh0VC3QtFJaf1RV/qDUV8AbtFiKKURRFJkkSN1+JEz70PRYFcwEXmwMlEM4e/RHP3Ckf152lGN0tmRTWft0Qan7dEfTZSRJxSkkQtioxETalxRGlqrES3rLtEVOh2RHLur0SSNgBFhdxcRi8GU0T4Ta1FCU2mRPRfnkSySRhFrTZQRZ+jjkREhtREfhnoRcZSdkSVElhEvWqLRMoPYEQw7EpE6q/XRHQ/h0S8maBEIZ+GRNegJUX03bNEyA31RLUMb0R1gZVG3O2hRCaEa0amM5dEeUdlRA/tx0XUN3pIydYNRauFcUSas5pEVDoMRWBZrkTyxGhEdrjlR/wWWkRw5QNFDniLRBd+gUdTRl1G2VeTRJZhlUWdSLREv9z3RA+haERMKK5FcNMhRbyFXkawNYZEIyFhRWGQYkR9j4lEHYJOROmdZ0WMu6hGe7FJRI8kZ0Vyj1tEus5oRMXw7URdFCJFc4OSRGOI6UTq+4dErjp0RApYWETR0KxEXSqwRHZkVEQW/BRFslHfRQ3f50Rpw4pGYdCgRLiX9kVHAw5FZzQERerrZ0SWindEjhCtRKoXfkQMZFlFwoLjRHFB7UVSV1VEvqxSRIBGn0QKHLFEIquMRC16fURRm05EX0dlSOVEwEWtDPxHJOr1RgBDiUSRJSlGTVxERUGYLUaTXa9FdSnCRBQWxUTbE0NEV7QuRnTgiUW4lGFFUXVzRHeKUkXEL81E9ROPRAphnUThepJFicPBRMkjEUVfW9hETQh+RDgBU0QHfZZEb32KRMTatkS3UWdEdESBROdIJEbcGEVG4XkFRgx5xkXBKyxFSgMGRSC1/UfwoUdEc8dQRENjYEeRSAVH2t8sRf70pkW3NCFGsJD1RNWpAUXQk7tE1OjYRGpaVUVJOh9FZBqGRAMJb0T9suxHdh1aR9rABkeO8hBFiDoARtASB0WHl2NFVa83RZd9bUSzZtlEFIttRDxIcURVbExEbF5pRHhkX0Q49z1HjsDTRkAI5UV16ZBEIh2TRA3pNkS1TLxEXHqaRJCs0UTJMoJEkqthRPFZfkQbZa9Fod5LRJD6vESzHFRFR/oSRSgHIEULQgFF8rC9RJOsGkUS2g5GPmYnRoZmiEXuVM5Eqb4uRx8SRkcjSN1GqonvRSpM8EQGfplExwxxRck69URLQzdF+xYqRf8prkQXZx5HG86dRuC6KUaKZ89EUolZRXuWQ0WcINtEchQrRR5vjERX8+xE8tGuRPE/sESpSopExFuVRIN1mkbPfk5GbMpFRZYc+ERBii5FuG2HRGYXnUQVFiFFEWT8RTn5HkXUp4dE8Y0DR8nPekbnHRJG9hhURTywekRO2qNE0dK+RN7pX0VbOVtEWb6YRGsJfEReQppEps9dRCDFvUQTzfdE7N5IRHIRU0TN+05ExxVQRNrOZEQQLVBEPbIJRVT5zURAQmVEDNo+Rky7tEXBk1hFwZDsRI27XUSP2xFG69gURnjfXkULww5GOVrARSmwlkVFJhJGQ+0WRR/6o0X+n3dFMVgARc5pfkQwNotEMFyCRWnKD0UB8NBEmBl1RFmn9kXYl2FFB9eERXT9rkUDSmxE0W+BRNdZnkbYj3hG/dnxRTNhH0U= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - vMt6a3nAckAwImTFDMFyQDaWouxuwXJAsrFeyVHCckCoHfBlp8JyQEBNtqzjwnJA4RQjPTvDckDRdV46AchyQKeZfklMzXJASgGU8FrNckC2yemFQ9JyQPZ+Avm00nJAtaVZ8dPSckA1Y5MGz99yQHJCUvq44HJAqoaxR0/hckBIPtogUeJyQDa8vBGQ4nJA3DDqbMrxckAo9955uPNyQHieaQkM9HJA+DFYkKD0ckD0aXYWw/9yQGaWVVr4AHNARg5SGU4Bc0CPgb1DjwFzQOL5ce7PAnNA7gDjkfoDc0D9NFVVChJzQAYLi4e8EnNATo6Y6PgTc0AFx7I1BRRzQK3TNuDyF3NAju5//E4dc0AB+h6leB9zQPQpxWCiIHNA7rSZBTkhc0BLUHPT5iFzQB7loVN7InNA8DjnIsoic0D9Xt3JzyRzQOhPPQFGMXNAGbjaT1gxc0AwkyGYITJzQH/d/XnNMnNAOMKRaDY0c0AWfYWvuT9zQOjB/8zjQHNAG/fmDXhBc0Ao4tAFJEJzQLKUP3W9QnNAQsFcvXpEc0Ds7JkJmlFzQIahsrJCU3NAQO/mCaRTc0BYp8JUhlRzQF11d6oNVXNA8cgS24pgc0AWqbE9OmNzQCA9uborbXNAlMZwA9txc0Aem0KdaHJzQNoxLmmFcnNAmQdq+Llyc0BC6vx7SnVzQDAHwaTed3NAlitf5St9c0CYINndeIBzQLMtLUKkgHNA+BaRiAuBc0AHZ7pXXIJzQBpGFGrlgnNAqW6WjkSQc0Dot0Kmh5BzQJLrruDTkXNA1qBMBk2Sc0DZfUawYpRzQIqqh3T3lHNAnh80obegc0B9V49aWqJzQOLhiWh9o3NADK7ZNQalc0Au0a0QzrBzQBJarChcsnNA4DeBJ6ezc0BubFGLDLRzQFxlnr/4wHNAUaNsjM/Cc0Dm0NpjJsNzQDS+K1XY0XNAJKi1vPTTc0AwASSV4tRzQACraQw44XNAEptglWThc0AaKgcjEONzQO7wneJ743NASrz5Vjf0c0DaygkwQ/1zQBxLehLiAHRAPsUBhXgBdEBsGSQfpQF0QMQ/4PmeAnRAyI9chbcCdEAHpjSx9BF0QPIPmOpME3RAlpxJsksgdECeYFxbtyF0QONHTTNTMHRAMJycbl0zdEDMqWEX4jd0QDAbhSM6PXRA/8wrbFRAdEDE5JK4pUJ0QJ1djeeKVXRA1E9T2dtXdEA6CnszNl10QDrKdi0hYHRAdOtv3LdgdEAYgBLjCGJ0QPx4UC+PYnRAeCCxVw9kdED+Np9XT2R0QFopP5jqZ3RA2JIoeSJwdEC6V4fQQHF0QDbKsYwWcnRAzrTaNjlzdEBgmc1hoHR0QEuAndY1dXRAbophPkaAdEDZDh4W+YB0QMocUU1OgXRAka52fiaDdEBGZPSdQYN0QIz7J2kVkHRAyE/Qz2yQdEB2efOPM5N0QBRiq/tPk3RATUyZfu2fdEB+xHJF0aB0QJj7dfU3oXRASChxPrmidEB2vDthEKN0QEIEp0ELsHRAomlyU8KwdECeD7OVb7J0QPgMlqrJt3RA/UE0rBK9dECwqjdXJL10QOiFIGF5wXRAsaux5evBdEDUi0ltDsJ0QAMA7KAlxHRAKJUBQrjEdEDB6+cn/M50QBvKMTxv0nRAGXUoOuLTdEB0fGujeNR0QPI3NR3O1HRAc8M6G7vgdECIn+AjuOF0QNN/zRxR5XRAptNCKY3zdEBgx6AwdvR0QGEe9u+jAHVALOsuQs0AdUBY4m4hYwF1QF75Gj9dAnVA9u0QTKMCdUDWVMEJ/A91QJyAxaBqEnVALC5l4yEUdUB+a3dLnSJ1QE4L7dEuJHVALQftCasydUDYQ2H6yzV1QOYQhHX5N3VA6nKRllQ9dUD0e3pX5k91QAYwVhYYUHVAwwRrSXhVdUCDo8mCN2F1QA9uYJfRYnVAeKKblnVydUAaPQEGjXR1QK16RZx4gXVAFNeSB62BdUDjQcdDpoN1QPImt4GahHVAW9Ozfw2TdUAWZdnlOZN1QAK/yzZwoHVADHXn5ZGgdUC0vqL6uaF1QPAytTs7uHVAC6Lq483AdUBSRbBhZMF1QDJqX8n4wXVArC0Hb83TdUDI2ptFYtR1QMYYW/0N4XVAHF3KlQjidUDfUU2Xq+N1QM9szGaz63VAVb/pZEztdUASDKWwpvJ1QMaV3ndIAnZAxb44YM4DdkCbYKJbWBJ2QAhxNypMFHZAVPxZfogidkCMYpnljyR2QFXPsqFKK3ZACBcEnh8xdkBwA8N4UTN2QC6UuZQgNXZAn4r9b05AdkB+BP+pHEF2QMQucCScQnZAt4upWshCdkABy2mRekR2QDzRa8P7TnZAuV7e3MtQdkAe9vajEVF2QHpHXXaIVHZAZO1n+cxUdkBkugcuZmJ2QAZrf1FQY3ZA6ck3M9tkdkAyREb4ZYJ2QBlJpNqQg3ZAUEJW78CydkDPHKdBeLN2QMa/F6kMtHZAOLsYN7G0dkBiYeqUvMB2QKwTZPkZxHZAZqZhTs/OdkB2vHyrftB2QEtB7kWS83ZA5kLObzMCd0Bg/GqkARJ3QMR1P8SOEndAHPIByA4id0D3qSCXdyJ3QMy5IdykM3dA/NmIIQ01d0D2326tJT53QEATIA/NQHdAM0HaYp1Bd0CAHPDqfUN3QCHzBuSwQ3dAauwdwBpFd0Ab8VJtS1F3QH3pKtCRUXdAT+gccylVd0CxjtS91Fp3QJSEpcaOYXdAxKc1GChvd0CM8S0MoXJ3QLqnhMH2d3dA4nZIBVV9d0Bw/Y3gdoJ3QBkE+1Vxu3dA1wqb53jDd0Cy8eNlast3QIxf06x+y3dAdo+DW2/Td0B2Bdn8hNN3QGBxtfxt7XdA9eSISlLyd0BexRYgRv13QKhil9SpAXhAvFhphqACeEBXLzTukAN4QAi3FdjnB3hAbtpoNv4HeEA+JG7Zxgh4QA808HAgDnhAMN2Ri7cReEAcoe+QUBN4QLDUA/JuInhA6LerBTwjeECPkxvyiyN4QKA4ZlNnO3hA9O9wJA1CeEDSbZPFa0N4QLyqiRcRRHhA+OmjHnlFeEB2XcuDylF4QJHsxBKVUnhA1Wo9Qh9UeEDqjy5DiFV4QIYVjtDvV3hA73q1y0tdeEC8Gs21+mB4QJbAe2m4YXhAqKoTJbhieEBAqjiq8WJ4QCCbxowudHhASOAxZot0eED41pVIq3R4QCTjWF3JdHhA+1QQeeZ0eEBWZJC2tnV4QFR1we+kgXhAfIECzpmEeEDUQE8Jl5F4QOSltBJZk3hA61l2LqeUeEAmGz7G87F4QC/qPYl9s3hAtDmU8KSzeEAOHA7g07N4QC7ouhTcu3hANzFrmczAeECChszr9sF4QE/9kdWxw3hADt1NeuDDeEDqIbJHuNR4QEgjOEQD9HhAei+wbIz1eECpfd7CWwN5QN4e6XcQBHlAvqAHipsFeUCKCZ0/1CF5QFNt7KS7I3lAoGglLLIoeUBizSjxCi55QDC/c2bJM3lAH+o2keE4eUAe/2Hz+UN5QMGk7NTLVHlADhCNTERzeUAU6EkJ64t5QJjhC09wjXlAxN191sWSeUCev57qNaJ5QM4np5/AsnlAAtVKfkLUeUCqZ0NPzdV5QEc427on43lAdbjmkVDkeUD6afHvZwN6QCy/C373BXpAj2VJ1zkjekDyXiYgQTJ6QA4hHj4MNXpAyOf/3E1CekDylswiGkV6QOS/NMnMS3pAplB/VShVekA48qakIVx6QFmB5AQNtnpATDgGfxzGekBIY7NSDsh6QFQc2/BnzXpArJm8h2XhekCaKv3M9+N6QLQROlQ85HpA4yX9ZwDsekAIutAtNe56QHFCYksa8XpA5/ec61nxekCwlQwsS/N6QOztAYxJ9HpAQhzrrqT4ekD+fQ5sAf56QLCdoeJ6BHtAywIOpCsOe0DiXdMKxRJ7QPaSKLBMFXtAPKl/mB4Ye0CbWvr2Zx17QHT9cqlbJXtAQes6LsAze0Cq69czZjd7QAVfj4hXUntA+go2viOVe0AmP2whz517QC7jrRYoo3tAemOcx4Koe0DAWrFBJ7N7QI12Aal4xntAu1zW5f3je0BABCaZIPN7QCgtZDSM9XtAJ/sJjdoBfEDcFQqv+QF8QHnNfTM9BHxAgtoxcGYEfEAu6bIrlwV8QBFc3U2EEXxAIMH86tERfEAYMfknGhR8QONdwox0FHxAbH2qO+gbfECkHJY34CF8QD8jAEPzI3xAMn0xNnokfEB7r8+n5y18QAyouuiDNHxA8PaGwsxBfEC+vfxYUkh8QNVo2g1gTXxAEJ/T5KpNfECuRWoLB1N8QO9qtlmvU3xAHfuhBmJYfED8Zy7EvGN8QJIkyEorcXxAChDmwf2BfED2HQH3WZl8QJxQQ2iynnxACRIbdQ6kfED8aJT5wLJ8QJj7R2vO1XxALnDnNWrYfEDmK4BxxN18QDY3LbhX4nxAgk0zsQ/jfEDYZFsRveN8QMxAMykR5HxARZGkJqbkfEC12kN2a+h8QH1H3kLJ7XxAAEdUFWrvfEB0aDFHFvJ8QOEbrmlU8nxAZFScYQ/zfEAyNbXIHfR8QAqpT/Jf+3xAqH8O6wACfUByLMhFSwJ9QGQpuUNnA31AavrxY1IEfUDIgytxhwZ9QKCAxGVWC31AreABY0USfUCyu90srht9QKPoy+1BHH1AHxgqebUjfUD0xeeRrCt9QKz/uU6hMX1AmPC8RW1RfUAUEVJyRVN9QH7ycsTUhX1AxsNAspeNfUDO3R0+7ZJ9QGbNPGo/mH1AY4d/bZKdfUBWvpDHOaR9QMSsNnflxH1Aag14WNHzfUBk1J3XkPV9QNZZ8wJ5BH5ApNqNeoAMfkA1CSK37x1+QI7IikJII35AqPoFcZ4jfkAqcqaKnyh+QKxDKnWMVX5AVGWRUpplfkDTKtGnPHN+QPxeCU63e35ApCcpr76DfkC2Qo83xIt+QAikKOXKk35AYLFds7iwfkCozIElmLJ+QKiqqObjw35AIJfdInLIfkDYBR5jzc1+QMLNhI1s2H5ASmm/Ds3ffkDIKgvA1u9+QFpsL6fM/H5AIOOqxNX/fkCk7X49IAB/QCFXi9uUA39AAhJuZJ0Lf0AGtyFlt3F/QOyz+EGygX9ASvzUm6SDf0By8DXFYpF/QNKF3EyokX9AwT+k45aTf0A6KVKHPJt/QAOIBTldoX9AbDYRc0Ojf0AhejgDnKh/QPYJ7zn1rX9AM2BsJ1exf0CZ8i3vvMR/QOYoRp7Ly39AWhEuw9PTf0BF1nvCytR/QFxxrDSS+39AgkeMTswBgED0F/C40AWAQFuscIvaBoBAT/ugTYoJgEB0quLpJBuAQOoL5iX6NIBAHJ0OV388gEDUsBoKqUKAQH7opkLzSIBAFO9RMuZQgEAy6vfxE1GAQBwxJloNWYBAmI4Mrx5ZgEBQnrYhSlqAQLj0RsLvbYBAOJexWylvgECBrUA+KHeAQMs5A9spf4BAJI+t+J6CgECskviZ/YqAQFZhh20ej4BA953BRSCXgECu4KT0v6SAQLk5nDj5poBAKpjYmGiogEBUH0GfhqmAQDbfBgwTr4BAbG6AvrKvgEC8apQtZLCAQOfYXLR/soBArTF96JKygECO64coBrqAQNRHDFiyvIBAW//8sX29gEDmzjIjX7+AQMzFIWxSwYBA0uRVOQjCgED+JXzAH8iAQEE7F01TyYBAfKnYPEfLgED2jyMtBs+AQBvPwfwq0YBAqFVzdUzRgEBIFsPuYNGAQIT378BJ2YBAXmE1YXLZgECj5/PuQ+GAQH1K49j/44BAgHZQpvjogEBsq1JKkeqAQELPWHJJ74BAP6qIfQf6gEDoD28KaPqAQD9EBy1q/oBAvr2Goj//gEDtZ9jOPweBQIXKbrdUC4FALHxggzwPgUD+gXtUHBmBQKhz+ITvGYFAzqcRlzQfgUC0TxU8NSeBQEe2H628MYFA7gLeThoygUBap3DIKD+BQJPFm6WSQYFAPkNwEwJKgUCQ7H3zhGCBQL0KNKYCYoFAmjs5OHN7gUD4VeU2YX+BQFyp+kMFjYFAwo99AuuOgUD6YlBuVY+BQFI/ytiyj4FAWN3M2PKRgUCwhUCDEJKBQNo9NcwTloFASYJQx1aXgUDvkH8gGpqBQM7s5LtRn4FAbiGgieihgUAoA9O3bqiBQCSValtKr4FAzwzjtFC3gUDAhJirZbiBQCA9BVR904FAv41pVPfVgUBIbhqVD+KBQCki2J1e6YFAUdN4RqfpgUCUBzLxqe2BQMD2JyXE7YFAFlHCv/vtgUBwvhlhqPGBQL2Z4vel9YFAflY+Sqn5gUCNIL5N7PmBQGKfoTjw/YFA6lI8idcYgkAmEkDy1iCCQBzRPPrPKIJAixJ7C6IpgkDPER+v0DCCQLyEudZdOoJA9pG67mA+gkBA2zHV/kGCQJAkBTGiT4JAY+/JotdRgkA+wGom21WCQBBQgAgkWIJAdmX51zpdgkCOIwKuD2aCQDzcqOLPdoJAgKRyYPt+gkDSj0sHl4CCQGQ4TXgDgoJAg6b4iDCCgkB/bFagyoOCQARXHstkhYJAIksPoAGHgkDWBF798IeCQP6FVfxCiYJAmuHtA7eOgkAQTC8vQ5GCQOit8IA8mYJAuiETtA6hgkCQRfgDOqGCQCwK690NqYJAqiPaRDSpgkBzPKa8B7GCQITRwkG90YJA8qdnLr7VgkA7YGHfutmCQNAoP7p92oJAu0yng7rdgkCwnYrQgN6CQPYSt3t5EYNATHqsvHkZg0C+OPVhciGDQIAuGbyKIYNAdLN5/HApg0B2MB03wi2DQMQoNTZGMINAcJmz3Wkxg0Dx/jmUSoODQIC7eXZl6oNAfvL7/Wjug0A0ncG5bPKDQD5vgG9o9oNAvE3qdnD6g0B0O4FYAhKEQAT6o7TTLYRAP0ymInQyhECS0QyKDEqEQD1P8xf/aIRAtrkGyv1whEAYBvknyXeEQDSmnX/2eIRAvJhIBnh6hEC+n03qI32EQEnXcc9vgoRAFs4wGR6FhEDC6kCdyoeEQDeanVBxooRApBfCsx2lhEAeUU18yqeEQNsesBN2qoRAtbkC6SWthEBkBO0D562EQGqaFDnQr4RApCRKYFSyhEDHgcUGV7aEQMkzFI9auoRAsSQle2vKhEBwUxaIGM2EQJuUV/DCz4RAkdY162nZhEAbJDOadt6EQMZ9QQdq4YRA1HxW/GLphEDkjFvONfGEQK/GK0Jj8YRA0GRgWr73hECyOy6UN/mEQPDDd81Z+YRA5oI3CG76hEDiDZQsMAGFQFUFcODfBoVA+s/+NZMIhUBUg0ek5AqFQFbxn1T3GYVAnoA/ePsdhUDM8UbH+SWFQOTWEKKRJoVA8KIyb5IqhUB6Y3DiNDKFQE7QDIoAUoVA9O2SbgRWhUAggg4v/FmFQC2H6yKgYYVArXDHL6BphUAMPRlWmHGFQAL/kyy0c4VAWYUjS5l5hUDcWC9Xk4GFQDiqxEHEqoVANE4ZdeXRhUAaZ/lmoVaGQCBN7cGlWoZAuATsuI9ohkBgpdm5lGqGQGwJ0vgluYZA6iOXoyfBhkB3x9pXgBaHQPevljS3HIdAuEdTW7keh0Bu4kq8uiCHQBQZbnG7IodA5alwB5Eph0D4MpuckTGHQOJsnTaKOYdABP0ZXF9Bh0DqNSf7iUGHQCV0n5V9fodA1vgpvICCh0Ap5qSsgoaHQEwRxjPHsYdAk/8egGOzh0D8SkRJx7mHQO6gHLaTuodA35TXe2m7h0AAtxb7lb6HQNlis7jAwYdAlkoG0ZzCh0AcbKh0l8aHQAoxOVa9yYdAErPDeXIGiEBCj6BgdAqIQAB0ZenmHYhAAKsjjlw+iEAenJf0X0KIQOIZ+/fFq4hAQlVkn82ziEBO75ytL76IQKK1puwzwohAUtl8WJbyiEAsnvLLmfaIQNiZhRif+ohAPUK4Z5j+iEA= + KBZXds7jZUDYkZP9yKNsQG+XdYaqQnFAR9UTyqeidEA28gnAwnN3QA== - + - ol2iRGRT5kREIqFFaemhRGPWRUeCp5lEQJSKRbIYnkbn0qdEfl3rRGPUB0d3xpJEpWCHRAQ6D0VIxaBEoCyjRAbMg0XmZoNFZVGBRRgKA0U8NoFEhTLORItXD0VLOahEIACPRI1ekUQM/2dFpQsDR32vtUSBDVBGv8aTRU67hUXnO9tE5QZ9RJPPo0TQ27VEF37ORgvMVkUZoqRE3aeNRKeziUXTvQ5Ffg3DRKtpx0QDLk1Fp+eORE9670Q0lcREWLqJRSoEdUSTHYpEiPX6RXPg30T3EdZEaBaYRRWipUQV7HBEwp7MRH84IkXyG1xHWtd6RJimqEV3qMVGfHeNRpi48kSqdVJFgnG6RMhD50a3pP1E3A8BRTPuBEVEJ75EQ6MbRRX+EEXrXX1EQ8xDR1uH0kRAS1lGB5MARvq190X6FNZEDunmRJQsj0QMXo9EXeLDRacqKkXiutZEYSWGRX+tGEXDCTRFR9G1RL5+g0XK/M9FMj3IRDLZ2ETzyYBE9GoQRZGfAkZNpoZEj5ySRoYj80TUwh9Fms38RBFLiUTEW1RFlNCVRPTu8UQejIJEEn2zRDa+yETaZppEvwrLRJjSikRfc5FE1dGWR1MKAUfoplREFMqVRXFVv0XwUelFL5KQRAVzCEV9YLFEnG20RR11IUdoFZ9EBOeRRXuxqERg5MlEqNSlRPxnL0W2lPBFFwrCR2isnkS/iJdFgcHVRDF3K0b/1BJFCQiYRDrk60RuCpJEf52/RENmHEVxUfZEmH3RRMPvj0abC7dFdkS8RKDR5UQBZr1EsTCiREb4jETz9IFE+m1ERY6kyERdf6tE+ufERFRxX0RnWepEKaWGRNaZF0UhVHZE3Vi3RSB3ckT7StdEvCbQRPM0tUR5lzBGxzl4RG9tdkQopM9EeOu+REOJ/EWBu25EuWuWRC6FXEUsv+lFbDrWROM1zURKN5REOeGVRACwzUQAA29FJ3y/RGyzm0bw0UJFYpSYRWBz60VHZVdFgRWPRAc9p0SbhjZFf4e4RJfXx0RTuHNEf2fkRP0ptUSTivlEhInHRIEypET/zqxElfErRXwuYEXTxItEdp9XRmuIXkUMbhtGhwVoRJsGrUTzo8ZE4WOgRbv9y0XtIuJFg5axRoS5/EQRb2pEuUOqRL09lkVHpM1E2ZVMRfiJZ0VixadENbiCRPKEEEUQT6NE4J+0RoeRp0RFBbBExKGKRfABm0QQLGFFbiEgRYKQCkWrBJlFBL2HRANtgETZDrREriOBRRFYkkTkpw1F5Q0IRQ0KgkY6AYNE8zlpRfVIjUTcu69GjHrmR9Ydz0SF9FhEzwe8RsG0h0QbTUNFiELQRsaViEWnHVlG9cWiRNcMwkTDE6FEuLMXRZPWuUVWs2ZFnl9iRM8B80RHvkNIT816RwaI2UWrxgpGOeQHRf/W10TtPZBEPK+VRGFEm0ZSUqxF5agFRtL+hUQ/dRhFZbUHRY/fSUXt7MpEsEhxRDsOrEXv7/pEX/aLRNN9lEQQ3lRG5XOnRHToaUVE2eZHgM0eRqFRg0VXPX9FDdBxRiUZKUV1osxEBmiqRITcI0VuxRVF3nN5RHZAs0RNncNER09CSfPlh0V9TrBEtXMYRYdYfER/LjpF0X1LSBsVBUWb4bBEQWyMRtqwekTkpLBEBJxfRzt3iEfEq69GN4PBRBs6zES2UQpGrAGiRZo/NkUzNnRF1IveRS6st0Sa4KhEmlWgRGG/T0WMluJGVCiwRZLHi0U2k55FqJMARc+AUkUZBpFFzFzBRH/JQUXzO1RFpd/XRPW3gkTCJy9FMWq3Rd7vCkWNh7NEf+3ORII8uUQblM9ELR2NRKd1ukYcis9HePhLRfrZ3UbvgARFJOY+RToxe0SlA6BFT+GyRLVVq0VzPw5FaoQZRb4Ro0VHeLNGZqq2RIn8z0QqF/FE2P+ORBVYNUYz2YJFbJINRodpyUQNyrRF5AntRIC6wkWuIBtGsSUaRdtrrkQKYERFwvWBRCbkl0RMRHdEqjyWRb9WGEcM/MZG6PLeRcUUaUR8tZlEuIihROubn0Qh6Z1GbVJFRlxB5ES4qgBFUh/zSDbCrkXd6WhEKPGLRQhSkUSNCr9HvO5fRc+NhkSz8aVEorIDRhfDv0QqggFF7EG1RVNJqEbc1ZdEhp5CRkjAT0Uv5wlG81uZRFTpv0TwjHZEEn7qRFn3d0VdQFFFjVqlRM7yt0QX95hEmGujRQObHUX0Q+BH+oYLRrnlYUTxzBlGPCB6RTdjnEVjzt5EmcJTRMeN/kTgMNBGxXO6RIMBmUT0/K9FE/QqRafGm0aYhhBFBnP5RPqzmEQzO8NEBAp+Rc3joEVbOJFEFtdtRVr1lESU62tEM4aURCsa/kRfLJFElBnjRYYhgEV+KQtFdBSSRIXOv0RFNNFEyNgWRcvP+ERbhI9FGAbtRPbPEUZC/r5FEhWsRFvG5ETyHQZFzIiAROVwrEQu7axHKSw5R5dZ70VUdg5FP5CHRHpJq0Q+vqVE2hGERV02dkVdkqJEXJWIREOAiETk/GZEcf5qRBP57EQLZphEkvWSRAqRmEWkuplEYHyJRGN2LkZOto5EFiGCRHtBbESYOB9FPlFyRRCtAkVEdJJECGzERPXxHUZ2rd1ELq14ROJVo0SbYdVGsSomRohZVEUuDfpEvN+gRLgWj0TSg9hEtN1/RLQbgkQyC9lEfgkiRUeSaUbGn2NFxtYJRfFLiUQnADRFWJoORRsbjESBN9BEdsyLRPeTykQVucFF6aFjREZSsUQNEKREyhm6RHOy1US4ZjdFYwGSRND19kTBNrdEzI6KRDjNXkbLSBdGYD7CRNQYqEVGeYVIpViHRP3Ei0SHbf9H+sKVRDDUuURNmthEhi+DRzGXhEV9TUFGK3SWREDhgEV7erFE3SWyRNkgdURx97FEixugRBJg1EUoVEhFFJdPRuHLQEWWqH9EMVgyRYvKiERyR6FEBfeJRtQWZkWjzJlEFdPaRMh0JEXudptEFcwpRRv2hUT5945EYlmPRIn/n0TND+xEXwBwRITexEXBKyBFmdLBROv9i0bNdxVGb4UQRWqcSkVYq5BEKwhkReQHHkU29slFaJ5sRN6CiUQgznlE3l13RAMTrUR8e6dE/BLdSLdBgUjEaUFF0kWjRInR00cflqBGtgmnRaHxEkarfKFFEe41Rserm0VcGg5FYWubRHjnjESBYF1FvrGZRDyza0Ql6oVE1B8mRckezUTJUghF+3SvRMKolkSpdAhFfv9FRmrXwEbfYpBEwt99RjD7IEbODJ1FKj8ORRi/fEQ+xttH7bZ7RGpuOUdj4txGyrWyRWCfA0Z3uRBFSMcKRc7UhUSaEWdFRjbpRNvasEQf2nRFFPR/RL5bHUWkJf1HEfBVR6HW9kbXCkZFSY8FRl7TtERqI9tEVoRORUutt0S2F7lGFp18RiB9RUX0Xc5EE/SERHNke0QSu4xEsn6JRAFQkURTQ8FFoMgyRTrRRUWL8txE6NlORb2SfUSQcFRFgl5eReWTu0RbWwNHiqL6Rj6PoUatILtFL7zrREcI40Ry46tEk1EDRYUMFUVbO3NE8vSSRLfIFEVdSgRF900iR3VwuUTo2nNG5kg3Rt+njUW2a5tFLlSmRFXm0kRVhlhEOduuRK/2rkSOj95EM+j0REdlg0Q2qBlG3kOwRZY4lETHs/lEA+SdRMiGs0Q0t/VFffxDRfzhv0SQNQxHHm1uRtlwIEZTjJ5ExIN3RTXmuUQKDqBEYdMMRY70SUVaFu5EnkmZRFCMnkTvGKhEGY6HROAJ6UTr8WFFWX21RfLB10Ut4i1FRX0rRhsJo0VW1jlFzamfRNJjE0XGhKJFL0ihReoXJUUaQSlGyMscRvavskV6NbtFiqdQRRmqtUXbO0tFagn7RK6bgETPnY1EPKhHRdvP8kRREPhEZhemRFtoXkSaWcJFrzjdRB28VUWpDiNFHy9qRllUKEZtKllFRq8KRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - /mjG/g3BckA2loerJMFyQE+S2uk6wXJAfoV3uW/BckCJ17hgycFyQCzCAQtRwnJAKmvlj6fCckC5tsnaO8NyQExLzWRcxXJA2c1UVADIckAa7qcVTM1yQOIsGr5D0nJArU7H4HbTckD5NhuCzt9yQFGODQu54HJAIJV0aFDickDJcdO5kOJyQA6yefki43JASPVJMFHxckBMXs0kyvFyQL510o2j9HJACsGUocH/ckCPUOsJkAFzQAh7fsDPAnNAxpkG3foDc0AK3WDBvBJzQGqWPgbeEnNAdz1JbQYUc0CycyC19BdzQAMtdH15H3NAqs9DdqMgc0CwrZQFOSFzQMz4DrZkIXNAGZt4XeUhc0D4EhFeyCJzQNnvKETQJHNAvsdp00kxc0A2As1fzTJzQHCrRTM2NHNAcp+xUOVAc0DmFg9FeEFzQDpomkQlQnNAFMsrI3pEc0AvpAGunVFzQCyZd/RBU3NAmmv5PaNTc0D0mA9gh1RzQJh8pHIgYnNAWQkRDTpjc0AUTrOPK21zQIeWrzNqcnNAiNv414Vyc0DGYrwiunJzQJbDODVLdXNAbjsl/Wt2c0CXtuTb3HdzQAYQPqMsfXNAauVtE3mAc0Cwxx3GpIBzQCmMHRYMgXNAVCeFMF2Cc0DeOEEux4JzQHbouJ1GkHNArjGAzYaQc0AYiG5nTZJzQHYfr97Kk3NAgpv5XV+Uc0AnGQeJ95RzQLf5uJC4oHNAQLRDa1qic0AhAlo2kaJzQAJg0rXlonNAtlVULgWlc0CmMdPmy7BzQCTge/BZsnNALpQlrqezc0B5imr3C7RzQExUCkT4wHNA5nb4tc7Cc0AYj8zQJcNzQBCuqLO2w3NAGO3EHdnRc0BednrV9tNzQOJYyCfj1HNAIkZb6aPgc0AssgiPOOFzQII9ybSM4XNAojPugBDjc0D+kTPvNfRzQJbYcnpC/XNARI3hXuQAdEBwbh48eQF0QMqWQvqlAXRAYVJQFaACdEB3Fj+RuQJ0QALSOcJ2EXRAt/1a8oYRdEC3G+/+TRN0QLKxIwBLIHRA6FjkY7ghdEDYSOi4UzB0QNL3cdYQRHRAyV8kEahSdECK41n791R0QAIKWoCNVXRAqcb6TdxXdEAycoU2Nl10QPSbg5C4YHRAvkYjqQhidECpqelXj2J0QOTX1nBPZHRAGira3SJwdEA02Ql/QXF0QKpN4EgVcnRAoIfAQTlzdECoOyAuo3R0QODpH8M4dXRAMMRrz2qAdEDijHV7+IB0QO5Ptj1OgXRAikNCnCaDdECYzIsfF5B0QOiHcUs0k3RASlfjNU+TdEDmT+Pv7Z90QOTeB3LOoHRABHqBkzqhdECxeNaVuKJ0QN7j9toOo3RAjdm6p8OwdED5cm29b7J0QFCAwNjJt3RAnW+E1eLAdEDHySytt8R0QEbfzAJw0nRAepoMRc7UdEBC5/GV29d0QAn81XE33XRA5lk9IbjhdEDUJfVBjPN0QKioTECjAHVADnvek80AdUBCOKNFYgF1QKmpISZdAnVAqFcvyZkDdUBmdkHZlxB1QOz7SeZoEnVAtqTB6SQUdUCOKIzGnSJ1QFjms52sMnVAWGECfMw1dUBFuHdr+Td1QE83rrFVPXVA2oqEH4JRdUDSZL0DTVR1QHK6htB2VXVAmNCycDhhdUBsL2zR0WJ1QHEkfHRmY3VAnW/EsXZydUDw+3GsjXR1QMx4NRN6gXVAHoDz2q2BdUD6YfecpoN1QPfowsibhHVAnvONpm6SdUAgE99NPJN1QCfNagtvoHVAq/Gr5fnBdUBZsgvWSM11QM8Gg0fN03VAvgOKxQ/hdUAt/fqTCeJ1QE4TSI2r43VAVJiMREztdUCAkl6lpfJ1QKlYNJbv93VAUCAOgEgCdkAGkBRi0AN2QCzzBhJVEnZAdKf0U4kidkCSsNODjyR2QLQv7EdLK3ZA9C8MrR8xdkBqZIo5UzN2QHpNXvKZNHZAHI7W/RxBdkCbHubEm0J2QGCZKy3IQnZA3CW4e3lEdkCJdXRT/E52QIa9+azJUHZAuSgT9hFRdkDeyvGO2VJ2QKftXXXNVHZAVi1YElJjdkCaC3q122R2QLAFWXHkgnZA4kBm9w+DdkAiKaEukoN2QNw42lsNoXZAVihIGMKydkD2MgsiDbR2QBZwbt7VuHZAmrqPnk7BdkBwJ1x90MJ2QCY20WcZxHZA3t2lf87OdkDfwUEfQON2QBxw3WqQ83ZA5gC01TUCd0BJUJvZARJ3QJBr0boQIndATtwfEKUzd0B0VMRSDTV3QIbzzBQmPndACmSuAZ1Bd0AzHmPTk0N3QATAaWKxQ3dAVKJT1hpFd0BA6MzDF0t3QG5QE9hKUXdAaCecdpJRd0BOvbzPK1V3QGIbIuzXWndAWmT2D5Bhd0DIqgdQomF3QGM45C01YndASIOHgjpld0AwqBAcKG93QCD7HHKfcndAEjATdPl3d0AUmisyOX13QHys3WR5gndAho5hukuUd0DkcYxEcbt3QI6nClp4w3dA6NEge33Ld0AcKfgJcNN3QJQpW1TM3XdAR0y5fOvgd0AWTyuQUfJ3QPzJqENG/XdA7O/jBtr9d0C7kKnGqQF4QOhmM+OfAnhAvhoTM+gHeECyaIgWxwh4QIah/Am3EXhAMMeaX1ETeEBG/OyTTRV4QHgy41NuInhABnyhAWc7eECOudOQC0J4QGQ4qqNrQ3hA4PpnuhFEeEDWKYTpeUV4QOxOGl7MUXhA/IshvpRSeECeOR21HlR4QH2f3SyIVXhA3hPNs+5XeEC8ciQC+mB4QLmRs2u2YXhAsJR3RrZieEC2a1Y8IWR4QBhn/ve9cXhAhKDaLkV0eEASZ3LuXXR4QFZqDp6LdHhA7JrA4at0eEAD0eS/wnR4QGKqkFXTdHhAd8T/faSBeEDgKIQlmoR4QEJDnh64hHhANLGng5eReEBtWUhKqJR4QFUbAwV9s3hAsl9COqWzeEAwJ2o31LN4QMyyq7Hbu3hAqvO0kMrAeEBNsZnDsMN4QDr27+Lhw3hAmf+u57fUeECLx8UZAfR4QBjPXYeN9XhAggWeYpsFeUDbXRRP1CF5QLUVbum7I3lARUcDErEoeUDyBAMdCi55QGmA5zZqM3lAfjzXdckzeUC8WWT24jh5QFEL51s9PnlAhkdBK/xDeUD5BkW1zFR5QCprb0NHc3lAh8IZUuqLeUAy6GSvcY15QHrYPGXKknlA9fK/asCyeUAgnaq1QdR5QD76XYfM1XlAnfy9WFDkeUAiCt8M+wV6QP+eEHlBMnpAuAT/TQw1ekDV0FbUTkJ6QKiPxfQaRXpAVO5oh81LekCJeYqMKFV6QNCCQYojXHpA5lM/MIyBekBjvCh4DbZ6QErFo40YxnpA/EHT4w3IekAM/vwfZs16QHx4uXpn4XpAPtuRKPfjekAPjYMDPOR6QBhxl0N35HpAA3DuAjbuekC6hkSxF/F6QAL6hSxh8XpA0rM8eErzekCE6PYmSfR6QGhg2gmj+HpA7p+gg//9ekDY9jkHfQR7QFoHRfHDEntATrxV+kwVe0B57XBPHRh7QEIC8zBaJXtAcIk2uSKVe0BgpefUzp17QDSgW6wno3tAnAPmLYaoe0Dfq1WIza17QNw7gTIy0ntActdF1Yv1e0CRWvrYd/h7QCr6Z5aUAXxA7aUG5tkBfEAADMOgZgR8QHIc/riXBXxAlyLteYoRfEBKFsZe0hF8QITCmpd0FHxAQN6tnecbfEARGYOE8CN8QDqfPZ18JHxAnyWet+YtfEAx/d+ygDR8QLq8TsLLQXxAyg/zeFFIfEADhh0SYU18QOKvkZCrTXxAGvlYGdpRfEBhm4Q/CFN8QE9dY4awU3xAhJWiCE1YfEARYpzwBXN8QNYCGd3VenxAwOy4gViZfEC2tEUwsJ58QFecAzIMpHxACmajPszVfECMRSWQadh8QMFfcdTE3XxAKFoKpFfifEBkhSgLEeN8QP4j+0cR5HxASkQVFKfkfECgewnFZOh8QIDKFSdU8nxAvTnzknHyfEC4oljOEfN8QAGJmMxe+3xAYmEMNQQCfUDY2ohGSwJ9QE53AnplA31Av4zjmVIEfUACL20BnRF9QLZZlsZFEn1AaKrS/K0bfUBkuzs+tCN9QDOR47/jL31AcDFpAUVTfUClZRFvlnp9QATm811mhH1ALCoEQJaNfUBwfF8BapJ9QMmR+I/vkn1AI27OEjSkfUDI/NFRKcN9QBgZOoHQ831AGkAD25L1fUDMiwSmegR+QEiMBY+vHX5AVcgT6+4dfkCqlaDcSCN+QMDQPxCgI35AeimniqkofkB4+Mewt3t+QBpwZ/q9g35AyvovocyIfkCo6EcKxYt+QJBzqqPEk35A7JveGuHDfkBI+vxvsMd+QA6YT0ZzyH5Aepaxhc3NfkDMvBNKINN+QLkJ/Ztt2H5Al3POvs/ffkDOpu7bilh/QELcGMDjXX9AfkGZ9bhxf0Cs9DLusoF/QBgRfuKlg39A2kP7mmORf0A32yBpnZN/QEj/p29doX9AfMHPlUKjf0Cc/l9BVLF/QDKDHXq9xH9Aylq+msvLf0DMxNYA0tN/QA73Uf3L1H9ACOFL2JH7f0BwrqMrzQGAQKoXZLLRBYBAgGzrE0AygECgcrNs+TSAQIRh9KupQoBAu78Fi/VIgEBYNQIN5lCAQBJ4gJ4TUYBAU88wK+ZYgECCkHUXD1mAQP6gMpQMYYBAusuIFO9tgEB48R6sJ2+AQF4OXkInf4BAVOwHrB6PgEARom1S8KaAQHbVYtmFqYBAAPS/xhOvgECaonrbf7KAQMwzUtvCtIBAj12Op2q4gEAilNrPBbqAQIBtdxicuoBALqYX9LK8gEBLxRvkXr+AQEhcbH1SwYBA5naK5QjCgECizONGU8mAQNp3e88LzIBA0IdLywfPgECW2OGBTNGAQP98Lehg0YBASfopekrZgEA4JU9QROGAQOaozSj46IBAOrXYWGj6gED6KSwFbf6AQIS/LDs//4BAJMCTEj8HgUC1wreYPg+BQIkrQlqKFIFArvMcoDQfgUCCa1IqUyKBQG/bZwc2J4FAsjGdGb0xgUA8ebZ4KT+BQID5HzkBSoFA8g+MYVWPgUATNR+AEJKBQFcJTDsUloFAYJap+FSXgUCoxWB7GZqBQLRUt6JSn4FARhz0qZahgUCKVrkE6aGBQGAnWryapYFANi/pj22ogUB0lTn1Sq+BQFJyJEbJtYFAga+TBEu3gUBb5nw6ftOBQMTfd6kx2oFA4QHjCBHigUDklhYlf+mBQJxMs2in6YFAUFFsFMPpgUDSdjruqe2BQNMjvwvF7YFAFDhtYKjxgUCKL3wbpvWBQDsaldKp+YFAgKX6Kuz5gUD8dL0+sP2BQP6Mn2rw/YFAOvNRpwQJgkCv3pVk2BiCQFoHM6bWIIJAxKSUP9EogkAeuE20oSmCQEU7965dOoJAzu+ESSNYgkAyiYgS1VqCQDiqYhqfW4JApKKLzq9rgkBuPrIZAX6CQHPW9637foJAyNBHV5aAgkBajzymMYKCQIbpUTPLg4JAF5CfHGaFgkAyM0Qm/oaCQCzWlhRDiYJAmu5l30ORgkBbo1olPJmCQIDzOHgOoYJAFL6dTDuhgkD4HcNTD6mCQNAN1wk0qYJA+mT59zCxgkB5cf79u9GCQDCnZxW/1YJAsrWoen/agkBl73qGg96CQLIDSWCx+YJAGbfVa3kRg0ByuEA8ehmDQP/htjJzIYNAxmeKyHEpg0AyQSuvRzCDQHVYihtrMYNAydpiJh85g0Dowcl920GDQJ7bNwbiRYNA7ljMdkqDg0DaofdUZeqDQAXobvFo7oNA+hgpTW7yg0CxdaEulviDQGazsnTSLYRARdrZAA9OhEDU33dE/2iEQCycVO3/cIRAVf0p0Ml3hEAbwmaN9niEQAy7E8R4eoRA1qpGSyR9hEAqcKG0cIKEQMh4LbNwooRAqAzZph6lhEDCjdkdyqeEQAAOLzF4qoRAM1p9g1KyhEAArJrQWLaEQHUrkvwWzYRAkhO4KHPShEA26Vg4atmEQImS/Exq4YRAJYaCh2LphEDYBN7mfOmEQERlG/s18YRAdkYs7WPxhEDQISR0v/eEQPo46542+YRA2RLOaFn5hECbIMjvLQGFQOAXLZ3gBoVAFAPzY5QIhUCsBW6dSxKFQJqG2Tf2FIVAurRQp/cZhUDWnmZX+h2FQKD7P1X0IYVAeuhxmDgyhUDC1Xw4AVKFQHdLTyQEVoVAYiqBgaBhhUB0yO7joGmFQI8r6JOZcYVAvIiQI7RzhUB4TOHsmnmFQKx8A8/l0YVASH1B9ujVhUAp6v+wolaGQH14bUGlWoZAE2xj6ia5hkBFUo5/fRKHQGyt2a+4HIdAolDnVrkeh0Aa1TzzuiCHQPnEWLC8IodADthMlJEph0AXGOQvkTGHQDfeU4+JOYdAni/Q+nx+h0BGhcaqgYKHQBbqUQyEhodAfDga2Mexh0AsMJSTY7OHQLV5TWXHuYdA5Ccu2JS6h0CwXziJaruHQCxRZcyWvodAQg0ev77Bh0BYyy99xcmHQLjrLg9uBohAny1MJnkKiEDGpvhg5R2IQPp3bLnsIYhAKYpyufIliEA7eV+mXD6IQAW8YSfHq4hAfjeERc+ziEBKXAJbMr6IQI2BXIUzwohAneTwxZbyiECcHrWDmfaIQBHJl/2c+ohA + KBZXds7jZUCmvpxNHCRnQBTpB48/A3JA - + - 1yAJRR5YlkRHEshE/f6jReIdu0RgQwlFUIYsR5PSPUV/FZ9EjpOFRtSp/0QnqBpH45eoRBDM70TBRRhFq1uSRXfwh0UzbgBFvUXQRFHYT0Wq6q5EMT0ZRSOhqkSXNWVFDBQaRyVpS0aEoI9ELJGRRUp+JEUC1xpFU43PRKH22UYaMb1EFP2dRd1+y0R+GqZFfAz0RNdTE0W2s7JEJvrHRMLilkUBReNEtLgtRpoBBEWQAOFEAAeSRaRX0EQ5wsVEkgCwRA5RRkdBAKlFLaqERoGR8kbLah1FzG4MRcTjgkWCmK9Ese0ERy+F7kTgkx5Fv11RRQ1zbEWa6FhFxwY3RXHQaUepTrNE062ZRDZ2bUZqJQdG1Q0QRn7hrUTkk8BEBnkrRfC6lURFu8lExKXFRdcbG0Vc27dEoYuJRTGtCUWWAoREj7BjRZ452ETrQrVFhjOQRNG03UUe9p1EEx7KRMP1/EQOme1Fjh+0RPvyhUayystE51GIRR9pNUU/tp5ExSfxRGQTHUV2wMpEd44iRYFAuET8+o9ExsSPRLLk7ETv7wBFw3mER3YY7Ub+UYBFY98gRq3350XUCpxEEfXWRRJvT0duE+REZG45ReMGzESA29BEd/CNRCw/e0Xz/OFFbhIISEEHxUVuZXxGx44eRdzYpkR5xbJEVqyWRCKIv0SsRiBF9GLIRJD5V0Z0gxxGxkCKRH6HbkWuldtE1h6pRMWiokT/lMdEsa0VRQB4ukUNI7lEBKCcRHIf80RAS2dGXwauRGaO3USkDShFDcwSRbij/UXLN9hECgVBRVB6kUUR491E+5XHRF9F5UTVKMpEkVUJRfQ7X0WOebdEeFsvRR7400bneh5FqgybRa14yUUs/2tFHDyZREzO30QnKttFhwTkRIkRvEToJORE9YjORBRlG0VrWLhF628WRpy3eEXnPPZEnCUsRo9OAkW/4AJFZO6zRWeSCEZQeSxGMHzrRhJKp0Ro3otEgoW4RXHDs0TQcYtFb1+iRf3uukSeIOtEDqJlRVApj0SDnwlHpJMdRSY1tkX7EaZEpJ6tRMBxLEUYPapELXA5RaR3l0Vi9bVEH7aQRHW6s0QRGMZEUliFRTlqo0Si0jdFAPLVRH7phkYmdcVE33+PRuM1B0g1ueBE02fCRkZNkUS95F9F/VDPRubwmkSwBYhFqml3RrXIrkSRiPBEXkHLRBO89URQPppEFt7lRCbBYUV5dqhFnexGRdrAkEQwXCFFjf29RJa4lkhMkt1HLC+QRsXjMEWz5v9ECfPmREpW4kQ4zZxGXdakRAFySEbe8WhGCF79RBF4r0Q2avJEOIRmRbG3u0QYMF9FNbEvRnZjz0RVuxdFdCOmR5vWTEYUY4lF0My/RIymJUa/IzxFWI4dRQxK/0R9bX1FUdmxRJ36zESm/+xEfM0GRei2R0WwHllJ4W64Raz+CUWbMgFFOlJYRVA5VEjYrr5EIAIkRXAsnUaptolF0YhbRxYQYUe79q1GZDSVRAQUG0ZLSr1F+CxKRatUW0UsGQ1G0APkRGZ8okXanPhGcpEZRv5Cp0Uyp05F5vd6RRwt6UQXrxxFe6F5Rdqws0VWvr1E4OkvRUtAlkXuff1ErjJIRWfS/EVBNQNFtuQWRSkWAEUiAnpHWSXzR5E4AUYNMvNGo5SwRHPoO0Vx1dVE+5IQRR0c3kUbF7pEuExgRTCbaUVSTR9FKXJJRa5/tkZ8mq1EBt3zRANWGUU/r9hEtrdoRleGLkUsR8tF3LY8RV/ogEXa5t5FuGVURubxiEV7rxBF4MUHRbciJUej1ONGpxeYRT/ePEUhW5lEcKW5Rsq+10R3IqJEHu5CRtqi6kje265FiHehRDbqd0Ur9LtHTeWcRVNgAEXlURdGpTfvRP4KlkSKa5pFYxidRuDB00QvgmJGBhynRCgpEEXrWPdFRInMRPP/nERgIYxEdoptRYvAK0U+rgVF6N3vRDfCyEVKBBpF7ffxR4MQ2EXKpx9GHvqGRZA9OkUsu+dGamiXRS3iwUSKmApGgssZRcUpwEZtcCBF0dboRBKewUT2CVpFNubcRcH/bkV7EJlE6O/MRMr8mET7LL9EDOsORtniv0Q7+CFF1tGYREMNu0Ti1hBFP7LERNz+LUVZ8rJEUoJiRvWm8kUFXwpFrffFROZGokcvlx5HBTXrRNwlI0a/bqlE/4DURGgyqkSFpARGadZoReTMlET7reZE282xRH1vREVdoMtEqAPKRSLy1EQpH/1ECeYtRmcdm0Q+qT9FGiyXRemXEEWsxD1GSNB5Rd3HO0XcrvREqQe5RpZZH0YqWcNEDl28RPeRDEVH97BECPksRfcKBEVC74lGTkuORP/sC0ZsWb9ERAr/RPAXMEX5T75E8bOqRUHnIUX86kRF0yn2RPgAmUTGuwlFaaCjROESWkbDAtxEFHEPRt2DgUXdcKdItmrGRO+AFUiPbxBFvDH7RHlwnkcmN6dF/aKURiiNx0XAtxZFHPfZRXOcLEWMIlFGPff0RDAEJEVnNptEhZClRqkHmETsdYlF+U7QRPfk+UTblzNFOhTFRQO0kEaugjNGZK4ERRZM7URjSb1Ea7bqRA7aWUVxdq9E6aIdRc6as0Vd1MdEGtuURKIqsERwOLNE5CXARBUzBEVg4RtJQ/skRQUGtUi/yldFO9McSAlqIkeZYy9GTF4KRuDmDkUOr3JFX+3MRDcwUkZ9A25FNO5WRQUWEEV5I15Fba/8RLMnvESmCe1EHDmYRB1miUSOqjhG317RRpkNgEbmKfJFu2qfRf5gB0VBCjFI4XKvRwjOJ0e3O9pFkUdkRjc+AUWLTJFF4k2rRI+MHUbE9JtF6ioJRUCtJUWO2sFEpVk7SGILukfg9FVHW6RVRuYs3ERCP6ZFb16wRBGnz0RkfaNEN/m7RGkTk0bzWyVG5CliRY35DEUNAK1EH1beRM3z0UVM9R5Fi0pIRftunESpjFdFv1HPRAeTQkWXkpZGtAmoRgvSGUZZyKlFHudoRTqcEUW6wq5E0v4fRdbqUkfxLs5GpWxZRr2+zUQadKdFqNnNRTeUn0SOhyBFKzIBRQs2/0SlgclEiDUdReNfl0SveLBEds7vRZiseUXCpa1EL+DgREGMBkYRV5lFuZMwR94XxUbVp1RGBX34RDrE0EUDzx1F9LQYRQhiC0Ut3+ZEVyHrRI0LpETwBoJFc4IDRmss/EWUG6pFylluRkO850Xt04hF6frhRZZ1hkVEQ+NE6XAdRoDKhEbhCeBFS+eaRUMpikVhF5hFrBpZRWoU7URah8pERsbMRED/EUWL+R9FS3iwRPU4n0RknIRF9HHORPP2NkXPARxFKRJZRudO+EXe5W5F + AACAPwAAgD8AAIA/ - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - eoZh/wvBckAuNpXbbsFyQBgBO83IwXJA9ChRt1HCckAWuIkXp8JyQCppFoM6w3JApWSHpMTEckCT6u6mW8VyQKyLVaAAyHJAklczOkvNckCoNImPWc1yQFwzl1JD0nJAiDnShnTTckBC+saCz99yQMho+oe44HJA9Nz7bkzhckBkc36uT+JyQNwDdmaP4nJA+sF2G8jxckCOyNhcuPNyQEX3R0ui9HJAP4TqNMP/ckC0tI319wBzQGgIY7iKAXNA5Aq9RDsCc0Bw/dFpzwJzQAJoZGH6A3NA7OLXJgoSc0AeSZxrvBJzQA7PUj74E3NA/theQk0Uc0AWs7zO8xdzQI6ToRR6H3NAMjpXNjkhc0C7ny+kZiFzQLSz+vXkIXNAsoaKpcoic0CMfOL9DyNzQPJ0oTPPJHNAjHwyOVgxc0CE7+29zTJzQOP5UeU4NHNACIXU3tk0c0DQjIs2uD9zQKRyTK14QXNAZfNRQLpCc0C2HtRkekRzQCJN4dKbUXNAZANKWEFTc0BNPm3Bo1NzQDpWvs57VHNAHJbL9otgc0BTtNUiHmJzQDg/JPs4Y3NAMtxHSyttc0BmMJweVHJzQPRpgAdrcnNAVnN8IoVyc0BVq1yauXJzQPSVh1u3dHNAQnhSgE11c0CvRpu7wndzQDnL6Tbfd3NAN/5e8Rx9c0CGjI93eIBzQIgZM3qkgHNA5bqS2w2Bc0CoArnWXYJzQMBYrE/HgnNApiH++kSQc0BXpJJrh5BzQBTcjBVNknNAZKPb0M6Tc0CUGGp295RzQOhXldK3oHNA5kGZOVqic0C06ZXDA6VzQO/svHh9sXNAvaQh41myc0BZJ2OoprNzQA4LBfizs3NA8Kft0wy0c0DUjcpC+cBzQELfbZzPwnNAV1RfCyXDc0A+UFxhtcNzQAmxMmTX0XNA1LJPufTTc0DIM3je4dRzQIQi+T+k4HNAzltRJzjhc0BI1xMqZeFzQDhk+M8Q43NAnE/biDf0c0BlCJlOQf1zQH4y1dTkAHRAjIAisXgBdEDyfELkpAF0QG4SCCafAnRAhn2PqLkCdECMD7D3hhF0QCRNyZ1ME3RA0EO56HYUdEAgccx+uCF0QFbtU/e5JHRA1G1zh7oydEBi8HRK5Dd0QCor2LJ5Q3RA+ErMSvdUdEC+oeBii1V0QLpZQqnbV3RAyp66njVddEC0zxiTtmB0QB2F3nwIYnRAOqIdH49idEBDhCdFT2R0QNCxg2rnZ3RAB9g75yFwdEA65RAFQXF0QCBTmSI6c3RAHm9tHDd1dEC0dblZ+IB0QJPGz+RNgXRAeDkqkRCDdEDoZnhXJoN0QKp/fhsVkHRA8IXS/DOTdEAvpMoRUZN0QIb7xKHOoHRA1DJcQbiidEBS2xdrD6N0QN7MocM0o3RAWbhfbgiwdECGCWEHcLJ0QPxGRAfJt3RANgpWIOLAdEBevL8t6sF0QM+KI9D7znRALI5f+G7SdEBM1AGmPNN0QBqNW73g03RAwNt4CM3UdECMuUlc29d0QBhHlBu44XRAnfIMzabtdEDyQ4bDi/N0QIYE44FkAXVA6Ifwal0CdUD0CEH3aRJ1QCFWMpsiFHVACOgEE50idUB+Wff2qzJ1QPbSgf/LNXVADiyWxPg3dUAgl2caVT11QOR/nsVNVHVAgY0bxXdVdUDs6nwDDmB1QH9riuc2YXVANfCR9tBidUD+kVlGZWN1QGjYR1x2cnVAdKbeW410dUAniopMeIF1QCD5Wy6tgXVAPfFOraaDdUBGgfMxmoR1QKzXwNS6kXVArKcx9QqTdUCuJM9Yb6B1QAAR/v/4wXVAcqkABNDTdUDkztdu5N91QMLyyvwH4nVAoXs8uavjdUAWexBKOeV1QClahAOy63VA7X8CnEztdUCWNj1GpvJ1QNBW2PM583VANOCKYUgCdkDWvzeS0AN2QDKjYCBNFHZA9pTyFQwWdkB9YKxjiCJ2QIAFDduPJHZAAg/aKUsrdkDvL2YrHzF2QApZLmBTM3ZAENuc8Zw0dkBl2TD/G0F2QIxd7PuYQnZAlf3N/cdCdkDxlheNpkN2QIF2xLN5RHZAqDZTzRFRdkA+k4ohzVR2QMVv7lLZZHZAiL+7qZGDdkCGOWxbwLJ2QC6ehbwMtHZAvv3hvb7AdkCIDZSQzs52QIiItl3z4XZATbqzZT3jdkDa9WjvkvN2QOPOHgYzAndAhGm8NwESd0B7dYUxkBJ3QFvI/vUOIndAVBLfgKQzd0BTjuI7DTV3QCa+GuacQXdATyN+0bBDd0CkxqwzG0V3QJLDuIkXS3dAd0cWWEtRd0B/2Ps2klF3QOHgZgcrVXdA1r4+mNVad0BDOdogkGF3QLp8Vjonb3dABHaHjJ9yd0Bom42T+Xd3QCIMIIpCfXdAmNpxM5m0d0Bn/Dj7cLt3QL7a1B0zw3dAxQ5R5HbDd0Cqwbi9lcN3QPy16KZ9y3dASroL7W7Td0CQVDIJbOt3QLgcHttF/XdASF0TTqkBeEBeivOKoAJ4QPQdoFbmB3hAINvHcf0HeECDuLHOxwh4QA4Ab9YfDnhAoEYEWLcReEDO8VTDTRN4QP7czfNsInhA4MHRa2c7eEDFJVXFC0J4QKYUuY9rQ3hA0ipAExFEeEB2Q2RQeUV4QB7J3jnKUXhA4c+4QZRSeEDOgqzrHlR4QHJm4s6HVXhAAIvRMPBXeECQcgqO+mB4QCZpce+2YXhACIblCLtieECjY/kM7GJ4QKAZACuLdHhA5Cj1QjiBeED+fYvMpIF4QMjkQ5SZhHhA2l8CZpaReECZjenQp5R4QFqYmnX4snhA5zfYBHyzeEDfpPN8pLN4QEpS7rnTs3hAEB4Xutu7eEAnUrq7zMB4QAKiG2n0wXhAq4zUarHDeED4KAFE4sN4QArLPB8FxXhARq0bYLbUeEAGOyZG1Nh4QI5fYrgC9HhA5iKa4Ir1eECEujsRhQt5QFxb1fXTIXlAbQfxG7sjeUCyBO6Osih5QIJw++kMLnlA9LOt+WUzeUCg7IkyyjN5QF4FtkzjOHlATPVKrftCeUAEifkZQkN5QPz/C2f7Q3lAkhRpO0lLeUDZzjBXzFR5QH57bdVvjXlAkGozP8CyeUDIBlgVQtR5QFYEbxRS5HlAamXI2Az0eUCP7sziQDJ6QBkNkDcMNXpA+ac+yU1CekBW0w9uGkV6QFAR+CtUUnpATZ4f5SZVekDMjyZFIlx6QKe4sT6LcnpA+gKbxomBekAORLi60rR6QAccDzsMtnpAOuf2ABzGekBQR/WqDMh6QF6umwVnzXpA+YVQo9bTekD0QQ1j9ON6QLiVYVk75HpAOCdJFDXuekBgugiaF/F6QNSIDQBK83pAM9L1hcLzekDoA2PHSfR6QHhGZeyj+HpAxBoMjnwEe0DYzrvfwxJ7QFpccNNLFXtA8/3X3B0Ye0Dal0hIfR17QD4hvVpZJXtAluh/dcQze0D4PwPBzZ17QAq4Zkkno3tAxgUze2aoe0AiOni/h6h7QOY0O27I0XtAH2mw4ov1e0D69ama2gF8QDRWswRmBHxAmLj4xI4EfEAUzhKYmAV8QLbyeU/REXxArvgVoXQUfEDAmJeR6Bt8QMoupO3uI3xAutDAcHgkfEBSSJGvzEF8QOpEsh1tRHxAo+pl41FIfECYSWLnqk18QP4XzS7wUnxAFBQ50QlTfEDMi5LbrlN8QKzHrtlWWHxAUJE/fwpifEAz9j3nu2N8QErejrJob3xA2ZLqniOUfEDAoGhbWZl8QJNZLRa0nnxA6PKvMwmkfEAMnAbGwrJ8QGbLDYoRtnxAzAJYYmvYfEBRTLIuxN18QAjsz1FX4nxAZsAn/RDjfEDvsc7bEOR8QPiZYP+m5HxAZpqG/mrofED7q6MGwu18QKxK42UU8nxAFG9N/1PyfECITBpdcvJ8QJwVIfZd+3xA0s0HKAICfUCgXAP/SgJ9QCZt3uFmA31AeLrFZkQSfUDNogEmsRt9QBKBrUU+In1A0CbXf48jfUDaDHvAtiN9QPdRMvaTK31A7nwMFkJTfUAk9ftjuG19QJICEBtnhH1AxmOubreEfUCVLIUFlY19QIWReZRqkn1AY37HCe2SfUCA/v8aP5h9QBDy+g6UnX1ASJFLhivDfUDY2kIo1PN9QFBxnvqQ9X1Ax0AcyncEfkAqMXkbgAx+QJpwxhivHX5AUM8use4dfkCzOBTaRSN+QHi+YgCgI35AoOYHXpEofkC9/j3APnN+QDbHBgW3e35AeO8fpb2DfkA1Hc9Zyoh+QKVIYb3Ei35APiBmb9OTfkBkjwK22aJ+QK4kMb6Qsn5AuMgRQuPDfkBiSosQr8d+QBdsLVNyyH5AnvAo/MvNfkCuROVJJ9N+QGMeaDMeAH9A4tRx1ZMDf0DembIFnAt/QA1GNEZ7U39Ao3EITIpYf0Dmwll9411/QLDDNT64cX9AzCDaVUB0f0DUwpxnYpF/QG+mwA6Xk39AxFC+9Vyhf0CgsxcNQ6N/QCC7l8+aqH9AAzwF81Oxf0DKgVuSvMR/QJTs7q7Ky39AqpIMkdPTf0Bsxr2ryNR/QMV72LmR+39AQG5/ZM0BgECkdGNMIwWAQPYetuFeGIBAENzUDnUagEB/1faf9yCAQAW7h4HsKYBAgJSYO0AygECkJl8Z+zSAQA8Lb5cQOIBABjLs4fBIgECi1imW51CAQIY7XW4TUYBA5Kxidw5ZgEAMFzUiIFmAQH1HfGpGWoBAr2AmOQxhgEDU0vLm722AQBOSO+Mqb4BA0vc4UPRxgEDJBFBBHo+AQIBbrxogl4BAQgI8lIepgEBEYk+1Eq+AQNou2fl+soBADjziqAW6gECii4rMTbuAQPxoZPSyvIBAQFe4sF+/gEAV1qonUsGAQGYyKo9lyIBADBqt+lLJgEAujFMoTNGAQFSPL7Nf0YBAk/nfn0nZgEAz9asScdmAQCwDT0BE4YBADNn9P/bogECU5/rMSu+AQJQM1sA884BApzWFYQX2gEBb+qo0aPqAQOTImxNr/oBAgyqdHz//gEBHUsKYtP+AQNTGdbBsAoFAZkSErj4HgUC3kgztPA+BQDG/U2g0H4FAgAAgVDMngUCkIp7OuzGBQC+kzEUXMoFAym8TAxs2gUDMkvHhKD+BQEr9M5D+SYFAEm40NIJggUA9KaFkYH+BQC4eytNVj4FAGmsqJhCSgUAWNN+cE5aBQMKrGe9Vl4FAsPxdABmagUBzk1fCUp+BQGrRSUuWoYFAvWKky+ihgUBn1Vz/baiBQLQAddhKr4FAEvhie0u3gUAO8NQBp+mBQNtLRJGp7YFAvEYrdkDugUBcuN8kp/GBQFy7XRam9YFAKhjq2af5gUAgDJ5A7PmBQHgXvUDv/YFAmOHY7NcYgkBbQTcr1SCCQO7fXJT5IYJAuXGy/s8ogkDYIW3LoCmCQDrXM81bOoJAhHq+HAhOgkAwGlEk2VGCQEVY6/IgWIJAHsNimRBagkDiL7uwfWmCQJ+UsKX7foJAjQipAJaAgkBQeGldMIKCQHicytfKg4JA5cPMnGWFgkCw6dTDQomCQIiS+4dCkYJA70jYszuZgkDIqGZ+DaGCQC6T7TU6oYJAktc5Ww6pgkBQm8OOMqmCQNyWJvEHsYJAHxtOb7vRgkDesuOAvtWCQNj+Xkyy2YJAuqAUjn3agkA4U54HvN2CQBzTzMaA3oJApOHI7q/1gkAjohhrpgKDQKF3ywl5EYNACuMHdnkZg0A54gAvciGDQBB0NjiKIYNAulCfWnApg0ACOBtzaTGDQINWFMYsaYNAAhdwueOBg0Bhgjp6ZeqDQFs6C1xn7oNA4ylKM2ryg0BpqYVqlPiDQGpWWusDEoRArGOsGNIthEBshOUi/2iEQPsLTDX8cIRASyCNkcl3hEBCWB2ZdnqEQAIcTWEmfYRASBOEcm2ChECcAYIpcaKEQI6VSrUdpYRAnOS6CsynhEB2nvKQVLKEQKNBgipYtoRAtmX/4RXNhEBwdOxdxM+EQKCnAepp2YRAZCREQmrhhEDfLAvvYemEQOQFl5A18YRAIsdC/l7xhEDOE4eWvfeEQIbZ04Ay+YRAiuS8JVz5hECJo2/MLgGFQHI2TvDgBoVAeFLwhpIIhUBS5YZa4gqFQBR1QYv3GYVAIihiHPodhUAWyj75NDKFQIEcmeEAUoVAxNZBawRWhUC4V40H/VmFQICb2h6gYYVArPjeep9phUAaRwHBmHGFQA5tNjm0c4VAzkNRS5p5hUCD1lvAkIGFQG10xMvk0YVAGnyHpOjVhUBC3m0w4NmFQOOC/GmiVoZAaRor3qJahkC6sD7LJbmGQP3nykkmwYZAMvNk33wSh0DYf8TXthyHQMDjfh66HodAmdt/frggh0CoUjEnuSKHQN5y+zWRKYdAXF7ox5Exh0BztnzshjmHQDK/BT9cQYdAV29BlIpBh0BmGBNwXkmHQHwGzFh8fodABDK1HICCh0DqwzCsxrGHQPhZj8tis4dADbO9jci5h0CRsyZykrqHQE663o1qu4dAVe6y9JK+h0AQMrArwMGHQK3PL7O8yYdARWyEenMGiEBZQQqO6yGIQHsQ4jBZPohAzG/bSF1CiEA7QWq19pGIQLgqOrjFq4hAMRdwo9KziEDZB+ZaMb6IQHe4/4Q0wohAFCY15ZbyiEB3ahe1mPaIQH6asEqd+ohA + NrgMGZxjYkByWoXuS4RpQInLvLYcpWpA4rYaRubicEA5Cx9LftNzQA== - + - N7TORLM+w0WakIpEgn2bRA1wIUeOqnpFGnGlRGQa9kR+oYRGgMO4RECyc0UWtA5HkK3hRA0AFUVc97tEWX6ZRHh/pkUDdk9FEyePRUA8skRs6bpExxnFRLRZykT/VY1EyazGRHUoIkXFwhlHVSCzROdRbEZws4VFUBq/RMNVtESqUdhE0NW3RhUEn0Qc5FVF1BQKRWxz2UTukLJF5Pv7RNW/OUULJZhEUGy8RBHdiEQh/t1FzPmDRMT7N0ZOS9lEGvLMRDlZnUXyJqREAfmpRNX7jUQr3QhFhEJRR1VtyUQpOqFGFt95Rp+J9EY9D7hEd3gTRRzQakU6JS5FLLa0RIgB00bIwb5ENU2+RHv3VUUMgyxFTvMEReMQHkVOe3pHGOCwRKiiVEaM0hBGVQHaRfC7QUUTw7dE+VCWRJlUr0Uu+pxFjTUtRXZmmESn46VFHb3ZRDNRiER1NU5Ff564RJxPkkX187FE5uXwReYH50QO3v1EZyniRMs6v0W5D71EJMakRk2iDUXFXYVF8i4dRWPMCUWY7plF0mGwRKnbEUV+cMdE9hG3ROGx5ETPGQNF36XARICu2URT+4FHStIJRyoalUWrYQdGI5zyRYIArUS0TyNF2MCoRY7Hb0ffmy1FWZnBRBwRNkVV8yZGWrIORZxROEi5g8ZFgneuRro0p0ThHB5Fuw0TRUYECkWTg89EyH22RJCUM0aedg9GVDnhRJBJqUR1tgVFAqUDRZfguUTJ6JFE/gSNRMmsVEXizv1Ec223RBcatUXNXaNEF59DRtYa8ET30xlFkCb8RTJo10TMGzpFGd3JRcyrDUWjx7pEJasLRYchG0WtVjhFKYVARUzAqkQodSNFZGIYRrnfdkXiVgNGoGfKRakVC0Vnu7JE+c4cRRD/3UWjcgNFc2roRNXc4kRN3dBEgmkIRlJ9qERrRO5EeII/Rkg/TEW9495EPAUrRsmMC0U2f8ZE1ErIRHhBg0XD6TxGGOnHRccMvUY6/ydFdIkHRZV+oUWGEwVF+ouORS7itkSdoUJFzYkoRTBGEkYi9OhE4/YMRT6A40QNcdlFOHXERGSVWUWO7slEbTnBRCB860Tnzt5EwBu4RjvL1ESuDJ9Fg6RuRsbvBkiHx41GTL38RLv+1UbbHZ5EIEqdRUDhZkZjRLVEe9DaRMU/CEUBKWlF0QysRcxCd0Wt2LZE6567RI7m3UgDm6pENGw1SBoCyUTT2udGeUTgRd9toESzF69Gtv6iRgj1RUa/vQlFRjwRRUiwBEWPx8pEVCY+RYQwT0Uj9sNFMtclRkyUkUQ2AjxF3KOUR1FbiUYhyo1FBIMkRZQZ+0UEh01FS+YLRaPa9ERAx3JFPYigRO3cfESVfUdJGdGTRDF9R0W9mVBI/bZGRdgKi0agiphE0Z/hRKhFP0cKylpHUgSLRr/CFUWNXaREUEznRRr0T0VxQcNEczF5RaiP3UQMiX9FrfCaRSMU9kSirBNGGg+5RgGbIEaRMrBFB/EPRQQqIEVCuAlFGMKrRHf2SEXQaidF+AS0RIVth0XU/1ZFs2mhRdvU9kWxd69EVGCuRHDvmkdLuahHNmctRlAyrUb7PLlE5uXSRPJa5kTz45lEJgVuRS7T2ETm8QFGqeYHRdDh4EX58P1E6T6lRDmrV0V79cBGOtEGRb1d+kTJqCxG//K0RMiLV0X1+MlF/VNSRT1+B0ZzdTFGzetQRZX0ikSF6EJFalKfRIlfEUcwj39GgyTRRIaoS0Vr+ntFXSaFRs8iMEYD7NBIKP4uRStRlEUl8ZJFr76eRxsQlkXRZDNF3UsBRr+hy0X9fJhEbzOZRobQXkbUBBRFZEYfRapVvkULC7ZEooTDRB/G0kRUfI5EYWsJRTfMT0VWiuFENOWbRJuS10QchqdEO0iSRVHAHUWUyO5HlVAGRnVwJ0ZSrAJFvkqdRZSl3kTHodNEDFLoRikWT0UUsSdGwIgVRX2Co0bJolBFOe5IRRQdOUVQpJREuux8RcEy7UT9ft9EOMWiRNL1hkRMP55EMruQRD5qckVUNYdE3mxrRSCbsURLRMxE6ZC1RFmfwERA2w5Fho58RZTRDEVqNtVEopTpRfvdjkWVlLpELuHIRNUHqUSbmYRH7VcKRxAWKUVhOeFFu7bVROA3n0SB9rpE8luNRLONBUWHHoNFAmuYRcFn5USRKAdFt+SzRM0M80T0mKJEeuKgRV/nIEUf31dFOTj6RLp+OUZBObVEIfk5RQtLiUVj3fJEZaMLRWiVh0b05J1Foh4iReL+PkVjb2xGWTW9RdRH+UQozo5EAheURLpl2ER1aspEsOIGRRGe40SJU45EogUJRVGcakW871FGY3+aRXrRskRhJptE+vvDRHzvHkVKL6dEWnjDRANAzUXuoPFEuIyiRCG+t0SmgsJE0k1GRvDI0UTK8idGabDWRYXFjEiCPM9EbpbrR5F+h0cIt4lFop9URiStsESY0rNFGgGkRCzN7UTqZxNFgtyuRAPZF0bmBZ5FPnAxRqj5j0QyIwdF4GJWRYUwEkWK105GdBh0RSPb3ETrfE1FvuD5RLpDxERo0KtEs+mNRKValkQJ+shFMOqORhm4/0WvFN5ElYA0RZLnk0RSo15FMEBRRaSwJ0X8MrpFoWeaRN9lGkl3NrRI0hfBRBltM0io6y1HZF33RaKAsEUZEx5Fl2VvRtQ9o0XoWB5FBIIsRfU8yESAP+VEVm7hROABw0S73+pEHDe2RG1A10QPsxRGP/9CRm1SK0awGL9FsWx4ReNXwEc75QhHk3TBRk/E7EVv0MdFMo8gRd6W7kRIGgZFrQ01RroMuUWrpAVFaYRQRZ5WskTzb+BEG0GGRAgjoUSyo/RH4Q1LR9aoBkcFlxFFw3IXRpOIUEXSBIREZmgORUkTUEab8/VF0AauRP5Rx0QCHpJEW/2SRK/IzEWAlx1FwefyRLjHSUXhIOJEAW+pRB4x/0VY6S9GO+ZWRSjlaEXJ6thEwNVSRY0rPUUcUgBHpsp4RpmRGUYBtMdF4UyDRUfkr0SBHf5EA8y8RI5Bx0RzzhdF97McRUfb70Qbj9pFavJERSr4q0Q3eMlFdfhLRXi0DEVvuxhHQ66BRgkVJUaMZLhEe/GIRZfzBkWFE4xFM6f5ROqy/kQsfvZEXfcgRb0c10Q1V7BE6DWdROO1b0XgRqJFWiktRftcNkWzIjxG7q+WRUUuNkXFBqNEAEHARO8Qr0Qf+3dFoq6RRc0tEUYKDbdGO2KNRcA4gEVY9bVFouAqRcAHVEUizZ5Ef67mROszJUXOVqJE+DgURYikA0W8IF9FN6LDRBDmEEWtcd1EKMbuRTEV3kWKm79E + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - NlhWuXjAckAj/8Y4DcFyQNJwtcMkwXJAvv6xODzBckBMbp5YbsFyQAzdQQDJwXJA78onVk7CckD4YicAp8JyQMBvkaQ7w3JAPPjTksXEckCYvZlaAMhyQHEM5VxZzXJAwPKAWEPSckA6tzckdtNyQKTSbx3O33JA4pV7o7fgckCWEAlK+uFyQEkDfLJQ4nJAcGT3CZDickAo6+pXyfFyQGxS5Uih9HJAUKAPF8L/ckAQFai6+wBzQE4ME7aOAXNAB+K21c8Cc0Aa4nys+gNzQJrSmJAJEnNA9U3ejLwSc0A8HWpTBxRzQBSl0OBLFHNA7HgNIngfc0A8MVvUoSBzQPjDD7A4IXNAiKfKMmUhc0BqkKRV5SFzQM6/ODUPI3NAqPDRtzokc0C0H2lbzyRzQPP//ehGMXNA8ClVbc4yc0AI5TPBuT9zQMpk1gpCQHNAQCJAcnhBc0BB6gOtu0JzQHDZ3oV6RHNAdEldvJxRc0DSxqETQlNzQAY3hh2jU3NAPQ4zRIZUc0Do98BxOWNzQBqYp47NY3NABoEtl2Rkc0BkjiTIK21zQOpzCa1VcnNAUogCnWtyc0DrjAdXhHJzQKiB6Mi5cnNAoFQxpEt1c0AwF+uyxHdzQL79kyLfd3NA1jkKWB19c0BXRlGteIBzQLP5kQymgHNA0kdinAqBc0A1pXVzXYJzQNo97szGgnNALgv5n0SQc0B6+fdphZBzQNKjCvdMknNAVKpm7syTc0CwCme5YZRzQLAjdOz3lHNAEMz8jIyVc0DEi8d8uKBzQBiRzyhbonNA+N7U/ASlc0CgLQMJfbFzQEEjNOtcsnNAWKHdxaazc0DGqYCqDLRzQDbnh/f5wHNAIOo71M/Cc0CauHXuJcNzQPoNj0u2w3NAJgXII9jRc0DWB0g259NzQFemk3z003NATrwWf+LUc0CVwuYtOOFzQJ9y5Q164nNAklvJ+w7jc0C/zI6pNvRzQERcQ9pC/XNApKhvGuQAdEAyPOQmeAF0QGg+mHSkAXRAIiiba50CdECqEZIruQJ0QLJM8+WLEXRAUGZOW0wTdEA2ghWQTSB0QFRbkVe5IXRAnPHsX6dCdEDArRX4O0N0QLaThm17Q3RACSfTN41VdECfTtab21d0QPLTpoc1XXRAIrmnUrdgdEAiUT42CWJ0QIioiKePYnRAXhwZRyJwdEDIakHgQHF0QIbzrmo5c3RA2hDudviAdEB2gY8VToF0QFbmI/ySgnRAzBf2KSaDdECknYcWFpB0QIDcv7Ezk3RAnr+YnVGTdEBdruskz6B0QO9In1UQo3RAtkLi4QiwdEDFPC0Ob7J0QGrhcxmQs3RA1Whob8m3dECacZc9Er10QBkpwcniwHRANNgAz3fBdECCpkkl6sF0QK+qEbO3xHRAMpS2L/zOdEBnwJvab9J0QDpHVL/N1HRARk+/0tnXdEBYlk3xuOF0QODwc4VP5XRAginrLk3odEBI3L5GjPN0QAyaO76mAHVAVCUqNMwAdUClKy8UYwF1QNcWxyFdAnVAJA7gHiIUdUBuuLtZnSJ1QORUImWqMnVAJJhqtMs1dUBIySed+Dd1QH1Y8elSPXVA4Z/+u05UdUDOIUwWeFV1QEFFJDU4YXVAHGu1tdFidUAcUiZXZGN1QHrcKMR3cnVA/lDwMo10dUDiXH32d4F1QFCnrB6tgXVA/KH0TaaDdUBerOqSEoR1QDJyL0qbhHVAFFpdpDuTdUAqNfystJN1QA4tVRrLl3VAOoYWJW+gdUBarYCLXcB1QKqGu8vOwHVAR3OTjPjBdUCyRgr4ztN1QJUX2dwH4nVAzAc81KvjdUB8a4Jdsut1QI74yK5L7XVA2mxyOqfydUCm3634RwJ2QBJGBK3QA3ZA0LmrO1YSdkBOnjh1iCJ2QPj/3MePJHZAVZuai0srdkAA9KTTHjF2QNcx1MxSM3ZAx6dHIx9BdkAeJu8em0J2QPnSEuzIQnZAGGVM9A9DdkDcqB6aeUR2QPD4IBDIUHZAPQh0rhFRdkCjgU50zVR2QApIyPPbZHZAYQtqyWmCdkDs10EBkYN2QEiIE+rBsnZASM7KJXuzdkBwH3w5DbR2QNVefO0axHZAnoPlOdDOdkAog5J2kfN2QOrOg0ExAndAvC8emAESd0Dm4ja/DSJ3QFMRRFekM3dA9pgAXQ01d0CmilZinUF3QOiGLNyxQ3dATAWsGhtFd0A0BMh3SlF3QI7R3wGTUXdAqsMVuihVd0BUtdQ/kGF3QGmPLjoob3dAEHeJxaByd0DRwObw+nd3QIylyjwIkndA4tdd50qUd0CrjsGvmbR3QCDu8aRSu3dApufrznC7d0D4QNKRnbt3QOxokLt2w3dAAEwO23zLd0AKlccEcdN3QHkLF7Zz23dA8QBoyGvrd0AXRvYvRv13QKzFepSpAXhAqUhzG54CeEDnbxum/Qd4QIbm0O+0EXhAMbhN9k4TeEAUhziobCJ4QFdsxYhnO3hAExIcy2tDeEARfrc3EUR4QHB6YYd5RXhAnFRHuMlReEBGhBFKk1J4QDDCjLMeVHhAegwNDodVeEBjPnnS8Fd4QGp+NCX8YHhAdKYn+LRheEAM0IE3i3R4QAiWJVS7dHhAtoxUhKSBeEAVQo9imYR4QG0a+mWWkXhAQldwJqeUeEAemrM2raR4QCJ9/+57s3hA/uFpkqSzeEAZNyQc1LN4QAn6om3au3hAogLPqc3AeEAi9O1gsMN4QHKMmSniw3hAVkMqr7fUeEBaWFXFAvR4QLfbm7yM9XhA+oJVg9MheUDIXhfYuyN5QMzFpYGxKHlAtFkd+gsueUD5GyKUZTN5QKW4gjPJM3lAuTryf+M4eUCyduj5QEN5QK4wbgD7Q3lAMswooklLeUCmGXQ6zFR5QKCsFqtvjXlAojZmtL6yeUD4CTodQdR5QFrrwnHM1XlAFf5/g/UFekDcNkqxQDJ6QMqO9xkMNXpAOMgQK05CekBHlXZVGkV6QISht4VOUnpAIMR1QidVekAqiGM1inJ6QPQGBBuKgXpArBHHRg22ekBZcQhfK8N6QNTsxy8axnpA0uryOw7IekDY5y7gZ816QLoOKE7343pApiqGlTvkekAoUHnLNu56QPiadGVc8XpAoXLg/0nzekDeWcRISfR6QNwlMxqk+HpAEiJfCwL+ekDkU4eQegN7QAgYZal7BHtAiifiNyoOe0BeC8uCxBJ7QBr2lKZMFXtAXjyrbh4Ye0CPAKVaex17QJQEEKpYJXtAfKl0reqQe0B+/Gplzp17QIQQavwno3tAmczBJGGoe0DSu2Xpg6h7QJbHx/TNrXtAT0jarPrje0ByO8M/lvF7QPgLImaM9XtArbnk+dkBfEBYpc9DZgR8QKDIl6+XBXxALIHhV88RfEAELEOGdBR8QLReNADpG3xA3C+Qm+wjfEBsj0o3eyR8QLs32t7lLXxA6aPBvMxBfEAoGwRKUUh8QM04VzJdTXxA5CK9U6tNfEBWyqhQ2VF8QCHzywPxUnxAVmZdlgpTfEBn0yaErlN8QABX4CIIWHxAx4dX701YfEAEF+pYKXF8QJa3k4oilHxA+cfK3FeZfECOai1ws558QNhei2zCsnxAgPX0b2nYfECeMG/4vd18QHikNphX4nxA8qCi2w7jfEDyrDcKEeR8QCDbhBOl5HxApUZQimvofEBQxRjVFPJ8QMCry4FU8nxA7CFNil77fECpaDKfAQJ9QBjakMJKAn1A4yhvw2MDfUDJ4sm2QxJ9QIG7AJ2vG31A8JHewz8ifUAIsJ3EjSN9QJASoIayI31A8CHGcpQrfUAkLgr/nzF9QABZtRN9M31AHElvuZaNfUDyZ0dzaZJ9QFa5pVvukn1A8rPCazakfUBCtjvIu6p9QO3syR8sw31A3BZlzejEfUB60hvU0/N9QGL1KVN5BH5A6vNTN60dfkCFniOA7x1+QLNe6xlII35Adv2Z0ZwjfkDizutot3t+QNuykCm+g35Al0fFUcOLfkCkVjJUyJN+QJtqgPXXon5Aa7P+GpGkfkDG0VqBc8h+QBrLJjroy35AlZNALsvNfkC05csjF9N+QOvIla2SA39A7BY1ZGJMf0CUPWNzilh/QNZvcfDlXX9A4LzzxjFjf0DlfEdpt3F/QIctUYaxgX9A9KSlqmKRf0C2y7bZqJF/QKw/yTyUk39ALjQKOV+hf0ACkX5AQ6N/QBZiVsScqH9ALCjOs1Oxf0C+arPUvMR/QCAO3JTMy39AZr9cv9HTf0D6d4aDytR/QAybiUaS+39AtaOZpswBgECCKzXqXxiAQA45scdBMoBA6on3N/BIgECGDUM+51CAQPCEVygTUYBAC3flq+lYgEClB4xjDlmAQOdhlG8hWYBAiF5QCPFtgEB+3+DnKG+AQPYMGwMqf4BAmHLOoh6PgEDuDQ+oG5eAQOyxEsjNpIBAnh1MYoapgEDU10UOE6+AQHyR9s8FuoBAcrh9VAu8gECiaU7TsryAQGBtIiN8vYBAfnYrpGC/gEC8ds1hUsGAQA5rDOEIwoBA9C85cVPJgEDF+NaRJNGAQI7ewz1M0YBAeSDbkmDRgEAZBvqvSdmAQLiVIpBu2YBA/DxL8EPhgEDoOjAZVuGAQBn4WaEF9oBABAia6wj6gEDeC7/RZ/qAQIx93zJs/oBAQcDhhz//gECYtt8FbgKBQMglVzA/B4FAPq1lFz0PgUCy81ZZNB+BQFMJFdg0J4FAigCTTDEvgUAGIH1cGDKBQMcv3AAcNoFAKEEsryc/gUBaO9VnpEKBQDAbHFhVj4FAKMhWUfCRgUDxNGNQEJKBQD4F3Z0TloFAJpNlOVaXgUBqyYn8GJqBQMrvwHZTn4FA0gogqZuhgUDgSGvv5qGBQMnRcLp/ooFASM4dc5ylgUB8KZo/aqiBQOpkeppKr4FAUpHzRUy3gUDLdsLJftOBQHyvGR4P4oFAnoovMKfpgUDaArW/qe2BQGZTetCn8YFAssgPi0fygUAZXsSgpfWBQKaBQ+un+YFA33PxKOz5gUAWABVdrf2BQIqutiLv/YFAookVmgIJgkA18gMo2BiCQIp3xVfWIIJAbT1EiPohgkColYdz/SWCQERU0PDQKIJAeGmEIg9CgkA5o7bA1U6CQEpRpMsiWIJAOP3MdgZagkAYddvynluCQPJwLQv8foJACKVvTJWAgkBYNOoUMYKCQGhVQufLg4JA2AJnxGSFgkBKvSRKAYeCQKjJwf5CiYJAE3JrYUKRgkDpgj73O5mCQISk/hYPoYJAdxV2pzmhgkBXoYipDamCQEAuTiU3qYJAgH/1HLzRgkDCSmC7v9WCQJMHHCay2YJAwrGnb3/agkDws11Og96CQEaZ9GR5EYNA5PBQJHkZg0DgfgZpciGDQM4TPNaJIYNAumyc3XIpg0CaUoDvajGDQNA7WpZlVYNAYFfUOGXqg0AqFEMFae6DQBAqDYpu8oNAzjBlU1P2g0B8gcxEbzKEQGEX293+aIRA+JR9q/9whEA8qX2ky3eEQBABnJb2eIRAUPiGjHd6hEBaLWhHcKKEQEwXBb4epYRA0Izddc2nhEDwBXZveqqEQNgbwGZSsoRANavRmla2hEDk+a790LaEQAeRHuFp2YRAXsRbxWjhhED00++vYumEQHw37HQ18YRAY4X6P2PxhEAu4ae/vveEQM3Ot+gz+YRA7KwaPF75hEDwwbKRLAGFQPQmvrDgBoVAr17aE5IIhUDGc6Bz4wqFQMKq0A73GYVAwMwZTfodhUBUAK4aOTKFQHj33mQAUoVAnp4ONgJWhUDcwnCC/VmFQDPPikagYYVAHvcbL4pnhUCo6RE9oGmFQBp2W/CYcYVAnswmoLNzhUBty6xYmHmFQLZnraTk0YVAOjSRr+fVhUDQDQAf6NmFQGZG0zChVoZA3p3AhyS5hkCCwKbAtxyHQAQhBjK5HodAIEx2NLcgh0D8ARdRvCKHQKxBaNaQKYdAdhWP6pAxh0A8PeaZiTmHQMCcydKKQYdAeoqCZ31+h0CEL88CgYKHQLIYEUbHsYdAUD4A/2Kzh0CwhYhCxrmHQBDPTlmTuodAoBbBWmq7h0CvR75BmL6HQJFHodO+wYdAM9bYKnPDh0CaZsapy8mHQOhoOwpwBohAEEpHSegdiEBstQ8R6SGIQMTksn5gQohAqwujJvaRiECcCjOGx6uIQODWEqUvvohAPwINUzLCiEAtk6QzmPKIQOCQhymZ9ohAYRksdJz6iEA= + NrgMGZxjYkA= - + - JwXWRAF4CEVPFqFEv/PwRLVTzUXzjrlE083ERFABLkcoGy9FFTi4RISQkUZPiodFGUcIR2FclEQuIAZFoN8ZRQ46q0Q9tJhFbwg/RcUloEXNzx9FBYfmRCr+nUTqQ9lE7/pYRWvZTkd/Qc5EJPtURj2/1UV00r1E/GoARWDm7kRP8wBHoaWsRKPlf0UQbKlE5Kn2RMSrz0UlrBxFr8YuRTgyyUQkctRE5JCpRZZ4y0S6lRdGTt/XRPSWHEUoeH9Fs33hROO57kS1179EkWS7REQ2Ukdj2uFEot1ER4m5dkaMpC1H+JkZRe60YkYD4m5FeJUzRSDK5UZNbAJFUVz8RFTNa0WXanBFdqIZRdRaJkVuF1RHEKuqRFrb6USP4xhGqBbPRKp9AkaAf91FfE0VRXyQoURdBcBElpbJRcTeVEV/l6ZE3aqhRUVCOkWOoZ9EwAcdRa/Ur0RFyKpEy0qcRQ7uAkYewbBELMkHRZUlEkVeZr9F4P6XRNyrdkZ0bRRFuqsyRVz79ERcmKRE26Y8RVqgykQ4hClF1t7cRN/AtkTD/qdEC9DnRNhVaEeef75GY81dRWqsRkboieFFqz/sRYQJWkcSeAlFUhkTRSOy3EVqSelE+aFISF0b1kUhAbdGevjeRCKx1ERsmP1ELxrfRM0uoUYizqNEpdESRmOb8ETAPrVEh9WqRI9XwkQx8BJFzG0jRbwUHUWe1/dEOzW2RDI19ERzT8tEJIT4RA+T40UjGrdEAD6TRG7U30Q+QlNGkpJJRXKcFEYaQ+pEiSMcRS2PtkVDRmRF0t/URHMuE0VQ+VBF0z+JRUmL2ERzZVpFw/M8RlRqaUVsXK5FyKX6RbNCtETpzyJFcukkRa7vsUQbeAxFPj4KRtz1zkSvqs1EE7YXRTQC1kSCns9EfqSrRqQZt0U4ag9GthWERWBCVUYi+L9E7l3TRFWmwUXtiRFGjZbqRWXn0EbAl1xFAXuNRdBg20Qhb45Flz0BRQEqbUX/Q7tE5eZnRVuDTkba+sZEnVTCRAsMY0VPMARFnnPdRHWhtEWmh9lE/IV7RcdC40T7IO1EIqmtRrSlZkX4ND9GEIQCSGdsrEZvzw5FT8/aRloDnEUU+mJGTN1PRaaSSEWaCX5F0E6bRa99L0V0rdxEPPGhRLKexUSy201FSzgoSaeca0Xk0IdIyRQ0R1bt3UVFe9xEU1rSROEnqkbTidZGVGPmRTXn4UQ8FoNFDjZsRaAukEW0mDlGzSRNReBMbUdCLEZGQDmvRdlObEV2U/BFbswdRVFBtURCrddEB8g6RetQUUltWZVFuGJIRTO/T0i88gxF5ZqORlDup0TYZHlFQQIzRwxeKUdWvGpGp2DYRPEY1EUdhm1FIP6jRL42fUXYLN1FNsY9RqnQhUaz8sBFOi/HRSb/E0V3nS1F6YICRcyC2EWUoCRFn70KRS9ThUX/0yBF8E2IRWKT2UV5O91Er4nKRBDqHEjKW9dHDXO2RkZGyUZtcwdFX4AwRW+tu0SebMNFb0zBRUMuwURzWN9E6UVzRb6vyERRDzNFcpyORk39IEXg7RxF1747RjKbUEW/athFhrADRbprm0Rg0YZFxoPARIesC0YUbTlGOTmkRYzy70Tp9B1FwDXYRJ0A/Eab6qxGhMnCRFUGakUsKEhFk2CwRJX9mkX3VZpG3ohVRtpIuEgzaHhFxVxfRX2RkEfPWrxFHaH+RBVD5UXh1/NE6R/BRbCgn0bGkcREGjk4RqRQvkSEUP5E8rotRV2uqEW168pED8HiRLRJB0W2N+hECH7zRSp0lUVDJNBEE2BbRWYs0kTnaQFIPpnaRcRrBEaD2V9FxHmMRZxAGkUmHvVGGAgYRhaeUkXowrRGlSOxRZXCYUVOzORFCri9RFeh80UGxT9FN3oWRZ7YpkSJZaxEQTzwRRN1k0QEWVVFpCHhRBw/pUTxotFEtrjHRE559UQmoxpFlhHARLi/skUCPLRFCB/6RFOIokekZBJHWUT2RSBv8UTVF8xEvk3XRK/ir0VwA6tEtbSeRXf0y0SJhSlFKRPxREr+BUaAMIZFpQi9RH5sgkX9wNxEfngoRlyP2ES0Ac9ENhdMRUb6AEVuTF1FfjojRXVbmUb4AgRG9zg/RW2hPkVWlGRGKvu9ReEo5ESfmcBEON3uREs1/0RzkYdGmoa3RKQ8skVts7lED9HHRH2qHUV3hOBEXSQGRtes3ERSVglFhcrxRIZgRkUZy0xGlVSzRKZiKEbtYPxEr5bCRcbsiEgSIQFFIEvuR5cNukTciIdHDxxmRZs9ZEbPIdZE/lOYRdzkAkX5/bVEpxueRLSHi0ZBJdZF9TJbRiCexESGDlVFENphRYVfkUZq3UtFZ0emRDqeQkXAqkRFQ5s+RYF1qES3RrxF2yWaRCh3gUbApOpFnFQDRTZBW0WgGLBEyj3GRM3FU0Uge6NER+FGRZbvBUV39d9FwwcURYyO00QnHrREE4UZSab4uUhzDzZI9wm+RP46HUfa2/ZFJOUnRoJYEUXxsaNFANmlRLWVI0Zd+C1F1D6TRSgk1kS5NFFFxXb8RMyNokSHQkBFfcbKRIY14UQMEvtFZiRpRbJ9DkYImJdF/HDmRM0loET41MlHwLAeRyWW1UbgYNBFGMXVRQW4QEX65hFF21QyRrYr00XFrPtEo6lYRfhBIEXjgepHygM+RyW43EZwWfhEpa7CRcQH6UQPmKBEv+g9Rujh/kXchixF7NoHRVQT2kTrhMpFKYwbRTb2XEVkCMhER7AcRVd+K0a2cclFbxcFRSbGIEWPBB5FtuXfRNUN8kRMBx5HncJ6RrWGMUbbgoZFnZxyRa97LkWJOBxFkxSuRJ6j4kTqvodFFVrLRDji9EScADxF3E8lRbI/yERUKQJGroZoRfDOKUWgbQJHcE7aRAMcXkaVMSRGuQDsRLZpY0XDcOZFu1dWRRluGkVehgtFKLXHRDfnJ0XcKB1FaT4BRRRqG0U3cCxG0U2/RWpxd0XT3g1FPh6GRcl/GEX+iAtGHB0BRwoP1kUnf0tFA/dORgIMFEUKmURFwBMNRfoLnkTGe1RFfSjrRKEDKEWQK8NEmE8cRdFSVUUjc+xEYwb3RIR6pUUT7UlFs4j5RA== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - MxWxQA/BckC9+oImbsFyQPD7aHhQwnJAiMzta6fCckCe0vN8OsNyQGUO7f4AyHJAtk3so1rNckDGkHNAD9JyQCT3PZ1D0nJA0rvhhqjSckD0ZrkId9NyQKxBRYrR33JAro/UUFDickCrswBVj+JyQIRiDjvJ8XJA+OgCZqP0ckB87yoz+QBzQDD/7p43AnNAdjqnRs8Cc0DsGQKr+gNzQHY4LpUGEnNABK+nd7wSc0Dq0bka+RNzQOp0w2h4H3NAnF1vJjkhc0Cpczoo5iFzQLq9b3B6InNArHj0Ks8kc0AOZ2cISDFzQKW17njOMnNA1BxcCbo/c0Al258IeEFzQOqczoR6RHNA1+karptRc0CC6w1nEFJzQA1hJ6miU3NA+FGBnoZUc0AsOD3ZjGBzQCl0c4A8Y3NAJ2sINyxtc0DoLIdfa3JzQIBllIeDcnNAmqyysrlyc0D4Q/6NTHVzQDItc6rEd3NAaFr6utx3c0CaRwbWDn1zQKApp5sdfXNAVoST4niAc0DyF8wOpYBzQIDXGkgKgXNArKebRlyCc0CYQ3juxoJzQJWDpI3+gnNAAFaWyIaQc0CoA6Q+TZJzQHH8JK5glHNA61ZejveUc0AYOoLwt6BzQKA0605aonNAdIRNaQWlc0DahVQNp7NzQPAMTbsMtHNAfBI0BPbAc0D8f69h1MFzQOg3GBLQwnNA4MfpkCbDc0DepTkn19FzQAQcJSX103NAJOV1XeLUc0C0FnKjOOFzQP1Em85k4XNAEEIocDb0c0Cozk6dQv1zQCRMTeriAHRAFov113gBdEDGl6/8pAF0QNwSVR2dAnRAZmLE2LoCdECxDzr2SxN0QFJ6ncO6IXRAmwwEv1wzdEAg5KMuPEN0QBVk4Fz2VHRAzi3ISdxXdEBROy2sNV10QKFh3N24YHRA4JY8zwhidECdH3tIj2J0QCqH9IkicHRAeOpuOUFxdECg0CHkFXJ0QJ5MMcU4c3RApF4GVjR1dEA4oRyJ+IB0QFcYAG9OgXRAPoWUmyaDdEDbU4aKFZB0QGydBY40k3RAUL8pLzehdEAOrsyMEKN0QAGL6q4HsHRAyqSUGG+ydEBcoh75kbN0QPPL+HHIt3RA4s3AjSC9dEDaDduot8R0QFMI85U/0nRA3Nlk0m3SdECIXpoZzNR0QFX7Hhzb13RAA/GOn7fhdEAqT06/Suh0QHxOB9uM83RADukKp10CdUDvN2YeaRJ1QK7zZUgiFHVA0b2D5p0idUAgL3skzTV1QEIDYlL6N3VARKa3F3hVdUCKKNZwN2F1QINhWJXRYnVAbKhnW2VjdUCYnK7ndXJ1QJT3QBKNdHVAevC/KniBdUATIQ8XrYF1QFJzAMSlg3VA9ROvaBKEdUAiK+BRnoR1QOSdVKJvoHVAXihUYfnBdUBOEUbWq+N1QMDnbaOz63VAnlVNJkztdUBRwKAop/J1QHrsc52783VAJ/lGU0gCdkD+gIDekwJ2QPY/99nRA3ZAIaBlhwoWdkA9kxTqiCJ2QDAXdR6QJHZABs+1/0krdkCjz+6cHzF2QMluwKVTM3ZA7Ti4Wx1BdkBg3yjgx0J2QIR0/tWlQ3ZA/giONHlEdkCsyo4My1B2QPRC7c8SUXZAMu8pbs1UdkDqWU5BJGF2QL/IXfVQY3ZAjnH2OdpkdkBmdj3GkYN2QFmTJczBsnZA2VzqJg20dkCNLQ3w1Lh2QEljPbrOznZAtsiVeqHbdkDUgOWPkvN2QLqJob8zAndAgp0CDAISd0CsvjzKDiJ3QJSHQvdxIndAVukMiqUzd0B+ixefDTV3QNMXW2WdQXdA/Dki5xtFd0CoWhupS1F3QOosMKOSUXdAKSbCcJBhd0BMLWyOJm93QAThyGygcndAwqp3SPp3d0BYdCIRqXl3QCbn6xh7gndAe6zkI3G7d0BMHyKHlrt3QIL5e3Z2w3dA7DZqo3zLd0B0ZnrAb9N3QNodcd1523dApG9znGnrd0AgG7OaTvJ3QDt/jItF/XdAJH0eSqkBeECnzD6VnwJ4QKa72h36B3hAOrjOv8YIeEBSeyjatRF4QBTcVjNQE3hApla/OE0VeEAIkLd+bCJ4QJZaVf1mO3hACLEm5WlDeEDQcTNeEUR4QGgfrBR5RXhAosh2E8pReEBazOPtklJ4QIylhVweVHhA8o7yx4hVeEAJzno6+WB4QGLISJa0YXhAviMfx0R0eED/TI4+i3R4QPDTNLfGdHhAWEO8wqGBeEB9UomEmYR4QDZdQzFPiHhA+LHvhZeReEDCb5yap5R4QNjnA3J5s3hACWZikaSzeEC2DjPo07N4QP+UQonbu3hAVHVSnc7AeEB+gznlsMN4QAwiXlLiw3hApP0OArjUeECUtEusAPR4QNQQncmM9XhAypdpbIcLeUB8maNujBN5QM4ZX4rUIXlAJhw63LsjeUBlzgoesih5QBLSWiEMLnlA6oNfy+AxeUC8JIszyDN5QCZsYLA9PnlA9NsURkFDeUAmkjJ6+0N5QEZlB1BKS3lAnnm6sctUeUCUW8ui2WR5QNX1dPdtjXlAzqoaTr+yeUCydFhrQtR5QIoWjhjM1XlAuOvJ103keUCgZu0bOSN6QIatR2RAMnpAxuf6PAw1ekAUKd/RTD16QHpzqbNOQnpALTx0MhpFekAO6+Xvzkt6QI5krL9TUnpA6E5d4CdVekA8RV7IIFx6QCDBof+McnpAuh26eoqBekBKq0MfDbZ6QJ4vsLQbxnpAJDdbGw3IekBeWrE/ZuF6QLqU1c/343pA+ojH7TvkekD74zCBNe56QE4ZJdRb8XpAbDTImUnzekCyLBFYSPR6QOaCiZqk+HpAnMX6p3wEe0CgPAnBwxJ7QNYGhhxMFXtAgA7Cdx8Ye0AWEuv6dh17QKKSzQtbJXtA0tBmOCsse0BU5xrZIZV7QKr8nlTPnXtAyK9FaCeje0C6be+1hKh7QDrfaOHbrXtA5mm4EWW6e0CLGCuSecZ7QKx45cKX8XtAiu9P8ov1e0AAQyRXkwF8QHneHjLaAXxAmuJDpmYEfEDsADnYlwV8QBwIbxiLEXxACAoMJtERfEC9LL1HdBR8QMU9u07nG3xA4rNmNvEjfECc/6rdeSR8QH+ovUnNQXxASo0WAFNIfEA+JN/vq018QPJpBJwGU3xA1Rion65TfEAYOKEkUlh8QARwLTMrcXxAakzfZP6BfECUgCvcWJl8QEYVpUGynnxAIs3/gMOyfEAuGWr1ath8QCv4MbTD3XxARptBylfifEDmXgk2D+N8QFy8bR8R5HxAwAohSKbkfEAPXtUubOh8QLrAzmoW8nxAGD5eO1TyfEDeG4LFcvJ8QMatX94e9HxAeTwgw177fEBeNI9MAAJ9QBhHlzBLAn1AZ+YtxGMDfUDIzn1eUAR9QE5MFeJDEn1Aai+yx64bfUAZFQhCPCJ9QPoPzWGOI31AgpqCGpIrfUBOmVBzoTF9QMZOY1ycM31AXJqOl5WNfUAsfX7/7ZJ9QEsfYRBFmH1AqkmIsebEfUC6CC600/N9QO4kObiQ9X1AKA3IC3oEfkB8z/MX7x1+QEJx3D1II35AUHNLCqgofkA+KFrgjlV+QBn1czy3e35AfImlDb6DfkCsSlHPxIt+QEBdAcjPk35AnL+RGtaifkCorYq748N+QOy+8/5yyH5AqrW/68vNfkD2wG+NFtN+QATBaDR/9H5AGhuGopQDf0Dn482ui1h/QK5VOvDkXX9A2gnQJ0Fjf0Ai5XMuuHF/QEgHEKVikX9A7nOkDaeRf0Dw2EZmlZN/QBz5QapcoX9ACSWvUEKjf0C8Nu3Pnah/QPYHCthUsX9AoF8qRb3Ef0DAFwUwy8t/QCiTP8jS039ANrjeBsrUf0B4PZ09kvt/QNhmmODMAYBAAv4AoNoGgEAawEmAXxiAQDx8pCzJG4BApPSTmUEygEDoa5yO80iAQMAwSo/mUIBAPRlmjRNRgEAGISoIDlmAQNyW0/VBWoBApvaQp/FtgECslTRyJ2+AQMynGh/xcYBAkEQmJyl/gEAx4yczHo+AQLgQEW0fl4BAhJ+/5YWpgECfclV9E6+AQAC5dDm3r4BA1bWjJiCxgEDU6iBj1rGAQOQxkWB+soBA+5X+lwW6gEAGN4TCsryAQBSJ3QRgv4BALbHCc1LBgEAxNAoWCMKAQFz3cARTyYBAMCmF++HJgEDpNr7VnMqAQB7+3aBM0YBAWJmRBkrZgEAwY6T+btmAQEbWCTFD4YBAIU6pV0zvgEDWx5kiaPqAQER4YmJs/oBAdS+Ijz//gEDBoULibgKBQPpzHhhAB4FAvHN6QT0PgUDjOheoNB+BQHZ3VuwzJ4FAiEAWVbgngUDSTqarujGBQGwtgC0YMoFArOy1fRs2gUBwHvgdC2KBQGNwBFhVj4FA15fkXPORgUCEAjHbEJKBQHyN64ITloFApOls1lWXgUBERaWpF5qBQPWf7Y3noYFAUwW0HW6ogUDWFghFmK6BQERxxNBKr4FAMuuI9Uu3gUC7hCFEzdGBQNKCJW4S4oFAZHEFX6fpgUB2foP+qe2BQAK1ljOo8YFAitJDOKb1gUBuBkahqPmBQFJ9jWTs+YFAX3DoH+/9gUDqV4Ld1xiCQBoxmc7XIIJAwpNWevghgkC0JdnNJCKCQHZwsbb9JYJAOqoxFdEogkA6z7EFFzKCQNjHjx8lRIJA+vJnnCNYgkDGw1rLe2iCQDT9X8b9foJAi3xICpSAgkBQWmc22IOCQGSYlDZDiYJAjGylcEORgkDQA4FjPJmCQPOkQ/hVmYJA9TIG1w6hgkBg+kCSOqGCQOjb8iUNqYJAk3OwHDOpgkB6zWTGBrGCQCiQ0Va80YJAQO/Hp8DVgkD0j8KfftqCQCI+oU2B3oJAeltbbHkRg0Di3nuQeRmDQAR90mpyIYNAYVJgjHIpg0CiMsB2RTCDQBopx/FpMYNAyt19j245g0A2VJ3+3EGDQIhvLmjrsoNAerA8sGXqg0AX734Cae6DQEZbIkxv8oNAgCC/p5T4g0CJSuCcAxKEQIIcC5H/aIRA+P2Aa/5whEDIVo4CyneEQLLSyEP4eIRAZ8qYsnZ6hEBihge1JH2EQFIhpv/Kh4RAdVwh0XCihEBFYwMwH6WEQN5N0FPJp4RAvJP5t1OyhECOKqtBxs+EQH48lApq2YRAnm+uT2rhhEAwZLbfYumEQOAWIgg28YRAdMBaLmPxhEDsiabuvveEQNoAKOs2+YRAhC3Tr+EGhUAsa/37kQiFQBYKpvTjCoVAYBZe0fgZhUDINREujyaFQMLDhiGVKoVAYvtYkTYyhUCXO+EuAVKFQEwc3WADVoVARE9MJ/9ZhUBQ0yJOoGGFQFKHR+CgaYVANM10lplxhUDMSg98mXmFQLSAr2ujpoVAYgbLE+TRhUAEM0iA59WFQM9+DTvk2YVA3X3Uv84qhkAUQHFzzy6GQK194FulWoZAUs4V1b+KhkBXKyXpJ7mGQG4gAR67IIdAgsofYpEph0DJhkOPkDGHQNdpPUyKOYdAbn0lDotBh0AwPG5hfX6HQCep0tLHsYdAwtN6OGOzh0AxA8UiybmHQI/7p9eSuodAoBGa2mq7h0A4LVlTlr6HQHX40Py6wYdAdU/T9pnCh0DLZAOwVMOHQDbwGbp0w4dAlptJ+m4GiEAjqN1sXD6IQF9n1bxfQohAmdjbpveRiEA0ifuxxauIQNWnmAgzvohA/LAr8JjyiECa3fOMmfaIQHzAUdqe+ohA + Ukz2Fu+BYkDY/G+vNiFkQI7ubuyeomlA - + - HgcsRVEDlkXBq/5EDnY0R4EqUkVF20pGfIrHRG+pqUTYTA1H70W4REvIr0QgZN1EN11PRZA/P0Ug4ndFehegRCQVx0RhHJxElesjRULq80bnK6NE7DEPRkPAcEV5kv5EC6GyRkz0gkVNWf9EE5qhRXsK50RzS/5EANrMRMY7YkUxDgVGqL/eRBJDokSVhnxFtvbjRLl/rURLh9hEq6pGR3x7iEdPIjhGiRMcR1eDCEWeXcdGaZ0xRWxmnEWnPqdFutDSRmdYmkRGlgVFXns9ResJMkW5lq1E8C3BRDp5JkdjmJpEY4xbRg+KskVRN+5FCjwBRbw8lkWbC75EeYWzRP+c2kQEUVRFAVC0RC8XQEUyDp9EOZWURTqyzkVF+JJEuxDYRIbT7EUEE8ZE8kFfRsfR5ETIADdFrkndRA4bSUX4dMdEvLa0RLlLl0RTzeREeGVARxc4nkZJiH9F5s4HRpygt0VXI6NFeOMtR1nYuUQQgzdFpjvVRJSzL0UcwLpFaW9CSE4dkUUEV85GtfKuRFWSvUSkoeBEmR+iRgcouUUpveFFJCMGRVW4GUXp0hJFhpZfRWvUF0Ueaw5FDkoERVzfoESKi9FFv6o5RnNz0kQvmTtF3pANRmzmB0VaM6pFVxzURL+azUROuE5F2X3bRA0lAkWQFyFGe6d3RQ7fiEUwxAlG0JhtRZW9qkQkb8JFIDTjRJdnAUcrwyZGO9UCRvfYlkX8NBhFagoURlRurkS/C8VEHXqjRBpxpUVQ8rJFnxrURZ+dp0b85C1Fj4GfRdOeMkVZGqJEC3h/RaNyykQAsCxFD9xgRoYphETk0rpEuPg0RRNBQEWQwAhFgIqfRXNUykR6RDNFmga5RLYd+0QRgB5Fsmx2RtXCOkV9r5NEaM1JRtmJ2Ec+gp1GfTzFRlDeg0XSmSxGaJ5HRdKQQUV6EqdFWv8VRWr+uUQ5VZ5EPNtnSUbAMEUQPr9ISvuER/eEN0b1YrNE+XEmRUzZ3kTxsGxGoozsRiMw9kUUwwhFEFqsRAmxhkVdwLtErnCkRJ2eFEWANR1GDgzRRGT/RkcNbB1GY8h+RQtLhUX4yAJG4pOmRA+++kRt+RBFYNzCROQePElMAhZFonwlRRofR0iLHP5Eg0sTRdH5kEY5VdNEMN0ORw2bEUfVGxxGWxDSROYenEWc1t1ENiJZRcMXf0XeRNZF2B8dRW/bp0Q5XXFGVSpHRpBx2kU8jYVFiQAJRQnQF0UpRuJEU/hPRt0tXUW4m1JFr8mgRTEFtURYqfFExjdJRRLwtkXooKxE0RrbRCPcoEQfyBVIR9zJR5/umkQgscNGExXnRkIR6USNLrNEz/YzRXhL8EREhr1EfoXNRRRowkWk3c5EyBjSRQkJAUUxRiVFiLWQRhCj4UT7fMZEputHRqR+LkVZ9bJFbX6HRZIzpkVJzzNGfneORbegpEQ2pcZE8RrARIn0H0X7ehNHKHCjRqbjrUU+i+pE/7PfRImLq0T7kY1FIheJRrQ8wkSBhzdGkdKVSIwbkkWSE5tEf7x1RQO3b0cCYMtFqkL/ROUmlUXWptpFMG+XRjKFMEZTo0dFUr3BRcctDUVATaFEovnGRNJn/UUpiS9FaKKrRMxCe0WVEktFbBbbR8QiGka6IghGkfqZRcxWgUX/MgdFXcPmRvl4SEUFkstED24KRjLgC0XKJJRGmlVeRXQSokTvYVFFJR28RXBN7kSaqVlGjktkRTTdqkTdQcdEwX7nRRxQoEVtC9ZEaLO6ROc9lURso+REBlP0RBwZ5EXp3MVFbC7ZRJK89kRJ34xHe8oNRwJI6UWGJQJFfWuyRE4lqES4VflF+kacRTftnETd68dEG3kRRUl4C0ZTx+xFQ/iCRRpSl0WUzyVGNl+ZRPQjq0SReiRFfVNpRYDNO0X3HgNFb9W2RoI5zkUiD1xF4JekRUpSb0Z2JZZFAC2sRMo2HEU4maREeWWvRHS+0ESRcS1FcKxfRj7GfEVzH5JEA8bxREzfMUV2f9VEtzS2RK4C8kWJpNdEyuLmRGqw+UQJAq1E16PGRDZy0kTx1L9EqDhaRlhrHkYmV55F36N0SKte6EQii9pH9pXURAH5w0QO83tHYvc5RqnF4ETZ+FpF4f7kRBf//UbGhYFGRVRORmKEmUUPfjBFbouORQUHikZrFSNF+XmgRPZtn0SGkHhFNgMSRQuRyURc49hFx0PPRHOca0aTVqhFrO70RNTxc0WLgglFwl0LRaM+t0SQ+b9FK/vIRDUMEkXQQ7BEVcPwSDbIlUjWuf5HyhT6RihmxUWTPBVGeledRQDAPUaWz4dFJgrBRc+Jw0SiK4ZF6gwlRao8h0QgtZ9Euz9/RWhXnESP2eJEgJ63RJw5lUQ8KuNH7gE1R56w6UaAQApF61m/RYLj00UWpuZE810QRQSZy0S58gpGeU+4RR+bikVk/xdFy1bdR0CYOEdmIulGLKTwRZNSr0TfcyVFr+6bROYuFkUPhKlEg0EXRp9rG0bOwABFqfHiRIw2sUTl3rlFqC5WRTLgeUUn19BE7Q0oRYg/tUQJOLFEUqa5RaiXrkWVZBhFqZR8RT0zQUWFeRZH7z2aRj+lMEbWMnJF8IGBRWiVr0SUnexEkLIbRSeVzUR308JEe4QwRWG+nUTYKKdE/CEGRVi7AEZFJVxFuwnsRBK4/Ea0+WdGd403RkhdXkX6eLFE3oTcRT2ThUUcpBlFr2PNRPfGC0V02stEZh/cRB39n0QSL5dEix88RtbBx0WmYm9FQNfgRLYCHkXzTRBGJedOR7LtkEWnJh1FhrKIRhDD1kQ0zdtEQk+RRHYHwUQK6BlFRBINRdo/SkXfWslEGrECRSmbQkVrt55Ek5uPRRVBIEXdOtpE + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - J2SuUXfAckDe08wRb8FyQExdvIDIwXJAVEy2qFDCckDoaCXfpsJyQFLE6L47w3JAactlLlrFckBmv/+CAchyQGjoWQxczXJAM4afT0PSckDYhU0YdtNyQBRfbRvP33JAHL0ozlDickAmgIDcj+JyQDWdKRkk43JA2JnWd8nxckADVjWpofRyQOr0ZUHC/3JADRomufYAc0D7zrNqOgJzQPT7YdDQAnNAbNgRt/oDc0COIH+WvBJzQFcE5Db3E3NAhB0BlwYUc0DObPXieB9zQLkiSH2jIHNAhZ6vDjkhc0DqFb5gZSFzQArbQdDlIXNADGopZnoic0BY6T+jySJzQIzn9H7OJHNA/Ui4jEQxc0A42QO5VzFzQFBjc+TOMnNAP6XuJrk/c0CycOXG4kBzQI40cgx5QXNABtcC43lEc0AC7rbXm1FzQIBLeBNAU3NA+t+fHqRTc0AFm23XOmNzQNLU4qgrbXNAymHy3lVyc0AEUA/Aa3JzQCESzQ2EcnNAsoE9o7lyc0B2Ay+TuXRzQKplmzpNdXNAoJrzlcV3c0AUJt1U3ndzQM6N5d8QfXNA7bYrE3mAc0D2kdlyCoFzQPpEDVRcgnNAWMPGkGuCc0BGjw4ex4JzQKBGIEWIkHNAUlf9Ek2Sc0AoD2l095RzQNBbRue3oHNAT9xjgFqic0BKY81VB6VzQGIXCzW1s3NAgBy4AA20c0B0MNXW08FzQD4T9Zg6wnNARqbpV8/Cc0DyRpapJcNzQOi/9OrV0XNAOiTY+OHUc0DZpWicOOFzQEiFF4Rk4XNApbZAyTf0c0ACldkwQ/1zQE5M9bl4AXRAFjT0D50CdEB/zEchTRN0QAjvqyW6IXRAWp2GImAzdEB8sdZHO0N0QJZgaxbcV3RA7OVe8TVddEAwZRLIuGB0QOLCLuAIYnRAmPCJwI9idEBUgkPSTmR0QG6UXq3mZ3RA0C945SJwdEBQlM1rQXF0QJo6UPY5c3RAFEtPvjZ1dEBObRhh+IB0QK4jfrpOgXRADh9DiCaDdEAuevyhFZB0QFJUNA40k3RANGsxj1GTdECdNzeXz6B0QIbrbWm5onRAm8eQfBCjdECH5jDHNaN0QFJW5JzSo3RA3oaS2wiwdEBRHrs7b7J0QDrkYZeRs3RAknRwFsq3dECmtlMKFb10QDZc7l14wXRAdNeQUZ/DdEC/cR13QNJ0QOZhEWpu0nRA3u5WkdvXdEAg6SleueF0QEBM292n7XRAAnGCl43zdEDL7JhwYPh0QDwTFzhdAnVAWUyEH5sDdUCa4DfuaRJ1QP7eGwwkFHVA3f3oF50idUB41JOZyzV1QEVBru/5N3VAytfRHVM9dUBefK4SgVF1QIIMtyMUYHVAPEiUnjlhdUDU0qqS0WJ1QIDWTVxmY3VAGnkWBndydUCeFNeljXR1QAquhB54gXVANw760K2BdUBk8N4OpoN1QP8UeVwShHVAQCEXIJuEdUAC93Y7b6B1QLTfdW74wXVA4Jg3iwfidUDGnyQyrON1QOoV22yz63VAKH8lRkztdUBJrTS6pfJ1QHwg18u383VAolKUPEgCdkCmAn5FVhJ2QIx1wWtNFHZAPgmA/4cidkAQFeI6kCR2QPh/c4NLK3ZAsmMRfh8xdkBO/UIcUDN2QC0caNKcNHZAt1YV9h1BdkB9cDflyEJ2QAbxtvh5RHZA1pfzb8dQdkCsnijlEFF2QBgbX3HNVHZAStqsI1BjdkAuXmMT2mR2QFKUpuWSg3ZAerlnuMGydkAk27lEDbR2QMi3AHnPznZAG/+4ZKDbdkCCtgsckfN2QAIRcWkzAndAb/+/DAISd0CQNLu4DyJ3QGTG9XmkM3dA+97j3w01d0DQGcU/nUF3QF4hMVGTQ3dAaj14vxtFd0DAHm2IS1F3QJQI7qqSUXdAjgRCdNVad0ANHSE+kmF3QICcjkgrb3dA2TvV8aFyd0Auoe7nenN3QEw2osf6d3dAfpKTr6d5d0B096RmJLt3QB0pZQFxu3dAfTDb/pS7d0DqwSd1s7t3QBRx21F2w3dAbaUyomjLd0Coc6evfMt3QIU3Wklw03dALA16foTTd0DcSPBLeNt3QLKbsd1o63dAo44suE7yd0AZUezZRv13QHAgrPKoAXhA7+yU7aACeECi5/Maxwh4QD4Fi/a2EXhAi9aCxk8TeECiP7zwbCJ4QKKzLH5mO3hAbCxoHGxDeEAYJiE5EUR4QELPONR4RXhAfmwS0MpReECEhbYfk1J4QLymoaceVHhAEGlQcodVeECeVuKv92B4QBqg7KG3YXhAhVkZGIt0eECwlgtSrnR4QGCDoH2kgXhABmUtgpmEeECSCrR5Toh4QCDHG1erjXhAwC1cO5eReECGCnprppR4QPa2x4t+s3hAZYSKVqSzeECO7Ql81LN4QMQs+nHcu3hAdIpDJczAeEAAQqn5sMN4QPQq5Fziw3hAotqqK7fUeEAapAn+1dh4QLJ1VwwB9HhA2q07roz1eEB0Pqqc0yF5QOANaC67I3lAv5EZZrIoeUD276TfDC55QHgxy8PhMXlAoZsFIeY4eUABEWE3i0J5QH6PEyBBQ3lAAAL7VPtDeUC6uzYJSEt5QGGpIHhLU3lABfBvCMxUeUD+sG78b415QBjwCn/AsnlAD+pW30HUeUCguJC1QDJ6QMtSu1EMNXpAzFHhO05CekBGJ/b0GUV6QLZPEOQnVXpAXHSAMSFcekD2ZTrwiYF6QJnXYn4MtnpAD/of5gzIekBCWye1Y816QK0tA+Vj4XpARN7PI/jjekBGGZY8POR6QFzbovQ27npA/DW7zRTxekCmFIsTW/F6QFG7u7BJ83pA4iUn6Uj0ekD+5zqio/h6QEPdBkz//XpAzG3Fa3wEe0Cz2xo0Kg57QEpPg+jEEntAzuwQykwVe0DDXAgDHhh7QIDlJcp5HXtAmIK4M1ole0AyO+6kxDN7QMbfzDHqkHtA4lZVVSKVe0CzJsYJz517QCaIfP4oo3tAopIqPGGoe0BcAQY1hKh7QBZx8P3grXtAyha8UGa6e0DGgmkkjPV7QDwunt7YAXxAqhDIn2YEfEDKlkq1lwV8QGaSf37REXxAWoaIkXQUfEDIKbAn6Bt8QNF0izjxI3xAaEUxuHckfEBjVEVr9Ct8QJyt6kXkLXxANjAa0s1BfEDv16KkUkh8QPXdLcCrTXxAIkoV9/BSfECC7f0dC1N8QFkKHGCuU3xAJFFlzlRYfEAqWtDaYV18QB0sdWoklHxAxm9ZdVuZfEA2dXEIs558QHVI1a7AsnxACz3eaWnYfEDs20KBwd18QCKodtNX4nxA9OKg+g/jfECglynJEeR8QBbnkpam5HxASCkphmvofEAkgte3yO18QBQ0NgQY8nxA5G8TjVTyfEA4mZDNcfJ8QKmTHu0f9HxAnKo6a7b0fEDkHQrCXvt8QNqR/e0AAn1AnlN/xEsCfUDeLSHOZAN9QK68Ke9GEn1Ao5OjR64bfUDkab0PPCJ9QNIYL2COI31A9t5wGrQjfUAx0muylSt9QDNNvCiVjX1A6khBFPKSfUAxWMMBLMN9QKwJZ5SQ9X1AWiAth9j7fUAN1SrSdgR+QNbARKXvHX5ANmgaWTgffkCoUXtPSCN+QCDtFMW3e35ATKil4L6DfkAxg3LKxIt+QN+ByOLKk35AvNzrNtWifkB1jZ6okKR+QIS0ifdyyH5Akh+G283NfkCkm8XfKtN+QHhU2sox2H5Ah0UUAoD0fkAM3mozIQB/QFXo5UGUA39AZkbfzIpYf0DCGcnv5V1/QNQTc29AY39ASP7JzYhof0Dd8JWdt3F/QN1nTepikX9AipSD0ZmTf0A08Vt9XaF/QLS6xvOcqH9AashAzVOxf0Am6np1vcR/QEoDhpDMy39AUPPUvtTTf0AE8buCy9R/QJihdveQ+39ApRg7WMwBgEAot6MeYBiAQMnoTGL2SIBAy+YtZedQgEDQ227LFFGAQAVU+ffoWIBA00PJpQ5ZgECA3tXm8G2AQHKxWkQnb4BAzzzAA/VxgEB0lQVQKH+AQBSBufgej4BARso11x6XgEDSUqDkAqKAQMQv3RYVr4BA28JeOGOwgEA0XHnIILGAQFCuqhqCsoBArPMZiMW0gECq/uAkBrqAQOOkkZeyvIBAudJzO4e9gEC/t1KFX7+AQMrJG2RSwYBA3Fq8blPJgEDA5DhiTNGAQPzgPXJK2YBAADNnSkThgEATr+Oa9eiAQNGIx1ho+oBApnp/zGv+gEC+SPlcP/+AQCay+LduAoFADb7lsnEGgUBUPzkoPgeBQA8G89Y9D4FAwOJZYzQfgUB8P4FpNCeBQArdJhruLYFAXyvicrwxgUAIOeOmGDKBQCe7va4cNoFAVODvdyg/gUBOLt3bZ4qBQCwIeldWj4FAA2q2dxCSgUC4WFLBFJaBQBjCwtFVl4FAxo4+s5qhgUBkLHTk5aGBQLX8PEpuqIFARutb/EmvgUAqBhlpp+mBQJx4QRqq7YFAaltGkqjxgUCpSEUIpPWBQHFJCX6p+YFAd+fD1ev5gUBgS/2T8P2BQLZQkD0DCYJApCIEn34OgkC+G5Zj2BiCQFxii5LXIIJALl+k4vkhgkAaSzG5/SWCQAT4cxvRKIJAiDWNZKBPgkCFrAM4I1iCQFoevyAZaIJAAhFPRpeAgkDMG68lQ4mCQCEsl0dEkYJApm4s6xiZgkCNFtbFPJmCQLzk5kpVmYJApBjs/g6hgkCV1YG6OqGCQELMJOkMqYJA3jWI6TOpgkBslNtNvNGCQC7n4Su/1YJAhgLh+H3agkC4R+V6eRGDQFj+xCd6GYNALMgh0XIhg0AO/OAIiiGDQBhssmVyKYNAYEHrbUcwg0Cg6+HVajGDQODm4X3lgYNADPL/2EmDg0CLLtL+ybiDQHpB+XBl6oNANNrYsmjug0C4XKvObfKDQF5i9Bf/aIRAMLfV4P1whECW4VXtyneEQM4UFub2eIRA8sKCI3d6hECoJIBZJH2EQALi214bhYRA6DEcuXGihEC+3DnIHaWEQD7cxXHPp4RAWqkTv3uqhEC0I5vAU7KEQE7eNRtZtoRA1sZvZBnNhECnpBsBx8+EQOVylApq2YRAtjqBhmnhhEDeGKPeYumEQJzNFBc28YRAVRSUrWHxhEAm0CJBwfeEQOWGkwbgBoVAvq2mWZMIhUDk6FFN+BmFQPyizX0BUoVAItKgiAVWhUCo3OPL/VmFQF3Pa36gYYVA5EHQy6BphUBcfCRWmXGFQK7ES7mWeYVAZAgL3o+BhUBntrhXpKaFQNTDl+Hj0YVAJZbl5efVhUDWNDfr39mFQMXpYiHLKoZAKHfwF9AuhkAOB35aolaGQEoGnU8muYZARtPmFJEph0DGxvMdkTGHQKKlseCKOYdARB80c3p+h0CD0F0rgoKHQOhO1ArHsYdAFxZXZmOzh0C+DSu8x7mHQAheId1qu4dAvwc4GMHBh0B2vnLJVMOHQEDFKJZyw4dAmhzse8DJh0CIYZwOcgaIQNoSwndcPohAfDMDzfCKiECLh3w89pGIQPK+00LJq4hA95QLNpnyiECinHMpm/aIQA== + KBZXds7jZUA= - + - Q/6/RGm/rEX0itBExVDFRHAnM0eGlYJFI7W8RN5mQkZZ41xFvAALR+ZA4UTWd9dE8m1NRd7uOUU1edBELyGGRSmkDEVxCftEQkyqRCA7DUXz+DRFX1gnR126ZEa3YIBFNpRxRXmw4kRRtAZFav+qRlHTskTrtBVFQmPsRPTZyUT0vp5FLKTcRKvStkSQMNBEXKr5RBMlz0StipFFjqAPRrxZuETw8clExUNfRf+NIkWHL0tHJxT2RC9grUdUez5GlAD9RkV57EQZYQNFWVMNR06X70Rp2OFFUB7PRk2GGUUo2gFF9tUBRSHWQUW+3+VEU8svRzkDaEYRnwFGfDy2RTyw8kTJqo5FqSBSRekdDkbmb+BEt3GNRUXmxkQjYgBFsDSwRX692kV2CKdEAlgORQ7itEW/U2JGE0wXReWtUkV/ORRFti7NRMs1uUSL4XlHWyDORiZFaEUefR5GYBwLRnzAA0XbZTNFaGSJRapOIEfQFCdFxILERB/+C0X3175Fml8QSC8SsUWnXJ9GsgCeRKwvvkTFLtFEnyPoRGmTE0VIiNhEnGvrRFxSr0awxHRGB7S9RTzKLkWr6sFElVD/RNaAM0YoEClF7GPaRDX+BkVZ28VE8gmERWKqskTmSzJG2hzLRHbFzUSWsthEj4MRRuIPUEWVr41FZNiWRQPdyUTmWctEx6spRaUi/kQbb39FePsURS8jCkZKmTBFuCG0RbGMGUap1INFKroARUbFPEXzgvBEidbhREsDIEdUZHVG5RYkRneSiEXKUQhFBgcRRvZP60Rc5tJEucScRdohCkaIovdFzFzKRr5jC0W1KABFis2wRZpfPkX6EIVFAjrFRDmCakV+mDxGr+ngRL0KCUWCYg1FtvM1RUGXUUXP0DhFnH4KRY90E0XXow9F//ZmRgGRQUWqyd1FHm/TR1xhmUbC2ptEiDqpRv01bEUCKk9GX7zYRJiLRUVQJQRFn8KwRXTTlUSX+E5FSB69RNoYVUXK4JRJB1DGRQXMfEXy7u9IfOgBR4EVqkfHOSZG/MMbRuXkCUWYNmlF4traRMvphkbe58lGZzicRZYRzEQYFYJF4d/0RKkZT0VZPQFGeqMERdTKIUdL8hVGaq1BResRO0XU5clFwhkARf7p8kTHSCtFbZI0SdxojkV0FBNFyzQ4SDSVqkXphuBE9IxJRV+FTkZAft5E0Z/KRlKi/EZPlDZGT+jlRPO5ZUX+8MlEy+sLRazvzER/dGFFCQGwRT13SUaDLxdGdk/ERUrZbkXwCe9EYzAYReTO5URL+qRGhmZ2RapH2kVXxvlEiCZNRfRVQkXl4nJFOgvGRUQS20c54atHQmSERhRkn0b//CtFSUP1RIu3nEVpeIlFGyx1RZG5R0XoOA1F9pQsRV2DcUYY375EmBwFRYpHvkT2WFFGiG4GRdlTyEUuhPJEweGDRQxu00Qz37NFEQ43Rl/QeUVimB5FbKw8Rdfz00St369EydgcRdXlHkdx2rtGTrEGRXoxqEV2kipFFaLaRMB0cUbyHC1GYnFwSIUukEWMzZhFteMjRyZ28UW91PJEkoxrRYDqvkSnAwBFGI3IRdzlxEb17wxGXs8mRRnDVEW2d2xFFpUERau8y0QVXPtEMj9LRTW+dUXrQulEFCt3RaUsDEXoDt1HQUf9RSjiFUYOWL5FM5qXRaZVAUVBHgJFYh7jRsW9OEWkVOBEXA/FRFSJMUZcXxVF1mKuRkjOnUW9GklFb0XzRbugvUTFD3NGpmJ+Re/BrUXuF95FIXSARa3Q60SuheVEcNzIRBvxI0WpFQZGUJsDRQl90EX79GpHN1HdRkll/kWbGK5E+5XTRILYuER/VK9F/2mbRXqGKkXe8MBEZ0BURazJvUQpXflEXlVxRrl+/kX6hjxFXFUKRZXo7kXufDJGzinSRJQGVkVYPwxFf9IPReH2tka6spZFlxdbRViGgEX6QxZGhMc2RXhn6kSFttBEMMlmRdLenEZINx5FL/vIRQSkwkSm6RRFJWjBRLBhtETs8AdGVscCRZYb20QzccBEzVZwRd84tkQlkpVEMjCmROEDVkYhjxJGxOqyRBuTlEVtxJ1I4LgTSPczmEdEF4ZGyvGlRXyL3ESGTIRHdUz7Rq/uOEZkzv9FoIICRdCrNUWyvW5Fd1WHRvKrT0WnletExhQPRQ0AMEXSJh1F68LeRJV22ERUYbpFOOhBRsdCp0XxIalEkp/NRIPvEkW3rC5FeVywRceCrkiJWj9IKW2PRw2jdEZ3tN5FWrqeRRWzjkUvdRpF/nquROuTNEZ8o5BF47YHRnmVoEXV1VdFND+/RAAo1EX9mMdEM+3CRBj8PkhnHNJHS7e+RI8SXkdW401FJ7TSRWCES0aSLC1FnneeRW3/u0UALSVFv4E6RRJJSEjjvNxHfllMR1uWjkVdpnxGF8zZRLmYyEVXifpE9X2/RAc9wERhyxVGPsK+RaeXvUSfovNFoPg9RfjikkXz0M5E4bEURY7XzUQK/vREePjZRV6Xo0VPzQFFmR/FRP8jPEWxNflE6UjwRDWI4URGM1RH9OSwRjhJgkaWVqZFM7elRcJzG0VNb8dEnbfBRLSd6kRY1/1F/lUzRXcNzURTeT1Hkb21Rpk5cka2EJ9FgY66ROmgCEWOncFFsnNbRUnL6kTxl7VEgOXHRBdg4kThYdhEUJBiRpdmtEWJsKBFzFkHRdHn/kRXtitGtieJRxWKuUU5p6pGm8eDRYor/EQ0mnhFbGg4RbVcGkVEeuVECtbVRGuI6URgotZEpS0cRRNVDkU= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - yV3eRm7BckA2Rsgvp8JyQD/0PYo6w3JA2K5okwDIckCtSnJHWs1yQOaD2U5D0nJAY6v0PXbTckAuz1Dxzd9yQNZKKLlP4nJAB8xI+4/ickBQSuSZyfFyQAAaoyC583JATGcoI6L0ckBKNO/ew/9yQPKKtV/3AHNAbQqMT9ACc0D2ewp++gNzQMuGzIYKEnNA9DzFE70Sc0B2JA7/BBRzQOavlqQ4IXNA8QsW8eQhc0BKpFSUeiJzQDgi09vOJHNAQbu/lUYxc0Bne1S4zjJzQHSnMKsMM3NAAElmUTY0c0AKxrCb4kBzQJcp5RF3QXNAeuMZv3lEc0DtpISPpVNzQC49IQM5Y3NAcfMGpSttc0D9cD2Aa3JzQAy3I4ODcnNA0MebELlyc0D88XkZbnZzQKDLURfFd3NA0xTEWN13c0Bgshi/Dn1zQIblfZkdfXNAtAyUkXiAc0DQ+uuSXIJzQMwZTzJ2gnNA8pcdAYmQc0BkGS4sTZJzQPIe+MpilHNAAk0OxfaUc0Buo6rBt6BzQIJ/2K9aonNAGLu5wQWlc0CbhQq+prNzQKL7TuYLtHNAPk5M2tPBc0DyclwYO8JzQDJgzu/PwnNA2Oa71iPDc0B0ctZ55NFzQLYZamb303NAtDUOLeLUc0AoSQ0TOOFzQBzSaKBk4XNAHhA+Kjf0c0ClQGmbQv1zQOLdQvF4AXRALo7imEwTdECyiAvGtyF0QJKO5o6MVXRAkGavkNtXdED/cL1MNV10QL8eypu3YHRAKyHyBghidEBO0mqpjWJ0QJuHKDkicHRATC1xRkFxdEDBKWmaOnN0QAi4xLn3gHRAyqjgk06BdEAAMBxSJoN0QMHxDa4VkHRAnk4BhzOTdEDjv38Nu6J0QCiyvY8Qo3RAaCg6oG6ydECChutzkbN0QCKPIGXJt3RAYe4FoxW9dEBmLK+6I710QFxQnnKew3RAZPgTtnjEdEBWLIStt8R0QPzVnOX8znRAJro5c0DSdEBSRPThytR0QF0xHPy34XRAGptZsk3idEBR7sRqjfN0QPI8ltVcAnVAi46NoyQUdUA2zpE/nSJ1QBS6wX7MNXVAVgKyw/g3dUAR2+/7dlV1QDB8Qvk3YXVAUW7ZKtFidUDzNzvFZmN1QAA3A8d0cnVAYUIBBY10dUBxVcKnd4F1QEpBOdutgXVAXNDcY6aDdUCkQdIqEoR1QOQnoqNtoHVA2LbCdrihdUDAvR6f+cF1QDhbVBDN03VAZr3k1g7hdUCjqsrOq+N1QCFlpe6y63VA2G806kvtdUAYQuNYpvJ1QJWrNeO783VAwBsyHkgCdkBmWd6O0gN2QFmGJeaHInZAuhrYcJAkdkABdeJwSSt2QKD22MwfMXZAbhjHWJ40dkCIvrLnHUF2QNgk7rjIQnZAxM+qz3lEdkAEghW1x1B2QF5Fuc4RUXZA0U67f81UdkDQ59dbqmF2QEESnKvaZHZAfIYJjpGDdkB2d34WwrJ2QAwQfmMMtHZAUtBYmM7OdkCmQ98wodt2QHmNuI+R83ZAHDHeHzQCd0ApuLNOAhJ3QCzMVrsNIndABCBslKUzd0Aqc7evDTV3QBqNuIKdQXdA4v4wHLNBd0C/c1vFG0V3QBNdHiJMUXdAbBssFpJRd0AyK+UlkGF3QDC/Q+Unb3dAtlA9Zp9yd0CsOe7ukXR3QIYb4E37d3dAmuJJxXiCd0ACx+V/koJ3QJbgiVc7u3dA2AUZ9ky7d0Bot+zzcLt3QIAc03Scu3dA6ITvNs67d0C0Q0mWJ8N3QBCZfqNRw3dAINdMK3bDd0A2qpcSocN3QHg3cGNny3dA5nh0z3zLd0DQTDdScNN3QIhwzRZ323dAJgBErUX9d0AAMOfoqAF4QBr5fKeeAnhAdr5FqvoHeECswSZPtRF4QDUrTFdtInhAd/6sf4ojeEC8r8zvZjt4QFzYkN4LQnhAmLw+HWpDeECWfvwwEER4QDerBSd4RXhAHB2gxclReEA4qYtOHlR4QLfROK6GVXhAsXABaLVheECXMe7aZnR4QNY4csGKdHhAVs/a3aGBeEAiE2V2mYR4QApKazlQiHhAcL2qaKmNeECSOPmwlpF4QH7e3tOmlHhAOYGOqn2zeECA7PBTpLN4QAveOs/Ts3hAmvaLNdy7eEBUKt3nsMN4QI9v9lq31HhAYO++QAH0eEBm4s0JjPV4QGL/Ax6EC3lAqca1UdQheUAQn/BluyN5QBbBP1exKHlA8c5zmQwueUBEiWUpYjN5QDphUW6OQnlAyBVOAfpCeUBN375YQEN5QNKolb77Q3lAaGBx1UhLeUB6PzwQy1R5QGYXot9ujXlA0lXSDMiSeUAwjJHgvrJ5QND+6NxC1HlA21AC2cvVeUDi4rOfUOR5QOwg3eJAMnpAmAIyXAw1ekDgjeKGTUJ6QGDPh80ZRXpAxCxVUSlVekBjg94TiIF6QPaHxKAMtnpA/L+57RfGekCSzysqDch6QHwhY8ZmzXpALwSr4LzQekAofDogZeF6QA4/xVf643pAvPF9kzrkekBKRj8aNu56QF7aZ6lJ83pAQGXVc0j0ekAtFAILo/h6QM13z9N6BHtAqtxcRCoOe0ByuHS7wxJ7QAuv3uCJFHtAXUPvdkwVe0CaX0VtHhh7QHyLmbRZJXtADNEyzSWVe0Au0ErTzp17QBZDx1sno3tAtUzNi4Soe0Dcj4R3ONR7QPgNJDqM9XtAEoa9l9kBfECAJnJeZgR8QKKTP6qYBXxA0k+Y79ERfEDoqzwfdBR8QJy2oVHnG3xA1NedeHMkfEC0N23bhiR8QAqIKCPnLXxA6cvppcxBfECyp0LhUUh8QNi9duNfTXxAuFE7RqtNfECY8Qa98VJ8QDQ7ZnwLU3xAMgTkEa5TfECGEwLRWJl8QA6wOPSxnnxAYGtmgRCkfECOmJhxv7J8QDRiuWdq2HxAViKjCcPdfEA45Q6PV+J8QE5oQo4O43xAxPr8+ozjfEAwoUbjEOR8QO1E5Cam5HxARyJVGGvofEBsnhO6FfJ8QAnmFplT8nxAuhyZEhz0fECaqzqBtPR8QCuDZIBd+3xAEjqkngACfUA6y5nySgJ9QC2phCxnA31AZv9mBEYSfUC0nIeKrBt9QNTyRUk7In1AY2RX8I4jfUA4FySwlCt9QKIacbmVjX1Ab/8TK/CSfUCcu3r5K8N9QNlh/1jmxH1ABAI8A5D1fUAusTXwdwR+QN29/+DuHX5AxFPDf0gjfkCUSH+6oih+QKDKontBL35AMehS9rZ7fkBjuGXcvYN+QP6CeabEi35ATpHhclqMfkBG+hPkyZN+QFDI4iSPpH5A0Wx/U3LIfkDcD2tnzM1+QCwzm5Tb0n5Awwq2MW3YfkBgghi3fvR+QAOsKhOKBH9AS1TgUotYf0CyiL4P5l1/QHNQkRVAY39AUoFWc4tof0BOhIyDtXF/QKCsoGE/dH9A+ruxVrGBf0CQK0bHYpF/QIhze3uUk39ACkq8DV+hf0Bb1B+jQaN/QDoqMYKdqH9ANk7XAFexf0A6t/IQvcR/QIJ1m1jNy39AN38uENTTf0CqMSrLytR/QHXknoWR+39ACmOcs8wBgEBJeScEXxiAQIhDuKXzSIBAqVZX5eVQgECavkJ2E1GAQAKFCIQOWYBAoibpK/BtgED4Ty5zKW+AQFVjqIfzcYBAgHhvlx6PgECqngtrIZeAQL4ngscTr4BAfNtdzQW6gECizgsBEbyAQP3I1nWzvIBAsWQlql+/gECsRNZQUsGAQJC+EGJTyYBANtf6akzRgEANeSs8YNGAQALaE7ZK2YBA4JUo+HHZgECg02MintqAQE6Pjr5D4YBANB71glPhgEAUfKBJTO+AQLl8wmM884BAaOKha2j6gEAWV7Vda/6AQLqlYnk//4BAODFua24CgUDH/KhucgaBQBtQpZFAB4FAqixERzwPgUBaekUZNB+BQAZCALM2J4FA1NdfDr0xgUCuLfXeFzKBQCTwFiQoP4FAbOLgdlWPgUA2pNvmD5KBQO6lbIkTloFA79tELxeagUBigGjX5qGBQG7fzN9sqIFAajDB3UmvgUDGlL8IzNGBQOihCv6H6YFAXthOJ6fpgUA6jbTfqe2BQJGEZICi8YFALuH8hKP1gUCQ/iEsuPWBQDpxroyp+YFAy0+3tuv5gUC0PQ0Q8P2BQKCySwDYGIJA/lFna9UggkCwE2Ax+SGCQJCRDWL9JYJA0nNrZdAogkAsogNNI1iCQOoBnvk0YoJAKu2EADdmgkCxgwtaG2iCQO30YTOsaYJAvg4WBUOJgkBL3WlgQ5GCQB7bUQM8mYJALrGEHQ+hgkCSsnKQO6GCQJhlkvILqYJAUKLfsDSpgkDJmGPiB7GCQOS9ax+70YJA9FyduH3agkD8/MZEgt6CQFgpulR5EYNA86UW2nkZg0DY6WtUciGDQCCR1XyHIYNASMyPJXApg0BKRly1ajGDQJg8DUbrsoNAyj79CGXqg0DOmzFuaO6DQDUTrpJu8oNAzGsl6pP4g0CX+eY//2iEQB4Ensz8cIRAMoIvLcl3hEBHawJgd3qEQJAEXuMifYRAkBaz7B2FhEB41WDQb6KEQFuIod8epYRAPiKCfsynhEDvG/OLVbKEQA5n9kUYzYRAFV75H8XPhEBoxU7aadmEQGhEIqdq4YRAdgaPZGLphECyyuNvNfGEQM8qzU5i8YRApDiatGj2hEDJ+oyGvveEQEQ5V1Va+YRAp3uRyvcZhUAPvQCUAFKFQFRLdewDVoVANy6GIPpZhUAYFqsKoGGFQMwRPbegaYVA9P5CLJlxhUDMvUWkm3mFQEPyMPuPgYVAva+xVKSmhUBA/43Dp6qFQGhY9ZLl0YVAQSidQ+fVhUBgEQWDo1aGQAR5geQFhoZAYFfLscCKhkDLDBn6JrmGQJ5kXdKQKYdA79IHgZExh0BTj6taiTmHQMZvjCNbQYdAmLpBCotBh0CmWDwDen6HQPdr1LbHsYdACpgQI2Ozh0BY6Q4+yLmHQCDZ0XRqu4dAKsnkbcDBh0CBtWelVMOHQE5g+dRyw4dAGYPnCsPJh0CHm1SoWj6IQOXX+dFeQohAb7f7e5jyiEDQ4I+9mPaIQGs5X9Oc+ohA + KBZXds7jZUBK9xnL9URsQNS+X4D+xG5AwTM0RRfTc0AZoU3VaiN2QG/1UdoClHpA6PR7vMXje0CMRg7FWiR+QAVGOKcddH9AcyksCI86gkAvKUF5cOKCQAJSiv26AoRAvlGfbpyqhEDpeyFx6OKGQJYyLjkSC4hAwVywO15DikCjzgFpYOOKQOyGMj6qe4xAavqneMzrjUA= - + - 046eRcp3N0cZRoBFxpWURo3zH0UVmwpHLrbHRDSeFUVTO1xFz8NDRe10aEWtQdRE7EzGRO8+3UToNw9FnNwfRa1MBUfL7d9ExJOXRr0ASkU82KdGkPXfRCNV6ESqHMlFt2LeRB5Y1kSvUMFEWRXcRK4RA0VUko1FjZgwRqWQIEVtJFRFxw1HR5/op0d/aY5GG76VRsadBkUhShdHvr9SRewLjEW9R5BFu8PjRvXnNEVTd7ZEaQ01Rc44VUek5eVEPnhmRoMEC0YW9QBGZA3iRLlWbEVM1fZEhY8fR2ZFx0QXb7tFp5HlRIYOCUXPpuhECs+oRVYtAkaqUcpEZCPMROeN20XaR4pGtdhzRYICTUUtmAZFwlNmR7lK2UbUVXZFhqEzRk14iUVYCatF9YJbR1z/GUXWRTZFUObZRV5yzUfrvcFFnXstRiTh1URSPNZEGo9nRj9IEUeNj8tFRgyqRIOfyUR5c6RFvsXjRMwoEkX0rgBFWdsuR6jh7ET6sAxFgHK1RUGMr0Uw2CtGe+gRRULRAEaYRgZF2RViRYbzEUUqbA5FL7DrROYa00Xx+whFnXdDRoUMF0XKcqpFi3vHRdAK0URvWRBFDMbkRE2wxEQDCM5EX87kRI3tOUerXEVGnL0FRp8SzkWsOchETCgIRnlVBEVs3q1FTicORhHUoEVv3cJGVrHHRDaTtkXUNz5F5dCDRcu/30R+0VZFmZ1JRu20xkQYXBRFdvwFRcPlBUU9u3xFKpkzRQ6iT0UUmw5FKnvPRD5GjkZE3zxFtVbcRe1g10fjloFGzdyNRSHGtEZ+e4pFQD85RtcgEEWuqy5Fjbr5ReXRwERTFjVF8OHpRJkKs0Rg94FFLgdcRigBtEkkLC1GBdP3RBIx/URf/rhFbO8UScK9Z0VpOARHsc24R4+5cEZ7LttE43VpRuMuZ0YXQJpF3pgnReHj+URYnIlFZjDhRJ/O8kU32vdE4czVROU3AkdCTR5GfQ93RV4FnkVKZgZF4nwkRY2y50UaP0BJGTZNRf8NR0hNvTxGURX4RfXVNkU0FJNG5qTHRBljjkZ1lbRGU1/vRXjqRUVDER5Fiq6ORSNoskVw2exEf8vERVof5kWLL/FF45fRRR1h0USmw8tEaX7TRADshUYXeVxFAsSnRVC1h0XbN+BE2akGRSE5e0XxPOFF8sHMRM4azET5pIVHN9TFRx8f60VTxe5GvsBERcPgCUWlSPlFo6bYRLGztkXqWIVFmj7oRBGm90QYcsVEFTgtRgItAEX3ZxVGpD4cRaCviEVk6stF5EDmRO+7ykV107VELwwxRmS5RUXDBB9FLMnlREsZ9UbNrJVG1pGzRVuI8UROD5lGFEw5RinyKkiNtoVFzbJmRf3++EajepJF4L/kREUj20SYSPNEsPLuRafIgEbFLulEG7ISRjSTTUXjRyFFKCpARdh8xUWRXNRE6B64RNfM/UQlInVFw6YvRS/m6keCKfVFYR0PRTzXAEYVvwlGbo+eRTkLBEWBYr9Gfc/TREl8yUTB1cVFVHQwRQLWnkZEF/5E06KpRftixUU7fdlEI12HRg8Cv0Xr7wBGNOZkRURAJUVvaeJEAWsfRRBKXkXy6sxF6OPERVjzMkXTbsZE6oY4R8xrzkZprsxFBlXvRCIewkTA6ApFJpbIRc3tUEUTWNdEzhjQRG58uUXxPAdFylZBRg6+FkYf3H5FwxYVRX+ItUU+GvlEoAjPRIuYBkYzzxxF1rElRW1kJEUvxL9EPsITRazQs0ZNDpJFau8SRSrvnkUXZTVGDPdyRa8lBUUe7QdFpDg7RTV3h0byR7xFoAUzRbl1G0U3fThFZFvNRcj46UT/dBFFrLNfRvhG1UTrxAJGPT1eRTUJkUiitQxIKRiXRyD5SkWLFoxGJuPZRHS31ETPF4tFS6TcRFS010ThwQNFmkDJRzlRPUf6+DhGsKFGRoCkW0UisZNFrwsRRdD/eEZWomFFIM4MRZF5PUXv6dNE5hHJRUyYWEbFBc5FCjQNRZ0DGkVMw/ZEcIWZRavGJUUmi95EEbNySEsFAkjbpdRGZRlBRtOoZUV0ti5F0r/PRWKn9kTM8FhGIGNzRajdt0X8ekBFhCM1RfjwAUbge0xF9363RNCwEUWDq+NEv/j9R0qAVUdsN/RGLOfARekOH0Z8RSBFa3p7RffHE0XTWYpFEwJXRUxCDkWKUA5IGliOR0fFC0d2gjVFHtYbRiY1lkXztL1E3SP9RfshtkXw375EAKHCRFj+30XpGRVFgHJvRbwKiEVNglZF+O7TRLIkhkXOsjFFPFIZRYutFUWBqhFFTKLvRFtQJ0cj0ItGE9AqRrojoEUBGUJFEsPIRNra0EQex/FEEj7iRNr0yEXEC3xF9dQBRV3zI0fPTYdGOBMXRtZpkkV/5shE9Nr3RaJ2L0WjdZRFL143RetIFEXlOLBE8g/nRL/lxUQ3jRtGKHKGRSgkaEXPlrlEdgi8RFkD1UQvC0VG5KecR1f+rEVUmOJGTURQRQz0QEWcCq5FiMrkRHu32ESY+OJEGKM3RSOiQkUp2OFE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - TceL0W7BckCOVyF/p8JyQKPW7hM7w3JAfoU0JAHIckC0+UP3Wc1yQMD0Q69D0nJALlPPbFHickAX5dfmj+JyQCJpukPK8XJAciB6yLbzckDmLS6V0AJzQEAnPbP6A3NAvNt//rwSc0AmMidy+RNzQG4E/DV6H3NAQlJ4I6Qgc0DOd9zoOCFzQKg89jZ6InNAEFf6GREjc0C/urkWzyRzQHBk19lGMXNA/mnxF7k/c0Aq2AmaeEFzQELjdQN7RHNAZkiRxptRc0A29Jmro1NzQAcJ3sg6Y3NAYZIfnCttc0C5Vzcza3JzQP4Uz0SEcnNABB3eHrlyc0B+whp8S3VzQLIhn0lqdnNAqrbuHMV3c0AApoCO3HdzQGADAC8cfXNAGJHprniAc0ACaZSMDYFzQNyp89tbgnNAMm86+4WQc0Cg4IwbTZJzQMIYhUZklHNAIV3PR/eUc0DfQdPAuKBzQLgNAgpaonNAsEd+Jwalc0DY41dFqLNzQIEwfOgMtHNAEneZG9TBc0AZYAZrOsJzQIorDXzPwnNAzv1fkCbDc0AUwp434tFzQGYOJ9ji1HNAmTuvlDjhc0B3GYrMN/RzQBhfQd5D/XNAfLHob3gBdECFcQYFTBN0QJoAe5y4IXRASniAIl4zdEBS0W7P21d0QPxQzSs2XXRAQkGKoLhgdEAS6Kt3CGJ0QD98Md2NYnRAytidDE9kdEBMzwPUIXB0QAJ5jP9AcXRA8vcUMDlzdEA6/N9pNnV0QK7bLKX5gHRAFDBu5E6BdEAwPz+QJoN0QLEzUXoVkHRAVwJghTOTdEDIBzSX06N0QF2rZvtusnRAaH1AVZGzdEDtZhNUyLd0QG4CpasRvXRAjAXJEp/DdEAPtvBLuMR0QGQ7iGVA0nRATEU2AuHTdEB/+PKSTeJ0QAClcpSM83RAz0bHOV0CdUAEro17ahJ1QKa/oTkkFHVAbqrPc4ghdUB+c8rjnCJ1QOClIlbLNXVA/aFn+vc3dUDJBDyy9091QPw6r0V4VXVAJ+af2DhhdUCGv6uv0WJ1QHiy7khmY3VANNvWbo10dUCq+H3JeIF1QOIPKkOugXVA9LnGG6aDdUAkFNzgEYR1QNmEQL+ZhHVAzV5SrvfBdUClMkBYCeJ1QLK640us43VAzk0lXbPrdUDiaG8TTO11QLrA00Kn8nVAetaNwLvzdUACrun5SAJ2QNkQbo3SA3ZA/iHIwIgidkD6T1KWkCR2QKYb9cdJK3ZAxu3Box8xdkAqR/SpUzN2QIIrNWYeQXZATGn+kJhCdkDC9C/zyEJ2QLKMi0N5RHZAvcT5cxFRdkC3UyKkzVR2QDrN4aXZZHZAgQ7PfZGDdkAexbVuDbR2QBrnKTEaxHZAdMguZc/OdkCRe4man9t2QKnlqdEBEndAytdUbg4id0BGiI5XpjN3QMiVKgQONXdAHiFUeZ1Bd0CmWn/cG0V3QDaau0VLUXdATub3EpNRd0DkoidGJ293QNb+bUGhcndAuLNlT/x3d0Be7buP97p3QE5M98wKu3dAutpzpHC7d0CwFa2iqbt3QGsqFO3Yu3dAcqqtsuG7d0CGqeykdcN3QIbDQVpny3dAfGZXuXzLd0C0rX2ocNN3QM7KrdJ323dAcvyIo2nrd0AYbnbUT/J3QBJqSv1E/XdAKlGfUKgBeEDuaVKInwJ4QMjhXhhsInhAorooNqojeEDwpLSMaDt4QMjrKdUQRHhAoW8zTnlFeEDW94PPyVF4QLQbOOYeVHhAjrfVevdgeED7JXjntmF4QBJZDsiKdHhAMNsNbat0eEBQg65OmYR4QICyOoVOiHhArgM76aiNeEAO8EoBlJF4QKTMaCgDk3hAbdRT8aeUeEANNIYreLN4QNb/c7Gjs3hA6FmH69SzeEDkUZW33Lt4QORrqNrKwHhA2ead8LDDeEDTO9NQt9R4QOTlGq0B9HhAILb6b4z1eECQzibFhgt5QJHUiubTIXlAdqHKJ7wjeUDn7aOasSh5QBI9ruwLLnlA6eoeM+I4eUANMuuwQEN5QDillyj7Q3lAZoPrqUlLeUDhAXKJzVR5QDp3TXDaZHlAeqSRYMySeUCcGw6MwbJ5QKZQvEdC1HlAcrKJmk7keUD32UTpQDJ6QAQ7chkMNXpAOvOhjU1CekC8jtvpGUV6QMbcufAnVXpA2DoXvYuBekDhsKFbDbZ6QDbN7f4NyHpAwADcZ2XNekBbuhdAO+R6QErnOqMY8XpAnfQvF0vzekCkcFXho/h6QFI8HoB8BHtAcszx28MSe0ByDvqZTBV7QPQ2CLQeGHtAML7zYVkle0CUXGut/4x7QJqCKeQjlXtALB3rZc6de0BElHUpJ6N7QJeVQDFiqHtArGtRQ4Woe0A8kpLri/V7QF0Sgs7ZAXxA3i0NgGYEfEB0AC42mAV8QFB2NA+MEXxANFcX99ERfEA7fAUudBR8QBIsPyTnG3xATNRPju0jfEBsDg7XeCR8QCBHBO3MQXxAEI1SDFJIfEAx+Ez4q018QBGHWkqvU3xALJ9BFFqZfECqkqmUsp58QEyNUWJo2HxAEEEy1lfifECgy8I8EON8QKyyeA8R5HxA+THUDqbkfEDOQ+w3a+h8QF4nHOwW8nxARQMg21PyfEC1m8rOtPR8QBl1165e+3xAiKdBEP8BfUBENAbQSwJ9QEr4j4xlA31APsSJ6kQSfUDElqC2rht9QNGcEfaOI31AYmNH2LUjfUB+3Yi8kit9QJzPBv2WjX1AIud0iu2SfUBdNqn60fN9QGUjcijvHX5AJpm14EkjfkAaip4ZjVV+QGLTgKu3e35AV9NgpL6DfkBco86MxYt+QCLGXE7Lk35AwB1DbJGkfkC4WSltcch+QKobjJDLzX5AzXN8On/0fkCXvCgClQN/QCQNPreNBH9A1A8lcotYf0DaAJbt5F1/QLcR/HY5Y39ATB0t3rVxf0AkDLOBYpF/QKK86k+Wk39AjoyRgVyhf0AYDX89Q6N/QKT2M8pVsX9AmrELd73Ef0Cy44Jjy8t/QMx1dQvM1H9ANBl54ZH7f0Cs05tBzQGAQPppH7rmUIBACMGdsxNRgEB5bDzeDlmAQOaVErYnb4BAPFjYGx6PgECieZhnH5eAQEjrAOMFuoBA5I+pA7O8gEAI6tFxYL+AQI6WZ3dSwYBAqE0TNgrCgEBO4PruUsmAQCxxmkdM0YBA1opc8EjZgEDWpIS/ReGAQGKOLmdo+oBAgOL4l2v+gECkugazP/+AQP5ogcJuAoFADjX1oHAGgUA0OMtmQQeBQOGPGVY9D4FANve0sTQfgUDEQ0fGMyeBQCwjeUEYMoFAghqcYyk/gUAML7qjVY+BQKEhM0gQkoFA8ihS4hSWgUA6zbVaVpeBQBI8lD/moYFApRErlG6ogUD/JG1NSq+BQBaJR0un6YFACN7x/qntgUAT/29epfGBQCDM+wCk9YFAxkoIqaf5gUDWojLk7PmBQOzKp0rw/YFAuE4o19cYgkCRjxbk1iCCQBmD1qr6IYJALh9QhPwlgkAhTiiM0CiCQIDMoXcjWIJAcVCUizRigkBIHw79GGiCQPDTprmsaYJAlP61O0OJgkC6Ocg5Q5GCQGKw7w88mYJAwnkOV1KZgkAw1ynDDqGCQJyKtAI7oYJALGBG7gypgkBz8+mju9GCQIL9Fot/2oJAe+ByaoPegkCX+KCJeRGDQI4FDnF5GYNA8/BkQnIhg0AICcQWcSmDQK2qcg1rMYNAeAcHouqyg0AekZ5tZeqDQMfQKapp7oNACDKJRP9ohEAkomoq/nCEQCeS/wLLd4RAUBXMcnZ6hEAX5MKFHoWEQIzT67hxooRADk/7qh6lhEAusSTJy6eEQJew0OgXzYRAymMjRcXPhECdHKaZG9KEQKY0F0Fq2YRA3uzj/mnhhECCn4AEYumEQER0YjU28YRAfM6gqWDxhEBEqSBm4gaFQIxc5+Y2MoVAD328JgFShUCejpQiAFaFQD1mfEr8WYVAaLtD3AJehUBCPJmGoGGFQEoPMUugaYVAM73hmZlxhUD8aHZumnmFQPhnRSGkpoVAUlvxD6iqhUD0vlq1qa6FQOCVv9/k0YVAZspYD+fVhUBauyns91eGQMY5yAqRKYdAJRBk4ZExh0DPCoq3iTmHQLqfjLVcQYdAFLHOca5ah0AWRSmVeX6HQFtVpuDHsYdAaMHHRWOzh0DbAoX/x7mHQKr1wY9qu4dAKIGSL7/Bh0CQE+3Zc8OHQAILrgnHq4hAzGTXK5TyiEA= + KBZXds7jZUD0hHOUyKJqQNS+X4D+xG5AnMs7e+fBckD5NnxfV3N1QJwpGM8/03lAC110hvU0f0DXJwj7bsqBQIVdKO0mI4NAnlOuCtvShEAWYqmFaNuFQMl9MA0nC4dA3Y1PldTjiEA= - + - y2HcRcGIVEdDsKZFT2qBRov/Q0VWMRBH9LiGRWqyNEUn7HhFmaYTRWAPwEUaSQlHnDMHRuMCuEWTVEZFM9v5RPNQxkboyBJFAOHxRMOQnUW9MDdFh7QbRYo2tEVRDRtG264WRd1ukUU1hkZFC7dGRyzdokcaQZ9GJtGJRgoWFEXgqQNFaXD+RlSqXUWvKNpF2QnqRoWbCEU1ZC1Fqz8DRZY7QEeUzAFFDxWLRug86EV58fRF1vkhRQ67zEVn2jxFTCDaR4OLK0W3DKZFv+0hRXJyHUaRXNFFd+cARiuiDEVT8J1Fc0VdRkqHeUXggP5EKHUmRZabI0dF0rVGTFCnRXco8kWfMohFevbnRF1DzUVJR0NHsP6pRYKbBUVRHgZFRd3YRc9ztEdL27BF/SolRib7N0VOrLxG8oyJR0AIDkY5ZiVFcMoSRmj4KkWj/ghIV+EpRUybf0a/fslFG6NzRiCkGEV9Wv9EThsyRXjqP0ZvFjlFRwRqRe6wHUUpWghFUpErRXFyDEWVIC5G4gVmRikJDkUYIptFk377RQ59N0VjiSJFNxgpRW8FBUUpmVxHc3RsRnEcPEZ6y4VFhe4RRReU9kWB0+REIOGfRe/1sUVKMuFFJCfDRq6iFEXvn4pFinwIRXo9WEUqI31FMdVrRVsbmEb2L5NFT6tSRb6koUXANQBF/YmDRV+mCEVe/V1G90t/RbvO/UWhwNVHdhWyRsxep0aA429FhemCRme5CUW8D+xFqvIrReVeYkUSVj5FG/XoSQXGvUUIEh5FdQgjRdWuQUm8SzRHiRTXR2pCoEaqZXhFhMgdRZiYD0WAm4ZG/FMWRmdh7UV1wztF7ezWROHl60VnkAJH/D0MRh92lUWpZqZFvYkiRXTHEkVgizdJhv9RRaJ5QEiEfZlGi69vRjzX+EQIDERFq3ZqRrTJ+UQmy4lGpqjBRo83GUb8mwpF01dORaZGckVKspdFipj/ReT5N0U97q9F3m2yRb9qCEbLWnFFQM8wReVC30aNPZVF7HnwRTj/hEUsjA5F1PUNRXb9WkW2xvRF10f6RCv2gke8OcdHyKYCRs4cyUY4OS5FkikqRSWkwUXntrJF4FMyRWLhNEYxWCJFXXQkRk0G9kVL27tFcPv+RXtjP0bLNIpFGyAYRSLzDkVf8zRFGk8bR6LQm0blAwpFdFbpRRhvnEaAC4ZGiGUmSOg+wkWnt+ZENI1zRbk52UbiCc1FNVz/RD5NE0VtG/dFwjqVRi1oP0borzVFK7GrRcEfZ0WxNQNFV1zvR9jjFUYIuglGmltFRqbBc0U+WlpFvXjARrefM0XRQzNG3W83RXGkq0Z7+IBFE/ctRWwK9kWTlYZGTDpRRZ6WsUWoT7FFZRdjRc9wNkVSLClGAjmZRXTiAUV5tYVH73oaR+HDGEZdpOJE6UL4RPr84UX6uVRF8k5iRs6A+UQWTV1FAb5fRlNFhUZpfkFFR6CkRSa4MEZY6hJFG4JPRQCbXkVaQzRFeKfLRjfafUX6wI5FkKsiRiAmXkW/niRF/T+HRg7xukUVJvxERJrXRfSMAUUx64BG/yAERg7Fg0U64HVIm8gaRcJzxUc3t3RHVQw3RofwjEVmKAJIuq+NRz5aOEbKd3xGlh2KRcdrNUUp6ThFGL2fRtnRQ0X0D2xFZJkMRYUYx0Uq0nNGj8D0RcRLKEW35SJFNNkbRRDJAEaTemtIqYL+R6yax0YJUPtFcXEhRdrbFkaT7IFFVIsuRheoiEVYmOFFSmaaRSLaS0Xv+gVGCjjDRQrsAEWZqAJF3zXXR670Q0czfOlGTN9PRa/Sv0X7jBlG7y0ORbA0j0UczEJF7WInReij4EekcS1H4RHGRhNt4kUKeihFvFwTRQo+50VSJHRFMCPbRe0dK0X4e69FyN+/RWCmA0XJ/KdFfLWbRZF8QEX5fv1ETcRTRYr7BkUcRRhH3EeARi4UHkaTamZFW3x5RX0ZQ0VN30tFiWzgRa9yrEVV00dFHr37RG7W9UYYrlVG9FsMRuJ5iUWVJIJGlypERnqagUUNesBFWicsRQVI/UQqTz1GqcnaRcS8f0V3xeFEwhwERZIeMkXZIPtFhfvqR5yzjEU04RVHl5I1ReU7nkWE0UpFsJwIRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - vHfSXG/BckAtiC0tp8JyQEoqkB09w3JAFlMUVQHIckCoKrw9W81yQOlrNx5D0nJAxuVMrE/ickCaG93Kj+JyQOUJ02TK8XJAvgQcNNACc0Bid27S+gNzQPrskNO8EnNA1mOcpAYUc0Dl2M0R9hdzQJOvhUk5IXNAluzr9s4kc0DUFaSheEFzQItttGZ6RHNApkFwUKRTc0DZu5fNOWNzQCi83mgsbXNA3DMv3Gtyc0CwtV3VhHJzQBhLwM65cnNANddHpE51c0C8hGjsanZzQCT7MRbFd3NAUDjyrN53c0Dn5eFIEH1zQIZuraB4gHNA4hUrRVyCc0B6xgkNh5BzQFypLkFNknNA9twW+faUc0B15hYFuKBzQB4ner5aonNA73xT5QSlc0CcmzbztrNzQIiowJUNtHNAgJfF0/fAc0BSTWgl1MFzQFhuSJQ3wnNAhklfes7Cc0AaVii/JsNzQCCkqoDh0XNAtpXmZeLUc0CcYiStN+FzQOwU8Dzk4XNAaGuIb0P9c0Du4vUQeQF0QGhQIVVNE3RAREANW1IwdEBWZmuoPEN0QLGpvVGLVXRApRtwKdxXdEBaST+ANl10QHRJkeC4YHRAomxIjwhidEDkhKbqj2J0QMg0AMkicHRAnlpGP0FxdEBW8Jr/94B0QFqwqlBPgXRA6UAEkSaDdECk1ujzFpB0QO6bK5Y0k3RAQy7hGxGjdECOjAdx06N0QGabV5xvsnRAnPRJsJGzdEDKe/VGybd0QO2WpqATvXRAb82kM5/DdEDaWTOLQNJ0QDMOb6RO4nRAEFespU7ydEBUapiojPN0QFz4ELhdAnVA9hvUiIkhdUBaml67nCJ1QDKeGkXNNXVAScDoA/g3dUAWUt1eN2F1QCJ2FdtlY3VAeh/vVY10dUBaijcQroF1QM7WcDCmg3VAIgrXQazjdUCQvgFvs+t1QH18iX9M7XVATApVCaXydUDA7wz5RwJ2QJjOTxGJInZA0vo0rJAkdkDNQcarSyt2QKBT0FIfMXZAEObFPx5BdkD5Y+v0x0J2QEbk5BJ6RHZA+Q3w1s1UdkCQkx2A2mR2QOCatCANtHZA5qAMMs7OdkCy6Z42AhJ3QE6K/AwQIndAmJ5r7KUzd0CuS0sqDjV3QEBtpcOdQXdAb8vMuRtFd0D0BFegS1F3QNJR2E+SUXdAkr7pYaByd0AWi2QA+3d3QL55fqUau3dAbgRZa067d0ALcjvtcLt3QFXJPj+eu3dAkJHmBMi7d0DsFOPjPsN3QHKTTfl1w3dAdNzfp6LDd0AGKQL+zcN3QCD3fNl5y3dAJLl4N3HTd0CiMPBMRf13QCInor+lAXhAPK+93KACeEDS8xb0bCJ4QP7B+RJnO3hA3AWh+31DeEAMaVv9EER4QI7Sgwx4RXhAFnInH8pReED5jT+vHVR4QKZocNH3YHhAujJ/s7ZheEDexs1YY3R4QLqwHPWKdHhApDmRP6l0eEDcLBTlpYF4QJbGc6SZhHhADpng8E6IeEB1Vj8UqY14QGajtHOWkXhATYPqaO6SeECdMIyLBpN4QAHuCWGolHhAPTO01qOzeEBqO4d21LN4QBYDztrbu3hAekDGuwL0eEAcg3sSjPV4QJ7SBreGC3lAbD7ynI0TeUBPQbZ4vCN5QNDfs2SyKHlAVvjYAQsueUDUISn/1kJ5QCTfpMZAQ3lAyiB+Iv1DeUCu5ro6SEt5QGsqjYfNVHlARTAebsCyeUBVLOVQQtR5QOgHlkXM1XlA129N6UAyekBygvRMDDV6QG99rw0aRXpAEth90ihVekAyENr7I1x6QAquJhjImXpAykzVsA22ekDEZciuC8h6QF52WlS/0HpAHhahAu3QekDq7dhy3+B6QErjtKZm4XpApva2fvbjekBgLwv7O+R6QHqFRGNJ83pAdKYIDqT4ekCwVphVewR7QH6kMSTFEntAXWuUYkwVe0BO5FHsHhh7QLQ1iwlaJXtAsswPb86de0AKTf83J6N7QKPNTAano3tA4glIBWKoe0AoXTfagah7QMwJThmM9XtAMHNaNNkBfEAwNY1jZgR8QJ7MtQ+ZBXxA350wu9ERfECCJl+ddBR8QBK5gWzoG3xAKucNpu8jfEBcQSTxzUF8QBg+SZ5SSHxA01yQdqtNfEBQZA148FJ8QCICR1JYmXxAKCPH2QykfEBKOibmadh8QLvR4b3A3XxAQpzXb1fifEB2z9YKEeN8QEAIxQMQ5HxA+AU1W6bkfEA+Dq2Yauh8QB0DgZcY8nxA3KByY1TyfEBet+NDtfR8QAIOPaxf+3xA+IW7UUsCfUCE/aS1RRJ9QEC3dJivG31AHAO1qz4ifUDGH1uJjiN9QDZEQzOUK31AxTa06ZWNfUB0iJrQ65J9QAAlbNbuHX5AODQkpkkjfkCdqmdDpCh+QIYVqVS3e35AGigVRr6DfkChsRazwYt+QJJk6WhxyH5AuhKJIszNfkBgeBZWf/R+QPUEWIOUA39AbEGqU40Ef0BWbqiyilh/QHJUs+DjXX9AD5HgpT5jf0BQ7b2Qi2h/QL07wma2cX9A3NMUI2GRf0DyuXYoXKF/QHA4r1pCo39ARcH7NFGxf0CC0dtqvcR/QADeXVfL1H9A1sJbXJD7f0C6Jw08zAGAQO3y+LMeGoBAv/bskedQgEBGPZ6tE1GAQEHhLPkNWYBAls8CSSpvgED4W51NHo+AQM710qITr4BAxHglM02zgECul+T8BbqAQI08oy+yvIBAsjYrFmC/gEAaD+pSUsGAQNp0GC1TyYBAYtXMXybKgEAcgsgHKc6AQEC74WVM0YBACMWL+GDRgECiQbRdSdmAQEKt7jBF4YBAdvHp40nvgED/mA10aPqAQLzc9sVr/oBAaE96zz7/gEAG9PmZbgKBQPhl5ZJxBoFAVEzuWkAHgUAwTdUKNB+BQAf//BM2J4FAlKUp1rsxgUAMnDlrKD+BQKgMwKNVj4FAXSy4CBCSgUA6nOKyFJaBQEQhiijnoYFA6+5d7GyogUCrZUv+Sa+BQL7kPi+n6YFAX8xYGqrtgUDgc+uUr/GBQK48PS2l9YFAJuOo2+r5gUB2Trco8P2BQGcQzM3XGIJALXXpOtYggkDEiaMr+yGCQA5YHX0AJoJA0pckMtEogkDwC4rzIliCQE+tHGw0YoJA80yRszdmgkDKhpWtq2mCQOp2pBFDiYJAuLkF4UKRgkBgnV8IPJmCQCWcFDpSmYJATCv0rw6hgkBGUNAOO6GCQKh3vAIPqYJAAGf4zzKpgkC6slcKftqCQJE57Tt5EYNAkL6Qf3kZg0CubM+ociGDQM6lvnRwKYNAzQhR8mkxg0AGFnELZeqDQIPkSDhp7oNASmm/0W8ShEAc6UIR/2iEQCiweh//cIRAF4GWe8p3hEDPA+w9d3qEQA4092dxooRAY0/9sB6lhEBnS5jSFs6EQFg5WzBq0oRAsD3/RGrZhEACwVVlauGEQMjd4Lhh6YRAKKDwEzbxhEC40K5jY/GEQN3baan3GYVA8M4EUjUyhUAXgnfz/1GFQMYjXU2gYYVAUavp3J9phUA0RRBImHGFQCJ93duYeYVAYh5GG6SmhUCCTnBRp6qFQLLAQ7irroVAHCfMOK2yhUBGHY+849GFQGfFQdzo1YVAOjDFfKNWhkDsTs9TkSmHQO5fQWOSMYdAyGmLvYg5h0ByDMq7rVqHQJdfO2/GsYdAiopEC2Ozh0BsbRHbyLmHQFpy9h1qu4dAtJDC9r/Bh0CmCvgdVsOHQKC9TmNyw4dAMsTpkXIGiEA= + NrgMGZxjYkA/KJil8iNpQFf+/uF9UnBAH3KoplGjc0B+v0ZZLGN4QObMPOBp1HlA1BNLXsTTfEAEHvnKwWR9QBS0pzEuooBA+W38E5hKgkBBukzXj8qDQLPA3AsQS4ZAC8IVihHjiECqn1w6R+OJQJ6iucVo64xAPoAAdp7rjUDLwBz6z0GQQATEZBQQgpFAJ+oM9gtCkkAbRzfnQBaTQKPZTI0nDpRAMFx46GYylEDq7fuHPfKUQEZxuemMTpVAnARhloN+lkCQYYuHuFKXQBwcWKvZQphAH4rpfOQamUDOMr25H8+ZQA== - + - utaeRcUgNUfx/T1F5rJMRnUVLUVdawdHrclqRQMue0V4qjxFkq52RQNxJ0eR7jVG9HnARYqDJkWOkq1GBXDDRTv5kkVl/xxGkutuRV/CGkWNq0tHxSw3RySnmUaB+ABGxFUZRRJYM0XJSatGRFGARWARgkWGNsNGc0wiRXt6V0VnHV5HEtVbRtgAAEbvIw1GjzM6RRkAk0WhrFpFXPsQRY7bl0jk6vtElPg8RVgWE0XpMQdHz6m0RQBFBkba4zVFH0udRYtodEZYyoZFhhESRZhC+USASwpFUfIZR4sIh0avU4NF4ONCRhJPcUX6OsdFIhlRR6i9MkVMDQJG2hozR9SmtEWnXIVFByEoRZRnA0USYolGx82sR43E/UV7wBhFskZCRnrXwEhV3VRHVBN2RQUXskWjRTtGxJELRkWgHkbNvw1FSkCcRZjCHkVFPehFAWcaRqdlq0XybbJF1eUKR/Py4EVyYEJG1xSrRXYlG0Z13ZFFJjIRRvmZl0UTSsdGx8ttRW8/PEXdA39FhLQ5RvuZFEWjPqVFTsFpRcTbcEYr0zdFSwTWRZ5g2UdW+pVGeZe4RpHqsEXWHFBGp6XQRZA8ikXxoLhF964vRt0jAErycARGzGLPRbKFOkVIqFVJulBKRXJwMEW8GglIx8uwRigOUEb+LzpFLFPMRVDMV0XmOddFMvadRc6iv0ZTTClGxnCbRf2UV0XmYCdF7VYPRbGzMEXLUj1JVNdORaEAFkWDOjdIcXYtR1WCtEZMdSlFleJpRXqsN0V7zmFGw88nRqxKZ0Y1EbpFKHmQRcmCrkUVNl5F0QklRXNOZkX4G6BFM/qORZl7lkU9VoRGsUctRQBDjUVXHY5FilOfRSd8q0WGyiJF+GWCRmlXxkchx+FGg343RXgjGkVtZiJFjqHXRaOufUXd6OZFOip6Rc9cOEWu9idFZC8FRZd93UVT4gpGIugCRvz3ZkXIzLtFOR44Rs2EMUWr3XRFMWQ3R529lkZMKjBFpFcRRbSxv0Wso5NG1PZFRqYQ2Ec0Lr5FO/CERZGaZ0ZQyYVFYKoORTnjr0UKJpxG6ocPRjbWQkV0jO5FuQ4VRcpGRUVxnzFFI+YCSG26BUZl48hFO2w8Rh7jl0X1yhZFZnD3RhhqF0XN8SFG+M7URiXqnEXbN5RF8QwKRfUyAkahzmxF2m3aRVWMOkWlEwFGuBsmRRF2ZUXvDHlHb8vSRkus0kXybOtFAu3oRUlEkkbnni9FAnmFRYysmUbpeCFGrUqQRazLMkWr3LRFzVEnRidwc0WJF1ZF6CQPRXfDqkbP56BF+y7KRa0lSEV62ApFPIpjRZyhZEatVbhFQHJVRYBF3UVQ+GJF+9Q5RStdTUZ21g5GEwOLRW5riUgMtuxHoFELRQ2HI0WMnI9HMwKHRVleVEZtlZhFaFMMRbOc1EcmRVdHQWhBRqYrS0ZN40hF8sdrRdtJika3uoNF6RUVRZodGkXBJt5FGWRkRtqu0UUYMkhFa+IuRVrgsUVPzRBIj1CuRwATaEbrngRGccK1RWojekXIujtGN5yMRd64UkWBCjdFKU9TRZEMwEXMKgJGSU2iRflfgEXzGd1HIlo/R0y84kYr4iJFGV+5RaVDDUayeRpF2jYqRQTNhUVM0PlHun9MR2gmCUchOQtGBuVBRTse80VxfoBFypECRQ5WvUWMqQFFVffVRYYInkWAcI5FhJWPRQsx40XuR5VFig8SR1hJc0ZmnRBGbEyTRUokkkVkeUhF6QT/RKB0iEVgKv9GklhyRsRPNEaisXRF64lGRyBY70bRcRlGhYpORaYFb0Vn+CdFgWkGRRVKEEZx3X5Fjg6MRZhXiUWDrB5GPpIFSA3ankUvaz5H1Iw7RXPoXkVzCAVG+TYnRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Pkq2e2/BckDEj/c4p8JyQOpdlb8ByHJA2h73LVrNckBArwWHQ9JyQIq9QMBQ4nJArDKLzJLickC2kFc2yfFyQLb7EkLQAnNAdCn5qPoDc0Drw8VLvRJzQJrLBRwGFHNAlvcjIHofc0Cmd/5GOSFzQFhBgNvOJHNARlEFgMwyc0C0vCQCeEFzQGZqRlx5RHNA0r9CWaNTc0CAnK1mLG1zQKr2enJrcnNAd5FpZ4Ryc0B4jPNauXJzQBwe3tvFd3NAiiFgSN53c0D3diYzeYBzQPEC26lcgnNAEl39M4aQc0DEcku8TZJzQE4JFZb3lHNAelAoMLmgc0AxysQ7W6JzQNb3a5y5wXNA4MwHHdTBc0CNqfDUzsJzQEkyLabL0XNAavSeLuLRc0CQ72+G4tRzQAWJTqo44XNAPvBA6ePhc0CWUebPQv1zQLitpgZ5AXRAVP7ZcpwCdEAINXrNTBN0QHEg3Vi5IXRAZoQrUDtDdECoCUqQ3Fd0QMr19hE2XXRAlkwworlgdEC2uIzOCGJ0QIoOtyCOYnRAxn4y8iJwdED4ycuCQXF0QKTsA3k5c3RAHp1ioU6BdEDHmxP5JoN0QBI0FjgVkHRAsFtfx2+ydECcBvv0kbN0QCmaCJfKt3RAitkxIJ/DdEDw3iq4I9J0QEgF8HxA0nRAWpKwrWXSdECLO5mtNuJ0QDomOYBO4nRAx87Z7U7ydEDJUMyUjPN0QMy5bLhdAnVA6pwcfYkhdUBMrzGYnCJ1QFqDtPmWMXVAbNRozPg3dUAwzKEKN2F1QKiGuqTQYnVAdL93qGVjdUCS6t5UjXR1QImCzkKtgXVAuf41X6WDdUBYpvuFCOJ1QEc/Hsir43VAKYslDbPrdUCOyx4GTO11QMQwSgin8nVApk+MV0gCdkCTvdERiSJ2QExMKhWQJHZAK4BhrkordkBOlcObHzF2QKOBf48dQXZAfPn81MhCdkCkdyoReUR2QPAUhY/NVHZAn95MedpkdkDEP0FjDbR2QCRgmuoBEndApymPlA8id0Beg7YzpjN3QMVsxWMONXdAm3Ae+Z1Bd0BuS5blG0V3QO+mhydMUXdA5cyZ2ZNRd0A6th6+n3J3QPCtldI5u3dActR5fk67d0BJLYQHcbt3QGb+VMyLu3dAwHRwf567d0CZIntvP8N3QLzK4zdSw3dAYEw/IXbDd0ATIyNsdst3QPpcbzhw03dA7ApQ7njbd0B6GxjeRP13QGCvRmSgAnhATBUv2D0oeECuis7oly14QC7s4/FlO3hAZi0zeH5DeEA4DKj9EER4QGJyiTh5RXhAxqRkW8hReECm4gF3IFR4QHAQgW5RdHhANaRd44p0eECroT58u3R4QMCr7IulgXhA9ANwvZmEeEC4VlJRT4h4QOdQa5GpjXhA0rUKWf+SeEC2g9wkqJR4QK/wvfyis3hAGrgE4dSzeEBF5Txa27t4QNqwS/IA9HhA64dpjIz1eEB68ZtgfgF5QENlOtyFC3lAct5gS7wjeUAOOS1Nsih5QIyoCyjYQnlA/oyJB0BDeUCQHDnC+0N5QGDLzPHLVHlA3rOD5b+yeUC22kufQtR5QGCUgo3M1XlABgfJ2UAyekBWB3NkDDV6QFIpvIYaRXpAVjXCcSdVekBEL3XpC7Z6QDSAxesNyHpAzZz3SmjNekACKcv1vtB6QAhnLCLr0HpA0oxEqCrTekBj4BH84OB6QDJv8LU75HpAC6waoErzekCJi22Kovh6QGUBMQp+BHtArJHqXcYSe0DEtl53TBV7QASGmT0eGHtAXjNdcc6de0CFaYC7JqN7QGPlmq2EqHtA7T1/aJbxe0BYWRvBjPV7QFzmsYzaAXxAQzTObvMBfECcn0yiZgR8QMH0kX2bBXxAxmGbl9ERfEDGoa36cxR8QCTsrt/nG3xA6PXXoMxBfECKZakVU0h8QCivxdqsTXxAnMaL8fVSfECqR2pBWpl8QJP2qjGznnxAGIjK0cbdfED9ahvKV+J8QDhD0EsN43xACvru/I3jfEC7Sy2sEuR8QIhfN6yl5HxAdhAqgW3ofEBQfduj5+h8QJBtP4xV8nxAhkcvsV37fEBELxEB/wF9QICPtGxLAn1ANiZ+WEYSfUDgMfSxrht9QPrRHB+PI31AFEofYpWNfUBOlE5I7pJ9QBvzbON4BH5A0lOy/e4dfkBZ24b7SSN+QFajRg24e35AMjNaIL+DfkA3kKdHxIt+QHeLlgySpH5AwLmL7nLIfkCYsBJQy81+QGp3y1B/9H5ApksJto0Ef0D2U4oqi1h/QIIM7cTlXX9AtI9rOYtof0CzQ5/wtnF/QBzrNV5jkX9Amj3QoV6hf0A4kOCGQKN/QMNhfHm9xH9AygzfGcvUf0CsWyT5k/t/QMnx0az5NIBAaZcQyPVIgEDIc7kL51CAQKZrkFYUUYBAGZdesw5ZgEDsz0SxJ2+AQKdeL70ej4BApLaeXQa6gEA29L+QsryAQErGyQdgv4BAzq/ZgFLBgEDOvT55U8mAQJgl16clyoBA9oNfgCnOgECymDRsTNGAQHBRWHdg0YBAig1M6EnZgECwdEalROGAQNIDJ4xo+oBAiCL6J2z+gEAqwUNmP/+AQOYQ0WBvAoFAUsWgPXEGgUAmaMM3QAeBQGlS2kU+D4FAdGrixjQfgUAs2pSXNCeBQKxULTkXMoFArMxeMik/gUDwKL+iVY+BQAaI9LkQkoFA/qmYIRSWgUDYXCgzF5qBQISoR0bnoYFArQwpCm2ogUChWToDS6+BQKhw+YWn6YFAE57/p6rtgUD8deTcr/GBQLyeXB+l9YFATJKa4+v5gUC2SVuT8P2BQNozCXzYGIJAfRWj0NcggkAKZVZ/+iGCQPJhBFPRKIJAe3/ZSDRigkA/qxaVN2aCQGhxB8msaYJAeFKhR0OJgkDeWogSRJGCQNSOu508mYJAGwWo0w6hgkDgiVpCO6GCQKYVzrIOqYJABs3TXzSpgkCCXyOweRGDQJzKz196GYNA4mFTCHMhg0CejgZ0cimDQNRw4JRqMYNA6L9j7WXqg0D/oLFcau6DQCgGEL/6QYRAHApA3gFKhEBU9p6z/2iEQIDe1gHLd4RAiZI77Xd6hEAMpcpqdKKEQHynsa5VsoRAhfWYIRnNhEClQclAFs6EQFqpA90a0oRAk/W6BmrShEAs9Gsga9SEQAqn4NJr1oRAHmArTmzYhEByMgY4atmEQDoGdwFq4YRAAs1XlWLphEAyBE/eNPGEQDanadRj8YRAUaYI/WfyhEBzmhtP+BmFQCsOrv9eLoVApF2rHQJShUDGnPuAoGGFQPNgmG+gaYVAZFZ0xJhxhUCqWEuLl3mFQKIlddSkpoVA0nB1/qeqhUDSsu+jq66FQHqLTYSwsoVAcCE1WOXRhUA2tN6EkSmHQLCJMv2QMYdAZICQIos5h0AGAqKvrVqHQBbWjKy0YodAXkIGyMexh0A0p4ZUY7OHQOLvKNnHuYdAmHvnFmq7h0BJ7xV4v8GHQGoYlG9Uw4dA8RJBOnLDh0C2n4QjcgaIQA== + KBZXds7jZUBcG3g88iJnQKPid1q/AnFA - + - e7+pRWm9DEea2XBGWcdARTta2kafJlRFcuwKRXqULkVLQBFFc2IGR3ubGkaAJYBFSkweRYTSp0bshp5FZY06Rd++a0WVuuNF99J/RReFaEci0AJHWnWgRnUOnUXjkxlGb6RzRb8Cm0YQwCBFJ+IIRTRtGkfBWltGS1TQRWeTpkVYebhFYGUeSQVNJ0Vq2hhFAi+4R40HjkXM9rxFRVHMRQLzf0V9YW5Gz0ZbRUfhJUXpBgJFsYylRftLJEctJWdGPh1mRXgDJUY3QEVF2jmRRZzYKkf6U2lFaw3ZRQELrEZwknNFdd51Rp26mkfdf7RFul0VRtpS2UXFZkFJcq+mRTT2ykUDw8lHtke9RRVKzEU78hpGngOJRjiL+0X4/g5F0TGCRXzmIEWZbElFQwboRSdNGEanNY5Fkda0RYJFCEXPB7FGDWwaRoxqSEZn26NFxYz0RcID00WDqPZFCESqRWRV1kYj2oFFpY2BRdh9RkVMD0NG0FcuRcsFZkU7UntGPzElRUoqjkXKI8lH5hJ+RnDrfkbXMiBFrG4rRv8Dd0XA7x5GnFSLRhf/BEqRowJHO4ZZRjo6oUWam95FsYFbSb+DKEiOdMRGGe40RQgRTUb+xJ5FAfqORb2MK0WC4pxFLl+RRXiZrUZf6txFIklORajUR0VO/11FfRMySfprgUUnLCNF8FgwSGHbfkfHYB5HT+DZRRTrmEbI7+RFAOglRuxuT0XIDBdFrBy+RU0OIkW/x1tFKkpzRXCFvUW3PChGaCkARmDQZEWx709FbKFHRS572UUVwzRFNhNlRWLV3UcbYdZGLrRPRQ9mskWFc0pFR5pcRWLVjEZJK/9FxBYmRUBWoUUBFdxF94f6RUzZMUUWPo1FtOzDRRpRF0Z5nkJFwNn6RoKBmka36n5FSoqoRQpVmkZMYEZGigNBRSP0hEcHSJdFCjiMRcqcOUb8y6RF7VneRQ6tpEYoTTJGz0sfRR4+PkVGuU9Ft8VKReIJ/Ue0gaVFqjaxRe4QpUXDuc1Flg2URcPoX0WXpgFH/TgNRraJFUX9pbFGgNeWRapBBEb70rZFygvERTSXZUUGTkVFu28hRrjNkEV/Ul1H0CuxRvCHz0VsjxBFK/fRRcjBxUUWC6lGzqeqRWzxdEbk+ZJFsREvRSNHw0W6HBxG5xUlRWkcPUWTXJxGZl9gRQjZg0W4O3BFe54RRa8AX0VYi6VGnX3QRZFVEkUoTOhF7X1TRpKpHUYwUHBFIXejSOx4Dkiq/A9GvT6IReJwm0c+or9FaXuYRs8HoUWZ9JZHqJwRR246S0ZiogBG85saRVCwekW7B2VFvyObRse0W0VoDDdFKYFIRSRVqUVjT5JGpAgRRkCmGUVjB0tFqBQPRSXzi0VqbNhHaKJmR8vfTUaBIMFFR0biRQt2oUU+KEVGW+Y9RX/vPkVPsVZFXTCFRpIP9UUxpUJFlc83SM/mokdDj1FHqlG0RWSweUZcMzJF1gKhRQvaNkiTQbJH8GxaR4FWZkbKq6hFyLG6RUEoREWlJi9Gif8tRYeh10UNFctFk4XGRYKcE0XYyVNFRooyRTeRP0UE4ntF0YsjRrNxb0aYBCZGqWTARarsUkdVobdGxvwtRoSjjEXVurVFt4wwRdgSH0UvvBxFPyUeRXb4N0fgNLFGxYRERtTrnkXLhp5H54VUR8sdhEYGtTlFYh0tRZaAaEZL4+hFIiCNRfRSWUbiLoJFl3YrRh7jBUgF1bpF8406R/WMTUUcX3VFIfD/RTP3MkU= + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 3qVT627BckD3LxCyp8JyQJJ2bqQ7w3JAgk4wYQLIckAoV+loWs1yQGmSxqZD0nJA1tA741DickDU2wMOkOJyQAfqmobK8XJA6Gqmz88Cc0DupRrp+gNzQPyqsZK8EnNAYhFTPAcUc0BzxFBeOSFzQPih45zPJHNA6ozY13dBc0BgHCnfekRzQKrLvtmkU3NAVPjDgCxtc0CxMdzpbHJzQPUUeEaFcnNAZFWD0rlyc0BM10VmxHdzQKB/Hwh5gHNA7NmpzF2Cc0CMDtLjhZBzQEJ/2ZxNknNAomfD/feUc0CkPcP2uKBzQAZd9jRbonNAjx/iPwWlc0B6Rvg3t7NzQNICsIepwXNA/kfEENTBc0BCtQtXzsJzQLfq+GbK0XNAbOcBAeLRc0BB0oDW4tRzQIH5Cls44XNA/marIuLhc0B0i+cBQv1zQBTBbb54AXRAxKfmhEwTdEBwnMAUO0N0QFELCjPcV3RACsHYmTVddECM21g8t2B0QMRQ5fIIYnRAuhkW1o9idEBytElgInB0QJg7BZlBcXRADrCI6TpzdEBiXXkO+IB0QFL1RuhNgXRAC0mK8SaDdEAMuaxmF5B0QEoGWWs0k3RAs40KbO6fdECef0CWcLJ0QAh4ldmRs3RAVu5Pv8q3dEBtIoC4Er10QHkZskWfw3RAZa7R2hHSdECkT/FDQNJ0QJCxxYA24nRAZxMbf07idECKnEIRUPJ0QAxJO+OM83RAoBnurFwCdUD+0DTHiSF1QKQ5N8CdInVAHGHsvJcxdUD8UgYlOmF1QMTebUVmY3VA6DbWQI10dUDMd2XyrYF1QJObjkWng3VAo7HLEKzjdUDe9EW8sut1QPUX+aBM7XVApieie6XydUBYi9nvRwJ2QKDFliuIInZAHpO6gJAkdkByKB4GSyt2QIoFS9MfMXZARimNlh1BdkCwjsAwe0R2QCLLUlXNVHZA2searlFjdkC650ZgQYF2QD19+mWSg3ZAuLzk6w20dkA43sRV0M52QLC6VPIBEndA0Gvitw8id0BCu2sjpTN3QL9bQT0ONXdAOeI/kZ1Bd0ASBuutrkF3QB1FgZsbRXdA7pVL65NRd0BqCZsFKW93QLh1FzehcndArHVrmRm7d0A2CP1GRLt3QMS4WbFVu3dAD/CFEHG7d0CG4fWBqrt3QNLNHM1Yw3dAaMmQKXbDd0D4wAlkoMN3QMwXX/16y3dAehFv8HDTd0Co54/FdNt3QBRoWIdE/XdAGPns658CeEDIDWqRbiJ4QPwKr3g/KHhAnP76gGY7eECa/a9ifUN4QJKn+9wQRHhAFmW77XlFeEDs32C6yVF4QLtrDbeTUnhAf/4Xax1UeEBBS0X1inR4QIoSbzSwdHhA7iZ+8JmEeEB25pViT4h4QJmdEsOojXhAPuqw65aReEBxaF7C75J4QL9un60Gk3hAi/IAvKeUeEBvImlQpLN4QOj1eu/Us3hAn5tSGtu7eEAY7zlGBfR4QLoKSbmM9XhA9DBCqn4BeUCId4D+hQt5QDGVjLa7I3lA+miKXrIoeUDWF9zEDS55QBdeG4vjOHlAErg9NtdCeUCsr64AQEN5QKZIEL/6Q3lAwp5EAs1UeUBat9KSwbJ5QKZQ555C1HlAE/JxOFDheUDOWKQ/DDV6QBr8o5iVQXpAyX77yRpFekDuG2w+KFV6QPibjDwNtnpAaqbkAL/QekDcOOEE69B6QDNcBRYq03pAhDT7at/gekCC53roOuR6QMq+yeMU8XpAhuP7JUrzekALp8flpPh6QIYaEeULBHtAHFXMmHwEe0CLHjTqwxJ7QBnBtIlMFXtA2BQM9h0Ye0Ayb/hqWSV7QG629UHOnXtAxvOldyeje0DQgrelhKh7QOyqlNPKrXtAcHBMrYz1e0D641Rd2gF8QIrHnRJnBHxAHG204ZkFfEBZrqpX0BF8QCKwRr50FHxA26d2ZOcbfEBinJpNzEF8QDyoXWNSSHxAbzqmY6tNfEDG7cxfC1N8QL7q8mNYmXxAZgM/erOefED4/ADt0sF8QF4Fyeb423xADYXX+VfifEC7J2eDD+N8QELV+LOM43xAkt1D/hDkfEDy5c0RpuR8QJxam15q6HxAKi28NOnofEBbu1JtF/J8QGwiOXpU8nxARFIx21/7fEAUhVSqSwJ9QMqDeBpAEn1AEOql+a4bfUAGoYyYjiN9QAWcDg6WjX1ApFa6Y/CSfUAemwOeO5h9QFMnWueP9X1AH1dN2HgEfkBE+D2X7x1+QNIpBbZGI35A6KZtwLd7fkDgEaGQvoN+QFU4k7TEi35AwLOeRnPIfkBPP7hczc1+QC3oPgl/9H5AsjLkQYtYf0AIAded5l1/QEFx/ae3cX9AChWnbWORf0Dax81OXaF/QKptE0BCo39ArkDHZ5yof0CW//N8vcR/QJlYd5LLy39AVMfiqsrUf0C6QneDkvt/QPW0RbL6NIBAt19x7QE5gEBA3Lle51CAQFLW5J0TUYBAWYA8/g5ZgECm3v2DHo+AQIxfiLUSr4BAyqs76QW6gEDsrAwvs7yAQM6lXRhgv4BAtWRYmFLBgEB+E4caU8mAQPD7CjolyoBAtHEO8CjOgED0qoBaTNGAQFCRAqRJ2YBAtknue8DegEDaR82CROGAQIeOuaVo+oBAwHBPD2z+gEBIfx30P/+AQGQS4E5vAoFAJEn94z8HgUBps3tFPQ+BQMBUWL80H4FAvhfhMzUngUCa4MY6KT+BQOgpCDRWj4FAxtWVlRCSgUBfYwogFJaBQA6E6VwXmoFApDX1duehgUBHkux7Sq+BQEITZpen6YFAt0WAqqrtgUCzgCvdnfGBQKvIfKKx8YFA1NUOM6T1gUDKWg936/mBQMR3rSfw/YFAZDhCmtgYgkBmb+W71iCCQCCznfz6IYJAyx6sLtAogkBFrqxNNGKCQImvMsY2ZoJA/ne6XkOJgkDECF7cQpGCQEK0/6aYkYJAK0JEXjyZgkBOMUCxDqGCQJ5pOsA6oYJAiaCWabvRgkBIhYXhftqCQFqCf8F5EYNAhq+p4XkZg0BndblMciGDQMpY9lVxKYNAJF0xxfPhg0C24hGr9+WDQE6i9Vr7QYRAZC1SawJKhEBQQG7v/miEQPbVgVCfaYRAPnm1JwJxhEBaXryIy3eEQH192LB2eoRA2kl9xSR9hEAB7niYb6KEQFLyFfYhpYRAfpldDFWyhEADpMqGFc6EQNfp9yHGz4RAaeXWa2rShEBS9KWWa9SEQES3hets1oRAYLKTF27YhEBYUxlMatmEQIC5JIJu2oRARiKZyWnhhEByIRzGY+mEQEL+9Ec28YRAvBgqLWPxhEDqQexxafaEQGQwT+r3GYVAEDShI/sdhUAsqtIXXS6FQAacV22gYYVAOyhtk6BphUBKkhuKl3GFQGIn9EaZeYVAmr+vu6SmhUAgpiSxp6qFQD5yD42qroVAvujS3K2yhUAw+AnSv4qGQIMMVAVam4ZAqsjRIJEph0C8p1EikTGHQMBANU+GOYdAmKp9lK1ah0D4FqkGtWKHQFL6IsXHsYdAgCmmUmOzh0BeFjaAyLmHQMCAj5Zqu4dAoIrOqMDBh0DWiMJLVcOHQJQdMQRzw4dA + 7BToB3LiY0AoFld2zuNlQHZo0FeRAnFAiTDsKtfyckDHaN72tnJ3QLDxM6KFA3tAVsAqFo+DfUDNQvCM3ZN+QFhmujAp6oFAkycdbFBygkDnjhgmVbKDQFpTw3u8eoVAem+8Yay6h0CDU0pLz7KIQDTCnFkku4tAg4I4dXs7jECwiN0a3WOPQA== - + - WsPERTYoWkecMYNFIv2RRhwNg0UGxA9HS/qXRTM3k0VXdUxFYs5SRZSLJkdyrVVGOvafRSlpskZ1maNFIA5BRUjWKkYnp1FF1gdWR8Ml7UZUkqlG2TMtRc8e8UVsxrtGY4c3RcgJJkVCNDpH0pFKRt7z6EW1qL9FkZk/RXZhTEWgZR1FO8BwSWyHiUVi8LdF/0r2RzacY0WmRtFFvSO2RZd0W0XwVWFG2V1oRYge/kW8uxRHfHUvRnDZVUUiEBBG0XSVRcxdg0W5sitHKrwwRbARVUV1Z8BFzXJ9RrkLrkWmUD1FjyE1RQPDW0aN7RNHR72KReajFkVA81FF7sVURbYJjElbYDpGrEMUSIXSF0bpeq9FE5o0RuoMyUYZEgVGzGkuRbpVNEVVRpRFR94YRv+B5UXei9VFmPyGRp3I1UVq0DtGAz6KRfUq1kU13YVFW/MGRt+41UWoFMJGi4VvRcgXT0VhSR1GG88xRdefhUWX3ShFMCiLRVxjI0XhbIdGgXcbRT+LekUaid1HIeCBRr+nnEVv+LxG4m85RtCLZUUmJelFdJKJRdUQ/UVR3pZGj74CSue80UVwjb1FpxFbSQTdh0WagwhIXO3BRkG9UUWEql1Gm0XVRSTWb0XmB5ZF6ambRTMYF0YZ1apGmRAkRhiJhkVvBEJF8NshRYfdP0l9AZ5FLL89SEZbxkdchmhHduY+Ra41DkbitCFGxhZVRkkKh0XtehZGIvKZRe14OEXSC89FhFBDRTUaWEWCbIBFuUIhRrqwJ0X1TFJFne2XRv031EWjan9F22mlRTI1XUX29sNFnD53Rbtu0EcRVEZFnfvsRp3qWUXST7dFQpTzRv4bKkZ1th1FaTgJRpxbcUXgthxFwRM+Ri2iREX9PmJF5Gu/Req93EWoDTNGWCBORTXnckUZgfpGk4txRgrnz0X/pDFF6I63RreUgEacuj9HP/atRXF5jEWCCwBGb6anRRUYwEV1DaBGp9MlRucRPkVGGZBFEixSRfGCTkWnE6BFGwMDSKAL5EWl1JtFnYbbRbnstUWVPW1FmQQ8ReopGEVbU/JG2/y4RRcLx0aEEjFFjmwNRkfnu0XEVoVFT+lvRfOkSkVlwVJF91EsRcx4C0b/W6BFywFSRwX/0kbXO8FFI9X2Rcs4L0Uqd29G5UE2RisIC0bfdINFPJhCRunYJUV0hm9F+2VxRW0YjkbFi0ZFM1R6RTZms0WXGc9FthR4RTQrl0X+SmNGZHelRcyAC0aBWCpFW/eDRptPPkYUUY1FvxGSSO+R/kf7OGVGtucARoE/i0eryWpGYakgRbgjk0VLUmFHad7mRqpJNEYaDdJFh9aKRcyYHkX9UYxGvRqMRcZsMUXrJdNFoc/NRivJXkYyZD5F5M6BRVMq5EXC+55HNz8nR0kWvUWpeP9FC/KPReX1CkY6BqRFuYktRn6Tk0WLbEZFIh1GRaIKpUaXPUtGi9m+RyHvCUcd1qxFe4vORobAsUWHDQpG/i5RRV4rbEVPy+dHgoo1RwzMy0Y+bhJGayR8RQUjNUVN+cNGOYGgRZ2Hs0U+/GtFeMIqRc7P3EUQE8ZFQTpiRd0b5EViqVZF284rRRSDiEVxHEJFDl2nRpiXzUYBOaFGDKkuRjNOBUeZgJNFw1RiRv4O7kWhbIFFemtPRfGRQ0W4lYdFMsMrRaeykkW5uQ5HYkiURmGY7kVO0plFivFdR/PTGEehTD9GuE1HRfy8JEWUsxxFEgwaRuk3n0UZMTBFB8nGRjZn5UVDYhJGLrEFSLAxr0W9rzxHIQdDRSyrW0UKLMhF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 4mBS727BckCcIf6kp8JyQE4ZuIE6w3JAioi+iwHIckAeEhERWc1yQMp+YltD0nJAAnOdR1HickAUxSOhkOJyQLjaPaTJ8XJAZiQ8Q9ACc0BSWPbv+gNzQKYUDd+8EnNAcSc5jAUUc0CUf/jwOCFzQDqHBSTOJHNAZmf+bc4yc0ATYcxUeUFzQKB18ix7RHNAnt+lbKVTc0C4cHTyOGNzQFYImSgsbXNAcgbqM2tyc0Do5hLthXJzQOCO1Ei6cnNAanwQ3E11c0AY4cjew3dzQF78SEHWd3NAzPZCPnmAc0D6RopdDoFzQKWoV7dNknNApnG0+PeUc0CktfWcuKBzQF4TFKVbonNAmNQbBbWzc0CbyzbcDrRzQNrKDQWswXNA7vo07NPBc0Ams1+v88FzQHcAAzHQwnNAelURa8rRc0BL60Dp4dFzQCYmv21T03NAQRBWOuPUc0DicfeHN+FzQL55qjfi4XNATNvT9Db0c0DYI3P/Qf1zQIbPKHZ5AXRATt6BrDtDdEAEO8in21d0QM6XG800XXRAXDhj6LdgdEA+bbqiCGJ0QEqG2ekhcHRAwzcinkFxdEDyLQ8UOnN0QLM9svT4gHRABsx/Lk+BdECbsfmsJoN0QA7IbjoXkHRA3kyxbfCfdECWRe+Wb7J0QCo+NGCSs3RAn1v6N8q3dED8oPt9Ir10QBElUra5xHRAhvXW3RTSdEA8V9Q0QNJ0QGvu4e414nRArGTfKE7idEDqOXL4TvJ0QDWuC2eM83RA5DPd510CdUC2QqaSIhR1QPQy9fKJIXVAUCdXxZwidUAyb8P/5SJ1QHz9SEyXMXVAdKrozcs1dUCnwe1HUz11QIpPJW54VXVARP7zsNBidUCqUoHDZGN1QAIWvpmMdHVAOrr7F66BdUCS3q9DpYN1QOEzYLKZhHVAXtM2RoCydUAKlvRyq+N1QDx9+Gez63VAXyzZ3kztdUCYaHcvpvJ1QHLjsGpIAnZAZMzz+ocidkBrpeQHkCR2QNq1iI5KK3ZAzInbHh8xdkBUqB3qUjN2QDFMqAweQXZAMi4kJZdCdkACwGzEx0J2QKBMVgB6RHZAAsbkTBBRdkC9xnFhzVR2QLQGnnxCgXZA56Gu0pKDdkAkI67rDLR2QIi5BBDQwnZAvkHVVc/OdkBWTlEXAhJ3QPpz6bwOIndAXU7VoKQzd0D664kJDjV3QNIMHKOdQXdAyAsdtRtFd0Dw05JfSlF3QLj628yTUXdAN9zVfidvd0D+d8GXoXJ3QApZdXI9u3dADDI4SXG7d0CHXcBqm7t3QIJ6Dkh2w3dAgthrXmfLd0AsNTK5fMt3QFSQ4kBw03dALKLgZXLbd0AiNvppRP13QGqAdy6fAnhAbdZWXGwieEDM+xCcPyh4QA7dU02eLXhA//siS2c7eEBuFMqbfEN4QMkvZLQQRHhAaRFxsHlFeEDRzu1pyVF4QCxEWcmTUnhA0zFe+4dVeEBwdieU+GB4QD9clgm1YXhA1uD/PIt0eECprQ6no4F4QGTYtsmZhHhAtUzAs06IeED2+NZCqI14QM4fXI+VkXhASg1f1uySeEAgNOqnBZN4QDb2v8KnlHhAWqGyGkuYeEAYp9D/orN4QDP0PVXUs3hADsImqNu7eEC4vei8D8d4QMwPdb0B9HhArO0DEoz1eEBi5vRZfAF5QJgqZrO6I3lAFtWSW7MoeUAavIQmDC55QHKdJ0ktO3lALmrnNtdCeUDqCELwQEN5QIXZ8kb7Q3lACmFaGOVSeUCSgJNUy1R5QDoIpflB1HlArNUm0E/heUAqPAxoDDV6QHiAgSCYQXpAEOrJKxpFekAMUFNbKVV6QLILQpQNtnpAIPxagg3IekBxxPzYZ816QByibVu+0HpAXOhZHevQekAO16HqKdN6QCgqr8vg4HpAyrweuzvkekDEAoL7Nu56QLbLpLsC8XpA7H1ZHWHxekAiefwISvN6QCGk5guk+HpATdvZuXwEe0CMgiJdxRJ7QLfUd6NMFXtASOc86x0Ye0BifWo3WyV7QIi5wXTOnXtASOzLaieje0CH+scNg6h7QCrsaReW8XtA1CdyVoz1e0BsAR3J2QF8QLpV8mxmBHxAYqXkG5kFfEDpjQyU0hF8QFDRiCN1FHxAaXLzZegbfEArc6GazUF8QBrJ9kVSSHxAcqqey6tNfEDb7vrpClN8QGpMeV5ZmXxAjO/hN7KefEDwv7EY08F8QIrMxwZq2HxA90+7zfXbfEB2uqG0xN18QDCftsNX4nxA0vn3exDjfECRFCie/ON8QK2n0nWl5HxAskopTGrofECDxYDxA+x8QED/cRwX8nxAKxCH1FPyfEAinvFxcvJ8QE95svVe+3xAlw0c80oCfUCeGN9/RRJ9QP4+X0KwG31AnVFpiY8jfUCIBCHLlI19QOxoSjrwkn1AOBSj/4/1fUCjsyk87x1+QLaLrKNKI35A/BEw5Ld7fkBmmi6RvoN+QJQf0JHEi35A6PnmCCC8fkBEPwigY8d+QNKZm3lzyH5AxhXDXs7NfkBoZ9kNf/R+QGgE2l2LWH9AfHW16eRdf0BQOMcyOmN/QDnOuqa3cX9A1mkzgWKRf0Dl/RcxW6F/QOleG0i9xH9A/U23Fc3Lf0DMpdu1y9R/QBD+TFn53H9A0+k0rwHlf0AcJnaFkft/QAJFhpz5NIBAziIbuudQgEDIquNlE1GAQG/GuTAOWYBAjGV7kipvgEBwM/f1HY+AQHKAP1kGuoBAcK7ahbK8gEAeqohXXr+AQLRMXHBSwYBAhPdoJlPJgECio67aJcqAQIhViJIpzoBAx8zbSkzRgEBVj2SgStmAQK6SCNS/3oBAKFAMqUPhgEAM/5l9buGAQCGJYF1o+oBAaL7u5Wv+gEBIonfZP/+AQJAfzkhuAoFApkTsXD8HgUA5IDUtPg+BQD4NsMs0H4FAcKPF0zMngUBgDPxn8y2BQJSgLaG+MYFAeE6sY5w1gUDSOJj+VY+BQKLqRlMQkoFAgzRBVBOWgUC6Us+cGZqBQH4J7FDmoYFAXPD582uogUDRnv9lSq+BQMgfIFan6YFAVaphpKrtgUCjc//anPGBQIBvdbOv8YFAnA0DVKj1gUDaqcCJ7PmBQFC3Z7Xv/YFAkkdUJdgYgkAWXAi41iCCQDqqb0TRKIJAHXKVOzRigkBSa7qoN2aCQNhjcAI9aoJA8GGkSkOJgkD0u/BIQ5GCQBLwnqyZkYJA9ncdfZuVgkBfTVZHPJmCQBUR1OYOoYJAKNfaHzqhgkChq8TdDamCQKA/alu80YJABknY/L3VgkCOTYSSftqCQIYQEat5EYNAKqIkWnkZg0AbiFiuciGDQOD63ZxxKYNAlUxkJ2oxg0Bab9be9OGDQH+4faFl6oNApR/3MftBhEC6LUYtAUqEQNTLcpr/aIRAPOEVgp9phEDDZtXB/nCEQCiRMI7Kd4RA/X0NA3h6hECk/ChNcKKEQLoKRshTsoRA7tYqBVm2hECiYd3ZxM+EQE5XCSJq0oRALLx3cWvUhEBerivga9aEQCKrQz5u2IRAVv/UDmrZhEC9t7fnb9qEQJNDLG9p4YRAXOBhZ2LphECXfaUWNvGEQNZLUZ5l8YRAWpgq9vcZhUAkLlabXC6FQJZtMfn/UYVAsG1/M6BhhUBOWYgeoWmFQLYIhLaYcYVAmgJZn5p5hUC2oxclpKaFQNMhdm2oqoVAhsZ3ZKyuhUDPn6S75dGFQKKIExTp1YVA/NZQoMKKhkDZVbOhkSmHQMjwq7KQMYdA6jm+X4g5h0CuaxRcrVqHQKup+ZC0YodAQiI4ncmSh0DAIWeax7GHQEmLZVZjs4dAnGTlk8e5h0DDLivRaruHQDiwGbTFwYdAEoxUJFTDh0BZxwI4csOHQA== + KBZXds7jZUDUvl+A/sRuQAojd9/OZG9A2+W/dP8idEDzZSGOcPN3QA== - + - M+eORR6hLEdmmB1Fb3yORmQKTUXyZwRHhTKeRRWoh0WJhT5F8/mBRfVHEkdq6yNGx+yMRXpIs0Z9P5xFYOoEReb4SEXeYetFlZE6RSN8KUXPmERHwz2PRrIgwUaNVhhFjaIgRbdzeEUikw5FwYbURu8PC0X+wDpHvMcmRprwp0VciL5F4ewaRezQGUUC9kNFq314San/xkXmVJJFe+KiRWXt+UedaQ5FKMWERdfFtkUVRsVFM5MQRQV/rUVfNVhG+oAIRog4z0b2nwRGMLlmRbiVFkZdSX1FIWEzR1nbEEU9YkFFKhC+RYFcUEZpybZF6lIoRqb0jEY0azhGbQfURd9sPUUWPBhFkAFSRQKRlkm/Qi1G0B4gSPBdAEYzS55FxI83RsORFkV/979GKaQcRkn9SEW5VkhF0KMORZKIGkVv3A9F2ec2RSgTX0U/GkpGu/SbRd0GvUU0gQ5FUgsPRaxDUUa7q4pFvFLxRWf1wEWbHMtFhx2oRR/roEXTVblFsp7FRsXWI0VK+ZpFg4tNRQPeUUV6ozlF5CoRRXSySEYowIVFac8uRQqAmUUsABtFMwFRRdpjd0YE/UJFEwfDRZFp4EcQEYFG65qpRpRQnUWEGxNGlbQgRXKGh0U6ZptFPYzWSTS3LEZg5CpJnDMUR+HMw0fL1qBGDyoLRSF6IEZysKNFZ5J9RYX9SUV/gjpFnMe1RT82RkYuwZxG62sGRrJ7eUXcRyFFuTEbRfBkE0Vu40hF+31GSY9XDEVaaUpI39LrRz6vhkdN/SZF71WWRRYjN0b62I9GlDyFRYz8jUWFIwxGxr9ARRrLNEXLI3VFOxbfRRLHNkUViURFxkDeRYwwh0UYZg5FZ7SBRgLHiEU9EkdF93YQRXIQdEXJPrpFOqFLRY6V2keSuFZFRSHaRq+AN0X0LMJFBECvReKSO0XWmu5GcWA7RtjfHkVyNTVGMRc6RQiLH0WlPSJF/kwVRSNFEEZ9tsVF/n+cRXupq0USPC5GxaqeRYPeKUX0ZxVHXm+zRvv/UkXZYbBFgjK5RmzFW0YrWQBHQRG7RaoaYUXKxc9FXFzTRc0r00VFYn9G+K5KRvxGHUWTYf5FWpdjRcHEekVyfnNFb1nkRzgPHUU0KgBIg8sZRvYlVEfIKo9Fs+eeRTpnNEYxxABFTYvwRkm/mEUCedFFUV3ZRs3aYkUAYaFFZip5RdmPz0UT80BFBG5IRT5REka8PYFF85tGR/duy0YLSLlFdr+FRZc+CUWeJqlFGGdNReNdAEZO5CpGdg0NRrwvS0UqictF4ghLRmRpSEUjDj5G6dYURRfJL0VyII1FoggSRWvvQUXTiqdF7dxtRRhrY0Yswt1FG8o1RfXL8UWLjFBGE45HRu6hQkU9a45IfobpRw/COUb5V5VFDcWFR8W+eEZXzzNF7EijRTcBHEUZAyNHm5mSRg/kR0akYtJF3zE3RRyaU0Xgh5dGGudgRfM5I0WncBRFKC0YRdYozEUfP+BGqedjRlY4gEUVfHJFLuwVRSBGsUVwVoVHu4XuRuTZY0VMpgJGmqU0RWDM9UUZGVpFjmhlRioZi0VKEUdFQtDURlErUEZJdY9FHPzoR1EOPEd8CDZFNKYNRSDT7UaR9NJFeiQTRnmNUkXkIstFRjRCRZPOZEViN/JHFt85R1fc/kbXhhNGr+ArRY/SfkU7hBJFgU/9Rm0WtUUH0MZFe+OmRSj2PkU9nbBFaIPDRZjar0V49lBFHkYTRWGRbUUQQl5GsqPuRjc7n0ayYglGvikdR2m8bkWQ23JGGHomRn6FhEVukjFFj6vYRRO3V0W8AgdFk+0bR6oNg0YUIi5GcLZ0RY6I4Ea/jZBGLmjpRcUyXUUw+RNFVo8aRbSdKkZjgK1F9hRkRd7lE0e2wzBG2L49RZ3BDUYWauxHO/unRYiQCkez3RZFm3MdRRb+2kU= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - pDmgTm/BckB0lXl0p8JyQMYd2RA8w3JAVuN/mgHIckAAXvwXWs1yQJJzu7JD0nJArO9EK1DickBZCQXVj+JyQD6rGKrJ8XJALrIggWQAc0D3yPzv0AJzQBRJeM/6A3NAJDVdx7wSc0AFdEX8BxRzQGJS8vD1F3NASMYRGTkhc0AuoRX1ziRzQNyS53/NMnNAULj8E3lBc0BGtwo6ekRzQD7znZGlU3NAsO3mmDxjc0AVrsMXLG1zQFraDVBrcnNAcqtWVoVyc0Auf/8iu3JzQGoa9yLFd3NAN4tETd53c0AmRxD/eIBzQNi0jGpcgnNA7J/yPoeQc0Cih8eaTZJzQIUxaNL3lHNAJJkLZbigc0BkTS6VWqJzQMDuwc0FpXNAMfehcrezc0DAkCkG1MFzQGzuDhXPwnNAUIf0OyfDc0C+AZQEy9FzQAwmXhni0XNAgLhXZ+LUc0BqCXohOeFzQILnBwTj4XNACKs8V0T9c0BUS3OveAF0QCBEYpmcAnRAyPiINk0TdEAn1LMPykF0QFxZaDk8Q3RA8jYkKdxXdEBL4+/uNV10QFHI6RO4YHRATBMLCglidEAZNcEcj2J0QCqFyMAicHRAMiQDkkFxdEARkP7iN3N0QIrPRBP5gHRAvdPug06BdEDKpiWPJoN0QMI8svYWkHRA8G1QlO+fdED7+l3hD6N0QIYFRaT8r3RA588VycOwdEDXDHFPb7J0QFitseSSs3RArrkzJMq3dECqERajFb10QAocaI7ev3RA9NtoakDSdEAsrzl6zdR0QHAzGGc24nRAckoTSU7idECKznNeT/J0QMLl5duM83RAZ/klKF0CdUDT6IKliSF1QFAx9QCdInVATHea8OQidUDh9kmFyjV1QKK3NQP4N3VAhCH3+TZhdUDqSPDy0GJ1QN6q0NGMdHVA1xkBe62BdUDmQgAbpoN1QDMqb3m6oXVANk5P8VqwdUCux6Hpq+N1QBixTbJM7XVA8bEaSKbydUAg25x+SAJ2QDKylsyHInZAhqr5IpAkdkC4osOhSit2QKpQzBMgMXZAl/YOL1MzdkBOaDr3HEF2QDBIbBbJQnZAGCvEJXlEdkCBKDJXElF2QBvRhzjNVHZA4tbDx0CBdkB7sZmDj4N2QKeK42S/snZAVy6KYAy0dkAmWMURzs52QNypEAyS83ZAzhkIewESd0CUv5JHDiJ3QJytHN+kM3dACO8F1w01d0AwaLJTnUF3QOa7fVMbRXdAcAaWB0tRd0CASCqsk1F3QOY9L8Qmb3dACGbcVp9yd0BoDtYZcbt3QK2dax12w3dAerrDlHzLd0Dy+faqcdN3QPununV323dAUJAgDkb9d0DGeRZdoAJ4QIRoFs36B3hAmdtr1GwieECc2/eTQyh4QEryHdaZLXhAAGOflWc7eEBMqua2fEN4QLAPcMEQRHhAS38sY3lFeECmFKSFylF4QMCQHZuWUnhA7DDu1R1UeEBRExKGh1V4QOogKpv3YHhA2YLHtLVheED0ILEmi3R4QFdUp7yigXhAxGyO5JmEeECTg+P0Toh4QO7KA5aojXhAdkfn+paReEBsf7le7JJ4QAohJm4Dk3hASIeYCqiUeEBIkbN9S5h4QIBnKnGpnXhAnGDe6qOzeEDApZD/0rN4QDIvZtHMwHhAzUgBoxHLeEDVf+fxuNR4QA6+DRID9HhAKCt2oov1eEC82GtxfQF5QFK+pb26I3lAatj/xrEoeUDa6H1sDS55QJ5F2JblOHlAri6//dZCeUBFck7XQEN5QKZzjxr8Q3lAEmZQdstUeUBE54z2v7J5QIdsbi2A0nlAeDfKgEHUeUD0fJTWT+F5QF65oC0MNXpAmpKikRpFekD7dFVfKVV6QHujGqYMtnpA2/BYeBjGekBHP4XIDch6QId7aHG+0HpABYGckurQekCg9zN+4OB6QL+hAiU75HpAFN0rPDXuekBmdeVxFfF6QAjYL1NK83pAFkui1qP4ekC6dC8nfAR7QMBHD4UsDntAZh0F58MSe0DyZyomTRV7QIC9maVaJXtA3ke1of+Me0B7N8HQzp17QAYNR8sno3tAoDqhtIioe0CwWBgLLut7QA0lvV0Z83tAltfaNIz1e0AwjeGU2AF8QLLnPcJmBHxAAMa0SZkFfECG2Rjj0BF8QAr9o99fFHxA+hyu2eYbfECUq2MeaBx8QCK5aFTNQXxAiIb3f1JIfEBu4euoYk18QEJcDPuWTXxAGEf7FghTfEDVLNjcW5l8QDqq4+6znnxANlfk62vYfEAnRg6r9dt8QLpHfWfA3XxAypoGF1jifEAHmBhhFON8QIr6MVT743xA8ifLRKTkfEAnt6Z9a+h8QDJwL5oA7HxAuJKu2VPyfECKGTXadPJ8QNKO94AH9HxAQfSNy1z7fEBUI88ECvx8QHfev0v/AX1AaNPA30oCfUDVB5ZYRBJ9QHhyes+uG31APmrj6YsjfUAa09JstyN9QBwbVjuVjX1AajL8ae+SfUBUL0pakfV9QNYqLwh6BH5A8Wdpru8dfkCws826RiN+QLvXfES3e35A8olfib6DfkAOB+t0xIt+QCgtb/4gvH5A4Hn4KCfEfkDpuA3jcsh+QK5Tm0vNzX5AwG3rNH/0fkDgs2TxlQN/QGQXty6LWH9ATnN4PeZdf0B90ZnmPWN/QKrVmzm4cX9A80yAWmORf0Akhh4wXKF/QEBM5dJRsX9AFOyvSb3Ef0D0/5qIzNR/QGAZ/Cr33H9A1p9bb/o0gEBftkmo51CAQEx4+g4UUYBAQ8/EJg1ZgEBIcXqb722AQGAIkQgmb4BA3pWn4h2PgED8War/FK+AQKroZH8FuoBAa6J6ObK8gEA5Y8nqXr+AQFhUfV9SwYBAtCP0MAzCgEBIK8ABU8mAQFr5yQwlyoBA/swxU0zRgECyj7CwSdmAQGYGDz7A3oBA/iYC+UPhgEDO7yCsbOGAQNbK2o9P64BAIWA+Umj6gEBAAKzLa/6AQCwoQjQ//4BA7KWjam8CgUAQITzZQAeBQHG+hEc9D4FAHtv4dzQfgUDa0/0wMyeBQJGdIV69MYFAmDRIVxgygUD0RXqanDWBQLRTQIwoP4FA3rSUtFWPgUC/DHZXEJKBQAmnBLQTloFA0P6x1amZgUBmWptxGpqBQKyOdlPnoYFA9+clfW+ogUAPdppaSq+BQD5SNUmn6YFAjPn0q6rtgUC69j9TpPGBQKIbZSqw8YFAPOHrkuv5gUAYR2iP8P2BQDlALxnYGIJA+z05DtUggkDATyr5ziiCQEs58gg0YoJArDTZADdmgkCklpeKPWqCQM5uUShDiYJADyVnJ0ORgkAYllwUmZGCQJVvY4w8mYJA3LVwvg6hgkBGlObZOaGCQHLgdSIOqYJAAN1ioTSpgkDZVQgjvNGCQFivQoK+1YJActvlSn/agkDSbJEDft6CQMnAeIt5EYNAWgYoRHkZg0CdFy/uciGDQPa4wo1xKYNAX4xQYGsxg0BI8bGEaFqDQDgFUTFsXoNANBaq6/Thg0COijGYbzCEQFqyUfhmQIRAsvfHo/pBhEB0t8l5AEqEQKpARor+aIRAkLXdtp5phEAkDzMG/nCEQMv9N6LJd4RAsKVwqHd6hECchOAWJX2EQG64ollwooRAGpXTXR+lhEDcAU6SVbKEQCBIh7vEz4RAfh5FGGnShEDEtxsDa9SEQF5sU69s1oRAujF7SG7YhEB2WHFBatmEQIZPyc5q4YRAreoApmLphED596VwNfGEQH4kzili8YRAHwQWIFQBhUATjA7IkQiFQIpc3gj4GYVAjdPCG/0dhUAgZw53XS6FQGYCd6lhMoVAYtheMos6hUCsZ3AboGGFQByL0eyfaYVA87E39phxhUDUtLUXl3mFQOpyRMukpoVAQnEyAaiqhUDy6VbsrK6FQHpWXGLm0YVAPlM/kcKKhkDA3F9PkCmHQLlwB6aQMYdATZ4p6Io5h0AhROqdrVqHQAiCoRC1YodARD4lx6Zqh0B1P19qvWqHQH7kk2DHsYdAwPXMOWOzh0APj4AkybmHQGz1Yrhqu4dA0J9/rb7Bh0DdAKZGVcOHQIDIuC1zw4dAsSeUGNu4iEA= + KBZXds7jZUAmWGpEdaJuQDeULWxqYnBAaYA5p9LBc0D+7sGlgpN5QLqAR0b4MXpAfybPfG1SgEBd7xFNqKGAQKcmVkyAioNAwBzcaTQ6hUDSUNhOzMKFQFEhXQJ28odAyS9YfQNbiUA= - + - ChnMRUPzIUcGpzFFy9giRgG0U0UgGAJHdlpgRUYNg0XJbE5FtaTwRACfkEU1UhBHYEBoRvz/rUUUsCFFcTa/RvEarUWpBxRFJXzKRdFUEEZ7nW1FHiIfRcL3VUeT5YBGFXZ0Rs5HA0WJX/pF8ZF9RRdVt0YsOTJFhXkKRajQWEfwQWJGiWnpRU1KAEZqXCNFma9nRbU6PUkciYtFqe8GRSdyqUWk/b1HKvKWRZp0pEWKPKFFhkAQRQxYYUbDvCBFI91VRVdTC0WX9d9FHPUXR9xobEav17JFf7gXRpD1lkWMIpNFB49TRzSAF0UT+TJFPCDpRbpCQ0bb+KRF//feRgXUFUV3jy5FsncLRb/jSEZ+pIZFuCLnReX9AEU4DIRFyKlpSdbvAkX9ogpGTZ/cR82S4kWk1aRFycI4Rl70rkZP4wxGjeVNReQxPEWpNSlFUK8JRZ6BMkUCfwJGXIQPRpDy5EU54QZFlIAhRa4FQEblzyBGYRGjRRgLzUUbTKZFHHwVRvGR50XS46dGFCEqRSmPlkU3tk5F0N+YRVp/QkUZGAJGE01VRRLBIEVypwpFQmSZRQEdhUVj4RhFLnWMRkc+UEXal4pFdzf3RwyVpEaP/ctGtGWNRVNdWka0E0dFZun/RMrqqUnCwAxJyVbHR4Dqh0a5VR9FpPeRRqmCEEaZ3glFI1iARUqbOkWFrGJFI9E4RY2qTUaLyqBG2vhPRmuLY0VwbxRFOiJhRenAH0X8ahlFbk8xRSMLREkXgnxFprJKSEiDCEhrK41Ha2c8Rayad0XGAn5GhwyGRmDCk0VxMQZFnKQiRa6CCEYkKSVFUJ8xRWhNHUU1ek5FbH6TRXHNN0Ub4JdF0i/nRd+6i0UxPCtF60pbRl5HU0V6y4JFrRiMRc8pgUXJTklFzZrpRfncP0WqrcRHUODHRj6cXkUqMr9FjFoMRcHyCkVA+6RGVGbtRbuRzkX63ABFXBcpRcKg+ETihvtFuYyaRQ1c9UXnBQNF9Ga5Re4OPEbkGmBF34AURUvlCUfChZZG/zKORWKYaUUQBClFvg+KRhmPD0ZCy9VG6qSPReeJrkUYbsdFYfZrRagwXkVeZsJFll6qRqh7IEUHViVGNiSyRVgFV0X7tEhFEXZpRbHlQUmTtxhFHWzyR6RehUVpStJIV6RiRffQikWCA+5HO3zzRgxLYkWtJa5GG7ecRZrYHEW4FlBFutWvRqyMW0XeXu1F68JmRTHPjkV7sK1FbucsReC1B0UsdSxFuQICRu/Yd0XnIyRHg42fRjrUjEV3MVJGKQ+rRd2vyEVywjtF1/aHRaVbQkW69DRGe1TeRVHrGEUFxaxFDgNYRuTLHUW22hxFUA8SRnlF8kSCn1VFSE+oRS3ecUXZfnxGZqZrRVyEFUV6fxpFwem7RWpzCUXbRXtGwWoiRjuEjEXUhotIQ1IpRVDl+kdkLHRFRzqIR8rBT0YiXQpFd8+YRffk7UTtbvJE2L35RtsFjkYFlEBGO0fBRVcpHEV4ozFFn02URoLhjkUT7CtFuTEJRfLcX0Vz3AZF9r/ZRRtX4EaH/DJGta4/Ray2MEVcEjFFMhpLRVjNw0U5DkhHfDG2RhHDMUXGTXBFPFjsRckgUUVZMzBGRlxnRS3GEkUiQOZGXBQ8Rg8Uh0U7GsFHJqg1R8ouHUV98uRGXsrPRX/EyUUWsoFFBhs9RWnzUUauBMBFT3ZkRVnO8kTWFfFH33MzR+Zm/0Z99PBFv85IRQM+l0VxuntFk3ifRVJ00EXU0FNFBJdvRlheB0ViKtdFQj4rRXLzSkWcBtlFNVveRXvFWEXjn5lFP/KoRcbqNEVDuxZFZvcmRtV6b0ZKAhBGTFORRaTmDkeSNVZGi14tRsvPnkU+cExFe6AcRZfBIkW0ueRFOEE4RbdWDEWvQ0lFZdsURSFxC0dUr3BGcOElRjZDOEWpL3VGe+TFRW9aLEXL2xJFhZI1RWP9JUbXv5lFp/ujRQPlVUe+MHZGAhcFRWHBJEV/3BZGV8amR0y3u0VxIsJG1p92Rf+EDUXA1alFZ4UNRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 6oKOW3DBckCoruVop8JyQLCqJqE6w3JAcjwKBwDIckD5wTcUWc1yQNqOFTlD0nJALZnJ2E/ickCIDGt7kOJyQJzxXXDPAnNAIpkfvfoDc0Cbn4jNvRJzQD6RBRj6E3NAcqZ0+zghc0CeZbMT0CRzQDrac5x4QXNATmvp+XlEc0AgsP3nolNzQH4olAAsbXNA8ELO0mtyc0DH43zohXJzQKRF4n7Gd3NAqANkN+F3c0BG7YQBeYBzQGw3WcpdgnNAmFF4RE2Sc0BsEhc695RzQNTorg65oHNAzp3EeFqic0CxFeTvBKVzQIxF6FG2s3NAuFZ37Q60c0Bs0Bn608FzQIAJdtDOwnNATuC77eHRc0AhNO5+4tRzQM35suU34XNAaKPTzOLhc0A4HWdbQv1zQFw80Sl5AXRAzm4UiU0TdECofs3vOkN0QJ/Vjc7bV3RA3nzgXzZddEAKSmljuGB0QL5qAF0JYnRANh5cUiJwdECwck9BQXF0QE59Dp9OgXRA7U/oUiaDdEDULVCYFpB0QGKdi6Xvn3RAvFl8yPqvdEDMX3Ndb7J0QMnDtP7It3RAyBX5J92/dECL7o0xI9J0QAYptTtA0nRA9aGm1MzUdEBxgbPVNeJ0QOmYXwpO4nRAwLP8NE/ydEDgV4W8jPN0QIRRiNVcAnVAfNbOKokhdUB2cTDNnCJ1QCLG0QvmInVAw+kN5/Y3dUAchzg+jXR1QNb5nmqtgXVA/tEXdqaDdUDuzgIvXLB1QDSMrG6r43VAdNy6y0vtdUCy9ROEpvJ1QCLFNJdIAnZA3tfLsocidkA1ZSI8kCR2QNyENnFLK3ZAPrr/gh8xdkAoLfrlHEF2QJbL3QzIQnZAYgbmu3pEdkCX7NJKEVF2QCvL8XzNVHZAwv4z4Qy0dkAYsRbPz852QMr9XNkBEndA9gyw7A4id0APP3yspjN3QLKAOcANNXdA7owjSp1Bd0AZ3B13G0V3QMA7aElLUXdAvvaIkZJRd0CMiqbMoHJ3QF5UgKxNu3dAykTR1XC7d0B8x3iUdsN3QObwvTRry3dANtgtsHzLd0DUr+ZXb9N3QGBOe4dF/XdAcPvfZZ4CeEBWTdJuZjt4QKQ51LB8Q3hAS9ZyEBFEeEC1woHCeUV4QKFRw0jKUXhAW85NHrdheECzUalvZ3R4QCxqhSiLdHhA6ysqqKSBeEBoBondmYR4QKbrZOxOiHhAuFdq5qiNeEAyGv/37ZJ4QDIG1FIFk3hArKg2rKeUeECI2PUgo7N4QEeWrgDVs3hAWbBCsLbUeEAENPZXAPR4QPIXFNGM9XhA5Cj0lYULeUAimoouuyN5QB5KbIyyKHlAlKcwdA0ueUDMfbOf10J5QIhh6cj7Q3lAgEJ5OcxUeUAGXdx5f9J5QLiedb5B1HlAYWvW84XaeUAmJyA/DDV6QISqhX8aRXpArP8aCwy2ekBH/2xzDch6QGe4oA2+0HpAEhn4ouvQekA2Li5Y3+B6QPpvRuBJ83pA9MrJeqT4ekBM6o/ofAR7QFJ/RQ7FEntAEqJr8kwVe0DT2BVvHBh7QOfCxIvPnXtA1q7bgyije0AYXkVigqh7QJHGd9GM9XtAsKQviNoBfEAHGcEwaAR8QPKu7B+aBXxAKo3GAdIRfEC3sg9VYRR8QEzcFMjpG3xAbLNH/WYcfEAkyUfizkF8QCnT0DFUSHxAmcD2paxNfEAOaNOG7VJ8QNdvIO5YmXxAalM5wbSefEDNlqcVxdt8QL4c2I7123xAEelpaC/cfEAZrHVCWeJ8QPw793gW43xAaY8E2MzjfECkoye5+uN8QG4MuMU05HxAVRG2e2nofEBI+Kc6AOx8QN7lgKRT8nxA8jA6uQb0fEA4/zdZX/t8QG26Ib0L/HxAQuvQYEkCfUDE0po8RBJ9QIc33fqtG31AeFYC2LEjfUAEhCXzlI19QHC8YtbuHX5AdyyRi0UjfkDQb3sZt3t+QIZuQYK9g35ASw1EOsSLfkAwX4SPILx+QPARXhgmxH5A4JsZWnLIfkCDX72tf/R+QNwy3jmLWH9A9gVlneRdf0BbF3SKt3F/QFwf8aJikX9AwPtOQ73Ef0BAxOZR99x/QMRLWhgC5X9A4H7IQ/o0gECLeu6UElGAQPD3PxwNWYBAirvKLx2PgEBF11haEa+AQEteFdcFuoBA1mXmLrO8gEBc6uySXr+AQI7doWFSwYBA1VrMRlPJgEDVHxGPKM6AQNMesCBM0YBAtktGLkrZgEA9Z0jpQ+GAQDRArutn+oBAj5Jhkmv+gEAE4GZ0P/+AQMQY7x5wAoFAQliwzDwPgUACFnKaNB+BQLplNCIzJ4FAiMVgeps1gUAQwUPzVI+BQNJ8XU4QkoFAKM/l/ROWgUAAE8XwFpqBQCr5ztXnoYFAtgoEikqvgUChhQuLp+mBQOpVOJSq7YFAsJX3IrDxgUDKgmF/7PmBQO5x+azv/YFAVES/ctgYgkCqFLCq1iCCQEjTNhs0YoJAVkXMejdmgkC1BtIyQ4mCQGTwQSlDkYJATlbYozuZgkC7VMwoDqGCQMSE94A6oYJAhcdb85bGgkBCZ19PvNGCQC3bhXG+1YJAuC420X7agkC4zAR7eRGDQJ8NA4N5GYNAjl+HZ3Ihg0BxrGwmcSmDQKrYB/RoWoNAGMulG2xeg0BSBR0vbzCEQNoU+nz6QYRASEp78/5ohEAIjCx3yHeEQCTSpdB3eoRA9BcdIiN9hECGuwJBcqKEQD1hl8tTsoRAln5/XQbFhEAeZNtzadKEQFo9ZNNq1IRA2f9gIm7WhEDT1SHCadmEQM5y51hp4YRAYEuELWPphECQBNdMNvGEQMDbZQ5j8YRArrReqJUIhUCalN2f+BmFQBKW+uz7HYVAnbOXTKBhhUCIPDILommFQJ4XhTaZcYVAu9oYIZl5hUCzdn+OpKaFQJ6AlVmoqoVAWo5eqJAph0CE8EOKkjGHQOJsfcmJOYdAtq4JfK1ah0AOhAWltGKHQLRClsa8aodA1nWULcixh0DShfd0Y7OHQNIUP6nIuYdABqOVEWq7h0AfbKBcdMOHQLa+L6HoHYhAUuZrBOshiEAmOhT86SWIQA== + NrgMGZxjYkDEZV5bjlJwQEMdzoN8QnFA5m5gjBHDdUBlJtC0/7J2QA0wqAPA031ALIFk7hfkf0A= - + - j56zRZOcOEdvw5dFw4ecRtXbfUVT5+VGbjKDRQVGY0WtR55F6jUYR+UPFUbsXMJFUru3RuDMTkWjB35FsTMFRmSNiUVzO1JH3vRnRn4MlEb5A3pFuz6MRSWft0butHhFK/YWR2O2RUavzeNFdZXMRZnBKkXcs1dFd5QeRSeGBUlx5HlF5niGR/5dXkUMreRFWOKDRRmVxUW2r09GaAxLRSHzm0Xo4NJG6eZGRjKnjkVkJBtG0a2mRWNPIUedUJhFtV5FRgvKlEV5kEFHjkpORWqZkUY3A4RF8rryRUNk4kVzcx5JCb05RTdXlEXziJdHyPJMRV/cokUbKiBG2f5DRlXXDUbM2SJFqm5eRZ+w2EXVy51FiUHGReYgbEX1RBdGAj8NRppPmUXjHORFCASaRbnw60VrvLZFNFWeRuSiiUW5l3tF6zJhRY2DMkV3UBJGM3+gRSyLPUWTrmlGz1hXRVhElkWZK91HYRypRo5ok0bciGFFCQA7Rou0eUULUTJG0PeBSYUAzUiT8iBHd9OMR04gQEYJvVxGcOKMRcRMmUVdMl5Gw6ycRgkHEUYfr1NFMZEzRW/a3kUL4zJJmfZDRTMZO0jdN+5HizGNR4JWn0UwcxxGTZGFRg7iFkXqYNhF/Ad1RXMMT0WUOaFFYQtFRdMCXkW0vbpF1OJFRXTQy0V4J1BFqXmURVBGCUZGIIxFgxAjRbzcuUegeqtGRAutRZJ2IEU9pH9GvHuaRYJaikWhy+lFROazRf85nEWoCwtGQ5IaRrhKSUUv0NNGP7t4RkMcp0X9QWtGUfdFRt80kEagO5FFsehpRefG70Wql45F2ugtRe5ExkV6W4BGvvoPRpKtq0Um+VNFdlZWRcI1qEYPMg1KsAM8RsVxvEdiB7dFo0EsRpxzkkmQdrtF4D1RRUQFr0g52aVGbQBbR5PXnkUJBOlF8pxaRt1mVUWr5KhFCpE2Rc7oakU8EdxFYueRRYALBEe9uplGsRq9RfPKUkauHKVFY3LSRRnQR0UJxCJGrD6aRajBT0Wb7ixGlckKRvVLgkXZdyhFGb6JRSuOXUaq851Frw7ARb6HIEVGqYBGHhgwRg7pNEWp1G5IfefKRzcQMkV/qGZHvFlXRrVcYkUNqsBG1iFDRuU2IkY0VY9FGyMgRTPPi0Z08ElF1SqnRUuoqUUlqatGaUVRRrF5SUWZy3dFTQaoRbOSKke0RpxG2xi5Rcyk6EXF2F1FI9owRuHeikULGNFGak5mRhRhzEfKl0hHXTnGRn1BhUUsggZGFLMZRSPURUbPv7BFuVeKRXJu00cEYiVHiOfKRqkT3EVU8jVGQYnTRXl5GkYnCOpFX7i1RXXMm0XpKhNGbf59Re8iukUUH0hFJ/09RYU7B0awPoNFCSaNRbQnD0dCAYBG9HkrRtnHYEVUHFpFx7c8Rbmt1UXgZqdFyvHtRn03cEbvgxdGgLyKRVRVE0b5xL1FmMMqRu4jokWosIpFnEpnR8/Kl0bqAlpFcPLDRWqlcEfI14dFhkaPRllyVEU1MjVGOjHyRbTnH0U= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - AkI8EqfCckDrOt8eAchyQBycFAJD0nJAQhC2QfoDc0DGuav5vBJzQEJgeNY4IXNARnquY88kc0AWtQ62ekRzQNBYb9ArbXNAgtM0Amtyc0AsOaYChXJzQHdD6Mp4gHNA/ib+NU2Sc0DiV2/99pRzQGrom0u4oHNAQbDML1qic0Dar8BD1MFzQMe0Y0Li0XNAmn7WmDjhc0Bk/UvIQ/1zQLYNE/Z4AXRABA6bN9xXdECkebyUNV10QDJktNQIYnRA0pAa5SBwdEC2JzFbQXF0QMS0FwhPgXRAKdvefSaDdECQwvE7FZB0QIE+6q/vn3RA1RCKbfuvdED+Fm3zb7J0QEMC5sXdv3RA2MajmkDSdEAcvH0oTuJ0QJ3zglmN83RA3AESBF0CdUBgAshJnSJ1QH8PnN2MdHVAJplkJa6BdUDeztH4W7B1QFSRc/mr43VAmhI2skztdUDEn4WJpvJ1QNphAL1IAnZAy6exwYgidkAahch8kCR2QCAyXi9LK3ZAp8F5yR8xdkBpfhp7HUF2QJDG92vNVHZAMnG9wQASd0A+M4PJDTV3QOqS9iGdQXdA8JlEmxtFd0B+qdtpkVF3QC795PZwu3dAsjxxq3bDd0CWWGPnfMt3QEaoebVw03dAT4JZtEX9d0DEXJm0fEN4QDGUlwoRRHhAXIF9/nlFeEDO7T+si3R4QB9zgGGahHhAPIVVUk+IeEAKFbwjqY14QFCMIu8Fk3hAZmqp1qeUeEDAHhYR1bN4QHFrfZ2M9XhA0sYxc7wjeUCQFRUxsih5QE565a3LVHlAphPE33/SeUCiBoOQQdR5QJCq0ZmI2nlAILKTFg01ekDaiSVzGkV6QMyxqVsNtnpAYFmgAEnzekBYxgUko/h6QGrrHO5MFXtAm0OVMM+de0Cluie6KKN7QEdWU+mN9XtAPPQm6dkBfEDAyHUvaAR8QPH/99ljFHxA72tOqVRIfEBGVdnVlU18QCpZkxtbmXxAbAs0hm/bfEBqaUlSnNt8QPOgHa+223xAgR0U9fTbfEDubAA5Jdx8QHGY4gdc3HxAbG+hl23cfEAI11D9Ld18QAT7jRNa4nxAwcBYgvnjfEAzhUfuKuR8QKIEObf/63xAsrVLI1LyfEBI0uHYBfR8QOy9rHoL/HxAts8qUUgCfUDByq2Ntnt+QGNksyM+g35AhL1R+7yDfkALMAaBILx+QFw+UmZyyH5AGjxWDYpYf0D4hACu5V1/QBoRGn5ikX9AdBK7hhJRgEA4hcPBBbqAQHyIvqayvIBACJ6cGlLBgEBELTZdUsmAQM55iM1L0YBAak+bWEnZgEAakjW/e/aAQHJQW1lo+oBA6s/EZ2v+gEDpqbJ0P/+AQCSBWXA0H4FAPs3RhgaNgUDva6LDs4+BQGonBDMQkoFAcAv80ROWgUDUlwcvp+mBQI5oPFqq7YFA1PFCHNgYgkC4+uhsM2KCQCxbCGA3ZoJAEk2T+0KJgkC8zAdfQpGCQOB+JPI7mYJAJE2fyA2hgkDgVh/FOqGCQEta/0aXxoJAmmOnQrrRgkDI4vZBeRGDQHnbwzN5GYNAKB7CrXEhg0BLqYs+cCmDQCYmNURoWoNACnG/S2xeg0AdYXVGbzCEQEhqV3fKd4RApCgTgWnZhEAEOuy8aeGEQFq86gJj6YRA1D2WxvgZhUAMjna0+h2FQM97hT6gYYVAIHP1sJ9phUDEMEoQl3GFQNY4RfSkpoVArOOSdqiqhUBcwT4DRZOGQGyaUSCRKYdA4jKICq1ah0CctyWVtGKHQLBSXp7HsYdAxlpqMWOzh0Abcw07aruHQPwCGgjnHYhAeKwbheohiED6ykSR5iWIQNLH8zDoKYhA + KBZXds7jZUA2gKvZDSNtQBTpB48/A3JAcRTa8R4Cc0DHaN72tnJ3QKNAVK4XFHhAjsNyMM+jfUDlAM4SYxKAQBIHc7jEOoNAKo8DtXNqg0A9MfW6EHOFQI68zdH/AohAPWDj5Lz7iEAd5SvHK8uJQGpmiIoeJIxARuWylj4DjUBxDzWZijuPQOdJqVNVXpBAap7/WgvqkUCZYA5im+qRQOq19m9hrpNAfuRyO9x2lEAAyzdxh8qUQP77aVAyO5ZAsuGcf80Wl0ATEatRWFeXQPn1S3rj+pdAkyiiZq4bmUDdCx+CGX+ZQKk942fUN5pA8iBggz+bmkCNU7ZvCrybQHI4V5iVX5xA1GdlaiCgnECITZiZu3udQIZ+ynhm7J5ACGWPrhFAn0DOyQU9RgSgQHb0+UMp5qBAjlWBR3HmoEDPfyxLTKyhQOfgs06UDKJAcmtUT6eaokAoC19Sb9KiQHwrNgOsaKNAs0zIu4eco0CgtY0At9qjQHPYQ8ayfqRA+UDAB9oApUD+YuTGxQylQImkTTDe1qVAUszyDv0mpkCunDb/89imQKtXJRYg7aZANuLFFjN7p0CgJyADD5unQMFsZhdGCahAYLObDTp9qEBMrs+AXtOoQA== - + - gvw2R8WzNkb6PBRH7m4URw3lb0ZoZM5G3HLxRQlyNEYCwXVHZZ8/RqZjo0bqsulGh/5cR7yFQEZDlAxG/RkDRv3PdkjLROVGCo8gRj1w+EVh3JNGNh/4RvVjjkYctDBGPvXURWkuSUfwtwBGCb4YRrhc00VtCa1Hc9LRRVSlnEbZ9y1GYQ2YSHOkDUdOoctF8AZyRj6SXEZgo4pG/OzTRdbIJkZyPVVGAstqRsxKFEZT09ZFlpfDRR3uAUZPMC5GVIi0RmhZ00W4bbtG/jiURiXOBUhDlaJGPf+4RuiyKUYhR0NJ4PecSPwcWEcDrQ1G81qKRg/zeUYjMKZGb81aRnMMT0khdk9IjtXsR7omZEfQRV1GQrmvRtGGv0XzxgFGCe8yRlraGkZF1bpFNrrnRu9m7EWtGwlGZiHUR1Ui4kaxyuFFK+/xRQFeukXwaxxGyH/WRtEYhkZHnoJGJAzpRfOGdEZIH8xFiIApRjBoJkZ8M89FIUB8RmvqrUYM45ZGzGG3ShEuzUanBHtGGN5LRjxKBUaYRJZHZRI7SuNwgEbuCmZJ7WB1Rtp4K0j1BKxGo3BIRqnryUYrqBFGz3k/Rqj3oUY6hQpGs8ruRV7zw0WlSydG4bMtRjT0cUYxcTNGi4uNSGHMy0fFM4VHFjQ7Rr6V00V07rFG3jArRr+0YUYgNoBGatHQRYrzAUbybuBGaesoRnEH4Eb3bYJG24lkRskusUYgVF5G1NfbR2A4G0fo1txG+oXBRV19AEYgMtFFZFDgReBS+0fjMEFHEJ3eRnU+AUbpmmtGuHItRsnhMUZ2IiNGwfL6Ruw8bEbZdhtGZXn9RWF3uUVtxwdHjK9XRi0E5UVJcAJGbWrPRenyAUZshDlGGXF6R8PzlEaPmylGUFcqR0pBhkZkCX1H8MAtRy9fikb52xFG + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - JEMgtabCckBVnM5QAMhyQAY3fpdC0nJAtLynzvkDc0AxesqZvBJzQEgVqmQ4IXNAnlOM2XlEc0Bx21AsK21zQHSPxqKEcnNASrwuGXiAc0DMwrp4TJJzQDE3JB/3lHNAmC49pLegc0DgBqCv08FzQDQqthji0XNAOqt3Yjjhc0BQ3bx/eAF0QGIIqBnbV3RA3UCmTzVddEDGQAVaCGJ0QFDBJ51AcXRAgetgv02BdEBGQUMCJoN0QFCl6Cfvn3RAiA0XJfuvdEC7nLeWbrJ0QPo1c4zdv3RAUGLxDEDSdECyOStITeJ0QOdoNnRcAnVA1XjJ7ZwidUA6IxuwjHR1QCBa+AdbsHVAKPR6+0vtdUAW2cT0jyR2QN5BwCAfMXZA5bl1SM1UdkCKdfvcABJ3QOxXdv0MNXdA3ACJe5xBd0CKDT9tGkV3QLLqsJqSUXdAziGPrXC7d0BqmDNSd8N3QPjDPil9y3dAEN/VKEb9d0B9EYygfEN4QFZOKjYRRHhA87QA9HhFeEBugXBfi3R4QOZciSCahHhA4d0LXk+IeEB2ovgnqY14QMzCAxgFk3hAzKEBi6eUeEACkNafuyN5QJABdpCyKHlAHIJ/gfxDeUCk0CfHf9J5QG/66SaI2nlAyylgkQw1ekBy1RUnGkV6QJCfBM1NFXtA95N6mM+de0AqlbNuJqN7QB2LdtaN9XtAfD8+6mgEfEDnWAN4VEh8QCBMtZyXTXxApv4/L3DbfECImpDTqtt8QMkW/07E23xAxRY2gPTbfEAKN6+/L9x8QPf2xQ1O3HxAanFUXG3cfECq52I/i9x8QFheJtpZ4nxAYpSJ9sfjfEArVzER+eN8QA1/KcEz5HxA3+BoBv/rfECgkjIVUvJ8QDJmMwMF9HxAPGE3kgz8fEAAFSUQSQJ9QGtII5i1e35AfnfB7D2DfkD8bkrpu4N+QOwN03MfvH5A4EUZ7SbEfkCBMTiQiVh/QEzfwixhkX9AZuwfkxJRgEAjofbCWoaAQJxBsKodj4BAiYkdPwW6gEDawoqqsryAQLzwg9hRwYBAHjVfulHJgECKutyXS9GAQIRH5H1I2YBAh9fOKHv2gEAbqjDNZ/qAQJCj37dq/oBAijTy6D7/gEC24eHfMx+BQCEQFb0GjYFABAEg2lOPgUBrszbwD5KBQHFcXTYTloFAVhlX01/OgUBzi7qFpumBQB7wXb2p7YFA2LnuxdcYgkA5OZS4M2KCQHqA0HtCiYJAGvCkwkGRgkBxtn6xOpmCQP5ngaqWxoJABBD043gRg0DKwX6ueBmDQER/fN1xIYNAYtmGDHIpg0As3JlJaFqDQJTcF8JuMIRAeEesJnZ6hED8YdpRadmEQMuh2k9p4YRAC+ZsTGLphEDKfxI7oGGFQA78IkKhaYVALToWEplxhUAw3OALRJOGQOo7mWeQKYdAU6dVzaxah0DGKu1TtGKHQM4jT3rGsYdAzmbMd2Kzh0AOM1G6aruHQCvzfZTmHYhASm2YCOohiECUE9v86CWIQB9HixfoKYhA + KBZXds7jZUD60UzrnGVsQNS+X4D+xG5AxMM6r+Zjd0At5s0TJZN3QMQhFwM/dX5AeiCxph5igEDiv3mrS8OCQA3q+62X+4RAapq2FcEyhkCcElqjw8OGQMc83KUP/IhAzseAMk1LiUDO9m5c+dOMQCpqpsKblI1AX/vv9DqMj0DHS7jvkxaRQPh/uEY+IpFAeJevW5TmkkC/CDsn5f6TQPiupnDqqpRAPyAyPDvDlUB4xp2FQG+WQPE2l0qBT5dAwUjeUWHLl0A6udcWoquYQHNfQ2CnV5lAutDOK/hvmkDzdjp1/RubQDroxUBONJxAuv+8VaT4nUDrM72sTgSeQAOC/SHFVJ9ATyWRXUoooEAmAh/3cligQOaNmgGeOqFAqLDDZG1OoUAzO2RlgNyhQD8ZzQjBAKJAV8W7YotOokDiT1xjntyiQLt3jqTpdKNAotvXbcm+o0AUA8GrDJukQGJnU3j0oKRA7MM0ZiGhpUC78oV/F8elQHdO1WY0L6ZAe34BikKppkA= - + - YOkyR7uii0aCWxRHplcdR3uojkaHxdxGV18/RmmFaEdswLhG8xXvRhY9dkdeO5BGntVeRiVi9kd52RFGKXAJRgotr0Z/ZAdHTbNyRoTlPUYHJTpHVtsRRmagBEYV2eFHFu7wRfGl0kaKJoJGy6D+R2ceO0YLXiRG+K1CRh1wN0ZtCglGM9ZYRrqwKEYZS6tGlHxPRm4zhUb46/NHQ7/JRuoX30Ziz4ZGM3IcSUSkYUjnIiRHaeBxRht9dEZjTJZGgK9ZRsG+VUkrmFVIhbzOR4wBbke+uzBGyQ+gRk+JCUf8Zy9Gm1MaRiU0IkeGwD5Gc8TARznttka4FiRGUJSxRl1iK0ZEcFpGsX4wRum4KkbQkv9Fl1JsRkjAtkaCEk1HxnHkSsUtBEc8T69GBndgRknDKkYyV1lHDhHWRnZqZ0rEbmhGGSeNSeOXZ0aFG2dIX+j0RvZaPkb3/MVGym5hRtb/EkaovIpGUwT8RWv+CUYb1TFGw0liRrVRBUajN/JFN66VRkBpE0YTRpRI+tS6RwWXikc+xX5GUEw+Rla4ckakeSFGoQ1ARp5cgUZYXY9GiasGRtgSjUasJVRGrboNRhr240boR2RGJ6IwRnKNm0alluJH214nR1KTu0ajMQ1GyO/2R3N+MEfinfxGiU0DRjG5KEYUu2ZGnO0URpAiD0c651pGUUgpRquDDUeyuYVGdSNWRn7HVkaC/yFG6AhYR5rYZUYXKStGPCQBR7NzHEYRtMdH7JGMRxbmEUcy5khG + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 3muyxabCckB9VljrAMhyQOo28wtD0nJABkE5+/kDc0DCOz5gvBJzQIwWjH84IXNA9BnodHpEc0BI4ro3K21zQDXp/hFrcnNAdDxQy4Ryc0A+eTtzeIBzQEDPQ/VMknNAcsKet/eUc0Af9nGnt6BzQE4YAO1ZonNAQJ1i0tPBc0Dx4W5LOOFzQB7sgWh4AXRA6Em7a9tXdECaJBiYNV10QD5ZWh4IYnRA8Npo60BxdEBE4CEJToF0QPy18m0mg3RA6KU5ce+fdECajsjh+690QEKrsolvsnRASPl2kd2/dEDI6o0rQNJ0QKewH1ddAnVArGTDZJ0idUBGCj56jXR1QLUWUytcsHVAKK+hNavjdUAHmd68S+11QDvmwGyQJHZA18s4C0srdkD6TcFcHzF2QA7J29DNVHZAtr58YQESd0AVIA1iDTV3QOvaVASdQXdAwjOn4hpFd0A/Wp7dkVF3QDOsTE1xu3dA4YI96nfDd0BYBkAbfst3QGwmpzBG/XdAaK6c6qACeED0ngWBTxN4QEIf6R99Q3hACNfthhFEeEAmFCS+eUV4QIRXNvWLdHhASgELi5qEeEAOY595T4h4QCJCKGypjXhA6uSh0gOTeEBiwNkhqZR4QM8e9OuL9XhA0myOWrwjeUD5vPeJyTN5QDy0aKGA0nlAsLgUzYfaeUCuExjbDDV6QGR/+KYaRXpApC1Cvc6de0BfLhIZKaN7QOnXeVCO9XtAdqtQG9kBfEBTtNzBZwR8QD9bzjVVSHxAIDrMhpZNfECykaxagdt8QEwHW6id23xAF6yvw/TbfEAGMzy6Wdx8QGLvvgFa4nxAUKHizpTjfEAo0Zj3oON8QNmYfVj543xAxCrGKTLkfEDabWi6/ut8QGVSYDlR8nxA2t+RfQX0fECiAcfUCvx8QIBbKyi1e35AN8gqZj6DfkAWjpqovIN+QMImtOtHi35AUCKSPh+8fkDGRNjCJ8R+QF6jJvmJWH9A1bscFGKRf0AmisBpElGAQASAHGpbhoBAlQLsQgW6gECaTdwmsryAQMb25CFfv4BArAbU/VHBgECTeSFRUsmAQPH9SlVL0YBAru3DaEnZgEBePsrFe/aAQMTp7C5o+oBAny4se2v+gEDutMpCP/+AQEDNo/EzH4FA7MopwAaNgUBuWrPUso+BQNoJPAYQkoFAj2OrMl+SgUA+xJ8vE5aBQMBxNhRgzoFAcL22EqfpgUBOr0Aoqu2BQFfVUPrr+YFAxKUEfNcYgkAi40TCM2KCQBD9hvA3ZoJAIe6bvkKJgkAhJU7LQpGCQEYvnrI7mYJAXRNWtzqhgkCkKhpWmsqCQFZzxTt5EYNA1EFNBXkZg0B2k4uwcSGDQHQHPrxwKYNAgpnZmW4whEA0GAF2dnqEQPSnbIpvooRA/PZbeWnZhEClYTe8aeGEQApzzL1h6YRAXBRdY/gZhUAGmPv5n2GFQCgN2EKgaYVAo2QTnpdxhUBquZM6o6aFQDT77ktEk4ZATvvfipAph0DVY8XAkDGHQOf/aOKsWodAApd/I7Vih0BRQy8Wx7GHQMBvqKhis4dAXn9UCucdiEDmUuSD6SGIQLYJKMHnJYhAUB35COgpiEA60KYh6S2IQA== + NrgMGZxjYkCJy7y2HKVqQFf+/uF9UnBAxMM6r+ZjdEBFvP4+7IJ3QLKBOgxVlHtARRrbkkSUfkD3kdlwglqBQCK8W3PO0oJA - + - XsE3R925PkbTZgFHJIH9RnJAK0bbd89GfToVRh+kbUeqC2FGI/tnRp2x5kYt40ZHjARXRkGW/kWXUPNFTyjjRpR5EkZsCGhGl+jCRnMbQEYWhCZGON1ER3ORBEb3KS9Gh8oHSHBzN0YUJKJGw5GSRufYEUdbhDpGlTEURpYJJUa+1lBGkyElRmMKHkbu8QFGFnIHRruVvkbRWDxGfcCiRrFQ8EcV3qdGXJ/ARkoeV0bdD+dIvx8gSPj+6kbOaqRGyCkgRgwKl0ayVnBGauqERrPLMkYWPEJJ4rNLSInR2kcpVldHGH6ERitaj0bbHNpFHyf3R3rMqUagcbdG1jIIRrhWpUe8N81GKbDERlmhV0aG2jlGiS0DRi8xUUZ9PSNGT2UZRid+S0YygLdGsTjcSvj/kkZBi0dH1nEWRhmhSEYyp1xK+zwdRnrpiUmxAgxGtqRRSCe9iEYufMVGH/NdRgDzEUYL8wlGeOCHRlS970WKdtVFKDUoRuWaNkaJ1fdFAr+ERnnvCEbNUgVGg3yISLJcvEcmhHlH+rlcRj/85kXwVVZGN38ORugRGUYFfJtGMyAOR+QC0UbxTYpGFkqiRufL9UX6rRtGMySsRtzKT0ZmpBBGlcs4Rru2WkbPSR5GDLwBSNgPRkdfUgtHsVTwRYxD8UWqlwtI8CNNR98eA0eXfxtGNCZURm5kCkaN9OFF/StAR62tjUa5yx9Gw07/ReA8IEdmZI5GRpEfRo607kUmjFFGUm9PRsFX6EX1Sh1HlDsqRjE+JEYbb6ZGJmIBSC7Iq0fQWxpHOz6fRtL+BEY= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - GuOqP6fCckDSZHxkAchyQCR+mjdD0nJAYsX4QPoDc0AVFthWvBJzQJEqhGv4E3NAZP6y8AIUc0B6aj4NOSFzQMLtQuh5RHNADMzWo6JTc0B4yJtZK21zQOraxx1qcnNAq7VicYVyc0CEgwS03XdzQGWMC2J4gHNAhouM/EySc0CE4LZ595RzQC7L+2K4oHNAHSN4ilqic0ASEBcl1MFzQHspfhrQwnNAmgXjVDnhc0AiwjfoeAF0QAgq80U8UnRAnBmUSdtXdECcsKm+NV10QEIsXvIHYnRA5rld/EBxdEASSrlaTYF0QN9EW1Qmg3RAVIK4qBWQdEAd0Nx/7590QE3zfb/7r3RA/uqpO2+ydEBBzJjh3b90QNT2PY5A0nRAxMy46VwCdUB4IebJnSJ1QDXJGniNdHVAaNCHx6WDdUAOBhSjW7B1QKTFcLJL7XVATE45LKbydUB6PHIfSQJ2QEZvfi+JInZAXDRBuUordkDVFFS5HzF2QLT5oFsRQ3ZAepc+98xUdkBof+h9ARJ3QCMtWtnnJ3dAQswjKg01d0CKQaRenUF3QNxYfaMaRXdAQN89X5JRd0CYE/Ndcbt3QFCtckV4w3dAtoEX0n3Ld0DIxhB3Rv13QIB4k0qhAnhABKVn008TeEC4uu+PfEN4QPHuQcsRRHhANY2f83hFeEC68Ynfi3R4QI59/4qahHhAL21gkk+IeEBqH545qY14QNjHr84Fk3hATmFvPKiUeEDmJ10GjPV4QJK+er67I3lAEKlUMLEoeUA+L9MkyTN5QL636cr8Q3lAT1yxeX/SeUDc43LJQ9R5QJAPkZoMNXpAQv5MFRpFekCulQkcDbZ6QGqokOZJ83pArjX1k3wEe0AoI6bjTBV7QHFlGCLPnXtA2OHoECije0AoZY8XjvV7QG77UwzaAXxAolaQJmgEfEC+k4RZVEh8QLxLDSGvTXxApgPC1rfbfEAJVT7mzdt8QGSAatj023xAR8XxYCzcfECaWEygWeJ8QEgjN23543xAG+8HJC7kfEASQv0f/+t8QBK6jfJV8nxAkWfNrAT0fEC54omtC/x8QNopdbFIAn1AlGnxWLZ7fkDm2KhkPoN+QEBztF69g35ApAnCqyC8fkBetYH5J8R+QHxwVihyyH5AaAG2nIpYf0AmA5X5YZF/QFi5LtkSUYBALr9olwxZgEAcmd3xHY+AQKt5CywFuoBAhtZE/rG8gEAfxiUPX7+AQExc4A1SwYBA8g/K6FHJgEA2rVyYS9GAQNxoBaVJ2YBAJEW213v2gECk6MVQaPqAQE7lrhZ6+oBAVEeNQz//gEDmi2RfNB+BQNKGdLEGjYFAoit4NlWPgUD+Jtwxs4+BQHTf6bkPkoFAVwCEuF+SgUCFM62bDJWBQNqlvrETloFAqF9IdEmvgUBEomlNp+mBQJBej4Wq7YFAFZPa1+v5gUAVCXMa2BiCQFUsfwI0YoJATvaN+TdmgkAAM87MQomCQOzWyLVCkYJAcbcmrTuZgkDcWCicDqGCQJI6ak47oYJANBrLNZbGgkBKuyUOeRGDQOySta94GYNA+gKX5nEhg0CeWKLEbymDQDjiL/luMIRAwBY4hv1ohEDsYWx6yXeEQCNtiGl2eoRAvNb+pG+ihEBcw+l7admEQHpRqNho4YRAp5b7CGHphEDToVL69xmFQB4Y+d6fYYVAGykwfp9phUBZHB6fl3GFQPXVyrtEk4ZAjq21ZJAph0Bm1eizkDGHQBLq/uasWodASqESKMexh0CyqexGY7OHQLCe3czmHYhAzoqz5+khiEDqtb8b6iWIQER6QwDmKYhA + NrgMGZxjYkASeFMryKFlQJgT9jS84XBAjwFH/L0ycUDzH0CAfzJ3QOoNkUeBg3dAeWXdZlmUfUBnxQBwbzN/QEvbzKhYkoBA - + - L6piRy+gf0ZkJQpHXBoiRyqQNEaXRKlFkeWgRVZtxUYLqfpFFXzFRYICbkekY2tGY+XHRsJaxUUDcutGnoo/R+sZlEbHIR5GHzMSRlnHDEYiWOBF+JPuRbO+ekbUdS1G8k7HRvlWW0YbqiZGurA1RyVFykVu2AFG4C3TRdOC/UeJFDZGsRqbRrxCg0ZbR15GQbdGRgJpMkaBe0BGwLDcRVrDVkagvhRG8OzIRXPC0UUtpNxFQZfIRZbvpUY0A75FlWtHRvyXo0ZKRcxF6izuR3Hjvkagi7dGrn9rRrfTuEgASABIszqqRrhYj0ZIAtxFz2oiR6ZFJ0YF0ZlGe64WRkLYOEloDzVItdWyR3mqWUcy9ShGHT+RRs6H4kVL4YFIN0XwRYLoFUcYbO5FEkoJRuWQ9kXo95xHUoq6RmtwwkVPx+NFA3fYRUFTA0acEd1GlUd2RncAYkbivxRGVpsTRn/JK0ZJLtVF8CKoRnHsMkd7MbhK7eniRnANX0cvhjlKsQB4Rmz1Xkl2Zu1FnQs4SNS4qEa14hVGtA7GRratIkbMtgJGQnRdRjpTEkZWvMlFDxjVRfi2FkbUnHZGNJHHRZy84UUaZ45GuSM4RoQSzEUwQYFIf4+0R2/uekdQD3pG0VnQRVnEQkYDx61FsIBQRgpCmEbDWq9H3G/sRbxRbEfhRmJGrsHnRngoTEaVVAdG3DDtRZBdnkbzcOJFoWUNRvMMQUaPqoRG2O7yRaO48EcgS1RHDHn6RtxrBkb2zvRFduIBRsBc6EcGCEFHmsz1RpbVFUaQ0FtGt5jvRRZfJUY/68ZFv2a6RWCtJEfLaIhGn/AnRmwov0UWN/RGhWBmRuNU70UCrSFG11UzRgZzyUWDM51G+FTpRRn7kEaLxa9HHf+OR9FxBkd9aXBG + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - EizxOW7BckARpYjxpsJyQL6Wmb0ByHJAdyac9ULSckBg/xGbj+JyQHCMe1f6A3NA9DDMbLwSc0CbS6Vx+hNzQDdY6Ec5IXNAuiTXFnpEc0AupHPTK21zQJKfemdrcnNAujSqdIVyc0AJwfx933dzQLgVo0x4gHNAZaDBs1yCc0D/YlI6hpBzQENx7ClNknNA5q9/uveUc0AQ4Fent6BzQAwOi5ZaonNARKrUv7Szc0BgjxQk4tRzQKBYhEU44XNAKK07nHgBdED87/+lPFJ0QBJcwMXbV3RAgMHvtDVddECzvUJ8CGJ0QIKvdtEicHRAK7mZQkFxdEC4iW4LOnN0QIvlDv1NgXRAeLK1/CWDdECBBB1MFpB0QMrsxIrvn3RAMb3qm/yvdEBiNgD6b7J0QByMfS/Jt3RAAJvJ/d2/dEABYBK+P9J0QDnt/tuM83RAVMhKK10CdUA6lFwrnSJ1QBFnXT+NdHVAtPS/RaaDdUCgdLpZXLB1QJhkObar43VA1KcY80ztdUB+CdZMSAJ2QEuikdmIInZApn4v8o8kdkBmFzTASyt2QP1dQdcfMXZA9XPT+hxBdkBGLYWnEEN2QAqPiR3NVHZABnjCFQy0dkB9DXwHz852QKqbTicBEndAXqzFQ+knd0DWb7UGpDN3QEyfqkENNXdAsaMlbJ1Bd0AY04M/G0V3QArzcGVKUXdAxt2ZQJJRd0B+ywY6cbt3QOLGQXZ4w3dAiusj+X3Ld0AgISMfRv13QGz3yg+hAnhAfmpuVVATeEAKdHKqfhR4QN6WxQZtInhA8hVKAF4jeECSMb6zfUN4QNTkbyQRRHhAAOYULXpFeEBWIcCTy1F4QCKLjZKLdHhAoAi6I6WBeEBbDbdymoR4QNQx17pPiHhAh3F7mKmNeEDSu51oBpN4QPoRp/eolHhAkOgIErjUeEBrIdGQjPV4QHRC0ke7I3lAejWnqLEoeUDJQr+vyTN5QDEFRQn7Q3lAYhGpOQVzeUC0EHpfQtR5QIxHE8sMNXpAN8s4KRpFekDSjNZHDbZ6QHeL+Z1Tx3pAhyImSEnzekDPpfd8fAR7QMEm/x5NFXtAGBLqg8+de0DQK4ijKKN7QCtHZpKEqHtAZLcAoI31e0ACPalS2gF8QMygQTJoBHxANPgQP1RIfEAyI+1orU18QBpgXlLuUnxAiTbAxI/bfEDIhjCXw9t8QKDoolX123xAVoiUjCzcfECeID31Tdx8QE5l5jRa4nxA2txERL/jfEBFJQow+uN8QHJ4XYYy5HxAqA6twP/rfEC0K8CZUvJ8QEpXYJMF9HxAc43Y0Aj8fECu3nONSQJ9QHpwx3OtG31A90NxEJeNfUAYsXx165J9QJYTG9DtHX5A2kqutwcsfkCM+yFGtnt+QFxWmpo/g35AVjrM976DfkBZ1slQH7x+QBih0wcnxH5AKxoQ+XHIfkCS66UAzc1+QLEc3fiJWH9AEz1EM+Ndf0CQgLAXt3F/QPAru0RikX9AlgBHOxNRgEA8zouyDlmAQLSrDGIej4BAU8cdQAW6gEAx36+as7yAQMimXphfv4BAeEzOT1LBgEB8/oEfU8mAQNYjPClM0YBAFrttpknZgEAlF6IawN6AQBwwlN9D4YBAAsBRh3v2gEAY19GraPqAQIKbylo//4BAzOPMRVIegUBy7DZ1NB+BQNBnfclZR4FAj4vvaQdKgUDWdeHwBo2BQEBIsqRVj4FABJNbabOPgUB4GbVqEJKBQHGcYctfkoFAXQ7zWQ2VgUDsPjhwEpaBQMRtUNBJr4FAEFI/NofXgUBIaa9nM9qBQNBG6Tmn6YFA2Ks/7KntgUAbTxx87PmBQOBeLKbw/YFA8mDnDdgYgkDqslUZ1yCCQHK4lJrJSYJA5hPkqjRigkC0wd7fNmaCQLKbbQZDiYJAuJXO8UORgkBGOPm3PJmCQNwSupINoYJA/0+/lTuhgkAYm3EpM6mCQHan6H6XxoJATi7Tmn3agkCiGyBOeRGDQL6L3+F5GYNAdKiX1XIhg0AO4e2+cSmDQFYXt6FvMIRAyHOC05c6hEAwVdfc/miEQEamgpHJd4RAKB8VJnh6hEBQ5HZgI32EQPxsNqxvooRAe/L10mnZhEDr+VUQauGEQE723tRi6YRALE2eVGLxhEBe6ic+oGGFQIwAMvWfaYVA5okzYphxhUAk5eOfmHmFQNY5qApFk4ZAB7DqIpEph0BOcpGdkDGHQEatGCWKOYdAWjjZK61ah0Cos70Qx7GHQHIGBSVjs4dAVrOBeci5h0DXRRZ4aruHQB7e2GbnHYhADcH2dOohiECC3fqV6CWIQNYX1nvoKYhA + KBZXds7jZUCRGlyHeVJxQNvlv3T/InRAkXg429FjeECe7F1IpVN8QJHWFC8qdX9A4tbS3ykygkCsmFQ0IVOEQDvBsilNG4ZAnCmz16EyhkBm6zQsmVOIQJxYoQFOu4lAyhj/SCXsjEBmYGq0z9OOQBej5LJYApBA5Uaa6C32kEBgJSV/eV6RQC7J2rROUpJAEjyKjb/qkkDg3z/DlN6TQPe/7mYAd5VAkvak0doqlkB31+V7VjuXQKcL5tIAR5dA7h+VzRYrmEDUANZ3kjuZQKA2+ttcd5pAHvGnFb4/m0AgTvHwsjucQM9yj4rnS51AoGXoBQkAnkCBifSYLZifQCB93xpfxJ9A - + - 9yemRV1wNkcPpJpGsbb1RjRsi0VN9ORGAe8bRjmzh0WSjbxGkGYRRvIBhkdpI2pG5p6MRvb6uUWAnsVGENSJRUBhaEUDeyNHQNdtRj3u9UVg2thFB1FkRVZptUXNdOxFTNNhRgvcL0YqXYBGWSgYRsx+RUbB9INFgpAZR5tz2EUc1atFRXfbRTVEt0VWhcRHr7e8RR7GlkZJTSFGslJ5RjwclkX/o9FF9/5tRo7YIEaXGUxGxYG0RQLTEEZCJ9lF7GoRRtB+HEaX2rRF3YrfRX9JFkY4wt9GYVbJRbR3hUWeU0ZG5KW3RYmFmEVoD15GFnMwRqT3mEXPIOFHGhG3Rv33wUaGkLBFg1GNRoZQkUitSNJHbQFtRr2rk0aWXrNF0xMsR8hf6UVhyIRFAr/mRQ8r7UW8rXVGLf0RRi56kEVZETBJCz+FRf9fLkhDdZZHSHUkR7fi/0XSb3hGLaiNRa7WpEWyeYBIjPSfRUVlH0eSlstFkxisRcu370UCLaZHuLi7RqLst0W0/YlFvFPGRWYm5kVhyApG03e6RpZDWkbwmbBFCktCRhwtGkYKUfFFDSA0Rl/EL0ZEw5VFVeglRlfVjEa/aoNKrXiFRijcT0baloRH8iDrRWPqAUpEIvFFmYIdSVLjQEZsMfpHcN40RojBFUYQTZ9FBtOWRSSHi0XsSBhGlduWRSoKuUYWjsFF/K0ORjRre0Z29J1FNw+GRTG9bkXN3R9GeDzGRdXcw0WSbxpGjc6URh+b/0X5sN1FNjNeRn4FNEZvrbdFIgqRSEdO9kd1JIpH0IxhRkOlk0VBurFFtCupRWbCFEYi4S5GOf7ERbIqkUavD9hFc5mPRX69wUcZIdhFizGnR/2xPEaluQVH6pgVRhWlq0V5C9dFFD8ERi74JEYYqUxGozLkRR5ayEUa/o5FpuUqRux+rkXcba9Fh8aQRlXCB0aJ/FJIimLLR5eKg0cFeaVFrIB9RiRkwEV34aFFXDWnRZk8S0hlQ71H35BgR9ebh0Yn1iVGekWqRYpt/kV4hxdGYR/fRVc95EUjla1FI5tfR1pv+kbZmp5GSVq+RQmfQkdV56VGcaVNRoMYrEV30apFMxmHRjie70WEUp9FinvBRcyYHUbVUWNGm4jHRfc+2UXpZFlHfPggRxWEfEZBYwFG + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Zb9QjG/BckCSLeTWpsJyQGn8ka07w3JAx701WAHIckAgyA12Q9JyQP4YFjtR4nJA6mtxCpDickCEtcpdyfFyQIvvoLX6A3NAkHZV17wSc0BVSpmPBhRzQEw62PA4IXNAenFbh88kc0CNEAD5d0FzQECBlWp6RHNAFn6+v6NTc0DSlZaHK21zQJQibYFqcnNALsDzFYVyc0BAsXjySnVzQCDp6B3fd3NAIaVny3iAc0BtJwPaXIJzQO8Uv0CGkHNA6yk8Pk2Sc0DGBhLn9pRzQLDhE5K4oHNAchRHFFqic0AZdFIatrNzQNUWtz/RwnNAMBWDSeLUc0CsFqk8OOFzQPhGayhC/XNAJBGzbXkBdEBqyVYTTRN0QOkFpUk6Q3RAzgJYCT1SdEBANonM21d0QIwIgiY2XXRAppE42bhgdEBjwCiSCGJ0QJYbU3WPYnRA8qZqSSNwdEDL1NIdQXF0QNyZ6bROgXRAMlPKLyaDdEAWREbEFpB0QOS5Ke7vn3RA8q9Y9vuvdEBo0xrmbrJ0QAIFPrHJt3RAFIT3ad6/dEDaPDAcQNJ0QPs5Hly44XRAUEPDHo3zdECCxoKNXQJ1QFprNEedInVAuW8Dds01dUBOqKRq+Dd1QDrLRKiNdHVAlVj+m66BdUBwViRIpoN1QFwp9CxbsHVASNspJqzjdUCGxg+eTO11QGEKE6Om8nVAypBXyEgCdkDYqoWUiCJ2QHtrmL7RInZA9lMfIZAkdkBitOJMSyt2QJh4S+YfMXZA9LNDuBxBdkDwtQ5teER2QAEQvoYRUXZAVUc3Jc5UdkCmKCtKwbJ2QCvdDtcMtHZAQEch/87OdkDVQ6iiARJ3QGwDxEMPIndAamzcxOgnd0A+PEJ/Qy13QG1tkHylM3dA/C0OOw01d0Bcsq4/nUF3QF2Sbk+wQXdAp+y24ZRDd0A08idCG0V3QNzBxW1LUXdATDVB1ZJRd0C59D2xJ293QBLjLJefcndAfNw+gHG7d0CgXzlpeMN3QDk9+l9/y3dAuE/azkX9d0BqbJ/DoAJ4QCwRb+1PE3hAdtSmNn8UeECHfgo+biJ4QPtSP4VeI3hAnMpPuo0keEAsbMjVfEN4QL5r3ZERRHhAwq4dEHpFeEBNN0z0yFF4QCwhglmJVXhAuxNAdrhheEBlkBudi3R4QEZ22K+lgXhAXPiGTZqEeECiYgb1T4h4QMamQgGpjXhAKmp51ASTeEA/nbSzqJR4QNpa3PzUs3hAKsT58AH0eEDWZP6fjfV4QM8Dmfy7I3lArIalqrEoeUCI5AVGDy55QJA3dILJM3lAln6gf/tDeUDy0X1mzFR5QLwTPo6/snlAdgnRCULUeUDZ5uPHVOR5QG4MwM2T63lABmdnsgw1ekCr5i2HGkV6QKbudYEiXHpAgg88hg22ekA10/GyUcd6QJrv9N5Ty3pAwKSgGEzzekBSTWano/h6QN3IPV18BHtAivEEbMYSe0AU5AdmTBV7QKKM81sfGHtA9ryYK8+de0C2g1J9KKN7QEf1wD2FqHtAWMT7s+fDe0DxQ6IijfV7QKZo36/aAXxAcyZnK2gEfED3Xa/tmgV8QD5is53UEXxAKNAPVOsbfECB+rQDz0F8QFVD5H1USHxASPiTja1NfEB8QfqwWZl8QANJfJ5QnHxAt3gNHaDbfEDR5MCF9dt8QFSbTMc/3HxA2d36+mzcfECqKxEKWeJ8QDdyXtXi4nxAsZVugbDjfECyov94+uN8QJZM+WpE5HxAqajizP/rfEDZdyYHU/J8QK7Y6PwF9HxAgCoOVg38fEBGqXerSQJ9QDHMCmiuG31Aj03OEF5DfUDAr7afl419QGvyN3rskn1AEj39P+0dfkB0naSiRSN+QDyo3BG3e35AbQQoVj+DfkDl1ncgwIN+QBvrW14hvH5AhAlcYyfEfkCyr2Hccsh+QF7yZBKVA39AEgEYzopYf0CspbZu411/QMYgHKm2cX9AVqps2mKRf0Ccg267QaN/QJWVKuX43H9A4iHKYeUmgED6uDaj+jSAQFscb0PnUIBA1qWtMBNRgECIVCwJDlmAQMAN6h4ej4BAfJP5AgCigEATbi2zBbqAQIm4KwuzvIBAJ2+iRF+/gEAszJtfUsGAQAJ4Uy1TyYBA9ByhH0zRgEA2FOGzSdmAQJv6XhzB3oBAzjNoa0ThgEBqPxcUaPqAQNj7Sm9r/oBA8H3Foz//gEBRY7AMPg+BQBP29yBSHoFAsCsWGjQfgUBpDJTwVCKBQOeNEbQzJ4FA+wbfWlpHgUB8NOlPB0qBQFBdFp3lWYFA/0Fd5waNgUCQ2CORVo+BQK/RMc+zj4FAyHbllRCSgUASPdhjYJKBQPcD+N0MlYFAb5bgDRSWgUAg3CGCupeBQGRZFpxFmoFALU5UG0qvgUAIZpu35MmBQNIzye7nzYFAlvYwoYbXgUDUZCTeM9qBQJXrsDXf3IFAedtgtabpgUAaIDI7q+2BQGjvPuzs+YFAsscksu79gUCzKJQa2BiCQAB8yfDWIIJARvK988dJgkBk2fvy82GCQCHnBbszYoJAzGig1zdmgkDSp5MUQ4mCQJCCPK9DkYJAespngzyZgkDYhir5DqGCQLYHEoU7oYJAiEFNUTOpgkCA5i11l8aCQBoaX2R/2oJA7zPvW3kRg0D4G4TgeRmDQPfPCaRyIYNA1s2zIXIpg0BjRjXSazGDQIidGKBvMIRAg9l9bJg6hEA6qm/z/miEQIOpQwrKd4RAYYnoaXZ6hEBGFGlgJH2EQBs/bCZyooRAPFvPTCClhEBoH4biyqeEQJadxgtq2YRAtLk9Q2nhhECUPb/eY+mEQCh88o018YRAiiCqR2HxhEBQbFV4+x2FQP70XgSgYYVAGyTF959phUDk2L6lmHGFQNpAuGqYeYVABLx2q9uZhUDMGpuupKaFQO8zVrVFk4ZAkMRsahTWhkBasZVBkSmHQEjYnieRMYdAmpT9W+E1h0CEQOa9ijmHQERC2+THsYdAiyfa2WKzh0CY3tafyLmHQG1iUBdru4dAnPStLMHBh0CCw+Sp5x2IQMo4cC3qIYhAkm54UesliEBO/6+W5imIQA== + NrgMGZxjYkA1uAwZnGNrQK9rGHLRYnNArmsYctHid0BDe6rX1JN9QMxnV242AoFAoT3Va+oJgUA= - + - x66tRcA5HUel5HdFHjKdRi80GUeAVq5FvE6nRfO5jEU1Ry5HRjAtRg0xg0XUk9ZGOCWbRT/fpEXjSC9GW95nRQf/hEcGrWdGPmSfRr2ibUVH1ohFDhLgRv8fx0UZAltF2VBCR7YGV0aXF9FFBHoARrFdgkUfRndF3/2pRVrvA0YjuKVFWceLRrbOZ0XJaGtFW0HSRRLFyUYZSONFFHqTRT6eZEbzKYFFRrioRbfTWUemnwVGejXiRf73vEUu7G1HjyatRW3eu0bsgDZGEZIURtd2YEXeXG5F0si5RTfoh0awyzpGnglyRbbCg0U/jCtGpePiRekHCkbdkpZFKbeJRWQIUUaHqglGlvfrRZOhxkXgFnVF5lcjRtagJUZ8xMdGpAarRUzlVEWpql1FZM8yRmGDiUXjObdFcxF1RQ9XmkZxLYJFaJDIRmMBDkZLxIVFJA/rR2HRoUaKXNRFfulERfjZzkYkkMBFnmttRtpkskXFHaJFeil4SHMPtkem6Y5GtvSNRvUwHkZ+36FGqCyGRtcFgkV2vFRFXlBURchQpUUcXIdGI1Y/RoR3bEVY4V5FB3FjRZ97QEmVIVtFWWdDSFKClEet8RBH3Xg0RgvHk0Y5OHVFoWF5RVvW80U2YBJIEpbNRdJhVUVn4bZGtjiFRSNHcUWvOnxFKBrCRdHrX0XTlH9Fem2vR5a+q0bzH65FL0LARQvXBkboMdhFZg3zRVJtg0XyIANG3wlXRamcJ0ZS6I1FP33gRtqBhkbivfVFh9lhReOHc0ZOIg5GztgMRvtRc0VuJYhFNsmIRbpEo0WDwlNGNWpARmL7qkUAlK1FC/MZRhBcUEpQRTVGUt3ZRVn8vEffRlFFC1+dRWONzknqfq9FtV7xSFQujka3Jr1HK0o+Rn8NbkYY2tVF5iviRT0LvUUQYGlFtEXWRbETjkXRLfNGhHaHRYY2GEZyJiFGSeOoRfU0z0Vh6nxF4DHsReXMikXjaLxFA/gVRmZYnEXdDkpFA0lGRclpZ0XBZ4hF+XCVRkVTy0ViQgtGqZJYRVe0WEZQcTlGM3WkRcRvnkgVBgVIhqeXR1mgXEbGgVhFZunERUYZEEYCWIFF91VFRlRdlEXfgR1GdCGhRrGoq0XTnYtFhnKsRXo+W0Vd36VFg0OMR/heBkZjhoNH8nJvRtfO0EYdsx9GvfanRb0tQUUj3mhFvJfNRXKLDUa5XVdFEIhlRqNuR0YYjaVFj21ORp4DrEWAuP1FA5tXRf/qTkYLnWtFPNJvRSE3h0W9YlJGTbnmRUvFT0g8i8lHnHpuR7C07EU2KXZGm0ybRXpHhUVky5FFdRo2SJ7Zp0cwmD9HPwxeRvKfrkUXneJFtvV/Ras15kWTgztGH+YvRtLEqkUlV8RFFBNgRUOEmUXFfm5HcPTLRjWFgEa1xpdFwmy7RbjpX0UKjSpH7aaqRl0TTUYGSrVFRQTNRQ6cZ0VrEFhFL6qORTshQUYdGcdF3p2KRUJhiEWymz5GDkxoRl2u2EUC9I1Fiz9oRfnKCkeLf5ZGUzUFRiZKlEU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - LtID5G7BckD06KQeyMFyQCitzwmnwnJApcLmejvDckAW2v3cAMhyQER0w1lbzXJAJHwB30PSckD3Tgmht+ByQCKAnxlR4nJAtMmMTZDickBS1PbEyPFyQIoVIujQAnNAt2KMxfoDc0BOwbcmvBJzQPsvQbr4E3NAgAzqHwYUc0DIbraleR9zQCAlj0I5IXNA8t3t784kc0ARTFgo5EBzQHpAyrl4QXNATIvv2XpEc0Ce63ZFnFFzQGRn6sGjU3NAtIAu7Tljc0AKW/ljK21zQO7co1FtcnNA2pWDp4Ryc0CWcIJqt3RzQFBVMu/cd3NAIl982niAc0CGmzBoDYFzQFCNUrxdgnNAs/gPhIWQc0CJHpE9TZJzQI5UPXf3lHNA/M6XErigc0Def+cbWqJzQES2f+AEpXNADlxCZLazc0AfwsEt+cBzQBS007LPwnNAGVvB2NfRc0AeNaM84tRzQFZmTqU44XNAd8NjsUP9c0Di/e5ieQF0QNwHUuFNE3RAHzXvdDtDdEAY73hC3Fd0QALXSqU1XXRAzIz9LblgdEDzeEU7CWJ0QEUHm9JPZHRAbUzf4SFwdECT6A7XQHF0QCtZ8U46c3RA7II8S/qAdEACZFdwToF0QJjuk2wmg3RAOZptiRaQdEAYRdmz7590QEidky0Qo3RAtAYZO2+ydEAYBdFcyrd0QLZHez4UvXRA2GdzkN2/dEBQtT60QNJ0QL2wkyS44XRAxJtUEY3zdEBudO5SXQJ1QIiE5QckFHVAJ/hbu5widUBnjpbTyzV1QAqzTfhRPXVAaH3KtXZydUDMrREWjXR1QLAsmVF5gXVAdN8ama2BdUC6Fd03poN1QOQ6gXas43VARudXRkztdUBOq2W5pvJ1QIOeM31IAnZABCOnv4kidkA0Oux4kCR2QEgC6P5KK3ZAZ+PNpx8xdkB8NGTgHEF2QKYRuBGZQnZAjtVNlMhCdkCmIZvkeER2QCaauSkQUXZAvFn/9M1UdkCtyxXm5WN2QI6Gj4jaZHZAjPIi1cKydkCr9R4cDbR2QPqkehLPznZAWkS0HJHzdkCg4acAAhJ3QLzkTaoNIndA+vTAOeknd0AzojPOQi13QObJWyydMndATqZblaQzd0BMj91nDTV3QP7j+1edQXdAlIBBbZJDd0Bks4kxG0V3QGI/4DpMUXdA7MiLsJJRd0BNg5/hJ293QHceTHCgcndA4LX2hnG7d0C6T9bLeMN3QPAs7W19y3dAWhcxRHfTd0DhojZyRv13QCipq+2gAnhA0PX5dccIeEDPuopyUBN4QEghLJp/FHhAh22CVm4ieEBzuOeJjCR4QKgU91FAKHhAkKLJBGc7eECxfgmZfUN4QHNpXZARRHhAk3eJKHpFeEDTLuVSy1F4QBYIqJeVUnhAqmRbMx9UeEATydFch1V4QHbLUVC3YXhASOIxbWV0eEDObL2mi3R4QFdec8yudHhA6eYtsqWBeEC+glQnmoR4QEN5W9NPiHhAdMgPD6mNeEAXLZ0hlpF4QLhSHRTvknhAzo5ASQaTeECGo9MzqJR4QEhVG+lOmHhAvYxc6NSzeEA2f/+dttR4QDCFDcIB9HhApN4uHI31eEAc+Lb4uyN5QKNEev6yKHlAArYKZQsueUDsngxEyTN5QAK0OCDjOHlADHYKhfxDeUAsCuK2zFR5QBYHtPH1a3lAOkOQAkLUeUBDPvVraTB6QFtV+OMMNXpAVpro4b1CekCcBSX/GkV6QIRgX48nVXpAPKop7yFcekBZe90RDbZ6QKQC3Y9Tx3pAoJwBcVTLekASXOqUWc96QAhp3rBi8XpAa1ST4UrzekA+YGiMo/h6QMCGpvN8BHtAjuzY8scSe0CgLormTBV7QMmdJ78eGHtA7RHJKNh7e0B/4wPuzp17QIS0J0sno3tAxQDdWoOoe0B6RbMW6MN7QKpIyCLC0XtAzBSMwo31e0C58ANV2gF8QKDhDFtnBHxAOBZkf5kFfEAiYaVP1BF8QPYv5SvpG3xAi//kfO8jfEBtBohuz0F8QOw04QRUSHxAIvgm7KtNfEBOgtbGC1N8QEjKxM1IU3xAoimJ60VYfEC8eiFRWpl8QJBKkkdQnHxARmGjY7KefEDk0d9sU6R8QMBDpvMz23xANx7FS67bfEDYD7Qkxdt8QAiNcaj123xAjzSZjl7cfEBS9zKKqtx8QObDpH/D3HxAKjiTZVnifEAxEclAFuN8QP1WsSrJ43xA0tU7q/rjfEC5VfLrKOR8QDpbTtlq6HxA8EYnHQDsfEDx0Wp3U/J8QJpEOvQG9HxAbMV4zA38fEAo1oqgSQJ9QKj4dyOtG31AGIsagV5DfUCsFls1bFN9QIEl6yOTjX1AjK6Pw+0dfkD0MteNSCN+QB7FxNq3e35A7r013z6DfkATpxJNvoN+QI9NjO4fvH5AfjdDknLIfkBIqeTPzc1+QL55WsCMWH9AAhUQj+Jdf0A6cFetuHF/QK5FHN1ikX9Aer4rQF+hf0DH2G37QKN/QJycMwqaqH9ADUwRIPrcf0CWFYax5CaAQDYRKJP5NIBAMPMJGRRRgEDq0YCZDlmAQLsI8Pkob4BAo3aemh6PgEAy7el4E6+AQEAtAesFuoBA3pidd7K8gECO3wmi8L6AQI622i9fv4BAixoOZ1LBgECBRS1LU8mAQFiMmTFM0YBAsh3Y0WDRgEBJGkslSdmAQM7OYRPA3oBAdIMjm0ThgEBHjy3kVOGAQKDMpFJs4YBADMX1dGj6gEAQONvZa/6AQFHYUWY//4BAdmuyrz4HgUBweQ7wPg+BQFqQfEFRHoFAV4y/RjQfgUAuzbGwVCKBQDba0hQ3J4FA/yF/eyk/gUAuJMXJWkeBQPLueCQHSoFA7YN6NOZZgUB28OGoBo2BQBddx7ZVj4FAgAo1u7OPgUDIgVhYEJKBQKzEhndgkoFA5nM75guVgUAoqWPDE5aBQOBl8k5GmoFAItuA4OehgUCxWh+6baiBQKYBymxKr4FALCfERyO2gUBuBsjdS7eBQJM5g/LkyYFAhPngJejNgUBQpQnOhteBQPVj4nIz2oFAFvvdL+DcgUCWzExBp+mBQEqbS6+q7YFArk6O/ev5gUAHIsWP8f2BQBTt44DYGIJAGPNxddUggkDkjLd+zyiCQJjwBu1tUIJARpZgGDRigkCqdlnuN2aCQOd1O0ZDiYJA5gVLikORgkBgVblcPJmCQIHYZrcOoYJABnenuDqhgkAu+wgWDqmCQNusHFM1qYJAiUmaLH/agkDQJUtmeRGDQLlVs/Z5GYNAhImn03Ihg0D21j1rcimDQPqpNnxqMYNAZk3SAG8whEACzmCYmTqEQMBZ9rH+aIRAbO4GyP9whEDQVJZxyXeEQAyqYYJ2eoRAYpuP1CN9hEBn6X3q0X+EQG6cXJFyooRAc83geSClhECpNvbWVbKEQCw4JRHDzYRA7QETJ2rZhECuCawNauGEQFThVKpi6YRA0FjgOjbxhEDFS2n9YfGEQFnLpW+gYYVA8O2cjZ9phUDs73WimHGFQNWQu3GaeYVAWpgEzdqZhUD2PPNf352FQLvlUVajpoVACDDH3xBuhkAYBSBmFnKGQPqHjntGk4ZAYV+DPxbWhkAvC/mgGNqGQH7q0Dwb3oZAoaZQgJEph0Dyf5IAkjGHQBS5ZHDjNYdAoLL+2os5h0DwGSAax7GHQCPFvR9js4dAogSFEsi5h0A4dp5tv8GHQG598HznHYhAPgat9+khiEBCejE46CWIQEsXITfpKYhA + NrgMGZxjYkD60UzrnGVsQBu6YmAmQ3BA - + - tirBRQBCJ0XpLCBH4TxVRZQefEYrww5FM0v3RmeYBUV1WJVF/lyCRfKTXkW4GGFFPXkWR1QWI0bmXmxFDVJ6RcSWDUWN4NpGcIKWRYjsOEU2OYhFaqz+RZzfBEUZBUJFUJMPRZqNeUdlWfBFRbPMRiw3EUXNT3pFmqTVRuW4A0WyFqNFpOYvRZTGNUegX2ZG3jYBRl9x50WmU0lFEAptRWPqLUVAqmpFPz9KRRZeh0VNy+JFkHlpRZDJgkY011VF9SpmRYFui0asO/hFMH6uRR4/I0ac7flElX7BRTcrO0dZYk5FheAjRWKW3kUw1OVF566/Rc8SAEdJkgtF7snIRgUU3kVQFk9Fl2GCRXpeUUU8QB1FQ+yjRdHfN0aNHxVF0MAvRmYFdEV/nzRF+qggRRz1/0W9BkBFToTCRSvqyEVpHpdFjqlARomk3UXaUgNG6jmYRblE7UX6tadF5jCxRqoFikVpTjBFBQZJRQX8jkWkQStFo9AXRkZ6fkWhMxdF36sNRepfdUW3vohFajUcRSfIdkYC9DpFq5LTRuZVg0YjzIRF912mRYWg70fAbqtGqcQlRQW9uUaKq4JFq6ZWRqC5ekXfjkZFxItHSLb1j0fhlyNGxNf+RAOVd0ZvYhZGheUMRRrjtkVLtrBGiJBaRaVVOEXkcnpFYLQTRS/LkEXjNs1G/RNKRq1Aj0WJIhhFMPuBRTo/O0U35iBFNCl9RcUzPUlS5sdFeARSRdpKP0i9J19HCKwHR+VmSUUEr3ZFtqSuRU21gUb0RBpFdiAjRSomfkX0UltFHUakRR56K0dEhCRGwzVhRaSihUVtvh5FBz88RX1bjEXcoh5FOjoARmN8uUUGQLNHlj2wRWWVyUZfayVFZwaBRYrpnkUHDQpGn1XaRV1Xd0WIPflEz8MsRXrugEU9gwFGSBF2Re4OI0aYHFVF9QeKRWst1UZafIFGFclgRe/sn0ViuA5FsLx4RjpSJEaGVApG9vVyRah/cEU97atFSJf9RISZsEU8aH5GplEJRu5HJkXof3tFD3cDRePxj0VkgopFbqJFRT6WJUUXkm9FF/rNRb1oZ0aZlwdKpKGxRTdXQEUg3B9FK6q7RwJN7UX4eK1FEvWISfeLEkZCzXlFdY6nSJihjEZe0mNHFfXARf1rckZP9tNFpOB0Rm7UB0VeFTlF8xAHRnnOUUVFnodGb0FgRQC3DkaB4t9FfinFRRcJnkU1AuZFaVysRVdMr0XL8kNGkTt9RQp4MUXpZyVF8lwXRd2AGUXfnodFgdqJRmM4ukUYolhFCLzXRR3lGEVR9CtGEv47Ru80A0Uj/WlFi/yGSHz/BEgcm4ZHjiaaRb8kVUahtRlFpSqhRefCC0UCijRFsxvyRSvGRUVJv0dGwlp8RVcsc0V4RxRGkjadRiHNaEXNHZZFT9gYRYRgb0XkX5BFztKJRQb1C0cvgNtFz/PMRowdPEYnLDFGXMZ+RQmJk0V+mHFF2i8hRfMvDEVbUdxFHPOIRbxCEEWFKD1Grb+7RaEiC0bEftZFXVZfRYF7OkattbBFsZwVRqhhI0VvNkxGYBNvRYHmHkXB1iRFbec6RvKsm0VbuRJI6nqBR33bFUfa9spFpEUtRoaaHkWvLkpF/gZYRS3NB0hMy4NH3cscR0S/U0bUAXlFyH9eRSFXjUVy671FUBsRRfwDV0anJWJGdGmsRWx6HEWmglhFlbJpRRDbBUUiqDhFi3IqR2cdl0bsrkRGusqKRdLbgkXZdgtHU+Z6RnX7KkZJfYpFHeCdRSnbjkU7qipF89RhRVXSJUVLFRhFQekORnCMwEUy0QlFtGceRjtJy0X87mxFn6NYRcnjFUZMSxNGJjqvRWDcKUVqLKJGQlwiRmgxjUX9DAtF + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - VHAA3W7BckC7/QUpp8JyQPaD43I7w3JA4MSfKQHIckCOcI7wXM1yQDLrsFdD0nJAMNm7TM/fckDOE2B7ueByQNC/rE9R4nJAiL/kVZDickCa8RUNy/FyQOZlN/fB/3JAHPlFj9ACc0DmSXyz+gNzQH5iFkS8EnNAyFqEoAUUc0BfIkoNOSFzQBS0rp3PJHNAgv2xpnhBc0DVQVN4ekRzQPRaYiicUXNAmvLTQKJTc0AslDMchVRzQBvf+386Y3NAHwfO9yttc0CmR3YMa3JzQILDB1SFcnNAJmYWVLhyc0D3szXkS3VzQPYQCIPDd3NAqtdLlN53c0CvrqEGKn1zQBS7KIt4gHNAbKLhNwyBc0CQMlybXYJzQOBkKV2GkHNA7HvICU2Sc0B+sVxn95RzQCNWA8W4oHNAIiH3r1mic0BFvQNTBqVzQL5uDtO1s3NAqO0cYg20c0AOn5MH0MJzQIoNmJckw3NA3mM9X9nRc0C9U0jc4tRzQB5qv1844XNA0UCjsDf0c0ChNkPkQP1zQJQe4Lp4AXRA7i3cuZwCdEC05tjZTBN0QDnxSOG2IXRAHRHY0uA3dEBeu9FNOkN0QNk/BNCLVXRA/dqk8ttXdEAKFz8zNV10QEgVPuy4YHRA+MtzswhidEDaVfdpkGJ0QLLsagpOZHRAkgK6GSJwdEDETWk6QXF0QARLBDU6c3RABIN2s/eAdEAeE6m4ToF0QK+SFOMlg3RA9Fx4HxeQdEDo1NGr7590QMrA9HjDsHRAJHNFUG+ydEAK7cbHx7d0QOwy5mPev3RAbe05srbEdEDQkJIGQNJ0QPCz41m34XRA3vC8M43zdEBL2DxeYgF1QNZx5OtcAnVAaGD2QyQUdUCYnFpRnSJ1QHR4JfbMNXVAAXHQVfg3dUAaIGnpAlB1QFb8AF04YXVA5TEGYndydUDsbNOJjXR1QG5pIUF5gXVA9Egx8q2BdUCb2pSvpYN1QKyyLfj3wXVANBQ8FqvjdUAueS4DTO11QCroz4Cn8nVAZHbT8UgCdkCqtIWSiCJ2QD0FJzOQJHZArFJznEsrdkAemAx9HzF2QH4WEZVUM3ZA8Fj/vR1BdkDJ4bbieER2QPAJZGcSUXZAjJ6bbs1UdkB2n6q65GN2QDU/2a7aZHZAe2sE01lodkASdRMEkYN2QPAAkePDsnZAsJArzwy0dkBMm1OJz852QM5f0XDK43ZAXszuZZHzdkBUHqZEARJ3QGGyLeAOIndA9GiUH+knd0Cg5rHaQi13QBYBTpOlM3dANYaIQA01d0Anh64ynUF3QKDjtgWRQ3dA4+sF/xpFd0DBt5N3SlF3QHg0nVeSUXdAkEJP2o5hd0AOA6oBKG93QPLUiwSgcndAs1T2HXG7d0C1HeGZeMN3QIJx215+y3dAlr4jNlLyd0CU4zckR/13QCZ9YLCgAnhAyhIHZH8UeEBg/3KmbSJ4QADRmPeNJHhAaBdyw31DeEDUqeOgEUR4QAJSRQV6RXhAnJvyvclReEBlpSu3lVJ4QIMIAH0eVHhAzt2lEIdVeEBLUGbi+WB4QIoKxhq2YXhAY1+72UV0eEBzb02Yi3R4QD9o1SCwdHhALInoMcR0eED6bw7ipIF4QLxb2u6ZhHhALCcUNk+IeED7XSe2qY14QLq3SueXkXhAa0GrNQSTeEANM1sIp5R4QGYDSnfUs3hAXD3oI7nUeEB2dIADA/R4QKKGuWKM9XhABiYUJJwFeUA1xWnWuyN5QIEzxwSzKHlAyliJ0QwueUBOEsslzDN5QOIMN6LgOHlAvGJQNf1DeUDe//YLzFR5QH+pxsf3a3lAQ4kW5ZWbeUCmK+94v7J5QLpeAo1B1HlAml72ZFLkeUAV0WVCkut5QGpEiWIN9HlA8MOtXGgwekAUgWWYDDV6QIDv24O9QnpAhaA56xpFekBqvO13xUp6QADzQJsnVXpAGIInBSJcekBsHX7fJ2R6QOSBth0NtnpARIFz0VLHekDFm+WYUst6QDgDLqFl4XpAfuvZdhXxekCfk102SvN6QAfjAhJ8BHtAArfpbMQSe0Dl1DwYTBV7QPqvR68dGHtAEqV3PVsle0ATGIiaUXJ7QG4GwUrZe3tA2aHbmCGVe0BU/LcFz517QBPQmaJzontAMGl1MSeje0CUXUBqhKh7QMJJGSzow3tAQG2Tfp7Te0A75pvgp9t7QG6lmOcH6ntApeqh1Jfxe0Ag1HF1jPV7QKaH65jaAXxA8Fz0O2gEfECGYcrpmAV8QJI4KTfSEXxA/Yg7HukbfEAuFX7wzkF8QB5UsA1USHxAnXqNZKtNfEAxIs+qSFN8QNmLTTpQW3xAjIFKX1qZfEAIrxDdTZx8QMO0t1m1nnxAKh6eMG/YfEC5ZpcTntt8QLqamg2423xAwrJ9gPXbfEC+b38oP9x8QI5QE4dd3HxAS1rn7FjifEBu7lgkFuN8QJi2FZ6g43xAZn1JdL7jfECzh9yl+uN8QGK1M3ht6HxAxCDK/v/rfEB4j6I5VPJ8QO0HQAEH9HxAWpygnF37fECRDeBhDPx8QJi4wshJAn1AcmNUi0MSfUCsgrHirRt9QNbW4Cm0I31AorllQV5DfUBK8q4halN9QHv6x59NY31A4cQ9n5aNfUD8aFbj75J9QDgU+h7V4n1AXCiXNO0dfkCaXSe7SyN+QHK++U+3e35ACtbmZb6DfkCFOmFyurB+QFDX6ukfvH5AWLS9ginEfkB4CeCscsh+QG3E3d3NzX5AKqpCwAc8f0AIXciqi1h/QOohjgnnXX9APb/myLZxf0AIkbVwYpF/QNj5LPteoX9ARrtpKEGjf0BMEc5Cn6h/QL+nXnL6NIBA7qPxIxNRgEApj1KvDVmAQI6WQ1LvbYBApo6b8ipvgEBFRI4k9XGAQCxPl5kej4BANjJcqB6XgEBTARULmpqAQMMebVnfpYBAzKQjXBKvgEDmPQ7UBbqAQLvYnYeyvIBA5orA9F+/gEC2PEpRUsGAQPpNhbUhyIBAPnnuP1PJgEAybrApTNGAQCAGcqFh0YBAYjJVJUrZgED6Tjl5wd6AQPJV3FZC4YBAdOzFbm3hgEAehxZbPfOAQD1qCZt79oBAGYB6Xmj6gEBqJsuMbP6AQBNLHLQ//4BAdNGTXm4CgUBy5aBKPweBQMeKBO09D4FA8/6661EegUAylxM/NB+BQIS51epUIoFAmYsuGDYngUD47nQ1KD+BQL06g5lsQoFAMhk9TlpHgUAUMi9LB0qBQMqjINzkWYFAdljLFOpdgUDMYFvoBo2BQLQ/eCpVj4FA+U1jDbOPgUA8n923EJKBQChfGYZhkoFAfPXPcRSWgUAIAHF4VJeBQMxhspxFmoFACrHrn+ahgUDNfkf0bKiBQCqrNt1Jr4FAN3FgHCO2gUDSCj2CSreBQAZuz9YmuoFA2t0C7+TJgUBSuFjO6M2BQH/ccpSH14FAEPZTwTHagUB4RRIT4dyBQHAOcxmn6YFAy6CSkantgUDArqpP7PmBQIFhzHfv/YFAAMASfNgYgkAhB+oX1yCCQPQWUFw0YoJAi2M+gjdmgkAm/knS22qCQFC+2w1DiYJASI3DO0ORgkAaZhNePJmCQJpmx0kPoYJAKIsrVzqhgkCzLAj/DKmCQL5r/w80qYJAHjIG8H7agkD56tlleRGDQPisK515GYNAO04tZnIhg0A+SaFFcSmDQMOXltBqMYNA8FKXIx3Fg0AYOWqBqvWDQBskY66ZOoRAAFhpo/5ohEBoUysi/XCEQPjW3f3Jd4RA+BAW9fZ4hEBxMvn4dXqEQJyZZysjfYRAy1upRnCihEA4RW4oIqWEQAanLOhSsoRAVmoL/mnZhEBkyNSeauGEQEgi625j6YRAklt4ujXxhEDy1dIvYfGEQCZzx4wz+YRAdnQuaqBhhUAzKwxNoGmFQLR9ZW+ZcYVAlEwmuph5hUBJn9BC25mFQDbVrvjcnYVAnMAPcqKmhUBT9LT3D26GQPAOK94VcoZA50eOHEWThkDWTzusJLmGQHCZBAsW1oZABq0qnhjahkBI8xDDkCmHQAiJxCCRMYdAvD/lY+E1h0BCiQtViTmHQEjOtMHjOYdAgkEHjMexh0AmlZ6JY7OHQC5bxyzHuYdAbFjjYWu7h0A0B8CKwcGHQMrLwernHYhAJjJDtukhiEC1LoO56SWIQHq9xd/mKYhA - - - - - - QW+RRc0+BEdMbz5Fd0xtRnRK9UQ5KhFHdwYaRRsfAUUfDI9FY1oPRZ2zPkXdB1JFS4yURUDCJUeIDCtGzrK9RRXwyUZ/5cFF7U2TRRpNK0b4fQpFfxpKRY0w2USbqvNEyb1HR2NRQEZqj8FGcUsGRdz08EQ033lFEvJBRey7EkX2d+lGnTXzROHxmUWgCflEf/5UR6oUUkbA4g5GNFjiRSBHC0UurFNF3Sc5RR0upkVT1g1FumEHRaAImUUljNdFKoDfRGgeJEUUAmxGAujWREkCdUXKEB9FvuvyRNRFNEXGnPNECM2sRniWzkX5NdRFN7MXRkOHaUUuTwxF0n68RVI5S0camTZF8P0VRSM98kX85gNGbfudRculnUbaS/1Esr6WRv6ozkWlDVpFUm8GRQDj3UQuX0pFpH7DRS6H9URTPVlG+Kz1RKD7C0b5piRF/rFSRc4B5UTfARpFulJGRVt4GEZ3zNpEmj3YRb3VokWXqhtFV7CDRaL0SkZy5W1Fc1TlRYGXrkUmkQZGfesERrc9rEbBZf1EbHmSRfXEgEWbED9FrIAxRpesHkXwRdpEM8gQRW5iK0W4ssxErfqnRdFSEUWy2pNFVjo0RSLQmUbR/25FNbAMR6RKjUYgCR5FtCPvR5hQrUZF7BtFZ7LMRsN6qEWRXTFG6QkWRcKURkUmQTFFzlocSDthYUeWcwVGdC7lRMaLl0ZNAQRGxkl/RkD9UkWVOSxF4sqERdzf6UbZillGsVeMRdZR60QHnmhFtXAaRSCm2kSxdi1F/LQlRWKlREnsZIVFGsp7RbJPD0WXxUdIs+pPR2pSu0aPOwZFMJzbRSNQmEZnAF5FsxIERfr2a0Uo0dhFeN/rRBG3V0Z0SwVG18CDRaR+I0Wr8/FEMgN7RaUFlEWdeEpFXDMdRfgCeEXexp1FX9QERViGD0XAAsxEQ3qzRdD8ukdUEKlGyEPTRuhC8UVlMhFF/TrGRQF24ETn0r1FkR4wRcWTHkWQlAJFRvDrRPFth0WqlwhGwFBlRWcLBEYJQ+5ECk0oRc+I00S2AAtFFiLqRLQT1kZcbAlFVncdRgPTFUVlH7ZF1mYbRisNQ0X99S5F7UKDRcHHkEaSxy1GkX7pRV/sakUzlz1FQKWLReskrkWhZodGtlQRRvwlaUbr1ahFeHuGRT9JhkXm8BVF3sQ9RZZ5pUW5txhGNqHTSXUIE0aRfX5FcH3QRySzVkXtXjhF92OrRdv7VkmMQIhF3s98SKt2rkbmHBNH4RlCRf3PnkVqsoZGg44bRdxxlUUL6AtFARypRr1iJUUtksVE1Im7RfXSBUXi8/NE1uzoRVcB/0RxymRGTcDYRb6u7ERo+bxFuG0MRWhsqEWiJY5F9sQ7RWqSi0X9oWtFB3qpRfl4H0ZTph5FyP8ZRW0TCkUTbeZEijZQRvGKfEVCfQVFUBYORZ+k9US5gdZFAlDHRJD93kQ7BCdFPgAIRT6QYkYoACRGYAOIRdJMhUj0yv1EUe/zR3vBhUdEqlpF1f5LRg4zTUW/yDVFIBgrRXpu+ER1+O9E0KDMRXU2PUWfETdGhyviRD+mOEUXhFZFWF3NRcSrhkYFno9FQMhmRUSn+kQGuzFFzKhkRTR3gUU8uLZFPaRXRa96g0ZfXN5FVl6DRsUECEY80WZFBIskRc0uIUW5aANFyFglRWWK3ETwW8RF+oZFRWSm1UTxDQZFG8OXRrGd8EWOOBlFI2HdRN5UDUUiXMJFccU3RUvbskW4hFtF47FJRgkMk0VczAFGrtNqRdhW1USvEd5HJQgzR+ml9EYcLMRFE/zoRTiLJkU+JfhEGkxkReps/0dU9GBHnQT/RsNqB0YSbl1FupEcRZwOXkVw6h5FPGWuRfUlOEVyNkhGct3oRKJFSUZQwAVGxXGvRQdoWkXKWENFeTAQRwd5Zkalgw5Gj9mZRah1fEXQ0gVFy7sGR/6rdEYTIChGI4WHRfqqkEWWyDVFuScQRfVhe0XfZWdFyTXWRFc36UTwY8pFC2dcRSEaK0btA7lFT3bwRPWfh0UTdexEK7gqRoezDUZk4XJFBBQlRWCfWUVEZSBGIEjXRWwhMkUoPQlF - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - dICJVm/BckCOtesqp8JyQBwUWis7w3JABkXSyADIckBAzQpoTM1yQJvdJlpZzXJAKHRQNkPSckCMuz8Zzt9yQM/VDWJQ4nJArqkQnI/ickDY6Ct+yfFyQPYbCw6283JA+3hk1sD/ckBGn3lf+ABzQOZyV4uMAXNAcqf5UdACc0C8meKR+gNzQPWcqGy8EnNAViT6JgYUc0AQB80peB9zQFAlDpGjIHNAzA58Izkhc0CELEncySJzQGCWKWbPJHNALWH3sUcxc0CoBvrDzzJzQPyyB2E2NHNA+nHZx0JAc0CCxaHbeEFzQD0UG6a6QnNAWAc8aHpEc0ChbA1tmlFzQLdVqMWjU3NAJIU0OodUc0CApZp8OmNzQFjPlHErbXNA/p6GhWpyc0C6d7d1hnJzQLnEgcm4dHNARBLD1Ut1c0BBBGdna3ZzQNhglxPCd3NA/Vtlwd53c0AScpITeYBzQIiurCWlgHNAr2P2dg+Bc0DqMCJoXYJzQPSp0BqHkHNAvPu3NE2Sc0AY+Ivm95RzQK7tVjG5oHNAtiPQmVqic0AEu/q6t7NzQAB/BowMtHNAgK9qrdPBc0BYxoPEz8JzQA+AQeUlw3NAZgLVwtfRc0BMv5Q24tRzQKIs4Nc44XNAQn1R3Df0c0Cbi4jyQ/1zQEfjyet4AXRANsdIZZwCdEBdFGnNTRN0QM6Axli4IXRAtM9uNDxDdECCDJD921d0QNkPafo2XXRAxU9qFblgdEATUj5/CGJ0QFxL6nmMYnRAWFM3bU5kdEDeEAlKInB0QNpf0StBcXRAEmMqhjlzdEDwwrQ3N3V0QPJc4iH3gHRAayGh706BdEBYp6JyJoN0QH4SG+MVkHRAmfHuVjOTdEDsw9WyUZN0QBRitpHvn3RApmQ7gRCjdEDia2bJ+q90QGw5gWZvsnRAcuLVLsm3dEBkR45wE710QFelO3MkvXRATMvY992/dEB+GuxBuMR0QBB0ThvN1HRAvbKG3LrhdEDcn9AhjfN0QPbIlVBdAnVAdLWLhmoSdUDmnf3rIxR1QLFb1i+dInVA8u1Pdcs1dUC+lJOe+Td1QGw9IJIQYHVAxmNHgTdhdUCcb4V/ZGN1QF6+oI11cnVAMea3c410dUDSy+RmeYF1QMvU5eqtgXVAlITTe6WDdUBTYxGx98F1QBvaSRkI4nVAeOZZrqrjdUA4uHTZTO11QEUYx2Wm8nVAxWytufD3dUDfm/rFSAJ2QNCyzDjQA3ZAf6J7p0wUdkBCHGQliCJ2QDP/aRPSInZAVF6zxJAkdkBGlt7tSit2QEgc3p8fMXZA8Og4RFEzdkCOgdaPHUF2QDZ4mReZQnZAJKGUL8hCdkCA0SY7eUR2QJQ8Uvb1R3ZA1MeKqxFRdkAGyaAhzVR2QNL7jXRQY3ZA8hFA0eZjdkBkgV6I3WR2QGaccmPRf3ZApBfu8ZCDdkDFroXgwLJ2QA8guAQNtHZA1DeQVc/OdkDpXPFfyeN2QJ5rpIGQ83ZAcsW6zwESd0AI4Mg9DyJ3QF6tbvPoJ3dA7LZ1ukMtd0Aara5kiTJ3QKLTCMGeMndAqWXT56Qzd0B6sfZlDTV3QHRcyQedQXdAdrd1QJJDd0AOCIggG0V3QIaZst5LUXdAmljW+JJRd0AOOpXGKVV3QCQHaSOPYXdANF2bDChvd0BE1vJHn3J3QDkhqp54gndACjrJpnG7d0D2wcYtecN3QHT/vrB/y3dAsODd3lHyd0DJiJpqRv13QFGLZXafAnhAfRQq+/oHeEBnZvwyfxR4QGTWNF1uInhAHgFps4okeEBC7XOMPyh4QJiC8O9nO3hAja8VtH5DeECTu1CBEUR4QOePq6F6RXhA8yKLU8tReEAsbd94k1J4QNZY4sEfVHhACPcoIIhVeEBkx/GA+GB4QO1lbpm3YXhAbOteAml0eEBIm/3Ei3R4QCID0WzDdHhApwN+CqaBeEBssoYKmoR4QAjGvTxPiHhA4hYTdqmNeECBMsIglpF4QHh/WdEDk3hALo0DCKiUeECIzS3q1LN4QLAozmESy3hA9ndLsLbUeEDOBUXxAPR4QO2aVwSM9XhAWIrPt5gFeUASfSxXvCN5QMIxjGyyKHlA8leW+gsueUDEOGVbZzN5QMpexT0tO3lAVgmF9opCeUBWnWxN+UJ5QIqu/+z7Q3lAAKBzD8xUeUBUW7Dl9Gt5QOezV3+Um3lATkmPPsCyeUAsgaapQtR5QI/y6zPN1XlA8hh9m5PreUDq+80GD/R5QITQMKlmA3pAGLisijwkekAuea46aDB6QBRVr68MNXpAwtXu2L1CekAG5VvNGkV6QL5ozA/FSnpA+hNTuMlSekBPY+X5KFV6QJ9Z5SokXHpAYKFINB+jekBuCpwODrZ6QDhzd+lTy3pAjF59CzzkekC2PJO6XPF6QG6/fr9K83pAftpZP6X4ekDA3MOHfAR7QKrRmeYqDntAGmlm38YSe0Amf0lgTBV7QNwmb7AeGHtAjrg4YFsle0D+KU2uUXJ7QPI03kPZe3tAcet5PaGLe0ClxbSqIpV7QO+ZgvHOnXtAOzm9Myeje0AMpCjsgqh7QPPgGq3nw3tAOJOnPp3Te0DcVSY599N7QNR5tySl23tAFdMhigrqe0BDC7IfjfV7QPDhO8TZAXxAnKeOFWgEfECcghbqmQV8QASqAF3TEXxAPK5tlukbfEDmT8k97iN8QGamBUrNQXxAg/BHAFRIfEAi9amgY018QCqTc2qqTXxAiGVIyuRSfED86YmQDFN8QMSVgJxIU3xAVDXKSk9bfEAsbOLWV2N8QEbZ3lZamXxAaZqa1U2cfEABD4G6tZ58QCCu9b28snxAtbud/s/DfEAc0vK/bth8QNDOTzJ/23xAHrE0g53bfEBWq8fwtNt8QKo0ALD123xAyJBXqj7cfEDS40zsXdx8QNF2qxhZ4nxAKCPCShXjfED69SMNoeN8QEbF5bL643xA3FSvgEPkfECMXWalo+R8QJZs+xdq6HxA8hCDLwDsfEBvsCOcwu18QD6tbGwT8nxAYHLkrlTyfEAUI/UaB/R8QC6Ppo1f+3xA3u+76A38fECEOscYSgJ9QOBkz4ZpA31AdsAnsEQSfUBb1dJyrRt9QGxPMLG1I31A4xWjPF5DfUAT9PoDa1N9QM7SicOUjX1A2RlfZKiSfUAqYmwE8pJ9QL+qryG7s31ASx5olSzDfUBCteqz5MR9QE5ewBSS9X1Ajv3TQ+8dfkCgEv9KRyN+QIyI5Oq2e35A6jczr0CDfkCa1ShFv4N+QNHYcpfBi35AvJ9iwSC8fkAL8fcvJ8R+QAkLRzJ0yH5AfKihncvNfkCIQ3FlKtN+QGadMAKUA39AgGvvwgY8f0Bft7gpi1h/QHUuMYDlXX9ACk3fCkNjf0DE8gukt3F/QDT4Y4likX9AwklCIZaTf0CEZabuW6F/QBNr12FCo39ApgxEt5qof0DERt1JVrF/QCjsb0H43H9AQeHPGOZQgEAUQTrPE1GAQC6bAEQOWYBAuDBCzUZagEBQF6hH8W2AQCSumJYqb4BAPhEQIx6PgEAkSJS5IJ6AQFxCt2ESr4BAqFTPph6xgEBQgjJFBrqAQFrxrvxWu4BAGi1eA7O8gEANSmCSX7+AQEpxzk9SwYBA6c1s3h/IgEAivjpKU8mAQGRUdoyQyoBAlNka9izRgECcJEhYTNGAQJe3jF5h0YBAnsodfknZgEARiafuvt6AQBCmxSpE4YBAEqADMWvhgED7w6u5Se+AQE3s+ds984BAMcWrO3v2gEDUGidiafqAQHhgY7xs/oBARJGnbT//gEDyVuF8PweBQOdDtHc9D4FA2k/dkFEegUCgeZYYNB+BQHGUJadUIoFAExuJNTUngUD4R/4wKT+BQDYTbyJsQoFAB9w49FlHgUCUN7BtB0qBQAyiTGi0TIFAqGcouOZZgUATs5266F2BQKp2fHgHjYFAOoF851WPgUDoMdWrs4+BQAEmYcgPkoFA3mWFD2CSgUDcxKczEpaBQLz+jMFWl4FAMHh/juehgUDyyb88Sq+BQDfCtLsitoFA7Ne6TyW6gUA+b0Gz5MmBQDqOkhfozYFAS40B8nvTgUACrKDyp+mBQNhdGV+q7YFAIjildez5gUAPDnN77/2BQGipCBwCCYJAKivJFdgYgkCk1YYJ1iCCQDQGFVrRKIJAtzi9qyNYgkDdBEcZNGKCQOzVrbU2ZoJA/w4ZF3FogkACIUeKOmqCQIhR8jFDiYJA0SY2lUORgkDnfmqcPJmCQKbQNzQPoYJArGqo/DuhgkBuGk5XC6mCQOprvfU1qYJASyOfr33agkCcRecW4QGDQLSrRUl5EYNA8qD5FXoZg0BSCYnwciGDQM10lUyIIYNA6mwVaXIpg0CiII9+ajGDQL2S738gxYNAshIdccrHg0CQUuNYrPWDQJYMH5Cu+YNARXYz2KT9g0CG7aI7/miEQNsYIvr9cIRAmCzhWcp3hEBQ4o0DdnqEQIHtY4AkfYRAbmWsC9F/hEB7TU23caKEQC6N3jQhpYRAuOBcEhjShEBQM/v3admEQE0r+ypq4YRA/aDwwWLphEAVFhgQNfGEQASxrrti8YRAM+ewAzb5hEAUT25moGGFQP5Fg/afaYVAOQSvrphxhUBINCLvmHmFQAwet47amYVAYNVwQdTChUAG7IRcEG6GQAKr+Z0TcoZAUL5sWUSThkAI+cpxJrmGQJroydwT1oZAdLIcZZEph0DZQIC1kTGHQJz6cXqJOYdA/1onb4lBh0DYDbdBx7GHQI7igr1is4dAVbDfZse5h0CC3TmvaruHQCJ1AgPAwYdAx9LLCHQKiED/k3fw5x2IQHHZCPTpIYhAPCAAte0liEB2rkD6CHOIQAjAni8Ld4hA + NrgMGZxjYkDsFOgHcuJjQBu6YmAmQ3BAncs7e+cBckA5Cx9LftNzQLoc+GU/knVAYMxmwizke0C6etS5l6N8QMFqtPlXqoBA - + - lxj4RaYOIUdpDURFwbMnRkKOE0UIXi9FlkoNRz+eMUXDnjtFnqOXRauhhEXGctBEtaTzRNr73ESa3NVEb9HIRYMlGEedv2pGRyx/RdbZGUUTVwhFjmfARoY1yUTn9sZFEjjkRD3xv0SA1M9EXBK9RJq0uEUjVN9E6MQ3RhhhPEVdaoJFMF6+RNHT90RoYndHySJJRkVrjkZaF81E2xQURX6SWkVKYv5E/qyYReII0UbsRupEVCHjRGV/b0VkWDhFMZNVR3wlb0Yy3BZG0+IcRkY0fEVcUTlFTazqRNRe4EWVuRpFeQtERSisu0XVfrFFBupXRQxieUV1TIZGDVf3RAPbRUV3+SxFi8RsReuWokZsMNFFUaiJRbrCBUbyLgtFCxX0RDbxlkXpgkpHLBI8RVN+GEWsMwlFCl0JRieMLEbTlq9F4wfwRITu5URQs81GJBEpRbi7/ETw9KlGIewuRhnnZEUeiv5EiAlsRTmWPkXcfTlFrPsPRUS/6kUmlWBG86v1RLb7OEUCdghG1s4uRUCoO0VIIdREgMUVRZKj/0RVNQBFy+g2RldtFUX7HcxFtircRZER+kRPIyRFqEC/RTbLXkaG7opFJrDzRBEzDUbs0ANFW28jRcTk1EUjMNhEge4kRgxzAkYpwrtGILhYRQRplEWkRFJFM9pFRSGgjUU9ueJEywM3RZEyOUZyI8FEqvwpRfr+7ESItNFE6pMiRV/tFEXnNaBFpIMRRQPXgEWyVBpFfnWPRvaRTUXP8RtHq4qWRm+QSkUaoIhFLy+dRdnA6UderrhGbyYfRYXn3Ua1aJtFOX9uRmj4LEVjDvxEC5J4RV9sU0XcgupEyVwnSA8ta0cu/idG/UzoRE5olka6rgRG5P0PRabqfEaVlERFrBUwReY7CUU+buxEbw4aRaHgzEZX5UZGQ4egRUp9G0V7qztFcVEYRaoPMkXxmxxFEHibRaokS0ksBUtFEJpLRXlmVEgSL2pHu1fkRgUlNkUEdp1Flw+mRhgygUXN3hRFCfx0RQj2n0U3MhtGr0UHRXc5Gka7yblF1j+2RXm3F0WVDOdEYAr3RPOp3ESik1NFT0iFRT34R0VsnkVF7HqKRTZC4UUNlQ1FUAWdRXSPE0XQi0JFvXrTRCVzi0XoNsNHQPIOR8KgxUYZWVBGceQQRS4rIkXfLYlFtL2LRZ94oUUAt+ZEG3neRHiNC0WJ2oNFVhSERQAbJkYtWgBF8X53RQoMH0YCEWlFBUEbRRk84kRHG3xFtIACRTW9a0V7BM1Gh/aKRnQppEWKbulFptFIRq0RKUWs6ENFBXFORYEAZ0btGTVGPfsmRpJWiUUWsJ5Fe5qQRVzE+ERw85xFKpiXRpPD3kRD2QRG/KAPRWCavERGVJVGMJO4RdPH9kQWeBFG7ywURY0PV0U5gslEXZXNRGjpZ0XAXWJFZ5adRVlff0VpSb5JE53ERWz2a0WRnsJH+wPJRQZtHkWkgEVJupIuRWiOEUWIJ1VFojBtSAXEzkRDBBVFXHS/Rq5yLUeIChpFdU1kRWUKd0Zipu5EylNJRV9n1EUFbe1EkjuIRlIEckXAUcRFtxXFRGUst0W4kzBFYgbmRN8DGEUmxBFFchm/RYV4IUVsoIRGqYUkRd1j2kXAM/ZEifeeRXmnBkW/DgpGMthBRX0OD0UHQw9FMSBARRkblEXf0GBFbNwBRa/InkUmvStGNErdRM9jCEWaKvFEQ1cqRfgsK0Xv99hEbDZPRfAFlEaweMdFXMQDRZfOI0XTWwBFz6TsRVpV7ESpqShFwlvhRAzGgUa3E9tEJR8QRswUe0URQZZIUI8PRR3bD0hjVrJEL0wvRQuomEcZZF1FiUNlRvHpjEUhwJ5FbQfKRHrWyUTtMOpEspj2RP8ew0V0l/NE2gRXRkioUEXWbIFFETubRZ7ghUaYboxFykZZReNcL0UgfDdFSOSzRTM+rUVGcF5Fvc66RchjPUUNbRxG4OL4RRFIu0X1a/9FruK7RavYhEUf3w1Fb0xBRSgcxkVmDYxFOcgPResZekaNrblFgN8eRRoquUWWQsFEJEvKRXVjIkUN8tREixkxRhj/j0V8MyJFiRgvRWvrAkbk5H5FhEkARTyNJUUFnhlIXCuER4eXKEfME9JF/ndjRp427ERUIDJFDZVGRTUukEXMoz5ImKe0R8FbQkdjMWhFfQRgRjcJgUXpq+RES2c3RVfezUVKWB1FDvTQRFzA50UYHFJFJ1F8RqstYEYJIQRGWVY0RZeI90U+BnJFdMACRTDPLUfSJ6JGheJURhB3pEXYzXNFq+D4ROUCRUcJOrBGvaNBRuODk0XVTYtFvbDmRF58cEVp8xpFBH0YRW9/6ERdkSxFKThWRm4o4EWYaGxFnAzzRDXMOEZ3piRGZD2yRcMrDkWI3YlFXLfXRNfDvUVunMNFk7NoRYXTEUX4cxZF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 1bIRmm7BckAf/TkSxsFyQIpmlDWnwnJA3nDkHTvDckDqhlQaAMhyQAwFywxazXJA/ubKT0PSckB2EzpqSdNyQNqrx9d103JAVohAHrbgckDIgxWsTuJyQPJN69yP4nJAxKl5RsnxckCI3JAqzwJzQJT5LHH6A3NAaIOAcbwSc0Ceq3T7+hNzQN6goj4FFHNAwivFZ3kfc0DXNpHkOCFzQN7ptWrPJHNA4KN8kEYxc0DBOllEODRzQJQa1yR3QXNA0ZcsLXpEc0CWkIFqmlFzQKI0LNejU3NA51DHXjhjc0C74yy4K21zQF/7d+9qcnNA9e86yoRyc0DHhXrSS3VzQLR8bhXdd3NAt1fzaniAc0AqKZMvDYFzQBrN/uZMknNAkoYDO/eUc0BrJklRt6BzQNVIHqRaonNAAENYpQSlc0BtBnvztrNzQGiUZbUMtHNAGwdjI9DCc0AWTubKJcNzQDixEeHW0XNAeO5Fr+LUc0DY5mrFN+FzQP9+EwgS43NAYuZ4Ijb0c0CO3BlPQv1zQPBKrGzkAHRAKIZ7EHgBdEDo+jvqnQJ0QNvLw167AnRAtK/7ZE4TdEBDr55zjB50QEKUSmC6IXRAgyDOVeI3dEAUvQFGO0N0QFLb5S7bV3RA60D41zZddED31/SQt2B0QJrE0VcIYnRA1WmkzY5idEBUDmn+IXB0QAojiwpBcXRASKjGWDpzdED8XHz+94B0QHCSMt9NgXRA1MDXTUiCdEB+L9S7JYN0QPoRbnsWkHRAmW1HVO+fdEDDVc2/+690QNcJO9NusnRANqbxcMi3dEBU8OZt3b90QOatmX/iwHRATS7VgT7SdECLZvVEtuF0QLb5JF2M83RAEL42hF0CdUCfSyUlaRJ1QLxtflAkFHVAHoAc4pwidUCPBY3+yzV1QALvciz4N3VAOEfXV1I9dUBuAY65+E91QA09r5JFU3VAXuWVJzhhdUDKdPZl82F1QIKSrYNlY3VAsdvS64x0dUCaBsPTd4F1QFDauRetgXVAkjQuhKaDdUDC5F5Gm4R1QCFn3unNjnVA8OCFlluwdUDIWNmI98F1QIDS3lqs43VA/FFXYrPrdUDovJMvTO11QHhgUp2l8nVAIK/DwkgCdkCdCwTYhyJ2QMzvVW6QJHZAcuH3BEordkCI4i1xHzF2QL7arHcdQXZAiHdW+shCdkCOuU6SeUR2QC4A8s3JUHZAA+C1FxJRdkCnQZ5yzVR2QPqDnATmY3ZAekIXF9xkdkC6MhoekYN2QN6hdL3AsnZAhnGFpA20dkAi6CJ6z852QDhThVT43nZAlnrMdMrjdkCE9r9m7P52QFxMsGozAndA3aE2GQISd0CP2N1TDyJ3QG5/OtHoJ3dAFEXeEEItd0AOKqMjjjJ3QBAAO96dMndAzNG+IqQzd0AgAzMFDTV3QHtRUe2cQXdARPQxU5JDd0B/FKHXGkV3QNNT8MVJUXdAN4SRXJJRd0CNr8A7K1V3QGz87aOPYXdAqm6iVihvd0Bkk0HXnnJ3QAClV89xu3dA++dRwnjDd0CzTUD/fct3QN6kTulQ43dAguVyJkb9d0CYVzIhoAJ4QFQO0pPmB3hAnDb1OX8UeEDeMMumbiJ4QDHAXn2KJHhAvH5IkmU7eEBkbCUVfUN4QHzuuLARRHhAAYyC6XlFeECCvralylF4QM2+sFEfVHhAHmsET/lgeEANVtvktmF4QGRrISVvdHhAPGqXjIt0eEAwINuwrHR4QGyIsyKkgXhAtoZgAJqEeEBKnYzMu4R4QOUZdSpPiHhAbMbu2qiNeEAHOBBDl5F4QDLqd9YCk3hAUMhzmqaUeED/ucvt0rN4QDeZBcAQx3hAT/BhzhPLeEAmjtJ7Fs94QBcdlYy31HhAW16+dAL0eEBUwzC5jPV4QI45aoe7I3lARD2dHbIoeUDkAbh5Cy55QEDe38ZiM3lA3S270ftDeUDqlL+vzFR5QMC9TpL2a3lAcNBR45SbeUCUNrlmvrJ5QH5XARtC1HlASiNWdczVeUCELixNlOt5QOrTyoQP9HlA1LgSDGoDekAy/QxCOiR6QOjjF55oMHpAqof5bgw1ekA8gzPRvUJ6QA4Aja0aRXpAfGG/psRKekDYo+/x0Et6QF4V9+PKUnpABVLc8ihVekD6ocPzIVx6QBSmZW8qZHpAeMzzvh2jekCaAxwxJqt6QNIWh6cLtnpAHX9vh2nhekCIfR4Ha+N6QJUNXWY27npApBBflEjzekA04diCpvh6QPIOLFt8BHtAerE1OMMSe0Cu8knJihR7QL1csyZNFXtAxA5uIRwYe0CyhStaWSV7QFIETLtOcntAX7tTQtZ7e0Detn7iIJV7QKreiwfPnXtACvXkuCije0DSWGLkbqh7QI/uqp2IqHtA6VJU5ufDe0DIL/ZpnNN7QMX3AdCl23tAet0Mgwfqe0CwNIrkjPV7QMGMdGe1+3tAN3tYMdkBfEAsUXmbZwR8QDTuNaSYBXxAqkqTvNERfEDKVOsq6ht8QFiAxW/NQXxALDwelVNIfEC6Ug3jq018QEinj5JIU3xAEsYRNVBbfECFX4lzWpl8QGx6XKZOnHxAyvFnTLOefEC85hSjbth8QDRfEcf123xAVGvV0CLcfEByYmesQ9x8QLjv9edY4nxARIRHpBPjfEDE6wb81eN8QEA0c/j643xAarrM2SbkfECisWXia+h8QPTilqYA7HxAOkFtVFLyfECbZuUVcvJ8QKIdiTQG9HxAjLDwyV77fEAwzSAmC/x8QGbUmLgCAn1AWJAnWkoCfUCoQoInQxJ9QDUwfiytG31AeEwgx4wjfUDuyeX/siN9QIr17ZpeQ31A/DHKu5SNfUBGb35P8pJ9QLIxZFc5mH1AmXQ+zbqzfUCsIaDx5MR9QHI5RXuP9X1AMLMceO4dfkA2VutvRiN+QCDDe0PtLX5A2Gprard7fkB+SwMJwIN+QIgWs4fNi35AAkOzaSC8fkDgkpYlc8h+QKBNGhrOzX5Aad94JpADf0C4fjgsilh/QGrPJRjlXX9AlNCM5LZxf0D+beHQsYF/QL4ovk1ikX9AJDhryqeRf0BYtRKEXaF/QMQdREBWsX9AHuj7k8PTf0Boyk5Pytt/QIvgtl8VUYBABvUEIg5ZgECIDUko8W2AQGzOEVsdj4BAmMKE8h2XgEBmN8yp36WAQIeNb9OHqYBAZwg/ORSvgEAajeT/BbqAQO3ZsgEGvIBAYN/IKLO8gECaZGzpX7+AQMEM1jtSwYBAlGRD9WzBgEDbNneBU8mAQKiVZ11uyYBAzETxgyvRgEAc6aKPTdGAQE4h175l0YBA7OACOkvZgEBWxaL8v96AQHwo5JRE4YBAlB3ylGzhgECi2Yq89uiAQIyIkANo+oBAOk51YWv+gEDazJgjP/+AQMS+YMo+B4FAhhEzZDwPgUAFL0GSUR6BQByTqvYzH4FAnzzQb1IhgUAHEaiAVCKBQLB4Y61WJoFAWFA2LDQngUDwRmGsKT+BQNpey6JsQoFALmAI+1lHgUBisSwTCEqBQNgjH36zTIFAlCu+nOVZgUBC3qeu6V2BQOhrqcAHjYFALerxPlaPgUDdyqXxtI+BQIBQRnoQkoFAEHkX82CSgUA4QlPEE5aBQMoItFxGmoFAW7tUQeehgUCC2Hima6iBQK38PCFKr4FABqxk/CK2gUAJxoJ3JbqBQMIrK3DkyYFAEP5/QenNgUB4ZTySp+mBQPR3OCes7YFAwEav5ev5gUBWRHug7/2BQBL8xQ4DCYJAcEwbUtgYgkAaoFJK/BiCQNMdeqHVIIJACnkqttEogkAMOxhKNGKCQGOHjYI2ZoJAajSNP0OJgkB+xm9TY4mCQML3qZJEkYJALpD4BmWRgkAMPD/7PpmCQHvR/noOoYJAaDJ3fD2hgkC+8alEDamCQPNTE6Y0qYJAeBwMXUqpgkCO+EKjBrGCQEqlJEk1sYJABnNZrn7agkDM29P27vmCQNSiqmngAYNAxqiT0eUFg0CJd04ueRGDQO128iyaEYNA6hGoZnoZg0BpkfuLmxmDQIxfqsN1IYNAbiVEbpQhg0DMpu4bdCmDQLNrSBJrMYNAPlZjK4Exg0AYLM4uHTmDQDSNkXltOYNAwmnj48nHg0BkEuiZGM6DQK6hetLq84NAvjIGAaz1g0D6m8azrvmDQNfBhC2k/YNABpsxGStZhECusS0n/miEQOjXA5TJd4RAusEiaHZ6hEBnksU5I32EQLTXLYjRf4RAYd9Gx3CihECUe+XiHqWEQICvfUtUsoRAwjJOzyfOhEAdnnH9admEQI9Ix6dq4YRAMqAVu2LphEBU+iSkNvGEQGFerKJi8YRAlDITAFr5hEBYskxTOTKFQNyNPTCgYYVAvuyAX6FphUD+7MgEmnGFQCw8yWaYeYVAVnddMZGBhUAWdPqE2pmFQBehjUfenYVAIKYkldahhUAmNl02o6aFQD7f3rYQboZA8DtgOBNyhkCuTQ8AkSmHQLB1jZKRMYdA6hwPCYo5h0D6wUgtiUGHQMA5raY8bodAgiFnMcexh0AaKrkPY7OHQOokwyPHuYdAsvO0lr3Bh0BrnyEIwcmHQLVAv5q70YdA/qB8cecdiEBCTiyF6SGIQMlA8eTnJYhAv9WeKglziEBi2TLhDHeIQDbk46INe4hA + KBZXds7jZUA/KJil8iNpQNeRyQ6NInNAW7ZEKKmyc0D5mss/EJN4QOoNkUeBw3lACF9NMtlTfUCH8hdf6KN+QG4jDjJAioFAGJDK1EOygkCbKbPXobKEQEWWb3ql2oVAcMDxfPESiEAuClcT+bqIQL0ytQglg4pAN+yXjF0bi0CEXlsYkYuNQMjwGCWf041A0deLgfSNkEAV+nMH+fWQQFHvgpZKUpJA - + - xsytRT5nFEWk1StHQ/l0RbScbEYHfkdFuQoER4TpA0UViMNEW+bNRI2HaEXl1I9FyHgeRUBXhUXrYfRG+QgRRnYTYEU5s2FFtvz2RDPEokZPZYdFasAJRcf+80Q6golFx/LJRVwU70Q7JX5FZjgSRWKgW0ebvitGj1rbRh9lFUXAQ5dFbDu/Rs5U/0QvuCZHtHNORpMmz0Udy9BFQPjpRIoEF0Uhl/hEI8piRQJWD0VBnUBF7c+2RZ6Q0UWhdPBECCX9RPouKkW89/REWk5HRqrT/ESbKwtFARc1RRHxDEVmcfdE0UPeRED52UWxEDpG9S51RRP1ikW96wRGCrMDRSjzskVFSTlHwbSIRQ/CG0UDZ8xFfzgBRb5h3UUg9aVFVz8mR+maNUWkmdFGq9IERuqVpEUIAe1EftPyRNTGCEVpc4tFFr5ZRvLV90SLPQ5FaGMrRvOaJ0UbaVFFQJ72RCabDUXXEQRF587dRARD0kTEh0lF+YwZRv/dCkVwBr1FwwbMRdfE8kTe6CFFY+sYRaDaH0WPwJpFj3vaRN8Hckax7LZFSQ0uRj8qAkb4D9lFPDnURTe6K0cWqxBGz5/yRLugmEX/JQlFsZOuRS5DUUYofwxFSwkKRQVsPEXR5SpFChyfRahKZ0WEuIFFbvobRYRcHEXd/gZFv0hwRk/mTEWKbixH50HCRkJNFEWKgsZFA/hYRUvH4kenpbpG2Q71ROAst0bhqbhFkq94RiLrF0VvLDZFNxg8RV+SF0VltgtIEbAqRwYeAEZQZPhEKSN0RpYXJEZFTxtFsO4nRnxGQEXxDwBFbh8ZRVqeS0WQL7lG2jYhRjEth0UVCyxFKlAfRVORR0UcshVGArsxScJyAUaLizBFlMI2SLU7DkWsWzVHGHDWRjoUN0XzU8RF3QuKRhUUIUUEdaFFXOaxRXk+7USrZ3tF6rkrRUGY7UU7UARGbziKRgiPukWfdCVFmCxaRR2EPkX13WdFnMCjRVnpcUUfsrFF9q/bRNOiK0VzKglFF2wVRYFM6USl4FZFe4CqR8eV+kZwkctGMPAiRj282kT7vDBFwbA2Rdzi20V6cRhF7vDxRc7D8kQsx6tF9N8wReGIKkXZEPNEra6vRQIBBEUKxAtG/O+qRcWfBEWixhFGUW/rREkfTUUZZ4xFsvchRZYCRUWN59xGSFNzRpLjKUXsPzFFLvnfRUNrbEYvo99FdwGeRY11fEYbGxJFNIYdRvKsAUZUy5lFVK6pRUF0iEVUaYVF/+CBRkkyOkbkhHZGZZPURdWdm0V5EhVFMSkmRV3/DUWWnKFJhzdRRhBUM0XfLLRH4wG4Re8dE0aR6iJJI8PYRQhalEVg8kNIS9+LRgMBNEX/qb9Gh53PRJiGj0WjVR9FBCtSRi+uMUUl5J1FuSHfREWp/0RCjQ5G9mDLRUHOXkUcGQNFUYx4RcSLAUVg8wdFEk32RVELUEUvWgVFZQd0Roj050V8c+tEhj4eReDn+0VTJGRF/IxARYoHi0UMiG1FCgthRuCzI0WGQjFGJdoNRahxKUW2IEZFaFUnRnbYfEW5Yw9HKPAZRlVOL0XBmsRFiTPtRJ1nakU9ANtExNseRYbTSkaNLzBFUA0lRjFvsUXQ/BlJVn6tRcD6o0gS9EhFRqE/RS2GKUhjy0ZFiLQeR2e3M0W7n1NGlB39RBGOTUUYoNRFNEabRVd0RkbgaudEtmt0Rf4d4kU1XIVG+H2mRY7NXUVsYzBFMaZxRTE9YEXb7CFFs6eVRc88cEXFDgpFNxHrRThg+0TzYc5FcP2qRYwGxEU4oeNFtHvfRH67VUVAuxNF8hIQRboI/ER1OdZFIUxJRbG9B0WYUAdGQSWERTH/lEXq7BNFJ5f+RehjgEV0D55FAt9ORuv70ESqgIZFkmAkRfA8EUal+ZtFBev+SAZqr0WokZtIObE5RTbwPkhzW8JFb3xhRyzqF0XpakdGdB5RRe7fGUXm60RFY1B/RcnvbkVTz1hFXJMxRe3ULEmgcMdFjjHGSJIphUW3/ohIHEAnRQ+zrUdm9p1G9e1rRRT2N0WTPZFFw+MbRVOG6kTP4M1Ep/Q9RlNYAUbQHxRFC332RDlO5kUFlqdGnYOERo/K9UUOGyNFaxTMRe8Up0VQmRtFs3zkRE0X+kfEDn9HBpIKR0MboUWSj1JGdTZ3RTYG80TSPQ9Izz6sR8XNJkcnf2BGoeaCRY7iM0XcVVNFCDXZRHA2TUU2KQ1F2uLzRIAWykbQ/lpGHQ8LRqKjKUV6ntxEopqrRsmy50X3NnRGB5CxRbCFkkVwTuREr04BRvMQb0VKB+xE4UucRdJIrkUXfSlF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - LfPCKG7BckCJpvbNx8FyQGfYrzBRwnJApuD4S6fCckAlHWaiOsNyQMa6jM3FxHJAoBa+UwHIckDBWHlWS81yQMZVE8lZzXJARr0tL0PSckBFgqXiR9NyQFcXvgF303JAg2k6pbjgckCyDh8mUeJyQM/RiDiP4nJAaHWKecvxckAMd4aKZABzQHD0mIX4AHNAMtQ4lTsCc0D0gqfb0AJzQCiujX36A3NAGGCT/bsSc0C+T7me9xNzQGIlNqz2F3NA95u4WHgfc0BiXRbUOCFzQB1U9YXmIXNArX6s9A8jc0COQcVvziRzQDRISElHMXNAwH4n6Vsxc0BTyHsteEFzQGxFqQG7QnNARDiJmnlEc0BKmhl4m1FzQHnLsOJBU3NALAHfOaNTc0Du9cjkelRzQAR0fSYeYnNATNtmmjhjc0DgnHiGK21zQARykb5qcnNA6Gos/oRyc0BXTK3fuXJzQBhAnhtMdXNAJCfuItJ3c0CoEoKI33dzQHCXCRQtfXNABJzgwniAc0AWuxKepIBzQNZhfgsQgXNAtZJ60FuCc0BkqzebhpBzQG8jXwRNknNAMq5unPeUc0AMGDx5uKBzQOxyPAJbonNAZ+Z8f7azc0CM2jzWDLRzQOwTgMb2wHNA5GmubzvCc0DHbzn4zsJzQLwnKtYlw3NAlEmq0dbRc0CVlLi84tRzQBVTIdSj4HNAalUq2Djhc0CQ1MORZOFzQOB3D08O43NAxJKVADDzc0C0Tqc7NvRzQKvKUthC/XNAHqLii3gBdED8R1EnuQJ0QLLEPQNME3RA67W6eVQwdEAGXcXD3zd0QHK+0xA7Q3RAr0hlbEZTdED1oAvEilV0QOpoRrLaV3RA2tYRUzVddED6S1MXuGB0QDpx440IYnRA2sFhho5idEAaaVIFInB0QBJqYe1AcXRAN1+auTlzdED9wmJFN3V0QCtLi4H4gHRAjpLTFU6BdEAtZh5MJoN0QJivu5gVkHRAzjOw7FGTdEBbsAp27590QK8/zJz6r3RACOPWaW6ydEDiIxBqybd0QEEvhO4SvXRAc9qwxN2/dECQ56jneMF0QGrVWx/8znRAPh4Okz7SdEA2cyGK39N0QGD0qwfP1HRAVEVNNbrhdEBQX7q7jPN0QOrhBi1jAXVAX+0PTK0BdUAkEbXwXAJ1QPG7A80jFHVAqowKHp0idUAQFUwIzTV1QNYw4pj5N3VA1txO9lM9dUCmOeyZ4k91QBwrmetGU3VAuP/8vHlTdUC+xXUqd1V1QOBhYy44YXVAau4bQvJhdUCyZAk00GJ1QFYbbdZkY3VACj6Kf3VydUBovTvrjHR1QLIb51l4gXVA4KDXx62BdUBNguU9poN1QDgb7Se4oXVA/cJmT1ywdUD+J3RvCOJ1QN0DtWOs43VA0vE/E0ztdUD4LGl2pvJ1QEaVzRxIAnZAvmEMpVcSdkCkVsfhShR2QDwuUGKIInZAmDwjOdIidkCyBUcqkCR2QN04FaBKK3ZAxEnQYh8xdkDQc4CBUTN2QGy4CA8dQXZAMKTzM5hCdkBfqr1+yEJ2QNh3xNp4RHZAWd14k8tQdkA27kPEEVF2QBTg8S/NVHZAitCKHb5jdkCQI1Pi5mN2QHHKiUjbZHZAJ5AiJGOBdkCa8Bu/ZYJ2QEzfWWaSg3ZA3hnNYsGydkAiEtK0DLR2QKxZkCLNznZAJI1qZ8njdkAeInCPMgJ3QOiRKAsBEndABZS2Jg8id0AA0muXcyJ3QPCYW7ToJ3dAppUboUItd0AKa7OnXTB3QPbtMR2JMndA3B+P8p4yd0BUT0LopDN3QKul7fQMNXdA1yd4uJxBd0Dlov1FsUF3QA7ksJeXQ3dAOviX9BpFd0A5gi3ASlF3QHOtWISSUXdABr+sonxfd0DIu9lkJ293QAzpOpqfcndA2rgmGfd3d0AsJgc0cbt3QLsh6M54w3dACmGUgn/Ld0D61/IhRv13QLCWEv+eAnhADE+u4fsHeEAmi5lLxwh4QPRddEV/FHhApMr0gWwieEDdh+CrPih4QLysGUd9Q3hAVP19JxFEeEA8+0ECekV4QPDoTnvKUXhAaZxdxJNSeEDTdnmmHVR4QHCZZemGVXhARNWs1/dgeEBq7P5stmF4QECAcUOLdHhA6+gbmnN7eECwGlBipYF4QPLuiQSahHhAFhIDkU+IeEDvoYATqY14QC7NlRyXkXhAub1gNQOTeECU8fvvp5R4QOA6FSHUs3hA2qssIQ/HeEDMmuwBEst4QGYeO9UVz3hASuLt3LfUeEDk/6sZb/N4QNT0+toC9HhAjJb0II31eEAly+aQfAN5QM+RWU26I3lA+mRLnLIoeUBWuKGjDC55QE60ZOhkM3lAFwfm8OI4eUDXJQRLLjt5QPBcd9+LQ3lAovCivvpDeUCNBvk7zFR5QAzASSD2a3lAVsURd5WbeUB2dKpgnKN5QH1ilL2/snlA12NtvUHUeUBPIU/iUOR5QIeWsQ2T63lAvIDhZJzzeUBe9kaJD/R5QFbsMxVnA3pAmUAATgEEekC+ecOBCAx6QIHsp/c8JHpA0fCErWcwekCG9EWiDDV6QNWa28a8QnpAsGumNRpFekBTBWfpxEp6QIjIFtLQS3pAIMLqwiZVekBu+/NCI1x6QNJ1u8ApZHpAypMgPR6jekCKvvkUI6t6QNIqd8gSs3pATnyScCizekBdPCiIDbZ6QCRYrEkaxnpAH/hpbGfjekB0uK8Dc+t6QGOan6Y27npAmOIKQhjxekCo6A+nXvF6QFiQ2N9L83pA5N2eKaL4ekB6dhIwfAR7QMHNKSEsDntA+sqSpsUSe0COtB7CihR7QE61K8xLFXtA+NhUkh0Ye0CqrR9RWiV7QFM/Dc7Xe3tAODXd5gGNe0BLQ5emI5V7QKBVPXjPnXtAJpf77yije0AcSQO/WaN7QEZqeeBnqHtAMJO9U4Ooe0A6QI6a3q17QIibnGTmw3tAGb6BEZ3Te0CW0MZ0o9t7QKr7pl8p5HtAWMFkigbqe0A4MdPtjPV7QHcUZt+1+3tAbkksy9kBfEBUSH4FZwR8QJy+fgKaBXxAmqsU3NARfEAnVcoj6Rt8QF1KIRHvI3xAwNGsis5BfECe7RkdU0h8QJZMz6mqTXxAZrxjQ+hSfED4/MwxSVN8QOYEEFkDWHxAZon7fExYfEBgwzg3T1t8QPpKrGJYaXxAhGgLkFqZfEASjlQTtJ58QLSPMwEPpHxA3Nq+ZsCyfECFwd9Artt8QDjktoH123xAqLgJ0SncfECUqcBNWOJ8QFDr49ET43xAIgoQ9PrjfEA4NdZJauh8QBBvQZkA7HxARRbTkxPyfECpNwUYU/J8QCQEu78H9HxA2/CxyF37fECApPndDvx8QGi0aEUAAn1AYHLm9kkCfUBgHLecrRt9QLozuUmMI31A8Ez947YjfUBWLK+bX0N9QGrnAUqWjX1AxyYeSNGSfUAJJozW8JJ9QLjaA29MmH1AHvYB7bmzfUBXTlNG5MR9QMbzx154BH5AWXUka+8dfkD0XZd7SCN+QMBctaulKH5AjjJGLUEvfkCEGVRkjFV+QE3334i2e35AGpq9bL+DfkC6ODM1wot+QKO5KK8gvH5AEIkbytLEfkDE3jdgc8h+QJ6XNDTMzX5Abyh72BnTfkDWEEZ+lQN/QFLWd2iXNH9A4GrEpgg8f0DEMGzji1h/QJ5UXRfnXX9ArIkyQj1jf0Cqi79Lt3F/QCZp3smjg39AsgVVbGORf0BWRFSfmpN/QA8+3+1coX9AtmP320Ojf0DpExe2nKh/QEKaowxXsX9AsNBUg8PTf0DBl6GeHdV/QN6vIPfJ239AOkpGT9Hjf0ColkLB3gaAQMMOczuJCYBApGhPtPZIgEDmFjBt5VCAQPwdoxkUUYBA9J/fKg9ZgEB3W8Zj8W2AQBx2Usgnb4BAJiBBxvVxgEDDzzkwKH+AQHCqykH9ioBArrK5Th6PgECTT0O4H5eAQMpweZQfnoBAtEeMUIalgECsgJ0C36WAQACiRszzpoBAWg32c4apgEDowM8x4qmAQHYBOhcTr4BAhnXrYwe0gEA6f8UEBrqAQLvKibdNu4BAHI3icrK8gEAz+A85776AQMRSF5xev4BAKCBI5SXBgEB6U+NUUsGAQDgOgNRvyIBAZoBEMVPJgEAmyqlbTNGAQMqlplRh0YBAJD3Tx0rZgECdK1VHv96AQBlbgsJD4YBA6CWyYFXhgECvHXaDbeGAQCdhDdP26IBAEtaOHUHpgEAyoI/RSu+AQOIQRgZp+oBAST6y+Wv+gEA2yfSbP/+AQHsaylxAB4FAYFzTRT0PgUAwGt7vUR6BQHIsga40H4FApsW3G1UigUAKtNxBNSeBQP1VsYe7MYFA6OU3gCg/gUAwtKa4akKBQAb9CYJaR4FAk0BddAdKgUAC2aw2Xk+BQJ44AmHmWYFACMUdvupdgUCmZrK3BY2BQPCV1VtVj4FACOp5ULOPgUDEqkm7D5KBQNaqcEUUloFAD5/L1liXgUDotuG7Vp+BQPBsUfrloYFAHNMMX26ogUCioDB7Sq+BQMZKmjj3sYFAoGykcSK2gUCumaNjTbeBQAqQJrYnuoFABBW1duXJgUCappsl6c2BQGj7qNqn6YFAQEAMz6jtgUCxta+t7PmBQE6s1jTw/YFApGkeDoP/gUC2ptbx9AGCQC7H5uwwAoJAtdDuggEJgkByAQOZ2BiCQOjMgvXWIIJAfqT6xNAogkAo4GmH1kaCQMhd0kEiWIJAS/FsEBBagkCyy+wINGKCQADdluk4ZoJAU+DBh6BngkBglmCsbXSCQDs4kvxCiYJAuugf48GNgkDaVUH8Q5GCQMIzvfw8mYJAnHnu5Q6hgkB9jgIAPKGCQA4TmRoPqYJAGGwggjSpgkBGeSHipqmCQIaBI7p92oJA+v9N9IDegkCWdBU+sPmCQIi+3Kfv+YJA4s9Up+79gkAYT/VIeRGDQKGpwSF6GYNAKpoBB3Mhg0BEpupEcimDQCxy0iBpMYNAuUBuMoExg0CeGhEtIDmDQN6wVhRdkINAZmPN18vHg0ApV3lFrPWDQC4i6N2v+YNAaNQXRrH9g0Dpyw4X/2iEQMAY83/+cIRAlNeX+Ml3hECUl7Yj93iEQM7v4PZ2eoRAgv6K0CJ9hEDlxKhE0H+EQAbFpNl3gIRAegF+k2+ShEBOpKQUcaKEQOlZ6VsgpYRAYPHN5cqnhEBESvQdQ6qEQA5lMflTsoRAao+nO2fYhECj1rb0admEQGDHtO1p4YRAUrYOQGPphEAMJKduNfGEQDMfg9lj8YRAOm1P2jP5hEBu5jzrWfmEQKWGXiygYYVA0Cx9rp9phUAKk46lmHGFQKByffaXeYVAfu/589qZhUCdFdXG3J2FQELuKuiipoVApLv07aKqhUC1y0KU5dGFQHrm2aYQboZAShnTJEWThkDpl2qTkSmHQFReRvqQMYdAiuX3pIs5h0D84arvjUGHQIg0XBw/codA+I2O6saxh0BdOnunY7OHQJhcqWbGuYdAVVoL5Gm7h0BRqJSxwMGHQPqWHsvByYdA6hCGSXMKiEAqWLSC5R2IQHoRH3bnIYhA3Ig4qOsliECEkDo3CXOIQEC1geILd4hA0M01wA17iEA= + NrgMGZxjYkD60UzrnGVsQEMdzoN8QnFAU72qemajckCUHdwiorJ3QLFumA36QntA58w84GnUfEBPFkw1tDmBQNeT6AzBgoFAaJhppQI7hECyQxZSQNKFQPfAx5ouA4ZA9++1xNqLiUAWceBuzGqKQIYYFLoGVItAep6qi1iDjUDqRd7WkuyPQL1mzFoChpBAPDceZl/akEAEe3tVGGqRQLxOFXu1npJA/Df+jGlSlEBt0Pzv3qqUQLZSPbz/BpZArk5jm6+elkD9Zuy2FeuWQGBlyKn1KphAr31RxVt3mEACx0T9MU+aQGGUttOhw5pAgt47EogTnECqFvefwh+cQAL2Mife151AXC1crghsnkCCDSo8NJyfQA5EwbxO+J9AgZKQKEWwoEBOtg9ZPeCgQNodwy9odqFA2fd4wlWqoUCaqT46k1iiQJmD9MyAjKJAJeuno6sio0C9xBQzkTqjQHu8tP6eIKRA/asbXsAopECf/dRkr86kQFY3TmXjTqVAX4lQb9qwpUDhwe5l9tylQIMTqGzlIqZABQMPzAaLpkB1npFwAOWmQJko6W0LV6dA90TBOCfRp0AkalLXIyGoQLfQPENSs6hAffWE3kbnqEChf9zbUVmpQBBcb0p12alAYQtY5nw7qkBp56FRmP+qQDI8FhCbTatAVsZtDaa/q0AX/JlPtv+rQBS+DdmzpaxACYeDU9HBrEA4/y0/xFOtQC3Io7nhb61AKooXQ98VrkDrv0OF71WuQA9Km4L6x65A2J4PQf0Vr0DgelmsGNqvQBgVISQQHrBAT4Nq2yFesEBhSBZaJ5ewQMRauqchsbBADY6v3Tj6sECkIPgsNyKxQNMuZBJFX7FA5fMPkUqYsUCdQVFjR8WxQF65BBNY+bFAL2Jhlk8cskBwfrCRXTKyQHSnsRZZY7JAUETuFnOjskAg7UqaavayQOJk/kl7+rJAwWDOL4Jts0CMzYT3dHmzQFOB3mKKxLNAUm45LIHes0AzRxzonzW0QDI0d7GWT7RA+efQHKyatEDeeRA1qLK0QB1yKBq3DLVAvj9Our0jtUDJt8GdyG+1QJ4FjD/TlLVAdf1aIdoCtkB+y8nE6AW2QAcea1TiWbZAXpEHSv52tkCzYwTY8+y2QMap5l4NALdAX6mdWwVQt0By73/iHmO3QHFuSdoKibdAA49ZDRPgt0AeNRlmMPa3QG9vk2odY7hAXOT5s0SwuEBPNdHvMtS4QG6ppTJK6bhAYfp8bjgNuUBOb+O3X1q5QA1AFvJJoLlA+rR8O3G9uUAfBcJwT9m5QP/K//VkSrpApvoVv4JQukARkKt0aoO6QKOwu6dy2rpAUkCvQpTjukBP9lQrhD27QDE8fyibVrtAQwErp6CPu0BIF65hlOC7QEjhGwGj9rtAjVz+4Z0nvEBaXZDorXe8QG0iPGezmLxA - + - nCSwRXK/B0Ua/ONE9RceR+MZc0UrQ7xEagNsRoYZ7UQPLixFpzUbRyrJt0RmL9BE58lERf+Bi0Wji0RF3TRTRR/z1kQq0MNERbPTRATSuUVllflGWcGNRW3ynkX8QTVFmYYMRWwx1kZAfJ9EiM23REuGaEUmjxNFhsnJROYxOUUSBbRE7KHHRd7oR0UFfhZFcrhYRZYoDUVi0S5Fo1wFRZhEdkdcwV9GRaSeRifvJkVpXgBF3rxIRXgbMUVw7MdESxrRRne8zkSg1EpFj33uRPqPQEXrlxxHIqBcRrfhnUUlRN9Fg4oaRS9QKUVTb+lEmdKhRC8kYEWxD9FE165PRfk7kEWZr7tEb6f7RVLp2kTjmt1EuzOjReET6kTRDJBFOAk5Rgsc4UQsphJFyTfnRNk+wkQdIB9G0k23RJtAAUVzfC1Ge26JRdBLv0VDZQ9Go/sMRSsLikW37iFHynbGRd0TxET7XShFAAWcRQHx90UQD79Fmsq0RKdBoUe0vqxFn/qcRmkxq0UZdNtEuiVTRuGU4ESWoxlFoTbbRJAPx0QOcf1EuInNRIBcukUYjc1E73ijRKgRd0bcSg9FE+sURmOj8UQtOj5FEvIBRWeEmkQ96AZFqMHyRDiW/0SJ+jhF8VbZRPyNOkUWqoxFUSQERZHY6kVZZyFFKueHRdbAAkZWFtREnrJfRbi3+UQazqtFCVFcRpkBmkXdcx9GsFjSRDT2C0VdnwVGaQ0FRbppnEUmnQBGTXHRRkJu+0SuAqJFb+fvRPfGUUUHwRlFzS/ZRFLXNEXnhS5GMjqoRFr+kEX0agBFCwjLRLZ2wERsXslEF131REqgg0V65V1FacgdRQgHJ0WiiYRGmCZARUUL50SuwT1H1mqgRmqrx0Qq80xFLCGKRb0UnUV4DthHoKetRtDmuEVmD89ECNCoRisZhEUTdXxGUTnpRNnOVUUGBrlFl86+RPo/EkiOek5HV7XzRb2xk0aDYPRFtWQlRSMt90TlfwVGqYeARW6QXEXkAD9Fy5B5RslPBEb9P4NFpImfRUyeQ0XdSx1FdlgPRc9H1kRE+yhJr2u/RLmgfUVS9ClITi9WR++8AEdXFThF2sMGRgeqW0Yc8ZNFBsgjRhwl0kVLPlRF1GHmRZox6UQKAVNF+9mkRXeaCUXC/cFFOnUARhZkk0VH6sVEQsFCRWVftkQ431hFnJwURWM/XUVC+A9FlKwHRgorbUUiL1BFND65Rdnt60RjsLBFSQC9RKeRXkXgR2BFHz3hRZc6VEXz0MNEsEm9RFmNoUd7D/tFsPajRt1LKkUL2gRF/GzoRPah5UVnxxxFDgV5RsGWhEVvOAdFugbjRPJxtkUv7gNF/+kcRaleIkWZdO5EdSMFRXAE9URF8YBFDsFARey2T0aMUetEUyFSRTpsB0WVmCRGSBiORRBIGEVBIf1EWhEhRSTUokXcUrlGJgFcRjNomUR7OQxFhfvVRd5I6URHD/pFiauoRhsdAkb8MctEfZUCRYvxekaQulBF7xMlRnSpHEZk95VFiuSyRQkKo0WlieBEs1vlRUSZnUb3KS5GazxMRb80skUeysdEKVq8REdIAUVsJLlEB83URTEXjUU0nLlEZMLVRAJYQ0VS255Je0mCRTI+r0fbcqZFIzYfSfnMiUV8V0NIy+4ARbRMeEbeCddGjzMtRWwFlkUP8gNFtc09RmyjuEUiz/lEPp9WRSorkkU8AcxFo1iyRN/UJEV2J9dEvffnRWT8GkXuufNEh90xRuE4nkUrTihFhaDmRMPJMkU9QXBGbEaWRf/FSEWbyTVFapD7RHWPrUUiEJRFOigPRR+HQEVLJdtEWEIBRe432kU+L5tF9RWSRDapsEXhpthEmD4MRkyLxUTeGzpFPLBGRZn1WUUNIA5F0Lk5Rydz1URVboJGTZqBRXJI8EQUg7xE4qsCRXAlJUUtyapGHlLwRVzzLkVv3BNFVr27RG2G2kTfpcFEO7jYRXdKGkWKtg1FVjTJRDscy0UQB9REAv3YRB05QUVcIl1FoIH2RMPsnkZeFdZEbQxDRgkr+0TZcy1FUWGNRK1udkhJ4Z5E5v3nR6sUg0dPFnpF/zJ1RjSeEkVnenRFugfVRDXt/kSkNDVF2ga8RAGACUUq/ohFRsslRQltREbaTo1Fw7BURf3J00Uc8JBG1TLXRSwDmUXgHsRE4mE9RZbSIkX0Ps1FnnaKRSgst0SBrrpFzOc5RcPWikV/bcNFiOVHRRxVyEWDd29FFPUPRWf51USChbxE49cRRc757EUEPblEo2hxRfad4ETx3RxFtI6IRbxhaEUFPmZFqEwmRaLRFUa/paJFwBYWRb0utUTjA/5EmW4URUNqMkY3cl9FnLg0RQaCrES3B+hE5kgTRXuAA0ZmR2ZF0QWsRDZwtEQTynBIeMEORUgaBEjasYxHxYF+Rfgvj0akYTxFFqujRQc9CUUMQ5ZF6YQHRYPG2kQ0w2JFIe7JRDsEOUiclKhH22lWR5hZbkb/OIZFh9YARVAo8kR81CBFxtbAREJVqUaUIxxGN4ADRfPEwEXsViZFkYEIR8CGvEQdTfxGdiZ1Rk0s00Wfy7hECtHJRG6crkVwb7tFay5tRUA+qkQ6Jh1FxTawREdDcEc82+tGZomMRlccdUVDzKVFJaL5RI+lHUXhdSJH3PiLRtB8OUY7gIVFO8+ERUN2B0UYBBZFr+awRJkLz0RRDIxFNZn7RHcRe0YiL+pFRBmXRfXJI0WzbLBE92wXRmzW2UUCy4JFYYFWRURqOEVBLMVEaJ61RBikYEVI9wpFBP4DRQXSG0bGBohFgbL0RA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - Ykj0S3fAckAadZ4scMFyQGDw42jIwXJAqkyys03CckDUWfg9p8JyQEgFZ/XjwnJADh2FUDvDckCoFOtcxcRyQIZz3lBaxXJA5k5fEgHIckCSAkXzW81yQOreOYBD0nJAMqVM1knTckDzDOA+z99yQIEHgPC54HJAEmuBalDickAz5wcFj+JyQBBIcHLJ8XJAhIM/FAz0ckDuZARao/RyQPiM+2vC/3JA2KuVivkAc0AO/HUUjQFzQAWpcEjQAnNAkMWmk/oDc0DG7F4DCBJzQGI0eqy8EnNAfloZigUUc0BIG/CTTBRzQC5YVqN6H3NAZKAp3jghc0DTm272ECNzQDQT9lc7JHNAh6UuD88kc0AUAj47XTFzQDEdc07OMnNAxhx6Bzk0c0BgEdoSuT9zQGH46XDiQHNAUUXpCnhBc0BOZ9/hvEJzQBTfC0N6RHNAUJytEZtRc0Csfz9xQlNzQM4x7IqjU3NADiecEoVUc0BvkkzFPGNzQMvXf5QrbXNAcuLvm1Ryc0BTTsu9anJzQBSsh9SEcnNAvjKTKrhyc0AbBVNotXRzQMJ2Bp5LdXNAyjSddm12c0De5KZ8zndzQGqZOR7gd3NAdMR3vniAc0B8hn4/DIFzQOTcVNhdgnNAkpZjWoeQc0C+Hw/xTJJzQCtvj+7Nk3NAXqt/iGGUc0BG5Tzy95RzQItq98i4oHNAekJ8R1qic0AKxK9XA6VzQJBu+1lasnNAjJKnHLazc0AfB296DLRzQBxfLaH4wHNAkusjls7Cc0AS6dUtJMNzQAKG2MvU0XNA2HQ0x+HUc0DwOESdo+BzQNb7a5c44XNA24GoQWThc0AkT0jHeeJzQAjHO5wP43NAt98aFTDzc0AClh8qNvRzQGrCzTWM9HNAWJy6pkL9c0Ax7mO9eAF0QF8MWICiAXRAPj2bXp8CdEC8gghWugJ0QCU6qGpNE3RARljSyrkhdEDQgaqUVDB0QIKRMCNUQHRAOOJIxztDdEDgl4mISFN0QMSp5Db1VHRAdih5JotVdEDw27R821d0QD0oMNY1XXRA//tHVrhgdEBorlEcCGJ0QBhHUYpSY3RAGpHr805kdEDxqmdmInB0QCy6/JnIcHRAyBFgXUFxdEDmCEjnOXN0QFCh2tykdHRAfje/kzd1dECalK+d+IB0QIj+RoFOgXRAVp+Rj0eCdEDiGvemJoN0QNqCXIwWkHRAJY0YOlOTdEARRR3b7590QHdk2UrSoHRArgygqA+jdEBkhlkA/K90QCJMvChvsnRATkSw0si3dEBiWxIWEr10QJR5sfzdv3RA4D/cnnbBdEDQY+tvJMR0QK1DLlq3xHRADrm9l/zOdECoPeyqP9J0QDjeZJDh03RAHcGWOHjUdECSyK6WztR0QNxlWOW44XRAsDgB/4zzdEAaNieAYwF1QPhzeGBdAnVAzqg6AmoSdUDuWJ0aIhR1QN12NdqdInVAVs52LKkydUAbRGM/zTV1QGhUhKr5N3VA0CPIo1I9dUB2iKQqrkJ1QKzDdlndQnVANM8KuPhPdUCJNvR8RlN1QMkNlsR4U3VA1vtIYHZVdUBLCOVoOGF1QBDUR7LwYXVAxHbuA9FidUCSNGGOZmN1QKwR5VJ2cnVAEqk+03RzdUDGkHhSjXR1QPxd65N4gXVANX6B2K2BdUAWucYup4N1QEbL2JGbhHVAsQtWZoyQdUACuwxrzpd1QGppVSS5oXVACl+7Y1ywdUDu0l0jlbB1QKscKxBkwXVALw8JTvnBdUDY9eqNpcJ1QBkvdkTk33VAaCpKJxDhdUC4h5lOB+J1QG7MIWOs43VA6BAcUU3tdUAj1AhGp/J1QHjsVewB+HVAH+3YaqT/dUDnPZdWSAJ2QNrtIffQA3ZArX+dm1QSdkDi+MkiTRR2QMvFhY8LFnZA4kVcBYgidkAfEXU40SJ2QLjoB1+QJHZADGzBp0ordkAjkh+vHzF2QGOuzjRSM3ZAnwrMyJ40dkAgkoEZHkF2QIqAJHmaQnZA/pvfVchCdkCW+ZEfeER2QIxZWELKUHZAwM3TWxJRdkAkGbx0zVR2QLxTR7ocYXZAhHVVueZjdkASaCqA2mR2QEYeYmSRg3ZAXetO2LqRdkAZcDqawLJ2QJHPJ88MtHZA3haZ3RzEdkBbAK3ozs52QBvad4Lm0nZA787plMrjdkAlZji0j/N2QL6OyTgyAndA9rIjzgESd0CAhvuCDSJ3QMipjEu5JHdAgAa5tOgnd0D/iBpDQy13QF8cZB1aMHdAjuOy74oyd0CM2dwmnzJ3QB76fyOlM3dATvVMBQ01d0BVN6/L5Dd3QLbFTOqcQXdAFKlrKK9Bd0CmBR0+G0V3QLYFfkVKUXdAFFsop5JRd0AGzpaMLFV3QHLbAlN8X3dAS9XK3I5hd0CqqGYEKG93QGS1e8SEcXdA+f6PiZ9yd0AwgsORcbt3QGA5nwx5w3dAehsmI3/Ld0BU9HiOctN3QAlqgEdG/XdA4dUqGaX+d0Ch2umtoAJ4QLSpZUboB3hARjuMP/wHeEAQly3DfhR4QEqgnXpsInhAejK5+tIjeEC/qBytPyh4QHlYc6lmO3hARDqajX1DeEAWPNUNEUR4QGh3XPp5RXhAdLvFXstReECGePChlFJ4QITc7rQdVHhAbEXYFIdVeEBJ3P7L+WB4QILUhIe2YXhA9MCYTrtieEBOlhedi3R4QHZDkRJwe3hAeCu3MjiBeEAaWTZupIF4QMWwOP+ZhHhAoCbpGk+IeEAWISm8qI14QC0N6liXkXhA9NVYFQSTeEAmHV2CqJR4QOzOo19amHhAN2zI/rSkeED4wZ9rpbN4QCZz+JfVs3hAbLyvYs3AeEAIoj85D8d4QJI4CZ8Ry3hA4Hto+hXPeEA4uEPyGNN4QO4qtwS31HhA3rOrqAH0eEDVACJcjPV4QMyuX4R+A3lAoJRJHBAEeUBs/EgYmgV5QCZbhr68I3lAvzVXPbIoeUA0uP/+Cy55QJ8W+zpkM3lAIgpRM7QzeUA0ehYG5Dh5QFwi+Zc+PnlACvfQvvZCeUDED89hQkN5QPxJwlmIQ3lAd7rgw/pDeUC2Ea7zzFR5QBT6A+T1a3lAp9iWwkFyeUAJS+NqQXN5QFfMjGuUm3lAIqHno5+jeUDu+MT7wLJ5QDzP23lC1HlAaH/jGs3VeUDQCv2RI+V5QOp/6NCR63lAbiZcqQ/0eUAqewhKZwN6QD6bwcwBBHpA1fdtnAgMekDmP8mbEBR6QP6WC8nzIHpA0F2QHDkjekBIgRA0OiR6QJqvh1EMNXpASr4yLb1CekClm7ovGkV6QKTeMK/NS3pAZ5GJVypVekCoyB4UI1x6QDrwetwqZHpAGwPNCR6jekCaO5/dJKt6QNTL/K0Ts3pAhmB4oAy2ekCaukCJ/MN6QMJ5DREaxnpA0pZqUQzIekDK5fFG09N6QJg8FItr43pA1FTv7DbuekBYci0vSvN6QG5Cl8ii+HpAsT3kYnwEe0AASuU5Kg57QPRzrfTFEntA+F69ZYsUe0CfjKx3TBV7QAgYDLAfGHtAGvWndVole0BoC9B/2Xt7QOrhj0sLfHtAgjbn4SKVe0DokbqLzp17QKjGOwwoo3tAVdUDvzCle0AJZ7Q4Yqh7QESwCcqEqHtAbNKTBt6te0Ca4X452a57QFaaDPxluntAiNK+IufDe0AdRV9Hd8Z7QCXJbAmd03tAKbMI6qTbe0Bg6Och/uN7QCAVi/+M9XtA/gwMirT7e0BWk84L2gF8QG50Gla7A3xAouJFymYEfECo9rZImgV8QGldhzjSEXxAAh70X3kUfEBpjqGA6Rt8QIPwI3kjI3xADw8K0e8jfEDxL+pRzkF8QOgVuBRSSHxAfJJNZ6xNfEBcJSsc21F8QPpmBB3rUnxAuR/wwApTfEDEV9VYR1N8QF6qTuYqcXxAosX2VlyZfEDGIuc1tZ58QDCVM8ENpHxAw1m87m3YfEDZVqaYu9t8QLKL637123xArCQtsE3cfEAO7zkGi9x8QPzNLF9Y4nxAPuoIiBPjfEBasLG2+uN8QAt3FKpr6HxATxDrWQDsfEC82QNPGfJ8QGHbBK9U8nxAzOLQPQf0fEAGc4uEXPt8QFZuk4cL/HxAfHplxQACfUAmwGj6SgJ9QFSRsisCEn1A+ss830QSfUDejDZZrRt9QBO0m5i1I31A4z6UbqAxfUCAbG84ZYR9QBTwn76UjX1ACwT2+++SfUBfQt291JV9QO0KN91CmH1A1WjbPJWdfUAu/dNTurN9QFwAcIrLw31AedkRxOXEfUBYiTS0yfN9QGApak+Q9X1A3n9ejawdfkClHI+C7R1+QHzvLQNGI35AprWUGIxVfkCcRmH/tXt+QBeOxkq+g35APF6Ff8CLfkA05OUoH7x+QAtn1Jl1w35AHsc+QSjEfkCG2mgE0cR+QGC/iCFyyH5Ayk/TDs7NfkCUcb4o3dJ+QBn68kU42H5AWnkBFmnqfkDffKVk1f9+QGPNGa0hAH9ABAJ395MDf0B75BDA3gN/QO57Z3KaC39ADwEM9opYf0AJ4zbS5F1/QJJk46ArY39AYhslPbdxf0AS9X00tIF/QAjvHHpdj39A77UIGmKRf0Cgsg2Vp5F/QDgXkG5foX9AYXscsD+jf0AiTlEUnah/QJvEZhH2rX9AKs2JXFaxf0D8yresw9N/QHZm5oDK239AjA4TI9Hjf0C0JFVn1Ot/QMgnm2uIAYBAfKxqSOEmgECG6Kv9jimAQBCvy6j5NIBAZktaevk4gECLYddlS0CAQJkITqaoQoBAIv257e9IgECgnYeD5lCAQJia3scUUYBA5G9lk+lYgEDM/Jn4DVmAQAxHPyLbWYBAlIQnSeFggEAQxDik8G2AQHuxjRAqb4BA+A97LvRxgEAIKSLSKH+AQMpFiPAHgoBAXDoqYR6PgEAYfUgDHZeAQEppIAMrmYBAtd63LwGigEDA5uYx36WAQPSqADZApoBApMHcdfWmgEAsNmP5YaiAQCWlgIOFqYBAvB5tHOKpgEDOSHT95q2AQJLImJISr4BAOLzqu7C1gEAEUhv1FraAQKxLefEFuoBAjpf1K7O8gED2mwUteb2AQIep7Mo1voBA2kyjuF+/gECJvOEsUsGAQAg+ySwLwoBAHrhhbx/IgEC9HqhVU8mAQDLStU5M0YBAfksqoUrZgEByqP0ICNyAQJgbby/A3oBAuKSYtUPhgEAwlves9eiAQBSpEBNL74BAfLR3Zmj6gECI7uBmbP6AQOp0hBc//4BAAEwrBkAHgUCMueNHPA+BQC5MJRxSHoFAFpK6JTQfgUBoaaa0VCKBQFLfEFozJ4FA2i26/bsxgUAffxJIKT+BQHAjPRpaR4FA/KAbVgdKgUCuyMuks0yBQGGcc+rlWYFADnJypupdgUCYGC4h5oWBQJKj3p0GjYFASR4RrlWPgUCaXaTUs4+BQAL1/9gQkoFAyi4C8hOWgUBUSFz15qGBQC41NcVsqIFAkIHQAO6pgUAwAN/HSa+BQGjG9v/9sYFA0t/0ViK2gUCESSCUSLeBQGEg9Y4muoFAsMzVe+XJgUCgqo+fpumBQJ6G+Q6i7YFASniQrez5gUCrTihd8P2BQFzZOOCD/4FA7hmXIfMBgkDXpFC0MAKCQAjLeDTdBIJA2FObswIJgkAuQiQf2BiCQP/BYRbWIIJAie3Tv9IogkBO7Y+kpDCCQH5DJNhHQIJADj8PhaJPgkCcMFm1nleCQPnpg99EWYJAskqnPaFbgkDRHNB89GGCQHayixM0YoJAWGOLgDhmgkB4VYDXCWqCQLA+G52ha4JAduuHFel9gkCSHWxoBoOCQFYSQAdDiYJARbJSW8KNgkBWKn/SQ5GCQCTGfDnCkYJADH+TnTyZgkBSRJI9VpmCQJ1hVhYOoYJAgJKzpzuhgkA0Jhn+DqmCQGmcOEgzqYJADsVzOkmpgkAzi3LapqmCQJQ0gYOnrYJAVpbSuwSxgkDdSCkeftqCQLLlu62A3oJA9Hf/kO/5gkDWmvPR4AGDQDqd/Vd5EYNAI4y9/XkZg0DKFE88cyGDQBl9wjBxKYNAItpjsWkxg0CgrkaNgTGDQFNAAl5iOYNA7M6EZ12Qg0B6gS3fHcWDQMQEcVzKx4NApJfgNRjOg0Aeye8RGtKDQObywjhC6oNAJowuz5bxg0Bi1c8PrPWDQKI/gcmu+YNAZQ9HYZIAhECj2w28SGKEQMqO0BD/aIRAMHZtyf5whEC+8rPPIXOEQBLtAdLJd4RAIsLDlvd4hEClMMJvdnqEQAgk5D4jfYRAelgyq85/hEB0go3sfIKEQBVU/wVykoRAKdA7c3CihEAJErseIaWEQHiHpZ3Mp4RAbz34EFSshED0PzsGWLCEQI4hvujXsYRAcJOgX1GyhEBkZe0k17WEQK3/dEHCz4RAMO/QEGrZhEBcjzn5aeGEQFKhUBli6YRAGPfbiDbxhEAinkZeYvGEQLvL/rO894RAUF5QMTb5hEARAoNrYfmEQI3iBeGIB4VA0tw67dIXhUC9VIk8OzaFQMzM3xSgYYVA8q44WohnhUAo2kzvoGmFQJI6MaGYcYVAgOmNt5l5hUDnyaRxkIGFQFan76HDgoVA1wXZEtqZhUAiv30C3p2FQCDxzfjXoYVAAJ6A9qSmhUDOF86f49WFQFbshD/RPoZA6O+vEtJChkDgTyFW10aGQBxgf0cQboZATFYiyhNyhkCHqJhuQ5OGQG1BcdoluYZAbPBYvCjBhkDIf4hakCmHQIse8deQMYdApyx5uB82h0C9r6JniDmHQJDydCmLQYdA7SaNasexh0A8RtniYrOHQNjYdu7HuYdAus3nY2q7h0BUDb1svsGHQKBaSQLnHYhAdL9DCOkhiEDI0D2ECHOIQCLPFd4Kd4hA - - - - - - 2IupRB7doEVbuRdFDY/CROD1JEccJNxEyYY1RbVktETw84tEHKGZRn4TFkVsZgBHN0tARXYbsUSOrwdFYRpjRWZFMUVHLjJFmkOCRIT6okQakr9EH3/1RH4g1kRckXVFnxECR25BkER+Tg1GMcuIRVfYc0R3C9NEuhKuRkXCnkTL64xEqrRTRTEWg0RdJrhEnuyZRCra2ERa3ddEvPFpRWQ/rUQOlexFOu4IRajrrUTCS3lFpWyYREfsB0VgGlRHFDKDRLuT1kWavbBGOB4HRWcUoUQxDw5FMmeaRDE/GkUMbw1Fyv26RnWpA0X6b3ZFdOE6RfDHLke94ahEuE/WRDzqPUb+uLlFYf3JRQ0jDUVnwrNE0f6ARRbQvERP2ZREtCpXRfHv+0Rog8FEAiaFRQ/2gURyIdpF8dygRD3QtkSUSNdE4eA2RksD/UR0IoVEBRKbRQqhb0akXY1Eue3KRIgmvEQKPjRFPaqKRFD7uUQKBpZEJq4gRhnCtkTsAJ9EIkWMRCUoKEZjdrZFL75jRamCsEWxZ6BEXvrERNKSo0UiGJpEFE0rR3lzZ0VqFJJEmsmdRF9aFUX2nchFj3+vRP1zokUlE7FFiV+gRMuE2EcBDsREZ9EWRZi65UWjO61G9V4iRs9dqURdpGhGu92kRExonUT2oeJEkb+cREPVo0QlBtpEiK2aRGY5v0Tzh/tEwtKIReXbtkRZGRBGnc+gRKrsBUUzwwxGRvCZRAKYHkXNmx5FUMXGRDb6t0Q1BrdEUM++RO2LrUS2CiFFqwa6RIws9USKI6lEBC0DRekBC0bViLZEg/usRP77dUZHMtJE+HmjRbi/u0VzXktFiR+JRIkNmERyup1En7S5RVwBmETHpK1E+wybRLdTykQcWLlEX5yFRFZQmURHclJFMd9KRiXyfUXXL8tEO7X8RB3sBEar8N9EGK+ERIUJ+kT0hodEVXDERXjOBEWpL+BFqbbLRUbsuEZJkBJFI7SuRFdFkEW1yK1EkrPXRHc5YEXd6fVE4c00RUjCmEZP5IdEkKr8RZA4SEWo8wpFr4iYRANr+kSMr6pFpYiNRMPGPkW0VJxEY5TDRLBAK0WFHCRFQcmHRseeHkVdMqpEBtr4Ri9sRkagxrVE1fkIRaOHFkXTHIFFS7PcR2izlEQirKJGXHy3RZdutkZMOXRFVSRvRsfdqkQJ875EhLQWRQIBMUXP/J5E3YemRTWk2Ee3jhVHdQ+nRQVOwkQbVJ5Gy/p2RLYwwUU2Z5hE5gY8RZ84h0Wh+TBFkRbrRGLdP0X6n+REgJsHRXLBOEYNRCFGMLiARRQnK0V1gKpEvrPARD08SkVXCRpFQ4iKRE8RKkn8ypdEo1aERFMUZ0XsijVIbCwlR01ezUYo605FxN6kRV3Td0bl3ctEavqpRH5zyEQvOilF5yD5RL/uBUaAytVFxY2TRU8Zq0R+BKpFSvdRRe+Q5kUkoJ9E/0uKRMdXnkSoOZdFU/r3Rd5ojkWQbtxEBLKERDmW1kQvftZEP0PRRMoy4kTpHklF+3QsRWzHJ0WYEqNERqWMRChonURuhLVFawaLRDC0U0X8EZlFxo/nROHuhETPvpRFFCQYRcEp6ERf6PVGlCRBRrsNtURhnppE8CO+RAO6uEQ8v7FHRRx0Rf6Gv0atuK1E+QAHRYivz0UFiNxEjvHORgsYAkb+Yk1Fd8avRUIU1URmadtEtyKkRFmNgUTwf4hEF7T1RGFjm0VHZwpFg68sRg/pq0SezV1FSTu9RGEcGEZLAwJFeTICRQuc8ETrxz5F71aqRUnrykYSXZ5GWPSyRIZfq0RJwzZFG3/sRF+CDkW1JBBFc/qjRf1qlESkBixGi2tRRVZdqERNB3NGZqHkRCgpJEb6rZ9EKdIGRntjpEWPlGVFbKO2RLVnk0WJjfREphK6ROkE1kWubXxG/e8nRnF6p0RCxg1FSJP1RInMHEU4+cFEbAmaRfAli0WQt+ZEumn2RINBSUXZa1tJtlorRRhL+ESDsLpHUXl4RSwL5Ehnal9FZGoHSMLsiEQiA61GrTqcRu8E7kSrNTpF5dfCRM14ckYTFo1ExZwaRfva30UlmkNFuPuNRDa9L0Ude6pFyHiIRS7ClkQt589E/CuzRIf7b0Vq4YpEaQUARTIZhkS4upFEIM+VRKOR7kW9hVJFZ/0hRX1fPUbF5KBFFOWLRIbzIUVPPHpES5iwRCaAxERC165FsYdXRdVjskQ3OqVEsquLRNS7lES8E45ESpRJRUQfjkTOPMREYpSmRcWmFkUIA5BEH5rIRcHj2UTZCqBE3ZckRkmfiEQMfjNFr2MSRRhe0URSgbdE7X8TRa14gke1AwVH8tgTRvtzN0VR/jdFm56fRETHiUTQYLNEH9DPRPdsFkXusoNECEDKRDsLFkUk8p9GSZyYRN0yy0XX85NEYSu1RLG6OkWfStpEj73QRHTO+UTuec1EnmnsRTv35EQCWMFEFYysROFzCUbqW7VEWUuhRDPHiESuUhNFMJAiRRYPtURJcDNF8ETHREBf3URnB1BGckE6RrFCvkTuJ/RES6S4RXudj0iwCdREaureRCRgCkjfvo1HnxtzRj86vkR1Jw9FKUeiRbyookQFZwJFl02KRYviHEV7OzxGzfM5RbWpLEWte6ZFAtCoRlMdMEX4jFJFQV4FRaqXI0WpgGpF5BVqRVqD+kQVSpxF1MUtRQ0WoUSSHRBFWFvsRaKzCUV8T8hFFt06RUrqGUWbzRdFxX6bREnw4UVhtJJEkU41ReXGsUTKEO9EtoEVRVo8N0X8SMNEDvHARa9eY0UaYCBGKYqvRNpK60U7UmBFkbgXRT+zIUaS6UxFhgQ8RTb9jkTSxI9EGXILRVxMx0R+uJFEDJfLRNDuzES4MTFG+fViRVPfnkRnAcdEA/S5RO3/qkRQwyxI79ALRWLsqUdzh79EBP9IR4vAJUVEsptFFFJLRv30CkWSSZFFCyvxRL1LLEWH6ZJEzRqyRNIzT0XTMBxFMQHzRPbTE0VeyTJIZ82xR/akUEeznldGtUmFReB82kQy9qBEak43RZXD2kQOGalEY9nTRPRRnUTnnJZEzC2dRFc5KEbdiqdFFH6ARD/RcUQ+bNVFWmZHRWypxUTdGTxHj9oMRVOuQ0cw4sdGuhobRgxGpUTZMKJElF/BRYxtdUW3A95EkMXJRIjMukSRqeVEB+dIRRIXsETNlwNFT+dDR7dsnUY3sTxGEiN1RbmLnUXbVKpEVJTDRBrTsUR0RaZEhY6mRDW2pESp1itH8wClRD0fmUZy6kFGZHGSRe0nxkR5NXlE1GmIRVleAEVWaKtE/yv6RIHllkT21fxEH2KHRGQamUQKv8FEHiiURPUMo0RktuREeSq+ROr0UUbbw7JFwnC8RJyJd0WCmL9EGPoMRonpokWKZatFz2QLRbELQkXaMSdFb3U4RdCiOEXSaSBF - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + - - - - - - eE4MJQ3BckD+e+6/b8FyQCclKmLJwXJAQM5SjKfCckDeOM2f48JyQOTXmB46w3JAZiwcVlnFckBq2gTwAMhyQIUINehJzXJAIqBTTFrNckBWLgEWQ9JyQCsnNwem0nJAvUGF9XfTckA0H1w7Y9RyQFE9513M33JANzw4xrbgckAcsGtQTeFyQCQEzPz74XJA6rWj+VDickC1O1nfj+JyQOrRFJ0l43JAOmYWyMnxckBoGbtspPRyQECNmV/C/3JAFY5RSGQAc0B0jscc+QBzQN5guSA7AnNAMMbvrdACc0DRiGmN+gNzQHIMuXS8EnNAAMfsPPkTc0DfnsHRTBRzQMVy0gJ6H3NAkDw/Y6Qgc0D8qXpAOSFzQBZXdf3JInNAGlWdaQwjc0B636rDAyRzQP3bJ148JHNA32fiJM8kc0BodLclSTFzQGzjIx5gMXNAOO5+kwwzc0DSTNUQozNzQB5XktfWM3NAmmyk5zY0c0AIHkC8uj9zQN8rNVhBQHNAFNskvOJAc0DzSVW1eEFzQIJIwLd5RHNADMZcpZpRc0D2u1aoQVNzQOfON9mjU3NA1CL3eYdUc0CryheYO2NzQLZPi3srbXNAv9LW4Wpyc0CkcVGPhXJzQAAqoz24cnNAizzzyLZ0c0DzgEkJTHVzQOqCPfDCd3NAvry9ct53c0D0YgwXKX1zQGiyTqR4gHNA3AiIVaOAc0Am6nhJDYFzQEqb9WJdgnNAilBTaYWQc0B23j0DTZJzQEqDq2PNk3NAhFRjrGGUc0C1aRqY95RzQCER9QO4oHNATp2a6lqic0DQmpyOI6NzQEDOGv4FpXNALfDPerezc0DdLtfbDLRzQMr81nb3wHNAfC6s4M/Cc0BIbpmsJcNzQGh/gAbX0XNAltS4grvSc0AC4I1V9tNzQD6+7fjh1HNAqOhZnqPgc0CmEX1lOOFzQMvgyGxj4XNAvp8kPefhc0BAWF7IeeJzQEMEz6IP43NA1/2zOzDzc0COdeeCN/RzQCZ6s2NB/XNAXhev6uMAdEAZMeXMeAF0QDnaQ2SlAXRAxKflu5sCdEB+u0bnuAJ0QPerRyg/A3RA9xLPNIkRdED1UBVSTBN0QIQU0Vm3IXRAxPxnRFUwdEC46/8w4jd0QKhvayY7Q3RAFBiVLHhDdEAAB1X6SVN0QASpLTL3VHRAen227o1VdEC47QPr3Fd0QPSwfX01XXRA50sP97lgdEC0vtvD42B0QBQLHRAJYnRAcX67FY9idEDu2B1HUmN0QPmAjkMicHRAZsaLVkFxdEAi2k3fOXN0QCIBjgZngHRAnJNadPiAdEBAumb1ToF0QMQbQU5JgnRA1NzcGyaDdEAmmIvdFZB0QNCbUZBSk3RACz3rl++fdEB2OyJ3EKB0QGya7i/RoHRAPKF/vnqidEAEcKDBD6N0QHqnHOn7r3RAFgDSDG+ydEAAnBjIyrd0QCwnwzrev3RAlOuoTXjBdEDy5KH/68F0QJzueOJ5xHRANkxx3bjEdEDAfmBoy8p0QP0p+8f8znRALukGNuzPdEA+MfUtPtJ0QDpYwwbS0nRACED7EeHTdECoQD/czNR0QGqumXbN33RAzqd9BrnhdECiQt5O+eJ0QDzgRYtO6HRAbkClAo3zdEBKMIF2zAB1QIKyGvFcAnVAKTuYIZwDdUDWPIKc+QR1QFg/2DKaEHVAAlpd3SIUdUBuh1uZnSJ1QIwhBH2qMnVAksriPs01dUCmQcZl+Dd1QIhtab9TPXVA/kOCi4FRdUAKB8zKelN1QEJ5God4VXVA2MwBNThhdUBygcsi9WF1QHFtp3rSYnVA+nWVYGZjdUCIsXrjdnJ1QGpZzNxzc3VAhHcQRY10dUBuGiaCeIF1QE8dqXytgXVASg5iyKaDdUDmaiX5m4R1QMQ4sbO5kXVA6bTnIbqhdUBUBOBUXLB1QKQpAtTnsnVAPiSAX/jBdUCMEoYiTdB1QDhJP8HM03VAKGXARwjidUDMFCaqquN1QKg/4Bc75XVABNLZPLLrdUBWcLYdTO11QHffp42m8nVAHtNdEgD4dUCLYzK8pf91QPt7uY1IAnZAyI5WMpECdkBoa0QkzgN2QFLWbRNZEnZASVtPfUwUdkCjLfTyDBZ2QJ4nm5waG3ZA+oVAb4gidkDjP+xA0iJ2QPTY6PuPJHZA+yOtv0srdkDpUlJtHzF2QE4UI8kdQXZAFi8mB5xCdkCL5rwzyUJ2QDrTXcsOQ3ZA/NGDnXlEdkCUNsYA/E52QKDSyikSUXZAZCL6Ms1UdkBP/zegH2F2QPjhHiZRY3ZA9nGqTuZjdkBAfW9U2mR2QE4SUVhVaHZAUjl4AvRzdkCw51AaY4F2QHRb7rWRg3ZAqRIgCqKhdkB+otGcwbJ2QKYfMTsNtHZAFB/SPHTAdkBq+6/bG8R2QOYzH9zOznZA+yy7ccnjdkCK0bsikPN2QNm7O6kzAndAxnvfrgESd0A8yICfDSJ3QBYr/11yIndArLV2VOgnd0AY66c3Qy13QIVBE3xbMHdA0CpBd20yd0CgBpRCiTJ3QB4/oRSeMndAQg7SW6Uzd0C48PFFDTV3QPJqxiScQXdA1Y4n8rBBd0DaDR31jUN3QM778PgaRXdAxBemOkpRd0C4ARnNklF3QLgz48goVXdAvswyYVxfd0AFYTksSGF3QCl/fPKSYXdAhpMIb6Fhd0C+XGSMJm93QF2l7l+ecndAJV2b5neCd0AydSV1TJR3QPbbsJVxu3dA6gvmHnnDd0BMllwKf8t3QCziLNRz03dASGejW1Hyd0Dbadz3Rv13QOAXFN+gAnhAv6JmjOQHeEBTeCua/gd4QJCAVGAcDnhA6tau+X4UeEDki1Q4bSJ4QJ3bqxrPI3hAnHIoB0AoeEBGldwIfUN4QA5fTK0RRHhArrfvXXpFeEAkp6CUy1F4QBsu5cyQUnhAuKzm+x1UeEAWucrqiFV4QDbQ6FXuV3hAF/1DmPlgeEAaoxmgt2F4QOK4EhlndHhAavdCoYt0eED0hcrNqHR4QGw129i7dHhAcIlMMHJ7eEC6xkvWpYF4QMOMnOeZhHhAnBwWdE+IeEBPyvMQqo14QOS56ftRj3hAgprXvJeReEBK1B7Z7JJ4QIKzJlsEk3hApJsF+KeUeEA08ulE1rN4QFPbCEs5u3hAW+/W0dm7eEBslyAzzcB4QIBQciI+w3hAnof49RDHeEDwgIFkFct4QOGnWpoYz3hAGoxp7BvTeECgxqq7ttR4QN1KQuBu83hAdpeTMQH0eEDF8eVUjPV4QKz1uhR5A3lA/n1P3poFeUAUh3CMuyN5QGLVGcCxKHlAqpQ/VAsueUCXkJCVZTN5QKWZFA7jOHlAoLIzqis7eUDypSGFikN5QN4GqEf7Q3lAkNIim/JFeUBQg+pbzFR5QD5LJlrqYHlAYS/BIvRreUAhftbPQXJ5QJt19NhCc3lA7KE7ZtuAeUCdiaDrlJt5QJ7DfXiYo3lAPDXNUcGyeUBmG0CiQtR5QIJCfE/N1XlAiQbk60/keUA24CxZlOt5QPaH4iMQ9HlAvhk4cmwDekCspeB8AQR6QGnblm36BXpAU6u7pwgMekB+zgORDhR6QE4Xb8f0IHpA7FDJWjwkekD6JNzSDDV6QKFpB6AaRXpAFYdn1dFLekCMbutQJ1V6QDoj0zsiXHpA0S0lUShkekALDEBQHqN6QEKRZDQlq3pAfCZMyRSzekCGXXFsK7N6QEIpNb4MtnpAPscKAvrDekAq0rGmF8Z6QM4tsMA85HpAUz+wYDfuekCMkegES/N6QKqRaPCl+HpAYuwhr2/+ekCyGcu4fAR7QFPqNLAqDntAIAY9jMYSe0AF7/4NiBR7QJnQV41MFXtAiQFNciEYe0DOhUQ0WSV7QE7nUq3Xe3tADvuX/wt8e0CNXSlqE4R7QPix0PMAjXtAlIQuASOVe0BUUverzp17QMxqdIMno3tAIhElWmSoe0Byv6Lfgah7QPyYbkvZrntATyGUtweve0CU41X8Z7p7QDi3YR7ow3tAPSICdnbGe0CDGaV1ntN7QDfduY6o23tAWtpKiCbke0AGLtm6jPV7QJCUEXfaAXxAedJQdPoBfEBIwh/LZgR8QBpQMCyaBXxARyDmG4cRfEBAffom0hF8QHRBQJJiFHxA9zs6i+gbfEAPMZ1B8SN8QC8V9KTNQXxA7mI5DVNIfEBZeSJXq018QFZSn4vsUnxAtk7WVwlTfECaPkXtxI18QKAGMK8kk3xAqihgnFmZfEBo8CDptJ58QEo5YqLCsnxALq+bMs3VfEBixBRAxNt8QPzCxrH123xAEG4PpTPcfEC66wRBw918QOyAWqRY4nxAAm0KNBTjfEC2BVAK++N8QOb6v6sf5HxAM3GDaWzofEDrafF0Aex8QKCQDckY8nxAQTsGD1TyfECsXu3JcfJ8QJYXXqgI9HxApcpxX2D7fEC2RhoEDfx8QOA5ZRYAAn1Ajpic10oCfUDI4uUtZQN9QKpHQSBFEn1APhAFDq4bfUAc8yipPCJ9QHme/1eNI31A0qGt3bMjfUBiDsOiZoR9QOqLq3CVjX1AG51V4e6SfUCib5FgTJh9QFbeeaS9s31ApOt+OSvDfUB7TFOl5sR9QEIBGauP9X1Azsm86u4dfkAa9yHSRyN+QKq8r9yiKH5A6iRfA0IvfkDUSXY0jlV+QL+2Aue3e35AB6wpfz6DfkCZ7LKcvYN+QFx7DvLLmH5ARmOYcF+vfkBR+VvHsLB+QO4+8K0fvH5ATQBTjybEfkAYyNJK0cR+QPLYuRtVxn5A+ktxGnTIfkDmu+pzzM1+QJK7Ad8p035AxjvEctTvfkDHllzq1f9+QFU5ApUYAH9A/giS9pIDf0CfGzyo3wN/QNmzrui1BH9AUIUrkJkLf0C/kXfyilh/QDiodNnjXX9A4Qjbf4pof0CMuXhDtnF/QC+/ZIa1gX9Aa0BjwWOPf0BPBRB0Y5F/QB7XYpVdoX9AyervtUCjf0DWC24Mmqh/QPhkU/rvrX9A6NQnRlaxf0Ds31llvMR/QNg9/t7D039ALANiA8vbf0Bycw1Z0ON/QJ4DHNPW639Akl7cBogBgEBE5anKNASAQHH2ajPbBoBAk+qvlogJgEDDClSXMgyAQPz031R4EIBAqEI58S0fgECYMPUi5CaAQJh0IXj5NIBAgao33UlAgECcd6Pf9EiAQAgNIkfmUIBAYB/gWxRRgEA0hTl15liAQCoNyYQOWYBArz2Er0lagEBHNPKX4WCAQG/1kKzwbYBAmalFMilvgEDKzrtW8nGAQKR7JYzmfoBAkkeIhyp/gED2Mv8HBoKAQNJKrvAej4BAFJ3LBAeSgECAdsD+HJeAQGAA6QsrmYBAeUNULwGigEDYhU2hraSAQCVPwmS+pIBAtKJfbN+lgECavHNvhqmAQJDYl1fjqYBAQqV3UfmugEBB+IRKE6+AQJblG+RssIBAlEWw3rG1gED5gH0LtbmAQHR6mB4GuoBAzHP7y7K8gEA/1MFv776AQAhBdLlfv4BA1yNTYVLBgEDQLI2BDcKAQB9wyrshyIBAWpfnwCrJgEChNMc3U8mAQB64tRjAzIBAdGsT5iPRgED0VCNgTNGAQGDfJWZg0YBAqoM0jErZgEDA0Iu0v96AQILQTDVE4YBAWGPH0ljhgEA2oLi19eiAQFYuvkPI8YBAriKz/T3zgEAWocEAaPqAQCsgWXw//4BARhSjjD8HgUD6hbthPA+BQD0kLLpSHoFAIby9TDQfgUB8uIWRVCKBQMxYUYA1J4FAnKzaxbMngUB+uz8hvDGBQNcRKTYpP4FAGBf9spVCgUCsc8mqWkeBQKbSF0wISoFAKpqp6rNMgUBnDEvg5VmBQHRRsq3qXYFA52E98WB/gUBIMd3LBo2BQHMUjutVj4FAvmlPjQ+SgUAIULMtFJaBQECHdo5Vl4FATsuvxuahgUDkIj/xbaiBQKRsC4TtqYFA3KEATEqvgUCSZhyrIraBQCCcIKRKt4FAycaMPCW6gUCITbNu5cmBQDBi6Wl904FASJc5dqPfgUBI8bcOp+mBQMh7ESSX7YFA9gZF0uz5gUCc9/xU7/2BQMrQjtqD/4FADEZEaDECgkBnLprt3QSCQMbcNd/YGIJAWpRCBNgggkDnNf1K0SiCQKXTl3+iMIJArePzvt9OgkD2nF2XDVKCQOu8ylb2YYJAOiZ+tzNigkDoKTphN2aCQMwAhsWeZ4JAAJqB4pdogkB7kxBHa3SCQNiaJ1ACdoJAyk78gtx2gkAFzvBv6H2CQKfREDVDiYJAjQQajsKNgkDwrHIqRJGCQOTPzik8mYJAT6Se9VKZgkBTTryUDqGCQKgCVws6oYJAnJIAfg2pgkBEoEIRM6mCQDAURrNHqYJANdX+A6apgkAgdktXCLGCQAmAOkR+2oJAkCfoEYHegkDUcAVNhOKCQDWu41+u+YJAXgtcwO75gkBUjiGh5AWDQFo2nnV5EYNAlATkBXoZg0AKI3GVciGDQNULxClyKYNAy77/0mkxg0CYkkYLXpCDQKRZjrIexYNAkva396zFg0BWJsIZGs6DQO6F1Y6r9YNAwvgkNZX4g0Bwo0XlsPmDQAoEcAkuWYRArCV/Q/9ohEC/xmhDSWqEQEq5zo/9cIRADsKXOcp3hEDMpZPB93iEQM+1an92eoRAhsfV8iJ9hEBouZiHz3+EQPDLcxV9goRALtPMeHGihEBwohyXIKWEQOR48Y/Mp4RAmmLpSHeqhEAtDu+/VayEQEDdm0dYroRAgOyWxViwhECgxpfUVLKEQHbjH3ZdtIRAxzASAFi2hEAK+HxlfsqEQJ5IIKxQzIRAG8TFF8LPhEBGBjoNdNKEQLLR2udp2YRAvPMB92nhhEBgbdrfYemEQAzDVeB86YRAxjVebDXxhEAWM7aZYvGEQHiZNK0y+YRAp7/vA135hEDEFwcCMQGFQDDW9jagYYVAJIyC/olnhUCY6Oi8oGmFQCTnF2+ZcYVAsnhMU5l5hUD/kAc5kYGFQKrtznzbmYVAdjMd1d2dhUCXlJZnsaKFQMaM/LOipoVASkD68NA+hkB0s6c60kKGQGh4n8PXRoZA5o6zLhJuhkDgeCPQFHKGQCBKzvRJk4ZASeWbM5/ohkCaUKsAWBaHQAIIWrSQKYdAqUUZZpAxh0CU6UJtiTmHQNaJsHuMQYdAEl/NXGGSh0DjeElCYZaHQLg88dFkmodAD5bV9/Shh0A3YI7Kx7GHQHYBO5hjs4dA1s8jcce5h0CAjauaa7uHQLBcmiPBwYdAqs8kkL3Jh0CaNNh7eQqIQIF5zfDmHYhAes3b0+shiEA= - - - - - - quybRJR8wEWhLuhEkL84R8RK6kRWFw9FRlGpREMxKUY2UFRE/Wf0RD11C0fn37FERTCcRMPEo0RaIIVESToKRR67j0QVDoZErqJhRQhMhUUV/NBENfxiRcYG30QGmOJEhCF4RJAkv0Tvh7ZElfdSRa0D8kbqQCdGXWOJRRNajES23r5E8pC9RDrZtkZRPuREmJ3pRBNTiEQm45JEfchcRbxfxESR6W9EdBWHRF7MbURINKpEtQaTRJJUqUSX/JJEXJO6RHSzb0XqUhpG1sgDRY+HykQiKIhFMfaPRCM510TZA39HpW/vRbDadkbPeQZF5QGtRGyTC0V84Q5FAZmqReBJCEURbeZGNwKdRIh7nURAW1VFh/4GRTjIP0eFyatEC3UIRZEdQkay/rlFVL7hRbU6dkRzU/hEIjEzRY4qPkWoBdJEQJWSRb5UjURRx1VFxzWIRAdmskTj4JJFFWV6RHS7B0ZshZlE5CSYRNK2tUQfIKVEp29ZRrVN2kRNiVNFf336RMAbZ0bSnM9Eq9j1ROd+5kQ4Y5pE8rnFRFZFcEX+4AJFS3TKRE9rxUQ2XBZG0d+MRLcpAEWaiMBEaM2cRFPuCUY+B1FFM1WYRTVGekT8UHNFDJn5RJBhNkUlTLRFc5tDR0/2MEU25ZRE+io5RTl9yUX8sotENtyjRS/jokUusZ5EnqEUSDMLcERfusBEzAt4RBoxL0UJljhGusmORjkAg0X93qJGVlukRIAptkTxTaFE7/WuRE/A90RtgJhEUDjdRK11v0QIO5pE3WmmRIm08URSO7BEUehiRRWzlkQis/FEwC+HRen0pURLZxlGsqibRFfEhkSxMYlEdY/UREl1CkYI6nVEzaUBRWkIPEU0sBBFVWOURHWwLkVnl59Ee/D+RB4CgEQ95URFwy2KRgE8DEWyfCVFplwURnHk6USrf71Fu6fcRSxp10SUBqBExOaVRLKEzUU9vYFErZC+RM9AskRQtJRE74+uRIKFX0VRL6dE5/u1RL+0bkYxgr5FFKr6RL8qDkViQQZGFUTLRJRRe0RNr5FEqyy9ROw4sURhhY9EbHTMRQINs0RHQvBFZabARSwj1UaebYFFNBcZRbNJD0X79VtE35UaRYsvqERDuyRFuTIrRm/ul0R6wHJEqF0GRvUav0T+ubREv1HARMEumUSk1RVFSLWaREo55ESyULBFIV+URI800EQiATZFq9nWRNBUDUU89etErZeXRg8XHkVIy5hEblnIRq7JG0abA6RE3EB1RAbaF0XukF5F/fSGRbwx9Ef565lGjXXCRUXdn0R86sJG6wqCRWCmXEbGXClFJPSeRGgRnkR3trpEGtTLRAo+c0U7V2BFVtGpRBIawUSsprlHxZ7mRsJrW0X8ZGZE1WjIRMBTi0Y60t1FrN7nRCD300STsYJE/ClCRahSKkV6Ar5Es8T1RBXr50RNsRtGeZosRshtkkVoeJdEWrTQRA/BPUUYueJE4GVDRfMfd0XFqK1Fi3E4SW0U7kXa3VdFoSc0RaqlKUXEEzRIL74dR9T7W0Z9B4lEkiIqRUCBxkSqt7hFG/R5RsU7+URced9EYaulRN4pr0T81YVE3pm1RXX2K0UHD9xEHY6SRB1PhUWdRZlE7Up7RRW+0UUm8MlExEPpRIvbYEV9qkZG1iuJRbRd1URKag5FO9KZRCdNMUXDczlF28NoRKlbTEUYeJBEeiWpRJ9/vEWkyK9EbpSTRG2BaEVH3ZJE1SRJRSiIs0WODIFEwmLCRKPFdkXbOElFth33RG2Kpkcj8L9EhLTrRl/xkUVP3c9EdfckRXd8pUeJ/5BGOjiNRJMC/UQGjBVGBAIuRdZaFkdIOlVGZnr/RPpmwUTyHcBF5dMoRRjqzUS5yhBFq2ubRCZBOUWwXzJFNASTRE36OUbLCpNESHp6RUWW7EQXuQdG8rHyRBK/LEVSJdBEVDrhRYL9CkUmPXZE9fRFRaxZmkas8FpGR/KeROBZukU9UzJFxs/ARIgX60QCNf1E05eHRA+I5EWtF5RE+G28RCSSlUaq30RG/+PeRCNq/0W2s4FFvOKWRPaHaUWg8l5E3X6KRVgICkUFOdFFHR9BRlHUJkbbAyRFV2pFRZvvn0QaAYFEqvGuRZIpbEXToo9E0QOjRAGAi0Xv5j1J8OFxRbZpr0Tsdb9HxLrTRcWyuEh7+GBFjilPRbzG40dcWMNEqXq3Rg8UUkWdW4hGHFQcRXyh4UTUoSNFWiCERrfsoESuZxNFvrHWRZHoikSYnK5EKp4hRcCfnkXoQ9lF1fkxRU5xukTeT45EfrHARConHkU0Dp5ED/rIRbbNYkUL6hZF3w22RDOulkTNrzNGgpGcRDfur0W7sINEpcaeROdpZUQrDdFEekuORAkpGkU5tIRErsqqRT+wWkUKtwtF+fd+RNFWW0R5h4NED+EMRciVhkR/IHNE7BuvRJkUl0Ww4qVFqSWPRKOufEUBn7xEVgayRAUtEEZ1mxBFQT+WRW5/6kRjecRERgUYRdiVjETZgoRHCOkBR9n5C0Y+JaREZMVVReeiLUXUYRZFD7WNRG+Q6USQom5EL3xsRBN+r0TCvyJFm3WkRJcn3kQP4RBFmWpgRm2LjETKAI9FNoOwRIn1ckTPzUlFWZQ2RV/UrUTmPmpE40l3RKE61URp1ANGIPuPROZ42USh8OZEJdcTRZclv0SerZJEuPlORpGuFkVCA7dF9JCARGQ2A0X5H+JE5w2qRZMNMUWh3XdGdPZPRjCG8kQHPYlF/0l0SGMSwkS99+FEAplqRAuS4kcbzZtEeSy4RD6FcEcNi2ZFBA1cRullCEX+n4tF/AWTRAcgyEQfbYFEY2vKRMwbZ0X1qE9GROpRRdYAFUXQxG1FOpSkRvYjGEVrAI9FbgF5RCqr00RIyCBFaHeRRC2RhUWBvhNF/cWwRN6yhEVOSuNEBkd6RM7t8EQcV+lF12qHRaiPD0VWIBxFyMQmRQ7FH0X/zfJEiwkJRllSRUVzisxEK33HRFT430QOJ7lEQKyWRG/GI0VhJGlF3L/vRb8NjEXoi1RGfqkeRkqr0kWG+jVGOjFFRYL2IkXYrbNEw7rARPE9aUQmy7xEo3C1RaPnm0XxhHVEUlbURJ45lkQq/KRETlWtRHHMS0WnEOlHwIkBRer9VEdsXO5G4ChQRZeUvUW8iAFG6lrZRAZQ2ESChZFEh4hFRTcPnETeO7tF7E7aRFQIq0SFagdFqGO/RA0GrERoqeNHwHNcR9LM7UZ6mQ9Gq0w1RX1NDUWDJ9FEyh6bRAAXo0TDqkNFsHfRRDdCw0Sra3lE8e3aRb8KyURgRgJFA9O+R2JHJUWCnsBHOmNVR/0XnkbdHbBF+CL3RcUduEUC3sxEj53jRG10fUXiDF9FaNO4ROe9Q0XUr5BEs3i9RAckpkS/8YBEiFmlRL8qn0SbeRZHBUSPRvOCJ0bvot1E7JiFRafDkkV/dMBEFNoKRc7KfERIaRtHTSS+RCaUg0ZBJRJGV5ONRUnOAkWHKmlFaXYsRbCHqUStywpFsbKwRXT1YkUy6u5EovF9RCJli0R4l4REmuWwRGPZk0QMBy9GWZLERf2HdEXwd7hEESEhRfPjuERbr6xEClq+RD50CEa048JFpFLKRVzNn0Q3LUtFVK60RE7ooUTTsZdEhlSjRA== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - flqc7wzBckC4yL0Bb8FyQGK7WqPJwXJAZlOhqlLCckBWwDGWp8JyQBi+UmE7w3JAG2YTqMXEckB8N/NhWcVyQGyfWMkByHJA4FfpSVrNckBsn9+VQ9JyQL9o/2ix0nJAvtWpLkrTckAq1GBlctNyQDqwZUjO33JAMpV4fbzgckDqlMNzUOJyQMifC3+P4nJAubxwD8rxckAmv7Nut/NyQC4DlWyk9HJA0mWHGcL/ckAk8zFZPAJzQCSn/dPPAnNAyIy2HvsDc0CDYpGpCBJzQM5WCz29EnNAPP3rRvwTc0COjGTXARRzQHTxbyZOFHNACP265vUXc0DgkTWreB9zQDUCMs+jIHNAHw7+FDkhc0C6D6UvYiFzQMi5RhfLInNAwZ6O3Q4jc0BUVnYwBCRzQMmpqq/OJHNAlJPGeUsxc0BS8j6NDjNzQEh+XjQ3NHNAHou0Lts0c0AP7Vs8vD9zQPSLOYLjQHNAsIk26HlBc0DueMKlekRzQEbtdcVkUXNAeNj8XptRc0AweHIjEVJzQKM+YCTjUnNAula34z9Tc0Bk2S0epFNzQHu39yeHVHNA//PQJo5gc0A6GAspHmJzQKQ9m844Y3NArA5PmM9jc0DaZwfSK21zQA5xSHpScnNABl46HGtyc0AFMwFwhXJzQMSxVNVOdXNAYxrl5853c0Dzyu5TeYBzQKozLWakgHNAMKpGRwuBc0DYm6ciXYJzQBDfGZEOhHNA2nDwRYaQc0A2tWdvTZJzQDQSmAJilHNA7P1kVPeUc0AYoyV8uKBzQN95SCNbonNA939XvCSjc0AnQzxDBKVzQMHZno6AsXNAoH+Ys1qyc0CcZql7erJzQCWtuFS2s3NA3uQwRQ20c0Cms3k6+cBzQE9Wi1XPwnNAVssQaSnDc0C0nLHz1tFzQBRd+NL403NADSZEK+PUc0ApckbOOOFzQIqKAqIQ43NA/P/7UEfxc0CCl+UBMfNzQH518bs29HNA/O7EBEP9c0BZ/DfJ5AB0QMDUUyR5AXRAQNiMqaQBdEDEoKZBoAJ0QASOhBS7AnRAFt2TTokRdECYXKUtThN0QHXSx6F0FHRAkjSQIUsgdEBOLIOjuCF0QOZJZXa5MnRA2kVv8eQ3dEAl4yhVU0B0QFRsbTU7Q3RAXobly3tDdEB8gFeD1VF0QBlcoWP5UnRAJvFaM45VdEA3cbv621d0QFz/dOo2XXRAIt/5+rdgdECcGGAcCWJ0QAIrGaWRYnRAKeLpuVJjdEBSfOlwUGR0QJxi+pQjcHRAIL0fV0FxdECY6pwBOnN0QGh3a+ChdHRAfjdmQjZ1dEAcA4QR94B0QOZNBM5OgXRASyEc7yaDdECQqvktF5B0QIwb9IzSn3RAS9vZve+fdECcLIQrz6B0QJbKmI0Po3RAdw51tfyvdEAAxTUixbB0QGgdLMJJsnRAXm9/PG+ydEBoIKkjybd0QBUk0rQTvXRAu3kWLiK9dEA4TQbz3b90QM2sIX7kwHRAmPbYCiPEdECOF0kjuMR0QHInhGX6znRAytBckurPdEBiglavQNJ0QJR2aIvN1HRAE/xoLM3fdECUr7qjueF0QDffy4H54nRAuyp0a03ldECVaFBDTOh0QAW/VBOl7XRARQv7+LzwdEDpvtcUjfN0QGBnNsxhAXVA4tYpUV0CdUAaH04HmgN1QFxKMOxqEnVA0tCXCyQUdUA6veoNnSJ1QOT2pFfMNXVApDDHwPg3dUA4bOyrUj11QHR+eA+tQnVAMLvkv9FPdUBnHyV66E91QAJP/gF7U3VAeF3YeXdVdUAEuQjwDWB1QND/77s3YXVAxqj59fJhdUBwva0X0WJ1QNI3fx5mY3VAzqG4Z3hydUC/4SSLdHN1QFAAni6NdHVABpAgAHmBdUBSa82xrYF1QAcRzk2ng3VAlDd6cZqEdUC0X8XNi5B1QFYO/NS2oXVAOERe6luwdUCER0XXzsB1QKLJKsL4wXVAj+b+8knQdUAomOtvy9N1QJ2jUeGq43VAzAREsrDrdUBm8F+bTO11QKSVkpem8nVA+H/7Pe/3dUDiIfn5APh1QPE3mj5J/XVAXtGuOqX/dUBIpbFKSAJ2QLirA5nPA3ZAQhdElVYSdkD4p574iCJ2QNI9lG3RInZA9L+WEJAkdkCBIVkLSyt2QHgUSusfMXZAmHc1f1IzdkDANGtonTR2QD4RSaIcQXZAulwl5ZhCdkDplGBByEJ2QArd5pR4RHZA8JfZbvxOdkBXC3k6zVB2QLTDJOgSUXZAkqrrec1UdkDsq06dIGF2QMz26EbmY3ZAuQB8SttkdkBSBiNgkYN2QGjJnNbAsnZACjd1+Qy0dkB0VYw2UMF2QOZaR9gZxHZAmtKTAs/OdkDabClJyON2QIiFUY2S83ZACHB5qTICd0BOOPcrARJ3QKtagk4QIndA0meGiXQid0DBFzYiuSR3QHLmQNDoJ3dATsXojkMtd0CeNbzLWzB3QFN/fv+JMndAzLubKqAyd0CIj4UuojN3QKd673ANNXdADhdGa+U3d0Ads/KPmkF3QLKVI+OuQXdA+LBgLJNDd0A1LEEK/kN3QBWgMboaRXdAG70cpEpRd0AtR8GwklF3QH2b4pe5UXdACnnviwhUd0BLscL+KFV3QDDjP5tbX3dATM8vRY5hd0ChM53WomF3QKLRJsI5ZXdA3ET/ZCdvd0DGWbBdoHJ3QOYjVWP5d3dAxGJe5XmCd0CTLFRAqoJ3QH4amGaPoXdAluwmv6Ojd0ChosYRcrt3QA0bZX55w3dAdJXO3X7Ld0AAP8pi6uB3QLwdPPNG/XdAZI4gfKT+d0Bc9hEmoQJ4QGJw+VX9B3hASheg8EMNeED6CEEIgRR4QEwjCTNuInhAvD90S4wjeEBgVTKi0yN4QDuyBbQ+KHhAqncPU5steEAgCvAqfDJ4QDoZ65V+Q3hAQgDbdxFEeEB++2IaekV4QBaEe8/KUXhABDVdfxVSeECwDpddlFJ4QFpv2R2nU3hAbada5R5UeECgrD7Mh1V4QAMGphafW3hAtgetNvlgeEBkFmo9tmF4QPa0HKHyc3hAnoOoblF0eEACV5xOZnR4QO837oiLdHhAIujmerp0eEC8wBSxcXt4QCbRhyk6gXhAMuaTq6SBeEBTOahHeIN4QCSjOASahHhAzmVd4E+IeEBjfYF/qY14QIJ/+jKYkXhA1ZUEnu6SeEBQ/lP0BZN4QNaBHQmolHhAVr4HOkiYeEDG5Nojt6N4QO1tkheks3hAghiFlNWzeED5nbESOLt4QDhO8P7MwHhABMJ+CfbBeEBQeLINP8N4QBJza5cGxXhAyhw5ARDHeECs0/WxE8t4QM4yDvK21HhAwvP969vieEBhOsm7cvN4QKD8V+0C9HhAAoxOpYz1eEDGgDwfewN5QOheIuycBXlAHjEZX7wjeUCSE73ksSh5QKjHlqoMLnlApIWeM+Y4eUDuIqMD+kJ5QLDJm6KLQ3lAfteOV/tDeUBqceHuy1R5QCA3FmL2a3lALLdCgUFyeUBh6NMlRXN5QGSIsQ/hc3lApv+/gvWBeUD8ZQPGToJ5QAbY2WeWm3lAQDky/76yeUA3jmcAjcF5QKLNJmlC1HlAFF5dmMzVeUCYqwoQUOR5QHLHOxiR63lASAwftQ30eUCOazSeAQR6QBDNdDf5BXpANWH7eQgMekBIjyTvDhR6QDZhcOY8JHpAq3RihCwzekBKPjmiDDV6QOztXn8tN3pA3v48JxpFekAii+D/0Ut6QHKI7rUmVXpAqqPnmiJcekAyg24HKmR6QL9Cg5Ieo3pAxD5IsiWrekBkIFI1FbN6QOravW0NtnpAUK6jQxm7ekBkzWJFGMZ6QPrsQ7MHyHpAcJCfD1vjekCgOqKY9eN6QKS9QBN95HpA/Cyj6DfuekDdmeHiSfN6QB2KzLSk+HpAKbtewvv9ekAoLfRyegN7QNsShaR8BHtADGLdGisOe0CZj/M5xBJ7QBH0qLKJFHtA7Zf1h00Ve0DJjOfQWSV7QK7z6GTOU3tAKESywNt7e0DPQmAaDHx7QA4DuKnkg3tA7iHC7hKEe0DxioxDIpV7QB4BkGvOnXtAqvTpcSije0A7n4HXhKh7QMCrfGXuq3tApgP0ZMute0C0SN7P2K57QGwiuqZluntAxu46W+fDe0CGNPXtv9F7QF4a1m6b03tAiUxoTSTke0CyZz6FjPV7QNhkbSe2+3tAbiVhl9kBfEARRF4BZwR8QId2FJOaBXxAvKtIK9MRfEDU8hax6Rt8QGbDIVzuI3xAYCg5vsxBfEC+Y1FzUkh8QOR5huJgTXxAOCA0K6xNfECExxwtAlN8QLZZn5RNWHxAyIPWZliZfEB1hhrYs558QD6iuTkJpHxAenv6ZcGyfECo+P7yzdV8QNRjngFt2HxAkABXv8TbfEC+TI/d9dt8QARrEO0w3HxAvCefYFjifEAKW517FON8QModbo7743xAqcpQtGnofEB8Y+SXAex8QIOm553F7XxAFphIqBXyfEDW2F4VVfJ8QDBTw3IV83xAtVmPzwf0fEAqOJ6PYft8QEKgI03/AX1A7CML5EoCfUCwZaqXRAN9QPLmaOhlA31AXC4wlUUSfUD7dAdfrht9QM4LG9M/In1AXEJ+mI8jfUDCfYd+tSN9QLos+mSfMX1AaAG5+nR+fUDAPs87ZoR9QDqrpdWUjX1AFI8Mo/GSfUBlUjCJMMN9QHBCJH/mxH1AdGUOv3HIfUAUumxlkvV9QMmN1X0yAH5ATZA45XgEfkA26yAb7x1+QOGBvHg4H35Ah9jpakkjfkCpgCkJqCh+QGFz4XE+L35AeDjeNZNVfkDiWJmDKHZ+QChAc4C3e35ALH2WUb6DfkCm/MtCFJp+QIyefQEjnn5ATWipUsW0fkB8JdKuIbx+QAp3JkwsxH5Aq47+CdTEfkD8li4KdMh+QBui0rvLzX5APBm8fMrffkCSKlje1e9+QFxLUWC1+35A2E/zApYDf0CqsWKCi1h/QKgmt8/mXX9AI0mKoitjf0CvMx7ItnF/QGXA3tCzgX9AZNNJRF6Pf0CahxQEY5F/QIhcQLBjk39Aliu2M5qTf0CJ0D5AX6F/QJpjW09Do39AepQfJJiof0B/z5y+VLF/QHitOQcsvH9ATJQGLMTTf0Cyv7tf29d/QO3ZzEXL239A+UikktLjf0D83lPH9vx/QGz1JUGIAYBAeKZ/qDUEgECyHaDp3AaAQDpZNyFMC4BAmF1jpjYMgED6DiLhRx6AQNZyP7MRIIBAngbPMeUmgEARaHUb+TSAQNhkggGrQoBAqUo0kvdIgEDYPNLc51CAQPCsUi8UUYBADXNKFg9ZgECcoeyl8W2AQPoVp2gqb4BAoNV/1PVxgEDm3/JDKH+AQHks+0nCgYBAIxUT2cKFgEB1EMTXHY+AQIh9PIsGkoBAwOSLGB6XgEDI6C9xB5yAQAWBJ3ken4BAQosenQKigECO9m9XsKSAQK/I2qzfpYBAUKC8xzWmgECvKrQu46mAQCBYkCv6roBAmDRmfxOvgECDrCZvsbWAQNZ7TaK0uYBAoiUJMQa6gEAjfHqNsryAQIAPVa06vYBA5FUhNLi9gECq1nB4X7+AQEos41lmwIBAeq+o2TTBgEA8HFxeUsGAQEaxToMJwoBAwErxDu7GgEDyzNM8qMeAQBbLRVpTyYBAnNjLmNnJgEAil5TMzc+AQLamC35M0YBAzCtZtGDRgEDZrb47mNKAQJUMhq3F1IBAlrb5CmPWgECMjtouStmAQCD480DB3oBAswZE2kPhgEB0ZCIjU+GAQD7n32dr4YBAcsBUaD3zgEA2z24vaPqAQMbKcghr/oBADKknrT//gEDgqZVIQQeBQEx1zPk8D4FA2Ebx/1EegUDWk1mrNB+BQIShnu5UIoFATNmLkjUngUCCFRReMC+BQAXyz1+4L4FAstYslb0xgUC0Tcj9KD+BQA5aHCpaR4FArrLM7gdKgUA8Ra16tUyBQK60uCnnWYFAsrHgjadcgUAuLfvw8HGBQHLEdShqfIFAhCvVOW+GgUCeracgBY2BQGDr0ERVj4FAWWdpQbGPgUAMpNeFEJKBQPc0jvEUloFATuRsbFSXgUA2Q8a6UZ+BQK7LQj/noYFAfYedclmngUDZFDstbqiBQL8D39FKr4FADT60CAmygUBAxWlxI7aBQFvNGp4luoFAYvxD+ke/gUC8KwOA5cmBQKFhdCVfzoFAiIOvuH3TgUCYM4J4p+mBQHZ62c7I6YFAZprClJbtgUAYkOOcyu2BQN41xdqY8YFApn/Xc+z5gUDuQPfV8P2BQP4XDlaE/4FAIJ3NlfUBgkBmgR93MQKCQNTrb7HdBIJAyQeAS4oHgkBCNZOJBAmCQB3gdTfYGIJA7ErskdAegkAKOpsR1yCCQNGq19PQKIJANhOOAqQwgkA7nn9e2k6CQOJIsADUWoJAwyJVxqNbgkAY+ybNNGKCQCiQROdlZYJATQs0zjhmgkBKYLcz3GaCQKBMOPH+ZoJA5tIs7mhogkDVpHISm2iCQDHl1A47aoJAKjSOSTd1gkBl7Rwf6X2CQKi3RTzrgYJA5GVbU0OJgkD6aNT/Q5GCQFQ6ndk8mYJAdRRQ3A6hgkCYc3ypOqGCQF0kNUMLqYJAb5UiqDWpgkCyjrZVCLGCQHzaGVl+2oJAu9Na54HegkCeIO4+r/mCQPg25jju+YJAJXj9m3kRg0D6rqPseRmDQC5mT8ZyIYNA3LnCsIohg0Ba4i3ScCmDQJx1drf/K4NAtZWmh2sxg0DrR/N88jODQGrqU0qgRYNAJWM1qOSBg0B1veeyXJCDQB7I/p+oloNA/Yx80Gapg0AVcU8slfiDQFNUWikHQIRA3i1BW/9ohEBz+OrwSWqEQOZerIRLboRADmyAuP9whEDOs716T3KEQIjKbGXKd4RA6m61BPd4hEB/O9dFdnqEQCCQulwjfYRAooDk/M9/hEBmse5zfIKEQFiQnEsohYRAULpvitqHhECZjmoQcpKEQGWXpN5vooRAYtRt4B+lhEARFrmB0KeEQBCEHqVYqoRA4mj05naqhEATOKadVayEQMiiURJXroRAzmD7dVawhEA8twEDVLKEQHgyPhZXtoRAuJ76cyHFhEBxxwsO0ceEQHCBakuAyoRARDM6kBXNhEAWqugQatmEQLI/i4Jq4YRAVHHxB2LphECuMFt1NfGEQIjaT0tj8YRAWAPv/TT5hECSzd0tbvqEQPjQkAsuAYVAWJ4auPYUhUCCCzZyODKFQF6CUDw9NoVAlF2PB6s+hUCSTzFxTlaFQFmvyFKgYYVABqzxAY1nhUBzeXB+oGmFQEo+gor7boVAtnlscphxhUCBQ5AOAHOFQC1upxy1c4VA5YokJ5Z5hUA/ZuyckYGFQOC/3V/cmYVAqu1dAd6dhUAKjjjSo6aFQPDyQU4PwoVAAKuP1NE+hkDW3rfL1EKGQLB5nnbWRoZAXlu6Gb9IhkCtcsC5b5aGQCKs0TMnuYZAemAZ7brXhkB8YMU+n+aGQM7IkVOf6IZAJWWGm6DqhkANzGfZnOyGQJJOoCGRKYdAXKBqr5Exh0Dyyka9iTmHQM8Ao4JbQYdAvLOYHY9Bh0BxIgMUfUmHQOC0OwpfkodATsuNgGWWh0BdlpOx9KGHQJC/naT3pYdADDtynMexh0ClauOIZLOHQLSBEojHuYdA6t69l2m7h0DPG15dpMCHQPx3qsPCwYdA7ogaQL/Jh0D1fCFwYP6HQKaDftNjAohAXuZlonAGiEBgMu8cegqIQJgJPhPmHYhAhbdBwwoeiEASff1b7CGIQE7r/I7zUohA9nFTPQpziEC97sO6YeiIQA== + KBZXds7jZUD242ktdYNuQGaLOdoMYnFA+0+R6hJTdkCIlDsLkNJ2QKXl9/XnYnpA+61tPmtkfUDDNrTgP/N9QIxF3PLrMYFA/QUlyeE6gkC3b171N2qDQP00E/ONw4VAt55MH+TyhkBhYt0PGtyIQBrMFjxwi4tAYZHLOcZkjEBF9pg+vMONQGHAuWNy7Y9AR2OvBOqKkUAbOM9WL8qRQDK7oSlgXpNA6cQrWCavk0B5z1AkdkKUQGncIm18c5VAKlE4mZ9OlkDp8xmC0jeXQKpoL671EphAmwp/kBjEmEBcf5S8O5+ZQOSMv1w5IJpA+qEAXl88m0DclovRkWObQFyugubnJ51AV8vwWZs8nUBuTsMszNCeQNzFefs97J5AkDKUHYmOoEBHbu8EQpygQNL4jwVVKqFAUL4PKLRwoUD2ObBrZdihQHT/L47EHqJAgcRQbHhmokCYQFD01MyiQEFQzHajSKNAioICYfUSpECIZHtxuSykQEjw9nvkDqVAfMS0zRVZpUBsek5574ClQKBODMsgy6VAYNqH1UutpkBfvADmD8emQKfuNtBhkadAUf6yUjANqEBnerLajHOoQHU/07hAu6hA8gRT258BqUCZgPMeUWmpQBZGc0Gwr6lAodATQsM9qkBZDG8pfEuqQPpbRknmY6tAspehMJ9xq0A92QqatzusQLrnwVMRRqxAenM9XjworUDr7QKY1TutQHZ4o5joya1AOv+4aGcKrkCaucP++HeuQJOK62+K0K5A80T2BRw+r0BTFmd6tbKvQFnoOIgjELBAlmttGmVcsEA5rnYNOYGwQKgwGZlqlbBAbtHNzXb6sECixlUiSAqxQGhnCldUb7FArICuG4u0sUBILUjcaeCxQPHF/puU+7FAKPOFYX9RskCdC5gfpo6yQNQ4H+WQtLJAfdHVpLv/skC0/lxqpiWzQMIWJiXFRrNAB1x2pc6Ns0CUxJrvu5azQBkhIiTUxrNAK+bNotn/s0B0ith00Qe0QL0G3tXhVrRAVFAW+uZ4tEBmFcJ47LG0QMLmzi/kvbRA - + - qSqSRDUzpUXeHwNF9ASZRP1GLkfkYX9FgKL7RHYVy0RiFlhGzewcRcQQDEfmE09EG32PRMJ/UERE3hhFL8PCRF6WnUW4kU1F19RlRZpViEQ+9sJE5+STRMP+eET5WExFwbcWR/ERnkS/U1BGAgiTRYTMkUW5woZEhJS9RHscykQiae1Ebf6tRjCpnEQsjaZEV18QRbYSiET+GYxFRTqzRJR7x0TxwaFEQmRnRGj1ikSzycNEu/pkRTBPEEYtEaFEZRa5RPLpfkQAbFhEreuuRNn8dUXceo1EWBmWRKrdAkXh6hRFyzpeRBFdbUdW5K9E69PnRVHtrEYcHgFFdQgNRUI42UY4eaJEwKPARLCvVkVoP7FEqfwGRRo4TEdy5sxEV5U/Ruz2z0USpt9FO/+aRHkQ/kRxC6ZESzWwRArOa0Qo4GtFDc8wRWVR70QaZqxFbvuIRAg+JEUH3YlE1gSERQLh60WJltVEGFt5RNJEAkZMlOFEjedFRU4jjUR7g3xGdICxRE19tkQHfHFEB/21RGtZUkW9eIZED56GRNXu1kTjSYZEKwaFRIt+gEQBKYxF+BSLRCTJcERxBMxEJncnRVh+KEbOOPlExcqIRZD50kU+Z5VEk2qdRRTvmEQ7S55Fmwo9Rys2HEVxcr1EQ0vZRMlRG0VBV9lFJnSSRcBClkVKvvJEmoYXSOEOwUQc1S5FzV8bRptgl0SCV2JEPrKaRgVqGEZvKiBFdB5BRRtPo0amHIpEcLmiRHZE/kSBxrREhL6gRFl6kUScPdpEAOOiRNljBkXL+45El6KpRCKixkRBOHBEWch1RNOlqUW968pEvAwPRlMBokT3IdhEPSwiRdy9Fkar+wdFDylNRWKwtETnkIdEyMJvREMElEQe66pEtiQFRWKZ6UQDT/hEhiS+RPnrhkW2dKlGxpQKRUWwFkWw7UtGo2msRJ+azUXHTshFseH+RMQPi0R7colEtPj/RapFpERIyddEf1qZRPB8v0QCgfREIvCZREUDbUb727NFBnilRFR4k0R5d7tE2OIbRekRAkbuiOBEVFCmRKgBt0X822REBc4LRn44wkVL6KpGZJXzRFnA0UQTaZlFHzjaRMgvPEVNcCxFJ1eMRO4YekSIRylFgbNiRj5KfEQCJZVFhcnjRAb5D0WRj89Eq119RfE8iUTtYXtE+m1IRQtJtUTTCSdF8wQTRQ8ogkb1fllFubDaRFR0hkQ6eH5GOSkGRvYi4ER2/65EupCbRBoAB0UVyudHKL1vRM0+ekb3zj1GJO+VRNsPDEY6dLlGRWmORRtOZEaGMTNF6PifRP5TCkXkT61ElFbaRKZ1FEVnaqdEz4YzRRxBA0VSTrJE6cf/RFCaPkSihoJEHWORRCDOnkchBMVGueFuReMUgET6X4RGziAARWw1HEY8B8hEWFG+RFrnxETzqDJFwd13RI77hEQFSURF4ip4RJFgc0TfaMREhTY5RvBfLUZn2JtFrxxBRbYly0TOXV1ESZSTRDJfIEV4e7xE6zHmRLE5S0XXZNBEwgQ2RQ5IyUUmUTpJm2uRRevhi0WGwo1EtZQiRZX7lkREvTlI9cQERwmRi0Y96V5FTFOuRNmkTUXuXJpGwxfiRBaPokQqFIFE8i/nRC7QpUXO6vxEfGqORMQZwETlVLREDkAlRaB6DUWrwAFFKMqzRPlZnkQds09Fy5rXRdYChUREHoZET9OURTXN4EULF9NF6TKJREoo2kQyphJFEhYqRZMJa0XppZ9ETaesRv1Zt0TsBoZEEUuMRONuAEUluetEpiwxRd8ciESIfM9FgX6DRJhZK0VgDhdFSXYdRUgW0keXQJ5EkPMuR7Fs40X5TdJEwf6zRDGbsUcmdL9EBBrJRthusUR7APZEhEbORdnMA0Uzd09H1ndZRmImvkW2rp9FN36XRFLbhkTpQ4VEcYN7RHvpnUQJQKJEoyOmRBtKgkUv0pBE+xmIRCZXikQ2RW1GA0SURAmCmEVfjPlE7pkARggFGkXunO1EK6XORBhoAUaKa3NEEOspRaqV50Qd7qxG0IVFRtNaY0WEc4NE0QjIRBFx+0RluIdEZ5rjRDE+LEUArGNFnIGKRDujkEZ2qGBEBXMwRh7Pv0WZto5FR+qHRQTOcEXvxKpEM6S8RSNMfEbvT5REmMpBRhYRtES9vIpEFJDqRXaKTkUmysJELMaYRJC3pkTJWkhF0TKORWNdF0nr5nZFRxPKR6PIlkXFKJZIB38iRS0ksUePpd1E7nHtROsUuUZsOHpEQvpKRsEDFkXIQ9JE7QaDRtvLo0SYyqNEvkAwRUdPvEUsvJZEFlPDRElJSkXypcdECu18RKh2iEUEBvlFixq7RbUDtkTEoA5FnOpfRJ7hBUWtDxhFrKmPREEMkEWt0eZEgJeXRVuxnkTdd4dEr/52RA9XckTJ5RpGM0J/RZdjnkQ4WH9EzyyMRKcmCEWYBvBEuq4IRa3stUWqu5NFNRRrRH5OnUQXHX9EM19IRVCr1EVE5IdF4US9RNL2eUUK7qREF7zhRPA/KUbtDrtEEEDURM6jUkUjHyZF8TfSRPFlDEXbXHJE3p8iR7sgZ0SLgWpG1duyRQ/hi0QmP0tFzx8jRe0OGEVhYIlEkohvRE5lZkSR0FBE9lGURFtg2UT0ioREMt/bRMzLQkVaDD1GWp2hRf0oNEUCEAdFdldkRNaVqESc2KREfjucRB7Z40VdA8NEDibCRH5IdkQBpoVEB7OwRDxZVkSM9YRGFEJnRP1s3EWAELlEUYY5RZSXzUXT9RFFK6qVRphsG0ZpdoVEZTmmRK7ug0U+orhEEL8LRYAyfEj7AZREkqenRDf7FUV4/OJHuYxyRDvPZkQSk3FH+hJ2RfCsqESVLqVEkc1XRAQfUUaUyWlFwWOiRaW/tERFhspEIj/BRJQd7kTXZI5EviFERlzbPEUD1S9F8PKFRTF/l0aLyB1FzeFdRR2tkETd2GJEDWecRGB89USQv0hFLpk4RVLbEEVLdC1FJPZ3RNlsckQXNIlEss9wRKauHkU1TsFFAEy3RHp4hUV94NNEnloCRRX5sUQOXB1FGWNaRAzL4URUHe9Fl+BjROQp/ESrvNBEX9ZiRDSd10Ttu2BEUqSaRBinGkUCXBRFE/4mRa73MEXAW6RE5cjyRW3QkEWOMVdGK0mfRKEADEa7uoZFdrx4RG5Z+ETO+xZG1xZeRDWgX0Xj9F1FMpegREllp0R2Y9pEg7CVREpR5kWqQatEIwRkRRT9q0Ri3lRFZ+2tRGiyHkUMx9lEvs12RMAgaEW85ANFVGvOR0/1P0doOuBGdKjGRW8m80UyzeJEqPoFRaKJx0QJphNFe7MDRRXC0UR30IJEX0DmR/ToTEe5/uBGYp7yRDftAUYQLXlEMGA+RTr7YER+9HBEQfTBRMTArkT0zG1EotGlRAEQhkSvroZEE223RZdUE0Z2d7tFJr1ORY2gC0ULSyFIAQKVRLihIkgf+adHSSQMRyRzHUbi4wNF+8CYRHxRkERpMq1Fqr2ERViyA0XUMnVEqLbgRHjrXUVBlw1G6jR9RTdZX0UqmwxF3C+HRJPxD0UGH5pEYK3sRIZNCUdZYHRG6NgkRtVjwkVOAmhFEXH/RODrqUTNmt1EuqWKRCBnw0T2hIhEO3h5RPQhv0QpF/tGT2SGRJDLa0bjcKtE1t8NRpvHZkTLpbRENjwdRW5TkEQ2lWRF9I8VRQr48kS1Lr1EwofZRfxql0XfzcdEp55ZRMNsi0RBXeREhwKfRDI0kkUVfE1FwZ9dRQJEyEQG2zpGzqC5RRQlrUV5VrhEpEy0RGMei0RzqIBEzzURRXNYb0UO88xE1WL6RbUMYkVkQopFr1OwRDNggUTU+CRFbCW7RAC1UkUzRTZFqn+uRNxft0SfRqFEwQpwRGZ9YkSlgcVEjxW5RNTDbEQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - zqn8/VHBckAgFcgHccFyQDqmI1DJwXJALIa/k1LCckAS1Cpmp8JyQOTRX/flwnJAxCc0yjvDckB2L5TFcsNyQNorbhhaxXJANIf46ADIckASJ6N0Ws1yQD5LGel70XJAYCeIZQ3SckCigH2sQ9JyQL5qbQhL03JAxtKCM3vTckAn9fa1j99yQLQscRPR33JAglKWf7jgckBUBXYqTuFyQMTZYDpQ4nJAcktjNI/ickAQqlWDJONyQBXl/wLL8XJA0CYx17bzckBxw8vvofRyQMcV4d32AHNA0B6nhk0Bc0DsPc3VzwJzQNxqAjP7A3NAR3Yq4bwSc0CQC6pJ+BNzQK/78SsHFHNAMaombfgXc0Bi7znweR9zQAxQEIs5IXNAhNsNCRAjc0CWQodt0CRzQLTVFzRIMXNAh5AUVw0zc0AnUVZAojNzQMF5HKTVM3NAPLwEyjU0c0BuF3aHekFzQIOZ2US6QnNALcgh9XlEc0CTe3CsnlFzQPwQ4AQQUnNAqXT9tEJTc0DzTmp2pFNzQFwBvz+FVHNACn95Uv1fc0CG9+wojmBzQNfe2dAdYnNA/DoaAThjc0C80AYDzmNzQLZZkSksbXNAMx/XklJyc0C8arCdaXJzQNp8tL6FcnNAOECwRbxyc0Bq/dg8tXRzQLpx1kNMdXNAZHHxhWx2c0DDBSTDwndzQHQ6jPDQd3NAI0OtTt53c0Bcj6g5LX1zQN67fxB5gHNAkaORtQ6Bc0D0KHZLXYJzQPpY4xmHkHNABhM0bk2Sc0Dy1jXVYpRzQN44nZv3lHNA4/udgLmgc0BMl4R3WqJzQJ48DbEno3NAOgoknAWlc0BqzaMRgbFzQCjjdH22s3NAdp7CCQy0c0D1T3BW+cBzQOjeg1DRwnNAO8hjNSbDc0CAAlUs19FzQGrJexL403NAzGLXyeLUc0Bs7ePeOeFzQLON6c9l4XNAcTfVKuThc0DO4s6deuJzQGMDviQO43NAji1tUTHzc0BQ4SuSNfRzQKb0m+uO9HNAEe+F60L9c0AEmUZK4wB0QACbE3d5AXRA17HMbSQCdEAGqcnIlRF0QKip1jFNE3RApyS7vOQTdECNS/xHTCB0QLecePpSMHRAwPOR87gydEDsTKnLXzN0QA68L887Q3RAXDvSVWdSdEDhCZDpR1N0QMlkTw72VHRAJm5rLY9VdEC2wCVo3Fd0QI+iXXc3XXRAst+QmLhgdECeEQzn0WB0QJ+Osp4JYnRAGlraQFNjdEDi+DgtTmR0QKVUzFMjcHRAliyMxUFxdEAkHkLXyHF0QOqhczc6c3RAFHLsXTh1dEBgkaBz+IB0QA2MhsFOgXRAwmLpUUqCdEDatXqzJoN0QHCvjjkWkHRAiUyRGMKSdEBjbDH8UJN0QNZWsPDvn3RAQIeCXdCgdEAJxXTXuqJ0QGrdLOARo3RAhy/j9PyvdEBcfkUHcLJ0QKox7PHKt3RABFwfwRG9dEAjwN/YJL10QJrXnGvev3RA2ayzhHnBdEBGxNyTucR0QHZ3JkLJynRAX1GVxPzOdEBWETLo7M90QNoIEwzi03RACkIZIn3UdECGFU7SzNR0QJJlKQu74XRAQJv+rGbidEDOyT25T+V0QIiNAn+n7XRA0FjEpo3zdEA4UBXApAB1QH4jQGddAnVAIN9z35cQdUARGZPWaRJ1QCUHX38kFHVAZbP4Ap4idUDyIiPpGTN1QL2gxDTNNXVAxHo2mfk3dUDqhnIjVD11QFeZz+kkQ3VAOGChmO1PdUDjXEHaCVB1QDwQXqKCUXVAwnbenU1UdUDChkh6dVV1QMyK1tvaX3VASnL/hQdgdUDk577qOWF1QNC7Cn7zYXVAYfAXPdJidUDO6nXpZWN1QAya/Ol1cnVAfKF83XNzdUCp34ccjXR1QOLhZ8B4gXVA3Ahz6q2BdUDO3I8tp4N1QN5JYDqahHVA5l/iwY6QdUDeDwQxPZN1QIX0XTO0oXVAvonBVlywdUDAoMQykLB1QLDcIfDOwHVAJKhE8/fBdUDMXsMRStB1QHpppGo80nVAcsnMCM3TdUBqC6yxB+J1QE7HLmCs43VA1ZnHWLHrdUCSDh9YTO11QOiT0NSm8nVAqG9oIPD3dUD2QKGoo/91QIG4udNIAnZAHAaasM4DdkDZ2/djTRR2QDFbluUMFnZATQi7pIgidkAtNh000SJ2QPLUBoo5JHZACCifvpAkdkAOGka5Sit2QGUmyW0fMXZAcH26SCUzdkCQVKwtUjN2QKiu35KYNHZA1KbOQk1AdkCUCnnHHUF2QPb3z73JQnZAJiKqaHpEdkDZ+yST9Ud2QASa0XL5TnZAUu0S58pQdkD2gbJxD1F2QLqljE6rUnZAIguPis1UdkC/sph6HmF2QPD09+vgYXZAqIeLzFFjdkCZMk5G5WN2QLao6oDaZHZAIplvN1lodkDUYNgiZIF2QKgwq8SRg3ZA7vl43naTdkDj1Vt8w7J2QNOMyBkOtHZAcsBP7nTAdkCrrsmBTcF2QCOYRBWLwnZADMxc/8/OdkAmQymqy+N2QP6jtyaT83ZAkplwrTMCd0AwzEUHAhJ3QDRaEqoQIndApjRjE7okd0CAuGJR6Cd3QKzhbSRCLXdALvBML50yd0AOhbzBpTN3QDqZ5ocNNXdA/GN4IpRDd0A30B3w/UN3QGDoj+4aRXdAIO8hGwtUd0Bk7ZcQKlV3QLjEk3ZdX3dACHQD9o5hd0BiCQmYoWF3QPTn+yUob3dABgdvJYJxd0D2BCPFn3J3QNp50FX4d3dArnkkMniCd0CiWdckCJJ3QIA1k3NMlHdA8ShAbAqzd0BIlxEscrt3QHBCPih5w3dASigQMn7Ld0BG6tZBj9Z3QJaKR9X14ndAZNLTbibjd0DdXb9yaet3QD4hozdU8ndA7v9aIH34d0A7Ld3qRv13QP8SQKyeAnhAaBIL3pADeEAokKRq/gN4QFMC46HoB3hAoOVluvwHeEAWW/5dxwh4QJaJf0dCDXhACmRoLaESeEC9fzyzgBR4QIW3oVtMFXhA2C5Y4m4ieEAeIQHIiyN4QIL44tilJHhArFMHOUcoeEBP+OIOny14QG0QSRtpO3hAqhT+XA1CeEA8nvlBe0N4QJQyjFQRRHhA9nx3XHpFeEAzzfsFy1F4QFFZeuUWUnhAuKX9PpZSeEDyTZKOHVR4QKKNhVCHVXhAwkTsyudXeEBAHQS5+mB4QGY9gwu3YXhAH0vkLiZieEC0hK8WLnR4QDhFqkc5dHhAcvnP9ot0eEAIS6z7qHR4QKgKE7vGdHhA4E9hqOZ0eEAMkfjmcXt4QD00jbekgXhAEAv3X3qDeECHNgAdmoR4QPoR+qdPiHhAlsog06iNeECtlYwwl5F4QNLCmwzuknhAEJWBVgSTeECGY8eMp5R4QJWxjk2zo3hA0JZm0K+keECr2a/YoLN4QNxSzDjTs3hAjh10sje7eEA9bkXA3rt4QFrG0IjPwHhAcjnZJkDDeEDDdbJmB8V4QEjJRQEPx3hATX7cUxHLeEA4HQmGLMt4QBSLbCb4zXhAsp15iBPPeEBojFyqNtN4QG421Bu41HhAt1p4hMXkeEA2To1xd/N4QNQxlOwB9HhAQUJPN431eEBukbMqmgV5QPQn/Yy7I3lAFBY5IrIoeUDk5xs2Di55QM0pNUllM3lAMOJLZ7gzeUCQDVeG4zh5QEr85DYsO3lAwKXuy/VCeUBYhbEAQEN5QKOZ+62JQ3lAD2kbQvpDeUD6qW2fzVR5QGogySXqYHlAUdR7X0FyeUCGD9Cm5HN5QHJEYT1OgnlAJlO+u/2TeUDVA71bnqN5QJ4JPCm/snlAsZ9MdozBeUAWnufcQtR5QBrCk5nM1XlAWEuA2pjfeUBA0nS0UOR5QHjmPleQ63lAC0LBF5fweUDrdZYEEPR5QAoTS2X8AnpAvGEvjGQDekDsuuKDAQR6QD2gpcj2BXpAdqoD7ggMekBgxNd7DhR6QHjJjbHyIHpAoNZv/T0kekAQfC/5KTN6QEJjUZAMNXpAI6vvQy03ekCm5WWwGkV6QFHZNj/PS3pAnKTs2ylVekC0How2I1x6QIDDUdMpZHpAPg3+4ItyekDWcXBzopR6QOoNbLIeo3pAdjVdMCWrekDqEai2FLN6QCZt4hgNtnpAZhc7dhu7ekC64JLO+cN6QAbzCDcZxnpAssZ1TELOekAuL+qg2eJ6QGLVtbw37npA+dURw0nzekDsgaSYqvh6QHICL/Z5A3tABPRp53sEe0DZ97ylwRB7QOcF/R3FEntA+Wg6EooUe0CM2W2gTBV7QPZnKnwcGHtALqq2QFole0BGiGdOazd7QKiYsVzNU3tAkE75EhJ0e0CSy7hLQHR7QOD/JHnYe3tA1L3fIgx8e0AQhkDCEYR7QNl0Q1kjlXtAcsDmpM6de0ANwSLgJ6N7QBB6LZAwpXtAvkrHRWOoe0DB9WDkg6h7QL65E0/tq3tAYwDT/86te0AdqvGz2q57QL71V9/mw3tARqCxpjPSe0C+0/lgndN7QD817rcm5HtA8/BCF5fxe0Cov7RmjPV7QHBnPD3ZAXxA+anH72cEfEDnXzNKmQV8QJIBx4GHEXxA2BH2r9ERfECsn+99dxR8QNy9marpG3xANgsCCO8jfECAf0DnIDh8QBCEo3XNQXxARNBB11FIfEBUVKUqrE18QMQHF2faUXxAGr0kAQZTfEBipwWlfVN8QNqr8B1TWHxArAwi8lqZfECMlk9Isp58QBShJJEJpHxAxj6mLmGpfEBAryDfwLJ8QKdt9iB2tHxAZMcyqGHTfECAesGpzdV8QCrBxAxx2HxAJPc94rjbfEAsOyzG9dt8QLOq53Mn3HxADLMZU0/efED9MWoUWOJ8QHQSIrsT43xABuZxPPvjfED/AW2pKeR8QBYEa/qi5HxA/gMtFmrofED0kJ8xAex8QB1VG1gV8nxAgCgXDVTyfEBXZY0pB/R8QDyJxngO/HxAkG3aEQICfUDy+ONxSgJ9QKxk4eNjA31AME8dJE0EfUAiGP95RBJ9QHXOv0uuG31AKj+WCo8jfUDyN0OStiN9QF9Guueqf31ALziKWmWEfUDPV66RlY19QCSW3xHxkn1A1n+wR8GafUCCoEPWl519QNuLbh11o31AZHV2hS/DfUAGf8zS5cR9QMwFfcVt4H1AQmGNRNfifUCOaeL/kfV9QI8JSkozAH5AqOcjA68dfkDOUQWQ7x1+QIAqlIg3H35ASP/0ziMgfkDlaUXCSiN+QEqNfvJ+I35AzkKqW5EofkCHMP/K7y1+QLsN378/L35Aobt2D5NQfkDHykL/jFV+QKK0742eZX5AaoigcpV4fkAeSevWt3t+QJR+4C+/g35Aq1pBaLWHfkDjYLqnyIh+QHZ3CkHekH5A6Gf0IdyRfkA4K1S/PpZ+QB5h4qUOrn5AUGyXFba7fkDGHC6/Ibx+QHccnKQlxH5AFLSBC9PEfkCJyQsec8h+QJwZ2i7NzX5AUJPkoSjTfkA8SxHOkwN/QPKpXtAYDH9AlcTNWo0/f0DOE3VaXUN/QArIbg98T39Apsf23IpYf0B/ssuj411/QDZQxos+Y39AkFnIro1of0CglQrjeWl/QIaf+aCrbH9AajLwJ7hxf0B8UayJroF/QMR70AOgg39A0Ab/UlmLf0AbKQt0YI9/QBgwjTJikX9AEDxntrGRf0DoeVNzZJN/QAOOemWUk39A5NiM7luhf0Czd2L5PaN/QHKOoRWfqH9AObz0u/atf0DtywexVrF/QITi0A/E039AvJ9PxMvbf0DInRxx0eN/QGqrwT7V6n9ARxsfDogBgECWYb1fQgOAQH6xBPUyBIBAIN8w1N4GgEDYimTJhwmAQBAJTePIGYBAaupxbOImgEA26R/CjymAQCIRJ/f5NIBAeam4spo7gEDPU7FW9kiAQCNqtVTXT4BAKQ3HWOdQgECCUB4FFVGAQEIN6F/rWIBAeEsAAQ5ZgEBOqKIyPGaAQMo8IHDwbYBANBDcnClvgEA0IxEH9XGAQIo8eWGHeoBAXnCP2MGBgEDG6moxKYeAQJIcnhT9ioBAtcn+o/OOgEDyDnrhHY+AQJlHxakEkoBAJDGGtiGXgEAsATzS9J6AQGhDNNQbn4BA/D27uwOigEBW3713gKWAQPbMlprfpYBAdCeWMjmmgECM1x5076aAQKY/Hu21p4BAUO3VWiOpgEDeMCb7hqmAQIggMu/iqYBAQ/ZZWpiqgEB2xl+Y6q2AQFBG1PcTr4BA+gyacGOwgEBCWKsT7LGAQNLxKaewtYBAFhunarS5gED4FvAOBrqAQJ6u7ylOu4BA2f+hjLK8gEDzZLaLX7+AQCR13HJSwYBArGSBOiLIgEBGQ840U8mAQDbMIlnZyYBAjHPtTAfPgECJ46wycNCAQPQxDw0s0YBAMgocQ0zRgEAjzCiiYNGAQNgBSmhJ2YBAH3FI6cHegEBACeakQ+GAQGa8Y85s4YBAyg+c/PXogEDfZj5MS++AQFpaYoFp+oBA3Gb5BW/+gEBA0ITeP/+AQH4fWhZbAoFARIhaj14GgUCi4+btPgeBQDCu6ltsCYFAoN8K4z0PgUDdYQr48RyBQJpGrflRHoFAtGnKczQfgUD1gcf4sR+BQGCSlwpWIoFAaCQnTjUngUAqVvZ7tCeBQBnLRSpnKIFA3uhOajAvgUA9tI2QuzGBQPzkVKB9M4FAsh3Ypig/gUD7JvNykkKBQAPRn59aR4FAmeE4IwdKgUDSDU4atEyBQApVeAahV4FAKtUxhV5YgUCceiXJ5VmBQFtXkOroXYFAHNJLDJVtgUAeUC6rYX+BQMFYTQ8GjYFAapymklWPgUBWg7wJtI+BQPRyr5sQkoFAL5odZGGSgUDaXkrdEpaBQBIW1/pVl4FAAjKrcFGfgUBefLa8nKGBQJrrG5fooYFA7OqABk2igUAyKz1KbqiBQBzFVV86qYFAJCpJuuypgUDE3E0hSq+BQOrUizgjtoFAYVzh7Um3gUBKzyZ2YLiBQKrU9H0ouoFASi/zGVPAgUDi/Rtg5MmBQAZpsgLqzYFAYsAm36jpgUDvLbqdyOmBQIf/GTSW7YFAmB1TTMvtgUAEhn53mfGBQPcBMdzr+YFAbGI6ZvD9gUBFJwcKhP+BQFDOqLUwAoJALGqSjt4EgkDILhZKiQeCQP5YMTkCCYJAElk1AfQRgkCEqN0YsxKCQCEIgnfYGIJAcpYJWtgggkCKo7wLlCeCQCRWuuzQKIJAjjwsdXw9gkDC3QseoE+CQNiguJEQWoJAUq2HOzRigkDI3pEZZGWCQIR3suQ3ZoJAtK2ozv5mgkCHGlxkpmeCQBkbdbpvaIJAXIO8nphogkA2XSe7PWmCQLjhkioIaoJAMq9eVzhqgkBn1mer1mqCQAX7gO8McoJA6n8/Jp13gkDolTx7UHyCQLKGzRPpfYJAitCXZRR+gkBOSS0aQYGCQFO04hyOiIJAsimOLUOJgkAwywZj6IyCQAKLrrrEjYJAxJOXR0SRgkBrajP4PJmCQOj//HJWmYJA4o+RcA+hgkCvmv7GO6GCQH4fg5ANqYJA1gGZrzSpgkBmyJrcBrGCQEp47zZ+2oJA9DXztoLegkCaLsVQVOqCQNWpbevv6oJABI1u2K/5gkCEbwz44QGDQFseu4aSCINAdHgUhnkRg0AERkVLehmDQKap1N1yIYNAfBRXHoshg0BMvFeQcimDQGBNjVyRLINAmLXXVw0ug0BiEvDFajGDQOPNYt7KPYNA1sQfUulVg0Ba5/6JSF6DQObR0fLse4NAGC0AneOBg0BC18tnXpCDQGp8/3aekINAwcHZVFigg0AeAmXtL7mDQGreowZ6wINA2lkeKybKg0C8HBe8GM6DQCjv5BiU+INA9GbjwQlAhEBo7tmLrk+EQJFPOFfOZYRARmPGM/9ohEAUHF8TSWqEQDZfvN5MboRAtqQ5O/5whEBDCzDiRnKEQMIzBqEHdIRAOubqV0d2hEAPxpYWyneEQKTKmLD6eIRALuMdH3Z6hEA3k+HoIn2EQAinsoPPf4RA5cqR9HuChEDAFLLCKIWEQAosxMbdjIRAhmWiMXCihEA+UcgVH6WEQOccBafNp4RAIY/2Z3WqhEBIDKpXV6yEQIqVgXRXroRAWG5OdViwhECOAJzF1LGEQDB0j5lVsoRArl/Xfde1hEASJsWPWbaEQKwzeTvOx4RAPt4jin7KhEDw+V+pFs2EQP5KlgDCz4RAHIGQx3TShECN66cpatmEQNrfvZlq4YRAz3Wf92LphEDPAhNRNvGEQG7QEalk8YRAShZXGMH3hEDbGRz1N/mEQNAHz1tb+YRA2lus+2v6hECYAW3MKgGFQAIokkA8NoVAMnwNcyBMhUDb/Gb7WV6FQPbJGDegYYVA5B7fcVxihUDIBar7t2eFQM/UsWmgaYVAbDJ+sThqhUBG1gjA/W6FQL1ascSYcYVAb+kD+LJxhUCsxzMDm3mFQASOf6ClfoVAZiiZAtuZhUDy1gkP4J2FQGsm9k+yooVAcIspltelhUDkKE23oqaFQNxysKAsJoZAyAubW9A+hkB8G/CL1kKGQIYO7ta1SIZAG0OLTcOKhkDulImoJrmGQPtgxXfTxYZAgs1lap/mhkBGaxi+n+iGQFoX3/qi6oZA/XHDQJ/shkDl6g3lpO6GQPogNTSRKYdAHU9u35Exh0BAuTTJiTmHQCxunO2LQYdAfa4IpmKWh0CEknsi8qGHQI7Jhyb4pYdAwG5mUcexh0DM+VzdYrOHQCDSpf7HuYdAqHj66mq7h0A8NqLiv8GHQKhafk9g/odA8IpzX2MCiEBn2re8ZgaIQMCc3df+BohA4QUOgF0KiECsYTycWw6IQBJ05xXnHYhA2WW/mOwhiEBoUOynRFCIQPqzRDTwUohAnKb0ORB3iEAOVsESKrOIQKQFkCzn9ohA + NrgMGZxjYkA/KJil8iNpQBu6YmAmQ3BA - + - SELIRASLakU4fpVEb2GTRPgALEcg/mFEuIY5RSPjw0RB6JhEBzuBRiPg6UR+mJ5EUmvURMQw+Uam6AlF3tx8RJjXe0QvN2VE9LUCRRgNikQeekZFBy9ZRXDuUUS1BR5FMhWvRC1nqEQ9ZqNEbF5LRPuwV0Xbx7ZG9eO4RaziXUXtf0FFbNysRNgxA0WtrbNG9F/vRMFXUUWNh+NEalRGRNFrhESKlKZErb9TRIanR0UxMx1FQOC1RaJi4UT5z1REP9G/RHRaE0UVFExEsKZoRCT6T0RkdtFEYVGdRDeaWER40G1H7wuYRMdsokW3QI1GhQjiRLTN2ESvPfNEDaelRMOtr0RvHwNFwNJBRfEqikSBzMRG3y0TRUiKMEVWfNREicIwR46F8kTvb0pGsNuXRdgjxEX4IFhEj2n5REq6gkSOY0dForsERb2KxkQhlxJFAZAZReeVyERYyJVEn8R/Rb4q60X1T8NEesNHROkBpURocI5EqTxzRXgW6UR5n4JECJNnRZtmn0QI1SxGfG6IRPiPh0Q61kxFz0lmRDQ+oUTQTbxEb7R7REbxVkScRVZFHS5jRGOJa0SZt4FE/HWfRKPiaEX71ehEvmM3RcvVU0RHQqlFOEtqRdkE0URavI9Fsc4PR1cYg0RVxMhFQsKiRJIMt0R9w8JFVPxVRCFOdEWR3IlFq158RICjl0QWUgdI7zPBRBtjykThs+BEBJkLRv+DrkbmNQBG+RqgRLAf00SfKJxGuO+FRKqm3USSt3REVpCnRBOg7URqABZFO7FwRI6q7URXwrpE2F12RElPfkQLhHdE1PN4RTocukSrKR9GxCJdRKqpoURe7M9E4DQNRjgCVkTEQxlFiz1hRVIpFEVahu5E2AKOREm8i0RXyaFEH+m9RE+d40RrFFREPe56RNJYIUXz37BEUEaJRa9eaUa3vq1EmC8fRTHRGUaro9RE7SJRRaRjnEVnLwVFHZuYRNbycERWBHhE4hWlRSsXjER8wrVEyJzuRJzjjES2fL9Ebh+LRPzbu0TlrHRFlMTFRJcEZkZkfARG2LykRCHP3kSQFhNGnNeHRLlZSkXfT9JEV3HhRRX3c0QuPYREeEyzRV2mwUVRectGKABlRICiG0X0XIpE8YqNRHkOrUUfclVFI1xMRZONuUQdJnREtCGmRC3j+ERIe1tEc0dVRlk+cERZVmRE+zx1REmbKEW59SVFoheWRETSn0S6egNFz9SdRLNO2ERTo4pFYm51REYXc0TeRjxED6BXRdLXkUQnoOtE1hL0RDOiZ0b9gj1FVJKRRNdofEYact9FeylaRQyOZ0UZ/dFHnbwHRbQ4nEc3xrFGhrJRRsgorUSuNIdEpL7mRKSOvETPZj9Fw4CMRKFkdEVi6BdFi5aCRLFPrEQJqgtFay9sRIlQhEez2qlGS3CCRbAsVkT4TVREA2/LRO4bBEWUaZJERiixRNaSdEZzT29F/kC7RCkujkRudd9E+iPDRBpCokTug7dEbEGIRLfCikT0UpVElxQSRT5EXkTbJ2NEbph5RNfLokR7uXJEfBt6RB1Ks0SVgwxGgeOyRXlaf0X7Ly9GhEfnRGbvvkTXqA1FpO5dRPiyD0WEycpEVxm9RAEofkQ+KZ1E0PIpSZ+BmEWkUu9E+SSuRDKI/0WdNXZFlHgDRXg3M0iarwZHRI2VRqG5I0Wjid5EmIZPRfJAhUZ4NiBF6AJjRGMWl0Q6VAJFxxmqRqhqoER9vbVEKuDVRaeGXUQ5ejxFcLCoRA4R1kQDQoFEnoSqRLRjQkQM1+NFoj2tRMTZVES3OihFyo7CRa0KvURRJl9Fq1wyRvONhkWbf1lFOQOmRC6kiURZs09E2AmiRNBxUkRg99hENSLPROodU0W9R5REp3iMRySuV0Rc9t5FycaQRPibckStxkxF4kh0RV0tvEU+z4hEgIyGRAaNtESv3q9E1yeBRD+eOUWHZk5EKFuJRGvHs0eaiWVEDBz2Rmu6y0WkcoREy/uHRJnVY0TA/b1HLp9mRNUtp0a+WQFFFRXIRJzflkXJ5wdF/guVRJzGo0RqCFZHEguARtQ6/0W4NKlFPzY/Re9MUEQTDXxEl/6yRAvKuETTMTNF788hRU7cjkQc3JBE8NxbRmzjTES09YlF/JEXRXSfEkYdxbZEejEwRccLl0TnuE5FmMNERP9OiERmmrlEg3kNRoprZEXNCttFqjF9RoR0WkYKP+pEcKS/RIZrU0VfpI1ECdSLRL1pCEUrmttEw7+MRGUOR0XDZjRFY6OLRQfZhUai5DxGeHG9Re4pMUUhTqNEX4WIRbdWqESTfptFW//QRJRZcERQm7FFMuhkRhjJI0avcIpEPMsRRcDXu0RVpotEbGeZRblJh0Xs/ZNEmkCHRAN+10QyBIBENFCERPtekERKsZ5EdzMMRc2dAEkIpxdFszOpRJ9mqEf2QPJEaWaESEdMnEQ+/YtEdRueRTsrj0dayvVE9o+YRvNSN0aOGsNEs5G7ROJ/f0aEDYtEDCKhRB40DEWi0btFqj7ARPXfX0WFNoZE4GLeRKXS0UXmU2VFew+BRA0RmUTQC2FEQmzNRB5V5ET04NVE3IdzRMBZrkQfCt9F+llpRPwC0UUd4b1EBCCvRHglF0Xy94tEZf+YRNpUgkSLT6hEW6WORGWKeUXax4NEERmMRMZzHEZOaI9FFY1qRCULn0SOhL1EGGVZRBAObET00FtEAIh+RJUW0ET4N4REs4gCRZoQ60UPNV5F005dRLQfEUWj5s1ET8ObRLTTrkRXQJJEK/wERhSCi0X9RKpEsXhgRMDak0TYMVJE26m+RSVbsUTu6Y5EzbLcRAg6+kQ+RxdGD31bRKXzxkR6cYpEiT0NRdqjy0SlBZ1ELjWGRAeBJ0WZ0LZGk7EURr9VSkVvHWJENgSjRXoEWER8bDhFSRLbRG/qv0T3RE5EdNbMRE4liET7UKhEp09ORBMN8UQSlINEdifTRA01sUZNlqtEdhvXRZY3pkSXkldFWdokRYMQ4ETAxG5EJgulRJW4lETVf4xERAq4RNErDEYoGblEkmW8RPdSfESjMZdExI2QRCV1oUQ3m71GpRDjRPH+jEQALYBE8NjeRFvBBkWNGgdG2FRvRAi0skTKBFFFRAWQRDpOm0TGmNhFwMp0RdLOZEa76aREGr4gRpxaZkUHOF1ISB9RRN2NxkfeE55EAvh1RImxXUR2RrJEo05IR4eChkW1dxhGOvgQRfeaU0WImbFES5PTRJ4RB0U/fQxFr++RRDWDMEZJGrdE7vB5RPe5OkVY1VNEQb5uRa7vnUTPgDlFluKdRvi270SS0wFFX5yERRcrg0SipmZEQ920RKN0oUS8gKZEvbEaRY+sdEQIWpJFqtdTRUKtAkWlwptEyH/NRGCjfUX/zbhEdzmrRFlNYEQfF25FcAfjRT23SUVabbJFvKp7RP3G4kR5QNpEeMDaRL2gYUQUfehEpN91RClOEkW2KlpER8dxROnYxkV4LglFGZrgRPBolURprvNEaFlARIcawkTpg2hE5UbCRC8EV0XRd+BEeWUMRZLqmkQS5DRGVRbKRSbvokXkcoFFPCn4RPh+p0RHxOBEgL+jRExra0S1qDJGR0R7RRRRcERAmjNFP92NRAs3mERjKoRE8NoSRvCzQkWsvZBFaokiRXJhjUQBkZVEvph8RQ0iZESwcqNEqDcjRX8eWESvA2FEwcmpRKcYe0SaspVEbru+RB+7cUSwSklECU45SDWQpUTswYZEQPC8R7d+SkecEmBFNeKQRWokPka3RepEaLCzRda0m0QVT6ZF+sRLRYKFYkTjUFtEokOQRBd7w0QuxVJELRQNSGWaiUeGYhNHcqVSRcqmNkZFh3hEmP1xRIFniUWbImxE/xzeRE4cjERmMIFEEyGyRKoiI0WulaNEoWiuRJxHfUTmYo5EigJeREmGlkTwt7dERdXDRAMmN0T/EkVEGvWoRX/N0UYpX5FGWykkRZ0XikXOHZJEIiwSRWUmPkjdPfREXk1ESDqh80cQpiRHpRI0RjgT90QzA3BEEhuzRZfgnEWPJb9ERuW2RKhbOkWgTDFF+nQtRY0N60Rv7HhFVNq9RK6m1URfL+5EvWP6RASLIEXeOAtFUfXFROx2TUfwCNFG9YxxRoetPkV9rJJFFoieRDAheEQ9Y9VEGujkRKCmi0SXHrdEGINZRP9TEEWQMQNHtKHLRAG9TER1hYBGlwSXRP5ahkTwJQ5GJJeMRPIMMEUWfbpEzrRNRbOxsEQiP6tEb+VpRMiHEUUB/XlEcD+WReb+KEXx8mRE/iZtRDkEu0T7j0lE95SJRc9ih0VYdIhFmHy5ROKMWESoZHlGMbD/Rei/hEUEKQ1FuJOVRPx5MUU8AdREM632Rbd2gkVAPp9FQYaJRIzyIUXAl7RGPjl4RlKoAEbZ4YhE9ssQRX1DrEQTOpFEQHmQRC48pkRjPMhEiONlRLsOnUSB5GFE + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - R8KH3QvBckBEXzwUUsFyQG5RRR9vwXJAIkJQWMnBckDCnIvoTsJyQCr6cH+nwnJAP01tP+PCckAwHCFQPMNyQJ7FlOfDxHJAIpeMF1rFckBQz+fPAMhyQBQ5z9xLzXJA9M2NBkTSckCKIrxjStNyQIIyt1J303JAUmpVs8/fckAY+M9ZuuByQDHojsJR4nJAyKXFh5DickBLTCYwJeNyQOiSaOLK8XJA8DTJWnzyckC09o0FuPNyQBIyb7Wj9HJAFEwMGcH/ckDGl/WL+QBzQAgtKiI7AnNAPjsoWNACc0BSsKRg+gNzQHRDnh0KEnNAbRt/ZrwSc0CEkLoX2hJzQPS1RidjE3NAhu4JcbsTc0BD58Pp9xNzQCAYJPX1F3NAHIi45VIdc0CAMbSPfR9zQFoANc+jIHNA4KtAkDkhc0ClO/+3eyJzQLg2JbnIInNAWr1sExAjc0B4Lk1NzyRzQKWaR9JIMXNA12tIgKQzc0BqrSsj1jNzQEl23/g5NHNAagnUibs/c0BQi13J4kBzQP7jHv14QXNACvC8XHpEc0CTZG/xm1FzQJ4n+iq1UnNAiije8UFTc0ABl5bso1NzQHIkdY13VHNA3iiumYpgc0AJ1T8bHmJzQCQ9kHs6Y3NAXTrwys1jc0CUeLwBLG1zQGYOzxxrcnNADIpl3YVyc0CyCgOiuHJzQFVKHPa0dHNACv1XaEt1c0B7F49OaHZzQMtStQ3Ed3NAlGEl/NB3c0D+bkaz4XdzQA1O+zkbfXNAwOM4aSt9c0AY9IrqeIBzQN4n2f2jgHNAcXibEwyBc0BMcTfpXIJzQEiuchWHgnNAGEtJIg6Ec0B2UWcyiJBzQMADa1VNknNADhRVn2mSc0BKT5+tYZRzQHFXUIr3lHNAQteCirigc0AQJL4dW6JzQEpsU76MonNARAlBbwWlc0Dh2HONyLBzQGrW3MXZsHNAcMjf4Lezc0AcEET9D7RzQFiyRwKjtHNAmH8KhfjAc0DoHZql0MJzQF1dMoclw3NAxHJKDdXRc0BcaWGP9tNzQKKIuy5K1HNAnuwkPeLUc0DMHWXUo+BzQHopWQo54XNA68kdIGXhc0Cv/QdUD+NzQErbx0Pv5HNA/P1ZFlDxc0BPnaijLvNzQDQc+OI29HNAKN9aNET9c0AOuUjR4gB0QDGbDyJ5AXRAIuEcpagBdECytpA9uQJ0QClGchuJEXRAg33MpUwTdEBkGIwzdxR0QISTzL3YIHRANJp1nLkhdEBwWaMHXiN0QBw/qc8jJHRATOpftusydEDaDyAOVkB0QFR/jGmlQnRAx8n/mzlDdEBMk+AKeEN0QApZYihiUnRATIUa1kFTdECGRquG91R0QPZJ3UeMVXRAmG5FuNtXdECpeMNrNF10QHxiO3x0X3RA2fr8EblgdECv1R7MCGJ0QJoqr92OYnRAoLN3x1NjdEB8mGnNT2R0QLuo04IjcHRAgNEI3WRwdEBemqy9QXF0QIgux085c3RAoJztVaN0dEA+UT5zOHV0QD9/dsD3gHRAw5Yruk6BdED/p54J7oF0QMS1CEMlg3RAPdaXGEeDdED4u2swFpB0QLePW2ZskHRAEbJu0VGTdEAm6JPZ7590QAIy/yDRoHRAjjSVKw6jdEC/530K/a90QLI9p7hvsnRAmEYkI8m3dEBqqM+3Eb10QPc4XkckvXRAGjWHIt6/dEBESESp48B0QJHcG/d4wXRAnLUyX+rBdEDe+2BjJMR0QEADgBt8xHRA1DQ9p7jEdEDglnALysp0QGle/Inrz3RAkvcOwuDTdEDus33QztR0QC47ZI244HRAnG65W7jhdEBmnHEyT+V0QKBjsQa+8HRAgDGn5IzzdEDscsHRowB1QFiCLo7OAHVAEo4CA2IBdUCOcWxGXQJ1QNitaF6mAnVAvhd3d0wLdUBLexwIZxJ1QH7pmLokFHVAse2PdZ0idUDSgtyyqjJ1QFp0zfjMNXVAQvoNovo3dUAoPMrJKEN1QPwKIP2BUXVAWsIVcnhTdUDGf3FSeVV1QLCKxmwQYHVAvbTtKKNgdUDQCvwjOGF1QJY7Ji3RYnVA6FPuWWZjdUBgWtZEeHJ1QJJEnkV1c3VAKs+z1o10dUDY1KmF5IB1QMyVTct4gXVAD8p+wa2BdUAwkIhhpoN1QHqDX9KZhHVAHv/aSWySdUDQvaYXlqB1QBaTY4a2oXVAknNdgFywdUCMFobvxLR1QHQO0b/2wXVAAgmkBGnNdUD8ErLWO9J1QK+iEYPk33VAunYTRQ/hdUD+UFzJCOJ1QPLDDvur43VAKCn7N7TrdUAG3JXVTO11QG/huOqm8nVAPDJaAAL4dUDMgnWDSAJ2QHi4qcbQA3ZAaXZoHk4UdkC0moJQiCJ2QG3w0bfRInZATok4KZAkdkDodslBSyt2QIVjZHYfMXZAEcuUklMzdkBgpXvwTEB2QJQriWUdQXZAJtzTxpdCdkAI+oYzyUJ2QHyGZyp6RHZAVNvN0PtOdkBClC6ZyVB2QDQjyqIPUXZAbgLaHidRdkAKrlorzVR2QAE1w1MPYXZA1FD107hhdkCpyuZKU2N2QCVhbNbmY3ZACBZPE9tkdkDV6wXqVWh2QO6fqWdkgXZAGKldBJGDdkD+/gUdxLJ2QDBS6U15s3ZA8co0PA20dkBijHJdcsB2QBRaew+ewHZAfG2oKc/OdkBshWuMf9B2QBgZEf4+43ZAws6vz5HzdkDCUkapMwJ3QLsPTqIVA3dAqvLl/AESd0A+y255DiJ3QIxNrTnpJ3dA6v2Sm0Etd0AglHbvXjB3QLrETWalM3dAks6QVA01d0A2X8zq6Td3QLYo6O6oQXdAH6fiZYpDd0ASCVtZmkN3QKCOuo79Q3dAnGo14RpFd0BwJ3vWSlF3QKy8WJuSUXdAWnrO5rZRd0CKSSqc81J3QFZMYLQLVHdAZARcWilVd0AoJblSXV93QAHDS0GOYXdAPsUDJzdid0AISjIzHGR3QHLI+Ronb3dAl7hGOqByd0CbmiPPd4J3QMDbaZOqgndAevo55QiSd0DGVfyzS5R3QODHJs+5sndA4E6REHK7d0BgK6NOecN3QNIMMSXux3dAkd4yu33Ld0BL0zoUKeN3QEUk7S5r63dAWO3CCE/yd0A2e9z6OPN3QBd9SpBG/XdAPDBw1tn9d0AvbVVwoQJ4QNp/nM2QA3hAUf1RG+gHeECZqhcH/wd4QA4jOrrGCHhAMpBR6QALeECijkL2IQ54QN7RDAujEnhAHMNyV2MTeECfJDb8bSJ4QLDZyU9AKHhA7EN3lnkyeEBOn0JmDEJ4QDbPeaR9Q3hAn/VEVhFEeEAC91NmekV4QKigV6HLUXhAZ18SwhZSeEA46zInlFJ4QP7WlqMdVHhA5m5p44hVeEDhBoq57ld4QHwF/4z5YHhABEpXFLZheEA+phOgI2J4QAtSw4a3YnhAFxYQT8hzeECPA8HoOXR4QDCRaqKLdHhAo4eaUq90eEB8KcykyXR4QEReCzPndHhAHMknzHF7eEChRM4FpYF4QGY20Xl7g3hAGeBtJZqEeEDX6D/ST4h4QAByyhSpjXhAbsIH2ZiReECQFQCZBJN4QGZx0tOnlHhAXtbyg0yYeEAOMot0taF4QHRU5dyyo3hAIAoIhLikeEAiZ5CiN7t4QH5/povMwHhA6IqtvD7DeEDesBcVCsd4QLRk7JQQy3hANBaQzjDLeECIEt5QGdN4QFpXLRw403hAYiqYfbbUeEBg4j/VxOR4QGxlZToB9HhAAIwaqoz1eEDU/PRHDwR5QOcEN+acBXlA/mctKcUTeUAK2WYkJyN5QPhGEgG9I3lAeNGn5LIoeUDosOxDDC55QFPgRTdpM3lArJTQN+U4eUC0eGnYLDt5QPQsfDA8PnlAeOeof4o/eUCIQM4eYkJ5QKpFkrH8QnlAhZtfRopDeUCIC60U+0N5QARglnrMVHlAkpaUEPZreUAOwDADQXJ5QCRqftRCc3lAn5oPp9qAeUBvR279TYJ5QMqkuMNOknlAj7/94v6TeUB6SB3rlpt5QMTd45m/snlAPOZVzYrBeUAAb51GldF5QGjKmMdB1HlAV4frTM3VeUD4Dj4ZUOR5QF46MRck5XlAaF9R75HreUCOc7tl7et5QMmQWYEP9HlA0n+6zmoDekDApkf8AQR6QDCtOhoIDHpAfHzmGhAUekAuLxVjDDV6QE6OpWsaRXpAbv9CbM1LekBRQHEUKVV6QJVPw84hXHpAvDL/5ilkekCsYiBuinJ6QLD3OPeilHpA/mxgIB6jekCSDIngJKt6QIv77uAVs3pAxuozDQ22ekD2qKxpG7t6QD5zd18sw3pAm2RbcR3GekDMU9iNC8h6QF1SKr9k4XpADjLf9TnkekDqTACpNu56QNFuzZcV8XpAQlsej1jxekBaXFwySPN6QI7Hk0Kl+HpAtcye+xv5ekBogpdHnvt6QPZla0x8BHtAfHDpDcYSe0DAWc5TihR7QDwiRo5MFXtA3P+cZh8Ye0CEstUIWiV7QN6dmZiSU3tA4LKNm81Te0A3GyXzQHR7QDADqmbVe3tAhCxgFwt8e0DCbBxZFIR7QLNeRD8jlXtAccC+Ic+de0A0yscPKKN7QEghoX6DqHtATKe2eQ+re0AYjvdX2q57QJkGxQsns3tAsDJDyn7Ge0DuqYH1m9N7QNQZUr2l23tAo06wpCbke0ARmqdxl/F7QP92UL2L9XtArNl5I7j7e0A5W78ZkQF8QNa/bajZAXxAn01xz2YEfEDoGr0tmgV8QKZwtf+HEXxAakyi4dARfEA6IR9WcxR8QNqUePLnG3xAZpQYP/EjfEBSGfGN5i18QIPAjerNQXxAz5orn1NIfEA2KS+uqk18QK2y4ZDsUnxAUq+iRwlTfECK7AgNfFN8QJSt4YZXWHxADOLgqiZZfEAUrtNij118QERhuXkOYnxA0+rMIyxxfEAqymlPWZl8QHMOO4O1nnxAPMwnOA2kfEBmjCuHjaV8QCMLogXEsnxAQF1dCRG2fEBVC+pvZtN8QDZb8f1t2HxARhEUtY7bfEByFCqk9dt8QKs2jbxX4nxA8tQ2uBLjfEBOsoMv++N8QK/tMWih5HxAVaP8yWfofEBM1Jf0Aex8QMz2Ck297XxAAMIHWBbyfEAYnos0VfJ8QKiQknoG9HxAGEUDgF37fEAggEVxEvx8QAcJuvj/AX1AiCuHAEsCfUBia/kWZQN9QAYn3O9QBH1AsoYEHAkSfUC2kPtMRRJ9QGTO5kNkEn1AcZ+qoMkXfUBXTpBirht9QBz8ScI+In1AHLpV244jfUAotx8YuCN9QEkoccu9K31AsmTbd6ExfUBq2xtFZoR9QLvQdfGVjX1AWnV+Ie+SfUBY30kdzZV9QD7ogJc9mH1ApHWAheuifUDCt0X/TcR9QChaHt/lxH1A3yGBSj3TfUAOyg9tbOB9QEwRLyqQ9X1AFhb7VzQAfkB7Dr1KegR+QICQ+nvuHX5A3PrdlzgffkAwUi5PIyB+QKX9mPRHI35AMjd7sKcofkBV6d9cPi9+QBqU29LBS35A9eX9W5NQfkBZN8fUjlV+QKo1MkG4e35AI/nErsCDfkDA/4YxurB+QOrGN/u2t35AgAGJsx+8fkD6xSEV6MN+QGwtaVvRxH5A9JOyfnPIfkAkvU7UzM1+QFQicQ/b0n5A6DHLyifTfkDkmOhJcdh+QI6bjgJR9H5AVssPFpMDf0AgBdrJnQt/QEgXb2AXDH9AIPL/QR4Uf0DqzAcUJhx/QIrpzuiAS39AuIW7pX5Tf0DCf88KhFd/QKfpnguKWH9AM3RBO+Vdf0BuBbsrPmN/QEQJxGK2cX9AWKyTSbCBf0CWNpzIYpF/QFwYJeulkX9AWn16X16Tf0DeQaVwXaF/QCULgew/o39AvPa5spuof0DfCiWkV7F/QKXEBVE/s39AEFmyO8PTf0BQGC7zy9t/QNa2dcxN4n9A7m+kxc3jf0BgcukEiAGAQHPHLBI1BIBA8g+AqtwGgEC6RbWjhgmAQOy38yYyDIBAcCtk/OQmgEB6OFw+J0SAQAKyw2T1SIBAlz9TIuhQgEBya9LcE1GAQMCzVWEnUYBAZSHbu+ZYgED05o9uDlmAQISBNvkMYYBAaNvnFvJtgEBW+N6+KW+AQJg4PjGgcIBAa8/t0vZxgEDUDQje/3mAQAwfTrQlf4BAIl7iDv2KgEB3RXlkOYuAQHpfru+wjoBABOinAh6PgEB6lLEUJJGAQMbC5OXWkYBAIrwvwAKSgED7tlsyHZeAQKCGy4BimIBABFpPUk6bgEAwxV/gA6KAQKFsAuIUooBANHOtXRWkgEBnYsuMq6SAQPAyOyuDpYBA2M+oit+lgEDaSRRsh6mAQEgez3viqYBA0Ba7SOitgECqZN2hEq+AQLoT78UjsYBAG70PJdSxgEASF98bnLKAQNs8qP5Os4BAgv02YrC1gECGEW4YtLmAQJi0DtQFuoBAViPD2U27gEAQqvEws7yAQCq5tNb4voBAnzcYv1+/gEDK5IZDUsGAQAo1WDI8xoBAIo54mffGgECAddtKU8mAQGznhd8Gz4BAr2xkCCHRgEDsk+5LTNGAQGEz575g0YBAL5UgOtvRgEB/2TCCS9mAQBsFd1m+3IBA+lCrD8DegEAKFRylROGAQPrk3/5t4YBA4iq+bx7kgECRQscM9uiAQOR3nO/b6YBAT2XKZErvgEAkT+twaPqAQFigROlX/oBA5isyoT//gEC64Gy1XAKBQEBvMhhAB4FALNRSIT4PgUAvwWj4UR6BQIj0TDc0H4FAb44R41QigUDDloebNSeBQJRz6Ry8MYFAimueLCk/gUCDYhDOWkeBQDYhGGcHSoFA3DvddbVMgUAw1oiCFFKBQDxn4ablWYFAZpuwkeldgUCCf2Q1PXGBQFQfRZaWdYFASjsHzYKFgUCXpZSEBo2BQLhEv2RVj4FAEXv8GbSPgUDA6F7495GBQMktcE8QkoFARDcQ82GSgUD+zbaXEpaBQMsVJKVWl4FAC1RghxKYgUDgAIHPU5+BQACf1GvnoYFAjsuJsfalgUBI1TbWbKiBQFB+gWJKr4FAjKNGZASygUD+8/GJJLaBQPe7ATNLt4FA1qLKfim6gUA7aEX2VMCBQEJDtY9904FATzwGZcjpgUBpVzYclu2BQChVNknK7YFAshy7Ae35gUA8C92n7/2BQDnJZI2D/4FA7csXhvABgkBIcuIhAAmCQODVciH2EYJARqnTSbQSgkARZ+J92BiCQMja2HP9GYJA+K6iQdcggkAUDe3P0SiCQPgiWFujMIJAuRQyXNAwgkDPl9a44UKCQFAkdl0GToJA0ngWwNxOgkAhxnZialCCQFvXjb2dW4JAst2xo2hcgkAWJDcuOl2CQCAXFYwFXoJAdtLPeDRigkCAmWFGN2aCQPRW17r/ZoJAOurespdogkCtneiKN2mCQH2waP4LcoJA+OsZiDh1gkAEWQkvaHiCQE7kfCDPgoJAzL4ZPUOJgkD0rCZMPoqCQIZ0RkrqjIJAJ1TczEORgkAQOu2FPJmCQFl9JYVVmYJA/tqomA6hgkBG0RLvOqGCQKFXWRQPqYJAiBybRjSpgkCcWmrWB7GCQPx0YEwzsYJAgPCtBh/agkDaJ4qxftqCQHhpgnKC3oJAs+zerabjgkCM8kJxrvmCQB2+5d3t+YJAoKm5WnkRg0AmO06zeRmDQDINAWlyIYNANvBlLnQpg0AP+Kc1ajGDQPFgqbXMPYNAwrtS1atFg0Cych9p5FWDQFn2i18Ya4NAuiJYR992g0COR23j5YGDQN6FqLpKg4NAoggQuV6Qg0CYTgkPXJiDQFvfVepVoINAJixlNBehg0ASQ1DQ+KmDQAzuaO4IuoNAws1HCQpAhEAW2tkdREqEQE5PY+eXV4RA7CcOy/9ohEDQyFpYSWqEQNSifZFMboRAFsBscIJwhECZZszO/nCEQNrnzP1OcoRAH/kr/Ux2hEBX/AU9yneEQJVOIAv4eIRA+JGPYXZ6hECZmZs7I32EQKJ+VbLPf4RA4KatEMyAhECnChjPe4KEQACM+RMphYRAuLUEo0KGhEAwn+hjx5eEQK6Va8ZwooRAyo0cLx+lhEDF1GABzKeEQJJzvUdJqYRA3rohrtOxhEBQWO/uU7KEQNPHaoZWtoRAq1ZPfR7FhEC4VlFY0MeEQLaJ53F+yoRAPOB9BMfNhEC6kuUex8+EQIYIzf9p2YRAS9ipOGrhhEAWeH+sYumEQBvdWes18YRA2N7E9GHxhEDcNkpav/eEQNMdiGU4+YRAABVKxm76hEC8NH2pKQGFQKwxVRV2KIVAanlHkEIqhUBgy0Z+NjKFQBSxskTTSYVAj6nOuFpehUAaBCJxoGGFQDrRuHRdYoVADEyOHKBphUBciVmCO2qFQF/IvkmYcYVAdbhdIbJxhUBGk8ZHtHOFQIL9AZ6YeYVAtolSCKd+hUBMie/tk4GFQJJ501WtgoVAz6h+7dqZhUCKFRONoKaFQDTL8LSrz4VAxXWQMOTRhUA69xmCC9KFQA8eQgYFAoZAzndOeko6hkAI/OID9T2GQCJFJfPPPoZATNhOU/hBhkDbKFrD9EWGQCAe7Iy4SIZADFGV+IhchkBXE4pTL66GQNfx0i0nuYZAvKsNc5/mhkAiSBO/n+iGQMIBHKGi6oZADVZucaTshkASqGPUvAmHQHZq4omQKYdAMFqJ15Exh0BBFWmaiDmHQOYTyEddQYdAcUI3g4xBh0CKsZTWYpKHQEGxkKFmlodAFrm7OvShh0BQANbb8amHQGMzj0bHsYdAUr5cwWOzh0CkBOJxxrmHQH5ymzVru4dA9J46SMDBh0CmIUb1wcmHQBIFPWRg/odAscXG72MCiEDL2TLQZAaIQH8w1NFgCohApGWenGYOiEAgT6Tz8VKIQEHyPPYos4hAFI2wJzO7iEA= + NrgMGZxjYkCdFrCBNyNrQAoahmk8YnBATmm0FPSidEB+v0ZZLGN4QE7HkGhMtHtAz79U+FHTfkDQY88DORKBQOeOGCZV8oJAirav+7AShUDnvQZQAXuGQIGVLyroqohAEL6NHxSziUA= - + - lzuYRPBE80SS/ahFWNeFRNSzdUT/eidHCsNwRKInPEW1GoJEqXuFRKqcOUZ91JtEZzAER/kH1ETwA45EzKGyRPOw70QNfkRFs5ttRcWMsURAEkhF5TdpRJQYoES3RGpEoCCJRKLSgURY0cJEONtQRe537UafKYdEgKwbRmCDokRRvIxEtmNURIuBmEVuVABFSMNWRJEjuUSTjZZEKJOxRusmekSgzZ1Eg0igRKAnkEXbZ+ZEbY13RAhQoERojY1EAkNoRDuyxkS2vBJF5CMWRoUjDkVfzIJEBCyURIY6gUUMiVREYrGhRDYFqEQX5RZFhx5tRMGUb0dEYOFFqQ26RrPGiEQ4o35ExI4TRU36lURibCxF/HEORYnwGEVYNadE+gHHRJVQxEbQKqNE6hzoRCKiQUW9E2NE7OCGRPKUDkWdgTBHDZJxRMQ9wkSTGltGsUfsRfRhsUUVPnNEJ7kvRTX/WkSFwmhE+TgpRZr1y0S4kG5EQkLuRLMkhkW4dPhEPPW5REvxtkS6PGpEkcuaRRCrlUSCMAVGSES6RDSdxkTi54VEfoQ2RGLj0EQmU+BECJc4RTtYjETSJ3lGqDJZRLC4w0THM5BEw1wKRc8agUT1j2hEVDGdREe6U0QXA85E5so8RPXyYkR8tXdEQlcBRf71mEQtB4dEoQhFRLILmETlg41ETbKxRSOr60TMRmdEIi+RRQkXmUVzyJFEUyXbRPXudEREuLtFSe94RMzSNEfe5mRFcQmlRDYjrERLEyxFrV7CRRZuQ0SYd4pFNHJ/RE2bu0U1fHpEov/hRDenoEfxuNNEYEUWRTlWrEWipctGRfULRsglskSFS6VEPoQURrGInEQNUbREOY9eRJhDZ0QSNo1EI+oPRWP8tURbyotETzshRStdzETdeo5EL1nNRNGBvkQ54oFETRulRUmIqES5c7xEw8+bRP+vBEZgbwtFvsmeRJdKg0QTZPRETM8MRm0/eUSRvgFFvB5KRdNDxkQVQI1Emb07RP2ZwUSxG4ZE9Mi6RFNI8ERIQRxGBBP4RSXu4USOrJxEOz31RWbwd0QXuBZFiP6hRQvQukXfr+REO/OBRNywiURRG7VEiJmHRdQCh0TidJ5Ed29URXz4SUU9/4hE0goARVkx/0QghjJFj6JaRGQ/YUbSx49F38rRRL+LFUbJgZpEWd4SRS9/oEVGZ6lE3FDoRSFM8UWPnMRGWcIIRQWrW0R/IXFFK8ifREeLYEWFuGRFxdhMRAQgxURqntFEkpQ8REm8F0YOIWVEiyNkRCawy0S+9wlFeVe/RDeHi0RE2ohEdlbZRNiL0ESehaJEiLSPRf9NiUSvz1BExQk2RVK+nEQE9IVESYUgRbNFJkWLxYZEPL97RkG6L0WrF3hGme8WRi/yaUQN32ZFO4vsRyyflUT14mNH6tmBRCRRhUT3HD5IJsC4Rlj+k0XublBGurWURRTkg0RiMwdHwsEBRe3lZ0Tu79tER8BtRBpzk0SPEx9FvohURWJfqEQhF2hEyCyZRKJWT0RL3kZEA2uFR2LljkZ0PVtEb7o1RXsESUV+Xw9FHYecRGgjhEQYuoxGJcBgRGao/kUFoOxEkkK/RPNS/ETLqIxEUpPVRAu8aUTe9Y9E9x9+RI6md0UVgQNFSC6WRLKR50Rr2q5ERaoFRqSgKUZjG6VF5gpCRkMMHkVwcM9EAwQiRYJTCkWuNRdFFsYLRYhZDkVC05lE8fpsRKcaD0USajlJ6S6sRaeb40TNDQhFeEYkRsXiUEX6T2pFYqE9SIGRAkcAhnFGtOQMRbKW7UU4VJZGJDb7RAH5XUQkvaZFwbiTREQEnUcOu/BEtjjIRlYBbETX2HpErROqRX+mdUTbspxEzvR7Rb/dnkQj7nxFNkeWRQrmzkQqYNNEGUFHRI0XnUTXTTtFFaAlRmvc9UUfMLREh9/sRPMtzERh7vJElj1jRA6cWURKnHNEgcyqRK2xFkUPupxFNy+NRIvZhUeQMVVEt/qaRMdxFEZ4pn5Eq8yDRHDns0RWskpF6ndzRaXjdkTKbvpFxn9gRLOY9kQl6KZEeJy/RPm1vkTHU3BF7aiCRMxSQEckEYZGdNxqRXvEtUdf16ZGrIHqREseKkX/OfpFlaBjRapcrURsYV5Ee3SCRx/WtkZQArtFSRuxRTHAJEU8P01EtuuQRIkzo0Ta9B5F82uoRLrv00RARKVEfJmARB28VEX+Fw1FQsSeRJWQUkRH8nhGe8k2RYwsSEVq9Q1GMuY2RV0830SSAG9ERbUpReIAcEQ3WIlEafY5RQSz5UR+JZBFaPekRkT2T0ajd21F/wR+RCK8iERJz19E4PylRNjLP0XTLN5EB1YbRfPpkEV232BGa04HRQkF6USgfCtGzanMRUKWp0WtIYZEPTSFRTD5eUQz9JtFDSC6RJPrTUQt7KhFiCmVRqZyKEZ4RNZEIQLoRHnMX0SlmwJFF1eFRBYqaETmJrBE3sNdRO5IjUW1MF5FZGrqROdzekS0bWtEEK6MRINeBUUE+wVFjq/BRFbT20jI6clH6n/bRUozYEjxXplEwCtCRauVYkfnFsFE0U0URcjGxEYKpBFG0fL4RA/p4kQeCqNENw54RqGYokRNyl5Eq0dlRCqZMUW66rJE7nl3RJTZ2EVctrNESVGDRG7S4ETVWKBEHFLGRDD8N0V4U+5FeThOReBxXERGHpNEPaZWRN+Zj0SmtBFFvtmwROFN1UQ4t8JECaQGRgLMlEQ9741F1lKfRLww/0SgO5JFMOS/RESDt0SpvYJE6yPCRKVjIkX0GB1G0MGFRbPuakRcXbdETGcERQHEkEQL1kJFZbOVRSUihUUGkv9E1wFIRNzOu0S8c8NEeDwzRdeUoEQuIO9FIKFqRaFxfUQWrXtEE9zjRAz2u0QiuZlFVpVBRS+iAkWoM6dFuKCFREanH0bIBXBEk5KxRITwN0UPXRhFfsTfRLTHDUXe+WxE1j5yRukR4UUc2IJEtU4WRXYnr0XCinZFdbECRbTfgkQFe5NEKm9lRHbTXUSqsLBE6DFARamxgEZXtANF7KyFRMsW3kVSV6ZEhyQiRdBDM0Us/WxENJlLRBtobETxlHxEv2CxRGr9UESPetJE8kgKRuVrYERaH3lEcExDRFLTxES7+nxE9F68RHE0ZESJRGREOtDdRDVKi0TYWWlE9KPhRjPjmERA0zhGjGQURVUUP0U6mmZEw5d+RJDGvESTH8NEjuiiRVe2WUWFoWlGr1a/REEGPUbBJIREZO2fRdHPekgjOGdEmwtwRKbt20e/SZxE3gm6RCHtdkePYGRFhFWoROKAN0Z4CJlE6tvhRFuAh0UWughFRXKJRDJEl0Rx/3ZE46DsRKRX7EQ0TRxFik8+RgT4oURBEFlFHAZVRTH4GEW4s5NGmF0KRQ+Dg0XODcxEHvYfRfRWHUUD+pFFo+ONRJQDt0SxjxtFnf3DRHU3gEQ4YIBEB7C9RKOcUEWEQMZFUbBRRXILpUTyCFJF28OYRFChEEWza8lEzTh+RPf9v0QmdTVFbfxqRGbeLkWx5/9FfuRRRCqvy0Th+edE7X2ORIXWhkTNU6pEbgYiRWeOvURG2WJE7wkWRj+bkUXc7MNEg3qrRJv9o0S/ybdErEWbRFr+dkYsTmhEDwGCRYBTSkXEJ7xELvR3RC/cfUTaZhRFNSFZRA7TDEWlIXJEbcSiRAItzERqtK1E9vjXRZ6PPUU58gpFOjEQRYd2nUREdj9EUFuaRLHBYkTuso1EAkD5R+k6vUTLQjlFb/BcRxSsC0fKlOVEJaW/RTOOHEZyvCRF1vd2RSBTnERKU59E5v9aREggVUWnqLNEq1RNRAmhxUQb6bZEUo3sR2RASEdEufNGVVjyRZXmB0XlhXJEzO5lRPNde0Qhl2BEgkpjRHuzykTvbUtExMBTRZWMV0SlFb5Ego6bRO3vdETVompEQRScRPdhV0TtjZNE/3i/RVpWPEfTJtdGqbRgRHQDAkV/gqtFDwdGRb3GAUjx9OdESVj9R5SQi0eIKN5GnnaKRGDA+EUoNY5EEf+BRE9iZERAOsJFIcnLRfLdEUWsIYhEyoyQRJo1OUXsmKBEXUEnRcoKYUWD8DZFLbWjRPLK40T97SJHEyWeRgsTUkZqCTBFo8yJRYCxv0SaGgRF3Yl0RMrwYUSSWUpEUfRaROoEkkT1zp1EIR6JRfHzEkdPIydFBKZ1Rj14wER2TApGfJm3RCrto0Rb0kpF7YWsRD56rERtWn9E0AmmRF1tpERXeVFERGbIRFgjuUS/tkxE5Y9nRMmJpUTBkM9Ep3NnRDUvUUSoJE5ERSxTRBvlhERNDfVEIkwRRQqQF0X2sExFOp6eRMLO5kR2WjZG4UjFRT3tgUVW7ItEpf/6RHByn0QBk1BEZ0DFREs0e0S+8/xF0vhtRV1tskXlHYdENQBDRawu0ESYIDJHv8fpRiHAWEbFssBFV97eRE12S0QN7n1Fi/C0RA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - LtbR+XfAckDQaXVYEMFyQOX8FVZRwXJA5u8zcW7BckDk8ZGxT8JyQFKHgp6nwnJA6O5ZReXCckBUa4asOsNyQF7b3Y3GxHJACpf5y1nFckAdwF+aAchyQHV8zONazXJA4BlA5HvRckBosTh/Q9JyQLSRs/uj0nJAJMgD0t3SckCv+edHdtNyQDwl0Oxg1HJAlDmSGc7fckDOPRQVuuByQPJQeWZQ4nJAz1mMZJDickBYPlHxUPFyQMCI7uHK8XJALLx7MXzyckCcF1YAufNyQLbH3oil9HJAa1YSoMH/ckAOnVQE+QBzQIqy445LAXNALkCRPY0Bc0ClsEsEzwJzQIiqDaD6A3NAaOVXOSQFc0DGzhpFCRJzQObkYBZ3EnNA3oUhW7wSc0Aq9UPF+RNzQN+e2FZOFHNAvCYvj/cXc0CaYXTqdR9zQKiZ+fY7IHNAkrO8/aQgc0DcpYofOSFzQGoiPEBjIXNAFrb52qUic0ASAXNNyiJzQOsbdisQI3NAVrmLugMkc0AqlM/kziRzQEtgIF9HMXNA4wDRCWcyc0B+H7VdoTNzQDmlsAL3M3NABDdXODg0c0AK3taTuz9zQEot7DrjQHNAov2JWXhBc0B0qkijuUJzQIgWsG97RHNAyvT5zJtRc0Detgk3QVNzQC/8K2OjU3NA+s+SWIdUc0BuxcrlNGBzQERP5keLYHNAVrOB1B1ic0DOfzAkOWNzQBT1TPyuY3NAFdGTzyttc0BKtkI+UXJzQIUSMsNrcnNATtRbPYVyc0COWY8ZunJzQPwCxXxGc3NAeQOpi7d0c0Ay8u/jTHVzQE7NtXxpdnNAaqDkiMJ3c0Ch7xzl3XdzQM14h5VvenNA+Noz/RZ9c0AoyjfGeIBzQDom1QakgHNAPpSZkA6Bc0C40CnRXIJzQCzJHZ8OhHNAeCQvrYeQc0A6C/jg0ZFzQIKo7EIcknNAdJ9eUk2Sc0DEUq5izpNzQPOoAMtglHNAMpQMZveUc0AGFYT2uKBzQG4N6aBZonNAkItvSCOjc0CWOvWABKVzQKw+9GzLsHNAqDQFFFqyc0Cl6qXCtrNzQPhkf9IMtHNArH7kTfjAc0Ckq2buN8JzQP4EGaLQwnNAr3RNOSbDc0DdS51mwsNzQLpI/srX0XNAzl+91rvSc0Aq4ZNo9tNzQJrM3+ni1HNAwBdNtaPgc0BGvJIyOeFzQFh13yhk4XNAFpd8F4/hc0Big7UeeeJzQPi87dEP43NAPHHqkfDkc0BfGallL/NzQFQFJ1s29HNAHDL63EP9c0A8rEoAmgB0QFbtgcPiAHRAI9QX6XgBdEAgi4GRpgF0QKhqiI+bAnRAbJnZv7kCdECYGMVe9gd0QPSjvWwJEXRAZFTwAIsRdEAeijmwTRN0QKeHcNxJIHRAqrUUFI0gdEA2heyi2CB0QCjLFJC4IXRASDYTBmUidECOpFMIuyR0QIKX5R9SMHRABkxZ5dgydEAI0vvZXDN0QB6SEFM7PXRAFITdyz1DdEAoaHvJYlJ0QADR142LVXRAAvAnLNtXdEDXmv18NV10QOUpISe4YHRA7+v4E01hdEBy5mpJCGJ0QEnXYBeSYnRAOCutNU5kdEDLf8xMInB0QBY00fBAcXRAyrQXejlzdEDu/uJ4onR0QD7AW2Q2dXRA7OI36GaAdEDIjvHj+IB0QLb2tIIUgXRAl+3eaU6BdEA2Q9ORSIJ0QAjFu8Ulg3RAo+dlNRaQdEDV8UHeapB0QIFzJeNbkXRAjMcvsfuRdEBdKBozupJ0QMtdh3JRk3RAfxpznu+fdEAZNuCBpaB0QBqe2Qs3oXRAaq7fk8qhdEAEY4EouaJ0QDbmfWwPo3RAJDioBPyvdED+q9SXxLB0QAYiKBVvsnRAaFH08pSydEBO6TcXybd0QBu/MpUUvXRAJd4CxiO9dECIXLE13r90QDygueziwHRApHJagHXBdEBO7sRj6sF0QDQUVQZtwnRArredabvEdEBkkBDXysp0QF2SAJ3+znRA1FuorNPSdECq/mUdPtN0QI7fVvLh03RAYPm/ts7UdEA+H8Dxt+F0QOi20c9l4nRA7Lm0NfnidEAEJVL4TeV0QJpiBoOo7XRAgP6WaIzzdEB4m5tEpgB1QIRRWeLOAHVAUlXBsGABdUBaKfNtXQJ1QBTUXYKkAnVApjfbBkwLdUBwGSFemRB1QNSH7/MkFHVAFXsbTJ0idUAfJibbyzV1QEIU7q/4N3VAGK+DtSZDdUBMgduI2U91QCzqzVnyT3VAM3sXwQxQdUAU5wjBgFF1QME504B5U3VAlnKJ1k1UdUAWmxDHeVV1QIbc9BGhYHVABjNkHzhhdUC6dJ+70GJ1QI5YUdsMY3VANmbQV2ZjdUBm644Pd3J1QCzNTA3ecnVAPn6ViHJzdUBpeRZ+jXR1QG4pBCZ4gXVARQ4H2K6BdUCycexJUoN1QEQO3SSlg3VAGhKYpJqEdUAmzpZlvJF1QFxVgtFtknVAXbggEraTdUApDvGCzJd1QDqfuBqSoHVAITYvkCKhdUA+5fMIuaF1QG5pwixcsHVAIpFSYJKwdUBUQCaM0MB1QFBD++73wXVAWLTOGWrNdUAYFrcoPNJ1QHqB3MjC0nVA7gK/eMrTdUB+8rmCD+F1QOA5Q8oH4nVAXFvjY6zjdUDqQvElTO11QC88dFWn8nVAEnG/mAP4dUCzM84fSAJ2QDJTYWrRA3ZAj1s/blQSdkDzM719CxZ2QCLMkAY/IXZAZ3wjpIgidkD29DwY0SN2QAAeofGPJHZA6iC7lUsrdkC5mPZvHzF2QHmNfa+WMnZAiCgK2U8zdkDWP5EgdzN2QHAY3xucNHZAF7p6Y+JAdkBKV8gMHUF2QKgOhcOaQnZAdmUdQslCdkD3GKvPeUR2QLQEHzzKUHZAqoFRERFRdkAhbBbHolJ2QFH0to6HVHZAHN6Z+cxUdkBUWLn3UmN2QPKDjgzmY3ZAzD/74lZodkDQI4wUsm12QFwVichigXZAWC3AppKDdkCAniGNtrB2QNBbvaXBsnZAKsnkC3qzdkCBzEGzDbR2QEtH2M7AwHZA/0vlzs7OdkB7vwY1ott2QGV7P4zI43ZAsvmc0pDzdkDL/U0AyfR2QKyYCx80AndAam8XchUDd0D+HuIfARJ3QOjyU5QOIndAOkpiRHMid0DzbnzGviR3QDAQN7roJ3dAW7xUVUEtd0BaUD6iijJ3QNrVPBedMndAwpUzEqUzd0D3rCpmDTV3QAQV5wzRQHdAfDP0jKlBd0CfLJUK/UN3QJ7cgMsaRXdAXAAX9klRd0Cojc28klF3QKpFGYS4UXdA3AjdcgtUd0BwJTvHKFV3QFVc8VREYXdAY3cupI5hd0DBiUqHoWF3QNggcUsaZHdAZOhdzzlld0DcQMeRJm93QIj9hDKfcndA9BcqaY50d0DwzIy7XHt3QGAj+TIyfXdAjCI5H3yCd0AzbCfxS5R3QMJeK1iOoXdAxx481XG7d0AUaCU3ecN3QAKWhBx7y3dA++GdSMPgd0BeZ/CHKON3QNoUxvxn63dAALIQwurwd0BWN7DT/vJ3QPJM61g083dAggg/A3Tzd0DJYRZ/Rv13QM4t4oWfAnhAWCg9ZfoHeEBO7jbhyAh4QCKnXMf/CnhAzIsdAm4ieEDwiB4miyN4QMtgRt4+KHhAaMnqKn1DeEAc2JrREER4QMZouAB6RXhAnNw798lReEAYR7v2FlJ4QP4sqt6VUnhAMokOUYhVeEAMKaPu7Vd4QJ+m7dWdW3hAdhJ+gPlgeEDyyrBrtmF4QMwenp0kYnhAEEKgG7dieEDuED5wMXR4QFjwzz1odHhAjN3Uq4t0eEB1N/04cXt4QHSObq49gXhA2BoxWKOBeEA+wXX+0IF4QIieT3p6g3hAcIXICJqEeEDuSKO4T4h4QD+Uf8OojXhAnHjjR5aReEBqXU9V7JJ4QGES+4wGk3hAir/hx6eUeECnrzggT5h4QA6zRe6inXhAfsdpU3OjeEC6I2EIs6N4QDoDLIPTs3hAo/NJYze7eEA8NM41z8B4QDbVRN7zwXhAfkTWWz7DeEBpd2XWLst4QIwgPmgVz3hAOnx7hR/QeEDXlUGvNtN4QMB5clC31HhAOMTrhQH0eEAlzOrkjfV4QGLXRoUPBHlAYPuni5gFeUBs0ozbuyN5QPCZ0rP5I3lAu8eqSrIoeUAMFuvQCy55QBZf245lM3lALPuQkOM4eUDchnORKzt5QIJH6kw8PnlAbI9KnfdCeUBYqR5ji0N5QADthE37Q3lAXI5u8cxUeUB6JQXV2GR5QASSKjJBcnlAF7kNC0ZzeUC4T5TqToJ5QA3kLuVPknlATAEMTP2TeUD1fksLBZx5QKBwb0fAsnlAIwOptIrBeUB5D5BRQtR5QJLGk+XM1XlA7wjPKFDkeUD/r42Y7et5QDDy67EP9HlAGm8dTmkDekD8wQEFAgR6QHWvF1YIDHpAqHtkh/kTekBaZcuHExR6QJSoQyA7I3pAIN8JhD4kekBAZQRSDDV6QPk0Pj8aRXpAPNDuks9LekAmIbMDKVV6QEhllmAiXHpA/CX9UClkekBeWYkVHqN6QNws28d4o3pAJ2KLtCSrekCQuMYNFrN6QKjTc9wNtnpALiy+2xy7ekCma9T8Mrt6QLgEQxkpw3pAyuTPXxrGekDe8BdBDsh6QPnWc9sYy3pAI1ZGxDzOekDqvkH01dN6QNqh4PJ55HpAqT4HkjXuekA6kusnFvF6QDQDuFhf8XpA2jYvU0nzekAYiCsZo/h6QLSXPSt8BHtAVx7SLCoOe0DuLmDowhJ7QDg6tsWJFHtAMGbuTEwVe0DWo0JiHBh7QOxVU6JaJXtAEUCkLm47e0DUua68bUh7QFfHSWZjUntAOcIwjMxTe0DdhHdr2Xt7QCDpLj8MfHtA9i+sEQCNe0BBIzYVI5V7QF7P3uTOnXtAJskS/ieje0DWJilnh6h7QB1rV+rUrXtArCIlT+bDe0C+eaUifMZ7QMfyHP6d03tALz16paPbe0CUyCAAJ+R7QMpbBFc/6HtAuLWLShvze0CcxM1UjPV7QPApxY+SAXxAv9DIG9oBfEDk1v9LZgR8QCL5I6qYBXxAy+tp94cRfECkedWZ0BF8QJbHbL+yE3xAiVy/2nIUfEAAdfH+/hR8QFGpoc7nG3xAaxg8iCQjfEC+MWAn9St8QOonp4DMQXxAUJPCXlJIfEBqwmwJYE18QP4onrysTXxApI2thgpTfECmbf4e9XN8QLvzf57FjXxAHJ9nnliZfEA3/Fm7mpx8QMYLBe6xnnxANKzOprajfEDiq8pJCaR8QAHywF2/snxAFFO9TBrCfEBqghJYZdN8QFyxT2dr2HxArUNhnXnbfEAco93Z9dt8QGKNpboo3HxAF/gvFsXdfEB2p8djWOJ8QBhGjjIQ43xA/E5SNvvjfECSPd+NbOh8QGIzD1MB7HxACAxsO8DtfEBQ6WF7F/J8QNyJ8RZV8nxARmZNOQj0fED+TLc5X/t8QLz8M+gI/HxAdoNxgdIBfUDxoWLIAQJ9QLyhfEtLAn1AfmPu/mkDfUAApS5iUAR9QLamb//8EX1AQ7LZJEQSfUDqCqLmrht9QNKpyvc+In1A5AupJLUjfUDWaEncnjF9QO5RD/ZlhH1A7K178ZaNfUDaQJheqJJ9QGCJcUbskn1A5FcSY0aYfUDnZ/vVmZ19QGBNlRGfv31AyOZ4VjLDfUB2la/b5sR9QDNqXxHU4n1A1G+oZNHzfUCYP8w4jvV9QEhnaTI0AH5AumgBPoQCfkBE4puiRBB+QF4Rq6GqHX5AGwdHBvAdfkBaIWcEOx9+QAKq8qsiIH5A+j3xlkYjfkCO0rjoqCh+QEZhdqnwLX5AMCaNYEMvfkDLZbo3rTl+QO9j/vlBP35AMgxO0udAfkASGxrYk1B+QILefTKQVX5ADwxJN7d7fkCibVjGAIJ+QOH9H9m+g35AngWR26mIfkB2x3q6uJh+QE11YR+4nH5AQCigVfihfkD2Xt3IZqh+QA6/jia9sH5ABHBU6CG8fkDoGLYu0cR+QBve+4sGxn5A8QVEeXXIfkDqC7wA0M1+QMpxzAAq035APPNP4s/ffkCoug8OlAN/QJRbUeUXDH9AduwUFx8Uf0Ak2/hIlRt/QM7paxEkHH9Am0/GRWQkf0ARfYciilh/QINEul3mXX9AOmxmWZNof0BoGCKOuHF/QKHtnO6jg39An0ChWmKRf0Cs/ioaq5F/QI7KEd1mk39Axgo2AZeTf0BGO/k9X6F/QF+jrE1Do39A7iwUH6Cof0CiTaQH7K1/QCSxZ7v3rn9ARPDF+Vaxf0CCyLLXvMR/QMCPNKjD039AUPl1gszbf0CGjYvTz+N/QMjtnaSW+39APJlMAOf9f0BgqXNAiAGAQPzrHcg1BIBAMdo17toGgEDrdWMQhgmAQCBW0BX2E4BAxHxdXOEmgEDs1/RbiimAQNqoq7/PLYBAzvod+fk0gECgkEaT90iAQEBs13rnUIBAXmwNzRNRgEAMFWTE7liAQBpKbAEOWYBABD7cmB9ZgECQHkywaGCAQFW79THgYIBANLcI8DpmgEBwqx4p8G2AQC9hg7cpb4BA0LNqsfRxgEBSxwlS93WAQGYiAUomf4BA0iUFA8CBgEAMmkEQ3IGAQKWq9wA4joBA9rsoa7OOgECs5MvWHY+AQMtcq0ddj4BAWP4uB2ORgEDaycZuHJeAQFYkNVdjmIBAfKXzCSSZgECQi2QBlqKAQK5Fwi5do4BAvHs1hYmlgEBuyM+a36WAQDYAS5uFqYBAFMkqPeOpgECSJU5B1q2AQGgvLQHprYBAldPfbxOvgECHlEecHbGAQHqIvMXksYBAwLt2+42ygED+96R7sLWAQAVJhSa1uYBAyvelkQa6gECJY4yaB7yAQBrotqiyvIBA37QB0O6+gEAI4nWYAr+AQAwKy9Nev4BAl/rUclLBgECGb5H+CsKAQNcwW+7xxoBAUsR77qvHgEBzHuXtXciAQACTVxohyYBAoU/VglPJgEBqLOHLTMuAQM5z5VEHz4BA8u6mKy3RgEDHpxByTNGAQJb1krlg0YBAokpQt0rZgEAmrvS3wN6AQNr6vKVE4YBAZA8drmvhgEB0e1b2GOSAQEzwa1T26IBA+/0EMk7pgEDQN64S1emAQHeY0W7l6YBAWF+fu0rvgEBCR1raZ/qAQK41orhY/oBApkcMsD//gEDFDY+DXAKBQMxrfyk/B4FAHgGLQuQNgUDc5emWPQ+BQJLOv89RHoFAdXJaijQfgUC1VJFRVSKBQByYuBU0J4FAXEqAhDcpgUDd8DBELi+BQDjkd2O0L4FAJFq/w7wxgUDn7QvaKT+BQAhmNxuTQoFA2OvX+1pHgUAqVRzbB0qBQOa5+9iyTIFAolsDchVSgUCEq0ApGVaBQNALgOjlWYFAms0hpBhagUAOU2hI6V2BQAvLI81ff4FAYeuJMCaEgUB+8LJFaIqBQBjEflUGjYFAMdwltlWPgUCqeFJss4+BQI5MdwvvkYFA+rSoYBKSgUBIi+NMXZKBQDbxlDhUl4FAXlNlKFSYgUC4n3jfFZqBQGwiwIhTn4FAhePJCuihgUCnSr81bKiBQIy/rzlLr4FANCJbsCG2gUAY3R24SLeBQGZM68fjyYFAmGHPDn3TgUBAJtIEnt+BQArdasvI6YFAJv1gdJrtgUD4q1cj7PmBQNBs4xPw/YFAsisueoP/gUDMNAWrMQKCQCqP5xD1EYJAzLlhy7QSgkC+FMw3+BWCQMRHguvXGIJAysTebvwYgkAQFm8G1iCCQJvQVGbRKIJA5ifT6EkpgkCUMonfgjCCQNZRnKmjMIJAiNlIJQ0xgkC3R/t14E6CQIAoa28DUoJAzpLEbBVagkB2lcUm5FqCQHPJIbKiW4JARIRzQfVhgkByDPUzNWKCQKBL/ek3ZoJAzOsqs6RngkCabdVPeGiCQOTxIFtGaYJAtJ7HhQdqgkDKmNfmA26CQIqSmhHScoJAhuWZxZ5zgkBFu4wqcHSCQBzoh545dYJALMI4E3d8gkCgMq/IBYaCQCrLXlhDiYJANJ6J/D2KgkDnlJKN+4uCQJG41yLqjIJA9f/fkZaPgkDOoap5Q5GCQNo66l88mYJAcJVfL12ggkAL01RDD6GCQFRKVsQ7oYJA+VqTvwypgkAWyjlsMqmCQNKFl7VIqYJAzO3A7wexgkD818OcN7WCQDLXsDGA2oJAsMSSq4HegkAoW/sAiOKCQBZjmX/H7oJAKGZjYe75gkAqSS/A5AWDQDBRICelB4NAbthWk3kRg0C2978vehmDQH5gf+VyIYNAWJI+olgog0BjLTSWcCmDQP6C375rMYNArq5L9YAxg0DMWz2CcDmDQKRcXcBjQYNAakbufeFBg0D46EG0WlGDQBjXJaLOVYNAqs7DculVg0AG5I3q6lmDQMClQ0a1XoNAuoaVGu9ig0A6ZQI+H4SDQFhNmhNekINAjMNHOVSVg0DqwmgoWKCDQKIPg3/qqoNAA/VzbhG7g0D9DHKQlPiDQB8HSmWMAIRAi11NJQlAhEDhVLq4cECEQBNAPpxKYoRA6HK9ZAtkhEBa0krx/2iEQE0pP2tJaoRAubXu5UxuhECAyR72AXGEQNhsQ/ZPcoRApr0CR1B2hECWdwhkyneEQEioKgX4eIRA61aQV3Z6hEDCnotYBHuEQKbnAIIjfYRAGmJketB/hEDkTRu1fYKEQO7JZAPJloRAHIyxVnGihEBd9CorHqWEQPwBQXS3p4RAjFmzHtSxhEAS6X3cU7KEQF0JV2BxwoRA8CBQRRzFhEC2Bee4zseEQDDA7dV9yoRAuBFC7SvNhECLS/p3xc2EQMjJAF3Fz4RAIstGFWrZhEAGwfmRaeGEQJpfI4Jh6YRA1jxa4DnthEBsdT96NfGEQMSCVFFh8YRA6ReJbb73hEAWo6BmNfmEQBHsfv5Z+YRAVqIkmW76hEA1E9/jF/2EQOvaiyAvAYVAK4jn7pYHhUD0wsd2ixKFQOCpxWydF4VAaFoHwTsyhUAtGrhwOzaFQGhDoadYXoVAAk1+LqBhhUB+Jy0BXWKFQIw8gHGNZ4VAsJq/PKBphUCbGjMqmXGFQMhlcb1Ec4VAPjpxhbVzhUBN+OFIl3mFQOtaq3mmfoVAVRr7ENuZhUDEtCgho6aFQIRPeer4QYZATA+DjBxihkAa+7uxMrKGQB/VzgQnuYZALuRQ4yPBhkA0un5OouiGQCjzhquRKYdAYRQL9I8xh0DusMjLhzmHQKZupZ5cQYdAqJsiRopBh0C6Yasd96WHQPlSaobHsYdAgMMfWmOzh0COoWeHx7mHQFoVApBou4dA7t8D18HBh0C/ExfMvcmHQFR9t45g/odAORpDR2MCiEA4fo25ZQaIQJUkYq//BohAIJN2CGEKiEC0D0BjYQ6IQMHinVN6DohAMrAbXimziEBQfpgTMruIQA== + KBZXds7jZUAAqvrc5WFwQIkw7CrX8nJAAAjXMD5zd0DE0mQAhxN6QABms4SWhH5ALHH7MkUigkDKuiL1zFqEQCyg6VzxqoVA6Avf3yTrh0Asz9eGnTOJQKJev9ec64tAkPyhoynMjUA= - + - rBK4RC6rUkQiMIdE2GDBRZ5cuUSUfjNH6gfIRPcmckV3e3pEU7+jRNbCT0Y5WCVFRVGNROPw90ZRJIBEKaGARIuYeETKOL5EoBCvRDRnuES0IlRF7D5sRZNWZkTXH3hFAMqPRBRgZ0Rl1bxEI+vqRAocsES+VatEUQbORDSDTUUYSR5HX+ysRO3mt0Qn1V1E0UQXRn6pmEW2m61EHX2cRAhco0SFd0pEyJeTREb9x0ZXPbFEb2ReRAKkm0QT45pEA+yIRKkOnUVnD8lEl3RmRDZoiUR8dHRE+IjDRM/7vETKrOBE9VBURaFQkUTICwpGHRWyRPeUqkROqHFF+8mqROiMVkQPjANFCTvDRLk0xUSf9GhEqEJ5R8cZX0RxKqxFlQvBRgTI4US2YXJE5NGbRMWDRUWlJVpED5EiRbdbskUKmIJEdzC3RLtS2Ebrsx9FhtoIRUcMS0UNsINEVc0JRXJ2m0TVI4JEw2InRwGM20QX865E/omARnvI60XwidNFrwhpRErtFkV6wU1EQZHtRAXYdEWRxPNEMer2RALlTURdt6tFNH/iRKv0a0RyxidFMQJSRM68rkT/F5BFTPWHRPClDEZCDZVEMWqKRA0C1EQy+M9E3zNwRKBEaEVBEgRF9PlYRVBXuEQY4A1FmbOPRgt0oEQjUaNEj2zKRPf1cERiXOBEimVWREAlH0XkorFECkhJRHJY2USDq/dE+w6URAXknkR2SgJFroZfREXl30Q2vOJEQ3zkRJcWiUQPRphExGzfRXh5cEUNOqVFWrBfRKsGuEWA9mxETrbgRLMJ1kVFYzJHf4VZRdDSp0TWQ8VE4KR6RIokEkV7CVJElf7ORRKFikRUk4ZFQVhaRbsRV0RRd4FE6V5HRBtEakQ+2mpENpCDR3hoWkQHdG5EYpZcRFl6/0RNzvtESJaQRavyp0QvN8BGkpxdRLOYMEYazuNErkrYRJF6BUad1OpETAtZRFz0c0SnRKdEN/6cREJseUUDa4tEDEz/RHG1bERmY4NEF43vRORKP0WbRndEElGhRNVCkURql2VEk8agRYOMt0SLvZNEtAloRACZGkZUYcxE+FUGRdAhskRJWhFFK2QBRlrAV0Ub2BZFX6E5RXFSTESEMkZEwr2FRFL1jEQ1mrBEiLiPRKslzUQ693FEFKsqRUOTAUZFSXhEutqjRcMwDkXqra9Eb3akRGuy80UgnRpF2ituRTTLfkRb7YJFcG+7RKj0qkSYVYtEdteLRE4IoURQsI9EERnDRIFC20QDakZFl0dnRJKvVERV2O9El4nDRO9kLUW95QlFvQ+VRKa6ykTYKwBFqzQhRTOxUUYPXopFQOauRFq7J0aMAI9EjFtgRFDtj0RMakFEoqWdRTprFUUMzsNFOeLJRSgztUZX7rBEBFo9RUGcREQYX8JEG4RhRLJok0U4HL9EFDSQRZdyWkWF43lEEAJFRXM0hET/EJNEfaoVRhR3jkQF9R5FlhZeRCRfXkRr35FE7T8NRSEkfkRC/wpF5bx3RE3DfUWqZYtENbJaRa1LSkR+RGxEOtcWRSH5SkTqxuFEDSzlRPjkcEaq0T9FGrqrRDCIfES5uHFGorwhRuRqqkRHKxRFCvdKRTEB3UfHJVpEBnRYRx9mZ0itgLpGsNdVRZUORUYFw2hFdEkjR7/G7kRt02pE8AEARXCIlkTmFyVF0SdcRHD1NEUw2G5Fdp1cRDaZd0Q5HIJEpqKpRK9da0TN4lJE2bJlR0Wig0a/bDtFAN1sRFhbmEUMqKBETOlRRA+MUETHUoJE1Z9aRFZVpUaw9whGEnJCRfvseUSEIrBEACZLRTn2gETbCBFF0zjVRNLS9kU/uxlGi3qERd6ERka5yJ1Eu7LaREdwHUXi3lVErtTqRI5YGEXs7elE+Vc8RPx8iUT2+ZBF6x05SZi7CEbm6ltEFy72RGSPgUTWCGRFHbU0SMg8zEbAa3RGqlcqRWkQpEROSJtFLLeHRmgq1kRalHVEuWWHRCG820VcCDlF7ukHSPOYjkRGx4REVGZAR4dxHka4WUxEiNFfRLZxU0U7cG9FKgJaRa02kkUsZAJFdFjcRFlFoUVF905E3mIrRg8okkXLFBNFeU7jRNt3SkTFYCRFqFihRAxPpkSvee9E1Wg8RU0mn0Tw84pHCEN5RFhy+kWE/IlEC/qpRBMvYETgOh5F1dp8RXihxkWR2fxEr5ecRLkSwkQnLoBFLtmORFKxJ0dfEHFGNwdpRG3Pr0QqSntEmOSPRBevsEcqdaJGgMwmRVlpNkU9bhRGz9IjRYXZiEekI0NEww+wRvZlAkalV5xFbPylRP94XkTaT5pEohaYRB/se0TREFlE7uVKRPhQRERjQslEImr0RG5oeURXALRE9F2ERWFvCUXGEIdGVkqARNYbOkVSpENFkKk0Rk3MXEX51RVF1VNKRAJmO0QF+VREz7gORe9ykkQ6gAdFnnK4RKF14UShPJFG/CxjRp/oSkWIyHREsnm9RLOHn0RB0D9F4oimRHSo70RXakNElqjZRG1nhUYS5YhEKMQiRs0e70ULV0dFQp6MRMAGgEX/TEtENjSVRBULp0Tha8JFQVmHREKKcERxebVFBn6JRkdhqUQ4JkBG6+ocRS3YM0R9DLpE+h8DRpjFokRZgJJFN1k5RHLNm0RuHdNEaax5RDDBEkX2yhBF/jfsRAOuxUhZdrhEzeSqRBea4EdtBKJF4apCSAKGXEW1LVBHmTHcRAlZ20SPasdGmbgMRoqKwET6N7REP5ByRD+GOEXFHZdGcbiPRF5VWEToKptEeAlkRaRI90UmRL9ErARWRXaJeUSkCq5FwHvARRquHUUHv5RF0EAyRSaGeUS5tGZE5M1fRCqWGkXo3oVEQw9oRLA/30SfUQVGcSGAREjvj0TI/31EQtvCRZU+g0TBAdZEgaZzRTRUtUQY4odEjE2VROdGdUTYHINEebOHRGRwCUUNJJ5ErJzHRbt0SkSNMCZFS+iORHLOgkS7p7hEt/9ARH8rXURrL3hEMM7iRN+aPUVq63VE2GmLRQNFM0WkmlREL+VLRJNIBkWtdGVGW5wSRjzrhESUFiZFxS2+RPXMdkVpWYpFmuxJRH6bnEU26ehEek0vRnCKi0SMWaREgv2gRM8zfEXAn/dEXIqRROwUtES1u3REfbcFRcA9qUTx/UpGbO2QRbuU8kRXHl9Er7BbREOzP0XmwGtFuGnoRJKww0SPNVlEfyySRLHVZESkrYxEjcnQRAR/0ET6UB1FCQ6GRpIfpkTYjJNFMTPLRGpAckQEsZFEdGsBRaEXAUXvEQhFbnZ6RDV/dkT3d5ZEl3JzRCLMgkQDz95EFIMERaazwEUeV2VELs9cRAsZwETU4LtEWUeFRGgnRURuQ0JEW50/RE9fD0eJyOtEQ0R+Rlkdq0Sv2ztFOWkjRQlhbUQ8tplE625iRCVBy0WZvxxFEvlXRhlljUTXQBdGAy2fRHtjV0SPZmNF5RuCSIN29USEwYZEnC21RGTMhkRjy15EdTryR++ggkR1yNNEKiqZRJWghUd5lV1FS3JcRuNe4USYabBFFL64REtoZkRDzAVFPJRLRHEEOUS/GFVE9bSnRLaHAUXZTpFFf5tWRmw5FkVVi1ZFFNBeRDZZUkXQliNFJ+ygRi9R70REVp1FRQZ5REBnkEQoGIBE7kvdRO9cHEVdaqFEm/2bRXGNWUVJnfxESgfQRXfgT0XNHWZFyW5/RGXkp0RN3Z5E8PZ+RBLbeUQ5mFJFq8DSRdLmHUWA4K5EcabPRNni8kQ3MY9EUF07RJwBkURmiYhEzPlMRVJRtURi/ddFpHLBRJTSwUR65hNFvrmlRMYXX0TFBslEdn2PRMORDUYCeHpF7AptROLgl0TWT6hE5rq4RCUm8kQYqihGbgSCRPVig0UySQZFxNJNRHYIXUR6WI9EjJKdRIi1ikSt/ddE9wl6RJ5Kk0Rin6JEqF+BRMgSgkWWh4NFJ4RXRPsctUTL959EuRSNRCsZUkRNbOZEyWmZRP7QnkSMjqhEHQZLRJ/JO0TAud5HYsRnRQ84NkRNZjNFA1z0RA6xRUeTV9BGl+heRJ5Ts0WR1BdGOIpQRY/gJEVJPsNEQJbCRE9JgUT2dZNFX9wIRVb/WkSsmWhE1TpJREjXR0TWnlNE6AXlR901UEeq4f5GS79URI49/0W9PnZFvrB1RN+/yUSNaFNEXX+HRNXxTESLfoxEwSy6RPb/gkRnQF1ERyVwRKK4hkQLzVFFSZA5RCXeTkT64VBEzRx0RFua00SOujBETvoERfCuR0Sr4ohE3CBuRBeO5kXQGDRHgqXnRhP2IEXyS8JFxTpeRTf1q0dimgZFhGSUR4H6Y0Q2AihHE9hTRh8DjkX+gERECNyQRQvyn0Vi84lEvICmROSTokQclBVFKLj7RMNknUXFGSBFHEuwRCLScETDPqVEDeUWR5H1h0behw5Gjb9+RBhIe0UHlWBFN6yFRAcf60R6MshEi42SRDwp6UQLwcpEsdaSRD3iykTFwoFE1CBoRI4vX0TmAhJFWU4CRxa5y0Qgh0lEWRZzRqegGUbcZ0ZEveVIRHX6c0VmvVVE3biURHDJmkSL95ZEc4V8RDB6T0QTg7NEgUC6ROh7+0Qz9QtGsS+qRemTi0UapbtE6D7yREzAZ0RoCA9G/AomRRVQgkXX9pxEF5YJRSZ0i0QqekRHyTLlRu6RaEZmLphEwWLIRWZIRkQCfGREFhWhRe/+LkU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - +GHPU3jAckAxEuiJD8FyQEyMyotWwXJAps53r2/BckCrneEGyMFyQL6onFZPwnJAQBUDlKfCckBC13Dz4sJyQK12BEc7w3JAIOn02sbEckBtAugeXsVyQPtA3wAByHJAKQWXEV3NckAiVLzDQ9JyQHMO/AHP33JA9W7Rt7jgckDowvoB4+ByQOQwoWNP4XJADOkJf/rhckAE3hxOUOJyQH+DXdeP4nJAUn/qTiPjckAUQThROvFyQAACIXTL8XJAonIb+XnyckCaqpJutfNyQGyNBPzC/3JAEjH1pR0Ac0CQseab+gBzQB55eN5OAXNAY82ksNACc0Chv4rt+gNzQDme+x4LEnNAnB2IWr0Sc0C+lY88BRRzQP55E/X2F3NASV2QZXkfc0B8hAXUuB9zQCJynrWiIHNAnJ3DRTkhc0A0lG7jZSFzQBk3hSHkIXNAfIdxo8kic0AlUx+wDiNzQIJTSdAEJHNAlg+uGs8kc0DMyhjLWzFzQMMuszEkMnNAyJkhngszc0BU/mwKNzRzQP4vLM7cNHNA4KyHdbg/c0Adn/yfeEFzQFB7u1m6QnNA8qweTnpEc0DDOFxfmVFzQP4KnHxCU3NA7wM2LaRTc0BmqYhihlRzQMND7nL4X3NAYjgHaB1ic0DMogkzOmNzQNDc1NQrbXNA4pqQN1Nyc0BeR8oDanJzQHrrJDmFcnNA0i8aEbpyc0DcWn1luHRzQO/0naJLdXNACulbnNB3c0Dojoan33dzQLTqRjIUfXNAQCq44id9c0B260SreIBzQEAQAIekgHNAZEyiygyBc0DoN8LWXIJzQJ7baQ7kgnNAXGPSqIaQc0BYttRZTZJzQBTVerpnknNANth9ZmGUc0CZtWdG95RzQGTSvYa4oHNAdBTLlUyhc0CAHFe846FzQEvOyfNaonNAxmcvlpCic0DykrzNxaJzQEqfRscDpXNA0t8oo3yxc0DMKYpzt7NzQHVHY7EMtHNAXPTlRaK0c0A5F95gZMBzQL4PlfP6wHNAyHXQd9DCc0DoqDpgKMNzQMoX8gHY0XNAMmdIXbvSc0Am1dmH+dNzQN6LazDi1HNAfpkpcw3gc0CyxV7qouBzQI5VhcY44XNAEWvh82Thc0D8KcUTeeJzQEo64j0R43NAeObeWfryc0Cjsf8hMPNzQDQq+jY49HNA+6FJCEf9c0B3hxiNeAF0QApcfaamAXRA14pH/50CdEBgi4eZugJ0QOzTn+iKEXRAtdf+GE0TdEA8PqBteBR0QJTgH7yNIHRAnEQg5NkgdEBefX9EuSF0QIpcNEzjN3RAtH0Oyjw9dEBtgKw7O0N0QGIAm8B5Q3RAzSOw39BRdEDC3vR4YlJ0QJhECrz4VHRAjumsIopVdECQU3vw2Vd0QLv16bg0XXRA3kD1PLhgdECR8C9OCGJ0QNnBjICPYnRABXTu4ktkdECoQMzXmmV0QP3RdI0jcHRArF6tjstwdEC8cFQ5QXF0QABNlzc5c3RApMPz3KN0dECEzi97NnV0QOZMugu1fnRAyD/go22AdED2TuYY+YB0QFDHk1dOgXRA9IYyiCaDdEC9XQ6tRIN0QP9mm+IVkHRAjIGr2COTdEDFYKHz7590QJhIo5LRoHRAlKGYMTmhdECUVPDMDqN0QGA4p1L7r3RAnOI08AuwdED+qw68b7J0QD5mEL3It3RAsYbhghS9dECepWKBIb10QKa6kFLdv3RA/IWcYePAdEAlPzWVesF0QI86CRkmwnRAdVHQS03DdEDgDQPFJMR0QBAWjjm3xHRAgNX5ccvKdEB3SXEd/c50QAP+jWjT0nRAxNjJPODTdEA0Eez/zNR0QOc+F4i44XRAT1ie+0/ldEDQSOmqT+h0QCK4ac+m7XRAlFKT6ozzdEBIZJD8pAB1QBKRZOpkAXVAIb95OwoCdUD4dWwMXQJ1QGKCMGSkAnVAgh+ptpkDdUD+vgLpSgt1QNVNqigiFHVAgJ+ZTp0idUCEgW9LqTJ1QEMWztXMNXVAwHamdfg3dUD+Mm72VD11QKtkLAwmQ3VAt+gZIAtQdUBV3i8dgVF1QAC1oFI1U3VANK1gi3hTdUC0G1FwTVR1QGGzzqp2VXVAEG+8hDhhdUCty/QS0WJ1QNwdoTRnY3VAzoJbgHZydUDHkMpGjXR1QO+pvXd4gXVAzIsL3a2BdUCZ9pBvpoN1QEvgjyubhHVA02UwNbWTdUAoaV6nt6F1QEYbpGBfsHVAFsf52MO0dUAKv1Xzy8B1QOo9ZmP5wXVAToY/qkfNdUDoJJS6as11QJwlnXc70nVAumVkSsPSdUDg6iuRy9N1QHK8nUYS4XVAiACaDAfidUCAHwvcq+N1QBQHG/u/63VAR6i6jkztdUD+bRpdp/J1QM4rnyfF83VA1kA8O+/3dUDU5VAmBPh1QP5D4I9IAnZAGhWHi9ADdkBw+ZO37Qp2QIbt0QZVEnZAzshd2EwUdkDV+AWoCxZ2QFJqIRGJInZAiPDK9NIjdkDyVb2skCR2QAxNvZtLK3ZAAHRbmB8xdkAGHH9glzJ2QL43P+5TM3ZAHMnAvpw0dkDSNhNJHkF2QJRI5F6WQnZAstfJbMhCdkCn2nmNekR2QJCXknn8TnZAs1OXiBJRdkDeafBAzVR2QPzx+j0dYXZARtxpZ+ZjdkDjt11j2mR2QNK+bExWaHZAzl8MBGeCdkCkHoKIkoN2QPP+6kYQoXZAYiWMByWhdkBsHUH5wLJ2QEhUHRINtHZAsOufAHHAdkAOb6LCvsB2QIeEgIo1xXZAVO20eM/OdkDEjTRbg9B2QPT80XHz4XZAvR9nRZHzdkAEYGaBNAJ3QFRmkpAXA3dA4AiDRgESd0CCpCx3DiJ3QKQ9H221JHdAvntfbeknd0Cyy8XCQy13QAKQRXlaMHdABqX1Rp0yd0A6CiHRpTN3QB0RHJENNXdAigP8SapBd0CAsCtbjkN3QO8aQka4Q3dA7vrTSOBDd0Ce17dz/UN3QJoH8IMdRHdAD2316BpFd0Am/BWPZFB3QEHCc5tLUXdA+Vp46JJRd0BYj+vRuFF3QKqfB0YLVHdAkkPtyylVd0ASKozkjmF3QMnbNy+iYXdA0AgvmTtid0AkwSxHH2R3QMqsX3Imb3dAEKuj1ltwd0D8+mnfoHJ3QC4Hw2eRdHdAHGuAjPd3d0Bol00UT4F3QD53UVR5gndACQw5QJ20d0Da8P40crt3QP574Dx5w3dAYBq5UWjLd0DwPmDggst3QJZpfOzh0HdABHl1uYvWd0A4Glsb7OB3QLbFFbgo43dAXnxmfE3jd0A4hlgGaet3QOedvChQ8ndAfPnnT0f9d0B0xermnwJ4QFB+r8nmB3hAhinZ7foHeEAP5yslAQt4QGT5prZvInhAifmjPIojeEDChxWgmi14QLgfxUMLQnhApnShbn1DeEBE99+1EUR4QNxP3vB5RXhAHIQBsMtReEAGKMx0F1J4QMNQEvOTUnhA1GPodB5UeECcnYvthVV4QGvCFtPtV3hA0MYgz59beEAOIdSl+WB4QE2skyS3YXhAyQWmPSJieEDurwYbu2J4QJAG33YEY3hAz973vF10eEAWvJiYbnR4QJpiT/OLdHhAOtkd+K50eEBpfBHRv3R4QLB04wNye3hAglfHEjiBeEBcPGGopIF4QGal17N5g3hAyT+aJ3uEeEAoniwcmoR4QOvTwca8hHhAQpuazU+IeECcnGnrqY14QE/tzVFRj3hAz1oZ7bqQeEA3ehiZmJF4QLJCwZAIk3hA5DJ08aeUeECoXUbeSph4QIAWpIuzo3hA+Ra1MtezeEC01CAaCLt4QMogC/Q2u3hAyyLRoVq7eEDecRCZ0cB4QIL6URgaw3hApXQ+GT3DeEBUiD/oBMV4QOzGCx2gyHhA3lXAri/LeECkHAngNdN4QCXnPi631HhAVrWspNbYeED0pqFTPtt4QFowgISg4nhAq1cZ8QH0eEA0U0ZsjPV4QOX2duERBHlAyqdy+ZcFeUDoghmZuyN5QF6hQUiyKHlArzsKQQsueUCCzPvLZDN5QBxPMz3JM3lARMnlB+Q4eUBqyU7tiUJ5QHgVhFL5QnlAonFtLItDeUCIGIHj+UN5QH46VB44VHlANmVzw8xUeUA45fGT52B5QGGPNNjYZHlA+Go0dPRreUA8U3MLQXJ5QLCrgRpFc3lA39cYmE6CeUCRD19l/JN5QGJkIi0EnHlAMqd1Nr+yeUCEihHzicF5QN7vNyxC1HlAY9XGO83VeUC64oEZTuR5QHjZ0sfs63lANGCf85LweUAKdx4oD/R5QLJD/6FmA3pAtf66waUDekDouOy/AQR6QPz5div8BXpAxJdjXQkMekDZB+JPExR6QGxjgV04I3pAZP6S5zokekCg/DGnKjN6QKwdsm8MNXpALsRtTRpFekCqbAbgzEt6QM7jhz7SU3pAUK6PxypVekB1A+Y3Ilx6QJFB6JwqZHpAevApcC1sekCQFfm9MnR6QJqyhxMeo3pABNLUqySrekDSVHICFbN6QJ6QFOIMtnpAqPivtBu7ekAM5X29euR6QMAMU2k27npAzYQUcRTxekBAf8NRX/F6QPY0PK1J83pApFZbu7vzekChSdITdwN7QJujQE58BHtAYOEMBcQSe0CR9WT7iRR7QJjJLj5NFXtAwFqAbB8Ye0CyOJb6WiV7QKmSpds9TntApZQ+amBSe0AOl+d7lFN7QE4znVTLU3tAcd11KyNje0Cuf+Ao2Ht7QAKtrj0LfHtAgBN5thCEe0CaZBMF7JB7QFTgSAAjlXtAriO7nc6de0AmelmJKKN7QP6aM1ZuqHtAa41OAoeoe0BddiELzq17QHBiv1oUs3tAniIvIenDe0BNi5FPxtF7QNKcOnMp0ntAwOVk6qDbe0DqAgFku+F7QJyjhKb/43tApOzjpifke0BRRh0+mPF7QAb8mC3e8ntAstKhjoz1e0DK/gPtz/17QFQYflaQAXxAyIYAVtkBfEAKUK3lZgR8QIr5nHOZBXxANmC7zoYRfEANvbXz0BF8QH7heix3FHxAcvjSQOgbfEAMyctc5yF8QBxu34DxI3xAjVsoaM5BfEB0ZOs6U0h8QJCzqZKqTXxAO/QeGedSfEAZIi4UC1N8QGwTo/KDU3xAIiun05hafEBqg3a6DGJ8QNTR+k0qcXxAYwMT1/tzfED1LUr4WJN8QPaNgz9YmXxAOH7swJacfEAsvwG1sZ58QGw8slkPpHxAmjEiu7+yfEAsPUlAY9N8QKFUZ2zO1XxApf6jE27YfEDaQysDfNt8QD3Z5s6723xAL4CtkfXbfEBPBXtFJNx8QODRFPdX4nxAXFo5qBHjfECQV21AU+N8QDxGxMX643xAllk0kWjofEDIQcYoAux8QPGJycnF7XxAcSKCpRbyfECvZMRTVfJ8QIbXjK8F9HxAv40Hu2L7fEAe55k2Cvx8QMRmoZABAn1AauE2QEsCfUBEX8RNXgN9QO/Ox0hRBH1AWnsAV0USfUAMqMjXrht9QDSBH1U9In1AiXHaqrUjfUBB7VVsXzh9QAFbjwJlUX1AEDR+6WaEfUAE9EBSlY19QF4cTXLvkH1AXJ6IT7CSfUAxsAg88ZJ9QPMRgRt1lH1ABJPalz+YfUAU3r4EtJp9QDeQ2GKWnX1A3smIcy3DfUCAZ4+XY8N9QF91akDnxH1AZ6p0f6vrfUBGWJYi0fN9QES9QgiR9X1AsrqD+TMAfkDH15LR7x1+QHIVJrNII35ARN/WZKMofkAmnbjZxyl+QDzJxInpLX5AjImtvzwvfkAGrtFTQD9+QC6IIGtoQ35Axlx9R5JQfkAW+VEQ/lJ+QBJcwcWOVX5ATifdqctsfkCqa14roHF+QL2+EWm3e35AmzI4vL2DfkB5LoS0GYZ+QFEBWiBwh35ATuPyX+CQfkC40ByIsKx+QDuy30oSsn5AmhphuujDfkBeYELo0MR+QKPkqTZ5x35A88sjFnPIfkCU/OjIzM1+QKga+L+fzn5Adn+zt9vSfkBQKo2gDNN+QMQ+2V8u035A8KuXUTTYfkAFj0ILb9h+QMIkLM7U735A0PDMPVL0fkDQYl+W0/9+QIBLzf+TA39A6Txml50Lf0AW1L7BFwx/QBqyp6oeFH9A3o7h3yIcf0BONx0sXyR/QAvg+FVqLH9A69XSJItYf0AOIikEklt/QMsx68XlXX9A6iM2vLdxf0A32jzJtoF/QFnJnaikg39A9svlAB+Kf0DC0spIMI1/QI+41ddikX9AeUcMRKiRf0CRwwZul5N/QLrHOIRdoX9AWp1Ta0Wjf0AUelSYnah/QLDiCjf5rn9AoGEIIFixf0BU/kc/yst/QJIjUd3C039ApK8TtMrbf0AkwsGJhwGAQDkB3zY1BIBAdrD7atsGgED81njX8waAQCx36FOKCYBAFQCSwzMMgEA4PY0V4yaAQGrp/tu/MoBAcI4rOvg0gEBAKjzw+TiAQCJH71U4OYBAJ5sXf9Q5gECctUmdeUGAQEowu7OoQoBAv/y+Ju9IgEDo1WDq5lCAQJTJpssTUYBATkFYSw5ZgEAQeg8oDGGAQLCY+588ZoBAgFFKq8tmgED6Luo4P2qAQKKmjn/wbYBASnHIyShvgEBOjsmVJn+AQP2bfhyzjoBA3xstmfGOgEA2FGDQHY+AQA1VtoUGkoBAS761Qw+UgEDUglUxC5aAQBRiZaQel4BAbozXqVGbgEDCADOkGJ+AQMrc39rCpIBAPiZ29n+lgECUeClU36WAQI/sZnb4poBAzARFpYWpgEB0hczM4qmAQLxMstHorYBALulptRKvgED8lHa/HbGAQDQ2CkffsYBA620BbQe0gEBYdpMHsbWAQMxpYzM2toBAtspnzbS5gEBwy5a5BbqAQH/o1VuyvIBAfmws4ny9gEDUUwTeX7+AQO5y6NIIwYBACnwFtC/BgECeXGpOUsGAQBNBZ/FuwYBAbtOONgfCgEBn6xnUuMKAQPAYld6kx4BASIyhnR/JgEB0RdZBU8mAQPwFH8COyoBAjqk4kivRgECKrkxRTNGAQAxI2ZNK2YBAu9r/nEThgEB2UsWEbOGAQFpTVgMd5IBAN3kCPvfogEDjdtJBSO+AQPFgezCx74BA04npiD3zgECucl95aPqAQJXwlWNY/oBAXOlHjT//gECbgqCCf/+AQNqya/dZAoFAIya0Wj8HgUDqxAS0PQ+BQBA7VIVPHoFA9LHWaTQfgUCcdXxqVSKBQJpTdFw0J4FAz8GxUT8vgUCW9MARvTGBQAa4P3YpP4FAgyMsVetBgUA+bBh3k0KBQG/GVORVQ4FADKx3BFpHgUAX2obpBkqBQK6RbHkVUoFAmKoYJBlWgUBUEieR5VmBQKIXUekcWoFAXl7DDJxcgUBGvltO6l2BQFj/AmIhXoFAJn/GCVdmgUBorwyfD2+BQBgIX2aDcIFASAP8lYpzgUCgl3EVVn6BQGYm70dhf4FA/vN18iGEgUDgNMvQBo2BQGp/94RVj4FAXssOuLKPgUAKvyJOZpCBQDP0qPEQkoFA4LZRJBOWgUDLsRcqV5eBQH5WEdVSn4FAZnwd6uahgUCUYsWmbaiBQDJMoYRKr4FAHiZdJQmygUB4szpeIraBQM4J/lJKt4FAeDDXiOPJgUA6kcQ2fdOBQGzuRzg91YFAf5xTD+z5gUDeB4pF7/2BQLh9hHH1AYJAbfI8igMJgkC8fiG18w2CQNlC3DH1EYJAdFATVdgYgkDuhzD81SCCQAJhfRnSKIJAFQ1oc6MwgkABXr32pTiCQLifu5NdOoJAxki6+KpLgkBaXOGYb0yCQDBfLs+gTYJAcumCdLJRgkAnw21x01qCQF76PwatW4JAXAKk1fRhgkD63guANGKCQE6/mfU3ZoJAynUhCQ9qgkBTuHeV02qCQDgtyDpndIJAXNXNJkOJgkD0I5CqPoqCQEBpikbrjIJAdYpqhkORgkBIDLSG3JGCQNrZVHJBkoJAyvgxZzyZgkD4RMC1VZmCQNTf0IEOoYJAm82uAzqhgkDg7+PYCqmCQJAFjJM1qYJAEurpOk2pgkBRSboTCLGCQJ4r8MheuYJAwNep7EDEgkASqRAsR8WCQEYe/VR+2oJALjzlXoDegkB3Yeb7g+KCQMlN1UPN4oJAYmupPq75gkCuNW7LHAyDQEh7+oB5EYNAR8HB+nkZg0CuA7cEcyGDQI2voyJxKYNAajgLWGoxg0DUuSkdrEeDQKLWfcbFT4NAlcBs4CJSg0DmnAeQzlWDQJSa/OrVWYNAVlI3B7V+g0C+lO3u5IGDQGD2MtRekINAty5vgsncg0Bs4GQYlviDQGArp8F6EoRAqDsGyghAhECLPPE7/2iEQEpLE1JJaoRAJIX9V0xuhEBUChSl/XCEQIV8UGZQcoRA78625UN2hEA8zMX+yXeEQJ6LFRj3eIRAwknUBHd6hEASeoP2In2EQB+8naXQf4RAimj6DfSAhEBaLGAkH4WEQKAsHczMl4RA7zTArG+ihEAXtERrH6WEQORDdOTMp4RARmViE3eqhEDlBafzU7KEQM5V0BVZtoRAPYQvB9+9hECLnr5vcMKEQMryU7W6woRAprqmSh3FhEBKJn5H0ceEQAfWwo19yoRAkBoLDCzNhEDhe8bjxM+EQLL6FSHaz4RAVUpEz3LShEC6mUMjatmEQNiPUCVq4YRAUMKikmLphEDyKeCzNfGEQDIRbutk8YRAZCHFecD3hEDQ1D4bNvmEQBxFL3Zc+YRAkOJJqi8BhUBWKEb9RhKFQFDtXMSKEoVA2OGrzZwvhUCoDRTsOjaFQCyoqDI+OoVAjPZV41hehUCsR8b2n2GFQKWqcL5bYoVA6DXwl1tmhUDyqYDZoGmFQCGFuqqZcYVALzg+wrVzhUBOb2cNmXmFQG1wKA2mfoVAUigem5WBhUCp2sI03JmFQHarihN4ooVAxblRFEuqhUBEKKSnzLyFQGJu3DZVGIZAA4anbBI4hkCTk7Jq+Z+GQPp2qj59ooZA1d7UgqOihkCEIHyWUqWGQHeQM+v0qIZAP80pnCW5hkAisihAn+iGQNJBD5NsFodAHLsIY28ah0CAjMgMkSmHQH0b0JqRMYdA7i82Iok5h0CarWKRikGHQEzpbF2QRodAC+GB/5dKh0ApiHujx7GHQO6brnVhs4dA4VgNpMi5h0BIYPaXvsGHQKAzvoLByYdAOvHYYWD+h0DBjZh3YwKIQAbLw/tjBohAwIxVIv0GiEAP7lLWZQqIQHSO2ub+CohA0kWqc2gOiEClv0kTKrOIQHzlW3Ewu4hA + KBZXds7jZUA= - + - K6hdRNdnx0Sk5J9ECl2XRbfS4kRtHbhEjtIjRz/KuUTuZ3hFJiuLRPqtR0S/Qk5Gq0meREBDz0Y2b5lE2h+oRMMyPER3HY9EMJJFRFS3h0UEwmdFEq9lRHuwsESIxGpFSoeFRAxFOkTfHbZEMVlBRAe3r0QWYWpE+M4qRcszGUd/jKtEVDYyRoK/i0W6645ExynJRMHagUQfyJZEa+TVRj5fXURMBpNE1El8RPJa2EQMyV9E6I62Rdg3g0Tu215EOjuBRJl/z0TH/pZEIvduRI98SEXXGWxEC3H9RT9TnkR41qpEgSyBRe+xgURrvShEtitlRGxD+0T6Vl1HpvH+RMTmj0Vb4JRGrACTREeQrESMPRhF+q6LRRQTakVDJVtERkUoRcpq0UZaPXtEqpmxRHaBJkWEMTxEQ7MBRY66MkePMKVEFuTsRLCwTkatxtJFbB2WRIhKP0S9ON9FLcprRMrph0SJmhZFk9I3RAn5I0UuFOVEzmpcRBJkjkRj7ctEOSFtRXrFykSo+/hEMX1fRAMkNUQaap9Fan13ROXLZETT/B5GRex2RBRWl0Qf8YZE9lxHRNJvyUUCzLZEk1AHRayAdkZX/1dEo76mRI8Tf0RzMMFEeRhrRWLNY0THg7hENBMdRdK5v0RUAWxESIVWRHt55ESbllFEP9RHRBlvREQ/y11E3D22RHSQWEU16OFEN/6FRT5tsEWImaBE6HeVRNjebURr2bJFJQllRNp3JkdZDlpF/MpHRPkovUQdgGFEeQmeRPezCUVBTqJFY74fRVKmUUTxVqJF8i8zRNDYAke6wZtEp5+oRP3CBUXV6CJFM8t+RPHYoEbFqhxG9S85RZZoHkUBDJFFHi6YRAopoUQyP2JE1H+GRAANi0QPDaZETqRlRvktekT+a0tFY1+JRNYwPER9TftEaSafRO2mt0ThgZREE1nIRUZqtUSYv7ZEJd07RKD6JUaSBt1E88nRRNbvO0VBv0dF3j8MRjfWhUSPmB9FUg6CRbnMwUQ19apEIRhMRAS1X0ScnDtEl0K7RJHs1kSj+MRESKQPRVSC8EU7WEJFCiufRAP9E0YOz7JE3NSbRfXjoUUy9AhFpThCRGu5nUS7usFEC0pVRGGqd0TewylFemJNRCODD0VSaDFFb0C4RIVE7kTk05FEA/XzRAd7B0WRqmpF/H8xRktJ2EVSSgRFPgGuRNeWnURKVPtF5Pq1RAcuBkX2vINEDYezRBTDskRWl6hFtbskRcq7B0b4kp5FgnusRsiiikRopZVE1e6sRB3Gk0XlGI5EskIhRRiJYEUXHZpEaBvaRGtFKUbNPohEO4K/RQyatESQ8XBE506NRGLYDEUK/0JEff1KRCiW/URrU6FFh6s/RL0kp0SN+UFEsksfRcqbgkTHeGFEeL4BRQR37kS4bwJFg3uMRjyQC0XaIWVEy/tHRm6KkEW19I5EDe3nRFLcDEXHs9hHRcceR8cStER9A4BEYPHDRAGzR0gOj+9ED/CvRgRvOkSA9T1FLPMtRk9CV0V5FxtHJjQKRYMw3USKBVtEbimBRP16ikRK9jlFHNJVRK4cMkXFGIVEL8DFRDK3ZkRPRHRE++JdREehMkcA8xhGc6GsRGtHykRkw45E36OfRIGhZUTpn5NF9qV1REMMq0RgFahEkLdZRqszIUbU6QdF65NfRSJpvES//CZFY7KsRPJbgUT8wKVEcCidRJvp8UW9WSFGUwlmRb5C8UUp4BxFOOleRHXj+ESAcH5E0nQVRawS9kRI1gNFGFbARCQanET0mopEWE2HRauH7UW0bzJJzP7hRfrRFUXGFzpG/r1ARFOuHkXIC5xFUBfOREOFN0giVdBEafTqRrPEmkbojj1Eg8pJREJvTkXXUBxFi/F+Rk9uxUTm4rRFNBwFRfgH+kRWyo1IVZM5RZ46jUTi7IpE2vv4R8Xkw0Ruf0NE/R2nRqwgAEbrGz9FEkhXRPyH8kRNTa1EIyouRVI5vEVcoc5E/Ry2RI/Rh0Wp7CBGSTytRRecDUVBc69EEjcSRc7vqESUbGJE0xGjRIUxCEWIPXNEznWbRd0ngES1oHtEzy+yRBqCPkcQiqdE9yPVRc8uVUXI6odEd20YRZ+OO0VbJqRFtKTQRFVuuUSLBd9Exd2DRBYggkW971BEU584RCQKv0bQdWxE4tEHRhRjmkQp44dE2etfRGn/1ERU6bZHT/2tRvLgnkT27WpEPwrDROCtM0Ys1lhFLGs7RD1dcERhropHlTS/RlKn3EVqrI9FP/whRbJYbUQ+2MVEvMTcRBU6i0SkvjlFmw+BRLPjdkTELqFG4GxORdA6H0Ui9xVGuv61RFmVO0Uwf4tE0JVhRIqQrUTiuZZE9DxqREdll0Qqt9ZEDdrDRLjwnUTX8iJFs1+WRplEHUbTlvVEexNGRcMOBUXirEJEpp93RMODYkV9YIREq4dBRNxEKkTZ04VEPaCpRHu+o0VqF4VEtsCQRinNW0RKVuVEbVAmRihPvkXdzJJF0o2HRLbYZUVWsWJEfU6WRXTzUkQZVAFFzsy5RdihhEZh6z1GSqWaRGzAIUVVg6lEGi1ZRKHFmkSttLREBQ9MRBi8UkSFBd9FHDrPRKtoc0WdTKBEY03jRMS7bEXA/4dE7dKNRCPU3kSkddBED++iSJJHNUVfbdpHJJO5RYYFg0TfsB5IA5BWRTeoJkdUBO9EvtIORQMZ0UaCTeNFmI6WRBXZT0QueSNFTXCmRugtW0RG8oBEKEpGRYsY2EUU/ohEe0KQRQPLUUR/v2FEdKfXRajzl0XNKHNE5OWzRUPzikUWR8pEmxv3RMobCUU6m6VEtCGeRDhtY0SMxBVFzGNgRGdlfUTVA9VE2DR5RZX7qkWfI0NFqA9+RMmfS0SDJoFEwV2LRI3OnkSHlVRE4tutRNVJvERq7vNEgRVMRJBpeUTZ1NtFvaEwReEFWERmV39EKCOWRKWdn0Qd+I9EwbNxRDFHREW2c2dEusSqRdtHMEV8wUdEbZXORODmpURTNNFEE7K9RMd5qESTYkpEIWdlRPOEV0QLE1NFtNTCRCOvC0cBLYBGINZ2RfWM9EQrP4hEzeK0RfJlikRjo4ZFh8CSRaymT0QTp6xEMf6SRO4hWkRGoh5GyKl6RFyPo0Rj6zVFALA5RYdYAUV74ZJEtgLaRNkldES2fSlG9/q6RfWAhEV5XoxFb8DORPS3vkTdhQ9FR+ttRAkTs0R4PFBEhFXdREN9zETrrSxFAm9DROxkiUT5zZtEqh/rRPXIIUW0i05GnPmXRTGDjEQfKZBEt01yRGSNXEQ9vQ1FMekaRdlGyESJD8dExfU8ROhY90XsbKlE2HehRJAoUUT2PaBELr9gRCvIV0SGDbtEA/WdRBgK90aNGoZEMB7zRKQvXkataAtFjCpJRW2IzUSFvIlEbnFaRAFxcUVkMYNE0KXERNnqR0Z+2ihGyqm0RGIRoUX0k5FEpXuwRAf/fEh5bh1Fi5OURGb3Q0QBElFEIyHRRLZu3Ucr3m9EOnaXRIacgkfgNGxG8veIRYW9xEQF8KRE97CFRNIhZEQVeYNEIqCmRLy/KEU5fchF/gwzRmEETkRfdgNFLYBhRWwyY0XkmYdELt2cRgdE5ESXGl1Fvbd/RN6auESqLz9F/BRpROSei0ROvGJEFhaIRZX+WkVKBPNGBfugRr3iAUWAYLhFZk+ARLYCWUSxGIdElglgROBPaERB7ohE6nlxRM1dW0T9IGFEQWhlRBYhY0WuO9JFoqW5RGukTESVYRNFwnZzRM7o6ETqYLJEX4cJRVl3u0QMLLdFcAJhRLKJtUQmxAZFFcQURV0MTUR5WVFEunkFRuFJ1UWXEJZEaYGSREIPRUTSWz5FSxcdRvrmdkUqJitFHRORRBswV0QSwGtE+8NSREilS0TfDnVExNHkREa2h0S8RItENQakRIVEq0VF7E1F8Fo/RCKbqER3ZK5E9evRR4jp4kQNxxBFt1lERz6pokS89YtE3JLZRowV/UR10MhFtYrrRU6GZEQTRUpFARmMRMdXmEQCVlFEFlZlRCefX0TBhFNFGDUORfpBkUQGWmhEpnaHRFksYUQKS+ZH8bRfRyz1BEdtdgZGLFRNRTwVCkVD5ldESBSTRJeBKEXGJEBEQptMRETRkEQpTKhECnhoRFY7hUT74khEsBKKRKFJnUUzLg1HfP3CRo5C30TFrs5FXXUQRWu38UYVUAFFnUTMRj/eb0bB85tF0i1xRO+eh0SoM6pEhMFCRWUDp0XPYdREWUeGRNfSykS9wVhEAwZ3REmlKEV48qtEBtTHRMYO10WVNaxFNXEuRYvqu0QSh+hE+dmcRPDXEUeb34NGTislRiFyVkWF/4VFe12kRMyLBkU87KpEQleHRNUudEQwGo9EHs91RO7atkTgs0tE6nt7RSVyB0e+U/VESB55RDMKgkZchjVGTAaYRP6Gb0WgMFVEBVTxRNJIbkQ7j0ZEGJpwRNKKOkT01FZEmg6LRI57z0Tq92FEdwBqRIWkxERKD6lEHmSZRKzzk0TWjltFglsWRXIMEEZx05JFI+tbRSul70RmcI9EbXeeRAE15UVaRwlFe6WVRXzUI0UMIQZFY+6KR7KaOUdQk4hGzehzRD1T4EUGE1lEKRvFRHrQK0b084BF + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - D+BJ0HjAckASuFp5EcFyQIxitIpuwXJAIT71LM3BckAK/LWEp8JyQG67qenjwnJAgCRORTzDckCyDbKeAchyQFB3HE9MzXJAIgYbW2HRckDrCTRxftFyQH35tJxD0nJAqm66S6TSckB0hGA6RtNyQAaz1ovQ33JAOqhMGbngckBfNtC4/OFyQJRVlu1P4nJAyFm6MJDickA95lNhy/FyQBGuc8+283JAQbx5ZJ/0ckCCrHrnwf9yQOCnSnBPAXNAaftnCjwCc0BwgUew0QJzQNRg2M36A3NAm2O1PggSc0DiiySwvBJzQLKnm9AGFHNAsIR1/Xgfc0Dzu8DRoyBzQPtwO0g5IXNA6o/352Uhc0Ddn3VkyyJzQChHP5ERI3NA7lJutM8kc0DoSSkPSTFzQA4NOrMNM3NAxYGoSjY0c0BCHnwCuz9zQFhiv5PjQHNAXuLCG3hBc0BwIBRGuUJzQN7SgUt6RHNAfbZ7G51Rc0DBEMHFo1NzQIAbaQR4VHNAhEpl/IdUc0AK4xBvi2BzQG1o/hofYnNAzJCT2jdjc0BIhFtILG1zQOfwiwVQcnNAoP7/nmtyc0CKeCrohXJzQCxD7vi1dHNAQtiWLUx1c0D4BT8zbXZzQCYdoLXDd3NA4MiFic53c0Ajtpvs4HdzQNg9pQl5gHNABvRdA6SAc0CcMlLFDIFzQL7LqDVfgnNAdOwAz6SCc0DczZzNOoNzQHrzp0gMhHNAn9zXCIeQc0C5sdRfTZJzQBBOcKzPk3NA4O3ilGCUc0AESXU6+JRzQHiJ6qi4oHNA4ol5K1uic0Cs8/BmBKVzQPnkKU7HsHNAwkOoaFqyc0CWfE2utrNzQFYpujsNtHNANaqdSfjAc0DWDqLKOcJzQF9vaHTPwnNA/Has+SrDc0Bjabq41tFzQHoBFmr403NAzlSKPeLUc0A4Md2aOOFzQBEjTU8Q43NArt2i3+/kc0CW0N8bSfFzQIbFLCYw83NAYF+G6jn0c0BTR25lQ/1zQMGarEd5AXRAxlnE2aMBdEA0IfDcvAJ0QB0+SYs+A3RA/bVJzQ8RdEByI9k4ThN0QFmpqo1KIHRAe/9fW9wgdED0jHWXuSF0QEZn/c9lInRA+jQZh1IwdEAqm+AI4Td0QNjmcLc5PXRAT5FQIztDdEDS9k4le0N0QHQvrsuMVXRASs3BrdxXdECADS6YNl10QIhfx9K3YHRAT5j/qglidEDW9ZDsDmR0QNm0nHpNZHRAP4G9pSJwdED7yT91QXF0QCU57n86c3RA9iAMFvmAdEAtfgTWToF0QBj2+8cmg3RAuWbgtBaQdEAiloORUpN0QAQT8sfvn3RA5pt7XNGgdEAwTxuEiqJ0QFZ3LKIPo3RAzwEDZfqvdECSiYQNDbB0QPQ8lYtvsnRAgFsP58m3dEA7Zfz3FL10QHwBTsDev3RAOKUAseTAdECHuKkfesF0QEZ45vvqwXRAxPr99LjEdED6KTiny8p0QADF4AH7znRA1Gjqoz/SdECmidG00tJ0QPIypY/O1HRAojlA09badEABkdZ7ueF0QMDjI5Fm4nRArjig0/zidEBFjt55Tuh0QCUkVDWN83RAfri4Z2UBdUAMZylOXQJ1QLyLkCekAnVAGlGLBJkDdUCSiUrJSgt1QCbK5/1rEnVAurVLPiMUdUCiYB71nSJ1QIbw/c3MNXVAQJiwEvs3dUCimau2VD11QJYUlrwoQ3VAxJ8qRXlTdUB49rAOTlR1QPvlIht5VXVAFZGZFgtgdUC5NZVeN2F1QMxssg31YXVA19Fk09BidUDS6o6qZGN1QILDYT13cnVAbvk0yI10dUCf1mHQd4F1QA5OuKmtgXVA0BjwkqeDdUBmq6+HmoR1QDgZWpi7kXVAEL8RZrqhdUDa72NFXLB1QJUrrvDQwHVA7omUXfjBdUBC09bLO9J1QPwTLIXP03VAFCbBZQnidUDtzuwWreN1QBRTxvq+63VAtIFAjkvtdUCSzgYmpvJ1QJAd6OQB+HVA4sbFe0gCdkAirzSj0QN2QKrHP6rtCnZA3Unb5lcSdkAH3rhkDBZ2QDuytGmIInZAJONlv9IjdkBY89GPkCR2QMz1jAdMK3ZACmeLfx8xdkCsnBGEUjN2QJluvZadNHZALm6+Ih1BdkCa5LekmUJ2QHaKkrnJQnZA0Jw+KXpEdkBIazKmElF2QDLQYHPNVHZAHnL4muZjdkDKyhIO3GR2QEDxmr9WaHZARMJY2pCDdkCdtDO9trB2QPGhPvDAsnZAqLh8aXqzdkDKTZYfDrR2QKn/bszOznZA8IEn2MjjdkAQOuqokPN2QMJtNQkCEndACIzs1g0id0Amht94dCJ3QEjQ5j/pJ3dAFaQ2sUItd0BgBs1MXzB3QHb28YmcMndA9me8ZaQzd0AIqsFqDTV3QIIcx7LwN3dATvkfd5pBd0DtAvQMr0F3QBqRGx+SQ3dAmUXp9P1Dd0Aw/foKG0V3QDx16KdKUXdAm5C5QpNRd0CEAn7ZulF3QJInm5gLVHdACh4Q7ypVd0DLBdg8kWF3QN5OCUifYXdAygLVMDZid0CcUROkJ293QGKY03ugcndAineukHiCd0D8TfB6CZJ3QF6BJ9RLlHdAkDZJ1HK7d0D4+JiZecN3QCsyz45oy3dASHVVFoDLd0D4rKEMj9Z3QF5YYZop43dA+pQkRWvrd0DQ19puUvJ3QLk1FXBH/XdAdYGs7KECeEDIUoby7Qd4QNjupyHGCHhAoMljggELeEBksxPFbSJ4QKIQ78fAI3hA3EROZaYkeEA7EV0mPih4QJbgfqF9Q3hA1JaFrRJEeEAYgJnAekV4QBAWZR3NUXhAmIcgiRhSeEDgI62al1J4QHRVWxmIVXhAJw1ln6BbeEA9KWUW+2B4QIJOihO4YXhAlOjY3KhjeEB51C4U63N4QAHBnNE6dHhASgAK5VF0eEC23IEiaXR4QF4B9DuMdHhAfjEUYLx0eECUp43S03R4QEDZw9Zxe3hADND4R6SBeEAz9/9XeoN4QJj5iJ6ahHhAOo5YeVCIeEA8XC0Lqo14QL5rZAKYkXhADLkmaO6SeEBWI1c2BpN4QNDzHUKolHhAuTMIIKmdeEBvVykOtKN4QJCKGHzUs3hA9DHDMRO7eEDnQvffNrt4QDS0+mVou3hAvCxtns7AeEA0+rfUGcN4QHhLJ208w3hALI+N4QbFeEBkbjeQMMt4QEMuhS0103hAekoZsrnUeECmtaikOtt4QAUFPlmj4nhAJgKdHQL0eEB3/4OqjPV4QLsqLF0RBHlAPnI5IpkFeUARTnZZxgp5QNicMee7I3lAht9L8rEoeUDWXKrCCy55QES641tqM3lAOlLuRuQ4eUAKB4TEiUJ5QFSUhEv7Q3lAaPaKkMxUeUAwDL2PQXJ5QKjyAXVOgnlAbrMRM/uTeUAK6+bewLJ5QAAI2efKwnlA/pCd6kLUeUBW24iDzNV5QMg2ZMVN5HlAxM23/+rreUAwedCFEPR5QG5BJNUBBHpANJlWAPkFekCGvfFKCQx6QIYJCR8UFHpA/DFeujskekCaMno3DDV6QAi2FqgaRXpAtiKlaChVekCqKUFQIlx6QAh1cFUqZHpAAk2O8B2jekBUlJxpJat6QEjsBukTs3pAgitE0Qy2ekD0aT1GHLt6QFr2icsZxnpAeAjCUtbTekCIPKThZOF6QOIw4hw27npA+O5jlhLxekAWF9zIW/F6QCOTw/VH83pAw4pWv3gDe0Dp+PiEfAR7QNRHVbUlDntATcJs7cQSe0DBMbsGiRR7QN09poVMFXtAoBAPQh8Ye0B2LAfKWyV7QPJF1GDBM3tA5LFlGNd7e0Dp/hrSC3x7QDy7AGAQhHtABsxka8GUe0DDgICqH5V7QPTRWjLOnXtAHmTYhCeje0DhEKsDhqh7QIBwuqXYrXtA3OWLYejDe0Dz2Q25eMZ7QKBUiz/A0XtAIg5iNpvTe0D6MftfAOR7QAi1k2OM9XtAChxIIdoBfECwBR7D8wF8QFz4YBBnBHxAGBzZHJkFfEA0tMaH0xF8QDOLtPapE3xAqkXkIakVfED9nqHz6Bt8QHBSQd3tI3xAyAos4c1BfEAmpAmFUkh8QJvDbsmrTXxApbDmxOVSfEDKU1EDDFN8QGRNfAJUWHxA2GdxaA1ifECIcSV8AnN8QFKoSsP6c3xATv5i+1qZfECYOpuEs558QLY44YwHpHxA0mNiM2TTfEDpeLXaaNh8QPTPhQH223xAFLOw4cTdfECg+1YrWOJ8QPWG5tER43xAI7+3Y/vjfECEG4w1bOh8QHP/b4AB7HxA9pPPvsLtfECsSSbpFPJ8QKxfbSZV8nxA4u+LXAX0fEDKmG8tXPt8QOYkNGsAAn1AyHt5ZUsCfUBIQwx9RhJ9QNLv2vKuG31A8slv4KwefUBZr9vRlCF9QO7uVl+TI31ANyyf77UjfUCQ/Q1uaVV9QNTh77lmhH1Ablkh/JWNfUDQpt6fsJJ9QCoeRGztkn1ArK0J1XiUfUA0mJKpuJp9QEgQJ4bJon1ARoUgwyzDfUAhMp0X58R9QDwC3H6r631A42SMRJD1fUDXCS8oNAB+QDl8A/2BAn5A2CP4pO4dfkB9y8seOh9+QLwE9tVII35Avhwe57h7fkDE3x9Gv4N+QBKaOIIXlH5Aw971xhKifkC//+kEJbx+QGooGPnnw35AfBFK3dHEfkDuv/jtAcZ+QNMHTMBix35AYGZRyHLIfkAyf6N+zc1+QIjO8BwT035AErQnnNXvfkAE6653UvR+QPbhkUAgAH9A5knwGZUDf0C1Wbi5HQZ/QOhWUfWZC39AWBEq+xgMf0DWcakKHxR/QKAf6+slHH9AgsNZauogf0CgJmW1YCR/QIR5nDZiNH9A2ftjbItYf0DPa+Rk5V1/QLwiV54+Y39ANv1Qfolof0CEzMA8uHF/QLhqmKaxgX9AdtDbfqSDf0AsBvRRYpF/QLuzzvapkX9AiAs6wZmTf0CxKzYfXp9/QIb7WOZfoX9AmaUAM0Gjf0DwOduPmah/QDv3TLtUsX9AGlchV8TTf0COdyhQzdt/QMB+KwuKAYBAgn2PtUYEgEBAMHQw3AaAQB/LVBXxBoBAduGnguUmgECuhXP7jymAQIjuM//4NIBAYnMlSAM5gEBGWcXiRTmAQDnd46L0SIBAtevAauZQgECIMJHwFFGAQAmbWDPlWIBAXBBBjw1ZgEBAUmpuC2GAQMqOSQI7ZoBAJmdQ9/BtgEBEfwAXJ2+AQMts+GrycYBApN3YCCd/gEB+jVpQHo+AQOwBznpfkYBAPTVNCyGXgEAyu9H736WAQEg+Hg+HqYBAWCm/keKpgEBtW6Rr1q2AQDoCBIrprYBAksBIwROvgEA++YCGsbWAQASitae1uYBAFOHGBAe6gEA1jRiLs7yAQCyYnqs2voBAEqr8KWG/gEDAemyGUsGAQCqueZJTyYBAKpze79XJgEAw2NcFtsyAQC6AYEkHz4BA9rsfji/RgEBqZ0nITNGAQM7IAXRh0YBADliu9krZgEBGxfkDCtyAQN3P/PfA3oBAxpwj2EThgEBsrAcuGuSAQEUjwwNL74BALlsQB9jvgEArdze0O/OAQFbaPaZp+oBAh79c1lj+gEDk3AO0P/+AQFS2n7RcAoFAPBLejj8HgUAI4SHLPQ+BQPp4A5XnHoFAuNd61zQfgUDd2S6ONCeBQPZ8ywkxL4FAjjhGO70xgUC2vey9KD+BQEWuI0BbR4FANP8hugdKgUAker68FVKBQGC8hgQZVoFAFL3xAuZZgUBQI+3PC1qBQELbjIQdWoFAasHpXiJegUCR9qmDV1+BQMRvAToeYoFAZMOI2QWNgUAU71B/Vo+BQErqIvyyj4FAekwozxGSgUCwte+hYpKBQOjgwnISloFA6AAYYlWXgUBu16b456GBQKhT1OxsqIFAooKcXuipgUAwurLESq+BQGyHMjP0sYFAuObA0CG2gUAbYT1ETbeBQDoxkXflyYFAm09eIKD2gUB10w+H7PmBQDRx2cnu/YFAlOfXS/UBgkCKO5OmAgmCQDd/O+P0EYJAUIhCEPcVgkA61aGW2BiCQBZCMRPXIIJARL0oFNEogkAoTSHToU2CQPV2A1SxUYJAhFycBzVigkCw53GcNmaCQGxp2iync4JAiMk3tXV0gkDvAKhuBHaCQHR9FUlxeIJA4OtHVUOJgkBzg2e6Q5GCQE4r+Eg8mYJARlvIMs+agkCs9IdVd5uCQFZ8vA8PoYJAU4W9GzyhgkDkbMDC8KWCQCTOW44KqYJAmNxwBDSpgkBeKyd4SqmCQDahco4HsYJAnGuLh37agkCiJQjZgt6CQOTNi4ar54JAXEmIoK35gkDKY0CPeRGDQDDSrR16GYNAXuHoEXMhg0C68ZwCiiGDQJpoyeFzKYNAVrqTw2sxg0DqF2wbzD2DQPGlZh6sR4NAfzhBxVlKg0Dgy36NBk2DQGhI5NyyT4NATPspMM5Vg0DMrX6gilaDQJxqO/TRWYNAdyXBF9Vdg0Bcd4JGytyDQOBcFk0nRoRAAutV8L1WhEADVM3q/miEQGoX/GRJaoRA5uOBmkxuhEBMr+vd/3CEQJiOZExScoRA3eMW+cl3hEAFR4pM9niEQC7jRFZ3eoRAJ+Y97SR9hEByCI7QypeEQGgs9kF3moRA2LdRjiCdhECXmTP9caKEQLwNcTsgpYRAh7f/fsunhEBF2sa2dqqEQJxaWTtVsoRAMIhcCHDChECGnlGGvMKEQLhVYdgfxYRAsMIAodHHhEAwpDe5fcqEQKggetsZzYRAqhZgUCzNhEC+UUME2M+EQAiAZyfN0YRA496YZGrZhEAhEHd7auGEQOZ9Jd9i6YRAjgsKeDXxhEBebWfSYfGEQLJw5/e/94RAF6Dwqjf5hEDO+D+aWvmEQOSg25ps+oRAombUHy8BhUBdyKLJXwKFQDn+SZ1KEoVAXXBIFCk2hUC/jiYLVlqFQIdThFFYXoVA2OzMW6BhhUD9c6x5oGmFQAaaAK6ZcYVACB/mxbVzhUAyjhj+l3mFQBheJ2+jpoVAPGjfBroyhkB8Jvi6ZTWGQLvdNSkaOIZAdIRr6/efhkDoalwWJ7mGQBwog88pwYZAfkABSW0Wh0DTMeDMcBqHQFAuTkRyHodA0l/LFXEih0DvwDgekSmHQGLs1eqPMYdAtMAYRoo5h0BIl9LWikGHQFmJY0JekodAhJPC9vKhh0B4PgTnxrGHQFYdWSnHuYdA/O2Et8HBh0Da9ej9wMmHQAIgLxRh/odAVJUAwmMCiECVre5PZAaIQGzcl0ZkCohAnCHzJ2oOiEDTrX+RZRKIQOjK0I8qs4hAHACjxzG7iECh+ts/HcOIQLy2qIs/w4hA + KBZXds7jZUAtECBNt2JpQNS+X4D+xG5A - + - 6nacREhMpERB4pJFCcFpRJPVBkeC14BEzm0wRcqyO0b9fVhFBVNlRBBojkQcVOZGnzHkRDIPXURKRupEk/uhRLwQekSa0XZFvCYvRQATP0WLQcdEoJ2ORMR91USfkJBEbV6RRBPivURpJwNHyFiBRM2COkbEHphF03oDRWSTm0ST6KVG0N7ARDbbq0RBEmlElqGZRTPgwUS23pBEODqrRGJaxkQXy6dE0iCTRUhUlUQKnRNGBwicRKLzi0XAGJlEo9XKRKOMlEQfLstEc3wKRd1GcUdPsWREoOUXRvccxUZVK4BE0VQjRbdmvkRjZwNFrhLqROWrKUXtR9JGUvZpRPhcJ0XnZVJF8XOARGZ+YkSHuIxEdGHcROg2UEeAQ4VErAB8RA6+JEZ12dRFMkzHRUtb3kSxmmNEqrmmRBTZQ0W4X/9EuPoLRW3iv0QjIp5Fk7CbRED89ES7tMhE1fB+RdU38kWoUY9EyEilRFois0SPz1NGXzjeRERQFEXFfoJGH7PPRJdskUSMw6NEtR+GRLBLBUVGVpNE04ezRBUF3UQZQYdE2v/TRGb7BUU3JY9EiDiKRByDeUQZkKtEM9urRePEmERsLXxFpxvARbaMkUQLz8dEJwC3RSxxP0fe/B5F1fAoRQnX9kW60CdF286iRWo/rESNaqVGs6K3RFrPckTc4+xEULLDRKTkiESGTZVG5Fb1RW+hVEVQnBxFesTPRD1sm0RbFM9EC/QwRQD8+Ub9XYxEvwxYRJLS/kUwUuBEE8CdRJYk8URNDolEMHJyRJumEkUx6bNFCf+WRKzMLEbzHPNEfsuBRB8520Rkpp5EuUT6ROQxAkbj3hlFCF/QRErw8ESnZxZFaf2fRKzUqkSVMtpEH8qlRJ8t0ERJ1nNEvu98RQMX70QlwDNFIlYHRo8KqUTyj89FXPSJRbgN+0QvAYxEIXKdRKhdskRoi6BEearpRPkO30STE6VE8MW+RN9nBUW3Wu5Fki9BRpE6kkVS6bREjiwHRsfJKkXWuwVFTgygRLSGukQ6075Fj6quRGvP60WBDMZFi3OrRt5fGUUJ/YlEpgC0Rei+kkStoSNF540wRaPaQEUk9kJGhNC1RafADUXSKq9E6A3XRMvnaUSqLABFlLyRRAdCUUWA0TdF70RxRKA/AkVVUoNGDMhQRUF9okTci+ZFDa5kRQM440TFrgdFPPUQReAD5kes1IhEX2JPRqFuR0Zzts9EMqW7R+hFw0aMKqBFlcxJRlc+eUS691VG5CjfRLA1x0RrOr1Eb0WBRJ2uKkXL9O1EhzqpRApQmESq22pEoc8UR6nrfEZ6z71EleEGRaLHhETJCOpE9BWDRIOCd0SAPU9GTji+RTujekRDgfpEmsGxRGSvK0XMXPtESi2iRBhDg0SpooxEv9HARe89F0arMhdFX/b3RB/00EQ6ZxtFksohRdHukkR1zAlF5z2tRAW8mETvo91EubwYRdWru0Vs+0VJ95dvRTuc4ERnmQBG57shRXLnNUWMPUlIxV6qRmnnbEYHIzRFwBj1RJHOmEW7GoVGtm6cROlFQUXphPdE/6GWRRVYF0ncfyxFp9jARLIm0URN8nZIbqbOREX8OUcN12xGORjFROubDkV18xtFfEg9RZy95UVcHdxEW73wRJSaiUTFG4tFRtJLRgnOpUXnaoBEB+wFRRMcfESWHwdFewy+RblolUYOgchE/h7SRPvIW0UOR15ENNb+RaOWo0RlvLNEHBKPRJW+REUNt1RGehG2RNeBpEU6FYZE2vY5ReH860d+MNxGog1wRYstcUbIdotFhth4RxmXykaiEr1FK6i0Rdq6+USbfK9EwHmJRPZwHEWbNO5ErDPIRPBsokR8zwVF/j+QRDigtUaOWZRECl8aReDAdEUfFTJG0HyrREEXGUXXo7JEqOeQRBulyEQMP5REMK+ORN+AwUTqloVGJowRRrLnIUXVq3hEk6WJRBCdl0TAbxdFA2sBRYGZm0Sz+Z9G/MIdRiPL/kSUlrZF3RiXRVYbgEUoS5RE6F+MRHAMlkWlDdNE9TfFRYnaikbvOCRGD1iWRMEuzkRYMLxEqzGvRBNnikQf15pEtCzmRbfvfUXcn7FEE8JARQUIp0TQ0XNILpkgRaq39Udgue5F31cASF48hEWBqQBHhX8kRa5cy0Q9pvBG6ouMRda73UQwG/lENBq4RkSQP0WCDLFFO8aVRF0Lb0SHXMtE6ZNoRW3DykQTkNFFT1PCRcyeREbV8l1FcfWqRLEtjEVExqlEw5adRD3u00TxGo5EEksWRQERF0Vmon5ENIynRepFlEQhgpRFzXmURWjzPEWF1IVE8i5sRKjph0Q8Fa9EEhlLRRrPhUT6HoJEi1zhRVAfY0WtVs1Eu4R3RN9Ri0T0GrFEY2ENRYRlYkQ6kQhFnlLnRkXLXEY1UFRFhhSCRDlGMEXh1Z1EbDm2Rej3dEUxgSJF6xbfRMIeg0WY9a5Eur7pRP4zKEYQ+r9EDPK6RDh9k0SWQx5FEpQnRVacz0SKvQxFeTjJRXDP1UQvlqxFiu9oRcaPukQ85odEVP+UREFnm0RpadZEvBLHREZQdkQYZudEdcclRSIbl0ak8MNE8Wi8RVxjmERJI/xEAv0NRWiO7kRM6rhEB2qeRO3AvkUucQRFZQulRDYv/kbivQJFYp02RuCtuEQXcxtFF9c0RaT/IEWQeK1ESGBWRo5OEUaKFOJE6vcFRax7iUirHv9HONbYRPBdiET9S71EI1oARfTdi0dlCY1F89OERkxVe0T5eCNFJTbORU4VmkThE5VEsziJRNYRwERr6hlF3xzKRTxtJ0av91pFQ/4vRWm3TkVPX5lEoU+URqnfbkXzrLpEtqXlREhqK0VndZ1FAyv0ROS93UewC3xHnXQJRaK/CkV5no9GiI9IRR8cfUTLPJVEzZ+sRCupnUXTH5hEyKcPRROxlUTHjolEyyK3RONeC0WU1wFFYCR/RGB6tkWoQGJE1UuZRDrKokRgrY1EsZ6CRE06BEYIuYxFjK6QRPmK7USCkSBFKSH/RCYzMkZCw0pFVRxNRaUoL0UK2DFFOWKFRVISSkV0HoZElFNeRFm/aUS0WG9EyGvaR09dSUcMiOJGCW5rRGjbikTgSp9FD7sERq7Xi0QDPNBES28aRXPRtkTZN6FE7zNSRdv3DUUFvLFE9Z+kRIlU90comHdHeczgRjPDEUW9bwdGzjtzRRbXikSHZfpF/N4ARjo0S0UbMJ5EJqiCRSjygkTffSpFuiaPROeHhkSlW2REarGNRNK1kkWfGZdGh2lbRnS2A0UTkmZF2e4ORltcokROnNRFhMZrRRyM8UTvLcFE79oFRRpEUUXZoo9FsPfjRARG1UToQBNF2G8ERVmQA0VjddpEAu7+RQSpvUVPnNxE1pBRRWWdAkWEMJlEF+UPR70DiEb2RzpGyBeCRVjcX0XlqpxEXQgORaBV1ERl56xEs/rpRBCNmERMdI5En093RCBTuUSt7cVEInYMR0N3hEYYzytGJKySRKolg0WTvZ1EXWCkRCd3+kRmgYxEtXKaRCO5GUVYN29EqIGMRq0tMEaEycZFbNc/RS63KkZ3Z21FijCDRapE6kQhqIhEN6+eRD9FDUYcsoVF1gEgRYxMpEQyiMRHZ5+IR0an5kb3rkRGWcsARcCSyUQvW8BGhuv9RVfv/EQB0KRE + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - GmDQ1G/BckBqofuQUcJyQMzsTbCnwnJA9JOXQzrDckDtG+BZx8RyQBj0me9axXJAOth6SgHIckBEGfTeQ9JyQCR7rnOs0nJATqBbftDfckBI5CEgueByQMU1QGpR4nJA+ulhKpDickB+gnlCJONyQOhvZ9zJ8XJA9o8LnbXzckClhretw/9yQIq3rtj3AHNAVODTSM8Cc0C+1tHF+gNzQMx5vwcKEnNAlaVKsr0Sc0DYyd2EBRRzQHrDBNZ6H3NAmecVizkhc0D+3snsyyJzQKJBlRjQJHNAiPPrnFgxc0Dk4zfBeUFzQKLCK5N7RHNA/Sxpb5pRc0AfXd+PpFNzQIzuu358VHNA5CvMYYZUc0DfJrL+HWJzQGTqAdM5Y3NAJuQa/Sttc0DucYsaanJzQDwAyayFcnNADKNk6011c0CeqBwlxXdzQFXTNuvcd3NAqI2yBnmAc0CSrluTDYFzQBomFQhdgnNAJPgVFKWCc0B82syCPINzQLY9Yz+GkHNAIh+Wp02Sc0B6Blv7YpRzQPnjxJz3lHNAhm5fkbigc0ACaqL6WqJzQLhTOaAFpXNAmo6vWVyyc0DK5Y37t7NzQPf7c/ENtHNAFZonUPjAc0Ccj2NQOsJzQLo/dobQwnNAbvsbftfRc0AWXWRNvNJzQFg1e4z103NAPgGrfuPUc0CYKmq+OOFzQOYviRkS43NAZk7EUDDzc0AAIl/2NfRzQNgUz/5C/XNARinZXZsAdEBfB00IeQF0QGoFC1C7AnRA5w39fz4DdECMEPyYTBN0QLjeGaG4IXRAqr5bo6NCdEAuccm021d0QHhUtWs1XXRAliAFzLhgdEALhmKUCGJ0QGjz+gWQYnRA+wBovOZidEALOfltDmR0QD+SFEBQZHRAeSMRtSFwdEB6LiC3QXF0QFmIQwQ7c3RACHD9JPqAdEDaimeZToF0QOBGfYxIgnRAQhw16CSDdEB9kE9mFpB0QFr8wMXvn3RAhYW3nLuidEDcb6sfEKN0QMA60837r3RA+tyRaW+ydEBmMkL3ybd0QK7vB/ISvXRAZ9/3o92/dEDpqQJdeMF0QMxuAi+5xHRAa+vAt8vKdECWPGsB/850QBJ8bdvR0nRAWK+2/83UdEACz/eAueF0QEdQKg5P5XRAFH25J43zdEC6AHk0YQF1QI5Ab2ddAnVAlvKkXqYCdUBAmbx9nAN1QBgIGF+WEHVAzcHWFyMUdUD+aO6FnSJ1QP5Br5uqMnVAUupQOc01dUDEnDGo+Dd1QFrs74AnQ3VAeX5RF3dVdUBjx2R8C2B1QKhpVNk5YXVAFVf5PNFidUDRAqwUZmN1QIejxfB3cnVANXk7i410dUBTdUwweYF1QMVOcPmtgXVAuj7yyqaDdUCSw6cAnIR1QIgARNY8k3VAPyUxkbSTdUByEI3GuaF1QCwqxjLqsXVATOf6jffBdUCwO/Icz9N1QJIZJlvk33VAelt/JgnidUCVspk7quN1QDj2J0K+63VAMPH/L03tdUDmeJ0LpvJ1QDjnNQ8N83VAXgDMj8XzdUDUUknRSAJ2QBwLkd3QA3ZAELJYLe0KdkC+/NG7VRJ2QHd4F8AKFnZAhZm5KokidkB0UGCTkCR2QDhrc5VMK3ZAD04onR8xdkCQQKy+VTN2QM5dO18eQXZASDRPH51CdkA4gfUVykJ2QE90sb55RHZA+mutBctQdkBwnijtEVF2QCBMB8TNVHZAWK5bIlVjdkCOHPEs5WN2QDXZ/ZbZZHZANk5+0eWCdkC8LACdkYN2QPal1UzBsnZAWqAbxA20dkDmRIcJzs52QJ78v52Q83ZADNZ9PTUCd0D5dEvkARJ3QPFqL7sOIndA6r/4Regnd0B8jx2pRC13QKhSW76cMndAQmWIC6Yzd0ARY16+DTV3QLjM0tQlPndA8c3fT5xBd0Dw3S4CsUF3QJOUE7b+Q3dAccyilBtFd0D/bibjS1F3QK2mifOSUXdARNyGLwxUd0BnURytJVV3QHWz+5yPYXdAeKdtpSdvd0Du4mHtnnJ3QGTF4LEJkndA+jLFbHK7d0BDhSqwecN3QKQbOOt+y3dANaZSh1Hjd0Cwshe8R/13QJDw+imhAnhA+nhIX/sHeECAubimXA94QNg/4L1tInhA8K60HsEjeEC0rfqlPSh4QMLyDZavN3hA8J8qSntDeEAH9kl6E0R4QAzd7B97RXhAjojJSctReEBZ649SllJ4QGQsWJ+LVXhAEvrHlO1XeEAqi3NloVt4QBwI34D6YHhADK+1aLhheEBo47SpjHR4QGn8QKlye3hAyKmCx6SBeECr80bfe4N4QMhOzFKbhHhAMP439E+IeEBeTE8aq414QKYU9MaXkXhAWDUEw/GSeECaQEG0CpN4QIwQqg6plHhAhMENYtSzeEDroIRxB7t4QHEQYXo3u3hAQcv4JQ/DeEC2dbY0PMN4QIaWTYAvy3hAdp9M6EXLeEAJD0GtNtN4QPo2U2u41HhA1CAnnj/beEB8vU33ouJ4QE2FZ6oA9HhAQeDoL431eEAmWFh2mAV5QA9udVO7I3lAzDmjBLEoeUA2lSwJCy55QNykvm1oM3lAQw/t4uQ4eUDCQ78pPz55QOTStTOMQnlAxAwI0fpDeUATTVRxzFR5QGi+5T7ZZHlAfmeC4UFyeUB0aFkZwLJ5QL3bi3xC1HlAYh9Zj8vVeUBZbt8sUeR5QMA1fFnr63lA2AVatA/0eUD7CDckAgR6QMhw83EJDHpAzoMDohAUekBmUaZxDDV6QAoX2YcaRXpA2j1Pgc5LekCG8conKVV6QGx7KHMiXHpALvh0filkekDOaGP3MGx6QCxnhWGXc3pAait9Px6jekBtTsWjJKt6QBlwE7oTs3pAZSOe1w22ekAdDV4fHrt6QNzshfEZxnpA6OUF6mThekBA2dGcNu56QOBbxGRh8XpAh2bnjUrzekCgRBXIovh6QDR+oB58BHtA0fzoyywOe0DAaCjXxBJ7QFKA8cqKFHtAZBONuUwVe0A6ICeWWyV7QJTB/roKfHtAwDJe0COVe0DmCN3izp17QEJWLIcno3tAyuMATGmoe0BUmeE0hqh7QHC8IpTerXtAiimOHMLRe0BgUGSynNN7QHdjDV/943tAGtT8nJjxe0AMcN2TjPV7QMPb85qPAXxAFMVj8toBfEDyoYtcZwR8QCg1PBqaBXxAfO3Er9ERfEDa9PUF6Bt8QGCYHNjtI3xAxEoWkc1BfEDj3JjNUkh8QNoAgf+rTXxAt5iHSdtRfEAmQ16W/lJ8QMBYl/UIU3xAIBnz6FmZfEDczpTctZ58QAL5h8EJpHxAfmgDR8KyfEAYuIItZNN8QMiouKTN1XxAr1hOKGjYfEDAqjpP9tt8QAuoXGHF3XxAAEDggVjifECxezipEuN8QHwmOrz743xARAD3RG3ofECug8qxAux8QNJsjlAV8nxARt6kDVXyfECTHEyGCfR8QLCXoHQBAn1AHq8Dn0sCfUDBt6EYRBJ9QFDTHtX3E31A8YKOSq4bfUDufgzhtyN9QEam0CppVX1AuFEUJ3plfUAa5W2hZ4R9QIQBf0uVjX1A45NUmLCSfUDxeRe56ZJ9QHm6Vl24mn1AwjXcnaeifUCygnww5sR9QC7xIAiR9X1AQBCE3jIAfkB+1YAsrx1+QCJJPFnvHX5ABwEEoUgjfkCW7SnZpCh+QJpW6XNDL35AUp//MlBIfkDF0aGeuHt+QFSprqe/g35AmHA6i+2PfkAC9u3R6MN+QORauFPUxH5A55DMqHPIfkCEO2HBPsl+QE5qRYLNzX5AQIc1HyIAf0BiZqi+lQN/QCYlXBAYDH9A2tWrHB8Uf0C8GEwXJhx/QHPHL49iJH9ATgaAt2osf0ByKCizBzF/QDrTI9mLWH9A7z4dfeddf0BWk0yYK2N/QJr4kSq5cX9AePcMQbKBf0BYD3r8p4N/QICH1HZjkX9AEoov712hf0Bd7rqVQ6N/QPDbSqibqH9ALYDr+1axf0AfiEIzxdN/QEge1YXL239ACIfXH4kBgEARHnedNwSAQAbWHEpFBIBAfTCcpdsGgEB+bJ8g8AaAQLhhjuM1DIBApjIYVuQmgEAW08zs+jSAQOaaB036OIBAaABP7AI5gECMeJ4w80iAQEy76aDoUIBA+qALuxNRgEBw42u4DlmAQH8OzsNIWoBAqdUk7TxmgEBFmlNSP2qAQLE83owpb4BA9o1oGh9xgEBaUSc8KH+AQKQefhi9joBAc0iRlR6PgECMQYkLYZGAQOgTujofl4BAhGJ2qyuZgEDlsgF0mJqAQErTMO0AooBASN3Kvt+lgEA0NSi7H6mAQEiJSvSGqYBAQsVOruOpgEDBHP2z6K2AQBYtRTETr4BAUyVyLHCwgECqq5mIsrWAQJb0g1UGuoBAvqat87K8gECc2wGeX7+AQNkghbVSwYBABUlhMgnCgEASl5AIPMaAQAbANMFTyYBAfVNwokzRgECwgdmXYNGAQPb1YDdK2YBAVPCVJ0ThgEA+Zez7a+GAQMe8aCpo+oBAJKI+OVn+gEDzPNUIQP+AQEIniNdcAoFA3AaGLl0GgUCIcjkrQQeBQI6CQqw/D4FAeNZycTQfgUD90WaYNSeBQCq3Xte+MYFAurlZlSk/gUBQwb6yW0eBQK4ljEEHSoFACocfwhVSgUCxDn51GFaBQBpGIw4cWoFAHIaAjCBegUBnGnG2ImKBQMxMi0wGgoFAkNOVwAWNgUBxkMDWVY+BQNKVxnSzj4FAuiCq9xGSgUBsFW7PX5KBQCghuwZWl4FA3AeAx+ehgUAdifaFbaiBQPSGBX5Kr4FAciRbhCS2gUDWHt8uKrqBQC4Uuks2uoFABA5msH3TgUBqamj+7PmBQOhOLMnw/YFA4tbfsPMBgkD+OrC/8xGCQIY1e5H3FYJAJqFqodgYgkBrZUBi1SCCQJHTN8nRKIJAoidmVbRRgkAlSaWatlWCQD6ISQQTWoJAXA+JhjRigkBV5xVTOGaCQJQ7aUWeZ4JA+Wd/7D1pgkAP0YxrBGqCQN4w0YpDiYJA9Mn660ORgkAUA/mLPJmCQLlDa/lVmYJAdQx29g6hgkC2MTa1OqGCQMFjO+nzpYJAHD+NtQypgkAk9svZMqmCQF7HG2cHsYJAufnFVH7agkBIyNuugt6CQBNH1wfI7oJAASt+03kRg0BCMp/4eRmDQEXdPjBzIYNAHLY/bnApg0ARdBuwajGDQAm2aLOsR4NAFDw6sFlKg0BztaLzBU2DQJcN2lexT4NAovr2cl9Sg0DBV859z1WDQBUgM9LSWYNAWjSUvtddg0CgUvOMsYGDQEzDmrR8FYRAPkb/6/5ohECMZZinSWqEQGBClP1MboRA27kym/xwhEDx3WkzUnKEQIBaLHDId4RAEtLI1vt4hEBSDmsPeHqEQKxFxp8mfYRAggB4QtF/hEB/EUjDzJeEQDo/d7lwooRAxtwygB+lhEAkPTFoz6eEQGDwyX9oqoRAYktFElWyhEAaTWUUV7aEQGwA9/C6woRAyMkW0dHHhEBsEMF5fsqEQJHiNGAUzYRAMTUypCnNhECm0NJaatmEQH8VTX5q4YRAFforeWPphEBnm6xFNvGEQIhJgr9i8YRALIGeAL/3hEBqlKw5M/mEQHtB5NRY+YRAeG9pDTYyhUBagIfZWF6FQHbvYbSgYYVAHO7TulxihUC6KrLpn2mFQJsG/hWZcYVA2j5Sj5h5hUCucBuepn6FQITl5zJlNYZAxL0z1jR9hkCS6hO09p+GQPFPy5VtFodA1NZhaXAah0Dcdgdjcx6HQOqEVCxtIodArrc0g28mh0Dkgu1zkSmHQIdmCt6SMYdAhma0Ook5h0C2OpwDXEGHQKEmD6SNQYdAuPT73/alh0A8UVmbx7GHQPYWNklks4dAewl06sW5h0C89iamxMmHQAaPPQBh/odAira01GMCiECWuym1ZAaIQNWx969lCohA0M3qUWQOiEAQDz6fKrOIQOYCJf0xu4hA6OqrHR3DiECw1xuRP8OIQE/X4vtU8ohA2ZM651n2iEA= + KBZXds7jZUD60UzrnGVsQBTpB48/A3JA - + - z9CbRdcxwkQAnexGxHJjRTAk10RPCZ5Ed+JyRiWh3EaR7KZEuJkNRaz2HUUrd0ZFJF9pRUUhukSKRH9FwBqURP2QAEUehqZEX0IsRXouHUf8mKhEG5osRt9ggkXrc9JEtp6zRs1840QjdaxFbjyORB4Oi0XZvuFFXVXKRG8tfUU0xa5EOOm7RBFC2URvpQhFNtB/RzAVoEVUh7VGBIfRRHu0HUW3XWNFH/7MRpx6/ETTSTJFJAIZRZkfAUV5qQpFSPpOR4vI4EQxJjxGZzTQRUhr4kV6dslEiQ24RP0lHkWB0gRFR8b5RN0lpUQTgchFcqEoRbuutURXep1EbXx/Rc/fBUZOUr9EBuhHRjT0wERHZUNFl4DFRCchakZMtPdEo8StRJRlUkWjAfVEO/ukRF3gDUWGo+VE7RBuRTvs6kUipcREKbydRHE/tUTGbrJE5aeURdFaPEfIoAFFnVVURfOW80WwXrxEtLkARcQOxEUOyWtGrnjTRNnjOkXbpNVE2QDERoiRPEa+U0pFJ/OcRJLPlUSJvEtF9yojR0mSm0SODhZGotPCRLswHUWnbd5EMRPURUEEuEQOUhVGmUyERcAckUTiY7xETXzhRIBIEEZrDb9EsHkdRTOYKEWiAdxEpC24RN4okUS/gd9EWO5NRb+e1UQRieREh01ORnKen0QAJZRFrDyhRZVhrESXIapEPmOHRFSxzEShApREOALNRHrV4ESC/5ZE0YPZREer2URz4/9FD3A9RtYYk0X+brxEjGZpRTJLHUZOD/hEc9peRWs8oEQLW5hE+xqkRa9wwUWDq9NFyrOTRi4JxEQ+8R5FhHHRRDbk1ERyfW9FhOaqRBxgNUUOsYtGVrKwREv6Y0XBnSJFMwqjRBo9tERdoixFy8uURZFBTEWLsPNE4r+wRLSnhEZz2FZFIxw6RpfboUWYOtFERrayRMIe9Ufk+bBEQVuGRlL4vEWZU7JGjTOrRsK/ZkUUF1VGY1diRRH2skSaNdJErQ84RbDa00RpKMVE344BRzPqG0ZNKftE/N/NRLPLnUbjlvdFWfo7RTAGs0T5vChFeV8KRa9KB0XsoMFES0+nRBVT20VYswxGicc6Rd5x4kTwmAZF6l2uRLOxGEUf2h9FsrxMRRK/NElbuAVGMpsaRWXYFEXqLz9ItIeuRuVINkaoeexE74r6RMfyYEX3TnFGfYjURB5Tm0WoE4VJlQzrRBI63Eh043NHGBUSR2eiwkZQ3/FEwsp8ReybdUXT6TRFtJfURQaQ1EQnb09FQWjfRSJISkUOdsFEHwy+RG6Oz0TCdrxEJBhBRe7ba0U21sFEuhefRUdKJUUkwdhFidfLRNhEoER4EclEISi2RdSmIUaPPpJFf3OwRImW0UciS9xGpWPGRPsQOkV22tRGkQ4RRp/WEEWgeaFEpKKJRyeXwUa3kddFVCaTRaDhXkXxwbNEePGvRCzt5ETGzr5Eov1ERaQP4UTwzyFHmb/LRCkdc0XSFMpFDGMpRvTn2EQ9DwVFaJwFRQM5oUYb1RdG3AueRKg0PUUrAglF8sdARbENnES6BOJErbqURbKHnka9fLlExG47RhQIoUVWZKJFjVh3Rbr00EUih9dEuNXLRYOEWEbDcfNFHO+zRHNI6EQZCN9EZ5iuRVVXHkVrZr1EhMqpRCbWBEXgT8NEAq+kRDdNW0jdEbhE1VveR1Dxz0U31NdHAS89RZixwkZzubJESt3lRsU420V13QVF6820RoUANUXpSp1EjT2sRe9/F0Wkl3RFfAHVRHGr/USRfKJFv76MRodOS0Vq3M9F/uUXRcToGUUQddxE7tkVRSTuqkQi6sBFR/xjRePrAkXCW5xE/TGhROnBuUWs6jtF4K7PRMElKUVpSJFFrB2hRboV7UQOh4ZFlomrRFPODkXQFL1Gw9YfRvTcPEXBvplF2X4/RcsKk0S/hY9FFNeDRavMn0Sjf4hFijjeRBbNxUR/sPxFLQM9RUWBq0XwNRFFVE4NRUczo0XvrCRFsqKYRRzHXkXvhmJFQNXqRJ9Hl0RphJ9EUTYWRVdNCUXV7/hEhAryRHdo2USLbX9F9vlrRmGos0X6BbdEb+m2RT3RIkWxsDpFnJCsRFUtm0TCxbZEmVPYRfn0rESA1b1EjmzXRHjw1USCj79EqdqkRm7hMUVZcjlF5TI2RnvfF0WPTipF6CqlRBGyqERYN1NGPUYKRtxSjUUahoNIi/q8RKrXuETzW9lHGGd9R/finEW9qU9GeGiuRYf0oUSbthRFalt0RU5kCkbCAjdFK/itRCXAJEX9IjFFs3GCRnOMj0Vv29tEiHICRb5lMEUoLLJFh6ikSDAXQkj2lWRHtbYDRiveqkSf6olE0O0oReVgxUVNhj5Fvz8PRbDgEEX7AbJEzFQiRUlV20TvIrdFkMsIRSUTgUR2HItElxyzREnpEkbpZ4JFZyS6RCodmUUufgZF7oM6RjpXekXtDitFHL7oROSetUSUFvxE4dbhRX1d9ERDDMhESC7PRCCWt0Q/BNVH23EzR+Jm0kYU8AFFKmSvRdz0/0XO5qVEJwcTRUJqAkXiRexExfGZRWjuJEWL5MZE5XLnR61GVUf8mO1GZpjJRd7CEEXPpwxHqwjaRrUdpEbKSNtFfwKtRNGSc0XsrF1FYOixRFhBpkSehahEXCfMRSzLiEYr39dF0MrTRFLjwkSNNJJFFLyvRB8/jUWZafBENVfPRKtirkTFrLhFkpmSRbrHw0StTJ1ExGwTRbLv2kSgxkBFfcOeRaGjjkVN4whFCgsGRRvrCUfNrY1GwdIdRmGvTUUFI3VFjB2mRFamzkScH7JEuyjRRK5xsERPBvhGv8jFRF3Wd0YO6BBGuUt4RSEFv0SKLL5El3m7ROgxmkQRj4FHB3EiR82wYEZpMX9Fe2fLRJVwGkYiJI9FCA4YRczkpUT/0OlEZlX0RBpmA0YbsdZEMqSFRVIqw0RaHbpHniKFRzwyAEc/9zJG5x8lReA5U0f3doVGg5EwRV1eAEV4t9BEokWzRA== + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - eSyfIW/BckB4uEclp8JyQKoKJGw7w3JAhi8rSQLIckBYCP0rWM1yQOsCSZ8P0nJAF5a4e0PSckBqsDHtT+JyQAq01A+Q4nJAn1wNZMrxckDPaYUyovRyQEj4dovPAnNAbBRftvoDc0AsITyGvBJzQEnsl+r3E3NABFZ09nkfc0AnzhT5OCFzQLaQNhB7InNAqOyMqM4kc0DwhkSwQUBzQEZWC9d4QXNAMjQWYntEc0BEoWxZm1FzQN7KO+ejU3NAn8abNB1ic0BKyCbXOmNzQKSaAZ8rbXNAOIjky2tyc0DmADx0hXJzQJDiZ8ZMdXNABjmcKN13c0CW/J+4eIBzQGyAYGykgHNAVXJvoA2Bc0B0IznGXoJzQHb+WNungnNAlkexdTuDc0APc07fhZBzQAyrlQ1NknNA9ndrdfeUc0CU/ju+t6BzQC6LefdZonNAAszFJQSlc0Bk+7ePtrNzQNKz9sULtHNALUn59/jAc0CWCrna0cJzQAR0REonw3NAZ9Jd+dbRc0DFL9Eg4tRzQLy37bg44XNA5ZtuRw7jc0B8PTPvL/NzQGBe/dV4AXRA2l0GokwTdEAzNd9yuCF0QNqcQW/bV3RAsprYZTRddEASEW6TuGB0QDgrEN0IYnRAApqsok5kdEDAlPwDI3B0QMyx1E5BcXRAMQJV5TlzdEBF78cv+IB0QAu/P7BOgXRAVEgURSaDdED+ZsZIFpB0QBzQtDDvn3RA13oAe36hdECgvDB2D6N0QLbO7kILsHRA/OLGMm+ydEAOiXsnybd0QONwy8ncv3RA93U3KcvKdEDXrhqh0tJ0QMLIfIzM1HRABgvxoLfhdEDnfxoljPN0QCBWgtNdAnVA6HXwm6UCdUDuSgHQnCJ1QEaZYRr4N3VArikhi410dUBCmd0EeIF1QEC5gUStgXVAC78ikaWDdUAM9r8w67F1QBD4KOn3wXVAFtrWnb7rdUDnUBhFTO11QOJyZZqm8nVAQnkZDEgCdkAoX0iN7gp2QACHt7eIInZA4zK0FJAkdkBvnEGzSit2QCgiY2EfMXZAeCITah5BdkDu6Oudx0J2QJ6gEzB5RHZAXqPwdBFRdkA4RzUjzVR2QANZPvSRg3ZAvDIAtcCydkD0nfegDLR2QPyN+fTOznZA2plloDICd0Bw3hVlARJ3QBT78DQQIndAfv8HVOknd0BkeTEaQi13QFrbE5daMHdAGBjx6pgyd0BhH8AHpzN3QHSJmaYNNXdAODnsspxBd0DOSm9W/UN3QNzXlKgbRXdAht3F70pRd0Bu1avyklF3QDZW+8omb3dAELUwt55yd0CmdgRqcrt3QCTL5QR6w3dAkoYyMeHnd0CRcCzZfPh3QB72frFG/XdAtoa6jaACeECehnUq+gd4QPtPmnXHCHhABp+j48AjeEBCOG46EkR4QM1i66F7RXhAGAb84MtReEDRO3u0iFV4QI0Kib6hW3hAvObLKftgeEChw4ZouGF4QOhkWFNvdHhAujAQrox0eECj6QeO23R4QBTW1i1ze3hAO/pkeaaBeEBOiiQwm4R4QGI0Jg5RiHhA5EZLZquNeEDC7WGRl5F4QDjZ7AkGk3hA5AyhuKiUeEB6Xfb5TZh4QKjYyFLKunhAhIK9Xe+6eEDy+VNQBrt4QJqCfTo3u3hA+N+2HnS7eEA/Bqfwhrt4QFSreyD0wnhA1ecP+jvDeEBMNdEsOMt4QCLmw4w103hA/cppkbbUeEDy1lNwJNt4QFqZc2k723hA5k3L56TieECihhyv//N4QOQ9dOmK9XhARi0FybEoeUCcVAgoCy55QNL1cErkOHlA+pGouvpDeUDg/U2cylR5QBerT4XAsnlAljGytEHUeUBhZfKRDvR5QGIJ3eoBBHpA0E1Z6kwLekBwQMbjCAx6QOdAnWkMNXpA3hB+rhpFekDaQ+x+zUt6QEvKjPMnVXpAQb7UCiJcekBnZoWvKWR6QBytCewwbHpAvs+Ybx2jekCKumZqJKt6QCtBh1MUs3pAglfVHg22ekAa9RvKG7t6QH0C/g5l4XpAGHlgZTbuekAGtn66WfF6QNpTl8JH83pAZPGLG8PzekAoLrboewR7QNTW9GTEEntAFk/e/okUe0DA8iRPTBV7QAw4RwJbJXtAQgB8CyOVe0AcZTIzzp17QLfZk5Ymo3tA9wloL4Koe0CS1sxFjPV7QEpCuBjaAXxA/8j6rWcEfECVgMvAmAV8QO5qRKfREXxALDM5recbfEDWp9Cn7iN8QORvflrMQXxAuuPc41JIfECYu6cPqk18QB7z9vcJU3xAhPp16liZfECQJ3Vrsp58QLofSBMKpHxAvRrKn2TTfECgAHXD9dt8QDlZ1xBY4nxA4ADthxLjfEBfiLBN/ON8QAgvZLVp6HxAFDVV3wHsfEDhFNGTFvJ8QGQb+DlU8nxApLpyinDyfEDcqo2yCPR8QJSkKTDn+HxAQk6NCUsCfUB8k/V+RBJ9QOi23nOuG31AvNZcVLYjfUDOoTclalV9QC8/AdhzZX1A4eIGLJaNfUC6F1hFsZJ9QLSg/GXwkn1A4idBA7eafUC+821u5cR9QOAVZ4QzAH5ANHEc0e8dfkDm9zOgRyN+QBi+Adu2e35AcqBNE+fDfkD+flCt0sR+QNe0rBx0yH5AYE4EvMzNfkBcB8yZ29J+QON9CS93/35AoNYiRpQDf0Bn/shrFwx/QAr4MzYfFH9ASliN3WEkf0BczTqVi1h/QLQb+A+4cX9AhntT9GKRf0Cm5RZDW6F/QCbN9nVDo39Ah4JznJ2of0DxTso5WbF/QJ5MdqTC039A9wm3BYkBgECEuQD9NASAQPrIvUfeBoBAZss4xwoxgEDDYI4H/DSAQALUaLoONYBA1GRuxu9IgEBURwnm5lCAQOS/K+YTUYBA5pFE/AxZgEBWpWs3HlmAQHpChFsMYYBArbXsyzxmgEBj0OAXQGqAQFo0fp3ubYBAmg8/vylvgEBQ5whJKH+AQNHeB+Qej4BAXnrYEh+XgEC967v536WAQEzv/KDiqYBAHFx/cROvgEBBLUTasLWAQJAQnpYGuoBA0COp3LO8gEDeQsOAX7+AQKFDRKRSwYBA5HgOXlPJgEBtSw2lTNGAQNKmcFlJ2YBASLe/T0XhgEC0cCD7bOGAQB6npLpY/oBAqg7dBED/gEC+tts9QAeBQOLYyP0+D4FAeki3wzQfgUAorL0MNCeBQODsJ+UpP4FAOhzB91lHgUBHAxUltEyBQKgGupIVUoFAAwAkMhhWgUDW3YF36FmBQF42/WsZWoFA5abEVB9egUDaCCGpF2KBQJZrQpgGjYFAJgmJ6FSPgUCxY+cds4+BQJrWv8tVl4FAVD++2+ahgUBv4cFUbaiBQIPsRChKr4FAcJrFeDe6gUA6hAlqmdeBQE/E757z3IFAgh6qSOz5gUAeC7168P2BQNg6kEL0EYJA0/d56fUVgkApfcFX2BiCQN3gUIvWIIJA3//f8KJNgkCOT4kGNGKCQBJft8w3ZoJADFAsOUOJgkBSVd29Q5GCQJqVyiI8mYJA4r12Jg+hgkDewo3uO6GCQJSoMPAyqYJAkHr7BH/agkBBWuOZgd6CQC/VnY15EYNAjj2DyHkZg0ArBETSciGDQMq7H6NxKYNA04qtjmkxg0CwpBllrEeDQDg4sapYSoNA9sLNkAVNg0DcrBqask+DQJy9TexeUoNAyridOc9Vg0ACurXg0VmDQGhmyCpteoNASo79hf9ohECU9KT4SGqEQHROkF1LboRAz2QbYv9whEDTf3EAyneEQBrHtkN3eoRAFS02bCN9hEBLkaQz0n+EQEvTYndxooRAqB1TfR+lhECG7ddvVbKEQH+Qz++xsoRARXWUa7vChEAf/jypGM2EQLRTxDTFz4RAnKxO12nZhEDtdnZYauGEQOmWoHRi6YRAgZrPmDTxhEDCzqxEY/GEQKwXyP01+YRAeGhKSKBhhUCLY/uYoGmFQNHyrbiYcYVA5uzw9Jh5hUCkq0ByJrmGQECn2ghtFodAZeePB3Aah0CC89l6ch6HQF9c+CR0IodA76n+PHQmh0CwTOT4kCmHQI9w+3eQMYdAqkjagYo5h0AITdaFh0GHQIqtDmzzoYdA+hj0UPelh0ASvMZ3x7GHQArNpfRjs4dA2PsCYse5h0ASuSrQv8GHQAJkuoNg/odA4qqvj2MCiECmIZmzZAaIQJL15TdkCohA1u1cJ2sOiED0W/LkjRKIQHjE0kMqs4hAprsVgjG7iEDsCd4iHMOIQOg3z9I9w4hAaMNUEifLiEA= + 7BToB3LiY0AoFld2zuNlQNEWPk/8QXBA9X42GSyTdkCxCkktQeN7QIPWgjgEpHxA7GVI0vf5gUCkmAs5juqCQOyUNvyjgoVApMf5YjpzhkBQwgAZMBuKQDionZ6Re4pAF+6mKJwjjUAUkdEGGiaQQAQ01ksfepFAKxSk2Uq6kUBBKeXacNaSQA== - + - NHXJRYxPFEet0GtFYtAnRrEeTUW7CJpFL5ESRwYCmEXU72tF/6JVRbsO3kQNaSNF+SgMR06vVkZzNYtFhNlKRfLlr0ZPEftEkMmCRVUoAUW+omJFyLsDRlOn60RVoYJFCg3gRHxU+ESjPoVHL38MRs8T1UYwnXFFbWmZRZXY2UbwextFGKUcRXBvZUWN0vREY5ZFRY0wG0W2AU9H7RddRoC05kX7dgBGfG4hRcxKTUXnKyhF+/IWReAzikVhVwpF/6UFRUuDokXRFBRGP/IeRe8n+UXhkEhGrUdyRQ5NBEUm34xF2uUFRZPPxUWdxsFF7Y/cRBzRm0XsbjlHx8JZRdrQI0XcF9ZFojAoRTl5oEWgdnFGTTtORUA4/ESuFQVF7s6lRpGwJUa9OxVFw28UR832OUayoe5El6j3RPWDz0XfwRFGr9bgRfPrGkYScxdF/90ARsbx5kTLrpJFiMuNRWOtWkWtp2tF5fYFRqM+akZmRK5F+mnbRVE/K0WBdLFF8dXjRQXX5kVBds5Gzy3VRQiMC0UwXTZFWRQmRU9oNUb9sedETlkvRUZhhEWcKFJFBF8jRZqDk0aPTylFaS5ZRjbwu0WKkxpFVMz+RKiJCEXIg+JHr1KaRoVArEXEz7FGdmZ7RUWNXEa1RE9FvM9oRTKQDEcPnyRGG38iRQwo7ESZXIJGydbARRK5KUU+NBFFJNL2RDe6+kUHhiVGtcdZRZxvFEXVd49FDAIMRddVN0XkRYdFzeAnSVWW+EQmvONFxJnyRM8+K0jvWL1GU64/RpflGkVcX9VFRmhpRott6kTdLCVFO5bHRU8e/EXPi9JJ7w/VRRDchkXNWkdFdGo1SVyWckh5SR5H7B4nRQ3czUSJfJhFRpkqRZgvIkXchJZFgSLKRVIJtUXhxABFAfnrRN+/gUWKsBRFy7KzRQfWL0aKsFNGFK4NRaU7QEWCj75HaHeiRspTDEUYYUVFMsdIR58ih0ZqupJFYzW8RyFXAkfAkQtGOMGQRVeqqUVYf0NFlmDpRFG/6kStpC9Fb8jwRNB0YEeO+FFFzE8aRlXWO0b8gxVFeu0GRZb2k0aHaDVGIQkbRds1hkZNiUlGm7/VRWDejkU0uZxFltpwRas3EEV6kNBFO5GMRpqHJUYkyw5FCny6RbbZmUX21RxFYmwRRUdXRUimBdlHOcXNRWgtrUf4HVtF5IWORhNg9ERj8qpGrAyfRd5bZkVHgQNF4HiBRuf7okVAtBtGycAsRTkYvEVh2fFEcGx6Reg+JEZZbYRFhBNjRWctK0U4p4lFeCQTRtwVwkXEbf1FgR3SRTZen0X2+PFFFHitRTT2MkWsDxFFPSBRRVsaSUbU3P9FiAxsRRKEj0Xg/YhFsg49RjLoIUU4IxRF4D4PRSHtKkViKCBF/c2rReatiEVWAQ9FoC+bRa0cBkVzcARF6Y7zRDCaAEW22nZGZpGhRZS20EQw8ANF958TRlW5nkW9tC1FMFMyRcq7EUVMDgNGnCERRYoZ5UYi0ilGsDRVRTTS/0T2kktGIp88RhF9PEX55oJIyELXR2wqjEd7RjtGbzjJRTZU9EQfyU1Fh3BFRnTDZkXhTnlFLFOORrMpgEWEiSlFSvWMReNAFUVBbj5JVCLlSCtfKUWU2hxIE57KRil9i0UugN1ExMHtRVwcH0Xh2QBFcAQsRWHhSEVLT9hFOoXoRBGTOkUZsBNF5pUARlY+FEVDkJ9F6zQXRXKSQkZZZ2xFnegGRSbut0WbswpFd0sISJ4RXkeG5wNHM+G2RSeX+kVE0wlFuBBuRfRWWEUSWghIiUx1R436E0cKMRpGqewkRUZ4TUc4PidHbBvXRmUo0EVuFAxFtJKQRSCbEUUbAyNFtWHXRfIHQ0bek8tF5UwXRXCkukZBKa1Gu7FbRks3g0XetNxFnH2mRY6v+0SlagNF5/kwRd1O9EQLex9FTbshR56IpkbkvURG5j9pRU6IlEWVegdFNQAWR6xlikatazpG41+QRUi0GEVwB8xH2u2MR+OU70Yj06tFv6H8RCP3IEYp9cVFqzmQRVRnE0WBj4xF0zNaReyoCUZaQw5FwDmaRQMQP0Ue4pBHLrdRR+wqn0aaeQ5GSIXhROtV3kRce61HJW/eRpA9pkV3RFlFGbcoRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - zK6JjW7BckAIHMD5psJyQIYsnkI7w3JATE7XuAHIckB4i0lmQ9JyQIfXlFBR4nJAxAemTJDickAMT+7MyfFyQAvcurDD/3JARP/Hd/oDc0BI19C3vBJzQBhVNbQGFHNArP4OETkhc0C9rZxQeyJzQKZvrsPOJHNAyN/P4XhBc0DqJunxeURzQAT7s4GkU3NALMW/kzljc0B0soy6K21zQNjB2zNUcnNAHCvjv21yc0Bj7f9vhXJzQFLslydMdXNAd8o/h9B3c0CUuWHq4HdzQK+yord4gHNA5lwMyl2Cc0AFcr8uiJBzQKaqhWtNknNAGmtOlveUc0BfLDXst6BzQLdO3dZZonNAINUA5bWzc0BTT+1W0MJzQFJpJLAlw3NAUntflNfRc0Cvhpex4tRzQLmDlf444XNAvPXVIET9c0ArtLZ7eQF0QMSFCZxLE3RAtq6ClNkgdEBXCnMD3Fd0QDRlxNe4YHRACKj0WglidEBUfZn45mJ0QHKlZaxOZHRATirxTyJwdEDtrFxWQXF0QHbVHCY6c3RA9iQOePmAdEDekXIBT4F0QODP9Fkmg3RAPveUKxaQdECQORDK7590QDqARId/oXRAJ0G6xBCjdEB9qQd1b7J0QIP9CR3Kt3RAeNN7pCK9dECi6u1EeMF0QOCBI/3KynRAAj2pjNHSdEAY2RkKuOF0QNzdHFWN83RA1S3rsl0CdUDsbQgFpgJ1QKQsexSeInVAYCDRXMw1dUB6uEt5d1V1QOlH6cQ3YXVA1iZKlHhydUCCZEnWjXR1QAqCrwyugXVAfvqLeaaDdUDHksRd6rF1QHe5VA/4wXVArsl1eAjidUA2j4sWrON1QCxSn8u+63VA4I9NmkztdUAIg2MTp/J1QIZ6yaFIAnZAtKitaogidkAS4UlmkSR2QK9/y6xMK3ZAAKvCbB8xdkAp1OCMUzN2QHi1jo8dQXZARkRSRspCdkAAxkBtekR2QF4ma9gSUXZA2jc93c1UdkD63YuC3GR2QKLH8fvBsnZA6f/fJw20dkDmETdo0M52QMphHy6S83ZAwuDxtzQCd0DSSyBjARJ3QFIZw/UPIndA0ufKJOgnd0C9/oCYRC13QJLnnrOmM3dATnWdxA01d0BMtQs1nUF3QFKt5vWSQ3dAMADmNBtFd0BUgt3wSlF3QIRzRjWTUXdAMuoTkShvd0CPwL8joHJ3QB17KvZ2gndAAit/D3O7d0A+4fpEecN3QP8G5RxH/XdAA/1bfKECeEDsPbczbyJ4QMzmdj0TRHhAMl6m3npFeEBMKkxKeUt4QPZL/jfMUXhAAoaDXYBTeECaHvqvt2F4QLhwA/G/Y3hAuFV0Co10eEDFgtVpdHt4QHpGsSimgXhAy5frdJuEeEBylwoEUYh4QC+DXw+qjXhAvPJu1JiReED4boWzqZR4QN6B1q3lunhAo7Ftgfu6eEAIaRBoN7t4QHevBoZnu3hAusaFKDzDeECgZWSPN8t4QA+gE/4103hApLveLjnbeEAIX820APR4QHtVPNSL9XhAOtjm1LsjeUDQa8pYsCh5QLgIG9AKLnlAKh2yqvpDeUD2NYfPzFR5QFKli5rAsnlA5tL8VULUeUBm39RkD/R5QACdPhABBHpAlElBsAw1ekChD8wwGkV6QIYgYkciXHpAhHQDFypkekDErxbbMWx6QEOdfxkeo3pASnWExCSrekBWWPpnFbN6QHicL3cMtnpAkT7p2xu7ekCIqtrbewR7QGZLdpaJFHtAljbI8EwVe0BguufzHBh7QDJJD0xZJXtAKurJoM6de0CcJuicJqN7QI4hEOeL9XtApVbxSdgBfEAg5woiZwR8QP5MuheaBXxAkLT67NARfED2aJdR5xt8QOlgsYXNQXxAalMBglFIfEAIQl4Wq018QHycjb8KU3xAc8CHGViZfEBEFaoAsp58QFRM5t7123xAigS+8VfifEBSS7TmEuN8QPrJFYX843xAZtisM23ofEBKQz8oA+x8QGYmrXiI7nxAbCustFPyfEAaBuBBcPJ8QCrQG5wG9HxA+UNcMgICfUDECwtqSwJ9QDmkDjpFEn1AzSn1eq0bfUD2DdeItSN9QOCNBHpnVX1AOtTPQJWNfUBCtHJn8JJ9QNdUcAwuw31AIIBmouXEfUCWPLljkPV9QFhEmc0zAH5Ahoi/Hu0dfkClK0meSCN+QLJSWGy3e35AiC8w/ejDfkCp6kvF0cR+QI6b3ctyyH5A1TmVaz/JfkD/9pjAy81+QAtWUkeTA39Af/rRRJkLf0CgCvNFFwx/QLtLZ4AfFH9AdA1OT2Mkf0DsWzAriVh/QPInA2TlXX9Ace2iLLZxf0BcLArYYpF/QBoQG0tcoX9AOP5kpsDTf0D0evPpiQGAQKjmRh+WAYBAmhAPh0UEgEBMYn0x5CaAQPRzYkwKMYBAlN7m1g01gEDDlSSsAjmAQCu8vun2SIBA7A1aqOdQgEASwH6nE1GAQFH7+goOWYBAiEf5zTxmgEDomafLP2qAQOorx/DvbYBAqpit4x2PgEBmsdc2lJqAQPe0okfgpYBAlNp8M+OpgEDm/HE+FK+AQCJoiGMGuoBAVGsAc7O8gECyN7CyX7+AQB5q1MpSwYBAlEEua1PJgEBvuOt7TNGAQN4d+wFK2YBAJh1PE8DegEBwtj8lReGAQKyAwUOC9YBA+7XVvWf6gEAM7n/YWf6AQAAcuuE//4BACnXmhD8HgUDOpb3APA+BQLSKRwc1H4FAoNZvtzQngUAlq7ywWkeBQPDCwzEJSoFAftsniRVSgUBxKBQAPVKBQJC81ikYVoFAhn5OfxhagUAC4IHRGl6BQKXP0X0SYoFAHqJ2wCRigUAc7XnJVI+BQOKjyPDkoYFAK3Bgw0mvgUBrh12TIbaBQHBvKVGZ14FA8rYiTUjagUAiIhhT8tyBQNtDs2Ds+YFAajDktPD9gUB3s1nf9BGCQLrHGOr4FYJALwnECtgYgkBbM9UL1iCCQOhoDvzQKIJAjToPe6JNgkCs1cF3ok+CQKuCDAc0YoJA4If/STdmgkAYRPseQ4mCQJeGtENDkYJAVzdSRjyZgkCMjIUlD6GCQNqBGag6oYJAkPDgm33agkAstP++gt6CQASOGm15EYNAJIwUh3kZg0CWtWK9ciGDQFbwIMdxKYNAeSA0BKxHg0A/ba/nWEqDQOS9bNMFTYNA5h4QJLBPg0CQ/GJ1z1WDQCDoDmrSWYNANvkFBP9ohEAEl+8aSWqEQPwiappMboRAbmwoaP5whECgFZwZyneEQIRWIUl2eoRASHtVyiJ9hEDQ6Vg7z3+EQBnqtWZ7goRA7ssN/SeFhEAWZ/d6b6KEQABGjLEepYRALmUjZlqyhECMTaiYGM2EQMJT4QfGz4RAhnxWmXDShEAV/eILatmEQGdNM0Fq4YRAcqa7jmLphECM7mrwv+2EQGY9REo28YRAijhf+WLxhEDM4ajGvveEQEUWQ0SgYYVAi0+lwaBphUA667rfmHGFQOpmGnW0c4VA2dQmS5l5hUBVD0d0n5qFQEpM/BZtFodAWCKd5W8ah0AoebmCch6HQKMFjC1yIodAdRKL5JAph0BCk3yckTGHQFwPlQ+IOYdAYLlEEvOhh0AqZJ8Ux7GHQB6vTWfIuYdAg7WhBMHBh0ALDLrGYP6HQAy74H9jAohAHK+nq2UGiEB4AHuSZwqIQKzEbNNpQ4hAg9fuL3FLiEByKDVDKrOIQDRZtNExu4hAEB9OaB3DiEA+jJlhP8OIQA== + NrgMGZxjYkBeG3g88qJrQI8BR/y9MnFAAA5KvZ5BdECxCkktQaN2QCIXTO4hsnlAAgtXzGYTfUBLXgbviNmAQEqN9Bg1ooNA - + - JDnURa6IEkdO5lxFBoEnRuTCEUfskJhF2MqRRVMAgUV86RdFlDUKR10zdUaEkYNFj6inRhM1AUWPTpRF+/2CRefhKUZcpJhFxyAARbDkh0fIexJFrkWqRZYKxkbavyhFdgOTRQ1xl0WIkOdGWMFXRbGXJkW5PVBHRVNrRhQg8kUjIRFGVJ0yRUmMrEUDyRhF4tQWRWu2ukVH4sZFoLkRRXcxkkYgPi5FYkYERbd2eUXRhIlFsRH2RQOwGEXiMgtFIvTyRS4/Rkf0TnBFMg0YRW2z+EV28DFFd2XLRd4hQEbMKWxF40VeRZF/r0bOcaJFSsMZRRi4CUV86aZGbXeIRaWPSkWvANNFa+gZRknGeUUVVRFGRncgRVDgDUWFnTNFeSkxRcgTU0ZrY8xFy86CRY/avkWmZzxFQOELRVEOAkWEX39Fw3gzRnILCUYkTBNG5QOfRZybGEarrpZFErrJRrIKDEUB92xFEzYZRc5onkXOHxlFgxpxRh4FTkWXViJFvHOhRUW9SUXwgTlFWX8eRWtsfUZ6QTRFAXTsRThZhkUynxRFkfXqR2H2rUbhSBdF1w7BRoREh0XxRkVGdRpURZwoS0XlfQNFWSDYRnCQCkYrJXxGolr2RX19NkUCYt9FJt83RnxE/EX0IkhFloZBRdvhGkXAIDpFf9YtSUzTXUVF0xBFdCgsSEoe30bgdHBGJ2gHRX5mWEYpXDBFt32CRXXN5En9kBpGz85ASdDhlEgH2zhHvDPHRTmQNEXGfn5F275GRWzxKUYafaJFZlo/Rdz8iEXr8TNFc6qkRXm8EEaM59JFjti1R7UVuEaqeHlHIZnkRs+SlUW7OetHVxYiR6P7QkaUdsxFdYW1RSQNVEfVGQVGP+MvRnAtBkXb4lFFFTKeRtgcCUYmvJJGMKQNRmUZxUVJM51FoiKbRTYoW0V+jblFmdpVRtPXGUbIBEZFRzHyRXWUrUU5yxNIYCTnRwBAwEUd/opHANVDRZq+rUbyQQFFUt20Rpz4hEWBiUBFfN8qReUIrkboMSZF+RbJRTDDIkX5pzRFPzWsRUacb0WxOyRFtQseRaojGUXgfsxF1RWaRfFjUEXpNJRFAGMlRRWU20X6165FA/gbRRWPMkXtAztFcxsHRZJ8TUYTs3JFceEiRSN5VkWUGb1FpcWLRY26LUY2ViBFM4E0RfidsEVxNqtFuNNpRaksEEXzpT1GPECCRWNy+0Q20+lEYNARRX2uXUbenYdFCg85RvwvnEXtkFdFIUb2RfgnG0Upe2RGsh3lRbwiIUUQkYJG6NsFRlg5q0V4xYJI+ADuRzYWd0cVA09GuEqZRd4lpEUrwSdFfGQZRfvHQEWAjRZGDFlTRcFgJUVbBpNG139QRaR1KUX1dq9FwJeKSdb0vUUCNidJjHKBSMX7BkeMpWBFvo6qRb8w4UWK7ChFXbGoRZXlNEVUhnxF5iE1RQNiBkVr89FF/yx3RayXT0WurkZFd+U5RlsgZUXOdmtFYTxDRau1FUUrjqtFPrYTRb5u3UfX0SNH7xTnRsj04EUyygJG2reHRSWUHUVW4fJHVMJRRyjL/kYA6x5GQ165Rsmg3EblVDlGFh2ORQzgGUX/kxJFUmqvRSMeTEbxEj9GvT8ZRWV7bUhwlHxIRJIRSJGbXEc4tkZGVsQZRb3BvEUk3vpFXUYDRS7LY0V1SEtF/TwGRXMNA0fA6ZBGJPwpRht0K0VP0lNFMbuRRbgdEkXgAxNH2QWPRsXoMEY9DAZFgzOiRfjXOEXyzZJHiiE1R/NEf0apkq5F08o1Rs4KtEWzGmNFpwYXRf+/PkaTS4RFu/qGRc57RUd+BgFHFD5TRrtQnkWd5iBGJWo9RVozvUec0PRGW8vVRRiEXEU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - bmp1A2/BckDQuvHopsJyQJDj+k07w3JAxjjA+gDIckBQFZegTc1yQIhcPT1D0nJAlgUUkFDickA+mlqaj+JyQN77kMbK8XJAEsQG/sL/ckBecOfF+gBzQMEX6zLPAnNA6C1dmvoDc0CkdoBavRJzQIdonh4FFHNAnnIwIHkfc0AyCH8EOSFzQJqLEgrPJHNAbaQS/XhBc0BAE1M8ekRzQBGoKyykU3NAtHwDtDhjc0CdDsTtK21zQKD2T9tqcnNAgFu9oYVyc0BsJ9vPTHVzQJcS3iXdd3NAgAygyHiAc0DINZXwpIBzQBRuAKJcgnNARN5fbIiQc0BaYC4MTZJzQC1U55b3lHNAByvpSLigc0D4hlBnWqJzQJSF9F22s3NAhDbcRg20c0AMvFNY+cBzQDzXli/QwnNAF9mBJtfRc0BGrnp24tRzQKjFDpM44XNAxHsIUUP9c0AUSjPaeAF0QO5fH95ME3RAQPXzHLkhdECWJdft4jd0QJZ2DpLbV3RAfSLlHLlgdEBzQOCPCGJ0QG0puKAhcHRAdAmTYUFxdEBmYxux+IB0QPDfTehNgXRAjlSdTCaDdECJPGU5FpB0QAIciG7vn3RAsH36QX6hdED4fKpZwbB0QICI0QJwsnRAwP0OTsm3dEBn+Xbty8p0QNb+PaT9znRA8xxuGdPSdECkm+rot+F0QOPytuaM83RASmA5HF0CdUC44/repQJ1QFFchqAjFHVAB3StOJ0idUAGuHUR+Td1QDvDvHHQYnVAuBJIRnRydUBPuN9CjXR1QDzhTGF4gXVARAdohq2BdUDf5l+hpoN1QLwW9rHrsXVAXg2qcfnBdUDwuEAvTO11QILVN4ym8nVAttiKo0gCdkBHoO7YiCJ2QEyyqAOQJHZA0vxZikordkBmvg/VHzF2QKQ7kr4dQXZA1DXZbJpCdkAGnEHQyUJ2QNZUINB5RHZAVTJ1Q81UdkAQx3nnC7R2QMS1i9XOznZABrmQBgISd0D2yoUDDiJ3QJHFNcfoJ3dAeMbEZkItd0BwJvu5DTV3QI6hAmudQXdAEeHATRtFd0BAgsY1S1F3QJ6hkcqSUXdApNLybiZvd0BoopAQ+3d3QOBy+Htyu3dAkj2tennDd0CsjXGUR/13QORiXFWhAnhAgCo0Y28ieEBE0sdeEkR4QAR3xX17RXhA2nGpAHpLeED44Kd4zFF4QH7rn+t9U3hAJIL3BlF0eEBADbwWjXR4QMAmlc5ye3hAFq7346SBeEBmv1Bvm4R4QIIUOqpQiHhAFLkDuqqNeEDCMslgCJN4QFZ52zyplHhAgtR4LsO6eEAMvC0s5rp4QEZAISr6unhAkEPGZTe7eED435ywf7t4QIfNMqufu3hAW2dHJjzDeEAmhHTcgMN4QGZyfI83y3hA9h7GSjbTeEBkCtGjOtt4QNCoJRMA9HhAtlf3z4v1eED8cgpxuiN5QJzWTy2yKHlAduzrFgwueUAY4QUVvUJ5QKTBvzL7Q3lADZu+ncCyeUAWUgt1QtR5QAfUpc4O9HlAJPk3SgEEekC2btu1Cgx6QD69SXAMNXpAuh6I9RpFekCoG7EYIlx6QN02FgkpZHpAoI6vjTBsekB+/m2VHaN6QLz5Aockq3pAWhOl7hSzekAaDe7pDbZ6QBx4+rscu3pALNs/FWXhekC9E1+IfAR7QA2Zrn7DEntAA2xh34kUe0DgD+5FTRV7QHpOZQrPnXtAVBaJEyije0B8GCR0g6h7QFzn4NaV8XtAblZWBoz1e0DcIS4o2QF8QCw7GANnBHxAnvQh85gFfECIrIGL0hF8QDOzaffqG3xAuFl8f85BfEByXgM7Ukh8QLrqSQGtTXxAKXIkyAlTfEAAieeLWZl8QO4SRomznnxA/BRMRfbbfEAl6G1VWOJ8QLBk6WAS43xAuimvuvzjfEBhHF0WpeR8QDuJ4ywD7HxAMoPvVFXyfECIPFO7BfR8QGrUlHZLAn1AoMwvUUMSfUA83Z99rht9QPBp5ta1I31A5ghSDGpVfUBGH2Qglo19QM0LH0Xykn1Ap9eA4DqYfUBmLTFU5cR9QFLorZ80AH5Ai7EYZu0dfkCKXSEWJCB+QBRw+29II35AIXMLV7h7fkCEAYB6trt+QBr24VVnw35AfNGwi+bDfkA2tt2x0MR+QIOxn/ByyH5AENpXa83NfkAI3dlBFwx/QER5NjchFH9Aq2GT+X1Pf0AmpHVgjFh/QJWVvZXnXX9AdPP1srhxf0AiD983YIt/QD3VEN9dj39A2TWTOGORf0DKtPRtYZN/QJ9LRwFhoX9AJPZyjsHTf0BCXfe1lwGAQBXMWKY1BIBAUpz6d+MmgEA4L8h5CjGAQETtcZsONYBAvIaUE+pQgEC+F9gKE1GAQCKbczoPWYBAxLlEjTxmgEBiU1PhP2qAQIpkR8XxbYBA5Fayzx2PgECcAo8F4KWAQJjIp27iqYBAwh90fBSvgECWD0pdBrqAQB148iazvIBAIxbuWF6/gEAemr32UsGAQDyExbdTyYBA3qLJiEzRgEAqzh4fYNGAQJDhF4dK2YBA4y2uMUXhgEBwlNAmbeGAQBuxer+D9YBAvLufHkD/gEBFjsH0PweBQFKqVmPxG4FAWnioBzUfgUBWJX5uNCeBQIKmGQ5bR4FAEiADu9JRgUA22V4O41GBQFcIo1L7UYFAloTfshVSgUB5eIPkUFKBQDg1okcYVoFAJpMJgFJWgUAwxFluGFqBQEo5eL4dXoFAREaPPhJigUCgUKmmI2KBQDoGkSBVj4FAlWF91lWXgUD6RhNLbKiBQJoLKr9Jr4FAORxI3ZnXgUAgkdxCSNqBQOd/YH7r+YFAlIMClPD9gUDzsIjj8xGCQLT7MXDYGIJAY2XQstcggkA0e4Q60iiCQM4u8UWjTYJA1J0NFzRigkBORSzQN2aCQLalCURDiYJAbVnPdEORgkAsZOFOPJmCQHZYZVIPoYJAzUA2NTqhgkCMpR56D6mCQN6PPH01qYJAeVmiq37agkCoHbgRg96CQBU8nuJ5EYNAsXIpt3kZg0AiVLjFciGDQMXRmOlxKYNAQDavUGoxg0AM/zNtrEeDQMb6oOVYSoNA3iZIwwVNg0BO40sHsE+DQJY8N5vOVYNAcW+kRv9ohEAyd7YTSWqEQBkQuDlNboRAVJG2zfxwhEDiwippyneEQEjrGGh2eoRAeEapniJ9hEDCCpgYz3+EQMY1xpB7goRAZ3LX7yeFhECE40PrcqKEQP+ZnPsfpYRASDQgx2myhEChawEbw8+EQGTs9ktq2YRAJOcPw2nhhEBqt1vDYemEQE4RQNg18YRAXuQAcGHxhEBEswuyNfmEQLzDnBegYYVAJr6TIKFphUBM+zjjmHGFQBpWraiXeYVA6oDP5p+ahUD36oFEbRaHQARvVIhwGodAgjPfBnQeh0CssqXudCKHQDRya56RKYdAXs2zjpAxh0ADJNYiizmHQDQfSkWuWodADWUVvsexh0BkT0FyybmHQDL7lSnBwYdAjoOA6GD+h0BRFIbgYwKIQA4rYOllBohA8/sJsGkKiEAR8b7raUOIQCihb+1zS4hAmBsnpSqziECeEd0MMruIQMDn+sMdw4hAXnVM5T7DiEDgS6NZJsuIQA== + NrgMGZxjYkA= - + - hbXzRVlJA0fcsUBFcTBoRqo/EEUsfvlGb5h8RZpro0XMXyRF624lRaMFGUX031tFuBshR5HsQUaY541Fij0mRUb8xUYwN7xFnlCfRa1wFEZ5XZBFYxwIRdwFgkfWtwpGfRq0Rue6DUVqYZBFnQjiRoI8MUUTVodFscEdRWqcO0eU31NGSSPsRZK49kW9WE9FwsIhRVqUFkV6oFxF7HZJRWCjp0Uysh1G3fIxRaogjUYhzExFikIyReclHUWgR5VFB+OBRRwcCkbkd65FnDdKR3pBI0VJkMJFOqJNRdv6yUUy8yxGaE2bRS3kCEX4X59GDAcpRvEma0YWhA9FmymKRd3MGUVFDMNFZPotRixBhUVGfydFCz8kRjwRJEVdZQtFF2kLRaUoIUabQQtFu7ypRRNht0X42c5FncUWRT8+T0ZeWcdFXdAcRiW450VLSgtG35f2RfhDskYIhKxF5sksRUJFFkUOKaVFEvE6Rsuqd0XmVB9FEZhpRigebEVtY0dGl7S/RUpp2Ucd3JdGzOKuRjEufkVMlVFGH8wiRbpmFUVDK75GMkDaRXHof0ZmzBxGmAiNRTAk8UUfQBRGbaoiRj/gZ0VZ/idFAA0gRVNuJkmk9EdFycUcRVJVKEjmpq1GLSYcRjWeU0WwREhGHUdcRf4Fi0XmGutFi7jnSSjRzkXELnFFu6I/SWNMKUUdHpJIAEYER31r50UTzE9FSxWURfL7TUX/+vRF8EToRdzZG0VS0ilFel5EReo1qkXxoyFG5iQSRu/AOkXDqaZH09yTRkOHmEfgtrlGj+KzRagLBUgiozRHRcw8RtcvjEXiZrlFXIUNRfaaP0ebQw1FwwQJRtoMJUZhiK5GOrk5Rq8elkWV6oxF7n2URuF0KkZdta9Fqfq/RQhCqUUCVjlFLIyGRcQfdkaXgyNG8HIXRbAy4kVVe8lFDBgNSA8Z5Udr4+hF3CiBRzshGEXuV2lG+ef3RlFhN0WMs7VGM7FmRd/EwUVYRzVF52BVRfhTwUUaMG9F+L0mRb8ZJ0X9P+VFNNWbRZ1wFkXaoD1FxIJnReHUfUWAeyVF1betRSPTl0WDH7tFq0MmRZ4/HUaCUntFzaQyRZIJzUX/01BFe2WERf/ek0U43zZFARQVRkz4jUXreCtF2gqPRYk2cUVqvzpFy+8hRTMAJkbESJpFsK0dRRnlSUZpAYtF6+syRovcx0X4BhRFvq67RTDwcEYme/5FvAAuRd3gEEZQbSdGrw2aRbameUiF1tFHX59gRzAdqUVYulNGqsBxRSMBG0WEcN9FAYAnRg63MEUPAQtFDnqDRqkirEVeOZVFoDRYRV7nfEUkCKxFdqSYSe+PWEXyNjJJLe8YRRZgmkiAWBVHCdyMRQkvyUXNDtdF4NAGRedLHUXXI79Fu+eORQryOUWc0cJF5chBRUJgw0UoiDNGuoGkRWqZE0WDsDtF2QW2RTw7cEXtWcxHPl0qR+J430a5hvJFOYbrRSnd+kQ74zRF1OScRQ4qFEWJb+JHTbA0R93F5kZrIBBG1ddHRdmbaEbGhWZGG2UURqhUbkXPYEtF8rnkRUsYaUav8xhGs30hRbXxCEmCNA1Jxk6kSIhTDEhwmBZHDJICRsqLkkV8j9FFgVwoRcvxREV3NvhGmTxyRhuUCkafD3RFgNRFRX9ZJ0Ul3/hGwS90RuLFKkbGmGVFLOE7RddObEei2yVHQjNoRgHu1EXo6hpGGgK1RZZNVEVRsw9Fhu74RQS4qkVF/oZF0JMjRyvU6UZAfwlGCK+PRbL/gkbDn5VF6wPBRzkw7UbsrvFF10yaRX6WPkU= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - HpHCQG/BckCo+0gsp8JyQAPnZp47w3JAqW+IdQHIckCKPaqAQ9JyQNxmaMlR4nJACxvNWZDickAKZcOTyvFyQGrnSJn6A3NAua6iXrwSc0AEBeG/9xNzQMFq3XEFFHNAUIWhvzghc0AybnHPziRzQDEm+413QXNATFL1xHlEc0A82RkHpFNzQP3arqcrbXNALBjmo2pyc0A6KJ07hXJzQCf+SE/ed3NArGVXqniAc0CO/7YohpBzQN4/ouhMknNA91hY6veUc0Cd8AYAuaBzQGLJCRxaonNAJKgyNbazc0Cwl6G90MJzQGDIDUTi1HNAlv0Jejjhc0DnZFv9eAF0QHwd867aV3RAczt6ZbhgdEBwePTWCGJ0QEkvcrMicHRAVChkekFxdEDqfsTzTYF0QERnD+Ulg3RAtPvpXBaQdEAzz/Je7590QOukxbJ9oXRADZf5gm+ydEDogAghyrd0QHaEBAjLynRAwBf3f9HSdEAgp0LBjPN0QD5WmxBdAnVAN7OESp0idUD2E2mVdnJ1QFzIc0SNdHVAy1FKd66BdUAcYklUpoN1QAQeR0PrsXVAVFzSFkztdUD06Amup/J1QGdh1fNHAnZAkNhPR4kidkDsq3I1kCR2QDhcoV1LK3ZANQWnch8xdkCoEEHLHUF2QMCylmh6RHZApOwS98xUdkDo+q+bC7R2QH5HbScBEndAxj58ng0id0BiuQf76Cd3QPMRvBJDLXdANhYgkw01d0Cjj70fnUF3QKzd+98bRXdA7pwpQ0tRd0B+fOj/kVF3QJBy5XP6d3dAhBKmTHK7d0AAtNS4ecN3QIA7OJZH/XdAyoMsi6ACeED8i216byJ4QLaPOKoRRHhASvp9+HpFeEBi/6fJeUt4QO6FMwvLUXhATlqyfIFTeEDrgRLOjHR4QHXzvftxe3hAYPjqPpuEeEBQQnyRUYh4QC/uTDSrjXhAp0HGs6iUeECGNgWuE7t4QPNlGFM3u3hAmPOvWBnDeEAABq98PMN4QK67Opc3y3hAU6inXjbTeEBCVpR5t9R4QNiOAK8523hASfeAQ4r1eEAyVmeDnA95QG6m3Lm6I3lAR1VfQ7IoeUCwPdxJDC55QIRv97m5QnlAnlgoZvpDeUB0Nhtx80V5QAUeaPhE1HlAKLpvLw/0eUDMcnHsZgN6QPhbO/0BBHpAqJWMGg01ekAT/6dnGkV6QEwwdPchXHpAaRRwcClkekBiJzf6Lmx6QNUWevAdo3pA5uklvySrekDUs8xeE7N6QPZAf0gos3pAmFhrhgq2ekBvn0mIHLt6QGiIJn58BHtAbP2bc4oUe0DLUnUOTBV7QCTeCwgjlXtAKlwUn8+de0BQRzDTJ6N7QFKAboSL9XtAmZitmtkBfEBofzmEZgR8QBb56zWZBXxATaK+dNQRfEA5wCUl5xt8QMkfZdHNQXxAyLKctFJIfED+8ltjrE18QAlGjbJamXxAbmFsS7aefEAAFwE59tt8QNIjCpJY4nxAz56esxLjfEAIqsCh/ON8QHLd5ygC7HxAOAqkMlTyfECQnrllSwJ9QM4nvjmuG31ADqCjB2pVfUAQMrCIl419QIMnIPfvkn1AybGyFubEfUAuJVMsNAB+QEk635rvHX5ATsW3arS3fkBUqCw2uLt+QEho0a26v35AsrJ8MtLEfkAJuFbkc8h+QKSl+9/RzX5ASub0SRcMf0DB7iJhf09/QNAS+cZ7U39Ao2Af/otYf0BuHTKx5F1/QKa/z6+QZ39A4swqpZNrf0BLiixtXIt/QL8XsOpfj39A/X58zWORf0BObsNrYpN/QJnh/gJnl39A8uScVWmbf0DcVlX/wNN/QASMpYiKAYBAAnogzwkxgEBXUyC4E1GAQKq3ri4PWYBA/Wu96jxmgEAxYtYlQGqAQKxXfwDybYBA5s1PiR6PgEDaYQqi36WAQJ7zesbiqYBAR0xyKga6gEBsjz/is7yAQFqHRu5SwYBAaqOiLlPJgEC+RT+UTNGAQDCu1HRg0YBAMysBfEnZgEDSD9cHReGAQAfrLFGD9YBABuR3sIb5gEBE4y9+QP+AQCsWphA1H4FAVrWdMTUngUD+ustwW0eBQBiX9FX3UYFADz/VzRVSgUBA8DBLGFaBQEyuCL8YWoFAFrxFrh1egUAAU0pNFGKBQIrQ5wEkYoFAhPgiAlaPgUB0FXlySq+BQDgdLQzkyYFASiPMIUbagUAa0k9S7PmBQFnn7krw/YFAcIepP9gYgkBL9xC+1SCCQCzeYqjBKYJAAtyJgjRigkDWlxBjQ4mCQM4qvhxDkYJAfiY4GTyZgkADliS0D6GCQCKwdW08oYJAUhH2192hgkCEqrj94aWCQOm5jFx+2oJAP8TL9HkRg0AZQyzyeRmDQKCpE2xyIYNAP4AAVHIpg0CmfqAprUeDQCreGgVYSoNAYvvY5QBphEBdkVWQSmqEQI9cONdNboRAyH3+jsp3hECtH+CoTnqEQPtQDL11eoRA9KIIriF9hECsbtxJzn+EQProd8N6goRAzqNCuSeFhEAb3sOO1oeEQIWVsRRvooRAZpX3/x+lhEA0YKDp2aeEQENZqANutoRA8Or+m2nZhEAEtUSsaOGEQDK54oNi6YRAo/f/iJMHhUAqR0AvoGGFQFJFCyGfaYVA5p9H7ZdxhUAwzVjNoJqFQK9NuBmcqoVAiSUZX20Wh0Cq9o6/cBqHQAI1t0t0HodA2DdGf5Eph0D7CudIkTGHQBVot4+KOYdAOs98Wa1ah0DGV/9wtWKHQPn7M/3GsYdAYWZ7lsm5h0DktwjyYP6HQK3EgcdjAohAkHzvt2gGiEBsf3XmYAqIQCzDHhFqQ4hAu/fmvnFLiEAS9EKMKrOIQLC58LIxu4hApOAv6x3DiEA= + KBZXds7jZUCEfuNfSGJnQGaLOdoMYnFAQh3Og3zCckBm6RUuZXN4QJMd3CKiMnlARtWu0glCgEA= - + - 62vYRQ68IUcCBmlF/CsgRqDUDkd2q2NF2vuyRYZAeUWpeQNHfM0aRnCaP0UIlEhFRzCnRjpoxkWn3YBFLUUeRhuSeEVWGH5HGzW+RaCT70YfoaVFyzfoRqDpfkXOIDVHvC9ZRiySDEaBlQxGFFZgRYkC1UVabsNFgM/+Rcfifkaq1qtFOCqiRWl6y0VI1Z1F7zIzR2nA8kX++lhFt/rDRdNNDEbgUYFF6dOtRkL0GEYpCoBGEL6CRbgu2kVGaTJGEIUDRqqnWUX11dFF8HK/RfbY1kVbJHRF/ZdFRmTns0Vu4QNGj7CoRbLVIEanI8dFElapRicShUWta4VFU+wCRjmTY0V4u4VG382FRZy3KEaP01hF//zSR28Mokajg6ZGQy+IRS0nPUaADXpFm6O2RloUoUUr3XlGH/YqRqdjdUWVvc9FRog0RidSqUZAg2NFJr21Ra5ZJkkj6nFFxHciSEhs+kb1ziBGPolZRpydWUYLmdRJTduxRXQCMEkDIVJIhjY0RzO8aEUA8YFFD99pRYvkX0WZBD9FfwUBRk3pnEU296lFQi9bRbK1VEWWFnxFJdHORQd4XkU6rPxFtD+NRxrHiEZyudZHx5dCR9I1DEbzofNHwAY9RwqOLUYTe8FFUOJ7RVsMTkUM81JHogIGRpbGIkYiN6JF9LJyRpsi4UUIS1xGGHcyRhHijEXF+l1Fa3Q+Raz5lkUbA+BF2QqDRjQdGkaPN9tF1nuURRMs6UcMXshHe37sRRnuQkdZ5i1GBF2yRhQ3ikaQMgZGxHVyRR00nkUZ0o5FXUBORdoC20Xrz7NFFJOERjObckasF7pFeNywRXxL5kWeyXJFi+gKRoE7DkYMhIlF4UKQRdE0a0XpwKlFPJ9eRQhBgkZ74LpGT2UGRnytRUbDsttFQUiWRV/MRUXnQFdFM13TRfngSEZKGYtFSgcDRrSjjEWIeGNFPp/mRWZjSkZWjsRF/T5pRvHHLUZl92tIp/uwRx3HTkeRuKtFN80bRruhhkXHHWtG86BoRe9QKUZwEnhGWMuXReNhTkVksQ9GMFqcSXnJNElL45JIktQcR1/viEW8r6NFdSHMRRID90XZxolFS65eRYlnsUUop2tF07odRmPbeEVVl6lFIGeLRc1/wEc98gxHpGuoRifDnUUrCuVFfsGpRTUtWUUUaZpFgBzSR5zZJkegg8FGH0TnRdM+s0XtcqdFLam0RRlw8UZaZH5GvFjoSSZ/ZEY1K+pJvxGISfRz5kjTXwtI8ubGRufy8UWMMohFtZGJRdqThUXadUhFaivuRlzZWEY46+VFcfSRRQ8Q/0ZoKU9G//8DRjFom0Vy4DpFHssUR2IQxEZaDhdGAuggRoYZikUjeoxFLKJtRnw2v0VE4v1FZj6NRfP23EaISp9G5KAPRoJlckUposBGkQHSRQyLo0e+suNGPG26RQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - +FqoqabCckCTUpFcAMhyQFz68NJC0nJAi7OEAJDickACPFEi+gNzQMQMp9e7EnNAaGAJcjghc0AGUiH0eURzQDC0EXcOU3NA3jC9PSttc0AfmAmdanJzQEqK9HGEcnNA4I+N63eAc0DcJSbSTJJzQGzVs7H2lHNA0Pj4dVqic0Boc10WOeFzQFJDgRJ4AXRAoSMJ+QhidEDiGPzgQHF0QMVEUbdNgXRALiKgohaQdECmZnn27p90QH+m1OBusnRAQhYURcq3dECo5wtgysp0QOBsR6+M83RAMSDl51wCdUD1AywLnSJ1QCXTonaNdHVA7qcymaaDdUA8pU1cS+11QGHrDqFHAnZACsjLnIgidkAGj40TkCR2QIaKEz9KK3ZA1Tw6PR8xdkD6TlDgHEF2QATljG3NVHZAKuoZpQESd0Digw3P6Cd3QM67JTNCLXdA5FffLA01d0DiAz2AnEF3QBLXGFMbRXdAGu1u+UpRd0DKXCWPkVF3QLJjit5xu3dA5OrsL3rDd0BIEb+3Rv13QLmfOIugAnhAWD2MJhFEeECc6VlcekV4QAhGy0Z4S3hA7hzc6YFTeEAWXYpbjHR4QPth/OaahHhA3hLhXVCIeEDYVtZNqY14QGYSPZqqlHhAORqgFDe7eEBG33cJPMN4QOvUHZIuy3hAdNr5yUTLeEAYi4EQNtN4QMyk6IOxKHlAzqS15wwueUD7IQhrij95QOSI3ny7QnlAvKDhSvJFeUC2zBY/Jkl5QCitIrIP9HlAbhqtcmYDekCOt+PNDDV6QDsO4SMaRXpAUuBzrSFcekAL/ijJKGR6QHtAka4xbHpAh1IQ1B2jekB+G+CyJKt6QF7iCEEWs3pAWGB6kHsEe0APDfvoiBR7QDXU+FxLFXtAbqYF/M2de0CE3nMBKKN7QLau7XqM9XtA6Uz5e9cBfEACNm3NzEF8QMZG2I1RSHxACcyyn6pNfEDRXt3j9dt8QArAEKNX4nxALIqW2Q/jfEBgWAYd/eN8QKBRSNoC7HxAgJQwZVLyfEBuIwbvSgJ9QNaSgCeuG31A+gdbdGaEfUCISzGflo19QIxbvPE0AH5A2spNYrS3fkC+nr51t7t+QFj1gK+5v35A1mL8W3PIfkCIcFLhlA9/QAzVhxWYE39ApCoL3YYXf0DYvUGQixt/QBZM3VZ+T39AymzRQIBTf0AcDFG9hFd/QF4/YPqPZ39AfPHLRpNrf0DDNKHflm9/QOhaZBW3cX9A4gFUkV6Lf0AzWINaYI9/QI10ZgNjkX9AhVWx12OTf0B3HJELZZd/QMBgxDNmm39AXXU6iEKjf0B2GsZzCTGAQNx4gRoTUYBA+73LPDxmgEBuX4BdHo+AQGY6KYHfpYBAvMJEPuOpgEBX+maBBbqAQJihJnWxvIBA7JboXlLBgECN1QgQU8mAQPZRKCNM0YBAfIsI/UnZgEAehu6jReGAQJRHWzaD9YBAQvEw7oX5gECXxfKAP/+AQGt9WRg0H4FAjulkYBVSgUBLlrgFGFaBQPRTnEkZWoFAHsQKPh9egUBJ2KQ1VY+BQIihq9FJr4FAcCGgx+TJgUBApIb56/mBQH88h/Dw/YFA0OroPtgYgkCC+rooNGKCQBr2xB1DiYJA5nWifkORgkBAcaKoPJmCQFvj3lINoYJALLSbxTqhgkBvP0ubeRGDQDGmBT96GYNA7K5OoXIhg0CfHkixcCmDQKnShWdKaoRAz+YNy01uhECckMo1TXKEQJIpVxyYd4RA3s28fsp3hEBkXfrEEHiEQKXCeRN1eoRAD8EfXfd8hEB7kSCxIH2EQHypOyrNf4RAjuQcAXqChEBylfyMJoWEQAjUferTh4RAApoy+y+lhEBd/Zfo3KeEQF4BgKZo2YRAdDZ1smfhhEDnICGaYOmEQP6L4QLhBIVAzT5Nk5AHhUBqHNGMn2GFQIoAykCgaYVA1CaboJdxhUDK61BNbBaHQKw8LT9vGodAPL/Dj5Aph0DLm+NgizmHQIELFNisWodAMqDyULRih0DN3EkLx7GHQAiE6NFf/odA1WifAmQCiEB0Z8oXakOIQPrlO6hxS4hA6uI26CmziEB5w2mHMbuIQA== + NrgMGZxjYkAbumJgJkNwQLPFgWSkcXBAcQ5nZb6zdEB6IBaevKJ2QJjPrtxsxHxAoeFdFWuzfkAvlSGLwnqBQPwaMY0BkoFA/Ekft60ahUCSwuunThOGQA== - + - p1gTR5fV/0WYuhRHOtfjRSniCUeRvCxG7W/aRi7bKUbu3wBGFlJ6RwBhNEZeittGY5TVRoaDYEeQun5Grl/mRTiR/kX+K6FGw3oURmkMSEfHKsZFCsPjRS7SFUbRRNJGmyDxReIyI0YCwdJFTERcRsaTE0bdtDlGf/j9RbsSYEbvTBJGc2vlRc6qGEYee/NFX6TjRiBv1EWk9RxGMO6WRgkBRUa2T+BF3WvuRxtcwUbEl8pGzBjTRe83ekbMhbBGB5PXRXO8qkaCltFF+VIDRrBcSEbnyNpGTr/qRc5ZL0nGATBIYB4DR2cbnEbGNjxGyau+SXa4I0k1YcFHfXaCRwbuEkeILDtG8R/HRWexR0ZKd7ZGVLgmRih0wUVmruVFY6UtRqw8ikejNH9G/GU7SK1plUfKDBNGnsQASPeHM0c9UzBGC+tDRwy/BkZCJwVG5zRARoKWUkbR3G5G0TcXRs09BUa836dGfBXnRWEmuUfOT8VH0WvbRaWZQkcNYkRGG+OgRsQei0aaUgpGYH0iRuN02UXfO8VFvqv7Rkju8UaYKHdG+cPZRau7rkWCQcJFuxPmReh5BUa9DoZGRWipRq9MTEbfrlVG1Kv/RSpo3UUDheFFrWUER4/xgUcSvSxGQQJGRzfopkYVqRRGAd3HRd3l1EVeLZ9GAHgPRmlQ+0XtTR5GmAkLRhRKMkYLQjtGrZanSNj4BkiyAaNHe8iGRsI730U5IYZGourRRU/fZEanX45GTqSSST+4LklYz2pIuBgXR0/jE0bkDrdFGu00Rsr9+UXNGLtFM9NGRqpA0UV/XHJI5RDgR/lehEdxoc5F8K2BRmexZkixTNZHaFiER0BckkY8WRFHK+vQRixnqUUcYolGAYN6SqGRFEaTv4JK678gRkOmFUo9xm5JGgKfSAlHiEevWG5GRDATRsOJBUZqtjdHumuuRlowdkbHoTZGMnMxRhx2TEfTy51GGCRkRn0Ur0YJaZxGgduMRvmetUWYntVHESjpRpaoH0aIYLxGF2urRvnL4kah0xdGIkudR96wtkY= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - BjHxN2/BckD/3bGgpsJyQHA+/JwByHJAt3nVLUPSckDY74PPj+JyQCntSaz6A3NAeBvYerwSc0ACqbqpBhRzQGFaBeI4IXNAWBBUVM8kc0Bg/ETteEFzQDlaQc95RHNA+t92rw5Tc0DM1xqWK21zQLwkMmlrcnNAhCTs1YVyc0C2skjOeIBzQLlvHitNknNACNAOwfeUc0CWDE1VuKBzQPI2SINaonNA+ldbm8/Cc0DaX3XL4tRzQIDpWrM44XNAArxRyngBdEDCN8y/t2B0QANPvuUIYnRAkbnyPyNwdEAtv2w8QXF0QA3b20NOgXRA5CPybCaDdEDT5DUQFpB0QDCMYJnvn3RALiG/IG+ydEAgVUBEyrd0QEczn/7KynRAeCvxoo3zdEC0jUyUXQJ1QNuSKVOdInVACtNyCPk3dUB5mSRrjXR1QFSQx5WtgXVAdEgNEaeDdUDCLIpCTO11QKIR+wRJAnZAEK9BcYgidkD0priqkCR2QBDpelJLK3ZAQUsgfB8xdkCxEdKLHUF2QCtrHZF6RHZAyEAB/c1UdkDITt5/ARJ3QPQZNsLoJ3dAaAu6dw01d0CNt1SQnUF3QFz+Nj4bRXdAADmFqkpRd0BMUUtWklF3QIzdYdVxu3dAUtbKonjDd0BmvmABR/13QAKB/SShAnhAvgqSHhJEeEDOnClEe0V4QBhYhbp4S3hAsmbwkMxReEADROl5jHR4QD4OEw+bhHhAtHGXbVGIeECDpyEpqo14QN7zoJeplHhA1wWBhje7eECuobKXPMN4QI8tAPgvy3hABi8J8kPLeEDIxEj7NdN4QJZhbzi033hABsFpHBDmeECJnvBti/V4QLLKFtqdD3lAarVr5rEoeUC2vQENDi55QHxlD7eKP3lAyoSr0r1CeUAQSkkl80V5QNytEoklSXlAGHRSdMtUeUAA2jrwQdR5QNA53+oO9HlAZpNHO2cDekDCm46wDDV6QKUem5oaRXpA0p1yECJcekALQE4cKWR6QOp3XoUxbHpAWt4pJR6jekB8VO8VJat6QFTjHq4Us3pA7MInbQy2ekAjnARpfAR7QOOkmDmKFHtAJp0/VE0Ve0BIR1Qoz517QOt6fpgno3tApjc+74v1e0C48d732QF8QLQPlP9kBHxAJpB88pgFfEDKz+cpzUF8QPCvo1JTSHxAbpH1VqxNfECa4ndGWpl8QOtvU0r223xAxGScUljifEBdS8pV/ON8QJa+KrsD7HxAlMDju1PyfEA7G1wNSwJ9QCAQOrRGEn1AAoKTRbEbfUA7YxsZZ4R9QAsBZhiXjX1AoYvsIfWbfUAAOWbctLd+QA40Gjy3u35AoGPPWbm/fkAnjvs7u8N+QBI7bbXQxH5A+CLwwnLIfkAOJYWizc1+QLSCKeaUD39AQZqp34YXf0BG6HRKjBt/QGg+JVR9T39Am0QhhYFTf0DKLqbmg1d/QEcj2mWQZ39ANumqEJFrf0AKEtDSt3F/QL7ksfhci39AvCbJt2GPf0DSGOqEYpF/QDS2d8hkk39A1zFNt2aXf0CG8crJCTGAQKDJaZcSUYBARMSfug9ZgEA4i8HNPGaAQARpjKUej4BAXu9A1N+lgEB6bEyj46mAQO48m8UFuoBAaYvyRLO8gECuH7rCUsGAQGgd5ENTyYBADAH/akzRgED08KGkStmAQCBAZVBA/4BA0I3/mjQfgUAMDne7FVKBQBop7msYVoFAQL/QBhtagUDavKwgH16BQLphCChWj4FAHv/jH+XJgUB3rLJg7PmBQC6ePzTYGIJANiEfMzRigkBcKcRcEHaCQMi18HoTeoJARL/fWkOJgkDzj8oNQ5GCQFaFC3I8mYJAmvQVsQ6hgkAWXZU7O6GCQMJJphbdoYJApIxx43kRg0D8vmQDehmDQFSDyZVyIYNAmHHn9XEpg0DWxtfaSmqEQKrPuwdPboRATgyVKKN3hEDoOiLRyneEQBrJVt7/d4RA3ENJE056hEAG+75odXqEQIwvaSqpeoRASP1BJ9B6hEA0iiUOIX2EQGR18qTNf4RAI/xScXqChEAZ0l/4JoWEQJhiCWPVh4RAEajpqTGlhEAkapd+3aeEQDSLkwCJqoRAZgADLHDChEAlT/c/HcWEQKyUFFHHx4RAtUkv4WjZhEAWo6h4aOGEQEgC+bNh6YRA3aLF1+AEhUAKEjYNjweFQHwZULifYYVAnoEsVJ9phUDI7cu2mHGFQBxIa9+ZeYVAIpxY/mwWh0AfBQlfbxqHQPFBRaiQKYdA7hgCypExh0CMjJ8trVqHQKj6n3G0YodAULo+pJ5qh0DM9kcsvWqHQEjnvC/IsYdAwtrN7sa5h0AGiXK/YP6HQMgCE8BjAohAnDBAP2pDiEAEkXViNYuIQFlMKOkps4hAEAx0qjG7iEA= + NrgMGZxjZUAoFld2zuNlQOK2Gkbm4nBA3OW/dP8icUAACNcwPnN0QKNAVK4XVHdAHlmTG5YDeED5lFizr8R7QEBilUwZdH1Ap3Qu3KMagEBkdENNhQKDQNR604EFQ4NAZX9UGkf7hUDIoQ1qERuGQFmmjgJT04hAyaweN9MTiUCGrDOotPuLQA1wF95LXI1Asda1qgA0jkBPOky7RgqQQG4AnFYmNpBAlk77tVzukEAgFwFlbMKRQN1iqrBy0pFA0i1mc7JOk0CPeQ+/uF6TQEGQdM3+6pRA - + - AYP9RVaf1kaDxwlGEqz+RpGHG0ZrywlHooeeRva5m0X888BG4vzGRYFewUX7kUVGWWofRhsuVkcDmQFGXJepRuQJ7UbvFnFH8K1RRggmGkazwg1GbpmsRYKiqEXQBPdFloibRpDRokWkASFGac6/Rb/RU0cw0ftF4GSVRcg93UWQ3+tFfM6bRvPNOUYRNfRFtQTFRVPVNUaVnO9FWhGWRdM6+EXPCdJFLofjRRuPREadqP9FSUngRaJpGUaf6QxGXX/xRpC8uEWJ0qhFF4xgRliuskYFTBxGSswBSMDYpkajo8RGAE2oRcrenkYs2pBGNa68RWZpyUZLVSlGaRUMRjPHdkYeVPNF9RStRYi2SkltpEBIjQzSRtg9SkbQlmdG4MN4SYFhvkikNphHFJR4RyOGtEbJqp1FykaZRb7ptkXMBqFFrs5bRmSxvEWFxaxFVc1VRpUENkZzoQ1G/WmcRbo2sEVy2gZGPKp4RiXXy0fRGq5GAB5+SEd5z0cTjDpGZAK9R2FdAUfzjidGEmijRf8RGkf1nAdG6rxARhyBj0YouRVGXqONRhe0JUaxB6FFW7KZRUR31kXhKTZGvKk3Rj73AkblZJVH3onpR5mL/0YScxRGPOreRlystEbKwLVFsfzERfKtskaA/sFFBkzbRW5JE0c+nBhHEq62RrElskWoCc5FcwrkRcgYmEWMM9FF1/u6Rag8pEV7Ng5G8L+KRvR7o0X2ah1GewfaRQ6Pp0UuFwdHkwpaRxT+C0bjtbpGTltGRm+H9kVxqUVGuLiuRbM0xkVCbtpFkWAORiuq4EUyLzBGParkRejElEj2//JHgS6WR0zViEYcVBtGcCZ8RkOIPUk9EeRIowsMSNVyyEbQRchFK53tRSZR80Ve6jlGuLKtRQGQbkaZuOZFiZH5R01PS0d5oQVHfQ3TRS6W5kWTEMNFA/YSSBu3h0e/ZwtHgHtJRqKf8UYaBZ1GV9qTRgx5XEpNKm5GRMiyRg3yYErhBIlGXFrdRVqDAEpaDVRJ8fF1SDkVYUcuLX1GhEEeRlBINkaEO8tF3TXkRcMx4EXicKdF6r/tRqLyZUaawQVGcpKqRT5+wUVGMAlHTfyIRuSSMkarBKxFNsJjRnRsFUafOhpGekDZRSTqfEigf6tHdZUURq4SaUZMZSZGEwC1RXPSmUbecmFGEQ9SRnlKtUXdSi1Hri5uRg== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - suf4xW7BckDRTv8Tp8JyQJ4cQEc8w3JAZNtfgQHIckD7uPPEQ9JyQPxTEVzP33JANDrrVlDickDG0tDJj+JyQKW2hmDJ8XJAonarrc8Cc0C79mys+gNzQGJ5c6+8EnNAojngSwYUc0AWiy0GOSFzQIxH8ITPJHNAXlORLnhBc0AzsMqVekRzQHgGnH4OU3NAuIF24aNTc0CJCBcmOWNzQPcEFKorbXNAMBi5Ampyc0B612a8hHJzQOTMo3nDd3NAHOtAPeB3c0CzwMPSeIBzQJLq0pQMgXNAPHs3jlyCc0Bcg58iTZJzQFCYY9H2lHNA2fM8jbigc0ACMlBFWqJzQEzPqCC2s3NA6sKbfM/Cc0CqKe344tRzQHMZsBw54XNAcsW673gBdEAshtkTnQJ0QBqhxGFLE3RAXQgiqeRCdED2KXw3uGB0QPwmQsQIYnRAqbaWMXtjdEDwEkObInB0QL5+UtxAcXRA0O3LpjlzdEAcVaUe+IB0QPjL72dOgXRAHd0T/hWQdEB51z1Z7590QER57vtvsnRAJ3QXg8m3dEB2WEtRuMR0QKrg0TXKynRAzDIgRI3zdEBhY1MeXQJ1QFJJdB8jFHVA7JOHVZ4idUAK/K0IzTV1QNVOUq34N3VAjWJeNjphdUCM854WjXR1QPhcwLCugXVAWjgRaKaDdUBAnhaUmoR1QOodRGRM7XVAoo6oxKTydUDmk/xISAJ2QApqlb2IInZAExeCQpAkdkBWWwUUSyt2QAyHHFYfMXZAesw/lhxBdkCyDPpyx0J2QBBdi1h6RHZAxuSuNc1UdkCQkIyS2mR2QFBFgpEMtHZA7knyTc/OdkCYhKZRARJ3QBon5EoPIndADH68jugnd0AC5rerQi13QEj2NEWkM3dAk55yNQ01d0AyPfTtnEF3QIXndDsbRXdADBfzI0pRd0ACmsXYkVF3QLzu6UYnb3dAJAcsUJ5yd0CiGJjMcbt3QDHVJdZ4w3dA7KuUS0b9d0BsLGuYoAJ4QMJsAUtvInhAmKPVhxFEeEB6jP4le0V4QOBZDgF5S3hAzLFwmMxReEAc1iBgiVV4QJ7sG5y3YXhAO3haNox0eEAo3dNkpYF4QPb3VbKahHhAWqGIZ1CIeEBwQNW9qo14QL2NRk4Fk3hAEHX/mKiUeEBXqBfiNrt4QAD5CHM8w3hAMEsy4C/LeEAN3oZHQ8t4QGP8gCc203hAiSrWE7/0eEBkc2y8jPV4QF4n9tcXCnlAxQbCzxISeUDoBaDt0xJ5QJxZjPoHFnlAef4kqrsjeUCSovSjsSh5QAj04dAPLnlAlMRTnGMzeUAhYSquij95QM1F4Tq5QnlAiE7M/vNFeUDPSvmgzVR5QKVPfQXAsnlAVhsL2wfMeUAAZyZIQtR5QNDpiB0P9HlAsFJIcWcDekCD3kijAAR6QNy42NIMNXpAPXDk6RpFekDqJ4/wIVx6QNP6sUMoZHpA1OKCdjBsekCUTbwzOXR6QPlyUagdo3pAcPIAKCWrekAgOsRHFLN6QJDqjjYMtnpA/OgSLhfxekDDwPA5SfN6QN7artt7BHtALUjgJIoUe0BBjtI5TBV7QICsbQTPnXtACvVGPiaje0BwfpoOjPV7QKr7Ztgo+3tAIMMS4tgBfEAASMd6ZgR8QFgqK86aBXxAahTc5tARfEA+3cIx6Bt8QJDOOsTMQXxARlaKx1FIfEBheGF9q018QEOD2j0LU3xAmCrOpflzfECgZjZJWpl8QNpItn2znnxAuiADE/bbfEC6b1r+V+J8QDtIdqUS43xA8/u1C/3jfEDURxhXbuh8QG5+OlgD7HxAxQpkmFPyfEDHRQQDTAJ9QHh/2NZEEn1AxLwoAa8bfUAMTzqptiN9QAbXTHtmhH1A7ozdCpaNfUBAKKNK8JJ9QMRrklZ2lH1AbSxUs/WbfUDQ3DVc+6N9QJxcXx3oxH1AKAKrYvAdfkBUyVtKSSN+QAiTeectZH5AlEZdHbW3fkDJ5q6lt7t+QMmQI2a4v35ABGdT8dHEfkCckwdPc8h+QDlVrrbOzX5AsAMJ/RUMf0AwcU0jlg9/QE4MGSd+T39AFhj4toBTf0CAsbH6gVd/QIqVEiytW39AxNLgw+Vdf0Dt6QnZtWN/QHZbLTqPZ39AVCPUIpprf0DBa5OOtXF/QA6a7y1bi39A2H0B61+Pf0AqHskoYpF/QIrr0Ftkk39AXEp3xGWXf0DeYCO9Z5t/QEyd+IZWsX9ATiqlzIgBgEBEUTAMNQSAQDR2tkfkJoBAbN1hJwoxgEDVX/7oDDWAQP80EUrnUIBASoLVQBNRgEANViDhDVmAQKhHkno8ZoBAsHd0IChvgED3EzXiHo+AQAMmglnfpYBAUPz764WpgED3jOp546mAQMTM+fcUr4BAqrpDXQa6gEALOpGssryAQNra0JNgv4BACpAgqFLBgEC8/uExU8mAQFB0PoVM0YBAvD5cM0rZgEAo9F6vwN6AQLYtEYJC4YBAIatk4D//gEBsrbDeQQeBQCfAZiQ9D4FAmqxjzzQfgUB1WxYJNieBQOQjBPpaR4FARj4ldAZKgUCpbNSFtEyBQFLk4ckVUoFAmM5LnxhWgUBqlhMFG1qBQLAegkwQXoFAKGqP2iJegUA+Gxl9VY+BQAKfCiNFmoFA3kElbZ2cgUCQfX4KSJ+BQLQTpaXloYFAXarqREqvgUAcDEq/5MmBQOhx6OXozYFA5oYI2NXhgUBeMT1P7PmBQIKIfQfx/YFAJj55SfMRgkDevY7Q2BiCQJmZwPvVIIJAaMkLTDRigkDX6rsoN2aCQODPdpEQdoJAJpGwHRN6gkCe1RbIGH6CQLpxLmZDiYJAMMcwWkORgkC00RpzPJmCQCusLRwQoYJAFJBe+TqhgkDyihcg3aGCQOvjd6ILqYJAwruSAX/agkCdML3VeRGDQBbZfBp6GYNAni648XIhg0AuJSAvcimDQJ2dhHNqMYNAtbde1c6Pg0D48atzYJCDQL6OApoN8oNAGzUOtRH2g0DsAvaAAGmEQCHbQnVKaoRAHF6+ZE1uhECpSH/8VXKEQEJDBXjKd4RAA8Jmiu93hEC8dTBAB3iEQLspEKp1eoRALsjeHct6hEDFRyyaIX2EQGrYOfFEfYRAGIUmRM5/hEDAqVMje4KEQC6qdZUmhYRA6oFyg9SHhEDScdr4yJeEQLjgWvp1moRA4qWbTiSdhEAniG4bbqKEQEmTmtsdpYRAGP1KnNynhEDmbGvKcMKEQJIpnKgcxYRA8VTlUMnHhEAZ1Kttd8qEQOTym2tp2YRAlLxZjmrhhECQVluLYemEQES84XA18YRA4n7TbmLxhEB24Jp45ASFQOxW/EyTB4VALjIsaT0KhUASbTcyoGGFQAFbp9WfaYVA/qfbwZhxhUB/pUDJmHmFQIQB4JKfmoVAWp5H6qGehUA6JcLndiCGQEb05WG4MoZAGtATaWU1hkAhxmFHETiGQL6zRZi/OoZA4nDAsmwWh0Doolx6bxqHQOYsYo+QKYdAFqdKMJAxh0BoI67IiTmHQNT/kRGtWodAELHeLLRih0AwFyqrnmqHQPWGmnu9aodAMClz28axh0C8D2cLyLmHQA5lw4TBwYdAK0pz12D+h0C4GB4bYwKIQLRGJOliBohADKwWAmlDiECT+UTgKrOIQKCVe2Uxu4hA5HOijjjDiEA= + KBZXds7jZUBkuM9LfgRtQJgT9jS8IXBAumLZczATd0AgmueCrbJ4QD7ro20FQ3xALgiaYyAUf0A= - + - OiLnRYyp+ka0ZYJFI8xpRuBI/0ZLiyVFqJmbRYP/uEVY1EtFB94tRVyuD0e1WndGsBmmRZLPvEYYQb5Fw8K8RVu8TkYuDE1G3IqjRVazgEUazXZHw+TmRYYckUbaXhlFLKZ9RQa2AEfNtx9FcVpXRUWeakfRm45GquYwRh1W2EW4foFFQj3KRUaOrUXwPMVFr2WIRjL5O0WFETZF8f57ReKum0Wjmj9GlcSyRcUtt0XV4lpHeydrRb+uZ0VgUQJG1nTMRc7f0EVp1q1GJm32RbrTfEWaDp9FG1rKRbFcMEb2fUlFdHT+RfksNUUmm05FGJglRc0lXkbfaeVFBOfJRQSERkVvT7xGwZwYRrtUy0WFxepFyM0jRvZQtUWQl8hGhiSqRV/1UkWx/mlFAZ+SRnl2gUWVXJlFE25pRXDLmkYMl5xF5pQARgYBuUXlKCRFl2cFSBqxxEYM4dRGkHenRZTsW0ZaLT5F9lV/RV+giUbqq75FPN6mRsemJEas/qBFAWG8ReCeN0ZI5nBF3ZljRY59TUVz0m1FwyRHSZ9LPkVn0lhIzi3VRskwQ0Zs20pFJV6NRgj7Gkl6BXxIp8tDRxrME0e0w3ZGb59rRcC0vEX5oCZFDLSKRVu6ekWJaz9FUwMtRU7JOEbZOnZF14wtRf3uQ0VwWMtFEv2ORZyskUUclH9FE7NkRekbw0V+C8dFu2BJRi6CcUVAUs9Hpn3LRpTLsUjTawhIHkaoRo1mPkUj0pRHG/fQRpPx9EWWfbxFA/M1RRQCe0WDDwlHmgO/RbtTOUYuamNGqXkRRq4UlkbzfzVFfggXRmT+WkVrHZBFT/CVRa1qkEUerppFCOmdRvvVCkZAKE1F+smpRckmrkUVmJZFrA5pR+qX6UdStKNF0c3ERnhoL0U52+ZFvmTMRhF/oUZGAFlF7d+9ReK6gUUzvddGmHPCRU0PqEV4LlhFSa2HRtQT9UVH0GJFGb+KRb48VkUxjkRFnquQRmkfUkbD2r5FzlWwRRu/A0Yx9GBFCvZ2RWuyUEWejmNFGjzoRS+uikVGPTZGJgk/RakZWkVpkFNF900yRe7ugkU343ZGYSyeRtQeMEaOVUFG/z2+RVz3sEV5qVBFufEuRV04KkUJM2hFkxjZRRCxWEW4iz1FHMB5RiCDlEVvnppFvAE0RekiAUbuAM5F1h0rRVkJf0XsbTVFOPFhRhw/9UUuibJF4EaZSH7W9kftIYRHySluRv3mdUU79lFFgusgRs9KX0XaoURFzLp5RgPhl0WKSEhFqgRvRdBYMEUxXvhIxySXSMGytEdaFPlF/+0lRqKW0EVjnUtFUjVgReO/WUUMCi1FBD7LRYplrUUG2XNFureART2qB0YQgU9FdcN2RUR5LkaFr05F+tu0Rd/LOEXdIBNGFwCYRZDtXUVWMARID55HRy5iAkd+wa5F8G0URltidkV5IyNFU/hlRbkDHkgy+I5HCRY1R+YhLkbHs2dFnlhCRT/XXEUPuadFANwlRdhkrkWvEMtGeGliRvOzH0Up++RJJxUdRuQ5hUXMDulJHS4TRXSAfUnzcZ1Fk8HRSKJl7EdEaN9GQtigRa0LJUZ86CdGOLicRbFpbkUN0ahFP1qVRdB0AEcLUcFGGTFDRvfxYEVe6xBHbNd6Ru4aLEZchF1FkziiRaDOS0WhaG5F+oNFRVViHkfGnYdGmjkZRvCuqkUfe59FilRMRYUQWUXUgj1GQmNJRjlfwkVGiEFFXUUcRk6DCEatgWxGOVnaRTgWZ0WzI4VIbBGqRyMl90WMEWVGpngwRr0u0UVgEEdFT5chRsRrFUbSTg5FoRiPRaaH1EbpZRFGuGolRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - zhLCo27BckCa55S3yMFyQL4XVFGnwnJARC/qwjrDckAEuxVaAchyQLPUlONZzXJANrdGgEPSckBYB+XAzt9yQNQNfOS34HJAHCILugnickD1wtxNUuJyQELZlHKQ4nJABCXKkSTjckBxUIU5UvFyQLagniDK8XJA7QpRCCfyckAgDtest/NyQBB9OBDC/3JAZIoQV/cAc0CqqPlpSgFzQHsowBvQAnNAHodwyPoDc0BscxzyBxJzQDPvDhu9EnNAPDV+lQYUc0Ae5pGFpCBzQBJ4TTc5IXNA1OTfMuYhc0CQafx6eyJzQAax3q/JInNAoLtzDg4jc0CMqRcozyRzQJ/i/GFIMXNAhul6tgozc0DoMGRsozNzQCJOKUfkQHNAeqHXOHlBc0Bca59BekRzQBvyeGqbUXNAtshR2w5Tc0CP8uapo1NzQFj1t8aMYHNAzXQW8R1ic0Ciq4LfOmNzQAgY/r0rbXNAkJdsrd1xc0CaMmq/UnJzQEgE9ktscnNADIcAf4Vyc0BiNusgT3VzQPSUWiFrdnNAxFLMN953c0Dav+BhJ31zQF6WVZ14gHNA+nCzv6KAc0DgdAC1DoFzQNKVBcVdgnNAHw7uqf6Cc0A4CRg8hpBzQOxJjClNknNAHK+VDc+Tc0Buyj11ZJRzQAlR2q73lHNAfCaOtLigc0CeOzJmWqJzQA4QvvGQonNACIhl5QOlc0AGwZzOf7FzQIpjJTm3s3NAYf1H1g20c0AvzVXs+MBzQF48mE7PwnNAmtTU6CLDc0D05y3Y19FzQK6DWlG90nNAmGxpUeLUc0B85ao8OOFzQOKpzrsP43NASt1eLDf0c0A4FRh8Qv1zQNYFXTDkAHRASbtR+3gBdEDo74ybpQF0QPB/LJWMEXRAzmYl9EoTdECmnkDruCF0QMxEZPNSMHRAehkVrJEydEBU7eA64jd0QLxSmmDkQnRA8A6RKDxDdEDjluM39lR0QCYRZ9jZV3RAO0Gci7hgdEDbFitiCGJ0QLQu5c56Y3RA0fcNJk1kdEDz0SNHInB0QCzOhUVBcXRAqniHdTlzdEA0qzYsN3V0QCTg2vX5gHRA44ad3k2BdEAQQD/1SoJ0QGpIr/Mog3RAdq2idRaQdEDmC2yUuZJ0QOJDZ3bvn3RAOochhtCgdEBcnZ3WuKJ0QL6UcDYPo3RACNWJFwiwdEDV1VMqw7B0QLGWC5xvsnRAaKa7msm3dEB8j5ZUrLp0QKoeKC3jwHRAAlrxPHjBdECh1OQ8IMR0QEg0zzq4xHRAhAZjU8vKdEBnPPFQ/c50QOz8UGap0nRALH/XNdLSdECacFV5ztR0QOrtFdy34XRApL9Co5HydEAsfpspjPN0QI4CpgjOAHVAWue6ZF0CdUAN7riXmQN1QCz+5biWEHVAzz4daGsSdUB4iaVmJBR1QPsmSdGcInVA7U9FV8w1dUASNIgi+Dd1QGsQ3dndT3VA5XhMTfpPdUAwvAsVd1V1QIIwR0Q4YXVAZSuOaxBjdUC2NB2Wd3J1QPFw3o0xc3VAVAVg4ox0dUD2da/IeIF1QMUEhWOtgXVAFuh/gaaDdUDcgB+7moR1QG41f6W7kXVA1lvUdsqXdUCdMg6tY8F1QMK0aj4I4nVA4FVJGUztdUBLn+DmpfJ1QLqYkEdHAnZA71XfwwsWdkAWbPLhiCJ2QLjuY5NmI3ZATKVKFpAkdkAu0WtLSit2QMhCr6YfMXZAgS2ODlIzdkDEUks94kB2QOz27n8dQXZA/ogh+MhCdkB81KdHe0R2QOVc5TQSUXZAWhHcogxTdkB0kEB0zVR2QAYLGQq1Y3ZAsss95ttkdkDW4AFOkoN2QGfvpgzCsnZA/1HsPw20dkAvK1SavcB2QE6qaKfPznZA2B5yMX7QdkD/xFE0kPN2QLApyFEBEndAQGT4ww0id0Al6b4DciJ3QEg9dcXoJ3dAFUxCZUQtd0D+71VSjTJ3QACrJKKeMndAJiXYHA01d0AGXfgXnUF3QNa/Sw0bRXdAdn8w2EpRd0DQdkSaklF3QJgLHy58X3dA0lhHgY5hd0DN/biNJ293QC1QTDadcndAjzKoKvt3d0AyyBNhCJJ3QNptcB5yu3dA+vR8NnrDd0B0VfUoUfJ3QEo0WEp9+HdAS1+J0Eb9d0DwdMeZoAJ4QPHCLaPoB3hAfGNJJMUIeEC1dkXpbCJ4QG/w3V0SRHhAxmyjqnpFeEAZWUEPylF4QIDB+9iVUnhAfB8UNSBUeEBsbj4zh1V4QCLII0GfW3hAINuzivhgeEAUjA5QuGF4QIIigFZgdHhA4tFZKYx0eEA4mZGgvHR4QODTokT4e3hAfyvFwDuBeEDBxZugo4F4QCVAvWGahHhAvxUR/k+IeEDykESaqY14QEpeOKWYkXhA1DkN3QSTeEDKFshbqJR4QKdNMHXUs3hAdAcRLgm7eEAe5xlVN7t4QLFCwOFpu3hAJJCXhs3AeEAmiGGRdsJ4QMCOFPc8w3hALDrSZjDLeEDZBWBPQct4QDzmyYI203hAUsM/bLnUeEDs9nDEn+J4QB7pPYw843hA+DeVXwH0eEBUNaHBvvR4QNabtI2M9XhABS8QNpkFeUD9mzSgGwp5QJgKD1ygD3lAxu63CLMoeUAODX1hDS55QK4Izv5hM3lAijP+x4s/eUCee0TQjEJ5QKU9LaH9Q3lAKZBzDx9JeUDgmazsy1R5QIgVG3i/snlAEnO4LwrMeUCgGGClQ9R5QJ8tJKPO1XlAY1Cr4k/keUCu8wImEfR5QK2ydLlmA3pAOjpz+gAEekCuSsJO9gV6QMWzSkVSFHpAcKKTJTwkekDwplMNDTV6QKJHf10aRXpAhOYqBM5LekC2dm3LK1V6QJAu+yvxW3pAnR0LwyFcekAUuJOAWFx6QLgIoAknZHpAb+VKbC5sekDkIoaminJ6QCBx5JE1dHpA5lqytx2jekDCW6xDJKt6QCGnI+oUs3pAxgxNiwy2ekAqQ5WGH7t6QP1CYO4YxnpARz4a4WbhekC75PNLF/F6QErw4xNb8XpAQjYziUnzekCi0pWGfAR7QLZqzw/EEntAnlP8rYsUe0BGfiKjTBV7QEIX7ZcdGHtAEFO3rVkle0DEUPtYxDN7QNpJCrVhUntAvYDvSs6de0ANYONjJ6N7QCeGr6H0q3tAhqFg0Pqze0CKqapHAeR7QLpU5zQp5HtANlftTJbxe0AdxR2qjPV7QJDXh0vaAXxA0aRa6/YBfEB/YjYoZgR8QCpVGjyZBXxAzMfh8dERfEAaEc1i6Bt8QI4oZPTsI3xAFTBKgc1BfEAZsiUjUUh8QBR2yRmqTXxAE7N04gZTfEBYm6BsS1h8QNK7lYT5c3xArISHzFiZfEDLv4Y+sJ58QMhpjQELpHxAB1v+JL+yfEBMPPedP7Z8QAxyJFv223xAseSHF1jifEAIvzoAEON8QPjl6cH843xA4LJqJgPsfECuO+73yO18QL6UJnwY8nxADFaR21TyfEBGlkY+AQJ9QOhqJbJLAn1AR+s/GUUSfUA2fQkkrht9QGyJi2U9In1A7joGkY4jfUAw5nmytSN9QKp77If1c31A2rfLUeiBfUDX/hAiZ4R9QGy7gFaWjX1AoPkBYO6SfUDB6buUc5R9QDJn67c8mH1AtiL4YvabfUAOF9wC/aN9QHE/G1wBrH1AvJlrZubEfUCWOOgzaeB9QFi4/ySm631AzlUfZo71fUAKl1+h7h1+QHFfM0xJI35AwUTnx0EvfkAGUqDoLWR+QJIMq1Y2bH5A5PvZH+VxfkClL1pLuXt+QChQO6fIiH5A/v+6EpiyfkDE/M3DtLd+QCwQYUC7u35ACEdoV7i/fkDyIUHZ0sR+QITZyU+jxX5A7REpNHPIfkCiRIWWzs1+QGbGr20p035AuNWOFlX0fkBUBm95kwN/QDvpYmgWBn9AiFAa+xcMf0BgdYk3IRR/QIjTNJGMG39AVMB8Xl1Df0Be5DUdfE9/QKbE0omCU39AT1+9B4pYf0D+mfYarVt/QCqaqTPnXX9A6gtr9rRjf0CETPnavGt/QDKN9Z+6cX9APT+lO1yLf0Cwjp/LYY9/QPAhntpikX9AhRgKc2eTf0BOg8iImJN/QDfunsdil39AEsTn1l6hf0CdUooMQ6N/QLrFQt+bqH9AyrObelSxf0ACchHCgbJ/QPoLayGIAYBABsuC1jMEgEAUf9302QaAQHpX3ccKMYBAlCRoxw01gEDMua9W/ziAQOKbWLmoQoBAedWr/PBIgEDhUm2u5lCAQCqA0soTUYBARFbWdg9ZgEDGFjNV4mCAQAp/sJY8ZoBAmmWsgfBtgECCE/3fJ2+AQHt42eX0cYBAuhMu1B6PgEBJvuQQHpeAQLQsaDjgpYBAYoDEReKpgEDe3HMxE6+AQMa1XRAGuoBAommQlLO8gEDK31Irh72AQBHcs0U5voBAzqqKZV+/gEDTm8cXNMGAQFY556FSwYBA3NjazwzCgEDAGDIwU8mAQO44yyQs0YBAmODjk0zRgECvWF5tStmAQBF3xtjB3oBAsKdlJEXhgEDudcyzauGAQAL3Kx736IBAQmcjHWj6gEB2Rf8qQP+AQCLogchAB4FALuzNZj4PgUDYQ7oxrxGBQFZB/Ho0H4FA3nnjZjQngUCaSFmwKT+BQDccY4JaR4FAVv2mZAdKgUCTjDqNtEyBQMzWracVUoFAcTz2OD5SgUDce0Z5GFaBQGi+QWXnWYFA2zU1SxtagUBUojzXD16BQDiERucgXoFAWhxAmyNigUCSYtPPMWKBQPggqGthf4FAICi+hAGCgUBnsdnpBY2BQCRrKqZVj4FADBZDNfWRgUBrmkVhVJeBQHv900VGmoFAlwN4ZJycgUDyeqkwSZ6BQPCAm2NGn4FApJBN9OahgUAeTgmbbaiBQCx4pEJKr4FAdpnkSOTJgUCigXCL6c2BQJH9/Tt+04FAbj3+SNXhgUBAEGX87PmBQJ5dHtTw/YFAGrBns+cBgkBCMJnrJAKCQKzyoxMCCYJA3rAdW/MRgkDgUaKBtBKCQKeQErDYGIJAKHA62NYggkAURbJY0SiCQHhso2q1T4JAS9cwejNigkA+rhRtNmaCQHEOgxIrboJA/NW5dGt0gkBqUfnhEHaCQApLWKYHfoJAT9/K8qh/gkDEfjdeQ4mCQNoylZudi4JAJUTnZkORgkCLBpjuAZKCQNC6uGg8mYJArlWFOA6hgkCWtMP2PKGCQMw0BireoYJAgu6wr+KlgkDM9je6CqmCQMQgOt40qYJAug4pb37agkDSnoA2gt6CQALeT5uG4oJA+hOmnXkRg0Cop66WeRmDQJvbh9RyIYNA/OPQ4XEpg0AKbnm6azGDQFjBgnHcQYNAUh73TM6Pg0DUiOBfXZCDQELERHpVoINAX0bIpq63g0D4EFqHor2DQCM2BTumwYNADF6nwnnKg0DCBS7yxdmDQM7f11MN8oNAhN0lKBD2g0CieGUIFvqDQPC+WVZwMIRAysGJOgBphEBW8i6ycWmEQLa3fZ1JaoRATqtvCk1uhEAlNqaj/3CEQCh87c1WcoRAuicMpZl3hED9X2RCyneEQG5x7+X5eIRAFaiO3VZ6hEAMvqgYdnqEQB5QkrqbeoRActJeRyJ9hEA+Xu0Nz3+EQNINHLF7goRANAtAsyiFhECCbGZD04eEQEA6idbJl4RAjafAWXaahECmC/psIp2EQOhOAn3Pn4RArOMkyHCihEC63+eKIKWEQEo3V9HMp4RAYL6sBnHChEBxJ8VxHcWEQJQkoTzKx4RAooWV3XXKhEB+d8bSIs2EQPBXL7CdzYRAiPJwrdrOhEAuZocMys+EQJz68spp2YRAYxN3TmnhhEDfI2xjeeKEQDB6HfRi6YRAIn061J7phEBzW8K1v+2EQGUPBT818YRAsPPys2DxhEDa8QvvMvmEQFibFSSQB4VAMqqbrDUyhUDkKxQ+oGGFQMwNUyGgaYVAn91PTJlxhUDY6BYqs3OFQJD5iluaeYVAjj+ZBaCahUCgbCr3o56FQAdjbIJ2IIZAZEDK+3kihkD1cNIUeCaGQGKkp124MoZA1PLuHGU1hkAqhzy+EDiGQB3D6pK7OoZAsPqcw2g9hkDctJC4J7mGQPbCCWNtFodA/rRof3Aah0C+Na+ydR6HQEhf4zWRKYdAwQX/7Y8xh0DN8zjAhzmHQFauokNdQYdArYXAS61ah0CGJM2OtGKHQHSvsFqfaodAwtcfzbtqh0B47MR5x7GHQDwW7fTIuYdAcI9vFL7Bh0BEZRKNYP6HQI++sl9kAohAKMg1pVkGiEAKkh0PdwaIQAVFilZ5CohAuODFAyuziEAG8H0pMruIQPCh8UEly4hAxKDOa1TyiEBGYT9mWPaIQJAPuDlU+ohA + KBZXds7jZUAmWGpEdaJuQJ0RHYnYgnNANTU3073BdEBkbLHC8LN5QPyPywzW8npAhnWz83Mkf0BCi16t48GBQFabfTWRmoNA - + - zlmVRaCttkRbUQdHt/h9RVxG90VWhAtFIrQhR0oxMEUlridFVa8FRXHxkUUuA7FFDtDORGJJlkQLZDBFuIUyRedz50SGzxxFdhGxRJvYjUTep0RFkpcfR/59wkQ05ydGTq2cRZIh40RNhNtGii9CRUmO1ES9T81EswKyRIscpUX+59REUwCvRMTdukR3D+FEttWlReEgIEbDAvREsusIRmwSo0X5M7tE0tZxRTl9FUUCopNH2/vERP7sHEWcZsFFGyufRnd+FEVOucREt2fzRYNmCkXS/+JGmWPjRDvbQ0WZ7qNF35moREZIRUXt0FdHFmGVRJDLyERFZn5G41sJRjv/CUZ8raVEYrQDRX4Ks0RJDnhFDu5QRVG+DkUkoIxF1xblRBvZJEX2ObFE2sSVRZMIAUYgXctEMxu2RIkDhkVTWNBE3fuQRiWn6UTitapEz6osRYeo+UTdoAFFhmLXRPOT1kRiqAVGN6UcRWW2s0R5bhhFc0CaRXkdJEYvZ3ZFg/XKRDPivUXxvlVHj2IFRTxayERgVC5Fu4cIRn1PAEVM90ZFeh3fRWUj3EQ1ECRGblzLROjuqUTd7wJFCOeRRIoprkRfAbZGLCXlRQXUqURnxtpERq3GRNzzpES+2DpFrFG3RWyiAUUNzMlEWkD3RMQm0URyQjtFEUfkRHcO7EWSiaxEllFKRl4fykRV6MREuCO0RMwA6kTx7+ZF/CctRQwPVkUmTJlEQ9myRPgoAEWJ8xFF35+fREwlaUU+/6BEB+MnRr88LEWH8axFntOORa5F2UTkx5NENt3gRASqnETrVbBEPW5ERiQR20Xl499FoHbDRAou0UUHJqlEl/AORjtesUUpkLdGrAYfRQ9jvkTinnBFIoBwRRiugUXKmxFFPCUoReugGkbFKaVEycwcReMIJUXIvi1FCQyRRYpEmkQlmI5FM1KsRMirFEVdsJ1GodFaRb12nkRQz7tFHfR8RZgnxkRG3s1EMUcASNNXuEY4oOJGAPRQRVgicEbiuzlFkKTDRL2/EkXeLVlFTXxFRR4T80RDHi9GZuA3RVhjxkQ0ecZE7YuWRkITJEbozCFFZSi4RKj3X0XWU/NFQxEuRqhPhkWyRvJES7O4RDnjIUV9Fq9E3qkxRXa7XEV2LpBFkalUSYMMc0WyrdBEDHWsRJ8SPEUIXV1IspjtRnxuj0buUiFF1MljRRGEqEaMWwFF5qElRf45AUl4txdFxSMhRR4rvkRrqT9IsREeR7FL7EYM/GpGpHHARHlvtkSEH/9ES1ueRc+TW0Wp2gVGdA7sRELPz0RmwA9FmKoERkYTS0Xec/RE0rHpRERu5kROvwJFUwCzRF/JcEVqzVtFl5BlRbM3AkYDwQJFptLoRCnI00XiqLJFw0hKRSouyESFRLpEX+TmRHVY5Uef4N9GFre3RAll6kQ86/9EwBDoSP0/+ES79UFIIYMmR40kqER+XmhFLPqDRxY9rUan4MRFvvGvRdE0/UQCR7VEc5ruREef4ESPibpEUe/kRN4hE0eOCTVF8levRVtFIkb+QbhEACNORZnKv0TFEbREKPFHRk+u1UX+AhZFh/HPRHm5skT2pwRF7pFvRQ1zqUYBEzJGG7QJRe6Bj0XaxtJFvhNpRRkbk0WS3LtEZX7eRVsPgkYImSVGhnseRR+PzkSg4WZFVlDeRereZkUC88NE9cvJREGGpETaFFJHRT/+R6R9LkWtm7RGg+OtRW945kQW1fVE8PrzRiQmMkXbyalGbziGRWi3CEaQpL5EHebrRBaLM0WynRpFB4W6RGj1zkbaL91FgL4BRU+agkUEBcREV5IAR2yjhEahAkBFk6Y2RZq+GUVoB7tEQgvxRCF8iUV7FjxFp2TYRJZ/tkVmDW9F++PeRBEvqER715NEZ3XsRJqRR0XmDhZFhJxoRWvv20VINKtEkeCpRShcjUUrI9NEWLSvRByAREUBlLNEfasYReEL0kSPm5dEwzw8RX14J0XSVFdFQmeCRf6srUZfXoRF5vs2RsQVFUVywitFelqmRYMxVkVprzJGtCt3RcN0MUVxAI5E+uFeRTkdfkUBaxhFincYRaXkNUU9/1JFdfI9RfmkyUSOfstFfDgeRYX8AEVpc6xEsRUTRe25NkWVA31GBbi2RYsVqUTfnNRFIoh4RZB7JUUgEudE/5jnRbMbCkWkss9FOHA5RelcSUUVPopGEGcXRsh3x0Qic6REDw6uRWi9v0RTaIpITO3DRGnd4kfE++NEKRaJR1ySUEZUFupErQOPRTlfD0XLIdJEoqcARSwPHkY5aEdFQGk3RdTQ8UQCWZRGXHClRUfnRkXMgGNFhsShRXfGrkQlXsFICbHHRLEsZUgCwhBFwa6GR9n2gUUeUjFG/lHORIyp4kQILptEJnqcRM8g30Sa2uRFoAy0RKVzGEW/X05Fzr5FRSEDKkU6K/xE6N4bRexPKEVjjvBFct1JRXrZwER7Od1E/Q8YRdL9HkYRybJFqQHXRONT1kQuPKFEX2lTRdIkzERqnzFGg32CRUgEaEXws81EMW+7RfpFR0WobapExKQHRbdGjUW3LPJEN92tRK2a50fFJKNEVj1WR/slBEXcTgZHuarFReXYAUYHh3xFMXUHRZXCDkVscS9FhvjERVQZJEVKR8ZE5NL7R6wPPkeR0vNG1wEJRvcbNkXl6rhEFqz0RMbSq0UqwwlFcT7HRJDy5UQEu+dE9OXYRL13wUTKrrlFTZ8+RUpg2kQtqsFEBJ2sRYdyq0SqO59GOWBURrufE0UKfuVE3jY2RYOTEUnZahJFbo5RRWxlD0nOQmFFVU6mSMuG7Eef0x5HdeIHRqHA+kQEV+FGcFvJRoZSWUblMr1FLvtPRTEvLUUMigRF2XY/R5ixRkdh08lGK5EMRpxZJkXMOKVEBJCjRNfDskRgcw9Hto12Rsql2ERmji5GCkGwRPd3KkVzyXRFq+F+RWTWAkVB6bpE5DQCRZSa+EYCX2RGlaUdRsR8AkV6J2hFJVqhRbihJ0Vvdw1F0N5CRRM6CUWhQppGDDTDRupfi0ZeP7tFuP5XRcf00ES5Nf5FcqrJRQ/t/0Rmt0hGxYWjRXTxRkXWKK5EC9UaSGP8PEekVoJFYnAhRkV6EUYziLJF2uwHRemfKEYtzN9FN2QYRTfU80SlhMJEvFqiRkDmDEaFbbBEE+wsRS1NakWaaMdE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - zEqZw3rAckAe9QPsbsFyQElWVCtSwnJAQPGTjafCckDf+hPsOsNyQPy4FfbFxHJAbBIFS1rFckDOnm77AMhyQAK7uEpazXJA/LLHj0PSckBPIifwdtNyQGWYif/O33JA6aWmALjgckC2PixTTeFyQG4waZwI4nJAyjxZeVHickCCz++VjuJyQBw2eWjL8XJA/jn7niTyckCrLJVYfvJyQLJ688S183JAlAVv7fcAc0CewZ9LTAFzQAxCA1aPAXNAcFfPUdACc0AIX5GK+gNzQLrwbmgnEnNA7m9QWLwSc0Ce2fXaBRRzQHBCOoVQFHNAGmKgmfUXc0DOrbe/YBhzQIiUqolRHXNAD8lVTnkfc0BMNtDOoyBzQHhEO5o5IXNAPd4wf+Uhc0BFZz0xeCJzQLh+ScjJInNAmHs/ogUkc0BPil9U0CRzQCb64C1HMXNApGSStAszc0Aw4MoHoDNzQGZ8GhjbNHNAxKOGprs/c0AkFuiq5EBzQPhhgp94QXNAcutHcnpEc0BJ7rGSnFFzQExhmwwPU3NAvooHDKNTc0C+ZIzbhlRzQILf/jcdYnNAHyEimjhjc0CJ1DD+K21zQEWRbNrccXNAXXlneVByc0BoeIJAbHJzQIgW48yEcnNAMqNLprZ0c0C200foTHVzQJpH3ILQd3NAYq3Kptx3c0AcgAEweYBzQIwSouGkgHNAGANRBw6Bc0DKExv8XIJzQDBVE1KHkHNAPspQhk2Sc0BVy869zpNzQLqUqixjlHNATV+mffeUc0BZAI8ouKBzQGAPZxFbonNACKKSSAWlc0AIPDpBNLFzQNMqAyu4s3NAp4SOrQu0c0CaPZ/H+cBzQMIyX1PQwnNAUlkDnSfDc0De78W32NFzQMDiQBK90nNA5lJsROPUc0BY7AqHOeFzQBzDSW554nNAcsR0C9Dyc0CyJTF+NfRzQLaCznpC/XNAfFA63eMAdED60a//eAF0QEyzRFqkAXRAJpVtrIsRdEAdTrZYShN0QMNHAQNPIHRAjBK/Q7YhdEAkm0WMkTJ0QM5xKxviN3RA3JopWlRAdEAIXr0u5UJ0QMrja/J2Q3RAHsgAZoxVdEBaLQ3C21d0QIWjnqW4YHRA3HALvudgdECw90s7CGJ0QEc1t24eY3RATB4SXXxjdEAQDcF5TWR0QGLim6QicHRAgkGwWEFxdECytFjUGHJ0QBh7Xu84c3RA0HKzNaJ0dEAA4wdD+IB0QIYHxVdPgXRA3KiO2NGCdEDW6a3/JoN0QCIEkNsVkHRABuoAuWiQdEC9Nfum7590QA5FdYXQoHRArC6Pbn2idEDcTqtOvaJ0QJbCGvMOo3RAKFjpmfqvdEDP7zWrCLB0QIoievLDsHRAuoi3jG+ydEClY/Jn/LJ0QBoDCCXKt3RA6aR/XhS9dECeHeJUJL10QLgxWQjev3RAdFsyq+XAdEBO4higeMF0QCQrQDZswnRAapFWwyDEdED6gTncucR0QOoELdfMynRAylTAw6fSdEB6oCZmz9J0QOrzMxbi03RA1PkRxs3UdECxlUqKuOF0QJ8C4y5Q5XRAeF2KzI3zdEAKhpdPXQJ1QGLMi2aXEHVAsytUo2oSdUD0f2HRIhR1QACP/0udInVAxgfD0Mw1dUDMZZ2K+Dd1QCZXly9SPXVA4bjRt99CdUCO39Iq9091QLN5QTJ5VXVARDi3tQ9gdUCEN1M1OWF1QIrQD470YXVAIRKM5XZydUBn0w6EjXR1QN2a8b7igHVAFn9kIXqBdUCsakoZroF1QJFDDXumg3VARDw/e5qEdUDXMp5VtJN1QI5dA+6XoHVA/kTseGLBdUCiraGx+cF1QAyKkv/M03VAxjwEIuPfdUCqhkkFCOJ1QHBn4eJ743VA1UgYwIvrdUDQ2Yh+TO11QBYK+s+n8nVA/Lkbt/L3dUAiAiUsTP11QC0laoNIAnZAZqGQ188DdkAoS+63TBR2QDH+qYyIInZAuKgiKpAkdkBUWnASSyt2QNPyeqkfMXZA4DhU3FEzdkBC6ABknjR2QGDpKEPhQHZAG40GMB1BdkBWhfDnyEJ2QJKO+i4TQ3ZAdhBWiHlEdkCMqIk8ElF2QNCKXfSGVHZAQXPWQ81UdkDA8TYuImF2QGo/XL5TY3ZAcIrn1NtkdkDO+NEJWWh2QHiLRV2Rg3ZA2iDcJxChdkCEzNyapKF2QLTRuDLAsnZAHk91dw20dkA8bsH2vMB2QA7A/1/PznZAjOXpU5HzdkBA6qLxNAJ3QF9LkugBEndA6R4WMBAid0De9R7gcCJ3QIbU9JLoJ3dAJDVWtkItd0AOqePmnTJ3QC7W6ESlM3dAT0eYqw01d0BYr5agnUF3QNyql0yQQ3dAemsnhhtFd0B/FUB2SlF3QHHJ9LmSUXdAy3PBSypVd0CgdsxffF93QCTuGgmPYXdA4opR56Fhd0BCeqiDJ293QPYpy2GgcndAQk6Jbvh3d0Dk4pU8eoJ3QCh3fywNkndAXt8TPE6Ud0CuSTGrcrt3QJ9bdUN5w3dA9JxTf+7Hd0DriE7/6+B3QEpb2RZ9+HdAhtM2Ykb9d0AetQqiogJ4QBqAVFznB3hAkMsqF/8HeEAoI7E0ygh4QMFyEKkhDnhAivdlf1sPeEDexVK2fhN4QL14UgRuInhApVO3MYojeEBq8ag5OSh4QG60l+GZLXhAQGDAxw5CeEBGBEYvEkR4QPZJE8Z6RXhAfAWwBMxReEAgGBp/iFV4QO1WIPX6YHhAVhfzsrdheEDWy6FvtmJ4QMgsdT0mdHhADjY/pjl0eECCQoGraHR4QFwRplqMdHhAlFq4nOp0eED2LP7opIF4QHhkM56ahHhABH5xmVCIeEAWwl8cAYx4QDTIHNGqjXhALrM54ZeReEAdLsPxBZN4QGbGUqinlHhAKCtfT1+YeEBsO0RGN7t4QJT/ViSXu3hAHOprXc/AeEBIc8ZHPcN4QDiNvP2byHhAhp/C8i/LeECIGPqhQct4QFYNvew203hAD3IBU7fUeEC162uGP9t4QB5zZSw34nhAFQOFbAL0eED0kHDfvvR4QByVUB6M9XhAVvdRhb0jeUC0F9x3sih5QOKpF4cMLnlAbCTeuWIzeUDAq4HDtDN5QJngWCXhOHlA2imRgP1DeUBazmvd80V5QAKrG0vNVHlARgRBE8KyeUB0B5CODMx5QKbEEwlD1HlAEdbUBs7VeUBS4qGCUOR5QP1w1RsQ9HlA11JLrGkDekAPirkrpwN6QGKbrTcCBHpATsI2tjkjekCvwqYyDTV6QKhwvswaRXpATunnXStVekDDwmDXIVx6QPPeXuSLXHpAltJNQidkekCMbYjTLmx6QONzpQM3dHpAMl3HMh6jekBSJqvqJKt6QJu/hGASs3pAqBhooi6zekBsdjL3DLZ6QCw0SnQbu3pAYd826BjGekBUkUspYuF6QD372Cio43pAoz+/ID/kekCibfarWet6QB7MMwg37npAHRN4jxbxekB+w6v0XfF6QOBvZLNN83pAhTAblnwEe0CAU35QKA57QD4Us23FEntAAbw0jYkUe0CU274mTBV7QG3yamJuHXtAyg2J/1ole0AA5qYpEHR7QDg1FU3rkHtA2ga/qiKVe0B8VIBM0J17QKx3snAoo3tA10X77ISoe0Bc1Rfe9at7QN0qKX37s3tAbjxty3jGe0BAZzBlKeR7QKCe6kJe5HtAlI+wEoz1e0B2NBfeKft7QN6XZLSSAXxAanJLLNkBfECMxhUD9wF8QIxmdgNmBHxAHmIltZgFfEDCSxn80xF8QDRU/yt0FHxAXhT8UOgbfEAQWQqw6yN8QLEWFak+NXxAzP00981BfEDmN+rVUkh8QIjqftKqTXxACqIlJetSfEAkkU69CVN8QGoHBRWpXXxA+hFtxClxfEBKCb2G+3N8QMaasS4BhHxAxMxpvVmZfEDI84FcsJ58QARHewvAsnxAuILabPbbfEAFab22qt18QI6pqDxY4nxA4tCWVRLjfEByiMG7vON8QFnpLeX843xA7LyJc2rofEB4nxtgA+x8QDYOeXG+7XxAJ78kChfyfEB/vudqVPJ8QLAlx1BCAH1A4ZLSIQECfUAXqCc4TAJ9QDuk8p9mA31AFvCdbEQSfUDq801rrht9QLE/xG4+In1AZ5TavrkjfUCkp0OTnzF9QIVINGUWU31AhdnlxfRzfUCk7XFm/3t9QKRvv4Oqf31AAjk7OWeEfUAKm4pol419QNjQHRqwkn1AlQZmXfCSfUBx06NIdZR9QDCIxN9JmH1Artk+BfabfUAlNN7blp19QMUlIuX8o31ASHJ+cQCsfUBacv+hBrR9QBX+NyDmxH1AaVC212zgfUCCJ/QAk/V9QMPKR7E5AH5AWXaAwu8dfkAS+nQ1SyN+QDJ3HGRNJH5A5qGiEqkofkC0PHpvpyl+QIzc0ZTqLX5A7DKVKv5AfkCyGIZXwEt+QKialqyPVX5AMs81HGxbfkDRrdgyLmR+QOLHvOQ0bH5AuD1W9mpzfkBht6a1tHt+QJiEKzEShn5A2hyrv92QfkBUEVvKKpp+QFo1I4UpnH5AChHJ5SCufkA+62f2lbJ+QMZjiUB1v35AjDZh0qLCfkD8sg+H0sR+QHRgU/pyyH5A+qyTM8/NfkDYSOEU3dJ+QAQOX4Li1H5AUf63trLufkD6/zqulQN/QKR/TRTJCH9AUFnqJRkMf0BGORg1GxR/QHz+6gO6LH9AGbD++lxDf0DWNH9IX0t/QDDEcDyNWH9AiFaWsK1bf0CHPrmQ5F1/QPCq3W+0Y39A6nOCPLlrf0BgJm/bt3F/QJeSubelg39AUGpu9V+Pf0CNDVP4YpF/QDDoFEBjk39ARiEr/JSTf0D8KlAMXaF/QDadqTNDo39AZobHQJ2of0BUrUY8VbF/QFqCmaKGsn9AWEIbu4cBgEBtYzd0NASAQIZzl57aBoBA+HitCYkJgEC6tRp+4yaAQFze+JeSKYBAvjUC4AoxgED+P2H/qjGAQMo2PwgONYBAGER0nqlCgECaB6Sd9EiAQF4L0wvnUIBAnG11XhRRgECO7TbwDlmAQIa3yUY9ZoBAwDDFiEBqgEBohsnj8G2AQGIyU0HtboBAjha+8yhvgEAbRtPv83GAQMyxOAIqf4BABNLXTh6PgEAyzclEBZKAQN7RMagel4BA2gpfX1ijgEB4cbUS36WAQAD/b4M5poBADu1/F2eogECOmQl6hqmAQBYhgLjiqYBAsoq+4+etgEDo4MryEq+AQGJPoGRksIBARJSyUkWygEAG4tDuBbqAQEyKsvayvIBAhbmtR1+/gEAc9c2/UsGAQATEUnwJwoBAfuuY7Z/HgEC0Udt7U8mAQAqWwHtNy4BA0NDkOS3RgEBKuYnXTNGAQLThU1ZK2YBAVzaTP7/egEDRN85WROGAQOpOOn1r4YBASWtRPBfkgEA9G0Rr9+iAQGa5P2JJ74BAlWgT7D3zgEDAo1sRQP+AQNuPSe0/B4FACPoJ1QkKgUASigyJPQ+BQICqBSayFYFAhDtNlzQfgUAq9TysNCeBQMT/hrgwL4FAZlYqryk/gUB9JlSdRUSBQEeMdE9aR4FAz45tIghKgUCW7vdgtEyBQMf74ZcVUoFAGif0khhWgUDUTNsTNFaBQFbdizrmWYFA8ja1PxtagUAa5GED612BQAaaQFUgXoFA+HAl5jFigUD99bOomWKBQIkzjVIFaYFAHIRbBjN3gUAdJTtF64iBQLLLwfdVj4FAwubtKLOPgUACYfyrVpeBQJiTyszRmYFAilE+3EWagUAQduOfSZ6BQD/1m1VGn4FAQ5It+eWhgUCIi7oFbqiBQIQwhwRKr4FAEGsdPePJgUBsEsa26c2BQHQCUrl904FA2rJU4ALsgUAvR+1wPPSBQLJubxzs+YFAbLRGcED8gUC0UKb17/2BQFyoeeLyAYJAa7pMSyMCgkC1cLzRIASCQH/K+g31EYJAZr4jFrUSgkB6SZp+2BiCQCikeDrXIIJAZvIFjdEogkAfyUTDozCCQHIMgLDZOoJAob3ux+5BgkDcZVvoCUKCQFeEvQ6gQ4JAGjbuJaNNgkD26Kv0n0+CQIsEtE6CUIJABZHluwlagkCg5D4mblyCQJiWA9M+XYJA4n/zSDNigkAkAwxjNGaCQPsyc72dZ4JA5P9alThpgkDiK6KHJ2qCQOasdB89cYJAxBlS8xJ2gkA0ZjS4HnqCQMjfKndDiYJAUiNAkEORgkA+6WkOPJmCQBSdqTpUmYJAaL0twQ6hgkDBLsQaO6GCQHMt5SLdoYJAtOZmfw6pgkDuzfgFNKmCQFXApg24woJAJtNWZn/agkAuztu0gt6CQCj3TBUI9YJA9EKl/DQHg0Bo7AhEawqDQGqXELl5EYNAV2aoZHoZg0As3lL5ciGDQHI246txKYNAPqXsGWsxg0BVjw84ZjmDQM3TnHzeRYNARuudk+WBg0ASjW51X5CDQOQlEa2ivYNALpnWKKXBg0AgQeADxdmDQO7MhqMO8oNAdgXF3xH2g0CKNoai6WSEQJHJmxEAaYRAdhdUsElqhEAWMfhTTW6EQPigO3n/cIRAMlLhLjpyhEDJTG0jVHKEQNCcx3lHdoRAaIWpkcp3hECcSLgb+HiEQGRlIUF2eoRA+BA9UyN9hECcvddm0H+EQFmsOZJ+goRAScjp+CmFhECSBXs7ypeEQGRV04h2moRAdgvx8COdhECPaOk50Z+EQCrkT01wooRAD2FFkh6lhEAOXskhzqeEQJFQ4EpxwoRAwgIpch3FhEBzTuVkyseEQCa64Oh3yoRAhBVpWhXNhEAQsQ1JxM2EQGZrmOlp0oRAZuBTF2rZhEBe7J/YaeGEQLolLgti6YRAxMNn1J7phEBMIUKTvu2EQLbZqMo18YRADUYldWLxhEBiDObvwvGEQEoWw5hZ+YRAaotvFC8BhUD0xmAykQeFQAKpiZU4MoVA078LsKBhhUBoA18RQGKFQNCLXCegaYVAWDA1lJlxhUBfmqTMtHOFQBLw/VaYeYVALCA5NKCahUBmJQS8pZ6FQDbZClt3IIZAhU94L3kihkAKIv1YeCSGQMa+ed15JoZAlySAg7gyhkAV6iqMZTWGQLv+q8EROIZApAKZd7k6hkDi89iiaT2GQHad6OT1PYZA3Ec8sLxQhkBUau9JNJeGQHEjafEluYZA0PAwEinBhkAEL7ycH8mGQGRkHc3aCodAuv24Z2wWh0DO+axhcRqHQFYHmbNsHodAMrFCRJEph0CJJweLkTGHQI0vYuuJOYdAeovAxYpBh0Catn2VrVqHQF5UHSe1YodAcuYFe59qh0Di+cdivmqHQKU1Q0HIsYdA5IRfrsm5h0Bc46Vxv8GHQCyTBCbCyYdAFKBJjGD+h0DWIspWZAKIQM9dfpNzBohAIVGwTCqziECIihfZMbuIQMb9sUwdw4hAWNTvIj/DiEDMr6NCVPKIQIYYclhY9ohA7vbCXVn6iEA= + KBZXds7jZUDs3IbI4yFtQDeULWxqYnBABMaPA8qhdED+7sGlgpN2QJId3CKisnpAcpSClXKUfkDA7e0/iPGAQOsXcELUKYNAzCplhpBSg0BPRTpfYEKGQDBYL6Mca4ZAs3IEfOxaiUBOqeuNdPuJQAj8y4Xs+41Ao+wJ644rj0DoE7lKLIKQQDUMWH39GZFAkjVIeTkak0Dg0DuCfWqTQCFepm5l4pRAkuegkMP2lEDTdAt9q26WQET+BZ8Jg5ZAWRNHoC+fl0AdZd0a13KYQNUChzdLa5lAeo7NFhNzmkC5GFo/ge+aQCylMiVZ/5tAnS4tR7dznEB1J3PxeVudQOce/+Tid55A - + - DbR5RNR8y0WultpE/s8XRzKRS0UGL45Ent5zRLwBNEYcuflELpz3RmyJn0RLbX1EBczYRDZelkQNx8JEooKoRS86dUWQr25F63DXRBZSmUSSBHxEV8DoRJNda0RxgrlEIBA8RWL880YXuZFEBPIjRs8JrUXl36ZEIumARPCufURQhXFE0+wVRc9Jp0TB06RGiA+tRCbPhUSO/q5EQcdmRI2YikV1SR1FZ5mGRNwdaESndn5ELb7IRPEhAkV4bTZFkC/MRRB6xkR5HMBFBlBpRZlkpkQ4xThF3DecRNN2b0cGe2tEH+axREnlYkX1AuRGhqDeRMijIUX9HUZFdTluRbsu8UZPGpJE47evRCvnS0Xjxh1Fwf0/R6d/hkSq6ehEbUxQRt8zwkWX/KBFOy4oRcJdjURP6ChFW67WRADJ2UQOxmZFekLZRHvc00SE+tRE7ECnRSzbtEVas4REHiSVRI9fDUUST59Ek3t4RArpa0aXo7pEU7uVRIJSNUUvNqpE8nQKRZ1zv0QQC8FEFKKZRNIfrEXHeKREMwPbRHko8URw64xF6G9hRNGmA0b/84FEaxYlRVrtwUSlbLpF/q4jR2sYlESFpzJFQySVROhIG0U8mbRFtXGLRE+BNUUhF6hFQBWjREO/akbc2wRFwjdbROS1j0Sfo0RFb2VuRNEskkRvwKxElS2nRiUlCEVRzANGw+4QRQSow0QuCglFp4GjRJbWi0Tdv7FEhk+PRBsuyURTTGtFSHukRJXKBUU23HZEGeKTRCoI1kRCmbJEys+qRbDBIUYCJ5xEZuahROyQE0U2CeBFPy1gRfIFAkWAiYlEXPxyRCD8sERSJMhEsed7RPIJ6ETUAZhErduhRECn/UU4IKlE53YDRZ0FnUV7p5BFddSzRMY7iUSpY4xEcCiFRF/tm0R8SrVEKjOYRPfWDEX+RdJEDfiERFOlQkbaqJdFOT2LRCzE0ERdg71FAg/sRJoZnERotKdFrfTaRbt86UVK+spGHfY7RbqBtUR47YdEECmARZnkQ0W/wpNElmiDRRYpQUWcbGhETn4URp47qkRhkIBE36zYRK0KmERddOJE6tZjRJDRm0TciRFFhLZ+RbpyfkSnknBFkUYNRd5s1ETOHGNGrIIvRVaNhESB0u1FILCgRYeXkERQaxlFVjrhR8EJpEbwQ9BElTyyRvUkVEU8jXxGaMUFRRvzEEXsZO1ERdm/REEISUUxQFZF298fRT0Ky0Rns5lEQZSgRABPNUYz6aJFRgTBREs8fET+tKFEhh64RkLJJUZlaNJEMncBRXKKkER345dE+jypRDJgbEQA60dF3jiKRKyHfUSPEppEYrjHRMNLvkVsNAZGILCRRWe07UQ8/QBFWnInRVrNZETwzcZEqgG2REt7Y0U6/SxJmQnYRKcMKEXmgzJIou7dRhcUgUQkjEpGaE4gRY5RhEU6y4lGsN6FROKyykg3QLFEgmjjRJ3NI0iRGXpEDFYAR7eBuEaarBxGh6RMRRuNwkS8P1JEo7AXRRg6K0VpE3tFNv+TREypR0YOvbxFZScQRRK+hEQ6K4JEknmfRHKmrUQB3GJFWsFURdNmHkV+5qxFMdCuRDTVgkTelvpFai+iRAA1lERUb1xF2bi2RKpeoke9YpNG4i3zRH3//0hqfsFE59ZmSDiiREca6J1FWk5uR8zOlUZK5IZFuk8gRTMzi0VA7SFFCaahRCseIEVqsZFEvxFoRG3S+0QTb85Elw7CRPtIsESRm6ZEF/YRRypetkQSKCdFwyLHRSzPGkbXukdE/OE6Rb/1tkQeEqFEEcYIRRBm30X3hylGvvMRRSmiA0WHn4REVUqIROcowkSEZ09EMe2ARm1HtkTcAdFEMVwqRnPiN0Xj8XVFzOt8RW6ZUkVerIdE6XSARewHiUSx3lZFSOXERfOeRkY+DgBGCaARRV2nTkUfipdE1mSeRAb3jkX0vYtEQSMSRtZifUVjRZlEP7o6Rxn4pUSuEcxH4p+qRZs+aUTlCZhGmKloRWz2ZEUMdIVE3WP8RHlWwUYFu4xE5MTTRPQEo0YqraJEbPcjRS7e5EW+Y7ZEv6tvRZwdmUQRqZxEvzqbRIJTpEStOoNEdSjLRgmv+kXXff9EjJF7RY6IiEVREvBE5/r8RpTW7ESZySRGszXRRGV3okR4ATRFJ7m7RCwVwkRTfpVEwdSzRS5mE0XUaahEa3+cRIKJekSI05JE5MGYRGgjh0SvnOdE2WZjROp8dUWYEOpECdp1RLnN6UR2snNEL9NnRGiunkQteBtFW0DWRDmO4ESQZFpEyx1uRP4CAUZ/zXpFLAlVRSI7lUSB/q9ER+eCRF4kOEUvVoxEYU8DRRdClERaA45EoIw0RQgTa0Rz8n1FbAepRiNFP0VKAThG06pXRaZorkXtwoVE2skmRdRkG0ZvL4hEu1+lRGmJI0VM1RBFKd0uRYF89kQugc5EpI8xRW25JUWCmktFni27RKM6B0XY7XVEkCekRRyHiUQEGx1F1OqNRO5/nUQTMNJE/xhSRkb3rUV8935Fj5X7RMFNI0V/Vm9E9shORWhW9USImdVE1pMCRoltiETtbzJF47R6RIMbp0VEKq5Eqfe8RL7S6EQyOxlFXdudRKvvRkU6zFNEscJ8RNpdP0Y3tBpGhchXRbUvc0hCMNFE0UCZROen10dWF/BE1fetROfCdkfFeTxG/tz1REr/YUVcIalE/mTBRN0O00QxGaZEgn+rRBsGQEbWGWdFqXxpRPCXgEWNdYRExuyiRvLGhkWNWKZEnwMcRZQoYESoPwtFR9qARQ/ZdkTHfKZIBzE0SDmhh0T6Sc9EbRBwR0eykUR6PAJGO0W/RKMSgEStRVREDq+JRIfWf0Qf1blFT+KsROUM0ETDk71E9WBpRW1Q5URU3w1FPT8CRd7Z+ERNJrtFYJK8RHzVh0RwxY1EhMSWRI/si0Sj0xdGxjNjRMi6mUXGzZFENffxRFtelUQ7zCVFWUcYRXOROUbRcnJFXlFDRWB/50TfdLZEg+qLRB98L0Ufn41EcM5XRAUarkR1yGJEFUJ5RGG3l0R+/nREokmlRYCPwkTEacxE73W7RG5ktkTDRLZEMqiQRJ4WS0TInNNHLd4zR7fs2UbmrBRFpLjNRYAh40UPFTlF1H7RRNmSH0V9Kr9EJr2XRYRyc0VJ+FtELKmMRK+Zs0T6CeJHN89DRz4q7Ua6SgJGzDhKRSjRT0SJxYtEIaqZRLloFUXfXo5FWIMbReG4l0QiGihGdeW0RZV+tkSwHLVFJ3N2RnWf9UXqiDFFRlGKRHB3BkVYCodEDioZSD+q1EQshRdIZzSnRx1sz0ZscQdGumULRRfEsUbprIRGvZokRiOpb0XzmpJFVxenRSCo2ERg0xtHGIoCR+Z2jUbnbgdGLC+kRI95PkUr92RE7KwPR1onZEbMoiZGNedfRDW27kSy21JFzfYqRZ4VvEQSm7NEOBGSRLncm0T+DbdEHnn/RmIM9kR7SoBGOgE0RqZdgUQ3iT5Fq3EtReYBAEUJXU1FsLyrRccoX0VE7CBF5ZN0RhDYikaDSTxGSyM7RVTQwUS8vrxEUhmBRCrYw0T/Ka5Eb6p+RK32i0SZ3oZE/3eQRZ2lN0UCwclEnpkYRlDV1EUwXTZFfN8ARYluMUeOQVNG4h/dRPxJ5kSqLwdGCT+GRQIMLUVbFYtEl8onRkbNg0WrvPdEf0iIRg8B3kXxzqpEIF+hRHKBq0Xfk6hFAQ/jRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - qWjUgXnAckBH0AQLb8FyQHzQf//KwXJAZHlNOVDCckBUHqMPp8JyQN7WDA87w3JA+i1svcXEckD3kuXRWcVyQIqL2WwByHJAKPnGmF3NckCCNL58Q9JyQFiDNvx303JAUg6NTs7fckCQhUUuJOByQMuFGe5N4XJA80CoSwnickBo18kxUOJyQB79lZ6P4nJAvEnpgCbjckD7Uen/yPFyQNyRYbck8nJAs8gmprXzckCCQEjJofRyQMh3r6nB/3JARKHA6voAc0D5s+pkOwJzQCb/nKLPAnNAXY2n+voDc0A+L/DcvBJzQD4UOUNiE3NAxOMpmfcTc0ANvJn9BRRzQMLi0fJOHXNAPHe5fHofc0C9509CoiBzQHtEsWs5IXNA8GVIzWUhc0CK2XICeiJzQDX5cdDLInNANj6hrQ0jc0BwwhH4OCRzQK6oD93PJHNAVHYH10oxc0BrXQV8XDFzQHXsDd3MMnNAYdi+Sgszc0A6ru/J+DNzQLE5rts3NHNAm6OeYNw0c0DtjUWRuT9zQCL94EZEQHNAOAhC4nhBc0D7NyyjekRzQFIxssmaUXNASr7HqOJSc0BIds2xDlNzQLRi2mpBU3NA5jfPp6NTc0AoHT9ahlRzQLWvJvUdYnNADcv5zhljc0A6lyDNOWNzQJrZaP8rbXNAlLdwBt1xc0BoIsUeVXJzQBAhjZVrcnNABO1HTYVyc0Bxen5nt3JzQFwNLQS5dHNAnkzvB0x1c0Af+YQkw3dzQMDlV0nVd3NA73WIX913c0Bc9ED9Kn1zQBa/jYh4gHNAfJWAjqeAc0AYXFhgDYFzQC0QvehdgnNAE5pfO4aQc0BbU9yt+5FzQDm0mlJNknNAEYLLuWGUc0C2rg5695RzQF48PKm3oHNA5jD6tU2hc0CwgEEGW6JzQGYBQygGpXNA4Rz6ajSxc0Dac7pecbFzQARhUWq1s3NAmvJP+A20c0ALTmlz+cBzQGCSXWNMwnNA6BUGzc/Cc0B9RLKPJcNzQEZw1BnY0XNA8r1/MLzSc0BiGoIl9tNzQDC1Fpvj1HNAjCKw76bgc0DGsoL7OOFzQI5NP1974nNA0+cEEQ/jc0CVe+UZEfJzQIA3paw29HNA+80xbIz0c0DGODceQv1zQKVKsYJ4AXRAFitGNbsCdED2iDsDTRN0QKca0xFLIHRAPspC15IgdEAE3YekuCF0QEg47C5oInRA4EF/E1MwdEDS5zj4ETN0QCpU2sXgN3RAOP1OY+RCdEAFUlfQeEN0QDno0U72VHRAttVVyIxVdEAOjFjh21d0QBQU39K4YHRAuYjM6QhidECiQibme2N0QJrYVXcQZHRA/jVlCU9kdEAvI8tsInB0QP78bTNjcHRAOcVrRUFxdEAuvQqEyXF0QNKrrF4TcnRAELqAWjlzdEAtmgtPoHR0QC57aYk3dXRA5frYcviAdECkQ3X3FoF0QG8F9IBOgXRAoEi1Y0mCdEA4F6c1z4J0QKgkbHMmg3RAHWl8pBaQdECiBwTP7590QHq814LPoHRAtfzBbzihdEAAnuJ0uaJ0QNLnLWcOo3RA1iL9cv2vdEDKGiQgw7B0QOBeuLBvsnRAPaHjzPqydECkDhPK97N0QBfOZIMitXRAPIL1r8m3dECA6xCkE710QHmmQzgkvXRADvo/jN2/dEACRhoU48B0QDj2GZx3wXRAA/Hq8rnCdEAqkGGJt8R0QIzODyzLynRAyqyIH/3OdEDAliy3U9J0QGK3rXap0nRA0iYUQNDSdECAISa04tN0QKZ1LMzO1HRA+S4QgrnhdECG4UbmZ+J0QOa1L65P5XRAqp/3EE/odEB0UyYspe10QIyAt/nA8HRAGSPxIpLydECWWXZljfN0QD7XAQmkAHVAKZQtAuQAdUDS9yR0XQJ1QNeFCfSZA3VAXUdlImsSdUAn2Un9JBR1QPwEWWKdInVAJv6Fs6wydUD93l5fzTV1QCQSnoH2N3VAZGdBO1Q9dUDQK8Vc3kJ1QI71yQ8PUHVAdMlamoJRdUBwaSopdlV1QKLv2QoOYHVAYHVAvzhhdUBMjZV28mF1QKL+C1l3cnVAxGcdrY10dUAg99Pgd4F1QLIjVvKtgXVARGjKdjWCdUB8lfBDpoN1QKRRcxqbhHVACfj/VoyQdUCFBaurkaB1QFvWvO26oXVAzlypT46jdUBihZQak7B1QMur7GRjwXVAXL9I8PnBdUBsbxiZpsJ1QLZVh1TN03VAuasq6wbidUAWF41ieuN1QGXPfWqI63VAigjAokztdUDeeksHp/J1QMA7VIfx93VA3v0+80z9dUBdC0ZTSAJ2QBA5/pnRA3ZARJop9lMSdkCoN58WuxJ2QPga82BMFHZASQ0FwQsWdkCOZXcZiiJ2QJZG1ANmI3ZA0BeORZAkdkDiUxgQSit2QA559Z4fMXZA3hooGiczdkBtSoisUjN2QNyMHHuWM3ZAi3tjI580dkAeNplTHUF2QIzlEY6ZQnZAlgaGl8ZCdkAEpnPGEEN2QOq1jW96RHZA2zFk5fxOdkD5HWsrElF2QCgf7qDNVHZAjE99Bt1hdkC2JnhXUGN2QET2PNzZZHZAQ5i9AlZodkCEAAq/kIN2QBDX6Q2moXZA0y+ExsCydkBhM/HXDLR2QFHoCtlywHZAqry59pzAdkD4w8WuTsF2QPiXrdDPznZACiFxnn/QdkB4TTIRkfN2QKsfBhkzAndAbBqEFwESd0DIZiGkDSJ3QG9SKIfoJ3dAMtUr4EItd0Bky/PhjDJ3QN9nNEmlM3dApgskJg01d0CsUuZVnUF3QFNO6E+UQ3dANEP0OxtFd0Dud0GVSlF3QAQwxqaSUXdA9OfWhSpVd0AvP4CsfF93QEqxubePYXdAyZ0q8iZvd0A4YoZePXF3QGSXq8+FcXdAl1TmXp9yd0AO4kUc93d3QCRm2q4Ks3dAiiz6GnK7d0CMcOrXeMN3QN3NPK/ux3dAJsrT5tznd0B8xglJUPJ3QGAv5Hd++HdAStr0vEb9d0CowBkzoAJ4QI6espHnB3hAWWxgxv4HeEClVSqVxwh4QKTePDkhDnhA60RMz20ieEB+VL++jCN4QNBMd4NBKHhAAD0tHHwyeEDaNsQGDkJ4QFtXkW8SRHhAR+o+nXpFeEB/0Qh3y1F4QCItYVKVUnhAoW87/oZVeEDUDdX4+WB4QNUsyMi3YXhAEAAPkGd0eECccU39i3R4QLz60Nu6dHhAEiYj03F7eEC6uTsXpYF4QBGeVYB2hHhApsbhUZqEeEACfItqT4h4QKStGCCpjXhAHAYSg5iReEB4N4p7BJN4QOIT/SCnlHhAVsNqkNSbeEC3PlMkqaF4QKgICuLVs3hAvnUgcRK7eECstfYFN7t4QN4QT3fNwHhAGtphjxrDeECIE+taPcN4QEzzSuYvy3hATymPe0DLeEBmPvOKNtN4QInPx8a31HhA50f7KDzbeEDmOYiPAfR4QHooajGN9XhAUjOvGCT5eEDNjDShfv54QLe6TyyaBXlAtCRWd70jeUBSfYOxsih5QAXXr9sNLnlA396gzmgzeUCk1BJEikJ5QFMbY4E/Q3lAFrphkPxDeUA+HgHYzVR5QNLWx13ZZHlA4n1thsCyeUDp2ovazsJ5QPKzcd4PzHlAqniGkhTUeUCAr+RCQ9R5QKrqcurM1XlAOBRnDlLkeUCY29ibD/R5QArrMChmA3pAwZCh5wAEekDsSygLLTN6QB3DBtEMNXpAsgR02xpFekCMxcJ2z0t6QExuHRAqVXpASk2waflbekCQ9uiEIVx6QO4DLwUnZHpAQ7ptaS5sekBU9NFUNnR6QJq/V4Udo3pAaptzcSSrekA4IxrhE7N6QKeWKWwMtnpAaldc+hy7ekCuUDX1MsN6QF7lO/EYxnpAdwvJDULMekCMxkFjQM56QJYb/IBO0XpA2gUTsGfhekA46tIXWut6QJjT8JM07npASgw8+xbxekC5vSMZ5QN7QJJagPF7BHtAXAWTGicOe0BAGKx4xBJ7QCJm9Ul9E3tAHbGZVogUe0CwSppPTBV7QB68aS5aJXtAurCJmGM3e0AQYE5tuT17QJ5NyR1AU3tA5RuJC8ZTe0AEFiWwD3R7QI6morQilXtAx0a4c86de0BeQtUxJ6N7QOprwKqGqHtABZ75JYWse0DVgnmXv9F7QHn07tw+1HtAmy8LrgDke0AGTyoaKuR7QOBIOxeY8XtAYOZykYv1e0CQQ7HI4vh7QCi9ig0l+3tA1cUTMdkBfECV2Uk89QF8QCqiUhFmBHxAGHEZw5kFfEBTwrVOhxF8QDSuxNrREXxAorNiDOcbfEBv7xZSuyN8QPWZmOztI3xAFMuLrz41fECWKMiYzUF8QG0wUQdNRXxAhHehEVJIfEAiO23Wq018QCdwWLTpUnxABkm/lAhifECgv65m+HN8QPAZV1oDhHxAUMmMJ1mZfEDaW2Vws558QJxpmawNpHxA0rm72I6lfEA8u03NvrJ8QLhZZOri03xAAIP/kPXbfEAUPJ25V+J8QBp7iq4S43xAKM8DxfzjfEAyaTdrauh8QPFZTGAD7HxADkkzkRryfECNjL5SVPJ8QGQw+VgAAn1AtId7EUsCfUCIjNZ8RRJ9QADaGu+tG31Al1/61DwifUDbH+mBjyN9QPUkW4O5I31AjI5gjpwxfUACH46AZoR9QKUAIlWVjX1A1JbEWrKSfUAccYct7ZJ9QNAihtdzlH1AjCC8LA6XfUB2/NeROZh9QArQe5e4mn1AlzlwuvWbfUCKna84/aN9QLIsAH4CrH1AgQoUhObEfUBUVgZpfwJ+QIC1vGTtHX5AQ4cttzUffkBONCc5SCN+QICUMHhOJH5ACWV5LvAtfkBiH7/eQS9+QPA1B3w+P35ACfLxe4tVfkBWR81nLmR+QDAjTfjUZX5AevWxwTFsfkDE5Ewat3t+QNycKqG9g35AHZyCq+OQfkBnCiVFLZx+QIaf/fCWsn5AeFqIn7y0fkD+MXB30cR+QLFE7DhzyH5AFGYs08zNfkAYV1Ht2NJ+QNLdCwp62H5AunOy5svffkBP9GtxTvR+QBwlMhqXA39AlKiN9ZgLf0CAaU+BFwx/QLJF2XUdFH9AANLKNMQdf0A4Nf9PZCR/QGyBP42vJH9A8gmrYFpDf0DIjuC7Ykt/QGSeS5SKWH9AgWZUTKxbf0BBk1de5V1/QJJP07GzY39AMFvhjrxrf0AwWk/UtnF/QMovxiVYdH9AXKlpamKRf0BmhYASXqF/QNAGZCREo39ADMKafpyof0C3dFbLVbF/QB5j5TyBsn9Abuc0I8Dbf0ArTajyFuV/QLrFbb7N6n9APDdkvogBgEAk6fjiNASAQG0q3GyICYBAYMplSs4PgEDSGNEqyxmAQJZKMNTiJoBA6RWLXwoxgEB8UskiDDWAQNxkJ8r/OIBA8NDe5rg6gEBI7sjwAkGAQKnMsa2oQoBA8s/kS/dIgECcDgeZ5lCAQAZMoAcUUYBACk9QcA5ZgEBoHWsoHlmAQHNJOndFWoBArakwnd5ggEAxoSevDGGAQLEhAbY7ZoBAdk7xwS9pgECmsMbHQGqAQNpj+0bwbYBAvc2LrCdvgECmJw+WnHGAQN5tTyHzcYBAFNML9Cd/gED5U8xD+4qAQOzZnlEej4BAtvQwqSGXgEDvaYHAAaKAQPRo1ILgpYBAYQTmte+mgEASvtPchamAQA7Htj3dqYBArv03rvSugEACI2KTEq+AQCLY3ZbWsYBAQK8QOVazgEAG3hLDxLSAQMx6HuUFuoBAANAQnUu7gEATVhICCLyAQINMY8RCvIBAIIuJZLK8gEDS/mN7eb2AQLaW375ev4BAo6/yX1LBgECMjSj0C8KAQLCGJSBmyIBAacBb7VLJgEBXJdXQB8+AQH55BihM0YBAuOqGWdvRgEAgkfsuvNSAQIl3ljdK2YBAKlYJG8DegEDkpuJTROGAQOnnqhRt4YBAPpea3RHkgEBpX8ogv+aAQG7ywMQ884BAXkfecmj6gEC7/dzmWf6AQAjK3c5s/oBAdiKwkD//gEDgEeW7PweBQK72o+AICoFA4pyxHz0PgUA4GeeVrBGBQL9RylTiEYFAfO83xu8VgUCxS6q00hyBQFeXS2M0H4FAzHFsHDYngUCufZ97tieBQDKq/YbsLIFAKLMTeucugUDI8xovMC+BQEZOkcW2L4FAsJmmlrwxgUB83iLcWDiBQO3VplIoP4FAsdwYRJBBgUCMzbSxlUKBQKKpIzRaR4FAGKA4rQZKgUCUPmU0tUyBQCqydxD3UYFA6umZiRVSgUBXKVssGFaBQHPzk0LnWYFAbphPXBxagUAOdr0pCl6BQNZgfTggXoFAJm14sSNigUD7rx+UM2qBQEYdsV4FcoFA5EKt+V9/gUBgLbb1AIKBQHbgstYcgoFAkvRhggWNgUDv03glVY+BQDQvnB6zj4FA+NgLl/aWgUCSJmZ7U5eBQJTpUjZFmoFAGizv1pycgUCQdWsgSp6BQGPzTSvmoYFAC+PbW22ogUCCBD3SSq+BQKIbvoGxsoFAMKBC7yK2gUDUtO4PTLeBQOg+83XkyYFA3mcmZDz0gUCcyDL76/SBQIwx46c+9oFAupIWJ+z5gUBXNVZd8P2BQN9U7NTzAYJAK/41miMCgkAcJVzCzwSCQLI4ni4ECYJAh43UbvMRgkCQCh5p2BiCQGjfizzWIIJA8EwuD9IogkAHkSTHojCCQDgtcG/oOYJA9og+3gRCgkDdjtiaPUWCQGg7r4qiTYJAERaqR3FQgkDg2Eev1FqCQGjiO6IsYYJAeJyzATRigkAIljcpN2aCQJZUGthuaIJALm8v3ThpgkDObNPfOmqCQCQycf41dYJA3R6eC0OJgkAQlxd+Q5GCQEZztbYbkoJAald8+juZgkDk00r5UZmCQMlRRFUOoYJAQAu+gDqhgkArcih43aGCQE4kwL5/ooJAAqOBZuClgkBaheWhDKmCQOV6pYg0qYJAU6QVzSbQgkCqyoNlm9WCQHXeUHd+2oJACmDARoHegkDm015GhuKCQFJPriS76IJAGBo2tFzygkC+rIc0CvWCQKu1Hwyu+YJAtLSSgXkRg0Cr3vk7eRmDQCppMptyIYNAGpK9UHIpg0DgyDYwaTGDQMzYhrksQoNAQWwYCiRGg0BlBqm92U+DQK5jNwdckINAsBiaAT2qg0BUtparob2DQCL1laKlwYNAaLVrCiDFg0B2/7BzxtmDQMpOLvUN8oNAmujSGBD2g0AI7v8OFPqDQFiMHC5uMIRA0WuRIjtKhEBGzKIhAGmEQEuKKbBJaoRA7wJ7AexshEC59jUWTW6EQGztH+H+cIRAFLXuWlJyhEBAbr4zyneEQL4MCfP4eIRAEU9Fv1x6hECGm72Rd3qEQKxxEo8OfYRACO3cvCV9hEDpteXGvX+EQLBujZfWf4RA1eaRHm2ChEAz6vLYGpaEQAvTnwnKl4RA4hBVL3eahEDJyW0EI52EQDQ5Lx0onoRAjix1B86fhEBE6pVAcaKEQBeNpnggpYRAGOeGIbinhECgQJHwdaqEQJBsvC1QsoRAGoObVXHChEC0fXXEHcWEQJKsknPKx4RAlgiD33HKhEDQIJL0Fs2EQMLC9drFzYRAcYQ9L8jPhEAwxjrkdNKEQDBgSuxp2YRAov3Cf3nehEDO9TmJauGEQH4T/dli6YRANI+hSqPphEDKHVCSvu2EQKJhY/k18YRAG/gD+WLxhEBY6bYAxPGEQE5Tq004+YRAlh7Uzlj5hECQdZAuJiCFQOTO7Vs2MoVANUnKPj9ehUDrMD8KoGGFQKaPtZI+YoVAhAPTY59phUAgVCV7mXGFQBhAZjSzc4VACTEB9EJ4hUCo5/f/lXmFQCa2EAiRgYVAmZ52F6CahUCJRBtno56FQO75mAx7v4VA+mdmsuwFhkCOs98SdSCGQFIh3Y92IoZAOi7yNnokhkCNUtSQeSaGQIMP7Ay4MoZA/A0ANWU1hkDWjzHPDziGQHpbftW9OoZAk5VzYDmbhkAkgalvJrmGQOJGq5AkwYZAzAJ0Zt0Kh0AME6QJbRaHQGNw5EdwGodAGXgznnQeh0Dloca1kCmHQBDe9c6QMYdArNTxt4o5h0DuxAHbXEGHQNIhqZiIQYdAvvutkddSh0CoEikKrVqHQER2Obu1YodAnOk7Bcexh0AmzSfJxbmHQAQZ0qbDwYdAJZ0hXb/Jh0AasM9CYf6HQPKZPaJkAohA4VRX3nMGiECih3xtlkGIQILr3I8qs4hA3iaxSjG7iECawsqQU/KIQFd2s5xY9ohAZo30A1X6iEBpO3kIUv6IQA== + KBZXds7jZUCmvpxNHCRnQKmz0iumAnBAqZq9oOoidUCpEa9//hN3QPqayz8Qk3tA+hG9HiSEfUB8/NNJNFKBQKcmVkyAioNAx5AnwpPag0DSUNhOzMKFQA== - + - pp2HRC0YrkVip7ZElIrHRGk1zUZ9HzRFB/aBRGQ63EQ3px1GuKC3RNj140bwZZZEbNr8RJuHpUS1uGhEGUfgRMdRZEVrsmFFG9CSRGyMMUWHDsZEsqmyRBRlCkVbH+lEmXyYRNBX10RPXTJFNVQNR9lB1kW3tE5EyaZkRQ4xMkXznWhEna8uRfMdp0TH/KlGdCyfRBxXGUXDBIJEVruEROViYUSBMZxFk0WIRPORcURw6shEyzxVRJKejUQOj59Eig91RP1oyUQDkmBEUCwzRbcR4kV+DQxFoPqWRN/1MEZM6ahEOruLRQujzkQEgkJFMcNxRPeSskQhRGVHT5yuRJ44fUS3GpNFQW/IRuEMSkQN7IlECWgpRWE7QEXDWxRFcnMURbQkCkVNTq5GUPeoRKW4AEUToGBFAkfnRBV/UkQ3a0dHKrDURAhUWkZ/4rFF0W6KRMIc7UWEdQdFgOVlRNY8U0TKOnNFjtMHRVdopUQfSZVEum6DRf43w0Rm6xtFN2fNRPks6kQbPpZFV+hyRD84z0WIsPNEMMq9RHju1UTzuTlFIgSLRFvGDkU4R0JGl3e4ROV3X0XOKbREbTx5RGvZx0TSmF9ENg28RE6ym0Qrya1EW9U5RZ2ehkQk4MBEeJn1RHRr6ERTwYtFpKZHRjMWTkVNrnFE9NmvRDSBukWb5IBEPYE/R0G+j0SQyFtEWV5DRZkQsUTYCapEI5r3REPuTUSsH/pFMdkJRQ1dj0QMPfVEY3+nRcm9QUeHVItEQVa5RC6rA0Uj4RlFbvgnRYqcwERE88NGtdfCRGWaeURQ41JEFJgqRnc/xUREjQ1FKFS3RYjly0R3e7NEA2+6RDL460QOVVFFlAHzRNMfpETx4MtEGnMGRVAMoURNJrFEgE4FRZg9lkT6X71EwMHhRMHObkRph3xET+SCRKVfr0URFaxEdy2fRC7ZC0aE33VEMM8QRV4gGEV30g5GzLu9RLcwK0ULC75EhlWBRD+jdERCmbFEiJ52RNR8BEUYxvhEN2zkRLaa60RkwKdEGIJBRokQAEUtauFFE1JrRAfkmUW8vB9FxwqkRPgpjESaSo5ELzyHRKVWcETpcWVE30CJRNsuq0T4UcBE8333RBoC+URulIJE1SszRr7liUUXVQRFjemDRC2g1UXhJbxEYXClRF3T4kSNAp5E9xexRGR0YkXdF5BENb+9RdkSx0WnZ7dGqQqcRF3oIEU4dXJEnGWLRIeb1UVlv8tE/ScGRTvZjUSq8WVFATmuRAc2NkVFYjZGatyNREV2g0T89SZFi/KvROh4AUVpZnxEmvrhRN1hnkXFMbxEN+F7REgGq0TgsldF6U+PRC5QxUTIObtEJamnRsmEZ0WgXj5GMuKORTDzKEWd+SVFvmH2R/z8vEZ2IqtEf4a1RuWImEUE4G9G67K2RJRkVEW2M/5EZSAWRb5abkSE2HREKKopRbs9q0SqG25ENUsHRgdJJEXAHnREud9VRMoczEQdlLFErIKSRmoZv0Xm4SRFknjYRE0KJ0WBeLZEeo6VReLSfER5bJtEAmCTRJIJmkQNsdBFu4McRk/yrUUu87xEwgP8RCbYBUWFZiJFI6frRZbSPknJ4YZFftySRDMOU0VX5gVFeQtESAduyUbkzmRGH1ZKRfKCUkUTJIRGNP2YRF48WkSwucREB7AkRb6fmEjAXwZFm3yFRGKd6kfWh79GrZWNRtmRx0Xb3tZEMpXxRMHWgkXUt71FlgO1RF+qjUTZ37JEhqCTRMW7JUak/cFFFMMaRXoWikSp7V1E0G7CRPXrQEV3EqJE8uNgRXkzoET3xKlEnXHwRB1OtUWdaNhEVYvPRK3YFEa4uVpEKjEcRTZinkQ+ULJH5wG+RkoDiUTC2CJF0qh0RRqB9khM015I0ypER4XVikUmdX1HHQqoRiILt0X/VdFFNhbLRAcumETh9bZENryoRHATZ0TPlbVEqVcPRTyjq0Q/Vh1FfP2vRI7KTkSZ0h1H0tHQRElKmkSPS3FEqTbFRYBHHkZlFxtFl4R4RGBQXkTm/GdEGXqLRAVAbUTNMOBEIjJsRhi00EXMp79EP15xRJQjOEUWe5BEz5iFROkG3ETrK5FFGeWARpwrf0RBM55EuAEqRq/bOEWBb2pFS9qwRZlp2ETgp6BFzzxcRdI4dESZVQJFHJrvRW387EVVbRRFho5KRmvvCEZqXz9FG+Z0RBfy7UUTuWZEKdoPRtKLkUUfZQhFcc2kRDjq8ERdBp5EVADrRlGow0dthpdFbbBCRosqzUTZYkhFj0EDRWXvt0aQL9ZEgjyjRtxiXkWCOO5FUuPZRHchgUT4OgpFTWTIRAF2/kb0a+dFyh69RabrWEWcpupFNNxxRPYDZEXn0jRFzOSZRiqw9UUuDwVFMotLRawFkkSHP0ZFs2+3RCjkNEX+k+5EbiWIRGSAe0QiznhEqg+fREMvxkT6aW1E0Y5+RK/uQUXERgVF0uCZRBxHrkSwQB9FZJddRACxBEa4GpBFcPH1RAeFqEQqaKlEompcRIDhYEQC9XFFkdnJRNKjC0UynbpETpt+RLPDsUS8CVhE164+RUA7pETbPmdFPKtHRg2p/UTbiAlGKxD3RBmKlEUFZa9EIwo1RtS9eUWSIhBFPAwfReAJFUXfD7lE5BNnRCWjYUQBw2xECdtpRbVVykR2nLNEdOuERFQLjkSfoTdF8MkARiTM3kTiI0BFRpeXRBAxtERK0vBERLrqRLxMDkWjtGpGKIzJRfPQOkVtB4BEfVVpRAByfUS55RtFmiyMRE+5oERjb05Fa6QXRS4bpURxn5JEf9KbRAsOxUQwLAZGfSbcRBuj4kSkM4pFm93zRHCdFUXOn5dE1TZkRBNVQEXuAO9E/NuNRDI/4kRoJz1GgSe/RI5ykERHqIlE1tb8Rb+zEEXcOJpFtSVSSNVuv0RCX+ZEWDqkR0g+5URFMk5Hnx9wRCumo0SCIQ9Gb6JaRVADiUVCZwhFz4VhRHtXd0TpJKdElf6SRI6gaEThzXlExlc0Ri9UhEWrbaNEoyFBRXJ+p0S3f85EDb0zRAmnpERC3ZpGACSSRcUrnkQOvXVEhe1VROTQj0RBU41ENZe5RBoyYURsSDtFq1tlREh1lUR1QGdFrzB2RUdao0TaCjNF8Kp/SIc1EEiL4KhErHMXRwP1uESaTPZFRgGBRH6nnkTdyZJE07+PRIrxcUSMnIZEc3/wRM26wkXNTs9E2ZpXRK9VokSiCPVE/zUkRfMH4URyZyRFcvZPRdFNxUXjv45ETlFoRLry20SItLpEoh67RDOWYUQUnp9E2B4qRkK6s0XezLlE7k+7RC8ro0TH3YVEIVevRJlGPkbok3JFD2tIRdpFpkTwfcVEXSiARGGEkEQ554BETnfVRCDamEQmyYVEZGLVRR2Ld0UsywlFWvKSRKBzo0T4CuFEXCnYR7ReNUc8wG9EArXORvv/HUU5IKNFB8AIRvhh8kREon1EbtSZRCBREkUcMRZFG5l1RMFGlUTwuKpF4bFNRYS/zETFRGZEnYiGRT+ALkWhnrVESF60R+hsFUfm+8JGalzPRTLU4ETBWYhEDShlRHqmVET9hYNEZO6KRPdFRUVUFRBFOAifRO5ueERbEfVFh6jART+yn0Rz+YVEv+87ROYG20UJi1RG+sKNRBJu0UWuOSJF3fQaRRkIRUeHphVFnhY9Ra3AKEeSBMFFdQZ9RnKankW/MH5FQ4xTRZJeg0RKRsxFa4/ORTttMkVOdGRE29PYROBllkXOXl9FaiGIREeEkUQMbYxEF3wsRtF6dUa8v49FGqVrREA/CUWU4ZlEE8kURaSzxkQQbwpHQ6ZzRCF+b0aOBB9GjQjIRAh6vkSb/3BFhmB4RQtsaUQNc4ZEYYymRG2dh0QSs45EwNuSRLw21UakIcpEegUzRmcT4kVhTcVEJ7mGRODbDkU2bIpEZfErRfIOBEXaV5FEYIaARGRdKEUuMURF1w8mRRytp0QacflF9aksRj5lVEV5YwpFJRGLRE0DqER7hqJEOy0sRUyrm0Wo9CxFQH25RKb6PEY4acZF7LSDRe/SlUTJI5ZEqZyfRPHo/kW8ktxEyabnRZ9GcUU7pPJEqBqlRJ5YxUWNwSxFcpmjRBLVbUTDgmZGNKqTRbGeXEUqSbdEwouoRL60j0Q= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - xAcZ2njAckBMnbEmcMFyQGgD8NOnwnJAFDf7nOfCckD8UCWpO8NyQGTywjbFxHJAX++IHgHIckCVD3pNWs1yQErfZu1D0nJAZ5tOInfTckCmHAZjYtRyQCDd4DPO33JA7M2HcbngckBW38ueB+JyQC9uCZFQ4nJAsHr1hI/ickDwA2MUyfFyQIxTjzW683JAqbokH8P/ckDq+3TT9wBzQNShqTJMAXNAOvERno4Bc0AZhW6MzwJzQNCU1Rj7A3NARIkYtwkSc0DTaWr3vBJzQES7Sf0FFHNAZYN9u04Uc0DnUoMgeh9zQHyrK9+kIHNA1NO/NDkhc0B9a9ZlZCFzQLdxGPl5InNA3IN7eMkic0DgCTim0CRzQA+9lGBIMXNAlvwrMVcxc0Cc+FkMEDNzQC4hfaG5P3NA1iYjTORAc0Dci8gUeEFzQM03Adu5QnNA+E/teXpEc0CqAr3jm1FzQK8RziQPU3NAG06wTEBTc0B26C6Jo1NzQOMa3tx3VHNAHLum9vlfc0BcqQODiWBzQAwbxj8eYnNARDLDQDljc0BKqfue0GNzQNoAwCIsbXNArugkeNxxc0Di+lMVVHJzQNbqAvJqcnNAB3wHe4Ryc0CwoCBquHRzQEQnUOJNdXNAlZsDNdB3c0A2sgto33dzQJBOWBN5gHNAe8eEx6GAc0CeWpA7D4FzQD+o+eBegnNAtOiPXIaQc0B8UUB905FzQCYlelBNknNAlNLJb86Tc0CSSbWSYZRzQKbGDPT2lHNAAmfyl7igc0DXCjOfWqJzQLFUiaMFpXNAKckIgM2wc0Cw94xa2LBzQLAFswk0sXNAOOWOlH2xc0BAKgjTWrJzQKXS76u2s3NAWK/H7w20c0BcB6A/+cBzQM9yDD7RwnNA0JnreSbDc0By6OGL1tFzQKLHp6C80nNAtG1GsNrSc0AIbr2b9tNzQIhCOfDi1HNA2hBpijjhc0C6dTH5YuFzQFHCOxF54nNAUgDtCO/kc0CM69q7EPJzQFWKd7I19HNA+bwUhuUAdEA6fgMMeQF0QCzkYBykAXRAeS9bDr4CdED8FlciiRF0QGBM/8xME3RA17p0kncUdEA4DD8DTCB0QPoPMTONIHRA1/pt+LghdEAe26D/VDB0QBTxCOPiN3RAbu7hKKZCdEAQwC6xPEN0QDSHQ8h3Q3RADJjS+dBRdEDoBKfLjFV0QHUH2OraV3RA+GB29TZddEAkSoi2uGB0QHL12YYIYnRAx4VfQ3tjdED0rhAGUGR0QOygnDwicHRAVxlQVUFxdEA4MQDSFnJ0QOJXOp06c3RAcj6/cveAdEBUAKILT4F0QOmRk68lg3RA0IcRFheQdEASBfT47590QBJN6e7PoHRAchgJdjehdEAvU7p6iaJ0QAHZUrq4onRA6uurwA+jdEDqmSzZ/K90QNzFIFfEsHRAwDbqeW+ydEBktUam+7J0QJ0w5ULJt3RAziyxbxa9dEBgg4BUJL10QI5S4lbev3RAXoykY+TAdEASpAgcesF0QDOoOqvpwXRAOoKP+bnEdEACYQR2ysp0QKA/K0P8znRAP8PdL9LSdEDjZkT0zdR0QFl10Foi4XRAFnKe77nhdEA3oIQmS+h0QB/ZVuSn7XRANH7HOo3zdEDfjWcVqQB1QHYHutJjAXVAJN+7bF0CdUBUy8Q3mgN1QBsKjt+WEHVA8FuZ3WoSdUAYqEzrIhR1QPjmlzeeInVAJi5QhMs1dUDfAKt5Uz11QF4nr17aRXVAg+moHE5UdUBamSQneFV1QKG7YFsAV3VAmckviQ5gdUDcJx1GN2F1QMDuacHzYXVA2YuZTGdjdUDA7/jod3J1QKBOto+NdHVAes9MgniBdUDAhF1KroF1QKL1j/6lg3VA/Nb6vJqEdUD6n739vZF1QIr9KFu6oXVA8rBlZZGjdUCUaCNW+cF1QKb2RyXN03VAcwQsqhDhdUAij/UaCeJ1QNpQc6Hm4nVApQLEnavjdUAsoS2pjOt1QJXXtVdM7XVAVLXLlKbydUDQmxoC8Pd1QCg0RPcA+HVAZgdjmEcCdkDhpIP00QN2QH5rJ5pMFHZAnOZdfA0WdkAUqVwDiSJ2QMWw98SQJHZAH5DfQEsrdkBaSAroHzF2QJuM9hRQM3ZAqlrEPOJAdkCYf+7EHUF2QAJS+NaXQnZAGPilsMdCdkBGldLgeUR2QCAyYcHKUHZAFIEPpBJRdkD+Y8RSh1R2QGoy76DNVHZAPPkXReBhdkBeexbiUGN2QOoKE464Y3ZANhFSBttkdkAaZe9JsHJ2QLbfqvaPgnZATOTRLeaCdkBzoaZzkoN2QECbH+LBsnZAJmtqBg60dkDItmwndsB2QH5WoOS9wHZAoJAJLxrEdkB6Tpq4zs52QHK3e2uB0HZAOa/MrpHzdkDkATrxARJ3QEim0uAOIndAihkE3nMid0BYZJz36Cd3QAj79wdBLXdAzQpb3Z8yd0BgxaM7pTN3QMK2T34NNXdAen2dQZ1Bd0AyFr7ukUN3QN3hlLAbRXdAa1Xir0pRd0Di4+y9klF3QGaLvW8pVXdAyOeoNn5fd0BG001SEWF3QKbmzMlJYXdA9l6cg45hd0BINh85oGF3QFfUHoY5ZXdAouhqoidvd0AC8RNioXJ3QJaJcgj6d3dAzuKpcXqCd0AKi2ubCZJ3QIbS/TaatHdAGHaxlHK7d0Ac40VtecN3QDBZy9btx3dAnZHsW43Wd0BIQobs4ed3QNMX5ZRR8ndAebHBK334d0CymdZ0R/13QFZvWpmhAnhA2vfIRP0HeEDmHxCTyAh4QPp/KHpuInhAdhbVNEEoeEDacStlDkJ4QGpH0s4RRHhAK+aR1HpFeEDaX/zh1kh4QFLfZHosTnhAmJxO8stReEBBqY//llJ4QBJ0UaeIVXhAimO8xu9XeECEG2tq+mB4QEl8/Qa4YXhAJjJKdLVieEDO9N9OJnR4QGQB5j+MdHhAUoOXwet0eEBwmR8kooF4QGfbrfbPgXhACs4nSZqEeECEycLtT4h4QAbfW+SqjXhAONPP4JeReEC9B+yetpJ4QMjwbukEk3hAX3Xza6iUeECe6j5ETZh4QA7NRSa+pHhA5ih8bNKzeECeGDqaN7t4QOoC35TMwHhAlBvIcT3DeEB+F63YL8t4QBYN+bRBy3hAYK7CATXTeEDkidrduNR4QJirpVWh4nhAlDnJuwL0eEA8e3VgjPV4QIY7hoYi+XhAON5iExAEeUCSro7smwV5QJYrEbe7I3lAzmiPXbIoeUBDWUSPDi55QOl9q6VmM3lAOtnaKPlDeUCQhqphzFR5QFTyez/aZHlAxMIILkNzeUA/MVTr24B5QDLH91nAsnlAQjHuVQbMeUAwa3PCEdR5QAzDwUZC1HlA/Dbwi87VeUA142U+TuR5QPEo2cZH8HlAXoJEjg/0eUDxbNvIpgN6QImQVWUCBHpAbFqMXB8EekDA8tQu+QV6QIRuk1b5C3pAZOXvKC0zekDWoRM8DTV6QAqpqToxO3pAylTddRtFekA6mFMWz0t6QFQ8/X8pVXpA6iXZbK5bekAKmpPiIVx6QN4lZJsnZHpAOxMXZC9sekCuf0xkNXR6QF6Uztodo3pAMlrf6ySrekCFUf+JFLN6QKSzMd0ss3pAGYcNbAy2ekBMhUyrGrt6QPISQ1Yrw3pAZCiFV0LOekAQwE4nZeF6QODC/GFf43pANZsynqXjekAL2cGvOeR6QGN9Bqg37npAz7ZpvFrxekA+b/ogfAR7QMJ0rMvCEntA/NoomokUe0AK/4MZTBV7QKvn0etZIXtATNodL1kle0Cc6EsUvjN7QMxSiUgOdHtA/jWt3c6de0BeIrKYKKN7QEZkoK2GqHtAetu0/4Kse0CooHi0eMZ7QHh64hI81HtAIi6Kvv7je0A6wd6ZKOR7QH9jllqM9XtAaOI9GdoBfEDGURUT9QF8QCB1S6VnBHxAjJt1OpkFfEBsDCXE0RF8QFhxrJXjG3xA1gMg8+ojfEAk7ToDPjV8QCr0ajnNQXxAiHFVEktFfEA/A0ZhUkh8QCag32urTXxAUorYTwtTfEB246hvR1h8QOTmkeSjXXxAiyabhQ5ifEAG9zPZ+XN8QAOkOF0MhHxAmT6M5FiZfEBENCBCtJ58QC+zh5MOpHxACcXtf7+yfEBktCXK9dt8QKRHrypY4nxAhajXnxLjfEDSPhWL/ON8QJxpOAFq6HxA+pBKjwLsfEC2GDS3FvJ8QPLaCaZV8nxAm89QzQACfUBoNhp+SwJ9QADwoBtSBH1ANDZYgUUSfUAzyJe9rxt9QOJodL8+In1AXN4Wwo0jfUB+gytityN9QC5PwLjyc31AVJPzRWeEfUA6UNJFlo19QN0B2Gyykn1A7Hseqe2SfUAzZqzhc5R9QFYapbhNmH1ASEi8aLeafUA+8IEZ9pt9QL6X3u2jon1AUy7c3u+ifUDQVBaD/aN9QNBYcGm4qn1A3Me+nQOsfUBRinfzK8N9QPI2lU3lxH1Avepwe/jLfUC8PFpZrtN9QG5AKF/Z4n1A1niO/I31fUB7s1Ek8B1+QNlC9zRKI35AJDWoghJkfkBn1u86tnt+QNIp3LS6g35A/MPGp7mYfkD9dzy3irB+QN5QzsOWsn5AAi0uHXyzfkAkOUbXBcJ+QCm1CBHSxH5A7Kf/qXPIfkB5Fb9dt8h+QPEeHpnNzX5AHuvrPd7UfkA44mqIyeh+QJ55kvmSA39A/ohYfRYMf0DePpPEGg9/QLj3sBkaFH9ApNkVQV1Df0DX6cJXYUt/QL7pjt6LWH9Aw0VQS61bf0AuijzY5F1/QNtFcEK2Y39AlKdJ3S5vf0Dzvnqht3F/QLx/X9lWdH9AmYJ6FLOBf0DolV3Uo4N/QAiGa5NjkX9AKAnd/JWTf0BRjcw9X6F/QADxRk1Ao39A+j8mUpuof0DNSMPFUbF/QPYy0HFRwX9AfPz+d8DTf0BkDM9DiQGAQFY/3q19AoBA9nzjZjUEgEDs4yNe3AaAQPMAli94EIBAFEQrCukvgEAu56lPCjGAQDCWtb4NNYBApvufNKQ6gEBuaVbHqUKAQE71clb5SIBAdFROX+dQgEDh+DcpFFGAQOqhrQnnWIBAzKBveg5ZgEDgQBpo4WCAQPYuSkYMYYBAjEbMCDxmgEC/XKF/8G2AQG49H0Mpb4BAFY7cXCp/gEARdEykqouAQNoP92kej4BACoVF1V2igEDktFR5CKSAQAgihDPfpYBAuA/tdzqmgEC3XVEOhqmAQDTCUm/kqYBAvZE3JviugEBfoNFHEq+AQPo1dkhjsIBASJoWUiaxgECW5JQGkbKAQMCabz4GuoBAnoCHSQy8gEB7e328sryAQOx7I4pfv4BAVMaEnFLBgEC8JwsSC8KAQNpFZoWBxYBAbY0GyqjHgECEm4i8U8mAQE6rKW0Gz4BAVBcA+STRgEDUp5GrTNGAQHTCj5Rh0YBAitqa40rZgEBAOXzHwN6AQMNv3mdE4YBA34PqyG3hgECYjkiSFOSAQFhFePJK74BAOPDAXT3zgEDaJ9MaaPqAQKZXj03r/oBAzvKe6D//gEC5I95rQAeBQLad4dg+D4FAMCr5qDQfgUDeuntzNCeBQIyJM1UtL4FAgt3DzL0xgUCKNoBfKT+BQIq54buTQoFA4n/47VpHgUClhzByBkqBQADiii2eSoFAYx7/qhVSgUAWZtsdGFaBQF50Ie7kWYFAPMrrTBxagUC0Wk27Hl6BQB5XIdAQf4FAuIb+TV1/gUAoiryNB42BQLqGyVpVj4FAEPu/bbSPgUD17vzAVpeBQAhWMRJFmoFAKCtYUJ2cgUCagWegSZ6BQCafeP3noYFAwsmdk26ogUDCWq9XSq+BQCBNOGYFsoFA2idA/OTJgUD2rPlgVNGBQARCi8d904FAmlaUd+v5gUADExTR7/2BQKE4jKokAoJAJYqDoNEEgkC3OTtXAgmCQB+0FBD1EYJAHgOtMrYSgkDQShD89RWCQPbEoynYGIJAFtU2UdcggkAyCAFl0SiCQHvFurGkMIJAc8BEs9AwgkAq3pZPcUCCQFTNZvpBUYJAYW9PAqZRgkA0wb1XIliCQOEYM2MTWoJAMqmZ0WxcgkCAzBMYM2KCQLhvN683ZoJArocLe9JmgkCaH/XibGiCQF7emXM3aYJAYhTw0DtqgkBFfDhyBXaCQEz9zYYGgoJAX0GcXEOJgkCaYgP+Q5GCQMRsTi08mYJANu8dTFWZgkDSMR3vDqGCQGJDty87oYJAN8Fa0NyhgkCWNYazgKKCQGSN+lQNqYJAwNE/1DOpgkDXgnoMB7GCQPQ3JB992oJAyI6hW4DegkAEvuYeXfKCQMoTnZ8J9YJALAKFNDYHg0CLW4CA0giDQDYAckLpCYNAuJIlunkRg0DRm51aehmDQMD7acJyIYNAEHeZFYshg0BUiy5dcSmDQIzlvLZrMYNAT+8e6uKBg0CpMSLOSYODQMIDCyJekINApg2L/qG9g0BQbs3ppcGDQCzVD+YfxYNAbko/O77Lg0BGXj8mxdmDQGbUOizK3INAvN7dWw3yg0A6oIgUEfaDQDhyrbuM94NAgP1AGpb4g0DSohBEDyqEQHyvOwMSLoRAUdh1CLJmhECEsLERAGmEQMZrXP5IaoRAmNflYk1uhECy4CXa/HCEQKEMUS5OcoRAnHPKjcp3hEC81ccU93iEQAi7z4pjeoRAWou+5Hp6hECwcntFE32EQA3cQzkqfYRAWOJ2+L9/hEAwkWfN1n+EQB0MdDJugoRA3xSLZheFhEAMKb79dpqEQNx6esFxooRAIwXOjR6lhEC4ifHOyqeEQGDU8p9vwoRAoASE2R3FhEAE/PVCE8eEQGrP0KLKx4RAykfBZnTKhEBYRfnjGM2EQHpDzmbHzYRAxXTbZcfPhED0MDKDyNGEQHSdvqFz0oRAGKiZHVvWhEApS0VIatmEQH39J/t23oRAUpEDMmrhhEAu4jYDY+mEQIUMyh2k6YRAmhEBPsDthEDGqzKjNvGEQH2BkW1j8YRA8r+FxcPxhEDsOJSDNPmEQLIGUd9X+YRAxL8PFS8BhUBHdTomNTKFQLsCymU9XoVA4UVseaBhhUDGZWILQWKFQCp4DbegaYVAHBqbw5hxhUCLRZ3zs3OFQCUlHc2beYVACP0AS5GBhUDo2DqWoJqFQPYPvLyjnoVANmcFuamihUAUX8KE2wyGQDsaZwu5MoZAQfqG02U1hkBFnaP0EDiGQKfBOtphSoZARnSG6GNOhkBWRv/uJLmGQCpYmHhR0YZAUFF3eeAKh0DqNB/xaBaHQCHc53FwGodAtzxyPJEph0Bw7KyhkDGHQArVR6+JOYdA66GpZ1xBh0Bs/sYXiUGHQPKf5x2tWodAm6muqayfh0Dav9EFyLGHQB4ANsHHuYdABSKXisHBh0CeeTlnwcmHQE6tvJVh/odA1F34uGUCiEDIaJV0dAaIQAyiTR1yrohApkhjUCqziEAsBou3trmIQFPy4NIyu4hAl0O7ih7DiEDQQA0zU/KIQA33Uk9Y9ohArP3iKVr6iEA= + KBZXds7jZUAeR9VQy0JnQFb+/uF90nFAA0krmFUickDkVUsBVuN3QMZPyWv7UnpA5LMnVa70fkAma91c9nGBQPIIglQDA4NAU3GCAliahEC5NChkbwuGQFOgcCwEI4hAHGLygPujikBx8SwXXLOLQKuKUHYnbIxA1R73M+jLjkDYkPUbiZSPQLPcqYharpBAfw+/gf0BkUDKX3xbi0KSQDEmJJBDjpJAEXQrVqEmk0B4OtOKWXKTQL9OgoVvVpRAkYsia/fqlEAceHKBq1aWQNt79Agj75ZAIpCjAznTl0DOjteP8eKXQGmkUv5Ot5hA46MYkRf/mEAbu7cMlUOaQPcj3Pggm5pALzt7dJ7fm0CpOkEHZyecQERQvHXE+5xA8E7wAX0LnUA3Y5/8ku+dQPZmIYQKiJ5AgVNxmr7zn0AqyAhAI0SgQE5SYD0utqBAgTW0VwrcoEBy3Lc6OSihQKW/C1UVTqFAy2fqQVzuoUAwAXW+LRiiQFSLzLs4iqJA1SfM9WC8okDfzDUlUVSjQC6z/vyDgqNAA1eNIlzGo0B1x633mWakQFzivyl/7KRANVMpAsVIpUBObaktmq6lQMCUkmvdEqZADvkkOMWQpkCRxVCV+ySnQM6EoELwcqdAaYbETxArqEDAD4pGCzWoQBmbvE0u+6hAJ35kGx4RqUA9JRRLOW2pQA== - + - 1HmvRIGA3UXIFOxGNuuBRB38HEUK3qNERyc5Rg1LLUVpVAdHfmfTRN80bEQXNFpFZDHiRCHCl0TERGBF0mNsRXBoaUVIfNZEA1Y2RVw10UShrrtE9Vp9RB/kQkUJUQVHCe2lRK4ej0b3CYFFM5OiRKGG+0TPy2ZEz7+6RiB1eET+AslEdGXORPhPkkVDqLREbc2XRIA3d0QpggFFBBzhRAK7gEXZuZZEYY8LRhq0/ESYZjNGekagRPEvTUXEZHFEWYSvRFQ2dkSc6yFFOMcZRUphhETgJXtH9TikRAcR50R3VcVFIyrLRnrZmkSjT81ELFMKRTHPHUV2799GlbCHRDVNaUTw0XZFioTZRCm+k0QigV1HzHmMRGY1vUQEoGJGwWv5RbUG5kUhIPxE1+hCRMNaQ0S0d3xELKOARK2ioUTqZXRFJgoIRSAS6USJj7xFGjnqRAEOCkVDgf5E4xtqRPJFxkTlVo1FEVTVRQCFjUSuaolEsRaTRHHAzkSbgt5ENpuiRDeGfUa6evtET718RI9nuERCUmRFTLyzRANc8URDqopEUDlpRb1gykRHLBZFke9mRNoyhETFOZ9EwjSERH2rCkWEt8BE8zPHRJxGi0Vh7BxGoSmrRS55n0TxmptFRi9jR923mUQCh/FE8Y2vRBde7EW2twRFjDWsRauSwkcFOIpETj+KRPi3UkQk2PJENTT9RIA1vkV/0f1En5fBRgMnHkVyXBZGwdUVRYXdKEX8dldG6muLRFHVnkQnQpZEiBYAReXHFkX9r9JEu0e4RIsarUTIvpRE/TcARUqre0Tn4l9EX7zFReBtn0TufbpEY3IgRtwnxUTo1ItErdLrRJ2BEEV4Qt9F1+s2RVD34ESzp45EIhqYRIXu80QyCL1EXcCIRIT2JEVbGMtElvCRRH6KEUU3BXlGYKoFRdPI3EVg0mlF+llIRVqehkTVmW1EwNvURN1Vw0SfBHdExpK9RAokDUVdII1EQxSXRFO4F0Xydn9Gu/fjRYh2UUXVCyhFID3LRVhzoUQvKG1EbO+sRKn/lkW0gSBGcFCMRRd+yEbOTdJExz6KRHcSjEU5j4FEcFIrRZ1LRkU8jYlEraMxRbRcpUTST5FG9DTPRNHGdkReOoNEW1hIRXoYcUQfLWZEMrd6RDMR40TuUlJFFyazRR7RhUTgeplEEHWlRA25aEXrdW9EwTk7RS2blkYn/xtFZdbIRGbZSUYDSqFFWtuYRNcT5ES5HQFImoWTRtNqIkUmbNZGu7KmRYXbUUb9hw1FTGI+RYa4XERKPbZEQSmtRB6U2URu6ZpEKVccRVjgE0Wr1spEglWuRNXkfETELpxEHfK8RWDJ7EScC6xE8qGORPMFkEQGKJREzESRRBibsUa/Xi5Gz+sYRSwk6UTeBGVFMALeRIcy0EQblq5FhZtQRluq0kS2BKVE3VeKRe2Ig0S2byNFnhnjRBbN1kQpxV5FpQ6DRAqp+ETtCllJJ074RMkQEUV/motEOwNbSF3550Zpx5tGiLQtRU3sXESz3WNFV+uKRiKOxkQuxtBEQuSeROaxf0g+RvZEnbDIR7ASika8JV5G8nrfRdaN9kQMcWtEHxCLRf7RCEb4oaJE/iyARHQxG0Vuzs9E5U5HRrDKqEUZ/3ZFau0LRRyzrUUFEHpE6fiARM6AfkTFCU1FybQ8RSb3ikS3XLFFP6T+RBKe8URat1dEaswfRpD1b0QPm7JEWyENRahY2UTqHoNExlKPRGIS6kdrZnVEKuDWRj2dJUUHHEtFIRODRK7r40hz0k5IBdUXR7w+qkUEYYVHp5bCRmnnjEVz6ldFT0fQReksAEWRN8JEDs2gRD3owUSDqKREjeUYRbmShESW8oREKpfPRH7caUf/wwJFciEJRoTFMEarvItE50g8RXwKm0Q87ZNE3ScbRrL2zkUE2flElFbhRAwP3USDdJJEqp+WRCdu4URtzMJG2sMyRmCwKEXpN5hFSyO7RbTwiEXfBYZFftDORJgZGUYaD8pFU1siRXoVdEZzeClGCPqhRO6ncUQ6ta1EPp6URPYh00VSXNFEltOsRbPwh0XQfxRFehoHRZDo/EZaU/ZHe8KDRToHHkbwyvlEv+rsRHeaz0TMZQBHx6kdRbd/qEabYZBEDIZgRcr960VTs9xEJeoERRCbw0QQeZFES5AzR+mFvUUPZR1Gp/1ZRfb+yUU46KJEshejRd5YZUZzQb5Ei02yRBNhrEWbgZZE7c7ORBwFqkTqfRNFbiOIRJDUrkT+EKhEQu0SRXfbikWUfGdFcZ1NRA5r7ETahXdEawuoRI8KqkSbOoxEIsylRHdNkETMxFFGrf2bRaGdzUSNuptF7XAxRSrrZUSyyA9FAH0XRWhagERSeeJEipgsRVKLoUTzfsRFt2gsRsDjV0X0SXhFGM6ERJSslkXQaNVE0d/WRA8WpkRoxB5Gu6PARDVmHEVFqu9EiYTjRApswUR6T5xEVYWaRDhpY0V/wXlELzjURDyxAEUFhYBEMxhgRBPr40VfMChFWGJpRA+f8kQ34s5Es8JcRWTTYkYWdZVE9BKKRanhd0QFVoFEDKZpRcddKkUZBiVFc7q0RPVKi0RV3OJFfZbaREgE20RLG3tFevGARHadC0Xuxo1EvU2uRFUBWEWnVhdFlHSmRFqjukTdlEBGVRTKRBAO+kXrEoZFr7uPSIEajESTkFJEVHq/RMRlBUhGdntE7kADRV4IjEeXT49FKCKIRpGjYEWZB6NFiDQTRblGrkRaLvZEnoKPRJkexEQJbHlERrkpRr2zQUV3UFRFiiOhRrkCZUVS6apEJNgMRcYlK0UxoxFFu4CvRaVCWkWxA4FE3DVNSBOUAUhcf+9Ew1QKRzzfbkVNkY5EZ7uQRBul9kRw1p9F0ZAcRQFmtkSgZPdEusXxRE1GgUStYFRFQ7ATRQf1vUXIxItESAj6RBPQeETmsQJFKZWeRQ13gUUC4+1Ewk2kRMMtgkSHXutEGuaTRLb7wkTmGlFGe1aJRegJOUVLTZlEPPx1RDo7o0TaHHZEJxlrRAo0hUQzdctEo3m1RO03pEWblwdFAHUZRTy9uESI0hVF5dGERAP9zkQ9H/xEZnnRR8aiMEe+RM1GzbYJRdzAq0XX8hRGXlnZRFiRGUVbcbNEzhUTRd+0kUTtcUlFrB0ORWzCEEVCaOVEfTySROmDeURhIIREnEn3R0P+VkeEVQlHuRJERdkoCEaLzkZFL36HREyqtkTExKxEr98rRR9U4kT32MdEzJV1RC0AiES4A3lEDYwTRhXZ+0Vxv4dEnp3WRHRz6kTFT+FERs2GRMo/ykX8rzRGmbm6RU4CKEUV2pNEOJzaRmXAyEQsWyZG+4CeRuLhd0aVbANG5YjiRUGaOkVQfFxFdUu8RFaqSkXsncdF+UGHRdpBJkUusRJF5+d1RSbngUSlLhFFAdHwRDmux0VVIApFgL86RS6ls0S91AZFX1HIRAdVDEcFpnFE5GZ9RudTCUZuuXdESFtyRAQ3fUXnX1hF7GqVRA5c4kQRusFE7TMBRXWqlkQu+aZEND0YRwlyYkSoUohGdgI0RgG5h0SCRDxFLguqRPHPTkViFBJFU9+wROzvjUSj1ShFswXMRD654UQJ2SNFM+rkREmBzEQz7lJEPf/NRBR4nkR1qeJExBsxRk15skW8U4NF7XmsRHbYskSzTfdEBumQRM2GJkaQiZVFYRU9Rf2rzUQAUnpFVMNARUkmnERMerREHqAkRo/gjkQAxltF4tWJREu4LkWE+S9F4kT5RA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - NPcaJnnAckBk3eUdb8FyQM/0aQ5PwnJAjN7QTafCckAjckSy4sJyQBDgQ6Y6w3JAyEbGBMbEckD/WAeKWsVyQFsBhbkAyHJAsqqS8UrNckDXCPdyW81yQNqhcD5D0nJAM/4u1XfTckAy0DhEzt9yQPYHdSK54HJAmqN14FDhckDkTrzYCeJyQKn0MhNR4nJA5ChTE5DickCWUi6bJONyQNIOJK3a8HJArtriS8nxckDSLLUzfPJyQB6rfs6183JAHJjhiaL0ckDpNYnjw/9yQG75JKD4AHNAFAJed00Bc0CGG3/WjwFzQGpxff/OAnNA0lL9PmcDc0BMiM+w+gNzQAL541AMEnNAu01UtrwSc0CQaOXzBRRzQFCkD8xNFHNA0KlbOPIXc0CwX7LfeB9zQN77eymiIHNAMOSYEDkhc0Bo2OjKZyFzQFoRy7h7InNAPee8eMcic0B4oCcODSNzQErngOE6JHNA+KVzkc4kc0CeKEzLTzFzQN8dnsGiM3NA7j20vjU0c0CsKrGx2TRzQJAm0J64P3NAfCEHWONAc0B82qgbeEFzQMenxMC6QnNAgEG3OnpEc0C0DPmrmVFzQEF3oyUOU3NAbhqLxqNTc0C07Y3D5FNzQHer78x3VHNAe+uGQ4dUc0DsY/ST/F9zQKezP76LYHNAsumjNR1ic0D3Y1R/HWNzQJZBpfI4Y3NAISs5S7Njc0AMukhFZWRzQHT4QM8rbXNAO8Njl01xc0C8cLI823FzQGhDpFpRcnNAOvvunWpyc0ADsvwYhXJzQMAk1xK4dHNA3MUO6kx1c0CMwHhbwndzQCxAMN3cd3NANUOQ9niAc0ChnBlIpYBzQB599zQMgXNAx+7yd12Cc0DOXJH/DoRzQFjSWM6FkHNAqHR7eU2Sc0CoKD4+zJNzQDrNYNFllHNAGBBOnfeUc0BI+VBzuKBzQIHKbAVToXNAB7pF1Vmic0CqwY9XjqJzQNg0l2sDpXNAFUj97Newc0CEZie5NLFzQFyb9g9asnNApBLD+7azc0Do0R8FDbRzQLhQAzKmtHNADkuHRfnAc0DUsglx0MJzQNY3EOwmw3NAlhfa09jRc0DcrT70u9JzQGaqaqPd0nNASqvw8SPTc0Acz2ts9tNzQF61pWnh1HNArpGA46Pgc0DRF/tTOOFzQNDLcfBg4XNA18uua3nic0D+FXbw8eRzQM4sa54P8nNAMiKfUYz0c0AGuYtGeQF0QObNvzubAnRAvv+DsYcRdECmReh7TRN0QCKPF/N4FHRAE91d3bghdEBa8sdXVjB0QD1SHi/kN3RAfI4yeTs9dECKF65yVUB0QPxHamQ7Q3RA8CfzXXtDdECa6jGf91R0QPud/NqMVXRA40WEVNtXdECSkgpQt2B0QDKseeAIYnRApXwyylNjdEA28u2Xe2N0QCQUfjpNZHRA/LjdlSNwdEAmdnE7QXF0QBYRSy8UcnRAthYaOztzdECMkQM8oHR0QBApi7v4gHRAliDLxk6BdEB0kjJlSYJ0QDo7I9omg3RAuvK7MBaQdECWrDS57590QAWTVrvPoHRAErcyRjahdEBnootvuKJ0QL83JmwOo3RAonUyQ/yvdEAGf9W1brJ0QKKuevf8snRAezncLsm3dEDeWzmvEr10QLCFsO4jvXRAwF+EYt6/dEBGhwuJ/b90QEqccazlwHRAJGSCIXnBdEASPrwObsJ0QN0MXPZQw3RA3KE73n7EdEBInTHKycp0QCar8tz+znRAkYtJhu3PdECesYwJUtJ0QE6HcyHh03RAk6A3dM7UdEBELyLvzN90QHChjYy44XRAENBEAU/ldEAUTd4JUOh0QAYXDJ2M83RAvbt+tGIBdUB3/8ANXQJ1QHDwBbCkAnVA/BSTa5cQdUCGLExMaBJ1QPRGrhcjFHVAJ66zsFAidUD4ORo6nSJ1QDbfolDMNXVA6NklQ/k3dUBGlOWn4k91QNmczitPVHVAEOUVKHdVdUDPXCWVomB1QHOghJE5YXVA3g9ERvRhdUCwyXAyeHJ1QL5nTXmNdHVAfJMnNneBdUCGTjd/rYF1QLwlNCSmg3VAyqeLVpyEdUBahMavO5N1QMZnBB8goXVAQT+cFLqhdUB4n/fQkKN1QIYiE8ResHVAQUZRjH6zdUD8QbXao791QF2imEr3wXVAeCXJdczTdUCtHSvJ5d91QAFWWZkP4XVALAb+JnvjdUBAJmxbq+N1QMynp2qL63VABqoCgkztdUAOcXXFjvJ1QB6nskGn8nVAfv8lYgT4dUA150j0Sv11QHouSQSk/3VA4sn9iUgCdkAQCgqj0AN2QPqSi1ULFnZAJllzbIgidkDu8XjtZiN2QMarLB+QJHZAj8zmlEsrdkAqWZejHzF2QOwW/ydSM3ZAnEIILJ80dkDu3wj87kB2QG67gGQdQXZAwHnUr5hCdkA7yvIzykJ2QJDE6u55RHZAFJ1FMMtQdkAk79VMEVF2QJrT37XNVHZA+yZ0ESRhdkAuPKv72WR2QN8LVfhWaHZAbvxUV5KDdkDWomq2oqF2QDi6VUHAsnZAuGAK63izdkCTwK14DbR2QEQPp+WvtHZAHq+gPMPAdkAIhiLtTcF2QK6juusaxHZANFnqM8/OdkBKJtnSfdB2QGf/OB+Z3nZAZkfODSDxdkBAx+gHkfN2QK6rMrA0AndAsKaacAESd0BOGCWdISF3QLLY/eQPIndAfgU77egnd0D9mL+QQS13QCWtrLekM3dARh/4Sw01d0CWHlshnUF3QAvLbyaRQ3dA3Hf1yBpFd0CAkO83SlF3QHAEfUKSUXdABLCO1SdVd0D2MV9We193QJbtuOSgYXdAVFxOqzdid0DHagisRmN3QABroQcnb3dAfkv4i6Fyd0BRQOJ0kHR3QJEJo05DfXdAmCwCenmCd0Ccp+m3B5J3QF56A+5KlHdAZlITdnK7d0CSUD9DecN3QDq+BBfux3dAkp1Kk+PQd0B8jjAy6uB3QBLuqIZQ8ndAoMBv9f/yd0Cyqbm4fvh3QFFOCeZG/XdAYQyOzKACeEA34YJw/Ad4QC57BktFDXhAADw+7iAOeEB7q/G0ThV4QPSvP2JuInhAwnBSiIojeEBkowSWkS14QHy0XhkMQnhARrDwuhFEeEDQsd3ZekV4QEhct6HWSHhAVCovbMpReEBGPZkNlFJ4QHKNWyyIVXhAv6PKdKBbeEC1yFfD+WB4QEbHWEG3YXhAlsdBcT10eED6IM1ZXHR4QFQ+3wSMdHhAxkkrvcR0eEAQ0eq003R4QPBQ68bkdHhAtE7hVqaBeECXmgROmoR4QFBmSLpPiHhAzItwc/2LeEAqXaf6qI14QLr8tPSWkXhApSIwyvKSeECiPxFNCJN4QBQTyLanlHhABjPQxaCheEBovGG117N4QILype42u3hATMKNiM3AeEAk0dvq9sF4QHYnH3M9w3hAXIkwwYvDeECZJg+7BsV4QF3wMC4wy3hA+DKOth/TeECT3y0WNtN4QBKiNze31HhA7QbnCyvbeEDQUtHQPNt4QOOFQdSf4nhA7vty9QL0eEDIPjs8jfV4QI0SyN0k+XhANu7X95oFeUBcfaw6vCN5QGlVeL2yKHlASt0evQwueUCvrpsGYjN5QLrz8aHjOHlAEnhiQPtDeUCuCLTqzFR5QMbZeB7rYHlAars9atpkeUDQlV8l/HF5QImeBhRDc3lAeIzqZNyAeUDhKRlBfJh5QCr4gYfCsnlA2HiW2cnCeUBoswrlDsx5QCpwu1UI1HlA9CV9ykLUeUAQQgkKzdV5QE/VTMFQ5HlAzhuhEhD0eUBSFR0+pgN6QL+6zmAcBHpAmDiwKgMUekBQ1FkYDTV6QAtbw2QaRXpAViG19NJTekA8avriK1V6QM9SvCDsW3pALKWK6yFcekDjMHOFJ2R6QFxc8O86ZXpAIE380C5sekCrOVKKNHR6QBvfmtAdo3pAHoFoIyWrekDgba/TFLN6QNJ5dR8MtnpAwGL+fBy7ekC3JLnm8rt6QHvUhgwivHpA7IiPvRrGekCm/ayJQcx6QOo6cY4W3HpAzq2NUmXhekCGSwdAp+N6QK6/oe945HpA+KiSXlfrekAhLeKKNe56QOD5yMYV8XpAHhSo82DxekAZWGUxKfR6QDreWlh6A3tAjCAitHsEe0BQUjGJKg57QL5nx2DDEntA4O3QxYkUe0CXLM8eTBV7QCCzqQRXIXtAIu5BPZcke0CGkQBaXCV7QJ4ebw7EM3tAheErgg50e0BYf0JJ6ZB7QKmVtwIjlXtA2gwHzc6de0C0RwItJ6N7QKmO1WZxqHtASPO6yX+se0AyWwbwd8Z7QCUNC4o/1HtAc+NhOgDke0Bux9ItJ+R7QOqCpFmM9XtAon8O6Sj7e0BKbs4NkwF8QPkYOZbZAXxA6Eli4vgBfEB8chouZgR8QMCAk+WaBXxATfMrj9ERfEDyEyVU5ht8QB6BVia6I3xATPXK7+4jfEDqk2RBPjV8QKAW4szMQXxAl7eEmUtFfEDghbkDwEV8QEi8365SSHxAKF9oeKtNfEBwdBXW3lF8QDal0FDkUnxA3tiQIwtTfEBrOIeTDGJ8QHBu1SYqcXxAOITzzvlzfEDoupuFWJl8QPoIj6iynnxAmA84Aw6kfEAqN5BNwLJ8QLhVz+T123xAvGc60VfifECrlJ/FEeN8QChDyhT843xA3pmMcGzofEBG2hP9Aux8QNndkv/H7XxAUK2dahfyfEDa13ozVfJ8QMiD/WUDAn1AsJ5SDksCfUDFJUZsChJ9QCVpdNBEEn1ATBRpVa8bfUA8hkYROyJ9QNjy+ftTIn1AjNtfUJUjfUDYkvJBtiN9QJ5/6k2eMX1A4RBFSmxRfUBcn/AAZ4R9QLr0cvKWjX1AUGsxC7GSfUCKgwMF8JJ9QFGKT9t0lH1A1KG0eriafUAIFXP09Zt9QGKOesakon1Ak280kMSifUBUCWB+/KN9QHghfNR9pH1A2tvswizDfUB8+pQx58R9QJCLjAiw031AOKw05o71fUAgS0vR7x1+QFJ+TIw4H35AdXN/eUcjfkDzeDglQS9+QFnoMevYU35AeP22LBRkfkBQFIiGv3B+QGUUGLd8c35AOudI+LR7fkBDyVW/wIN+QPgXsb0ii35AMIVgid6QfkD4sksWmLJ+QFZdzl16s35ADncxSb60fkC0Nd2QH7V+QAWoqRbSxH5AVl5wbWHHfkBo2WVEc8h+QJFv8ATNzX5Ajeni6NXSfkDAPfLYFtN+QMgk7/Df1H5AVNyd9zLYfkACXSKWy99+QNarzUDm5H5AUKWZUmDrfkBjY2d+lAN/QNzOH0WfC39AFjqAQBgMf0D4ObMrHxR/QL4fY3leQ39Aqtg7uqtGf0C2rng+Z0t/QIZHmXqLWH9A729gP61bf0CWRQOj5F1/QPsSkoZKY39Ai0LKzbRjf0DW554pv2t/QBPEBrC3cX9AJhbwGCp0f0CMkc+YVnR/QGNPrXZkfH9AHN1e8KSBf0CgHtdcY5F/QIDMjzqnkX9ArGWeqZaTf0BylYKGXaF/QIDPNBlDo39Ati6DSnykf0D8CuPJm6h/QD+D13rmrH9Ayl1Sm1Oxf0AK57aOSvZ/QJipjbqHAYBA5P5haTUEgEBkB6Xj2gaAQPg/AVBzCIBAkMJOH+MmgEBmrqGC7SmAQOBaq8M9LIBAjLlWTgoxgEAjNu7W6jeAQDWVrQsCOYBA+zVfNMNBgEDqn+NKqUKAQLxFXDbySIBAuvzDg7RMgEDjdzEH6FCAQJwgSrUTUYBA1rEO5w1ZgEBoNzvkRVqAQB5JeV88ZoBASslAlexpgEDiQd4G8G2AQFbOEG8ob4BA92Sj/PNxgEBgaBtrKX+AQBhBY16ojIBA4oE9Ch6PgEAyJnLoIZeAQBe+NdCXmoBA8M66Q8WcgEACj8gSX6KAQPnGew7gpYBABGEt/t2mgEBE9gAhhqmAQAfKhwPmqYBAWrulQRSvgEA4Ysfv2rGAQAuSJwFHsoBAZIh1MpWygEAM6UfWBrSAQBjKeVcGuoBAUFC4Cwi8gEDczo6dsryAQEjyjN5gv4BALPuemFLBgEC2ipw0CMKAQPVfmFJhyIBAkNKk2B/JgEAOAX+oU8mAQD7c+aIt0YBAy8ScukzRgECfjsbiX9GAQOvvFfZJ2YBASOrfiMDegECoVDTkROGAQFIfoD1s4YBAhP9GXDTmgECMHgAo9uiAQPoI6LxK74BAYz/rb2j6gECjaYXHW/6AQEaCyqxn/oBANFBKuz//gEAIfc3/PweBQI09MuY9D4FANhSihDQfgUCTrkb9NCeBQKFT4T6+MYFApIX0ufc5gUC41L17KD+BQO0PycWTQoFAKTMecVpHgUAoRYjuB0qBQDw6DTNnUYFAyE/ckRVSgUCiVDJRGFaBQG4uiL/nWYFAYqogIhxagUCzxi5zDV6BQJrq5tEhXoFAFc1lOBZigUAuZ7Vz32yBQFAKXULehIFAtwH+kgWNgUB6kfiHVY+BQE06W8i0j4FAmERRnvORgUB29dv2mpWBQPAFrLRXl4FAjW0DJJ2cgUAOCR4hR5+BQCRffbvkoYFAsQAKMm6ogUA77rr+7qmBQGUi8+lJr4FAgZ0LDUy3gUDobWpL5cmBQC5xiHqx8oFAeQLeeOz5gUB6dAJR7/2BQKMlpn/lAYJAaM71dyQCgkAsFTPB0ASCQIIFfad+B4JAcuVvxAEJgkCiWpNd8xGCQEy9bUK1EoJALbVcjfYVgkB9xgJT2BiCQHymhgxVHoJAPPbvHtcggkC2W52A0SiCQNgSi0TQMIJAf9iXLNVagkB2j1VHq1uCQFj2b91tXIJAxMSH6wdegkDk9TKHM2KCQHATKgo4ZoJAdQuVwjdpgkDa2bb5B2qCQEO3KZkscoJAHk/bRwN2gkCNBsofPH2CQOILPoCJgoJAgDXbYkOJgkBs0t1lDoqCQOa3x1dDkYJAOTkG3TyZgkDq8PXwVZmCQJh2d14OoYJASfWJ/TmhgkD1HQbbT6GCQMB8CELdoYJAWHBm536igkDCkG8x46WCQIjjX0MaqIJAA51NcQ2pgkBoJANBNKmCQJiA0HwHsYJA+IOB5H7agkB09Xyggd6CQCj1uvlW6oJAENdvO1vygkCYCOvsB/WCQHzdQzmu+YJA4usHUJ4Fg0DmSDfd5wWDQDJZSJl5EYNAUhlTvnkZg0AcDpG+ciGDQKxATPdxKYNAik/NiGsxg0BW8LKR3EGDQAQmzvDlgYNACK7AWVyQg0Csty8Qor2DQAqPJF2mwYNAzPijzx7Fg0DUt3Njy8eDQFWRpJvH2YNAEN+Hncbdg0Bw1FDgDPKDQBi9NoQQ9oNA1tDXqpT4g0DoC3UuFPqDQAQ1Ss8NKoRAcilBt2NKhEAqUFb1/2iEQIq8N+lJaoRAHBbzgExuhEAadxkv/XCEQGrRMitScoRAoh8cvMp3hEDyQEwE93iEQLAGMNVjeoRAQ4EufHt6hEBcAds8FH2EQNpfCHwqfYRAvHTcusB/hEAoxhvL23+EQJzyBCRtgoRAtIqJU8qHhECC4dD9dYqEQODjnw7Kl4RArUjD14OYhEA9u047caKEQMpJjTUepYRAUllJjM2nhEA2rKlcfKqEQJrhlvpVsoRAnmjMyHDChEAATVoTGM2EQFIUdKnFzYRA4MTQMcbPhEAIdXO0x9GEQHbGjoxx0oRA6uXrSlvWhEAhMYUNatmEQMWAOBhn2oRA3PkpTGHehEA8BHQFauGEQKJr8kJi6YRAS4udpr7thEBDxMU3NvGEQOP4yP5i8YRAg6l3sTX5hEDKdScbLwGFQLnlGas7CoVAxEqdVTgyhUAkOBGlYzKFQCIp4qPSSYVAJYdmKQ1bhUBCVx7YOl6FQCecZCygYYVAxYNHa6BphUCy9EkDmXGFQNixBCW0c4VASb0a+Zd5hUDI50FekYGFQDCWbZigmoVAUf7AOWQ1hkCKJV9MEziGQIu+4oxhSoZAdqheH2VOhkBA8TDNJrmGQEgePk9sFodAqPOKQG4ah0B190j6kCmHQIQMHAqRMYdAdD6BKYk5h0DITCw7WkGHQIy9rDCIQYdAe0vbi19Jh0C+VXfO0U6HQIaB6LfHsYdAYlROzse5h0CXIY8SwcGHQDT+/etg/odANJHGwWUCiECgugJicwaIQPfx0DuJaohAinQ08SmziECKrswBMruIQL7lAoZT8ohALh2/jbb0iECi+uzpWPaIQDCm0v1f+ohA + KBZXds7jZUD60UzrnGVsQG+XdYaqQnFAJCru7HxDdkA28gnAwnN3QFNDxqoaBHtAJIjKQNVUfUBwTQlleYqAQDCVIYvCOoJABC6toNCShEDq5wGDOjuGQGhbd71cq4dAfsilvpFDikDMiEHa6MOKQHWnJe3I241AMLYL93TcjUBhXcZHW0qQQGzq94QqOpFAtWw4UUuWkkATdCtWoZaSQGeDnV+RIpRAj2Nr7bxilEAZmgJu166VQNlTPYvoZpZAy7BnfB07l0A2fS2HJGeYQBWhORpJP5lAxaWLfFAvmkD5tgwif8OaQEDLuxyVp5tARb2Ckabzm0Dy4SAr2zOdQI+tVC/S951ACWXz/QvInkAPxUtEKLyfQA== - + - eU2vRNXa20U6j9pEy37tRv2Ik0StyCZFPcafRLjQg0QknklGLwqIRBWu5kTBpQFHnMONREDH8ETsG1VEj/5zRFso2URrJYNFn3NyRez26ERm3F1ENp1QRZsUoETVWJJEgi+pRE2AL0Wx2BdFxSVDROWOq0TRWiFFbodlRAw0IUckpbBEF11sRgLZrEWQIcRE6afPRH7HCUW3ealEDaXORnF7hERVEMpECEKGRAHRjEQWyJBEQemZRffhgUQwbXxENMGtROrkgUR/qvVEP9jARDedtEW2cLpE0gYfRuBW/USXgFxGwx2eRc5rc0QPpodEGGPaRIWerURHJdtEfyUlRQOijUS/cR9FXhdeRFKnXETtwoBHNNVJREng7USRsqtEJCLkRTtbq0ZX1XtE78Q+RVBW0ER+7npFw7rJRixD0UTkIwVFYfiBRRjjiUQRcexE81FPRzIvjUSHbZVERBh3Rn3fE0YkX3tEhqDFRUe8e0SLJetEcHN4RPuAiERwoYlEiIZLRc0DLEU2/GtEVculROVstkXQ/cREGtcVRWTACEV3KoREPf6HRKdAlETsRYRFXdizRMu/1kVKHGhEMWK4RMKphkRuh09E7LlmRBtNhUYoz41EPebFRDuzOUUKsZtEVocaRegYs0TzFwNFvIGARH+27kQ7E7tEg0yGROU3ekSETAVFrXHQRJS2gkUmlB5GxQZgREipikUpKX1EPkqgRYF+REdiyIlEfFO1RLujjkTJyQhF99flRc4ju0Tv/u5Euf6VRZht/UfHse1EEgh7RHhEqUTH6vNEsREVRnwBxkbXugZFukwlRkLbWkX0thNFLi2YRq42YUSZFnlEmDvBRFqf20TCuXtEGeNsRIebBkUj5UZEWrmuRIAFh0QlnXdEC73XRCsGlkQlZClFxy3fRLePt0QU6NZFjXPzRNVgEkbG33VENB27RMzOnER4UPZEtGRqRBN77EU0CRRFKclGRdAedkRePH5ErGa6RJfwgkTBUwJFJ5r5RAoq/ESzbxtGtIMIRfBsy0Vr3rFFjM/pRBQXsEQSY3pEZ3mOROpo2URbx31EEY2BRGLzbESPfBhFFPdyRLm8fEQJ86pEKE3cRLjQh0S7XEZF9zQlRm1nTURshKpFCNWnRB+cgES/+/1EgIrgRee11kS5vbREmsSlRd+AhESkpgRGedrZRabGtkZWNDNF4BueRPu6S0TTHmhF1BbDRNWE7kRmGkdFEzyIRIPCLUUJ2k9G71l6RGmt40QgA8hE2kkPRYxym0QDK7BEyE+VRGTMk0X53FVEXKViRCBVXkQU9KZEkixvRS7XfkRfxkxEW0dPRO1GH0WjLXVEduOFRmfVZUTpbzdFV93PRbhRwUXVkdlEDgH5R62lkkYTcqtER1C4RuEqkkXBF1RGjikrRfPJHkWE/L1EaQW+RDQqU0TcdDFFrW8kRf5mpkTWtYJEoygBReB5okSJGXtE17m2RYyikES9/7BEisSSRBLmmESc1d9EkLFGRHw9qETZQ9lG5FpLRpCap0X4GvVE9Wd0RPMNekQX11JFctx6RB8RwEQ0AYBEFdrBRQr4LEbDe5xEFJWIReAU9UQnyhNFAKuNRPVR60TY7U5FnMLoRC1Uh0WDO0NJs0E7RcjPEkVVT4dE0LBCRRd6RkjYhNhGdGiTRF9USUZExiRFOLokRfQ6DkXvOKZGAmxXRMvqkkTXRIFI8Ij1RHFmkUStLsFHiDY4RNVkkUQzN5tGmt+ZRFyTt0WpPcBEUQpTRND5oUSX7IxEIM9ORYL3rEUXpJtEs+amRIEB9ESbDVZGuhz8RUPa7ESOM6hETEECRZ9cYUUDhmJEdDKPRJ7BV0TzqNVEbrWNRJ06Y0R3QjtF4KNRRHNQl0R6EZ5E2bLKRflV6USqD/NE6nFLRsZFX0Rjw1dFgpN3RBCBs0fkgqFGtzmtRGGf3ETofARFnkbZSJi9Rkj6nYVEMukTR+ebmEXW/pdHidfdRiviGEYFIbdFtiv+RAQW00RY0YFEtWPNRBhPIEVidkxE3y2yRIo1C0UBoHJE7iHuRHth2ETZWKRE4EiCROkSmUSWvXdEJvuHRyi68URx9aZEJyU1Ro+GJkaEWKhEi8FkRBSZC0UJzMtEH5QlRTEv4USylLRESEh7Rl2E/kWB2WVEj7WqRPdn30TjkW9EO/6DRGbUBUVpOKVGkVOIRNOWdkT0HkFGeufVRLO+tkU6n4hFB/haRce1VEXZ1YtEIWCuRJXiNkYZaLxF3kJPRUCTk0SHSINGGogRRiyyh0Qj/M1EXdXWRHWXf0QHDMxEmDD1Rafz2UU79nhFTi5ERZUEsUTyftNGhofoR5jpYEX0fy1G8DXrRFulfEXQdIZEGTCPRCGn3EYQvkJF9lKzRpXsjkTQWEFFVcUbRkUDkkROSk1EU7R4RJll/UShyrVEHLplRGaBKEcLAbBF09ldRrowfkX3xftFHOu+RaavDUaDZ/NEPkp+RIwepUUP/MJEEDepRJaRGkUEBQNFWbjiRH8YUUVJ2M5EV25JReW1zUTp355EI/JzRHrQnUThZFpEVn7MRM02xkQX8EtExwmrRH5b4UQHuZ9Ex9enREM1WUSRxbNGArBgRI7TvUWH14pFfdN/RB6I4EQqIyxFRHNgRKZrm0SqGWREX5lDRHuC7kQukmhEnGJMRc/cuERqTzNF80FPRCnflUSSrqNFDiG/RXGQgEXIDoxEPpZDRYwVgUSfGJBF7nZPRPjMjkR6+JpEFnNVRMW9GUYcnMVENzW8RJkpaEXJm2tF6HxfRJ2exUT57m5ECs7QRAGFAkU5KzdFNaD0RGdYFUUeT3hEpuArRbRqjkQqDntE+L3GRc72jkSOogNFRoFvRNMpA0Uu77REoMhfRM5MR0WJHldGUpeNRVVjbkRkjQVFcMdRRLo0TEVEljJF86j+RJ5lmETO7oFEjXTJRQoVwkQppM5EV0LLROe9yUQ8jKZFsUxaRKu5/0TbO+9EpWAlRc6z6kSYVY5ErmCIRNUQqUQo+yxGQ/NqRHnDPkYUp4hFnqGDSIz4kER7GmhETt5lRP4m+Udgk49EHSiDR0wPWUUzf1lGIIFsRV39rUVD7shEs1ZmRDfGk0TMXvFE7X4CRZpCVURfd1tE/Y8xRtzlWkVcumFFEKyIRjKXi0Xgi/xEIX5ZRKE9GUXWnQ1FUNKrRXjMOkX6IJhEp+pISCLi+0dyWM1EOCECR68/7UTDqp9F2VLURBfaoUQ5h61EvxDFREzqqUXpuIFEIq6yRJdmc0S8CgxFPUkqRcvvK0U2PRtFcU8MRTHXeURRUexFhBq5RJGsKEVup3BEA64BRqyJZUXPeJJEKoaMRJbaekToBntEz5V6RNnN+0THlKlEvomXREynLkY1ELdE6qZNRW5BAUXG3lZEUmveRPESBkX3N+ZE26efRBVxn0W8TxlFgmudRIpNAkWuUWpEfsBiRIl/k0QcK5ZE/4a0R54PQ0S8PBtHzVnbRupB7UTSsJNFzMjCRdQTQUT97PVEszAaRW11X0QSsIRE26QuRSggS0XRd7ZEhKOJRaROFEW9vXdEcxexRGN3hETpiJZEtFZlRCcN9EQpZ+BHMlBORz9/6UZUkgVGREkcRaICkURjLIhERhG/RPnnFkVEbvtEbxhuRMYihkQvA8JEt2CIRJ5kD0ZtI6FFE2y0RHas0kS/mJpEbOWrRHCllkUuJgRGbiaqRXwj8EQ52n5EwciyRiaY0ETA7EBG5gSGRmmWmUanS8pFW68QRuWG/kQK981F19EGRZ9tUET9xvpExEhpRORkr0U7fN9FqNYHRWq/qkR18apEc/DTRJgAykW0cUJFSsXDRbjntUR+RuBEYuTcROdv/UYoz3VEZpCrRBJiT0bAtRtGhMKiRO+IvUXtnppFPqTsRBR8ZkTfWYNEYdiORE5deEQdS25E06eBRONtu0TKPAhHgrB+RlAnFkYpSbhE9hV8Ra4ysETZKCVFO8ajREez9UQbfZlFbQZRReeG4UT8Tw9F5+yYRM/rHEbAtLpFKuVXRcN8rkSC7NpEZZaDRLsMhEQ61StGuOS2RWO1WEVJa2lFgXs2Rfe8qkT1W3tE/GE2Rl28VEV9CzlFkJRyRB6WI0V+IXNE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + - - - - - - Xlud+gzBckCVR+y9J8FyQEWYXcVuwXJAGYNxm8fBckBjbnzXT8JyQPrVKJanwnJA/+ijquXCckC9FvElO8NyQEr4pmfFxHJAbyXX+gDIckDM/JUbWs1yQOSPaFtD0nJAsPaDlnXTckDmO4hk4NZyQBj1VXLO33JAcN0RQ7vgckBe3w7OB+JyQBzouZxR4nJA17GfzY/ickC6oTTEJONyQOzdiAK443JAwmn2q8nxckB7O1JAffJyQC6NZ/W183JA3mYKuQz0ckDkxHcAo/RyQL6uxCTD/3JAUET38PUAc0B72oOqTQFzQKwu7fSMAXNA3PqkdTwCc0DXoIakzwJzQPgHOO76A3NAVp6B0Y4Ec0A1sSP5IgVzQB8vaGQLEnNAgCbqGb0Sc0AIzlJmBBRzQLUo6VB5H3NADPLKb6Qgc0B4TmsBOSFzQIVo9lLmIXNAlQSxwXgic0Agi+5fyyJzQPOgt6YPI3NAXd+1Oc8kc0Bry971STFzQFDNsfjLMnNAhu7Qlw0zc0C81k/1oDNzQLBIr4/WM3NAohRZ+vczc0CQxWMHOTRzQP6zNhrbNHNAZ/ub1kFAc0DseEnU40BzQFu/LPN5QXNAHgtEdrpCc0Csugy3ekRzQPAAYkyZUXNAIStT1g5Tc0AEgytto1NzQKU/jXmGVHNA9Fe/Y/pfc0CJJIsLiWBzQHSBmnodYnNAusGazDljc0A8qK7szWNzQKLfku0rbXNAfJL2xdxxc0AU2YlVUHJzQLI51X5scnNAob20XoRyc0DLewGwRnNzQJz191C4dHNAGmuu1Ep1c0BuyIKLzndzQEhNOcLfd3NAWk+/nSl9c0DOa72TeIBzQNAJPR2lgHNAeCuA+AuBc0ClScSoXYJzQLqTqvwKhHNAZkabK4iQc0A3hhwaTZJzQImOz79ilHNAwna6UveUc0CoxvYxuKBzQK2In69aonNAUh+K/cSic0DswMNOI6NzQAA0QTQFpXNAXQnwCxuoc0Cn7ViP1bBzQOCdWOl8sXNAlqT3iFyyc0B+YpyDErNzQIEkuay2s3NAzFHlSgy0c0BBQXiczb9zQP5UimH5wHNAs/7RwIzBc0AbabjdOMJzQHG/AULQwnNAys1VWCXDc0AfBZFx2NFzQFPcJ3W80nNAMEI10fXTc0BxvOrY4tRzQL9RxRSl4HNA0IUT4Tfhc0CambAQjOFzQDycQap64nNArfJWYPDkc0BSyQpBE/JzQIAlCOxp8nNAg/NW5Tb0c0Co9z6aQ/1zQPQOLk3iAHRAfvdRsXgBdEAiyPJfpQF0QICkTh57BHRACM60CIwRdEDSZhdqTRN0QDFVCl52FHRAlrLNlUsgdECzhtg0uCF0QP05Wt5lInRA1f/mmaQidEA/LwAsuyR0QBK/0rziN3RAb/hb5D09dECTtdm8VEB0QGJ3Cgx4Q3RAWqkP5EBTdEBKlsTV9lR0QHlwMCyMVXRAFj08jNxXdEBML0H+uGB0QPopCt7jYHRASpST/QdidEA57Zi+emN0QKKzM+IPZHRAWpfwBk1kdECydfS6InB0QGTP/eVfcHRAzlShEEFxdEB+oYhAFHJ0QFLzqDBAc3RA2lj6M6F0dEDKpsbyNIB0QNT9Q8BrgHRABS2CVPiAdECSgcdMToF0QBEbTf5HgnRA1rJsPs+CdEDC8myJJoN0QG74KgYWkHRAgiJ4T2uQdEAqUSmr7590QGrFwR3OoHRAqsAvRo6idEBgO43auaJ0QMYq8kEQo3RAC730Q/yvdEB4gNDrw7B0QM7ES7lvsnRAzoeQl/uydED2Ng+4ybd0QEUh3roSvXRA5j/heiK9dEC3TwPu3b90QPwWlwDiwHRAid8aZHnBdEAihXBCDMJ0QJzQHmQkxHRAMcDmR7nEdEC/7tTXysp0QOeMw8z6znRAFgORSevPdEALzun3rNJ0QLh08dB11HRAi3JlnM3UdECJWOquzd90QDQcsGm44HRA4oq4UbnhdEBdo8+qTuV0QDXYyhbn8nRAh+ecaYzzdEAmZLjypQB1QGaVPRddAnVA9M43g5oDdUCdMLFnlxB1QLr4dD8jFHVApFmth50idUAn5c9XqjJ1QGQsXCLMNXVA/EcvIPo3dUCbR1hLUT11QJqecs7jT3VAigPS3ftPdUBCwqtWgFF1QOgqnop3VXVAIO82t/5WdUDSvQc7EGB1QNYSZTs5YXVApMudKPNhdUAUUZc40WJ1QI4SXPJ3cnVAmuy81ox0dUDSJDLua3t1QJFzzXl4gXVAKuiIJq2BdUA463Y8poN1QNyr3gebhHVA8rAM67mRdUA0TCGVtZN1QNfKDbzOl3VA1sP1EJKgdUDgs0ye+qJ1QAMU9dSQo3VAGGyTMFywdUAqhlRsxbR1QIT9IR5iwXVAbh2hGPnBdUB41FndzNN1QFH/WyEQ4XVAzl1qxwbidUAPaoAxeuN1QMw4UTSL63VARRU9FkztdUC2gdzYpvJ1QBDDrOFL/XVA6HXO2KP/dUBqLv5gSAJ2QLguA2vRA3ZAnK8ublUSdkCyqAs8DRZ2QN3ghxiJInZAtBErOGgjdkBhEBugkCR2QPOttqVKK3ZA0mYpRh8xdkCM1iBmUTN2QC7Z3UOeNHZAMKn97eJAdkBIpFHjHEF2QBZ1hh6aQnZA7BwCbchCdkDoeXjPE0N2QArReCF5RHZAfCHUXxBRdkBGiSEIhlR2QLLxmlfNVHZA9KmeJx9hdkBC17LD3GF2QLaSqChPY3ZAgXeC0tlkdkAOOpevV2h2QNq8muKRg3ZAuGgYT1ugdkANoI+aDqF2QLp9XnXBsnZAW2P09nmzdkCENxEXDbR2QP9bDIBRwXZABPYkv8/OdkBUrFePftB2QO7PRI2P83ZAOhb/TTQCd0D+IEhnUwN3QBY+AVMBEndAV15KOA4id0CqGzYOcyJ3QKgG7G/oJ3dASEuX/EEtd0D+KuJlXTB3QCYbm/2dMndAcNcT/qYzd0B/6MlZDTV3QK1UE0qdQXdAOBgqd5BDd0D4pD4AG0V3QH1116RKUXdA1rVBGpJRd0Av7pXxKVV3QI4VSF18X3dAkiTcUkhhd0Cy4z/yjmF3QBqxBsI6YndAMEL52zpld0BSqCjeJ293QAADZmyfcndAOKZUOZF0d0AGzvbd/Hd3QM7unBh4gndAaXgto0uUd0DS1mN2paN3QBdA5+9wu3dAy6/uY3jDd0AmMdc97cd3QG6dAqd7+HdACgZSYEf9d0DGq7Y8oQJ4QOqDCVvmB3hAPqAT/f0HeEAYhkPSygh4QD6VA2pEDXhApCBZU00VeEAO9cpebiJ4QNImo+aLI3hAhNoghdIjeEACoiowmC14QDgtTC+2MHhA9LblAOwyeEBA6p42DEJ4QEKi228RRHhA8ro6V3pFeEC6F82+y1F4QFxkdsiXUnhAegW6QohVeEBClNjc7Fd4QERgaDn5YHhAsMmHn7ZheEBaqwnTumJ4QAUy8VVRdHhAXKwoC4x0eEDGv4gQ0HR4QBj8TvKkgXhA9OeSXpqEeEA8+/UJUIh4QDSr1y0AjHhA5AHNP6mNeEC8ppwHmJF4QAqEy6jyknhAhISTOwaTeEDvv/kEqJR4QLR2n6y+pHhAFNRyK9KzeEAfIEZFN7t4QMRoxCM+w3hApIXzlC/LeEA+xzUaNtN4QOpcmSq21HhAqEcjrzzbeEBHEnjDAPR4QAKwLBKN9XhAuI24vJsFeUBe0w04uyN5QEPVqW+yKHlAWp/eaAwueUDME9p5YzN5QAs/g0zjOHlAwB0X+pk7eUBmRFvSPT55QIa40uqPQnlAoI8EbftDeUBVZkERzFR5QECEREfbZHlAeGjcbsCyeUAP6b9fCsx5QAluUYBC1HlAljx3Q8zVeUDQIfPVT+R5QBgEBe0P9HlAUB37YKUDekA/YU2nBAR6QGjsHyobBHpAQsM1rPsFekCudMDY9gt6QGeBfhk5I3pAVPtvFg01ekB/ambMGkV6QFDrpNzPS3pAls8o1YRTekA4ps6OKFV6QGo5l+UhXHpAy0wKUidkekAcdYREN2V6QBpXQKAvbHpA8I0mqDB0ekB6JtCvHaN6QD+8vznAo3pA22HOViWrekCguOVMFLN6QG/OjNsqs3pAEP8xkw22ekAjz53TG7t6QAxWR0nyu3pAesJNFRrGekDP3qnnQsx6QKsiPaREznpANoYqD9fTekAEFNLYQ9R6QJqN/l5m4XpA1IIZUaPjekBO14n3eOR6QMfgWe427npA0t0HChXxekBAvNCcX/F6QJSNwYkn9HpAyFdnsBv5ekCurHpHfAR7QGMnCYwpDntAH7AJxsASe0DggyOciRR7QBJK3+VMFXtASrTTYFUhe0BO0PqsWiV7QGADT6BgUntA2aUW2sRTe0At8gFdEHR7QIsrXJLokHtAmOPB+FmSe0AaQ+2NIpV7QGgDmN7PnXtASIuXzCeje0Dw5eOWhKh7QEvziQB5xntA5JeRehzTe0DlRejI++N7QMQI/Rkn5HtAFovUrIz1e0BKlQ1AkgF8QPI8xQbaAXxAISLc/fQBfEDCgCWOZgR8QLC78WGaBXxA+dlfFooRfECKCE030BF8QHyaAqblG3xAP9W1/u0jfEAKWeEp9St8QAbjJg4+NXxASjTnuMxBfEDPitL4S0V8QGpUaZPARXxAjBepWFJIfED4mQJhrU18QDwymN3aUXxAMnWp9QtTfEDSn+sNfVN8QKaGHNFLWHxAxwMQ4gxifECbMANT+nN8QC+w59fpfXxAECpFhgmEfEAV429tWZl8QFDTsmmznnxAjGsX6++jfEDUj591/KR8QI1rcQrAsnxAObUDRxC2fEDiy2N29tt8QIB/sTZY4nxAkA5oUBDjfEBC1Mky/eN8QIpfdgdq6HxAesiRRQHsfEA8YrK2FvJ8QL+fqMxU8nxAhXKiKnHyfEBeV3PAAQJ9QFzHKWxLAn1APEtUrEQSfUDCn8t0ZBJ9QIIGN06vG31APB2lKBcgfUB/XAxHQSJ9QKDrHa2PI31ApB4XdbgjfUDgrFprjyt9QPgeweWhMX1A9+KWi5szfUAA4UIcv0J9QJwO099rUX1AgH4tA6l1fUBW32EtZ4R9QCK9HeqWjX1AWMLH1LGSfUCOfi0r8ZJ9QHfLPHl0lH1AV6m5N7qafUDqRkRY9Zt9QBF2OG6SnX1Aj7mvQvyjfUDsfsVFL8N9QP+QwhLmxH1A0KDzL3LIfUAiSPQFsNN9QGLG8OfY4n1AJBrIxVzrfUA2WzQ0j/V9QIZKHc9fC35Ag6s9u+4dfkDiwBZ8OB9+QLK3hfZFI35Awt5GG0AvfkBcjaLiLjp+QFhslt63e35AsnNlk7+DfkDQVheqyYh+QKQqImFkl35A+MPTumOjfkBkVQVYDa5+QKYkMRWcsn5AuLYwQ3qzfkBwXzIr0sR+QMxEn4tzyH5AEt727svNfkCTlHp/29J+QIe6+Igk035Aiiay19/UfkDSVsPakgN/QNAYRnaaC39AMrG8GRgMf0AhcsHFHxR/QJrXrnxdQ39AKDY95XNJf0CmyZDJY0t/QNFDY+SMWH9AWoGeCa1bf0BAp/Ax5F1/QBTv2w5FY39AwyFAeLRjf0D8aEcDMG9/QDbGwWi3cX9AsAv8Vlh0f0DUOOQDZHx/QAXqsF2ygX9AOCvjKKWDf0BAb9EnY5F/QDBNLoiXk39AQ8Wi312hf0D6g05+QaN/QASKPlJ9pH9ARKauEROlf0ADUf7OnKh/QDtLendVsX9AdPUJ33jvf0C/ilPphwGAQLWUw0I0BIBAB6CDk3kGgEBO52oh2QaAQEOXigWJCYBA8S3gJuMmgEAQpuuTCjGAQF6sCiEONYBAYIgENws4gECcSdPMwkGAQGJrKWqpQoBAADM8KvBIgEBtFnQUYUyAQJAacZ/lUIBAeZJS8RNRgEB63DuD5ViAQJbTCD4PWYBAeAFx0eFggEAsgoEGDGGAQGKrJHg8ZoBA+9ZCkPBtgEBqsMDTKm+AQHaXOWzzcYBAa1SEgSl/gEC0WXoWHo+AQLXrdBAdl4BA4+isDmCigEDMN1R83qWAQFjxL+0op4BAO1EtOSqpgEAv+SvJhqmAQDPlX6kRr4BAuJ9a9UaygED+mMnEBbqAQDSfqY9FuoBAyo2s1gm8gED0LjG4sryAQLMcjOvKvIBAX77lQWC/gEDTDMxHOcGAQFBEg6RSwYBAmVcWt23BgEBQef+k7saAQI0xxlisx4BAel/9mmPIgEA2hOebU8mAQHwpnj7YyYBA8EEsU5TKgECUDyKCJM6AQFR2iU00zoBA3k4koSzRgEBC1LpoTNGAQDQFxoRg0YBAAtj9uUrZgEDRdJ+3v96AQAVkipBF4YBA2emXc2zhgECHKsjr8OaAQCtzWFv56IBAIGv43ffugEAx6GMjS++AQPDpTRo+84BAggmvUWn6gEBVpAhOaf2AQFoV2fZU/oBAVrMv5z//gEA7ZuJOPweBQCj2B9g+D4FADMfKerARgUCQOjL+6ROBQP4hfyM1H4FA7JnsGDUngUA0RihTuCeBQHzTWc4wL4FAfhgWpL4xgUDic+L6KD+BQDLc3R2VQoFAqFc0OlxHgUAXjbf6BkqBQARqFfi0TIFA8uPu7WJPgUAuASOiFVKBQCAX+7EYVoFAulD8zuVZgUDitmluHFqBQCrTORYPXoFACOpL3iBegUASKrzgFmKBQF4pWuw2aoFAmkLAerZ7gUCCNTSt6YmBQHjawQsIjYFAqv0jg/uNgUB+KwXyVY+BQKJlBzy0j4FAO933emOSgUDBwi26WJeBQJj+sO2bnIFAMA2+rkOfgUDomED6V5+BQEQLhLHmoYFAvpA3WW+ogUCeIbvw7qmBQKy8okRKr4FA1kxIBUy3gUABTjiY5MmBQKOjRX7nzYFANtSs9n7TgUCg8ary69WBQJRKmpbj5YFAdv/b4+z5gUASxSDY7/2BQM3vMRECCYJAnDG2GJYPgkDa5XJ19BGCQL0gVhe0EoJAsNLsRNgYgkDqOnpNVh6CQIpt5QfXIIJAcnsZgtEogkC5br8QpzCCQPKnFmLRMIJAwos/4vE1gkB9O3TibkCCQJCqkpGjT4JAZNkJ2sdSgkDHmDhF4FKCQB61wqvSWoJAlDg0PjRigkACgK3gxGKCQARqQmk4ZoJAvrqHHKhngkBIwJf7ZWiCQDgjDdlAaoJAgQsxV0OJgkCEBTcH4IyCQNJQ/ClDkYJAuI+rWhGWgkC8UrAXPJmCQFCIDB4PoYJAh0exhTmhgkDnacQY36GCQNYeuZp/ooJAWo/BUAypgkDGxlSpM6mCQCGa6iIIsYJAru4MpAa5gkAglL7LAr6CQHDeVBp+2oJACmGOqIHegkDuBP2ZXfKCQCSs342t+YJAoBwQW+oFg0BcqA6rBgqDQJDCxZp5EYNAH+6OMHoZg0DexX6IciGDQBZBcyNMJoNAqht9S3Epg0BadZ4hazGDQKPhauvigYNA3T7VU0qDg0ACrNxAXpCDQOjklKlVoINAzoQvvkWlg0CS/50zo72DQHEjnoanwYNAmORlQx/Fg0CaJmQrx9mDQF3ZY6sN8oNAiMYLERL2g0A+MZ2WlfiDQKkTcN8E+oNAkJVWQhn6g0CU1B2VDP6DQKzBP5SLAIRA2s+PtAsqhEBKTGcTEi6EQPaBTrNgSoRAEMFDYA1NhED25O/y+VSEQGeCxTT/aIRAX+fi9EhqhEDuFwtdTW6EQAaTQy/8cIRA0EqwSUFyhEDU4ekryneEQAV1bwn8eIRA8kK+H2V6hEBOfB4zfHqEQFRHChPeeoRAhHtN4BN9hECV4+S3LH2EQLhILVfBf4RAJQoz1dt/hECdEWCTboKEQCY/u7IehYRAj/3vfCKWhEAstccncaKEQCamnAcgpYRAutWYbcynhEBM6KHmcMKEQEzXLUEgxYRAHOzjlxfNhED8w1PxxM2EQOwa7cPFz4RAHmavLHTShEDODCn8HdWEQNSFbQNb1oRASf17VmrZhEDF9ewZYNqEQFyWBbFp4YRAQlIBqGLphEBTdpRCve2EQH5QI3I28YRAPWFwMmPxhEDT62uc3PeEQPAwS682+YRAGFfJ8jb9hEAs6cFNKwGFQFgkBpY8MoVAcap3JOJNhUDw6kPF81eFQDfWuus8XoVAhhDPhaBhhUBK8VjroGmFQBanWpWYcYVAYl3RqgBzhUAquPpDmXmFQAWWWEmdmoVABuur7qSehUC9WME2YzWGQP291E1jSoZA2a5SEGZOhkDXVul7CYqGQPw07859n4ZA2jFRPya5hkAdWE9KiwCHQG8f6rHcCodACicCQ24Wh0A+qxKykSmHQHIE+u2QMYdADmKOXYw5h0D5uSeVpDqHQApFFgJcQYdAontZwIpBh0Cw/FcK006HQORbE4b2ZodAChuPL8ixh0BYN15hyLmHQHD3nE7BwYdAEdrXmfHEh0DOjwxuwsmHQNFe49de/odAduYwxmQCiECU+gOQKrOIQL/sfAwyu4hAo6GDzFT2iEA= - - - - - - 75KCRBBWlUSoZgVGPkPCRD27EkV45u5GLCOSRCQkKUX4gNdE/inwRRag4US7oANHKN/WRBD5kERuZflEsgfHRFwekUQ33nNFrRCWRT6bc0TgLlNEYlkZRTZbfkT+rMNEX0JhRNSp0EQLwQ5FWR+KRMT4c0RqI5lEJZOQRD6OOkUfBzxHHeNkRI0vi0RK2olE6Wh0RnuBmUUABTJF4Ge8RDSkz0anlWREquLXRC4Er0QyJYpEcm7gRUcuEkVsDXxEPAieRHBywUSPh7xELn1WRFhV0kRooYtERZqARP8WoUR5vJ5F+xS0RNvjNEYZABNFztoeRoFBhUXr2edEG4jARPIBh0TAxn5FRrssRRof2kRRNY9HUcW7RGDbukRVCMhFef2jRhAVgkQ4IRZFcCf+RL7pKEVuRZBFmir/ROqW30aQqfdEL+bRRJQIoUXvC4FEL6E7RTjpVEe+yM5EDr53RuGnDEb8uRJGbthjRLmmV0TFVxRFYMZYRCDYXURj16dEMrLiRK+5l0RCDjpF3GUqRetvkER76vhEkheYRIZgn0TIvIBFlsAARUveG0VmzN5Eooy6RDsGwUXpCJFEt1zcRe9UlkSx0O5E/6m/RC2Oi0RXyIBE/dgEReVv6ETJi5FE3Fp/Rvvy7UTZX3FEs+6gRNeMCEVvmqdEHFelRFUOIUXIXYNEXNmDRE7gsUSYg/NE2rVQRCC5g0SoLIRE8EdXRP/HsESUQuhEr8PLRJBdiUVHBj5EpA9ARgdMkUUXjYNE3EadRMCMzUW5j2JEJCtUR/OYmUT9po5EXV6KRAhSmESE5mpEpdQoRW2c7kVpB8FEvTNlRG3kBUXWJ8NFOblgRFECNkiaWbZE37lQRIJW7EQRJBNFLwNlRv8Tq0RG6ZpGpbEuRa9xLUZkpBRFytl8RcKH6UbzEJtECSu2RI1FY0SbHrBEDWGbRGHcT0VdFHtEw8m7ROZnVUQWG4JEDKWjRI04qkR/EI9EhNEIRWGL3EQPOFREa2nURU8vmUQE3gRGh1rsRCG3yET/5kZFP6DeRform0RC5wZFxDuVRCyZk0QCXJdEvTupRCW+z0TF+sxES0GQRMrodkRNhw1FeVMLRRcwbEQJwA5FjN4URj08f0QiiLFEe4PyRc0ejkUjSNREcWe0RLmbrERFtIhE396sRPlJgkSfHepEwG8WRRoDqERvn7REym0KRVsFC0VGTnVElenqRArDeEQahH5F3EGNRuktHkYXkodEFn+XRHdkzkWwkHlE2CqkRP74rkS4YKVF4aueRFSlJEZe1bZFaYO+RuR5+0QERbdEyZd7RKKXqkWhaqxEmmgJRQrQl0SLvaNFCC7MRIhNhURAu0pGPRZ9RFk0rkQo2YJE8LhEReb3n0Ta1FdF2/iORLHOhkT5UhhF2OViRAe5m0V8Nc9E31NhRcbUc0R3nN1EOKkURe7yaERzV4JGCht+RQoWnERF/CxGT2OMRbJOs0SiapxEbKDHRLEEAEjpDKNGyafBRH/q7EaPr7BFds0cRgdFD0XzQRlFTu6nRFUep0RPsn5EA6GKRFo+SEX6GmNFzvSaRPdj1kSNSQxFJpahRAeYlEQev9xF+X8XReAdv0QjkChFFF3HRtkQKEay/vpEe7XLROo100REQVRE2/mDRJwchEVtaZdE5S9lRPqslkQGpVhEhdthRGFulESF5dZF9dhuRuxkR0XzKw9FktlXReyuXUTYKfxE8P8hRZOGmUSdtnhFAOpKSczIP0W5bDZFY8JcSKS7/ka2C7tEC75tRj8oHUXzIwtFURUKRbdQnkZHlH1EfWGNRG2YZ0h6jahHR1ePRrXWZEUfNKREAiCGRCIRREXaO8lFHFyGRKBT3UT4hmdGiHkGRvUxREXvMu9ElC6PRLjJkkTE5oREuTAbRX9zSkWQcJ1EIbJgRRANT0U80/1FgLXKRMoWakSOTpVGQuqARDHkMkVnHTdF0NO/RJqT50SnwqBE5QC6R46PpEbG7ulEvMd3RL93CEUod8RIRm0rSOijnETihPpGmSw3RXXLskeyfIBEzxoBR3xQ/0VjArZFRlK7RbUPbkV+DPJE13vJRE5hVkUjx5tEbuTHRLgGWkQ6a51EhwGMREpXfESmyO9E9/mnRMK6rkSHPt1EoPqbRH9rtEeRcYZEEzd/RPr0SUZNOipG6DKjRM9Pc0XE211EwMxiRAv9lEXGTqlE6+ReRMVWtURyY0NGipfIRcCR3UQ1rYNEcxRcRARmn0TDr/5ECueJRtTef0SbAyBGeBoMRYtygEXASrRFxr+eRJ4SoEUFg8BF1BQaRfw2iETY8/9F7/XCRfHeIUWOJxpFIIMvRtlIKkZVJHtERXcNRXHqbkR4LQFFZtPYRNb7z0UYKoREUpmhRAahKUbVnYVFOiiSRFMmhESvUp9EC3aERBcJukZ3zfFHsErkRUKb9kUdglhF/bwrRd8IAkUMd+RGT6Z/Rb0VFEUIpbNGzcmLRfbDuURCM+RFtbBrRKGA0US4apVEeV5BRdrNgUT+dMZEMhKSRNIrjUSpWJhEXBK/RKHdEEemrd1Fo8kNRiD0sUXMRtBFMwofRZxnDkbhFWVEBIxXRXMfAUW/lVFF+KdiRIovy0QgwLBEf0ltRGvhEkVrO3RE0yLhRcOvdkRZHVNF1hapRP3oWER15yxFeyuhRDSaqEQbS2pEG794RCmTa0R1iZNEkB3BRFBSG0cvrIBFmiBeRaiXk0Q6AiBFxwPSRSeo3kQDiM1EEU2iRauvDEWIg2RFoAJdROZpokSqgBlFN1ObRdHgAEUg9oxEbLlbRSSJ70SOq2RFq0sHRdAbc0S0o9xE4ymGRHIbLkYha4tEIadGRcm2K0UI8cFEB/tpRAmdsURtFgJFrENpRI4gN0XiZRpFXm+ERPVSwUTcxLZEjuyeRBffpEUNn19FPq+FRDsVukT2MwxFVTaxRG9FiEQ15i1FhtB2Rmdyf0QYzcBFDvJoRIL3sETCoS5FE1gKRf1cEkVKQytFoSu5RLpmC0YFbLVEmJ+rRDc1jEU2HodEYv2ARLTkCEUwsVNF2QVoRGT3L0bSo15EBpSQRGn5LUboeD9F3bppRX/Yp0SaqoVI/JCTRE4UcUTIf/hE4gDTRApa/kduHnNE37mnRIKMfkT3I5JE9CO0RDNCgEdqEZVFZNNERkvS90TrmptFR873RP6bjETE9r5EcQx5RLC1+kT2uSpFVKv0RLBLgkTq4XtEdb9FRsddcEUUL3xFgABzRNQ2m0SlsodGGLtrRUjXWkQuP61EWlsORZi4PUUGPCpFM+yFRaW8IEUV/25EtmaIRPdBPkgdL8JHr4K5RFOiyUa5/cFEqNbBRd6tm0QSh3BEK4FrRNCygkRiNNtEYWeOREkUpkUqF4VEKS66ROeZG0X15e1EiY7YRP3FiETZPVdFjMwBRU46pUT/09lFy8e7RAOjK0V1XiVFPmPVRJ/vkUQ7mUZExJMoRhoTrEXKxmJEx76URICVKUWQ8cxEmEk4RpymjUSV1JhFUVMzRa/XtUQyGntE2DHLRIdiXkQoQZ9EdnVjREJ8iURvZYpEueF0RQgXjETkpzFFQ0WxRP1bVEQwrYdEf0q2R53YbUTW1hBHZdd+RLWvskYJf+ZFBT7oRR1QhUQB1YBEcoomRdZSy0Q96fNESUdeRPfWZUT8+qlFSeQhRRkXn0RWkqdEHqOPRN3ZUUTuNuJHJKFBRzQW50ZVraxEkMj+RSlfEUUKI6BElM7TRPjjTkXtaJpEOnRWRFa5nERJuJtEYDxlREDzukS7jvhF6+evRbw2gUS8SXxEGFjCRGMijES1UDpEIvYdRf+id0SoTyZF1r3KRMLtoESKGM1FQFDpReJWh0XnFOREY55hRAgKr0bHUMJEOyGCRi8FXkYW8WxE/cqdRjLvsEVOThZG497rRPFLxUUppFpEaumiRBuywUWCwbRFn5cRRU10I0UOBc9EJDaIRYehDUXyoKxFvkpmRVMDhESO6oFF6+4OR6YUMkVxBINGA4EvRsXT3ESuULlFciOVRR5vgESH7QNFsiKERFnMnURqcWdE1vJlRFXCx0SzJtFE+8gYR45tg0bghSVG83BsRMjsgkVhAtVEgYilRELIuUSmL4JFviADRbsvrES4OIVEsO3cRMqWq0QtHpxExp8GRXttE0ZiKsBFB7EyRU+8dUQM6l1ETesfRTtUhUQsvltEJFshRvOosUWPMklFzN9VREsJBEVTpdtEoWutRMRsMkbnvV5FTM6PRA== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - bn9nOHjAckCersDd/cByQLoWPUpuwXJA8NFTusXBckBi3JQ7UMJyQAibbGmnwnJAGP3fazvDckDNrUDcxMRyQP+bMwNbxXJAIPZ5EgHIckCpaNfz99FyQAV6/3JD0nJA/J+d/qfSckAK4CPs2dJyQEMnRjlK03JA7AK3eXTTckDyhIcvzt9yQAym5Fq54HJAmnjhRU7hckAEgxOg++FyQN7FAYAH4nJADrsaKVDickDUXI7/juJyQJ7BN8Ei43JAwid8E8fxckAyzgHRfPJyQLiW+4O483JANQaIGaL0ckAFAov6wv9yQJqJn9r5AHNAllSOrosBc0DwuDJBOgJzQE484afQAnNA4osDe/oDc0Ci4GmzvBJzQHh8yG4GFHNAqpoOp00Uc0Cm5FQVeR9zQO62dJqlIHNAC5wRJTkhc0Bs6gtTZCFzQKSvVsXmIXNAybouyXoic0BedjCTyiJzQO9bxn0NI3NAgtNZ0M4kc0D2TgZBSTFzQD5Uw//PMnNAIp2shQkzc0DmlLH+nzNzQJ5p9eHVM3NAgVw6Fzk0c0B3HZ5ruT9zQCDfkBVDQHNAO6cZgeVAc0B63g45eUFzQBD6vKW7QnNA1+uhw3pEc0DypPoMnFFzQFHN8xoVUnNAjYEOEQ9Tc0B6zFA1QVNzQHC9iKqjU3NAfq6ALHhUc0B9W1GWhlRzQPD+IkkOVXNAHPH49x1ic0DuXGPwG2NzQDgrcY45Y3NAoGu0uSttc0D/Iqn523FzQFSfM3JQcnNAPGDz3Gtyc0BF33oYhXJzQEgGWqa7cnNAmMS8M7l0c0DLg+xYS3VzQCY2SgJqdnNATMSheMB3c0DcAs2q3XdzQIFfOUMqfXNA5JqinHiAc0CHF1x4pIBzQPZEbFIMgXNAXJC34lyCc0BWdYg3hZBzQNTngHAfknNA5KbzK02Sc0AK5Sx2YZRzQGjdGK/3lHNAEF0T0begc0Bg2DMTW6JzQCw+byeQonNAviyvtOWic0BLq2R1BaVzQPovlgt+sXNAVKpWH1uyc0CBfKWaErNzQJuVJXq2s3NA2tdpHw60c0AZ0Tvlo7RzQFtgm1L3wHNAjM1ihM/Cc0BGMCOfJcNzQGrtog/X0XNADHTpeLzSc0DSZJbZ9NNzQHoqs/Ti1HNAvVYw36Pgc0CGqqoxOeFzQLdgMH7h4XNAB8Nex3vic0Dy/vJcEONzQMA3z5gT8nNACNCbiWjyc0AM00MBz/JzQBlVckA39HNATOrqXov0c0DK/wsRQ/1zQBN9F6HjAHRANko8bngBdECY4AELpgF0QKL6Pxm3AnRAKEB5v00DdEDItZPFTBN0QMEec+J3FHRAjsG+GEsgdEDiNy1TuSF0QJko1x5nInRAxqZCD7okdEA8er13UzB0QExjVlvkN3RAnCiw5VNAdEBC0vFRyUF0QPylIgg+Q3RATnq49XdDdEBSmpSyVU90QNJIbDRjVHRAejl0bvdUdEAh8xvsi1V0QNnmwi3aV3RAOsAGmblgdEDOqMEBCWJ0QLfPpBl7Y3RAgLi4KyJwdEBefqw2QXF0QMAT1CU6c3RAghlMcKJ0dECcqLKGN3V0QFQ06m/3gHRAYnW6fg2BdEC2rrpLToF0QG1v520mg3RAhnmSRRaQdED0RH6jT5R0QOqkJdO/n3RA4Zpjae+fdEDSnSYiIKB0QHfydgOioHRABA0d79GgdECKp9yVOKF0QOxq6LIPo3RAwOHfKfyvdEDOCtkjxLB0QJQAOBZvsnRAhJ+H//qydECoFtRjyLd0QCtuUooSvXRACKacyCO9dECUCAwR3r90QNLptvDhwHRA1RQ20nbBdEAz2pTce8J0QAMH3gomxHRAxBCr2bfEdEBGx7cQysp0QEanLS78znRAduQnpuvPdEDIhvy6PdN0QE103k/g03RAXOT7gM7UdEB/vXvTzN90QPR6psuM4HRAjtGYf7jhdEDZUDt5TuV0QPYRuKGn7XRAsHN+FMDwdEC0vARzjPN0QHKFjGDOAHVAlEpNi2MBdUCWoymZ/QF1QDRhsAVdAnVAvBFShZoDdUDrckkSlxB1QEDimzpqEnVAHjUuyiIUdUBcmWLZTyJ1QFRLOtmcInVAM6DMD6sydUD4EuQjzDV1QE77u7b4N3VAyqCmzU49dUDcvC7C3EJ1QLoDMdTiT3VAJBd1LoBRdUDkWF3RulJ1QKohCYJOVHVACI+wnndVdUCuQer38191QK5rIHcPYHVAG5bz2DdhdUBuNhWx8mF1QD5IWVYRY3VAsLABf3dydUDiD1gxjXR1QLQsnSdse3VASy3UXHiBdUD+juCjrYF1QJACJ9u3gnVA9HmDnKWDdUC6HxaKmYR1QNBaxpU9k3VA5Dm/ZZOgdUACwk5OJaF1QPLBAOa3oXVAJXyn5pCjdUDLafWzXLB1QGJDYc3wv3VAk+dkH83AdUBC6MN7+cF1QLi874WmwnVAFsGHKjTTdUB+8Y8gzdN1QBD732Ek4XVAvnpyAAridUBKgxuRiut1QJOtVBtM7XVA3LF2MynvdUBEu7XJpfJ1QBRO+OaS83VAsomVQu73dUCsAmUF//d1QILANail/3VAmCpA2EgCdkBz0SIM0QN2QOgBufZMFHZAqtV5YQsWdkAX9PrHiCJ2QGRpMpVlI3ZA9do+dJAkdkBte17XSit2QIDGO6EfMXZAuLCpmlAzdkDmO6N2nzR2QIgaQUnjQHZAgDitVB1BdkDs+w4VmkJ2QLARKJHJQnZAb4CnTHlEdkBo2zm4ElF2QMZ0+3jNVHZAN3iwLNtkdkCeV/uxkIN2QAfTB7oQoXZAUyXLJ7ewdkAYrsPpwLJ2QB76ja8MtHZAWmCvW7G0dkBolNEywMB2QGxVSDrPznZAirQ2QYHQdkAUCHQ/9eF2QPGLuoZm8nZAMwivJ5LzdkDc/bVNMgJ3QKbPSWMBEndA7992z6MSd0BM9OyAKCF3QCN6izYOIndAnr2hAXQid0B6op0n6Sd3QGpFZiBELXdAB5V7GuIxd0AcZurYpTN3QM0APv8MNXdAE0Dbz5xBd0CZ7cMyr0F3QLeiSc7XQndACtJEVpJDd0DcxU7rGkV3QMu+e1pLUXdAfQNPdZJRd0CzVQXrK1V3QCqF9mV8X3dAPqRzyUlhd0BGCsRoj2F3QOMRNduhYXdAFlEnHihvd0C8mk/MPXF3QNpds42ecndAzu3U1fl3d0CFuBgyKX93QEwwtgJ5gndA+vVjIgqSd0ApzKScSpR3QLZGHr6ctHdAdXbRO3K7d0DLG4UaesN3QLLHEK3k0HdAKIUKl4vWd0DTwKlqUfJ3QJxkRFl9+HdAwE/pgEb9d0DqLEr+nwJ4QOqmi5joB3hAtjZRp/8HeEC86t1Wxgh4QNgB3qBtInhAhJLeGowjeEAGIczxmi14QBj9PxsRRHhA4F/NTnpFeECS5n3aylF4QLIGfu2UUnhAtikjaIhVeEDnP4VtoFt4QEerutL4YHhAhpB8YbVheEBc9dwPuGJ4QEvShiEmdHhAIG9pzjl0eEApLxfeUHR4QJqLqeVndHhAP38uzIt0eECKfRZfu3R4QAo+gGbQdHhAUQvqKeh0eEDZ45ivdXt4QHBG2iKlgXhAxulgiM6BeEBYMTlAmoR4QHRSRONPiHhACbLyyamNeECEnuUWU494QDp8rtS3kHhAmsBiNpeReEB5LaA27pJ4QAqSAloGk3hARqxXvqeUeEDEy5SGXph4QIXfgdizoXhAom8eTWujeEALrrDto7N4QBwRcl28s3hAEPBNytSzeEAekppB47d4QMlPTlQ3u3hAO7+YTM3AeECWyKL49cF4QPw3BTU+w3hACkf5tgfFeECfRu7QL8t4QGim4B3WznhAf3PX/zfTeEAMj/ajudR4QNuKO6nR2HhAzO5jFqXieEBs01N6AvR4QIkS/W+M9XhAlTYCpQ4EeUDMYA0tmQV5QBLAY/O7I3lAWqQ6nLIoeUC+GA8fDS55QKqiwXJkM3lA/Gs4reI4eUBIOPSXPj55QEyswWijQ3lAfAgPy/tDeUDyediCzVR5QB0+/zvtYHlAinioe9tkeUCJ+OeCRHN5QPwxIMXAsnlA5ojLtczCeUC96Ug2Dsx5QLxqKk9C1HlAtDBsW8zVeUC2fs4TvuN5QEy39ycQ9HlAUMPLrKcDekBlMw71HAR6QH9+ZUj4BXpA0KdQsPULekDeG8uV9CB6QGKDDt4MNXpAp1JKNRtFekCZ4VQYz0t6QHqVT/HWU3pAzUmuTitVekD6+3rZIVx6QIYsN71XXHpA4sfgT21cekBd24HzJ2R6QKg24f1HZHpAyAl02C5sekDUDK/HjHJ6QIBLrusydHpAOC/2RMB0ekCGvHo/opR6QIlB/sIdo3pAnh+ISySrekDYScX+FLN6QA6VCgYos3pAMqd/Ug22ekDE+x2PHLt6QHrpfpggvHpARuw4QBrGekCOIujeQ8x6QCTvKmdl4XpAEkVxWjzkekDmXL5oN+56QN6DoIwX8XpAfhLMsmPxekDTQO8wSvN6QIJ6V3y+83pARgU4XCf0ekDxoD8BfAR7QEIC768rDntAPBnyqokUe0DRVVoLTRV7QCEcBjgDGHtAX7M+oFQhe0DtuB+ekSR7QDifYq9aJXtA+oKqBZRTe0DkJRdVxVN7QIjcWtoOdHtAzt5CWx2Ee0A0AEq965B7QAuF4Z7ClHtA4uth886de0AlsudzKKN7QNv9txaFqHtACJN3cAave0DA0NYB+r57QArfFSJ6xntABrr6j6PRe0DzDKn3JdJ7QHoXJWA+0ntAcL4eqPrje0CMdtJZJuR7QCACcA+M9XtAROvblNkBfEBRP5N50AJ8QNxfXMBlBHxA2BGbQZoFfEAQHq5MjhF8QLl37v7OEXxAyEJOMKgVfEAS503u5xt8QEGVaEq+I3xAt+3EmekjfECnyYlWPzV8QCeFlJDNQXxAQv7UKE5FfEATSGJ8vkV8QH5k3R5TSHxAWh9WF6pNfED6IYxjDFN8QCEBGn9GWHxAQBGD6Q9ifED86jF5KXF8QF7azjz6c3xALqXi7waEfEBMSNp1WZl8QMKqHHGznnxALsijKvikfEBtKT1mwrJ8QFZ2Fb94tHxA1oE0/8rVfEBC4TiGZ9h8QFiO6fT123xAx4it1FfifEABi5qUEON8QGHivZX943xAxML3zm7ofECgsLBFBex8QOzq1hK67XxAuL1obhTyfEDMmQcNVfJ8QFqM7O1z8nxAL4pegBDzfEBMVmIVAwJ9QC7A6CxLAn1ANju68EUSfUDG1wj2rht9QERRD0uSI31AcAwXMrgjfUCEaLIDvCt9QEgx87ShMX1ABu1mHap1fUAbgrAFZ4R9QKmKgeSVjX1A5MCYrrKSfUCyXUXz8JJ9QFadkQJ0lH1AavGhQTyYfUAm5e/iupp9QGtPl+X1m31AYj4BPP2jfUBM0NDWoaR9QDJwTUosw31AhE3UcOfEfUBuPkonsNN9QEeBX+zb4n1AttJkrJD1fUDmn/aQ8B1+QK4IdxlJI35AaB8WsYEtfkCGwLqbQi9+QOzFkoy+S35AZwoc/79QfkAey8LXQVV+QMjKtFu4e35AXKrdbb+DfkAIMIp6KJx+QIoiasUSrn5ARjoik3qvfkBxOAA2lrJ+QETOW6R4s35AHRS/cdLEfkBGY3nzc8h+QBZKrVTLzX5Ab82xhNzSfkBSmyEcJtN+QC79iU3f1H5Axc/PjsrffkA8E0Q85eR+QAjrxlsdAH9A6sHnnJUDf0BvcU1Dnwt/QLaiQrYWDH9A/gTywh0Uf0DSQf88W0N/QCVkDL9jS39AQMRXhzBQf0BA6xXDi1h/QPufdbWtW39A2AVRWuVdf0DcM1hkNWN/QNqArgq6Y39A5ruTKjBkf0D55VvVL29/QO9Vu6y4cX9AsrQT1lp0f0DukjynoYN/QDvAZtJxj39A2D2NrmKRf0Ag6k2smJN/QCUgDE1doX9AFuCTRkKjf0AO3fDhfqR/QOpJ4+UOpX9AfAfSfpyof0D86dYEVbF/QEQuqsLDvn9AxF+4nVTif0B6L7VMiAGAQJr7ouI1BIBAsHk/q4UJgEDaQv7/yh2AQLefwY/iJoBAFJIfQ3gqgEAPX4ULCjGAQNjAqcUMNYBAAF0L7es3gEActWNLqkKAQAqdKmP2SIBArMXgbedQgEB0mwKLE1GAQIjlbhTmWIBA+4nsEg9ZgECd6YLRR1qAQPJIiDX6W4BAuPCjJ+FggEBuDXXt7GWAQEfHD9U4ZoBAvfA3JkFqgEDAnoub8W2AQPoLEfLvboBABgdrrChvgEBm6zlE83GAQJBJUoF9eoBAPmqOFCl/gEAc0utMcoaAQFJWSMUej4BASnoo+iWXgEDqtkHeTJ2AQMRDfGEAooBASIVPu16igEAhRWPI3qWAQCzwNlOGqYBARSVN/uGpgEAAU2GaE6+AQEJsMpQbsYBAw+faF4OxgECEElne1bGAQJYxLc7msYBAHBE4V0aygEC4tJigmLKAQFigh9VNs4BABKGfZHy1gEB43QCUBbqAQOiI8AuduoBAhMP2wrK8gEC0G6v7fL2AQBLrimhgv4BAogYclnDAgEB2FyCDUsGAQK+I7SeewoBAXdqS4unGgECkfh8NrMeAQCglmpsByIBAEtDUXFPJgEBCAqMi2cmAQHU3HPNWy4BATHS8wAjPgEBc1rQsTNGAQEa3xPxJ2YBAeNViRMLegEAcwwM8ReGAQFBeD6H16IBACoPzkgLsgEDzcLdi9O2AQGpG0JJK74BAGn7IG/LwgECapoyUPPOAQFW1Ci9n+oBAsIQT4j//gEDZgtxQ9AaBQGiis5A/B4FATFN3bz0PgUAyPNjTNB+BQC7D3PavH4FAYG++/pUlgUBQldOlNCeBQDDhBX4xL4FAZKFC57wxgUC1IugySDaBQGZD+jgLPIFAqlbuZyk/gUAwHSrilEKBQGuRs25bR4FAVIIGXQdKgUDctbxRm0qBQOJKlb4VUoFAMg1MoBhWgUAIFSRv51aBQHLL0dPJV4FAwK6Zn+dZgUAien6XHFqBQBY1W6YyWoFABhv0Ug9egUAfxVfsIl6BQN+W9VQiYoFADh/oictmgUBc/4mkBIKBQOa88M8FjYFA3sfH0VWPgUDR/gf4s4+BQIyraV9ekoFAxDerzFaXgUDK0RxrRJqBQCSefRSdnIFAVLYyUUafgUA2HvFkc6CBQBgbQ9XkoYFA3OM6h0umgUDzfkwGbaiBQMpRanUiqYFAY1FwH0qvgUCsHcSmbrCBQKYYxe1Mt4FA3j4NWpK9gUBOjjMm5MmBQEjC4jrrzYFAtjEmP9/SgUDxU4xrfdOBQAYZZxzs+YFAvgWBrPD9gUCEBhqZ9QGCQP4gm6YDCYJAkl7nQvURgkCwqhhDtBKCQEzz/y7YGIJAcJhPY1QegkCtlUJ41yCCQDx5p0pVIoJAZ6zwtqEngkC4xzJB0SiCQBxs6gWmMIJASlG+BNEwgkDNqhHk7zWCQGKucR8/P4JAQoJBijhRgkBKnnigB1qCQLZvrNszYoJAQP07C8VigkD/5/RaNmaCQATjexZEaYJA/06tg3ZsgkBq3L+A2XaCQHD7rIXLeoJAcLOGZ0N9gkDeMF82Q4mCQPTG2fzcjIJAwzjTqWuQgkAs7zOtQ5GCQMDoA6LBkYJAHIwcsRGSgkA2ZYsbOJiCQBra1j50mIJAvm0ScjyZgkATvfuJDqGCQL6/k8o6oYJAfBLW6A6igkCsa3eSDamCQG5ZjLc0qYJAroBLPgaxgkAU3wVIN7GCQDFBtRAGuYJAJP6qA3/agkBMzwu3R9uCQDjiX4eC3oJALKimAYXigkAYqvFdq+eCQD71oSmv+YJAebvnb70Bg0CsJDL/4gGDQKtjJaF5EYNAqmCCh3kZg0CYC1aVSyCDQBCpIbFyIYNAjKe5ZYshg0CpeiIBCyKDQJSlbsRvKYNAIWpZTPYug0CYJAC7aTGDQBFcQtgTRYNAprCy4eeBg0DKVJ+5SoODQGXMRSdekINA5ocJ+zedg0CaBdXvWKCDQG3jS32ivYNA+CKrE6fBg0BeOKWkH8WDQMxUSfnF2YNAShFcL9Ddg0BccnKYDfKDQEixvlXg8oNAGmToMRH2g0C9WifPigiEQI1O6NQOKoRArdZepG0whEBaZ2Z+YkqEQGlJONsOTYRAo+RzgrhPhEBgR/7BaVKEQOfEapmyZoRAAi2AYf9ohEDqN9zhW2mEQEhciWlIaoRA1lGc4EtuhEDKkTOy/nCEQP6HEdBNcoRAcKzIJMp3hEBAHIn3+HiEQAwSn2tmeoRAVKrWu316hEAWr0uoEn2EQOppmb8rfYRAm49aZMB/hEC8/SuA2X+EQB3Q3pjKgIRAcYxpnfSAhEB0aP4bb4KEQGCatSwZhYRANxQ3USCWhEBO0lt33JeEQLCjoXK8n4RAWMYB13GihEBUUlTlIKWEQDEE+QmXp4RAoLzbNs6nhEDvq+QbGM2EQNh9NMjGzYRA0FRBzsXPhEC5QDuxcdKEQOiS7k8g1YRA7Hb4TFvWhEDi/k9CatmEQGdJdtpb2oRAphp8HGrhhEAt67Ed3+iEQBxOTxpj6YRAis99jsHthEBy3eHeNfGEQDrQ3cBk8YRAcG8zat33hEB+pjBdNfmEQBKI77otAYVAtempxzcyhUCJ3gLvOjaFQPDHdMjgTYVAlq3EBz1ehUCAWISAoGGFQBBTETuKZ4VAPJ1fO6FphUBySY9wmHGFQMm0zH61c4VA5FP+yZd5hUAOyNNsjYGFQExJ79iImIVALFAtQJ+ahUCeoOkCpJ6FQHWkSg1XGIZAxvhCnqcdhkB80kauYkqGQLQIwGxmToZA+/E0D8t9hkBUCscW4KyGQHsdczIjuYZAYVKXWynBhkCsGNU4bBaHQCpT5KFxGodAbNYGT5Eph0C4uF8KkjGHQGIQwP+IOYdAUgB+AYdBh0DKQQJgdoKHQAeD4YzHsYdAcgprw8a5h0C/j/J5wMGHQPKTXwS+yYdAoQ1dJnHYh0CiGPwlZAKIQPPT6ci7L4hAykZo2DlIiEAHSgqnKbOIQJZLG1Yxu4hACBWFEznDiEAmxnMDU/KIQA== + KBZXds7jZUCmvpxNHCRnQBTpB48/A3JAjgFH/L2yckDkVUsBViN3QJxv+dwwlHpA8sP94cgEf0Bs3DxPR7R/QBYzu1u8EoNANp2M0c9ig0AWYqmFaJuGQA== - + - wMmARPKnnkSKyW9F6QKyRPcDEUU4lsdGgLLSRJ/cp0SKHddE/l8ERvEMP0SAavxGSiNrRFHzb0Q8wEVEYEmvREZo+0RJgvtEK/OeRFtoiUQ5KoVEQiVeRdcAjkXuv5hE/YocRZkZmUSY9+JEmhnrRCra5ETfnNJEyu97RJLVnETioWhFbrgAR1jmNUYATp9FQFK8RDIrAEWiMgVFZ3CrRvvIn0Tt54BEHA/pRMo9DUUUY75ERfqtRYud70RatnFEgYFSRFkySkSakIpEpNidRHNgxUROIE5EebTAREzhX0W+AY5EdYwWRgW0TEXl2G5E27wVRlMkAEXqHnVFnmWnRJ5/h0Q1R15Ei5lGRVf1jkRbc+NEiflaR6gG4UTlTI5ERQMARncA3kaUSoZEAz2hRMynBUUdXI9ET2XsRCSep0VIt2hEvHjPRn9PyERbWQJFroeXRVBnDEXkEGdEalA+R6Df8ERBYndGdW7nRdm5AkZ1LbpEC9aDRKrCREVUCpFE3FSiRJa5lEQOEo1F3UMkRZ4wf0TpZ7BEdOS/RTYaxURJoiFFTPKnRCFyqkQGy6NFYpu+RBon1UWCRGFER8cfRd6Al0S/Q1lELV9iRMG1r0SzYSNF9pqYRFiQGUUL76tEnj5WRhZoq0R2D1NEQFGERNYVnEWRpbpEk1ljRM5k40SBjYRE7BNkRIMdhkS0tpFExBi2ROrOb0QIIohEPTtzRBLSeUS3Y4REChEGRU8Ty0R9J6BEIMiHRTQ4bkbMiYBFtaC7RVB+TUfkPEVFsISZRH7I5ESm/+lE7I9rRKcc6EWyiQNF39KxRWa1cURSaopEPYJmSHGAg0SsIYREq8SwRFAZtURFsKlEeK+ERgv8wkQZv6pGEzUGRUgsAkZMGgdFK0gHRRG9Hked0pFEZPGfRMtAkkRT4INE9+GMRHvaNkWmnq9Ee/ZQRaiQXETCt7JENW8FRUUvGkWQzYREXl+cRL8dmEQ4HKZEzViNRDoXq0X5ollEkTWFRGB6WESFDhFG9tCBRKV2aUSXC69EHQY0RanGlkQCLvFF1yWPRKRgTEUHs4JFiuZZRIeiVUTeJaBEcTK0RMWHYkRMVINE27gJRej3a0QLY+NEqs36RJD58ERQxIRE5i8aRazeBUamg3RE7AfdRGBBwkW174JEL6GWRYe7d0THj2dEfYqVRBP/YkQdf3dElafSRAYKFEUFwVdEgJ9rRAKkzES3P3pEWDNaRNMu0ERB92FEZNbKROoV60SBY2lGDGFtRB6askX+t21E/CnGREI+pUQysyFFh4ISRntZEkX9LXFEVEzcRCqjnEX2t/VESVrmRcWwokVVRahGxPO9RCMvg0R9LqFEXym+RWwptkQHqdBESdI9ReNLcEXxbD5GrtslRa8aP0WP/VtEX5SRRNCtIUWfHYxFDMt/RHR8gER5Rk5FbeqLRG8PgUQ+UXdE6Bt4REY3xESc/4lGxEOgRP7dSkSUOTxFdHGnRO++H0bdXZdFrIuIREOu9URwLelH1TmuRp0R0UV7kI5EfOL9RIOMyEZvbYRFC96BRnGmp0SMWf5EDnWJRL9vCkVh/fhE7c2BRat0RkRDF+tEv58TRQFTUURj39lEuPhrRI0y30RfypZEb4vHRWmLtURZdnNEqcd+RAfhFkVsH3RESAevRkAUyEUFJhBFVvazRL1DlETzlFpFKaSHRGnjnESvKMFFXYYsRqdy30X9QCtFm1MDRYwcaURrLydFcooDRUlAg0TGge9EZ4IdRakpW0UgLdFFTLBFSTXYbkUYfEBF9nc4RXj/gkQjp3FFhHOMROmrP0gOPuZGrf45Rlm7SkS6lZlEE+VQRQ1skkStAPZEFbK0Rhmgk0S1HDhEAkjKRMEUgEScm05EX7eZRODjfEQ0UEVIRJq9RLFuf0S1JIdHPSqFRMmjiEZn6s1EyrKJRUYMg0S6dndEuL0ORYCKoEXCpMdFqjKmRJApBUWfXMRE5DgNRhWZvUWeiadE/hGhRH/mukQhGmhEfbDgRHLRVEWxI5REAwGPRCuPoUSc2StFn0dhRLiNukSPkZpFm1y6RAFvqUTYtxhHpmNxRGYopkUL5KxE0NsVRT+pF0WPDLZHwNC6RjS64kSt0K9EQiEXRXkdrkiq8spE4iqMRFlbC0jOeh5F4232RnG7V0TzYodFpduKREhrSURyxMVHmtwiR8CXCUZuLs5FhhTTRVIzIEWQHO5Ee3/RRKcKe0VVKr9ExQaFRIxxDkX7R/NEkmLQRA1IkkRbn7tEbnwxRX9TCkis9bREOZuvRiWNH0YNsKZEpLWdRJf++0QsxilFuUZXRCSnI0WJLBxGQf0qRe0yfUSkV2BEAvIqRnD7WUVVEiRFQzH3RPHzzkQ7F41EedzVRCYf8ESn9MxEFZ6BRCqPJ0V7ZIlGQ2FFRttPRURedDdFEUWdRaZjXEQfLoRFmJ+CRPVZ20WA7IxE8bakRPPXrkWaJrdFicnYRAta70SetzVGNHzsRXwzEEUCeI1E/CS+RArUtUScp+NFUBW2RFZdikXhEbNFY3xvRO9mq0RevrxEr/uCRJD7cUQOQJ9GJKfKR+LJlUXm3JhF8BSxRGxOn0T5YYlEWB3cRL3rxUboIy5F59ZSRLgOuESOLoBGB/RIRY5E8kUm7J9E11KCRQhpj0TzU6VEgXmoRNmG2EaE7OJFOKSaRTL9hkVLgIBFZKx1RNOKoUT7s+dF1rx3RSJMjEQquo1EIygdRUSn40ThW3JEcRO+RGZCXkXWVYtFXpp6RMcTgkSXQspE5xCORFmcVkT8kkRF4cieRNBBk0TtF49Eqe5zRKL7NUX/lDVFisOJR7W6u0UvRCFF7c38RFhgqkRUc1dGR/5aRGhQ4UTbE4pEcag6RfVlpkTE85tFzll8ReMSbEUOsN5E6epnRNvnaEUO2o5FETsvRbAhoEQ1N89EK+VsREZLxEQdCqVFSmf3RI4+mUS+/5tEFgdIRtY8qETTFl5FcmnWRKvKkEQK6ZFECwoSRbOSPEXZzo5EPjtkRFwgBUVVZ3dFSTmIRM5LkkQa35JEefF8RCG2rkVVbLpEU+tyRAa5p0SbTRlF5V8oRYzFY0Y5NYxE/ZuIRY64i0TNdXZE1Jl/RBtSbkQuj5BEHOBRRGOjHkXU+LtENWsTRT4ZtkRPjmBEQdCKRJUtX0SgYtpFpZOWRJCHiERtFrNEGq0SRcxGK0XgOhtFTlj7RN3NaEU/LnlEYrRcRHbn/kQZaqZEp+ycRAmIvUTMN7hE58HRRKLDBEbcuURE4SQaRss+1ESuS6ZF+7GZRDh/V0hON4xEnMh3RELpC0VK6UxE4PewRyH42USvlHlEAv7TRC4nQ0f/5hpGc+q8RP77kUUE1ZhEHUNwRAZ8kERqAfJE/ZRXRIdojERt9J9EChU8RtOPg0S1GTVFxt4oRc0KnEbpSVpE4vNIRLFSjUWfjsdE7suyRHogrUQrK4dEnZklRcW6a0Vi7IJF57GARY3Rm0RaNRVINi+nR9Kuc0RfH3VE/BW9RPEjukaRhphEjM8eRX5GdkVWq5JEtG6CRAMAe0QcQ4RESQ/YRe4vkESCAnpEKJUQRYxztUSFxy5FVTnERGmchESIwiJFZY5sRDOhEUVcVKdEpcbNRYo6rEQINeRE49pyRD+WHEXkDAdFDHhLROwPp0RvMipGXV67RQu3q0RBta5Evyb/RB1600TexkJG2xSwRHmEj0X7yIlEmKSNRCc1Y0Vu11JED3mBRPv8X0UpMp1EYCxHROyAEkXy+dhFsa1QRTLlW0Xs671ECaaYREBClERq42ZEfvp5REJ3zUddMItE3dlyRJKrNUfKC4REnElyRFcsU0QRsY5EsxP+Rhbpl0VBV/JFgjyERAIkGkVyzjFFFnzGRFkBhkQHTWtEo1G1Rabm7kSvoYVFpgTTRNXcpUQBtKFE+uywROecg0Rqwb5HusIMR7tUwkSC/5tGKbEORToMcER9fr1F/OZWRBHa9kRChoREu21fRLbIpkRvHSpFzVGSRAj8akR5eI1E53bARBJMh0RYSxZF2/bSRFFuLUZ0gM5EBLbORSqDWkQCG0tFYyFwRJOPbUVoFCNFoguHRHc7qkSvTJxELDD0RT0yY0S6lpVFBXiFReA7RUW6XKhEEE+kRkFxD0X8enpG55XnRQhuU0bwU8dF2l3lRRYZ3URPCWNEG4p7RJXqxUV6aYtEKOd5RJwqTERErIFEFji2RZ9nsUVCw29EKcgBRQaihEX9pelEmmvfRZqgR0XgnQxFWvp6Rca3C0d4YRRFuBqRRvZhi0QPYzxGektsRN0/gkXXA41FkckVReCGC0Vyb7ZEM8/CRBmdmUTFYrJE5vmXRF+V3kbzkJ1EtGIrRooQ0EVzHrhEKd9oRXp5jER+4YlEfI4fRSTxFUUqvV5EO8FvRLhzAEVDbTdF+6GqRH8WYUSvQbZEJatZRB2MwkQ5OYlE0zclRshekUUkpGJFYIzIRBQLfUS+yAZGH4eBRYYfNkVXio1EBAZqRG25x0Q6GXVEuHKBRN+MFkaxM0BF8fKRRBMcEEU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - UFswBHnAckBywg0Pb8FyQMyZ8gzHwXJAPBTbNU/CckDYABkHqMJyQNK9Jmk8w3JACecK3sTEckBSS/ymWMVyQDJ2s8QAyHJAOlxMvVrNckBJTevUQ9JyQI883K6P33JATiHJjLjgckAYjEhp+uFyQIBlNbBQ4nJAKudec4/ickCsLuptIuNyQOljKbHJ8XJAzoCinnryckBcLoLWt/NyQA9Y1bif9HJAm9ZWjMP/ckC+4CXM+ABzQHqu73E/AnNAACXWOdECc0DGR7bZ+gNzQN/qpAkOEnNAbihi6LwSc0AoJebcBBRzQJJf6BJNFHNA5mBhYXkfc0A662f1tx9zQJdehk2kIHNApYp+XTkhc0ApAPq2ZCFzQHYN61oQI3NAlixuic8kc0C/h8Y2WzFzQA6TDlnRMnNA4cBxADc0c0D+UsyB3TRzQFgv9R25P3NAOEprJeNAc0DmzwSfeEFzQLw26Wu7QnNApdvtgHlEc0Agn/WSmlFzQKr8wWkRUnNAEICZmQ9Tc0CZsON1pFNzQLQ3xcOFVHNAFe3Vbu9dc0C6mx44+F9zQJDNnRmOYHNAwVoWyR5ic0A4vi+KOWNzQGULVdiRY3NAmCLm1ittc0CmtJ+R3nFzQJHwRT5TcnNAtNuVVmxyc0DAe8VPhXJzQKJSB/JLdXNAGSqIM+B3c0D6ozbrDH1zQF4Nw9IrfXNAhLIQ2XiAc0Dim2O+pIBzQIVAerINgXNAXuSH7FyCc0ARRITuh5BzQID6PoVNknNA3huDDWOUc0D+eV/E95RzQDwj9je5oHNAFrPwaE2hc0AOAqhHraFzQNz2IZVaonNA4J2hhwalc0DoJvpoz7BzQG1Lp29ZsnNAXuGe9bezc0AezbopDbRzQKdp9BD4wHNAag6UltDCc0Dz101SJ8NzQMMtwKfX0XNAEvVinMDSc0CIyf0v+NNzQI7B62zi1HNASLUcxzjhc0B8gykLZuFzQE443QN54nNAPucW/DX0c0D6WdH6QP1zQAK0903kAHRA7DZoDnkBdECMjBvApwF0QNTndxSKEXRAgZ8CeTUSdEDEZoebTBN0QKKp2+13FHRAIx9nEksgdEBAs/2VtyF0QDRw/nVUMHRApJyjiLoydEAOYS0t4zd0QEpmI0V5Q3RAkAHQ/M1RdEBFnbDxYlR0QMy8Gt+OVXRA4dydwLlgdEC5I2Z3CWJ0QDYJGoF7Y3RAfm4eik5kdEDJUJ9nInB0QKQoS+NBcXRAjpwuQ8xxdECa3S0GF3J0QIa/BN05c3RAMWLYgKF0dEBGwGq4N3V0QHzUAVT6gHRAAh8Qhk+BdEBAnBW7TYJ0QCzI8yC4gnRA2s/PDM2CdEAYn+3NJoN0QL3dcb8WkHRARmGTV2uQdEDe0IMM8J90QHh+HSTSoHRAzc0sCzehdEDDvyduvKJ0QLA9cBIPo3RAxmGZqPyvdEAiJVngwrB0QKhOsAZwsnRAnAqKpMKydEAnvBnV/LJ0QBqTONfIt3RA9DDSTBK9dECgkpvg3r90QArJfYPmwHRAWrRkC3zBdEAmM4yB6MF0QDKvp8R8w3RApBYM9nnEdEDsnJlNt8R0QEnKhYHJynRAVLFk/PzOdEDokwJi6890QHI6ydPN0nRA5LF6u+HTdEBWAdu40dR0QFSLMRLN33RAo7iiYbjhdECWkTzgUOV0QMpvgqf47XRAULN1dMHwdEC4U5oQjfN0QEThKW6iAHVAHLy6F2QBdUCwJEODXQJ1QBuJe80jFHVALgsDkVEidUCBmSwEniJ1QCQwOhnMNXVA1O662Pk3dUBYQaSEVT11QLW8BCgnQHVAIBEosNpFdUCath809091QIByQKyBUXVAA2FltXlVdUBu0ukuOWF1QESZon31YXVAx4cZd9NidUDGnhwAZmN1QA7LDsZ2cnVA4TEqkI10dUDyoM9gbXt1QBxt3G96gXVArsHL/KyBdUCqBcd+poN1QPcsmI+RoHVAOgEyWrmhdUDwwNFQW7B1QC/MnfJjwXVAjEKr1fnBdUAmG6ntzNN1QJ1hrLnl33VAetoWeA/hdUBOrGHpCOJ1QAmEOLGM63VAmFeZyEztdUD1bbnrpvJ1QBjgdr8D+HVAMKn9faX/dUAl1OK4SAJ2QH7JgdzRA3ZAgBA9jIgidkDJ1iAuZyN2QF60sWOQJHZARIOMDksrdkD19+XBHzF2QBLpINNTM3ZAlbx7JqA0dkAnNcSg4kB2QKL4hjgdQXZAUjq4sZxCdkDGL68Vy0J2QES91MYRQ3ZALBrN63lEdkC0kXqUEVF2QIbZg2zNVHZAmhCgktpkdkBnqHJwVWh2QIhTDFa0bXZAuqZ8ipGDdkAKytuPXKB2QADfi0ZRsHZAWDqqzcCydkDqZ22bd7N2QEmzjJQNtHZAzISGOJ3AdkCZW5aTwcB2QDkOmfZPwXZAK7COPs/OdkCmyLGu8uF2QMilJuqS83ZAytYW2DUCd0As6VaGARJ3QMQVtDKmEndAAALNZw8id0Ccva5uuyR3QFzAWOboJ3dA26ehkkQtd0BAibaknjJ3QDDhgrulM3dAVGswqw01d0BK+ClLnUF3QNTcA+OSQ3dAHJNBcxtFd0CMEVZUSlF3QID6tyKTUXdAQmhBVCpVd0A3Zfo9f193QAqIhdKQYXdAWEW70Sdvd0Aub9ZDn3J3QHiWnK2QdHdAyqxqxPl3d0A1eWmieYJ3QH7HWvQIkndAzLfe9Y6hd0DuI7svmrR3QG4SfHZyu3dAPAqzvHjDd0CU/38yUPJ3QA0j9PdG/XdAUrq34db9d0BdTLQkoAJ4QJPYW6jpB3hAha3y3f4HeED7vU+neBJ4QGgAcb5+E3hAngs5jW4ieECidB78iyN4QLzVRpilJHhAtiIyMT4oeEBm48fYC0J4QLoOrYERRHhA3oISn3pFeEAWjslIy1F4QEdDE06KU3hAbumI0odVeED+N1Ay7Vd4QNC0XOGgW3hABPvsf/tgeEASux+5t2F4QBjpgrW3YnhAYrnMWFF0eEBEJpVojHR4QMavbau8dHhAra5Zo6aBeEAZW6VsmoR4QE7OpOVPiHhAaaWCbaqNeEAw2O4IvJB4QBbS5naYkXhALPUKewWTeECmnyVTqJR4QIIdROROmHhAhiVRkdizeEBQkSvjN7t4QNz9YJ/MwHhA3jsCTj7DeEBEJ3mXMMt4QCQyZ3tCy3hAZlktkjXTeECcDUBrudR4QMznL2qg4nhAc5rVJDPzeEDqNA9uAfR4QNtrDISL9XhA+oCPFpoFeUDaN5cQviN5QArjvbmyKHlAdodS6wwueUD+M9P+ZDN5QEQ1IEnlOHlAFYc5t41CeUB9sc8l+kN5QGq210fNVHlAih6nv9lkeUDBIOGcQ3N5QLpeNynBsnlAb89zMgTMeUCK5yZoCNR5QHZWth5D1HlAjCx+E87VeUD49a0dUuR5QBxGg5DH63lAkEE2w1HweUBA7MPoD/R5QG3HCkwdBHpAb41xXfwFekAqDcBX+Qt6QMyh0KcAFHpAdC7eDSMUekDaL9Cc9SB6QK5n10INNXpAjk6QHRtFekD/0itgzUt6QOuX+0PbU3pAD2fvgytVekDNlYdOIlx6QAbYZlsoZHpA+C5mXjBsekAmurxCi3J6QOoK9pk0dHpAgPoYib50ekBgx3USHqN6QHKkUuskq3pAEkimcRWzekA8IlTGDbZ6QCqvElwdu3pAVH/SMfO7ekDyUmGOIrx6QLXP1pUrw3pAO78fDhzGekCKLWJyRMx6QPIJ7P9I1HpAwh3TKkriekCgY8hoNu56QGagtHYV8XpAlEK0gWjxekCBO4L+SPN6QJaXJAwo9HpAn0o8t4IDe0DXz9WoewR7QH6EZnC1BHtA6F0++sQSe0AtR6h6yRN7QN/ud2KKFHtAKtBpsUsVe0D8bQ3dHBh7QAZKReeNJHtAljJWPFole0BI6Ei8mTR7QEQcQUheUntAjrYODcRTe0C8iVoB0WN7QApncQwPdHtAlLzPWB+Ee0Ch1pLuIpV7QMqCX/DMnXtA7FRGViaje0BpKiJ2h6h7QAAfAv/MrXtAxu89gwive0D+A9IK+b57QPwVg8x4xntASMi3Cibke0DUMYbJjPV7QOa/muop+3tAIiZRq9kBfEAqedEM9QF8QP2F5cBmBHxAeUcE0ZgFfEBxwmLFzxF8QHYQdRjoG3xAGtAYsLsjfEAu7IlW7yN8QKp/1vo8NXxAsgbdOM5BfEDjQLZ6vUV8QGLL5/ZSSHxAck/yD+NIfEDQHeHeqk18QIb7JaTZUXxAIfDytOtSfEBo/DsOC1N8QEw+jmJYU3xA6OIdpQxifEByObGBnmV8QAZAyP36c3xACFqdhgiEfEB+DWTAWZl8QMS0i9exnnxAFlKQjgukfEASAqmm9cN8QHjbr9H123xAy3qD+VfifEBvUprcEeN8QKqjcXT943xAznyeaWzofEDc0MbjAux8QFCtGr0X8nxANtyinlTyfEDgIXQOnPx8QGuy+sZCAH1A8AfUGQMCfUBv3M1eSwJ9QKWJHX2fBH1AZkUGukQSfUAOlB8crht9QHgL7S88In1AdIAAmbQjfUA+/DC3pDF9QKpnjVYiOH1ABy2GCQ9VfUDbZn1qZoR9QEieU3GUjX1Adhz3qLSSfUA+8fIp8JJ9QDDmh7l0lH1AUXYHavabfUBE4YNZlJ19QHbOz3P9o31AqPEAuaekfUApAHZSLMN9QFRsTLHnxH1AsGo5Cq/TfUA2qXQs1uJ9QA1MdH2P9X1AKVo9b3YEfkCmtcfS7h1+QD+eHmZII35Aiovkpb84fkABoqrTjlV+QN59A+0Rbn5AJvBzs7l0fkAWqGDJt3t+QCdiMAUrnH5AHIHAebucfkBQwt2ulLJ+QIz++/B5s35ARXsAn4a7fkBa/S830sR+QCqvXRYKxn5An9/zPXLIfkCwqtNKzM1+QAWgxTXg1H5A+LcGhurkfkDkAUKykgN/QPog9rEXDH9AjOrUgx0Uf0ByoBPqkzR/QP8qZsNdQ39AGu0yO2JLf0DVfJkhilh/QKJZFK6sW39A1kTkX+Rdf0C6NyIvOmN/QID9ysW0Y39AeEEGiDBvf0B8bEn1tnF/QDLn0x1XdH9AgxHPc6SDf0ASx7v9bI9/QNx54c1ikX9AUMnHoJSTf0B1jzrGYqF/QCv5dz1Do39AmxzokHykf0BIqMGdFKV/QPgJt/OYqH9AaZWtuVWxf0D8ueXBS/J/QCtfifGHAYBAkXQ4ezQEgECWk8Oh3AaAQDwrpK6GCYBAFKZe+SIPgEBQSukvzxGAQDBCzcnOI4BAnPcCSO8pgEDC0swLCjGAQIZ8EgQONYBA1luFS6pCgECERwbp70iAQA/CSoDnUIBABvlkixRRgEDyRh/zDlmAQBLJ9rQLYYBAHJzGGyJjgEDAgFVQPWaAQDxIKRnxbYBAe2ZB8u9ugEAoh683KW+AQB1SoenzcYBAXPUq3Sd/gEAZTwz2zo2AQCA+xOsej4BAyRHHox2XgEBngKsAaJiAQCbeiz4mmYBAB+eNal6igECWGk8nV6OAQEAnQc/epYBA2L+tPDqmgEAccXTc7qaAQCxmn7SFqYBAJq5/lxOvgECS/hy6IrGAQEDSVfPksYBAdq1ylUaygEDds6p/lLKAQOicSW3huYBARgTWDwa6gEDoAwBFnLqAQIasGcRNu4BAEIVU6LK8gEAmwAa70LyAQCISngWIvYBAoIxGUTW+gECfwDaEX7+AQPdOOq6rv4BApKytlVLBgEDeprEGC8KAQJ4kqVj4xoBAstIhmFPJgEA2iS7UgsmAQIw7yv+cyoBA8MnpRyzRgEAMAh/JTNGAQImHl41h0YBAasRmxnvVgEDkvgPYLNaAQOocJ/FK2YBAP0i/dcHegECQbNXbQ+GAQOSvigZt4YBAstGyI2TogECnGsBm9+iAQAgtj1hK74BAdSE9uD3zgEDOqvYcafqAQOo4JF1Y/oBAhPo8vz//gEBMzIEiQQeBQGBH6a88D4FAgIgzdzQfgUDU+ly3NCeBQMK9sx4tL4FAFU5nrr4xgUBQ9Op3KT+BQEBseK2UQoFAFevpu1pHgUDu94vaBkqBQDiV1PeaSoFA/hwBl7RMgUAOnFC6FVKBQDByTP4YVoFAmgTRX+VZgUCxD5jwHFqBQN5H7Qv0XYFATer3WRJegUCqjCpQIV6BQHTAqb8HY4FA/4gnarF6gUDa/Hp8YH+BQCYb7FX3iYFAil81HweNgUDKK26iVY+BQBbwYhKzj4FAgEwxfIKQgUDsWNg2VZeBQPoU7gqgl4FADTunN0WfgUD8/Qkz5aGBQOpmpuJtqIFAjNMZmEqvgUCMt/cC5cmBQMLZzNPqzYFA9r56nX3TgUCGKo5g1uSBQL6Bn3Ls+YFA9PSp8O/9gUC6uTSp8gGCQIAsy+/yCYJAf5uWCPYRgkDoEaAwtBKCQG/5rmjYGIJAVi+F/lUegkCol2P21yCCQIh3M7TRKIJAVCSkVqUwgkDedX777zWCQP7C1zD1OYJAxlANlTlNgkCsrjvFoU2CQKThqEA1YoJAtIcYTcVigkBW3jr/OGaCQHb3RyY8aoJAVRYTI81qgkCC/WTNOnGCQEJUrTfUcoJAXOMl9Gl0gkC+Ri8TOnWCQFB8g/0/d4JA05zUpkV9gkCOQGddQ4mCQLWK94xDkYJA/r7Tnb2RgkAH32gqGpmCQJRmYjU8mYJAlitMiVSZgkAcflbRD6GCQJrfrC87oYJAkO7tXd+hgkCuBQ2V46WCQK+FEssNqYJAOObabTOpgkCM1OQfCbGCQFo3+pigzYJAoAIMKH/agkA6Tp5TCNuCQJmohOyA3oJAoXcGiajngkBJAKOxwPWCQK7IdVS8AYNAsMFoQ+ABg0D5dUaM4wWDQEvVZozFCYNADm9vrXkRg0CJKsz/qxGDQJCRK116GYNAGAVQpkogg0DUwKl3ciGDQGPbksBOJYNAyLYGgnIpg0C0RWb8ajGDQI4lAULcQYNAave370iDg0BTRxafXpCDQNaS7ZNlmINAsOVk3gKhg0CISrrGor2DQOTyZR+mwYNAfNxiHiDFg0DKLBBwxtmDQHLcggnE3YNAcOrfyg3yg0B5YvQF4PKDQCD5Vv8Q9oNArvYH0pT4g0Cw9ahPFvqDQIjERNYPKoRAgqL+WBEuhEAoIt4AUTqEQIbFwWhTPoRAudUIimNKhEACeZuED02EQIwioFG8T4RAPn76KAdkhECQcG1n/2iEQDQntiJJaoRAyEi1U0xuhEA+jfYeAHGEQMKy07PKd4RAk6YOl/p4hEAek26vYXqEQPp3uhx6eoRA9dfjlxB9hEDHUUYXKH2EQBx1W7y+f4RAHBVk42yChEB3JkSXRJqEQB6gXEEMnYRAcoiAVHCihECEJ+LGIKWEQNd1AAnKp4RA3rb/71iuhEAUQQeBGM2EQKo75gDEz4RAHnOmVHDShEC2ZNFSH9WEQMNm6B9a1oRAxNBitsLYhEDxW2ZuatmEQFhk93Zd2oRAHuz+dGrhhEBqvTfBYumEQK8RP8Y18YRApG7mR2PxhECPMYIiOPmEQOeE+g6I+oRAEU5plC0BhUAzeswT9RaFQGgSWXTFF4VAABBrjmwqhUDJao7L4k2FQMSkx+voUYVAhooDnT1ehUB6+UaGoGGFQNBz5zQ9YoVAgXCkEKFphUDWW3Y6mXGFQNTMUcm0c4VA0iRweJd5hUAyNosIlIGFQCKFRWqgmoVAziqs1GJKhkBE1Xh7ZE6GQLxiWiwluYZASFB2/0K7hkBwDupXKMGGQK5fAfGUEIdAP+bDpHoeh0Bib/YpkSmHQJeW+JuRMYdAynGI0Yk5h0BqzVueW0GHQH/8H1yKQYdACC5wVcexh0BEYqWmx7mHQJwg87XAwYdAaptGJcLJh0D0DrFyXv6HQH2o9y9kAohAkwYt/HIGiEBqi8ZMKrOIQBgzjeUyu4hA6PwijVbyiEC4NxSuV/aIQG7TappV+ohA + KBZXds7jZUAc6N63HmJpQCzFq0ZnQXBA3OW/dP8icUAyOsR5l5N1QCwjiJq/UndAbdw8T0e0fECGi0k8AnqBQGN0Q02FgoFA8pyhQrFKg0CDoSLb8gKGQOq4E1mOEoZArsuk3T47iECx5Llo+hqJQD30AtNqA4pAFRKEhYYzjEBq+qd4zCuNQJUkKnsYZI9ADPEDtL3Lj0BgJ9Y+Ms6QQGoO1eEUapFAsSKE3CpOkkARqb2zW9qSQMY3xd1QapNAWL1srnG+k0BCJwV1bDaVQGw9MBZ7WpVAWDxGdpJSlkDsVCcr0R6XQKG+hkKzrpdANddn9/F6mEAh1n1XCXOZQEvsqPgXl5lANVZBvxIPm0DH2+iPM2ObQHxq8Lko85tA3fApkVl/nEAkBdmLb2OdQC3s1y5S/51ACBusk6XnnkBCARkweBufQCwLrRjPG6BAQgV2leBZoEC3TBaC5+WgQJuQqJwDIKFA29Ztf/JXoUCNG5KgHuKhQGZhDoAF5qFAiqIu5hWUokCuLIbjIAajQOamxKdBCKNAOW7vTDnQo0BiBYZDanykQICCnkdPtKRACw0/SGJCpUAikQFOlV6lQEYbWUug0KVAZJhxT4UIpkBqXHmxsH6mQA== - + - nXGGRDUav0W4R8ZEO9O+RJsp1Ub3tEBFLUW1RPux7UQBtPhF3VnYRAvaCkdHeoxEPdHgRAWShERpAXpFJi9JRQCBnkRb0oFFp4aPRAECnkQyg4REL1nFRJO6iUSOX19Eaj4ORVyV90YQMe1ELE9lRrFXkUUqdlFEqwalRI7YbUQD0fNEbomrRkCfwkS7J8pExVqURV315kQLpJZEh2iXRJqgWUS52NlEYqTnRLWzUkXf9bhEthICRmG0tUTIlVtE3gyVRSAInkWDPrFEgsuSREpirETdtZtETJQGRRB5O0Xaf4hEmPt7R+ZzuERRuItEWLwgRjPSu0ZCycZE1RRVRZ4gYkTzRZhEY5nGRvMS1USjNJhEmpkjRcrOI0Va6z9HBzYFRdrJVUZr7vFFV8CGRNGFekTECclFAqv+RBYBh0Ra9btE9IE1RS42NEWvr8RESCbGRfoJvkTgdCJFUXFwRO2UpUTmZIdF6AaqRUbtYET6lq9ED58WRVnLvUSCzdRE+iadRrc+lkSH+blEp+CBRDaiYkUA6XtEnxTeRNoQ30SQINpEA0lgRNYcEUXSkptEl4FmRESLgkRyK5VEW4+GRQtaJ0ZXbmNFsOS2RMhVsUUrsDBHB0htRKjMikRpdR1FJOirRIlLTUSgTu9E2FG+RcLahURnYV1EBpyMRM4740REQq9FVclcREhzXUiZVrtEKVyBRFY+ekRMIktFek6aRgQRykSxXsBGuxuEREOnO0WeAFFGlfruRMhvCEeNIaZEx2yvRIb4wEQ4QXpEFLlwRFTA50SJNiFFCmbcRIe94US/ZntE78S5RPQZtERSBIBE3trPRDuAlETfKYRE9OplRAxNwUUlTKREgv+5RHsQAEZdawdFA6tuRCzd0EV5DexEpfU6Rbb/50QeUmdEz0SaRKlQxEQEaY5EPyi5RBUX/0Tx7nNEKLSaRNU63ERTuRxFvncCRvCHjEQW8ehEu2KbRUzKkEWJx51EG6/ERCxtWUV6f4ZE+aGZRGZkpkSuD4ZECHpoRITdskSt+YVErTdHRjv0yEVVKmREvq4HRWqlCkZFGmZES/ahRaHA+URjZelFpve+RW/6vkaAhJBEa/JgRCqpcUREe6BFlIv4RN6FB0XUwfREA3qCRQ9vt0TykjpGwvn3RIIIi0QxqYtEmoryRLL9jEQhDVREmM8yRd0WoESBIY9FhWNeREsJqURbtIFEBr89Rd4BjkQufA1Fo6WsRDO4f0YVOs1E4DY4RTN7YkSSJwZGmQMqRdmzzUQLTS5FPKXfR+JulkZ3vRZFgzC3Rr5Bo0WVHFlG6iwjRbTxWUT+Q8tEWJA1RZrCiEXdN4ZEv/PsRKP70UQ5G4pEyQ94RAdMnERHlrNFA1oPRXBo8kRC07ZGpuvlRCvGTEYhToBFZtVxRVU2VURd03JEnhxVRfRjl0Rr0X5Ezr4JRfnH0kQgLbRFpco7RmGPj0UHx2xEOwL8RH+biERQwpZE19IbRfcWDkVXFJhEUjIrRWsMOkmckTZFPU41RXilOUjW7ARHEdJ1Rjz5uUTMjkJFjowiRY4IkEYYhtJE3iCFRI4DQEjh771E1/KBR5SNMEY+jThGuOKhRVELFkVFOJ1EsFZkRCM2Z0V6fptF0uz5RLk+nUTuwThGEVK/RUeMAEVF+SlFx5eeROrp8UQwFG5FjRubRFb8l0SqeUZFqhrxRBLjs0R3JWZFhKiSRDN7CUXcM4hE84RERB63y0d8bYNGswZ2RONJeUVNCd5EgvbERGvfzETQTqRHc+6QRnBPtUR/h21ER9jLRAN/lkgUV/pHMWvKRtnhd0QUazxFobIRRQ+z6UfN/T9HQ8ZBRgrQj0WxJnJFTs6rRBAlEEV+L65Eg43eRDOBFEV6U+lEj4qaROgHukRwkZBE9ZSPROD5iETP8vtEqF2ARM/W7EgQS8VEC+2ORMNsnUTnyrBHkgXrRSV3hURTIupFFCUlRQEqk0R0L8pENRqsRY7cpER3bH9G5nAIRUDQEUVF1CxGkx6ARVkJqkRfuodEPwCZRPZQ2kQC7o9EfzKVReiEbkbr/KJEORwkRvKhZkX2xYlFOl2XRZDcaUURZ5ZFoJmWRHBe50Q66jxFjXfRRfKE3URrRV9Gy2yWROhb3EW9LohEymv2RB14y0S3KfBERTHTRAqkiETbNUNFVVmGRH9oy0XaEDtF/mJmRHiPhES6LHpGgybFR20yjkVDEqdFxA1VRcQey0R2/gZFfLvFRlmTfERVM4JECWsRRU2/lEYGxVdEpkMPRR9P/0XwW5BEqhceRZ9jcERFIUREqKpdRL2xb0YO+aJF4hDUROuyrEUlN+VE3WO7RZAbj0T6A11FxmQuRbKYoURBrkpFRLR1RMWJhEQ8C8REPqhzRO53jEVxvTxF7YCuRDCu4USrb31EpdJURBvJo0Tma6JEm4JSRB5mMkWohn5FUsXGRDmNBEi2zW1EuXu4RQ0eHkUhp9dGiPcsRQh7NUVdF4hFgSp4RcyhA0UVLlhFfvq8RA3hXEXGgCZFNwDqRH48jUSf6/NEuIrcRE8OeEVHHQNFAWR8RG9yf0Rq+ARGjJqVREW/FEVb9BBFOwgQRXJxwURLphNFug8xRVQvXESSclxFQhTIRDbfyUTWA/1EOWhyRDC+e0Srv2NEXVx6RHskjUW/PB1FVvORRCv/o0RSx0xFOExfRuolqEU2gXhErf5hRJ7lB0W3ejJFSgCWRAmPDEX6H8hELzrkRM7OgERpJ+ZFQ+n2RKzQo0TJ0ppEes2KRIk9xkT/tS5FLhUORYW7dUQdV9xEI4NBRY4RgkRzeNFEN3aBRFMRf0QxMFZEYgE+RroRRkTfe7JEx6b8RcZoT0QJwM1E64ChRNUiEUU2qItE+wOASLxduERSam5EoDnrR7Lrb0ThbblEWa7YRCMjeEfAUTBFP9jNRM2lRkSXSW1GoKBwRcrXXkVB/ApFp/K0RIc/l0TNosxE7fepRHhmfkRL/FtE6BtJRhaSRUVzsWZFWRahRqgoi0UZL5NEPCaXRGYLO0Uk1NJF0syQRYVwkkWlnsVEUH4YRT9dB0i3NJVHxisNRUi9pUawYaZEuAIURYsc3kTJ02ZEypajRBk6gkTX74hEQekERfFitEXwPPhESIVgRA8a40T1rVdEfyytRAZH5USA0AZFq1gIRozoYkXSvHZEMnfARKGJdURBowBGFECeRVXwvERoMHNE8EW4RI6KtkTtzjZGUhG4RAdqgEX3HD9FkGFsRPqLS0X4WRNFGaD8REFoekQLRqBFHawZRnqbNkU1ro9EzJoVRdwOgkTLvJlE6COYRLNzBEXhf4xEAxBoRJ53z0fWbT5HBDUGRf19XUSifMtG4DwQRS6vq0V50vNFE5h9RIrchkSYmhxFWXwnRUIM3UTuR3JEVQ23ReppnURwiOhEeCqLRGBVhESyY8NF2REtRec/zUSH6tNEi1vsR7wOXkQHYmFHfg2+RD1x9UaWNpFErFgkRpwfTUUQUbBEIqKmRACrW0V05YlEsxBzROyAWkXZEPVEEVWbRB3oikS6dqpEfXgRRoISS0RLuLRF+rWcRGTO4kRMQBZFxqmeRHpDskR9cINElNg5RcMkoUWpvDFFklm8RBjfr0Vd+MBFGSlmRatTWUVBAG9G4XmNRN21kUVyzS5Gs4XlRcMB50VNRoRFwamRRY+0UEQt2KdE3PSrRUYfpkVbN75Em1ZhRP9ai0XZvXNFFAv5RBbBgUQ1fIhFNt5xRGm2EUd92otEqd57Ri/VIUZZo3BF7qN6RfT160TfvjFFq0vnRAVad0T+c2dEcD1YRGCjAkUF47NEiD3KRKXKDEeH6oVEbBeaRqkcIUaKlshEtM0aRTBc7kSgAxBF8BIBRVKckkQkOAtFi52GRPvsnERX0VlEyqWERJ2YLEZxarJFf0BFRWfGuUQcno1EfXAhRhzMmkWulwVFxDy9RHDd0ETz3JdELr67RM8VE0Z3xWdFwETDRNbaLUXRiqpE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 7D57QXDBckCG9rmpUMJyQLhjgsunwnJAlwQFhjrDckC+iUYvAMhyQNpRyolYzXJA2JQ3G0TSckA8trDweNNyQGsx1cHP33JA+tGYtFHickAAEiWPj+JyQNRWHsG78XJAt/K3SH3yckCiAC2nwP9yQGL51u3OAnNAtTZO9PoDc0CWrf0mvRJzQP3nqDj5E3NAUr+oO3kfc0DgZHDGoyBzQEJVKe04IXNA+Qbvbsoic0CWe+1vziRzQPqXwvBGMXNArSrAR900c0CJQOW3uj9zQNjK1Jd4QXNAksr9+3pEc0AT98nFm1FzQP5LBsERU3NANL/tlUNTc0DXxvWto1NzQGgh71OHVHNA7M3Y6oxgc0AYnwbQHWJzQJRO3Mo5Y3NAoKZ1VJNjc0D+thYu0GNzQP5/LOMrbXNAcruHz9pxc0BaiMWvbHJzQHJQ+ZeFcnNAQHaFm011c0CqlyYd0XdzQPIlpI3dd3NALI+F8St9c0CYZvABeYBzQMqQQ2ClgHNAPD9lLV6Cc0BRqk6liJBzQL2DRHxNknNA76gSamKUc0DyxFpb95RzQKqQt+C4oHNAALbl7Vqic0Bq0xrxB6VzQLLYqi62s3NATpbePAy0c0A7j2Zj+8BzQCrpxb7PwnNAj8V10iXDc0AztS5T2dFzQOYMB4X203NAOoZDxeLUc0Bar5y/OOFzQNBIoYN64nNAJrPyWzj0c0CwYcGYeAF0QKgW6bSmAXRA5ulgUokRdECqumgiThN0QDgNq224IXRAcAe8+tpXdEB6eETOuGB0QEetUxMJYnRA/uuwS3tjdEAZY3hiTWR0QPPf65EicHRAjR1VoEFxdEBi7aaFO3N0QHD8dzM3dXRAnGPXkfiAdEC7pROdToF0QB43XVgmg3RA02XKdBeQdEB4+44U8J90QFcOM53OoHRAoLERtg6jdECQvW7F/K90QPz2AHTDsHRALukztG+ydEB4J/oa+7J0QAadybzJt3RAAmb/jhK9dECHd//U3r90QDLTV/24xHRAdnk0G8rKdECIqGjm+850QDzuq4jrz3RAVHG7cs7UdEDiJ4NXzd90QFEnyFq44XRAt/HQI1HldECKYDFmTOh0QJ5AKriM83RAqHmV16MAdUBYuNXyXAJ1QFT4FSskFHVAJPWjAlIidUAAkRHgnSJ1QEMwscrMNXVAqMhGxvk3dUBWjB+mgVF1QNSvqQJ1VXVAlpQpZQ1gdUCmDwleOGF1QIx4psjyYXVAy2TPcWVjdUCW+r+7dnJ1QN797OuNdHVAJD/723uBdUDHs6msrYF1QFIuEtKmg3VAkID6yZuEdUBuMCM8W7B1QPyYwIj5wXVAMIX9OzzDdUC6s3J0ztN1QO4cN6sI4nVAzO6aHY7rdUB8lj6iTO11QGBdbQen8nVA6s40JDjzdUDOdqlKBPh1QEBuZ9mk/3VACf55Z0kCdkDmZ+8vzwN2QDY/GKGJInZAuhToF2cjdkAqhLL3kCR2QLD+4tFLK3ZAmBJcax8xdkCM0ii9UTN2QKsBi5CeNHZALjjPax1BdkBKMmUom0J2QFeqYMYTQ3ZAdA7LzXlEdkDKE/wjyVB2QNyRTPESUXZAMr+deM1UdkD2yXFP3GR2QIpkTCCSg3ZA2fI2PsKydkAQ+iAdDbR2QLjofvbOznZA7kDwSZHzdkA+nLsVARJ3QA4r2BOlEndA+NJw+Q8id0AVtNIRcyJ3QA3fGKXoJ3dAzc9G70ctd0CPv5cypjN3QJY+TJANNXdAjBpsjp1Bd0D8lf24kUN3QKzCGFEbRXdA4BEeJUtRd0CA3p74klF3QLh4bBsqVXdAWEmeAI5hd0AZ/0+hJ293QH1kcjehcndAMS7EBfp3d0ACOkjje4J3QOQPMmxyu3dAuE9hvnrDd0CUzqunTfJ3QELYtDFH/XdAvCsAWtX9d0AQBVOwoQJ4QE7JAf7nB3hAeKxR6P4HeEBTE4rARA14QEWDbh5wInhADvSfHhJEeECnz3RRekV4QNOUC1nLUXhAatULGZZSeEByReFFiVV4QMg/oW3tV3hAwt7Op/hgeEDHBZhWtWF4QAnUBllRdHhAyiyMaYx0eEBcz9+wpYF4QKpXTb+ahHhAJK3eAVGIeEDm9gnQqo14QF1O+jK8kHhANVqOUJmReEDEWXYh8JJ4QNrVKB8Ik3hARCTs9qeUeEBX95fk0rN4QLKKdwU4u3hAvaxnAD/DeEAuhse8L8t4QPJBVyk003hA2a0a/7TUeECjaEmGA/R4QOjRQ8KN9XhAEjJUSbsjeUDfJ4LJsih5QFN6r5AMLnlAzNTNgGUzeUBlDNBjzVR5QIhH1LO/snlANCe9kEPUeUD+uT30U+R5QEp2EW0P9HlAyNkbYh4EekAc0vL49gt6QNiBrkwqFHpAi8ROeg01ekBKHgKbMzd6QHTKrrUbRXpAhhqsUytVekD6yIJuIlx6QBLDQnspZHpAk4Ic3jBsekBk8SU9O3R6QHeLoCq/dHpAWvX74h6jekAPxj9wJat6QDd60dgVs3pA82Bffg22ekBJLROdHLt6QLZ+sfAhvHpA9BGRhyfEekALdl8zQ8x6QFGdOxBI1HpAPEothjjuekAg5mF5FvF6QETZ2v4p9HpA/ghndoQDe0Cjzqf38QN7QHZ+BjtPBHtA/HhQiHsEe0C0iNlasAR7QCJhSDbFBHtAYoW2JYoUe0BNA8X4ShV7QKRyPBmQJHtAYAqjv1gle0BWFSNimDR7QKWYxMHEU3tAtbQdN9Jje0Cl0LEJD3R7QAS0bDsghHtAJTL3ps6de0AOsTMFKKN7QK5lIikIr3tA4ggiZibke0Bsg5RaueR7QFY34o039HtAdtg8YYz1e0At6BJ02gF8QHK9ZUpnBHxArqF94ZkFfEDOdPTFzxF8QA6qjeHnG3xAtCrkROkjfEB+xtBKzUF8QPTk2G5SSHxAqHaotapNfECaXMcSCFN8QGRg7r1aU3xAINJthGdjfEDeJDT+KXF8QHrhi/VYmXxAKP58F7OefEAQEMlRvrJ8QLQJaa71w3xARFuWS87VfEAEhukyath8QADXFXz123xALn0+4FfifECkiXHxEeN8QP73XsH843xAAQKlMBnyfEDhvfENVfJ8QAZDm8p08nxAwOrRlgMCfUCO3OFGSwJ9QLBpYgJBEn1ArLXOFq8bfUANNUWtPSJ9QBHSU3uPI31AAe5hhbUjfUCoI24+oTF9QL5/aJGqdX1AxCT78WaEfUDjyP7vlI19QMqMuk3ykn1AeUUeMvWbfUC7qm7u/qN9QLeNfFimpH1A3gJkhCzDfUCn0pRo58R9QPo8qFWQ9X1AuheROO8dfkDcaO11SCN+QNJq0mK4e35A4KPKZ76DfkBMcm3Dl7J+QMRnyDl9s35AyXdZNIO7fkCowiYv0sR+QJOKoLZzyH5A7vY/lszNfkBLvuUZ4NR+QFVHpkrn5H5AVNun9JIDf0DYcM1Ymwt/QKX7CVIYDH9Ali77zRwUf0CwycGDljR/QEYI7etcQ39AcK1RVIxYf0Ayih2ksFt/QIcDzfnlXX9AtLXOaLZxf0AyGOXBWHR/QEWbWZhgfH9Azpo0orGBf0CiNgLnYpF/QJmUT5GYk39ADlWTZFyhf0BgqBAydKF/QFITWqxDo39AzZ6VCXykf0BoqGHvEKV/QKjnUT6gqH9A011B/1Wxf0A1pqy458t/QGQ9t0iIAYBAEMuFYjQEgECo6uYFhhqAQBZCzGrjJoBAnEeDm48pgEAhz53HCTGAQIVg0aSpQoBAKM0Gsu9IgED+h7zd5lCAQECKbjcTUYBAPFGcieZYgEA+/3u+DlmAQNxht0cdWYBA33GnlDtmgEC6uI3E8W2AQFdTqZkpb4BAsBXF5/VxgEAtl266HY+AQHRHRGQdl4BA9MifD16igEBsSTDlzKSAQPwR+eXfpYBA/t7tw4WpgECb3YTM5KmAQJhwV5kTr4BAnmmrUt2xgEDesaIck7KAQNgFJ20GuoBAUi4IKLO8gEDNWkvpMr6AQGrcGZdgv4BAfUfLm1LBgEDhD+HWCMKAQPhXmIpTyYBA7jxyhyjRgEAKTX5xTNGAQF4yrath0YBAhT3wLkrZgEDA07f8wd6AQGZJ58tE4YBA7GQmehrkgEAnSTjHvuaAQPp4MQz46IBA7kFNRz3zgEBkqo9TV/6AQAev3LY//4BAIrYix0EHgUCMF/sMPg+BQN/CeHk0H4FAIqVl1DMngUCYP0souCeBQLa74mkwL4FAJ5k3JCk/gUAqNY/AlEKBQJ6ESiRaR4FAcB7qhAdKgUCwwRUbmkqBQBDzDHy0TIFAPn760hVSgUAlXuiwGFaBQAzTRRTnWYFALMNzmxxagUDCgg5wIV6BQI20jSBWj4FAoLh6J7KPgUDQJ5rtU5eBQIDiRP+cnIFA+Jvi9EefgUAgEvac5aGBQNLACzhtqIFA/P62dUqvgUBmbkHK5MmBQAL8w3x+04FApQo2z+XcgUCK0Wl07PmBQJmb4OPw/YFAKsTKVuUBgkAI5dWw2BiCQE67hkVTHoJAXmyQc9YggkBRSaMu0iiCQET5rm7SMIJAtgXj3a4zgkDi2JmG8DWCQMi2O6ugTYJActLKSQdegkCivwcXNWKCQNlUBYPFYoJAMhpRVDhmgkAVtfiQ4maCQPIw26XMaoJAlQXFetVygkBYH8kCzXaCQGCz9IdDiYJAzpppoEORgkDkI3cWv5GCQDqLdEI8mYJA1Ym+Gw+hgkAI2CYmO6GCQO4Mww3eoYJAVM2y8gypgkCTe0yGMqmCQFJ4dIQJsYJAaXnhTH/agkBqLFx8gt6CQIK9y5C8AYNAAeFfOOIBg0CE3q8ImwWDQIBIhZLkBYNAbnXfMTcHg0A9PVwq0wiDQL6aaszFCYNAekTB5HkRg0Alo4EtehmDQPe68OxLIINAilqi6XIhg0BPKMQMcymDQMQFShxrMYNAq4zef9tBg0DrzPJdS0qDQIh93RGjvYNAWP9HBx/Fg0BKDhpXeMqDQCpTUaIN8oNATh6HVRH2g0BelgLgDv6DQB5opT9iSoRAIYqOXw5NhEASrohJvk+EQNOdoHgAaYRASCyXB0pqhECx2QVlTG6EQMTJkcsAcYRAStYl5Ml3hEACUc5X93iEQHYdQgR5eoRADBML1gt9hECQ23ySJX2EQHVuoBq8f4RAds3PpdR/hEAByf1CbYKEQH75qZ9vooRAnyyOLCClhEAsdqsjWraEQP7Uac8YzYRAr4vDzsbPhEAOPKeoWtaEQIugZaFq2YRA8iXReGrhhEBw8oQ1Y+mEQFZYxq018YRAbcKICWTxhEAOzhUrOPmEQGEevYzkTYVA85TVbehRhUD1tDfhoGGFQCYSE0OgaYVAwnbKuJlxhUDOC+8ytnOFQKPQN5uZeYVAmVwmRpiBhUDlhmecnZqFQO3JLrliSoZAR4abwGVOhkBQKIrRPnWGQIyj6iIouYZAgTRcMJEph0Ay1ncWkTGHQHD3jHGKOYdAXFa4botBh0Bqwyzzx7GHQICCmsnIuYdAPCS87cDBh0CmKMRVZAKIQN6g1KNzBohAVE1/CyqziEAUCF3AMbuIQCHsEthV8ohAhDlCxln2iEDYl+dcWfqIQA== + KBZXds7jZUBeG3g88qJrQNeRyQ6NInNAChqGaTwidEAynhNaUHN5QM0gJD3iUnxAT+/PRKgDfUA= - + - oJ+YRRV8DEUza/dG9UYiRVYjLEYWqspE9q77RhZJvEQbF8pEyGA8Rf6aXEUVpjtFypHHRCYZtESPZRlFdIgJR6VOO0ZIf3FF9JKzRCCrAEU7HpZGGwbKRDMjl0VdXNBEw8meRMY07EQHNqFFjZ7/RXSHBkUJAfBEiRTCRIsda0Ucj9FEgHeeRAeQ+kSBSi5FUBGkREPR4UTD94dHnrihRPqJu0URj79Gnir9RNkfk0XvwoNF8CHURL64t0abPN5ECFOHRcqnHUXBzUBH2DDWRLkzSkYjfeVFbqmuReOT/kRPXDRFvRfQRA9g4kTAEY1FHq8URbkIL0VggcREWVKrReDovEV+Ic1EqxbORNgWeEYX+N5ExVm6RMCWiEVByD5FL3HXRGXAakW41n5GGmIBRQq61UQ8UqFFqvpGR47M6kQ/X8REprgnRfS3yUVh9gNFvLC8RYKMYUiUowtFJ7ZtRaePi0ZjwblEeGWqRr8vGkVcExVGP1EGRd7ABEdEjUxFiwAiRYBWsUTCwrtEDAHARJX2BEWMf+xEkXy8RKe5DkUBo8hFo3O0RMjq4EXDJf5EWj3MRKgi80WXx+tETXUNRZd/FkWAfqNEcxHmRPFF4ESKBQVFyf6zRG4cBUVykSNGPaz6RMmtzUW0sJ1FXljgRAN1QkXGWBJFLDGpROeI7ERKLuBEJxfIRMWAe0b7ZuBFgpTqRB/NsUTEvtxE/IcURj7gykSb4JFF6LoZRYFj/UV2tb9F6+u+RrAd0UQrcuJEz4deRaMK3kQw+8RElCEsRbK5xUSwzxBF5D8sRiTE5ETahf1ErmQ/ReJKjUUFnS9FOer0RLfga0YxIP9EyFNeRY0Os0QwPgBGMiErRRT3+ERyXu5HVr+dRge7KkWr0sJGOIRpRQ/IPkaf9gRFCCixRCNJHkXhL1NFtQLsRBiE1UQtmIZFheHwRO1XqES5Z7NGEUykRETeFEZ/fv5E/aLKRFsMz0Qt4EhFPX6YRV5fLUYLs4xF9MwQRYl4EkWcrrJEa1IURSwWLUWst85ErWhCSaWXK0VBh0tI8TDvRgFvdkZUfa1EwIEsRTPVBkV3bSlF+0e2RiQa4kRxjxdIvTpiR7gzR0ZSzStFnFvWRC8bfUWjUKxFj4n+RLe9F0ZXJa1FFA8sRYGXhkUZpjdFC1a2RenTs0R53pBIg75jR9lq2EUH029Fn+y3R+tUtUTn0rlG20ETRYQUd0j/KcNH9qmWRlcHJUWE86xFN3ztR9WKPkexUTdG6rB9RVgqn0WQydVEMZmyREGXy0WsBSNFuRP4RJCVxES5+u1EOR7KRBnW00Ts66VF852bSamAgEWX+R9F8EmBSOIGFEbzZs1GYasQRUQsPUVn2GJGjZAfRdGEpkY7m1VFRBcaRunmu0UOnrdEm3oCRh8TzkSmgb1Ew1WORtKFO0bgH6FF76+cRdwCOUUuQIVFWVcIRV59okWdk1NGjnALRoviGEUoam9F9srYRLFa4ERgEgFGjPhERfdd00Qh8pdErk27RH7Xu0RO3j9GzRLjR0nDXkXNPwBGxUSeRI8q9UYFRD5FfaxLRbZpokZySA1Ffp3FRRypuESW/QBFFI8HRRshtUTXtp1El7aiRU4qukUFD5pFlazYRYvZ40SjcJ1F79OiRO2+IEV0A9tEL+UtRdT7JkWPPe9EVgTRRGYaRUXyuCNFjzTqRGAIQkiE7CZFpwIHRUYjKEdcnYxFTRkwRVQfFUVdBptFrVxJRf3L/EQlqlVFhbmaReDCMEUiPGJFGnN2RWHePUUJRs5EEMrlRMsiJUaY69ZELg0SRdaNrETX4TxFW+UYRSIgHUX+StdEAQjhRJ9au0SQFLZEOo0gRZeIB0U6dNpE3qHPRJZrV0UgbshE3bTIRIjzMEWEeDtGBuq6RBXuf0XCQuNEocQRRVWrL0XGWDlFefy1REqY7EWFSQpFk0u4RFLP/ESPZGFFDo8nRS7nxkSRl2NFnSymRLqCG0W17gtGQNAVRraB90TkRIZFRlaESP+BsEQg/OhH20DaRC2zgkf8al5FIKNTRtrTN0XDc45FNVjfRGFMy0RfRL1Esa3DRAYt8UQPci9GTflzRZEcLEVBGpxGEQV3RW8xq0STdQpFrGjmRHE9DUZ8PrBFlhhERYBFnETV6QZF0uD0R4hme0fpqQ1FV66MRpugMkXY5KRFgEHmRDmeCkV2hhlF4YMQRc81B0W95fdEv0/GRdP72EQWrNJEzaikRNv2TUb11L9FmJ3ORFYLOkbBPBVFrpyVRRCIVUVEx7REXnDSRN9nzkQG8btENCn4RL/Pf0UdFaFG+v9RRcuDzET9Vk1FMZOvRFMltUTbisVHEkYwR6md6UShOs1G9oOFRZrE8UWrELdEjzcRRVJr5UTD/8lE7oLJRcIOTUWGkJdGx9FoRQB73ERn2ehEjJcsRQQOA0UbJ0xF/Y3lR8rEW0fW2gZFE5vSRrWIC0aDpE9FnrMORdW3I0W15x5FhljeRMKBtURmphVGIGm3RZJpqkR3/jtF8XhARUd320TWGdRFDJeyRcZFV0VHKjBFilxIRgMXs0S2A2lGL60RRZv4AUYcXQJFAjoSRQz5B0XZtqxF5ZGJRSXRmkSQCmpFFEw+RS+WdkW6AQpHPDWNRv6fGEb1F15FRlttRf+KrEQj/SVFzsgNRb7vBUc3YF1GW3AFRh5NpkT9KG9Fa62zREscxUT+yxpFy+fPREN4BUVzR7dEMmURRg4frUUC7hhF9mTeRHYmFUYGg69F89ZiRRWK5ESB4/RETHfhReWGKUWewmZFMpaqRBVXwUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - D4v77W/BckAERxSST8JyQAQsUgmnwnJAg1njyzvDckDUZEnXAchyQNIxuSxYzXJAUItrjUPSckCdt3Ib0d9yQKL/slpQ4nJA7mol8Y/ickAUfZiByfFyQASeCJPRAnNAqtaTivoDc0D6Bm76vBJzQHCzdFr5E3NAquaVE3ofc0D8bW51OSFzQDSGJZ3PJHNAZgcA9HhBc0B2bHN+ekRzQBAzxayjU3NAwC7Unittc0CIwcE3bHJzQNbIJ1eFcnNAcHoNp0x1c0DMM20WzndzQJW7rozed3NAvJ8/vyt9c0CKgJeneIBzQFyyTCoLgXNAwPDDR16Cc0BNNCA5hpBzQCtqU0FNknNA4LFfrfeUc0BEqBKwuKBzQFJF0qlaonNA4Akpsbazc0CSb2OlDLRzQJ+ZTsDQwnNAyNnpDCXDc0DW9WbU1tFzQBBIJgHi1HNAkAxsz6Tgc0C6I8MFOeFzQHj2CIU29HNAd9CCDHkBdECsxw0mThN0QLI4csm4IXRAyOIkM7hgdEDiMc2uCGJ0QFp4Z7B6Y3RA0Y1pfSJwdEAbIwJCQXF0QDe2DYn4gHRA45r7Qk+BdECQjzHOFpB0QDB2G4Dvn3RAWki/oxCjdEAGJ8xt/K90QAgkryxvsnRALEXnsvqydEBddGv0ybd0QCIxZu4TvXRAv/C/KSS9dEAyu5NE3r90QKJ1qlu4xHRAhjGLucrKdED+feskueF0QKiyF22N83RA0dOXq1wCdUBsaaHiIxR1QB9vhZydInVAbLUc8Pk3dUDQvPFbN2F1QK+GtTf1YXVAhCz0eY10dUCs3KHqrYF1QBj5hL6mg3VAKJ+2kFuwdUDXX77/+MF1QN6EAZFM7XVATTOJBabydUBOie318Pd1QAZ4W85IAnZALMeKQVYSdkBMRSuSiCJ2QHDYP2xlI3ZAbL9dg5AkdkCc4dTySSt2QCIV3JgfMXZAVEcOOx5BdkB67E2DykJ2QP/zozF5RHZAYe2ISxFRdkAhE4ZdzVR2QHTjMMPbZHZAZPIGG8CydkDR6M99DbR2QOxVUtPOznZAAHP3sI/zdkCbbmZUARJ3QOpoK4IOIndALm/mUOgnd0AW8s+0Qi13QET5DN6kM3dADY94QA01d0CWPOxZnUF3QL90lR4bRXdAtL1fmEpRd0C2JkT6kVF3QJJ4b5iQYXdAnGldtydvd0Aol8kboHJ3QEh+/0pxu3dAso5cUUb9d0Be1pgSoQJ4QPQVyvVuInhAApdsHxJEeEAG+5rLekV4QIq97K7KUXhAADLzQpRSeECyjIWliVV4QITutjj5YHhAOrmL+LdheECerWt2Z3R4QGsL3/eLdHhAdqVSibh0eEB6bryMpYF4QDK35rmahHhAGpM3oE+IeEBd6l4yqY14QBr0z/2XkXhAlWO84QeTeEDm76ySqJR4QCvOQ0g4u3hAaOGqXj/DeEBhWBhsMMt4QCH4vIE203hAXMr03AH0eECXjK4FjfV4QGC9+hO8I3lA7ksFZ7MoeUC2lNr4DS55QJ075thmM3lAY2j6yPlDeUBa0xG8zVR5QKYu6mS/snlArNz8wULUeUAQQ6TwDvR5QGtbHzceBHpAqxs8xvcLekCYZPfdABR6QATPIaUlFHpAgv4/iA01ekD6wPAgG0V6QCTxUPwnVXpAIC4akCJcekAo08jLKWR6QCJAqyEwbHpApvXK4jR0ekCEz3sUwHR6QNj/ObMeo3pAqAXp6SWrekBO8NdWFrN6QJv9Qocqs3pAIkuTSw22ekBSh4l+ILt6QNpODP0hvHpA3u37SULMekBYcn4XTNR6QLoxAzgQBHtAFgi+VC4Ee0Dxc7DsQgR7QE60mgl7BHtAF4ako68Ee0ACArQa2gR7QNXLKSNcFHtAuJ3KPIkUe0Ck26OxSxV7QGqvoyyRJHtAeGwfHZo0e0DizOyRxFN7QLQnP37RY3tAZogMaw90e0BUoPr2G4R7QIb9xtrNnXtAYmhkuCeje0AnAw6eJeR7QH7sxd0w9HtAU/14qov1e0BQwv781wF8QL4q7MhlBHxAJ7iNDZoFfEDseLMkzxF8QCiNHEjnG3xAavBgJu8jfEBPQoRczUF8QPybpnBSSHxAcI4Ekq1NfEBg/UMGC1N8QBiEQBRZU3xApqLFdGh7fED54P4MW5l8QMC2TuiunnxAh+3Se8CyfEA3SkIt9tt8QJAsrcpX4nxAiIHIMRHjfECorp2v/ON8QCA50Glr6HxAFAVa5hfyfEDiK0yHVPJ8QCcq9WEAAn1AQu3y7koCfUCNQLcZQxJ9QCZrf36vG31A5nboFrQjfUA5NujvY4R9QNmPkuaVjX1ADwNByPGSfUAKR3+89Zt9QOKCH2CmpH1A2zLJ7+XEfUA0mUzD8B1+QJrMu6BKI35A2BNrkXqzfkD0ZUke0sR+QAKxDRhzyH5AMAW05s7NfkBH02QL4NR+QMMfZJnn5H5AlPbeeJQDf0ATRHWvFgx/QATSOFgbFH9A5KCb0V1Df0ALLBeJiVh/QCcy0CetW39A2MQ0GuNdf0BshRiFMW9/QJDrN+W4cX9AegaD52GRf0DcR/ykXqF/QFv6s+N8pH9AfqecwxKlf0AGqu/Bmah/QLghe4CHAYBAQgqMNxNRgEAOSoFzI1GAQDpYgZ0OWYBALg107fBtgEDGR6+GJ2+AQIS/0P8dj4BAEJB7s9+lgEDctl27Eq+AQMS/J/IFuoBAhywj37O8gEBm+svFNr6AQAPCoy1fv4BAtmsGhFLBgECMXOlKU8mAQI5+t1JM0YBAqidAtEnZgEBsXTRMROGAQATupJls4YBAU0M6Dz3zgEBM5uVsP/+AQIgycXM+B4FAmArMsD0PgUCeUdJoNB+BQFoeIdMzJ4FABKJcFik/gUC3gUfjlEKBQOF7d3lbR4FAyKRDhgdKgUDEiMrVFVKBQCjwm6gYVoFA8jpuxBxagUBc4shqIV6BQJhJP7hVj4FAWHSGA1WXgUByTpa45aGBQBZpcihtqIFAIkWycUqvgUBAQNRH7PmBQOXRFuHv/YFAvvNHfdgYgkCR4b4+1iCCQFGpxAU0YoJAuKucx8VigkBaDu1QzGqCQKxAJ0lDiYJA2Cav5EKRgkCwcRPHO5mCQECh+jEPoYJAoHoXUDuhgkBheTDYDKmCQMp5R+01qYJA9nn0tHzagkCpTAAAhN6CQCBeDZO8AYNAUApwMOEBg0A/tU3knQWDQHJ4TPnkBYNAkb4J8TgHg0AUjDms0giDQAQNHBvDCYNAj/eNoXkRg0BDMHuGtBGDQFrxx8h5GYNAUTSrFkwgg0CPFDymciGDQCqfGM9xKYNAH6wnD2sxg0Ai0vcDS0qDQD0qtGGlT4NAaa93hqK9g0DGmFE0pcGDQPZmS1QN8oNAUE3goRD2g0Durn9aXUmEQHb/RlBiSoRA3t5cvP9ohEAo99QtSGqEQHzQYjr+cIRAiOM3hsp3hEDnyT6qd3qEQBJBmpomfYRAX//mNXKihEA9XaBnH6WEQDQRc1kYzYRA9CqZ6GnZhEAio/YaaeGEQELSaPdh6YRAXOaIYjXxhEC4oaYdYPGEQJzcbgHjTYVAznOoZqBhhUCNUlXNn2mFQM6cbSaZcYVAag4PNJp5hUABY8FMkSmHQPoOkQqQMYdArBXdCok5h0AeCs0ix7GHQADOWq7HuYdAWi7RQsDBh0DcfwAMKrOIQDysFAFV8ohAgrSOsFX2iEA= + KBZXds7jZUBOGswAeMJsQGS4z0t+BG1A7mf6OVSSdEAgmueCrbJ1QO7F1o2so3tAr/EzooXDe0AVtKcxLmKBQNcnCPtuaoFAO1XSF/uChEAV45Vb2uqEQJ+CnDSHm4dAqMM5lzHziEAyY0Bw3qOLQAzxA7S9C4xAcB7O0Ekkj0Ayki6aiiyPQLgmXv16VpFAqHF1QnFekUCcPDEFsdqSQCiJbFfHIpNAGCxxnMymlEDan9FlDa+UQF9AIJfiipVAacgvWzl3lkA= - + - vNIBRjd2DEV8/dBGwoOGRb5kN0aDYxxFunYcR42zG0WYe1xF6myDRSi0a0X5ul5F8cAmR9+YeUYS1uhFJ/YpRcGM4EajrQRGmompRSpZWkbX3LtFiySVRxr/C0boTupGX345RWgjGUXdsshFVUBARdZuAUf/8iRF8WGFRRvHQkVNBWJHVrmORgeOOEZihgFGzFaERa0uFkXTpwlGiCA/RRRXXEXvd+dF6ugSRQMx/UXD1z5FJwuSRoTyeEUrJx9Fug+sRZlzUUbjpRdF3SbRRclGO0eXjWpFfSDyRdMOwEU8PU9Ik+tlRQD/hkZQJulGxsE6Rbq7HkbHP1dFcvhCRR4kEUc80EJFtrtMRTsBLEV6AN9FqGkiRqz+QkVuYOdFnR87RQobSUU+WxlFCMpXRkSww0VCD65FhHVWRTKDTUU3r11G5fXPRWfgOEVeVSpGKdwmRfEsmEVF81tFLGEXRs2QlEU9IMBGqz3NRaOlcUWr0FpFG0UyRWlEjkZz2zVFySwdRRLap0V5LqFFbxAWRdknVEYQx3ZFF44WRmr/nEW1uj1FgnL0Rzetp0b4BdVGcTKURSducEY72zxFdKmARalOfkVgJI1FQUnGRi+xM0a8KW5Fnq/TRapDW0Y5atFFykRRRad9FkVUvElFBzoqRRO8q0W6EUtJFkOIRatCbEXUa1dIFzsHR/gyUUa2MVdFP5KfRb1XjEbjgCVIzohWRwPHUEZK8IBFbjOKRRuiBkamXiBFgAqWRhuZ70XMSmJFtfoiRdcjjUW3NRxFA6rQRa47E0km99dHLKT/Rboeg0Vvpe5FlcvBR+Rit0Zf01xF0HV2SGsUv0ehW55G8uhcRQS/zEWluvZHfMo7R4/WMUbIgRFGdVGtRSQXPkXuNVdFxEInRjtPGUXDrs1FVeF1RdTHL0ZzQB1KAqtfRqJd30WF7lJFL1b/SAOx+EUNXIpHG1HhRV4dGEd0btZFxxftRn7o2UWDUu9Fdem4RadpkkbYhxFF886HRhaiBUYmRRtG/WkuRVwxcUUglJlFasZNRfhOwkWvCZBGRgUARgK6YUV+nAdGL3N/RcRJAkYmkGJF9tEiRcgUY0ZfI+hHhainRUEfkEV745NF4JYjReCs50aRHC1FZxqVRoSnU0UQbfdFYQNGRV5RMUXuCPlFhVAvRTuxzEVGpAlG8F1NRQ9NU0VL9aFF0oydRfzKjkjU7qRFbrpjRXyna0fLgOdFFE0hRamFT0V6H/VFR8VKRRdGS0U7VERFVjd9RdGXD0UvFItF1s4wRt5LHUVDaTJFU/c4RdbvIkUWzQpFZr5cRi4dK0WE0MpFdpt/RW6pMUWjYwVG3+pjRaJnLEVqlCJGueXuRYnGKUWG3jJFkrCISPH76EfckYxHlXVpRjcMjEXY22tFjL0gRSAvR0Z1hWRFejyiRV/UrUaFBGtFfYJWRe5vS0Z5r39FoE/bRau+4EfmSX9H+oSORlUDcUVHFfhFKqMwRcBoJkVjxSpFwIkPRt3fukVGuZRFBas5Rq6kO0Uror9F7HXGRhMJxUWo985HlLwfR/mgykZ6yM5F5rDqRTxsGkXLZXtFbwRlRQueNUVO+QxHf7SDRWj8ukWjNFNFV+eHRdnEhUU+xfpFdYXxR01XKkXpfD1H/LpTRZ+UBUdk8h5GKak3Re1rLkXviR5FkuofRceLE0Vw5x9GpG7wRYZUH0UOpxNFUrnLRUtRs0UD/DtFhhlJRjG8nUZXp4VFLAMARuzNeUW3O1VFKz/8RlU6kka4TBNG1h6LRURYN0XTnzNFq9UOR4rsckaKRyZGvoSMRcjNSEapiKtFfJFtRQ19NUape9ZFwK6YRdLUykW36GpFU2I6RQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - MnQERW/BckDgomEdp8JyQF73KkoByHJA87gWd0PSckC2wQw7UeJyQFTdJzqP4nJALdo828nxckCqtSyN0AJzQAKS76D6A3NAthcRcrwSc0DAxxn7+RNzQBTgde04IXNA35Mgwc8kc0C2F+uZeUFzQEGA93t6RHNA775In6RTc0AITErtK21zQHQsjPppcnNAcgkTXoVyc0CBP3p4xHdzQNdgoA3ed3NA1FdIMCl9c0BIiODceIBzQAR7Jf5dgnNAcCxhAYeQc0D2Ye8lTZJzQKqTZwf4lHNASFAqALmgc0A2LFUUW6JzQNDLHNO2s3NALpFjG9DCc0CiI7nYJsNzQEy01mjY0XNAaJyqueLUc0DuT8iXOOFzQMnlkPZ4AXRAePl9YeI3dEDNTpSduGB0QKDaOaYIYnRAZ6ndOSJwdECu8OCQQXF0QJ2BbxQ6c3RArKkjdU6BdEBmsxyyFZB0QNxzVs/vn3RAaOZgF/yvdEBH++ZZb7J0QAqYPT/Jt3RATEzgjhS9dEDOwNVO3r90QJAmTCG44XRA0OrxVI3zdECVw4uZXQJ1QKg03xeeInVAMA7P7CdEdUCMwR6GjXR1QDp+4katgXVAGE2rwqaDdUCKzQYITe11QHL0njGm8nVABkgfoUgCdkDun90aiSJ2QPYzRHVmI3ZAhvTz6ZAkdkC/EOqxSyt2QFq8WNYfMXZAGPa3YB1BdkDUzpTQEVF2QLWYYuHNVHZA9LZRoNtkdkAS0z6QDbR2QPwGefPPznZAMAgAxQESd0DkohM26Cd3QHgFbTRCLXdAAtk/26Uzd0DXQtibDTV3QJk732CdQXdAbgs/FhtFd0AFCqkDS1F3QO/WfoqSUXdAUObTUyhvd0C+kxrWn3J3QOSeGzZyu3dAnVLhoEb9d0BEJu+toQJ4QCKfht/7B3hAyI9N0xFEeEDMkrjIekV4QDwThzHKUXhAtM+Ucox0eEBDlY48m4R4QOTm/ihQiHhAxFDLc6qNeEDT+DcCmJF4QMx62jgDk3hAyLvapamUeEBicRpuOLt4QB7HjbE/w3hAvlzUJzDLeEDU9LwLQ8t4QNx3IBg103hA0NiW9wH0eEADpiUajfV4QJwdZPiyKHlAmqJYQQ0ueUACjBscFUJ5QNypnjvNVHlAHu2yYkPUeUABUJpAD/R5QDAiqHweBHpA4iilA/gLekAd1p9JARR6QKsLhJ4hFHpA5osd9w01ekDOGKo9G0V6QPzpFBCDUnpAd9cadSNcekBGr6ExKmR6QLDczKMxbHpAJW1xFsB0ekCGlW1vH6N6QIgwDzUmq3pAvyaHNxezekBkp4JqK7N6QMWB4JYNtnpAXL6CDkTMekC/MHOhTdR6QNbSg30eBHtANlu1LU4Ee0BFvPo0ewR7QM4agQKoBHtAWa3aVswEe0B+WsBJiRR7QPuMzpNJFXtAkI7cWpEke0DGBYzpmjR7QMF7mtbEU3tAtroMItJje0B0w9M4D3R7QNkMgIUchHtA9M8a086de0B6xGnCJqN7QICfD8wm5HtAlYqfNbzke0DmLrFkM/R7QJSanFeM9XtAAWwK8tkBfEDg3VSEZgR8QPya2EDnG3xAOIngjM1BfECBAiG7UUh8QNFQ1jWqTXxAY66Bt1lTfEBcP0O6aHt8QEjVlwZamXxA8l3Z5rCefED6HQjn9tt8QCAqdg9Y4nxAtm7CDxHjfEDMsisB/+N8QFA+g9VT8nxAKSivBUsCfUDU1vDzrht9QCyJlK+WjX1AjKkdDfWbfUDcqj5KpqR9QLAORMfnxH1AxoYp5+8dfkAwODSTSSN+QEmm2TN8s35A6OgELtLEfkAdRCXqcch+QNJHMkbNzX5AMsSRPeDUfkBst0cE5uR+QFL2zUyWA39AfgjeqBsUf0DWjfhGuHF/QN2TNgBkkX9AGB6suF6hf0AHmxw0fqR/QA4O2lwRpX9Apjdaspmof0D4F9UiiAGAQIE1PoznUIBAZhm5ZBNRgEBNt1xtD1mAQBxXcXrwbYBAooMpCh6PgED1tkup4KWAQExGjUwTr4BAXhH+GAa6gEDajxyms7yAQDakcEBfv4BAgoW+rFLBgED8KlU5U8mAQLYNl2VM0YBArkooYUnZgEDWJDnfROGAQJRv5LT17YBAXFE5bln+gEBqLzPZP/+AQO+tUaY9D4FAntsFujQfgUDYCQ3kNCeBQDiDteS7MYFA+JQdPSk/gUCOeH+9lEKBQKWxMhVaR4FAgoAL4QdKgUCIo5rtFVKBQPx2hPsYVoFANvysyBxagUAk25G4VY+BQEumbrBKr4FAaNJLtez5gUDy30848P2BQNX7W6XYGIJAy3Vf2dUggkCGwH1SNGKCQJj7ycjFYoJAA2BJ9ThmgkAKhz8XzWqCQODD1mVDiYJAQHXIF0SRgkCuWAE2PJmCQPFeP5kOoYJANDlrjDqhgkDeNE30NamCQHIkLRN+2oJATSkVuQn1gkAOAUFOvAGDQCZJVdzlBYNAPMw0UzkHg0B8lEsO1AiDQO9eW67ECYNAQJrTBm0Kg0BNEYLDeRGDQKjAxMO0EYNAlvcj+nkZg0DfAI6pciGDQMB8/IhxKYNADHp+UWwxg0BEGKgD+UyDQDbTkfGivYNAtm2pOQ3yg0DORdyz/2iEQKMfETVIaoRAJ0cxHcp3hEDVhssJeXqEQApklxsnfYRAbtwvd2rZhECabdTFaeGEQIBvBj5k6YRA3CzPXTbxhEBFbQLNY/GEQFxOHRvkTYVAQ8Y/vqBhhUCIP3MSoGmFQFAGH/uYcYVAN7HlIZp5hUD5gBSekCmHQIqh+wOSMYdACEh2q4k5h0AKNeCGx7GHQBY/UDvLuYdAqiw/8sDBh0C51WRAKrOIQHKg3qVU8ohAWGLaJ1v2iEA= + KBZXds7jZUD60UzrnGVsQGS4z0t+BG1AiDDsKtfyckCF75fDv8N2QOM8NnaaQ3lA4PvhDoMUfUAbKPOJjcKAQLXhE+JF6oBAqlBRf7mKgkC1EAIM8nKEQA== - + - 6Tr6RRUI/kZ2glVGg20QR8FqtEV7o31FNn+ORR7ZlEWLHFRH5uRLRm7X6kUkfNZGENTBRVCmw0Wd/xpGfD93Rff5i0eLgjVGq4LHRly/ikXYXaFFo5xXRSU7FUclm3JFF85rRRdgT0eD/JNGXMEXRp018EX52nZFSQfRRSSoUUWL6ohF7RvmRfeh9kVF+KxG33h7RYCCjUWyTYBGBo3HRVgyPUetFZRFGTXWRXxmoEWwBChIZl0+RgVy70YegzlGjPGDRXGzvkb4cF1FfUnkRcvJLUYjCPhFoAh0Rca5gUbd3cRFJ1S1RZPCu0ZnWghGn+uORhPIm0V8lnpFwBH/RcdIukVMJL1GkB6HRVBLlkVlZnRGqrx4ReJToEV2CZVFMhiSRjXCQkZVJsJF6EqQRbLx5UefUcxGAWfXRqGltEXxuIZGtA+ERXjyekVSj05FSvkFR9uaYUbZ+mNFZd/iRadTTEaYLpJFaYk8SRCUP0gth/JGGcR4RuXMS0XU4JhFieKIRn8nFkgPzmdHIPdGRp0iHEYn0rNFXuRwReaK6UUOMoxGQromRpsv0UVTh3NF8R+1Ra2TWEmCJSRIfjcuRn14XEUBnE5Gy2agR00xo0bEM89Ft59dSPi9skdSt3xG/vaSRYPX0UdBNixHTL4nRorz80XzwYpFJ1ZURtt6okWYux1GkqVZRn9EWUphjV5G2u9YRjh+MEkc9q9F3bjKR3csLkYWwWxHy9AARgMcFkc6J+FFZMytRVfJhUU3GgBH2z14Re3Tv0V9TndGyPZARmWBEkZSX4dFMu6/RaGPY0YE9/hFR0CHRvTmz0W0JgJGjpyJRU2qKEa329xHIlCCRTVM2kXHwMBGhvepRiPYA0YOFtBFMxyrRRMSQ0aHPItFQqefReKtW0Uz+X1FSJ6tSLcH60U8VpdF/DiCRyyUCEZ2s2xFtvSSRZqxxkXnzCFGGNaFRS3JcEXMRLRFaOV5RS95UEXNMJBFsCeNRpeO1kXOSKBF6PsdRpqClUW/Ln9FpV9zRrvlEEbFkFJFa0+SSOiQ50dAuIpHClRXRlhCnUUom7hFxu1cRSs7OkadmYJF0si2RssKyUUeQlBFXLVdRXmdX0bv/odF7QcQRmybykfSml5H+PtPRoECGEaIvQhG6sQbRhGUrEWoLzJGTfycRQzgp0U3HOBGO39NRfz21UWvyQtIWTFrR3qfFUcI5MtFVkw2RvnOqUULbK1FFKdPRZ62QkcjxlJFXIHBRd0Rr0XvuSlGIkd1RTxlDEhrcZVFhvBRR8TeCEf//wxGGFuiRU/7uUXZq4pFisDPRXCRykWJt41F041pRqXkWUbtLcpFfzEyR9VAgEaS9jhG2XZuRdTZhkWC5ZFFo5sPRzWWkUbI+D9GtNbFRbw5PEYLBt9FFhiZRYMlIUaO+KdF+C9JRdshxEUIBLJFhoNjRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - aIqTHG/BckAE9Ll8p8JyQO4WJCE8w3JAnXy9LwLIckBel2OTQ9JyQF6Wt1CQ4nJAQou0ScnxckAXrJjT0AJzQKBP0vf6A3NA3KM/I70Sc0DOiQZBBRRzQHDwjYA5IXNA6F0spM8kc0D8umegeEFzQGjzz+d5RHNAPqKPMaRTc0Asa8YbOmNzQGzwxMArbXNAA7laBGxyc0DcaMhAhnJzQJcsv87ed3NA2OYt9niAc0DWJo+IXYJzQIA82H5NknNAqaf8+feUc0BSv5cGuKBzQChRp1VbonNAzutfw8/Cc0CM+fEY2dFzQG7pGSXj1HNA8FvepDjhc0CD0XsWeQF0QOH9CNO4YHRAbF3ciAlidED4wLYrInB0QMAdNapBcXRAeiP3Rk6BdEBI4H0nF5B0QLZ1TATwn3RAxjDTz/yvdEB/JkJrb7J0QGiegQ78snRAQLEiHsq3dEDWbeVHJL10QERlnQvev3RAFjlyRozzdEB/qE6qXAJ1QIhqq8WdInVA3RZnCfo3dUBiE7CIJ0R1QECl7bSNdHVA1NFEP66BdUAoKyvEpoN1QIKyXUdN7XVARgGUyabydUBILJ2uSAJ2QAqnvyOJInZANk4n4GYjdkALTIeGkCR2QHK7EPtKK3ZAvrp1yR8xdkCUqGmdHUF2QGChpvJ6RHZAgMvpqRFRdkBiPtSlzVR2QMRUsYYNtHZAzC581AESd0DYC0N1DyJ3QHc/uvPoJ3dAxsIGX0Qtd0APlne6DTV3QICiEH+dQXdAgVx4VBtFd0AeyxO0SlF3QATbn+ySUXdAzItvEaByd0BooLFGR/13QKr+bIehAnhA/nZP+ekHeEBYGgbvbSJ4QDj9iT8SRHhAHgDDsnpFeECSvvYmzFF4QGAG/i+3YXhALbC7Zox0eEBqmgwGm4R4QJr0DgxQiHhAo7FPhqmNeEDVOyIyBpN4QPHCUuWolHhAyPIAyTi7eEAgtOsIQMN4QPtpSBgxy3hAQd9GqTjTeEDkf+61BPR4QCYfnG2M9XhAAtpvWrQoeUAoFrPtDS55QO7srYoVQnlAGg4iRc1UeUAiqaJnRNR5QL5aQzwP9HlAFR3OZB4EekCHXn4k+Qt6QOa5VJIhFHpAxMdH6w01ekBPTIBwG0V6QMlBuiOCUnpAIFj0fCNcekBG3CgcK2R6QH6HaMYwbHpAsL1Ve8F0ekBAosaMH6N6QPSryZAmq3pAxk5W5RazekCAq45HDrZ6QGwh9ClFzHpAytDvgErUekAutLXbSgR7QDJ2YR57BHtAWspX4qcEe0CA/rG1iBR7QIzloEtJFXtA/zZoN5Eke0Bc8b+EmTR7QADrL7XEU3tAKG+EcNJje0Cy8nVuDnR7QG5pazUdhHtA9GlAsc6de0CclT89JuR7QBwMAhS75HtAQg9c+zT0e0A2WKA9jPV7QKCpK3/ZAXxAaQHw4GcEfEA9wH9xmQV8QGTfNjHpG3xA2+MFzsxBfEBoJ6RFUkh8QD6pxKqsTXxAGJADSVpTfECI5SszaXt8QIblBTlwg3xAbHClDFmZfEDnCxjLsp58QHIwGvr223xAlz+qp1fifEBUBucA/eN8QFy6UfpT8nxAnovQ3wECfUCYq4WLSwJ9QJ7QaPhHEn1ACXGgo68bfUBs896wlo19QF4GI3jxkn1AykvgM6akfUAFAWuE7h1+QK+JMUJ8s35AllqZTtLEfkAZ04uUc8h+QGw2umHOzX5AnJX5Q+DUfkA8C3FV5+R+QNYi2h0dFH9A9U70BItYf0BUWEaztXF/QH8ayLNjkX9A4ozH/12hf0DFOWG9fqR/QHSlkMwTpX9ABvMmwAoxgEBO8UXG51CAQBZrUkMTUYBAul9e2h6PgEDpP0kWBrqAQG538ZOyvIBA7kQWg1+/gEAqS22nUsGAQL2/6nNTyYBAU8JNaEzRgEC69KavSdmAQMysmrjB3oBA+cry8UThgEAWMMAv9e2AQIHRtXtY/oBAvOCBwj//gEBqNSXRPA+BQLEYXK40H4FAYL9dcTMngUCg/M3SlEKBQNafJQlbR4FABPD+OgdKgUAELhPBm0qBQF1HJL4VUoFAloLL9BhWgUDwEugHHVqBQA8EUsBUj4FAxvxKJEqvgUAgqXz37PmBQEZEkqnx/YFA2CPhodgYgkAKvaJS1iCCQKYiYiI0YoJA2LvNfsVigkCYmwGKzmqCQE1lkXVDiYJAWHq4SkORgkD8kJLHrZWCQAJ+WKI8mYJAMntQwbCZgkBOXZQhEKGCQKGhKaE6oYJATn+SVH/agkCWWH2qXfKCQFKWahMK9YJA3jIfY7wBg0DISgOUngWDQIRNTU05B4NA/WvwgdMIg0CKC6LJwwmDQNrLOVxtCoNAzgl8znkRg0C0XOcIehmDQBTAyNlyIYNApPofsHIpg0AaXLd5+EyDQJR6ke4N8oNApNiPrRH2g0AFvvZh/2iEQN4oPGPLd4RAHOklb2J6hEBuIlLwenqEQDm07BMVfYRAHsx7v8F/hED+eDnacaKEQKimkfAfpYRAXBRRWmrZhEBqMqDiaeGEQLKDOApk6YRAHBsYBDfxhEDWYwoxYfGEQBKkDcPjTYVAwF2Hr6BhhUCCR0q0oGmFQOf8u4qZcYVAgsnVYJl5hUCgVAxdkimHQBfXY8+RMYdAKkqEYIo5h0ABJhs9x7GHQAbKKMTIuYdAzPtgNsDBh0BgOALIKrOIQEqp7AxV8ohAJ16/mVj2iEA= + KBZXds7jZUA= - + - DYTaRVs2/UYu9UJFGPLwRfxp50bNXpNF9viERY87f0V7tQdHEUVxRl6gT0XzhbBGtRPCRQoon0XdizRGz3WOReyPVkU2EXhHu1TuRQYm40Y04b9FCo25Rokfg0UrAVdHtlmERtAAA0bsfghGIbHDRZPAREUYRYRFfWsERrGZh0alh5lF2WhvRjrduUVAz0lHYy3jReA80UWZA9RHVjP9RRdG3UZR3UBFmEY0Rud0RkUa3XBGSeTrRQbo60Wa1tBFWQhERaTCQ0UQnjRGCCS8RY30j0WERINGY2yRRRg6Kkb5l65FBxxPRTpAEUZYHLhF75W3RmN3lkUCaaNFc9ZYRUFQMkZV+rFF942TRmlGR0VrfkZGz3uNRQk88kfI2phGtL3dRjaisEUTiEBG7PXGRZNl0UZZBVVGPQ9zRZ1Vf0WCM7VFB7kxRoPLekXGQ1RFGZU/Se7DREhiKfpGsixlRv1eiEUw7pFG5RP7R+wvLEfzbOlFqmlORXifj0WR9MRF77BlRqwM5EXhCFRGxstaRTD+hEWdu0hJRpEYSIPHNkbcbS1GlxOnR6UDm0a/DhtGVzA6SOZ7c0fa0TFGAmdERdV4pUfqP+VGadHyRV4okkXrqUdGOjePRWmQE0avrVBKylNIRsHFLUkF6ddFDZ7NRzji2UXzHD1HrnPbRYBG+0YDfaJFjz3aRRe4E0dAkY5FC4DKRW1bgUYjdSRGCSTTRYDemUUfi2lFyHSORc/aOkZYRa1FMHxRRlPQjkbA7uRFCkKvRbCLXkVQS/9FB5PYRx8OfUXF271GOeBxRbdblEaiIXFFxzyiRY1at0Ut9lZFNSt2RsFyhkWP/D5FfweuSPR7kEWVok5FcOabR4jf4EVpzqRFjdJPRfZrjkU2tVBGb3xXRexLTUVjlalFiki5RfxLe0V8zWVG9vbeRX3GJUYo5sZF0lFiRXjgh0iKFPJH+bmDRzG6Y0Ys5XpFpmm3ReQX00UY0YpFYhhJRtXYh0UGL5FGF9dZRaMKaEbARcJFH/6FRaisfkWgiqdHKpctR1sgQkYmyb9FTBvbRZbjE0YtCF9FjMZLRrMyX0V81adFW0aDRqb3fUXkQ8dHjhguR52bG0ZX2NJGOVaKRVHtvkVdDA5GrB+nRRQQEkY5/wJG40RCR/mOqUXtkpZFvw+AReDJ/0WpmldFUTvzR8LRaUcCPRRHZ9EdRiFSeUVsZMJFppFtRXPsz0UA+9lF8EzPRQjIFkYjWzBGSw5yRZbY8kX87phF9rwaR56WeEYC5ChGWglcRSYBWEVMBYhFZ0EXR5msUUYUtihG/hSGRYbYGEYATrhFxDiBRUltH0ZNIbVFKgVjRY3vtkU1k4VF84tiRQ== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - YPe4vHDBckA4jxsgp8JyQNCfzKQ6w3JACgI/7QHIckD2HrykQ9JyQLhPqKvZ0nJANuLScLfgckBI16Q3UOJyQCz9UNyP4nJAMMF/s8nxckAgYesowv9yQABJ/KrPAnNAIkdH5foDc0DPvUP9vBJzQPw64AAHFHNATtXOfDkhc0CphCx+ziRzQF4lRMh5QXNAmOtp1npEc0B/LzG3o1NzQGRkHcc5Y3NASPLQlCttc0BY+FLlanJzQJSTEzCFcnNAoMkFX2p2c0DHj/tQ3HdzQKQG9xV5gHNAnL+3zV6Cc0BQU1WXh5BzQELQ2m5NknNAw35Hq/eUc0CUXnWGuKBzQCzcm6tbonNA4rQ02gWlc0A4ldtTtrNzQMLfP7kNtHNALsg4U9DCc0AG54ZS49RzQPjQxgg44XNAFaowK3kBdECW+1PtTBN0QD5MimLiN3RAl8PAKrlgdEDD/q4kCWJ0QPUh6C0jcHRARnwxjEFxdEB5iFEuFnJ0QP2xSYE5c3RAq673/U2BdED07K6TJoN0QDM3KQcWkHRAZc29FvCfdEDqLK0e0KB0QJeDTmP9r3RAe9MSOMOwdEBEzG9yb7J0QKBxhb3Jt3RARE7zgCS9dECAUVdF3r90QGAAy/C2xHRAfnNhosvKdEC+tSD+t+F0QKAgyRmN83RAnO2Vel0CdUCJXsWenSJ1QDav5qbMNXVAkngOp410dUCC6jFSeYF1QB0njpWugXVAyOCYrKaDdUDoSWsCTe11QMuycFOn8nVAudAN00gCdkAkxBzliCJ2QEqfEMxmI3ZA5riRIJEkdkBeiORzSyt2QMRSVGAgMXZA6NZKfR1BdkAeqYtbekR2QI3FMQIRUXZA2IU79M1UdkBzL6TkDbR2QKe+/srOznZAbqj6fpLzdkCoO6wzARJ3QIqN24QOIndApJ9C0egnd0B2kpRaQi13QLK8H/WmM3dATmbLhg01d0BmEuaJnUF3QNZhQ20bRXdAkLEMy0pRd0CK7EBDklF3QOFAv8KecndAQNNxanK7d0DpStO9Rv13QAvn4bOfAnhA+7kaOG4ieEBuGq2X0iN4QE8h180RRHhAHHWslHpFeEBOYY/hylF4QP5oWIy3YXhAuLzJT4x0eEC4wO+ypIF4QNhdbr6ahHhAeTt8j1CIeEAe6H4Lqo14QIW+a8mXkXhADnTa8amUeEDiQBilOLt4QG015vg/w3hAGkxogzDLeEAkj1k+ONN4QIxkFngD9HhAoC6fJ431eEBg8aQjsyh5QAat1YUNLnlAQlkRhBVCeUAcyTitIlJ5QLoGmqbOVHlAxmETV8KyeUBgBve0kbN5QB6xXB1D1HlA83AQHg/0eUDiUKcUHgR6QN7aSb34C3pAhVsKxAAUekAqeKuPJhR6QCAHQ+MNNXpA3KUKoxtFekCkY/2WglJ6QKlXBDojXHpAsGGjP5BiekCOf0nJKmR6QOgF5FEwbHpA8wOwWMuhekBmIZibH6N6QCJZTI0lq3pArJAuERWzekAa7k/tL7N6QDpmwwAPtnpAfl6KTR27ekCcOJPrQ8x6QMquLaBK1HpAgJzdThwEe0Ai6JIJOAR7QB8x5BlOBHtAeoeuMXsEe0CJNiD9swR7QB756vDKBHtAXATffOYEe0AytuPZiBR7QB5POURJFXtANkFU6ZAke0AUqSZFmjR7QCKgl77EU3tAw+7FyNFje0AUlRNjDnR7QDK0dX0bhHtA0np1M86de0AsC+TrJaN7QPZu4TvIw3tATu5DSSbke0Ac1OP1ueR7QA4pZxIz9HtAlQnMlIv1e0C4Lwl+2AF8QKWCPDJmBHxAse9n6ZgFfEDUHRQT0RF8QJJMkNflG3xAC4qdic1BfEDasc3jUkh8QMx9uyeqTXxAbBxVE1lTfEC3O/PqaGN8QBh/eEppe3xAks+PzG+DfEAaNXE4WZl8QG4f10b123xAzEudtFfifEAqpd16EeN8QNbPrXX943xAQ/OKXGvofECkHeoYVPJ8QLhfiE4AAn1A4hTbXEoCfUBsZtOuRhJ9QAlTRBGvG31ABn+srLQjfUBoSvJ+l419QCh3EUjvkn1AMmZjAfabfUDcmjwXp6R9QHJ9B3+1tH1Atr9O8ebEfUA8t4tjkfV9QCrN7jbvHX5AahL4GXyzfkA0TXT20cR+QAtfY3ByyH5A6Ogwe8zNfkBI8hzx39R+QKYYeUTn5H5A8pG5rpUDf0D6q1r1HBR/QJDNDedaQ39AoiNi22FLf0DlIot0i1h/QLBwUg64cX9A5RHpimKRf0BHoMO5faR/QJTlM3wRpX9AgNedoIgBgEDi6eH22gaAQLpw62IKMYBA8A4/9hJRgEBqdJKxD1mAQGymsPXwbYBAurbbox6PgEBcmc/23qWAQEgwxP4FuoBAuaTHtLK8gEBXiapIYL+AQPJAQYFSwYBANqy5QVPJgEAeKGs5TNGAQDX6uFNK2YBAdQshfMDegEANANNpROGAQEoxmjz17YBAWmc7rfnxgEDu/ussWP6AQAyPAUdA/4BAyqgH41sCgUA25L9fQAeBQIqUT4Y/D4FALPN5gzQfgUBSgbxTNCeBQNiV5p0oP4FAayVNcpRCgUB8AAYJCEqBQH4LqbAVUoFAPP5A6RhWgUBeKm/pHFqBQJy/MZhWj4FA9CtnvuWhgUAuo/JnSq+BQLeKHt3r+YFAiouCc/D9gUClF/JM2BiCQO4/RODWIIJASAfn7mtSgkDKXOZUM2KCQGiK95PFYoJAtsDnYjhmgkCiX+EeO3WCQHRMzKVDiYJA2cOEq0ORgkCivRbArZWCQENNIuY7mYJA8slGZbCZgkBScSCmD6GCQFz5fDc7oYJAxtZLkn7agkAcQ+Kygd6CQKJc4jpd8oJAask68wn1gkASR9WgtfeCQHfKH3Fi+oJASEx+OLwBg0A4BmJxngWDQDCMEg85B4NAAgDsYNIIg0Caa8RrwwmDQCZG3b55EYNAFitm67MRg0C0q9ckehmDQDCw55hyIYNAEHC+nXApg0AEINiOS0qDQPg4hGX3TINAWK7fmw7yg0DanizCEvaDQGxLo87/aIRAXPWXyEhqhECppL3dyXeEQFdT0/1neoRAtM5TAIJ6hEA7U54zFX2EQIoX29nCf4RAhIttgHCChEBqOB8FHYWEQMOgjkl0ooRAgg88RR+lhEDsQ2bxFs2EQIyYK0Fq2YRAk7TfX2rhhEB4rSrcYumEQKFjD+k28YRA3Ja8d2HxhEAgl3Ku5E2FQOO5sFvmUYVA0NoUJ19ahUBcdaiNoGGFQJpj0+yfaYVACyVyD5lxhUDE9dkEmnmFQBbGaBGUqoVArl4gSZEph0CKh3IHkjGHQCzqq5+KOYdA4C1vJ5uuh0B0P/I4x7GHQGR6CwrIuYdA8M80r7/Bh0AwZToCAsWHQCWk9+ICx4dAnqKyBAPJh0BfqCWeKrOIQLZCQnhS8ohAeN7LeFX2iEA= + KBZXds7jZUBMjnNVJ9JxQNvlv3T/InRA - + - yO2/RSGrzEaW3ntFPuMiRhLKBUdpJVlFz34vRRE5WEUZLolF25aIRS/yVUUo+WlFwVxGRzK/O0ZYZNpFy5/URv5w30VzSp1FsfYaRg9TnUUSn3VFRlGCR84EEkYVbrpG6RMuRXnTm0VqRPFGMHCLRcJ4YkWCckFHef9pRsO7GEa3LvZFQeArRfRohkUXAGJFpnHURfkIqkU6EspFDXRnRplSO0XUT2ZFwhDIRQaFk0a1uNFFd/0tRwjgR0WUHFhFBJ7dRRujLkUFZOlFI5uoR6dBPEWF4QJGQlwvRfALwUZCYzVGq/hORXT3QkYholtFLzQ1ReqYREWjdKpFpPoVRvPYBUZ+6G1FMhMoRt89QkVufMFFdkGMRd1NdUaoNghG23FqRjCukkWOpS9FP3AWRlk24kWJSqZG0LpIRT3usUVquWpFUHNGRihJr0W5uo1F7U9NRUP4gkY/7S9FOfUNRjvWPUXKXENFDa3oR9fNnUay8NBG7cGeRb53UUaC6yxFMmc9RRj33EZUcn1GoIJcRUMstkWnoAZGO4Y4RmIQtkW+dFZFWT5KSdrUWUVuqEZIxaH0RnLEWUZV6ldFRlSaRqXe+EfO3ShHpcEORhyHQUURpF5FN9vjRcARRUauaLxFOCsER/W/tkULZ5pFZfBJRQZrK0U5Dp9FPx04SRxbBkjHryhGqIyoRXzTOUYrzMxHcYeSRihx3UaUyzlIDsymRaHplUelnS1GO9ZPRVkGpUevSuVGjn/5RaLHeUVtz5lFETZSRXaPkEacONRFNtsBRrzyM0alEkxGF5g6Sj8UOUZqIwJGerXuRV34E0k8sgFGUFWeR0hT3EWKdjVHtiLuRZrVJ0eE9uhFAavURZTxfkXdtSBFqjAlR8SCSUU2i9RFMtiQRk1EK0br3NZFJtOMRYM1fkUJTZ1F9dGYRXWvS0avf9JFMCNNRjnPNEWc7+lGP9EhRtU6HEYwoR1G3IbwR/Gdn0WNDZhFW7mCRdXv30bTW0RFUNKmRvnSUkW3XdRF+BIiRYRSzUUoTVBFbstkRWr0gkarfDhFK3E3RUATLUVv5JFFr3FJRbdnwEiT7cZF8RegRXLdqEeOVx9GvdlyRfbSpUUDMUZFs086RVjyj0WX3c9Fa5ENRm04O0Ub1eVF/RahRdHCNEX6hddFXWRoRmBbrkXh66BFiQz2RViQO0U5uXdGrz8lRidBiEWZl4pI9groRwelhUdx/3hGGeJ6RUSShUWpnPVFdO8rRVO5okVoqD9GXrM9RbQtLEXoiG1FYimqRmElqUXnD2tFLSRcRpcyd0W8SI9HddMgR0ooFkYRKe9F05NMRU5+/UXBvgpGehizRRU4PUbGIHxFrYYyRR5aj0Xt7H1GWU+VReE9R0U/8MNHHmUwRygKsEZf29NG9ZQJRkR930Wrk99FfELzRU7lSEWe1qNG8VqGRu2lQkbyllNFtbASRxjG9EUb2QVGTG2+Re1+BkZfA99HDRpNRdjYP0dig8NG+DfuRbg7k0WbE4FFMDy3RWvuRUXawb1Foq+ZRfgRN0akG/RGLRCPRcHCAUcRGa5GuvENRpj0lkXSwUlFGBTMRUIbaUUrmh5HO7KERuceHkZlRT1Fu6VYRZ/fukVSYYhFOU9TRSPMAEfyVVZGnWb6RSTKbEWBIadFJqMvRvz+n0UhKJZF6UdBRZCB8EVn+bNF4QBGRd+4UEUDRElFX+o0RX6DnkWhhcBFU0uGRQ== + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - V7GtB27BckDWnydbp8JyQCH30DA6w3JAjVYFYADIckAY7E3+W81yQHSlE9pD0nJA1A8451DickBh1QQTkOJyQMbkxRMl43JAjsRC3cnxckB6rMUjwv9yQN9BLMD7AHNAbJ3YatACc0CocUcM+wNzQOaISJi8EnNAOjf7eAUUc0Am1R4rOSFzQPIQLfFlIXNAzJcztMoic0ABQgDmziRzQJB5/Py4P3NA38GU5XhBc0AKzdSsekRzQDr/vribUXNAAnJRiKRTc0A086QmH2JzQHrh+/krbXNAtJ8pmVByc0BogMLea3JzQK7T3wGFcnNAxvaNmU11c0D72YY50XdzQDiJBjned3NAWCwZWHmAc0AvXrOMXoJzQD8yNAyIkHNAQ/7/SU2Sc0AW6t0pYpRzQNJkh7T3lHNAXPnwM7mgc0Am8QmXWqJzQBrYfXoFpXNABChXXbezc0C+Gsf+DLRzQKM+1B7QwnNAHgVOFdfRc0A88AOn9tNzQL1wpkPj1HNAAiPOBznhc0ADlLCOe+JzQFQn5Z849HNApeFa1+QAdEDsPHiDeAF0QEyq35hME3RAngODW7ghdEBY729/yUF0QEKKNsi4YHRAPNOAzQhidEAI7KY3I3B0QPFfWX1BcXRADOo4ORZydEDTBv0QOnN0QOqIe5n4gHRADuNMJE+BdEAq7Am+FZB0QPZpgevvn3RACr3DgRCjdEAh6zKq+690QIDKnAxwsnRA+A+YivyydEBUgqhhybd0QJjfgsIWvXRAqk8l4SK9dEB3Aw5g3r90QF/FgGMkxHRA4PYu1LnhdECrw9u7jfN0QFJ58XJdAnVA6rZSOiQUdUAiwgVGnSJ1QB5J+xHONXVAsicKivk3dUBo7mS/OWF1QFyIKWvzYXVAkPwePXZydUD13DHtjXR1QJNBrAp5gXVAHvZZvK2BdUB/p0KMpYN1QEwdh7i5oXVASt/7mwjidUDcw2NuTe11QFi58tCm8nVASD/No0gCdkBKTlrRVRJ2QF7d7yOIInZATO0HmmUjdkDSIhNckCR2QCdBmkVLK3ZALBUe1h8xdkBY1pixHUF2QMiUpELKQnZA4sP67XlEdkAzdOESFFF2QBxl/xPOVHZAJi/JqlFjdkA0LmRBwbJ2QAKKTMoMtHZAYjZ1us7OdkDKMxg8kvN2QPguAsUBEndAjWuQlQ8id0CWv8gH6Sd3QIIjDidDLXdACNsMs6Mzd0AvELudDTV3QP6yBSSdQXdAYtzPipNDd0Ct/I14G0V3QPPdew1LUXdAORfZYpJRd0Bf0uZ9LFV3QAYUU6qfcndAAuLjfneCd0DBqoSZcbt3QOCtNktH/XdAgM/OUaECeEA+9foD6Qd4QO5S9Lf7B3hAXKH0LsgIeECKcEOtbiJ4QKAbVe/RI3hA8tEiRBFEeEDEn7TjeUV4QDxegEPLUXhA1bLYsZVSeEBwMOwkiFV4QGZLl6D4YHhAEHBIwbdheECBpZhujHR4QKRWUGSlgXhAjliaspqEeEBG4WAaUIh4QGI6TVyqjXhA4HKoFbuQeEBW+I7jmJF4QIEH6IzuknhAZ1mNZAWTeECxw4cEqZR4QDyVkM/Us3hANSSheDi7eEB0i6CeP8N4QHmWZPovy3hA3uMtmjXTeEDe9ILjt9R4QG61Kj4D9HhA8I1OSYz1eEByF1nMsih5QE5RC+4NLnlAEoHxN2czeUAruBpO5jh5QJtcSpMVQnlAmAJ3YyJSeUBI34EYzVR5QFBNeAjDsnlAONH6/5GzeUAKLc7RBMx5QD4q61hC1HlAtnxhOQ/0eUDO4q//HQR6QMX7GF/4C3pACj2vhgAUekDsRkpeIBR6QGpd6dkNNXpASe662htFekBGF2ZcglJ6QNrI1PwiXHpA2q22/5BiekBGSYJAKmR6QFBequEwbHpAvPoZR8uhekCnd6aAH6N6QByUCVsmq3pAGBcMuRazekCKc/ohLLN6QNC94TgNtnpANuCCWxq7ekBS0lynQ8x6QP40icJL1HpAIiP/pffjekDON/SsFfF6QBUiKoDCA3tAixmD89cDe0DrRL8AOAR7QEIeBpJ7BHtAFsulbMoEe0CIgvhuiRR7QMSpeZ5KFXtALiw6G5Eke0AVRPHlmDR7QFkJ0/vEU3tAelSKatJje0B1nlv+DnR7QKjucxgchHtAfsdtnCCVe0Co0BevzZ17QJbNKH4mo3tAKl5dysrDe0DUAgmeJuR7QOzACO809HtATGwDgIz1e0A+Nh0dKft7QJujkejYAXxAhMEIemcEfEDksBJqmQV8QDoVD/PQEXxAeCx8LegbfEBaQVUczUF8QOZPBYlSSHxAYBNIVKtNfECSOakYCFN8QHDeekJZU3xA3hgie2l7fEB7xUhgcIN8QFkWNsZei3xAIXyOx3eLfEAMfCr0WJl8QIZUC2SynnxAEsWOIvXbfECIQvX6V+J8QHy57uAR43xAeBqiY/3jfEAHqY6Obeh8QP1szmhT8nxA6A/hlHLyfEAfLNzLAQJ9QPjPKmZLAn1A6q8jMUYSfUBqkF3Zrht9QOu4E7G0I31AUvKAwJWNfUCq6rZz8JJ9QORv/0X1m31AB1Ro5qakfUAlu9rxq7J9QCoVW9qztH1AK6r8QOfEfUBwIZJi7x1+QPI0YFhKI35A+sRkPZZFfkCqjSfBuHt+QDkmJnSllH5AyKSUYnuzfkAUTHQn0sR+QKz4yehyyH5Ajo5W48zNfkAunQVb4NR+QPWzMLzo5H5AVF36oJQDf0AzoEchHBR/QKRUP8tbQ39AnGQ4g4tYf0DYBSGBt3F/QFJJS3hjkX9Ax3AA0F2hf0B0p7x/QaN/QLhG50V9pH9ARoocExOlf0AOv2x3U7F/QIWb1zSIAYBAU8FidTQEgEC0GbbraSKAQKBdLBkLMYBAzhYlDw41gEDmPZEPqUKAQD9S+mrnUIBAgSQ/hxNRgEBsZt3wDlmAQAbpvic9ZoBA7b8Rse9tgEDEML6zJ2+AQE5R6Gwej4BAvuRk4IapgEACksFEEq+AQJ66yeV9soBAoOsdFAa6gEB7uW4+s7yAQEgsu61BvoBAW44hUF+/gEB27EmOUsGAQM7Io29TyYBA6K7EpEzRgEA+oI4PStmAQAY/TMu/3oBAlVL6VkThgECO/En1a+GAQEKgiz317YBAca9eEPnxgEAPqs3AV/6AQNR+2AxA/4BAEu/rBFwCgUAEhNqVPweBQCDJjEk9D4FAflMXvTQfgUAW968oNSeBQJwLxg8pP4FAWE6cz5RCgUA2PTcDW0eBQHaGF2CcSoFAENKwKbNMgUA7e5G1FVKBQDD5IwEZVoFApr4ouR1agUB8jYnnVY+BQOod4RKdnIFAxbOeikefgUCOpKRI56GBQADrhQdsqIFA8gIyTkqvgUC/80Lo7PmBQMzJIrzv/YFAyif/ZtgYgkDAGp3P2CCCQFZsBPrRKIJAlimjoGpSgkBoExzaNGKCQAopn5DFYoJAdkCevjdmgkCgtuKLQ4mCQPDslSlDkYJANsBgpK2VgkDWrA//O5mCQITqta+wmYJAFVeGNqOdgkBQJLohuZ2CQAg4Pj8OoYJAJ6elbzqhgkBQ5ObhDqmCQJCCm7szqYJA5IuBdH7agkAkFAupgN6CQOa3lP1c8oJAPDqctgn1gkBAGz2QtveCQF0AXbrv+YJASpnNKmX6gkA+eI2SvAGDQCivy9/gAYNAhmjCY50Fg0DVoai45AWDQFjE13A4B4NAjwkW9tIIg0D6kF+NwwmDQPBNQcV5EYNAbrnD4HkZg0BitIIxcyGDQF51YWpyKYNAUvDYe2oxg0D1VCIiTEqDQEnXMxgO8oNA5ot28xL2g0BeUlcaAGmEQCD8wWHKd4RAIIZDy2l6hEDMzE9vFn2EQHaAkQzDf4RA3vDLW3CChED2ehu1HoWEQBH9LfVyooRADN7QQSClhEDAPB8hGs2EQEY2oRPFz4RAiaEvUmrZhEDWFZgSauGEQMbX0Ftj6YRAgeKWADfxhEAFtHufYvGEQOwLO9Y1+YRAA1U3SuRNhUAiBTX951GFQDR8X4CgYYVAmGCetJ9phUBGxxF0mHGFQHAFwqqXeYVAEIx6q5OqhUCQc8bamK6FQLkePiyRKYdAdL13L5Ixh0BChEkIijmHQDQJyRmKQYdAhoEiX5yuh0CwsH9xx7GHQPo24fuesodAiKms5Me5h0BkJXGzvsGHQK468x8Fx4dAqp6PY6Lwh0Bspiu5KbOIQH4jUblS8ohAsAdT/Vb2iEA= + KBZXds7jZUDEsXzkG6NpQGS4z0t+BG1AMjrEeZeTdUCps9IrpgJ2QFRDxqoaBHtADU8tcpmagEDE0+6E9dGAQDZPtEGs0oNAi/+UlGHag0D9elpRGNuGQB7gONC44odAjn/b6VmTiUAeDyf6ZGuLQOU6zQnRc45AWIeknNurjkAU/2LYJF6RQKQA1QU/PpJAuRUWB2Vak0C2YN8rYYKTQNCY6NmV7pRAzeOx/pEWlUDi+PL/tzKWQHL6ZC3SEpdA2rV1NwkbmUAUXOGADjeZQPhxtIhEu5pAvznaEEqnm0B4iaudmn+cQAi8Gt1qA51Awnl9O8aDnkDs0e3koIeeQNNHqCH+A6BAAKlYJtURoEBZNIst+NegQE+mab0meKFAfXWrkwiGoUA9ASeeM2iiQKgxnMRJnqJAYYt+mz7aokDMu/PBVBCjQA== - + - bAe/RVhOukalSGNFJwMjRpWCGEVKRhVHE5+ZRZqaokU45vdEpaaGRWL+HEUTPOVEiodpRVzLGUc5sYlGWqm1RcQQoUbKZOVEyNbuRPCGuEWbCBNFV/KkRZNbG0ayaupEbC1zRVDoEUWJP29He/UNReupJEboD/1GVBghRXD6eEUntbpFxlnbRpbgg0VS5gxFXTVMR3u/EkU6XVdGCqwBRvxQ7kWmTx9Fg+idRX5qFkVlYNdFiM8lRbOY+UQNMJpFq/vfRax6PUWRlglFh6YFRSOikEZWIFVF8Df9RHjNBEXsIm1FDFOpRqQ4j0XXEEZHeKI2RYyrMEXnryVFfw4ORiHbtEWO1XNHCfw0Rbhhm0XvHuZGwK5DRW9cLUYt0BRF7kYpRagyEkY/CvdEV9IeRSIEm0UjwbdF+1dYReh+4EWjX0dFRGgWRezb+US+cCNFKMRXRaKUCUbu//VEgOmgRfdivEWqzwFFv7EiRZV4XkZ/78lFSnVlRjStAkXhj5ZF9Cc9RbZrJUaScpZFD1rJRhpCtkUG+gtFeAp3RZ/IEUWqFwxGsC8IReEZKUXt8odF1l1FRTAwE0UMka9GMwJVRT/rIkYqu31F2a0KRZeN/Edyv6JG8FcIRefG20a2UoFFz/MuRnzBCUXt+r1FrRMCRQfcd0UsVPBGHp5fRpqD5USlDRZFONUvRanpH0XCB8dF5BjPRbAxWkbrNI5F7aElRYbyDEVAnCxFlwY9RS0rQ0mFoRtFehVDSPHOBUfDUlhGtygMRQ86GEWqvjBFF6tiRWYBh0bNjhpFfOrvR0r+IUe/HhdGHMmBRU6UJkVv1VlFdbTRRSvBhkacbBJGJRtFRX/J8ETrPE5HcUX/RY6bIEXJtSZF80oRRQXtDUVEybtFBTvqSHFMp0eqnx9GgbJdRWwRxEVzp6dHBALARl78NUdHbydIzym3Re0hmUd0cDVGMWaPRWG9okfvsNJG1ALMRX7js0W1vIRFiFExRWJ+rUa49wdGDcY5RcBNBEWUA+lEDupBRbs7A0ZSxPRJpme5RU4hxkhxcBNG+oo2R3FRv0Xtr9VGF+mPRVw0NUcJWAFG6OccRW1DvkWjxndFn7EFRWsh60ZT26ZFrgt8Ru+fIEXEixZG9n/QRdGxb0XGzmFFCgtfRU76n0UatU9Go7XhRQp7XEWC3RBG7ZEqR7ExvkYitZNFz696RW4PwkXoSz9F5K/eRVR82EchyeBFs0dERecjI0VFvLhG8nuhRSBXOkW5TLxGbOt9RUfqsUUymytF4kd3Re3TbkUKVTdFH9uORih1BkVfM0VFohdFRZkBaUVPjQpFgDBvReBBG0XZxANFJpRURXBJtkg1YkZFWbiWRehWm0fzRQlG/z5QRTlVtkWSH4BFt3gGRURvWkUVpS5Gs2trRZDVpEUepWBFCNzVRbUtP0Xe9VpFI90ARS+JKEWqCqJF7K9kRUuyJUVXDEFFVIo5RntqpEUMJQ5FltExRZgWNkWQONNFw5FSRevpG0UbfhVF8jETRseJF0b7H05Ff5S8Rc5ph0j6uOFHPLOHR3REUkbXLVpFd7G8RQOvCkUISBFG/b5tRf4+9EVQNTNGRYaNRdkVV0Vr5JVFx16nRnP5fkXOsTxFEA50Rp684kUZMChFTx0aRQs3eUdz3vtGy/QHRjh5v0VdGjpFFyYtRej0TkVrYUhFJYzmRao7MUa4S6xFhstXRiW5w0WGs3xFIrIQReO1pkUiyKJFM5dERbr0vEfJHzNHSFAeR6q9v0bJGKxGVgVFRZRtgkVJ17lFz0zXRYm1L0Ua6hdFVF/fRRbQUEVEWv1G2qn0RgMtXEZ1aS5F5CmORX5CqUbxrgFFYB21RTUM9kSnt8FFZZHdRd5ohUW7/+xHfXNJR09jBkfvhg5GQZNlRd4nhUULqgFGMbpRRUQc2UXZTR5GjvvdR7S85EfDV2dH3e6SRphrrEVh+I1FdKuuRdpoQkXCyj9FS/QgRyvGakaZzyFGvuaARaXzTEXEUytFAFkQRncGfEWvBQhH9UhtRgflDEbUxYxFu+T7RZwXZEX18iNGC/uKRXShh0VbzRVF+MxYRZ+bCUaAlElFbsiXRcB2R0X0gylFt7MJRdaESkU8wGVFJ7FdRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + - - - - - - GtF4u3jAckAB9dx2DMFyQGh3J2JvwXJA6OeINafCckB9Iin+O8NyQItmhd0AyHJAkwhqPVzNckAwqYx4Q9JyQLpFNPDb0nJA5LpCNHXTckCoXIsXYtRyQNwGLQ/Q33JA8x5Fzk/ickD+wT8HkOJyQPAkFYwl43JA0GTRhcnxckCw7fuAofRyQHuJLgzB/3JAZ6aSas8Cc0C6BvrQ+gNzQJTM6wIIEnNA/RsoFL0Sc0CozRBv+RNzQLPBzMoEFHNA+/kFzE0Uc0Cm2KPmeB9zQD78SRE5IXNABKE/dtAkc0D8iK7URTFzQGDk1TI3NHNAEkH3ubg/c0DVptQEeUFzQFinpw96RHNAeRO0QJtRc0BhpdmhpFNzQAb75V16VHNAIOivMyBic0ApmvmOOGNzQD1t5cArbXNAxGejz91xc0AmFsCEVXJzQPHm3TprcnNACtzLKYVyc0CLI1U+TnVzQC0K+1q/d3NAfEiv9993c0D4Cge1eIBzQIIai6WkgHNAyPpkhw6Bc0B+/2U3XYJzQA4Pm7GFkHNA5BdGIk2Sc0A2dRTRYpRzQLVCupP3lHNApDWlgbigc0AkfUOZWaJzQBaFCg8GpXNATAXDmFqyc0B2MXHEtrNzQAC9E4IOtHNAmg7rdPnAc0B0NW/yz8JzQKL5WWwmw3NAUFB0jNfRc0DkpI8W9dNzQGzvtV7i1HNADkwZWKPgc0DQAPcyOOFzQCiSXigU4nNAyN+Mlzf0c0AyA8fg4wB0QCOS4uB4AXRAt57LyaQBdEBBbaTnTBN0QA5kONK4IXRA6PKgA2cidECwr1/bUzB0QFSV5OTgN3RAaKh3Y1dAdEBjX2Dr9VR0QOVzllm4YHRAbjoHzwhidEBGCNifInB0QAL4HQBjcHRAqyle/EBxdEATDwcwFXJ0QKpe6os5c3RA3pYi8Dd1dEAsf0Iy+IB0QL4nCe1NgXRAGk5m80iCdEDgMl5GJoN0QDp9ggG6g3RAbnlXGRaQdEBip4ym7590QHSX/k05oXRABHDong+jdEBK+qYC/K90QAmpzFNvsnRAf2t+W8i3dEBws0zCEr10QHlPbE4ovXRAEk2ixt2/dEDwxfVzeMF0QJzjstpuwnRAVlnkFbnEdECUpOVxy8p0QDxFGezN1HRAUA2blLfhdEBQtrSST+V0QB5jZaWn7XRAssB8FIDydEB6nrt3jfN0QFSBFgCkAHVA3hPb4M4AdUAgmyuiYwF1QHssqSxdAnVAVGtEVCMUdUDaefbCnSJ1QIpJZr75N3VAYqNGiXZVdUDUFacsOWF1QK3Uo53yYXVArE7XknVydUAAi2pLjXR1QDjXJXp4gXVAvuLgWK2BdUAOrWIgpoN1QCiuxnabhHVATyuSTvnBdUCAH5m9zNN1QDWFM/4H4nVAEsv9QkztdUAfoV72pvJ1QFVs+Ss483VA6jNubAP4dUDs+BUsSAJ2QOADLf3QA3ZAus3hXFUSdkB20b1ITRR2QHqGrBuJInZAKAoQUGYjdkCGTB86kCR2QMA/ZD1LK3ZAWtA3dR8xdkDFKX9hUzN2QEa/dawdQXZAOohcOchCdkBiroxheUR2QJ/AU5cRUXZACowyl81UdkA8rFzPUWN2QD7XmQzcZHZAuI0fdJGDdkBDHo4HwLJ2QGH35q4MtHZAAA23ns7OdkCgYglNkPN2QGARI/gAEndA0uC0KLUSd0B8a9nuDSJ3QD46BXfoJ3dA4Ow+BUMtd0BO0UDYnjJ3QPSk/UkNNXdA9Mf3Tp1Bd0AfVQ1EkUN3QDa2jGobRXdAWOSYckpRd0AcAQdrklF3QEJHYGcrVXdA9NLh4Y1hd0BryrQaJ293QMrBKMSecndAZqKc5kN9d0BTLBsKeIJ3QLq/BVlxu3dAaPGfSVHyd0ACu9dkfPh3QC6B7LxG/XdAJhRwUqACeEBdxAQ//Ad4QBxsVb3ICHhAc44nA/obeEABXSCwbSJ4QNZv2aTTI3hAHI90+Q1CeEAnbJCDEkR4QD0IOGp6RXhAA/6ZOctReEAGvor+k1J4QDsAzpeIVXhA2O4OevpgeEBsoHkSuWF4QOw4N82LdHhA+T51I+V0eEA8FKzipYF4QEaGVDiahHhAL2hWyU+IeEA4fM25qY14QM4eLbKWkXhApLTtJAaTeEDcqTyRqJR4QApPnd7Ts3hAMAKaGDi7eEDkS317ysB4QG0p4Fw/w3hAVqtKvC/LeEAQ6GXWNdN4QKYXDtq31HhAimGXWAL0eEA2XGk5jPV4QKBCn1+eC3lAjpgom7IoeUCUPsweDS55QCnnlSpnM3lAlNxRrxRCeUBOihZc+0N5QFf7HbghUnlACvqpr8tUeUAaQxeAQnN5QCT6fPA2e3lALDWnA8GyeUBYiMDYjrN5QK7/YtdD1HlADvci0U7keUA9jXffxut5QOne46QO9HlA1qhLzB0EekBA2mA6+At6QCMqzikAFHpAXeUbLiMUekAfEyIkDTV6QLLrCdoaRXpAPtV89YFSekDbDvjLKVV6QAnImWwiXHpAfrN6ro5iekDu/iprKWR6QF+BfckvbHpA6PyM4DV0ekD3+Zq4xoB6QEUi9Z7KoXpAUHIwOh6jekDwcDz7JKt6QOt4N7gVs3pACiaT9w22ekDP40+lHbt6QJ6l/xUfvHpAQLwAXhvGekAA5In8Qsx6QJkV2q9J1HpAgIFu2WXhekBE/2Kr+ON6QOLWU0Ra63pAj7MCSlzxekBEKJoRHAR7QEdcR/YqBHtAbElkjkQEe0Bi41BfewR7QCZUjj+nBHtA1J9l9r0Ee0Dgz7GW2AR7QEzfaVSJFHtAxqFzNUwVe0CKUDFMkCR7QCOckfpaJXtAiveKBJo0e0DWuI6yxFN7QMuOLKjTY3tA0idZJg90e0BbQrIHHYR7QKDok0oglXtApA1AvM2de0BrXfPbJaN7QBZhY4/Iw3tAbhFfps3Le0Bkmux3JuR7QMgfcN255HtA2DJcVjT0e0DAWVnGi/V7QDtzi8cp+3tAEr7W+9gBfEAmBobtZQR8QKCORBmZBXxAomXF388RfEAwytGs5Bt8QAhuq1nMQXxAgQP1nlFIfEDUJMCHqk18QK7kkVTtUnxA5DmyXAxTfEDwKm5bW1N8QHo91cFTWHxApNTIZGl7fEBK+ErQb4N8QJJ5aqddi3xAogtb1nmLfEC+7zKNTZN8QBa+aWplk3xA547qa1iZfEBun2SCsp58QAiqW+FDonxAmNlzcwykfECNLmYZ9Nt8QJjneJtX4nxAEDxf7xDjfEDQ0+8X/uN8QKKkgXVq6HxA3GEDQhXyfECsFOAUVPJ8QEdLBm/c+3xAKZrhfwECfUASkx7ESgJ9QNPNbbBFEn1AX1oHqa4bfUBcNV81jyN9QARIk6y4I31APIyKw5SNfUB+es0q75J9QDDGN5BNmH1A6BufffabfUC+6wJmpqR9QCjpze6qsn1AQzk81bS0fUDrZ0VULcN9QCq8HeXnxH1AEI1541zvfUC1bdKw8B1+QGDWFtdGI35A4BJ0LZZFfkA84uXLpFV+QCkN+524e35AMJGxK5eyfkDm9aM4qb9+QJQJY5PRxH5AaoyFvHPIfkAMfYm1y81+QPgP9Ycq035AVhj+F+DUfkDAihBD5+R+QDiIi3uUA39AchGSK5sLf0Cu3ablGxR/QBlTRpNaQ39AgnOOiYxYf0DOTzGorFt/QCD4EMPnXX9A1rPsl7dxf0BciKxBsIF/QF2twptLj39AeecZ+GKRf0AG//cPYKF/QDth7xdDo39AYPQR0n6kf0B8o66QEqV/QLC1WvOeqH9AetBLBlOxf0DM0B4aHrV/QBqtZ+iHAYBAoNP2dzQEgEDJ3jBG2AmAQOiH/stoIoBA9AZRsuMmgEBMo+4oCzGAQH7vPcUNNYBAyB8vYqlCgEChwfzw51CAQCT+MLoTUYBAWQgW0OVYgEAb+5BwD1mAQEj3kV09ZoBARm2w++9tgEAsNiseKG+AQJS5txAej4BAKnP9fSOXgEBORePwCZyAQMXcEfTfpYBAzMoo6oepgEB6MR85FK+AQP7fT1+AsoBAPfpq146ygECalFTKBbqAQKaAU22zvIBARslU9F+/gEDubJh0UsGAQKx7RmRTyYBAQvqtT0zRgEAY6O33SdmAQNL2nQDA3oBA7P5EAEXhgEA4QdEqbeGAQJIVtAT17YBA9SHiBEzvgEAaHuOm+PGAQFBaHehX/oBAxoe/sj//gEAo5s84WwKBQA433QmRBYFA3AP66z8HgUAiqMVSPQ+BQCKLWHU0H4FAbt3PEzQngUBYgtmk8CqBQK7rUxTvLYFA6g+1Xyk/gUAoABS9lEKBQP259+paR4FAbnoMsghKgUCWbFM8m0qBQLaZJbSxTIFAI0HNymFPgUBouiavFVKBQPRaeeYYVoFA4OqUSudZgUAozxC+HVqBQJay7nhVj4FAK4vYZbOPgUAKMLMS9JKBQH+QGvSdnIFAUHWikeahgUAetAfHbaiBQCJXvKVKr4FAcWce81/UgUCpXENFafiBQDniDmXs+YFASB/2VPD9gUAY8T/N5QGCQJWkuSrYGIJAjU3bQFUegkAo4VV21iCCQGox5YvRKIJAaAyHYWpSgkAE/y5TNGKCQLK2OVXEYoJAaGVXEDlmgkANa+C6cWiCQLZsAbLOcoJABg+pQ0OJgkDBFdG4Q5GCQKKKfpKtlYJA1wp/rTyZgkDwzWDesJmCQHp9ZF2knYJAsLc+HLedgkA4FzUNDqGCQJL1lrs6oYJAVN5WM6uhgkBZwcvXDamCQIwQB60zqYJAvM7mvX7agkA44ocugt6CQGugCV1d8oJAKFTuqwn1gkCiOnnVtfeCQKCxSUuw+YJAYPItau/5gkAZF0z2Y/qCQE2sR88P/YJADKqwPLwBg0BGMWxF4QGDQNdQtYacBYNASNn1OtIIg0DYKIGCwwmDQOQJYIBsCoNAUgcXAAMMg0ClHcRheRGDQNDx5uJ5GYNAMsFa23Ihg0AWGWlziiGDQB4m9D1xKYNA8U0uemoxg0AdLz5Dyz2DQIkWzNz4TINA/SGaV2heg0CUKVqNDvKDQFmvQ48Q9oNAjkVLxJT4g0CmghI0AGmEQIC4VX5KaoRACsL/vEtuhEApPXAF/XCEQPnQemDLd4RAOCd9QWp6hEAiFE+ZFn2EQNhN667Cf4RAfPUg+26ChEA+5sR9HIWEQH9JSunLh4RAzIP5WnCihEA4ONURI6WEQFqCizDOp4RAaHDLihjNhED62w0Zx8+EQOLU7uBp2YRAQ32ocmrhhEBMf9f0YumEQMalTfIz8YRAkELk3mHxhEDfI+tyMvmEQIh6TE9a+YRA3oYik+NNhUCeX4xU51GFQKIskCygYYVAQ65tAKFphUApzmWgmXGFQJpKA0WZeYVAdiPqwpOBhUA6HRO214aFQM9K9EqUqoVALqSIcpauhUD8sVQinbKFQDD4Qdr4PYZAkt3dNWFKhkAG+TLokCmHQNHJ7zGUMYdAU4/7zYg5h0ADt9kni0GHQNJnQKCarodAwdVHXsexh0DEJiUYnrKHQBORrsDHuYdAQI6+MsLBh0AeOFKRA8WHQDA37f4DyYdAtJvtqsPJh0DseD2PovCHQOJ945xyBohAYg4r96MKiEBYQQiBZmKIQFxXrkUqs4hAngO5bTG7iEAqyo5oU/KIQEQyXkZX9ohAPrfpp1j6iEA= - - - - - - +NfMRNpnukR4XoBFyv/NRk1wdUUI9N1F8CW9RPiI/UbnEgVFca7BREg/tETNY69EMb1zRYnJaUVXJbhENRaORUoGykSp7CFFr+1RRVLML0fUNMBEiqs8RpBDmkXbZplFx2ClRP4A+URYyM5Gek6QRSPIDUX1U+dEKPTJRJx7RkVe1S1Gvn0MRepnaEW1s6xEh4jlROY+GkWmzXNHyx3fRDiJtUQHhwFGk52dRv2r4EQBrMJEuuaHRahqw0aG/qtEyZ8ERbrOkEX6ABRFqqxBR/MH8kTzJVlGeKHqRa0d4kX1uwBFT+mWRLTWnkVTngFFf08BRTqjnEWJXMBEAwdSRegjzkTWcJZFwL30RIth7UVvbt5EtEApRWSLAEV0/IpG6t25RNf5R0UqK+lEOFHdRGj32kQ0RDBFqaCzRIl9u0T3LKxFfCbMRjyNiUWI3K9EQYlER3UCIUUVe19FmiC2RJO6CUU5McxF8+8KRXgNFEVHcyZFxFiZRU5pW0fn4dZEtVobRWkPhEWPuwRHdto4RmBlEUWw2MlEDdoBRgK2yUQXj+BETcIMRV5EuUQYIgxFyJpNRU4+40TJz8VENA4tRe7WrEXS/OxE1ir4RFpQ60TAZSZGoif8RM4B5UVYIuFEF5LqRNFMCEVbXeZELD3WRL9hCEaVifFEQRCoRWuzrkUqfelEtIrFRIG370SSxMJEreWTRi4sCUaSZwdFPnPiRJmUY0avFx9FHSkYRVgKtESxrq9FSofiRAE5AUYeDdVFGs6oRnWj/0SDxnZFpKfLRBBrkkVTgQpFKgkTRqG6O0XlLQ5Fa2oCRYgpGEUNwqxFPrR5ReRwCEU52HpGuRrLRD9yX0VweC9GquGwRWGdvUSHvO9HLOSyRonmEEVumL1GkBqORY8rSkZD1fhE36PrRCRjd0WJCIRFbO7NRErs1kQUNlNFlz2uRGzZFEV369xGHiklRodzdUUKKwpFQA7vREbGR0UwboFFhcO2RAxHvUVPPTFGM3Z0RdbPLUXkjNhE3D0cRfLtLUU0pjtJAhPQRN2qCkW6p0BIn2UTRzoahEYN8xNFX/YdRcwYh0a3HOJEzV3UR2AUnkSZPhJHscIWRtoZhkVEhOtEvEx6Ra+ft0WTChtF4g+FRs+r0UUsVTVFaMmDR+gzt0RCmgdGU2l5RU0us0TIDM5EFUZ6RdDVAkUKeJ9Fj2PJRByt+ETkrJNICNdRR9+cBUZTQjVFIwqWReBWtEc8m5tGF5KPR7Kr30TBjy9IalI5RuAWhUfj54RGwEMjRaVSxUTJMe9FVXuiRweb10YNqwNGJQWpRWxd0ESnABpF24oHReWV2kZCbSVGX7cXRdYwPkUKGudE0IThRAWpREUyt2pFnYmoRRGgl0m6N7VFzH25RZXAdUWcum1Ifv7qRfvxx0ZVQcREeBwqRVitg0ZStElFtfxER3CXCEbFLrVEsFvzRWOyeEVN+bJF/E8CRcDbrUY1J/tEszaIRZlzd0aTJm5Fz5ZCRtjIoUX4eppFDVJlRbnBTkVTaqFFBKc9RtRO60UgOttEgz0pRXcLoUVxkAxFIhSMR6bR3EYT4JlFne2MRZkpyURVOCBFYKONRRg8FUVCnxpFvxoGRTeD30X/stRHVXJ7RSEiRUXZKJNFqsgMRbHEyUZXdc5E9DYcRfinrUbuU21FLV/lRcSPykRmWmNFCzHMRY8Eb0VlxMpEItMRRTodmEZtQ7ZFxAUWRYW/wERJG1hFi3qrRHb1X0V2DEBF/wYbRumj2USCz/xEmiPmRLiaC0VXSbNIy2fBRSw0hEXVtdFEjBOiR4FgrUWggDxFsDu7ROSlx0VYvC5F3WxmRQ7ftUTYXeBEoVqORWMiBEWT07FE+mkXRmQEZkUchzlFozZ5RaeY6UURqrBEXQDdRPb2rUToZGdFxeoJRRKUp0QU4wBFYf7JROoWrEUfQDpFvoLnRFlAOEXhdmlGUXfSRB/010W8de9E/OFYRfjvF0Wk8PtFUz25RNNU40QIBuNE5b7ARO4AcUUd27ZELO3ERPX1EUbxJABG8muHRVHdhUgQ2gFIG7aFRz0TVkZyQCxFyOisRbiptEQCaEdGWgnrRNuSlkV48hNGS0Y0Rvc1GEXfM59E4zQsRfSQU0XCo65GQOG0Re3u3UTB2UBFvt1URZeAdkZTv+BFNJ2QReO2eUVpERBFyQ7DRFXfTkcH5QBHRQeuRI+WAkbzPslFhHfWRA2iyUQcyBFFSTA5Rd5Q9kQJQ/1FwFCTRDcoykT0fFhGBiS6RX/j0kTpHkhGP+IXRcb6ckW6gRZFGak2RZSY3kUrkBZFgNpsRcZd4kQdi6JEuhgBSEVwZUfI9TpHYW8LR+G86UbQSjhFBZuPRZpauEXMjRhGIi0XRTpN9kSz0GxFW5rZRS0/bUUmfR9Hn0E2R8B1n0bhA6ZEqT7kRDfLqkUdJf5Ey4gsRhH0skTvXDdFfTCXRcy6Y0UT5/JEWB4FRSFZ+0fx3m9HOv8QR0LlE0VvPxZGNJyARUiQsUQgHbREa8UZRUyRqUVAhjtF7+PqRHfduUUr80JFHXKzRBSvLkXo3TVGqnVfSI3hZkhe1AxIndEuRwssGkbwMydF/PKyRXwBNkXETi1F1FAERc1gEUVvkx5HV8WLRi7VNkZ1S45FCiloRTYozURWPNxEo3QDRon2b0V4dRVH5SuLRi9eGkYjS4FFXfHjRPSMzUSs2mNF1eeMRS6utkQouqdEz3rLRCBxK0a4p7RFkq+HRd0I+kS4fu9E5dUIRskyskRX3Y5FTIwnRTWxIEVl4CFFTWrQRBy/HEX1qcREJsypRGuNzUSa4pBF7D3rROsljUXQrDVFxBmoRA== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + - - - - - - /PPfTiXBckAFCNw1bsFyQJVxPmXJwXJA6G1Gz07CckCfXLwZp8JyQDi8fLLmwnJA4IhDKDvDckCvLblrw8RyQKo0P/oAyHJARt2uOUPSckDIFZdm39JyQFIcwTd303JAUktm9M3fckARCaXKt+ByQFvA0lr74XJAqKW/XVDickDNfthcj+JyQApNBb4i43JA3PbZHlPjckBSE6cqyfFyQORMmt6583JAeHtzj6L0ckAuLn4Lwv9yQIcbauxMAXNARthGRTgCc0A6QsoK0AJzQJqk7KD6A3NAP4qHXQoSc0B8N3fIvBJzQIdbfr73E3NAyjlkmgcUc0Aigg4VTRRzQBh2avR6H3NAngrFX6Mgc0Dy/xgMOSFzQOiXY7R6InNArsj9/8kic0Dn24jxziRzQBShv5dGMXNAXjnTo1oxc0B6Kn59yzJzQADCIGQLM3NAcDGld9czc0DG1VCcNjRzQFAidc62P3NAEsZjF0JAc0Cior065EBzQHSSMql2QXNA/B7UBiRCc0DkY82DekRzQAy2g0iZUXNAdpQvog9Sc0BJkvAjvFJzQKxvHvRAU3NAnPNGo6RTc0BavsAQhlRzQIo8LeWJYHNAmxC8YBxic0DNzBUKOmNzQEOfhbkrbXNA2BKG31Nyc0AruPVBa3JzQMy9EzSFcnNA0539+E5zc0CjseSKtnRzQPINv/1MdXNAjj+BV8N3c0CIJZ0mzndzQHjSXOTfd3NA1cMPsRd9c0ACBFmBKn1zQILnSzd4gHNAIIuMB6aAc0DGO38NDYFzQPArpUFdgnNAWaJJG1mIc0A8MGhMiZBzQESmpwlNknNAwGJZ/syTc0DuswzJYJRzQCdxbqv3lHNAchdNobigc0DNR/pSWqJzQMjWBsAio3NAQBB3+ASlc0Ds30U+WrJzQC/MYZ23s3NAmS0HIQy0c0DPf92eO8JzQMoAIKDPwnNA3n2a+ibDc0BsvR6M19FzQNJak/7d0nNApHJMuOHUc0CCnBN9pOBzQADJOH444XNAYP9o44vhc0AKOL95EuJzQOwkT2R84nNAktYnQxDjc0CjhW4IIfJzQPytj8Y29HNAUxdS6I70c0AOlJ6B4gB0QKVB7Lh4AXRANOEoObsCdECENhyKEAV0QK/S8OCJEXRAIfQxvUwTdEDiYmJndxR0QDIeLsu3IXRAfgwpSWYidEDu6z2QuSR0QOhmnRxTMHRAvLbFVeI3dEB0YRcvPD10QBImr15TQHRAPqOn3XhDdEC+gJ0GjlV0QMQesgDdV3RA6IPnjrhgdEAi0Xy/CGJ0QBFkYLqQYnRABtFLjntjdEBi+4oMInB0QNIDiSNBcXRA/iR+axRydEDGpURFOXN0QAhYw+I4dXRAGjUfG/mAdEB3yhELToF0QBxjx/NHgnRAbKBT2SWDdEDZVKCHu4N0QLgxyFoXkHRACdcu5u+fdEBWjlj4oKB0QKapvb/PoHRA7J1Rlw+jdEC7TziZ/K90QGp672TDsHRAoPEL0lOxdED22gBob7J0QFQP5gX9snRAJkoYacm3dEAsU+XMEL10QHi5ezDdv3RA3rwN9VTAdEA2pg7st8R0QKCDi8TLynRAdQ9IA/zOdEC0r3wYzNR0QE0kl8C44XRAgmigA7/wdEDc+0sqgPJ0QM6+PIeM83RAoPU4VaIAdUDwHOV9YgF1QLRnkJhcAnVAMugXPJgQdUBh/kPtaRJ1QLKx4OMiFHVAopo5vU0idUB6pkqQnCJ1QF3i6QvNNXVARMoZ9fc3dUAEJh+cDVB1QF6m5wJOVHVAdEeqV3dVdUD2or9mDWB1QD4wJHg4YXVAptvGKfNhdUCADkMGdnJ1QEzDr+eMdHVAoP/3q8+AdUBA2gC6eIF1QL/j2nGtgXVAHRSTf4KCdUBAX0BypoN1QMRutPGahHVAWNvZ8rmRdUBevP70lLB1QJIP+gr5wXVARhpwu83TdUBKTEEy4991QFb2ZogO4XVAoNtDH6vjdUDx3vnBOeV1QHgeqvxL7XVAlPekaKfydUBm023WN/N1QPq75lPx93VAfLlF2wD4dUAjhLVXSAJ2QDQNfevQA3ZAt3LfKlYSdkBUJz4fThR2QEp63JINFnZAGxnj3ogidkAq9ph2kCR2QAgw0XVKK3ZAGbLXch8xdkDCDnpgUzN2QLqZsU2eNHZARvTAFFFAdkCwgfvw4UB2QEXLTtkcQXZA8p1mFZxCdkAYQWFvyEJ2QE9Xy555RHZAfAFEghFRdkDETaKuzVR2QBI0nGcfYXZA0ZBDS1FjdkAeFBau2mR2QEDGLQZYaHZAYkTrbaxzdkDchz+FkYN2QMv8gN1eoHZAK62D9Q+hdkDYo/EkwLJ2QM62MEYNtHZApmyc6660dkDq+xwsTcF2QMiZxgXkwXZAqu27ms7OdkBF+Q8WvtB2QG4R4cDz4XZA5DbWwZDzdkBw7YOLARJ3QNoBCgq4EndAUzGjwg4id0D5ExcwdCJ3QG/fl5m5JHdA0vmuWOcnd0DmgMJcQi13QAh60pCXMndA1NwdNaYzd0C9Gk5DDTV3QDuGQNqcQXdAZHnGZZBDd0AdSkgJG0V3QL/+mkJLUXdAq8qpuZFRd0BGF3MukGF3QMAdX64mb3dA3NyDXaFyd0CS0XHRknR3QLrj8LX0d3dAardvFniCd0AO6GaFmbR3QBRYdGRyu3dAKRYC/njDd0C1AEYtUfJ3QL+9nrF9+HdA3O10JEb9d0COFl7foAJ4QMrxvzroB3hABDdyDP0HeEBYftEFbiJ4QLLLqoHQI3hAfOW/7z8oeEB9G9G7tTB4QOZ5qJQRRHhAMqCmY3pFeEAueevVy1F4QINBeN2SUnhA+OjBvIhVeECGzFjz+WB4QAoPfEO4YXhA4upnzIt0eEBC6dqo9nh4QBr8Pg+lgXhAdJmvI5qEeECiaiTeT4h4QAriFRqqjXhAPgdh2reQeEBwzg9zRZF4QBv53DiZkXhA6vIYawaTeEBlOYxUp5R4QEoXJkW3pHhAstIshdOzeEDUxakQOLt4QMD0J4fOwHhAqrO/Dz/DeEDA+8iAMMt4QGh8rPA+y3hA3OTMzDXTeECRau47t9R4QNwURr0B9HhACtstkYz1eEDuGnoLnwt5QK8TeNSkE3lA3r6QKLsjeUCQJxmIsih5QF2AbrINLnlAknYmFmUzeUA8Hfpd4jh5QBj7y5UUQnlAPhC4hIpCeUDsafS3/EN5QJ9B4SchUnlAaKi74MtUeUAMOe5HOnt5QDTFsypAg3lAeATdzsCyeUCezc+CQdR5QDh51hrM1XlAAujmCFLkeUBXIQgrx+t5QEYm8FcP9HlAJuEOuB0EekCUKLg7+At6QB9/orn/E3pAsaxpqCkUekCYIgkALjN6QD98JSkNNXpAmkRcnxpFekCAZKBwgVJ6QPW+vSUoVXpAI8BixSFcekB4Os9xR1x6QKRcb3qHYHpAQyVeH49iekA5fpx2KWR6QCSrjrMvbHpA+O3ZJI9yekAHxrLgNnR6QH9bNpDJoXpAZF2iQR6jekCE6lI6Jat6QM2xXPIUs3pANn8peCmzekBGy7CyDbZ6QDLBgmoeu3pAXDyUR/K7ekDUkqHKIbx6QChgMtAQw3pAM9QouhrGekC0yogVQ8x6QKog3oREznpAIP1a6MHTekC2u9VwStR6QJpi6LVN3HpA4h+RzmPhekB/xJAxgOF6QNSV9XeG43pAfSj1BPbjekBbgLHRPuR6QAtDs8ha63pAhp4x9zTuekDsKJMzGPF6QG3d6RBf8XpATtgSo3sEe0AUOiZTyxN7QGzY9ceJFHtAdgKJjUsVe0DjEl8ykSR7QADYJy5ZJXtAmoN+0pg0e0BatwlIxFN7QEAuFrfOY3tAwn/BNw90e0DYHTyfHIR7QBa8wkfqkHtAqJvXgCKVe0AUowlTzp17QFa/mvkoo3tA1v3f336oe0C78xcsycN7QI/gaHTE0XtAJmVCwiPSe0Cgcl34JeR7QINGyrSU8XtAGCsT/zP0e0ByKI7Vi/V7QFaGe4ko+3tAKK0bdZQBfEDcgEC+2gF8QCUhdQVmBHxAR5+Kv5kFfEBMbluH0xF8QM4KSU1zFHxAZPoPvuYbfEDGo7P97CN8QEroO6nNQXxAmntlL1JIfECEWZZ8qU18QLIWRDQJU3xAvQzyVVxTfEArPqRUWVh8QNoAVFEqcXxA66TsXWl7fEBIICvyb4N8QKyE+1lei3xAN/7ve3mLfEDSyYfAaJN8QJDARvRXmXxAFSUU8lebfECQVaPur558QGq5T+4+onxAsKJT+A2kfEBuRvcqv7J8QNVI2FD123xANIGq2lfifEA/+MwzEON8QOfnadb943xAWturBGzofEAPhhxAF/J8QCo8tx9U8nxAPJZGvAACfUCEuLjkSgJ9QGwiQndEEn1AxlQvnq0bfUAm/zGGOyJ9QBROUk+OI31A72K9TrYjfUA80Fx6oTF9QOohZqHAZH1A00Myx/KDfUDEzSLrlo19QBKpKP3ykn1Azi8UTUiYfUDkuqKt9pt9QGVnT7ympH1ANHqmPwmnfUDIn+22q7J9QLKJ6H20tH1AkMAQbbrCfUBshrhHLsN9QCe6rpfmxH1Asr6JXvXUfUDMi6yW0Op9QFT/z4zwHX5AOPPdpUojfkBEk/6blUV+QGLN4AqkVX5Az/mqnVFzfkAalDyVuXt+QIjseGfAg35AsRJf6qeUfkDCmQqMsZx+QOz00KaZsn5AN9VmynmzfkC7Wyphp7t+QB7qJjOov35ABEBQoKzDfkBesV/NncR+QE4+vvrRxH5AZzx+pwDFfkANv6E0c8h+QLy75UnOzX5ALIJ3e9zSfkDCT0pEKNN+QDTEzQbg1H5A5pCuMtbbfkCQ/B2o5uR+QDY0WiZO9H5AmjQ9fpQDf0CSfxh6GhR/QK0ZpmpcQ39AaprQU2VLf0Be2OUjdVd/QBJaA5CLWH9AmrqqEuRdf0BGGv5qP2N/QJy3SRSKaH9AkGJ957dxf0BeDsC14HR/QOA45POwgX9A15be5aODf0Au0ZewT49/QAOIihZjkX9ATPEMSK2Rf0C1/fU3TpN/QL+aRUiXk39A+jU9BlSXf0BjykhbWJt/QITkQtVdoX9ALJZr0kWjf0CMwzFQfaR/QE45dZ0RpX9A1nYjo5yof0D2UawJVrF/QHBxImQftX9ABvQXv73Ef0BcGpKh7eB/QLS+DJiHAYBAwDjUz9oBgEAu55EdNwSAQJx65AXbBoBAWsu42tkJgEA+98BnaCKAQP7JMXfkJoBAFCvWi5MogEAS9CM7CjGAQIRDGp0NNYBAFliiEqlCgEC/tpQ/8kiAQEvtQaSWSYBAixirfedQgEAsToMSFFGAQHViecDjWIBAsHffuA5ZgEB4T87UIFmAQLYbqNnxbYBA7ggu6yhvgEBBTRew83GAQF7dHBgof4BAzFsLbV6AgEBsGbC/HY+AQI7SpWofl4BAeAfdDOClgECCHhARiamAQBDKO+ISr4BAYoasObOvgEBQTWhUbLCAQL+MIi5+soBAWhTP0gW6gEDa3dQwobqAQEPGhu6xvIBAW3DmfF+/gEAQ8GGRrb+AQOwNzXtSwYBA7UQszGzBgECWV5mgB8KAQJ7DWpq2xIBAJP1nfa/HgEAQnl20G8mAQLCjegFTyYBAJGfmsQbPgEByFnRjTNGAQKwQWClK2YBAdJRtlzjegEB4ZNcjw96AQIJwBa5E4YBAUNARMW7hgEA5oMj/6eaAQHLRB77b6YBAOj3By/TtgEDbyOtzSu+AQGYF39v48YBATgrpQ/z1gEDYAQ7gV/6AQMYhCNU//4BA0q00yFsCgUDgxLtsXQaBQH3qxcw/B4FA2ETWEe4OgUDwVWaCPA+BQNY5hoM0H4FAoJ+HmDgngUDa6Uy18C2BQHyDGYwuL4FAMJJBtfQxgUBQ91DwKD+BQERf/62UQoFA8qHxG1pHgUDOlZVLB0qBQMVXWbubSoFAIF4aSLJMgUD8r/RtFVKBQCI9J7oYVoFAhHXj+ORZgUAu2WM8HVqBQALy9FgiXoFA7kdN+gWNgUD0byZLVo+BQGq0P4izj4FAr/nz01WXgUDRzC7KnJyBQEYnrT9Pn4FA1FfMheWhgUCosPfAbKiBQIzH8W1Kr4FAe1IeiEu3gUBGVKAPfdOBQBSvGqvs+YFAOKNVgvH9gUDaQJZU5AGCQGhq943zEYJAFP/tp9gYgkD29h9f1iCCQESzhGHQKIJAVKUkgX4pgkCp5o2+zzCCQNTmpqzqOYJA3+gMsAVOgkCqQfH5fVCCQJSQr1okWIJAcEQY1AxagkBQDgg71VqCQKTtPuObW4JA2PNFVLBbgkBiJY99M2KCQOzHPWE4ZoJASGwWe9xmgkADLZkNoWeCQIKPrkU6aYJAQgPWaztqgkCsUyZA3nKCQKVu7WA4dYJA3/Qv2M55gkBNVwjQCX6CQFANeQ3gh4JAKhcTXEOJgkBPdK3iQ5GCQKa72aetlYJA+sg59DuZgkD+xqV+U5mCQLpm/YWwmYJAvs8tYbWdgkCo5ExPDqGCQJilfqQ7oYJAr4Z8R6qhgkCOiH3bDamCQP62hGAyqYJAjKX3BwWqgkBdseNZCLGCQIKRXwywyYJA5D5AjH7agkCQA+WXgt6CQB4hUCJd8oJArF5zvQn1gkB7ffnDtveCQIhNtw6v+YJANpXFwu/5gkAkv+nAYvqCQPiLH+YO/YJA8OCma7wBg0Beq4zh4QGDQL4t1smbBYNAvUU/5OIFg0DmXsbIOAeDQMXkmjXUCINA7FD2LMAJg0Cg7Axbnw2DQICzwbh5EYNA6Ivns3kZg0CK7X7kciGDQA4Pw4twKYNAmJXuG2kxg0Ddq+WE30GDQNQC1R6eT4NAhN93D2heg0BwYDwdb2KDQPCMM77lgYNAMAIgEB/Fg0BubMsExtmDQIBqPQg32oNAJlnK+w3yg0DQneWlEfaDQPq6wJmU+INAFLFtgSJjhED5m2T4/2iEQEL+7uJKaoRAuy3xWoFwhEAuw/U5AHGEQMg4jI/Ld4RA67hG+vl4hED6pok7anqEQOacZ8iNeoRAm6OpQhZ9hEAcO0XeNn2EQE7aQuhKfYRArrGT6Jp/hEAgymShwn+EQFXZ8/JugoRAYkRLTBuFhEAaFEx9yIeEQI680cNzioRApPsT33GihEAgJa8jIaWEQPR3SvDMp4RAhTQcV9S0hEDkb1eZGM2EQKrf9udp2YRAyIGVJWrhhEBMm8N0YumEQBw89GY18YRA4QiQC2LxhEDy/EUPU/KEQKLKeWUz+YRAWopBCFj5hEAau/cLLgGFQD6DUNsRGoVAFi7Hu+5MhUCEJMJv5E2FQOtj387nUYVA/Hi0AetVhUAyCecIX1qFQHtQ991hXoVA/JRsPaBhhUACJoBhoGmFQPSNVMyYcYVAB7y/BZp5hUDs3hXsRqaFQACthfaTqoVATRZikJeuhUD3DY1/m7KFQMRSsa9bAoZAwrskMmt4hkBz6/s0JrmGQAf2KugowYZAgKPIIpEph0AYLawBpCyHQJb+N/iRMYdA8Eajz4k5h0CQ59SkiUGHQFYr1n+GbYdAFXt/G8ixh0AOHAalx7mHQMQJcWnBwYdAitHvZAHFh0BuCqRoBMeHQHnU/MYIyYdAcA+2xcDJh0CG+ZNYovCHQLKqqKykCohAUo0fu6sSiEDeixNeaWKIQK3eECgqs4hACHP7flHyiEDQfRk1WPaIQA== - - - - - - IMmLRKHAzEWA1NpEbg79RJbZwkaAzK5EIR1PRaI540QTOzdGKmryRomAi0TRsapEFOP/RC315kRNT5NEbqdWRWpObUXFC6FEKiABRecXXUUx+6ZECuCiROIgw0QCmItE2PTARLDBQEVZZRBHxxKdRNJoIkabPIFFptpqRfaklESl8hFFRDz2RF7MxUblqZFEo+GNROHBo0U/7sFE2MbgRGJqnEQheLREV4qaRDi+tERq8u5E2UuaRAc1o0RmOkNF5w2bRA+9/UWezglFqDaORKXQZkS5rgdF9LlNRdDWq0SF675EAyXnRDTrM0VKBX5HaR6QRGE23UWlUbJGRaXDRMzRq0SUPQhFJdvgRCwh3kTpfh9FZeycRBpewEQlBMdGHBDBRHnS8URuF4lFgBuNRCJI9UTraUVHhNaxRA+B7UT8U0BGCoHgRV/iDEYaoplEJYhdRX3YkkR0WlVFMaL3RCB6kESNBZVFCTfTRJy0K0VyzalEHZLmRTqTAkWqRPBFJPp4RMUVbEXP/r5Ej9aQREy5s0QwtChFHEeDRH5AzUTszFxGsdW3RNd4k0RtPatEROgERatzckT/DhVF+VRyRP3PcUQC0dBEwW1IRf+d1EQS3s5EXiijRCHusUTDys9EwtadRWDn0kYXzY1Edq2aRDJCxUXS40hH+cv7RA+YY0WzPrlEWogURQGd6kVqYBBFloUcRYqb9USsU4FFvbsvR//5zkTWvgZFOMb5RCaMYUUSn7pEoFqkRM4QzEa+gStF/BNGRgA+s0TWQ6BF0p6FRJ7Ky0Ra/cVEEUa4RNsxCkVLdf9EX4KyRNi2nUXyIMJFW/W1RGZ6mES9SxBGODvQRH0iikQHrhZFsm+fRPem9kUQFD1FpyDJRF776kRBMapECAPsRHMMyES0cAZF71g7Rcv2/ERqbChGYl+FRIEK1ETJ5J1FRyOORBCRpEVqIrdEYYiMRH4liESnyh1F5bbXROAVhUQNOn9EQ3vCRBCcq0QEKoRG27vgRbmE7kSWHapEBEaIRF3rcUYVUKREnw7aRGwu6USsfrBEGTWGRU+h2EXxIZpF1yTJRplitkQAEYFEHRq4RGD4ykSoQpJF0i2tRPiDE0XygoJFOc0tRT5ZJ0YsiplEgqyiRbT6C0XVrbZEQjfdRJ0c6UQFDIxEEhKWRCiSC0WcqLdF7lWlRFvDeUQpi4pEAlCFRQAqekRLitRE+9kFRSQRokY2bahEyeeIRRFcnERre5VEf6HORUsxhUUYem5EXSkcRf9y9EfZ+ZlGbkNMRZpMvEY/+EFFgrBXRlAA/UQPgFxFvnZtRcQuk0QZ+YBEjTfiRF1uvkQec4JEkceZRMNYrUQhrtpEt1TyRlN3UUa0RNFEcJSyRKxzZkU5cjFFGIWKRAeMgkRjPZdFqr4yRluIkUXaue1Ea/fWRGkWAEWKeQRFKsw8STOycEQOUFNFklc+SKoo0kZdKZ5Gn+zzREQRk0R9YTlFVMVVRYxBjkaD99xEEdkRRUZ7ykdse69EllsFR7rdyEXvt7dF/qFgRVlYVkXrx5RFKPrTRXbXDUUwmcdEDmJ7RB2fPEbJu/pFFw9SRXhU10Q3RIpHArjSRKEY3kREyiRGGpeKRSx0/UQBJ4BE7asqRdeotUWpwp1Eych2RIMQwUQ7DfxHr1KIRpDG4EUCAVBF7iYtRXpzokSjoLxHRyWtRvrelEeTeAtFvu8dSPeVokTX83tEU5IORtBjeUcpgRFGGhQERXrGE0V8as9FH6OER7Rqp0ZxqadF0xePRQBxpkVyZENF0zsXRSXI+EQm6odEDkXQRJpiAkej1YlEUj2XROZFJUYQP/5ENCj7REgBjkQDm7NE991ERUEXfEQhWTRFZ/PeRPPs8ET3oYhEMEkDSTQ/p0QmN8ZH1e8NRmI1CkZBhBhFHGiKRD2Ju0UEWsdEIrctR4ls4UUob5lE5+cHRWkmpUWbDK9F8VyJRHy5sEXyfwpFDmm3RMT3akbD/YNFmsv+RC+FiEYiz5RFuHCMRPJEY0ajEWhFcI+HRQxVhUUqXn1ExR6cRRMbxkQaJa1FQdVcRjgF+EWZKBFFRDPLRDtRtkRm8pdEJb3CR/MnF0fqJ+FFBM28Rfp7P0UtsvtFt0YJRUYosEXvb4dFff2jRNMG0kSJgypGnBPVR+cOV0VXMQJFtGisRPFn7ESqvtRGyPXtRMMdnUalVkdFTUUQRmlOrURG2aVE39TzRChfwEQGU6FE2oqPRJWuqkXMGFxFR0CPROcjjEXs2IhGmPKaRJjQ5UUoJBxFYZWQRDqKt0TNuGxF0IjmRGRKmkQ+mE5F+w/FREXHLkbcIC9F/zSkRLRe5ETcbYdEmhayREU/9ERtvclEDcM0RbkbxkTDtuxEpyOoRKhXCEXonZhIVCa8RAukW0XvPJtFfHuPRDPwBkVhyohHeX62RFgL10XlnaVEz1knRW3l10VU0mhFvMUARZP11USJDG9Fq6j0RHBF5ERNpXlEfVqpRc+2mkQjAbFEKnGNRDIezUTAtgxGLzGbRMPOBEUlNblEDLpGRZkfQkVudE9FBtIVRZI1lUUC/MxFWHxFRY7UHEXWggFFC72GRIWIjkRv2i9FmaGfRPRZm0T3bJlE5VvBRDgUykQe/N5EXQarRMBM6kWc6MtEYDQiRZ/XBUVUW49EtAcYRcaMZka5Rp5EVHl7Rfalj0TrjmZF4ejrRM/ZGUWzVdlETHqDRJP900WNGbxEQ1rPRG7Jo0SUdXZFfUapRPfsiETpXRVFvj4BRuOUiUTf9rRFlBUcRUHTf0TlR3FI7MrZRPU3rkTltnJEJoPZRMzJf0RPgMhHl5yfRO/ncEdmQ0tGMnuYRDNpLEUrQp5FshQMRW/mp0Tf7ntE0PPYRY9h2EQaY3pF8vKPRLpjuEVuyEJG6yiBRewGfkRrgwdFWf+JROBPNkUjgahGuUZTRT+SuEWMJe9Es38IRW3wfkW16HZGt/OgRfWFr0UA7S9FMvQARfSwRkcvmblGOLY8RcP5+EVDzKFET6riRDec00X+k7pEXCOPRIm3G0WVMqBE9O8BRQqbKEVDLdFF5jjuRHQpmESkellGxn/ORT9QjURM8cJECEdRRg1ohUWr3D9FGmWhRPiPoESdKhlFYdTgRA/0nUQRsK5ED+DyRH8h3ERcV4dEZkOXRLyhuEX+hCdFsBGuRCc8DUV75LNEk1eARFtbhkR6vRlF+c+FROxvqURoDX9EM0jPR9TfL0chTXlHi/TSRsTkaUXUuPRGewcDRnGdykXo1QtG3MtZRevn0kR5gxRFRrKaRFDQDUWmapREJ6OrRamlVEVCZxlHBNI2R7n2nkZLl8hEE/kiRVwk8kUmwA1FHFZ4RbDNoURPVhpFPlScREnRqEWkN4BFNl3NRP9HoUT08dRHncAtR5lL4EYXL9xFYYsMRVxam0TSdoNEI4/xRChp5ET5oZFEB5O9RGT/u0Q0KYREdLqaRXrvCkXt1JREi6CYRAfiw0X3m8xEThWPRPcYMUUNqx9GFHgCRftEv0jQeydF95/LSCOIPkUH4eRE+vPyRPAHZ0hvkLlHE/fbRg3t1kUsfOVENzt4Remti0W5iwZFtjCFRCpl0UTVXwBHwH+NRvdCJ0ZgGSxFocyDRUZxlkR0ibtElA2CRGnCjESXX5tE9gKIRKb10UUkJcZFZ7umROCNzkRHzMhEtBwAR/VzYEYKMfpFx98uRc5BkURFrsdFqDx6RQtcqUSHZHFEKxuWRO7jwkTIs2hEhyw/RmrErERfxp1FQxRTRfoBkURwz4JEWU8JRiK0pEXUJxtFfmy4RF7cIUU0w3BE4dchRaH8AEVSSbFFmPwgRam/70QS1l9FSjBhRfRDXUU= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - AFvE2m7BckDq5VtYx8FyQFxRPttQwnJArSzbMKfCckBSMj4248JyQBp3/f46w3JAGCrelMbEckCRxlSqOsVyQH4fOSdbxXJAXOoegwHIckAc11bCXc1yQKUeealD0nJAukImFnbTckBsLU3MzN9yQJL6moi54HJAsCfmGlHickBaS2JykOJyQPGR+CIn43JAlmWTAVPjckAPjHCzyvFyQKvrEo+383JAPOh7SML/ckDEFho6YwBzQAds3Rz4AHNADK8uHjkCc0DSWraAzwJzQG5xZPH6A3NA/iZpQQsSc0D+qwU9vRJzQJx2ijAFFHNAlmDVxksUc0Ai9TnteR9zQB21k2KjIHNAX6UHajkhc0Dy6h3oYiFzQM1zZb/JInNAItyrbhEjc0DeHntPzyRzQBQK2UJKMXNAFJUqFM8yc0DVTb1Y/TJzQA7B2Q06NHNAVVSAg7k/c0DNyCT85EBzQIrtX6l3QXNAm+jP9npEc0DaL/+6m1FzQKMxynqkU3NAPOoKknhUc0Bqom0EiFRzQJX/sn8dYnNA3DbAnzpjc0DydYbnK21zQMRRrWXccXNAU/3qMVJyc0AYKtRObHJzQMSRQbyFcnNARPluZlFzc0DaH8YmuXRzQEixLPFLdXNAKF5B+mp2c0CVICwIxHdzQM2p0UXgd3NAjsocJRN9c0AUCJ7eeIBzQADYle6kgHNAuUEfXA+Bc0C4iXvAXYJzQEodx4yPgnNAruDUfoiQc0BvukFGTZJzQHULaCpilHNAABrgCviUc0DKAmIsuaBzQGY7su5NoXNA+qspEFuic0DaQbQakKJzQFo+MOUEpXNAjJJ1EICxc0CivGaGtrNzQPAfjT4MtHNAlT3lV/jAc0DuOY9QPMJzQBIK0FNOwnNAsL9Il87Cc0BNqJduJMNzQPWVJrbW0XNAeGnONbzSc0Ds5cHI9tNzQNIDajri1HNA/rg84Tjhc0CI+B4VYuFzQA9fdwkU4nNA3Dp6mXnic0BCgSj6EONzQIPkGAEq8nNAol3jezb0c0BunPEgjvRzQJBl+tJ4AXRArhzLRaUBdEDsJtbZlhF0QDiWUBFME3RA15EArEogdEASHH+uuCF0QBZuKRW5MnRAriREe+I3dEB/9XZMPT10QNTVxweoQnRAqJ2AZI1VdEAST70G2ld0QFxzxBG5YHRAQ3MxdAhidEAnW2GJT2R0QDsjMeUhcHRAFz3CJEFxdEDm5k0bF3J0QJUGJvc6c3RAtQIiCTd1dEAyTkk7+IB0QKRXrJROgXRADjVGyUiCdECsr+8CJoN0QOpm+gm6g3RAwez2KRaQdECcn0RpkpF0QFB4ruXvn3RAgKGXN6OgdECqcbSR0KB0QMf9ido4oXRAQqNPSw+jdEDYgaTg+q90QBTnkJfEsHRADW9xE1KxdEA6hQsPb7J0QEBottX8snRARr7Y5ci3dEB6ekcKFb10QMyQl4okvXRAbRx1ct2/dEDYkPYb4sB0QNmNfJt3wXRAXPPb8uzBdEDeuSIYeMR0QCKM7R+5xHRAhmxczMvKdED004J2/M50QByNba3h03RAoPhI4XTUdEC6e2tbz9R0QNvfzXq34XRASTLQmE7odEASeO/qgPJ0QD/VUTSN83RAjAYObKMAdUDlxPoQ0AB1QBwFbTllAXVAqAfVt10CdUDAHw3vlhB1QE1ffKsjFHVAXV+j2Z0idUAQE3BmqjJ1QKFJ0rDLNXVAYYXZwyVDdUBoaReO+091QKT6g4OCUXVAlSsyW7pSdUAwdIYBT1R1QDN4JRR6VXVAKiPh6jdhdUCuyJD982F1QHcB3SJ4cnVAhxz+VY10dUBbtcNC44B1QLGUzml5gXVAMptUnK2BdUD6I2ecu4J1QLgh78emg3VAXDTSt5uEdUCe8XwUu5F1QMiDv50Lk3VAP56vbMyXdUAq4HeY+cF1QD5bcuXN03VAAB/3sA7hdUAWoH3OCeJ1QOgD5JtM7XVA/utRcabydUC2njvcOPN1QIDg0a1IAnZAzttVCtIDdkAPMtkaVRJ2QFzVKUVOFHZAO/Z0cQsWdkC0X50uiCJ2QFkC8xJmI3ZAYK0w948kdkBavfeDSyt2QGtRKZ4fMXZAcv1QiSUzdkAK3fSGVDN2QEfEh9kcQXZAy9Kx5DBBdkBODWMXykJ2QJTwAQp5RHZARRMsnMlQdkAW69R+EVF2QEZ8FyvNVHZAa6okCR5hdkBlZnPMUWN2QL4NpTraZHZA7MFi+6lzdkAIkqIpk4N2QNsaWkJdoHZAVbVskMGydkCCMFAPDbR2QJi6yDFywHZA09+cQxnEdkCD+jpqzs52QEapmzP04XZAwD0wW5PzdkAo8/0HNgJ3QO4AtIMBEndAolfMfQ4id0CYvZWj6Cd3QBt802lDLXdA4gz8aJwyd0CUaDuUpTN3QJhhTlgNNXdAbrVHOZ1Bd0Ac+cCskUN3QHSbSfQaRXdAsPxJykpRd0AVwMKNklF3QL+91qqQYXdAUDz8NDlid0CGw2erOmV3QGrkmkgob3dAEnhTHp5yd0CAnDzW+Xd3QNQdHil3gndAtiuT6AiSd0AvhozatqJ3QHiNLFpyu3dAQjWhDvDHd0BIlS9HUPJ3QBlnF0FG/XdAZgoJOKACeECIlvVk6Qd4QJoYhFZFDXhAuoyBIyQOeED2Tw909xt4QDTt5SxvInhAinX1kYojeEA91yNg0SN4QFoMfx6aLXhAUvLhE3wyeECaSMtBEUR4QPzvY2F6RXhAepQc4spReEBOHO9nk1J4QHhALuWIVXhAeHBFVO1XeEBr8MPd+WB4QAr7hhe4YXhAqfsYV1F0eEBaoPTFi3R4QJxaL7S8dHhANCFq56SBeEDbFhQlmoR4QHJStolPiHhA0v/JpamNeEB2YVFKvJB4QNgSopeXkXhAIdiuC+6SeEDoEK61BZN4QM4Qlg2olHhA01xy/je7eECyJuhjzcB4QMQF9vc+w3hA+iHQdS7LeEAe5n3oRct4QEeDH5c203hA7kt57LbUeEDMEfo7AvR4QEoxk8aM9XhAFCTGj5sFeUB0XoYJnwt5QAodxcKkE3lAIalLP7MoeUBkRC/6DC55QLPmPNJlM3lAYvbUE+U4eUAIgExPOz55QA7nQHIUQnlAALFq0pBCeUBdEYk5+EJ5QEeeCRb9Q3lAh8EwdOVFeUAiqcX6S0x5QFLETGQiUnlAXFT0z8xUeUBjFzdRRXN5QLWw57E4e3lAOlrvur6yeUCQGap3ysJ5QABugZcCzHlAynm+G0LUeUCqD/uYztV5QPD8GqFQ5HlAMNvQxQ/0eUD5icd0HgR6QMIIkhD4C3pAomrfuwAUekAmMvLEDDV6QIG2OyEbRXpAgggTu89LekAP9NbhgVJ6QPRazFQpVXpA5GY8DyJcekDg78nIj2J6QG8Qb7soZHpA6HWIpy9sekClRvwakXJ6QFYFAk7KoXpAzN7iKR6jekCeDb8lJat6QGiZRHEVs3pA5lG6pS2zekCuNsudDbZ6QLIk7N8bu3pAtzQSofG7ekA6Sa9UGcZ6QEolQEhCzHpAGZ+M473TekDSPiJT09N6QFgWPhZK1HpA0+ZNBk/cekA+q/eSZuF6QEDSFKP243pAqIKA5FnrekCbFCYVGPF6QGl56GpX8XpAa6p5Bt8De0DB4bDcewR7QJTAKDUrDntA47DV0soTe0CKzA4YihR7QFFTaUxMFXtA6Lah1Mwbe0CW+hsPkSJ7QHEehT6SJHtAU/P7TVkle0CzPIbDnDR7QKJpy7zEU3tAs4QxceBze0AqXUrvD3R7QGiN+4wehHtAzuHRWyOVe0DekMpmz517QKfOP3Ylo3tAwxEpyoOoe0BgFrksyMN7QAKBF8Am5HtAA2x5ljP0e0BgjnTSi/V7QHh3oagp+3tAgHw0rdgBfEDZS4ld9QF8QLEWU88wA3xAhkW0aGUEfEBsbzvQmQV8QHZwd5WLEXxAic5qZdERfEBnr/9r5xt8QJNZV4qYLnxArBZyCs5BfEBYBx7aU0h8QCii4RqsTXxAUIYwCgdTfEDikfKNaXt8QABknClwg3xA4O8K6l6LfEDkk1daeot8QAfBgnFok3xA0gf0aFiZfECfbNaaWJt8QN5M2PaynnxAWtLb5D6ifEByZ7rDEaR8QM5Fj3u9snxAgS9jgHe0fEBEkC259tt8QArtRh5Y4nxAqZdghhHjfEDDJwR/++N8QETeKx1q6HxATvyv5cjtfEDN6asqGfJ8QKK4mIxU8nxAJiAClXPyfEDmeqicAwJ9QG1kvy5LAn1ASEwQRUUSfUBYJ/GVrht9QGiBRZ47In1AMDEeEbYjfUCIhau6v2R9QDLsl8kcgn1Ai9XG0pWNfUB0S0dx75J9QPZHl072m31ALuZJAJedfUD5hbvnpqR9QMBMOySssn1AatEjy7S0fUAIHyKSbL59QFifbrC3wn1APhUJjyvDfUDSoMpr5cR9QLzTtlaO9X1A0tyimOwdfkDEqhn1SiN+QFLCOI0/L35A0gxsfUI/fkAD7+bUlkV+QB8SlTmkVX5AKSz8FbxYfkDMGAZXZnN+QHQ8ZiG3e35AmtYO1aKUfkBgnCN0l7J+QFByIgh8s35AosX+c6O7fkBa46soqb9+QOlnnFgJwn5A7CFHNHbDfkCqLFUZqMN+QDq4J1bSxH5AR/WTjmTHfkDN0Kltc8h+QJTYizXNzX5Ax4WBwhHTfkCHz9hL4NR+QA+3mhPX235Ar1ws/ejkfkC/+5ecTvR+QHHSLRNOAn9ATn5brZQDf0A8DWi1mgt/QPNNAfAbFH9AmrM7SVxDf0DOVgvyblN/QMyaLwyLWH9Aq9jLazZZf0CsOYefdVt/QKoKqa3lXX9A4Ff5gLdxf0A9xHxOjHN/QNTMUeq1gX9AuHegDU2Pf0BMlXJHYpF/QBo+nH1Nk39A5Lx8LpWTf0AMn4TBTpd/QB7p5PRWm39ANTSjZ2Chf0DBVdCBQ6N/QNVTGfh9pH9AqnZ34xKlf0Bq/SG1nKh/QEuFphnwrX9Au1mkTlWxf0COnFADHbV/QGqutHORu39AKPhU7H29f0AICX5BiAGAQPSN/tN3BIBARvJz6NoGgECQz5lghgmAQD4gx9PgJoBAKYObuoAogECbpHy+kCmAQDBZvUciLYBA3h3GGAoxgEBejy1mDDWAQEpt6tKoQoBAhkSAmPRIgEAT/sne51CAQL6s1fETUYBAQFAcNA9ZgEDWvW2pcWWAQJu1Ur/wbYBAygAUuSdvgEAZWbF183GAQFkslsgnf4BAvc+qQGmIgEBUzoUtHo+AQLhZjCAel4BA0MBGit6lgECcRTzDAaeAQLJmfXiFqYBAtHWyreKpgEB7U0WLE6+AQLOnqkd+soBAVVp/jpKygECzy4lbBrSAQErCwf4GuoBAQFI82FG7gECxeiD5sryAQFJdyPiEvYBAEBQS0mC/gEDOZPZotb+AQDio4aggwYBAGDw2r1LBgEA4fTR7+caAQJBAFJylx4BAuFqKkVPJgECUn9WCTNGAQC7rWJBK2YBAhXOc5L/egECYbC9pReGAQJjYK0BZ4YBA2lCAWmzhgECcAVGMHuSAQKtKSc736IBA8sVYb/XtgEDYMBKCTe+AQIqH1pT48YBAxITcmD3zgEAl/SmS/PWAQNpf04tZ/oBAZBdBSkD/gECoxy+tWwKBQGEsK4dBB4FAjPAY7D0PgUAGSaqENB+BQEn/oLczJ4FAUiaiHhwsgUBOXOAA7y2BQNGxTlO/MYFAzveGoPMxgUDEIPUF9zWBQLC5CmkpP4FATfREY5RCgUCaQ7nHWkeBQJPzSN4HSoFAAeYC9ZtKgUC2sO0YtUyBQE43AwQWUoFAvBaHWBlWgUBU7ird5lmBQE6BdYccWoFAep9vmiJegUDEGo0SVm6BQLfN5AexeoFAjFF+rwaNgUDyoErBVY+BQBymuWOxj4FAxZRZ01SXgUAKs5i2nZyBQNbhsRnnoYFARFQ2W22ogUAwwwx27amBQDTJ0WtKr4FAXNpWNUq3gUAaW2RO5MmBQN5YOCp904FAuKA9sDvagUBQSA+559yBQMjWnYSz8oFALUDfhe35gUDgeQ6T8P2BQCrwz4e0EoJAXWbGhtgYgkB4hv5U1iCCQOA2SYnQKIJAxA3xl+o5gkAUOSbMmDyCQCAHXy5HP4JAiM1A6NZOgkCyQ6HAmluCQAAvxVNwXIJAwuysMTVigkCslP63N2aCQBp4yc7SZoJA6kFPokNzgkC+r2WLQ4mCQDYdjwMljoJAWOSuskORgkB2/X3trZWCQJjIgsQ8mYJAAFoWkVaZgkAiUIuBsJmCQAAOvfS2nYJAaEMPng6hgkC9wl+2O6GCQFoWeFuqoYJARuPI896lgkD8rpyZDamCQJzsmpA1qYJAkOLx+QLHgkBuMthGs8mCQAmQ4wN92oJAnkQS4IHegkASzKJIXfKCQNS3ROYJ9YJAbMnhS7b3gkD6a86Ur/mCQPLLLCdj+oJAzOMryOABg0AamZi4nwWDQAKOcqY3B4NA+vkO39UIg0CUWuvTawqDQItGa78HDINAEIrJ53kRg0AC0usFehmDQF6sCfJyIYNAgC/m0XEpg0B0MTaUbDGDQGiXOVZpXoNAEoixBmpig0CMwS71SIODQFZ2s64fxYNA98Rd4A7yg0A0M6IfEPaDQFxoeo5fSoRAKhEAMN9lhEDHj8Kc/2iEQLsgQdr+cIRA4L6JCcx3hEB7TNKs93iEQN760FNqeoRAtU3Eso56hEDivSol13yEQAayqWYWfYRATqsL+Zp/hECGSahVwn+EQANsOOFugoRAasQlthuFhEA+LcEbyoeEQPZ/Ilx3ioRAMytgYVuQhEARmZG7caKEQIQ5HIkepYRAfHwaDrqnhEAsnqhEvceEQPFZHO9p2YRAf2XUeWnhhECy6NDnYemEQBYKOyA28YRAqFrWvmDxhEAO4nUUNPmEQJJgrC5e+YRAOp6pwIQHhUB7T66E4QyFQBj6NU8NFoVAVl4uSeRNhUDL9n/Y5lGFQJflIk3rVYVA1Eabc6BhhUArOSAaoWmFQD8sKI+ZcYVAbt6mOrRzhUCU3yQvlnmFQILf0DaQgYVA8raJTZKqhUCytWQylq6FQLhDFXRhSoZAnxqmem14hkBwsjWinpKGQDTX8UInuYZAOVU6M5Eph0DyxkA4kTGHQFYIiXUsNYdA7rSEk4o5h0A4GBq//K+HQI5Y6KvHsYdAksfmVse5h0CwmHSpwMGHQBZgCIoIx4dAOiUyaQrJh0D4YshyxsmHQEu8DHKlCohA4Ht4PKwSiEBQjXAHOEWIQGBK6FiXUIhAGghfsWdiiEDYSgKkKrOIQHRrPeYzu4hA4C2SfVTyiECXX1VpVvaIQA== + 7BToB3LiY0AoFld2zuNlQJi98BGiw2xA6q+08yjycUAU6QePPwNyQG/1UdoCVHhAfr9GWSwjfEDKAZwlxqR+QBArUBWvioFA3bBfF+6hgUA9MfW6ELOEQN3fTUGaKoVAPWDj5Lw7iEAK5vLm+1KIQJkOUdwnG4pAPY/RDmnEi0DMty8ElYyNQJk9PwbUo41AZvMOl6CKkEB+tYQRMB6RQH124WnRHpJAMMzpH3aqkkDEipBk5wKTQHfgmBqMjpNAwGLZ5qzqlEAOe2ICEweVQFf9os4zY5ZAClOrhNjulkCeEVLJSUeXQFFnWn/u0pdAUCi314/TmEBo6ixSH2eZQAI/HObVH5tA6AEkZ3Urm0AvFtNhiw+cQIJWE/sr5JxAyWrC9UHInUCvLcp24dOdQODtlMhyXJ9AL0XBizeYn0CwAsZuZJCgQCPkSS80lqBArm7qL0ckoUD3FnVpenShQDmwU5lf7qFAxPG8Ani4okDpWCfWmrqiQA3jftOlLKNAhH04DaOao0CYbR/UuLqjQCP4v9TLSKRA - + - HCfYRRnM9kSdZeFEGIGkRgXe40TYMIlFMfCrRNnUfESUn+ZEuOjlRUWzvUQ+NAJHnRr0ROMIiUQLU6dEaUiCRRoKYkVoCtlEEazMRORig0Xo59tEvY/5RB1vsETh4a1EXNGbRIFNRUWo0h9H1lCLRIddPUbSSopFZN+sRK5BGkUCjpdElxixRoVZiESupPtE5IOHRPFno0UMKjRF+wGRRMMEoETNOqREd92tRBsHokR0j3FF36USRsAmAEUFl0JFcm3HRPpy40QKBstEUkfvRJFEfUddvbREdUi/RHkjj0VLj9NG+A3ARDIDnkRbrOdEU7TJRFzGLkV4z7JFNmSHRB1nzEZQxZdE0dGIRK49Y0WSh1pEhCwTReD1PUdAMcBEK3dzRsjF+kXhHqVEo5jMRf2grUR2zOdEcRyzRIOCiEUKnC5FAWWyRCJSj0SWjIdEymyxRRiHB0WX5w5FUuicRLr2mkRi7JlFWZPyRRvekkQXpotFY2XvRH9as0TjFntEFB8JRbgTq0TIrIVG/svDRFrpjETOdGpFCXCaRE9BSEUoCaBEP1kjRYBHtUT27Q5F8vXSRF7OAEViMsRFfoHQRqqZ2EQ1HLpFPtZBR6CtQUWpbyZFVF7tRPWsJ0Vd89lFwETERJy79kR1XyJFLm+cRZZ3kEQvxN1GL+idRPhM00SJpe5Elu4tRR1VCkXKW+5EdtefRG7n20Y1m3BF7B9FRmsS/USYG/NE+UlNRdfi6UR+uclE70nDRIj4sUQFYw1F3r7PRG/3o0QXL85Eos+TRI4u1ERQdppE0AUpRWW27kUP47tFUV+fREzzzUSCgrFEHEXGRbprm0Q7AhdF1PSrRfexiETP7ltFlv6RRN8PoURsFodEihmKRNDfuUSPZMxEZ5AhRR+nMkVrwNlEEqsPRh6ttkSZlbJEc6a6RVnmxURtQaFFvP8sRUjHgURGQoxErxmdRIAYqET1NoVElHXSRAQX00TLnpFGuZ/mRceBu0Rz1lJGv4C8RJoIDEX3u81E9UPjRG4xqUXsgsJExPkFRgvYxkVB06hG5L6uRMhA8US4XYxF1xO9RC5BAkXTTnVFJPzHRG1tKEWLgRtGIrW2RDnijUXxU9lEzcQIRaKBtUQDSsRE0yIHRTmBjUUV8YxEemitROPDHEX6HctEasyOREkbpEQpeodGjT1bRWtgOUaKFppFmPW5RK/t00QuodlH8rmdRg78X0VBGsRG3OuCRUd4X0bBk8FE0nKLRP/Np0TeDFdFrVF/RU8h1US0bMtEM1mzRHHOj0RsYg1FP62SREPf9ETImMhGtw5NRivp0UQBxglFsl2cRGeLhERqliRFYj+tRDlQNUXD+bpEfNCsRDAz70U5oyNGZpiHRVcTBUXILOtEM3GrRHihB0WnmlxFY8lxRZ//P0k28l9FZKE7RTsSQEikkfxGCHuURlKClUTjGzNFaEfkRHQmEEUjAJdGCZTBR3FhtESuce9GJVbIRePNbkW5eSBF1G8/RUi4eUW1aHxFXpnYRDzqjEXbrAJF4XCXRo30C0a0DmVFgbbhRGBDn0QR/oFHtlq4RHRso0T1d69ETIUZRS5nhEQgKBJGmIdoRVSul0QAUwZFzis2RdSdpkQx5KFEfhWzRamhmEQSOQNF9p1NRyTF/EUeovJFjbcARbdgq0cTAbVGKWiyRN23f0fWl7dEd/kjSNjGCUaMr39HYEItRrAPnEQPp51FQyyCRxrQx0al5thF1c6aRcoE3kUp9i9FBDGFRVRlCEXEmQJHvwiiRI3akUSIWVtGONPvRGxIL0VGfxBFQEAlRYjBt0QBeadEqsmNRC9CckjdsK9ErhQuRTumKEdIWA9GxrmWRFgJgUSceiNFHqcORdIgkETx7UZFaW2URG03HUdQ7OlFgTw7RaKyu0Vc2jlFF9wDRZhKhkWuSh5GZFICRRW/fUZu2axFT+MORioddkURBqpEBz2DRd0AhUViC8ZEhpKoRX+/SkUpSfREFa6xRWnPJEZRUb1F7PsgRbc2GUjNdYhHA51oRs9sHka0ZPdFTWLDRaQi4ER8J55FcT+7RdZ0ikSrTe5EvAmgRE+DyEUR89NHscc9RaF1bkWuG85EL7MIRfv/wkTZosFGX4VaRTm3VEU1RJxGJ4k6RR/2AEbgKd9EU+kARQAPDUXIDpJEVm6bRa6KcEXyOSpFNNvnRJLpjkbv8AlGl61pRaA/hUR3Hb9ENQvJRKClYEUgdcJETUujREtT/kSHu6FER1iARIbhkUaAsZJFf8m3RCHwDUWiSJ1E1kboRM1ju0R6gapEjzdXRRiQhUXZctBEcv2wRBEbIkUZsJBI4i+ERMfMi0XA44lFVVfLRKyrfkc4VodE+B6FRZ/FlES2vYRE8l/IRJOfwEQDLYRFLG+JRVuj7USylXxFD455RDu180Rk90BFmyWKRWTsskTJyvJEKmgXRSsCTUZIlIpFrXqhREAgIkXYBMZEe5VtRfeM9ERJ8cFF0DsVRs65S0Xn/qhEWrEcRcf6lkTg73dEnpvjRJHeBEVju5REHxWGRMUxt0TC9plEYtOzRH385US/MI1EyBvaRccCn0SWYL9EulH6RL8cREV+U2ZG6befRaEBv0RtfFZFN5gBRZIV/UT4DtREaeuHRPYc6kVxmbBE5zjpRJZztES2xZtE8Wp2RO+kYEWWtrZE024BRVX72kSAigpG7ZW+RPaMBEZJW9pEtOZXRXTFh0SWJrNErKNxSI7NqUTeY4dEpSnYR5dRgEfWXm5GlmYIRYqulUUvPeJE9TIERTPUkkRUcchEg03vRcBnrUSROJ5FDS+kRG1ClkQ04oNFjDEjRrzhWEUqKnFFCd8zRfHboUZq4INFgMDBRNQjr0UnO4pEvIVgRUbZ8UTXXlpF/qKKRmS8mkWlT2NFaFceRWtQCUVblypH4TelRi/hAEWiuLlFiM/PRIei2kQ7APdEdUbgREOxz0Xzy9VETKDcRKsATkV2TTBF9VwNRapChUQl/elFxEh8RCURskTOTcxESeCxRNzWGkVDcaZEGiMiRlph2EVGo6hEsuAuRqnzb0VpRSVFJ42ARYmSxUQoNvFEk1XQRIyewET/dJxEhTnGRaJRJkXKrBBFPNOBRIMnykfSfoZEL/woR7Y0Xkdc+NBGnjYMRfLA+UaQ1NZFay2tRQmf8UXeeFJFwECKRL4lBkVkf1lFeTabRKqBIEUmKIlFF6lxRYCQMEf3DvpGZtt6RuKvt0QDysFF0rqWRCbHHEXxRRtFPmwKRQn5z0R+/MtEeSjVRxorLEcp4NZGllzRRV9SVkWr6QZFvKK6RCPrnkRXQIJEedV7Rcq0P0U6r4hEOouyRHYM10U7sS9FomYFRhl23ETTWg5Jbn0jRVocMkWKEhFJlmAFRXM/oUjvOgBIXuIeR0eHGUYx/gdFWsDMROQZvEVe1IpFeOuDRRNCHEW0iwRHquGCRp9f/UX13BRFC4x9RQyOCUXRtPJErQuYRNQExkTArJZEBFAERpqwqEUIPOdEmrMKR09wcEaIhQpGiSGiRAQ2XEV5hbpEmCRtRet9NUXdV5VEJ5L1RP7evUSgSu9EH6AeRr5ivkVN3Y5EBus3RXx2lkQLfhNGoAu2RUXvHkUIOKpEeL53RMXRkEQUB3dG9cmZRSc0i0Tw74hEbg6ORF8/YEVKfL9EGkUzRathBUU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - +jUe9G/BckDmQ5S+ycFyQKRhfAunwnJA0Kkh1zvDckDGx77DxMRyQGdNMJ1axXJAzZuBLwDIckCQWq0cfNFyQAZ46XBD0nJANvbVqnbTckCShzWSzt9yQFajrTK44HJAo5DgyVDickCXHLu4juJyQAmPu/RU43JABt02nMnxckCC9WEYuPNyQJ4JVYbB/3JA6Kwyn2MAc0CIvSwKjQFzQCDwLCvPAnNAFJa95foDc0BUgd4eCRJzQFe2myu8EnNAIgENEQcUc0BoewLXTBRzQNj1jYF5H3NAxmtkHTkhc0AqR74FzCJzQHKeWJsPI3NAwpiFws4kc0DZj/8qRjFzQGZjN/ELM3NAun5Myvozc0BIubmZuD9zQL4qOOfiQHNAnpOPiHhBc0AxtbQeukJzQKTGxfZ5RHNA80eHhptRc0CYsL53D1JzQEKct8hCU3NA16hP/aRTc0CIPjfLh1RzQFIv81L5X3NAI3fPxB5ic0AKLszgOWNzQDHpDtgrbXNAakD9ltxxc0C20Fw0UHJzQLCruXhscnNAoHwxn4Ryc0Cm3HEwTXVzQI7D0DzRd3NAudjpbOF3c0DuuN+COX1zQDqf5tB4gHNAobCaRAyBc0AQotlrXYJzQL1B/cQShHNA0HSdHIeQc0APRptKGZJzQD5611hNknNA60Muq2GUc0B4Qd1495RzQA4dbFm4oHNAnH9FoVqic0B+9FAPBKVzQBPBXi59sXNA4SU4f1qyc0A0tEALt7NzQKCK4Y4LtHNAsDNrU/jAc0DebNWE0MJzQHTiFxIqw3NApxnHUNfRc0AML5VS4tRzQLIyAgk54XNAv29YIRTic0C+4IYVe+JzQPrxq6oi8nNAaH72Rzf0c0DkWr3m5AB0QJA2rxF5AXRAPuxqBUwTdEDLkcB1SiB0QDpL7nS5IXRA1jPcRlMwdEA0gST1vTJ0QLx4y+DiN3RAGDw+CKZCdEAOC1nZeUN0QIeCcvT4VHRA5NXkCo1VdECOCefH2ld0QKsHqHS6YHRAtMsdIglidEBo1FxyTmR0QDP6kJAicHRAWnQBGEFxdEDnM6JsFnJ0QPLOlaQ6c3RAhmQI76R0dEBYJ3RKtH50QHys/uf3gHRALFflz06BdEDqEH0Iz4J0QHClxlIng3RAK9N2VRaQdEAe30GX7590QBAYlXR7onRAalqp7LeidEDcJNyeDqN0QBZDqfP5r3RA4j7BNcSwdECaTdtob7J0QN7HrJ76snRALPmDxcm3dEC0f2EUE710QAIvW4/dv3RAnoxB5+LAdEBDvPsYeMF0QA4JwYkkxHRAIPsrwLfEdEACICoB+s50QBjWzNHh03RAEniO683UdEBR0I67uOF0QK7j6GdN5XRAIUnTlE7odEDq2aOhgPJ0QEr5QAuM83RAwhGuvM4AdUCk8q/9YQF1QGDw2tJcAnVAacY6JCMUdUBk4aYInSJ1QDAGMwfMNXVAKuSopvk3dUAcZXzWTVR1QHuZpGp3VXVAx/6xehNgdUBqxlIgOWF1QEBIC/7zYXVA3GqbQXZydUC9hOA0jXR1QEJBwp14gXVAUNVFZq2BdUBucQiUpYN1QEZJGnW8kXVAiiUhzgyTdUBfe+HbkaB1QPoFCWm3oXVAaB9Md8/AdUB8F5Eb+sF1QFhRTDk64nVA9rZFjkztdUCGvJGtpvJ1QD672dg483VAhmWkPvD3dUB0QKBsSAJ2QKpVZE3QA3ZAZD/Rn1QSdkBgF4NtDBZ2QBWfLz2IInZAGOk4F5EkdkAoTMDUSit2QKbIQ7kfMXZABkrkulEzdkA3bqrMHUF2QMYa0iHJQnZA5a7lL3lEdkCF1HJlylB2QFTtim0RUXZA8daCE4dUdkAM33EczVR2QJnd0yZSY3ZAmvxf9KpzdkBNAgUqzoB2QOR/QdSQg3ZAA1eiNMKydkBAGlfGDbR2QMau1UN3wHZAY0yFBM/OdkDQcDcDkvN2QCrZ3fcAEndAW07SCLwhd0CwuvrDDCJ3QISp2/HoJ3dAygtOmEItd0BCvnNCnjJ3QOI+fu2iM3dAMd0xYw01d0DLwstXnUF3QErOK+mRQ3dAkRnaZBtFd0CvANIKSlF3QLOtpO2RUXdAs7BSmCpVd0Czc7x4j2F3QHzqR+8nb3dAcDM/R6Byd0B6JqLp93d3QMlfAl95gndAApybZZq0d0B42o1tRc13QHLF+RJN8ndALvNuT3/4d0CyLHLbRv13QAhp/qcgAnhAxFOIaqACeEDUEzBn5Ad4QK5CiM/8B3hAjHAEIMcIeEDREN5gaxt4QGwGGhBuInhA4uSlzokjeEBkLiRQQih4QKSH4n0LQnhAsMvJEhFEeEBqdTVSekV4QGh6NsrLUXhAAYH2UZdSeEBx1QT/HVR4QPYh08KIVXhADiTT0vpgeED2bfept2F4QCwDnWdWdHhAsBKztWh0eECM/4QMjHR4QPD0O4W7dHhAbMAod6SBeEB+IhJUmoR4QEzgd7JQiHhAzZrGXqmNeEAAcB0dmZF4QNOLDiTtknhAP8CiPQWTeEAEl3+Sp5R4QBlb0Ks3u3hAp+p+08zAeEDyrELG9MF4QEIfheE+w3hA0xKg1i7LeEDiKMiiQ8t4QOA82sc003hAsaimNDfieECw3sZpAvR4QNa8IPyM9XhAggQn/JwLeUD6U9d4pBN5QFD0IHwuGXlAAMrRObIoeUC+S0xfDS55QLTtIX1jM3lAs4OqjBRCeUBBoCepikJ5QIh0KQ/6QnlA7sLx8vtDeUDFx2Ww50V5QBCXTFcaSXlArDpTmiFSeUDPVfFmzFR5QEaWd3hFc3lA2jlETzd7eUAagj5wwLJ5QABSUQfRwnlAYV9bKwjMeUCbr/vHQdR5QLZEqmkP9HlAyhhPxRwEekAU7AGe9wt6QMYnrC3/E3pAspsKpAw1ekB+pL4DG0V6QCqEfaCBUnpAIBzjcyZVekCyYRfS5Ft6QD7VxfwhXHpA7NfwDI9iekDKnZ0tKWR6QFCnPDMwbHpAwCK5ZDV0ekAkj+E3yqF6QGq7Lu8do3pAY1A0TiSrekBQhJq7FLN6QBE1oGsNtnpAzKcAKx67ekCa/ORr77t6QKVtgq0gvHpAzZe62kLMekAe5FwKudN6QHOD8e/V03pAHGjvrUnUekCobfhjUNx6QPRpwfxZ63pAyez5GDbuekBa/5iFF/F6QBUQCzhh83pA2EtibRr5ekCw2IwVfAR7QFnLWo8rDntABUKpqMoTe0Akc3X+iRR7QNYkWXpMFXtAQgBazNAbe0CwJ+4sjCR7QNWQAT9ZJXtA7H24Y8Uze0AGJgT0CVx7QPu8hawPdHtAQOmx0B2Ee0CiWGDyJJV7QEHy72HOnXtAlBYtlCeje0Aftm4fcah7QGZvdPnIw3tAFNexK3nGe0AASY3E0ct7QLi0VdCp0XtA6hnIgCbke0C2gaJllvF7QEQPYks09HtAKLBa/Iv1e0DHbloXKvt7QIMaa5PZAXxAoIjzIPUBfEAk40H8LwN8QIZSTkFmBHxASl6TrJoFfEAKplpHMwt8QLzQ5WHREXxAzlMn++kbfED44De3lC58QDSMGTqRMnxAP4m0UJ02fED8tjvozEF8QF2dzplRSHxAal4LS6tNfEDt5VUT3FF8QPrEIHrkUnxAWtgGKlZYfEDilHf+CXN8QHRmkI1pe3xAMsKIIG+DfECml1aVXIt8QALT8B15i3xAjnos+0uTfEAk+z4vaJN8QMLEdkmGk3xAy+BcJFmZfEBwiKx6VZt8QCIeveeynnxANzy3xD6ifECcg2dzSrJ8QCsQvWq9snxA+ItYNsnVfEAOCrNK9tt8QGpDev9X4nxAlvxfChHjfEBgFDw1/eN8QHVBDz1p6HxA+r5uZRbyfEB2m/ugVPJ8QIXgDBgBAn1ApDqtAEsCfUC7/khBQRJ9QCb4BkViEn1AsIQXy64bfUCeJP+/PiJ9QKKgR6yOI31AruuDZ7UjfUB+EpYMwWR9QCYHpCDUdH1AsvizpZaNfUAiuNAn75J9QMRaXO7ym31ArkAo4aakfUBCRF+gM619QFwc1y2ssn1Axj7EzrS0fUBYleg+uMJ9QPHpof8sw31AygWxOubEfUBEV0aBkPV9QOoBF7PwHX5A8wptA0gjfkD+ujEqlkV+QHb11BCkVX5AbNZeV7Z7fkDyPuoeppR+QG7i6nhkn35A5NH+8qqgfkDebgfAlbJ+QFaKPrKku35A1kk5NKi/fkD3KeDBqsN+QDBLIvDRxH5A6Qttp3LIfkB8YdIezc1+QD52ffUb035AAvpHHODUfkAQdhjZ5uR+QJO2uwb19H5AXpp0vJIDf0DjgdqqiRN/QH5CLPwbFH9AKF8Q6n4ff0AbcaAXWkN/QLHpGQhsU39AWQkPyGtXf0D9YpgAilh/QD4fYM63cX9A+5e07qeDf0D45pxjS49/QM1RwaxikX9AF8tTsE6Tf0CKiGirmpN/QE09Bp5fl39Aj8izplabf0DsvmX9XaF/QE/82lJBo39A7Wxk4Xykf0AGjif3EaV/QJKi9hidqH9ApJL9GVaxf0B20qFvHrV/QMRwIV2HAYBA7kWf0jQEgEANe/A32gaAQCYDw5uGCYBAkQ7CtAkxgEAsn4nICjWAQB+sXVypQoBARLYhn/ZIgEDeKWiRlEmAQBQV7VHnUIBA6oWAfxNRgEDTnxEPDlmAQF8k71IcaYBAyBusrvBtgEB2rrVEKW+AQHgQ4u4nf4BAmlyVaB6PgECOq0kIH5eAQH6XE96HpYBAssxRG+GlgEDgj/Xd86aAQOS4XrqGqYBAsWSdeuKpgEDiKZ+1Eq+AQPPQ3dHgsYBAdqmFrX2ygEBilbjHBbqAQBKhkWCzvIBAljuA+l+/gEAV8YCAUsGAQP7lk1tTyYBAbC6mqSTRgECi4zS5K9GAQJCwMHlM0YBAILF8bGDRgED4cE9dStmAQIcgI9423oBA5gkCkr/egEAoZlY1ROGAQJ5qbkRt4YBA+qgncSDpgEDMzbxV9O2AQKxWzGlK74BAjs2Q/PnxgEDaMG0NPfOAQJAgX/9m+oBA7nx70Ff+gEBzk0UQQP+AQDzjsiZaAoFAKnxFKT4HgUBmBQCRPQ+BQE7w5q40H4FA9n7RibAfgUB06M/lMyeBQMJXf/jeKoFAaJuEdfAtgUBY4EN48zGBQCogxQr2NYFAi6oXZCg/gUC4DN1nlEKBQI+iSZTwRoFAKhy671lHgUCaInnTBkqBQGTykAqbSoFAgE//ALRMgUB2iFsW51GBQJjvBXgVUoFAfBkz7hhWgUBcxZUv51mBQDDerrYdWoFAC62Tgh1egUA9oJVAlF+BQOiBhucFjYFAPj9VQVWPgUB9pl+19pKBQCyxVf5Vl4FANof3xpycgUAseXzDSJ+BQIVpQS3noYFADwfVvG2ogUAUvLQ3Sq+BQN4blmNLt4FANsAWbn7TgUDwwWcoO9qBQDa10pjm3IFAnrk5O+z5gUCfnDKf7/2BQC9eZJXzAYJAcCU91LUSgkCexQKC2BiCQDbcBZ/WIIJA1t3MytAogkCSWfv4ozCCQHv//mnqOYJABbPVxpY8gkCOPUyORT+CQNxFfBkUToJAZ6nb+3FQgkBBkh8melyCQOnSLM05XYJAJADLVDNigkDXhjZYN2aCQCRHbA49aYJAfjN4H9ZqgkA4rRpoQ4mCQBxBw6tDkYJANBDLaa2VgkAIJVJnPJmCQKM7b6OwmYJAi3kMqbadgkAS0TR8DqGCQI5UvOc6oYJA1N739qqhgkAPBtEyrKWCQJhOZRYQqYJABiSMHDKpgkBEDOC2B7GCQPrgvlizyYJA9DtkA2HMgkB68VLNftqCQD6cHB6C3oJAQAHWr1zygkCIle6qCfWCQFYsETG294JAji90v6/5gkAwkZg3ZPqCQGC1YQ0O/YJAwPnK+ZwFg0CM03Un5QWDQMxKyYEyB4NASCkB1HkRg0BKk8EeehmDQOjYPs5yIYNALjlFRIkhg0C7iTiXcimDQM84Zl9rMYNAX8Mee2xIg0AYXfUxZ16DQHTs2gYfxYNACYcxLMvHg0C6DaB8DvKDQCPwjqIS9oNAznb5WQBphECFXUbBS2qEQIADDff/cIRAQkyW5sl3hEAk/hKH+HiEQEb9zxAxeoRAHj9VQWp6hEBN1VjFm3qEQACy9ScWfYRAYkxXMcJ/hEArAZML9n+EQGBdlnZugoRAt6pEtxuFhEBj7p4HnoaEQNJPBYvHh4RA//tIL3eKhEB8hL5AcqKEQL4Y42khpYRAF7TPUHyqhEDg+ak+I62EQKVKW80PxYRAhDmNLb7HhECH2h6qF82EQIzPOzBq2YRA4aagwGnhhEBJhrZ8YumEQGgtFoo18YRAtrV6c2XxhEC2IJStNPmEQLTLfVAvAYVANqBhRIYHhUAAw70+5E2FQIgnxk/nUYVAokM0SqBhhUDWn++ToGmFQHCtaCyZcYVA2NP867RzhUAaAhmOm3mFQJtxOq+UqoVARltKppSuhUD5X9CvW6+FQCNK+OCjVoZAI9af0CS5hkBAtYaZkSmHQFtDOD6SMYdAQxwz64c5h0AZf8CPjEGHQJL7V1z8VYdAXqsZUMexh0Ds3AFpyrmHQATCQGjBwYdA0hYf+MHJh0B3+K1icAaIQIi+iMqkCohAvoNu56sSiEAwrHN5KrOIQAE12b5T8ohA + KBZXds7jZUDUvl+A/sRuQAojd9/OZG9AMjrEeZeTdUAU6QePP8N1QGo9DJTXM3pAwZEQmW+ke0B8SqzZVyKAQER2UunD6oBAb6DU6w8jg0AQK1AVryqEQJrKVu5bW4VAO1XSF/tihkBUHTfm01uJQGhbd71ci4lAzIhB2uijjEBUTCUQgOSMQPeyw9w03I5Aqr0JHZY2kECR7qJvQIqQQKhxdUJxHpJATB+GcNJakkC88TiqerqTQP41634Y55NA0gZ6q6DWlEAVub1RSXuVQF47/h1q15ZAhB3fueYil0DaKj61haOYQGgzssEcp5hAsbXyjT0DmkCMQaPDyy+aQKFW5MTxS5tAY8xXnIOPm0C3ayXGF2icQMD1R5i/j51AFJUVwlNonkDWComZ5aueQOwfypoLyJ9Axqt60Jn0n0AIl11OXaigQE+bl9QoqqBA+iFHUnhqoUANkzegNpChQDHUVwZHPqJAU615WZuQokC8FcFvXwijQN43GlquHqNAFaHzdoLOo0Do9/sNs+yjQHM5ZXfLtqRA5tGxoKDgpED+wwV43kSlQKZdLavLwqVAiU6mePHSpUDi2dh/FJmmQGbpqLX2pKZAbRtC6Sxjp0AU/qCzFKWnQPil4uk/8adAn4hBtCczqEAqE+K0OsGoQB2ey7hV86hAg54UvF2HqUAPKbW8cLWpQJqzVb2DQ6pAdSn+v3hJqkCMPj/BngWrQM60MMebD6tAWT/Rx66dq0Bdb/3qvBesQA== - + - FdqaRbaXpEQH4rdGP9NWRbR7mESE7PZE55ogRocktUR2fwpHJsGsRHQsG0XIL8xEjWqCRbJ890TQgaNEtmxMRV00ukToLftE2AKRRDQc7kRzo2JF1/kiRx2Hr0R1BodG7+bFRaC4z0QzVftEl/SxRtFTxEQwDZ9EHoPARfAaBUW1ZM9E6vyNRGHIvkSiv7tEr0+dRVqGmkR7nhtGkCURRaoel0R9qbFEAJRmRZ487UTXZaBEZOJ9RP/lAEXsA2JH2969RFvqyUR1rdFFiRyrRpvsF0XAfzJF+VdARaj5sETbXdlGVSwTRUI6P0XXM4tEEdIsRY4kqkSUN1hHGQgIRYuFiEYCyQRG3cvgRdWTEEUgVplENMDWREoLOEV6RAlFfpHMRGiUpEXglppEQd9HRWFEgkXlisFFZbfGRbCCvkQqTqJE9+0ORTOMykQ9LnFGOPxLRT4yqkQAWwNF1zq4RAMNhUQ/78dEvioHRYu380R2WrdEi728RLctzERJEW9Fb130Rq7CDUUuNMNFS5dGR9siCEWZfsREj9ihRIjRv0TILUJFVrbkRb/njUSZ8BlFXR3WRZaR0EbtF4ZE8m2mRO5OAEVEa+tE9de6RAre3EbXqotFveIrRmYlDUXuyFFFScTURNKNzkSajpFEajgNRSZ3rUQbrpBE9RSjRBviDkUkwM9E1mStRPWeIEYbT9NFHcUSRYXS1ETftApGekIURcKlw0V4Zy5FclQbRfMRz0RQKB5FJpiRRE2tBkU41hhFp+0MRZiyCEZIPgJFdL25RRhvk0U6IspERq/zRNZ+j0T/C5lEOheORAXzr0R5/phE1zaJRinQCkbNbtBEpiMVRbcub0YPBAdF7GwERWeGmUS/uIFFSgwgRgGLvUXYfL1GLtUHRRU4mkU1sehEWXaORZvaoUQixENFGFmNRNl5JkYuh7VFuZ+1ROdWjETd7rxEpIQQRZlWo0WS8ZlENkhfRWe2UUX+n4ZG72lyRPICJ0UDxz9Gnh15RZmkn0RHevRETSAESNYBnkapMjpFyQ3TRqB8xUWr0x5Gcwj9ROUHC0XlSk1FrRMcRTRh1ESYhP1EDSOZRDTYnEQh3pRE0wK3REiLy0aZCItEC5o+Ru9Bx0SxhTdFSEjuREwqr0SSN6lFx5TURKmRl0TTZNVEsqnARSLzVUYqhp1FdWAGRfpCrERTEAFF5FFJRZXxCUW1/kRF4k/BRSpqUEkHj4RFVXkgRTLNWEidWM9GkHmHRkLPSEXd195EY7x+RcfYnEaft7NHp/4BRSAcpUSYltxG0sOiRSEddEX/8DFFUyyHRHIsiUXUiN5FbnnaRSq6C0Xv+sdEULSQRlHxxkXkMzNFMLgsRzAjq0T47IlEjOMWRd78wESYJuRE7wyVRcRTQkXqA+5EJvVXRZr0F0U34aNE+n9ARWhfvEXPrL1GXGKhRV5iy0XVETFF4k3MR/KuxUaOOSlH/xz1RAe7gETAMAtInkLHRbl1eEfZUipGdJrSRO/yjkWGtGlHgQyoRgrkpEUUBJdFeipHRRFrL0W3TepEmC4FR/ydjkRlHZVEed0oRhJELEUu/gNF1qe5RA4v4ESc5YtEAlDBRKp2+kdJZ5hEiOR6RarBr0bWQjNGuanpRM5y0kRSuxdFw2yzRHcMi0SwT/RGKRusRQW1y0T3Tr1Fj+2JRQStnUTx8lpFiqDERFnT8kQV0KJE1phMRj+wmkU7Gw9FFzSlRtANmEV/Ky5GA3IoRfx3R0XSFUBFWUyYRayjn0T9m4FFQiIpReX0yURSKRJFfcKcRCI7wUXcRkRG3FvGRT2huERZOJBErsvERIPBsUR6MzVIf0ejR1sXV0a4VkVGh+gYRRZzq0XQ6aVEZbHmRVwyLEWpq2JFkbPURWWUnESr2fdEeyXIRPSVrEWogeZHG6YFRRgX4ERM2UFFWzm6ROMXs0ZYFzhFFKKdRgD+5kQxmb1EV1wTRo2su0T9M5FEZkASRX5EhkU/K5pEXFWKRWgyZ0XeJTVF/ihtRtxQk0Q0cjZG1ZvRRKODy0RGdKREt7R8RfMmIUVF6SZFdcirRAUAnUajX4hF35QLRWARmERmfp5EmG+OROLQlERNsMRF4wPARebgiEXAKWhIooFbRWe3VUXc38NEXw9GRw1tSkXW6etEQbiARbkXmUStBi1Fij7NRKv2M0UunOpE2Ea5RBiOCEWpp6NFFQKnRLZkOkX/6C5G6YGuRZ5YtkRLke9EblcNRSv4JkU5XjdFeXZ9RTwfCEZht+dE6+gNRZnWDUUeHgdFDnwIRWfhxEQt/7dEBsKkRTJikkTnMxBFCp0CRRkl1UTHf49FEmNHRkyLg0W7eqFE4eFvRbYDDUW8Ro9EdgDiRcXgKEWdc/FE3QzwRHG3mkSHBiFF0OyZRHGETUWViLREJE4gRV7W5kXWIcxFRqcBRat4h0jSJ+1Hq5ODRM5ui0Sx9IhHOaidRbZnhEZfRt9EiDAGRdk4kkXWT2JF00zgRFi8oUVkRPxEmsMGRSDN60S/iYlEYq5+RSBFKEbgQ6lEaYxuRVNVTkUtA5RGbP2PRL33pEVuYXxEb+sqRnTnlUXqC6tEA2Z0RTdJVkZXi51Ea6+vReqCykU4/DBFfUfVRKeZtkQ4KRZHBceFRk5Xm0TEF4lF6v2PRNg5lUTLegJFCaC1RSI1g0QAKf1Eo+vKRLjdM0WCtCBFh5wURdussEXUlqtEWtK8RJHeQkVV8V9F/sshRkPLZ0VpKrdE0lunRKw/E0ZyiIJFhMEiRaqlsEQcO0tFzbYIRYCDOUW07qNEHHy3ROJdpUTEfcBE1oFyRUPFWUUiuLxExs+iRLzUwkd6aBVH9JxYR6Yps0aHOL9GP+GoRVk61kWOl+xF+CpARX3wxkSi39dEyxjlRN5YpkRJMvlECfytRAdy5kW+tDNFQ7iQRvoUZkaLyv9FfcXmRL05Z0UPWqNEXvAJRTvEn0ROucdE2ZHjR2JrRkeNhO1GVu8YRfh6+0UbSTpFPvWZRDoBykSq9+tE+Ca9ROecd0Xpwl1FxqrWRaX3yERagD9FcmIBRjoI50RQQi1F+90WSa1GD0WPTBhJZJSwSHp7AkWvXg5IWIgWR5bd60QygS1GIK8SRWZCCkU/m0dFlSS+RKTHkkTsLQdFMMUeRaUwLUUUPABHUTJ2RpBzJEbKMJBFn/9xRd42zkQ3LcVE7a+iRPD8K0aCYJ9F4CMJR/DEiUZz70FGAHOVRDl1c0UF04RF270JRZrL7kSTFKVEmxzGRM+4JEY+GrpFsSpSRTS9DUXr4MVEAn0aRlZ0g0VzKTpFMp0XRaYv2ESgLe1GJ5FARnPjjEXyN/lE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - JO60BXDBckD7G5u1yMFyQBFB6BdRwnJAVn8o26fCckB5tP/CPMNyQJJBTXLFxHJAUh2RLVvFckCMLtS7AchyQERslZ5D0nJA6FleNkrTckBAnI44d9NyQNFAxTTO33JAWZ714rrgckD+8fJVUeJyQM+jxoKP4nJAPgh5QiTjckAorntuVONyQPsHN6bK8XJAVtrFDrXzckAYUBIMofRyQHxkgCzB/3JA99H0kU0Bc0DYud+OOwJzQNpOTl/QAnNA4lZOF/sDc0DoTteACRJzQFLovIBzEnNAwKQJAL0Sc0ANHt6F+xNzQDptbxcGFHNAKHDY7loYc0DEb+lyfB9zQDqTddqjIHNAQt4KcTkhc0DSBApneyJzQFxk94fNInNAxPS4dRAjc0CSO7CUzyRzQEZNnBJJMXNAbAG50lwxc0CXbwCyCjNzQDTjXR6gM3NAuLHvjjc0c0Ce0pAvuj9zQIRhk0HkQHNAojwK6nhBc0A6ZJnjukJzQMAocUV6RHNAYoCADZxRc0Bw5kBQQ1NzQPwWdUGkU3NA5LoCModUc0AWUAttjGBzQBiYmTQdYnNAr1Eyvv1ic0AbkNNFOmNzQKtRw4+SY3NAj6pVCixtc0Bs9LZB3XFzQLixJwtRcnNAtkPukm1yc0AgXRJmhXJzQLI23D8mc3NAdIOJt0p1c0AyskIv4HdzQGCZquN4gHNAQPF6O6KAc0CApU54DYFzQHZjmvZbgnNA5R3n0f6Cc0DhHC6lD4RzQOwtlbyIkHNAFHvPcU2Sc0DHZw+fzpNzQKx26BxjlHNA3Btp8/eUc0DtgJPEuKBzQLzMJNPkoHNAEIXCN1qic0CGWJSCBaVzQNo2MaZ9sXNAXknpz1yyc0DYQIpAt7NzQMdS5xUMtHNAOtilCKO0c0C8fne++MBzQGCiBEPQwnNAAMl6ayfDc0BEYJWX2NFzQM3feoH203NAqC5N/eLUc0BSNhh/o+BzQO7FNqQ54XNACt9ewGThc0CIuHzMFOJzQD6nuRV64nNA2qDikA7jc0C0ojsT7uRzQHVsqAUh8nNAZ2e1Mzf0c0CgCmtoQ/1zQNjAo8zkAHRADPKXWXkBdED/4eBapQF0QCbbUq2JEXRAI2KXME4TdEBGJAOoSSB0QECm8gwiIXRATr6RALohdEBUI6QMUzB0QA/r50y7MnRAR3hDBOI3dECJN1PlpkJ0QMCrYrN7Q3RA1NVvI/VUdEAOgjU3jVV0QOpE0U3aV3RABJUWxrhgdEDmq2sRCWJ0QLJEEY5OZHRA0A599iJwdEDKxH5uQXF0QNATnaUVcnRAkkSffjhzdEBAcwzCNXV0QNbfv8T5gHRA4Pdqm06BdEBGfU+JSIJ0QDg/S24mg3RAvpWklRaQdED4j8S87590QGYFgyOnoHRAew4Qrs+gdECE1bKwN6F0QI/GUTC4onRAfADbdA6jdEAk8Nvr+q90QBduVZrDsHRAXa8f+E+xdEDHTaKUb7J0QJe38cT8snRAId1oMsm3dEDepMsGEr10QE47JMjev3RADfCcfuPAdECuDvG0bcJ0QDL71gC7wnRADANqAE7DdECAiBTOI8R0QMW7Pfy3xHRA1r3aP8nKdEA4Wlhn/c50QLWnLTne03RADBI09szUdEA0SKfNuOF0QAIkSz1m4nRAzq2UkU7ldEAuHagjgfJ0QI4tuUGN83RA/EwZQtAAdUD9KVRZXQJ1QDF40MqMAnVAiJ+/1aMCdUBfa9WTmgN1QJAFEBIkFHVA8muGiJ0idUAui10zzDV1QP6b7kpUPXVAdltNMuFPdUDU687OAVB1QICaOouCUXVA1lutMExUdUD+bjrZeFV1QFyyAlE3YXVAJM59b/JhdUCN4zGzd3J1QAz0NcmNdHVAIol9WHiBdUBMKsnvrYF1QIzr2eelg3VA4+EU4JuEdUD5AMX7u5F1QMDsSBoLk3VAjiBZgs7AdUBRavHJzdN1QLf4v38O4XVAzbW9jAridUB6lmliiut1QBB0Db1M7XVAOncjV6fydUA/+Pqj7/d1QP9RvDYC+HVAmW1qyEr9dUCE7GjlSAJ2QB1HvbHQA3ZAtMOQWQsWdkC2mXK7iSJ2QEbstRKQJHZAUl9ty0srdkB4stGUHzF2QHoZpM0lM3ZA2EuRZlMzdkCMXo6HnjR2QL583YjiQHZA5rAdNB1BdkB0m+EWyUJ2QIx9QwJ7RHZAZXyQkslQdkCACXHWEVF2QFAMsNXMVHZAR09NsSNhdkCgP4sD4WF2QBrZBelQY3ZA/D1bV9tkdkDC5Z8SWWh2QEG2hZ6pc3ZAyVMzX5KDdkBk/KM9X6B2QGrWjGzBsnZAGLQDKQ20dkBaCrURT8F2QERA4KPPwnZAJptU/RnEdkAKKaX+zs52QOad3kA0AndAIzh+egESd0AmmtRlDSJ3QPuGNVVyIndA2zjZo+gnd0A2c1MNByt3QMK7RQJCLXdAy5ISHp8yd0D4R1f1pDN3QPgaRFINNXdAGtia2ZxBd0DUPX6pr0F3QH6HPJuQQ3dAKJKv8xpFd0DLtZBDS1F3QBLrsHSSUXdAYqqxYSxVd0Cy8RIASWF3QG4ucPyOYXdAhcqcLTlld0DWkD/6Jm93QHiivzqfcndA8jYk7vV3d0BeHDv5S4F3QPANVSh5gndAtsdmrHG7d0B4BGOrPsN3QCbYIZp0w3dAls2XoU7yd0DHr88Tfvh3QGKFh1lG/XdA5uALZ6ACeEB2dIn+6Ad4QIjye/D7B3hAvon+B8cIeEDahZyERA14QOQgZtetEnhAMvO98mwbeEDF5l8WbyJ4QH9YMz2LI3hAAub+pNMjeEB6enVKQih4QKTxbyMTRHhAOr5oYXpFeECw+mC7yVF4QKsXiEKXUnhA0F47M4dVeEBbn2Zr71d4QExtF+L5YHhA7ma7KLRheEAK9MqUCnR4QFCZsSMudHhAs/5fiV10eEBeQarUi3R4QLV815+sdHhA1OsXwsZ0eED8H/b923R4QAjTciPJeHhA8odEFfh7eEBki1kcpIF4QNw6MRSahHhAstVTt7mEeEAMhO+uT4h4QD5KP4SpjXhARtYh7beQeEDMeGfRRpF4QH7nxtyVkXhA0iClBvCSeEAOzD7SBpN4QIv209anlHhAi0d4LjuteEBw8/A8OLt4QOA1F/zKwHhA+NcL5e/BeEC6ypP9P8N4QMAb1hovy3hAwnFp8zLTeECIz/zit9R4QJRe29aU23hA+D3tIwP0eEDe8SwQjPV4QM664gWaBXlAYtlg1J0LeUBn7bMCqBN5QElnMVWyKHlABOoNwgwueUCcHUDsZjN5QCxsmonjOHlA5pssIhRCeUAeY1Fvj0J5QGYYwhj7Q3lAyCRrPNxFeUBUPYIHGUl5QEl9878gUnlADYas7sxUeUAMjho+22R5QNSYcRRAc3lAwn7GGDh7eUBqAsSH9oF5QBweAY09g3lAKRda2b+yeUBdqswsQtR5QOJvgm/N1XlALEsBxZfYeUBYkmGjTuR5QChkhp0P9HlAOM2tgBoEekB2QvQP+QV6QFAx4tD3C3pArtksqvsTekBzMWuJaDB6QBrr/M8MNXpAJuCNvBpFekBG2UZTzUt6QKTR9lBYUHpAmujDd4FSekDklbE8KFV6QGix6y8iXHpAtiBCUIVgekCwY8OUj2J6QOhEelcpZHpAVdspJS9sekB9w/KRjXJ6QKLL9QA3dHpAKQ6vpsSAekA+FhtFyqF6QG4kAAoeo3pAJSHgVySrekDONOjdFLN6QBrueVMMtnpAERx1DRm7ekAc7uti8bt6QJUk+qcivHpAh/T+6vrDekB4SQwMGcZ6QFH8D7JCzHpAr7fJhUTOekAU16uiu9N6QI32SaZI1HpA3F3yllHcekAMscfoY+F6QCxNfj7343pA9D2RblzrekCpv7PgNu56QGjmDCzC83pA3IMUSnwEe0ARPI+PKw57QPwKx3/KE3tAWPnndooUe0BcM7xZTRV7QJmn6nrTG3tAnDHpZo8ke0DYJMl6WiV7QIXFnMkeLntAYo+RaGJSe0Cki6lIC1x7QNqtL/DYc3tAkYJTxw90e0BooauDHYR7QAKGuKPPnXtAAO2UOCeje0CyvGuZxsN7QFyq/1x5xntANWjWNQDke0A4zlwoJ+R7QBb3EzGY8XtARO4bIa/ye0CeBYBUN/N7QMoxn2M09HtAjqWbioz1e0B4DQORtPZ7QFAeDOgp+3tAhUlz+dkBfECGuwSz9QF8QNrwjUxnBHxAcrF4H5sFfEB8l9At+Qx8QFq9+r3QEXxAmpgJEugbfEDT7WZzuCN8QNXl8BTvI3xA6DJr7c1BfEBwdTRBUkh8QDa85vKpTXxA7Ba7p9tRfED2WmeAfVN8QNGzjsQOYnxAsjzatgZzfEAyrDeQaXt8QKL4Q6xGg3xANZ43vm6DfED71jDLXot8QMefnxd6i3xA2hXZnhuTfEA4P4CsTZN8QFANg5xpk3xADgp7r4STfEDKARRJWpl8QB4IkcdVm3xA/wa3b2ybfEBOCD5lsZ58QCL+8mU+onxA7MpWJPOjfEC/x6IPEaR8QOaxMUdNsnxA1LPumMGyfEAmYtFozNV8QETAIGr123xAij4kulfifECcmY3WDeN8QKoe+y/743xAcxva/mvofEB9FlUTx+t8QFqBaTfK7XxAlkp8VxbyfED1I6tMVPJ8QGiPTCb/AX1AQph6n0sCfUD+S9HJ6QZ9QJIbEXVFEn1ASNbudK8bfUAZa3npPiJ9QHnM2KmLI31AQllwzLcjfUCl0NtpnzF9QG9ltB7BZH1AgG0rv5aNfUBrjoiC8ZJ9QEcyYmDzm31A1Z9T8aakfUBwoavxq7J9QOXso92ytH1ArLrwYbnCfUBpfTLr48R9QKKMLn6P9X1AIA4OpjUAfkB0TIZW7h1+QAQJy0JJI35AOLXKjZVFfkAMyC0Wwkt+QLw4ZUxkU35AFNg1LqVVfkDKIjIwcXN+QCBG8Lu3e35AKIZqeaWUfkBWflpefbN+QGvwgJWiu35AY5HHDKi/fkCIfT+VrMN+QFq8fS7SxH5APt7Nbq/HfkAO+8kOdMh+QLnrUeHMzX5AXu3AkCrTfkBY1R4D4NR+QJmxDgvK335AOHxCtOnkfkAdngmYkQN/QGBZ4yUbFH9AzPJUhF1Df0AOw/PaYUt/QCJVhYZrU39AWNqaP3JXf0DOIbh+jFh/QIifVY/lXX9AcDRbHSxjf0Dqv+J+tnF/QNcyTcr4c39API1apwN8f0CB+4v4o4N/QNH4z5FVj39AXKwfG2ORf0A6mF3kU5N/QDIG9olRl39AhvC+p2Ghf0CwIKQIP6N/QEr36Y18pH9AlOeWuBGlf0BoE4VTNap/QMh50KFQsX9Abg/3TiG1f0A8CFX4hgGAQMAb2Fw0BIBAWDjb49sGgEDQKXsg2gmAQCaFuEoeGYBABOGW/NEbgEDeK2dh4iaAQHwDOPGNKYBAUuCuywoxgEANDY1IAjmAQGzqWuenQoBAfH1F4O9IgEBKoLwWk0mAQJEM5fzmUIBAPo7WuxNRgEC5pZr56ViAQLEyq7sOWYBAqLtUxe9tgEDI3e4LKW+AQLtJdxv1cYBApunT6ih3gEAOGXE5KH+AQBomSO4dj4BATJa8ACGXgECgxEsKIZmAQEZn0ZHMpIBAQj2p+HqlgEAaZwAvO6aAQEixSLeGqYBAfIdVWhOvgEACCioqfbKAQAh2JCQFuoBA7T3jhBK8gEBQxgAIs7yAQFjenklfv4BAPKgPjlLBgEBU4CjLB8KAQFZYGoAuxoBAtLoESrDHgEBgGQzoK8mAQKa6e3pTyYBAkqIM7gbPgECcTZUILdGAQNqR32xM0YBA2osb6mDRgEC2I2HySdmAQF71KwnC3oBA8tpH4EThgECIewHMVeGAQBi3SMJs4YBAvIVkkfXtgEBuyQIVS++AQBrsH8j58YBA0LxgbD7zgEBSj2RuLvaAQMo/zsRm+oBAoHUpOVn+gED6KRTPP/+AQEIyY+Q/B4FANwC1eT0PgUDqrl2QNB+BQJIEfH6CH4FAU4/HNzUngUDOivgb8C2BQAvN8VDmLoFAjj+FMbwxgUBpnAYf9DGBQGq7Fln4NYFAsrcJPCo/gUD7SxUClUKBQPurhPlZR4FAaPb7bghKgUChh2b5tEyBQOoJjbIVUoFAKKjubxhWgUBQiD1N5VmBQJoLDf8eWoFAEiADvF1/gUDDeMzbBo2BQMiX8LRVj4FAHAUY5O+RgUD8KqebYpKBQMjnvcNVl4FAw2AQXpucgUDO/gieRZ+BQNDZGxvmoYFAPewmKW6ogUCI5K2pSq+BQD9rYQRMt4FAwKJ/L+XJgUDDuXaQfdOBQBDrb1A62oFAhSQvu+jcgUBGYIoKlN+BQDzuVNTs+YFAVLaBte/9gUBOloXbtRKCQK5yNkzYGIJA5XdgPtYggkDWsxQ21yKCQILknTTRKIJAHpxTwqQwgkDKkANb7DmCQJmu/TOYPIJATm5qN0c/gkDcfqqh2FKCQKxwLOQPWoJAYruwNdJagkDP+Qk8NGKCQAM6D7A2ZoJAqjAuUAlygkBoKOBgQ4mCQLobotEKioJAgvqOjEORgkDQIgS7rZWCQEHT7lU8mYJAhpssr7CZgkCvMb9FtZ2CQEh2fHEdn4JAKk/EYw+hgkAsrecTOqGCQDgwqj2moYJAsu9VmsGhgkBymDv1DamCQFK1keozqYJA5HR3OgexgkDiCMLlA8eCQLL5gH6zyYJAtuklOmDMgkDabAItf9qCQPZm0+aB3oJAvhko14XigkAPx13zSOeCQHlVpJBd8oJA3D56Fgr1gkCfDfWOtfeCQBh6oSvhAYNAiITlDOYFg0CHywysOAeDQFMhj6Z5EYNAxnBGvnkZg0A1JrTcciGDQPymiuFxKYNAxXmd+Goxg0DM1GUz3EGDQDAhFmURQoNAMH/ENOGBg0CpXXnbyseDQBoYxfwM8oNAjfSn7hD2g0BnRRzdlviDQE3/YefhZYRAfLTmKwBphEBO08XBSGqEQOx+zvj9cIRAC7aFGsp3hEBo+hAp+HiEQLLq3lhqeoRACkfvVeR8hEC+6wowFn2EQJloxZTCf4RAepGt6G6ChEDG7/uwG4WEQMr+r6rJh4RArGm7qnCihEBe1sGnIKWEQJsOVfrQp4RAmL3s/GSqhEDvkb/NfKqEQNMr+6IQxYRALlfEjb3HhEAIwwSgacqEQOTSYuQXzYRAGnhqkcPPhEBQL6i6admEQLqP9uBp4YRASRmDM2LphEBmWEfENfGEQAAiQWVh8YRA6JYcjDf5hECXJjmTMAGFQDrR4TbkTYVAOFtP2udRhUAuG1KV61WFQPbjnk2gYYVA71IWh4pnhUAk7KkeoGmFQDXWTFT7boVAlkmvaphxhUBW0LTvsnGFQPDcDC6ZeYVADgiWs4yBhUAI/Kw78kGGQDwgitG5SIZATFwDjmJKhkA8ot/GZE6GQFiYyxpueIZANxVcyya5hkBdEwspociGQITJVO/J44ZA9BSlKZEph0A+8ukRkjGHQNMmdWGJOYdABGPbyItBh0BqoRSO+lWHQALAFpT7WYdAJ5oA0/5dh0BZ1fSJx7GHQACn2bnHuYdAvlPWQMDBh0CEPev7vcmHQB4MivSkCohAkk5fpqsSiEA2MQQslRqIQBfB9pO0GohAXVpK6iqziEA+K42FVPKIQDhD6qpU9ohA + KBZXds7jZUBImCMySWRuQFAtpBCXEnJA6yam0jxjeEChLbKvvIJ4QPeBtrRU83xA64SCJpV0f0DyH9uI4RGCQG0hwcGBUoNAVCOqcjQqhkAAAmX92FqHQLYmeVyHQopAZC8vGmVzikAaVEN5E1uNQMYy/gO4i45AV5pzWrWxkEAUm+Z2BVKRQNOJs/HQfZJAkIomDiEek0Cmn2cPRzqUQFOhqgYnQpRAuh8rd1DWlUAFuA8VbY6WQElIiWx8npdAT6jhspiSmEA= - + - 9rzPRQ0BOEUS8bFExfqQRgRU7kS4prBEsbujRF+nMUZr4PlGS7WnRFX2sUQbRStF7qewRFJLE0UV9GhFdTuuROVMw0RYKl1Fe+OwRFWgy0Te9uNEwPKMRP1wkkSWOjRFoFcmR4cPpEQNWJFE+zqARtJskkVLu5hFUsSdRDZ0AkXTbgBFXTW1Rq1ioEQc6QNF7uuvRBUNqEWjvQFFcCUERU8tpUS9R5hEB7rCRAqK7ESRwNBEPMScRXhuq0R87kFGBTQ5RUpLBEU4f55FgnPYRO4kvETE/dJEvdeGRA2Q7ETMwbBE9S18Rxp61USytXtEIlWqRTyatUYIYxRFIysIRZq4gkWI691GiduoRLjo10Q+qUJFhFeYROikk0Tr37tEHg5ZR0bgokSHP6dE8fJRRn0l40W0zLJEe8zyRY+UIUW5RItE7OnZRLNj7EQwpwVFexGPRDTwtkRdTKRFwaMXRQGWU0WZvbFEjZGkRc3kmUS2qMBF4NN3ROh3KkZumA1F7SCWRHLUikSmDdhElTnMRFKOEEUXPL9Esn6URtqFw0RhMsdEIc+JRZowhkTgS49EUM4dRRHFvUTXjLNEDdMLRYqAFUVGoIVEFW+MRFortUQf08ZE/56ZRcmqCkeWOZpEgKjeRZgXXEdZZIRFtytGRXY9uUQIvCVFgQ7uRawS0ER07upExZy0Rc2KukY4bI1E6U37RIxjtkSD6L5EP3jHRP23/ER42chEugWSRPAv5UbQJZJFrEsHRhhr9ESXnC1FUMr4RPoWpETTXo5E3OmDRC4VBUXZym1FqkPARIm5v0T41H9Ey9/gRBFwyUQdlIdEshGoREtKdkajVQxG4UX4RIR6QkZ9IL9EG1jCRAtC4kQa2EFF7MEURsePTEVWG5lEdYW5RAdotERgcnxEXKK8RBWLA0XkcTJFVU0eRTVcFEWGJDZGZBK6RGxqyEVQxGhFMgAQRZx5ukQEuh9FMNG1RBH1fkRnhOlEYezbRBK7sUS/yINGwsy8RT91z0Tk0QZFhCrgREGvSEZhhdtETgm7RHukVkWNrAVGI2K7RbZnuEb1CqZEdXzqRLU2GkWcDKlEEOKJRUfp6ESYZohFON/ORPdPRUWCSDJGLNTZREaXyUTRZyBG6/8sRfFUzESNx8tEBOXhRNBatkQxEg5FeYKbRQ+tjUQ9eqFEoMeiRD6mZkWYOudEqDaKRhnHX0V+Mp1Eqc4WRjLflES+YilFalX9RBnB6ETQSgBIfSeYRkiXuEV8kytF/K7kRsKAiEXUgFJGXP/ARCaGiUR9cwZFCMSfRJRPU0WSaIFFJDvQRHnljkTCaypFW2I4RdA/rkRGxpZEhTblRA1tAUV0TtxGfTx4RkIM4ESboTFF97PKRGbjKEXMOo5EV8DORPNUm0XQaNdEAFerRE9rCEVlSrBFhhJfRpo0b0WIncZExSRVRZTev0SqsDJFZohXRXnek0Q9sRNFkmNiRZ8CW0mlM6JFVuNKRYT9FEUD8XlEzt3yRJYZJ0VTOWZIihzGRGgk6Ubp3VNGEpGWRHOAk0QPtEZFPecrRTRyoUSWGK5G+O2IREyhnUfLbaFEXLSXRK65zUZE9tlFKewaRXCPAUXyyZNEkWRMRX0+B0aOiARF1pPqRRbzAUXQD21G4oIyRt9BZEWEWqVE1wC0Rih7j0T5Py9FcSXLRGawhURg8C1FqGK6ReVftETpk4JEoOKeRQY0m0Q7R+ZEkXgyRTsf1UX4CbxEqcl/RJBX5kTNtoBGFeo1RXxB00StydZFEokuRQiGX0W3KedHQA7hRm2lnUT+y6FEaavFRi6TGUW8YwpIrFS5RAsOVEWvC1ZHJlsYRjNEqEQmdQxFvn/uRK8mEEV/Tk5H+3WURipUzUVbpqVF4hTHRG98E0V+prFErDTWRA7J+0SZlP1G4nKHROck1kQz2TJGAGQ4RagWvEQv75pElQApRcrY5URMdptEJo2nR5pwp0QEtchFb4R6Rhx4RUbzrZlEkLGeRA1bKkWyesZEKw6bRCCYr0S2UahEsSfaRvQStkVPCKNFfkl/RTyO4URi/Y5EmE/LRHf4iUZIS3dFUhrBRPmRdESjeVJFT5+hRlPjGEXxXLNFBTJLRvq/y0SLOWVF7PltRUO8l0Sj1T1FFQR5RW0ZqUT5PKlEeniMRXqfS0a7dwNG3T6zREocjESRvK9EkSSTROWDgEg9xLRE5NL/R32Cv0bWNYNGAUG1RCE/X0Xji75FUyr8RGHaPUVdwZpE91D4RF6PdUV5ad9FiYSkRHGBtkQirI9E/rK+RJV9lUQ495dFjjb/R/YGOkU+r3ZFevNTRcqXmkQCbIxEo8MfRdhX1EbD0LlEqJfCRkwhlETXYotFGBrdRU1ErESrreFE59kERU4YsEQKpLBFxym0Rb6GSEXgpddE/ylQRk9fRUb2uQ1FdvsNRUGuh0VjevFEFqdURSI3LkWfWQxFgdFTRhIysEQA3rREYx0ZRey/jUR8vsREWtMARVmKhkSzvXlF0l1YRZ7SyUSAWkBIQnK3RMqG20VR3lJFrL3BRHwiDkcPVapEachzRX5RI0V9wGdFpy1QRdPXnETCTKxEQtaURP2e9kSUr3pFALfMRAUBvUVNsJpEZJfhRJvizUQ9qAlFLxM6RidDaUWcshBF5r49RZrQEkX9n8tFKLsPRrwpkkQOHa1EteHGRGYgd0X9UwpFkToORcQZ5EQnPp5EafaSRCulA0XhcKtEJxYFRZ2WhkTO5aZE2K/qREpgpkTUND9FQWlaRuTZxUTm6JtF02plRQluHEVP+I1EV9CNRJOByESI7OhFRea1RK0ZtkSz5nxEkKXTRDDqx0Rla89EIbhWRbx7rUTRTxBGHmPLRD/IzUUmzAtFEAOHSEcnlUQ5spVEDp2pRN/fnkRyzwBIr/OkRM+mzUTP2oZHsndeRes0OUYTJEdFxiGDRb73wkQQIANFw0kMRRsOGEUqczBFjsO3RGfeh0SLdc5E0GMkRRPLWEYuY1BFyOBfRaRYmEaxVpFE8CitRdjKp0ZtPNtEgRa8RN7TxkVrSzxFmjcDRUrhSkZ6brxFJixHRVzF1EQb1tNGmP+dRlO+JEWHwEtFHDeeRIV22kTC2dBFY/qyRNqwmEQsOA1F4E8BRZNS/kQ6BQhFqpX8RMyJ4EXjoahEnrGoRG26BUVzKvNFAzKSRdSCZEU0vCJGO/GFRT7jqURjJk9GPIeCRd1nh0TxwDtFPpGmRJTzjkXKSV1FS2vVRL1Xz0RrhMNEf2JvRE+krEUZtVNFjqirRNCG0Udt/K1EokIoRyIKIUdrW8JGrKWtRj+doUWF+4FExgXLRdJN80XYHqlEYgb+RBozOkXA0DtFuqzBRAdakETjMbpEzsfDRGhXxEWjjS1F7VDLRJ7pm0SgNMZFroWsRVNzFEUPAcBE4F+SROAvCUUKgulHpyE2R6v640ZuKAtGSnpYRWFbj0SUSohEA+CiREogt0TijIhFegcVRV+H4UQNn5tEHO6uRULCsERkFgtFBYkKRq56KkXy8uFIucvpRBYo+UigjY5I/iHTR4yG4UYsoMJFOIaZRd6LSEU/WTNFyWyzRH3MrURqV+lF6gb5RSRRK0UutzVFsOGuRJ8UAUdO6GFGm0oWRi9YfEVrxIJFkJIFRTZclERSQDZGD2rGRWcVGEVpdwtH46O5RJllfEbMJIVEXV0GRvNReURb2XpFv9CsRJUOsERxzLBEcfsERVc2p0SokYtE5MK5RAq9s0TGGpNEfmoxRjeMoUXxVVtFSZDQRIw0gEUFbZRFP/IuRcL350VCSIxFhvlTRfQtvUSnbVlHr2mGRiudwERfly9FxHRYRVRZukSKpKpE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - yL1IyG7BckA4KE3+yMFyQI5hplVPwnJADQLPaqfCckCe797SO8NyQG4UVJOixHJA0Gcgi8TEckCk0QuvWsVyQMKlILcByHJAAOeBIl3NckAbfwejQ9JyQBoTHxN003JAPiOqdszTckBGZutSzd9yQIddt5S34HJAkEZ7mFHickCMtXFNj+JyQE5BxXvJ8XJAI8whQ7fzckD062iDpPRyQDBtWhPE/3JAPQGt3vkAc0Cdd4gaSgFzQEGx/nc7AnNAfoV6StACc0CR2Zhr+gNzQAgOqteQBHNAdGBLBgsSc0D4b0irvBJzQGw7SVQFFHNAfBft300Uc0Au5pZGixRzQD+Lkaz1F3NAINnednkfc0AxOJAUoyBzQI4L7984IXNAPJ8YpXsic0CNIGdayyJzQECKDqTOJHNALJ/NMkcxc0BOs0CvWjFzQH3+g1g2NHNAjdX/odo0c0Dj/ldwuT9zQPs+5x3jQHNAmqcaF3lBc0AqC0ktv0JzQDEYyQd6RHNAKY6445pRc0BB58TJo1NzQML7QlR8VHNAchn7CPpfc0A+mTIMjGBzQJojv58eYnNAeEGbYTpjc0CWgqnXkWNzQL6KI6grbXNAclbMQdxxc0BtQ0YmUHJzQJbuA+1qcnNAoHmRBoRyc0CrPgwzuHJzQJCsuSUmc3NApkFrDLh0c0C4bMrTTnVzQBwUMifRd3NAHTGdZN93c0AA/47qeIBzQJQ/aGekgHNA90on9w2Bc0BiIqCXXoJzQMJ3TX4Cg3NA5ZuIijeFc0B4TN6hiJBzQGI5cC9NknNARLerkM6Tc0D17atFYZRzQHah6Hv3lHNAkrFew4uVc0CGFG8zuKBzQGNJl2jmoHNAGF1A4Kyhc0Da8CvSWaJzQKBPbA8GpXNAttdZGc2wc0B58GwbNbFzQBRLo4d9sXNA+siGFl2yc0DamyyUtrNzQLABfokMtHNAXqFv5I3Bc0BoldGNz8JzQCHkiWEnw3NAEcqZP9jRc0CKYNM8UdNzQGJ2HjT303NAkvjYNuLUc0CwWXMspOBzQIKABNw44XNAYgg8ZmPhc0CxVwrxE+JzQKxHO3J54nNASEJD2g/jc0D9ga8f8eRzQIbGoLEi8nNANUiMPmnyc0BSadZo+/JzQDauD3s29HNAsK2GNI/0c0A2u7HM4gB0QF4qrdx4AXRA2lCvz6MBdECyzTtOeRF0QO5Y/DmIEXRAiSNVdZgRdEDC0MBlTRN0QC6XX07iE3RAPmxSJE0gdEC4B5OakSB0QF+1o7UjIXRApmWtN7chdEDegQM5ZiJ0QLqteItaI3RAZPggo1cwdEAg9hM+6DJ0QDj3A7HgN3RATKotWT09dEAXBmLbzUB0QJ0iN3Y7Q3RAC1fO/fhUdEDOrAO6jFV0QPogDC/cV3RAetXR6rhgdEDDhF3RCGJ0QNREADeQYnRAFrxgAbpjdEBFFZAVTmR0QDF+KOkicHRAucZpO0FxdEC2YiAcFXJ0QKxoz/s4c3RA2g/LY6R0dEB9fg2QOHV0QEDtgL34gHRA4eZIkhCBdEB2QmXyTYF0QIbv1qRIgnRAUDSZkCeDdECZiEE3F5B0QC2/XHVrkHRAostMSZKRdECEa3Wy7590QNz+O9SioHRARotQ+8+gdEAIjkoqN6F0QL2XU8yIonRAiJSIsLmidEBANm1VEKN0QBpwHHv6r3RA7Ll9HAqwdEBQv149w7B0QInq6stSsXRAUmO3O2+ydED4Tb+C/LJ0QOQqilTJt3RA5Oc/TRK9dEB+pJliIr10QOG7AV7ev3RAVJzPbOPAdECezm/x+sB0QKGbghF4wXRA6lZM2uvBdEDOJgd6ccJ0QK9quIG5wnRAHJGoi03DdEDs/EDDJMR0QFRhiBV6xHRAfBrUVrfEdEDuZq8Jycp0QGT8na/6znRA6jiXK6XSdEDYMbv93NN0QMItxXLP1HRAMIeolyDhdEA1eaVBuOF0QOa2ysZN5XRAwFk1/k3odEBwiAdGqO10QCJbANnA8HRATnxpwoDydEAvVQkHjfN0QNiMLRulAHVAQr4+3c0AdUAbdnZU5wB1QHLXgjFlAXVAtPqfKF0CdUBspB3VjAJ1QKLxGZylAnVAuETdDZoDdUBnVfTWlhB1QEdnz31rEnVAvWN/ESUUdUAgv2SGDiF1QNuPvECdInVApOE8Wjc1dUDNQi2SzDV1QICe9h34N3VA/NcaVOBPdUDqVzXpH1B1QAqAJt6CUXVAHkQaHd1SdUDqT1tSTVR1QCYYmFV4VXVAxxB70QxgdUDmiU55OGF1QMTeb/3zYXVA84mzkBBjdUAkafEfd3J1QF0QTAWNdHVASd7/1+OAdUABhCa3d4F1QGYTNwCugXVAokIagaWDdUB+Y+XRmoR1QIIxqAwMk3VAaoavpxGbdUBDrWYF/KJ1QNYR8GbDsHVALNuTwDbAdUDd/Bo6zcB1QF4dTvf3wXVAAO2avc3TdUDk2rZl4t91QHz+vWsP4XVA4pKwpAfidUAUi52tTO11QPpeWH2m8nVA7HO4jP/3dUAIUDCVS/11QD0FsXFIAnZAlIXn8tADdkDXwqKoCxF2QAteDoJUEnZACqvs/kwUdkBLMpc3CxZ2QLuH/P2JInZAdErIC5AkdkA+D3kvSit2QK+mL1ofMXZAhf7ZYCYzdkDgmb2hUzN2QOxCQKCXM3ZAV/ZMjp40dkCMeCvQTT52QCrd4vzgQHZA4yUgmx1BdkBSlo4cykJ2QOflrZZ6RHZAq5IjvvRHdkD0s1VRE1F2QJgdlPPNVHZA7yLA4SBhdkDOk64q3mF2QGyeOod0YnZA38sKHlFjdkBn2Y972mR2QOpUFEmzbXZAkBjMVKlzdkCkp7NRkIN2QALjFeFmknZAmSy3GLuTdkCJB3u2XKB2QKRnOkdRsHZAxglm2cGydkAUpf45drN2QLR/YX0MtHZAQln2aRnEdkCQ02LPzs52QJKb5pqQ83ZATHtVjTICd0CkJHuuABJ3QPDHMfG2IXdAp+04MA8id0BmLt6p6Cd3QEV6PwBDLXdAGATbkKUzd0BQDiAIDTV3QHcsVdOcQXdARIJaPK5Bd0BIa01pk0N3QMTsZWgbRXdAI6szpUtRd0DDLNLZklF3QH9affEoVXdApYR1w0lhd0BM9VPYj2F3QHIJKhYob3dARsG1fp5yd0AkM/cek3R3QHqCufHzd3dAEDx6YniCd0AGcLQECpJ3QFTQuLtLlHdAInD3Uruid0D+e8BPc7t3QEutUdzrx3dAULuneozWd0DC+emWfPh3QI69iLBG/XdAzEXRsNT9d0D5SJISHQJ4QKmjRMqfAnhAVM769OwCeEDyn9+u6Ad4QHQoQY7/B3hAjP0oYh4OeECKGF9n9ht4QFKv/yxuInhAWhyDhYkjeEBZBhgK0yN4QMwXkkFFKHhAZY6fwA5CeEASrCuREUR4QCpIEC16RXhAMmMzZ8tReEDMCNWUlFJ4QLqld/KHVXhAOP8+kPhgeEBqqQdWt2F4QOqieKAtdHhAAv8NkYt0eEBEB1NJ3nR4QHRAS4vydHhAPRS3svV7eECCV9BupYF4QMeEbNCZhHhAvnVQC1CIeEBJP69LqY14QCi+PHqWkXhAoSJLUgmTeEDy+x5hp5R4QN2JZWlNmHhA+CUeB6+keEDsfuUD1bN4QDw8diTlt3hAC5/67Te7eECq5aOfzcB4QOyGMF4+w3hArVg/iQXFeEAyw4ohnMh4QDm3cS0wy3hApOKKZEbLeEAdZlWSOtN4QGwjYre11HhAvxzaKJDoeEC2/1UsBPR4QGt6lG2N9XhAgFmRKRAEeUDoxHQimgV5QLpcCUSdC3lA/OP5zaQTeUBtf625+hV5QAxoxgioG3lA3CQUdWcjeUDyP1K0uyN5QG4jM+exKHlAHmf6qQwueUC/gj8fZDN5QKw1BCwVQnlA0yFTkPhCeUByJJ+4+0N5QMyz0DjMVHlAJsqRTOtgeUAqekSe3GR5QBbGgXpCc3lAtebohDh7eUBc6ziiLot5QCLr1mPBsnlAkDGZ3v65eUAuxO2bzMJ5QOLHVasFzHlAXHl5v0LUeUAw6RaszNV5QJg063NR5HlAKueelw/0eUC58SvE+gV6QEdaqj/6C3pAlr7XBv0TekCaxIboCRx6QGI94+mdIHpAPsJTpzkjekAeqVJ+aTB6QGwdc/MrM3pAAMwQoAw1ekAkOfZXeUB6QJs2uhwbRXpANZQI8tBLekAwOqozV1B6QK05doKAUnpAxvUtBClVekAe+gzqIVx6QEynsrqHYHpA6PEtVylkekA8XMr9L2x6QNw13jo3dHpAknG4icWAekArIBVaHqN6QJqnlVokq3pAzKkrOhSzekBSVMCnDbZ6QGIEcRgeu3pA0sS14/C7ekDK2Fx/Ibx6QLK2pGT9w3pAZCqeTxrGekBifJGxQsx6QEDwtUVFznpA/tpJCLvTekBqL0+rSdR6QPGT9cFO3HpAAFV2X2nhekD+wGtsSeJ6QFRZrXRP6npABge5DFvrekD2GA5WN+56QLJ9gtUW8XpAGgnJYlvxekB47yRmY/N6QKr80lnjAntASviEK3wEe0D018yMKg57QAWQjkbLE3tApI4h2IkUe0Aj0vBoTBV7QK94T6HUG3tA0EX3IVkle0AHBmzeXTx7QELCqCQ8TntA/JGbtdBze0CY4BsHEHR7QNxjD2ochHtAgIzAZyKVe0AGhgPEzp17QOY1kDgno3tAjvNhvMyye0Bpl/akyMN7QBvOX/95xntAEHQCqgDke0BoI3H4JuR7QNnH3WY09HtADvaR74v1e0Bi89vPKft7QOjEFavaAXxAPQA3PjMDfEBn4Fp8OAR8QIrKchtlBHxAGg0N5ZgFfEBkUZKIihF8QHNsB17QEXxAlHo+hOgbfEBpQRuj7yN8QC1GJZWVMnxAWLk4cVU0fECUQzm8zUF8QIbj6RBTSHxAk0uBXqtNfEC6UqeO2VF8QBoaDMT8UnxAyFppWQxTfECcT+bLDWJ8QHh5q4Bpe3xAGMnA3m6DfEABbTc9Xot8QK9EpUJ6i3xAFRCwh2aTfEBPgFOihpN8QIofYyJZmXxAjfP00lSbfEAcDUkkcJt8QCBPJpWynnxAMgLRBz6ifECMi/AUP6N8QBiv5MYNpHxA/vNpjcCyfECLbdcBerR8QL4XQpn123xAcqnsqlfifECVQ7o8EON8QJ1/b5v843xA3RuDeBbyfEDvJ+ynVfJ8QPjZY5hC9HxAcK6Xs/4BfUAZRgDOSgJ9QCpJ8yZFEn1A4r7KObAbfUCex+FcPyJ9QAoM4zGRI31A0XCCtrQjfUCK7wXpv2R9QLrUaYTPdH1AFoNkupSNfUCcjLGi8ZJ9QBKZ4q74m31AvvZlPv2jfUDyMQ3kpaR9QPmxwcYyrX1AzHTvW6uyfUA+9ulisrR9QI4J4na6wn1AuJeX+CvDfUC1ZgXO58R9QJnuKk6Q9X1AgCmPMjMAfkDelbZr7B1+QJHrw+w2H35AbH6yRSIgfkAOS7/iTCN+QFoBW8w+L35AZOHrxEM/fkDqu5vdlUV+QIJ18QYUZH5AbjDy+bZ7fkDaUdSSG45+QB4h3G6llH5AhCcV9AuafkAyuRkFsaR+QLIYGHT3rn5Ab8zIIM+wfkBG5RTQlrJ+QIYjFt14s35A/jxU56S7fkAsAUDsp79+QPjsjfPRxH5ARDxf2nLIfkC8JpmLvsh+QGhS0Tiuy35AyPiQFs7NfkAoYDvz29J+QDJ+/Fq5035AHOEr0t/UfkDITi8nMth+QBaEOwp0335AoRFUPubkfkD4OceCkwN/QNpjusKcC39Af7BABBcUf0AgQugXmh9/QE6+W3ZcQ39AIrs+o4lDf0Cb5tuTilh/QLjeUT3kXX9Azi02WnNgf0DKe+m8zGB/QEjC9O1WYn9A7orOeT9jf0D+qObttnF/QJ2WpHwBdH9A5g5A5Fd0f0DWxr2LB3x/QH7RtVY1fn9AnCKs2bGBf0Dk0MgXpYN/QDay9s5hkX9AeJ3bA5qTf0DShZXTVp1/QNX1ssdgoX9AAu4N3kOjf0B3tprbfKR/QARDoJ0RpX9A8ttbpJeof0BKPI6y561/QCeY/ERVsX9Air4vgou0f0Cdo4YpIbV/QMMtmESHAYBAT9cIwDUEgECWb8/l2gaAQJtee1YjEIBAVhLlSiYTgEA0zJ8kIhuAQM5aHLoLMYBAf3RWmeg3gECYfTNCqEKAQL031X3vSIBA9Z6lQOdQgEAYFxwIE1GAQLBCH7OTVoBAuFODiOtYgEDUw7PTDlmAQM5puzhGWoBAXKuDejNfgEBeUo3GD2GAQA0HdAPrZYBAupLQDvFtgEBEE1PXKG+AQIz1aG30cYBAI2hsFCh3gEDmUssKzXeAQOyTO5cqf4BASElvkR6PgEDhkAf8H5eAQGY3wDvimYBAMJdG38CkgECmMsUNeqWAQGpkYzM7poBAnMzfMN+pgECk6PhE2ayAQPCS6XwTr4BAnh6wR2SwgECLyib917GAQCDy3pJ+soBABGIQuAa6gEAdpZ7qs7yAQC478Rc0voBAJok+nWC/gEDKoEG8E8GAQLKmjodSwYBAV5pfZKjHgEBaNJ10U8mAQCBc8YYt0YBAMM7ibkzRgEDV5fvsYdGAQJu3M5mN0oBAiuzPC0vZgEBiTjnvTduAQJ3uFUvA3oBA1djlDEXhgEB7U+sYbOGAQOol8QQX5IBAc/wnD/fogEDpwY7gR+mAQHSrVJdL74BAopMSJvvxgECLkrhrPPOAQC90ReRz9IBA6h9VzgL3gECwyljSV/6AQIQbOsNr/oBAkHP9gT//gEBuc4l6KQKBQPka0TVAB4FAeLt0mT0PgUDMvosc6RmBQBY5YWAFGoFAdtvNizQfgUCoqj4jsx+BQIQ2xmw1J4FAnAxAxfArgUDS0fXb7y2BQJk/JhIyL4FAoGNLgbwxgUBqD4UE8zGBQOUti8H2NYFAmp/RAyk/gUA+LaZnkEGBQJRu43mUQoFA+ROfW1pHgUChhHsvCEqBQJ9rBFibSoFAej3oE7RMgUAsb1Z9FVKBQABzdtUYVoFAclAEiORZgUDuB9B/HVqBQKYHpUW3XIFAZCw5mgBkgUDk2vpgX3+BQESGf1L+iYFAKg3cgQaNgUAAMCXoDY+BQDRA2CRVj4FAZozzmrOPgUCLz9I5VpeBQHpgVTL3mYFAtsF1JJ2cgUAb0JnSR5+BQCdUNwx0oIFAUlN+aeahgUDGIhEHbqiBQBzZ+0brqYFAJFiDiUqvgUAGcMMCCbKBQG8TZgBLt4FA/BPKMbi9gUC6TuM65cmBQBLk3+rkzYFAQsfA/33TgUCfZ2MzOtqBQEJvFrrm3IFA+qpywZTfgUCUh7NyPeKBQB4/BOqH5YFA683l87bygUD17zTc7PmBQO67f5Dw/YFAK0PMgt8BgkASS1pdAwmCQIi/30C1EoJAaKGpj9gYgkCwKdisOR2CQFqklfnVIIJA/skOdM8ogkBfVcOXpTCCQNwR+YLqOYJA3pH4ypc8gkAkzJ4QQj+CQEYYZjzyQYJA4LwZLqRDgkCIBtOjQUWCQMJT9woUToJAEGKGl9pOgkB6j09Rn0+CQOy0y8ptUIJAkLD3UyRYgkAoTTEW4lqCQBSNZR6eW4JA7hyKLTtdgkBMSpEeNGKCQN42ZH85ZoJA+ByDpdFmgkDLOjmi0mqCQCKXrKELcoJA6in4b6VzgkA1Sig00naCQCYnzpRseIJAMl8q6kCBgkAusuv8EIKCQADd2PyIgoJABNIwQUOJgkDPlFCgQ5GCQNKnpC+tlYJA7mnAT2aYgkA44TdRPJmCQLKTjAixmYJAWXT9K6OdgkCZMbg0uZ2CQLCxgfsOoYJAo9712jihgkCm+SBOrqGCQGvdhCGro4JArH2RNA2pgkAk4DztNamCQDS1FtcGsYJAcfyPa4vAgkB603pdAseCQEZWDfixyYJAwfnarl/MgkA+Xh2IftqCQJCKJhWD3oJAxtHd86nngkBqiaOlB/WCQJL0qpiv+YJASqFjYd8Bg0A6uT7hbAqDQM6W14d5EYNAlMMFH3oZg0BYNGBTciGDQJ7JCAGKIYNAdh6jtnEpg0A6OFPlazGDQCq9Q3oqMoNAGmnDXN9Eg0DOQY4Q5oGDQKh4pyRJg4NAmITwR8rHg0D74Y3eJeKDQKBAKYjV7YNA5dU7KA3yg0AO6p1BEfaDQBBuICi4CIRAQi1YIDcahECxlrzflEeEQIhnDJbfZYRArbcYHv9ohEAqhlcgSmqEQA7ZE2v+cIRAyUNoCSRzhEB4wDITy3eEQFgN0Hr4eIRA1oGWeWp6hEBYi0VxFn2EQPiQC6DCf4RAWCs+6s2AhEDqGSCk9ICEQGRbzx1hgYRAELD0b2+ChEBctbbnHIWEQHuhVhPLh4RAJJIN2HeKhECMetmTF4yEQP4RZmVhkoRAGHkn53CihECehjmzH6WEQJK50pHOp4RAf58+XXmqhECyx4nSDsWEQDfHiMG9x4RAgh4gombKhECie4EDGM2EQC/u+Wqwz4RAHEtxMcvPhECa/v7HddKEQOupyhFq2YRAlw4ldmrhhEAzodUcLuKEQEJQE5nT54RATEjhDmvohEBAJtd/YumEQAnElZJ96oRA5lrnZifthEBqA8jKNfGEQEVehDtk8YRAlNVLoJX3hEC3JmCMNvmEQKAp9NNZ+YRASpfI0Gv5hEBHnN+Kh/qEQJKO7kEuAYVA24aBEjUKhUD49BQqgheFQECCv/QMGoVA7u25+eNNhUD9LUii51GFQEk+kOjrVYVAWM08SqBhhUCqRfgtoGmFQHhs7VKZcYVAVGCw17NzhUC7iwjpmHmFQPzTGy+UgYVAADBdrbOlhUAw+jJop66FQNLfJPXvQYZACuR3tGJKhkDCWOCRZk6GQKxsFp8eYoZA+eHARm14hkBa2iT0JbmGQCH+DA+RKYdAIhGxN5Exh0CASVVXiDmHQGzsGzldQYdA8t29vJFBh0B8cMJKYkmHQHjRIYp6SYdA042Bk41Qh0Ay7HYB+VWHQGRnf7j8WYdAmrSGafpdh0ANQWO19GGHQHwdts3HsYdAQPdZq8e5h0Cy1YDMv8GHQBDVsrByBohA+ZCEp8gIiECAeVaXpAqIQLRLOEOsEohAmkIkg5YaiECIli4GtRqIQKQ3KX/hHYhANup62boiiEBGCxSeID6IQFIZwVYqs4hA6CvwrFjyiEDShN8AW/aIQA== + NrgMGZxjYkB8yhB7okRtQGiLA8lIY29A - + - Rtb1RZcBbUUSTrNEbdeaRhFGeUUL1otEXj3ORDL2rUSQ6upFPFGeRNexJUcqu3NExJeJRMpHuUQv2bNEGdipRc4bPEV6BihFMzFoRBN3t0TO6rNEnbGLREdmbEQn/6tEpSpBReSsBEeNE4dEQg5eRITVY0bGFpJFHv3PRP+/VUTka4ZEjA7mRLo9Y0QW4KVGxciHRGOMqkRyN7FF0TXQRJmSH0V0h39ElyCmRLt+8kQjPqtEVN+VRSorXUQvLhZGKPElRXp7UUVQc45EjXtQRBJUrUQOW+dEUuMzRRRRa0QaWXdH+HTjROXFp0Tx4O9FvCSyRgpLdETGU3RErh2IRJQJFEWd80xFsFOORV/RuUa/+MtEeqcMRV6FlUUXkW5EjYdpRB2zGEXdCWVHfq+GRKflAkXBT2BG75l0RDbg1kX672dEOVJtRJYlDkbdMQVFc7NnRAn/h0Sfh0xEfBCmRBLOc0XS3U5F7fFXREJnykV6fotEfKtYRapNzUT96E5EXx2gRW1njUS/qQ5G0TeDRMh60kUrcwdFwlOuRJuMkUQPqZ9EcdeCRFjjVkRc2htFzrqvRG/CqEQTk2NGMcMORfR/NUR+W4tEGt9ORKxUd0VmbUxEhiBjRN6pfkRw3qhE1YQFRQV9jkRwupVEVT+rRMfHakRhOBZFwhQDRWNaYUTrPoJEXHWMRMS4r0TPP/BEW054RUAGDEemeWxEfo9uRMbZr0QcorFFc3BORw2/Z0Wqii5FzTiZRIxj5UT3dw5FSo9tRKbQ6kXlfNREDqrORKf6qkWHr5NEx+tkRAKGh0bxh31EQbW+RMhaqUSB3VVE0+HbRKpbOkWRQK5E8OrXRFpz2kQTwMVEzx28RmvXhEVUyTNG5Cg8RZZvGEW7Zz1Fr3roRGlyXkTjlOJE6MiCRCMPcUQ7u5VEesVGRJ2mxETwfmhEizoHRcVDsERvu71ETb+hRC25NkRKJ6hEnANaRMWYAUU1jr5EdLXJRM7fsER4YUpEN9AaRheA8UVWD2ZE1ArkRB1vqUQdXmlEAcQHRqV5jESZWsNEANiJRAVH3ERkk6FEIUUCRWDRmEQ8o+hFmrRGRIOrFEVi6rJERDxYRGvxgUSz6XZEg3w9RC3800Q/UuBEhVKtROFHIkUv+CZFlLNTRG3nFEXM0TNGqYJiRD30kERE4e1F9sJ+RSfk6EQM4FJF66ObRG9BeUStoFhEZepXRKT0i0Qb2eBETwKfRAqVzkThoa1EzoObRCV6bUYYarVFU5a2RIbIq0QlvxZGmaKzROCjfkTBZ2ZETI63RAi/wETVOSpFi0EaRjtFekVnLqVGX/ppRJY+AEWWSGNEIXu3RFa4ZUSbwJ5EighCRQyeCkWeqoZFIfWGRBGjT0XL9WxG2bOmRIWso0TiZEFETWnWRfQPK0UNG25EKGqCRMbf8ES+JYtECXGcRCmJK0UqYXlEHajLRBWKa0SNy6BFoMmyRP80bkUJxAtFr5O8RNVLmEamA2JEHCgqReQgE0aP0aJFxCupRO4J/kdvL5hG/k23RTrsGEUyld5G7xWuRcfwTkZ29BFFqE1tROJF4kQu7mhFTYamRY55g0RkwKhEHMSNRDdPzERKgUlE56NuRFyMj0S9jbVEQCupRAoOn0QnOwhHdRyNRPAzdkS532BG9ZVTRNYGVUW44ftEa2d5ROJIV0RwIJZFWz3gRDPoYkToXYhEfbqrRK5cqEUoD0BGM6+TRWfsKkUkMEJFdf0FRSmaI0UBMQFFp6NOSciAwERfgfZEqM+BRGkUGkWYH0xIpafXRnNumEat9ThFOQu5RFAUjEbOrtBEbR5TRF7D3ERCX41ElaGHRyGVmUTfNJtGdCymRG4OYUQHMmBFjS58RWX6rERm9BBF4herRBbZJkWEytJFaKxURKVA2ETGogpGY6R6RVaOfkQhBIVElI1nRGd1jkTkNIRGmyL/RcTW7USfNZRF13cIRb7OykRcvKRFwB6ZRHuMq0TX2JFEk915RTdycUTm43xFKf1gRBmOqUSbWb9E2BGhRfyC9kRHGPtEWHI7Rr8Bu0Ro/6VFk23URPXgZURnTkpE3qZORCKMEUY+uuxEGEfOR0qqaESlOcpG1XfmRMIy0kS5tKJFmzAeRRJD80ce04RE0TouR6TFGUaIhsJEeASYRPqpQkeVEHlGYz+5RVlZxEWzM8hEOyytRJkBk0TStZJEZ+/QRJXyvUaHJqpEWgBrRVjkIEauj+tEPLUDRY3Bo0QzUYlEX8vHRJ9zpUSKwa9ETrKHRLpGlkRGcE1EKmN6R3kzq0S+OdRFogEVRjWzNkZsKAJFnbIgRagSn0RGqKFEjDiFREWmh0ZNRmpFK8gUReeYpUVkJkZFy4pmRFtI9URfmLxEj7GxRHFp4EZSrzFFVxqTRoVqx0Vw+09Gx9nJRAZHVkTuQjRF5L6qRToyWkT2WGJFoGx8RdLqm0R05XNE99RiRBdwuUWUPUBGpPTxRTDRiEQ0t8pEETq/RJjWhkQarpFItnURSFYUyUZIloFGUjM8RqxqAEU2s5VFnyDYRIDHBEVbd2xF0EOwRa5XYUSjuutEq0TBRCxSnkT8Ql1FxAHYR04ZZkXB7qxE/jMFRSuG2kYR3GJEZ4XXRH2PqUZQP1tFEr3zRRoX10QYtNZEeMdFRdFYk0U295NEfFyxRaVCFEVR9qNEWEyuRJC5/0U4HndE+C69Raaf5UQ6jAhFBHmrROYThkWkzdREcPQWRkOF4kRsuKpEmEkqRY8HskSETn9E9ZlcRGbFjkWmW7JEA2ahRD0pf0SoVbJEA8OsRIMkUEQfLG9E9li0RPaagUS/vhpFrEO8RBwerESoMgFIySmoRXL6Y0R213JEVDt0RbyKsESE7JBELb3DRh+wmUSHdExEG29KRS2cAkUCYLtEWjATRWopgkT3fURF19ZbRJiyO0XoNw5FYkBZRGrKakSVXoFExV2fRLYFhUXMzdpEq11nRANzZ0SwsnBEexzgRK/ohkR2CSpGc2qqRFmXiUSpLXtFQHUIRbl4w0WmawtGdFl0RIG9pESaYiFFkRDARIFX/0TJOPlEzuq2RIylDkU6Ak5ErAGFRBY8yES9H+lE6jF2RD4J3EQdlLdELPgJRepPOEa+z3lEj+VeRD/5yUUNq49EHa5lRGGeg0RtivxE4httRfIg1ERSQOxEusGJRIJtQUSPvKJEXqMFRqtv4UQgiW1EKVbmRBgR0kSM3sFEkahyRDSHjkSh6CBFfMKQRCTj7ERkRYJEzEE1RpB9z0WEKpNE0JXcRKa/X0S7YYdIR7PHREZFAUhlJ6FEJJOKR8ObZEVpaIhEhLGGRnLLbkQgoVZF0ryIRVzlFUXmlAdFd9F1RF+PrUQOn71ERuiZRABpi0QMtZBER22oRHiS30Thm5dEa8IRRsR4SESmPy9FFkdERSjKgkQpprtEAruZRuTDikQnDplFSydaROgduUaEKVREHBr7RM5pTka0vVFFMhAeRZSMa0TtwSdGbDCgRdkwmkXNcaRE5U3WRPPGqkataSlGsLjyRImrc0UOjF9E5WdqRCb3rURaMGtEzFiVRBSqcESNvN9FQNl+RJTGGUVKhZNExT4URUq6DkXtcWJEDSwIRQ4qN0W/lIpESEzlRUP2c0ROVaZE6PFtROG2xEQh+5lEedO3RDy/sUWSHdxFPH0KRUmQmESBDp9EvkFyRKvBDUbVYsNFHwJWRDDxaUQXM45ExuBRRhH1b0RS1Z1FhWq7RBhpg0THCGhFXwcXRcJivUTE9FlEOreeRDZFgkSOMJdERAVERECvZkQ4rIhEr52SRJpFXES7ubFE5YemRLSakUVBUFZFEZTQRHZIdkQcBVdEEy98RGN3hEQ7qnBEqaNWRN6gcETNoGRE0mnGR28NMUdPAMhGapFTRJFMwEZpIFFGIMYHRf8EFEUTGuVF1/LCRS2PXETt9nZE7J/zRJ6SDUXu37JE6B5VRC22okRDdCJFAbGoRPtAoEU8OxhFGYTcRIR4jkRWknhEDLugRPLKj0TqO/JHSvJqR0Ry2EYSDwVFLkUURmJ3IkXg64NEt450RMsf70StcuNE1oSBROFolkQ7WWhEUvJZRSUL+0QjM5RE44pCRFtLY0QQYYVEZQ6rRUU5kUQehk9F0spfRCF0B0bCo/5E39MlSFDcJEjov7tHf2iERH3DbUTs4k5EfIQLR7a8EkasGwRFuQW2RNaKj0SYlIhEEZCiRXRQikW/q+hEKayfRHamj0Usl5VFpOeDRLzWIEWZSZFEV+SQRDkBjET6RglHpmCBRmIy2URup51EzpOFRBan+UVW7aBEDMpKRPkzhUV9ZUNF0hRnRFB+g0Sa4aJEP1JdRDKOakQKeshE6+1pRBbmR0RfDcNE2XAvRsoy5kUV7SdFFbYRR8bNZ0ZOHCVGp0TrRGCClEVBo9tENfPWRLhliUT59adEMdYmRan7DUXryWdEBrWtRJOpC0VnyyJGoJ6/Rdr1EEXPYthEVn+JRJx6R0Sg7XFERK5cRJV7BkavC+tFAMceRceehETJbxxG0gq6Rf93PUWVrLtE3syHROo4PUf0b29GRwTSRJe5KEVBauhE4fWORNknr0TA805FoFrPRNBzi0Q= + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - MiTXAXvAckBLeLfMDMFyQHgjq3ZvwXJAI9zPv8nBckB820KDUcJyQKouRW2nwnJAtgP+quPCckBMDB2wO8NyQGj6g67CxHJAopZk+lzFckCCM16YAchyQFbbtiVZzXJAJEz6UH3RckBCMcZaQ9JyQEkS9xp403JA4D1Omc7fckDAEwX+tuByQBBGbaXi4HJAql+LNFHhckCcOdeHZeFyQBbjPlf64XJACypaqE/ickC0hm1nj+JyQHifxJEj43JAKz4dWFHxckCkx9z9yPFyQLQ2y8l+8nJA1qqwTrbzckCknIVNo/RyQInShxPC/3JAvMV5W/oAc0A4t75DjgFzQLDXAPs7AnNAlBlqU9ACc0CIoIh2YwNzQJjyVwj7A3NACP0yLAsSc0DzA09xvBJzQCy+O5UEFHNAPfl9F2AYc0DQ12QBeh9zQMgZiCymIHNAQiITXTkhc0Ce5Sn9YyFzQFYudCR7InNA9LrIhMoic0CaucjuDiNzQOyryn/QJHNA+mEyVksxc0Ci4443XTFzQK+liWUgMnNA1tj3488yc0DKBEw7/jJzQHtFj3qjM3NAtkric9Uzc0D6Vc10NzRzQHfAuXK8P3NAi3E0v3hBc0BZBiZnukJzQFBujRl6RHNA3LahUptRc0B4b4iFQlNzQBY1pkyjU3NAULVGB+NTc0CH+VsGeFRzQMusHHqJVHNAHn3yLw1Vc0AcHx7k+V9zQHe4XsyKYHNA8vCT6xxic0AcFNDoQmNzQGLnYathZHNA9Bqjrittc0AdliMKSnFzQAbDKTvecXNAvFQInk9yc0BEvI+danJzQIlZESmFcnNA06Jt/SZzc0AWHywft3RzQOoiDhxMdXNAIi3dU8F3c0AGOWJZ3ndzQB0eZVgrfXNAUpDCxTl9c0Djuk9ceYBzQLjvpsyigHNAGKhuEA6Bc0Adv2LQXoJzQHbu7bl+gnNAerm02QGDc0DWa0yshZBzQPjP8SNNknNAIt7Smc2Tc0DaOrpuYZRzQAwiPVD3lHNA8rzKx7igc0BuEzlrUaFzQJb7zd/5oXNAVQV1Alqic0CLuP0YBaVzQAzfxWbHsHNAteAZy9qwc0C47XKsebJzQMRSRNi2s3NAxmFmtwy0c0C+Goa5zb9zQC43cdP4wHNA/aDkoc/Cc0A+bijJJcNzQJbIIVfFw3NAdqgEKNfRc0DqFIcWU9NzQJ/uMuL403NA36zLvOLUc0DxMzyuouBzQDpCyZQ44XNAybuL/mfhc0Akj8WxEuJzQBm4SXp64nNAfjVnnxDjc0AU2sVx7+RzQHtFuUT68nNAEmdTtzf0c0Ci2Jrzi/RzQB5+OL9E/XNA3CA1uk4AdEDB/Wj05AB0QHL7qo55AXRA2fBGR6YBdEACmeZ9uQJ0QKk8GwROA3RAQv3v6IkRdECOEUEoTRN0QNIYIfHhE3RAqoS0DEwgdED2S0rCIyF0QKpboZu5IXRAO/gwu2cidECqP17rUzB0QMhqM17hN3RAVCkLhT09dEDOT/+xpkJ0QARCL606Q3RAkDDob2ZPdEAXrpGRhk90QJwmjUbSUXRAkk3dCv5RdEDXcs9BQFJ0QHa6UBj1VHRAd5ZFloxVdEDudH+2uGB0QG6b1gEJYnRAmuwQfRFkdEB2AQljT2R0QHo8KhAjcHRAOlLcXUFxdEAYwDGkFnJ0QG6mDOU4c3RAUMGKV6B0dEA6M4TVNXV0QAd3Vn34gHRAwInjc06BdEAPlITi9IF0QKmOwv1HgnRAdDIPpSaDdEA0xJfLFpB0QEruj2lpkHRAzBUST++fdEBQ3YihoqB0QKbj8TfQoHRALvri7jahdEDnBlF5z6F0QM4Iym14onRA/5YYbYeidEC8uLcFuaJ0QJQhoPENo3RAwYRdw/uvdECiVM9BC7B0QOY9N+zCsHRATn7rrm+ydEAq1i8+o7J0QETnsej7snRAtwFOZcm3dEDGSHv8E710QE85H4YivXRAdmBKPt6/dECkeClW5sB0QLBrTcN4wXRAksaqx+rBdEAAdAagDcJ0QDAQayJswnRA/F7NQrrCdEAiZXStfcN0QFT8anF5xHRA/d/G37jEdED+3ju7ysp0QFq+oVT7znRAxoFWmF/RdECBJPTmptJ0QKErewPk03RAfjGNS3XUdEANAIHlztR0QFpSpziR4HRAS+Bo2rfgdECAhyY3N+F0QOamBC264XRATll6YFDldEAOks5yTuh0QMRGeSOA8nRA1EajM43zdEBUnSFvd/R0QEmsMxyjAHVAFqQVy84AdUCe2zjBYgF1QOY9ZtddAnVAKTq6M44CdUARvj9vpgJ1QO418leaA3VARES8KZcQdUCKCuKjaRJ1QGBxXDEjFHVAL7Ri1XghdUCu4HC/UCJ1QJ5wY+OdInVAL71mMXsjdUAIASBfODV1QJw7KSvMNXVArGTa3Fc9dUDaqe+a3EJ1QJoWDnL6T3VAHlRLqRRQdUDilTMSc1F1QKg5mbSCUXVAjIrltk5UdUBIRBjOd1V1QBMovhYQYHVA6nWKiDhhdUBIak3G82F1QF/DkoUCcnVAa0+ixHVydUCwphp3jXR1QAbMpssGgXVAzp4LMHeBdUCcOXxAroF1QO2Ajiimg3VAnTBhb5mEdUCDjeVwu5F1QIVc7QEOk3VAALhgNTuTdUBQdHhz0Zd1QDD6o0eSoHVAduCqurehdUAKlsqC+aJ1QIIjSNTCsHVAoPrFxDazdUAG17z1erN1QH3Ol4HOwHVATvKv62PBdUA0xyKH+cF1QGxRjXuQ0nVAtDksmczTdUAjqNUxEOF1QN6v4WoH4nVALIIUZz3ldUD6P8IJjOt1QCNPhKZM7XVA3Gy5T6jydUAyOw4Z8Pd1QC0YPNgB+HVA3nJe5Er9dUCcybdRSAJ2QEwX8nOXAnZA3nTaxCQDdkAd/KgO0AN2QK4EG+wIEXZAKOLxk00UdkCaAwOhCRZ2QE4JJ8A1IXZAAGsRFokidkDOEqGdjyR2QMUhafxKK3ZAtIMtrR8xdkB4l8o0UjN2QER4UT+XM3ZAd6/odpw0dkDf+zUUS0B2QJh5VhzfQHZANkHk0xxBdkBktYtymkJ2QJBmp9PGQnZAIk7SuXlEdkCmMAo5ylB2QNq20LkUUXZAtCJRGYdUdkD22ZayzVR2QFhvlAFRY3ZAFjJLuNpkdkAEVQGNVmh2QLIE5b0Ec3ZAbKqKsWSCdkBGmmM+kIN2QCRUy0z6hHZAlrhlAl2gdkBS3QLrEaF2QGbW5CY6onZAoz9NyFCidkB505d4ULB2QFJKaCLCsnZAyOrX2wy0dkDRz6N/dMB2QCR33SVOwXZAMioW4c7OdkDYgvBIftB2QGK5/sXx4XZAFJJ2ktHidkAEZAG3kfN2QK5TnUszAndAptikPwESd0D0pJRN0x53QKtkBR+2IXdAYJgxTg4id0A+U87bciJ3QATosNO6JHdAicmMduknd0D0NA17Qy13QMqi1b6NMndAXsiwRpoyd0CY8w2kpjN3QHph8DINNXdAnVvbhNFAd0Aok1jlnEF3QC35dHevQXdAYKDAbpBDd0DbDWEmG0V3QDhgAItKUXdA9PWdh5JRd0DY7ouW7VJ3QG3783orVXdAOrGj9g9hd0ByQJsCS2F3QFpwTxKOYXdAfUdgRaNhd0Aip/C4J293QKiQBm2YcXdAZLtRdaByd0BesrbEj3R3QBCmDib6d3dAro/PJ0R9d0BuJbvyeYJ3QKIbKuwHkndAJOFVN0yUd0C8LjhgL8N3QI+3v3xMzXdAENWQLOHQd0ArI9Y56+B3QOonXELt8HdA00Sz9FHyd0ATjuxRfPh3QGg1kNhG/XdAKq8lsaACeEAUiqjw5wd4QACk5XH/B3hARAfDxMcIeEAg6sqEQg14QDO92U0jDnhAIGnIMmgbeEAPca0dbSJ4QAub666OI3hAEBdKbNUjeECs5HpjQCh4QKIyF+8MQnhASp/7NxFEeECsMQ80ekV4QKAMAKDLUXhAP/Ayo5NSeEB2iqvth1V4QE44Ed6gW3hANblZz/tgeEA/+n9vtmF4QC/PN+dddHhAHMVLp4t0eEBsMGYTrXR4QDbrw2rCeHhAduGmjKSBeECeaDRl+IJ4QBg1h1qahHhAjltzblCIeEBkOd/ZqI14QIYDKaK2kHhAziYXr0WReEAWTNsMlpF4QOVfkxi6kXhAYoGF3eySeECcfkr+A5N4QJcP2/GnlHhAjp879E2YeEBK5+pTqZ14QGYHmBG5pHhAI5axhzqteEDVj+5Xl7J4QKDbzbHTs3hATdLk++O3eEBc1wr+N7t4QGJGZffNwHhAaoiEPvTBeECPAK60JsN4QKY+Cm0/w3hAHmQKsQXFeEAuDCz4Lct4QDifJwJFy3hAJkpDNdfOeECa6c3JN9N4QOWftd+31HhAJCkEUpTbeEBAztxgMN54QBTzx5CP6HhAhdHCGQH0eEBkkqxSjPV4QOacglKbBXlA7h6b35wLeUDKSxR5bBN5QIHw1WekE3lA/ucfz70jeUB10NEVsih5QHlsTJIMLnlAfnbOdmYzeUCwfLy4tTN5QLAd3666OHlAeldWPuU4eUD/qPyFE0J5QKwv89CKQnlAzhKdovpCeUDMqpMzZkN5QKgM2FH5Q3lArkrRwMtUeUB1k0hQ5GB5QIrsANlDc3lAhoT+ATl7eUB/LaWr1YB5QPA0elhBg3lAPOmiBMCyeUBqYru9/8t5QC7SRFJC1HlA2kWEz8zVeUBniL7GT+R5QEJPxYES83lAf5gLhw/0eUBq0iP6HgR6QNi/R0f4BXpA6HkUqvcLekBaUghJ/hN6QGXM7eY7I3pA5g9llakjekCobJkDaTB6QGYhop0MNXpAKsuimHZAekBOSoW6GkV6QOzaUhzPS3pAIkZbO1dQekA2LQCjgVJ6QMTA0K8pVXpA5sQtGSJcekByjl2BhmB6QCzEnoopZHpAepmAXDllekD7aRT+L2x6QLSoWPo4dHpAzjl4TcqAekCsYkEc5ZB6QJKwQIoeo3pA3zSNTXKjekC9ZqmVJat6QGsJaHEUs3pA6b8seyyzekAuas5oDLZ6QKx1+nQZu3pAwoMAofO7ekAoAYCkHrx6QMyMIzkaxnpAZ1nSqELMekCaa05RTdF6QIT1XG2603pAbiWeg0nUekAQlQDrUNx6QMuEeU5m4XpAfBP1h0niekB7Seeh0uJ6QOPPRCOJ43pAepuNScnjekAyFAGw9+N6QOaaurNP6npAToyP113rekCEo8DxOO56QCAexigY8XpAxKYLZF3xekB6SyZKP/J6QKTScj+883pABbiBRnoDe0CO6RVkfAR7QNjfGy4sDntA/IAf1sEQe0D8R/PUyRN7QMb4qveJFHtAQNxxREwVe0C8bOJv0Bt7QPdfFKVaJXtA2H9TNMMze0C+ZRCb+jp7QKXa383TQHtAkCdQzg1ce0Baq0BJEWR7QKQrot4zc3tABnt2adJze0D8NqP/D3R7QM5IBIzAe3tAfx6mLBuEe0BboQbH65B7QOocQzEjlXtAW7Dsls6de0B+IdtyJ6N7QODbR6FoqHtAeA3EwMfDe0DCHOzjdsZ7QOLV547My3tA6qoc/Sbke0AwAAPPlvF7QAKYWFqs8ntAW2x5ti/ze0AIk+2JNfR7QGbZl0eM9XtA48odAbT2e0AtEFoZKvt7QBxN4pGUAXxADMYV29kBfEDIIRBM9wF8QNohLN0wA3xAFHmK8mYEfECKGSY3mgV8QJ02j0ohC3xA+gJm3oQRfECAUEt00RF8QD6YYnjjG3xArDCc0uEhfEA+Hf557iN8QD6g5FWaLnxAyooOaVc0fECsyDWsnjZ8QA6l4sfNQXxAu/forFJIfEBu3b7xqU18QEt4oYnZUXxAd2XS8QVTfEBZNkW7DGJ8QLUfnZ0rcXxAKymbOwVzfEBs8dW7XnN8QNAjYlJpe3xAJKlTkW6DfED4LTnSXot8QAKe2AZ7i3xAYHsicyGTfECwba6IS5N8QN72dXxnk3xAs5vxM9aUfEDu44rXWJl8QMZtKUtVm3xAshXBo3GbfEBCUr2bsp58QFZuimlAonxASVAu+w6kfEDmTwANwLJ8QJ7CpCUGvHxAGGyI2/TDfECiZq3I9tt8QATCLpJX4nxAZNNQrxDjfEA+c0oVAeR8QNDwtq9p6HxA5qa7vAHsfEBq6/IuyO18QAbza+MV8nxAoO3G3lTyfED51/0AcfJ8QKhDFQhE9HxAogaTV672fEAsBjx23ft8QDzpJ8sCAn1AhCujxkoCfUCa/rFaRBJ9QCp7K0uvG31AOfsPuToifUB+0taxjiN9QMBh65i2I31A4De7N8BkfUCdJ931dnR9QMSg1K7PdH1AI813u/GDfUDqk8kflY19QHZlF8Xukn1ApDYFiUyYfUAuIZAM9Zt9QA5Am7D5o31ANIsWAaakfUDBSXZOrLJ9QJ6Qr7CxtH1AaJzt5rfCfUD6wPQb5sR9QFppsUbW4n1ARDOFwo/1fUAuqPAFUft9QC8FC0X4/31A+ndosTQAfkBiO9MTSBB+QBDiOmDvHX5AqKELQTgffkDwo60rIiB+QAdP6KRGI35AhAn2GKMofkDkBPYYPy9+QDSQCnuWRX5A7rRtL71LfkDSnmGnjVV+QHwzegQSZH5AOLZrtBJsfkD2GUJfD25+QBrgs7sgcn5AA7h3Ibd7fkDMg82vvYN+QL6mGGm2hH5A0iv6kD6GfkD4oOkDlop+QFi4QnfikH5AcLGbq6WUfkDllcDkDJ5+QJ75iiyXpH5AyO33A+WmfkCVyaHRGa1+QEfwkQKYsn5AWLRSUnuzfkBya9Qk6cN+QLQ/lB7SxH5ASvbQSXLIfkAQ6uams8t+QOQprcDOzX5ANd1WdtzSfkDmNMBhL9N+QJwSPBPf1H5A1iGMznXYfkCtTEsx5eR+QLKuwlhV9H5Aiv25ctb/fkDzed8+kwN/QLQUaMYZFH9AAvxkuRg2f0DzDpKGpTl/QIalzD1cQ39A2jxZr2FLf0Aazb1HjFh/QI6Nl+6vW39A4qInEOddf0AW/XEetnF/QFJyiZWYc39AGCNdXf1zf0ByNEByXXR/QJEw6hgDfH9AUUKBLqmDf0DEG97gYpF/QMJYDBinkX9ABL1d7VGTf0AGb/kenZN/QJxAW0VeoX9ArjJgHESjf0BeyaDKfKR/QMq2dcXmpH9AL1kcFRGlf0DRiaddnah/QILfHMn1rX9AUE0i8lOxf0AMdE0SIrV/QEDGUJhtwX9Amkg/sMnLf0AcHyme/85/QNY+FUrD/X9A46m2aIcBgEDjGAT/NASAQBxzSaHaBoBAr+iqdYgJgECie7Nszg+AQJhEUPkmEYBAKySiAOIggEAX1Kmr4iaAQH18k8KPKYBA2GhmBwkxgEAtAVn53DGAQBC/5mqoQoBA3As/AfBIgEDYrB5E51CAQGK3XjETUYBAj891wOJYgECoO5QADlmAQB3dtpfpZYBA9HOThzlmgECGF+ZN8W2AQNxp7cMob4BAMDX9QgJygEBFauXDJXOAQJPBrgUod4BATZgTB8l5gEA4YdQ9zn2AQOv0xy4nf4BAhhFw6B2PgECK4vupSJOAQLo5h1ZQk4BAFTwqaSCXgEA8ym8FIJmAQCZd7h+emoBAF4C6QdmhgEBUiQ7h36WAQOqMRLr0poBAADG+84apgEAjJ0E3fKqAQAUzhl0Sr4BA3oJ44iqxgEBOEfcS4LGAQEohWWqKsoBAk7myeNy5gEBdmlCXBbqAQGHMqp5FuoBAMzTy+gO8gEBfWEwus7yAQOwdIKk4voBAwJMD0WC/gEDtSkXa/L+AQGo/14BSwYBAXKs9TQnCgECgpROhnsKAQHII9WH3xoBAyrUdhLTHgEAo8+ZqU8mAQM79gG4Kz4BApfkDfRnRgEBAA5KETNGAQOCxJWth0YBAnhQgLErZgECCZDVrydmAQKIAqpa/3oBA/G1EfkThgEBBlpP+VuGAQL2xk39u4YBAy4Jes/XogECGZaThROmAQAFraMph6YBA0FTO4PXtgEBV515ATO+AQLyY+H8884BAMcnEvJf1gEA0yZvkPveAQBwzky9M94BA6JiNMGf6gEB1HO7QWv6AQBb+o4s//4BA8njVrloCgUBsTxU7XgaBQI3suWY/B4FA0q5e/z4PgUDgN8AEBBqBQM76HJA0H4FASDSTlLAfgUBqCsmPNieBQMNJj3KzJ4FA4hyhRfAtgUClRSx0MC+BQDy0YVy9MYFA2ud5mPMxgUDP6Cug9jWBQDSfqxj4OYFAZPP9vyk/gUAe7WaOlEKBQN46SfVZR4FAuSoTZAdKgUCgz0WtnEqBQKj7Vty0TIFAgX+BiRVSgUCIpMggHVSBQEZEgd4YVoFA3L02IeZZgUBo4t/fHVqBQNZbM1/mXYFARif5vCFegUDwuBJgPGGBQIBamgixYoFAGKrDpMVkgUBWZhRyFG2BQEa6OgpVboFA6gVV+mF/gUD4pUHlDYeBQLbJ1e8HjYFAaHpVJFaPgUAuwe/esY+BQA7K263wkYFA+CHgmvaSgUAxq7IcWJeBQEjfHP+cnIFAqwfIl0afgUB9jTCq5aGBQLqAHElsqIFAxIdXzEmvgUCKMKuUSreBQLhYnE/lyYFAkLHMRXzTgUAhQwJDOtqBQF6QcTXn3IFAMFsMjJPfgUAqrTUnVeGBQBmAC7mQ6IFAHinVv7PygUCIwaKtS/mBQISJHNzs+YFACulwR+/9gUARVkZg9QGCQJiqbZIZCoJACQJYf1IPgkAMgcsb2BiCQJKPX3XYIIJANKJY6NAogkAiaJSz6zmCQEoV8zyZPIJAleH7kiY/gkDo+6gARz+CQIVddf+hQ4JAhgnRgi1FgkD518T8DFqCQBZgYlDUWoJA0oSx4pJbgkDpDAKqeFyCQMjpnZUzYoJA3ISBBDhmgkB+TrsKeWiCQMxLNo06aoJAmCBvNs9qgkADpUpQmGuCQDLT0Co/dYJA7RmyVBJ2gkARtiaWn3eCQFD8XjF/fIJAJoqeaQh+gkAEs4jMiIKCQOC0gn83hYJAlY4EUEOJgkBWlraeQY2CQBxCl3hDkYJA8AzHcaKTgkBsJtpKrZWCQJpmEW6rl4JAxruipDyZgkAGgrB6VpmCQHCov9ivmYJA1/hNxAKagkDrJxBww5qCQDGogzOknYJA9u7Th7qdgkAyIGD0DqGCQDatfRI7oYJAXVVZTKihgkAWqHBTDKmCQN4/j3syqYJA4LQCGwixgkA2A88vCMeCQDCgHQ97yIJAF8ZU2LXJgkAXDB/OftqCQO52LZ+B3oJAonbPHoLigkAUjeFdQ+WCQG6FM6Go54JA9vwrF7nzgkA1F4MSrfmCQI0nWAPJ/YJAnsOL6+ABg0BIsd1P5QWDQKDL/iI5B4NA+4CPUtMIg0B88gF6eRGDQCvJwJ15GYNAIPqMJHMhg0Dy7gNfcSmDQCTvAPhpMYNA7gCYmwU6g0Bj1JKM3EGDQKJQ04JuToNAioFMFYVbg0B2r7e5aV6DQPTF177lgYNAzPQxbkiDg0BFHfpYVLCDQNbsBOIexYNAMfyC8c/Hg0A45yrXy9yDQBANrg3G3YNAQNkcwuXkg0BtQLzuh+qDQGb7DrkN8oNAijdt4RD2g0BB6igZmPiDQJgUTZm6/YNAbgdUl9kEhEBm1NjaDxKEQMgz9yo3GoRAtq/reF8whEB+TbrCZTWEQCJXbCVyOYRAI6765AVkhEAexx5a/2iEQI58oeD7cIRAcnKYucp3hEDsbDxh+HiEQD4kqIhpeoRARWpAcRZ9hEAkOQMiw3+EQN1SIXc6goRA25cyym+ChEDwVPqiHIWEQAhXyZrJh4RA3tccsXGihECAfMIIIKWEQM80q3ewpoRAyBjCcQinhEBCs6y1z6eEQN/kDGl3qoRAiEjLZM/DhECBVN3NEcWEQO5kaLu8x4RAy2QNhGrKhEBkLfV8Fc2EQCjr0WDJz4RAz06o9XXShEDAYmdFatmEQBTmfutp4YRAwHZCzC/ihEDXuBj/2+WEQJxUA0rS54RADlD+LGLphEBLvnDoe+qEQOm7iuQq7YRAqvGUCjbxhEBJ/i7XYfGEQByFaqxW8oRAzhfdNTb5hECqaW/RLwGFQGjkYasNGoVAuFN+Z3cnhUBhDD763CiFQG7N2jw6MoVAYDRPaNVJhUBPNqzq402FQFY1N6znUYVA5JlYxupVhUBTBWVgoGGFQMh7+hegaYVAnkDvc+VshUDUw8y/l3GFQLrLzUGxcYVAHE5Fz7RzhUBIaO5wl3mFQGqRHjSWgYVABvGuDAK4hUAgHaJfdr+FQJz0YcyiQIZAQhqfBWJKhkAYsIg/Zk6GQGLpUvdteIZAyDh78SS5hkAWjEoNKMGGQMtYiZ2QKYdA2D94oZExh0AwJZTXiTmHQB/3LhheQYdAWAzZ5YhBh0Dky+/XhEmHQGQF1eiRUIdAKtZPt/hVh0BYsCcZ/VmHQIAqEiH/XYdAMYcpTvhhh0DbmWDFRHuHQFJqu4LHsYdAPidYx8i5h0Ahrw6Vv8GHQMtyuMHHyYdADPPvp6QKiEB1YNYzrBKIQETKRYK0GohACleY0kMxiEAnLhgySD6IQPn/kw0uXIhA2gpdOk1yiEBcc7h2KrOIQCxq72Qzu4hAKFvIY1PyiEA= + KBZXds7jZUBxWoXuS4RsQIkw7CrX8nJAiq1QlkuydECJjsh+LwR6QIoLLeqjw3tAKbPgEV76gED+mUS3jwKBQFTdYhSqMoNAknro8uYKhUAbCQkkFjuGQCZbjC4+E4lASA+uyXdjiUAminpY6puMQEg+nPMj7IxAUbT8WjbUjkDWNTMIWMKQQIWDbilXapFAVk0qHa6GkkDirF4lk2qTQKA9/LrZipRAKy+f8bPGlEByQ07syaqVQFJUYckf15ZAFKXKPwbPl0D0td0cXPuYQDvKjBdy35lAxrsvTkwbmkCETM3jkjubQBCsAex3H5xA4XW93847nUCQw/gAzuOdQD6frdsKPJ9AIe2uBwoYoEAqWnduGCygQOF4KhI1+qBA6uXyeEMOoUBsupN7TcShQA/e20dZEKJAXkV9f2iGokA01sQWbxKjQOnPHYB7FKNAQltQh57ao0Di6rwUjRKkQALny5HJvKRAonY4H7j0pEAMp61FzoqlQFCLMB3W9KVAU7tcQORupkA= - + - Alx1RJdMVURCyo5FlJmCRVctZETVGLNGEyCpRHNIfEUFjJNEiR1WRIF/v0XmGoREnFBHRHWPA0fO5ZJEfNvURNhOt0TcgCtEsEtVRFDJOEQ2JYJEEwZpRVDCRkUn0Y9ET/8fRIGpQEVjV1dEN69ARBFbAkWAKqtEbQLQRH/taEQOwVpE+lA8RZKTfkT3pjFHCtOeREbnL0ZoGZxFsNVCRMUMh0St23NEJGa2RnB6Z0SETuREAuA4RKqh0US3YqdFWlLKRPLFwETqWERE+CeRRAN9YETHEEVEU12PRMBmf0R2rnlEm8g9RdfrgETudwlGmBY7RW4JAEVeF3FFSoCQRJezgUS4xqdETS1XRP9PZURNspFEmg2eRGAgk0RAdTpEXMFuR0sTOEQh93lEiKmjRE/lskXvfqpGRmpfRBX+ekQ6PABFg7oMRRFuUkUWIbRELDmHRMsdw0ZLObBEqoOnRIVHikWdiTFEOpUfRZzMD0XnPUJH44iSRNyO2ESAfW5GXDm+RQAcQESLWjBEoFm+RWReKUUEPypEYIF0RNnDPkQvzoFFHPwvRYbIN0RyELpEMSOwRW072ETEEIlEJR38RN1NkEQtb4xEPreARevGg0TJo9BFMqBRRFFyjUVun+lE9LN3RDO0aURGTDVEBCXyRKiwYUQt1INE3TM/RNQ5gEQtkmdGju5qRGE+XkQcGWZECJWQRIAlG0W4YHdEMxGcRAbgREQ+QbBEemqcROPZ20SUWS9FB2hqRIjrM0RFQ4JEK56DRJk6GETM+YNETC5LRHT6QkTX3HdEH6bYREeQf0UzwyNH28p2RLt28kShcGNFYSU4Rye1iEU81h1FBfOARE7IvURs9A1Fy8ipRbRlpkSwS4ZEgqDtROcPoUU2/GVEVi11Rnl3lkTlsa9EoBNYRKfkRETvJ29EcFedROSmrURbXA9FQx2oRBESjkRG+ZZEGuLARqyQOkS19IFF4MwfRumfGUVyU9FEFfMcRY7TtERss5lESnmaRO55eEQKJUpE5B6bRKiOjUQjC1REx+v3RA3P/0T4TJFEf59pRLasb0TsRrBEl55HRO6wrkSd60lEwCxQRETjJUSDbQxFXH57RMVHh0QPMc1F1XfORRXUW0TDbKJEDKbcRNts0UQHWwtGAxKNRGPwmkT/Yq9EF9N+RIv8kkT7pwRFpagvREeRSkRHd81FW4ZzRET2VUTkIjNF6VhDREUNfEQ6YqBEoeaURICwG0TwGHhE1W0vRG73CEXwGUNERxQoRflWDUVsOzFE1WrkRDZUVkb7nhJElOXBRNyzzUVwOYRFHkwERZOZOEQPrJFEc7F1RBKGg0TY0j1E762kRKlOc0RQD6BEHk1iRKgpeEQVJcRExURJRPdlDkXckF1EZxXHRCdbZ0S27dBEs8MwRJVcbUQUp5dGMWGxRd/n20S79f9ECIljRHrDBEbELXhEGvBNRAUc00QrN4lEiY+xRNz/lkR+0kJEqVBRRX777UXc9KxFDeulRsLLA0U/wTlEb7aBRDZlg0TUvaNEnfWCRdDgnETcMeJEcOJMRQJB10Tm3w1F7VlrRE4OcEYe+oZFAcE6RWbP2kTg1idEzeA5RHnUEUUmp31EgJWIRJu7gkSqA1ZEijhSRFz320Tc8h5FLjyURYSjgEQNsJVEgRwyRQD7W0THj2pE81WZRMHMG0X2Y/5EWdCGRuhCrUTwakhEzA10RZUcO0Tc7klERI05RgDlK0WG8lJEd/xYRNXQ0UTDceVHE/M/REZInEajyJlFHotGRVkpv0aVm29FxlYcRgSXckR43YlE4Pd5RHQquUQt46dEzCmHRCbNM0VJLkhEjMN+RQL5cEQbCCBFzo5zRCqQ5ETv+VZEajWCRGWldUQrhTpEdaiGRLTEiEQHBVVEODOUREMq/EQar8tGV4dERgnOZkXk1TpFRp78ROLzr0Trgk5EBk98RCqwT0UUApVEkReCRPr9JEX6anhEsHSeRUF5HkbCk4xFntMGRUtF0EQV6HZEOMwSRbkXNEW+a0BFESYwSYLzkkUZa4tEEoI7ReIrVUQaZzNIpc/kRt8fkUaOQjlEOuFZRM24JUVpsnlEKcndRPHkskXVDIFGBGeaRKxXlEQW+FhEiveXRGVKeESgxcNE3GaKRLoQgEdrV+1EaOJBRDoKjkTFvq9GzyKJRN1WWEWbhgpFAklARPM0HUURaCVFbl2PROI+cEREDYJETM4qRYFmkUXJl5pEguvaRd+ickTmd7FFhLaBRKveY0YymwBGDVnfRDCoy0Tz9HJEI33BRJXAFUUy2qBErGuIRLyjaEStTQpFXspJReIWQERnrppEZTaQRTXQcERM8KdENwlBRTMjgEQ977ZFwt9xRPEjkET8tHlE4p0WRjvt3USD0U5EwxXORURkHkVFzXBEcCd1RGpDZUaKIJ9HdzfJRLVTmEZJEgNF7cBQRSZq9UQaMMtEb1bQR2hRBUXWoSlHFNXCRFJWz0WjXYxE3aW8RFKriUR+2j5HBY9NRAA1cEbot2tFdvscRYxWs0UbEtREEnLSRGiMikQ+HaxExI2mRpKPkkQoR5FFC/viReliz0Sp/QtFHAxsRVOASESXSIlEMYhTRI2/vETQGglFAp62RAH1tETnH+BE0HOPRNixa0R7CYlEnqxMRAdcWkeiyKBEZMpGRP6jpUULTwdGB9MYRpFev0RozR9FAQxtROYiR0Sc7ztErMbIRHlkRkQVNQVFDfg0RCJnaUaRiTZEuSH2RE6ttEQPSTJFOmKwRVR+hkXjFZVEuBw7RWv9jkSOD3FEu73tRjg+lUVBmZ1EhBSGRAQcg0XHfoNG3OCARG1RxEXB3rJEEToYRsyLBEVHEr5EPG5GRd/OXEUTQ/dEpxyKRJHeiEVYCAZFLWNzRNSOf0RymLFE26eLRKrrmERBLahFelZWRry2r0USOLNEJm8QRaxFd0Spn45EzsA5RBYnREQRS6BIfC8USI/57EadEmNGMXeARI9AsUTT9jVGEOyiRDAykEUPidJEf6s0RRotN0WP8EJFH1CzRIQ1rUS+5DBEjSBXRNK/bEWK/tNHcGFSRZs/iEQYs4REEWBhRGPSX0RWxtdEUfbKRtZGNEXmK0REvYddRE0qh0R5YxBFQMGeRuokVEXxL6tFZxKOROq8fERyneREx3yERe01ekQRIt9E0ec+RIoFqEUqTmtF38DqROmHa0WVB4dEvsn/RbR+rEUeu+pE22BHRIYXdUUNYKlEf5XkRAWTc0QikJNEZ81aRlcWX0SsjBFFgK6GRKXYDEVw6xtFfDatRJHsd0Q50cNEfdtyRIyLqERkw5lEWZ1URLnDOERL0aZE/5T7RJkteURDf6hE++tARGrWeETLFH9E8gLvRCv8ukQQkzFEzT5ERJ9PMkQaCdVE8GtORBnQd0RCVsNH0EiVRVE1x0R7BU1FR13DRFj6ekTSWolGitFpRExzGkX8yClEz3FORBx690QoR7REw1tMRBPXdETJ/WdFU4juRPiSjUXe4WJEOVG3RB8LoEU0JWFE/C82RceRSkRTBldEWPOvRNiBFEYYVXNEk+N5RASHN0STsVJFR6YgRcw9o0WQ425Ekl28Radr1EQgWEtEUgLlRHkIuUQArHBEkAp2RBovQkSBWWBE+qBeRaRdEEUVMc5EQpGCRIK8cEQXKG9EMmEtREP730QZnVtE+oW7RPWja0TXLL5ETTHORGoa+URguE9GJ7pNRD3mnkVwFU1E7WmiRHR6O0W1LhhFSgjsRHpxbkSObYpEDURXRDi3SURzjKlE4fD9RUVoJ0TovyZE3ouiRN1hokQARz5EmIrmRAgUiUR7mmBECwaSRNIEUEQa0WBFdVXjRLE5e0SztqhEXh17RKYzEka1c1xE5rKjRMtVCEbWDVJEtCLqRNV0Q0Rl6IFIlNebRDoIXERwKG5EW6ATRbpk5UfpNX1EunFDRHb7dkfX/3VF5mpQRnrZekQ/XCdFviSTReG6CEUTxQNFLXPeRPKtUUSJGRJEUVbsRNmz20TvvndEQW2GRKK5NkSyayZEnursRDF1wEQiNC5Gmfh1RH2SfkSfVzhFT9pmRb8Q3UTs2KpGW+VWRFReWEVtMFJEjDe9RhN1eUSxHZBEesNRRt91kUXP+y5E1pwJRVWEGEYgbYJFySkRRW7fvESkPT1FZJ6HRklmS0TKxxVGDBHMROtXGkW1xU1EYUdyRJXOa0RocThEBNp+RACgU0T02DJEi2qORCf0WkSTJrBEiwreRd0YEkV/Dl9ERk9dRJI4m0SmN4BFvrIIRS4VuUSJl7xEVwLoRVZt20TaHURFtI+NRLV5tEVjZ4VFTwkxRdsQZUQaCEVES19rRFqneUTeAD9GyBmoRUmdskR27i1EPos3RNT1LEa2zE5FQGMwRajxOkUBvyRF7vs5RDEWWESMGl9E0fxeRGPDn0QEaZhEM8QxRBMSMUQHo2lFuywtRd5ye0Tye/lE4j9JRCCTPUSY/mhEaPvJROL9aUSwK6BEepViRHlrUUSRt0hEWz/JR+pVQESgHTFHvd9PRMSiqEb41jhEudHrRljE9kRuryxG0uKCRHKyakQr9rhEk4itRKdL3EXrK9VF94euRFbWMkXAc8ZEg3uiROqooUQZR0VE14GiRFXu8kXcYWZFZtI9RDCoSUSRlpJEHT9YRIstjkTg/19E6bdCRLERn0S6EZJENew+RNzr4keqMz5H5RsER1nRFUYaGChFViyERMJHYkRCcj1Eh09BRC6PYkQjnZtEWTWpRJyMgUSlieFEiP52RDLObURU4IREFGpdRKNBckQKWmhFmTEBRR5efUR1v5NE2ipARB3BbUSljXVE2nZSRNvJXERJFjlEaQZiREyQs0WrUvNEuHEuRo/bHkX/qm9HXTpuR94X/0YInFVEwcdlRgJwikX/KcdExxyjRezYyEXEAmlEvGlfRDRp1UTTd7lEP9pRRKL+PkXCUoxFw3cWRaUDN0XdC7hExVd1RC4ICkeFRGVGSuO7RNGvLETl0w1FQ3YKRpiWP0UTxRFFSbiERblmi0WZPpdEUHDeRJCrkER7/DJERRs0RB62PETUrYJEBgJrRI3saEYNdgxGhMsdRWvtEUezKl1GX+o4RH4IDEYinp5Eq2LKRFWdVkWLH05EkUpORPticEQKiUBEbM8dRT8XGkUgHZ1E4dH0ROjSY0RQowtGQCiGRdf+OEXYee5EpAIURcZCjEQCT4xEEf32RXKCpkUDuMBEpBbNRAm0h0SzyA9GjmOZRSr/GUVUI8NEN4cSR56KJkaP8R1F+xIpRCDLo0QDnChECyZpRGY4LkVkdEJE2P7CRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - uIK6pvvAckDCh0wUb8FyQEITbPDHwXJAVoYmUlHCckD+bZDVpsJyQB7NGUvmwnJAOu+W4jvDckDuNcqWx8RyQCSAPA1YxXJAbJ5+EwLIckDP7OYeWc1yQHShFV1D0nJAvpGd9KDSckATSmjltNJyQJTWNpl103JAMo00fI3fckDoWHm/zd9yQLyzO2224HJA/GtLW+XgckDgpFoHUOFyQKcczCtQ4nJACcu+IY/ickBCjKsvJONyQBJmePnJ8XJAahxmR7fzckAIcUWwTPRyQEKrUZyi9HJA0whtwsL/ckBwioKi+QBzQBqIcXxNAXNANj82PY4Bc0D83veiOgJzQMCqt1nPAnNACmRXofoDc0AO8LjqvBJzQJLno6zdEnNAVtvYUmMTc0DISZ6G+RNzQCLJWqx5H3NABgobF6Qgc0Aso/cGOSFzQKawU+rIInNAIDmrmg8jc0DQ+T2SzyRzQNucbPlGMXNA7MTZwVoxc0AgT6Md+zJzQPc+2KwLM3NAw/DKhaIzc0BI0fi71jNzQM6gxYA5NHNA8vaUSbg/c0DCeyI540BzQHgUN9R4QXNAgdfcx7hCc0C+qKZyekRzQG0Z7IebUXNAbqXJ7z9Tc0ABgW61olNzQBaJeaviU3NAIDUVp3VUc0AKo+eihlRzQN2KjEX7X3NAmEQ2Woxgc0AdupLVG2JzQOgEQTI5Y3NA75Jb8ittc0CEJ6EJ3HFzQPY9+r1XcnNAzekEbWtyc0AaM4lDhXJzQIHoo3W3cnNAXdC2U7l0c0AAmNtES3VzQFzvos7Bd3NA7inxKOB3c0D0F6kIeYBzQO7AiF2kgHNAzjWf4g2Bc0Bows1Tx4FzQKTNtMRdgnNAYttL+gGDc0CWPRBbh5BzQLYMSScfknNAJHNJH02Sc0AoDHppzpNzQNRMUEVglHNA75/WIveUc0AepLmIjJVzQJz+cTm4oHNAgqwzXVqic0DT+zFZj6JzQFo/hhUFpXNAwn/pwcqwc0DTrQtxfrFzQIBZWGlasnNAItVGN3uyc0AIp36Ut7NzQOKoGv0MtHNAsPNZZ/fAc0DzSP1rFMFzQJVL3SY7wnNADGMO60zCc0CsWiVm0MJzQBcHpp0lw3NAFg0Vf8PDc0DZAzk119FzQMT649280nNA+GHWV9rSc0C+vnZx99NzQOJi57bi1HNAVo051qTgc0AoFfn/OOFzQMwA5y1P4XNA/PZSFOfhc0BpdlNkE+JzQKq38XN84nNAwJF+mBDjc0Dc9hlpK+1zQEQYkOFJ8XNAb1Z24iDyc0Ay4qYJs/JzQKLWXNk29HNAjW9uDET9c0A+plqu4gB0QEt+/gd5AXRATnwNR6cBdEBCzjJZDAV0QLWztiqIEXRAglUX8UsTdECPk/Hi4xN0QLI3h7B3FHRA8zoRBk0gdEAu582ljiB0QMW6vZokIXRA5GfSqrghdEBYJLYjZiJ0QOrb72BSMHRAPn5QvrkxdEBGJve06TJ0QER5LeLiN3RANBKAFFRAdEB54/TGykF0QMqyujqmQnRART8OBzxDdECOR11/fUN0QBlG0BkQRHRAQwjVZklNdEBYiAFHW090QKJllnD3VHRAgNjY/4tVdECoBJ/O3Fd0QArxOH9dX3RAwKbLJLhgdEDAHlHYCGJ0QD708115Y3RAXtsG4E5kdEAjvwAfInB0QKah/DVBcXRA8Cdqv85xdEAGuOtLFXJ0QDIObgY5c3RA/wPg4qB0dED4mbMQNnV0QExXQ/BBgHRAaE4+hviAdECTVvNLToF0QJhn/SPRgnRAPIRETiiDdEBIH9HRuoN0QClX8jUWkHRACkI9l2qQdEB8TJO87590QAJalc+hoHRAatFB0c+gdEBXwnycNqF0QJT/qyJ9onRAoDWGhouidEDnXtIFvKJ0QLSA2fcOo3RAcMqif/qvdEDuwGFsC7B0QGbF26FMsHRANl5EoMOwdECY7oiIb7J0QPaENTn8snRAJFcD18i3dECvlxtyE710QF2q/pXdv3RAoLNKHeHAdECVzVDAecF0QIyZ7CTrwXRAcJ2WdhPCdED3Il5eb8J0QMx7UrW5wnRAAnxnGX7DdED2Cv+1IsR0QFwpNNe4xHRAqbWd9vzOdEBkzX7TqNJ0QOK7WLbh03RAHDmkInbUdEBYDrwMzdR0QG7wue234HRAUrQrrCDhdEB3kbHLuOF0QHp6I8NN5XRAqjfnR03odEBUOJP7+O10QDJihb6+8HRANkrKpIDydEC8xpzXjPN0QPy68POn9HRAqJTsNqIAdUCazk3SzgB1QIq490hlAXVA1IItyV0CdUA0rbT5jAJ1QAovp9WXEHVAIaE+0GsSdUBL6TmHIxR1QLpIAc/gH3VA8lvm/lAidUBZ0aBmnSJ1QCGqCJXmInVAGRVkkiQjdUDeneC7rDJ1QA1UtszLNXVANI3kuvg3dUDUEWx+Uz11QAg0Ds5/UXVACiBesrZSdUC+deI5TFR1QD4iyoN3VXVAHKUanAtgdUAuwk6KOWF1QOI/merzYXVAketSFYRldUAeoOQ/dnJ1QA2wDXCNdHVAYNtwcXiBdUBYh3vNrYF1QGhLiPylg3VAwtrjlZqEdUDwdpHTi5B1QMKUbUW7kXVA3oJWAAyTdUDKT2/1OpN1QFEpeEm2oXVApQhrJMGwdUBkP3Yv47J1QF55dMc2s3VAjHyCdc/AdUAVt7S0Y8F1QMB/ajX6wXVA1CWzZc7TdUBa6hqj5N91QMAkAzcO4XVAoGAv3AfidUAeBpx6O+J1QHOFMslS4nVAqWdb1jjldUDTJqvHi+t1QJh/QZBM7XVAxYUBYKbydUC8iZHb7fd1QEKgzUYA+HVAg5QZuEgCdkDa/QTjjwJ2QHYzHIzQA3ZAO7IwvAoRdkDIyO4nVRJ2QPxt069NFHZAmoLE6TghdkANSBdyiCJ2QBxrmoz6I3ZA5sM0j5AkdkBUjVKQSit2QCvYMnAfMXZAPulTqSQzdkBKuVHxUTN2QNri0tqWM3ZA2yBiN580dkAuggEjpzh2QAzfg8JOPnZATbrSS09AdkBhasZH40B2QKpX59EdQXZAPk9qT5pCdkBgJnI6yEJ2QKCx9NdJQ3ZA3Rp3anlEdkDu+fed8Ed2QJxtaWD6TnZAJjxB08xQdkDu0aGJEVF2QCj0gGvNVHZAIChNaSFhdkAYQly23GF2QI0shTlRY3ZApEV6ktpkdkCsqnqrV2h2QAwAcYtlgnZA6lXLNJGDdkAbtXBpXqB2QO7SdWijoXZAUHutNlGwdkBKBDUmG7F2QFQrGK7BsnZA+Iabd3mzdkBep838DLR2QOoypb5xwHZAt8IbfE7BdkAXkS+LdsJ2QG6SlDQZxHZAUyp85c7OdkAMmpetgtB2QGIDIpu/0HZAmPWkKfXhdkBC3Z3w0uJ2QOrsT0wx83ZAdg/Q+5DzdkC7ChP1MwJ3QG7XT3Z6AndAHohDowESd0A9exGZuiF3QHKocoEOIndANEFQQ+gnd0CTQeehQi13QDzuCAibMndAA7TGYnwzd0CgiKmJpDN3QIIfwzQNNXdAZQdFXZ1Bd0DtdERaKUN3QNZWtDKSQ3dAsEc59BpFd0DcmCKmSlF3QFwpsPWSUXdAjHc9eilVd0BDjWm2EGF3QO16AcyQYXdAses7Guhid0AeLSI4PGV3QA58tTsob3dA2qt9Ap9yd0D6tXMB+Hd3QJSItXaVe3dAxRHmXnmCd0BQ5rGvB5J3QG+J2I9LlHdAunlXHJu0d0Af45SCcLt3QADWycrtx3dAAMazk+vgd0AYBelEUfJ3QHpwGEV/+HdA/g+8pEb9d0B7MgIN0/13QG4JZsYgAnhAzuXreKACeEDU6kz/5Qd4QGyuGSH8B3hATFiAecgIeEBgTC4PRQ14QMTYy7ygEnhAzA6Nmk0VeEByFep3bCJ4QBdbNMfQI3hAmIfhqkAoeEBaHeZTly14QLzjk0J9MnhAoGasRfEyeEDSBPgqEkR4QJQO0kx6RXhAwK97y8tReEBh0qTglFJ4QPDOUWqGVXhAij9tketXeECXMNzN+WB4QF66nmW2YXhAwJTfg7lieECEM5HLLnR4QC4z2846dHhAOreSZFB0eEChCc8BjHR4QELDvGfSdHhAKc/AF/J0eEBAOex5yXh4QB52KzA5gXhAFsP6i6WBeEA6VV7fmYR4QE6iHtJPiHhArSGe9qiNeECS0j9dU494QITYPTK3kHhArsNQ7kSReECIir45l5F4QGQkQdXwknhA+A/lCAiTeEBAjXi5p5R4QA6TokRemHhArX8NAtqieEBSqlU+s6R4QCgPksySsnhAZyIsCTi7eEDlzORgzMB4QBCt1vU+w3hAfInIkwfFeEBS873rLst4QJ5bS4ZBy3hAqOnyHrnUeEA6ykP3ktt4QCyVFmIt3nhAacqCNsfkeEBbXgzXkOh4QKDtvfkC9HhA9RQUMY31eEAEkjFpmQV5QCRJpBueC3lAXi0TgaQTeUBKp/DpqBt5QGTrdGu5I3lA6/Fp4bIoeUCgnpVVDS55QKqXp49lM3lA5hp42L84eUBc8ez24jh5QO2BMcbMQXlAGDR3MoxCeUBOBjtz+UJ5QIAogSpsQ3lAZpRCUvtDeUAKrTtVzFR5QAPcKW3rYHlA4HJQbdhkeUAAn4BFQ3N5QGx8Btc3e3lAujwi2/aBeUCHrCo4P4N5QBqEjnI6j3lAANqyRMGyeUCubjyDQtR5QPTSIsHO1XlAknWwFpPYeUAwarkBTuR5QFbBAaL58nlAxBpVxw/0eUBoNsZE+QN6QNjmIVAfBHpA9NK0bvsFekBw5/t++At6QIZ5LYv/E3pAhMBHxAMcekAJhV7ZOCN6QEYaG2KpI3pAwHZHf2kwekDn4SGAKTN6QAi9lZ4MNXpAXvYG9iw3ekAeF2dfdkB6QAXTbY8aRXpARILtLc5LekD4XMSgV1B6QAHRDpSCUnpA/AbIkINTekDgA4txKFV6QGqcFloiXHpAlPV5iohgekBIln7Y8GJ6QJJ279QpZHpA9Yz4XDplekBAVK+5L2x6QAeDGYyLcnpAQK2ffDl0ekB/yx24x4B6QM+Npk70gHpATPSDkCCLekA67VNAHqN6QExgZK8lq3pAIs3BCBWzekDpPZ3DDLZ6QBmzoY8du3pAMFcuQ/O7ekBTJompILx6QDAWJM8tw3pAVwXoXvrDekAkCG1PGcZ6QAc84zFCzHpALNJUmUTOekBQVAuwutN6QMYzqAFK1HpAETtbnxfcekAKC2ogTtx6QHJAFFVm4XpAJsvRJkjiekD4VEI4x+N6QEreXqX343pARY100TzkekAPq1gVT+p6QMbCbYFZ63pA7++8zzXuekCSAE97FvF6QGRzZ8dd8XpAylMPEHsDe0DutUMMfAR7QEuS8sIqDntAooWlRMoTe0BqP7ZQihR7QJrt5EhMFXtANicUTdAbe0CZQSEKIR97QH6FrcxaJXtApW2Xhb8ze0BQhUyqYTx7QKNCkFiZU3tANuT9Sgxce0DNltIxOHN7QMXw8VEPdHtAxOMt/B6Ee0CSzeTk7JB7QI8ioBkklXtAKlKOyM2de0AcXZyPJqN7QKBjkIDJw3tAXJBnlnjGe0DMQSCRZdN7QDKtWw0n5HtAWlscbzP0e0AmrhUMjPV7QEyetIcp+3tAe3lHltoBfECqICXTMAN8QPbZT/NjBHxASAoEqJkFfEAjnE+TiRF8QFz2khPTEXxAMuJxMKkVfEBgyz7D5Rt8QL7aovmXMnxAl4fcRVo0fED9/c+ozUF8QGhDBX5RSHxANkzyu6tNfECbUUEj2lF8QCnb53QEU3xAxCUmcLdTfEATaljzCmJ8QF6RM/8rcXxAzprezP1yfEAEnfLtLnt8QIYH/mhpe3xANG/+uG6DfEAt/r4PzYN8QAC2iDRfi3xA2pQuQ3yLfEAwz7AwxI18QBp2s+Igk3xAmLCER2aTfEDYopX41ZR8QD8Eum5YmXxA9OdhwW6bfEDQh7jasZ58QOR4UGJBonxA1cCyeVyjfEDfBjorCqR8QM6/zpndpHxAjtqzkcCyfED+ee6RzcN8QFBgzBDqw3xArCR0aPPTfEACC77s9dt8QBz7I8BX4nxA+Lvr1w/jfED6EElw/ON8QGwPlLxt6HxALv2tJRjyfEB4khrFVfJ8QPxoh+w+9HxAaEWDBdr7fEDqEQ2sAQJ9QB42gF9LAn1Av7j68kISfUDEVUDHrht9QI4dAHZAIn1A0g3rS40jfUBg72r+tCN9QHjyzd29K31A4TrdIcBkfUCTJ8FveHR9QGKnRCPPdH1AIi1rJ5aNfUCFys6u8ZJ9QAYXPHFLmH1Admbk7fSbfUBvBznzkp19QKJq2vj8o31AgAoJQKekfUDz2aG8q7J9QMkfVAS0tH1AK/wQ+CrDfUDMpFj+5cR9QH9trkvV4n1AwtYDvk3jfUBGnQVhk/V9QAbfNS80AH5AtU/29EIQfkAllHW46x1+QB66lgA5H35A6PEUDyMgfkCx3eIZRiN+QIZ2TCtCP35AwBFAkY1VfkCofR9wE2R+QKRw6vATbH5A5H/OxQNwfkBM6OtOtnt+QAAz53NVjH5AjOcWBiOefkDcSAzvlrJ+QGoKlAUjtn5APCUY8tHEfkCJQ80yc8h+QHbN2CDOzX5Aui9fahzTfkAW3SWX39R+QO/E1t1z2H5AE1mWNurZfkAoNvnYzd9+QKqMkyXo5H5ABinbN030fkA3KMo6Y/9+QJp+pv+UA39ANGR9opwLf0DkInvPGxR/QJT7zbytK39AZxAr+FxDf0Bd9COXi1h/QKtqEIbnXX9AMs7MtDtjf0DIZkAKt3F/QF5sABAAdH9APNWQ0uN0f0Bk3w6IA3x/QHAuzeXUkH9AJNhT6GKRf0B2Bc4slpN/QB6ZJbrYnH9Aup2v51yhf0CRAS8sQ6N/QKvn3qZ9pH9AMP+3yRGlf0A7UL/P9q1/QFJd79hUsX9AXIMG54i0f0CugRdiIbV/QEXFOxH1w39AN9NOcdnEf0C1A8IK09N/QHxy0stz839ALH51o4gBgECsUy5rNgSAQCsJ16/HBYBA8PCmYHwGgEA+ywOx4AaAQCSyfpyHCYBAdw6U8yAPgEC4cGcsEReAQEQLOPfjJoBA6ibXYQgxgEB8BOIcXkKAQJ3Xr/OpQoBAXBBIGO9IgEDWLwkV5lCAQCisASQUUYBAPotxgw5ZgED5CyQU3FmAQI0L4dHeXYBAA4yoCw1hgEDup01f62WAQLeico4+ZoBAapM8cJ1ngEDE/Q8A8W2AQHJ56kPuboBAKxlLMylvgEAQRN+Rn3GAQH7bJXEBcoBA92/8VvB2gECCiGWAKH+AQO6THMnMgYBA6RFQWR6PgEBUtkMpHZeAQCHoxMKPmoBAevZvVi6kgEAg8ZcjNqaAQHnXz2CHqYBAhc2BehOvgEC+P1iXY7CAQNKgI7N+soBADq1u7ZKygECiCcOtN7aAQBNY8NQFuoBAQkDEi1m7gEB2Wfjfs7yAQJ65Vbh4vYBAGraCk16/gEDV+lVtUsGAQBYQJ/2ox4BAmPxGdwPJgEDmB2fvK8mAQN4P4W5TyYBAw1ndgDvQgECtpx9WLdGAQIphiFlM0YBATAP552DRgEBbiO+bSdmAQErQExFe2YBAzf0/Dt7ZgEAM8Sc8wN6AQOq/rVVD4YBAdJmIuGzhgEAj/PYkB+SAQLYwp6Mb5IBAYJHyQsLmgEDGkbAVtueAQAostqP36IBAeGlpaALsgEDXWU+7HuyAQEgSrrFL74BAApTAYPXwgEAgVMRdPfOAQK5X2/1m+oBAQN/1XIX6gECwjQW/V/6AQLH2naw//4BACVd3YFsCgUBG7bJ3PgeBQF6h8wQ+D4FAe7sIYAYagUAUTr8rNB+BQGKVgAsNIoFAJtpeCjUngUBO46cr8C2BQI4+CZi8MYFA2Y2fqPMxgUAuCKkRFjSBQJLzzdv2NYFAXfpd70o2gUCzVVrTKD+BQJ6H3aeUQoFA6N2sq1pHgUDGe28NCEqBQLjt+pqbSoFAKO3HarRMgUAo4qxTYU+BQAbZP1AVUoFAwlD9ORlWgUB6sGtX5FmBQILHn6QdWoFASm45WutjgUA9YRaCum+BQFqCsOZvd4FALJ6bn2B/gUDATeEkyYGBQNzpKa4TgoFAY7MQ8iiEgUAQ1YpjBY2BQHnawKVVj4FApPI5j7WPgUAhF7Zk9ZKBQIhY7t4nlIFALH/CzlSXgUAaq+bWm5yBQLqc/KREn4FAyPzeIeahgUDsYqlobaiBQDHJF9PrqYFANrnmY0qvgUCmn//0g7CBQHyYQ2X0sYFAxEGmwlu0gUBmxIfPS7eBQOTQYg/qvYFAWsvl1OTJgUBwZ/HD582BQIclNhPr1YFAMrA23TnagUCsF0aB5tyBQJb/JRyU34FAoPeS+erkgUCy0IMnlu2BQMdV4Xyx8oFApJq6azP2gUBshyyN7PmBQA6tByrw/YFAjr4UOu8RgkCmvl9R2BiCQMjtOAPXIIJAJi5IPRUigkDoeFxg0SiCQGKLeek0NYJA+wHraOs5gkAsdKltmDyCQFi7chcCRoJAZHzb+wZOgkCjGRx9pU+CQEYLLj0JUoJAUESqFHFUgkCDNjbdoVuCQOZiL5FpYIJA6V/gLDVigkBTO5UcOGaCQOBlXI+ac4JAVum6inSAgkBGZNSCCoKCQEq3ZH46goJAGj9OWkOJgkCaz7dXDoqCQNBMbaFDkYJA9priJiGSgkB9yI/2rZWCQDSIOGI8mYJAsxxhTFWZgkBnYmYWsZmCQF62jBalnYJAP3HfwradgkD1XUsfzp6CQIUuJ8QOoYJA+PBp2DqhgkDiM2AIq6GCQLaiviEMqYJAPFYzAzSpgkDo12quJq+CQK78L9AIsYJA//Gz4uW9gkBOZqHXA8eCQI8+Gv992oJAtKmmKILegkCWAWjbgeKCQAaCNaOs5YJAkirj0q35gkCw+VU08PmCQAxAEQzeAYNAwTeJlnkRg0Bsdw3ibxaDQB4qhOV5GYNA4R1+pEwgg0CA/g6xciGDQF/K7kFxKYNA8NiL4Goxg0Acm3Jz3UGDQDv/X3vpcoNAws2cNOOBg0CEExhhSoODQBwxwwX1loNA+tb+Jh7Fg0CQE0Q+yceDQNK4MTCK6oNA0jBvKw3yg0D7RAevEfaDQDs4PQeV+INAMh1wtAT6g0D2fs1fDxKEQKxtQdw3GoRANpbkmvBUhECE7otN+FmEQLkORScuZIRAEgLtz/9ohED1M8t2/3CEQNNo+Bcvc4RAaSSIj8p3hECq32Lt93iEQPK6w+FneoRAWilVvYF6hEAeHUucFX2EQA/8X2vCf4RAkpxavcuAhECvSNIPUoKEQBW4U3JxgoRA99h5jR2FhEA7BaHbnIaEQHiWw1ISnYRAiPNE3MGfhEDcm8kEcqKEQCy1JJEepYRANe4BtrOlhEDwMQg0zKeEQCSVVJl1qoRAX2mUtBW0hEAyi/aQvseEQBDNGTVqyoRAKbufvxfNhEC8HV/iyc+EQHbr8bgV1YRATjVPIGrZhEBY5EVXauGEQMNuyscy4oRAyhwLqdDnhEBcmOfRauiEQKvQrjdj6YRA9H69+n7qhEB9zjSfJ+2EQBov2PzA7YRAlkcNqdPvhED4JKKtNfGEQB4GBTVk8YRARBPKqzT5hEAfbI3iWfmEQFiNsKEvAYVAEnnkNG0ChUD+/RlACRaFQNI0gS9RGYVAB8fE8hEahUCOhMnQODKFQIS/tDfkTYVAVqaJCOdRhUB8bqxP51WFQOvPbtDkXYVAAMdvkaBhhUCOklUS7WWFQAmQ0ruJZ4VA+M+D3p9phUCQB8JTNWqFQOjiHN2ZcYVAPtsEPbRzhUAkkwP6l3mFQORuEku7e4VAPZ73WpCBhUBUtTNVnqeFQFs40rCSqoVAnJVLGGRKhkC8L/dmZU6GQI7Z6cdreIZAQ3GhnaaAhkCtmw+4J7mGQNsr3xxX9oZAxb7grsIZh0B6RaKEkSmHQNfGDV+SMYdAAzllP4o5h0AlkjsjiUGHQD2iUzaSUIdA325hnvlVh0AB1uBo/VmHQLbeayz7XYdA2qVPFN1qh0Afb0SUx7GHQNsxBn7HuYdAdm6u98HBh0CZvSFjvsmHQD0S/pikCohAnm89uKwSiEAMVXrVK7OIQC9yqj40u4hAIeQJKVPyiEA= + NrgMGZxjYkDiYBUjzERrQP70/iAf42xApjvHBz6CdkBRpJXvqkN5QKaZo1uWk31Ac62XIC60fkA3+ptKV+KBQBwEFi2j8oNA8Ux8Qs/ihUAT45Vb2oqHQKufXDpH44lApOcW9BtDikDPEZn2Z3uMQMnwGCWfc41AXjr365NDjkBYGXcayzuPQMKhfI4LupBAvsVZ6/XpkEALJL1aLBaSQBvvSecx6pJAhxP98Ufik0B4GDrjbeqUQDkqYgCOLpZAKi+f8bN2lkCCrKLMroqXQKpGlgYKO5hA9DZopDU/mkB6aSUEAHOaQJB+ZgUmj5tAPic6QmFDnEA= - + - DmBPRJ/7zkWimIRFyQOwRHhnmkZTNoBEXPIORRI4tETnuptEnMnbRWfo5kS+oBlHaD1iRDMBNURTb5tENXZRRKYmH0XHCK9EZMpzRDp7q0SWDWJF9fZWRX5MTETDFXFFOeTkRK9aQEQeq75EMdCfRNOM7URRJdhE5JbdRCXmYERbVThFUUEgR5C4X0ZEBkFE3JdwRNmOpEXHcT1FdjIzRWm3pEbRWNZEYjrKRKZ5mEVUigxFCS4jRecJjUR7UHRESoBeRH+dm0Sb/MVE3Cn8RKXXqERnAxBFNBOMRBo+MUYIly9FI0aeRMORi0XMzKRErMibRIyZS0SzipVE4maRRISCuERe6PdEq2JzR8QEqkRkMMJE5oCxRUxBq0beMlFESCErRHNlB0XQzCJFrZRnRf6Z1UbYrvBEvtjYRNvrZUS9R25FO/uDRBqNI0VLyX9EHFc/R5LgsURwVuVEwm51RuPAfkTu0+FF5dnIRcNxo0Qt/hxFxK0lRKoGs0RuAXNE9/WBRPVhc0XXzhRFxOq+RLtMiUSO3oFEgq6cRK1QxUWPUN5EJp5sRBdVEEUysoNEwkt2RFxfrUTyGGBFoG8DRTjix0UaZVdEHlWORDLCgkXnQZ9E2dHjRHocX0R6O41ET8xJRLySWUSICRpF6g2ARD4MtUTx2lFGcj2kRPLSNUT5WKVEzhslRfZOP0SEZYhEt1J9RH/7tEQBT5xEAQWbRP+6gET6RVpERIdLRMyXW0Syjy9FLfWiRD3Ip0QjcoBE85HARMsPl0TK5FFEBB5mRFQeXEQ8fhNFLaLkRECpvkSGH0pEGhVpRZmHJ0eCUIBEXBqrRM404EWNcylHIhaHRD2zbEX+gSpFvUBZRHPC20T4TXtEEOP1RMORtkX4TZxEsqn6RCLCt0SnCeFF6hwwRBgrcEbowH1EV6fERKqhkERDy3ZE1aGGRB/TWkS1fSVF1iSrREQkmkQnDmhEJcXYREyIzUa4xGxFvr9CRi62UUXjJAJFkrvxRCsszERc86xEHog1RPgmykS4npREFRbORKFfhER5ij9Fuy7KRG7PnUTUcFFEkQV9RDhZhETpmJtEEOKCROhlGEVpyIVETjudRO7TWkSXyFZEyQGGRVXnyUWOzZFEH2afRKeU/UQq6cNEU6gJRmwbQ0Sqgq1Eb7+DRKcUr0QkOWhELbKLRHm05EUCp4REyRVOROUqhkR7SPlE9u/4RLVAR0Rf7YVEdF5qRNXWpUTLxQhFYeFhRIJ46UTj9QRFvmN1ROmZ/kTxc7ZGTlu/RMxVpEVtAqRFoVtuRaLCXETICYBEQC+jRDTzhURS+79Ey6HXRJe+gERQi6FEeFe9RDd3YETO2u1EcsrWRExnhURcu4NEicKsROO4YUQc/0FE6JFlRNz+WES/XqhGdWFrRXZWmUTtq/xEZY25RUChakTCgO1E7Bu8REcGQEQc03lEoo6GRPo+Z0Wj81pEYE/URYxb1EU847pGBrvERKSBDUVRGVJErXC8RNCCRUR/p8JEfGeTRCqluUQlJJJFvgvzRFAxEEWy+F1EtQ87RYZ2UURnXmJEHCStRDcgH0UqwctGVoa9RAnai0RTUStF+MCoRarRr0T2n4VEyXSwRD/QFEVWqHxErjHDRI93dURzitlEQ0VjRMCCcEXS14JEWelRRAqfYUR0TplEEvRqRdPvN0SldlZEqjlKRK6kUkSgRGFElIkNRRJFg0SBkltEbNR4RppDaESSOSNFZiYCRrXN10XGlANFoYpBRHopBEWQAe9Hp+yjRvPBUETUJRZF5P/HRuh9lUWVXWJGizOeRK13PEQCSiJF5yBGRL70lkSraDZFVys1RVzTGUVM4Z1EgU4sReKmn0RqDcBEqOmeRO3e0kS6St1EDoebRAoNz0Sx2ItEt5H+RtRSikQ4wUxEMZCGRoNE4ERZXz1FZWH8RLdG4UTwyp5Efcl3RJ8DikWKu9REt7HWRPW+V0QsXn9EHwpWRBWvxkVnXUNGuca5RdkNY0RIWMFEBSakREHEAUXmXGBFNqnYRKTZnETvGNdE2y0cRWAFRUmzCyNF2Jy1RLiUnEQLgFdEOIYpRXtETkibjQ5H46CTRhtFd0R59YhEMUSuRHABCEVvN/lEbJo2RayTk0biSKJEm8JKRBrjOkTmZklEFUdsR5silkQrV7RGXC1RREr+VkXpIz5FrS5MRSZ8lESt35JEw72ARIw7fUSBjFRFMHENRpb8B0WXKq9F8EYgRQWzcER60pNEREeZRj1pG0bjHNJEITZ/RDbU7kTiMkREhtfURMN7xkQnOnJEMgPtRGditEWBE4VEmpXGRG9d7EQE8ZlF0+qIRE2kIEXKpYdEESQlRQ8m00XN7SBFe7xsRFkewERh2zBEbdwgRqz6iESFrNxE+yPaRFchzkVtKp9Ednd1RP/ppERDgoZER7mjRqzJBEWIPcxHAG+pRDUF3USH8thGQPT0RNlJOUVCyXFEVCp2RDSqQ0UP8dFHBA+tRMTTSUTGvixHWySURDtc8UURi4VEZ2bkRJ6v7UQtt1FE632rRHATQkfhdlRGaN6+RUtqpUXFtf5EeMu1RCkfykRKzY9EKlacRI9tzkQxkq5GeeqbRPjlpUX/bRdG3cdQRBhK1kSLp+xEffqLRfb5SUSFq7JEN1RxRDuHl0TME7dEyPPcRKeJ2USwJJ5EqsxIRD+iOEebNU1EobGcRfs/5UVsaSdGfVnBRFMZYESUfA1FOrGVRCGdAUUCqYtE3DKjRL9x+ETEtB5G//kNRXb3YUSnHDVFYDG1RS4Kr0V3ertExMFhRECNkERQJPZGiVjCRW31g0b95a5FO0I9RpTgQUUSN/ZE3eeHRWelp0SQo4JF67t3RDGpN0WgebFE1NhoRNjCsEVy0ehFFNjIRb65Z0RFe8ZEPjeORIn4gESJolFEXm05RE8xxkSfVJdIS3sZSFw7KkT74QlHaq9BRiEghkT4G8REikEuRqCuQEVcx81FPzztRAt0KEX5AtZEdJa1RAp94ETg54dEDl3NREkMM0Ql5DBE9+c0REthgkVPD9tHnN8CRTPgE0Xz0w9FhKwXRVvJ30aAMXxEuaObRKF49URy1otG0LYwRdphxEVTcqZEGM24RMZ0MUWMXlFER2BnRWn0nERtA4BEhVK5RQ4xlEW3vKREpNgcRcwDykRaud9EsafyRcXIVkXSQrFENXRyRBG0lEW8O5JEdJiiRNPm0UQR05pGG6MCRYvrKkV43XREzs2RRQpRvES33lpEPxPYRCfybURZYVREMR1oRIFFoUSusUhERvI8RJLq+URe6HpE2GakR2KrxEVqUlpFSHvoRH9oYEbnnZREMn9CRINtgURppvpEYphmRKKwjUS8tolF9nybRAPez0R/nnNEe/BNRbaTa0Wv0I1E7YaIRJnImkUREHpFEXRVRISrtERbMHVE4jEzRinTskQu2LBETtE2Rd8OzESNPLRFfPeIRW5mXUR5qj9F76xvRAncgkQpiKREAO+ORCE+iESodVJEeNpdRXkd+kTfZ3dEvp5nRLpNhkQJTpFE3ktiRFhvXkTsqaFE/t9tRHA+7kR16DpFvDXvRA6KEEU1GIJGR7uhRQgLy0QfsIlEpAveRFGVyERf2JNEQmaCREQrOkUNoEhEaCRMRVfqcUSwR+FECBptRABC0ERQkoNEnO7zRVpetEQkHlpESTpNRN3Yk0QJUPREq9RCRTqBBUXQDG5ExeasRG++iUR1vxFGtsaXRIgp5EXALhZFVwzrRD5HhUiS3KlE5QRtRNcomEQ6mfZH28dNRIsIp0QdMH5HnqOLRaRZY0Znk6lEHkQjRGrOd0VjwI9FAFshRdA5bERzQJZEHQyORDhAU0QcqcJEbQRaROaynUSuLwdFnXG7RC8bz0RbaNJEpjd0RKbEwUQ2MVdG8gvDRETnKkWOEZNFl8kbRZmkp0b0aJpEjYuWRd0uskZxVd9ET+wmRgsZ2ES8r45Fjz1yRHcuhEXodB1G9yKVRVlghkWt+wxFXJexRKUua0RiZ25GCBEIRg1N+ERIRAJF1YFCRO/nPES3TIhEoW2gRNa4kUS4jchEsiRGRJrJmkR3eLRFFc/1RO7UBEXe/XFEbyI/RbXt+USjfa1EPZQfRbU/3kSxnVhEmQX5RSegO0SKjIBE9NWGRKh8DkUqOnFEo3NvRT5Z4kQx3nFE8EG7RaAc2UXvCyVFkTJnRBQjx0TAr2dE529vRBJrLEbnhpNFb9duRFKuQEbvSo9FNJ9SRKSH6UTnU65EwXk5RZfCC0WoUIpEyDe6RBbowUSX/r9E/gdURHD7hkSofFhE1LKmRaATR0V6I6VEvD2DRFudrkQ8qy9E9R7oR2yJS0TxxDhHTuFTRN8RiUatLvFGo4kdRV2bCUbaKIREHREeRUrdZEToXs1Fv0IKRvy9T0QsPB9FZVtqRZFqdUQxAwNF+p1fROWTa0QLFa1FHwOPRSNvrURP+XlEK9KRRKaWvESeNW5E4cjnR1MzVESb/FxHNziSRMh850Y/PQRG3LFVRbrYlkS7LqFE9e6sRNN3SUQwCVNE9jCyRFgHn0T4OYBE8QJ0RRPhsEQb+51EH+xcRP75iUSUbr1ElbhbRIrflkR4MJ9EcAfDRVlFOEVnxadEdDIIRl9gjUQuZ6tGfweFRWXmnEaBgTdGD05RRFkXgkTFrIhFNy0sRQVulkTKJIVEPtRgROQg1UUtdMdFUq+2RKcLNUVwDMVE+uMzRLDNiUSL1/dElaUmRSykzEQy4W5ESzIQR8eRjEaXz8xEiZ56RQhhY0TXLiFGBoeZRfHUrUSyLpZE+v3URCkZb0XsLkRFvxKjRHBKs0Qr7ZJEVUFRRIh+p0QmnX9E14zeRPwsnkQ9DmVGL7gSRszaUEVnTFxER28OR5p+R0RB4eFEZ09hRuF9REQqjw5GOtrHRKW8FkU+G1FEyFaHROjUWETVlF5EFwoHRUPqPUWHOBhF7LFfREnBvkQRHENESFGLRFWcPUYv1dZFhZ9VRVzeukST0pVEqFqmRTjMjkVooO5EchWCRNOqG0ZxEKVFCGFtRZDfuES+MqNGb0+7RQZcD0UvUFtEyELGRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - rbfP3HfAckC6+jseDcFyQBU1PRZvwXJABLhl+MfBckACokIhUsJyQNwX0LinwnJAuB182zvDckCw/4kCpsRyQEgN5EHFxHJAEm5E31nFckCuQ+/AAMhyQOR8445czXJAWpE/znvRckCIND+aiNFyQLyJ3KVD0nJAnuzha6XSckDQFObndtNyQKuraNTP33JAdZKLWLngckAum/PxUOJyQIjCxd6P4nJAHOhTSVDxckCW2V6lxvFyQKJTYgJ+8nJARJN7lcvyckB3Vd8WuPNyQMrX/zmh9HJAjqJHx/gAc0CXX4+6jgFzQDTmX5w9AnNAKCw9A9ACc0BHWcr3+gNzQPOgmAsKEnNAuvI3r7wSc0A+PDPqYRNzQMzwGZW5E3NAez3aY/kTc0AG0QPoTRRzQJTXTzR6H3NAEHobqKEgc0Co0AzFOCFzQG7tAvvMInNALHcrShAjc0AsU/YtziRzQOwNyhBIMXNAzd5YqVsxc0DUbEk8DjNzQFqlAxejM3NAJoIOd/czc0A8ylXCNzRzQFL/g2jfNHNA3iRjG7s/c0Cqim5n50BzQO7bbft4QXNAvN+OebpCc0D2Qp6deURzQMJBPSabUXNA/AW+KRJSc0AfEtwrQVNzQNzcSOyjU3NAUErhvHZUc0AqBLZbi1RzQN7ubLL5X3NA+QEOl4xgc0D15CFcIWJzQCQ5klE5Y3NA6PU6Ts1jc0D4/6HQK21zQAz9GBXZcXNA1/8Pi1Jyc0B4q+wZbnJzQHD0FFKFcnNAlEC3IU5zc0BAv9FrtnRzQLofti1LdXNAiH6/+893c0DRKrQc33dzQGr5mQY3fXNALFBjt3iAc0Cw50ddpIBzQIAUCt0NgXNAbcQQFl2Cc0CC64ZqD4RzQFZQOw2IkHNAezUBDvqRc0At4oolTZJzQKhsT9zNk3NA2NtwNmGUc0Ci6ak495RzQHjYT8+3oHNAZyJZjrChc0DNH/IwWqJzQC4czimRonNAmiaxXeaic0AmTLlyA6VzQDgHweTYsHNAprOGn36xc0CYPsQyWbJzQCB/Ewy3s3NADhi9jwy0c0C2YDRlorRzQAUpC8H3wHNAbeAXjD7Cc0ClbEOpSsJzQLegFDrPwnNA9OjJDibDc0AuPD1XGcRzQBtfws/W0XNAqIEdLrzSc0DOxw183dJzQKh3397303NAZY5z0+LUc0DHTqGFo+BzQOqKZXs44XNAxt7MvWXhc0Bs3Kn7FOJzQNTk92l74nNAJPDxMBDjc0CutaW/7+RzQE6iRFOH8nNA/jFoZzf0c0CIb/y24gB0QBh0iuZ4AXRA9ZVDK6YBdED5ax7eTwN0QJwtVY4KEXRAGrx2kosRdEC+D2l0TRN0QJzn9F5LIHRA2rmm/48gdECu8DLPIyF0QKMMDfW3IXRA+8DNmWgidEADouQSUzB0QDLsfcXhN3RA2aClGzw9dEAh4kZ7zUB0QKYlGvGmQnRAIoYGBD1DdEDxIEjF91R0QMbw86uMVXRAO8RsdtlXdEA8iZ3auGB0QNpqzjAJYnRAaI04eYxidEAPuWvcUGN0QMZ07MVPZHRAYPqvxSJwdECo4IzUYXB0QDkRc1tBcXRAHtTa0RZydEDMgsiTO3N0QNzetqihdHRARxIlmDd1dEAmMTSkQYB0QKrcR+j4gHRAikUQpBWBdECyVG5JToF0QKS/QH1JgnRARecASCaDdEDAz0ljuYN0QEAdlOsWkHRAFG0QEiqSdEAcd8+W7590QCWUZO+hoHRAHNE459GgdEAwqvDiu6J0QCgOx10Qo3RAUoRNgGWldEBvAmgy+690QApnMW0MsHRAjAPOgMOwdEDH7IqMUbF0QGUm3EI8snRAEjZBpm+ydEBkpawA/LJ0QEK2YpAas3RA8d6I08i3dECKOpuqJL10QNUiMGHcv3RA1JcrCeTAdEDz86xNecF0QPjwG4fswXRAMiVh52zCdEAIpyN4D8N0QGlAEvV+w3RAPca/lSTEdEAEOHX7dsR0QLquGvi3xHRAUGW00QDPdEDRagYHq9J0QJXYX3bh03RAmtEW+nfUdECzxz/Jy9R0QMnDSh+34HRAG/PXziPhdEA2wHCRuOF0QNeMz7/74nRASDfDOk/ldEDos1CfTuh0QNT6sh7B8HRAK3KTkH/ydEDO+qfcjPN0QGRthUJ69HRALolcGM8AdUC14pauYgF1QAY+noJdAnVAvAyUVKcCdUCM1n4kbBJ1QHaF+ywkFHVA/JOaDlIidUAQP2HQnSJ1QGgQaHjMNXVAvsbRMN1CdUC55IctI0N1QAIpXmQLUHVA9qR6b4FRdUAOtJyfJlJ1QOB4TsC6UnVAljmUPE5UdUC+psfZdlV1QAKqzhM5YXVADtWWHfRhdUAQo72Ed3J1QLiCiXuMdHVAyN9LK+KAdUBnzcejeIF1QNLVJTytgXVAhFR0d4eCdUC9Jlo+poN1QMx/8pqbhHVA6hI5eIyQdUB0dG0Jo5J1QKBShQe2k3VA6Ra/MMmXdUDsDFXeJ511QH51gcSToHVARBXPzbihdUDI7oBCuaR1QHrVMuaSsHVAsoBwr8CwdUCsXa3OOLN1QKkA9oPPwHVAPvFugfrBdUCSxxhOytN1QOSNkHfk33VA/Lv6nxHhdUD2vmVCo+F1QMKWsHoJ4nVAbVT/hDjidUB9c722e+N1QGt7kFyr43VASECYNUztdUDSFZuJpvJ1QBIukWPu93VAWXSQVwP4dUCMnpkRSf11QAwGUSBIAnZAuFNhW5ICdkB++aK9JAN2QMyfWbLNA3ZADuXsogkRdkB5wsvTVxJ2QIanwM1NFHZAPtIWhQ4WdkD1CbkxNiF2QGrQEc6IInZAI6CaTJAkdkA7ArRqSit2QLQYfI4fMXZAMlLRRyUzdkDmDoOYUTN2QMLtSP6eNHZAYZ9kFk4+dkB7ivnsTUB2QO4I2nXjQHZA2JWOwx1BdkCWhKAZnEJ2QBo2T8DIQnZAEEklAqpDdkA+3kQdekR2QHAidA0SUXZAJ8LhyydRdkB0UEZozVR2QOS8Ri8iYXZAUA7lIbdhdkCnwx/122F2QI5kcPZRY3ZAILWLrrhjdkD0qtdA3GR2QMxVNjBYaHZA1PkgNWiCdkD/V1l4koN2QPC5hqlcoHZASspWUhChdkAQps+yo6F2QKo+GGFQsHZAvFhzPcGydkBpO2cxeLN2QI6IzT8MtHZA8qwi/r/AdkDcWHt2GsR2QHKh+jbPznZA2Nuur5DzdkDYtI81TPZ2QJ5eBDMBEndAxQ3/N7ghd0BIyCmpDyJ3QKeYuCN1IndAqIN4zrkkd0AnzvuJ6Cd3QFD5nPVBLXdAi7tJpJkyd0CgSjD8ejN3QK6tALekM3dA6LvuHA01d0BwWzX0nEF3QNocGln9QndAmrqpo5JDd0CjgYz5GkV3QB5pGshKUXdAhJG525JRd0CglaTZKVV3QLSSg9hJYXdA1DUvAI9hd0AgNi/hoWF3QJdZSUQ3YndATjUlMjlld0D9sBK5J293QIBVPsojcHdA3q8ktqByd0DCAJgS+nd3QK1hsbqWe3dAtEMzSSh/d0CEzKXY4oF3QBLVYDB5gndAZjVfuxeTd0AQa2jES5R3QMQVwCW2ondAzivy+p20d0AG65Nhcrt3QP2n/ubk0HdAKuqv9VDyd0BeEL0sgvh3QPDpyeZG/XdA5KwzdB4CeEDo+ThKoAJ4QDzDs3PoB3hA1IyBrf8HeEArTCQ3xgh4QMlnnL1FDXhAy2N79B8OeECx6CG0bCJ4QFqcBcxAKHhAXIKZO5UteED6jU5+DUJ4QLjFD1kRRHhA46NcIXpFeECaoSPeyVF4QODU0UdNU3hAB9WALIdVeEDUiEld71d4QDaQN6X5YHhANUY6PLZheECURvbDvGJ4QGuq9jxcdHhAokB++4t0eED3hL1XxHR4QHdUa/3+e3hAyM9fnqKBeECcgs35aYR4QJCWgzKahHhATmeAok+IeEASIHYFqY14QAXO24dSj3hAEOjoC5OQeEAidx2/RpF4QOCTpIGWkXhAQy+6GLWReEBi1JH1BJN4QNDHD+CmlHhAVxFWY1+YeEBwQ+/NtaF4QHwxEm66pHhABkM31zmteECUbMkwmLJ4QFwP/+w3u3hA0sCoh/XBeEDZzPEYP8N4QNJmAKcvy3hA2CG/CUPLeECqWPSHN9N4QLDAnp631HhA/qnSWtXYeEBC4WGRltt4QNrwTwU54nhASxSXKgP0eECMSWjSjPV4QFjFcMIOBHlADTEEn5sFeUATBgxhnAt5QGVY+SukE3lAZjwyx7kjeUBM4Cudsih5QDR0G4ENLnlAy5SeUWczeUC8+RaHtzN5QFAIW5+LQnlAPkZg1/xCeUB6Mn8VakN5QGHlAPT7Q3lAoPuGj8xUeUBYt9mX62B5QPVVwKPZZHlA/iSJZfZreUAgqGwdRnN5QG4ClWk4e3lA3ItMcz+DeUC+zyZQOKJ5QOaCfWS/snlAOuS98wXMeUBEDQzIQdR5QOI3pPXO1XlA9n07VCPleUB13icGEPR5QFbhg+3IA3pA/JM4VhoEekAeULRa+At6QPUsuM7/E3pAJGQ6xqcjekDmBTLMaDB6QB4JRA4sM3pA3rzy4Qw1ekD3MJefekB6QKhtarmSQ3pAltYn5eFDekCkUBvsGkV6QDTyaq3QS3pAvRhW5ldQekBk/pbdKVV6QAvy/lEiXHpAFtdgtoVgekC93vTBKWR6QKzsM/MvbHpAItq/AItyekAUG1+7xYB6QEWcfSv8gHpA7cwbXA2BekBqFjtK6ZB6QMKXWsoOkXpA7HTRyR2jekD+ovtyc6N6QLzfSJ8kq3pAq7NNvhSzekCkZEOnDLZ6QFbqrfQcu3pAFtJnifK7ekCQDO9CH7x6QAJUYfMiw3pAPFezk/nDekCaFcZYGcZ6QIBYHTBCzHpA1dd0X7vTekCUq+BRSNR6QLQMikpP3HpAWIhVoGfhekCIG30sSuJ6QDyqL6aG43pAtr026s3jekDnWKK49eN6QEQ1yVB75HpA4h47iU/qekDWF2asNu56QEsKzBQY8XpAqP10Wl3xekCsGinTu/N6QLhK0HJ3A3tA1qnrN3wEe0DmUYMfKw57QCj0C2nLE3tAUF6l0YkUe0BoajCUTBV7QPRKvrHSG3tAyJHLy88je0BuHIKfWiV7QGi+AfBSMHtAJCa1U8Uze0DVe2w/Yjx7QCAVVq5nRHtAqud3x2BSe0CDScNRDVx7QLYqgZI1c3tATHkW2Q90e0APw49EHYR7QJZ1Y5kjlXtAFstl29Cde0DheXtkJqN7QJ8Ey/zJw3tAKvMjCXrGe0BsnVENsdF7QG6xtBst0ntAeI0F6f/je0DmuFmVJuR7QLGDYESW8XtAFkfmLTX0e0C+82uOjPV7QAJTS6Eo+3tAxjKuPtoBfEDYDDM5+QF8QPhS2eYsA3xAcxx2imYEfEAQvgWBmQV8QASvJmqLEXxALX6DBdIRfEBmKhcl5xt8QGqnsRLsI3xASMC9f81BfEAsVetvUUh8QFpEeyCsTXxAxwtYGglTfEAeCwetVFh8QHCVdg4LYnxA81f9bpxufEBvz39iaXt8QLY7eBVvg3xADeCyNF+LfEBHBkhVfIt8QL0XEsQdk3xAJxG1ekqTfEBIFZ3GZ5N8QA4Ga/WEk3xAfM0QI9WUfEC+aFhOWZl8QJvD0HJUm3xAUCvgx7KefEDIYCoPWKJ8QH5/pjgJpHxAJaRmIOGkfEAk2IPyebR8QM4KbEk+w3xApXreY9PDfEBwrCuB8cN8QHY3sfHz23xArTd4lVfifEAKli/BEuN8QGITgTlS43xABmfGKPzjfECOIjs9beh8QL2kiWsV8nxAgraHwFTyfEC48BUnAAJ9QPsl4ZxKAn1AlO0OclgEfUCO2MAfRhJ9QGDa5BOvG31A7EuCQDwifUCvxiqYtiN9QECdaRS8K31AmdjEeUxjfUDWFOzwum19QFYecT3Le31AlwB3i/aDfUDQXnQElY19QAjnFRrwkn1AiflBEU6YfUBKlUYC9Zt9QOx/kzGWnX1ASLaNR/yjfUBrg+XtpaR9QKxf8vonw31AYFW5TefEfUA5JEWwa+B9QErluqLZ4n1At7781znkfUBpTyF1j/V9QEyoe84zAH5AsL/EeIQCfkB9i2JmYAR+QH5qLiooEH5A7T4gwkUQfkDKCJyeRxN+QFLyHgTwHX5AekWvpCIgfkDsklDVSCN+QByeSpA9L35AHm/GvTEwfkBcuaWzjVV+QArPp3GsWn5AmO9XvBFsfkDgXZFB6W9+QAqp3ELWcH5AnjjWsbZxfkBkPU/XX3N+QP6R71kYdH5AxPBpHrZ7fkDnrm6OkIN+QOINRd8Qhn5AyreFSkGZfkDm4RolI55+QOPtXLLZpX5AaihSZA2yfkCKTIcvlLJ+QNRMi+zRxH5AEOH0tHHIfkAyZkLRzc1+QGX1Xibb0n5AfQuuvw7TfkAoH81n39R+QEQnArI52H5AAcnKxv7efkDyG+j1zt9+QDt8Xbzo5H5A0un7aNr6fkD6GZGKZgN/QFgk1tuTA39A+Dr+3MgDf0Bu9S8xmwt/QB60Mm2hEH9AREhIWLoRf0CH1DnvHRR/QGNA09G3L39AZvPYPVxDf0AeHIPrjFh/QD515e1LXH9AJgvyZ+Vdf0DVPANgQWN/QFhmVzAsZX9APsc7J7Zxf0BDHQNM/3N/QKRYcXBVdH9ARLPU7GKRf0CiWQdTrZF/QLbpoEsrkn9A1GHmCDmTf0CKv6MmmJN/QCQajGE+m39AA2Tl+F6hf0AQO3pkQqN/QG4mDTV9pH9AW0+KexClf0DbW9Dfm6h/QEjccob6rn9ARRjO1laxf0A9NfpRILV/QPAcaJ59tn9A3XSr1svLf0BYCKmc1tN/QDGRygjc239Ag0Q53qPff0AWfBuJ+PR/QKKwZTOIAYBA1BbYhEgCgECiEZhjMwSAQHHV7OXPBYBAUuboQtgGgECA84jrfAiAQFJj1GeJCYBABl9IHSETgEDaSSFYLR+AQHp3wiBUIoBAqDw1T+QmgEA7u2W57imAQBA3hB8+LIBAlgYMQvA4gEAE6/TuXkKAQEg6GLqoQoBAKFZnyO5IgEA89zmm5lCAQIg9q10TUYBAiUkunA5ZgEDzaDYZ3FmAQGb8I5JIWoBAbosdeOFdgEDzOyrx3mCAQBmcsfgsZoBAgsKH1y1ngEDGRhSX7WmAQAzr8F8taoBAlhJVqvBtgEBCA/gPKm+AQLTC88QqcIBAd6Js7wNygEBORIMW9naAQIbmhDrOeYBAUJhZekd7gECMI+WXJ3+AQMAr/TT0joBATf7X7x2PgEAdydEKUpOAQKotp2Qel4BASJwJS7SXgEBQrQWw6Z6AQIUBLp0cn4BAUJc/+sukgEBIj0nDfKWAQHYrbvT3poBABwSSu2WngECW0XS6rKeAQBZr8tOGqYBA9gPZBROvgEBGts8MHLGAQKgAUNiCsoBANmH3OTW5gEAa8Je6BbqAQJoAGOkCvIBArDg4p7G8gEBStheHfr2AQCC5Z6PyvoBAPlPUz2C/gEACCTAq/L+AQB13v1UqwYBAqCfCV1LBgEAAbEtF7caAQPGLDCGkx4BASg3gGmHIgEDwYmu8IMmAQOQMb2pTyYBAgGBKpsfMgEAW/lkrCM+AQHwUaEgs0YBAMwpsiEzRgEAMP2Z4YNGAQHE0CfJJ2YBA3D+n4b/egEA8hiLZROGAQJqdxsJu4YBAST35QRXkgED6siPI9+iAQJO+TcYg6YBAdn7lP5jqgEAgeVgH9O2AQGY2YYtM74BAdL67Rz3zgEDmKjmxWP6AQCjhNuM//4BAIdGXYz0HgUAngX+TPg+BQMIvTFYFGoFAuNOWUzQfgUD7vmZlQCWBQL06fpI3J4FAQRfsK7gngUDDvgVInyqBQKVkAJHvLYFAsBKBfBYxgUASr8TZujGBQFAb1RHzMYFA1E2htow1gUAcphax+DWBQKJDbr4pP4FAIOCksaVBgUAE+wYqlEKBQIyhW7FaR4FAoFT5JAdKgUCiwgWemkqBQP+tdQqzTIFAG7PmxptNgUBGTYEeQFCBQCj350sVUoFAYAsBihlWgUD3zFwwW1iBQLAn+gjlWYFA0SGc4BxagUBFbEPkEG+BQC2tbDKCcIFAf4wo/J9/gUDnnQDSx4GBQOwc+ZxLgoFAwdczwQWNgUBKl4OtVY+BQAff2tqzj4FAhhq+7yGSgUCLh0Yk9ZKBQDCYv/PzlYFAwODO0laXgUBqKK1JnZyBQGLPzkNGn4FAVgzdFVaggUD6kVbn5aGBQG+8LMxtqIFAPWwKSkqvgUAC6JfAZbCBQKauhMO0soFAlB7WEkazgUBSJyc4SreBQGIia7JruIFAVr0A5ge+gUBqeJvI5smBQFuqZ5LozYFAaGgQ5XzTgUDenNUqOtqBQKLxJSzn3IFANupliJPfgUBJXW9mlu2BQEoHzCSd8YFAJuYCcuz5gUCODEPj7v2BQA21/MDjAYJAOboseOoFgkBjJYBDBQmCQCHKujTYGIJAoDB2bV4ggkDhdKzw1iCCQOa3v97RKIJAsnz0ZqQwgkDkEc8t6zmCQDTN2PWXPIJA3vQfIEM/gkD8nUa2a0yCQEkSkATVToJAO/la/EZZgkAeRswLB1qCQNo3DIzMWoJAEw805JxbgkBGysaSOV2CQD0Zq30zYoJAU00H8DdmgkCrGeZoeGiCQMFZ6dgEaoJAEgixFtJygkBQradjoHOCQKIGDcRFfYJAorBiUUOJgkBgYmGxQ5GCQCgNBYKtlYJAOSigrjyZgkBxWl48VpmCQGSSQCCvmYJAmiGw2KOdgkCt+hTZuJ2CQP4giLMOoYJAaircnDqhgkAq62OOq6GCQJ62GFavpIJAwdw6gg6pgkAQ1nVvNKmCQHqm9V4HsYJAmiRM3jWxgkAPZHULzLKCQHvrmX7kvYJAQZtktbHFgkAB/otlB8eCQIwAWLh92oJA3evkf4HegkC8KfPDhuKCQObckFFY6oJA3HUtTAHtgkD2nrGXmu6CQJwkOL7c9oJA4ugG+q75gkBLysVk8PmCQJiMWFB7AINAQ51gmMMDg0ANHHkwNQeDQJrBWWYBDINA6CNZdHkRg0AezsBm+xKDQLS3D+N5GYNARMBEs0wgg0DdsUuyciGDQKjDDlVyKYNAImY61EEwg0B9WpqnaTGDQEaW7x9wOYNAYm+W9NtBg0DsRfdEC0KDQLmdV2wERoNAGy0QK21Qg0DsnxL2KnKDQPDbBnbigYNAHpz87z6Sg0ADFPJzraaDQMTiiIOnsYNA4T6/8WG6g0A7uKp+H8WDQAdDO8/Lx4NAADRSPCTfg0BfA5sVi+qDQNbj49IM8oNAqZKrLBL2g0B6n3NwlPiDQBaAOF4N/oNAtNmxqA8ShEAGZJaveD2EQPYCirW+VoRAIYi6/K1ehEDGhtFdQWKEQCynHpXdZYRArtNrA/9ohEA4k5mZ4GmEQDl0dZz8cIRAxFZz2Ot0hECAXgM3WnWEQL1rpxSRd4RAscJPbMl3hEAeiFd0+XiEQGo/3sFjeoRAZaqnUXx6hECn+aa2E32EQAhVcO8qfYRAEOZJWMB/hEAiQMgob4KEQCILrfMehYRAiQYn98iHhECWJwRaFp2EQFkXnYe+n4RA8pgIOHGihEAI7IILHaWEQBt/6XbNp4RA3iFMj3SqhEAi+FDQu8eEQNaPqzQXzYRAc8BvF8fPhED+SzYxdtKEQMQgP0Jq2YRAt/RJkGrhhEAMsiXWL+KEQBR747/Q54RA42El7WbohEDGNukJY+mEQKZKOWJ86oRADh5srCnthECVn7bYNfGEQPTqz4di8YRA8cJ+6Tb5hEDWJ1vLWvmEQGUouozk/4RAZasEHywBhUAGUzcSDBaFQCr/7dwOGoVAi8YwlEsihUBKxFYsayKFQEZ+vlyXLIVA4ijgqDoyhUAyD2c7PDaFQMIq5cXCP4VANvMpgeRNhUCEp2iO51GFQGjBNWlcUoVAr097uulVhUAeC7yY4lmFQNLBFlOgYYVAPi/YbodnhUCzliwAoWmFQJqWPwGZcYVAGMggRLVzhUDQaAj1mXmFQKzVFvKQgYVAjojWuHu/hUDmT+PTFNaFQBVV7iFiSoZAwkU+lmROhkCcYhE8Z1KGQF/A0o5seIZA0BOg4WWIhkBIynThJ7mGQDFjcpmK8IZALAa3F4gCh0AKHfsOexKHQPVWFWaRKYdAPIuw7pAxh0Do6lhOijmHQIAdccZfQYdAANIyhYlBh0DqAAhVWkmHQAzmoPb6VYdAvDzaUflZh0DAfgGy3WqHQOxAE629gIdA4DULMMixh0AAjmx7xrmHQABgCsrAwYdAYJeSfMLJh0COe6JJcwqIQCzhzlukCohA5g/LhKwSiEBe4zKqTz2IQFJJ61oqs4hA + KBZXds7jZUD1hHOUyCJpQDtMc7KVAnNAooOBwRKidEBiDbspRBN7QMlEyTjBsnxAuGG/LtyDf0A= - + - XzG2RC9Og0QiWbtFfjeORbTLTkTQmppGVNNmRcp/MkQpqsZE8OOnRCMxu0UeHLhEqztJRJkcQ0RhUvlGGhdURGTHPEQtf/FELOglRTG6m0V9IF5F3jJuRLcnF0XNeVBEXm50RD4FgESSubRERg7xRAJGwUT9aVxElTwdRYURAkfSEUZE9E9SRjlbSEQtVpZEageDRXwxb0RbhPBEHcmbRLLdl0aoeqREE8+BRNC+j0UFptNEgfreRKbKiERvAGlE995fRL5AhETtKEhElG8BRcVpkERo9HtFmk+ORKM++EUfZC1Fe9OgRJD1k0Sv0Y9Fh9Y5ROSQHkRrW3hEczt4RMhFYkRSovZESRR4RCFVfkeOgT9EdJa+RDDemUW/vKxG8xevRCzwkURY2BdF3Zh2RQoLakV4r4dE+VnCRsnO7UTlmeBEKFWMRcvBwUQvKQFFIOcxRHsISEfwi4tEyoaWRJZVRUaKY8lFtP4wROct/UUSMjREO2BzRMwoGUW5iolEKm04RO78fURu9EFF2uLeRJyBVkQxULdEbx08RG97LESPu7dFUQPzRIkPM0QTqglFM95fRFg6dkRdFYFEqmalReobdET+BvJFMW6MRM1/pERkxI5E8VN1RLYZN0Sx7zBEBiAhRcwqbURPv2pGr+ibRNIZg0TilUVEsceFROnkREVNxcBE/E2URCZcjESbSPhEuL2IRP8XvkQPojdFvmfURDaNU0THNHFEe1h4RCa5d0QGHsxEV19iRA1+c0VNaCNH53SRRP3abEQxmctEQCyiRdtYL0SDUUZHgg99RSPJCUU/JqVEwdJ9RCDOPUQCcu1EpsxoRFv3/0WYjlpE10moRMHE8URGsc9Fyw5CRPlSS0bcvVFEvB+9RN2IvUTH/xhFb5xWRF1Gj0TwPpVERDmURLrryUSKUTJEQSbURtBRhEX/+DhENdgoRrk+5UTLFppEi+b7RGG1o0R0/adEZBs7RaX+aUT6vJ1EKM2HRPhWbkRlTr1EBLNhRKZtQESs1phENjdERFlnr0Rmf29E2lCARNXdD0UyODxEd+9XRCesVkTQbjBEdwOoRLyAz0WYEjhEqmMLRWYssURqUxpG//1LRLaSokQeZShFg0XQRISZ00VjLT5F+giTRE8MZET8V7xEY6edROsUNUSjx5dEOau/RLLeAEXqFDBF07MkRStEF0XeoSZGv/ppRNAWykTQFpdFUug5RCK/bUWbb/RE3si+RKd2JETZQElE+iR9RNCmcES3OutEi5XIRDAORkRF7nFE4VKuRDkQcEQBVM1Ejs0HRbwniES34JlEAoCTRCSlXUQShq9Ef5BfRC8vaETvEHFEwruCRq8Y5kWgcHBEqkuORDK1gUTJxNNFtfScRBr8UUTvv3FEHg+GRGKymUQcxrdE0wKbREXpeERAsHdFkg8ARsoYikWbirxGcmbAREGr4UQYppJET9CURL06WET5Ia1ERdKgRbzEXER8Ww5FXmk6RCvVUEXvSmpFbnU1RGmWY0a7465E89lBRFVQlkS/CStFGwGDRN27FUUbIaREJcRdRPFEG0UyxNVEuDRHRPkDYkSEtZNEKRv2RBodPUQR4ppFu9x0RLFsh0R0oTxFNssORS2TXkQvvopGqlauRHoYa0WWB5NEsHm6RIdfJkbwKrFF9++sRFR1gkSJmLpEYqn2R2UalEacADVEoOgbRTI2y0YAc5JFi+M5RrPI20QXmltEqtjARIPHqkS/vXBEVoRjRNbjRkW40UNEliWCRXFkLUV7vCJEuEZCRMx0Q0RrivRE8ZI8RC2UkURL+F5EgOCQRJyekEQwkahE1bWsRGdWl0SF6AJH9JFeRKY6l0aL8WpFR0e+RAw65UQW7LZE3OCPRPEqXUVAoJ5EmeJMRBVBo0TyhsFFQU87RsQugkVEn1JEZPYGRYw/hET0jrtER4UsRVZ8OURcMGFFxjE4SaXcJEVSAGBEYhIyRdsGlkRDzzxIXb0NR7axbEZzYVJE/1tzRJdfy0R1Qy5Fx0huRAy4W0XM/5ZGEnOHRLD0IUTU1E1E0YW3RGa0N0Qv7FtH+I6TRM2mUkY9J1pFOoFMRSHGgURDLUlFy4++RBIA5ERiOG5EG+EvRUrMvkWvs0NE90q2RG5zfUXX1MtE2/l5RA8JlEZsWfNFYE8vRaMLyET6V4pE6h1FREywM0T+WudEYKyBRRyJb0TaQ41EbxE8RPDpm0SoDlhFwM0DRbF0cEROUYlFRCxERPzOy0XH+aZE/q48RAs+2EXPt11EooHcRJs5nUWVbcVEndWgRLKkNUa1brVELqylR2XFiUS7Il1E5mY2RJSnnUZpvbBEE+/ZRA+HDUXF87hHOIqhRImS5kbkMvtFpPFiRFl+DUUOyyhEL6M4RPGOaUQNW0dElIIrR6u6bkRxI41GGkqERSSrw0UTueZE3bbMRG8OckQLRUNE1pNKRHUplURyXKNGm808RV1A80W9BpFEfTHBRPC+EUWFmYhEbnCZRDYzhUQe8YZE6uGIRBENzEQ9pL9E4lKhRL8skUSoJqpE3QwjR+93W0RlPC5Fd7PkReY2CEZ4bKJEMkBdRK05R0VzX3hE8lCnRMXKNkWNPEFEx/BfRHHbfkSUq+1EqRLiRRpWokQ/xztFfggIReQo+0QySa9EPMp7RP6nyEQBfH1ELoawRPfrukZZEIdFGZJARYa3gUYetptF0RAwRnW0/0Rb7opEERYuRZlJkEWb57BE26NdRZ8vNEWLNWRERm6tRRJWH0bpLs1F8rrARBrkvETFCshEFHmKRAyggUha6vtH8GDWRgBQH0Ys8TxE2huqRGM2HUaboeVE9kcLRmtGzUVfjvNEIvxPRYYbU0TTOktEi8jzRMPirUT/lmtE1pY/RHTtRkSXGjJFXVjGR3UXMEXsrUBEwPmSRI8NGUXn++FEShq3Rp5wUEUaPZBGRn5ERE1JikW80r1FSXNtRC04C0W3V3VEIgCCRCL8N0QpF2tE6GSZRH5qP0XjnlNF1yGtROKf7EXsM5VE9P4hRSXYiEUe7nNE4zaDRR6unUQUkE1EcPJdRDMSCEV8x8NGowY9RFhaI0TaMzdELJ38RDV0QEQLcSRFiKGzRa4zpESs30FEuUdRRHo31URhh1pEyexYRKArtER+IoVEQXOJRKRRg0TRFkBEi7t7RGgaPkTEAGhEuiJqRGMZckR312JEhG53RLH36ER2ElVHj1qrRRSLi0V/woJEPUiJROraM0a7zyxES9aPRBwnT0RO6pFEHQmARAHDOUQ3JypFbs5jRK/IAUWUynlE3sE0RFY3dEQlkZREYY7iRBit7kTo8jxEYqkmRX0PtUQ9b0lEik6WRaniwEQKrFtEia4eRqWFikQ7V2dEunZWRI2dsERsQ2RE5ic1Ra0ofkUyvI1FXKtjRUyFEUXTt0ZEYN4NRTNbcUSI8UdE+AUvRsgpu0WvDfZEBUJNRDK/aUQZOVBF28q5RIAWz0SvCNlEYPeERCJwYURz9wlFytRMRPkyV0SzSVpE13c8RXn+h0SMCk9EbMx1RDZbakTILhFFpMHgREnMJEXZOUtGkgqgRSwIMEVSu0dE7ImMRFKAiUTDYrFEpZgtRD8xhETxvytEoi8bRVbHDUUULzVENa1VRBjINUQC30pEkqdTRBD5n0QWCoNEzoELRmWdTkQuBtlE+N2ORMSnjURUX51EF/xKRAixaERjhEVEVgNLRE8fOkTTIbpECgcjRQU8u0QDwrdEEMRURM89C0ZbvftEfJJmRdsRF0W6QnpE64lRRdwgYUTRgIlEowOHSIjeWkQRV4xE4iSeRKklmUSTqv1HQvpSRHoJs0TzKY9EWHCIRzGKQ0Xa3FVGjCMfRdXNmEXGLhdFEcBURLykqUSwiG5EgZmVRF3sdkTHOLNEHhy6RCfwW0SuK0JGGWESRT/qP0UEqQxFzduoRqygWUSRNV1FXO9CRF8TXETTmWRGKcdeRC2bnUS0p+hFG0M6RM0PDkUFWyZFcI5ARMrHuUVR0eFF8Z9ARTFFnURj2DhFEfVRRND5Q0RtWUlGeQWpRT6vREQakqJEfBqdRE7FQEQHNFtErqlpRZ44bkSHKVJFJ8fyRIKGwEWM5bJE5jlWRO5elkRiN11EUGvoRGZbBEX+Qg1FjchERBj5AEWcpxFFg5jYRRfmPkSs0S9EG5pMRE+PvkRoM25Ehpk2RBKF1kQeopVE7215RL3yLEb9wwxGxZ58RSoaQUV8so5Eag40Rky2mkWLG0pEce6eRJLOb0TpJTFG9To7RISCkEVW9U5FKCR5RBy0O0U8oTpFAlh8RAl1VURn+rFEMp6IRFmfxESpE/xESdmeRMLbwkRJxqNFgQRGRUUnpkRHIYFEZWRgRAGtV0QZiklEuQraRyxxR0f4RVtGqaTiRlto3kTus+FFddaxRNIz5ESWualFU9zVReY0s0QO40lEBRwIRdZeLEVwKINEBLh1RDvsP0Rkf6pEqnZDRMOHiETJ+sVFrAgQRSC3KURKcHFEjTJRRFykVET91TdE2W6PRE5oAUXEQVZEBwwpRC5YY0TNBVZExM8ESFWcZkQnxmxH3RKSRCyKB0df/0JGMqlFRMDIU0U4Ny1EmDu3RKAsX0R3fVJEU+EpRMUFPkRzv6ZEj7xBRKXLNERBJGdEmZZeRPXmVUT29ElETDZQRBPmZ0Q+r1VFtcC7RBsjSkR0+R9EvGOJRMshX0R6tUxE/kpJRA1WXER0CgFFraKhRbYBmUSidg1Fle+hRMXTaESSWShEMX0QRmGGDEW7QaRFDTGeRWAlu0UIb/hEqsBERbARDEU4cQlFamphRB4DykQ5b6FEVDPqRS2IWkWTykFFtex6RLTCfUSj3lZFwks1RQzZTETmghlHdw6KRiRl40T3HJZFoIabRJJ8TUZm5ohFZq06Rf5kl0X8cIxFZg/3RAz3f0ToHnNEUzaLRDA7gESv3Y1Eqjl2RCowX0TzbYZEDltvRDXIekSQTkBEslBzRmIOEkbA7slELedKRVC7k0TLDhtHBT42RO6zh0a8TTBGjKWgRGSleUUjX5FEyjFBRKAFUkRzC+tEhYzGRBS7mUQxzyJFO7lGRA8O3kSG7TREU4xtRBxITEQsHSpGW+6sRdTwdkX4tpJEELzzRKW7ikS1VLdErl2IROUmsUTlEVBEAjsIRrLjnUXUkH5F9rnZRLiSOUSmnqpFDwGMRDuXXERnISNF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - gpwc3XjAckDIPbGwbsFyQLMxrpXJwXJA+PqbTFDCckBUUGhwp8JyQBuNub3kwnJA74nlzTrDckCyIaG8e8NyQI46J8rExHJAnns9PlnFckAbCjvgAMhyQKJFXv9azXJAwNBCXkPSckDa4u+J0t9yQMyCmLm34HJA1nS3gPnhckBud42FUeJyQLEM3ZCQ4nJAFG+lFyPjckAGWkYsU+NyQDAQjShT8XJAdooaFsfxckDy7agZzPJyQOa1ooS183JAwo5e36L0ckB6BWd4wv9yQHhCQAViAHNAmEfRtvkAc0BqcY/NUwFzQH520KSRAXNAJJ17RzoCc0Djp74SzwJzQOy28HD6A3NAKy1TRXsQc0CJrvvHChJzQMqirv+7EnNAWBxvmwMUc0Bzy23cTRRzQAdFEM94H3NADHsCtqMgc0BUltFSOSFzQBDmM1xmIXNApZizb+Uhc0AE4VcgyyJzQIWbHBIQI3NAcI13kDckc0A9+YDoziRzQJB9NTRIMXNAjr92fFYxc0AmUj5RZDFzQOZgbz7VMXNABZqPZdAyc0DOFXVHDDNzQNJnfHM4NHNACF64nd80c0Bsu0/quT9zQLzYMfDlQHNAE1F2PHlBc0DRISm/u0JzQEw/jR16RHNAV9p4Y5xRc0BezAE6Q1NzQNiN9LWjU3NA9pZ/yXdUc0DK1T7M+F9zQF4AcWaMYHNA3uiNRx5ic0A5DnHKaGJzQOhRbzg6Y3NAB3F/UZFjc0BrZysFLG1zQHDn95fdcXNAy1OlKSlyc0DoECDia3JzQJBrBU+FcnNA3LBeQLdyc0AWJ12aTnNzQEkp1C23dHNAVboC40t1c0Agos2taXZzQJ3bmv7Cd3NAIxzQQNx3c0AKWtQwKn1zQAyTVop4gHNA0VQ/ggyBc0CERWj3XIJzQFUdNa1+gnNAU+xl6wGDc0BwmVg+hZBzQN8NpJ+dkHNA0PcQFxiSc0Dy1KFrTZJzQJ5gikHOk3NAokXWwmGUc0Cfx6wN95RzQM70fyi3oHNAnlOxP06hc0DQkO0Tr6FzQILrNx9aonNAMBHCSCOjc0CwDeLpA6VzQOSArN6AsXNA/E1JHg+zc0BM+CsEuLNzQEiwqfQNtHNAcA/HvWXAc0Bcm7DZ+cBzQDCRHww9wnNAgmOpYs/Cc0BGS5pCJMNzQKiYrdLY0XNApO65O7zSc0DbbrIv9tNzQPTWRovi1HNAilU2GqPgc0BG9b84OeFzQCUpyJpl4XNAhv7R1Izhc0Dg8Bx+fOJzQFTZ5NAN43NAAMnhKUHjc0BoaL6bpONzQHjqQD1j8nNALKCK0snyc0CcY58cOPRzQPatKHaM9HNAvt5wJk4AdECCBoqd4QB0QE2lJKZ4AXRA/NGJv6YBdECifLDLUQN0QPMtGtlME3RAT/peGuMTdEA+PD7HdxR0QIoYjj5NIHRAFnqj048gdEBbINnrJCF0QFTncXy3IXRAsKG7n2QidEC+LbIFUjB0QEYmUQDmMnRAJCLor+E3dEDW7uIBOj10QOvrBwqiP3RA+lNFAFZAdEAoE38dXkJ0QIlWlhI5Q3RASanSd3VDdEAqAZbfz1F0QOQhGjn4VHRA/p+GldxXdEBtTeMmuGB0QOvHYzwJYnRA5gYukHtjdEAUoAZFEmR0QH6IBk9PZHRAXx9wPyFwdECGU0FsynB0QBr8QYNBcXRAwvb4RxVydEBQpfRsOXN0QAxBKPJ5c3RANigAqDV1dEB+zJG6/Xl0QDC29ZO1fnRAMgtf7WWAdECItrth+IB0QBWFz1EPgXRAOCi92k6BdEBBXItPwoJ0QAKFCFzKgnRA0p2liyeDdEAO+bIeuoN0QBWY/6oWkHRAShUOMvuRdEDwJvb9K5N0QNx/QhtWk3RAolxCy7uTdEB19MRT7590QG5ShMyioHRAAmCvIc2gdEDzbo5TNqF0QArrRni4onRAGMU/IhCjdEAYSqK2ZK90QD+AUqT7r3RAahyxOsWwdEDZL1JTU7F0QP6VPx1DsnRAzv+YeG+ydECA3x+0+7J0QNg5gl7Kt3RA0qneLhW9dEAAWaNM3L90QCideI9WwHRAUKqV2uLAdECbdYjnecF0QNJ1iW7pwXRAPBLmoG3CdEDOHHIyg8J0QH4WDsB7w3RAOE8BKiPEdEAaEsugt8R0QB2ayc7Qx3RAeoLgnsrKdEDV2v2p/c50QIaSxFg803RACuDoN4zTdEC6sNnw4dN0QABmM/N21HRAPiZDkMzUdEDhXlC5jeB0QFIDTxS34HRA51ECRLfhdECDjzpVH+J0QMKIKFc74nRAtsNihY/jdEC+4KwxS+V0QN6SDqe88HRAOkOzIozzdEDoMvLit/R0QOnAv/EfAHVAwiJ2lKQAdUBI/Zq2zgB1QMBZnRdkAXVAQsZnfl0CdUC4igF4qAJ1QMr3ZDuZA3VAZJRvnAsQdUD+W3QnlxB1QNcFTksjFHVAdvtij1EidUAc3W3BnCJ1QI3qx0dhMnVAm6H1HMw1dUAAkVmD3kJ1QOCt8733T3VAHXY1DwtQdUCDd65KclF1QI7AwspOVHVAA0zfTnZVdUAUXeJ5DmB1QBI333KkYHVADjf0GDlhdUAiaURc9GF1QN6xzcICcnVAeBIwu3VydUDX9U9ujXR1QNOmXcd3gXVAUqQai62BdUBcvRiTwoJ1QIhQi6img3VAkShUApuEdUDOuQCgi5B1QGrRBRK+kXVAjtvZbz2TdUDmFTUcsJN1QEjc17knnXVASNkAhJOgdUDK1DC/t6F1QKrvvuCZsHVAtaGv5MGwdUCUt9fZN7N1QLPZwMjOwHVAFlOUdGPBdUAWgYHB+MF1QJAaUyilwnVAP86jSDjTdUCqFToUzdN1QII11BHk33VAyGmx7Q/hdUDCbFsNCOJ1QJDyoZc34nVA0KSI/+XidUDbMpSKi+t1QDYSx2FM7XVAdt3mhKbydUD6LYHM//d1QKhCi0pSAXZAtJvffEgCdkBcTwt5kQJ2QDruO28lA3ZAkutPENADdkBsPjToCxF2QEof/IdVEnZAx53ZIE8UdkCwf3N/OCF2QE1WDMuIInZAeU6DI/sjdkDaiGvijyR2QKDSe6RKK3ZAwsullB8xdkBuLktOJDN2QBG8Ja5PM3ZAatopjp00dkAEpnYeTz52QF79pf9NQHZA3CIr5OFAdkAHW8MbHUF2QFMZTRegQnZAJs1GS8lCdkCJDe43pkN2QKzYlop4RHZAckIyI/VHdkDcj1sI+k52QH3xPo/KUHZAgBXojBFRdkAiZLkjzVR2QPJ2fs2NYHZAug5u4hJhdkDtBTL2uWF2QATnyJxRY3ZAGCzbB+ZjdkCPZIRs22R2QA9UWg3RgHZAjktFuPmBdkACxPcypoJ2QA78Kq+Rg3ZAAkg6FWWSdkCAIVjnXaB2QKozTgYNoXZAV+GzOFGwdkA1WWVguLB2QLI87XXBsnZAYK2UVA20dkD1oA48erR2QP5UqviutHZA+KLBBnLAdkCD71eEUMF2QHScbvR6wnZAAKDi4c7OdkCMbjHh9OF2QNOM2cSR83ZALmH6yjYCd0BXBVd1ARJ3QOHS7yEhIXdAzEfP7Q4id0DKlZjUcSJ3QBm3tF3pJ3dAsHgveEItd0Dmm/JIjDJ3QGJzNaekM3dARoh8Xw01d0ASIOHlnEF3QIQxDiiRQ3dAo3Q9bxtFd0ABuXi4SlF3QI56s8qSUXdAA5FB/ClVd0C7VG5hD2F3QBQShw+QYXdACmb/vCZvd0CSvJjPPnF3QCpnZfGfcndAFsAzmvh3d0D4pRNWlnt3QKbSDoRDfXdAAgljtVV9d0CQ5KQ6J393QL583hl4gndAndHmAJiDd0CO3IYRCZJ3QKz+gsfOkndAep6UYk2Ud0BqAhP1mLR3QCooNZRxu3dAwI+hyOvHd0Da4sxV49B3QPGb8bWO1ndAJD8iwVbdd0DLH1Ji6uB3QOA4RPNO8ndAX8DxOHn4d0D2LZUBR/13QCzjKTMgAnhAKGGbQ6ACeEDEEmpP5gd4QHqOK6f8B3hAfwL1esYIeECKjffoRg14QPagtvhtInhAH6IIs4ojeEAOgdOUPCh4QNiUeEO9QHhA7DztixFEeEAnni1aekV4QD57pIDKUXhAlw33gZVSeED0q/gth1V4QMCy4GvwV3hAEE2H959beEAq29TG+WB4QBVQi9m2YXhAnorGeLpieEAyPkyE62J4QDhGOHJlY3hA2l4OVht0eECQwTPVL3R4QPBOzbxRdHhAYFih+lt0eEAmYNTdi3R4QMpeRRCzdHhAkfB9g/F0eEDGVz30Hn54QGQ5h0KlgXhAfBV41QCEeECgXmwomoR4QF/Vu6lPiHhAbFkveamNeEBcfLJ3UY94QDZgFbC5kHhAgBKvXkeReED2HLQcl5F4QD56MiftknhAyCmCDQWTeECyVOZmp5R4QI0PQDhemHhAFQGW3mmjeECm71lkp6R4QE/MoWLgt3hALOqa+De7eECsJ2E6zcB4QILFKvgBw3hA80MtYj7DeEA2iPT8Lst4QPT/asXzzXhAbNCpzjXTeEAZYkwBt9R4QCS2Lg2W23hAHPWGRJrjeEBcN1iexOR4QG9sH3rm7XhAmXDnkAH0eEAWZA5ujPV4QCxgvGVUA3lA1AC04IADeUBe3SdtmgV5QAz5wzydC3lAQIZwAqYTeUAY6dlHviN5QBZoaTOyKHlAWWrmvgwueUAiYnW1YjN5QJQ5Kcq2M3lAgHQjfb84eUD8K3HknDt5QF8Tn90+PnlA1MO8jPhCeUDueZ0rZ0N5QG/9B2j7Q3lAGUfTK+BQeUB81nJFzFR5QNm8ViDaZHlAAH35UUJzeUDQklSAOHt5QIKmZXL4gXlAZqtkA0CDeUDuViewOo95QNwu8idUkXlARPfBAYGYeUBOFXLgvrJ5QNgvT0cT1HlAzpLaKkLUeUAhrUGwzdV5QEC4mglS5HlAdkmhqSLleUBTVSGsD/R5QMA4rD4eBHpAvImqt/gFekBuh23o+At6QBIFKHb4E3pAlLNRXJ4gekDyql7qOCN6QJQ9vEKoI3pAPOPD7mgwekBc7SLXKTN6QEXrb9QMNXpAEAZj8S83ekBky0Y9eEB6QIzfMvAaRXpAZFoKV9JLekAv/wUlWFB6QHt68Z4pVXpACaLfoCJcekDgc83Lh2B6QLcBibsoZHpA0LmSljBsekBu/Dw5N216QJb4PQOPcnpAguYgqsWAekC8zX7yUYN6QDhp0DblkHpAnxWenz2TekByPN7bopR6QBCETQseo3pAEOzpYnSjekB+Cp7RJKt6QJoyp/EUs3pAbAbO4J2zekCGVu5dDLZ6QLTYCqbxu3pALqNMUSG8ekCGmf48LsN6QF13GeoXxnpAir9WjELMekC7T9VLutN6QD5qKZ9J1HpAxD5eKFHcekAUGq1QZ+F6QGqJB/NI4npAvB9TH4zjekArLNHFPuR6QEQ+8ilP6npAqi9i+DjuekABNr+eFvF6QCBL1SZb8XpAkrtCrngDe0DBTHNcfAR7QPrE4r4pDntA6neGDssTe0AM7h13iRR7QCC0vEZMFXtAPouPd9Abe0Co2Qb2WSV7QFEQSQNhPHtA3glse2ZEe0Dl5mnpXFJ7QED29ZfEU3tAbM+BsA1ce0CDf2qS+2N7QHc8XYg2c3tAgP2d1g90e0B4rk69j3h7QGw+J3UdhHtAaJD4HyOVe0A+yuMaz517QPxurvono3tA3mYmlCule0Bgz+g5aKh7QD4mds3erXtAY9CXrXvGe0D6WAuh0Mt7QOI4cXX+43tAmkPaxybke0DVTSiMl/F7QAJC1LQl83tAW80MPTX0e0A0qngojPV7QGY5Flkp+3tAzPt7w9kBfED18rxUMQN8QB7Q2btnBHxAGMzAopkFfEDC77Q9IAt8QGg2FFyMEXxA1Wz2xNERfEDOwwQf6Bt8QOo6gijiIXxA5IXZp6AyfEDEqMybNjN8QPB0kgiZNnxAbAgg86E/fEA9q3ptzUF8QBod3U1TSHxAnbB2salNfEBowW/12FF8QAKzpwjxUnxAy/Sn6wxTfEActFDZVlh8QLRpzwBpX3xAaKjFAg9ifEAKtZ9PaXt8QApxczCXe3xAlkWZsW6DfECBAeQ2Xot8QEJBhEl6i3xA/QCOR8WNfEAcznuIHJN8QI1Id8NJk3xAXVOAgmaTfEByiZav05R8QHpZQ75ZmXxAV/+w5FSbfEBmARK+dJt8QFLiYd6vnnxAUfmERlmifEBCwyrpW6N8QBQ9dHwRpHxAaXkV0OCkfEB6MGjPwLJ8QBj4u256tHxAUvaCO9PCfEBtAxPX08N8QELabQrL1XxApC3+Z/bbfEBMefTRV+J8QPi8sNYR43xAPZgpLv3jfEAFjV0na+h8QG6f/9XH7XxAjs+u3xbyfEDhzYfDVPJ8QEzJBh/g+3xAkza0ZQICfUDlWQS+SgJ9QNjgZ9dFEn1AjOwVh68bfUDX6vH8OyJ9QO8Q6IOOI31AD30qq7QjfUBi970+kit9QEbSSgm+K31A5LRy5p4xfUA7P/8TEFV9QMgzW71jV31AVq5G9p9jfUB2vBfWw2R9QNIZqT97dH1ANP0+21KDfUBQlsqX9IN9QELS5s+VjX1AL7bLDvCSfUCOqfQ2j5R9QBqxIORNmH1AoI8yI/abfUD8oDqPnJ19QImMnaL+o31AveOEoaakfUACf5HMAKx9QOUuJXm2tH1AbiQ8U7q6fUAhbmVgK719QPpwg87kxH1Ad9ZwqGjgfUC8/NcWkfV9QNJ0HAc0AH5A2DWcX78AfkDoto4dQxB+QFx2X2xZE35AYc2TlO8dfkDIpC01Nx9+QEJMjdIjIH5Ao2vy/AksfkAQGVRgPy9+QLQBTAQKP35Aub2hnEE/fkCKvZU99kF+QL6z7rqMVX5AXuv/QB5afkCCEY9MEWR+QAbEu1mVZX5AuJQPiBNsfkD5bhY+DG5+QGzgyhFab35ArA9qPmpzfkAIMcP7sXR+QE7Q3ju4e35AxNVcxJODfkCo/Ns71KN+QDoS/iqyrH5ANrVwro2wfkCyepkil7J+QESjGmOCu35AfI9j13bDfkBaabzw0cR+QDDdq+pyyH5ARUjukYfNfkCmef6tz81+QKp6gLnX0n5AXidPDQ7TfkDGgaWG39R+QCIfOsV83X5A8vtuPv/efkCMANp80N9+QIBwSaFX5H5AzNg2LO3kfkDQZmZn1e9+QLZ/SjxO9H5AqEhPAZYDf0AmLIgrmgt/QFY3tzcYFH9AIrlkka8rf0CZtMxjry9/QNSUExgVNn9Azmi+4uFCf0A7GFnMV0N/QGX/b4pmS39AVvPKVJ9Wf0C18JrCiVh/QOmbEd3jXX9AGm8+Hixlf0CNf/AliWh/QMdyxkOwbH9AkNlaOtFvf0DQJPuWt3F/QLZB2Aj9c39A0iWmTFx0f0DLeH/mDHx/QB5a7FqwgX9A2MxnrfiIf0Cv0YUnYpF/QC58BfSrkX9AEMBNgTqTf0DUoK+wXaF/QGyqWIlDo39AwBP2Mgqkf0Bm4N5ofqR/QIJi4EIRpX9AFExmR5yof0D6QnlBMqx/QPOO4yT0rn9AykhGilSxf0BqFAMIILV/QHRYxD6bvn9AfDArXofAf0B4AMlWrcR/QKYeo8jNy39AdilGErXMf0Cg/K90R9B/QF+s8LfU039AsB7p2Nfbf0AGZxgn3uN/QMVsg1qe839A9HikYIgBgEC3RRhlNQSAQEJQyXoeBYBA+1I/580FgEB4Kn8v4waAQO3JpU0kCYBAslH1+IcJgEA6MCYqDCKAQFKryJDjJoBASLvbcO0pgEBEIy8PDjCAQA5JnWwNMYBAtowuFw01gEB0IyfL6jeAQN6pqHJ5OIBA4A+8ivg4gEBX7VqKX0KAQEgMfLKpQoBAhziMg/BIgEAORnMDlUmAQAGBhEvnUIBALvmhkxNRgEAsOG126FiAQPCL8boOWYBA2lstdNxZgEA+qVxOSVqAQMpnzlfhXYBAxEYdzEpegECt8mn71V+AQGKQ3TILYYBAEle+5ONhgEChm2vM62WAQLeu9ooqZoBAwrRWrCtogEA0JUb+8G2AQJgZ7tonb4BASdfvcaBvgEDSw+VO9XGAQLiC5ioCfIBAQ6NUgit/gEDK5L6IK4eAQKgNbZ6jioBADggeLPyKgECSz6y5sYyAQF5UD3iEjYBAaJ4L4T2OgEDrtX0K/I6AQGgz/O4dj4BAihI+8yaXgEC/GDKe2pmAQJnpXuEHpIBAOVaOaUukgEBPs3PYyqSAQAAoTlp8pYBAiSQetrCngEAdbGAChqmAQL48KF4Tr4BADjMvn6qvgEDO+YbubLCAQAQFtjEesYBAN/EVtnmygEBG2xrGBbqAQNyxt3EGvIBA9jOPHrO8gEAW2wrLQb6AQFSEjBRgv4BAVBkTmvu/gEAeC0VnUsGAQBIW23yfwoBA0d55vn7FgECcsCZ2U8mAQLUKZu3jyYBARjfQfAjPgEA4FGN8z8+AQDY/T5Ms0YBAyKv+WUzRgEC0iE2aX9GAQHcxHCPq0YBA8ojQF0vTgEBKOAs/StmAQG/CsJjA3oBAss9jNiHhgEAkrbfOROGAQCU22UJs4YBAtrEruBPkgEAvon819uiAQEFSuQRL74BAdGqIOtLxgEAgWGArX/6AQLZnIXs//4BAftX4TEAHgUDMPQdiuwqBQKBCk489D4FAh3zoCVAWgUB4gRAfBBqBQNYqPEA0H4FAntaRNrMfgUC2rmNqNCeBQJbVO3jwLYFApo50c/UugUAlVMHYLy+BQOO5JZezL4FATIJNSL0xgUC+p9ko9DGBQFov949PM4FA7hhGxvY1gUD/OBeojTeBQIcIvNrAOYFAOk5ueyg/gUCCmb7wA0CBQGsPlp2UQYFASmNOpJRCgUB2TWRBWkeBQL89m+EGSoFAHpYEI7RMgUArSntGXU+BQB7AtThEUIFABXZa7WhRgUDCAVCi6lGBQCmQvOIVUoFAwmLuqhlWgUAS0l2VYFiBQPwUVynoWYFA/GKptB1agUDfkpdN612BQL3a1tvDdIFAZftWn213gUAc2DqoYn+BQHbgTLGgf4FARuef+aKAgUDq2NTwS4KBQM5u/WD4hIFAlhVXHsqFgUCpqZn8f4iBQE65mgRXioFAeJommASNgUCmJCY8Vo+BQMi2nic6kYFAs40mW++RgUCl0T2sYJKBQLBmopmykoFAjlwzifSSgUCv0DcOVpeBQGC9E+S5mYFAsxQHfZycgUBv6fgBR5+BQFC/bunloYFAXr1X7vehgUD4fChobKiBQJ1n9ZIRqYFAvA+ZCZOrgUCkUadaEq6BQF5axW5Kr4FAMuhE+b22gUBO5A67TLeBQHTD4XEJx4FAjhB02eLJgUBMaTivDdCBQP512zp/04FAaVzZxTnagUDqZqI/5tyBQHoZwLmT34FAtvP+CO/kgUALF3EH7emBQKDk/+uX7YFApsc40JzxgUAtk0fAdfOBQPqsfnJ/+IFAuhf/Yez5gUDUNNGW8P2BQHxe7tuSAYJABPw+lOMBgkAaddKn+AGCQGRkZf7pBYJAP4x6RgMJgkCOLCZY8xGCQJKQTyC2EoJAVKQENdgYgkCMaQ/BNhmCQO5fB3LWIIJAHpVsx88ogkBxwAp+5yiCQDO8cYLbKoJAWBkwEOw5gkAkugHVz0aCQP9g/vnISYJAbvJTXRhOgkC8Px6/OV2CQO6aVQk0YoJACO8gdTZmgkBKh8iQbmeCQFIJh5AJaoJAyBU4Ez1qgkDajiv9n2uCQMxLdqxsdIJArV6CdEF1gkCi/6ihDoKCQMwfGp2JgoJAJzW3UUOJgkCq2NTfy46CQOvsg/hDkYJAYG3G+qyVgkB061FLGpmCQIZBDSU9mYJALhPAMLGZgkACSVzptZ2CQHyoW1oOoYJACVyCgjuhgkD02kh6DamCQCXahrwzqYJAuvU/jTSxgkDKvkIVlbWCQPO3M8u6tYJAJHKLSuW9gkAv3S3W7MWCQKFcR1OyyYJA+kOOGH/agkCsInOLgd6CQCkpAbyE4oJAjPyGClXqgkCG5Qi7A+2CQHyD3fBb8oJAlrO50vD5gkCw2HXv7f2CQBwgzYO3AoNAc5mW4cQGg0At0c0s1AiDQPgv8XpqCoNAWINzKRYOg0BUwrJmeRGDQNiiahI8GINADQ5KUXoZg0Ca3TyuSyCDQOC1i+VyIYNA0xRlZsMng0BUppU5cimDQGXW9haRKYNAjkOGLDQug0B8Bq/eajGDQPWwGmH8NoNAsBmLzBs5g0CTLh5bZzmDQEJn3BRmR4NA8asG3h5Wg0DIDle+63KDQFj7MPJJg4NAETvfNuKag0Dev7vUa6yDQNi5ezcdxYNAp/cBbM3Hg0AUdKoZecqDQLeFPAPN3INAWFbLuSHig0B8Arpsi+qDQFbaIyeP7oNA+q8bPQ7yg0AG6pCCEPaDQDcs9IJMAoRAdLUnm1EGhEBT/Nvc4A2EQH1Xcv1vDoRAluS8pQ4ShECg6gdsc0eEQNhsYbaxVoRAB0Pyw6lahEAoHdLGrF6EQNWURsuzYoRAepBRrQVkhEC1sKmQ3mWEQOn4Qk3/aIRAAAdNzv1whEDaX0pWJXOEQPILsp7Jd4RA4MrLMfh4hEANgNkcYHqEQLwrazB5eoRA4q/gAAZ8hEDqp0rPEH2EQC1lisAqfYRAZ1EdLMF/hEDN7XmNcYCEQFSE0r9vgoRAQ8CbJqOChEBgtgHlHYWEQM5igv9gkoRAXFGAEmmahEAJlzMzFJ2EQBDL9ey+n4RANPlS7nCihEBroDSJH6WEQLSxhz/Pp4RArPa6qmmqhEDkGG3JF82EQEXRPC3Gz4RA1JWpbXPShECcw3szatmEQEr7BGtq4YRAGpidGSzihEDyCw+2weOEQNj3+WLQ54RAjnsAvGvohECk1XMtY+mEQNhVZ/eV6YRA7OVLTn/qhED7W1AHK+2EQPQKprTA7YRAjb4bqsPvhEB2VzKQNfGEQGv+5xVk8YRAa7KNM3DyhEDE6aZyNvmEQDoCdHxb+YRABHbV4mz6hECalo3KLgGFQLzPnxZLEoVASLfRrwwWhUAaY6blDxqFQLq0xu/jTYVAB79e4OdRhUCmMlFX7VWFQM5k3/W8V4VAeWcGQOJdhUDUlatXoGGFQGaUNA8gYoVARxwDFYdnhUDUqZXioGmFQNqhgxaZcYVA2RG5CrVzhUA8AruQl3mFQLx2MaudgYVAC6RN6iOUhUAw+oY4tKKFQCiiJUnMvIVAJ1uGzXu/hUBEXNTWkt2FQK7z3GG9SIZA8OmtUGJKhkBqo67SZk6GQMZHcuijVYZAAGm6am5fhkBmguixbXiGQMXIa+lkiIZA4vCtiSS5hkBTgYAxJsGGQNRm+SyRKYdANyTRB5Ixh0DGM9FDDjWHQP3mqISJOYdAetsgJ19Bh0A+oDZpiEGHQIB2YVLyVYdAyqFk19xqh0Ckcv8m5XKHQJubRRFsgodAZr2whMexh0DhiFCPyLmHQLA/BVi/wYdAvkmf2P/Ih0CvsfGevsmHQKl4FWKkCohAQr/k1HIOiEB3gIyKK7OIQA== + KBZXds7jZUA= - + - EaXVRAEtlkUBWztFzPJ3RLv7k0bEh9VEnIBGRZJDQUQlk2tE4YOKROleE0bVgNVEckf6RgtNtkTZfgJF1GNWRFJcUkUPDllFam1MROs9lUSzAH9E6TFiRcnER0RmC6dEsqDSRHBkfUTf0GpERxWeRM5/OkQqn0xE0IVdRGKeGUWsr8NGWFw4ROZIdkQd8fdFGotYRQjMjURimCtFU4sIRZt3rUZk+oFEef16RB45oETaajlEdlE/RAAgiUX9P3dEQxBNRMPdFkS7Li9EjiFbRKGmrETryUNEUtpTRF9WJEV7tExEuqZJRfY8gERkCulFapxTRXgwlESz8XNFUViXRK2HS0T2o5RE1O+kRKTxcESY1LNEkshYRHnFYUcs3oBEx8BQRIDxsUUbCdhG1cJ9RFjFlUT6h6ZEe/nqRHqbqUS7UzlFKbFaRUxO2UTFhJhGnonpROZqHUVbf5ZE+RsvRAusBkWKPWVENVsIRFCuNEcjwbREuSHJRFCPSEaMOLhFDoWCRDUGP0Q60dhFJ4RLRLQNAkXTZztEApSMRIdIA0WXnsFE/X1rRAijj0TgGZBEgWyHRfHCyEQBqjNFkheHRKtls0Q8L25F8RWIRDN3wkVKS19E9+cgRKocfETq/tVEY8CARNeReUTBtCNE1KEpRAvu5kTvwjhEKmk2RLiznUR5QThGendZRFP1kEQoKUZFPQNQRKMrM0REv0REFuzgRAgASUS5OshE+BLdRO16b0QB9EpEIMAzRUnGikTRojtErjxXREhpP0S+mo1EIl0rROJsj0QPl69EAQKqRCtDbUUvUhlH75dTRB8yMUSrTO5EaX2vRWKlikQLWCVHSSpWRSMgVkWyyGJEmDuSRKZgw0QUrVlEqLdFRHVY70QAdjVElKXARepSK0RS8jJE9jggRUiIOUXqjKBFSlQ2RIauO0QMoD1EmW4NRJNgOkbO11tEDGapRKzSkET7aXpEcVIVRX8HKkT4aMJEaQvFRD4d20Tl44pEYPvqRnDlQ0Wf4QFGSstaRR/8qkQ5ITJEhqHXRCyNwESutztEoQeORKTnHERGt1xENOqTREfY/0SEEhdEHKvbRDZW8UTL6ypE/lEsRLUazkRzX5pEd+GvRJBVokQj1oBEM2eYRHofd0Qg91BEBb8/RP9IdEQSmDlE8HeZRZ7fLkQkAkZEfN9CRJGG+ERUrjVEmdscRn7HPUT21GZELMIXRKTPo0ROQwRFyAZGRWXn8UVccBxER9MWRYSSVER3CaREa95PRMfreUSUtJFEm2QHRQM2ykR7GJ9EbFQoRWzBKkXXr0REYJ7TRA6RWkZXAuhEG1y+RdELQ0Q5eoJFTAY2RcxSckSpIGBErl+CRO4EF0RRxlVE9ojpRH+FhES91VtEHXblROOtf0RN18dELoz8RCV7BEV9KZFEpBg2RMfZr0RDuYBEma32RLx0AkUY9cpEPaU2RI8PZER89I9GTwoFRmMXzURQmS1EYZAERv+qrkRJnrFEHQzbRPYwrkTmnYpEPy8KRcCFNkQ95o9FqDVlRGA30UWHppZFi/XRRp6lXkRXT6tEhUOBRLkip0Snk0RENcmcRJTbqEUmJCZEr2fmRNtYz0RK70RFButeROTVg0QpwoREJnw5RdvXcEbwonpE5MuCROo4X0SWJg5FdlQDRRrZbUXpDTJEQZlARPVvYUR3axpFGjFVRK2oREXWon5EXmIWRWXIakTwarVEn5GgRbUVKERn/zREfiC4RFvMYEQFPC1E1UtRRUHFgEQX07tEkSlyRBXrhUZbyylEyzNYRejXOUQOOVVGSItsRYYakUQuSQZFkvbgRz9wnkaUGS1FccOtRmu7l0VaslRG37EPRdJfKkQLdeNE4eNTRfDxVkR4QndFpiRERb2+K0TNDZtE3Y68RISXWUQpaPhEQ0VaRAQRfESkEjpEmTaDRPM8JERToMpEjIOBRCfhY0Rx4pxEuMcbRM9hmkRpurNEOg+cRNTx6kbORHVEDbdrRsB08ERByqhFK8oGRUMx60Sl5jxFINqPRA1HV0R3P1dEWHzpRQwFGUbUFohFf3jTRORJpUTFKYBEdA1bRDdc60RpGAJFJnqeRJIoMUTkKjJEHi2cRLcrmkRKsb1EzKh7RSwRM0kWOodF1y5/RJJDVkRpm11Frl5TROsxN0hRygpHI9itRmA2NETQcclEmIDJRED3FEWKZJlE409yRbJ/kUa2uMREqgR+RISsP0Qh2ItE/ylRR0N+ukQDyS5EYXuQRg72jEW2CIlEwpcFRWpHuEUjEl5Fd0/gRG4dekQY6ktEKb+JRT405EWf+lFE0x9KRKkrhEQu+VVF2P6uRI7xwURilXFGOxw6RlNo2kRuwkNEQtiURPd3NUQpQp9E/aTYRH/0kES68R1FraKWRMWVbUWDlEREOcq4RH9lskWuJItEuAAkRXqVMURPykJEhhA2RP3kUEUoDopEXuHRRaYDpETnlotEX2ZjRJlX8UWpvplEbT53RIvxnUVqDyBEmmiERGcejUT5PYhEdWD5RfYpj0Q2yrlH64yVRLhTwkSTHKhGJJpFRLcS1UTowiRFh7m1R6TaA0UPwhtHYFDdRRGld0Sa3oRE0wSjRK6CNkWXOpdEBKBBRBq5ikScWSVHw6XyROiwjkYiP45FKGQiREhizUUc3WlEtg0gRMe+gEQWdY5EwaSTRooUikXkwAlGH48hRcsFvESWgYZFYtpLRJV3J0R6R7ZE8OC0ROewDEVHpNZEP4BWRBlVD0e/nvhEL4JWRXYSuEW8twxGRwK+RPem30TSby9FyzWZRBg5ZkQkuzBEb91qRAoiGUQq/xlFcIjBRf77d0QyTWREV6WQRUf0I0V9NxxFKhI7RJ+QlUTKaDFESSBcRP6xckTZMZ9ERNOjRkJBkUU5PFlEl7IxRQ7+ikYZiKZFHJMxRtjsAEWFeE9FE3qiRW9wSUSM+8lEvR1ZRd52S0V3wkVEetOXRFXkjkRik5VEZb1ZRGQApUVUFTtG3qjSRR1jf0Q8a3ZE3teZRH0ZJkToAkdEXg29RISdeEgckLREx4PpRxFgxUYOtl9GtD3FRDVlJkRHvABFTJARRudTHUZwHaZFZjrXRCpsmERHhEVFL9JdRCmzZkSUIyZEzkXDRDUh6kQc3bxEiXJsREj7N0ShZXFEbUBkRb2KuUeq91pFA8sKRZ6H8kSh3q1EUvjpRHSNrkbR5olETL76RArKbUYCbkhFWr4KRmZ2l0REy95EEcSBRSbwrEQALj5EHnvDREI/RkSkiTZERmobREQpVkT3bzdEJkRjRPWap0Q0FZpF1GqCRbnCVURPidBEaiBQRghWUUQzYJZFa6R8Rb7EjUQBCHhEt4RTRIlPjkR8eHNFV0+VRCnkvER8F7BGQvdLRLizT0UoMYFEIWwIReRLYkQYosFFUWGvRMWXpUQzYVZE3BieREPhLEQZNyNFY6OORBeaXkSyu05EooCiRDb1TES1brlE4QWuRMHdhESDBu9E3ZedRFvzMkQYrFNEicaURKDukkT4gCxE4tuMRCKDMUcU3aBFdMciRL+LRkWSF79EOqpcRNwhAkaa75JETDY9RfmgSEQ5zHdEBJEzRGppiEQoaY9Efb5jRRRMa0Rl51lE2i20RBDAXET2TVtEWrYhRC6zAUXsTk1E9MooRMQ7KEX1bBJFlgzQRL3lRkQ63ENEKjGXRGM/okXL1ABFe8peRFgCT0SeE49EAKtDRPeTHUZ/+2JET3mJREr5SEVeJCpFcPoxRPCWj0WQ81dF+zwMRe9jJ0RBO5tE82jlRLkOmkSuFkVEshRkRBmmp0QjDARHGJBrRI/3UkSCVXNGmbVVRSYOUESLLKNEspZDRZA3MUUr+ixEn+NkROaZhETeV3NEKum1RJbbUUS/j9RE1UFmRIjIQ0RykpVEr5pORHT5gETL6ElEIGj9RPQXqkS4g/pENgfURC1hGURLpCBFtTZ3RmbrTkRC1b9F/cFfRXkhWUQZ65pEeytARLlwX0Rj035EzCVHRHkAy0SrAqFEimbiRE8oWkXXNjNFWRUxRCtJ/UTw90VE/u6CRGrvQkR7KltEq+aJRCjQV0QngF1EW0RERP0LikSspQxGU2eKRMvdaURbK2pEE5vZRCD6akS6caBEjdaJRGWd30SrAllFbEGRREpXK0QAooBEEZsyRA5U5kVxaKVEsyPPRafhQUQRvxdFdaBfRBhFakiSCjlEb9RWRFJq60eSaLZEFzeLRA0JcEQJNYtEiHFoRysiVkWZMkpEGuNDRD05UEa4HYdFDD2ERKWFg0Wf405FuTkJRaVo7EQAcRhF/yuMRKkYtkRgijVGiRR2RYM6IETk7G9FurpgRIb4JEVWT7JGVKkvRCL7k0W0OitGHa9PRKTcbkS62UZEWPWFRGhbqUUpDkZE9BK2RI8ga0QVMBtESwFdRc2FWkSHiIlEkDeYRRNenUVnm5ZFycQORVeWXUQvcDNE1ctiRJeTPET5inJGZ/fURU0HW0Qg2bxEEzm9RHDHqEQpIY5E+8SwRKo6eETOl2VFVPUzRBQTgEWNDqZEpAg/ROW3OUR7iDdEO5eeRHSb2UU/z1FEuWVsRAfOOURwZztERO7qROh9C0U2bR5Et/6BRZ7HPEXEpd1EsezBRHHIGUXtH05EbYBZRGLDXUSWnQhGo1s1REhMwETQklBEvE+kRHguHUTLLopEKgPjRW0x/UWqlZ9FbEY4RHZnV0RZLXVFY6+GRHZ0lUQXRi1EcghYRh7vwEW8IyxEXfW8RAbpskRL4qpEmyMHRQNBmUSjvIxEbxweRlcyNUTUjJZFFpgIRWRGd0R910BE5A6/RDzqN0Ss+jpEiL2IRE0RxURuvbxFPBUURaVehkRR16FEPC6uRNOzskQIoqREi8+wRCpfrERVeEpE4B4hSEpSPkR0WqhHXDVNRilzhEQuu0NHfCC2RbWXyUQEsJVFatk9RgIhD0XsYVhFrVecRFsqLkRsTZNEWohQRDI3V0QXiB9Fg8DlRWHwl0VsKe9EoER3RJKWZUQGqFlEbzh4RPjkb0TMO5BEEn1BRI1raUSMFYpEJ5YwRCBoEUhhrSdEP8mPR2Ru5kTARCVHqVs0ROIoQEaOJl5EEYsqRO19cUXUcy9EfcdwRAs9ckTrB4REAAImRHDLPkST0INENnyTRPzpLURPpxJFvoWPROM2dUToc4dEGimDRK5GaUR3Ti1EsOfERFGWkER5TEtEe4JVRCAURUSob4FEEk7cRKfmJUQvcDhE7UIcRbKTMEX1sThEJDmTRA6JbERnV/1Fk2dMRbczwURbwedFqiy2RJppr0QGG9ZFkJE1REVcXkXFVzJFRrCvRPqmMEQG849E2GtnRL3S00SVo0pE7JIeRemVT0XnKRBFlFvMRWOtz0XL/iVFxWWQRId5HEUsgxZF+SvzRDE6QkeDns9GOSEzRMqTMETupipFPnmBRJfYTEbP5VlE9FsdRSS3cEVb9xBFrmhVRHdRTkX4NY1FD0DURASitUTKVuFEqBRORNs5mETFUS9ElwsJRUw5YkSaEqdGR+4jRh9KfEWDfSxEdGhMREfoE0fxiylElcVMREYrkUY3ZyJGu0WfRMD6kUXbMVtEABQ1RCd9eERliL9E9VplRLFApUSZQUBEDv8JRVCMjkQ/LDxEUJuLRKZhDEVMPVNE2ooFRWLdokSFiWlGZX/ZRUIZpkQMJrBFUjFeRBOrwURtl05Ef2c8RQw+fETaADBE/6b9Rfdom0Um2jVFtVc2RD7Z7kSrYedEH39RRPQov0Q= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - YrzI8HjAckBwzElvb8FyQPpwkWXIwXJAhGDBs1DCckDUkz/0psJyQH+1twfjwnJAUNpbvjrDckCctF/OxcRyQNBBXwBZxXJAWgHTbwHIckDOkS3+W81yQFZ7bUJD0nJASgr5Da/SckA+IK2hOtNyQFxzLyR303JAonJjeczfckAM4WSTt+ByQFQ8u3fj4HJAUgH4r03hckASMZlvUOJyQJ5WP1KQ4nJAbFBBpiPjckD/eXXnu/FyQMo0snJ78nJA4nOkgaL0ckB3ewFWw/9yQKB4MJFjAHNAYgEExvgAc0CckR7iiwFzQEz4Irg3AnNAvI1lEtACc0D4HN6O+gNzQE8FBa+PEXNAGGx19gcSc0AXHMchvBJzQKKvNr8FFHNAUgCpekwUc0AuAaDwihRzQGTP8Rp4H3NAIkHwTKUgc0C6PgWrOCFzQGw3DJ54InNAG77De8cic0CEHlMaESNzQPOZu+c8JHNA7FBxPM8kc0BGajG5RDFzQIgcxB5ZMXNAe2bGp84yc0BuqkyWCzNzQK13VIqiM3NARKBlNdgzc0ArA+yHNzRzQFJ1m5vcNHNA0+BDpro/c0C3EubeQEBzQEAv+CrjQHNAt9QGJnhBc0AOdav4eURzQFCDEdCaUXNAyD47d05Sc0ACtb23QVNzQKzZJaCkU3NAISMt/HdUc0DwEwEu+V9zQGMXwR6MYHNAilg0uBtic0Aq4VdxOWNzQDJeAfOQY3NAzGQqM9Bjc0BSD8tVK21zQFqQiTbccXNA5qDbxFNyc0C+JcsEa3JzQO81ChOFcnNAJ5RUI09zc0BWsB8RtnRzQFaY2MdKdXNA5GE9v9F3c0AOm3Sx3ndzQM8HJ4kqfXNAyMKYQTl9c0Bf9wLHeIBzQDl5yNOkgHNA4m9mTw2Bc0APZrONXYJzQKombt/+gnNADjOUxQyEc0A0gQGHhpBzQHAK8R6fkHNAfgvKlh+Sc0AkC7fwTJJzQFMJTJBjlHNAZmzu9vaUc0D0BBy9ipVzQAhhTZq3oHNA6Gc2ROOgc0A5e5Q6DaJzQDEIOQ5aonNAvrzp6Oaic0AB002MBKVzQI4bFt55pXNAXMvGizOxc0A9E3zYf7FzQMwIQDi3s3NAiIZNrQy0c0DWmy2/+MBzQCSqwIjPwnNAzoHTsyXDc0BS+O3Y1tFzQESQcaW70nNA1td/fffTc0CtezU54tRzQLZrDks44XNApbPACGjhc0C5QMy75+FzQMzqY6oU4nNAGc8GrHric0Bkt5ctEONzQFvZIRCk43NAzKqNJrfyc0AmTQDYNfRzQCB6kiKM9HNAZOpuVrn/c0B37oAm5QB0QJh787Z4AXRA1Kduv6QBdEBcyJ/YTgN0QKTV6CN6BHRAyCrKJIEQdECDQ9ogjxF0QO5ATb0sEnRAPFnYn0wTdEBywL01SyB0QMIHvG+MIHRAIkDYayIhdEAN5HTRuCF0QOrFvRBhJHRATNJ9xFMwdED4yOEFuzJ0QOqzGxEPM3RADQpaE+I3dEA5hhahajh0QGi6big7PXRAn9jFPFNAdEAOL/sUx0F0QMu5ciKgQnRAeHkQZz1DdEAk8pSveUN0QKawTh8NRHRARJfl1pJSdEDUpPG791R0QED9HCmNVXRAOKNYsd9XdEDijwIzuGB0QMzVpH7RYHRAzFowjU1hdECwSV7xCGJ0QIczYmxUY3RA0l8LynpjdECmqTs3T2R0QGPUssJdb3RACuU5BCJwdED2kMohY3B0QO2hTJq6cHRAxqWZy8lwdEACdXLtQHF0QBy+p3AVcnRAtCYUmTlzdECQwnp4OHV0QAk1spr8eXRA8vWV/vaAdEBKhlLjToF0QG5YCSRJgnRAsJ+yhiWDdEC3/6w5uoN0QETRpUsWkHRAR1DIAfyRdEAurRML7590QME7gAuhoHRAK5+/PtCgdEAuz0ttuqJ0QAkSmbIPo3RAgCn7HvqvdEBZYcErC7B0QDvDlkbFsHRAt1/Wnx+xdECSHnZjULF0QFMY+exusnRAcNubh/qydEC3fKVDybd0QJavxykVvXRAVmV83SK9dEDkhFnj3b90QJOPL/ThwHRAkCHz1XXBdECmLih8bcJ0QIhOQ1+6wnRAm4TC0wXDdEAWYEvdJMR0QHCTtV64xHRAZ9cMWsjKdEAYodyS+850QM54D8dR0HRAM0nZWufRdEDsKNV14tN0QJgtf3131HRAFZ1dI87UdEDeZ917jeB0QAe5kYi34HRAcqemx7fhdEB06ofr/OJ0QHbWZyTZ5HRA4k87Ak7ldEDo1xRdSuh0QNhwab+n7XRATN0ktr7wdEBaWsAgjPN0QNIqbJXNAHVA8URAXWIBdUDvbP2mXAJ1QPKXAQqaA3VAXOQiP5gQdUBO0o3LaBJ1QJqESUgkFHVAD6MYcFAidUCU7DvgnCJ1QHChFQyoMnVAsh18jMs1dUD1KJuO+Dd1QNLKTKPbQnVAYoCekSRDdUBY/kBOg1F1QN5x2VB6U3VA48QhnExUdUC0va6UdVV1QNko0XY3YXVAfZaMlvJhdUCuOourz2J1QFJGZ51lY3VAukav0AhwdUDig7kV/nF1QOuAhzx2cnVAdGaw8Yx0dUAu2kwqUIB1QNJixsx5gXVASjZlnq2BdUA8L9xCuoJ1QFD3vkMNg3VA/gW+4qSDdUD1fq36mYR1QICqZOK+kXVAyA6A7g6bdUD+x5fBk6B1QAj/ESUkoXVAZN2WBbehdUC6V8qJ+qJ1QI5thG2VsHVAWLCFmcGwdUDLJcW9NbN1QCI8BazQwHVAiOyvhWLBdUAnD3wl+MF1QJDOA0M603VAdDhauMzTdUDNLvTD5N91QL6QkUgP4XVAjQGOMwjidUC9FlDaOOJ1QFy5fZ1P4nVA1L0B8+PidUA+6sp5feN1QAx+Q0Sr43VAwjzwdTjldUCWvzf8S+11QEZL/O2m8nVAPotVTjzzdUD8ZsX3zvN1QApdBQ7u93VAfdYuOwL4dUC6tYzrS/11QAQIAzpJAnZArWsURpQCdkBISNT7zwN2QEG/H1rmBHZA32HJ8QgRdkBqS24LVhJ2QIyyWn9NFHZAsJY/+woWdkAQpYZViCJ2QHDxx1qQJHZAyJbPCUordkAsBu5UHzF2QNaMi8mUMnZAfSWR2VAzdkCY4/bjnTR2QM20kxdPPnZAjo4xBuJAdkCys+7RHUF2QBa1jTzJQnZArtvdORFDdkDyIWNRekR2QKpA+aL1R3ZAPj3so/1OdkDkPBjWyVB2QA2ASasQUXZAIkD/rM1UdkACZcsMH2F2QA59e57fYXZAhj0FB1JjdkAqcH0RkWN2QCR08Hq4Y3ZA7xyIWOZjdkAW2pXb2mR2QJVxB3haaHZAQivyFPNzdkBYjf4w2YB2QGjpEgZqgnZAXOSNu5GDdkDs3qrRJ5N2QCz8vnddoHZA/LvtHQ2hdkAJEvTrjq52QJII4GJQsHZAnA2Cg8GydkBk5FEAeLN2QOfErlUMtHZA0vmeKTy7dkCBnMXBd8B2QEJ6lvi/wHZAE47+e8zCdkBkRXW5zs52QGpk+wyA0HZA+mavlZHzdkCCBZE/MwJ3QKgoNzcBEndANgru3bchd0DMwLJcDiJ3QC7pwVN3IndAtGEU3Okid0DqQ/IZ+SJ3QMT8FqohI3dAANvS/bgkd0CIjeV46Cd3QEi8z8BCLXdA9EVX0o4yd0DwQzhUezN3QPs27jClM3dA/reb/Aw1d0C5C2EY5jd3QEboaMmcQXdAvd7jr5BDd0CioFM8/UN3QGYQSBYbRXdAKF9AeEpRd0C4+gDPkVF3QKKJTDwoVXdAZvDzp5Fhd0BAGGLGNGJ3QGKcYYiZY3dAsgbboTlld0BpHWwGJ293QN+zzsSfcndA1xnxsPd3d0CWsOdyk3t3QH2FT654gndAr0fyDaCCd0C+jm/OCJJ3QEZIPlRLlHdAZUzSjoyhd0Abtr/xl7R3QPDCAa9vu3dAEp//5VLDd0CLpdwY78d3QK56tbbj0HdAwkxuuIzWd0CAxrBM5+B3QOBQfCy74ndAoHU9oX34d0A5LqiXRv13QN6Q9e/V/XdAuhWz/vYBeEDthuqToAJ4QO2ke5DmB3hA+bLRGf0HeEBUPXuKxQh4QOIuCxIjDnhAXk4G8YwSeEDUoFOObSJ4QISCAGGLI3hAVJFFI9EjeECect84EUR4QGpvWlB6RXhAjsJzT8tReEAk8iTNk1J4QDCk9XeHVXhAMoftNflgeEBhw4cgGmF4QIKkdZC3YXhAFHa5A7dieEAw1eFfDnR4QHg3NtBbdHhA7t7FfIt0eEB/livKr3R4QK5zvNnFdHhA1Fc1Ry11eEAsHD139nt4QNpL9gEjfnhADXzV/6OBeEBlTpismYR4QIwagYNPiHhAc53lWKmNeEAlOu19RZF4QNiYUVyVkXhAkA1LPO+SeECGCX0KB5N4QNrk54unlHhA4vjY9aWkeEBiuYHm0rN4QHzuNsDjt3hAmlE/3De7eEAAxBWgy8B4QHSRJn4+w3hAbZOJAy/LeEB0GsdnQ8t4QCFW3ik303hAXtl20bbUeECGrvrwlNt4QABT9qOk4nhA6lrJBJ3jeECYvXrGAvR4QCf1KpeM9XhAApVga54LeUDEMjxIpBN5QBJpya25I3lALiVI6bIoeUAyqvwGDC55QIV7wipkM3lAj8WhIbYzeUBYYPAF5Th5QDUQ/jj3QnlAllWuF2NDeUDrUjiB+UN5QO73Q4nLVHlADubcKOlgeUAigL142WR5QA071PREc3lAUXH7hjZ7eUCc+51dP4N5QKQt7O1ek3lA9HYiBMCyeUAjCjiKz8J5QNI6grcHzHlAnG80gkLUeUBKLmFFzNV5QJp6OXJQ5HlAuIRGfCLleUDlOh7CVfB5QNBbvB8Q9HlA4zxc8RwEekDtUCSd9wV6QG80mdH3C3pAWimgiv8TekDh8kCFpyN6QG5EzMZoMHpAPJXSkSwzekCeD1leDDV6QLolktcuN3pAQTjAqhpFekCiWUX6zkt6QHYOoNwnVXpA3OoRNiJcekCgKlsxhmB6QM/vePcoZHpATLXWHTBsekB9fvhWN216QJ0mz8aPcnpAiTHIBzF0ekAsAByvx4B6QFkuuoHzgHpAmDRE1FODekC6X2Ou5ZB6QNsc+W0eo3pAWgVzmnajekAIp0HqJKt6QDpIMUQUs3pAhe+xUC2zekBCEquBDLZ6QLxxByIdu3pAJ+ZkbfG7ekA4leB3EMN6QDVTseEww3pA4E/lPBrGekBT073RQcx6QNyCbaIgznpApsPmETHRekAayxoIvNN6QBR7oRJJ1HpABH1H1UjcekDeK0tgZeF6QNELTA9K4npAIIee2FTjekA0viJai+N6QGjNdYVN6npAgCTo3TfuekA45DWDFfF6QLbFqRhc8XpAWeVe/D7yekD2tF/Kdf56QNWHwUxYA3tAElQ2k3cDe0BKr1QQ5AN7QEJcIit8BHtAVUYelysOe0CeOszkyhN7QLi5fSqJFHtAESLsMUwVe0CPIHC2Axh7QD/rdeXVG3tASGuillkle0C681GXVDB7QGqGA9FhPHtAYCtWMGhEe0DqFrMBDVx7QJUCa4U0c3tAf7ynuQ90e0B9FgVhj3h7QC7NMua/lHtAp32hkSKVe0BCIfw10J17QMKHwkgno3tA5kvmQmuoe0De+Q5EycN7QHZTKiB7xntAysZ1R7HRe0ATnBOEAOR7QNiQuZwm5HtA+oe4iDXze0DKse6YNPR7QCz4xHaM9XtAGplpzir7e0DCzNhPkQF8QFHpd2TaAXxAwAYZxS4DfEAiKTCyZwR8QArXB3iZBXxAIiW+3PMIfEDd6GkeiBF8QHdmFpjSEXxACD2tMugbfEAAdNnj5CF8QKRS83iXNnxA897j8cxBfEB0OCdKU0h8QEzrnM6qTXxAIgF0Y9lRfEBVR6vqDFN8QDBOkKETYnxAcm2Ie2l7fEA+YXlAb4N8QEh8ErNei3xA7qKVLHuLfEBkvxB2HJN8QH5Aan9nk3xAThoQLoaTfEB/Q4nt05R8QNkw4XxYmXxA5tF3o1WbfEAu9CT1cpt8QII/N56wnnxANERppA+kfEB8dJpP4aR8QFRz+wXAsnxAam0E0Hi0fEAc5vq+zsN8QIQl8yTO1XxAQICkoPbbfEDcWWz3V+J8QFpdOewQ43xAZrHhfv3jfED+3EiKbOh8QLqC3EcC7HxAsLRVRhbyfEAQjdO4VPJ8QMpDlbJYAH1AC0qYpAMCfUBqtdafSgJ9QFql9PUCEn1AJbQmzkMSfUCo095pYhJ9QOwnsNquG31A4mIjnjsifUBOijNIkSN9QOKFQyizI31ARq5I5aExfUAo8k7KY359QEAM/H1Vg31AqO2sRZeNfUA6gY537pJ9QP1wfIA3mH1AJv1GxvWbfUDAZ0jU+6N9QHQlw/WkpH1A3nB+RwOsfUDkouYwMMN9QIRMb5LmxH1AMpZ8FfTUfUDw+75QbOB9QI4UiVna4n1AtD0lCZD1fUDmnZfLNAB+QHb2aaVEEH5ADi3nde8dfkDI8XKHNR9+QCiaCbwjIH5AwuomeUUjfkC0HqBqCix+QAFeO80gLn5A54d4aT8vfkCS8w4VMjB+QJqxhw2SOX5AEL4sDb5LfkDAxFeZjlV+QE5Q1kMRZH5AqFMhOBRsfkAqIKJfHnR+QGL8aMaKg35A1o+dkbyDfkAYyElxT4R+QMyOu5vUhH5AFiBmfLWIfkB0TJ+ioot+QIgvApgmjn5AomMTDt+OfkBxFYf5ZK9+QNCt5EGZsn5ALCIq4XmzfkAUUYAhg7t+QMlIVfLRxH5AdnO2wHPIfkA626EXzs1+QMy4mrwd035A5k0G1t/UfkCe0s6IL9h+QBwDm6p52H5Ampdv8gHffkBose9FouF+QJaqeN9Z5H5ArqLdaLLpfkA9YcMG1e9+QGqpi3YgAH9AJX69cpQDf0ApRz9Tmgt/QHFb0kdKDH9AObO09McPf0D9FAFzoxB/QCoABD1dQ39A2QiQgWJLf0CGbUD0jVR/QII28EKKWH9ArBkhLDVZf0AQxWKN5V1/QNPRUiuQXn9AQmPakuZff0DkizbUO2N/QEAAf+MvZX9ACmfQNJBof0ATcplRuHF/QOKJa4V7c39ADBP4Y/tzf0AgXBL0V3R/QIS4SnkHfH9AKhqRybaBf0BszoPVoIN/QK5h/9NjkX9Agd3FQayRf0Cu4p8LM5J/QP5QK36Xk39AADarK2Chf0AMTb0EQaN/QIDOr/J9pH9AmX/TYhOlf0AAtbU6nah/QEqqm/JWsX9AnPA1Do60f0AXkeHHqsR/QCROtOfNy39AkJqhkFvMf0C4auXu1NN/QOAQfWef1H9AERncI9vbf0BKDdQ84ON/QLKWbe/I/n9A4y/zkIgBgECQbFLUMwSAQEzMWVh4BoBAiMIhweEGgECoYXFDeBqAQNAR6wzhJoBAe0FV8pApgEAWTH4YCzGAQHW1a3DrN4BAkOl+ValCgEDZSMSV9EiAQCgftJXmUIBA1MvlfhRRgEAChmK5Z1aAQLxSrUPlWIBAxclrkQ5ZgECvUGReIVmAQKbxMy3dWYBAfG3k90VagEAqQGPyCWGAQMMV51fHZIBARrkQyOllgECtdyfAKWaAQLJWceUqaIBA977heDFqgECGcOuhTGqAQCj+GZ7wbYBACgoo2e5ugEDWOUgQKG+AQBvxy8kDcoBAlAglVSl3gEDgqPW+J3+AQPj26TUeg4BADkfZdfyKgEBRUtIUHo+AQK0ik5Kvj4BAyNTIxh+XgEAGBqMiZaCAQIK53UkDooBATMBjWc+kgEBFXOeqOqaAQOcbMsrzpoBA0EtDrIapgEAmf72WsKqAQIvAJ+5Mq4BA9H1cnxOvgEDBpCf0s6+AQLCNuvZnsIBAAJhjACuxgEB+qlXffbKAQIj5T/0FuoBA/M42aJW6gEBOCl4bs7yAQOl8ZSyIvYBAyjw8G2C/gEDQwSd7UsGAQNo8F6abwoBArRGY/m/IgEBI3VWmU8mAQDhUARnXyYBAYBXRDAbPgEAcYxert8+AQHrqUVYs0YBA8ObvpkzRgEBsXlv5X9GAQF8L6XBK2YBAyavky7/egEAa4JwaROGAQKyzpe5r4YBA9kalIBXkgECh2GeQwOaAQDjdh5r46IBAOEZjXUHpgEDIKW/lb+mAQFzcJX/G7IBAki+iz0vvgEAK2Vro9vCAQLYum/E+84BANV2xBGj6gEAErAH7P/+AQNr9b2pAB4FASlD1tmcJgUCsbQ8qugqBQI5MeWU+D4FAtRy2+QQagUCUXtKJNB+BQBClvqk1J4FAiRWzX7YngUAKfLEb8C2BQCD2gAQuL4FAqKmbnJ8vgUAZJnrEvTGBQDoziXPzMYFAHZJO44I1gUBMoC8i9jWBQGyiu7sXOIFA7LfdACk/gUA00Fhkl0GBQHnqhq2TQoFAcwLZMC1HgUAtQxEYWkeBQE1nJquXSYFAiMeY3AhKgUAC2NhWm0qBQPuman+0TIFA9BqYmhVSgUB8f2IxGVaBQKpZzl/lWYFAI1qT0xtagUA01lYL6F2BQPS4ImIXbIFAMM3W1RBvgUBSmHcsyW+BQKoWCuTCdIFAVpR2Y3B3gUAqVCiYGnqBQIhm/Oeef4FAR0LWm8WBgUBmldDwTIKBQFBZAumtgoFAlIWZgwSFgUDYRyxjwYmBQJxgsE0FjYFA8mpgEFWPgUD7bq0Os4+BQCiRJuj5kYFASFqikPWSgUDoLwwyVpeBQGuHoQCdnIFA9vXEGdqcgUDS+m9qhp2BQKbEZcTmoYFAFkBUk26ogUBNqukjJqmBQGzpDDntqYFA9Vkk/kqvgUD+0z1HLLaBQJTTvQtJt4FASPIC/f+9gUCOG/4SUsCBQHSH6jw62oFAA4itWefcgUBS+doSld+BQOjBmX5A4oFA55dXIqrkgUA+hCbQ8OqBQIRphA+X7YFAPGorpZjxgUBoU9Ef7fmBQF7suGPw/YFAXzC/zeMBgkDtSTPt+QGCQLEUSUygA4JA2lCW3QMJgkD5nBbItRKCQLtJipTYGIJA+MNBk9YggkDIHnpv1iKCQH5LdJjQKIJAlrlvHeYvgkASwnRkoDCCQBo19NgJNoJABEFRK+s5gkCkvdavmDyCQMzFyhnxQYJAtffw0QhOgkAMZooprU+CQMCVS/s8VYJAQr0jiwVagkBxzVLq1FqCQGRjufOpW4JA2ORdxxhdgkBzECepM2KCQByEJtNkYoJAQqslPTdmgkCz7ib4OGmCQHHUz4EEaoJA5PGeCz1qgkB+DknFOW2CQEA+oJQ+cYJAd9TOBg5ygkAGGz/faXSCQBBC/ubRdoJA3muD3d9+gkDjI5lC14GCQK5seAcqgoJAFmMwGYuCgkBEzSDt0YKCQNtMyFqphYJATCTFVkOJgkBkmrjzyI+CQDd07fBDkYJAw1BpBTOTgkAA8KiErZWCQF/zSvo8mYJAHPrcjLCZgkDIBi5gD6GCQAQqxAg7oYJAliCA7wupgkAa+hcoNKmCQATDVcdLqYJA1Z6JSievgkAUJGE4CLGCQDHoA2cKuYJAvuqLMuK9gkCIVRef7cWCQIgdegMDx4JAcr/MG7LJgkA0G7n27smCQJ3DS7NfzIJAIHmaKw7PgkCkUM36EdKCQJT4REZ+2oJABwExxYHegkAmCBioh+KCQEJNzDSm54JAagNFTFjqgkBY9UprrvmCQKX6ENju+YJA+oiZZeIBg0Aw+Hh4zwiDQCO9+AndCoNAy2QogRELg0BqJLuReRGDQBRaVyR6GYNAMGkNUkogg0BySQ4rcyGDQKoiz6pwKYNAFqNgoDAqg0C9lNy9RTCDQLhPLq9oMYNA/jddbQU2g0Bs31peHjmDQCaznEQoOoNAttzIwwxCg0AIKLJukUWDQO7MCERiR4NALswchVxRg0DcbmuGaF6DQJleHaMJcoNAHP1i0+KBg0AQYH2R35SDQKSl6vMLvYNAmHybzMvHg0Dz7VKYLciDQIyFgmzC0YNAsGaLUs3cg0BwDPRodt+DQIE2TlIO8oNAIIDScw/2g0DGFoTklfiDQDPIUEYzAIRAaLatC5cGhEAPePiN4AmEQJ9/QKYPEoRAGsfUhCtZhECJZZ8w+1mEQMjxqp+pWoRAklKeEq5ehEA7aHDrrWKEQEiyeK7LZYRAeGNJIv9ohEAgBfkL5mmEQCn5klMAcYRA9jNLWMl3hEBwjg7F+HiEQL53aI9feoRA3x9h7Hh6hEDlhHx6J32EQDonxUK7f4RAIpdzmdR/hEDKsbbCb4KEQIK6NNKngoRAVikz0h6FhEDU38hOp4aEQDyzJpVkmIRA0nnJsGmahEDO9AXtFZ2EQA8Jvdi+n4RAFx34rnGihED0sp21HqWEQOX8OLbMp4RAK4GeOneqhEAl9wXtGsWEQPlZ+tdpyoRAilpwIhnNhEAVq0iuyc+EQOAvUWV20oRArUXn+WnZhEAEQTRvrN6EQL5PTvlp4YRANvMh7i/ihEC5/gAV0eeEQEaIB+Ri6YRANQIIuH3qhEA87dW/LO2EQFZhTVW/7YRAQu3UiDXxhEAjaHbQY/GEQGQltm9q8oRAoo095xj1hECVF9uQ2veEQLJ65ZE0+YRAco0MSFz5hEDVV0JThfqEQK6uGMEvAYVAUEXj8w4WhUDDg2T6ixmFQJu0qO3jTYVACwgM7q1PhUDjCht151GFQNqtuWTrVYVASOX6/eRZhUDmGdU1oGGFQJqaASHlYYVAeAQus6BphUD6FGUGOGqFQGAKGxuZcYVAjomc+v5yhUByUpxvs3OFQKLd1vaXeYVA7nrIwpCBhUBQ8h1gq5+FQB6kalyaroVAxFxMy3m/hUCu/ZOjPd6FQJXqQDJD9YVAPx6KnGNKhkDqW6aTY1KGQLRiEDWjX4ZACA/9d254hkDWs/36JbmGQKBmlFofyYZAidZYUpEph0A2DU5OkTGHQOpN3auIOYdAik4/+VxBh0DEDtb9jkGHQATpoEiRUIdAohu93Nxqh0DaL5fgxrGHQM0grhfKuYdA4R/cx7/Bh0BGVKDPwsmHQAD7RkejCohAUHoPGLZOiEBHEVfJKLOIQLau0GrX0ohA + KBZXds7jZUDUvl+A/sRuQN3+1P+6wnJAxet5i0KzdUA4Cx9LfhN5QI5fI1AWhH1A0m/CtEOqgEA= - + - l/GZRNivtUV6UMtFAZaGRM+JjEYTAZREISVnRZ1BXESIBlNE+MWrRRpZpUQihQlH/4xDRGYyOESfy8hEL+mYRGsz+ESrVzhE7wOnRKlIiUXoD3xFwspWRGx+UUX5aTpEljXTRNQHkkQw+jlEYbYBRSnJJ0S1tExEZZwoRcAu/0YFzzZEicuKRM6MEkZ/EFZFhNhzRPLjM0SjhcREiDPbRBNSqkaQcIBEITJ4RKN5jUTwLHVEehy6RdCM2kTRgtNE/iN4RF1Zs0T6c1REsZ5WRKT4r0QPrkNET8qfRGm9j0QHX5xEUEN0RYczE0Z36B9FU658RBCpnURrlxtFQqDrRBo6gUSriTBEFfKWRDCR1UTZO2lEhztURF5gekdBKpJEj0iHRKjNxkWFqsBGErm/RPxLkES+i4tEOZZsRayZPUVeQsVEPktRRIKSpEb2sI1EKdHwRA1MOEX2m2xEGy56RFTI3ERafkVEP2ptRM3pQEdGAY1EdhNURpS3gET36bdFI1xjRO+7NERlFf1FO3OjRGgWCUXUg0xE2m+CREEqV0TfqzpFR2kvRZzYCEV4SZ5FSmUQRbrcJ0VeTYREY0e6ROCTmEWCrsJFRedEROiCIkSywldEpkULRdSDz0QU2EJEemguRIkWYUR3wVFE05dlRKM+j0R4uE5GzlyYRHJf8kTCfHFEo8AyRLuXUkQ8mzlECuE3RWXST0RDIpdEeW+MRPcHGUV0sUBEvIigRIZqhkSPSzJE5CKURNEbQEQs/H9EczpURNoqcESYrTpE+D+LRPeetkS+pl5EdORHRAwP0ESieKVExidTRJo+akV0BSpEWck5RCp/N0dnLTNEYaqlRLqpnEQ/xB9EmOuZRYZcSEQ5bBdEY593RP+RPkf73aRFM+WPRZ7+uURtuMVEF7oPRalL5UVDvEJEaYWdRNkeh0WwUKZFZMeBRNbmKkYnDIREpbGCRCyNkkSmfDNFHSBZRKYP5kQtp4pEU4EqRJPj9UThmdxGVVIrRRtRB0b4wGVFMeKHRX8mxESDBAtF93ZoRP7qZ0QDH2dEVthSRJusgURHYLVESN1gRJBZtUSjE3BE67NURAB6pUSgRzFEN7TURP7LOkSAFzdEH28wRcrLgkTX2UZE6s2XRE/YMUSH/ldEj4E6RPQ2pkWCnhlFjOyvRADuGkaHdnJEyWyJRHcnoUSF89pEI0VZRUxrp0XIsphELdYaRTzDpERsjT5Eq5cvREQac0RzzYJEktmYRG2qAUXxeTBFF18YRWnrV0Qd8jdEqsIzROiZK0RKWJ9EgZ/wRTcSUET3puZEznHDRXtdrUQW/TFEoPeJRTOygUS3eX5Eki0+RIYKKkRzqaJEupphRGXMckTdFDxEsFHkRLHyqERvGU1EbzCIRO1cCUXKJzFExKCYRJMMakTVXZ5EBuFyRAJnM0QHviREPaGNRLiWX0SwDxpEafqWRA3ZokYeIcZF9O5pRBtoakTWFopEo82XRJU9UkSxyY1F+E6bRBVYm0QRXEBE7xqeRDOF0kT91K9E/Ql0REa2t0Xjgc1F0FWsRReowEYfMYNELsCcRKuxpUTK90lEAG+CRClRdUVQpe9Ek1qBRKFiY0WATYpEYfeGRDgCgES5s+lEzw4GRpydmkQLPbdEkue7ROlwUkQJQYFEGpTKRZAq1UTa1C5EoiyWRC6EZESggmpEL6zyRF5/OUSg5BZFCjSDRD+7UkQ34AZFVnY3RfGXZEStNIdF0+WmRLzIcESQcU9E/741RAyeb0XrFnRE9m81RYFu5UR8q45GoOeWREbUYkVmFzlEjTAfRBmGH0QdpCVE8F+9RK69JkabhrBFttlkRG5ccER7pqlEMZjhR9NYaUQmlZRGr9MaRROrcUQpcsBGZ+mCRVlTOUYg7vdEy23+RAYAOkTHND5E7hwmRNwMO0VHA0VFcISjRKjjsERA585EY/aBRHPlj0TTvrVEReNyROFGcERJA2ZEPGnTRMWrzETXEWNE8J92RLMHZETgoTNEaP7hRPcd8kZmwGlEDhk1RHtgPUZ4lmJFTbI5RWr38ES1KaJEjkWFREAmXEVXdHFEpCFxRKO5t0XFGh5GK7OQRasgmER/1PtEJITVRO68KUTjwCxFg7s4RBxyXkT1T3VFaOk0SUjUikUjlwhFJSM8RH18R0RQVm5EdVILRY8+NkjZ6hRHNiRZRj1xykRW4DJFep+9RCONL0VHln5GBYKSRPClqkSvG3BElds8R6ang0QzxoNGlEv6RGsO1EQVUcpE85ByRYoMi0UYL2NEKz7GRJhJO0WMmIdF8ENuRddCrET2CpBEAvOeRrnbLUZr3PtECAHIRCvdm0QELaBEeV4yRPSZ50Ru6kpFH5J/RKlHVERJT3VEBJt3RVMnm0TOsHBERQJiRQ88gkRTzjREE2WlRdNcNkQMZtNEURtFRKEcH0RZadZFYuDmREUDVkRe0HBF7BwoRdHVckSKQapF/DOIRCrUpkepuspEuteiRtsQs0T3Pw9FsMWpR/tOK0UGtfdGrgrPRee9gkRN2l1EYt5ERNSECkVvB1VEmCYRRUonT0QtlwNHre/iRP+SU0bOQmlFEi4CRSIyf0XYOY5EHehCRFLkR0TXEpxEltyvRJsygEYfxI5EXh04REniBUW2UdpFIhp/RE6xDUVaGH5FygwrRMskRkTw3pxE+gGwRIkGnkSZ0MJEB6phRBNyQkQRWElEowqgREJANUTB9AtHFmBoRPTSKkUwMKVF6uw6RudSSET0mo1EdWtARV2xVkT9+WlFByGVRBB2mkSeDf1EZpmFRaOl8USkFidE4aRFRetWVkXE8+NE2SGGRKW/qEQv55xEHkXWRMTvUkQmGopGmPJnRI7qIEWWr2ZGEfxgRZDRrUQvZiRGP2oaRbdpLkU4oJRF/1xGRJd/m0Su5VFF1Y4dRan2YUQzzmtE80S+RaVVNkZ/NelF8gSGREAajkTl/m5EijhLSL2rskeYEqdGcPAzRhucHURFUBNGQVbSRBrx3EVtFKtFmOMcReFGe0QF92BFpeOlRIWS4EQlNplEQ3yaROb5RkRfTX5ExO7MRWIQt0cm4h9FHsXZRNbG1ES+aH5Esp+QRFIDp0Yg/T5EHiEkRSfIikaVQ0BELCYhRRn1mURJpglGXyMYRajStET7rBVFY9qJRNZ0RkR7uFJECFyTRTy3LUVIW8BEn+twRgSJc0XIsy1F5HV5RBZt8URj16BFgUyVRCmKn0SaE3FEsLLSRJTexUYjzh1F2TgURW90k0SDcqxFsIOURGD/h0SL+2RE87XPREmfNUQnM1JEFPJtRBahFUWCynZECBxZRL7puURAo0BEvkLlREb/LkQ6d29E3gB5RFt0WkRXP1hEvF1wRBICPkSAFYZEzuyIRAdDY0RWvAdHQ6THRbeEmEXxPqJEwcjFRarNiET1O2REEBNIRW9kRERF3YxFyyoJRX0jcUTR0lREn9gXRVWoqkQDclhE9WlrRDl8YESmu2BFlFOURLgtOER3qj9FflM1RCmdVkW8rEBEj1MkRIIaDkUYeJFEht9pRI2Zk0WY2ztEw3OlRHI+iUS306tEE4qURHmdaERR0xhGG1zhRPhEQkQxOrNEDNc1RRQv5EQFYaVFL94QRYz4NEUQbxtFoTF1RFwiw0TvDz1HTAZ2RCqkx0ZmYyZEWXSURQK4tETWDjVE/r8qRa+DrEQSrtBELxPuRBwVcET8OI9Exy+URBEZsUT9ojhE19XkRNtKokRGVwlFFqaERn9pPkQzGWxED/C9RcUVskRMtDJFEV5PRIZ/i0RhbjRErg+ZRFGFAEWny2JE55VLRBKvOkSrXyxFZhS3RIKyQkVNP1JEVxxPRJb9u0RuVFFENC5CRNPd6EUxmF1EZanGRNRTMUSXW1JE6ILKRDLpEETTr/JEMMYARagRMkTX8VlESNNLRYZG6UQZmohEKKr0RO1sSURGbcJFNBleRGeHnUUNHi9E04I2RT4sfkhSPSlERCulRJ6t8kcl3+BE2cNiREDYTUSH/INEKI6LR99zZEVxm3FGhlc6RYC9nUXQDRpFtc2uRKyXTkQjvJZEfEKGRAHqVUTiJmJE2+aaROnpbEQTKH1ESxVRRKmINUah8n1FxTA+RC34cEROg1BFznm7RJWXpEbmdphFXWmjRJZyokVu4ZJELHyVRP8y6ERT2BtF7fhRRNIyRURgAitEam6ARffdi0SKk4tF3wxzRLRUjEXad0hE/FYvRZL5tkSPjOZEn0IiRlCbd0Vk0/dETfPSRC2qoUSGJjFEk365RIpFb0SXdLdEQp8yREa7VERTpoZFmGiDRMgBUkXfRkdEmyRkROwBN0Rwl/ZERIbVRSk+LUSMwjFEQs/cRMe1wkRSU1BFnc1XRLaWN0QYdxBFOovjRKwOSES4pXdE7ZTBRfhQUERPgqRE+QtFRLlxm0S3IwNGQUTfRdvXO0W916REEWofRAGvOEQMvUxFX+wNRdhyP0ZOS6JFSenHREYhk0R2yD9EOLLHROi3rUSJty1GkYWORaKxVURAIuhEVU1HRKnoRUQHVypEq/71ROIDb0RuaS5EMI51RAwbS0TA1l1EF5N6RO05gES2E6pEueRBRD4WzUWO9z1EytZFRSDKJ0WSikFEjOw+RLmQVkQ5yDNEQWFzRNVlC0VlEg1FrUtuRAGaP0T8tTtEFIWbRIIRU0QtfkdE2qASSL1iNEQmOYlH9X0wRNmhW0bmEiVHJdKWRUYYjEV2hytG9dbDRPaKjkWvUZ9EQW0zROTkykRQalFEflp0RMM2tERDu4hEmdWORMPIkkQY5mdE699sRM9WO0RhNZNFKUySRX8lVEQ2qW5EvVBQRGtTR0T0rDZE+bSTRDhWmESpQEpE+jVXRKZ3FUiLdo1Hy0GfRK+hKUcH4D9GfPk7ROYwaUQvnR9Fx+qeRLokgUSAA6REInnpRPMjakQ4MTZEiHZQRP2/ZkTeyHREfraARJx0N0TOgF9EIwCTRBrZJESgnmdEftiaRHBUwEThfvlEFlilRObp0kTmnDRErjA5RBcgWESd/ONEL4ZORN4QgUTfgBFF4q5NRZl4Z0TG3pREt/TTRW+6eEQ4AC1FgaTLRcB9t0Q5kBFFyczmRXwjGkU5GoVE2iC0RP0vEUXZDttEsfeERGxGlUTeMD9EIAgmRahgcUU6b3VFD6LcRYJwj0UuUz1FHcGiROPeUUTcoTJEv7YVRdYGkUTs+3BEHFEtR2gWMkRS6oZGRpUCRXhVXUUMXj9GpUYZRa3EVERfr8JExhqRRdjYhUU4y6ZEoBBFRCM+T0SS7MREBEDcRATSQUSxu8BEGmScRFSpMkR+Kp9Gf26ORDrJI0Yx1FFF0C70RAgFCkfaDjZEa4eQRn+JcESJUyBGpEaIRJT+SUTEwYFFn0roRG/VREShVEhErvTXREIFbkQtcYlEJmXxRHDnhUSeZFVE8iWyRC+IDUU7U0pEnukjRgDUzUX6eVlFqYlQRAIOjER3zpRE19YFRexXDEbSnllFIXNQRTT2r0Rkk5JEBqsgRCOcxUSnro1E + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - hEy7e3nAckBmxMywpcByQLT7jkoLwXJAj8OQwG7BckBQ0SVdycFyQB0qP5ZRwnJAn2d09abCckAkmlup5MJyQNGizN88w3JA3Gg9a3jDckCc2gyxw8RyQDQCL5IByHJA5hHmbljNckAQ21DP19FyQPLp0MxD0nJAfMMVbnbTckAt8Cklz99yQDGfF+K44HJA3EWzjVDickDR7dJOkOJyQKLjyt0k43JAWBDQVlHjckDM5/LxUfFyQLi3ZXi68XJALLJVerbzckB+ggZyo/RyQHy+j1TB/3JAmFdsQmAAc0CqNfex+QBzQJMDCbk7AnNAlBFvTM8Cc0CuK8nIYgNzQK/sSRL7A3NA+Yr2qQcSc0Auo5dDeBJzQLbEUwK9EnNAL28EpPsTc0CY2IS8BxRzQBCfiSFTFHNAp5T5HXofc0D2tlGFoSBzQNCthZI5IXNACzmq2ngic0AfHPB3yiJzQJdoI9ASI3NADpsJxwUkc0DXiu7JzyRzQBpC7FhNMXNARr1zWtIxc0CEV0Gq/jJzQCJQeSmhM3NAboxLczc0c0DuGAwI4DRzQLznl0e+P3NAopZTuORAc0AuqMJ7eEFzQCToLGu4QnNA5GyJwHpEc0A2uCztmlFzQEbFuPMUUnNAg0q3OkBTc0BgsjyiolNzQEJyDO/iU3NAbwgsfoVUc0AiMZTr811zQCL2zVr6X3NAlp8r2o5gc0Cm1U48HWJzQLzsa8Q6Y3NA8mMxJM5jc0DyXfbHK21zQL4q8cNQcnNAPLDnzWlyc0CE3uofhXJzQP7MDdq2cnNAcvdQ401zc0ABxdxwu3RzQMR+8nlMdXNAPKgoadF3c0CZ2NTU33dzQP6aj2sofXNAXGPXJnmAc0A5QPyLooBzQNOKePsNgXNAiPW+qF6Cc0As11qjfoJzQB4708bkgnNAwv7NdgCDc0DESMrtD4RzQGL2W45XiHNAjFszRIeQc0ClNU07TZJzQIK9AvVflHNAcEkBEPiUc0B8PIBkuKBzQFpeKPXmoHNAAB+jI62hc0Cpa/RgWqJzQArSf1znonNA3RHPowOlc0DnXWFO1bBzQF5cKbw4sXNAmi1Q+ICxc0BY+vy1WrJzQEyjOe54snNAkHrlEhSzc0CSXvRhtrNzQBUpL8UNtHNAztlPVvXAc0CX9yFR0MJzQKJWd58lw3NA+P5a+HfRc0Av5uGr2NFzQEKLfBb203NAExYjouLUc0ABbTDeo+BzQOaO/cg44XNAukRzuWThc0Ayyg05POJzQO7XSbd64nNANLU8xhHjc0BE9K+c7+RzQMhwuhA49HNAAXEd3oz0c0AflLa55AB0QEBk4Zl4AXRAEpIDfKUBdEC2QcLEugJ0QJJ15ndPA3RAX4JMA6oSdECMT3xITRN0QBTLLKRKIHRATBebqo4gdECm9K7ItiF0QF3TSjy6JHRA6F6kPbwydEB0fepT4jd0QNnW0eQ8PXRA/9paJjtDdEBLKFI+eUN0QMsXc473VHRAeryEJIxVdECAY0Sl2ld0QGRKuuu4YHRA6Djk7whidECoGJEQfWN0QFIlVv61Y3RAaNbefw9kdEBTz6SuTmR0QBqQwq8icHRAuH9+QUFxdEAEKKgLFnJ0QNRlIvI6c3RAkP9Xrzh1dEDMC26R/nl0QK51Sh/4gHRAGFT94k6BdED+fJUn+IF0QI8FNM4lg3RAs9PvIWKDdECatqSru4N0QBOnXe4WkHRAt0zEqbqSdEBCFHPyUZN0QFpIXD7vn3RA1nRdu82gdEC5e0Z/iqJ0QJYm3FS4onRAlll/9A6jdEDKRI4Y+q90QDajpvkKsHRASnmAacOwdECT+upiUrF0QJziDFtvsnRAFs80SvuydEAEurq2IbV0QPCtcjfKt3RArBb9FxW9dEBCmseZtr90QLicr7Hcv3RA8GJLw+PAdEDBOp9XeMF0QMKZa6RvwnRAHgCzx7rCdEAvdFUqI8R0QEHUQjXLynRARYblX/zOdEA5bob7qdJ0QEACNjvf03RAmH6L23fUdEBAw8WGzNR0QFqWEym04HRA3nhBh7jhdEB8XFb6QOJ0QFLak79P5XRAWSpwz6jtdEDL/Yq2wPB0QHRo3YMH83RAyx0xGI3zdEBVtMv/pvR0QHYKK9ahAHVAC5TTU9IAdUDyYvYEYwF1QDIc05ldAnVALOaOGJoDdUDUEIMF+gR1QNRGSvcFEHVAMqO5LiMUdUA8IXcbDyF1QLIiq/FQInVAVAg1EJ4idUD2SJB7qzJ1QDKf3ErMNXVAaLAHDvo3dUAeAOR020J1QBgUcygHUHVAj4nr6YFRdUAWiA+EelN1QAxCuOJ1VXVAgiluqAdgdUCBK0xyN2F1QCAVf07zYXVA1ly4jRBjdUB3zgJRZ2N1QBY6iS2GY3VAinNb0XZydUDh26dpjXR1QB8s2PZ3gXVAMm7zOK2BdUBEBAPHu4J1QKXwVB+mg3VAHGR4C5uEdUA8DbHojJB1QCY0BEO7kXVAhBHAJ2CVdUDMuCcTzZd1QOzHHL+SoHVA7H3DzbmhdUBO9Rdm+qJ1QG9lfmaPo3VANvh0B8OwdUAanRJ557J1QLqdoAo4s3VAScAohM/AdUCwILlV+MF1QLQq8/DN03VA5iF5Fg/hdUAG5r6RI+F1QEhOgJui4XVAwPdLLA3idUD4ZXG+OuV1QErtrkKL63VARAKEJkztdUBUHIR/pvJ1QLTzJXHv93VAfW2RYAD4dUDkfqppSAJ2QKCffZeVAnZAk4WuM88DdkBezEe6ChF2QIKlhdNPFHZA+r9DjwsWdkAZuT/TiCJ2QLp7lmCQJHZA3HkjiEsrdkCKcUqOHzF2QKrOca2YMnZA2/IUZSYzdkDM0u9jUzN2QJQMbk2dNHZAsmUbMk0+dkDyC7+lTUB2QB3amLDfQHZA7gq9nh1BdkA4UOiDl0J2QFgONlvJQnZABbLcJqdDdkByVanseUR2QD/Txh7LUHZAJzkIYhNRdkC8XUOkzFR2QPrL850jYXZAua6O5N5hdkDvHPrDUGN2QM3EfDuNY3ZAyiInZeZjdkBJaw8t22R2QL3NJzv0c3ZASEq7PJKDdkCuqHsQX5J2QGS9tu5doHZAHGfFujmidkAdyGwdULB2QJnzgju2sHZAWilzucCydkD2O3y5DLR2QHB8vG6vtHZAUyaBIT+7dkBcIjc4wMB2QFpNdeBMwXZAOj77exnEdkBAd6gQz852QD0+Luzw4XZASOsyF9TidkCM/BoyMfN2QPwR9Q2Q83ZAIjKMsjACd0A2ZsqdARJ3QBpGLD67IXdA1ZRw6Q8id0CP85+FuSR3QA44/TnpJ3dACuOvyUItd0BYCPXqmDJ3QLzXQiamM3dADCZAQg01d0CfDYeDnEF3QIhdRD6TQ3dAuHZx1BpFd0CZJ7OBS1F3QCsFwD2SUXdAbt1SjY1hd0AuWYKIo2F3QNgu/g06ZXdA8EkIbSdvd0BIGU4en3J3QDaw7TyPdHdAiolO8fp3d0AGMlxek3t3QKjOaht5gndAPJUuDJ+Cd0CQHuNwTpR3QHhdv7COoXdAhoLuq7iid0Dh2z30nLR3QK5umH9Qw3dALORNguzHd0B6lrHbRv13QDXNR3vX/XdAli2C5qACeEDq5iuX5wd4QP7/+d78B3hA2tP338YIeEDku9S3RA14QCbtEO8dDnhAkr7ZqWwieEAUVCJKjCN4QDhCk0S8I3hA7ps/GDQoeECZ7FyeDUJ4QARRhJERRHhAAqhWfXpFeEASTCreyVF4QOnwcK+WUnhAzoP3WoZVeECts0Cn+WB4QLYIESS4YXhA2KozpCV0eECB6biNi3R4QHYCg6T+dHhAz6C/6vd7eEBsThz6pIF4QI1AIlDrg3hA/hSQuZmEeECEBfH1T4h4QJMoqdaojXhA4JoI0UaReEBieBJil5F4QAS3SGcDk3hADmPoIaiUeEAJgHpXUJh4QLJLyHmopHhAXtT4kzuteEDuGf741LN4QE8a3xk4u3hAPKKzgMvAeEBOI+K0PsN4QAL/g2AHxXhAcTk9hDLLeEDBWWNKRMt4QN3XdTs403hAROV+krjUeECEixyLlNt4QHGXUDKb43hAfY4QFwL0eED+7eYdjfV4QPCnGtmaBXlACBsZQ50LeUA2gDy4phN5QDrTf4W6I3lAkFyZO7MoeUCUmWxuDC55QFyJ76hkM3lAliGfbcA4eUCiYxYvj0J5QB4JoJX9Q3lATl93scxUeUAhtPW66GB5QM5oDpY3e3lAU0BUSD6DeUAGVYVOwLJ5QOyYZkXMwnlA9MyFcQfMeUAW762UE9N5QL6V/qdC1HlAJr1RNsvVeUDHNB5wuOJ5QLj3JYlP5HlAXOilig/0eUC1250xQQB6QLieKygCBHpAAGFwCisEekAEV0/l+AV6QLYBlJr4C3pAnPEGMvsTekBanOChaDB6QMMh+EksM3pAZIq7eww1ekC8ykzpLjd6QPnSyJEaRXpAJNWh9s1LekCWmZsMK1V6QJL7XhgiXHpASpVeSIZgekAL+OmDKWR6QEaveVczbHpAzoI9UotyekDu2GGqJ3d6QI4k3dbFgHpAjmKsVviAekBS7AZcUoN6QJEOxyoeo3pAaqbtNXWjekCKrXNKJat6QC421Q4Ts3pAgoHAoSmzekCABTylDLZ6QIgdrpwau3pAIZlXMu+7ekBsuFa9Ibx6QJHNCzQww3pA23JAK//DekAi7y/HGsZ6QEezAXVCzHpAzYU/8EPOekC6uuiaTdF6QMjLBJK603pAzNoe/UjUekCShyn6UNx6QGLYSE5n4XpApr3OZkniekCKt8oIO+R6QFobRxF65HpAwMs5a1HqekAgGVQXNu56QHjGtc8V8XpAqJXH/GHxekAOT7TSW/J6QEwguW0aAntAyETp9XsDe0BgCtwsfAR7QHJh7mArDntA4vWr8sUSe0DwOatuzBN7QDT4EjWKFHtAy5h5rUwVe0D+P7AoWyV7QByJOWpSMHtAwlpMUWM8e0B+jfdRaUR7QKYTGWU/TntAuCF2Kw5ce0BrEYTwFGR7QKTscLgzc3tAHEAp4A50e0DJFhZ5inh7QMuP59DofXtAkqaxWCOVe0CkZYWr0J17QC0mlHIjo3tA9bMd43nGe0DDCXKhDs97QC7D2lcm5HtAghPErjL0e0AIyDB+jPV7QK7o9YYq+3tAJKcuZtoBfEDCqcDD+gF8QLL7qgs1A3xAMsKkRWYEfEAYAUjhmAV8QNK2ObfQEXxAyVxzh+cbfEBInVXEy0F8QBiqOnhSSHxAmKZI6qtNfEDoW7FI2VF8QP80oX+6U3xABBSkMAtifED+iKShaXt8QPJrfBpwg3xAGbe+eF6LfEChxap5eYt8QKh3ntjGjXxAqFFs2lGTfEC4uv9eapN8QD3KquvTlHxAnIfhNFiZfEDiFL1aWpt8QJydrPyxnnxAgFzxC1qifEAogr9MDqR8QLMOOvHfpHxAQM6NPsCyfEA2/rItebR8QEQ1PwLVw3xAvlrTNfbbfEB2eXi6V+J8QCD+maYQ43xAZf7f9/zjfEAFnNuZbuh8QDigWBXF7XxAGJJhbBTyfEATY9NfVfJ8QPa8Suf/AX1AOZmmNksCfUBiWgymQxJ9QDrEpyxkEn1A6KNPG68bfUDKs9RNOCJ9QN2Fn2aOI31AGfTNa7QjfUAQCwaflo19QOVtJ5bxkn1AiLxqxfWbfUCBJfXyn519QPe27Ov8o31ArUoF/6OkfUDWl0RoAqx9QHBpp9kuw31AsV9BoufEfUBmYMH/u9p9QO9eX3lr4H1APr0wr9XifUCho9V3C+99QIoBtnKO9X1APnYc1jQAfkAs3UI5QxB+QIqo+s7uHX5Aqk5ufj0ffkD9WEovJSB+QEAU4s9MI35AJLpLpwksfkC97zo4xEt+QFppLGT8TX5AoozwhlJvfkB/dhWzbnN+QGrtNrM2dH5AkkqkILl7fkDee5bZPXx+QPeJA4slg35AwmGQNpmDfkA8M0AVbYd+QAZ2XeHhkH5Ap5kOQQGafkCwa8uEzKB+QFuuBaeUpH5A7hQms2avfkCZ70A8i7B+QA8I/IBgs35APo22Tbm0fkBUrtAub8N+QNr5fb7RxH5A7gUOzXTIfkCMa1ayzc1+QN5ZG8jb0n5A4YOmet7UfkAD/9JbAN9+QCYlAsVz335AjGYM8lrkfkAqPZE9sul+QMjiCazV735AP2fplFL0fkBUN9Q/lQN/QDKnhRWZC39ApLscFltDf0AAlgAeZEt/QOwYiwSMWH9AWjZeXuNdf0AkGpsgt3F/QBVrRHoDfH9AMIUey7OBf0BEvSf9pYN/QDa7nGpjkX9Ad2ZNFKmRf0A04Q3YmJN/QAkHuAJcoX9AmDTbtCWif0BKxNWlQqN/QOwElkd9pH9AbHxyYRClf0DqwBd/m6h/QNrCwYhXsX9ARjmahCG3f0CTlmSV975/QD7v8m+rxH9A8eug8M3Lf0CSUvMWXMx/QI5G7TG1zH9A7vCNatTTf0A59Zse29t/QHZSu3zf439ARNDdocHqf0C6Wf+vhwGAQO6JnkNHAoBAqTu1uTMEgEA2tv7v2gaAQLZ0Xx0jG4BACkx0+bIkgEChV0Gg4yaAQJXmoR2PKYBAT6f5IP84gECuxF/UqUKAQIjXzC/uSIBAoEaz2pJJgEBOVC9dtUqAQKqDF1HoUIBAK1XohhNRgEB0zUS151iAQFwN9PwNWYBAKlvo6tlZgECgUv7/DGGAQA14EeHqZYBAGH60LSpmgEDu5C4IKGiAQE2cDqvkaYBADxahpClqgEDantXlLmyAQM/EFq7vbYBAlKjCKShvgEDJlhBU8XGAQPeEkKUnf4BAjCQZDB6PgEDsmgTjzpGAQHVA48Mal4BAjR65ONyZgEBFzQCbxpyAQJIG5JYdn4BA/RBf6BCkgEA+Kj08KaSAQEOlr8FKpIBA8h9YgYapgEBcw/h4SqyAQEsd6RYTr4BAjl5EoI2ygEBxo4i+ULOAQNKGNUUStIBAMMvYI6i3gEC2SGEiBrqAQPqpqi+luoBAovi0Zwm8gEAnxne9sryAQJC8pXA5voBAnivC3vu+gECp8KpsYL+AQLLOjmZSwYBAK5DMAoLFgECLPtvqqceAQE7bEs0hyYBASjqLdVPJgECYfUYcgMmAQPIYN7fuy4BA9nslVizRgEBwFLCaTNGAQAS2rnwc2IBAAotYpErZgEB7SaJD39uAQCYUq+XC3oBA+uRBs0PhgED6GK9GVuGAQDAAAPBr4YBArq8rwBrkgEDT3rK4M+aAQAs9PFv46IBAs47rF0vvgECBF0sgPfOAQDh9i2hn+oBAS0ABN1f+gEBmjPOpP/+AQAgoWhVcAoFAFzrnQz8HgUAGwZ0YPg+BQPJxgGlJF4FAvICICAcagUAgHzRyNB+BQBY+2T02J4FASZxw5bsxgUActS6UKT+BQFlWSpGUQoFACPy8BFpHgUA7yoJ5B0qBQIiJcr6zTIFAmeE+ZRVSgUBg2gWxGFaBQF4toYToWYFAThztgBpagUAuSBK06l2BQBNZA44AZ4FARMjuOoNwgUDlbm/qwHSBQDJ/I6phf4FAsLeyrp9/gUCSncieTIKBQPxVTan4hIFAkeJtGg6HgUBLzxe7pIeBQECxQ7YGjYFAzgwqwOONgUCmn217VY+BQN4BrHCyj4FAVeXxX2CSgUAK0jZsV5eBQACx/rrkmoFALnkCX2mbgUAiwXh0nJyBQG0TYdZGn4FABHYA4+WhgUBwUk4jbqiBQOQxzWFKr4FAbti4ZUq3gUBrSSZiUcCBQB9TrwjiyYFADD6LJfrRgUDcaUi1ftOBQCMjIh852oFAEsJG1+fcgUAKXC7kld+BQM7nBVaX7YFAUECfsJnxgUCeX5HVAPKBQJC/L2iz8oFAAxHsn+z5gUBMWpaNMfqBQPh6qZRa+oFA0HCCZvD9gUCWo+/1MP6BQH552nvlAYJAi5bAv/cBgkAVlnWZAwmCQLbCADipFIJAAQcYL9gYgkBibhLF1iCCQBX4C33fJ4JAEZOtIWwogkDMN7oS0SiCQDZWnmKkMIJA9hCyMuk5gkDoKWzKmDyCQCQT/6pxQIJAe48teWlMgkDi7l5FEk6CQNSXil55UIJAwZ1jFwxWgkCagE4q0VqCQIYnqp2NXYJAshjccsRfgkAKRU/LM2KCQJhZF6g4ZoJANNKH6jZpgkCqQHDg0GqCQFYwcxRCdYJAoSQ8oRJ2gkBMXu6m0H2CQLbrJ9kDgoJAzsSYx4mCgkC0DldjQ4mCQHMn6cJDkYJAcF1nnKOTgkCG1WForZWCQOYMXfxqmIJAHDXS7zyZgkAyHrdFr5mCQFT/3yG3nYJAirpzwg6hgkBDUo2EO6GCQOdopa8NqYJAuhO3+DSpgkCJEGOzB7GCQK9vuwvsxYJAL3kBNO7JgkDzOkccGdqCQFR7Mw9/2oJAgj916IDegkCu170FpueCQOKM1YBZ6oJAWro1HrD5gkDe8q6A4AGDQCPJRLG0AoNA5BnMJOIFg0BAVgcgZAqDQEjdDpl5EYNAckVH5QMSg0DKtkUsehmDQCCNWsZMIINA0glQP3Mhg0DMfMHOcCmDQHZZo2xqMYNA0nNqnA1Cg0AkLd6Ru0SDQFhTn5hlR4NAxhWU2y1yg0BCX2QW5IGDQNKCfzI5mYNA3lpvIiehg0C5womoyKGDQHZUNbzMx4NAcvL3aMHRg0AMivlvy9yDQF/Yk6cM8oNAjsbJuRD2g0AHz16cDxKEQKZSC442GoRA7MSSUfkghECHDcIfl0eEQNKcJpf3WYRAquEVcqtahEAaLnn/rV6EQDWFnhuxYoRAVs+MJgBphECksEYp42mEQGKyWvr8cIRATkU2y0FyhEAu3WHIyneEQErH07v2eIRAIHIsIXl6hECSsLIND32EQOVdyB4nfYRA4qNtx9N/hEDEMuShcYKEQBw8ZqkehYRATjX/kqiGhEA8cKNjkZeEQA/kZbVqmoRA8RVU/xOdhEBBEDQ/wJ+EQF4b94ZwooRA1k+AxR+lhEBMaAastaeEQFhJkCzOp4RAPxRLhneqhEDR6MUgFa2EQH6opt4OuIRAqE7CiHbChECUdTmzF82EQKwC/hvFz4RAYV9SHWrZhECJL+uUauGEQF5pZnww4oRASeBy4M/nhEDizVyyYumEQDr6QmZ96YRAbedqGIDqhEDPXaZWwe2EQEIZo0bB74RAUxzsijXxhEB4ZKlDYvGEQKo4fNRR8oRAxD0V+Bn1hEBFN6K0NfmEQCxPs9xb+YRAahOZFi8BhUASPHLfWA2FQOj6QdElFYVAjwmmwgsWhUBCrgDrEBqFQNkmegHkTYVAZZIi++ZRhUDAB07V7lWFQJoO8GPgWYVARQp+bvFZhUAML5B4oGGFQIKHDhUmYoVAg2k0faFphUBkPMKdmHGFQM60obS0c4VAo6ziCJl5hUBY0Ymmu3uFQJqXzVCSgYVAKkV9W/qchUAUpK6rsKKFQK70AXePO4ZAfwKo9WFKhkDEp9CVbV+GQFJF/PhqeIZA2CuShCCohkA4kgq2JbmGQACKPJQgyYZAVh/mDLD3hkAyOrAbUACHQBWV4qeRKYdArgq+fZExh0CSVybIiDmHQNJPdPpcQYdAREhuR4lBh0C0zaBg3WqHQFgfpNrHsYdAlr6LoMe5h0B4dRVQwMGHQAqG+WzByYdAJmov+c3hh0AyS92qcgqIQKD+QPn8iYhAPP889eSniEBcT0nbK7OIQMNQo+IYz4hAzNjWfVj2iEClDZbWvfyIQA== + NrgMGZxjYkDauChX50NvQIKrr+J9g29Ai61Qlksyc0AXKlz2VjJ0QBkFnbUjQ3lA9x1n1JvTf0CVlUruYIKBQMKb75PCqoRAxpb8nE8ChUDtxXGWDuOGQPHAfp+bOodAHOsAoudyiUDt9F/AumuKQBgf4sIGpIxAHBrvy5P7jEBDSWTFUtyOQEdEcc7fM49AOiULuiAukUCHqBY8avqRQL4uyUOInpNAf2WZc7vilECiRJxLviKVQJV62nTh/pVA6VhLRtQGlkD92A6u3aKXQCSjOGoNx5dA - + - tbhmREYgjkQfjnREiK2yRQ4fBkZiZYJEbxqJRqBPnESTewdF8SaxRGb3jUQPk65Fd9RmRMxynEQsIQlH2OqLRBvhCkX30CRFtjM3ResTQkUy+HBEvYFgRLGsgkQt8o5FTsOoRILwfkRD1otE5FxLRM1cxUSaTLNE9SY3RbfiLUQQ8i5Hm7tyRKAVWkSFUl1GVWyERdOZk0XaJqxEqtz5ROcIqES46KRGAF9hRN3rnkS1InhERtdbRBKdk0VaWJ5E7ylhRFN3v0RZgK5E1yeWRESdTURW7ZJEYfqkRInZfkWpcHZEzE47RkTDLkVPezVEc1p2RNXwgkWX53JEsb6eREKtdESl5k1E8uJ7RIakykQHBP5ERhFSRExngkcimYpEGA25RcG8vEYLMUpEifmTRNykZ0Q1JBNF+1gsRUroSUW+tYFECfvSRlawr0S8NJBE/rtyRQ2YI0QKNWNE7eENRVnMgETNPGtEMK4DRY8OVEcmeEVE1aleRgWP/0VY+19EWRlPRARJ4kW4HyxE/tPTRIgSTERpFktEWLdJROH3UkTXJjREsidmREGNPUX4ZiVFY8jdRArvp0XZ//xE6tJDRD1wMkWuqnlE3obERWwzRERMlMdFMQqKRHpykET/K5BEnZiVRHQ3sUTRbAtFH8U/RGK4YUR3jl1G+P8LRbNATUTu3QxFvKtRRBQmQ0UhgJRE/JyaRPHoz0QuEmREi5iURF+C/kTqUoREzB6SRGx5q0TlUcpENFTPRDS92URT3YJFzpNxR/WbrUSBd4pEKvNmRIjzlUQ5WKxFwIVnRz1qlEVN3BRFBv2pRNsYEEU30A9FK0MJRnCiaUTi8e9EvuI5RLCSPUVjI69FgDY4RGv3r0RLGSpGtExGRIcObkSYra1E3LUTRZE1Q0RGPo9EggmQRNRFAUXSsNlGGKEcRda2U0R7dPNFyuALRXvwQETVv75EFWC2RJGz4UQUL7lEquyDRJ9nzEQdbz5EeoWxRHWLokQge0dEWM6KRAZHE0Wu3ChE6o8NRUu4LkTKHgJFGBFBRAHQaURUT7FEcxXNRSIla0QAwJhEDmupRJTBkUTIewtGix3RRL/ORUQP3ilEzV4PRY4pRUS5NixFvz3oRbJVfUTo9CxFZJuGRM43RUSYBttEggfbRFs+lkWSrdJE5wMzRLH/O0UJjxtFF9CWRMHrUETGTYBElBlhRSfd1UU9DPxEFJb8RetwUESSjpVF4/m6RFsTX0QEHqlENMU9RPYfTURHFZVEoAZfRO1Xj0S+M1dEEgQSRRK+VUQsdJBExmHCRGKP4kQ95thEmTPhRGaHOUR3zktEXjlxRDvng0SqPadEtOmcRq6cu0X9ButE7a4jRTJbnkVZTkFEqBjNRFPimkRLIlpEAuKYRHPNXkWeFB5GTtq9RXiCt0anAidEa7KMRC/kjERMS79EBdGPRDYOSUR1mI9Emf+BRbaWhkSucQFFSpGKRPsOUEVsqnVE4DsGRRheFUZ/mJNEVBubRJsCEUWxw6REflrCRphyx0SmCk5F2zfMRCtHOEQFJAlF3YR3RBsroESmJmZEoj8vRbQDnEWxEaFEhkVpROyym0Qzy6hE6qWbRIj3cEX8CY1Em2l9RNrjc0R3BBNFOAxfRB6PtUakSWREu2FpRfkKg0RmJxNG3UZ4RSWhj0TJEZJE/0T0RzPGgUbDdvVEs8LhRp2SikUK8FlGrEmMRCChX0SBWoZEaP8aRTUkiUW7V11EhbMhRS8yzUTGEypF1fFjRFT+jERT23FE9N5RRNmQukT2qbxEcPmLRGu1DEd11MhEdy9cRi4MSUWIPoFFFvoORVn0AkVV5HxEVDiQRX/G80TRYEtExJhsRO+xoESn955FdrFIRhGEbEVHOeREIfL5RJDYx0Qc0UtFdCHRRNfDSkk4k9BEXaZEROfSREVtCU1Ex0ZKSMfZ1UYv2V5GTeWFRHoKT0XrKaZFOKujRiAimkTb2U9EBSWcRHAspUQ7FC5HmVbNRDb9NkZe4u9EdecVRcNAIkUO7LZEU3uGRIzIzEUfjQlF6ARtRapRfEXC9J9EkcQbRSX1h0SFcdFE7I+CRrQz90V2u0pFMtl6RDEQjES+EO5Ex2lIRYIWUESkzX5F5FPGRAR+gUUXu6RE/UKPRIs/gkTIpLBFkojORCj7K0QiHfdENbCvRQkdQkRs7GtEAk1oRGUosUQksoFF54ijRJUVxEQOSUNEdZaxRxFKy0R1Q69GPRbPRFKV9ERtypZHSCjZRE1KqEZPKg5F5004RJf3QURiss1EqVpyRGpeNUUKpthG7PfDREioG0achnJFabJHRdEwt0VmDalEeMCXRL40UER3641EsXU/RCnguEQVv4FG6e5ORMEIr0RfOjFF3YztRQFop0Ro7sFEddRORQwpgkSTUWhEYt7eRJkeCUV1GotEIaCWREqGRUSeoFhED+STRJac8Eb7yYhEPk5TRB/REkX2MY5Fbe4pRsxZQ0XJlT1EC6N8RWWcTEWMQlBEUMMVRSkFzUTGzB5Fyfb9RE7ADkXhop5ELlzTRFcafUVRmqBEMTnCRCvNaUR4NHdGQwMlRcLbikZ/D4pFPsU1RmvSyESPurVEkFRJRY9GfEVta0xFUp4HRb8nm0UDJQ1GBAxoRVS++ERX+oBEyVmzRAOAI0gS64hH98aFRk6dGUY9y2JEEGONRY9TnEXegZ1F/OmdRZ1I3ESCTgtF2IdxRJPOAEW9Wp5EeaP6RJKClkSNdEtEWPuSRb0l50clQGZF5mBpRFdG4kT+RpZEAnPnRO6k5kYyMBdFlqWbRmZNQUVRVIFEBCK2Ra1iUkQN0DBE3jo3RTZbs0UPuEVF7cJ4Rs6FMkSdWvdFb9ISRdtARkW3ON1E9h+NRfMyTkTHuJhEeOJmRAVRYETn7AxF5bd6RuPTy0QMmBxFd3J8RCvjH0VLYY9ESoekRK9DP0TqnW1EsfBtRNllVUQYuK5EGYIaRa+51kR+KkdEF+hSRBlvckTQkKpEj3g1RA24UURWYXBEahqDRIl5XUR8qI5E8pN6RF2KNEQo4dtG9OWbRcWNHkW+KsJEzB2sRYRf5EVbAFVE9WR5RepOjUTpE0FEmo2GRAVNYEU62qVE2SH9RNc+uUSQvk1FlhGBRFhQlEWdg45EosB7RB2q2kQX9CZG2wOlRACHt0QLSExFJ/M2RKQeNEVVRJJFDRDiREph8ESoNQFFCBZzRNkgM0T8d7REyul6RxROuEQUEa1Envv1Riu/yEXHmNNEQ8hQRJ19PkVoOlxEbvjWRNO+2ES0nH9ENCqIRCGWx0Qw9YhEsZNKRN0BzUShibZEatEuRI+IUERwCRRF+/AwRvqywkQg9YVFAoTNRP2KhEQZ15BERrmIRNqEj0SfDX9EwsVHRP6SV0TZAGhFU28rRThet0SWZ9JE6tENRp8sUEQFoo5El0RyRG5r0UQbH3VECnfjRDXMfEQixHVEBGLjRMxAQUTvCDtFXBOkROT5rESTH2pEugNiRCfW1kWOlzJEwcLVRDvto0XmIDZELMKQRJQzFUXqCYZIJSdlRJFFTkSDxz9EitXvR9l2pETKuUZExAnmREt5gEdkh3VEbWBJRk1QNEREjvJEeoNkRTQYoUS3SPdE58/NRIzqeUTka1REqAbSRE3j1ETym0JE/RaARL+yU0Y5ulhEM2sJRekEh0X91U9EuL9uRCQsk0a9BYNFV8LBRP0jPEU9kIBFb/uFRU+ph0VCPvFEkm4JRj/mikUAkg9Fi4+QRCxdSUQJCEtETWZ3RNoZMkTz9GlECcDyRPNnSkXpg0tEUVpURK14j0QEML5EAUVDROjG1UWVq4VEK826RG5m10RjQjlEhc12RFPOJEWrTM1E93MbRZBcKkXxeOhFOE+WRKDilkRKnJNE2syIRE1b7kQx9PdELoJ5RNpOvESqpJJEgBuGRJnffETVR5pElHs+Rjl6MESxJilEFkjbRYx7X0Sa9IBE2lOPRCPSiEQurmFEhiclRrM9WUXwMjhEf9UyRFjtVEW4F2tEIjDTRCX6D0XwtnZEha+DRDpyn0RibYhEcO9gRLCpSUTADoZET09DRMhzuEXP3KNEWD/ARHR6m0RLbUxENoNjRIIHcET0KVNEBRo9RMehwkddeSpHD3hXRMV7AEa6FkxEAjrcRgbzkEUz/R5Ean3PRWYu90WKmBtFTJoPRbgEikTEF5VFnaf/RL8rI0QlBL9Fj+BJRY/cSkS6N3xE0LGORJxGdkXWunxEVVydRL1zMURPbetHmqU+RBZVSkc9HWJEdu/rRlYHBkYqlzBFhyrIRGeG70SEvtREkgt6RCmbr0Q9ET9EbPg+RAjXRUQlLs9Ep2BjRNRQzkROIxZFH0SMRNggIUXRUm5EaSFFRMzST0QpL4FEvrn4RRNom0WZDOFEUKzLRezal0SbXyhF6KFBRPArGkZo6qxEOS6tRbpz8UQZUT9Fs1XVRGhT3UQwWF9EQFtvRHkyZ0TjUAVFhfNuRerFJ0VwKL9FfBt1RRjhkES09hxFUv9SREGPQESlDhdEv6tFRDKyFUXZgvVE/dUDR98aiEZTYyZFlphiRBNnCkaRPnZEOzW2ROEghUTSortEoznGRS0IM0VXw7ZE2fNZRKBHsETpxoZEOVCHRMjXOkS7FVREITAgRbEyekS6xJ9GB8NrRiNcgkXSysdEEMbJRLXdEEcuWmFEEOxpRta2HEalTedEiiCVRRMAN0SGGoRE/MlFRMhTkUQdqqpEFH3hRA5xm0SYe51ECtpsRDgkt0TFBIBEubB4ROjWNEQRphpGybucRVa1TEUKct1Ejur5RIgt7EQj8hZG0X90RavWUEXh1c5ELzwyRMjld0ReqZpEUvKARFLp/0Q41mdEYC2RRJp5Q0Q= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - A8ih7XjAckCYgjRYCMFyQLzlStJuwXJA2h7SR4bBckAalrsJysFyQM3b0dpQwnJATdtwMafCckBW/VHg5MJyQMIk9T47w3JA6IFLoHrDckBmbU/hxcRyQEyF25RaxXJA0urakQHIckCcOczwntByQAQTlSTW0XJAz0T8lkPSckD0YClCd9NyQBSQ2MJg1HJAnNcrZs7fckCMJ1Q/ueByQHmeggJQ4XJAAee7ImfhckB0OuzkT+JyQPZhZr2P4nJAIBtXiyTjckDkNlHu5uRyQNtRkFio8XJAp9igbcjxckDvqNLTtfNyQAPjGOmi9HJA/EDKesL/ckDkazGr+gBzQK5Pm2CPAXNAhuNqSzkCc0C2llYz0gJzQF+bWOv6A3NA/L2DGCUFc0B8GHCfDhJzQAcPsPQnEnNAp4XEb3kSc0D66SCTvBJzQD71RYIFFHNA/Zz93lAUc0BAbbHedx9zQGDg/O+iIHNA9Ho+LDkhc0ChOMINYyFzQHhmERLmIXNAmNzS/nwic0A5vx7IyCJzQHCViAkQI3NAgoYsqTokc0DGvlwJzyRzQK5FTcZEMXNAgnoDr1kxc0AG+5Rt+jJzQHZbX+oMM3NAZAeqvtkzc0DeujezNzRzQJRMLM24P3NATAxwykBAc0Cu3FzdTkBzQPM2sUjjQHNABnsILnlBc0BAmirP40NzQLcz3pB6RHNAgjAx+JtRc0DkzEFBVFJzQHyZ5XZDU3NAyhBf86NTc0Cumaqcd1RzQPCaB4GGVHNAbQnZ3fpfc0CuWwUji2BzQOS6OoAeYnNA4wIy6zhjc0B/+vp4jmNzQD86QQcsbXNAzxT6xttxc0BeHLNCVnJzQKyFTl1rcnNA5Mhmi4Vyc0CRJbYJT3NzQLQ3s7a4dHNAr8B1mEt1c0DGiydG3XdzQEcQuzwufXNA+nL2Bzp9c0Byt01ZeYBzQOjW9NqkgHNAzEs7YQ2Bc0AcNy93NoFzQEAJ/+5cgnNAguCcPQGDc0AUvVGwh5BzQGwJpmZNknNA4Aj+BWGSc0ABgOFmzpNzQOqQmLphlHNAVgr2iveUc0C7n8vDuKBzQCB5cs5OoXNAJbcElayhc0DNjE6rWqJzQHHx4WYGpXNAMxJKvdiwc0CkZwT/NLFzQAqViwd+sXNATil5KVqyc0CixtGterJzQIHO5ze3s3NAhwksJgy0c0A9peZMo7RzQPRpkzxlwHNAjtdgrvjAc0BeThRmJMFzQP7ZGEdEwXNAdEkeqDrCc0Dwdxiyz8JzQPz/WIglw3NAshTbWGbDc0Cw9DsM2NFzQHLVEwEw0nNAiFIzZ7zSc0DH/2cX9tNzQFAN9Zvi1HNAzo1myaTgc0BckDb/OOFzQEX73lY94nNAsHociXric0D2MLm8D+NzQFAhzAU55HNAxFhpUIvxc0B8q8cZSfJzQN61Z31n8nNA8Q9iALjyc0BmTzfVNvRzQLQYHthD/XNATJ9rbeQAdECYd7jzeAF0QM0sWxKlAXRAwELRTpsCdEBQc85RTgN0QK/aySuMEXRAurSfIfcRdECriG2PTRN0QAxjy6PgE3RAxshDAUsgdEB2uE4MISF0QBSIG4K4IXRASu78LmYidEChyKQAWSN0QE6nclu4JHRA4IxAmlMwdEATV5louDJ0QFnjJ4jhN3RAPr0DeDw9dEB8Gd2qUUB0QBJgdTMZQXRAFr6KojtDdEC+6H0aekN0QMAsUe0gS3RABI9csAFTdECA8J5V+VR0QJhePOKLVXRAq1df0ttXdEDMDZ7AIV10QFwY5SJlYHRA/HzGOLlgdECA2ITvCGJ0QGXFpiB7YnRAWIbShnljdEAIzxs0UGR0QKRVbHLcZnRAgO7ROiJwdEA+RT0PZnB0QKLIrAPJcHRAZAjbfUFxdEDkYq+mFXJ0QARN09cRc3RAdGPf8TpzdEBqxNgApHR0QBrBfd03dXRAlDODLP15dEAQbEQg+IB0QOTz47xOgXRAlljBwPaBdEAoF7MaSoJ0QOCxCwiOgnRABOOtHCeDdEC/7E1hu4N0QP6EU+MWkHRAbGsM0GqQdEADxbMrTJR0QPLiuEvvn3RAN6zNS9KgdEA+DRR0NqF0QJtUMCDMoXRA0ZWs+biidECel9K5D6N0QKYcVsH5r3RAtYupEQuwdED35IDiwLB0QMAEgc5RsXRAwGofV0eydEDj5Bdzb7J0QPLroyX7snRAmmpgK8q3dEBWTn8TE710QA6cf0UjvXRAxtEmN9+/dEAfgdwYVMB0QPrW2ofjwHRAoCLOw3fBdEC2Rf+7o8F0QIgmB5QKwnRAGgAQ7ZXCdEBhlawmesR0QN9MzFW4xHRALOmzocrKdEBDumAC/c50QKqx8Pmq0nRAjGI1x+PTdEDaU15aztR0QO0PsLO04HRAcaWlQCDhdEDaWGWPuOF0QIw1dXOV4nRAensyu4/jdEBs6u0pTuV0QCytnCeN83RAinvEfab0dEDyqqHUpgB1QPQ/0V7MAHVAlQUvRWIBdUClPqCIXQJ1QCHJ+h6bA3VAtCVLYQ8QdUBm05GclxB1QFEqHRCfEnVAUBAw1SQUdUDs/nwFTyJ1QOAZXyWdInVAQD8CX3gjdUCWh9MozDV1QL4IgLr4N3VAooqg/HFAdUCeiPkw90N1QFOZz3KJTnVA3ieJp+VPdUBAB+ouDVB1QPLhQu82U3VAv3vO/3lTdUAYmvFgelV1QAUcsgsPYHVANSI5tDhhdUBXwQ5H9GF1QHLo3MmFY3VAq+26f/5xdUAynig1d3J1QP6Z0k6NdHVA8F6kquKAdUA4DFB2eIF1QHDAdjuvgXVAXuRMu6aDdUDbjKDamYR1QAaX+6e9kXVAuHsmzSKhdUD+Y7VGt6F1QLIB67VIo3VA+dTwkLmkdUBMwSESlrB1QE6LQijCsHVALec/jTSzdUCKpzR5YbN1QIGAspt/s3VAhoShP87AdUCw24prY8F1QMnwDXf6wXVAvH4XkNHKdUBSS2nfytN1QMzbi2MO4XVAp+gMCAnidUA0iporO+J1QJ4WsiA743VAzFA+JHnjdUCi/ltZiet1QI6fn/hM7XVAWlD0R6bydUBm7jMF8vd1QPOzkFJIAnZA4y2Dh5MCdkCchNSj0AN2QAk1Rrb6A3ZA4A3aOuUEdkCONkE7ChF2QH6IU0ZMFHZAjNtSawsWdkCoJQQOiSJ2QGKFC5yQJHZA1Jmn1kordkC6Z+juHzF2QFB/uXZNMnZACLwaRyMzdkC/6TNBJDR2QAT23ESfNHZArMttakw+dkAu90jt40B2QNKjQwoeQXZAW9g6y8hCdkBGM1TFUEN2QGopx8B5RHZA8k+6EfRHdkABf0GI+052QGrhrSfLUHZA+RUZQBJRdkAfCKjIzVR2QALJfoYhYXZA8oaxo49jdkCkv6fFtmN2QKBT1K3mY3ZAZs+tKdtkdkCBbrjwVmh2QAxSEdURcnZA8G9rQPRzdkAc5p+pO4B2QDAW4GBmgXZALwVC1WSCdkCAMLb/jYJ2QGYRfl2Qg3ZAQqEYfV2gdkAOh0FuO6J2QGy3lWtRsHZApCJNKcKydkCICNNYDLR2QPGO7Pd2wHZAaHhPQ8LAdkBErTkTUMF2QDTt9LB6wnZAke/UQhrEdkCE37jvz852QHwJrOF+0HZAQFKwfzLzdkB+Vgb/kPN2QA7Z+hY0AndAAEUDpQESd0BQnRO8tyF3QBJ8L1AOIndAHncE7nQid0A897lEuiJ3QI4ZgP7oJ3dABuftlkEtd0CzGsTYpDN3QGDc6VYNNXdA+K4gM51Bd0CHkklmkkN3QJj2c8H+Q3dAiMZzWBtFd0DlBIq2I1B3QNSWurBKUXdAgHfsspJRd0BCNXHWKVV3QCollItHYXdADiNRfJBhd0B9QV3QemN3QJDSTHg7ZXdAEYzfPCdvd0C5Jp0en3J3QKMJABT6d3dAk0tVqJR7d0DVk10MV313QHJEP+t5gndAJoTm25uDd0BAabLCppJ3QAq9K4lMlHdAHne5HI+hd0DukTC1vKJ3QGzlEv5Nw3dAN3PMSO7Hd0CrgkhLWMt3QFAeyCnk0HdA+uqUDo3Sd0Ay/Brb5uB3QNfF7Ce74ndAsrqGrRrxd0BUFRVVT/J3QEyQpvh9+HdA2eDYt0b9d0DJSJAvoAJ4QH9NXyLnB3hADdScYP0HeECkeNyGxgh4QE5npMNCDXhANvskMY4SeEAv2+ukThV4QCi/uVFqG3hA0s1SVm0ieEC6b5sqjCN4QHxAgDs/KHhAfAOeA3oyeEB+OlgdDEJ4QF8rfW0SRHhA3O5oLnpFeECnc70Xy1F4QGqiaCiUUnhAHs9Y1B1UeEC+r9ibiFV4QMrdkvieW3hAGi0GvfhgeED456ASuGF4QAdazTW4YnhAGOJebOFieEBOrPtes3F4QJTkics8dHhAMN1tIlF0eEDCmKRgaHR4QBJ/DgOMdHhAxg+hFKp0eECa9Ih2vHR4QOud7YnRdHhATGpc1MN4eECk0dkx+Ht4QKLsPJ0gfnhAnJkLvTyBeEAJwbu7pYF4QCMDcJkDhHhAHS+BCnaEeEAgMbUxmoR4QHaXAPy2hHhAw87WPlCIeEDOvyPVqI14QK9DY5FRj3hAejlRtLuQeECOMh3bRJF4QDv/QVSWkXhAXOsIQ++SeEDKdJ7MBpN4QFLH78inlHhA3m7JiUuYeEAkFuJYop14QFK/ZBqypHhAkbYnzdSzeECs0amROLt4QAaQIoXOwHhAfJr+8j7DeEC8gwNPJsR4QIy5nM0GxXhANKD55DDLeEDS2gKWuNR4QEMP+ciU23hAlhnplZzjeEAqX0OSAfR4QP4UAueM9XhANqlRtyf5eEBMwBcIEAR5QCQdPGeaBXlAuywaJJ8LeUBQUL/gphN5QA5faCm8I3lAIkioprIoeUDmkALwCy55QGbXy5VoM3lAN6iQ97EzeUDR0DUCvzh5QBjCLWbNQXlAsuBEgfpCeUAH8Xi4+UN5QJBjHhXdUXlAR3ICXVxTeUDGyaYrOFR5QKIEuhvNVHlAWj6nvfxxeUD4Ujz2Q3N5QG/I3mc3e3lA/AnsaveBeUCuW516PoN5QJaIVUxek3lAMEoG2mKbeUC4dj6jOqJ5QBxnXynBsnlAMLqANrrDeUDAKhNiE9N5QI5lca1C1HlAoOqi08nUeUAd/TYxy9V5QGoN/w1S5HlAjFBqKpjweUBD57a7D/R5QKxSnKb+A3pAoPG1vxwEekAHQOQJ+gV6QHJcfkP4C3pA3ullxv0TekA6HhgwryN6QDv0qDGqM3pAQLt70gw1ekD1bQdZLzd6QBaLnrgaRXpAEz6vis1LekB4vodHpU56QBhD/T0oVXpAQQ3QcSJcekAH6c99Q1x6QORb2YuHYHpATojIgylkekCoS4HGL2x6QEYJ8s2LcnpAqqzT1MiAekC6XOEmU4N6QGaJbGjnkHpAbP5AfqKUekCL+QVqHqN6QObIG7Z3o3pA4lWPvyWrekCWbVSKFLN6QJorVFkts3pAMF5k8wy2ekD8jH/YHLt6QIhN3ywsw3pANiQh0fjDekCPJnRBG8Z6QHDwrRJDzHpARlgeUUHOekAgCydWudN6QH4OQRVK1HpA1lvLembhekB4lTDnSeJ6QK7+/PKH43pAqS9nx67jekCGrqOQ9eN6QPo2jdRR6npAzZjW/zPuekCtrpWFF/F6QGbXc/Ne8XpA0t6iRWPzekCC6gu2+AJ7QNmuEJZ1A3tAOmdxRqgDe0BXYBxZ6AN7QJk86+Z8BHtAFziAhCcOe0CGCah9zBN7QBHT7CKKFHtAxLXWl0wVe0CIwCcJ1Bt7QDi+uQpaJXtALLELCXwye0CM5HznfjN7QE1eWhXDM3tAYspy12I8e0Csi+8lbER7QHBGFtNcUntAhIzmoQ5ce0BGimoIEWR7QPlhEdY0c3tAHhYGABF0e0BG/uaTjXh7QBgXAGYZhHtAR5b4DcKEe0CuWuB765B7QDxIITwjlXtAfnN8Vc+de0BUjsYtJ6N7QPtmHNKDqHtAXkVHL3nGe0D+j+olo9F7QGSIYYLA0XtAIGPhyLXSe0DXFdfQJuR7QGkES5GW8XtAJ7Pg+rnxe0CVdT6jsfJ7QDr7rk4z9HtAWvjEtoz1e0D63p9nKPt7QFyxeyKUAXxA6NmfdtoBfEBmRadYMgN8QExiIW1nBHxATP3mYZoFfECe5hOKjBF8QPchGjXTEXxAnsXqIukbfEDnr+KuljZ8QKgqi3rNQXxASmFVzVJIfECW5XLyrE18QLac2SXdUXxA5Jg0hw1TfEBExpQcSFh8QIjPxJUMYnxAYO1a6SpxfEDIGGr6A3N8QFYbv94mc3xAWYMhtml7fEDoglhmb4N8QOfGMIBei3xABgQllXiLfED+azQow418QGmCa1FNk3xApQp3FGuTfEAoyBuM05R8QMAo5E9ZmXxANIFHnlybfECSNx+xlp58QEhuStqznnxAMkUBxPajfEBEi91DC6R8QFg4JpfBsnxAfv8dA3u0fEB+oZfZELZ8QIDtWL1C03xAL3n60svVfEClJZuM9tt8QPtRCAJY4nxAssOH5RDjfECsWKT0vuN8QCf3v4v843xA1o2IJGrofEDQ1F49xe18QOVWAxAY8nxAll91eVXyfEA4filAEvN8QFzprOEBAn1Ay64qCUwCfUCfeE0uVgR9QIaJes0AEn1AAKfTaUQSfUDsi0aUZBJ9QBoKjXavG31ATFnk9T4ifUBUvjyCtyN9QIoLDBy9K31AsYqYaqAxfUCQvRSfblF9QEpf1lNoVX1APPrl73p0fUDtxpTN9oN9QPHM08kSh31A0HE1nJeNfUCq9pkV8JJ9QOOMzEUtmH1AcBtmmFCYfUCJLUmS9Zt9QHVGdoamnX1AJhugJ/2jfUDdLM5zp6R9QEz3BIEBrH1ADJ1d1i3DfUC7mYxd5sR9QDh7QK721H1ACJXThmPffUAiol8mbOB9QCrFf7vb4n1A89b+n3LjfUDCfLvqrOt9QHKhk+2P9X1A7kI0tKX8fUDey/Q+NAB+QJkHqy5FEH5AAL/fvO8dfkB5/zOzOB9+QNxcFQYkIH5AviEtwkcjfkBjsk9lIyx+QEiLWvk/L35AESHmUCs0fkD0JeULPT9+QL5ORakTZH5AE31btxRsfkB9I0ssFnJ+QGrS9+A3dH5ABNnHY7Z7fkB3SIu7PXx+QGSqK+nCg35Alz25XkaMfkAupN8XH45+QOlFH4HkkH5A4nb4uo6kfkCu7JQyC65+QCC65HCEsH5AYCQTmZayfkB0griFgLN+QFLXaFKPun5AZ8p+3iq+fkBbmcCybcN+QJwcsLbRxH5ABBEKNnTIfkAEtwYIy81+QFy5bwXb0n5Ayv1pNt/UfkDEefWaj9Z+QLBfX3ky2H5AB/HawQPefkAm5+cEAd9+QLzybKAQ5H5AJ3qYO1rkfkDsKXERtOl+QMQ9hHGUA39AUfK1OZsLf0AWTTpbW0N/QA5T1cnDU39AgUQg0WRUf0CqmpsZilh/QBIQ9WviXX9A4o7RKzljf0A+gU3at3F/QCruMl7/c39A2oZEULOBf0A2eooOpIN/QAg3XE1jkX9Ajuxr/KaRf0AUXXj1NZN/QLLQcYSYk39AEjpv8F6hf0BWNECfQ6N/QN6H0A59pH9ALL+6uhSlf0BFJdxxe6Z/QAwntGecqH9AMaP0Xmesf0BC+w1D+a1/QMJ/OikQsX9Afv5Jz1axf0A/RUTpirR/QK2KvKmtxH9A8CM50c3Lf0DEXMtHtcx/QBamidB5039AMCoWSdXTf0BIN38G2dt/QHyoIaul339AO5mtX+Tjf0CwQtyT8/B/QEwZDe+S9H9AIV6/xIcBgEBXpQBsRwKAQAyXyKhuA4BA2vfjzjQEgEAAzwPuIQWAQD/IsoTZBoBAbLkkaicJgEAuKGHMiAmAQBi+QZfMD4BAGtMNscoRgEAu+ODT5hWAQAq7LCb+IIBAW6T0MG0lgECypDma5CaAQJgnQPKQKYBA9MWiXO8pgEC45bEJFyqAQBrJKk9KNIBAfPoKMww2gEBy1IrX7ziAQGxnifv/OIBA0KM+DkI5gEC2bZZ+UDmAQCI9PHYDQYBATzyydqlCgECYNner9EiAQHEI2RViTIBAiN13teZQgEDSopPgE1GAQKjqPwgOWYBAuN74BiFZgEDqLfAR3VmAQIxCkw7fYIBAzn6WJOtlgEDk7mLqK2iAQB7XZqHuaYBAjT/+tfBtgECwHFijKm6AQHD+Swsqb4BAPhdHSfVxgEDGOp6HKH+AQHbZw242hYBAl/kgMXiFgEDWOqERwYyAQLCjqyEfj4BAzgOlBq6PgEAojvvNBZKAQP4NzLIil4BAx9b5hZWagEDgneFF656AQCRLC5kan4BAthEaxxGkgEDNbmUgNKaAQHxcaRvwpoBAmM7C7hupgEDj8JiahqmAQOI1hJswroBAIjKq5xOvgEDe/MA5HrGAQEywiEoSt4BAYlkLeeC5gED/BZZtBrqAQC/fM9eduoBAt2dYMwe8gEAwMiYUs7yAQI4OW1jOvIBAI6jQf3+9gEBOeW/NEb+AQLLYZ4lfv4BAa8szm/y/gEBaFGNUJcGAQJZHQdA0wYBAuvnjl1LBgECGOeRiecGAQPBQSJPcwYBAo+hG5AHIgEA8lc2rYsiAQHjr1jsXyYBAe5VQWlPJgEBzCozjf8mAQMTD/NffzYBAdA6N/gjPgEDCbkTXTNGAQB7EgGRh0YBAQFOU+I3SgEAotwKqL9aAQOGt4xkr2YBA0EeiE0rZgEBC9VAawN6AQLgVSmpE4YBAG0K4Dm7hgEA+3hspB+KAQERs4EYZ5IBAHM4Y9vXogEAhKp8eTO+AQKwZdas884BAXCHPdmf6gEA7Myp17v2AQFcAFN1W/oBA1HVCGED/gEDwUkZq1gGBQC4uIKJAB4FAshq4XGgNgUBModg/PQ+BQG4sqgQFGoFAK8IPgzQfgUCMdVi6YB+BQGCqscWxH4FAtEH/QK8jgUCo0hXnNCeBQGIFe3K0J4FASIijxZsqgUB+17bh7CuBQDjrcCQvL4FACYb1IF4wgUC0gR03vDGBQM7eVwTwMYFAZYL6BSo/gUBwFqaxlEKBQNZKCNhaR4FA0lo8oQdKgUAW7DzJnUqBQJCoO023TIFATRwLSBVSgUDV4ZCTGlaBQCHUCqrmWYFATjllcB1agUAFMD47JnKBQKZ/hJ7AdIFATrBYcft5gUDlyiIyYX+BQH8rYpCff4FAUDx2HxiAgUD3uruASoKBQCLrGSCchIFA+ul3agOKgUAbICt3aoqBQBza4mUFjYFAFYzIblaPgUCOqEiNs4+BQApEPwvvkYFAo9XfpvSSgUB4WI2DNZOBQHIfjWpXl4FAHN3rDZycgUDCnMujRZ+BQOfrizjnoYFACnKIfW+ogUDGBveJ/amBQP4JK2tLr4FAsmNbC56vgUAWMyzx66+BQKzurEVssIFAjNLRufmxgUBX/pgsMLWBQHjG+nlNt4FAGKz2TWq4gUDO76fzELyBQC6dtwbVvoFAa4PETH+/gUBkvwMJUcCBQKcEN2v50YFA9AaQ5PvVgUDo8TC++9mBQFpMkOg52oFAVAfYDKHjgUAKuuXYk+2BQO1szArw8YFAIevkZDb0gUAv5wgioPWBQHrLlgDt+YFAYpJ3ui36gUDjtKhx7/2BQKTgdQcy/oFAciIhNvgBgkC7UCp6hQSCQCxPtd+bBYJADHBRiQIJgkARDX8PAhGCQHoWjIK2EoJAkqC52tgYgkAaU24E1yCCQP0MKgLXIoJAU9gAlNEogkCWDKdUpTCCQHDk2qjuNYJA1ptOYug5gkAN/iW+BT6CQK8r2mdEP4JA87wNPAlCgkCw3bSkIkiCQChcVHPUToJAecriW3FQgkDJxrcvkFaCQPSD0jAhWIJA+KiXXg5agkBi9u9qOF2CQELRg03HX4JAyH9KQzRigkAhYqw9OGaCQDKsrDXXaoJAzGESqHBsgkA2u2MCR3GCQPPa8BTjcoJAhBOcZwJ6gkC2i2ZIBX6CQO8JOsqYf4JAkAOdUwqCgkC/W+RGjoKCQA/665dDiYJAPo7kxHGMgkB3B/6LwY2CQODkZaxDkYJAvAYZf62VgkDahANCPJmCQAAhu2NUmYJA5Rayt7CZgkBQwrr7tJ2CQJ+FVYcOoYJAANtnFjuhgkDIxsm67aGCQCqgum0NqYJA+FeJ7jSpgkCU2GdsB7GCQBMYZV82sYJA0/0Z6uzFgkCq08Bx8MmCQHrW6+PzzYJAljSOAoPSgkDNYnJcftqCQBq5hbaC3oJAyOZ8yoPigkCu8eseqOeCQLJorb+r7YJATaAPuK/5gkA7D7mB4QGDQCSdNeIaAoNA3MiEWLYCg0BOOrqa5AWDQNyX6hy8BoNAZmurydgJg0DSEK/t6gmDQMpOPLp5EYNAwh5VAnoZg0DIXUF9TCCDQC4QotlyIYNAXKMyoIohg0BZ5udrcimDQGqMKTPMLoNAPBKCasQvg0DK1ekhazGDQApx3scbOYNApEj5w31Ag0AU2fKpD0KDQB4uRrq5RINAsoE0QpVFg0BJv05ka0eDQKAVfeQjYYNAnkkPvB5qg0B44LDL53KDQDf4sGbjgYNA5GdlkEaDg0CYOTPPRaKDQJqimT2Yp4NAGoqTRx/Fg0A8vrsqy8eDQBDeuEt9yoNA7r79YBjag0Df2fNsydyDQHijuf1z34NAf1rRHMzkg0DS2hSYDfKDQDB+6rEO9oNAeuwAoyILhECPT9vC3A2EQBoTd1YREoRANcuRSAE0hEDxfDaudziEQEaLbAZ1UYRAounwJLNWhED0Ttn8+1mEQKhpoFaqWoRApkFeIq5ehEC/yPvxtGKEQEGn5freZYRAVUPxeUhmhECQe05Xt2aEQPzr3xD/aIRAnNGfhwFxhEA4vqSayneEQABl49n2eIRAAwn9DWF6hEDgubTxeXqEQErxdRcmfYRAvDvmisF/hEDGwUuRdYKEQG4ZYwyogoRAgFr4SByFhECgTRo+p4aEQCQgx5V4mIRA4hngo2mahEDsKHGaFZ2EQGh1zP69n4RALW9d8nCihEAqauNy+6SEQGSgjUMepYRAyF+7nM2nhECy/h8siqqEQHgx+sP3roRAQCeNDfG8hECc/F2XGM2EQM+MKLLGz4RAoza1EHLShEBUYeaRTtiEQECgb1Vq2YRAThazU2rhhEBwYeWAL+KEQMaRDZjQ54RAEp/3CWjohEBOk5nuYumEQORyTfN66YRAWsSIkSnqhEBwMH32f+qEQGTFNBQp7YRAyl5Hkb/thEBJPQ//vu+EQHTrElA28YRA+nHJUmLxhEA883L/wvGEQJ1d8v1q8oRAPJAZMBv1hEBeGTyWufWEQJUDs6C+94RAICH0oDX5hEBwC2+HWvmEQNAogEQuAYVAs/qRpyYJhUCS6VPiChaFQHRjz/4QGoVALHwHgzk2hUDsuU1KNEKFQEHhtELTSYVAIpplaeRNhUDAN2oW6FGFQILf6D7rVYVAgHLEIeFZhUAIx/eOoGGFQOacijqgaYVAmk//hJhxhUBLwcZZtHOFQIbQJhmaeYVADIuZ9rx7hUB1EaeVk4GFQGk3C0eNsoVAk7M0Dsy8hUB249UuncyFQOhl7aYg3oVAxI9+4kLihUDtF2d/6gWGQMTZcFvTDIZALGqKgqU6hkD6WoH4YUqGQBL097lmToZArMLLUmx4hkD9nveYJ7mGQDVyDt3YxIZAQ8h/Joz/hkAgBj4XkimHQIIcdWaRMYdACiIvg4o5h0C/u3APYEGHQGBUtUOLQYdAytwOfdxqh0DK0RIwfXKHQN5e1OvHsYdADEG+Wsi5h0D8omtZgr6HQHCJHt/AwYdAkGeEFr/Jh0DCwe8a/MqHQG/+MUK+0YdA+rYBw6zVh0D0IiGvcgaIQM4dqa6QiYhAWnXskiqziECGgCSkNr+IQLxb+qDHwohA + KBZXds7jZUBeG3g88qJrQDeULWxqYnBA0RY+T/xBc0A38gnAwnN3QCwjiJq/knlAxUlW35qEfUCN8MP7lmGAQEZSdYzZ2oFA8R2OGCN6g0BvUvxb7BKFQBoeFeg1soZA03/GeHgriEB+S98EwsqJQMpeRqevw4tARXeFFC7TjED3ZOtMEeyOQCLTOR/tLZBAxDS2cinSkEBrVXrrDYqRQKm4GkxqXpNA - + - 20bGRNQdV0SoXrJF+rJFRNoNxUWNvZZE29tiRjI1mkQtIDpFOqhdRGTmpUTyxlhEK6KJRb9jKEQcsUNEwiUIR3OUxEROgjFEdx72RKZ+HUUUbHtER/1IROqCakUZPENFVY1eRMFcWkQmYixEUpRoRS8WV0RTW9dE1RyYRDwbfERXLDBEq0xPRIuuGUUZyQdHzqh+RAeuW0T++BxECpM3RKm9N0am9ZJFws04RJP90kT/guxEmeyfRhgjY0RSXD5EzuGERD3MvURx2b5Ekf5CRAFhlkWfz8FEtAQGRVEIZETXpppEgcofRHMvP0TajwNFTa1WRIdKLUSu5YZEa7mNRa8BPUSlsgxGYPgsRTQhSETvHptEsgKHReRzd0RfoXFEmvmNRAnIlESkC7dEwO3gRGtAWkTb5WxH9OSORNGelEQ11p9FYSq7RkfpAkWMBLdEA/MeRWTOMkXfzH1EJXeDRN8Hr0Y9ILRE7qMIReI+PkRhO4pFfVTNRJdQF0WruDRHq614ROfNgkTKzslEM7prRrfIxkWtuEJEKUQrRDpV9UWNUtxE6y5ZRPJ5cUQJfpBEmH7SRL5vOUT33SNFs/vgRBucG0QdNDREctjmRAooQkQjzBdEcC2WRKDxvUVd2ARFmfA3RNJULUWWSyhEAZSKRLVg00TDQWdFk/GIRElJtkXpzo1F5JDwRAJk00SQHUREqiZRREkackTcvSpE1El9RE8UJkUYQHZE5b/IRHewhUZXZdlEE2M4RBgeEkW8hy9Eb5ZhRJvuN0VRRx5EJSKQRH+rLUR/BgdFNMZPREDwXUQl/lJEIqnEREkuYkSAaxZFqlVdROsfRERzhEBEtKViRJMHRkRrTwpFeXMfRLOAqEQnn8pEkgiMRHxab0WnJSZESAeBReCnR0e5+KVE8fVJRMM3q0S1AjlEcbGHRc1ucUT0LIxEZhxDR5cedUXdjCdEaAcnRX1oiETVK91EjeAsRaArBkXkaOJFyhfnRAM4kUSITixEoC3KRNprikWDK51FBHtDRFMdXkR10gtGaRGNRJ47gEQ6JF9EEcSSROPM7ERKrGREfnluRFHjbURaQhNFRfKyRHet1kbMdgJF8LrwRfn5P0WMQqhE91ikROaPV0SIL9RE08VjRJwvSEQPR2VEN4ldRM0XbUQbA+RERGZTRJYZw0TnuIxEc3B/RALt6ESF2FxEvAtPROinAkWYEyhEU14vRFCVuEQK/rRFlJCERGulc0RT+JFEYjuxRBh0CkbyupRERspYRGnCgURKxCRE0lLYRDkLy0S56tVFisx7RNRVP0V1lU5EWqZBRGTTP0T5JkdEHBNeRLDYhkTKhDhEKGOSRv1EaESFSrdENwILRQ+4SkVHuQFFpx9ERKonEUXENy1GJweTRD0Cr0S6dY9F7o+MRYdhmkRi1VdEW2ZoRNtvr0T2FW5EufRcRDqrTUS74fFE9ZBIRO91IESK0SREz/arRALcdkQZepZEGak1ROdsikRf9NFEwxe1RDf6iET5LEFEpzFARAGvpkQjcYxGY1QDRlRj/kRLH7JFx5ZORI2Nu0TJdj5EeuNHREOADUXBT4hEFesxRP2wl0XYuwlGB9x4RcmAvkYrLEZExqCGRGaTnkQYVlBEQmOLRDOMl0SCFopF+KjxRLvRX0T1VmNFb/2kRAxLKUShIVpEpN4zRVhsVEYRLJpEdlA/RTMUgUTtIpdH9ggiRVntpkRyNEVET7AKRqhgPkQdE1tEG76SRGH4SUSCS+dEk2m/RFaThUTi4EdF/HzyRPnvikWRkz5Eji5oRDVqWESNqjFEzFRPRH/qR0WIXYdEZzKQRCKd2USK9KpE132ERqoASkRpRW1FpDZnRAP4QEQWXiJGHsSURWFoHEW4iuFHDliqRpDgLkWbBiZFl6ilRr9pMETdWYNFjYxdRqyk9ETrlHpEuE0lRcHtYESIsG9EqupIRe/MiEVGKvBE1emaRTBKXkTiqBFF4qsWRbe5H0SdT5VEq3ImRN4rskSyRIlEyrBKRFOcmkQsc4xE5188RQN4bkRDoFJEwgs0RPJGvkS3rKpEsR/jRqqDkkbbQiNFacweRXqb+0TKMPtEuzJHRFGxP0R/QjtEYHJiRWI1Z0Q/0TxFOk+BRDh/oEQJgrtFfUFTRhG4l0VaYvpEhY1aRB2sKkWmwptEHskFRSK8cUWReJNEBcg5RDPuSkS5POhEE0BlRaetyUVvtz5JiRwcRiT4h0XRWDZFh+CeRC/+ckTM3oJE45w5RDgw/UTX6jFEhSjRRBOtQkjLfyRFnVkAR42XXEbMPUxEzBk/RBae2UR3LWtFQJM3RbFja0Wq4ZlGc+4KRVoKR0SVG6dEIfKIRMySFEdPMcpETE4+Rs9FMETo0kRESTtLRfuWOkUTrgRG7R0/RQ4ZeUUA6QFG4x2YREDbwETNtRJFPkTBRH26oET/ka5EIc+iRnYTM0YJiVhFOI1ORD9Yp0QT4UREDjqSRBqGokQcn0dESXhGRGU8y0RDsoBFjbAoRD4Nx0QBRUpFr9djRP2A2kRK2aBEmNiaRKJeX0S7FQZFM7g/RO6nrUQMoL5FkTRuRNaFv0S0t81EYk5QRGYxs0WVHYJEV9GEREA2j0RNDFJF0hOGRFU8HkRLsihE5I6+RyhgFkV/JdJG2LWjRA18UUR7LClF4PKFR/Y6jUR19e9Ec7O7RtiMhUXj0W5EF9PyRDqXk0V02KhEm7FAREuwGUcV5SBFOaw3RqGuFkXxSrJEbI7DRdN5nUQQ0p1EUWtgRNKTqEQBuxlGQBGNROpj50SczIxFrvO5RAQzmEXLtEREmLIgRDkic0RqaMpESIVtRK4dHEXP/bxEXlBrRCqeR0QL3FFE/sVORAeAdUQP4uBGoYWFRI8bi0TqyblF64IoRnIRv0SYTTxF29pVRJ//NESz3k9EYUPlRchbHUVOMV1E2xiORQe3zkQCycxEBx4PRX3Hn0THjE9EBR5ARHoozUTNqfZEgW+NRd0VmUQQIZpErN5MROphlUQFxSFFlrZgRElLa0ZSKKhFrjlYRHvnSERYETRFVsWVRhG4gkXhxplE0s86Rv3DmUQHkURFFU2URWCOvERWeFBFdVJGRZwEV0ShJtdFoW8nRt38zkWqsHFEFHn9RJPjbkSdtdFE350HRS47jkQz0WBEW7YGSELtUkdwt0pGyagTRkLApERt4CpF/jRrRRBTuERJs6BFVy7URDvsRUQQHHZEB+d3RJQnnETZuf1E6ASCRB/eMUTTOKtECKWARKIdbEWvWeJHrV9oRU3QKkTuM8FE8wT9ROVWZkSsCeJEPTfMRg4yeUQTyRBFRfqsRjBmWUTcEYdEyQkTRdG+bUQFnvdFLRG9RPGLJUVgojRErIJWRPeyhUQsZQFFtLk2RHjld0Q0IH1E1juLRZ4HIEUsEEJEkWucRDz9pEbCz1FERrv4RYr9IEVsNslE96SiRIHMpEUkWsREkN0tRD9uqET0LTtEbGyTRKMOOkRw1MNEYI1MRKsTJEZil3xE7enyRPZ1rERH4BJFCzzlRMAzUkXv951EP4j8RKP4MkRNM+ZEuk6DRJEfP0QGpFJFaUYPReAOzES4KHVEdTU3RGQ3qERDd1lEpvx5RImZVESkkExEKE9fRAyCd0TF1jxEoE9bRKIRX0ROcZ9GrtKHRaPxQkVfLThEJBJQRSocfEQ8RENEVFxnRFhzDUZMiypEDkidRajJr0Q6CUZFVYP1RPRIUUWeVDNEn1FNRGaUOkWKnsJETRKNRCHeh0Xm5MNE/pygRG0JuESsxBdGj5JZRFqiq0TzpwtFtI1nRXgT3kSnlp5FQSz8RNNhSkS6jNRET7c8RAhXgUQlljNEvgIURf8OVEQTfVlFyoJ1R2of1UTGICdElybdRpv/rkUjw2ZEKE3TRPlHdUR1sz5ETaFSRTI/V0Tmp0tEelkTRdsaaURvN8RE4ZZLREHYbUQku4NEchhLRDYc50SOUldEUs09RMigGEULrdhEZLU/RItRNETVl5hERS8+RAIZx0R7iNpEixCbROTdi0S2yJdE6sQIRXBVBEWB6VBEm5AURdr3cUZVxpVFtJiMROMA/URycHZEAlGTRGMEj0T052FE1VFORZd4HkRyavREuud2RBp+RURIS4pEbqAhRH3FQUQoCwNG6X6BRP+QO0TboKhEtcHCROnIVURVB5lEQhdARDAsZUT0K99E5Mw+RA0KjURMYkxEUFNTRZXGQERqCkJEFTDrRPxe9kV3jYdERf6IRPDVsEUWJohEbRuCRJfpSEQEvqlE5R49RCuunkRP3QdFo69/SJIko0RrOhdEjvluRG/cnESNXOFEQYjpRwbkZUQchzBEV9SERFKbd0dy0mJF5iQ9RKZxqESDk2FEruhaRljogUURoJ1FR4/1RGeEXUTIKotE7ojjRBZ1xER+ZalE/HhmRM/jQ0SoE4xEKRtYRrTbPkTmaFxFo2F5RNR7YEVTZ69EMXujRlmkMUT/vYdEH7ZlRGh7k0VDl35EW+6MRKv8XERl1f1E8SFURC7u1UQuv2REekGGRfMjPkWnboxFYU+gRfpkRERTOOhEdKjhRcKKqkUVBcBEaj3sRKRkM0RKeG5EvKk+RBc5S0TFXiRFOGBMRFeuaUT/PE1EjJxYRNZ/lURXPM9EoyWYRbzgK0UDpGJEhOuURKwzMETrGvtEiTdgRWmaxkSkVPBEjzPvRKSkhUTqKbBFeY82REMbKURxoXxE85JCRKPfWESuXeRE8ShgRFXwSkRU/mFEZ+ctRB9jkkSr9cZFTo0fRSfwMkRcz9hEEUpDRNo6SURv/4hE6+onRBgfWESeDk1GaOvnRMYZ2EW2uHBE6l2MRG3NSEQz0TFEeM1mRFpUTkQ/hZREkYgoRqHcXkXTyyxEqZUmRekTaES436ZERoSQRKztKEQJfKJELvaDRAIsMkRQO5REyEwfRA7ENUTFboREf73SRCGKw0S1v3lEK4WtRRDuZkWiqmVEbHtXRBoFV0S4HmVENY5MRCoEqUQ2ATJEVoelREnbWUSNZsxHU1ayREWWNEQ/DzJHiVcHRjLNv0bBwwFF8lydRU9/WUSpSMRFtpgCRpJ0hESOiMVEzkkZRUr8vUQA1lhEAjw6Ri452kUM6jlFm36tRIguskW6cRhFpbSTRE+El0RlfFpEyrqZRB3FSkZiekZEC4nrRNff4kWyKTBEtZWhRPOOtURnv9dHxss6R0ye80QK9+1GBxFARYq/9UUNAU1EdWFJRHUkHkWLoytEb2B7RIIeT0XGwjxEgThaREtNqkTbQDBErYGDRAWFZ0Q+h8RE1QDIRP6hKER56V9EdOaORCZDBkWCQEpEbqZQRLow2kRRDWNEPGY+RGR/MkXmHJ9Eszo2RNlkJERZ2CNFc4JWRODYbURfozFE5R54RNJ2TkQSlfBFfwW5RbW0bUQmW4pEItpIRPKGLESovMVFM+L7RJzT1EUgMu5EqQq5RCMSkkXXUXlFlIn1RPBTlES7iKdEwr67RHZvPkS6ny1Ea8PbRFrEDkVWn+BE06e9RR/6XUSNNKdFm38yRUrUUUSURlJEDeNVRIYGUUVbPjhFdB2XRA4K0EQKIQdHD1qARgLDu0RGmY9Fm9lmRBJbBkaU4rpE5nZlRAGW1kQDhQtF3Sv5RGvFbkQbKpVF7VpQRfqze0T4/Y5EiedkRDUsOETmBZhEjRHIRNNsgUQa/3xER9knRLUzIEVimpxEGUxVRIBtSUT/D0dEIH20RvslQEY5vaBFTmudREJJ+kZqeGlGZkYCRpn3QEScqDpF1c41RM7FvkTJ5kpEBD6KRMLZi0RoaplEjsWdRHP5fEQGikJE7PRNRGtJD0Wes8NEimy3RFNz1ERWDJlEEOKGRBd0Kka9gs9FSyOGRReYkUSoY4RErmdSRKbJOESQHw5GO2KFRYtRjESLBVFFHDNQRHRnRUSyciJEgJpTROKluUQaD5dEKnZwRGhMTESYGFRE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - KP+7+XbAckBolpLJNcFyQNRWnwlwwXJAEQBXTcnBckBtW06/UMJyQJCk8BinwnJAYLKUn+TCckCPFW9zPMNyQJAZ+OXFxHJAUtiYlgDIckC3YQx5S81yQLoOhpVD0nJAvp3fFc3SckBYonyA4NJyQMfFyDd203JAHDbJA9/WckARb+Puzd9yQPh+6AO54HJAlA+uZE7hckB4/1cT+eFyQKYZPp5R4nJA8gq99ZDickCa9fPWI+NyQAzU+wBV43JAZs49rjfxckCEDNlOUPFyQLQFs9mj8XJAkFBM9cvxckAvudMEfvJyQAh5CyYT83JAJLLLwLXzckCC9xMQoPRyQK3lB+q//3JAPlleAGQAc0BGhbr5+ABzQEISRC+OAXNA+NxwBNACc0Bg6d70+gNzQGxtWIl3EnNAlA+Vm7wSc0BORXAEBhRzQDbt3MPzF3NAAOeSVnkfc0Ak6JutoyBzQMztgN45IXNAnKbi+mQhc0BKWGhYeSJzQIByJzIFJHNA6CeFsjgkc0AxM7PXziRzQCZWqDRFMXNAGsha51wxc0BIKsKSCzNzQKQyLgmkM3NAYCw+69gzc0BWmvdOOjRzQKQeS3K5P3NAaLS1/ORAc0AqNUNLeUFzQPKtw368QnNAfGpfynpEc0DW3Kyym1FzQCojbnOjU3NAnJAod3dUc0CC3TlFiFRzQGJocND4X3NATCWqyotgc0AqFhsLHWJzQLySTdY6Y3NA/gUphs9jc0AqjVEWLG1zQHvhfEXXcXNA4h1E0Exyc0BOZXV8anJzQG73il+FcnNA7v2M2k9zc0D+wqDKTHVzQP7YB8drdnNAsEq9DsR3c0Ds2Ldm33dzQHzI/GQnfXNA1pDR7niAc0ACEiwmDYFzQA+KHLAogXNAFdvVOl2Cc0DA5JHrAINzQKyQAfIPhHNAoaXoCrONc0CTy1l0hpBzQD3UH3scknNACG15rk2Sc0AfOs+WzZJzQFTle2TNk3NAGp0npWGUc0CCXFPw95RzQIR4F1KMlXNAWgljeLigc0DY+Brb5aBzQPw6bOJkoXNAiEk8pFqic0Cm3MPsxKJzQNX5ubfjonNAIChACwSlc0AmWoougLJzQF83MVcRs3NAmflMerazc0Cr2AZMELRzQIu3mZLNv3NA+EKf+WPAc0DkO8ky+MBzQPR43fJMwnNAEBQhANDCc0AaPwdmJ8NzQLRydZrDw3NA2PMTj9nRc0CigETrA9JzQFm2B+m60nNAzuFDWvbTc0DuKLyF4tRzQLWRTeai4HNAPCkFaTjhc0B2gGkiY+FzQCAuO2uK4XNADmD4rTzic0BfKvVbe+JzQOxdvAQQ43NALCghwe3kc0A+/VWpKO1zQNCH7OaL8XNA9vbjKEvyc0A0TWVOaPJzQHSSln439HNAJe8+kOQAdECg1zkTeQF0QObCeYqlAXRAzMgi4E8DdEARnrrGeRF0QKIXKaeMEXRAWgZ2TE0TdED+f34iTCB0QA2RRpwhIXRATw3ti7ghdEAsFVRzZCJ0QIgx0D/6InRAwzqEmlYwdEBAe9P/hTF0QPZUKBK+MXRATlTFNuI3dEBlcwE9PD10QGLaQwPKQXRAUV7wOz1DdEDZNq8sekN0QM3ri/sgS3RA6t8N46RSdEBocwnl9VR0QHkZes+MVXRA9l7TQtxXdEClGv2qIV10QIBU47O3YHRA0oHbgeRgdEDOPeYbCWJ0QIo7olZ5YnRAqjRPUhBkdEBR+cTvTmR0QILweZLYZ3RAxi0S8iFwdEAaIljCyHB0QOWCKYVBcXRAxjjDJBdydECyIAOQOXN0QMMq7nQOdHRAc8tfbzh1dEBMjC4L/3l0QO9pIRX4gHRAh+MYO0+BdEBeQhRbRoJ0QHTZkLong3RA2EufdLuDdEAQGryxFZB0QDiNjureknRAGCtMfk6TdEAhB1rcxZN0QJiKrCvwn3RAKqmTBaOgdEDkfp4L0qB0QH7MXTB9onRAPs7ucI6idEBy1quiuaJ0QABxtRMNo3RAn5ekbPqvdECSpSlxDbB0QJpfc9PCsHRA57B65FKxdEA+MIpSb7J0QNzLVjD6snRA3B52MMm3dEDIiMOWI710QJ2eHXbev3RAcCqq+eLAdEDowTKKeMF0QA5profswXRAiFU/BLvCdEC+lWkRTcN0QKzx9mYixHRAMkwNbLfEdEBWrk/4/M50QGPAQQKq0nRA8ZYE6d/TdEA5r21O0NR0QAT6dCO54HRAAloixrjhdECeZeoNT+V0QHYknGXD8HRAkBlEPgHydECf6LvKjPN0QNSdL1ulAHVAc6ZKu88AdUAgN/plYQF1QOgaYlddAnVAwA79P5sDdUD8aFt30QN1QIlVyF6aEHVALtsnuWoSdUBKL9mjIxR1QCAjusoPIXVAfvkrKVAidUBsKL8GnSJ1QOAGlb0xJHVAjI52Yjk1dUAsygPpzDV1QOjQj4H4N3VA8n1ryo1CdUD2Zh5NZEN1QLJMEEHgT3VAIo5R4nlTdUBmNsTaTVR1QJ1uuHt3VXVAzvtnKf5WdUDlO+TPBFt1QCKsly4OYHVAxcqlADhhdUB+zRqr9GF1QOougK/OYnVAXvMWsodjdUDceCCudnJ1QMh1g6SNdHVATDXXBuSAdUDh9BZPeYF1QMqNnEmugXVATOb9hrqCdUDSkpANUoN1QPc1F42mg3VAlLCgOZuEdUCqtmjmcZJ1QEWSDXC0k3VAQgeJgc2XdUAUKqHISqB1QB4lxay3oXVA3N7Oz5uwdUCx/mNqwrB1QIh/tMl6s3VAJC5wT2LBdUCYKums+MF1QGgX0SDOw3VA1vL/ps3TdUAy+q8G4991QCin6K554HVAZkKichHhdUDuIm2lCOJ1QC6ZQ1jn4nVA2id0gYzrdUD5JF4VTe11QEzbtY6m8nVAqgm6VGnzdUBCq9za7/d1QCzvJlVIAnZAap/1PpQCdkAHjl0V0gN2QBZHyJMIEXZAkBXmw1YSdkAwSyDXThR2QPDutykLFnZAMr9t94cidkCWvpeakCR2QPbaw15LK3ZAgi6AvR8xdkCMln7gUjN2QF9mxLMmNHZAfvzUpE4+dkCa9xMFUUB2QDyqtN8dQXZAwtGzQZhCdkBi2ULByUJ2QGF7NId5RHZAPtLf/8tQdkBAJRTcEFF2QFRl93PNVHZAfAZvxCJhdkCjCuuI4WF2QBjGeSBTY3ZAMg8q4ZBjdkACXGRruGN2QLAkbGrmY3ZAvYfgq9pkdkAUw++YWWh2QED8J0gFc3ZADuTHbQ5zdkACSauYm3N2QAeicCf0c3ZAlqVnKpGDdkAe3jVc8oN2QBqNPyi6k3ZAFmlW8FygdkD8/YfilK52QLM2kVVTsHZAOAFxfrmwdkAa4/LJwbJ2QFzI9YUus3ZAQ9rARHizdkCQwW7PDbR2QGBw7dTTuHZA9LprTXHAdkDMjKaSvMB2QOQaRfVPwXZAQ5MuBBzEdkDwgx7zzs52QIJaN5F/0HZA2KIfNqTQdkDRhdum0+J2QF3yMhiR83ZA5C0GYkn2dkBGZjVrNgJ3QIQ5L8kBEndAQiXOirshd0CrrTZUDyJ3QE0cSUK7JHdAyAn0oOknd0BObChYQy13QCtWAmWKMndAlED+dZ8yd0Cok/hdpDN3QB9V3DoNNXdAkjuubZ1Bd0Ay48VskkN3QN184fb9Q3dAJKDLIRtFd0CdsL53SlF3QHMCfmWTUXdAQKguCAtUd0A7WE8jLFV3QBTj51CPYXdA8gSN8DZid0Bkezj2J293QPbLh3k9cXdAevsZip9yd0AgK67lknR3QP6q4Vr5d3dAxpVDDJV7d0AT9Q49KH93QATls1l4gndAHmasiJyDd0AMn/0sT5R3QFy52G7KondAjoYab5m0d0AlOfLhMMN3QODQOUxSw3dAOEIoG1bLd0CEUZvdi9J3QC5ESgl++HdA1tOORUf9d0D1AtVv+AF4QLbVUhqgAnhAWK0ziOgHeECGof2NVg14QGyEXIwgDnhA1PpIjU4VeEDexHTDbiJ4QJFV6JmqI3hAXc89PtMjeED1jwOWpSR4QABgdStAKHhAnqN3gZwteEAImzcfEEJ4QEKLufUPQ3hAhDfOLEJDeECidE+OEUR4QNguGdV5RXhABC5crMtReECazucHlFJ4QCGsofceVHhAFMtSCYdVeEBilt3g+GB4QHVkSWuNYXhAjJrM+bZheECQz4pSI2J4QHhmxM4CdHhABEsWmzZ0eEDiN9vci3R4QHIzaYLadHhAlH4s8vl7eEAWVNeWpYF4QP6chxCahHhAdgt+lU+IeEAbwU7mqY14QPziqz+5kHhA/xc61yGReECS5t8BRJF4QJTnp8qXkXhAXzQgu+6SeEDzazYEB5N4QAeZPMqnlHhAvMlcBUyYeEAuRd/pOq14QICzYnXUs3hAmWfJ2Te7eEA47cxOP8N4QPUMudMlxHhAoJ2t4QjFeEBzRjv/L8t4QN6xX0ZGy3hAjLgdY7fUeEBzid091dh4QL4JLXSV23hA4iYnCpzjeECDSagsyeR4QL9vSOMB9HhAkjQ2I431eEDMBbyM6vt4QO0Y6c6YBXlAjGiq9J4LeUAuLHV1oxN5QJbzEpe/E3lAjvTEhrwjeUCOKavssih5QAiY/BsNLnlA/JkvnWUzeUDU788KwDh5QL0NxO7lOHlAzqCiaDs+eUDQYh5pOkN5QNRH6ev5Q3lAqJEHCpVTeUB9o7XKzFR5QD5tulXaZHlAOPkisEVzeUDU9l2FN3t5QBSeVvb5gXlAgRj5kECDeUAFWwdtO495QCt3KSxXkXlAFVfT0jWSeUAiEZnNXJN5QG43Uixkm3lA8nX2NGejeUDxCJVOvKN5QKNXCQbAsnlA9AkrtczCeUBc9yegBcx5QPM/ndgN1HlAIy3eCELUeUASnAm2zNV5QBMmyElS5HlAPo7m3NjleUAWHvZKD/R5QMZcnC0ABHpA5gyiZBwEekDko/k3+gV6QFcduX/3C3pAzFX82/sTekA5ryBGmyB6QB6J1xGqI3pAJy7d1SkzekBoi9iUDDV6QFTbykIsN3pAJzDWahpFekAMGPqFzEt6QILqvjYqVXpACscdnCJcekDtVSxJh2B6QCAcEyEqZHpAnFiQcjplekBKq35MMGx6QKD772nHgHpAgMDhhFSDekDs9sAlGpF6QP3K13mmlHpALW3OPR6jekASukfZeaN6QETiAR8mq3pAaqYZ3hWzekAgBpPODLZ6QJlvo9gbu3pA6Mk/XfC7ekBZlm4mILx6QPN5AG4xw3pAyLVG4BzGekBn//iPQsx6QLmkCitDznpALHAKAbrTekAazhflR9R6QHLg3R5l4XpAQPeoe0jiekBK/LXhi+N6QJ6zamtS6npAfyAuaDfuekCAXWWHFfF6QLGmB/Vb8XpAaTtjErzzekD+THpU6wN7QJQB99t8BHtATtwpMsoTe0CuNWQvihR7QAdHvwdNFXtAxtbDG9Mbe0AK9FS3WiV7QAAIbBJjPHtAYjFoPGlEe0BwSYX7cUx7QJyZVoI7TntAuj6zmg1ce0Ay888vel17QKDyJjMUZHtAAzFdkDRze0Bn8vQrDnR7QFyTotTpkHtA6l8eQsKUe0DVmWviI5V7QFqVUzfPnXtA9EzuHQ2je0D4zAC+J6N7QJKkRqg0pXtA8Bq+7JPje0CdTXOWAOR7QNDFr54m5HtAGtj4yJbxe0DsyPe+MvR7QCrdfQGM9XtAzDeKCin7e0D5uzHo2gF8QGpHErL6AXxAFr/M2S0DfEA+2msYZgR8QMrxRLOZBXxAG9EqptIRfEA6EwDd5xt8QBSBJkPNQXxAcrcF/1FIfEBc+AkjqU18QLKrWUTaUXxAyTovCuhSfEC7wZ36DFN8QOe/rkIMYnxAZgecr2l7fEDe3Q1h6318QE+QBTBwg3xAJqird16LfECUs2vteot8QCEEJ0fFjXxAAoCwr+2QfEC6CiQsUJN8QHpwjH9ok3xAWLvoO1mZfEDXhesNWpt8QMzQZsaynnxACofd61+ifEBCUDt1YqN8QAa/5lwPpHxADvm/cMOyfEDxpDCue7R8QEi+E7fSwnxAhFzmIs3VfED2kiKt89t8QJjqjc9X4nxAamoCZg7jfEA0pLS5++N8QCelaPlr6HxAGnjPD7TtfEAohHNpFPJ8QH4gNH9U8nxA5tliTXLyfEBoXLO59PJ8QICeNQYAAn1AxHZes0sCfUD40u+ZVgR9QApDS31DEn1ACu9wbGISfUDgt48e/BN9QCyw4ymvG31AF5UlfUIifUA9KRp7jyN9QMwwX8i2I31A9hSJWL0rfUBM+r3jpDF9QHBLHwcaOH1A9bOhtGlVfUCkSSWGeHR9QBytPXvUg31AjAGCXJaNfUBpkxY175J9QKTqcYRWk31AVPmVs/WbfUAhEeNt/aN9QLJdgzKmpH1AZqpAqwCsfUAb2Bno5cR9QGfKLs/z1H1A/LSlS2ngfUC2CVN8kfV9QFodqHI0AH5ASqqyc+wdfkDe3zxrOB9+QKk6/zwkIH5AXszKa0gjfkAsf0v9Iix+QKBrCHg+L35AFt0L2Cs0fkB8qVd3FTV+QIK+w70uPH5A1SI/GkQ/fkDiQ95bj1V+QLKircgTZH5A+mLjdJllfkAG2GBgFGx+QHQFl+G0c35A4LqAAzh0fkCDx2ubxXh+QBKbPya1e35ALPfdHTt8fkDHlscLzIR+QPAKapbhkH5AFgzLsruYfkAN7Qklfpt+QBzchyTlqX5AdnpXfwyufkBMeb3Qu7B+QD6+kQt8s35ABgKgmELAfkAI/cvP0cR+QHjhQRNkx35A+OmU+nPIfkA6P9oKvMx+QO4qIELOzX5A/EbqftvSfkDPdi51KtN+QJYK34Xc035AHAq64d/UfkCcCLefdNh+QBHQjE3/3n5ARnh8Y9HffkANYAd3A+R+QLqdaNlZ5H5AWRGn7LTpfkAR7nT/Bex+QBi8EIvW735ADu12OTL8fkCkziQbmf9+QKB8QQAdAH9AT50A9pQDf0AarzsKnQt/QLzfLwGPI39AfMj4A2FDf0AA5Lz0Z0t/QOqKOoZ3T39ApDNNFIxYf0CUf3/OmV1/QNjBW77pXX9AXi7Ejbdxf0CCIxQv/nN/QNzA7rUofn9ASeoW9LKBf0AmywNHo4N/QPDL0oJjkX9Aj5scupKTf0AUZ61pX6F/QDiGWatBo39AjiVSYn6jf0Dmj29kfqR/QJw+IYMQpX9AYbedqJ2of0D7Qc5O561/QIpm7oBWsX9ADoL+NY60f0DubiRSqsR/QM+fAyHOy39AUk+z2LTMf0AI08uY1NN/QPtO0Evb239A8gKQi97jf0AWTju2O+9/QEUGE5K5/X9A5bvO/4YBgEANnyFINQSAQFn/re7aBoBANAfIPIgJgEBIxv9ooAyAQEJ/qabmFYBAkGgpWMoZgEA5LtyByiOAQNhNnFJzJoBAlv1Wv+MmgEBEDK9FPCyAQK78o3seN4BASmY3Yus3gEDyuOuLqUKAQFj4Xl/vSIBA2BMvh6ZKgEDQn3BrtUqAQHzPoZPmUIBAGj4iQxRRgEDb/MpQ5ViAQFg5xpoOWYBAdAQnLCFZgECy2FZr21mAQJ2hZz/rZYBArABnlghpgEAsw8AN8W2AQJqrDNcEboBALdDylO5ugEBUW3s2KW+AQO3IP4n0cYBAclPo8/x1gEDsP9oh73aAQN1jLgsqd4BA9rRSapJ7gEClQr9yJ3+AQMSJbxjuhoBABs19W2eHgEDoZIrS+4qAQPT1+Twej4BAI0gzvx6XgEAU7KaDY5iAQA5+8t+PmoBA3NclXhmfgEAwYNd/F6GAQJqwHm+HqYBAGvIgOsypgEDgCFAREq+AQORPZT9zsIBApB+xVR2xgEBwT6mZk7KAQLG7bdpLs4BA9wOu6sK0gEBcuqhLBrqAQNEU7thMu4BAYoN0TQi8gEB60gZrsryAQE5ZYq4/voBACOzD0l+/gECp8L1vqb+AQHzIMC/rv4BA9cRIMf6/gEAul7+OUsGAQFC/pRqewoBA09RMpoXFgED/6hRCqMeAQN5+y/ZwyIBA4Li3klPJgEBWekYP0smAQOhUN2yWyoBAplscWFrLgEAYjUriNMyAQDzhtmsHz4BAHiaLjrTPgECXgVXlcNCAQM78JelM0YBAVJ5lPkvZgEAB93JCzNyAQOElnkO/3oBA7A2hGEThgEDYJ7GgV+GAQIWbnC9t4YBADKCEnBnkgECgGyNPPuaAQJcQwGV95oBA7EWMgsLmgEAbC5XT9uiAQArfp54e6YBAl6wdIUnpgEAkwsN0Su+AQI7+AXE884BACKnw+j//gECfKBvVQQeBQIxnqkNnDoFA+vZuGz4PgUBGZD4kBBqBQPpYRvc0H4FAkNM3SzQngUBan1WMtieBQPZjwD8BLoFAt4ADUUAvgUA6+UpbuC+BQPaBH728MYFAIDthfdsxgUDuWivaKT+BQOntCcqWQYFAIdyK5JRCgUDOSInUK0eBQOKrHNRZR4FAhfiD6QZKgUAK6XogtEyBQOqdSjcVUoFAkJkwwhhWgUAw2/bI5lmBQHCaDFHqXYFAqADwXc9vgUCTckGvr3SBQLa9SarId4FAYnNo3cx7gUCakiSQSHyBQB5pUIYEf4FAGD9W/p5/gUBKZP+LDYeBQERGvRJhh4FAfJV+sAWNgUB6MiZGVo+BQI0dAqLKj4FAr9XTm+yRgUCogWwOV5eBQIzxuhWdnIFA3eQlvUifgUCZP3lRUKCBQFQnz/vloYFA8mCycd+igUCYwGo3L6OBQHacoKBtqIFAwHqHIkqvgUDApHBUZLCBQORkcRBMt4FAlNAGXWu+gUBnJ7Q4U8CBQMSxQELkyYFAlPTuePnRgUBqsY16ftOBQHiKq9v81YFAoaiJKQLagUC9NVXOO9qBQO4Ekz/33YFArmbBifzggUCUgjOH5uSBQJpdyP5u6IFALMHJZZzxgUAwyjA2vfKBQEqFJmPs+YFAxTWCMiz6gUA2PnEN8f2BQJzvNVQw/oFAKhvky+QBgkCevO899wGCQErbkkgyAoJAQdOkdOkFgkCAkINwAwmCQOw+97OsCYJAZZGXCrQSgkBEmqrl2BiCQIQX57n9GIJAqEzER9cggkAkj5Ke0SiCQALCKI8PNYJAXDUge/A1gkDQ9Z6uyDiCQIgsesGaPIJAXiUKiZ4/gkA6G3E1A0KCQNcuvcrISYJAarOlMMxNgkD4mXUI3k6CQN6g+n0jWIJAYmC1WaBbgkCwMuJkO12CQIxbLUc0YoJA2JD5qERlgkA2azrqBWaCQLz3ru83ZoJAQRtDFKJngkCG05ObN2mCQFbyfjI6aoJAgUyWFT1tgkAmCFNteHSCQDf0q2s6dYJAnS54swJ2gkDoWN+xaniCQEivgIl6fIJA+2MlVQd+gkCGYA+MiYKCQG4kTZRDiYJAfJq9T0SRgkCD3VYs4pGCQDohG/8zk4JAguBASa2VgkCUBeFsHZmCQKAukkw9mYJANOEUeVaZgkCc4oAtsJmCQDrG8lWpnYJAymnu3A6hgkDtAu/4OqGCQDeDBPRepIJAspslvQ2pgkDqD2EXNKmCQB958U0GsYJA+g/FdBC2gkDtrDjnYcSCQK9syrfsxYJAjEPjmfDJgkCwDdTL9s2CQPn87brq0YJAkpdxeoPSgkDEosbnfdqCQG4iJYna3IJA8gCsLoLegkDQ6cgXhOKCQMBysz2s54JA5zUBHq7ugkA8+SOkoPeCQKY9SJWv+YJAxozBcuEBg0AHfdEC5QWDQBAT4YbLCINAEKD+dqkJg0Cc2YP52AmDQAC/oJfsCYNAJMwja2MKg0D4GfTY3w2DQGAgbL55EYNAVJCVV+ARg0A9KnbzThiDQHyNCWx6GYNAtC64Akwgg0DwdMMgcyGDQK4RlaOKIYNArmq1OVQog0A0Jba2QymDQLpFEFZxKYNApcr1qGIrg0A0qX8+ajGDQBS4HoH3NoNAA8Lbdmg5g0BQ/Wd/ZEKDQFDScda6RINAQRF+KpJFg0B2SRAZxkeDQPAYPOwPSoNA4Hg4xNtZg0BGM97tZ16DQKKz/AxtYoNAjqk8i+WBg0Bh+pL42YmDQAXp097wqoNAEvU16Qmyg0B0MOUtHsWDQNK68YXNx4NAqtb2vHrKg0AAQQkK386DQP+7tpEl4oNA+Avyq8/kg0An4r4NDfKDQF6mcikR9oNAicc+rWz3g0D2USFXk/iDQPIava/kDIRAK0V4EBIShECt+wUQPTKEQHVHg4NjQoRAtQnVCvtZhEC/XtKcqVqEQLhDQuatXoRA59BEfa9ihED2G5+ZxGWEQHbHfkzcZYRAixo+gf9ohECxn/943mmEQCwF3vXrboRAKqbmiP5whEBZqiBWTHKEQHae4PkVdYRAchcG98l3hECSgl6r+HiEQPYQTUR4eoRArIM1eRF9hECbh/FOKH2EQERQHY7Vf4RAV7Jja2qChED2iGeUpoKEQJLi/D4ehYRA/BI30KiGhEAeN7cYzYeEQH4qBGfZjYRA0ksz5f2OhEDqN7CYeZeEQDDz8klqmoRA+HxFMBOdhEAOYIPVcKKEQLipcEYfpYRAEb9da8unhEBvhcykeaqEQOFAyFklrYRA7Lt0LRrNhEDJguXyyM+EQHp4groP1YRAImMnQGrZhECwwaaIauGEQAiwmW0v4oRA+34h89DnhEC+3Zd8auiEQNxALtFi6YRA2EQ/QyzqhEA1NXS5fuqEQDQxI1IK64RAIAnloirthEDGkjmTv+2EQHH8tqDW74RAWA07kDXxhEDpBSQTY/GEQIYGmUNR8oRAwbPlPILyhEC87DPfxfeEQIR+Blgy+YRA7HZP21z5hEAm8cxFMAGFQF+djydKEoVAddVWOAwWhUDofp4aODKFQOsrja3kTYVATe5TK+dRhUBSLBwf61WFQBsZT1DoWYVAmhJxf6BhhUDonQp5VGKFQJBE69SgaYVAKq1SYZhxhUBglT5CtHOFQAzS3SWXeYVAGIECQI+BhUA0S+np8pWFQHVBu90i3oVAQtvvhYYIhkCq7B2OMCqGQFMc2cdiSoZAFop2Yh5ihkAb6TaNW2qGQEaIfJJseIZAVAB5wkWThkAkwge7J7mGQKp1Ql1b7YZAlB4k5f8Uh0DLVSQhkSmHQOJ3+PmSMYdAjDQ8WYo5h0C24sZkX0GHQMYkXzuIQYdAcJTxx1xJh0AwMTHdx7GHQLCFn/TGuYdA6JJeF8DBh0Cc85pRwcmHQLiNz95w7IdAtEyZkoQqiECaBl9TK7OIQPBkx4oyu4hAYKFX4B/TiEA= + NrgMGZxjYkAYxSyCnGRqQOzQoK8iBW9AsyNeuPxCdUDqDZFHgYN3QLOBOgxVVHxAsWglgZm0fUA9bueitkKBQLzhXN3Y8oFAoZuxv0JbhEC8EEsHhXuFQFvukbe6W4hAUPHuQtyDiUCI9DZdHISLQBcdlVJIjIxA - + - W4qlREKVYESFQo1FzBbKRX50kkTxs2VGkOCORI6KN0WPVqdE91OgRVw0iEQmIe1GA2owRPnvb0TEv4BEC0nHRIO1qUQddytFEoxcRIo9pkTpNDpFUk52RejwmES9n0hE5il3RGpDr0SoWzNEoWgtRUnejEQZh1REJKyhRFOTh0QIfEZEK/uPRHZOv0T3e4RExmX7RC22Gkd+fzRErdMpRpftjkVCmmNEd1bcRDKDhkRONZxGwbxwRCIcmUTJAF1EQ71vRIijpEWthQNFH3RaRCyFfkTqJWZEsM+GRPbjUkS3HwNFKOJLRO6aNEWyPZxEwocDRny8NUUZ1VVFioeKRES3VkQHM29ES0ifRD8swER18htF9dhwROluWEfWak9EFbo8RN6OEkaOlc5GEl7tRBHhGUU7KqNEd8CNRAdBmkXzBotEpR+hRv585kQ6djxEz0KYRV1ru0SYBUNEoMk/RJt7wkTdbhxELykuRwy8VUQJNV1EwJajRDXhM0bfbUBEKnTNRYPyUUQnYDNExGzIRWX4c0Rg1ptEEgRVRaujNkRheolEMLRXRc1Gt0Sh82lE+Q91RG2BwkQBMVdEANKcRW8W+0Q87XREpgADRZZxPkR/uEJE8hV7REazVkW3QadE4yLLRdu5nkSyxpJECxhVRiZiAEXubMZEJpNTRMTXQUR5s0dE80eERPcmQURm4LBECCR8RBRwPEaT44dEBoXyRPZUrkTArJ1EsXxkRXM3eEQjFGNEduicREKXeEQGDlNEjS9FRPQTwES81jFElxwYRR7opUQFgSZE2ZZDRDt2b0QlXw1FTdV2RAe5m0Q60bRE+RyhRNi1HkZYRYpF3/UyRKbMQkeeoExFR7yGRNMzw0TJDoREYDafRQRheEQE8y9HfOOEReI/Q0WYw2hEq5uuRAla0ESQSR5FLl3CRaCeUkQveOdERDC0RShVt0Ue+0dER/pXRF1uKkR4ExdGvr9lRPBWiUQQ315EUmGDRK7ZNUSNVcxEVtxRRMdKfEQvhrFEAWa1RH773Ubjww1F/eYxRgTE5EQwJ9hEKFu2RDG72URTcUdESrqNRL7b2ETBtp9Eas4fRdsKWkRdlkhEC0hXRBLHtEQ/15RETmIPRR9MkUTbUVNEZgdyRFpV4kU7FYZEtkgDRelhSUQASRtGgaF+RJetMkSObHNExVPRRIuG7ER3bXpEDXGJRBg91UX/PFFEV05ERFICK0XsBV9Ezk5HRDInTkTXHZREc+2+RuD9g0TIptpEYtVxRP9hKUQ+AqtErQnNRD7jI0WM/FtE3YlTRWe26UR/6U9GxyiVRAMO5UQLaqZFE9o+RD+dREQFNpNF5qJkRfZ0m0Tu/29E3j+4RCGiQURRcaZEpvQgRMq9BkUJEyZEjiiURNPdEEXfpz5EdiFoRGaLXkQs6VNEbQONRLgFV0SUTaBEtVluRBsPjEbGCwtGIw14RESI+kQngJhFZR81RPSFE0WfdmpEKIOBRGcYpET5g9NEpUArRau4qkUgl7lFnoLHRpmLtURuYzFFhqt3RMArVURKX5pFRHh+RAVO30S9/mtFm3mvROpyP0X8DYdGgIeARH4+ZkSvuK9Ee7ycRRvzmERrO9BHSv5JRTEMkkQAgitEpK8mRNfefkRSxVpGxWQJRcDwcUTM6UhEOITYRGIjVUTWwZtEPU9oRANeDkVtmWxEBclyRO8qQUWAUTZEIcltRDypgEStLnREwoeRREXscEUY6D9EkzUoRHV1X0RrdstE60FKRN9edERzmmlGt/RbRPS1KkWeAIxEUloLRrQvjUW+UrZEV4WtRChAAUX6Jd5H4UShRmQNFEViiqxFfXXCRq8ZbkUmO2VG3V56RPqol0S60xlFP0tmRJTYJUWSgmhEY1KGRSv0jURABKZEZjhoRaJWW0SGBCxFTIgcRaQ3kERWr09EbO2JRCATP0SC8KhEsDWSRB5crUXO/jdF+9kKR/lGN0T2rJpGsRFARV0mgEQcLJ9Ek/VjRD1GhEVVUXRERMRPRBAPiESZxwdFloSDRFRab0SSKjpESTBVRP8isEUiIytG9nCRRedbiEQDVpJEuePYRPKyNkVRyjpE+RoWRbCjPESuTbFE1bdNROkhP0nwzrhED5ueRAG3IUW67kdItjcMR3AMjkb+1qpEv8qDRAvZtEQFDyBFBLmzRIfSN0UY3oxGUJKhROtmm0R758lEWSP5RpicLUZtOTlEED9ZRJ/QmEQ6tvdECYmKRZFAkkSl0q1Fe0BzRTE/PkQlXGxFWLnSRW3rRES83tJEZiSgRCZ9bkQqBnJETcPtRL2aTUYoEBBGQb5ZRR6WM0TUwLREo8CBRGKuPURAH/VE5k1qROM9sUW/kXNE9dg7RAVDHUW/1kxEfYSSRCQvSUT+VIVEidxsRFDIlUVoqQZFhr1QRO/sUkTedfpETuZHRMUBSERcXXVENUGwRQNvKUUST29EuVRMRFaPsUXocK5EAdqdRKX7m0Q/JntFMqODRP0cYERVRo9Eg0i5RIxg5Uc0dENE38XWRq2bvEQmH1NFrfdtR3p2IUU3la9GKWlARAP0W0XQ9tZEXkAzRUWSNkSYS3NEn73URmTiAEV2pwtG589yRYnztUVh6aFEAMTrRN/NqETcBmNEWa93RE5LVkZnzpVECwwARTa8pkV1guRE8t6ZRZPnWUTDyl1EqiKJRLUT90QwOARF5AmARDpTQES0p8pGoolERYIpo0UzuA9GBaFaRGv5H0UgISJG6navRa2USkSAepVE2SYORp+6PURH0Y1FGV0eRd5570QgmIhEEDOEROCpZUV0M45ElI9eRKB7iER/ijREJ8RKREeAWkSHSjlGlJKrRSpnuUTLUahGaNZ0RQmFRUY38v9EDEpwRAE+YkUzP7FFjPuhRYeIBEV8dMhFInPgRVJPgUVRVkFE4bL0RLzyrkRTnIREtz7jR3KFP0SD3UVHVUBURgYIv0X2jIZEE+o4RFRaKEUrqlBFvnjbRdsbpkQ+GA5Fsw9FRKG4RkR0CnREngYQRXfokEQSR4lE2qFJRBocg0Xiit5Hbm9DRSb4skTjYUpFYXWHRAaa8ESKN7tGAKxcRT9fKUTZNLVEA1+1Rg5KNUTWKydFAFaNREBFckTMTbhFpTKHRMwtUkTac0hFh9OQROeGwESuXV5Et15VRQwI30RC/GNEP197RXzsTUUwT5pEaNJdRg3H8UVn6INEcMCuRLGho0WMy5pEpjieRKZz1ERFeOhFAg/8RD4R2kR+GQJFUzuvRPByZUYhR49EDSiRRRTen0SfSgVFV92MRMSTAkVuEixFKUtLRFFCR0TTenxE9m6iReRXVkT26QxFwt6fRH3QX0Tf8kJED4pqRMw/XkR/+oFEl0bCRCr2o0QEZb5ESPxSRN/hoUZb2YFEyTyHRVFUeUQQjEdFTPyORKYniUSbuDFEkXBtRacnbEShOchFTswrRP0/M0S+oF1FQ0TJRIZ8gESCCYVEqk1JRGmuU0RillNESEx2RWgVhkSIGW9EO1IVRfSQgkQRWFBEo3QbRaK+rEQJpwFF69eeRdQ49kSK24xE8+OpRLixtEROJA5GU3lhRL36UUXMm3RFctZARJHAlEXjS5xEoBO3RFwRr0TodvBEvluLRG/VGUV6vDBHZRnMROLI4EYrLMJFScKLROA2XkTX0z5E1AENRb3TDkVZWRhFvXf+REqQPUTbyytFhQVgRPDQZUTboF5EG1XbROTzakQm0VFEf1NWRBPxE0V85AtFqGMiRE2hR0RNuvREhfuLRhbsi0RYzMtF/wjoRMX5cETuJqJEJ7ByRMZ1jkVdmB9E3H47RCvsBkX8jkNFIZpRRKhoU0SY/kZEDHUpRDhApkR85jREWztWROtWaUSzagBG9+MYRdwcjUSo3WREeNhoRPTIgURX9sxEF1M+RPIqgkUzIYNEXnWqRBSOA0VRMNNEGPKpRIFvt0XICsJE1ol2RAzdlEUjsRVF6umRRMq+YERtizpE2/hCRMFnlEj2Mq5ElrbPROKGeERZgOtEiL0KSLkogkTodH5EsBlHRFEdjkSAYcFEfDJaRMSbZUSO2JJH7ZiWRi17RURFdDRFaTqRRcizp0QrGP9ENoFyRKh26ERli1hEFLGLRHu340S4dIlEpiRnRLUzmkR1GIZELZY+RnHKhkV/RkBEvyguRWQxekQA7qBGTz9mRZXZg0Tlfz9EqyeKRNx3U0TMSpNEcbF5RCiybEUlHWZEAhkwRSoJTkRCzK9FDniSRX8910TMD6lFcVa9RCJ2NUX5N6BE6+BNRG0iIETDePZE11+HRAZyUEQDclZEItuaRPh4SUSY4E1EGn3ERDXnxkUrAnZEdeqDRBcr0kSy24xFjayjRCsLXUSzA9VEEjldRFZtl0T26MtEBMrYRS/IXEQnJNJE2UdBRPhzfEQyv0REJM7CRmCfqESAyUpGRpAeRW+PnERpul5ET0tARCKnX0TYK4NEOKVDRFTkV0SyCnFGhbiFRQmzzUXVc8xEoQrARB+poUTmyHFE4/yBRNXGdEQ0ZVJEE0BmRN96MUYX4yhElP6BRUJBd0VMlqlEwENpRREYRET5qLVE1St+RPYaMkQhSxZFGTCMRH41UkQ65aZE8NKeRLQ/i0QTQbBFxP9NRO2GPkTehkNF42fqROij2kRv1spEBpI8RMSQRERbOaZETFpdRGZBrURnSYJEfS1cRKCln0SQhhdI3RmeRz0YD0Vwj4REI8cHRtpqi0QXNDdHMBwlRSq/i0WYIJFEkIW3Ra0BLEZOeXJETxITRfGXY0Vl6HlEYoRsRDmYWEQyY7ZGIuFVRvexPEU/8pdElSwOReifEUb5ritEtxaPRXj980TCkT1EVXFQROvzH0RdVqtErWIQRwg+bkZWm4xEYHtFRGAqT0WXF1VFcvuNRKZhHEXI7hpIMRM7RDRUc0SXm6NH7Fk1RUR8JUcs5kZFrjGcRCSpgERQ+z5G6I5sRO3skEVKryRE27VhROzzVESgKtlEWbq1RNfMQkRHiaBE44FdRBKlWEQGPG9EvPOkROSxwkSiXEVE76wtRB566ER6t7hERMCuRGj4L0Ro/kJEq7eZRNa/x0S/e3REhg6FRFcWwUSDqVBEP0m7RL6lM0Te+YRE42prRJV310WuKmJF4salRHdnZUQedI5EOHibRTQ7VkRQmy5EPmoLRV8EY0SoaVBEqK79RQyH2UQ2MstFkJOBRNZZwUSrjpBE/VBjRJgRhERccJdEL4agRMGJmkTKEV5EQU8fRKdyOkQd8ZBE/+l/RIQE10VSWsFFvzepRAcBgES3nVhE22GlRJbEDUWVE0lE1ao2R4Q5o0ZZsN9EROhrRhxslER/v11GISVIRFn2NUaJh29EUozGRTa+80RlWH9FukKFRYQ6mkVNrC5ELuSUROGRW0SBrdJEf7raROgTnUSJ9XhEX0QLRXbQlkRAv7pGFuZARn9BoUUrx9hE3sEYRy3iQkS/uItGbsgkRkj/rUQ7LVFF1sqWRIckPkS/yOBEhnVJRBvfPkResX1Eem1eREXqPURy5PZEUutjRLxC1UQFnoRE5uF8RA/fJkbkvdNF5ypLRSuQsUSjnvhEii16RIJ190U9CMlFCSFjRbPq6EQ7fW1EPtOHRFX7g0TPgEVEfeo1RA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - yG9PRnbAckA24v68DsFyQAJ1ugdvwXJA+MU/LMjBckDusNzHUMJyQADx/8qmwnJAz/UbTeXCckAFl57sOsNyQEI8qcjExHJA0nl/3VrFckCjkROZAchyQM3JQ0+X0HJAisU58QzSckASHqFiQ9JyQIN1fp4603JACW8+knfTckBaciN1DNRyQKAGgRPd1nJAPLp6so3fckDEGbCHz99yQMmGIckp4HJAVOfNybjgckAopwPV4uByQIj6XlhN4XJAiHbLjVDickC+uz/GZeJyQPafBNWP4nJAmG5fJL3ickAy+jQ2I+NyQEbJix+743JAnNP8zaXwckCoI8PVUvFyQPaQ6GPJ8XJAkDjpnk7yckDef2o8fPJyQMx2UQYT83JAZO1CGrXzckDQDzAqDvRyQAByYg6h9HJAy1pA3MH/ckCiboPzz/9yQIbCY3ZhAHNAlIMoCfkAc0D14sSQEAFzQHShNuAfAXNAWhIMCk0Bc0CYg9tsjgFzQJRLgGw7AnNAgauK3s8Cc0D6F7dSYwNzQPyfHof6A3NAsyaEPXsRc0CU32d3vRJzQDTtYuthE3NAkOhY8vkTc0DxGCVETRRzQOFEoDF5H3NA9H8F3T4gc0Afm7a0pSBzQExZKh05IXNAridCWGYhc0DJWU/ofiJzQE7ePrioInNAnEoBDskic0AszhFlzyRzQICdgIpGMXNAapTG+WUyc0AAnbSVyzJzQEL2b5n+MnNASCJi9wwzc0BUUq361TNzQJ49tf0zNHNASKQ4icw0c0CUNeva2zRzQGa5cH+5P3NAelDeUuRAc0D1cuTId0FzQMykTI56RHNAU1VliZtRc0AEJc7FDlJzQPIsfMpSU3NAyHhhGqRTc0CkM6fYhFRzQC1ic67xXXNAJhaO6Phfc0CsUx12jWBzQIwvY/0dYnNAnEHhcjhjc0B7uAjIzWNzQOmI7+wrbXNArgyTWNxxc0DiVy9ZU3JzQGYdXy1qcnNAFrkYroVyc0C4yy6Tu3JzQGjKvW9Qc3NAfxdNk7Z0c0CMkrmqS3VzQHC0YlvCd3NAYOG8Fdx3c0D4K2yoKX1zQA7yfsd4gHNA6nC4jQ2Bc0DGKAocXYJzQBb3DpKFkHNA2vlInNORc0C45OVzHJJzQOY6xgpNknNAZs6cZWuSc0Do9mgrzZNzQNpSmKdhlHNAr23FDfeUc0DOBE9LiZVzQBcVYj+5oHNAz38xl1qic0C7puyuw6JzQE7Wj4gko3NAWkg5xwSlc0CXs27xx7BzQOZrUao1sXNATYNGWXqyc0Cz6yKsErNzQMegfiC3s3NAPF5RZA20c0AdPecBS79zQKAbW6f2wHNACiPPxDnCc0CuE9jsfsJzQGggHjbQwnNAYhnwByXDc0AyboBf1tFzQLACxCFC0nNAMDMB0vnTc0BmltDk4dRzQMT1dmil4HNAtrMdTTnhc0Ad46iAY+FzQN6Xh/484nNA8t9h1Xjic0BUYYVgD+NzQPRVDMak43NA/9xMuSftc0CEtvQ1SfJzQFZte7fA8nNAkboT5fzyc0DWlds7OPRzQFQfVK+L9HNArEsUK+EAdECZTx0leQF0QJzBIp+lAXRAkmjAVroCdECkyZsbUAN0QFYtuAjjA3RAcprlJg8FdECYvX6qhxF0QFomsX1ME3RAvCtH33UUdEDzd0XwSCB0QMRTLdUgIXRA4mQtd7khdEBGn2ophjF0QHDbq6C8MnRArtBOXBYzdEC/G62bSjV0QKJ9TavfN3RAvGEttzo9dEDbsi4ipz90QJcOcZc4QHRAKorRNqVCdEBunMrWO0N0QOaLHPZ5Q3RAAN3z5x5LdEBObYS2JFN0QFJ7LHv2VHRAuDOoGYxVdEDAfu2221d0QM8mIxAhXXRAJwM4lbhgdEDA+x+3S2F0QEShHOUIYnRAmuYQqHtidEBaXxS/vWN0QDMOIQMPZHRAziEpzk1kdEA0LRZkyGd0QLfL9ubVZ3RAp71b5CFwdEDuAfsoynB0QDbrCf1AcXRAsNSxhKNxdEBLU0f/x3F0QAOnG2EWcnRAuHkasDlzdECI9ekgDXR0QHZYOgs2dXRAUrN83P15dED0Bn7s94B0QH7S99ROgXRAtDFXYvmBdEAQRKk1SoJ0QF5K1SLPgnRAwhQ07yaDdEAJPJxpRoN0QEz+f0S7g3RAEfVeqRWQdED5peelapB0QPrZhTsBknRAzlOfli2TdECuGHVTyZN0QIzAQLrun3RAMJ5qeaGgdEBaHWyIz6B0QJRCwZU2oXRAZI9SHImidEDH6kwzvKJ0QBJjzUIQo3RAojkbfvqvdEDkZQ6ow7B0QKo6f5pSsXRAFs3zLrmxdEDivw5Pb7J0QK0Cdqn7snRA2YMYgyG1dEBQcnrcyLd0QJyR7wcTvXRApClWqN2/dECCDH2748B0QI49och3wXRAbMBEYenBdEDcTHGPZ8J0QCs9egG7wnRA8NPQ3UnDdEBrxgPjdcR0QDYvsmi4xHRA+yfunPzOdEDMGw24qNJ0QM6LLmTh03RAPb8s6XXUdECKFde1zNR0QFygw9jR13RAkYpSLIzgdECa6qd1uOF0QFwORIK64nRA7GIUakzldEC46H2pjPN0QNeANRR59HRAmJUBMfL/dEDRSz0HOgB1QLCE7F/NAHVAuKAJ61wCdUAkvITImQN1QG6ZKVWXEHVA39O0k2oSdUC4UuvFIhR1QCSO1cAOIXVAuhxH+08idUAFQyCqnSJ1QO5lWFisMnVA1czLf8w1dUAUuvQO3kJ1QCIRY1wkQ3VAGfqNBRdQdUCiFAlKg1F1QIJli7t5U3VA1Bg1QHdVdUAzNWOVomB1QAQeFLI3YXVAkhM3D/JhdUAMT3JK0WJ1QCbnCjtoY3VAN8rmMYdjdUA8dejeh3F1QFYR8JZ1cnVAtumMzZFzdUDemndUjXR1QBkGDjNOgHVAIganeuKAdUBAeVX/d4F1QPJ2w9utgXVAAll1lr+CdUDuyLNHUIN1QEyA7yqmg3VAvD7l0ZqEdUD0hT38s5N1QOA+55HNl3VAIpYQIJGgdUDE+v+suKF1QDBP5tpHo3VAaqfr7JWwdUCC9hzBwrB1QHIg7njNwHVAy2KcSmPBdUAYxfR198F1QIIJmJXL03VAkucgnwzhdUAokuy0B+J1QLRx+ULn4nVAzCOtsEztdUC5wwODpvJ1QH7sL88A+HVASmIa4Uz9dUBETn5ETgF2QAuncolIAnZA8GROUY8CdkDENM0P0QN2QN3xOTsKEXZAJ8vPck0UdkAX4OwuCxZ2QOwPvy2IInZA4H0X6o8kdkDM3gtzSyt2QJ0BZzwfMXZAQNWYQ5YydkAc/tZTJDN2QBh4d1FTM3ZARvIEWSU0dkAjsApfnjR2QBihrK5MQHZAcCJOfuNAdkAfSo7QHEF2QHRp30ybQnZAwrW0sMhCdkC6L+QKqEN2QN2W7Np5RHZA3iKydBFRdkDY/pwchVR2QHRqBx/NVHZApnDipw9hdkAWjTHPI2F2QHyJ0Wm3YXZA164uveBhdkDCsUjC+mJ2QGy4MSNTY3ZASY3u9JBjdkCwTb2oxWN2QAiBS1DmY3ZAdtx7edpkdkDCOFOtVWh2QHgHOfzzc3ZA7vVCXvmBdkB+DOiPJoJ2QGReUFBmgnZALlTRxpGDdkAhT275upF2QP7FFmwDk3ZAkB+IBl+gdkDI9yVa5qJ2QKLh7NxQsHZA22kuOsGydkCaSfOLerN2QLZBKSANtHZALF8qXjy7dkA2UASpccB2QM6ng1S7wHZAtTdYL0/BdkChZ/o8z852QPai6Dd/0HZA2QmWO4DgdkCOwTeb9OF2QB5mZBcb8XZA1tsary/zdkBky2iekPN2QMJAT50yAndAm65XTQESd0DGjxJXDSJ3QLCxy+dzIndA3L5Pkbkkd0DuIbBy6Cd3QEYATjpDLXdAJDrbaKUzd0CWplUKDTV3QOZd4HnGQHdAW7my95xBd0DGpY40kkN3QJocplr9Q3dAmFmHSxtFd0BP5wvSSVF3QOUKsqaSUXdA+Dz2r59Td0DCjj4NC1R3QOpq/ggrVXdACyFy9Y1hd0BjM4Q4omF3QEyVdkwmb3dAvPwK0SNwd0AgCSSrPXF3QEug8zmDcXdA8M3mL59yd0BS+goWknR3QK610yr5d3dArgvy9pJ7d0BdY2ygJ393QJSm9i94gndAJOf18puDd0D2IrhCCJJ3QPh2wkxMlHdAOJfFRkugd0D+hp03nLR3QEi+bZUpw3dA587hmlHDd0Ds84fZ7cd3QFgf68hGzXdA1tqRmOTQd0AmMqVnjNJ3QNSaXE6P1ndAb9FLNZnid0BQV1QQUfJ3QCzk3WZ/+HdAfCJczEb9d0BYFH1IoAJ4QBriEajmB3hAINVzJPsHeEC6v+fyyAh4QLTVvgFaDXhAXObaJyIOeEC6ElgDXg94QDDw45OPEnhAhhuPz00VeEDKMBs7cSJ4QF2oTKOqI3hAEbQ9is4jeEAb1BEkDkJ4QP7hQuQRRHhAyIFeFnpFeEASItrtylF4QCD+92WWUnhAcuMDcIlVeECgoF90NF14QHV1D0j5YHhA0CabLbdheEDpEwU6umJ4QM2vgzoCY3hAQsy4UxR0eEAlLeCARnR4QL7yioZQdHhAMFTj+Wd0eED/noOti3R4QHIqNgjPdHhA+d69jOZ0eEAiae2ix3h4QAAZI4P0e3hA3eQPEUaBeEBKd8PSo4F4QEkPX6ANg3hA8MlglHWEeEBrqrkMmoR4QIbBVmJPiHhA6YTuf6mNeEBmKEwAvJB4QOT6UCFGkXhAAqb8Z5eReEDyKnQ7A5N4QJJ+L92nlHhATxX1s0uYeEAOKOIGpJ14QBh4mXxUoHhASC4bRIqyeEASJIL25bJ4QCykzVjTs3hAn52X4je7eEAMePViz8B4QAwS5qf1wXhAiDHmNj/DeEDnwsL5Lct4QIHozuM103hA7MGCJrfUeEAM+4yPlNt4QCbKX/2H4HhAexHQQ5zjeEDbhZaew+R4QPiKuYED9HhAEI1TOoz1eECwFV1gVQN5QCIKzn4QBHlAOicU7ZkFeUAKY0QhnQt5QOKyc6qkE3lAdqV4Db4TeUBqxdT2aCN5QJwwkl+8I3lAg/Not7IoeUCktXAQDC55QPTTOchmM3lABTqvLuU4eUA2s45OPT55QP5VD9ONQnlAxhwBUT9DeUAgWv+q+kN5QIZVtuLfUHlAcFqGZ8xUeUCClGvA2WR5QIawrRjkcHlA2oUISzd7eUA654vV+IF5QOwWoUZZkXlAv0ZptVuTeUCW+E97Ypt5QD6cSjjAsnlAETu1fE+zeUAtzdnf0cJ5QKgrv4cP1HlACKCWjkPUeUCWVihzzNV5QJ4dQgZb3HlAQ/9i8lDkeUAWqouZD/R5QMbnN1mQAnpA0PKOMvsCekBdaffOFgR6QKJ5gXD5BXpAP/5uq/gLekCWxtX2/hN6QOK3Y8MIFnpAJcvOIiozekDS1JZtDDV6QINRFG4aRXpAxhhx1c1LekB261YqKVV6QLy+NDHdW3pA4LM1eCJcekAuhNaLhmB6QJqsLP0pZHpAsnwwOC9sekAgCZKei3J6QMZWSLLGgHpAA1aNsPSAekA+1YTbVIN6QOrVM9nkkHpABQa+lKCUekDmYBiiHqN6QJSlI/h1o3pAmw8HFSWrekDyzSewgKt6QLIfTCQXs3pA4CYT9Qy2ekAAm4xLMLt6QIEM1ZL5w3pARuqZBBvGekCXqpK4Qsx6QExVc2I+znpAw+Dq03zTekC0tdPnutN6QARpl8FI1HpAOADFU1DcekAup94rSOJ6QPgtXa6I43pAgj2RW/bjekDaGV5nOuR6QPaNSd125HpA7RgRjlTrekAcH1Dei+t6QFrfq1U27npAvichkBfxekDk03QekQN7QImDqOzPA3tAuOqTBOIDe0BsBGeIfAR7QJFykGwqDntAzKDxCcwTe0B0tZSsiRR7QGjUXehMFXtABVbh99Ube0AghocLWyV7QCF9BsXAM3tAervr+2E8e0BOqRbtaUR7QPrR0FdcUntAYjMIApNTe0AQJPIKDlx7QO9JKjUVZHtAUlBzUzNze0CmzdR9DnR7QImTkEyMeHtAz6A+MrV8e0DMmI1R65B7QBhv7TTClHtAalq/SiKVe0Au73rPzZ17QKqzEoYlo3tAjHuwXXzGe0D6XTyKYMp7QKmcT23/43tAToGgOifke0B4bwkUFOd7QIoniag09HtAftNGXIz1e0AaVunSKPt7QFxnnKRs/ntAbdoxtdkBfEB8wSsJ8QF8QLrIIRIyA3xApgFWYWcEfEDYiEcPmQV8QL9qp3WIEXxAGEnCL9MRfEC6heOp5xt8QNbQsRrkI3xAyoXxfsxBfECi+S12U0h8QN7cNAqqTXxAxAydO9tRfEDSIQL17lJ8QHJbXNsLU3xA1GMT1X5TfEB0JJM0u1N8QIXnrQoOYnxAJHwamSpxfEAX71xNenF8QPC1ji4Ec3xAGIxnyml7fEDx0oEQcIN8QAABtdVei3xAKD2uAneLfEANoqFcxI18QLrA/C4Yk3xASO0KbmeTfEDHsMXPWJl8QDJDECBTm3xAeO/rOrKefECvnSyCC6R8QPEcdDOPpXxA3CsK+b6yfEA0ODj5d7R8QCJ0VOrVw3xAdmn/3vbbfEA4pn7bV+J8QEatjnEP43xAboPKX/vjfED4Ntlia+h8QOirB8OM6XxAFXpP3cbtfECo+OwLFfJ8QM7IvFpT8nxAUJsGgXLyfEAwyOJX/wF9QOK5AntLAn1AdiowvUMSfUDQlG1Frht9QEdw6205In1AR++nh4sjfUCaY5d0tCN9QPAnsgOeMX1ATh3Yd6hTfUBEAPliDVV9QCfxkOhoVX1AnNCHvnl0fUAanbt+lY19QNEitYjvkn1AeZEQdDmYfUCAeGMX9pt9QHMq3vn9o31AnKJNfaekfUCcSd48Bax9QGggFU/mxH1AVK60P/TUfUCHMxwe4vB9QHYcej/X8n1AVij+1TMAfkCn+dN7QhB+QK88GWfuHX5ArNMDpzcffkA2nJGjJCB+QBIWKPBGI35AuuVrpSIsfkAGaZKPPy9+QFhKtT0pNH5AQBwEnBM1fkD7lTbELTx+QJz1XmtCP35AKuwusjdEfkBm3L1cjVV+QFhvrA8RZH5AXNW0RBdsfkDs0KOj2G9+QD6eD143dH5AZjEBXz18fkBY+thsn4N+QMDZYvWti35AOpJpw6qafkCWgpdLEaJ+QNJBbXkPsn5ARHAMFpWyfkDihY/Q5cN+QNyycKHRxH5A3uRPu3PIfkAoSvsqzc1+QNT+XqjZ0n5A9mpGURbTfkBct8rF4NR+QK5JSxIA335ALBYD9MrffkCk246JXuR+QKYf8wi36X5A/u4cb9DvfkAKUDypIAB/QBSZZm6VA39ALNYipk0Mf0CEtuT4rjt/QClwIkFaQ39AJLkwJGRLf0Af5H7qilh/QKHPpzHjXX9ALS8qUzpnf0B0GRGXt3F/QGzWyMlMc39AEK6B5vxzf0BjiAZu5Hd/QG5tZIykg39Ab8TswWKRf0C1dv2eqZF/QKn6s180k39A0u7TKZiTf0A4nlomYqF/QMORREpAo39AV6oTQn2kf0BMS6b5EaV/QFiAjV5YsX9AfHvAao20f0BJvDAWhsN/QPSPlXOrxH9A8GY0W83Lf0AaVqoaXMx/QIsIffn+zn9AbToEhNTTf0C459mI3Nt/QFBmLT3B/n9AhJO0uYcBgED01412uwGAQHyR06ZGAoBAZK0XSTUEgECUe7NQ3QaAQJjKgeAkB4BA5gQQzIkJgEA+jK4rIBKAQH6fAlTnFYBA2uxGO+oZgEC414+x4yaAQCBE4tMTKIBA2hNDepApgECOstTHOCyAQII6IczhQIBAOm857RBCgEBKl52pqEKAQJBlkFf1SIBA8sm0g+ZQgEDU4vRUFFGAQCLl5fUNWYBANmElziBZgEBZJ1moR1qAQETHE6gqXYBA/9rD+w1hgEAot9kY42GAQI7KSuuLYoBAEOqNF3llgEBU0rMS6GWAQGzLxjnwbYBAm1y0dylvgEAMMNjt23GAQFgPrXzzcYBAomcSXid3gEAEW+QjKn+AQC4QyfVogoBAG3ofCYmCgECTrlBR/IqAQCVMgam9jIBAJj2XotqNgEDCaK97Ho+AQCiSViECk4BAJUHbkieXgEBKF8Coz5mAQHWquQWUmoBAcOZ0mcKkgEAEhNyZ9aaAQCq2oJi1p4BAIviPJBqpgEDUrmgdhqmAQFvWqrsTr4BAeu2/NbSvgECuEJcLarCAQA/f5jkesYBA/8QOfQW6gECa6GMvsryAQDgMFJCHvYBA+rJp6TK+gEBOdi7nX7+AQB/3eXxSwYBAGfxJbZzCgEBcxyFqsseAQAIM3CRmyIBAdW/nOCLJgEB6W0YmNcmAQMBzdmFTyYBATJMJ0HzJgEDMf1uPC8+AQNReSpBE0IBA7VFO/CzRgECORbgyTNGAQJBWojlg0YBAqPrOnL7UgEBK0lktJ9mAQKfrMqFJ2YBAF/lFwMbZgEAmkt/P3tuAQI0y12tw3YBAvv28Sb7egEDkrxqJReGAQGxBN2Zr4YBAjLs4ptfhgEAawGcCCeKAQDhXDxUZ5IBASBo4SPfogECOJ8fDS++AQGAhQBf18YBA1gc9+kz3gECqzzq7dfmAQNzqYvFY/oBAD9H2vD//gEBo0PEKQAeBQGOBddAiCYFAkveKsD0PgUDDw7a0mBKBQOPzgjlTHoFAtdI2sDQfgUDWxb3irx+BQHqaqz41J4FAaAFPWi8vgUAeQMSavTGBQKqB5Vm2OoFAJNriTAE+gUDRTfymKT+BQMAxrquUQoFA3s7DCupGgUCorvsWKUeBQFbxbppaR4FA7KGRZO9JgUC4KJVwCEqBQCRoSvudSoFAsDykvbRMgUDcvBKJFVKBQAoHDvcYVoFACLvrtAFXgUCmScvG5FmBQL60rkMYWoFAZohue+ldgUAYocNKvnSBQMg7nnVsd4FAsEmwJrJ6gUDbHJzpYH+BQBpZxWLtiYFAUFElRAaNgUDdk52WVY+BQDY7UypfkoFAfKzHlliXgUBPHA1oW5iBQJKqCqfHmoFAAkhiqcubgUDyp3aenJyBQOD7QxRIn4FAJ1pNWeShgUDYlcAz9qGBQJqZ50igpIFAaAUprW2ogUB4xWEK8amBQKah+eBdqoFAjDJqW0qvgUA8/QCIFLCBQABns9nztYFAkpxPTk+3gUDWFSjEZbiBQLJCQ09OwIFAhPDlc/nRgUAQt4gAXNOBQObc3Mh+04FAup0ecvzVgUB0121M7dmBQFJTPxMB2oFA3MV73jvagUClCfC+JdyBQKRoLFDp3IFAQq6nYfXdgUC+TncdDN6BQAZR/3GX7YFABwgwdJnxgUAbUWVM7/GBQDBcYDns+YFAdGMAsCv6gUCDZFCP7/2BQODb2xkv/oFAniz5s/UBgkAk7Nc3MgKCQEA98CsECYJAPkCG2a4JgkBuT57XABGCQNpdCny3EoJAQDhvqEMYgkBCVihG2BiCQGIiRq3VIIJAUXuHR9EogkBaoCAPDCqCQEwbr7PRKoJAtrhzypgrgkB967wFTDKCQA2lVhfxNYJAgBYCZXQ4gkDShjCM9zmCQHaJhiGrPIJAhoxEavQ8gkCqj5Zenj+CQPh1lt9IQYJArpOIZglCgkBAIQHl90KCQMBl9uIARoJArnm0/shJgkAEqz8ySU2CQFwi4lLKTYJAAJ5teRFOgkCvvYC6406CQOqlvexsUIJAKmejvgZagkDzvn9xOl2CQNQcRP/SXoJAcHrS/mpggkCYOlAVNGKCQJMofBQ4ZoJATU8V8N9mgkCg4MCRrGeCQFrgZKhqaIJACEajGgNqgkAuYciSO2qCQGzUzG3SaoJAsiRnRgpugkAi/Tv4C3KCQMpeRXaWc4JAnDG9Osd0gkAsKeRF3HaCQJHaJi7lfYJAXzweZYmCgkDGk4OQB4eCQHDcaEpDiYJAvP6hypCKgkD+A+UkRJGCQMj6cQDkkYJAYqawjzSTgkC+iDTCipOCQJ2IY8etlYJAYrlofTyZgkCKeBxlVZmCQMkq/B6xmYJArdvWK++ZgkAVveXwCZ6CQJYTnSIPoYJA7jj4ozuhgkCC03AO86SCQPU/AhwNqYJAjbcy2jSpgkAeSmDOBLGCQKCAArcysYJAGIA3cOzFgkCS6+cJ8MmCQC4Oeyz1zYJAeqnGT+bRgkDc9pmyAdKCQEGSq76E0oJAVLZdkPDZgkCj3AVJftqCQNYRbH2C3oJAho8RioLigkBuW4kYqeeCQHJLtfQ26YJArJH541fqgkCsBrjjAe2CQGxAwBtb94JAjA8hTCf6gkCzlm9U4QGDQBjgjnvkBYNAqm/TKcoIg0AmKtRH2gmDQMYbJmLqCYNA6UB6rBIKg0BssnDt3Q2DQNZq33P1DYNAqfhDz4cOg0DuxvtreRGDQNrjgvt5GYNA+iiKzkogg0DSPiyqciGDQHZvuziJIYNA2I6vwPsig0B6cKXQVCiDQBJH6RZyKYNAj0u42moxg0CES2QGfjeDQMqdedhbOYNAom0ie0o6g0AajBod4EGDQM3ZvEQRQoNA6Lxg6JBFg0AAIKeG7EaDQLPAryJnR4NADsnQdh1ig0BhZguW6nKDQGbsVmjEeoNAwEJ9DkqDg0Bst0wx3YODQC4EPnDzj4NAtkPdpoGog0BmZ3BKPryDQCIWl3YexYNANuz7FsrHg0BoFRdDIs2DQNNVLG3H3INAcxuYOrjdg0Aqmitmdt+DQMxMR8MM8oNA16/ptQ/2g0BPQJ8wl/iDQGRizK0QEoRAphWdb/M2hECcNt0VBk2EQJ6AUmetT4RAfMjig81ShEBjFcqcClSEQJ5Z+SWrWoRAe/Jei65ehEDykUoxsWKEQNNEfQ/gZYRAzVYz77VmhEAwpocU/2iEQPpYa4TTbYRAvm9vQP9whEAuiZAFFnWEQPK2MCXKd4RALrYtNfl4hEDTNhmxYXqEQNob3uJ4eoRAQAYR2id9hEBegs/WzH2EQFyFOki7f4RAYM3Nq9V/hEAcd0bFzICEQGgJQLT5gIRAfLTh822ChEDzVSsXG4WEQO7ebTa9kYRAg23Ys4aXhEDITWkFcqKEQBTOqYIhpYRAjtpxxMynhEBjZqP7k6+EQDs9uMQZzYRAtB+Pd8XPhEBIl5FFatmEQK/Vfpu03oRAzCPEUGrhhEDR7YePMOKEQIpfMHbR54RAiFhCQWnohEAv8DBfY+mEQERKNpF96oRAg2BlGCrthECuWg/Wwe2EQJJ20b4u7oRAYBDm1NbvhEBMuNcANvGEQFrFMt9j8YRAHq7LAoLyhEBl/NBCLfWEQKYxMnM3+YRAlUNMi1z5hECYdDBvLAmFQDRObpF5EoVAzIHmBvgUhUD4/A+ADBaFQBbfMZYQGoVAvsY9qyErhUBiy1pGOTKFQKhtK3njTYVAdkjXE+dRhUBW3iQ77FWFQIJf6JjiWYVAAvvnMaBhhUDcbt7ijGeFQBi8c+ugaYVA1DSx/phxhUDiZZtstXOFQL0F0NaXeYVAq+HbPpOBhUBva28JsqKFQAPsHiO4poVATmC60SXehUCOTIPyieCFQPwz/O+KEIZAcJlWtA0dhkD1W3yyPjiGQBAxOR73PYZAQP4HUmFKhkD6aqh6bniGQIky3IEouYZALcIupinBhkCeTBj3ghyHQKDQid6QKYdAIFrnptIuh0C6dMrckTGHQDMPWmDYModAy+ETrIs5h0B4LqDiaTuHQORB/2uGQYdAQm1Cr4FJh0ABdBQsd4KHQNB1PrTHsYdAxW2/gse5h0DEZ1I48r2HQFDR8m/CwYdARIagcv3Ih0AbfplNwsmHQM7agzNZ1YdAXAgYbObhh0D/9mK59OKHQLq4Fxsps4hAZiTZvhnPiEA= + KBZXds7jZUBkuM9LfgRtQCZYakR1om5AMjrEeZeTdUATihH2kmJ2QE4sistCg31AWfsL8UWkfUBSQEdo7fmAQEDeKTR62oJA40TIAC+yg0BrCKw2xhKFQHJtJvZaeoVAYucrZf2qiEBynBQgBwOJQJ+iucVoK4xAWcarkzRDjEAuyxe7lPONQCDyUaOgS49A4GfMKetVkECfIQdH/G2RQGB/wz5BGpJAUThsVUL6kkASlihNh6aTQFmq10edipRA0U9japi+lEBRZ1p/7oKWQPsLVJvZrpZArSK5qR87mEDRflGUREeYQPQ2aKQ1H5lA5f4U/E3jmUBwJqg7UeuaQLc6VzZnz5tAh2CRT4oHnEBGY7Urk5edQDl39l3QU55A+HkaOtnjn0DkT6op/g2gQAjaAScJgKBAzW3LxgoEoUDG0aHyFmahQNctrXoP0qFA6lv57yHYoUBD5yv3RJ6iQJe5KIU6tKJAV0Wkj2WWo0AUGOogY7CjQDiiQR5uIqRAF9EfmpB4pECRLXQlkeikQHBcUqGzPqVAUbnvL7zKpUC3cAGcySKmQHX6D5bMeKZAqfvqn+TkpkCZhGeT1+qmQCTG0PzvtKdAZ/OKa/LKp0DkUUwHG5eoQCXrKjcAsahACNyjBCYJqUCwdcs3Ez+pQCwdxGo2t6lA1W20BilBqkC3p2RrSUWqQP67E2ZfKatA+mWd1T5Dq0C+R49wigusQLrxGOBpJaxA3ntw3XSXrEB8Py88mPGsQA== - + - UwG3RIwmYkS45+xFsTPbRcHIu0SBj3hGGH7zRDdUG0W5YW5ErDVqROGvrEWNjoFEPmRhROFLA0fWPUBECIIfRVWzM0QhLVJElZakRHGPhkT6WzREKNEGRUBKNUTwk1tEhLCURWMTO0Rx7zxFNjBqRL/nqEQXRj9ERoNCRI52PkS1YpBFQztBRG8ZykT1n1tEvp6jRK5JhUTvqcJEBQuXRHc6KUR6RH5ElH2lRGCGhUSfUTBEWzeMRMO3jkT61e1ELKoaRdltP0QEh/JGXAxlRGeSBkZOYkxE0GWBRXHYdkSlOyhF3wVSRH5+AEWqjrpGU81XRGXdi0RfhWJE/ilhRLrmZ0VsbBVFZP5MRKqLWEQUzIpEEjqWROb8QkTYGLdEgAVZRKtXOkRhTplEsQyaRPxGg0XecwFGEbiBRQ0epkS4EHZEkEVnRZ/noETye3VEC9aEROGIS0RpAMpEA72ZRBp0VkSz/n9Hc5rVRBU21UTbAbBFLK26RmS8skQZCA1FeobERJ0G+0QfbOVEZqCNRZGTCEXQlcZGOwERRd8WiEUuHkZFu7V0RJwdnESciDZHoXFIRD0smURgcxNFqxtIRjwEoUQ/6aFFzW6wRZ6urESsaHZEV7D1RJFNSkQ/FH9EeYqqRMkPf0S7ZGJFHQxRRWwcMETnMBNFDUd1RIBafkS2DpRF9hbPRLNtKUW+VKJEnXhxROrolkXpWadE2/LCRSEOdkSA6Q1HIeLTRHRR90RDRotEyaR5RMfNKkW3CzZETvpZRHw2BUWhIZpE52/MRJPGfEZIY71E+4SGRP+PykQIXFNEWhCQRDSEnUQgcUNF/16FRGl+gUTMUFRE23yPREFoIkVep5lEn9FkRCd2RUT7CxxFPQkGRWm3j0RiuVFEBeaaRNncq0TEfYZEqE4CRQ3i3ESTPZVEO87GRBVwLUXWMKpGsY5oRfVNbUSUA1BHJ/3mRd24NkSIt19En5qxRI3jHEUR+jdFHs3GRQSEkkTJBzxHl55dRGIJgEQC4ZtFqAKMRa5qWkSY159EIE6aRJu4v0TFXaxFf1OLRH05l0QUZWNE9eG3RGhAOUTsGIhFkbirRRzTmEQ/gB9EXS5BRN5EYEQ3XC9GXW8KRfREJUXlIrREP8WIROXMu0RHzhFFykDwRG/L00T1dypFu6t8RKxB8kYwm/9EVgdpRIq3HkY6CFVFnfOrRHaacUTDKd5EoqtgRAIbXkScDP5EKWxcRK5sU0R5rDRFI/2nRGXeokQRb8REzWVcRDuCEkUS2TdEOmxFRPPw8EQNTTpEcCiGRPego0VhdWNEayY2RGbvaUS8qR5FfEAuRny1xUS7HOlE7ZOrRJvUCUXm4lZEvk2WRNI6EkZgEJlE3olURcbXlkQc1opEZF6TRIHveUTOSdpGXWG8RMkodUTW8BFFqSYMRUF1pEThdItEwqlbRb4iXERHjgZFAItFRHTKTka++4JE2guIRC9NskQAdoJFlbteRFdthkT3G9FFOW4NRZHHbkQVEFlEuNBURPTCmERYcp1EFbNAROnFKkWXA6NE4KVLRLRHE0VB7cNExW2+RLCG8UQqyLZEaceuRuP2B0bPkkRFzgatRJ4FgUTpp7xFM5g4RDJS70TqEa5EbIKxRCjimUTqsZ5Fko7XRY5at0Wpf+RG9YCdRDAwnESl/89EY+IlRcNO1UQdGJJENpR5RPR3hkVmJVJE4FoHRVO9lETV/n1FV22ZRVUQW0S8c0hGlN5mRADcdkQwUDVEnIVmRLj6SERaXL1EXmqZRQvvnES7t9hHbbYDRcO+qURKJWZG2+uvRC2MOER9g3NEuIIiRZI6R0SqxDFEo64GRTIGRkQG1oFFPJP0ROk7oES4ZZhFw9dbRGauV0SgXG1E0DSPRCG/lkXQSrdEyO1uRGz7e0QYjU1ExsMeRQhSm0SL3ANFkVSFRio0OUXj2n5EMXF+RNeTi0a+NMJFsiQwRYSG7Efox3VE8Vy7RmlGiEXVjkVGAffPRqP2WEW+h35Go0lFRNsBDkUKFadEaV42RRuQrUSg9INF0ttBRDoQVEQOV4lEo2eURR7askSFGU1FUKWsReo7jUTDAAlFM6gyRe0UZkTtF2JEqQs1RHbqoUSsTkJE8iHORHB8vUQqMT9EiJtLRJmPWkbUHntEUULARI9K0kSvhCdFU30fRxuhp0ZX/C9FAiyBRRRx5ESW13FE37pkRL5ynESa8IxEH8pgRMcE6UTL9L5E5/hSRNfGmETtcZBFwAccRp6kpEXn8M5EL1sIRRyIi0TinHBFCQE/RT7qfUQxbJFEFYlKRJgpi0QYljdFvRm3RWtXSElpt/VEEC2FRIyA8USwG5FEeB4+RLIzR0Xf+DdEYXnMRPxESEh14wpHtEeNRiZgW0Rf3rdEmzaKRbni1kVAUJJG3inbRB+RaURi5mBEBA8yRHGCWkTFbmtEo1z/RiscpEQq6IlEwCkuRh39SUV0xghFC5vQRb/3sUXFEZ1EhN5jReOXbkR+O0VFuEXrRVvMRERT1kNEder4RMwLvERO1H5EH9FeRJ+KPESR3C9FxJiGRuYkK0bTqWJFuZNwROrzgUTBO6NEtbFYRAteKUXkC2VEwu+PRQ/2vUTybENEOk8gRQaokkTf4FtETb3mRax8KkWEKD1FAoVSRDv5O0QuVmxEKlK2RZYe5EQufDFEsXOtRFewmEXZQE5E5WIyRO8ul0TD1sREZeRXRWwpyERQezpEpchlRL7pykdQxc9G8+KBRF31NkUXHKlEJqJrRx4wDkUI6bJGXwOIRX3MZET52yBFF6WkRF5TlETgUVBEwm3BRNiH70Zp3C5F4QwcRiwcoERddnBFeYXORbiahERgpZVEdZLQRK4IP0ayK3JEwoSDRCO23kRJFIdFK1GQRK36d0VU/RJFFaJgRAiFjUThPFJEn1ZSRARKZUSlhcVE0+zLROzxTURtViRE5/4tRGeH30bwUF1E8RkbRSaviEUF0CxGWs+wRHjYOkURf5NEEZWKRrxo9UX5Xn9EtY5XRE07JEbaeXdFfL7vRK5cuUTlHZpErU2JRMgViESyeGBEzmvCRQcxgkVpDB9FrruVRKONh0T2SGVEXkkcRi+QjkQPQ/NE9SimRhd+KUVdaJpE120tRvjrE0V7IxtFKE6LRa1loUW9jLhEMzV9RTLADEUSYUNEb//gRcgo9UWCKchFJqCpRGBCskRM1qhEdxmCRAJTfkSD2oNE4S2qRH92tkQO64lE7IrSR5awPkevOUhG+U/iRYTtCkV6WxJF7WmNRVSrxkVzo4hEbfR2RbRPZUSvZn1EKV7pRNc7/0Rx43VEf5yVRegrzke/vFNFsx1sRJXYRUWtV0tE0RuARKpsKUXWFbBGD2hxRYoYAUWAuI9Gnz9QRVin3kUpMOhEyfy6RHZZUkXZaNhEroeMRAhFTES3InVFcCkFRUW/zEVHhyBFpkyQRHpSO0bXMKtFV3HkRG7J00T5ebtFOfyvRPSui0TkSFtETJEeRpkLz0TnxytFT6CeRAGAGEXfKKNEilYWRwFHtETJ52NG4M1bRYnCKUVEr4xEJyZtROBulUUTtSVFzfJ0RBX8dkRdvapFFJg4RfhzUEUhbIJECFQ4RMgAgkRKY4VE5nNxRNokaUSh14dGC+aARfjSkEWjJ9hERFOARPOMTkU2JNZFXTOkRJE9CkUTSVhEf+qnRA6Iq0SIIztFsMthRMrCt0QM8ftEnw2dRHmRAkU1mDpFKqlvRL8tyUVv3INE4e+DRL4jhUQSKZdEUpofRlTPlESDj3REeezvRDgaX0XnyIJEqpKdRc6ZjEQlE/REGp5XRH1rRUSxxSVFRswORzloWETFlVBENCh0RhHIfUUNBZxERBY8RYT1ikR/IWRE0iYJRYD8uUTllftEkXuORAJ4WUQIFtZE81AERQSc/ERZY05E4MvMRAmqb0TtiHFEjyRTREBTK0VDwwRFY7/5RLU8pEZ6fcJFEpvKRFh3skQNM31EKu/CROwHlkTnj4pEOVhNRAnTzUQ9M4FFF6QtRVdDj0RyL65E60OLRD0SsURVVl1ElcpaRP8M1kTK1IBEKzpMRO/aFUaLvGhECXmtREbqpEQns0FEG9CBRFiumkRflWVEYEQtRBda60QUpYpFiayWRP+JjkRNJGlE3CvWRcbcwEXjn1ZElRWZRCJbB0V14YFI1BqFRIGzmEQSvWFEXv2vRBgbjURYO99H9k6QRPT0Z0RHK4BE3E6bREHufEeH2JpFDL2CRDBBR0R02URGYyuNRP4OVEQ8X5REkP8nRXg+nUVTVtJERyZSRCE5TkSN05RE1c/zROl/vUStm4VEmshMRDmmKkQ3gaNE2K9XRqRsZUVIx4RE9MGLRX+sS0R0qEZEqK2/Ru2KXUSvG2lFlvoGRepj+0TLWGlEdChtRBZTUkV9ZyFF6cNdRPcOOkT5i+BFfkN1RIR2j0VxHUhEVH2KRHy2y0UKTCNF84VARBAc3kRTqlhE3nb/RA3JmESrHVBEM+/PRGh8o0T8Y19EnQouRYw/7UVPI7JEDcTYRPllR0RhtlJEAbVmRPxYhkWsNQJFp1KARG0Hs0RrFVBEOMQ4RV+kaERu7zZEd1zuRQ4uOkTvKWdEjJewRAKnRkTu1mdEOwWoR5znZUSmmWpEo3o7R0Se5URDPRpGRiFaRPr1KUQki1pEYpALRTlUh0SC9EhFs77LRIjBn0TgqllG5qtlRe9x1UWqnRpFqHM7RXj7Z0SIO71ELnYmRbZGU0T/32lEGOp/RNP1SUYQxERFjPwZRXNYYEQAzWdExKs/RM37V0TZwmFFKNh/RAYe7EQropREr0pKRMV7i0QE1TdEha+mRLx3b0SIkj9EtI5mRRFQmEQoqAhF4H9LRNEBf0SDx6REH9YSRamC6kTev6tEOaFVRHSt6EXbQHJFA9tnRDocq0R2p8tEJJagRFX8ikS05YZE6UFiRDe1QUTBMmRERe+BRE7vcUR0nTlE5q2dRJXjSESQFThIV+kzRNPssEd8UEJFXYWnRJNqd0ShVeRF6Fg/R60JWUUJxStFnIt3RBOPjETnpaRFqGVgRofOhkRl17JEMMOcRZPHgkQxBa9ETo8XR3E/yUYW+6BFO6cGRfK3cEQa2ypF2EFuROsdDkbNGsxF3ccFRUu+kURH6pREl1txRIMPmES8z0ZEY29KRGd9m0fXuiVHisCaRIY1DUYD9fZFS1IsROsPq0VSk4dE+7pBRN0AF0i1x4dH59g9RdPfG0cVKjFFwDDURLnwkUSishlG6/hfRfnXhkQBhU5EbM9JRCOMV0QKmIdER1niRGbzbkSQddFEvetVRBNLXkSmKl5En8heRF/fZkRkpURE4h1RRP6fTETZyBBFwzwWReqiVUTSeWxEVbZiRMfUg0R3cuNEaGkARdrNlURJcgxF+3GYRJHdPEQA0mpEXlJDRBOZZUQUZIdFNOxKRYzfw0RmnKFEp1zeRHGa0UWSUlhEQrA0RTwrbER52RJGPIbcRJbzqkTZJg5GxBhWRabGjUTW5oNEFradRJ8NRkShaUlErYkDRbxPeETrz51E6ONlRAJZr0VgBJBFHZPNRD4JZURbuVxFLhLjRHIzSEeA+F9Ea1HVRtL+p0SR0TRHqIBaRM4yhka7GR9HmJG9RnCNZ0S78qVEK3QERkIQlUVWbctF+XJeRb6VmkSHnAdFwgIKRV2jW0QxJVRETQpkRHbgPEX0WMpEih3SRJPRV0TI/L9GOWOKRkgLk0X1uRdFZogTR02rS0SZdX9GZPE0RuKgiUT2xVBFrMTwRJ26f0QRUVhEvCybRC2+RETHxF9EEz1kRMkCgETMsFhE8FCsRNX2dERPhtNEAEZQROyCTkQW+VdGj8CMRNJJCUa4YDdEWvxsRQNWRESAkYdEb7KbRG0i8kTs7CVGXLSbRWrPKUSPdntFsFqsRC8m2ESdLcZEtTFKRBkY4UQlYd1EjRiFRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 3IHt4HfAckAKUqaZbsFyQHzbG2vIwXJA5GnO/qbCckBs6Edp5MJyQLhmqJ46w3JAVIphh8XEckBRCTvoAMhyQGZ1oj1D0nJA+QgytHbTckBfDYiOzd9yQK4Nr2G34HJAoO+VgErhckBJIqIwUOJyQNbubx2P4nJAWLnvhMrxckCEPuzqe/JyQLjAhmEQ83JAOtWiZLfzckCS2IJFo/RyQML/P+CN/nJAE+/R+sD/ckCOQieN+ABzQIxMflBMAXNA+MJTxDoCc0DGVCQDZQJzQJdrHmnQAnNAkB/9f/oDc0DEonW1IxJzQFvAM6u8EnNA/O96TvgTc0B8ANMJeh9zQLgHpeqkIHNAfLRx0jghc0C0Dn8MZiFzQIQBCSsPI3NAWiyWkDokc0DaEYGuzyRzQKJi/TVIMXNA0mur0Vsxc0CprcZeJDJzQLx9aGf5MnNAspfXUNYzc0D+9FkINjRzQG8tOa66P3NAcE1HkuRAc0D4hAyLeEFzQGWR0uu5QnNAJhJpSnlEc0CIAtpVnFFzQLY6VNlDU3NAdshcEaNTc0DXNhD2h1RzQHzOOHvxXXNABZBXooxgc0AmxTSYH2JzQMSdYVQ5Y3NAeNwutittc0A6ucn323FzQCTFLktQcnNAVtRybmpyc0BDiwvZhHJzQAyS4Re3cnNAcB+tMk5zc0D6N0lSt3RzQH42CQFLdXNAPobyXN93c0Df2s5KEn1zQMzYFo14gHNAmVxsWqSAc0BE6PcTDIFzQPhyHCJegnNAQLZPG/+Cc0CCxZN6WIVzQMv3JwKKkHNAhmNv5kySc0Aou1SfYJRzQGzKmnH3lHNAQtfnLLigc0BQ897tWqJzQJkn2D/konNAlz1yvAOlc0ChoOGrw7BzQKSQ+a8zsXNAlhh/BX+xc0DzhuHEtbNzQJpCYTINtHNAyOho4WXAc0AojK8N+cBzQIGtqyDQwnNAjFCNcijDc0AaUzUox8NzQB5NM73X0XNAC8YwMkHSc0CO0bw+u9JzQDpSt+H003NAK1ojLeLUc0B0giVJpOBzQB4tork44XNAftmOLWThc0BKedpY5eFzQDDTcZc84nNAJaulLnric0BeGhLnD+NzQAhUTX1K8XNAONGKzUnyc0D2FhyeuPJzQODThzg39HNAdEyneIz0c0BqoGLz4QB0QG6CM3N4AXRAuI/anSQCdEAfSR9SuwJ0QP6cyfBPA3RAaWQvzZURdEDIgIlWTRN0QAALjS9KIHRAKoecWZEgdEBLmKTAuiF0QMT7WCpmInRAejUKulQwdECePD46hTF0QNQdD9riN3RAVFIZG8pBdEC6m+E+OUN0QMO6yzQfS3RAOmSgw/ZUdEC/wuBGjFV0QJ7iQYfdV3RAIorWhiBddECUMPRgt2B0QNYl1rsIYnRAROpN+nlidECYkWoDD2R0QCRrgVlOZHRANiair8RndEDuR+o802d0QHntBr4ebXRA/DX5jiJwdEBE8uUuynB0QC5bzwFBcXRABGthWBVydEAvkc+5E3N0QN5M9DU4c3RA9OyY8Th1dEBzK6ay+3l0QPJczGH4gHRAGC55VU6BdECCUGdQRoJ0QPXmkNPOgnRAf5WTlSaDdEDDzxY9u4N0QDlZHzsVkHRArpVzx+6fdEDvgCsao6B0QCx0dWzRoHRAxuCaTjehdEBmQWuZe6J0QNePEam3onRAhiDxORCjdECJqAUc+q90QNQKpk4LsHRAIOduwcWwdEBECxy9ULF0QLKNaINusnRAZpBcNP2ydED+/L3AyLd0QOU0EH0SvXRAtqHg5CS9dEB8vDxB3r90QPokyKziwHRALF2nwXrBdED9apNN6cF0QJizQAG6wnRAdVkYT7nEdEDYiMqky8p0QHrVmIz8znRADXVHbKjSdEC4Bwj6zNJ0QCpyKSQ+03RAclxe0uDTdEDaoGUteNR0QD/HCXHN1HRA58Q2mCLhdEAa7G2ouOF0QBGmeyJN5XRAE42amr/wdEC6OvpLjfN0QITrnNDPAHVApkaALGYBdUDKyT4AXQJ1QKwFcXRrEnVAyscVsCQUdUCXbpUt5R91QNpxeQWdInVAtn+fasw1dUAGqs5hJUN1QAM+7nPmT3VA1r9kAxVQdUC8w+aGeVN1QC3XddhPVHVAbB08o3ZVdUBA6NYnOGF1QMoYGVfyYXVAbjpizoZjdUAQ4csbjHF1QGH8cFR2cnVAqDLYyox0dUCj9PkMeIF1QAwmvaatgXVAKrlhWFKDdUDcaJIjpoN1QIgwRyqbhHVAEKjPbc6OdUCfsl4wu5F1QOZGtbvLl3VAXAVjk4+gdUDabfequKF1QDTWj5P6onVAv41FKUqjdUCKPFyQwbB1QIYApRXnsnVAyDPCR87AdUCqp+0gYcF1QM6mCqT3wXVAEsXF98zTdUBAQ1nHD+F1QP4PhOkH4nVAAekaIObidUDOnz90OeV1QAmRmi9M7XVARJxz7qbydUBwgxix7/d1QOSKVo5IAnZAC/Qvk88DdkCe37d7CRF2QNq1Dx1NFHZA5GWP+QsWdkA8Foo5iCJ2QO+h9lWQJHZAEEnAVksrdkCqUdgwHzF2QN4xx7AjM3ZAcjHZOFEzdkATz+v0JjR2QFS0uYKeNHZAPlRTZR1BdkAOpOz0yEJ2QIB04RynQ3ZAxG6gs3hEdkDf+KHN/k52QL8g8Y/JUHZAzE0XihFRdkDNmAEIzVR2QPiUaixSY3ZAalq1jI9jdkBe9kRV5mN2QFLaY6PZZHZAAMyh21VodkBKG9Ks83N2QJZ6Z4yPg3ZA8qI2w16gdkBtmaz0T7B2QERaQczCsnZAs2tBvHmzdkC8PguSDLR2QNRJgUhzwHZATm6EJxrEdkAsBjVkzs52QEnbsIb33nZAXq4u/PPhdkApckwiL/N2QK45voo3+3ZAnrlCcez+dkA26SCrARJ3QKfBgea2IXdA+0NDVg4id0AQ12RfuSR3QN9+xeLoJ3dAaIyXz0Itd0BYtPrWnzJ3QNZYI2yiM3dAB7sQDg01d0CMKJbfnEF3QAbRqN2QQ3dAirn5LP1Dd0DVYTHUGkV3QGbJ8zlKUXdANRgSj5JRd0AwIucLC1R3QCHkC+snVXdAFDNqx49hd0A2YRDfJm93QIo9T0WgcndA8d59OJB0d0DZekI/k3t3QFBPYYl5gndAS26IkpqDd0C+EA1KuIN3QItIRGRNlHdA8Afm6+zHd0Cul/VJ49B3QBjsaoGM0ndAgB7eZ5jid0DZRl/8T/J3QMSgLpDX8ndA4eNrr374d0CguKvkRf13QB4JcMegAnhAdJMHjOQHeEDGEqlE/Ad4QLtdW5/FCHhAZli3M0MNeEA9LMnbIA54QFRBkzhfE3hANlvePXoTeEC4TYDsZht4QH7dpydtInhAfeS/ZoojeED6XFbLqCN4QIC/TNA8KHhAOEFcuJkteECCdTdUwkB4QL7cgkMRRHhA8JrTCHpFeEBSE6PEyVF4QHu8j5+WUnhAnmVIeIhVeEAG4Nnl+mB4QMLt4JKOYnhA0IXJArdieEDJ0i6gxnF4QDTfyYOLdHhAdusBWsd0eEBQVQvVxnh4QDY32Vn3e3hA4HbVUB9+eEDQBFSVpIF4QJDTQvaZhHhASjg9h0+IeECy3PZFqY14QFmmklFDkXhApsMehpeReEDeXHy/tJF4QLuwwKgDk3hAVzTrh6eUeEBkqaOIPa14QIQqcsTTs3hARMdPKDi7eEDJ9sjXzcB4QGpbMEX1wXhAismyTz/DeEBsPZx2L8t4QHAjLpI103hAOltoabfUeEBU4U4Yldt4QAqPaNvG5HhANUKMzgD0eECyASEgjPV4QFfCxOQo+XhAZlwZXJ8LeUAMb5FzvCN5QPVDUDKyKHlAUUzz7gwueUBwVNPvaDN5QBYwmqm4M3lAenNtrcA4eUCkjrd65Dh5QOx82sL4QnlAADOruvxDeUDF3gjezFR5QPp0dx84e3lAe2IetVuTeUAD92pNYZt5QNL3P1vAsnlA1y0twUHUeUAqQvjxytV5QOqQDLzk4nlAxy8NCU7keUDmKeGRDvR5QOS5i7v4C3pA0pVqJf8TekC6L0eOpyN6QLB4xVcrM3pA+UaYcww1ekAQ4mbVLzd6QDyKU1QaRXpAFv6grc5LekA9D2YVKVV6QErExhIiXHpAVGj8v4VgekAsyEMGKmR6QIa/0+gybHpA7xniy4pyekB1bpXJxoB6QHR7mB9Vg3pA2tuZ8uqQekDs4NsQHqN6QIkzF713o3pAhyZYTCarekCZEENvfqt6QHWutEkVs3pAYU0mgAy2ekBwD+FZGbt6QGTTwKwhvHpAqhjnjEHMekDBjV/pSdR6QOwL42Fn4XpAkLBwD0niekBOAg9wi+N6QK8M5QpS6npA42Nq1TbuekBQo2vjFfF6QLif24he8XpAXgRmBo4De0DY+ssyfAR7QJiiW3ErDntAl4oR/ssTe0DQk4IBihR7QKr5B6JMFXtAuxA3BVwle0BItVAlYjx7QJXh0EtpRHtACssPznBMe0AoQMVvDVx7QJzcSYkTZHtApsBlPTJze0B0T+94EHR7QGwY0kMklXtAVNI9Yc6de0DoKSxpJ6N7QCS9Y9wwpXtAdoSBBSfke0D2U3yLjPV7QHF/RbQo+3tAbzs6tZABfECeJPm92AF8QDLKHmlnBHxA8sPjzZoFfEDW7xIy0hF8QFLI1KjmG3xAclzHSs9BfEA0MIoSUkh8QMAKUxmrTXxAr2C4WtpRfEBunvZo5FJ8QBahUnMMU3xAMBj6zdxXfEDOJJAQant8QHkDsJhwg3xAiL8nbV+LfECccoF7eYt8QP5s+dTEjXxA9Jw0BRqTfEB8cxdVUZN8QJdjCABok3xAxXHI3VeZfEAIhrvdWZt8QKrXHU+ynnxArBq3QbajfECfXpLJv7J8QHP/qWx7tHxAaGIqr9XDfEDEvz+m9tt8QB6qr7lX4nxAzQ24uhPjfEDDHZTSaOh8QBLwENoY8nxAyiDHNlPyfEB2juCh3Pt8QFheMeMBAn1AaNzVG0sCfUCXv8q0QhJ9QNqiu42uG31AxoTE6DwifUAKfjq3tyN9QEDuVjKgMX1AJWJ4AWhVfUC2dhEYeXR9QOPjBMeAfH1AQJ2pnpaNfUBi7IPlGZJ9QOQ0L8vzkn1ALZwlFjyYfUBcWp5pUZh9QOjpYGD1m31Aii+KK/2jfUAG+dcHp6R9QEhZGLcDrH1AvrkILLG4fUBoIXh25sR9QFicHmM0AH5AWSskyu0dfkAsW7DPNh9+QI4iYKEiIH5AbE8eWEYjfkBKuODMpSh+QM7uWpAiLH5ARBikakAvfkCEoqkzKjR+QPx4cjIUNX5A4zvRNy48fkAkXpcnjlV+QNZYckIQZH5AgHLIWjh0fkAJ2x3ntnt+QIo3UWOfg35AICeoW6mLfkA35GSmx5h+QCIO1asSsn5A24TOitLEfkCK9lqGc8h+QFZX3UjLzX5Aq46E1drSfkB8dQl6mNN+QGherpPh1H5AZqZ5+G3YfkCmhOaF/95+QPcRR0zM335AysMevVzkfkCVgMK/dut+QDAXV/9e/35AHG0vRJUDf0Anvk0Fmwt/QIyq0RirN39A5h82mlxDf0Bwa9oFREZ/QD8G5ORhS39Acq1YBopYf0By7jNX8Fl/QOTIjpjoXX9AuBs3ajRjf0B1wfHUuHF/QClBFMOxgX9AnsQ3SqaDf0AUmhpxY5F/QPAB8jyrkX9A+Df8hzeTf0DKcjX5YKF/QN4mtGNCo39AOIiM1H2kf0CzZ2cZnKh/QEYOI09WsX9AGmzvJYa0f0CsfLnTq8R/QOHDR33Ny39AbwIL1IXPf0D7cmNW89F/QOY8SjrU039A2TYUD93bf0B6OIbyR/Z/QBimiAeIAYBAIZHaEjUEgEC1J8MQ3AaAQExJ4PkjD4BAcOAJ6+YVgEDpntxk1BmAQCYK7NLsGYBAckYEO5EdgECYun0fth2AQE1NBP/kJoBA3juyhWMygEBC7UclqkKAQKKWtBrxSIBARfpK0uNQgEAL30omFVGAQBokNumHWIBAPlaryu5YgEAWxDqbDlmAQBSF6LLeYIBAlJqBhgxhgECvF3epM2mAQOgsIMjvbYBAhChGsChvgEAuqwNd9nGAQOgYcmREdIBAE4qEpCl/gEAYKCeGl4KAQGSy/Az9ioBA0CPPph6PgECs5zzyHZeAQH0uUBlwmIBAgNT/zRyZgEDi2dJwGZ+AQKALwnR7pYBA4hCgdvqmgECdI/CihqmAQNs2g2YTr4BAN4d69G2wgEDx/KU/3LGAQNDzdBZNs4BAkO7GhQa6gEA5rQyOBbyAQPKUZ4F2vIBAroEXyLS8gEAxmY0T776AQJzbqNJev4BA+Md5YVLBgECpFUegxcSAQO6jMtWwx4BAkSGPqlPJgECSR63uB8+AQNzalaUs0YBA9oLvC03RgEBSv6R789aAQL6+t0ZM2YBAyxWFUTXegEBoN92Sv96AQKOp8ddE4YBAnOAoqVjhgEDbgSvpbeGAQMSMdYMR5IBAhjG97D7mgEBIKkPt9uiAQMvuxEJA6YBAdx8TPFn+gECxlDXpbP6AQNi8u4A//4BAR9StokAHgUCOj9tvPQ+BQJhBtwkHGoFA1Fc9aDQfgUCON9Tprx+BQKKqxzFSIYFAcYlZRTMngUBmUJjqNCqBQJZwnwkxL4FA5H9J/0sxgUCgi/JVvTGBQAR++SIoP4FAiawwdeRBgUC8azu1GEKBQBaFAyaUQoFAjPomI1tHgUDnsk/BB0qBQGI4BS62TIFAvrzbomRPgUAX6wSaFVKBQIG+qW4ZVoFAaF7qi+ZZgUBc1EZLYluBQFCQbNducIFAKl/20mJ/gUCYT2AcBo2BQPLIW0JVj4FAQl/9G7SPgUCg8tzVU5eBQILreyJ5m4FAUnWgPZ2cgUCsTcJGV5+BQE07dwDmoYFAWCq7mvqhgUDYdWlRbqiBQNj5hAtfqoFA8EKc2EqvgUBCrilZCrKBQDkDNWNCtYFAZhkloky3gUBfYKvx48mBQKBCCB75yYFAe/CXVPnRgUB8WFE9/NWBQMBZZxwB2oFAlIUaQ/fdgUBjLL+LDN6BQEbTLzb74YFAHg1QNJftgUCUGDCamfGBQECEtibu8YFAkTB9x+z5gUAeFz3aLPqBQPwjUJPv/YFABlWiifYBgkCe1VORAwmCQFhfMTyuCYJAZnMByAQRgkAZ3PAnsxKCQFDVq2nYGIJAIrLPStcggkBT4jrH0SiCQMP0gcmkMIJAk1nfd9EwgkBWLPVF8jWCQPGmi1r1OYJAJG3jHj1BgkDiSeu6B0KCQJ3kawjJSYJA7CAjfM5NgkB2ypN2o0+CQBwGcrvcWoJAtO+XWK5bgkDUOSOualyCQJ54SdozYoJAhITB3KVjgkCyLQ4KOGaCQBp1FPNoaIJA8ocb7BVqgkDMGDJBD26CQKQV2xvvboJAGoldKWp0gkBvUCJmNnWCQLf56n8EdoJAzKnhMNF2gkC6AQIl/oGCQBu7DSQBhoJAoKKbYhmJgkApnCRhQ4mCQB9pUYJbkIJABw4TrUSRgkD0Ewvk4ZGCQPBxvIyulYJAgOEvUD6ZgkDqVyIur5mCQM4JvFYOoYJAfZB7pjyhgkAe9U9DEKmCQPPKBqQ0qYJAwa5eVkepgkBcFm9hCbGCQNYywVs2sYJAJfZdt+zFgkDyAWdzScmCQIBQvhLwyYJAnnX4EfXNgkDuUPtd6tGCQFbe7o2E0oJAXbwQgu/VgkCA44iOfdqCQIoF9eKB3oJAKiKlW4TigkCL/6IkreeCQCit7zJV6oJAYOH+B635gkCvTsR64QGDQF86bzLkBYNA2jPWW90Jg0DudiZPZQqDQNi+6PfcDYNANmmAvvMNg0Amp5VCeRGDQGIaUNbhEYNA2NzHc3oZg0DGbRLZSyCDQDbMb0V0IYNAiF4913Ipg0CUCJ7SjymDQJ6J/bpqMYNA/dlzRIIxg0DEm0QGHTmDQIRuXXBsOYNAx8s8ad5Bg0CYhfSJu0KDQB0pjwWQRYNARvFK75Fog0BM4r+XP2+DQC/cmMzggYNABk8Szx7Fg0B8DhQwzceDQL5o9QgvyoNAV1hUtnjKg0DNqFady9yDQKViP9d534NAXX/Anwvyg0As9a1elfiDQCdCRe4MEoRAHeoNEm9ChEABUxVRLEyEQOHqfiQGTYRAaN80oClZhEAO6Odf+lmEQG/xFKGpWoRAVAKXv6xehEDeRebE/2iEQEpUN3r+cIRAIMziLhV1hECQGeo0yneEQBb8cMj2eIRATkcrHXl6hED44UPQEH2EQJRABzMmfYRAmyCkJb5/hEBEUZRhaIGEQG/Fb8pvgoRAGiXyBqeChEBGBHVUHoWEQIno1KiGkIRAPREPjrGahEA458UBcaKEQGlRhSgipYRAuGcAf8ynhED42+wneqqEQCqGaIYYzYRAGwAGE8fPhEB253WqcdKEQC8wNQ5q2YRARoyLb7DdhEB66DexauGEQD7BRI0p4oRA3//VU9HnhEBew5ZnZ+iEQP6ohpxi6YRATyiuUX3phECMwaAqLOqEQPW++pF96oRAyqJqLCrthEDS5V1hMO6EQHtuGo7X74RA0GyelTbxhEBHw+AcY/GEQMBBzXLG8YRAcm0o94TyhEDc0t8WwfeEQDT+aWfb94RACJo9zjb5hEAqSQhcW/mEQIL8VH4qAYVA4C6xs1gBhUDfP1PMDRaFQFh0GTIZKIVAXBTQTjw2hUAvMoP/402FQDS3LfnmUYVAWs0d0uxVhUC0tNRG4VmFQAMifzqgYYVAIl4lz6BphUD+4dSbmXGFQKnggzW0c4VA59TCWZl5hUCmoBYjkYGFQN/oseV5v4VAMYEivSHehUB8Hw12IuuGQARGvCORKYdAAHFj6JExh0BUnPZfizmHQP5mKxBdQYdAlP0z0IpBh0BqQEzkWEmHQHET0z6BSYdA6D4qzHWCh0Am6gA2x7GHQCygv2fIuYdAayKTJr/Bh0AV7mOV+8aHQCBhKmDCyYdAPtDjsvPih0Cou8RAcQaIQAfMS9w4IIhAQJqGFyuziED7eCBoV+qIQA== + NrgMGZxjYkA= - + - uioVRXzT9UVmvcBFxr6CRkAfq0Q6ZnNFvjW/RIDjMkX1pRdH9BMERSjaHEUEsPtE4ORdRLTAskVpHE9FYCxaRVoLekRPsH5ERHmBRAXqoURoV5FEmSecRBGcjUSdU81EGkvxROeqiEQwqGxF+wAlRw5dh0QrsCFGutamRQAUHEXAqNpE0Ou+Rqh24kQKiZZEF7KQRPoOrkX+DMxEJUjfRMkwg0TxbIlEt6RsRM+crUT5JN5EVEDaRKYTkkUbM4hERNbzRd5GAkU+k/dEF5aWRcDTk0SfdbJEVT2gRMczoERsXyNFcC9zR6hLnkTJw8JEPMXfRTwprEY3trpEWckIRTLEjUR/oipF+nCvRTExd0SSuc9GS47mRIybHkUKZ4NFsznORIzqi0QEHwlFML08R78evkQ2jT1G7tboRQ7zvUXS5n9EKAoDRTWQTkTt45tEiVLMRCDHO0UkpCVFyxlRRG3m/kQgVpFF0ZH2RM4dVkRSBVtFkR1dRMRzoUTPK59EQFmuRdnmpkTWJPRFoqmVRCC4rERohE9H0i7yRA3QCUXa+KJEAcdiRbsUmESb9A5Fh5uEROyx00RslHhGTa2bREHdxkQ/Z7REFIhhRNTFNEXAnaJEmZXJRP7WuESba5lErcutRCWbbUUu6mFFpEh4RK996UQ4oUZFhB7kREsetkTh22xEtSUXR54PeUWzxytHLUpIRtjDb0QJlQlFZtJIRebugkVpkKBEkmTaRS0S50RK4B5HtiePRRV8rkSsC6lF66npRGni5kQYkBNFmO7CRY85tUSfH4JEM5iiRPLOw0UW06NFv94XRmMbtETK7bxEcBmlRLllYkRRPtlEexnBRMu+ZkRHu7BEfq0URTpxF0WCdtNGffsLRdXrW0bFrARFpxMjRWlXtUT77xtFBUXIRCWmv0QXseVEdy7RRCyv5kS0otFEXIa8RPigc0RfBFxEwx3XRJDkWkSXoeNE7FqYRKrFFUUP7qFEDuRfRM/9vUWWafFEi2icRFfmM0ZlCO9Ek6//RLNHhkRewOxF9zEXRdP5y0QyOddEnWKsRG+Do0beAYNEufa9ROIs3URDA/BEwPFBRSDbtkRpEs5EUYwDRqrjAkUApn5FZgCrRIIdvkWw7xFF1lujRLEWm0QIC91EUuqQRJ9190TO15xEwfeORC3CA0VnToRET1/TRIgJwUSiHxVFmKTuRB59j0SpRftEMln6ROcpj0TD9ZFG5Q0IRsXaH0X+SsJFq6zHRATPLkVB5fpEclGgRDNkskUDRAVG1y63RYkSEEe1vQhFZd0LRW3g2URgxJdECIQCRpeW9kT8qYNE45xLRVxHrUTwihFFnwSPRW+KEkZW/69EuHuURSKopEcFUo1EeLOFRApQJUZDjg5FBs03RcIvU0W2USFFJ6KZRKEaokWK6a9E4HGjRAbkQEV/jvFEOsC3RHsq6kTld4VER4OyRNdRd0b/wltEgK9vRaboikRqBR5GzUmARXHAwUQ9KupEM1TbR5BnrkZTD2lFRHVzRpCBnEaFHfFFSO9uRta+SkV9x8lE6zMnRWtpTEVMABlFhS2YRBlZskUlSxZFq7MURVLob0SNA89EcyzIRJz0hETSc19Gw7oaRSqrrkRgPmBEPW2GRFe1PEelfm9G2qcWRdXQLEV5ITlFIzwtReRO8kQYz6pE6KB1RD0Ji0RU+lNF0lqNRFqm20SjwQZFZTepRP5pX0Tq6sxFtyk0RrVapEWoabFEBjW+RCBXD0UqYohE5V9uRKKHjkS+wCxJCX0BRUBeBkWrowRFdhDNRMkiRUUGCSxIaiQWRyKygEbvorNEd25TRdQqpESWwrtFpcOARnK7okS8eZBEYNDtRjrc1USPcZpEx7QJRk+Z4UQFcptEjcSsRfMkkEWx+7VEpL1LRbBKi0UqYptEYHL0RKygAEUtVp1GowUaRplPDUWk3qBEWreYRIl5p0Tr47FEkAUmRa4EK0VIyBVFZpBPRiPE+kQ2fVZFU/OjRcSMhkQGgH1EFuuKRPKjsUUmAC9FC82gREOrtkQ3O99EFvuxRw+P4ERbIaJG5+S9RKQ6NEXE94NHrmhsRWbvh0aKhRdF6nOLRIqeG0WUv45EtvSfRH7j4EY9grJF1eMjRorr3USlt1dFA8ipRXhbh0RHJpJEu1hQRuvbiEVLcbJERzmfRWjVvkSwD5NErt22RPUYBUVTuedEPxiTRKpP00ZSAKdE8mrXRI96hkXh3DlGl2QvRRLhokZkehhGkhTHRCVyWEZy+N9FR2QkRfZwNkXB3V5FzoAmRWoPG0Wxfc5Er2jzRfYUjkYMTE5FsQiqROBuEUZRxVBFKbRlRRROrUWc81FFpATFRRnKIEYai99Fn8qBRPUZoUTluvREOb1mRMoI20eeFQtHSjwfRpsFrEV0VHhFAQUIRUl9N0X6oiZFKSqkRbzLsUQ+wItFOc5ZRPS/p0Q1ULJEL/twRBqyOEU0lMNHnLceRUpDzUR1891Ef/SqRi1ygETHvfxEvkaORgIgHUWm3e9Fb5QDRYeHU0VmNuVE5RZDRQM/BUX/mb5E7/GoRY9kckQl21dFBuyGRPSPe0RcKR5GH1+RRfU91kTAhqJEKmiARKhN2kUYIypGvLScRNXb2ERsc/FERHWIRCyu6UTBUz5HReSfRMMnsEa8uSZFmxizRXZQI0VhuHJFWmpTRVr/i0QOzaBF6w3ORPwY/USvToVEGBc6RjjFlEWhxmJFRJjSRIc+gUQK+MFEROuKRDEaYEU0yKlEnpQ3RfjkvESxq21Er+QtRey8A0X5YGJEspKLRCuFeURTModEA+PjRCuui0TiLJNEW+GORN+kM0bPGxRFqPi+RMTrEEZGBRtFLIK/REcrNkV7cnpFkuioRXs1OUW/IrVEdZGeRM/CvUQirOxGUJ6ARNOyWkTFvUNGba9ZRQZL3ERfg3RF42UbRVFoIEVLuKZERNIWRVrvpERQGY5EPht1RObYiETT0aZEOqSARCPp8kTNJ3BFTA3tRHlsBUe++Y1E6tyKRIrTOkaODXtEGh4gRWOaAkX/WaxF4rMgRcmrI0VNnplEJXbIRLu6gEQ47oxEagsfRq2/40R3R4REHNm3RL7UokT3prpEnoWsROoSO0VU/2pFd2yrRD8WxETCkt9E1L2yRRvKJ0W041hEi16dRbGfsURPAuhEkDDsSE2oe0TjtKpEHaNlSJUjqUTk9SVFlzv2R3fAcEQ5e7pGny+8REQJj0XDQg9GKRQLRQpbqUQ9N5xEhuWBROjJC0U3u6JEwW9pRFOkX0QgBVxGXJk1RVl5i0XM3HBEhl3FRncElER17zNFzkWPRfl+g0SfEvpEAgpxRJofAUVCn4NFG1rARBIoa0Rw49tEtjebRQl7f0WazwZFc33uREHTjUVzxL9EUIoIRW6snERL1qZELVGyRJKRnUSJtwNGAleXRMooIkXE5WBEOnVkRZxC2kRg9pVETyndRF39D0XYxaREKEwdRvU2vkSnd5VEkfi+RIhNqER+yZpEuEUcSFd1y0c45M1GnTjTReKeBEVu9TFFAouMRbZEFkUlNrtEgjNtRi+COEXjfxlG9wPCRDBPPUVRoq9ErxC+RAfPakRuUVJGQkiZRXXAQ0WwqbVEg8TgREUcA0VVp5xEtZoIRU3Xf0QxTZFFZgWyRIh93EQdP5BEOXsBRYWPs0TsWPFFl/aBRN39W0Vr7K5EjVt5RO6IpkSvD4BEm/WSRMcM8USlOJxEctCcRGcSa0Taf51EQpyaRNt+uUijYHxEF6BkSGswLEUx5JpFVhPxR4L5bUVD4bNFLnQFR90JJUWFQBZGQaX6RBFIEEVAa2tFJDteR2S6Z0R+Ev9Gi/DVRb4uWEXrWSpFXnqyREDRIEZCwqdFURTBRGRuk0ScsslE5CUeRS6cs0fUWkdHKwZfRmS5EEVIkaRFipXiRCttwUisfJBE2xJcSCG4cUVJW+VHHekUR78qzUQGYiZGikk/RSATMUVYSRtFdJWVRDnN1UT3yaVExw2JRA0qk0TvrY9EE3sLRZCW4kTGnpVEG/O2RD9VnkRrTtxEiDDGRCclnkRWlMBE3zZkRIZVqkRlgJpEjFWdRLZoi0SPQSpFDyUZRTYA20VKtjNFve6IRFQ140XzdeZEB3zIRSiT3UTP2nBF57HERJdwb0SrTQtFhyqxRD/xzUQ2EI1E0i+BRJ7ftkXUA4RFA20ZRQ7xv0QwAG5F5TRZRXfZ0kQ+W7BHCH5tRHlxP0e6tItE5J1VRxQ9C0V33bBGXoxJRXj+eUUY+2pH/lQBR/koOEWrDmxGqzGfRZzZD0ZUALZEv6SrRdlQjkRukNVERcYBRZkZXkUE5o1E4uGcRFBfE0VZ731ESbiJREY41EaUoIFG2paSRcQHD0Xl06JHl2gkR3kTvUb3X9REmxHqRVu4NkWxx6pEUJhSROiylESYVpVG1AQXRouozUU6xp5Er3V2Rcr7okT68H5EsptyRR9ChkZ1A+JFZauHRTo1cETDag5FwN0CRVx16USOKJlEGLiVREmUo0Q= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - nAxdnw3BckC4J9R3bsFyQEcjy+/HwXJAahZRfVDCckDiYPWFp8JyQN8WCKrmwnJANONlKzzDckAGv8u5w8RyQMqGPgRZxXJAvKDUlALIckDcKWgJWs1yQLJbJoMS0nJAYMzxLEPSckCz8hfqd9NyQKS5vx9j1HJAKJeOHNHfckAEnmTktuByQMzywQlQ4XJA47wRZlDickBGDlsxj+JyQAKzwRAp43JA+IPrUsbxckBUYAUXfvJyQLA5mL0O83JAoB/gTLfzckAI5p+ZovRyQNFJLBvA/3JAVm6Q618Ac0CYqA0X+ABzQPc4noLOAnNAummFc/oDc0CahloXCRJzQAnq5uS8EnNAOC7RkWATc0CSX2cy+RNzQIBNX1N6H3NAEvj0sKMgc0DOQ+f6OCFzQOwLcDp7InNAN8SyBcgic0AanO/TESNzQJz6FaXNJHNAqm3JR0Uxc0CubebSWzFzQDzfS5IMM3NA4Mp+cKMzc0DxNrSD+DNzQDwzpM7cNHNA6PTkX7g/c0BQYO+n4UBzQEO/7bl2QXNAWBLSLORDc0BEy3pxeURzQPPCeE6bUXNAxNisxRBSc0BCGq0BQ1NzQA/sggGjU3NA2qzDH3xUc0DSWStB+V9zQMw8FIqMYHNATkTfxR1ic0DaV5EROmNzQAuorufNY3NAvMTrXyttc0C+9QpL3XFzQD2GqcxRcnNAbgN5IWtyc0CECrgvhXJzQF0N5xu2cnNAJLWGAk5zc0DEZLTES3VzQPiVEn5qdnNAc5ts2953c0BQZ5ZQeIBzQKrvXi+lgHNAN0sMkgyBc0CMbHdrXIJzQAjgF4IBg3NAN2Uk3RKEc0DMm9Y0hpBzQIF8F0/TkXNAoOHJJxSSc0AEacveTJJzQMCLVMdpknNAKqEAB2KUc0BaJds795RzQCx7Sli3oHNAlSS4Akmhc0DUhtv/WaJzQEhQmYWNonNATxH8O8Sic0CBJkGI66JzQNhfLCADpXNADe9TesWwc0AajNyVXLJzQDjeip0Rs3NANEuCGrazc0BCPyDsDLRzQEo8zzvNv3NAwLuRpfjAc0BwpD70zsJzQA0iH+Ukw3NAZH+cX9fRc0BS7BjR29JzQOJFam3103NAMowK/+HUc0DMe8EQDuBzQO51i8+h4HNA9m6TsDfhc0BRistyZeFzQMQStIQ84nNAmsQqh3fic0D3xbwXDuNzQFyMk1rx5HNAmdIA1SPyc0As2C+ySPJzQCIZIECe83NAQgLUMDj0c0BF9chTeAF0QOT6TZWkAXRAjjyCzbYCdEDczaToTgN0QHFodjR/EHRAM2MgiYcRdEBtcxyfTBN0QPesZ1DkE3RA5DrM9HcUdEBR6kKpSSB0QF/j8PMiIXRAXCyjjrghdEBUbHYkkiN0QDx89wWFMXRAUCCnEhMzdEAAiejP3zd0QADG5yRsOHRALKJMKzs9dEDF7sf1xUF0QN5ymiWmQnRASMS3gjtDdEDYhNyQHkt0QJLVYFeEUXRA+3KRPyZTdEBQmefV91R0QLhBR9uLVXRAwjmQ5tpXdEBhTDC1IF10QF2dIZS4YHRA2MCBfQhidEBAcgHremJ0QKVmX1oPZHRALg+VGk5kdEDJQqSBw2d0QNVFvYvVZ3RAVvUb7B9tdEACt9bbIXB0QFmGB71AcXRAPp1dTMtxdECZ8ZZcFnJ0QHaqGpo7c3RAeK4Ej6B0dEBaCopAN3V0QE4gpW1kgHRAxnGl5fmAdED9E4N4ToF0QPA+jetMgnRA+MVJaCWDdEB6a1Ygu4N0QLmGPYYVkHRAiB+m1E+TdECQV/q3ypN0QHDqM1fun3RABqbpX8+gdEAufIK6OqF0QFCFiGy2onRAOjPsDBCjdECIeuJTDLB0QJBnkPrCsHRAbv+dAVGxdECg86C3brJ0QCPT1Q79snRAHHlFIMm3dEDAwRF3Er10QM/+yg4kvXRAMnmTTePAdEDeyS8o9cB0QBRN43p3wXRAB2aj9LbBdEAKGWfP6cF0QL32g8O6wnRAJPMrR3nEdEB6nfpwucR0QGlgqH/8znRAIAlCiYXSdEBiX08mqNJ0QIS9mDHi03RAegcRxMzUdEBgETumuOB0QDPAUA+54XRAnjj9ck/ldEAmOa2YwPB0QPYochOM83RALQp16TgAdUCSevE6owB1QKadlPphAXVArKEmz1wCdUCcIzhDpQJ1QDPfDj+bA3VA6nRPmJcQdUDvLkVTbRJ1QLzLdy8jFHVAxUMkG50idUBmIJRZ5SJ1QEzJrw6rMnVA16Wubss1dUDOXzKhs0F1QIsoRqnfQnVA0nyVvyZDdUDOraTq6k91QMQcvJ1+UXVAcjjo7nhTdUCBZIxHdlV1QFU81pwmWHVAOsL7mAxgdUC63fQzOGF1QJhUYCPzYXVAJ9m1xYZjdUDdx8C3h3F1QMzqSjp1cnVAywjCD410dUC0yPrSTYB1QEJf8b93gXVAA6olIq2BdUAQtzD6uIJ1QP4zgGmmg3VARCYSCJqEdUBom8QaPpN1QK15czvLl3VAC7tV1pOgdUDnU8bxt6F1QKInnIr8onVAdgcqZMKwdUD2fvowDLJ1QGwwKg9jwXVAEAbr4vXBdUD67Hqs0cN1QLEk1I3k33VAXOeKvQ7hdUAgXsiDBuJ1QHzjXlnm4nVALyRCS9rjdUDi9r1pTO11QEm+nQSm8nVAus7MlAD4dUDrsCQtFQF2QLUlC8dIAnZA+tFeo9ADdkDY371HBxF2QBKt8R5bEnZAVzPR3EwUdkDlNUiKeBV2QECRJgmJInZAmPOiuo8kdkCIGx42Sit2QGMarRsfMXZAAJDCqPsydkCWoiWkUDN2QKfJWQglNHZA9tqBT5w0dkCLs5kCUEB2QDJ5n/IcQXZA3pYkE8lCdkD4ZG1AeUR2QOV3K8fJUHZAbEpV5BJRdkA02oT1zFR2QOUy7JMgYXZAHUf0BVFjdkCDUABij2N2QNQlWSPmY3ZA+t+1dtlkdkCeMBeYWmh2QNbMan8Gc3ZABG6Yl1JzdkAxdDpZ83N2QFAZz8WRg3ZAienJyV2gdkCK+yK3ULB2QOzYVi22sHZAPjoYIsKydkAcY8KrDbR2QBBkomqvtHZA1F+bC3fAdkAy3ZrXvsB2QH0ugzsZxHZAMXNLlc3OdkBRKqJIgtB2QOAIwPwx83ZA9swIhpLzdkD/r38uMwJ3QDEdgV0BEndAvx+cIg4id0C2Zs6XdCJ3QB5keYTnJ3dA/Jyd8EEtd0Ccbdj5mTJ3QH80PbR4M3dAMOk+06Mzd0DO1/vZxzR3QPpReroMNXdAmKJhMeU3d0CAM2be0UB3QIrs01CcQXdAgEuRWJBDd0CFnTDK/UN3QOwlls8aRXdAbuuBZUpRd0DvpLaYkVF3QNY1Rs2jU3dACikPeQtUd0Bzbj7JKFV3QB0jKD1FYXdAwd2s745hd0DF8c8UlmN3QAi6XaUmb3dAphURo4Nxd0CExEiOm3F3QG4yEQCecndAvO+bDY90d0BwHjWj9nd3QP4sQmWTe3dAFKC5JeSBd0AToryMd4J3QIYAeYeXg3dAbAQzmQeSd0Ba4/EVTJR3QIzDCXE6sHdAXI8MkJm0d0BY0+lJjNJ3QNyVkDnp4HdAkQYs95rid0B9fEE/UfJ3QKK8aat68ndA8EmBdX74d0CMDkE5Rv13QMsrnEbT/XdA4NNHsp8CeED6U9ub6wJ4QOzePKzmB3hA0PsFo/wHeEAS6SlTIQ54QGj9FXttInhAZg41S4kjeEDhL51YqCN4QNLrFQI1KHhAJL13X+syeEBsYtUJEUR4QJ6pIDt5RXhAZKwLOspReEAeiCh9k1J4QIAs8dOGVXhAUPEPLO9XeED490srR1x4QFfQ5K73YHhAQFXyw7dheEDGeWk9XHR4QN+BaRKLdHhAHe5MlcR4eEBHdAaGIn54QGzIflGkgXhABYwETnqDeEBhEdSJmYR4QMrkOHFPiHhAmVvnYKmNeEDKJ/iElpF4QEmIzU3sknhAtHdwcwSTeEDwrE+Jp5R4QPpYh31cmHhAf1ui2LakeEC6iP5DPK14QPZOrQzTs3hAMHob5OO3eEAb2ak1N7t4QBWLSo/KwHhAxNXTdj/DeEDsWxzELst4QGWDduI003hAfI2VkrbUeECIrQPx1Nh4QIJr0OyT23hAKZv2e6PieEAtII+Nm+N4QODMiBzE5HhAhD/zPAP0eED8X8Q6i/V4QBNAWJMk+XhAI0Wxv00BeUCpjBZ1DwR5QCyU3P++E3lAEvyr77gieUAWio97vCN5QAk9zB+yKHlA5Ayc2QsueUAMzkQhYzN5QAwbJie4M3lASHT1huA4eUCMkNWujUJ5QAZCOyz3QnlAwjb70flDeUDHXMOjy1R5QOydn0vqYHlAJi5IFdlkeUB6hYcPQ3N5QEI2uSw3e3lA60BiBD+DeUBrnVoiVJF5QJIxhnhbk3lACmB8aGSbeUBgjZf8v7J5QN6UR0JC1HlABVh03M3UeUCgwcN0T+R5QGtOkdAk5XlADZHfXb/yeUD+9ClTD/R5QNQ4THAcBHpAuINkVfkFekCsSDaO9Qt6QBur21aaIHpAVgCxPzQjekD6vxO7pCN6QGPuVkA8JHpACpRVLww1ekDGWraULTd6QFXam8EZRXpAilcKIs1LekDHR68Q0VN6QOgZaQInVXpA/M9z3CFcekAuB0xshWB6QA6h6M7HY3pAJegIwChkekA0TS4GMGx6QEtn/Zo5bXpAAL7jocmAekAuqvjI9YB6QH9OnYLnkHpASgGbwqCUekA42JBJHaN6QL+qdvx1o3pAW7iPdiSrekBIpdVqe6t6QBq/AnwVs3pAoakMYwy2ekBO7TewVbt6QPiJhHcsw3pAxoGcVxjGekBj3YdqQsx6QNNtrmNK1HpAYojs/U3cekAGb88SZ+F6QK8im/1I4npAGl9ya4njekCrbncTpuN6QE/I66175HpAsOWuqVXqekD2ok/+Me56QHSpdf4U8XpA5kftHV7xekByzuemdQN7QLJngoV7BHtAfBUq6SkOe0DSjERcyBN7QNzVlluJFHtAvMIFY0wVe0DPrt6JzSN7QCanxotYJXtAMZ4UQ1gwe0DlEH53vzN7QKysVBdiPHtAVetJwGlEe0DMhT6Db0x7QMhrRvpbUntABVl67tBTe0CuveYMDVx7QPCVybMUZHtANCptDzRze0Dc0WcGC3R7QHwJldAglXtAEnkfqM+de0BAVdKyKqN7QAQVdON2xntAw1oxuf/je0CYStayJeR7QKacOYCW8XtAzuEr+jT0e0DWSK/5i/V7QFSRxY8n+3tApPK7D5IBfECNC/d32QF8QBbjQ/VmBHxAsgwOK5kFfECLQhv2hhF8QEwwO8XSEXxAbFA0iOMbfEBU0DoCuCN8QPqR2PjtI3xAJh6F1/oxfEBIG1ayzEF8QJj2Z7pRSHxALvaQSalNfEAmaNRf3FF8QN/6xp3RXHxAPzsFNoFefEBg4BKXCWJ8QCgrblW9cXxA1qN5H2l7fEAkR5IUcIN8QIhbUZ5ei3xA+jq+0HeLfEDj4OzWwo18QOKX/SYek3xA4gHE7U+TfEBsDLq2ZZN8QFlX0tpimHxA587H+FiZfEBe73L7s558QA9qtRm/snxAlEZfnczVfEA+T1cm99t8QMAUuUtX4nxAt5EaohHjfECPJW4HBOR8QMw56dVp6HxAOFR5ERbyfEC+EH6QVPJ8QBUgzrz/AX1ACH16cEoCfUBygOOMTwR9QG3Jzf1FEn1A9u35hK4bfUC5T+cGPyJ9QIIWoguSI31A8tRBtbUjfUBkkcZ8oC19QHw3BHKENn1AW+L7wWdVfUAmApCzKFt9QIcQQ+Oxb31AswI1j3h0fUA4os3lf3x9QIAeCJaVjX1AJ6TNSu2SfUAGus1g85t9QEK9ANH7o31AlNEjmKmkfUB4tbZw5sR9QOiiwf301H1ATP8mMdXifUBQZE3bkPV9QADVhow0AH5AnQKbjJ4afkCqb0JY7h1+QMS7ARAiIH5AcEYGMiIsfkCWfHYZPi9+QJZdq7goNH5AyiDrqhM1fkAljY6MLzx+QKpqig9AP35AsuEVv1BDfkDerlaKjFV+QA5o1JERZH5AZECM4VZsfkCK0f6vNXR+QO/8SqS3e35AHlJ+b5+DfkAQrH4Maod+QOLrvvkNin5AWGjJ16SLfkCe1QPDEJp+QH8VKYK6nH5AXp3JWmKffkDGOJvDDKJ+QCIJA8+kvn5AhgYu6dDEfkCD7pC1c8h+QIKYd6C2yH5AJJYkrM3NfkC23gaY2dJ+QHb05Jff1H5AtQcziXzYfkBYeEyy/95+QBcgF84o4H5A7rCAzFjkfkBgxFY4rut+QNsg0hu87H5AMlmK59DvfkCKwysdgfJ+QB57l91R9H5A3d3iC9v/fkBmKhX8kgN/QJyh5n+cC39AXZYC0VtDf0AN0enNslN/QOLK/HGNWH9AL+mVR+Rdf0Beu9JQt3F/QPreZokien9A/u3dWrSBf0DnAVvdo4N/QINqMNhxi39AH1qchGKRf0BobCVWqZF/QIZldWaTk39A5meLRl2hf0DtMihMQaN/QFJyPLV8pH9ACtup7xOlf0A+omGhmah/QFHkAn5XsX9AnOhScH2zf0DQgY5vfcN/QHIL7wmrxH9A2r2R0c3Lf0AHEIqC1NN/QM5kt8/c239AZuFRw/Pgf0Dg+ueE/uR/QIO8tHY0739AbicVlUz6f0BrdT5avP5/QHzcq1qIAYBAwumjSkcCgEAYnj7R8AOAQBLQGas1BIBAGiles90GgECcNPrMzweAQJp/H5iICYBAOKsZ2OUVgECihgTNshmAQG7rMz3pGYBA/MZUVXUagECoGNfB5CaAQID823KOKYBAcxMevKhCgEADqUbX+UiAQASSmGblUIBA2pIaGRRRgEArTa5UbleAQHJn2TTqWIBARs06HA5ZgEB9rK9jSlqAQM+AavAKYYBAEvNP5+llgEAAUnly8G2AQGKor9noboBAKffV0ihvgEDwqy9X83GAQAupH+7tdoBA/GKoyCl3gEB4noIE8HyAQIwwTi4sf4BAGSOfIR6PgECqGS/KHZeAQBT0vkNlmIBA9o8ILBqZgEDgdXIoN5qAQKLC66/lnoBAAtFqQx2fgEDmrd2K/aCAQH6rvxd+pYBAGnmlDWGogEBm65wMh6mAQGSVqeLPqYBAHBBA4RKvgEDxnj0Rqq+AQAZtSRBusIBAhidr4h6xgEDArEo017GAQCCiXMFtt4BAGG5wRga6gEDE3q6Ys7yAQA3NE8M1voBAjJJOVV+/gEB+vYaMpr+AQEkXhuO1v4BAHH1YQFLBgEAsHxdRn8KAQJIXWrlgyIBAIFDoT1PJgEC3scI92cmAQIVNbWIHz4BAmiVqtmbQgEDeKHgB6dCAQB1CIlMt0YBA8HGliEzRgEC+l2jBX9GAQC7H3AZL2YBAiOrETcDegECmvLYiQ+GAQHBcWHpV4YBAnMYca2rhgEC+AE9YGOSAQH63Faz16IBAi7WXCWfpgECEcc2qSu+AQMTUDvw884BAnPSlNd71gEAz2zqvVfiAQAre/1Vo+oBAawzOHD//gEDA2ksMJQKBQPYSbAZBB4FApE7hUD0PgUCgrzgWwBeBQHWx4GJLHIFAk5PuwvEcgUAfjuWYNB+BQIxYxIyxH4FAWMt/IzMngUAswlYB5C2BQF9UxBUtL4FAWXQqT7cvgUCI8nf6uzGBQGLxSsIuOYFARZrFzCg/gUAYCz81k0KBQJZbZv1aR4FAbnYuxwZKgUA25mu1tUyBQPZzJH4UUoFA7O4qSqRSgUDhu2TmF1aBQFb7zqQUWoFAWi2lrOddgUBP8WFh5XmBQKxt0GK0eoFAJPNna2Z7gUCPFY23YX+BQNrVcTHuiYFAVuaSkAWNgUAto9HlVY+BQBtemmSzj4FACjtQ61eQgUCif3LZVZeBQKjlnQbpmYFAfGy+Pp6cgUDkii1rRp+BQAvki/lYn4FAAoSB3OWhgUCMM3DQbqiBQDLc1OFKr4FAK5RnDW2ygUCOS9vE4rWBQFCpSJNKt4FAlDzr9ePJgUCifioq+dGBQO7WuaN904FAJeN+vPvVgUD4qMpG/9mBQPOFFrj23YFAZrcvlQbegUBQ0CZKYuCBQBDrY+z54YFAtvqBf5btgUBAuBOcm/GBQH4eDyTs+YFAYjZr+Sv6gUDOuuQY+vuBQJQMbAzv/YFAPWjYSTD+gUB/fxbv7AWCQIQ9AxYCCYJA8xOmbKwJgkAY2xRIsxKCQCs6Q0VrFIJAjlrP7loXgkCwraxy2BiCQF5vp6QhGoJAm0j9RNYggkCAzRqszyiCQNBroZSjMIJAvvmPje81gkDyYD9J+DmCQM34E1Y9P4JAvpG3fT9FgkDCSb9wyUmCQO19VqU6TYJA+I01XMtNgkCN5kPm+k2CQHQ0JbUhWIJAfg88cTRZgkDGwNQK0VqCQFKsjqSjW4JAhTx8l2xcgkCAW/R40l6CQKz8tjw0YoJAtbfTPjZmgkAyKursbWiCQBROWwA9aYJAAYFRyWlsgkB4PAjemXOCQNTbIRAKdoJAXCki42V8gkDpk+Nr4H2CQKaPDedrgIJAhMabGUOJgkDD5A8loYuCQExHWTNEkYJAzHqoxOORgkCi1cUWrZWCQFA3oR49mYJAr8VL+FWZgkD9FK34rZmCQD/ZY5EOoYJAeB2M3zuhgkDfWIV6xqiCQFJKEgMNqYJAzb9HkTSpgkCeCW2ANLGCQAycDkBBw4JAfEu/duzFgkAoEwme78mCQF4qjFgoyoJA2WLb5/PNgkAkoNvy6NGCQHaoLlL90YJAa6+JI37agkCmEcB3EN6CQCQxPOKB3oJAogCCs4LigkCe97zIreeCQH4MZhBY6oJAxoz68MrtgkAyxijztfKCQAUuQ7qx+YJAnIARKeEBg0DKJGMi5AWDQARaBMDSCINAl5RFgNsJg0CwXsUyZAqDQNyWvHneDYNAeYmiJ3kRg0B4e5CQ4hGDQP/0nh2dFoNAFIn4KHoZg0CxsDbySiCDQBmwsANzIYNApqfiKk0ig0CvN2mkcimDQLveHf1qMYNAZCZNw2o5g0AYURXf20GDQN7XZr26QoNAGPYVE49Fg0DkLsqd30WDQM1mcBZ7VINAOt/O/eOBg0D6g9B4SIODQG49aW5eoINAMsO6lhzFg0BcaMkJy8eDQGpvtJJ2yoNAuOPlhMrcg0COGt7VeN+DQFAHOsgM8oNAl4CI6A/2g0CATW+mDxKEQJj7qkVASoRAM26w2VtZhEDO/cYJqFqEQCPDwhytXoRAkIaeRt5lhEDxn1V4smaEQF54a93/aIRAuBJ5cP5whEBIymYUF3WEQCg+wgKYd4RAYPPXssl3hECcYhti93iEQCCCZl94eoRAdlDuISV9hEAT0NMawX+EQABEM7tygYRA+NOXXW+ChEAT7QfhpIKEQA0rYWochYRAlrTmA1mQhEAY6VzXCpyEQNxiI+NooIRAWDE35nCihECQ3yWcH6WEQIJhHEDMp4RAd91HRzCthEAaMAolSLKEQP/2U8cVzYRAOgc60cbPhEA4RKL8admEQCKYaNtp4YRAWN2/jNDnhECOYO9HaeiEQMvS1mdi6YRAuZGsuizqhED+kLSBfeqEQLKpFT4q7YRA/ofESL3thEBi5tpELu6EQOTyq5fW74RAYgL24IHwhEDWF6+eNfGEQDySQelg8YRAuqIWuL/xhEAffb31IvKEQPw1I0BK8oRAJN9t+YPyhEC86QkuG/WEQKrO4a4z+YRADjO3OysBhUCI/XmfCxaFQPyPhqugGYVAB74q/1YnhUDWzARx402FQOSTMHbmUYVA+nH3dOxVhUA8xuo54VmFQMRQqIjxWYVAMMdg3N9dhUAa/wH/sl6FQIQMkQqgYYVAGlwESvxohUCWuV8RoGmFQBRIPucHbYVAGAzkEZhxhUD8x7HEs3OFQCwM/Sq7d4VAfKR3CZl5hUD8Yu44K3yFQAeGOkySgYVAfz7dlpeJhUBw5Wfhx5OFQEikoo5tX4ZAIFBxRCe5hkD+H+9QIuuGQEIrnKmQKYdAEyK93I8xh0Ctd1ZSiTmHQLqlsDwFPodAYhLcQVtBh0BQOHIfjEGHQPbasD2ASYdAGEMPI3WCh0DqU+SCfIqHQC6Au/LGsYdA7ayntse5h0BeNhwFv8GHQLzXkon7yIdAMI3osb3Jh0DGvfAvCtWHQC+DlIX14odAkgvv8nAGiEBXDc9acAqIQAbt1afTIYhAQIFRsCyziEA= + KBZXds7jZUA1uAwZnGNrQGS4z0t+BG1AcLCKEWYickAyOsR5l5N1QJdx0ogUM3pApt+EaYeUfUCGi0k8AhqBQGZQZvCa0oJAhro3Zq6ihECReujy5gqFQBXjlVvaaoZA9KeyD3OjiUA= - + - vI1jRLrZ00XvJfZFOWzMRKxagEYRKpNEUWxfRdQF0kSgiZlEQ1G0Rek4rkSt6FlEJ0IFR4O+l0QUs5VEnE7JRGMoG0X5MIVE/0GbRVu9bEX2PYFEd/wtRZldVURkSIBErMSNRJgkpUSFva5EUvs/RISxzUTE7RtFhcwAR0vxi0TLHS9Gn+BrRI/krkUtk+ZECJAJRfKvl0b4HUBECmmTRFsboUTIh6tFOvz0RFp0m0Rm65NEqyV/RB0bhES/vEhEnloDRTb6lkSDXkJFOf+GRLtxD0ZunU9Fr0aORIMUdEQWt2lF7v2RRBPlRESW5J9E+VxzRMgdGEUyV1hEvedtR8brjETam1REadx4Re6GsUYeBIdEkRg7RXDCIEWonPxEKXXBRfC8y0aqIZZEdlu/RMYfgkWNsVdEgy1QRL3VykTmxpBEzAlORLYsREftA25E1Yq+RDU6bUZ3QtVFGVtXRIm4mkVUFqFE3+KKRODxTEQ+aBZFJG5oRPptiETGqohE+mQtRcyfH0XrFWBE1wH8RHWXhkUyYN9E+/knRXDUjESHqGBE/q2YRcuHYURRqotERHjERUY9nUTW74VHYfSqRDAx80T6CJJE3PGcRP2egEU9XUZERx7ORPnjZUYWYpFE1gCDRB8yi0Sik6pE8DxhRHNKKkXJR2BE8IqjRKwvTUSubKdEB6kIRWSGSkRVtFxFHDTXRLmqPEWfpWpE7Y2tRHYJdkS8/lpEf+K5RKmnoUToUGNEU4eCROct5ETDu/1EyavNRPxoO0doH01FXC89R4lOikYCFV9E25PdREwwXEXWeeVEy9Q6Rfc/sEU1UCNHVr1JRDd0l0VM6CZFkrptRMQRikRjuIxEpRMPRY1oq0W5iT9EGiukRCTzjkXJZstFUlKKRH/3X0RPrQpGAM/yRKhum0SCTVREIQXjRMaOlUQT1J5E3V2uRClWCkeThStFhq0YRsa810R2vA5Fvxm2RBrJYUT+NLZEs0dWRC4VvESFQJxE1h59RKSWhUTJxOZEU2ZcRPgIzkRNUNJEHOwSRQ5zv0QL8PhEoLesRHNMd0TufrxFgGWHRIihzkSpP9lECCghRpl8jkRCpYNEB8yVRIudgkR9djRFTA3aRZAIrkR6EblE/qY2RR8WeESju41E0I3MRFOYskR7hKdE7TArRr56lkQjdnNE+nQORap47ETmzvpEUXKcRDOXz0QDHhdFD00uRsiRYETTNNVEEl+0RY5Vc0S/aY5FRHgURdaylESohO5EZvhgRNcjwkQKqo5Ewr9DRVYZUUQmQKxEbwS9RPaiakRHvKFERfrIRL2P6ET8165EgzhhRPNqlkaNCXRFBUMrRe7LOkSmqbhFfpuqRKD49ESKsT1EA0UZRWRxVETm4IhFdWXyRfENjUUjRtdGP6Y5RNfRiETipfREYV+GRGPEa0SVdblFxTzwROn7aEWKeZNEi5RcRTk9akatDXpE2O10RDsGMEX5HFxHdfpQRfzrjkQpz21Exj5GRA0g2UXfZsxED/EmRfY0P0WZMZVE0eIdRWhTmUVrmWdEtz5qRAXdmUQFqYVExhSURSyjlUTIFB9FmzGoRLAN3kQwooBGRlxxRYApiUQ1eidGmwXERQ4q8USm6FREM6KVRDGhLkTjHOVHY9WRRLOOUETYyZdGjPiQRYr/dEbouLRGdBSqRTALN0Y7MHVEpGoqRT9oFUUX5rNE2TM1ReDvfkROElRFh2VvROAhQUR4W4RFCAl2RObXI0XmDN1F4iaVRKGU9ERO32tE++WfREP03US/klVEiderRJH0OkZ0TYxE0Vr3RCZaxURzZZJEbiqHRNCZKEe3qp9Ey5GRRkZfZ0RebCxFflmiRQxeakSd5itFFryWRFGQ7kSatppEg3c+RAEyyUUk1RxGvxOBRR2p0kTTtiJFceqIRFcBYEQmNARFGpAaRdWOhkWw8jpJoEkHRdYEW0Rv+S5FKJV+RFuZOkiDvRJHr4ePRl32gUVSP7NEkbWSRUgYjUZrEMBEp2t1RPvwpkRDh2FEt2JwROAKyEa5CbJEzHz6RVAqHkXa/KVE4hqNRY1znUQOJJRFtOukRBv61kSLsopEQSo4Rb0AqUVIYLhEUgA6RDLkkER8gKBEtX1eRH4W1ET/965G3O99RjGFm0X/yqREqWh7RA5luUS0+ZxEIQfFROi+S0WB2khEm9yFREdMiUR08v1EAUCLRB0IWURQakdGYhBARXIENUW7V7FFoKhWRFmzv0RhIptExNB8RHTunUXTV4pEydKbRNH8TkUF2JhEPlOMRBS+YkRZFWlEDra2R3EDukR+SJ9GHdaQRNT9QERmUgNF7cdHR0WuGkU3OUZEUGCNRstHWkUrpmFEAksERcGF50TmlJ9EUZZpROdM6kYKOshF++YlRnaQgkSUXCRFbW+mRYjtSUTJT2FE1c18RLnaOUYyIHlFOzSgRIYV10QE7IhFQsEHRcYPg0RXAYdEwv6VRK3MhUSI6eRENe4RRbS9W0R1Kr1G1yb1REdAHEWgElVFmYQbRoQ0UESlQ+REujJcRCRqgUTTRcFGT3UbRjQ1LUU+gmJE+59JRBzUbkZku81FPoraRN524UQAKl1FGJIWRfAgaER3o1FEU4xiRBnPnkUEHKhFuhGlRBCMkkbHwfZEoreKRGsZJUbPBkpFh4WmRUn5nUS0ljFFGv8CRcTJeUT0yf5E+El/RD+/lUWcWBJGzdmTRSnVV0RmXl5EoSp4RKzuiUTK0m1EbfiwR2YUGkfLxhpGT3H6Rd2p2EXttTFFZiU3ReqmSkWF/ZVEDoixRUSTlUVnp6FE/WSiRI/GJ0UntsJHbXG/Rc5ZNkT4vhJFEcUJRVyBv0YjsCBF7S6WRm0Fh0S88YJF5aLnRZYVX0QMS9tEARUdRahvbERyg3lEIy0VRajnjEThnXZEY/dCRYsppUTGDo1FeOsRRZ3sEEZeP2BFqsSbRIHx20XO1bFEfTCQREC81ETmaw9G2q9tRDUTEUXMeQZFzRlOR8S7sUSecNlGVxE9ReCenEXmgpNEZ7SCROnW80TQgEZF5PF2RNi+70RYZIlEUm/HRTHld0T2LJdErZgzRY9NeUSH/kpE7uF0RGffbURMnGlEX/UmRsKtkkVLckVE7DF9RagnEUVPwxhFz3NhRF3dQUWqj4dEge0ERW/5OURtCIlE2Xd8RHHjvEQRrFxErwaCRGn3V0U4GLhEh4YyRXC5nkTK/g9FqYoURUQzu0V7EmJE0UYJRccVlkQZdoNECzcdRjPkBUXaKrpErhAfRZLJy0QxQcdFctagRB4sDUWJD/lEWQtcREKiY0TYyLpEAP2sRhH/EUZsWx9FWeuXRH/wjkSIaYdEEPR8RI/ouUTCvKJFjRpLREN2UkQVdi5Fv4JHRUvmlUTp3PNENKkxRRrnXkR9z5ZESO19RHKFgUT+RbZE+nMORb+axkQ+g+9EYC6ZRgi9aETQMUlE5rHkRTvOgkTkb5VEcmCdRK+RKEUHKFtE2IwsRTFaF0VeNlpEey55REsRmkSxPYhEfAQSRvy0vkQLKn1EEWy3RESP10TCakZEc/27RA/XRESnzX1EYEuHRD9W+ERE41xE7QtWRUaDgUSjWGxESCefRPNKeESgT0RE0Z2JRW5QQ0XePdxExCHjRGB5VESvBThES4aiSLK+fUTVca1EjqkcSCRz/kSJtJVEsBtXRO+/XkRn2sFETyuiRwyjOEUvgYJGIwV5ReJxk0V0TyFFbwHjRHI+UkSfAP5ENsVBRHd9sESUFaNESN2ARIX3ZkSOr7tEa7QyRla8UEQuIEtFe+eORaX/aUQMaKJEQCqrRDMgukblZ4ZEADdgRapqxkS/fJVEnBB5RKtB5kTSZpRE+q5yRQ2dt0TNbIlFl0mORaV63ERM3R9FaKmgRGtYAUUR401ETaemRCZsgEQ99oxET35qRNabe0S9s0RE/hCiROT4z0Ukf5VE3dCRRDDZIUXLJGREWE5PRX5Q70QAzJ5EM3cPRUto/kTU5tNFdQNpRIHgeURKDq5E9ITERDsgfUjHtoVEgzQrSBZqL0eGcfVFiTrsRY/aSkT2xz5FxypkRU2bh0TqG11Gbbk3RdN8e0RaYuBFpaaoRM2WW0QzrAVFa73KROBVgkSjMIpEsOCERAO9GEaq7mBEm+SFRd2+G0WTZWRE5SsgRbtMn0TVcpNEtSmFRGaNikXXe69EcZnvREQ8WESHEE5ELoGgRLyC4kQ8S9tEmmL9RBUxfEQNBplFnnt/RaxLDUXD5JBEYPlURC3nkEQZ08pEIHJVRHMPhES3u1REezVQSCm8UURghNhHK0gYRU2iv0Wdml5HGTlfRSVrG0V9PtJFoFCCRpn0P0ThoSNF/721ReMryERA/3xEJi1/R5aICEfrfnFEUaAMRtwrb0WSZNdE5RT/Rd1FjURp4Z1F1PbPRBusZUS/srVEjt5URHcka0QyHZREQsauR1ZRJUdKC0JE9tA5Rnr72kSXQuBFvoZaSJatpUQcPFlE6EXlR43cVEX4x3FHuLGHRFPzlUaV+cJFAFKmRDS7pkTeD/NE80bGRNAPoETSvLVEh37JRP1grER5L0NEmuHwROou+0RYLg5FEthaRKgPoER9vbVEYLW9RBaJA0U/tFZEkKZaRFV58EQPp7ZEAMerRMeqrkRbas1FV0M9RTxpakR+YG5ENOXgReXYB0Vf59JF9YD7RNHqU0QDqIFEzk44RUB1gUQU4P5ESE9URHzrtkT5zTVEwT6vRWO6qUUVCyJFsXmcRITFYkSrqaVETtECRbo1b0ebvLVGqit6R9aBgESaP3ZGC+QFRihtg0fROyFHQD+uRNNyjUWsSDpG5gNcRD4/aUWsGoRFoySsRH/sqkQlJ4JEUZJzRSlWVET80NpEiTmqRHbLV0XCV11ECsmLRKn4xUaBeGdGchWJRWxsuERjhOlEneCCRIV5bkQ+8FZH+nuLRBEDsUbitFlEKqFbRgzmUkQ670pEXeSuRQ3qYUQ6Td1EoRF4RD8DbkQ6g0dES3wGRe4weESMflZGyo/xRWpZfEUYGG5E2K1ZRNWZx0S8KohEjZOLRZBK/ETfbkhGDcTGRRiuKkURlJ5EpUCdROW+NkT+tMdEEsMORXFVmUQne3hEFlGJRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - 9gFKIg3BckDhixk8bsFyQBgMavPHwXJA2Ge8R6bCckDONUrB5cJyQGzcskw7w3JAl1VSd8XEckDUlSccXMVyQOoJ5BX/x3JAARgb5kLSckDampMpzt9yQMTLwAO54HJAPjcW2lDickCs5LD4juJyQG2O4Fgj43JAkc0YvMnxckBYiEydEfNyQG2KWQm183JAFoxs1KL0ckDsPdIzjv5yQLIHWpHC/3JAaldiL8//ckBu7xo6zQJzQJdHSZf6A3NAjOe/638Oc0DihltrvBJzQBKCYbgFFHNAeLCpZXkfc0DvZH1SOCFzQGqcrLwOI3NAdEeBLs8kc0BO7hTXRTFzQDkRPqwHM3NAehlDrLk/c0DuXRHM5EBzQEJch5p2QXNAr7UDUHlEc0CuNAAWm1FzQBDMXjWjU3NAuDS6QnhUc0Ca6A2kOGNzQPaEhncrbXNAyrOSylByc0BqOdCZa3JzQDr0X7OEcnNAAmAYTE9zc0BkKERxTHVzQCC7N2vPd3NAKEu0ON53c0AiNM7ZLH1zQELdt0h4gHNAYObVVQ2Bc0Ckz5/zXIJzQFVU0vmFkHNAQ0578UySc0AIbzh/0JNzQGb6sVtilHNA5LR/CveUc0BobNB2uKBzQP7p3IhaonNAooR6jY+ic0BmC3e/AqVzQOGbQmy1s3NAaUFrpwy0c0AjWf1Qz8JzQCi7x34lw3NArhN4mNfRc0BOYfeb9dNzQIctSuvi1HNASpMGsDjhc0CAZ0JqjOFzQNr0y7884nNAHDzVtHjic0DIw21tDeNzQNZWJxFJ8nNArmXV3jb0c0CAC+LFdwF0QOxsTdVLAnRA8pE0p4oRdEAWpUB8TBN0QAaIXTuOHnRABokMXEkgdEBxGJswtyF0QCqaBq6EMXRATCBOKuI3dEBxhf83PD10QKIgRqHJQXRAvAxmW5RCdEC6iNjsOUN0QKl4rhcfS3RA0B3YHI1VdEAIzJpBIV10QICwkNK3YHRAYgc14QhidEAqF31femJ0QPildiBNZHRAUI5HrsNndECST0b41Wd0QFMxGsIebXRAAoQ3RCJwdEAt7mTlQHF0QLq4cAsXcnRAzjK+2DhzdEDrMGKSL4B0QMvMAc/4gHRA5coAk06BdEDvuSavuoN0QCJr9N0WkHRAi0+Dcu6fdEC2SK9d0aB0QBiwRo0Qo3RAvCGbJAqwdED8tkqtUbF0QJhg5ahusnRAArUtVvqydEDzkiPVybd0QESfym0UvXRAyc7V4rfEdECecMDs4NN0QG4lDem24XRABG+t9E/ldEBt9V/Hi/N0QEn/wJukAHVA1w9TOGMBdUCIUlgbXAJ1QPLyUNmaA3VAWuKD6iIUdUD+DNpnUCJ1QMrxIBSdInVAWuRb+OQidUByp5icyzV1QO5CNsAjQ3VAW3IEX/RPdUDs1XNWeVN1QE6UQi93VXVAONKsLwtgdUCqucBLOWF1QKSCCt/yYXVAoADJjYlxdUAvYGMYdXJ1QMAswzKNdHVAqmbZ4HeBdUAkAQyKrYF1QKrlFkymg3VA/TvlTJqEdUAmSgXwupF1QAnyDTTunnVASLyW15SgdUAOHTeEuaF1QFAz5h3ArnVAVh7YAL+wdUBfuWdJ+MF1QP51Zks6w3VALcJEJtLKdUD9c7WwzdN1QLBOeQPj33VAlwobdA/hdUAu5QQOCOJ1QI4WqmxM7XVASv8MaY3ydUBWnWDDpvJ1QFY7IUdHAnZA2ioWWgkRdkCI9T18hyJ2QCxa/A2QJHZAaL02+EordkDURDMpCzF2QHhMt6AfMXZAEPTdZFEzdkCUZy9sHUF2QOhK8B3GQnZAqMJecUxDdkAIDa03ekR2QNZZAOb6TnZAymrVnspQdkCqLg+mElF2QLVhbO/MVHZA9ChBCpFgdkBIq2kOEGF2QOBVMBuNY3ZAeUtideZjdkAIQ2mO2WR2QHPRgZlYaHZA9E9/zfNzdkCmnXJjkIN2QKax9oFcoHZASvEFi0+wdkCyscw5t7B2QOhgO1rBsnZA5klFpHmzdkC6mJK2C7R2QB7V1Hq4vnZA5on3i87CdkAWUUVpz852QDFGt2j43nZAKkkAIiDxdkD0p6eTNPN2QJoaVNOQ83ZAkAZ+zez+dkCufCUCAhJ3QJJ8AfANIndA6o6Nh+gnd0BQ8OErQi13QJ3j9wSlM3dAmP+M8gw1d0CCsFeSnEF3QL0PXTmPQ3dAenFNpP1Dd0CSaXKKGkV3QEj8br1JUXdAiCIPa5JRd0DMQX2KClR3QPrVdAspVXdA2LtpVZBhd0Dqi0RsnmN3QP3M8IMob3dAkwNkB59yd0ATzWzp+3d3QMQ+FguTe3dATZb0mneCd0DsWWN1nIN3QPSBCY0sw3dAsMid8YvSd0ATBlzSnOJ3QAKu5SBR8ndAIFDdwH34d0AVLTGlRv13QHa8HN+fAnhAqp23NPwHeECsOhPOxwh4QAxNpuNCDXhAPsMJJCAOeEDGeNFQbSJ4QKCb4PBEKHhA2mIGLxFEeEBO/dU8eUV4QI4KDlbLUXhAqGkjlpNSeEAy48ruh1V4QFpJi+T3YHhAPKtqdbZheEC0EDNTZ3R4QOJ3SZSLdHhABpckUbt0eEDcFR0gx3h4QNIL2vf2e3hAA+puNCB+eEBEO94EpoF4QHcmK9qZhHhAdOxf606IeEAGzxdzqY14QIul+sWWkXhAQ0e68PCSeEDwsJ+KBZN4QNaNPamnlHhA+hoakjyteEC2lqAiOLt4QHDmL9vLwHhAyEyQMT7DeEBEXJmHRMt4QBAvycK21HhAOAQZtZTbeECQafiCx+R4QMQDy9IA9HhAcPQZ24v1eEAhMmrhDAR5QMhU5C6YBXlADsYLpKMTeUC4Z43buyN5QGDRnryxKHlAnAnjIAwueUA4vFkYazN5QKh/+ea/OHlA1JWLhfdCeUDs4FGT+0N5QNAjBTXMVHlAKfElnj9zeUB2tUCTWpN5QD46ioBjm3lA6NfPXMCyeUBlR0WrQdR5QHp4rwDN1XlAYL84yw70eUBaDHQ/9gt6QH6pGjwMNXpAJYKQURpFekAszg5Gzkt6QDCaMjspVXpA+KXELiJcekA0t/LjhGB6QIKRfqUpZHpAMkDz+i9sekBkroNqx4B6QFp6Mi8eo3pAeDRDgHajekCvC/ZRJKt6QMU2Gh+Bq3pAWruYNxOzekC4kgYTL7N6QFFld4sMtnpA7ze26Be7ekBEeK9LGcZ6QCUvxQtDzHpAo1/FCknUekDIpjDrZeF6QLB862xI4npA+v5n+zTuekA6wOPJF/F6QDzD4qdd8XpA5KSorHsEe0Dj0d6bKQ57QKzi39OIFHtA6BBh3kwVe0CDWL49WiV7QAI1VHHBM3tAFGttz2E8e0AhSGJ8aER7QMrPJR9wTHtAfiU6nQ1ce0BCNtXnE2R7QH4kebEzc3tA/DRM7Q10e0DuISdXI5V7QPlSsf7NnXtADvC8pyGje0Bj4F9IJ+R7QARBLTeM9XtA5eGiHSn7e0B2EEZN2QF8QLLqePL3AXxA46N0k2UEfECTDm0jmgV8QCSFG3jPEXxAZhm6IeUbfEBOjFQUzkF8QOrM8sxRSHxA9kvc3aZNfEBEPb/T4FF8QHjgW1Bpe3xAUoi/dXCDfED6aDxUXYt8QMqZFMx4i3xAdA9WTMONfEDXizm/HJN8QECaYvhOk3xAUhciV2eTfECsDhm4Wpl8QOk6kSWvnnxA0It5MsCyfEBgJCRr9tt8QBh/oX9X4nxAyvQpNRLjfEC6cs1aauh8QNz6wcgT8nxA3NN6H1XyfECw0xZLAgJ9QJbzxypLAn1AViIitUYSfUCzTBu2rRt9QOpOxfQ8In1AfPLzLZAjfUBouJWRtiN9QGTcB615dH1A4A5Cb4R8fUDhTxcelY19QHz05sTskn1ApBQ6TDmYfUBPy/Ru9Zt9QHqoxez7o31Aw2qku6OkfUAkZTSLLMN9QN4LYN3lxH1AtSg1aI/1fUAUVvtKNAB+QDmJsiciIH5AgFAhfEkjfkAOBn+tIix+QBUk0IspNH5AasovxhM1fkBqIJKRMDx+QKBayvuLVX5Apu6B6hJkfkBqp89aOnR+QNiUxKa1e35AyYgX0KCDfkDs7EH3pYt+QHyqYvDRxH5Akkid6XPIfkBCTONrzM1+QEXE+IUf035A/WVkod/UfkCP6HlKAt9+QLgCdllY5H5AvT4GiYTyfkCEtExPlgN/QAw4TQJbQ39AuBs2f2FLf0Azxi5fi1h/QCyOmSPkXX9AuC+eD7dxf0CUg41gsYF/QCLaWsdikX9AggCn0quRf0CuhwbZX6F/QKJdvMhBo39AZk0Jxn2kf0C46QOcD6V/QA35LFSfqH9ACptNAfWtf0DtDNMKVrF/QOWnJc3My39AXlgXtNXTf0DRTk1U29t/QPrhXaaV439AdjD1RIgBgEAikxtwNQSAQOc/AFfoFYBAMu76YOQmgEDCFiMHkimAQNDq2U05LIBAejX6oahCgEAOIRkF8UiAQHI0fhbmUIBA/e5xqxVRgEB6g48H6FiAQJSq2fMOWYBAIinOr0RagEAxqXycGGGAQM9KuU/wbYBA2j9onvNxgECDEksiJ3+AQBgCg0Mej4BAnwtkAx6XgEBa8Z5INqaAQO+2QZGHqYBAQ3ScKhOvgECHoaNI17GAQAP6/nxPs4BA851sHwa6gED48dJMs7yAQDh7ckjLvIBAgL+UBmC/gEDkuM9sUsGAQBDXPT0WyYBADP3wgjTJgEB+02uwU8mAQOizs7fYyYBAWKGkoZLKgEATVQnRLdGAQEAP9MtN0YBAZLLwidnRgEDw7fw6JdmAQI77FyFL2YBABpGWfQ/cgEDQVSyxwd6AQMgHuopE4YBA2uUjxlbhgECwj7Loa+GAQC7jwYsY5IBANunlHfnogEBBxQcMQemAQN45Fm4//4BARYIN4T4HgUCQkRx4PA+BQD451nE0H4FAbk3yyFEhgUDA2EU+NCeBQDY7dmm9MYFA7ontXio/gUBUDX7zWkeBQIt8AbkHSoFArItqnbRMgUAjbdehFlKBQNFonyQZVoFAXJauMVtYgUCfUsZX5YSBQB2GDXjriYFA4iYmdAWNgUCfWWIMVY+BQMyqzbmxj4FA9kX1mFWXgUCom7SXnZyBQJI6AlJIn4FAgVTTFeahgUDA5Sj4a6iBQMLe1p9eqoFA/g68SUqvgUDkzSplS7eBQMt1GIkkvYFAQgHshfnRgUC0ThMc/NWBQJTmPYj92YFA5lMdOvfdgUDi+szQ+eGBQIy6nzYO4oFAPIwGdf/lgUD7e9UqmO2BQLRk0C6b8YFAiDB2iOz5gUCQxba5K/qBQBkorWTv/YFAspWGgy/+gUDYRWgy9QGCQIZ02O8CCYJAZ0OiHK0JgkCsX0BlARGCQHxrt33YGIJAUo6dP9UggkDbnzwO0SiCQGqsdKvJSYJA3W7iFHBQgkDGUJivy1qCQMrNEo81YoJAVCfWejhmgkB6QTxzoWeCQPZsiZd1aIJAFgQ5hDhxgkDKP+iGW4iCQP/69UxDiYJANExCpESRgkBBko0orZWCQLIO0xk/mYJAnvj501qZgkA2xih0r5mCQFjkKzwPoYJAFMecRj2hgkB0xhDSDamCQAa26X80qYJAtahdikmpgkAtijSBNLGCQJ2DFrTsxYJAOPSwi+/JgkBant3b9M2CQNz7P8Lo0YJAk6wzbvzRgkA3mRZNfdqCQLQlzLyB3oJA+CjhaVPqgkAXc9Nh4QGDQN4fXWjkBYNA+BcLmS8Hg0BE9PbUywiDQNFfzF7bCYNATMAYL/wLg0CgNOeB3Q2DQDSrwCd5EYNAkEUr0aURg0DFBA5kehmDQKmAsn5MIINAyW/IOHUhg0Cg0mGGcymDQKYWzp1qMYNA3mNZD4Ixg0BM9SynHTmDQBJi2VhrOYNARLMwN99Bg0CMEEvvu0KDQHigWi2USYNAVlWkmopOg0CeHRUgHsWDQPjj3DpAxoNAHD/O5cnHg0B5gwV2ecqDQETvLNAL8oNANl9/SQ4ShECsATHSKFmEQIIIlk2qWoRAjUoCtt5lhEB6pcY2AGmEQGymf6L8cIRAfDiUXgR0hEAaMfsg0XWEQObBfHTJd4RAnn/+y/l4hED+kgxVd3qEQAIuAW4pfYRA9yP4X3CChEDyTgR1HoWEQHDU/pJwooRAYHvawR6lhEBsxrOczKeEQGeIAQAXzYRAcm6LeW/ShECwgn4BatmEQJKBFxJr4YRAtq3IhdHnhEBx03GKY+mEQJJDSxot6oRAcPJIWX3qhEAGGGnEKe2EQPJL4how7oRAeviu8dbvhECzBDLYNPGEQFB1L1dj8YRAalC/ySryhEDyLEg+gvKEQDSEkoY2+YRAScPVNlv5hEBvx5apWAGFQJ7x09sLFoVATLiJj+NNhUByRnS85lGFQKZZKKfcVYVAbnuzqu9VhUDRzCZc61mFQKyd/kCgYYVAJg9M+qBphUBQs/nZmXGFQDoDWf6zc4VAaCQmQZl5hUBuNpzOkYGFQBD3KYMmuYZA2EdfEpEph0BGJ+Ce0C6HQG2hDcGQMYdA3jHesdQyh0DCD/jVijmHQF/k9kiHQYdAwb36knSCh0COxVaseYqHQCZcfHjHsYdAxX1REMi5h0DY+x5nwMGHQKQkITjByYdABb6iiXIGiECyR7nx1yGIQCTZXF4rs4hARxJVsBjPiEA= - - - - - - EmigRPvarEWo5dlFzaArRtcwDEU92A1FdI6mRM0kn0RtioNFWycIR0Aq6kT+O61EcpyKRRgcK0Vfs9VEEJBxRRV67UQUJtZEKvOURNHR2US8X9VElSyVRMV0t0SAkQhHUlCjRBzMPEZmjmJF1NgaRTc+rUbKCMBEGu6ARVG5tETmeYZEG3HQRCcjwESX63ZFrQzyRXngTEVWOURFZjaeRD9qFEV+xVtH3fnCRNKGtkW3kMdGtvwlRatgvEQo2zJFCxBERTyZzkQebrNGeXrTRLemQkU958tEisIsR/hRn0SNIrlEnsVHRjZ730XBLKpFAjKqRHjB40TONSRFFKMWRRFylEVD0QJFx46VRDxBlUQNqI1FYOqwRSifkUTnwI9HeKGaRH2Vp0T/kZdFKPrERPHLOEafzKVEtK3XRNAkQUX2E8pE1OWXRPLf10Q2xMFF8tQ7Rfp0oURdGKJE6fiIRG5AzkS1cgRF5Kq2RPT2TUeqOl9FuTYoR+/0p0ZshNVEDwmHRTUhP0Xb5D5FSId3RU4VIUfbTYJFDMoyRcRtokTQ8r9EESXARVu89EVvSopFIBUBRoX+0ESuE1VF9XHjRBgM+ET1vd9GB/8DRbAZJUY4gVdFv0rNRHzFs0RXxhBFHqfPRPPDwkVp+KVEmzW5RDznJEaxw6pEZVQjRfX6i0TZXdFFkocMRfq4IEUVz4FEkGz3RKSEz0UB8AFFWkzRRIMB/0TkV8pE1Hs1Reiu90TuL2hG9ZGrRGeEWEXgl4RF39U8RQukrURWN65EmKSfRIZ2qURkJ7REgKcCRd4sEUVuk5VEcnuWRAISvkSNcJhEw9zlROizzUSRbJxG61i1RMPeBkYrGshFJML7REgBS0VFheNFK4pvRd+E2kRP6RVHomADRQJ+0UUSr5hE52qqRMM8n0X2yp1ENvMNRUubrUVdc4hG74OORG2mykQ4PqVESvL2RsQbPkUQPrFEZO8jRbeLyESWnAdFaW3IRDcD0kQyX1lF/fsPRcPohUUjNbFEOZWwRLf/GEVBmHdFHIufRGkQwkRPmzlFrxEfRU0ObUZ/IzJFt/cbRo7UZEX6nyZFBUTdR9tCn0Zhc4JF12QQRuM2tkZHzFtFgkRSRijNB0VsNq9E2njORGLOikR2iQ1FZ0ZdRR00/0R915pF9vvrRNjnyURJhIpEABxQRnACs0TBTJNEF6jZREu3IEd19XlGU+h+RVfu2ESq5yBFloW9RGDTQEUog7BEtWOmRfYOFUbsf5VFJwTQRIlVREXICvBE8VUkRaEykUXnsDVJlj53RTaiK0WuV7JE0JYnRVm3N0WnuT1IK/7vRvHGo0ZoeBNFPe2wRLncH0U38IlGYOSxRE0XrUaZcg5FzKDERXUS9kReNSZFpUx4RaEXkERqdTVFLmfNRSTGl0T/9cxEyVuxRFd9rUQWnZhGQ3kdRv7AwESOTphEEu+aRPiJ8UTE+FBFahaURG6IX0YVzaRFKpktRYsavUU41txE65ueRdGwH0XgoABI9c8ERzJhCUUuuVZFEFYoR1qpN0VTxFNG4DADReeIA0VEmKtGXw23RYhmDUa9UQ9FCS23RHxS3USJrJVF1fa5ROBsxUS/pRBGyUBsRbZVOEWkvUZFvyzjROgl/UTT0eBEw/OfRh+JHkXeFUZF0lUXRiVfzUSYPttEIlPbRma6HUaCdwdFhcpPRmV9fkW8RtZEJlQLRQXOgkVDTzJFEBf5RL7mZEUw1ZtGwEcJRR85MEa9NxRFcT4lRXVJa0U+z4JFLPrtROtItkX4lM9F2BubRb29okQQapVHv3/rRkBM9kWnfYBFQFRuRcW7OUVbzwtFo50GRYc7e0XjwRlFJjPPRDlOQUXRNMxHGOtPRWE06UT9W99E+HzaRt02FkUoHpFGGbliRZFk2kXNtJBEYFmrRJ8FEUVmr1dFyqqfRPqvPkVWdPZE1sygRPcDtEX3nSNFVx6bRBaUEEUzU51Fg3PKRLjOKkbVYBBF3gqlRNA7TEduuqJGDqKkRAtTzkW4qwJFmB4+RZux0kSsmb5Ei9DARV0Uc0VYEy1GWYBIRbfEa0UMtphEbO3LRAbqGEVxYLtEM6W1RPYC7URMP8NE55qvRCKeqEWmBdFEpb0jRlJRMkVtKBhG8uTPRNcmIEXv0ixFt+3IRXrV/UQdnqBEyDmjRGFEFEWNtZJG1WfPRQN7MUWd7cpEB835RLJX2UQ7RgtFDle5RA0amkSoAYBEfB8RRf/dekWiNQhFmTQeR+ujBUXKZURGXeuWRCSR30S5zH5FM6/qRGEU8ET1qstFdd+hRKFmyUTQSqNE9UUpRSO27ESw791EddOWRb1OIEWuXg5Fs2kMRS3cCknroK9ExLnmRJoSkEjHn5BEe/owRTewJUWlqBxIMOrTRPqlj0RlQwRHws6jRODl00ROUg9GaNs6RZ+YhkQXzu5EwGlLRdbGDEWA/D5G/Z5TRde0RkVO6rJGJLp6RYFbRkWNqbFEsvo8Rdl/2kVWx1hFkfsYRUGMGkXHjtVEp5eYRBKU0EQdf9tErenhRIopoUVD1gFFHpTRRNGlVkWOjdtEwo0GRc6QqEQcP7REVg2wRVUSrERY3c1ECpnCSE9ndUjUw51HRA1sRjjSPEUNi9xEz90BRSenSkXE9OdEu75MRiPhEkVekgBGo/HCRLpy/0T6x6RFi/2oRB6HCUVccSBGwpYvRU2TKkWWNkxFIE4RRfF5zkQhHapFWwYpRWQKr0Q9EQpFFn6TRFj73UQXBvRICc+NSA/EQkUG0ydIRp4tRWFwLkXAPqRFsWRNRwzTKkVYwkZGxUkvRdioD0WsU39Hehj7RuA+xUXrPUNFF/myRI9/2UX2CXZFV4ixRN8imEeGkCtHPzCbROS5vkQvyxpGbYGaRDpQkkX1uAlJuFbsRP+pnEgGCLFEJuJISIB0fkfbkmxG7SQzRUa+ZUXWGE1FBvSrROzmGEWAmI5EBiiWRP7vEUUUJp5E6EGhRPyAzUQeaLlEykv8RJDBqkQI55xEyVTIRNeB0EXm6xpFpKKhRCVEi0SCkK9FsfHvRE9au0XFhS5FXZdPRcpsKEUg6Z1FgGxsRT6dLkVjIRVFtwjFRFhX4EfannBH94J7R0fEBkcUHmpGyaNzRyHhBEfToOpFbtOURmidQUXNJSdGn9wYRdxBMkUVM6BE4OJNRa+ctES36dZEzMfURrMDJEYaiBdFWJAqRSkv4UQ9FtBHZDtjR8jZ/0Z4bbZEATNiRlM0nEXoA5xEvUqjRrL01US+3T9Gs47zRFN/00WA+0RFbTjvRRZK8UTQNJhGv9AiRlLO7EVOpiNF8bvcRFL9zkSFfZdEXSmPRA== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - pLEt3m7BckAP+ztkyMFyQIdZrd9QwnJAbuwkbqbCckDuZDDm5MJyQFQbdK07w3JAFPbZ11vFckCQvPikAMhyQC1WqCrZ0XJAPCYuTkPSckBagQTcdtNyQH14efzO33JAH8WYCLngckAeQWHfTOFyQG7q95384XJAiD62kVDickBqgjlrj+JyQGgKuxMo43JAAOwVKVHxckCWnLeXyPFyQEqLQBMS83JAPaS2krjzckB6Tv54ovRyQNT5A6nB/3JAsMIvaPgAc0DzJq6cjQFzQJTTvGI8AnNALrbXcs8Cc0ADYOx9+gNzQB5t6qgJEnNAIDW0UrwSc0BKUo1E9xNzQGJxqIMGFHNAPqBQe3kfc0DesrR9oiBzQLBswyg5IXNAcbMRRcoic0CrISLqOiRzQKMJG9POJHNA1Dua7EUxc0BAanEnWDFzQF75qJvOMnNALMJ3og0zc0AuZnZBNzRzQEooc7y5P3NAeGETqkFAc0DP6+iY4kBzQDus9cF3QXNAPKH8DnpEc0DA4UZqnFFzQIHVz2lDU3NA3s2wcqRTc0CuzU2LhFRzQC35a7+KYHNAoscHERtic0BK8G8tOWNzQDrXWnnNY3NADPTtOSttc0BgvZeUUXJzQHwV8e9pcnNAwvSgvYVyc0Af3hq8uHJzQEBDDzxOc3NA6OFGobh0c0DqUAgLTHVzQHJtwxjFd3NAi1R9id93c0AazOcwFH1zQPg+eDJ4gHNAXcq+4KSAc0BJnJN5DoFzQOMwVXVdgnNAVw/1C4eQc0A76Y8ZTZJzQEZuv3nMk3NAicvNMmKUc0BAY4+o95RzQBTGALqKlXNAGjA9Hrigc0Ckx60WW6JzQAnwSHPHonNAYi3KsuWic0DC5J9tBaVzQHZqmKTHsHNA5t44xjOxc0BIPxHpfbFzQCzYL6VasnNAjDsfwLazc0AhWsgvDbRzQM8vjY2htHNATt2vzWTAc0A/y0kR+MBzQHaOe247wnNAFzPDQ9DCc0AWK12zJsNzQCLs+mbY0XNA/zJNOifSc0DKnBt/4tRzQL7ih9yi4HNA8HGaWznhc0CCPMDAPOJzQMJtgXd54nNAuEfowQ/jc0DcYjJVpONzQI1lk6ZK8nNARJo86mjyc0AMIo9qN/RzQDtOXCPjAHRAPB6rsHgBdEAK5vH1SwJ0QKQqtguKEXRA4FQm0UwTdECscwnDjB50QCpsy0VJIHRAtHu1tI0gdEDYARR6jyN0QHUCSsVTMHRAkBeeL4UxdEDywlII4zd0QJXcJSRTQHRAztMv1KZCdEAsey3JOkN0QIOmsDp8Q3RAMa6HcB1LdEBolByjN1N0QKCfYmNjVHRAQqPFyIxVdEAWTD7tIF10QP4K6/O3YHRAmozM4whidEBgbJF6emJ0QDztLHrEZ3RAI/6S6B1tdEBCuuHjInB0QDMZWuRAcXRAQukSGhZydEDO6F3SOXN0QJclJ0r4gHRAKIDhdAWBdEBmeTwHToF0QBkH7pMlg3RAmDIrnbqDdEAKxsmCFZB0QGqkHmPvn3RADiG6uM+gdEAE9gHkt6J0QLcHHKEPo3RA+EJFWsOwdEAf8ArHUrF0QKZHORZvsnRArjYzEvuydEDkq2Qu97N0QBJqwaTIt3RAQH6cXRO9dEBtk8xN3L90QCJQZhDjwHRAxtOAzHfBdEAdQ69O6sF0QHpvhZVrwnRAa28LUbnEdEBqJ2Kj/c50QHme72ip0nRAZQYufOHTdEDEZb5EzNR0QPDHqsi34HRASM2UGCThdEAU/3Oqt+F0QKhtZ/dO6HRACCWaEo3zdEC0K3KhevR0QLZ9J4XOAHVAgHMkZ10CdUADjebPowJ1QEPKeueYEHVAKN4VqmoSdUDCkFgjJBR1QL4lzrGOFXVA/wGh3+QfdUBY4CoBUSJ1QDbIewqdInVAFA/t9eQidUCFM0tCqzJ1QFYq3TXMNXVATGtteN5CdUAGKuyd+E91QMah1lt5U3VA0Bi9jnZVdUAQ5paXDmB1QM6i3g6iYHVAZCvOmDhhdUCCXx5E9GF1QDBFd1ZkY3VAVJJlQYhxdUCc8fA/eXJ1QKjaQVWNdHVAnutpZeOAdUAkWbKLeIF1QNRe8xKugXVAbkqXQ6WDdUCeeM0lmoR1QHqd7DHPjnVAco7G97uRdUAwJMoaJaF1QC5DzXe5oXVA/aqxB5awdUBcBIzRwbB1QDT/4aXPwHVANq8pZvnBdUAeAnPlzNN1QB4N9kEO4XVA6pa6YgfidUDnu5PXS+11QDDJF12m8nVASKrOM+73dUA7E4joS/11QOwoxqpHAnZAOVwGjs8DdkD8P93gTBR2QKSWKWoMFnZAbGk1uIgidkCPo/bgjyR2QDQL8mRKK3ZAel+qSB8xdkDzynQ0JTN2QE61171SM3ZAetnIuJw0dkDQ9z/4HEF2QIIg/wfKQnZA9BZ9XXlEdkDKi5VCyVB2QFxHOJwQUXZA7r1uhM1UdkB4Al6ZHmF2QJ5eBRNRY3ZAVjUB6I5jdkDsUsTf5WN2QNIvqzTbZHZAh5eCj1lodkCi2PiNZIJ2QDn/bIqRg3ZADHDOaF2gdkA7rxQ7ULB2QAz+9PfAsnZASnhs8A20dkA69MDXdcB2QM6O6bjBwHZAXEYr2E3BdkBUJP88zs52QGQFvRd/0HZAyyHEF/fedkCwgjMDHvF2QMr1nygw83ZALv6Y9pDzdkBefmiq7P52QAJo9w00AndAxMHxQgESd0AKjztiDiJ3QLHizLvoJ3dAgOUn2kEtd0DDMzZUnjJ3QL44d9p6M3dAS3AzlaUzd0DwgAE/DTV3QExQlSOdQXdAuYmL0pBDd0Bagud1/UN3QAIMDekaRXdADpXs4ElRd0CwmLUPklF3QPWNuwwMVHdAH3ozmHpfd0CGHOMkSWF3QNi1WyyOYXdAJu6AiqBhd0DNW8iOOWV3QFxBUeAmb3dAwn5s+4Zxd0AMkObznnJ3QOBLZkD5d3dAfDQpoZN7d0D6QxgmeoJ3QL8x03eag3dAUybMv4KKd0CTc6h/jNJ3QLKPs7uO1ndARa/pHOzgd0Bcb/vQmeJ3QEXSlWVO8ndAoYGnk3/4d0A62bJKRv13QJhVCVGgAnhA/fhtzrIFeEAUSqBa5gd4QO6yHLb7B3hA7QCTNkQNeEDxnnnsbyJ4QM6ic8uLI3hAWxuQdZoteEDUzQXMEUR4QB8t8/h5RXhAvsWe7MpReEDitwKrlFJ4QBvh+omIVXhAMIqujflgeEDT/kL+tmF4QOYa0fPUYXhAgIb2YrdieEAlPcvlLXR4QNwR4JRbdHhAtL+j0ot0eEDILxTAxHR4QET0pBfedHhAMFAX5/J0eEDNWpjbx3h4QIhbxjL2e3hAR3FGtCN+eECLw684pYF4QDhYAAWahHhAiallYU+IeED4utsXqY14QID6AGBEkXhAhWICh5iReED78itgYZJ4QKKkriHtknhA6iDlswWTeEBaNLIWp5R4QKQOMag6rXhAL3QwuX+yeEDygfQnOLt4QFOyK5k+w3hA3iBKsS/LeEAVyDGRt9R4QLx07kKT23hAe+GknETieED9J3SEA/R4QGh9d0KM9XhAZCZd2BAEeUCdHSF8mgV5QCb79fe5I3lAJBOwubIoeUBaTbDyCy55QEqx35poM3lAYIjL47s4eUAykGFf4zh5QMDnghX5Q3lA1qqK2MxUeUDXasR82GR5QGqSl8E4e3lA6v1DcVyTeUDmSoyEY5t5QDvR1WN9nHlAvEu5zVKjeUBMUGAqZKN5QDXgPCPAsnlAeMgEa0LUeUDveJWUzNV5QLZgYh9Q5HlAMXvyn9nleUBnOLCHDvR5QITX1uj5BXpAaHx+bPgLekAAbXrLNyN6QGhLDPorM3pAJo5yjww1ekCGGO/OKzd6QBT6UGwaRXpAupmWFClVekCwrPVAIlx6QAwVCxKHYHpA0A53WilkekDy8gmnKmx6QPTp+ceLcnpA+m3P/cWAekAIDiXuHaN6QDp5NCl3o3pAFBQxsyWrekCA1p8Sfqt6QBqmfCoVs3pAagNWq4CzekCUYsoXDbZ6QP+0JKgbxnpAMNo7tEHMekA48bq3StR6QLSKFIxm4XpA1iW0BkjiekBZKGH3iuN6QFabdr027npAu0yenRXxekDG3+P8YfF6QO9UpTSNA3tAzqodiugDe0DecHoyfAR7QG2HuDKHFHtAXLcGdU0Ve0BimHUHWyV7QJ/C4HRiPHtAPgL9FmpEe0BVWOnqbkx7QNHekLYMXHtA3JOAWxZke0AaD74LDnR7QFelalshlXtAuqqqdsyde0C+3oSJJKN7QOclBTyFqHtAPMgPYybke0CQPPQUQeh7QEiwhQqM9XtAkpLDfif7e0CAlwdKkQF8QMTvnlTZAXxAPpEp7S8DfEBuxJ0uZwR8QLxY0RyZBXxAmoGBq4oRfEBy4qoD0RF8QFgM06/mG3xAOn3N2c1BfEBIj45Vl0N8QPbIp8JSSHxA0jM0ZpFNfEArJWWuqk18QG9HG/HlUnxAYDW58QRTfEAOWNuPDmJ8QEaBdXFpe3xADAMZcXCDfEA1qkGjXot8QBY1AdR2i3xACjH6P8ONfEBh2JZmHpN8QF13E+dSk3xAhQQiiGeTfEBkLZyTfpN8QFKXdWp0mHxA8ItZnVqZfEBPhG1OVZt8QJivHkaxnnxAbKVPtl+ifEAiBoACCaR8QGCR5X/AsnxAL4hLuHe0fEAboDp79tt8QGhBzu1X4nxAc/z1ChHjfEAw0Qhi/eN8QMyy+u9u6HxAf6oh6hbyfEClKa6VU/J8QPbs2QcDAn1Aac4VKEsCfUB/qgzATwR9QI5HubZDEn1A8ufG5q8bfUASQVtGOyJ9QH2FwyeNI31Ao+iWPLUjfUD+xcYGpDF9QFjOdo5pVX1Agb3ItHp0fUB4E3eMgXx9QPTHk6CVjX1AeDAlsuySfUCcL9+W9Zt9QMXjx8D+o31A7G3A/qmkfUCHxt2i5sR9QB6cxwP11H1AegLnX5P1fUAQoMLKNAB+QBD9xUrwHX5ALi4dhjcffkCYn9SJJCB+QAr7T90hLH5AQUFHeik0fkDqJ+qeFDV+QH63isEvPH5AXBfc0ItVfkB+krDOEWR+QDBJTjuqcX5AyXQTDzl0fkDpgdTWz3R+QIOqGqtng35AQHLwPqCDfkAH1ltcxop+QKcwQiuli35AZmE1UbGkfkDgerUyFbJ+QHZxkGB4s35ArOuXcEy0fkAal1ds0cR+QHQNisZxyH5AQtsX38zNfkDmMeBW4NR+QNqDW44S1n5A9Pja01nkfkD9Oh71fvJ+QGyeet0hAH9AyLQNppUDf0C0DBCXmwt/QNTzQiNeQ39AHJFjZ2BLf0DodlaMi1h/QLoLQPnkXX9A+mJxIrdxf0B0sePR+nN/QNFjvUCwgX9AIk3T5GKRf0DG6KQOrZF/QILU7X2ak39ACHYVE1uhf0D0Lzr4QaN/QAYaY959pH9A8xaqVBClf0BBUWJSm6h/QBoeZwNYsX9A6siI2Iu0f0CMQGxIq8R/QI27TLTMy39AqD4JONTTf0DR7SbJ19t/QNGxKWSJAYBAekEYETQEgEAUEzZQ2waAQC+bT0PmFYBAnAlXyewZgEAq9F7FuR2AQFhzd9Q7LIBAvOzpDqlCgEDasAMc7kiAQLyL68nkUIBAXETeURRRgEAGHmh551iAQPN0WYQOWYBAvsZlJgthgEAY3AO46mWAQJAluCHxbYBAs/CuVChvgEAMt+vVLH+AQGrrJc7ZgYBAWT4TqsCMgEAT0lZ1Ho+AQBBSTKUhmYBApu8w2jiagED1qkOwe6WAQHDpar6HqYBAnr8hErysgECivcgkE6+AQE3CMvirr4BAEA7udGewgEB0hrm+JrGAQJQP74EFuoBAVsCHy7O8gEA2Nk15UsGAQA5vVKwIxYBAFHy8i6jHgEAw5cJpU8mAQKzncckUyoBAIFgwaDfOgECCTsSwLNGAQNupPnZM0YBAFiBEr2DRgEDJbxHrStmAQJy2V66/3oBADunpgEXhgEBTJ+jYaeGAQLBxyphW44BA0t862RjkgEDK6ixz9+iAQIknZ+ZD6YBAlDKQqDzzgECrUmqvZvqAQNTw7+E//4BASJOZNUAHgUCXJ4svPg+BQEg2qHU0H4FAjwYxvVMhgUByMcQkNCeBQKoU7qS3J4FAmDOeMDAvgUBz3DIpvjGBQAavY9coP4FAMOICkZVCgUAqnGOaWkeBQJJB2oUHSoFAyUJpHLVMgUAYN2veFFKBQFLepZ0bVoFAYPBXjuNZgUCOYpvoQXGBQPDekhWGeIFAptbEkeqJgUDGW5gMZ4qBQEcIbu0GjYFAjMIXU+2NgUDSm70rVY+BQPAHj5D0kYFAljgZRFaXgUBg4frHnJyBQPL87vZHn4FAMmnNSemhgUB547YccaiBQCz2IxvxqYFA9YuSh0qvgUAY3vbMSLeBQKZk3UvmyYFA5Hr/Ac7RgUAgCAs6+dGBQEz08Nj71YFA9WXmtPvZgUAUNMZ39t2BQNLBmKH44YFAuFcZYgvigUBjNOG0lu2BQFSMi6aY8YFAMkafxrHygUCej6X46/mBQK6pjO4s+oFAvvRdqe/9gUDRjv0Y5AGCQIABQ4IxAoJALDcaX+ECgkDa2oSoAgmCQP0XQiQEEYJAFBAQL9gYgkANouMY1iCCQHN3hj02IYJAKr0nd9AogkCOmgfVpDCCQNhrd+zRQoJAOnUV5cZJgkCqHBx7Rk2CQFXik5y8T4JAHLrgxg9agkD3Bom21lqCQGfmWtcSXoJAGXjYCjRigkBWpkrmEWaCQDMbmls3ZoJAWlqyaGNmgkBAhsJHaWiCQBNSI+ZvbIJA1JeHP6NvgkBb/YCrRXGCQPAmHGSfc4JASqkAGeB6gkBqEh1OOoeCQFLuNy5DiYJAkHdtds+KgkBiJ6jD14qCQOKFhG1EkYJArKDtKeeRgkAcMxuPrZWCQH4WwMQ9mYJAYpG/s7CZgkCKNtLoqJ2CQKxACG8OoYJA1m6NCTyhgkC9DZdyD6mCQE7HMMk0qYJAUiDy4kqpgkCGkRHfNLGCQEJHykjsxYJAtcdL36LHgkAYQMrI78mCQPoyAzv0zYJAOL/u21XOgkAcb3uT6NGCQLBsx+uq1YJAAHL9/X3agkC7subSgd6CQNzFGTqF4oJADJLvZVXqgkBEsSJF6/qCQIj37zjhAYNASF1VV+QFg0BqRKwFMAeDQFbP423KCINA82xUxtwJg0C0szW4YgqDQFwC9ngADINA91jF/90Ng0BsGDoPrQ+DQEBLUkN5EYNAKFPmzOMRg0CYfx9rehmDQL5EhDVMIINAF3q4jHMhg0CAFEZZcimDQPpGdYRpMYNAQvphmYExg0AKVjFKLDKDQAYzs5McOYNArIGcy2k5g0De1pmJ2kGDQFahcPG6QoNAuaXdQyd+g0Awydsz4YGDQDHsDVMsuoNATQKktx7Fg0D2XMqvmdiDQILn0oF634NAeNw7BTXig0BkbNZ7DPKDQKRMXOUQEoRAbsV29KFXhEDEuWYYqlqEQBdmAt3+aIRAc4AEDP1whEAkh8hz9nSEQDv1Hd7Jd4RAbBZMo/l4hEDrNp1IeHqEQMn4lWAnfYRA8nlxI7d+hEBgXhLfwH+EQB5ddsVbgYRAUhxOVCCFhEAPjIp/yoeEQATxvWVqkYRAEo0Tg3CihEBkQECnMaOEQPB01zQfpYRA7M9He8+nhEDi/5oOGM2EQFgfx8fDz4RAI3/3GGrZhEDYtuWWl9mEQOfS5Vxq4YRAcg+IKtHnhECcUf3VYumEQOoyyi8s6oRAPGsHkH3qhED+Ixg8Ku2EQOknthPA7YRAH3ugzS/uhEC+Y5zL1e+EQPPmaCA28YRAxnx0VWLxhEC6Jv8mx/GEQNzyRUEz8oRAOqXL2YHyhED3k9fGJ/aEQOPOH942+YRAXmoa9Fn5hEBPpj/biQiFQEhQ8VMLFoVADpkq0eNNhUC+MJ3O51GFQLBU+qbtVYVAtWasiN9ZhUC2K8zh412FQLJtXkGgYYVAEV7ubqBphUBtJMq0mHGFQFTkTtSYeYVAUgJq0ZSJhUBKytxG16GFQPxxzR4muYZAU8KG1ZEph0BKsTYM0i6HQOx/KH2RMYdAwGrslIk5h0B4vqJIXUGHQG8PxgeJQYdAefMxpXSCh0CQXlt1e4qHQPTJGUXHsYdAoE3twse5h0CunKNSwcGHQPRGgRjAyYdANrEp1/Xih0BURquB1SGIQOgUvjTWKYhA + NrgMGZxjYkCmvpxNHCRnQHJahe5LhGlAqbPSK6YCcED8s+DKy/J0QKkRr3/+E3dAGQWdtSODeEAZY3kJfJR/QDGYoM3vpH9AG9oa+mmSgUCndC7co5qBQNR604EFw4RAX50ToeLahUD9elpRGPuHQPJ9t9w544lAKoH/9nkji0CBphXSZauLQLmpXeyl64xArqy6d8fTjkAmxQCU/nmQQGvWoCPtBZFAgllz9h2akkDIJn3nOp6SQMltIvEzfpNADzss4lCCk0CPUiP3pkaVQGvPnkRwopVA1mbS8bwqlkDr5pVZxmaXQIfouWbmNphAAfzWWuyCmEDO/Ghh/BqZQIETzm9CR5pA - + - BhwYRsVbGEYwA6FEPrR2RgeFv0TEHnNF/EL1RLgAsEUoJJREORMeR7XWj0TzBxhFtSP1RE71okStCKNEypKRRU9cjEUucaNEg3u1RMXiZkV8RlBF2afoRHvxt0R4SdhEOL/dRCD72EQzFQRFXklcRYaRKkfTv8tEMgNQRl55v0VccchFXrA7RWii3ERu789GIwzZRL7klETRz7FFUF32RDle3kRLIJFEr4/MRFiKDEVxLCpFAnilRJ2vxkTEaIdFAvkbRnQfKkWXmxdFi/J3RYWvvUR+iNZEdrmuRCpaHkXWG7pENql2RyahnUTjohFGPfqpRtr58ERgAadFvwqORLquM0Wz1iRFhce8RcG5hkTk+9pGZwXNREnHGkW2d3hFNbdiRXJTREf8qQNFGJn2RG9ZkUb1C7NETaYSRp1aCEZLZK1EOareRLveNkWTqJFE39KQRNWYnkTgZqlEezRNRXcLOEVbDaVEpjqGRAOuBEV88rBEviLeRSiWIUXv8DFFneSXRFYXy0X5zb5EAvLmRZQKvUfjfhxFKeEzRdgcpES3qu1F0Ne1RCkYqUR6WvJEgE+HRpeTo0RTHxJFwMtvRT6+zkQi/gJFXwLgRKWC10R+aspEhF0aRjlChkUfo7lEXfaoRFoe9ETZ18hEhTS/RKPpi0TGro9E7/MERWIZTUcF0slFpWNPR3Hgpkbk4thFtTo3RdMQ9EVSpTNH/U64RXzrfEWbS8BEvTyeRLe5/EUZdFBFfXsKRqpqCEZxqRRGU6bFRLnEHUUZ8WhFC/3dRI35IEW5EO1GjRvlROwYwUSIDRRGpteDRdVkq0RP1ApFvAnTRNOo30QGzLhEx34rRXXZCkXQ2e1EhHazRCD+DEUyxMpEVXzQRJ+e6ERORYxEn4W3RSzxu0RtzvhERVpdRin4nUR0BrFEwUnuRJ7ZF0VvjJlEiAqXRGK+3UTqzvxFRKFVRelzCUWtKh5FMHfERJFW8ETQGmFFMEgpRffExkSd96REUwIpRWE/tEShp7BEzNwwRWQkqkQECO5G4dGjRMia3kRk+7xFgs7ARUp6s0UeoM5EqR6eRLtFA0Xn1tlEq4bQRNXBFEVM2MZEPXLsRP6O/0QXwvBE6MeZRP5NvEZR4StG1LDbREh28UTTmuhFYMz3RCdSGUVSEL1ET5SMRUwQEkYlY6FFikcSRxUwvUQU/9xExkb6RPpOGkYo5r9E+1mRRXP3/ES6D0VFxGAVR5NIxkRHYRdFJOelRIQejkaxaQpGWVTCRNUBqUR+1ShFxo8KRXT6A0Ur0CVFaTaNRa6CwER8fZZEaJrORCg7YUXnKcJEGtoKRReMu0RTGYpF4VE3RQRptURQRbVEnt5xRn7xOUVJEExGH621RXVQTEVI+tZECXRKRdxY90fADdpGwE6lRTmZJkYibsZG3CS4RW1OZUYDp9FEr1vTRGvOnUQc1O9EsKAJRSI2lEQKCGhFhb3FRJhNqEUOlDJFjhGZRU/H2US6ur1E1hurROrhV0Z9c7FE+aS0RGi2p0TWvw1FjSEjRRCKKUdWOd1GJJCXRJVXU0VEkpRF6WxXRYI4c0Vk3qREW4eiRAyYzEVXfWRGH6/WRa++xUQjkDtFXbErRbY6KkUW7ZdEaRi5RI6o70QpMo5FiNJZSc1dlUXiN8lExF4WRdGlAkVmjsJEMb0LRVKbZ0WLm11IJzolRxB1l0bySP1E385pRdD4IEVy5QpFrSPORRY+pUZnGw5FaD2BRNbt30a3Eb5F2qwoRYt4mUUeVzZF6D6oRJtPeEXSJR9GUB5dRROrJEWawgJF86PVRtriQUYJqGxFzpHpRO92qkQpow5Fu6SyRdbkxUQTqbVEoW6VRnI8L0YH4K5Em7DtREDH8EQuQ3tFJRfjRaSX60RMqDJFfP2TRBfCjEWtFP1EG3xcRUFar0Qvlq9Eq1j4Rz0yu0REoOtG1HZ1RYuIOkc0iBNFtCebRtnvIEXeKcVEgIkFRVxE6EYMGQ5GQKcCRuGzkkWPzT1Fv0zHRKdk4EVekstEd0IwRp8meUUygBNFXDxGRT4epkR7h7FE5V4sRUhmxkSBwr1E7cWeRAENrUZqp3JF+s1CRqQqIUWwvR1H/cE3Rq2KdUUwV2lG9gJpRTAAuEQhPXlFHh9HRY/ywET5n89EQKicRcI+kkS00rxGR5MwRcyOu0S/m1hGSqPCRJjcmkVtXsBFHfTSRA7CrEUfgStF4ZWuRRL4kESckzJGPE5NRTq8iUXKDa9EhtayRN6E3UTXe59HHMbmRh4aBkbkI8xFYc4PRqfnnkUpCtZEhG4mRT6+qkRxXwhFoPatRb2rl0RZKmdF6siGRFI6hESs9Q1FSa+8RP4MMUXyV+VHO3iJRWzcD0Usd+dECuirROyIxEYJ6RZFES6lRsVQlERj8C1FAxDQRe508UQMQr5Ejyc0RTtT3ETWL9BEJe7ARRgoSUVZIHVF2ItaRWrps0UnzotFfpuYRA5b5kVn17tE9l/jRKNgLUZpPRFFxBagRGo2ykT4E0FH13PCRvw7/kStZ7xFzFQWRS3VN0Vj3I9EfEP6RJ8GxESfAbFEYb8TRnLmnET16yFFFhjcRBcduUQNpUVFjruXRGL/NEaHQpFFSaR9RVpxNUVVAqNEhVHIRFjpsERvgJpEgj4JRbuy5ERY0/9EiKesRLjsLkUCyBJFVLMgRrcWpkS/AAdF9hciRodLCUXFtOtE4zT+RHdSFkVuBAVGDCXvRHTHCkVbCBFFdo3/RMcY2URLV3BGjKXdRa6hu0T7LBdFXESXRS9jxkRoCLlE85itRHWOu0Q8Ed1E2BbBRA4DCEWQmQ1FqigMR+l70EQiSktGIggQRXeNHEW+S+1FHXgVRYVpqEQ0sR1FysTIRD1bEkbvUwZFOeTURJhQDEVO6QFF9uPSREK8h0UjWwhF09i+RCd5mETnD4xFKjmARWsG1UifFrBEdd00RY4lRUgxQrlEkCKcRCmo+UTx8NdHKJa8RcNitUZzezFFiBseRk8fJkVAYYlEKsIQRZ7WNEUNacNEi37ARLfjtETiw01GrmBbRXPhjEVulLJGVzX/RAshvUXm1MREq0TDRDlPRUVL845FFyWmRNHQC0bls+5FPhZhRbPpNUWUYNNEODC5RPryokTDn5pEvM02Rot/wEQW+DVF1BNXRZWFBUb51AxFmFA3RWvNGkW0/9pEhB4HRfS0/0Qj9gFFCWAHRrE1tUQu6cNE00VNRaZGJUm9PstI6fgSSPJKr0Z0wI1F8JkLRRV3REWXOuBEOga3RJq/k0bJkg9FiR37RZ48EUVqV7BEFxOvRHhRk0VNIJpEXIZORpBUjEUBIqBEAtMbRRFhn0Q5JMVEYr0lRT7Ym0R9RolET8maRB90qUQncsNEQwP7RWdzu0QG85tFD1+cRNXPKkWE/6ZErmSTRHW7C0VMm+lEzYGlRGNnskQrzMJI2AmNRLl7jkQCIVpIccukRKH/nEWvPedHhkhXRZs920SL7NBFTMEKR+SRDEWRChJGs11OReuR50RiKpdHUNePRIhgOUcIHixGmhPKRJ3oS0XnZaREjj/kRQno20UpwShF5bOyRPXeqkT518RHhVZHR6MYzETnuJ5FUVJQRksDtURc1udEN/LiRQahmERp1qJIz8bTRMl/OUjPcqhEzcm/R2BM80bBsQJGA6QwRSdFmkQ41glFqTIqRVceHkWdJM9FtlmlRJnwnERdThNFrctcRR4prkTbL6dEO/eIRG3n70QaQBFFkMGjROoCokR4Oe9FCo0gRb2m00Q2q/5F84YLRTcUIkbLYzhFCnOfRAtuCEUlJp1EZY/WRJRxxEREI5tEz6OiRQsFk0Sd76pFmbHsRNcsRUXoQz5FqAy6R0hUt0QrMT5HMOB5R4Gj0kbIDppGiFN3R4l2BEeEAudEKNdRRsm1NUY0EK1FNpMoRpgGn0T+G1hFhqFkRYG53USM08lExgwTRY26t0Rqq/pEeGjqRmAloEbXYqNFED8RRSKOo0QZOJhHYaX9RlXgsEakEAdGZX/JRKeKq0Q5OvxEK9iYRsvNrURv5CRGsOLFRS0eyEQgNlBFw6kmRs2RdUU+gnpGeDrJRZtLzkXYBPdEmRTMRGgIekXQqJ1E + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - GA5mj2/BckDU30z3yMFyQBWIJVdQwnJABtTRuabCckD0YVra5MJyQDqTzsI7w3JAkFMgh8TEckDKkcUYA8hyQLhykdhD0nJAnMdl0qTSckC+3nnFd9NyQJinRWjR33JACLx037ngckAwh6WnUOJyQM4NVAyQ4nJAUeCnArvxckAsyRwAyfFyQO4fH9VS8nJAGj+fOxPzckD8T5XQtvNyQFCvl/yh9HJAxJI9SmQAc0CSSV6++wBzQGeZlpLPAnNAiPvezPoDc0Bq47YoCRJzQPTYoAK9EnNAGV+4PPgTc0CWdPxTBRRzQIR+ag9MFHNAgRK88nkfc0CK30/GoyBzQJxsU/U4IXNAfMF16OYhc0Cq3fPkyiJzQApbnErPJHNA9x9vZUkxc0Dp99xjWTFzQEZkasQ2NHNAOhP3St00c0Du95Y2uz9zQCfjhBZCQHNAbj7Nc+FAc0BN/7MYeUFzQBSUe3t6RHNAHQIPP5xRc0BB7FPqo1NzQBIQ7Tt4VHNAbIjCSPlfc0DFr0TpHGJzQDyZ1S86Y3NAks7c2ittc0Bkyijo2nFzQBOyp3RQcnNAozeXiWpyc0BsMSOXhXJzQN7TfZVOc3NAxRPU/LZ0c0BtK7HFTHVzQGyiWR1rdnNAI2uL0sF3c0CfBk5u3HdzQE50Wyt5gHNAZnYZyw6Bc0AKuO4fXYJzQHmUq4H/gnNASMSuMoaQc0A0DvIP1JFzQIY/iUtNknNAwhUwCM6Tc0DaiZEH+JRzQLGjoKS4oHNACu8aaVqic0CM/qr0BKVzQFZkgMjYsHNAXo/6/7azc0Ca8CnFDbRzQGgi7JTPwnNA8s9K0STDc0CUK8Rg19FzQIPpRW7203NAZIi2DuPUc0AukwIKOeFzQD4w2fg84nNAejugBhDjc0BcGLHNSfJzQAyhk7c29HNANH7+Koz0c0Dq0GkL5AB0QO9LHFN4AXRA2p8PCaQBdEDLYrSnTRN0QFiwyp54FHRAFNhb1ksgdEDczCVDuSF0QNcP4fmOI3RAGuoLnVIwdEABFhfShTF0QIdq6bW6MnRAor8pjeU3dEDKeuRdbDh0QLTqYF86PXRAIR97AMlBdECWWEhTO0N0QKyku0AhS3RA/z57UY1PdEBILjgTi1V0QIQHl77bV3RAXY7ZdyFddEDf5OomuGB0QOSEIgUJYnRAeIlkh3pidEBqyAaQTmR0QFMSMOLEZ3RAhOXbjdRndEBqFLzBH210QO5ni40icHRAa/20LkFxdEDnFt5rFnJ0QJpJ2GF7cnRA7HHBMDpzdEDWWCDsN3V0QDHwQf10gHRABPd0ofeAdEAvnkb+TYF0QKq2G+8kg3RAbJRmWbuDdEC4gNTzFZB0QHbz1mrvn3RAMWdnedCgdEAotNhjDqN0QCQHwsP7r3RASvesuwqwdEDNS1uUw7B0QKjniQRRsXRAqq4X0W+ydED5eNaT/LJ0QFVVt8XIt3RAsAYf7hG9dEDGsLc1Ib10QKQKvx7dv3RASvJq53XBdECYBTyMuMR0QFj7TAr8znRAYAhwG6rSdEBKlJfQ4dN0QA7GPkDO1HRAwCeRG7nhdED+BoH/TuV0QB6zyxlN6HRAaNvvYcHwdEBClIaIkfJ0QBTWj/SM83RA8lGbzaQAdUBI3QsazwB1QMjkj9xjAXVARQ3NF10CdUDmEjp1lhB1QASkAucjFHVAJUhodVMidUAVH0dFnSJ1QG9HDsDmInVAMssanMw1dUAFzdcj3UJ1QBZoLwDlT3VAKbCrI/hPdUC2D6eyBVB1QEeiKfl4U3VAeBiU3XdVdUB+gE+n8191QF711HYJYHVAYrtEKDdhdUA2f3hX9GF1QGtsn+NkY3VAAHloWItxdUBSXkz8dnJ1QN4dFX+NdHVADN2Ao3iBdUBZvt07rYF1QA4xCCmmg3VAFQEMlZuEdUAo+JOOPJN1QLVbSsK4oXVAZDhuAEqjdUCArbSTw7B1QKOYJ0v4wXVAuvhdwM3TdUACw7x/5t91QCC7oaoP4XVARO09jwnidUBqIZt+OOV1QGbV5URM7XVAC2VdAabydUDzysNf7/d1QC5LdMsA+HVAoT+xkUgCdkDfw+YIChF2QEXo7nVLFHZAWllM3QsWdkDSmtCsiCJ2QKZTmtOQJHZALnzgfEordkAcMZJ0HzF2QLw2frIjM3ZAhQlX+FMzdkAWSxjUHUF2QIbmeOvIQnZAwH8O0nlEdkDUWB39EVF2QBPFuX3NVHZAN8Od3SRhdkBiwDYnUmN2QC1ty9fmY3ZAkHoQOttkdkAY0Uu3k4N2QOo2Oi5eoHZA3lgilQ2hdkCkKw4VUbB2QNzrSPS2sHZAngeEpcKydkBBUVT+DbR2QAbOoXdOwXZAshU1B8/OdkCcM/i2M/N2QAiX2zmR83ZAQZJtgzf7dkDQrIt6MgJ3QCre3n0BEndAfBaHHg8id0DOTG7n6Cd3QBJHUiRDLXdAYBihlJ0yd0CK6cx4ezN3QKONn9ekM3dAINiYWg01d0BC9RhjnUF3QGVPFDSRQ3dACkCeJv5Dd0CAJUwiG0V3QBpYXf9KUXdAcnWuE5NRd0BQ8MrwKVV3QJEjBDh9X3dAQmR4cUhhd0CqsO9Kj2F3QNlMcyknb3dAoNdovaByd0A/bqVOk3R3QFaPoFL5d3dA1B/KtZJ7d0DW2r6zJ393QMS/vS9MgXdAnpgzCnmCd0D71cT9m4N3QI4p/gCEindAPKxthYeSd0Dmy2rdjNJ3QDWAD6I703dAKM3eRpnid0BEKhp9UPJ3QPTxbjZ++HdAkmi+qkb9d0DEPQ2j1/13QGBuXMefAnhA/+7+L+gHeECYN/hoAAh4QI5qsXDKCHhACcydoUQNeEDhrcXEbiJ4QG6T9dkLQnhAGxXokBFEeEBdGJlgekV4QEtBQzrKUXhAHubiuJRSeEBjxnM5iFV4QApoFDzuV3hArow38/lgeEAAo2fhtmF4QEftjZvnb3hARfZq3Sx0eEBhG6uMVHR4QD3xhTpodHhAbNUq5Yt0eEBoDF1ivHR4QISMT+LKdHhApoE/WBB1eEBShDZfxXh4QChvFO/3e3hAvEb/oiF+eEBRKswSqIF4QAZw4FGahHhA2daWbU+IeECqjUY1qY14QB6DSkBHkXhAYjoJ+peReEALmKWKYpJ4QN6Nde8Dk3hAQn76saeUeECar/ZqYJh4QCqzhFY8rXhAXsgyoHuyeECZgBx+07N4QIADg983u3hApldRk8zAeEC72iAwQMN4QIXk1D231HhAOlWuPpXbeEAUYBOPMOJ4QO9hDlWN53hAXOG61erseEBDfHVPA/R4QLDeFdWL9XhACvOEIRAEeUCpaHjJmgV5QPk8FTGdC3lAPiHVYL4jeUBIJQXKsih5QPyM3R8MLnlAhWWcYGczeUBI8U+J4zh5QNQxzUeKQnlApksYOPpCeUDi9IRl+0N5QO7fL3/MVHlAaHry0OVgeUCYgujOR3N5QHASH7U3e3lA1Lu0/1uTeUDGyjcHZJt5QKYi59dqo3lARtUNNsCyeUAksbYbQ9R5QOrgwCtS5HlAYc+Fiw70eUCCqvftHQR6QEyAidP3C3pA23/8oP8TekAoTQc4LTN6QI+r+8IMNXpAOLWvoS43ekBkh99nGkV6QGmdhu4mVXpAurSvviJcekC1pkD1hGB6QIIP2kcqZHpA3X6kDzFsekD8lN8OxoB6QJjS8Cp3g3pAfIb2hueQekAaSWQLHqN6QJuekIR3o3pAOkBi+iSrekCmvqMqfqt6QBVPrFsus3pAiKrmP4GzekCO5qQvDbZ6QGrgozocu3pAvmk980HMekBbt3OJStR6QMZH5oNJ4npAGh+stHnkekC0Mqc0FvF6QMjnPUFk8XpAwLEvcZEDe0BQhaFZfAR7QOjHvnIrDntAkCtUzcoTe0BQpG9NiRR7QFqmjQhNFXtAqqADPVkle0DqapNQYjx7QD98SgZpRHtA+XfqVnFMe0B319heDVx7QFBUm6AUZHtA0ko/nQ50e0Cqz4sVJJV7QHBJpSLOnXtA0HAlJyije0CnppEoMqV7QIpSKxAn5HtA44A9iYz1e0CBetIRLPt7QJqaoh7aAXxAcoJHUjEDfECQPEuBZgR8QNAeQX6ZBXxAxgbqx4oRfEC+GmHI0hF8QE6fEI9zFHxAABJri+gbfEDsbizSzUF8QBuXmA9SSHxAUeOmg6xNfEDsREeQ6FJ8QAYgWnoKU3xANyJWAQtifED46m7paXt8QHRm7cVvg3xAVgZd/F2LfEAobw6teIt8QBCViyfDjXxAnLixaxuTfEAG0GmTS5N8QJhJl5Fnk3xAGW5gwnaYfED3A3E1V5l8QOsWzrawnnxAtbl8U8CyfEDuI0TTeLR8QAzUV7L223xAliuHFFjifEBSdyo+EeN8QM4Ulp9s6HxATGkoPhXyfEBsbZw2VPJ8QID/tm4CAn1ABi1yEksCfUA63xWYUgR9QPhk2WFFEn1AAYV83q4bfUCYz8VbuCN9QDrfZRmiMX1A62tGhHl0fUCyYBR0gHx9QArxWpOVjX1AUo3sv/CSfUDon6wL9Zt9QEgrdmL9o31Axiw5OufEfUCi75kTkvV9QEr+Fo00AH5ANwxSVu4dfkCeWlIDJSB+QCaPiSekKH5Avlp1byIsfkB6RzU/KDR+QC4W6QgWNX5AYBAAfjA8fkDfv7GAPj9+QNZKJMepQ35AgocPfTZEfkDGaIWlo0R+QEr0tNuNVX5A/uZThRBkfkBUuRULOHR+QKCB0vbSdH5A18Pgbih2fkBonKINoIN+QKatgpmpi35AWy68KWObfkDikgqp0cR+QPbJN+VzyH5Ant7gH8zNfkC2nktd1tJ+QD5I3gzg1H5Ayy98nm3YfkCaOg8+H9p+QFw58QT83n5AkA3OSIPyfkAuHR2ElQN/QGI6G9GaC39AQ1OmKV9Df0D3pizYilh/QHNLZzfoXX9A1ukDIUFjf0DMDWr2tnF/QHyHpW3/c39AYDQkKrCBf0ADcwMAYpF/QPLhMDk7k39A0ttit3Kff0B8HkUoXKF/QN5/9OdBo39AhiOmGn6kf0DgAQv2EqV/QMzn00iaqH9AmDNidlaxf0Aq7YrCirR/QHIH9ffMy39AGbaZ0dPTf0BCmQ5SiAGAQMOZs4Q1BIBAcAEvqyYHgEDO6ZSZigmAQJQujfvOEYBAuxE5EuUVgECYP80A4iaAQMJiLjKQKYBAJxf4AfQ+gEA+bX5wqkKAQCJy1eH2SIBAlQGi9uZQgEBcQ4WRE1GAQFHZKiIOWYBADxZq2R5ZgEBoeMhk8W2AQJTIKMEnb4BAR3MsJvRxgEDIedVoKX+AQHyiXtb7ioBA5ixxvh2PgEBSsoLiHZeAQDktOAQUmYBAgqAuvdyZgEDKLFFmOpqAQJNSJa/4poBAovHEeIapgEDIR4hbE6+AQL8CDiG0r4BAHzwbbGSwgEDWlS9BBrqAQCoIolFNu4BAcnhSqgi8gEBWFQQHsbyAQGhP6IxSwYBASDSQx57CgEBZrle6Y8iAQLT2D54fyYBAdPpJpVPJgEAzRSdocdCAQDo0959M0YBA6y75KGHRgECiRftlZdiAQBwI8DxK2YBAjcVgtMHegEAoJkgbReGAQPQJiq9q4YBApetV3fbogEAqaIRubOmAQAE/xepK74BAgRYpQj3zgEAw+Kz4Z/qAQLh2aug//4BA+kQHkD8HgUB0BwqzPA+BQGrr4c80H4FASH7BbLQfgUDfUCluNSeBQExDAOW2L4FA4QFoo7wxgUDkIv1AKT+BQDxTqDF4QIFAuVGJ1lpHgUDtXg39BkqBQN1BgtuxTIFAegwXIBZSgUD2+NrbF1aBQHCfbZLqiYFAMN5/QWWKgUC/YvOFBY2BQMRVk/XtjYFAKGtfpVWPgUA6/DrNs4+BQOwvR6rzkYFAa8UDv+iVgUCQaMvfVpeBQAoCHAvsmYFAg1p8b52cgUAcjsqERp+BQDqFUWHooYFAIrnVKm2ogUBo+n8/76mBQM67fr1Kr4FABVXbG0y3gUAAQwerBcKBQB5knnmn0YFABBqjQ8jRgUA+qfA0+dGBQFb4NI1L0oFAxpRtwsrVgUBIZiq53NWBQB5P7+D71YFAHqIOAt3ZgUCyxGyS+tmBQE2PYET83YFAfsVPgfrhgUD9tVIclu2BQJ5aLRvt+YFA9vEVOiz6gUAGDKe37/2BQLDlbdDkAYJAlOZqGAIJgkDbO5vB1xiCQNwuEq7WIIJAqpWmJ9EogkBBdeNJki2CQLhdDsLrOYJAoYJPV9ZOgkBEBo3QeFOCQJRRsBYEWoJA3yMdujFigkCIYwJ8NWaCQF1aouF6aIJATA4n2Tp1gkA6cUh5YX2CQMhrQ0JDiYJAjM3u9KCLgkDxMRCwQ5GCQKKXnjWslYJAhcXVujyZgkCzCa2eVZmCQDyfsWSumYJAhFkcow6hgkC061eXOqGCQNvYRsINqYJAWFFeUDSpgkCMWgO6t7KCQDxD0xS7woJAjuzqlOzFgkAbYma678mCQJwy0JO7yoJAggtga+PNgkCcQlkj9s2CQCgNRRjo0YJAX/eTtn3agkCrMOkdgd6CQP4xRhrS+oJAdD3jhOEBg0AaxS045AWDQHKDs8AvB4NAj0quN8gIg0DYC/Kw5wmDQNA54NVpCoNAVWSptt8Ng0Ae3SdueRGDQKkAdrnlEYNAXtuuAnoZg0CVKEo1SiCDQCZkhnFyIYNAMv9bKnIpg0BnJDoyRTCDQAg4kX9sMYNA3HVGhTgyg0C451d320GDQLn2Q6a6QoNAK2gQ7s+vg0CDSf/PibWDQFELRnIexYNAgm4OuEHGg0CwncSTy9yDQJAETIp434NAPIjSKQ3yg0D9XxQGlPiDQEbStcAMEoRAOTK7X8MnhEBo39IF/2iEQAm5Thn/cIRAtjj/PCpzhEANA2OKyXeEQMk5o/73eIRAuftkeHp6hEDT+7YxEX2EQGxGIunQf4RA8J9XnfqAhEDOoa44cYKEQLpaaoilgoRAvI5dIB6FhEAsgfvzcKKEQARFllkgpYRAWlvlOdCnhECeAny0Gc2EQIhSECjGz4RAOoiXN2rZhEDX6GGNauGEQN4/3FPR54RAO7B3n2LphEAzSpXCLOqEQNjQH7B96oRA6FpHRCrthEAwko+mv+2EQAxuJ8wv7oRA2O6QPdfvhEAfK8YPNvGEQDKi34Nh8YRAAZxPvMHxhECMrBrBNvKEQHK2/3+D8oRAfsDXTCr2hEDv9KVxNvmEQFOUy2Fa+YRAt8B2pi/6hECTdM7uLgGFQGZsJ5wMFoVAIJy8KhEahUCWlkwj5E2FQMaMrGznUYVAjNWxQepVhUA+7Jn241mFQARmyGGgYYVAYtt97VxihUDMaMECoGmFQOuN9p+ZcYVAOeDqvbFzhUBgxlIWmHmFQJhks7nEe4VAoKbaipCBhUD2LzcKbl+GQKvnXQ4muYZA+o1Vb5Eph0CFP+xukDGHQLEIkPyLOYdAPgTtEV1Bh0DSGIsdi0GHQNruwjx1godAGIGEq3yKh0BhLq6Ix7GHQElReA3JuYdAWk/Sm8DBh0AST9NfvcmHQNJVQi/7yodAvRm2XHAGiECqSBtr1yGIQO6uoATaJYhA - - - - - - RwL4Revv+EUdpalEMDZ/Rrfb80Rc8XJF4m8cRat2Q0WcHgBHF+mQRLTqlUQblQNF2+vWRBSGa0Ucy2ZF+GMxRc38NEWz+IVE0awTRb8o0kRptPhE4xilRF8plkQzHmJFNbkbR11i8UR05mFG4vKURb5BnEXRWpVE41opRTxP7EQGGtFGpRmTROxR/kSuJ6tFbHX8RCfe30TT0sZEjDKIRCl9AUWNsp5EVavCRJJpaUVkWM9FF+ZCRfwcc0VUlLZEU+kTRbg+CUXmqylF8A5iRzeckETONOtEVqSkRYUagkbDSphFy9rvRPhqp0RHybpEDHA+RYDoiUUwkNxGV9IARd5toEWjM0hF1tAQRSzwr0RuvzBHZb+8RHVsgEaDXgBGvWnTRYHSE0WusZNEba0gRTLEG0UbwKFFhzSVRHiDDEVBrIxEjmSfRXpd+0UEPL9HECsRRWKyCkaIVw1F9A2eRMU+4UT3EVxGvdybREsxi0WZvplErrGxRCgXuUTam5NEP7/JROPGEEbENs1EY6wCRaV7sUSw4ydFqwesRC/tT0UEAqNEsTOeRH0Dw0ReLQ9FEkM+RzpYlEWsFCtHzrunRphcBUWW04hFaBKJRZSC7ETlfaNF+PsrR6I2jEWeS9VEMi6VRW7LuEQKiIJEY7YlRc5yw0XEYQxFuywGRoUqukU3GMRFpd6tRELVFEWttalES6DPRITVn0QYNOdEzwYAR6EM3EShxjlGeFD3RDxOA0UxVaVEzlOaRHfC/kTAv7tEBpQERbEekUTKCutEu+YnRROY80QiyMVEgJAQRUdJukQJPcVFV961RApV8ES6Kt5EYg07Rletw0RSBQ1FzNW2RPTFDUbXl4RFs1IxRenCyURLiQRFderBRKJjtUTIAt5EHN0YRdrBlkSCtpVEcdJKRasin0T7UKNEprpIRR8OEEVGSmVGVMUJRQjR3EVlI4ZFoacDRSIbE0X0NL9E+HTFRIR+wkRrBx5FNcnsRNMGAEXqBdFEkRsCRdG5jERDvpBGyLceRmptmUQqUFdFPCPKRePv5kRDRNtEORSsRFnDlEUXtBxGiOF4RVnm2Eb2bfREhGiVRE+LzUXMguFECjC4Re0RPEWa6HhGJ37MRKWfnkTOeQZGYnhIRTiuAEVfVEdF3mnnRJAgJ0UlGqtEg2WhRH09c0WbbsZEN/VpRbPpJkX3KydFJxAWRT3m80SS1ZFGVs5ZRcEMQEYjFOBFbxPWRDGoEUXmFgZFdWb4R1DSwEaB3p9F6mGfRcUtykYwXJtFE389Rj1yFEV5JElFTgCZRFUnHEUkAj5FOPuXRXHclEQ3+v5ESweBRUG9oUQkcJdEQbC9RMQ7wURM7whFgXinRFRT6EUDj5FEdZWbRHX3D0UMl0VF4qUyR451p0QKobFGTfpmRWW5CUVLuNdE2fGZRMZFXEU0zuFENxXXRZuBR0YRS51FFGSzRNjLV0VCOKdE8eAQRffXXUUhxOJEXeLWRDDHE0VCRY5FXS5ASbSTWUUOE9hEZAicRHwzVEXe0LJEMIsoRZZsF0W4gU5IJ8YbRwncqkZ40YtE1ltMRUHjGkWg06JFUkmXRgEJwUSXLtdEqwS1RI6dA0Xk/qFGvNPuRHg6tkXfcZlFzp03RSRC6kQRTJ5ELg+1RDmBhkWlJp5Fc0aqRCZ7rURP/LhEtfSnRJFUu0bwzSZGA3hnRWjX9kQ7QZ1EBUaSRKd3FEVj7E5Ftc98ROgPnkS4zOtEkV/kRg7aEUZZUB1F4Ht4RXFhzUVOMQZFjPySRUGbnkQZWFNFElzMRJAkwkRo87dHWSUMRei4zkZIjutEBr4eRywR1kRcOnlGpihBRYTKzEQGhYxEMkXyRHkKxEYIaIpGXRUORj0es0X0UfBEnm6qRLgrnUUCZctEpNvYRSPsOkXCiRZFE3ymRDlD2UTjo8FElWAkRYEBqUY0B65EuObYRKoid0WQ4glGtH0WRQGmNUddKntGVVeRRSgmQUYNa5BFMt+1RBhabEUrJgJFyib1RPShuEQyfKpFhJ+QRrsOPEXJrl1GBPicRFSPaUXHB4FFEEqiRECUl0WD0KVETMPmROir0kV16ulFu/2GRV+DrERXf+hEWzizRMB4l0ezg79G+ufXRcfChEVkir1FuMaZRbvXsES1s11FSj4kRZDeL0XCLnBFYaMSRaAl40R9W2BFQSLcRylVQkWTb8lEr1QXRS7hyUbI3iNF6PqARmQ9qES6ZQ5FSRGpRf/6ZEWRitVEVYzxRUJYQkUKeEhFN24FRS7huEVieyJFPnerRZwoy0RN1AdGNBXqRGmnsUSRjKhEmC8xR5N3q0ZGWKBEGF1bRcCSr0SnYLVEBxLGRATRyER6fypFdvEnRRbBIkWeHpFEjJCQRF91xkWjEeZEuGnyRP4QKEZ/D9NFkqCTRTj0vkSkh6pEUa6MRLh8pkToDNJExIurRKk1EkVi8qZEt6cIRf5aZUU0kQhFsR26RICvi0UYUKREKeXKRCPiIUaS1/tEeNqaREw9A0XPPqVEtmcpRqFYS0VL0bpE99G9RF+y1kSPzypGiETgRb6Ht0XBVcdEZTutRGwWj0TnS6tEnHGqRJFzsUSN58FEZzW2RFUbAkV5ScBE6nRORSqfbkZQUsRFtCK0RKX2W0UpCdpEHO0kRcRnikQywblEZeP8Rdn1QkXasMpEdHmVRDZQnUTnjoZEjMALRUomgEW6HwtFAwkzRTWcyEUtMgNFxV/SRJzBDUUBnZJILOG4RCMR4kR9wD9FbAwDSFb18UQYAY9Httt8RQ6ztURXDGpGZ79IRahNnUXxuMVE+w6wRFcph0QWHvNE/HzFRExDj0TwUlFGrl5ZRfpNk0U2abRGApepRK7VmkUT8LFEcmAGRdKbV0W6C5hEuB7qRTwpq0Urpg1FoaT/RPqrvURpeRNHvW29RLyb00QWpJhGNmzpRX93M0W8eYNFqxj7RAdXKUVQ2rNEAjVaRRd920Qy/uZE4wL7RE49H0W8vfJFpP3IRAbSuESSYu5EJdwzRV4SaUkQleBEQIixRBYdQEVfTQ1JYWtbRe3RgEhu0jlH09ExRpxt7EQ/q3VG+Q3GRALw7kWrjZxETrERRRqIPUaB7yZFjXBPRbbsmUTT5cpE0nrGRI1QkkTlKsdEg5GBRXyRLUVLs8BEU34lRSPenETsWQlIcO/SRGpkh0e+5D1FtIIcR+BrE0UhALNENPbKRQuzK0aDy61EAzs3RSCcjkRqsq9EMdaXR9+gRkdcEYlEUAS4RTzmBkZBz1tFirTgRS9Jj0WPhY1ErgHAR+GsQ0eQuAJFM3T4RPWPN0ajgrFEifixRXP/JEhZIc5Em1OeR0iQvkTQgTNHAlYLRgb1mkR0KKZForWIRFbEIEVo3LhFg4KTRNMzzkRYUPJEIOmHRO4+k0RDbQtFG9+nRG2a5ET8wvZEXmWeRHg+ukX3XjdFAQKJREhxBEbivNRE8VyeRbP4ykSBwSRFv5mNRNmV/ETIPBNF4B3tRCQayUUq6DJFY4/YRArNIUVOB11F3oonR1cPqUZkRQhHdwxGRjh/l0YUcyVHtdGlRihnTEWxcTxGAqztRUh3l0UhQYZFVDftRJSBdEWY8VRFxbItRabi8kSzQstEerOVRObWuER9dkdF8HwIRV3/2kY3MIZGI53IRUcuHkVueSRH9yupRC56nEYhDFpG/ZjRRGtwMkXh1o5EmXzeRH+9mERFyK1EYNU8RjwE3EXwLqVFAAaiRN99LUWP0Q1GuP1mRR6iIEY9UaNFOFmpRVy8n0T0CK5EOkLbRDmMrkWXPCVF - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - BG0ZBm7BckBSfTECycFyQP6p9OqmwnJA7GBDjeHCckBHSsHQO8NyQHIJf2vFxHJAbldZygDIckCWceevV81yQODTKEFD0nJAqo0aKWHUckDuVF9ht+ByQFaRZFNM4XJAUkKHfFDickDES7UAj+JyQC/rZbi88XJARjPy+xHzckAMXdAetvNyQEAIUiGi9HJA3iKAfY4Bc0Ardvg00AJzQLx+SoT6A3NAqZ2aJrwSc0BS03TFAxRzQDDT3Xp4H3NApiw4F6Mgc0BIMcitOCFzQEh5IiJ7InNAFBU/JM8kc0An6ULOWDFzQMdKJx/PMnNAAeKXf3hBc0DwzlDMeURzQKj0f9aaUXNAGZnRKA5Tc0BG9Jflo1NzQOO+hr+GVHNARLvgaB1ic0CK41zbOmNzQOYWjZ8rbXNAymSUMGpyc0BXMMHyhHJzQNKQjelOc3NAanQLQEx1c0B6GP9H0HdzQHipVfHed3NAe6Z8XHiAc0DXe5H5pYBzQGrHDFcMgXNAx5lhD12Cc0D0Z2Vt/4JzQNrUOqCFkHNA8230ak2Sc0CS906bYpRzQOw7VCj3lHNATiB4Crmgc0COec22WqJzQKz76XgFpXNA9b7FX7Wzc0DWIJTrDLRzQBQkdiv3wHNAuVDcos/Cc0CiFUS6JMNzQPzevb3X0XNAh99JC+LUc0DpRIQ/OOFzQOzfLK484nNAhcIMAXnic0AwVDn4DeNzQA6hF4BK8nNA1UzIOzf0c0CUeXb6eAF0QLa+RZqkAXRAGDOdRFESdEAUt36sSxN0QLAsnO9SMHRANDeHMYUxdECaHNE1EzN0QHRylKrgN3RAiVrHJDw9dEA2u+aAO0N0QAV1pKQgS3RAxNIZTI5VdECfVxrB2ld0QAQYJiQhXXRAyiktd7hgdEAkXBHHCGJ0QDwquK56YnRAUtaif8RndECnUgpSHm10QGQQYfUicHRA5Wiu2MdwdEATkjU0QXF0QIDAX2UWcnRAWkDVwzlzdECtYxzM94B0QKxX05VNgXRAkRW71ieDdEDHWx5Su4N0QLZDtToWkHRAtkWyWe+fdECP30WNuKJ0QMehKw4Po3RAq6IsDAmwdEAkmAWXxLB0QD68MLtQsXRAYsfHu26ydEB/dQHRyLd0QC5HYCMjvXRAQtay0eLAdEAgVPngusJ0QCkWqlbf03RAicJGRczUdECC/UDDueF0QPaD+1TA8HRAjBzqYozzdEB46UWPpQB1QL5IbntdAnVAMsHTKGoSdUBIS9L8JBR1QGf69zdRInVAotXil50idUBqvcmX5SJ1QJiAC7rLNXVAWk2k9TdhdUDau3PBiHF1QH9E53R1cnVAZn2sro10dUD8ON5WeIF1QNgGoGmugXVAkjuCeqaDdUCMFx9inIR1QDcjbnM7k3VA5KcUo7mhdUDgwZA0+qJ1QNR5zYL5wXVA/0pwMBDhdUCW8qhZB+J1QA7qVAat43VAoteMq0vtdUCuMwKCpfJ1QLQQE2v/93VABuXEIkgCdkCQoGZKzgN2QNr7y/uIInZAFu8N5pAkdkDq4xEQSyt2QGIUTpQfMXZAck+m8CEzdkDhLagbUzN2QOOWsyUeQXZAPPDkKXtEdkCAlP/LylB2QLkvoMYQUXZAaT6STc1UdkA6lGyXHmF2QGEz5XznY3ZANtc9jdtkdkCUK9dRXKB2QFrq3v5OsHZAXBJ1osCydkBs94bgDbR2QMQKH2HPznZAWvY2sjHzdkCC+b4WkvN2QDZnBhYBEndAuqqTdg4id0Cgox5W6Cd3QDxNGHFCLXdAAJ2VI3ozd0AjjVsCpDN3QITY3ksNNXdAadvkcOc3d0AQqXAVnUF3QBFfi6CRQ3dAmppBM/5Dd0DcONEaG0V3QNaNL2dKUXdAcJdCQJJRd0DxA7SofF93QKrB/L+QYXdAcncBCpljd0Cnj/BFJ293QE4PD+2EcXdAe4fGMZ5yd0A0I+sv+Hd3QO1kaQyVe3dAnju7oXaCd0BSKVSGmYN3QEpmzNRLlHdAMOS+PJm0d0DfbnYyi9J3QM0OEGDr8HdAGu/7aU7yd0D0U/XcRf13QKRiOnXU/XdAdcliup8CeECkUwYh5wd4QLwNM5D8B3hAoPSjTMYIeECAmdw2IQ54QPayqFisEnhAwFNGSnkTeEBwkuDtbSJ4QOzdoalBKHhAnY8C9ZoteEBVor5ATzJ4QGcCaMAQRHhA0sWxUnpFeEA8GIgyylF4QFI4GquTUnhAwlauAodVeEBwNMM++2B4QJxAzwG4YXhAhuM8luZveEB0/lvyi3R4QIVZoe/FeHhAFD529vd7eEDQLXvQHn54QDWxM1OjgXhA/sr2uC2CeEAk36AomoR4QHSMHpKJh3hAzfNCck+IeEAQkunSqI14QI3UOwyXkXhAXCoYomGSeEAic/HtBJN4QHjdjMqnlHhAi+NWjniyeEA6fZtbN7t4QAqHkT0/w3hAAtl6eEbLeEBc//dLt9R4QJ+JmguU23hAgjcGNi/ieEBY95zQi+d4QG66tdkC9HhAIjMDB431eEBUl0H3DgR5QColPlqyKHlA3D4yswsueUAGFb3XZjN5QPv1oCH5QnlA6/Hhd/pDeUBUsulry1R5QDgIJnzqYHlArAPJxluTeUALIO3IYpt5QON5AGpno3lAE5aJc8GyeUDi79iKQtR5QGLVOVFO5HlAFlXisRD0eUAzy2Wr9wt6QHKRGG4rM3pA/iPinQw1ekBRk3pzLjd6QAZxKpIaRXpAHEDbYiJcekC8jSXGhmB6QFwIWtrGY3pAfJIciCpkekDK0puoLWx6QHBCsYPGgHpAgXv1FB6jekAEBxkLd6N6QAR/8agkq3pAngYUpH6rekDAUW80FbN6QBw/dU36s3pAeNTJFQ22ekCa6WCkQsx6QFaWG/lI1HpANbJR9kjiekAyTl58Ne56QHN6F3iPA3tAj2KjFXwEe0Cg4qFXzBN7QPxZKkaKFHtAte1j1EwVe0BG1vYNXCV7QHB06rViPHtAiIoVemlEe0DmtzbZcUx7QKbLVHINXHtADtMETBVke0CgDU+ZI5V7QOIX2d/OnXtAkPfj8Seje0AltMmBeMZ7QLqtYaAm5HtATgwB84v1e0B4HGdVKPt7QOAJ+x6UAXxA+GGu3NkBfEA6u/0e9QF8QDDVwrVmBHxAjJq9/5gFfEBDdQVJ0RF8QCExPHDNQXxAaGiEG1JIfEBkrKS5rE18QJXu+bPlUnxADmgLYWl7fEAbCRemb4N8QJgeyHFei3xAwUP4cXiLfEBpXFm6w418QB6vfmsck3xAljMoRWWTfEB0YZovWZl8QH75GNOwnnxAQRIUGwukfEBWjipBe7R8QHhhs2n223xAXhorxlfifEC+SKuCD+N8QJu5V09s6HxASDyXUhbyfECyz3MAVPJ8QOrzCU5w8nxAbw6U+wACfUDwY5tNSwJ9QKXgK1BHEn1AfAsDzLAbfUCg1KvHtSN9QFaRTSv/a31AUY1XKedzfUB8gfXqeXR9QDKSAwqAfH1ATIhmeJaNfUBva8mT75J9QCHXFPs9mH1ApvdolvObfUAfwUKN/aN9QLCjjeotw31Aut2HRebEfUDo+YatNAB+QAKoESc4H35AKBh7JiIsfkBG5tWgKDR+QKYSPzExPH5AyNWnYjZEfkB+uZreo0R+QJT2GsyLVX5AuuMAPxFkfkCixQOHoYN+QCJ7XljRxH5AwIcmpXLIfkAqptwqzc1+QBpH9x7f1H5AVvceev7efkCleZcQlAN/QDhIIO6iE39AiZsA/oxYf0AC2urk411/QJQ+xy5AY39AY1ZEsbdxf0CKjxvHYpF/QCBsNExfoX9AIodJdkKjf0A0/Rg5faR/QPcioRcRpX9AZK/ZgZ2of0CMA8eNV7F/QFbr+tiOtH9Ag9lGLc3Lf0DKGKEz1NN/QALiQmmHAYBAZBeaazUEgECgdqXEhgmAQMJl0bORHYBA2HB5J+MmgEB9ev/4qEKAQDiyuczwSIBAysp45udQgEB+QF+tE1GAQND2gr8lUYBAx27HFQ5ZgEDKLG5V6WWAQAipaYrqaYBAwKykufBtgEDyixpWKm+AQFgXaen1cYBAEPGq/Cd/gEBjNgcn24GAQJuljiVRioBAVqeyuh2PgEBmR9diN5qAQBuxRpt+pYBAz4uZXPSmgEAyNG0KhqmAQEZVwyUTr4BAZNjB2QW6gECWQVI3m7qAQNZH5PWzvIBA9HU+Nnu9gEBS6ZHJYL+AQCYBPJlSwYBAJrvtr67HgEDIoOZNU8mAQIdMo21M0YBA9//wkUrZgEDQ5psLwN6AQIrXyrFE4YBAdvYMBmzhgEBR6ZxCF+SAQFaJLFP26IBA4FRGB0vvgEAaTWyPPPOAQCAVTVRo+oBA6JClrj//gEB4fBGqPgeBQKlR/hw+D4FAtlDruDQfgUD7YzWENCeBQH4b/DwpP4FAA5JgsZVCgUAsqaSJW0eBQMZxuDYISoFAv2lq07RMgUBwjlrgYU+BQK6G9ucWUoFAPhhy43B3gUCcsBAzYX+BQEzeMdzqiYFA1b7j8+2NgUAgp5Q/Vo+BQHb+JGPykYFAUgZC2eiVgUBG8Qv2oZyBQAKOwGDmoYFAepLfa2uogUBbSJFoSq+BQIoc3u5Mt4FAAtwlKc7RgUBcyI4p+dGBQOXfO30b0oFA/Iq6EeLVgUDIe3eK+9WBQJFHUZz62YFA3LXfdvvdgUDcph6b++GBQAHSet/85YFArTumtev5gUDiZ4vo7/2BQHLiegXnAYJAkXJoRugFgkD33rHj1xiCQMLU4EHWIIJA1mQiltEogkDXYMp61FqCQK02UFFWXIJAZFmNO2xcgkAMj2XQOV2CQPrSSAeOXYJAxt4PRAtegkAUkAJJlGGCQNOMIoIzYoJAFA4zyshigkDJvRAhOGaCQKEiyuVHaYJAkJ6bIKtpgkCYG9WhanSCQOBUmN9CiYJAdmu6Ud+KgkBWlEIpQ5GCQO4M2eitlYJAiUwYKzyZgkCcJC15r5mCQOoy9WAOoYJAryLGCjuhgkCU4XOfM6mCQAaSz4y9woJAtu5rduzFgkCEpcxb78mCQERdcyXzzYJA4AcbFerRgkD8C/fmftqCQBMQ6X+C3oJAVvvrhYTigkBs9USEqueCQLzZEAfhAYNAJFALJeQFg0Dmz9InMgeDQOIk/YfcCYNAfY6z+GUKg0C6JWHfAAyDQM25fJzeDYNAcXZhVXkRg0D+MDtjeRmDQD9fA6tyIYNAwri/bHEpg0C/t8v2aTGDQEo1gkbbQYNAhXUwbLpCg0DGs+pm4UWDQFZgz0QgxYNAcgHViMzHg0DqX4IVy9yDQMBicOUREoRAAsN255lXhEAeN11V22WEQMizUPn+aIRAHzDNkv5whEDcuRu4yXeEQCk9pcd4eoRADQJwIhJ9hEAmvGEGv3+EQBr3OIIehYRAy5MyLMqHhEB7tSzacaKEQOA5tOoepYRAXTtkisynhEAsPZC7GM2EQD6/t2jGz4RATsQW7XTShEAdcPv5admEQJx+veBp4YRAhuCJttHnhEC2qR8HYumEQBZPDz0s6oRAOT5bN37qhEAH0GjXIuuEQAT/ikgq7YRAHKT9tr/thEA9s2AWL+6EQO3OIJDW74RAH12MIjXxhEBcLA/sZPGEQDC5uybB8YRAMg5bQyjyhEDOZQXcOfaEQLkb+zc4+YRAGH2ZjC0BhUA0wHOaVRKFQGcEYSQMFoVAFVL3tuNNhUDrP+aV5lGFQIYOGkvoVYVA7utxaulZhUAm9QJeoGGFQM0i+ESgaYVAiJxjAZlxhUBQwXyKmXmFQBRWVjge3oVA6CEnBVqihkBs00sRJ7mGQNVCqBqRKYdANrKvr48xh0D6n3yhiDmHQG5v5ZuGQYdAwjzDw3SCh0DrXXNEfIqHQF7CfiLHsYdA0l+w6ca5h0AgKozIwMGHQGRILIrWIYhAIbtZAtoliEBwBQ1+RH6IQIejEAVHgohAgRrwikaGiEA= + KBZXds7jZUDiYBUjzERuQNeRyQ6NInNAcQ5nZb4zdkAynhNaUHN5QOWzJ1WuNH5ArK+taP/BgECGujdmriKDQBDdd4WL2oNAnwXWereihUAam9uhBSuHQAMzoJdDu4hAfsilvpFDikAuXSKaj/OKQA3xA7S9C4xAvYWAj7u7jEA4G4a2CUSOQCGzSqxH1I9ATiSo6UqukECVOFfkYJKRQNpJ93NP7pFAR0+88qYek0AkOskRe/KTQJE/jpDSIpVAgWO5DbfylUCowmBjA7eWQAF7sCINt5dAWURI2CzDmECBkqc3Y3uZQA== - + - YszkRdCm/EVjdzpGV6T8RI57vEVI+MxEzLT2RUG6qETSbxlH9KjyRPGaDkU7WcZEKaN4ReYvnUUuyn1Fp5HLRIUjAEVPAB9F7FsJRWqrPUWidQBHXr/iRZ+lbEU8yhlFunUCRb54zUaxSNdE1yAqRemB4kQxs+lEeyqJRaqhxEXJWRRF2h3gRCagl0W45ddEy94HRR7v4kTvlmtHfdD7RXc8wEaVa6ZFI3chRXLfCkUK8oVFD7PBRtQGEUWPMRFFSNKVRVLpCkUBpRZFc/cwR+vKykRGBGZGnTjwRbVI4kVe00tFcX1qRXB4ZEXvff1Ew4+jRS1xF0X9qXNFD6S6RRHb8EXlLsdH+UPhRB0W9kSGihpGJWgZRcmsNEYt0flEAez4RP6iXUW1vONEMeoNRqNaxER7XR5F8uUvRQDegkU3trpEnnHWREqDC0VVPEJHjxWdRZqFRkdIeIBGzbuQRVd9+0Rsk5ZFbwTCRDpVHEc1TnRFI6lTRbdsIUWtkb9FfF8cRaJdI0bg3KFFopEdRtj/xESjRAtFAQqlRE++CEV3IhNFXcUFR+gCQ0Z/iudEuvMWRaHFA0VMY+xECCTjRNKKCEViuPZEVTmLRXpD3EQaeR9G5UTBRGqQPEU+lytFaH4cRnwL2kVQTXFFgYYeRQqUYUUJeClFyUZVRo92D0WEomBF0G/GRXzw5URJ9AdFIqoMRZP4zETqrMxEYUL9RGZv/kSXvNNEyDSnRo8GP0YvKXRF7kEDRuje4ETsE3FFn1m/RUuK80XkYbxGE5gIRWN5M0Wl4aJF9dhNRehFDEWXgoJFb2KIRu7120Tel91EOx0dRf4QGEWRtP1EaiHpRIobkkWtV5lFfny2RZvJvUTpAItGrdJoRWE8lEa1fM5FFLvWRHvTLEXMQvFHPT7qRJm2sUZ2G75FEbv4RLwk2kZBXpdFnFR7RrE3g0UuEjdFnhcERSJlikXwKcZEPFKURek4dUXyfj5FZokARWFABkXr0shEwHD+RE2HkUWxGcpEzHcCRT1nG0fi0/VEZsvRRg36UkXgCLJF6PbcRC0S3UT4KbREONyxRJP3HEXBMwRFMV7JROC6ikXkZcNFrz1LRs7cqkXxrO9EIiIiRdmdMEUXJ3VFsYbPRIbNQklphZFF0qjwRLHKEUXZOD9FryBpRZziSEhSEfJE1TAZR+2f2EYApYZFvJoDRRUCtkWZC5RGmXLIRA+BoUajs89FKorwRCpgnUWC34VFiIcoRSmP70RAJIBFRcG/RX4GuETQbrJGXodmRpEaMEUJ9rlEQGwpRaBha0Wtz7ZEnb0+R5Z2gUZDfk9F1kMpRWR3xkUWvwBFowmARc4reUUlRfJEH+uzR/nRK0UqeK1G45QkR/zdKEWfEtBEr38pRptCF0XTaCxFOPjSRlDwp0bqEPpFdNbbRameXUXmkslERRPKRQCW80VwxE9FvAXMROR0M0X46mdFMfCoRpmmzET6bDtFU2EjRphmF0WbwV5HgSfARqedQEUmRclFDqxfRa3OoEXUXy9FK588RRLE6kQ+/ZpFV2GTRlVlF0XEWMhEfyFcRv63B0WV3+ZFnBCMRQrekUXYSb5Fkw8ZRkenmEVuWNxEd7qTR2YC00ZvuNBFxpeRRZRN5kWx7ZRFQ544RRKPzUW4mnVFVEirRAjzF0WoJ2RFu63QRzUtUkWX0RtFgwsrRSlzwUYhSJhFfgI5RZJ6pEYYniJFRcLSRQt6XkXHZO1EwPfWRKYKI0a2SqhFH4+YRTYaKkWEwkJFQD60RVDdIUXtnQVFcxboReq2yEUbJutEZNAlR0gygkY1H31Fa7zcRIP8REXzUvhE8qj3RBui2UX0SAxGylOvRfIGS0UCkOFEjzkGRVT4d0W3OQxFtjboRK9cJ0WcKetEivPPRfKZQEZXcm9FoNBwRUH4QUaYSFtFY58DRclyFEWtfCRFYI9GRqgvlUX1qCRFPWHhRF2n5ESf6+5Ej8JFRXAVPkWO5yhF7FFLRWnthUa6YkJFhqS1RWs/0UR3qzRFCuKyRamm60QgM/5EhdjURNLi6URToslEk7YDRhg72EQCVxZFWFZMRSY0CEWUOotFagG1RU51w0Q4MPVEdyIURdU480RxGndIEMENRSVZ6kclx4NHAPKGRrTyjUXky1FFtFMqRa9v40S0yQpFg5gVRWaNykSygkVFSONNRs8hiEXMp1pF/4bHRittg0UgzaZFOFK/RONz8kVpM5pF+MYHRYFN2ERSJnNFARzdRA8M40QbbCpIe7y1R6VL2kUbN5hGlaq9Ra7y80Teiv9EVTfdRPncD0Y1U91EKAaQRReCskmUD8tFQVXGRYCTVkny1cVIJ+zTR8MoW0byxj1FtRGHRr7R/0WNGSBF7uHNRHEELkYIjmZFsU8vRaJGKkWekPVEd9P2RDYzBkWumUNFMOHhRImKMEXbwMdFu1S7RG0WfkVXbwdFaL/JRD9r5kR5lhFILhAERRP0fke3WUFF+sYVRybTT0VzGMpFxp5JRq+6UEXKcdRETHbFR4JuaEceujlG5BhVRcE6OkZmT+tF8xsfRfTK3USkiQJITf+OR25FPUWw14ZGXth9RaEb2kTvlAlG5bsJSAZ2dkeQshNHr1AnRskcTEUmO71EYFzDRSs20ESmWcxEraE6Rcd6+ETfL79EnkDkRP3jxEQ9asRF5Xr8RIHn1UVyCdZFWaY2RbAJB0W3HwtFLcnfRGJvjEXFGtJFCstERZ25R0Uw0DxFvHn7ROJ9MUdp4qRGgcRbRs1JS0bLyP1G7TGURiPHwES41B1GXrdxRQyCjUalGUJF7BWURRUgj0V8vt1EjgvBRWkY2kTIOBlFiaL2RIwo1USixxtFINb/RmPopkZ9LZJFOvhhRbHzDEcCGJNGqbAYRlK0cEVmgghFliHeRDF9zkQwiSpGy5T5RWyud0UZCPlE1G05RuxtVEULdAZG7mWsRddAKEW9Mm1FZHKFRcUVnEWCwmBFGqbgRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - CLp3F2/BckBuYOQpyMFyQBcXW5amwnJAHHX3GOTCckDO3b6JPMNyQLAhenIByHJAABgRRkPSckDsOR5fzt9yQHqskkpQ4nJACxudhpDickCisfIHyfFyQEipvVW283JAgL4K3KL0ckBt4yH2YwBzQJRIVnTOAnNAA3jnpfoDc0CmE7uXvBJzQNs30b35E3NAOO87Inkfc0BGPZglOSFzQMX82HMQI3NAr28Mt84kc0DCJJIPDTNzQNpsRwS4P3NARqsp1HlBc0BY2+A6ekRzQPokW0ScUXNAbOLC1KJTc0CEyV86hVRzQLTskQEeYnNAhK9SDTxjc0C2KcuIK21zQH4wHCVscnNA1OKl6oVyc0C+kBqnT3NzQKi9Lm63dHNASHKit011c0AgQ8Idz3dzQPHm9RTfd3NAKCAGaDV9c0CGw0fCeIBzQADxLk4PgXNABOLjF16Cc0Dp7FrmhpBzQMGvKAZNknNA7HNjMfeUc0DqyEyDuKBzQG+eyxZaonNAHKaZIgWlc0C1gVVOtrNzQDCqah8NtHNAkSa8JfnAc0BTHm6Gz8JzQMZL3V0mw3NAyh2FC9fRc0A9+02Y4dRzQLYJBG844XNAThGH4Tzic0CAvbF0EONzQHEIpiJK8nNA5Ljzr3gBdECoyOoeTRN0QHMQcIm4IXRANJ70+IQxdEDTudHWO0N0QLwxfCOLVXRA/GtF2ttXdEBMY0b3IF10QNSa29q4YHRA9W3I1AhidECa0TtIemJ0QOuqGZxOZHRA0NN+ksRndEB8fuM31Gd0QHiw2BQjcHRA+WIB70BxdEBAY6nwFXJ0QLaakp9NgXRAj39Gx0iCdEBhmk8lJYN0QMib9Pi6g3RAIi9egxaQdEADcv7rx5N0QC6xopfvn3RAQLYlIc+gdEDemHjTDqN0QBwYGt8KsHRAqi//wcKwdEAOFMYaTrF0QCRXQ5pvsnRAlpqJrPqydEA0BwE+ybd0QAROy28jvXRAitZkRePAdEDM53rrtsR0QFAlrWW34XRASBSf5IzzdEDmgiilXAJ1QCqtxPsiFHVAIOUBL1AidUAqrJ1xnSJ1QFhXN/LlInVAlpD1hcw1dUD8iC+3CmB1QLoCMPE4YXVAwA1E3IdxdUCcMKnHdnJ1QCCwXWeNdHVAhio193eBdUDCa31xrYF1QE/qft+lg3VA7B8Hf5qEdUDms/PqOpN1QFxaHK34wXVAGBvJPM3TdUCOcvlBEOF1QESdRukH4nVAbtWpfUztdUDmL5iWpvJ1QBwWpm1HAnZARlkYV4gidkAbOdOIjyR2QC6u52xKK3ZAbM0ooh8xdkB4V3MFH0F2QIxewux5RHZATnj33hBRdkCC8rNgzVR2QL4JQ47aZHZA7uDobcGydkBmDZNnDLR2QMSUua3OznZAawaZzDHzdkAXDaFDkfN2QHBFVHABEndAKDWU8Q4id0C5mjEQ6Cd3QPLqiL9CLXdAGqNXT4wyd0COmr3MejN3QOPBpR2lM3dADPSYFQ01d0C4e3ZhnUF3QII73TmQQ3dAksy9ORtFd0Cuu2VVSlF3QM4b3S+SUXdAkN/KGitVd0AiomFUfF93QOJBTJ2QYXdAZDRICpxjd0Aa5JhJn2t3QJSaeKkob3dA0GfZHp9yd0Csj1Rd+Xd3QHl4x2yUe3dAvXgeG3Pid0C86Dmptud3QKQEFXdS8ndAst7+aUb9d0BwD7S+nwJ4QJarmJT7B3hAk4fObm0ieEDyuO/BQyh4QOYKgIJQMnhAeg9kqKg3eEB9ckXwEUR4QOViE196RXhAIjwW18pReECU8ZWtZ1J4QP6rCeyIVXhA7jjZcvlgeEBPCMcft2F4QBoUeFvpb3hAfE/6m4t0eEBUvVPjxXh4QPC4aDmlgXhA3tAo0i2CeEAovS7vmYR4QMRXMMx9h3hAHc/Clk+IeEDUxiOi2Yx4QD5y8DiojXhA8K/OmpaReEDxfePSZJJ4QLBercAFk3hALrFx+qeUeEBWmXDmN7t4QOGN9Ok+w3hAzM94qS/ieEBT4On+AvR4QJrBbmeM9XhAYpIj/w4EeUC6dpa5sih5QGfT80oMLnlAIPYqxGUzeUDIQNzuy1R5QCKsl6pbk3lA4Ly2s2ObeUBeGUT6UaN5QEDlvEVqo3lA+2Om08CyeUCMWQrbQdR5QB0ZLgbM1XlAvlOMGRL0eUDWX7vX+gV6QGA28qD4C3pARlZoHmQjekD+ju5IKTN6QBphbFgMNXpA9LHrYhpFekC6zaGOJ1V6QJv2b6chXHpApuZUqChkekAwbrYWHqN6QPqRgot2o3pAvjlojySrekBk/o2hfqt6QJItRY4NtnpAVDDi5UDMekBUr7NjSdR6QJ3y+jl8BHtAo+hKxMcTe0D2pWckiRR7QOR81KZMFXtAyCZg11kle0C/RgwDYjx7QDwLN3pqRHtAhGDFSnBMe0DTBEK9DVx7QNC6s/olo3tAssIgVSfke0AsGvtAjPV7QCQJfu8o+3tAUOPkKtkBfEBUQJp2ZgR8QJIsmQ6ZBXxAoFImg9ERfEAsCOC/zkF8QG4CqLtSSHxAUtTanKlNfEBZhACAaXt8QJig5Kxwg3xAiNVFE16LfEAGOezNeot8QJ7y0RXEjXxA8CGbiRyTfEC3KNBKaZV8QIQabwBlmHxAolwLWlmZfEAgheM3tJ58QICewob023xAxvwQ2VfifEAFEe29D+N8QFGJZpMV8nxAFNasoFPyfEBUq7PdcfJ8QJ7VDG0AAn1AIU/SWEsCfUAOJ8OhQxJ9QKq+h+euG31ALP3AHj0ifUDu8evvlCN9QKVxZk/+a31Aov7xgehzfUBVKsNieXR9QBoV3hiBfH1AXEmzxpWNfUDWABti8JJ9QC5jk3v3k31A1jvPwvSbfUDcbW6m+qN9QMio0JzlxH1AXpZhj5H1fUBsuPtONAB+QF62kgQiLH5ApUGHyyo0fkAkaN7DKjx+QBZP7uWlRH5AnyRDXp6DfkDauxCVo4t+QMLHe6DSxH5AEUsHqnLIfkAsqepzzM1+QIRWHgmVA39ArLehEKYTf0C9QzxtrBt/QN90C0qMWH9Abtb3weRdf0DwbcYUuXF/QGraNtFikX9ART3OjF+hf0DIz5qNQqN/QNJkta99pH9A3V7a6RKlf0BTyyQBV7F/QImcs9/My39AEC7sfdbTf0BWdUgXiAGAQGTo0ojjJoBAGj6sk+ZQgED+DM92FFGAQCHhNMkNWYBAdF9wxIdZgEAog0LO8W2AQMYeCooqb4BAmU0kIh+PgEBEqmLsHJeAQASKgDKHqYBAhqawuBOvgEB81RO1BrqAQJgYkk+1vIBA1k8DBl+/gED2nrKoUsGAQIa7FHlTyYBA5Q6Ov0zRgEDHy5yZStmAQNACkaG/3oBApq9B+kPhgECrPaSIP/+AQAAE5IZBB4FA0Ijgpj0PgUB+tCtZNR+BQIHVA3k2J4FAIFN6OCk/gUA1Y2EKXEeBQHh8hTcISoFAdbO+8rNMgUAawVCMFlKBQGaEg8vqiYFArbvAM+2NgUBUS4BVVo+BQK7fvo/tkYFAhM4ZLuWVgUAkkwuk9pWBQJRxspTrmYFAVAbxTJycgUBvk6L5bKiBQEkCeWpKr4FAcB/q8Eu3gUD0Y4rJb9GBQOJ5BOjG0YFAEO75e9nRgUDYe3kL+dGBQNX6Woj71YFAje5Rr/rZgUAMJkUP+92BQM7xi6j54YFAMIpTGPnlgUCWthu/6/mBQHpXwG/v/YFAu75sxdcYgkCboMUz1yCCQDgA0YDRKIJAWAfkzsQ5gkAmrPZSjl2CQDpuaP6TYYJAl+pLEzNigkBKoF6aNWaCQFeJOLQ4aYJAQpCf60KJgkBSMuB3QpGCQHTWuHetlYJAx+w4kzuZgkA1ykrEDqGCQBD6vqM4oYJA9QweAwupgkAWO5VCCLGCQNhWS4K4woJAVB7hSOzFgkDA+md078mCQLIe8urkzYJAfOOhPPbNgkDYI3GF59GCQAp1vI360YJABofnJPDVgkCQpSWkfdqCQAMb/DWC3oJAcIwlR+EBg0DkCZMc5AWDQCqqBeLcCYNAAEfstt4Ng0ACSTYeeRGDQJISbnZ5GYNAeHvyUnIhg0CUqQ44cSmDQC1ZlyNrMYNAGe8uCR/Fg0Cnkp1+y8eDQDbu9kt234NAusdwRf9ohEBGCb1yAHGEQJm+BGLJd4RA1cHjx/h4hEADhQ9ZeXqEQGUypqURfYRAWDmEN3KChECUGCZLcaKEQKTr9CodpYRAxlYfTMunhEDEAqT3F82EQDBNC+XFz4RAdAiUP2rZhEA3Mv4HauGEQKh5A8vQ54RAnDiuy2HphEADK0BYLOqEQDAh8Sl+6oRAPtZhtSXrhEDT5UoAwO2EQKo5D3Uv7oRA/u/tdNnvhEBV8qUONvGEQGZmaiJj8YRAyH+bhCXyhECYJfUHLfaEQMuSoJA3+YRAyCfBBQwWhUAiYWyy402FQLo2jpXnUYVAdGC9retVhUCMAXYFoGGFQCCRSwygaYVAU89nhalwhUBVgsy5mHGFQKT9l46aeYVAPLP4f5KBhUAzoylakSmHQDh8aQCQMYdATiRakog5h0CwSzRoW0GHQCsP+sWKQYdA3LsN73SCh0Dur7zoxrGHQFoU8gzGuYdA+v1mUr7Bh0BocXvMw8mHQC5A6r7XIYhAcE9EE0R+iECEpiV0R4KIQFcpIQJKhohAXMGMzEeKiEA= + NrgMGZxjYkDiYBUjzERuQBu6YmAmQ3BA - + - oB8bRoy24UWwUShGViUXRRfVV0WCSlRFRe76RlpZ/0S/FZNFzFRRRYTmpEUey99EucLVRMk32URuxi9FTv1ARwySgEatqYFFTAkORTFI20ZIhQBFRFTdRS821ETmbQBFdeiBRSfVKkatdF5FApqPRdMN70QFH8xEgskNRQ8aWkfbetpFzHy2RgTPKEXpEABFSAYQRTwcKkVkhEtFK7/PRGK7wUYga9tEqWiiRbxODkXGC3FH05FvRqKMBUZjxAlGYmsLRVQYlkWvKmtF1vjNRHHjrEV7/gNFxMcwRZYfnUWnfABGOt5YRwKMFEXAtZJF6SJwRjackkXJYSBFTvx6RWB6y0UxRCtF4bQ1RSJLI0eCGHJFUmwxR24jWkaabOFEQ1sVRfLbikVPLcRFVCZER/PJaUVBntxFqPLsRPG4X0X1a+9FA8+5RVfcBUVrZcNFjKj2RAjLOUXL7wJFHnAHRa1+y0QnhQhHeyz+REhtBUamSwpFswUCRfa180SeIg9FaVnnRYw+DUYJBQ1FT4oWRX+QukVkDJFFyls+RT6G/ERmiA5FcWD0RKaNUEV0YBZGJlANRXGUBUZncm9FXh0NRYsJC0UVVgVFle/bRFY7A0WktvJECJGCRt+X9UXo8/dFKWeMRf9OKkZpn49Flxi7RnFTfUXscYdFIydVRQt6J0YRUANFxyNCRRdF2EXLRxRFTmmSRX0MHkWs6atGUYFGRZu0NUbUFqVFDHAQRW3d8kQxOiFF7uIESDzynkZeQKVF5FLXRs3plEV+0khGpMUvRbs2gUVeh/dE22mKRTaY1ERZZyNFKXCaRbsnREW8dz9F/HcWRdSxlkXjAd9ERYgwR58Rtkaq0MZFNoeQRQDHHUUwVhZG1aeDRQhcrkWyzYFG94uMRUMzGUV2k0JFxJBbRWJdfUWFBgNFun1pSfGkH0XkjSBFEn/dRYGQdEj8x6VFhMATR2k9MkVbhnJGtLFqRSFmTUUfX4NFr6CwRvPhOUaCK2NFthgPRdAYn0WUduVFNPnURPz7gUYqBjVGkRuNRTFm00UG5E9HB3WERqDN+UQtb0lFKy9mRYD340VwUOZEQ4gsRZsG+kTMcPtETVZqRhOGV0W7JvpHxdL8Rm5qP0V6fu9GL5ssRrwjiUaRFmNGmF6rRYcnrEWBEetFqoK5RUodHkVtcIBGEE4FRU3QSEXsBERGfP5mRSHvPkdwqnlGuw+JRUBnrEXthBRF2aLaRRfPwUbptyFF/FE3Rsp9xkWaFclFS3F/RfRKx0XXPMtFwOeIRdX8UkdqbZJG6ABcRRRKL0VlPgpGyN+URRQjQ0Wm6jhF1MiMRb8s5kSbVhdF6p4ESED0NkUww+VEUvDTRoKXnkUg3g5F4pDIRm2ogEXld6dFcNQTRQQrBkUSkgVFBdbsRHqJg0be0xFGxctURchUAkU3CXBFl/PHRRlp50RUjPVFy5veRIlw9kW5RKRG97kURoT7MkXc+kJFQvO+RR0OGUWHxANG44WFRcUXg0UbsUdFbAMIRqfkeEUzkm1FBQACReZPcUW4uiJG3FZvRZaLH0XayhpG4esDRYRR30SZRetFp1EZRfg8P0WGpe5EE4hfRTy0h0aFlIpFqtMTRROLh0WKJxpFnsbgRaWjA0U32htF9IY2RZ0mbEVkI4dFC8b8RHjmj0gQauNHMjCPR8HKVEaqygVF0jDGRdPCKkZ1Tj1FjsyIRXFulUabTqpFFTQ/Rfwa4EVz2ulFLs+fRYmEDkUEzQlJ3OWhSN+yt0X0rdRHeCIiRkGMa0bbrJ9FaLP5RHR7+EQIMKpFg2fwRN2N70Rlra9FPjyaRaEBt0l2sFhJy07bSF582UesrB9GVLM2RZmcLkY9hdpFvNJBRg1oRkXJnBpFK+4sRW+bMkZhRQJGJX6YRRb7FUUJcipFoIbZR4MCJEfcE/BEIJi2RogryEUdPLJFs6QZRZbQOkUmDytFS1+4RzpYT0ejX/JFH9sSRowfgkVjOSVFhMFKRcey80UhMSRFDQ3vR0RXg0fgnpxGuZ4SRrLAA0huhk1HVOMBR9eKFEZCID1FR5A7RZvVX0VbzQFFHQ7ERdfGE0WT5+tFsY03RVk8oEX2eUdFL8IFRbaIjUUKfLFFMOsmRbFhGUUBVlRFk6wUR3LCaEaxMZVF3mEmRg2rn0asfodFokM5RbhEM0XtB0NGWcwaRWYnhEUiw4dFb2hORbTqD0W7fB9F23I+RQs5t0bkrZpGAjJ2RVO2I0e8rm5GoccIRd8eI0b3y0dFpgEPRZOlHUbNHNZFNyxKRf41AkXfxNhEigzRRVJbNkZ49JJFiZwiRQt+DEU4lARF/5a2RloVW0YliplFLvgYRQ== + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - BJ0e/m7BckBLQ5SCycFyQOi3FTqnwnJAuTl/NTvDckColgj4V8VyQNNhSHkByHJA/PZPeUPSckB/SKWqz99yQOR6n2FN4nJAN3dQTJLickCen2tnyfFyQLkGXXfPAnNAWvqYiPoDc0Ax629ACxJzQBW1jUy9EnNAWrwTAvsTc0CzvUDBeB9zQHaE256jIHNADjyyqzghc0CwH9moySJzQN+Fl9rOJHNA7ZfoPM0yc0Ds5hiwuj9zQJSsn2l5QXNA4MSlonpEc0C/5WGTmlFzQPyTwCQOU3NA10chr6RTc0CiTYDBjGBzQKXIbZUrbXNAdL2s71Fyc0BSL8Nra3JzQKY3N/yEcnNAD+1uBEx1c0AW3hQi4XdzQEQvHKp4gHNAoDo6FaWAc0DsVNOpXoJzQPOaa8n+gnNAqCIBEoeQc0CKABEfTZJzQDECCf/3lHNAGAkfwLegc0CSMwu5WqJzQKjqXK4EpXNA2uPgLLizc0Cimt3vDLRzQODOY0HPwnNADvKqeNfRc0BC8n7w9dNzQEb6tzjj1HNAAN919zjhc0DWdQrYPOJzQKYXK+pJ8nNA/b3/o3gBdED+S8SSTBN0QOaU6Ty4IXRAAs2gPIgxdEDKYcTOEzN0QEpdsoU6Q3RAGt4uXo1VdEDTeBglIV10QHHJuPW3YHRA1vGb4QhidED+X8FaemJ0QGJWhL17Y3RAamxNNdRndEDKnGz3Hm10QJoc2q8icHRAakk680BxdECR6F+5FXJ0QK1IdLw6c3RA5MLZijZ1dEDq9La++IB0QJ4MyadPgXRAhkwt+iWDdEC8JfeMuoN0QKDwk/gWkHRAonseEe+fdEAy/GLuz6B0QCYL8mQQo3RAPtYKrMOwdEDCgvamb7J0QBQfx3v8snRAzj52Lsi3dEABW3tDFL10QK6H2Vuq0nRA15th0bfhdEA+1SoajfN0QFQghSldAnVAk9a686cDdUBo+LUEIxR1QNnOo1edInVArYfW2OUidUCNm53EzDV1QKTrcCN3VXVAvjxIrAxgdUD6IL6BOWF1QCJBNFt1cnVAEYlaZI10dUA7NOFbrYF1QCYwuWKng3VAVAxkNJyEdUAUfuOw98F1QKTl3vPl33VAXsCiO0ztdUBY6uR4pfJ1QATpju7+93VAzd0lxUcCdkBsfj940gN2QM/xt+qGInZAhCCx1I8kdkA2io8kISt2QDKWptRKK3ZAd3dIMR8xdkDieGHmJTN2QD4t630dQXZAFQyOQXpEdkDM1/7VE1F2QAzNhCHNVHZAhnP51NtkdkAOTd3CVWh2QPzeYiORg3ZAYEaOusGydkCiyn7wDLR2QMW1uZvOznZACZnWIDPzdkCASHk1kPN2QChr77oBEndAZFDshQ4id0DssD0P6Cd3QDHRf99BLXdA6nA8KKczd0A6X5EdDTV3QFm93PacQXdAsuU1+5BDd0BYyl2VGkV3QGqOIFJKUXdA69amNZJRd0D2JW/Fn1N3QHLf3bd7X3dAJdaPTY9hd0ALoh5XhWN3QKZbnfmYY3dAAj3Y2iZvd0CWt6YxoHJ3QGRRGM34d3dAck3DnpJ7d0AYeAikdoJ3QCjQ+J0X3XdAPEX16XDid0BX0hjBtOd3QMMyYMEM7XdA3Lc/vlLyd0AW7sMaRv13QDzcki+gAnhArormEOcHeECUoJtT/Ad4QAzkO8NvInhAmiKzMlAyeECVd4T4qDd4QCpQIQ0FPXhAiF4vhA1CeECcWAT+EER4QMb9En16RXhAdgTYvslReEAvWiLXZFJ4QM79kSaVUnhAApFp+YdVeEAMLZCp/GB4QI7KTWi3YXhAMelZZmR0eEAhUnxoi3R4QGDwkV/IeHhAbLXvWSF+eECGe8d3pIF4QDLdbXEXgnhAofJk3i+CeEBK9GKvmYR4QHk19OZ+h3hAmilb7k6IeEA5A5y81ox4QINbRQSpjXhAKMj6iJeReEDHn43YJJJ4QEQbqHRkknhA/NK7fqeUeEBdyOeEf5d4QMK55RF5snhAaUKo4Te7eEDU1n+wPsN4QIKDhayU23hAowkcti/ieECOYeoyROJ4QA23LqoB9HhAartltoz1eED4OF06mgV5QEfIOUyyKHlAxGJj1gsueUAei1PKZDN5QK6rI+n7Q3lAiidEHc5UeUCPf8FSW5N5QCANJiljm3lA/6CANWmjeUCh/7/wvrJ5QJkxDm5B1HlAuCZp+w70eUBIkwDu9wt6QNzUsIVjI3pAUV4H2iozekA+8fhZcTN6QKpR+/QLNXpASGWIxC43ekC2NTQwGkV6QHjY8E8nVXpAnKm7AiJcekB9RhtQKWR6QO2sHTQeo3pALAyRT3ajekCUkWP4Jat6QBPltup9q3pA1gOj+xSzekB0OJFODbZ6QNVOgRNCzHpAGi0FZrvTekD7ZsIzSdR6QNC0wtVk4XpAmoxCdRjxekAMkQssfAR7QNatk06KFHtAdJVJt0wVe0CoqZ5OWSV7QGzlAvJhPHtAAEeXS2lEe0B8PkR4cEx7QDwL8ZQMXHtAz1BZPhJke0AITYqlIZV7QPjOhksm5HtAQFniyTL0e0CeQeVli/V7QG678p0n+3tAq7ntL9kBfECif+XFZQR8QI7jgDaZBXxAh1k87dIRfEBCjkC5zEF8QHqA44NRSHxARs3e7KVNfEDMa3A2aXt8QFFDUb1vg3xA5LZGH16LfEBCrFuCeYt8QKXniSbEjXxA2g/wbByTfEDaD+FgaJV8QLb2Pl56mHxA8WRKV1iZfECS48pCdqV8QCr0vxv123xAKjZIX1fifED2jFP1DuN8QOYfQYsW8nxAHg/jCVTyfEC+HBS9cfJ8QOgxpQUEAn1ALIdP10oCfUDtJ8cFRRJ9QDYTvGivG31AtsRTULUjfUDg3ft4eXR9QF6YNSGBfH1A7kTqiZaNfUBzs+Ii75J9QLY9FWr2k31AsvC/L/WbfUCovizXK8N9QI4R97HlxH1A/ldfOjQAfkDWnO+7RBB+QFrdA18iIH5AqOHBzyEsfkBS7AMvKTR+QJ6jcPGjRH5ANpPaAJ2DfkCOQLExUoR+QECjVz6li35AzIS00dHEfkCndf1bdch+QFKu3f/NzX5ABAfYqJQDf0A2rml3phN/QGIyo7irG39Ak4t5jLUjf0DiOL0ojVh/QOSaOzG3cX9AgOquXWKRf0CwlBkmXaF/QEY9iCxFo39Aw+rTM3ykf0D689POVbF/QJKmnwrMy39AWwZuT9TTf0DTA8rN2gaAQPZODn/kJoBAud/XS6lCgEBull7t5lCAQDiKdhYUUYBAlnfSKttWgEDGK25eD1mAQHC5qgCKWYBAXgeWjO5tgEAjDIETKW+AQCSKGt6FfIBANvbILh+PgEDbMQVUwqSAQCzcpXR7pYBAA0etXoepgECi8TAfE6+AQJynYQIGuoBANrT2wEu7gEDacXmttLyAQJzZKDHNvIBA3ZdJl1LBgEAB6BkxU8mAQN6Ok35M0YBAkLO5tErZgECSvy2IwN6AQLj8VzZF4YBARPg1XUrvgEBGU+roP/+AQLC1xcY/B4FAZE/F9TwPgUBTkSL+NB+BQEi0Mk05J4FANqnOtr4xgUBzdmR9KT+BQFYhH19aR4FAojLg0wlKgUAc9hQe5lmBQFKQUYXqiYFAK5YIFe2NgUC4WsduVY+BQFLl/NbrkYFAAmpGruuVgUCkvzlN6JmBQGz+zjH7mYFAeLgHsZ6cgUAu6CjmSq+BQPKcH/VLt4FAwuy5jt3RgUD4gVO5+NGBQBaK7hZB0oFAtQI7RvvVgUBEpzij+tmBQOidrpv63YFAhjibedjhgUBOEVBI+eGBQBLNrxn95YFAYlNr5L/pgUCSRng57PmBQFblv58r+oFAgBvsl+79gUAISEjr1xiCQFz80G3UIIJAWCieQsU5gkDOdZufyD2CQLkdJSAFWoJA0Tqd2W5cgkA+6yh/jl2CQKurBrKSYYJAHDFXgDRigkBklxiqzGKCQNbYPKqWZYJABUjQPzdmgkACG/lOR2mCQN7OfIydaYJAsFwAMAR2gkCcIgG8QomCQIRyibJCkYJARPf00zuZgkBHpzCUDqGCQHA070I7oYJA5iGcrA+pgkDcfgNH7MWCQBQ8glPvyYJArCWKKPPNgkAqzbWh6NGCQBSPh6r60YJAzX6nyH7agkDA68EMgd6CQNrfXQjhAYNAEF+E2+MFg0DcJA/tMAeDQN1s927KCINAZk/VUuYJg0DxpeZd/wuDQPwmCdneDYNA23RnBnkRg0BKS+g+5BGDQHJi3lp5GYNAaG6vMHIhg0CifgnEcSmDQAKhJdnaQYNALWH1YB/Fg0AoPsP7yseDQIAeMdF3yoNAim3lh8vcg0Asc838/miEQL6xd+H+cIRA02O2fsl3hECiltI/eXqEQJDRw8IRfYRAr2Sc6HKChED+gvlecKKEQAZzJtwepYRAkFDHi82nhEBN2JCoGc2EQDIjTqDGz4RAVnJn+WnZhEDSxe/gaeGEQEza55vQ54RAUrWSt2PphEDKXpY4LOqEQM5tRUl/6oRAfpIcpCTrhEBAtQUSwO2EQLSuV5gu7oRAOBQQVjbxhEBaWaY3X/GEQHL4sxPD8YRAinatXjb5hEDUh3UV5E2FQGT/2M/mUYVACHal9dpVhUCUdtYd7lWFQGC58vPeWYVABsIuR6BhhUDJ0yAEn2mFQLaqvMOWcYVAvrcw57RzhUAeFMpmmnmFQGIfYA+RgYVAQHaX0Wx4hkCOYPaOnv6GQKD0olWRKYdAxKDUApExh0BXv/MbijmHQJkp8U/GsYdAeRl7Scm5h0Au2bcIwcGHQCi7yTz6yIdA76UEJ0R+iECKILHhRoKIQH4K7tNGhohAXu4g/EiKiEDnwb8tRo6IQA== + NrgMGZxjYkA2uAwZnGNlQHJahe5LhGlAG7piYCbDcUDHBI8W/tJyQAl4Yr2U83hAAqcH7K3zeUCYz67cbAR/QOLW0t8pEoFAhro3Zq6Cg0DiBcEJ1pqEQBXjlVvaSoVAcS4f/wFjhkAVEoSFhtOIQCuB//Z5Y4pAdhVTb9nrjEDyrKUG5muNQEqzB60YPpBA9cWSmg6CkEAuydq0TsKRQHXdia9kRpJAdd2Jr2SmkkAn9O69qtKTQA== - + - RF/ARdOjtUWk/ftFDs97Re3S80SnRTZFIUYNR6EL6ERrMB1FsApPRW4qoUUN2T9FM4gER7NFCUVikXlGIaGGRR0eLkWbuARFuZKlRtQVEUWV9Z9FZ94fRYaaHEWQWYlFAqUURuhwZEXPbhVFCBBSRc1rzESdQGBHAk4HRevECUZe7YNGrSQYRTlnI0WeiNFGJsbvRLUwoUWyyuhEcxBQRSL/V0e1E2ZG1fzkRZ2MFkYrDBFFiEYgRcPHQ0XLV5BFlGA5RZBr8USU5nlF9FqsRftgxUZrjPRE095/RnWhb0Vkd85EnQfoRFKhD0UrU9BFIIcmRXEXHkcL+FZF/bsAR18jkUa94wdFLhBKRecs9EQ4X71FBzw9R55mOEU4ZRZF0UMNRc05A0Wz0K9FGwf9RG0BeEWHlo1FEl2PRcz+wkR5nCFF8Xf8RN/8zUbd3utEjt8QRj6aHUW2I9dEuworRfhV20WT4cVF21VXRZUUQ0UZBB9GY0k1RdOAAEXP1OJEqMHXRAQJVUXDvR9FPc58RhkQtkUVuVpFVAoaRTs8C0X08PlEtqawRmQ7C0YXagRFTJi0RRGE2UTZdYNFIB0yRuPFl0X1OuJFvk6vRoNOSUVgDpZFEU15RcrNQUWzHoFGjQIxRV/QB0WEN/1Ei3H6RM1bk0WQfIdF26NuRRVWREWj3ndG+eZIRaNrBEZPPfVFC6ALRU3d5UeCt5xGXogFRlZHuEYPgaFFvW1TRvFj60TFKnVFyzIYRR9EXkVTnr9FKkIZRdM+/kWOaBdF+gUJRcZrAkU2h21Fbj4CRa2Dl0XxfBxF7i/FRG+2E0cOyaNGtOW+RaHYk0WGBWdFnxdhRoLGBkbQQBBF+4f2RHRKkkXkkydG5qKpRS+73kQD6R5FyCRQRevy70SqZCZFOdNVRcYRRUlaBPNEjMYyRZ/TCEXIBThFto8VRkdiS0jvR1FGeeQkRyoQ20XB9oNG+rd4RXru70QjnUNF0ciXRuCBDkU3Z/hEH6o8Rj2mPEXFGSdFtVo6RavBC0WL3I5FaXG4RdZI7kSgXp5G8WgoRvDlpEXjV/xE9/aARf6Qn0eaJ9BGYnG4RY+SRkWnX7NF88pjRZgtNEXxyF9Hme30RMYJ10VgOL5H6CxWRaVRt0a6nPREu+jHRsaN7kU+w3FGDwUzRt7wtkU7joJF6uLfRIV6t0VCrahFdXGVRQh9OEWZD91EiVz7RIAdgEYYpzpFVqnbRYwxEEVCE0VHR8h6RovyTEWCdIdFQOYHRW5hEkUP1Q9HTVfCRYNUiUbZIxxFiLYwRoeV6kWlCI1FXbSQRferxEXDPL1F1B4vRYEBPEewwV9GwkaeRdfk+ER4RYBGiXAGRkZ1MEb+LFdFkvtzRS1iDUUMZAdF67HYR6VcYEWyTxtF+yTLRn2IaUWkSwZFCBudRpeLbUXSvLhFN0xYRehNnEYkkx9GmA2ARTcrO0VbGclFkyECRSj320RlecBFucGPRhTPJkWT8m9F5RSaRqvFNEYVQt9E/57NRbKDg0UWGU9Fh3gCRmHdg0XZtuVEFyMCReeGdUbeGKpFIP/zRHfWEkUGY6BFy7EmRhHXSUWB+/dEXENFRVtKOkVcKKRFdjsURZBPAkV0z/JEAdMaRXghS0VbDmFGYckjRRqTskXdVidFSqaZRaDdCkUMRdBE/tfORVnT80R5NfVE3ExDRS6NVUXKKoNFWogwRcQqUUW4NgJFB4WBSKl8ykdf7HdH3LAYRthhnEXFPZlFn43zRMeJG0ZbZDRFjtZJRYAbh0bKA4lF9fPjRPkZIEW8oZxF8HwjRcoa/kQONV5JO9v/SDvtkkW3EExInMcPRwF9PUU6SItF/tcYRSSKl0XWCN1EL+3fRevop0lArT9FDWdISarowEhUAJZHc9qUReEUOkY8HoxF8JgfRfriTUYByPVEInyERSvrCUajlDdFYIuPRYjg7USD7wJFLpAeRUH6m0ZE/gxG7zHEReHvCkXT60RFqONmRV6s+0TPCBRFYuncRJK0wkfolxJHd0nLRpdqt0V7ZtRFYw8GRRGXvEf32lVHaNZ6RrFFREWVFA9F+mS0RTLoxUVz7tJHiuBVR05W2URmTDFFnN5KRieCO0XcML5FaHfpR2qGBEXsR0tHB+TjRofJ8EXHORRF6PIJRSKrEkWemQRFGpoYRcask0X7nyFFb5MIRruZtUWMjBRFYbg9RT6ilEUvopZFN+ENRWj9D0WI3SZFTtEBR/vGdEYoVyJFQMYxRlahT0YPhBdFszxoRYtmCUVFJehFyt2zRayNOkUglspEF04FRdvws0ZwF0ZGumEpRbOXTkU0f9dEqWEER1kFgUYpi+NFAi3XRA49VkUdogVFkOnoRMBE1ETZHA9GKiDcRQP2UEXeJw5G+iiUReQbY0V6TlRFX6wzRwy+CUdBkFBG1BioRdvS50Q= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - mE8c3W7BckCTkOBOysFyQIpip32nwnJAAg25PDvDckC1oRYo/8dyQPA2MVJD0nJAk1p3B3fTckBQ9kX2UOJyQPNcwo2Q4nJAbNZmTMnxckA4m415ufNyQCwALaag9HJAy3jLH88Cc0BeObJy+gNzQJSISYS8EnNAcK2hUPkTc0D8DsMnBxRzQPfPBlJ5H3NAYuaqPzkhc0BCsPQfzyRzQJLxbqFaMXNAv3aA/M0yc0Cg11P9uD9zQPLvQPJ3QXNAqLOYGHpEc0BO3IoanVFzQNRMRoajU3NACuK+lx1ic0DE4LbiK21zQNSDbbdpcnNAyhvaUoRyc0DKGbPlTnNzQADGTgRKdXNAHkPfhWl2c0BI5pnK0ndzQMwWGx7gd3NACjfDszd9c0ClRIb4eIBzQHjPC+xcgnNAdSe8PE2Sc0DoIHws95RzQN7/+T+4oHNAfITmllqic0AbhXT+BKVzQBbL0fi2s3NAcJRUWQ20c0BmyIuHz8JzQLLycncmw3NAbI8UFtjRc0DO41IJ49RzQDJV/9o34XNApLFA/Dvic0Cmp3w0eQF0QHi0wNFME3RAO2G0HOQ3dEDs4U/hO0N0QGYNZm0hXXRABiPl4bdgdEBYCRpuCGJ0QBJmG0p7YnRAhPX5yn1jdEC+tlg5TmR0QHrwx43EZ3RAmJDlM9VndEC/pL2cH210QFor/YQhcHRAgaUVLEFxdEDSY/4HFnJ0QCxBlyU6c3RAfiVpM/qAdEDMf1xuToF0QKPmcjAng3RAyGhciruDdEDo6BrmFJB0QJyqYTfvn3RAQFWvZNCgdEBeUGE4b7J0QO+gLQ7Jt3RAvrw3CRK9dEDunMgvuOF0QLbiIzKM83RAMR9YPV0CdUDoDM0CqAN1QOQ50/ciFHVAfL6wbZ0idUBMjCli5SJ1QGKuXzI3YXVA4lS5xI10dUD8RkOtrYF1QCxwTgamg3VArnsXMZqEdUCL5gXR0Y51QJIlscdJo3VA+1CW3svTdUB+1IDVTO11QHbIed+l8nVAegQahUgCdkBuc3QvTBR2QFagee+IInZA+sets5AkdkAjXd+aICt2QA5mZhNKK3ZAbrcsah8xdkBG1YycJTN2QMA4A0odQXZA/IvWrslCdkAkXlMwe0R2QEpvhhvLUHZAmJo8FxJRdkDI+LCUzVR2QLwTy0vaZHZAz7FmOVZodkCoa1OPwbJ2QHh71WAMtHZA1kpHGs/OdkC459uj+d52QEJMjygy83ZAJrh6fzb7dkCeiA7AARJ3QPBXddcNIndATbTfI+cnd0AuAkYXQi13QM+WIcikM3dAQqF1Jg01d0CsG+CJnEF3QJctIhKRQ3dASPkA7xpFd0B69O1pSlF3QCTqulOSUXdADit+cJ9Td0A3r1cpfV93QI57c6qEY3dAfpVPtJpjd0AZ5/zdJm93QE20LCigcndAQaDVovp3d0BCo2OAGd13QNax3Ily4ndARrbFQ7Tnd0CGxf5UDe13QKju8FRP8ndAxaSNiEb9d0C4WvSVnwJ4QBeiD2n5B3hAcueimGwieEB9zZXETzJ4QJYDdbyoN3hANTmeiRFEeEBVNuUvekV4QJDx0P3JUXhAGvMCNIhVeEAej8+GoVt4QDgEf8j4YHhAcpy7ALdheEAWYjO86W94QBKhtzJpdHhAaBaDoYt0eEBL100qx3h4QPpAN7fze3hAbpeMnzuAeECbqQW6ooF4QGjJC8sugnhAw3OquJmEeECkCDgKgId4QPK2If5PiHhA8N0evNiMeEBePp0HqY14QC/cSH+WkXhAMEEKrDKSeEDbyTUcYpJ4QKYNFjoFk3hAxqa5b6iUeEAA+8SlXph4QLz1Mz84u3hAyuICWD7DeEB1ltE3+s14QBbHxru31HhAcNuvkJbbeEB2nealAfR4QLjdPgaN9XhAUgEgsbMoeUCulVWYDC55QEFiO91mM3lAxpX7YM1UeUC2FfJhW5N5QMEmr1xim3lAOJzEoWijeUBObZeQwbJ5QIXYb9ZC1HlAiOSxbonreUBaR58MEPR5QKgSYpj4C3pA/R+y/mMjekDsqgnTLDN6QLr3l8RxM3pA8JzrcQw1ekBd006hU0N6QA6JYQoaRXpAxNjwSCJcekAI2ufMhmB6QNwBSoIqZHpAF5xnBx6jekBYCyTodaN6QJ6hXE4lq3pAsttdK32rekCEI46eDbZ6QBptRsIYxnpAgHCW+UHMekDy1wB8utN6QApP7HbH43pArkcPfzbuekCP2JCX5wN7QKS3O298BHtAlWYoOYoUe0DZhwvvSxV7QHwB7HZYJXtAXKS1UWI8e0D+MJxgaUR7QJZLXVFuTHtAYvoZjA1ce0D6Dtk6IpV7QPAapdnPnXtAQKHU2ibke0CTIyJCNPR7QPC/8PSL9XtA5oxNftkBfEA89iHcLwN8QC2s3X5ABHxAsvWM+2UEfEA0/8PImAV8QH17j4nREXxAVbKj9cxBfEBqpJIBUUh8QN+MCaCqTXxAwKcCw2l7fEBnztEDcYN8QEsyfJ5di3xAT7+jUHqLfECzAWdUxI18QJbgrPgdk3xAfP1Xr2mVfEDuJ4FcfZh8QPq/DSpZmXxAkAENYJqefECm5BtTeKV8QJqzFS94tHxAWgneufPbfEDoG4vxV+J8QA5XsH8S43xA4fkaIG7ofEA5siH9VPJ8QFr8jVNLAn1AKgCNv0QSfUDu276arRt9QH7m1r96dH1A8AvKNIB8fUCNUhk/hYR9QNpLFm6VjX1A8wOX4u+SfUAawS3c9pN9QO5I8/H5m31A+jiUFv2jfUCyw32b58R9QHiKGE00AH5A7MtAgkMQfkCMWn+KIyB+QJYxjEkiLH5A4OYBYyo0fkB8NKRmj1V+QGqTczGfg35A3ADr5VGEfkBvfB5GpIt+QOrLrL7SxH5AdK2umHLIfkDqcyBGzs1+QLCwl7eVA39A0c3jzaUTf0C8XjG3rRt/QIFCTm23cX9AiYT7Ma+Bf0CoHV1XPoR/QDAKmCBkkX9AiikPgqiRf0BYtRmLl5N/QKxZ8n1ioX9Azn1xKUKjf0BUe5qle6R/QJyyFwOeqH9AwLNptVWxf0ClRT64zct/QAq49+m9039AZhaYsjQEgEAabGY9qkKAQHIMiWfzSIBA+GWoq+ZQgEDYBNg5FVGAQOdmSJsOWYBA7IRZhohZgED2k8rICmGAQPy46A/sZYBAUJblDvFtgECiMJnDKW+AQHIYWFrzcYBA9vuUGx6PgEBwYYhCh6mAQMDvbwITr4BAgAuKah6xgECYNc/gBbqAQJKV7c1SwYBA+WTyG1TJgECOS3tQTdGAQLuw3XpL2YBAgGc96MDegEDggIaUROGAQGhv18Jr4YBAEixTPI/igEDOIpxQ9uiAQH6aPj1K74BA7P0JtD//gEB4AyLvPgeBQPVe03w9D4FA+COrPzUfgUCAspyIUyGBQAMqN1I1J4FArAc6oCk/gUD8j5UF4UGBQBrSPMJaR4FA7GzxWwdKgUD48vVm6lmBQIycis/qiYFAbfUNJAaNgUAjcRhC7Y2BQLR2QspWj4FADZ0Y5bePgUA+oGsP7JGBQDDy/0LplYFApJLjF+qZgUCsHpA8+5mBQFnxqp6cnIFAMnqfB0mfgUBSO+L75KGBQB+DXgtKr4FAuF+tMfnRgUCV+tiyINKBQIbgFsD71YFAdlIKz/rZgUD6UIPQ+t2BQAnL9kTY4YFA5qvZDfzhgUDx3zDi++WBQJz+XobA6YFA+vmpcOz5gUAIO0E18P2BQJTQtVgCCYJARcaNodcYgkBwtov61iCCQJKjHBzRKIJA6IJXdsU5gkCeaudLyz2CQM5UuFwMPoJAlT7ofglOgkCWJuXMjl2CQHSj8lOUYYJAO4lTqDNigkDrrJsPm2WCQMyH0u44ZoJAsq1NJEOJgkBwoDJwRJGCQPJPqGM+mYJAXBaZzQ6hgkBE8sRUPKGCQCQ6rIQ0qYJA2id7zUupgkBKJA2DNLGCQDQ2iXnsxYJA/tC8lO/JgkDgGSva9M2CQIjl1pPo0YJA0gK5SPzRgkD6cPsjftqCQAFrhgqC3oJAxm9yRuEBg0Afndov5AWDQEX3M8syB4NARhJ1X8oIg0CesdJw2QmDQNdQjPHrCYNApJmvOWcKg0CC3VU7AQyDQJmPPa7eDYNAKiJ6KHkRg0DWJeZXehmDQNy0G6Z0IYNAUOB6f3Mpg0D9qNhEazGDQDtvhYwcOYNAdFxoqGs5g0DIA5A52kGDQFt1oZwfxYNAW2QapMzHg0Ak9Re6y9yDQLX3WwUqWYRASAVXGP9ohECKRklG/XCEQKSEV5/Jd4RA+u6HcXl6hECOEDv4bIKEQE2PK1xyooRAOsGHNiGlhEBGBGVgzaeEQNlnOBd5qoRAfLZkDhjNhEDKJkLLxM+EQE8VnCNq2YRAkyvzxWrhhEDbfuEa0OeEQFTMkpJj6YRAyPRVOivqhEAKXvWwe+qEQEdWZJck64RAI3HNTcDthEAD5mEOL+6EQKdkQ0g18YRAehX4NmPxhEDusrxJW/mEQGgEYMUMFoVAfiifaONNhUBTf8SA5lGFQJDRo7zrVYVAUPCPHOVZhUAB0VE1oGGFQPNAtkFMZoVAK49bsaBphUDEylgzmXGFQNJrkHeXeYVAfsJuH5CBhUCFpIBNCtKFQAqUttIf3oVAug1I5mx4hkCWaBT3kCmHQIqeaTiSMYdAYlkeb4s5h0A4xQEgjEGHQPh6/IXHsYdAtmpPn8e5h0CexAh/wcGHQOKgDB7EyYdAluYU8kN+iEAFv8N6R4KIQHRme9pGhohAjqGvlEeKiEA0XWl3S46IQA== + BIYf0EKDYEA= - + - oFTLRRrWS0WVqwZGdHtARcdPY0XB891GSnzoRNLqlkVHwHhFFlwQRa3Eu0TKTQRFYxGmRYV1BkcI8QBG4ZZvRbSBZkUaqiVF9yWlRjtjW0VbtwNF6J4SRanX+kR3FhxFXCbaRVpzFEVVWnRFVEH7RDDIXkc/0rhFAyd4Rq5M/kQGdfJEY+D8RKhF+UQWGBBF/EjWROl8vkZqbx5FZVsnR566YEZlF8ZFEiGzRapY3kTJiyBF8i3VRGDPqUUjFuFEIHc6RU7MjkUPK+hFcnxFRlxxNkaEMzBFPtofRQvEnEW9sndHek6SRTs4uUb82LpGIHy7RNpm3URtiKlFQ7+gRRwPSEVI9KpFDC4wR+zUOUXe1ktFncgORWPkxUXDRShFsptkRY5Ac0XMD8xFvTzdRHz+kEb74ftFxKYaRQcC5kScW8tFDj/3RbfwrEW5BDtFlBYrRlppIkVxmRpFRTc7Rp9grUWhylVFMVMcReKp0ERcgthEprnpRH3KakYfU+RFgcyQRWXS70Sx82FFuonFRX8npkX6WaVF9lcfR1Ue5kVu/+pF5ibCROsjIkUmMtZEYiVrRdP8T0ZpNBhF9VPnRAJEL0Wbf2lFIAFzRX8O4UTkPm5FfLXeRMzRYkbYAH5FLJkXRrjY5kUDzPtErH3jRw6Lokb/rqdGAAygRgytsEVZ4VdGE9j3RP0qI0UAQQ9Ff36rRcLoEEX7EJhFFmk6ReHGTEULcxlFjUWYRXCcXkWqSOdEZ4gjR0sTjEa9M3RFYLo/RSA4H0Zz3ZxF1O3NRZaS/0U5Do9F6G/8RCEx2EQ30ONEY04VReO70UTXpHZF9Eo3SZocbEWbCANFglvERND/HkXAHxRGgGcxSDqwNkYmZ/xGNbo9RUvGeEY7BxBFKw8wRXuhG0X2+pJFeyh+Rkhb/UT+EU1GI4A1RW52w0Q7Q4RFIklBRUwxDEUo7s5FyKmaRsPQTkbV/FxF5+ReRYNByEcaVBpHwNXgRQdCGUX1bb9FNJ8ERUdKdUUJohZFpp/QR3P53ER8Fm9GlDS0R3qRWkXWvZ5GwkS5RhbfyUQ9b+1FVwuZRm4oBUYTiINF2OCERU3RokXn+gJFgn/aRDMOg0ay4jpFZCcDRf44XkVRY2JGc6kiRXlIFkYMHENFSfM2R/YSmEYWUJNF3Yw7RasfcUXpywdFBs+8R1y8fEZEMHNGA51PRvKy0UT7mclE4kKuRWGHrkUusEJFSiKwRcJhgUWZc6FFYvMfR+S8TEZZQE5FlUEFRUEsV0ZGBBNGmJ6dRvUJBkVmZZ1FPif9RBXDm0VvEB5FIs4jRSe5xUc8owBFs3T+REZHyEajDJdGNXAMRSrf/UUvV9RGJ6HlRbXZ/kT2Q8JFzpw8RXtkhkVk1lVFElwHRVBU9EXL0dlGY/8tRSu9zEULDGhG7T7URWAU/0SNKOVFXA3RRfzuQ0Who9JFa35jReskhkWNcQ1FRptZRj5JyEUA9CRGB9QNRWfKMkX4tSxGn9rcRJQoFUXi9+lEz3kqRQG6E0VIQ99Ea7nuRC7ToUWzOjFFrqcBRX13AUUzmE1F154eRex/Akcd/RlGdVZfRShvA0WShhdFg4+fRaT9AkVb2A1F5NX2RTij8kSrI1RFDeNKRSj9tkXii+5IOsRmSMAh6kciXLhGfdAnRRAb3UVrdAJFtSzcROUzJkW1QwFFSD4WRsX+UUVcL4dFWmqYRtYGaUV89WVF2q5WRZQ840QXkJBFYLNdRW5L6kQ2RDtJLfz1RFxM0UgaSaRFNA8CRUgEIkjSfZBGpCqPRf25fUXXNzlFNgFDReYV7kR2qrBF9ouPSRX1ZEXsTjBJveWsSF2QjEe2Cy1FJENPRj5oIkWLmilF6RFxRu314UU/Y5RFRlorRoruckUDmTJFMTKfRYAPLEViJC5FtrMfRWK8ckYolDlGWb3FRbuGZEXbMfhEA2jdSA+cfUheLQ1IYjafRRW2MkcaM0tGtAFsRYV0A0Uhj8NH6MRdR65LI0aJJatFdZD7RMgg+EXkv51FFBu2R9l0QEcZ5GpFDXsrRVlhIkbHFPNF2/oTRTHVAUUE3qBFruPWSNGWekjPIwZIKUcyR0ZkWEblVkhF/Pn3RGFgDEXNbjVFfYMFRTs/CEXKNApFInLHRRKuDUXkILxF1U5oRaR9BEVCbUZFpZ+HRXU/HkWESBJFNYk/RXoEMkWJr95H9BlZRyGf70QGvQ9HlXYoRpW31UR39y5FWWMORd/+qUW/xYxFCv1aRqhaiEXr2P9EWxrgRvRAZkbXnJRFzfbSRKk/tUetASFFBz48R8cMz0Yj0gRGkvYQRYsHzUQm1uBEr6YeRTj8s0ZxUS1G5w4URtW/H0W/wHpGFDYXRpSCuUWluQZF6sBdR2FZGkcIfIVGaibsRXY5IUU= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - dUaMBG7BckA66OB2yMFyQBT63kJPwnJAR8gHq6bCckCWboUQOsNyQEshODEEyHJAZb2VTkPSckCKrYCYzd9yQMtoHMK24HJAHnHgjFHickBAw2Ckj+JyQCe+7MPJ8XJA5jT1zsH/ckDWbNpuYwBzQGkbXss8AnNAAqdJcdACc0Dnrh2t+gNzQOwAFvYJEnNA9HczibwSc0Cilr5w9xNzQGDnWLV4H3NAEnB97jghc0CFKutGySJzQMArfKYOI3NALh8W984kc0ASpV09RjFzQETEE3RZMXNAyDmSswwzc0C1CZQnuj9zQK8VO3HlQHNA0Dad13hBc0DCnOJCukJzQKyspoN6RHNAnijMG5xRc0A+afybD1NzQNwbK9+iU3NA7hh9xodUc0Ab6k8COWNzQKLTgawrbXNAKGlVKlJyc0AvfcEWanJzQDT8GsKEcnNAIcv1ZU9zc0ACSPJuTHVzQCIdDD7Dd3NAKLJslN53c0CXNLEUKn1zQA4aF5Z4gHNAuBf08qOAc0Ak/K35DIFzQDy2ITNdgnNAxh6amIWQc0BoQvrXTJJzQCL1QzRklHNAx1VnSfeUc0DzB3tsuKBzQPE38gJbonNAfM26sSOjc0Cx/hFIBaVzQAw3YmvWsHNAmiNmZ7azc0CSjw97DbRzQI4aCwrQwnNA3hqd1ibDc0DseH0c2NFzQC8Qw1T303NArFQGROHUc0CDBdrlOOFzQB1+3lo84nNAmMYIzXric0DCa5yED+NzQH4eZ5019HNAFMDUqHgBdEDJyn51pAF0QNz/qNZQA3RAavVH1UsTdECQW3W1uSF0QEgOQRJSMHRAFQUT+hIzdEALL1uz4Td0QB4k01M8PXRAlsI1MztDdEBk2jacekN0QGLaXLv2VHRAOiXVM4xVdED+SLcYIV10QCoFWfC4YHRAeGswVghidECn5VbVemJ0QKgmcKZ6Y3RALI+r009kdECeoyRAxGd0QPp+DqrSZ3RAcHoc/B1tdEDEd2QgInB0QOCLr8pAcXRA9jFOvBVydEBkNNUaEXN0QLJ8ib85c3RAdkBBavqAdEDjD33ATYF0QBovEJ4mg3RALvxNR7uDdEAW3WkeFpB0QGKJpSzun3RAwKmRDqGgdEBRXtTz0KB0QJRisJQOo3RAHBMZ/AiwdEDRr2Vrb7J0QNSwC5f8snRAI6nnLsi3dEDKuacYFL10QAqSrUF1wXRA+kRMhrjEdECc0toT4dN0QAr5Ro+44XRA+Ef6bk7ldEA8z2Z5jfN0QNteN5ZdAnVAWsoEi6cDdUBo4H/tZxJ1QAieWFMjFHVA9BTOXpwidUBCwESv5CJ1QHznZIntMnVA/OLZIMw1dUCmeQeQJkN1QAAFMHXwT3VA2o1E8XVVdUB+8zn1D2B1QMiDO6M3YXVACjSPvHZydUD0/gLAjHR1QOy3kgt5gXVAeQxtw62BdUBu+OYWpoN1QKEgAfGUoHVAetXj/5WwdUD4TyWQ+MF1QKAkfUzL03VAC8z1HOTfdUDnlH2ABeJ1QKxTbvFL7XVAqejX7KXydUCEVsw8Afh1QBwpE/dHAnZAHO91ktADdkDcQW3EVRJ2QOLm6xqIInZA6Pni648kdkBCcll0Hyt2QKkeJ/JLK3ZACIMqKB8xdkAWv88iJTN2QHz/LAmfNHZABpdapUxAdkD4xD0aW0B2QHIWaYAdQXZAmmbEVshCdkCszP6LeUR2QDj1SDcTUXZAyitVMs1UdkCUEWmIT2N2QAJXl3nbZHZAjH8ZZ7BtdkB8nYfTfXN2QAiTApuPg3ZAPD3CBV2gdkB8LU7QULB2QCP4JHHBsnZALFEv2gu0dkBys53gzs52QJapLAEx83ZAaNf6C5DzdkC9pcwZOPt2QGgX+5c0AndACGwH3gASd0CWtYzhDyJ3QIR8eDzpJ3dAMAX8i0Itd0BSy62NiDJ3QMqkBAENNXdA9sDpypxBd0AH+C5skUN3QM6SArMaRXdAsrg/oklRd0CgdOriklF3QMQRvnyeU3dAzrb7ryhVd0BDaLyIel93QIYZ+BeOYXdAyeARMIRjd0AeIgmQmmN3QGiBxzSaa3dAMUF7PSdvd0D4jB79PHF3QDXzw6ufcndA0c2S3JF0d0ClYjJy+nd3QOgJHo2Te3dA/5kE8neCd0AzhoaajqF3QOSEv0a3ondA0G0q3Bjdd0DcZHVcs+d3QNRqGxQR7XdAxLJ/DH34d0BO4sRXRv13QLjhEnjX/XdAw4hZXaACeED9u/uD5wd4QPeyAUH/B3hALEb1L8cIeECU7EFDbiJ4QMgXP5PRI3hAur1I50IoeEBU1SCfTzJ4QPLB2AGpN3hAplXUvQQ9eEAZls4tEUR4QKS0ulp6RXhAPOcJe8pReEBs8ZVha1J4QEprc7uVUnhAmjYsq4VVeEA4bwhg7ld4QINahd36YHhACvEX5bdheEBSbvWft3F4QDL3xJxcdHhAuh/Gbot0eEAuhFSZxHh4QOTM9gr1e3hAdp0PzyJ+eEB8k7U+PIB4QNWVvgs4gXhATjehx6SBeEC20ZILLoJ4QHZfvuiZhHhA2pUSw3yHeEBFdx9UT4h4QEaQ56zajHhAzqFTV6mNeECS43QkmJF4QKxRYkgyknhAInmwuQaTeEBcj1hup5R4QC6W5HM8rXhAIvHCbDa7eEBueTJ+zsB4QJ9NF3Y/w3hA74ggZgfFeEBMjAeQt9R4QEH1W9WV23hA9AzcSwD0eEC27x3BjPV4QJwYuYCaBXlAOqMsRLIoeUAW95zoDC55QFEY8vxkM3lAKuXPVMxUeUDqrowcW5N5QK/1rbpim3lA61DZrlOjeUCpcHi+Z6N5QMxjJfhsq3lAdp0YwL+yeUCg8GlAy8J5QEx6syVC1HlAjvfnR8vVeUB8peyaUOR5QPw9xFgQ9HlAqYn4L/sFekDe4pxM9wt6QKiCQqNjI3pAhG7aayszekAWs1SRcTN6QDIh1l8MNXpA/0u7ZC43ekATIaB+UkN6QCQ55QcaRXpA+0bcR81LekAICzbRJ1V6QFTimVMiXHpAhIS8VClkekDemJz/HaN6QKphJ+N3o3pA/Lj2IiSrekC+EWBvgKt6QCC1x2kMtnpAsgjyYSzDekD+5BqEQsx6QAaCiFu603pAbprrGknUekB+lRATZeF6QPzeAgxJ4npAMiFUT8rjekAu/xwENO56QKGLj1UV8XpAzv5xj+cDe0A/4KhtewR7QPVEPxaJFHtAGn7L80sVe0AC0VlIWSV7QPgwptVhPHtAWhC172hEe0AAGy7vb0x7QK3PxeANXHtA0DfTBxRke0CERmbNIZV7QA7JVQkfo3tAbIx1libke0BwDZIQNPR7QHALFPyL9XtAhkiS+yn7e0Cg8H9s2gF8QLIai1IzBHxARiMgM2UEfEDOTk0jmQV8QPdjgRDREXxABAOl920zfECoswSGzEF8QHb18FhSSHxAqFOS7ahNfEDS4QWb5Wh8QPXwSaNpe3xAEu7OJ3GDfEB3QvTGXot8QDt+la54i3xA2JN6MsSNfEDNxxAfHJN8QIXgMihmk3xAg/FHsGmVfEC42q3LZJh8QBrKHGN/mHxA+obdV1iZfEBY8562wp18QFK4/FawnnxADxG6c3alfEBk36hVvbJ8QJwb7e93tHxAc5eir9LDfEB7lv63zNV8QEL8v/X023xA/sGP9FfifEA0DrtCEvJ8QBuWfqJU8nxAijH/InPyfEB06S3LAAJ9QHl2rCxLAn1ACvOWtUUSfUDyIHQJrRt9QES54hk/In1AOpAhObUjfUDtHZ+y/mt9QC069NF5dH1AoBg4FYF8fUDAZ3w1hIR9QLDzvD2XjX1A0mp7pu2SfUDgYw5o9ZN9QH7Th/j3m31AeWBZOObEfUBC9g+6JdN9QELpb5Dy1H1AcK0KYpH1fUAughtINAB+QFqJzmtEEH5ADKdxkiMgfkA8j2gqIix+QAhh0e5CL35A9qO6hyk0fkBCbF06t3t+QI4jzs47fH5AC+SybZ+DfkCmfpKbUYR+QNjDv7qni35AUkbXk9HEfkBo6yN1c8h+QK5kWPOQA39AImdcyqEQf0Asng9vphN/QEIfmBmtG39A4moWNrdxf0AU/NKYPIR/QKR288xikX9AcPbclZWTf0ACTmYbX6F/QKCCqC4/o39AKpdoGn2kf0Csmvfynah/QMj8A9xWsX9AurDaAc/Lf0Bm1rpbwdN/QPRRffjH239AaHRdxc3jf0BZlaOQhwGAQBxwvnypQoBAcriou/JIgEDU21hA6FCAQGWGtUYUUYBARBHcA9tWgEA6897PDlmAQLZoNaQrXIBAcirtVQthgEBOGfLk6WWAQDiGB+/taYBAygqSE/FtgECeaOh9Km+AQL7fidEof4BATnOBfx6PgEDgJ11gG5+AQO4K0sLvpoBAGcW/FoepgEBMgFpH9K6AQPGSyT8Tr4BAYJTdMAixgECtZW63HrGAQLIhBfUDuoBAyvUpyQO8gEB452iss7yAQGjJiKw1voBAKo6islLBgECJmy+jU8mAQAKb255M0YBAUpXaKErZgEBwpoJ9wN6AQLjs9JtF4YBApOozKGzhgEAIq384ouaAQB5yEPb26IBAEjFzVEvvgEBKhUhKQP+AQP6tmNAYAIFA5IHzoMoGgUBmV6T5PweBQG7V8WQ8D4FA1ynDxTQfgUCwh38MNyeBQJSd0vcoP4FAXBOm71pHgUB08gSgB0qBQMAVwT60TIFAHSNB8eZZgUCQgW5GwnSBQDDJVqrqiYFATDfs5g6KgUBgXZhuF42BQGyQ9irtjYFA4TFx/lWPgUCaoK0C7pGBQCKwn3NfkoFACKXQ4eiVgUCW0KIfVpeBQOJmHlPtmYFAuF9A2p2cgUB2Gco9SJ+BQCEFcabnoYFAinOJwm6ogUAdNLI0UKmBQIpwlh5Kr4FAag5ylEu3gUC95WyTCc6BQMjoF5vH0YFAysOACPnRgUAm+oVXHdKBQJZy1Hd904FAvJNjSdHVgUD4rOes+9WBQIE2InIj1oFAZEqTr/rZgUDWCb1wGtqBQPzrdNf73YFAUoeacNnhgUDA/9ay+OGBQDToKhXZ5YFADcFP+/rlgUBaZ45Lv+mBQIQ39eDA8oFAOhh48uv5gUDDdsMz8P2BQP7Aq87kAYJASgRI0NcYgkB8GQ7g1yCCQF0zQovRKIJAHzNoUOgpgkDm6wnMxTmCQI78v+IKPoJAMHOsRQ5CgkCSOdBGEEaCQPyl7/HISYJAAdfc9UdNgkACVCqRDE6CQJq8p/VrUIJAUjfwwJ1bgkA6gtFFaVyCQOqLSleOXYJAGDzQbZJhgkCUo7owNGKCQOQXvsTOYoJAfEaGjZdlgkAWqrDkNmaCQK8klU/gZoJA9tU6q9BqgkDgyZL1pH+CQCKMIPpCiYJArBgCGEORgkBdHo7QrJWCQPQ2VOo7mYJAu/BHAA6hgkBiqUs8OqGCQDJLCPENqYJAQqnh1gaxgkCWnG2btMKCQO66sI7sxYJAcFvZcO/JgkDwMY82882CQJqN8P/n0YJA9hl5RezVgkBg/g5RftqCQCrtQN+A3oJAwpobVOEBg0CQ+qaI5AWDQJBq8w4vB4NAvL6lHswIg0CUNpV52wmDQOhcrStmCoNAWdoXQAAMg0C/iKQknA2DQKqLnWjgDYNA0rcFLnkRg0CiUjzA5hGDQPGTNoZ5GYNAJm0VWHIhg0DLU8n1cSmDQJZLZC5qMYNAB/ntQdtBg0DOv+aq6GmDQF6B3kcntYNAnN06lB/Fg0D0ASHnzMeDQMJjKN7NZYRAPk0xXOBlhEDedvKw/miEQJz941P+cIRA9Ei5kcl3hEDSJ2SBenqEQB47cesmfYRAlXoQC26ChEDJkz4ZHoWEQLwGzmdxooRA9qMchR+lhEADLthgxs+EQELEEflp2YRAICEnaWnhhEAMVeAjY+mEQCLFkaws6oRA3MiDNsHthECGhM+yL+6EQMre48c18YRAlzzeDGLxhECCl/dHNPmEQGb/Rc6H+oRAOCZonC8BhUB+8wg1DBaFQJQ7tJ/jTYVA9HYHaeZRhUDw9lK37VWFQLrs5VrhWYVAkVGw6p9hhUA4r7fQoGmFQO7UqO5RaoVAPJA8bZhxhUDSFLAcmXmFQNi3ihPGi4VAHFAhkbmihUAw2Aa0GmKGQHZyelhteIZAVieYD2WIhkAKIFVoJrmGQCLGw8iQKYdAgs/0KoEuh0DaTO7AkDGHQHZJXJOJOYdA7iI/nItBh0BpTTdgx7GHQFprFbfHuYdAcC/zlr/Bh0AC22lH+saHQIS09Pb8yIdAu0rgiMDJh0B0mJVW+8qHQNMDi+T9zIdAkW0rS9chiEAAh6FN2yWIQNDvCRREfohABPa6D0eCiEDiBE7NR4aIQKytHvZFiohAXA4MHEGOiEA= + NrgMGZxjYkCAI9DqN6RuQPtPkeoS03RATmm0FPRidUDpDZFHgQN8QDwntHFik3xAu7JusywKgUCOjd+nUxqEQLvhXN3YkoRA - + - xhgJRs+ftUVwuclE8I3+RRceT0UV4ThFix8KRyQp2kSfIcFEHqKVRaMToEW1dkBFgUwWRXUi3EQL5rdEkjqQRa3JJUeQxN5E9fE2RtdzlkW0nw1FNRa7RkKuFEWYks9EDaicRfCVEkUSgMJEXvOvRNVyF0WnntFECN+JRe1enEShFTNGKHEZRYYkx0SBPmdFH6SfRMsdBkWjGVxHm3CzRFxSEEaUBolG/Ao2RXN1EEWMYANFZ32GRabL8kSf2rlGz5PPRHn8HUVnb6VFls42Re4TT0cl5shE57KGRkGE2EWijsRF/MivRIxBb0W4J5hElIdgRTrF/EQww5NFP8YCRXxPCEWcdglFsxydRVPN70XDasFF/C8FRSpD9kS02AZFRHKMRr+PB0V4PclE0RM/RV818kRTvbREnTDJRAr+wkWaz79EhwnRRRx74kQ66/ZEMbvkRJyFWkcvSIZFcSvBRkJt1UbqNiVFysn/RJPQzkWJzKFFDEpoRf8MvEU9sEBHMJYXRRMR0kQJDURFCiL/RCWQyEVDsDRFzd+bRRL6pkUkso9F6Uy3RH45o0TZSj5FWFgQRa+ClkbacsNEXtIZRuvRdEXt+bFEr1UGRVUK0EQTuwdFMWYARRNA40VPbbRFQqanRcC43UTaPj9Fp+8ORrsTREWnHbhEGOcSRZsn4ES/z9dElfcWRcF9+kSiKy5FqTkqRb0+U0YlfK9EPE7HRb9ALkUWcp5E6LSgRNEG6USv9OZE41fGREYs0ESZ9pJGiPT5RYjt0ETMjthFMmgFRa/7uURcKH1F29kURp5nAkYQ51tFpiK7RkDyX0ZWDbNEwXGsRMNBjkTPTqFFWToBRQsaj0XmhBlFPsKHRnAQJEWG/BRFbXbrRJqUPEUCOA9FJ6HDRH/Mr0S5cyNFc7qSRSuuVkUcz5VFP+wkRb9pDEVDkOBEmWeKRtT+SkUYdkFG0VvJRRq9q0TX7eBHTMG6RoIsS0exrbVGGk+LRVkYQkaEUcpFakMSRSyqAkVEWwlF/nNRRdvOfEXkwARF3iovRYRvoUSsvdtFvli6RPBgwESr581EzZbMRMdooESiDqNEqItGRS6zOkVVzchEcf9KRSR8IkdamcBEQ83DRlbXbEXqvAFFRNuxRO6Tf0WSFx1FCYrIRPe5CEaGUApFBrmzRKjQnkXaRztGUYiTRZgtqEQ74LlEbn/9RP7Ay0TdE+FE/6n8RHLt0UTkf2FF68xKSZQDjEUSuDtFtKfsRGG6uUSmrbhEeAdKRcWjtkX4NU9Ii8P5RbWkGUfXN4JF2YudRnH2G0XB105FF6SFRdySqEZ0q7BEkJsPRlZ3rUTsiBlFxyW6RGyzW0Xh6t9EQspTRVTgBEZaHAFFbJ2pRgwQRUYum4FFuCmvRYok2kd8KSlHdiCBRV0K4UUrOdxEgYGARcqYpETir9lFRuwHRTFVBUXyYv9ER0/SRCvyFUX14fVH9xY+RZ9tiUaUXdFHPcbjRGhtjUW2eb5GU9HJRKJOa0WZiYtGnRzcRSgnbEZUgBZGfiiZRftGEkXmfJhFZK7aRAUvrkUqd8lGtjIDRdJWAkXNKb5EqLBTRRt6vkQk/eBEcneXRbeogkbgH2JF6LQ5Rt2kMkX32iFH+AeLRlkgjkUVfI1FCij6RNR6AkXlkotEnDsuSNjE9kZeTqFGGjLIRCx2MUY5OR9F15ubRa2DpUXsB6ZF46LvRFvDoUVzptRFk7pgRV/KtUTZUiFHB8dhRjwhZEVZwGVFHnCLRrcwOEbMebpEHVm8RkTJ10ROhr1E37GFRTvXykTepVpFpqJvRXexwkT0eLpELfPlRKkN4ESMnxtFO/HaRwp8ukSYvNtGn+pNRey3HUWOWZJGeOSBRSefr0UkmsREza0/RUvXtUQReO9G8PgiRnOYJUXma3NFD60CRfC4e0XtgRhFBPoDRuWMx0Q03L9ER+qrRF1cKEeTEHhFEX0FRjnLbkbR781EUCrPRXwqwETq35lENYwARttpyUWH7INFQrTlRZwMkUVU3b1EMnTkRGmxhUYq0sBFOWmSRYuTTUUZETBG8kWyREqoKEW34M9EJpTGRAxdvkT3bx1Fl6ZsRS4aP0VXd+BEYUnPRAOMJUXz0fNEWrIERWPJTEVrIohG8Z6IRchXr0UZqsFEsICjRIGAq0RWnPtEYM9kRZLzCkVAx8JEGayzRdPu6kSrIvZEyw3uRP9WmUSGcIxFkJnJROdUukR9VxNFsu+/RC75F0X4Uz9FXCGGSNE55UfPgH5HmWZrRvsAi0XiPJBFJwe4REBz2URDtMVEcCIGRShkI0bugbtE8Yi2RFcJPUUlcRhFdpKeRkQyb0UKKyJFU5izRXmYbUVa21BFYMHkROcDEEVcwflILyYVReh5sERwDIlIPw6kRSeDnUe7ULtEcaWVRvzVBEWw+Y1FW4FpRaQ+HkVS0hJF/XDhRMPltERXcL9FlzvORLcirEQJGTVFX2N/SRghq0W3P9dEcH3fRE8hGkkRlVBFAamYSIpix0T4k1BHSoJ6RURo/UUfAN1EADT1RNXCDUW2KZ5E4V1fRqXMxkU3dCNF1fYqRqnKiEU5rAlFSvLIRPaMIEWgzO5FGaS4RUS3oER1uKtEXWv4RHPAxkQx//tEDYUARWlZ0kQPCRJGxSitRTB9lEU5h+xEv23YRALsOkVBMfFEWJzMRKzGmUQehuBHK1pCR14EukQQFttGuyPkRbyPDkZx3K5EwJvvROgR+kRkXcpHVrx2RyjZbkaOEpBFStESRZr38UWeryxFJ++gR9a6KEf1o4FFZseeRSoKGEa/gplFOvrKRBY2/kROL6lFpFj7R7eb3UQGoWZHrxsIR6QTF0YYgFJFtA1DRaBuD0WVAcpESCukRc5cXEWdgbxEPAuoRJDq3kWvz3hFa5PqRRFqc0Vj4VxFXcrDRKXs3kTSdqFFWvaCRZ9olEW9qCxH3j+IRo4QEEZk0OFF66KnREzgsEXv7HtFZaaBRdtCDUVLHaFEyoShRDufQkUbUcxGLOVlRqC+TUUu2whF15ASR52lgUY4PblEYNL2RQpEYUXI4L5EWUQkRezX0USTvVBFeGjaRKC56kSS0ylG4KW3ROg32EU3l2xFHWoHRYBVDkaeSKhFKXQjRexfyURNYABFJAr4RLsS8kQHjutEsGE3RWFr4EQsMWRH1+cnR+ibdEYh6e5Fjo+9RA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - WbT6fm7BckAzgz13x8FyQM9NKTymwnJAGNCK7uTCckBtPnbUOsNyQDbmAQHFxHJASB1lC1nFckCg5B6VAMhyQISHmfIO0nJAFC8mOUPSckAYb+S/dtNyQOXH+OLP33JAfBewy1DickCCyt6Pj+JyQBas0/jJ8XJALv8t27XzckBWZlXWDfRyQNqTB06i9HJA2vpIxMD/ckCSjmet9wBzQLbBqQ/QAnNALRI6kPoDc0AYBwfKvBJzQE2SX3v6E3NAMSgPJnkfc0D8X5zqpCBzQHpu1944IXNAPX8ipskic0Ac4MjtECNzQBY77xHPJHNA02hALlkxc0AIBqF4zTJzQBj++EkKM3NA0VITOOJAc0D6oW10eUFzQEpYLv8mQnNASFIh5edDc0CaELHpeURzQHtDZCaaUXNA9GCsRg1Tc0Dt2H5Mo1NzQDRfMnt2VHNAn+Ust/dfc0BCsQqNjWBzQFOAg186Y3NAVhY7g7Bjc0ArhaSUK21zQCcI1nPccXNAMzbGCGtyc0AmmvDbhXJzQOTGrhdMc3NATUeiv0t1c0AYYWy7anZzQAAVZWnCd3NAAftSZN13c0ACBJK2Kn1zQIaV6bQ2fXNAKHSQlXiAc0CorrbOo4BzQABqWtcOgXNAMgJmf16Cc0DcgJUDWYhzQKLWG4mGkHNAetJhmkySc0DQt+/SYpRzQNGwcQ73lHNAAeuqirigc0DL7Ca4WqJzQCIeyl4EpXNA0LFZYcawc0BkVy8lM7FzQHCagtd8sXNAq+HqF7ezc0Az5kNCDLRzQJibNqD4wHNAMPGsSc/Cc0A4nvhkJcNzQBRJQUPX0XNAqI+O8brSc0Ahl74P9tNzQOaD1ozh1HNAcNR4PDjhc0ABTvtlZOFzQJJ/0jw84nNAlt28Wnnic0BM1oZKpONzQKo2iy029HNAuAYm5OMAdEAynEffeAF0QBawbQCnAXRAmjLHmFADdECUHg8n6Q90QNUuGDx4EnRAPWGdFkwTdEB8N88fuCF0QPSNx8JSMHRAKGYn55AydEC9zej+uTJ0QK5qsS3hN3RAyqOnnTo9dEAIWmgtyUF0QFDYWKY6Q3RAnkLsPvVUdEDsKVvZ21d0QPmjdH8gXXRA5ULPUbhgdEAgDgq1CGJ0QBENJ716YnRAPuBjQX1jdEBwGNUmTmR0QLJeSf3EZ3RAjlqFrdRndEDQFRpuH210QJ7yKTgicHRAUH4gsEBxdEBi2yYty3F0QNsBFhgUcnRAUlfAUw5zdEDq+9llOnN0QDD6NFL3gHRAz9EjkU2BdEBmNVzdJIN0QIydWi67g3RADpdq3BWQdECwfgnN7p90QMARCjg2oXRAjrcKX7yidEDWPIq8DqN0QMax2UsMsHRA7/XyN2+ydEBAc6en/bJ0QPc/tozIt3RAUFgdmRW9dEAcYqT34sB0QJy3U4J4wXRAjDNNTE3DdEBTvTi7ecR0QDz0cS+5xHRAqHaBzznTdEB6/hQC4dN0QGwsC73M1HRAGDLElLfhdEB43y47jPN0QKDwfgldAnVA8S9dyKcDdUBoe19glRB1QBYLamokFHVAvcuQsJwidUBQ42ig5SJ1QHARpkzLNXVA5Dq2rSVDdUBSRA9VglF1QJBOSM9MVHVAJEZ/BHhVdUAO22f8DGB1QOT7mio6YXVAtFtVRI10dUCgNk33eIF1QLWUj7atgXVA2FnokaaDdUBgNkUjm4R1QNpviE3Ml3VAu6XM4JWgdUAfmGrRI6F1QAPr2KW5oXVAEtE9GkmjdUCK3jq0YsF1QCO9lZH4wXVAEuYAyQ7hdUAkkEanB+J1QG5xXAxM7XVA3wgvP6bydUC8Vjnx7/d1QH7uRE4B+HVA7w/bH0kCdkCQ09eY0QN2QICGUjFMFHZAiPbZ9YcidkDIH3IMkCR2QAKHf0ogK3ZApy3/G0srdkCVWRYgHzF2QEDN2BYlM3ZAufAqR1EzdkBI3XvLHEF2QNNiSO3IQnZAgHFwejNDdkBK56HDeUR2QBwtOGERUXZAgp4vTM1UdkDURufyIWF2QD6Y/2pQY3ZAgocD69pkdkCOvC7lVWh2QDKPJwF8c3ZAhm12kpKDdkCijtD1t7B2QESL0JnBsnZACYKxJwy0dkBAWwY9wsB2QAirbRZOwXZAq7wSys3OdkCOZjOaMfN2QDeus5+P83ZARUFrZTj7dkB+yguJNQJ3QIz2OckBEndAQOo6ow0id0CEx/2d5yd3QAA+BNpCLXdAqtD9mIsyd0AepLFGnjJ3QJoSOCilM3dARgz34ww1d0Aq0/WYnEF3QCx6SiORQ3dAai7JrBpFd0CSqR44SlF3QPJyVWGSUXdAKr3Pk+1Sd0AKf3BWnlN3QP4UtEYoVXdA//wAx3tfd0DBBl3IjmF3QJ7iWbOYY3dAkE1XCSZvd0DVA52+oHJ3QJhuOtf3d3dAfK3jZ5N7d0D+pCBfoaN3QMIivEdwu3dAQq+/sjrTd0AukeFZtOd3QMhX+MRR8ndAFLnhPn34d0BnRwmARv13QP8Ly0+gAnhATIaQSfwHeEDQSO0zxgh4QAi9oktDDXhAdBPKHm0ieEC2j3+HOiN4QOr9dSXRI3hA+kQuEaYkeEAGD0ayTjJ4QDAoUxipN3hA1MA+yw1CeEA8HNEjEUR4QMC0JdV5RXhAXkLGActReEAQmglflVJ4QDnAfo6eW3hAoznxjflgeEB2pbspt2F4QKBeKoSLdHhAfkj3Ur10eEAFJOAgxnh4QN0UCQf3e3hATuVXdyB+eEBactXpo4F4QPCZ0YgwgnhAgFQd7nuDeECiEDOw/oN4QC248OOZhHhACkmy9n6HeEDu/59jT4h4QOiiR3TWjHhAcPIfr6iNeECkpsNomJF4QOTlo6kEk3hALvRsVKeUeEA9jdMzvJd4QIYuwAxToHhA0AQWTTe7eEBgP4Vky8B4QHRfc130wXhArAlSnz3DeECGwJ8eRNN4QOo2vU631HhAU/Ulp5XbeEBoznf0Q+J4QCHsphLs7HhAugLdLQL0eECphUbDjPV4QD49qiIPBHlA3q7ehJsFeUBYE+JXnQt5QJDSnKWjE3lAiJLtzrEoeUDGXhitDC55QJBtSYFoM3lAb37ZfI1CeUCLCkQL+kJ5QENSDQX8Q3lA4oCyIMxUeUDKCpsz2WR5QJhSxv9ak3lAk66VfmKbeUCQnGp0aaN5QFsltatXq3lAdiJo3sCyeUCiazNLQtR5QJ5D00NQ5HlADHt1ZIvreUDuHOeAD/R5QKmPBLv7BXpAUjl46/gLekAbL2FEYyN6QBR4YKUrM3pAW0XdzHAzekDE/ClMDDV6QJCcbjFSQ3pA5tzWGBpFekA/vO6+KVV6QOi7XAkiXHpAGHMUiSlkekCKJa2nL2x6QJAbx20eo3pALOxEq3ajekD2Qr+SJat6QL4Gyn57q3pAHIOytBWzekCGPyQyDbZ6QF5Oz/QYxnpAlhHsAkLMekBh0Zg/Ps56QNQPxD6603pA5hQn+knUekDK3XhpaOF6QJMt+RfI43pAhKCKCzTuekBIasNEFfF6QBLRhnj08npA4DCbo+YDe0DYjrNMfAR7QALvClcqDntAbcZoU4oUe0Dtb0vgSxV7QG6Gxu5YJXtAZAG4KmI8e0AAu2maaUR7QADldWNwTHtA1rlhfQxce0DKUa5MGGR7QMa61XAjlXtAkHxSP1See0DmQo/3MaV7QDxflZQm5HtAQ1S5pDT0e0BQwai/i/V7QPayiBYp+3tAXOKQE9kBfED0kivi9QF8QPfO0os5BHxAsgTPg2QEfEDOvly/mQV8QO0nZ4XREXxAtdECebcjfEDiZuDybjN8QE6jrFbMQXxAcEmbQ1JIfEBr75+EqU18QFAdjxrrUnxAxpAaaWl7fEDeegMBcIN8QCE539Jci3xArtc42XiLfEBS7FZbw418QByzJMAdk3xAgz5JOWmVfEBUzgKLd5h8QDTHJ05ZmXxA5iIGRbGefEA2rIuNdqV8QJDRiljBsnxAfY8bG3u0fEC4hNb00MN8QK8JSpr223xAGp7Sq1fifECatI2TD+N8QJgRlKVr6HxA3x1GK1TyfECKmLJoc/J8QCbp2PsAAn1ATynBFksCfUA4LJgeRRJ9QBg5P1WuG31ABcWiD7UjfUCXk8fL/mt9QPhhmh96dH1ANuHx1oF8fUDd02z7g4R9QIwNlqSVjX1AV8yoJvKSfUB41top9ZN9QExVNiT5m31AVaAC3gOkfUDS3STMLsN9QOVrZE/nxH1AJju4PSbTfUDQxA3G9tR9QCLDYiyP9X1A0BIOlTQAfkDkqe9WQhB+QPSCmE4jIH5ALFdD4CEsfkBQ95KBQC9+QClXkxspNH5A7gQD74pVfkDagUzSoIN+QI/MTLFRhH5A0CRY15yKfkCDD+Uep4t+QP5JiFXLnH5Augq6Q2GvfkCoz68M0sR+QF5BMq6tx35AAoPbP3LIfkCCRhuZzs1+QJ4JgIhezn5ALh2sFCAAf0CeA3qQkgN/QJfB9Z2eC39AKN3x4T0Tf0DU7MYRphN/QHid6wauG39A0zzUpLYjf0CW+XbmWkN/QN6Bh9rkXX9AcktThbdxf0BVRRViYpF/QGFLYyOtkX9AeDPuA16hf0BVIRaLQ6N/QKTTIWuaqH9AygsFxVCxf0BQeAGdzMt/QGapBJG/039Ahor0Zsfbf0AQgaQjiAGAQNiYURY1BIBA24nZCjIMgEBKArUmzw+AQIIj2DvSIYBA48j2J+QmgEAgOgE6jymAQDtsoq6uP4BAyC4KialCgEAepodK9EiAQEZ16LbmUIBABfRQHxNRgED+DTRh21aAQFD9mKMOWYBAenxUQolZgEDU2f+R4WCAQFJlhPHsZYBAH6B6WdVpgEBKyH3t72mAQImbSOfwbYBAVQUO9ihvgECc1D/e83GAQL2mAM4ej4BADFjTcB6XgECPgszyCZyAQBwh9KETpIBAlofM2fWmgEB891BGZaeAQK48d7iHqYBAwX+m/xOvgEBd2neoHLGAQNyD/ycFuoBA4h1FFgK8gEDr8cf3tryAQC5QTZt7vYBABhFT2TW+gEBLXgmMUsGAQICNTCWfwoBAxV7FdlPJgEDCPUZpTNGAQH4MFphK2YBAQgXyVcDegEAQtDy5Q+GAQErnIjlZ4YBA4rXjpmrhgEDkVNuG9uiAQAtMjwFM74BAmKI43z3zgEBV0YY+QP+AQKZsuWxBB4FA1KEwxj4PgUD1oFnKNB+BQJr0MJM2J4FAph08XFwugUCgIVofMS+BQGgRXVi9MYFArZ/61ik/gUBIAUvqWkeBQLTcYrcISoFAqB7DELNMgUDU1b2BEW6BQFqOfRcbcYFAWNkvlBNygUBElkSK6omBQPFyAkBmioFA2LZpNAeNgUBklBMq7Y2BQJNnGQFWj4FATI3hGbWPgUC9R1sa8ZGBQFhZAn1gkoFAxtFEGuaVgUB21+o7+JWBQPwFK/9Wl4FAAoI/2+eZgUB00QsFnpyBQGiKGltFn4FAbXIzeeahgUABr72/a6iBQKJ5rrdKr4FA4Ott81C3gUAq6xdZx9GBQBKjxxPZ0YFAidRGKPnRgUBIoAowHNKBQASP3r/71YFAjJ80qNLZgUBMhTaB+tmBQGjCa8r73YFAtnCZXdnhgUBMrsXs+eGBQHjE5UMA5oFAFkG0Bez5gUAHG5Vj7/2BQBF35WX0AYJAhqItOgIJgkCKwIwP2BiCQDIqFNTVIIJAPTKOttEogkBR7BjSzDCCQCz5ILLFOYJABLNvAgs+gkAUU7ARDUKCQBR/WcMSRoJAFKZNItJOgkC3EX/+i1aCQNSGZzEiWIJAfm89gDZdgkCim2rMjl2CQLguesmTYYJAbGZcdDRigkBaQEMO0WKCQGz8WY6TZYJAaVvXWjdmgkCjdl66anSCQCo8ouTSdoJAFs+tjKx7gkDOhPRADX6CQBMqMzigg4JASve6MUOJgkAwnAslQ5GCQD2T+66slYJA9qfaXDyZgkCK09UJVpmCQPIPumUOoYJA+gi6lDqhgkDkbj18mqWCQHLi6WUOqYJA6OLQBjOpgkDIXRkuCbGCQGiER7G8woJATrRybuzFgkASD9Re78mCQFima6bzzYJAktQnaejRgkC63q1i6tWCQAHWird92oJARnDrQoLegkBGo8W6CuqCQMQ82ohW6oJAvyLzaQ7ugkC/IGqYrvmCQJ7NvkThAYNAhSt5fRkEg0DiRn+c5AWDQBIUo2wwB4NAazZyaMsIg0AA9Ovt2QmDQCo9lc9kCoNAv2lOywAMg0AwAHkimw2DQIoSkQfhDYNAloCuQnkRg0BCT8fweRmDQFjPf1JyIYNAh0pJUHApg0CwW0mZaTGDQPcUtmjbQYNAynvc2etpg0AmpVmG6nKDQHQTgJIfooNAxFLAOiHFg0CikPBoy8eDQLygyqZ2yoNABq3HKMvcg0BJhHD2eN+DQDCcE7cl4oNAd/s0AIlChEAWeYg4YVmEQOzvOUr/aIRAoAftnwBxhED2GUDNyXeEQCqIZXP2eIRAl0TVgGF6hED2u9Eme3qEQLSU4E2Me4RAyemjxgx9hEBYjp+SJ32EQPTxafq8f4RAW2pqsHKChEDCR54PcaKEQNSjrnsfpYRABEk2t8ynhEAdLDiuF82EQNvD3NLEz4RAGKYrsHXShED8F5AcatmEQDy43chp4YRAsooI7tDnhECwgYoMY+mEQPz0U+Mr6oRAwKWe/YDqhEDQfTeYv+2EQMYl72wv7oRA18UabMPvhECmnSv7NfGEQE4bSm5i8YRArJmweTX5hECe655nDBaFQGTFERsPGoVAejJDs1cahUD8FCbT402FQMI2W8zmUYVApcHoMeRVhUDuLbrG41mFQPY7xjKgYYVA2l1P/UxmhUBRYeU4lWaFQAifAVigaYVAYBc/4JhxhUCQF0/2mXmFQB0m7D+QgYVAF1TaULiihUDjKRKovaqFQKYG89Yg3oVAlad8zCHihUD0Px4abniGQObzPQIkuYZADEpYTtHEhkCAXvMG1saGQNqe84Ih64ZA3mDvS5Eph0C4MPK9kDGHQLDEgsmIOYdAyOfAElxBh0Du7KVPi0GHQDvd8jfHsYdAbEmF78W5h0CsvMFAwcGHQDibXEz7xodA5DwHq/zKh0D+gBgjbAaIQF/YpHTWIYhAjeiKMER+iEAKcmBuR4KIQPj7eD1GhohAahVtwEaKiEBPNPGTRo6IQA== + hH7jX0jiZUAoFld2zuNlQEIdzoN8AnJAFOkHjz8DckBqPQyU13N2QEJ7qtfUE3lAapvo5y+FfUChbMOVlhKAQLR84h1ES4JAAnCSf+kqhEDSzZ4InNuFQC2aFII1Y4ZA/fcgC+gTiEDEI8caVByLQPeh3TS3e4tAxFK1RACljkD30MteYwSPQKq9CR2WNpBA+/9cxIdGkUDAQNzvxsqRQHsXVNndCpNAQFjTBB2Pk0AtLrnnI1eVQPJuOBNj25VArUWw/Hkbl0Byhi8ouZ+XQMTIgs+qr5hA8p0mPQ9kmUAL3THKwJOZQHK1HVJlKJtAi/Qo3xZYm0BvCvzmTNycQFc5giumtJ1AhB896HL4nUBtTsMszNCeQBNIm92ewJ9AD2jV0HpuoEDJL0l5esKgQM/zUNulUKFAibvEg6WkoUAURmWEuDKiQI9/zOXQMqJA1NHgjuMUo0BPC0jw+xSjQHNMaFYMw6NA - + - t4z9RdFoZkWsf9lF1dHbRPvEiEXabpxEuAkJRaTPlEV8S5hEBEEMR7pFfEQBxb1EmV93RSSmVUXR6E1F6KLLRHBVsUQjBfREWl8ARV4GqUTTBFJFTNMPRw6gYEbFKGxF2xUgRbSkvURZ0aZGgtyORAeDFUWIqQJGSArPRP5EI0WvYnlEkAO+ROqFekWapJNEiGiERPMQCUatD0VF/vHdRCCoU0VeYZNEFwLVRFDt7UR6oBhFx72cRIHvKkdCxb9E6FG/RTgtbUaHk69EkQIARfMIzERz7wJF8HFSRcgTlkTZMpxEvsLSRkWmrEQSnb9EJEB8RaeomkSnfgNFBMc6R7J4FUUt2F1GASAFRpz9xkW2EztF/fudRNmFp0TAm7FEdchFRcOj50RkGANFcJCzRXrWAUW4+FdFq2OSRBkLwESrTbVFeVDsRWCcBUWaiyFFO53TRBNrsURr6S9FDIzmRE8GfkYUn5ZEVqz4RJSDlESxNaRERrIxRUMwCEVbcLpE57zDRDp9rkTojQRFpBSlRCLRpkQ8IoJF2ja/RCAm6URnYmJH/oZtRTLSWUbedLVGGFsQRaunukRahIpFYJe1RQmBD0ViCopFcVgeRz8xnURkCfxEfbmTRNdkikU5JQ9F4Wq+RaXubEXEOW5F5WueRbKpAEaFl5JEZ8x9REIXDUU5QL1E1vPLRlqNm0Qg9hVG514FRd/VrES2841E+FyORJndnUSk//1EXISVRJqq2kTTAO9ENagnRU2uyUUsS/VFUbifRc/5wUQv70lF1DoZRn7KO0V7VQ1FSsTpRDDe0ESIqMRENDHtRCimFkUuOxVF+pJYRhgS4kQbP7hF/b2GRcnqKEUa85tESB6AREeglURMtJxEuvadREUVhURHixFFdPGwRPwPCUVgWHpGDp5NRpjHO0UfnvNEg5PGRcHxCEVyc71Ec2eERRD69UXLOCZGj4ilRRbFrUaU0b9GkC7+RD8Ot0WEnxFFmcIXRVCNXEXyTBhFZ1dURr2upkSgpbBEfo0TRSrqEUVoG1ZFSyq3RCPvi0R0BPhEvnmWRfe9jUQGhJJEXRw8RfuQmUU7JhxFduG1RNHu2kT6tkBGCkJIRVybZkZsqHFFuoX0RAhHukQ0mPpE9v/oR2A0kkZv1sFHKcXJRuEwk0WH/VZG/sCQRGRYXEZjUh9FS5ICRWvY0EQQ9xJFEcIuRWKU80UtJU1FtIftRBlImESDjIlEMESPRDyuv0S+iahE4ubiRDP7N0fuDdFG7aCMRbI70US5SjNF0eJgRf7nkkTQ16ZFKYeARPAWGEUfhRFFpqmTROBfoEVPIUBGQuFwRSyfuET4U6dE0jsGRQGiHEUiaT5JaTckRUdJwEXtmAhF1iebRVYhMkXmjeBEyDTdRI/fwkTx4j1IIK8hRVPg9UZWNy1FE0mERjGQTUWJX8pFuRFXRsI2skTlFZBEf0kERmi63kTMgZFEN1AdRZV6iUT9J5VFwPHpRMOwl0SaybJEic1pRZ7ztUUzxbNEO9u+RCoomUTik6xEBXWwRjRTQUbenGtFtxyZRFxGw0RMSdhEo9R3RSsdlES9ePNHfp0+R6vqKUbQcc1E7UiIRT1nt0VplL9EHn65RH51M0XF9YpEPYk/Rf5240cGHQBFcmuGRusvrkdpvn9FsDLCRpXrvkR5bI9GmVTORbH8DEWu6GZG4n4ARveKsEUQjARFrNQ2RQP7r0V8BqtEZoadRcJDfETqmxFH8LG/RDkfHUXt19RFp3zJREMUrkTtY5dEGtzRRR8OY0Ym8t1EO4kvRWnuC0aRgkJFitgfRxl6Zkb3/XpFQshZRcp0rkRh/GJFrp6lRAH7sERJ3W5IajA5R51Oi0YXb0NFG7kVRkN5VkWQ8J1Ftb2VRXHMj0XrGaBF1n/ZRGtGckUzt65Fcs6dRWbBREU6ExJF9tLlRjxMY0YLSCdFF4A2Rc5kdEYlxx9G3uGZRhKMR0VlH0tFPXX9REedU0Ut8cREjCXGRCHS+0RwKBhFU6PBR2wv/ESrjfhENtOwRnO1Y0XaqydFBMeIRor1OEUgxqRF8LcHRe8eq0T2KdNGozz6RZErMUUNW3JFy76jRO6UnEVxq0BF+zKHRD3TrkT85MhFT726RPwXwUSTCeNEfIkjR2Z1tUVfEBNGQ403Rgo/vkRsuNtFd+2jRJZSrkU0xdlFUQeNRHQSSkW76Y1EVsnBRKoeFEZAbZlEoDitRSkh8UReSbBElgWZROK9xURUQbxEbPzbRBztikYbvLpFzyoIRSP1xESQMt9ElbSMRcqXGkbLmqFEu85URWwFBUVe595E9DbARHAhbkV4vyFF9X0pRZIXjEWWzoFFkZaiRJkUuER8B4hEqhkGRcyzxUTrWY5Et4TvRAeY0EQWhhxFJoQ+Rrdvj0WXhJFFLuS/RSWQoET3NI9EH4unROcqlESuy4lFa4kFRdp44ERAKxBGikQVRV7nl0TlmaBE6sG5RMVDzERRWrZEX0/tRPm+E0WUFJ1FxN2YRCFcUEVF4sJE2Oc3RQkEgUjAGsFE9yjgR1ZFgEf12U1GpJhlRVXfdEUYCqtE7VXbRAPaqkSIotxETW79RC9LLEYg0ZBFf3h6RaherkaDDZdF7tibRCcR30R3DxlFaPNNRTsOz0WVPJZFlkEZRS69p0TWH59EpqmwRCsygEgieA1FFww2RRKjCkibvK9FvjD4RArcxkaurJtEd7WRRURhjkUGKu5EmxjURA2XVkV7sepEwvA3RYJXz0RzE91Fetp6RIfTCkUCZxdFbgZiSStlSUVKMQFJCji9RKBPgUgrnztHz1nxRN9dFEZ+wm1FEtuDRi6MokWbZZhEytSKRKyxA0Y+JVJF0dcyRZ8jp0QJSc5EcdwxRhCI5UWWGYVFzifFRO433URZHJdENPq/ROua5kVueVBFo5HGRYs2xESO19BE89UyRa76BEVPuAJF1nKURGWNmUTOSMdEmVPeR16zK0ejlbFEAB4AR8acA0WdXKpFrbXzRfVqn0QhXBRFt3FZRXaQq0TTLbhE66euR6BFQkftTVJGouTAReAnw0QW8shFGu2PRfeO5UTV87dEgEedRNenrUT+ApNHYZKLRPFbHkftbXBFtv2zRSSGEkaruJJF4wKURR2w8ESz/cFFlakGSHKLZkdbfv1GV5MVRiqsLUWIXtVEIeuMRM0zwURc4JZELrouRRzdO0W4f4tE5ZIHRXeOOEVLBIhELOItRdJ9zUTHS7RFyxlIRcoFxkVCPdxEgjkYRYNsfkX4JZxEkdUPRWVxWUXAEbBEIr73RK4QvEX+qYdFm7wlRbJ1YkVbOjVF/YbXRPkCFkfmj41GVy+PRJmbJ0axpOZFIx2mRKmRrETbu6VFFYO7RBaOa0W4lH1Fmy7VRPOE1EQtyxlFdlGXRByr10ab1nxGi/JGRVnKPUVRLRRHQYXPRIO2z0TTmJ1GfGQdRjoBYEVyP5ZEmb6iRUzKokSBbxpFmEqnRAeDSEWuWb9EaemdROj3sUQiz79Ea4swRgrevEXnJU9Fk37IROiYE0VYWTpGL7NlRfhmM0U18g9FtSDHRP/foERw3D5FnxFHR03uC0fCQUpGuDH8Rad6D0U= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - cJX+DAzBckBE/QnKbsFyQDSN4ynIwXJANC4mcKbCckCQd54gO8NyQAvH2nRZxXJA2Nhiwv/HckApPm9JQ9JyQF28xyFl1HJAAMZmFM/fckCUwrr9uuByQAQhPwtQ4nJAupDMZ4/ickBYXPoKyfFyQIwZLlOi9HJA7V5s+ML/ckDActmRiwFzQOKICDXQAnNAHNL0mvoDc0ByGoJ7vBJzQBzw87r2E3NA3k+OdUwUc0AWxo3CeR9zQD0P1C45IXNACKbB/Q0jc0B805/HziRzQFZyWqtKMXNAolRmRM4yc0BpVo/gNTRzQHnQQ2a6P3NAHy8xkONAc0CW90p6d0FzQOWlxKR5RHNAvBoQkptRc0CWqLJ2EFNzQLCsgUujU3NA8tEv6oNUc0A8JDE+HGJzQCTsKIM5Y3NAoyKVzSttc0A8IaRtanJzQG+fWKCFcnNACei/9Ut1c0BTaS5J0HdzQHR1u5Hgd3NAl+nzd3iAc0Bat136DYFzQEnYsXddgnNAR6YccViIc0BW3qHDhpBzQPbJD+VMknNA43Oy58yTc0AomQtQYZRzQOCaK873lHNAzedyrLegc0CWOI92WqJzQDgJpj3FonNABze2cAWlc0AJYfrCtrNzQPwN354MtHNABJlcvaG0c0BS1DI3+MBzQIhkD3TQwnNA0IFJdiXDc0CMgE4t2NFzQJC+kgDi1HNAjgkWNjjhc0Ac8MhVfOJzQAAKtm4O43NAvL7nZ6fjc0Bmp+I0NvRzQJqMQO2O9HNAys7svHgBdEAFHJ+keBJ0QOf9RX9NE3RAn92AqI4edEDqg7FgUzB0QDhsnSXhN3RAOu3dYTo9dEDGlRmhO0N0QEJwtV9NS3RAHPrn6oxVdEBsDT30IV10QEbRotK3YHRAHE0WxwhidEAcM8yeemJ0QFyyFptNZHRAJLvNFMZndEAOS74g1Wd0QIKnuIoicHRAFPbwN0FxdEBYYJC8FHJ0QOSoWNk5c3RAfhUvFjd1dEA+2oYpQYB0QKwf10z4gHRANIThM06BdEBI2OQCJYN0QKPrZKC7g3RAbmeeSBWQdEBZPEgy7590QGRD8OcOo3RAADf2ofyvdEAJW9lLC7B0QFH4EoLBsHRACkQnSW+ydECg78JE/rJ0QNxcvsDJt3RA5+UIkCK9dEAY/NeN2790QAiJB3fkwHRAJMLC1PzAdEB/VfQYe8F0QHR8F6MNwnRAtqOtgmXCdEASwTYzt8R0QDvUPk39znRAviGDHOLTdEAAxD1ny9R0QKzB6Pm44XRAfM3pqU/ldEDg8O7MjPN0QJRhjE+lAHVABh20AF0CdUA80m14qAN1QGEZDO9uEnVAPA5+OCUUdUBb94GPnSJ1QHMEzYnkInVAgAnsXasydUB77Q1tyzV1QA7lgq4mQ3VASr+QyExUdUCg7ColdlV1QPrfRwUNYHVArmMEXThhdUCkCnZydnJ1QC0T/76NdHVA1v9T/3iBdUBUxd0crYF1QCp1D2umg3VAJNPu3JqEdUAT2nKuzo51QP2W73LLl3VAbKCqjLihdUCAZk/YYcF1QNC7xN35wXVAMvS8z8vTdUBWG2xNCOJ1QLi6smdM7XVAqPr6XqbydUCvH/Ve8Pd1QAKmOZcC+HVAzu5ESEgCdkDCTX3C0AN2QDwiwQNVEnZAONmfHxMUdkBx4aPyhyJ2QGaayPCPJHZAtldWch8rdkA0uUi9Sit2QHkXq6kfMXZAWmxuEyUzdkAoc3ZCUTN2QMBQ0YYdQXZAJIQrBMhCdkB87t6cMUN2QDx+dwt6RHZAsbN17clQdkA3J4ZxEVF2QNSpFZbNVHZAVqhfwxNhdkBDphm9T2N2QGFPQ8DaZHZAnuYq63xzdkCK+ciLk4N2QJwx66zAsnZAXn2/XQ20dkD8+JPSdcB2QLzjrDDOznZA8lChXffedkA0UirEMfN2QAPxmZqQ83ZARvErWzMCd0DWHY9aAhJ3QNVZaRAOIndAxLuYaOgnd0DSudY+Qy13QITkSeZdMHdAbkINT6Yzd0B6wUZLDTV3QCSQtz3PQHdA1JNqP51Bd0Ai/8MPkUN3QAA7XTL8Q3dAC7uGrxpFd0CyRxtnSlF3QAGL8HeSUXdA5rHNop5Td0B/U09iKlV3QC6irqt8X3dAbFT9945hd0Ar12JElmN3QNryT5Uob3dAnGZIX55yd0C2S0pL+Hd3QND5R3SUe3dAP46r99mSd0B4iBO54dB3QIuSNVjr4HdAZTPJ1k3yd0DX4FDse/h3QPa9K41G/XdAwpPCDqECeECykRqW5wd4QPrRA93+B3hAfUVcA0QNeECOkCflbCJ4QKLl8zU8I3hAqg47ZNEjeEC6NUVo3DN4QFo2GQ4TRHhALoRYc3pFeEBQNROlyVF4QJxSobGVUnhAPx4ab4hVeEAimhRh+WB4QAeR9ha3YXhAcK+zR+lveEBDS/kDSXR4QN5AwVltdHhAQGJlzIt0eEBoNnbExXh4QB6D3vr2e3hAmks9jyB+eEBPn7NfpIF4QG58IZP/g3hA8vsWEZqEeEBsL/eiT4h4QCyGiceojXhAvxypl5eReECAmuxJ75J4QPDzaAAGk3hA8Ci5W6eUeEDUOwIsUJh4QLAhVq83u3hA43q/MD/DeEB4Sf/UN9N4QOG/bmG51HhACtvb4JXbeEBCjBXAned4QEUzSGIB9HhAfh3AFo31eECZ/IRumAV5QB4qOaCyKHlAKicaMAwueUAwwffnYzN5QDi2W+y5M3lAjitrb/hCeUCD3CwN+kN5QB7E2gfMVHlAvChYRTl7eUBElM2GW5N5QN0heK9im3lA/Zh1LlCjeUDS6nDyaKN5QN5Kpc5Zq3lA6sk95W6reUDPm2n2vrJ5QKBMy4RC1HlAIE7cZrnjeUAuoh/ETuR5QJZr/QmM63lAFB3Xug70eUBUu7TB+gV6QKj1OHj3C3pAl7Ug+WMjekD4IMfDLDN6QKLaOihxM3pAHp89ggw1ekD1L0FJUkN6QNS74mYaRXpAnsjWZ4JNekBolYVLulB6QHvO9rQqVXpA+o5O/CFcekCOHyLQKWR6QF49gxSJcnpABKDGZR2jekBeg/NVdqN6QLIPy7olq3pAmKaDzX2rekDkwG0AE7N6QPBzjSX1s3pANt4MnAy2ekC+5TCNQsx6QFDHXau603pAiGOXOEjUekDe/rkQZeF6QPC+guo143pANdrBEcjjekCWJ9JXNu56QOSDYB4X8XpAOk3NrV3xekCbI9xT5wN7QFLXM/97BHtA4OfvrykOe0BAO/zgzBN7QF4jSNj1E3tA+gMMG4gUe0Atr09rTBV7QH6LhxZaJXtAXlQkh1Uwe0AuKXGXYjx7QGAQWAVpRHtA1IsruW9Me0BGiqLsC1x7QE8203MjlXtAFiFQiibke0D8PQpuNPR7QKyoQtyL9XtAvKvtwJIBfEBteAbp2AF8QJq+ShbzAXxAhanNXDoEfEBO+z4iZAR8QIbMra2ZBXxAMDKTEtARfEALD9LW5ht8QLou9HFvM3xAV4eKnM1BfED23rEjU0h8QIot5g2UTXxAk4aOdtxRfEBeGPH55VJ8QEf9t+cMYnxA1vX0bml7fEAaM+KHb4N8QBre8vpdi3xAerotRXaLfEAvbtYsw418QF6wiPkck3xA4N06LmqVfED7ujYxXZh8QM458BF7mHxAX3P7E1iZfEDQTEUQwp18QC4xppixnnxA8mFgsPSjfEANWEtJvrJ8QAjeJgN6tHxALENEBdLDfEBix+JhGM98QBIDkyv023xALE8bwlfifECs5Tp9pOR8QCypWJAW8nxA7PHjRlTyfECUudZAc/J8QGLxs/v/AX1AqPYNEUsCfUAdKAfeQxJ9QNeIwrKtG31AhoD2BDwifUAIzDpFtSN9QLBW7B56dH1AwXVAgoF8fUAkU6BPhYR9QPk6HEqVjX1AgmQX4faTfUDS/C4TSph9QJkzM/f2m31AjQ0HUi7DfUCEKpMN58R9QIDkUAko031AYtUwDfTUfUAHIVK6j/V9QG9qjao0AH5AUkHak0QQfkAagZ+gIiB+QIMR2zoiLH5AjraznUAvfkDeCG7cKDR+QKzfPAEtPH5AkwVyf45VfkB2Q0hJNnR+QA4z8YG5e35AVzQaFaCDfkDcKtDFUYR+QEzjQYeli35A8kJ+uWCUfkA8n8Xqu7R+QMkV4kTRxH5ACNEk5nDIfkBFSW1j0c1+QATUWUUo035AtBibxN/UfkDM+DeMlQN/QGaT4htBE39A/eOUT6UTf0C2nuqMqxt/QFDHRDuFI39A4vjnH19Df0B0IEqHcEl/QCTM9KBiS39ArF1Hw7dxf0DGrmr3soF/QHAoRACng39ATLWDH2ORf0AbKaxlrpF/QBzcbIIvnH9A2o2nEV6hf0AE6vSfQqN/QBzyS3R8pH9AONJfW6Gof0AM24MuVbF/QPRbh8TOy39Ahi7jYsHTf0AGwaFvzNt/QAxelhSJAYBAOF5ljzQEgEAMerLF5QaAQBllf83MEYBATw8nzWsigEDPfHSb4yaAQE5EC2P4SIBAZg4ta+ZQgEAD4zyDFVGAQADDAhfcVoBAptnA/A5ZgEC+KMn2DGGAQPDdLbfqZYBAHA05fqFngEAi5CAR8G2AQPWDHMopb4BAwqWQRvVxgEC1gaqRHY+AQJJrdIcHpIBAndq/1oepgEAz4KyzE6+AQBOpn6BwsIBAgC9XpwS6gEDiuDaHVruAQIwMOyB+vYBAaFl4oV2/gEBDYed3UsGAQI4KLGOfwoBArmIMpRPJgED6UKLHU8mAQKPRkCsGz4BAq4y0/CvRgEBt8vg8TdGAQLoIzU9l0YBA7jqIu0rZgEDkMFxGwN6AQOiPSPBE4YBA1tt7mlfhgECYp3NYbeGAQDkV7DCk5oBAzOnua/bogEDO+KmvSu+AQDOXJhI//4BAjuusKEAHgUDcjUoMPQ+BQPA9ST4ZHIFAvu4t1zQfgUBvNBREUyGBQMDyo0A1J4FAPtxASb4xgUAwAWBjKT+BQEw3+HhbR4FAIv5DsQZKgUCuVGhjtUyBQMq5U+/lWYFARLqXqA9ugUAGliIbEnKBQN4rFNbBdIFAKZsKOmN/gUCa4jMvEoeBQDJ7DZbqiYFArof0ne2NgUDByvz7VY+BQBeCIqrykYFAnEDrp+WVgUDqhE2VWJeBQPhVPgadnIFAkjcWNEWfgUAm5lQf56GBQEYhpxVuqIFAbgKcqkqvgUDSLXo0S7eBQNbNWfjHx4FAgwxlTfnRgUBVxSjuGdKBQObBg9p804FAnDJFrZnUgUBhTDHD+9WBQOEkNJD62YFAbsxAsPndgUC2Y2wI++GBQHTv0xP95YFAQNR4g+z5gUBArSv57v2BQFr726znAYJAagJRfQIJgkCQS1xAABGCQIskWCjYGIJAHsz+o9gggkDupg8P1SKCQJ5pUQDRKIJABtS52/cpgkC6sa7mCj6CQHZee00OQoJAVT8iew9GgkBCi9j9g0aCQCQciTQVSoJABoU6qY5WgkDM05wCBVqCQOWITqafW4JAMmZpPW5cgkCQVMMbjl2CQH7+0XySYYJANLM3pTNigkDd3zqsOGaCQLCuKJydZ4JAFP+iMkOJgkBwQ8FqRJGCQEq6Jfk+mYJAxt5ivg+hgkAiKCCiPaGCQHRa/loRqYJAiCSz5zSpgkAGoMMsTamCQKpZVYkysYJAO3DG9c7CgkB+vQGV7MWCQNYScpPvyYJAgNiULPTNgkA+S/ny59GCQO4RRbHv1YJAqLCBEn7agkBpUI8rgd6CQHBn6f0P6oJACQ3zbgX2gkDkd4BO4QGDQCx96azkBYNABgEm9C8Hg0Ax9VraywiDQHQA707YCYNA/4FAHO0Jg0CwaR/4ZQqDQGLgN0AADINAzkSGS5sNg0D/swcN3Q2DQAqosYzvDYNAq7hlL3kRg0DcXLVyehmDQA2HAFdLIINATxN/WXQhg0CK3FF/cimDQFYV/FJDMINAl9KVD2oxg0BawA2SgTGDQOBMfdgcOYNAYJ19qWg5g0CWKImW2kGDQI6PrkmQRYNAZhia5g5Ng0Dc2/iZ8lKDQBaN8z31cYNAZBBa8eOBg0B9oTaBH8WDQGmT80TMx4NAQFYK5Mjcg0DmlZG5dd+DQBIkFKmY6INAMnoXmopChEAyMSs8oEeEQJb2mbwoWYRAZFeTaf9ohEAKuf57/3CEQBif4T7Jd4RAvhSFzvh4hEDMCIe3YXqEQG6qSC97eoRA5G0emxN9hEDE+dypvn+EQJZ5pV1agYRA3MV1YW+ChEBMsvAPHIWEQPqL79oXnYRAEYM1DnGihEA48VfIH6WEQOkmt227p4RA+IFYMxvNhEABGuljyc+EQJPrOytq2YRAK8tZAmvhhEBL99dV0eeEQCLB7CRj6YRABElRVSzqhEC1cBI1MO6EQDe/YGo18YRAFlxtpWPxhEAmK0I2wvGEQPQcIHAm8oRA+5t9QTT5hED6WCubXPmEQJznsF0vAYVAu2Ut7QwWhUB0/OG3qU2FQCuajsPjTYVAADKfoedRhUDueZzB7VWFQBhfiE7kWYVAYPMedrVehUC2t1xCoGGFQB0kmuWgaYVAmPvCa5lxhUA6DYCRtHOFQMPfLdOYeYVA2AcMLpCBhUAom3XLt6KFQGKO3hy+qoVAvkDK3SLihUDkBpSKbXiGQBdMzGPSxIZAWp7QH5zGhkCM1fPN0caGQEA1/oPRyIZA/NbFaNXKhkB34csGkSmHQDDQcGeRMYdA6qwKbIg5h0BZG/RdW0GHQBBywySLQYdAcyyqEoRJh0AMhAzixrGHQOO0IgXJuYdACk0QPsHBh0BJIBNl+8iHQH3VqxfCyYdAQKACh9chiEB/I11M2yWIQIZ3MP3cKYhAlCfmMER+iEAKgeQmR4KIQD4p/l9HhohAvln37kWKiEBXdl3wSI6IQPKhrPkU04hA + KBZXds7jZUA1uAwZnGNrQGS4z0t+BG1A4rYaRubic0D5NnxfV7N0QAAI1zA+c3dAwJEQmW/kfUA= - + - FcjCRCu3vkV99mZF4d3eRdGnLkXbL9dEr10bRbWtEkfWaKFEVTH5RPaU3US3Mo9FGwmaRUXNQUWhOqhEfO+8RLmTrURCq3RFk4jXRigZFkbHfWFFB4XCRChJIEXMW7FGcYbhRD+nsUVJuM9El1+0RI8vtUSsUrxEbTOmRKcNTUXYDfpFX0zmRGwqzkRtg29FD5CuRE14xESOD+lEND0aR48F7kUaRlxGtbnORM58SkWN+YZF9yq8RqKvDkW5hrhFcsaXRPqJF0UMqBdHOMLqRAlT3UQx+F1GjTCnRZ1s2EWcHtlEbiDVRGWbhUXXohpF0ICXRGjCskTuerNFw1nGRKveHEUaZ6xFjjXIRcM42kRAMthEt56fRKOlEEXUgY9ETJxVRskXLEWo0EZFeASoRKE3wURPdvFECOXTRGrfYEV/eIREH1SpREmRLUfP52VF/4x0RkUHrEbP455EofOXRS+RjUVAAsBFEJwcR+O4uERT6OFFwKAJRaPmkkQSgbdEgS28RdNPpETZDUVFZ0mXRbvSPkYhAclEZVWKRARtm0QEMgNFylacRozQykTZHJ1F9noxRaGeykQ7g7tEi0+TRBcG0kTbgbVEPw6fRA+2BUVNB9xEnra4RKZVtESIJMNEuoyRROwbqEX37qZEwfUARoWmfkX4cYZE9OgdRRIBQEZC3JFFeP3tRDxz7ERlqvhEFFeWRElx3kSrjStF3jwWRYKHEkWV4KpGzEr0RDp8skVyM3lF7VSbRT5jyUQYicpE8kvIRPWaqkRj0MZEpUesRPHwFUW4GV1GqFyNRY1aHEW03CRF6hoORqOxu0S+56pEknOjRHSRT0VH2AFGsjAgRhJ9iEUCCxZHpJgtRwqAKEU/4u1FjUIVRUvfZ0VxqE5FXZc/Ra7UOEVbBt9G8bCvRLamyETn5JVFQTPBRdEgGEWoT0ZFqPaDRTr6mUQmXKVFYMn1ROpOh0V1Yt1EuGa3REIjVEabiyFFCmFWRqYNo0W9RJNEY6/CRNKU60eQ9bJE2zi8RojwLUgzy5JE3RzKRiORq0WDnmlGrJ7MRpQEn0SsEupEeCwyRQkZHUUnoWJFfVsCRvO5iUVHnO5EqO4tRejGrURJ79FE8x6qROsEs0QJkDpHFiqdRuAQU0WnCnpFz1jdROezEUVIl81EEEQXRq1spERBvbBF/roIRseKnUVE8hZFt20eRcgbNkXTOjdFq3CdRNHP1ETSDnlFphE+SXexFEZCuXxFBmS+RRRgSkWMow9FDrQ+SJHsEUdAyXJGsLVBRQWbVkXUaDJFRGqlRgkvmkQ5kN1FMfYnRQCkjEQZAENF4Fj3RCrXt0QCUS1FxESvRd4r3kRRR5JGZDIZRiAsO0Uz0KxEZuCzREfBxERaBK1FINGaRPoLC0gLcU9H3RdORfudD0Zsa8VEJG+7ROzENUXJB+hFDqGzRMAdyETisClF/KlYRThF8EQu2y1FU1+uRxNgHkUnYExGUqPUR1Hi2URvgM9GoVxVReWRvERyYSxFMryQRu69zkW+vJdEkSNoRmKFBEYAq4tFlp0bRTiVy0SmJKNEwSqpRbg4oEU/wBdHNXHVRMyuJUVe2LhEVZkARvbw+kQbtzNFtR/bRCxV9EVfE09Gcqe1RE1JqEQJ5qtEPiwFRZQGIEbtm0FFeSefROidEEcWe2lGAUg0RUboSEU7FE5F0UdcSGahGke8MIVG8Pm4RLvbL0Z03CpFN+KURanndkVo559FW7F0RUysokQTcVdFTYrFRTYA3kWXIxxF/z2xRG+T2UTU1ZdEyTkJR80xFEaZ3VZFiqr9RP59XEYitARG9cbyRS3R3UTz5i9F0DxPRdyQCkUyueREI6bdRObGAEX0oBJFFt38RHbLo0STJBdFTH3FR8Z//0Q3wxBFoLDORgu1PUW6xwxF2gGYRsMFJUXLPpBFNh20RFItw0RUYcRGOFUaRrlVy0Qs7eVFmuOLRcIlo0SkMUdFkI3oRJZ4EUZfMRtFC0zaRIB46EQkyx9HjZNVRePDDEZCtkVGnIqdRNfSlUURHcVEE7n5RAM4DkUC0t5EoZXmRbUH2EXVMEBFD8gCRWm26ERVTtBFYLKORToVLkWU86VE8wycRBw9SEWF8NBEo7szRuFmiUWhXYZEDGjFRNmgrkQOJMdEWAlSRrVQAkVtsqpEcUsORuaPE0WgbrREj5cSRROBSUVBObVEefHJROTbPkWBykNFngkoRe9x1USEDRBFC+AeRQqd00Rkq7xEd4a5RF6LwURzXmtFmy/xRFb9HEejYS1FqK5WRkbLHEUfRARFNLSSRKe6UkXYRyBFvDMNRXa5+kVxNsVE4/erRGfikEUqArtEYoMbRc56F0Viss9EorWRRM8310gqsf9E0trPRIKxU0grhY5EHEMdRU/C40c0UxlFVPexRhyep0XR0RVGXfYVRRvSSkXdcJVEXzUwRYu+C0UsdCVGbPiERfz/WUXWnY5EU3qkRoShKUVeNb1FL8+cRN5VV0X5Ct1FPLc8Ra+47UQwXKxE5iEGRTbkvESaDdpEIW+yRPrHnUS6SHdHWQ3dRgCkqkWdmeVF+GL4RItAvERDZo5FN2LmRJfgK0UHPe9ERB/eRT5ZyER+wa9EhKQ0SZ+DHEV316BEzmsNRWjN4UghVFNIl5EBRzgW+UVyG79EFNeTRvJnJkYHNjlFx+fARYBGM0WD41xGP9mLRRK/pUQ3PzZFb92fRDJJwUZsFjdGY46uRbUctURwc5JEFkvjRLPfqUR9wVxF+heyRLsBz0TxePtEunLjRaxNo0W2tvxEC23fSI4XgEhpPyBIxa2hRXsjPEd5nONESL9NRrQ/2ETduD9FDzXFRPhZm0doRktHPLMXRpyElUXdS9NEHycnRr3GsUWieKZEEEybRNfwgkfm1wVHBSwuRTUuwkXJNdZFWR7LRRtZikXb6yhFOgzFRFJhSkVLW9ZE3JW4SOE5U0j9XiFFuTDsR7A8CkexB5JEoT30RTyeK0VjYiJF0BIpRWLRGEUKlghFfkmTRFBJqkQm+rFEurzURHoaWEUn92dFA4+rRBbtp0QTVahEsuwaRVj/r0QEh+xEDjfqRZvWP0WRpAZGpcoDRabiTEW7075FJ9GRRaJYOEWd/bFEYj6eRZs4BUWYratEuSqpRQtRRkXlg7pENobgRGYww0S6rdVHsP91R2w2/kSlvvFG5r4CRoWKmEUoKKxF9e5VRr7ZiUQNEJpEKk3GRFGegEXb6ctEf0UaRavsjUTtoNBG7OtWRtbPn0WIHbxEZ3O1RHL5m0e0KxpHG5S0RtrCukQxwgRG8m0KRUWo7EUnsBJFDWfURJmU0kQSwaZFdPe9RAjARUUc5mRFUzPHRHeznUaM9y9GCgfXRcixxkRPoFlFWuK/RLjibkaCMwNGcPrkRbBf3kTBERhFqqS7RYAISUUcz7hEW7stR8Ew40bkbDVGYBfmRWpeC0WeQZlE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - e3+PIHjAckCCfumNbsFyQPKogcHHwXJA9dpIu6XCckCUP/bkO8NyQDdhYoLGxHJAhbuA71rFckCa+xkuAshyQOEwsusR0nJAvzJ9UkPSckDxyrV6ZdRyQBGYI5vc1nJAtE62wM/fckBMps+EueByQDQG9wtR4nJAngTPOY/ickDX4BCeI+NyQAcUtm/K8XJAlmh+ArnzckDHUyvBoPRyQOACpMK//3JAz1iro2MAc0DgA+wWTQFzQKZUdK6PAXNA4AkOZs8Cc0AM8ZyD+gNzQALxif+8EnNAKk+i3PgTc0DG0sDoBBRzQF6zLCxNFHNAACicvngfc0BUxC0WpSBzQNcTER05IXNAtmNEkGUhc0A62pCvySJzQJJ/I58QI3NAZIlGgAgkc0AjUKDjOiRzQNzgCtnOJHNAJAL4kkgxc0C8e0LcVjFzQALe8e/PMnNA8DGUFJczc0DrPeQb1TNzQDwYMVI4NHNA084b/7g/c0AgsYJA5UBzQCJDmaV3QXNAj9ds9iNCc0AO3VGIekRzQGYxuRSaUXNA8htSg6JTc0BiLjVohVRzQC5AikX5X3NAILqtAhpic0BSNE1GO2NzQPkeyssrbXNAGuM/h9txc0AAOAdgVXJzQPuBZNVqcnNATdmlQoVyc0DxhIvmT3NzQIVb69pMdXNAREwHud13c0DuXaxyeIBzQJY+GIylgHNA6uQDSw2Bc0AAFpZNXYJzQLwl1lCGkHNAonGA7kySc0AfFo2EzZNzQGpv77FhlHNAWGu/rfeUc0CHoaLJt6BzQMCF5AJaonNA+NtEII+ic0Aac4hzA6VzQJdyAIfYsHNATNkAtDKxc0A2FNTYfbFzQGfebEe2s3NAGuhKnw20c0C/WaA49sBzQD5vAqTPwnNABnhhJdbRc0CxvRjH9NNzQBIjJbji1HNAURbpFDjhc0CFLo+lZOFzQHQ+Qoh74nNA6QJF1hDjc0CdodXwpONzQNxMrmDw5HNAAUlgmjf0c0BM9IoVjvRzQDGbsKx4AXRANFLURqUBdECAFSqSeBF0QGDgPh97EnRAWU7sYkwTdEDGRq2TdhR0QNiUntNMIHRAodyPh4wgdEAo7W70tyF0QIWrT6jhN3RA+pSjDj09dEAaHRVFO0N0QK2gCTBUS3RAjsi+xiNTdEBUBcYIjFV0QMz/4mraV3RAvAJfLSFddEC4MO1ruGB0QHwrT9QIYnRA48Zhv3pidEBGShMUDGN0QH6CnqNOZHRAjqewGMVndEAX/Ruo0md0QOi/0PQhcHRAsnmTpGJwdEAUvh4uQXF0QETrtgA6c3RAssu3yDZ1dEA46zsz+IB0QNpm3R5OgXRAbpUxJ0iCdEApOj4TKYN0QEbMpMtJg3RAEasK8WWDdEC8qqpXuoN0QDpmMcgVkHRAhm5l/GuQdEC01OJf7590QIcna3XOoHRAsBvRvLeidEAIS37YD6N0QEPNMNcLsHRADrXpHsawdEA3Ndn/brJ0QMNffcX7snRAIJ/mWMm3dEBSGnrfIb10QLqJr8fbv3RADzy5klHAdEAjB7Rs4cB0QLhDbeF3wXRAdOAiR1rCdEBCZHQCt8R0QEA9GPvN1HRAqEmPrCPhdECISYHWuOF0QGoi0m5N5XRABlEkgIzzdED4xYgdpAB1QDyNmwhdAnVAcWGCjZgDdUCldReAqQN1QGpZlOkjFHVArQccD50idUAKdkYu5SJ1QFo8cIepMnVAzjuVGsw1dUD26NerJUN1QAOkxkzeT3VA+x9MtAhQdUCKBcFsTVR1QDLBd9p2VXVAyuWI0gxgdUAGDcRcOWF1QOJe8rR3cnVAkIndOY10dUCgMTlDeIF1QPMjvKesgXVAqDBgYKWDdUA6PkLqmYR1QNVSJ5+KkHVAOpfBebuRdUDBkoZXcZJ1QMwes/48k3VAUscN+cqXdUCP/ozjI511QJL1/9a5oXVAiJxX+saqdUCCqZupy8B1QE/nC6hiwXVAW/EhF/nBdUASRyKizNN1QBgock8P4XVAWPNfKQfidUA+HEiqTO11QDXO2qKm8nVAgCqfgwH4dUBGM8F2S/11QBd61XpX/XVApeZgtkgCdkBUILrQ0AN2QECoS9gSFHZAlzjOrEwUdkAxhEqACxZ2QMAg5DCIInZAcspuaJAkdkBQGwG5Hyt2QORJcB5LK3ZAUX8hoB8xdkBAQ7IlJTN2QPuJ0SRRM3ZAhCoUxxxBdkBYPlNrx0J2QLicMfUxQ3ZAin8xVHpEdkCOsBq/EFF2QI6ldjLNVHZAaVUnElNjdkB2XxwL22R2QA51aa1WaHZAD5h8QnxzdkBIIMA5ZYJ2QLKl54eOgnZAbpa6Lo+DdkAZnyeUOqJ2QKCSoRnBsnZATCdQYnmzdkDLd0ygDbR2QOIh2FB3wHZAN0zGU8HAdkAW1kDnzs52QNuowpIR43ZABKRZgjDzdkDSNMdVkfN2QAXkXws1AndAjyfyYwESd0C44U6OYhN3QIAp0V8PIndAYBB/Kugnd0DrIWmXQS13QCSjv2qjM3dAOHBgLw01d0DUP2bKnEF3QDiTqv6QQ3dA5qcqiBpFd0AkVvArSlF3QAWVtBySUXdAJIDzHp9Td0D009KaJ1V3QHvskNpIYXdAD+zZn5Bhd0A2H4+poGt3QN5w2cwnb3dA/mjYdZ9yd0Ce29Bb+Xd3QHYey8NFfXdA0may7HaCd0A+lBQH2pJ3QCih9mJLlHdAgGn70Zi0d0CYNl3ZNtN3QCzNXgp/+HdA0I7+UUb9d0Ap0wT71f13QDqx5fufAnhAxrzvteUHeEAWcs2p+wd4QKp+hGFDDXhAohfkayAOeECw9peZbSJ4QEibpp0+I3hAkixCN4ojeEBNEajh0SN4QGOk75c/KHhADG5ya5gteEAz0+g33zN4QMH8toYLQnhAUL8M/hBEeEBgOOocekV4QCT7UdvKUXhA9s7NX5RSeEBK4hsKhlV4QBzUHqSiW3hAyPPD1/hgeEDKBAwwt2F4QOZDXbI6dHhAEE7RGlx0eEB7NTSki3R4QA65tmHUdHhANgaWZfV0eEAiDpnaxnh4QOyDhmP2e3hAOG7cBSF+eEAuv7kWOIF4QFzAsx2lgXhAaHKQMH6DeEAAMAXtmYR4QIQiBLfChHhACmFMek+IeECMirUk14h4QMomHHmpjXhAzEBSEJmReEBiQRJN8JJ4QA8XvdkFk3hAXxk9OaiUeEBBRh5nSph4QL9qmm04u3hAGCgjUMzAeEDuN5HVQ8N4QI7dWrC31HhANISBC5fbeEA4Kt8VnON4QNCPIiOX53hAsCvHDwL0eEA0uTV5jPV4QKssiMAOBHlAGG0v75kFeUCSDpN+sih5QDhuMyoNLnlAkG+5hmUzeUAwjf/1vzh5QDqy94GOQnlA0rri5ftDeUBMOr/qy1R5QHobMRbZgHlA07SBB1uTeUBYGEI+Ypt5QGJmjmpTo3lAX5JA0WijeUDpDgQFWqt5QHqSwUhtq3lATjvUaMCyeUC1KQkBQtR5QHrybTzJ1XlAq+Aqbk/keUAV0A+hjet5QKiR6+QP9HlAvgjFhPsDekDeelhk+wV6QModJYH3C3pA/DH842MjekDgFbXcKjN6QDflvJtxM3pADfYSRAw1ekBa7EcgLjd6QKyAxsJSQ3pATpfDXBpFekAECq50zEt6QMM1qtmBTXpAyicsqrZQekB2yeOO7VN6QPdg/XYnVXpAhHEtmCFcekCK1DIiwmN6QNB9p8QpZHpAgLzKzMqAekDaPmjbHaN6QCFZez12o3pAatwVyyWrekDLtR+mfqt6QK3mn9YLtnpAIsjl7RnGekDd/CYAQcx6QIBpkB+603pAS+iC20jUekA6LePlx+N6QIx9SK417npAwnm3lBbxekB5VOcJYPF6QLNZ4JDmA3tA0G/nwnsEe0DQY090Kg57QHXRM2jzE3tACpHz9IkUe0D0hghRTRV7QErsvPxYJXtAZBLahsQze0CAU5pZYjx7QMlytElpRHtA4UMktXFMe0BCjgfjDFx7QEKUjLsWZHtASGqiVxB0e0BE4cnNIZV7QKbtDQYRo3tAcIL3oiaje0BqqlH8d8Z7QN0bHqEm5HtAGI09lDT0e0CHvzlQjPV7QBVz0cgq+3tAKJRTndkBfEAHVjoD+AF8QKRs0Fg8BHxA1xarDmYEfEABcPH8mAV8QJj+TwrSEXxAgYHtS24zfEA8r/9jzkF8QIakMvY0Q3xAJyiMl1NIfECc+lVZqk18QMQnyYrZUXxA4S2iPO1SfECYqAxnDWJ8QPnDfAgscXxAiPNCtGl7fEDW53WtcIN8QJCzwTdei3xAs/2Z6XeLfECsp2tcw418QP0KyV4ck3xAGG7CaWmVfEAPf4CHeZh8QGBYa7dXmXxAz6der7KefECA64Jn9aN8QFh4U+DAsnxA9pqo33e0fECCd4Ki0cN8QPZdAOT023xA2+0d3VfifEDk/FvVEeN8QNhFuOal5HxAOBvSKhjyfEAAoyj3VPJ8QF71KjT/AX1AmG0kIUsCfUDCPOQPRBJ9QMa1I3JgEn1AUnT5pq4bfUAa+hxxPSJ9QIymt+GNI31AxI+Pg7IjfUA08U4aoDF9QBq1wGLlc31A0A2j2Hl0fUBWO0r/gHx9QFhfRGWGhH1ALwffi5aNfUCSrIXw7JJ9QERBAoT2k31ADiaI3SrDfUCkOJV15sR9QCL8+Y0o031AwCZQ1/PUfUBl+O9a2uJ9QMBn3BuQ9X1AnrgdVzQAfkDc4wWxQhB+QE+bwj44H35A9cALcSIgfkD3d3wvISx+QJSRjRFCL35AaKvggSo0fkBYmvcj2U1+QC3GM+Sfg35AknLzNVGEfkCkf1xypot+QGWMq52ok35APqbVkV6UfkBtvryqEa5+QL6KgOYOsn5AghbGDNLEfkAZbsLsIMZ+QF6X8sJix35A0DNVxqzHfkDygjBXdch+QGwB5JvNzX5A32Zox5QDf0CQolp3mgt/QL6p7PM+E39A0kZR+6UTf0C6D3sESRt/QL6cs56rG39AJUHFCVtDf0CE8JuNi1h/QL5cwDrmXX9ASEvoWOhff0C+Xg4+t3F/QP67Npm0gX9AU5bdwaCDf0Bhj/pLY5F/QObYVQipkX9AfqOpwJOTf0BqjIZDXqF/QDTSBS1Ao39AfDVww4Gkf0BC8IVNm6h/QGyABr/trX9AwIJ3QFaxf0By+DnXy8t/QGSu0pa+039AQ8obepLjf0Ba6Gh9hwGAQAbHHds0BIBADowJC9kGgECQ6JTUzBmAQHqPKdNoIoBALGjtV+ImgEAosdpkjymAQO9APR3rKYBAIrZqF19CgEB6sg6PqEKAQDbrLSzxSIBAz4WHVOdQgEDqC0b9E1GAQPwGJaDbVoBA27Dr0yRYgEBWvn9BD1mAQAaNCzaHWYBA5nMi5AthgEDOSmzu62WAQKAV56PwbYBAYHuFVilvgEBDVIlf9HGAQLplHkQnf4BA1LRgBB6PgEDuE4SvH5eAQFKZ38yFqYBA0jKfgdWpgECio5Rc9q6AQDZ3iiQUr4BA9g5Bf9exgEDXuwHCjrKAQBCfY490toBAHj0FkAK6gEBhtyB7Xr+AQD7xy6RSwYBAioRrJJ7CgEAiyM1lP8aAQAwVrKeyx4BAhPDqmwPIgECq/x+0U8mAQE5rKH5M0YBAcpBzMgvXgEBCXW0CStmAQE8RYke/3oBA3t/kyUPhgECKXBQjWOGAQOxso+ht4YBAEhMh7RXkgEAEd79Z+OiAQLqDCPdL74BAra/BE8jxgEAx5sT4PfOAQLQT9oU//4BAmg3N2D8HgUBtQcIVPg+BQFJaMLQ0H4FA6K5R0zUngUB6CKcEMC+BQIrz20y3L4FAXh4i7ik/gUCr3RjtmUGBQM35IflaR4FAjEdqlQdKgUB6TcAwt0yBQPY45BZfT4FA/usRHOZZgUCk7Gu16V2BQAMJlzXCdIFAJo3euXB3gUDe1X+ZPXmBQBoIKzBhf4FAjokU6eqJgUCuN9o67Y2BQPJxfmlWj4FADAmiye+RgUD4/uo9VpeBQCLAM0OdnIFA7gFPREifgUA09z7q56GBQOJRHoChpIFAKhrBTEqvgUBJ+l+qS7eBQKPLOUbJx4FAaLCzOBPKgUAELZwwIs2BQLc32/qx0YFAyYFoBNLRgUDctthG+dGBQLLsTYIc0oFAfhtGXUvSgUBfHjsJftOBQOIf9tX71YFASChguvrZgUDNjJ4R+t2BQFh/14T64YFAmzvAL/vlgUCRn4UO7PmBQPDsu0vv/YFAPBmFp+cBgkBD5jrh+AGCQNwmFQ7YGIJABHlC7tkggkDs2ASk0SiCQJovSv6jMIJArOmYvug5gkA7a5iCCj6CQKiwYdQNQoJALDiDdBJGgkCqFEiqL0iCQBdvgDiQWoJALrD7DDldgkB/jmbmM2KCQALZaPQ3ZoJAM39OgqBngkBkWMRuCmqCQGRUwio3aoJAPgReGmh0gkDK1F3fQnWCQD5iBF1DiYJAc+AAYUORgkAWYNFlPJmCQJSVjVAOoYJAENwR2DuhgkAxcUwFDqmCQGwyNh00qYJAua9FdAmxgkBe7H2MuMKCQA69GazsxYJAbW5xhe/JgkBwa5Iu5s2CQG5suYj1zYJA9wbdCufRgkAuNsgZ+9GCQMDw2JV92oJAei6ni4HegkC05zJbCuqCQKx8qnPhAYNAf82SbuQFg0CjQj73MAeDQMigZHnLCINA2p2eD+YJg0CEd0wqaQqDQDTC5EveDYNA0luqXg4Og0CYUq95eRGDQBbTBhV6GYNAaInLOkwgg0DO85KqciGDQMpyNTI6IoNAtH0WmnIpg0CfyxcgQzCDQECiaI1rMYNAtRZFZ3M5g0AMQTc23EGDQCm2CynfRYNABmfsOepyg0CGyqpR44GDQMYK/GcexYNAlkzdA83Hg0DZfX0neMqDQF74DzJ254NA+HnJo4hChEBomuED/2iEQBMUPT0BcYRA/qXIs8l3hEA9P+r8+niEQOzrToxleoRAW1MfAH56hECd/SyeFH2EQLaQhZbBf4RAEnyM/myChEAcxh0dHoWEQGTzVhPXlIRAyGNmOBadhEC8TrJycaKEQMjUqXcepYRAVnMzc86nhEBGtKlvHcWEQFz7EeMYzYRAw+FRQcbPhEBi4gEvatmEQJbKwPBp4YRALOLHh2LphEBr0YlgeumEQFqkubgs6oRAZf/Lv3/qhEBSDsAFGe2EQKwYPJDA7YRApqMwiDDuhEBAxOMWxe+EQKYUwvo18YRAlxzvV2DxhECCKR7EJvKEQMLQYLs1+YRArkXFUbUPhUAuspTaCxaFQKSo/pxfK4VADlnjJWo5hUCCVpIB5E2FQKUHDzjnUYVAxQx/V+tVhUD469Yd3lmFQG+DCTmgYYVAnrWDNEtmhUD22BoVoGmFQHL/e+iYcYVAqb1YzLJzhUCeeJ0Ul3mFQM71T1+RgYVANjsfqreihUDwLu/TJrmGQI/dO0jQxIZATPrlVtTGhkCOViOv1ciGQAJgZlLVyoZASsbcPiXrhkD6sZjqkCmHQHAMlTSRMYdAwhFAK4g5h0BpeyQmXUGHQBKU5wiIQYdARp68vMexh0AE9e9CyLmHQKJcz5W/wYdAyjdRVvvGh0BZu7xfwMmHQCu5l4nVIYhAsj7tJtkliED0/3N/RH6IQI99r3BHgohAmHFHREeGiEDlowdbRIqIQA== + KBZXds7jZUA= - + - 9EuXRO9O50U9ivxExbH0Rf57AkXsfrhE4CSuRJy7CkWY1JREV9cAR1RknUTo2rlEWg5ORdmDl0TqlW9FWRmIRWhNw0QJOGxFfKfQRJ1vqESQdL9Eej2oRP6Hk0TxjslEt1hvRQ/jBkfB/VVGV+KFRanFfUUXBslEioQfRQqypkQA9bxGm/h8REYmmUSFsSlFp2OsRO1MtUT8g6xFkgGfRBg+j0QIrJxEDWmCRF4Th0Qvv+JEq58ERUy5mUQrRcpFys+fRBXoGUaBKxlFIWd4Rfl14UT3colE92ORRNU0MEXdUURHY9jVRMhTk0SPGbdFpamPRnGXAUVUEyVFCaiMRerRzkZ9OfBEsxAARauFi0UQFxdFtrhOR4lnxESNSN1E7V6BRjAbJUZ4t+tFvr2IRMz9EUU7xJREjkaTREQgnUTK3VxFILcBRdZrs0QhP7hF+TwCRVGqkEQ6ctZFahDgRWhMt0TsMh1F8gTgREl6yUR8FZBE0ITYRDR2uUQFJpNGQun7RDPltUTCbEFFR9NqRX/MvkRZpotE01+ERBTD3ERjNTBFKii9RHhfAEUonhBFSlSURHbH2USkqLRE9ncRRxgbdUWyZDtG7hA/RpssiURytPREKB+FRekFY0VOT4hFwrqXRPi6NUdeJKJFNNnARD4sCUWHSutFyS2gRGGI5USak5lEcdiJRE4DXkW2iLJFtG2QRFx3iEYadeRE5PeTRLvnNEUsb6JERrCvRHg8xEazAc5ElCcSRka0T0WOpARFLYm6RHGEtUThDw9F487SRDzjP0UpDwRFT+uLRPjJN0WKip5ESFPxRZ+nzUSVqsNFafWWREMz1UT/2hVF84UGRvWtpEXtzsNEaDg4Rc1svkTH+NhEiMjNRP5cu0Tt/dhEOvAwRfke+0RwjsxEHhM3Rrq260RVT8RFu2aURWbmDUXTephECkmURO5ij0RGeZVEe2yQRJVWoEQ9U6VE8QG3RJ7nfERqkp9Ez83WRPGPo0Q9rs1EsICbRE/hikbefvhF4uqvRGrpj0QHS6BEgoHrRb844kRwnKhEBD2uRKGOlkR1i0dFAy8qRlDK30W1KplFmvjCRmavSkcK8bFEqVGXRfBLD0VZrZhF3rSbRdlYNUVtooRGQjGWRHzog0WiFqZE/VyqRb7lj0QvuJ1Ea13DRJRmokQhzSZFQ2i/RF7/jkUPMb9E8WqTRDAlS0X+hu1E9ml6RbT5VEWS1adEDd5+Rj5AlUSOBStFfKViRjrcxUVZtKREULPmR8F8rEYBMFJI0v2xRt5QhEUhn0RG83jIRjsyC0Woqo1Eff7PRJgkyES+C1FFLWfhRZe3U0UPNMNE0nqvRIPlJ0WJYJ5ExiynRJKje0SOrv5EC+ZTR2/w+ETFQslGWgVMRckCykWkpgJFz/K2RDL1PUV3IvREAcW/RMlHJEa2zhFFLVnNRIyTuUSI0rBERt5yRfEqaUags6xFCxgqRfuAFEWa4qxEu+LdRNdse0UemWZFahRZRSE2TkkeCy1FDNYHRTWdY0aUtCBFK+jiRTzBekSWfSxF4RLfRFohVEjoY4pEAogERzRfn0Tj9pdGjaYHRY4QyUQdzlRFqHuERqxI1ER2wtFFrC/xRKDEo0QQ1ktFnyTuROhOg0QUop5Eg7RyRZGN/0VzwZdES8KuROYRyUZH6khGUOWYRaWRoURxi5VE/J4DRVTCjEUvUahELscSSJlKS0fijItFHjzjRf2C9ERPKvpE9PA+ReRc3UUtmbVEViUGRaXzr0S8aC9FEZaXRPskjkQ0piFFhutaRwKvmERDVhRGHzTQRw0lKEWsBtlEfDbYRu7gskRRkGRFpXg4RaurHEUpk0FFNlGDRgSGjkQmEN1FSFCGRF8iXUa7lMJFK+iSRfOsS0Wu0bNF8+TfROPWFUUnK9VGD6mERPGic0XnChVFEs/dRBo44kTz6ipGvjVrRqln70RyZ7lEX4hbRb5CKUasTCxF1vqhRLwo7EZeHidG+0wlRXcPikV7kZpEEEGVRBduKkVRXoxEo0NjRL1Uk0TYFS5IvhEDR8kXpUZBlutEJbIkRmVKCUX5HPRETCU4RcRqt0VoOpBFRdEQRU4dtkV7i3ZEUE96RezqNUU94o9EvsDQRF+XkER965VEtLsERw1YSEaBrilFtbGlRI7JfEZ5XUFGKY1/RZbqokUxRGlF2Z0dRTg84UQE+khFoADGRGUBDUWuLftEykXiR7rq3ETsqQ9FS/+sRKTx4EbCnidFGkC4RnRlTEVKjfxE3MfMRQX+DkXxPJ9ETZHeRMXZgET335hEg6+8Ro+tw0UweyRFUBB/Rdf3LEUtgrdETwyIRMZvE0bbmDNFE2fLRCYUpUT6ExdFGdfjRsDbWUUIQodE62YARsltQEZntoBErH9FReHBtUQzFJFFq1bfRQ9hFUW61shExxPaRNKrqEQsqQBFHqjYRQMPjER852tEaUfiRI6tQ0WC0bJEygQNReDKqUTDmGpFvKdFRlH8p0RKn3hFdFaiRGqUvETHQ4tE3nKRRL3Ep0VaM8VEskcHRa50KEar6otE4m2ZRJvtYEWQNrJEWmaXRIqw4USw6YJERIKpRL9hg0X5IBZFgkKxREEVyUSI0xFF5BG5RFuDm0Q7EiVFrYTzRGoM/0RlWY5E4TqSREdhAEWdortEIb8HRZ/9cUYuZglFsr2bRHnut0XKsaxEoSjLRL+E2EQ1N35FSyQbRfxfvUTNe99EUpQDRiuU20TOeiBFiHeMRD56nUQ8VApFJ9O0RH2f60SNoYNExDS2RJBNiETOO41IkLCuRI4rlURWyqpEzFeQRL0HBUhrCZNHl1KCRG8yU0bP6SdFFnqaRY76AEUCMQVFub+wRMnHvER+LM9E1J2RRCpyMUWjtTZGi0VmRYyaakVBTKtGQRicRUx6rkQQzptEHkacRbowp0RIn/5Fm/OyRTMA4kS65q5EmXo3RXa/e0QpigtFcc+YRC6RfkRPza1EoeavRunN3kXMn7JF2tuHRUxqAUUvuwpFDsG6RKGU6ER1PZlEoobzRTCcp0QVnPhEQs2IROnRhUTn6C5FsxQURTxMKkkjb0NFIvSZRNEXk0Q0lclIO8czSKeCw0YBSrVFtnHaRMKmkkbzGg9GJnuLRE8OmETBIS1GFSM6RS2nWEX6faJEtpWYRIp4u0Y5T15G5B2XRQ8vlEQ0qZhEN1qpRJpVBUZ9DOxE3BuuRKx6L0WHNKNE4HN6RPsKx0TuiulHeuk/R1YL80aAW9hFrOEBRsL3JUXUsC9FWuDQRCYG0kQa2JxHt/QzR/VJokUhBNlFIJZPRYvlMUUeqOBFhaRSRU7ZGEV20W9HzDndRhWGA0VefU9FrRgHRopOw0TIk1RFstuMRM23C0gJCHJHOHpFRWSiE0cMMohE2yZQRhjckERWt3dFlPWgRB9ZukRfqcBEBKXeRCl+xkT++hFFG4iGRVB65ESfwmxEZAaHRJR8t0UkFB5FmSEMRli+o0QbYb5FErNjRRxc5EXl8Z5FP+AeRYa9nESW9nhEY9jLRAdtfkUJI1dFe8wyRSsCxUQzIj5FMLUMRcViHkfgA4dGa8ApRnccn0SbYJZF4NuhRDCzu0QS945E3StfRZPvB0WFzEFFCoVFRZaH2kSRQvxETBXJRN+gHUUDCoREIsCARAzKzkZJQltGfSE4Re3vBUWnnBRHQngcRUlRbka/KCVGj+WwRFHlbkXpiYtE81/RRWxFxUQNQm9FV+CkRTezLkX9J3xFf+2aRAa6JUbNq9NFnbQmRU7jjUTBagBFrg0LRvd5mkWwE2pFQ6eNRG722UQR+49FPE5aRYDSBUfcp8xGSx8xRuSShUU= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - xnFv627BckDJqpzRx8FyQH4NWtVPwnJAlL/WxabCckCpuEvY5MJyQNf3FVA7w3JAsOdmg1jFckCbBHvbAchyQOzAaU9D0nJA2la+H9nSckC4otN9eNNyQMZulhtl1HJAgyxvcM/fckDotG9ouOByQLoKvUDj4HJARBxZPVThckDxP0XkT+JyQIdmayeP4nJAYqBgocnxckDQc9fatvNyQKTh2NAL9HJABI4AiKP0ckBi5knQwf9yQJ4f/hZjAHNA2O9fi/gAc0BWxSoBTQFzQMlVz7PPAnNACtg6pPoDc0DXovyzvBJzQEUjDgIGFHNAh0wmkUwUc0CN7ySmeR9zQCQVAYKjIHNAGC9y2jghc0A4AXu4yiJzQH7eUasOI3NANN/hZjokc0BMkp9jzyRzQC4rkkRKMXNAuikdqlwxc0AXXtnEzzJzQNr9TGyfM3NAyy/SBzg0c0AOlSLZuT9zQOAmZDXkQHNAmH8gKHlBc0BQSWH3eURzQFbnO7ycUXNAbu5I0qNTc0DXCx71iFRzQNAiWtr3X3NAGjib4Btic0DGv2wIO2NzQHweYy/NY3NA0KWsuSttc0CkGszPa3JzQEDcUGGFcnNAuEYQEFNzc0DQRTwxtXRzQIgdLfNLdXNAzmFK5Wl2c0BWWufJ3XdzQDT+XZcrfXNAF7EuP3mAc0C1ryo/pYBzQGSZnJcNgXNA9lYEZ1yCc0AEFwx8AYNzQDbxIX6GkHNAtPj8B02Sc0B1KnH/YZRzQD6ZR4X3lHNA+N0/hrigc0DqoSHcWqJzQDwfNivConNA3fT55QSlc0C/2egpyrBzQJZTZuU1sXNA7sie/7Wzc0CIReHzDLRzQOnG/NihtHNAiLUTOPjAc0BpqaX5D8FzQBAAdxfRwnNA5uMjribDc0ASt19k19FzQLT3ASy80nNA9CVD9/bTc0D3CF4G49RzQHkJleKk4HNAB3ACUc7gc0BMILj/OOFzQG/xLjtc4XNAsVGtiYzhc0BqVlVkfOJzQF5REowO43NAKBDlQaPjc0B2ijeLIPJzQOM/u5M29HNAEIeVZo/0c0Dgjdy+eAF0QGIRn6KhAXRALtVcIVEDdEBc+UNeegR0QKIJWth4EnRAztm4iUwTdEB+LvWXdhR0QPzHgnK3IXRAwyhFj2YidEAibzvGEjN0QFWqh+LiN3RAnmpx/jk9dEDJVT0XVUB0QNiVeUI7Q3RAblBRclZPdEAaUvOm+FR0QFvYGkGMVXRA+OigAdxXdECaVbkaIV10QPRby5W5YHRA2KlHpghidEBDjSR3emJ0QH2UxtF8Y3RAsqkFSlBkdEBYhUTzxWd0QGAPuCDUZ3RAPS1y5x1tdEDCMhVWInB0QJ6XmC1BcXRATISJ2BRydECPxrU8e3J0QLjTRoo5c3RAxCg6Izh1dEC4eKfn+IB0QALmlopNgXRAum+61UmCdEAZDlkSJ4N0QEsT0z67g3RAcHwcDxaQdEBY8ECyU5N0QBaMVwDwn3RAVKNu/s+gdEBWBUiZN6F0QCnTjnu4onRAizqnxw6jdEBUsxOx/K90QNQ2JVPCsHRAnGV/926ydEDG71PW+rJ0QEj38WTJt3RAVAuv4xW9dEDgiur0I710QPp+KbXdv3RAUyHG7eHAdEBcOfa3eMF0QEThIErtwXRAWG0kDQnCdECHk+w0WcJ0QOJHLtlnwnRAJqYXBbnEdEDzWuO1O9N0QGAvuoXi03RAGhumLCPhdECyujDGuOF0QFdlndpN4nRARqfQ8k/ldECc8Bn+v/B0QKyEmkCN83RAgOA196EAdUB0LFojzwB1QIwF+LTpAHVAzpHmGWIBdUA1Ijz2XAJ1QOhCblCXA3VA+rEiD6gDdUAy7p7vmBB1QDhZ1e/4EnVA0Ck3lCIUdUAUHTGSnSJ1QEgkMhPlInVATb4tmLkjdUCkZBJMzDV1QCCvxPXaRXVA8JMRKIFRdUBWQZTIdlV1QBByxPUMYHVAIhzk2aJgdUBwKnVrOGF1QCt20+bxYXVAwIuYnGZjdUA2rg1teHJ1QOrKz42NdHVAopn2f3iBdUBgA9yrrYF1QPTEKDW6gnVAWIxslaaDdUBR/FMOmoR1QE2JbPi7kXVATKdXLW+SdUBGOB+/kqB1QEbWQ9W5oXVAkOmaBEujdUAEixEhyKp1QCoAgTU4s3VAuGyQcszAdUAA7vAKD+F1QC9fIvcI4nVAADkbijzldUBUE7iQTO11QOLA3Yal8nVA1OXJ9vD3dUDAKlgfSAJ2QPCEEV3PA3ZATp2Uq1USdkDwCVO+EhR2QOhinBJNFHZAaF/Djg0WdkDwR5y2iCJ2QKZCwxiQJHZArb18xx8rdkA6GtenSit2QI2pE3KoMHZAimiBIx8xdkBer3BDBTN2QKaAgPEkM3ZALblv2Js0dkD8fT8rLjt2QIf6gdNMQHZA7p++jh1BdkC5dUegyEJ2QFi2c4IyQ3ZAPJpip3lEdkBoxdSIyVB2QDBFWgsSUXZAwqTjvYZUdkB2dvGxzVR2QOg3awVSY3ZA0h40Z9pkdkAVK2lKWWh2QFJORep7c3ZAuEaBpmWBdkCO67sfkoN2QIVSyDTpnXZA/Ig1kcGydkDcN3t5DLR2QCDwRzvPwnZAcuGvRRvEdkBoZMG5zs52QAAKGRAx83ZAPjRju5HzdkDnQsG6OPt2QLiJZuIzAndAROLgdQESd0CWW96jDiJ3QOdhA2JxIndAzpDJ+ugnd0AOeCrWRC13QGzeIrWMMndA3nzguJ0yd0CT0QcZpDN3QH4txXoNNXdA5JXbWsxAd0AmsBFTnUF3QIdG2OuyQXdA3l+P1FpDd0AZZ6QQkUN3QKj6f0zGQ3dARIZE//lDd0D0/va+GkV3QJjqM/VKUXdA6OScopFRd0CsF4TqnlN3QCZAKS0rVXdAlMIBeXxfd0A4PP5cjmF3QEAV8SuYY3dACjvz1KNrd0DbuLyTJ293QKWg1ZqfcndAbiRlP/l3d0D/xnVUlHt3QD7mRsgqgHdA1DgmA3mCd0D4UbWwmoN3QIxzBXzbkndAcAUDTeLQd0AWegt8UPJ3QDw+rd58+HdAO2rG4Hb7d0Dxux5sRv13QEKM3T3V/XdAbwERLqACeEADItAW5gd4QDMW6438B3hAdoF7/sYIeEBC6qYqQw14QBItYrN3EnhAqLYujEwVeECmmbz9ayJ4QMKy7Ik7I3hAuvWhpoojeEAgqk/R0SN4QG5Zl7iaLXhA5nAl798zeEA0k/EPDEJ4QD/zB1URRHhA0qHSjXpFeEA119tzy1F4QOTTrHiUUnhAVJc89YZVeECWPVG6nVt4QA4Neez5YHhAGMyFZLdheECyWm5wmWJ4QCw9vsFLdHhAQGWFkmd0eEBQq2TCi3R4QPqq+NyndHhABlobo8Z0eEDYr2SZ5XR4QHqHj/72dHhAuyPzZcZ4eEDIEXnN9nt4QNaHYL8hfnhAVYn2QDeBeECtDKwtpYF4QKx2rtp6g3hAD5/oz5mEeEDpZB1RT4h4QLbE9a2ojXhA8OohmJmReEDmgmxo7pJ4QCxJ8tQGk3hAqkqZ3KeUeED9mklauqR4QCJBBtt3snhAj833bNOzeECYjCQu47d4QAqR+wA3u3hA+M23usvAeEBKtT5KPsN4QPZQvAVL03hA/GdLUbfUeECGKFFp0dh4QAgg87ih43hAoqHuCgL0eECZHQX1i/V4QBTuIdwOBHlAIgf9I5sFeUCyjhAXsih5QNLIWkQNLnlAGpbq1mUzeUB3S/6jvzh5QAU/aIn7Q3lAhk40M81UeUBw70KL32R5QNYfJ8hEc3lA6GfwWVuTeUCev1mWfZh5QDPe4axim3lAVRCbwWejeUCxqF/iV6t5QDZpjQJvq3lAKhkgVMGyeUAQP76N0MJ5QKoxtH5C1HlAMuySLc7VeUB8OMEjUuR5QIij8g5R6XlAWv2O94rreUCS2FYfkPN5QKxabDUP9HlAJPeP2vsDekCyxzHlURN6QNaRxAQ8I3pAd15xy2MjekDcf4IZKzN6QOgyCVxxM3pAssDpeww1ekD/EsM7Lzd6QKhModEwO3pAQb7f51RDekD1i2kyGkV6QCxHMHnNS3pARpyfHYBNekCcDvs8uFB6QLeUgzfrU3pAaFvdUyhVekCEXNjFIld6QNhaT8YhXHpAWlIp8SlkekBxOTxNNGx6QEWvCPMdo3pAigs6k3ajekDMN1FeJqt6QKaXshJ9q3pAJnJocRGzekAkA/m4+bN6QPLnpdQLtnpAoVuTdSnDekD4G1ipGsZ6QMQX3ylBzHpAZHK4mybOekCAzEz6O856QOgiFgG603pAmPJflkvUekD6kYXqZOF6QOHUcCDJ43pABECxgTXuekAmSEEJGPF6QNo4rmhc8XpAMsziF+cDe0DGLggofAR7QFTw58bNE3tAqv2Pv/UTe0CXmffviRR7QEXofrlMFXtA5GhmHdEje0AG3fyWWSV7QN/N8VDFM3tAOt1nIWI8e0DGGnRIakR7QK4RpiJyTHtAWGMwEA1ce0AHpWidFGR7QLKvShkjlXtAfONauHjGe0Bqq2Qim9F7QDpRFTYz0ntAUAX1fSbke0AhCtdmNPR7QCIzhwWM9XtAfndUHSn7e0AyJkILkQF8QKKICh7aAXxAWOsdr/cBfED34NW+OgR8QAKdAQRnBHxAOHEBTpkFfEAZjOJHiRF8QAJd7uTQEXxAqiFqueEbfEAxk4G/zUF8QLS4xQBTSHxAsX+h9alNfEC1RdHPOVh8QDKADZMLYnxALF7kBmp7fED5xDcQcYN8QCBJglBci3xA/ArNAHaMfEC9wPajw418QNgCTTIdk3xASlnXHWmVfEDOTqXqX5h8QDwpx+d9mHxAVO6jX1iZfEB6LtWpvJ18QFRUwKWxnnxAmTXaCh6jfEDmLl2bwrJ8QPsLszx7tHxA7WwZyxK2fEBS8mYH0cN8QLJVbg/023xAXhd131fifEBqTTu8EON8QFSa/fj943xAqTMrB6XkfEBH4Fr7cOh8QP2W7QbH7XxAIJUgchfyfEAg8o2mVPJ8QKcgHaUBAn1A8nv+S0sCfUDAfroZQxJ9QKAgyxyvG31AnnegkLgjfUANXa2x9jt9QEIcisP9Q31AqMG4U/xrfUBomH44enR9QBab7PKBfH1AmUWjjYSEfUB+4thrlo19QDiEyrvwkn1AbfB9AfWTfUCevvuyNJh9QEbZJFzwm31ArAUzhSzDfUBm13/05cR9QC6F0TyhzH1AI56lkSrTfUAwW0519dR9QEZuH0Da4n1A+DdNcpH1fUA8L8VnNAB+QCQLDmlEEH5ASiWCozcffkB0fcdgIyB+QGoqFbYhLH5ATuUT0EEvfkAYzkdrKzR+QG0RRxwtPH5Awjuw8UE/fkBUw7696U1+QKAucH+MVX5AVjMfVDV0fkAVC1gvt3t+QJ7qZ0Kfg35Ack0M+1GEfkD+SjZ5toR+QLS+x2ERhn5AFmVt6aGLfkAWjcFhXJR+QCSmbhx3l35ABeq62GKbfkBgvu1iJqp+QE6npJCWsn5ATBURZtHEfkCCl8cxYMd+QB5kkYJzyH5Asf1gtczNfkBN78Qu2tJ+QNrZjETf1H5ALkErssrffkAp43KjIuJ+QJsFSTOSA39ABoI5nT8Tf0BiBURrphN/QO2smmZJG39ARFeyZKwbf0DoZTl2W0N/QKZPvtFmSH9AWIyRVIxYf0Dm9hIu6l1/QEvkyDS4cX9AC+lJZeB0f0DmEp58t4F/QPploQA+hH9AWFzA72KRf0CwSIdtqJF/QHK6wG6Yk39ALj68tH2ff0A62Pd5XaF/QJ7Vwh5Co39AxbzVRBGlf0Ch0RjKnah/QGKfAwhWsX9ArXv6NszLf0COIUNEBM9/QC9KNAGL339AyMpAjMTof0BN9vVyifR/QCrvZ4+HAYBAFgMOqtIBgEAMnYgGNASAQOxjnCbLFYBAq6qV8mgigEAkR4wb5CaAQCsNY7KTKYBA6TnJOes3gEAl/i3J7ziAQOYxV3NfQoBA+BhoCalCgEDTLWyZ9UiAQBg2TjE7S4BAFam55+VQgEC2/j5eFFGAQAaOhuPbVoBAzmUitOVYgEAKf5YMD1mAQNbyvjaJWYBA8MqzHQthgECSaFHMwmGAQEoKbcXrZYBAJghFju1pgEBS24Yt8G2AQIT9wzMqb4BA/6UegvZxgEB2py64KXeAQIh+kREnf4BA1VtnZh6PgEBEvdHmapCAQCIgneYfl4BAOPLm1IepgECERRfqE6+AQLKM+aEesYBAnmlu7wS6gEC+Nzy3jLqAQAp6EFWzvIBArNgJIcu8gEBIPj19M76AQOAgIZtSwYBA+8Z/J5/CgECvx4Qf9saAQAC4q4JTyYBAiGJA1tTJgEAUha2qB8qAQGDT0eth0IBAFPkJQSzRgEBEkwR7TNGAQBAOCORg0YBA2fHMX0rZgEC+v7QBwN6AQLCu2KRE4YBAmrZgpW3hgEDkov1KEuSAQKTWpI336IBA0NkJyT/pgECuZyZ0TO+AQFcLzkVS8IBA6IPvEBTxgEBtl5dpPfOAQHmTtG1M94BAmHdjqz//gEBeAAB9QAeBQEzAN5w9D4FAtiyFnDQfgUAm+CqLdSWBQLMPics0J4FA6s12DbUngUDoKM5lLy+BQB6rz3m8MYFAULeNRCg/gUAANMHWWUeBQJ7ezAMHSoFAnlIF7rVMgUCuBk4fFVKBQJdDk4cIVoFA9hLdBOdZgUAM6Bp+Tl6BQFhJ6SWDYIFAYK4G0uRpgUCIu9rGbXeBQBr9L6Jff4FApyeK9WGAgUAWGH+H6omBQDulPAcFjYFAVbv8Du+NgUAcMrIRVo+BQOK39NTskYFAXmqvmFWXgUCP2qc2nZyBQEJHYRbnoYFAxyV74KGkgUCjfbVBb6iBQHW1HLjvqYFAPiy7CEqvgUBaPknrS7eBQPj1rEbGx4FAgpjhdGfOgUA6U+WgxtGBQNpCWkn50YFAqRjFsyvSgUC0BvfggdOBQPKbeCjB1YFAkm1p3PvVgUCgGLB0L9aBQFjrHSr72YFADKJKdfjdgUBsPT/Y9+GBQETAcAkK4oFARPqUE+z5gUBGOYjP7v2BQLdCPRPkAYJA3+7pqfkBgkCxLC5b2BiCQCSGNxXXIIJA9KXU3tEogkCApVcUCz6CQJe81zC3P4JApPaFUw5CgkCAZa3GEkaCQOlsjG8WSoJAKJeLpuBOgkDI8immcFCCQKZ5OHiMVoJAwkxriM9WgkBnjkh80VqCQLo/vG3mWoJAtmZm+ndcgkCX35/sM2KCQGTCSQI3ZoJA5ixmoKJrgkBM+ho9Q4mCQFKWeaxDkYJAyrKXmKqVgkAncgV0PJmCQKLJ0ItVmYJA3OhFxw6hgkAoqrrxPKGCQH5+8kNJqIJAN3tJkgypgkAy7iOVM6mCQFDM0CwHsYJAV5G4saq3gkDMUJaE7MWCQJyIUZjvyYJAZO6R3eLNgkAY+9x99s2CQItJoxnEzoJAntZf7enRgkBORlMCftqCQDWn1ZiB3oJAaIRQsYTigkBOtMrPCOqCQJYjNM2s+YJAyN883Xz8gkCqY3Rv4QGDQOh9uZvkBYNA9RbE0zAHg0Ce4KwXzgiDQD+H9h3ZCYNAnZXemOsJg0DmT0DAZwqDQAt68cDdDYNA6n3/ZHkRg0DB7EWq5BGDQD4emg96GYNAlKZdQ0sgg0B827DhgCCDQC8e3o9yIYNAiJ12SXEpg0BquahJRDCDQJMLr+xrMYNAeMvskWc5g0D055fu3UGDQDlo+jySRYNAjvhXJxVTg0Ckshan8XGDQAZXQzDqcoNAmMRREMJzg0BspNUR+HWDQID+fL/lgYNAQtldrkmDg0DEqDUrH8WDQHBWm8XKx4NARDKaSHffg0CGvmbeKeKDQEBH+zGJQoRAoPrgHP9ohEDEbWX8/XCEQGCzp6/Jd4RAP90DovZ4hEAS5fhUZnqEQCCHh2R/eoRABi4Y8hR9hEAYqMLnwH+EQJAP5rNvgoRAsKLnZh+FhECkSagUw4+EQLOwjFZrmoRAK9Xea3KihEDucu6zH6WEQJ4+g6zNp4RAHhf2GnPChEA/AhTAHcWEQHS/Q5wZzYRAK44picfPhEBmp7iQc9KEQBuWOzBq2YRAlAo2amrhhECwFNN1Y+mEQA62blUs6oRAmFE9gRnthEBeVLcGwe2EQNPl1IYw7oRARAiE8zXxhEByAReNYPGEQFpS5ZEt8oRAzkg8N+H3hEAW5pnbN/mEQFygrdFe+YRAOhZefy4BhUDA7egsHAWFQBtag3ILFoVAjJjn6BAahUBNQqj6402FQKCp97fnUYVAyHL7W3NShUAsqMTG6VWFQN4paFPhWYVAZOgJj6BhhUBEc680u2KFQEq/xFlOZYVAhiOlNk1mhUDTHRIRoGmFQLZ8LPtKaoVAjrm+qZhxhUCO9SF0tHOFQJS+0uOYeYVABtfYFpKBhUC6tHiOt6KFQNbH4TfEqoVANbHxWiDehUDWPA7KIuKFQKCb7CLT4oVALOyFTXsehkClCEspcV+GQBBrSIpreIZA1L48Vye5hkBED5RmKMGGQM4t7E7SxIZAEFlawtTGhkDyPAaH1MiGQGtckZPVyoZAkMcVb9bMhkAz1epLIeuGQDQtMTOO/IZAn/9RDJEph0Dmlr41kjGHQOw0sI6IOYdANDdhnV1Bh0Cks3NXjUGHQHNYbbHchYdAoBE1s8exh0DIKaFYybmHQIbTWy/AwYdA0JAUXcHJh0C4KCFAAcuHQL6wyA3LBohAepuWMNchiEBJSAbj1yWIQHaaj5jVLYhAXPQhPmFmiED+upL9Q36IQGb6AeBHgohABOkH+0mGiEA1SMuMR4qIQMj+wPZSjohA + NrgMGZxjYkAAVPW5y0NsQOO2GkbmYnJAdE+7zNUidkBxDmdlvnN4QAKnB+ytM3xAcWxDuRaFf0Cs/YX4IlKAQDjlj4Y3S4NAcyksCI9ag0DXVvYkG3OGQDgUfrDj04ZAOENs2o9cikAbGu/Lk7uKQDhyWgQ85Y1AG0nd9T9EjkCcUCQX9LaQQA285Q925pBAHGgbLEp7kkCN09wkzKqSQJhXW8NlR5RADevTOSJvlECtbJzEi2OVQFZtFAZDy5VALYST2eEnl0DWhAsbmY+XQEQHZqwSvJhA7Qfe7ckjmUDEHl3BaICaQG0f1QIg6JpADaGdjYncm0CCNBYERgScQI24lKLfoJ1A/iNWm2HQnUAN0Iu3NWWfQH47TbC3lJ9Ax3NB5sWUoEB/KaLihqygQIf/vPDwdqFAP7Ud7bGOoUD/QJn33HCiQFgwexoPiaJAsbutITJPo0C/zBQCCFOjQKNGlyVNEaRAf1iQDDM1pEAu0TcmYJ+kQD/kCxdeF6VAIFwhKnthpUAxb/UaedmlQM9wGSiZYaZAivonIpz/pkDB+wIstCOnQA== - + - NqEERv+gOEX1UqVEtNW9RUlatUTcZIFFxXqEREBKwURkLPVGkRWNRCMXoESN53BE3WgFRd2+7ESBZ2xErweDRCz6jkUYGY9FecdkRR3Y+kTAxnlEFm7JRH0n6UQ/vJ5ElhqzRMrdZ0Q9GjhFIEggR55LTkbHo4hFdomWRFv7j0Qx34NEg8K7Rq9vx0S/ix1F6ux1RH89oUUvm/JEjTK4RA4T6UTnIIBEZ+GdRHUy/UTkCnVEG0lVRQiDM0anivJEQF+SRRdD40QB15dELtHBRIlasUQakKdEZEU9R5yIoUUR+XhGQZeTRMwEoES/Dw1FQ11jRLp0TEX/ALpE8LXARjzr0ERWdfRECdGkRcsRjEQTaRVFMTRLR8eOo0To31lGlVXPRWp19EWMQpVEi/tDRXZEhUT/E55EjH8tRUc3GUWK2YZE0ZWYRBB5oERV3cpFa1fLRNIcLEXUwI5EL6ypROYlnEWytYxE3ziLRFUY1kWEV15EfOyoRBxCtETfc3RE9L2+RDQvf0RB6QNFgwuFRBqGfEZK+LFEUtuKRFzmbkS8yWhFf/qOReU2ikTq+RVFWjRUREjp10RlHCpFyI2uRMbak0Rl0fdET+hjRIk+l0S9cLFE4a37RIxHxkYbdW9F0/gtRsxKG0bJe2NEeVfiRFK0pUWFjclE47fMRDYKyEWALFhHF/ezRLkWkkQZNu5FKTXYRLrfKUW25dxFP/SxRCIeyUSf3T1FD8mlRQ+lrkRM3Q9HOBiaRMhDfkS4E8dE3sY3RbDIV0Uw7dFEkmSZRhOIykQOtK1F7iEKRW/WNEWyYqVFTaHRREzp0kRfxJpEd05zRNRUZERJXW5EYYnzRJocckRxqIJEV/uSREo/u0TzQopEbpy4RKzKfUR20ulFlYZzREbRhEQfy3dExBTuRLo/9UXIb3FEcNihRNU0f0ThFK1E7AUfRVoGGkYM0M1FjEF8RKolBEWf9m5ET1DqRNL2AkUCMy1Fb327RDq+GEVznY9EW0uiRF9Z2ET2AQNGuWLfRNF4xkUOXqhELpiqRUgWzUQ14a1EUTyqRAQkmUSvrIhE/+TYRK6YjkTHhmVE3tKQRG8GqEQmaa5EUOhMRBzucUZgNOtFlDUYRScYBUarl+xE/4yrRFpLDEWJvMtEmPWeRFjzdUVKPhRGxs6rRVl13kUyhF9ERIHARqeGjUQgzDxHuVmxRKuvfERo76REJ5SlRVtPLUWoSN5F58ZWRbSjpkTV1i5FhdqARP+JLkY7wuVEOyYaReku2UQ6mkdFLtKPRElqCkXR46REybAORVGvg0WWHI5EO0GqRMcQR0XrIp1FGSoKRRdL70RkZJtE1Ip5RttXWEWU45RED00wRjr5YEWtV5BEdri9RNNhhEQn5PBHY+thRFFNpEafjWRF8uBtRGHqYkjbG7dE5xPOROpl3Ub6fJhFwXkuRixcC0cGyeBEQXG4RAq41ETTOrBEox6ZRBfVSUUD77NFbKGKRRlGvUQXzI9EJZXIRJk9qkTxG0BFrRihRJOz2USJCEZF0AhiRK28PUe6moBEny25RpyUWUWJbrtFNT7BRHx8WUU6ANRELq2VRC4RNkWxxQJFaeKLRIo5OUYVN3BEmBcbRYOebUQokZlF5r9FRvvse0VLZgRFkhswRcr/cETdXSJFLc8iReqCX0S28UhFlmvRRdXpQ0kdVzhGp5+NRQzNpESTG4BErxsXRp/mjkV75fxFLuCFRIOTPEV8H+VE3rpKSF3pE0c1U5tG83wORUjUB0Vcv3ZFQrOURmaGh0TwA1tEwredRMIXiETUddJFlR0ARUtEVUVTj9tEE3hERdquukTMs4tELyCGRauAv0WgHJdEpACeRPFot0btBg5GVGZ+RQprgETBnBlFZH2NReXwX0TwachELgMNSLu0pkSsi11HSIUnRg+9wERKRd1E2YxoRU5Jb0RRIv5FNfasRPN9/UQSZG9E8fchRdGLo0R4X/ZEjfhyRPwojkSuOZhEIKgqR4tspEQ0DgJGGkrERyaenURmYZlEtA2YRJhfv0ZKNmxEEWWZRVoIMUWFSCxFWBoxRUbLwUTnEn5GkMjjRV7JiET7fl5GlEv2RfLehkX1AFZF1VunRGsmlUSm3uhFKcCoRBJ9MkVkJVBF0nqbRO+NiUQ5Gm1GQiaqRE0cpESrsD1Fp4DGRGRaEEWtFO9EHk9NRlM+W0Zn6k9E7IG9RDYbPEXMbitG1D2eRL4wDkXFBONEjZ7yRmZyPEYOUn1EGhduRYfyp0TJhy1FfUPIRHz0tETmENRE13DMR1LRe0apJqJGyj8nRRvEm0RhSEBGojoPRfpeq0RhahlFgzigRX13yET6MIRF2VCYRDdTy0UTZ5BFveygRRdjwkRoLOZEb5HsRsRpGkYIdhhFLUSkRMrSj0Yf+hNGA4PORMUByETmjAxFV59FRRWGyEQQPQtFBnt/RFLbokQTks1EeZOKRA5vTEXzbQxFLyLZR3sE70QDOulEd6U5RafizURrr51EY0DsRMLpvkasSDdFb5KkRr71KUU67ohFhxgRRRbdaUVPQHNEmK5zRMhnmkb/RKxFEikLRQbXc0Wal5dEBmvBROxbkUTrlrtESnnHROsNBEYACGJEQzAfRR//40SwOppE01XXRIyJrkY6VkZF+49oRPpDrUUrz0tGgqqhRJ/wakVCH+xEPaJ3RPscskQrBo5EGDaMRGT86EQ1Z8VF5n78RTHKhEQ4i4tEt/gdReTeFUXByY9Ejm14RBDbgERBlhNF9N+QRfZLp0QD50ZFlccgRbk3tUQZgX5E8rKRRNSY10Q6og5FnKQ0RVWg8UVYFs9EBKR3RZUyi0TC9GRE/KciRTql0US+DpVFCcSDRKnS10Rbbq5EmFE0Rh7TaURG7LBEiHiPRBh4L0XzUwhF6PmQRBPSZkTgBDBFwQRHRUxSzkRIfnhE+8WRRGF5aEQGKAFFw1pURHPUwkRgwldE6Us4RbvHmER95IBEkd2vRKKyi0R+pX9ES6EPRcbW5kSiSXdENWsoRRSvgEY7V9JE41eTRNLfr0VSLwtF+oCcRGtCqkRyQO1EieIZRXPVY0VGyx5FXOKlREVAmkRwvbpEWuDtRfeSYkRc8SlFyUMIRS1/pUV46oRE9RhvRRzBe0Sec8xERmiLRMvf1UT6loBIk63FRJs4tUQ9v+JHbhLKRK0VbkRH69lE52/ORP1mhUdA9nNFYaJMRr82FEUwl4xFVmkORRIdo0RvP7xEMtOFRJWR10SsY3lEweZTRGBE70TOtmxExmEfRmsyJEXgB5pFQaq1RkXikETGZ2hF/HaZRBRu2UR+CcVEp7JfRWRrjkX+XJBFCSL4RJ8dekSZ7bREoCbRRKMQkkRj421EEZ96RCEmsURwlXlEq82ERLGU3UXMXpNEgE7FRHs5yEVk8tFEtc25RAdRUUVG1ghFG+2CRC//5URguYBE11HyRQkUz0TkKLBEjje3RB5kBkV5Sw9JfVMbRROLpUSO2aVEBZmrSNPz40RkNCBIK/qORuiNhUVlgyhFgmluRph6GUZ3dd5ERa6MRDKtEEakJYtFzFoKRYa3z0bnKdBEGKlrRjYQuEUKa6RE81uzRHKalkRwWzxFfAyGREAk+kT1641EFMLWRNUd+UU0+H5FlIigREal10e91zZHB0udROm4+Ea8fyZFWhbnRb4hC0YNzWtERW0aRdYUEEWcc69EqAiLRH2YiUflrRVHOseURSq9BUZVz4FE+mOQRQ588UVzqNtFYJWwRG0FfERpdOFEDsJUROfNZUcA8wBHa85SRfarPkX3jq5FFB/nRfnnuEQKwYJFGFXsRzoalUSsV15H9WhcRYzQb0TySgRHv4MYRlNOkkSfglNFRMmLRGdnCEWKHJNEGoKrRLMbAkVF87tEd/mKRDspr0Txt5JEFljDRId/REUWndFEojATRQYEpUQspZpE/p7KRev+IkURYQdGkc+qRGaYBUbpIk1FBbTURaDzp0WQLIVFK2fORKbZe0Qs5+5Ev8iwRfnio0UgaAxFtBiuRIJ3rUTqdg5F4lPjRK7tAUVpyRRHzRmWRpTYSEa9oNVF9L6ORFhNfETefExFUaU6Rcm3GUUy76xEVNe7RPNNHkXLbZBEjTvmRCnvYER0jA5F1zAURSd/pUZZu4pGuiyNRId3nkW3NQFFcTMWR5qtjUStOYZEgJj/RHRojEZ1LX9EseImRnhJxkTooHlF9NqVROfcoUUjk2JE57t2RB0awURiDt5EOX5SRFrXfkSRa7JEEvS5RNOmgURDwZpFoNyuRWt+iUW/JoNFW0fqREtHl0Tk7slE1XxPRqEW5UUAPFZF88K6RF404ESKVGhE8M0tRq+xjUU8c15FNfZwRK5PnETN9sVEwVSERepO4ES6V2hEL7tZRMCv/0Y+xalGY5cxRmz6PUVB+JBE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - nvOPPHrAckB1lzJPEMFyQDZU5dFvwXJA+q7DW8bBckBvjGt9UsJyQMKXXv6mwnJAnN9FXOPCckC5VDGQPMNyQIyzYi7FxHJAxjiF1lrFckCCG8XgAMhyQLzLosVYzXJAgBeYIhHSckCizmBGQ9JyQJ+tNcDM33JAlSE37bngckBy+I57T+JyQBKR886O4nJA0vvn3FLxckAohm3gyfFyQP6v6wMl8nJAyCS+sbbzckAadqcko/RyQFxM8ZzC/3JAhsp/rcYAc0Bs7xdY+QBzQLsyHVCOAXNANsFQdNACc0A0IoS++gNzQEtV5fsKEnNA8AXAOLwSc0CgOaX3+BNzQLea/0d6H3NAym9NEqQgc0Cwsx6SOSFzQCfmkIRhIXNA8ESjz3sic0BjpluLEiNzQD9x6H7PJHNAVY+vPc8yc0BEu6mY1TNzQLoHTvK5P3NAuDMvfedAc0AFyufXeUFzQPCihqx6RHNAFNLrh59Rc0AawxtDFFJzQEjPoDZCU3NAdpKTK6RTc0DIzAchiFRzQDYWJYIdYnNA/jxIdDhjc0B7h4oVLG1zQHi4+BTccXNAOD80PVFyc0Ar1Es1aXJzQHiqKtWFcnNApAISEE9zc0CFftsotXRzQLJesVdMdXNAeNL1+8N3c0AqRATl43dzQDFM4mMsfXNAgiGLs3iAc0CA5yvOpIBzQDhs+JELgXNAZqGJV12Cc0BMc+t4A4NzQEeSnCpYhXNAepC/coaQc0AQ2pT8TJJzQISn9CVklHNAoV2pPviUc0COEjpDuKBzQJ6GNtpaonNAK5VfXZCic0Bo2c3nBKVzQA/gDhzHsHNA/PWkHX+xc0BcjkyytbNzQPwVamkNtHNAZuH6SvnAc0D/ru1GOsJzQKy+I6vPwnNARMvYhCfDc0DgoWCT2dFzQHYqLe1Q03NAstiVW/fTc0C2LyNe49RzQOKt2XOj4HNAxF5oBTnhc0AgJbLJaOFzQLZytqR64nNA4mfXDKbjc0CAmkW5NvRzQPIj8KmL9HNAj0cUf3gBdEDwqXaBpAF0QGy/0sVQA3RAuRO6OqMQdEC7HqAAjBF0QHF156l4EnRAyHcct0wTdEDcwTn54BN0QE4t2JJ3FHRAADS7N0sgdECfXdzbjSB0QA4Gfcq4IXRA8nHIc1EwdEAtJP1rEzN0QMfjMDXiN3RAJiEJqT49dECko8nTUUB0QJYrQwI8Q3RAS4q8a1VLdEArkzO0/FJ0QNRWWzP5VHRAFsf4eIxVdEC91jwRIV10QG99nt64YHRACI5xnghidEAqYzkOe2J0QFzLPJsPZHRATIvUlk1kdECgkzjlwmd0QDI9gh/TZ3RAUfIZ8SBtdEBE/y+ZI3B0QIBoq3VBcXRAdIzLsXxydECXOYJPFHN0QCgEEBs6c3RAqI2IM6Z0dEBItbpWOHV0QDju99P4gHRAP08wjk6BdEDwR7yk7YF0QAT6X1PUgnRAzktwPSaDdEDOqnSYuoN0QFi6BaYWkHRA5kLLeY+QdECyilRiUpN0QE/9e7Dvn3RAUouBedKgdECQxpr1DqN0QBeHNiP9r3RAp1wAH8OwdEAlQzuUb7J0QD1alwL7snRA9DC0asm3dEAk6cG7Er10QOgJM73dv3RAVAJDRuPAdEB45xaseMF0QII+MjPqwXRAZOk0/G3CdECRzewQvMJ0QCDSF922xHRA6QeUL/3OdED82bbZptJ0QIoWM+7h03RA94IrhHjUdED0OW36zdR0QIh8MAC54XRAPh/YT/jidEAyG/ZAT+V0QPBHl8X97XRAbrlbwIzzdECuby+8YQF1QPhpl/9cAnVAxNJgnmsSdUD5u0DK/BJ1QIyLdgojFHVAkcmPT50idUB9UT+h5SJ1QDOTPYTMNXVAmqOmjNxCdUA6WHAg+U91QGpzvhmBUXVAMmPr8nZVdUAycYj1D2B1QFbjVeE3YXVA8XMxzWVjdUDmKZuBd3J1QFy4qkeNdHVAvEcl03iBdUD5aDRMroF1QJJvUXumg3VAxHtIbpuEdUCS8KY1tqF1QOM3dWw5s3VAuk1Hvji4dUA2E3BgzcB1QC5+8Gn5wXVA0lWP5KTCdUCO3fFjzNN1QNzpxXEP4XVAywCVmQjidUACVOKXCON1QLSSZv9M7XVA/yQ0PqbydUBi3huVOvN1QC+p1pPv93VAADggDUz9dUCTW5pFSAJ2QJbLehQVFHZAoN2vskwUdkAgOVRviCJ2QJT+VA+QJHZAMlE4lx8rdkDigBNiSyt2QML1NcsfMXZAZOqkGpQydkD0fXYuJTN2QFuAUm5RM3ZAfOIYf0tAdkDrAil84kB2QEYQBwMdQXZA5t9FW55CdkBuaxY+yEJ2QKIiQVQyQ3ZAYu+upnlEdkDkwRWVEVF2QJuadImIVHZAwA2wM81UdkCXy7cuHmF2QGD4PIdTY3ZAyTZNfbljdkAMaoFG22R2QBBui35ZaHZAmi64Ja9tdkCTGAbxe3N2QEACVT+tc3ZAKm8oUGKBdkBe5bgNaoJ2QPBQCU6Sg3ZAoFjr5GWSdkAMRZtNupN2QK/2H17qnXZAQto3oFugdkDeFJWJpqF2QCLvcX1Ho3ZAgQz9bsCydkCdwJVEDbR2QCaMaVBzwHZAhIqvYp3AdkAZu5hRGcR2QFet23fPznZAldsAnRHjdkCqhFSfMfN2QKXWf5SP83ZAM5b55Tj7dkDA568rNAJ3QFZy8KUBEndAaA7NdQ8id0CsilM36Sd3QLe9CWpDLXdAtJVfvJsyd0CjA/zhezN3QDvvvD6lM3dAUuwSOA01d0CnXGZi5jd3QIxkeLKdQXdAqCBK15BDd0DYiVmF/kN3QNiCOugaRXdASKDgCEtRd0DaruIQklF3QNQhFOWeU3dAmIJtsChVd0C+QdIefF93QKHK0mlJYXdAr+8vi45hd0DQLAFdo2F3QBSwfvWwY3dAdlJa9iZvd0A103JfoHJ3QLBRVySPdHdAjTgAAPp3d0AuT2+pknt3QJ9OLZF3gndAmtB4QtqSd0CGy953mbR3QOAxZbBS8ndAeQ2qgkb9d0CoDPea1v13QClBjW+gAnhAFvnvL/oHeEBQNzS+xgh4QDZx/V4MIXhA0qLNDGwieECIWinKOyN4QARyTVGLI3hATNIX1tEjeEDjIlCoPCh4QMoNIXiaLXhAHpEfrUozeEDws73D3TN4QFOkn3gRRHhACpb4h3pFeEAwSxCsyVF4QNQN+0mVUnhAImqdGohVeEAI/0qp7Vd4QArr4XqeW3hAMSxicvpgeEDENfc5tWF4QDKFqvRUc3hAVqKTqIt0eECsUVM9x3h4QEVl9Bz4e3hAKUPb1yB+eEBmKUpiOoF4QKLWp/WlgXhApRXionyDeEAZTIsjmoR4QMDdjKhPiHhAUPFWpKmNeEBlApvkl5F4QKjWEfZTknhAs+hFU/KSeEDKSsehBpN4QCIBpy+olHhAgO3X/G2jeEDu3zimPK14QDhsNJTSs3hAjAeUKTi7eEBQSxSEycB4QO7ffuU7w3hAZALI+7bUeED8A4Smk9t4QOmgDXMy4nhA1UvLlqDieEA3+h806ux4QBw0rsgC9HhAtXQ5Ro31eEB4pZ2lngV5QGXVSZSyKHlAiIsNOA0ueUD7B+S6ZTN5QB0Wyi/5QnlA8bxFUPxDeUCqvUoFzVR5QBgSBGZbk3lAULJXx2KbeUAvtK7lZ6N5QJK7JPG/snlAWojat0LUeUBDsvidy9V5QNo0+f6K63lAKgzBtQ70eUAEpFEN/AN6QBXyMSz8BXpArFDQI1MTekDWEyOeBRR6QCik9H06I3pAjxxnAmQjekA3Upa7KzN6QONIA59wM3pAKhGZgww1ekBnV6bHLjd6QO4QbsJOQ3pAzd95KBpFekBEahfHgE16QMtQGfq3UHpAk2iOWutTekBsjPjNJ1V6QNwpy2IiXHpAKuxCOCpkekC+1raUN2V6QI7gmGaKcnpAQiB+r8mbekDolYDfHaN6QLzc6cJ2o3pAnPnBVSarekBIenSJf6t6QBSh+ysQs3pABGYJzyuzekCMas2xDLZ6QN6EADkbu3pAmkcGuP3DekD6JEKZGcZ6QLpnKvtAzHpANgtby7nTekDC9Px+SdR6QIxOxRln4XpA5JSjwzvjekDSw/FROuR6QGjW4Ns27npAgndmZxbxekB6w3y1WvF6QL27O/B2A3tA7pX26OYDe0AZVPzRewR7QP5dpoYoDntA3JmVaM0Te0AEvLF77xN7QHOh+aaKFHtAd/grTUwVe0Bsx8V2WiV7QMK8NYxiPHtAaGKXTWlEe0D67xoDbEx7QJSDr1INXHtADBWbJBhke0DS5gt/D3R7QMzPqK0jlXtAezyWSnrGe0CGY0eWJuR7QNNpRBsz9HtAQk2vqoz1e0CQ+ZM92gF8QB8qmm30AXxATGHR8mUEfEAoWlaRmQV8QOrf7znQEXxATvF6aqYVfEDgVoc4nRZ8QIgE0EYwI3xA/T94es1BfEB2ivT5UUh8QBkE7cyoTXxAFjOimApifECL7KN+aXt8QHSzA+Rwg3xA7wrqVl2LfEATDk/ZdIx8QIN7bOHCjXxAjLStfRyTfEA5w0a+aZN8QJQopo93mHxA4A0LaFiZfEB0K2D1c5x8QEJzfJrBnXxAhoLoCpmefECqm1HYtJ58QPQ4QLIUpHxAOugcJ76yfEBFeavlebR8QKDyDFjRw3xAmooN1VfifEDAJ+59EON8QNB66iL643xAgzg44KPkfEBYHYWebeh8QK+Z0ioX8nxAHZPunFTyfEDwq889cvJ8QBFspyMCAn1AYJmyUEsCfUBjRDqifQ59QHplSy1HEn1AAGQqeK4bfUBSbkI6QCJ9QG2/Tay1I31AQVvkxvQ7fUCWhlh3/UN9QBgaunirY31AE8Ul6/9rfUDLpH4kenR9QGwNygaBfH1A4viQ4YOEfUBepqlLmI19QPs5Fjnvkn1AgLO4Z/uTfUDC8RCMOph9QBjt9qr2m31Avv5MzZGdfUAmfY0LqqR9QBrIop8tw31AqZjwQObEfUDxsxsU89R9QIG5huJq4H1AeAdSddXifUB8yUxHoet9QIrFK+yP9X1A9jAm2DQAfkAlMgvnRhB+QOzNGas2H35APghlVCUgfkByI6HvISx+QCBe/PE6L35ArcljYCk0fkC0w5s3MDx+QGLfGJDdU35AiK38dIpVfkBGRj+ZNXR+QEYQQb+2e35AyI1qGKODfkAFZF5DUoR+QNYGNUOZin5AzXyI56WLfkAgQx8alrJ+QNpgq9bQxH5A5J+2+XPIfkAiI+kNzc1+QDB9l54j035AgU1Hh9bvfkD4kXuIkgN/QAppo5ycC39AWEO5AUMTf0BYSCt/phN/QBCn7C2sG39AKBbJZ1tDf0BUREgzilh/QNR0yZDnXX9AaojbPjxjf0B+jaQt2Wh/QPri2ti3cX9A/EXnmLCBf0AKQr+IoYN/QNXEzepikX9ARqAKKWCTf0Av17trmpN/QODb/WtgoX9APQg8JESjf0AiVg64fKR/QDrBgMCdqH9A6GE5FdKvf0AsZPv4U7F/QApld4Sau39AClgA0c3Lf0D6+pr+ztN/QDTjQsSIAYBALHhlbzYEgEDwdfPQeg6AQBjWz43MG4BAEq5SA2kigEBlmssC5CaAQFC3uOeQKYBAQNb2/e0pgED1e4X1cyqAQMPQlPGoQoBAuhxoNPVIgEAe0hUQsUqAQF7QdXTnUIBARC7+FRRRgED0AUWzp1WAQICiN448VoBA1s0h4g1ZgEBGWO38IVmAQKRcjTyIWYBAirVz1UVagEB89sEV9V+AQF3NzD3HYYBADqj4y29kgEDoXrDQ6mWAQA7GfHftaYBA5VKSpf9sgEBJauKf7m2AQIA3pITwboBA2q1tNylvgECikQXkbnCAQAICTcv0cYBAmHHAE/l1gEAOh2LHJ3+AQJJ0gHsej4BApoZyKX6VgED16suxJZeAQIxYwXlJm4BAzlzWccWcgECW1WZ4w6SAQHYRi3R8pYBAZiXNq0KmgECiyDEF9KaAQDricnyFqYBAAPK0Uw6tgEArRf6fE6+AQJ4cj0phsIBAlBUIs9exgECnxSK0B7qAQNjxae9Wu4BARRPasQi8gEBqoG+Qs7yAQFlUb9N7vYBAbutBOkK+gEBEgbU7JcGAQKFSuZhSwYBAwiVrEZ7CgEBMVL3898aAQB/yZsJTyYBAg3rtaNnJgECV2uAAMsyAQL1/9i4Hz4BAZfJBBh/RgEDsYC/hTNGAQHogkDNh0YBAGh6CY0rZgECiKJQCwd6AQIm13U9E4YBAMHyDYFjhgEAWndsyaeGAQDLfxXLC5oBA2hPkD/fogEAkqVZzSu+AQJRcFvg//4BA/MAgTT8HgUA8YZYaPQ+BQGYV1wIPG4FAl8PTqjQfgUAwJ3SANSeBQDxol7MwL4FAsObdQb4xgUDSwPgX4jGBQJZuBDkoP4FAqpeWaFpHgUAe1YcwCEqBQFMh0SO3TIFAKZhwrRlWgUDlfvbP5VmBQIv+kDi2WoFA/VUwR2F/gUAKa7e77omBQCj4ZVAGjYFAwgStGBqNgUAZWUPtVY+BQKpIxi+yj4FAdRQiMGSTgUDeq9LYVZeBQIiF0gqdnIFAVpyyQEmfgUAh0ANj5KGBQC7jn4PepoFAXjjsaW2ogUCOfQXh/a2BQGYMmVJKr4FAyg9m522wgUB6Ymn/SbeBQBKRCfvEx4FAZPvfQnbKgUAZYIqfvdGBQDLXxjfI0YFARE0fW/nRgUC3IpPn+9WBQOTB8Xb72YFA/sXrK/vdgUBmZn22+OGBQEWkpKcL4oFA4OATPqHngUC+cqKq7PmBQDtNfE0Q+oFA3d1c9+/9gUB+rmCmQwGCQCkRJrX1AYJAAmw+7QEJgkBC2LUu2BiCQFy3siXXIIJAocHFOtEogkCyAqOSpDCCQK77+iELPoJAwCgnwVs+gkCQgqGtoj+CQEsSi43uQYJAJ6EzAQ5CgkAS6N5zEkaCQO4ZqHvHSYJA+LCZGRBKgkAOYEgh0E2CQMiUpD6jT4JA8RNdRdhSgkAqWwNKjlaCQHgT4jM1WYJAIsIRG5JagkBUci6hUlyCQIfL3WA4XYJA8gN8TDVigkCAXHaPOGaCQLb+wl2WbYJAutp5pTl1gkB6AlUWQ4mCQAp3XNVDkYJA8qi8izyZgkDA+sEUVJmCQEn1mJgOoYJA/P2dsTuhgkDcMo1HZKSCQF5kTFcOqYJA9BQo8zSpgkCYNKcZpK+CQClkYV03sYJACOKFVQLDgkBYKBGK7MWCQFzJQKXvyYJAljB2MVbMgkDUShPv882CQByfIDbr0YJABkbuZO7VgkBtuAFjftqCQK5hnVmB3oJA6konooDigkDRYde6q+eCQDoAsMRd8oJAv4vUeOEBg0CgDyY05AWDQE5Xa3rCBoNA2h0LxjIHg0DMShp1yAiDQJQCUwjaCYNARKGSXusJg0AOFcAyYwqDQCpJtv3fDYNAMmtjhpgPg0C8ndVJeRGDQBdycCd6GYNAruNWtksgg0C2NDn0ciGDQManviWKIYNA4dtrcXEpg0BuGcXUaTGDQJ5hf4SBMYNAjDDxE2k5g0BkrHTy3EGDQIzBQJWPRYNAvm14rNxFg0BK6w4HvW2DQAHka+HvcYNAQCf+Eupyg0D2DVnh93WDQI0NJiLmgYNA/gKPVkWDg0BbOr2h6MKDQIQFdrIgxYNAyiSlwMzHg0C45fAId8qDQAI3fJMj4oNAPD7/tpP4g0BahZWKjkaEQPaF8Ki2RoRAbK+MSkBKhEBkdjuiBWSEQMC6xgj/aIRATqebO/dphEAc/N9b/3CEQFDbTNS4dYRAdGISKMt3hECYMHxh9niEQNplr1tneoRAbCgff4B6hEAwF4clFX2EQFl9KgXCf4RAdYzbtXCChEAEmp41HoWEQDp8P+PKh4RAsDZayFyKhEBG1VHqaZqEQFCZ428WnYRApz7COMOfhECmqJFBcqKEQNsxq1YfpYRAXLgMc8qnhEDaPZ/1dqqEQHW2hjxMroRAQ5SJpBnNhEBCwhQJyM+EQIjBFiFq2YRAZDkjE2rhhEBkd/4b0eeEQKKrLYRj6YRAmr6kRSzqhEAm/yc9MO6EQJKGLMQ18YRA0PiqH2DxhECAQeZ/LfKEQLz67uY0+YRA3tdgki8BhUAYdl4uDBaFQO4q2PnjTYVAMxuljHJOhUASgMHo5lGFQLqEwxvoVYVA/U6rg+xZhUDbGjkl5V2FQAZrQw+gYYVAzIkJ5LpihUB6bo1PTGaFQOwXE+egaYVAesu8/k9qhUAqw5MjmXGFQMZTgeKXeYVAD8Gxw5KBhUC3aSSdt6KFQKYG9jXPvIVAxLwZjSDehUA08qkrvUiGQF3Ocn4muYZA4I5/wNHEhkBcB8wq1MaGQD32d+3TyIZA3g26OdXKhkD6CPxq2cyGQKyY4Tck64ZAaFJ6VfcAh0CqOitZkSmHQP6Ys1WSMYdAUXsqT4s5h0C0A9bOi0GHQPnPg3PIsYdAnYqOUci5h0DK/VOiv8GHQGU1K63AyYdAAE0UYHf3h0B14xWt1yGIQJBVJr3bJYhAHjKZAflKiEAveMBhRH6IQLTidAJHgohALISZdkiGiEDmqNi5RIqIQDYDHK9ijYhAV3aPn0iOiEA2XQuVQpKIQA== + KBZXds7jZUD60UzrnGVsQNvlv3T/InRAJCru7HxDdkB6fvLxFLR6QBaIOEqvQ3tA0NL29qwkf0CcSJ09GVqAQPlt/BOYSoJAxnIfQGWSgkDxnKFCscqEQBe/uP7v2oVAhH1FfgjTiEB67IIbfHOKQISsM6i0W4xA - + - FQdxRKKQfET9hsdFRNukRAX9zETOBe9FRIyCRLxbNUXDJ3FEAayXRC9izkRScLREw+W3RDL+9EYC16dE4NHuRLu0iUWHvHNFoPumRHPMT0VfO2dE8TexRBie6UQQe7lEtpliRGjS10SSQodE6erURONlC0eRc6JEozQbRrUkikVEpxhFeiK/RBG1wUbyeotE9/R0RKggBkXw82FFfvyDRD27SkTXrS5FxMmkRKeHHUVpN89FiJnPRDTwm0Sz1YdENiJ0Rfewk0QD521EyRasRO6+H0crb7VEmwKqRPW77EXN+ClGX66JRG6rP0T7+CNFGFoPRTgl5kTjXqpE5/W+RtVlxETZpLZEWBOJRUeJh0Ro6XZEQXDtRL82JEeyrHREI1UjRjvGw0UBG7ZFLPJkRIEhv0RAS45E+WRvRNJhcEWVtMRECKyKRG9LWUTOcZJFkXn1RDDSA0Xj6IBESo62ROiaZ0UH/UlEk3i2RV8Oi0QLq+lExsvURI2F1UTp1pJEa7FORn7wx0SDwopEOP2BRMgvm0RLLXJFJoVHRYV8b0QnbJBEpSnrRNuTi0Sj8o1E87zPRFBkHUVFiSxFfkB5RNfbv0QQdhdFsHMrRdhof0Q2tLFE7g0BRVIwykZU+UBFQcvtRXLyBUb8lFNEDveoRG2FDEWRpY5EHk7bRF9/jUVumR9HenrURGDjkURKgLBFtS6bRIARpUQ7OAFFa0eqRXu5akTdk0lEkqQrRYm5EUWIJbNF75RZRDojXEQkT4VHxdmiRL7TLEUv2IpFe9evRKNrmkaWw+lEZ6QIRrhdRUUTkflFRh/PRPvttkRSpYVEO02KRLtVbkQeVrVEHz+RRJ/dl0S/PIdE1VCERLjAm0TFQ9dEBWdRRPLKk0TRxI1ErIKhRRmTpkRMBddF1BmORHZwkUREsBBFrU4hRok9sEVoQiRFPNpQRGynkkQVFJ9EXgh4RC+w60R6BRJFiJTVRDuVmUSIvAlGc9aLRNoChUWDm6BFVT29RIwxzUQJRHtEx7WHRF/lg0Q5VBZFflmBRPy0uUSOIYlEURbMRFKovkSN5Z5Gwg0jRpXQuUQdvKhEbY2ERAatC0aqwLREh53FRFRQZ0Xj5c9FmqgSRRbXu0W1JsBGyBNlRBFzJUdrzzNF1gukRP+gUEQAEolFzebfROWa00SrFJBFE7RcRaTrCkWj7YVEtjxCRmVOU0Sc98xERl+gRAFl9UTlxWdEZL7uRJH8v0R1tI1EFxBPRNNvdUR3cMlEsiKJRHAgzURMzCFF0fiHRH/XcEQUHrhECowWRX/haEU9XKREicKLRBZycES1oUtF2qWURN8srEXH5KhEvxKsRLaQvURWd2xGTRQjRYczHEZRsJlFWwWpRG+JfUThjNVEdf3PR1mYoET4ppZGYOI/SJdvFkU1V65GcZpqRQjTOUYdpNdG6f6ZRJy/m0SKxoZE2hLgRPp3hkSzpeFEDNQ/RZMiokWQo2JEqt2CRfPLkUQZquJEOjApRbzMbESoOYNEs39RR6NMlET2SN5Gz3HHRTZaCEUJbElE+1wURfqW+0RuHGNE8LwHRgl3x0TL0llEchCARKscrERYon5F3EYPRsHAgUXq2gZFJV0yRdtXjkR99llEwx3XRF1NCEWcZYFENl0mSSrRUEZ9UERFs0ESRkAVk0R/SztFnIYWRQnOJEh4CxNHXbSKRirdG0UGPXNE6XETRcCilkXz1U5GLHttRNftrkRl9YZE0EPZRblOzERPcO9EbfsfRbtlqkQ8XplEgv99RPJ130RPdmBF/DeORaynuUSEEqFGdHUiRvbYf0VgkJRElsf/RIf+aUVUTA9IArZXR5E8GEbwekFFUcKiRdh/qESilItE2g8vRReHGUXWKmlED36MRMBoa0TCcXtEgZkRR4MoAEXPMqFF/bGZRy1pGUXUr+hENkycRstlmUX7RX9FVE4rRZUf3kSgIIpGzYiyRUOMhkS7PF5EUAuCRDdMMEbVE6NFCJmcRb95BEUEq65EOuAERW+MnEVb5o5EmEGGRI/uvkR7V5BF4qTARXfdjkRx6ZxEV0OQRDszX0RwucNExxQJRdxvkkQKWLVEf7h4RiUYR0ZysolE9MWpRNgKlERSLCFF93kCRsiZSkWSvfBGkFUrRtONFkV31bJFLONoRFEqskTyph9Ft42iRL/0EkfqoZ9FGYlKRv1OLkZuFNxExms7RUgkgkUDMGlF+L+lRDh/gUTCeZFE9bC1RX2QnEWCrmVFxGa1RKw710YqqglG2VZGRW12lUSK1U5GjjpRRkoBnkRRDrxE541QRZlEgUQodPREhjWNRHGSC0Wjt21En5iARE3HBUXVzNxEULW5RywbBEWk101Edp67RIit70QUsQBFGky7RsCNM0U5QgZFKueGRr0yjURGFmFF+F3CRe+cskR0MhJFQouHRWPH/0Si9X9E5iqQRE72gUY7a85FdkmtRMsWqkUcJAJFeG+xRH0ph0QVJwJFaKafRIFga0Ql161E6NkWRvaK5URgLfxE3mCDRJCci0R1ddpEblxJRlq2rEREo4RE+rBERbWKAEbRQ2JEzsWuReUy20QAfKBEHSmyRMpyeUT6FoVEIbc2RRYHpkUvUoJEOMAORdyiOEXPGcpFRrCLRTON2EStSqlEThOURGMxHEU0ctdEibA2RVsdJkbj7GVF9ojGRAovYEUnodBEyCRgRLlVcUQYVKtFPUKkRGaAtkQOEw1G+1KfRKKDuURhRDNFVk8xRcJBbkT7lnlEi3V8RMUJ8ETkLoBE7u8LRSU9jUQh43RFa8f3RIvgUUShvYVEBT8BRSiu9ER51JJEkghfRJxtlkQuuuFEbhIGRX/Rc0QtzQVF7mWNRng0d0SqSJhEwXuHRZ5/pkQtl3ZEjt5QRG0VNET0BfdELayPRFKV5URoQbJEIV9VRG5MvkTS5HlEsaQQRTqevUQHaoFEXTCdRJvzx0Qq7+9F9yZtREf6x0RTuEtECcdmRPgb0kSXfLVEiM6nRJGAWUQ61KpEqu9KRO2cTUVRN3FEtVgBRRxte0TgDmFE1bD+RFLV50TcUcRElvWRRGiPhESa2YZIIX0fRVpn80Q0sv9HmUj+RFWXZUS3lbJE9eBwRLH7hUdqQG5Frt9fRlPPckXZpJtFisHeROKpHkU/N5REpxWlRK7irESsW0ZG9jhuRe5mWkX1+YlE3ErHRpEgoEUMLJJEvKi0RBIQe0TU2EhFA5ugRes5JUW+689E+euaREgoHUW7bopE7XJ1RKkBiURh9QVFkx2TRIRrt0XmERpF1KVURK/bv0QQVo5FjIWJRbAACUWyxJVEG2ACRdd3O0RXJ85FKGp2RPMB50SKY4lEtiPCRBvwrkReK9lErjgDSSWjo0h/oQVInQ6PRt44jkUsFxpFJMRoRE4Cj0YiQmREDogHRozNZUQZM2NFMlBoRHAbG0Zyfj9FLgMNRX8a2UT0FudG16OKRBd/uERSl95EJa9uRnjpZkWCGZ1EKMqTRJZ1SkQk++hEbKOkRHjWHkVVB4dEokbWRGLYYERgI55EQpzTRfO9MkWt4YxE4UCBROw5CkhAP4hHtpcFR+xAS0Wcs5BF+3RDRm9aXUTrHj1FmZ9GRePkekREHn9EEb5URP5GaEe6Bw9HTjjjRBWu/kViT2tFtwDQRB5Y8EXwaFZFhGHcRJBcjkSflmNEa6iFR2QTHUeNR1lEJRvFRDjbu0RPNuBFwTaiReXdgUTYcoRFpzhvRJ/nF0hW8pRHMQc6RQLwLEegwE9F30cvRtr2RUVNO8tEqMtdRJ02z0T+laBE5T2KRK+0WERXdahE5uGKRNvZ30T8CYVEKN5WROWWWUS74OVE/cM8RQPTuUQDSchE+jqMRIgvhET3b65E9Em9RFlookSEIahFg0VSRAz3c0U+EYtEWIXbRSomuESqGS9GJ3IqRZ0QUUb5qdJFEhWARRmbHEW+aLVETPtnRBS9AkVjcrREBhOCRB1tjkUPOsxFWFknRURUl0SBBk5E6qDtREh/8US1pB9HAvWaRmyMk0SkbUdGEYCwRbpXgEUO7YpFy7xnRVf/vEQofydFoKmyROuqokQ4k8FGztSiRGQJe0YyP5VF5hMXRZ/YgURz0xZHaIRoRJ+IyESc14VGIS+XRIGyKkas4ZtFRTfrRG5XU0Va9pNEGn6vRH6gV0Q5m8tEoOu0RX5MREYY0cRFAAq6Rb66vET3xMJE95N0RMJlMkZA8p1FqRmARQxx9ERD+xJGtXCIRXMtL0WjQoNEYPByREE+iEXiz7NE0YaGRP2YwEau7I9G3j4KRro7H0V6ql9EVqixRJtOjUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - VOpEh3nAckAScfepD8FyQFKCtzhvwXJAe6upsUzCckDS5j4ip8JyQEoC6lbjwnJAt+9YODzDckBayzsRWcVyQLP3ghEFyHJAEnCklg7SckDcygzQQtJyQFgCel7O33JAIe5JKSLgckDwQQllu+ByQKn51QFQ4nJAcOfxgY7ickB0rkMmJeNyQNC1J1rJ8XJA1Dsj3rnzckCiAhIRC/RyQEAW6rqi9HJANoZC4mYAc0CMuS1c9wBzQF2u7vnPAnNA6qaqgPoDc0DOmQBZBxJzQLOGPM68EnNATo0DjfoTc0BLCNsGBRRzQEtnXEdMFHNAI6L+rnkfc0AqndBypCBzQERb7Lo4IXNALBZUDWMhc0CXeBsb5SFzQBYiOtJ4InNAcGA91BAjc0D0FnZlBCRzQOcZ0efOJHNA7YZNYkYxc0CPF2OrzjJzQHLAjHcLM3NAmmIJi6Mzc0BOIzWK2DRzQM6NZwC4P3NA9Crc++RAc0BqrtXheEFzQCjJf455RHNAi6tsB5tRc0AXdTJio1NzQLXa3kL4X3NAQpZ0NR5ic0DKQab4OGNzQPkbF8LOY3NAPQeJrCttc0BQSy6V3XFzQDea7nFQcnNA14wJHG5yc0CsbnQChXJzQG0qCk24dHNAEIvfWUx1c0BGZcQFbXZzQD8l0BjCd3NAImCOwdB3c0B3SbJR3HdzQODoEpB4gHNADBHxV6WAc0AB5ut+DIFzQHyVfCpcgnNACKYSYQCDc0BOK25gDoRzQOKUoo+FkHNA6q0/w0ySc0BMJq5MzpNzQLGAjsRglHNAIW8VxPaUc0A8tW/1t6BzQB4kjAGtoXNArHdCRFqic0CEARpTj6JzQIHKBvHBonNARKpWNwWlc0CEDjdE2LBzQNra0Jd8sXNAON8B3Lazc0CvvBFrDbRzQGUBEI75wHNAHU/8EjnCc0CezsQZcMJzQB5AIubPwnNA90KDtibDc0AQeBX01dFzQMqJUnsn0nNAlgYZ2vbTc0AI79UT49RzQCS98rSk4HNAoHo1GTjhc0DdpLTRY+FzQIzb1kN64nNAZ4WWPg7jc0BK/7ompONzQNoactU19HNAsP/xZ+MAdEA1Gsy3eAF0QKZ2s6mjAXRAFpTB6YsRdEAyparpmRF0QPimtc94EnRA5In4tUwTdEAmt0sTkCB0QAw4Rn+5IXRA6HTejVsjdEC6LbxKVTB0QIYFF8a4MnRAnOmxEBIzdEA6/vL84Td0QIwKacFSQHRAQSxfOj5DdEC2jdjdH0t0QBKRsSpUS3RAUqdh0FlTdEDanddT91R0QIZ5V+6NVXRAvbWU2SBddED1VKbGt2B0QHfPByEJYnRAW3BxhXtidEClg43mIWN0QJ6cZa5NZHRATKKglcZndEDyJsl51md0QEfc2LgicHRAZg1j/UBxdED+O2EZyHF0QAF+RYc5c3RAKHix6DZ1dEB6qzQqbYB0QC7PMhz4gHRAMFpp1E6BdECk9einSIJ0QERLHcEng3RAUjsHarqDdEBZpDRaFpB0QPmx+a1pkHRAMkdUZu+fdEDAjq3G0KB0QHiEolM4oXRAzqGWaA+jdECKV7H7+690QIad/nbEsHRA2N1tj02ydEDUGVCxbrJ0QB4HGxn7snRABNj7acm3dECWXcKSEL10QOthzhQgvXRAX8vsed2/dECUgBWB5MB0QGXEMnl4wXRAo58sberBdEDgdla/WsJ0QCTUGWy3xHRAWxmdLPvOdED0iWEV6890QEZr1UPi03RAZJAjbXXUdEBWDNYBztR0QFRwBqXL33RALNzmGbjgdEDCCWs0I+F0QBOP5mu24XRAHJEF4E/ldECL6WyUTuh0QLTOhZKL83RA+buDEKn0dEDUUQhppAB1QPRUahfCAHVAmB2NhdAAdUCimSKBZAF1QGEhIDr4AXVA2ChgXBMCdUA6vi9+XAJ1QMIsQByYEHVA4hfqLG4SdUAojDHl+RJ1QP1MhvQiFHVAel7Y8+IfdUCEbSD2UCJ1QL67vdGcInVACRqdyuUidUDC1HoeqjJ1QAfZQH/LNXVAyE9JemZDdUD8B8R74091QP65PfT8T3VALhkVbDFQdUANVunogVF1QFUc7/V1VXVA7Y1fawxgdUBBk5zdNmF1QDDo/+zzYXVAJfy8w2VjdUB2AdV9dXJ1QLZCaPv9cnVAJczBr4x0dUC010tZ34B1QC84PQ14gXVA7HPCiK2BdUB+OcIBuYJ1QNBdcRSmg3VAP2kM7cyOdUAwCTurbZJ1QKzH0gI9k3VAdJ9ipCWddUCiNTpoIaF1QEJeVXRHo3VA+vaQpWXBdUDakkS9+MF1QL5Ju/bM03VA7ME85eLfdUA+DcMzDuF1QEZxkkEG4nVAMbnSJQnjdUA7WjwfTO11QHNlBXAp73VAUuQsGqbydUDWbmHgNvN1QD5Ssgbv93VAlm5HIgH4dUBa0WuyHPh1QB68UX1L/XVAbJbGb6n/dUCUiSgmSAJ2QIwA2EfRA3ZATwcGhxIUdkCif0GOTBR2QCvK5KMNFnZAWY3+LYgidkCIJ6TOjyR2QALCKukfK3ZAPLuaTksrdkAOiQt5HzF2QIMJ8nckM3ZA04MY2U8zdkCMCmoXnDR2QAKr+AZPQHZA75GadxxBdkBCFc3pMEN2QJ/PNPx5RHZAWMfuf/pOdkCMndTiyFB2QEjZrEYRUXZA4FdAYIdUdkAOc4u3zFR2QDKoZ2whYXZA8mC3ndlkdkCW5wsXV2h2QIgJOVd/c3ZAgvyXMapzdkCom7QGkoN2QNpkyOHqnXZAGvTbaA+hdkCOWWrNRaN2QB5hAje3sHZA4IeAaMKydkDgJVeJDLR2QFzj3RR1wHZATYoT2JzAdkAwLgExusB2QDakjHrPznZAsi1QuL3QdkA8fvRv9952QKbgjVYP43ZA1MMCijLzdkCFcCq0kfN2QOQSMeE2+3ZAUEb7pTMCd0C2anQgAhJ3QGnKuqEOIndA7iPNM3Eid0ACxTZWuSR3QKSYsVjoJ3dAWASuJUItd0Dl9kQciDJ3QAN1E6ybMndATbEYZaUzd0CAIg8BDTV3QNTacH2cQXdAbCJN/EBDd0DIFNi1kEN3QB41SYP8Q3dANSq+DxtFd0AWWZ2rSlF3QCJujR2SUXdANYcftZ5Td0B/+ttA6VN3QK55zQcqVXdAqu+XoHtfd0DIkQ6ukGF3QFIWEr8nb3dA1MhniYVxd0D+Ysyjn3J3QPZG91L5d3dAc5gO65J7d0D0Bdd6d4J3QLRRUSzakndAQs5u35qxd0B5xcJ9DbN3QNxGHFeatHdAilVgKS3Dd0Cy7aVo8Md3QKS67ffr4HdAKvTYrk7yd0D3dpbsfPh3QNg4iztG/XdA4HYPptn9d0AwgeKTnwJ4QG6tZhXoB3hA2mFZtf4HeECLLac/xgh4QNbqCEJCDXhADDdXq2wieEDvlgQjPCN4QL5gFDvQI3hAp3cNizskeEAcqcSsPyh4QBtqEbScLXhAmuU8ihFEeEAasiFzekV4QKUhrZnKUXhA5GG6F5ZSeEC55309hVV4QOZX3ub3YHhA2fJnqrZheEAslrdkuHF4QJhkxVtbdHhAOG8qVot0eEC+mbFhr3R4QEE2UcrLdHhAMujuGN90eEBg7BAB8XR4QO7e1SzHeHhADNjRAPd7eEAuR22sIH54QGjXmGKkgXhADjHWdXuDeEA6omkL/YN4QDy+EsuZhHhACtNVWE+IeEB4/ZdPqY14QL+si7iXkXhAMhptTvKSeEDyBYYYCZN4QOLmV4WolHhAdlxZIV+YeEBByHh+9rJ4QGGZPWfjt3hA6L301za7eEDwhsFTOL14QOxeDOHMwHhAuXk3qTzDeEB7dAIRT9N4QLFW8WO31HhAlvyyoJjbeED+4LY5kud4QDsCJXEB9HhA2DlwHoz1eECbBXG1mQV5QNcpwxKcC3lAbtqdprojeUA5NCONUCR5QFDs1i2yKHlAgJ10fwwueUDP5OBZZjN5QAoL1W2MQnlAxh4SdfhCeUAqhLq6xUN5QMazsdr7Q3lAfCs5uM1UeUAa81JbOo95QMTeOA1bk3lAihBk6WGbeUAqXQKIZ6N5QBiQSwS+snlA0PJCFmXDeUAhNoHmQtR5QC9oCxnK1XlAFm5Qik/keUAQ+91Cj+t5QDlfWpgO9HlAFJjWWP4DekCg7lsF+At6QMxArFo/I3pAqmt3j2MjekDMDSv3KjN6QHRzw9BxM3pAiO89Kgw1ekDlqz3SLDd6QLY+QX8yO3pAWdrthVJDekCa1rsbGkV6QJL6YFDOS3pA49i/BoJNekBM4uB2t1B6QE6/heLtU3pA8qjFGyhVekB7JBdzJ1d6QEXwgVAiXHpAlkOoVylkekDs8CJAHqN6QOJwgH11o3pANEf2ByarekD+AxnVf6t6QFD3sdsVs3pAjNx2VC6zekCIwyOSDLZ6QFqd1XsaxnpA6qPg5UHMekAu82tEOdN6QD5oVuO303pAhCprjjjkekBf71NvdAN7QKMm12rnA3tA90CCiHsEe0BBM4S3Lg57QB4F/anyE3tADSQKOIgUe0At61IvTBV7QGXHWhBYJXtAjgIJF8Eze0B6IHz0YTx7QFowpT9qRHtAdbNsaVxSe0A+ighpklN7QBrre/AMXHtATRQIgBFke0D5A6m8IpV7QJgRsL3OnXtAghV7GBGje0DlL6h1LaV7QMJLlRM2rHtAqUjZqwWve0C8eep3+b57QM5j0WB7xntAhiI3/7DRe0AMh9ltJuR7QMUPu58y9HtA0O0LBYz1e0BerdjQkwF8QO40NyPZAXxA8EF4BWcEfECo5DHxmgV8QJ0CY6zREXxAK2//FugbfEDmfbbNtyN8QE1na+7MQXxA2okiXFJIfEDsC64kq018QLymCfrrUnxADvGqFgZTfEBCTF4N1Wt8QPPuJx1pe3xAvWha8M6BfEAJLUKccYN8QKkoxU7RhXxAjZFoz12LfECJEAY8fYt8QAP2bDR2jHxAraI0rcKNfED+BcuaHJN8QKyhGFJRk3xA/GGMJXmYfEDOzVwtWpl8QHBnoYCxnnxAyrBt2L6yfEAD/CVuerR8QOR1ekDUw3xABlH6XvfbfEAEzZT9V+J8QAwgZB8P43xA92t/rabkfECV9OaCbeh8QNUgKT4W8nxAI1N20FTyfEBnLSPIoP58QI5GhzUBAn1AE1Hg60oCfUCpn49eRRJ9QBCAh6mvG31AjEClPTsifUAr+cS8jSN9QIlraulvKH1Af+UKHPY7fUAMSo3h+0N9QHg/MoB6dH1AUPRBdoJ8fUBJD/ZUiIR9QLiM4tiWjX1ANUSSI+6SfUDMOHDL9JN9QLR0Pufvm31A7CRczSvDfUA674hs58R9QNGZA8T01H1ATSFZ2mzgfUD+VyCSnut9QFaJ15yP9X1ALm74oTMAfkBMoXINNB9+QKBf5u0iIH5A1FtdjyIsfkCgj8fgQC9+QIIKqo4oNH5Au4ZtXkE/fkA6hrrIFEJ+QFwQVXaiRH5AeEmdiMNLfkBQJ99LjFV+QNgatbSbZX5ALHUd1rp7fkDObyq9oYN+QISFIwpShH5AZeZZO6mLfkBM+cQ1XZR+QIb+UFl4l35ARtUahraYfkDyOUEFl6R+QBBpoXKVsn5AeLGltW/DfkCixACo0cR+QJUf29hyyH5AYouUHszNfkDIxqTb19N+QKAD52Le1H5AjPa1Ys7ffkDIfO5myOh+QNQaIbbT735Ahik4/ZUDf0CzEr3hngt/QK7Ex/tAE39A2ES4X6UTf0DGbZ1WSBd/QMI+l11EG39A+h9F+Ksbf0DWIqkKtyN/QJYQA1pDPn9AdBE0oy1vf0AiPLssuHF/QAiL+LLgdH9AhuyjC7OBf0C4/I1Mo4N/QDAASRljkX9A2b6I+aeRf0Bk25xbK5N/QE1UyiOZk39AUhdRN1yhf0Bmyc3uQaN/QBOjI9V6pH9AyhPCg5yof0AoJk6UU7F/QDhSlX7Ny39AStJNrnTPf0AyVuG0vtN/QEqxyfc3739AZOmXlI30f0B6FAT3iAGAQKj+jDjlAYBAS1J51jQEgEByuJeYigmAQEJyQYrCGYBAqnroopAdgECWaH9OaSKAQCxA8d/jJoBAQZRny+gpgEC0errVmDKAQGYTUDYUNYBAMBmUxx02gEB2n/e6+DiAQFjuurtcOYBAaPJ1dqhCgEDLao9y7kiAQF6rK4jmUIBABf2VHxVRgEAWaixUDlmAQGoCGtmHWYBAQnk93gthgEBwmAejwmGAQIl4/FrqZYBAPdrzJ6JngEACz/Xe7mmAQEqx/qHxbYBAlKEifilvgEC28lFTznGAQEp0+ObzcYBA3kAf9ih/gEAOk2NZHo+AQGEDUq8cl4BAZfh/yh2ZgEC63sRD45mAQEYrdWWZmoBAGHQzLBakgEAIhuM49aaAQLmXdgCsp4BAmrr544WpgEBQJcTi9a2AQGjc0ggTr4BADXh1z2ywgECWXmVkIrGAQBJ4x8IFuoBA8XKVq7S8gEAD7Bvrer2AQBEC2UqfwIBAlsuHUlLBgEB8A/2jccGAQIT/V4t/wYBA0mqWcZzCgEAm8VSWU8mAQBI4lCZzyYBAsCxwVQXPgEBa1Ry/K9GAQNp2++9M0YBAMsgF9ErZgEAJHV5jv96AQHQeo11D4YBAYuEmfVfhgED7QxkBa+GAQFqLxZES5IBAH4x0offogEAI7QSjH+mAQEON9oBK74BA8hW8+z/xgEAuuSF7P/+AQOe523U+B4FAFCa/tj0PgUDoZCehBxGBQOjevFONEoFA2G53faISgUBi5L+fNB+BQHO4OcGvH4FAN5wMblEhgUBIu6HRNCeBQBqk1TFKLIFAw0KOuTAvgUBQ5btmvDGBQICQtKEoP4FASjXXR5VCgUAIJ4xgWkeBQGulHFEISoFARiPcZLNMgUAo5rbVYE+BQGcvc0b6UYFAixmsxaZXgUCKrk415lmBQDTSa/LqXYFAvuJnPu9hgUB5NYM9w2iBQHEm+trBdIFAsniK0Jp3gUAcoa/SG3qBQFj/VnGbhYFAVOi7yQaNgUD+udkgVo+BQGq2OYSyj4FAs24WsPOVgUDUne4QV5eBQJAC2XWbl4FAOm2aG52cgUDNw/JqR5+BQLJAVMDnoYFAfCeFLaWkgUDueZWibaiBQFI38stKr4FA/jCH9kq3gUAgWg+CQL2BQCOmH8qn0YFArrcufNHRgUBfhPAp+dGBQNobRGQb0oFA5sAaXNHVgUCyuCbM+9WBQMYqdmsY1oFAFlVyMfzZgUDEPLpR992BQLEZmetE4YFAjqX/mPnhgUCf8arjpOeBQCbu5sRO6oFADorGRuz5gUA5ZJUy7/2BQP5lcAviAYJADjCG7/gBgkAEemOW6wWCQM02stwCCYJAT1GJz7gKgkApDKJ+ABGCQCaUt0nYGIJAAf9cPGsfgkAE9QC01SCCQNw5/XPRKIJAQWgecKQwgkCFwh/tCj6CQNQ5NBhnQIJAAWpsag5CgkBdfeKnokOCQMq6sPwRRoJAAwqjGchJgkDuVBIIFU6CQAisowLiToJAQAuFYD1RgkC7oL042VKCQEiox+iMVoJADZxDVBBagkBmidFDNGKCQB5dXd0EZoJAGriJozdmgkCa4OULo2eCQErHoptqaIJA6J9OjTtqgkDMGLo01GqCQMqXFVZpbIJAWq9xnQRugkAAcAaUbHSCQGQ0iulAdYJAEyfSHdyBgkCGoXpVDoaCQGY/pi5DiYJA4Ep0OESRgkA3133tNZWCQM2PxBElmYJAsAXLxz2ZgkCPKXAHKZyCQExu8MJinIJArhq2aQ6hgkABqb0zPKGCQEal3m4NqYJAkJYerzSpgkBMfvpcBbGCQNuvpTQzsYJAIl2NsRS6gkDAoHSJZsSCQMU12n7sxYJA4gIAx+/JgkDSJvlP9c2CQGpX7sXo0YJAJfEWEvrRgkCL7rUo79WCQEXOqEh+2oJAUJHf4oHegkAVQh76heKCQCx2iOup54JAIINqagrqgkDyXAAur/mCQIHCMBnhAYNAEavE+OMFg0COBtINtweDQL6hCcTJCINAVLdUUdkJg0BetM1E6AmDQJ77N7nfDYNA1FfvI3kRg0BKCVTRnxGDQJZLzRTkFYNA0Q3dZ3oZg0C63vhZSyCDQCxAyK1zIYNAILrcn44hg0BUdFU0MyeDQOnRQ7lyKYNAxzMuuCEug0BZd4BMGzCDQCDd9qRrMYNAdhL0nR45g0CnCZasaDmDQBrjO79kQYNA2YHuqtpBg0DEgOKDkkWDQGYcC5vgRYNA5wjxG/Jxg0As+fPS6nKDQD2JY4EhdoNAypjbhvqjg0DYgTQA+rGDQA5kdD4fxYNAPOxuLMvHg0A3DgkLecqDQBn4qUMnzYNAovUX9TnSg0CNHQ1RzNyDQJWYcZx434NALaOBb48AhEDMxRmzhAGEQBjHttA8IoRAXg3uMYhChEBQptg9jEaEQEKuj6shY4RA/xjDkv9ohEC8lOvm9WmEQB7aYxYSa4RAjmBrrvxwhEAS8KmUyXeEQJqtEdX5eIRAfE7GVmZ6hEAo6+/SgHqEQKoPAZkUfYRAAhDCAcN/hEBNANZKZoGEQGoUWKtsgoRADuE8yx+FhECMg+PoyIeEQHwQ644Wi4RAfCQzYWmahEBwupWMF52EQBYkdxByooRAoz1wBx6lhECsmX4Ez6eEQMKowlB6qoRAPDL16xnNhECWlfRsxs+EQN7Tudtp2YRAiWZXGLrahEB+UzJ1auGEQMAUVGzP54RANp8wgWLphEDS1BcqLOqEQK4YrAKB6oRAKLvhIL/thEAuAa4wL+6EQMab0Qzg74RABlZxAjbxhEByI82lYvGEQO0MN+Mn8oRAg6iNLtr3hEAQ9/FHNfmEQA5NsRpd+YRAbMfGvAb9hEDE5oHPLwGFQK4seVQMFoVA5j3qcw4ahUAtWsNeXS6FQPhfjVFfMoVAtmHvJ+RNhUBMyeoN51GFQMQNp9nqVYVAji92srdehUDcd7QloGGFQDpto1VMZoVAiouwyp9phUC/m3edmXGFQMi7D/eZeYVANDY54Y+BhUBj3WJ7t6KFQAKcuI4f3oVAchKM8SHihUBpN+964/qFQND2YqodioZA1Xb/gSe5hkB9NQppQruGQAD9fZfPxIZAZ5FHBdPGhkA5S/la1MiGQKf5IjfWyoZAB8o6u9XMhkD5hDOA1s6GQI7ifPMh64ZAtNUYAJEph0BHyR0gkTGHQCwCOrKJOYdAaHWw6ltBh0AguEGdiEGHQOOx3eBqRodAlkYVjzdHh0BT8iLYxrGHQHrrRDTJuYdA9DJVisTBh0BTjUFjwsmHQFmipKXXIYhA2NsBzNcliEAyoGtzRz6IQMi+hFH4SohAbBSk2vpOiEBKBTx7AFOIQFq/PJlEfohAHYTBcEeCiECY7V0+SYaIQH2KFm5GiohA2jbC1ECOiEA= + NrgMGZxjYkBUZ6VXTIVuQHKwihFm4nVAqhGvf/5TdkByDmdlvvN8QJ+QoPKAQoBAALNZQkuCgUA= - + - wh2+RCe9n0T0sshFsjO5RPlv+UVc+HdE6nGgRaZLqUQYIp1E2SMxRUcaB0dQigdFYY6YRBvPtERRinpFQTpNRVNGpURHIFtFefmHRMTJlET+o/1EN1psRG+NdUTGqSZFb/EaRz7GskSq2yRGv/6aRWmToEUegJBEd1YjReCh0ERMTdRGFKWTRFE5qkRyZ6ZE/oXvRJVCdEThUZ1FTKkbRaQC7ES1EXBEN0lmRNQMpkT7XxlFcpmDRAYzjEUIdudFTVAMRSqvlkXYAWdEOyS7RLH+AkXOIqNEd+w8R0uC/UQtj7tEi0OWRYHtiEZYdJpEj60NRf72EEXBL9JEvIvaROrL7kQRT9RGUpHgRAVXAEUv4XZFY3bsRL0ql0SxTwlF4ZYqR+sfAUWR1+1ETj83Riev50WHcYdErmLhRckagUQK1ZhEBsM3RR2rZET7JZ1EHnkgRUcpJ0UvypxExXfNRLPJVETepadFC87zRDiCJ0XrS2pEPLK3RAeJiUWIHO5EpYfJRRPx00QMaDFFwr6nREC8wEQbiwxFzAvYRJ8Kd0ZiIgpFDlV7RF+ZkkTiXhpFT5GYRakOYESM3uZEb7CDRJFy5EQKQIZEwSPjRKMkhUU+tYdENm67RLBZoUTK4G9Fl7GmROXXvkRMl5lEUUd1Rr+1bEUVp6BFYRkGRvbZcESkcBxFj7TbRFYWBkV7YtZFBz4xRzHfh0QXis1F2cqQRMkplkQNnBBFDOn3RWWNkURxK8pE2ILARHvK4UVCUoBESkoDSG5FyETiLqJEFcIiRYddLkaRyZ1ErEN4RMX7ukZka8pECxjzRTfi1kT8TbhEpKWSRstd1ESC9MJERYasRFPIjETq5MRE0CTCRODzp0Rft8NEw7iTRLYwtkQuPJxEAF+QRHYNdkTPhcVEbx11RETXzUSq0JxFDJduRBAJukTp31pE1faERDIWpkRtj3REP22IRNzBGUZqR5lEGxJ6RCjqmESwiehE6dzeRAUAhUQS9wpGF+qSRWZvs0TFGEVFEU+HRI10nESOCqhEeSdeROvfjETVAdlEJD8vReuTHUVN1nBEGB5lRauk9kQwVmpEpXcKRoM4iUQofh9FJ4iXRShir0TYF7FFlZefRMNQh0TKh4BEXN3AROFCoETjLyZFmWOAREcKLEW9m6ZE3BHKROBJFkW+dOtEDOXdRHaStkbnmWpEyYT0RTP7aES4IxJFgHRCRcW3nESLdq9EXUB4RFguGkafQZ5Ewy+PRLqRCUWYQtZEKUKBRTpRAkaBOSZFZYSzRctU/0b+/AFHbOYFRUk9m0S0VpVEBimjRRkWCEXEX4VFeK6jRONe9UQIXD5FFAl7RD23MEZJzaxEz0MFRes6AkWlRZREjLLpRE7iB0W2mXtFOP2yRKEVgERwMsxExfvMRNIcnUUIPsZEyY6hRAu+dUQ6wiJF2CNwRLsMuUQvZvVEgTuhRc6+4UQGiPhEbrodRThNeEaBryNFiHNYROplf0SiXDxGBrziRWwouESa9gRFhWcSRYY63kcyWqRG2oBzRMHEDkjNcVFFlay6RrINiEWp219GcZKoRjuL1ESEZQ5FMFf5REEpEkXR91lFycZWRCKPmEW8hJpFV/4bRZmM+kRmcEdFUqd/RAIcnkSx871ECKegREi3lEQbFZJEuumwRDXcnkXBylFHe439RB/XxEaGQrlFRElhRQIaQEVBJiJFqs5DReUDFEVUvI9FEQWIRPmGJEV8Pv9ET6OvRVZLUkb0d6RFAeX/RF0RA0W4yblELLc+RYX5o0Q4H0xFLvctSTNAlUXA8eZEl0oMRZSY2ERD7FdGPZ2nRdnN5EV8yApF++UCRV3VwETeQDNIUHQyR83+pkbYizhFTmg/RRJu6kTNaHdG8h3LRDTnmESASfxEW2d5RQUOlkTJtMdEeNOHRAcblURM4IxF41YFReLEcETJfgRFxejNRbKq4kSemqlEcWKSRM5Id0TP9txG3nWNRmD9pUWNu9ZEuM97RNMujEQLwz5FtLk4RY6LbUSniAFI0iNER2TLGUajEiJFdFByRDq/6kUYFrlEQKG0RD78pUSECypFo3kgRX1qzUTRxZNEyVwHR1CVIEVkirVFrRC7R5oZBkXAOexE8GfMRPNvwEYvfJdEcsODRS2AwkWhRABF1BsmRSninkQrwING3x7QRcSiJkZUmcdFoz2fRUzVh0SY03VEdC18ROtJzEWsv9tEAzk7RbfaeUQrERpFMZuKRMk8kERtu3pGHexORh63ikT+KGtF1NcwRWxtU0ZFpTdF0oqzRJXK50bvHRlGkiSSRMkwmUQQR2dFDNuoRLYWgkXpcsxEZ5yKRC/VkkQmZ7REvY7mRJws6ERajKVEPmvmRCdfgkaz+xhFUSSFRhHDw0SvJTtGQKc2RRmffUX0OpRFb3+fRJXMj0RxTv1Fz/PJRb8tbEX7LXtEd9VtRFT6mUT2FLhGOkeCRLfgJ0aRTJREbUoARZVwlEQvQilFss5bRn1BIkYb1plEYpXyRNtE00Rk1ipF6q0XRdWKHUVObs9EsuBZRfHw1kfER2tFnoHTRN0OBkWEI/JE0ezdRuP3fUTBFQBF14CSRop5UkVauKhFe2a7RN/OxESFWplE0mfXRSb4XkX9jYhG5BPYRc6ECkUfe41Fj7YQRX8S/ESZw7hERBC/RBL2SkZYgkNFj4gGRZlJiESQlYVEuCX7RRPqi0RKg5xEebJARtJRtkTgBbVFQBirRDt/k0SKMYFEkU9/RANzKEWkm5VEaIgCRRPBOEU78MdFyweORJw000T9kpNEDN7BRFYZjERXWINFPfKgRLHnvkXL1ZZF3TcpRTz5jERw0qJENAnKRIq7fUT7odBECTBiRViqjkSnLO9EhtwRRshZdEQbLOhEn/YcRShXyERfL4dE3hahREA5AkZqLZVEzBT7RHXLzkQlszFGAyQsRWzJe0TdddNEbmnJRB/5C0UWI4BEKkK4RIs8IUWFLKlE1jGDRAs0n0Tv9YdE/JqXRBdpaUV8XFBF9dmCReDDYUTUt7REGcd3RIXreUVOVchFuNGPROwGlUSynHlEuhV/RMBQFEUs64xEcopFRePSGEVaIilFT/fYRhq0C0bVKK5EHvWdRNGd3USzlRpF1/+rRH5v3ERdJqJFguY1RXERekS57wdF9XqKROyiJ0b0NplE1+rLREToiES+e3lE4SeXRDAWukR4WkVFtsPxRBlObkRxbLlFx6YnRZ6vrkQ2d3pF4wvDRMjFDUXKIY1ErnfVSCtWEkWj0JNEjKKIRK02T0iQiY1E/T2TROUeBkUPPdhH2XHPRq4beEVNKs9FvO4IRZOTL0V9DtVEwZo1RRctokR/pcFELdSCRAT8K0Y0IUZF11aHRbBrhUQVAoJEUweFRIU+z0aS07lEiD63RGPpskWXjXNEqOPdRI3l+ER3xm5FqLaJRKaGxUVMLcFF8Xc5RfeEk0TQdJJELGauRDQWskRmVqdEpBd1REumqESYYatE52uHRKq9sERR9ZVEMejWRC9S9EXUSURFvnezRBr3FEXsmtVEno/dRerTsER+NSpFJWaVRF33K0WBsiRGTivPRJ4KdkR2mdNEd/IDRYiPAUmEJnVFlmuxRMqWoEi9/6BESIbTR1Lujkbqun9EMvSoRToR7ES5C5lE9H/WRo/BZ0bDDelEAjzTREjBqESg4CJFyaF4ROB1hUQdHjhGIc1jRH5Hf0X7MGJFizK5RN3gsEZG9YpEYE1GRttNyUQPFVpFYv28RJOPuERoZHtEZUuaRE1pgEQuhylF5AN6RKmEGEYIQv1EXOSTRbsMh0QCR4lEnYbwRB/DwkT1oIlEmS+HRG7bAUWPJstEZv9WRCP5w0R6R5FIoNYmSGZafERka9BEJKKxR5PPkEQJpMBE/mXcRf8m4UaVPDlF0ZLiRZ3NrUQFURRFE6FxRAu9gkTU9n9H+/rtRq9tAUaBfA9FyH4RRY7jskRRwjhG/aojRolrj0SsMNBEFqy8RC0oj0SAj6dHIDkiRzV60URSX9tEgiwaRhSZ10XzLP5Fhp2cSEMLx0Q4NIxEzXUzSFJZG0XvjsFHVAUQRerdkUQSMuJGlqWRRBZAVkRstA5GZi3SRCGt8ET6zYBEG2WnRDtgtkQ29nxECRglRROtpkQ6+J9Ej3S+RGUDjUQynhlFcvY0Rf9zPEXICZZEuI1XRJst40TL5spED3BmRDcw4UTDXYhEkygQRZ50oETtJ5tENly7RX+mbUSIWGJEvjsdRbuNBUY1FtNEZQQwRlwLT0VIaWRGzYT8RbtEq0QpC09F7GcPRYjmtUR+E4BEtyKqRPlDP0UCoHZF+UOKRX2hmERAOLFEkEMdRW81EUXj15pHZ1zbRIDxC0fXcyFFZoSXRuMrpEVYTPJELICfRPWmJEX/5YFE/MmmRSLM4kXi7U1Ed6a2RLJB3kTkykNFs01hRFY+h0RwwB5FUUrzRKFJrkSPmhRF7KjDRsZuhUbFSo5FNvy9RMprjkcwT6hEhGoLR4Y4lUZmguFFPJQERexKsESRe/hESU+KRBoXyESErMpE0v2tRJFXYUTd4A9GbAmKRt9DcEbG7ulF2FzzRELwj0Qpd5RE/a2FRt0jEEZqD5lF9pu2RHdoE0V60m5Ee7xlRHf1ZEYgwcdFsVKhRVRN4kRsFCNFJ4+hRIATZkT8Pi9F142HRUAR40TygttGKYmSRo0rBUY+gjtFCK+FRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - w7FPzW7BckBIrKECUMJyQNuBzbymwnJAENe8IeXCckA8+JebPcNyQO9QLVzDxHJAVpaNZFrFckCAKT5AAchyQJAy8n590XJAMxp1GBDSckA7h2VnQ9JyQLZwTnp503JAtjHNx2DUckBC/5Y8zd9yQH1sHbm44HJAKSW8hkzhckA8vddtUOJyQDiHaouO4nJAspznPSTjckAlwlOOyvFyQIzVb9no8XJAvihaNSryckD0DeJ2D/NyQPzHk+i383JAYg8sI6H0ckBmNGZV0f9yQB86nYv5AHNAMpOq004Bc0BS4UKEiAFzQLI5GqA5AnNAjhLXf84Cc0BzsH6O+gNzQAS68GkMEnNA8tTGFbwSc0CeQVwhBxRzQPTNdi1NFHNA3M4Ce3kfc0D0QoYDpSBzQL47EwE5IXNAPhDxc2Ehc0AqI2mReyJzQPhF5AzIInNAXmZhqjckc0DGJaUG0CRzQF/TS1pFMXNABWUVe1Yxc0BGzR/uZjJzQBiBZhDNMnNAAO8BmQozc0B2k/FD2TNzQBE9Jns3NHNAZfG1Srk/c0A0ud4TQkBzQEWBx/HhQHNAmoIIdnhBc0AVBKl0ekRzQO6InX6dUXNAVAK2WKNTc0A23+25h1RzQI7GPSr5X3NALfEu0Y5gc0BVa6C5HmJzQIhR6qc4Y3NAGP82fSttc0DSamxa23FzQG5Tr5lqcnNAuFpnAIZyc0DVPAjquXJzQPasDkBNdXNAzHG0j8N3c0Dup/h23ndzQAAEoqwPfXNAzM9kbSZ9c0DfgVsaN31zQDr0Nox4gHNAEomIf6OAc0Ch0fDZDIFzQBrTCdZcgnNA1Jb5EQGDc0Acyru2hpBzQCbwrPv2kXNAXbY1/0ySc0Ap2VWDYZRzQObf+wH4lHNA4yMOVrmgc0AM8ANAWqJzQCgH2uQFpXNAgL6p1tewc0Buftm0M7FzQM33tHR9sXNAKqI4bbizc0C0+M9fDLRzQPCDUkuvt3NAuVPy482/c0CwFJCA9cBzQN6Z16uQwXNAd2drtM/Cc0ATgyPBJsNzQA4EjIrDw3NAqU7Fm9fRc0BlwalavNJzQFIdym/d0nNAniWg8PXTc0COMgXb4dRzQF2CK68O4HNAlsUU3KHgc0Dw4ss1OOFzQCTzZpxl4XNAAWPQO4/hc0AmVWJ5e+JzQBC8zwgO43NAHiEuF6Xjc0CY958mjPFzQAAclHyd83NALjvdbjj0c0Amu/N+UgB0QFAnIq3lAHRAUtcD23gBdEBSj6pkpAF0QNaBA+mNEXRAkunVV00TdEB8mMCedhR0QBaj2k5MIHRA7MFrbrYhdEBwyHHuEzN0QE6a1arhN3RA//Y1Ezo9dEA3SrZZPEN0QGWiF5R4Q3RAnOhim1RLdEBVO3KD9lR0QBbv9NaMVXRAECfzENxXdEB0QJNPIF10QKTkJ924YHRASIqzQAhidEDmb8Fie2J0QCSFl7W5Y3RASSFiZk9kdECe6sr3nGV0QIR/pvjBZ3RAukj8oh9tdEANpHpYInB0QH9GygpBcXRAJOZ7AhNzdEBpBwYuOnN0QOgvb7OjdHRAUidjpjh1dEAQgYFGZ4B0QM52z434gHRAdu3Lnk6BdED0ICt3koF0QMSxnulJgnRAsIr9FyaDdEBoW5v/vYN0QG3XmkYWkHRA8trKb++fdEC4YGgpz6B0QITtMvM2oXRAbv13XHmidECyqBZ0jKJ0QDvwQ6i6onRANpXFKw+jdEBsmcky/K90QF84TZ4RsHRAwBbXukmwdEBi0gUrxLB0QEhb+ytvsnRAqC3EB/yydECMjuppyLd0QNTN1oERvXRAanlP/CG9dED7bDtV3r90QFgC6pvgwHRA4zAgaHjBdEDw3VwZ6sF0QCiLhqFpwnRASgP/wU7DdECmKXjlesR0QGiqgjK3xHRAX3perPzOdEAIbNLy6s90QGiUw1oQ0nRARYO8IODTdEAwwL7SzdR0QJhj4bHM33RAks/lEfffdECfqSUyvOB0QB0+VIK54XRA3WTb8VHldECwOHUXTeh0QCNl9nqM83RANO1kP2MBdUA4K2+SXAJ1QJrU4eGbA3VACh6cnZcQdUBNcx86IxR1QNSSJjjkH3VA9nxkWZ0idUAMW7MK5iJ1QPxCGC+oMnVASifiscs1dUBgUQcEJkN1QAYmC/4PUHVA4jnrC35RdUCelZJsTVR1QO0zn9t3VXVAZde+xg1gdUBK2nlyNmF1QMXUGwHxYXVALJ7mx2VjdUAqKIqidnJ1QFw7jF5yc3VAUKTt5Yx0dUAOx7eMeIF1QHqAjIutgXVAPv7vaISCdUCOlUUFpoN1QFiv+6mZhHVACFr397yRdUB0Yq+MO5N1QFNW9A7Ll3VAHqjDQpSgdUCoC8bvuqF1QC5yBFaQsHVAyk8j7OaydUBGhpiZObh1QLqKANHOwHVAdA/3tWPBdUDyZLH9y8F1QBI+Ton5wXVAtCHhxRXCdUAOnjjvzNN1QP75Y6jh33VAaNVdnQ3hdUAYuU1sB+J1QE6UgDxM7XVAlpTLhaXydUDmZ2/47vd1QH4nOWRJ/XVAsvIft6T/dUDDvdT6RwJ2QFQvmk/RA3ZAsMe/YFUSdkA4yZO5TBR2QESyf1QLFnZApOTtSogidkCwP1j6LyN2QIjRufmPJHZAhkJgQSArdkCgd8/LSit2QBv01HAfMXZA4M8OYZUydkBmOF3IJDN2QHyn76dUM3ZAzBWRwp80dkD602uHVjt2QCORV+wcQXZAuqd0BspCdkBMrz1WMkN2QOcnFRN5RHZA1FK6bPtOdkBQdfSRyFB2QFyq0I0RUXZAZnNjgidRdkDQw5GTzVR2QO4JzZIRYXZABK5U6h1hdkDuRdTU3WF2QCQE5zjcZHZAHMPJ61ZodkCAeLF3fXN2QNAVWzatc3ZATq1vAZKDdkAlpy0xvZN2QJ9AUJ4snXZAnuBe++uddkAwKEvRRKN2QJZepftQsHZAv1gmjrewdkAZdpoNwrJ2QJTTASMls3ZAXNr5ugy0dkAms2GrcsB2QFb7S57CwHZA5Fp0KuDBdkBGq8B4GcR2QEm1DLHOznZADhy/sDHzdkAcCe6Fj/N2QNr7MXpO9HZAaFJVUzf7dkDZxPbmMwJ3QAAYnBIBEndAqFLh97MSd0DQDv/KDiJ3QKL8w0C1JHdAgIIKkegnd0BX92oYQy13QOjI/GKbMndAEK1ljaUzd0AAdhDrDDV3QFFUX9AkPndAtssDspxBd0DSgB5xkUN3QLIprP78Q3dA3JnvtxpFd0D0b5YMS1F3QP7MzSiSUXdAMM8Wyp5Td0BT/0x8KVV3QGC4SdF7X3dAt+HAkZBhd0BnRIJBkWN3QCDAgEQob3dAJMsuaoZxd0D0pn/mn3J3QJRVQ32SdHdAjEynifl3d0A8MDk2M313QD0Gj/1FfXdA2OOuFHaCd0AiRkGfo4J3QE2Fd0Umg3dAiqYwoAuSd0DWZjGfTJR3QMuR118Ks3dAR0f3FenCd0BCJo9ZSM13QIRmk+k903dAJrsfQFHyd0Cduumrcvd3QBjfTwB/+HdAyImKaEb9d0A0BKj21v13QKaWSdqfAnhAlB31pmkDeEBmCEvH5Ad4QMa4N4r7B3hA9NUh0EMNeEDUDe+xbxt4QJKUTC9vInhAzOUo2jwjeEDLPbod0iN4QLG8qUw6KHhAjg39vpgteEBVH4aC3jB4QO+eyH0LQnhAnE+zahFEeEA2OqQUekV4QIZDBFnKUXhA1KJXV5VSeEAQJMtMh1V4QIgePX85XXhAiNpwmPhgeEBe7UeXtmF4QFKRV08lYnhANNnBXrdxeEBikexVi3R4QGDlmcXDdHhA/t2cq8Z4eECbm/iZ9Xt4QDO3rZEgfnhAmobb9aKBeECfMTugMYN4QFpGWaX8g3hA6bdw2ZmEeEC2nPMoT4h4QMoQyuOpjXhAEia6dpeReEAoq6A/A5N4QGizu82nlHhAm9cjqEyYeEAoeJjrbKN4QNz3vKu0pHhANhup1zmteEB8qtV0frN4QCDTzpTSs3hAdhAnaeG3eEC6QZt+OLt4QBgMy1fLwHhAAFUayvXBeEAKtRCiPsN4QJ7ld/ECxXhAsNTgDZvIeEBqsIX79c14QEBixKZR03hAAI0xSrfUeECFHg0MDeF4QPfEqFaS6HhA6u3S0QH0eECZAcHljPV4QFyfV2KZBXlA6OWIv1EkeUAkOJYpsih5QOwH2D4MLnlARNQL/GQzeUCeC0hBuDN5QAMkR+q5OHlA5VKCDfxDeUAG3I2U31B5QN3GyLw5VHlA5M/8U8tUeUBSB5XQvGJ5QNXGfK9Ec3lAOtKvM1uTeUDKPaNAYpt5QJkzChVoo3lAmCGp9qajeUCT5L4dbKt5QL5ltWzBsnlA3xRwTtHCeUCU7+mnQtR5QOqrGD/J1HlAy7VRLa/yeUAQdUcpEPR5QDTAC1b7A3pAqa/V4vYFekAvXHXT9gt6QAIgJeVQE3pAlCx9RQIUekCs3vFGOiN6QBnJREFjI3pA0ZBc5yozekATHq7acTN6QPhdc2MMNXpAsAmMWC43ekBOOxADGkV6QLLaYGmCTXpAsxZDgrhQekAXFDdl7FN6QG4BPnAnVXpAPJ7wViJcekC3nW5LKWR6QFyyrGAtbHpAxIOLIiBzekDUY+a/xIB6QKuO5tcdo3pA2PQb6najekAsTe5nJat6QH5aCStTq3pAvrNIB36rekCI7BEdDrN6QOLiPwwNtnpAQn3HmBe7ekDLF30YLcN6QI+SMMzyw3pA3Ftg2xrGekA6bGNFQsx6QNjPN4BCznpAZuCwfNLTekBMiA8FS9R6QPYB7tRl4XpAoFIAHznkekCFbxodeOR6QGz76SM47npA1L9F1BTxekCyaHZxGfl6QCBx4b55A3tABIjuOOcDe0BRBkyAewR7QCRNP20nDntAr13xlPYTe0AcdbssihR7QE9fM5pLFXtADhX5a1ole0BE6GoiUTB7QB/VmP1lN3tARQb06GE8e0CSWFvXaUR7QExxtnhwTHtAlJ7glwxce0A0l8YuGWR7QHhwbmDskHtAMiIQgyOVe0A+bV1ALpt7QK76M3zKnXtAmlMZCKuje0DVXpLcLKV7QJQoYj4Gr3tA8g48M/q+e0Dv9W80ecZ7QPR/PTMz03tA9AK1Eibke0Dzvn0HMvR7QMBp9ACM9XtAWOeiqyj7e0D2h23U2QF8QOkE5cX2AXxAEL/rTmYEfEAQQk2KmQV8QJipbRiJEXxAprx+BNIRfECPjOJk6Bt8QHAAeaPMQXxALk+EqlFIfEAasSnHrE18QONG4v2rVXxAqLIyzg5ifEDhLeG7oG58QH7lMFsrcXxA4ix6KwRzfEAqTLpxaHt8QNBZkbtwg3xAXZLY+lqLfECjSuuCd4x8QChiB2DCjXxAsIONKx2TfECNWcEbgZR8QGJJtDRhmHxAwFmB1nmYfEDon/G/WJl8QFbvIJ3GnXxA1iNL/LOefECtPUFq+qN8QH5+y5CQpXxACmBvi++wfEAmuGpVvbJ8QIcljRl4tHxADphC+M7DfECar2zVuNJ8QD8BeOLN1XxA5VyB2vXbfEBcylDSV+J8QKtiVGkP43xATC/guP3jfEBaDdWipuR8QArkKndt6HxAOUE9xRXyfED75WKrVPJ8QCAqgwt08nxA+JX+0/XyfEA0b2hSAAJ9QJlAECRLAn1AKnMQrAYSfUBokM3qRBJ9QFY73iGvG31AlnTcPjsifUB+2boctSN9QB+P6KyfMX1AiLcGKPU7fUDAjd8d/0N9QJuHrNf+S31A3Nht8LtRfUAcsSSP62J9QCDAtjLtcH1A2PUGf3l0fUCmJQo2gXx9QBRM+g+GhH1At2NGfpWNfUC4qKFR7pJ9QMIxpQ7pon1AFbXEZ6OkfUDwps22erl9QMJzKJ8vw31AdBokZubEfUDuSzemfct9QHGRklzz1H1AfDf7Z2rgfUCO7j+H1eJ9QM8E4/aP9X1AOKCHlzQAfkAVNHUCNh9+QPjOi3gkIH5ABDIU/yEsfkBgWETHRS9+QH6enPNaL35AAqDvkyg0fkBUhhjaMDx+QAJUGFylRH5AWjCg04xVfkBmyVtMflt+QEJD4SlrYH5AsYcQDnxvfkAOFFD61HB+QMyg9KmXcX5A9E1dubZ7fkCf/6ASoIN+QNBjMClThH5A3mAdJsiIfkAlO5sE749+QDk8RwbikH5AXN0az1+UfkDiq0cZNJ5+QJiCjviQpH5AgvVqf3CvfkDm1O7fsrB+QIbOM6UMsn5Asv7OwpSyfkBo8G4kBcJ+QJ6cciDSxH5A8SpuZnPIfkBxNrtlF8p+QATIdEXLzX5AbS6ox7fPfkB82kXRtdN+QFXL7Gvf1H5AWFeF+8nffkDNgGYn3wF/QLA+VB6VA39AMNqFpcsQf0CmYn38PhN/QHZbhhilE39A3s40tEcbf0ATZUjIrxt/QBpKlVCvI39ArLJLFXMzf0CWr9HTVUN/QOUDlCeLWH9A0g80LTVZf0A2Dpyk5F1/QMJu7fkvb39AaJXDb7dxf0A843VZqoN/QIc+ISZyj39AxEXO0mGRf0By7ZE0p5F/QIPP1TqVk39AcxMTPmChf0CO1XQ/Q6N/QKVaUvp7pH9AHcPMH52of0BP2wijVrF/QELNhBLLy39Anl41m/fgf0BJYi3ho/N/QP/N2luHAYBALkZneOUBgECxLd4rNwSAQNDAsULsCYBAMPNwFowRgEAzpsUSRyCAQDYmro9pIoBA9I2gruMmgEBqglj2jSmAQE5iwVHpL4BAZWEBYlc3gEAU6u1D6zeAQKjyHOFgQoBAEKzOEKlCgECzj+dX7kiAQMTxj45XS4BAWE6K+OZQgECVxP8LFFGAQJ1LSl+lVYBA9xCN2dtWgEDHB8De5liAQNAApUMOWYBADo88QSNZgEDX58M4h1mAQFCdaKLeYIBAbCnozgthgECXCF2O62WAQBe4kIWhZ4BAl8XXZ+9pgECoKDjxTWqAQLhYH/rwbYBAptvvCihvgED3V6H+8HGAQMiHncscc4BANk0iZyt/gEBaeG01Ho+AQIwQYSkhl4BAYEtzrSmkgEDA8x1zyKSAQJSgaoaGqYBA3+A/EROvgEAh+hRsp6+AQB/DqKtnsIBAof9NWZKygEBOYPiZB7SAQHTghouBtYBAtM1PISG5gECOEjN2BrqAQDTrGvGauoBA5MTeWFS7gECKoHoDCLyAQKCP+pvvvoBASApqxTnBgEBy6btYUsGAQFxFemyfwoBAoCEZgj3GgECqLa3GuMeAQIKUn/4DyIBAy9z/2GHIgEA9bqxcLMmAQKqV2kNTyYBAVH0BplXLgEAgcNdqCM+AQKidTBYxz4BA+O1SeyHRgEBcq7+JTNGAQPhcVUBh0YBApI53p1HTgEBGNWmVSdmAQN4poIHM2YBAtf4TZ5ragEB5Z9rXv96AQCeKjfWo34BAEO64/UThgECXuxSda+GAQLDICT0W5IBAEh/mycHmgEAb02bc9eiAQOyDQYAc6YBArBCq7f3rgEAnTy2TSu+AQBbnMrto8oBAh2cZgTzzgEBFibzR6PWAQBSmx5QL+YBA8CZ81D//gEA2Dl1B6gGBQF2+t+VAB4FAqDwe2TcNgUAiNQEJ9A6BQIphZTc9D4FAHi3NszQfgUC55xojsB+BQPh+k9rfJIFARhD0kjMngUAGiNAPuSeBQGikOuBVKYFAgJu2D+YsgUDWqguCQC+BQFjodcS3L4FAdJyb4b8xgUDIlCIuKT+BQMY6grOVQYFAzDwiTyRHgUA5Xv0bW0eBQGOAL5ObR4FA63zrAAhKgUD3hfRMn0qBQFRn+4mzTIFA9dI1sl1PgUCiZzl4aFGBQPlT6qf5UYFAkgWEnRVSgUDWEF5cNFaBQIKwt5XmWYFA8aoc1eZdgUCHUDImwXSBQOkq5gRwd4FAkHZY0WB/gUDuI1ms7YmBQJpvvDUHjYFAytmsKVWPgUDGUlW+so+BQFBxG3nxkYFAoWcaRFWXgUDinvZ3mpeBQPGFz8lJmoFAFE7ovq2agUBVst4snZyBQCZS/ALwnIFAJ4R8H0afgUDpUtXXbJ+BQAQojv/koYFA9GpZB/mhgUCps90hp6SBQFiof7NuqIFAXrGiu0qvgUDDn2HKSbeBQHduiI4kyoFADL9eIdHRgUDqwKsN+dGBQA5wA9P71YFAVhVKdPzZgUCcBaFk992BQButYtL44YFAZDtLXv7lgUAA0pj90fKBQKu6c1Xs+YFANAANUZb7gUAQrYf27/2BQGYC6anjAYJAoSloSgEJgkBu78ZupAuCQKwJuDeaE4JAoGu019cYgkCY6kTe1iCCQM7PKXfRKIJA1inLLJo3gkCuWLoLCz6CQJT/3ZpbPoJAvfpJbrM/gkAA9M+sDkKCQFqqnaprRIJAUvytEBRGgkBxmjkKykmCQKLIWLqMVoJAhv+pSYhYgkDx7Hfy01qCQOb2065sXIJAWhua2zRigkDU6QXJOGaCQE4/PzbTZoJAT2kJDaFngkAtIR8kbGiCQMRZif47aoJANy4h5jx1gkD2vqoNbHiCQD7aWtSpf4JAtJDtQ1eIgkAYvQYZQ4mCQChEVRARioJA+oWkaEORgkBhh8XZN5WCQKrXZQU8mYJA6q+6/w6hgkA9hdkzPKGCQH4wHKEMqYJARF2nwjOpgkBeWcDASKmCQAZ5scQir4JAHbYcdAexgkBNvnmyQ7WCQPKjopwvuYJApvkEWZ2/gkCweABp7MWCQP8RO0jvyYJAcAg5MPXNgkABxCZp69GCQOyRAPJ92oJAIBbb7IHegkBApDEwWN+CQCyH9dSF4oJAVOSOPeEBg0BtZjAO5AWDQIakN3K7B4NAyuLwCMgIg0D9Qn5o2QmDQIwegvvpCYNAwrHgNN8Ng0Ceq647eRGDQL586AHjEYNAeJyBwXkZg0BylJH7SiCDQJBwpKByIYNAZv5Uhoohg0AC3rkgcimDQLyyFW9qMYNAK07SqIs4g0DiTJkz3EGDQN8jMxaPRYNADjoS7olQg0DIgwS9lleDQDqZYqrxcYNAAtya8utyg0Am+z4V9HWDQIn/TypJg4NACDBN52uag0CKs9DOs52DQIShN5PxqYNAJwNJS4ivg0Ak26QxH8WDQNoRzaLKx4NADP+9cCXNg0AEwjiTd9+DQK6BfViU+INAoi6sAIMBhEBuRqYdiwmEQJY2ji54EYRAkkTnNopChEAMrgy1gViEQO3RZoX/aIRA00qkgPZphEBM2h6c+22EQAJ4GPD8cIRArv8Mhsl3hEDvQrLM9niEQB3OZGxoeoRAxiWGRBV9hECEAj5rwn+EQOg4DDdvgoRA+Gj9sh6FhEBqIob2E52EQIrEFwbUn4RARhFRnXCihEAecBzcHqWEQCZiFRF+qoRA1ASY7iGthED+O8ttGM2EQE5+6TzGz4RAJ7Bg82nZhEAkwVvxaeGEQENx1ErR54RA5irx/mHphEDo1vt1K+qEQBGE7y5/6oRA8MrQkirthEDZ1f3XLe6EQCJIMu7Z74RAvqVyszTxhEBCUZ1/YPGEQOJUv+bY94RA+CzHGDX5hED2K4FVYvmEQKt5r3uL+oRAZT6Bt9//hEA6GOYqDRaFQGbN7xNcLoVAetGj3fUxhUDsNdNGYDKFQNM+3/9mNoVAOj+t56tNhUAkMIfJ402FQE0NX2rmUYVAivQEwe5VhUA+vHJym1iFQI+/VrriWYVATJawPaBhhUDq3K+zn2mFQLhEX3tPaoVAh5AmN5hxhUC6Bp+ZtHOFQLQS2eKXeYVAWPfAn5CBhUD+btIbYISFQHNSrAyTiYVAeNCmaFS/hUBuo1mWIN6FQA0nXHRo6YVACiA4ceb6hUDUjMRfJbmGQD5QVhXRxIZAaFFiINPGhkBMeT+31MiGQMjqV+bUyoZAzD+m29fMhkCqUdYw186GQHp1Ju1M2oZAywsDbCLrhkDlQHJKkCmHQNZbh4CRMYdAjngdwog5h0BYxp44h0GHQNrGSoeBSYdATmlAuFuah0DMQLZjx7GHQKZb5v/GuYdALDFgUr/Bh0D22FbZ2CWIQOQpeTDWKYhAElomqPdKiEDYpuCK/E6IQAZZZw38UohAVNUVaWhiiEBki/18RH6IQLyUPM1GgohA6inaM0qGiEBOXI6fR4qIQHfJZyBLuIhAWnCEzP65iEA= + KBZXds7jZUAYxSyCnORoQN1iJOBz4nJAO0xzspUCc0AztyjlC1N3QDuqTwbuE3pAMxUFOWRkfkBds1E3cYR/QMeQJ8KTWoJArgiXxeRKg0BYlaha1RKFQD0x9boQE4VAaFt3vVxLh0C8wnJ3YauJQGiKZecI1IpAS+vQbI1zi0BouVMRtVyOQFeMzcQMBpBArJkswKsWkkA8EDKeTZKSQMMc/5LcqpNAhZJyam7uk0AMnz9f/QaVQM4UszaPSpVAIB8DxwajlkBOLKpL5Q6XQAWjZ6BHL5lAM7AOJSabmUCFul61nfOaQEcw0owvN5tAzjyfgb5PnECQshJZUJOcQBe/303fq51ApzXlK4EnnkB+IaITEBygQFD5szHph6BA16zUGjNCoUAQhS88FGqhQPs2LBg+tKFA0BCrRj9MokBbm0tHUtqiQFTCXh9h2qJAfyWjRF1Mo0B4A3+FcYijQD+xHk+ILqRAA0Xo7olSpEBj8j61mNykQMPQY/m0NKVAI366v8O+pUBOWwT6x8KlQFgb5q3MkKZASHajjtnApkCxphi171anQA== - + - axTjRTNt4US/g7JFZw2ORCPHU0WCo7VEYIYMRSfqXURPxGREdWEuRau0EEcS/nFET1Z1RKAw6ERLtvZETqedREi5okXcZndFGEDNRE0LK0WeMFhEEo9fRFXnkkSXVapEsSilRCclc0S+uvBE52hmRKQ+b0R8WpREZynPRDRaEEfIqZ1E9fhXRlszfUXcIadElvnxRFRnqESAL6pGF7+bRNj8pkT/ApVEa91hRNEFlkWrBxJFAlCMRItYVkSRFaREUjRvRKJ2ikQsZcREIMYYRRERokTAcoFEtVihRWTRIUbh1PNEPQqSRbZWrkTyGddEqQB/RD58qUTz4gdFbW0gR0Cly0QkGNtF+NJCRpFRgkS/ydBEK0/0RNFf/ERQGDdEHCPQREdZuESFvdFGCzSoRLux/0SPKpVFxILVRHpDAkWUHFdE0BpLRwnx0UTJaB5GC4OtRSKe+EV+2MlELVSLRDigqkQAtoJEnGBMRQ3fN0UvmW9EQRs9RNa5pkS+BFJEXRrYRWkOAUX+o4REQEIHRfj/AUU/UFVE5OPmRLcYokULl4lEJtaIRO4fC0YciNNEwuBDRB6++kTtk4NE4rqfRL9rXkQfnjJE5GrRRPDSXEROUqdE3SiARhnNX0SuxZNE2YD9RDBIqERzNKFEiSA4RbBAd0SToU1F3JKSRMZ1rURyiZxECGoMRctavUT3i/BE5pEcRSPvS0YGoYhFdte0RWP1A0bb7lZEyu67RA8xU0SprJNEgp5lREvDdkXLgUNHy79NRBa5lEXYSYdEoYN5RCfLlESGOT5FixXiRQThSEQmN6REy03JRBj/T0QIaZxF0LUnSH+KBEWWRZhEQJSURMEhfESPAIpEezE1RbZRRkbBclxE8EJhRKgBhkS96o5Gaz7vRGXYNUaZLStFdz/VRNIC20Zg7K5Ep0W0RPVOVES1qahEIOB6RLOeo0SCM/9ERoCYRDNp30TnsT5ELWy1RFNptEThOsdE+KCCRDISX0Tw5BxF/oWeRILKpkSr7uVFqeS6RJ6u9EV0qH5EM8T4RIWoHEVZM3JEWkANRqS9+kRvkIBEjzpCRU++nEQpLZhEb2RORIAjekQOnddE4wQlRapJ9USpWb9EA4fERafutESEFppEHugQRhiRhkQlerVFPYhKRDajuUV968REYTuGRK2GoETn4ONEJ1eARN4LQkTX/nZEPcujRDPCoETes5xE60V1RCIsgERe/+pERoBERNoI9UT9DKhEJWO2RNL8f0TKTHNGL+buRTqQDkWpw+FE9lGuRB2YE0Z6OtBEwm6pRBp+6USgA3dEfROARddwZ0TZOwFGnRozRRvNtEXrEqxGjgJ9RDkna0YyUFJEOq2CRLjVfERqfKBFKfPORKxc4URhvVNFgIZaRFi2mUSVCTBFn6Z5RB8wKkb/vndE9rmDROrnoURrTQBF3cT1RJiNQUT6PZFEDaoWRSp0dkSUjlVE9bqHRbF8V0VBiGJEeRDLRMZDPEWqNzNEZPxlRYGErUQ8fkREB85xRCiAfkQbcG9FcaR0RXp/P0X4e5VEfXKRRD3eF0XMWnFGn+ZiRDCbUkUba1lEGuJWRikLtUUoZuVE8yHZRG3p5UerEYdEKwOYRvnKk0efzANFFmLURk1GikXSO1xGA84URp65gET0jEdFiqZSRVl1NETTnx5F5fGFRO1nKEab7mdEJZweRUGiXETk64VEZj2dRJ1kakTkxmBEeH2KRHt6lURIWkpEk4tzROqzvEQ4hZlEEUuLRCl4PURxnJdE01leR0J+K0W0n95GTbbuRNTxLEXRN7ZFvCMoRaOubUSHkkxF249LRWRbCUWxGspEqMUZRUhUg0StEAFFsIWcRRguO0bQ1nhFg2EgRZRoO0V8VFREf90oRbhFFkUDuG1E/NpHREpyPkmruc9ESL0GRl6ZqkWgbWpFkVMQRW+oNES/q8JE3fY5SDryK0c997JG8veBRdOBwEW1XlNGOrEKRV/LTkTTb7lEIJSHRKt8Q0ScbIpEI1SoRBELakUyXsFETXGNRCtfsUR7mIxE91lgRKyuh0SQ06pE/juYRf8Lk0TSYJFEH9pmRT9lukUbGI9EyZHhRAkTmUbpFT5G7gqWRSNLk0S/BJNEHnPbRB2oc0SYc1hEH7t8RURAPEQHSdtE/oHMRxgWDkfDD+JFCtxsRPeyl0TnNC5FD5xiRFrBiUWJlnpEtG5eRGG0P0VWouhEfqmQRKkDpkSIZiBFuGJyRNwoQkT4UIFGDXVxRSlpBEWR865HxegqRQCarkb2uVtF56SZRTvofUQNBQRFz9wjRhEjo0WeFllEXfeERDJmdkSfETNGPPyIRYueO0XkvbFEyOW8RFJ3jEQOhohFSWCXRDDhp0SNH0NEkX3cRMZCIEX2S59Ey/5oRBNLbERaGahEqxuIRJJbx0TQ+IpE4PqKROTtXkRMMNpEkCs5Rk2RWEbagZ9ECpc4RWl+WkWF0h1Gxl5lReNAe0REbUREyqqqRiHX+kUW3EJFI2siRQ+0jERfcJxEm287RffTYUTdOL9EizGrRHg5XUTxpXVEzG2MRKQwn0R3t4NE5fbyRUtmsEThpoVGxSLHRGv4E0ZuvgtF8UVFRQgPrUXNEZZEHPiaRQ6pQkRyCbFFLMxPRSKQBkVVanBEey2HREPSXkTraJ1ElQOyRByNiEbqouFFd4eKRAh820TKkyFG4jQHRjSOoEQGF7hE3WYhRVSpIUXecq1EU1UoRbAbkURyKYJEDY6WREt2Z0TLXBpFlYqoRAIDTkR6DJNEu6ppRUte0kcKgxZF1sCeRK7i10Rl155E94QnRTXs40ZphR5Fl1N7RLOB4URGGopGdnLqRCL/OkXYWlFFAIs9RKfg0ERX3K5Ef2vORTaQ+kQR8npEADZMRI38PkQtjUdEgMpMRmPWn0WJKZ1EIcFyRcuJ/kRt0ldE5nN8RN2plUQaOsBE7pVJRhJR2ETMrxhF35LrRIBojkTN9/FERoPIRZs/gERn2KlEsn+2RYn/ZkRvO0JEpUdGRWffnURXCwRFiriVRKjRSER910pE+FyORFB0bES1F8VE5XpzRBxrNUWPWUhFlIqkRKs2b0SZVYNEl52ARDC9P0S5wK9EQ39xRCR2WkReGGxEfu0YRWeQlURRj8xFxkYKRX9WckRIRkZFxIZgRCiDo0TzgZ9EifZSRAVthkQ+P/lE4x9nRFi2LEXA0MtFl3BVRNOtj0SkWbFEDjmTRPA+iESYbflEKkhRRMJNl0SLVPFEp7ejReLUckSjRHlE5fsKRnbrg0TxqbBEQHUaRWLaBEU5PINECAfnRAdSIEU1KZhERuJZRAnPikQ1CBpFtBgRRr3m/0QbqvhEqrljRAquTETTIc5Ewi0UReFR3UTwSXJEIqhtRNEIgUTUM4VE8MAPRWfD/kSMWHhEHjhTRYarW0YhHllEeC1wRDLjx0TVK3xF3XqeRGl+7UTSdHZEeFWsRJkyNkWqHrREOiuQRHV84EQoH1xFGSM5RVfpkET+h4tE4LYTRSOQE0bu9RBFpUF8RL0Qr0RNbK9EbvGfRVR6s0T1Jc5EunHyRIwqYERA6V1EP6pxRPHj3kQM3sFEt3nbRMpznUTH7sVERwcPRc8zjEgH9xJF9H9wRHA7SUT4yapEO1U6RRuYlkSqkwNIgStLRBzZtESEqmREuYu1RBR+k0duIBFFNg+jROUnY0aMuXlERKGZRAOv7UR/X7hEcdClRbe7XUWfhkpESzsBRe7LvkTRjIFEiLGLRDui+0Q4IotEDH9+RKEtUETgbGhEfYNGRjiHgUT07y1Fz4WNROkAiUSZR5pF6sjJRneBe0Tf8L5E7saIRT79V0R+C2lEIyGVREN/u0T8RWtEExLNRBNdgkVFSW5ERshFRMjCx0UzLIBErSbiRTpsWUTJXrBEOX5LRDtuZUQVFIhEEkWGRMWQf0TMOApFlg9mRMl8gkRzptpE6T2NRBHr1kRBZtxEl0y7RbPYGkUB9o9EUTTrRDHdGEWUv8hE+bLCRDsdpEWlBthEevkSRYykdEQQ8zFFvzzYRM47z0TMw9JE/rLvRVmBAEXrXHdEeUmhRF/nzkiraXlInBGWR7WCY0aiOFlFoJCRRGb0X0TgiJRG9LlIRMAUL0bEKudE6cOgRGNzgkQ54H1ENKUjRllvVkU+Xh9FVNyzRE/hekZcVGtEM9idRInLy0X8mIZEAn8RRR18m0RD4AdFeMF9RE8W5EQMjsJERsvfRWT6fUWlpXtEtUv7RNr+xkR+98NEkXKQRMMgg0Spz1xEQZ6MRJED9UdF4H9ELnJZR8pTfUTFsAtHKl7bRWxvFEbCmfhEB8cvRVL2k0T911lEA92jRP0je0Taa2tE11hVRCk7YEd4UOhGszoJRq3FNkUt6uBFdDZ7Raj5f0TgSw1FaZupRxkzF0d+mI9EB4xcRMXlEUaV//ZFSFnLRR5LDUhjF1hECfeOR+PKyUTq1BdHtQgbRf+xOUbH2m9Fr5+aRCIVtEQP/6pEI5SsRIpjRUTAuTFFhiflRMRjlER4bW5ECMtrRJvmsUQylEVE0O12RO1TXUW2YRVFvq/PRC5Zs0RebRRF/4vURXnOvkSBBpFELJyFRMVZbETs6O9FErqcRNDNaUQJLyxF2JAFRgnS+UQabqtG0MuiRjqVOEZJRLVF178eRYqDo0TleMZE0dyBRRZmTEUSIaBEF3OLRPlX7kTyXgtFko8kR3m7qEZgxndF3ewuRu+hRkW5p4BFDjriRPKdO0Ub1o9EK6+fRfQhkUV7YIVECVkZRVM5r0Rr8oVEQbeBRCD/mESbFGZFp89tRAKVWUXIxFdEgtc7RK62p0Yd6ztG1V5JRX0RTEQE2rJEVvIlR8N0iEbmYqZEeeYnRrS3eUQgp4dFRqeBRLRsRkTcKFlEfhnTRPISx0TsgcBEwjrQRBSG1ESe0ThG46OzRnb8QUZ2WPlFthgoRRe/gETjVVpECN+kRBBHM0ZYx81FqvOMRW9OmEQWPoZEXNpvRODJ80VlYZRFMExwRURCp0TG5GpEGNpBRVngC0V4opNEOeaGRFD+kUYN6kZGIVeLRRi7BkXC00RFSQ07RQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - msbEMyjBckClSCcvb8FyQNx46F3GwXJATrVBik/CckBgf4oHp8JyQIoSpjPkwnJAH+38CzvDckD4S7i5xMRyQObogslaxXJAzvzj+AHIckBw03b8fdFyQJnLpJoO0nJAYBP9LEPSckAuUMYUd9NyQJKK8NLN33JAl7KVjbjgckDoStbmUOJyQJCQz92P4nJAlsfDrCTjckAwNE94VeNyQEJewj/K8XJADVQen3nyckBacqc0E/NyQKTh0+O183JAdAKO36L0ckBGB3m1wf9yQFgFQFUVAXNADE3V4ksBc0BumXafjAFzQJgEK+M6AnNAqgQmVM8Cc0BJA7rB+gNzQHyc2tsKEnNARiD8hbwSc0Dkm/Dd9xNzQLBuel56H3NAmBMNrw0gc0Cqbr25pCBzQGqrllE5IXNASkKbEWUhc0DA8Y1JfCJzQOQC5fnIInNAZAddWjkkc0CALUMGzyRzQByPSkhHMXNAwPpyMM4yc0DWGLWnDTNzQJqR+WPVM3NAihVi2zY0c0CQ8Nc7uz9zQIIeLxPkQHNAjj7yBnlBc0AKf1ZPvEJzQEALFvTnQ3NA5h/MKHpEc0ADQw1Im1FzQKKKQ1tAU3NAAooNnKRTc0DKNuD8hVRzQHuVvGX7X3NA/pbpCYtgc0CWaoU9H2JzQNfZ0JY6Y3NADhGoG5Bjc0C5YkhSz2NzQN3HW0UrbXNA9xoB0t5xc0Aagv/UUXJzQLOW0tNqcnNAINnVEYVyc0CxoK4Mt3RzQBTrMCZLdXNABlkOFN93c0ACBR/CKX1zQLjGy6p4gHNAQtWuXqOAc0BYffuoDYFzQA6/NwZegnNAtwfSvOSCc0Bw6fAH/4JzQEqqJ/CHkHNADXkkrM+Qc0C7woq505FzQOYWqhNNknNA8c78vM2Tc0CISMLDYZRzQG+LtGH3lHNAMmsJhomVc0DRFqZZuKBzQHyIwQxPoXNA2kJ4Ylqic0A2vIc5A6VzQMCh0VW2s3NAZGwOIg60c0CKO03M98BzQJpOGIo3wnNAgpRLLM/Cc0BoH2PAJsNzQBQTHqPX0XNAD8uiC/bTc0BoE4y74dRzQBDmQT+k4HNAoyowrzjhc0B8ygrxZeFzQM1ooMZ64nNAyHeFrA7jc0BXANDxpeNzQIJixUI55HNA/Dl7if/yc0Di6VNSovNzQHaCo+s29HNARjYokI30c0AQiQKJeAF0QGWnIpyjAXRAyZtAo7oCdEAkl71XlxF0QAEZrAx5EnRAu7EY3EwTdEAqLuwXSyB0QCDAM8sjIXRA7HAwPrghdECIB3F6uiR0QOICcgRUMHRA/WEhQBQzdEBoth2LtjR0QEvIbDXhN3RAas8tuslBdEBnglzDp0J0QNSfcac7Q3RABQrLAVNLdEDkJwI4+VJ0QMlnSYRZU3RA9iY5uPZUdEAeaBuEjFV0QC7E0JwhXXRABHzpmbhgdEA8cjciTmF0QBojg7oIYnRAv1BQ1ntidEA2bE+KTmR0QGrGhLjEZ3RAwsWtkdNndECfAXD/Hm10QOb48NkhcHRAAtioKkFxdECOGGcrO3N0QESymx85dXRA+l5+w2eAdEA20gpM+IB0QI7xAKZOgXRAhgejvkeCdECMMoNTJoN0QLwgQQq+g3RA549SvBWQdECQhgxb7590QJA2IkDNoHRAXihMnzihdEAO8Xv7uaJ0QJL5lGsQo3RAkLUs8vuvdEDN7RKlwbB0QE/sokVvsnRAHBlRn/yydEDQUB94ybd0QJgXPNsSvXRAkOK4CSO9dEC0syVt3r90QJfu7xniwHRA/E0jUHrBdEBOnnJK6sF0QHarASIOwnRAstW3f7rCdEBI179jI8R0QF+BZb64xHRAFJYw5PnOdECuoSPl6s90QEdjCPN21HRADv4oGc7UdEBW+4U/y990QPmhuici4XRAwuX09rfhdEB6UOW4jPN0QM4ZaRt49HRAm8qDHKb/dEDCLN2xpAB1QABzmAjQAHVAzi+EP2MBdUBRDqpvXQJ1QITHUJj1AnVAAiPB4ZYQdUAE/a1yIhR1QHwxh2CdInVAVEdYluQidUB8EFDarDJ1QPr/ceHLNXVA78Ob8dxCdUCyT/LfJUN1QN1Gb+T3T3VAMoQCGYJRdUAQIpszT1R1QM5pxNN2VXVAshELrw1gdUB+qGjHN2F1QKhspRXzYXVAyyZ5JGZjdUABgscRdXJ1QMBrtvhzc3VAVm79OI10dUBJyDCz4IB1QO5ozOx3gXVAsrS3Pa2BdUDmWgcUpoN1QPv6aFWbhHVA+DK4Tr+RdUC/DUmzOZN1QBJm3Fq4oXVAOqyI4EejdUDq5L6GCbN1QEDkd4KRvXVAas4CNM3AdUDe88kC+MF1QMZISE4PwnVAqDKS7DrDdUD6Xo09zdN1QOFOOpzl33VAPx31Jw/hdUAu6CU6CeJ1QGxPOQNM7XVASsapxCfvdUC3xa0YpvJ1QAMXFJE383VARRl3egH4dUDM0dHmpP91QL6w5pVIAnZADyi2H9ADdkAgzaGQVhJ2QDZxAcjgE3ZAimBzFwwWdkBehPAJiSJ2QNMGm9KPJHZAlUOYmR8rdkCyI5M7TCt2QBBX6Z4fMXZAnluCbiQzdkAGcKb/UTN2QNCpjJmaNHZA2NZpqx1BdkDi7gN4yEJ2QNXWu78zQ3ZAZC1tO3lEdkCW/V4Q/E52QCJJJ1cTUXZA/KByn4ZUdkB57ksMzVR2QB24PDsTYXZAuRoAm91hdkB8TwVI22R2QHwbMbLkgnZAkK08TZGDdkDgL8J2t5F2QFun8bTrnXZAaicCnqKhdkCTNG1bQ6N2QFfPs9qeqHZA0v0e4bewdkAUY80+wbJ2QNAqVA0NtHZAtWYjKHTAdkDKRM/ymsB2QPyOuZcaxHZApnWemM7OdkB641f9EON2QFNJ7toz83ZAK9F7qZDzdkDUWxN8NAJ3QIZAyUilA3dAToJzmAESd0Au1bcADyJ3QJRaVz14IndAwbW82Ognd0CC1UICQy13QBpJ/wSaMndADG1wn6Mzd0CyPzZNDTV3QPwY3hedQXdAZfMPbJFDd0C8rgO1/0N3QOKhrQAbRXdASjch8UpRd0BMXdJVklF3QET6lHvuUndAKAks6Z5Td0CT2lJa6lN3QH6pxropVXdAPqHgTnpfd0CQZUeKj2F3QHq+CPucY3dAxmud+Sdvd0CqP5TDn3J3QA8+ERz5d3dA1H92hJN7d0A+/1MNeYJ3QKuie+8JkndAUJhg6EuUd0CubP0RmrR3QDb3nkgtw3dACoojb+/Hd0BL0GOxT/J3QAXX6ld++HdAMG+fuEb9d0C4s9GBoAJ4QESvIcTnB3hA2Ge9cv0HeEBx6uvyQg14QMKBPJ9tInhADSWq5zojeEAcM5biiSN4QJqryB/SI3hAgg8oGj4oeEAz8uW4mC14QBBY2bPcMHhAi0qjLXwyeEBCt87uEER4QOpCuz16RXhAYGs0rcpReEARDU4iiFV4QKTIFhr7YHhAvJHzNrdheEAAJPOoZ2N4QB52pQTrb3hAgMTD5LdxeECAfBW1i3R4QND1zzC8dHhASoNU+c90eEDuNtMcx3h4QPBYHx74e3hALIuENyF+eEDmVlNCOIF4QIYUjW+kgXhAIjZmB3qDeECs9RKmAIR4QEJD7tGZhHhAcHIWYk+IeECWHJqCqY14QCgGQ/SWkXhAVIteHgOTeEDLBm17p5R4QOjuvZRImHhAReSgEl2YeECVfkBlqqR4QBfZveA2rXhARy7yHuO3eECyEGFBOLt4QOhaN3bOwHhA7JYpiPXBeEA37SMoSdN4QEa01XK41HhAQ4skmNXYeEAQsXSJldt4QNDCoKww4nhA/dvE8AH0eEB2r3sEjPV4QEQowraZBXlAGnJ1zGwTeUCkOyJEUCR5QDjzy+SyKHlAaX55FwwueUAkZYizGTN5QPZsEZ1mM3lAXCOCf744eUDYdFdwjEJ5QJ7qaw36Q3lATGnk1zlUeUCHbGSTy1R5QACTAtnYZHlAzpD9X0VzeUBaFMkk+YR5QARkwk44j3lAlwoASluTeUDthMuje5h5QDqEqipjm3lAwPAl6GijeUCe44b+X6t5QBRwuRPBsnlAqr14x87CeUDX94phQtR5QMoA4HHM1XlAzM3D1LvjeUDMb6ZxUOR5QFu10QMj63lA4nL8v4vreUAZSrChEPR5QBQ9kZ78A3pAXEofL/kFekCmHHLx8wt6QIVuU61RE3pAzJLV0WMjekDyqWk9KzN6QP5MfH5uM3pAllpeLAw1ekBAM4lzLzd6QDiG6VkwO3pA1oXZlxpFekCGW5Cezkt6QBgVmkiATXpAZCbUUulTekCWhUMVKVV6QOTGljYiXHpAb+yhrchjekCpNqvYKWR6QH/jyhE6ZXpAD/AU2IpyekBaPEU1HaN6QBqtHup3o3pAy1os7CSrekAe29axVat6QFsxARd8q3pAlliCVA+zekC2fmNw97N6QJkzEqIMtnpATpMltyvDekCWWM2dGcZ6QHN0NbdCzHpAn1sLXz3jekCEav73e+R6QElA0Gs55npA4NRQXDTuekA+fsJOFvF6QPbMVUvnA3tACFxvTnwEe0AN0WeWKQ57QLjoUBH2E3tAvtgZV4kUe0Ds7n88TBV7QCR04xdaJXtALar2scIze0ASsBfJYTx7QMWebw/zP3tA58pRgGhEe0AU3EIfcUx7QDpXqDgOXHtAKiB+NyKVe0AKyMK6Ba97QIsJZBr/43tAmLitvibke0Da5ZCJN/R7QHB2Zm2M9XtADlulwSn7e0CeLx542gF8QD/VEbT0AXxAxuhEcWYEfEAo7dS1mQV8QJuuEMyKEXxAtkuDV9MRfECsZmVw5Bt8QEp5jNfMQXxAmswYDlNIfECsnEPGqU18QCSmlPDbUXxARCQk8+5SfEAV2msKDmJ8QCIkS1Fpe3xA7LOxKm+DfEB0eL1ld4t8QPPsI4h3jHxAY+rkmsSNfEAo9ERpHJN8QAoNOuxwmHxAmG8Gm1mZfECbfi0cmZ58QGurGJeunnxAe9Pg7QukfECTd4tWv7J8QMTJHjx5tHxAfzSJ0BS2fEBetAel0cN8QJ6TVSHK1XxAduMfK/bbfECuBmDQV+J8QJjxQWAQ43xAiuglC//jfEB5LXInp+R8QFN6xLhr6HxATjmvqxTyfEC6j+XPVPJ8QEq6fINz8nxAwlZG6QECfUAR8ht0SwJ9QE4mXi9FEn1ADP/qqq4bfUCY4zSNPSJ9QPskMxOOI31ABlzEebUjfUDjcqx39Tt9QM734qn9Q31ARNXjkXl0fUAKazECgnx9QEy6DZZag31ACo4IyH+EfUDgu8+/lY19QBX1I171kn1A+Li1dIuUfUCCuFtM8pt9QKgDlzUoon1A6Me8ayzDfUA9pETQ5sR9QEBXkV8r031Arz/LHPXUfUAJl5Kjb+B9QMiQ/eqP9X1AnOXQmzQAfkCQKEDDOR9+QARzE8giLH5A+Ic4rUEvfkCei56SKTR+QMCPyikvPH5AHvHX9kI/fkBph+Jio0R+QDrhuYTHU35AbjQshY1VfkDY3fCtwHR+QKmIvDPcf35A4O4Ku6CDfkDEnlExUoR+QKjXCda8hH5Au0zNOj6GfkAxZ/GUfJt+QNOkbNcSnn5AWgoZU5GkfkAUsqxGl7J+QITMaxxPtH5ARCNAfNHEfkBq7wuyc8h+QKzjSUyxy35AWE78VszNfkBcNXzC29J+QKI1ez0s035A2n8399/UfkBqg/tlXfN+QCpIruxN9H5AVuxe5+ABf0CQrbFPlAN/QFb7Dj1EE39AmmcNaaUTf0CYJchESRt/QIIogpOtG39A/31cKc9Mf0D83Ytu5l1/QKa0kP8lbX9A3wJ1mzBvf0BsD+kvuHF/QABCom6zgX9AlRmSBaeDf0CFFicrbo9/QHVXLUVjkX9A0p6UTJeTf0A675ojUpd/QERq9Zu/oH9AULMSSluhf0D1RbM0QqN/QM6keRaRo39AhLucSJ6jf0AQfnaAm6h/QI54IltXsX9AsHQ+B/Pgf0CACQoYNe9/QI2rdD309H9AsjR2gQ4BgEBitRKPMgGAQJY9z6CIAYBA1DZlyuUBgEACzlZDNQSAQCgLsq7bBoBASzZ2XScJgED+UlFAhwmAQOZFU4LsCYBAWhshaPwSgECL6emweByAQKZSebhpIoBAmNX3hXcmgEAimew05CaAQBiEAyeQKYBAuHTw6xM1gEB2SgGiyzeAQIKJ8eSoQoBA9i7sz/RIgEBEtBMACUuAQJRkWuflUIBAaE1R9hNRgECgDFsB3FaAQJXNNnoNWYBACet6LyJZgEBsn3Yoh1mAQI4ptcdHWoBAche9pcNhgEBKwMarb2SAQCBcgPjpZYBAvEnEyqJngECaragLTWqAQA11Omcza4BAZmeBRPFtgEA8hkmSJ2+AQOMnlXjzcYBA/lbtmip3gEAWqqW8Ho+AQNyWxmYZl4BALdpfmU2bgEDTnDc5wZyAQBhjsVTWooBA5nBFaQmkgECBdyRfKqSAQG7xBsw1poBAojaeXYepgECszPZtE6+AQBIHvukZsYBAjhwjjiqxgECwg8D/wLGAQNi8h12UsoBAtpmJ8wa6gECgNE15UsGAQFDKwvCdwoBAsgQJ+O3GgEDfzoWfX8iAQK645m9TyYBAjH4XbfnLgECSR6dyBs+AQEI/DZdh0IBAfsdUeCvRgECuxvBuTNGAQMADKFxh0YBAxjXDIkrZgECilTvCwN6AQLskg8BD4YBA5N5C7lXhgEAUT6fpauGAQJC2kbUT5IBAbvOZVfjogEB6EhuVROmAQA1HR+VL74BAMow/vzzzgEB0MMpj0vaAQLo/VE4Q/4BA+jt/uj//gEBwaqZxPweBQJDCbOjjCYFAE1LOBD0PgUBI+UFTNB+BQEa81/yvH4FA6maXVzQngUA935B3jSeBQHLBwbkwL4FA6noh1XMxgUC1zSRDvTGBQPwAp+EoP4FAk/W5yZlBgUCz+saJWkeBQOb/h9UISoFAWQYaWbRMgUDhtR+4TFWBQPA2P5vmWYFAYo924uddgUBcVEQKM2eBQFC9QXfBdIFAYh2+lAp5gUBiS0X0G3qBQFWdddz2gYFApldri+2JgUBaLxzz6o2BQK69lXxVj4FA5wieDbGPgUAa+Big8pWBQIh9BX9Wl4FAZlA/9pmXgUDI04ZCRpqBQGYcc22cnIFA5fTZBkWfgUC8LCLU5qGBQKeIGctsqIFAMuWIv+2pgUDGFVPUSq+BQHPziCJHt4FAUM2xRvnRgUBxMiSLftOBQAZftPL71YFAgAL8Ov/ZgUB+hnpA9N2BQGEzrrwH3oFALG0Oh/nhgUDDCQuTBuiBQMOUsY1264FALJb3eez5gUDiVsdqIPqBQKgzQtLv/YFAVWF81OUBgkABFYal+gGCQBYwYZIDCYJAJydQUtgYgkB8ijHF1iCCQPX6r8zQKIJAcnwGgs8wgkCuN5riBDqCQKTssQYLPoJA9ivoPQ5CgkACOqJMskOCQJg3mLkURoJAS443cS1NgkCJ8Anr1U6CQFufYZCfT4JAjKg/X3RQgkD7afB6OFGCQABt4GaPVoJAdvp49J5YgkCC8hSCpFuCQIh0xb9vXIJAEhOeNkZdgkDxSaNoM2KCQGeQE1k2ZoJAYHDFtIVmgkDM01WLoWeCQAg610zVaoJA6BQpwNhygkAErnMaanSCQKRXED5DdYJAtllYZPR1gkCr/pOliHuCQGhWenfkfoJAotCWSkOJgkAeQr0D7o6CQHoQkn1DkYJA6P2OB3GYgkAxLWhbGJmCQAUM2FI8mYJA3Ccz/w6hgkACI2k4O6GCQOkxMYIMqYJAZBOLWTWpgkA6djPRB7GCQO6XiWYps4JAcvA7JhHCgkA2JJZDs8KCQBind6XsxYJA8stPiO/JgkC2zEZtVsyCQAWYxynhzYJAprJOEfbNgkCm+NvH6NGCQL0rBZB92oJAZ2vgYILegkAKtoqlCuqCQKVNeCBV6oJA4LLkz675gkDc5F+v4QGDQNSseEvkBYNAZOkhZMoIg0CWnThY6AmDQMKsqNqUDYNAtMR+ON4Ng0BxQHx9eRGDQMKQ+q3kEYNAjuP0FHoZg0AHJA3YciGDQJHzZj+KIYNABd0DfPYlg0CW/i7DcSmDQLPjHuRqMYNAnmH8e2g5g0CoobUT3EGDQOYE4yvhRYNAVhjaoj1hg0Dfl1Hb6XKDQMxhPBfzdYNA8jeyUkqDg0D0SeE5wcGDQJJZMQwfxYNAA6dVysvHg0ASaqwCc8qDQHKk+wbJ3INA18Oq+Xffg0BgiLZxIuKDQAbnOsZP8oNASFC0fpT4g0Djd2jrggGEQBnmKuuLCYRALzVWxnkRhEAYJCJfb1CEQFJ9BTDrVIRAnPk2VP9ohEDEEdCY92mEQMPb01T+cIRAMmO7vyNzhEBKdVETyXeEQLGfaRX4eIRAgGYfHL15hECiF4gbaXqEQNBTFZoVfYRAOEf2XsJ/hEDOLA45cIKEQKqhDqQchYRAhtUCRsqHhEBCdZ24HomEQJK2kftBioRAosH8gtefhEDI+9pvcaKEQJo51/MdpYRAXEy1tBWthED2VLDe6siEQJ1cYlYYzYRAPrnDMsbPhEAGG3rnadmEQDEmdQhq4YRAmBMvI9HnhED153FeYumEQIEab7Qr6oRAbMi+4HzqhEAJdxNMKu2EQDbHSMUv7oRAQuxU79jvhEBpdjcUNvGEQA6x8MBh8YRAUjmRizfyhECuDz5YNPmEQP0z0VBd+YRAEpIOBS0BhUDoiCfnKQmFQIzLXNMNFoVAgrAh0F0uhUArZK/KYTKFQEMfVP1iNoVAaMXC+ONNhUBI1NFG51GFQJQ6F2vsVYVAawGKTO9ZhUA2rHh6oGGFQNTTscufaYVABl3EC5lxhUAiQ8TOtHOFQDloEkOXeYVAxYCbOqGBhUBSV+yoqMqFQLTO1qof3oVAxQiG2P3phUCGSTlX5vqFQBfcYBWPEIZAnE6TrEkVhkATepvKt0iGQHstkGP2ioZAqRjnZJuShkBLOvorKLmGQGFsjzspwYZA+jCLxtHEhkCiDLtk08aGQNEv9JHUyIZAuiRbRtXKhkBoxHEb18yGQIZrH+DSzoZALj2/N5Eph0A5z//LjjGHQNXHE+qJOYdAyBITGVxBh0CKrBNQi0GHQLPijfbGsYdAIpS7AMe5h0CsDWeRwMGHQJbuPlO+yYdA9iRCDYcmiECyEfF+dC2IQER4pDv3SohAaneswvxOiEDUWs+mRH6IQPmki9lHgohAGv/nJEmGiEDJflruQoqIQA== + NrgMGZxjYkCRGlyHeVJxQK9rGHLRYnNArmsYctHidEB1xqyr6RN7QCMR2WHBY3tAyxqxsIGEf0D1tbbNbMqAQLzhXN3Y0oNAyboi9cxahECQ5sgEOWOHQCAPJ/pka4hA9BOTIcV7ikBLOan8sKOKQK9mcxk9vI1ArmZzGT18jkA+j9EOaYSPQB/fX5yKhpFAPDceZl/KkUA= - + - dK6LRPsbA0YCtYlEPWyfRJV3pEVcILZEv5tMRRlIvEQJdaBE+AjgRNC9oER/1hlFz1AQR5BpuERc2TZFlAjWRG6Rs0Uom7BF9acpRUvnsUSjTYhFcqCuRFrAcUQpRQpFsUbSRE3uNEXYR4FEcY+lRM7O1UQSsKZE9HaHRc7TGEfsCOVEeJakRm7KkUWAPdhE0aKPROOOzEQPItRGGLaGRELqsURbGytF6UzgRMKN9kUxJyNFS4YcRfdWxUTQHZVEXlUCRRVeGEV5zo9EFCq6RZhN30TApnFEOCFDRnmqVEXCAalEHL22RQ+g9URNt61E9SuVRJWS9ESroUVFl2avRN6htESq2hpHmtWvRMs0zUQXQg9GBPaHRu15w0RJ7y5FfMKzRY2hD0ULsv5GGU0ORd3D+0R9DtZF3vuGRBr1h0VsfDFFTU1jROTmxUTerXZH0dnRRB2V70RKFo1GXlqJRMfmCkan/Y5EDdoDRhR8OEVGF59FTwc9RRzz30RGen1ESDe+RavzIkU5vGBFiNDERG5dqUWOj6BEvi3gRcvYv0TpifFEMiTHRPZsNEVfrXhEVEqARFPje0RCRDlFzM6SRPR5qEZy7QBFb+KpRJvfnETR/pdEor9rRc3sE0WM38JEa8AmRRe9iUQL3NtEognrRMj+ZUREtV9F8EqYRHAshkSFWjZFGSI9RXKKF0X/4JFEovuYRLD/70Qm3mtG8cGqRVBXjEQNuudFlAruRaLGAEVGwQ9FsTHzRG9tmURyS/BFWq9rRykpREWUdtRErZ2TRJtrB0WGlhBGlW62RKpHB0Wr4qZEtiGzRdROUki7VpFErvzVRDTOC0WsAVFFb9eCRuXqo0TZ0pRG6SITRSeiEkZISLlEnUSZRN8TDke1/sxEOJeiRJgkrETN+oREU1/tRK1Xo0RQDlVFR6yYRD4HHkV9u8xEv50wRfUNoUQon+lEE1M+RTRPGkY7q79E4Y53ROFX0UTBCtRE3fPdRF0HNEYCKoJEXZXqRKbo1ERZ5PNFliHIRNVDvkT8qH5FmlSTRHNWjUQ6n4JEr4K3ROc75ERUsQRFb0LPRC8Ke0WugQlF7EMuRhh79ET0eAlF9QVfRrdefkQc2EtF52UjRt+rqEVJczBFXyarRIprkkR354dE+B84RffDAUUNVXpE78ajRNfnJ0X444dESxedROeDCUVNMnVEDELqRJ4g4kRNCHtGJ1WMRLDU+EXFr41E7jQWRcYeLEVSIl9GV4xRRR+3tURkcn1EGayyRILBhEV/ACtGlz7hRKgumEVE+8ZGmVYBRsGv60S0UKVE0W6VRcneCUWH0pJExEWJRbbVnEQfbipFOFGBRKHzj0Y145tE9V2TRPeql0VGrqVEi9QqRTgRlkQDIMhFjGurRKuQKEUisOpEkafDRMcAIEWhpMNFASSoRNrgqEQCZ9dE3suKRU9lj0RQt1lFuJNDRfF3IkU0S5VEXhypRv64iUXK3HBEX/xARizKAEaLjTFFNVCkRFwjC0iHf7VG0TxFR5JgmkQcDPRGboB1RbgbUkbQZ4lE7A2sReqiCEX11BZFvSj3REqjC0UAY6VEbxVYRWw27UXWoRNF91OtRGCJ50Sv1Z5EuUSLRCqqhURQVtlEwQ/2RAw+E0Uo6mlF5iFzR3GZ10bYLaFF80nKRar5JEUxcalFEsbcRHxouUQ+hAJF6MrDRA/0mkTBfytF5UCTRJPXk0VWZYxGfLC0RbgfOUXueeREK+eFRWvykkQjLwxFzQWoRJwLfEl3bTFFRg0CRWWszEXDlHhFxl03RbdgfUTJdl5F4HewRNVEt0TEdnpIJHc6Rw8/wEbphUZFqhPfRa1ly0bKxpVE2P8SRRNc0EToOo1ECeqpRPWgkEUnAgFFI8CaRCxVrkTPzP9ETTLFRFRWDUVUPtpE1m+lRSIdKUbVGg1FdMCRRE14MEUfes1GNKZ0Ru/al0RziD9FGunOROArFkWIit5Ezg58RCOnukXn29BELj7uRCeDl0QFm7VE2+amR63oAEWSZvtGGa6oRWV1x0TH2Y9FuE/dRO4LA0ZN3iJFXtaqRLVqA0Vy1atEUkjHRM1GUEUPW41EOfIIRUvwnkS4zPRE6ZcQRp8KRUXc0OxEu1kKSLOThkXbWW9FgywVRzpbqEQOF6hECZysRLWqh0UcuztGsYStRGI7oUV12gRFnNODRMJuOUagqkNFECN+RZDSKUWpJ8lEccImReFxpERi0bhF6SuVRPAp+0QG0BVFCfGURNq28kScX4xE0hnfRL5Wy0QdplhGZ1yLRoCo80TzYzdFU6pVRSlkXkZi6jhFH8SqRHT6tUabV3pEjCopRnlZS0UeEHpFnpIRRXJj3URKF9pEj+jhRcn/wkRwtL5GWbL1RI1UUUapHf5EP+MaRbh+3UW+4/hEIMyyRcgmPUWWa9ZF0TGgRRjcPUX2Rp1EZWvHRIpqlURusKBGZ5zVRYBT80SLlBhFS10ORv5pv0URrN5EJEAZRfk4z0SyA7tEGxKeRAlrIEWve0xF9BaxROj8AEV/rbdEoCIgRZuDEUi7fP9EmM+2RMg7xEQoY8NEPU4aRQJ6DUewNI1Fw9Y8RRg+0UbVxMlFJMG3RcwRCkVgMoJEWRrDRBSjnEVw+ipF0PtMRqQyokW7mHRE/kYqReSMHEVu68hEMc+TRA2qq0S+H8ZEiWOdRJErREZPmqFE7N1YRUIQiET/uCZFACK4RbG2zEQLGsdFC0KsRKlId0V+K/xEjg2FRLCSz0QXn7dEYFeQRBoIokSz8YJEl4QCRZnxN0X/SJtEnAaNRDd3sETDYpdE8TjyRMoYHUWY0ZRETn62RUREMEV5LJJEzCbNRN/dtERdcOBEdlnQRIAhqEQZiapEeLicRB3Ux0TMFJpETzH7RbeN7USm7TlFFwKHRGjItETGZYFEa9PVRI3SsEV3mZhE8O7/REz8f0TPJEpGPuQ+RV1PjkSQQ6hEcS8aRRsNEUXOpHJE5a1zRBt7EUUYDxlFHNcpRaU4vkQ4eopEj1+NRBPpjUQNdWhFDLx3RtT+NkUa7X1FjyyhRF0EAUWCxBlFUCGWRKz0jERckTNF+LKtRG+J/EStmtpENIGJROqwe0QLunlFLTnMRIaOmEQaLFhFEPCWRgxA8kTbesxFShbmRA6jvETZIZJE9yFTRWvgnEQoGJJEIrSjRPYjJEUE4JJEex1WRffDO0UsGtBE3oh2RCzVHUbwatFEkIeBRJ/zkET6VptE1Q/vRNCwhESELMVETOghRfogh0UN64VEur/MRLkwiESZCrVEJt0DRZGmpUioWzVFqFmqRBdi+EQtlB9IGjevRIWVVUS90ItEyj4KRYwFokcPYVZFoEqORiX1JUVaTs5FTi0WRd1pTEU60iJFbunXRHJp2USdssBElxm9RAA0nkS2VrlE3jssRkBnWUWfA7JE4DxhRYLC10bYcn1Ea0iVRV6YhURhhsNE4V2BRHr+pURuEDZFPXaJRMaACEaa4ZtFugp/RQVggESCR/pEwLmvRD30l0TXN7VEc6aBRATT5kQC6IxE42nWRF9kjEQvbupFYcmdRJXOgUTtvTtFd9cIRT7fl0T+zsNF7QbuRDSDTkWxKd1EU+mMRMrFBEYgabJE4yjBSDb0DkXF3m9IgttGR8dQR0bDKxpGviZ0ReRfhERMCJZEjcmORoqXnkQTsQpGaOTiRMyIpURxvaxEScpHRk6nqUVAjR9FABO7RKXXikRwEzxGbKsURpvCwUSFiNlEk96fRDcnE0XzJdJEv+HTRHZlmUQUfp1EU+uPRLfyjETgTY9EozPERDF+1UVtLHtF7AOdREHF2kRZIdhE5TaVRBt5eEQkvLBEpjOORKI5dUSxz6tEumMHSBgukUQTQGlH96m9RM3Su0SZBw9HwWHORY6mJEYDWSZFI6N2RWlPCkW6D6REZNGGRL/fgkSesG5HomEER6JiikTqUndFawsWRv5tRUUBLAJG4qGCRd3oLkWGKL9Enm3fRIClmUeRAh1HpzDcRPrOAUZNlY9E/1S/RU08JUjh66pE39mdRzo8MUd19jJFDauQRD8PTUbET19Fe+eRRI9X2ET5EqZEYCfIRAL4uUQw2JZEzFu7RPJjlUSAORpFEZ0QRZRPhEQDvwNFcKetRALevkSk6eFEsA3PREGZrEaWl3VFUxEJRQePhER8Do5EKHTwRWdgqkTSsFJFuJSFREK/AUbyXVNFtqeuRFftMUd1wCxHOs7MRrgHLEY1UaRFiVUCReU10kTkEJ9EyMGURFEqVEWRx91F2+iHREPsZUQge5JEGSAQRZYYL0fz45dGtLxIRQ/LQkZTWhdFCtK4RWQ6HUWgTVRFtsaURE32p0XP+YRFjZBeRA4nE0VMTdZEhK/2RJO2lkQjdQRFg4tIRfaSh0W4MOdEK93DRnETNEaHTmtFS4qaROLGHEfDU5hGEA9pRmVs9ETCyJNFuaawRLikm0QNTv1EM6OiRCazAkW23ZhEOzXkRBcivUTshZRE1CihRNruikQfjc9EqqO2Rsom/Ub+itxGWAp9RrB99EX9mpVEfp1RRg2ts0Vs1ZlFX4aNRKyVtEQqkyBGrZOeRej6HUVro89E+k+ARGApiERKolZFyPpbRSCPhUb9h2RGMWh1RZxgH0U= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - RshXFAvBckA+QlOCWcFyQA5J8vpuwXJAzi/4xsfBckCS0vOoUMJyQNxFyCWnwnJAysbG6OLCckC/jID/O8NyQJt8PU+ixHJAhs3r0MTEckCkMAMOW8VyQE0qUqgByHJALh/ix33RckDA/QllDtJyQHTXWlND0nJAK7FVp3fTckB4rX1bYtRyQE5Qm3CP33JAWXIwg8/fckBmA7bhuOByQEifmIxO4XJAcp5zWFHickDpK05HkOJyQEaEOxYk43JAppihceTkckBWZX9kUfFyQLTd6yvJ8XJA/lJ5+M3yckDoHZe6EfNyQMCiO2S283JAxuiIBg70ckD8zS58ovRyQKkUAl/B/3JAus2saPoAc0AY7OlsTAFzQDJnyDqPAXNAvgHy1jsCc0B51ZHpzwJzQAifyKv6A3NA3s8GXiMFc0BS0oZECBJzQDSZk30oEnNA9H1M2HcSc0C2P3PGvBJzQOoRxFD5E3NAKL6VEQUUc0BSwY/kTBRzQI/TXol6H3NAaqGXDwsgc0Acgn4NoyBzQHS0Gv04IXNA1LY35mAhc0CWVVz7yCJzQOwu8VwPI3NAZ6t2jc8kc0AG7F6NSTFzQEtkEsVaMXNAQcP/OmYyc0Bcln2H0DJzQCQdiBkOM3NAsIJi1Pczc0ACAZF0NjRzQAJ4KLu3P3NAQ3qbpeNAc0D/q9C6eEFzQFxeg/F5RHNAxG+rmptRc0Bx9kNNEVJzQHUTL35CU3NAGmZM8qNTc0DDAB8EiFRzQI734zj6X3NArkeO3Itgc0CGVyWXHmJzQHoKw1Q6Y3NAso8fBI9jc0DEh+8mz2NzQBJdJ/QrbXNAcuRe391xc0AmPNIBUHJzQJZDss1rcnNAilKMPIZyc0D8qsA+TnNzQHyiyqG2dHNAJnL9Rkt1c0ABLlHtbnZzQA4cdv/Od3NAXF4Drd93c0BeY9iueIBzQNJAyO6kgHNAvpWQpQ2Bc0ANBENCXYJzQLBwlWsCg3NALi/gqXuDc0BoCjIqh5BzQKKFrej2kXNAm62dJk2Sc0BUTPpnZZNzQJrSR6zOk3NAm8ySLWKUc0DQxaAA+JRzQPZYgpO5oHNAvsuheFqic0DKKC7nxaJzQL72haHmo3NAwoEAfgSlc0AuPDkH2LBzQNihCUY1sXNA/RYwlVuyc0DMmFFufrJzQKJvwsMQs3NAJgiFX7Wzc0DsRX+YDLRzQNgHxNL2wHNANkNlpc/Cc0AslnWyJMNzQIBk4RzDw3NA3keTptbRc0B80aGJvNJzQHCefOP103NA2dmOl+LUc0C5YbylouBzQARCzlk44XNAF5J82mHhc0ATb1wt5uFzQLwCHzV74nNAgms4XaXjc0DKJ5XzLO1zQN+0uVmE8nNA2MXiojb0c0CqdtRl4QB0QKZfR0V5AXRAzLGQkqQBdEBYM7/ruwJ0QBKFrn1RA3RAUm9FNooRdEAI6JBmTRN0QB46Rl9KIHRAxLgzepIgdED4rdviuCF0QFSaR7P6InRABL/5fyIkdEBCOQmkZCR0QFe1NsVTMHRAQgpyr7oydEBmt6pn4jd0QG0Xx4E7PXRAqrXLOlRAdEALfU47yUF0QBrEVVmnQnRAgYzLSzxDdECGcGudU0t0QDiOnsmiUnRA3K/uCvpSdEAukigoWlN0QIOpxpr1VHRAljI6V4xVdEDfbaKF2ld0QIJ4q7QgXXRAFumAcrhgdEAznEcDCWJ0QHBQdRZ6YnRAdhp1+ORidEDoex57fWN0QFlG+NFOZHRAtjW/zCJwdECZcKwMQXF0QKIQSZvQcXRAKKwWgHpydECGmYT4OHN0QOvnuP6gdHRA2gztXjd1dEDCExALZoB0QHJdWUH4gHRAaKtoFU6BdEB2t9VDjoF0QEI4EDrugXRA8xG6akiCdEDJjXVU0IJ0QAblN6Qmg3RA7EcU17mDdEBOkOz7FZB0QDyoIpNrkHRAGLBkkO+fdEBKpaAlEaB0QEd1sbEcoHRA8LFuLM+gdEAViB4UOKF0QNjs+6G6onRAQrHJjw6jdEBrE32nY6V0QM8ShOP7r3RAgmoVOsKwdEDeLeXFbrJ0QLYUJQn+snRAYkak5si3dEDD+AhbEr10QKcIoEEivXRAKzIADd6/dEAPbL4beMF0QMkSCklrwnRAk/5WALfCdEDWUbhQfcN0QEyHeBwmxHRAYBD6cnjEdECwYDCSusR0QFVO+1X7znRAuOO7ierPdEAUDgi1+NF0QD7eCa0U03RAuMiM2T3TdEB8/hCBd9R0QMAMQkDN1HRA+jY80szfdECesDkbuOB0QJANUMog4XRAyS3WJ7nhdEBEmGhgG+J0QOlSeL9P5XRAUz0XhIzzdEBnv6end/R0QK4I4aWkAHVAE76y9M4AdUDI7+U5ZQF1QGj7F0FdAnVARr4GmZkDdUD26j/g0AN1QLdke2+YEHVACDWx/GkSdUDbfumyIxR1QL0cB7bhH3VAST1zbZ0idUBB10H05iJ1QBujA5qoMnVA/nOkMjQ1dUCCykynzDV1QHzgQZ/eQnVAhIupASpDdUDOARx/DFB1QIH2hLyAUXVAT1MLT3hVdUDfpU+5DWB1QAD5zhY4YXVAaMR2wfZhdUBUeY6KZmN1QPjUWzd2cnVA8LFfWHFzdUC34z+rjHR1QPI2f+d3gXVAHFlKpq2BdUDaPr5Sv4J1QBrjVj2ng3VA2CgShpqEdUACCNSR5Y91QMi9KQa8kXVABiGn7juTdUCN0DGXzZd1QOrp0PqUoHVA4NAf8rmhdUBARJHlSKN1QN4C8LylqHVAj9u/bAuzdUDCnszIY8F1QLRsGjb4wXVAyfwYj6rCdUD4k6VmzNN1QEbeAh7k33VAzpA0wg7hdUCCIDLwCeJ1QEhZQVBM7XVA4lAbmonydUDmuFMGpvJ1QLoXHBg483VAEoIGEvD3dUBMv8uoA/h1QJa+beJJ/XVAtuG86qX/dUD6etgySAJ2QOYfg4DPA3ZAegJQZ1QSdkBltEEzCxZ2QOjwq4yIInZAvlJ4lJAkdkAKuGwnICt2QJ4ocxxLK3ZA63ZpFR8xdkCeFUG3ljJ2QJbexJEkM3ZAeXDpQaA0dkB1bYVg40B2QIVQC+gcQXZAccjFdpdCdkB0S6CGyUJ2QHDZJzN5RHZAJLvBUPtOdkDSfl2BzFB2QKB2mvURUXZADtdd1oRUdkDShDjjzFR2QG7Bn2iPYHZAl1h3TyBhdkAEXEdG32F2QMrnp8tVY3ZAuHrqS9tkdkC0qTQrV2h2QIBkxQqqc3ZAzEiaINCAdkAo2Hf9YoF2QDQXIntng3ZAbsCiZpKDdkCQnQiAZpJ2QDD5RojqnXZA7rjlJkajdkD9/j+It7B2QB7JV17BsnZAgqJT83mzdkAcauiDDbR2QA+MwPd4tHZAyxccCk7BdkBjLsQzMsV2QANzkLvOznZAK6vd4w/jdkBXgkdwDPN2QGD0tKEx83ZA92gr54/zdkBeQ2yiTPR2QPRiU0wzAndAtLei3qUDd0CY210aARJ3QMBgQK62EndA2cBOqZAbd0BEHLlKjSB3QB7qDzAOIndA9FVCe7skd0CWwsuV6Cd3QAOQQYdCLXdAJkCe6Zsyd0BsY89ypjN3QE4IjyMNNXdAEM3m8uQ3d0D4p8UrnUF3QOYHwdaOQndAquWDCJFDd0DqLOj//UN3QP5ZKiMbRXdAWDuqW0pRd0DIyJpnklF3QD5Um5+eU3dAGAxQfulTd0BKFfZzKlV3QP6Vy558X3dASGMz20phd0AYrsE/kGF3QADfwheZY3dAU7ECgSdvd0CUus4nhnF3QK0Py6SfcndAUk/g85B0d0CMhQxT+Xd3QB5tpEGVe3dAVvVdeEN9d0BJcQsmeYJ3QKZnN0Oko3dAs5z9ULezd0CM/GITPNN3QG2DlH2L1ndAYo9LalDyd0DoTB0CZPN3QFlLOvBy93dA9uiRxn34d0Akr0G+dPt3QBeHg6hG/XdAqv/qpdj9d0BLd8f4nwJ4QG/tLkfoB3hAMkEVgEINeEBv55B6WA14QFJAqWOiEnhABpVePW4ieEAscwioPiN4QJRjeb6GI3hAr7h9s80jeEAGcUB2QSh4QDPsP+HaMHhAAvE0BQ9CeEC+j4T7EER4QJ4ewTJ6RXhA9ULaEspReEDl+yOFnFJ4QP8ncEOHVXhAzGEdSZ9beEBCNlsr+WB4QBLWwvy2YXhAd0Y8qitieEBgTcSgtWJ4QNy4YW2kY3hA9ueKv9VqeECmPKOR6W94QOyguC5UcnhAtl6Q6TF0eEAYGDYjRnR4QNRkPIGLdHhABN8KerB0eEBwc33Cx3R4QBDcx6zadHhAUypXGMh4eECCZjtG9nt4QCZ3DfshfnhA0QxTq6SBeEAukeSI+oN4QO9YcPmZhHhAvf+DaE+IeED4dfln1Ih4QFRumqKpjXhAHR7rMZiReEAOThtwuZF4QDrvEpXtknhA+CdqgQWTeEBedSUaqJR4QCwOlJtLmHhAmDDvKWKYeECCsSbpVqB4QGHG77OloXhAShuilbakeEA05ASnOa14QOK+GHXht3hA+p+T4zi7eEAuAEtlPb14QEaDm+fMwHhAanZZ9ibEeEBE/dugBsV4QAOhdL1Q03hArk2SCrjUeEBIAkcTA/R4QH6EqaSM9XhAfGEXvJgFeUAFpdBrngt5QAAqv6q8I3lA6p+6bFEkeUDGp8Ursih5QBjcVFwMLnlADHXmh2UzeUBPVUKluTN5QF6SjOaPQnlAmFyIc/hCeUAeLAzd+0N5QP0mE73gUHlAWOj9Qc1UeUDdw31O2mR5QCLilTxFc3lAyUSQkfWBeUDAQ/Z2W5N5QJ7y5shim3lAJJL3LGijeUCa8vPcWKt5QN6rHRzAsnlAMF2TG1+zeUA2TH0KzMJ5QIqj/4dpw3lA5Hu6QELUeUDYOILIzNV5QDOUqj5Q5HlAFJLGQCXleUCx8ZLMi+t5QAEetIYO9HlAhP24bvkCekD24ERE/wN6QLz7/qL7BXpAPo5gvPcLekAGGoW3TxN6QBxlTbzzIHpAWlAUW2QjekBGJO1sKjN6QD1Ukn0MNXpABkAMqjA3ekAco+ZoGkV6QCBTe2WATXpA9P3MdfJTekA1OKl8KFV6QA6vCN8hXHpA0IBv3cNjekD0tfkcKmR6QF7Su8gMcXpAYOGlKJByekCcot66HqN6QDIAxdN2o3pAusq+syerekDA5fUAVqt6QD7XEN8ts3pAJOWVE1+zekDBwwBI+7N6QDKjxooMtnpAAh6TUivDekAbpbCkGsZ6QPyrkWw/zHpAfjuqZlfjekDw4h9KeeR6QHA/pG827npAOVAQnXsDe0AXu4xe5wN7QFTpMn98BHtAA6qHE/UTe0DYJCTfiRR7QMJi+9xMFXtAjSIzy1ole0D8bq78xTN7QEAamqViPHtAwJUghmpEe0AtHdiPcUx7QNJ0TjtgUntAnAW9pw5ce0AIQTWuEmR7QBfEohwPdHtAnHkucOmQe0AmsRYCI5V7QMbvjdZZnntAoxFFbDase0DK6UvhBK97QJjqp2Z5xntAyhII6RLQe0Bg28Pgl9F7QAUziAI10ntAWpjl0iXke0BBKQfoi/V7QKPQzNgr+3tAQ/yBIpEBfEAO9wYt2gF8QIq8jfz2AXxAbNFO8A0CfECIQs40ZgR8QGZHt9uaBXxABpAxQIoRfECyOBMP0RF8QGAjCBP/E3xABATpRLsjfEDvuzN+ijp8QLqIZJbOQXxA0+htBFNIfECCf+BKlU18QNz0exTnUnxAd80+Cw9ifEBaM292K3F8QMz7th5pe3xAmfvYcXCDfEDsts2deIx8QIvBWcnDjXxAfkGy/hyTfEBU+N4EVJN8QIrMael6mHxAuV0CS1iZfEDY6Srvm558QMVYE9X6pHxAJlLov8GyfEAql6akebR8QLTNEs3Pw3xAZqQFrPXbfEBy/9zoV+J8QNBlpLYP43xAzw4QC6fkfEB+qyTDwe18QOJvjzgX8nxA2s8EXFXyfEAZrcL4AAJ9QC7MJl1LAn1AhbfEKkYSfUBwxgxBrht9QDqEDQE+In1Axn5xhrUjfUCc5VM0dzR9QLo3jD8oNX1AkvFNoPQ7fUBnDjxH+0N9QEz4Per1R31AGbH6cmtRfUDWF1uhCVZ9QMbqDwl6dH1AvssOYYF8fUCgKKZlv319QOUBWKGIhH1AbsVi3JSNfUBLfu9R7ZJ9QCqcCv1FmH1AyDTGlPubfUCd9hiRj519QI+N7IABpH1AmMroCca0fUBc9mHQKcN9QI9n76TmxH1AoWhU01jLfUB64GriPtN9QK5m2Dz11H1A8Lj7GJH1fUBomIYxNAB+QHbWjsylEX5A+Ixx2AMefkBYaKdnOB9+QCURhoNbK35AiveO+yIsfkAwNQTiPi9+QMNiC8MpNH5ATg7td6JEfkCFudMCJ0p+QOAGB3neU35ACPMU7YxVfkDNp/erfW9+QOZZNSm4e35AkvVpvgN+fkDMek3tnIN+QG2HE5xQhH5AQlFjk5CKfkBUONG7uZB+QBzdnf5pk35A11SnfMuYfkC0UhPik6R+QCzDgE/BsH5AgDZ31piyfkCoymlie7N+QLiUFWPRxH5AVkma3nPIfkDgyn+Bzc1+QKbe+CLe1H5AOuToLsrffkBibaFA6fB+QBphRUSXA39AJpgsoTwTf0CG4UFBqBN/QBLNK2UhFn9AhB9x5nsbf0Aw22Qurz9/QIZZR4NaQ39AuMBt49Rjf0Ayw6fiL29/QOSdI++2cX9AytJGROV0f0BTkjnNzYF/QK4Edc2lg39A+g1fP1GPf0C2GNhTY5F/QP1qaO9lln9AaJIMPWChf0ACpMq6QqN/QKApy7x8pH9AxiigRDyvf0DpSCy5V7F/QDAFxGVEs39A6GQii/fAf0CkfXVVVMF/QGTzJki3xn9AHtx+Tjrvf0DUKRLtofN/QB5WbwU8/H9ASRe284kBgEDTBweY5QGAQFR7/CHaBoBANg5FquwJgEBqdKtXeRCAQPALn0ACFoBA2B6+3soZgEB1QOjxaSKAQK5OAujkJoBAfKdx3pEpgEBIdSQnbyqAQES1pdBiLYBAzN5lTFMvgEB5/4i26jeAQAa3i+apQoBAGqxr7fRIgEAA31115lCAQBT1aU8TUYBASI1GbNtWgECWlHom41iAQDmC+RsPWYBA4ti700hagEAi5lz9w2GAQJBbLirrZYBA3jEMHaBngEC5egVLT2qAQFhrpwPvbYBAJc4DrSZvgEDqgNiXKneAQGA5AXcdeIBAMia3rCZ/gECOJKWjG4qAQHTXsbhcioBAM5mQDB6PgEDp0BKHsI+AQPjQ+SYdkYBAQEFeWx6XgECIcddbTpuAQDwDPtbQpIBA19iNfjSmgECCJ0IZhqmAQNpTJwETr4BArZLE8LKvgECt7h4eILGAQKMyNQzOsYBA6ML2fk2zgEBAXM8isbWAQAQ8/44DuoBAukTo7rC8gED6bqtGer2AQOqBcIdev4BAg3e8mFLBgEDhTWWhncKAQBiPzPhDyIBAOv0LJCDJgECQi/95U8mAQHjhtRzgyYBAwKaRgJHKgECPZj08B8+AQIym0V9i0IBAF7WJDSzRgECkY8BeTNGAQEIXqFAg2IBAEtPTm0nZgEAQmjJ2v96AQELYg1xE4YBAFKuEC2zhgEA4ZfOmEOSAQNxgE7Hg5oBA6mgE//TogEAmuDejGumAQLdwlatQ64BA14TRlDjsgEB43DzJSu+AQA7yBrjF8YBA1JbHkT7zgEBAWqlJ3fqAQEcFSv8//4BA2uePRz8HgUCQocLF7A2BQEZfw8o9D4FA4Dli1O0dgUBvQ2tuNB+BQHD/5FCzH4FAzmqfx98kgUB4Ry8WNieBQGYHnfiLJ4FAnviLsLUngUBv0YYiayiBQBCN0d8xL4FAdh6z+LcvgUAy8gRUuzGBQAAlvLUoP4FAljhD0JZCgUC00LnbWkeBQGwLtjMISoFAsKLO5YRWgUB6BWyJ5VmBQLKiCPTqXYFASwuFywNmgUBwDEon7maBQMLdT8XEdIFANnSO4HB3gUAaBNcO6omBQEbX9Q9ZioFAykpXoQSNgUB8UmUOF42BQJrxKhBhjoFAnYLVDlaPgUCiVHFB7pGBQGzyITxekoFA1E2Z5g6VgUBEZCTs75WBQGDIB92vloFARgrFKVaXgUAj8Gu6mJeBQJp6V9IXmoFA1AS1ZUeagUCqKtsxlJuBQJTgB1SdnIFA8p5PhO6cgUDOxNv+Rp+BQH7JVEvloYFApuW+avyhgUCSPZEf5aeBQLyPYultqIFABEJr2e+pgUAAVc48Sq+BQJvIz0hHt4FAyOIlGKS6gUDzgZCVvdGBQML70zT50YFANqFjzz3SgUDU27P6ftOBQAJ5fd371YFAKA9bBv/ZgUCAMhd99t2BQKIqwUwL3oFAPLM6kM/fgUDw3BF/+uGBQGUabGuy8oFA0DulwOz5gUAs2dVdtfqBQPL0TmHv/YFAFsgi6fUBgkCUXIXeuwOCQAq6mmXYGIJAMwtJ/NYggkC+5+UF0SiCQKAnl78TKoJAPDa03XAwgkBpw4MBpDeCQHqVMCQLPoJAlJ9FNLU/gkBQhGRycUCCQPRAC/w4QYJASCkjaQ9CgkB4Fv/+pEOCQIH0BxASRoJAtAbTYclNgkAIP5T6B06CQGiiDC8GUoJAVq7zzdVagkBWLDgYblyCQMeqrXg5XYJAuh6BrTRigkCGEq2LsmOCQCB0EBE3ZoJAZtcDKp9ngkCou/b2N2mCQNaMVsIraoJANFkNlXZ0gkDkfYdndnyCQCzXRWhDiYJArUjt5lqMgkCePBoOT42CQDNpc/ftjoJAvJz4W4iQgkA62p8eQ5GCQEgu2L48mYJAXL2OEFaZgkBhlnPBDqGCQEZm7T47oYJACLcn0A6pgkDprqP8MqmCQIwC/NanqYJALvlfFAaxgkCgnoRDMLGCQHrtkcfsxYJAlJy5yO/JgkAwcydj9M2CQLhKnhDr0YJAKVo+d37agkAcqjHbgd6CQFLmKN6F4oJAiECwRlTqgkCC2nQX1uqCQE6GVWSt94JAReqTc675gkB12y9g4QGDQNQ88BXkBYNAEnzSJNsJg0B4oU5Q3g2DQHCHKqePEINAbEvId3kRg0CDrExF4xGDQCZtP6V5GYNA5gH1eXIhg0CfCLfFcSmDQJwRQTdFMINAHk1G8Woxg0AGiwaFGjKDQLyY96BNOINAJ/GfvdxBg0CUeQiOkEWDQAB4bmPiRYNAoJPZBJFJg0Aka2P4Q1GDQF4tzw+ab4NAEGr3Ynhwg0C6Z2js6XKDQDCLdzz0dYNAWctmLmt4g0Bk1Rj2R4ODQFnWrhI+moNASsIiZ/Odg0DMd+e1g6iDQKoiUaofxYNAkjsbWcrHg0CyRQOheMqDQHM1yGDK3INAuPYMMXffg0CksRfdI+KDQGqNJ9Wu4oNAhgFcY6Xog0DE3yb4VPKDQA5cGnKDAYRAoFDu14oJhECIp+nXeRGEQLofuwvJL4RArlQ0ZIpChEA1DxySVlKEQHHfbDAkY4RA7lOW6hJkhEClpEO4rmaEQCQ4F7b+aIRAsnDOFvhphECEDFbx/XCEQLDq1XNQcoRABGaOvrl1hEBwSYkhtnaEQBp9Q1bKd4RApsHQzfh4hEAIh7D3aXqEQJedO3kWfYRAil8CL5d/hED0fB/mwn+EQOz9wpxegYRAC4NoKW+ChEBKIqUDHIWEQBDoVFrHhYRAYrNAUM2HhEAqH0DvuI6EQEz43MwmnYRAMOenF9mfhECHugJicKKEQI4RCN+DooRAX+wnmh6lhEAe8zCYzKeEQMJZ45J3qoRAvmYPplSxhEB4sI2GvseEQMOqawpjyoRAjl+TnxrNhEAxSBaOw8+EQEZ0eoAe1YRAAdaNcb7VhEAAoZM3atmEQIth5UiI3YRAypTamWnhhEAwlfhU0eeEQLDVXGhh6YRAFgZCVyzqhEDJLywlfuqEQDOFSXYt7YRAiBocRy/uhECIFhJ7NfGEQCJivWRj8YRA2gvos1DyhEDklgNF3/eEQJC6lOE4+YRA4puBJ135hEDQFDDDLwGFQFIO6+8MFoVAABX+VQ4ahUC24MBaXS6FQFCgYBNhMoVAXisC/WQ2hUBPRtnxa0aFQGOOEPvjTYVAtPLwKudRhUBIAWQ16FWFQNyH57Q8VoVAt+UZ3uNZhUBbVLp1oGGFQKSz0Nq2YoVAc/12i0lmhUDC9u04oGmFQHTz/D6YcYVAIZQLY7ZzhUDS4Hi5mHmFQArcyEmRgYVAtrm1U+KdhUBZ0O+Za7uFQHQ/aekfwoVAr9e8WiHehUBRYS+SIuKFQDA4SHpp6YVAosF5cnDxhUCG9bmM5vqFQEIRG2PIPoZAUIC7Eya5hkAZT/3g0cSGQEpLFxXTxoZAKC6WstTIhkCv/sFbIcmGQM8+IfVGyoZA5yiF6NXKhkCKv3hE1cyGQMCZNkxIzoZANKGOndbOhkCK0mf40RKHQPGvi3+RKYdAPJ05pZAxh0BUVWw4ijmHQIhmIPxeQYdAQNRO+otBh0BSIHR8x7GHQG7yRATIuYdACzhn2sDBh0DwPCH3v8mHQLOmG2D92odAdm9nQtXkh0CUOHPpcwaIQBiS/tbZIYhAtm/eGEEjiEBZqDT92CWIQBLCAZCyNYhAelCUb/lKiEDhcd1T+06IQPBisoFEfohADEzp30eCiECRt73KRYaIQLr1YVJFiohAJv9iGoWuiEAY+12T68KIQPYnPMuh3IhA + KBZXds7jZUA/KJil8iNpQDeULWxqYnBA - + - MxOdREs3nkQobfVFuBziRNahBEULq09Fo2SVRGJba0XXfnhEU+qlRKzk1US/2upEznO/RH3xEkUzPBZHALqKRAMkckRJAaNEH0EMRdmTEkUIUu1E+41gRaSB5EXqK/1EjVRrRBZ+vkRZpnNFVZabRPdd1kS7Nc1EUcq7RFE5BUU7SL5EmIjvRDL8oETtVLFENALIRADePUWulThHJq+DRIn8oEQQImlEMGF0RNAjgEbRUY9F+CCSRWF5u0QxpRxF/dBgRJyyu0TI+edGRC6ERGXXykQl06REhPmyRcM4mkSQicJEjU27RJ4shUQfM4BEiTmiRLXM60SkFvlEu2GpRChxqEWuxj5GTk8oRbwuw0Qg0QRF4EewRa6FCEWWc99EpwebRM1/F0VFcjxFYqGMRO0XoEQW2yRHlpvqRF8M6UR0laRFC8ZeRneBiESMnZ9EYl4uRTC9eEQaec1Euf0URSAM7Ebo8Q1FzX0KReb+wkVb9btE+UltRGRAWkV2yI9E5dZ3R4MMYEQDks1EVDk0RZ7fTUZVkPlF8aoCRqRtpERo9B1FodIiRXjZjUStg5hE5VGlRMPug0TFH4FElYSDRdeYP0VBMvxEh/65RfrNoERHjIBEg97XRETpwkSJvqZEKD7ORQC6hkSFWeJF0ZBxRA5IjkSm5idFGwzpRIQWVUTSb4VEQbb0ROXDqkRcWYJGZVTaRCs5Y0RArrFER2DFRNuYl0WrWXREB/p3REO8UEWv5ptEtQlaRB+8lERTib9EnbVNRNyBMkWj/9tEHHfDRCTw0kRGGHZEXY8ERYV8SEVqlGBERRKCRSX/qUR0w2JEg3rFRIhciUTkzCRG2wyRRRC/40VPC7BF+k66RHtejkT7WfJEcoPkRRQfYkcNZYZE+hNhRPqyOUV3RHJEPLPdRLXjkkS4cBpFiKwKRhYAiUSEooVEJrIlRXCsfESbQthEh5sHRUFWuUWPcpZECEhiSJQ/ZUR6bJ5ESbLSRPxGx0TqLt1EUQZPReJnkkQYToZG48a9RJ2uq0ZJf6RE6UEORhDbJ0WU5zBFEtUcR61fsUTVVcNEH6xXRIsUoEQmd21EgdqrRJvNm0ThmLBEGKAORQCOc0SA7WpEyIWZROPnwUShK+VEd437RHQJq0SJOWpENkgGRURfj0RxidNEMcvBReefjkSK3cpEYkmpRLsyx0T4CgVGZCh0RCYWd0QTfbBEXL3ARENCXUXPSYpE7dsDRoeOhESS55FEBxd7RFcIb0V9R5ZE2/J3RICigURoLMREAIzQRNhCDEUDwOBEFNWwRPNJgkZ6+xhF6Li+RGuhHkZC6A5FTIABRhukm0Q6nFFFPM3CREGkg0TmMLlEzA+iRNeLokS9tadEzVmuRJe6pkRlAMNEoQqbRLm2mEQINEVFtwWNRJnNBkVx7ndEiZXJRP0+xURwpodGCr7aRCHM6EX57qlEzWbTRNX4m0RHNMlEGr2QRPVObUa0JN9EppK3RPJquUQQO6NFWCsRRu82JUVHLbZFEmmxRr0ZbUSK8/BF+0SWRC9dmESpg6BF3AmCRJO3EEXY96pFNf2KRNx7XEQey1dFmD2aRMh6GUbkH5FEnoKaRJogsESLha1EiMI7RX0R3kRAlZ5ESY1/RN4tikRxqsBEG3UkRW/piUQT1y5FLSAwRVv3wUSbQzVFsuuNRCx41UVOI4VEniGIRGzogkRtoXVF7AmARJa+gkTilApFSX5IRYMZdkTdWwhFmD1oRJpkp0b8ttpEQiODRLucg0S6BYZFI/98RIRnREZDIJFF1CnhRJiq1URmggRIr5atRAoKokbVtEVE/3n9RuRTqETzqu5GA5uXRVBYQkYcUilFNdMuRT30LEXqMAdF30bgRGnMaUVBDalE5KJGRUmwlkRVEqxFBc6vRM6pKEXepQxF5csERewI2kT7KZJEpVFvRC5l30RmV5JEXg8FRUCMRUTU+NtE8ScnRYRgkkTR4UpHCN+tRHwD4UanwX1F+yK+REy+z0RrZ3ZEXSq2RfJbpkQ2N6lEEo5MREYRuUS2StFE10mUREOeVEW8UVZG3t+ORVxLW0T/WzVFY59oRLCdJ0XJwERF2RF8RDZ3n0TKtXhEnd+bREiWAkUCOWtEfmLUREsqn0Xw7VBJhl8rRVWVjkUBpjdFIdk+RYmvVUWEOk1FwS9aRZiw/ETRPFNIdbksR932bESBroxGr4gERZkvj0TTv9NEB6qqRbOQmkZdQDxFVTPVRGPNa0TecXdEV1KiRHxAqkTCvJJEqgMhRYeXg0TReA9FpfBNRJwBhkQKzaVEkVCeRFR5nUVYpsFF/qHOROEqiESP6KNEnvjURJYGpkbKqlNGgUSVRWwutETRy8VEu9qsRMd1AkU1mpdEcqhvRTHkp0RZyJREishURKUogUee7LRGx7SrRYqkDEWdipRFpBdHRPXLd0QsgTtEd6KwRQBUyUR7/OZE9tZjRArJCEWgQWpF8juXRENW+kRUtoVE0BKwRMqY6ERAUK5ETSiRRbDLtUWut7xHCNu9RGdCsUa+AeREwBFYREtAKkXD21hG3yRwRBouikVsE4REc7WCRPfYL0a5a2dFNCNnRZeEi0XG7aVEHo33RPW8sUQbfNJF6V3IRIR+nETLh8RE9vhGRGnYi0QkWZxENxhjRB2SN0ZWJYJGj/fLRCj+UkWAJFJG/0ZgRVnukUTiUKZGV3kORof3BUXL6JxEISoLRT9BekQc8aREdJ/sRCIhsESiGIZEWlm2RCpb2kQ08+ZE4XyQRASzAEU0XLtEdKHARdm7hUYSV4tEZu/MRHPJUEZv5e1EoId6RBbPP0WcrK1F7K3nRM/Zh0WXPz5E58FzRHZQXkQLK6VFRZ43RdsNSUU7sqtEKbyPRP3tY0VHdo1GPnzRRQbm9kTxJwRGVcEcRgvWkETTqOtEUOcmRcTsHUUsWaFE42HWRIO+RUXK2fBEVP0pRb6Z+EfCI6REUwWpRPcR1UTOWRlFtTz/RiNQAkVxubZGC0tbRWtafUWV3BZFLIffRAdikESVX5lEvWJuRUzp3ESTvnZECQO5RIlbjUTYyXhGKnurRaKSU0QKkkZFlWF0RVDaLUW7ExNFMyS1RDb4iUS0UZlE+LiJRPIeukTf1VRGC5JpRNW1bkTzQDtFNWAHRYTnikXnWYZEoTyWRJLXyURldplEh80ARptHyUTzUJhFaOH6RNrzXUSuunlEnwqTRPq0iURPjcJEvW6LRAqVVUXwsgtFoVDRRIHCk0SWNnFEWGACRSiwCEX9ooNEjSoVRQ/OtEQVQdlFKy1DRSPzCEVVzYtExpaGRJHgikQHCwtFMfS5RGMbsUXhga1E2qVsRPtvX0TaL5dEeM5ORHXP6US2kHhFQt1zRNFMnUQ0yKZEOqSRRHMcUEZ0REVENuNKRSh/CkUx4pxEshl4RJjdOEWqqaVExo1jRMK0jkQU12JE8piIRBH5TUTO+21E/709RcDt7EZH7YdE1cmFRWcIjEScRUhEghBhRECrwUXE7g1FElbfRIdcuURI1aVEcyOqRO2qjUS371RFr/irRD3JQUV6pW1GvPujRMP3gESQob9FicaIRCO78UQpMRNF9w4HRcpg1URuz6FE1B5QRY4Vx0T6TptEn94ERZ+fDUXMuGBEDI0uRr64mUTGrp9EXGETRfLwAUXnVUdEfMOYRHXh1ES5QoRFnoamRKjOgEWq0WNEWfi6RI710kQty3xE14fPROAwhUQWt4NEz3mFSHHCFUWqUmZE6fMCRWKOAkhalOtEjmAGRdkkyESpk3VEA5bURCsYiUeAal5EiZtkRnlSgEUOraNFZaA+RUKpfUTv6m9E7hTMRMk7b0QFv6dETAhyRFE4kkQeIYNEP6TgRGdtTER3iDxGh8NmRXNTgUTK5opFgx1wRPXY0kZZDaNEBJOrRD9yiEWCX4hEIyikRLZMhUTfx6VEu+BpRE0kgEQmgZ5F4zxIROPGn0Xdf6NFSou5RI6fPUVtVoFExwODRFU6j0TLifJExoQCRVuMcER/Z8hEXMjhRPn7nEQAKr1E7U/ZRQVV3USU4ntEAr2oRCUYoUST1IpEmCTfRFdy6EQ/7pVE035XRfOOmkRU415FcYSFRLsEAUXQtZdEot2RRAtIj0QW9f5EZgLGRCK1/kVG04hEjsaaRHbXxkRjYadIgjiHRNhR30Qp+UZIFXlRR0vMXEYCR2dFJtVmRLbMSUUoJ6xEdFzTRm8DikSUaAhGYxYoRSCwd0SHuSlGyq6CRafZKUVCB0hEwmSGRJzigEQbDiRGdmeRRMY0s0RsEYRE0wGtRVFhkET7GpxEz2SYROEjcEQtpJNE32qMRLRDkUTO555E8c3ERSUYhERMBmtFECPORIigKEU1a3tEvUsORYsudER/ashH7mBcRJ6cuER/ZtlEPDf/RHFbLkdpJthG/aD7RPyszEVYCgJGDRwfRdtcL0W9SZlEw10GRZIgg0R+V3FHC0UlR4+UOEYETbpFoFwMRujHskVZL+xEcqh/RHXOiUSbH49EIobZRN0qkEcFSRRHidgURuTsiEWHS2BEuNLwRx5/iETiDkpH4HvoRokk/0W/uINEL+NURVAVhERsj1dEQ3e8RJIZqERn2VxEQP5xRNZdYUQCxXlEsQ64RF3SzETxgZhElE+ARH0ti0TSgkpEpqN+RLWQg0TgxGZFkQ57RdyV/0QMTqdElXoaRVA0ikRccstEWbebRCd5q0Rj8gpHVswYRnP+h0Xat3FEeVaFRDaiTUQcQWpECNuHROi/w0R3jLdFwmJ9RAZQSEUzKolETP+MRE4DhkTQU/9Fzn0jRR5J0kfTHtVHGlWuRGTWhEeMaZhE8py8Rna0IUbmS5xE9TUjRTuwmkSApOtEMvcTRQK+UUWG+R9F+IluRZjCnkT45YVEwRhfRIWGlETDCo9EFfoGRdikoESiXlBEW++HRCs5DEexGGlEQCOCRiPs2EWztSNGZ4niRIkWtEV8mBFF8j4CRX/K00VVX11FeMNdRAGVyUS/wuhEdgPfRLG9tkRyKzVFyUpyRLz+mUW00WVFhx+HRAMfaESc57ZGwgNNRjOkgkXBimVEaY+tRJwqCUebjYVEAzW9RBnWiEblZC1GWJyDRGlEOEWjU69EgLGTRAbMgUS9P29Erby6RFkYkUTCdiNFtICZRN/mxUQkF8VE9cMURXTSuUZXfE5Hf34eR9C1SUS2IqBEBO6hRqQgIEYbH6JEMdswRW7RhkQq0kFGjJq7RWlHc0XWId1EnDR7RF6EGUamN49F5/FTRYm+tkSEBLxE/fhyRDnFT0Sk/qVEd6aKRH5nW0QKSMNE7H7mRHS9j0Ska3lGcpIORk+6YEUbizFFbo6JRGOwg0SSIL9E + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 3nG3Ym/BckDPutXRxsFyQIpsLklPwnJAfvJrGajCckAJLOQp5MJyQDjgXcA7w3JAQNKYq8XEckD4RCFrV8VyQEi25FwDyHJAdrjMAg3SckC62ouUQ9JyQMR6kyyj0nJA7KqO+HjTckAMslv+z9NyQB4cgiPP33JAHGkbWbrgckDuC4iRTeFyQA2MynlP4nJAQoBzHo/ickCgMhKYJONyQCTMiw7K8XJAOI3J27nzckCgZ2UjovRyQIk8crfB/3JAwDkreWMAc0DqeO1M+QBzQN0qO9iIAXNAQGMVujoCc0AM7aOQzwJzQArs991mA3NA8OOQ4/oDc0BDoTxpvBJzQLM6vu32E3NABvzZUwcUc0A6Z+qJTxRzQODGBeh4H3NAJC2ZxKMgc0DgzWYKOSFzQH1uWKtkIXNALPQk98cic0DUdYGJDCNzQFi+uArPJHNAIRigOlYxc0D3PyI0JDJzQE0CdDfQMnNAB2BrQKMzc0ByMBYr9DNzQFrzrt01NHNAvlKLubg/c0CkAX7/5kBzQOVh47N4QXNAxrnVoXpEc0CKkF8gm1FzQIysxMxDU3NAAEPkx6NTc0D7oYcHhVRzQEgFh3b5X3NAz6UWbYxgc0BGLd2MHWJzQFYDIYc7Y3NA5rnUISxtc0Co3IM63XFzQBRxVn9rcnNAtxYjDYVyc0C61Cy1unRzQOQL5p9KdXNAYsDYtm52c0AKmLEDxXdzQOJ5l7bgd3NAy6O19niAc0BRvEvopIBzQCZQTOEMgXNAQNMhoV2Cc0Cm4h7n/oJzQPKSnsSGkHNAXhOeI02Sc0D8stPQapJzQP/mO01jlHNA1Pxqt/eUc0CMqi9fipVzQHoAe6u4oHNAAnaCQluic0AgSR7A5KJzQEjBmszmo3NACPHN2wOlc0BHPmxrxLBzQLAmAQxbsnNA2PMDvxOzc0CW1TT8trNzQGxdiOoNtHNATjhArJ+0c0D21uHJ+MBzQLEPqNrPwnNABnPCcyjDc0BqxPBvwsNzQKK+En/X0XNA+s7Vnr3Sc0C+ybS599NzQA0o8Rnj1HNAeTJTJqXgc0DEKPksOeFzQCdToyJp4XNA3o41EuXhc0D3hUo6eOJzQATKHooO43NAXptkzaTjc0CQhaUITPFzQARsNu3+8nNAxrlQrzb0c0CWmmOm4gB0QGqJyUp5AXRAKM+tQaQBdEDGhkeO4wN0QI08TsXkD3RAin3YOIgRdECGsrMSTBN0QP5oMj/hE3RACUpM/3QUdECg9azrRyB0QKampte4IXRA1H64LGEkdEADuudmuSR0QO6WQb9SMHRAnMomvxIzdEAg6KaI4Td0QBwWf0Y7PXRAxYtmkFNAdEDg/INax0F0QCAU0A46Q3RASxHSGXpDdEBZFVdcIEt0QFxz0itTS3RAzIH44IxPdEDA6sfW+lJ0QBpU9MViVHRAR7/xWoxVdEA02MLX2ld0QMaOF28hXXRAgMUQ8LdgdEDEjoSvCGJ0QNK+P3t6YnRA9E7u+eVidECEKo+VTmR0QOCb6tTXZ3RA+tzW8yJwdEBSc2M+Y3B0QMz6fSFBcXRAqu3Mf9FxdEDwzvcVOXN0QEyRc02hdHRA3ECO7zV1dEBQN+uz94B0QAq5vacLgXRA9FMiok6BdECRb505SYJ0QDNtUo7RgnRAiJHa4iaDdEB/+uNEuoN0QIjY/NcWkHRA8t4HB1uRdEDHj05+7590QGZXemfPoHRA1yKxoDmhdEAda2k0uaJ0QG3s3gAPo3RACHO79fuvdEB4BNZ+b7J0QDRXuRz9snRAtaiRO8m3dEA0WHs8FL10QLgPJBnev3RARL0o0OTAdEAAfvJJesF0QPbsYzTtwXRA9niaz37DdEA/UkCPJcR0QJnNDMi4xHRASKvyvv3OdECSaNaK6c90QBmM6pSm0nRAIFcJxN/TdEAnHX24ztR0QB35glXM33RAbHSjmo3gdEBfDQHgIOF0QLQQUYq54XRAlZ6c58DwdEAQxg2pjPN0QHib/at39HRA17PugaQAdUDJqh2oYwF1QFAgxQleAnVA54DuCaUCdUDocwVP9AJ1QBDDCkvQA3VAv6NbbpgQdUBovGQLaxJ1QFo6/+oiFHVAsrEbjZ0idUBhu8ol2DJ1QJyfx/HMNXVAKoQJLiZDdUCxhfgvZ0N1QH7WGX0AUHVAIsnSLYFRdUDqpLYmd1V1QAypVTMMYHVAIURNqThhdUDmsrIb9GF1QDMsISmHYnVAjokcPWZjdUCKDcPoA3B1QPl7KwJ3cnVAXEXsgHRzdUB6+UtpjXR1QOrP4lN5gXVADhSY262BdUDt3sqWNIJ1QKK+q76lg3VAHVXqKZmEdUCb1dR+upF1QD5k7/3Ll3VA8GyCko+jdUDxQgqYlbB1QHZmdeQIs3VABHxcmDmzdUCYvkskfLN1QKfl4Nj4wXVAJGyY+B3CdUDviH/VzNN1QPo5mZDk33VAlYfJaA/hdUD412w6COJ1QFGxQuNM7XVALP/plqfydUD4Mn9+A/h1QFzLVSKo/3VAkB99WEgCdkBYzd9fzwN2QBt/crVYEnZAum81PAwWdkDwbTtRiCJ2QFfgcxGQJHZADrVdeB8rdkBcsafHSyt2QOxydKYfMXZATYuWySQzdkBcQlPtUTN2QGiDK7mdNHZAXEfmvBxBdkBUHYIqx0J2QKC+i0x6RHZAOE/S7spQdkCoSKfQEFF2QAjpj4vWUnZAFs0VPs1UdkDsBrik+2J2QEJzlxpSY3ZAEkxMgNpkdkA49MKjV2h2QFc2pAusc3ZAudyy66SCdkCKtNjra4N2QPAJvM+Pg3ZA6CsUJuuddkAQl5UxN6J2QFpTrctGo3ZAaj7XJMCydkCwHmIIeLN2QE6RvvsMtHZA0EdIaLG0dkDK7OY00sJ2QEiGYl8bxHZABmxycM/OdkDm16MKhdB2QIfqbwEw83ZAGawBP5HzdkC/xemQMgJ3QKfoXVUBEndAON4GTbUSd0DcHxCv0x53QAihJrwOIndAS8qJQOknd0CcqcSyQy13QMkE93ecMndAKwj5Cw01d0AuBQzjnEF3QJNk2WeRQ3dAJewW+xpFd0AmbS89S1F3QObXQTeSUXdA13L8N6BTd0APU0EK6lN3QKwScewnVXdAgPKqgH1fd0D8+ZlJSWF3QLoL8JeQYXdAEt76NKJhd0DYRCaSQWN3QI5dqsQnb3dARlNSQZ9yd0AiL6Mfk3R3QBi/q7b5d3dAPm3fF5d7d0Dy+QineYJ3QMJeN82dgndAG3PmlAmSd0A3ct+JuqJ3QDLM6BJBw3dAsegkz3/4d0AIdEYjR/13QAoXfu7V/XdAAiXVSKACeEBh2+9kZgN4QAZjqhvmB3hA+A7jC/wHeEAHy2TSyAh4QHfJokNFDXhAVcs5pB0OeEAzVduBjxJ4QMPet6h6E3hAHhIax24ieEBSXM4u0yN4QGh9X+rbMHhAqiHTHg5CeEBfsEVQJ0N4QHwXfwURRHhAUCXFuXlFeEAe/ZDIylF4QBJGCieTUnhAXIQsn4ZVeEA3Q6hpo1t4QOQC12j6YHhAIDuAVLZheEDa3sozvGJ4QHSFcWvob3hAJAMbrxp0eEC7W2GKLXR4QP1rznlcdHhAvlAC4It0eECnJOnjwnR4QOsz0MDydHhAdBnXXMR4eEC814Qx93t4QIRXR8gffnhAMgxZtKaBeEDswn14/4N4QLplY+GZhHhA5LwRZ0+IeEBScynPqI14QB4X8D2XkXhA1Be4iGKSeEAyYDrF7JJ4QAX+RUoEk3hAu5kgjqeUeEBfPEhDqaR4QIV7rIqRsnhALlS/5vKyeECeXSqZOLt4QMRkJITNwHhANm4xU0/TeEAYFL8LudR4QIEtkg/Y2HhAmKSvMJPbeECau9t5oOJ4QMkDDW0C9HhAXCqyn4z1eEDpFJ96mgt5QFcCn5ajE3lAsKKbBrwjeUAp+Ml1USR5QNBr/XuyKHlAme7ZWQwueUBaGomQZzN5QOKRj9f4QnlALDjV2f1DeUBdF1TPzFR5QHDAbZJHc3lArnjcOPSBeUCTiA/TW5N5QEBuKelim3lAXMV/N0+jeUAkgmfUaKN5QKtxr4Wko3lArkLQJ36reUCQ/aVhv7J5QBgCNb5C1HlA5GzRac3VeUB4RfASveN5QPKL7PVP5HlA2MB5aQ/0eUBxCDKF+gN6QG6kQ633C3pAT2dwpFITekAUTvzaYyN6QJxXvlIqM3pAwZYRwgw1ekCKCr/OLDd6QDmCeF4xO3pADpxsiBpFekD2uzqtzkt6QKbnDj0qVXpAMcqqSSJcekAc5s/xKGR6QIt4oNONcnpAOjuUyx2jekDtZasod6N6QHtaJrEkq3pAkjvozFWrekDbXikPf6t6QJ9RrlMQs3pAHo/qoPuzekCwBAaeDbZ6QKwf/lMsw3pAY7pR1xnGekAW+fBwQsx6QGrSpvA+znpArZcdWjfTekAyBwSH3NN6QEJ6NYR85HpA7v2T6zbuekAz/4F35wN7QGLGhoh8BHtAdoKfrykOe0BEgMaG8xN7QFht7myJFHtAOKJyWEwVe0ATa7caWiV7QAbmGsjGM3tATvQ4HGM8e0B7GckgakR7QOQ/z3puTHtApjlx7Atce0C2W9WGEmR7QMgSVK4ilXtAtYHbatCde0BrdiRANqx7QKbCx1QGr3tAElq/xfe+e0AasL8decZ7QJCHR4kA5HtAQOHK9yfke0CSbd8mM/R7QALxc4mM9XtAMSaTrij7e0CAVpp72gF8QP+7mVr5AXxAxvOG5WQEfEAoah8MmwV8QNNXaDOJEXxAYlQuCtMRfEBU0seuzUF8QMLSFgWDRXxAPVSp2FFIfECEV3rEk018QIoARwuoTXxAWVbQEtxRfEAPUf47DGJ8QLLc64vWa3xAksAMRmp7fEAw0ElAcYN8QAL5feJdi3xAlJraSXmMfED8faNhxI18QGCPuxwfk3xADgYff36UfEAzljCDY5h8QCKisHF+mHxAjw0VFVmZfEBZ3TLHs558QDQyCpUCpHxAUL8b4sGyfEAOO7F8erR8QGxs2SbSw3xAN6oGDfPbfECyGwJbWOJ8QFW0TzkS43xAiHGujKfkfEAXNi1GEvJ8QNwwqO1V8nxA8h/noUP0fECcS2PbAQJ9QG6LaWhMAn1AURwt+QYSfUBMAdgARxJ9QLwGY7quG31A8osUlDsifUAowoeCtSN9QM6UHI4lNX1AEMSrN/Y7fUAQ5B7kenR9QKTSYnmBfH1AMFiaq2iEfUDYYFDOlI19QAU7Nlvrkn1AinSLS0OYfUBGTDFl+Jt9QLoKqLunpH1APEkxzqW/fUBJ6Sc1LMN9QGYrgTbnxH1AQhNLg33LfUDY1D9XKdN9QLY2GmL01H1A9H1PJJP1fUAutRhGpPt9QHr/Eaef/n1A64/A/DQAfkD6+YR1PB9+QOqQ0A6aI35Afg9g7iEsfkBnvM5GQC9+QOZmox4tNH5Ab97koS48fkDKYw66Qj9+QBQR1W2kRH5AZkdvmfxGfkC+NGcjtFR+QJovjEemg35AkHJ+k06EfkCGzQ2BaYd+QApQecmri35Ayc9qDZKkfkBglGvXlbJ+QPl9A5XSxH5Ae+9tzK/HfkA2nRi2c8h+QM4AM9LNzX5ALiv9WWTOfkBg8ZYR5dR+QKrfmY/E5H5AAcCJeFrzfkCPtQro2P9+QM0hFXaUA39ANkbdxEATf0DI/l4QqBN/QGSXH7L5FH9A8I5G4q8bf0BPjATBtCN/QJh+BKJlNH9AdjHUq4xYf0AEGcHaMWN/QAc47LT7Y39AoAoo/Nltf0B908AXMW9/QJMgd5a4cX9APkwuabKBf0AGqgsFioN/QGY/OvhFj39A4JV9KWORf0AywPk2T5N/QG7FvzSXk39AibJsWlOXf0CaqB9eWJt/QCoAGgQ5n39AYpEKnV+hf0BEaPpTSaN/QARm7VCeqH9A+CjRKlWxf0AfaHRWp7N/QMIWlzdq4H9AIrzkrzbvf0B1egBCiAGAQNYmROrlAYBACYypI0cCgEC3EDM7MwSAQMtox4/bBoBAUz7WHCQHgEAwlkoH7QmAQA4b3MzbEYBArqPm6W4TgEBcZW5rzhmAQD7rCbpoIoBAt8mdbuQmgECpoVZ1jymAQAoFeOztKYBALJK/cTI2gECo85rzqEKAQDoWurgPT4BAFBZSEOdQgEBdfo7AE1GAQGRYnO+lVYBAEXK489tWgED78517mVeAQMZG7e8OWYBA/LGIfSBZgECQKhYF4mCAQOJrU9APYYBAVSu7s8NhgED9ZYUS7GWAQHRG2GOjZ4BAEr32NPBpgEDOwvKXTmqAQNlU6KDwbYBAIniEai9ugECKV1R1KG+AQMwjPgT2cYBApt+1Kx14gEB7V5GtKX+AQJarkrIej4BAOwBkmiCXgEAguF+eZZiAQNCIRxUGnIBATICGGByfgEDS/xo84qGAQHbcZXsHpIBAAkLYNsOkgECd7ikiAKeAQNfpY0OFqYBA+8De4xKvgECZBuv1wLGAQOSTV9xRs4BAUe/XjIm1gEBKshynsLWAQJmOdefstoBACXr7REa6gEDo06wGEbyAQHvB/QNev4BAeNSfz1LBgEDSYli/bMGAQFqZ/r+fwoBA7HKCx4DFgEBvh0GwY8iAQGM3ka1TyYBA6gKfwYbJgEDq9eUd2cmAQM6IIApN0YBAviSwT0rZgEANp4773tqAQBpUhSPA3oBANifPjkThgECTizrGa+GAQJRn9/ET5IBAiN7aZfbogECd9Vk8QemAQOSIOfVE64BAmGtVrUrvgEASlXz0PPOAQL7mOUBp+oBA2jUpqj//gEC5EiE5nQCBQIeN00s/B4FA4kVxsj4PgUASFifQNB+BQOTqlJs1J4FAYLKxlLYngUBjV8X/4S+BQORhO+e8MYFA1JNrrCk/gUBgEaVPnUGBQDLhtF9aR4FADVf+DgdKgUBcIBNQtEyBQAo6wmQRUoFAm0uoAedZgUD8lxd0AFqBQEb/hfNOXoFAAaaMdXVggUAwKElk22yBQGsbXZfCdIFAnhyEiG93gUDN7sHdHXqBQLxXCH6yeoFA2klCCWJ/gUDuutrNVYaBQCBk9cJpioFApHhDIQiNgUDwQZnWVY+BQMjaSwO0j4FAxIHZb/CRgUASsP+cspKBQIqgzNtmloFA1RBSN1eXgUAKEnFNm5eBQBucR2hHmoFAwqh7Gp2cgUA3IE/j8pyBQOkaHltGn4FAL4gcM+ehgUDoekWRZaSBQAJsgNBuqIFAWEasv0qvgUAYe0ruSreBQFQ6V4lTzoFAmP4NQd3RgUBXhfWS+dGBQGjcNjt704FALrDhNfzVgUAu76V//dmBQFyVkoyp2oFAHwJhJvTdgUB4KfSdB96BQHe0kuf64YFA/sh0O03qgUDKuwHj7PmBQODuBEEe+oFA0bCXdfD9gUCaNaCG4wGCQO65oez3AYJAOiCQPTwQgkC+V4ApXheCQO5LgiTZGIJATJHe8dcggkDUOI6j0iiCQNBSKjMkN4JADi6lCXI4gkDd9t77Cz6CQHLo/Gk0P4JAobqK5+xBgkB5PjbYDUKCQHRHGabYRIJAeA3baKxHgkA2RfmVyEmCQEaA3F7LTYJA4j6RQzhRgkCXvVXkCFqCQAJnAMibW4JA/v3Z12tcgkBJYeEdBGKCQA48jDQ0YoJAnD9QgwVmgkD6/LlZOGaCQPcVCmmkZ4JAXlEo4jtpgkC2WYGNnXOCQPnFZ1M3dYJAp/0H8v12gkCMBzMONXmCQM3UKQTMfoJATNa41xmCgkA9IwB2Q4mCQJLNRqtDkYJAyjzQdDyZgkAAHMM5VZmCQP6prH5XoIJAFlu1QQ+hgkA22o6TO6GCQCKnT6sNqYJA+txUZjWpgkDtrILz+qmCQDJnfWNcroJA7kxiDAexgkDpFNnp7MWCQEQzCe/vyYJAx1LMQvXNgkAECstK6dGCQIYx8zWF1IJAyObKnOrVgkDkSbo5ftqCQHg509aC3oJAJ28k14TigkAinRGbDOqCQLJZKPoA8oJAYGU06gj1gkBGcIzf4QGDQPIiyd3kBYNAjBFvy8wIg0DW+Mc63AmDQNzdP+HpCYNAI0Ay5lwKg0A0SSWp3Q2DQDyrtOB5EYNA8HLH2OYRg0C8kNp4qxeDQGP6JQJ6GYNAEOqXOEwgg0AMTCfaciGDQGpE2KWKIYNAJIruTXIpg0D0bCaDRDCDQPSMc91pMYNAR4YlXNtBg0DSIYldhUSDQIdLUmjdRYNA3miMTOdJg0CCJR0Kk0qDQJQSMLLycYNAxgoabutyg0Bt09Or8nWDQBaskgfmgYNAIhcw3UmDg0BQqxM1UYuDQKwm+H9ioINAX9pr4UC6g0A2HLsWIcWDQBoFDtbMx4NAWhDasyXNg0CIo7wey9yDQDbiImB334NADL1utpT4g0CO3Jx1gwGEQAapIf6KCYRAwIP+xnoRhEDwU3xxiUKEQABC+ecoWYRA+IjxRf9ohEDhTDf39mmEQGBlZXp1cIRAlI2m7f5whEBOsQUYy3eEQDGDZ7j6eIRARlv0W2p6hEDj/9uoFn2EQDz06L7Cf4RAam/jg8yAhEDpWHmDb4KEQK4A1qobhYRAKMct6smHhEBy32I4d4qEQJIMTNwpnYRAPHT9SNifhEB8XeMdcKKEQH4IpkIbpYRA/osaQxDFhEC2NohBF82EQLcTVRDHz4RAASVSGHTShEAXMquWatmEQAiPQzZq4YRAupFlktHnhEB4hW0PY+mEQKw+pEgq6oRAtu6cXH/qhEDY4nZoLu2EQGVLAFIu7oRAKgbD1TXxhEA7BQ1VX/GEQLjHfYQo8oRAEaDU7cH3hEB4TVVLNPmEQHYP0WNY+YRAdtRZmEwBhUCZ5i7oDBaFQLjVSI35FoVAQlj5JA8ahUB6lVufXC6FQMSB39NfMoVAzD10PmU2hUCdqT4l5E2FQK3fFovnUYVAo6XaNexVhUDK3OHm4VmFQKn1pKKgYYVAEFtM/J5jhUAqCo3dTmaFQGK+WwShaYVAxiz4RplxhUDBpXYotXOFQM0URK2ZeYVAvF2GnJKBhUA3QO/LzLyFQJkpLxog3oVAMVDHrb7ihUA8s1Wfa+mFQAyHPfrm+oVAFm81Jia5hkBOQGtOJsGGQGsr9RXSxIZAvh44SNPGhkDmAHRr1MiGQMZ/JMxEyoZAsSNWmNXKhkDQ4vKj1syGQAQcJLJHzoZAignkVdrOhkA4pA+F29CGQI8/iIUs8IZA8IkMjJsWh0BIbwcrsR6HQGav0Kq3IodAXgZdX5Eph0DkbYYMkTGHQP4E6I+KOYdACNq5Bo1Bh0Dagqb5fkKHQGnsedpcSYdAfBP9FLNdh0CmeVx9x7GHQNb+jT7HuYdA6Vc3SL/Bh0DiEgJZ2iWIQFjz6QZlYohA3gKZ1UR+iEBqICnZR4KIQLCdintIhohAkChcnEWKiEDUzx+BL9GIQA== + KBZXds7jZUA8VWQoKMVvQNzlv3T/InFAnogOaOzzdkBQi4Bk7yN5QBlM0OZ3koBAOybk7U6agECodC7co1qCQGgsiZOwwoNADKL4+C9zhUCVMi45EuuGQAzR5iLc+4hAs4PqI2p7ikA3+2glKDSLQGIl6yd0bI1As7LYTRYEjkAxquwokHqQQD/dUABMjpFA48BRN9YGkkD41ZI4/CKTQJwGQfyHjpNATh2mCs4alUDwkhVwTQuWQM40nR8k35ZAoql6fpOXl0BOTJQ0eqOYQFMrYvO8o5lAAGP5QsAvmkCcraK/3f+aQIB68FcW9JtATsQHziNMnUCX/cIqR4idQJXYtsg5MJ5Aq32GklAkn0AcnRkOOyqgQKdvAXNGpKBAJl37wT/4oEDL+VhwURahQLGeZCtYwqFAJIWLd3Q8okBxKuA1g6SiQEjGq92E6qJAyrUSPaZqo0Aghx+YmfCjQIpBjkfRTKRAeRJSn7y2pEBKzQlS/C6lQKNYPFkf9aVA9XATO+UqpkCA+7M7+LimQFJtNFc99aZA2YbmQht/p0BEr+bDXTuoQJkSYk1GYahAJJ0CTlnvqEAEO2LOiB2pQK8no05sfalAS08RyZ4BqkBvsx5Zl1+qQNaQejK3y6pAyD5RYLolq0Bh0uObz5WrQOzIqF3Fl6tAhsrMauWXrEDfClvK5d2sQDTfxGgDmK1An5bW1BDArUCNavdvJl6uQJEhwNgrgq5A - + - 6WfoRbmMckQ2jOREFWoYRW/9BEVCym9F5UvdRNfCj0QK6vdE/SsGRV5vAEf17XlEVpKsRD+ZXER4EMREsteDRKEpoUR11q1Fs31wRQ26B0Uk5mFFURbaRI1hiETJG7hE5plSRPDG0UQmqoxErcaORITxNUWi/49ENbpBR/PCa0beCHJF232KRbsLiESX2D5F/Z1yRCHapUZQxItEL9DgRIumUURaZI1FJKqgROChT0QBHXREe2CcROg2bEQnW65EI23SRHi5fUQMQIZFZtsaRs9JGkWjiZBE0SmDRanXr0RwDc5EeQ+GRIMZ5UQSmahENaEYR7wD4ETLsHRFqxhqRhUSTEQvsQhFlkBARHKnwUTC2gNFunvJRnwn8kQr5s5EpcmKRb+k/kTvVypFQZpaR8C4f0TxdQ9Fz38vRnjShUSNT89FvRMHRiEzaEQavRZFwRO/REJQU0QC3XREqp5mRJBGMkXYYfhEnMdIRGiEBkX3paVFSD/URJ8ER0Qm/gxF/HuLRGaY7ETGIFtFaqCcRLwmy0Vsf3hE5JB4RKnEmkQ1mMxE11jiRAN+VUTCy2dEhz78RIaNvEScb2FGGk2NRPIiZUSyCV1E90utRFWJQEW6gIlEQL6fRGSIekSmzwlFHU9gRDNnaUQ8sklEm3f6RNZsiUU6dMxEs/ZLRE63lUToPo1E3hHJRPB9U0RokwdF/j8pRAv3l0WqqnNEFT2QRL7qjUQ7VUNG9OVtRa5ksUVMX41FDHaGRGwTp0QHCO1EZNfNRV4KdURo81NHypthRNnh30R384lEMop6RNebBkXK3l5E/IzmRbX0G0Ulh5REOHneRM+H/ETXt51Fnx5ERIeeNUim7uBEwCpcRKzP2UT3InZFbWY5RiWVq0ZLQtREtlD9RbeYF0VsXvVGI6CcRBdD6ESv+VlEK/6cRHh+z0TQK7FEkhnORGlgp0Qh/bVEVU2XRPZx7UQMXlNEZPiOREnSWkQD+MpEehxHRCJi10Vmx49EQcm2RIr0ikRv0tFF2l6CRDKhtUQVuHpEPWO6RIW9ikTMdtpE0n28Rc++NkSOoA1FLyKVRMcnTUTjVapEAXugRDn5pESjghdFmyYLRcCb6kT0KWxEf/maRtkEYUS7KAZFPevqRH1HA0baYRNFLauxReqgW0TUHpFFW5KkRBGmvUQbnYxEKwE4RP4ZVUTqhTVFM8t0ROhMg0RGMxVFuRs9REQby0SHn4pEc9NORJ4BlUS/oW1GfHMKRjBC3UQ1p6JEMe4wRqbAykTDhH5EGQRPRIQoWkUDsCpGntQARcX/1kWu9blGIUOPRRsZDkWlg4dEiAOCRfwVVES7hzJF+QGWRCx6OEWDcVRE7SAPRg/0ZUQuCtZECo7PRMOOlkTVzIBEW6dNRLZJhETvZQdF8Y2RRVgAZUR0+AFFxsEPRbErcETfONJFGr+TRDbbhURkb9JE1MNZRfU/dESE9HxExhRSRcYgokRncqlGI7uLREF+f0Q5Fl5FPkMKRsXg2EUdijtFSiH5R2pThEbGPptGRWLVRtyijkWcfStGe9hfRR+2wUSNFsdEj2g0RWzykkTvnZREZ3I6RIyEKURy/ENFIHHDRR7uS0QCModFVcVyRDtnoESovXJE26dbROnRUkQHBnRE4D2lRE4YT0cVZLVELK3oRvEBPUQTFmFF2ZrURaKoo0TpGVZF9pdiRGLKbERBGXtEZ72SRczBZESUSr1ECgWgRMQ6PESRbpVFK+xERrL9c0X4/OFEOSE4RSg2QER9IRNFUG0GRV4gX0TNwHhEBhpyRG3OskT0mUBFHSQ/SWS2GUXaspxEXYEORWUWpkU6qelEhC/rRDPD5EQCKUBI4REsR9ftlEaQZD5FzuhERGCBi0TQfo5FxNyLRvN+gUTArYBEAv5eRMD0PEWQ/5BEVP6gRNplSEWwfaBEkt7MRCq/gERFaG5FtxyARQyXa0QtXpZE2c6sRBlGEkWfwJxGGOlTRlUdT0Vvx1hERJzVRK1fQ0VXekBEVzSARLeLVUcemZRGzzb1RCvu4USw5m1EhRs0RIBPXUWze6NFlHWDRMXTikR+p7hENXgdRQ3Od0QGPsBET8sHRXjFA0Xq6pFFeGmmR4pvjkQIOVhEsE2jRsE7e0QQz6ZEX+w1Rhg3hEV89I5EAUcERkaBM0UUTWJFH7OoRd9ftERCwqZEmnVJRHeGvkXtqIxEFSDXRM6JAkUQ92xElOVdRJV0fkSJV55EqVmZRFu/REYRqoxGkIm2RL/0oEQywhpFND8NRmQrPEVErklEV4SkRrsB+EWjIAJFbZ8vRTzrs0TtU/pEy5BZRA2FbkT+U5hEP4JZRK0o20Qgx01EbQitRR1mkURxvYdGmuvfRIrNOUaQdANFh9AYRcwOj0WZ0cJEAQ5kRTkXpEUGb9REuCtiRdArZ0QfKndEwFliRMI+hERtEXZECms4RmnhnEXQ5qdEaH6nRFUICEb7Y8tFnAGVRIU2yURk0H1EujAiRRXc4kTKYoNE5ubHRG0EOkXb8cREJszGROps30dZ3wRFv0uTRCSS5UT4j9VGJptZRBvoFUWVIbdG4SlZRNF8n0Wf6KFFR9O2RGb4CUUVv3tEvEd9RQtvQEYmus5FmTQ7ReVUGEUJrPJEQEleRCb2h0R76qhEyPrlRMWEykSfVjZGrLFnRI0zkUTkOClF8mKWRDVrnkTEX0pEFEuJRbTgaESRpylEGdqORaXXb0TOegtFhH1mRBVlUERFnsBEwKpcRKwpS0TKx7dEWeWMREDjY0QsamxE2dHpRJ80xESzNphFMlSfRBmOLEXHhQdFXBJvRK/ve0T0NGJEf3kARV0qikQcsgxFRPigRG3Ds0W/pFJE9k/LRMlVV0TCYZlEhfzxRLVadEQYz0tEKuheRFvktkTRNnJF34LeRBD+VkQZC5NEJ/gQRjDf0UQficpEMTP+RARumEShxjxEzzCHRegKg0SMLOBEsCUhRfb4WkRNnFZE+2fCRI+XekXr1OlGzOJoRFPt8UQz05xE9ul/RP1zpkWxyL5E2AN7RHdXRERx36xF9mDLRMDoy0SoUFBEuICBRM7iBEX7botEKnoYRRZ9Skaj7F1E3/6URP9rmER57ZJFDQumRJiZZES7AUpE75neROItF0U9hidFZiCARC4IW0QUWFRFJoAzRPkAREWy6u9EXPSGRB+00UTM5fJFg93NRJBWTUTafmREXEPdRGtgRkQHQlhEpoKPRJr6a0Q5ailF7XRJRU2Kn0TVtLpEvOaAREU6jETPtlBE2npBREZ6YERopUJELi95SBqwqURnQ/REKQpaRCEh1kTM3edH2ZZLRMUP8ER1SHtHLZRMRsqBT0QI9kVFCgSuRfpz2UQY4Z9Eh6WBRFW+aER7vWZEK5q2RE0+sERgXJVE2aZERvjrZ0RgsSdFZlWFRe5crEamu5tF/VHbRJiegEQIq95ERUl+Ra06gkRiUYJFlKqdRS+m1UQVUl1EMrLJRNrgVEQdqIVENCpdRPwqRkQbD8NEfKkLRTIkR0RjCFJESPyPRBzitkRsFZlEGvnLRF5Ut0UKru9E1PtsREvFa0TIyJZENYn+RIgvB0VV/u1EL4IqRZC9hUT4+/hEn7k9RXeZlkS0Tz9FvNHoRXEs9ERqQldEYbmURHvCkUjrUJBE9zssSFBMVEeYZFBEcPgORjdB+EUgGSlF8W42RFAnqkZyN5lEaWcPRgrzyUTKpyBF7+SORK+8OkRaoyBGBxuDRY+7ZEVg71NEDEFcRGhgD0bMA5VE/md3RLB4r0WlTFREVhZURF/gpETe4WNESuBzRGIBfUSh4JdEns6QRGv/S0QStQ5GbIZ9ROUge0WIyIdEs++RRAx8tUTA8qpEH22PRJ5LVUTecV5EB6xDRCUwuEdxbxtHgei9RiP55UTUlYhE9kjIRUsMr0W4thtFFNzcRCpaekRicHdEWBrcRI9HhUd+6wlHCbcFRiR3jUX+DX9EtjuTRPQ0s0UvfVhF92YIRWpFbETfbFdEmltcRHF8cUebEgFHYptvRNxt2kVd58xFPQaGRMgTW0VXsNZHPfJVRK5OX0Tqx0NHI473RMT+5UauBRRFQKgORrNqnkQiEihFyMCcRHtvN0Q0YLtEKZFKRN4FrkRDGQdFvj3lRNidaURNM4FEtJJrRO6ZY0QfKHtESiVRRKsFW0XQZARFSsKFRBZerkQanwJFbVt8RKVHOkfvJxhGmSOvRa64jETjJFZEXHrPRcyUVkSw72VEnSAXRfaR50VuFdNERFIsSJOjJkibtMdH3ZBDRHxFJUfMw0xGjfVGRS6IwURHDlBF5BpWRThSokVe7vJEgSjNROTQ9URzl9RE/qLyRAcGAEcvTkRGM6fdRTPyC0Y0JxBFxn+pRUBKCEUSsYhESaRxRdiiP0X/54dEwK9RRPgfIkXfb4JER6Z8RLc2yEQSUG9EWjPTRKLZl0W5rFtFwf7HRKvAikbwnhFGp98iRWOWkUTGYPxGu+1hRB+VZURnUFdGL/ogRuql4EQzQ09FidyaRE4XhURUPGpEOPRURFQoMkW0UF1ETkzKRAPTlUSs8g5H+9RxRx8ZKkePdbtEsOzKRlWFGEYM1nxE1VWGRU7VeET3AWBELj+hRJGUZkRTDpJEQmIKRtxZoUUyaldFmHWBRPhwRUTzAJlENeu5RFo3EUY4TIlFcfQ7RTYGtkRWGDtE4pY/Rs9iAEZJClRFtJwIRQ/KsEQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - ymISRHnAckBG/rCqC8FyQDCNjQNvwXJArPpiQFHCckAoemkup8JyQPDR7UnjwnJA1+CTATvDckB8UXJexcRyQKxyiJVbxXJAvA63Vg7SckCqRaJ9Q9JyQNADGJ9303JAmBEnOcvTckAvJD24zt9yQAqWvdW34HJA/M7SalHickCXNavYj+JyQOb7E0gj43JAfdnMcU/xckDyx2VtyPFyQBoxCy4R83JABKsoj7XzckDQa8uhDfRyQO6N7amj9HJAVe2EC8H/ckDqO+uAjAFzQEwAws08AnNA54FCns8Cc0Dqk2XS+gNzQK5+04sKEnNAgEBjcnYSc0Ai/FvIvBJzQJJDkC35E3NAJgm6YHsfc0Dj4rJfpiBzQGZniiQ5IXNAQsTXsmQhc0Bi5faYySJzQKQS/j8QI3NA8bVeFs8kc0DuhZYLSDFzQLbzFSNbMXNASdzaRs0yc0ASv1m3CTNzQMhUfPahM3NAHs0ledgzc0ABYVFM9zNzQJbdFJE2NHNAcL9ohNs0c0AisWnYuz9zQKpFLIrkQHNAU8u8UHhBc0B1z92ZpUJzQFQRi/p5RHNAPue9PJ5Rc0BkGpGwQ1NzQBJnD9CkU3NAi+cDKYZUc0D+V10k+V9zQJ8YC0yNYHNAUkmjVh1ic0A8qBSxOWNzQOxP2MYrbXNAaDmnS91xc0BaM32AUHJzQLgOPXVscnNAQnoOaIVyc0BuoMjmT3NzQED0wIm3dHNAaCRQVkx1c0CS6OKBw3dzQJaEbcfUd3NAjHzLqt93c0DgdpleK31zQFp8Wb54gHNAilzHraiAc0BGfQv4CoFzQOt+RPFdgnNArOsA0gCDc0AA3hBPWohzQDsRO4iHkHNAEXWv7kySc0AiOi95zJNzQEqxip9glHNAvpNUPveUc0AQ3JmIuKBzQPPwdW5aonNAWMlGbOajc0D/AVcgBKVzQHIw17zIsHNATseYJluyc0BWD2eot7NzQHadHPgMtHNAyVs+4c/Cc0Ba8h5NJ8NzQObmS/zY0XNAaGSqSb3Sc0ACWYgY9dNzQM9tXJ3i1HNAq/fXm6Lgc0DaUe1gOOFzQAKaW6h54nNA4p7uj6Tjc0AyKDyvtfJzQNPE1h6i83NAcwkNdzb0c0D+6lC+jfRzQARM8EvjAHRAKEahGfsAdEAWu6HIeAF0QEiUbQWjAXRAtJ8iUIkRdEDCbj9hTRN0QALaJm94FHRA6G05kEwgdEC/BometyF0QLIPXu5UMHRAjIfVeroydEAEohuHEzN0QMzIniriN3RANHr3Hm84dEDlV8XFOz10QLz8evtTQHRAEMRmBchBdEAILwqkO0N0QAb5m6R6Q3RAOp1h+1NLdEB4gc9U+lJ0QApvmvpiVHRAJkroIfdUdED2U9i3jVV0QO6Yy+jbV3RA4k883CBddEAcuyV5uGB0QOJ0F4gIYnRAEvbpin1idEAqEWz2TWR0QE7aMZLFZ3RAqHfXOSJwdED+BEbdQHF0QJhowTjIcXRATjuOwvpxdECshN7jOXN0QAGsujmjdHRARUzYOTd1dEAjdWYo+IB0QLDGUUhOgXRAifEhbkqCdEByiZ4eJoN0QEopnsq7g3RA6o4kyRWQdEBdljBw7590QHOGIoqhoHRAjo86Uc2gdEDCfe/KeqJ0QIQWivSzonRATp4f0g+jdEBVEw4L/K90QF5lSaVOsHRAfk+M3MKwdEAip0rFbrJ0QDjfn/H6snRAP1GZVcm3dEDWaFg7Ir10QBTSSfLdv3RA7AzeKFHAdEAubhNj4sB0QMTCWat4wXRAClTH5enBdECWrsWvTsN0QIRsyOJ9w3RAP/GGxSTEdECwWNqUt8R0QLRTuL/8znRAsLanAuvPdEDM6br7PNN0QEvZ2ezg03RARlsSZM7UdEDyIEMzjuB0QLw4RKS24XRAbNJOOE/ldEAYitioT+h0QKL0RbCN83RAnPYAtnr0dEA/aEzOowB1QMvUm43RAHVAKB2M5WIBdUBECrqFXQJ1QExa2oX1AnVA9LRej5oDdUBQHNZbzgN1QHT88yZqEnVA2MgklyMUdUBdOyQ+dSF1QBDFUNKcInVAg91QUakydUDWUEN3zDV1QJhwu57lT3VANIqGh/RPdUD21FGpTVR1QNgq4Wx2VXVAbEWFjt5fdUDgQ2xnDmB1QLYpSxo4YXVAVklvOfNhdUA8GMMZZmN1QJjidHp2cnVAE09sf3NzdUCyOxv6jHR1QGo0ycLngHVAsQUaW3eBdUDMwLrGrYF1QDD+Xl+mg3VAiCXADZuEdUAkcUARu5F1QCClqRDMl3VA3nWCZyOhdUBIEOKntqF1QHi7iZb5onVAR0lxU0ijdUCMZyeApah1QFm99iwKs3VA7gdedjazdUDfLJDFxbR1QP5Nv+1iwXVAeAEiPvfBdUCEW5Hw0sJ1QK5097A603VAa/S2W8zTdUDWcbmnDeF1QNBW2msI4nVAEXrQGUztdUDWI+XkpfJ1QD4tKY8683VA3U4Wwf73dUDImV+Npf91QAhOUDVIAnZACNP2ytADdkDmKDQQVBJ2QOTb8zgKFnZAclXUPYgidkCAUFIwjyR2QA6Rz3wfK3ZAT2tadkordkByUiN3HzF2QFFdjS0mM3ZAWLiSO1IzdkBc73NGnTR2QAqUwSQdQXZALiqm3ZxCdkDKRCWyxkJ2QCzdWkZ5RHZACHp+zQ9RdkBsCa1rzVR2QCXxuuaMYHZAggGjqiNhdkC+2Bmz22R2QOpzF29XaHZAVbGWIpKDdkAynjjBupN2QMrpTGrmnXZAGEq09w6hdkA6jipCRKN2QJocSNG3sHZAwmr1KcKydkCTUvLMeLN2QArR0kcNtHZAwO56Dnq0dkDAy0t5csB2QBJKzAtPwXZA0I/ApBnEdkBAbfKnzs52QLbHnLyB0HZADH9q0TTzdkAFppFJkfN2QIg7cYMxAndAV2KVmQESd0AEVW6HDiJ3QO3umT/oJ3dAZtadmEItd0AuWKqfnDJ3QEpsYS+kM3dAMorGLA01d0BFoWKInEF3QBAbbXWvQXdA0lbyMZFDd0D5as4OG0V3QAGG6aZKUXdApp0O/5FRd0Af7cbGnVN3QAjxnSXrU3dAneseHChVd0DIWL2me193QIgJKe8SYXdAdh8fZUlhd0AyVeRgkGF3QDwZarQ5ZXdAGiyt+iZvd0A8snLAnXJ3QPzSrY32d3dANbAK3Gt/d0Au/luReYJ3QJAyfwuegndADDy28AaSd0BDnlOlS5R3QC4FeBSPoXdA8tD6ZJm0d0A0aCwL7sd3QISSNZ7i0HdA+P7wT5Djd0CLeXE5UPJ3QD/Jgw18+HdAbGlE7kX9d0BSIGTU2P13QGqhRMefAnhAinQXt+UHeED4YLck/Ad4QBrQLDfGCHhAdFUgBUMNeEDm3ZDFTRV4QDQxu7FtInhAKhfosYsjeEClWEjapSR4QPYjEuQ6KHhAesrTqNsweEBKEY9rEUR4QPQzk6B5RXhAjmoIn8tReECJ1VKalVJ4QPAiQn2HVXhAapmP0vpgeEAUsm/GtmF4QOYEgQvrb3hA2haSlRp0eECsmj2iLXR4QHQ2DUBddHhAUDqfe4t0eEAKQMlvyHR4QC7Y9j/ydHhAsTce7MJ4eEBWya799nt4QNoqhikhfnhAJIC87qSBeEDmUJg3/oN4QCQGKqKZhHhAxgTKhU+IeEBWudfbqI14QExIY4GWkXhADzw1FAWTeEAI4utTp5R4QMHHN1FJmHhABm6JGrekeEC411B4Na14QDpKxDjet3hAm/+v3TS7eEDgEnbey8B4QN5zqzP1wXhAtKN3kLfUeEBoXFbvn+J4QMYuX0ab43hANXO5MIbneEDtSnUPAvR4QFit8sKM9XhALNK91nwDeUCUWhNLmQV5QG7+8TXFE3lAfTA8XLsjeUAyry1JTyR5QPFiEOixKHlAh4coewwueUCYcwuNZjN5QPQVEPKOQnlABmQk0PhCeUA6tQ8c/UN5QF7pF/4aSXlAm/3r6stUeUAscY8N2GR5QFTQ8odFc3lATyRIQFyTeUAYS+7zYpt5QOiV1Udno3lAamYfAKqjeUDcLwvpV6t5QJDZCp6+snlAFFJ/u87CeUANJfAKQtR5QCrTG13P1XlAzFnTmk7keUAkEMM+jet5QPs79dkQ9HlAnghXzOIDekCN/3ed+wN6QHKbJDb4BXpABPFoPk8TekAKsxDoYCN6QB9eMmcpM3pALvQPOgw1ekDgSeqYLDd6QFMjTCEzO3pAoALp5hlFekDgyCxlzEt6QMRMF1fOU3pA8CMJmyhVekBqe6VuIlx6QKDnxJ8nZHpABItKQotyekBE8zvZHaN6QIu3BsF3o3pA+AO5ziWrekDAUbwkVqt6QH2yKJJ9q3pAl1HJtl+zekC5/AyQDLZ6QIQ4rq8sw3pAwNZeeRrGekAlF/zbZct6QIeGizFBzHpA8Ih0LyXOekBoxccV2tN6QINB9PE45HpAxXNJ5jTuekAd7Ur65gN7QCJJ6fl7BHtA6JtnDScOe0C6ERNx+BN7QFxODtyIFHtAqmY5gkwVe0CSKUuJWSV7QGGaSEAgLntA1kUOdGI8e0CNplmOaUR7QLr33tptTHtAXBy8w15Se0BiPXuMD1x7QEZVpmTDlHtAOshIliOVe0BBYx0zrKN7QPfD+cU3rHtAEDfaRwWve0B4tRVg+r57QBmVIUQU0HtAhOZvw2jje0AojhDvJuR7QPKUyc3t7XtAMvOYuZbxe0A6orlKMPR7QDLzryGM9XtAktq0mCn7e0Dc/Ted2QF8QJ1OJJb0AXxAJNJyhzIDfECOvrZkZQR8QBD/7MKYBXxAm1AmWowRfEAslmLmzhF8QBSpIwv1EXxAvDhkeM1BfEAKMyFtUUh8QILlKK6pTXxA+OKZYNpRfED9muV+ZV98QOvnkNEPYnxAJiv7DypxfEBygsbjaHt8QC60SZNwg3xAVgNTPF+LfEBEJoK+eIx8QL1HPLbCjXxA6iyzXhyTfEAO8hPoUpN8QFxW9UZ3mHxABmYcJVqZfEDEdUesvp18QB63dv+znnxAxNhWJ+yjfEBI0hwRwbJ8QFimka16tHxAsFF3itLDfEAylUWxzNV8QKUjZLHz23xAyCnsh1fifEC8J08LEON8QAYCpC/+43xAw1FK+KXkfECalRMVFPJ8QBPFhz1V8nxAiD6oBgQCfUA8TxtxSwJ9QLyZz9sBEn1AYRWg50QSfUBuQT33rRt9QPxpWP87In1ABP6LfY8jfUBwMqwZtyN9QBxrKoS3K31AMmUCY6EtfUB+hC4fnzF9QAT0CTorNX1AnQjqB/Y7fUAyakbv5z19QGa4WB96dH1AFgHFo4J8fUA6qirWZYR9QIiJBr+VjX1Ad4N5wXqUfUD4rURi+Jt9QP5a6wSnpH1Abr/FpubEfUDOSNAypsp9QFwgsUHz1H1ALG/17ZD1fUAwwGt0NAB+QJ5hmy04H35ACEzpxiQgfkDKriAUQid+QCgesV8hLH5A6bSAT0EvfkD7fb2/KDR+QJ2beWRCP35AP8Yv5klDfkCe/v0ZokR+QGS1l9WKVX5ADqkEY52DfkAKu5RlU4R+QBSTUL/ikH5ApKOc8rmcfkBDx19KlKR+QAQqZjAHrn5A9+4BgnavfkDPMQA8TrR+QL7mrr/EtH5AgC/5SKO7fkBO7geknb5+QKjRHMfQxH5Acn0KYXTIfkDSk8ZTsct+QE74fXfOzX5AwmsIsGfPfkDsROiZ4dR+QBZvQaDK335AIGXA6tXvfkCS87tnXPN+QKOQYiOTA39AaO3DfJkLf0A83VQ0PhN/QDQfjvqlE39AVtUFFXkbf0DQFlWxrRt/QPJg455lNH9A/AIn92hTf0AYfLi7iVh/QG5d9pWrWn9ABBwq37dxf0D3M+KctIF/QBzkakmmg39AckKNSEePf0CERgY+YpF/QFRkmyWmkX9AnIvFEU6Tf0CcrxTvkZN/QJmGIqZRl39ASJBDYlebf0DIJcl7Kpx/QJfvhh9eoX9ANHHRS0Ojf0ANPF7SEqV/QC9MzCoFpn9AVGGhrVWxf0C2tUc+zct/QPiOyzE1739AIb5MeIgBgEAM9imi5QGAQMLDF8AzBIBApvFDA9cGgEAeNB58GgmAQJhWFgbtCYBAOU1vF98RgEBC4Jh9tBmAQJZVfVZpIoBA/LdMseMmgEA88HqsiimAQFicw7tvKoBATvAt5r4rgED6jTmLMDSAQKoTR7u2NYBAxMsm76hCgEDgdCM0+EiAQEriH8HmUIBAN8W/IhRRgEAyiC5ZplWAQHfmdI3mWIBAOAtLqA1ZgEAvzFNuIVmAQHodEgExX4BAKPEvgOBggEAopLOaC2GAQJf5z9vEYYBAH4QfKOxlgEDWhG1CoWeAQOA7kChOaoBA7IKbsfBtgECU/M66KG+AQAZHjBr1cYBA1C0cUxt4gEA3THkmJ3+AQPXaSZQbioBAEp4rdkKKgEBE8H9XHo+AQCGbIJMel4BAAWsDQmqdgEAEY+A4B6SAQIawtgQ3poBAFXHh64WpgED9t0ooEq+AQGy+FTiyr4BAGNihfx+xgEBBwABAv7GAQAGr4hfVsYBA0kWVQLC1gEAyXs6BEreAQIWQknUHuoBAVeL0xgO8gECT/E23FLyAQH5bRHm0vIBAwGmHZ8O8gEA4Lcx5e72AQPOfiErwvoBA8TCL4qq/gEASJejn/L+AQEq24Y1SwYBAqlEJ6p3CgEBAc5Ig8saAQEVfs18byYBAlIF5WlPJgEAqU4WDosqAQATo4g+dz4BA+Br+rGvQgEB+oUA8ItGAQAa2s0RM0YBA5uK50GDRgEDAdqub89aAQBaONkBK2YBADut8i8DegECNafHOQ+GAQFsKEfBr4YBAgDREjmXogECvsfKH9eiAQDK/CbAV7IBAg3H+RUnvgEDwvTpVPfOAQHCwYNdD+4BAxrfZ1j//gECHabCXPweBQH71sso+D4FAlDwyizQfgUAYnCPMrh+BQOJ9w7M3J4FAmE/kZxssgUDO7EHFMC+BQKr/2Dq8MYFAo4YA0NA0gUAUSLd1KT+BQN7lShgeQYFAmnUqWFtHgUByrmf7B0qBQMD5M6uzTIFACWDMj+dZgUDcdrIC6l2BQIBISgRLXoFAHsnb9LJmgUDn/tbhwXSBQD5hxARxd4FA/gKm0h16gUASbV+naYqBQGIF5QRdi4FAqHsEE7OOgUD6XJK8VY+BQBrC5p2zj4FAROdzYu+RgUCxsC2fYZKBQGJGf3sJlYFAkfx4MlaXgUA36kiSSpqBQI7ZPXCdnIFAcSzhUEefgUCAlNUm56GBQO30RiwqpIFADnRPjW6ogUDgVcP87amBQJBYbhporYFA+pfaPEqvgUCBIgflTbeBQAyqXOYcuoFAnPM2USa8gUAEzQ/SQ8eBQKfeEVP50YFAStGnjX7TgUDaGxrk+9WBQCseXpX/2YFAiBaoC53bgUAsDzHW/92BQDVcP5Jj4IFAzdJa6vnhgUB0L3MxA/WBQNkP/F1u+YFAheVD2uz5gUDAiGtD8P2BQOBl5iPhAYJAPfvoW/YBgkBAh3kelAeCQMTypSHYGIJA4Bz+vtUggkDE2b0P0SiCQJjGCsusL4JA/8u9EtAwgkBv48/WCj6CQNgghe4MQoJAvAdXjBNGgkDllh9rq0uCQJ6Uhw4NToJADkwDPtZOgkDoYAbInVuCQLIbXehuXIJAGpIddcldgkBuyBoeC16CQFYknII1YoJAaj598BRmgkAE/pbdNmaCQJw4vIdsaIJAXWiN9J9rgkA+DUCi3nKCQF5RcDWnc4JAKPh/ELF1gkBpPqBuCHaCQIYvEFAveoJA2I3PRTiBgkB5XLIyQ4mCQNiKetHziYJAMs1y+EKRgkCA3lwJJpKCQC5nr9/cloJAYDk3JTyZgkCW04CEy52CQBTDevYOoYJAOsM1IzyhgkAS05RMEamCQDcqELE0qYJA9Ezji0mpgkC+bF4QpauCQEO9CdcGsYJAY5mcd+zFgkDoClOR78mCQDSELF3izYJAr4v1pPXNgkAmYZWU6NGCQDR6YuX50YJA7RHp6vvVgkD0Xt9OftqCQGh9PiCC3oJAU0zrEofigkC0FhNcr/mCQG6rADMd+oJA6McbiOEBg0BbjpNV5AWDQK+l8FPaCYNAKPM/AekJg0DnjJ6iog2DQGqawhLdDYNARo5Rb3kRg0B58ygg4BGDQDZCq395GYNADvJUyksgg0D0zNKBciGDQAqVSSsRIoNAGCeK0XApg0A6do5m9i6DQHz+X2VsMYNALv7WkNxBg0AvkS/xk0WDQNJTLb+USoNACxyhT5VOg0Amq7yC93GDQKolMoXqcoNAnL2QDHOVg0BW0aRDPZuDQDacRYOPn4NA3q+EFd6hg0BWTtNCHsWDQA4QAKbLx4NAZ6J8XHfKg0AEw7Q6y9yDQDsIWYEZ3oNAPPtX/Xbfg0Ce2CVNPeKDQCaTSjKV+INABatcoqX/g0A45tw8gwGEQJq1REyLCYRABk894XkRhEAELj8GgBmEQAyGtrP6KYRAZm7fj49ChEDWdmMnMGOEQNAhnG7/aIRAUqRDDP5whEDYoDq5uHWEQKq1HurKd4RABAIMefh4hEDGib83anqEQDcoWToWfYRAwIW2asJ/hEBy82lHP4KEQPEF6Q9vgoRA1diM7RqFhEAYypuEyIeEQIkoeABxioRARt3oOSOQhECMUcOHKp2EQNg/jyfEnYRAML7yddafhEBMDJznbqKEQPKrAQkSo4RAWDduHx+lhEB+qGVhzaeEQKuiI5l4qoRA2ndt6RDFhEByU+GrvMeEQFStvHRzyoRA6tUCyRnNhEBDzSiDyM+EQLNdXghq2YRA8sYCfWrhhECBRHeQ0OeEQKyCIkdi6YRAQd7sn33phEDqIe9wLOqEQHBPQeV/6oRA3iKnVxfthEBalj53MO2EQE5TjlrI74RAWF9rLjbxhEA/sEJzY/GEQL9nj3Zz8oRAQJmoXzb5hEDwCrvJXPmEQIwovx0M/YRAQI0wbNv/hECiUO46MAGFQE1Eyl0LFoVAfmWwBBIahUCOhVT3XC6FQG5jFxdiMoVAHEt5ouNNhUB9X7tY51GFQOQk6JjrVYVAHWfwpedZhUAiylXMuF6FQCT4eI2gYYVApp5Tdi9jhUBOo89AoGmFQA2O0OFQaoVAsh0EsZlxhUCWTQjSrXOFQOH8vHSaeYVAlseDSqyXhUBCpKbjqK+FQBAJ7O+JsoVA2QVmuR/ehUA5Z7/nvOKFQH5T161p6YVAV5PuhMaohkA4ygvhJ7mGQL7I7bbRxIZAnhAaftLGhkB+ecPv08iGQMxOYfdGyoZAjS9xjdXKhkC8M4xw1syGQGW7nNtIzoZA8khH/dnOhkCcFQMY3NCGQO0xxy5/7YZAUA6pwDL/hkCKlaWEYf+GQIhqTpDSEodAJNCT2LIeh0DVy31dtSKHQOoCNN6jJ4dArVZf+JAph0DkqrJ+kDGHQEqlwoGIOYdAsiO+No1Bh0BrSdK2g0mHQCZi23t9eodAuScXzdWVh0B6Q6VIx7GHQIRMRorGuYdAH1A7pr/Bh0AkAOkuvMmHQDxs6kT0DIhARBcjNQIyiEAt9qDMRH6IQPZaDYBGgohANsrMn0eGiECCr9XXTIqIQDw8m5nowohA + eg5Y0/EhYkAoFld2zuNlQHipJL+oMXBA3OW/dP8icUBrPQyU1zN3QJ9qbDZXQnhAa5vo5y9FfkCfyEiKr1N/QBl7vhAkO4JAfWrJajnSgkB9qIgtsFOFQKZqUDpMCoZAdIcIXOfriEBwchntzSKLQHS29oWTdIxABFO9KCUrj0CXhOu+hTqQQBHSvIm+XZFAJq1JtLECkkDD6CGYBKqTQKKciUvNzpNA2mv0ajU+lUC5H1we/mKVQFZbNAJRCpdAazbBLESvl0Dlg5L3fNKYQPpeHyJwd5lAQq2C87jSmkBET/G/m3ubQMLEeQgPl5xAKdNVmdwHnkA+tLmfKmOeQD1TGQHmo59A8MoernDvn0Aq6/VpC5ygQNHwQV7bvaBA6nZxdDZ+oUCRfL1oBqChQIMHp2whYqJAD29aQ0yAokDcktlzRCijQFaDCT5iZKNAeg1hO23Wo0A= - + - DkqBROeLjkT1bAhGlaKkREJVK0UCJGZEWXd6RUQSzEToW2xEHgbMRHKIDEfSvPhEWx9pRGwiFEXwvZhEYZRyRc4iekWIORJFA7uaRHZUFUVugXVEPHKURG8+oET9KAVFZu/4RImhkkQAW6REnzNJRbKoIEeqUJpEpBthRFr7E0ZNt6JF05cbRe2HvEQkTcNGpk6hRELl70Qa3PpEHLmVRRWJAUUPJZlEIfSQRNh7ekQaLI1EGkdqRDR3YkQ3xqdEHIpdRGGhDEW1+QVFNMJvRbLtVETIuAtG/F42ReWukUQD5ZtF4f0ARdYsj0QFzZtEO1heRFcoHkUGDi9HfMUYRQilbkR7tYlFpuV0RhTcsUTzEoVEhIz0RMSJkERxqPFEilMQRXZgDEXF8dJGsgy6RD8va0QkzYpFLHKWRNp43kRs2wVFyw5JR0EzAUWTGm5E285RRlbKx0X0s+hF4hJdRdu4DkXi6eZE11hsRHr7CUXRzT5FiJOzRduwCkXf4gNF5/7oRMS0v0S5UIFFJUFpRDUT3EVzZiJF/37/RHFvgETM2kJEbXgrRfUCgESBwZdEqeFSRB4ZYEbCPJJEKZLKRCzSN0V7TJhEGauwRKBt70SsF85EGpxMRIukjkRcZjBFylaORHBankSsoYVEdVwFRbtIlEQMcIBE9BuJRNM5i0Woi0hEV8OARESS20R3srtEKokORv6siEWfdl5FhNUKRTQXqES7xIVE7rqlRTD6M0cDZV9E5SxORBmXQkXxHpFEbSDKRGAENEUrQdVFaeagRLUkeETOuvNEV6aHRWQfL0h15YZEbn6oROGKWkTmMD1E0vwXRZfySEbKp2hEp6zNROn1kUZb9NhEQVXoRcg5DkXBoM5Gys5xRGA2X0RpsbFEj8FzRMSpj0Qdqt1EfGZPRCax70RRuLZEdmnjRJ+cU0QtGrZEETPvRMlXgURSjgZFiX65RBmjT0RIS5dFLQSLRN3W10SX6UxEmY6KRNIM1kWhFWpEP7uQREqdfkQAvpJEO3oQRU6OdEQ+7QZGlR+pRJ1IOkWrIYpEhJeERMYLvkSSsJFEDrBYRAGQ2kSfiRBFT/8NRaLdn0bB2B9F7LhKRdSyCkZWSaZEC2/+RAxbu0Wj8pNFW2/XRPpDikT2iFtEO3XMRF1O6ESgT4RENTToRKpukEQIESFFxRelRKZScETsUHtEQYAjRcZtiERkQFxENf2xROg1s0QFAPJEiF6IRq7oIkZoWohEYhcRRezsnER/EzVGRvv0RIsatUQZHKdEHdaPRTG88kVgbhRF4TSZReiHt0aMd1RFHr2tRLlNrUT67GpFoQ5gRGpgkERJHUtFDWPsRC2aIEYUPI1E0ZRzRBDzEkU70gxFA6w4RacAiESr2cpERDWVRO/qQUXKrY1EAXrzRG4snESDh4dFZFyDRFhfjUSiDkpEN8R5RP6KUkV0m0pEHFqgRPpQCUU117FElxKLRnPgCkXmlVtGuObARan63kQVsMhEO0/ZR/2qlUYkr65FSGyJRq6DukZuSrFFyVtjRrkyH0VSC7FEaBTFRAAKVkXiDkZE3xeYRLRlCEX8u05ER44mRZ1ly0VboE1FB69MRG+mrESOX6ZEIaPEREgGoUQ8RTtE+T1eRHmSiETvvpZEkuBfRNQOjkTjxTNFUtBGRz803kSamwJHEN6BRZObmUXPzBFF75NTRYnwTUR/WXdFTG+SRN9oWURU7oVEm9WZRHUJmEVCmTNGF3FzRdmY6kQX0tVEUM/zRJ8LNEUmVPVEzx6/RGx8H0XNmiVFNENDSVyqwUQp8A1FSW7ORPm+VkXWZpxEWlofRTDnlkSTfEJIAnElR5QsrkYo8k9FWjWzReeoh0Z5J5VEV9KeRAgPWURcBZBEkrIDRQFqD0W9yZhEgy4oRQh5W0QqBZ1EbDBfRK1SZUVtY7pF1By6RPiwyEQ1A11ESHyLRM9kJkWQMZtGjswhRmgOl0XXaIhEwXqhRLKr4kSRS5RE44ucRZntpUT6FKlEPCstRyYbeEa2RjFFd0h3RLyVlUTQQGJFAuSLRP6m0kUMiJNEL+5+RO8MmUSdyz1FBGB7RD1vfkTXiq5ERz6HRJuymkS+mmZFkdbDRydDD0W3/dNEIKi9RgnVjEQfy2VEzAs4RROG+kUO1ipFnAmPREL1S0ZIw0NFi/BGRXB7hUVuT8hEDkgCRT7/s0XuTY9EmRECRczmckRORuFE05XJRL2khUT6g0ZEvNDQRBFmOUa3kIRGrJCmRPr0kUQIxU9FXoQTRkaK/0Qs9FlENW6VRkuQCkaXRBNFJZejROTaDEWt7ppESFlrRXGLnESWX+FEfBB8RJfPgkSHc9BEQNmGRGWtmEUZ3ENE4DCjRdhdeUSwXZFGx4HFRCQmK0ah4uZEB0t6RK1ZIkUiQ35FrhdYROz+gUXOPp1ElZisRVwTo0Um7iVFDGeORCXVaET+2nNEQjZpRE2ubUb7bahF+9DsRKqxQ0Uv4SFGN0dsRQzUd0Q5D4NEyC+sRLhvukR+bDJFSB5KRMOJEUWe9nNFQ74ERfI7ikQlvMBEzhjiRwN1GkXhgJNE0w2VRPG6C0W2JuFGy5sARcUBpkaahJBECnUgRS/KU0Vs6a1E+9i3RIbG2USD329EvE9bRJluoES0X0tECto/Ra/RbEQkIjFGkCQ5RSIc8US76oVFq9BxRBsYaESMEatEa0loRjkOekSW4RlFnibmREKIaEXWJKhEGU6XRLGdaETA3aBF9b+WRLdxXkWDP3ZEpAh0RN0vpUTNhWZEGbPHRP0+oERzg1hEzHvpRF3yoERKo35Ecd9xRLzZq0QqIVlEHHWKRKkDZETuxIdFiEn+RGGOqEQWedxEfECbRCOjgkQZSUJESsKWRJ0yrUQnhk5FDgaFREW90ES2QWRFvKGvRI6VIkUw9qhEoi5GRGx4okRQti1E3GmbRdGkgUShQsdE7jCYRLfhJEZpvWpEFixmRf/ygEQTr9FEg/IZRZjgnERDCkBFbTzlRAJhbUQT1YlEmrkMRVhxiERuVgdF688+RbsaCkfrtuREaCKTRDKwWEQzLaRFYLS+RAkUbUTbPelFx8sERXbynES4kZFEswxYRGiyUkRslZdEDf1WRR7YnETqJkNFWcdhRjdSWUQehH1EKDKMRZkKkkReEnZEupyMRDi7mETRg+dEquVARdK8LUVulmpEgmVYRTc2ZUVn/ctEASemRJc9uUTdgs1ExWhGRPvQEEZDcqtE/a9CRHkuAkUnXmVE17SVRM73h0WicOJEbX91RCpc4URyILVE5eG9RA9jXkRhN/dEK+AdRftWtETwy1lE7l2cRM3DN0UWXYREyNN4RP06gkS1FHlIXU8lRYR/nkSRZKdERWzbR1axmUR0oG9EyJSQREv4PERzf3VHuMhqRQUfXkQDGVJGYF3rRNwQk0UB9dlE5qSBRP+tDEVU/KlEVOD5RBezqkR7NVBEvBk4RshgWUU9QHxFn8OmRh4YcUSNOIBFonGFRLx+qkTcws1EswGORHD4kEVbu31EMFKNRXhIIUWMhYZETFkTRfT/F0VoqVNEcXBqRFn6w0TspG9EiJWERB/8pkQUGoBEtCVTRNmXu0WTDQNF6wS/RF9Ek0TxnHxENJ7CRNXDmUQYC05FJdk3RQuJHEX6U4FErDchRSZil0R7II1EacAFRhrnnURtlIREsh1iRGTYX0Rw85BIl79lRNP5HUgGmC9HAUiNRAEgE0ZOJY9E8dyjRH9QgET3/oJEHN+ORqehJUaMM8lEDsI9RTV7bkQWshVG+LCPRXiCQkV+6J9ERB1RRGYOCUag76tFYTQTRdHSTkRmdd9EN/RDRFyzeUR6ZnFESa33RLSEgETq+9xF/GWuRJVMjkWbZQdFwOHSRBBZ0kQoUbVEEMVJRFCLDUWEr4BEHaWARGNyxEdbHWBE9s4YR948T0Qf/2RE7WfARnM1ZEQnjb5F4JEGRhD+4URS+ElFAqN1RCwBukTeg7pEuYqMRzbtL0dabZVFZFIURtt2QUVBwuNEGIU9RIVVE0Y0cGtFvF+iRNmrtUTgDpBEOvpQR3Wh50aE3L1FnT2fRfB7YkTNR0JFDUPYR6r53UQiOStHhCfARE5k1kbNIoZEhDbcRR23cET6SzZF/mwkRevIg0Qv5N9EBR/WRJoaiEQUqIJELWWORFC8XETnCEFE3QKLRNV6jUU95R9FQDnHRAKEukRZg1NEGm0SRdnsYURpG5RE7ItnREmRdkdhYkBGqmnnRXL6hEQTiF5EklVJRA8RjkS63LxF9cYfRT5lp0SsMq5F1jjeRGM1iEgZbYNI0dYRSOzdxkSJaF5HmCGpRrgCu0Xt6J1EP3yCRIHmOUUQT1dEVKEMRVH+k0UQ8GxEuAiTRWVyNEXvLr5EgSzHRHkxGkU5TEpEXLNcRetUp0TtSQtHFq1hRnVju0UQqBxGKtWfREauakRiJ39FMaYMRVPzB0W/xhZFsdY9Ra4VXUXsFEtEHtgCRbxa8kSR4XNECW2IREdLa0QaVQhF5F+mRE7710VeeU5Fy+elRu91UEa3sG9FfRSGRAgMlkQpMPhGEe+HRHFqTUaJXT9E3Ab7RTcFaERuDDJFCMdmROtAW0Q6vqxEfBemRMk8r0RE0XhF4fw6RLuGgkSmajRH9m54R4SaS0e3qAVFz/f+Rp1zU0ZB4slEpQuTRWyT3US5lK5E7YBBREkrQ0TOsulENiqwRB+baUTRw8REqOA3Rgtor0XXpEtFR4OrRMZ6kUS1n59E21NkROgbBEYpN3BF3gBoRRZCgEQVEFtEDqBTRPnYGUZY6vNFKcVHReCNRUQ+SwFF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - inkLvXfAckAajDs9AMFyQNi7OsxuwXJAxuFJMlHCckBCgh9SpsJyQBrxP9jiwnJAs5Zq6DrDckDiiKccWMVyQAr1IIR60XJALAEMDg7SckCUg0BQQ9JyQPk71n1303JAxMgGBZDfckCOeyOGzN9yQMr3gA664HJAMsDvE0/hckBac3sGUeJyQCkJmAWP4nJAen/RaCPjckDoIsACyfFyQNrsZ/q083JABNp50A70ckAiTuf2o/RyQHixPbDC/3JABudUQPkAc0D8fjgLjgFzQM0rh2/PAnNACGac7/oDc0D5i737ChJzQPHdHIy8EnNAnUmobQYUc0B7DOPaSxRzQMf5hDR5H3NAlrGriLYfc0A+hZ/OpCBzQKbsxTQ5IXNA+GexAGghc0A8zTiryiJzQOd3mD0QI3NA7k0JZzkkc0AgexvfziRzQDQt9YFGMXNAsQZiF1oxc0CtvcurzjJzQDbKYkwMM3NATjX8IKIzc0A2cZBR+DNzQMTcY343NHNAOCRMEdo0c0BipENpuT9zQJgkBLZBQHNA9FKdiOJAc0BL4QieeEFzQFojYBq7QnNA6AGnQXpEc0C62/Otm1FzQGwl+K1DU3NA7y/L4aJTc0Dy2TIPeFRzQBgiC5mJVHNA6vaELvlfc0B9dCccHWJzQITNlEM6Y3NAjaLsqSttc0AO0Os/3HFzQCOylxNScnNAiI+sMGtyc0CyjwlshXJzQDbxsIBOc3NAU6l/+LV0c0DqZOL9S3VzQDLAUU3Cd3NAWAYdxdJ3c0BiDooOK31zQBwYTth4gHNALHqBuaOAc0BqRZbAXYJzQG2u0lL+gnNA4H6JrjaFc0DIuoMFiJBzQEr83FJNknNAXtrpvNCSc0B2ix+/zZNzQJL4MpJilHNA78CrWfeUc0DEli8tuKBzQH58jLVNoXNABFnHxVqic0Chw7dBkaJzQNORRobDonNA6nDyDuijc0Be+re1BKVzQINP1iXHsHNAaFfuzTSxc0B2pFNifLFzQAvYSzlasnNAUrH/MLazc0CE58aHDbRzQKgVIYn3wHNAUkL+7M/Cc0AgWAh7JsNzQASDqQLHw3NAEq2/mtbRc0Aa6JdTvtJzQF442i7103NAYjtNeuLUc0Bqze0+OOFzQAu5njVl4XNADpzxuubhc0AAsnZXfOJzQNQgkBcQ43NAYKf58qbjc0BWUawBN/RzQBR+AOSL9HNA7SQexngBdECAmThmpgF0QM+uqWa3AnRA8NsakYgRdEBDMdXoTBN0QPiGFxHfE3RApeZrs0sgdEC03fNDuCF0QLG6ZRj7InRAcPKhvLoydEAlDo3yDjN0QOn0ItofNHRAkLQsV+I3dEAI5yypOz10QJ4abmNUQHRA7cPMMcZBdEB0Srizp0J0QHjmRsM7Q3RAgndzpHdDdECOn1fNH0t0QNHI92+mUnRAqoxlrvlSdEAqZmNO+FR0QOZv37PcV3RAMcToYiBddEDFDHsauGB0QPlqRtAIYnRAsJ7M/nlidEDqgn1mB2N0QJM4xE0RZHRAatp0Zk9kdECfsUiz1Wd0QEpSSsgfbXRA0zyrTCJwdEBU3AgrQXF0QH4vB9E3dXRArgN2c/mAdEDn7nwLToF0QMauTbFIgnRAHmfJJM+CdECO8oouKIN0QKAChKq7g3RAJrkS2hWQdECyjN9xx5N0QD2RNoTvn3RAdBmtWc+gdECaH50bNqF0QObd+5Z+onRA8hDx1Q+jdECYKesD/K90QLllhXHDsHRA0yXndm+ydEDdFh7z+7J0QEDDf7j3s3RAouiva8m3dEBI+oxaEr10QK50r7rdv3RAsvehsuLAdECcjlEJ6MF0QFChJ1a6wnRAO1JlWk3DdEACZPCvfMN0QLIEa4AkxHRABqBCG3zEdEBI9qgwucR0QJnTDZ7pz3RA8OLQ+eHTdEC8AaOte9R0QLbW3U3N1HRAFFURPrnhdED8B6NojeN0QPxctY1O5XRAg4QqQ3PwdEDuHdhkjPN0QOXm7BY6AHVAOP0WD6QAdUD2c6I0zQB1QNB2ePxkAXVA4jORbF0CdUCSsqcp9gJ1QEyGRHaXEHVAZeXNZWoSdUDqsdvlIhR1QPra0Z/kH3VA9HOwTU8idUCzATBxnSJ1QAb+vNSqMnVA26mGQ8w1dUAE66lq3EJ1QGQcp9vdT3VAke0SWf5PdUCMA4P8gFF1QH4GDaBNVHVAeZAF13dVdUCSjpldDmB1QCSpxrA4YXVA7IIhsPNhdUDGwaopZmN1QEJ0oXJ4cnVAump6AXNzdUCyaOyAjXR1QGysidd4gXVAGW2fkK2BdUAYTViupYN1QOTMyP6ZhHVAkPJvSbyRdUAbfZaJuaF1QFKl4S1Ho3VAFnZ1zgmzdUBmm3omPLh1QEAFaIllwXVAirmiYvfBdUAEbUUNzdN1QEWsBg7j33VA5M1KcHvgdUAYblVLD+F1QA0Db6+i4XVA2lWOcAnidUDMRo4nTO11QF4SsuSl8nVA8FRZDKb/dUBjexsCSAJ2QCwpIWDQA3ZAaTobhVUSdkDxIaPMTBR2QOF8co4MFnZArECITTUidkBzQbLhiCJ2QNLD0zqQJHZA2FMTjB4rdkBYO0pwSSt2QO3rG4EfMXZAJvCAbiQzdkAM/eqUUzN2QLNXUwqeNHZAIldlGx1BdkBoC0asyEJ2QHy20hh6RHZAbAmrXBFRdkD3pvEyh1R2QGB/r6XNVHZAVhKflY1gdkAnEN1pHWF2QIS6h/fdYXZAF4xhL1BjdkAM9ZyM2mR2QMec2ulWaHZAlgR5vWaCdkCs2y/upYJ2QLygwOfkgnZAfl4HcGiDdkD4jodtkoN2QEhEZnD4hHZAyEC+0+qddkDc2ZusRaN2QKdXfR3BsnZA3SRsrAy0dkAlfLZrwMB2QNNFQwQaxHZABSHPns/OdkC8kWN6vtB2QPg3HxP04XZA1hKomDTzdkC28qvIkPN2QG6cfNMzAndAHzPWaAESd0Cmh2NctRJ3QCeW0D0OIndAsrMfTOgnd0DB990UQi13QChpbRGJMndAZixHPJwyd0DIc8pApTN3QC50qzYNNXdAQM52AZ1Bd0BM+S0wkUN3QHI2/xMbRXdAhI2sOUtRd0ABE56rklF3QNKhP4udU3dABXcNrylVd0BA2IemfF93QA6SDjGPYXdA9DxgGChvd0DQBP27nnJ3QNh8fjmPdHdARG+nSvp3d0ASCv1fVH13QI8V5/13gndAwgaZfwaSd0C1GmliSpR3QPHLZCego3dAGEmowp20d0C8QOKnLMN3QJJ5zLJS8ndAnD4WtXP3d0DGi/LmfPh3QFKYiN5G/XdA5h0pIaACeEBgpAVP5wd4QBwhKKv9B3hA0DQyW0QNeECyhVs9jBJ4QABN7sBOFXhAhuYnbm4ieEC6TKUhOyN4QPoB/iuKI3hA7WmKdEEoeEB2BtnNmy14QATUvhsRRHhA+HckJXpFeEAWZFuKylF4QGd9tp2RUnhA2Hb1Ch5UeEAXBTKJSFR4QFCb4buHVXhAlt1qNvpgeEC4SoYDtmF4QD5Nq1a5YnhAB489ECd0eECDtdnPUHR4QCST+auLdHhAb8ThmKh0eEDP+6sb53R4QLpuhxnGeHhAgR5/DfZ7eEDbfJF5IX54QGr808s7gXhA9O/1jKWBeEBfnxhb1IF4QLWgvZH/g3hAls3bL3aEeEB5y6oGmoR4QKyg5+hPiHhAx2mpCamNeECEaDMFl5F4QOUglC7tknhAAEPreQWTeEDiy/UMp5R4QEbs7x1ImHhAjMYde1+YeECQe4zHOa14QLv+H5Q3u3hABjcdZMzAeEAoQAy41854QNpW5ki31HhAixoJKpfbeECCf2XtAfR4QOREQZyM9XhA9ItMonoDeUD2CadkmQV5QPzVV526I3lApxpzZ/kjeUAWyxe1TyR5QMEuyaOyKHlAeub2Ew0ueUA9B3sBbTN5QExJSEBfNHlAgV6zOvlCeUBSXjmh+UN5QCLu6cUXSXlAvIsLZcxUeUBicGYY2WR5QDhrEIzcgHlAyzjq7luTeUDGSeGkYpt5QKgyrAZgnnlAj+1w9lGjeUDYAN8JaKN5QKLdFrHAsnlAIku0fXezeUD3Duua0cJ5QELhpGJC1HlAcgDOZsvVeUD4/Fviu+N5QLCaCr5Q5HlAvkjaJz7weUCCMET8DvR5QFh5K2T+A3pAg72Z3/oFekAMRAm4UhN6QG3rcm8rM3pAkpsiWww1ekBtC1lxLzd6QNR5ZI00O3pAEcKNlxpFekB8GBl4J1V6QPrJ7OkiXHpA0nia3ylkekDIyFmDOWV6QKrRV0mLcnpALMj+2oJ5ekAZOxr7HaN6QFQSD5Z1o3pAL+wGUSarekD+U/boVat6QK8y0z5/q3pAeNyCqgy2ekD+7EogGsZ6QOZfXXzU03pANvjbdmThekCsuGiF2uN6QORq//Q75HpAbqSTsnjkekB2E26bNO56QKi8TIAX8XpABr7xbGHxekAaSg0U5wN7QEzcCk18BHtAGR13cisOe0DECh82ihR7QMUUDx9NFXtA+KGpGVole0DYTTNjwjN7QAiwCgBiPHtAKMTT3WlEe0AqrFkkckx7QKDw+HQNXHtAkBM8XhJke0COEXxUEHR7QHJfVSkglXtAxDwvYvS+e0AVJA3cEtB7QHpg8CnA0XtA9crqwQDke0BMjILGJuR7QBp0KtqW8XtAAlcfT4z1e0CyhVgmKPt7QBvjIVjaAXxAvvDw6/gBfECmU9ivZgR8QOgjCTGaBXxAZWw9/IQRfECUvPqd0hF8QA1cF0vNQXxALFOKqHZEfECQFrHVUUh8QPKnZlysTXxA3iVheU9YfEAyARaVA3N8QEgjsfBoe3xAiwDwQ3CDfEBcZL1QYIt8QHbXfjJzjHxARxjcycONfECKfT2/HZN8QDpk2rWAlHxAeLDF6GWYfECMQEqtWJl8QH6+4/eznnxAqVQujwykfEC88mGYwbJ8QP8Wl7F7tHxA6Ep5PtHDfEAUAqQJwdJ8QJLShyb323xAmHoK9FfifECif3weD+N8QFznc9j743xAfmTQthzyfEA21jXSVPJ8QJ8iwFwBAn1A5LHhq0sCfUA6OQlZRRJ9QBDRlQexG31AQcepXT8ifUCMjY0ctSN9QCIuyfWcMX1AbkW5eio1fUANcLFz+Tt9QLSkbPd5dH1ADD5GcYF8fUAvPdwChYR9QFb4iqaWjX1AMUF+w+ySfUAumDWK58R9QPmXQo731H1AZeY6HY31fUCejFqjp/t9QO4mjPU1AH5ARGe0pBImfkAVpSwIxil+QAj9jvkhLH5ArGKWvik0fkCmzyHdRT9+QA8kbk5KQ35AVpWSC6VEfkBMhqQ/jlV+QERXW2zXbn5AHdU4VLh7fkDwI26KXoN+QHpRYYKhg35ALiVEI06EfkCqf41Fe5N+QHv/5Yhtl35AfVyldlWffkDq+pHZHbJ+QEbFQhBis35AVyKj17y0fkCZvk6qort+QGaOl5qnv35AarITuKjDfkAY/IMe0sR+QB5s5TxzyH5A+iGv8MzNfkDikIoFStN+QPoxEvDg1H5Ahp2kk13zfkAku7jsTPR+QF5UcEKUA39AYAyUpaELf0CSdFuNQhN/QNJGpC2mE39A2HA/3aobf0AunUdJdx9/QKLjLPCFI39A1tI9jEgpf0BloAQ+XEN/QMriG/f3Tn9A4OKyKmhTf0D8yRkhb1d/QJlXFGSIWH9AXDRJ4y1vf0CmLd0Gt3F/QIt7LLajg39Ay+IR/EqPf0CPCUhXYpF/QPkhAx5Rk39AMP3s6lKXf0C+2hJLXZt/QEJ4KzBeoX9A2feqwUGjf0CscElHfKR/QPwCA3QQpX9ANHzk1FSxf0B4hegD/b5/QDkHl8I1739ARgPZ+KDzf0AoKhwVkfR/QHyzl/nq+X9Aevnn5IgBgEA1Ai2M5QGAQPgOjvQ0BIBAFLXEsYgJgEA4Sf8B7AmAQB8+EeczDIBAssyOgOERgEDtPB+c/RKAQLCZhAFpIoBAo4DmdOQmgEAOvYfvjSmAQPZwQWo+LIBAVCfQVes3gEBE56GoqEKAQBSr9KX1SIBAXK91pOZQgED8BJApFFGAQAKCeGXoWIBAqvJOLQ5ZgEBAvXApDGGAQCS1K7zAYYBAAlPSkuxlgEA6sKNZomeAQPXydEVOaoBAeY+ZJftsgEAa5Ers8G2AQIQ5zjsnb4BA2kSND/ZxgEC0aYs/MHWAQNYAx0L4dYBAIrwivBl4gEDgAW5vJ3+AQMBfYHoFhIBABrTzJB2KgEDGfJ/1Ho+AQGCsq9B1kIBAUu+HJR6XgEDAGOqMJ5mAQPgAPZg6oIBASGt4YgikgECpEu4966aAQFa1hXv4poBARHuJhIapgEAvNu5tTKuAQOeneOMTr4BA5jHgCuWxgEAeE0AHTbOAQNjAT+6wtYBAikV4DQe6gEBCdRU9lLqAQC671K4PvIBA8iSzXrS8gEAwHY3WNr6AQLqyReruvoBAdJ8tb6q/gEAsXK7TZcCAQJMpPbZSwYBAFsHJsXfBgEBaRKdvn8KAQEapfAWzx4BACosFhG/IgEBKPcR9KsmAQFb6GYJTyYBAyEy5Q6bKgECKHmT2I8uAQORgABQj0YBAXZZaPivRgEB+FlDBTNGAQOK26Ckh2IBAjgYN/GPYgEDWmH8PStmAQGZoJdq/3oBAgLYqtEThgEBC0p5RbuGAQBSc59YY5IBArMwrGsPmgECuO5VU9uiAQAB8KdJJ74BAIvy55z3zgEBEE5KGaPqAQGqR0II//4BAMP1R2D8HgUDYhsOw5wmBQLTFLmQ9D4FAyEIvWU0WgUAbzq594RmBQKYgWm00H4FAHhwZ7+0hgUDWy2IRNSeBQGhpm2AlKYFA5KI07/QugUB+WkcwMC+BQNyO/8u8MYFAeb14bCk/gUAQHz+UWkeBQEzm9tsISoFAGDZz8LVMgUCNy3cp5lmBQG4QON/qXYFAAKI1OIdsgUACm+6ZwnSBQL7CdTgHjYFAIMGcMFWPgUC2yaYgsY+BQIBvRUzwkYFABsdtaGOSgUB+fFyZbZOBQHDXAiZVl4FAHDxUPp2cgUCou+5DSJ+BQL/tqkHnoYFANZcYdxWngUCxEeNAbKiBQBFywfDuqYFAlf+c/dKqgUCMtw57Sq+BQKRfnn9Lt4FAYMXKZvnRgUCgBdFiftOBQGyRfqCI1YFApSVg6fvVgUDCA7tgANqBQGPUjDj23YFAeNY2IQbegUAU++A4+uGBQCY1dbW08oFA9IO6Ymv4gUBc4W5B7PmBQJofXQkf+oFARVYPnu/9gUADnBeX9AGCQL93BCbtBYJA6APOBeUGgkCIddoE8AaCQDDfvyACCYJAKCmDY9gYgkCcsMSZ1iCCQLflX7rRKIJA9K/UIKUwgkCuKCVA6TmCQECHAORDOoJAnpm+v187gkCukh9ICz6CQMcDVMPsQYJA6AsUcQ1CgkDCnCU/1UKCQCSlytyfQ4JAppz4k3JEgkDgZATkx0mCQDYzjjvPToJATvdml9ZagkCgQ3/0oVuCQMezPhlvXIJAOaPnl8ldgkCg1692zWGCQCjdPTA0YoJA58p0MTlmgkAUU8rJO2qCQKt5q9rYcoJAMmVpy61zgkDMElq+yn6CQCdqLZv/gYJAmNjicUOJgkD+ch/2LI+CQDq+9yOIkIJAeK/J/0ORgkAqAsQYJJKCQF3JgpTSkoJAsGCziTyZgkChfpCDDqGCQCY8esA7oYJAJmXJs7elgkB+mzRmDqmCQB4G0IIyqYJAMp/XrGKqgkB+B3h3BrGCQJiKqdXsxYJAWibjDvDJgkCuZCcp882CQGYzltXn0YJAFFyJYfrRgkBCkGho6tWCQOA4peZ+2oJAMogKzYLegkBQzuCL/emCQGeKoXio7YJAlj71jvT1gkDVZoj5r/mCQP6gIJX5+YJAns1meeEBg0DCHSTM5AWDQMiul7XaCYNAlA9ewd0Ng0DqVcaYeRGDQDQe8gUNEoNAKgkrt3kZg0AvzVV5TCCDQJdbGMtyIYNAGnJ9X4ohg0AhDePscimDQNzHM2NrMYNA2iX7IttBg0CHH9DclEqDQBZoZ1eXToNAPhx/YvBxg0CSin0d6XKDQGa9bEj3dYNAY0zE4cWBg0A5gHdN5IGDQFY9+WxJg4NA8RqiulKpg0AENnnxIcWDQEqjeB3Lx4NAWN5I5HfKg0BDM1Cay9yDQAoEws1434NAWt/SKZX4g0Be9OtxgwGEQFYvEG+LCYRAlUVWonoRhED4BH4dgBmEQOpQtDDkKYRABAJVm6w1hECfyw4J2T2EQDrBi/P/aIRA1D9rND9qhEDAT/nlAGuEQGCRzU79cIRAthu/C7h1hEBeirY5yneEQGROmfb2eIRAAimqhL95hED8oVxdanqEQIADJFsWfYRAMb6ld8J/hEB6wXccb4KEQBozaNoahYRAmHGFxMiHhECmfh6qIYmEQN9RIKl3ioRA79f/VymdhECWU6Gr1Z+EQOxc6jZxooRAmoLOFB6lhECyhidEy6eEQLmQ0OobrYRArk2/5RHFhECqdMayvceEQICr9zBqyoRANCiAWRfNhEATQNiXxM+EQJZz5QFq2YRAWAIBK2rhhEAUePoC0ueEQARCBH1i6YRA0lsW8CzqhEANc5ysbOqEQLo1cdWC6oRA0d0V6hvthEBgfiY8x++EQFpI/o418YRApm+BEGTxhEC8Ts/GKfKEQJLdzmXa94RABM+GWDX5hEBgWavtCxaFQNoyZlQNGoVAextKWl0uhUDg7dxlYTKFQLA3Uk1jNoVAzh2J5ONNhUAuI2+U51GFQFAsrEfrVYVAYWjfmjlWhUB25i2T5VmFQMTWJZ+gYYVAP+EgqLxihUB2sBR9oGmFQEiS9n+ZcYVA1hGrSrNzhUD6hY/Ml3mFQMAm+KL6wYVA0idf0SHihUDmxWtHvOSFQDYfnB9p6YVAAyGOFlb6hUBIWAGY/iyGQIXjY3sluYZAsU4q4SjBhkCkoUMv0cSGQKFvftXSxoZAobJqzNPIhkAGi9pVRsqGQACF2mTVyoZAB40oDtfMhkCAX6MgSc6GQAIlq1rXzoZAQst+RdbQhkCBmEBP0hKHQOTVG9yxHodAJmrjiJEph0AL/OGwkTGHQA/G8M6LOYdAoYz3UohBh0C/UIGQcnCHQG+3S7THsYdAB95Oi8i5h0CAiblHv8GHQGlT+rO/yYdA1SJXBotHiEDSwYNEznKIQN0skAZFfohA9nuY+0eCiEAXO81dToaIQErc/nfswohA + KBZXds7jZUBImCMySWRuQCQq7ux8Q3ZA9X42GSyTdkB1KvyLorN8QERHZL8XYoBAOkTsb33igUBtR+uOKpqDQJ5xtowJ+4RA0HS1q7YyiECeoKS2tYOIQNCjo9Viu4tAAs5u00EcjUD9qUh7xOOOQLN9HPhm2pBAsGsJTCj+kEDFgEpNThqSQDOVEw29npJAF6vmFPMilEB2AjLCdyaUQFoYBcqtqpVAyCzOiRwvlkDeQQ+LQkuXQNov/N4Db5dAkFh0mYjXmECMRmHtSbuZQKfbRmy5a5pAPl3G+48HnEAn8z2BDzCcQL50vRDmy51A2Qmjj1V8nkBwiyIfLFifQPdEs3svDKBAeNEMGkGOoEDqhmXoT1KhQIKR7s1FXKFAQh1q2HA+okBm5SaEeMaiQGcVU6eGQKNA - + - 7jmhRA7fQUQBCgNGHoy8RCT1k0Wq+oNElmY/RclTs0R2IHRErhIKRQpeCEcdkodErZOLRMCevUTJTQBF7eipRPIDmkXGm6tFHD/zRIsal0X3B7dEhiaGRAmmAEV72AJF46rARMYzjERPFU9F+EU0R9JyskQyr5FGjkG6RfmFDUW8oVVFoAxtRHXKzkQWN8NGRELMRBlWCkW9E41EiZS9REfNsEXMgspEd2n3RMW5mUQYqKZEERG3RJbdrkS+1MNEdgbNRImFR0XUSMlEkGbBRO7HpEUYWdpEBPguRiLf9kRQbmNEvmOkRXKjZ0Qr/KJELQKpRC1/r0SMpxBFqqkFR4kv80Qt57dEv63hRalfY0Z0QuxECFm/ROfK/US6pA5Fj2tQRbeRd0QwTf1G/e0JRaxoqkVu4zVFdFtpRATHZUW9DFhHeK2bRJALhEQhNq9EnYFpRmPe+EWW1nlEvc38RV8efETgga9EEoCTRbwpRUWn/gBFo9OIRLGRnUSBzGtE+p5ERQvBM0UKodtEAILpRShNC0UMQH9E5W8/Rfzjs0R+Z9tE1Z+hRYYm/0UaIehEJKLDRCF0sESndt1EJf3+RP9uD0WH7nZEijWIRq/eC0UksIdEGgvBRBYChEXgkphEJRPWRLe3WEU2ooxEJxvMRLN5dUScU4VEoChkRVQg8URt5K1EeqTTRG5sjES0mKBE8dN2RJpJZ0Rw8ldE/7OYRU5Jl0T1u49E1skXRqhci0USosVFKiiORTFHqUSvO6FEcDvhROI4x0Q8S5REG2fWRb5JV0eYWL5Er/BrRcvzCEbPKvFEaiOXRL3UA0VRuH1Fv8fVRUrug0SesQVIwOWpRIKEikT7sVZEcj//RDqDIEYwZ79E6MepRkL+80RlaIZETyH2RZ3H/ETCZZFGnk7TROEXn0ToSJNEPYV/RFWfDEUfzMlEGVd3RIa8LUUp1MhEX9moRDewfET8OghFRLEcRfannkQIIspEkJlWROE5vkVIPX5EIJ+tROoqr0RBGrlEYwT9RY1NoURKl/ZEOUqGRO/HEEVR7qBEa9jNRPjK9EV5DQtFOhs/RQICnkRdr19E0CbSRBIvE0XUEnxE7T0IRTfPAEUMyRxFWUvoRBOkwkbkLuVE2W1HRW8+GkZOEwRF3pQPRqRVoUXtowRF3V/WRIRf5ERoV4tEBVUGRRmBcUTq66tEAsC/REQIpkQ58L9EXZSBRE7+DkWrXJ1EpUmrREIfp0bErxJGODPDRE54XkYIbetE5wfLRMtSjkRRlp1EBaWGRPYcgkVGEwhGwgkPRZgjckWWUrtGMMlZRbOGYESS5/pE9B+yRftgE0XGaHpF3frhRKKdqUTmFTJGWz6lRBc5dETWkqREs/amRMrTFEVaGiBFSljSRNEeaUQnzoREAL95RG/H/USnJYxEAZ59RVOM6kRSB0dFPXvDRUGYj0SOoYREGSoqRRgIiUTt379Em6WdRHAJF0Uu4PZE8hqhRuR5oURyfJBFD6lIRjWSo0X/B5xE5cgSRUN00UQCPf9Hy/WVRq0qYUZbosxG4cvBRbeuTkbwgMJEGeTlRGN70URUaSZFJ+02RfYP4EVdAI1EmfArRbLkgESpj6dE3BnRRIeZjURyvWlEWeqORGazfESRkspEpXarRKh0N0UptGhHULsFR2SqxUXojdBFfuozRW9uk0Sy8YlEcsuZRQs1vkQnOgtF03vbRL/9vEQ4mYlFbDpuRpRIpkVn9qtEawmfRLmahkQFrgxFuE8rRT3eYUUBLspEUCi4RMM4+kST01lJ1k4eRlwPGUXTM0xFuo9gRQEsCUUQmaxE3KBBRRFHYUS5Y9JE95HiRDSLWUikUDdHg0izRuPRMkVcBbdE3HwWRaL1sEaIs69EfUOlRMsukURxrBlFGivbRAwWgkTkexlFr8MMRZ6UiUWt0PRFJT0qRXdoDkWT/fhEfuxtRJ83gEXxaPVGctAnRgPz6kRIrqtERTR/RBKH70Rn91ZELYO2RcoGqUQb3oxEl3dCR5A/N0aI/mdEenwERb6CF0WkH5lFkmhoRKpGi0QQS+tFczSTRKVug0Sk5bVEL1ZrRA/dO0WHG9BEsziVRI8IDkV7/wpFtS3oR9IMNEX8vOBEa6vTRsVZY0U8RhRGXiqeRecOdUTsZYxERnSFRGsCG0bgK5tFJl8yRWSdn0WtFqREwbfVRVtDI0X/nWhE6j7fRFv8Z0QWSLFE8LaRRIhJ1USfUtlEuEatRL1oIkZ5zJhGQGumRCADc0UHFExGtKVIRayr00QtGZxG+4LnRSMg30S6UpdEzR7ARHptkUSIvSRFgv3bRFj2q0RyRj9FRxx7RAhXeUW7XaBFeYKwRiaz80T/XTNGds/aRNRuPEUjeMpF4wicRGRJlUXh6thFwJSGROqh+ERP1ItEzI7DRE0AnkS+KUZGSp10RUJor0RZvnNE9EEWRhgjVkWkKp1EAW2RRFOffUWa58FEjyetRAKrA0VgwVJF8/vFRL04dURA6v9EwOTvR2ElSEUw/IpEDDEBRcSs50a66BlFnpzdRoQ3okWYsppF2MY4RVQxzERv+qdEnc+TROngtkTOLFRGIFHcRax4+kTGLVtFjMH1RGo6gkadGiRFd3AKRSFxi0TjxV5FRO93RFx6hEQsCthFW6KORT2Qf0TQA8BEA3jERJ4np0QFNIZExQ3PRObMf0SoG99EPLKJRJP4pESTqnhEV12WRI/26UTPVnVEHhnoRA3ZK0XqMEJFB7VkRYB7j0Uq8wxFwucHReCHjUQ4katEsXaORPyaiUTUti5F9jJyRNrVIUXUM7lFqCMJRWBAp0T2X39EwF9zRNhZhkR6pIFEr4WfRI9Mn0RfzHJEj8WcRHpTiUVwXLdETcscRRDmIUYJbEJFOWQUReF7wkRjwDZFHvchRSmegkRjiL9EXd8RRROLhUSkFehEHSOcRAnOVETRDZpE08YKRbLU80bMmX1ENDnsRIWcsUXk76hEr/CHRO5WikQDM8pFfTwRRX9nwEQG4Y5EYGKTRJZAHUVFewhFAkNURTP0Skan4L5EA4GFRSvioUT2PXpErwXHRCk1VkWz1JZF2aD8RHLYWkWiTRNFrwyvRHzchkSyf4JE1xCGROaTvESs/o9EaKrcROdKCUbwSIdE6oa+RAij+kSWRFhE5+ymRLrMkETjQY1Ech4ORS7qkkT6BlFFDr4NRdvZc0TGIKZETLCaRCKXlERn9KhEbrGARLQLCkWsnIVEJVF6RJs+sUSG8ZFIv5HMRIvWOEXPlopE96QJRev9n0S9sflH80TKROAVikSeBslEok7BRKBTnkcvDJBEPthpRJ7IgUYdZypFtVq4RWJS6UTL83dEDjucRGRwmkSv/r1EoLP9RDEkqEQkJkpGlkBMRfG+hEQ2OWRFeoq/RN9iqETCdsBGoT+VRLJ1s0UL93NEqrOURMbzGEUWZiNF+L9kRT1J1kV77z5F6u7/RJHIIUX5DoJEeKSVRFd9lET29URFiRfjRZP4ykSQun5ERCnERAIGp0S/ZL1EO/TBRQr1AEVa8RRFwI18RJXTX0VuBalEqeeDRLmZCkbuYQ1F3P6CSEy0oUT40HxEqCIaSNkEFUctDvRFa0W4RZaKC0UkdpREf7+GRDpQnUYYHQdFjRQnRj0koEVxTLlEI7RzRHGtaUR/OptEHpc7RvVmkUWtaBFFYVi7RBBCdUSh17JEQXp1RDkb6kVVAnFElGCCRZM7t0QvWdBEoUvARPeWr0Su95REN499RPu9yETgm7JEK70QRXybs0SVCOtFZfo0RSpqwkSn0WdEeVWPRNkag0S5HYFEnADbR5OUiERzjtJESPw+RxSlxUQZdpBEhGfTRk/E0UXFCfZF+3KBRI1xDEVekk1Fw7FmRBYX4URalbdHocY7R1bbO0YDXU5FcEwSRVmbsURACBxGEM9xRXBdU0Rd8YREEJE2RZlArEQu0L5EGeE+R7A7wUbLALVFo51aRYDJ/UcsTpNEqq5TR16Y0kTytQRHzX1FRdSDA0ZAOVtF9InHRPonLkUQHuJEb0fXRPxds0RrTJdEORj0RKSnKEULNthEupdqRCJvcUWbbyNF/UbFRD2fx0SZBQRFGNXQRLN5bkcISkVGwCP0RcEgo0TKC41EbHVxRKZphURRHsRFdwJGRN3vT0Tuag9Fza9KRS2wzUWmk+VEZm2xRMOFpkjb9aRI5ZA8SITQp0f5WapGt8GJRRaAHkV1qjVFDZTjRHh+N0Xyi0BFkRN0RW1MSEVnpFdE7fsRRcYhWUUNkGJE8SphRR6xNkXcAA9HQ9B6Rmc8MkWMvBdGiTRQRe9klkTppxRFJ46IRVC0B0WJLqVFHN51RXJdskSi3pREC//kROYEvEQ3X8BEN1xuRZekXEXkwb9Eg6GQRgdECUbsNXNFkOySRGfJDUX85hZHa0ucRPMUjkagkghGvXq9RDoZe0X0ElpERNOKRBiXjET/0ChFlfzkRNIPdUR8M79EWQ2oRKOTQ0ddcn9HyM1eRwSh4UTDiOxGgdxGRme20kSAvKtF3gaZRFCaMkVY6pdE2VkqRuZowEUo4IVFHiIURRQZVkSf0CdGZfCBRcW5UEVXkRJFZXlkRHn1A0U8CxBGmzPjRVRfEkUPFcpE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - amLaWnvAckDoWdlACsFyQAz/bt5uwXJA1iEpgIvBckDQ5oaKysFyQNrBZC5RwnJAhGCw76XCckAqt+Is48JyQK0Xn5k7w3JAxJzU4cTEckDmkJLlWsVyQOLPCLcP0nJA1iy/TkPSckBDe9c7dtNyQF7RaknP33JA/N0+6bbgckCIhOdbT+FyQF2XRD5Q4nJAs5jtYZHickDy8nsUJeNyQAQAfVTI8XJAqL3OAxHzckCOqhOst/NyQPQhoRyj9HJAV8JCXMD/ckBwV72PYgBzQPRuD0f2AHNATBHTGY0Bc0Dc5NQtPAJzQNDQyhDPAnNAgkiXSWYDc0A+xryL+gNzQMae/8kiBXNAxmhedpIRc0DhyQ3LvBJzQGRZloMFFHNA2rId5UwUc0AIEJgseR9zQLK0LF+kIHNARpTs8zghc0D6Q2+6DyNzQNjjpUwEJHNA9i3aqTkkc0CU+ClEzyRzQH4hIf9XMXNA8hoa0wMzc0DClMQq1DNzQBATsec0NHNArsz7etw0c0Bndhu9uj9zQJos6VXkQHNAqutiQnlBc0B2QT6qvEJzQIg7jqp6RHNAnCtTGJlRc0AXyaRMEFJzQM5PvndBU3NAjOTVMqNTc0BmWxkUhlRzQElR9tGJYHNA8LO4SB9ic0Cmbae1OGNzQJJx0S7QY3NAyMg6VCttc0B/oBYA2XFzQEaTaBdTcnNANrwrzWpyc0D/TVP8hHJzQBOeuZ5Oc3NATg9qrbV0c0DipmTnS3VzQLS3KyzRd3NA8rWNhuB3c0DR2ucAeYBzQHZsVi6kgHNA3hxxNA6Bc0CoPu1TXYJzQHo8ZI6ognNAAIMLkgGDc0CCoSUfhpBzQKhOFARNknNAdEqhWdWSc0B3TO5IzpNzQEgeuHtilHNAiEeKdPeUc0BKgqdguKBzQMoRmO9LoXNABMFj7Fqic0C8rabzwqJzQMcf+PTno3NAbVYtjQWlc0BQGjO2yLBzQE9jFFQ2sXNA9tLznnuyc0Dg/l+Bt7NzQFbyA4gMtHNANH3FOfjAc0CY/Gbez8JzQKAJjPclw3NAbpYwXdjRc0DIk5pJ99NzQNiKjk7i1HNAeNqcw6Lgc0AZgLJEOOFzQGbFAA5j4XNAylrvJnzic0C/1PmZEONzQAwKwauk43NA5a4xoDf0c0DMJpAQ0wB0QIAsITnkAHRA4CL0ABEBdEBQoP8meQF0QCgVdRWlAXRANEOeECICdECMVUQ+eBF0QMHJUb2KEXRA1RKinkwTdEDAJ7ERdxR0QLANwxxKIHRAwwcrNrghdEBi3nXdZSJ0QKvcErBXI3RAd7W17GMkdECstnKLuSR0QKjkOn9TMHRAaQz5MLsydEDkn8mm9jJ0QPgangsTM3RAIdI6ueA3dEBSfOe0Oj10QIAiQ2dVQHRADoxSqMdBdEDxBFxZpUJ0QIQ4sKR6Q3RAjf5bN2dPdEAJQP/f+VJ0QEyntiT4VHRAqKw32R9ddEBg460TuGB0QHABgR8JYnRA8m6abnxidEA6HqoExGd0QOhTs5UicHRAGqimUEFxdEBKIebdenJ0QNTo/M87c3RA6j8ArqF0dEBo/aEwN3V0QMKy+9f4gHRAjJ1Nok6BdEAOwx8XSoJ0QMJErrkmg3RAqwOjMruDdEDOERYJF5B0QBLkalBRk3RAxK7GB8aTdEB8nl+G7590QKJ8JKahoHRAP6ytCs+gdEDhdWyseqJ0QH4n0gq4onRAhqlcExCjdEBpr/0w/K90QG5dCw/GsHRA7/rE1W6ydEDt9d9i+7J0QIQ2OxnJt3RAbAnMHRa9dEByS3RwIr10QDDhZt7dv3RA+ZQDouHAdEBbV0ogfMF0QKiPjQDrwXRAp4FMdrvCdEB/EgM8fcN0QCQFJ7QjxHRAOyZmnHjEdECWSLPCt8R0QFkk97H7znRAexTku+zPdEBQ3kSP4dN0QKPSEivO1HRA1izRzbfhdEBkepuFj+N0QEIgNqmM83RAukYh5qUAdUBCTsCdzAB1QODkBbJiAXVAkJ+SplwCdUCGxQUX9AJ1QNXP/0SbA3VAsQZ0ctADdUAmnWpHmRB1QG6mrxMjFHVAfM2bGOQfdUD9LVzEUCJ1QEjcI5qdInVAqiUUd3ojdUBUmrTmqjJ1QJFxzk83NXVANLqVF8s1dUCWNEPuckB1QNyWynLnT3VAHm179n5QdUCASbK+glF1QPqanlJMVHVA4AxYtHdVdUBJWaljEWB1QCqwcNI3YXVAo6UDJvRhdUBoxF9MZmN1QGA1HMKCZXVAiCPuNHVydUDMvL0Uc3N1QNLgX/eMdHVAPKf1r3iBdUAlVl6frYF1QFBu7xemg3VA0O2ESDuTdUAwYHFmzZd1QN8X1UmSoHVAmTXsoyKhdUBG+3xLuKF1QAyYIjZIo3VAbPdH8qOodUC+oREtCLN1QFbgKcfNwHVAJXyNvmPBdUC+qBQ/98F1QOIrCNTK03VADvLoegzhdUC615dGB+J1QCwdPUE75XVACDzAuUztdUC9xPXJpvJ1QN1TLBs783VAy+FDyvH3dUAgw0KMAfh1QD76isYkAHZA5qkhikgCdkAYDoL50AN2QLPbfyRVEnZAG6jUd0oUdkBQxnnNCxZ2QMZFsrOkIHZAEZMhvYcidkBq3QakjyR2QPuLWyAiK3ZAAIJce0ordkDC1QtlHzF2QGnqvo4mM3ZABpy3808zdkAFHVBbnTR2QMRxDnsdQXZAhFaWE8dCdkBgnfIPekR2QLJFASkRUXZAIE7fKs1UdkCL2igCUWN2QGS9Y0vaZHZAhtcnX1dodkDUZp9qqHN2QPqhkqRngnZATmNGk5CDdkB+iSvG+YR2QOn6JZu8k3ZAlE73gOqddkC0IUo/D6F2QJUqnKq3sHZAZTHu8cGydkDw6cRSDbR2QNzgydXAwHZAHq72b03BdkA5IHN0zs52QCQ/qKu90HZAChPX0vPhdkC8oz+40eJ2QNQRQgSS83ZAm0sliDUCd0ABaJAnARJ3QMoM09IOIndAyrs42egnd0ByhT7RQi13QKIBiS+LMndAnkegG50yd0DAabC6ozN3QCun20MNNXdAxYPG1pxBd0AyGhotkUN3QL1B7yAbRXdA3ZrAnktRd0DdoppGklF3QJGif2B4U3dA0Cc6QZ9Td0A4RvFHKlV3QALh9W58X3dAkjlP/o1hd0Dsj878oWF3QOYmDv85YndAOKejqqtjd0AEuqxdJ293QMCnBYaecndAxt/difd3d0CC0czgknt3QOQ3EFoqf3dAp8r2z3iCd0BwtDaEnIN3QGoPpmUIkndA5Vq3Y0yUd0BiPo4T+qB3QOSr4Cwyw3dAOpvw3U/yd0BwIHAwcPd3QJZTdFl7+HdADj5pWHX7d0BK+xvCRv13QGa589N5/3dAfIktRKACeEAegUIFMAN4QCLcBt9mA3hAGf08WJIDeECYXPan+gd4QIbZu5DGCHhACvq9rkENeECl980qnxJ4QDFQ0irlE3hA2DtJw20ieEDzqYvuOyN4QIES2vuKI3hAPQlrJEIoeEDa0TjFmC14QHkMmoy2MHhA/7/U++QyeEDgXchOC0J4QEhwc3URRHhANMm2jXpFeEASNCMay1F4QGea+d+UUnhAKNVrDIdVeEAcsVgpSF14QGDNDxb7YHhAx54rhLdheEB2Z/XE6W94QNpARLozdHhASuwdpYt0eEDu46hTz3R4QDQzWAfmdHhA7vMubcV4eEAI080S9nt4QCTovMAefnhAOh5wlDmBeEAn0w3xpoF4QKw2j2T9g3hAZG2uBJqEeEDSWSlnT4h4QLioA6mojXhA7ncSwVCPeEDH240Jl5F4QLdJZ5AFk3hAsLlgwKeUeECsxWA9S5h4QMP0/UU6rXhAfHpfSje7eECyBm7hOr14QG57LL7LwHhAjHg+YPTBeECmPYcEPsN4QEpMRGpP03hA0KjMp7fUeEDiF8JU1dh4QJZzMPGV23hAvJO7zmnjeEC8Rtb3lON4QHLEz6jE5HhAxvrkBo/oeEDSyoczAvR4QMphQaaM9XhABpcpW3wDeUDaPJmwEAR5QDjCrJSaBXlAE5rjklUMeUBKZLb5uiN5QG0Wqx5RJHlAIBcmXbIoeUBVplAzDC55QEPXOklnM3lAaOACQLYzeUC6slV8wjh5QJwhlqyMQnlA2I2ccvhCeUAUePP8+kN5QOIPVUHkRXlAcgrscN9QeUBKo5FXzFR5QKVXEcdSY3lANGG/8kJzeUDqZ9+t94R5QNIsH5Fbk3lAvJw6GWObeUCyEJnUaKN5QIY0XmOfo3lA/DyAdWareUA1rsQxg6t5QPmGg8m/snlAGC+m40LUeUD2rt6Zy9V5QCCl5F5R5HlA+6pmzInreUB8WxUuPvB5QMiPKZAP9HlA5uu8VvwDekDgxlA8+gV6QKj0qML4C3pAHK/fYlITekDmay+vNiN6QCJqIKsoM3pATwETdww1ekAmpj/vMDd6QE7DKdkuO3pASplROhpFekCk3Cj+hVN6QLRy5LgoVXpA2TJ9tyJcekD5VPcRKmR6QEKCScEtbHpATEVsJDltekAg5cT+nHF6QJaeyRiMcnpAQKsqBR6jekAgQH+TdqN6QHBYdNkmq3pABQ/js1arekCyqJ3Wf6t6QL4+X0pes3pAbRKH8vizekCSNMgcDrZ6QHj03NItw3pAxAB2zRjGekDeuhqEQcx6QBqbdG0mznpAyFy81THjekDI/vg3Nu56QKAnAFDoA3tAYSP+L3wEe0C6M9DgKQ57QHZXAEHNE3tAp8EsVfQTe0ApLHJWiBR7QHhQFNRMFXtA/lt1N1sle0DM86gvYjx7QPJuO19rRHtAglIqSHJMe0DAXB2/YFJ7QK3vzOINXHtAFZQXXAl0e0DGP9o86pB7QCYl3xollXtAeVX/6jise0BvL1qTecZ7QAh2DNaa0XtAcIRWZq/Re0Acd0E2PeN7QAKtCSv/43tAeKYosibke0BsQ+5HjPV7QP5LOPKRAXxAAnwwJdoBfEClPmSe+AF8QPRvFGRlBHxAbJZNjJkFfEAIE044iRF8QNtI3rnPEXxAitSvnr4SfEBONlBhpxV8QG/Si1q5I3xAx+kTgs1BfEBeblMHUkh8QLwhS5CSTXxAvjPVcqRNfECcc3qs11F8QNx0q0TsUnxAHJjPToFTfEA6gOACDGJ8QFamcAMscXxA0+yAq/hzfECC1k3haHt8QBEZiBxxg3xAY3Eqs1+LfEA+xC+Td4x8QGhOYDvDjXxAar2J3RyTfEC876CmWZl8QEIuBcXAnXxAkhf4XpmefEBG1tJU+qR8QIZlknC/snxAh7ksuXi0fEDOwfqn0cN8QHbrnXCExHxAZNWlIfbbfEDVatkXWOJ8QN6Ofv4N43xAPnZFgqfkfECUF88zauh8QJx6hKYY8nxA9z3yBVXyfEAPIhdcAgJ9QEi0e5xLAn1Ad0UFaUUSfUBoiqW7rRt9QP9E8Zs8In1AakIPKrQjfUAyskBfnjF9QDM9kYT1O31AW23sOmpRfUC+vffa92t9QMpVBlp5dH1AvH0fRIN8fUC+O1mj5YB9QAptZE9nhH1ACH4JLIeEfUBC2bQ2lo19QCJ8RAjwkn1A3OuXfqikfUDGlpUrgal9QEc3Yestw31ATK+BXebEfUC8Y2lN89R9QIPY9drT4n1AvoXdQ5H1fUDWbmKvNAB+QGoZNhXHEX5AULObfzcffkDsDebAIix+QN2zVpxAL35AfrB1eSg0fkCcvWk3LTx+QH2bPaJJQ35ARmRmYKREfkCgok3Jy0h+QHxoSgjBS35ASP65a4pVfkD6EMi8anN+QG+d7+A0dH5AxNa0OrV7fkAxnpc8XoN+QMSpjgShg35A28ydD1eEfkCQeRwpFIZ+QDZqn2uji35Azl1VZeCQfkAt8lFyrqR+QOl9x+X1rn5A8k0wS567fkBIQBIQor9+QOvdRRXRxH5AJMFYd3TIfkBH+tFxzM1+QA4JGCVH035A8MfuNuDUfkB/QpaPgOt+QFH+lTeVA39A/XMwiZkLf0BOeQu1PxN/QP8/Y++mE39Ad96JLEobf0Dcyf1grht/QAsFSaVvV39AMvjMD4dmf0BMwPJMuHF/QLrOG1nsgH9AyEpH6TSCf0B+Tu/zIIx/QG66Jn9Gj39AXYB2P2ORf0CHf2wHUpN/QAARTeySk39AaT2FvlGXf0AGoDOPVZt/QCgt88xcoX9ALOHJbUCjf0Dgb70pEaV/QPIS1dD2rX9ApFCkEveuf0DMMmtOV7F/QNSOy/4dtX9AhuLp0vbgf0AcYaqXNe9/QJAp5z2b839AEcDURJH0f0BooAzAhwGAQNK1+oflAYBAxdbzILMCgEBYvxm1IgOAQGiCH6s0BIBA0dKdTdUFgEDKSgaB3QaAQGZyGdTrCYBA6u4DgOkRgEDydPqoaCKAQKPmQSjkJoBA1rMxIZEpgEBqH4I7biqAQOQw3wPZOIBAxfvooahCgEC0cwma8UiAQKqXpG5vT4BABKZFpOVQgEDnTU5vFFGAQP7jFaOoVYBAYOHbnupYgECU7BaQD1mAQLB+Bbs5WoBA8uIArMRhgEAYrYMU6mWAQKT2C3ChZ4BA/QVd3U5qgEC5A+hi/GyAQL3lCA/xbYBAp7wkrChvgECUObE19XGAQJ4bFqx4doBAaaql4u92gEC67shwHHiAQKwPotEej4BADjIvsh6XgEDmrRdG15mAQIbIV13DpIBApjrUpVilgEA7nQdRNqaAQNKA52+vp4BAPUwR3IepgEC6CQXM5amAQHhRcr7troBAHQBCrhOvgEBddX5AcLCAQEQJwgkTsYBAkCPLsYWxgEBWNlxDXrOAQChBZfrAtIBA/lr9cbC1gEDn0+NWsrmAQEuA1AIHuoBAGZGocAO8gEDkmkxWs7yAQMyiV/eqv4BAT1rtf1LBgEB2r0FvnsKAQFopRVx7xYBAIhnlPPbGgECEkRcUBMiAQKSqz0NlyIBAGiAuJR7JgEAEt7qHU8mAQF3HXjGFyYBALt7QZQnPgEDfIgInMs+AQAQeUcSpz4BAEk+dj0zRgEC6XbHRYNGAQKLRyBlK2YBA8koYHxLcgECSl/IPwN6AQOxQsWlE4YBAiO80YG3hgEAs7uqVOOOAQIYhfotH44BAVn4BOxjkgEB8lR/iZeiAQPDQDq736IBAaHecZkrvgEDPNqwFPvOAQFoa1gZn+oBAfOEAeT//gEC4aDJ3QAeBQBhyBMY9D4FAD9BFTj4XgUCJvOJ1NB+BQCjYjIA0J4FAiicC57YngUBcHUN74yyBQEDY/QcwL4FAdmy2MLcvgUAAQGwPvzGBQPnFT5IoP4FA5MwbcJVBgUDknF0ElUKBQH5vSxBbR4FAULrU6gZKgUAvFX6PtkyBQBDfx8dsUYFA7o97aOddgUDk/QVASm6BQN+qp0+mcoFAOKAMPsJ0gUDI1HfPcHeBQAnWUCYceoFA7qor/fWBgUB39NOaVYKBQL89KVXPhIFAfsz9olmKgUCONdgWBo2BQG/t2/tVj4FAhp6NC8ePgUB03alI8pGBQMh/hlhhkoFAKGToAIGTgUAmfYuOVZeBQArAu5mcnIFAHNFsuEafgUC23x01bJ+BQDRaQ/6Zn4FAHJ9ePOWhgUC4BCdF+KGBQKYSCs5tqIFAXrtDo0qvgUDmjxn3S7eBQHAJ/xU6vIFAVZcJVvnRgUDamg3mfdOBQF9hA/j71YFAxMT6T//ZgUCqmN37jduBQOo66U3z3YFAoiZM2wbegUCEXjS8+eGBQOY2GMq19oFAdiZzSez5gUAkULMC8P2BQIVCJXQk/oFA2/gc6ZYAgkAEzI5K9wGCQPqd3t/XGIJA7vxbytYggkBSDgTmQCGCQCH1RW3QKIJAT+u3n3EsgkBOLoDFojCCQN50HxbfMoJAtnprspY3gkAkClXYPzmCQI60j/QKPoJAZhnhoG5AgkAoJy8bDkKCQBTiwqhwRIJAm4DwARRGgkBAaBa1yUmCQBo0qbB2TIJACMzB0slNgkAoFlxWC06CQCU+fupUVoJADFFMjS1ZgkBA3VXoE1qCQPQ6p/C/WoJA1Yon2KNbgkAhBkaPNl2CQLW3FmjJXYJAhqg/09FegkCEc8tmy2GCQAmhU0AzYoJAKfapuzdmgkBSWX8C02aCQL7fKa+tZ4JA3jxHaQlqgkDm3kCbB2uCQGc5vtVAc4JALn4suzV1gkDi8PPO0naCQLDFEAjmgYJADePzKQyCgkCUBhRtQ4mCQHBFafmIkIJA2ss/V0SRgkAEiaz425GCQHDDnHwVmYJAsJuzlDyZgkDfjsPDVJmCQBkDSDYPoYJAmMxCgTqhgkCIdv+HDKmCQCbitEUzqYJAuOb+8wexgkAt59mITL2CQPAxF6vsxYJAOvxrou/JgkB8Rjmf9sqCQGCTLmP0zYJAombPpenRgkDYqgMA7tWCQFTRG8N+2oJACb/xPYLegkACwusGieKCQJbB8hnz9YJAAhefMK75gkC8HG6/+fmCQBjJZlLhAYNACtfB1OQFg0C2fyYZewaDQO41/SHaCYNAVd7nkOwJg0Cc8xNj3g2DQFJxBo55EYNA3I1FG3oZg0Dccsu2ciGDQGJ4BcDxIoNAlmN9yHApg0CDpiRLazGDQAiX0C/bQYNAkCtni99Fg0DfZap7kkqDQHY5u7qXToNAfTsan5lSg0AdYO8783GDQO+dFCDpcoNAsHQS0it6g0Def50uxYGDQEQ59sfkgYNAKpslH8iFg0AEbcqbLIqDQMIHfvhGmYNAhqpmuoWxg0AHGsCihbmDQBiuq0rBwYNAIy60QB7Fg0DNdJPSzMeDQADBgMp4yoNAYGNWxsvcg0D+oEZmd9+DQIpS4ZeDAYRAYS+AVosJhEBuhQxvKwuEQJ6LujB7EYRAfFr1b4IZhED0tfoRjUKEQD4nYHusR4RAhtQvPU5ihEC4J0MR/2iEQNgYvvH/cIRASgtGaztyhEDRB4s7uHWEQOONVl/Jd4RA7TAC0/Z4hEAEJrqjvnmEQLVcUAhqeoRAqLWiHJ16hECPY9ziynyEQGgXx2wWfYRArBDzJnh9hECsQKlJjX+EQFKjZIvCf4RAJn7lCm+ChEC29j5dHIWEQAthEjLJh4RAe5mhihuJhEAsmzHpd4qEQLSeMoDPi4RArJnbsVaRhEBaJTK+YpiEQCXjv4IonYRAVKANwXCihEBmx8FFH6WEQIp0QIG8poRAuP2s3sqnhEDBoUXwZ6qEQDQ+q9mBqoRAPKA+WbuvhED4PQogEsWEQIKm6227x4RASGKG52rKhEAcDIjbF82EQKrRXyTGz4RAlM/UknLShECXmIUSatmEQPEHoWpq4YRA8k9QO8/nhEA8XfLbYumEQBavcMsr6oRA1s380GzqhED1RWtzhuqEQD4yvhIc7YRAb60I1y/uhEDIsm40yO+EQLsTcxA18YRAeBKH2mDxhED20EqwLvKEQDqHJKE2+YRAqmOiA4v6hEDbI8iOLwGFQFzE4/0MFoVAGN9K5xAahUCmJegkXC6FQDZda6hfMoVAKZcBsuNNhUDaGra951GFQEoM35HrVYVA1D4otuJZhUDwaB0xoGGFQGX8jIegaYVAnvIpPplxhUDyg1L6tHOFQPqJDgKXeYVAfppelpCBhUBGfj7fV4SFQEROs+Kaj4VABH+Q4YWyhUAIWHMuH96FQMPJBXe64IVARSE+wPbihUBBBzD4aOmFQJrD78Jy8YVAwlg0LFkIhkCMyk70JrmGQEKECGvRxIZAAEfPG9PGhkDuP2Ib1MiGQGtBcCJJyoZAl9V4uNTKhkDcw7LH1syGQFSsW8NHzoZAqkjbldnOhkBWtzjA1tCGQD5+g9yC7YZATg0GWNQSh0ABAVZ6tCKHQFM9ktyQKYdAVOy+0JExh0BchKTZiTmHQHiEgauJQYdAiqB+R8exh0CYcLOBx7mHQFk9YeG/wYdAnK4VNsLJh0CYwE/WP2uIQPouu7zQcohAaFqv+kN+iEDElseRR4KIQPST8gs8hohAskpad0uKiECSK/Jr6MKIQA== + KBZXds7jZUAYxSyCnORuQIkw7CrX8nJA34TwL29jd0D91awax/N6QGxWIR+TE3tAYpggqm+SgEA22n65dRKBQGLHDtQbG4RAmN1No8gqhUAp87TjhyOHQJgMPM10s4hA40WV2/8ji0ApEb1ltmuLQHRKFnRB3I1A42OdXS5sj0C6PALPdrKQQNXHoTZNOpFAa77pQ6C+kkBV35hLo/6SQOvV4Fj2gpRAB/b9WemKlEBOCq1U/26VQGQf7lUli5ZA45JjkEdrl0DBSN5RYYuYQJWpyJ6N95hA - + - 8qaIRGF6cEQGHd5FL+1XRFNjaUS70pVETdo7RcNBukTyxyVF4nXrRDOrtUS595RE1yIPR/SFrUQCyQBFF+nHRLU4gUT/uI5FFxuKRYsRqEQ9wjZFqbZaROmYzUTP56FEgJnfRGZymkS5e5NEdtqGRGu7sUSQZilFdfM/RNe2D0cY72tEZK1aRLbtWUYmtLVFPx+QRPD02kT9cAJFXP27RilCfETwjWFErV3JRAYiikXDfAJFdXolRNVlY0T+2gVFA6CBRNyFrkRWVrVEpG6PRXPFdkRbWxJGUbQUReyTcUQUK71Erp+gRZ/E1EQKr6VE0CvlRE2gKkUu55BEnFkIR4R0rUQuAstEizx3RXDEdUauoHJFU6naRPVG/kSt7SVFWDsdRS9+3kboQ7tEmTB0RGqYsUVSq0NEGR0cRSa6P0UpYUVHrO5eREO9p0QdU/hElCFYRuDN6UXPBohElCHcRYcDsUTFSYdFoHwbRRxigETMVe1EI6aRRKWLUUX0mz5FEVrjRE4Px0Wbr75EOlkcRcRC9kSo/pNFxa+FRDDl6kXzXptEktQGRZYbjUTVGEFFZUi6RHZVdEShHrhE2jNFRDykb0blZspEYKd6RF2seEQjO4lEcdV4RYp9iUQ1xpNEL83vRBa+WUS6WktEEKufROnrmkQpv5VENAmMRIBCe0R4lwNFJiJxRSRArUTvGHNE5fLJRLk5Y0TJtplEW/KbRGuHWEUzwJBE4vYORk0hY0WrHrlFbE8uRRJ+gkSpk69FIoo+R7YAwkQpqANFmIKxRF+EjURwSx5F9BgDRpnptESgjMBEwyLgRTPYk0W4a0pExFiqRInmz0fYg3FEOp3LROGWbETso9VEYo5IRfDI/EXG0MFEDPuIRuHCsUTiv/BFZVMPRSrKMUXWgYJGe3d9RCTHjUQfvrNEFlaDRBNu90TR0mNEqlSERBAxo0QQP6FEcMtcRMwbrETGAc1EJKpZRQc5NEXZMrlFE/qqRMMQSkSl+fJExQUORoHqc0QS9XtEEMdMROG2VkQ4egVFy4+LRLxKC0X/TCJGCAxyRF6DekQ41GhEFo3vRHT9bkS5uU9EsTaLRCROfkToHfFEENbKREFmyUQOrBlF38n/REuRjEbRQFxEBa4ZRQks10Q6iRdGlV4QRU8bvUWdrlFF41CPRJdQkUTA5alEUfWYRPYrk0T4a55EtUmJRICfQkX69YNENvSdROyE8kSG+YtEwXOwRHtGykRBclxEnVODRja8+0WXDVZE4E6pRHqoCEXj/VZEFYE1Rn7ZxUQmTrBE+xaMRLJbwUQNOoZEiY1mRUjx1UWA5rxEpH2oRc8XwEamnVRFCciSRGK4xESiZ5BF/dEHRcL/hkX+nCxF4UQmRsFTiETKKANFvhHBRKYteURFAndEMWusRL+kZUT30XtEOmsIRTZ3bESzwYBEV3obRbzOh0UA5KhEZgWNROEOkkUx12lEC49URJrqgESYdb5Ezn7mRMZ4j0aeyBlFlsM6Rmcv50UkYuFEF2O2RIxfBEWdJetHoTScRg44VUbNicxGl017Rdx9YUakrrlEv8sARVXwAkXtRs1Ef377RAg8WUQ4NJtE38eaRA/QWEWFDpBFqbxsRe1PwURNpIFEA6HIRPmGgkSrWINEBAN0RDEQXUSJdlBEbhPVRI5WU0QG5KFEcapWRIC4YUcjGI5EIWUHR4PzgURYYJtEIbyGRA4+5EWy14REizsdRdFCgUTEh5pETmNcRWTI0USfNV9ED25KRRht1kTpSGRE2fexRIX5xkTf0JlFq/cpRi/3q0WeKB1FBLcwRVnmXUSznDBFcXdzRdG/c0T7sCVFguo+SV0pBkWq/x5FrPatRBE4ekXiX4ZE6nFsRB/zKEWOSoZEk+FBSC7lG0dCd69GiN9hROYndUWg2+RFzTSERr4GNkVaUAlFaeYFRfGnf0RDO7ZEryu9RCNdgEQ3dbJE11NARbznikRg6RtFzzAsRI9vfETubtZEngaKRC2Ln0WocdFFvW56RfJdsET0Tv5E2C1URILiDUWo4cNF0R3MRidZQEaSpi5FrljWRBqyiETssnFELB+NRAbw+ESg95NEBfpuROEskkX3ToVEqwSGRNwheUSuDh1HpyqDRpKyH0WY0bZEEIdCRJVHn0RPg3JFdJzQRUYvikQordhEVWZfRGgCaUT7QD1FdQfpRDsfW0Sto25EzFtDRTZVm0R6TXdF7AO/R3mej0SO+NFEIee7RsHuV0Q/XTVFOgj1RdCBZ0Wc6mNEi19hRFLPiEQ7s+pEevoFRg1lVEWPrFpFHYF+RcuwmkRXEfdEiqQPRTmPuEWAioJEDeKVRBVwGkW7Cj9EVMloRGEw+ESIJr9Fvq8/Rj9VlETbE4hEiQi+RI9hAEU4ABBGafwUReCYiEYryPNFKVVYRE7gWUTgXQ9FyrV6RP5WukQT1QdFIqKdRPbgrEQ8c0hEMQh5RHqQZER4OrVEAGWZRWjylEbT1wBF/WBJRhr7DUWj7DtF7VSbRTv5YURWZoxFY2B9RFzyg0QX7IdEduXKRX7SlURQ/ftEVkXhRI3rXET4naREadxARA8RVkS0u9pEEgVnRCscH0aVMGdFBQ0ORfLFEEUERglGOqOJRbUzu0SQRWhEmft9RN0agUSemrtE5DtXRWYS1URWz1pE92IeRXeA0EcB0wpFjY2kROvwGkXylsVE6c/bRpzFREWRRqtGF3mBRf8MQkXAF+tERr67RCPEt0QzK9VEERBiRP1Vb0QJZjFG6GBWRZJNc0QnWxxFsVYARedbT0X9nfJEUQ5eRJPnb0RtCLRE9/eIRtaFRkWgB4REID/oRFhIPUXuN19ElTm8RHqE8UWi0OREecJQRe8EX0TEmx5FAZ6PRDwqbETx2uZESd+DRMvamERqZqVEk6aURPFxgETIhRVFnjtlRMLqy0Q8vcNEtXlJRAglh0RvrYxEtbfHRIxfgUQzQaZFZ9E6RdLGtkSweu9EG0h/RMPXhkTL4dBE+ja/RC0paEVK8plFrB23RECDxUSe9JhEfB1QRMCBl0WyCKlE4r1gRI06RkTHqTdF6k8wRhe3bEXccWBEM28MRaP8PkWVJiVFUsi/RPa4EEXt+aZEU5RzRPgM6ET0BIJEUnFFRHmDtkTPbydF6nzMRNaELkXgoLRG8zJHRHpam0St/Q1F/p1iRBge80SeDE9FQKFQRKYMakWK76JELsYSRVM0iURyxE5Eh9A7RbGh8USTFVVEPOUYRY/ghUbQOVVEV/p0RKkExEV9DTJEUjWRRHQ+JkU0LQRGy5fhRdjdPUWlkIVF1gA7RUHYgUSAH21E1BtlRCWV+USUtC9GX4AkRR1ackSfaQhFKRJtRH/NU0XwbrlEmRX8ROgvgUQOlMNEUOFoRSdawkTeNHBE7L11RO5Ws0Tzi3tEz+L0RFSYukTDgJtEsPmqRLaQ0ESUU4lEnMSMSFo/cEUs0klEiTGKRAkwO0QUE49EtJArRfff6kdSJYVE78yhRJT/eUTrhj9EBE5/RxCvjEUstl5GFgmeRFPFZEV3aLhFRbwCRbZCaURbQk1Em29qRAHZekQX1NREe2IGReXjqESFs41EW18lRpYgckXndxlFh71HRLq+qUaOPZJFy7K1RPSET0S+it9EpBhVROZ4uUTI231FAziCRFYSiESRk69F2DiPRbYKBEUS22NEI95xRKgqNERtHHVEb54ERbIYIEVBsLNENCSJRHPEh0R7fWhELjicRNvGKkUVg/JFKs6jRAWim0QYNfNEaFd/RIXh1USJ4lNFOhoLRazdSERJ0k9EKlcHRfatF0Vfr7JEKTgNRq0ge0QQil5E/uhySIKTpkR2ogpIs7UhRy2iUUTwP6FF7GnEReWDPUV+AllEeOGgRkmpLkaGxOZEh01RRCKoL0WwiilGm5aHRUO0gURyFX1FxGycRIwEiUQ0sY9ECeZQRIGUZ0TgbRxGHFrMRCajoUUdL+xEqdPeRDYsl0S1B2FEotZ+RHI7nEQ/QrNEdLZGRO3yokSDElhEiwaQRJdGi0TRlgxFvA+DRJpsm0SkkbZFgB5cReLItUTjyVpEHjtURBtvgUSAFYNEYoFeREcnuEQe9npEYVNOREhj+EcTO7pECPZwR6GlT0SXQ09EetX9Rr8ROkXeMeBFd+EHRuKB4URW825FhFEKRbHncER0sLVHY/piR3MdikTanFxG70SQRYpukkTOAgpGptO/RTMusURwnjhF26GDRKq7uURlNEhHQhfWRrl/gkRUJcNFqxaERYeRTEX9vwdI4v18R4EVBkeoBIRED3IJRht5XUVOCtJELkKvRLRQakW/obhEC/LZRBP/DkV+ftxE+iBCRI7KskWDmZZEgwjvRINZbkQUg1ZElviARH9PfkSd8kZE2l9BRSeFQkVVqw5FN58sRY//aUXskkNHiIIRRg8UjkT3O4dF/h79RIPmbEQJgklErHNiRCVgvUUv2CRFj65iRIC/CEV6FqlFz9oBRXTOrEQpuaNI0klyROoiO0TNTJxI2Gd4RBRsWESyQzBIo+GhRxxej0YbkbdF9WHDRHUJVEVCHp1EQnVURJnDZESQFiFF7u+HRRPKLUVbD2pEEkSYRHTngkTCgI1EKxRURE0u7UTwojhFPUmmRBVN6kS4t+VEOuh1RApEKEc1T4xG58cLRRC5Qka2uQJF5mtORQ6YlEQUyslFBaK1RENSdUXECJFFa99vRT5hWUR1HA5FudecRPygkES02AtFEovKRFhiN0XKQexEA0mBRkV6K0YDATpFcPjdRH2fEEd5yoNGQ+EaRvHjEUU55TpFkbuARKbkwUSzdlRErct5RCJvp0TvF5ZEftJdRE2bOEWCHlxE8bprRK1OhES+MRJHByp5RztYbEc7m79ENOvgRrKogkaCta5EvzFFRdczmETskoZEyczRRLjlZkRBokJG4XPfRSFseEUVK51EJPkjRlpDg0XC3CdFlGz5RE0xo0QP36lE920KRrj+wkUNj79EBotwRKuK3UQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - dn031XjAckCKUxMzCcFyQFz8Ku9uwXJAAEe8+8XBckAc2jxUUcJyQLJxGMqlwnJAlcmKM+XCckBW32y5O8NyQArFGwylxHJAJiTF4cPEckC+9NUeWsVyQF7KFXMR0nJASjoSS0PSckCQ0R/93NJyQBPv9Mt103JAG5+Bzc/fckA+8bpDt+ByQFrqfahM4XJAQNsAJ1DickBXCRhmj+JyQNBVGXgk43JAwIVN/FHxckCsN6/qufFyQIt0pUt88nJAOiDuzbXzckAWx5MHovRyQB40dLDC/3JABJt0m/gAc0CGMx2WjAFzQICPIjU7AnNAsbMp4tACc0A44zxj+gNzQNZi/ve7EnNAXBaR8AMUc0CNfkVpThRzQE8iOHd5H3NAxJjFZ6Mgc0CG/+vUOCFzQGh5QQYNI3NAIJWg2zkkc0CBA3xPziRzQGe+HPdGMXNAwJ+6KF0xc0BOYuHi0DFzQKdsM/POMnNASNvAIQ8zc0AA0PsD1DNzQKJlt0+4P3NAsxNwPUFAc0DQ6Peu4kBzQGWtFtR4QXNA10lAu6lCc0DUOi9UekRzQAjsJK2cUXNA44McKBFSc0BnGiGsQlNzQHRqAWSjU3NAr5GGoYRUc0Ctfjvxi2BzQHalMasdYnNA+nRVjzljc0DDSITmSGNzQCAHkG4rbXNAUJztUNxxc0CcIloGUnJzQKhw4mdocnNAl+tu6IRyc0C4m8EiTnNzQNYdF0a2dHNAMniv+Ut1c0BUbyqn0XdzQHCBjCI5fXNAHZoqc3iAc0D4SR8lDYFzQGQ6I3ddgnNAZCD2KAGDc0AuCI6JN4VzQKxML5tYiHNAdqxHQoeQc0AJtrgYTZJzQESamylrknNArGN0Fc2Tc0DMNmyOYZRzQGKXK5j3lHNAJJ6pko2Vc0AClpb8t6BzQFpDZslaonNAJqL3L8Oic0AU6g3d5aJzQJDXJEHmo3NA6kwvmwSlc0DUkJZ6trNzQCZqSakMtHNAn4Ws0qK0c0BMDZRHzb9zQNwAg89lwHNAAsbd4vfAc0BCKm9LOsJzQN+HsTPPwnNAnu0hsybDc0CCpZvD2NFzQKb3Sv250nNAYBZOqvbTc0CcWZwnTdRzQNzBeIPh1HNA9Godbw7gc0CRARCzoeBzQF5RusQ24XNANKpP6Uzhc0DwwdeL5eFzQFhw4GZ74nNABFqk/w3jc0AM94mYpONzQMhpJvdP8XNAZsa8mrbyc0DM+xZcNvRzQIx2QCKO9HNAGkE09XgBdEALYJfzpQF0QFhaWom8AnRAmmlgG+UDdEDKjL2fegR0QKKBfJmKEXRAUAYFF0sTdECqbJyndhR0QNiA/G9MIHRAcaWnnbghdEB8XbYSWSN0QCyRMw5TMHRAnEQFJRIzdEDC0eFM3zd0QM/bNyFSQHRAfKt7S8hBdEDgc9SLqEJ0QNLoIqY4Q3RADEPUzHpDdECCvohCUUt0QB62Y6bQUXRAsBCs7/lSdEDw3X3DIlR0QF7MKDH2VHRAZ72cxopVdEBig1pAIF10QMjky1a3YHRAzj/8rwhidEDZkiMze2J0QA7IoxgPZHRABg+Wpk5kdEAWqfH81Gd0QFrDn1chcHRAHPj1G2JwdEC7ZhvmQHF0QKTLM6Q4c3RAiL4P5wx0dEATOW40N3V0QO6r5/BqgHRAefP16fiAdEAEn+aNEIF0QHClovZNgXRA6dMu3keCdEB6jTc7zoJ0QCIh/Usmg3RAfFA7b7qDdEBeHfJjFpB0QGq+u2lrkHRAqOJyEsiTdEBY/IVP7590QO4loCDOoHRAiC7TsXqidECqvChZEKN0QJ5935T7r3RAbgI15sOwdEBQYS4qb7J0QLKNZHT6snRA8IW9QMm3dEBaslmEE710QBD9Ss7dv3RAMup9n03AdEBImsQA48B0QFqSPkfqwXRAnKk/WbvCdEAgGO3ufMN0QGt9taUjxHRA12XOYrjEdED4GTzG/c50QJCVTYHqz3RAXg5QL+HTdEAZpoQdzNR0QGrV8/C34XRAnOmAkI/jdEDUfv1BUOV0QCs/+eG+8HRABDUe6IzzdEB2K9FspAB1QHoOC+7JAHVAgROHKmIBdUAQnfu5XAJ1QLYYCR31AnVAAgHtCZoDdUC0Xv5r0QN1QKEwjM6XEHVAmCTHVGoSdUCIkxglIxR1QFUOwNXjH3VAt0t6L08idUDma77snCJ1QOC+2Z7mInVAdWnDcl0xdUA0+vwXNjV1QJ7buFTLNXVAPZ2JAq9BdUCAXgnq2UJ1QDVaq9gFUHVAkDPkOIJRdUAseT0SOFJ1QBXXOyhOVHVAmOal1ndVdUAdM1FvD2B1QEgYshU4YXVAGBfQevJhdUBmr6rmZWN1QJzJu9B1cnVAYG1qcHRzdUAIW/+ZjXR1QLK9vNq0e3VAGGP7lnaBdUD68DdnrYF1QLzyqpClg3VAiivflZuEdUCpRSAuupF1QKVSMISpknVAPiKTIK6TdUBC5DgEZaJ1QIxcxC5Jo3VAIsMcR6SodUAqb3kKCLN1QDoQK3LOwHVAb0GouvjBdUDOaimZNNN1QAfOWMzK03VA7LcEKOPfdUD5O4+vDuF1QA9HCIEK4nVAYLE8gzrldUDCfG+ZTO11QL4hmYum8nVAvYp6XgL4dUBpII8dCwF2QBgIOwZIAnZAMR39ZJQCdkA9NJvAzwN2QCBQceJTEnZAjDGRBU0UdkAsHs1ghyJ2QKp4UbkcI3ZAg0cKWZAkdkAv4y7+Hyt2QNzBbEpLK3ZAhteFMR8xdkDQkLiqJDN2QFqQs7xSM3ZAAnmn0p00dkCmEb9FHUF2QIyHK7rJQnZAyOU5zHlEdkAicTJI+052QDyh46zKUHZA8g+qPhJRdkBDvf3SzFR2QFnR4wMPYXZAzD866dxhdkDS2kMb+2J2QI5g947aZHZAfWn0JVVodkAC4ecpaIN2QB6iQ2CSg3ZAeqFg8LaRdkBt1vbiZpJ2QKGs4OHqnXZALq9KjeWudkD6IErvwbJ2QEIZMXF5s3ZAbveGFg20dkC13D/lr7R2QG1An3BvwHZA0hTFcsHAdkDss9XLTMF2QJLh//8ZxHZARLSaP8/OdkBZYf0mf9B2QGQ8HY6/0HZAcCf6ePfhdkAHYEPmMPN2QKDzUQOR83ZApvobRTQCd0BuahXiABJ3QFxSMH+0EndAJHEmTpEgd0DMsHqNDiJ3QAzRDZXoJ3dAdq+cWEMtd0C6YyVFjjJ3QEJn+u+cMndA16MksqUzd0BA7j3/DDV3QHJH69mcQXdA6dOwsJFDd0COpOLmGkV3QEApHIhKUXdA/Hk1zZJRd0C0xG8cnlN3QDA84BApVXdAg/7kS3tfd0BIICgWSWF3QNLql3GOYXdAWKQQkKBhd0C4vbAXOWV3QIx4UWsnb3dABhVUmoRxd0Cg0wBIoHJ3QBDqDdL5d3dAUvNti0V9d0AB+M2KeIJ3QBIs044JkndA/ClnOU2Ud0DROSz+jKF3QDHczk/vx3dAswsgzzrTd0BIMNO8T/J3QIpEmqtz93dALPEv2X74d0Dkc6JzRv13QGiIAfH4AXhApNsNP6ACeEB85MfP4wd4QIWwKwX7B3hAJN5c0EINeEBseyHH4xN4QH1lKZVKFXhAvYpyXRMheEDHSjI1biJ4QM3JfnE9I3hA/p5ZeYojeEAeAU/FfDJ4QLwlcuYNQnhAd8HZgxFEeECZwdWqeUV4QOKAXR/KUXhAulz/zZJSeEDwHNjc8VN4QF2D3tuFVXhAYEAkZPtgeEAs+Ulat2F4QBbGGefrb3hAonwSRL5xeEC9I6vDDXR4QLUthV8sdHhA7u4lVER0eEBx2gdZT3R4QJL8OnxodHhAtESAb4t0eED73tx0z3R4QEQ0TNfDeHhAjHeedfd7eEAKFg4SHn54QImK86KkgXhAMqglJP6DeECaVbqRmYR4QGC0sStPiHhAzLDDzaiNeEAhVCy0lpF4QCZTLdPxknhAfBd2OQWTeECahOsiqJR4QOhpOGRMmHhAbqIqdF2YeEDPp1qzGp54QH0L6A7Ts3hAYIGMz+O3eEB4rXidObt4QOxu9Bc8vXhAcNiQ78zAeEAk0NaRPcN4QD/pUjbdx3hAYIv+4dbOeEAYPLpjUdN4QNZqVnu41HhAQGgNAtTYeECtByeNk9t4QL5wlpQw3nhAE4p/hgL0eEB+8vyXjPV4QJT6ZoZ7A3lA+Nni8BIEeUBPbKy8mQV5QAQDqA2lE3lA4Bi3DLwjeUCCDvWUUCR5QKh7YpqyKHlAGmqYzQwueUDrL4QrZDN5QNL7oClfNHlAnvFjc7g4eUAF5fL0+kN5QNyNevrMVHlAeCv3KVuTeUBpLdsuY5t5QJqWt/5no3lA4zKCC1ereUD6GKD7f6t5QOLwhM3AsnlApkh7+f66eUA0cng6zcJ5QFj46nBC1HlA2mO8ds3VeUB6d1NRT+R5QC8q2BfY5XlAWOzetYvreUCUFsKFEPR5QKSB/Xv+A3pAP3HDrfYFekAG3CZM9gt6QPKtRQpSE3pAOsMtXFcbekDsGP7KNyN6QKkzQGMpM3pA2ObaVAI0ekAo368pDDV6QABgL/crN3pAIwG3XRpFekDyLCkQiVN6QI3GAkMpVXpAYAm9YyJcekBQU7xVK2R6QG79+jWLcnpA/fy4PR2jekAmF2XRd6N6QDbEi0Elq3pAm5ULJVOrekCCiR3ADbN6QKJjdKj4s3pAxGPz6wy2ekDperESLMN6QADhO+lBzHpAnP/s80LOekA0hu3Z2tN6QMClcWtj4XpA75ihaEfiekCmZqaA9ON6QAiUIPg37npAgDh9BRfxekDfynAmVvF6QHgrXLv/8npA62DjX+cDe0ADmd13fAR7QGiSiykqDntAotAZ1vUTe0A+hAERiBR7QG0R76BMFXtA1MZqUFole0BERldEIC57QDphS4diPHtACGPKqGlEe0CmBDa7bkx7QFWTeJ9gUntAMDcoZA1ce0AXDj1qDHR7QHSMMEgilXtAEgidVEGke0Cq3m9/EtB7QI37sPyi0XtAYpwLk2TTe0BOrEcIJ+R7QP4nWtmL9XtAcD/tWLL7e0DQyNq/jwF8QKLX87fZAXxAcuS3vfQBfEAye+NwZgR8QM5Gym6ZBXxAmN7RELcOfEDMzLV0iRF8QMX0LqPREXxAafc8IM1BfEDupJ3IUkh8QJc3kkmoTXxAAC8YRdxRfEDcpnXeDWJ8QIxH0kNpe3xAoTxNVXCDfECAML6jXot8QJw1NRN1i3xA1RLRbXeMfEDBWRYDw418QPbP4Psbk3xAArZp8G6YfEAsang6Wpl8QFJr4C9Am3xA5JQZIbWefEAO+x52J6R8QMyjaEbAsnxAwXRJnnm0fEAYozO/0sN8QJJVDavM1XxAaHjgS/bbfEBo/bbnV+J8QA7cG9gP43xAUsg7TvvjfED7WZRmpuR8QJ03psBt6HxAKz4CgCTwfECy2SZsFfJ8QFFb9dVT8nxAsu/Ec3PyfEDUdxiSAAJ9QL55TRlLAn1AylT5PGcDfUC/mKTOUAR9QIKJqbdFEn1A+nBsIzUUfUDMfqTNrht9QBeucl08In1AWMfc4bUjfUD0st1IoDF9QGB8fC/0O31AM3JKdnlJfUBG3yu5WWB9QE8RInN5dH1ADG+CooB8fUBs4gIP7359QORPcdJmhH1AXF1IyZWNfUAPUq657pJ9QLvPavBCmH1APEzrtSzDfUD8FbV/5sR9QL9Z8yL01H1AOArkjY71fUCKmn88NAB+QDNzsgkgIH5AmPdaFiMsfkDcA4I6Py9+QDxy3NMpNH5A/0kVfEI/fkDlukD7SEN+QPgM3sDAS35AoiLs0bFQfkBBxCWzxlN+QNqvr22NVX5A5GdS7m5ffkCC2N6Ml2p+QHyO2rcobn5A0zJxL7p7fkDiDAESoYN+QL4/JKFNhH5AvdBgDLGYfkCAfnR2wZx+QKrIA1hgr35A+SytyI6wfkAajp/WsLB+QPwOuTmgu35A9jP1ZqO/fkAl6U2Z0sR+QBIDk/16x35AaBbklnHIfkCpnNY/zc1+QADQdZFhzn5Avb2IAt3SfkASO/b/T9N+QJxOo6je1H5Anu88Fe3VfkA0dGipJuB+QIxUmvvU735AaCT0JVL0fkBrJJGI9vp+QCq1GZ6YA39AmI8A/84Mf0Aoq/9GRRJ/QPaVSqg/E39AeIxG96UTf0CsCXFvQht/QIVi60GqG39ArLjqdIEff0BnD6JiPlV/QN2NJn1vV39ALydX77Zxf0AtPEF3sYF/QPTSGtSIg39A6qyoikqPf0BW5tbAYpF/QGRD63mtkX9AHEfPGVGTf0Bk4oJjmJN/QGSeZQFYl39AxGNp016hf0AT77WjEKV/QFiU0R+eqH9AlC0LMFaxf0BGuMW+FrZ/QM4QdYP8vn9A2tjOSsfSf0CoWORkm9t/QCCtT7sf6n9AHMTY9DTvf0DCG3jDi/N/QOfIfl2N9H9AdEmU4EL/f0CjECWciQGAQLD34VblAYBAZ/K5HM8DgEAidhqVNgSAQIItXLfWBoBAJ0w+t+sJgEASQTpgZyKAQO67H2ziJoBAdD9XO5MpgECmRLBXIC2AQCEouiDrN4BAjImHz/s4gEDQz78BqUKAQBQtusbzSIBANDkKYbhMgEBmmzIE51CAQChG/rITUYBA2DIF3KVVgEDGTZrf5ViAQIvR5fAOWYBAPUrzlSFZgECWDYQdDWGAQKrr793AYYBA/vsLX3BkgECe8xcu62WAQCY7wqOhZ4BAAixdnE5qgEC8arDK+2yAQACNvPHwbYBAtmqo8SdvgECM4pmwp2+AQBLPvBD0cYBAfD0erxt4gEDmSr9ZKX+AQMQdUXMqhoBAlr4pVPqKgECXU2TpHo+AQJbVUbEbl4BAni2weW6YgEB6zrZjrKeAQArpFXuFqYBAsJfwkxOvgEDBVm8Sta+AQLlt2WmGsYBAwapsRZKygEBODwynUbOAQIqqGZALtIBAzZZHWLG1gEDQEsg7BrqAQCpG6SWUuoBARt0oeAW8gEARD5MNZcCAQHbP8XtSwYBADW6R557CgED6WZ/T98aAQH7ptwysx4BA0AcsxAPIgEBvvvDZbciAQAz7+CQqyYBA8B1BGlPJgED8sWHT08mAQI4PjH/4zoBA/+mVJLPPgEC0LMCOKtGAQBiPjWxM0YBACxLj8l/RgEBQwwNTC9SAQOPCE2UD14BAMxl50knZgECSc0cqv9mAQMQUsYH324BAIvuCBsHegEDky6mtROGAQOq+p17V5YBAa3Nn92TogEDHjMx54OmAQHA8aaFL74BAmvU09/v4gEBF0zFiaPqAQIZM/cY//4BAIEtqQEAHgUD1QviSig2BQOWufvI+D4FAmixZmBAcgUCwkjepNB+BQPdGum6yH4FA380kXTQngUDGR/VitSeBQLKs9QAwKoFAukztPS4vgUCO/3xk0jOBQA4hGaIuPIFAtGmGMio/gUAejuqZWkeBQKp0MMoGSoFAfit7DLJMgUDvxn8mYU+BQCPoYbsFUoFALQduMhdUgUCAHtrY5lmBQBCWD0dXW4FAGeCOj2lbgUB1GYye6V2BQFL0UHP9YYFAMDyh5cF0gUAA7Kkbb3eBQNiiquU8eYFAju6MOSmCgUDK5rXwVoKBQNwXqblpioFAFdjWZwaNgUAy7L09Vo+BQEuKxrWzj4FA5H3y1O+RgUAGenraVZeBQGwZJJacnIFAGP6pUEWfgUDoSB7u5qGBQNpgaOltqIFAssvnvkqvgUDwjQw1CrKBQMCxYYq3tIFAli0U3/y1gUBmFJ++SLeBQMj+IFJCv4FAuAtEGxDMgUDWY0ihhdCBQEqyFVb50YFAQa/gSX7TgUD8qNYF/NWBQIbWkcMA2oFA5jpwb/XdgUB96izXBt6BQEqLxzT64YFArpLq2ez5gUAUmUorIPqBQOrXK5NE+4FAOkdcZO/9gUDkD8Rz4AGCQFarq/L1AYJAYjoEmOkFgkDeK2QrAwmCQCMgWLdvGIJAD1hIctgYgkCSikNs2CCCQAIfa3vQKIJAdzaK4VgpgkBRne5ILy2CQDZXuTX2OoJAak+q3wo+gkBY5jucekCCQOiOQvXjQYJAboC5OA5CgkAuKU4gEUaCQDr1f3bJSYJAzg+0pgROgkDXbNIAIliCQCpRWPvXWoJAFl/ocnlcgkC+SWkVyl2CQPm8czfMYYJAi5pW8zNigkBge+FH0mWCQKAAk2U3ZoJA1PwcGt5mgkDceqcZnmeCQGU05NhsaIJAw8RSnwpqgkAGxnE5O2qCQFI2WhltdIJAEjHR0DZ1gkDwqg0qCnaCQIL1/mU7eIJAVv4gdUOJgkDBaD0kbYyCQFUEF1wtj4JAdPe730ORgkAldImNI5KCQGw1WGUMloJAY0ItezyZgkChxZ4bVZmCQDg1mnOkm4JALZlAS9megkDmqJIZDqGCQNoBs0Q6oYJA3dvKvQ+pgkCgujkbNqmCQDwDCMtssIJAgAED/wexgkAItGkkRrmCQBqGIimSu4JAYAKFpuzFgkDqssmY78mCQHxLu+rcyoJANoIva/XNgkDQYIx56tGCQFGmkxz+0YJAMMfxTe/VgkAADqTOftqCQDsRJL1r3oJAcnnTU4LegkDEenvI3t6CQDAvB0aE4oJArI55SGPmgkA9N4wCiuaCQDxQg71Z6oJAOPxT8SbxgkBLvQdr9PWCQOzs5LWt+YJAwO28b/n5gkBYlexG4QGDQBpzCbvkBYNAoPo0atwJg0DEVC5gkg2DQBl779TeDYNAnxpKc3kRg0BKRd4a4RGDQAASRPGfFoNAqBxKLnkZg0DhRr7BvB2DQBKT6jv7HoNAmJ7pV3Ihg0AXsZnViSGDQAxzFuBuKYNAgCh8rGkxg0AquNkyGTqDQMpp/BjyPoNA2PVtCdxBg0Ac/Li03kWDQKaUueWSSoNAAHZpNT9Ng0DmSY60lk6DQEPgMUyaUoNA6XnCzuVkg0Cw8VER8nGDQAF6F97qcoNA0uGd6fJ1g0A+mfK8xIGDQN9RH6nHhYNAODPknzWHg0C+PNHUv4mDQKaFJ1qojYNA4vz+rlygg0CQg6TKHsWDQCrvEJLMx4NANZFJX1zKg0Bw7UcwfMqDQCKFhtnL3INAKhpYu3ffg0Be4jJ2l/6DQCnIYWODAYRArAslmYoJhECsS8SMehGEQMxoT+dTEoRATZ1xao1GhEBHfbOorFaEQNg+xL29XoRAUCnoohJkhEDMFMETAGmEQLsgK448aoRAjNf9CuZrhEClhaUt/nCEQJiFPsG3dYRAXOgeRNJ1hEAjeRahyneEQN/vCRZqeoRA/P/3VxZ9hEDaOtuzwn+EQABvJxY9goRAuu46om6ChECeRfp464SEQF4L9uIbhYRAqWTkYcqHhEDbQB2bHomEQGI7qst2ioRAnK5cLySNhEAaMIXSS5qEQGFoPW5xooRAsVnqpGykhEBCGl7RH6WEQIdtFa7Mp4RAFcgLJXiqhEC9DBkvL6uEQMfV4qpNuoRAUjyUphLFhEBGWqn4u8eEQHht9qRqyoRAzh6ybhjNhEDeR8NoxM+EQGwKYo1x0oRAuxEDrGnZhECuc+DIaeGEQHk7rv/R54RARhTGxWHphEC8YsWFLuqEQNyZYlpv6oRAyP+mcBzthEBfcPs5MO6EQN4eHZPK74RA5VkKXjXxhEAu1PKYYfGEQIH5fTc5+YRAMv93SF75hED73cI3iPqEQLC+wlwpAYVA7uCnf8UChUB+GWSQMwqFQHpmgTMNFoVACKXzSw8ahUCKJ4brXC6FQFESFDRhMoVA6uqAK+RNhUDwFlz151GFQAF95I/lVYVAdk9iDeVZhUCIf/lcI1+FQChWHWOgYYVA4V9moZ9phUA93pjSTmqFQNBVprhyaoVAo59bcpdxhUB+3f/7tHOFQHGwDmCYeYVAVAar9xmChUCvNCLCxr2FQEtB0TK64IVAbQOM7GnphUAM9GJrWgiGQJiEjRAfYoZAcpe6RiW5hkC2Ug760MSGQO5K9rnSxoZAFHM2IdTIhkB4P8CERMqGQMNcFpTVyoZAdHfmgNXMhkB1F8abSM6GQJgjBATYzoZAkBoodtnQhkCHrjkegP6GQFCQakQMEYdA2HmDO9ISh0DVnjf2HxiHQBFhnBSRKYdAjv0x2ZAxh0BuSyOiijmHQOSvgpiMQYdANN+EHIZJh0CAB0C/x7GHQNLjkqrIuYdAkT8gfMLBh0BwUxgcwMmHQEhjPt3wyodAlsZR/28GiEASOPm9JB6IQILr3JLPcohAKjj520N+iEDz5ZRwR4KIQJ7DYSRJhohAmhGLOUWKiEDcWBzOiaSIQEaoVwxdqYhAl5uhrDSyiEBintLW68KIQA== - - - - - - mfOeREdOVEQQjs5Ff/pkRDfzxERwpkZFpFWXRBQFPEVbqHREaf2PREYvmkTUr5REq/AERzWxpkTjxKJEsSHcREXq9kSc4UxE99yRRRSspkX5+wxFcfebRNTynkVGxqZEP9jERLX16UT3vvdEJJ7ZRLie4kR6P55EElkwRVBoAUcJtg1Gyc1YRWCz5UQOiQpF50LvRJaapUa8zqhEda5aRGvWqkXRifREyFEGRQhTPkTz+4xEip+KRHIjRUS8n9xEc+WfRKUL4ESTUW5FnHhJRL1E30U76U5FSohdRKHoj0TWgo5F22aGRIIddkQvX9ZECHCYRLybQUTh5QxHbR8gRbz/ukRBRYBFW7IXRtOEm0UMQK1EPRAoRYyX6EQoh4dEeIqwRsegHkXPeddFiL8oRbr9gkSUE6hEJYAXRXxUO0dbPk5EbCOtRLesj0ROC35GdrRyRIi3yUXWEgRG6wTIRAT4akRK+U9FoFZvRavhaUUybBlFJH1+REuIckTTwoVE2VLCRFaknESg1rFFAoIIRRMEMkXbB2xEEHHbRFi1aEQTGbFFs+J5RAYVj0SL35NFzgyIRHtthUQGSh5FQCOjRPlGvEQ0wVNE4+RjRPm1CkWa13tE4vs2RoIzZESuE61ERs6ARANoZ0QhvrtEwExSRSmrrES2lL1E6q0WRXFIgETF2Y9EQRv1RIvEfkTDhptEgnbqRGjHbETs97BEFn/ARPxvpUTwIqhExzhqRYRViUSKNp9EUkHRRPqV1UW6d4NFBn/TRXIqkEW2J4FElXTORPuKjkSTDsxFv8dRROqVQUecJoVFoh1PRMly2USch5VEdi8oRal4U0SrUf9FbdseRazfj0QjbYVEIirsRWaVr0Wzs3VEry9rREu+rkfgLL9E3iuARLxvskQ6iOhFDTTpRIeTo0bJ/bBErG/MRYmCG0VtsktGzsu2RJz5h0QAEJREmGGKREnOyERYBIdETgnyRL4zsEQJqHhEwNjaRBDD30TsVeREcqpiRbGLg0RXw5ZEfcO9Ragxh0RCuqlEgoJ9RGYqNUZSqYBE1OTVRKJhh0Sm/aBEMw9iRHW0YUVy/mVEDJl2RRHuC0aogHREwwRIRLQtYUQv3ztFDFdVRLCkbETivLtEHymPRFktgUT9kJ1EgHsCRductUT9uclE6VQ0RVXkNEbgEwNFHPZ8RIZSM0Y4C41E2aO7RAzEpEUVRJhF07HVRAU+mETziYJEkdM7RBajg0QdHvFEBE/ERKZSrkT/AadEXMFkRLZUT0S6i5ZEWriLRNvLlURngI5EVjqcRBBoeUZlcwZGBWDARM7nUUSLaz1GViG0RPRSykSDHaBEsLhgRMLekEWoC09ET4zIRcOX2USKB4tFUWnbRg9eb0Uapp5EqBZjRNzfkkW1EMFEo0ZAReIGu0SO6phEL0F7RZlpOEY/fbdEXeyQRNs+mESzHkNFnyAVRaLfmUQuEA5FqBtSRMFSkERXMAFFitNURP7FCUWtpltE3cprRXGya0RQ3rJEAxpORP2NiEQAhaFETrCERWLRlkREiGxEhJiCREkUjETHr7pEirsIRcbjjkaTL1ZEW9ShRB1UUUUUrERGP2XCRQBGnERIy5pE8mIZRdiJ50cWvcFGwugcRt5mvEbaLKlFxg5mRsdZ2UTdMLVE5+0QRUidYETwg75ECASoRB3tg0SADkdFyLs+RP/f4EXhCkFFwyHXRK+vp0SfUcBEvWy+RHamikTDVMxEiRZHRPXj8kT79shEY8H4RFdNMkewc15EKx2nRjqeIkXQVgJGL2aLRD13BkXBI3ZE/kV4RG4ZQ0Vpd9pES8iLROkjk0TQmJ5E+qmdRd+JH0YKPZtFAiHFRAUTk0TJ2wpFtFuqRGQcEEWRhIxEACeVRNocT0SibvBEnEYORZtjGEXXDJxFy+ZKSYIRCkWzqo9ErcGpRYg3eETjtFpFEUElRQqUR0gDRRJHqXO0RrEMY0Va08hENi+BRbf9hUaZbwdFctiARCCrNUT9FGlELJIDRZh/BkXRuItEzpwvRejQvESoRZJELU9aRDkHVUS31ShF5kyDRLWc7ESJRnxExfCZRXPx1UWBd01Fd8doRPKn/kSDGDBEIpa+ROTEv0VI5nZGDlIdRi8qA0Wte51EHeZoROfDA0VhB4ZF3EwzR/1PeEY1iBZFwEZpRI1yw0Ry/UZFwtO5RMc1u0QgeMZFoVnQRFoqhkR64GZEMxlhRPhzQEWwSaNEvbifRFEdmkQjJFdF24B7ROwkhkQjrR9FOlpkRILcx0edmeFEvDrTRtuSY0QoUhdFR8QfRmN8JkXbV8JE82Q/RrFk6kTmUEFFuCjhRAKm5kR9hLREk8LoRTwzgkSIe/pEhHaHREy9RkTKNJFEpd90RF4nTERJxqxEsh8mRYPnykQvfkREFSXuRcfBVUZBKL5EskeyRJ718ES38B1Gwtk3RTAKg0SJ9XtG337lRS1k+UTwrnNEWrgvRQfFhUSa501FcAtzRJI3vUTg6aFEiIOIRFmlaUXn7KJGmR2RRO3Oz0RGTU9GqFIxRe+BFUWtfI1FfnaFRFjWg0TNFLdFVPLDRekdIEUyFctErpfHRNQ7hUSdKCtGStmBRXTy2kTd7L9EYURiRBtT8EUyAaFFRJmiRAv/E0VY5UtERl8FRYFvVUT5gLFEL2qlRZ09XEU0QqBE0uqqREL7yUd8sQtFiVhkRC9aYkRo869EkzBzRLwEOUVnu6NGDI1cRWE71kTYJoNGOYtIRCcFQUT8SIJFRHR9RFMpqEUJf55EBF0yRT4RbkTmjKhE0IiKRF6bhkSPnDtG8LJMRWMib0SHwTdFp9YSRV76/0Sfn6JEU4rYRBsdi0YlXjdFfycDRZQsLEVnCGtEfwmsRYDHkUR4kPdENm6LRCRGyESEEMpEPoeJRBHZtET/7xNFJ62DRAUsoESpj29EvpoVRd/D6UThMbVEnbNzRD1SRkRCSIxEubhiRK8EO0Raw5lEJK2GROxNi0UWJWhEfh0vRahaIEVpmcFEANFjRKiwtkRSXshEcYKVROy8fkT/E2dEH7F0RLBihUSee9xEneNjREFtmERwG8xFgXqGRY5kuES/m7xEm2lTRPtKfUSZeZtEeHNyRUHQZESMdopExwAuRVw6JEbaLp9Esw0qRTqh4kTSReVEXKFPRRW78UQjq4RE1GAARXdxZ0RRwUtE9suWRNtoVURSA3FE6a8iRdpph0Q6Er9E7vBTRM4aDEWpYVZGLkiYRCrqh0SMQIpEQBsbRfhoE0UXSP9EB3XqRJTEckRhVMZErX1pRLjWHEWUmgRFnI9MRPWJHkWEsYtGLviARILlZ0TEIqtFhtmqRBdLmERN6pZEXKGdRDqlv0QSAUNGydYFRiOviEVkWm5Fjc0WRRPOAEWAgghF68jCRLolwESalEJELMR8RB4QB0YnWOBER0aHRLHxXkS8aBpFOTiXRRlikEQd9ZhEiIfNRNUfYUQ3/6VEx1s0RVHmj0TFJXtEmXrcRCoDc0Q0skNIUplMRXjnW0TpXN9EukRZRJsK0USk8dpEMUKjR9ZRTUTsNIdE0KXvRMD7vUQX8UpHHGBzRWJJbkTQvKVEbI4NRgdKkkQTy1VE8Z6NRfk8iUUCby5E+hFtRIluUUQrFAtFmZVTROUtuUTYox9GG/OJRd4OWUQdln5F8oFwRK6Lzkbn84FEGoGvRaoshkREdDxEYy+lRDaLoUSkV4BE0hqNRZv5n0VQC4tFuzj/RJQJi0TKWCFEQ85SRPm8H0Xe0X1EvFFfRPfzqkQJxXZE+e3lRKT7EEVwjltE8M5vRHynkESBCptEm6uIRO/LxEXgKaRESytdRBgWE0Xwc4pFHDz9RE8MKkXt6uNEG1opRib3UUT3NaJETitkRBacmERBo2RELQtXRDQSk0T1EFpIpbLZRDd7/kcFhtlGm57nReEOhUXSIUpFLM/3RkZqkkTW5IxE0WNgRnPz2ERrgZBF9MG/RACzaEQBjGtEUSVTRs42mUV51CtF2U95RGukZEQlUW5E8YguRpdsgUQmbnpE24a/RbO7GEW8vLZE+aG9RIgxh0R/FlhEzXquRDMoDEXHm55EkJPgRUCaa0SA9pdFCD6JROt4ZUSEclJFL4HURHOz4ESQ0XBE1AW+RPbTwkThbIhEFSDjRwcWf0TqxXpEpXxWR9WrbUToBFVEOjPfRhzcJUXAcKhEvp2EREy3n0Xi3eRFewACReXfPEWkOIZESENRREI8iUS8qGdEaUzUR5UDhkd6ZoBEjLiBRlxoc0W4qehEQU0ARewVL0ZWeZNEc0fcRXnLRUR5ZPVEtcFtRK2TckSPyJJEOr56RGgggkVsraJEvYkDRWb3SEeibbFGK8jaRds/ikSAoEtFgjqxRzvAuET2tWtEnhkCR5H2ikSZospEkSiXRtdJnkTEvaRFUlADRYN6VETyRWJEF9+1RN1lqERDd2pFXL1YRPnCdkXpncJERb9YRBS4ZEUOGsJEa36ZRKfPRkYEPa9F719DRFvrsETlu5JEo2B7RGMobkVCu3BFutVvRLyyXEQYEiRFbtSTRFIFSkQPJgNHC2sDRs/Ui0UWPFZEt616RBJvekRVlYFEgtWnRDSRyUU2iKZE3LilROykIUXUhm1FiNYqRLZK7EVv6nVISw+ESFZRDEi6ilNEpMlbR3xObkTA75VGAVtgRecOS0WiY0dFYG7bRI+SXURgHYVFG6uPRNb0TEUBBPVEabChROBObkSdClBEaGDnRI5iBkWuf7BE8uAwRQxOBkWV2qREYWAbR8p5lkYYNq1EsN4PRo4JBkVdoqhFy9VwRWZBkERncDBFRzg+Re08WUUn6XdEMMCNRAs5mUSS8ltEo2tnRMRrDkU39/VESYvWRNcQW0Xl67NEqkBvRh/JDEZIW9FE/3jKRAvyQUQu9r9GARwzRsMgSUQ6sk9E7SfDRS+1c0TYjQNFcfpURHX7X0SEWTpE8mA5RTG8tkQHkm9Epf/cRJoe80alhEFHzy4RR3tW8kTqKJNGqNciRuEvlEQ6ZYpFGczIRDjfUESpHoRE+pTOREkjZkRrATtGzyzgRV5udUXMBgRF28VXRBZS5UWZdYFFNnk9RX9pgUR8aV5EUJCmRJJkZ0RBa59E6D+0RURUsEVg6ZZE5cNjRMgplERL3aJEHrGIRAJThUQ= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + - - - - - - rZknDAzBckD23oWnJMFyQAIcfABvwXJARzGlFlDCckCsYNwxqMJyQKVsVjE8w3JA/PzwhMfEckAmenH4WsVyQE8B75oAyHJAHuciU3vRckC08MzvQ9JyQM0Pxs9203JAUONFu2PUckDVBLNDzd9yQImih3wk4HJAWpX+d7ngckCTiy1CUOJyQDy94WiQ4nJApMItkCPjckDD6J7+ufFyQDzKX9DI8XJA6sNFFrfzckCYitCxD/RyQEyRrgem9HJAv3mMX8H/ckDsrPhKYgBzQEZ3fxf4AHNAsArYPosBc0Cf2WeR0AJzQOCmN/P6A3NAUu2q1CYSc0B/4qbSvBJzQMg1wMUGFHNAqPbqQE8Uc0DF9DYreh9zQOob76OiIHNAHALQSTkhc0AUXN3oYyFzQCxGOxfMInNAQIMwswwjc0CoZVmBOyRzQE7NeabPJHNApGJgh0Yxc0DiXekdXDFzQA39ejckMnNA4i15rgwzc0A2QPwb1jNzQPKllvs3NHNAHDYrd9w0c0DwAvDUuD9zQGkuQnRBQHNALoZpXeVAc0DwwDJbeEFzQKy/BzJ6RHNARKG8+ppRc0ApE2lhF1JzQHKonk6jU3NAl87gGIdUc0AM49cTImJzQLo4xX09Y3NAsCWEzNFjc0BYrOQfLG1zQGICoxPccXNAkBC6M1Jyc0A8Ffrua3JzQFirHVqGcnNAGpOxQU9zc0BetQziTHVzQHSluqzcd3NANEBfhSp9c0D5GoYZeYBzQHsAUZOjgHNAvMlRew+Bc0AHKl3iXYJzQIp8Of4OhHNAvMZ6i4eQc0AIzTl1TZJzQNRCkdfOk3NALCqf3mGUc0AQcSkK+JRzQJZWpPS3oHNA8k9F21qic0CsLKlakKJzQFx3cy/GonNAfZuBEOijc0CuRg6SBaVzQOKfAW0gqHNAbCoF7X2xc0BcK7ijWrJzQPx+3jEUs3NAShSfBrezc0Cg7f4pDrRzQKXWZb2itHNAtCyoPPnAc0AoHHhejsFzQDTT/bk7wnNAOiJmw8/Cc0Ae5TN7JcNzQF52RmfY0XNANpEz+ffTc0C/1xiC4tRzQKuXcw2j4HNA0AJGkTjhc0BElR6ZY+FzQAIB96fp4XNAfZe/VHric0By/5J1EuNzQFhfAyCk43NAoepMSfHkc0AGtwXBN/RzQDJwiSqN9HNA/EiP+ngBdEAwhy1uEQV0QPQmB5ILEXRA5PGY/4cRdECiUcuNTBN0QLXNeyq6IXRAMt5+fFMwdECep+ChaDF0QPT81zK8MnRAONcDOxQzdECWTkG/4Dd0QLJ6ecRuOHRAyqQAsjw9dEAUQNJFoz90QBezj2VTQHRAztCMdslBdEATbcNlmUJ0QDadrLM6Q3RArAOMEVtPdECuDgyx+VJ0QB2E6Ub3VHRAYg3p8YxVdEC5cpcr2Vd0QPTxGG8hXXRA/JTM07hgdEAe955oCWJ0QErmKHh7YnRAfB/vPBFkdEAgEshBTmR0QKin07jDZ3RAJuklXyJwdEBLR95/QXF0QMRfoVIWcnRAIuaYRzpzdEBzzydUpHR0QEUiI8U4dXRAusvZ+PeAdECSy5DyToF0QOvJ5m1JgnRAMioKvM+CdECi2/q5IoN0QCqWHgO8g3RA6KKIZBaQdECe/bghuZJ0QLiEhczvn3RA75e22aOgdECMmjcAz6B0QI6QglU4oXRAHCdJ9riidEDMvhdTEKN0QFVE8x/7r3RAwrD/NsOwdEC82I8Fb7J0QIQShjP8snRACcZfgMm3dEAshd/LIb10QKCquGzev3RAgGr/9uHAdECC7jv9+sB0QKbtRXh3wXRA0nkyAuzBdEB5W2dJIsJ0QIvdmfVuwnRAKlrEM37DdEAXp5G4vcN0QGOWaQcjxHRAhr483HnEdEDg6Dzvt8R0QKeGnnXKynRASjVudf3OdEBr8olEzNR0QIij5TyO4HRAlaGBfrfgdEDNyDG+IuF0QMzhNF644XRAIMYy1o/jdEASZm4EUeV0QBgRwyBO6HRAnNipGbrwdEA69CtK//F0QAoxGAmN83RAzOmu1Kf0dEABiLUkwQB1QHxcsH1jAXVAREs5eF0CdUDNRHMSqAJ1QL54Zq31AnVAnjU1dZgDdUDBxUXumBB1QJTlok4kFHVA2nWRrVAidUDGk5j1nSJ1QG61H//lInVARUhDmXcjdUBS0dYfejJ1QFJgOfysMnVA0A5kWM01dUC4rI5Z3EJ1QAyUuFHbRXVAcB8oGvRPdUCOTlp2TVR1QFww0Kd3VXVA9gqzixBgdUB6m25IOGF1QOI7QMfyYXVAOatTymZjdUCmd2Jnd3J1QLoRLUSNdHVAO9xQIU2AdUDgmk6J5IB1QGpkuRx5gXVAGr34VK6BdUAcO30CuoJ1QGpY/NSmg3VAWl1Qf5qEdUDBfH7VvJF1QFsOXR1tknVAHttiDyOhdUCK0IXat6F1QJLWUt9Ko3VAizXpY5ewdUDYTs9sDLN1QFaOKa+As3VAS6fcusvAdUA8TMuFYsF1QBSRqy36wXVAyL2S7cvTdUBGbBDk4991QCpp+ZUQ4XVAsFlDngfidUBcSkpFOOV1QOthqKtM7XVAcg3miY7ydUCwU64yp/J1QOV5OncA+HVAOuu0xkgCdkB8vg2E0QN2QFQfmT1WEnZA9vo30QsWdkAQUdiRiSJ2QNMBL12QJHZADFpfCyMrdkBlvUfISSt2QHDWtzUgMXZAj2KlbiYzdkAgUl/7VTN2QAVL/jucNHZAxOlyZR5BdkBCLjIJyUJ2QNqLpkV6RHZAiPOtfPtOdkDvcvuJElF2QAIujD6IVHZACP7IaM1UdkCwygtwI2F2QAQKgcPdYXZARHRY5k9jdkCT2G5E3GR2QBdT5hhaaHZAEuyhnGmCdkAApXeOaYN2QCOUipiTg3ZAnsKrDnSTdkD6dVsvvpN2QAAx+vHrnXZAAqoVLg+hdkAGDDFVR6N2QMKA/8bCsnZAF6kwoXizdkCevDoKDLR2QIT2C0p5tHZAjl79oa60dkDsCX4Nc8B2QLq3EQzAwHZApjTSXlDBdkAUsAcQzs52QIIGD0F/0HZAspyJpJHzdkCOaqYTNAJ3QH6URSoBEndAOg4SwQ4id0CFAwVS6Cd3QFj0COBBLXdAphmjn4gyd0DJivRGnDJ3QPa/Y/OnM3dA+IErWA01d0BAcyLKnEF3QFL+PeauQXdA/rb6xP1Cd0BKDaa8kUN3QFtWckwbRXdAEj9mSEtRd0AOWxjyklF3QJ+gf2tzU3dAy9WaKZ5Td0B04PdnKFV3QKhcJOZGYXdAdGop7Y5hd0CNMNYbOWJ3QGyIbvCXY3dAtgrakaxjd0AbOLYKO2V3QDDruyYnb3dA2FKF3Ttxd0AUYJT7n3J3QCB7d6n6d3dAe4Z82JJ7d0DGIxNpeoJ3QPDM2kmAg3dARd86FZ+Sd0CYQC5RTZR3QHWwcZ+ko3dAzl5I3Zq0d0BLcVrWLsN3QB4Adtrux3dA/u7SzIjWd0Dda2yf6+B3QB1yQXZR8ndAZCI8nQzzd0BIRsKIdPd3QHZBrQR8+HdA5vwb1HL7d0BWq9uWRv13QA/Xr8XU/XdAFgmvf/gBeEB4gpORoAJ4QF5sHxlmA3hApvKuQeQHeEBCOhh/+wd4QJJKiy3HCHhAuhlZFEYNeECrF0qCIQ54QMHYC6vnE3hAWG3KQU0VeEACDE8xbiJ4QGr9yi88I3hA4c3t0YojeEDeRHJNRyh4QHIKzSabLXhAHaDTB+cyeEB2V1hsDkJ4QNIUy1MRRHhAgETGH3pFeEAMVOUry1F4QIb6cyOVUnhAWPRLuIZVeEDoQpYN8Vd4QOqaaCf7YHhAWPGcEbdheEDqvYaet3F4QNSSqb+LdHhA3OGkf/Z7eEAQfDuKIX54QPaLTDo5gXhAKFVvHKSBeEB0DwwPmoR4QNyiuYVPiHhA1jhuAamNeEDIlvAwl5F4QNaJ2RwEk3hAAb85D6eUeEDc60TvYJh4QCpXZbk6rXhAjOkhpX6yeEBq+dc6Ort4QILlfrQ9vXhAcSuweM/AeEACRKizB8V4QMx4tIy61HhA9CZ5oAL0eECcqvCWjPV4QCu12Yp8A3lAWsSAV5sFeUDCQSKXkRN5QMEsSZe9I3lAgmMCAlEkeUDEWyDMsih5QHcXCXgMLnlAprKY6GQzeUBi9D05YzR5QE35f2k9PnlABPjtrfpCeUCIxnwk/EN5QG97oUnMVHlAuNvYvOpgeUC0XZhK3IB5QC0Qeutbk3lAFn4u5mObeUCPur+baKN5QPpIgoemo3lAXF+OtoKreUAMX6P9v7J5QHxri+uJs3lAMJz2ggG7eUAE7RFwzMJ5QHbQy6tD1HlAPs6nCM7VeUCBzSCNEPR5QApzda74AnpAf2T72/sDekCPjTvAOgR6QBBvFVv6BXpAqlkJn/ULekASv/csURN6QOZTY9lTG3pADerfbT4jekA0z3Ah+jJ6QDhRVVQrM3pAZWsFZww1ekCQKlU6LDd6QByddlU4O3pA8bTM6o1DekDgLYm7GkV6QPUJbiUmVXpAntSldCJcekC+v2v/KWR6QE0wC6k5ZXpA74Y4XixsekChhhS0i3J6QOKReaAVk3pAWhnggR6jekDPCrVAd6N6QHdUZsQjq3pA2OF0w1arekDOYhG3iLB6QMLxjA0Zs3pANWHppQ22ekB+eiYsE7d6QJYq8a8bxnpAu2QYY0TMekBPlIKDRc56QG5TohC303pAbA79LtTTekCOFXCZZeF6QI2XENg65HpAMnNrIHrkekD0gLfDjet6QEIVl4w27npADN1wzBjxekDGTHoTafF6QDAZyYFq93pABNNKh+cDe0Aq49GlewR7QPvgqQgrDntA/2fNNfMTe0B6ekOiiRR7QCztNSFNFXtAlOVAU1kle0CcTVuZwzN7QMpZle5hPHtAx9mSRGlEe0BUw8h7bUx7QKpR8YMNXHtAmvpNvzVze0C1AY/G1ZN7QAIDMzzClHtACk3hrSOVe0C68CeIBa97QAJXLCUow3tAIhUaVHnGe0A8VYO6JuR7QJww66SV8XtAMi0lC4z1e0BPddbXkAF8QD8RvI/aAXxAviO8sfkBfEAE+n2uwgJ8QJbCDC9nBHxALszLe5kFfEDASyf+0hF8QKBcRUQ3K3xAttss78xBfEAcqdB2UEh8QGRSeDyrTXxAaoSKbttRfEDWA/W97VJ8QNSJm0YmcXxA3QyGsgJzfEAvwURg9XN8QMiTnTpqe3xAVXjKRXGDfEDcNTK6eIx8QF79I4nEjXxAkMa1jx6TfEAa04bsfJh8QB3JIsJZmXxAY45B65iefEDHw5DCwLJ8QGZ44SZ7tHxAsIIMZxG2fEAWWFfLe7Z8QHbQsc7Sw3xABMFOAobEfEAuH8UVytV8QBwWXRL323xA8t1eG1jifECxsmJ7EuN8QMr6VH3943xAniyFxKbkfEA0w+TRa+h8QK5FXtkX8nxAGotahFXyfEDedZDOAQJ9QILZhJBLAn1AAxoWCUUSfUDucrDQsBt9QOV7UH49In1A+BiMR5AjfUCUYbHhtiN9QPBA712gMX1Aflgw0ZYzfUCdeilw8zt9QBJS3tp6dH1ARysjkoB8fUC21+VKZ4R9QAjLJLmWjX1AoBHo3/KSfUAgFwPcU5h9QDzJwNj5m31AkKlx6pedfUC2qNqxpaR9QLihhggsw31ACHDIGNzDfUDoDLbt5sR9QAgJntL01H1ATf8g33HefUCPHe3Cbet9QC7wsC157H1A0l9GuJL1fUC0A+R9MwB+QCopXRgjLH5Ak9QZAUEvfkC6BSM2KzR+QD1+XIeqOH5AeYPFR0xDfkBsyL44pER+QFDwhwvNRH5AjkfQ6CdGfkD+Ff7vvUt+QIb9q4S4UX5AWPVlmrNUfkCMb0TKi1V+QEE4KtTdbn5AIjafMTF0fkAudOTItIN+QOGKUq27kH5AAbiWML2RfkAQWMnsupx+QETqQf7yq35ACc9MEfqufkBmHR6Jnbt+QAOIT6FUwn5AvxpV8dLEfkCyGzJtIsZ+QHxowTirx35AeiY8Z3PIfkCRoHBcych+QPTU72oRyn5Aqzqw7LTLfkBcuVzpzc1+QBjQCNlJ035AnEvSpHHTfkD8w/O+TNt+QKIGjNrR335Az4+Kd3XrfkC+5hNMy/h+QPi4KdrX/35AgqicxZcDf0BO3xATxQR/QO48l6fFCX9APFYOZaALf0CsRmLWQBN/QIk9jrCiE39AoHo8DYoXf0CZEmn/Rxt/QMpgb3iwG39AqG2UbPgef0Aqp7hHzzR/QJcXEGytO39AML4GkodYf0BCNCoBuXF/QIkuOQ20gX9ASM1jz6SDf0Cw8jukRo9/QCHiuonUkH9AyiOFx2KRf0A8LwdjpZF/QP+x/05Sk39ACrX+gpeTf0C2DWASQpd/QEyxFkRhoX9AQDp49j6jf0BXHDinD6V/QPPA2nqfqH9ApFcuDlexf0Cahf5gNL5/QMPGtD+9xH9A7sUBL7/Sf0AsrqhaNu9/QN5lBO2R9H9AGPqrouv5f0AtHf9ViAGAQGIFpEjlAYBAG8ZOrjMEgEDBUBgYIwWAQAwPovnQBYBAOQ4OVOUGgEDGLBs77QmAQIQdU+whD4BA/kD5oskZgEApphFXaiKAQG+CSPTiJoBAKmsHaZEpgEC+IkjU/jiAQHKCihupQoBAEPq4Fu9IgEAuR1iI51CAQBhX9eYTUYBAPucHqXtSgEDkslbgDlmAQCS+MgHhYIBAanSXcgthgECsJPjPwmGAQKqNMNJyZIBAHhOIquxlgEDqKDcHomeAQB6ea2NPaoBAoDOOtfpsgED0SxUj8m2AQOfRN67tboBA2LOu4ihvgEDfyk8KqG+AQHjQQ9D2cYBAYpESmBt4gEC1mkecKH+AQKFcwiYQiIBAHvs99R2PgEDFVEvWHJeAQK4rQsllmIBARsV93h+ZgEDSksS/HJ+AQLgCvOUVpIBATjOo/sKkgEAuGDdPeKWAQJ4QQ9eHqYBAN00PcA6qgEClhd4yE6+AQA5S9yGyr4BAuplrsmKwgEC2bRvBHbGAQBheYkhKs4BA1ibWMge0gECsWy+fsbWAQM5AV3EHuoBAKJd+Iwa8gEAZoOY3tLyAQK+ralyqv4BApLQqu1LBgEAkfys0nsKAQGfygKpTyYBAUfT4FYTJgEC7WwYG1MmAQPtggUi/zIBA5DT9g8/NgEBwjQ/ZBM+AQKKySW0k0YBA5M2A/0zRgEDYo9l0StmAQDHPivW/2YBAsnVCw8DegEBtD2mmROGAQEp6QrFt4YBA9GxGPhjkgEACXxckMuaAQLfx3uW+5oBAcCCTlPfogEBD9b+uQOmAQEyFvIOS7YBAIiVEyT3zgEAKRpYiQP+AQEt3KJ5BB4FA6pq0OT8PgUCwpwgXNR+BQJBxTBywH4FAyuYLQDUngUBoDMcE8yyBQNZEvbAvL4FA8vUVkr0xgUCav0EQkTyBQKYzTaEpP4FAjMXlsyRBgUDaFQWwWkeBQGQoRJkHSoFAKBorw7RMgUBec30ZYk+BQCbld1TmWYFAzC5VvOpdgUDm/T50hXCBQO8VoTrBdIFA/yfCEm93gUA8ssMaBYKBQM7PA3VXgoFAapJuxQONgUDMziW3VY+BQOCzCKGFj4FA+JwvRLWPgUBtdSbJ8ZGBQPiUTZNhkoFAvqLScgSXgUC5S5nAVpeBQMB0Q4ednIFAc9migkmfgUCaoYie46GBQAxcneL1oYFAMQRGxdmigUAyqAcMbKiBQCTa5O/xqYFAUFXE6EqvgUAg+2bQbbCBQKC1HR9Gt4FAeyM2nvnRgUDIZ9+/fdOBQOj3qevO1IFAjO9+XfzVgUAr0APRANqBQPLGCCr23YFAx3qLf/nhgUD2LVUBVeyBQBwbsMzs+YFAp0l/4R76gUCEfVyc8P2BQCrR4gPlAYJABuRcYfYBgkDnayB28wWCQOqgHATYGIJAAJfGhdcggkDAZAda0SiCQL+34c/ZKoJAfr03bZMzgkALFiFWCz6CQHVTbUlHQYJAPYwa/A5CgkC2HQ0eE0aCQKtIFA7JSYJAh4wlLWVMgkDiM5Hy4k6CQObK6o/cWoJACoXJRHFcgkDYthTvy12CQBxiHAwIXoJAcA2ddDVigkBIR8X1EGaCQJDDKHE4ZoJA5q1MTnNogkAsxTFC/2mCQNRKdqM7aoJApK6HdEd1gkA429sT+X2CQIwZBrpDiYJAvNsnWyWKgkCgn5Jc7Y6CQDIRHVgsj4JA7x31IIiQgkCCzrLDQ5GCQA4LCdnBk4JA02sstmCXgkAWu/7wGZmCQAhDMGo8mYJAn/1R3Q6hgkBhJRckPKGCQF/MjBHJooJAhqfuAg2pgkAl4CQANKmCQCwT4sJKqYJALTRHgMCvgkCwWmTXArGCQKf1XqwzsYJAtLppL7jCgkD5EMvqp8OCQGdMG+DsxYJABLkktl7JgkBcW6IJ8MmCQINryUL0zYJAH+vAU+jRgkBir3Cd+9GCQKD34DHw1YJAcrK3qX7agkBuncW7gt6CQI/JibmE4oJAknqxQKnngkBOXxZ19PWCQIs47nD4+YJAer9g1I/8gkB82Leh4QGDQMOtfC3lBYNARgKcMscIg0DO3tY42wmDQEDVzYDuCYNAktmn+d4Ng0CUIsEQ8g2DQA7KT6t5EYNAZEdps3kZg0AaYI8W9R6DQLCZbs5PIYNAxJ7H23Ihg0DcoshviyGDQIYNiydyKYNAgoZV62oxg0DNMUH91DKDQBSpx8twM4NA0FLslbc7g0Bkkerz20GDQN8HalWGR4NAzl0VW5NKg0AOnlyHmE6DQFCitBecUoNABrr/wU5Ug0DUA/TPAmSDQFU9hB+oZ4NA3mrVpfNxg0A0R8rG6nKDQAX8FEj0dYNAJnM9QKt/g0As4tkFxYGDQPMdxeHIhYNArhBb172Jg0CKm8t31YmDQJw2HG3CjYNAzYdO+b+Rg0AIHooNIcWDQF5X2cfMx4NAkD9e5HrKg0BQz5myydyDQIxem7l434NAysqEuSbig0AQMW20kviDQF59FXKDAYRAqs9opYoJhECMFc2FeBGEQLJ5yU6UGoRA/2mgwj0yhEB2sN7m/2iEQJTgpyz/cIRAtlb/ord1hED29QbiyneEQBXbzZL5eIRA2klir7x5hEC6xKqlanqEQBvq6qUWfYRAIM2OVY5/hEBid3MDw3+EQK8KLpz6gIRAI2CTOG+ChEB60/vdBYSEQNbadeIbhYRArG83ucmHhEAiS8VQIImEQGh68O52ioRA+BPX0M2LhEBAvRR4I42EQHuKi3h8joRA6FJnUM+PhEA+pB1iKJ2EQOIDaLhwooRA/KUC3x6lhEAy+O9uzqeEQLyXq/x4qoRA7u1VpGfKhEDuSzIvGs2EQNF7vfzEz4RAwOZniR/VhEA6uOsjatmEQMY/Ttxp4YRA8unlb9DnhECo7LRmY+mEQFzPryAq6oRAnn9VHXHqhEAgBX7EHO2EQJR+JyzL74RA4E0rjDXxhEAX7dthX/GEQKHeN0958oRAbwKijtr3hEAcB3+tNPmEQMkXCUeL+oRAhBRupQwWhUAyRvf2EBqFQJJ6+hldLoVA6rDc+GEyhUClEDkgq02FQHvVP0XkTYVAIkDey+dRhUDoVY5m61WFQB05BxLpWYVAmyaDZ6BhhUCOUd5HoGmFQEmiZH5SaoVAbMlrKplxhUB6id8btHOFQDynmIXJd4VAaa11BZt5hUB5s+tMWI6FQEZXCnR9v4VA0YsKAiLehUBmEoFjvOCFQMZbRA2q4oVAiIn3D73khUAa1knas+aFQJL58Vxr6YVAesM5yVkIhkC+di9L+SSGQFB70iwVNIZAb59S4KlQhkCa1XCI2aKGQEJn0s4ouYZAJRLYcNHEhkDk4PLo0saGQFqDijXUyIZA66UUj0fKhkDDHX0u1cqGQO4HFofXzIZASD/wL0bOhkCSCLgE2s6GQMiS8q/QEodAQ/OP/pAph0DKExEXkTGHQA7lyYqKOYdABFsvx4xBh0Bob2Khx7GHQJwJVUfHuYdAs9hsOcLBh0C8phlZwMmHQFV9klJ3/4dAnJPHtHkKiEBJBAXYRH6IQJraeztHgohAuGkwHxGKiEDjXqE8bpeIQEeFNHxvm4hAtsUYH1mhiECTw6J8KKaIQCvOK17pwohA - - - - - - 8nZ6RInLVkRBmdJFI+bERATiMUVEmQBF/p3gRE0/yEQL4odEwmqJRHfXCEcIvaREacHCRPZw3ESbHFNEET3XRDUXf0U9WLpFypPZRHEMjEW2/GVF6xu0RDuqRURDs6JEmt7sRNE+lERt1U5E0E1ZRJ3bRkXeCxZHf1dcRIAFU0Zi9aFF7KWKRJirKkXN+bVEdLHNRnHslUTwk6VE3SRcRHjNRURn/qlFvGkIRYJ/yERNPjBE2dFJRFm7X0S/UK9E1RFRRMPH9ERZgVhE8cqXRCV5gEXewQ1GWLg3RevbS0R/YI5FMADxRAD9j0QSEs5Ez3+TRIeu/kZp4vtE45yXRJYQc0VOczRGubaORZdo70RrGwJF0TC4RFuSxkYb0rJEnPHgRFNuwkU1VWREzJwcRX80TUdX9pRE/UwTRaTWbEYFOfZFBiXRRWqIlkTFGZVEq/QaRZIoO0W7JntE3XaARBdNjUS9FWhE7BaDRfPqMEX3HXVEfCrmRDS1O0SGUUxEqymXRQDWhkSNdRVFx3XLRJeukkVAtLFEcLjXRfnGV0QL4GNEL9KgRHgFwkRxChlFJnV9RDv8BUVs45pE6l9uRiv8OUS06IBEHh2eRK/TeUVyGwlFanuXRBN5RUQRv11EPEqlRD05PkX/fJlEqCgIRa1+Y0RUh5FEMkMSRSbriUQBeYFE5ydZRK7xE0Vb1tFE44t4RAt9mUSAjxRGbZCaRViFu0WD7pNFYyeaRD9mrkRvWWFEipOgRWuzTEfaRplEKwjgRBR6g0Qv+p1EDxwgRbO63EUxVsVEA7aTRPAQhkQaq9xF/AyPRbFISURqPGhHr3SKREJAFUXWraZEbIjIRPyW5kRb4XBFQom3RPWDqUaBEmRE05HrRTsTJEXaXg9G/6mpREBCRES0MtNEIMHARN/zRUQcmLVE2AOfRJ6tXkR3wIhES5B8RHVWKEVPjopEiSCoRAvTAUVzynNEByiRROg+lUSMs/pEehUARi92kkSJa4FEnKRyRIe7lURrO8pFlNGJRL3ql0TZh4hEI47+Rc9SYURP3khEI8CLRIZA+0QveSJFdWtzRb2GxUXyXzZEI09ORKOo3kQnRIRE/HLARLyHmkR2n0JE+J+9RLjLcESfN59EIpKIRJLjAEVrFyBFiB8QRuDbB0WFcUhG1UB2RNfpTETcWANFm23aRf9ql0ReiHVFiiAPRaXccEReImREBm+IRKLQjkSteK9ETUhoRBmYlkQ5AFNEshxWRIiddETL6tVE4tpXROiykURxy3VE8cuORCpSXkRgqIRGpwijRGiu70WPBidF4EksRkbUE0V5MbdEd7njRDWXZkXmAh1GXhGlREuUjEWXPrNG+D4tRSvM10TXsIdEJSiXRet600TZFFdFhYaYRKrxQEU9dXBEbrFIRlGLkUTjgJVEIaWCRFs//kRpf61ENpJQRHq6sET/9wRFmvc2RCoAYETht1VErH6HRJ3IjUQRY5BEC+R4RPqyhkVvFzpEKQFjRArDgERszZlE1ciBRBPpIEUdmZJEPPz6RKQroURNtXxGOeeDRZWhR0YeOJRFM+rFRFdz5kQ0mWtEPDTnRy1ijEZ67pNFJ0VURHnmDEZJwL9Gb45pRTIJTUb77YdE29SzRJuZKUV2UZtEPFrkRNe6TER/IYBE/gSMRMp+gkSN8TdFRORIRHgjnkXDHSVFSAZoRKiYAUXRqjZEVU9LRPXS1UTYlXNEKbVfRCuKRESnPk5EyYB1REQziERQU9FEchV+RHCH+USPvj1FWgaYRCwja0eKCHpEwy+FRPNY70ZEuaBEi8QNRWrnDEaaKKJEvEkHRRLQkkRC8qJE31aNRKYpWUUsXN9EWIm+RBEXh0TU2r9EvsdMRNfNa0S2BKVFtxMvRpHpk0Wjs49EtFoGRQh4hkT0LwFFfpNYRT1tV0T8mkhJwViLRfCCg0RuXk5E8xh5RU3mXEhuiR9HzHW2RlleXUVkP5JFoaSWRi5XzES9H19E7XlDRJLQ6kRjD0tEszHaRE3CgURmlwlFw+yORS6y1EUx3C5F9pinREI3S0Qq/dBE5oX1RZsIlEbLEElGn15oRfGtcES443BEJ2VBRIMexUSupZhF2+A3RE9IXUQvUzxHztSQRnP7Y0UAs7tEGQP0RL4LiUXPTY9EwOiXRO43Y0T0g7ZFqmDBRCjoDUUmso5EWmGZRFlzbkS0FdZE3W2+RLYyyEQ4nppEPpE+RGoNZ0SuuohFzrvGR6wCHEWqMstEpUBxRO7dtkYiTypFRK0BRgXaOEUe6ltEWexsRLnDiESRC1ZEZgzoRawUP0Xw2DhFDKXcRJ48m0SMZqVEz4XURQVjt0SpSapE303lRMvcXkRCuWtElTwrRKhDkURqioxEX5VxRF6Si0RUsOVEnwOnRFetmESXNnZEQfqiRU0wKkYHBYRETtCCRFjlE0VMXQ5GdoEaRUsxp0RdsYhGO38URtC+jEQlGSpFFYp7REqJOUTDL3RE+mP+RCmwgUTpljRE2F2BRJbLQ0UWbI9Fs/WgRmWUoEROHDJGcb/iRIh3fER4nhVFCLqtRa9HhkUNO4pEDE+URR5amkT9wLVEOcjBRPIUgkSC3VxEpQGgRGpeVESmKRpGBe6PRa471kRHgvBF/USeRf4mlETFne1EL9GERI3JCUVwDntFJqM1RM0bSUQSd+xE+SwyRHvGhkQWbNNEgAvpR08rGUVtHo5EWkYFRRE1jkS0YdpEdLvdRowMCEVRLZ5GD4xKResCSEVdeNlET+ttRDuPL0WxbmhEM2RFRNVT7UTl9SBGGvmgRasTXkW7IthELfLURHafUkSK0VBEHpBTRHdtekR+VAhFJaVNRBICkEY6JXpFdh5dRDujUURacJxEJFjYRBtKIUUDRqBFsPChRLrR0USrJ6pE8Ig5RTxwIEWuzVxE/9NYRARTg0T8XbpE6S9URHW8fkR8MXZEnQedRBXKRUT92nNElZ1+RMVVWUTFMVxEwIlXRPbMO0R/5KlER7eQRbziSUSJEZlEehWtRAlDWUQK/G1EvEuFRASuCUXm5r5EVBBoRES+lEQKGo1E3v66RGC/tUSkJYJE8mPNREZVZ0R2V4JEk0V2RKaqlkWVmGdFmzVxRFa6NEUqO6RES/RZRDpmOUSUVYdEdgiBRIkIeEUuiH9EXdppRBaUeETCz3ZE7soYRp+WnURXnMRE6qv7RElyV0RQ4kpFfE+5RCfphETAtwdFbIMTRWl8QEQ8gX9EHCeCRPrBUkUzBnZFxYnCRNMq30S2VdpFoP3URCH4e0QQcmBEWVCcRBUPwUTFf4tEHz5IRGkNckSsBHJEuRIMRRSlRUTnXgdFRpjYRADMTkWB615Gl42aRJrbokX5SFZEXixhRMEPlURZhvBExvC9RB+gs0Ze7XVG5hqtRQyDi0XuD7VEepEWRQRb3kTpvV9ERxALRZZQzkSqO0FEX0ITRkxVCEXqRl9ErvahRLWp1ET+b1xEwS/RRCtw+kR1HQtFWNRPRIdEj0W6PrREL+yqRLpvc0TzC8hEr+e/ROxBBEUlG99EWrFWRGWuhkSvD7lES6iCSGx+TEXYC+RHAu2MRPuPykQC8F1EPc2MRDs+jkSoWuFEVd6LR7RWWUZAjR5FtXw6RbqDmkVJAeJEbbttRMnIb0T4WLREip/ARKBJjURjB1lE1HXWRE5nRkbIxUVF3c1lRXGeqEaYGpJEK1aIRVnqkUSrUBtFS9arRAr4ZETNC3xF8GeQRHJmtUVHX6BFkJHeRJAN7kRxXANFGbWDRMrhW0SoP2VEkzyfRP2mgUSN2HhELCWWRCve1EXz/mJEvoveRBnBxETVN69E3SVJRP1p3kQxJKNFGSY4RUQJz0Rqv45Et8JvRIeJt0TWLq5E6z8FRtFobkTnul1E6KBJSJB04ESoBnpE7/PoRwpJ3EZ069ZFS9UtRQCPbkRbjbdGPu/0RIdcMEbWjq1ETRNBRVYRlkTmNy9GRH1wRbzKFEX8jldE3pc8RLS5V0YCp/9EKh0FRkNhA0UK2LpEMp5FRKSH40RSZmZEeIiyRLWiqETWaKhENNW9Raj/PETgBYxFtLySRB6FTEREb51EFay4REFOU0RnvsNHh9lHRAuSYUTcXINESbahRJOXE0fZrnNExg6+RG93OER5Gb1GZ9SVRZXex0XHAntE68wiRUzWDEW5MKlEqnw1RNulQ0TlXblEhjE+RPSzRkRardpHzQhtRM5efkc4kGBGpoyoRcpIVEV6r5ZEdpP0RZyfhEVg9MNE06GPROIBpUVYgUZFDKV3REUBNkfPeLRGQ3CzRPHP5kVlHCxFAbpVRKd9bERBBN5H7uU9R6NXukTQMHtEtXvkRqptGkWp9PlFiVdkRWipbUR7tppEmXNyRG+Ut0S27kREoQuDRVZuvER7bTxEuyyERNzcaETyfmZEk6aHRR4HikRsuxBF731rRFitlUZhDDBGCtaMRQrXckR0lhpFjQ99RKu8ZkV6Nl1F+riFRG3DI0WBMVRFwgWuRPcEz0QO9YNGmtM+RQcOs0QXXUFErNc+RCc4r0Vlf0RFLMxrRSHQKUYS6w9Fb824RHOiK0icRSxI7xGBRJTmuUcjkYhEoHkSR81zoUSZ1kBGmHpHRVi3gEXMkChFv6fhRIlOKEX0XFhEuLg7RAGDcURj8ZFFrMdORReYxkSal/lEUYSCRGuiP0VyvR9FXRNTRGoJCEfjfHpGaW1jRJ1mK0aB9bVEGqglRZKxy0XaN9pE+GaQRRU9VEUHH09EUeKeRIwQ5ERh731EyyiZRDFJd0SMe7ZEyIwbRXEDc0Tty0xGZ18XRnKC7ERMeuREdHb3RjjVfUYSiDZE6BAhRgfQEEW6WMpEDSsgRQy4qETWnmhExPmQRJZIlkTI5dlEN/+9RKkIskTeT+hEYgS9RAPcRkRHeUdE7K23RKhzMkSxbtNE22WxRpIpF0dvMNFGZY0bRWIERUbMURdFAsZ1RLH7PkWbq5REgRYYRiMdr0WwBkxFL0txRP5fCEauDb1FqYILRfpEn0SsjIREhB9uRBcIpkVpk05FAzOFROuF+USeFaVEe+GSRFegp0QhZLxE - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - /7BkywzBckAcwpuMJMFyQGH3qPZuwXJAY9h/JE/CckBirED0psJyQDhVed7kwnJAdFeT4zrDckBYEsbDosRyQD69fkrFxHJAxCF+GFnFckCBlkQW/8dyQBwCXyUO0nJAEqfdgkPSckCYy3rZdNNyQBLD8fdl1HJALOohrdzWckC6jo4Fz99yQMJrgZW64HJA4uBE/ePgckDCsAJqUOJyQOBjZ7yP4nJAlHpjSyXjckBg5E3bu+NyQGjzF6C68XJAztMgj1LyckCseiISnfJyQIyYVQ+383JA6AUS9Q70ckBG5G4+ovRyQEeJ/jXC/3JAQmUDNWAAc0A2Jpm0+ABzQDyPe5iOAXNAivLivsUBc0B4eLTEPAJzQKVwbDvQAnNAJB354foDc0BQbpouIwVzQDyge5sHEnNAcFziZSgSc0CqXjUudxJzQE6FLiC9EnNADg2HcAUUc0DRiKmzeB9zQDKl7Ym3H3NAcMXdF6Qgc0CCLS9POSFzQEwtUPplIXNAilUCqXcic0BkuyabyiJzQC9mY7cPI3NAYinEwTokc0BhL2y+ziRzQF5G8edaMXNAIIE1mw4zc0Ajrqmb9zNzQAJi99o1NHNApqWcJbk/c0DZS91MQkBzQE6tuDvjQHNAq0hZFnhBc0AUsQaFukJzQOraNax5RHNA/AseWZlRc0CkJroZQVNzQEaOpDWkU3NAj+z7hodUc0BgS4Ys8V1zQN7VgUD7X3NAYY/3ko1gc0Bus/plHGJzQDYAIEg5Y3NA4mEE049jc0AgusIrK21zQCrwO6LbcXNAatJd8VJyc0DuEhb0anJzQAiF9kCFcnNAjnMx6U5zc0CYkN2ZtnRzQNSfBFZNdXNA2Hyv+cN3c0AOQcxy1XdzQJyLjQ95gHNAO94F2aWAc0AK3RWvC4FzQHdWQBZegnNAJlGI/AyEc0CPmg+4hZBzQNxWS1ZNknNAqMh70M2Tc0BEzN7GYJRzQJZf3dT2lHNAigY2moyVc0ACDC2AuKBzQAS2e4ThoHNAaR6mw02hc0BuzaMSraFzQN/OG2BaonNAAkeyQMSic0DOHwF05qNzQPsxQewDpXNAepn0t86wc0Dehvgaf7FzQFhDi79ZsnNABS0KqLazc0DxJreuDbRzQJLIJJj4wHNAUudjvM7Cc0Ac60OSJsNzQErKj3DX0XNAaqbbltzSc0AO6GwD99NzQNnHYdDi1HNAkkrBUTjhc0Bu9WlVeuJzQCxdFKgQ43NA4EPRC6Tjc0BfdsN6OORzQFrhxdWH8nNAcBMPwDb0c0DuX8ErjPRzQENld43jAHRAVAEvKXkBdEAnsxtRpgF0QI56rQK7AnRA1PZEvIkRdEAepigCTBN0QGA3zr1KIHRAg5NWJLghdEArGFFfZyJ0QDePMMFZI3RA67lXWlQwdEDGWFRsEzN0QGppx9DgN3RABV1I7Ds9dEA+4nJ5yUF0QOqjY1tJTXRA3FTrSfZUdECdMHH1i1V0QHBvE8TbV3RAhFQn2iBddEAeG4hFuGB0QCzsimUIYnRAOhTOzntidEA4BUlhI2N0QDRKs6MQZHRAx2GhXE5kdED0PyFr1Wd0QKBpXz8jcHRASjjyDEFxdEB1Eg2FOXN0QHeqRWM3dXRAJjYOE/eAdEDOq0JOToF0QJnczWdLgnRAElQftdOCdEBD7arBJYN0QN5QPi27g3RAcCZGcRaQdEA+cAJpUpN0QF3Pkofvn3RArmwjLqGgdEB0cTbzz6B0QJLzYxw3oXRAXmDiUXqidEDmboS3uaJ0QDDnDIgPo3RAZqcu0l6ldECAUtVu/K90QHJjt0TCsHRAAOIX1UqydED+790/b7J0QFLj3Fr6snRALyxc0Mm3dEDM4uGcFL10QP5yZREfvXRAVH4YzN6/dEAg6KD3eMF0QGLzJe3rwXRAHOROWArCdEDoSpZcUMN0QIjRUzS8w3RAiI7woCLEdEAID+5Ke8R0QDwWeg+4xHRAym9fQ/zOdEAyswoePdN0QAchPsDh03RA8n9AMs7UdECyPvcsjuB0QIICHsO14HRAFPxlTbnhdECIRVzY+uJ0QNEikr6P43RASPOBb07ldEBXYPlVvPB0QIZjoLSN83RAt/R//6QAdUCKY+aZwAB1QDb7Gs/MAHVAVBEXQWEBdUB6ZCJJXQJ1QJIplBCaA3VA/P+Hy84DdUBPdcCDmBB1QDhnCtIjFHVAvjmCm1AidUCITHvDnCJ1QL5rBdMyJHVA4NaAAHsydUB7F5uaqTJ1QIqawvI2NXVATryYBMw1dUCCGIg620J1QOsOwPDpT3VADAg6sgZQdUDUrICRgVF1QK69MTZ2VXVAGDORZA5gdUA2SBwJOWF1QCri3/PyYXVAwdSRdGZjdUBuMb+4dnJ1QJHKxGx1c3VAZLN5e410dUDnndyutXt1QAY1WJl5gXVADuYUk62BdUB3VHSTpoN1QDhlAmmahHVA6mmdYYyQdUBWANzc0ZN1QJgrXBXLl3VAmDvwFJCgdUBuuTjHtqF1QAYFnSv6onVACUKHgEmjdUAu6jvPoah1QDR1NloKs3VAvP2J+PjBdUBBUyqpzdN1QFpfJL3k33VAnL2fvg7hdUB2LohdB+J1QElDTFhM7XVAymfPkoPydUAWTnfBpfJ1QIouZnPz93VAEMiajQH4dUBGoObfJAB2QFyOTUJIAnZAuHsf1NADdkDCapEFVRJ2QKZRUqpNFHZA9PeolQwWdkBS2nwGiSJ2QNELtyGQJHZAv3YI5UordkCs/9CeHzF2QOd8PtgjM3ZAeD7zelMzdkAHdfW/nDR2QGdXmTBMQHZAFlgCvR1BdkDm8eKzyEJ2QITxlW15RHZAui8WzMtQdkCPPqwaE1F2QIQAPGvNVHZAVrxtbh9hdkB9iHF03GF2QMLNbMNJYnZASVKvytlkdkB4/Iu1V2h2QAwnMcZigXZAhwKkGuWCdkCwSBdEaoN2QC8QpV2Sg3ZAQqLvoOqddkAIKsXaDaF2QA7i44zBsnZAK6uGg3izdkD01xwLDbR2QCA6UFlOwXZAhq7ZxBvEdkCi7uYmz852QAI0CET/4nZALZdbJJHzdkASzSbnNAJ3QFwWFXQBEndAMh+8ydMed0AHv66DDyJ3QLhxyKzoJ3dA1NsafkMtd0Bsf/SdmzJ3QC4HuVClM3dAT0wXCw01d0AF4yI2nUF3QD7j02GQQ3dAS2NiSRtFd0Cl8Jg0S1F3QEWUmZiSUXdAf962j59Td0Cpk6jBKVV3QNXDWy8NYXdAnD2DYpBhd0BW7VBTl2N3QDfran6rY3dAZKgAPydvd0Am2PIOoHJ3QO65Wvv5d3dArNn3LweSd0DVHlqDTJR3QEAYYWqbtHdA0lkEYOTQd0CsaofCcvd3QM7ENoR++HdA4I7QIXb7d0CmXdeaRv13QKg+cPLY/XdAhpsu/HX/d0Cw0xMxoAJ4QMamZa8jA3hAEpNMpWYDeEDOnApG6Ad4QJayECn/B3hADrgXmEMNeEDGcPQpWw14QOBPf+1uInhA/CO6uz0jeECJKhaCiSN4QDVeL6J9MnhAjAiu/wpCeECEEJdzCUN4QL6/KqkSRHhA+geRpHpFeECErjsSy1F4QNVk6TmUUnhAAlGvb4hVeEAQMVZ97Fd4QGCSOyahW3hAYCRYx/lgeEAeLnQzt2F4QGxpJcG3YnhAWLplx+tveECkYZlkUHR4QJjMW31odHhAQGuSi4t0eEA8/NvYu3R4QDmlQ+zOdHhA/HJBeOB0eEBIeWNj8nR4QJ8EGC8udXhAityglPd7eEDCm3gRpIF4QEsjPCXPgXhA+K0CZPuCeEAmPplE/oN4QDjcJaOZhHhAODD9eU+IeECpNpDUqY14QASWjIi6kHhA7n8FbJeReEA/sgIWA5N4QPZi3P2nlHhAc6PInUiYeEAKtAfms6R4QLmDBGo6rXhAxtzVbTi7eECpZR/ay8B4QD5YGI34zXhArK31iDHTeECQNxHrt9R4QOggAV2a23hAmjFzsojjeEDFJTtvAfR4QKBX+muM9XhAzLrFdiX5eEBrdGVtewN5QCieXesQBHlAKFSjYJoFeUCHQMXEvSN5QMcrpKb5I3lA0BJs81AkeUDQzHILsih5QKh1CxEMLnlAJigZuWUzeUC6ktaEwDh5QCY0kMf3QnlAoPDqQ/tDeUB5PGdCzVR5QKI2JLPZZHlAmDHo60JzeUBJq2eEW5N5QHoi3Oh9mHlAkLtmUGObeUAitAz8Z6N5QHhLFsqBq3lA7EVXdMCyeUCkIEGr/bp5QM3T01LNwnlAZd4eB0LUeUC5IemfyNR5QJDz5IHL1XlAXHQj0mHjeUCUAt58TeR5QAAVQU2M63lAsJ5xTzvweUBg9XmGDvR5QB7Uk838A3pAUH3sy/gFekCqjMimUBN6QHIRw9ZXG3pAuJrlWDIjekCmsPd7YCN6QOijVx8rM3pADobd/As1ekCYm8Y1MDd6QLePMvAvO3pAdtj9RhpFekAUUt4/zEt6QA56ZKAnVXpAuNIMjSJcekD+1dpsPGJ6QC63+w/BY3pA8mf/mSlkekCSKEhmI3N6QMiIfhIeo3pAfCkmSnejekCQv/WHI6t6QFhlbysTs3pAZaiBXA22ekCEmVHdD7d6QFQUbe0rw3pARFpmOxvGekDf/EhXQ8x6QOi+R3RAznpAFsyhTR3SekB4HT2XeeR6QKOVcmc27npAJD0xweYDe0D4yJHjewR7QN0cT3YpDntAekOpK/YTe0A86Fg7ixR7QLAXe4JMFXtA9e+hVFole0CbOM6ivjN7QLi+3B9iPHtATY2iMWpEe0B4a7FHckx7QKLQ8O8PXHtAXMb8cuyQe0BMyvwEw5R7QGlnnbgjlXtA3uBmjy2le0DjXYGoN6x7QPAdTS96xntAtjyZTSXSe0DGjM8RPtJ7QBhZG6n91HtABCvBnP3je0D6YuzcJeR7QEaND82W8XtAD/1D+Uvze0CkYjxqjPV7QCg52DTaAXxADuGq+WUEfED4l2XvmQV8QKwuWeXREXxA2DmrmzMjfEDu4j+QzEF8QFyd5t9QSHxAlJ7tYJFNfECWimxU7VJ8QCPp6i4Cc3xAsty60PlzfEAEY6ZXant8QABc7iVyg3xAArrwJneMfEDWR1Fjw418QIqR/7Qck3xADQp3hFmZfEBzezN3mp58QP7xIpnxo3xAnErw0HyufECBVOPid7J8QI7vKiy+snxAil8ra3m0fEDSzMuQz8N8QENGvn6NxHxAghdRMPnbfED2Tq/FV+J8QLQAiocQ43xAKm3uKPzjfEAUCR8Up+R8QNrpP9ps6HxACvUwSRbyfECOgxWhVfJ8QJ1owqUBAn1AjiKxLUsCfUCNlcsLRRJ9QLmysxOuG31ARsHjjfchfUBRA1jlOyJ9QCIItUS1I31Aavw/ep8xfUAmoNmnnzN9QOB8Wz70O31AsD05ftxnfUDagZfFeXR9QIR9rl6CfH1A/hlRbGaEfUBoAig4l419QP0cxBXxkn1AX25BmneUfUDYrQzhL8N9QG7eU9vmxH1AgMsKsfTUfUBCXAUo2uJ9QMj9DRWQ9X1AvMGebzQAfkAE7ff+ISx+QOQPdIRFL35A+HtXWC00fkCdr+d0Cjt+QGeqinBKQ35AjPk2iqNEfkBSvQrrUEt+QEbuD+lhU35AsiT2EbRUfkAkDqMujVV+QI7NdOs7WX5AsFZ27zJ0fkBRGckFuHt+QGgdO5ueg35ALOnfC8qIfkDSZdDo9Kt+QBDiyAgNrn5A47xJnlXCfkB5dSdi0cR+QMaBS3Nfx35AnO9jJ3PIfkCv8MlpsMt+QJqd/U60zX5AgAkNtUTTfkDc8YgX29R+QBJG6lHP335AOrcAT9nvfkAn4y2/kQN/QH2aeJKZC39A3BUMukATf0BYf8cipxN/QIWrUbRHG39AR3g3yqwbf0CPEZnoajd/QAS2MufcVH9Aro/Haz5Vf0AkerYWilh/QJgFYJKRXn9AiHmAUbhxf0D+QWaQ5HR/QB1avB+zgX9AbCM5gqSDf0CSJKqvF45/QEr51FxjkX9AoQ+9GJWTf0DElDGcX59/QMbveY5eoX9AuHJgCkCjf0BMQGP/nqh/QJCSXEpUsX9AievGpM/Lf0CmrWPgxtJ/QP7b3dur2n9AmIROcTfvf0BI7C0uqPB/QBw7oQGQ9H9ASlry6+v5f0ArernmhwGAQErtbDfmAYBAwkZBsDMEgEBvLkJ8ygmAQOy5sWt8GIBAeCVd3WkigEBV2Uca5CaAQG11ykmQKYBAOPnM0+wpgEBY7Gn3Zi2AQApxt7MBOYBAEI7Mo6lCgEC8ZSgn9UiAQMSIlyphTIBAZgHKredQgEC7gSVLE1GAQDpLozcOWYBALeV7nMNhgECLBNfS62WAQESIVgGiZ4BAEsyYd05qgEASyD/9+2yAQP+cyALxbYBAjsAliyhvgED+KhFWqG+AQDCZJrH1dYBAAHl1MBt4gECp9KvVzniAQEhnlR8of4BAZBNp4eaGgEBktz/RRI6AQCizsn0ej4BA8l5bbeCRgEAS3I+PrpSAQLmNxE8gl4BAjiI06OSZgEBMwWKhkpqAQGzA4LMxnYBAmz07Yf2mgEACHiD2h6mAQF/2rCeeqoBAS+FwJxOvgEC/2nX8qa+AQKTfmDhksIBA0zUUgiqxgECjkEea2rGAQJ32253GtIBA1pVxH7G1gECUfsLxV7uAQN0lDWMDvIBA/dkvMz28gEDaHwcetLyAQM7z2ZvvvoBAcgxWhVLBgEA+w6f8nsKAQAYUGRKyx4BARl/vhBnJgEBnpqCVU8mAQG2nGezVyYBAauYGcQPMgECOBi3VB8+AQHZj4RMt0YBAiIFqf0zRgEC8X6O/YdGAQOYPfNBK04BALnHzo0rZgECpymuFv9mAQHDkD4XG3YBA7N8B3MDegEDZvC2/ROGAQI+7w8ps4YBAIyQOFRrkgEAX728gv+aAQCzUy1xL74BAHJmIKtLxgEDWGWJCPvOAQC458THr/YBA6L0vLUD/gEDzNoseQAeBQNTEPoQ+D4FArsl5fDQfgUACDXryNCeBQEd9nPpAL4FAOIdkiLwxgUAObyKqKD+BQK7sFjouR4FA7nd8EFpHgUAFyOGnB0qBQDjt0fiyTIFAdiLfscJWgUAC9ZPE5lmBQDlKsHqqX4FA2l65KrNigUAaDwv5V26BQCcmSPrAdIFAHnRUUG53gUAUa+6i+nmBQNJSENHHh4FATF07sQWNgUB2t9KdVY+BQKjFfD/vkYFASwvN41SXgUAGINJtnZyBQOnpQxRIn4FAAPC2peahgUDnwPohTKeBQHx9NPRtqIFAvE5gkeypgUBEprofSq+BQAAi7vhMt4FAGG0L20nCgUB9EdU1ScaBQEj++KHeyYFAFQJ3dvnRgUDGPpd/f9OBQFTALuz71YFA92VoOQHagUCCXnxi9d2BQD7MZmQI3oFAtsploOz5gUDNtGCmH/qBQKJAXM7v/YFADNzoweMBgkDk3APg9wGCQGI+1NvqBYJAM2q7MwMJgkBk5Qvz2BiCQLDDXjDXIIJAhEwrS0sogkD6/7eA0iiCQMfmPEoLPoJAE9TTVg1CgkDer5gfpkOCQJ6R/uYRRoJAv4Kb38pJgkD8LCI8CEqCQNeP+iRGTYJAXx9YygZOgkCqMEn6pE+CQJI87LoIUoJA/thjY+BagkD2ABIAn1uCQGD4BOhpXIJA4PjPFzpdgkA6yIuYx12CQGJpkwQ0YoJA8MPCWTdmgkAS+D7xQmmCQATDEG49aoJA2g/2uN1qgkAFx6qcznKCQENr/Z/TdoJABrC1fpR4gkC4OsqlwHqCQD4gayUJgoJA1KQOsi6FgkDmYQZ4Q4mCQPz7Ys4WioJApue5Bi2PgkA4AXwLRJGCQH4I/yTakYJAiit32TyZgkD24egqEKGCQMCdwlA6oYJA9L0Fpg6pgkDUEhCkM6mCQI47j1gFsYJAmX9ElOzFgkBw1n9MH8aCQDPxXtLvyYJACzGcreXNgkDAgzvj9c2CQKfrskHp0YJAXDkYA+zVgkCkQ3gP8dmCQBBz37V+2oJANqr+w4LegkBsOm5ShOKCQJZfYd2+54JAZk8UG/T1gkCSiDjz9vmCQJB0uvP//YJALEbIeeEBg0B30wUc5AWDQLSW9PinB4NAayO4MsEIg0BSI30KtwmDQHRBOhHaCYNAPBfEmd8Ng0A0BwSNeRGDQIBPtE96GYNAGA4+/3Ihg0C0VFdCiiGDQErdZ3ZyKYNAPC8StGoxg0BN/rbJbjmDQMuShCLbQYNAgD/l4vZCg0CNGATyl0eDQHgXdqGTSoNAWn+cmpZOg0DsH3UemlKDQOYybIHEaoNAUDcWE/Jxg0Ay4NFH6nKDQP21Q2D1dYNAOTWfoEp8g0BaLaLwxIGDQBn/n35Kg4NAlQUDksiFg0CwBI4+wImDQDQFH6SWjYNAnGhKi8CNg0CgZwEx0pGDQJx34dpRqoNANqUz3x7Fg0AKsuzuyseDQPba/zh7yoNAwF/8XMvcg0AYECoIed+DQAKcauGCAYRAtAeZpo0JhEBmZCOzdxGEQGAzu3puToRA4q901LRWhECln92CKFmEQAAU14n/aIRAQFL0zvxwhEB9OQDRInOEQO4YwGK4dYRARnrhXMp3hEB8Qf7e+HiEQJmbERC9eYRAKF4ToWl6hED2AlBGFn2EQP7vqRmzfYRA2DCngcJ/hEAmMfLstYGEQJeP+QdvgoRAAjESIx6FhED2Q6a4yoeEQDLhjLsdiYRAlsegZnaKhECYf7i8y4uEQJie4RUhjYRA2BS14NGPhEC4JPtE1J+EQMgGp5NwooRAyudaGx6lhED2sdPjzaeEQBi7BIFsqoRA4LgdhBjNhEBKff9Fgc+EQKSmAW7Dz4RAZBw7HmrZhEAOJiyraeGEQL7ls65i6YRAYLp1JyzqhECOyChrbuqEQF7pZAQa7YRALrJNcsvvhEAevxyiNfGEQBf/RKph8YRAxhJApyjyhEBV2WJl3PeEQMJf5wU0+YRAVsiQUSsBhUAmk53BMQmFQMYBi3FdLoVAHN0Xx14yhUAsrhpIPDaFQO7feTKMOoVAwa5lL+RNhUBdRMj751GFQJ4tlnPrVYVAkYcKeKBhhUDcNRowoGmFQGwrzdiYcYVAgFqJ2bRzhUAdDvqlmHmFQNIprLm7e4VAxhaVdJCBhUAZkldTrOKFQLJ9BCGv5oVALBdZpWfphUBlCfcuXAiGQH0ljG6dVoZAlHMPhYZihkCAqgedJbmGQAEI9TMiwYZAmhiU8tHEhkBw5iMB08aGQFhKPYnUyIZAPsT1bCHJhkAnQWjnRsqGQHjo85XWyoZAYIAAx9bMhkA4AmkYSM6GQIASC/3XzoZAvbdPqqgFh0AqKooVfRKHQN801yqRKYdAPL2FkgEwh0CYpfj/kDGHQICw7lyJOYdA/gVQmo5Bh0A4fnl/RkuHQEgl5NNdbodApPBascexh0D6/iQqybmHQDHwm07BwYdAlp/f70R+iEB2udY2SYKIQLrT+PxIhohA2Q/0MG2XiEAS7nrF5ZiIQPwkDENxm4hA6lMqGPCiiEBXoLHdjqSIQDlCZNsmpohA + NrgMGZxjZUAoFld2zuNlQHFahe5LhGxAiTDsKtfyckA4Cx9LflN1QI5fI1AWxHlAEbfdeMiDe0BVureJLvV/QFLjN+9l2oJAjgqmYSMTg0DhC5bkkaKEQLsQSweFO4ZARTlgAR67h0C7PzkxMcSJQEVoTivKQ4tAu24nW91MjUCJK0fSQoyPQOzf8aKabpBADRhkNUIikUC/LslDiK6SQJ72VrHgupJATlcnObR2lEAeDk7GNn+UQNAks9R8C5ZAM9uLEvUCl0DkpHY8hqeXQBfxXhorh5hAXgUOFUFrmUCWu9tKzPOZQN3PikXi15pAEBxzI4e3m0DB5V1NGFycQCScNouQU51A1rKbmdbfnkCmacImWeieQCtlSVcWUqBAGkkQjkJYoEBz1EKVZR6hQITwe145eKFAlxVj+3XMoUDLBCtZT1yiQGhGISWU3qJAi5CmY3o+o0Ao0pwvv8CjQEscIm6lIKRAgV3PNuKGpEDWXYvXveqkQKXnJjTt+KRAL+m93uCwpUCYKdmgDT+mQIh08OUDd6ZAE/+Q5hYFp0BpWpfKK1GnQNOKDPFB56dAGG+PyElRqED3FGTuTFmoQFCglvVvH6lA - + - UTq9RJt/UkRgRPpFZJLTRGG2dUVdzLlEW9xbRaXYX0QSKJZExnWqRKgliUQXf4xEX/0HRy+qm0SbD1ZEdU5VREBBOEUJ4bxEwNWERJHBkkVXAbdFgiKvRCgufESXtj5GYuxbRNannES2CrJEpWyURMd4R0QbFEdF49tYRAHpzEQP8Z1EitO1RE88gUSg7EhFOxUfR0qnYURCyKFE5H1BRJHAl0RvUoVGbGiYRbVlQkX9xl9ELK/PRKipuEZlAr1ENriURFaXDEW7mYdEvxVgRA4p3kUXUfJEqYqLRDRfiERwz0ZE8SL+RHvFo0Rkrg9F0e2YRY1ndkTjdRVG+STgRMKQrkQfu4FFFr+pRHOYeURnleFEAGeGRJd4mUSHbBBFdK11REOC8kbx1/dEFQgLRfJOjUWHwwxGe9YdRcn3l0RpA+BETpr/RInGA0WRH/JGOV3ORCxKzUTKGYhF1dCpRNBkM0Uv22BH/0jiRNVelUTww1BGsmZ1RE2fEkZ7RUpEETmsRHvXj0SWnBRGshP9RNKT6kSctupE52+YRJx0pETvnWREeFM+RdQ/QUUYPpFEiB23RQbq9kSWgllF7rmcROk9zkQ3A7BFGLbcRRA9nURy49FEhszxRLqVaUR8jU1EpcDiRNuvaUSLp6VE/meWRg0cpUS9AaVE+EOrRAdZQEU7Lq1E/PMDRUjohkT4nIFEE86wROnZjEQSzT9FGDTrRE1g00RNU6NEkqjiRCSVD0X0JwRFKEAeRsTSdEXlRaVFwrdPRezzfERSN3hEX5MKRfkt2UT88LVFtENWR05jKEVY+7tE21IkRX2aAUaFB8JEigeARClOt0RpP8NF+jP2Rf7EsURM8S5HdvWRRC4HB0WmvNlEyu9fRKAkmUThKBpFxLB6RFCzOUW/XuREhx1pRGXNckamCuBEIi/JRbQb4USXKNNEHxPNRQTFtET0M8NE65+LROjsxUSBMaNE7k3XRKfgj0QJT5BFl1rLROdoZUR5X2dEaNjiRPHrjkQv2KtEj3UpRSzWkURl80tGFIabRF/taERPvupFhU27RAvqv0TX+8JEYcapRPSNAEbypJ5EoUylRM9J4kT/zA1FB1/zRTILAUZ1h21EJkp6RWg/jESdPFVEXhwjRTLahkQUWXlEiRttRAhOvES5K/REAvbcRHorK0VCKAZFszqfRb3EMEXZIk9E+/4xRpOfZEQVQgZF7SnKRTleh0WolBVF71J7RFOx+ETOCgNF07OHRLdZkET1dIJEtjKbRGZfiUSFk4REoujDRHQe3kTr5o1EJlaVRGUZskSy6ndGnrFtRMyz90VOOctEJlngRKmYy0RDSxtGUrjGRJ0+40TSOrJE+GDARPj7lkXEbghG2BaiRYLqw0ajdAhFJ7K5RMoMAEVLr7dEAMagRXGZv0QwLopFkFehRMM4SEUUAF5G2otkRN60rERCMltEMI4uRZLr00RzYKlEU0FzRKYCg0T61hBF3XYTRYN4q0R8GSVFowNuRPdYmkU3nnBE0qmQRFgnWEXwlHdEsbU3RaYOfUTdUqxGPolqRASXFUVSblRG8QGdRQxD3kTgzMBE9eIHSL26m0bttB1GRPvXRurtmEXunyxGhyVORPGi5UQmvaBE0FbmROiToUSNoc9EtRg/RRKl9UW+zpRF70CvREi+k0TopaRED3J8RKWpkEV3gUFFVswaRbNbgEfp9YhEk6uORCMFC0c6qlVETYqlROZ78kWNJaxFyR1yRQqTtURnGmlFrMg6RTsfIUVD34xEkUOaRJ5ghER005hFmFJQRpgHmEVwA8tEtotFRZOwqUSjyoVEjqQuRYO1QkWJ2LFEIb14RORZXkVbWsJFjR1jSWdJQUWIRhVF5AW5RCkWvkS2D7dEnKHNRa384ERKbGhEMPt0RFKd4kSYZGZI7QRBR2XQokarGYFE309YRb0UvkXUPr1Gt8eqRCON3ERxUZFEH6asRBoLAEXLW5lEiE+ORKMJIUWQJZtE3QiQROL9ikVqyhNGtHOZRGtlykTN1ohElGcNRacu1USigmBEUMmXRXEmuEbnNkVGCVtTRa55iETcFthE4TMKRbEv2UWQHaNENhXaRCiaYEfVHHlEO7eMRiVSqEX04zlFpNOURWNI60ROP6VE1PDHRU8rj0QnZPNE8gJPRMyp0ERmCbVEn26RRHT5BkXnK49ELVU0RcgKAEUG5qtEDoWaRNnNfkQXh4NF+4oESEB2lkUqb4ZEYOQCRyuaUkTZgV9Fqb7eRe84VkRcwGxEECEkRciyoURekwxGKMESRe9CpERGMnhE0MvvRclGl0TY4XJEuFPjRNq03URdYZpEsF5dRM8BpES9Y2VEPSi9Re2TG0YMkMhEV97GRFcdvEQjLk9GfbokRVFfjESp12FGz1ysReaKnkQC0X5EILJvRP2QmURYoY9Ez6uJRGNEi0RbBQtF7UbARC8FlUThgYJEHPvCRKZ+gUXAJqZFbWhsRL2yvkaC60ZGcWYeRUk86EUt8b9FigmURJJlskUjWR9FTbsNRTfSR0Tf/qJE0sgFRakeI0afbjpFvlSQRPfvIEZzH1ZFz88KRUzKvkT/oL9EtuqjRDhBikQqVRFFfLOBRTmxoUSl13pEXmDDRHNg+EcA9ElFxeiZRE7QHUWmJIZErH8CRe8k/kaXdhhFUnasRhUjT0XhzTxF+j90RIcHgUROJRZFt0e3RAgQZ0Q9WPdEGKyKREDHQ0ZtQcJFevN+ReMKcUXsf4FE1qWDRE07o0TsUqRGVf6hRXJdgkRioipF+1bHRAIgcEWeZstE3pZzRC3gkERj6HJEZNRvRfkUsEQYeHlEdEmyRJ+MikSBLJtEdhTORKuDd0RJ5NhE+GCMREtqiES5foFEodaTRGWGokXPctNEPahfRV0o3kQYWFBEN9jYROlgiUSvz3JEcWL6RG45m0Tuo2lEMLjVRTMkEEXANENFctOURG3gX0STa11ESY59RO/WikR8CmpEYpNdRY6ScUSeXpdEHZKaRKpefETkoClGvCQmRUjBWUSEChtFgCqsRAC5pURqDAhFwRJfRBtCfUT2b15ETZOfRR9wY0QHjTdFkDWDRNmqI0WOShxFnQHxRH/OY0RZ3nVEEOOvRMKSb0QrTs5EG8WoRICBfUT4KJtENJY6RVqP3ESmvVxEA1NHRZCoeEakWMBFyWu6RFR0BkUy7MBGFAOFRoDtyUX5DylFBKa5RJa3D0WWAoFE7mgwRaWaUkTveuRE+qN0RCtE1kTkgBBGX3SGRIA9gkQmYPVEhcc1RMgJsURxMY9Ezy2HRI4y4EQXbIREiVmSRY0Mi0Suh9pEkg3bRK9Yj0RkAFJEgxheRFpfe0SJzn1EC6BwRJdBmkTvxWhEWpuSSEeyZEVQGi1Fs/OcRD5GDkhbBd5EveRxRF+hhkSycsFEVp2PR/XBjEU9TmREO9FoRjbAOEVGb5hEVaSBRVAs1EUPlXRFwsddRC2YY0RgnMFEW9dpRHjzAkXVY15Ezq5QRpEMiEW7hJNF+XTKRkJzyEV3aJdEHbG0RM1EWkWja1BEMS9GRWQBVEVOsM5EHhp2RJXcAUXiQn5EIuqHRAT3i0SKo+pEIqzxRBPkhkRSgHVEJYIDRRkuvkVPIrFE+PDZRBnPYkVRT0dF5lhTRUWFrEScyiVFvcmoRO6vBUa44chEzsGERNkoZ0Tjl5xEbcEuSAZNyETdCMlHhBO4Ri7ltkWyaS9F4p6oRuLa4UQD8UFGP6LvRBNU7UTSRo5EcyvTRMb5LEYf6YlF8r1cRMJFhUUxB65GGZImRh6ug0Tr+0xF+pDORDqzikQB9bFEOgnERExymETyjlJEAtCORDSnxURDEI1E08udRDdoh0S4ccJFEoc+RS3mQEQ7SN5EjJqARFSSxkSgqp9Eq2eURBEfaUTrTmxEBt52RH+w9kcWi5BEf6agRI/2Ykd2krpEFqwYR+yqq0Vx/PJFHe76RO/sMkXyV7xEJybDR1C9WUTfQHpHbCMrRkQOLUbV4rlFLe6URJu3gEQQBs9FSN5hRYzVyEQO2ThEAguLRXf740TPBYhEVyhQRzhNykY7QIhELmZlRKRxO0SePchFVm4vRboaD0hh7IZHP7caRx8wMkV/2DxG0alURbbGr0R0rqFEfmW9RIuMY0SujYlFB7sDRcRUwUTiw09EvgCuRUytrES7kRFFUSxtRE8r9UYZ4XtEiaOCRrnvTEXwJkpE8owrRYE6bESBrJ9EeBiARWDZgEWXQMxEvEESRQjwGkXhsNlFRWyVROj1q0TzeEZE5aWGREJ5TkTWhsVFgBInRUxmhkTAiHdFqP7VRdit7US7kclEYbmUR/oToEc1RpdEIDsiR9thgETRMplGqqycRfHrFUUC3u5Eox0VRcO+wkRNngZF5StrRLyxyUQMz6FFHR1fRVDp60QJq6VEWFoYRfEbYkT6gOlESRUiR+lYdEavqilGoG6RREb1T0WpXbJEArf0RBINkUXqPF9FAlNdRAXioESSSxdFtBSJRJdxT0RWxgRFGeCIRMe0U0TFYphEHBOFRq3zBEaVVVRFsZAqR1wypkazr0hG4t61RMuKhEUyx0hERiiyRJL5S0UPgnZFlobARIdYhkT7aFxEtO10RJ07pESFdFNEochcRstn2EZojJhGFLFaRPxbEUXg1BRGExOKRVJnhERs16tEZzByRGm+ikR2+ThGk2mvRAY45UUBqjpFZy30RE/TZkRp41dEsf0fRj0smEWcYYxFr2GwRdzDPUVwiKFEJTehRMH2YERO545EwTGuRNBa8URItOhE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - 8W8lbXjAckDKPXwvO8FyQBeZx09uwXJAPsp7aU7CckDpONmdpMJyQOS6F+jjwnJAbAjeYDrDckAZFUo7d8NyQLiFrR7ExHJABSM5ZQ/SckA7mwhlQ9JyQEqpiMB103JAybkmsM7fckAp1YiVueByQP3o+CVQ4XJAQr6omFDickDAOSwykOJyQFkVmt0k43JApjXEgrrjckBK4hRu1/ByQHhRUAdQ8XJAXgOos7nxckBfGz33s/NyQBoboSCj9HJAbPjW88D/ckAtV38tYwBzQB4FXx6QAHNA250fJPkAc0AV4dLMTAFzQBBN8auMAXNAqGSKwMcBc0D9mXMOOwJzQKzkTo3QAnNA0X6jZvoDc0A1+BkcjQRzQLAzSAgKEnNAsGQ0c7wSc0BbDvQx+hNzQHaO1Ot5H3NABhApJTwgc0A4nohapSBzQGaNFsY4IXNAV6DHrGIhc0AUlwUC5SFzQJBECWV6InNAl3NHwcgic0A6GsJ2ECNzQC6iB0jPJHNAPJZUiloxc0CYwYNJzzJzQJQ0EJ0MM3NAlKpXzaIzc0BfaZE/+TNzQALc2u01NHNAYaEtntk0c0AC8hEmuT9zQB79tJpCQHNAgxPgEXlBc0AY8QP5uEJzQMwC8bt6RHNABgzkYZpRc0C5pswrRVNzQO5yyqCjU3NA5m1sjHRUc0D/WfsliVRzQDmA1/EJVXNA5snpS/lfc0Auyk49HWJzQOYIjzY5Y3NAhOFiGJFjc0C4+78TsmNzQAAdcnMrbXNA0LVg/9txc0AOXL2zTnJzQMJbSpxtcnNAvGhw/4Ryc0DAA0PGunJzQML/XcZPc3NA1vVNxrZ0c0DYoofiS3VzQFJwcnTCd3NAgiBCnNF3c0B651uxeIBzQKIPMyqmgHNALDNxnQ2Bc0CpjO51XIJzQCAQ5bL/gnNAR32Ia4WQc0BLbdbsTJJzQHg1vr/Ok3NAYGadUGKUc0Dytzp695RzQGoktvOOlXNAju4Babigc0DebWk65aBzQBsyNqpKoXNAsGGWyFqic0DWbsTcwqJzQOSKOR8io3NAG6B3++mjc0As0zGzBKVzQHL15cl9sXNA27Mq3eKyc0CF7dOltbNzQLsYvK8MtHNAfQqpxvjAc0AmosPwOMJzQDv/XkzQwnNAKVF9/CTDc0CbtGAmxMNzQE8ua078w3NAUKwXwdfRc0A2oqVzvdJzQMpwqsMf03NAEiSOH1HTc0AM2fRS9dNzQM/paRHi1HNA+JFef6Tgc0CKpOQCOOFzQNTe3rxM4XNA9EKYq+fhc0A86MzgEONzQFQsdzSl43NAzxdOku/kc0AwdK3MZ/JzQPXkZayh83NAOn8R2jf0c0DYAWEhj/RzQGUE8EJOAHRAsebvdeQAdEAKyI/geAF0QHgEdLOjAXRApO/Nz+IDdEBR/+L0mAR0QOirvR0KEXRAc51pLnoRdECBh7rqlxF0QHI7FoxME3RA8sSsoOETdEBJRcltdhR0QKYaLTZLIHRASsFP3osgdEDLYi2SuCF0QF/DB7u6JHRAFdfmcFMwdEC2j88FlTB0QHCaWGTpMnRALBIXBBYzdEBSgkAR4jd0QOQ8nUVsOHRAzNEqaDw9dEDiTrB8yEF0QMeCRpuYQnRAwr8lyDpDdECCSA/He0N0QDRdXJtSS3RAV2egvINRdEAaLb9a0FF0QCSzx0D5UnRAVM+eyvdUdEAtgXbLi1V0QBYCXrnbV3RAijIxAiFddEC6pvdOuGB0QOZtZWVNYXRAvgiWwwdidEDMpVgUe2J0QMgwYrlOZHRAivK0C8VndED8h2+bInB0QJLbWZlicHRAFHBcu0BxdEB24RthOnN0QB010rJcdHRAeh3aHqF0dEDphyniN3V0QD1tIZb5gHRA1SRyq06BdEApLLP/SIJ0QBEFtCQmg3RAo9pL7WGDdECOpqobuoN0QKhc9EkWkHRAJCZUSe+fdEDiJS4Iz6B0QOIAFGs3oXRA/y731oaidEC3R5ctt6J0QK5yDEjRonRAtJhlqg2jdEBegbK7+690QDyITJsNsHRAdfIpMcSwdEAeRCiebrJ0QBquH8X7snRAj+zHAsm3dEAWcJ3qE710QNYMJjUjvXRAmCD2X96/dEA47Kxv4sB0QL51Gnf9wHRAHChqQXfBdEAltXDA6sF0QFrFBPELwnRAcr4FZkzDdEC1zRHBvMN0QGUrJxkkxHRApyUwNbjEdEB4fAmd+850QNrMTansz3RA9EYihcvRdEBOC42Q4tN0QPmk0bPN1HRACyI4TbngdEAmZVGAuOF0QFBdpg2Q43RAooMrgU/ldEAbDzafv/B0QNAAQlGN83RADDgWDnn0dECj5wy9pQB1QJxeMnrNAHVAvS66HGYBdUBETyboXAJ1QOSpNGqaA3VAVKao184DdUBnXFtN+AR1QPafkm6WEHVAwmBf42sSdUCkqA16IxR1QBaMmKtQInVAdDnsupwidUBCNtRNXzJ1QMLP0CB7MnVA8qw/FqsydUCwtss6zDV1QCppm6iJQnVAsg1Hld9CdUAwiwDv4U91QP4/VLTzT3VARo+VrhpQdUBYiwzlgFF1QAwUZ/B3VXVA5ulnQwpgdUDANNvNpGB1QBxRV4U4YXVAPKdZuvRhdUDQyo7vZWN1QIBmD3Z4cnVAKsEZ1Yx0dUA07AcId4F1QHxOF0uugXVACDkF0aWDdUA+Dfmy4oN1QM8IExqahHVABdXIBLiRdUA0JvdI0JN1QJRCxZPJl3VAwhI4kbihdUBQZ6kDSKN1QI6xtDyjqHVA0CdV0s3AdUC+NSK0YsF1QLispzL4wXVAW0vrKsvTdUBjzdKg5N91QAKrKWm34HVAxCLlNUztdUB4Hwb6jfJ1QLScWYmm8nVA2q8vTfL3dUBgoqUISAJ2QM+BoPTQA3ZAWjpB5+wQdkDeCu6SUxJ2QC7oTENNFHZAkGUTywkWdkBiVpifhyJ2QBy+AtmPJHZAacecEx4rdkBnHfhVSit2QLz4Od0eMXZAFKwZwpcydkCsuuiUJTN2QJ5FqqhPM3ZAzOphbJw0dkA6nDe+5EB2QMRYUrAbQXZA07nmAslCdkCOGYMxeUR2QBQXh2kRUXZAvoihq4VUdkDOq5Q0zVR2QPEEgi4hYXZAlKBMF9xhdkB2IM/TUWN2QG6rxLjaZHZA4WY0+1ZodkBFvhkvaIJ2QGY/cdiOgnZADD8x9u2CdkCg3B3KaIN2QPI4NJKRg3ZA67vlcOuddkDmTGRBEKF2QIYIfpdCo3ZAxAt6RrewdkD+y3f0wLJ2QIi2A3QMtHZAjwZPWbzAdkCURUYEMMV2QGQCOuDNznZA14c/p8DQdkBup3l39OF2QGTkDXqR83ZA93nQrU/0dkC+CldrNQJ3QCybx8zVEHdAFuDWHwESd0DMtgQ5DiJ3QHK51MV1IndAIDb8C+knd0AAwjAXQi13QGJxC22cMndAXvv8DaUzd0DsOujNDDV3QNvZuC7lN3dA5ha27c5Ad0B4/XUKnUF3QD2m3/X1QXdAwidN8JBDd0AK3YucGkV3QK50Ot5JUXdASPJEkJFRd0DsyUTdnFN3QEDeIAMrVXdA4ZR4Z3xfd0Ae4nuISGF3QHyzxyqQYXdAeuvd16ljd0BYCrZyoGt3QFkSiW8lb3dAcK3RY4Vxd0DbWJYuoHJ3QOr7GwK2c3dAmNjaQpB0d0C2ddAg+nd3QC3r78FEfXdAqntP3HuCd0Asyk6CB5J3QAtUeJ8Sk3dAq3l+VJm0d0AAa+blLsN3QOTu9bbtx3dACQGkhN3Qd0CeZ0mIjNZ3QMB0vkNL8ndA573bMhbzd0B7uu/qc/d3QLbRQ1d8+HdAxmk8NXT7d0DbXYMXRv13QBYt0h/X/XdAa9Rc3Xb/d0DGFPOEnwJ4QEADjgVkA3hAK95x/eIHeEDW5Wr4+gd4QGpRZErCCHhA+GwLUUINeEB6wZp5IA54QJivTeCfEnhAytDhdOUTeEBYp1AIbSJ4QHB32pk9I3hAz9kJTEAoeEDWIV4LEUN4QKTndY8mQ3hA9JgaNRFEeECmI81weUV4QB6X5yAXS3hAIO4zmMpReEAQV7PJmlJ4QHqeblSHVXhAsU6XQp9beEBjiCmF+WB4QAaMrCe3YXhAkJfG8blieEDNjMJw6m94QFIQP/hHdHhAdsoPnVt0eEAPAmo1i3R4QOYYYY/GdHhA4z4TaPZ7eEDiX89EpIF4QMnLgtb9g3hAjlH0g5mEeED6uIxAT4h4QL8Wv6uojXhAIlXm9ZSReEDYuBxVY5J4QPRjJP0Ck3hANp1SlKeUeEAxrprduqR4QLzbc+U2rXhATPdW6+O3eEAGIdVmN7t4QGp44zrOwHhArHCW0PTBeEBYD6akT9N4QI4IkXy21HhA9i7xnZbbeEB88yRPMuJ4QJRHwYkA9HhAv4T+bIv1eED6UKPkeAN5QAy417KYBXlA66/Y17cieUAdJesbuyN5QL68nvdPJHlAbl1lNLIoeUAib5D6DC55QCYLCXBiM3lArmU1mLQzeUAmzsSB/EN5QIFrHA8HVHlAfJHoXctUeUB3MfXP62B5QN0nZ5yPYnlArsp/UfxxeUA3Tdf7QnN5QCkk5kJbk3lADZlFxH2YeUBK7h1MYpt5QBYFHGBSo3lAre/tnmijeUCQwJCznqN5QImiieNaq3lAot4AhIOreUDn/qvPvrJ5QGdb6PqKs3lA4nwDSv66eUA2ly/lysJ5QGdDU9hB1HlApiOQo8jVeUBdQ6W7TuR5QIKoaZpB8HlAYCeb7rnyeUBS1mQ5EPR5QBncx44c+HlAFpk0xvwDekDY/o3t+gV6QP+mmX9jC3pAFwsiG1ATekD0M3O3axN6QEI7lbVXG3pAEKX6djcjekC74NEEKjN6QG32NDkMNXpAcFaJ8i03ekBO3umrLzt6QJbf/5MZRXpAkkqOrSdVekAoHYEhIVx6QOrK8BMpZHpASovzTI5yekB41dJVaXd6QO77OVoeo3pA0CedqHWjekCpM2YmJqt6QIMOd+R+q3pALZsepiizekB8SzHV97N6QGGiwM0MtnpASP5RLxC3ekAwZcc7G8Z6QCVo4nVDzHpA6K7WBkPOekAsC04kaeF6QIquUo1I43pAkn9sjXzkekB4yq2njut6QNJNeMU17npAfgONdBbxekCe2GL6YPF6QOwXbpp1A3tA0NQepucDe0BE0qVJfAR7QMTxB4QpDntAblBSWogUe0A8PLkFTBV7QBs+5KlYJXtAzgo4iVUwe0C4vE0IYjx7QNWmuPFpRHtAZ0bRU29Me0CUnuh+ZlJ7QLIB6MMNXHtASK/EjA90e0B/XL1665B7QLz6KKsjlXtAlNEZpP+me0DcD3OIOax7QJRlKJwptHtAPw94teXDe0CAuai3esZ7QNDijl7/43tAS6kMSSfke0CDg4K6i/V7QB0w9TuSAXxAjAQyE9oBfECNnK4pZQR8QGXTdNuYBXxANHIONYgRfEBu1XLt0RF8QDozP7foG3xArEJpXMxBfEBv8KBiUkh8QG5bxeSUTXxAetOF/N5RfEBocdTwCVN8QNyFDHIhaHxAuWqeaixxfECyAzRUAnN8QDjT6hRpe3xApn40SOl9fEB2Xpjyb4N8QGSVh0h7hHxANP75E2GLfEAAPDgkeYx8QM5HCufDjXxAY+QHPBSRfEDuOZJ0HZN8QF2rBWJ8mHxAFC2VfVeZfECv3fklvp18QMvGGxq1nnxAzdhKJXyufEDkYWimebJ8QBRYkZK9snxA3gUcGKCzfEDKXVHXebR8QGNA+k7Pw3xAXlvwhYfEfEDutgjRytV8QGZTKKX023xAuRQ1n1fifED5Z5vpC+N8QMIsAMWn5HxAmhcuGGvofEAsRtjrt+18QOrC3ywU8nxAao/3HlTyfED+IdPfb/J8QKxTBg8CAn1A6mweAEsCfUBGaOhVhA99QC7fqbVDEn1AQNjZfa8bfUC6mr83PyJ9QIIdulKMI31AzpRiCbsjfUB3DdNrnzF9QGiR4eIYQ31AAjRlBmlRfUCHpppxeXR9QIph2UyAfH1AOVeRi2WEfUArcBfSl419QNBbR631kn1Avkz3yvWTfUDIgz9IaJ59QF/2znQOpH1A3vGB6uOzfUA6qC+NLMN9QNgv4kPmxH1Aoheur/PUfUB4Em3Da+B9QAjt6dLb4n1AVrICBCPjfUBwHMiNw/N9QI3I9d+P9X1AzFJgczMAfkD29LCfNh9+QFKYn1C2Kn5ADM7tvSIsfkCyb3cSQS9+QFJbdoWBM35AMyA2gis0fkAgjuoyPD9+QH7sSuFNQ35AwPMnm6REfkBSMISCxVN+QLt4Y7uzVH5AJ1npmNRufkCKkANRr4N+QJad3RPAhH5ABj56ChiGfkAWWkqHy5x+QDrBu8BJpH5ATa44dGakfkAKcrx3kaR+QBQjTdLarX5AFVnRFnevfkCSQtmuaLN+QHj4ETdXwn5AMk75m9HEfkA0msqWrcd+QFLy7AtyyH5AqIHK6LLNfkCo+vtbys1+QEiRAPbY0n5AXwQ8+UjTfkCz+KTO3tR+QMweCXxM235AJpqlBc3ffkAqFVOfHgB/QGjuqiWSA39ADL5OO5kLf0DaX6wpLA5/QOI/spyVDn9AVQCsg0ATf0DqM7szpRN/QMLfPA5LG39Af2ua2Ksbf0Cexc/8tCN/QIsFuPqWM39AXPR7Aqs3f0AaWB3IQkB/QOvSdoNhQ39AWq0j46FNf0AGGc3PP1V/QGA0ukm2cX9AIOSpbMR4f0CCTj6LtIF/QHYmnYFjkX9Aqr/jDquRf0AgsgfZTZN/QO7fHfWUk39AXvNuhzeff0CkUQFjZ59/QCIuNztgoX9AgEjuuxGlf0Dhda+Vmah/QDK7FjjpqX9AKfkeGlSxf0AUN/qJOsR/QCKvJObB0n9ApKi3Ia3af0BMDiOEN+9/QILehX/98H9AEQf09o30f0DMuHzh5fl/QDv8QuuGAYBA2GL2pecBgEA6UXWERgKAQDGaOho2BIBAWiRgKuMGgEBGcfaZdw6AQOJGaIIgD4BAOv+VyGsigECzpM7AJiWAQCTa/3bkJoBASAxCdpEpgEBKjRXA7CmAQIo5NsdzNIBAWli2pNQ5gEAYWYYw6zmAQJZsj0apQoBA0CjGuuZQgEB9bKIWFFGAQN6z8ZwNWYBAKtoQfEhagEA9YcbAw2GAQMr2OhZwZIBAdHvFA+tlgEDWdXTEoWeAQN8sH/DTaYBAECB6a+xpgEAyNH5cTmqAQEJappn7bIBAT14ATPFtgEAmEM7KKW+AQHY4TIaob4BA/HwqIchxgEA+fRpw9XGAQIpJWorudYBALlQLsBt4gEBnB7duKH+AQKw/lyU6ioBAYCnwZxSMgEBtBgAC9o6AQL4pwYAej4BAc8kMPmWQgEB7Hwci+ZSAQL+tb24Zl4BAbf7aZCmXgEBu2VaGApiAQCxhizKVmoBAwFvk4QOcgEBXSiLsTaOAQA/R2pJupIBA6vvgZjWmgEAwtBp06qaAQD1qDweHqYBAXlD+kaKqgEAO75AlUauAQCLiKxDxroBABKuQExOvgEDsEbOTrK+AQFQ3qSvTsYBAOmCZweWxgEBJo6FKmbKAQECDM98LtIBADoAVsBa3gEDmatcGqreAQEsfe16xuYBA4J4UmAO6gECe9yZ2vbyAQJboIDWBvYBAdMEiaVLBgEAEW4WjnsKAQA6mQu/6xoBAY133LwDIgECxruNgU8mAQDY/OjbdyYBAKkeXet/NgED2acuXCM+AQIShwqNj0IBANDHcbEzRgEASsaqxAdKAQNA5SskK1IBA/CIvksXUgEDUo40bbNiAQEwkYbBJ2YBAo4Sj1r/ZgEBCei8PTduAQISWf/Bz3YBA7OzP78PdgEDwAAxRwN6AQLc/HYZE4YBAgY7OmmzhgEDUuuRHweaAQKKflBv76IBAZDPHsUrvgEBcDR4yKvGAQBYoVuRm+oBAyHAKhT//gEBT9SpiPweBQCE8RR/PCYFAABcjsD0PgUCCy7hibBCBQH7CbQDlG4FAftUL2L4cgUAjStJfNB+BQKahTy60H4FAYUnEBskigUCcSKhbNSeBQH3G/za1J4FA/GHIAWMugUCUBAcXty+BQDZjUWa9MYFApYxMtCg/gUDYk3x1X0OBQPRigb0sR4FAwJmKHltHgUBAKCAlB0qBQA4x0QezTIFA9xOVChlSgUAyOufR5VmBQLi0wFgLYYFA8QI/JcRogUBKoluSBG6BQIvzVBfDdIFA1nadEXB3gUC8IAS1O3mBQJ7zSUcTfYFAoFfbAmF/gUD3alc4UoKBQCAn43lpioFAxPGvogSNgUAYrUKhE42BQLG65NhVj4FAQNiuV7OPgUBzSnBO8JGBQAyfi4dVl4FAJOBXLJ2cgUAyhq/1Rp+BQLwGMgOun4FAHq+3cnCggUBr4OTD5KGBQOE4tOGmo4FAvtu/3myogUAQUFs48qmBQExbzXFKr4FAjk/7T22wgUCQPXFCSreBQC5FaghiuIFAnk6GJPnRgUA8Ht0nfdOBQLioVgn81YFAFLs3qfHZgUBI+lx6AdqBQJIrE6n23YFAynSmaoffgUAdD4Qx+OGBQORNMATq4oFAdJE7vOz5gUDol2N0T/qBQEtmgpTv/YFABMcileMBgkBXcwY/9gGCQEDp0Pw0A4JAZIKXzeYFgkAy/fh8OhGCQDGRzii1EoJAaGokAdgYgkBYwjES1yCCQGO/3VjSKIJAKqC0BugugkA6YCs9pDCCQJyqqSrPMIJAzjPRhRM2gkCfoBhDCz6CQOfAF2E/P4JAT5aQFg9CgkCYvNz7E0aCQOC7FxnKSYJAeiiJhxpKgkCKFLCRyU2CQIywhQwlWIJANMHaaERZgkDAMYg5BFqCQC4XJjw4WoJA9CF9DKFbgkDy+2aLalyCQKwcSIUzYoJA+NJxajdmgkCMeuzApGeCQFxYwI5kaIJAbgo5aHpogkAyS/o2OGmCQJi9fh7YcoJAdTq2tHR0gkCAXZhmRXWCQLj13DzmdoJARG0lV2J3gkAND4E7B3qCQLVFFzcYhoJAeKL2CQeJgkAvR7w9Q4mCQImV8Q4aioJAli2/OC6PgkBmEi5uQ5GCQNBCbTael4JAogwioDuZgkDCG047VJmCQGjVowfPmoJA8daKBw+hgkAm6iZbO6GCQDT4zHcMqYJAiVErNzWpgkAwktEKe6yCQO62QKIGsYJAXsoeAnyygkAwe1987MWCQMhymYLvyYJA2M1j8LvMgkDeCWKV9M2CQITjv3Lo0YJARDQrEO3VgkBsIMG23NaCQLHBGvx92oJATkmg84LegkCWLiamhOKCQIcGjcxb8oJAGEYgp/T1gkCb1c4CV/mCQO05qwSv+YJA/O7hJPj5gkBlqotL4QGDQGz4QEjkBYNAXRYQc+AJg0APgcdZVwqDQORxBNjdDYNACYe8rlQRg0ChWXBceRGDQHQXlqV5GYNAqKI5cnIhg0CkwU9doCGDQBUsZBhxKYNAo6/WCSUqg0D0G1Gkqy6DQHx8FcNpMYNAinnjRw46g0BmQ4rQ3kWDQN+adKOSSoNAYnccMZVOg0D++z19mFKDQL84+gPzcYNAqAMyRetyg0BkOMr183WDQF4Y8AX5eYNAoMTjc/B6g0AFLlzlxIGDQAbXNhdJg4NAtiNO68eFg0AGSfzGQomDQOZ5jNy8iYNAjPQ3v82Jg0ATm6CdwY2DQCbFR+0RsoNAaL6/zBe2g0DMEFCn076DQPL8ZqMfxYNA4oFxc8vHg0CU8DuQK8qDQOCo/g94yoNAEnsZ5h3Ng0AwTdU2ytyDQKRWoKx434NAtDQtlmjhg0BQoOaSzuSDQGvzT2B754NAXuLqMpT4g0CM4fsIggGEQH3ae3qJCYRAjKuTg0cWhEASFXEzMTqEQIIWvO1BOoRA4Py947dWhEBnxVhi62SEQJz7QgH/aIRActeqbwFxhECEjuYTSHKEQJU5F8+3dYRAXve1AMp3hEC+qYz1+HiEQG0Qm1y6eYRA5OX2bWh6hEAw9NuQFX2EQGO2Gn2zfYRAM9I0R8J/hEAdRJl/b4KEQP/x6/YdhYRAJOHW7cqHhEBKeIHEIImEQIy148h1ioRAjj2mWcuLhEA8V7XIfI6EQGoccTaznoRAnvNFpnGihEAM+f+dHaWEQJ1khRfOp4RA5FGJWWaqhED07Y0vGM2EQL67Zr/Iz4RA4ln33mnZhEDoBlykaeGEQEJ3/vtU4oRA6UbhY2LphEDr3u+0KeqEQA4+4o5s6oRAITxYoB3thEAsNDQFMe6EQNicdzc18YRAdijnHmTxhECK93ljePKEQHjr+xrd94RA+ovp3jj5hEBY7N4UXfmEQP5jS7Vy+YRA2jq5Cjb9hEB2AcqsMAGFQBxTkUIKFoVAGMS1jAwahUCyExtWciaFQAC4n21cLoVAkMpxy2AyhUB4LRDpqE2FQEby1SXkTYVAvpzSredRhUDEBDcd7FWFQBp36ADkWYVAqrkwOqBhhUBqgqO3SmaFQEi9Ih6gaYVA+AoUDJpxhUBYNDuqtHOFQEzJ3TWYeYVAdAEBO1qOhUCIzvlWYJKFQEDjLBHNvIVA6H/g96bKhUC4zjHfHuKFQEhZFdKq4oVAfiwlJq/mhUC58Kv/ZemFQAWmiRqx6oVAdB+njLXuhUDCfDAiPPaFQDRPOPH7+4VA4pNqoawHhkBcFmiRXAiGQJHkgMMKDYZAo1YPzGMQhkBqLDvoPlOGQLbZwfQmuYZA1GvTQtLEhkCWCwa00saGQFKhhQvTyIZAxNz/CkbKhkA6F0ky1cqGQHaRuVzXzIZAP8KOqEfOhkA4Uwuu2s6GQLq13FXb0IZA8vZBZ0rShkDDgfG4juSGQI8MdeGQKYdAarYU0JAxh0Dmimf6iTmHQLh8N/9cQYdA6vXvYIxBh0DSPKcWZm6HQC5gGf9ypIdADoY8x8mkh0Cu1wPtx7GHQIA675TGuYdA+DU13L/Bh0A84A0iw8mHQGuUgpLxzIdAQA6ubKDeh0B41sypcAaIQCdRhMVEfohAhmNC00eCiEBkWQUsP4aIQJ+Pej1tl4hABzR0xW+biECPWd7LWKGIQN31NtMlpohAIgP8cYPJiEAW7Py1QuOIQA== - - - - - - 5SmLRFwlZUTTxgVGEUh8RL98pkSq6KREkYwyRfXSekRsa5tEPNCFRHWgD0ebJ0ZEMiikRIuy3kQooVBE3XiURQPhrkVzcOVEspQ2RJpzeUQBBU9EWZcORuz7dUQKXotEEBuiRB+7QUQLoiNE3cW7RNdUR0Q0B5xEfQ2jRE0l/0TmTjFFnWoeR+qqWUTOlzpEFLVKRuZ5hEWOH71EpvcuRFVGh0QnL7FGeA5vRGHAMUTpmj5E4+hjRHTfpUTYC65FS+njRBw3XEQ9VHhEC00yRPETcESBz3hETSZYRGsa9kSMDmFEBcKJRe72V0RdbCNGIs/aRItoe0QRPo1Ff3BvRPoRYEQAukNE7+mFRBip/USdFh9FlypNRNzYb0QVL+JGXUmbRIeGVkTd6pFFziwCRiOLd0ThzQFFkmeKRFUeEkXncftE2dhpRHth00ZqdZREu2bwRO55qUVohsBEQFwvRfmxVkcLDWVExoT0RMTWUkZ7LExET2TQRd2wQUS5iTtE0FbtRdykY0Sy5oBEde+SRHCMMUXM3jNE2nlDREhea0WjaAtFDwrxRBkSQkS08pVFbNEMRSFdYUS8QEZEStc0Rb03qkRquEhECVhBRIy9zkSRaZ5FqQiqRL5q/EUm9WBEoItQRMRFjkT+rvVE/KiWRCbVOEQCEjBEMyYERRm2XkQbkDtEiYSaRLDOfUZHac9EAzYdRG/nF0RjtBdErqW+RLadKUTv3X9FNrOmRHf1mUSlZcREyiovREQeG0VLQm5EXheSROFgKkTABkFE+Bp3RFLBZEVeV9tE4anARFN9oETh0ihEpC20RAPZZER6TWFETMk8RHQlO0Tfg75EsVybRMD4skTpzINE+vXvRUMonEX3AmBER32jRacyakW+5rRE/tSLRNz/rUXJ7S9E0tVIR9EqAUXIe0hE5VigRABBtkTnlBlFHYStReOhpETKkYZEttMyRMx7dEXIdqJFY50aR8ZgoETVIJlEavUvRHpgSURN5SZE8LQaRVK7E0UvkGhEaEOrRFo/WUY+LopEDZ8aRmzHyUT23rNEt1ClRTxlnURXATFExKSaRAAxAEW4RIBE8dp7RDT450RIDkFEuPWZRDuBnkS4bz1EYlpKRONQd0RnjwBF1ShMRAMoR0VOzLZGptDERPv4YET7hLVFkHg+RD+jpkSAEmBEdX2CRB899UUGhq5Es06kRFxvOkTE16ZEns5iRFCjIkX1nOlFfSsARsDUU0SiMCBGzY6HREOuT0X1LHpEJz5uRBA62ERqpPhEPAhoRL9/lkTxYqBEBvynRIXeV0Rv9RhFVkPlRHrSEUWjb+VEaJkbRhhXtkTpKsRF5N1GRcJjUUSv08lEeb2GRO42KUURwGxEmv6SRNsJp0Qy2D5EWzKfRO31UETczedEyo+ARJJWcERSHFpEj5SWRgL/SUS3GQJGJd/wRJt0EkZ/98dEbIBdRNV/YkTo6rBEjdVTRDT7l0VD/gpGsNSSRL7PxkU4ILlG6N1xRJLvR0W75rpEKGdwROZGRkS452lFTUgNRYmdVUWSywpFI4BCRJmyJEbl321E46LERCYyf0TZmMtEP1ELRf4yj0SS5n5Emb4ORIc55EQy4gxFrx9KRGDjlEQ8MGVETvGQRMPV1USRkZRFXMArRJd2MEQi0V1Fsa9fRH/9k0SouM9EXB5ERFuiwUSm2kpEfWiCRi7LVEV9a4tEZPk5Rj2VakXnSZhE2o18RL4L50c0bmtEmTBsRKJdmEYqjFVEezcARt9msUYfyIBFYQMmRrBKrkSprIpEG1sxRPZIdkSsCvREzFsNReWvNUTsgERFKDuqRJG+w0VBLDpE2jyPRD0+N0VCV4VEQ1TNRN6ouETzzyZEIUkzROj2oEQT6WVEf3c1RGllUUSKJ5JE4y01RO2ob0Xl9o9EMgsWReDIcEc7/thECxiBRMbR50bJLZ1Ed3c3RYNN2UW5tF1Erdc1RbgPQEQjaldEBOCVRHhzk0V5tKxETRiMRJpYZkRNdVRE1NOARcJpN0Z1XTNEvFJsRfQiVUQMhLtEbc9eRL8aAEXrrUFFdXKFRJspWUTwGBpF/p5FRX5wPklElGhFr/nLRVnKZ0VB0VZFFtZESCzYMEfocK1GMiRTRcFtcUS7v7pF1ISGRimiRUSHfGlElomBRFXQjkTwN55ERm2/RHZtOERFPNpEHqTNREpZS0RuaqVFf9SlRRqG00TcK71E5yR1REDkBUU8Sk5FoHjJRqdg2EXJMl9F+Mo5RPUY7ESrQzZEkAt5RSA2U0TdExxE0S5bRAc5u0QoX3tHbPywRL+7q0bZ+uxEOZWeRQeTWUSYzKlE8fKHRWR8YEWgaqZEEA4jRR92QkR30clFTHVqREyNbESlfU1EVHAlRIIxjERVqzBEgqCHRMn1ekSz1SJFe6wSRRg5kETso5pExvZ6RN4+z0TseKxHWaQgRdvfRUT9haNG70b/REzi9UXXwzlFQI+FRBZDS0TYrMRFm+o5RUyPS0V/Lf9EcnF2RPx+dkQkOsFFSu19RMMynESONJpE/6CmRCv9l0QjRTFEf35bRFlolkR9/AJFJUazRB8AikQKjSpE9i6SRcDbAkbfVelELAegRJznG0bOdBVFXphBRA2DUUZe6JNFVE1DRTi1O0Se/xRFf9DAROWcxkTrvf9E8J08RAoMRkSkd0xEAI2LRAsFqERWtlNE1L5DRdUQlUbLJ6hE0vs5RjioMUUUNo5FLzOwRDVVgUWuwTBE3na8RUPBUEWqTRlFXbKiRHuiYkT4DkVEJ87LRKamdUQ7wQJGygxTRBg0PEVUhThEsk18RMoJ7ETx96BF7VIiRIOds0WEZ8FEgk4ERW1Jm0RVMvVElBqQRBY4rkT32sREWlM/RHx6nUUKwcxEwg1pRMxtqURat8REnTnVR4yDkUTbihpFMnWhRIryMET0KZ5EX0KxRnb0dUVcuxhFfdObRheGOEQgYhdFf+IxRfC1okSyq1ZEkNp4RELfRETX2iBE5virROTbQkZmjJZFuTNqRf0rOUVFuXJEVdE3RL1NkkQs6hVETmYVRGGUWkSMk59Gyr1ORaP4L0RhM6BE9qcuRP/YI0T6rhBFrRf6RElLtUTf519Er4SNRUrRiETrnFBEtQmCRMGjXETvdG9Eif+EReONokRlKaVEqI6QRCZxykTf9pRETKyHRIOZTkT6PRJEVO8RRJILTkTzkzlE18JwRKvYZ0SrvclEurWNRR8WbETnMNREIIGtRDhLuETbk2xE7tX5RIdUf0SohWFExlqbRLIKd0Rtd5ZESk9WREVeMEQyu15EZKexRdkIhEXMtNFEcafbRBSOR0QULxlEkPlMRBCWakSQp2JEDN1qRHgex0QY1Y1FrxBCRGCj1URUgwVGrt+HRDF7k0R9vrBEjkElRD2sJUT6fkFFLMGvRM1N+UQLnHJEpUDzRE8KZ0TNcC1FCQ+cRJHZr0X2gkJEu1nURaZsFEVup5hEtE1yRBBHaESMEGJFirenRGheVERVC0pEfTNOROuEH0T3lsREJXSYRHpNTkTChTNEfQwgRC+2QURy/w9FaeInRXokakYmJIxFV2J8RGWl2kSM861E4cYURSGUx0agpWtEyQy9RF8Ca0aki+9FdB5HRXh4zESGpEpFLUJkRG3c7kRrI1tExKgLRVzZBUV5AGBEPwNORDZaM0S7nQBGXgOMRDtgaUSch+FEGuaURA7KMETMWmZExkSDRPZvt0QVO1pEA1q7RNvCSURddLpEvjU4RDkZUUTiZZJERLWIRTouYERmDzlESKeMRP+8PERhVlNE2Bx4RPl6XUQ6olJE1JZrRJevP0SUAaJEAL5rSLG8G0Vr/rBEQm6FRJj+2Ef3j4dEX30tRIFqpkQV2oVEvxNlR9rui0QDJG1EXLxcRHykaESOK0dGrrKYRfX2VET2CX5EddKZROTML0UzPKNF5h0sRef1SkQUNCBEXWilROAWPkQgYkdEZU9KRutMa0W+GzlEJ0F3Rdl3QUQ4wHxE7MtQRBFdo0Y+/DxEBeo6RJ0agUWIiJ1EHzCERH8Xg0Qum89EyD9hRaDEMkQmSiFEcjuwRcEpikURxNJEErVaRPHYXEXOLVFEoUdBRKPiY0ROu3RE+1YaRfjsVEQCcTJEUitaRGNeY0T94bVEsj4BRX9xeERhYtdFSJIKRdx56kS4HdNESN6RRebxDkUa3F5E/MhqRBvHDkVj0jhETxO+RJKgoUQhTu5FwUoyRCwqHUX5mFBEMwEZSE2QW0S+xa5H9UvFRbD8j0YX39lFGfZYRPhHiUTxOjFErgmpRgyXKkQWeDVGIQKDRCgEBEWnnVZEPFfGRBTAP0QmWFNEMjsoRosYbkX38BJF5comRM29lUSvbHFEcTg4RCiVtkaGlYlEru1HRjPkVUWF871ETb9fRCR+TkQat2dEoxtpRNQRQ0T/tUxEJwiaRBoQhkT3ntlFuQKURdEMB0WRRZZEQzeoRFPIi0TNyadExbiIRHhXmERZezdED+aORJi6NURuJcJEc4lARCzkskfEDoBEKZhvRBnNHUcLUMdEDsq5RiOl8kTttSBEpKClRYSZDEbisptEGOQ/RZYfPUQNNtZEhTYqRGZgx0evQF9H839pRDKML0YDk5JFW99bRZSfSUTG+gNGTHtxRQP2CUV7E69ETmnpRQ2bQ0TVXm9EXm2TRcGgTEd2S/JGRtvQRcWeYURPuE1FiNJ0RIr91Uf4USlHobfFRq7vTERev8lFHLJ2RI8wVkT35vhEecmERHx9OkSXuHpF4B4FRfBUhEQFbLJFKLb+RB5lLEW7P4VE1KdWRNhyDkcXx21E/z+bRrhXOETJs5RFk6VsRRnykkV8HPtEP8bWRPFETkQ8GZtFILM6RVkHQUTB0BhFOWwxRCexS0XiDvFEO25PRIWunET5rEtEfCqjRH5ZiUUwloVE3zheRMdjEkQhmyNEHPY8RKmktUSYTrhFDIclRWKimUQZakNF7+31RZzLA0U4YuFEFWECR4daFkcWEbJEP/ClRgzhrkVnsWJF/nBARbaovUQWVyxF3FKORd01pkQkPlJEmPFVRQs9ZkV8qAdFG7eoRPEqIUXvpIJEXMUHR58RYEYPqjhE+WMjRoKHsUQwj+tEqn32RJcmTUQGHntF6cxPRdwMWER0FLBEHseWROF1gkSrOTdEDvV+RJ7D30Stzj5EhTFmRPVzOES4nAlFWTCkRI/PcUSFYkVG7pHRRRWLEkUF045E31cNRz7hikQdl15GHv8URmlNZEQeHgdFuOjJRNrgLESFlVBECFGVRO0wKEROF5dFizejRZjHSkSXN8xEzzNORHq+UEQeXqdEgiNARFe5qEQWZF5EbpkzRJ14OkSnOrhEnJ4/RjNvtUbPrSZGLu2/RBKcy0VaflhFxKqdRPIRjERUqShE6b9VRAPcI0RJCClGdsa+RSSyVkWCq6VE0ifyRKNTZkRPnYdEm51hRP/mGUZq4pRFG24DRaaxPUR2DWVE9hRiRNHXgUQaeTdFNdRnRQgbikQKc5ZEuKJVRCNmQ0S8P5BEufJIRAjUREQ= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - ecW8+HfAckC3mx3fb8FyQJY6/rPFwXJAlUA9y6bCckBeJwzE5cJyQMoZEGY6w3JAHMtkyHnDckCYkuRexcRyQH/YZEhYxXJAbRUSNQ7SckDOR4bsQ9JyQAH0oC3c0nJA4i/3mXbTckCCc5A4zdNyQJbRtA3O33JAaLKf17jgckAR5n/2TOFyQJoKmxhQ4nJAolvi44/ickDulhrFI+NyQPJzQ4Q48XJATpMzA1HxckBM5xLRufFyQNKRC3JP8nJAeNk0DFnyckD/mxbWnPJyQA9ge6y283JA0WssC6H0ckAGWP7Rwf9yQNtg8GZkAHNAjT5y+vcAc0B40wM2SgFzQA4WIQeQAXNAQHSdvsgBc0DSOJ9aOgJzQJ6cx6vQAnNAhux3fWYDc0Bpk5C9+gNzQGyRZyULEnNAjAGfQiUSc0DqTA9bvBJzQMAboxa5E3NA0gGugAYUc0D2zLvMTBRzQHgbAcV5H3NAljSTXaMgc0BmLSidOCFzQOy3dCtkIXNA0IwJkXoic0BK02ULyCJzQIpvLR0OI3NAFa9KzTkkc0DQfQCPzyRzQJxPbllPMXNAUhXllBEzc0BmktLVoTNzQNHKRbTUM3NA7oO4Jjc0c0CB1duw2zRzQLzMJay5P3NAxi/Kg+RAc0ACoR1Kd0FzQChKdqO7QnNA4NrdknlEc0C+NF/InFFzQLY0EVJBU3NAihTmd6NTc0DYKCfrd1RzQOqGJdWFVHNAWC7rs/pfc0C8J6sfjGBzQC6Lgq4eYnNAhU81Pjpjc0AQjD6br2NzQKse8MwrbXNAEBdzR9xxc0C0z8a+UXJzQDnhRWpqcnNAzJPRLIZyc0CKw/n0T3NzQNrPO/q2dHNA1wwv+Et1c0B7DZwK1ndzQMD1E7h4gHNAnp2HPKOAc0BQI269C4FzQKjG1T9dgnNAm0RPJf+Cc0BMvUJkh5BzQOwMDASVkHNAdO1zQo2Rc0DhRnLG1JFzQHgwei9NknNASMBFTGOUc0C2izuk95RzQNDwSMaOlXNAQr+XG7igc0DMzhQgTaFzQIqytKKuoXNAS17kaVqic0D4cgFXxqJzQGzilHIEpXNAqgQ71MWwc0DOXzlgfrFzQBuMTRy2s3NAnoBr9Ay0c0DS46mK+cBzQCrlXbUNwXNAD/tJSjnCc0D4X7c50MJzQPgZpLQlw3NAYLG169XRc0BMAA+PJdJzQFoFWbC80nNAKrDSHtrSc0Aw7qyK9tNzQIBO9KHi1HNAYuipaA7gc0CE+1DgouBzQJh8ej454XNADDAmVWThc0DD/9g3zeFzQNTYQSLo4XNA6qtnA3ric0BeKondDuNzQNkW7wWl43NAvD097+/kc0AyyydlNvRzQLwakliM9HNAyNwMJLv/c0DstG/y5AB0QDZb05/6AHRAS7q/zngBdEBMaNMwpgF0QP185xfnA3RA5uTMuHkRdECTOaWEjBF0QKLsM4ikEnRAHTTSQUwTdEDm/SZeSiB0QNwLaF+GIXRAVvo9kbchdEBWIZ4vuyR0QJW9lJe1MnRA/rNefuEydEBbJcPIEzN0QGgzSa7hN3RAQm4FQD09dEDgRtrFx0F0QMhM+deXQnRAOKM44zpDdEBRmajMVkt0QANvnbTNUXRAJq4Kc2JUdEBwenpCjFV0QH6EVvjcV3RAMbgQdiBddEApxAq7IWB0QPFZrDW4YHRA7KnNt0thdEAM8cdsCWJ0QEIh/dl6YnRA016IaQ1kdEAqj0QgT2R0QD7/NBnVZ3RAJthTbSJwdEAcJviNZHB0QEDakn0dcXRAQgTFe0FxdEA48nbAOXN0QIxBt4Y2dXRANdgrW0SAdEBAnvS+YYB0QPRBuIb3gHRAJvYim02BdEACyDINSIJ0QO+pLEwog3RAPjCNs7qDdEDO4oUDFpB0QK5wUqG9knRAYZDMWFKTdEDryY9P7590QDwVshygoHRATAx4wtKgdEAU08pVOKF0QFBnzdS5onRAYtnWlg+jdECqnDvP+690QIrgeTHEsHRALaGdT2+ydEDNiAH6+rJ0QNLf7g7Kt3RAovVUdRK9dEDdF6OGJL10QJapQR3dv3RACOLK+OLAdECYSclfeMF0QFH69QrrwXRAlv5gDrzCdED2Lu4gfcN0QAgkBAe8w3RAfirM1CPEdEDygubct8R0QESWPXL7znRAqKuN9+LTdEDiZW0RedR0QN6PYpnN1HRADtE+l/rfdEBwNCMIjuB0QGb323Mj4XRA9b8wWrnhdEDsIlqRkON0QIg06/pN5XRAghMJaLfwdEBAg1ZC6/J0QFj2sQeP83RAHvpJBHX0dECevlnLowB1QPRcUXnNAHVAhkotkmIBdUC6XFIZXQJ1QPqjf532AnVAn/7cfpcDdUDsxBPe0AN1QKQ+HTiaEHVAUdrdPWkSdUDNMpR3JBR1QEhbu+niH3VAoIBLF1EidUB/soNMnSJ1QAPfn/vgInVABFvqjHsjdUAlADh1YTJ1QLCko/97MnVA1WN2TDszdUAFALVuzDV1QDrk9NWKQnVAoHhhwuNPdUDgbuJR9k91QPTV4TOGUXVAnGIjYE5UdUALPuybd1V1QN79TvMPYHVAjHdYQaJgdUBQb5mfOWF1QEgGQaHyYXVAEvs3wWVjdUB+TWSb1GN1QI0kwhSZcXVAvG7OlHZydUApikQzjXR1QKCcnu94gXVAVN2CzK2BdUAWweyUvYJ1QIyo9+Wlg3VAaw4WjhOEdUDkN35cm4R1QPK5KrqHknVAXK1g1rSTdUDA8OLR0JN1QGP8zCrMl3VAiUmtwrmhdUAIXKWs/KJ1QE5libJMo3VA9nyBx96jdUAUfAF1k7B1QMiih3Y7uHVA9qiPZM3AdUCBP58PZ8F1QIrXl973wXVA0qPE8Y/SdUDzWz1YNdN1QFxlhUbN03VAgmmvbuTfdUD4OvkvEOF1QIJXh0wH4nVANHrmJ6rjdUD9LUq7OOV1QEDJ7IhM7XVA83M4lI/ydUCUfEjqp/J1QJiSttfu93VAyvAZsv/3dUAmwHCHSAJ2QHzN4oDRA3ZA7WwxRlUSdkCrUzYYTBR2QHs4e1kLFnZAh4ZD6ogidkAI5m/KzyJ2QDzbx0KQJHZA9OTSl0ordkDZD13SHzF2QAIf1VcLM3ZA/NDupSQzdkDYvywHUjN2QHLtXfaiNHZARG/v50tAdkBI2sFXHUF2QLyhySXJQnZAaEl4yA5DdkACKBW6ekR2QOLVTvzFUHZAXKkWAhRRdkCCwLqczVR2QB01ZCofYXZATF7KnN1hdkCOPe/p22R2QFz1AudWaHZA49MfyWqDdkBykMmmkIN2QIR1yA70knZALF5S03aTdkDi9J0c7512QKwQa3sOoXZAOF352sGydkBKu331DLR2QPOmNH15tHZAmryYC3fAdkAYZMbCvsB2QIV7NsBNwXZAVWMFrRjEdkB/9hqEzs52QDz5MoLA0HZA5bN5L3/gdkAsktmzjfF2QBa7JWKQ83ZAU4q5AzQCd0AHncwtARJ3QKzydxPQHndARS+G1w4id0BAprv+cyJ3QHKilnHoJ3dArPy9FkMtd0DkqefziTJ3QJRyTw6cMndAru3OweYyd0A4QThcpDN3QLqo9mENNXdARXnMep1Bd0DKxDXx90F3QHJ+Sl+RQ3dAMROcLRtFd0CwmcPHB1B3QLrlFdZKUXdA1uIjn5JRd0CJK/uqKFV3QMm/xLV5YHdA3lm3sEhhd0BAWK6yjmF3QIZE60+iYXdA4hi2rTlid0DRIPNFl2N3QGIW+fqoY3dAqIz3dCZvd0C9sobyg3F3QKrGDQagcndAHAmN4rZzd0AEohRykXR3QDhUQT/6d3dAkC9+ZkF9d0DS+0/NeIJ3QMJg3mMfg3dAGkhHavigd0AfVEOxm7R3QDEh6qItw3dAmnmgqe3Hd0BmF8y6Rs13QEdaXcZh0ndAfK/1No/Wd0C4ceP9uuJ3QEGSBKVS8ndA3FLT6XL3d0C/hB8Afvh3QPqNG991+3dA6qvyzUb9d0ARa+052f13QFTrqbp5/3dArmmLRvcBeEAoSyVKoAJ4QF5f2FY2A3hABEpUpmoDeEBA9kRn6Ad4QK79U8b+B3hAqtUffUQNeED4+eWkWg14QDp0ZVltInhAd/rcEjsjeEA09LADiyN4QOgOFmc/KHhAtPt/qpoteEBzcX5QF0N4QIncDIgSRHhAJkwXsnpFeECqJmvUy1F4QL+S1tuRUnhAFw9yJh9UeEAaHGtuh1V4QLQu0RDuV3hAUOLSE/lgeEACKgWht2F4QMDcyty5YnhAfiIO3Ud0eED/LjRLXHR4QAQBz+WLdHhA2uig0rN0eECmosjFxnR4QCR6g0badHhAbFURB/x0eEA/AjR5xHh4QDosbe73e3hAeiebeyR+eEAGyD0epoF4QEFbPaP+g3hABOhB4pmEeECDewqywYR4QNxjloRPiHhAspSNJ6mNeED6I1lHl5F4QKc3ZwYFk3hAVwQupaeUeEDGFikGU6B4QC6GmD86rXhAnV2jdZayeECt0NAbh7N4QHtqrPrht3hAcH1CHTm7eEAZyD0szcB4QFRuWsb3wXhA+JmkmGjDeEDWxHnCDMV4QKnZFK0903hAB4xs+0vTeED+GcJ3ttR4QBJ7FmQQ4XhAxGqwaCPheEA6VdbVn+J4QJi2ZQCO83hA+JAKdwL0eEC4nQgejPV4QOwugAwi+XhA9Jpz2Xn+eECgzjT8DAR5QLJlnZyaBXlAkhBSJMgKeUCOqd4yuCN5QGxnfsFSJHlAqGOtHbIoeUCydxqQDC55QEgwG+5nM3lA0Oq4iIxCeUC6l0yR+UN5QIwyxIucUnlA+QvehzNUeUBFHkAdzFR5QFQEcZ/YZHlAr9GD2fxxeUBTygZGW5N5QJiCtM5im3lAR84LTDiieUBykaDXUqN5QM5QUGtoo3lAhm337qGjeUAv5Zylgat5QMriZ7y/snlAoOYj9IqzeUBoI/kR/7p5QBKt3jzRwnlA53ljUAXDeUB3zOLsQdR5QNbUZZTN1XlAUB6WuFDkeUDNcy5mkOt5QNTENKms7nlAbsmIiEHyeUAMjiQeDvR5QC7m6qL5A3pAFNoaavgFekBMl0xKZgt6QM2jHqVSE3pAPKU35FkbekC0TF7RKjN6QOHEYcgMNXpAtMAhrC43ekDemy7SLDt6QKyNpTo5Q3pAbB88ZhpFekBqdM4Kz0t6QKYXcqo7UnpABoVIiipVekCo94L6IVx6QPta+ZApZHpArIEj+TdlekBOyfc5OG16QOjmAoqbcXpA6srFHI9yekAg68th3X56QFiszK17h3pAUBCFax2jekDrqsZhd6N6QK5ndAknq3pA/JZwTHqrekBHabSRHLN6QAgpGBn9s3pALGoBfg22ekCyuSPdLcN6QGAHqJkFxHpA5Eq5ARnGekBqTIZtQsx6QE4JRLY/znpAUrv8UETRekDi41HkwdN6QGmYrmnY03pAjD1rbkTUekBMqtQAO+Z6QMqo5zo17npAyPPsA3gDe0CgL++R5QN7QEAkDO57BHtAjKdlBiwOe0DCyICN8RN7QH46VZeJFHtAUHWBIk0Ve0B5+m8SHyN7QJ+BXUNZJXtA7otuHB4ue0CWqOeXejJ7QCv67KxiPHtALBN4vGhEe0ArV32Sb0x7QDHHFIwKXHtAkPbqBw10e0AXxp8665B7QFR0w8q/lHtACgfs2yOVe0BWOiGQEKN7QIpO8iI4rHtAWqUMbSu0e0AQUqofecN7QGq515jqw3tAVSY3brHRe0AGmLRGMtJ7QIBm77L+43tAq0k+gifke0CyBxPGleh7QFzJlNA09HtAZOcPEYz1e0DXqeilKPt7QC7b7umQAXxAHrHuXtkBfECC4bO89QF8QHpZyzlmBHxAIZf60poFfEBueNYLiRF8QCxxV+fREXxAM9htOLsSfEAlWZCFmx58QFVrtEHnIXxAyF8nQM1BfEBu3xjHUkh8QJApEiWSTXxAir9NjNpRfEDylmji7lJ8QM92r85cWHxAahh28AhifEAtqaXkKnF8QNx7qLf5c3xAc6k+aWh7fECaiC6kcIN8QD4tDXjCjXxAqe4B9hmRfED/4MDsHJN8QAIAd0VfmHxA4gTR0FqZfEDGtJHQs558QPsNG0G6o3xAh7jzXfOjfEDcrVCF9qR8QE/3Jw7CsnxAXpozkMSzfEBegPDzebR8QKpUmHvSwnxASJMmG9HDfEA/aE1ug8R8QJJhuan70nxA+pWH7J7XfEAfThmv99t8QCvOyutX4nxAg423iwzjfEBQ4+rPpeR8QLSrcYdr6HxA58pNGxfyfEA6V+PQVPJ8QOaO8HFw8nxAnokb7/ryfECwGYrIQPR8QPJZOKkCAn1AWgu7U0sCfUDCxze2RRJ9QPItEkU3GH1AhOGIb68bfUCAZ9QZPiJ9QN7CIQKMI31AHB7e/bkjfUCWFDMlmDN9QNKMpkUmNX1Ads9kdPM4fUCMoe0i5jx9QHxuZ6ZpUX1Am1sqL3p0fUDab06egXx9QIVKW2tmhH1A23Nih5aNfUCWwpEo7pJ9QFr4gIXplH1ATPo3kizDfUD6SQ8m58R9QHZ/jmZB031Ay+JTlPPUfUAuSo161uJ9QCS1nBx67H1Amx50O5L1fUBitV7jNQB+QCQ/1QrBA35AvQFsghcXfkDph9p9OB9+QJrF4pshLH5AP3vxLwI0fkCPUR5qKTR+QEJJPMh6NH5A6MtMIgo7fkB00CoSS0N+QGYM1RSlRH5ApxIyd1RLfkB1wmrPwkt+QE7hqOzZU35ACTP1r7NUfkCG+g9z7lt+QCDFjyu1e35AJ5M1z2WDfkAtjkH0oIN+QP4F8/1eh35AVmgYnk+MfkAQsjM+u5h+QAqY0YsQnn5Arinu9JKwfkBSqQhnILJ+QFIIb7BMtH5ARHdfOlbCfkD0wOXCz8R+QGLhTjlzyH5A80OLOLLLfkBGZVYyy81+QCB8+dLb0n5AcoX+R0rTfkDKG7414dR+QDRHwR8n4H5ADYOAl8jofkA6V03LnvN+QK0/xwfU/35A4dZ8m5MDf0AcgBxYmwt/QDDwQgVAE39A/sTD2aQTf0Dey/bARBt/QDpamLOrG39AQ34JAfcef0DszkiYmiN/QAenCA6aK39AoDDJ0180f0C2/4MmMDZ/QEBaWD+hPH9AwPnv0z1Vf0Cc4dV6ilh/QMSrJWDjXX9AUAo+srhxf0BGi3q/s4F/QBxQx5M0hX9A/J8/yOWFf0A3pwopfo9/QGAMZnFjkX9AVqcNKKqRf0AOtLitlpN/QK5spX9eoX9APZ28qUKjf0D8tWthfKR/QMKSRfYQpX9AwtrboZ6of0DgcLz4GKp/QNox3HtUsX9AgJ9cn1fPf0BahssCwtJ/QPhFMyGe1H9AU6JMOq/af0BiNhy/Nu9/QEoaMxCP9H9AllgXFur5f0BsONC/Rv9/QBD0832IAYBA9mzTVTUEgEDqhvEOZyKAQKwJ1CysIoBARKdN9OMmgEBx8t6DkSmAQP2x1fLoKYBAbGmdT7UsgEC16uEkIzGAQCwGd6apQoBABGCF1vVIgEASzHBBbk6AQA0yuBTnUIBABMD+9RNRgEBHIa10plWAQDaKMCE3VoBARxKuU+tYgEA8j4EBDlmAQGCuU4MlWYBALPw7zElagEDkA56w4GCAQNoZAxYOYYBAFuRCqsNhgEBEBpWXcGSAQGEqG+XsZYBAhEaebx5ngECtkYTkoWeAQLcH5AXxaYBAOtZtRk5qgEC6qiR2+2yAQFrEDF3wbYBAFqq+2ydvgEBrUU7Cpm+AQFB5rBrUcYBAPxoCXvVxgEBBhfGuUnKAQE/tAoIceIBA+OwiiCd/gEDMuGiTHo+AQGLrk90hl4BAmtv9rFubgEAKfh6/BZyAQOKLBoE0noBAWD8YEBufgEDpCVuMDKSAQEiIFCXCpIBAOAbyzHulgEB9DtwhKamAQIoQvROHqYBAcLYopg2sgEDeCXJeFK+AQN6czIhbsIBA+MaI6xuxgECkBfrm3LGAQFIVbv4cuYBAA6ROC3+5gECGAgJAB7qAQEYG5QqbuoBAsNCcjVe7gEDBtEtNtLyAQAYbWUn8v4BAtHNkpC3BgECUiiV+UsGAQCCklWBywYBAk8bGgoDBgECCuXVtnsKAQOzuFQnuxoBAX6AqDSvJgEBsBEWLU8mAQNzVOzGRyoBADJDh7qfKgECaFCOzCM+AQFxqISki0YBAoiiYt0zRgEBX/2e2X9GAQGyd+0xK2YBAiFZSbr/ZgEDgvjqNwt2AQJenuWzA3oBA0TVnVEThgEAsEaPPauGAQGqvdeGO4oBABaBnGBnkgED9w4At9+iAQL2AqYUE7IBAW+t8+zvzgEBysoZAavqAQHhxjKM//4BAeGhcuD8HgUDsGGAQPg+BQLWB0EziGoFASiCYqDQfgUDvrv9UsB+BQLJ41MUmJIFAmL9qwjUngUDih/mTtyeBQL409qryKoFA1vtG7vErgUCWNkCBMC+BQHjJpEkqMIFASdhjN7oxgUB+Ufr6hDWBQGQUe5qDPYFANmT2QSk/gUCFaK2YlEGBQAAx2xRaR4FAEEBdOwdKgUBIPXNntUyBQEKwosIVUoFAnJFskuVZgUBspYSE6l2BQNi+2RkPb4FAq+bIKMN0gUDuGRiBb3eBQARhFCEdeoFAXUk2F7N6gUDI3oXS3oSBQJKY3duXhYFAFEdFyWqKgUDKR8YUBo2BQBzIebVUj4FAtmGYZbSPgUDW5nh08JGBQGIcQ5lekoFASL3O28SUgUBHGOWC8ZWBQJTWt1dVl4FAYHFiEzycgUDKOchWnJyBQAsUtoNHn4FATh+bG+ShgUDY2mKB4aWBQNF9+vRvqIFAZAYDSCOsgUBdTqx6T66BQAQ1iPdJr4FArqt/LPG1gUCrZmn4SbeBQLi+XfwTvYFAeBUStPK9gUCi4BS5YcCBQAlLqVmcwoFAYLlNdk3OgUBSO3GJ+dGBQEoeGcN+04FAzlmPPvzVgUBKztqb/9mBQJwccSj13YFAFh1giwfegUAolvbP9eGBQBhRCvYM4oFA5ro95LDzgUAdpRWR7PmBQGp3Bj7w/YFATF21SOMBgkDPvg6A9gGCQKXZeePoBYJAmW/luI8HgkBa2i3cBQmCQKPQFKTfFYJAyrKLKNgYgkAblCAvHhmCQAYpLRn6HYJAtAX8FVUegkBOkhkU1iCCQIrzNnvQKIJAeFNIx8owgkA6K3tfrzSCQBYsLQ1GOoJAlCzCTws+gkD9e6i+Kj+CQFy8ejqfP4JAlozETHhAgkD8rE5wDkKCQKctVUhyRIJAcn8COhNGgkB/BqXkx0mCQDU96/IRSoJAlO4l4shNgkBAZ4l1106CQEhQnWChT4JAGFCJLEFRgkDiK00t1FeCQE63HKFxWIJAEYChohVagkAaqzGKoFuCQCo3TeFsXIJAcm1jovhcgkCcBrgXO12CQC19JIB9XoJAAq7wUtVegkCcLsSnKGGCQIZ0/lI0YoJA+V/kFoFigkDMtvrUNmaCQD5bI/7LZoJAKj9lAm9ogkCazpP2OGmCQAIXxVwGaoJArvCZ1jtqgkCpIPPT0GqCQDzewcdybIJA8nHb4m54gkAGOAuIpX+CQG7rLL0XhoJAImC7e0OJgkCQbvN41YqCQNaxSp8cjoJAOMesDyyPgkCBjwrYQ5GCQObtTy67loJA7UourzyZgkCO21GzVZmCQFwnbxgPoYJAJpSOwTuhgkC6lQX2D6mCQKLx/xI0qYJA3P+NrEipgkBcNTPDSbiCQM6kOcLsxYJAlmaoxe/JgkAfGk9E5M2CQDT6nMn2zYJAbTOw/+fRgkC2kQ2U+9GCQLj+zOwR2oJAylJx8X7agkBgAJTvgt6CQHFpfoSH4oJAhA2Jh6nngkCXD3lhuO2CQFq2ZHzz9YJAXDOI6Kv5gkBCqXoc9/mCQGiChHXw/YJAGizJmOEBg0CjsqJh5AWDQOz3pvYwB4NA8PxIs9sJg0CTWIoz3w2DQFwhLp15EYNArFYXb+MRg0AoiCmFUBSDQOUpUDF6GYNAIjKsk3Ihg0AO+AfohyGDQJApiwcjKINA3JN+W3Ipg0AfUlPZSyqDQDxImf1pMYNAkSxnCOI0g0A5mDI4azmDQK4vSIySSoNA39Bb9JZOg0AqNpnEmlKDQM0vM5J5XINAp8roMylkg0Cd9A+Jw22DQLhkhGvycYNAiJazvupyg0BrIjdg9XWDQP5kAvH8eYNAFEMr68SBg0BiE4EcyIWDQLJuS6C+iYNAXErrM8KNg0AWnRAX1o2DQN+CrFnBkYNAsY+Oo7Wbg0DMG/DKVqiDQNjXfzBCqYNAmT9OJRKyg0C8evZCFbaDQDlKBlB8toNAmhKBuQ26g0CSVVHmHbqDQGRaE7YexYNAGLqHBszHg0BfrKRQdsqDQBL8dYMnzYNA9gX48srcg0CAzmIpUd6DQBKCzKt334NALpUSNibig0AsehOBgPeDQKC0IPSV+INA+rk6wCP+g0AEG7oDsf6DQPoAtk2EAYRAjFwmvVY1hEA04GTz5TWEQHdvjOoqY4RAAgkehvdmhEDp1ibw/2iEQEIIXE7+cIRAVG3ue7h1hED4hdYDyneEQPQofwr1eIRAXCDb/bp5hEBMHipjZXqEQBDgdxF9eoRAoqJTCup8hEA9HrDbFH2EQHhzJQkwfYRAFkofWsJ/hEDZW2eOZoGEQAgy8SpwgoRAkrnu/ByFhEAYBj2yy4eEQBp1FQUfiYRA6jpvqHiKhEDE9ttuzouEQBzWkkIjjYRAPGIKhsuPhEBw7iHogZGEQG6/EIQim4RASZw85FqfhEA+eQgscKKEQJW4nwcfpYRAkQ7Z58ynhEDk+KSSTqqEQEzyaCtpqoRArnZN0RnNhEAA49DexM+EQBohquh10oRAAj6EVmrZhED0qiwPauGEQFa4SZ9j6YRAHpHkBi/qhEDsnqtXHu2EQP6aN/Ix7oRAksYGqzXxhEBDMi/hYvGEQNe9B74o8oRA6yrpYt73hEC0K7m2NPmEQBBQP41c+YRASr6CmYf6hEAUNLgpLwGFQG/vH8QLFoVAnlKthQ8ahUAzJ32VXC6FQO5vsfthMoVAPGSohLs/hUC35L8Gqk2FQE4dvTvkTYVA8lZpNudRhUCjVcHW7VWFQAVs4RjiWYVAt8mLTFtchUCMG9A9tV6FQKx3nQKgYYVAshPQqqBphUBkXuNtV2qFQLKo9iGZcYVAo52bTbNzhUBKukQumnmFQAKCbCOSgYVACSwN7lqOhUBhH+PnWJKFQNxHo+ur4oVARv4odb3khUAlVX/br+aFQLoiSFZn6YVA+o+Kp7PqhUDum0buue6FQC+K4WFaCIZAkeGPZn4xhkDceHvxmzmGQKhtyP/aQ4ZAye/1rPWNhkBklaSaJrmGQElREBokwYZA60W4FdHEhkC20RGw0saGQMLlGyTTyIZANK9r7kbKhkC4sj/91MqGQFyTq1LWzIZAFTtWAkrOhkAGuC813s6GQO10MVeK0oZAqtkCW5Eph0DS9ltBkDGHQOinWlKJOYdAL1g9Y11Bh0BMg6LEiEGHQLzhHbBSZIdAjqsX78exh0DMjIbQx7mHQKrF2wq/wYdAfFJ1Tb/Jh0A6fDFkuV2IQL9pj0a+ZohAbtJoNkN+iEBCjObBSoKIQIZ6tq2hjohA6PXGfXGbiEDXgGw+cJ+IQFF5TN3xoohAPPEeBY2kiEAIdqN6JaaIQOCvf9OlvYhA + KBZXds7jZUBcG3g88iJnQPV+Nhksk3ZAjgFH/L0yd0BquaB7OBqBQLf6KG0BaoFAMeVGi6QihEA= - + - jf5GRMpd9UVKfVtEWVguRXNWZEQHdxtFsWdNRPvRX0ToJYlEpkGLROvJAkexwINEigGRRBKXpUTy0ANFRozZROXbS0QudYNFqj6+RU9LVkTtjWBE590wREUXSUZMQjxETAI0RLjlgUSXf7lEB1nEREj4w0TVyqlE4oK8RNdyXUTuFWdEDMx9RIdUp0R0IT1FolJ5RHotS0fPrphE4NudRLAuKEYnIllEyIC4RQCPgUS/DQpFxFycRATBt0ZAK4BE3X9XRFGcvETf571EkBWpRL0ll0XnY+lEXuZBRBVER0Tdkk1EB6J0RBlmhESlw9REdRqgRP8lTkUW9JpEEzv3RRmC+ESeTAhF4EKwRZxSj0QdlpBEMBiDRE0dc0T7UYhEp6UDRa5TMESoaetGrDh8ROZGC0WQ6c9FQPAJRvn80kT9GJNE7ycORfr2F0WtZsFGb0ukREN6pEQltYhFyG6LRLU6nUSdBJxEFY7qROyejUQy8UhHnHwFRWFjX0ZVAWZEA7j3RdHnfET8zHtEX2rWRbVagkTAgjdFfJ21RGXemERnDXVF9fkPRf9Rn0TNeT5EBvqJRH2YskUkG5hEEBkeRe6AkUSn0tpEOOhkRDkXzUQNwpxFw2NERDjVYUTNzelF4h7IRKyRVERQFYBEYQ4ARb7L3UQiM8dE5KmQRNLIBEWGdrpEtdNQRJ6H4kTSkzJEoaV0Rk4hpEQ+ZYdE9MiXROjMckSyxEpEwyVqRWfIi0RzWnpE5+8RRaONhERsKjFEhrE5RKxMjUS9m0NFMIGERICN9UQjIyZEbjZURAuEhUT+w35EsNg9RCgHI0UNX3lE5tvMRQg8b0S3LnNFewyFRJHzzEXzPzBFOvFqRBzqtERGalRE7uPfRaSIbkQ90zJE5UdCR1UZMkV3MqtEPcxwRKkPXUQ6Si9F4E/CRTBduUTMsPVEkCcwRd8OiEU31DpEe49IREME80YFB4ZEDl+XRLTaiUTzvMxEv6EJRR30cEURubtEcU5sRsc7mUSQB7xFG0xxRJo5hkQYmYVF1IK5RHv3pETW/ZlEG9eARL4RhUQe2cFE8ECjRF8mB0VC7OJEzZl6RIYRVEQsKABFWjM/RGAsdERghZNEO8IDRfDYBUfufZRE8EVsRKNOQ0Tkkr5FhDg3RJwEa0Q6R4tEdgbPRFFYHUbgW2ZE6DBrRGCSgEQbZJVExoVGRDAOA0XFU6pEK74yRvYy6kWZWT9EUdGQRD/kVkSsXoBGefYxREhyQkUuSABFr6B4RLQYLUSbVHBElhKWRBUQ8URrPqVEJeZvRBXMJEX9thJFY5H3RNz2TERwTGNEBc/tRLCII0ZmKtNE/YWlReXhOESnrpJFq79JRLj7G0Xp30tER0VPRMPia0W6mQdFtMu3RDNKa0RFHrpEyy9dRBuIWkSOSOBEPWJiRHVwfUQuItJEXbt4RDmnV0QX9K9ES/xkRLWnqURusINEcKazRNpxpUROIrBGLkE0RPHktEXA/ctENowoRY+RFEZibs5EimxfRBAyfEQ+V9dE4qKvRbI4U0TpUhpGn+ekRY0As0ZYMVBEm6AIRbjYLEUp6UJEVDx9RO8GkkUx0wNFqepBRNUsX0XCNYpEZd4PRU7ALEYmPDVEEp25RP8KLEWhct5EIf6HRLgn50SjBzBEWzaIRJSJhkRVo7pEm28VRcSNk0WAXINEV9SGRDBGXkTRZYxEKGlrRK6AikUi0WVE+zE4RFMLX0ScSslEPRClRAVTiEZvL3VEMTZ1RYSF9UT1xjVGxdKVRTdt20QmG/FEUH5ORFGGy0Qvbu9Hc2mkRuXkO0Ssm9ZFwjK1Rhv/VkQMBqlFWM1BRiUvBEWXQotE+jGuRAojDUUgnXRE0RI2RBIoe0TwmTJFRSAuRUplg0QpUsdF7QebRHlunER7cSdFjA7+ROphBEXZ5j5EnG1TRBCoZUSr6X9E3u+yRGhtl0SUPI5ELARqRAh9XUQXY71EexGTRf+UYEWsthVF+dxsR6q1LkQrAdRE0xliRBot3UYG6TVEUzWuRE2tvkVue2dFX2QQRVGwe0TtJFpFTaQORbpBo0SE8wVFn1+ZROlfH0S0O5BFLJAqRtP+tUU0f+BE7tZpRNVS8ES9soJE3IzDRO3lTkX+y6JEs7c+Rb+0nkXbI0ZJbhKKRfMdYUWzQKJEKjJaRCtHxEQN+SRGg3hfRJkxVEWkYl9FJipNSGsEmERfZC1HG0LERn9ikEV+KapF1vqURq51gkSW1nBErHhDRAhYQES/35BE5X+URLUg6UTOt6ZErt9oRLxmOERWAEJE7lxERK65FkVIvR1E2Ik5RP+jnUQkulVEy+ObRV4wskU15lhEUcNNROpQS0Qnv7xEP6F0RN+hoETWah1FaHq2RjezL0Yn7AtFuXN/RECflESdvWZEYF9HRIZtjEUHvbNEhli3RFdcpUfy/81G6l2ERFkAXUUiOsRFfvK/RIo4oEWZWG9FhKHnRGFygEUjyi9ExoLhRNNmBkaHwO5ERF3JRB8xQkShK2pEesQtRJHWqUTj61tEmkPQRPbjTEVs/TlFbR2oRKhVkEVvIrtH59xtRbjj30QlDElEHz3ARvTQDEWK8ZREJxf4RJZpBUa+UTRFFcKgRMhbgEQtq3FEl0SmRDldRET/fz9E7U8KRuEJd0UUFypFZhiSRAWis0RQMpZELMvHRYJ7z0RDglVEX7ClRHvYXEQvZQFFpJN3RBvXP0RCClNEiwQqRGNnaER7yXJFvDSuRBnUTkUqXx5GIakrRXeaT0RRkK9EClEARtLGVkQWdAdF3WaGRBavV0Tjv1NGWZmjRfuasUQmOJ9EYRq9RFnvBEWxClJE7OyVRG/ITUQNgoBE/AiCRMKsYkR6JGRE3MYIRUlE0UQJZ51EtfBsRa4Lf0QXdDtE+/+URkmueES3loZE2tdERoU0IEV6cClFh0JnRS1CWUQKN5JFYwFZRBmWQUSGckNEdKkARgvJE0VbtXtE/FJhRIUxXURt1EBEDrSHRCp3KUWyI15EjB4WRhAVLEU42BBGaX5KRKwImkVdtmNE0PWYRO+qv0TqQFNE0LhIRCCibkRQ5aJE2O6VRIaZ1UUM/mBEUkXfRK/jkESsQTlEAAlkRHX4B0Xz/txHFEijRLIe+UQSjsBEsEgDRfFe3kbd+TpFAdDkRHEXRES5oCxFEuOsRqKkY0V/R0ZEmYmTRWZvc0S8BItEiChwRKeWj0QDwKVEZtqVRD+FYUQvdS5FrEoyRgaugkVraEdFizxHRSmfE0WB0oRE+QTVRFneu0Zu+2lEOhmARdG83kQNzclEoBYXRcH19kQokExEGGWARNiNoET9qlBF5+iHRF0JEUVIMXdEbVtdRPAyoERhiaVFNcOIRDABjkQ0pGdEC5zhRArAdUS0mMFE3KB5RAxcnUTooWZEe8xPRC9VZkQoHTNE/tNqRLUZz0Rcm6dEhMHZRBB3ikVxNypF32D2ROhOoETIy0pEWD1DRRWsbESas4NEq8MuRJmXWUSJ8idEEqD0RKPcq0S7nM1F9t5+ReHKtUTDxaVEsQhORDTcbER6oItEue1kRFTwUUSVbH1ETXvARJmhhkRrT5ZEFo+bRQPt0kQPzV5EnWlYRDvKR0T7xy1G7PVfRJxTqkRQhkpFGViBRPIAWUQ541tEx15TREt5YEQH+AFFRKIsRDIrDEUcGwJFyUL4RA3fPkao181FLGtYRWRHsESVHxFFI+OZREV2rkQVGUJEFX81RSBY4URa2kVEz9pZRLtqgUSWFRZFHYu6RMA2fESTaiVFdEiORnHIcESBHU1E1n6mRKurvEVTK3BE64JnRA+pQ0QkGshEv3IXRfBrXUV1/41Et4NuRO8PgkbF0NZE7uZ+RhY+lkWDQSlFu8w3Re6rWkWQPnZETdE+ROgbiURUJspEAXq/RLG99UW4IvREwVk6ROsuPkQRn2xEFiieRKgnNURLhZNEe4lsRCn/KEQL8dhEZiVyRKb3iUV0QnZEWdmTRJ99uESy2XdEvOBgRJjGWUQbBIBEx6+SRAl9Z0RMkXtEw55fRBXfe0h0i85E+/6JRCKYS0VT40hEtVmWRC5t40eCJWtE965aRHZHwkQ+76REfwl5R8OXZEVu40BGr5tJRffC9UQHWsdEr76BRRg/7kRwYVdENCmERClKrEQe81lEVpRfRLG4ZkTk42JGPZBCRVwklEWYPElEZQK4RitPoEQzMU1Eu+q7RZEDfkSCMl5E5QOPRAtdxESMYT5ElHSvRHRdX0Tn51pEUtGQRdAmTUTiCeVFQJubRUJBk0RPibZErILNRGs4rUQzY5NESG8FRf3390QVhkFEh8beRPplaESt2VJEUD2HRGftGEVmqrFFDZyjRCFi10RadmhE8m6BRGo0eESoJKlErl5VRPz7nkX8GJhFi+p8RIteM0Tw+dlE8tp0RDZ6gEQ4LRZG3BFLRChj/kTgMFREdMluRIVqnEQKgktENvE/RBMIG0jmxLFEYQKtR+R/q0aVsndFZhBcRcru9UQZdHpE32lYRKee2kZeQj1G1AK7RLgvT0UGU5BEPyUzRM4ZlkQRqypEzcw3Ro93dkS7A05ERW6aRCkzXEV6lyNFGKkmRJiWgkT+miREDOuqRo3hPETGZUdEC6Y6RIbQTkYz6oZEbXpGRazoTkT/L1pEKx9ZRFBRDkVgbZxEwiWPRJKuR0Snik9E7ysHRaakZUTWgBZFhkNeRLQmA0XdG3pE7nesRE9YVUTvzhRGae5URNqxeUUcQkdER8IGRVL/9USKZClFsG9hRDGa1ERZD3JEK7F+RGwXPkQ/6wpFmePPR9VCn0RiolBENXJORPz7LkfP0GlEfVXZRnWh0kQmgrlFXm7oRceuLEU9NSZFUcZ5RIWWMEQAhr5HG2xqR3UN80WXDBpG1T2yRf0pSEUwgGJE9tgfRgHRrkXPdN9EQ7LkRJYTPURBqjpG7qWKRC4kxUU3PZlEy2aLR2IHFkfMykFEJ+kURogltEWyJ9tH34upROtfZEQ9T0JHTJzQRgZ8+UQ5LmhEIMffRZcCUkQcsrxEGyQ0RE5lv0TAYk1FOKwgRby6akRCz0FEQ+eFRJyAO0RR1cJFfGX1RFClLEWzrmlEEm48R8Dc1EbyWOJFS7o9RXLWi0QCtbBEEts4RBnfeUTi8mFEO6+mRW3AWEWiiyxEsgWGRBsJfUTgqI5FNTOcRXwthkSoL6BE2lUBRZTVVER6V0BF8ua0RB+EZkSJkZZEPk0JRR3yWESOQrREkyymRJDUb0RyY1lE1ek5RLRM5UVDySFFkHITRUbszkVaqIFEeW7hRM6tMkaahfZFK3BfRFN0bkbOH+1EhP33RSLbq0St+Y5Fb51VRYr7z0Sr/hVFYwaGRbVXMUVWHphER5o/RLRES0QPS2tEllJXRKqPOUVU/XpF6M3bRPhSu0SqNcZEDZ74REXRREWo0o5EF4gJRxJ7Z0atGTdGbBeZRMMSf0TneG1ESV+DRcNcfEVGUoFEHjUERYkw9ERFYelEZciLRLscckS/MrxEvleJRHsCLkWhV5FEOFpsRC8RjUQKR0hGIGQERsyXVkXxpGREsuF1RCPIYUQkMAZHeN9pRhBQI0TNbxVGWoRIRK7CdkWf94VEtRqYRFKSoES1mihGii3WRGoY6kXLk4JEZ7gYRXgUPUTM6QBFtJR9RLF5BEUFOphEzZVZRA69/URrSZpENOAnRpqOgkabzi9G1fpURe/sukXkZQFFJtS2RMMCZkRX+HlErs0vRodduEUpHpJFgsFyRM/480RlbJFEE2INRvx+qUV0fkRFKQG+RBgLJETq/I9EqABURd6r30Tx1yxE/u0ERZNuUUTr2i1FeFuzRHUisESZNltE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - UKQ603jAckBumGsXEMFyQDakaxlvwXJAHqqBDsrBckC95sk/TsJyQAgBtC6mwnJANCaQMuXCckAwboQcO8NyQEgfeqh3w3JAmNBYZ1rFckD4eQmhQ9JyQOCl43Z203JASslCYmTUckB8AR1skt9yQCZm603O33JAsj07ArvgckCmABON4OByQCJZxQRP4XJAE21m/FDickD8QQTcj+JyQHB2Tr8k43JA8daBD1DxckArC/PAufFyQLit51J88nJAaqmHHBLzckCMrhXAtvNyQMQW3vyi9HJAfZyaDcL/ckDSdbvx+ABzQDx9r1RMAXNAIK2Pgo4Bc0CewTQqxgFzQNaw0CY9AnNA7oDLptACc0BjkHdfaQNzQA5J3cP6A3NALoOYkY4Ec0DSnfWNChJzQBvguNG8EnNAgc4T7fYTc0DUwBamBRRzQIyM0aB5H3NApAJXiaIgc0DwuAsNOSFzQIKJ2qbIInNAQN4rHA4jc0B89G8sziRzQO0kpP1IMXNAdEftRVgxc0DK7Ub1ITJzQPrpwkkKM3NAp8rSIaIzc0DSyfAp1TNzQCKQHMc3NHNAPh7qwbg/c0AQpAsueEFzQOaR4x+/QnNA3j2Qd9xCc0AglUokekRzQOwmeSicUXNAutO/nkJTc0BqyVATo1NzQOkWQDuEVHNASG5jYfpfc0CJ/OK/imBzQPz/BYkcYnNAJkagDDljc0Cg7GQ6LG1zQBFRXc/dcXNAdLhwQVByc0AKjD5Oa3JzQI6k1D+FcnNAEKrFl7Zyc0Bu+NCQuHRzQC+w7P5NdXNAAO5B52x2c0BQK9K433dzQBkn0IdggHNAuS33K3mAc0CaHEHapYBzQESYeAYOgXNAG2TpJV6Cc0Caeiz954JzQDqWHjUCg3NARq9MW1qIc0DaXIt1hZBzQMaN4cmXkHNAg7/q8I+Rc0AAgmCFTZJzQGR4TZ7Ok3NAJIIQImOUc0DWvv9q95RzQF42IfW4oHNAAeOW7Uyhc0DSa2EpWqJzQHSCmiiPonNALQdrtASlc0DRyRwB2LBzQJhEK758sXNAzO2H2Viyc0C71pOhELNzQHQc4e61s3NA+Cs1QAy0c0DstljQ98BzQMfNAcHPwnNAjGiqxibDc0Bq0jMs19FzQH1Io8hI0nNAnhkeA7zSc0BSoO129tNzQCrPZI7h1HNAOtbk4Xffc0B46v1cpeBzQCmUjfE44XNAvdMEbWbhc0A3olkPeuJzQMJ0YNYQ43NAmTNk/6Pjc0CC6Z9lTfFzQHclihKQ83NAw2p5tTf0c0AybX2pivRzQHDUBspPAHRATQlKcuQAdEDwE+jceAF0QORitcClAXRAVsg9cQoRdEDUvF4JTRN0QC5d0QB3FHRAzjBoMEwgdEAiaPUHuCF0QEpGYfD9InRAtP+VrY8jdECjJUqt4jd0QMt/rBhqOHRAjJXwQj09dECAJkqwyUF0QD/0+cOYQnRA/guifXdDdECVAGrFDlF0QKzQA2X2VHRA9sApyYlVdEAXzCcE3Fd0QOLj+9AhXXRAqEO2SrhgdED2IjM7CWJ0QEC+Nxh/YnRAEKscTE9kdEBMgl1OInB0QMDVP99icHRA3smSmkFxdEDQNBdXEXJ0QKrQne/ocnRApKJYWTlzdEC8qcINOHV0QBNYw2ZAgHRAREvBQvmAdECOKBhFToF0QPq+1ohHgnRAUskyisuCdEBUs5F4JoN0QIzU7DJFg3RA1ZsmI7mDdEDeZDPoFZB0QOY7Je7vn3RAA+QnMqOgdECv1wKiz6B0QD5D0p5hoXRAxD/2t7qidEBBauP2D6N0QLpTTU9kpXRA/HH+qfqvdEDZOIdOC7B0QKsoulbDsHRAygI4RG+ydEBSBNm/+7J0QBeoEa7It3RAlEeYihK9dEAIMVT8I710QGoyiSPev3RAgxa/z+HAdEA6JpPNA8F0QLRgS713wXRARgrrZQ/DdEDqdg3kTsN0QH5CsEG9w3RAo65ef7fEdEAc5Z+a/c50QDwMFCzN0XRAcnLCyujRdEDJ5gz8FdN0QKiI1us703RA1EwBEOHTdEBO42rndNR0QHEif/nL1HRAgGhYiI7gdEBgs9ZnueB0QJG7KtUg4XRA6uI6ErnhdEAOG81skON0QILf2BBP5XRAXvGSDLzwdEB282LvjvN0QHQkxZqhAHVAxF2uC80AdUAT8dHfYwF1QDUggAZeAnVAYJaYO5kDdUD+AUiVmRB1QPCY2+hrEnVA5M5GYiUUdUDkBx41ziB1QAejO/NRInVAzsyBiJ0idUDW6WevfTF1QN65hClhMnVA4FBqVnwydUA2nR4+qDJ1QGDyPxnMNXVACQ2s1YlCdUBhPEFt3EJ1QD6plyYJUHVA9e/zuyJQdUBufP9Pg1F1QNtpPQlOVHVAXOGybOBUdUAadq0XelV1QAIA698RYHVAk9Bg6jdhdUCXbr648mF1QIw+tRRmY3VAA1ZhipdxdUA3wjr4dXJ1QBoO7AWNdHVAep60GOGAdUBiPbhPd4F1QAbaDb+tgXVA4sHZuqWDdUB45C+nEoR1QKIHYzqchHVAdqfoNyqLdUD+nr3espN1QDaA8wLRk3VAx+Vq65KgdUAE0B9sI6F1QG05D1K4oXVAcMEpZ0yjdUA8IlJYCLN1QLKVPsNMs3VAnkoGf87AdUBgZvfkZMF1QHtQIxv3wXVApoKvzDrDdUDqxUeNztN1QIgCLJwP4XVAnb9UtwjidUDy/AAVTO11QJIChzel8nVA13gqavD3dUD13iZZAvh1QO8NYmwd+HVAYsYQ/UcCdkDkO7EX0QN2QKhdrTBWEnZAuO3eMQ0WdkDnyqGIpSB2QIoABu2IInZAVrAmPZAkdkAUSAsjSit2QEeTAMEEMXZA4uokkR8xdkASp2cCKDN2QEMWtZRRM3ZASkEC1Jw0dkBEE93aTkB2QNjY1wjiQHZAHGUIUB1BdkCINBB4xkJ2QCnHYVFRQ3ZA1oL/m3lEdkCHijeq/E52QDwkb3MSUXZAT2nyQc1UdkD4SwhIIGF2QLwDoy/hYXZA/VrO9FVjdkDwIMtZ2mR2QI6+2wFXaHZACzb7dLNtdkAgB/r/BXN2QIuuBKt9c3ZAzOq6GKhzdkCQyuS0Z4N2QMCJDsqSg3ZAYMRbSPqSdkCUffCvvZN2QCu58YbtnXZAqElJnQ2hdkBYY0HRv7J2QOb4sjN5s3ZACo83aQy0dkApymSXvsB2QEGsZ5kaxHZAAo1GFs3OdkDyE388GNR2QHGzP1/14XZAoDnQpJHzdkCK5JDxMAJ3QEhgqZQBEndAGgaHAw8id0BnaNUYdCJ3QGhPwdwNI3dAGr8vwugnd0BGIcJAQy13QF48yaSdMndAPpPatCQzd0A4R6BcpjN3QIDzTsDsNHdAsEjKFw01d0Cwmd/xnEF3QJ+DCsE3Q3dAmq8VtJJDd0DW07J+G0V3QEinWEcHUHdASFdF0EpRd0CQ8j0kklF3QNxAfI7tUndA6lOAb6FTd0AGGg0yKVV3QEou/c8PYXdACOS7IZBhd0CIjHyeqWN3QMVLTgEob3dAdvkYZYVxd0DWFgOXZ3J3QC0vEk6gcndAFvbIOpJ0d0Axf+/k+nd3QFxYqsIqgndAuAn4FnmCd0CQ0wa4CJJ3QFqJmnJNlHdAZYyIcLaid0B5631amrR3QPrcXVtKzXdAiNCUo+PQd0A+qC/a6OB3QPLPY45Q8ndACyLaRHL3d0C+vQw+ffh3QGlCFUl2+3dALenmEkb9d0B4Ofuw0v13QBASxKl5/3dATXGuWZ8CeEBcZspmagN4QJWOWB7mB3hAdOFR9PsHeED2WZfhxQh4QEKocGlCDXhAbuTf1B8OeEBOFJEToRJ4QFYA9AluInhAwH8XGz4jeEAifPnviCN4QP7im5qlJHhATttiUkEoeEAqhEnSezJ4QEhGpCDlMnhAHnW4SwpCeECfPeTSIUN4QLC3XmYRRHhAUqjeonpFeECAD8U1ylF4QB5K5bWUUnhAjDG9qolVeED25gI47Vd4QAPxaSv6YHhA8guc9rZheEBe6d2at3F4QBE+WqCLdHhATEKsLC11eEDWguGs9nt4QDyYptumgHhAiF0vrKSBeEChxYqy/4N4QKF5WuKZhHhAHG2NtU+IeEBUWTF+qI14QEpNxZSWkXhAHjP6LwOTeEDCkE+Jp5R4QPxD57WwoXhA08sz8VujeEASfcusOq14QBASG5Tkt3hATvWDNze7eECEAFiOzMB4QE4x+Aw+w3hAy3CnXwfFeEDCOgDJVNN4QLLd30a41HhAs4zS2pLbeEA+isgrEOF4QCs8ACSd43hAwGRyYwL0eED70vKqjPV4QCZKRAF9/nhAIF27QnsDeUBmmjrymgV5QO3Iaq1TJHlAWzENhbIoeUAormdaDC55QHhCIe9nM3lAKNDjr7YzeUC888upvjh5QPySNVbgOHlAWW5wgvZCeUCMZMOfMEN5QJaKMVX6Q3lArj4fzsxUeUDExmMa6WB5QH6cuBTZZHlAIRUAgUdzeUBmFsOCW5N5QEJQeaZim3lAjo3ThtKdeUCS+08fTKN5QGr2VcRoo3lANdB/lKCjeUBg2hl8Wat5QO77i/+Cq3lALE8obcGyeUBnLN7YibN5QMboAFj/unlAGA6/HgXDeUADi14tENN5QIpm2jRC1HlANFExBMzVeUBM2oupUeR5QGqa9+NG8HlAlm7XivrweUDqUByxD/R5QKiVylP6A3pAlPkINvsFekAzW+HMZAt6QM6Y1EBSE3pAWkyHEQwUekCA2Gu2Vht6QAZ/L6A3I3pAA1lBOSszekBos9yVDDV6QNuF5N8tN3pAHN7b3i07ekCDAk9DGkV6QFq9wGQpVXpA1r3T+CFcekBMeAzEKmR6QMH+xNuPcnpArv0BMIR5ekANruUW3356QK4pULGhlHpARAPvHR6jekDaCcJ7dqN6QMp0fU4mq3pAkGZb0gyzekBWf5nvLrN6QK7CbjYMtnpARI7F4g67ekB7a6OJLcN6QIJzL3wcxnpAxWeW2z7MekCcSehpPdN6QGar7mzc03pAehIx6zvkekDtI3zgN+56QGW4nEt2A3tAlp3UaOYDe0ASdSN0fAR7QNH7eCEqDntAnHvIivcTe0AiGFplihR7QIxHhbZMFXtAgsflyVole0A/ri0DHy57QHzi2AJTMHtApHbMRGU3e0CoZGEQYjx7QCF5IL9oRHtAhpz1O3FMe0Dg6yzRYVJ7QF7tUccLXHtAQPPRXemQe0D4gb6IIpV7QCTcQcdYnntA+JIBezese0Ae96BjKLR7QPszjh7ow3tADiUyQXjEe0AON1/hecZ7QEw5WrzB0XtAXhvH2mbUe0BtDM4I/uN7QGSmuNMn5HtAugayo5fxe0B4DroijPV7QHj7FbYl+3tAP2qyhdkBfECOiT2+AwR8QH44YY9mBHxABjzVqJkFfEAaPqHrEwh8QEYPOKfQEXxAXkPcwqgVfEAfUfwKwCN8QPIrmpg3J3xANANh7tEwfEA0Ukq/y0F8QJ6foBBRSHxAvwH87pFNfEBo2Axeqk18QDnshA0FU3xATm6h83xTfEB7l9lGNlh8QDCf8n9pb3xAlPNcnitxfEBAH+S6aHt8QACw0fdwg3xATybmDMSNfEDYUuVTH5N8QHAFUoh9mHxAUylBw1qZfEACXgUuwJ18QNjosDP5o3xAqEcuW/ukfECdqUhov7J8QITuGpl5tHxA3oeoN87DfEBMqmTfzNV8QO5/kmvz23xAlpaqllfifECsavBmEON8QF6b966k5HxABkFrT2jofEDORU2vFfJ8QNLpTplU8nxAabfsUHHyfEAryf5f//J8QLEjd90BAn1AMKcWNEsCfUBpVNyvRxJ9QHGCWZSZE31ACh8gtK4bfUCeRCxA7Bx9QJMZA/Y8In1AyJj0CaExfUDA4eQBmjN9QHbj+A0oNX1AMbXoIfU7fUBVtVUya1F9QKhiMXdbU31A9t7u8Xp0fUA6ToPigXx9QGRdT9JlhH1AntZnq5WNfUAOj0ws7pJ9QIx503BQm31Agsv/VS7DfUB2FCvO5sR9QOZsflr01H1ALpbymI/1fUD4ABSTEP99QLnnlSc1AH5A2Md6J5sDfkAIa9KUNx9+QOz/vz4hLH5AYguQ5T4vfkCA0UJRKzR+QIYfbfgKO35Az44/USw8fkBkMSvSQz9+QNQ/8NFLQ35A4BZ1OqREfkBIXShlw0t+QHy66JzqU35AZt81R7JUfkAu0g8DjFV+QISDuYvOWH5AjsDqbZdlfkAr6Sf+2HB+QLyCXeT8cn5ArGdA3Lh7fkDgnaI5ooN+QEJj2lZnh35APu2wjM+IfkBSG7xHJIp+QCXR3bOUin5Arn2Un3mbfkCW8PwuaJ9+QBp8FCCQpH5APGSmDrewfkBcckpIVsJ+QHssC2/SxH5AHfjvTa7HfkBuSCSYcMh+QCOZlrrNzX5A0P/zTEfTfkCFB6Q0y99+QLXOtJHU735A9DEb/FzwfkCgLRNHf/5+QLFMlfqTA39Aom09aj8Tf0ChNwmZpxN/QL761bT/FH9A8LYoJEUbf0AUVLkFrRt/QP/9vbNfNH9ALws9Lj5Vf0DcLi6asFt/QFoveWWsbH9ADUCRH7hxf0AA69++6XR/QP7iXrW1gX9AHnxZqKODf0BuqVJuYpF/QF6qGZyukX9AgrwktZiTf0Db1PsWXqF/QMp9jPY/o39A2A60bX2jf0ATlWqdE6V/QGZWacGdqH9AlGAG/PWuf0DeH93uO69/QM7qFhlVsX9A5ZlzsnOzf0BuchnyUMF/QEJwilcBz39ApuMbO8HSf0Da/o9cmdR/QPjGc/it2n9AygkWiUbef0D+sa+xN+9/QCWF7lKQ9H9A/7HiJEb2f0BUmQ206vl/QDRoBMtJ/n9AsPXltEL/f0BVLL6/iQGAQMgbjCgxBIBAIhhAWIoJgEAisP10rRSAQNAVaedoIoBAAlFQleQmgECJmJu9dSiAQP6b6x6QKYBA7NQdJOwpgEDuIJssaSqAQN+moXSeO4BAzHPzNKlCgEBWKyAaLUaAQFJ+l3PvSIBABkAkycdNgEAAzmxMfU+AQE1/UDvmUIBAGq/dShRRgEB/Jfkf51iAQI1kMnwOWYBAwLhDaSBZgEBVfh0QMV+AQASFWBoMYYBAgHsjLcRhgEAhe8uua2SAQDbEqgLqZYBAops+caJngEAEbP018mmAQDiHNFJNaoBAsoKxUftsgEBam1eZ8G2AQMJ7JhnxboBABuU8YSlvgEDpmDVh9HGAQD/VfZNCdIBA1JbEkyp3gEA8X8PWHHiAQNTLHvUnf4BA0uCr4eR/gECkq/aL+4qAQG65yK27jIBA3Ni19qKNgEC0opQkNo6AQHi/BGcej4BAfvfs0h2XgEA4QEXUGp+AQO52rf6VpYBA4R2jljmmgECSfaDhZaiAQGadJguHqYBAS2uSuu+ugECcwriKE6+AQHrQdFjbsYBAPlUtgpSygEA2PHnwsbWAQLIoyFkct4BAKl+5xtu5gEDcc0mJBbyAQAx0B0N6vYBA99osHje+gEA8vPuf776AQBY8iIgzwYBAptQxaFLBgEDGmE34ncKAQETkpGLuxoBAgpRDiR7JgEAiLzdTU8mAQIhpRxiVyoBA5DaBjgfPgEAL1n5UTNGAQGPE0m1g0YBARtoDImfYgEDH4QlLStmAQJgujM2/2YBAXx1yLcPdgECq7rOAQd6AQEr3CEnB3oBANLbonkThgEDYXKrMbeGAQKQ5BOwc5IBA2jnFpW3ngECgXbSKs+eAQC7bW0X36IBAUvPA60LpgECw2DalS++AQO8wI5LG8YBAEeEEeT3zgEA6nrbFRPqAQO4ptZY//4BA9KoYB0AHgUD5gDOCPQ+BQM04Lbt3EIFA8BOGWDQfgUBCeu9hsh+BQHEgV+00J4FAh3OBRbcngUCXD4PSOCmBQGCjObEuL4FAFFJpCbwxgUCwFHcxODaBQAIM/rjEPIFAEr6owSk/gUCKqVjF60GBQMaWw9ZFRIFAl2mR01lHgUCgkJT7BkqBQNWuDqJhT4FA7pZ54uVZgUDc+Eu2816BQOLmwX0AX4FANOMszfRmgUBS2iylNWuBQFrLRWfDdIFAKLdj+G13gUBg4ZVqOnmBQGxThrD5eYFAYKlS8Zd6gUCWECEJx3yBQPxIS4Rhf4FAkaVLCD6AgUCOZo4RuYSBQBpRSfRpioFAv0PVvGyMgUBluwLzBI2BQNznCGhVj4FAygt7l4+PgUAOB8c+tI+BQKrlgas6kYFA8m/dk/SRgUDKA2ay+ZaBQPQbWnFVl4FAxiwninGZgUDqc/qqf5uBQCNqjKOcnIFAVEeEY0ifgUCaix//5qGBQFcjjUJuqIFAUlQSX0qvgUBLOEi7hLWBQF2PnGRLt4FADg4HYIq4gUB6Q30Lq7+BQBoc18rzv4FAAAy/AknCgUCg9fG6b8iBQESXDmz50YFAzqkxUHzTgUDwxCw6/NWBQE480Q2m1oFAr3PFWNDZgUDIsNMs79mBQIzTabkB2oFAxs1/cvbdgUAkoVgM+uGBQDoYMq4w64FAf67SYez5gUAiQWc9HfqBQPAlgFnw/YFA9tBBLwwAgkBcd4439AGCQGPC8vToBYJAyvmJUwIJgkCBTGAZ2BiCQLsVDnxlGoJArpk0ue8dgkDarM2t1yCCQFAOnK3QKIJARGpcVh0qgkDuPOPu4S6CQAjD1aeiMIJAkE/+A84wgkAOBsnr6jSCQDJq05MMOoJAZNfkAgs+gkDsGBOTcECCQFhLUqXyQYJANoRrXw5CgkBM/NoK10KCQODopiSpQ4JAdFJLIXpEgkBeap/VO0WCQGo2ZF0TRoJA8mI/T8hJgkDCeEvybVCCQKOvwIckWIJAmxXvktBagkDq2fXloVuCQPRZratqXIJA5NqhtXxegkAN8SNpNGKCQDpL4Fc4ZoJATB+IKt5mgkAyTvG1o2eCQBJ6lwMGaoJATH0ohOFygkDwmRGa/XWCQKqIyk6fg4JAxEewWBSGgkDql9RaQ4mCQPp5Q+gZioJAkVCV8m+MgkAWVAtkQ5GCQEYq4OTXloJAU/7ZnTyZgkCiQDjOVZmCQOTDD2APoYJA+BuBJTuhgkC901a4DqmCQFDWowk0qYJAhyjOzAixgkAouByL7MWCQE0T6sjvyYJAevSeG/XNgkACTFXe6tGCQOpy0XTu1YJAbmA1k37agkAykadCgt6CQDpZKn0H4oJAZnqnUYXigkC1g1yBl+aCQL49AWmn54JAlLx+rQbygkA1tY388/WCQLyFv6us+YJATCjn3ff5gkDhhFT96f2CQH90BBP+/YJAQIcofuEBg0DSwWQ1qwKDQMtU/2vkBYNA626KOZgHg0BI9ye7egiDQLxt1a3FCINAWGbYd+EJg0DW29yz+QuDQAmVUHLfDYNAjIGUkHkRg0Bje6tqqRGDQDNyk8TlEYNAVgwO3XkZg0BsyP5/ciGDQFI3PHOKIYNAVO6ZZHMpg0CciR0FazGDQBxUKdptOYNAe2WMQhU/g0BpON8qN0GDQOKbgKXfQYNAsJjBWN5Fg0A2Bd+qk0qDQNw/gVaWToNAjCWchPVOg0BkRPnmmVKDQJr84zy0Y4NAGPKPE25sg0BSb9na8XGDQNQYGJrrcoNAFJrwjfd1g0AM30LlxIGDQNyMHtU4goNAOUbucciFg0B0VbroX4mDQOTkNQnBiYNAjDMqz8CNg0DwTUegvI+DQPAwrCzIkYNAeEYa81Gkg0AFR9+uVKaDQEQja79XqINAlDrZqBKyg0BiOj6nFbaDQN11xagJuoNAfEzmQxy6g0AvqC0zDb6DQMpe99gexYNAZG+/r8rHg0A9jkZPecqDQJamgqHPz4NANf8qExvXg0BGD5JCy9yDQJBcSI9334NAVeh5syXig0CNk95Fz+SDQJZZBIeU+INAv+if5SQzhEDWME+bc0KEQGRlIAD/aIRAtJk8mf5whEA2TVhDaHGEQPIcpuO4dYRA4snjesl3hECrONhe93iEQOPO99O7eYRAMCWzXmF6hEBKqhyaeXqEQOjJuw4UfYRAZDm/Q/aAhEBEnfW7b4KEQDo1+p4fhYRAylyXdMmHhEAVtn2iHomEQDIIXiJ1ioRAbAnbd8iXhEDgiVP2YJqEQERMj/sSnYRA2q67iCidhECYA9lpcKKEQHCf6Sbxo4RAOtvb3R2lhEDHSdJ0yaeEQJaA00ltqoRA0MLSy2XKhECGwzhoGM2EQAE0NnzJz4RAqT2NNaPRhECkmxYV49SEQBvyRURq2YRAxLys82nhhECLI8PK0OeEQOSOuGti6YRAW1aQS33phEDUx8b2L+qEQDGUgqIv7oRAhK1+1jbxhECBGExfZPGEQGT7j9wu8oRAhIQJAWzyhEDE03fA2/eEQFSALRM0+YRAgCya11n5hEDDaI1NifqEQJD5fBw2/YRAaEMxhy8BhUCddfyyahGFQCvl2d8NFoVAeAwM5VwuhUDVeaDm402FQFC8TZvnUYVAu67ex7dVhUDKseXP31WFQAHWCB3oWYVAtK7WcaBhhUCZ3YwvTmaFQIkjv4CgaYVAis9Lhd9uhUDGOFJvmHGFQNTcVpm0c4VAoPD4jJh5hUBW6exLkoGFQEM429atooVA3IXP4Vy6hUB0bIihRNqFQNtgE6Ie3oVATyNfb6zihUByWTbir+aFQEKiorSx6oVAaV3pZ1kIhkCkv/CTgXSGQFJp26ImuYZAWplFnybBhkBQ4VYC0cSGQFaX13DTxoZAaM1Mj9PIhkAzJ1rkRcqGQNB1NSLWyoZA1PSC8tXMhkAOwlFiSM6GQBxE2gPRzoZAmC/DOUrShkBoglhXkSmHQKDAd46RMYdALj4/MIk5h0A2sCS2XEGHQEj+q1uKQYdAWfJ0z19uh0Coro75jIKHQExkAMvHsYdAbjzVIMa5h0B1tUDcwMGHQMa4yrS+yYdAspN84PPMh0ArVs65vNGHQBDncvL48IdAZBs/BEV+iEB5UbM2R4KIQMWInuBIhohA7WWJknSfiECM4anYjqSIQA== + KBZXds7jZUA/KJil8iNpQHZo0FeRAnFA3OW/dP8icUA9w2SRqTN3QKNAVK4XVHdAxUlW35rEfEAEHvnKwWR9QHMpLAiPGoFAZrxGAu1Kg0AELq2g0NKDQPfAx5ouA4ZAaFt3vVxriECIxUgzcLuIQIj0Nl0cRIxAMmNAcN6DjUCmRfNHdNSPQOi3OiVgBpFAS0iFRjUOkUAxOnvxgGKSQMtffFuL0pJAsVFyBtcmlEBLd3Nw4ZaUQC1Bsp3y8pVAL41GeBcblkARV4WlKHeXQKt8hg8z55dAkW58un47mUArlH0kiauZQBGGc8/U/5pAdBa+8KkHm0CJK//xzyOcQMOc2N0aTJ1AGFRd5/vrnUCYa1T8UbCfQKggPbdb2J9A8XZKZDmGoECtG9HiUBKhQBW4aspJNKFA0VzxSGHAoUBuQ53RbFqiQPWdEa9xbqJAGd8xFYIco0DHzs/YjyCjQHJqZByl4qNAIFoC4LLmo0Cr5KLgxXSkQMv1liPIqKRAa3Ae6/BWpUA= - + - 4gCTRB+CZkRMJNdFP+ZFREaIXETUF8dECKuDRCK8YkUT6CJEnXVDREchB0eh0k9EbB5ORPuyJURvGoBEtomnRK4GOEQ72IpEk31XRSzYrkU09M1EOhJZRCHNDUYnJGdEyyUpRDNhwUQQgkVEUgDJRC7yvkTrq5ZEG41sRJxso0SXtqJEYlMvRbZaN0TnDgtHu/5ERO3Xh0Q+KCdGpK9NRWP7TUXGkwZFfpSPRG8CqEbtY6FEk8GHRI02pUXHYMVEjivDRBf0akRsRTtE/i2KRDPzO0QiZHFEL5bFRMcyYkV5G5dEaAdQREjp+UWUXKtEpKNyRNRcd0V0h5JE2FxERPM3gkTiUoJEF5iXRBAV0kaoSYdEWJt9RFMUykWjpuBF1suGRNvQvkRT9+REDeLQRLaHA0WU5jBEetDBRs+gjkRXtKBEIRKHRVqoL0RNb4BEGDGsRFdjSUSp8SpEvLeDRBPSLkc6+YJEtU6lROMNNUbfYt5FCZVzROJhyEW0ol1EAswfRW1gckR9RaBE8XSHRK23T0TmDxRFgNzZREFUyESRM5pFeP2jRDeXCEVfJShEZ1+0RKg4ekSAL5lFRr0sRJuUFkWEfshF3d28RE6N4kTjkqpESC/wRBQuPETrfSVEvFoTRdvPcEQn82BE3MjdRO3ER0bPZXhEARZlRKUnOkX43YNEzKDHRB3byUTIgTREJremRG4jLEXtM1hEEn05REzJzUTCgmBEjCKeRC2KNkRDv4REi/rTRO83xER/OxJG46yPRZajjEUorrFE7AniRLvmu0XRoEBEr00tRwobJkQcuUtEzY07RZ2jeUQ3OS9E+yDnRIAIrEXBd7xES3hkRJK/M0TqijVELkMLReWrq0ULStFGho94RHaX+URvhUFE0Yd+RPIC/0SpA19E0L2ORPRlxUTQVoBEB4SJRvm8f0QNnLZFNem/RMo/nEQPBT9F3X9aRKDPGES0Q8REMIo2RGp7mETsjRJFizUJRXu7OUSPljpEyiwkRLSuZEQoZilEjQnNRAlHQEQw3wNFOhqqRNuGq0ROaHVEhIi/RPxkFUfvg8lE9zRgROfbx0X5VohEbiiKRFGcukQMechFBumARH1opkTeTGxEpRjwRB/gVUToEwhG8wUERgAiR0Q5thpEpD/aRiEBkUQ4tRNFwy2DRc3dWkRTts5EHv9hRDBBS0R/ZFZE/+0qRL/MlETcrJBEFBkzRXx6+kSx4OpEurAmRP089EQ2gy9GeHVDRLsDCEVVKaBFmHyNRfhWtUSr39JEiTYnRAxNY0S3cppFLh9xRMlQh0QkjKtEBBa0RO39oERfFzNE1PmRRPcYnEToysJEvD1BRL7lsESPrGNEo6i4RHjWTka67PFFhCSLRLszRkSHg3lEtOfkRUm8nkQ6b3lE/NeJROaRg0RTB6JFkoDCRYi4WkV17DJEivu1RrVd20RHvrJEijOVRHWLaUT0uyxET4RJRUnMp0QAq35EfKZkRYQkeETs2gtFGtEwRo1sT0TlgDpEl0ofRNn9PUWfCE9FD5ORRMf/TETt8ThECHxgRK9wPkQKX99EAEGcRLXuekQzbYhEAjOuRCza8kSPnNREfxqARQigk0Ql1lhE5/onRYtqQESq/5hEkMAeRfBIm0TAvW5Gxo03RdYrd0TFpnZERag3RvXyjEUG64xEBmCIRMnNTETTiSFEPJnkR0sSn0YDVDZEs5ePRdvvt0Y3I0lFYwSIRdh+YkYfv0dEZfucRKPHuUThSx9ERE37RA28JUXpYOxEFu06RGEkK0SFc7tFkNiaRGPKNkUafoBE84/CRLr1o0T17cVEBEVgRDV7p0S7pUNEtC17RG2wV0QFgz9EtGW2Rb9/GUUEYutF161tR0OdOUTEHQFFTvgDR04zsUT0rYlFnqG0RRcTj0QAFFdFfBu+RPrkYkQJYylFTnzkRGOFl0SXIoFEGlT5RNkAeESACy1ESGaJRFG2Q0Shq4ZF31gZRlXglkWlDYpEFJj+RPVcpkQUrQhF2CIlRd8scERs/zZJMtVTREfHKkYNOj9E3zM6RdBcmUUutTlINhoyR+iP10bJIiVFUlLERRkhZkYAoBlEKtIlRCLKkESI0E9EV9EXROVVfEReZWZEsANCRL5WK0SYVj9F7SWrRJgSS0TyU1NEqmVcRbOClUVgvJxEhgw9ROEDqkSVt1lElkmxRoggT0aebnZFDzeqRJudLUQx+F1ECnGBRJplM0Rawd9EFm2RRdc6MkTfT15EXuBERMLevUdxfv9GcOKHRBdFuURKs+1F5kmTRMM9hES4HJdFnGwsRTAqGUU0WCRFAuhFRFgPPETTPc1F7U69RATtzkTxFUFEaSAXRLiJAkUNYEtEz7NWRMJpOUU1lThFNT0jRDjyn0Qg+3ZE9klmRZlvqkd/9HJF9tZdRMKnnkY9qwJFFk3ORQMs9EQimThEy8g7RLytuURa7ztEp4zyRcCBSEUBxgBF7Yd8RAqJTESjnrVFNAxpROXYi0SeiGZEe22PRLTnJUTTbUxEng2HRFdJrEQ8DkdEhXYpRRMdFkY533NELJESRKw4v0Q2IAFG3ztHRaF+QUQFrmdEcKpWRFLkSUYUSUhF9rRjRH8RTkSIRKBE51hIRPsrBEUau4lEtJCERIR/U0Sw1UxEBghtRGBG1USPI+ZEK5xhRJQcSkQoIzZFiSGqRc7Wk0aggG5EphtBRjLkMEQWQeJEu9aJRQ9iXES5/oJFxkBURMf7HUTx6TlETgsyRMsr6kXkduRE5ReDRLYvl0SibkxECVwnRDuob0TxRV1EdVtERPpivEWRFTBFY+jaRY/ggEUEUExEHEWORBSiNkSv1KdEcUdEROsZzERDT5tFh2i1RJJSO0QmxtZEosXSRz3HAEXqemhEfJmHROAetkQc/L9GCMdrRe96XkTJdQ9F6feXRqBfd0VgFTNEFgOARelhLURUqu9EpoJVRJHQxET8VolEYxuQRD+IL0SD0SZEhlEMRha5jEWrEAFF8Rp9RW4rGUW9imhEQMjFRPCR1kabQ3NFGWPVROTgQUTe9w5FjH0aRF3wg0QeimBFf4OTRMmggETYwAtF7U8wREh5O0RQbHlEgfbCReLtX0T968BEYWM4RAVDYUQkyTJEbCYaRJKDW0TkNw5E+Q6IRMFbv0RGooxEzhJORCVydkTyWXJEYwLlRMvmOkRjqTlELuXXRL/bfkTat21Fb0ZwRKTDwUQrJudEa2AFRboNokTHrGZETaFFRAhVW0QzkZJEhlKzRTUQREUxd0FEFBcPRYA46ETH+kpEKqXJRCERf0RRjZtEkjyZRbS0SUR+xaxEz4shRCsFLUb1N3dE7smWRK9nH0X4w5dERjhERHVnQkQz3l1EtLJARA3YPURIYQ9FQNhWRE4mQ0RzmolERN6bRMNWf0R1t49EZDFURIZWh0bcs0JGDL42RGx4jUUaBT5EVK4jRcC2u0TrFlxE12enRPsdS0R3001Fk9kVRb89ZETv3ppEYLSqRNnIEET1QB1Eyh4pRRT9JUTJI+5EW49ARKGPMESMJSxFEG9vRs2YhUR8EJNF/n6VRHiVMURYl6lEKlwFRWjmZEQwcdJE10wIRnQyZ0TnL6tF7AcuRWoMcEXvFURElwFARbWQ/0R2aFBEHNA/REClhUSbWJ1E2BKIRHrANkS6iTdEtFccRDSut0QbQRBGi+IARbgBkUSJyTVEpAPvRCg2MERqi7xE0zQ0RAsKkUVvu0BEVgQORXY+nkRI+jtET18fRAayu0QC0gBFAArCRGZRakTDyUREyLNzSOUnTUV2bHREeTI6Ranb0UeHovBEBtRsRKaYb0e/YDVFWJqnRM2EO0Z3YWRFD77BRAkaWEQ0hBpFelelRXGBBkVohKhEZUiDRNLxkESHO9ZEhh+gRA3q8ETAU1pEqiqfRD/lLETdRDtGfSp+RYOhSkUaRm5Ej7nKRlObq0TyYpFF8kJ0RDIuVUSiVbNEy8/FREgqPUTltilEavp6RZycr0ReBXlEneKJRTM9VEUX5F5EPEO2RE7gK0R5jElEJ0lIRM1wOkSeF8hEgUXSREEzoER2mXpEGWdQRBsuUkR1qZBE3rIgRCp0VkRsJLhEnWBlRJgwAUXr7b9FRo8jRCpO3EQDSjlEhBBzRJhwQ0T7nPBEgQw/ROg5ZES+lYxF4l+1RW22FUWFN4ZETc/DRW3BOkSYZZ5EVDpgRLlYRESP6jBEhIiWRM5QMkTIEQBI8rhhRJlMqUfY9UBEj7gmRKuPnkWso3RGG1aJRXFgvERv0zBEturCRgYL0USfEDhGyzlCRA3IKEWmBGxE6WyORO/EPkZRZVZEo7iVRMKIRUUn+ApFGvdjRNfENUTQ2EdEQYyaROHJL0Sj3FlEIT/PRpCCgETOJ0JE1+ZrRkYlKUS1OlZEnjNJRPXqmERv/jBFI2B/RK91hUS6qydEz9hnRJRzLUTGdGxEwNmQRMyLCUbn2EhFVp48RMv6S0RsGs9EP2afRGEUPkQcVkBExSsVRUm5zEfVFrtEPIY0RPPOKEc6oFdEJXjNRio/DkVCYotFTi3SRZV97EQZyx1FvD/KRP22mkdSsEZHWa8SRvtgw0VmJJlEedASRig/hEXhaaJE8ugdRZ/cIUTzkmNEJP6uRFxlIkZnuZxEuOCTRQzVX0QPbq9ELCWJR03pcUQekxtHeV5JRFldRER6sYBEg237Rdwzj0SQQLFFYbXTR8qGTESK4d5ET3Y8R4pyzUaz3Q1FKO0HRgzANkVSHVFEEMUmRD+xS0QBzpVE6p5zRKuhP0VicgFF7DyMRMM1nkSYVDhEcwM7RDaJm0X71M5EGc5iRevTJ0cb6SNERJuuRsVGIEQlFxhGvhV4RaC/QUQLZJtEuS6aRJnWGkXFXr5ERgGDRizlAUbgloBEPbsvRenaiEQ7VS9F335QReXL4EQUR11EQ1VDRA/f3UTciwBFYW5IRJteNUQt8nNEfppOROgPPES6bsFFPuEMRZrIZ0SW1nZFDlzfRbYQBEVPpW1EWrJWRckR9UVomI9FtTt/RKG3KUUL2gJF+fufRNkheEUXtZ5EGDfCRPBIs0TdsFZEr7qJRA9lh0WcFCFEDjtVRZbYIUV1VmdEYFVNREj5ZkXaKbtEVz88RCCwOUTvwwRHOsFsRiNtPkTvUzFGU5qVRNc9b0Qx47lE2SB3Ra1DgkUjyFREI7mGRArISkTgosRE+tSWREzU4EQsLlFERLWRRE8NNUTICWNEz8LhRIHoNEamPPRFMkAdRDrMo0TLsYxEPJXwRoZqMETTsWNGZhBBRHT0FUaCNZdEX2l4ReNBw0Q+mG1EK4A6RCX0jkQML4JE2ct0RqJdDkZoMFJFXur/RH37XURh/C9Elx2pRIXEyUWn8/lFbg8vRoI6/EQRkZpFYICuRJqynURZNpVEH4VtRJhNCkYySMJFisxaRcKahkTdTOhE1AyhRAyxUERZ1OlFOeVRRb1TUkWnEa9E91+hRPdWJkQbBjNEM5s1Rc7RO0WWu05E3vJBRNiCqkQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - PYwXIqjAckDKP+72bsFyQKNpbPdQwnJA46ScVabCckBaqQi548JyQKb6Jr07w3JAVOiu8XnDckC3z7Ztw8RyQDJbRMpYxXJAfANBjYHRckB80q+tQ9JyQCwhsVPM0nJAom8sGXfTckCfj+4QzdNyQI+IsfDO33JAd3OdMrngckAO7yVN++FyQCxAie1P4nJA/KBcHJDickBSYWGxI+NyQNhh1ru243JAIHv4RDXxckDQI4kGuvFyQK2IfFhf8nJA7THhvrjzckBgCYIwpPRyQPqpqTfC/3JAylWrsmMAc0CCa61n+QBzQMmoV8hOAXNAy/ZQkI8Bc0BMfdyXOQJzQNYd6kjPAnNAeT61gWYDc0BdKaq8+gNzQKtIdWaOBHNAcpKK8rwSc0CKWiFt2hJzQMjQZjkGFHNATtJ/73gfc0C+fRDcDSBzQBZf5VGjIHNAqvHiaDkhc0Cry4L2YiFzQJkhIgDlIXNAmqqVcnsic0CsVgPsECNzQJqEeLoHJHNAKhrFI84kc0BUBvF3STFzQM6hCAOPMXNAxh1RHCIyc0DGQlN/zjJzQMzP2OcMM3NATCmjrKEzc0DqdOpeOTRzQBgbwH28P3NAERiZLENAc0C6bEjk5EBzQEffYj95QXNA2NmPGLtCc0D2ppVQekRzQEltpfOaUXNAm++xarhSc0DilsDPQVNzQFYZslaiU3NAUsCID4ZUc0DDXERC+19zQKbcQf2NYHNA5Mo7ABxic0AS0rm6OGNzQN70Up3RY3NAObaZ3ittc0AALBBXRXFzQPzJOAXccXNAaOJ4e1Fyc0AdKw6ka3JzQMBNsnyFcnNAnCfK1blyc0BzQ0EhVHNzQJ7PA6+Oc3NAGBPctrh0c0C7/KxDTHVzQDryHCXCd3NA2k5M0uR3c0CoAoOweIBzQGiQWryjgHNA5M6j7w6Bc0C8bRcWX4JzQMTDBWesgnNAnvll2P+Cc0BalpKDWYhzQIC0KrqIkHNALeZl+rSRc0A0QCCG95FzQK57gG0hknNAzL2/ik2Sc0DAYy95apJzQDwDyztjlHNAO+UU4PaUc0BMN3xCuaBzQHSCSt1MoXNAiuAbyXOhc0D2ZGlEsKFzQIFBltLgoXNA0E+Gllqic0BhWZtekKJzQJBHg8jBonNARz6BgOaic0ByKZuII6NzQBiVXSwGpXNA30Q2Ah+oc0BCqieb0q5zQKZqS+DIsHNAmr6t6Vuyc0BhIdijtrNzQDQYDUINtHNAckMZ/qK0c0BcYrQMY8BzQAKdH//3wHNAjrjv/hPBc0BUDnj+z8JzQCT5D4wnw3NAiBXnItjRc0CEOmIxudJzQIjjRAQj03NAzJqkKPjTc0BG6lbM4tRzQKQA4S6j4HNAjl9I9zjhc0AZVvvEY+FzQOJg04J64nNAmlwgl6Tjc0DmhEV/7+RzQGgrb22Q8HNA9yDoGrbyc0Cwgj94OPRzQJ1J8riP9HNAFPBSYEwAdEA+5NXy4wB0QA4e1LwNAXRAySYGc3gBdECmtb4WqAF0QOQ00kEjAnRADpbWAwsRdEC01UvqeRF0QNu3s3GMEXRAaeL0qU0TdEDyAQjGdhR0QOrWVPD4H3RA7lD+IUwgdEBVMbAIjiB0QDjE2Pe3IXRAMPMtW10jdECl/hXRkCN0QPrUnUxTMHRAJGN377kydECDRrzS5DJ0QFv4qT8YM3RAlarSt+A3dEDOlI7MOz10QGz3FfxTQHRAWt0J/MhBdEBCW0yZoUJ0QADSCUh4Q3RARoE2OkZNdEB8Ua1AiVF0QLApYfb2VHRAhh5FZYtVdEAWCSFH21d0QDs62zohXXRAEx65QrhgdEDqSTgrCWJ0QDDOJIF8YnRAlPOtWONidECcaKHeTmR0QAzwMzXHZ3RAXLo+5yFwdEAe31NuQXF0QAAp4bTQcXRAwFxDuztzdEC4n+0IOXV0QBo57tRBgHRA7KxNPGeAdED680FF+YB0QETIsSgSgXRAPFNj1E6BdEBu0raD7IF0QHovVm9JgnRAZm1JdCWDdECcKfUGu4N0QFbu2mAWkHRAzL8nwWCRdEA8Yc58DJJ0QP/YPobvn3RAgUXwzc+gdEBtDteiOaF0QIQYi7tRoXRAtG7kQxCjdEB0qDmUpKN0QKxKjfH7r3RAJk8WBQywdEBnRt0Ew7B0QJMMX/1usnRAPiEkeP2ydEAWQkZnybd0QO7oK4UhvXRA8CcjXt6/dEBAxLN65MB0QNhI17B4wXRAEOWLt+rBdEBEZIIQDMJ0QCRAeH5Rw3RAnVJX17rDdECj7QfXecR0QFZqX9u4xHRAzAkzcvrOdECrEDTwbdB0QAjpPqao0nRAKtmqqM7UdECa5AkzueB0QNjPPrW44XRAziszTZDjdECAsdpmT+V0QKxg34BO6HRApB1xG4/zdEBevW3LefR0QNZIk7GmAHVAdlAS680AdUD04HBLYwF1QNjDQWb6AXVAW3E/HF0CdUBNSWdOmgN1QDW5qfbPA3VAHrkyTJoQdUBkJ1KvJRR1QBlO2TdRInVAiQWkYZ0idUBY0mdNfDJ1QIjlGButMnVAeaPTWss1dUBEM5BssUF1QNIJ4vOJQnVAffW3BN1PdUB8cYPl/091QAAOnmyBUXVAzAdJgIlSdUA0JkknTFR1QNCcEyl2VXVAnFAaMhBgdUCciXtPOGF1QBvffCnzYXVA4PggI9RjdUAG2HJId3J1QHQJX96NdHVANNIWjXaBdUBI5lV6rYF1QNR0OTWlg3VA+8kXmROEdUB+PTyIm4R1QHIcaKcpi3VAqdVFhoqQdUA4DoiIu5F1QCrZaQTRk3VAFOYZgMyXdUCWKxRUt6F1QFk6tfP7onVABq1SNUqjdUDUeHH5zMB1QKlv2/9iwXVACuYz7fnBdUBciSkvB+J1QKAdSY7m4nVAdCxp9nnjdUBG751STe11QLBnLpoo73VAPFkU+qXydUBZELiY7vd1QHAkD34D+HVAEWFmSUgCdkAsnl420gN2QDX3AS1XEnZAZ2upxU4UdkD2seZEDBZ2QOKZl5SPIHZAdtMIY4gidkDIEXtOkCR2QKe/deZLK3ZAIDrOtR8xdkDVRXU/mjJ2QFCPW8ojM3ZAlaTu/1EzdkCdorFtnjR2QOKrWDHlQHZABgy7GQFBdkCShWYyHUF2QJqzbfUuQXZAPLQTL8hCdkD+aqUJTkN2QOyNgUp6RHZA4PGOH8lQdkChWo2qEVF2QBnf7FSmUnZAPAcfBohUdkC+u2QOzVR2QEooXbqMYHZAnlvduw9hdkCAIqKLIWF2QEbMX9jgYXZAfO3ujDBjdkDiT7jP2mR2QAbkH2hYaHZAfjS9KGqCdkDKNqwvkYN2QPrB6Mj2knZAmPl8qQ+hdkA8hLOLt7B2QI1+427AsnZAccwb7Ay0dkBc2m/idsB2QFMUTQDAwHZA71aXg0zBdkCPaetcGcR2QOaOLerOznZAzUFRn33QdkAM3rI7vtB2QPrbR5wU1HZAgBfUs9TidkAkeaSYk/N2QCQyhVpM9HZAguj2YpwBd0BYvDuZMgJ3QIpf1vJ/EXdACvESOAESd0CSqC02cxN3QFj71NPSHndAnJeyGA8id0AGWMaK6Cd3QF9H68ZCLXdAKrfsEp8yd0CHx+kwozN3QA7AYjsNNXdAFn3zCJ1Bd0BY8mLdkEN3QALcoXEbRXdAeEzoggZQd0AYLGZ8S1F3QGqkUpmSUXdAqFCg9CtVd0DSTfuPR2F3QHtwERuOYXdAInSVeqljd0C/nvltJm93QIaxdPr0b3dAM65oSp9yd0AcntKRtXN3QMhsHXz4d3dAoOneJy2Cd0DvjdYjeYJ3QPr20vcKkndA+l6BIk2Ud0BGQ5RHpqN3QHAxzcbDsndAR4m1sZu0d0DPsXMg4NB3QObrn2uM1ndAkpaU7ezgd0AEdOco6fB3QE48mEpP8ndAgarsHXT3d0Cad8anf/h3QB8FFNV1+3dAg9+ejEb9d0CrUN8Vdf93QAsp4d+fAnhAqlM1cWgDeED5w21t5Ad4QDgvx7X7B3hAbrOTsUQNeECd3jzUFCF4QP7Rs0xvInhATKD/ET0jeEB6pki1iSN4QIIra8qmJHhAjrrL/UUoeECs6XH5my14QOp74617MnhA3CTO9wtDeEAdnrndEUR4QApI8yt6RXhATr3IVcpReEA0Zt7Mk1J4QIhE8c+JVXhAhshUQZ5beEBrmK+J+WB4QDDMbKq4YXhAlE/LtkZ0eEBsdFlBXHR4QCB9TKuLdHhAtpOE1a90eED3xTQjx3R4QKw5C/TZdHhAuF06Vfd7eEDA8cEyPoF4QNpumh6kgXhAIKxz8/+DeEBpUrUDmoR4QM+0DbW8hHhAHFPidU+IeEAeufxXqI14QBA9p1qYkXhAgJyyUeySeEAubZlcA5N4QDIuehaolHhApvnrikWYeEBNujGTV5h4QPI9OHi6pHhAWt5wmqGzeEBilY6N4bd4QOiutYs3u3hALlQfjcvAeEA5JkIc9cF4QNtrK2WeyHhAkNOXmU3TeEDaOGj4ttR4QI9a+6GV23hA5cu+vgzheECEpDxPAvR4QNsQHseL9XhA5wbZ2g4EeUDyU+LemQV5QOrAteeKE3lAME5jK1EkeUC73VAIsyh5QBB6DhsMLnlAiJ1gjGYzeUDR58G0/EJ5QG7Zs+T9Q3lAIHvpIs1UeUA4L3dp2mR5QGHsZl1Gc3lA6IjQVFuTeUBz+LW3Ypt5QNkxIyxTo3lAHgGwiGmjeUB1m3yxWKt5QKaqJZ+Dq3lArlAuj7+yeUAD/sgNibN5QIA0cHgAu3lASxEF5s3CeUDUz5HRAsN5QAQJpmRB1HlANIzisc3VeUBoF4w0UeR5QCQAfv8S9HlAjyalhBsEekDW1ALpYwt6QBPlrS72C3pAdDHYgVITekBexDcUWRt6QLaiQ/FPIHpAasrOZCszekCUm2eVDDV6QOwBmwEtN3pABixjKjI7ekCXHXbRNT96QAzaAYwaRXpAImOx9cxLekDCjuMiJ1V6QFJ1tY4iXHpA0srM2SlkekCcf4R0iXJ6QNni4EiBeXpA4bxqMR2jekDUDPs2d6N6QNTSmXsmq3pAqAyswhazekCGLMi8/rN6QHwmM/gMtnpAOXqMIy7DekDQxRunAMR6QH5HNSwaxnpAhM8RvyLOekCqAyfUQdN6QPDJU4E07npAAMUvrcDzekAAu6p6wPl6QLIP0kr3+XpAXCVioucDe0B59hdzfAR7QKo33VcnDntAUbZB74kUe0A0koXjTBV7QH7d0p9bJXtAiHtx1VIwe0B580zwwjN7QIu0kztiPHtApOvedmhEe0B4YLBTekx7QF6q2zsQXHtA7NLrmdSSe0BG/wItwpR7QN6PPg8jlXtAPiKj/Dase0CmbK9qeMZ7QFCV4sMz0ntAlONVlv/je0A8v+JYKOR7QA6qra2M9XtA/JZmxG3+e0DCsbBr2gF8QOavhV5nBHxAXlxt45oFfECCduw1iRF8QO91K2LUEXxAmCESxacVfEBgRIh00zB8QPV0WcHNQXxAeOmp81FIfEBq2CP5rE18QOQwrinbUXxAtLJ0TA1ifEC0sphBJ3F8QNy8LSyDdHxAqmfJAGl7fEBWsSeC6n18QFjYBkRwg3xAY3dONHqMfEDX99tSxI18QOJap5Ydk3xAdlzWPVyZfECSo2iIsZ58QH6Wbc1+snxASuUvdsCyfECLYIvFerR8QCaPYT3mvXxA8/9v0NLDfECxf59Rg8R8QEuJBn3423xAmrXgDljifEAaVkHEEON8QDCp6zNt6HxAloJBqhLyfEDVw3VOVfJ8QFO40kCw8nxAoNPDPf7yfEBGHg4dAgJ9QB03YAdLAn1AcEu6UQASfUAKQVyORhJ9QG4MZciJE31AerBv5LAbfUDzQlKMPCJ9QOlLl1+2I31A9Sd31aAxfUCnkguMmDN9QMAFiKQqNX1AeIfDTM9wfUDFaIssenR9QCogRZeCfH1AZvugHYmEfUB0OC9JlY19QE++AD7wkn1AmpAMsBOkfUCE9XMwLsN9QG//LhrnxH1A5ytbjPTUfUD8bH5P2OJ9QFZFBlp67H1ARlzWPob0fUCGQZdnkvV9QLx9KA81AH5A4g0RvoECfkD66O4WAh5+QDQdong4H35A1DplGJckfkA2bsaiISx+QGxPDWVCL35AiloEZXs0fkBiF24zCzt+QJ4HzKoRQ35A8Vt+rKNEfkAAL0fSE0p+QLAkHd3CS35ATd4NpapMfkC41IM77FN+QBqTCuyrVH5AUnlNw45VfkDM4cDI71t+QCr37GS3e35AaC7WwZ2DfkD8SD73w4N+QFcBv9lPhH5Abp9THA2GfkCwJ9A525B+QIrWt4SUpH5A2Hu4C/iufkBQKkSuxbB+QDCwbSMRtn5AMicbptDEfkD3I0/YIcZ+QLixKuNmx35ALPmEN3fIfkD2R6ibzM1+QCwDlpq3z35AnkWMNEbTfkDVw64eUNt+QEleRODL335A7NZi89bvfkDSBd1pTvR+QDcbR+bU/35AoB0XU5UDf0AkM3jDxwd/QK7zxJ6YC39AEDbX4D8Tf0DJyK6DqxN/QDTyykNKG39AegkYHKsbf0DdEkbMZjR/QH/64DuqOX9A8ugs6O5Bf0ByB7+EtlN/QGScsuw+VX9AII1BEIhbf0B4GklssmN/QKydJFm3cX9ArGl0M+N0f0D2SvetroF/QEYmyYipg39AakySYhGJf0CFM01QY5F/QL6sArCqkX9A6EImzJeTf0Ben4+4W6F/QMGii5tCo39AxFChDpyof0BKP02IVrF/QJurmEP8vn9AYtZg8BnCf0BNCOG+M8R/QLzU8Jl0z39AhAMHy7/Sf0AzRYRWntR/QC66682A1n9Aqz8EZa/af0DHVhIIsuJ/QNf9ZnM4739AOOE+BpH0f0Dg/m936vl/QHQ9+Jg5/39AEtv8J4kBgEB4LpG92AGAQICubFQ2BIBAue5TM9sGgEBIc7yMzgmAQHp5eRTzEYBAoJ63NSIZgEBoWU4r0BmAQBJi55VpIoBAEqmSceMmgEBJQ4GRkCmAQOqaJdZvKoBAiuCd+eYvgEBstu2qSDmAQI6SmG9ZOYBAUPutopo7gEDcefe8qUKAQFrAI+fvSIBAa8HHcK1KgEBEUIbb5lCAQIn34T4UUYBAPn6IPeZYgECmD9ITD1mAQHSXcYsgWYBAophmCDJcgECk3nyg4WCAQK1nWuHDYYBAzqLMzm9kgEAol4Vi7GWAQKf9h+sbZ4BADBz8SaFngEDDp+7+T2qAQL/ZtRj7bIBAd/DIzvBtgEBBrA8pKW+AQGLHPLpecIBAmtpK/PNxgEC8NPXAKXeAQIxdzJIEeIBA2pTnqBt4gED/HRJFSnuAQCiht10pf4BAXuKCRHOAgEAEWeHcwYSAQISX/lGHjIBAw17IhTKOgECluIdwHY+AQPRFj/4fl4BARVbDheSZgEDzx3VzGp+AQFLrDVDMpIBAxPUJgTimgEAyQS0WZaiAQKtewdoSr4BAPzaRw6yvgEAF6wpLW7OAQIQ6NigOtIBAPKh8v7C1gECFVwict7mAQBil+WRJu4BAl0M7Kwq8gEAp8ij6vbyAQAavjrAAwIBAuPuEpVLBgEBRz3vLnsKAQITBEwuBxYBA1LSHye7GgEB2FADgqseAQBf3bGsgyYBAXbTRjlPJgEBbgFcPgsmAQKISaxLRyYBAyuEFGqTKgECk/PRI6s2AQDYVR/e0z4BAcaECG2bQgECJQtNJLNGAQGAe6LVM0YBA0pkrGQ/UgEC7fRm3tdSAQOUPyl1m2IBAwvA+dUrZgECUeulLwNmAQJoqazrE3YBAurD8F8HegEA3ArHub+CAQIKDX+VE4YBADb/5OxXkgEAO9pqmweaAQNB4G3P16IBAGPSuzkXpgECwLhu3S++AQNMfnFU/84BAmRnz41H3gED88gWF6/mAQHsUFGlq+oBAyLDRdYn6gEACp4yLLPyAQOCYtrVY/oBAOrAs/bD+gEAm11bgP/+AQADM27VfAoFANFlznawCgUAFdxMfEAOBQJ68RfI+B4FAGuHDf+ILgUDIuZk9PQ+BQO5s8u+zEYFACtb3OWUSgUC1qPwL6RuBQOVmMNk0H4FAsGl+vrEfgUDg8NlqNSeBQE7UDRW1J4FAUHdHek4ogUCa+m/+IimBQGLWmL8wL4FAvujf37wxgUAgWv3xsjeBQGloEW/mPYFAnf5tWyk/gUD0MAhCDkKBQP7v+jiqQoFAXEdp0VpHgUBCBVkpKEmBQNEpKkfqSYFAPqCdeghKgUCaldYftEyBQBADVlY+ToFANOzL+8JRgUCjYAEhcmOBQE4ye72MY4FAGP5UR81sgUDMdLakzm+BQHLsrKGHcIFA3qXvdsJ0gUD0mOLXb3eBQGdMGGDseYFAf421Pxt6gUCmA49tsnqBQNA/8i3KfIFAR7BBzGF/gUBSIst/IoOBQFHQjlFFh4FAS7uaimmKgUB0vX7LBI2BQLuybcZVj4FAmjlklLKPgUBQtll6P5CBQBcywWnvkYFAp3HDZrOSgUB8co9PC5WBQGrkKFVUl4FAWIT0d52cgUDQ2YE6R5+BQHlYCfLkoYFAdMbV1vihgUC0EZBNEqKBQJTRXPSipIFAlgsFa1WmgUB64tF6bqiBQMgMzLDvqYFAmqXjgkqvgUBI6NFxVrOBQMzUPaBJt4FApElRXAy6gUAG5L0wSsaBQHAe83H50YFAXpYM3X3TgUCr4l5d/NWBQJIyD34A2oFA4tODQjragUDG9+HV8t2BQM6XLLwG3oFAFKFoApnfgUBGe5xa9uGBQIz5LznQ9oFACLl2C+35gUDwVEsEIfqBQPPwC3jw/YFAsX885vQBgkBdHEUu6wWCQAz7FYgDDoJA6vV8zAgSgkAqhpNCQRiCQIzECCDZGIJAzO/Fm2YagkAhC9W4xR+CQB+CrGXYIIJABH5iTtUigkADHr5I0SiCQPYW8DCkMIJAUC8Y/EExgkCOGMvspjiCQGhXF7UxPYJAuHhrfAs+gkCxt7IKxT+CQLxCsqF4QIJAlmn18A5CgkCoDPapEkaCQMwMjTPJSYJA6GfrjxROgkC8hFjxpU+CQKx+9x4MWoJAkjdkFt1agkA4W5yToluCQFDmcYBuXIJAP+6kQkVdgkBWRe6beV6CQMho+H24YYJAMhDt4DRigkDHV/MPv2WCQG6ptKc4ZoJASURPg+NmgkCKxMAVemiCQJpLqtA+aYJAtJ1EIddqgkC+jE803HKCQNs5YmEBc4JA63sgCTd1gkCKF8VXCXaCQIB2p+p3eIJAusKtGQaCgkBWx5ggJoOCQHHjCrMXhoJAK+ungkOJgkC9juxTFoqCQJwmC++ji4JAiBVxQRWOgkDjI+WJ8I6CQN7G0eRDkYJA5V26tEKVgkAotqN7PJmCQEbyHX5UmYJA65N+QA+hgkB4TVL6OqGCQJYzj4cNqYJAbkHK4TOpgkBFRO4KSamCQOivWP+TroJAMkd0+OzFgkB0hfZE8MmCQMRsbOrgzYJAi64U4/XNgkCJvImiuc+CQBT6KXLp0YJA/W6LofnRgkBc7FoI7NWCQGuieqx+2oJA4MnqvoLegkAwfbRGhuKCQApLapIU7oJAFYa91F/ygkAA3gCJ9PWCQHcgP7uw+YJAciI/FPf5gkCeO94Q7P2CQNDgq5fhAYNAf6LCkqsEg0Aim82t5AWDQHK2Kw50CINAqkO/v0IJg0AorHK12QmDQD7T+1vsCYNA4Exc7N4Ng0DqX7LUzRCDQJ6Du8F5EYNAWBCZ0eMRg0BysbvmxBSDQJYHcE16GYNAVo1M13Ihg0CkIXQiiiGDQKsPTAhyKYNAephtrBsqg0DUBuOTaDGDQOxDQdl/MYNAqI8nhx45g0BAJapt7TqDQD6yCIOSSoNAAFeRz5ZOg0C8zDTeKlqDQKGs0EUXboNA8YNHevNxg0DkABL56nKDQHyG8Ur1dYNAEY8XVcWBg0CulXTpx4WDQDy0SwK9iYNAdEpIG9KJg0CnuZkgw42DQIQBV53CkYNA6B6XR5qTg0CQxn03cKGDQOKOaJZUpINArdTLGlSmg0DRBgQXV6iDQK2OiENXqoNA4f5sWhOyg0DgB+HhFbaDQOi+2LIHuoNAhVQQvRy6g0C0fVsiD76DQPDEhmIdxYNAJNG7/8zHg0Cq8djxeMqDQEV3Fj/L3INAqpNgVXjfg0DGgXQQJeKDQMQIQFNPOoRA963l54lChED4rm2bH2OEQDrWaxr/aIRAFCivBwFxhEBo7mgkuHWEQBSWcVmod4RAPmuDa8p3hEBWknez+XiEQJIDi8e8eYRAzFkiMHl6hEDOYK8OEX2EQNBpIvIqfYRACBGR8L9+hECnKyxb1X+EQKwK95o+goRALasZC3GChEBb/BE7H4WEQHhiGEnIh4RASvoYKByJhEBN8cjqdoqEQM837UTOi4RA5Fn+XniOhEA2OVfGyJeEQOA0vBAWnYRA4CVuxCudhEDg2NhG2J+EQEy7kE46ooRARqJ2OnKihEDj0jsiHqWEQFWZIngazYRABO1uQWrZhEAoTrLTD92EQOj/OcNp4YRA8SGBNGPphEDuP+sFKuqEQJgn9yIv7oRAyKay+TXxhEA4VUPvYvGEQIKf9OHe94RAXP2INDX5hECGg5dmivqEQMoHmM6n+4RAzSD0Lzb9hEDWzhSyLgGFQGZ1IE0MFoVA2HublQwahUA3d9zOXC6FQGBfPaliMoVAOCSxvyJChUDUMDxD5E2FQJwNnbzmUYVAEhvefO5VhUDuaJgE4lmFQNwgidm6XoVADoALhqBhhUD6VBbVoGmFQNjJMw2ZcYVAWsVjTpl5hUBwgvzclYGFQA7DiJ85uoVAksreCQzShUBGmh9rrOKFQD4muBpK5YVA70rAs6/mhUDQdbksseqFQKJicXey7oVAABodjFoIhkC2q2615YqGQOr8h8l5koZAxwQzcya5hkAhPZK2I8GGQGgiiZfSxIZAt/RjcdPGhkBPP9be08iGQE6XVRdGyoZAItFmHdjKhkD0tJ1P2MyGQJxVwQhHzoZAeilrxpAph0D80U4pkjGHQCfRF82IOYdAAkJoTn5Ah0AQR/CLW0GHQBaOHRmKQYdABvq3zFhJh0AMQvYvrGaHQC9dbFvHsYdAUwvHjMi5h0BMqQyewsGHQKAshTi/yYdAYgC53q7qh0Bw+kDYbQaIQA7QdUF2GYhAFihmRe43iEC1zX8FQn6IQCJclxlGgohAfjL1A/KiiEAZURaLiqSIQMy0BdHbtohA - - - - - - 7ec+RAUT2UX756FEcGFARb5/rkQanVBFNE1RRDBteETnIpFEUkk7RF09G0clMjdEL6HLRAnIWUQGGgBFIvuvRNI1MkQHMjVFaD31Rcl9ykRtyDREGTaxRIYEAUbiaCBEm76LROKMs0TUigZFCZ6ARKflXEQVwW5EMrB+RMMkxURMx1tFfRLYRIHcHUdjZFpE9c/6Re/sWkQZ9pVFY+raRHBhR0TjPa9ERSutRotckkTQMF9ESMJrRHqkUUS16bBEFJWURTnOB0WGXYBET3yQRAtSlkRULD9E3wdZRB4OjkTz4pVE2upoRMcTy0TyLFZFiZqZRDHuIkbxDxJFiQdZRPwKvUQFoytFjOSERArAm0S9C6JEe5vIRORm/kSkQpVE4VGqRkjlMEQc8JFEBvLqRG3FjkVmwtRFkbGcRN1jPURpzm9EmIqhRKAUQUXIyGlEkWw8RHiEyEY3frlE0ZoDRfZQbEXNMFBENIKYRCEkYUSMbUxEkrYpRCd9OEQE8TVE2aNORzsvc0TNiuFEtC9ARlp76EX1YklE47Q4RITxTUSPD2hEDYrSRfuTtETg4X1EQgacRIxhPkSxfRVFBlKARBG4RkQRqmVEVbygRA8+L0X+KwdFZUhJRDXpU0SrPAxFew8hRDnUmUXPQchERI2DRDdgZERcEzpEe5ufRKIpjUUc43lFDzDrRdIMrURr1aZEw1SjRBljdEQ0TDRE4klNRGMzHUUG75ZEtMtoRPghLEXcBVJEWLFERvoWkEQrq0VErCh+RM/jdEQj6aBEw14WRX81WUT7mHxERDFQRBSIU0T1/uNExrCGRGJ/90TGlqdEVfoeRGuNN0T2aGNEKK+JRf/vAUUFMm1EBMTYRDAdgEQCXYNEXR2ZROn7RER/RnNEW+NdRAGXn0Q8E8dF3q1aRYbE7UVH3SdFML9JRLi/wUQt+xhEsPqYRUxOQ0f+r6FEymLaRO74EEXQX4hE8uktRBWznUTAxFBEVv7eRRA7TERllfNElbvPRP4pkUSH0MVF568mRCO7SUTD4q1Gm+C8RB8SqER0GUVEKBkHRaMQQEQCQb1EpsBPRIn6ukT0AklGhBqgRHh4yEXtqMpEV9hNRT/fkkQK03xE8bn+RLStTUT8dVREOlbiREUWR0TXfwZFMI3DRHOTL0TkH2dEKwyxRNTXiERmjgRFurwqR1HE5ERKLmpEDeDqRUMjNkQGzkVE1lOLRC0Fm0S3n0ZEWAsJRm0JdETFZEdE+FxlRGUJvkSWFPdFtCrcRU3c+EZ1I4xEBGseRecxlEQMJIBFoeKLRJCnbUS52e5E98McRBjXc0SRob5EUwmJRNxn6URSJlRFvQ45RD4tTUUCIwFGxgmOREML1EXD20xFIOkARZ1rEUUrhEZEK1yJREPcuUQqHuZFoKKXROnSjETR/4ZEPhMZRVgMTkT8yFNE2v2fRHdasEQjy0JEDpmBRJQASUb9FDZEQzjpRYtitUQzMZREe6b+RT3cNkST8nBEf9eMRJOIlET9qTxEUE2CRaoZA0av7btF4eu6RmRuZETK1/BEPfwERW1TdkTPbldEH0cuRK83kEXOg0FEN4GeRFtKOkQ0xFpFZvOHROeHaEVkIT1ELY6NREVwXkY5YS5EFoQ6RA9pIEShmEFE3dY3RAkT4ERT+85EZAF+RIlwm0S1JdBEySa/RDBEc0SHBDxFVtqcRSt/VkSABZVEID+vRPkVhER9301FyvebRDw0YEToNI5EbIwkRIZTFEXwYylEJJcnRK0eqES4eipE9UadRviKE0RPZKxELVQzRR1PPEYgLdBF2suMRP9QmkQ+o/pHuIGERgL2okUEYaNGLzCfRS9DgkVpkDpGpGmjRIfrr0QEUK9EBCY6RbzvTkWxbG9EhgUNRkD1W0SUD15Fafc2RJGm3kQpnJBERl6YRH8hRkRuRllEg/NhRCN5TURwpJxEwcJeRC1hZETLB8VEW/RSRZTnvUTatwBGeaV/R45wbkRVowNH+PnLRM/pN0XxheFFBz9NRWPSNkScLEBFi+rCRPhBhUSOP2pEse6GRCQg4ETrcTJEbVJYRAhIiUUU9C9GBiKKRaPYtURlxSZFEU0oRExOE0UMNzRFpKpXRYqDe0WkAjxJ72+qRaM0V0Uq3NFE0DaRRgzMNETyTDVFQo+nRY7JQEifT55EMNY4R6baq0aYCR1FKT0bRQeZx0WGQIFGmXFVRBTAlETGKq5E5x9dRCLH2kTZSb1Ezw6fRDIRNESe45lEXh6RRKR3AkWaZ3NEMVtbRF92c0Up+MRF57RwRCSyXET43o1EJrlmRBy0ikYIo0RG/I11RTlUd0SXj61EfuGGRRdmoUQz+1FEP5nIR9iaCUficWFFDMjERRQih0QTYWZFcmxdRQ3Qx0Ry5yBFQ5FWRNCJiUTwL8FF7h5hRPlOuETHRbJEZzJHRPWsnkVyGEVEwxVvRVq8s0SjHC5EjcE4RXF1skfZwRNFUXzHRONjg0TDw6RGEDmARLQS+ETqIudF6NJgRQt4LET0SLBEbgbYRXdN0USxuctE3yqMRHAGVkT6TMBFerFbRMUkSUThltFEgE5JRAlBTETyTGNEONktRLkvKUT/dktEryJTRTKm8kWVaqxEZRyMRNLtMEZvGABFNXWPRMupg0QAVyFG7XdVRW/5OkRp/PBEAjg2RCvPTURD/cJEhjhDRBjQbkRkfr1EyLR2REHsIUVEt4xGKNIrRAZ2H0YR2CFFBT6cRWKHQEQZ3XVFGphhRF9KPkRV3uNFfZsXRZ9oDkUig4NEJM7+RF53jkRv9GhEU2deRVbYbkSS55tE8ahNRK1cuEVCPYhFFbytRD253UTAxWNEupDsREHnpUXH1jNEr1oFRQP/eETUtltEdzDuRzt6E0XHbI5EsDyGRMfT40bMbR1EnCw0RDX1NUXR5qNGNKlQRF/2aEVN2zFE67ePRVdHzUTxVVVELCKrRK51LUXbZcxEZzohRAWZKkY/6ZFFITOxRM0kL0XHYBdFSdgwRLrRv0Tx7c5G8RC5RSyagUS9LOBEDKh1RED4okTQDddEdV6DRM96PUSeAJ9EmXlkRJt8UUV98m5EUOCrRGeLkUWk2J9E6sd2RUJERUTSd1REF8NLRP4O/EQFhDVEjl4HRTUCh0QpF/lE9vl6RDaMiERS64JENstORNuPaUQo4ndE/5xfRAxQT0SCi2BEIaCARcnrZkSeV4JEs5G8RMktBUVI1SlE+WUIRV+iXkTYm4xEsuJNRNX1X0SmVlNEXev4RHYciER5NVhEh3iGRcUPwESkwRRFE+iOREmBlERuk5ZE6LaSREojZkReKVFEQfVhRHCxakS1vZBFmuhaRK3Ql0QeNJFEJEZ2RG6/L0aoP41EhT2IRDlBP0UMVrJEItxFRAfkJUX2+WBE0Ik7RK6JXERDHjBEDhRWRELjYUSUpXtEtmhkRAp8hETPlpdGy28DRuzOkUU+vkpEcfMfRfvrQ0Rhir9Ek/mjRLKjP0Qu9iBElfZJRCAGdkT+48JFF+8SRe3wtUR6SLJElcySRCWujkTnRoFEQN4+RKdnOEVNHKFE/pNwRGhiSUUu241GFxNEROXlrUX2YfJEHXlNRAweSUSRzDBF0hjWRC8glkT9y21Eju5SRUbar0Q/r/9EiZ1kRfa/KUVzdEVEws+RRKE+4EQ0S3JEyhMZRc78qER3/bREr5x1RFipjERYkjtEjWY7RLA0EEZ6vuhEn0OqREAAfERp/ihEm3VcRH7Bg0QdJIxFaSWBRE5/V0TK3nNEDJ1ERAZxZUSHXVhEFsTIREG0pkS6nYREDHqBSKzrfEX6VCRERW2JRGEEYUSrC99EZczkR81yZERNMaZEwJVhRFWQMERIkmFEIqhGRAtcW0QM3XVHDtFGREohPURwnV1FClU3RikmQkU5jFJE0eAwRVqtS0SByK9FTaCLRMP0QESfD49EeY+YRLWPt0QNZHZE2edQRE9ThES9X2lE931SRHG/XEQ+RR1EB/MSRI6XIEYyVTFEiU5vRBEuL0SNz2pFn4UmRG31lUXdXyNEVpdBRHUPkkTnjqZGLGGvRLj3pkUv8pJEvcxiRB8BO0SGzIdEF//+RMaVTEQUp0lEHJeLRTGSJ0Rw3StEWym7RR0tcETC/i9ECwipRRXaiUXScFtEapNMRD4WY0SI2WlEWqErRM56RESYzUJE0fYCRTluwkRMnI1Eh/5GRC8tlEScgGlEOWmfRFKKVETGw3lEKDi6RNtNs0Q9UMxFDlzwRHR4ikQFx3lEIO5SRCHaMUTNOq9EFsfaReXhZ0XypuREvh3CROT/TUR5x4VE5LrYRLsBBUW6DoxERafbRVy6QUQs6RFFZ+UpRCpdqkSq3elHTk5jRK9ckUegw25Gzc9LRDNgR0UJ/RlFL/w3RNVxukRxZ0lEeZa+RoamVESeAXNG+pZPRT/3lUTTKrdEvOi6RMSVKUQ6cSdGBZOIRPdke0Q76YBFC3BlRLSxXkU27a9EyvtBRH3eYUQNqlJEdCfORv0ITETDA1FEEPZoRsLIdkW6rxNFxZ+2RHiElESWSOJETsBhRIKddER3hu9EqMKNRCYffUQeWE5FUvD/RXCMwUTOcZ1FEDNUROuDGkVvHbFEr54PRawPk0SoklFEvWC3RFalMERq/ENECTdxRJeVS0TBQCZFzIP1R1B05kTMC6NEjXY9RNYhXkRZSklHfow0RFcF/EYc10FFwjrXRYH1GEZLyxJFP1koRUzHv0RaJEBEYimNRyR6FkevMz5FeFsfRg13O0TTLCVFq3PCRJJRpkSXjfZFh7iLRQ6Q/EQF10JE0zpxRPgbG0Y4w5ZEeJWzRWxLgUTU1YxHbyk0RBxOD0cEGYtE2JWnRLz27UWd0bVF3vqORdXAQURgwOxH0+ZnRCQ1LkSh92tHcBsBRyJvI0XYMBBGpm9NRPPOA0XmReJEtdmhRNuwPUQDcCNF1arvRPXtWUSFiylEHkRtRSo0uUSePS5FLlwfRw0Bq0bR87FFJbxmRfOzR0UDCW9EacheRFTUeURhmxpF4gWXRUZFL0Xq1o1ExSj2RnlzhkZd2bxEOfF7RS76/kTe02hFa5h1RebYPUU6JdlE5ciPRetr8EQYEzBE2Bu4RCQaSkRVjsRF9w0bRVaOY0WOj+tEBLJHRrlNt0RUre1EHGTcRYfTc0XikUNFaAIbRIgfuURgbYhEld1YRasjFUX6TBRFA+qVRB7BykSlxqhE2b2jRBZtEUWe2QpFKe2mRKBuoUREgUlEk+agRSW0UUXUqtNEPDkeR9R8XERhm5FGDsAuRmi+okTUK4FE8ZZLRZS4c0VwHBBFFcjoRDseskQa4l9ECSk6RAEjzES8sTpEw1BfREGM20Q8VJ9E5N9yRA5sPEY9jpNFl8QHRRlsj0QhK7lE0U8ARwXpY0bd3BFG0aWERWt7gURr00REmdteRAbCg0aaZ1ZEP8YnRtq9okWN2XBES6vKRAuSc0RQ6Y1EwwBCRIrAjERgIYpFtZ0DRmnai0UoGpVEp6YyRdex3kTT02dEPJ81RjAen0U3L1lFVfOQRB5lNEQIAe5Etk1pREh1MESlzRRGWYeURSJKOkUL/6VEw2t8REfGlUQbzDlEn30+RBFV+kQszsREdVbDRAlIgURQBSVE - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - nn5IJHjAckCuQbL4JMFyQICP8oRvwXJADfzQrk/CckC8/OJXpsJyQPtb3G7nwnJAeioY1jzDckAeLEJoxcRyQJQcVGRD0nJAOout1NzSckBwk25kd9NyQHC7fMHM03JA5LmK9c3fckBfBOb/I+ByQJB1bNG64HJA/BS4FVHickAqUlL0j+JyQCbf7vAi43JAdI4LVjXxckD44LdIUfFyQLT+ZXi58XJA3k/AG8vxckDipoxgm/JyQJLhhTUU83JAli6Q3g30ckCQpTNTovRyQPSU1kPC/3JAkF+AidH/ckBOFk4+ZQBzQOSKj+74AHNAmv6Xr44Bc0BoDdRgOgJzQJSpbhLRAnNAXIiBuWUDc0D4k1U++gNzQP5FaEcLEnNAicpQhbwSc0BqocCw+BNzQHwMXOdNFHNACNJVs3kfc0DqJke1pCBzQELwZP04IXNAQKRXaWUhc0B+mYkF5SFzQAcK/B56InNA/Cugisoic0AQaZpJDyNzQNbZlg4FJHNAivyN8zkkc0AAFPACzyRzQOXBMndGMXNAjqbDXFoxc0DstWwY+jNzQODHOQU3NHNA+lgDa7g/c0CwfNMVQUBzQPgofqHiQHNAqMUGxkZBc0BWOd9DeEFzQANvPpS6QnNAKMXKSHpEc0Dqkjagm1FzQBWnBoARUnNAcwaIXEVTc0BIRAjmo1NzQAJSG1bkU3NAf9m3/IFUc0ASCnQG+V9zQMXhNTCMYHNA9Mx8WR1ic0BKESigOGNzQHRgYN2QY3NAlONM/c9jc0CeEGW4K21zQD8FZufZcXNACmfD8Slyc0DILtgOU3JzQIgXH0xqcnNAnBFVu4Vyc0BWODaJunJzQDhZ6i64dHNA5pblJEx1c0DG6sQK4XdzQLsHVVwpfXNA7aDWYniAc0DjUokDo4BzQBLQMqQNgXNAse7NHl2Cc0Dmr4L//4JzQI6oSR5ZiHNA9B2NUoaQc0BPjxUFkJFzQEjUixpNknNAQl3WJWaSc0BLpoAAzJNzQEFEHWhjlHNA/GBm4veUc0CU688RuKBzQAxcLBdbonNA1FeP7aCic0AIQkN7wqJzQEMOzfMEpXNAHt0CQXyxc0BUdPAqv7FzQGTCg6lasnNAPlAjqn2yc0D4OI8Ut7NzQIQpuaULtHNAZqw2pvjAc0BxpmbNEMFzQPfFkZLPwnNAtsCQvyjDc0DMD4WY1tFzQLICNN4y0nNAfCDMSrvSc0AwZ00n3dJzQPD79Rgt03NARql1QljTc0CDMEgi4tRzQO4FnUej4HNAV6WAVs/gc0AwaiQ1OOFzQOr5mhBm4XNArf1I03nic0CS3zkFD+NzQKOXwbOk43NA/KobL/Dkc0DPu45tt/BzQFxRmMe38nNA8g/AGjf0c0CUkpeyjfRzQDjYB4BNAHRACliiDHsAdED5G5ge4wB0QOAJN2x4AXRAxD0k5KMBdEA/JoVFvQJ0QMou0KXnA3RAUDmEsxEFdEDqP9slChF0QCRh552HEXRACn4BP0wTdEB8mWWYdhR0QOwRg0+zG3RAFvZjEEogdEB4/VEXuCF0QCh1fZ+QI3RAfoX6WlQwdEBNqajmkDJ0QHhxjLoTM3RARWc4guI3dECJoqBzbDh0QJYQAs07PXRAvLYhd8g9dECCpW3oxkF0QHSTyvI6Q3RAeYWvDx9LdEBE4HCbSE10QGZCAjOKUnRAl8fJh/lSdECcbTLs91R0QInVdIeLVXRAEegKGNpXdEDCQuGPIF10QNh7nW63YHRAIFcAyU1hdEBsKF2jCGJ0QG7bEv56YnRAEuXPAbxjdEBM+SNGD2R0QLymj5tPZHRAOjPk+8JndEAQvx+dI3B0QLMvZ9/IcHRAwdMz/0BxdECCiTTTWXF0QP3tBufOcXRAHg6CDBRzdEBiks7yOnN0QEBfugyjdHRAxHM5MzZ1dEACylUrQ4B0QK66c0ZrgHRAwlGA7viAdEAe/axTToF0QOFAPWRKgnRAnn6yPSWDdEAHi9bAuoN0QJok6w0WkHRAaQdjcr6SdEAwKTKmUpN0QC6g2Y/vn3RAmdt8AKOgdEC3l6YO0qB0QMh14dk2oXRA5Ftuvs6hdEC74IKpt6J0QLl6lPAQo3RADm7g0/mvdEB+O8lZC7B0QB9LBijCsHRANQXQ+W6ydEDQ31W6+rJ0QMpFndf3s3RAfFxMyMe3dECgOtOaIL10QG1kqMy6v3RAUhksCd2/dECvKoEf4sB0QDLvQpZ3wXRAkh2AIifCdEDWZL+0ycJ0QE50i8kUw3RAb/oA/FDDdEBknoisvMN0QNFC7pIkxHRAHce+1HvEdEBGZ7ZeucR0QAqGYYv8znRATumlSOHTdECWqDecddR0QOc8iYvO1HRAsDi+cLvgdEBno9LTIeF0QKBLhO+24XRAW1O+i2XidEA4q2vnj+N0QMAbSe9P5XRA8ku5Lk/odECmtI7YvvB0QMCvdb6N83RAsviyzan0dECap0m2vwB1QHraPeXiAHVADa7uqmMBdUDF+1TtXAJ1QLrXvmXQA3VAaKKqFJgQdUCcT3e5ahJ1QEhphcojFHVASxg99E8idUDcQIe0nSJ1QOZZ/L9nMnVAPDE/LHwydUCiUhujqDJ1QNRXxMrLNXVA+Y8HkIpCdUA3Q4qv3UJ1QD6eFZrlT3VA1OBwwRhQdUBanNBBf1B1QKl618BOVHVAAP0htOBUdUCCHVf+dlV1QEDv7DYsWHVA0U8MTA9gdUC0wKpUOWF1QHt7N4/1YXVAivjdXmZjdUCxuixwdnJ1QEqQfVuNdHVAqN7d0XaBdUCANAXRrYF1QBopPaqlg3VAxDWAtBGEdUBtgXdNmoR1QKjU9Y3Rk3VAjGNGOZOgdUBsVNsfJqF1QFUqDEC4oXVAkJhoDAmidUCg5+aLSqN1QAl3FObeo3VAmPG15qOodUCId5MhlrB1QGTG+Q02uHVAkMJfhTvAdUBy0xYMY8F1QG2Xb5j4wXVASBtRc8vTdUBNz++z5d91QOqC4td34HVAlTmdQw7hdUDR39X0B+J1QMTzs+Y75XVABvkBUkztdUBUAbWqpfJ1QNoBz/Dx93VAu88eFUv9dUDgHeyhSAJ2QP0RZjzQA3ZAxgK7hu0QdkA8CTaQVRJ2QO9syAcnE3ZApIp4okwUdkBS7RvQdxV2QLZh798NFnZAkIOMuYcidkDQGFvTjyR2QOy2374eK3ZAtw1WxEsrdkBSPRmyHzF2QNaKTv2YMnZARhPGoiQzdkAuzqfZUjN2QL5auSSeNHZAsuYvXkxAdkAoG57qHEF2QBJXyrHLQnZAxEhdKnpEdkCQzrzxyFB2QFbm+nUSUXZAGdKDU81UdkB4WEQ2IGF2QLzNObvcYXZAsAV8I09jdkCeJV712WR2QOYnOzxYaHZA9Kzkx7BtdkD+3zyUGHN2QJQAGfFkgXZAdqlHFZSCdkDgLVIf5IJ2QO5KHq+Qg3ZApD252vmSdkDWk+tg/Jp2QEb2YlcQoXZA5txsarewdkA3wIuRv7J2QDLP2F17s3ZA1Cy6sAy0dkDm+2iaeLR2QEAkhhqutHZA3agLTCLDdkCuiPaLG8R2QN7pz63NznZALSkzc3/QdkDk0k24vtB2QLZlWycU1HZALw224/PhdkCNUw7YjvN2QJDFxTQ0AndAZBTfOQ4Dd0BMLy5yARJ3QApstIsLIndAxOL7prgkd0B4gNf56Cd3QABRNetALXdAjNqpMI0yd0AWB+P4pDN3QB6n6OkMNXdA0vvZIJ1Bd0AKj1rGMUN3QNMhrgaRQ3dA2lFeCBtFd0A4pqMGDU53QO1kzCAHUHdAaFE2AktRd0DedhX1klF3QD4PNxUsVXdAqvvtOUhhd0D0vuQmjmF3QFwTi3+hYXdAyGwpRKpjd0C2EKEaO2V3QFM0D5SOa3dAA5r/4yZvd0Dih1Zf9G93QDfgn+ifcndAlVXq8fl3d0CgNRt+vIB3QAdQzPt3gndA4gdOrwqSd0BIIq8mTJR3QMqC9umUtHdAPNuBFMm6d0BuqJoI49B3QJrcM7KL1ndAslO6I+rwd0CwZWnpT/J3QMALweH78ndAcIzkqnL3d0AoQAC3ffh3QEEXGkZ0+3dAjqoUoUb9d0CsRpKL1v13QCzF7F95/3dAzYAhT58CeEAU2k1yzgJ4QKVsiI5DA3hANVP+H+gHeEAma51i/gd4QE75wVPFCHhA+LkvbkINeEB0OZpQoRJ4QJvEGYFMFXhAuuNFbW0ieED82O4dOyN4QNizZa1AKHhAVCSmIgpCeEA5F0KHEUR4QNrlKGp5RXhAaLtIbMpReED4m2Hjk1J4QIoL3n2HVXhAwoqTP/lgeED0nTKdtWF4QNMd6Ke+cnhABmLVdtpzeECuX40nAnR4QFDTcJ0rdHhA44U6u0N0eEDmWziEi3R4QI6mzpfPdHhACN2Qnt50eEC+N5LL8XR4QAy5ZVH3e3hAgCKgJ6WBeEBGAfjS/oN4QJt4gdl1hHhA7b5HnpmEeEC0EI6kT4h4QCsFclsGjHhAi+NTUamNeEDlIexTRpF4QG0a4tWWkXhA1uR7iAOTeEA8Tt0yp5R4QAoVPFFLmHhAHZneHbikeED6UJBaOLt4QNh9tOXOwHhA37kvHJzIeEDUmt6O/814QHqMpnu21HhA8iWDJ9XYeECJxuePktt4QCfQYaUQ4XhA38AbfTHieEDVPZ4tJ+N4QHC6MY/G5HhAXmdkrgH0eEDbrMvri/V4QKic4aIn+XhAQF+j/n4CeUDEAP42mgV5QKQxXJnpDXlA1bLDEYgTeUBamtBRoxN5QIxozci7I3lAkp1SrFAkeUDZNVvssih5QDycuKwMLnlARK27pWczeUBnPHTktDN5QASygaDAOHlAvxZojPpDeUBwYzAbzFR5QMrgG1DaZHlAaP8WR7lyeUCk/LUP+YJ5QCSPQjVbk3lATUoNQYCTeUDb3VvgYpt5QEE+VmpSo3lAtlF2B2qjeUC9kDSTnqN5QIKCc1OBq3lA5s3oh7+yeUDNc/VRirN5QGKYCsX9unlAn5381FjDeUCGE9VtQtR5QKB02yjK1XlAqChwVlDkeUDGIPTjJOV5QMJxAl5Q6XlA3kndjIzreUBiOqG8RfJ5QLTURpcR9HlASH0H6vv/eUDsyIsI+wN6QDUe+d/4BXpAqLOIoGQLekDAoLXPUBN6QPLnNhVaG3pAzLYW0SkzekCKE2NADDV6QB8BrqkvN3pACO1htzE7ekDvty4mGkV6QGJ01YgoVXpAQDNBpCFcekBStqc0KWR6QOCVJu8ubHpAvFs3+4xyekBDczRog3l6QM6zGvqglHpAcDXzPx6jekCwI0HldqN6QKxx898kq3pAwNTZXAy2ekBJ3EleDrd6QJJ6SZEZu3pAmvm4yi3DekAkKNxdasN6QPhMmRAbxnpAkHj8kkHMekAnEK4XQc56QMLZhnvZ03pAFDmJOTnkekDNe1NnN+56QAiafzHnA3tAQrbf1XsEe0AQb/ccKQ57QBoxAcOLFHtAsdBp8EsVe0CGXlW3WCV7QGodZjzDM3tAXoI0S2I8e0DGPnIyaUR7QNAHcBINXHtAB8GjqiKVe0BxwfqyoZt7QC+v1X2ro3tAmsZg7TCle0BQGHKufsR7QGAghfZ4xntAIh5048TRe0AAWwv7bNN7QJpM6OB303tAcAGzGpLje0CN/pKQ/+N7QMJoTjIo5HtAiMgASIz1e0DaywSaKPt7QOmmlDXaAXxA9I/oMfoBfEBQmZTiZQR8QGCpYlyZBXxA9jBt0YQRfEAAP+E1zxF8QGaCgnnNQXxAXhtXv1JIfEAu4R3Q3FF8QKgPHojqUnxAlfy4FBBifEB9uzptAXN8QPi+JcFoe3xAr9VCg3KDfEAM2WO4A4R8QFdIlUDDjXxAFKGUbh2TfEBQzzykapV8QFg3Dph7mHxAnA9cK1iZfECU+mtAwZ18QG667/WynnxAho5pH/2kfEDlDP/PjaV8QM7sfsF2snxApr4Itr2yfEBC8qCuebR8QPlFF4YQtnxAFqd+1NHDfEAseGEVhsR8QGPaoL4kzXxAvIpKNM3VfECw/oN/9Nt8QLY+OflX4nxAFJUt5g7jfECY9Sh0a+h8QEj2LgcV8nxAcM9WIlTyfEDspOx6cfJ8QCxv4FYCAn1AVDdO5koCfUCzqUuwohF9QPEc2vdEEn1Agln4WvwTfUCE97WCrxt9QOjnfIg+In1A33AdQo0jfUBSE998tCN9QMqlC/OgMX1AjgN3CpgzfUCMOoa2KDV9QKbs4n3sW31A3sAq8nl0fUD0H7Dfgnx9QPh6Jc3pgH1A6FVX/n+EfUC6fmWvlo19QIReq8jwkn1AxrcaxvSlfUCVtJAJLMN9QN1fFDWYxH1AJO3Z/ObEfUByZqo79NR9QCru4Cra4n1AQgW3vCPjfUA4veL2ROt9QPxgPfR67H1A6i5nRZL1fUBaUwGXp/t9QHhdDrQ0AH5Agm7q7YUCfkAUmycONx9+QJBrcBIiLH5A4ePYI0MvfkBiB30RKDR+QNU4B90KO35AvIZMgnpAfkA4+bWSEkN+QI22fx9KQ35A2Gm+ZqVEfkCwbt/+Tkd+QAgR4W5NS35AYH9WJcdLfkCPAtHbU1N+QEUO7+7qU35AQhNwFY1VfkC6UShI8Vt+QO752G6aZX5AnlFtd3lnfkBrqcXTtnt+QELdhraRfX5AUB7FF6SDfkAmxV6crpR+QMvslJFim35AvhXDlsqcfkCAwiNKlaR+QEOghaHGsH5AbNs9WmmzfkD29cYMqLN+QOl8K2JPtH5A3CICwSS2fkAyRZqxIMJ+QHtH0JdXwn5AUDGrZ1zDfkCR54FD0sR+QFjEHMRxyH5AVCZ0hsTNfkCi7ICsDs5+QCt2PlTU0n5A3N6qZkfTfkC+5D+b2dR+QIlkyZ8g1n5AprBLt8fYfkBG4yxaUNt+QJD9cGlt235Azq4H8c7ffkC76mUo1+9+QBu4p+iV+35AUL5UGZUDf0DzSVDumgt/QCZuEu5AE39APNokbqYTf0BlEhyYSBt/QFa/9U+sG39AILAmdXkrf0D068DXZzR/QBoZ0ulwRH9AiOKtAEBVf0AuUHATjVh/QPneFU+sW39ABPKkn+Rdf0CwYgDqxmB/QBfWA1O1Y39AU22CP7dxf0DCIvh3YHt/QBXCesG0gX9AQthGsqWDf0Cc248LYY9/QKhtjhdjkX9A2COrTayRf0Cm+pr5kpN/QFz/zhheoX9ArBJh9kKjf0CcryCJnqh/QHWJahPlrX9AkJTrDFSxf0AI5eRGr7F/QAAYLZ3ItH9AOoKdo/6+f0AuqPpxoMd/QC4d0JbA0n9AfmL2ZZjUf0CI7c2todx/QEalDKX33H9AyO1WxWDof0A8efu8N+9/QGQh6mby839AK/+L3I/0f0CMQHc66/l/QOzcgRZC/39ARcoEw4gBgEBK3FNhNASAQMrZWS4lG4BAp7ihjM4dgEA80KbYQiCAQKb79s0bIoBAQjd/aGkigEB2++Kh4yaAQNwoKROOKYBA5McNOHAqgEAqgIJ26C+AQGRvU55xMoBA8iRBQf84gEC25HTayTmAQKYYS7UDQYBA0+4ZHmNCgEDKCZY/qUKAQNtxEkX2SIBAkO3wieVQgEDCjLrCE1GAQM3lnjinVYBASU6bmulYgEBip3GQDVmAQBEHslQdWYBAsvjxyqpZgEC85Kej3FmAQHa0oF/EYYBArDqvq5ZigEDzFfMFcWSAQMJLPavrZYBAupcFaCBngEAHSqusoWeAQJ1ZBMDwaYBArPys0ExqgEAAnA9X8W2AQI54he8nb4BAoiRABDlwgEA6U8Dz83GAQDK4ykx7c4BAw9WNbh14gEDm9z3DKH+AQOqklcakgoBA+uJMcxuDgECiVua/LIeAQJb6nRL7ioBAHIRbQB6PgEBqNuw++paAQFzg2ukcl4BAVBLmkYuXgEDmuVDeaZiAQHLpUQmUmoBALJP7oRyfgEBtgkF2t6WAQGQppYBnqIBARgmidYmpgEAQvC0FFayAQPawP8ETr4BANeiGTGSwgEDi1EGKILGAQJWi+7fksYBAVHhnhZGygEDgA3jYTLOAQFD+C3HAtIBAo9T1lbC1gEBcGG+LBbqAQMtcBfOguoBAYlpHu0y7gECq0tBIBbyAQEPCJ0M0wYBAbLimjVLBgECE36jSdcGAQNG/YV+fwoBAeOQ3ajLGgECOu2peAMiAQPraI21lyIBA/LFdlVPJgEDodp1UfcmAQLZYXs3TyYBAXmiKV07LgEDCgot9B8+AQAwdD5Es0YBAAWgd10zRgEBuV8liitKAQMaynAdU04BADsGpRWbYgEBT18BgStmAQLDUhGO/2YBAwsbV3TrcgEAquMXHwN6AQOBqXJBx4IBAnvIaaUThgEArdV4sb+GAQDBr+8x25YBA/pYWwV7ogEBA+06H9+iAQHAH0x1K74BALeTG3vbwgEA0IVqlO/OAQM7cZKrx+IBAzDk1pYD5gEBR4TXIaPqAQCYlKVpB+4BA+N5rdfX+gEAAalAFQP+AQOiEnIJAB4FAn98+wT4PgUB7zopWmxqBQKqVlde9HIFA6AvHfzQfgUAQNoAGrx+BQBPOf/41J4FAEUMuzLUngUCMIOpi7imBQKoGpsuRKoFAfrPxEt4rgUCCVzZZ7yuBQNizAHMvL4FAqD32oE4wgUD7CZTUvTGBQE939pTgMYFA3njSstQ5gUD+9GzNKT+BQH1cZZYsR4FA8S0eQVpHgUB2jXAGB0qBQPE7WeSyTIFAuVEDl19PgUA+ulANnlWBQJalGF7lWYFACKhOnARcgUD474X4512BQPpVH8K1YoFALm07i59pgUCscoSXpmqBQCKpBC3CdIFAeCG45G13gUBJwLEHZnuBQCbDRa1qfIFAjjYONMR8gUDQ/CpyYX+BQAVAu6YAgoFAHMB2K6yCgUCfrF8bN4WBQJgfIZ9qioFAYykEjwaNgUBk3+JvVY+BQEFVWAmyj4FAdoBxk++RgUBcVNs4OpKBQF+4IxktlIFAuDVDheCUgUBUTZKLVJeBQLLvtjoymYFABL1sf0uZgUDqPqoOz5qBQKgQQR6dnIFAQtiWAkmfgUCS9bUo56GBQLWQ6FH6oYFAvMyjHW6ogUBZSaNnSq+BQChQ+yxqsIFA/LMd7k23gUAE3r24yLyBQMCSRfZHwoFAZB2DkiLQgUDaAtZp+dGBQHcYYsx904FACDk2PvzVgUBZATIuAdqBQNLYNLP13YFA7XIrOgjegUDOam9cOOGBQKLLRJ3U74FA9081Vuz5gUA0VUJr8P2BQNF2GJrlAYJA4Cg9kPYBgkBYTGSU6QWCQGCaDHoBCYJAwPbGJAUOgkD2hSXSBxKCQC8tUY3YGIJAke9vl2cagkD8OhxMDh6CQNBPIrtsHoJAbC+D/dYggkAkeWcxdyiCQKS8r67RKIJA7BqFqdsvgkBCE7ko0TCCQOzp+dSiN4JA9CFpYws+gkDafimMDkKCQBbDrdPXQoJAHrXjWPFCgkC6zynOEkaCQFWPRKcVSoJAfHsoK91OgkD+EbKxblCCQJwN4y8nWIJAraD98tFagkC2aoz4oVuCQCIwuXRJXYJAHpZMeaFfgkDiwKj4uGGCQNjXQTs0YoJA4rO4WLxlgkApXAb7BWaCQFTDrec2ZoJAtNiHTNFmgkDUvCt7nGeCQJnUro53aIJA8RbtyDJpgkDuofFUO2qCQMrM6U2ea4JAbiHMuG10gkBJnYDfn3uCQDjYaKoCgoJA6D/bRxeGgkBhWOykz4aCQJKBV19DiYJATPPuLheKgkAMGjzr6IqCQMbbP80ajoJAHnioVkSRgkBuBobvZ5SCQAkKucM8mYJAnsZXJ1aZgkAGktvm3ZqCQAa98/8OoYJAeF7RSzuhgkAQVSKNKaWCQA+VBIEPqYJAbIWZfDSpgkBm+95qTKmCQLevq4O8qoJASMrWQwexgkDuW3dKObGCQA6ocv0Fu4JATgpFs+zFgkAYVwDl78mCQF7FlY70zYJAzIx3OOrRgkAoTL1Wf9qCQGZgMy+C3oJA0rG1xHXigkCyoK8viOKCQC0OUYcw5IJAkOaPIFzygkCx+hPi8/WCQMaojMKt+YJA3SvGKfj5gkDwJd1S8P2CQDAkb1XhAYNAUKleWeQFg0CWdAOywwiDQKKLtGjdCYNApqBW6l4Kg0CzhchO4A2DQMw9s6p5EYNAvhjYf+oVg0DXjxMzMBaDQE5b62V6GYNAxPALBz8ag0BzrqJx9R6DQJrjMLtyIYNAVr8z7HEpg0DwysowRSqDQJ6rZa1qMYNAurRrqkw0g0BOcLwi3jSDQJsB79ccOYNAWMeJjdxBg0DqQvO/80KDQCgaVF6TSoNA2jia3pZOg0CM0CSZOFKDQIZvz/PxcYNANq3QNutyg0BAw2eL9XWDQLX6ovz8eYNAXhwa68SBg0CMbgeWSYODQP228a7HhYNAtKmw/7+Jg0BaRaLpwY2DQORZ8rDAkYNAbKjZ/1Kkg0DCedNFVKaDQH76FJNVqINALo0c6Fiqg0DKMwrPWqyDQLKsTrgSsoNA4DfIyxW2g0D+J7K8G7qDQPebNkISvoNAIN7WLhHCg0CuFwJeHsWDQAWNoI3Kx4NAwk5JMXfKg0AaBS7yKM2DQGbgFYWU04NAsg1g6srcg0B0y/wteN+DQBF8aaAj4oNAitFszdDkg0Asu5GE5PaDQHYAgtCS+INA1jcNJpcAhEDWayZ0bxqEQC6CaMnaRYRAPqDE/+pkhED0jjoG/2iEQOhcHD//cIRAeE+2Wl5xhEDgS1OYuXWEQN6LWtnJd4RA7JI1Svd4hECDBg9dvHmEQJwOoXtgeoRAi0I2rXl6hECIS+YJFH2EQAatfoIofYRAsjFPTLZ9hEAz4+mux3+EQJrRw6HUf4RAWt8zzMyAhECmCt75cIKEQK6Lh8cdhYRAqrYJu3aKhEAShcaAzouEQKyTZKDKl4RA5TiyNGmYhED4x+4NeJqEQCYKXxUUnYRA5nVavCqdhECQWefm1J+EQOPFUKxwooRAsM3wXh+lhEDjcXzZyaeEQMGSt3x1qoRAgYx1w7TGhEBaaafsGM2EQIHAcMB40oRADHvCDCHThECfnuwOatmEQBDC4cRp4YRAp5JvKNHnhEAEQ4ElY+mEQNAPAF0s6oRAMej5zX/qhEDAOEY7NvGEQJDWGrxg8YRA9HyqKL/3hEBaIm7w2veEQHCxK940+YRA/Lda5Gr5hEAE/GQ1LAGFQM5/QA4gCYVAn6FeOQsWhUCKGCnKDRqFQCBEIdtdLoVAV0Vpd2EyhUCytFlDqE2FQNkkfSHkTYVAuLuHoudRhUDq150dglOFQM7O+9nsVYVAs+0LkUBWhUDiVvEw7FmFQOp2tlGgYYVAsuZ7bE1mhUBB11nKoGmFQHACc+iYcYVAxk9+GbVzhUBcR808mXmFQPpPg9WRgYVA0M9z21qShUCit46Ne7+FQOm/nK2r4oVAavrDu67mhUAS7ejAs+qFQD4qttG17oVAO1Ml1FgIhkAgj+E5DyWGQB1NtAqlJ4ZAUwkz6b1IhkDdWIl7z2KGQORg9BPvboZAzy3xaJyMhkCm4BJOlq6GQEQ+QtQouYZA149Jl9HEhkAivckk1MaGQIJ5jN3UyIZAZ726CkfKhkAyMXIK2MqGQNhbQaFKzoZAVNHfQdbOhkCsoPteRdKGQBam+Glf8oZAKsB5OYMgh0DdRGSPkCmHQFhZkOSRMYdAcny6A4k5h0BrJXj3XEGHQHQ7i4+JQYdA3vGjccexh0CCeYVuyLmHQMcqmAm+wYdATNpder7Jh0BkGBXPTwKIQJpK2ovJBohAYjfBMUR+iECiMDdSRoKIQDVRIJlGhohAQJUEA7+niEA= + KBZXds7jZUA1uAwZnGNrQGS4z0t+BG1AOK1C9yVCcUD5NnxfV7N3QA== - + - 7j+fRDb0lUR/vMRF1s+PRJcQS0VKNUREKvAlRbs3YETLbhNHwlR/RKL50kT0cWtERweQREVevkTon7pEQsJqRawq8UV4PLdEGGY4RfM8cESTym5F++s1RQGNH0TE701EqP5eRKU+9ERr6pZE1MVORD5EgkQIzh5FeLozRPy60EShASlFvlhcRe/zBUeYX0RE+UofRiLoi0X0umJE+gUXRbcmp0QLua9GAS2GRGO7NETHGpZE7fuHRBoOy0SuS3dEcZBDRFbPpEVBU7VERBScRDA/IER5IWJEerr5RGgAWURyzqZEMYgxRADhZ0VLR8JEMnUGRifFBkWQ7lNEBruNROniY0XNOG1Ede+WRHcrsUR+0bxErxagRGvh70QyTE9E+fKQRI9tvEZ5CS9ET91SRNMncERSp7BFz8UURsYehkR/W25ER/rTRDEpT0SjIVFE7+evRo0CbkQ3zgxFe0V4RWSf5UQTDsBEwv0bRc7Pf0QJLUVHcr+jRM08R0TLOcxESNsnRq7d4UWPGchFASA6RLZLoERhSClFJAyyRI3DIUQG7VZE7hIsRKGQg0X5DOlEj+LtRHRoPUSGn8JFPxuIRCIBIEW+4p9EMq4ERZERT0S+piVExXsgRA3Dg0Vb1gFGnNOKRMtzBkaSZZZEJevFRI1HukTWJg9FmQ5cRG5pPUSThINE5sweRZD+mkRwqVlEkIhrRJfpjUWUr1ZGKsqJRHWja0RkT4lEe5k9RI6Kh0Ss1tBEwZdjRVlrm0RaGmNE6myRRG8rp0S05XFFTF2YRCoHPUR65w9FTGw7RX7dl0SRcRJFC6EuRMn2nESHUtJEtQ6jRDWHPERZNDdEmGiURI9crURtiQJFSfSDRAi52kU5aHhFznBYREcyq0Xst41F0zxsRK21ikQXCJREnGNXRDJYpEU2mGBEjx4rR/OfKERECp5EddaFROI/ekUFSqZEhqa2RAE7BEXXHSxEse0MRXyJ5kUFAHlEtY+zRCSRekR8sotFUa1fRKLjZkRE7ZZGp7JoRFTarUSRt7dEUA4xRFAy2USI3BRFJX8TRZaPnESoRN5E1pFSRtuQLUSKmDxE6JO9RaftxkTu5Y5EgiQoReYOvUTmAepE2K5IRMIwJET0AlNEmlFSRBrZn0Tw1WlE66yRRIPyI0V3IRJFmyjFRARSiUQteLhEfZglRCU+rUQBYcNETrklRMs8B0eSrnhECswuROe7ikSNf+RFA+EZROEPTkSVJEBED/g9RJ3aqEV6eXJEjM7aRIX+XUQn/91EY/iTRbM76UVjOUNENufkRuFN30RLbhlFCpxSRWMheUQK8XNEG25XRJL8QUQx/I9EwqQ1RL7WD0VfBlNECDLKROveG0XGhR9FKHmFRBgM90Qu+BhGBTwURRwMk0URtJxFD/o1RemsEkUlt6tF3mtIRMyVSUTleFlEmMg3RJNsgkSM3mBEcz2HRKv7a0QjLkdEplc6RM0ZoURlKc1EOLTDRB0JZERdHidE4inoRK4M30RVAHlEHMBLRp+2BEaBt+lEew9PRON+1EU2tspER3c0RKwqQkQHDjxEMLb4ROL2cET/koREYiSXRZWYEUZh77NEbHesRWGItEYNCi5EGNkLRf2Ji0QrvLlEzJWLRIOuLEWPx69EVh1kRQkHikSGeEBFmjF0RjDkb0RzkYtEqsJHRO+NSkV29BJF8Zm/RK9YG0QWcXVEvIxNRAUGPESLXLdESkOLRIlMn0SmRaBEFH9hRHKfwUT0Bb9EgbmMRTBpXUTsQKFEXhRHRExNs0RBuh9Fe1loRHrWV0T+DbBEmb7NRHce2kQK+upEOtNoROmLgEY47hxFdm5jRL6pT0Y6x4NFPjizRJYF4UQ4uuJHow+aRrhJdETJlbZFTgWoRh4PQERfJyZGl2aSRap7S0ar26JEfQGwRNg97UQ3Is5ElQ5BRVPBXES0QWVEHTZARfcIzkRNFAhGVRWLRZyEX0SKdeBE79F4RJjNrEQCJiNEmQU0RBNNQkRSPFlESu1mRKrMFkXcbT5EjziURWvCCEUduYpFzi9dR7Bs3kRUTdVEgZ8MR619KkTXP2dEP6aiRdnKcEVG0TJEqzsKReQRkUQeEkREAMZsRaO2s0TVwhxFlG+hRIZpmkUVHSBGqu9wRe+K70S4YTVF1AVIRVETB0WXSW9EJKI+REz1X0Spl4hEVLzIRKAYO0n2VbJEIXOKRLFqW0TrfrxGPn4mRY3n9EWHtddEX5I3SLvDK0elit5ELW3JRjZXL0R07IVFfpEARoLdmEY0vxpFmMmORNU+t0QntYNEakdqRLcOZ0SLtppFKOUkRYN8UkTomURE8S2ERIgULkSukJJEOYN2RfY8yEXaHn5E//FaREyWvkQibyhEYq9HRKrWM0RO3JVE0jBCRAquxkYFvVBGvvhLRQenSUSr8ZREfFj2RMX6kUWZi5REBM0+RMZTLUSqru9HO0aLROMSNkeRwjtFfvbFRcd4SERB0mtFQDsIRVIqnkSv1SNFVPipRL21xkU6wItE+QTgRB2OPUS0XqtE93lpREYFokTFKZlE95YvRIgIhkRDubdEWAjlRcbVokUe3btEuFjSRWbGw0eEEopFsE3VRExevkbi0x9F/wPzRdCBEUUePmNErHFzRO8vYUTRsodEE9XsRYCZL0V1/zRFcmCiRfjYRURAY05EUMaXRO9vgEQRssdEwg1RRGT4V0TDlk5ErW9pRFGNnURNxDlFAc4fRjshVUQtzI9EnuUjRt+OE0WRwIZEOFQZRlIDk0X/+xpF19WwRa1BgUTZY35EEVN7RHrRmER8RbZEEQYLRVwCVEQ2WFJESI02RA4siEQMDC9FnUOXRmkkbURxPEJGIhXsRLThG0XiZJpFDAxSRBgGk0XnFKlF4WwKRXSd0UQW6etEaTKXRNuskkRWd7lFojzMRJwbI0SmLwVGUWeIRSbo3ERUV/1EO2ENRRjmh0Stl5FEgmCARC/YkUQW9adEMlajRE9Q0UUjR11EXdTORNeImUR3dlBEAyiPRH9D2kS8+MlHOujXRNgECEVxXchEN9bGRorbZ0VmqBlFD/2ORnz/OESGRzhF6PmnRKXKOEVIuMtEbQiPRKT/ikTl9ahEQ+jHRNrHgESPen5EpaQKRkgYGkXyGkREUpFdRD7wREV97MxE4D87RIDDnETX9FlEKuYLRwocwkV3xUtEH0EzRDroXkS5JrtE52LyROh2Y0SGyRpF7ISbRJc9i0QUA1JFt99jRKw5k0Syrr1FRlZSRAeFAkUZ44VEPmw2RccliETGFSdEgy59RB77skSESzVF6exNRUEb9UQ5jKVEA81QRFrpnkTRwE9EzphHRP8PWESE1zREYUR/RJ7nlkQhG4REKs2ERNq7HUUIJ3hE6gdMRGzwM0Shg0ZEA3Y5RMJsiUVV7QpF9YVQRFdNSEQipHJEkFoFReWXtETKzWlEUCmHRO3aqkTCU1ZECDpJROi2bUTQ2j1ElLauREqotESt0JlFM4dmRffel0TNeKZEfv9HRFDU5kQFJiRExICXRCYk2kSO/gVFn6hAROcdhERa4btEzaqwRUxOhkQEKudEdeioRIkYWER4HxVGplVRRDGonESNPitF/WcKRdrFnkR9QoxEZsADReZtJkROOZFE4pmDRKC5jER+6WxEdU+bRKVFlERWenVEwsRoRPP8XUaVbIZEwthLRrQgykXUWc9Ex58lRVsLaUUiG0xEchiPRAjVL0R4sC1EtT1SRjnhREXPXmVEsXL+RKXmrUQp5VdEkIfGRBtv2kRoaX1EQU9ORAQXKkWpD9xE8MDYROkSaEYljoJEPz8wRJOBfUUWNJZEp3ViRD7eV0R3fS5FbQc5RDayHUUDwRBFSqSwRBR4QkXWoo1EjueKRMv/SkWgpwlF8aZPRLgHA0UBDGdELJnARD71a0RNRVJEGulIRFaJO0RL8ddEHwIrRiu+GkQEFd1Ey24xRH0ILkSY41FEUXiURCaNwEQbDoFEQzzQRLXPPkTul6JFG17+RHCagERgdNpEU1nJRASGdUS38K1EjxRCRDYih0RmGZhEGrbHROnPLkX8gexEEwCDSOH3oER9dHxFfNYiRMoLQUTizIFEsxTrR3mflUTbG1FE7uhVRBUU00RVlYxEsByNR55mjEShMYREr9nlRZq1ZkbjxTZFmu5CREOsXUUb2nxErtWRRcYo50RsR7dEM9kXRS+FsURV0uFELCglRO3GTEQssT1EaqpFRLUtj0Rm3JdECeVDRAUONkYvDpBFfMmVRboPWURvFI1EGc++Rj3YJURbWp1Fz06CRLlZ6kT3omZExicfRFyYaES429pE7wFdRMpHlEQBhztEn1ExRPwoe0UwkTpEiAIcRoiMj0VeN0hEYWw8RM0WYkR9VNtEDs5WRE9Un0R9bylE49ZWRDzzNUSstWJF/CbyRNQmJETBSG9EAT+HRBvzlESiBmtEcxGBREXrckQDZP1Ec89ZRfAHvkW1jd9E8oHoRDKkgkT/Go5ET99qRC+N3kS80TBEprmGRNBgTEQupL9FTTSvRYGcLUU4q8hEBiKWRH/4A0bK949E/unZRF4PYUR8rcZEUNNnRBe50EflCIRE8wZ3RwRYY0aJUmNFO1O2RIJcXkTSH3tExS2gRjuSR0bIlqdEHFxKRaIAdkT3jYlEQmUPRXObz0SUMzZGPhhaRCkSbERhKFBEBSFrRUQXPkQiYR5FJ552RN5/hUQO9UZEluydRkQGPUb6UqREaOljRLtgOkWWTpJEFPwNRUgTl0SpzVhEz240RHIzbERHdJBEfBi1RE1ClUXZvSBGwA90RYQgYURGAVFFm2C3RBTk10QgKMxEIFxDREG0jESeoIZEzmzKRArttUSUEShEk5kQReqqXURvAflHYrqBRHakTkTb6ZhEvn5eR6MdOUTie/9G8M0hRe/wKESkstJF5cIIRtDeOER+RadE3WskRYrleEThkzhEp6WlRLuUU0T+pkVEeD96R0sTJUdDnvhFcxVbRZFcxEVi1KdFqudxRPjsq0RiGB1EoXRfRAaW+UVksYhEI2xTRXUxc0Qt3YVHPJgDRwknCUUsPztGHERaRLy5oEViVQZIMulMRA1dFESikoNHLMRvROSpxETKTwRHtdI0RpF5MEQL8XxFGyA3RGCkM0QXFbREkoBTRMOUXEQ4RABFtyIWRTdne0Q3nphFoyTrRI9XYUW8coJE0T8bR3O2S0SAaI9GGkQcRqQRhEUb3bdEM4p0RaOo3kWeYC9Fxk3lRG4ir0RtsFpHysEMRyRWD0b0y3FFqzqiRCG6c0VJBBhFlP/2RLlih0T7oT9EgMg3RWfimUTWGYtEgn4xROOdPURz83tEklVNRJRLHUR9iztEB4+BRGd0z0VZxg1F+l0uRNkem0W7pzlGuS74RGGhtkSLcQxFBSq+RQvKKkXTdhlFD8i6RGnmT0QYqFFEV/clRGMfkkXb41JFesZ6ROkqS0SXe4pFyD1URMLVUUVX0VJF+uwPRcbVF0UuQIFF03pSRR0yOUWQeExEzuU7RHz1GUVk1YpEw111RDCFGkeQGItGhHNSRIfMG0aBHnlEmlx7REPrZ0W362ZFwVCZRJwooUQFYZlES/SDRALKo0SmcS9E8NK8RLP7M0TodYxEI6xERFd5gkROJidGvmzFRXpNIUStq9REJQ1mRJsfUkSSVRBH9wTMRGHuaEajzipGQmnSRFH6fEVYY8ZEa590RJeWYESHcX5Gi7IGRoTGhkXM2HdEcHlQRFboKkRUBTFEGQ1WRA+uL0Ri4y5EkFAjRAjGN0ThwspEN2+NRVGj0EVclnNF4WPWRD2NwESw5aREjzpSRB/BGET5MO5Ei208ROVXQEZR+KlFaR5gRVMfl0QO6llEFDwHRtcInEVofjxFneGeREmY3UR7Y21E6+IhRUhsmkRbAV1E2JlGRA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - OB/9PnDBckDydOGpxMFyQNuH171RwnJA2MB+tKTCckBOA50+48JyQGqijSY7w3JAqnvjxcXEckDuDSHiWsVyQMY6VWVD0nJA7+8N+XfTckDXmwyizt9yQLoeqRkn4HJAbITHlbjgckA5+kLkTeFyQCq37KD84XJAUnk4uFDickDx3jHvj+JyQEJDJ/ol43JAuNFKbTTxckAKmghZu/FyQFjS4nLI8XJAQJPFphTzckAym1tVtfNyQC7XGuGi9HJAXh7Oo8H/ckB/wPo1ZQBzQL1LnJb5AHNAImu9yA8Bc0CxP7lJkAFzQB+tN3U6AnNAhBMOV88Cc0CCDixjZQNzQIXfXrn6A3NACCdTniUFc0DoHR71CRJzQPCJaPG8EnNAqBRGRPgTc0B+c1KBBxRzQI7Hppt4H3NA9siH76Igc0AcYroGvCBzQNqTk0I5IXNAlQph8mIhc0DMRvZeySJzQFleAFs6JHNA8ck3vM4kc0AM/TnJSDFzQOzg9JlbMXNANAQJ9iIyc0B01dz9DDNzQMSpzwKgM3NA/EfP4Tc0c0DTi3w/3TRzQObrspW5P3NAd+BuT+FAc0AC+OFPd0FzQO72WWi7QnNArjteL3pEc0BUm5o0nFFzQG7EInYUUnNAoxLdrEBTc0CsDNW/o1NzQGCC2GHfU3NAGyldZYRUc0DUhpLp+V9zQAezw3GIYXNAQHeIxTljc0DozuSSK21zQOSc4iHacXNAzlIxPlNyc0Cs6l6CanJzQMDTvJiDcnNAbjymt7lyc0AoyTIeTnVzQI64Yst4gHNAce8B9qSAc0DykBQyDoFzQH01vZRdgnNASDxkRACDc0CEGfGzWYhzQKH3lfCGkHNA/3veLU2Sc0C3IKPWaZJzQHwPUEvNk3NA/fi18mKUc0Dy3pq99pRzQGKvbKWLlXNAwosHI7igc0Cfc9cF5qBzQMWwyDFaonNAS2n5esaic0BMzIfUBKVzQOeA1vTVsHNAsAAfazexc0Bkv5OcWbJzQMAtoIwTs3NACQdU5LWzc0BA/yhqDLRzQIeSHu9hwHNA8tpnqvnAc0D3VZYMFsFzQIKUlJs8wnNAp3H6RtDCc0DuqZ8AKMNzQLAAljnFw3NAMmdYGY3Rc0BpdEHA1tFzQJh0oyI10nNAucrwhrzSc0B2GvIo9NNzQE3nQVji1HNAP6HDLqPgc0DYMjo30OBzQP6LZT844XNA9jHBkGPhc0CByYLze+JzQOTMLWgQ43NA7ILjDqTjc0AbKGso7+RzQAiYHAuw8HNAJNbq/tHxc0BqdubvufJzQK9AYqz58nNA5OTI4jf0c0BQ8J1PjfRzQHcSGg7kAHRAnC1q9ngBdEBCIzNcowF0QNDDsaS6AnRAqFBBxw0FdEAh1+0hBxF0QMUXrOt5EXRAlQjf0aMSdECEydy/TBN0QA+szOt3FHRALsHdBk4gdEDruNwttyF0QLASBM2QI3RAFBomDVYwdEB6eCn14Td0QJfr13NtOHRA28Hv+zs9dEAsEnsMyUF0QOj4DF05Q3RAAZx16nlDdEA/o21gWk90QEaSg09jVHRA9DRC6/ZUdEAs+7f7jlV0QFaSC4/cV3RAWCZzoCBddEBQnTe+JWB0QD6gyoa4YHRAmJXkGQlidEBgKqKBeWJ0QLw0+ztOZHRAH6La+MxndEDYcEX8IXB0QK23/ChBcXRAZVTQ3xBzdEDb79qdOHN0QF0Go+c2dXRA8FPcj0OAdEC/kX5t94B0QKB6WWhOgXRAr7e14keCdEB/MDshJ4N0QCzlCaC6g3RAWtkOhxaQdECs51SdTpN0QJ6kR7Tvn3RAHHQZBjagdEBsGfvnzqB0QM2hx3bPoXRA3wNuQrmidECrnPlzDqN0QC3VxeL7r3RAAmM0AAywdEAi+Hl7w7B0QICtSN5usnRAMFr3MPyydEBUbAjNyLd0QCvj/igSvXRAgSel0d2/dEDSfZ/c48B0QDzyJpF4wXRAgAfXPrzDdEAH3NIhIsR0QN5jbKN5xHRAXcp5FrnEdEBCvr8I/M50QIgTkSU703RAQ6pcLeHTdEAleR0Fz9R0QPpfLnj433RAl48EtLfgdEB/HCYPJOF0QC41MR624XRA0Wh50o/jdECWMnaqTuV0QPsVzd2/8HRAW1J2xo3zdEBdl8DdpAB1QJxDDqFjAXVAYGtYTF0CdUD+gD2WmAN1QLzGi0aYEHVAdkBZ5mkSdUAEWbODIhR1QEQnYZ1QInVAukZEpp0idUDDf3wefDJ1QP6BUf+lMnVALWNrtqwydUAK57cmyjV1QN54/gmIQnVAiK7OEOBCdUBwPpmv4k91QLZ5E5HxT3VAcAM0c39QdUBQV0IigFF1QCWEzmpMVHVA3GhveXZVdUAJ/LuOD2B1QDyU8I06YXVAHAyuF81hdUCqZzZb8mF1QPijLNJkY3VAoNqrC3dydUDMWYtGjXR1QFL0Rzx5gXVAHng22q2BdUDQsol7poN1QLaQHW0ShHVAh/i5vJyEdUCNfxtNKIt1QCdEV7K6kXVAqpH2O9GTdUAEFwKsu6F1QPIfIhr4onVA/Ai+MEijdUCCZ3sYB7N1QKD9fqGnv3VADtd2QM3AdUAw8ikX98F1QDsFkp3M03VACDdVceTfdUBIoC80d+B1QP9ZmGEP4XVAVuee8gfidUDWaAfQS+11QCiRh0Sl8nVAwMpC9PH3dUB2PK+GSAJ2QMvCwBrQA3ZACiwVMFQSdkDi2V4YThR2QLAGYngMFnZAeKQPQYgidkDVLLE6kCR2QNYmRnUiK3ZAkB1Ac0ordkD8+lkJHzF2QLA0E7wiM3ZA7bnhIJs0dkDojE7gHEF2QI7NcqswQnZAqutekMhCdkCkq68gekR2QLnHpRIQUXZAmJ55Xh9TdkBMAzDvh1R2QJNJwCnNVHZAdNX/sCFhdkBGRf0M32F2QBHPhX+4Y3ZAWvvyFdtkdkDoH9ylVmh2QJ0L4Z5pgnZA+PeUbZCDdkCg5IaXvJN2QEZ916YOoXZAAM/84J6hdkAWBOuU5aJ2QPxHKZK2sHZAgDB6W8KydkBulRqOc7N2QMbdkW0MtHZADCeg2a+0dkD7iDCtcsB2QAZVxOW8wHZASK7NFE3BdkCugedkzs52QM5pCxyS83ZA96HnxAASd0DYbaTcpxJ3QMB4Xcw5E3dAKr2uCLwhd0CQU7gJDyJ3QAs7pdDoJ3dAug1ecEMtd0BEsfI5XTB3QJ89HHafMndAb3vChKUzd0BMq/cCDTV3QJT16OycQXdAZlbb+ZFDd0C2vIBm/EN3QJ8+9iQbRXdA2hmNlQZQd0C8fXvBSlF3QMSK3muSUXdAbsQRm5xTd0Aqe2pFKVV3QIWU9tMVYHdAtJM5F5Jhd0D0u4j6n2F3QHiqKMiQY3dAS1EUy6ljd0CKlA1kKG93QGHa00/2b3dA/vnpVXNwd0C0tmYun3J3QK55QY/4d3dAjJZ+qEJ9d0BkjxjNdoJ3QLU3hv8HkndATPBI1UqUd0Au6mvpLcN3QAMafTfsx3dAKb0Xa+rgd0CQqc5ATvJ3QJBT7sdz93dAT5LNInz4d0CMHH+6dvt3QAznjC5G/XdARjuRz9X9d0DsbccTeP93QDL9yPyfAnhAfLT5EBsDeEAUJCQNfAN4QMAT0b7lB3hA1ptt3vsHeEBtTDVVQw14QCYn4D5OFXhA9b/5xmwieEAyNiBbOyN4QJBc25GMI3hASB9q+6UkeEB640n8QCh4QKIBIRZEOHhA5NqaCUVDeECc1OZ6EER4QMU0cfh5RXhAsACp58pReECKn4EWklJ4QGNkWeuFVXhAmGQLePhgeEBu5XWStmF4QN4YYv/ZYXhA05Z3ObdieEDwW4uFv3F4QNyg25aRc3hAlGxReIt0eECcXC0U53R4QLZBe9n2e3hArsXrC6aBeEAKvwFq/4N4QBJE+m6ZhHhAFb2IN0+IeEDiTIy5Box4QB4gRgKpjXhAo3deJFOPeEC9YczFlZF4QIBWcNkGk3hAIgbraaeUeEAD+iNHV5h4QIGnd3GnoXhAWFPwd+G3eEAOA0XSPL14QBtt5Wwk03hA8QWTvLbUeEAwt9UxoOJ4QLplB7wB9HhA7IpN0Yv1eEDU15VIJvl4QFKNCdKbBXlA0sD2BSIieUBMfnPqTyR5QLSiNTWyKHlAPF1vwQwueUDxTRmJZjN5QBax7uW+OHlAGrCDc3Y7eUCCmh+V+0J5QF7UG7v6Q3lARSpDPOBQeUA2Hn4zy1R5QEF9Ry/ZZHlAIh4R8kJzeUC4BOEb24B5QMRoXKL6gXlAUlRW3VqTeUDKwp56Ypt5QOR5RZdno3lAcOJ/OVmreUCg4adff6t5QKk43hXAsnlAPd2AdAC7eUCYuuyhzsJ5QLYShh1+w3lAGgyyiEHUeUD3OFg8zNV5QIrdIXZP5HlA7lWOpA30eUASR+r0+wN6QIZu3Gf4BXpAoOdfLGQLekC2pUsgbRN6QOHkLYZZG3pA6pu5CSszekCStXUNDDV6QFdoJ6wtN3pAfu2HOxpFekBArFSRzUt6QJLYFBooVXpAEqHKsyFcekCqDLR/KmR6QP7L5lo5ZXpAfoESOY1yekBU1JGug3l6QERckHLbfnpAqC9/IR2jekAg0iufeKN6QF72a4ojq3pAMt118RizekCOdemu97N6QESpORINtnpAmd8zgyrDekB/wsnsGsZ6QAiBa3VDznpAhp5wedTTekAG76JgPOR6QMb5yvE27npA97XyPugDe0ClDJUafAR7QFS2R8QqDntAw/+quIYSe0AIqMxY8hN7QNnlkLGLFHtAxNE9zEwVe0A4r4CBWSV7QHwTpNEbLntAtDMkoccze0BWFM0oYjx7QFSFjgtpRHtArNDYK19Se0AfOda4C1x7QHr5lxgjlXtAUoZAsq2je0AHaDaJfMR7QIRhhld4xntAs7ZqzmTTe0DUVtvrl9N7QOrUgyz+43tAKhUxQCfke0AUfoW6i/V7QDjkhnMr+3tAcv4BfJIBfED6V8/H2QF8QGrlOm7zAXxAv/n47WYEfEAq3KlxmAV8QA3H4UYVCHxAHH6Z7IkRfEAFoOX40hF8QCaGmDb+I3xAVz0l78xBfED+OT21UUh8QOw+agGmTXxADrJ559pRfED8E1+R6FJ8QAw7CuAMYnxAx9dD6JJjfED06jNT5WN8QM0Srytne3xAxuuQBmuDfEBg7mvvwY18QNptVEgbk3xAdUHb6WmVfEBeA8JMfph8QBhRlcVYmXxAOOm2q5qefECOE/ld8qN8QCwGGm74pHxAniD4O8CyfEAGtsvjebR8QBowfrkRtnxAZzNUVdHDfEAXJ/1Ig8R8QODfwhn123xAFAshxFfifEBumqgUa+h8QLJWEscW8nxAqaNzp1XyfEDcSPIeQ/R8QKT5Wcr9AX1AbcW/CUsCfUDGW2eYRBJ9QIqnK9VjEn1AxmOxl68bfUABrfZoPSJ9QBMfI0OcI31ARV9bk54xfUDLfh0AmTN9QIS81ZYnNX1AfmAALPI4fUC0qdZC9zt9QF5NUa39W31AmxVFZ3p0fUCcMh5ognx9QFTYQUyWjX1AdaElQO2SfUAO57z/v7d9QAiA04Ewun1ARnrh9SzDfUDJxJ6y5sR9QGmhxcLz1H1AQgAVBTTdfUAezxr9eex9QCjr5S589H1A1qaN1471fUCcds5oNAB+QMj8iCHhEX5AZLEIPyEsfkAmVl9jQy9+QAzdZOSANH5Axk6pIQo7fkBCQQ/qEEN+QKdwmTKhRH5AbF5ZkM1EfkDkzn4jv0t+QCxiuRfqU35AcCFkPY9VfkAii+1M7lt+QNpfSc5YbH5AJbuKrPVyfkAmce79tXt+QATJZVkcfH5ANwQmQSCCfkDt3MjDuIN+QK74r2mUin5Ad20WuXOXfkAmxrsDyqB+QEX2UcyRpH5A/kxoTEWqfkCsKtlMX6x+QGFflPels35AlMkf6ru0fkCUp2aIpsN+QLjneU7RxH5AHnPsRQnGfkB4c2n+c8h+QAa8OsPLzX5A+JavBEfTfkA6mpF7UNt+QLz65PSWA39AYcMkhkoMf0CufYL9PhN/QMqChpOkE39A2iLlIk4bf0CM7VG3YzR/QH6DY+eoN39AAkg0jDxVf0B882O8rlt/QMblqNGvY39AwAx+U+5sf0CzdnBmfG9/QO5yfp+5cX9AzyqtcbSBf0DC9F/voYN/QNM4dLn6hX9ASICtN2KRf0B39Vlal5N/QBuGrXjbmH9AvQfq6F6hf0DOhLA4RqN/QBg06zASpX9AjutTsFSxf0Df6amWBNR/QLLia5OY1H9AWHTpJ3HYf0DaY+y58tx/QMNihdii339AJGyLwKjkf0C77y0l5et/QNTND243739AvBo0PpH0f0Cw9u2G6fl/QNwMR0mIAYBAPGc9tDQEgEAEmMh54AaAQNrG+LSLCYBAvW+lJWkigEBO6NtP4yaAQAxwE4JwKoBAREfbijQsgED8WvSX1i6AQDB9yPKrOoBA7pBb0rQ8gEAkDXa+qEKAQIAKr+tDQ4BAooQYDvdIgEDe69vF51CAQNTiHe8TUYBAs6ry/yZYgEBhfYQmDVmAQAKMj80dWYBAtsKvSN5egEBkSgtRxGGAQBesselwZIBAspEfCOtlgEBmLE5ZomeAQNoPSNhNaoBAPM5s0O9tgEAmCGzFKG+AQPYaqRvzcYBA7JdQIxx4gEBcxDpeJ3+AQPeAp8A3hoBAdIE7WR6PgEDqS623H5eAQJwNoXoemYBAtNPcFVKbgEDzB1DyGZ+AQD5DlOM9poBAOur5H/KmgECQIJKWsaeAQALzwC+HqYBAWJyJqvOugEA6WeFtEq+AQE7S+Jmpr4BAMIHNF9qxgECXSpTKsLWAQJZFl62WuoBASFm4Qwe8gECXL2b5wLyAQPIDzkZ9vYBAbbC1FDW+gEAsAG72+7+AQOJ7KbdpwIBARBYniSXBgEAkn5+BUsGAQLtdBj6fwoBAn6XJqffGgEAcxXkkqMeAQP+ncufUx4BAigOvG2LIgEBi9nASGMmAQNCjhw0hyYBAjnkKfFPJgEBGGF9+p8qAQFgqre5Ny4BAy0W2F0DOgEABcTy2CM+AQP51ZRuhz4BAu7kMhEzRgEDICa+nX9GAQGrY06hm2IBA4ldbISzZgEAJRKOVStmAQFzDcnvA2YBAQ5XiTFDbgECAcRojEd2AQCUiGqTD3YBAuCbQBsDegECyUKCJbuCAQHC3K5pE4YBAVaddE1jhgEBQfm69bOGAQDLsgpkR5IBA+F6LBV7ogEACYhOE+OiAQGSFNJlK74BAwn7s1T3zgEAz0rltaPqAQNh8joN0+4BAWOkpZjf9gEBwPcKOP/+AQKhTLsB4/4BAEN6NKiQCgUCgz7xwUQOBQEZD3ZBAB4FAE+vATT0PgUAWmyht9R2BQH6vlX40H4FAWMTlQEwjgUCMcAIaNSeBQPYSIfo8KYFAUDYN1CsqgUCcWGos5i6BQPQPchW8MYFAWrtPM9YygUAuG1dzBTaBQJ6hUm3FOYFApLeoxyg/gUCOw7nOLEGBQMOtq0pbR4FAKB8lbwdKgUBRmyQ2skyBQDBbvyjmWYFAMNmBTOpdgUD1xcK4u16BQPB0yojBdIFAkpo0FXB3gUDKBI+bGXqBQK+Ra/Zue4FAiDVhN69/gUAW8K8YYYOBQDey7pMGjYFAdPlRZRSNgUAODpQvVo+BQOWUwE2zj4FAHNVuxlKQgUA9Q8zngZCBQADaJhf6kYFAijQ8/GWSgUAcy8ZYV5eBQMgX9vKcnIFArvCIv0efgUCY/y2E5KGBQOlmCpb2oYFAvhzBut2igUBj9L0PIKeBQDaA9uVap4FAJqbYmG2ogUApJ3VhSq+BQDbQT2vntoFArhwa7Uu3gUD8Lc5dBcqBQJqpnI/50YFAXCmmNiHSgUDeheXFf9OBQPRB82r81YFAb/DWYuzZgUD6AqvgAdqBQGWeB0X13YFAxDXhdQjegUBQfDmgct+BQKYuSuH34YFAxmBkjuz5gUAEIieZ8P2BQAC5NfvjAYJAfhYSy/kBgkACyMxJmQKCQMgySmXrBYJAVM0pLwIJgkBaRpe3Aw6CQMnQvvoGEoJAzRanZ9gYgkCwZzpkZRqCQPQ7LkLYIIJAr241EdAogkDtu0VHlimCQGFIE9woKoJAwOo9as8wgkDwGE8zCz6CQNxln98HQYJA2mPOEzlBgkAyAeFr60GCQA6u1ZsOQoJA1+oZHxVFgkB4UPCMFEaCQExuNFvJSYJAVDQJab9KgkDq4EHizE2CQE7oV1qXT4JADFGPshBagkA86xkhEFuCQG5qR7KuW4JAjtax6G1cgkCmwaZiOV2CQCbe8KC4YYJAC2AeWDRigkDAq1mbu2WCQEu1eIc3ZoJAOjj1yWtogkA9PZ3nOGmCQD5CYnLYaoJAat6cXttygkA08muta3SCQCjHMolDdYJAxmlu2AN2gkA0/wrR0naCQOgaA8mhd4JAKNNioQR+gkDvvX+ysH+CQNYT11hDiYJAdNWTxRuKgkDl5UciqIuCQHxVa1IXjIJAqP4NYYuQgkA0MbrmQ5GCQMXfGWSZk4JAAV8CFTyZgkD6sAdrVJmCQLB10EAFmoJABk4Z6A6hgkBCCCWWO6GCQIr0GgvJooJAvjA8xtSlgkDkLSGYDamCQPxfNzI0qYJAdfeKWn2ugkCAAogxCLGCQF7+P57sxYJA0EfiGu/JgkCM5dAB9c2CQCBZ2Z/p0YJAKuX5YX7agkB/Kiojgd6CQJreMXjk4YJAgtBUw4XigkAgUWLj8/WCQJszIBAg+IJAPrNh2Kn5gkAa/TZ5+PmCQIAA2Lge/oJAgqVrgOEBg0CIjC1h5AWDQBpYK+uqBoNA6nUDqMMIg0AyENQ62wmDQAfDi+DgDYNArZwxn3kRg0AKSy2leRmDQBk+uvdyIYNAQ/w0fvEjg0AccaDtcimDQPY/usIoKoNAqWpi7Wkxg0B8q2tIlkqDQCqMlpMsToNATn6MmZZOg0DFc+xyv1KDQCZ3r3PycYNA/Q2dxOpyg0BYxVFX9nWDQBYbc/3EgYNA//Jd/kaDg0AapXPqx4WDQESI9TS/iYNAfKohTsKNg0COnj0ey5GDQIgd3gVRmoNAmdjh/lOkg0BtUjH0VKaDQOyhKKxTqINARBYuA1eqg0Aw005YXK+DQHxIAMISsoNAe3I4kxW2g0DSBJe/GbqDQEAhHcAQvoNALY7XkBbCg0DfTcV6H8WDQKT08FrMx4NA3ERgu3nKg0C8W1c4zNyDQBptt0N434NAX9fYbiTig0Cj6iblO/qDQHwgyvkyFIRAQcWTLycnhEC8WilXOUqEQDxnvlIpWYRAuhWrnPpkhEDp7hnZ/miEQGp7C8EBcYRAOsu/0rd1hEDBN0iEyXeEQCGRudj0eIRA0IgB0rt5hECxbJUsenqEQOFrdQUQfYRAOs1t3Sh9hEAwZq4qrn2EQKxViqbofoRAaiowj8B/hEDUJji9+YCEQMJPBEdwgoRAKd0b9QaEhEB42uO7H4WEQIRBoDHMhYRAFlf2qsmXhEBTuF9+aJqEQKBS7k4pnYRAWTH1cdifhECErpcob6KEQDQkn3mGooRAwi8wzh2lhEACukDOyqeEQJQ6PRF8yYRA8zNA6hTKhEBYcKQAGM2EQHZoWrjHz4RAkjNoF3XShEAGj2DtadmEQJUC3dxp4YRAJpVzXM/nhECOL4XeYumEQO7NdU996YRARgEP2XPrhEBLOQmcNfGEQG5gPvdh8YRA3Kz+jN73hEBZJVl8NPmEQCL6AlJa+YRASfN3XYz6hED+B6NdNP2EQFbHWcsuAYVA6NJhrXYXhUDUGOGAXjKFQCzJzZOqTYVAcCcj4uNNhUBwt9C151GFQPTzW1TtVYVAgAZ1kj1WhUDoXW1CoGGFQNxIdhyfaYVAh5ENhphxhUCgz40HmnmFQPqTf2mPgYVAgqdjQVqOhUChWbQcrOKFQEhjzj2v5oVAwX2WP7LqhUCmC/ShWQiGQPS3lNtPJYZAFK9R7D+shkD2hmv9JrmGQKSqNqnRxIZAOuXYtNPGhkBWQinY1MiGQHlxwm1FyoZAErDeFdTKhkAy/WbH08yGQCP/vpRJzoZA9LTM/WDyhkAUz76JkSmHQJzB/fKPMYdAYOtmtYg5h0AM6N3zW0GHQJvaAfeGQYdATZOQTIFJh0ANOyr/eVmHQEgagUnHsYdA/MMEq8e5h0BgFzVbwMGHQO5V8pzFyYdApkB/bfXMh0B8rCF3hPmHQHac5mRfBohAiBtlZFYKiEBOvu+OZxyIQIms98xrH4hA + NrgMGZxjZUAoFld2zuNlQBTpB48/A3JAjwFH/L2yckDbQ5zIVzR4QFZc2zXW43hAVrq3iS71f0CndC7coxqAQKejHAZQo4NA - + - fhyqRQB0Q0RcjuVE8QzURD7ZjkQ9vz1FYBhwRC7ulESddQxHAougRCUqE0UKc51EA3/wRH5mh0RZ1lZEv1+bRewWtUWRKsREuug1RTAkOUVGi0FFjNDoRN/noUSB171E6nz5RBgnbkS5P31EiEY7RKLlo0SbbTdESno1RfRmQEXoXxtH5HyCRG9EakSkuzRGcgZaRYUZekWRhD5FOzXaRB6ePkT19LBGKD9jROF76kS/n5REhGeKRYWOkESCVk9FyQM5RBcpRES3/mZELeV9RFImiUSNMf5EQURJRMIXfEVnEs1EaSoVRp67BkWky0pEGPm/REEMU0W2LEhEylKxRFMepESoqGxESfvjRKXJ0Ea4Ll5EDMiDRCQhtEX7BwxG6M2YRJvkEkURfNJG6IHJRHn620T+B4hFpym/RFpd9UQVu/FEBbpRR1+8hkT43ZVEHYLXRNNkTUZjbmZEWF0DRrFCe0QT1wNGngOQRO7CIUXrLplEQlRxROnFkESkQEtE2MCERQvLg0XZml1EegaoREq8fkSCaIdEJs6+Rc8Q5ERzxWxEITZQRAtdRkWazWdEY9HVRFh8SkS8KWBF580YRtNr8UQxW/FFNjqvROqR1kTUVO9E2nUFRRrQbURvbJhEkKKLRHSHa0QgAzREetifRNWJuUTO0J1FlvNwRvu+JkQMpZJE7tNgROUnXETlzahEMLhCRMe7a0WpYiJEckw+RB8Y4USk8BVFz9uSRJ/bXUV9f35Eu90QRTg4jETVgqdEvW2AREUsN0Sjq6FEbt+dRBmrlERq/HNEEcjRRZqGrURfPHVF3Nu3RbEWRUViBKZEJD88RBnBAEbPEj1HxaVJRP1K80TmFo5EzAqORTc/BEUHlqtF6SraRNWaskSvY41EBz+KRdRMe0QYB5FGmAk8RLvU+0R68mBEreb7RD5YHEXVRadEuP2aRAdJAEUDiHVG7r7BRMs4xEWqOLFEkZQgRdSOrURHQNFEwSuYRImpQUQz9YJEMMw+RQeupETP8mNETSO8RNbvtkTEJnhEy/SFRFo8mkTvCsFEj1m6RtavtURfRT9ENY7sRRStq0QenaFEJ3fyRb30nUS36bNEwTqERFCH/0TdbkRFytnXRfCGr0YkJUZEmsM8RH3k00T08D1FA3leRFxbnETuno9E77VyRCdnmkSN2dtEYSjvRMPFYUS8zt5EZYNYRIn5M0WvqqdEYXLYRHvyLUZCIKNEFk2IRX7bl0VPuYVFNaHrRKqurkQ8k5REL1BmRVEBhkTM0zxEqu2XRA4Oe0Rw0VdEm6mWRFZvuUR1YblEEOtyRPI+RUQOo2pECcacRJcydkZJghhG4kjRRPbjAEb5MrtE941NRKx7p0QmMm5E739vRZhNA0bz5XhEqcWkRYAEsEZSvtZEh/mWRBl4ikXv6l9ERNARRfpDfkXvjSpFt/g3RFhOcESDzl9Go/2URNjB+kRTtUpEQ3lLRflV80SDi0xEoNv6REo4XUTHpolERFw3RBRgPkSkzGRE9rjbRKGOb0TW9odFLIKIRDQfREQPg8dEb8xPRPvJd0W8aTJFWDGARgflT0RF+zdEiqY5RBOtL0XsNThGVVv4RU4dRETWvsNEdw20RMED8EdlGp1GYtGmRU/BakScgc5GKnkxRkK8pEXmtylGisiAROAA7UTgx45EXzrcRLkB+kT5WWRE3yBaRTwVEUVlzZ5Eie8gRHJsDUYidoJFKX8oRWN9tEQHEHtEa5yVRJ7AJ0R5VYVEpf2CREjswESGj6xFJiDFRNEsnkXYdWpHDV2VRFE8tETX6wJH8eQiRNLthkTPFV1FM0O1RQJKdUW50alEyadXRfSsH0Um/59EvcKIRGMvwER+SStEoc14RN/QjkX/DSxGvHdzRRHJ50QiRc9EuiEzRW7lEEXSEDpEQNJqRJBceESrsUBE+7NRSToDm0TwT8hGXaMtReG65EUdMFZIvskNRxDMm0QE0b9GwD5ERKmeSUWGfaNF09eTRviy0URlcjVEhFPeRIwjh0QSFCxEjxcoRT14lES8kFlFjcb7Rfuzc0T3os9E0QyZRGndBUUGsZBG+XkyRorVl0WnP3xEbCyJRAlvhESvxQNFx2VQRIiWjUXrxpZEVfjoRPR2UESCZYhEqKP3R2/eR0c5lPBFbYu0RAZ0RUUhMDRFfwfRRInLpkTwKD1E1ubLRRnr60S5RrlEsE+lRNYmOUQ34QVF0aHcRUPFpUTeAApFAhs7RYoX5kfIIo9FjU7yRja+XkRekDdFGSoLRgICBEUBwqZElYPAROlKUkQPRp1EukK9RTTq4kS9+ClFyZ+JRGv8s0QhMshFkuFDRP8X0kRch1xEVqOIRB8SjERWgrREBQsART9H70V4o01Eq/9cRDUYmkRePXhELxAcRmQGLUWqDXpE9AWnRHXNNkZAMYlFVZrARDoQrURJZhlF/eedRJlSZUT5YthE9exNRM/5P0RC7bFENEszRVGVrEZGPnhEtkzORKGaNUaxWddEBBPGROyYqEUR7VNEmANZRIx3xUV5I1ZEpoirRXQ5F0UHI4hEKa+7RKUzd0QKtcNEcIdGRIlwIETL0FhFjP1gRAWsokWjIFpFBicvRaWmS0RACLtEFVyrRBd9WkQJi3xECTWzRMyL/UXIA3pEgmv8RKzMskT9a/VEb+zXR0wcu0RjrCJFpgHgRuPQqUS0CeNEsumURkRoW0X42pRE+5M8RbiShUQQETlE2qOdRDcTpETpIXlEKT2UREaeh0TFuZVE7XkZRjCp70RsIa9EdmL9RBqFRUR7M2lEYb67ROt+CUcFQ6xFaiRARITeckSuG1VEjFIIRToLFEWhjmlEFE4tRcYhuEQN+IxEiEsJRnqyH0UETclEuF5/RMYY70TUfE1FgeSAREblAUXvq3pEdDlMRC9kj0QWJ1dEeXh8RD6aXkQ38Y5EKiVuRN86VkQnCbREwhFgRNBhRkQtIAVG18GPROsGZ0T4g41FhaJFRIB4DEWPJZ5E7sdBRegX8kSvt9BEDZNaREL8dkXMvkBF48ZjRH1hb0XgGqxENeBlRNYurkQWa8ZEH/E/RKNeXkSm/VtFiD/bRBzHtUQ4rFFE+kwrRsF8/kQ/+IlE3a8qRRKsg0TeNH1EwkDeRLE9QkRdtrJE+YpRRGCXgUTWtmVEidWRRAW9Z0S9+qJGNNh2RiTXYkXc0DFFJAjlRG8qmURTDYdEE0OXRrmQ7EQ+YYpF7mpRRMkMqkRudCpENPFIRLwfXEWRlHxEpt+zRLCEK0WdS2BGxUKgRPVhmUVKrf5EtLNHROpf+kRpqJ9E13jxRIwl8USh4XVEXng/RdeJD0XhqLhEmeCRRCR6mUROZ2dEz4gLRtMEzES2qoxE4PxQRCPliESwnkREYdnARE90gUSIr+ZEb+c4RP+qg0VEANpEVV8ORU0dsEQD+VpE4QkjRcUh7ETLx8REIkOYRB6acURivFNETK1eRAUBe0g/uXdFuizTRFNQgkS5935ECeQrRUC8VEQgY1xEjaXkR4A8RUR1F8dED3J8RBfR1kQ9L01EjiaCR7i5YkXQ4VxGZ8CGRI33WEaJsH9E0CE8RP4eT0SDlT1EepETRfwtw0SpRaFFz87VRA0khkSLALBEAlswRca5vET92A9FTvKmRP+GkUQBsDVEQ1ZERBg5RkYj8jREVHdZRJeQaUQIInFFQXh+RZRnVUSYWLlGqh5yRHmPsEWq6ldEq5M1RO0VYURamNNEKg1VRP1zN0QQ1FBEfG6ZRXYIS0Q/M81FoEmQRXgnsESeY/9E/B9vRJ3JMUSZ1AhFAW/lRPtMiER3L+NEEotKRN+ZZES56FdEmYY9RGQqx0W9g8hEpMlLRAX8qUQgU8BEKkV7RGTB60Te/pNFUypwRXLEDEXOIP9Ei9FyRNyhaETl129EbJr0RG3A20VJfkpE1SyMRNRguETU48FHskCCRMdsp0RklF5HOUEwRVSFX0aeK1pFS56SRC8OO0RHU71EdszORqQPUUYKBRRF/67mRN8Zg0Q1ZiJFaZ2sRLuvSUVfcalEwYA0RiUL70SMRo5FGiIfRQkNXEQebUZEu/yvRMSWekY41kFExmSJRHuVqEQVJBVGXfBGRAZQEUVlBaxEJExNRMT+kkTbb1VEhwelRGoEYERQnXBEVhajRBrMpkSWgA9GxRIHRlVOWEVHoW9FGvijRM7GukRAsYtEZQjIRFQLm0S4C4dEzXJnRP4szkR/NwZFBxSWRKqDTEShfOJHK4xYRAVUPESwhHVEUeJ7REgwPEexNWpEJQPpRjoyJEXqT2NEefC9RdSsAEZQhbBEmNR3RC+L2kTxJyJF00pzRLCfBUUtaYFHuOoFR8gbIEZ4GXFFFS4PRoOWikWbJEpEjcmRRLJYd0W++EdEpFJLRDLiCEXYJFVE2sNjR7hn2kbeOqFEMXTMRGxy+0Wd01hFytjqR7v1PUdvd/RGOGF4RHzBH0ZB6ldEL8A9RazFoESK4YFEJ37dRLpSckTtOo9F7XzXRDVQMUWLy/tGjsRzREv9lEYbB7tFz6NURWWs/0Q1C25Ee1GDRaukpkVxiB5FpmUQRX1XREQg9aRHVEpJR3B3f0YI9aBFJqGdRExbR0WFlHdFCK0LRce6jkVrluFEothrRKpfhUQGxTtEkGdBRJ2jYkQY4GtEQlG7REg5wEXfSOlERdZMRQ9+C0aUqYdENjkRRcw/70W1FVdF+WiTRY7abEQGHXlEr3QkRZZUPkQ+ilhFOj9HRJTq1kSbQoNERoKIRdM+20QKgxxFLEheRTRvX0X+pJNEYBPpRHfsEEXo4y9EmZhDRBnB+kSg9ahE0bpnRCb8E0d2lpFGRD9KRJQiJUY09rpE2Uo3RI8lfkWJDW5FUHvuRHBD40Qk2MlEGU2SRCbBikTPS6VE6WuERHD8ZUSsrEZE6wDmRef4q0WWCwlFY63CRGl3B0c+AlNGTcMRRqw9oUXR71dExoRhRG6gc0aOJQ9GNzRBRd6MBEVPQj1EyOY5RLLwhURlpIJFEgidRYaAZUWx99VEvc2GRH0UeURKJqBEM3eyREkZQEavAJRFpZiORfOHlETz8N9EcKFRRAqtRkT3uAZGrRCaRSi9KkVdFcVEtGbHRCyvn0RrZCxE4349RPRGSkRfYUlE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - GrtyfnnAckC5pV+Jb8FyQKDr0AZOwnJAVmyjOaXCckCwg1p95cJyQFq3okQ8w3JAVzw64qTEckA1xWM8xcRyQIo4OTACyHJAdt3KmfTQckC5a6bafNFyQNvFcqJD0nJA3Ni8JtrSckC6h1Z7dtNyQG//k1zd1nJA/ACib8/fckAs/clPI+ByQAqmsmG34HJAng+wcVDickCiAIuhkOJyQAdTEVIl43JAfA0nrbvjckBu8mFATeRyQLLitFo18XJArzifM8rxckCuLITUfvJyQBA5nDuc8nJAlt+ghOjyckC6ll7GuPNyQB5VTZQP9HJAJiav8ML/ckAQAHVy+QBzQE46uvA3AnNAgpI1js8Cc0D4PNGXZgNzQG+moMz6A3NA/y8zFpAEc0C2BkSxchFzQBanDPgJEnNA/4wo8CYSc0DC4Iq4vBJzQErdh9T4E3NAnMcytwUUc0AYrDrHTBRzQNybktZ4H3NAMjuIBaYgc0CW07grOSFzQASh9SrLInNAABfJqg4jc0Ajq81WOiRzQO4KTvjOJHNA/aGVXTYxc0C28fMAWjFzQHTGiGrNMnNA4rzEnhAzc0AUl84xNzRzQFTkYLe6P3NA18VCsuNAc0Be9XHGeEFzQES2hCW+QnNAX/N+RXpEc0CYkuHtm1FzQAjXlwdCU3NABJqGlqNTc0AKq94MhVRzQBhmpKz7X3NARGc7RYtgc0AOLo8THGJzQDGMCM46Y3NALtMWfittc0Dr64+73XFzQDaF1AVQcnNALMxxiGhyc0D239rShHJzQCDVIX+6cnNA7Km/K7l0c0CBEYrrS3VzQNTyx87Cd3NAllW9vNp3c0AHPePbeIBzQKyHjMyjgHNAso+4aQyBc0AKEjMMXYJzQJClLu+ngnNAlnu1CQCDc0COpzLoOYVzQBv7dghZiHNAFMTqP4aQc0BRXZZe1JFzQJiWGKBNknNA6Y8ZXc2Tc0AAfe5nYpRzQCwal5n3lHNA6xI2NIyVc0AEeuGWI6BzQA6yGe64oHNA7ed6qeigc0DG0CsOTKFzQIfBlJxaonNAGFQmOwSlc0AWIRZWy7BzQO+s5M/SsHNAwCIrhzOxc0AwGLDYfLFzQDzK4V9dsnNA+cKEOLezc0CS+IdkDbRzQHvtE1BjwHNAxiJFa/jAc0CKjwoe0MJzQPqNnnknw3NAfI/ismbDc0DE1rPc19FzQF+BXhQ10nNA9MH8F7zSc0DX62Ob99NzQDB3YQZN1HNAKpCCv+LUc0Ceetaro+BzQA9E7bzP4HNABq+WDDnhc0BEWNUFZeFzQERRqNt64nNAtEqpTA7jc0AyNoMGpeNzQFZ1qIMr7XNAeoCoXrPwc0Cv//Aow/BzQLk3Y2049HNAdzXku430c0CYGT594wB0QNcCGPF4AXRAeEFch6UBdEDN/iZ5ugJ0QARN/SNNA3RALjVT1eQDdEAQkKB+9BB0QFxPoRQKEXRAtvrPBIkRdEDUDT+hpBJ0QAs0MLJLE3RAtOh2quETdECc+5NLdhR0QJyCZRpMIHRAWPFMJLkhdEBgLO2HWCN0QLPsfo2PI3RA2Iy3ElcwdEDG1JzOtTJ0QItIaj7qMnRAc3E//hEzdEDxhUPJ4Td0QDSZRNk9PXRAGv5Qm8ZBdEB2dYy4SE10QI8nSsFsT3RAEJ4xoc9RdED3fzYNpVJ0QI+ju0djVHRATD9zhYtVdEAYTGzL3Fd0QGKI1vQgXXRAVuas17dgdEB2LluS52B0QAaLM0VNYXRASNwzsAhidECFa3s1fmJ0QPXLOG4QZHRAjLOgS05kdEDSK6b7InB0QAjt/4lBcXRAKh6CbXlydEAkDTerOXN0QO4AC/w2dXRAiipYVUSAdEDiDHOB+YB0QLYRoplOgXRAILEXW0mCdEB8WQGAzoJ0QEBM2W0lg3RAV5zDNLyDdEDcb0xNFpB0QGkg05tSkHRAKjhxRO+fdEB2tldnpqB0QBTQRNDQoHRA+huyZDahdEBGyqDsuKJ0QKCatjUQo3RAjA7LqPmvdEBn83VNDbB0QNkHYNDCsHRA3iLoazuydEC5qdabb7J0QNuqY4f8snRAFgdlcsm3dEDbjmcqE710QDLqrgDev3RAWXmSM/zAdEDyDMIxecF0QO7swWruwXRASL9lyHDCdEDmCeiPzcJ0QMLhpiC8w3RANKFXfSTEdEByoikKe8R0QCzRDyO4xHRABXo80PzOdEAidIYXptJ0QLAF0xTj03RAkgolD7fgdEDEcVLZIeF0QGvytaRO4XRAUFzObbjhdEAYDKnXj+N0QKjTcs5M5XRAfoP5Ok3odEBYpHuOwPB0QDJOZCSN83RA+VwEVDgAdUBQFuVapQB1QGw+Lx/NAHVA49rXRV0CdUBcpFzWzwN1QLX8+IVrEnVAoBp68I4TdUBs7mYYIxR1QDbfV2RPInVAzUF2jp0idUD+eq8mfDJ1QAL2Hz7MNXVA2tUjjopCdUBeJzxGY0N1QMcJK7T5T3VAsEzbUM1QdUAQp7QlgVF1QKSf1cBOVHVA5J726ndVdUC++kjxDWB1QEIuB9I3YXVAhcKel/NhdUDGC/U4ZmN1QHrZBnHnb3VAUnlXl3dydUD09hUmjXR1QI4z8dB3gXVANaa3h62BdUCDkd3KuoJ1QOQLkdLlgnVAqIDa0qaDdUByk6WTEoR1QIik3DmahHVApizSlSuLdUDGkmglvJF1QCG8ic9vknVAMoA9ItGTdUBudj3DHZR1QDMss3TKl3VAo2oplCShdUDm26dJuKF1QF72VEtIo3VAcDNTp6aodUB6ub1D5bJ1QDbc+07EtHVAtsP0sTy4dUDCm1jlOMB1QAlftIpjwXVA/v6tlfjBdUDU6Mt35M51QDpa1MQ603VAekbr98zTdUCH5a6X4991QCY1KrEN4XVAkvxBOQXidUDhPfkQxep1QGa5HYRM7XVAagdGfabydUCnJlgcSAJ2QMiHAg6QAnZAy57E/CYDdkBUX1k20QN2QGM9b85UEnZAC1D86AsWdkCmaO1CiCJ2QI6bs7oSI3ZAXt11XZAkdkDYFs5bSyt2QNHkXKMfMXZAuN8Ev5MydkAmqUkpJjN2QA8tl6dRM3ZAVO1W0Z00dkAOAxUPTUB2QKyiw4YeQXZAFWuT33xCdkAQKtcNyEJ2QIp/iZB6Q3ZAjRR2B3pEdkDs1WT5+k52QCwud4jKUHZAWLDJYRNRdkCRv7PhhlR2QE7HeRLNVHZA+LCIGI5gdkAA2o/03GF2QG6FmllRY3ZABHKFUdpkdkAMngYKWGh2QPpwaACwbXZAeD6mpatzdkBC/yc7ZIF2QARynSH6gXZAXrQ4AJGDdkCldw+uvJN2QPAMpOjrnXZAal2Lt3qgdkB3Uh2Dt7B2QKCNb4HBsnZAaYwzeg20dkD9de8C0rh2QIjjisC6wHZAMZOx8k7BdkDKJBk7ssF2QCVnXjzQwnZATPvJ8bbDdkDR6Ta6GsR2QBQaignOznZACENQkX7QdkDC7xOr9eF2QAS5I3OR83ZAEnxg/0/0dkBtGlGxNAJ3QAHw+5wBEndATETaCo0gd0BWJggkDyJ3QNyp3LF0IndAshj9C+ond0CBECcTQi13QD0azEqMMndA6OJ8Pp4yd0DcAL46IzN3QOB1iEKmM3dAD8aTQw01d0D+UY3k5zd3QJp3TiGdQXdAPuHmLJJDd0BG/3SVrkN3QHwEs08bRXdAbA34KAdQd0ARwSC/SlF3QLTuEDGSUXdAQcOrmypVd0AMChjMFWB3QDcvu3gNYXdAAJrJKUlhd0AA0iFqkGF3QLwFCjaqY3dA/KxqXTpld0Ay4fyLKG93QKzBOY31b3dAKlkYi59yd0D6VH0ctXN3QL7ZP7KPdHdAjFrpc/l3d0A4gx2ySX13QF4XgI1YfXdA4ridvbiAd0Cvc0UheYJ3QIdxqQZNlHdAPJsbwpy0d0AEz4k/49B3QNsgt3xQ43dAxQowpFDyd0AKgCSZcvd3QNrcxyF9+HdA9GvVmXb7d0CQ8ceIRv13QLMhGVHX/XdAYNKxUXj/d0BssMeK/AF4QPCmpnCgAnhAPQxjrx4DeEAWnk3j5gd4QIQ10f38B3hAYuIPBUYNeEDgbGvDpBJ4QAp4GxJtInhAfALUzz4jeEARE4ZWiyN4QKWb4/HQI3hAXUbj56UkeEBXaNn4Qyh4QMhVbDqYLXhA94M5ZnsyeED92GPmC0J4QCxrZZ0RRHhA0kmfEHpFeEBuu9+SylF4QE6i/oOWUnhA0EBw5vJTeEC/3Y3eHFR4QGyDWB6IVXhAjrNCWu5XeEB+U6dj+mB4QKwn8ZS3YXhAkCtgAyJieEAasxm4t2J4QC7oWM25Y3hAg3gFRbpyeEASv/+1RnR4QB6/ateLdHhAjNqxmOF0eEDEiYhm93t4QFQHe8o4gXhAxmJuOWGBeEBy3hxspYF4QETqEPepg3hAVFrMXACEeEAmPiEAmoR4QDIOTBZQiHhArKwgVwaMeECmQpYgqY14QBKPJXiXkXhAe4Le9ASTeEDliTDJp5R4QD7BaLpLmHhAQqh78S6deEAWnE5TpaF4QBg7B8q4pHhAoJD4xeG3eEBQ67kFO7t4QNT5Vw5CvXhAbwXgy8vAeEBUHrtnmMJ4QKrcJioHxXhA2LratrfUeEA4e0ETAvR4QFrPxn+M9XhAE3zYGREEeUCAqRvBmQV5QPAq4jIlInlAYuJrgb4jeUCiiGcWUSR5QOyGPQmzKHlAtW29mgwueUCwxmr9ZjN5QOzEinpZNHlAPkvSOYxCeUB7t9nRC0N5QFbj9ML7Q3lA/3uYqs1UeUDSd3mL12R5QGYGpnxHc3lAKNIhHvqBeUDHyNVEW5N5QLtgAuKAmHlAgOgMt2KbeUAiNV4baKN5QHHi8Gpaq3lA2jqshn+reUBivt5HwbJ5QJhJariJs3lADkmoyf66eUD69LF4BMN5QOiOuuJXw3lArFR+jELUeUAcNsSUzdV5QJ6WNsVR5HlA/w1tChH0eUDYZRrengN6QD1rr4H9A3pA2K/Tc/kFekA6+GKqZAt6QGiv7FhjDnpAiX53aFITekAWIJCvWxt6QKaEX6c2I3pAYsA8kiszekDLR6zNDDV6QH5NJSotN3pAN9Ojei87ekDZmg9nMz96QBghXhwaRXpAoeoBRyhVekDCmrPHIVx6QLhga88oZHpAjTrcpIxyekCUampzHaN6QGfMu/13o3pABfvbBiWrekClJNegDrN6QHY4dob4s3pASsiHTQ22ekCTcgq9Q8N6QNBdThBpw3pATk6VpgHEekD+fsmH4sR6QIhVlNwZxnpA7gzgvUDMekBwHIgvKs56QNSD78U/znpAvh2XSsHTekDv/GVsSNR6QNyJJXmT1npAihoHGnrkekDwDEzNNu56QEZIiTdC83pA6qPUHdT7ekDKJiC2fAR7QGzhA28rDntAxpN9tfcTe0Au2HyoihR7QBBfPa5NFXtAAx2Nl1kle0CY1jluHy57QBAMhxvGM3tAJAAYP2M8e0BQsCtUaUR7QIL4tJVdUntAz8DvTwtce0CYq8GyI5V7QPaYXmOjm3tAsKATenrGe0C+oxSrAOR7QL2bO3oo5HtANHaEopbxe0DRM52BjPV7QFZH6rfZAXxAcKolq/cBfEAHjiPHZgR8QPxPNI2aBXxAch9pGooRfEAqtGmf0hF8QN6OaJ55FHxAWoTCof0bfEArc/YOyiF8QN7vhOHOQXxA13QHYqtNfEA42ZpHrFV8QDz0JxUOYnxA11HoN2t7fED2lQB2JoN8QHwnVR1zg3xAWASBScSNfECIvGbVHpN8QFzlt0hplXxAR5tMYH6YfEB0WV9sWpl8QL4BSFmYnnxAh1+F87OefEDDRS/B8aN8QK5RYuH8pHxAG/DjwHSlfECU3RxKv7J8QCDual56tHxAIvOixBC2fED1aWd5hsR8QH0R1GEl03xAeKfPxM3VfECuYlgl+tt8QHWMWlRY4nxAznSgqm3ofEBj9GReGfJ8QE5qu6VV8nxAjioKdEX0fEAaO/ajAQJ9QDj9HLhLAn1AUmyQyEYSfUC2b/Vmrht9QPiVwGSLIX1ABvcmvD4ifUDqAo5ooDF9QHiXrGCXM31Akjb5K/Q4fUAQKCrQenR9QMImDS6BfH1A9gvVpmmEfUBg1y3CfoR9QGeL2LKWjX1AqstDAu+SfUBXU66spqR9QGIMtDgtw31ATh/sSufEfUAW6j8E78t9QLKPlsv01H1ACvHDvd3ifUCgLhqCcux9QGAqmQSB9H1AqV4cpJD1fUBCKFNUNAB+QHZzmh0xFH5AmRtIzjgffkBjLy7XJSB+QBSJk6oeLH5AXqnV9j0vfkA8zGspezR+QLSmuNQJO35AoO5/vg9DfkA0aZYSR0N+QCs4aQ/8Sn5A7y2L38FLfkDXLaHBA1N+QHQua5LrU35AzlFHhY1VfkCUPgITa1t+QLn9D/jyW35Azu9HM2xzfkBemeHBtHt+QCbhDtJng35A3F5O9U6EfkCmdKWwaIt+QJImECEXoX5AeJWzSZakfkDkDOuUu6x+QLY/y9ims35AqK4AtLm0fkDGhR4otMN+QKjHOGWkxH5AxEch+9TEfkCmNWpnysh+QIK2KFhMyX5AsJsSbBHKfkDeKbCitst+QD9IYdnJzX5ArtWwvEnTfkD8K6D7ktN+QJh3NKdQ235AI/W398jffkD9O5wpFep+QPjYgZaO735AknPBItPvfkD0y6XHUfR+QK9d0bMeAH9AfmFwo5IDf0Cqj0OneAx/QGYwEHpAE39Al1V4CqcTf0CKgwJwRht/QOpJBD+rG39AmqWqqWQ0f0Az60h+rlt/QBI4MLO2Y39AzPJDU7dxf0C43ION6XR/QK1NN891g39AIi9J5WKRf0D82Gv9qpF/QOinNmBek39Ah++F+ZmTf0C+jPqPX6F/QP5spPFBo39AzMapfrajf0AnqGuSlqh/QM5mJm1WsX9AepgOCjK+f0BtQztx+MN/QK5Cx/27xH9ApHfTXJ3Uf0An3u/Mw9V/QKSPgRX3139A+VmzdqXcf0Axo/BTHuJ/QGzSe9YD6n9AIFVMzjfvf0CEoJM7j/R/QFBlWKfq+X9AofU5v0D/f0BULkO4hwGAQMgFoV9OAoBA+0q59jUEgEDoCl9zeBCAQKv4GFN3HIBA2FSmRn8fgED2/8MjJSGAQOl9Y1nRIYBALtENbGkigEAuQK7K4yaAQBd7r8eRKYBA7Ki/ZXAqgEBkdrCh5C+AQC3IAg90MoBABrF3EnQ2gEBKeCKL6zeAQA7/9fSoQoBAvqXaA/RIgEAcaMT41UmAQG2tXcfnUIBAZhlSshNRgECTm1R+N1eAQAhf/BEnWIBAVnRxB+hYgEAg+JsMD1mAQMAT//1IWoBAIGaRjcRhgEAYidVAcGSAQGdMrq/qZYBAqFwngvBtgEDIXFr9Km+AQCC2EXUrd4BAjGHZaCZ/gEASQlQI/YqAQByaNAsfj4BAqja5BoqSgEDbZaEoG5eAQMoh1Yk1noBAaPMnHhqfgEA8v3UBNKOAQA0c38AHpIBAIQxAkUukgEA54TtbhaWAQIu7/iUfqYBAgnKIgoapgEDygaOLE6+AQOpvfgKzr4BA3sXxr2CwgEDCU2bXbLCAQHoSrBzYsYBAzRWBLZOygEAC09jZQbaAQApclyl0uIBAlP2pYt65gECiIuH4V7uAQJT9e7cFvIBAR9LJ5sK8gECI46/Q/L+AQKaCUMJSwYBAtPTQhZ7CgEC6J89dq8eAQIwsQ71TyYBAPJVlJqbKgECs0vJMusuAQAJn474r0YBAMmlgoEzRgEBBx0h0YNGAQJBwAb5m2IBAHMGhtkrZgEDeT497vtmAQJaS6jM43oBA24XrxMHegEBrzEX+it+AQL7Mm55u4IBAzPgYmEThgEDghfvFbOGAQAK1QVRd6IBATWB/UnTogEBGBYrD9+iAQCxKcFFM74BAs8Q3ezvzgECcr9g8avqAQDZ4qe6A+oBAdLOzK0D/gECoSB6zPweBQDywXq09D4FAytEItDQfgUCWISD+sR+BQLAddKc0J4FA3zlTsbUngUDxM9436C2BQGcU+ygwL4FACH06Nb4xgUCGRCgEKT+BQK2Io72UQYFAWn+/eGlGgUAtqFUTLkeBQDi5gLlaR4FA5/D19QhKgUAY3Rb1tUyBQBjtvM1hT4FAyMJM2mxWgUAQDu3piFiBQAjqQZrlWYFAGYnUt+ldgUDMIdD642SBQG7og5X0ZoFA7g7kjlVugUDUqkSNwXSBQOJiGieGdYFAXlAuqCl2gUCDhwMncXeBQL6FKaIdeoFAf0o407d6gUCA2DbegXuBQJZEei8ofIFA/y3X3wWCgUCLtX7eS4WBQFLZJeNVhoFAOMR/3QSNgUAqL3apVY+BQKi9BHCyj4FAGE/pC/SRgUDBVtHWVZeBQIvYhpaTmYFASHxXVdmZgUC6pHget5uBQNNMMcicnIFAZ2tjmEifgUDAaf+T5aGBQKFkWU/3oYFA5CBX+ZukgUAadMjVbqiBQO5ybR9Kr4FAsbaFSky3gUAM83ojiruBQNILTvYtwYFAXn6/s/nRgUBICtbmftOBQDTEGnb81YFAzq6bBQLagUB2EMSf9N2BQFLV75r84YFAHyX3RJfkgUDuRv82luuBQJMI79Ls+YFAWHYHTvH9gUAHchC/9gGCQBByKWsEDoJAaPp28AcSgkDO3xwU2BiCQMmKUiFkGoJArDdagNcggkADkI5dMCGCQP7YEb7RKIJAF2Dl16UwgkBYbS1tCz6CQAxBnAw9P4JATqbFXDdBgkBi+bMMDkKCQMKLJGYSRoJA/D0En2xQgkDdzPhgFlqCQGZkMYufW4JAzI+WyHBcgkDosyp3OF2CQNh9Fdh6XoJA8oYds69fgkCUpyg5uWGCQJzMfRo0YoJAfQEqh31igkAqvhFlL2SCQG7q/3y8ZYJAvsJ2qTdmgkAwi9/ZQWmCQNHCxtLAaYJAhhIerQlqgkDaN0mnO2qCQPV7deGtc4JA8njQJjp1gkA+P75lqH+CQHwLC4cWhoJAVrlNnUOJgkDEqjTa94mCQFohoQMaioJADPWdHKSLgkAp++zHDY6CQOf9Z6BDkYJA4zVbwguSgkBBCkSwPJmCQNisSygPoYJAKqkqhzuhgkCZ8ELGyKKCQPDjFGNzpoJAZplK7A2pgkDQvjdrNKmCQHTSpu78rIJAaKiA0g+5gkABBGaCsr+CQAD2FRJzwIJA77Ri/uzFgkBxUJUM8MmCQP1RJD7izYJAnHKUkfbNgkCd6Afx59GCQDSQ9un60YJAAxYbzvHZgkAyhU/5ftqCQA3W5tWt3IJAvLv7vILegkDIedfMh+GCQKt7Mi6G4oJABOr6oqrngkDMZsrx8/WCQFQpW2ue+YJAauOxB7D5gkDol4nD4QGDQNV0ENHkBYNAmDLSEdsJg0CuSDgWXwqDQKjjFZ35C4NAtqg8/t8Ng0Dw8/TNeRGDQKO9UZ7fEYNAfGtcRFoYg0CzYy4hehmDQOFofqosHoNAwg0L+XIhg0BUgleMiiGDQM76SgT3I4NAVjgl+nEpg0DuKjgwSjCDQOKe6/xnMYNAuPaK1yA5g0Bw6ZwvZzmDQNT7qP9EQYNAeofragZCg0DOoyVSC0WDQNwDPSbcRYNA8OVe3pNKg0CHhZCQl06DQHKQJSXzcYNA7l7FBOtyg0B6t7/D93WDQDzyZKTueoNAr0Kd3lqBg0CI+096xYGDQOtlOgJKg4NAHSMtS8iFg0CnWy3zv4mDQLjSU+HsiYNA2B+Qb8KNg0CMb7FqtJGDQGiXb2/LkoNARhp7nFOkg0DCuIPGVaaDQPC1k5JYqINAPBWKEROyg0AgJxysFbaDQFSq5BYZuoNAQO0o3hG+g0AePo33FcKDQNRSeHAfxYNAXlyltsvHg0Ba7Q/ZI82DQMoEEPzK3INAcR6TsXnfg0C6v6e0JeKDQFzwE8HC4oNAVj9jMJT4g0DGbq7uuAKEQC48A3VCUoRANNvqUfdUhEBP9H47mVeEQKzMdm8pWYRAmj9fpc5lhEDY/JsmtmaEQNjmNmn+aIRA+txjN/5whEAomVqwQHKEQKh32UhYcoRAVoBDkLh1hEBExC8JyneEQDh0u/f3eIRANOmU8rp5hEB81hmrYHqEQDguLvJ5eoRAZBDLug99hED0O+kSKH2EQDwX3XC/f4RAzBemh8qAhEDloISM+ICEQPY0Jk5ygoRARjpVlB2FhEBk3pp+y4eEQKOgFdohiYRArfZpWL+JhEBCT8m3VpOEQAI9Mz/Ll4RAnPAwOWOahEC/VnDFepqEQP1N+RQqnYRAEvOHb9efhEAYtjskcqKEQEwtOQQepYRABgrZ/MynhECSG9D7useEQN6mSwt0yoRAOcs1IBrNhEDh6+Knxs+EQNYaNTRy0oRA4qvyQmrZhECyLk1Va+GEQKCyCf/S54RAvPZ7wWLphECVXW/YgeqEQABRJVY28YRAjdeHymLxhEDGCSOH3feEQDyCMPYz+YRAdgxsFVv5hEAuIFtgjPqEQHIq7H8uAYVA6hek94YMhUA2B+oVWy6FQPsEqK3jTYVArH90DOhRhUBgUCSk6FWFQIJLpLo9VoVAWdEoZuRZhUB6XIQDQlqFQFgVk6FpWoVAM/fypqBhhUCohYMrTWaFQBAVl9ygaYVAEuiNNJlxhUBDsg92tHOFQOmRghOZeYVAGG2Aw5KBhUBu0vohXpKFQNwPm06epIVA1KVpV5iqhUCoqBRtLMKFQMrwTGGs4oVA5z7EGLDmhUB+DlsEs+qFQKiloQq17oVA/MYk06cDhkA4sW3xWQiGQEAexJ5yDYZA3UXjTR1WhkAS/fpDrpiGQKT7B5YmuYZAm+P/78/EhkBs67ny08aGQEgBPpLUyIZAOcixdNTKhkCeLpXJiMuGQFjW35rVzIZAZqicpkbOhkBsCo9Eit6GQGU3acBz5oZAlAF68mHyhkA0vh0/Mv+GQOLcfOQqE4dAOnZDj5Eph0AccvQ2kjGHQCRkmpCJOYdADixvIYlBh0Akzmt3x7GHQLqyjLLIuYdAUhtokMHBh0AtQjH7w8mHQMklVuPuyodAYneVl9dkiECEXFuRRn6IQPYDuvNIgohANhNiQBrziEA= + KBZXds7jZUBkuM9LfgRtQFrpTSZ7Y25AykXjfRXCckAyOsR5l5N1QOxO5a6YMnhAMpigze+kfEAOWOffG6N9QKpQUX+5CoFAB9vhGTpagkA7VdIX+8KDQMp9MA0ni4VABwrQQ+bihUCWMi45EquHQITQEAWfi4lA - + - Ybh1RDZ+5EUsK9hEgNfLRIF4sER0jT9FK086RH0oZ0QcoE9EChxHRBLcSEQ3GAVHua6uRJSmbEQJ8YNE9V8FRaoG5UQvG+JE8dl7RcKPt0VjnAVFQINwRIv9P0Sis4RFLLt1RTOiP0S0qElEbMJRRJMHjERH9VBER03+RAE37ESZwGNErOzyRCoJjkWwujZHBQyHRAGigUTd3plEu1mDRH4LKka4PadFFkmjRayFeUTy0BtFZxuZRBmAzkZ5nIREjPbhROLNl0QCmbNF5N9JREZvIUWgKKNE6EtORH5hnkROZeVEPiVfRMaFXEXzBJ1EnF4QRieKJUX4eBZFv3y2RaKVxERSMnJE9saQRAYu2kRyIO1EbieaRsoQUkQg27VE2OAyRX1FSUYQ40VEv9nQRBi+A0UA1q1EUSDdRND130Z1RGpEJSTxROFwg0UjCl1EKh8ORd8SYERqspREuEUyRdrljkR42j1HVirwREaNJUUGwVJGWg2cRM/iRkSLauNF6htSRAIiz0RP7Q5Gv20wRSI/JUQ9zB1EFtGJRKSXlUQYiYtEC21mRSayLUVe2YBEbCTCRKnFt0XaqyBFGk86RI2LH0VPcsFEVaGvRNigzUTLPWZENnOPRXpirEYkhUJFBfHXRfOwo0T7AAhF+86pRGCZDEVpwI5EL3/ERI6JmETNlf9ERzWSRM0HC0a4HoFGyZfQRCE/r0TyAU9ESNF6RAwqjUSYy21ErVzSRK29OkS7WmtFHcmTRODtkETBR/9ERiXNRNCbSERbbupEktamRKs+WETW0D1E4hXURAX0h0VWhfJEoFx4RKLXjUTtASVEUHZTRK6ZkkQNK0tE3OPtRMIV4kQtSKVFEml/RSbZMUR9kj1EaTDsRbhv50QQwYtE8WuuROr9nEWD2DRHnL1ORBAOFkXRlaFECKGTRbNMC0VIgchFGZ/4RJAFJUSeTMBEY5KyRGvQykV9XIRES6KERnXXPUTkJgRFcGCERJrDp0RVK1ZFGBmCRBmHs0QHpB1FqMIkRGf5gUbwuJREuTcCRo8vnUQ0RzRFsvFcRI7o8URg+0lElU53RGF5L0QZKK9EfxyERKjgrkTQah1FchJuRKiuqkSc875EMSt/RFhuqURhnDhEVmYlRZhvkEZqzI9EQadpRMZHPUQ7yrlFbeqLRFnEYkQFzIdErIkBRgBWk0R/lXpEOow4RDS6FEUHha9Emy4JRvj+WEZ+gB5F1M7FRMcWQ0QUTepEZ1k4RHg6cESv8FZE9s3XROuISkQIW4JFzM1KRe94d0SFiDREu3JLRXKqfUbcmpZEX4qpRXAOY0SNJ3REIRCeRZGblUWINA9FddWHRFXkiUSdw5FEuksbRVn0ZkQFSmZE0M9RRAAMkUREC/lEJ8d7RKvTR0TKrUJErpNuRJaFikSpgLZEaMYKRfVaYUQzPD5EUWHaRDqqzEQPwalEwH6PRL8hQUTcs1NGKdn0RX1rq0UBYEtExA2HRLx22ERStIJExQ6iRKdqqUUA4TBEodb2RZ5Gh0UkDqdGXyRdRAa97kRz+9tEGQ+/RNKrwkSVsl1F8XI4RKkVIUXV83tE0bebRVYIQUTlEFNEtlAkRV/LVkToYIZG3HqgRBH6aUR7A4xEGFwjRaLPHUUDvqdE58w+RCLlgUTQR15ECCXVRDuhh0RbG6JEw0lURN14vkQGbxNFUQyARVbLhUTadLZEMTbARILXXkQwYz1ELERMRMkug0TYn3JFfeBZRLR+RERYntFE2WwuRKKlxESJ9YdGcbx7RHqTYkW78KtEPQceRlVFaEUJjmtElX6gRLmeqURl5XZErNXsR6ahjEQWPZNG2cO4RU0rOUTmCb1Gj7ysRr/4qEUs70xG6GvwRO9q80QlzKBEykxnRP7GK0VNF0BFq5GlRPjST0UYKPFE36AxRiljrESKiWdEH+FXRRY/JEQAgGJEdIpURF55zUQvGsFEK8KFRHllY0SxP3ZEFTXyRPbRcka83xJFCUIQRll9gUeLQ1ZEFxpWRVDHPkT/gPhG3FFERMqrokWWJuZF9+MDRZNsYUT5IltF35XaRGA6jEQ3gmtEvYhfRNKMgkQEjFpEAP5vRCxZW0ScGI1FLbo3RsgbmEXP9slEKUJJRIb1T0SCzjpFleiLRNoP00SgAwdFVO9eRA2KVERFQ1FEFb9hRMahuUQvP0xJdWyvRKYvOEdHW0hEOQxLRPcBAUVHG2hE0pdbRlhZUUhxgTJHWC7ARN58wkZTOT9FR/SfRWzylUaxkBxFl7pBRGfdrUQe2KRESK/QRNi7T0Slv1xETBzdRGdLeURyimdE1CA7RUFshkVldOxFN6GRRFXaxERepl9EHyfrRHHl+ESIMaRGGHM0RnAlgEXK+VNEhOlXRGkTRkRYKyBFpSysRXMYT0TkvDpELWdrRLWMC0h+qVpE+2JSR+eaGEYPy0ZFYloTRXC0SEUHopVENDsFRUaqckRBH4pEF5PTRYR35kQ7h/1E4JMERXb3PkRQma1E1kigRCeau0VFN2hEkVpRRdAyvUR4MqVE8gbHRaN910fK9INFmkJMRTA+tUTe69lG31A3RZ3wA0bZVk1FsLCeRHmGxkWjnQVFh+8ARUbU9URuX7BEGTmpRb+xzkSFzYREtqamRLbIQESORuxEbr2QRKeQOkRo7FxEOJA9RLPLOkTWEV1EIS+xRM2rLUXq0mlExSOGRCJPGUZGIDJFegJORGfwkkQhIRhGSJ4gRWB0ukTVdphEzt06Rtljl0WJI5lEX5ylRLyETUUBl4xEz4TiRNbqdkSXA3VFpnewRZq3lUYcZVtGZ8wIRRtaFUXycrVF7pCHRNHrg0Wi60RENbmDRAWCckSpwctF4WCFRPqld0Tsx8VEna90ReFuO0Tup+BEBTKZRZSHT0VFwi5FgquURKgJ3URNY9dEJX3URHdUjUSdqzNEz7BsRC7AzETMEANGhBQ8RMPgckSN04hEJPNQRJaOXEQsM+dHVyqPRB6fAkVScuhGC5eHRD3CIEWNcr9G1KdQRZYYK0XMxT1EV0zxRFCBp0R5wehE6gFzRCjtFUbuq15F/nKDRKcPgkRyDyNFp1i/RLXkr0RBBaVEvm8wRy8ChETuH/9FDi9iRA8GgESBRX9E9JL6RObNLUVe5ElE6SdlRPiI3ETziJRENo13RF2V4UTfnP1FaxuJRctqSUQVerpEpHjkRDuaUUQPnEFFEVjBRCzWckStVRNFdsi0RLMu00Qf3z1EJ1eZRBo9XURHSmtEHt+2ROF9TET0JRFH1G1eRKrw50UxNIJEV0VWRbvPgkT3NVFEklreRA/ET0RrG1hEopZMRfkaBEUW+qpE1JddRDKGVkTO601EujqSRCiYTkQsqnFEyLYaRdqaUUR3qYZFLjgDRT2sqUTj5LVEOcxPRQRbA0VT6l5EWL6iRbNiZUSi/6FEdEogRkZ8mETeu2JELibbREVvd0WQ4QNF8XlHRPVvR0SajCFFbvBTRNkgJES6KJNEWMoKRe08dUQHmEFEmM57RNe5ikR2wk9Erz67RtVchkaS17tFLFMGRRS1SEVCLblE/esURb/RhkT5JVRECPA+RNGYkEQU8VZEUBjNRqR0LEUVW+ZEnvudRVgVaETY6p9E6EQ9RHZJjESyszlF5RCQRLVIcUQCDzBFjdKCRg5eS0Q/NLpEx4qZRF6q6kUs3l5ELG/2RBo1SEX16bBEQItYRfXIQUX0QZhEP8L/RFx4XUSC2/dFTpVIRIVbrkS/wU1EMi+HRDUqX0QWwFpEna4zRCkPjURirEJEAkYqRXMmkUV78tNEdrpjRO2nZkQ0219EkV30RN2hN0TPh1RE77VvRNsZgEQHaHtEIP04RAqIY0Smw4ZIylr9RRljhkTqY/9HP/DMRGbVPURgxU5F9MV+R3NFhEW1KpxGKF9fRqa8i0QeeYNE13wURVxfVEQTtz1FIViuRS1t/0QjXpdFddZWRLhQd0QW7PpE6HecRA6dlkSQLkZEJq9pRjcaj0WRFR9FDDrLRuGcrkTWiJNF1zaHRBPxU0QFkh9FVoncRGZOokWqpL5EoYJORGkkWESjzcZFNNslRXmH9kTW24REehSRREfZPUSQSPZEntJoRJCXR0TJuEREYNlkROYNpEU8AElE9mM0RJ4ABEWFHZhE1copRASJikRbsT5Eg1hURBhuUkQ7VVdE0rKrREgl5EWsyqVEVLGOREYPwkTMATREvNSyRBO0OESs8/tFrAqMRQtL5UTGTMBEvluFRG+pGUUBghNGSXwTRYn7YkRK4E9EIhKvR//j7kTWtENHfVoTRl4tD0WhLZ9E429JROBxN0TsAL5Ga2gcRiPjUUWYxFxFkUD6ROnrNEZRAw9FsR5aRbxDWUQ0shxF+F+uRKrZQ0YEcodE4Qt0RPgQLkYSrVdFW9WCRPTvR0R6btdE/63rRJzuj0T98mpEogCmRIX5LkZQ3PlFbD5uRC6aQERxqJlFifyNReclTUQiUBRFbDjTRKvd+UThvYJEpGiGRLRomkR3XbNEESXYR41xnkQ9AY9EYu1kRJcXgET8d01HrvtORIYy2UZG/edFSIgBRhRCk0TX6JZEOnzLRFqHIUU3HkJExWsqRAZuS0RWcV1ESZl5R5Fv8EZm4XBF4hEDRkmKq0TszohEqJhBRA9sGUb0NWhEeC2hRVoZgkRIheJEeNCPRHYQ2kQ/xUVEkpGCRGllXEerWNtGqHfkRbMxREWNIWREv1MzRQnH60d/jdJEO79XRC4oTEe3ij5EusEJR+e4QUU0WDBEzmAFRtatWkSFJgpFxBtARPewnURp5o5EwjGfRL9pWEQwukpE6zUCRSmmuUTe9sFFFVojRSlKDkVz4HNETw87RHuEFkezl15ELEeKRtfKtkUp9VtEO3ePRZs5U0RPJ2NEKReJRZt5AkUN+pNEmYTyRxMBlkdgaa1GJWHFRbnd/ESQ46ZF0D2cRQ6ZYEQZbkZFfowfRZg2mUSY9XxE9neCRCJ2kEQSAjxEJdtZRLfZS0QCgWVERipmRM/oiUS9RbVFQRwjRYFpfETuroBEpQleRcXoJEa5P4REzVUORR5y3URJh+dFSfErRa4Xo0WyZp1E7rR6RLRvgUQV8L5E0qAORWG4rETfFWVEOdNRRA8rUUSxZMBEDO1gRHatOkU9wRlFJybRRGQ+WkXNi2xFPrmrRMjwOkSYOolEDKi7RIYs2ER02t1EK2cKR34IfEYwy7VEPk0mRvIBrURM66JFsbmkRbgoLEXMOO1EwVJ1RK6vdkSmHrtE5qViRIy0SERDjAVGVKqRRYLtskR7FxdFiwRVRMRJv0Q4bUxEbncGR5O6hUQlVHBG9SUORjH7oUTBqYZFktOlRBdCnEShmYBEs88nRJyNQUTIhUdGgkgARoW7aEX2p5NEGNA/RNqS8EQ04UBEQrmERMKSpkRNB7dE6HFoRQrfn0WQtoBFV6zKRKgLhURWrL1Ec8FHRPX7WESIfzZEs62TRAMBQ0TFLZBEDoUcRnmZqEWOSHxFicnERCAjDEatYr1FC84zRWjVzUQanVNEZJpNRBwpukQZLt1E+LA4RA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - QE24oQzBckCRhptAb8FyQMbZrJJPwnJA7VBKSKfCckAqnA6O48JyQIgYBXk7w3JA014tJ8TEckDAw6ZEWMVyQAxFq4WJ0XJAeVJdeUPSckD8XkqRdNNyQFCXuIPM33JAiGgnsCTgckAaFTnJuOByQGTc3ShP4XJAhgYsP/rhckCq6FCUUOJyQETfhdqP4nJAwR5nYiXjckDXh8s0NfFyQAwrmyW28XJA+ECsA8vxckC/ovzXE/NyQFcjpBuy83JAPjrvr6P0ckBA7nTsw/9yQMUj3rz5/3JA24tyox0Ac0CcooM0+QBzQGP2S0OMAXNATXUyBjsCc0BS3e0x0AJzQHA8x4NkA3NAKvNysPoDc0BaQJnoThBzQMYJBYZ4EXNAmmLguggSc0BY9bn2vBJzQPByysFfE3NAT9uXwPYTc0BYVcmLBxRzQABtiBZ6H3NAcbucT6Qgc0A+vTL9OCFzQHhX+dV8InNAfEZVGcwic0B53TK1DiNzQAKEXi/QJHNA1EBLp1oxc0DrvBPRDTNzQGxj3QY3NHNA+FYC6NY0c0BK0TSouT9zQMxvd47kQHNA8uzrJHhBc0Dnog9CJkJzQFCDmoDkQ3NAmSAOtnpEc0BopD5g/k5zQKSOzC2cUXNAsPJk1xRSc0BkQYD0QlNzQCCYLtujU3NAcpamrXhUc0AoaDzyilRzQHZ6NuANVXNAcacrhfhfc0Cgo515jGBzQJ4YCSIdYnNAJgsHHqZic0BlAQI3OGNzQDhGzKrNY3NAwPSqqmVkc0Co1d1HLG1zQIQLKGJMcnNAihbodmpyc0D5RiVAhHJzQADVe8X0cnNAuPySk7V0c0Ab0FkgS3VzQLN3tajPd3NA6iNGNN53c0AtwSQqFX1zQOUvX3F4gHNAYhaB0KKAc0CAjxKDCoFzQKoM7CZdgnNAMHFP8/6Cc0AkFwQAh5BzQNrJJQeQkXNAxlydxNORc0DuHdDX95FzQAJDTw8YknNAin98BE2Sc0DW2PBQY5RzQMqmqbv3lHNAAJHN9rigc0Dmp7IOTqFzQNBKkF+uoXNAKoOlgFqic0BawYjgw6JzQG06z4IFpXNAPzClXaOwc0BKwsnN1rBzQDCs/FZtsXNAR6y0Q3mxc0A4o0OKWbJzQCzQLPoPs3NAYN8FIbezc0BKmlcVD7RzQDim0QdkwHNAaFm1k7jAc0AWzRh9+8BzQDIwKByLwXNAOOnGVDrCc0DaG7q1z8JzQDrwdWonw3NANDecitfRc0BAZjJ9NtJzQO51w4O70nNANnCiVt7Sc0AF2gN89dNzQJqx7HDj1HNA4vlI8A7gc0A4XG4ApOBzQJL1r5zP4HNAof98Jjnhc0BkCm7K5OFzQD9TpyZ64nNAPNu3zhHjc0Bb8HtopONzQEoWLyvw5HNAS7qEFbLwc0D4X0ZyuPJzQCB+gy+i83NAj+HNXTb0c0DyzKb24wB0QPqhnecPAXRAGO0y+3gBdED+owv0pQF0QGiophqPEXRAKP71MqYSdEDQ8qAKTRN0QDZimkB4FHRAWunwtEogdECI3hZZ5yB0QKInSxC4IXRAcGf5Q5AjdEB+hV/HuSR0QHYGNZhSMHRA4TlLBRQzdEAcCJxQXzN0QEVCkcTiN3RARB8uezs9dEAIA4biekN0QJ9AxPlSS3RAs9wGg/ZSdEDGY4Zh9VR0QN5uz0qMVXRAGRoK4N9XdEBMzk7yIF10QHo+ooIjYHRAXErNX7dgdEBCZcJ5CGJ0QBZgSsp8YnRAtHy4mJRidEBqox7pTmR0QJ45GRcjcHRAjH0nIEFxdECYV3H3OHN0QESx3KChdHRAmuVHzzd1dED8n4GKRIB0QLjyD9P4gHRA0oSjgE6BdEB2iLrc7YF0QMfyG3hJgnRAPJZx/SiDdECIFIBOFpB0QKAjZ/VQkHRAGKUcZO+fdECJQVzsG6B0QG8G/kotoHRA5V2zkc+gdEAdPlrWzKF0QIeJCKkPo3RAHPu9yfqvdEACAVJIDbB0QLKWjT7DsHRA1BqS8fWxdEAHYjmlb7J0QFRjk+b7snRA6nsM+Iy0dEA/63XnyLd0QEIfWf8ivXRAtj1BAdy/dEAHt1+e4sB0QFF7KpD/wHRAarLsannBdEDqGsgc68F0QKag90omwnRAo59EAH7DdEDxaj/xIcR0QLdyLXx6xHRAdvsxRLnEdEAyJQ5L/M50QHWcZ+xg0XRAkIrexQ7SdEDdRqBwpdJ0QKqiZtTg03RAnPR6MnbUdECZfQ+lztR0QPr9nD624HRAApFkvSPhdEAodO/ft+F0QIBYM+Ac4nRAGOVQyY/jdED2tHxuTOV0QODb/N5V6HRAOHRz1b7wdEBwZ+8H5/J0QKiW73CO83RAEJHCNKX0dEAMihqyowB1QPo9Kc9cAnVAABCRaJwDdUA8BH+r0QN1QCph/Vr0BHVAQIYmvZUQdUB6peETaxJ1QLpB1IkjFHVAiI0VxuQfdUB3T5HhUCJ1QBrBznOcInVA2OZoNXsydUAcx0yn4jJ1QHRFjrQ3NXVABC3NCcw1dUAZiWwViEJ1QNJwBCD5Q3VA0InRO9dFdUAuopni2E91QPrF9v0MUHVAGC936IFRdUC0tmKLS1R1QGKrc+92VXVADE0ij/dfdUAZaledDmB1QLSdCMI4YXVAisq6WM1hdUC7whxX8mF1QNxTBZVlY3VALvPzXuJvdUDk2pTjB3B1QBr8AjZUcXVAiEDfte9xdUB1rxxxd3J1QAaTATGNdHVAlI/x0eOAdUAebdA3+YB1QEKJZ8p3gXVAaPMvZq6BdUD/tKLH4IJ1QJapugmog3VA1O2q0BGEdUCH4yixmIR1QIrQZX++kXVAfDrisdOTdUAgnniguaF1QMLvMihKo3VAFA18/JWwdUAhhJJulb11QNEmmFI2wHVAxlIzqszAdUCAuuCfY8F1QKYlTxH3wXVAxIaDlqTCdUCV0CkCzdN1QPR+RdNk1HVACkXzZ+TfdUBEaRaee+B1QMk/37AP4XVAdhpFlkztdUBqo6JDpvJ1QIgbatk783VAKFzKlAD4dUBlaZOxG/h1QPbmitZy/XVADNCAq0gCdkBRSr560QN2QDpHXuRMFHZASPfqvgsWdkDEYfXDiCJ2QJxYYmyQJHZAyuh32EsrdkD05fRqHzF2QASV3dglM3ZArhRceFUzdkCKWtWTnDR2QPyqqwFOQHZA+CrTjhxBdkAQPpbvc0F2QMy0n3bHQnZAqkVUcnpEdkAwGs4GzFB2QBDlhwITUXZAv3pAq81UdkABRFwI3GF2QNimNTy1Y3ZA7KJM7dpkdkACvbzsVmh2QJb9P/MVc3ZAKTz77qdzdkABGBwv+4F2QIPAVqllgnZAXxJ5tY+DdkBeLR4n+IR2QMRARL+7k3ZAky9g/OqddkDE4ZV1DqF2QM0R6XlHo3ZAzmDNJsOydkDQ8gKrDLR2QJupvFZ0wHZA6ax/OLjAdkC+LxALTsF2QLi2yJyQwnZADEVyyhrEdkBu/pQyzs52QHMNJtp80HZAkXOTDr/QdkBCrIKbCfN2QHRRQheR83ZAeJyNZEr2dkDemTcoNwJ3QMSbAXQBEndAXjCmRTcTd0AIPIp6DiJ3QFmW0dJ0IndALSPi8ecnd0A8a6iCRS13QJe2UlaeMndA3eoW2aQzd0AIx0j9DDV3QDnFO7zlN3dAOiRiIZ1Bd0DfNFtWkUN3QNbFCHv8Q3dA3vbt8RpFd0DwGwXoBlB3QFggREtKUXdAwC6ByZJRd0A4z3dI5lJ3QAgZN54pVXdAt2UUuBRgd0CmQR/0DWF3QE5fOxBKYXdAMAW2JY9hd0DW2YZqqWN3QLuh5Jsnb3dAw2fMQvVvd0AsK0w3bHB3QBzzoDSfcndAfgr/+bRzd0DQiO0B+nd3QBk9i78/fXdAOqOb4SJ/d0ATuWWNuIB3QHgbP+JGgXdA2l5VAHeCd0Cw81aXUoN3QARwg6VNlHdAQvHT6Seid0AqnzvPx6J3QFCFvKaWtHdAHq5C3SnDd0C2ZKtHyt53QCj/svxS8ndA5jCntHL3d0DYvDV1ffh3QC7WY2d3+3dAEJkkp0b9d0CyeSYI1P13QMgv5914/3dAKLu7g58CeECspnDjewN4QIeILdLmB3hAOIbTbfwHeEDSblPhQQ14QDI0dcRuInhA5ZEBdD4jeECmC7VViyN4QJTFdJw/KHhAwdnNTJwteECIVZApIzJ4QJOSRfS8QHhAjOO/bgtCeEA5SMacEUR4QAmf4nN6RXhA229KqMpReECi9/IxlFJ4QMSgF1L3U3hAO1k3fIdVeEANZVPL7Vd4QO6CiTv5YHhAtSkUbbdheEDgVffvImJ4QJcgGN7Rc3hAzs5v3dxzeECiSpUz9nN4QHJu4PwmdHhAeIHaxUR0eEBSXzNqi3R4QFK4uMK6dHhAB9aovM50eEBCg7li93t4QO5FsHUifnhAepoweqSBeEDGVJrF/4N4QAo8xquZhHhAXYJu8E+IeEBUnnlwBYx4QMxakjqojXhA2Gv+S5SReEAEXEbGc5J4QMKuN8HsknhASl0ISgSTeEBaBCcfqZR4QMy7SMZQmHhA2hrXGqmdeEC6LlI2uaR4QAeYCNo6rXhAAszcGuK3eEB4Guy3Nrt4QCKxnqvNwHhA0h7TRmDBeEC9e3Rx9cF4QClH2La31HhACKOPLNfYeEAuEme3Lt54QA6hLTrD5HhAttr8UQL0eED6kyhAjfV4QDjgY9si+XhAxVx8BH7+eED/jL12mwV5QHKH3im6IXlAWhLa8SMieUDUSUuztiJ5QCT43ui8I3lA4ln4GFEkeUDk3ljzsSh5QNYIgGIMLnlASKbhP2UzeUD/LJ0pujN5QC27kABjQnlAQF90SPdCeUDoR0X8/EN5QFANgZzLVHlACa8kDNpkeUCwgfjtQXN5QPfSWCzagHlAzLDJIFuTeUAi2bFmYpt5QG7/9QDqoXlAdkFFr1GjeUD4Hcm/aKN5QFrziv9Xq3lA43KcyoGreUBThtZVwbJ5QHhYNnkBu3lAevpzDM/CeUACFF42CMx5QIRu9gZC1HlAIgw8E87VeUCb2oh+Uul5QAJekUha8HlABkZ7PbnyeUD/799MDPR5QNpFZ1L9BXpAloWjRWQLekA765VbUhN6QFNwPcZYG3pAmhyOi1UiekC6kIm9KjN6QDfcV1gMNXpARJRcHiw3ekDNkIWTMjt6QLNovV4LQ3pAyNIDdRpFekDG49IaJ1V6QBlF9iciXHpAbaHaTSpkekAEjPdSinJ6QFlruYknc3pAGJ0Sy8qAekDWyXO7HqN6QNbNOA53o3pAYqNQISarekDDSSQlE7N6QAsgXY70s3pAfqCCVA22ekCCgxUFErd6QNa4WVBEw3pAgxUAth7GekBIiY1yI856QEYhSARDznpAinjucW3TekDo9NeS1dN6QBLOppMy43pAwlnFYzvkekAgZaIueeR6QLze1dA27npAJbgXsXkDe0Dap/Ds5wN7QFZyfbF8BHtAZN1EgygOe0BkeEmRiBR7QPAtjT1MFXtAhEUBMNAje0AmqtbKWiV7QFu7hOXCMntAvFCTkGE8e0AWwZAVakR7QPIrCnYLXHtAf9h67SKVe0AYv1jrVaN7QGwxLFh2w3tAWIoPmXjGe0D4oG0GJdJ7QBKPlMf543tAdWrAXyXke0AfKjuojPV7QO5NaMwm+3tApIW3EtoBfEB7rtdU+AF8QJ9FjXRnBHxAz6ABmJkFfEAiisEO0RF8QKKGLmA1J3xAY5AWOVYpfEAtllYTzUF8QL5s/C9SSHxAR/WHZ9xRfEBIF9FyXl18QLqkimBsX3xAo3t3hSlxfEA2GUtOBXN8QDYD0Ppoe3xAgusgqXKDfEDto1Dg/oN8QDT5TmbEjXxAeUXMwB2TfEDoS+w/apV8QGYbv6RmmHxAMKMvg1aZfED3EyMD9aN8QHRpiIgWpHxA0t6H9nalfEB6cpBy0rF8QJM8Gc7CsnxAhMHiUHm0fECHCN2o0cN8QLKuFaGGxHxAzCei0xzTfEDchZGrytV8QCjYXaj323xAqbqlBFjifEAagPNtDuN8QFKV9d+843xAiOoCf6XkfEBE5jT8buh8QJ4sSPYW8nxAuLvTTFXyfEByh8vbAgJ9QN7t2lhLAn1AEF1w1QsJfUBHTnFoAhJ9QNCT8WFGEn1AlLzMs64bfUDodCwlQCJ9QKTiUxiPI31AdonOXbYjfUD+kp/qojF9QFYJdTGXM31AJN0CQ/Q4fUCXjPBYF0p9QLCdef6iU31AZnvS1OpbfUAl6PJHanN9QDwPLtR4dH1A26TZKYN8fUCGBZWQbYR9QAvV1m6VjX1AarcjAfCSfUBdcLH/MMN9QC6+zAbnxH1AbPR0v/TUfUBnni/A3td9QKAWRS7V4n1AiDJmDbvkfUD/CcKo++R9QIOWRbKS9X1AKlXq2aH7fUDnyoUUNAB+QCvfOeFwG35AqxR6DTkffkCepsHIJCB+QFQ1TJwZIn5AsKdkJyQsfkAdCplUPC9+QPjiswcoNH5APnnx+ng0fkDir5oHCzt+QEfGmocQQ35AfFZDAepTfkCdn0MbjFV+QD1yGO/wW35AShbIFR1ffkBbyzMBiml+QKH99pvJa35ArtTgFmaDfkAKh4bKvoN+QLYIKJIojn5AyBM7rNyQfkDOl9EOtZh+QD78l+GTpH5A/Ft0XKazfkBr3dBfq75+QOiw88Ozw35ATtavjtLEfkB0ZzokBMZ+QLBlIp50yH5AaJiI9wfSfkDWMi+OSNN+QAb2HomS035A/0myx77TfkDY4KevUdt+QJMlR1rI335AL4jAVtbvfkA0o4A9UfR+QFM8OG6a/35AJCjvW2ADf0C4HoQlQRN/QGmQApKnE39A3SvyJ00bf0AoHjgcrht/QNBew2FLJH9AUnAXUmY0f0BT5N6DiDd/QIQ9yMF4RH9APJck+rZjf0CD6N09uHF/QK+RkQFTfH9AagsY37GBf0Cma4s1oYN/QG6ODZRikX9AovB3waiRf0CAGR6lk5N/QKhtpyFdoX9A5lN5vj6jf0DiQFmdnKh/QLqxc4LkqH9AUg1q1Oatf0Aq4C6ME7F/QKDXO2NWsX9AylmO2Gi9f0CcZ30k+MN/QNtAkQi6xH9AXBXj0ZzUf0CSRrz5Ktp/QNoCbx2f3H9ANjydzFTmf0Dwlk7lN+9/QFJNHDGP839AUx3PDZH0f0BiN1Gs6vl/QKTh1BhC+n9ADHDuokT/f0AxeBsLiAGAQF+TFPROAoBA0pB6QjUEgECNNKS4eASAQLf3PIg5BoBA+/5879kOgEDysglyxBOAQAh/wGnaFoBAaAwkw84bgEDY2vMUJiGAQD6zZ5FpIoBAEHkgZ+ImgECXuduOpyiAQL6/OTDvKYBAWJ7y0xQqgECmprH/byqAQDTto5pFMoBAfGb69Xc0gEA0WzzFNDiAQLCJH7T9OIBAe89sHFA5gEBIuXYaqkKAQMR0vn8pRoBAQpivgO9IgEA6pgkK5lCAQMfxUbITUYBAdGeFplNSgECS9Hrvp1WAQECGjQPoWIBA+p7BXQ5ZgEB0/ypOzlyAQM6aUdkKYYBAicjd18RhgEAIwY+scGSAQJA3XiLpZYBA+qxuSu1pgEDaVg1aTWqAQI3hZsmXaoBAMzw8nvBtgEBg4NTXKG+AQM8Y8Xkpf4BAibNoDJ6HgEAcgokwHo+AQA0mU8QAk4BAwK2GLM+VgEAETv/5/JaAQAJQF3kel4BAsrkfXmaYgEA4TNonmJmAQOoEome/pIBAuuYP5DWmgEDgQQo216aAQAc2Zwf/poBAl7DaPIipgEDcOC6OTqyAQPYhPWburoBAWlwXHRSvgEDWgibvLbGAQHis4iHasYBACvN8vJKygEBM+uA+TLOAQFRpknutt4BAu5/qAQO6gECrt5ybnLqAQKjTRKNKu4BAl6LzVha8gEBSdRZAeb2AQLICjNckwYBAaidNkVLBgEAGtzRYn8KAQBfCnAIxxoBAHCZMWPfGgEDzWMNbZ8iAQFyE5I9TyYBAIMqSO6XKgEC0XpIy+c6AQHz58YwKz4BAs7q27CvRgEBSCa+ZTNGAQDQXVSlh0YBAgNC+iYjSgEDbCubWvdSAQFRCWhtm2IBAfPA/GCLZgEBEqiYYStmAQP/pKIbA2YBACjk13cHegECRoKq2b+CAQD0cB05E4YBAcox7FmrhgEBMGM6t2uGAQEB3DoIW5IBAELTnYF3ogECP/nUc9eiAQLY35AZL74BAnCTp3Wf6gECQw4k2QP+AQIS8a76GBYFAEPJsfz8HgUBVJT2Y7QuBQHz60cU+D4FAo7cDMugPgUDaCPzGFRGBQLhSGezJFIFAy1pSBesWgUCPsZWAPReBQIxlk3HjHIFAURU7jDQfgUDfl3p/FyKBQNBz5r00J4FABVF857UngUAbw0jK1S2BQJRG0YkxL4FAVrQr5LgvgUAEXOtDvTGBQAhj3GHEOoFA3zuguSk/gUAwnfzzsEGBQATC7zNERIFAAt2F4lpHgUD5Bhy6BkqBQNTEuVPlS4FAVM16UQpMgUCs+7NotEyBQJ5wIjhsVoFA6rSS2ZhYgUAGuQcL5lmBQLSPABbqXYFAxPDRx5VkgUCSUjaXlGeBQC6ET2fCdIFAuPZn2293gUCjTULtHXqBQJABTCBgf4FAowSBcumJgUBy0Kq5Z4qBQLSbXxIGjYFAPuJ3le2NgUC8V7VCSo6BQF0DEGVijoFA9nzCi1WPgUCgzikKso+BQDMlP93tkYFAMvCaxVySgUCAaPeb7pWBQCpPijVWl4FAuKe2cZ2cgUBq3UfqSJ+BQDzNKKTkoYFAq3SPh9+igUCjUEiY8aSBQBbjcJlsqIFAyK2IOEqvgUBIvLIOSreBQCVqCXhwvIFA1MZCC3+9gUDy49dzUsaBQAbv1ARVyIFAwhD8XLHIgUCaJjxH+dGBQLag6KE004FANKzIXPzVgUBKSzZl79mBQNY86gcC2oFA3BmQ/fTdgUDq0oT6B96BQPvftE364YFAKpebOlz0gUA6B7GR7PmBQEhaw1Dv/YFAwMgCJxf+gUCUULqJ9wGCQA7imqj4BYJAVi5haQMJgkCQ/s4mBA6CQJJ6FPg4EIJA1CCoqPsQgkCWBaDTBxKCQFBk6N/YGIJADogTtjMZgkBA3izKZhqCQFZtEHhpHoJAqjxYRNYggkCxJyns0SiCQKgkKdmkMIJApslUl3I0gkBKKuVBCz6CQCd8VtirP4JASyYqTA5CgkCFi8u3E0aCQEsa5FurR4JA5iIsbslJgkCkGQPNL02CQNaE5nAXToJARP5VnNJOgkD0XBvjpVeCQD5MAnoVWoJA29paAn9cgkA/F/A4Rl2CQLbirhFuYIJA3DAncblhgkAWzoAhNGKCQEx2LWB5ZIJACt8WaLtlgkBWGSv/N2aCQJg0cpyqZ4JAeunH8TZpgkD6Uqi0xmmCQKaOQI71aYJALrvZTzpqgkDAVia5Om2CQPRGz6LSboJAgPONfnZ0gkDhSaATEHaCQKnliBagd4JAUmpU7Pt4gkBNqxoDUXmCQMQJov1CfYJADOdbSBWGgkD2GrN2Q4mCQCRrMtEaioJA4NMmHKGLgkD4OBfsdIyCQA7/VqEpjYJAthZU+y+OgkAqRgDBQ5GCQMjrLV7YkYJAX7CBKmaUgkAWHqrAPJmCQAoXrNxVmYJACthoOM+agkB5W/19aJyCQO2XrEkOoYJAukMgMjuhgkDePaN6cqKCQEx31DTLooJAfkn3UnamgkB8HD3jC6mCQE8P/NM0qYJAailW1QexgkDUgFuIG7qCQOLXuMbsxYJAply+6O/JgkCON+784c2CQLWGQYH2zYJAZOqqROjRgkDTNUox/NGCQGSnCa3q1YJAg9+Dv37agkBblQw+r9yCQBZHpPSB3oJA+NPRhPX1gkDZHXmEr/mCQA69Jwk+AYNAP9dkxuEBg0BBVCSjTgWDQOiNlpPkBYNAPiglzNsJg0CFtuVMYQqDQJokkgvfDYNAVhDTnHkRg0DnPClAehmDQHhxw5/0HoNAfnLTHXMhg0B8UcL+iiGDQH6oNPaiIYNAFB3zj3Ipg0D06varazGDQASULkoJQoNAif+/vdtFg0CS2Js+WkqDQJg+XPOTSoNAyqQQ+0pRg0Ca6QDTllKDQOgucaJHVYNAE+/D+vFxg0AubRgX6nKDQEHkeKL1dYNAmBOKasWBg0D2ULzWRYODQLg1NMQjhINAVnFRO8iFg0CQXGc4vImDQOaPlTvQiYNAjlqUQsONg0AMnZ2Lfp+DQGzetxRSpINAesPZMVamg0BSWtMqVaiDQAAGiK5WqoNAsodK/RKyg0CcwfagFbaDQP4Jc+oZuoNABK9bdBC+g0DN/8fz/r6DQHao/+UWwoNAOMyiUB/Fg0DMYnDmy8eDQJaGn1F7yoNAmV8lbCjNg0DNGX3LtduDQJ/ZRm3L3INAJiHbUnffg0BtW0BOIeKDQLT99NfO5INA7E+MB3fng0AWlwKCtgKEQDwM4mK+CoRAHgm90wANhED8O3TAuBSEQBZXinhUIIRAh7Nrp0IihEApU2VIWEuEQKYo2mGaV4RAesRr1ChZhEAOWx3V/miEQCLh5NH9cIRA0kHBPgh0hEAaaQNguHWEQPuLTOyCd4RAmgv5F8l3hECGz/tO93iEQGaATra7eYRAnqYK43l6hEDuZYTIEH2EQN+xe94ofYRAcOUrcrd+hEDyU8ZSwX+EQPZ49WSGgIRA3XuFswGBhECH9MPMboKEQA+0JZQchYRAwGB7EcqHhECq2pGsH4mEQJSKF1t7ioRAAcKPUseXhEAOyINzd5qEQGTQYrsonYRAAx+a6NGfhEAwKOxccKKEQJw6+fMKpYRAagzaZCSlhEBao0G9yaeEQLDVTAvuroRAhmwIilrBhEAq7rdbFsqEQOxrtEoazYRAjX5BPcXPhEBkORSPedKEQMiqejjF14RATlckMGrZhECqiGsUauGEQJI48tti6YRA7IKEIILqhEBiXKSmJ+2EQOzjl2418YRAaK9lyGLxhEB25liyM/mEQLCputhb+YRAYUzvPWn6hEDGOCo2iPqEQAy3w6gtAYVAhcjBo/4ThUAIYCD0DBaFQKLbL6r5FoVAjwRv6FwuhUCuIjOlXjKFQMlNmXxoSYVA/0Ib/X1LhUB5FR9yrk2FQEIJQLTjTYVABhmzs61RhUC84cRx6FGFQLqSHhE/VoVA5ARln0NahUDWfVKMQF6FQAnoVEygYYVAODbGE6FphUDqcJmymHGFQIkXkAe0c4VAqMZCWph5hUDEA127koGFQPdod81ajoVASJWZ+8iZhUBGSlvF9LyFQBY7cyKs4oVAXE1rvq/mhUB81d1aseqFQDIKh/pbCIZAnLBdtpQKhkCxp2aYuR+GQHE22Zz/T4ZAYnm4riW5hkCiZ7mr0sSGQAATnWfTxoZATmnc39HIhkBo/9RxQsqGQCCXN4/XyoZAtCMw50bShkBMXKwaX/KGQOzPSJKRKYdAbOCPMJIxh0DkBDsDizmHQILkV59dQYdALGOfl4pBh0ChtmVkCkKHQDzxE9X2jYdAKJUxB8exh0DwKXs7x7mHQLxCI9zFwYdAKq2FN4LFh0AIxKqDv8mHQI5KW9z6zIdAVksAWlECiEDQ+7ogagaIQIh+/n9EfohA+bAnKmPniEAcIcpepvuIQA== - - - - - - 4cO+RBuC7kURDKpEHBR+RENIi0Qql1RFlWS2RAfwukQed3hEcekTRzQvV0TSA51EiAACRQBkdUQSc4RErnaDREXxpEWk7LBFr9FMRbgjA0aU+VZEPRUsRV0lUERKnEpEcGGURLjPrUTA4EREE+k0RBIdwkTNCYNEjDuBRLEhN0Wx74hFaHcQRwjdP0QidntETHBlRKvATEZHjXNE1EOERUVYgEXFUAxFcHKpRH8vpUbXgpNE/vXjRFeBikQw1qNFeYo9RbVLr0T91utEXOOoRNta/0SaBr9ESjRORXnaSUQ+PjpErQEARttsKETSnehEZ/NVRD78oUTeJ5lFM4mcRFe5NERKrodEW2q5RCN2n0Qi24ZETx1FRAfw2ESc1jVEr4BWRLAXj0YeR2tEE0KBRdpskEUe8kRElzWdRAJUBEUcPa9EP2mYRI4dU0RXa7FGLKN6RIDNwUTOgZZFJOAFRckKK0Uul4RECvZbRKl3ykRM+ztEDew3R+LY/0SvOGxGZi/VRcuSqUTMtoNECVjWRTOFjkQYiEJFJNCbRJw/m0SrdEZEAS9MRCEGhUQ7w1tE5JIrRdbEFUUmAG1EbN+xRPgupEQZslxEXhCKRAD5t0WClHhEVq80RYn2GkVXfMNEHOIoRBqcj0TdPmdF77k9RLfQ80bOeW5FCE71ReAqj0RunatEDcW3RHLr1UTiV4VEY+A8RQRmZER8XkBEpAACRUOxZEZuBq1EWRdxRmR7pETHbbxEpRSgRFCKUEUzWWpElzDIRD/gMER3VgJFf8ZwRSsrgkQN3KNE+LAkRVABU0TX/5dF2Hd1RHdecUSzjElEVIxmRGDsPUR8kapEH1p9RKXnf0XtnKtEA6uRRRgluEWZxRVFR6YpRH6Fm0T2/I9FrtYwR3z6JkXi1ZFETPeAROcSmEUwQRlFr/KoRf+NQUQ0cl1EPByYRBVJm0WnwZRE0ilhRkGMbkREU0JEjZOoRBKWnUTnEzxFyJm2RIOqgkQR+odEZqwpRLIvg0aeUGFEZ3JXRAdYCkbij7pE2PcQRf9DbURvNEFE+Xw2RRe9okSPF0FEkfShRIaOhUTIQVlEmF/QRC8dqETpMGhENJuWRNuVl0SE29FEMtbCRP6x3ESgiIBEmUa0RAwk4EQ2ZD5E08VLRvnUXUTRrklEVTk4RAlnQkTqRKJF4sCARItmlUSPcvhFG6KlRHDAh0SZeTNEyDEvRA96ckQXZ8RExjGIRP15aETRbMdFF0HFRRxEMURzYElEMCIuRfnytETRQ0pEtytCRNfQekRWTWJEWVZkRIZfrETl5eFEDHEYRLBLfEQA0LBFxjOSRNW8H0V96rZEfM0tROiFVUQww0JEBSU/RH0UpkQ0FHVGd0tCRMDQQ0SIgZxEqByYRbfZg0Rg1W5F9mKnRYydwET/jGNEUtw7RJKsy0Qs9dREKw48RFVTQERXGnREnbCTRBbAY0RbF7NE976YRKmzmUSh7y1EFjClRJA0RkQaLIxEK6VYRtjpyEX2ZT9EzzjARJMhZ0SDgkFE/z6oRWo85kR8ZpxEbV/9RMVlhkX48PlFu6uQRfHVqkZgohVF6bO4RKKso0RTeYJE7nuoRVxFgkRoLQdFODRpRYsHdURv3DRF7mSHRrVKW0QcbWRETNtNRcVfwUT/enlEOyiPRB2Lh0QHrTFEXPUiRZGooUSaBYxEi427RG67w0TjVJZEKYfRRNlrkUXIG0VEOZ33RPZ/I0SeZY9Ef1OuRNo/ckVlV5pEe45URA58ZETi3TJFSKxuRHVWhERH6lZGothDRBphE0UMcapESMUdRsfhQ0WKZIxEAFzCRJPm40elWJREvQewRtWH10UZkD9EZhO8RpEGjkbWmp5FI8xNRoTYK0RDUgRFO8zzRFneaUQc8p5ENdvqRKyF40S3FlxFCOAWRVKKW0Ro8fFFhGJURBBigUWrwHVE6yQ/RJRmg0T6QkNEawwBRSdLOURYI3VEKEZPRD86JkRhNIhELlQ1RF4YY0TUWk5EJ4KMRqTz9ETLAEZG9yB9R6dBcET6e81Fp1kER7xMnESS0KBF7iTeRSs4PEUSMSVFC6a9RF8oD0X0/4pEj+oBRbfKPkRpQDhEcPmdRHfag0VwLy5G+1yHRebfGkVeG5FES+0JRZ4fmUSDoklFtNUQRUhvZ0S37oFEaNxERNdYsERIT1dEHt2mRL08N0nMtiZFisfDRAXGNkfeMpNEjt8URaUucUamzDlI8PE8R2kE+ER1a5tGBrAMRUomU0SDAhNFGW7PRY/7fUbHQeZEkxZTRHx6WUTyRkVEdSlORC/mdkRh1IFEwCJpRBfLp0RbNWlFTO50RAS9ykQIpl5EWfFQRQBDq0WAnolEXqeURAnwlkTg7YpExy2gRJZDT0SHAK1E/CU4RY+9uUbYTztGGipuRbTOXEQmXDZE2lRkRMOS/kTVo1lFBu81RKdMlURI0pVEdFMMSFIgSUdy0TZEoSOURThxC0ZcYcdETPetRODcIUVfrNBEzXWgRIGEUEQJ27JF5tWlREEjTkTH7EZEoMxbRPElrUSlcHJExuN0RevscUWqXMhEIxlwRIuJQEXSXq1HBAyIRY9snkSN6EREUeahRqVYw0SAl/1FItMnRdwgZETOpqJE06xQRC7swkXbN/1EpQNERQy4p0R2FfdEhWSyRVaRkkRvICdFDM2MROGZRkS6y4dEqHEqRLdKTkTbEipEUtJqRDtKhERkGO5EzuqiRHHgBEV6zQBGgYyIRPu1k0SxgftF/hblRMMqTEXcElREAKbPRaaBOUUMYc5EYDFKRcrJTURHvzVEnPNSRGmU6ETM5kREr7lARX8Dc0b6HHZEBtVKRqww4ETVkiBFUz+IRYqOoEU6CIBEqTOiRK9k3kXU1rVENmidRMMKYESW+zhE7XlJRCoQnEQU1YlFFT+BRGdbh0Qv6KVFC9+dRc7UTEXxY2NE4ce8RC+JTUQQbRhEF2c/RIYeW0ReIqdEN+wqRvnIbkRYFAJFYJpERHnXk0R6YLJEBqbHR+Nl80QrjWpE1baHRATGmUQihthEcFPIRj+aCkU1tIdGAlBURD1djUTRGkZF2swuReZTvkRayIJEHtiKREzls0SS15tERSxYRIhrcEQhzy1ELbaqRFwJkER4LvdFFL01RcnaSER7k1dFapCARGqEhkSyr1xHk5EVRh+YSkQXLVNEyKh+RL71uERLcQlF9fSeREx2pUUiSkBEmaVsRNTiW0Rrbn1EoWLfRHwkmUS2Jo1EtsbaRIsBUEajRqxFtD1qRZvVA0XVMxJFmMInREZXVkS4Wk1EzsReRAiaWESjO49EPt5QRG6+TUSQioJEkYadR0NCSUTxMGRGdRuFRa6ge0QDbFZEOy4yRLM+eUWG0w1FOx+PREmFqkR8+UtE1neAROZUjETts0VEyTspRNDqXEV5yvVExJhoRO3JfERi/4ZEfixhRRzPLEQNnVVEMVWkRPjunkUsC41E2y2TRKeluUS0BS1G1FSgRFOoXUS/mDFFZrZWRI63d0SmOD9EXzlLRLJuQkSclgtFQkpUREzcKUS3yIpEOzwKRQw6ZERlTFpEh3YsRFJBCEd961lE+QoARy+JMEYsYbREp8R3RZvOUkWhVpFEuBvZRFQbcUSIGDBEcE9ORDHPYkQStEREVzqHRJ15SETTSMNGQ/7BRD5+ZkRPcGVE0UqJRFV0nEVEZXJE2pZnRHl9Q0Sn9YdEToV+RPEPP0VpYklEMnHWRDdgC0U1T3xGrlJARKZ8lETi97xED363RVARH0TGt6tEKM4VRVwIYkRbLaVE/A2KRPMFSkRguspE1ApARSEmxkRtywFFolxzRH76IkYKl0pEjjxqRI/vtETPlfhEq1l9RLnHOER+9oBEdQC6RIS5YUTTsIFEBakGRbBoZ0Rs4dZEYqCaReDDrUQy4DRFEC/URBtERUT3vmpEQclHRKQcQER/yWtEorhcRJGgSkTIa5NEKKWISLcvAUa7EelECWBkRJt4uUQ0CflHVijERK/zmUR46YZE+jjPRG9ikkfDylRFHxlqRDa1Z0QUt6NG5cFRREMocEaZAb1ELSrLRMLK6EQiAKFFLIaoRM93UERxZpNEFlhnRfDrw0Rf2xlFGXqYRPNCakY4iKVEzR5wRatcNUS+UotFys9yROIOV0T1wolEBWhbRGBNjETZnZJEige6RvdHTkTkwJZFx1dvRA4BPUSYH6tEgnNjRNxeG0UBKFVEKwhpRWdEW0QUPIREsO6eRWtnjUVLKGVEDNFMRHUzzkTv/MBEuMt/RIXvrkRNvrFEU1NdROtGbkR+fiVF24rxRHMDzESN0mREje+vRMIsxUSvvvtEHbmQRD6MKEQLwFZEDIjCRfjcpES/4odEqqQ1RENlTURgRAlFiWK4RdxzrUU4adZEP9R7RMXEgESyyeBEUw7GRSM+0UQkz1hE5LY2RCe8MkThozlEEf2fRDFrkkdG0oREai4qR9j8P0VmXc5FHCsARePlqkRE49FEPwdMRJHEyEZIa01G/kuERFgYMkVxaZtEAiThRFAerkWoH1JElVA5RGSLCUWklSJGuRo+RBBYD0WZsytEN6YxRTeF8ETvWURE5vF7RDhMHEZUdY9EBhn2RbG6xUSuWC9EEYr8RFovOUTtlM9E2Pu5RPBMhkQ9rLBE5IHGRA4dbkRtd1VE3BwiRpUpF0bFD1FEjuO1RV/ztUW6D7REdWF3RFGQX0QVFTBEg1GRRL8zu0R7Ak1ED22uRJqvvUQD2aJEavldRNAWO0SsKZBEHkOMROMNCUgM5UZEpCdSREZ9hkQ39kxEN0JTRKiea0c8FktEmgt+RNmnB0cTwS1Fya01RPr5WkSLfJxFkxonRvNe80Rbf8BER9E8ROBNAkXpXVdFhefeRFq4ZkRZmExHRibjRj/5QkWCVbZFzX0aRZqI7kTKKohE14sMRvnOc0QI0JZFbMhwRM/EbERSClVE+6A9R7lpXUS66JtGkB7NRY3urEQj4zhF3e8PSFn2l0dzlYhEIVsZRzn3T0WeCj5EKmQ5RoRDckW8jJVEc902RKuwOUQTcbREG/qRRBPZSESX/kRErUR2RZAOlkTSlSxFNJUMR8XQcUQjhEZEeZOMRqosq0VG6F5Fy8FqRaomPEQFNM9EAzLzRP3gyUR4cmxEPkIOSBqwt0eJp7FGzWb8RdELRkSMeLZE7dJjRQyJDUXz0q5EE2RaROM4U0QBKiRFLQ0lRZc3t0QZQYpEqBhVRIroBEXRXFhEvwZqROUJUUQt4W5EZjMpRCgukURErFpEAvFBRH3Hs0WibEpFtFjJRPbrlUUdz59EqQZZRhZD4ET1OshEGwIoRvBqCUWo8D5F0j9RROyAEEVOAWpEcvNGRGtpC0W8TABFhHJvROuVtUR92F9E55yxRDZCfEQMLspEcDTbRJFBj0Vun6BEU4OaRJviyUQ8y3ZERq9fRIaxU0Re/L5EFwUgRUlNO0TdCHJEluMlR/N/oUbG1kdGuZsvRASyQkQm2WRFq9uGRSXtAUUleRJFubNsRGoUFkUEv7xEnGBORPLwiEQJ/VJEKA69RPJRi0S0X2BEs3QlRIfrukReMaFFUVZTRCGQnkU9cN5Esve0RB6HgER+qiFH3mORRt9gLUbT5KVEmk2mRZ7r8kQo4a9EQ0KbRGktiEQEnUxGBnQDRth5fkU16MREo6SQRBTTX0QVrDpETeavREpw9ESc0KxF0Y0dRSFgjETVN5lE2UimRG7XBkX/cjBG56LkRZu6iEWqc89EXX3pRNXgs0QI6GhE8t4RRiRikEUlDFxFR31VRDcQtURYSIdEehiWRL9cHkS2aoVEE01YRJ8pTkQ= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - IlZG6nbAckBGgxf5DcFyQJSv32YlwXJA7CJBUG/BckA7ajLqUMJyQGhmrSenwnJAG7B8DTzDckDMQr27WcVyQIh7YZKl0HJAziubSUPSckC0rJF2ddNyQBtmf4rN33JAvtcmMCTgckDkVea5uOByQLJXieRQ4XJAmHwSSVDickDt7bPqj+JyQDS3ha0l43JAGnWPVjXxckDWWqZyyfFyQKTDfBsU83JAUIRWGLfzckBgWtxtofRyQLaPwLzA/3JAB9D2r2MAc0ALMLtm+wBzQJCJwCNRAXNApsWrN40Bc0CIc8fqOgJzQFYeuqjPAnNAWW4tmmUDc0BHw99n+gNzQL5pQ+x2EXNA3W58Wo8Rc0AAs+j6dhJzQMzO7jC9EnNAr77kN2QTc0CfB/4gBxRzQDDUyIRNFHNAmGJMn10Yc0ABX/6weB9zQBJxh82kIHNArIYm6jghc0CagOFnZCFzQKJLcBwPI3NAwBG8ezkkc0CcRMgo0CRzQFSYbNhHMXNALUIn3Vkxc0CCSAW1ZjJzQHBL9PnOMnNA+LmqOAwzc0AGtV2/ojNzQIQwJOH3M3NA3Jm/izY0c0AMcnr23TRzQFLGLsW3P3NA0rKL2uNAc0DqMpHZd0FzQJa5dBi7QnNAuhocPONDc0DGWHY5ekRzQOL06/ydUXNAugG/SRBSc0CapWx3o1NzQJ1nYgF8VHNAPiznvx5ic0DIJNa5OGNzQOz2WQqSY3NAZosJPs5jc0DQ/G1bK21zQI5DCcvZcXNAdgayGFByc0AeStNnaHJzQMTOQkWFcnNAMqluVbZ0c0BkuKW9THVzQBRyYprPd3NA+o8suhJ9c0CQwAzDeIBzQKmZI2algHNAL4G4wA2Bc0DSKRnbOoFzQGMSRKJdgnNAUsmOMqaCc0DEJgaU/4JzQIBXSAAPhHNAsjo+HFuIc0BSTgFWhpBzQOY/MwD3kXNAeeatfh2Sc0D4jblGTZJzQLX00PhilHNABsU6+veUc0AMriyvuKBzQHtJADlaonNAZUBxx5Sic0AdpHqEyKJzQKi/arQEpXNA2egLWaCwc0CQSp7p2LBzQCBwnbB8sXNA6j1Ig1qyc0DjDdNRdLJzQKrYLk+2s3NA8Hy83gu0c0C4NUF/zr9zQGDtbZ22wHNAnP/LX/fAc0CFpQn0z8JzQDou+Yoow3NA3t7UNT7Lc0AadTfZgtBzQFZXqIvX0XNAS+01pzbSc0D9GZQTvdJzQL16kK7403NAv5EQMOLUc0DjadgUpOBzQMBz1hPQ4HNA3IAXrDfhc0Dgr9b/Y+FzQObnNZrm4XNAcTlg8njic0CsebGBEONzQPbRWQKl43NA1jSOKLLwc0DiwmL09vBzQA24bp3jAHRAZtfdPhEBdEDs/IQXeAF0QJlw5IGlAXRAgu6lUegDdEBOyWNS9xB0QFaPNO6PEXRAm5iqUaUSdEDEVTdtTBN0QLXt4Xd4FHRA3E0+hcEZdECcHeQMTCB0QCeN9h23IXRAPrOiP48jdECvXSDquCR0QNhi2tVRMHRAMmzKqgUxdEAYysl6EjN0QMCeG7PiN3RAygkySjs9dEBWyrOPVEB0QMjbFubGQXRAWUKG6JJCdECa4yf//FJ0QPoJVjwjU3RAxPnxBPlUdECSgDKTjFV0QMolnn4hXXRAWPxLaSJgdEBoKCWwuGB0QFDp1mwJYnRABLNeUH5idECC7cdlEGR0QAvGX+BPZHRA5ti/iCJwdEAPY38iQXF0QDqwpUw6c3RAHS11UqJ0dEDg5mVRNnV0QEQIKrZDgHRAfdzFW/iAdED63wBMToF0QMTLlIHtgXRAtAuAwyiCdED7ZgVASYJ0QJPHaOklg3RANhPgdxaQdEAwpxwU7590QOZU0Vw4oHRAWokalqSgdECGPQG6zqB0QJypcpM2oXRA/WMqhM6hdECJ94/uj6J0QJi5OuG5onRAToy4yg+jdEAwSGFW+a90QCzxbwQGsHRAhsyG4CywdEDsrPX+w7B0QHQEHZc8snRA8irg326ydEAuvwII/LJ0QNc08ufJt3RAFma1RhW9dEDs7oAPJb10QNY01/Ldv3RAkBsMN03AdEAQ7zMm4sB0QHpPHzV4wXRA5/vwJevBdEBukC8mTsN0QFL75+J8w3RAA80f8iPEdECx+RM6uMR0QE9LrGcR0nRAxBr4LabSdEDd5RnP4NN0QORUtft21HRAL2PVA87UdEBS78fTkeB0QA9X8/K54HRA8xKYZyThdEDgfEutt+F0QOI2FJaP43RAWrVEILvwdEBOmgz0jfN0QHNfH0ikAHVAQhynrMwAdUDLTLanZAF1QDOUsZFcAnVAk7qc6OoCdUCKYfk9lxB1QBReFYxqEnVAIBfpniMUdUAOrXYs5x91QFJF8z+dInVAjHRiOHwydUBt9hb7qzJ1QPqunVfKNXVALvcm6DxCdUAuAQ/47k91QBLvkKINUHVAVA2KGYFRdUBTFCnyTVR1QJzeTqF4VXVABMDfog9gdUCWHtxnOGF1QP6izGfNYXVATuvyq/VhdUDep7wnZmN1QNRs5vlWcXVAnYxft+xxdUBuhmcueHJ1QLCmkXGNdHVA3x7biuGAdUDeyRKzd4F1QMCNn4WtgXVAvQEfzeSCdUCU5Qw6poN1QAYV1swShHVAzLh1JZmEdUAzWvvEu5F1QCqqtQZtknVAWRuWnoqSdUBbI0MuIZR1QGypmxBilXVAWjXLcM2XdUAyxkh9laB1QORa3qdOoXVAKCdP87ehdUDykaoS+aJ1QMdH87dJo3VAykWN8rqjdUDODjc7oqh1QACoMmYGs3VAwowfv8S0dUDWCMeZOrh1QFWoBts6wHVAFDRAx8/AdUD6Xi6RYcF1QH4AX8P1wXVAGmko3KPCdUCbO764zNN1QAwRlfF34HVAaVtYQw7hdUCFmAqyB+J1QCjkVzCr43VA8KpFCUztdUByxkOGj/J1QNLHrfil8nVAuPt260cCdkBMws9SjgJ2QPp0WGLOA3ZAdCRTX0wUdkA4XoMwDBZ2QMD7SRyJInZAv1l+fpAkdkAuukSkSyt2QJZwVC4fMXZAlq3/rSQzdkCSnA9/TjN2QFDOuHueNHZA730MRUxAdkARcxK35UB2QOEJ4zQeQXZAirmRjnZBdkCGwE9sykJ2QDCw0qt6Q3ZA7CzlVXlEdkAHORBhyFB2QEYljKoUUXZAoZ+8YM1UdkA++I1gDWF2QDSjn7AlYXZAzIYGgU5jdkAM7R8822R2QDL0pahXaHZAnZ1Mt7FtdkANVI4XqXN2QK47eD3PgHZABxiZ5mWCdkDp6dar+YR2QKFGbpRlknZAasOPxLuTdkDSCbFrd6B2QAhUIaaMsHZAKDXZNsCydkAYhJtJDLR2QLyoTsl1wHZACPI/qLvAdkAIphcpG8R2QCoL/j4wxXZAdNYDPs7OdkBxMPEnENN2QIZIGIqQ83ZATDDyX030dkDPWJbQMQJ3QIA1obgBEndA5F6FKhAid0BoNGO9diJ3QLELuFLoJ3dA6FYEZEItd0AKE08bWjB3QPZ1lSqPMndA8E8BXaQzd0BoFElWDTV3QNLFHyadQXdAVbmmopFDd0B6IrFIG0V3QMOoKdMGUHdAeoOHPktRd0DGwfgSklF3QHgBZ+HgUndAnA4Y5KFTd0DqAnflKlV3QPJnedgTYHdAJETb+kphd0Dyd7OWkGF3QKKUsZKpY3dAc/Eiaydvd0BXVZDa9G93QIB8sIqEcXdAPR0y2p9yd0BUIW5X+Xd3QL2ZNOFUfXdATE2vWViAd0BA18aQ44F3QCYXZNV4gndA0eQ+pAqSd0DIcL9pS5R3QKxDuub5oHdANotCcZq0d0CKDwMKL8N3QMc8CFbsx3dA3FLHzeLQd0C0aYQU7eB3QEyrNCxO8ndAMvw4hXL3d0B2Yo2wffh3QAbfhcR1+3dAbCQTbEb9d0AwGUgH1v13QGFkBLV4/3dA5C7NE6ACeECK5iBLewN4QPgOyGnnB3hATNtIOfwHeEA0FsPIQg14QKSn8qRKFXhAciS3A24ieEDM7iJlOyN4QJCfa9aLI3hA2i3rJtEjeEBiockApSR4QHTDRPhDKHhA1rVy/psteEAiuqrxITJ4QJIbLZZHM3hApI8SYw5CeED1/K+IEUR4QLGaIaB5RXhAkbxEhstReEDaWorAlFJ4QFBIXviHVXhATlHPLvhgeEBhUOcQt2F4QIDWngMhYnhASi3941BieEDBm38JtnN4QDWBhwotdHhAXnel3ot0eED00/5F93t4QLRr0sakgHhAhSVx/zaBeEBj8B3UpIF4QOT6Y2Wig3hAOJQYhP+DeEAk9vbXmYR4QOTJM8BPiHhAmAwVEwWMeEBWlOdUqY14QBR8OEKXkXhAvIcvF+2SeEBA+EsHBZN4QEK8t+2nlHhAPvkTF2SYeEBNEFm5/qB4QI0+9PenoXhApK1/9UGzeECos8yi4Ld4QKZOU/XNwHhATKMhIGPBeECbV9il9cF4QB4rnMW21HhA1mdp3tbYeEAyK011oOJ4QGDMVpvK7nhAIeudZQL0eEDwoR0fjPV4QFB+TCwPBHlArKEudJsFeUAOdJq1cxN5QDYwbuG5IXlA9KBB7SMieUAWfPQCuyN5QGDL7HVRJHlAsooLq7IoeUCcB1HGCy55QKYEU9NkM3lAg8KRXMA4eUB+vbiYPD55QN7tS69iQnlABxxsZIxCeUD+5BDQ90J5QNdLwar7Q3lAhO+RqstUeUCLBELOQnN5QBtRY+34gXlAjG/IU1uTeUCKbxfyYpt5QD1zI2rTnXlAbpmyoWejeUCUuKdAW6t5QLKbRCeBq3lA1Bzrgb6yeUBXe8USaLN5QMvAGS8Bu3lA3g8fHM/CeUBWHSMNQtR5QHMYs57M1XlAlmO4G1HkeUDOqL55mPB5QIhtFBuV83lASjGX8g/0eUAG/zy3/gN6QDNLMST3BXpArk66u2MLekDash/pUBN6QNqqmE1RInpAHKKnBz8jekB4RknsKTN6QDRqXD8MNXpALd2Npiw3ekDml9FdLTt6QPIpyiYaRXpAdkhZ5yVVekCP0D3WIVx6QHYUBgIpZHpAjhAfVSpzekBlRqrszYN6QOb6stgeo3pAWC/E5SarekBSVU1eFbN6QI5kODb5s3pA2rJd7wy2ekA5VyaWELd6QGjebMBEw3pA+uu5jP7DekA0Z4TeGMZ6QGy/Mz0kznpAHBvUhUbOekAThWTEEON6QILrZkk55HpAMGKoGjfuekCOpOHG5gN7QE/rcT58BHtAUJudAS0Oe0A6fQKBgBJ7QOUwgL6IFHtAmS2RsEwVe0BvHk0c0SN7QErsLCtbJXtAUkE04sIye0Dj7a2iyDN7QLqMFf1hPHtAcM9fzGpEe0D2UYxsbEx7QByR+5hKeHtACB44dOWQe0BUCvbxIZV7QOgw/dSio3tAOLPGiTOle0BDug00a6l7QKQljMhQxHtAMvSS4vrje0C0SVzwJuR7QGhsyL6M9XtA6gUDiNkBfEBEd8gVZgR8QOhuzYOaBXxAlkmBT4oRfEB+Jz2S0hF8QEKA5d8mE3xAou4vTscjfECR/UGtzUF8QFT72LCRTXxAi+XRJeVSfED6hE/vhFN8QAA1uNFpX3xAeMyXaQ5ifEDKTVIc22t8QPLIt2sDc3xALqyRoWl7fED6gxTbAYR8QGwTpOoOjHxAZHZv9cONfEDEzb7YHJN8QKqFZAdplXxAcm+0/2GYfEBceA6Jrp58QPpf+4HAsnxAf5E21Hq0fEAi6pGqzsJ8QMeVkazTw3xA/YeilIjEfEA/tkrTydV8QFZLnPf423xAnAwmHFjifEDaV6CyDuN8QIgFDj/843xALymOt6fkfECxqyLybuh8QB53aUoR8nxAyxxprlTyfEB3O2NZQfR8QFSsTJwAAn1ACnVY0EoCfUA+VsQGRhJ9QLpFNVevG31AwwFA4j4ifUCOUd/CnjF9QIJxhhMpNX1A2AyMP/Q4fUCjRjpHb159QGjmx3v5a31Ar4uX0Xl0fUDFKitohHx9QKpMoDuXjX1AT3zI3O+SfUBe0f9yDJd9QPDzj+Iww31AzZP/JufEfUDrhrfF9NR9QEbgZWXa4n1AqNXZlPzkfUDsgs+oeex9QMzF6eqR9X1AwFFJGTQAfkB5vt9LLxR+QKbdIto5H35AUF6t7yQgfkCqaGvAASp+QATYFIYiLH5AGpYF4ns0fkCNOC2BCjt+QMeqReE/P35AziKiFBBDfkAQMyFCSEN+QAOqWOSiRH5ADEmbQftKfkDsDpkQGUt+QKxf1VfCS35A6DehyXhTfkBuqajw6lN+QNDnEi6LVX5A9NSSF7lXfkDQtT8S8Ft+QMoQN/PBa35AIGqpwnaDfkDSRqKKAYZ+QHX5GWS6jH5ASrZ8s9+QfkADIWhij6R+QPT9TkOms35AXj3Lx7G0fkCM3O4y3bl+QJKJWlO0w35A7dVTN9LEfkAOXhqzdMh+QBZcMP0lyn5AVBPdhczNfkCObhj8SdN+QC5VJbqT035ABI1QWbzTfkBSmsP64NR+QFqeGohS235Ay9nXnjzjfkDM2ptXoeN+QN1McaPU735AKKgWKiIAf0AIglZSkwN/QElgYaNAE39A8oe4mqcTf0CZ6ugaQxt/QCIqa+cxLn9AGvteq2U0f0BWDtn5pDd/QNjgMWV0RH9A9Bi+v61bf0AoI6nat3F/QJauo8qjg39Act3lKmORf0Ae7wIXlpN/QNOfd5SjoH9AXw9UZF6hf0AYO1wQQ6N/QFBLR7tTsX9AGKEOF5jUf0BuIJKTqtp/QDiXlROd3H9AFn7wqGfjf0D73JFu6et/QPgcoas3739Aknzvdfbzf0CeiEjakPR/QFY84nTq+X9ANjhytfj7f0DER0NpRP9/QLbkP9KHAYBAmNo34E4CgED05gGwOASAQNwV4815BoBA6Cexad4GgECU1avBDR2AQJ3ygZNpIoBAsDAKDfcjgEBK6NBLHSWAQJrekpPjJoBAbk/+ZZMpgECYCo48vSmAQEPs+SftKYBAEQkirXAqgEDrWBAc9zGAQLKnbH+iOoBARD4JjgJBgECutPu3qEKAQKALFZXvSIBA4sGp0OdQgEBWrU7mE1GAQJx8W0klUYBAqqTQntFRgEBIbXD5plWAQE9oQggmWIBAGulkXeZYgEDLCexHDVmAQKCSAUWpWYBAXd+PXgphgECw6UBRw2GAQMErKJRwZIBAJKRleOllgEAGtmZUo2eAQFt460vEaYBA8Ix24k5qgEDv8JA7SmuAQIgqO4PwbYBAGh3eTChvgECwXamr9HGAQOQYB6mCdoBANJRdsiV3gEDQhrXJKH+AQE41auMnh4BAK+q73h2PgECo1Wfm4JGAQMjNJk9+lYBAdq2vOSCXgEAjSasPHZ+AQO6FUHwHoIBA51u3RzumgEBI+DYhgKiAQIhOm0aFqYBAQtcsAT+ugECK8K9qE6+AQCJM/5mxr4BAF17MnmOwgEAQj16EHrGAQIwxOwzmsYBAxDSHBZSygECfbaxbSLOAQNozpzZ9tYBAJJUD0Ba3gEBqUWqXbruAQDOyiInAvIBAymg9SDa+gEBavUYi8L6AQILfDNf8v4BATw/03DDBgECIVnCCUsGAQGUj+yyewoBAqzG0YbTHgEBUO2FsIsmAQNZhyYNTyYBAupxdn4bJgEC0SvcI08mAQMy40guoyoBA9tjTzS3RgEAKx//JTNGAQISnvhMC14BAnnCi26XXgEC816V4ZtiAQIkJ9BtL2YBA9FhYd7/ZgED69cJDv96AQLihwzht4IBA5Cogk0ThgEA+cu3vbeGAQD7pPhrg4YBAgirKmhXkgECOFm3zveaAQBJKsoVd6IBAOHC1zvbogEAOj3rzQOmAQNIcfV1J74BArhHK8gnxgEBmosiFPvOAQC4TgFjp9IBAIgvEQmn6gEDNTo7CsvyAQNdW3JA//4BA/mIZuz8HgUAvEsI3RA6BQAMA+uY9D4FAa3ufy78cgUCSgucDsh6BQCb0qzsQH4FAIMBfjjQfgUCguWR4bB+BQGnwhetCJoFALRvbxjUngUASm7ZVtSeBQK6g1rtsKIFAtN9Jyi8vgUCD7++FvTGBQFYC3GUoP4FAPM9soJZBgUAEpXbM3UGBQNR8Lj9aR4FA7McxRwdKgUDVM5dyvEqBQPEPBSK0TIFAJsT3q1xPgUAehnziFlKBQCHyYcJtVoFAwmimAeVZgUBgeKKic1qBQDYZ3sGyZoFAN1XUVlRugUAiaPhfwXSBQGrvmVRyd4FAskvrZBl6gUBSKGPk6omBQISeXcVsioFAtI3ZCGuMgUAj5x1nBY2BQOlhBuXvjYFAuq2dVVWPgUCk88sL8JGBQC7qVSk9koFAaAF2bl6SgUBIddp1D5eBQCSiCY1Vl4FAwQrzNp2cgUA0EY2ASJ+BQPZg1HrloYFA7qtOU/qhgUB5nMVYn6SBQJPhq1ZtqIFA9Lw48kmvgUBizws5S7eBQGxpk0VIwoFAbKzYV9TGgUC3g5yIL8qBQNCNIW750YFAgxqhX37TgUB8opaU/NWBQJRG1mEC2oFAsxIvPPfdgUBoRWlS+eGBQOYcMb4L4oFAHj0xBgDqgUAnN/96l/CBQCpx13zs+YFAE42c6kT6gUBIUHpS8P2BQPRsc09r/4FAx3xDsOQBgkD32gOU9wGCQExbNxADCYJAgatAAAQOgkBqN0vIBxKCQDeqA5vYGIJAviUUwWUagkBghWd2Zh6CQL7/K6XVIIJA7O+RRtEogkCel0TFNC2CQC4NAG+iMIJA3y61XFw0gkBuZRRa6DmCQOoUmBoLPoJA0rnEJFg+gkDylBuYQz+CQBz27c6sP4JA9hEOEQ5CgkCs3pCRFEaCQCd5KXsnSIJACo1sQspJgkAOffz3R02CQHI9OwwLToJAl5IS2tVOgkCKnjXpe1CCQAOVORYHUoJA0id8VNlSgkAQfOg3EVqCQFcawOLdWoJAHKYqJXZcgkCw41N3uWGCQPkQcHk0YoJATs9O8L1lgkCPkcT4BGaCQEyAwz03ZoJAVIZORNJmgkD55dURBmqCQMW2on53bIJALOEDgTd1gkBmgNa2BnaCQLTym/DRdoJAKBGaSAx+gkD4MVtJQ4mCQJKxJFkRioJADsuLMUSRgkCg4pgDPZmCQGhY1MBVmYJALgdFZQ+hgkA+kBmnOqGCQKLdKe5xooJAjh35v8migkDB9ZhWWKSCQPKVF8fwpYJA+G2/YHamgkAqpk1GDqmCQHJn9SA1qYJALkoqpMeugkBCDH2DCLGCQBoc84VHxYJA4OqHs+zFgkDq4pT078mCQHTNhLzmzYJApLVftfTNgkAwJtaS0s6CQO5aBH8pz4JAIlGVXOfRgkBJe6PH2dKCQBI0BxB/2oJAiKuVcIHegkCmkz4GV9+CQKzaV+mF4oJAMngm9ITmgkAy6tj3++eCQM5M6ZCu+YJA+lZioeEBg0AqtZAx5QWDQA2hSLDaCYNA6j5QqTUMg0Ab1PAL4A2DQIasYK15EYNA6EGIkqARg0CURxCBehmDQJraOmlzIYNA7Bppapshg0DJ8BmByCeDQCAbjetxKYNA4RnOHmsxg0B2MCVgmjeDQLZlxXlpOYNAxnqVnZg8g0AMnNBP3EGDQKKxt29NSYNAEpsCzpBKg0DE7Z2ll06DQFaClMHwUoNA+HDm0eJVg0AyGLue9HGDQIv0vSHqcoNACg86U/Z1g0AysW7xxIGDQOOFxngEg4NAtpnNnlCDg0AM3RPQx4WDQIIn+H9UiYNAPptbIMeJg0CaBuV5+YuDQBbkVffCjYNAhXVn31igg0D/hL2EVaaDQP6Zv6oSsoNAMYWqdBW2g0Ae7whrF7qDQGqCTxUPvoNA7I/7gRTCg0BspKJ7H8WDQL6ffZ4VxoNALcyDhsvHg0DEgtCfe8qDQAyQjvvK3INAXDgsZnbfg0CM0F3YK+KDQPXmUrO/4oNAOF12MpT4g0AOjYz9kACEQF1dkXG1AoRANsbx7sQOhED8PAmd+hSEQM5nJS3tHIRAO47gpNAdhEDGYCjeTCSEQAgLQngjY4RATM8iwc9lhEDikgOy/2iEQMzMNGI6boRAe2eW5f5whEAI1O1NXHGEQI77gbA/coRALr5FHSJzhEAy38JzuHWEQMExHLPJd4RAdIOhwPZ4hECu9otounmEQIu2CTd5eoRAJcx8dBB9hEAosZ5JKX2EQGCIoUKyfYRAIDM+uNV/hEDYXLADZoCEQBT4rHeWgIRAg5kXOmGBhEAk/9LmboKEQM7BeX32hIRA4D+F5B6FhEBxumaryYeEQEwEinl0ioRAe5ssnIqPhEDmbqIEoI+EQH4xnJnIl4RAD4a3AtifhECj4Ep9caKEQOx1jLwepYRAFtbhCc+nhECE2eCEfKqEQHh2mkIWzYRALDOMQcTPhEDFsasVatmEQJ8lMOdp4YRAcLvDhdDnhEBWm0n7YumEQB+NWp9+6oRAR+kmSTbxhEBO2PsRYvGEQL9Gy7rd94RAWbMdzDX5hEAK1z6fWPmEQL5EgaJz+YRA+vFmmzT9hEDEnsx5LQGFQOb8E+5ZAYVAIO5GE50XhUBJf3SzZBqFQLJbs3XkTYVAEh0u6OdRhUBGWjnV71WFQOGPO8Q+VoVA95xOnENahUBKONgqR16FQD4c9F6gYYVAT76PlqBphUDgNowAmnGFQHhY9yy2c4VAIuocdZh5hUAi8auPkIGFQFPw3dM5koVAIPxfQXWbhUBJDMNEqMqFQLvxZoes4oVAPIh6aK/mhUAgKbMos+qFQE5Aabw3+YVAdoL+g1gIhkC1Lkv9vUiGQBdnyCKsdoZAtEWRrCa5hkAS8LWx0MSGQMK+zLHSxoZAxEqrgNLIhkDepy0uRcqGQCd6pKjRyoZAwpr419LMhkBaxZAQXvKGQLdiOTKRKYdA3Os4rJExh0AkaPGCiTmHQDX8hpWDQYdAcvslb5hBh0ASm5v2ckmHQIwqRwYHe4dA9OAbysexh0Ak0wrix7mHQDU1jfPBwYdAzoRtAcDJh0B2dAXXtdGHQImvsLJ0+IdA2mGK51ECiECOypsQ4RWIQE5WGrbCGohA + NrgMGZxjYkA= - + - 9cJXRC/pqET25YVETFO9RVHhtURuncRE5i/+RAKbiUSr0j1EE0EbR9porET6MM1EBX+BRZNG3URGZ0BEZ3l2RajCuUVXwfBE0X9VRsyVBUXF7Z1Ew6z8RGJBv0T0Yt5EhU1/RBLI5kSaNkxE00HJRBnIzER3MRZF0GZeRVFCGEe/zMREAzl8RI1XRURXAU9G51FwRBQ0oEW62t9Eae5bRNyILkWJH5dExAevRorZfkQfUKNEFw2zRCycqUUQrf5EfY8kRUsEQ0Q/NTtEn+l5REvqZkQdbHNERpmvREL6dURDzCpF/T7QRH0TWkWDvpNEwBFcRDvlBEa3kplEsJZORFn2WEUdBIJEkjHKRHM4DUWmrn9EnIOqRNDFy0bBGGdETxGUROwyfUXLdw9GCfylRLd+3kScxj9EJfiBRJk3tEZuJwFF0o8kRVimgERA94NF7zWHRLZ2PkVCjXBEmqeCRLxRHUWbDRJF7fwyREFrSEfil9hEMz9lRj53E0YkZxNGdaWBRLssVUTnrDBFdUxDRPYvkUQicm9EoHiIRIydMUTVtoNF08cWRbhrSUSHFxtFfG/pRPiO5kW5L8lEnb5WRG04gESMT09FqP9/RMC7rkQwU5hEeZKrRcJ2LkeM09BFJ2O/RfAA/kQj6E5EDLrcRJF6vERlZhpF0I8WRTWkuUTiqbBGBTHwRJBBQUakWtlEt0ZvRD+j3URE81NEgZiHRPIogkVh/YtEBIZbRKbsrUSafsBEkf4BRZWBlkS2Rn1E17ObRJNotERBUzpFl+EuRUODiUSxtYBEpemNROKSQURu42hE5oClRDmc60QudpVF0qy+RK8PYkXNDL5FoB1CRWVhkET7E/9ECGq7RbT7Mkekci5FvquHRKwH1USoKHdF76k3RVnHs0VQzT9EsS5MRAIgW0TqH4hEbxauRTm0JEbOiYhEbaGFRKSTv0TSe3BEjr7TRBUVSEQDBo9EcEcURU/qrkRC21xEoPNNRIU30UQNQV1EIsc4RozTwkQP94ZF3uoXRb9HwESsURlF0+5GRA636ETvURhFOOffRLBGukTSt9lEc/mIRAppqUS/OBhFJxMCRXB+dURD02pEMlzgRKviRURfh4lEdDe5RIqw4ETAbA9G+Xs3ROratUXkhp9Ee6NPRCM3pUTN/sZF0uRFRJeokkTvPEhEtVg+RWJOiESYjvpFA+MxRRDVrkRQ08pEw+qARCXEoUTSvKhE5lyVRDC4j0TOltBEh85aRL7zJ0YbitpEnxmBRWiEyUQpVu1Et+MTRYpc0EQFTRVGPQaERM02TUR4Zq9FgZSSREBejkUwQrNF88CvRIR6QETH/ItEx79zRO4WV0S1bIJEl4ykRB3hikTX5TxEEkgARVKHbUQkMCNFNMNnRL3hj0RgLVlEn4BORMVsY0RKPg5FtV/lRJPhUURFa6JEPUxVRN4vrES3ZZlE8FuuROZx0ESJ+2VE2zheRoB9XESVFdNFibngRaxZfkTFbaFEFf7QRDuba0RI5GtF1I0ERjIPq0Vp8+BGS+jvRPfxkEQtzudEl1TpREYabEQaYpdFsQ9bRMhA3kQ6VGhE1dBXRRxK90R0hD5F1NEwRsgKeUS0KjJEWmW8RJ/5qkRxvCJFQoBNRGtYxUSQEV5EC8lWRIPBX0Rj+01EuYKpRCr+rEQn91VEa3QrRYWIf0X6gmJEhpvRREVnmEQHhF5EMLFYRa1HN0TES/pEVz2dRMuB1kQKfolG3lRaRWN6TUR3ZVRGCBKjRfhRa0S+aLlEJhHxRJGe50c11JpG79a8RXXauEaHCaNGe3hdRfy3Wka8PYpEivmxRN/3wUT+zc1EowSeRHE+FkWPPAxF/1gMRXh9OkW33ohEw+n1RRqNjUXcxZFENuAoRLsAkESIjcJEz4iyRJl5p0QNNVJENgbJRAXnwkR+HXBE02mlRCpohkSEA4xEM5sdR3DjB0UPNQVHWEOFRwQKj0R6hHRGpcgKR86JR0VozJtFgEDjRQhP7ESIq5lEZGAlRQcMQUX3cIFEbofnRIi2PURfWh5FXH6yRHtywURwp1pERPGqRJgUiEUT5jpGUoqIRbYM8URMpfdEilscRfHyMUWMG6dEt1t2RCECS0QxBKxEYsk/SY2pkEesz5ZELPVHRLtZL0VDhEtEviXERulaSUj0rRhHsIJsRepcv0afID9FjlMyRVQao0UTFZJGTEeJRO4MPkQhojxEV/I5RMSJCUWFz+xESO95RL1LtERHvXRFLXtGRAHIakSIh4ZENFYpRQvGx0Wt+1FEdGavREBNTkTgTyBFxVADRaYUv0TutXtFPsCQRk/1SkY503JF31GORMGmfURysrZEUr2URJ2TbkTCfYFExvOMRSfVnkQToINE+FQQSLgVUUfFWE1E0q4VRsu1u0TezIJEeTprRU03XkSh2YxEBmhtROWq9EV67exEW/cGRSNXZUQpjoNECfnlRJoErETO651ES0GTRad8XEU8mo1EYyB3ROsTmEUPubVHDGlzRc+NhUVgpK1GTd7VRDyHsUW6XDZFpHOLROU2UEShVsVFtqqkRJpTn0TOs6REy+SbRbFmqURN+UZF1qE6RIftXUSNFbZEeYV+RKDnR0QzBF1Ep8T1RHKRjUSR+wBGezmLRBZcT0QuPLBEo6VERqualERovzlF1NeTRLvdeURY9wdG30MkRe5qQURgbYlEjAZURAb6FUXsn1FEjK1lRAw1YkTzzHdErgVeRD2FOkUhb6BGqFwiRrnU/0TpiJdFMNtqRJmZZkVImJ9EKYg/RASipEU3WGxEMstXRDoVXUSkNX5EizRLRPf+Y0SjxK1EZXWGRRwALEWYy1dEhMn8RXoVu0VqUbxESI+iRJ+nPUSQn8VEdVI6Rr3IdkTCXXxEUrrURDb/hETXI55E4hzeRxj0CEW+u6VE4WfNRDm2ZUS9Vd5EBLzRRphcw0TR5WZF926SRjBXdEWzvoBFu2T0RKl0WESa4W5EpNt8RJWbi0SvQIREKu0SRv49RkVXALxEhkONRGrxiUTUXldEBROJR/a/UkaAkU5E6bzLRCouZUQqNrBEGx8VRlBzkURxp7xE5pI+ReR5OEQNBpJEIiKdRBGVVkas8m5Eu3zaReFxiUSEiXxEaGJ8RO6uj0TblWFEufBgRI8pOkUM36BEAzmIRCHClkTDpuBE965QRClhZkSUo1pEp5iwRHh45kRDjiZID/Z9RGooRkSwwwBHoBmURQO5m0RifalEkaZyRHYRk0VEeJ1FfgYeRSWTbESO165ETyhARCy9WET6KHpEBZ5zRDKZkkQ3sktFr09KRSEId0QPoFFEu62FRTUeY0QH4otEQw/HRB28vUX6uo5EEOsORr0smkRjpWtE1pskRcyR3kRzx9tE8VKKRNeEmURMmFlEpI1QRFiwn0R5SYpHjBNeRAiIakesiqRGjGmoRPoVAEazRyZFrUWMRNcC4kSLZIVEZvSOREtidURA7cRGZIlFRB9qXUQorSRF71lIRM+NR0TLhXpETeqeRWziSEQSl1lEIQp0RNw/R0WzdgtFUwgwRUODlEZfyShFYv1sRO1O1kSq/ZZE55i3RC49nUUcToJEtIiIRGwRJkUE9CVFh3qmRCb1nUT+815EPfDeRJgUZ0QUci9FKxlFRYA0okSpHYJErF9iRGGJr0TaZzZEw9QlRvuOZkTN4oxEQL0cRTTpm0TFunlEcZzvRAbFR0Qm6wNFlPTRREJRb0XVO+VE4cRbRUU6rkQJmVFEkLUnRWu5bUSnaXlEirx6REO5ckQPDENF+fCBRLqrE0UpcWtEld68RDwHpEj2UMxF5ySrREFjcETpuBZICJ1bRBbkcUSqDW9ECTUdRTwHoEeK1j9EKLJgRMdhmUab9YhGJ3msRGciIUWJE/xEtlfIRdIhskRJSF5E9EI9RKMsdUScE3pFTCKfRIa+0kS2z5VE0jQtRN+bvEQqiKNEJ7CPRI4CQ0Tr/3BG4SJXRS+LgUSug51FLdw3ReBHQkR/2zVEqZvORiglNUU4H1lEuX6WRfC+p0RmjZJEINcaRUjImESYk3BFD3OlRJfmkURbIr9F+cZERWKARERFInJF/5mFRB3AdURehapETHfSRAFmkkQRpIpEgehgRJa3BEVCjAhFchKfRHB7KUUJD4lEZ4F/RNqi4ETYu5VE0rTURQ8DAEWQNkNEBka8RASwZUQHXAVFNfvCReZ0iUUGIQpFgliWRKZQVURRa7tEItMFRpCWAEWHaoJEElo/RMFSa0RAbnhHH5+qRPReFkf5kdpFTHISRdlqREQM41tEG76LRPVqTERZnNFGqFFGRGBePkbuzzVEntqeRIv/F0VWgLlEJQkyRSxICEXoLChGXkEERRraokQRpYVFTLpTRf+0QERAJndEQrhwROdWdUR3zuBFvTulRIyvPEQivHJEDMaxRagB9kQsZnJEazCjREw7rkRDGq9EVEXSRDOm6ESARIdE4NCIRG07CUVkM6pEWNcURZZnukU1lSxGLupmRf5Wq0QBvXhFBNupREPthUSM3ipEgJrUROt8bUT4qlxEFimURO2JOEhN551EI1+4R6anUke+SYtFh5OqRaYGUUZJs55E+ZMIRf9BgkTb1WlEBSURRdYMBkVMILBFiJmMRDaooESuTTtEfEJKR3mmzkbk6m5FcxqTRZiNekT8E21E56S/RKXHRUSCY+5FF+CIRRV+nERW+NBEF69YRIVOQUQJDlBEnRUTRxNup0Z6dp9Fvhh3RK1SXEVgS0RI+u1bROLmykenaWpHCQihRGTQgkRReGxG3c+bRapKWUSGf+JESnGRRBjIo0Tv3mJEUCSbRCievkTvRWREqlswRGdHFEVsE9BEhxbnRC/jEkeA1oFEYg5PRKodpkaQLVtEPEnyRYZjRESfeYNFik2kRN61lEQuUyxI8WjqR+BWyka1ug5GV/QYRSBQiUXnSFVEFzuXRZ7ojEQz2fdE3SJeRV70b0TQLJREBy97RF3tU0RUzPlE5MZYRLR7aESyWWBEHwtNRF2mWkSIjmZEdUBMRO85ykXDJI1EKEYXRZXVqkStuHNEOoTqRI51ZkUIMQ1G5zG9REPJJUULOzFG2Dw1RcXXO0VfXX9E2ZzlRAAdh0SmRnREvYJZRAGJ4UQ5xjpEXxguRWRER0WoPH1EzYw5RE0oaUQE6rZEJf7nRGK+b0XvK0tFtE6ARDssWERijKdEX0jHRGVaPUfeY8dG/bKkRLMuYUZMFX5E3JaERUQl7EUf5QZFn74FRTYmqkRkSoVEOsPTRDFQzEQ+91BEWblnRMneV0QHeZ1FNCSBRdDfqURha1NFbPgPRVY3WUQhDjtHuzqlRgfceEZDIrZEbW2nRUDkDkVNd1xEx9tMRMjVO0Sv8B5Gj4sZRpUwBkXozEBEwnq+RDXPVkRV+IdEi56eRJgpOEVUT0pFjS+5RSrIckRnMJdEJHluRE8yr0TcRB1GimrQRbFfj0U2uqBEFgZ4RPlVXkRukpFEOnkxRj94ykWmFoVFRVEARR7YU0SPpYVEjCs8ROU7W0R+e2VE + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - NmwXvHnAckBq/Yeq1cByQL/3gvoLwXJAJLhkVm/BckDD2wC6UMJyQBALivykwnJAyfMqJzvDckDaQH6WeMNyQBRXt7fExHJAZBfB+VfFckDyoXqjfdFyQL4/yn5D0nJAPB+dVnbTckAe2l0Iz99yQNMsmXUj4HJAAkDl6FDgckBsPzvMueByQMh9V3xO4XJAnuObEfnhckBncpZhUeJyQEg74yyQ4nJAIu6OKCXjckDYIT0JdvByQIwsFQWk8HJAAK0KSjXxckAcWoUOyvFyQMDMAyWd8nJA3ivlfBPzckDWjUqWtvNyQOI2SxNO9HJA2u4eb6D0ckBe2O2Ww/9yQDjnCrv4AHNAHhE7S4oBc0Dfqkey0gFzQNz9O905AnNAj6ausdACc0BQhhA/ZQNzQKxAeXf6A3NAFElp3iMFc0Ai+LkedBFzQMRmlQvjEXNArMVZBQkSc0DkGK6VJxJzQNo1ClB7EnNAJsG37rwSc0Ag43zj+BNzQOEk0X8GFHNAzCE1m00Uc0AwYgxXeR9zQNpXPnMOIHNAhldxsTsgc0DucbajoyBzQAzLvw05IXNA7Dd34ckic0BEDBjuDyNzQAhFOUUFJHNAmnkBejokc0C+2n+ozyRzQC/mjURHMXNAnCk2LVoxc0CESRmVajJzQMQQClLNMnNAxnyTtwwzc0Be/eC7oTNzQCgL0bTWM3NAdAYhLzc0c0DTV2vz4z5zQLQWBpy4P3NAmsagRUBAc0C4l3P/4kBzQKFqr8Z5QXNADObN8LlCc0A873FzekRzQOoBufWbUXNAsnH2skNTc0A2HrNAo1NzQJCbUmV5VHNAVmvr1/pfc0DdKJwAjGBzQG5Vm6IcYnNATGsV6Dljc0DkEmIBkGNzQCgm3oTOY3NAkzTLleFqc0B6NjR2K21zQKh0dIDbcXNAjWSSw2Nyc0CtKeOyhHJzQIhU+3+2dHNAVgBpbEx1c0BI5dEPxXdzQFH3USnSd3NArxj/jXiAc0Cte3Xko4BzQITFkvEMgXNAzAlMCDmBc0BxjDAeXoJzQDDM4N7/gnNA4HcT8Q+Ec0CGGljhPYVzQGy+oR6HkHNAQCZgV9ORc0DcpUYD+JFzQOUXeVkRknNAmPxlAk2Sc0A7t5kvzJNzQIeY5+9ilHNA6DTKZPeUc0AicZvsi5VzQKxTDsdQoHNA9plCnbigc0BWLjnl46BzQGpb3gxOoXNAikhxn6yhc0DRh0EmW6JzQEEy3uqbonNA3NcKIMOic0AyZjfHJaNzQG3aEikFpXNAVBNAGR+oc0CPEuc90q5zQEnKbtqfsHNA7NVr4diwc0ByhMiyeLFzQLzT1hdcsnNAklP+x3Cyc0ByLKqMFLNzQH0RnaW2s3NAQszwAw20c0DoA5Mwo7RzQIUWJiViwHNALOiu347Ac0DUgvjitsBzQKeB/1z4wHNAAAz2y4zBc0BZcjnez8JzQO1EhlAmw3NAZA9cOMPDc0BlFXkFgdBzQCWDCefk0HNAz8XE4NbRc0BwTHUBNNJzQIq36vu70nNAcIYS4N3Sc0DmrSx+99NzQPqownZP1HNA4wjNouLUc0BzNL31o+BzQEgm+3PQ4HNAnsB+SPTgc0BUAkeDOOFzQLhcNOJl4XNAXAnAh3nic0BWJDycEuNzQCr85nel43NACgNc47Hwc0D8Ixux9/BzQMyNQEtP8XNAuRmusFXyc0DHjY86+vJzQEgIkxw49HNAbthfzeMAdECbqQ3QDwF0QGKbEHx4AXRA0vj/WqQBdEDU9YvbugJ0QKRUaRPlEHRAjrqyFfYQdEBZooxVnBF0QKF2k4ilEnRAwi3Z60sTdEDE6GCcDBV0QMABAK3BGXRA7iw2j/gfdEA84vSVSSB0QNUBKe9pIHRAxnloMfYgdEA6rT0RIyF0QBZAlXS4IXRAV2ATLl4jdEDIo90ekSN0QGXVlOa6JHRA61tPEFMwdEDWXIg3AjF0QKju0Uy8MnRACJIFgecydEBUr16fFTN0QHdVA624NHRAXIeAmOI3dEC1b3KObTh0QCXfsGs7PXRAg92GiFRAdECTKSAzekN0QNyhHqruUHRA7PQTA6JSdECAZZyn+VJ0QGw1HvJgVHRAaPGZhfZUdEBQXlqYjVV0QPDe0e3dV3RACktDoSBddED8nzMlIWB0QATPHBi5YHRAM7bsBAlidEAkgFeOe2J0QOB8F9BPZHRALHSZV8ZndEAWe6mYInB0QICCeohjcHRA1LsE6EBxdECk1/a2FHJ0QGrE/GYjc3RAc85AfjpzdEBgWJ09onR0QGkMV2o3dXRA+tjSWkOAdEAOZVYo94B0QOSQNcINgXRA4AWaIk6BdEA2gPNyR4J0QEm4+VHRgnRAG09qJCeDdEBuTOunXoN0QL57znK7g3RA0KE+OhaQdED6laKfaJB0QGKkgaa4knRA7BbfYlOTdEBSEstkTZR0QGcd1Mfun3RAMJoVng6gdECwBrztN6B0QGIXE92ioHRA3NEq3s6gdECi6hJjOqF0QOSBOHfNoXRAcMbPxLqidEDqR+6fD6N0QJKWRXdipXRA0NOzsgqwdED0eDdBLrB0QM7Tim7CsHRAvuk46O+xdEBUEt7XOrJ0QAzBm2VvsnRAZCk0l/uydEDO/qCZIrV0QNorbj3It3RAdzM++xK9dEBWSSO3UsB0QEYll3/iwHRA71/xLXjBdECPcMwU68F0QH78uhwnwnRAbM+PJk7DdEC05GOZfcN0QH6IQ7J5xHRAPvcQm7jEdECIlrgq/M50QK7hdWBi0XRAk3Dq2RDSdEDKmpUcLdJ0QOhBJwOl0nRAOpFVMeDTdEA4voLPddR0QLxD71TN1HRAzqO1hbbgdEBeMg/pIuF0QFLJF9I44XRA5DrdwLfhdEApcMceHuJ0QPpejnNm4nRAS6coBzrjdEDdWQ1CkON0QO1Ei0pO5XRAc0MJ50rodECijAMqvvB0QIUk7jCN83RAhZav9qb0dEB0GOw9pQB1QMlGw0TMAHVAnuZUFwwBdUCUYSDwYQF1QFhvq1ldAnVAwJrOzJoDdUAm72KkzwN1QOSY2iGYEHVAPHSRmSIUdUA+pcPAYhR1QE6CjPCcInVA8/BvanoydUDi/U4ayzV1QBirrIYjQHVAKteHC2FDdUAOBRov+0N1QDyEpzrbRXVAbyTKD/FPdUDoVBMCglF1QJHPqJpMVHVAMryBDndVdUBJaE8KDmB1QGj1PBU4YXVAFNiBOsphdUAPPEoH+GF1QHq2FAZlY3VA+LLBEFdxdUBM7IgJ7HF1QBitaD52cnVAMATET410dUBYGoVFToB1QD/zSBzjgHVAg64NbHmBdUA2q+7HrYF1QODfoU4rgnVA0Ka5WbyCdUA22LQg5YJ1QKdYVz2mg3VASCoGoxKEdUAuZHILmoR1QI61c+GMkHVATgzLD7yRdUA5YgBFsZN1QDENfUoioXVAGkEP77WhdUDbTc/TYaJ1QCyvzrxIo3VA23cVi7ekdUCyzLCXo6h1QA8MsAHpsnVAVn1bdznAdUAiL93/zsB1QGoa93hhwXVA/siPp/jBdUCpxqxapMJ1QCbl+yvN03VABLu6COXfdUD6TNuzeeB1QNAMKK/I4HVA9M9lNQ7hdUDSUy5d5+J1QPU/7jyr43VADBUceEztdUA8DDSXivJ1QJqig2Sl8nVAYpaqJDjzdUCYjV+78Pd1QOpXCt7/93VAfhKSgkgCdkDuBvWIkQJ2QE45KcrOA3ZAZl3X4wcRdkBKVcb8VRJ2QKyBc9hMFHZAKm2i8AsWdkDNb3U/HCB2QKW82hBgIXZAO4vud4gidkBwyINuYyN2QCSItQmQJHZAGBGKo0ordkAZQbfNHzF2QCgdlVCTMnZATAWUMiYzdkDgaKpUUjN2QFKbhhCdNHZAjE4FpUtAdkBDN4qrHEF2QNtw9vfGQnZAIV9S43lEdkCQaZqu+052QHbjQwHKUHZAZqYBGRFRdkAXi7/6Y1F2QIDD727NVHZAbJGTfI1gdkAKT/QWEmF2QPT/p+XdYXZAD89zm9pkdkD4RXknsm12QCtfre7mcnZAOPI+vhpzdkDMlYn3qHN2QHGOthTQgHZAglGN7mGBdkDSlIgzZ4J2QCtrJ85pg3ZA6jDGtpGDdkCSyhgD7J12QAzyrCx3oHZAqE4nWQ+hdkCqWZctR6N2QFqvWKLCsnZAbveSJQ20dkC4mrahsLR2QPhhMm12wHZASgeVqrfAdkBht4U6T8F2QDoxLH56wXZAVJVfF7XBdkCnRpnFkcJ2QBEsoU7PznZASh+MY37QdkCCQNsB6NJ2QFZ63drv4XZA+NN6XiHxdkBNiEBXDPN2QPsW4wE283ZAFIy80JDzdkAcxZHmMQJ3QKZe4l0UA3dA4AIqVAESd0BGs74/0BJ3QF+ky3T2FXdAcBLcGA4id0AqT3ZwuSR3QCh78c/oJ3dABOT0gUItd0A0s2BhXDB3QLdcZT2KMndARFJEY54yd0CaoE5RpDN3QByZeD8NNXdAkg820eQ3d0BUWsmwN0B3QKrYwBydQXdAmIx46pFDd0DOvwXHGkV3QIr6YekGUHdAQMGgikpRd0CKc5QjklF3QDKhmbvgUndAqqH/Tp5Td0AhrDhdKVV3QDqfkv16X3dAUNc0+hNgd0CkbwJ7EWF3QEtVpMxIYXdAl0LaO5Bhd0CWVc/qyWJ3QO7nIjKpY3dATCq4Uztld0D6wU7VJm93QJD/o871b3dA83A9rj5xd0DneS1YhXF3QP4gw4GgcndAKKwFcJB0d0AEjI2c+Xd3QELYQTYnf3dA+norK7iAd0D3IoSt4oF3QIcUtRMOgndApm0canmCd0CiYFflmoJ3QJCMusT1h3dAWB6dCPmgd0AXJvClmrR3QLoVKLahwXdAtpT8zy/Dd0A70rYpYdJ3QEqhNrSN1ndA1n+PcE7yd0Cf+a5Zcvd3QKcbDXeV93dA3HzNen34d0Bjnf/9dPt3QGsPepJG/XdAIkocGXj/d0BmReBy9AF4QJ87f8CfAnhAcIQTyHsDeECjZDtB5wd4QNrv7YD9B3hAchhkdkINeECSvYmTIQ54QJRcPnMGIXhA5mcqq20ieEByV4FVPSN4QJSUPzuII3hA16xpeNAjeECoWlOUoSR4QMmD5gJDKHhA5FRc0B8yeEDoicKofDJ4QKjgl9W3QHhAghU+jHxDeEAtM22JEUR4QJDquD16RXhAzml3RMpReEColEcqlVJ4QKiF/P7VU3hALt92O4hVeEABlbd3+GB4QLZoFrG1YXhA2EtU7CJieEAQE1W/UGJ4QBQ0T/OlYnhAEN8dA75ieEBKJFg/aGN4QIKR24Q6dHhAEOnQh1F0eEBEwBmfi3R4QLr8kMWwdHhAd3hzPOd0eEBMAU/e/nR4QOhLZZz2e3hALmwSvTWBeECGjAKmpIF4QONAB4X8gnhAmMOzcXqDeEDi88QK/4N4QD9m1t+ZhHhAYPpyYk+IeEB0XcMdBYx4QN7aGG2pjXhADQp1p5iReEAq+Ko/eZJ4QJp1ZuvsknhA3shQFgWTeEBonWR4qJR4QGRQdc1KmHhAMGRc77eheEAKWo4ROa14QLwa07ypsXhAZJR55d63eEByclbPzcB4QG9q9BZiwXhA7kyTQZLBeECYTI3q9cF4QAprR8u21HhA+hWpYY7beECEEKWCMuJ4QP7u+gvH5HhA0mZDsQH0eEAXu/cWjfV4QBLggT0oAnlAw223flcDeUD2Rxni1gN5QEqDnLYPBHlAyvaiopgFeUDX2pggZhB5QCrBIjK6IXlASjJK7CIieUAGBHBvTyJ5QOyMZty5I3lAMCWaOFEkeUCiX+ldsih5QCeePRkMLnlA4juoRrAxeUA+tfKIaDN5QLb4wL26M3lARA6ytl80eUAZBYun4jR5QJA2zgJjQnlAiGRauYtCeUDwAXiiDEN5QOLOjUNAQ3lAMmGf149TeUDYGhC8zFR5QNjjd7nsYHlAcieGtTVieUDA0LXw3GR5QLLgeADPcHlAO2/bB0NzeUBLVLbcDnR5QGx2Tj3bgHlAchYs81qTeUDC3y+EgpN5QApW0IZFm3lAJ0pv1GKbeUByGxfX2J15QAmhiK1no3lAni7CDqSjeUCj/CryWat5QFpO7SGCq3lAtosoKsCyeUDnvZrF5LJ5QCRIV13PwnlArNOtnFfMeUAwza3jQdR5QCPhD23N1XlAQNor/E7keUCqsnD2vPJ5QLGvZF0O9HlAcV2hzKADekBeeapF/AN6QIxTEln1BXpAhBJDBmYLekBOKbFuUhN6QAnOCoFWG3pAGhPba1IiekCeFlXGpiJ6QCCi9rRCI3pAwPT+2iozekDQpS6RDDV6QL91kegsN3pA9LSCIjA7ekAJL9vTMz96QKQJmr0aRXpAAsP/lNNLekA0cuKoJlV6QNODf8shXHpA2vYhaidkekDjpItTaoN6QHOqRMvShnpATnD8mhyjekAy1iz4dqN6QCIE4fooq3pAbGRy/gyzekClMv2P/bN6QA78cnANtnpApo3DNBC3ekAmtbJV9sJ6QNjcUs9Dw3pAmGCMMPrDekBnG2LdHcZ6QIZCzPNBzHpAekQ6YlTTekA8ovXq0NN6QJifiMNK43pAkIFk0nnkekDWkW39N+56QIIeVuDoA3tAXlwBxnsEe0BE2XDmKA57QHgF55iIFHtADOP7U0wVe0CRyYiiHyN7QCjOF47OI3tA/AJS+1ole0CPN7+swDJ7QOwF0ZxhPHtA+Cl+Y9FCe0CC4nb6akR7QCbQQZZ5RXtARlsLbmFSe0Bj3GT5Clx7QBDJMzVUYntAGB99t8KUe0CWFixvIpV7QL/pm8RTnntAWA+1o+Kge0DsdZAZMaV7QF5H7J1MxHtA4m3++XrGe0Ab7Zdqs9F7QNdv2E1C2HtAoOy3FgHke0BnImf7JuR7QC5YAfw09HtAoeJMM4z1e0D2li182gF8QIHlCmJmBHxABe8BEpoFfEBEMZSFgxF8QBRFtnHSEXxAfmyR120UfECbXHKxqRV8QGNv5d76F3xAcx08efsbfECKzMBDXCl8QK/JQa/NQXxAbpUdN5NNfEAg2MWcDWJ8QGKcoELca3xAXIvndStxfEAiL6Z8BHN8QIgUtzVpe3xAg3tc0FGDfEAjBy/xAoR8QOVu+6ENjHxAKIKqKTCMfEAiQaDuw418QE1PRCMek3xAiiMUBWmVfED2NjmqWpl8QJDcV8rCnXxA+rkjO4affEC+prI/9aN8QAOJ1aIjpHxAf/gwt/qkfEBsZkUhG6d8QFK+Pp6/snxApM7LwHq0fEAQ+3rbh8R8QDYgd2DM1XxAwg4Y7PbbfEBCuk7sV+J8QG7kZl4Q43xApkIQ6KbkfEDUgNp7FfJ8QIIYMtdT8nxA+v1KzXLyfEAse61dbf58QG5ZOmRbAH1A9yi/swACfUCe0d13SwJ9QFCLEAkBEn1Ak2+enkQSfUAhm93wsBt9QIQFKTH5Hn1AkBe0JD8ifUD1u1Yw8zh9QBrmvDYkPH1AnN4YHwlEfUC9lbAWenR9QFSDXEyDfH1AJp4r4JSNfUC7pNgVJ8N9QHL+KDTww31AkENfEOfEfUCmyU6MD9R9QFRec6L01H1AEnLJgwPlfUAWomdWeux9QH4YS+6Q9X1A6nij7jQAfkAXD0t1QhB+QDLakA4jIH5AVvpejfojfkDYUV1DIyx+QHqk8JA+L35AHKFue3Y0fkA3Z1r0CTt+QNaTz2pfO35A6k5IXhNDfkDsG8JWoER+QOK6brD+Sn5AarWvSR1LfkD4ry8LwEt+QC3UTpLoU35AplEwoItVfkD0ucEe9Ft+QCF+02tub35ApKNw+rd7fkC0nd+yyoh+QL1Eqt/dkH5ADnChDSySfkAA5lUXprN+QGrNskTps35Abgul8AW0fkBB1t5fEbZ+QCTO7aMovn5AjibWyRDCfkCGY+wytMN+QPBkU1UhxH5AsFNv2dDEfkBsU52PGMZ+QJ6URemnx35AOJeZwXHIfkCafuxUStN+QLS3u5SU035AePXKzMHTfkAOndnm4dR+QCivIRtQ235AblppATDgfkA+oxzhoeN+QPLR4aTm8n5AzApku0/0fkC67tA4ePt+QB7IVn/W/35ATLy5fZYDf0Cinickmgt/QC6MIEcdDn9Ay3Q7OEITf0DIe3OgqBN/QNrDdaMVFn9A8t2iDksbf0AAEamMUSR/QKJAcc5kNH9ANpC+e4pYf0COtWYwrlt/QNxTevu3cX9Ayf93wrWBf0BA+raqYpF/QPUJdAeZk39ALTCn9KKgf0BduCncXKF/QPYY8zVBo39AOztPSFOxf0Ai+zsZN7N/QBaKbpma1H9A0SFJNszUf0CEnIiiMdl/QLrbjRWf3H9AS2YO8+jrf0ASyB/9Nu9/QKX/hcrw839A6AbekpD0f0BAmbqRSPZ/QHRny6Dp+X9AdvsY0vr7f0AWYCMHQv9/QNBTerCHAYBAEhxMl0wCgEB2Y5X9+AOAQJJcDyI1BIBAbG3r7NwGgEAeMNGceAiAQOjboyyLCYBAzvIFSiMRgEDYsVsbyB2AQGhJyg+pHoBAvpSv+HkggEBMuGr5wiGAQNk6rEZpIoBAQABjaeQmgED4mXOykSmAQKJb0LfqKYBAKkPOBnAqgECim7DTLy6AQFqPhW3nL4BAeqgkQo0xgEAmCX7BfjKAQEEcl8SnQoBA1o7f++1IgECI9UjTrEqAQEMSDnzCT4BAZEWxIedQgEDOrLkWE1GAQN6zMySlVYBAKjeDW+hYgEAP9ikgDlmAQJDIIWMfWYBA2NXTyadZgEAMY/vCn12AQBC64iotX4BAugwA5uJggEBhOJLYMmGAQBJ329/EYYBAmRzgVnFkgEC+YV156mWAQHhDwb9taoBAQjNfFfFtgECrMr7lKG+AQK4ro0rScYBARL11qPR1gEBOFLrbTXaAQMAxiNYof4BAkl7LlBWBgEDYHz7taIKAQJjYlXKXgoBAGhDX8LaEgEAeZ3SFooeAQNl4DEZXioBAou1Z9eiLgEDmaoYEHo+AQOKcTNANkYBAhuu5wBuXgECt7nIZ5JmAQN9u4r0Zn4BAPB4wmYWhgEAYlggtCaSAQNAa0IDzpoBA6gfSxYipgECq392Mnq6AQGCk1snwroBAqDtyUBOvgEDMPi8Nsa+AQACZY81vsIBAurogYUuzgECT/Sw+ELSAQDyXDG9xuIBAOkQKI7K5gEBa/4Sf3rmAQM2XAtIGvIBA3TPzM8G8gEBMIXO8er2AQM2r5f40voBAeES+IP6+gEBV0CHDoL+AQD5+G31SwYBAbaz5bJ7CgEB81LdEU8mAQMi9SlpvyYBAihlFSKXKgEAC3URATMuAQHiL52z/zYBAB8s0eAzPgECS3CSGcNCAQOUPJ90j0YBA5pVzbkzRgEBYwPocFdWAQM1Iqsgc2IBAzFbjKmbYgEB25iQCStmAQMjCM3fB2YBAAEZToxHcgEDeuplJwdyAQOAWzKsQ3YBAxgZRv8TdgEDwa4WhwN6AQPTJ7toP4IBA2M6/zUThgEBmHjHsV+GAQIrxI1Bs4YBA5g5lxDbmgEBaO+4xX+iAQO5aMsal6IBA1oHiavjogED6XfFsTO+AQPZQHq4+8YBAjMTDUT3zgECASK1h7PSAQH1WEJrj9oBAmkkxumf6gEDf5rWTP/+AQEZrFG2kA4FAGAQj1gYEgUCCJ7RdeQWBQOa/p5w+B4FA2O2AFekMgUBDRO7WPA+BQIrI2+QgEYFAuMEUBRsUgUBsoSiSSBaBQNS7OWBqFoFAAbIMBAAXgUAEKTQePxeBQG5750dbGIFAclntVL4cgUAwz1Sr4x2BQE/0BGNQHoFAPAGTpzQfgUCgijmAbB+BQCQYUtlUIIFA8rbaDxkigUA5z5RnCyOBQK5FiBk1J4FAmniuLrUngUCyEKI8MC+BQGQdlZ68MYFAXd4b7Cg/gUAxd5HkIkGBQCRJoD2WQYFAPgUziBpFgUDGktrWWkeBQGJoLTwGSoFAgD6KuLNMgUAEXfGRz0yBQAj/loFnVoFA0ClaUOVZgUCuqCax5V2BQFY86c4wX4FAY9+APvVhgUBEOh5NMmKBQJy+42ASb4FALv2fJtJygUDoRvGWP3OBQDL7oQ/CdIFA/vb54213gUDyvtmuU3iBQIYNiYs0eYFAeMWnvvp5gUDVgnnUYX+BQOQLHs/piYFAwDKkWAeNgUDJ8jar7o2BQCL7w8JVj4FAwnfoxbOPgUDq1b78O5GBQBKS+SDwkYFAgAjiSe2WgUBim3dOVZeBQHxfU+acnIFAwu76pSOdgUDq96vvQ5+BQCxxJqB0oIFAOjmAuOShgUAoC2ua9aGBQIrb3F/eooFAMCXm7c+kgUArFwKvbKiBQCiBeonUqYFA4IBvi3OtgUD4bquGr66BQHCq14xKr4FAVKfNkmiwgUDA1c6HS7eBQMmD5/hNxoFAdj8LWvnRgUDwPbPEftOBQKXUaLf81YFAOTyq/O3ZgUDyjT9jAtqBQNvZm1X33YFAohyqTAbegUBawbWEaO+BQCGmrFNf8IFAWUhIV7HygUA2uPU/7PmBQOSb0kPw/YFALujTPG0AgkD+kMBhSQGCQBZDt07hAYJAB3lJmvUBgkCxQlXY1geCQBmcOn4DDoJA+RUxVgsRgkBQ2GkWCBKCQEsH8A2ZE4JAIHLYLQoWgkDiVT+Y2BiCQMZQ8fLWIIJAWhFAXWgigkCEWkUZzyiCQNN6tDsHKoJAruq0UaQwgkAEX6OiyzCCQEBcxjARM4JAbk8uRgw+gkCc9qJIWj6CQCC1yw6rP4JAXgj+NQRBgkBOHNm4D0KCQOD0dTGiQ4JAD2HjSBFGgkCcxda/x0mCQLg2qELOToJApEHaHK1PgkBi9bZibVCCQC7Zl1c8UYJA0DIn/tJSgkCiVoISblaCQPBpWX/NWoJAZLuqx6NbgkB+qgs8O12CQPgx3Lq4YYJAJMWymTRigkDhi054vGWCQPJvlbwPZoJASowpDjdmgkB6lQUPBmqCQHB+ONg9aoJAQrLN29RqgkAuXjeEfGyCQPx++irmbYJA3Ok/WdxygkAsZAipO3WCQHCElNcFdoJAmABkr7t2gkAxwmBwj3+CQFwuVDhDiYJAbBm3lfKJgkCtFdCkzY6CQA54GlQvj4JAlGX/NUORgkDuAkHVHJmCQDbUgwA8mYJADxDhRVKZgkC4UqbpFp6CQK6tV1ZXoIJAh6ULgg6hgkC+2YAYO6GCQDwToHlyooJALKN8IMqigkAvTCimcqaCQCKkU+gNqYJArjnidDOpgkAQIQtd0KqCQIZrTNQtsYJAoh5U1PW2gkCCr9WZrLeCQHDCgqliwoJAru4JtezFgkB+2BrZ78mCQHjzE7j0zYJA4kUaYOrRgkBKVPMr3NKCQFYA4HF+2oJAGGkOPILegkBqOzcAheKCQMYQ00it+YJA0zg8puEBg0BMtal/5AWDQARyR6vdCYNAxIdCtV8Kg0DU7SrT9wuDQNod/qffDYNA5qO2iXkRg0AIx7GW1RGDQOzDZdt5GYNA/Pq0LEocg0AoUG9yiB+DQO3c6axEIYNAquNKdXIhg0BUwsUxOCSDQOL1iW7vJ4NA/pChWnEpg0B9BSBS6CmDQLDiNf/tLYNASvG7f2Qwg0BOz+xlajGDQLR3Xl8vNoNAaKlBtmo5g0AD+wJulEqDQNJorl7fZINAfgzVI9dmg0CgPP7zGmqDQJzNemd9cINAZ8iKtPFxg0D2ycEC6nKDQL6DCf30dYNAKuF/6MSBg0DcYPcKyIWDQOJD+g69iYNAwphkmsKNg0AlMJ42yJGDQJxRqK0SsoNAuh2yiBW2g0BYtuzAF7qDQDCp8+cPvoNA1EfK66S/g0BweXeu1r+DQOUTpysUwoNAbLQNWiDFg0DUfosvzceDQJiPIl55yoNAjFSg2SPNg0CRnITsydyDQL7aKmt334NA+5NsjSLig0BW/Etdw+KDQGlJa9XK5INAfV7GhpX4g0C+7GmKqP+DQDI0TQ22AoRARKNHU/MchEDHJweVmyKEQOaza7hQJoRA0NdZPow4hECqQHt6T1KEQDoZvQHaVYRAFnx1RvNWhEB0Ku1ylleEQE4nqhbLZYRA2DkNqnhohEAcosmx/miEQCUSDQM4boRAnNujfv5whEBf/EaKPHKEQGbgXozqdIRAwlVSzbh1hEAsfPioyXeEQAgUO2n3eIRALLjlA715hEDzhDMOYXqEQMBlFf55eoRAfqOlMBF9hEBkbScYK32EQGC0eP/Cf4RAOXNri1CChEBszXRZboKEQMZ0hGkchYRAqE0RGsqHhED88HsgH4mEQP5j5KN2ioRAlO7P9KWOhEB2goPLw6GEQFIxKlJyooRAv7jpoiClhEDaN8wjLquEQNjmoNvntIRAuJBlfFHChEAApOJHFsqEQLJoQvwZzYRAxdlYDcfPhEDGZqeuadGEQF2t1cZx0oRAkKndAGrZhEAIx93tddqEQEYklTxq4YRAClOzbNHnhEBom7m4YumEQAi3Q8J96oRAjucAvsrrhEAyvfiUNfGEQAamEK1h8YRAFCspfN33hEA0MSzjNfmEQC6fE+aJ+oRAaiTdji8BhUAZnxGqMwmFQMZ7om40CoVAtLA45PoWhUAg/P8K5E2FQP79//vmUYVASrAcNetVhUDy80H2P1aFQCScJrLYWYVAUksg3EBahUDQOlpooGGFQJnBulSgaYVAqg0CelFqhUCqAi2bmHGFQBNKm9izc4VAkIQe9Zd5hUCArFk7qnqFQHDTp7y7e4VASoqGQ5KBhUA89Tj4GIOFQGWYI4RFkIVA2jQKS8SZhUCSp0jvWLeFQJYm4IfMxIVAWDcpX6zihUCq89x5/+WFQGf0UFuu5oVAyrbUArPqhUDqMDZ0WQiGQIrrm5LNLoZApiHNI75IhkCmC63CJrmGQDDwoWrRxIZAelCjsLHGhkAiHP3i1caGQBZrdu7SyIZANoXuqUPKhkBODZkAN+aGQNTW45Ve8oZAui+2MjMXh0CojAoOkSmHQLB7QfSRMYdAjJ1YXYo5h0AgZfuDz0CHQMXzxmNhQYdAwnA1h5BBh0CEk4Mpx7GHQHwKGS7IuYdArwP2B8DBh0BWz0HSwcmHQDQdpHdk74dAtpwZqGXzh0Aa5n+vSQKIQBacfrVVBohABI5BU8EaiECQWPJ0XiOIQMpYhcpQU4hA + KBZXds7jZUCN7m7sniJrQJzLO3vnAXJAA0krmFUickDDjIPylRJ6QCoKcw8EM3pA4N0/3e2ifUAy1nXy2amAQB31RJTY+YFAX9wamDvSg0A7RgF/MIqFQO4EeY1nmoVAzialuoeSiUCC5RzJvqKJQK0Pn8sK24tAxQUl6b4qjUDaFURxbAOPQA== - + - EriyROEPQ0Q3xWhEO4TjRXhpkkQETClFMqV6RbeZh0TmTr9EJlS9RP5lxUR1hiFHLSeyREaW50RlTKxFv8uNRLt+DkUwUalEZ6prRC98lUUzlQpGOU2BRTHuUUQo+KVEDpKlRhZIPkWC4YFEP4dwRBhgskQ+t3hEp5WeRMdX70QKxWJFzGCXREFZa0SAMbdEklIPRVaRlEWpsRdHylekRCsRH0XWA1xESoNFRGcin0Sqv1JE2o6gRuNkm0Xlop5FpxqCRAFFVEXoi4VETPJNRLyb4USzE61Gkv0eRdOvv0R4yeVE2Fb3RI4X2UXt4QRF/RcwRf3ehES+r8BEEpfHRIuMw0Txcp5EpjC7RD3oXkRP2gNF9UXJRFKs80QebEtFIwGzRPvpOEad7BZFHQzYRDnXlkVzY/tEsCycRNe1AUVyLpFEFQ1MRdtsz0TeHo9EBZrWRNwOpEbIWeFE5JoARTS/+kUifdtEcaOnRGeWskQqAiVFzaPjRjy3BUXJ4QJFvT6WRJZbkEU7eGNFbhKKRF7pU0ScJABFnxj2RBqGdkXOD3FEwzFcRyDtl0SSdedE6o5/RszkbEQliIBEL1cYRq2230QlZqtE56VQRPITCUZxxpREFmyvRPxli0TjvGpFHkF+RD0LYUQDdMlEUgTzRMbYW0TKtOZEQjxeRJhVQERcRFZF7nBTRX4AlERgtX1ESIWERClOXkVtRwtFtlrFRKAhC0bmhyZFjCaaRC6iWUTYvY9ElddpRY2GdkRMtApFlAeJRLP3YkRQqGxED2CyRRtwcEcHZhlGIdKJRHsf0kXuBqBEV90ZRUKRqURv4EVFAdSzRQPRAkWfRj9ExI2PRFO1UUSiRSNF+FELR56hLkVtgY1G13ADReRozERGnHlEdic/RccGb0SCMRtFBJuNRUnpT0QxBYhEeqmGRKe3A0Vv+W5EayFjRIoPlUROuxZFwclARG1wFUXnvE1Ey4rLRPIcfEQdd5xEylU6RJVynUSBJ3VEPX6IRe1vdUSpA+REbHtiRA4UAEX/oIlEXuKzRKvylES3UTFEu3H9RLXSNkUBGUpEZZfPRWnTdEQx/H5FhrOKRTDPwEQ2MuVEcrhwRA0vp0WjZ3pEyghZR+T7g0QM1nFEUAtFRdb7jkQNtKdENricRYHaDEX+dGVE7VLlRbj6g0Rof8BEkb7sRD4BTEQA43tE+Y/MRV4XfUQdEpNEiGIuRHXdiESQbE5Ge5qJROIHqkQ3OJ9EXkzTRCMRbkQ/EQZF7zgbRbx3hUX89lREAbn3REmRRkQ7AgJFdyP5RD7+ZUTOExFGw2s+RN9FgETlealF2w7KRLd1TUT9GwBFJSR+RfsZmUS1XVJE6OOeRJWE9kTArLtEb4+GRLtz2UQQ+4dEy+yHRSpiMUSJqDZFqnFzREdxWUTUuOJERIysRCxfBEWyAUJE8GXwRFBWrUQnxGBEFy2GRPBkwEX52uBEv+yMRGTRm0RrQuhF0UGARHCl3kQAhpZEBcCuRPrGgkQSsf1FykLrROcN10TsxfFEyDMiRW26bUS13/dFQWM+RRE9WEXNX4FEsONqRL5eakThLYFEDxrtRNDLhUQ+kYBEgWcbRd8imUT3eYtG/6+sRAD0l0VjJn5EKDlSRRJfPEVxLUFFdL4pRv2LzESSiJtEpcyyROXU9kWSV2tEti9ZRHhusUSTlbRFtniQRR4LrURXxIFEq4y6RHbHd0Rv8o5ENZXKRH9kQkQlT2xFYpJ1RDMJvETAs4tEtsxMRSIL3kTU3JBE7AMrRd4Wq0RTprtEwCAaRR2g/USTMH9ELDotRViFfkSmnqlEPZF1RsBTtkTMUMpF52FiRBPVV0SdkHREEdLRRUJZtUSNbcdE72lURL9At0R9MsRE6LmqRBY8mETP7YBEk7u0RbQ4gUTdLSNG0QXURXGbzUYUZXhETmUIRXSv0ETFfq9EXXCnRC1ChkXu/whFItCBReAYdURkab9EzLM4RQB0g0SwmDRG7JI9RCPGvUR4rJlERJAvRc/hm0R0I0pE9HEyRBPQSUR6U69E0nRMRLHSfET8qIVE+CINRRojrkRMNZ1EocihRE51UETVdVtFvpWNRWdmlES9XrFEYWLnRPjnXkRJ2XZEY0NlREtCUkSajHdF/nuoRCaYi0R9fJJEqhs/RF7slkReRGFEWaQERerrgkRZnolEmvOnRuSCd0RxJEtE3OGRRQjKp0RSF2RGaHTrRUB++0RKFAhF5IYCRRwmhUQY3/9HDxHcRJgYtkSDgpVGkBvoRTgh10bvcLhGeSq4RZP4TEZ5icVEOXHZRHZuL0UYz2JETZrrRPmEa0Qv1rFE9h4KRUBZhURb/0FFiRxzRBRTPkWRvy9Fh1eBRLo4dEQBCiZGFvW8RLtHoEVN03BEufWYRGEJh0S7R2RE3eWuRG3TeESX22ZEICmjRCShk0RZPlpER4GsRJKEV0Q+dV5ExsisRIsTlkdgCKREqG48RaMaYEdMbJdHGXOvRlw3jURLwBhHiSuPRewFrEU6q8lFi5MhRfvbW0SdGjlEpNGJRWEfOEU2KMZEUxMaRRXLlETMustEAmlfRb6GSERYzDdE1TtbREbUxUWJ40dGAmeCRbe+ykRzd1REWZZYRVqzNkUS6UxFL7gbRTxe0kTq+0REjVVXRJfbP0QYfhdF3poNRfGhSUlHs+VF5qf3RODRtES6LtNHw0SgRMeiJ0XYXmRE1t14RFQeNUdyyUxIHfMwR2bS/kXa4PpGASgKRYw5r0QjtQJFrXyuRQYPokYOH01F+oF2RAnFrkRWH5REzmuERPOTDEWPEuVEnYJjRIOavUTO9WFFuuFsRIY3XUTd2ZVEwJlhRQkVkkV3QHhEq0iYRC6VW0RpNsBE7u76RD2jS0Tyz6dFj0lFRffR5USMo9dEkAyrRZIJeEb6VRVG7l0GRT3y/UQL549ECa9URKcLTERP7wVFwQrzRPz5tkRNPWtEdvJIRMD4a0VLvJBEAd1SRIluj0QGpElEFbUcRQ0BfkTGCVVE5oMUSDdinETlid9EnsRWR648qkTMnCtGEG2GRDcMNUUgB81E48hYRVx6KUR5K3REFWlWRPvp1EUBq1pE4CWlRMn4lkQPWJNEAdFZRLAfgUTntcJEWJyERWhFiUXgibhE2jaXRBbnREREiYtEGe75RYI3rkfUKM5Fq/oIRT95jETNmqhGLuSBRPvC/kToyPdFcNwnRfx+SUTL9l1ExdO9RYv9ZkQH/plEWBYNRaHsc0Qrf6FFY25bRDIEW0R1709FIvLQRMiawEQsE2lEpNGIRHWYhkSYCThEzOKaRPZMoESIqQZFuvUQRv0GukQT7xlFiZkoRpItVER5VGdEXgVARa5nUkWn37tFESZ2RAfTJEXRCKREaF1nRNs0g0SOjn5EArNnRJmHV0XEr7BEcd5GRG1b0UQZ51ZERt6hRLznyERZ8YlE1KTXROlUhUWSYpREoxSMRqoxRkabu2RFLNyMRVDtb0TsNKtFBNN3RBIbckQk25BEQ3KNRCsGg0QSb89FaRvkRC2nwERElFpE41GDREOksES77FZF5r9lROlMh0XSYbJEzSNHRJ4P40XXk3lFMX67RPn2d0RpjahE+ThhRBypbkTSpkxEyvOBRP7JaUTKNRBFVfKTRhGJPkWdsblEKC7hRGwQ3EfhLCdFTjiTRMsYDEVYXMdGrVxbRS9lh0RGhHVEDYgWRQtEuUYC+EFEqsYlRXaSYUXvXV1EkUiDRGBTiEQRK1tEl0E+RAmH1EXTogBFbjc/RXeR1ETFsHpEc+ynR+x/RkQOEIhG5OzmRLl/e0QtMyFFZAtCRpazkETe/U9FlPm8REentUTmyI5EqoPXROIYkUYQBYxEJjShRbPjAEXGVqNECKGJRHKGiURgdlBFxAuRRMj7ZUSJC1dER1qARH1ZVEQcUpNEMkFcRFqLh0gAlbBEewugRJBXpUQexnBEg/2DRGP3YEdjbkNEf2qIRRYuokS4tOJE6JC8RKw7WUWNuBdGem6sRRG8okSKX7dEIMZuRALPC0XQn0FE9LNrRKxgeURDW0ZE5xIbRS47bUSqcYdEREBGRYT70kTY1ldE0cbKRBp8ZES85a5FL8xNRFo74URrKj1FmLafRCwfIkZJ3OJEsVAPRTbqIEXJDapEfVANRRONT0QeUQdFFhM2ROrRhESnn45EVzlwReo/4EfshupE4sWpR+4IcUQ+2CtH5XaWROsJNkYXvQ9FLcUyRbqziUQdP5ZEQQyERE2LrUTwl6hEiaVuRJyAV0QfKPZE9mudRGRqj0QaS8NGqZgORWTRKUWKZ2xEkhmrRb4BqETx/JREcypfRKpnYkT8ZCBF9Hx5REX3UURlR5pEHpFgRendQ0bDpx1F4qy+RMA6nUUPj/dEbkC/RChhW0QMQ3hEnGRmRCeuyETTnyRFI1jBRIoXn0Ri4Y1EkCo0RVKBZEW6nYhEUj1gRHuTPkSo8pJESAPzRDaOUURXsIhEpCxkRFnKnUSc+UlEnkpmROLGGUYBHZBEHvPbRKuloURlLqlEbthGRKZvp0T+yBFFUF98RBjDb0SD1YxEqmCiRbseAEX1i9dE+da6RIc9d0Qo/X1Ep7dLRFW0nETV0hVFOK+qRJ7sEUWzwylEfUVrRL0CtERFf4hIb48bRg7dAEgh6m9EQGUaRYkaR0SLjndEm6FfRK6LikQ5uGZEaP+MR1y+ZUT1l3NE/6xnRh5rZEb2xo1EKFyoRPJ5ckRzempEP+9TRLPTLkVWc3BErMGqRV/+mkRJSj1ES/KBRMFp70TB8GVE0qSKRByA/0QYDlhE7VsDRcT4dEShuC9EmCLARBzlbkYas1FEn5VYRLrDm0RyW2RF99JoRDZOf0V0FHdEnndtRAB3TET9r1pE3pSbRFtwU0Q5nZJEGpxNRVtCfkRflFdEYIfNRjDaNUV2bG5E3DB6Ra7Dk0Qy8qxFrwWIRI/hHkUzwZhEe2utRdEue0QVOZNEaIN9RGEPuEWRuKVFN1bmRAzg2kSiSHFEaVYpRckhmkRJ/3xEDJVYRAHOU0QQgHFEotpmRGNFoUR+j29F5yMxRWMiS0Ry2YNEgot1RGF+lUTzEdZFbYC6RAsMTUUIxAtGYRN8RA1EgESPrbREisLcRC2AKUX6QaJFdYhRRE5AF0UmZZhEjEGmRGb2A0XvMoVEAs+aRJ+lFkUO7odEuKi0RMxuiURMVihGRNR7RLefLUVfQnBEY2NwR5qOJkU+5f5G6ioURfZE1EWK8ndEqFK0RJtrPkQVPYREgd/HRC2XykZfUTtG4VKXRAFKlkTsF55EwF5SRWF9mESsoSxFliNQRClo1kQAgo5EK9yRRP5VYUaNi41FjUuORJCq3ESHHFZEN8GGRD+teETG/4BEU+T0RQyAk0SG28lEa8ITRdRnnEXpb/FEaxJPRIi/lURW1XxEOgLRRLy6dUS0wKhE6ro6REpiCUUQ8ZBEs5SDRAbiUkQLwJNFUHMWRhrCSUU9Fq9ED8LTRXjKTUS0mpZEsjCMRKaeXURUG4hEPOGxRJG0zkS+7PVECbg6RNbOdURLWOlHccV1ROxIXUQj35NEyFtDR1aXpEQHmehGER9pRRQub0ROPH5EhnupRV0nBEZHr/1EVbF7RUmrhUT/G/9EGUpKRUjmaER2nZ5E76k/RHCzVUTLKLtEI11WRxei60aBt71Fg4VmRTw6fEQ3fRJGq1hsRVuOyETNgc9EwfYvR7g5mUZkOItF6VRORBkrj0TG0EhFEkAHSLYMd0RRHWxHEu2FRLzxaEQ40jhExRkVR63bY0SjYkBEAs0rRit4MkTC/JJEGJB7RNyHR0W75W5ES7JuRIK2ykQSTG9EkNhTRLB6dkS6zFZEolmTRf5s+ESEr9VEkkwqR9pSvEbYIARGDoyPRatBYkQdqEVI2YEASA82Dkf3CFRGZJWNRIV8W0T9jTtF1ZisROMqO0XF/6NE17yKRNGrLEWO4DFFwxMRRaGqgUTDza9EurJNRA4DvkRXH59EvgGFRIlOTETEy49Ew3WHRDyaWURWsXdEalFbRCVjb0QIU7pEeo2oROF83EXBCs1El4k2RawVj0R+IH9Evi6aRbRsOEay5bxEntftRB5Ji0VhxQZGCsLERbJ2ikW49ShFd3CSRFc2rURtbzdFI7QJRSyCb0Q/94NENonXREguc0QYUQ9FpUS8RFV+WUQALm9EAZpxRLrtiETYS5VEnfOdRMWaiERWL5dE4lcWR0rGQUSbhIlGyWbVRHRiNkbbe1NFj0SeRK8Ep0V7oZ5FdownRayuKkXlclpFUecHReC1XUTGFFJEQftWRCIFpEWvHrdE18SaRMQn2UTh+H9ESvn6RGi5FkdxPZRGFNBtRKlUKUb6v+ZENuCGRWIVZ0Tr0XBEtozSRHclXkSsZG5EkkJIRACV00QwbF9ED5VeRhFwe0QP7NxFPBmDRRH+1kRPu61EMu6yRFmMg0SDDDtFvtYpRKCnN0WJo4hFoJeWRAAgaEQXuuVEXkqnRPoAMEYvd/BFhCNgRa+cbERLoqBEF/qbRP6qHUaVq89FKwObRSD9vUQleAVF3kGzRIGHq0SKZXZEzeelRCy8jETGdrRE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - lmOG993AckAPa5oeDMFyQDy5uDJuwXJAYFI+9FDCckBk3Wipp8JyQHmkskfmwnJAcQa9PDzDckCIajENxcRyQJLP39tZxXJA4oCQeI3RckBQ21j+D9JyQLwCkGdD0nJA1dL6W0LTckDRkbDudNNyQKDSEyLO33JAR9V7qSPgckAWoGr/t+ByQKbLUqdM4XJAON7O2PnhckC+nZtaUeJyQKjITX+Q4nJAmpzCsCPjckBcLUSKMPByQII9HO2m8HJABkFJ4DXxckB51hInTvFyQGYFanLI8XJALuZXtxPzckA6IHRCuPNyQOJcx+YM9HJA1PpBcqf0ckB9SOtqwv9yQLo0Ozz4AHNAwbqfMEEBc0AwGnVPOgJzQKW4l1HQAnNAbIk2XmUDc0B8mFGx+gNzQC4BRFB1EXNAfJTDnrwSc0BIC8Ns+xNzQKthGalNFHNACU3MyXgfc0Co8d2SDiBzQL4dCoCjIHNAarcIQDkhc0DmcUNYZCFzQACqUl7LInNAKY/VSBAjc0AYfKNgOSRzQMc4Bv7OJHNA8H8cGFwxc0AbTTdaaDJzQKZByXDMMnNApJYNEQIzc0C+7ufOnzNzQO68FBL6M3NAvty4lbo/c0AoAbHT5EBzQKkovWB4QXNAwF9UGLpCc0Cm5ujbekRzQPYeAQd+UXNAyovMuppRc0AmRuC6GVJzQLwOccpCU3NAyQrp9aJTc0CqN05bh1RzQK49fl2MYHNAYsM4Gxtic0DG2XgGOWNzQN5WzEDganNAy02ZGyxtc0CueQ7EanJzQPL1sOGEcnNAWjOfObZyc0DuBp5oi3NzQN1WJTS3dHNAlYvuWUx1c0CMRWaMw3dzQPCWxQThd3NAvsniOnmAc0DMrnDlpYBzQHL1J4wPgXNAIBhnDl2Cc0AqE+CZpYJzQCRAKBYDg3NAujBbYTqFc0CWcf95iJBzQIN9BcX4kXNAJszyQU2Sc0Dq1qGzy5JzQLzmMcNilHNAiLoRc/eUc0At5YcouaBzQFSQWDVPoXNA0nnqRVuic0ALBtfzj6JzQOh/Mf3GonNAjHSbN+mic0AQwNHhBaVzQB7hPVKhsHNAdhM33Newc0B+F59KNbFzQMaksSSBsXNAFLy0B1uyc0C8ZeS1ebJzQMpQZc8Qs3NAaLi9urezc0DwnnI+DrRzQIak6uliwHNARCqiopHAc0BqP65GtcBzQLgpfBD4wHNAuG6hgQ/Bc0BcJj61jMFzQNx1nW5ownNA+rb92c/Cc0AO7mZhJcNzQFKFJebY0XNAN3qchDPSc0Ci/dSdvNJzQMirHoba0nNA4oaURffTc0DQepyI49RzQMitpy+k4HNAJIQxL9Dgc0AAA2Sr8+BzQN5AnqU44XNAVxL3TGbhc0DM8KmLeuJzQOLQsxsP43NArLDbV6Xjc0CEjn0D8uRzQG8mtU6y8HNA0Knke9zwc0Cq8Po89vBzQPudybKN8XNArIyG5zf0c0BTNCt9j/RzQPqBUh/kAHRAxP7YgxEBdEDpBiyheAF0QDKSuu+mAXRAa1J+7vMQdEDHU9SniBF0QHTYIUilEnRAvzLfn00TdEBAxGRa2R90QGNibM5MIHRAYrIGbbkhdEBdYRiejiN0QEAsp0e5JHRAdGzvwFQwdECR2Z7GEzN0QMkcds/iN3RA3DsB/G04dEAmOYnKOT10QCYgBC5SQHRAnpOPkztDdECOARFkSU10QJEOzNfOUXRA9j0pjDNTdECO5L5L9lR0QCoybdeMVXRAlrGZLtlXdEBnZfbwIF10QPx55YW4YHRAlhou2QhidEAJf7woemJ0QLYy3rfEZ3RAzLRY2CJwdEB6whHTQHF0QKxG+jjpcXRASUQTg31ydEDw5GmkOXN0QGqFYM83dXRAA4iXXkOAdEBqeDwS+YB0QEKY5LMigXRApICJQk6BdED8ft/3SIJ0QPQOMvklg3RAVsEb3GKDdEB+W214FpB0QFxAq7W6knRAlkEgJe+fdEB+h0KzDaB0QM5Uzkk6oHRA5plwqaKgdEANus4y0aB0QF7O3D04oXRASGVkicyhdEA/i4QqeqJ0QLTZZNm4onRAamw9cw+jdEBuGhopCbB0QJcPmYYusHRA0Imms8WwdEDku27D7bF0QHx/OmwDsnRAa/FsK2+ydECPpRof/LJ0QOY2YqLKt3RA5lDa1iC9dEC+j72z3b90QDpzPe9RwHRAMm2NXeHAdECmgP2yeMF0QINvoXhPw3RAS4YhDn7DdEARSOlHeMR0QCjfJtu3xHRAdT2jTP3OdECyAPf6W9F0QFzq7t4Q0nRA+BHh0qbSdEBqIjYv4dN0QIKZwIDP1HRAxk5iLSPhdEBaNovJT+F0QMRBd3e34XRA6l4V0hzidECgZVI++uJ0QNBn/tOP43RAbBhcjbrwdECuXQu+KfN0QPRB31WM83RAwCsO/nr0dEAshKo2pAB1QI6/2FPCAHVAgRGNnM0AdUDu1jgd6gB1QL5jSQYNAXVANk6+sF0CdUAy+tCsnAN1QNg4CxaYEHVA5JU/RiMUdUBxzwPiFiB1QMuXdclQInVAv7tOap0idUA61LtN5yJ1QI5/ZLB7MnVA+I4aO8w1dUDJUG7mEkB1QGrfC7NJQXVAHPuYNN5CdUD0B3n+9k91QGu3ARNLUHVAnpVHU2tRdUB0X/zpf1F1QK6yKI9NVHVAqCnycXdVdUBcUUQlEGB1QL4E23c4YXVAftRtE81hdUA/Z/bR9WF1QEC0Gh9nY3VApNscQ1ZxdUCtkR4Z7nF1QPTmyu53cnVAiDZ1co10dUCMeglTUYB1QGYAsTZ5gXVA0PPmga2BdUCbaI1J5IJ1QEQ/nz6ng3VApnI6LBSEdUCSZlJO6op1QKZtxfCMkHVArwA3lr2RdUBqmtdmcZJ1QNOA4aY7k3VAWniUE7ihdUC+sDFUS6N1QFpveSe9o3VAsPr9/aOodUB1FklFOcB1QIQ8O/fOwHVAlVA3bvnBdUAwYFEXpcJ1QHiM7XN9zXVAD/PaW87TdUCGIgAe5d91QHKY0ct44HVASBdTEMXgdUABuj63DOJ1QPRfXrQ25XVA8k0WU0ztdUBHwQZhpvJ1QHhqSFD+93VAZOeDZEgCdkCI42mOzwN2QAq3b9pPFHZASusSvAsWdkBk/vRwHSB2QPCMeaiIInZALGO8cY8kdkAigdmHSyt2QLAaf3wfMXZAADg31pcydkAAroBWJjN2QDeBG8xSM3ZAKlOFA580dkA+o2D/5EB2QJzPdDIdQXZAbNhoOC9BdkBfBoyPykJ2QOjwXvN5RHZA2S0yhRFRdkATsiufzVR2QODsZkD4YnZABg5lGdtkdkAtt6CoWGh2QEuJ5GT8gXZAzzGrfGaCdkCKGj9sa4N2QNLUOYSQg3ZAApKWcnagdkBUI5lUwrJ2QP7t9EgNtHZAmGrZ5nXAdkAUZrEeucB2QCLpUUnPznZA3TmzfHzQdkAAbzpWw9B2QFQ97j5+4HZAWSAqEffhdkAiink8kvN2QGh901tQ9HZAJux7KUsAd0ARiWqyMQJ3QN0pFSYBEndAyEdMmg4id0D94guaciJ3QH6XtoK6JHdAzEfcrugnd0AMhnUCQy13QC6gqDFaMHdAEWu6knsyd0B3s5c6mTJ3QDTPLlkNNXdA2uTaiDpAd0BSUuHGnEF3QBPIC9yuQXdAr6rQHZFDd0D8WRuSG0V3QERvGTkHUHdAxE+82EtRd0B8He/7klF3QIDZyrXfUndACDsCIiVTd0D+q2a7nlN3QGogOYMpVXdASjiPxHxfd0BWSxG9FGB3QGpa608PYXdATKb1KUdhd0DKKOf0j2F3QGPmeT+iYXdAImKKUqtjd0AoVD6kJ293QDemGwL1b3dAqPLHuoZxd0B+ehyBn3J3QHQmsG+yc3dAVPUMHPx3d0DuakziQ313QFl+EqW6gHdAJpPVjeSBd0CI4Y03S5R3QAt3QmLcsndAtNftXJm0d0CriXlP6/B3QDYJIXty93dAnB/ghn74d0DaTxaDdft3QMpCGdFG/XdAkrV8Jtb9d0CIjXjTeP93QJplIT2gAnhAPgfVw3sDeEBwV7w0fwd4QFge/MPmB3hAQhuDL/wHeEAEDaM0QQ14QCbBriRcDXhA1FshkuYTeEA5p5t5bSJ4QIjvSMs9I3hArOJYcYkjeEBuVtWJ0SN4QE5zwolDKHhAz4xjmJkteEC2wEbuHzJ4QLiCig54MnhAWIWg6d4zeEDUkjdCEkR4QGl/8dt6RXhAGXCQTMpReECUTc6blVJ4QDtAZV+JVXhAoQhV3u9XeEA4p1zfMV54QCTuaPpeYHhA6s/6NPlgeEBjuK//tmF4QCwnly7OYXhA0lEuQCRieECkCan3T2J4QMiMiOBjY3hAqHuI20ZyeEDY+SJ5Z3R4QNo6adeLdHhAGNdb6rp0eEAa79vO9nt4QMRE8g85gXhASNEr6aaBeEDMnIT3/oN4QLrQgqKZhHhAmtrD37aEeECqQszMT4h4QO4ufHIEjHhAjL829KiNeEDo/nvVUo94QLAIL4yWkXhAmHn58nWSeEAAidxZ7ZJ4QEIlQT4Gk3hAYqiisgOUeEBlJXBcp5R4QInZ9NaopHhANyT8sbikeEBJhMksO614QMpP/8LUs3hApHgTrOK3eECYFV67zMB4QJ4vKfdjwXhAKgx/2vXBeEA3ESant9R4QBTkfyrT2HhARFL/QJPbeEBOXYskY/N4QJQWpmMB9HhAYoIbg4z1eEBTZ0JGKwJ5QLb/x0ORIXlA/ozcLroheUASUtLvIyJ5QL5RNHpPInlAffaw+08keUCmIq7Fsih5QPJEWWwLLnlAKx3WHq4xeUDs1FgyRDJ5QLTBeBZkM3lAZ+hd6WVCeUAcCUZWikJ5QIa94xT7Q3lAn/AiGMxUeUA+0DGwQXN5QG+wGDD4gXlAPCdv/b6DeUBGsIWlW5N5QORPyOpim3lAxpBKgWejeUD8SCQcV6t5QKT2TFvCsXlAWBaikr+yeUDALoD30cJ5QIzWYsNC1HlAvA1tmMzVeUCLPS+zTuR5QDR8T8Af5XlACxe15bvyeUCEPCBrD/R5QGZVCIQHAXpAZezj//wDekDi71xZZQt6QENNPAlSE3pAorzPBFsbekB+O571ViJ6QJoIXlyoInpA7CAiLL4jekA4l+TqKjN6QM/SZH0MNXpA3ugb+C83ekDB10cIMjt6QPr0TKEzP3pAQo8FIhpFekCVk+8PKVV6QIpOrsQiXHpARmF4FipkekC+XfaTWnF6QK7ZJuvVinpASIg1zh2jekDMg++qd6N6QGcVxQ0mq3pAVXg08jWsekCCBCCy/LN6QCP2PQ8NtnpA0upNJii8ekDc+oh5Er96QKRctT1Gw3pAZCiyPfrDekA8AtiAGsZ6QNagT547zHpAl+FP6V3TekCvFNWkOuN6QH5YSg837npAmmXP/mr7ekBgimmw6AN7QG6DHQB8BHtAu5lbkCsOe0CSJk/1ihR7QFZYH/BMFXtAWkiyHc8je0AjWFHxWSV7QJ4P8NDAMntAfEn1ocYze0CCAdmIYTx7QPJaHVVqRHtAC+sxJ3NMe0DKkXJpDFx7QFT62kEjlXtA+m/N3i+le0CXJvsWNqx7QHqp58x8xntAWh+gb7TRe0CuWqGchdN7QJbZ5iBj4XtA4GFaSCbke0AilPNpjPV7QJgyGtoo+3tA5KZCA5MBfEAVf/xx2QF8QBkktfW6AnxAZGJTMWcEfEAe0elSmQV8QKJGqtnSEXxAUxwOwjEjfEDKSsFctyN8QCCl1Cd/P3xAWtnWQc1BfECFibv8UUh8QOE1Tl2VTXxA7qI9oGtTfECNwR84D2J8QAClNWdqe3xA2W7AS3SDfEBaJWYVAoR8QCgaUkIOjHxAQLNOm8SNfECuQPn8G5N8QP5YcfdqlXxAZ0XQ+2aYfEDlJIi1Wpl8QBYxThO+nXxA02v/5ZyefEDcpzWzwbJ8QBd8PPZ6tHxArCy9sobEfEAjoA189dt8QHQDh1RY4nxAJr7uphDjfEBcTWNTPuN8QNZE3Eum5HxAsk+Lk23ofEBqK5SHGfJ8QHLSmWFU8nxA9JTtK3LyfECBytwjAgJ9QCiK9IlLAn1AgEH35QASfUAhuSC+QRJ9QFxc/cWwG31AJICpx/MhfUAruFd1QSJ9QHivhkWQI31ABIMnO0g4fUDKt15snj19QOSFZ/euWH1AUnb3a6JbfUBuYauQ6Vt9QDhmNRZ6dH1AZkMANBd1fUBignwPg3x9QBIBPlqXjX1AxJ44m26PfUDFDsrK85J9QMG2bf2jv31AUp/ILyrDfUCpD+Rl58R9QH69/UT11H1AHrCRq1vffUA+i4ni/eR9QPiiKg6R9X1AT1mxFq39fUBChWY7NQB+QHrBcsRCEH5AQpQY8S8UfkAn85RBIiB+QHajuP8lLH5ALlKiJXg0fkAnvB+FCTt+QEIxHQcSQ35AZl8kJ3JDfkAthk1Po0R+QMb1lND8Sn5Axh8GasJLfkCwg91v5FN+QDL+NW+wVH5AdKip7o1VfkB0JDXbN1l+QIByzkr2W35AELAzmm1zfkAikcM5oIN+QCS0abNIhH5A7NGx2ySGfkBYTG2Hyoh+QLTcVlPjkH5ATs3aoBOefkAQ4t4lk6R+QDrGgtSmrH5A7FzSyviufkCAXttWHbJ+QHIR4n5as35ADnQCU6azfkAkhXYUzbR+QAIBmye0w35ACpwBYtHEfkASfveJsMd+QA4zD9+uyH5ATfHjDHbLfkB0JMe1r8t+QMwPv+3JzX5A+HUrRknTfkCRKZ4jldN+QFwTvRHB035AOVUkYKPjfkBGqdpTZed+QGTAHKiTA39AcG9c/Z0Lf0AUM5eVQRN/QG4pDXimE39ACi7P/gkVf0C2jSBdSBt/QCeaRRPlHH9AC97F0mQ0f0CsyR05pzt/QHhctbuuP39AmplmWXdPf0BD7C6or1t/QGwsn82ean9A0DOrOrhxf0AQpjrdsIF/QM9HbdKjg39Atw4bwWORf0C8sM1bo6B/QAQODdNboX9AAGF0qkKjf0AqaFMSn6h/QFAgKOtUsX9AyrBf5ae0f0Cvo0ckBL9/QHuS64I+v39ASTBQ1zbEf0CxpKqKntR/QDxPSuqw2n9A2mOw6mngf0BOiZnD6ut/QKfovrY3739A+NSLP/nzf0AumilkkPR/QABvT7Hp+X9APs4zS0P/f0DocyINiAGAQOwb+xlPAoBAK8ij8CAEgEBRrj7uMwSAQM+UF+zdBoBAjiP9CbENgECwoK5keRCAQPK1vl7PGYBARi58EqoegEC26FRZRCCAQHKEXm1pIoBA2tG37eImgEAQYTHDkCmAQCRwCTLxKYBALdPGFXAqgECQc7xDcjKAQKURXrqGMoBAkF6zO6lCgEATTnjb9kiAQEAZtyjVSYBA1X6FsuZQgEA6YDJlFFGAQD05qJemVYBAqhzegQ5ZgECktp5qIlmAQHRJ2sCoWYBAgLOhlYJegECA1lOnw2GAQFDnJnVHY4BAhBoqanBkgEDjJcIFwGSAQMLb++gcZ4BAtNXn4ehpgEBoNmtF8m2AQMh4p/Iob4BA59PF9JxxgEAIijizKXeAQH2PncvBfYBASipfhil/gECyIxyPHoOAQNyyK1kej4BAjIqtjaqPgEDc6MWtHZeAQAwCN9DamYBAjh3dQYSigEByhoD9dKWAQGYJOQLrpoBASlazi62ngEDcj3dCh6mAQGihciYUqoBA5MCqxoysgEAyWpoXFK+AQCYv7dNysIBA5HkgOyKxgEAK6oASZ7iAQLwP3mcmuYBAOKVvhwa8gEBimDMgwbyAQJbNSqxSwYBAgLrXPJ/CgEDUwk4BOsaAQNr4EXqxx4BAg9O+e2/IgECeoAYfG8mAQI4S7X5TyYBAoOWZBKbKgEDGDrUkEsyAQMA/bJCsz4BAY36GbSXRgEBG6pB1TNGAQFXDfa9g0YBANAyJ11jTgEA7cfJGZtiAQPw6P55K2YBA+hzUdsHZgEBYjwFnfdqAQI8+8v6/3oBAiFhJwUThgECcdfidueSAQEshwehd6IBA1st6wfbogECH/89HTO+AQMIPBcvr8YBAslQ850HzgED8UqcRZ/qAQOw/PI9q/oBAAoxGCkD/gEBaCj3wPgeBQA7xP9Y9D4FAaMWyyb8cgUBW3BPcNB+BQLY9f3pqH4FAbspJ/LMfgUAV01oDGyKBQBBn3AQ1J4FAvm7Xsi0vgUDS0YC+vTGBQCBv7mvpPIFA/hSouSg/gUA1109PW0eBQMm5iDUISoFAtyoCrbRMgUAFW+qXclGBQE/K+PtrVoFAkfARafFWgUAw2Beyp1eBQFwsMPbmWYFA3MgqKpRbgUCVLWiy6F2BQIA2B6+zZoFA0rvcnMFogUA6EGDD42yBQPrziqLBdIFAstvVwnB3gUBZxAa4hXiBQMoshflgf4FAYEB0uVWGgUCc1EF36YmBQPZTTC5oioFAMTVWXQKNgUAoLqKp7Y2BQB7lwx9Wj4FAHWT2y7OPgUDixN2N8JGBQPp2NYphkoFAaPTNi1WXgUDNSKe7nJyBQNpJBKVIn4FAD12EUvehgUAkh2Hm3aKBQNMT5g5wqIFAshX/TgKvgUDc5ZqBSq+BQHKENOGhr4FAIESDhRGwgUDi2LCIbrCBQOjvbbsEsoFA4VG1fkq3gUBTjwNHHb2BQDxGAyFLwoFAulo/n/nRgUCndEVOfdOBQIj4SjX81YFAviJaJPDZgUC8tWVdBNqBQPhenrT33YFAmlGxyTregUA4GqehE/CBQCxopfOx8oFAH8sMtez5gUBAk2SyIfqBQI7WKt7w/YFAHfx8xOUBgkCOW18F9gGCQIVcrPjpBYJAuJoWJgIJgkAYUK9iBA6CQABe5yUDEoJAj3ntZNgYgkDSdb0wZBqCQH5T9k1oHoJAaUcvP9YggkBAdkVT0iiCQLPPz1nhKoJA3P+MCjE1gkDOyHuUoziCQP7SKjcKPoJAzk7ip60/gkDeKwjAbkCCQDIcR6AGQYJALqCjeetBgkB2cECpDkKCQJpmX3JASIJA9DTrRclJgkBK5aPjOU2CQBBzuzgJToJAEK4bmqFPgkBoBiQ9q1uCQFCnPDS6YYJARSyLiTRigkDI8v9E92WCQBTfTao4ZoJA6oGQrqpngkBXt2uEQGmCQMmUeLkEaoJAlP7RoXhvgkC66I2XPnGCQFCqHUh0c4JA4AmQt4B/gkCuyFsseIiCQDAp7HhDiYJAvlcBhz6NgkDro79ZQ5GCQFdw9mESmIJAMQN6bjyZgkAY4ZZZVpmCQArQxF0PoYJAkok3XDuhgkAdV3aKcKKCQGaQbWHKooJAM/vciw6pgkASOooWM6mCQKaF0CdJqYJA+1labmSqgkCYjfeM06qCQJZ+nqQIsYJAVGpJFtG1gkBci/rsBLmCQIzxo6pkwoJAfgpcuezFgkCUViWB78mCQNYiKYngzYJAENbg5/XNgkCa0HfEftqCQGOeeteB3oJAsGTf/ITigkCqJCltrvmCQJNHqB1u/IJADLFqiuEBg0AOOlw15AWDQHDdIpzqCYNAGx2PVbwKg0DYWOOHkA2DQGHXYbrfDYNAFV0U0nkRg0BscCO3eRmDQPLR+kDfHoNAiQwSTnIhg0AFH5e3iiGDQOoHrN9wKYNAVeF8jWsxg0Ae76a991KDQADD7szzcYNA6bJGd+pyg0BaahiqpnODQJarAi74dYNAxln0DMWBg0A6rzhKSoODQCLM9wXIhYNAFGm3+cGGg0Aw4GxwvYmDQGgEAjXTiYNAh9bXAcSNg0D8rW1BtZGDQGuHWHLrsYNAhnRxxBKyg0BukAKV2LWDQOuDr6AVtoNAUkjttBe6g0A6/VONEL6DQOKZJ4AUwoNAuftCOh/Fg0ClGmf/zMeDQLwou1J4yoNATLWwB7vTg0AEyor+ytyDQO3myfN334NAyNz7Cijig0C01G9ty+SDQNRuMsSU+INABLuLDLoChECy3NaqPgSEQC6qK9I+BoRAg8Lw4E8mhECS4pq7RTGEQOL8Pid1UYRA+locVwRUhEDIOeR4fViEQNGPmD9WYoRAqKWPs/9ohEBRGaKuO26EQFGopBL/cIRATv9weWVxhEDoYm0POnKEQFeSlFC4dYRAZa2ejMl3hEB/weO2+HiEQDV/rDC8eYRAuL9fSmR6hEA7ct1PfHqEQK6xt00TfYRAXiRzdCx9hEBIixlawH2EQCA/adAff4RAg92/68F/hEC0idKubYKEQI5Mo7QehYRAIMKF9XaKhEBt+DdqJ52EQCTNblA6ooRACFEaInGihEBCqflQH6WEQFL7iKjRp4RAtsl9EDeyhED+0LMcHs2EQCyCULpv0oRAeGQlPWrZhEAAMEZrauGEQCZ6alnQ54RAHnSlomPphEBxQul0KuqEQPiIMkx96oRAQAa+ri3thEDGjsDp2O+EQKS0wLo18YRA1Gc59mDxhECAioLA2/eEQNm9PRA1+YRA9fQ8hVz5hECEdU0xN/2EQM+gODgvAYVAGBPvWnwphUBgegkYFkuFQEbeV4nkTYVAyK2bVepRhUBTbAMi61WFQPyA9KA+VoVAPDdjz0VahUC2oIYGoGGFQPBtLbegaYVAp0hclU1qhUDL+brnmHGFQL7gUsu0c4VAZh92P5p5hUDRalzVGYOFQOsmdSSzhoVAtGcMKFy3hUA4cxvc+biFQESz+USLyoVAqA1yoazihUDshKVAsOaFQPJfe2Nq6YVAJOWJPK/qhUAw1ixawPKFQN70vlNbCIZASrgbbFQYhkBWWlxFmVCGQK5yVb5jdYZANdXks8R6hkBMqaJyJrmGQLycn8TWxIZA4AgMWsjGhkBQQlfA0MiGQNm3NH7MyoZA2xMAgGHyhkAYFLOnLBOHQEC6C18vF4dA++gI2zQbh0ACbWxKkSmHQL139suQMYdA5wU1W4k5h0BO7HndiEGHQBhkQ8TVpodAnZQD2sexh0DP7Jq0x7mHQALpgXm/wYdA6HKeeMTJh0Cm2cUxv9GHQOS0MtUa7odAivPRVGPvh0BLChKJZvOHQD5msrlNAohAtEbZHMUaiEAuex7Dax2IQIC1iEteI4hAEF4eXNM6iEDMjjqPm8mIQA== + Ukz2Fu+BYkDEsXzkG6NjQP9T9bnLw2pACGWKrXUjb0B0T7vM1WJ1QN8+DyJ+4nVAkqB3ty3zeECmmaNblhN/QNywXxfugYBAa9m9DBpKgkDKq1FcAiKDQFuw0vRD2oVAzNyM9mxihkDstFONhZKIQJMIMwbZaolAs+D5nPGai0AkDbSeGiOMQLURNTdc245AFOTIhkSzj0BRhhM+uL2QQFZ42rLJOZFAm3bl2+PBkkAIjz/BD4aTQOKKlNb5pZNAHxISlEAalUA/tITSNaaVQIbIM81LipZANpXkZnGulkA435jbkRaYQA== - + - UzJ6ROQWhUQRd/tFSjSzRK3cl0RmV1RE1kxTRbAXnESE565EYcqDRKAuOESfrCNHv6SGRKe+t0RbqqhEPRazRXgC6USUVXBEYvxyRJvTg0X0zZxF902nRDpmc0QhNqhESfHERomoh0Te1i5FvUNcRHnGhESYAqlEkXtzRLWzzES2IBxFs9S6RD3dpUSX6g1Fz1IVRRJpDUe+iCZFmrRFRlv7lEUYPnJEnORCRVWKjkQVFgZFpKiSRnSas0Q1wKtE3DZPRMncs0QmYMlFdUk0RWIkX0TZ+ZlEDBcrRKfZo0Qg3aREPwDeRCiFlES59VhFcpf2RCStEEbseVFEar4MRYbkR0TF/P5ETBOYRZMBmkQMKNtElbKqRK935kSc+tdEq5B2Rq4Pt0UmnttF2gaQRPUilEQ7fq5EDToBRQniGUXGvFZEaU27RjJKbETPRHNED0+QReXjnkRfsAtF4BhVRK1dCUXtF/9FIBNFR1UQhkQ2zr1EFFNcRuk1K0bhDFNEc87JRVHNv0SzfWxEBEaJRBd9P0Xl6qVEHnDjRN1PtERwTdlEIeIJRR4lkURvmKpE3sVqReudNkVR5shEUYWdRLCh/kQx9ddEsg1HRBm0iERMyFREgb6sRSQZDEVlXTpFR/V3RH6S90Tp4GlETcSCRN+2YEXAJJxHQvxXRjZYl0TTFftFifG6RHQozER2HopEZCsgReItW0T80bVFQPmTRGr390Tu6ZxELgbyREJjjUSr3wxHhL44RUdlYUbGF75EHeZTRTaPoUQPQc5EmitaRaE2dETAbLdEaNjaRP3B7kQ0+JBEQL+xRMxAFEWdY1hFkLPaRGY7jURsf5dEnmFbRHazVEScKnJEQhoyRNiiq0R/o8BEQFxfRHbWZ0VFilZFKFZ8RVFUmkSNDtJEEqalRUh5S0cLxkpEPlWKRPPIUkVkBkxEgYcaRXR8GkX99m5EUa/lRU8hlkRov2pEedFIRJ2MqEU/taNEW2FORrsuEkUkXcVEezXqRAVf9kRlEwVF30TTRLFYdUQiYAVFEIv1RP/TEUXRKs9E7u34RICfrkQRnVpEiEskRqrMykQgD8hFG6LMRAKK7ESCxJREuXesRHQJWUUTL+dEZvImRZFUkkQ4Q9hEggQURWnRXET2IKJFW511RYZFpEQMJLpE8Tj7RBm0YES25ZFES4qxRDWJbkTMq4pF/C9cRA9TVES9HbRFFpt6RHt/oETDzblEiSLERALoYES567REI37lRWo/tERaR7FEr3ETRdp6gkSzloxEAjHjRUTReEQ/SoFEkHVJRUjZmETHl5RErCuiRD8MqETF0G1El/I5RF3puURE/KVEVLkLRa8VBUXrk81Gt64ORf/ld0VPDAZFmEHdRSf2UUUUvypFz0QJRuSocURAXbNEKPH2RTOZ60QCLDVF+bgkRcZJc0SjhpVEVx6NRDNkVER/m5NEP5aRRISqBEUORE1Eq42CRNeQTkXKahtFeWfJRJw7q0QG1IJEwN/kRO8wsESuVchEZdfhRA+Nk0Sru3xEPRBLRlyTsUVzb6lEUSXdRV6D3UT+dqNEiRkARb+Zk0Tv55tFdD8QRsgkqkWYJ5xGACeQRGEfwUR/FvpEmBTORBqTgETrumNFZHbkRFAmy0Q8Z4xFfMchRRUgK0Z8qmZEDuICRfvl0URLwZBEKOdORJjgpUTzcBZFjA+QRLA5FUWD2aZFp/CHRCMMKUW4YFhF+KF9RFs5gESmh6pE2uxfROpMGkW9K3dEF7FURMXvgkR0i5BG7TkvRSupgkSdXE5EpZ86Rut6qUXvUoBE+S+tRBY990RZkexH9TOKROTDkEZSXrhFaCPaRedaxEY/YnFG6UiKRWD7QkbbVcVEQEZKRM6YgkRpaBJF86G3RKSVs0R2impECfd9RFmcDkUWldVEMqYHRfWpN0VGDPpEtepFRKEUKkaBw2BEZFKYRVVgiUR+HdNEwMFcRCO7VUQxzmxEhxV9RKwvXESpPI5HikSxREtaV0d6TopHPgmjROI+2EaOP/RGobCyRQLC9URcp5NF01vMRULrNkWQtXFELiKWREDCUUVEfQlFM8OfROBl/0XKThVFtrS3RCJtbUUeSYFEw7TMRAOvXkWdUhpGHFSPRW0LuEQEsLxEfUefRA5LWESCimNEROYSRWKEPkV9w2NEZ+gERd5SuUS33IJEymyYRHJZpkVVgT9JvcRXRVidC0ip65REeMQERT5RXUdP2UtIDB0ORQbfMUdP5OBFUFS6RqArbUR1U1RFf6ikRFlxx0TISslFcNrIRBcBeEa+NYJEvKFhROvj4ETWxnhEtkGnRL9PtkSnxwFFjVBRRM+FdkV6J5pEZrRLRAdWXkSooFFF1K6rRcoxlUSjsMxEmhflReKbg0Uem4tE1zExRYP7m0ZrBxZGVG5+RfFWX0QV1C9FhQGRRNNYaEQ/WMdEZahIReltm0SWQnxE7aBVRIkP8Ud+n0NHm3YZRrDA8kRtQz9EmFtURcK7dUSqMedFc4fZRN9V5kScUHdE88egRJ1v3URrunBEXnXvRMtGMUXStmZF1/3FRFGBrUTORHpEneyFRK0jF0aJtK1HLfIYRQzv2kRz/JRE/o2pRmOv5ERIyd9FAusvReZsYURIenREULiFRbP5vkTEIcZEre+SRLc1hER3CrhFPmtnROH0eEQ/MVdF7J+JRF7LoETa1EJED0tbROvgf0Qf3ZFEab3FRD1L1EQa2vtFbw6mRDFAlUS3nEFG8gSqRIvxckWAcz5FgDtCRGpdAUav2R5FF7eFRBb+mEQM3oZFYhhrROO1R0RXWY9Enia5RJCUgUQqa4NEwKyERUWRkkZLX3BEsLHdRKZUNkazIapELdEORaF0c0Ufha1FDoLERLGGnESb2GZEmf/URQxFs0QRj49EH6C2RBmdeUQyN+dEyPtjRH2tL0VRNYRE1mfWRW75tUXznIlE6P+XRKw1jESY/MJElTivRPoj0ESyTo9GQwQKRWFCC0WFz89HRycdRW4PnkQsc/hE/OPeREIVukRNT7xGcWRfRVvd7URAl55GBwFhRJUSDUVe6QBFSehkRKNXl0TFkX1ELr+QRAuEsETLhEhELKpyRO1qgEShHdZFmySPRLV08kSFnk1FmidzRMCB5UTl35xEER2ERKyUoEdRsoBGyYhTRE1OiUTB/OtEztimRDXtdkbCN7xEzxHJREjZPUWUBfxEVz1LRURKj0Zk/NxFAINlRHN07USBy/BEsRaRRK06O0UMVIhEuY7jRFEne0S/QqhERxVlREsLbURKNGxEgCtlRJlaiERuXX5EMe1+RKtks0TzeW5EhxG6RM4Ee0TCAqREF3WnSCIXVERzjX5Hzy2uRUvYeEQJmH5Ey29rRFU7lkQSDY9EF4srRYOjO0bZMoBFskO5RIUMi0Rp5qJEereXRJl6R0VHMaREqO2BRMy+T0TxPFdEnaXNRSfSl0RYZl5EVa2yRG82U0RjNXBEezV1RTD4pkT6hdJEfPgTRjZg5ETe8BVFCIq5RMWrd0RlDRZFcDNRRKHOi0StmINEZ9K4RC/R60QC5tpEHtG9RAv0iUSRxhtISnrnRK1oBUg2AGNHOVmCRgURN0UfVYNFEWmFRD8ut0TqPsdEgctyRM7he0S664FERZa0ROZrz0RYnRFH6bGKRDEF1USq5o9ENiykRTbcgkSt61tEOMZGRcLmAEVp+5VE6XMdRbO5cEbyd2pFE1C1RT4CrUQOR8REu8pHRLroM0VGUIFEOwsZRcSQYESaD41EaHk4RJnnGUW9QSNF7NpIRMiIU0Tsn6NEQ3uPRI8ZY0TbLRBGUN1KRJ2eDEUzPZREcx9pRD5wpkSofYlEm8dJRDG7B0UiN1pEi1lnREaTfkX5gABFQeTqRH+2i0QK+VpEOxAMRc10ykRtgnFI7mksRgJRykSbg6FEwpHoRCRKtkRJ7NtHY9xIRQ0GVER6f5JEqA98RDmOZUdRGFhFvg5VRCbpuUXx51xGdr2xREciikQR3hBF8ChYRa2R5ESf8LBEkh7MRMS1zUSAg0xEMHiNRE9PV0QLIHhEEy1nRoOseEWhDo9FT5bSRWokw0aAZHhFcoyCRN4m4kRgz65Fkse8REE1tETRhoxEOEWvReHhMUVETWpFhn1mRFN2dER2jdpEdKFqRIcldkRWFUhFJcOJRK+4+ESJYVFE5S18RKrRm0R1qgxFJoUtRWStaUS7r39E9jDqRMN5p0XS0dNE7H/ARC3aXEX7N7FFKUqhRHLO0EQshWVEQ1sYRR2SpkX5sntF4Uh/RT4ZgUSVVapEfi1dRJcVI0YGsY9E/QJYRHpqmESUhkNEQ0ruRDt2ZUTmhYREz9FFR/81sUTjGNxG0VYNRRSNhUXVSPBEWPuBRO6MpUSNGHpEVRUNRzUvZkTi9IBGK1MPRd6/f0VEq7ZELYVPRL+uaEW3vJ5EdkVNRu2a+URQqcZEJchtRWhIUUXsElZEjSlSRIjwL0SpirpFLQ7lRNvRgkS1AJJEx+BiRKyRYkX98VhEUKtrRLDfAUXQEq5EtWdyRJf9zkQSEjtFm1MWRjZIR0RKCKFFhqy+RDPSg0RrxeRE5UJyRMmWlETFEGxELQ+MRHYEa0SJ681HioR5RDA8N0cQkINEZGvTRmk+BkWo49lFmAS9Rf4SOUWkv2dFN8goRTF05kR1k7FE/eCLRFEqi0QvLuhENt5pRMm0bET9MAJF6m4hR0TymUbX3PtEhoudRZh6AkZWAMlFoLkBRdse2USb3FRE6hoKR01wkkbolIZFlJyhRO24QkQUSUdFZ3bTRz5PLkekMapE1Cm9RoZRGUV2HQhG1s9ORfcvc0TAfjlF85jpRIm0SURXFKFEdRlHR+A5oETGKMtGXXuZRMdd/0Wt84hFbDjDRbJ3dUT7LrhEJQxCSGd/YURCpO9HqfUpR9fIR0ZQwGRFhx48Rfg8ykS8tdJEx8BiRAN6LUWoA4xFxqGWRGr2T0QCSrREuPZ1RJ4KW0RbsJdE2FqBRCNRcESPcXlE8Hp/RBbFUUSjSnFE4zi5Rd66jkSmUkpFlNJmRCD70kT/5ZBFQN8qRq+3DEVWhwtFxxuwRWBgrkVj5exFvOczRej4gkRVsH1Emn6LRUbmUUVnn89EBDfqRLvKVUR88oJEaVglRaIEFEVwUl9ESOSPRHLajEQmucpE1V8NRzdThkYvwENF6/Q7RuPHrUQ4SLBFbnvTRCjkg0RORoRFGYeARfooH0VFah5FK3/FRM6NkkSKkONETWqXRGu9TkS4oItFfUgRRXLuekTBVglFtwqNRLVfA0cg6lFGGOqPRJuD5EU84Y9E4ORhRb2Hk0SJNEdEQO2LRAw+h0THjV1EhrJCRoXV5UV918VEK6mORIUWR0TL/xhFmx1vRLrbcUSCBY9Evzx0RIO87kSzsM5E8zOBRbjYSUVetOtEOWyjRNBhKEX0ORpF+bZ+RGdlNUb7ba1FlmZgRVtG10TUWJRET+4fRqTfl0Ve4i9FmqmiRB7sVUQjS0NEuOwiRcIF7USPcblEV+4BRaH4Z0TncLhE2SpyRFJgfUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - B1ODMCbBckAOfZsnb8FyQCCTKsqIwXJAFh9TmVDCckDgYjt0psJyQMeV+1M7w3JA9snWasTEckB+LU9VV8VyQMiLkBd80XJAXs9DlkPSckDQuHrOitJyQE3T1c5403JAHydv1M7fckBtVqb8IuByQH5pQP5P4HJAbGb7PrngckCM6s7n2uByQOI7Ma1M4XJADspgllDickAueAm5j+JyQPoG0/Um43JAOZrRWkPwckDKp3/8o/ByQFxhQ5o18XJAZGtGQVDxckDGoVq1yfFyQIA5bFF78nJAvnPzDJzyckB4zW1nFPNyQIiDzJu183JAcDviNaP0ckAYCbfqwf9yQPjHoW5iAHNAnIbcfvgAc0BF+HsSQAFzQIc+BcPPAnNAIrUHu2IDc0A6tQTJ+gNzQGbAny5zEXNAFg8PwpARc0Cz2Ji9ChJzQNJkMucnEnNAxtMdlbwSc0D4GDR/+hNzQFSkeHUHFHNA1F7alE8Uc0C0yViHeR9zQPS9COk7IHNABY7BKKUgc0BoDcVnOCFzQD4Zq7HIInNA9TYC0w4jc0Bf2ctXByRzQBA+CCc8JHNACBLoZM4kc0Amk8MUXDFzQFt7ERAjMnNAGgbedGYyc0Al1G8yzjJzQF6BoQwOM3NAAMIRi58zc0BccVXp+TNzQEILEvo4NHNAqovhPds0c0CgR5RfuT9zQKosnkDkQHNALj6HPHhBc0AA0TewJUJzQF+Idsa6QnNAwFbMG3pEc0CYJNuke1FzQIzEIMKaUXNA4qqn40FTc0AYSdmepFNzQIssepd3VHNACYSMr4dUc0DI4uZA/l9zQKzcQYmKYHNAPMgv6x1ic0C6UO/wOGNzQG4i2d/MY3NAzUSz1+Jqc0AQJSxsK21zQBDRfprccXNAHRb7MFxyc0AGXNbjhXJzQH5YPza1cnNA/wkmd+lyc0A+9nZ5t3RzQJBWK8BLdXNADPVFpWt2c0D4V7BKeIBzQLsCUF+lgHNA3p2X0syAc0Ak7vu3C4FzQPBEXMY1gXNA1wyaBV2Cc0CwR9oOAINzQGZatR09g3NAUrqNhRGEc0BAX1GZhpBzQBavNyb4kXNAivdChROSc0B+bTpQTZJzQH4jW07Mk3NAQdZ2e2GUc0AmViap95RzQJ7aK9i4oHNA4RI2Qk2hc0AH0sYjtKFzQN46hAEEonNADMT3WVqic0BAUX27n6JzQIpNDSMFpXNAxkRWER2oc0Bydn6DnrBzQCsXOgXYsHNAAk57W4Oxc0B5LyP+ybFzQHpYys63s3NAbFRM4A20c0Bk9oUNtsBzQDrKFbP2wHNAB665l8/Cc0CA/QfwJsNzQCI+WBPFw3NAmc97wITQc0BEvBE+5NBzQEzPMTvX0XNAmDRgBCTSc0CYz2JMu9JzQBDX6Jz203NAuJ1hL+LUc0AYlbY0pOBzQOEzw3nP4HNAQM8G7vfgc0CLxNJAOOFzQIDA8hZk4XNAvaIDwYnhc0Aqh6XdfOJzQAiEu+Wl43NAHbAo6Tnkc0BicvZUsvBzQBCKjDXc8HNAOpnqV/nwc0Cy3byJSPFzQIwfKsqN8XNApIlL1dDxc0Bnh9gMN/RzQHZoSBfkAHRApjCk9w8BdEDj4t+qeAF0QElFkNGmAXRAtWm8/bkCdEC8HuF9UAN0QHabyML0EHRAK/NMgwERdED5WDaaGhF0QEz3kdKGEXRAPhO3ZfMRdEBQItTopRJ0QI6r+RJOE3RAIgPVMeATdECep1KedhR0QFTQB9pLIHRAlsrXLRQhdEDghNxrHiF0QN42DlK5IXRAbqKLso0jdED4/nLXEzN0QNGkl2ziN3RAyLfM2Ts9dEBP8lI8VkB0QCK26VCoQnRAzl4D83pDdECCcGz/dU90QPMUb7egUnRAJPdo3WNUdEC3NEG/i1V0QILctv8fXXRA/NghPCVgdECEB6wxuGB0QO6uYDYIYnRA0FWJLnpidEAKIC2cTWR0QPzs2nmbZXRAoDZyDCNwdEC4myAuQXF0QCQknnnIcXRAfvNSbxZydEBfqsBQEHN0QPCkD7w5c3RA4go64aN0dEDe4Gv7RYB0QP4tndb4gHRAOKrz2xeBdECISm2sToF0QOot9Qcpg3RAJnwLmhaQdEDgYxaGGJF0QDQETsXvn3RAenCFYg6gdEB6hziuPKB0QIRYxdmioHRALNvB79CgdEBR89PAN6F0QCBXNgJZoXRA9ETUYM2hdEDSGAHnD6N0QBLVgG34r3RAJuH06A6wdEDF1vyHLrB0QDXyg0XCsHRAiGm1+e6xdECP4tdeOLJ0QDhyz99vsnRAGm8PxPqydEDI/bXTybd0QIZFjpoUvXRAkAXg796/dEA0oxbcmMB0QM+JYsriwHRA5NWspnfBdEAgP82h68F0QGrUNbAkwnRA0km5903DdEAm6Zr+fsN0QL7Dpf0jxHRABxk9mLbEdECgTnrA/M50QEZMh+Q80HRAFZPlX2DRdEDIiS3lENJ0QBE4Real0nRAehj7CuPTdEBDN4vIy9R0QEYhFyC14HRA/NZOiyThdEBtfnm4UOF0QBxvx/624XRA2m6F3BzidED0jFLMjuN0QOizh6NR5XRASjEkSr3wdEDJkdjbCvN0QPDYck6N83RAMvrZr3j0dECiTHnYoAB1QBqjWLTOAHVAclVo2A0BdUBrpoTFYwF1QM1vnfxcAnVA21oTq54DdUAdEsfA0AN1QD08OBo3E3VA6nUQs44TdUCsJKQtIxR1QMRW9HjjH3VAcBozUhYgdUB+wvg/ciF1QDjoLrSdInVAdA0K8+QidUBI9A4/fjJ1QOKPEmbMNXVAHM9n3kxBdUD5PVj120J1QB5/JV3kT3VADjFXxANQdUB0wzIMg1F1QAqtzVV2VXVACpswFt1fdUCSmWNJCmB1QMVqgfE4YXVAW7eLBGVhdUAiJiqFzWF1QBTYAkn0YXVAbMJ8UWVjdUAv4zDxV3F1QE3GnQbscXVArtqc9HhydUCYK/o0jXR1QOAJGLZPgHVAsnWxPXeBdUA3k0OurYF1QMgNYY78gXVAyAVEw+KCdUBS4q9SpoN1QHlkGdEShHVAdo1p8JqEdUBHlfaI64p1QCSeG2p/knVA2pG6nz2TdUDAIgJpspN1QPxFZJEAn3VAYV3So5SgdUA/qpEJIqF1QOuPogW6oXVALqGKokejdUDtLj6ipKh1QGgWGXyWsHVA5P3LhOuydUAMPrwKOcB1QIqvTNPOwHVA+NtHDGbBdUB3Nt7v+MF1QKYqkKqkwnVAHtmFpjrDdUCYe2TJzdN1QGSILVx44HVAhoq5AsbgdUB4VJsHDOF1QNYbsZAH4nVAGCQJVEztdUBECGIPQ/F1QHvWfqmN8nVAUf2lEajydUD/QWfW7vd1QDEimkwF+HVA8C7VCxr4dUArOTwJSQJ2QF5Ozd6QAnZAQipoGdEDdkBvFXNhVhJ2QLuVhaJMFHZAcp4bNgoWdkBMKjz/GiB2QHKAS1qIInZAmjwEGJEkdkDzDa3gSit2QMAnGc0fMXZA4uepaiUzdkBktTBRUTN2QF62PaaaNHZAFvSLokpAdkCkfR2AHEF2QK+nzLYuQXZAaDenFXlBdkCX+HEHykJ2QAgTfi15RHZABgcXUvtOdkDEbapuEVF2QMwgS3tlUXZAoBX4ns1UdkBbjM52H2F2QHTRjWG3Y3ZA4Vyvw9tkdkDf/bqrVWh2QLrfdHSwbXZA8AnOaqtzdkBcarx5OIB2QKwjsx74gXZAOocu622DdkByNsNWkYN2QBsA+S69k3ZAIB6vfeuddkB814deeqB2QKIdStZDo3ZAUXuAa0awdkCh0LClwLJ2QEgtvdkNtHZACm0/03bAdkDg0aNyucB2QCt/QbrOznZAxUtnAJPQdkBCQTgTvtB2QOjRFVr14XZAZPnXWyPydkDAWyQkkPN2QI9Y/Ww0AndAWkxoLwESd0DTSajI0x53QDbGJ+e+IXdAyW20jA0id0AP+9azeSJ3QJRwN3C5JHdAisXpqegnd0CdqtpKQi13QLbF1UtbMHdAbBulSn4yd0B56tIljTJ3QNwEpg78MndAdikuaaUzd0DtMu9+DTV3QEzHWTXkN3dA/Z5IAjhAd0BDOu7tnEF3QCosBjiSQ3dAEG/1IxtFd0BYyGUYB1B3QOieaNFKUXdAh9E6SJJRd0A901gk41J3QLyrd2UqVXdArtNzbHpfd0DAJm2+E2B3QKs9eW9KYXdAuwE2EJBhd0C4WfqJNmJ3QHYsvQBFY3dA2pRt7Kpjd0DIonSwJm93QJKhhsv1b3dAZLiZnp9yd0AyCQNTkXR3QJqNXCf7d3dAXkdiAZN7d0BeZfmnQX13QIRyny1YfXdAyiZhUrqAd0B8ihb8T4F3QAkry1PjgXdAVpTAhwaSd0AqADsbTpR3QH1TVUf9oHdA9/TTX3C7d0Dy0aQc5MB3QF5JxWjq8HdAHtMYmU/yd0Cb6JBO3fJ3QPRRau9y93dAUKdgIn34d0D4NUs2dft3QCzvbnlG/XdAoCzN7nj/d0CGfn8AoAJ4QHpD7Th8A3hAYiVj9XcHeEBSVjmz5gd4QJ6sijH+B3hAckggP8UIeEAiBzX6Qg14QNiDhMqYEnhA3xkmp+UTeECWMVISCyF4QG4y6oRtInhADEBg/TwjeEB8DBOGiCN4QFIjnaTRI3hAPvyrCp4teEAe3iwLIDJ4QM6xaNO0MnhA8xL9md8zeEC6SlTVpD94QKp5ZN2+QHhAEr95DSNDeEDIeOlnRkN4QMaM1w0RRHhA9IRgkXpFeEA0gfbdylF4QEhq18aHVXhAPJDuq/lgeEDY9dbnuWF4QKp0dTQjYnhAw0ans09ieEBMt7LfRnJ4QP9jOV31c3hAPOMnGg10eECWhLPhJHR4QP4aPJ9IdHhAfkmwiVt0eEB3/fPIi3R4QJBkwnnGdHhAAuDECOp0eEDSz4Xa/XR4QBxmaE0ZdXhAlnlSZsh4eEB6y2qs9nt4QDVgrlKkgHhAchtwZ6OBeED/vadz/oN4QOyStMSZhHhAVCKLZU+IeEAodXtZBYx4QF5LB4epjXhAWvMU31CPeECqY0kfl5F4QKeVZCkEk3hAmckiOwmUeEA7fZajp5R4QIJvA6hZmHhAHDpJbaWheECDD97ElbJ4QD8zqsjLwHhAKjuzBArBeEB4pts8Y8F4QGgEF76WwXhAvAjGJIfCeEBUvks5B8V4QIimkmuC0XhAaFrOv0/TeEBas15SuNR4QOScx2Gf4nhAfnBzS/rneEDXVGq2dPN4QMCDrDwD9HhAPvHHayf0eECLjAPtjPV4QHqQ66kj+XhAoj03e5kFeUC840SRjiF5QJy7GWG6IXlAXnoLmSIieUDx2Uo/TyJ5QLb4q9+6I3lAQiIN3FAkeUD6aYjMsih5QBisdB8MLnlACYS8rK0xeUCUHbCPLzJ5QBmo9iJCMnlAupbg42UzeUAgX/yFv0F5QCM7+ANlQnlAGir5uI1CeUA2d/nao0N5QOqXXdD5Q3lAs4EUVs1UeUCUY+5A2GR5QHoRV4dAc3lAPlccWfSBeUCkPWlNEpN5QNFP4odbk3lAshj8dWKbeUA8CaYxaqN5QC78Meueo3lAFcPrLoKreUAAKaoywLJ5QNs55ghcw3lA4jzqIAvUeUAqVof3QdR5QLpu2m1R5HlAtnLyQ7fyeUAwIHdcjPN5QISSoEAS9HlANsSFemQCekBbpdre+gN6QOQ7cktjC3pAnblV/E8TekAtfjM+Wht6QOjYmFhhI3pARO5K1SkzekBJB+7VDDV6QFatR20uN3pAoYTxUjE7ekAcydQfGkV6QEA74trKS3pAa7awlydVekCLliV3Ilx6QDEM+o8qZHpAzpt//SRzekBk8s2ey4B6QCzrVJgdo3pAjCmu/XSjekBajBzS1aZ6QARf+zomq3pA/7gzdwyzekAzunYg/LN6QPquHwUMtnpA3EmKyhG3ekAsAjMKRcN6QDd1zL4axnpA7sysHMbTekCjrbKKPuR6QCpX7gd85HpA8vveyzbuekBchhyp5wN7QJ1D8+Z7BHtATteKiikOe0DSSpECjhR7QDyLxaxMFXtAtA1sIf0he0CE62g6WiV7QKH5gUDBMntAMRsQAGE8e0A6xFXuaER7QNJ8BIxzTHtA9L1qcmFSe0Ac1Y2tDFx7QHAE/owQdHtAHkZStiKVe0AYLI2doZt7QExnolzow3tAqicxWpnRe0ACBw3UsNF7QILVtWHF0XtA1Lqx6YTTe0CIynXbaOF7QNj/LwdC43tAjC9BQCjke0BFGoHqMvR7QIxCWx+M9XtAdBwj45IBfEDUDDGy2QF8QO4iIVZnBHxAPzr3G5kFfEBK8JmHjBF8QCiLKsnPEXxADKGP5MxBfECCHgIuUkh8QBFrdSKUTXxADLZfvWtffEBSPtd3DWJ8QAC7jq4ocXxAQBoR5QZzfECp5uTdaXt8QEYU29Jxg3xAPP8howKEfEAGqFQ6NYR8QDC04HkIjHxAfj+QT8SNfEBidrArHpN8QDYIXMtClHxAgAvPjHeYfEBCpe50oZ58QArZxZpioHxAzWb2/R2nfEDKb8ZMwLJ8QOdDYHB6tHxAxUKZM4jEfEAPCILLs9p8QELzYbr123xAcC45YVjifEBCLgChEeN8QCco9nGl5HxAcsc32BbyfEBX/U7QVPJ8QNXBw/tv8nxAki/qHEn0fECFbx3aAgJ9QHF/AgxMAn1AaMYk6mgRfUAsr3iMRxJ9QPzO5n+vG31AVfS+FkAifUBZz5vOkCN9QJHN8MqzI31AWwFdc3EofUB0u+VbNzN9QJincfhIOH1A6AF2oZ89fUBkT0w5CUN9QJJp/Id6dH1AIEDWiBZ1fUBaaYGdgHx9QBjylvT0kn1ATvdoKKakfUCGAL22L8N9QAD3AGfnxH1AgwGJL/XUfUDAoTqh1OJ9QOAQo9Hu5H1AtEkNu3jsfUBuqzgUkfV9QO7tMd00AH5Asha5iakMfkBmHDzmRBB+QHe2BHkwFH5AAtRy0DcffkDsnxh/JSB+QPrwJ14/L35A0AVsEe0xfkC652zMeDR+QHEYEvgKO35ApCOaoQw+fkDMEaQKE0N+QOb2oUekRH5ARBJfRtVIfkD0xR/c/Ep+QHmslp7mU35AxkYHNrNUfkAkprJPkVV+QMiF1sY4WX5AypHCO/BbfkBwiTeHHW5+QJL7KNhZdH5Aw0Ss6Fx3fkAViiM8t3t+QNZwkOOpg35Aznn4XlGEfkC0H2JWzYh+QHG1DcMgin5AYPu2VWyLfkBSoD1+2Ix+QOzYnXUkjn5AbCklkmKXfkCieqMdlKR+QHQ6PtzVqH5AsbpXpB2ufkB7TKXq965+QAgyUQDbsX5A2nUFXKazfkCjmpudS7R+QI7hcqQjvn5ACpuN6bTDfkDHbhOI0MR+QHrX+6ZwyH5AYBbeRkzTfkB48O0/ldN+QNiyCM++035AEPg3o+HUfkCpSnfwWNZ+QGwWtu5Q235AZE7q3aTjfkAG/sSm2u9+QMAp1QCWA39ANI6XiUATf0DfeBPRqBN/QM0z9XFDG39ApBug/WQ0f0DEekkxyUN/QNIiI750RH9A9mSWDuRKf0BQEA41sFt/QMt1Y1W3cX9AvchxE+R0f0DSyFMrsIF/QGpbmt6mg39AFNI8+GKRf0AyungdlpN/QC/oaKPylX9APnEaGKSgf0AMtfOVX6F/QC60jCmZqH9AbM3vl1Sxf0DYDGTy2bN/QHociiP4un9A1G84m42/f0DxW+DaJ8p/QKOgawWJzH9A3vPZaTbNf0BVuqE4ndR/QBbKAJCs2n9AkOE5KJzbf0COncUoo9x/QBv0nzhR6X9AKPel2Ojrf0C6vaKkN+9/QPCgh9z/839A5Sk/ZZD0f0AgC0J46fR/QMY0AuPo+X9Ap47sx0P/f0BKE4bThgGAQC16islOAoBAglPgPDQEgEC2f7Zp3QaAQKK5JAt7CoBAWKsUrSIPgEDyViulIhGAQEhyQWkNHYBAkz7jmGkigEDwrQ71VSOAQD0uxM7iJoBAEnBFy5ApgEBsThNVcCqAQIk+33ItLIBAtqXDGXQygEDcwopE0DmAQIUQPkKpQoBA7LRu/fJIgEAGkzh+DUqAQM9CEcJjTIBASkYE/eVQgEC5OsIRFFGAQHiAYWUmUYBAlN2ZyKVVgEAgcPDY5ViAQDSAitQOWYBAcjwG2KlZgEDMWXF1gGCAQG+wGTAQYYBAlSPeHsRhgEC2URBwcGSAQAk/a7w9ZoBAp8EeUBtngED2//MMomeAQDplh2TZZ4BA/j7fue9pgECA1yFyTmqAQDREOLHLbYBA0XnJNfBtgEDckKYZKG+AQHzCMDvzcYBANtLk4yZ/gEDVVIh2woSAQODXPnNfiIBAeoXRSeaLgEAICaiSHo+AQES41/Ctj4BAKnelZvOQgEDUi7lyHpeAQMgcPTVpmIBATApRFuiZgEAO0kxzA6SAQAafm7J+pYBAfIfHvDWmgEB207ffaaiAQLOJ7LeDqYBA4uqnNxOvgEBQyI2xtq+AQLWDpHhrsIBAD/zi8TKxgEDDXvag1bGAQI4p/3RLs4BAkIs6TBe3gEAZ/2CdybyAQBkc1Nl7vYBAmFef3TO+gEBpWl998L6AQGC6OrRSwYBAjBu8257CgECiW8HZ7MaAQIw9S6VTyYBAQEnnbNTJgECu0NCEpcqAQEzCXN0EzIBAbJGTxAnPgECmyb5yuM+AQNN+TAor0YBAIENen0zRgEB2Ud4dx9SAQEwUgikP1oBA4R3/xe/WgECZcqGGZdiAQBhKvk5J2YBAQD9Lb0nbgEAMCzlKFN2AQFxtbibA3oBALeLZjUThgEBDLCmSVeGAQBQbWYtt4YBARhJS1Q/kgEAK3PX78+iAQGm253dL74BAr2m2Nuz0gEDEuNOsS/eAQJ506+WV94BACa/WiXz6gEC7K7xzMv6AQAb3pIBc/oBArzW4G2r+gEDY2jCUqv6AQKb5ehhA/4BANXKvcX8FgUDUniFgQAeBQBEX6vuBDYFAQCVUoD4PgUBaWWcp9BqBQAt1fcy/HIFAMzvAwjQfgUAWmWH3ax+BQNSHpY6vH4FAI90DfmcggUDv9wBRGCKBQDW6mgmSIoFA4pMXNSUmgUDGjqoZNieBQHn840PwK4FAh+UE2SwvgUDIYN+FuzGBQGS+sCq/MoFAnGdT5VA5gUCptE/lKD+BQFQGUAKbP4FAcikw5ixHgUBiAOlZWkeBQMTeTQ4HSoFAxtwu7rVMgUA2JV6mbVGBQBlq26lzVYFArj2QGm1WgUBo49AybFmBQAHPWMnkWYFAqfIhk25agUB/YK+0nFqBQKrWyY7qXYFAl2Jm1A5jgUAa8VdQrWOBQGxzQrlUboFAxJ+cB6BzgUD2EPAIwnSBQCgWMadvd4FAmtMtIpR/gUBGCyKv84GBQPyordfqiYFAkWCMl2yKgUDUiQLOA42BQHQ+CFsZjYFADpf0NO6NgUD1lhukVY+BQPiwcB+1j4FAAOiwce+RgUCKhYNOXpKBQGbZ5uHtloFArPcrYVWXgUCaH4PnnJyBQP5Q+btIn4FA6GbasRihgUDlQHQP5qGBQAtzLfbfooFAaoRdy2yogUDyemk0Q6mBQP+GvsORq4FAomfaWYitgUAOFUHgDq+BQGo7Iq5Kr4FASFYJ7+u2gUAmg+rVSbeBQMnbiKNDwYFAbOH8+JvGgUAosWGzBMqBQGq9/hDdz4FAlw7qgfnRgUAEoG/pfdOBQO8kE+n81YFAysB/dgDagUC0k0A869yBQEDdXfP23YFAAADhUvjhgUC9s6M+c+yBQFAW7kJg9oFACiGUx+z5gUDwNimE0fqBQJl5ruPv/YFAlt3lqeMBgkBCRDXU9gGCQN0agB2UAoJAgBwtkOkFgkCOCaSF/AWCQJCnROkCCYJACoRq/yYJgkC+tIvsLw2CQL9DNckDDoJAYNtEqAgSgkAuhvuF2BiCQNbQFkRmGoJAhEVJl0odgkDjcO6kZh6CQMrHwDPXIIJAVJrcIE4hgkBHshig0SiCQEZ4IWmkMIJAMvTNzc8wgkDtpazBBDaCQKqm1lwAPYJA5CQaZws+gkBKdVxsrT+CQFSkoKN4QIJAZsBjkPBBgkBIunPFDUKCQDpJu2wDToJAqkeWHaBPgkDyM80iElqCQIDmJlfSWoJA6AIcU6JbgkDm6/ZKaFyCQGhuCnUIXoJA3vlJKLphgkDyG5TfNGKCQB6LkQ5rZIJAm/+0qbxlgkApl7vtNmaCQFSVe8idZ4JAdDSS5GtogkABd8XDPGqCQHLlgxsKboJA2j/CNgZ2gkBEwvaCnnqCQNJNks87fYJA+sfmVqN/gkBbVkZDA4KCQH87EJtDiYJAkQhbMuCKgkCg7L0JRJGCQEovvpZklIJALWfn9mmYgkA2bD6vPJmCQALPv4VVmYJATm+4GB2agkDr175qDqGCQOb/cMY6oYJAdi8y23GigkDmlXh4y6KCQBM7LpU2pYJA4GHtSg2pgkAEoyTZNKmCQNHc3YbSqoJAsC0oo2+sgkDkzoy1NLGCQDzMpfpkwoJAfjRdzOzFgkA0WoPp78mCQFj/mmVvyoJAsOKvxuXNgkDWNJn79c2CQFgK+OPq0YJAOCPz+q/UgkDkKzid7tWCQMpNCDN/2oJASNT5JILegkA8j3APhuKCQBIO28au+YJAIgKbGxD6gkBExdKwrwGDQJgnR6bhAYNAi1xRGywCg0A4zaXm5AWDQCXZN+TaCYNAnMMe2N0Ng0Aa3mXreRGDQERSwhTbEYNADq23+OIVg0BmGm1oehmDQKrF9QVzIYNAYmsnJo8hg0BOnXI7cSmDQJVZaRhrMYNAViisa009g0AVUWJfQEGDQMpO70DaQYNA8PhZblZOg0DR68KirFeDQBvb8f/xcYNA8bu8Ve1yg0BCoDrc9nWDQKfOSynFgYNAgq+JhsiFg0B+VjwZv4mDQFzRFZfEjYNAcuZCQ6Weg0CQ2IXzErKDQCFTVRtJtYNAmzuS1BW2g0DaJlu0FrqDQEIL9twRvoNAduLaMBTCg0AmYrAMIMWDQAXYS+rLx4NAWtbt0HjKg0BF5swSasyDQNpvBSPK3INA9NKdaXffg0CQgqxLI+KDQAUTtKU9/INAeY+N+iELhECiU7ImUiGEQPJV7ntNIoRAoCAopZxHhEBsZxIKeU+EQIJ2vtiTV4RArppQ7rRmhEDgVr5U/2iEQNF08Vg6boRAuts8SwFxhEDkbSkM8nSEQGK7M5u4dYRAyaqT58l3hEBb87q5UniEQL9NPIT3eIRAOzBDnLp5hEDOVwhuY3qEQNX/+KJ7eoRAsoXIABV9hEBg6ec4MX2EQF0gGd6wfYRAaLX+wcF/hED+90jtboKEQAeKpfwdhYRASLDt2cqHhEBmmN85vomEQPxW7Ed0ioRA8b7tCcKdhEAaLoS6cKKEQEQoCLUfpYRAnp0HusynhEAQPLFifaqEQFSBx0i+x4RAoj7wURvNhEDM/npTatmEQEYG5YGl2YRARTxMgGrhhEDUQioG0ueEQHuhDwti6YRALx/YDH7qhEBmQ1AXK+2EQMiamVLa74RA32KnHTbxhEDqCBfyYvGEQI6rGK7c94RANUur9zP5hECaL86AV/mEQFro8OCN+oRAneHD/i8BhUDaBRHRMAmFQLCEwlwMFoVA27awUPkWhUAJTYMo8B2FQIcaMc4MJoVAzN11ZUk7hUAG4Lfa402FQNpIRWblUYVAfBYw8ahUhUCAsUX97FWFQA7a4DE9VoVAXvZdc0JahUDoZNKeoGGFQN9HoeoqZIVA3UUPT0pmhUBELdq+oGmFQG4s7SmacYVAqPyShbRzhUC8tKIImnmFQMa+zvaRgYVAtlsJFxyDhUDEjKsyxrWFQGY/S/JYt4VALOcywVjdhUCX12CJrOKFQOsrn/tq5IVACtSbpa7mhUCVWJI3aemFQCFMiGex6oVAopcf81oIhkAsT9/QgA2GQIxlMm4XYoZAcUoucK6ChkDgW4OBgKOGQBZXhIcpwYZA8PjqM9DEhkB+0pP008aGQJpDXx/ZyIZAGJqChdDKhkAG+qvajd+GQB4Cfm+V/oZA3JJkV2YJh0BsDzd5kg+HQLSEA1QsE4dAJnWToTMXh0CqtKe7MhuHQK2KxEGRKYdA3rd5spYuh0Ac+efhkDGHQFyE04KKOYdAh0CKjF5Bh0Akoa+BikGHQKfutzeBj4dAoMdkCsixh0D0toUVx7mHQH9b7FHAwYdASPPQXcHJh0DivNsPZe+HQLT+5upo84dAhISPwV4jiEBwDiFI6XOIQLZ6tM+NpIhA + NrgMGZxjYkCAI9DqN6RuQBu6YmAmQ3BA - + - ValJRGI6sEUG1jZEuWduRCp0IUUox+pEgFikRBjTXUTXpVJEflX+RqwclURwip5EsWpVRPHrwEW4G5tEDdrERBpOiESNllpE8JIURcnPqkU/v9REnspARMVelURNPbNGoZpBRCpLJkXdrVhE6L9ZRL7jgERwYmJEnqt0RAb/t0SzZ2BEsScVRWIvkUTHhyJF08cFRYzyHUc2aAtFESyeRCL1L0QmYI1EWt8SRtcqT0VmJnZFcD4+RJj/m0RGxkhEB4eIRGlBbkZbCMVE8k3BRPokVkS8/4dEuSKERWjbYEU3k1lEL1mBRB3NvEQ0PUVExGBKRAGXQUQlTZ1EsY8yRDR/A0VnRltEio82RU8KiUSotrlEnMkDRoWFTUSxlgZFkESJRMrGW0UQUYlEp5+bRFMboUSMHIlE9wubROcCJkWw+4FExiHURDWPn0ZC3YlEgWM+RX5nlEUsEY9EyA1GRKX6QURd2BlFiYpvRGSKjUZi2ohEAXFWRBtM9kRgxj1EwslnRW9z5URxGS5EyTE5RPf0okQMBQZGopccRH2hMUd08JFEWX5/RCAaGEa8sgdG0K9+RB2fNkTritlEmwSmRX8Wa0T1AvxE6V1cRJKiGUXGBnNEO/FLRI9kMUT9ZARF/UsiRYjaSkVkA5VE2mq2RQodJkX1oVFECnGkRDHq0UTTeQlFjSVOROSxm0QRZotE2guLRW6bpkfc2kBGX+XXRPEarEXcc2NE6KJzRK3KtUR2NPFEm9WdRJtbvUUWrYNEJBzHRKL4P0TNZJJEZGR5RHcPokRr+ydHL4JhRVoyL0YsroxEWHfGRDA/PUQNM1JFZYFWRXiFVUSgLk1Ea7V1RDYIE0WALR9FzLp8RN/xskQbrsNEEhlMRFvkS0QLBg1FSUnPRD9lDUVB711FCewdRTW1fUTFzWdEouF+RJo4IETm7iJE3TBgRFT75ESZ/nFF55KnRPNkXkX+Ot9FR6iYROM9QETdLzVE+7udRSZjOUc2ZaxEw/y8REzCSkTZVgpFQeNORBlFuERyZQ1F3sBvREuTjEVVFLNEp8mcRRJlc0SVpCxGYHIQRZ8edEQdxpNEYLppRH2asUQqEyxExu4qRfcgw0TgwHdELPtaRCM5vEQhiKpEaoacRGsyWEScg0tGxau5RLrZXkXtkOZEbny1RFska0QaFsBExmkTRW1egERLtDVEPnizRGi8I0XoEjlEE6aHRAfnekSJ8DhEHpaDRMVLEEaWdCxFR7OQRDzNn0QqXnZE58zyRADwVUR18pVEigjWRIm7dEU5pnBE8f2oRET/h0RiaaZFEO2LRPFkp0SR+VREfmiqRA39VETDX9FF+IJVRF53b0RTji1E5L04RMk9AkUjn4dECOCPRHXcOUQ0mMNF0ZiPRC3jg0RGHjdFpk6lRM2/hURylqdEWNJwRF9FakQatLhELrtXRCHLxER2rSJHgI+0RC+t4ERsNpVFPbp4RCBXCUZzoRVFY++NRPqe9kUFs3pEyu6JREuSrUUv6S9EvW2wRGhXkEUwuWdFUQz7RJywi0S1fzlEchtgRPA8X0RTmyFE3ainRB4xZ0QX3YBE4PEVRb63nkRP54BEB581RLZm/kTo+QtFi9FyRM93zUSnl35El4wzRM4RjESE1wlFdpC9ROKKnUROzvNEn0ghRtXDLkSeAoBET02KRen0rkRFFlFEKx86RFHh7kU2NGhE/cKCROIIlURZS5FEE6Z/RLQq5ETffpJF+LrHRRbOcUWwQaxGzLJ5ROyrm0QpdWREhUE5RHZ5KkUdCMRE3LE6RGyMKUUGfFJFxU1lRBwu6ERyaIxEHPILRjuVQUR08FlEM5u+RK6zGkVt/4dESYJLROeLRkRPa/dEzGZARDn75ETneNpEAbSCRFLr8kTm0VpEIjUrRObPLkWPi7dFH8h7RFYWDUUsAyFFcE9kRO9uQ0T5VzBE3IlJREaIBkXOMrpEkTZ6Rhv7RUSieIhElOU7RaN9WUT+/S1EBM0bRqODo0WluWZEaZy9RIDf5kRMbBxEZpqERGlx1Ectu4RElRyORKRQfUY75q5FK3aaRipLV0aGanhFofFPRkDcgUTawK9Ep0G9RKjvlEQ+J5hEzaoqRWotgER1LHtEfaEJRaId+USVsSFFuCoERoEpk0QlIGhFQ0GDRPd4l0QMKj9EHM+dRAzPSURNMLZEt5CxRPszjETbbJpE2vhsRH0TQUQO3XdE2HtmRHPyHUSMq6FHiYfDRL2QmEerXGpHeq6qRtKZ4katdKtFFyhkRNy8skVDKI5FWY1sRAWoZEVy1kxEYapaRBaucUR79WlFA5cGRQ60UERB9wdGOdq4RJocy0VJMLFEX82ORByiKET5LE1EJUdFRP9mUETAAY9FbrgLRmYVYUXaJ8dEPwQSRVV48URFWSxFf1QRRdAUEEQjHZdED5icROf8wkT7lRBFGdghRZWUIUn3ziRFdVPiRMpNs0QBrKZE0RZZRHMcL0iMqoZE26DMRMbwa0cfpB9Is/UUR2lMFUYCg5RGfIswRHYvCEWMOARGc9ynRPYOYUZWvKJENfVDRJZKPURwua1ECUKYRHWkzERrTCFEeCM9RFnXTURwuFVEaahlRNUhP0VNSUdECksnRKwMOUSbzkZFvxRvRHVYRUUJI2lEJqpRRDU8EUWEATpGwxsdRWVFgkQ39JJEem5jRUg+nEay/hRGjk2PRf/BVURHJ1xEI2SSRddiKkTKBhJFvwyNRHq3TETmp5pE3WcnRTlzYUQfoVBEME1ARAnnQESTj91HdjgUR9Jt8kXRT1hE9euQRM1JQEWYd21E6dlRRBreoUUMtepE7J4TRGpdT0TUSq5E/QQ/RB2bhkQu/0JFCXUURUFgskR/o1BEY27BRUnlh0dRa6ZFgC5rRe8TiUbDTkZE3ZcFRS7v0UUOnxtFb+V5RI0AUESX73lFsq7MRIxsWUQK13NEye3LRMxDfkRfN8pF44eXRExrF0X/wXxEyPMcRF+ZqES7NFFEsTWtRAyqmkRZPwBG3YdaRJqrpER03/dF2mAyRCRzDEXVo3pFL4S+RSjtPUVsk4ZEtL9nRGH6pUTQKGREmxwWRZhma0RK/1lE3XugRPOit0TEie1EU2qfRJTmV0S7jjBEOE6ARRW+T0RxXkVG0ebgRHrCJ0bMThhFVi9GRZjOh0S1uD5FVhqsRfqN20TWrbJE9pc0RGbKdURGKmdE4KJcRBRLDEUWzxBFC0RsRcpKBUVeQutEf6O7RajmP0XahTRETnO0RKdPskRtmXFE1MSDRK+AnEQrTYhGobBJRVWmhUSoLiNFzoXFRwhi1UTHfvVEagYORQ9knkaoP2NFIpI3RDH+HEV9xYlGSSVNRIQiJEV9N9dE65htRPYZh0RYicxEXoBiRG5gUEQPZKNEmqRIRMo9MkQmIrtFGOXTRCZiKUXLYL5EdaSMRHGZj0T78ahHbQV4RtwLPkTKeVFE+LxKRCJPYURwO3lG+045RK+r10SZDIBEhctYRM4waEWRumREmKplRPD4JEWLPV5GIEhLRLsEpUV0/GRFmNyZRIBmtkRUPwpFMFOBRIgaXkQuay5EBW9fRDBIUUSrLF9Ef7RHRJyBSUTAWmlEiRg/RMVNn0TSpnxERCVjRLqUWUQ2aJ9EFrJ+ROkQpETo8lFEBlc4RDixm0QnMUpElViZSAWapURNxt9E6/SAR4vBikX3BsFEClJZRV+hP0aw7rlFsoJ2RK37hERazclEF0sCRdSJV0TzdbdEDxNPRTysAUUU4XpE0LO6Rcz2HUQGROtErpaoRAh0fUR2N3NFIZBhRCLNe0SfullEnL5ARoMZk0R3S3BEVkzJRARHU0UXxMBEe4AhRX5fQ0RvbGFEjJRnRKejb0T6TWtEG2gvRDDCqETtPYVEcDJXRPJOqkQfF0xEEtorRdh4LUgiXihE9ZMSSH7XpUQKSIFHfWtaRlMWqEQE/llF4ELxRFDPrUToyDREWciDRFrcZESG7rZE1mAfRz8KiETcLNtEmfMZRbFTB0ah2FREplGsRDOp3USQwi9FuVvkRONRc0S7aD5EB33YRN9/bUb2OAVFdTBMRRYraUTJf7VFZDw+RYteYkTP8IZEH/k/RD9TIEWBeGJE6PGiRH8DNkSW6SVElKRsRIFEWkRj1DlEeBNHResyL0Xgiu9E2GDiRDiJYUSDNFREW/0+RCx7B0ZODjJEpd9KRPtf2EQMelBErPdsRAeZMUQ57YVEELVpRXADikS4YdlEvaheRc19cUTM56tEFJpVRNed0kQXsNNE3iYqRB7blUTX/NlErHiyROnWv0RsC3FI+uaFRu+JaEQUgtJHTAEARZJ8LkUb62tE9c53RBgEdkS1b3NE9PtrRxYdeETW2B1Ej0yfRABIEUWjORxGEJ5HRMdTRUTcA6VECtFvRR7f2kTTj3JF/KdiRKl1eUQi47tEyw5/RDxzO0TshU1EdRVgRD16PUTpqWRE9qs6RIgsR0Re8U5GvzepRJZ9lEXeB35EZN6PRShwW0Qns8RF2BHDRgUZoEUofZhEHwpwRM25tETmklZEZgk5RLg6nEXV0kFEOnGPRLcJm0SigZJErXyBRHFJj0UOQEZEI5UZRBbyl0WJ7HhF92YIRay2hERExyhEuQLTRLosPEQIVDNFrt5mRI5URUTC5dJEpx/DRLq5JESiiTFEaR4wRMz0UEWUETtF6ViTRLkVXkRKLBRGI7aSRHxAq0Q27YZEt/qXRQLe1UUAG4VE/kg3RX57kkSLZcREHBcORZpGnUW+BVdFMIlXREMw/0TUUoJE0nrtRE4Vi0StHUJEuYFdROjQQkSHAN9FGq1NRBIa5UQvJElEgpFBREaGokQMBDlEzq83R70mh0R8GKxGHh3zRTv3o0RP9Z5ECsOORHkpnEQFQEZEluXeRrqmVEQM25BGJYodRfa1b0UA9q1ELKaPRLXWYUQxNLJE0n0+RMaIVURWdQdF72aKREE9JkY2qARFUSmEROxfd0RqR4xFdrZORLyhL0Vlg2JEh6hxRCYQXkTVKXREJbKRRQYirkQxCkFEwcQvRLwrA0VIoJBEwP9cRHUNhETc+JhE+SmSRCFHgETLb9REZdNURM2n3EUB0k5EH62IROm7iUX9UdJEChWeRLDJu0QlZUNE008TRT3tVUS4zZBEeVeDRNTOxkS9T79HtzRgRFcRLEcUbmlETF+ARJiqrUY+mPNEKsFeRD72lkWPvcNFkbsYRboiiUV5MnBEqGmZRPBuDUXhaYBEluBZRJmkLESH+uNEbyEURzxyo0ZqijtE0IhFRY27lkXeVAFFSDRPRHlyP0RovAdGV121RTLrCEWj7Y1EhpRIROivPkQoAApH3j02RLZEnEY7DI1FbqxTRbdkzUfg9oFE8J07RD02Nkf/ruBGHFG4RMHX/0V5pABFqdo9RJo/N0T4xydETRVsRKIGW0R2vlxF7NO0REhOB0UJeSpH076cRgyjy0V3gLBFH7lbRCDGQEjNiVhE+B77R0uwEUePbSNGxrZoRdUAbkXd6FVF9b0QRdAaPkSwNxFF1TGdRea4E0VPwDpEqw1IRKUtN0SmYJ5ESS5uREdwPUSsrkdEzR9hRMsprkXura1Ek74pRdU1UETosH1F9koeRkMjK0Sa7shEUEwbRcqRzUUcWehFZ3dIRtYxyETuF+tEKDuORYoeaEV0SDJFmcNYRNQ1UkT7hrdEPq9nRINQa0WD30RFvpiwRDfYbUSn9DxE//6ARLLZF0d/321EjCN8Rl1PrEWHPvlFXLX/RZM1qEWt7KJE0MdjRYzjBkVycu5EefTuRI+rT0Q1KWFEJ+HHRAWPh0Ry48pEPrl3REQG2ETABUdEQSFCRL8Ad0Xdl/REjUxZRIyeV0TCJapEBxOsREw98UaotD9E8PCRRLcljEaDxB1G5s6cRM+WeEUNjopEzKS5RFhgiERP7oNE3yhLRLUYC0YVFWFEJqG6RaU9DUVEZ09FHHItRVDQTERBbFZEbeiIRFOEMUSutEREm5gNRUd5rkVIDQlFHCL8RLi9YkRAdEpEzrxoRD3WLERDBS5F2H6bREkn90SWSidG7PhKRL/wvEUegUlFqHWERNM/rURy3EtEQs3vRXB3oEWp5dVEvCanRMXkRUW85PpEuWTiRKYFqUQC6X9E + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - qLdmfwvBckCDXd6ObsFyQLLPTehRwnJAc1RaKafCckAWwphq4sJyQE7Zjlk6w3JAalaumXnDckAyIbXpxMRyQIRpeltaxXJAt78QDXrRckACNW9QQ9JyQO6n81N103JASRyYwWTUckDaItlDz99yQOCCJ/gj4HJAA0HwcLbgckB5CNs+UOFyQC9Damhl4XJAyMHdxE/ickC0cFRcj+JyQB27wwok43JAvq+zNkPwckA/LlFep/ByQEQxSn418XJAGHRZUlHxckCjfpbMyvFyQKGFPBQ28nJAQ2OF07XzckCwZd3JC/RyQDzKgtDB/3JA8+c1nWIAc0BZDRf+9wBzQPhFUktAAXNAklcnkdECc0BZBPb2YgNzQMfwkoH6A3NABpl+XhoRc0CTh+ImdRFzQIT6rs4MEnNAJglndbwSc0ABEMk8+BNzQC6RjL9OFHNAkj7e63kfc0CW56+rDyBzQJxdjaSjIHNAkP2KmDghc0CLiJqtyCJzQH7+UhQQI3NAT3CMjDkkc0Dhwc8lzyRzQMq2TGGtMHNAXpGq8Ecxc0Cy3rZiWzFzQDaZdslpMnNAwBxjzs0yc0Ai3blLDDNzQKC2hLuiM3NADGcAo9gzc0B0GkGdODRzQD3mW1PJNHNAKICPLOA0c0CGw08wuT9zQHXUMdfgQHNAtDf2NHhBc0CUf5OgJkJzQA6RWQSqQnNAXNawybtCc0AA5qUDUENzQEBZoQd6RHNAYCsVv5pRc0AqeQ4TEFJzQFqf84wOU3NA5Avx8UFTc0Cxzwrqo1NzQBqHGRN7VHNAvGZ0LA1Vc0B1wPhx+l9zQJQUjbONYHNAYKFuNR1ic0BPkDCoOWNzQIw2vq6QY3NAxyhdVc5jc0Aw8nVN32pzQFV2mc4qbXNA+eDvUt1xc0C1VrcpaXJzQHQmy5CFcnNA5pYoeLp0c0CNVXxaTHVzQP5rc63Dd3NAvpc78c93c0CwgXCteIBzQOS/dkGmgHNA4mYrvA2Bc0BQ1w4LXYJzQJeKSJz/gnNAj61jzg6Ec0AhbuBdWYhzQHoagW+FkHNAUNNVPJeQc0AJaC/s9pFzQDB75TcaknNAbuJsvkySc0CaZr2Jj5JzQB+a+rNjk3NAVmjzsMqTc0AM3IuhY5RzQIsC9j/3lHNA64bb3ouVc0A2zic2uaBzQIoWgujjoHNAHD1FxE2hc0CpLUTNeaFzQDfo/TGroXNAFS4IXAWic0D0BXIBWqJzQLqmh4WconNA0FSR6MCic0AWKEoMJqNzQKpSaXcFpXNA3AyCgKCwc0BpkRGD17BzQOmqf29wsXNAonYerH2xc0DUBAIJWrJzQJ7Knv0Os3NADUesYrazc0CUTRKGDrRzQBecE5i2wHNAzneDv/fAc0DyN2bQjcFzQEWqmQg8wnNAuiy9As/Cc0BvOo/VKMNzQJ6woJSD0HNA3HoqLubQc0DlUX6WF9FzQOKLab3W0XNAhhUu/bvSc0CsfazsI9NzQPswXXX203NA2pHaceLUc0C4CGZ9DeBzQDScTQak4HNA4UtT+s/gc0ANYs5X8+BzQChTQek34XNA32xxj2Lhc0CwfQsc5eFzQAxgRqV44nNAXGFYUQ/jc0BEYmEFpeNzQE64CjTu5HNArwkUFbLwc0DuUilJ2/BzQOJSqCn38HNA/g8D95/zc0D8pVo8NfRzQLhVwTC1AHRAJoPjI+QAdEAS0LaEEAF0QGwT3l54AXRAmI4md6YBdECt0PE9egR0QHeIFvTzEHRAr10fb4gRdECapx2Z2xF0QLrZuIKnEnRALUOz2UsTdEB35krA4hN0QFbYMK13FHRAa35t0kkgdEASVWwcuCF0QBTSy21ZI3RAE39JsY8jdEDWBq8WvCR0QOCZ9uJTMHRAZabq+fcydEDZKQs9FDN0QNWlHEHiN3RAIORV6jw9dEA4KH5oVEB0QLAiiE+TQnRAvnyoDHlDdECEl8WqSk10QEXg5TLQUXRA35WGC6VSdECuVHJX9VR0QBL0qhWLVXRAKXIuoB9ddECFtmMTI2B0QDvshWu3YHRAaHs8rAhidECTDexJfGJ0QFIjzBNOZHRAfxWDHyJwdEAmMbXkQHF0QDIelR7pcXRAtLPNTDlzdEAYUy8RDXR0QJYi+tOgdHRADuvGsjV1dEDISThq+IB0QGjOokUlgXRAzk7lEE6BdED0oGTQSYJ0QBg3b6nOgnRAbUuL7CiDdEAkVSjyFZB0QCZfGWhukHRAlXCXue+fdEDGIxuuDaB0QLC0ByhAoHRAtJOQic6gdEDmhFPJNaF0QLqJo37OoXRA2+8L04uidEDEUjoRuaJ0QA4daNQOo3RAGnyhlfmvdEBaJ//0DLB0QLvMwGQusHRATTAzNcOwdEDEv1m377F0QPKS78Q8snRAhs12AW+ydEBrJlvUtbJ0QFAHZVf+snRAjFWB1Mm3dEBylfQ5Ir10QGBv7wjev3RAiGdXj0vAdEBUH3s95MB0QKDdSil4wXRAaDJ86uvBdEBIy/ozf8N0QGr2q+8jxHRA9J7SBbnEdEAe5elZysp0QNHqSJb9znRAxkkErxDSdEAQfNuUptJ0QMg+/1Di03RAxR4X1nXUdEB0X/G+ztR0QLcLi+qN4HRA9noDLCThdEDYHswytuF0QHYoLG4d4nRAdjsa2o/jdEB8ejxyT+V0QEoebd6/8HRAwC/cDbvxdECG2n39i/N0QDInrz959HRAaD3geIz9dECmZi5xDAF1QP6Q+E5jAXVAptjzB10CdUDOFt1YowJ1QAlDihKbA3VAXnIH2NADdUAw/O6/+QR1QAa24ZYjFHVAoPInQOQfdUCTMvPyFiB1QMeMKTOdInVA0CKvBnsjdUAqurdvrTJ1QKwg5/bLNXVAdvHwcgE3dUCOZz4TS0F1QChndqEkQ3VAbLE/3ARQdUCssEsYglF1QA/99rEmUnVA1h2Nq+VSdUCWPy7vTFR1QBKqlWh3VXVASPBa+/5ddUB+QK9+7F91QHCfE3M4YXVAXps1cGZhdUDK+mIUzGF1QJ6s0Zr2YXVAiraC+GJjdUCRsTtQV3F1QEoNpJTscXVAEsbs/3VydUAfaeuWjHR1QI92M+lPgHVAxoSR0+KAdUD0XvUKd4F1QES8VoqtgXVA9zOMuviBdUCS3tuQ4YJ1QNq5kwamg3VA6HECzBKEdUAM4oiYmoR1QBu/NFSLkHVAKMJQ/j2TdUB6YMH9IJR1QGKGX+CUoHVAapT7mLehdUCSOj84SqN1QIZuVDe5pHVACrhVj+eydUCrWImtebN1QKLLsC2jv3VAEMd6uDnAdUBmq2eIzsB1QOtVjw9iwXVADKA1/vbBdUACnDY1pcJ1QE1y1705w3VAIBnkIMzTdUDrWZjIeOB1QILDs2AP4XVANNXMhwridUC8ODGJ3+J1QIoiOgVM7XVAJKE8TCjvdUAoDmkoQvF1QJUtVpKO8nVAsVdlkKfydUC9drWKOfN1QL1PjFLv93VAg+hS5EcCdkDQqyazzwN2QHfCFF8KEXZAye3J400UdkCRUWDTCRZ2QIqTA18cIHZAPoQRmzwhdkC3o3ZuhyJ2QKjtVT3TInZAOAWm0WcjdkCkgPSakCR2QKrdqh5LK3ZAG99uDx8xdkDC9EvAJDN2QEpS9sRRM3ZA5IMzUJUzdkCBNSTnnDR2QHAnx8NdQHZAhD2Ksh1BdkBma+Had0F2QLYISKvHQnZAMvClfXtEdkCc/2JK9k52QCZF+0rJUHZAkH5UMRJRdkBRAUckZFF2QIgtpzbNVHZAk2XldB9hdkAy/+oM2mR2QKbXWF5ZaHZAyL+InfeBdkAYqyr7aoN2QFD3xQeRg3ZAjhNJPs6XdkCKkFg6eKB2QOWpj+KkoXZAnDu/W1CwdkC33hk3urB2QCBFQgbCsnZAzL+NNw20dkC4lv/YdsB2QL7tCvy5wHZABFsI9xrEdkD5OUtPzs52QDp4JEp+0HZABlziyr7QdkAom+JR3NB2QJQWf0fx4XZAnOpp7ZDzdkBxFuYoMwJ3QD1pZ+MPA3dAj7CR8DwEd0D/SI7TEgt3QGKuXkZyC3dA4C0pfwESd0DQd2hCaxN3QJOeDCkOIndArx9ps7gkd0D8LCAv6Cd3QIWzAoJCLXdApj3scFkwd0DeGzMCfDJ3QCj0p2eeMndA6PBRdqMzd0CB9Wo1DTV3QHnxgH04QHdAsqPrns5Ad0ABkBIjnUF3QLrKdnX+QndAYN4aFpFDd0DCLlL7GkV3QJqNkKoGUHdAvrR8d0tRd0ABxz7vkVF3QLMBFRDgUndA9rXWX51Td0Dm/E+pKlV3QGwIfvV9X3dAIoXWDBZgd0CJHTxNeGB3QMZuJNQOYXdATaVf9o9hd0AMk6EXqmN3QLQVGwEnb3dATGYSfPVvd0AqfIER7nB3QIROSaWgcndAeGmytpF0d0BoK/D293d3QDIayypXfXdABUCdGmt/d0Ac4/m2uIB3QEe9f1jkgXdA+CB3K3iCd0B4Cl4wTJR3QEzpCQn7oHdA+omGpO7Hd0C6Pj0qjdZ3QOtd70xS8ndAYrnPVnL3d0B6ijwJfvh3QE7ODil1+3dArLlxc0b9d0By6cHVd/93QIvO/oNlAXhAPPTXgJ8CeEAwQiV5ewN4QPsr1EWAB3hAGNx6+uUHeEBwQO7W/Ad4QJ7p0x9DDXhAjI7UbFkNeEB0zLTenBJ4QPkZVZY4GnhAgIcAcm0ieEB4Ka3NOyN4QCohw8aMI3hA4uk4m9EjeEAsLd/vOCh4QBaysRKcLXhAjAkWfiAyeEBUxJTO3jN4QKVIRWcOQnhAoD6unhBEeEBSRn6seUV4QGQT2DjKUXhA47FpppRSeEA2ruXnh1V4QIBBffDtV3hAKv3z7GFgeECYGShA+WB4QCinuvy2YXhAvotUySRieEDUcCwoTmJ4QDhgso+9YnhAgHo0d+lveEB0ZrXt9XN4QA6w84tcdHhAozrKsYt0eECgIegOsHR4QDhU5HT2e3hA9xZebqSAeECiNci/OYF4QGRsEjikgXhAMVZuN/6DeEAKqH+amYR4QB3LvCK9hHhAhkyIQ0+IeEA0O2rGBYx4QDpjV9SojXhARp1CupSReEAL/Yj+7JJ4QJefK/MEk3hAGO3MCgSUeEAA6En8p5R4QNnC3TZLmHhAyszb5bikeEDMUIWyOq14QPRMuh87vXhAA5+yHM7AeEBAfNjACcF4QH5SYvphwXhALEhi247BeECaxx3e1c54QMrtZNiD0XhA9tGqIrjUeEAjMk8GE9h4QASm/5bW2HhAZnvEWZbbeEAqmF89Lt54QNE3HeGj4nhA7BJG/gH0eEC8avOAi/V4QJjR5ymZBXlAcOOxvY0heUCptN3xuiF5QEin8zQiInlA6tUNCE0ieUDPJxEIuiN5QAWb021PJHlA/LXJJrMoeUBmT4jnCy55QJ2LbHmtMXlAEOaJSTAyeUBiXL+HYzN5QGrY7dC3M3lA1ZfJ5mJCeUAaDw1Vi0J5QEHg80/0QnlAEtE1u/xDeUCZnM0NzFR5QJRRdBtCc3lAZXrEZFuTeUD0V9s5Ypt5QEk2+JKeoXlAVEVbSc+heUDOvJa+ZqN5QPREyriko3lATyIoelqreUAwLXSnhKt5QGQYyyzAsnlArkpZ2luzeUCZG+LUysJ5QAPsketB1HlAprZe51DkeUAazHOuFfB5QKYBgETD8nlAhH3XnQz0eUCP+l0T/AN6QJEgn9U8BHpAWoVNTfcFekAkR8nIZAt6QHdns0FSE3pAmslz0VobekA49o5VVyJ6QMiNwwk3I3pAdvcWHmEjekAwZJk6KjN6QAXsC70MNXpAunmyvi43ekBz7kdfMDt6QFeNnDoyP3pA8qKFBxpFekD+tTK3OFJ6QIq9zW8qVXpAQnJmkiJcekCYqUwRwWN6QDOllzsqZHpAUAspgo5yekDv8tRMKnd6QHC6nlsdo3pAeyEE9HSjekC+oQrUI6t6QFeQrz2AsXpAw7FYEROzekDGpfTD/LN6QDIrV6LWtHpAFHZU5Qy2ekDk5W+2RMN6QLQQyEgYxnpAgE/kmB3OekBoQZbBQs56QNotdTxT03pAxMHqkzvkekDsnNDmeOR6QGgypD427npA3f/UsngDe0B0HHb6ewR7QCC+BRApDntAahCAYYkUe0CyQh1aTBV7QKTwHqjdF3tANfzn+1ole0Dc39LKXS17QDYrDgXCMntAVPLqpsMze0B+KEkhYjx7QM4YLbloRHtA5gM84eBRe0ADjcrdClx7QDZNybm1YntAol/+h4Fje0DSbvYAAG17QHcxuezpkHtASKtXjCOVe0C+/lYVq6N7QJAwE5p4xntAsCJp0sbRe0BO0hGugdN7QAKvDHdn4XtA3J312bzje0CGcGVH/eN7QJ/HmTYm5HtA/RCwYoz1e0AO3PRg2QF8QNIH2hb1AXxA1c3kO2cEfECDOVPxmQV8QEiz6jSLCHxA+LSWVIoRfEBchHvc0RF8QH6z6RyVE3xAanYhcuEhfEBuHdq/uSN8QFh4FLY1J3xA6I5sF81BfEDyHjPjUUh8QJlcXcqWTXxA+3G0/9tRfEB4VCxccFN8QBsZ/G56W3xAlLGzkRJifEAo6Q+beGN8QGeZLd8qcXxAEpPRNARzfEAqX7Z+a3t8QMbY5hJ1g3xAp15ZMgOEfEDSrae8Dox8QPY49fo0jHxAai+cSHOMfEDcvjUgxI18QHN1e4wck3xATjXEfVyZfEBucK7AmZ58QLFV/3/xo3xA4k2iCI2lfECGcIx+DKl8QNtG62ROqXxACPWZMcCyfEC8OYXrebR8QOKuyIsQtnxA7z8xWIfEfEDOUZAB99t8QIWaJIKC4HxAwwLavFfifEDn512HEON8QBiM3x6m5HxAGm9UW2vofEDjAo/oFPJ8QBB+bVtU8nxApEP1OnLyfEAILQurAQJ9QN7HsVhLAn1AhnwTfkUSfUD4YJxOrxt9QNrgcuM9In1AQnFz/WIifUC/h9N/wyN9QGAMXSOYM31AbBAW1kc4fUBOOzcNnj19QK4OLKhmUX1AfKLPgvNafUCmZpr76lt9QDRm+fcaXX1A5vQVQHp0fUCGsLodFHV9QEzuWu1/fH1AuPWQxyOFfUAqmDhIk419QG7I2ybtkn1AP19/y+ahfUAy7+SL/6N9QG07CFyjpH1AJOrux3apfUCWDi8hWLN9QJTMy1Ztvn1ABj8ebSzDfUC88Scp58R9QLRQSjR+y31AspBY9PTUfUAV74+EA+V9QDl09mwK9X1AttefZZD1fUCkQgkpNAB+QNILVmbYAX5AD1df4zIUfkCp4Olp0R9+QBf3kM0kIH5AEFvRJ/0rfkBQrc5uISx+QJp5THZBL35ATt87EXs0fkDg2IDCMzd+QCRa0scJO35A+BrUYxBDfkAYv+5ZpUR+QJEDtJD+Sn5AFUH95E9LfkAvAVFtxEt+QKuZxU4LU35AhHyef+xTfkCBH84vs1R+QHxlcmqMVX5AEKIdjzVZfkCTmjSG8Ft+QPogM6oSXH5Aut/WJBZkfkDXS98tx2t+QBh2zEe6cH5AggZxprl7fkCJUZ+Qu4N+QDvtpSIQmn5AcWxVjdOcfkD4043yJap+QBgVhiC9rX5AALSkDJyufkDGNap19a5+QMLATEoWsn5ApJ21F2ezfkCm3GQTprN+QKyvOIPds35AaFGg/1O0fkCN4lFRsbR+QBa+viC0w35AtAPhfdDEfkAg0nc/dMh+QPfgEJKxzX5AiMWMjM/NfkCO0y0iFs9+QKZV4ZtJ035A9RDdW5TTfkCk1fjqutN+QBii57vg1H5AUvZJxb/jfkD5saUEIOZ+QPKz2FqVA39AQtA+ryAOf0B8XmKUQBN/QPRF3NOkE39A9MRW/kYbf0Ch1FAMeht/QEOeKtT1Hn9AC7Ve2qchf0DO4eIRfi9/QNkjqtxlNH9A4CbcN2JDf0DMALhdcER/QDCX6hR1T39A2D2puMRRf0DJpxhzB1R/QLqWPAGHWH9AEE/i+pZqf0ASaGwHuHF/QCNPbrfIdH9A8z4kaWR8f0Aaj4PntIF/QOxGzQKqg39AJ5gt7mKRf0B8jngBqJF/QHJlWyuck39AfvRvsaKgf0AAskanXKF/QAzAxtd6oX9AFT2Pfz6jf0Ce0N4dmqh/QATY+JdGrH9A5Mou8EOvf0CWWTR+VbF/QExj9Zlzw39AFIvCsPLDf0AmZ8z8vcR/QFFEH12Y1H9Aj+XaRaTcf0D2KELUQ+V/QPBAH/EZ6n9A7vze9Orrf0CX150tN+9/QPwbMqpu739A3Ngyve3zf0D0vbHXj/R/QGydFyfp+X9AQA+ChEL/f0AeNj22hgGAQK41fyTRAYBAmzmT1UwCgEDO1bdFzQOAQEScvM00BIBAroecB9AFgEC4c6sh2gaAQJPshdHvB4BAsF71gyIPgEDIxlGdqR6AQMAJ1atCIIBAXE3jLmkigEBSph7z4yaAQDMX0EmRKYBABOL/7qopgEBkIcSYcCqAQBafoPydK4BAYvZuwj0sgEAr9jMHdjKAQKpO+8s4OYBAFvIfeMs5gED6/fZNnzuAQFyeg52pQoBA6Nur4+1IgEApYP2Ps0qAQG0/21TmUIBACEXD8hNRgEBe0WL4LlGAQFcjfI+mVYBA993RDwFXgEDtqwnb5ViAQDaceWwOWYBAunVygqlZgEDafP7ZnV2AQLnqV0OoYYBAUKfTiMNhgEDeqQGkcGSAQKHgXmHrZYBA6wNhOKNngECWZzDz722AQPCan/wnb4BAyx5cJfRxgECdFkfvnXqAQAGpuW7WfYBATP4YsSl/gEB2P6YmgYKAQJiwCKfEhIBArEnH1x2PgEBsAHF63ZGAQE+M0R8dl4BALuZRYriXgEA811u6bZiAQEioauTamYBAKziTocCcgECoFJQvGZ+AQHo4tKB9pYBAgGPXTfymgEC8w/Yeh6mAQEsM3Yp6qoBACsS9QZSqgEAwKjbhEq+AQCjaFMpjsIBAUKv+7RmxgEBQIpdd2rGAQC5wbLaNsoBAm+97pcGygEAau5jdELSAQA6eup7AtIBAYNWsyHq1gEC8DLidZbiAQGpYNSRVu4BA6/sFLRW8gECN60Joc72AQKG5bEmpv4BAo1tuPmbAgEAMciiGUsGAQMT73iHhwYBAKFy8tZ7CgEBjxU5HgMWAQEZ5gC/yxoBAiKlLnKXHgED7v3iJYMiAQAeVLfAqyYBA6tztXlPJgECigTE2p8qAQP72FWdy0IBAwh9ekyrRgEA0smSFTNGAQOT/gsGR0oBA4bTAA6rSgEDy0BH+UdOAQEV/ZqVl2IBAmPsSR0nZgEBsDz5EwNmAQALljDjh2YBApKoDD5/agEDsloqSEd2AQOjCUiDD3oBAzuaQbWbggEC+GqCbROGAQPj+yq9p4YBAPvViTOrhgEBpDxlPAOSAQK4n4LpB6YBATkMNt9LtgECYorFtTO+AQHoiE9Sm74BAulDynT/zgEAt0WZDl/eAQINpuOV/+oBA4IBGST//gEDKVqT18gGBQMguIe8+B4FA+CcWzQ4KgUAQP88ePQ+BQP/MwzC/HIFAnxS8nUAegUDmX4zGNB+BQMLXSM1rH4FAaNiuBOcggUDA9QIOGCKBQAQkTkE5JoFA4E3wdDIngUDFNCv7tieBQJAvbLroKYFALDIWi1UrgUDMw3pM8S6BQJzJN9cvL4FA0hFkz7sxgUASi/v4vTKBQCg5tkMpP4FAoJC36CVBgUAAV0LalEKBQEV+3pAYRIFAWXWsLltHgUAMeEWHBkqBQD4MqkS0TIFAXFPaLtRMgUCiHayPbFaBQLxAVVHmWYFAaYcJkR9dgUCGVMyw6V2BQF5EDvooYYFA8Gtfz/lhgUCyFJyhW2OBQAYso/0gZIFApt9+K2NrgUBCjmHY/XGBQOv/7kfCdIFAspwB1G93gUA4X7EVGnqBQDrxAFUTgoFAqA2PkEiCgUAmS2hq6YmBQBK28g9mioFAStpLTQSNgUAs12pxGY2BQD5RujDtjYFAWC6sq1WPgUD4KHP/gZCBQDYowAU7kYFAqoHknfCRgUD3prUTCJWBQKhDuKLuloFAjM6wDleXgUD6rGkqmZmBQAtVI0Z7m4FAl6IYTZ2cgUADgrpbR5+BQK5fUWf1oYFASPiTAt2igUD+S0RrmKSBQG4ULF7BpoFAA7LHVm6ogUAaXNEcYayBQD8MXKiGrIFAjHNvOUqvgUA+/oTvmLKBQNjAd5BJt4FAVDtlRZXAgUDoR3Wh0cOBQC5wGCz50YFAsoQzQn3TgUCaomw6/NWBQMnuJxPw2YFAEcuMxgHagUAiKk5f9N2BQLGdfQj74YFAOPSJz67lgUDwM8Iv/+iBQLtUKQw78oFAcw/dY+z5gUAdi4J/QvqBQLrfDgfw/YFAWkCcz+cBgkD+aSgQkwKCQE33OEXqBYJAVoODHwQJgkC8zB1MAw6CQO5YK+lSEYJApCgrVgkSgkAqXjzA1xiCQLGvoJFmGoJAvpP3etcggkDV48k00SaCQDwBu3zRKIJADooq06YwgkDEiM3bzDCCQCjl3oPXO4JAPlxG+Qo+gkB+FJBDPT+CQJzcjb94QIJA60+7yxBCgkCdtW/rpEOCQADr6xDISYJAXkbMxMhNgkDeMSjboU+CQICs+no5UYJAoBe5rAVagkD+M1igoFuCQNyr5947XYJAygneRAZegkDRG4X80l6CQELjvQw0YoJAnA8MiTdmgkCeoBM/1WaCQCZxdah4aIJAWqKtGwhqgkAUcGcsPWqCQJXUrQPgaoJAIovGKhN6gkBAJtnlEn6CQB5vKkFDiYJAYMWL7uCKgkCRG3QfpY+CQMv09xFDkYJAmggq2hqSgkC0yLP3O5mCQFhbdGlUmYJAWL3gpg6hgkAaVpzmO6GCQPZRldLKooJArLaJ+Q6pgkA2lGuHNqmCQAJjWEjRqoJAtTFIaAexgkBWBdshNLGCQEhrAYJItoJAsqG4mFO8gkBCEwmq0b6CQBItlc9kwoJA1vnKtOzFgkDzfqnO78mCQOk7dUjjzYJAny8h0PbNgkCjyOxu6tGCQBTdiDt+2oJAqBuTNLHcgkA+cnRXgd6CQJRrK4qF4oJA4Ivm/5vmgkAOL2pJXvKCQGqnXDOH9oJApCxkF635gkAcbAVIafqCQMTT50bhAYNAcIFaGwsCg0BsuYnsGQSDQLEDApLkBYNAjGQspsIIg0C6/CY72QmDQBLAmwXdDYNAct0q3dgOg0Boy9uMeRGDQNqRvsqfEYNAVTce4nkZg0Auv2RuciGDQKDFRgSJIYNADIXhR3Epg0BzQ1B8yy6DQNw+9tg7MYNAHnmFbmkxg0AUFRzdejGDQCQcoBa+N4NAAwuozWo5g0BoDPJM8T6DQAqP45zRQoNAUs4gbY9Eg0CQQWBOlUqDQDmUhEaTToNAacVamSBSg0C3ehEaQWKDQH6eulLzcYNAsMfM7ulyg0C0QzuXenSDQMM1I6D1dYNAFyzLGfV2g0Bg4fwFxYGDQBOiiOxJg4NAUKR6JMiFg0DuDhjN34iDQO9E1P6+iYNAUFuD1MqJg0CEY116wI2DQP7lbCrQjYNA/kJR0MiRg0B8/UXNErKDQEKUIJEVtoNAbESUFhi6g0AXraihEL6DQKA4VxoXwoNAOh5kpR/Fg0BSSJllyseDQEwuq597yoNA4A/WmCLNg0Cic7+Bas2DQIMWD1HK3INAhrD1R3nfg0C0Po+iJOKDQMDd3CPA4oNASiZHV3zng0CuaxLjkviDQG5RubNOJIRAkgcGzfkphEA4VVQ77UeEQMZQQmoIVIRAUEWm7XVZhEDD8pKp5mSEQPaLcor/aIRAEniIT/1whED0gMsCQXKEQPwhhOq3dYRAJr3iEcl3hEDoMhv99niEQOGTxeW7eYRAekWwFmN6hECo3lwbe3qEQAzzfnwSfYRAbtu8/il9hEA/PUvwrn2EQEqJBWe/f4RADqFt/2+ChEBWod25IoWEQDzdgSbKh4RA59nhPHKKhEC1pvMOx4uEQDj7PsPNl4RA5pVtnBeihEAQWn4AcaKEQIi833iuo4RA0aAZ/B6lhECC7xXwy6eEQDgjYJ01roRAIShPmYmyhEBoA6VgCbqEQIzKCSQRxYRA2Xpx5GnKhECSTcDRF82EQLhSrxjCz4RA4JTw/WrShEBOLVAHatmEQHaRH3Jp4YRA5Pv2vtDnhEAqpwnGYumEQOfInuF96oRAZPPCTyrthED8FhWS1++EQAzaYA428YRAultEMGTxhEDTdgMEfvKEQMrX+/Dd94RADBbzzDT5hEC0/PJWWvmEQNAV0kWM+oRA0nAq5zT9hEDeXSQeLgGFQMGGlI9dCoVADIS+4vcWhUBSQjVMqB+FQPhQF81/MYVABoess+NNhUDyV6nTCk6FQPopvh/pUYVArJwQjz9WhUBU/KjlQFqFQDTE0K5nWoVAmEFPDbVehUA18ThLoGGFQA4D5MNKZoVALCogd6BphUDAsjOZZ2qFQHEHI32ZcYVAN4li27RzhUAkH9nul3mFQLQWqXOQgYVAOHGwMDeLhUBd+rDQL5KFQJz4Qd2NuoVAmnVs1+/MhUC+ycn7bdSFQH19804E4IVAglVRJazihUDsgyQ2/uWFQJIWCT2v5oVAohmn3mrphUAOIoejsOqFQKzVrkS57oVA+gGRSsX+hUAFaEdSXgGGQBujOK1cCIZAnpH4pVQYhkAgeXLoNhqGQOO55IPaWoZAljorPIpyhkAMbH9AroKGQAVZBHDxqYZAYqA1lSi5hkAazJ7H4cOGQH2aYjXRxIZA8xv+NM3GhkC+1qc40MiGQFjZg95GyoZA2hgYV87KhkCNGjVW0MyGQJvrxmbOzoZAREs5eHgGh0DiXPRBLBOHQAwpjU8xF4dAhOjA95Aph0CcLaOCkDGHQBLa9EqKOYdAREaAw1xBh0C6EsyfiUGHQCPNKStZSYdA+cgy76OCh0BNYoMQz6aHQKgrITvHsYdAGJu/z8e5h0D4p2KYwMGHQBhJzey9yYdAgP0i4xvhh0CHJOoiY++HQMECrt5l84dA+Qsws2n3h0CUafH3UgaIQLC0fOnBGohAlCgoAV0jiEDUXtMiZSuIQK/DCx9/LohAEAqYd30yiEBtRiDbTFOIQBaxMP/nc4hAUxJNFwKIiEAYnL5TsNmIQA== - - - - - - Xe5ORAoZtEVNRM5EiZd/RLqaREThCDNFfDN2RDdHpkQyRHhEGNyXREaoEUecPZBER+pgRNh57USIN7lFViwERaNjp0RXkS9E94tbRf6lzEVyBhdFRc+cRLnGpkQE0NNGT82HROutD0V85V1EhWQ2RSxGW0Qx+ZZEVeFYRPKQXUXit9hEARU2RapWv0RhGwdHAFu5ROOLREXZ311EPJaHRkqrnkUjD4dE63gCReXZRETavstEESKBRiaW10RxHq9EH16QRBDOrkXQ6UhEsZCGRCVeP0UmmM5EIT0GRQo4RES8U29EEsl1RPJQ+USCS1ZEi51YRJXOqESzxHtE+puDRf5SRETIjFdE57rIRMTXgUSmlxBGlWAORbGldUThYm1EtWrJRIJyd0WsVL1ExFFYRPgBs0SenplErhGoRM1WUkXGc2JEx/2mRJ0WNUXOLopGmU1MRJ6NdUXhu5RFQgWcRO+mHUXxJK1EDJnVRI9ZvUZK3blEMF++RF8VWUXDNB9FVAqzROHD80TJAcBE/0CERE9kF0ZxiWNErtM8R/0pGUT6CFVEt/1dRAPwtUTUgVNGioJWRBDMKUazdcVEmlCjREEFZURKm3dE9pPcRCr92kXtjH9ENyBkRJs4fES1zttEsDaARF0eyESsY05EipdbRCKcakSya15EkTSORSqNCEV2t4VF9kD/RFY9gkTZlXxEfrX1RYLCgkQ4hKtEIIGaRHAIQ0SFQg5FIw/8RDGRdEQoB/tE0AyfRbguOES8grpH+Ng1RmYWxERMUOFF6DR+RBtmkUTYDAlFFNrURN+JKUXg/KpEGYbLRe/TUkRh5P1EOBtbRBdtAUUh+mVEB3tPRx0HokWfKGFGqWyLRG9XOERzqE9F01DXRLxSTURL/uhEGm05RRrpPkSysEFEz9xgRIYoHEWBsUhE5SS+RHQ1U0Q5zutEsD5ERPyLskTYGoxF8yUMRTdueUTNhaREajjBRGvGn0TWFlREh7VURFCL40QPWKlEYw1hRaXrZUT0q4FFDoN7RUpx/kS/1O1E4UCoRSU+QUccX0dEmtUgRZ37RkRi/cdEhpznRK1DEUXGPnlEMgoURvCMlERq94dEatiQRAP+tkWK1mRETBr5RdgDM0UA2ohEJHnnRB2zmkSswohFXjdZRFKl+UR+YV9FuGZiRMLblUQCOb9EwRMIRci0rkSu7idEaL4kRpfhUUT7BdhELNzQRbopv0TQdflEduaSREwQ0kQ8wltF2vt3RGjUr0TKAGFEYQ+VRBNEXURfPY1EoNMZRtokeEWhgaVEZRCcRH351UT20KxE0j4GRZgqAEUG/9BEYjxkRTSypUQ1CoVEkHxbRCJAs0XwwFJE4Q6GRIA2AkWTuK1EU43dRfhAbETexcdEd5lhRN4bfERxRPhEA9c9RPuO0kTM/r5FXRNARN8SeEQPziBF89xiROqM2kSp52ZEH7ZYRNKGr0SdnIxE/ORzREbQskSakoJEXcMnREtyXkSzER5HWZLhRId++ES6S31F31WGRGWT30WotGRFtP8iRTf56kXuW1tEdGZTRGjuDEVDp+RFggNiROXryURRc3ZFXAseRfxJ+0R7ikJEfy5ERG7BZURBDa5EMsjOROyrkkXkMDtEJq4wRKlwZkQiynBEa0B2RcGyHkUF6HxEPJabRC37f0RvL3JEwzmKRFhIQEWhoxFFTlV5REk6KkTPwS1Gnr0wRGHdI0TkCldEqNK+RX4fnERC0u9EdG0QRqAnk0TwK1VEoXnpRNXUV0Qe3PJE9rIqRAM7bkX3GnpEoTVpRLRZLUYWYr5FvxmzRmJdFkWi9RlFFjxARFCnvERjoJZExjuNRdz3kER0J8hE4KZRRQsDX0SEu2pE8DH2RKCinESkrBZGEnCuRCRZpUTNWQxFkx7BRKvFfUT9xfhEbIW7RKFK3US+vj5EuHuXRETyeEQbphRFSdKbRf4nXETj6kFFeiGVRAKrbUWFc7lE05VJRHvtZUTFwpFEWogTRe7J/UTWbDhEjc06RGJ6X0S7IZ9ENY2HRgnoZ0SpMH1F/OiBRKQaSkbDpaxFDsmNRL1YAEXeOa9EUbynRL763kfLVYpEyT1zRF4DeUbhLUBERKq0RdTnuEblG0JGgUWIRWdoREaZAvVE5+ObRBjyHUUgTxRFVebURHHBOUTibUZEuePkRHpdzETZui5F8HUZRWLEL0TnrAVGBIKKRPoko0VRi4tED9U3RJ6qpkRlgOlEW++kRAxvZkS24LxEvk9aRME+l0QfObdEKezRRzijgEU0NaJHXpGLR/RKxkYHqjVEU8EJR8kwBkbmQgtFbFmPRftUrUWukYdFXbGFRAVwgkQp1lxEnOdqRWMbwUTLpJ5EfgWCRpOiukTwe1tE04+URWP9T0U0RodEXyF/RenzDEao4aRFVpjWRLGcF0VV12lEi9mZRHh540TaAllFbFUDRcnCAUX9mDZEbkuRRD2hiUS2NmpFbKsrSSrQwUVR0S9IRNe0RNsiOkQ9/jZFcA+QR9KDKEjeV69Ew8kzR7qJQ0YJmtZGVrHNRHyTAkUz0XlFSYoGRRGyg0bZvNhEaVRWRKlmekSRn8ZEaxWdRClkrUTFmcVE539MRFyxeUQR+jZEoRcbRQeOPESEFlpEdNZmRNzgUUR23L9E2wI+RWAfZ0WvAYRECffTRIb8IUZlKpxF/qG7RDEkNURhrjZF3196RpcvRUZBk5dF+BqbRGHRTEVFqppE6mb+RM7uuEQu5VFEsS6vRERgS0W46LhE0Ha1RxTj/EZXlLNERSM1RO3pxUVD4X9EQ/eFREOO3kRqMjRFzRpJRKEJg0QlR7xFfo+QRBRZNEToSnVEfLnaRFyIn0SD8kFEW0aORGv12kSqelFFPzHLRIc7q0Sri3NEY6ZcRLCL+UUXsJVH+eKaRdzOa0WiF6REyxilRitLR0THZZ9ECtTFRSOtNEToQhVFOWOWRPFveETlYqVFnk/qRFtC5kSEcY1ExPqNRHFUg0Q3sTBEM02iRek1REX3479EvppyRHRvk0RZ1YtEVVCJRHbQvkSxUb5EYKKSRAtR9UUFf4xEEx7bRNLANEZvRzxEyoUURQyrgUQCV/1EJLi6RCdt3EUOuFVFRSRaRFyyUURIbodE0qFIRG80Y0TI6jRFXog3RSwO2kTqlX9E7hs0Ra/ohESaEYVEU7KbRAYDn0S41nZFe1mLRr3aG0Y8Z8REmiovRc20W0WZYD5EO1i1RDuQiEXyTTBETudsRI7qrEQ3zmhEaR6cRTgqoERgfdFEztbERCyzx0RvZZJEz15rRA56J0QfVCNFJPVkRDq+AEUPC1NELweyRZ4cwESHqZJE1aiyRG5Wx0WkwDxFXeKCRLr9zkTsvypES1xORE4+UUQSZIBE11K4RIUpfUYhw4tEkFRCRZjcEEVX+45EKD2zR2bpAkWJ0aRELTaIRIqgo0QjbqxGGztORTQO3UR0kXdGHBU8RY6F/URIXdNEhPBURLOWMUTFYLJEsLIuRdHbjUSqwWVE8hGzRM8vl0Tv2RdEVLu/RS7IJEVc0E5FIA+cRNju+URM8IBEHtBdRGKxbkSYQjNE4KaTRKLBlkSrAEFECnbhRJJ6qUdwi0pEKV90RmzU8UT3dFBEf+LKREhMUUZjEyhEkR2CRPo8ikRiwiRFmSIiRNpc8URxf01Ew493Rbu5bkQES0BG8aOoRb4CSkV7LcJEo42DRI+xmkSAljtEYBUeRex0UUSv02tEEqhvROv8uURgkDdEtYEkRKjMz0RuUVZEqpSZRPWt/ETLz9BEpF1XRA3pRETIzoNEtwWWRGv4nETTW4FEhnLaRBd5hkiG0OlEYEODRBPzlkSpclpHjnt/RdYNhkSGNC1EEKk8RHSObETQbD5Fyx0MRrBHj0VhbC9EL/yRRImzZkQQSRZFQk5hRDe/AEVCGiJFGEGJRNU7WkSVaI1EtBIyRNnEZUTg7QVGAClqRAmI7kQs3pFEj01tRAPIkUSY2CVE979RRICpckU5eUlEeryMRERgfETJD0lEqs04RvBBcESumbNEKXAxRUulP0XNi3xEqscaRN1QiUTWlVpEBjRPRMzSL0X0/U5Ek7WaRJwaqkS5eqJEZFtCRFPVcEQOr2FEcegORUiTIUinWudEaBiGRIgSCEgKZz1HOq19Rk2JN0X2AWJETlE4RR6puEQ/r7ZEuxKXRFsCgUQbFEREaC2TRA97KkV/zAFF1yw/R+U1hUT6hLlE0GtURG0YLUZ80kZEO3tsRHIq1ESBshhFAIRkRPqrVUQXvYtFgPOERPmpNESCDBNFU0o+Rl5Oh0RyNX9FvJGVRMnBk0RqqqRFC9O9REyoPERtd0REmtHdRKlEI0XIRpZE8UChRK/OWEX7dkxFxA4SRVPcXEQp+YBEAJuqRGqeTkSKXXlEF8wJRi4hbkQrydZE4MlnRPSkb0RfjbtEcx2ZRMhMuES/yq1EFrOBRFiGw0RV3ntEugxSRBmxgUVGOptEIB+ERHTt2ET+IVxEiChPRKEcpkTdg2pE5KtgRECzdkTsjbJEBGrURPImdUR78khELO9oREE6dEgtZ2ZEHmrURnaUZUTjs6lETsZ1RJqaLkRen+RELm3cR3TBoEVoCmJENRzaRLoxgEdY1StEZM4uRI3FkUTMLwhFvcwrRmL8qUQSH3ZE5EBmRG+1iEQuWZJE6phgROmuh0VxWnJEC0IhRDKBT0QgveREeq5oRCJX9UQk4oVEVg+BRM9iQETcoZlEWqNDRm8HRUTw4UhFl+laRHpYh0W4hcBFu0NFRNaIyUYLGQRGsMloRCPG+ESOo3ZEg3N+RQQ4TEQy725EYBVVRN83rEQS4A1FSrLXRIvP3kQCXYBFU8dhRCWMW0RXf0hE8r1MRUnCK0VQO85Eh4FfRJoTr0Qi/+1EUA4tRIYbs0S3uoBEXAlNRHW5aURuAltEA7BmRMRWYkRJLqNFlbPtRAzTokQSFIVEY3xdRHCtuEX/kf9EYL3URGKAhETEKYRFG5nkRXRMhETYLyJFVscHRSFpWURMSmBEzwcKRfYob0SKvlBE6r/LRSqjnkWbfYtE9hiMRDIEt0Tui2dE0xPgRPLGLUShE0xEYRQeRjx5f0RRvQhFPvp9RONuRkRaXCpHJ/xyRPJCp0Yc8DdFSlK/Resir0Rng7hE4/ZeRIh/QkSqqkBEGqXCRqu8b0RW8IFGMWUSRT9lekQqIS1F/uSGRFKNFUXanW1Eylt+RJJSHEZlcZFEmPCcRTn/U0SQI0JFjic/RHkAiURjEG1E9nxyRYyEjERePTNEnI3QRMcDiERh1rZEZQpNRIZlHkXGuQNFfuPZRC/8ukTdrwpFTRhHRK3tV0Q0VgVGMju/Rc7MWUS0v7tE7Z0iRT9WlETQgpJECNckRHVZV0TLcbpHAGF3RB9Ig0RhzxlHlN5FRIdTq0YbzRRFhHu9RVQ3/EU7gsxFR83rRP8UP0UYiGxEy6NZRK0vTUSt64VEpk9dRA+ZjkQx/8xEUQgFR6hzlkYIBE5FSQNyRcHi2ERH+QxGvmU9RHjxPEVPE5lE6VBHRIBjOkRnq4ZEG4zqRCzrTESFrQZH6OFJRGfZJkSHZEtGFVViRJAofEUrzrlE6ftJREfK6kdkeK9E63lIR54Y40ZCfR5FjQIORiJLNUSPCSVEEPP/RHDHiUQ3CSdEzzeRRGgLQETFAHJE82k3RPWGdESGIYBEAvRuRLzvI0Q/xxBF8LB5RJ5gckT7yCNFNSVQRNnxJUcyh1ZETm6eRr/zgESwkJ9FWsaWRQekBUVPwv9Es2sURdjyHEiDjtFH4YrwRrUCV0YGs4NF4NtJRXrDNUVUhslE/KpGRPY0UUSeaWRFkSkWReeDlkT8Gy1EFMt3RPsQnUR6zH1Ep0xQRJcRQkRBdFBEzZVBRDu4OUQlE71FOR0kRY9tvEQUhMRFkl0gRrJ4FUVc+UlF2mrRRXv6H0acxf9FS6axRbkQ8URjImBFhmuIRSyWaERT7ZJEsAPTRLEoqkQ7bVNEaNRNRFYjjEVpxktEQVnfRM6W0kSf62hELPhARExDVkTz6YZElV5VRLQEDEX1o81EpvhbRFJMAEc9/GRGFy0iRu0dE0bJ+GdG69gNRmJq0ERwNJ5F085fRZHorURyw/tE/PHORJ/Ht0TIdP9EXsyTRCUSh0TNW5hEDDhoRCYzWETopXZEGLpaRY4POUSpfd9EX4GjRBAz90QKSVZEUN2JRFS6B0e+AW9E+n58RoYjMUStShdGGoCSRAofskWel+JEvnhVROeJU0TFhlNEbW5rRJTwVETLSVhE5orkRcvXjkSkJ75FQ2lWRXuvI0VRclFEF2JQRElXV0T1ZrNEugpiRMx0RkTpPz5ExGRXRKqF9USYqatEKlXNRKQvmUSNFrNERGItRaANbUWhfEpEfXuPReCsQ0VD0WVEM8E2RAQQQkXX4r1E7Jc0Rj+twEWaiXFFBAdgRF712USxXYBEjgdJRH9ekETekydGKvKhRQeTDkU+ZchE9IVdRLofK0U26DVFstuLRCY0VETTYDNE67xPRdkdf0TjA71ERuPFRAk0m0TPCodEWMi8RNqnhEQ= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - lj+5ZHfAckBuRivd2sByQJTE9rAAwXJAZzQsjiPBckD4HBtZb8FyQJqMwJPIwXJAo3lz3E/CckBs36/8p8JyQGDyEgDmwnJAb/2pqjvDckDA6ry3xsRyQJpYTDpaxXJAXPdyTXrRckA2bIBzQ9JyQH4SPt6K0nJAqJEyP3bTckCo7ssazt9yQLaiANgj4HJAGghqfU/gckDAMKFRt+ByQLKdbdPb4HJAgrO3G0/hckAqe4hg/uFyQFv7UFFQ4nJAWnn184/ickBoJSvQJeNyQFWLyNpC8HJAlPv3jaXwckCe+F2INfFyQHx/qiPI8XJA1vEGgHzyckAIAGGCFPNyQKh60Bq283JAfHWh/aH0ckAsbmRQw/9yQLTOgvz3AHNAu+E71kABc0BSUNiDjwFzQAJYNz09AnNAWQrYm88Cc0BWVu3iZANzQN4qEV/6A3NAUlNsDHwQc0BGtzurdBFzQGrPBPonEnNAWnVZ17wSc0AH3owPBxRzQNd+JQtNFHNAX7v9oHkfc0C6uMm8pCBzQHAhHLQ4IXNAOpecE8sic0AUB7sXpiNzQO7hOjsBJHNA8szX9jkkc0Dkf4AqzyRzQAlKks9HMXNAusLVLFwxc0CEflkcZTJzQE2X4tbNMnNA+jdV8gszc0CEbm/3nzNzQF5Xj6rUM3NAnDlaefszc0D8v4sLODRzQIo3d6jcNHNAMEnT7bQ/c0AurBiZQUBzQDzqMXJ3QXNAp04WurlCc0BQH2BPkENzQJCDWh56RHNAskbuhHlRc0A3pPOMm1FzQIDFGb0NU3NAwNYyskJTc0C1J6wQo1NzQGr8kvmHVHNA4KQYC4xgc0DO0w+BHmJzQFgKr3s7Y3NAfI20VbBjc0DQCC8Jq2pzQBh1uUzhanNAp9UGWCttc0Csq7Np23FzQFI/EOhbcnNAPj2kzIZyc0B0sBUzkHNzQDXUa5+4dHNAMGOt8Ep1c0Cma9+gwndzQPVhiKzed3NAWKbecDZ9c0DuHPkpeIBzQG6yagulgHNAAdzZgAuBc0CEiVN1XYJzQDHwyzilgnNAtJrOKeWCc0DX4pHH/oJzQCtqw2MOhHNAWeAIsDaFc0CCBj6Fh5BzQEVX7aqwkHNATVmz3/eRc0Aq8YYYHpJzQD5nSu1MknNAmq28b8yTc0Ao9dvMYpRzQE/7fSD3lHNA3FgT57mgc0By7gw95aBzQLZNLD5LoXNAuiPlggaic0Cij6OuWqJzQOWklNKRonNATs359wSlc0CO/sb/n7BzQEZ7L97TsHNA2RTBmn2xc0CC8l/QXLJzQOSbjQa3s3NAksVGGw20c0BdsSL7ZMBzQNA+7ZeQwHNAJ5gt2LfAc0BGKjr/9sBzQAzoIeuLwXNAbvT0yDjCc0DwekTQz8JzQA96e9Amw3NA8GnemoXQc0CEdWri5NBzQEgf5h7Y0XNAjFnVhCXSc0ByWKAOvtJzQMTSq8Tb0nNAAM+oDfjTc0BSFsDu4dRzQMSWwXIN4HNAgB+WIqTgc0AYzrIG0OBzQMhAoEX04HNAgleckzjhc0BneHaZZOFzQJCvAvfk4XNAjiw7AGLic0CaWxDseeJzQP6113MO43NAlzoXiqTjc0C4AICQ7uRzQCSLSlmy8HNA5s1aIdvwc0CzNnwT+fBzQGNeDwON8XNA5ND3jqHzc0DSyRpMNvRzQOo0MyOuAHRASkONROQAdEBgAABuEAF0QO+Ydkt4AXRA/tZbi7oCdECd7LiH8xB0QMgj2E8CEXRAgM44cBASdEDSo4DnphJ0QN7gVIZME3RAOMoucncUdEB3l8Fb8yB0QGBGppK5IXRA+h8AqmMidEB8UzFopiJ0QFo3n0D4InRARspUqLokdEBmh+sjVDB0QDF5wQYEMXRAI17inOYydEBYn0U+EzN0QG5Pw7XhN3RAjCY3tG44dEDUF2AqOz10QDT6z3hUQHRAYTYGuMZBdECCcOzrlkJ0QBgURII7Q3RABJ8FUHpDdEAPHjSLP0h0QNak4iVcT3RAyHWJEY1VdEDFHDufIV10QH9QZ6K3YHRApOXg7kxhdEDYfVhuCGJ0QNVoh3Z8YnRAbGpqK3tjdEB/aWCjEGR0QFhEt5hOZHRA/YaznSJwdEAp7gUcX3B0QEo52A8acXRACJEfIUFxdEBqXyWv4nF0QIYizsnncnRAAsvfYxZzdECWzL86IHN0QBaFv9k6c3RA0uItvaN0dEAW6IMdOXV0QIAo8PFDgHRA7paiDfiAdEAE7ZlREYF0QGxKYNlOgXRAclkujkmCdEC2XUR6JoN0QPomO9S5g3RAHvA13xWQdEBdXlCOGpF0QBpE7F9gk3RAJODXoe6fdEAUsRFiDqB0QGBVtlU6oHRAhPh9w8+gdEBqtiz1OaF0QN9rsCzNoXRAeiisGbiidEB2TW9EEKN0QA5/Zaz6r3RA9Cz5Kg2wdED1SylUxLB0QOI69y4/snRAlmO9Sk2ydEDdKkgTb7J0QEt0xVX7snRAzkYoi8m3dEDP5OhgFb10QElIeB4fvXRAlJW/sd2/dECWgLrKSsB0QGj5/2HlwHRABG/GUnjBdEDwGZV86sF0QK5VJq5Qw3RAg6uVkH3DdEBub6adIcR0QIamnUm5xHRAYsd8nf3OdEBHELWwXdF0QGqc5rec0XRAgiWkdhDSdEB8WKvRpdJ0QLo9SOTg03RAmrG3HXnUdECM08FWz9R0QCmPc77333RA4kMFZ4/gdEDCT7LpseB0QGxsQYci4XRA2OmGKjzhdEBzVBSItuF0QK4QX0od4nRATArvMmjidEB+9iXi+OJ0QHSakYeP43RAzl+v71DldECuqkX3HPN0QIBdePyM83RA4vPM9Xj0dEBI+IiMjf10QHqVlOLw/3RAgoBQIuYAdUDDX++WCgF1QKCvs+NiAXVAHqR+J10CdUCRJrNlnAN1QDB1h9/OA3VAYqPVGWsSdUDOJO2LJBR1QFVq63kaIHVABdUEz5widUCUciIRvCV1QMaTEmGtMnVAFhwJiMs1dUDWNbwbTEF1QAKtb7PlT3VAnOuNU3FRdUAkV4sMJVJ1QEqMyDd2VXVA2MQTFQ1gdUCkKRnGOGF1QNRHe05jYXVA9guThc5hdUAl19Jd9GF1QPsa8bBlY3VAwsHzV1ZxdUBJ2NRe7XF1QFawH2t1cnVAKA6k5s5ydUAk2xAbjXR1QPJKZclQgHVARg5HAuWAdUAMHZCyeIF1QCMYPMitgXVAzVVfNOGCdUBEwC34poN1QMBY0zgThHVAB2FPM5qEdUDgfVgBvJF1QE51KUZzknVA4IKHIzyTdUDBTwkKlaB1QAdImh4koXVA4TlU2E6hdUBY1/wOSaN1QEC/6f6WsHVAGAaHfHexdUCg/331u7J1QBaqC+jksnVA0OgATTrAdUBqdpWbzsB1QF8fvVxjwXVAFplOXPrBdUA6etjNpMJ1QF5mOL/Qw3VAvmro2szTdUA9xnBJ4N91QH6Y9v934HVAjocfW8XgdUBQ0w/dDuF1QMGcaOYH4nVAUgIWmKbidUDaAdA/5OJ1QIblwu5L7XVAdTNihabydUC4PrW49PJ1QPTYXc7993VAkwlEk0gCdkDKnofljgJ2QKiCalTRA3ZAF0XoKVYSdkDc+MZ3DBZ2QMNPr+oZIHZAlGVV/ogidkAscDkPkCR2QJ5MJU9LK3ZA8ADEjh8xdkCIoLNHJDN2QG+U1Y1TM3ZA/0zev500dkAS6tIoTEB2QGqChyVaQHZA1pX8Fx1BdkD274ECnkF2QDpsci3JQnZAkm2bC3pEdkBjeQxh+052QESmjQ0QUXZAUBI7cmRRdkBH+sPmiVR2QBBcB0/NVHZAamE4ro9gdkDKfY5bJGF2QDDptTvbZHZApSlaW1dodkDIOSaBa4J2QBTjTDLngnZA0q3nomWDdkCCnvlvkIN2QMLh05wrk3ZAhFE6htCXdkApqUmP6512QKhkD8F4oHZA9tJDU6ChdkCNCR6PwLJ2QFyxpPR6s3ZAbdzVgg20dkB+83irebR2QOZQgbt1wHZArEjs8bnAdkDT0kl1G8R2QAQa2UvQznZAZpf6O4LQdkBjXP0bltB2QIBCdKW60HZA/JPo247zdkCyvppaNQJ3QJrWUPARA3dA6uvdPwESd0DZQK1pHBN3QMyBLO9jE3dA0lsSrY0gd0CsbRKmECJ3QMxGuopRIndAjLu1k+gnd0CTH0cURy13QGp6czJ/MndAsj2D7qAyd0CC3JtFEjN3QLG6K/WjM3dAymtqQQ01d0A2X9odPEB3QCzn38OcQXdA6QUqlPlCd0AK7rIPkUN3QHZ8ueAaRXdAo/2nmAZQd0A8inABSlF3QGRxOtSRUXdAtKLeS+JSd0BO5ZPiKVV3QEVk9F58X3dAB0rpCxZgd0Ay+sTGemB3QC66WJGPYXdATdMFbj1id0CAzZRLqWN3QHGqb4Uob3dAcq7bY/Zvd0CpH9i29nB3QCUeBEygcndAPMyurpZzd0DTG4Bl+nd3QEeqWc8/fXdALgRJklZ9d0AJzW5SuIB3QIJjpbHkgXdABOkpHBGCd0Co8cHzfIJ3QG7XXZZLlHdAEqjqWCezd0BBl9fimrR3QFsiCCzowHdAjfz1kirDd0CkVEdu6sd3QKELrbNGzXdA6kFEIlPyd0Aa50F9ZfN3QCwKxJty93dAwNxJsX34d0BNOCCgdft3QOJah2pG/XdAaheLG9b9d0AZtTd5eP93QL1zEnCgAnhAXgksyH0DeEB4H9sIgAd4QJJTh17nB3hAtqhUo/0HeED8ZF6ZRA14QMpVfFShEnhAzIJeJDQieEA9C+MdbSJ4QAgi+kQ9I3hAzoU+jtEjeEC6CN3EpiR4QDRFERFBKHhA+Wg1YSAyeEC51LTJujJ4QJxH9+XeM3hAAvqfIeVBeEDkuBM3C0J4QHUg5KEsQnhA2krblRJEeEDNQ3CCekV4QB99ibTKUXhANgtVVJNSeEB2V6Jzh1V4QKoZsOX8YHhAfSVAJ7dheEAe5hOaI2J4QEpG67NPYnhAR5qOP7hieEB4Dh0Z6m94QA+DLRIPdHhAHgV9UiF0eEA4vD3ei3R4QNb1TKC8dHhATbhw7gp1eEC8TtNoInV4QJg+eZr2e3hAiZmDG6WBeEDQySGTiYN4QN7yLoP+g3hAJB2iqJmEeEDZ/fB6T4h4QGRCNL0DjHhA1l0ae6iNeEAiCdnll5B4QC4X8g2XkXhAWOFfwbGReEDMrz+WBZN4QIDaaB6olHhAlAuqy0uYeEDcI5AtYZh4QKsSMDEqnXhA4oNdtKekeEBgGe9XuaR4QG2sHf/Ts3hAUNLWPeS3eEDoow2HzcB4QEN3LWMMwXhARBAwc2HBeECNS7wW9cF4QKohEJ47w3hAGOZ4tfnNeED6plK1gdF4QMDoSNa21HhAEH9gatXYeECea/ZQU914QMo4CVMC9HhA33bBoCr0eED+WEcojPV4QGiuNgQk+XhAWd2XDRYEeUC/iBFSnAV5QDDf5TmOIXlAXHrNgboheUCGdmMzIyJ5QHl2ycxNInlAZGJ3llAkeUAiNBlesih5QGQ3fo0LLnlA0iIn064xeUDZmLPCHDJ5QPduLw1BMnlAqHu0ZmYzeUAaUJADuDN5QLR5s5piQnlA4pF7ovhCeUDzmuq3+0N5QLgi3jitUXlAWuwF/TRUeUBsI5GizFR5QJB5+qlSYnlAGHLaSdpkeUDIesiSRHN5QIJMU5P+hHlATtXiUVuTeUAsimCNYpt5QOpYB584onlAwN00lGejeUAxyixDlbF5QLBBXzjAsnlAsQ1jHISzeUC8x1NvWMN5QC5vc0xC1HlAqgOYKc7VeUBmgQICUOR5QCFFOtBP6XlAwNsByJLweUDdrdVPD/R5QIHSbbSRAHpAWK7J8fkDekAHu7YXOQR6QBY1B7T4BXpAai5qJ2ILekDUayGIUBN6QAjXWP1XG3pAGCpuLSozekD9CbWhDDV6QGpW6aUtN3pAsINOxzI7ekD5xN6+NT96QFBGpjYaRXpAWYqbWdxKekCV5jScc0x6QPHsKScpVXpA3SRq+iNcekA4zK85KGR6QGRBtGuMcnpACQKukGlzekDO18CTJnd6QJCFnHUdo3pA8+ggDnajekAS3YrxJat6QAWlRJ4Ts3pAf+4htvezekB2bY05DLZ6QDxG84sSt3pABgkR7UnDekAuvGm2YsN6QI0J+WW+w3pAZwWCxBrGekB0xLNoQ8x6QNxvFS8lznpAOswiqWrhekBcrhCpO+R6QNBe+tB75HpAkqAC0TfuekAQvc4lo/h6QBreYPfhAXtA+ops13wDe0C9WLkW5gN7QITO3TZ8BHtA+GYRYikOe0CuIaVqihR7QCrj91pMFXtAdnY/Zlsle0C8ID9jwDJ7QNCUKi9iPHtAVlaqqmhEe0B6dsflXlJ7QE4ZvmAKXHtAjCdCctZ7e0BbTgI97JB7QIzVYhMjlXtA5CY3ap+be0CaC/H3qaN7QCxHp4F5xntAHGUUtn/Te0DIUElDkON7QNjMU2gl5HtAg+MdFYz1e0CNGmXQjwF8QCB6iQraAXxATQV7R2UEfECGJgQqmgV8QIVMCVIED3xA0goDN4cRfECQ3/kH0xF8QDiaEJa6I3xAFUGY7vwjfEDbH/lEzUF8QGetcTtXSHxANdEAmtlOfECAjNWbblN8QIPL3uFqW3xAIIePRw1ifEBhub+iKnF8QHHTIlIChHxAJS+I9iyEfECztTJfCIx8QEbGUPx2jHxA1FcdU8ONfECqXHFaHpN8QMbwWZRLlHxAwWdmLnWYfEBPc1fn9qR8QHzaWl0Xp3xAGCn4dneyfEAfPpIswbJ8QK5uBSt6tHxAQokgctTDfED48th7hsR8QFAA2DP223xA6gWX/lfifEAso6UZ6eJ8QMDUdqcQ43xAxqzyM0vjfEDQG7BVp+R8QN59tOxs6HxAnA3O9kDsfEDolTk7F/J8QKqiI31U8nxAmN9BDAICfUBcOCOzSwJ9QPO1wjoJEn1ALY/TCkYSfUCr4PNAZhJ9QDfVfG+vG31A/kkNLz0ifUDSl496ZiJ9QJjIrNG2I31ADDgKoqMxfUAAjiFEnTN9QDmCFgNIOH1Aif1816A9fUCKg/bF9kJ9QHiirLdycH1ArnyTk3p0fUCYBE9oFHV9QOEMvR6BfH1AF85QPCGFfUA2zgQ4k419QDayrvvxkn1AujXGhjaTfUA6/5toLcN9QHyihkbnxH1Anm3IUvTUfUCmn/bJ/+R9QMZkhTCR9X1AdRmJdqf7fUCOtsamNAB+QN7HXYJHEH5ASl/n6nkSfkC2ZH4R7Bx+QKwOxiIiIH5AGAknFvkjfkBiIeEIwSl+QDwjscgfLH5Airl3YS00fkBNmh1tejR+QH7dGGMJO35AmqXz4RFDfkDiM+HJo0R+QMZkoLzAS35A80U5pOlTfkAQcYTRs1R+QOw+7/TxW35ARl4J4DpjfkAVQjbLKHJ+QI5c570oc35A3crtPLZ7fkCy67SnVXx+QOqDDBPNiH5AyuPxdw+OfkCUP43XCpp+QLZ1C6TJnH5A9B/SWJOkfkAyHsYcnq5+QOIOmnG4sH5AkNbXOqazfkBGVTxFIbZ+QGycOmG0w35AgPa6l9PEfkB6F5Gnrsd+QH3Co9xky35AuNmouLTNfkB4jgNjZs5+QFqYc39J035Ao+wpl5XTfkBGajUfd9d+QMtxEbxR235AFUuNZGr/fkB2P96ClQN/QMf+xrk9E39AdNLg6qwTf0ChvbvVWCd/QJvB+S15M39AvicTkGQ0f0ABUAllqTl/QAhN/fJlQ39AhQKovXJEf0CRoGVcREx/QHpZNUstTX9AL8tJ33hmf0CWMeQtoGp/QBT6td+4cX9AjJY+lw50f0CSeBTvtYF/QNCSBbefg39AMzfgkWKRf0BYkp3bqZF/QH0Bbq1Pk39Autez2ZSTf0AGGVNvpKB/QJhaHMZdoX9AvlzTsEKjf0AaQYPWV7F/QH5/Vv+Z1H9AuLF7Fkref0DU1j4u6et/QH8VKzs3739AplTWR+7zf0BeRyIekPR/QBvY7Yzs9H9AZO7ucen5f0DYsJz8Q/9/QCQqF4bd/39Ahkv/NIcBgECnNQcpSwKAQNg7w/y6AoBA7tZcPzUEgEB8FNk/IwWAQOxZFCgfB4BACGQIHtIJgEDLJdZjLw6AQBksJGP6EoBARO073esZgED1f8MWvxuAQHrX1NCrHoBA3PkkFEQggEDIi741aSKAQHLPCpfiJoBAXOY36uwpgECtLHhoBSqAQBuXg+pvKoBAZm+6dHgygECcBvEikDqAQAGjCz6eOoBAQMueURk7gEBAGcG73D2AQMr3YnepQoBAHjtLTvVIgEDji7jz5lCAQCwnCUMTUYBA3p1VkyZRgECwyL2hulKAQGkIL2umVYBAk8LzAuhYgECKU6WFDVmAQKDF2rmeXYBAYDOLTAxhgECquVOpxGGAQKwYVsFwZIBADmrFceZlgEDoFy+K8G2AQIRuqlspb4BA1i2uB/dxgECv6J/UHXmAQIx29sEpf4BArgmOSvWJgEAJZwNtf42AQARPjFkej4BAZ0KgZB6XgED+rbShJ5mAQHL6zrhemYBAkOs1Pe+ZgEDCzh6fkJqAQFzjTgM5noBAqnZkGMWkgECLUNdJiaWAQHClHrA1poBAmvs9r/SmgECuQsK2rqeAQPP4BVQ7qIBAgkNO5oapgEDKJTxsE6+AQGyktuZdsIBAB6JFaSexgEDfJ0561LGAQIIEZd7msYBA198IlpSygECcnu/W/rOAQM7894e+vIBA/BprlFLBgEDM5SvInsKAQC45bGDfxoBAWvhL12TIgECQVr/DHcmAQMBGfgtTyYBAoMgr5tfJgECkVXlHOcqAQI9TlW2lyoBAuCiccFXLgEC1LVaABsyAQDrccstKzoBAqB1DOkzRgEA4k8+bZ9iAQBw8X8JJ2YBAdXTCqb3ZgEAeJTiWDt2AQIDVN+5D4YBA0BypOWvhgEDmbFwN1u2AQBHl2QZL74BAZOlZqD/zgEAILjaUwvSAQDeaxBLr9IBAr4Gv12b6gEAaQnbCfPqAQHB2zdg//4BACiwC6D8HgUDlZS/ePQ+BQM4WtHf0D4FATNMMEjUSgUD8d0GF/xaBQHSQPW6/HIFAvN61euIdgUDEuS7eNB+BQFLBF7ZrH4FAWXZiWxoigUA9a1P0NCeBQAqjmle0J4FAVpQXwbwxgUBqyaM/vzKBQFSmLigoP4FAN1oV7JNBgUDXk3oEW0eBQFwFNXwHSoFARr/LLbZMgUBIJHPx41mBQK3/RbDrXYFAp84YOW5igUC49pjqoWmBQJiSvsblbYFArk2TsMN0gUBxZqdCbneBQOBw7zbOd4FARldExh95gUBuouYAHnqBQBIKJnhgf4FAE1AC2eSBgUAspT+S9IWBQHLG8/gQiYFAtlc8lOmJgUDa6hWZaIqBQKGpHkbujYFAoFoKxFWPgUD2HywNr4+BQBA9Y+bykYFAlAASNueUgUCbp59d7ZaBQPx/9SFVl4FAj8wJ3ZycgUD+z67+R5+BQNq+VVnmoYFAjmp6hfahgUDN2rocb6iBQIxBADBKr4FAiajNR/yxgUCWU0lbpbWBQK73ac5It4FAPnloF/nRgUC5zoimf9OBQFyPJ6f81YFABlGRxfDZgUCyFTytBdqBQPAbAf/03YFA8GlLJyfegUA4PUFrrd+BQJhsLcoA4oFAagmOtOz5gUDICITKjPuBQEoxkPrv/YFAT6XM7OUBgkC0ZiyR9QGCQFLskjOUAoJAPRnlSOgFgkBzflJXBwmCQDitbQA9CYJAPEe+OAMOgkBZtoNp2BiCQIrVh89jGoJAfrZnkq8bgkCEH+2OiiCCQBJ6LMnVIIJATm/tEmsigkDuDv2e0SiCQKDpOQOlMIJAfq071dAwgkCaJMRQVjqCQOAIMJUKPoJA6jt5G1g+gkCuIaPcsD+CQPgeDIJwQIJAWOU2nQ5CgkAeVGLEWUKCQCpW9v3ISYJAXux6ScJNgkDe6PYjEU6CQE7MLUWgT4JAjAB5JHBQgkDrCx3MoFuCQCuGeyVeXIJAFgE4fxRegkB2Lq0VoV+CQJeT+MczYoJAHvocKjhmgkDwNbcPoGeCQH2kQuZ3aIJA0qGAzjpqgkAQx1W7n2uCQCyiu3fVboJAYoVyIdRygkBEA0rBOnOCQDjkKu5AdYJApnmfPAl2gkCSlJul0naCQJw5icCkd4JAnrZbH3h4gkB+LH/bDHqCQFQy8mE1gYJAiphRz6iHgkCMQbdeQ4mCQHRhlqiWj4JA3rnXVEORgkAoxET/upaCQMzo1Gigl4JAuLcTFzyZgkB2CcKDUpmCQPrvZ2YOoYJAgpGKyjqhgkBObqjJyqKCQNk5PQ0OqYJAcMd9uDOpgkBsbk6z0aqCQFhndEQIsYJAUipt6iK4gkAlPDXnebiCQGashsgQuoJA0LiAXOzFgkA0INOu78mCQEQItgBSzYJAoLeiieXNgkBwto9g9s2CQGD6FzHm0YJACpkRKILYgkDqCPiVftqCQFUuy3+C3oJAStVyb4TigkAeRCUED+qCQLuGVMY27YJAlFnY9KjvgkCK+zQxJ/CCQJihG9l09IJADfINb2f4gkABX8RcrPmCQDv5hzFk/4JAsigsiuEBg0AAR8Tv4wWDQEqmjMc1CYNAOaSH2NkJg0BMCm+x7wmDQGgQJaQsC4NAWg2+Mt8Ng0Bb9L+heRGDQNonW8d5GYNAM87B6HIhg0DNaKy6iiGDQATkM81yKYNAYzydomQsg0CiLMIjBy2DQPfhKcJqMYNA7iciBJhOg0AYxR0K41KDQLh42EvBXINARKEcNlJpg0Cm6nM983GDQDzD18b1dYNAPvQAFMWBg0Adejm5x4WDQOBBaUzAiYNA/SLTc8WNg0Do6iTVx5GDQLqj0SPekYNA6V/wn1mgg0A42cm/ErKDQA6rOKUVtoNA8mmFAqm2g0CA/DtZDreDQJ5Cn50YuoNASDFUmhC+g0CgAZ7HE8KDQLWIJ3gfxYNANcT+lsvHg0AcwceDd8qDQNeO7o0hzYNAAlPgWcrcg0Brpu/GRd+DQLa4zA9334NA9IvXwSXig0D3KT+pweKDQBo4KmLL5INA6MYzjGj4g0D6LfjmlPiDQF7FBIuSCIRAAOpoGNwIhECgz58SCyCEQGAccTNPJIRAaD31rOgmhED6D4faNTKEQCA6OA5uQ4RADPI3Q41GhECi/LhPj0eEQH5lIoSeR4RA7GHFkEdThEDp6jetBVWEQPSEgbPlVYRA74rahhNchEA2kuAjAGmEQDfn7+uVa4RAO7JvqP9whEDcsM9DXnGEQEpP6hHpdIRAcLna6bd1hEBHP+2YyXeEQLcmRNf3eIRA0VMEP7x5hEArTQ2UZ3qEQJ6mDwEWfYRASFhUQ7F9hED6IXqMsX6EQEpXYwXDf4RAGj4Of9x/hECGU93B+oCEQFCJzRVAgoRAEn8is26ChEAka0xYHIWEQF5DBsZ2ioRA2vD/LSyLhECD/rpW6JyEQDCMjhxxooRACXQWCvKjhECsU0HcHKWEQNTvBpDKp4RA+Jzjkw6rhECehLYOjLKEQFojGI8ZzYRAiJa9J2rZhEAJhxIsauGEQLXbcbEE4oRAoN12xtHnhEBGBAILY+mEQFwxWk5+6oRAdsqYvirthED0WcNs1u+EQPkVww828YRAuIVlhWLxhECuhhlj2/eEQATGdUA0+YRAzAgAp236hEDbamrCLQGFQIIE+k2BAYVApSh96AwahUAgvsrXwR+FQHz5e1gIJIVADBlMGW8vhUD+THb05E2FQKrtdD/nUYVA4v3o47VehUBg/7x4oGGFQOaDgXR4ZIVAIk3sDqBphUCFxNPmmXGFQKy5VRG1c4VA9ihdzZl5hUCqCSh1HoOFQBYWAzPGtYVALGsSpVi3hUAw5v8n9riFQDUIsDKOuoVAiijU5avihUDvjnCeZuSFQBOrN6QA5oVApOZ9U6/mhUAKpYPmaOmFQL/+3sax6oVA4oaW1WzxhUAUNqp6WgiGQCzZ4ECgJ4ZACvKb2cJkhkAo/QNAiX2GQAG/NiytgoZA7EXbgK+KhkAVL77kKLmGQG5ef6gjwYZAtvucg9DEhkCUv+xbx8aGQHJa0JvMyIZAtlDVAyHJhkApd9QpzMqGQAoys4TNzIZAIBh/LajmhkBMVGgeLBOHQAtYLFcwF4dA8Xsw+DEbh0A484mCkSmHQN0SltaPMYdAUY0vBoo5h0Dcq1slW0GHQNwpV5QWa4dApfUFK8exh0DZ4hjRx7mHQJ51NqG/wYdAFkUXGWPvh0DAJfcXZfOHQOZzouNcI4hASNhymWcriEBJkg2/fi6IQNbtoceDMohAw5REWFDdiEA= + NrgMGZxjYkAKGoZpPGJwQLPFgWSkcXBA - + - nSl+RKmlqUSj1UtEtF6SRId1sEUnRaJEDUDaRAIMwERlXs1EoDJlRUWJk0SKSMNEyD92RCy3D0cl2MBEBTuKRC8WJUXCwvtFjpuVRFJBBEVfqdlEX19wRP1jhkSqtl9FBbfxRZN2QkUOacFEXtVlRMrd/kbvGjFFVI2CRPR/i0R+OtREwRGdRJvpLEV4k15FTnEfRbDNlESmtMlEWBOJRZF+tUQHASJHOHBvRKphEUVFO3tEltFmRp2bw0XwuaVEcmPfRJv5kERmF6FG4sroRLeXlkQiHEhEp4mORAL7n0X3JM9E5MYlRfOGiURhcCxFyFmQRBNItERsGW5E1vGcRJuTzEQ0GeJEu+NwRGYCvEQIhkFFu0X0RAFhXURbhhNGHV5kRIUKXEVH0ZxES1DVRD45iEWQKaJEyRG2RJee0ERArARFsg5GRF29kEQwJbpE9N1iRtOIvkQEjoFFzUS4ReKiXUQMjoBE2v8MRfxryESCiAZFQPNiRDcLrUZK2LZE+TDNRBxmvUUgIopEXAlmRMvW90Rz7o5EAzKMRDs5O0XxbVtErSJrRt7vNkTwU1RHVnapRMsvBEVqMWhGIy1GRopyAkXdHIZErtudRJmQ30XO0pREmw+UREGf20QMu6BEb7CsRG95wkTWbXVFdFgkRXcZp0T9bbxEhAx9Rb8GuESG+75E3FGvRFa3v0US2AxFroLURDw8G0Xz6mBFskWQRKMPCUW9uJJEaGCjRLKCjUUEo8FEztDLRy2jj0aO7+JEUeLsRYDMnERBDJlERGFkRJ5GrUTdkgdF01XoRIGNxEQvQApGOL8DRWGjCkXegA5FfPt3RFgXHkU1VIhELBROR7XllkVpWERG10V1RJFNb0Vg4GhFqp2eRCgDQEXLemNFPYuMRKS4gUREcCBFvKiYRJm3gES0B3lEVstIREji0kSe79VEjZ1VRJUxP0WeBjxFmhxERddOxUTmP4tEVwp5RMVGbkRqBXZEKwidRKfXc0QdQHtEPSkERUELmUXu9odFSr5NRGUtB0YGqsFEvEhgRLiRjkSaWMNEr9XhRQcYckQxcHVEpXtFR10MS0S2BEtEIutBRFqHQEQbP91EX5S2RBRQpkQcR7ZE4vtGRT8Na0SbvexFBuyPRBuVyETsVatEgPvWRWcybERdEU9EMIUmRv/HaUWz9btEogjBRHZQdEQK3YtFEKqSRIYl9USKRa9E7SePRCK+oUR9tYtEonx/RNUTR0aoF6ZESTuwRcoGmURKvZJEofoLRZa8v0Ssk/ZEWkkMRfaKX0Q32NxEWWgkRRf/mkQSlytFRpPZRPBkcUTd3IFEICQzRoKskEUmmppEoQl3RM0TA0Uti01EsOWfRHTmkkRUzCNF0KhnRPa/00R1YA9FBgGtRJYLkESNfSxFNdCORLfSbETS8tFFu0qgREp2j0S/cKBE5PZTRLWbfERoaAJFMnHaRRgFgkTGRoREh0d+RAHYGUU6PWJEqNOmRaGKZUQvD3FEEHVZRSQJDEU+x51EoeO9RCE3h0SeYghFlnnPRChGYUd0+5REvMEfRSm4zkUZ8H9E11cxRswZm0WLObNEoixQRIX2lEbyWYNEWVacREQOHkWIWMZFw1kgRQiqnkVISjRFCscZRZP5k0Rv0YNEOJepRCcxWUSUS7pEgeGFRL5BnEVjWYBEsWpIRHeiPkRtwG9EAexnRaa6PkUSlqxENfq+RGx8pkTG33xEsHTqRGM2m0SgwkBFAQK6RAdNv0RVY9xEGxlzRGvIjkRw6GhGPQvyRRngY0R0NbREVWYVRsdSfkQuidZEzkRcRMDFlkRcd6FEgCqeRfFXJkattP5FES2xRrMYrUSOSndEVcySROvGpkQ1Z29EFquaRTz+kUR0nrpE7YhjRTMMhERL7UtFGLidRNs5XkQRNq9GivuGRGgqb0Q+JGhFRiacRCi3bURkKJFERGGERB5yHEUWGFREe6mSRNyzlERzaNVEgBNbRI3a5UQamrBEW0++RXtpmERqydNEOSmLRR/I6ES47xVF2yFnRL9hjUTfd5pEP2P/RA2ap0SLUNJE5pOoRlbOnUT7w41Ez56NRDqTMkUC7HNErFlARt48OUWsrC9FloOvRFPfkkQj1IxE1XoHSEx2fUQdmZpGhGRjRA+zjkWOG+JGoJdJRpgOmEVzQ1pGWdr4RIjpGUWTnY5FTQBcRMD9b0SCex9FX2NdRI9htUTrW09FqZAPResqfkR/LQNGGDJhRHVFiEU+A59E0vC5RGhahESlHPhEi+KUREb3Y0Tkf5JE5zddRMeEnkTKsoBEgpGxRLg8XES2bZBE+R6uRLP6WUQSb2pHt6E3RRHPRUfYz41HipqGRD3Dr0ZcIQFH+jKVRaGJo0RAaKNFcepuRcBOTUUz8HdECuZcRKvBV0XCUgRFjmKtRuwAgEQIURRF1lroRbQudUSG5x5FNYVlRFpNwURfwpZEZh2gReAFXEZxIG9F7hCZRPrCKEXcfOZElr2xRRmITEUZlQRF7RWLRDAeZUW1r5ZEohKdRFLVTEmnC0lFimy/RF5urUSmXUtIAwgcRTB3ikSJb55HIGxSSG9/LUe14S5GsWKpRiO0XkR5XhxFJtN3RE0PlkVmWJ1GaREGReeAtURyR3tEBvWFRPhyjEShWXhEvcYgRSy5+kT6eR9FlkqjRFJFekRcE1pEodmvRHORq0QWli9Fag4HRd7cVkRRuSFFDiqHRDuV1kUCkU5Eis9aRFrXqkRz/UBFoghWRlNEpEV7lapEIYfxRHyOhkYlui1G1mXKRYxUhURHXXBE8bJMRXOfsURf2xRFcNmaRFq970T8ALFEHWF+RFQnbEVPl45EsjV4ROKKvEQpJEtEkiOVRxld70bUa1JEJUrURXnEdEQYd41FRviHRAFO1kTNvuFFeggBRRBJ40SHDANFrnd8REDrA0WWiI5E4tipRJZNYESErrBED7TmRL1sSEV/WPBE7qruRWv+00fZdFhF848DRREvq0R1zMFGkgh+RIuvhkQnX+JEm97ARfyuBkU3z2ZENC5IRIDAnUTlbIVF2J7qRL5i60Q0I55Ejs4CRQpaB0bQwc5Ed3mnRDUYQURyLBBFPpjyRLBzskSDOZZE55TJRAq1zkT8npdEYjauRNGKTES2LldEh8SLRB1l/URdCQ9GN22qRIfLlUS0JzFG+Nk4RRU1DUV7xvZFO25ORZEj0kTvqJJEmuGCRC1vY0Sh5cFEhoKXRKj7mESx4cJESAHURMA4uUSD5mhFA1qQRmZnsUTuaS1G/NQ4RV5VpUVbAWFEjCirRCfxjkUw+pNEljedRHuLoUVzeK9ENVs9RINgsUXCTWRE55fBRBqqAEVVRnBFRBe9RH8KrUTI065EDxgJRuq5h0UuP3JE5NyVRBLCkkTcRmREVNbWRGLiB0U6wYFG7oh9RL/fMkWq+8JERVrzR2hxNESaFyhFOxaJRK1d+UQ/J4dEXqh8RFsF2kTk1uRGI+r/RLcatkZN+IFEbjh8Rfv/YESgB+VEv7PCRP+9NUQAPolEp53WRLdfR0SEH6FFZ/4ERWbRmkTgk6JEkI7qRRfbDEYAIzVFV20yRdAMmUTvsgRFDhJkRK7h2USk8a1H8HZrRrztyUQuX+NEFIJuRDFiNEbv4oNEpRFXRHvTYkROZgJF5SSJRHIBbETt8GpE5Oh2RMDOA0a9oT9GYOKNRYLdtkVLAdNEjMBcRU2GoERsjOREL1OOROUYmEQbnpBE3ICIRA58tUTq2qxEm3enRGCimkTjCG9EAHgDRYiveEQTxUZEy0xBSGPfmEQ8xQtHK8aYRayuoUQJa65EP5HpRLJLaUR4YzpFSVvdRWQdi0Re4oFEynO6RCk6AEXJEjJFauxmRMNmlkT2GGJEYAcPRhjwbkRdFVJEiA46ReKZakTLSINEAWhERBy6ZUQi6KxFLRxaRGxSn0Rj8oRETyIXRtmYj0RiSatEj7KpRJv68kRci+9EY2DPRGA//ESj3A1Fd/tfRBhsPEWPvRVIetq8RKY4+EdaHMxEG8lYR3tPO0a6vzFEg+2+RM3RsERVQ3pEYHz2RF4vfEQXkm5EyUyHRBwmgURpgHREKhN1RIJMZERRw01EceauRDMMX0e/VfFECf6VRNWSR0T3i0tGJ+LuRED3NkRJkDNEXIiFRK/bi0T7QC9FtoACRYPBS0VOG3tGKQoTRbOqb0S7gJNFo+SiROIt0kUgvolEXHKZROygrUR1I4dFcn5tRGiaHEXPeetEVzXhRDm1VkT/IvZEemh/RGxlg0RDpSFGckjiRA9QgkTx8ZBEUQ1YRImoiETPw5xEL+ecRIhR20Q0K09EBNtuRIt3lkSHfYhErDoHRdUgcEUFM6VEaATjRHtY3USvd35E2s5CRV4ynUSBN1xFbM+FSAHzREcX4X9Es3QhRV94O0V1e9pHrHunRAEtVUSR9B9GX2tpRAOdqkQZ5VBE7beGR5T70UTTk0xGBV6pRBtUmkRARWdFoyrWRI/yc0RenAZFABByRJK/qkRLMGVEjGTQRBJrg0QKrVxGpyJcRQVno0XU61lEscpaRHuaYkQJupFFH1h9RDpMv0bAo1BF0u/aRA0bi0V/nZ1ETgyFREuBA0VR4HFFhLh8RIOLoUVEMbxFivnaRMW86EQlaqREV0I2RCpXWkSS1VVE6JZaRaW8f0UZr4RE92GNRPsK90QyWJhEArV1ROryYUT4K1hEpmnJRejH+ETpnThFYsjaRYqwjkSdmt5EafTKRBjoj0RJWyNFY9mhRRwYbUUUj8dEzCe+RLmvl0QTJgRGFumDRC/0bkQV8/tEfi8fR0CZt0SKCpVGSAlZRSqqTUV7gfNE/fVXRG/+XkSxpIpEcooARxKNeUTS4p5G6pknRVGFTkWfgoNEjPF4RNu7aESHqD9EcaYiRSnHUkZxkRJF7fygRCl+b0QyMm5FIa5nRIJFLUVWSXlE6h1qRMnelkQGWjlFNa+cRLQE0kQ17ZVEUZFfRWoFlETyWOVEepL2RIOp8UQZfoBEeo2MROZ+g0TozG9ECye6RHz6yUQAtAxGigKVRapq7ESldY1EOLXERJvB7ESs74xE63NeREMZhkS3uZ9EbrPXRDCxcEQ0xoFEhkqARD0r40R05sdEOehMRG3y1UcJOKFEBigeR4BklUT+xItEiWLCRhWFRUUcA6dFVAeWRcrA5UUHqDFFa8vnRFSvJ0VFNwhFzNGfRIG+gkSWJ0dEsg0FR/9OoUbIF2BETIQ1RauEhkXuS+FEdFafREwM+UX7kaRFKzXfRAD5a0TVbVlEyORzRKkSoURrt4VEu0edRMGti0QDG05E67/ORusWQ0a4mmpEt+8XRU7OuUS0QItE2RsYRRwj3EfyWiZHRuPnRuiv5kTidQtGy5STRE+HSkTHR0hFSc1gRFvJi0TeAo1Ec7FjRC4CWUXeRXRENUUHR9T7qkYlVglG9vMJRX2wmkRS9GpEOiRCRE89KEhBldNHmg9/RGAikET38dZGtKRWRnbxb0WTf2VFRLFIReVHIUXZn8NECzoiRenaQ0RtWp1FfWCVRGxplEQtW5FEyK5wRK9Zq0SJR5REHr1cRE+auURXOXJEyHG4RH6OXUQoDo1EwBZLRGXWfER++GtEcs2GRN6QgkTXHFdE109yRL6ewUUl+n5EdeU6RepmXESLelRE4mrLRRgajUaIz9tEAUljRQWmhkZn71tGxfvPREzqT0Q68htGtj+hRNaMV0R/P8BEQgriRaE/GkVdk7pE2mpnRGbvhUSURVlFoYtgRBwbZkXcgA5FCuyFROvNZEQk98REClcGR4vRTUYewmNE2/6dRtE0GEY8nq5G44MdRtoOg0Wf+s9F+bEqRaPJNkWXWLhEfbSaRK8AnERvlHlE4ICARHPOWET0UYdEDsD1RJL8MEVV9xtF3NhaRDUeFkfBKoFEfx9jRklsMEa61apEfcp9RTmLkESYzV1E2OSsRNcF8ERD8w1F/l0mRlUVX0T0qq1Eije6Rd3eUUWq/PtEHhuHRGm8N0UEtEhEUeKRRCJ8i0Rw3s9EGdF+RM2VmkQhk2ZEn3nYRAB4cUXcWNVFItqgRBEtd0Vr4nFF0Y6fRIDho0Xiu8RF3I//RHkaOkbV7dFF/3BXRT0yrkRgqYFEVOEBRjFjikVffShFiWhBRUq720RwmDRFIwjGREfPEkV9sPJELgzFRA== + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - mFz0+tbAckDzjUfDbsFyQM32oV1RwnJAbBX9g6fCckBzRmmO5cJyQEujXXc7w3JAt90WyaHEckDKlFrcxcRyQP7x34taxXJAPXlUFJrQckB9Z+mfENFyQAAbJYQs0XJAztgcmUPSckA8fBsoOtNyQKcGgYLP33JAySSvpyPgckD+Ei80UuByQJoBE1S34HJAKHfSNVbhckBQK/thUeJyQGkWvEmP4nJA4q2FkCPjckAwfYp5Q/ByQPCDY7+j8HJAinDQo97wckCCf0fINfFyQKYosvzI8XJA2wF/YDfyckB88TZutvNyQPae5S8Q9HJAfpg5Yp/0ckCBAw+xwf9yQLKae9n3AHNASsfAgkIBc0Cym2+RiwFzQNx+2Hs5AnNAd7IhD9ECc0CqDYY7ZANzQCapbJj6A3NAPrkOYHQRc0Cs9FAGlBFzQE5bOmMlEnNACglSN70Sc0CUM1mB3hJzQMRCYNH4E3NA52Oo3E0Uc0DfSwRCeR9zQBD/mEs5IXNABjpjrnsic0AyYKt9yiJzQEhsHt4TI3NAqYHsgc8kc0Cu4/v6rTBzQEIGtQNcMXNAtym0cs8yc0B0z+wqCzNzQHCfRbSfM3NAhKZn39Uzc0CCTnbKNzRzQJJ+Q0+6P3NA8kU/U3pBc0BE3yzKu0JzQFJ4j5h6RHNAfINXKHlRc0COXaxVm1FzQGZay1oPU3NAYL27v0FTc0DDI/A1o1NzQFSb2DSEVHNAMgnJhR1ic0CM3rnQNmNzQEZRML/danNA0+6cVSxtc0B4hYM+ZHFzQIovzbjacXNAzOR9HVxyc0BKTwI4hXJzQKgggDS3cnNA3U/gXLd0c0Aw/rVYTHVzQJpwYkPhd3NAvsn8mniAc0BkyE37pYBzQFJwakQNgXNAACQbuVyCc0Cu5MDkdIJzQIdblePognNAkr9tmwCDc0CILHEHNoVzQFpH3QqKkHNAfYvDmfeRc0AAeAzmTJJzQPqtASdqknNAiqsuYTyTc0Ae+VI5zpNzQPZCs7dilHNAsQMM7PeUc0DcDHxFJKBzQASuboO5oHNA0N8f7+Wgc0AVG7Z9BaJzQKosRx5aonNAYpV4doyic0C2u72oBKVzQGZH6X2gsHNALPCLttewc0A4BaR/M7FzQPrTEZxssXNAkubom/+xc0AItA70XrJzQC8dmYG3s3NACWymCgy0c0B6ZpxxY8BzQOhms3aPwHNAcsKhHbfAc0DYTLLv+MBzQKKmQU2PwXNAIPlwStDCc0BGhxxMJcNzQLzfAzWSw3NA9GSrm8XDc0DYjoFJgtBzQBQ1AyXk0HNATj0lFPrQc0BevMJj2NFzQK/4b9y90nNAAj6F/PbTc0A+U73n4dRzQJqzG3B533NAAuDxhw7gc0Aa4VoMpOBzQByLqfLP4HNAZJm5dPLgc0DESKD4N+FzQO9Khepi4XNAdCZ0vXzic0CggdKxEuNzQNn5WwWl43NAVDk0hLLwc0CV82/P2/BzQLi+tGT28HNAnPv1q4fxc0CA4kDy0/FzQMSyqGw19HNAlhCXsIz0c0DW3+oD5AB0QFp06boOAXRAehSlrXgBdEAKgc+IuQJ0QEpbfa1QA3RAr4uw9fMQdEDEfsbwkhF0QFy4YDanEnRAgBt1oUwTdECAia/zSSB0QOva9TvxIHRAvmdBBbkhdEBU7DBX+SJ0QFR8Pme5JHRAJBM2gFEwdECGaT2O6jJ0QFWDUdsTM3RAiOaiC+I3dECsNX9WbDh0QJ5KkRI7PXRAZBlvYlBAdECPT+ntyEF0QOx8iOc6Q3RAurjGCV5PdECPxpR6JlN0QHSMwEj2VHRA0Ng0rItVdEAwcE0w2ld0QCNX53wgXXRADNfkuyNgdEBpFcLHt2B0QHJ3XX4HYnRAY+yiQ3xidEBcIbMZUWR0QOj/jKAicHRAbh4gemZwdEDcTxIf43B0QHgGYwdBcXRAcQFy1elxdEAlk6dLFXJ0QIz/ZEQ6c3RAxLaFfzd1dEAm7LX/QoB0QIqWR6f4gHRAwlCF5E6BdEBwPeAIjoF0QLBl8WQkg3RAUw0B6buDdEAWeSVzFZB0QPsQ5a0YkXRAwxPHx1CTdECxyv+r7590QNfthJAOoHRAvNYa3jigdED1aFT+gKB0QL4tmQ+ioHRAqNKk29CgdEAGeaOPNaF0QNIXARXNoXRA125lALuidEBGZIGhD6N0QMSVyQX7r3RA+gEJGg6wdEB1sd4rLLB0QDz4eDFJsHRA82b59sKwdECfWrSh7bF0QHCdGRhwsnRAQhfy/biydECv3QYX/LJ0QOKNikbLt3RATfT9ISW9dECm30Dg3L90QEVRKq9RwHRAfkO6ieHAdED2ngpOeMF0QJJ2+SD2wXRAJKq5sbfCdEBg+yOVfsN0QChe7I15xHRAAn1SPbjEdECIShUxysd0QOHYBhr9znRAivoMRWDRdEDA63SIENJ0QDg7xxCm0nRAjJTZhuHTdEB4aXJlc9R0QALDtV7M1HRAZGWu847gdECmNIomuOB0QH6XUzwj4XRAU9VO7LjhdEAi4cEuHuJ0QGKgo3Bm4nRAPJnAGJDjdEC6FQY9T+V0QBTofbhE8XRAD1+rSi/zdEA68gTzjPN0QKXCW7h29HRAupiyXY39dEAsyvNNpAB1QCx33ksMAXVAzBMR7mIBdUC+RPdxXAJ1QG7JQf3mAnVAg29gx5sDdUA1EGSX0gN1QOikvDmZEHVAqNTD5WgSdUAsuE6SIhR1QI21Ts8XIHVADJWwHJ0idUDCrigHqzJ1QLwjJw8HM3VA4tvgTMw1dUDKw24US0F1QOQfUqPbQnVATaMK1dpFdUAL8Typ+091QECRLIZpUXVAlhtBSeNSdUDeKn3DdVV1QB5ndIQMYHVAPx3mzKRgdUCvJkSJOGF1QNA7cixhYXVA/CEUWcxhdUBXKBMb9mF1QLpy6SKpYnVAJgr3OmdjdUBNBW/TVnF1QIr5tPHrcXVAGn9qOHZydUAK+v2J3HJ1QE99WeqNdHVA3XglTE6AdUDL+gHPwYB1QCrJ4RhvgXVAeYL5m62BdUDeK0RJ+4F1QIxvJ6zlgnVAZgb5RKWDdUD5tuFTEoR1QIjRyhKahHVAVYBR3OqKdUAXVNTsi5B1QLrBbZG5kXVANLq/BLGTdUCYNOEtSaB1QI+u8sQjoXVA9sDybbehdUDkMfW/SqN1QI3eSdmjqHVAEE5Gb5KwdUAYpHC9O7h1QJh0ajU5wHVAiDNtl83AdUCvr/y2Y8F1QKbcPoL3wXVAlufwh6TCdUAAsUFPzcN1QMYCug7N03VAGGZklHjgdUAEHjG/wuB1QNaN4FsQ4XVABh3NJAfidUCeufRJS+11QHH6mNWl8nVARR0iSs/zdUDryLZf8fd1QPadZLxM/XVASLs+DoP9dUB5tmMNSQJ2QKqtnn/QA3ZAv9V+f04UdkAtIYU4DBZ2QNbuhcccIHZAAriaD4kidkC1degC0iJ2QEc67vdlI3ZAArXxMZAkdkDc8dUJTCt2QD2tyAEfMXZAC11aX5kydkBCCetEJTN2QLdhBQNSM3ZAZgWfdXMzdkBlb7UYnjR2QFco0qjgQHZAhRAy2wdBdkCWyh+eHUF2QO4YYlOeQXZAnKImxMtCdkAMrvtueER2QMwIzPv6TnZAIkBpNRJRdkDeZAhWZFF2QBrCb+bMVHZAfLuqoR1hdkCkd73EPGF2QIhektZKY3ZAhDpVxdlkdkDSWLTNVWh2QJYjktWybXZAym05019ydkC0Xp7V0YB2QOBYtFb7gXZAwUZC9oqCdkBkucvd1oJ2QGB/IIBng3ZAfDegBJGDdkA7NAd2F492QCkqBHm7kXZACre8jnSSdkCqdgf7u5N2QBYNgpp5oHZA+GUcpw2hdkAXgxgJpKF2QEtWjsnBsnZAGZNQIg20dkBsul3WusB2QNxwmUQmw3ZAvlXS4BrEdkBZGyZRzs52QJ8XwT+A4HZANF6JAfThdkCijcQ0kvN2QHwZyB41AndACOt6dxADd0B/6Uu5Ewt3QKa8h+YAEndAn/58nrgSd0D/W+6LGxN3QN6arL9jE3dA4sUsls4ed0BkILwrDSJ3QERRwUhzIndAOGKB07kkd0DoRRoA6Sd3QIWWI/FCLXdAlGz06n0yd0AtTMrSpDN3QPhlHSgNNXdAVHx4RM9Ad0CeIBr5nEF3QAi5UfyRQ3dA4DXLDxtFd0CSR1xHPE93QCQO8YgFUHdAoLL61UpRd0Ao102OklF3QLradlpyUndASmzD7t9Sd0AA2vOxoFN3QEIycsApVXdAtI7JCX1fd0DCDafJEWB3QH2k/vd8YHdA/LCpGA9hd0CHMQFCSmF3QF5TBu6QYXdANruoPHJjd0CyItMvqWN3QEK0dS45ZXdA9mRKUyhvd0DKnZLd8W93QFvwPPn0cHdAdTKCW4Fxd0BUsVtGn3J3QBigyJz5d3dAQoi17kN9d0C0jYmVa393QJg4s5u5gHdAqH4AlUyBd0D6fBkhC5J3QGqPu51ekndAZwpSplWTd0ASCLAfTpR3QMwK7r5moHdAjqfmCvygd0AabY63jqF3QJzMUFnhwHdAhhHGGI3Wd0BuBb8X7eB3QDf1KG5y93dA+nov7334d0D/liOmdft3QHvBqVVG/XdAgnRLh3j/d0Ci1W4iZQF4QBmZsAGgAnhAwK/pdnsDeECBje0EeQd4QErwtxbnB3hAJLVn5fwHeECUG2IUxgh4QDLxEgdEDXhA+CFFNEsVeECEdUembCJ4QOwtxCBFI3hAIugSUtEjeEASVed/oyR4QJhA6qlEKHhA/t9ZZZ4teED0jWg2iC94QEJ6fjQgMnhAQEK1QrUyeEAocyov6jJ4QD8Pw+7fM3hAsf1g38FAeEAkb90oD0J4QOJQuucRRHhA9ttFB3lFeEAqMLAVy1F4QKRfBS2HVXhAxjV5HzldeECMuqiqXWB4QPcnhkv5YHhAYqCOmrZheECEdh5EJGJ4QE6wxSlSYnhAZD43mBhueED18Nkl6294QDjYPsxLcnhA9C5qP0h0eEBUdRMvXHR4QHjY1niLdHhA43I6c/Z7eEBwmM3qooB4QFSb8fqhgXhATYvcfo+DeEDAdms8/oN4QPrB6nyZhHhAePc/sE+IeEBYF4kjBIx4QHcU2vuojXhAvhSdwJeReEAsLC0C7pJ4QJoDs1EFk3hAlHwxCwiUeEDy3lYDqJR4QAbYGquWoHhA+Dt3aBSpeEBCTe21O614QCRKUJHkt3hA9ighqAnBeECx07NWZcF4QKpsofGMwXhAqjGK0PTBeEAWCJLAisJ4QDK0F+4GxXhAVnF3o4LReECGXaA/ttR4QASoLifV2HhAcKZzIfjgeEDYD7mTeON4QAWDqLrC5HhA+xDl73DzeEAecYBoAvR4QJDTmo0s9HhAQ+SsO431eEBmgdj5yfh4QH+s848k+XhAhhCas1gDeUB6ShBKnQV5QF2641qPIXlA7KbQR7oheUA+MYsyIiJ5QKY/LWxPInlAQfgPqWMjeUC+CK8utiN5QF51Di9SJHlAecmOdLIoeUDeLAdtDC55QI7OuOatMXlAgoYCv2IzeUDQJ1myvDN5QPRhg+W/QXlAECWSjmRCeUC3VNbv+UJ5QB7knmD6Q3lAIwsLgq5ReUAEv2wtc1J5QKVli7I4VHlAbIS5mMxUeUDuQsbN6GB5QKKCZDlSYnlAFINOhNpkeUDrJEs5QnN5QNehEicik3lAtE6OOVuTeUAvcySBYpt5QPKZI1SioXlAsE+Z7DeieUCT4uM5TqN5QNwssgRro3lAhB+m4XKreUAkoX/okLF5QLJ1Ll2/snlAgA2G1AC7eUDGaZ8gysJ5QCp0w+wGyXlAQp7XM0LUeUCgree+zNV5QBa9aaxQ5HlA+D3NRyXleUDeFihOU+l5QNiCui+28nlA+fnLAijzeUDGau8VD/R5QPEKaexjAnpApDm4YvoDekAe1REP/AV6QCEO68JlC3pAPt1uWFETekD8wmQBWBt6QFeXIJQpM3pAyFomRAw1ekDWjI4CLTd6QAw0uVQwO3pAjnKiHjo/ekAu+3kcGkV6QHCJBVApVXpAzsBnNCJcekDcifx7KWR6QPy4Le45ZXpAm4wVWMByekDW9juSJXN6QHdtiN2llHpATesvHh6jekD08zpId6N6QN6Vpjcmq3pAqlv4GgezekB03+X9DbZ6QMWUSmkSt3pAhm8NFUbDekBu8ooYvsN6QKo6reUaxnpAPRJYosXLekBaJedgIc56QFloS2hBznpAnujNzNXTekCIVD24+uN6QMYaNhg75HpAT1Z5ljfuekDZx9xzJwF7QNevNijkAXtAidNtwXcDe0BXQerf6AN7QGP0dH17BHtAZN9vGyoOe0A+FbqjiRR7QJ56NyJMFXtAmksF2VYce0AsoVtiWCV7QPwoEOa/MntA499lh8Aze0DxcEpIYTx7QNMOkX/TQntAGX53tNJDe0C6wWA3aUR7QMJdsBoQdHtAZkmGESOVe0BmF4V1opt7QD65bfVVnntAgOJGJDKle0DA2RkS8ah7QLnbNlx5xntAsLurwvfOe0AKYXTDiNN7QGYx9Klm4XtAEq3nUifke0CETb6zl/F7QIo/PD829HtAxi/sW4z1e0DoHedZI/t7QM4dqPJq/ntA7MZrOGIAfEAFwBSb2gF8QKA8Up+8AnxAGiO6H2YEfEDsj5AHmQV8QDPggYiyC3xA7F/ltcsQfED+cQr/ihF8QDHoHUHREXxAsp93lnkUfEAMR8c+niF8QHxrikxXKXxAVXNpXSsxfEB6eudezEF8QKnHCHv8QXxAmIlQLN1RfEC4GvEsbVN8QAWwNdp1W3xAmLJJdXtjfEA3LfYDqWN8QBojGNQYaHxAxFhM6ipxfEAcZNWlbHt8QLQ42HdCgXxAIKSBmwOEfEB44U8rC4x8QF9c9F7EjXxAiIG3whyTfEC8uFkUWZl8QKRXO+WdnnxAlh7aMvWjfEBWcsrm3rF8QBrvhgjCsnxAvr4NkHm0fEAczjg+trl8QFU0muHRw3xAxKSATIbEfEBHENwl09J8QNp+PuL223xA7BZv83/gfEBFljwHTeF8QFwSRblX4nxAem/T5BDjfECugdO6qeR8QMJSedYX8nxARHw8R1TyfECFDGILcfJ8QFL4paoAAn1AUa7E+UoCfUAo752kBRJ9QIrcLDFGEn1AnN/KG7EbfUC2irEy6SF9QD+xPq8+In1Ao2GEW5YjfUD10/vYryN9QK+YrVmfMX1A0MnmezozfUBiQXFuRjh9QPzWUIFwPH1A0DPXFqA9fUCsqCSjDVV9QB0DgbVxcH1AWX8r6p9wfUC609wSenR9QNofcrEUdX1AFt1SKYJ8fUC4JQ75IYV9QCoRswiXjX1Aj8Jj+sGTfUACCQnjR5h9QD2gTL7ln31A4giuf86rfUAp6t80L719QDQ/nDgqw31AJH87DOfEfUDf0XDCmdF9QN+cVXn01H1ALmixwfnkfUCsLjQxkfV9QEbDiGc0AH5AjsmrmkQQfkACE9zzLhR+QGDFK7w5H35AhLVrDyMgfkAyfjGrPS9+QEDvvUt6NH5Aasv7ghA3fkAOtE7TSjh+QEj9a5sKO35A3munvxFDfkAab5LrnkR+QNwlPfnCS35A94xbyuNTfkCG/xxhlFR+QDY7vCawVH5AJNRttYpVfkB4Iq7YOFl+QKLjaq9+W35ArihuX+9bfkB5RNfyOmN+QNQwbfTyY35A8KvHUjBzfkDK1o9TdXN+QAB7aN5NdH5AnynOMLqDfkDohzEZuIR+QHyQfzkkhn5AzIYqn4+LfkCnnt3ug41+QALGtrrOj35ARH0vvtOTfkCgA5TbCqJ+QLASbLKbrn5AbG6SMaazfkAOkw+76bN+QNZmX+uzw35AWOs5edHEfkCkNpx2eMh+QNCMbvy3y35AkikvOc3NfkCS0OzGR9N+QDBLeSyU035APtCz7bjTfkBgIa7bTNt+QNozbjHQ335AvmIhhJIDf0DMJ5NFmgt/QIC+XMQ/E39AKvYYzacTf0CUY79zHip/QAaJFVHpMH9AsyT522Q0f0DhemrkqDd/QMTgk4ByRH9AriyQsixNf0DOLaWefVd/QDJ5Df/CY39AdB3glp5qf0DUmkR5uHF/QCULqrDBe39AdZiDJ2SRf0Bq99z2ZaB/QODtlxikoH9ARxnlDO2gf0CobSFcXKF/QGxDnwtGo39ATPfxv8ejf0DEcGUgDqV/QJCKHFburn9AvMQrBVexf0DLPKgrndR/QASWXECm3H9A71eS2Ejef0DIcX7S6et/QHoJbnA3739AiI6SAO3zf0BeRz+TkPR/QA4igZDp+X9ACCIgFUT/f0CgMSraiAGAQA7kG25NAoBA4g5a0jUEgEBIr1UsgASAQGivG23NB4BA7ga3TYoJgEAWgZEqHQ6AQKW1nGd5EIBAOMf6fCgTgEC8iG8F0RaAQOTh1JDOG4BA90ndkswfgEDeksVDaSKAQMCoF9vjJoBADjkSn48pgEDiDpDS7CmAQBYK0P1vKoBAxFc3AncygEDyoonDiTKAQAegBJ2oQoBAUhkVTPVIgEAs6oRfo0mAQLZCwacMSoBAeujeiylOgEDKRJWi5lCAQIkjhOgTUYBACrF67aVVgECoYwBPDlmAQCDbh+KpWYBA/rM+DkNegECYuYBeC2GAQJ4ajzcgYYBA2G970MJhgECrh4LxSGSAQPYZ7UdvZIBA0Ka+O7JkgEAAVPrI722AQF+IAEApb4BA+J+rIKFxgEAa3i3Z83GAQBSWZdcnd4BAGCc0Kyl/gEBrpykqMIGAQInzK6E8ioBAjQdvc/yKgEDiZo2BiYuAQK+xXJcej4BAqofC3RqXgEBXDsNe4ZmAQFhFLrJRmoBApc6gOBufgEDew0xTUqCAQB8Nm3utooBALPYiN6qkgEAiGflUhqWAQFL5peP3poBAiwjpNLWngECldX46h6mAQMCykJA+roBACr8WNROvgEDKEM0kt6+AQBZVcIBjsIBAgVpaoByxgEBsA2jK0rGAQM4sKvSRsoBArFKWJgu0gEA8+kWh/raAQOr++og4u4BAVjXla3u9gEAUuIfYPr6AQNDIexTrvoBA5hCIg6u/gEB+IawuZsCAQOi4sY5SwYBA/IHq+p7CgEAQ+sJvfsWAQPrIwZL3xoBAYDVQ12XHgEDMF4rCpseAQIO78fYfyYBAMZZ8K1PJgEAYGF6T2MmAQGYOprKlyoBAlDWqiy/MgEBr6RUtCM+AQFjQ6VKsz4BAI2fUA0zRgECcX3hSqtKAQDDtIJxm2IBALqLl8UnZgECijZxWxNmAQCB9OeVQ24BAeJwhww7dgECEzMauwN6AQLAF35VE4YBAdqwrRlnhgEANXdqNBuKAQA+amOev54BAQGRGyPbogEBikE3VQOmAQPmkugtD6oBAukL1h/PtgEDH2bTNS++AQFy56/E884BAfi+2Rlb3gECT2+xNJ/iAQODGd0Fn+oBAgok8a3/6gEDjHb/nP/+AQFSpNTs/B4FALHfrvqQHgUAO7jIy6A6BQLAvqxM+D4FAOAcb1b8cgUBOiQMa4ByBQGcitFI0H4FACjtI3GsfgUDeta3psR+BQJS3drs1J4FAcgjkGrcngUDeBhAUDiqBQKCPoGItL4FAoG7rAr0xgUC3yI23vjKBQHejKQgpP4FADpjW/ZVBgUDLL0o54UGBQF7sTTiQQoFA4NvBHSlGgUA2TemdKUeBQA6FTzVaR4FAIl9GPA1JgUDItwy3B0qBQLo31T4kVYFAREH9V21WgUDtI9Bk5FmBQFWYsWZxWoFAxCZQeuhdgUDgAxMpamOBQDbCcdYpZIFAkHyhAbJmgUBV1NRbr2qBQHJzYCE9boFA4rZ2jq9vgUCK7HBgwnSBQDSSrkI7dYFA5yxQYD13gUDgXtqhbneBQALE/cGEeIFAVVHMphh6gUAz9tBRKHyBQAxIiUQGgoFATWGF+t6EgUDFIdWuK4mBQHyl0STqiYFAd/Y5AGmKgUAYD1IABI2BQOSg7LoWjYFAA312Re6NgUB4O1MOVY6BQBtowmNVj4FAgAKxd7SPgUC6EiEL7JGBQDSIOh5jkoFAjFS+EPOTgUCChcTC7JaBQN6uIj9Vl4FA4L/lz/2agUAW1ScWnZyBQO5uk5lHn4FAgr9EOeKhgUAEJluq9qGBQJwGOnTLpoFAUFTntm2ogUA1hqtyWayBQCRiyk1FroFAJO5z3UmvgUA6mwdk1bSBQHAfbH5Ot4FAi+0Qeg2/gUBq9Rg3LMeBQECyox8wyYFA0LbiIfnRgUDKoM9Uf9OBQCaA/vD81YFArkQjqH7XgUByYAFrAdqBQNo8sGQH3oFAdiFuR9rlgUDQelqy8/SBQBABB5Xs+YFA7+WOyzD6gUC1EeuX7/2BQEDUCn7lAYJA8oEJR/YBgkCZFNAHkwKCQLo8xpniBIJAYJgWwOoFgkAkx5HjBA6CQDaPkIO1EoJA7vvDadgYgkCQ7jvXIBqCQDoBcAVmGoJAV+RNuGcegkD7cLS14x6CQEGL5NyXH4JA+vGCE9YggkA3E22y0SiCQKwajdnQMIJAi8UD9yA2gkASGcM9+jyCQMRoC1sLPoJA6aCzSoc/gkCQah+srD+CQGhTdfgBQYJAEGFueuxBgkBMTc0BEEKCQAZNQHygRYJA9AStNFpIgkC47RWUx0mCQPTdTb3JTYJA180ycOJOgkAmUVGGoE+CQKlri/pqUIJAFCKtEjlRgkBG87kwFlqCQFDpO0nhWoJA3usej55bgkAGudO9ol+CQGYuqH00YoJAly1WKDhmgkCcViTOIWeCQB6CRxOcZ4JAxmhI9whqgkBfIDerNmqCQLhl3QBrbIJAOZoRhqRvgkDsbind/nOCQI6IP5MWdoJAGAgPPmx4gkAgYav/D3qCQDyPjtNSeoJA/nbaZER9gkCKDlyFDoKCQMX/VmNDiYJAygu9E9OKgkDmdV0Z6I2CQMzlkCFDkYJAQB2XktmRgkAyWJYAD5aCQLYgQWQ8mYJAIgh+nVSZgkDqRRoI/5mCQGHuEFdwnIJAeXG0UQ6hgkDUrRLzOqGCQLiUcYhwooJApOPsxsqigkCh35K3DKmCQESzI48xqYJAr+Lq6UipgkC4xPtF0qqCQFyZgVc2sYJA6o5BE7mzgkASwUDIMbWCQBTmkyZkwoJAerYhouzFgkCI/wh88MmCQNu5OAbgzYJAjr9wvfXNgkCwpJei6dGCQKo4L3vt1YJAF8tkOn7agkCyhmyBgt6CQJB7NJdx4oJAKNtQaIbigkCcesNTCfKCQPKyktZa8oJALkXfErj3gkDuzjjehPmCQNvapR2v+YJAo8TqD+EBg0DO4Jlr5AWDQHoWCL3YCYNAY5Q8mu8Jg0BetFB8vAqDQLYlmVvcDYNAnSLXXfsOg0DknUeeeRGDQDOqkoHCEoNAth1eFI0Xg0B6SPLOeRmDQERgOWRyIYNA1BU4Pokhg0BGkXE4tyODQGdotGo4KYNAHKL8EXMpg0BSOCMqWi2DQE7WZVNrMYNA5I/+oC80g0A61gBdIDmDQFSxhTgnOoNAuZtedeE6g0DgGAFgWlqDQPjPCn3xcYNAP6q0EOpyg0Dm0QuO9nWDQO7uphrFgYNA+PSrMQiDg0CMqJJFyIWDQNSPM7W/iYNA3WBr5b+Ng0AUwmG646aDQGKGpS5SqINA/FxX/+Wqg0DS2nwT5LGDQO/oTN8SsoNAMo3NbxW2g0AwwkmEFrqDQHtuVw9RuoNAIBuh6BG+g0AYW0FPFcKDQCA59qw1woNAPG53eyDFg0AsVPNkF8aDQAJK6AXLx4NAbIyxc3fKg0AkmpEkstWDQMcqBTTM3INA+rEe3Hffg0CN+7lQHuKDQKLafRrO5INAIlgCLpX4g0AKmY8DLAaEQOCNwORyFIRAAermoywWhEC2mYQvUiSEQNsf6w1QJoRABxJ1fewmhEBgFYo/bEKEQHZEsxxLU4RAaME6vLJWhEBFjeAWt2aEQPfD3ej/aIRA5J9BNYxqhEAVf13+O26EQICeSgeBb4RA7EGZ3v1whEAiu8tLBnSEQO3Mrsq5dYRAyn+NHcp3hEBWd45693iEQBAEAcK6eYRAZs7m5Gd6hEAWxkcpgHqEQGAts4gVfYRAkCt30TF9hEDfp3zjwn+EQM7shbC6gYRAVQeoSHCChECb/VeVAYSEQHdENAgehYRALj/d/seHhEBIei9nH4mEQDHF9CN4ioRA3MOZTx2NhEDvaXk0npKEQGjWW+bDnYRAGQ+iUuufhECa4TE9c6KEQA6cwfIhpYRAJGcUfcqnhEDjpnDNh66EQDLF+kVfuYRAGLGXA7vHhEB0/KZKB8iEQLFDqbcYzYRAhmGHetrNhEDYNxa5x8+EQDxCFNBw2IRACAUhCWrZhEAkezbvBN2EQNn4dw8D3oRAmrN0RWrhhEAOBDo4AuKEQJqNmQDR54RAGEfI5WLphEBika//feqEQECV1dwq7YRAtgjq0dbvhEBoqRxPNPGEQORWI9lh8YRA3shGkYTyhEDOasvQ3feEQPgb37M4+YRAgbw82lj5hEDiA7VYbvqEQPjLjqyM+oRAjtxjqjb9hEDsDh+uLQGFQHAdQggQFoVAuHLNMeYmhUCEM1Vn4k2FQECYIJ3nUYVAuslZTu5VhUDIhmFHoGGFQKoiY5jeYYVAmGjyAuJlhUBigWhKoGmFQAqz94OYcYVAnlhdjbRzhUCetgCYmHmFQAX5TciegYVAspOHjByDhUDYodffiI2FQGTfJFoLvIVA7kLGkAzShUCS8pRTrOKFQF6J6wJl5IVAmiLiVgPmhUDB57x7NOaFQMRNQYCu5oVAUu3MB2nphUBkmWxhsuqFQESyPw6z7oVAGAuSWW3xhUB2rQnXWgiGQJb5sby9SIZAGq5xpHNihkDsfUgkroKGQIzxUp0iiIZAckfWxLSKhkD/BEwnJ7mGQP4neOaZwYZAdKD6dtPEhkAmtHibyMaGQEac7OPKyIZAXDAXuczKhkBe0HEPzcyGQF5K1WzIzoZAcMhQfIPuhkB9z9SlLROHQOXQAAkwF4dAH2WZpjQbh0Ckwf4oOB+HQHQEygqRKYdAY4faKpIxh0CH879TizmHQF7Y7PFaQYdANQEXmolBh0BgLkWzFmuHQEZoS4aaj4dAnVfmQsexh0DbhxEIx7mHQIDUzeTBwYdA4o2tvMDJh0Dh8H7FZO+HQD+ISSNl84dAKj0r01MBiEB0hOQCdAqIQFgBgUsBF4hAbM8mSVwjiECgffWGOSmIQMxf/o1pK4hADxTg/n4uiEBUIJ3kgTKIQPzZCuSGNohACOP0qedziECRDWfPhqSIQDazfDdXs4hAL4KWWn3hiEA= - - - - - - DiBlRM1Ti0XW+AdFfnRIRHjUsESG7TRFD5OBRIsle0TFjdtEUxU2RFTkLEQ14EZE1JHqRqTeO0TurcBEWFkfRm8gS0SNraVEPGAyRBE0SkVa/JZFP/zpRMGVyURDzP9Eom8gRFlTEUdbOz9F4S6IRHoXwEQU3g5EGWiLRPN8hkQUiEFFICkbRR1fZ0T2l75E/f0jRduPjURulQFH1/v8RFYkkkQaO45EF2ECRmp6OUTI3GpF/yV0RFemDEVZuWpGWCU1RCsyp0RNUjVENOxfRedriEQEcW1Fr3ZGRaoMjET+/29EVjplRCkvg0QQuP1EuOhGRU02pUTXacJFfIhKRKgABkX8pgdFrwHqRFDUfUXUSZ1E+1+kRKUvfkSUrWpEoUlmRgvHQUQTD5BESzhKRW50nUU3W41EvyOiRD3RBEU6/U9ErVCERsoKbUSEmsZEhLeJRYuzOUTvS0JEl+04Rbr8N0Qr6CpE28ZzRpWBKkdhsF9EmH40RMtEuET1hqlEM/cnRiTdQ0TgyQRGQYnBRLWf3USynOdFLk5MRFau4ETWTxNFPTi1RBtkRURI2zdEP+IbRNtQBkQNgItFl0JBRZt6q0RACKpE84+DRQVV30RB54xEgo2eRZ0SzET2m9ZEy3/RRAlWmkQ5NyFFRR0wRFob2kTHvRpF41OWRPsPoEUuNERENbRRRDKC1kcXMFJGubxnRA0du0WIFpNEouHORNkxMUSmOd9ECaL1RXzKoESgtSBFrllWRE0lh0T5e/FESWpHRIjcKUdP/BlFl/UcRts3kkTzlUhEV7VrRVItNETv7lBFS/l6RfrYW0TK33lE5kGcRCrZQ0TPQj9ETSaNRCbzVkS3CuBEvmsvRU8hwkQG9CFFGm15RInSMESZTnVEN9w2RNp5d0SqlXVET3voRIrEvUSHrI9FdLdKRJbAXEUIx0dFg1mQREXCUETx8WVFJmteRI/XP0RYzyRHPGg8RO7GTEQwwVRFBv1+RNS0OETqYjdFia+oRf+DSUTB8LhEl2vmRJcfo0Vj6H1EoZFsRNdBBkbf0CtFdILLRBb6aUSofaJE3mGwRBPwXkTuLlNFaItkRGYWC0WJQW9EdpSSRB/XtUTnPI5E6IvGRGLuEkXsriZGOtNORLkbcUQ6eW1Fo/C1ROqqNkQiwiNEJq2PRKVCZ0Vvjz9EzYg3RJemjETeqltEFgXeRL53RURdmb5Ek7dGRPQ/V0ZZuoVFMZW4RDZVPkQOCuFEENaAROYHHkQB+yNFzLbMRCoKFEVZ5zVE8RgnRalHkURmsCZEhzORRHLHrUW4jGZEy+SPRFXKA0WpZf1EPzx8RHWnsUVqXCBEmJ6KRDCPVUR2Z5FE+bKvRF4j7UQAL8xEage1RaTobkTUBi5EdT8CRZOuXkWCi0ZEcLYyRNWOhESzjGFECZRpRCKCpETVJm1Eqo5lRDawhUdz8OFEADkiRX58iEWRp09E4gYCRfzQY0b6WGNF9kmwRPeCLESVwflFjC14RFuuFUTd2adEqxJWRWr+fkQTSwtF1YiLRYIVL0Vwe8hEdFEvRDrja0QUfptEcI4VRDDZO0QSj2tE2DJeRJZdFEVxLcVEzghCRDpohUQoXYBFpC0gRWfRmETZnYtEQiy5RE0YNkTqWLBElDUnRTQgAkUkP1dEYIa2RC2gP0YlBmBFBudjRJBtlUQoO4xESTooRF5N+kVa9pxEoT7MRMLdlUTvosBE7EZmRWeq5ETMEzNEeCSORY1ahkX+kqhGHr09RBSO9kSnUcBEok+DRNhEskQFomZEbVRYRBiSg0Xt/E1EZJ6mRLNbSUXwsJxE4LQ2RYaYAEU8GyVG9t42RH+gaERlUS5ELn2JRME/pURetUhEPzORRH4klkSJalhEu7EyRBAXYkScwHZELCGlREZmOUQyB0lELjlqRAJ8vUQsxepEtxtoRD0XO0RI0AlFGdGDRYtkXUXGBT9EC0qkRCZfR0VE8jhECFmnRGFaCUWrCtBEz9bSRMpCg0RX+HtGRgtDRMlGMEQ087NELFA9RLVOS0WnC1pEFQxfRDSiREZTwF1FT4xbRT4S/0T+LdVHZGowRNd8jUYiIpFFWD64Rr67gkRIvwRGygh0RfrJN0avV2REh7kPRf7vWUSpHqtEV1yIRQzzS0TvZzZEcLNbRHSXQkQBoSJFdJxKRHHw4UR6iU5Ed3YrRckpQEQCw0hExgRpRBWzHEZkSLdFcvDARGTBrUTnOwNFYh98RE0Df0TDYyNEhwpMRKyBmESX6DNEDMDLRLXvIkQ4NJVEnSJSRMxRYkTTLwRHgCrCRAmT50ZQc3pHTLrnRf5yNEQA2dpGgvgIRZxCk0T7nY5Fmb6+RVtyi0RZtxFFaSk9RML7KUWB9VlEs4uuRqtneEQCGMREpbCXREv7h0RxRwRG4/5ORONMNUTdFj5FQt9pRGC5b0TAb11F+8wLRnC0jUV9vNVEHckXRHp/NUQFPgZFdjg5RSXnTEWdE8NEmMMxRCeNIUXJLJBEv6zXRBUGXEV1zCtJkKtDSDjtQ0QfV99Ekvz0RLH4lUeqFTJIGW4rR3UvUkYpJpdGdgQVRfyxGkWG96dFRZXwRFNkhEYImkxEwxddRIpGi0T1BINEOq4qRad0kEQAMkpETQRgRHJtg0RnUl5EJ2NPRCkFRUVpE6REOnM2RAVOLERj5llE9vIjRO/VgkXQRFJEP9WXRYpwV0Q7BJVE9tyXRNwsmkSWqBJFDpimRmfZsUWPKspEm/QYRErMLURqiF9EK0iCRkjJJUa8nQ1GKDZiRecbM0RO3F5EMrO8RCOnOURpn6hE48dgRFTwG0QoKFJEY55YRVEeb0QYycNEamyGREdPskTCEDNEOM5kR+eBhkazLFtEH489RCeGpkSspFdFEq+eRFyAQ0SUviFFpwW2RCZQbkQzTz5EKR+lRaB1ukRtPd1ESXgwRI34h0QELShEuropRLjHK0XTp31EmhSdROtNK0QqEMdEI9urRQEY/ERdZJ1FB0+pRzUJZ0W5PypFGTy8RNDcp0adK7FE+LxPRTG7cEUCOIVE65OxRHt+L0SjYT1ERvqgReTYokRDWdBEvn5FRDPds0UWX3hEf7xERPKcykWVgd5E08IERQg3hERGy5lELERTRHFPZEQRaq9EvEUzRfwpWURbFEJEpNNHROmNtURfP+1FRsrmRKFlpkTlA/5Fn6dDRC8e7EQuWY1ErrVgRMeop0XVxi5Ec+01RLT7uUTI65RE8s4MRYGmXUTHt7xEjKOYRAOWFkSEDMBENoQVRN59YUTLXMJEXjxzRcVZo0UR5zpEkoyGRlcNbUSBSKJERW2cRMH+S0bHhZBExzhlRSoffkXdQ3tEOBylRD54kUSB765FHjc0RPbdZ0S+amZE5VhTRN71kkXd6CxEtrOKRE4UVkY4yahFNDC8RH+AE0QxxmBEyjm2RE/Vh0QiNkJEe0HxRKoG30Qjz8NFSBV/RUbGcURYeNlEZFFvRE6kbkTYh6pEwbWERnnIhURDYm9EafJURVBMW0T4UCVFV8GnRKWPZkQLE6hHi1QeRbBSj0QEJBFFIfyKRkuNa0WY1p1EEXp3RkzMTUSGH1JFnc6ZRHPpLUTl9oFE2+dTRDKubURt7Y5EVYFfRI3BoEXYyB9ELkthRXmkZERO7WZEPyZARP5iuUWNgKJGqKayRFijGEWxJt5EbaozRPwMwkTe7xhEAOGKRGofTkRE1GpEy26WR0nyJER7715GQRM1RNp/gERkYgpGzHF6RMtvskTboY5EixACRZl8Z0ReHFpGLnYsROx1U0RJCuNFKgqGRZ3aa0V/amFEfB69RHPYG0T/c0NEUcuKRKo6Z0RWeT5ErSikRKN2WUTqzURERfd5RP54QURjDxNFUBeiRNJkVEQ9AU1ETPtgRDUKGEQexq9E06QlRG/QTUSRlTlEPm3UR5WjhUSbgYNGamFQRWd15kTzyC9EYyvIRGdACEW9JU1Fqs4WRSals0RnFlBE/3TPRKjLSkTD4ClFPQ3hROLykERtmLhEky8kRh8ak0RKuixFoVVWREeZR0TJ+l5ECOs+RHIldUXY/lFEEXsARtX/OUSnN7FEc+heRIsEN0VXXLlE1OFCRJDtTES9aCREjoseRb0qHEV6wUdEMHA2RJ+0k0S7XcpHQExWRNPhnUeOqQJH4GviRTyckkT/RMVEUNzVRPLsXESM/EJE3QJNREbjd0RV3oNEvNVYRNz/V0R5AFdE20pDRBNUWEeNWV9FlzUDRWQre0SDbSlGLlekRHEhpUSkvh9Ft47rRKDfJEQuSeNEr4tmREco7UTvan1GQxydRSTCmkU78K9Ei2M+REIbekRuDWREiPkwRSR0IUQ4orBEESloRNvaCEVhvgVF0UYmRIdrsETjCZ5Ep7spRUl1WUSBMV9EEsgqRJylSESzhQdG4kylRIqr0kQqfj9E/j+iRFsaTkRQp11EJE8bRKgrXkTNL0hEwQReRBbC4USO+XVEVk2JRQW+DUWJRFREoe3XRBYBGURn11NEVe5QRJNkSERE2HFEnDQiRWwNm0Qdv5NEC+B8RFOOU0SKhU5InL+TR7+iXERt46xEzLpkRD0y60Q2a2JE/8+nR7Ylo0QWfWZGmxWMRE0fg0RPiElEVGtERxgNzESjMkdFGPE5RrlkZURnRVREzhRuRO5hFUVU3UdFiquJRItJV0TSU01EThHyRJ5Ie0S6TXlEj4Y+RBWS2ERi9VhENstQRM9zMkQ7OjxES6KCRGW8SEaIYlVFnwNMRELCm0RZ+4FFIe8wReSzm0Qoj75GoiEaRVDGmkTRKsZFEV2iRLCEJER95pNEJc7aRJredEUh2XVF210gRHL9Q0TCKDBE7FYdRKncM0R7p2RFUrdPRARXS0WwCTZEs4+XRD8TAEWxMWdESzfORIezhERU5HxEg6iCROTOZUQQdTdEs49iRJNbnEWirj9ECtpARL3jlUWvn0tEzdiRRIifhUQOplhEi1RWRLTXQkQJDB1FuPZQRLpKkEQYTJBEU4j1RA9QUkQ7g/FFzeo3RX2kdUSswnJEkJlfRHsii0Srlx5FUyJ0RDQYq0VELIdFqTefRG+4U0UTgFhEzWD5RH95fETScz9EkZDnRRN/OES3NdxEbDpbRJV8YEQ0mWdEK+TqRojRcETuxWlGjWBlRPy5T0UMWLZEdXtcRI8icUQwtP1GsNRdRFl7ckYYCBZFHmdhRbGYoETRGGVE+2sERbLKLkXvvIVEP2UiRqdzPESMUQFFgBJiRFtCPkSZYDBEw880RYKKUUWDt09EU31gROyfDkTPyidFCCeBRBxhzES4cHBERl4vRI2ejUQVfGdE6ThbRMXeB0XmZjREFhCKRDgGh0SnJ0FE+LZ3RIrrhkR/+SFEhVMLRb1KrkTmOCFG81C3RRy8oUQdEX1ElGcPRaBwu0TfOhBEV9QtRFqPUESVa1JE46bURF+jtUTUoFJEiVazRM+nNEQi+shHcaMfRERXI0T/3TRHkJ9XRJjbRkQNesdGAkIhRXObU0ROGE9Ery6IRVeU3EVP299E0OkDRhluy0QjQcFEQFFqRBY/6USIuEpEonFPRDvtI0TEhE1E74gHR3PyZ0YDmchEDIZ0RbGs+kTHFqFEt/YzRuucgkWj2mNEuQnGRHE4ZEQwI4VEaaU4RDUJjkR1voVE62/JRgXCWUb3Ki5FpkcGReQfd0SA3wlFqiwwRM9zwUdFYGBEGtUQRDNMLUf99LJG5xSuRA1EHET2xzlE5xndRdMDQ0T0fxNFQFBbRFtBP0TKxNdEoRNgRI1eXESM1BJFRO6mRLPcpkRyFgdHAftPREOBcEYCT6dFtX7jROqeFESXSyZE9pEORGwxh0QbWwdI4KCnR9n23UZVGyhErFn8Reua/kTpbW1EIPgwRVDedUTTVERFVDpRRBnJO0Qh0HRFTC4uRWybTESAyqZEGlJSRPkGukTkzWBEvp5GRK3bzES5vjpE0R0eRVyjHEQ6xDREVr7vREJyHUQGP8VFfx82RLajTERgBm9ErQ4yRSFrJkRU2qdFHYA3Rnioz0TOjAZF78PbRu7OmUVFNgJHX58WRaxCpEZggzNEnmdDRnHcsESTXGZFTrQKRbRHukSrMSpEu5htRAMPW0S7Z4hE4G89RMcZzURf/NFE87aXRNb3PUTJVidEJy6sRPnwf0QNWJREgepZRMH8o0TswVdEzt4PR5mhhUTaoRpFrfJ7RlV7akQRXahGLAcuRtQsqUaFMktGCQJmRXXtN0XI9IhFMUsBRayZCUXwSJZEBF7KRPwvKkTwDnJFKovDREmEdkSJ4U1EaeQpRCjKI0V7MYVE7Y1nRENs1UZr5SVEAiWVRGNtTkbqiOdFv9KJRGwp8kRInl1EWZCJRDNOH0QqEJBEakB4RM4D6UVqfflEVk9hRG+dQES75sdFwUJ2ReLIEEUpR1FEgR6+RJiSCEUZJS1EwQRBRLohFUVT4VRERbAwRB23fUT5KylEm9ngRLT2r0WdSA1Gx2ajRQdd30RANEBEao9dRM9QsUVHLJBFPTk5RTqmb0TxGSFGSWeoRdpHgEXfmqRExWyERHYLw0TpACtE4cvPRRXsiEWZejNFes6ARPYWjkSVUWZEhqdXRPAAm0T5tjREAc4eRVi1K0ShBn5EKfhWRWvUz0TP9VxEjgagRD49JkQTLmdE5/U5RA== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - RGBflQzBckA4oWl5I8FyQPjtgahuwXJAw38Wa1HCckADIHE9qMJyQPwYwNviwnJAuW4WCDvDckB+KQYHxsRyQBDBZw0s0XJAPVhOyg/SckCuBvldQ9JyQH7FySF103JAM/A/CWHUckBtoUWPz99yQK53QC0k4HJAIJ24ek3gckBt9XciuuByQIDsPgxR4nJATKt2kpDickAuhr82JONyQIjdlHii8HJAAmIGZzXxckD64/TmyPFyQO0Sehd98nJAWGj6CRPzckCdtjz9t/NyQE6hwcRM9HJACkDCYqH0ckB4cZ83wP9yQD4kXc74AHNAuKgQZUABc0BS+/0S1AFzQNJX23E6AnNA1MYNE88Cc0De87aD+gNzQHYQxNJzEXNAypjLHY8Rc0AS6251/BFzQHYoQX0kEnNA1nPrp7wSc0DkAZLN9hNzQFbwbYEFFHNA0NeFxE8Uc0BblGDCeR9zQDp2DQCiIHNAIjEgcjghc0CYQFrJeyJzQBmUWOTJInNAS481MTkkc0Cc4InrzSRzQC6Vp+M7MXNAGvHmUlsxc0BDuQP6IzJzQDRTOs5nMnNAAn5pI80yc0A6EJGtDTNzQJDA+LfVM3NA/CK+fDg0c0B0EgGl3DRzQOKNiWy4P3NAnC+qKOJAc0DClMJNeEFzQHpX+uW8QnNA3KmPTeJDc0Cqsy7ueURzQKLwfuWbUXNALlyHdxFSc0A07L7M51JzQNthlIwPU3NAwnujNKJTc0CEedfc4VNzQEcpOd+IVHNA5jkeMRlic0AS5zu3OmNzQOaMMc6RY3NA1LDnMM5jc0BqRGJZK21zQBEVsdNmcXNA0pAIqdxxc0BBN1VtW3JzQBzuNUmEcnNAUmHEIk5zc0D4rTM/t3RzQMirKz5LdXNANpNrTt53c0CSKHqQeIBzQDZvgamkgHNAjfg9Nw2Bc0B7dTHwXYJzQKqLqf3+gnNA/WmGVYaQc0A2kFcMkJFzQAQCd6D3kXNA8SSOJU2Sc0CakUSJZpJzQD6haZPNk3NAnKmcbGGUc0Dm37Qx95RzQETbLQO5oHNA/0Z1T+Sgc0A97AbzTKFzQLbT+jIEonNAlDAzelqic0BWHakH66JzQE4GB64DpXNArG9uW9iwc0CwxDeja7FzQDw+hF9bsnNAUdi7abWzc0A4XTveC7RzQPQOJeGQwHNAErMCKLfAc0BEviek+cBzQPNXQJUpwXNAyozSl43Bc0CGXKp6O8JzQA2pXGLPwnNAf3AzKCTDc0CkGD7SwsNzQIJILG2D0HNA0tO4R+fQc0DAZp3v19FzQOgiOH2O0nNA/0v00rvSc0BY90Cc9dNzQBtzCMDh1HNACQ4EAKTgc0BwvVlIz+BzQNhfZBL24HNAaItJmzjhc0DIgK3hY+FzQOaGe+V34nNAGk/q1BHjc0A3Q/Zrp+NzQO6Exl/t5HNA0o6aPrLwc0BKlqZC9/BzQK8RjdhU8XNAbAMuaTb0c0CocPdljfRzQFyBRvqwAHRATwRDEuQAdEBs6wkuDwF0QDJkIEx4AXRARJTRDqQBdEAKhdQaJAJ0QBx+cNS+AnRAglU+DOUDdEAmdpwm9RB0QGBEuWWmEnRAVsWv7EwTdEBq8JJY4RN0QOrDFMdKIHRA42EwG7ghdECo3O/GZSJ0QK4ZYbn6InRAKJauZ1ojdEBPCKsEuiR0QKBR1lkEMXRA+OT7NhMzdEAMkCsmiDN0QC57VTPgN3RAh253xGo4dEDrETqBPD10QFYNoLQ3QHRApHQPtslBdEBNQWAreUN0QCTmKGfLUXRAe/UcUfdSdECcuSBr+FR0QKz769yMVXRAY3PaDNhXdECiq4JLH110QDo7X8i3YHRARjMwuUxhdED6Jqw0CGJ0QKsAbM56Y3RAPds0uU1kdEAQhlO51Gd0QA5DVjYicHRAhcsGesZwdEB7B7YcQXF0QDFLEx95cnRAxD+juThzdEATBXVSOHV0QJaGD6FEgHRAjNB9z/eAdEAjg9SfToF0QNPz7r9KgnRAQvTsFc+CdEDhO2dRJoN0QMjSe627g3RAUiYi7BWQdEBE+w51rJF0QDreYnhWk3RAC/vUhO6fdEAOi+qhDKB0QIBDsn06oHRAYmZA5NCgdECGLmLjNqF0QGSGP//NoXRArlleKbiidECE/9L7EKN0QAEpR6j7r3RAwvDGcgqwdEARM0ihMrB0QMxLAWHDsHRAvDvjG++xdEDgRNEGb7J0QAg6/Gj+snRAeIqoLcm3dEBSgxIyEb10QHD5ylAivXRAlfYpqeLAdECwf0IBecF0QFjw+f23wnRAUt4ej1HDdEDPaWu8f8N0QOpbpOy3xHRALGixRP7OdEA71ansENJ0QHbFAmGm0nRAXkPMTRTTdEAjTpIB4dN0QLEzyTLO1HRAJiYJI47gdEDecZMRI+F0QBpAW+y34XRA0gXzfxzidEDU1ualj+N0QCh0qSoD83RAVJ3rJ4zzdEA6C3AmefR0QB2COi6nAHVAZOaxAc0AdUC4TvasDAF1QEKo9W5kAXVAZs1O8FwCdUAn5IAGpgJ1QFJb1GYVEHVAJUgn6JUQdUDszQj9IhR1QCjeYbZQInVAVvS3B4EidUCYYicznSJ1QCofVTCpMnVApI/6T801dUAqM33fSkF1QKZKh0zeQnVAQgNDNApQdUBs5wJ8dFF1QPLukkt/UXVARxNOSk1UdUBeCVhleFV1QCJ/f5YNYHVA85DWpDhhdUDA5lU/ZGF1QGJum8TNYXVANJUbtPZhdUC+ahvvZmN1QF4MKGJXcXVAGpn22OxxdUBwictBdnJ1QKTulv2NdHVAfDYzouKAdUD8JoAndIF1QEDpseWtgXVAuAYqUOSCdUBfamI/qIN1QJ4wgGQRhHVAuOynDJuEdUDqtsZ36op1QCx1zsltknVAlIfeXNCXdUBoCNpWIaF1QDzqQsi1oXVAkVbSbkmjdUBYok1eo6h1QD70l904wHVAjl0FPM7AdUAkGuASM8F1QJwrI0BiwXVAeH3eUvjBdUCkWnLfO8N1QEBTRXmy0nVAyRJ6+czTdUB+3UsqeOB1QLY9ZXbE4HVAlXeA8A/hdUAqAg5lCOJ1QNY4c4BM7XVAfAPuu6XydUCi5tEm8fd1QPqnLoZK/XVAbu5bcUgCdkBbO1w30gN2QGYbUYEoEnZAAtwoxFUSdkAcLrzCTRR2QFrIZUUMFnZA3rHzSxwgdkAQZUm7iCJ2QE5DsynSInZA2/dZvY8kdkAqo/mNSyt2QPBReBMfMXZAr2UvkiUzdkDAz/9uUTN2QGY3+o2fNHZAOmr3cBxBdkDsciTRyEJ2QBhZrst4RHZALDUbhMpQdkBOInbwElF2QP1RhAnNVHZA4r6oGBhgdkBaZdhZjGB2QFwZi08PYXZAWFy0tLphdkAURLo922R2QPmsQdhZaHZA4PpztbRtdkByVtSvYIF2QKwRV7D3gXZAyXWfAeKCdkDxf6RSkoN2QEZsYvkok3ZA/FcX6XOTdkBWGmxkeKB2QDvmW+BFo3ZA9kHtJ7uwdkDG8FwjwbJ2QAJ8axsNtHZAbjbZErS0dkDH4ShtcsB2QCAF5dK6wHZAmpzSX03BdkBCw6JSHcR2QCB9c33NznZAjGe/zX/QdkD+zjPuquB2QNp9a5/z4XZAzKtPI5LzdkApjkB8MgJ3QE6WWJgSA3dAxGxKfw4Ld0Cs4Qeqdgt3QKhb5boBEndASYfvbI0gd0DgbLFIDiJ3QPlQx2LoJ3dAlEgYvUEtd0BsrNBLXzB3QNsBg0t7MndAnN8P9KMzd0AqB84xDTV3QHL2kIM5QHdALrAMw5xBd0AW6O0htkJ3QM0Pq4WRQ3dAZUBJOhtFd0CS8T0mB1B3QKwb63NKUXdAHr0wgpFRd0CofSB04FJ3QFAKvO2dU3dAtrnyxitVd0Cga3S8fF93QJww49BIYXdA3tnAx49hd0Drv1eHNWJ3QJPwGcSqY3dAXP1dVSlvd0CsIRAB9nB3QBCNndSEcXdA+nmu+p9yd0BSFI6PkHR3QAw/i8L5d3dAATJkVT59d0A8idECan93QE7w3Ru6gHdA4IbuZE+Bd0B6ZrBC5IF3QJy7tR4QgndAjkZbPHeCd0CJPhajUJR3QHoNPp/3oHdAyoXGR6Wjd0Bekm3snLR3QLZTsUns4HdA/4/Pwinjd0BYsuOZU/J3QGQ5tjRy93dAWrui4Xz4d0BIe3oXdvt3QGA4+4FG/XdAqJ5GctX9d0DDDgBjef93QATAtmSgAnhAiFNu3ugHeEDmVMaw/gd4QOfMavHFCHhA4OkClUINeEDU8Wg8bRJ4QNB1mclKFXhAAVOg228ieEA49ZvJOiN4QGw+ECeLI3hARA1lcNEjeECKmJLAQCh4QDE64USJL3hAuJOCdx8yeEBDiflvtTJ4QMTEAXjeM3hAAqS5twxCeECy3QrdLUJ4QD3UGSQSRHhASdg653lFeECn9XOwyU94QN4Ie+b0T3hARUgue8tReEDmGIL2HVR4QFEUsX6FVXhAJua+YmJgeEB8hGsG+mB4QMMJEz62YXhAfuMYKyNieEBCDgW+UGJ4QBv0Uqu5YnhAJl/yyulveEC8GLSFQ3J4QDTp0bbSc3hApDaWRQ10eECMcrR+PXR4QPpQl45odHhAqFKAuIt0eEBONxdEqXR4QH4KnDP/dHhAQgMTYvZ7eEBg1UOtFXx4QFzEIY+mgXhAFFt1RYyDeEAsLhhN/oN4QP67T3mZhHhAUhYDqreEeECnVSRHT4h4QCkrVckEjHhA1K8Sv6iNeECC0qyamJF4QJaOyBbuknhAtFCDjQWTeEBKEJfgC5R4QFZfKFynlHhAiaGxU26jeECkMW0Hu6R4QJCNcw87rXhA62Uk/dSzeECaqPn7PL14QKxecYPKwHhAhzUbdAnBeEAWcSe9Y8F4QET1o56OwXhAVMlHvYbCeECTxE/zt9R4QAyzXSsv3nhAL90BqwL0eEBSAve6jPV4QJq5/N5+/nhAwi0CkhAEeUBc35mCjiF5QAqkRJa6IXlAskJbsSIieUCslRDpTSJ5QHyTuyCyKHlAKpgOZgsueUB8ifAhrzF5QEEbR59CMnlAU1kw4mYzeUBu28aF5zR5QIJOeqHAOHlAYkWXYhE+eUBvoSvSu0F5QLIiNtBiQnlA8J6zWI1CeUCANhQH9EJ5QLdo69b8Q3lAgohAla9ReUDaeXFLzFR5QLa+2kflYHlAHBp1CFJieUD7NQOb2GR5QOID4LjagHlABPsC3PmEeUBMm3RYW5N5QICHc7R8mHlAEHG682GbeUAoY5hW2Z15QJ4Xumtno3lApo88xHureUAtVQe/wLJ5QHqCHHj8unlAkOAevVnDeUAGqYFEs8N5QN6QLsdA1HlAOQ8LzMzVeUBOl3GTUuR5QFxHB1u+8nlAq6rH6g30eUDPBc0UhAB6QOLB6mIABHpA8exlSf0FekDML61WYQt6QKSydlhSE3pA9MDoAlcbekCJ2J+mXiN6QO6fIf0qM3pAfkG8Iww1ekAuZTw5Ljd6QHxpyEsyO3pATMi4axpFekCnMXngzUt6QIRzAlwoVXpAoU4HgCJcekDpaiRoKWR6QG4qW1S/cnpAyCPghR6jekAKjp9ieKN6QASiRNkkq3pAnlZO3RCzekDC1ZxwDLZ6QBhR/FYRt3pAIKCymCvDekBYAAcYv8N6QFvQqxAbxnpACMXvEcfLekDCGNfCxtN6QErCUplm4XpAoqiv9jzkekCxj9pVeOR6QPyDIig27npAMdm9MRXxekCYT1WSX/F6QDECXSAoAXtAAkqUUeQBe0CYPgJq7AN7QAsEgSp9BHtAbKxpOigOe0CB9SwdixR7QNsngclMFXtAfuztaCgke0BeeQK5WiV7QNhUYvBhPHtA6t74tWZEe0A4LS3jIZV7QJ6Js1Gnm3tABs97QlOee0DHlSUkK6V7QDQ2NLSD03tAzM3Bk9jTe0C8d6AhZ+F7QF7AUPP/43tA3nIh7yfke0BdF7ejl/F7QLJNp06M9XtA/AtJJdoBfECMVHm7ZwR8QNIoolKaBXxAryPMFNARfEDW8Cj8vyB8QKGBgXrNQXxAhG4u0ZJNfEAI9Xx2blN8QOarrcd0W3xAeOfwVA1ifEBIWIt5ZWN8QHIk6yF+Y3xAwzpYCG1rfEB8jaB1K3F8QLv1blywdXxAgZkq8Wd7fEC8tfgmw418QF67nt0bk3xAvpGsTHqYfEBw3Fd7W5l8QIZyWO/CnXxAaty4KJuefEBiNMx2F6d8QHabOnDAsnxAXRLT4Hi0fECgjgM1z8N8QI4MQvk/xHxAvPrF1onEfEDxQ8oeztV8QC4V/lT023xAJTgkeYDgfECiwh7bV+J8QBLfapIQ43xAZqJrPqXkfEAwF9Nasu18QHEe624V8nxAm7aiAFXyfEBzPfPwAQJ9QP5mfyxLAn1AeJPwP14JfUBqAetoRRJ9QJ6Qdrj7E31AfOWYg64bfUA8yNoWpCt9QIZpUaC+K31AGR2s7KAxfUABZBuJPDN9QONW1VKbM31A8Kl6wkc4fUD+u7dEoD19QIwRyzn9Qn1Awc1iR0dIfUDoUFjhnHB9QIOK7iR6dH1AVlQhihR1fUCoyPKinnp9QCjjneKDfH1ABkGmrZSAfUABdajaIYV9QOZfXo+XjX1AzLCo8OuSfUB+Q50XS5h9QEBvfXfGn31AxtVAGF+6fUD8xUxWvr99QBarR7Egwn1A4LJhljDDfUDZAAMF58R9QAKnpkr3y31AaC78z/TUfUCSGtyc1uJ9QKDN66Xx5H1AYM8l35D1fUCeBLm1B/t9QH4hH8ozAH5Ay+n5MEUQfkClbCUcIyB+QFrriRg+L35A2qJabHk0fkBMXeclCzt+QC7UIR8SQ35ALuIwZ4pEfkCgZ1gE4lN+QBoUJ2SvVH5Anjy0Co9VfkDKCouPs1d+QK6oh0QOY35AUl9OisdrfkBCI056T3R+QMBEftS2e35AgNkS21h8fkDgx8aMv4N+QPQ/o2oShn5AyxLAEryMfkBOtmQh4JB+QEqBlPNmm35AwBmqkoukfkC0ZMduDK5+QFoM6XPzrn5AmBUTI3yzfkAo7QE8prN+QMpahWelu35AkEiY4Km/fkA8EjoqtMN+QMEq/DvRxH5Agpo00nLIfkAEpbdWws1+QGo4D3pI035AOExy8ZXTfkC0MMkNu9N+QF5O3SBQ235AQH5vjsjffkBG40lC1u9+QEIOCXuWA39AOqYMpR0Ef0DopoBVUwd/QLfAVA72EH9AWB/YUEATf0AU9ZvQqBN/QJIICsVkNH9AjA7W7Kg5f0CcXlD6cER/QJ8mGTp5T39AAsHtJLdxf0CYRmBP4XR/QPZjUuS2gX9AVGjTyhSJf0AWZwuHV49/QIykLONhkX9AVC2186aRf0C8/8zcTZN/QBhWaVGUk39ABl/PKFSXf0BYgiCOXaF/QIwpI+U/o39AEvpIfOKkf0Ckv0gEWLF/QH5T68D8vn9A3lCI+ZrUf0Co0dDxseR/QEO0I9Dp639AUsVlvTfvf0BleKCXRvJ/QMS3JQbm839A8Cd6MpD0f0BMpAgs6vl/QEbnxy1E/39AmkBnJocBgEAkOI21TgKAQHJI2dk0BIBAhuMKIHkGgEA+rdQj3AaAQGf55orSF4BA0pk81XYagED5uAoGzRuAQPJ+AcbNIYBAnM9rR2kigEAaaaPX5CaAQDyAod6RKYBAhDIyOuQpgEBJBGi8byqAQJbAeQElLYBAucUR8YgygEAaOhRHqUKAQBAAWk/wSIBA4tw2vQtKgEAO6oZv5lCAQNZOEtgTUYBAUG9gCKZVgEDSEPszVliAQDFv/skOWYBAPrIjLKtZgEBdQ8u1SlqAQH/gdpCwXYBAooEPCwthgEBsIXdOxGGAQFCDGOhvZIBAVmmAAiBngEBaRBbm8W2AQNZ6D/kpb4BAmgIZGLt0gEBnKqXEHY+AQKeS1e2zj4BAvm4Qph2XgEAqaxoAIpmAQIZlqytOm4BAdWusZcKkgEBUvTd3NqaAQIqAiQj+poBAcBuex4apgECOg2PWh6qAQNLNJHkTr4BAOTob6iixgEDSxCp52rGAQAIBNgAIvIBA5hXU8jO+gEBcbceSUsGAQJ3x3c+ewoBAuAKyrX/FgED8q4sqNsaAQAnD5nmzx4BAClB482LIgEDM+7JgU8mAQIwqR5OlyoBAlBuvI0vLgEAxvx6TI9GAQHeUnBJM0YBAfKminmDRgEBah4FgrNKAQKWmZhfG1IBALKRJEWbYgEA3PWpaIdmAQJi9bXNJ2YBA/63U7LvZgEB4g/h/pdqAQD7oK6as2oBASGg80hDdgEDuDUzqwN6AQHSPGrdt4IBACmiAKBXhgEDCZfcKROGAQOJWcPcR5IBAgpHfvu7mgECeJ2l7neeAQM6O97td6IBAgPmEsvbogEA0FTrvQeqAQHZJhxJM74BA5nWMcmTwgECufVE4PvOAQP9dLJ9m+oBAKI2Wdj//gEBQjDoKQAeBQNSwUHoDCYFABaepTz0PgUBviSpVvhyBQLYO+Ww0H4FA12qMrMMkgUAtX9PoNSeBQKl0HFe4J4FA6FDT/ywvgUDWQFS/Py+BQNTivB04MYFA9/nzWr0xgUCC2+ys5jGBQMhinE+/MoFAbNDxccM3gUBMdvwxKT+BQFzSmkmVQYFAzvLsLJFCgUBQxPF4W0eBQN7p7qsHSoFAGa/88GdLgUDncXIQtEyBQKqylWufUoFAq6jGQGtWgUBaz/N7vFeBQBZSsKybWIFAYIMlb+VZgUC8vl/r82aBQPLaSSHlaYFAJHLnWsF0gUB4st9jbXeBQHSVEIEeeoFAcL6RS7F6gUCqlEUxpnyBQFIqI4pgf4FAYS8utlGAgUDIlS+HAIKBQIht4n4UgoFAbuBY9wONgUB2ASxYFo2BQBt/i0rsjYFAkPqSkFWPgUC155aMso+BQCzo2d7skIFA9GNBx+6RgUCmIVpA85WBQMeC8BQ/loFALKXbNFSXgUAs/YF5sZqBQKWx84OdnIFAeKUsxkifgUCEx8QV5KGBQLVsXrH0oYFAE7AoLxiigUBecHD836KBQItJBtihpIFASPpVr22ogUDQ+GqfUKmBQN1OwkpKr4FAmXcqCOiygUDUHnV4a7OBQE4t0g1Mt4FAroLpWFu7gUDQD16JPcKBQHZBgf/40YFA1nigC37TgUAsrxnd/NWBQOIQnCQB2oFAimTfsuTcgUAQeM1w7PmBQDogFJjv/YFAvpYroe4BgkAT0z/ukgKCQLtw7SLoBYJA6NyGXfoFgkD3pPcjBQ6CQC5POVXYGIJAQde5YGQegkAqvmKD1iCCQHCWDCnRKIJAXjdu06QwgkDycPcTCj6CQGySqPiwP4JANKGPTNFBgkDStnsBDEKCQJZGe5XISYJArQUlecpNgkByxN+XclCCQAwDhcIPWoJAcIclCHJcgkDkSNHYPV2CQLTqAcczYoJA0juA/zZmgkBcFSpzbWyCQM1AWZvzcYJAUlebGkN1gkAn1KgqeHiCQHrcl6AQeoJAlsnWiBN+gkDYIGgVoIOCQGB6TGlciIJA2KsKYkOJgkD1rumcqI+CQKTZ7kFDkYJAOxSVdZCVgkAfCpcXPJmCQF7nLv1UmYJAnPDurKqZgkDmj36hDqGCQFofeSU6oYJAz9Ay526igkCU/7mYyqKCQMcx7mkMqYJA8pKXbTGpgkDtLJrr0aqCQC7k+Sr2rYJA7gFbYQexgkBKYy2TNLGCQERd5LDsxYJAYQh4Ve/JgkABnsmR8s2CQED82Evq0YJAAhTVBkLVgkACg0rJftqCQEguJrWx3IJA5erky4HegkCc9eu9g+KCQMYdRnsr8oJAyDwQaA/1gkDkMKhVrfmCQBCK6qXhAYNAZAuluuQFg0BYg1tq2QmDQC93vYrrCYNAVAF/+7oKg0CZ2kWG3g2DQBz/JxJ3EINA/dNYo3kRg0CuRmTIeRmDQB3W0btyIYNABe24foohg0BcuK9EcSmDQD8F92BpMYNA+vTXpW05g0Bi8sDNAESDQG68n7qDSYNAGnyYygFZg0B4jAHzXGKDQCHwGqtCcYNA2Lp7OPNxg0Do/P66U3KDQPVZgbDpcoNAUF6vC/h1g0AUhUkLqn+DQHpTw3fEgYNAWAs+Kt+Bg0BqR/ycSoODQPQBtazHhYNAXFEy3r6Jg0DZUgiEwo2DQEA7FRnRl4NAo0v9blipg0CkucLS76qDQL6RxdMSsoNAla5fhhW2g0BGOgJwGbqDQEf62WEQvoNA1IyNmRLCg0DtwH5JHsWDQNQ/1VEPxoNALBcURM7Hg0Byu231ytyDQH7L89Z334NArPKr9STig0D++SiGN/iDQE6jIDKU+INAhvMEiy8ChEAGjkgd9gqEQGZDlGTqJoRAY/abzOtVhECIBn4BTFaEQFBCEnNlZIRATQhnIHJohED4SURd/2iEQBs7e0n/cIRAzn4jjE1yhEA89843uHWEQDpSoPHKd4RAmX6DbfZ4hEBqdgfTu3mEQEiri79peoRAlmWmSRZ9hEDiAoq+sH2EQMIs+vfCf4RAvrgn0vmAhEAUJzLztYGEQCSNZe1vgoRAQOag0RyFhEBHDmlJy4eEQO79tB1wooRANqrdGSClhEDQrkdRia6EQAbx1+a6x4RA9ixmwWnKhEAmUEUcatmEQKfixJJp4YRAwfmxmwXihEC+FfSOeeaEQHb+fxPR54RAIpfwg2LphEDSkfzSfeqEQOalxu8r7YRAqvWFztrvhEARw9vCNfGEQKx+bxph8YRAOuubkYHyhEAa6VcE3feEQG/KjYw4+YRAEL57Rov6hECMzNSTLQGFQNRMTFZEFIVAyGRG9N8VhUCYmPEdFhmFQMLnIhuqNoVA6yckU+RNhUAK91y351GFQLCNKx0+VoVA6Bs3L6BhhUCwllGZ3mGFQLgR7RagaYVAoo1JZZhxhUAk+OjhtHOFQMjlSlKaeYVAyf8m3bl7hUCS+kcdGoOFQNfOXghug4VAbslRTpqmhUBatYfBP66FQLgWCic0tIVAhtkELozBhUBJJiqurOKFQOVWZ8Rt5IVAbCmEba7mhUCH4NKmaemFQKBhf5Ky6oVApOEMIlsIhkBMrCzuMAyGQIcyW9mqgoZACKoMAiW5hkCeGgEV0sSGQErXcsTLxoZAFiHMLsnIhkAypsIbzMqGQImvounMzIZA9MnErtPOhkCSWPpoytCGQDx/EBIsE4dAgl7owy8Xh0BAwVhrNRuHQGFYIImRKYdANBYicZExh0Be876gizmHQCijRBddQYdAVZ5tYYxBh0DihuYqG2uHQICxSnTHsYdAcM7S+8e5h0CZMxFJSbyHQFhVYRi+wYdATlpPS73Jh0CgZYAQu9GHQKa5mfdi74dAghJsDWzzh0AkzNJ9UgKIQEDtH4u0BYhAmvioNlkGiEBNgZAfXiOIQIQumT5+LohAJOCIOYEyiECGL+t0U3uIQJTh3fOOpIhAkjxGvBPLiEAZlDNqtvSIQA== + NrgMGZxjYkAmWGpEdaJuQEMdzoN8QnFAOu18Gelhd0BDe6rX1FN4QFz2fkps0nxAvaOdGmIxgEDlAM4SY3KAQEzM+w+O+YFA2/RZBbrBg0CfU64K23KEQGz52p37eYZAAoF4J2cLiUCKSpeIUwqKQMmsHjfTE4xAUXY9mL8SjUDn/dohK6SPQNrRg9ql1ZBAPAEuXTYukUCDFd1XTBKSQDf7c9bh1ZJAyimMUmL2kkARPjtNeNqTQNlc8Cke+pRAWsB7GZk2lUBZdOc+dL6WQKSwTbfEOpdAo2S53J/CmEDuoB9V8D6ZQA== - + - RheqRNVhN0Q0H8RFmYOSRLNkrkQ+FJ9E70AqRdhZRUROQ19EmWOZRJUDBUf4v6BE3huDRL3VGkWAFulFpuaCRCjxYkTy3JlFBNKoRXDpz0SxJadEthn3RsrsCkUmP81EI1t6REfvoUTimzZEgD3zRMrvC0Vv7ylFFHEFRdxubETggPdEDVQqRfY2CEf4FTBFMNF2RMiFfERQ2F9E7+BQRp4jj0U8gmxFzfRPRAByvkTZA31E9693RgLuuURd3MJEvUmPRFymmEWTYKNEButRRVY4hUQQa0pEVSASRd/AbERfylVEhG9rRBvWnUTHQKtEzlOPRLsXMUUOkNREdlo1RMVP/EU/tx9ForSLRHQ8QkSLH1tFtRmRRfhoUURIdNtENR+ARC/uGEXh82ZEFAdMRAZHS0Z/O4FEcsq4RA3AQ0WLjIxFbj5VRFx3WkRpnv1EG9mORLJrpEYMYZ1EpBe3RJ9Th0U9xB5F7nUzRS2hW0QtbH9G0PI/R0Fzl0S/I9JEAQl9RE/GU0YwtjtGyPnfRH9SV0SrS7dEi6HVRaCMckT+JhhFbyDkRLPcUUTisZtEKolkRTMTO0UFW1pE+CSeRcNLuURasjpEsb+TRBS8NUTaZ7JFNdfVRNIgykRx+WtEqN+kRM0qJUUbxFVEo0gdRfYigkTBZ6JFFva2R5LfS0ZnkLtEKY3ORZOqa0R0M5xEgLdQRMfrzkRc90pEkm8ARtEv8EQKVoFEDf4DRTyBo0Thr3lEh5lJR/KcakWxc05G1MasRD0OjUSBUIJEKU2GRCUrfEUxCAVFnCKORcTlkkSU5YREaWLtRJkNcUTqfpVEXz59RNwYWETXsvtEkNnuRDRENURVSzpFdZqwRNFYIUXUgWlEx6p5ROX5r0S7vHVEfUBkRAzOR0SAcNJEGfqHRLwDb0UWUGhF3IJGRIZsnEVrJRxFHEPKRBO0gUQQq6hF/t12RB5BSkej1WFEP+EcRcBhxkS311FEE/coRV8C2kXr14dESfJIREA3NUTZlxJFbA2URQrsM0Tr7VZEWs3oRfnOK0V6LadEHo/mROnBRkThUl9FU91ORGY4H0VltYREbpw6RDHmkERTa39EY5iAREhkDUYAWKBEX7XDRedpm0Rq/ahEXvVmRFrtNEV5+UNE7lqeRBlomUSLnSRFFdGHROmQOEa24TlFVVRORKiooETQA7BEOiZoRB+1DEXQBY1EwQyfRNiOLEXSKTZEKujARe4bd0SEDl9EORmoRJzP9UR7cGVEwCmtRTvClUSVMitEC79uRJpAEUWPsUBE23tuRLma5kVcO2BEux0HRTAf4URj+91EEeduREPuYET7k2hEkHyoRH8u1ETU2LZERjpCR7HpBEXP4u1EGNpCRQZs80SJzDxGS7KZRd7W6URRgUxGGLmERCh/yERbQphF3529RGhvR0WZfbFE1yMURfK7iESGnmJEheVSRC1xaUQhDVdEspcHRbuIhETmz1VFe98yRcfWR0Qzrl1Ew8+6RI7jmkTr6yREz0jFRObEFUX7rmZEVcqIRD1q+ETE6w1Gf55PRUfc40SE82FERwEORuH+AEV/qVtEPKTkRC9vqEQhl5tEJlgFRVPhjkUK9tJE2YANRh9f10WTiqFG9ZgQRZNyzUQi/KFEc8ynRRb+ukQQZIdF4XtxRGlqY0Xi8XpGWHc+RHBPQkQomjhEF4c8RIWmP0W71apE3TRmRAjRV0SJGW9EGUtYRNTZrUSEpU9EnpJcRFchtkQDMmBE5cFoRBQ5cUVdPrdFzH2URA0Bi0RIHWtFWh9GRACNgETJFQ9FzDy8RKMgPEQktIVE0QPPRKzMz0SgzUxF84OORG8lc0SBwIBGnQBRRJ1IZ0WgQyVGyfmdRVbFnUTcoe1EyVvARFuA60fBvIhETI6JRiujPkSvZmRFipvJRnmB5UVQC4FFDsArRm2QBEVbSExEk/K6RKIbiUWQl3dEnn/zRD7uS0SLCnJEQIXjRLzajERSfUpEjZwfRslBjkQ8f49FxtydRFbVbkSuvItEk8SVRI5qakSunUlEnAzoRN2zO0Rkx9RENt9bRFNLnUTYG21EBv24RLCWt0RnzpxGalLnRH0WfEb/2n1HJLHxRMxak0UkpgpHZjiVRc2dWkWNkoNEnqxeRX5RRUTTeHFEBxFBRcGGckQjgn9EfpWGRkzKG0UMYo5Eg27uRekf5UQLQFVFU6c2RKlT7kTjcFpFmSUiRuhkaUTge1xECLWfRZ28PkQqFPVEurKFRNvO3UTFl0tFw0g8RUHd7kQI0V9EghD7RHTJpkRApaFEIIPLRIxepETqacFFwrJESXN+DkZaU+xEj4w5SKQ3CEWN+zBFsGwgRTOqikfbUkZInnUjRbF7O0ekZgxGpHO4RruAL0XbDAJFqHFkRf9JhURBY5JGmVM1RJrCfURCGrhEpdJkRLHiIEQLl7VEf0o+RUst7ERiQZlES4ZYRLnKSkVYEWNEFM+ARWFK/UX74mFEXbuGRD2Q+ERIQ3xGkj/CRS27EUVsH4pGdaw2RldHyUU2yFJEE+cjRdmIVkRFLKJE1eNaRI9Lk0SiO9pEOzp7ROyXV0TOmJZEepmPRF49eEWjwlJEi++tRFz2hURCVEJEzlNjROijGEf6vWFE/e4rRmw8Q0QqE1FF9yyERA/8V0XCOYdEUgqIRLBwuUTSL+hFoXXeRImgdESjHZdEGvm+RKEpKERkdOFE/tqTRJ+35kS68mdF2CaxRJfFmEQ6/cFFMMrPR7t/s0WOewJF0YnRRgqZSUS3zPpEfeiaRWlXI0WbG65E4CZMRSMvlkSJmqtEh0AwRVTB20W2wpdEXjtzRLNkwkacJcNE5+oVRkuOi0STZPhESeDPRIv2hETEtbpE1IGGRCUA3ETzQr9EchqpRJxOV0T37+ZFzI+zRJCkmUQTDCVG3rR2REO+BkXLG41FxskJRZsB70Rh5GZEUX+FRLdgakRivspERsA3RHivhESjhFNEdadgRZMBr0Vvs6RG+VdaRlVHO0X7ir1FF3p0RdmGM0Qdrm1FCE+KRLwYAUel2i5GzlSFRE4YkUTYMnlE8ydSRCEwVUSDkkZEXJCoRAjjvkWOy1tFePKSRLY0hUTCpldEcZ+yRKMorEQrswxFg6JuRjvEFkVHGohEan+jRD62e0RJkcdEnbTDREajzEflOQVFcI4cRazvPUSd+fREyaHRRiT5DUVro5JGU7VeRFLwGEUUPIJELNKsREH2MUT2ZD9EFNGkRB94wkS4Ja5EIUzVRRMxlUVaHdRECi96RBimg0TCYIRFOzDzRtOdh0RnSNdEZCaFRKq10UX+Fv1EOOKQRNChZ0Sy71VExPpXRKmyKUT2WUFEMxqRRBRXkEf7cqVES7pWRvNKnkRQ53JE1cQqReLJWUR62+xFqjJYROG5qETAy25EtDueRgx1qkXuD5ZE0jqYRf36iES5bYREHwOVRMESYUTiK6RE7/NqREwOWkVrHYNEEvCiRAh5sESxOUpEGyhtRM2HNERmVZBEVnINRZsWhETN45hEt1+TRECM9kZO21hE5qpcRGA+pUXb4SZFBvmaRCpRPERItiBFWxOSRH4S1kQ2/KJEFPZ+RAJ6okSdwAlF4eBRRKTUTUQFJDZEclnDRBDKb0SedBVGMHBYRJmJMUUZJDBE9FeURQiBhkQJ78dEAYFiRC3dv0QGeR9GENR6RMla8kSqdNpE3E7MRLn9RUUSItFELKhRRM4/zEQS6IhETLXDRHOBVURWqNJEF64xR7rTkkR6ZztEob4GRzngUkY3CoNFBzIjRaxL60TuyAlFgsfIRNZ8oURAHXtExBFoRBrwZ0SFRFFEwp5MRxOvyEQ2EuNEthdkRCQOC0b4wW5Ek0iGRV5TbUV1udFEPhy2RJ/E3UQK9lBGjG2xRV4kTET/D5VFhy2nRJj9NUQmSWpEcwqTREb/p0SOIOtEQipyRIHPdUSz8ARFhYdMRDqbDkbMCGlEWjnHRD7XaUTwr8pE2kVJRLUl1ET8WZFEKuP2RBukzkS0n5xFc+EGRUAOmEQBB0tEbleURB1Nc0hLkexHsBLgRP3ISURebrNEPnaURB7gz0eiGM5GmmRERCO/QUTrq2FHnEuYRSIxKUUK0VVEiSMFRt5gV0SRYTxGRatvRAIlYkQSamhEvdTCRFlq60Q3+NJEemIjROT1okX6I5lEryNrRC9/PURMIvlEwTONRKoUAUXfRAJFoN01RHtglkSjkzBEgNBVRkWfbEWWeFdEWqVmRRAuYES6grZGu1FMRPsCrUVmMlZEMGd2RD3Sk0TCFmxECmb7RAHAQEQty3lFPvpgRNrDoUUeAEdEMVNXREqyYEUlVBNF4LJIRKaJWUTS5mNEuxJWRK/QgkQSq19EwfoGRSq2ZERkUVNE6emQRZkyWUUMsMlEr86pRE0FgURUKZZELhByRAYQgkSmgSFEcFGmRPepVEQf741ElhbPRSadc0TRWFpENBehRBH0VkQP/L1EOVX+RNajcUTHNJZFAi/IRZz7zkRpxcdEClNqRGHcjERkFQNFoQkGRacpPUQZwh1GTC40RNaOaEQlF6FEy3M8RNbnR0TX7sxGm9mjRDJyX0Y6b2RFz29dRD3hA0fes4BGalAORfhHh0Sak4VEfLu/RH/mjUSb4iBGuhB4RKmTekUkF1xFQW2XRHgpBEVP3pNEvRdXRFR9SUQHhdVEwcRwRE25aEQ7e1pEW/6zRLGwUETnAR5GuSKDRRgFXUSXf4BE5hRIRKHsN0SJ4xxF7w9XRJgGUURtElxEbzy8RxvQg0QR2hlHIMV+RBoWxUa3Y99Eo5JNRFczs0WboN5Fnt9MRI6zK0YkRgtFqNcYRdECC0WyvEZEfyaKRM0uSERtXMFGdAhcRrAyl0VUAbxE5fZeRFEsD0b7d2tEof5TRS9rnkSyJ6RECIRZRFnEkUSBsKJGiOY7RjUQA0XEKiJF48lmRLscq0SJQFJEa4HKR3vgL0eSzcBGevAyRX8+A0b78AdFpSp0RLO2e0SKOjVEyR9WRJNWT0T+ZYNEQv0BRRW6Q0SExbxE32zHRKxsU0T7BeRG2meXRKbmpERg7FRGD6vARaOAX0XD+ilEKPFJRDvtkkQuoedHrPiLRwpRkUagR8VFaVu9ROcXSUUx4S9E6DgGRTXgYkUct2JF9V4KRYV7hEQUhqxEn1h3RHkoPUTYL4ZEWNk+RK2yh0RrmDlEx0lmRDDSqkWwfNFE/kegRPp3wkUmjUpG4+fcRB7pCkVW9qBHPinBR3VookQRTypHQO1rRMdGTUSQoYpGU2iVRSEQ/USkHHhFQDjrRMOjFUUe27hET6SERAVMCEcGDXdGtaloREcW3USLpJxGPmgPRje2qUZB5RVGmJgfRXsPckWjQU1FbsofRTetP0XKVexExazZRIW8nEQ188NEI+2fRPIbv0TpsFREdx7tRGDr4kQl5pFEmhn9RuTCr0SltHNG9+ALRgcc+kStn5JFvG5RRFvw1ERhrIZEmgwwRKzffEStu3FEOnZDRMQH5UWQFjVE6zdqRadwA0XmW95EODDMRCyuXUTi0YVE4Oa3RPLOG0V2zeRFHV/lRVMd3EU1W4pFAGyfRCMRnkTcL8hFmwqvRV/fE0UVvR5GwY6uRaQ+bkWTSWxEFLX0RF84t0TWiAJGEf6gRUEaxkTemjNF1vRrRIlDl0QYrJVEnVxZREy8aETO7zhEQL5pRDghAEX2dJhFGlglRUeu6USIPolE/pI3RL07REQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - gF64G93AckBnRoRHDcFyQHYcRp9twXJAd4uzmcTBckA1+4GDT8JyQJhBab6mwnJAmM6cQjvDckCwcNKdeMNyQH4otlDDxHJANpBo8lnFckC7CLY79dByQC4PIG1D0nJAoMKa2nbTckAaXyCd2NZyQHqhCHzO33JAuknXYCTgckAqQF8ouuByQFFmqLFP4nJApJUUB5DickAoTooEH+NyQJodLm6k8HJAJI06tjXxckD7rF9yTvFyQOzDmxHK8XJA7vvEKrjzckDuLOdiD/RyQPznVZKh9HJAK1Kji8L/ckA+l7/hYwBzQIrsxiz4AHNAmMT0sCQBc0AkVhPmQQFzQAYuMGvQAnNAzkwX+2MDc0BOlz6J+gNzQLriJkP6EHNAkCqyJXYRc0AAhyiH4hFzQBWhb/S8EnNAXH7uB18Tc0AINyOK+RNzQJT31zQCFHNAdkbLwU4Uc0BP9uUQixRzQGL8UBd6H3NA7yyG5bQfc0DK4yuUoiBzQOYHjfE4IXNAYB+QjQ4jc0BSxHvGOSRzQJJTO//NJHNA0wK6HToxc0DY7aY4WTFzQNzYPLxmMnNALvakLc0yc0BQRT2z/jJzQLzop2gNM3NANr7aTNIzc0DA/6hTNzRzQHh7U2fcNHNAjhptPro/c0BKLKlL4UBzQILcdq93QXNAnbM3qLpCc0BAORD0eURzQHwBlO+ZUXNApZiRWRBTc0ASHONho1NzQMuBE6OEVHNAo+EhD4xgc0AMBbvqHGJzQIJKhZI6Y3NAePd3j81jc0CSX0dpZWRzQDzmjnQrbXNAZhNzSt1xc0C8vuPiWnJzQCyBGCptcnNA2szPpYNyc0Aq7zlMuXJzQIRAXOFUc3NAphm1cbZ0c0AOsQF9TXVzQH5FYBZudnNASPpg09x3c0AJVHGheIBzQN0hDlukgHNAsDPtiAuBc0AMm1lcXYJzQJoWI4YAg3NADnTHwQ6Ec0Aa3P92iJBzQIOjnZGMkXNAGjmxe76Rc0CsxElm95FzQGKx9CBNknNAEuycXmaSc0AcYuWXz5NzQOm3hmdjlHNA7NUNHveUc0DQ5OlJUKBzQDqhjXG5oHNABBzWuOagc0CWTxtdTaFzQJo82MVZonNAurvJ1p2ic0DWJOnTx6JzQNU8EXgFpXNAWfz7z6Kwc0DusBop2rBzQOY70twxsXNAFg8wKHyxc0BuyzVDW7JzQA5ri7G3s3NAAAp+RQ60c0Azd9ftYsBzQARiYQKSwHNAyFBp8rbAc0AkNGU+9sBzQLsw6wCNwXNA6G7HhzfCc0B9h5Qw0MJzQAyQ6Q0mw3NALr+oJGPDc0C7LSy4kcNzQHrXw9DCw3NA2i+G7oLQc0CcqyA+yNBzQGo9MPrm0HNAnFlf6xXRc0C46/0L2NFzQIFaZtKO0nNAaKkNLbzSc0Ba/c8k7tJzQOq3jln303NAt2ndOeLUc0CY21dPpOBzQP1UBeXP4HNAg+TuYfTgc0COAFwtOOFzQLktMMh54nNAEODdBQ7jc0C8zhJ7pONzQBIC9kLt5HNAiLarkbPwc0BYCdSD9/BzQBqCejJT8XNAKm54ZYnxc0DgKdTVuPFzQCp+SlrS8XNAvYdYnzb0c0CeinIfjfRzQNrRAQ20AHRAl7qYROQAdEA2wGZnEAF0QDqASdl4AXRAzem1MKcBdEDfsiu2uAJ0QIwPSKdOA3RA6OS3VPMQdECKGzqLiBF0QFByQu2mEnRA2GVa00wTdEBxFk5PdxR0QO/p3bxkInRAJGPY31EwdED0K6AOFDN0QB2WyjjhN3RAHAKWLG84dEBm3rapOz10QBuYghGkQnRAQOQOcXlDdED1oUde+VJ0QECZ9SH4VHRAGV67xYtVdECyEUa6IF10QHrUaxcgYHRADq4YdrlgdECCFcLJCGJ0QLMoTVh7YnRAtKjr045idEC54dbOemN0QDQEyPMSZHRA/vfgb09kdEC+DPbdIXB0QAFLTFvIcHRAGrXbRhtxdEDoaNo/QXF0QEJF6j/McXRAllCSLO9ydEAmF4gEO3N0QBYmqlqhdHRAAad4/jd1dECY0x+F+IB0QGbl2swkgXRAMIVWvk6BdECU4Yu8R4J0QP1KGpAmg3RAiLI4WGaDdECTlvYqu4N0QGyE1UAWkHRAk1zc+ZSSdEDcXXrevpJ0QKB9RY7Gk3RA3SmPAO+fdECUSnzJDqB0QADMCr45oHRAL03ZDKKgdEAiMnDXz6B0QInvjOs5oXRA9G0XMtChdEAp7U2i9qF0QJ5rzqC6onRAGEIb3g6jdECXAWtC+690QDhk4CrDsHRAqPJMN++xdEAAJo/Nb7J0QECcXC/5snRAXXbLhMq3dECal91kFL10QExzrUpNwHRAU/VUEuPAdECGPF/WeMF0QCoEXUnrwXRAfLsnAA/CdEC0GgqeTcN0QLHEMTwkxHRA/iGUWrfEdECSOTqI/M50QLqZHEc50XRAeMbEtV7RdED1vGzIENJ0QNexRZml0nRAc+a56uHTdEA+4M7Pc9R0QGrqNDvO1HRAtaJ5QyThdECOM93lT+F0QAKxoAm54XRAkhXbCh/idEAQctwfZ+J0QPQXx6SZ4nRAgG4Vp4/jdEA2skccT+V0QKmNTY/A8HRANAiFZgDydEC8+i1IjfN0QOPwQgOQ/XRAtR8fcKQAdUAopjMqvQB1QPR+vpcMAXVAVGOQc2UBdUB+AaLU+QF1QNyEHsFdAnVAClfEyJsDdUAZDNkV+AR1QNrDVvuVEHVARP0UbCIUdUD8spDZFyB1QKnanyxNInVAfr8ab50idUC4afNZ4iJ1QEsmloyRMHVARvRe7DY1dUBGjL1NzTV1QOOpEdpKQXVAvJdaUd1CdUCq+7AX5E91QFj7ToeCUXVAlgF4Ji9TdUDLbOcYUFR1QACIAPHjVHVAzDB8c3ZVdUAAyb0BEGB1QDz0vcY4YXVA5FBDGmRhdUCmLxhWzWF1QOq/gCz5YXVAoJsQ69BidUB2P/pfZ2N1QDY4OWf4b3VA3LKYYVdxdUDq7+Vz7XF1QJxA9h90cnVAGnECV/tydUDkyktmjXR1QAa+cVRQgHVAUU2Izd+AdUAkGQJmZoF1QJotuE+ugXVA10AB8byCdUDANQCj5YJ1QHdRAIWmg3VAaH1fvBKEdUD6jRGkmoR1QLgNhSCpknVAd2jhnQ2TdUADJNKqsJN1QITu/ly4oXVAS27LrUmjdUB8Tgtdo6h1QGj2o3DNsXVAcP7B4iWydUCycvjB5LJ1QNNLg+w5wHVAUi8Gi8/AdUDYx+TS88B1QKoXyopjwXVAbHMM3/XBdUCUHA9bOcN1QFfg6Ljd0HVAic5fWMvTdUCoR28h4991QPbiARJ54HVASidJfcTgdUApY1gcDuF1QFjLVMY24XVA2PtbXQjidUCyq4ZWOuV1QBI5h+RL7XVAaArFvYvydUCgSBhyp/J1QDq9mfM383VAkN9vaf/3dUCF5PsbM/11QB6VrRhIAnZAkwjw5dADdkBSbFKfJhJ2QPT2kQpUEnZAsoBBSVAUdkCkjyYUDRZ2QMhiBZkcIHZAsE6LGogidkAYdo450iJ2QPWQbQGQJHZAqJPtEEsrdkDSIyS0HzF2QEoyV1okM3ZAxgH58lIzdkCSej9NczN2QI0F8DecNHZAPY6s+ktAdkCLKT0a30B2QNRjiegdQXZAqD0kRslCdkCa+VEXekR2QKfJZtHIUHZAJrQnqRJRdkCC6t5EY1F2QFh7iOqmUnZA0BNhhc1UdkDo01uOD2B2QFqQuq8hYXZApgpcz7hhdkCE+v9AT2N2QP6G+GuzY3ZA4CnIH9tkdkBkEvBeV2h2QLD5NLsFc3ZAPOp9tfeBdkDmmoGNZYJ2QJUPG/rpgnZAu0XD6Y6DdkBsPt5fJpN2QFY14LzPl3ZABCtUreuddkBiv+jAdqB2QDI03V6koXZAyo4vtb+ydkCuWhVFDLR2QKvZBkJxwHZADXWXO7nAdkDCTZ+BUsF2QDYTBDAYxHZA1Hvlu87OdkBK8LhextB2QCwuFhL24XZAtMzRrJDzdkDoOf3jNAJ3QKJGcJMQA3dAH6O/DQwLd0CkXQVevg93QFjmoNEBEndArVnV1B4Td0AUnXNgZxN3QJxkptzSHndAAbNy9rYhd0A8GehHDiJ3QPOHu953IndAA+jeIuond0CKVtSwQy13QMclTnx7MndAWsGf95oyd0BIus2xpjN3QPiy0HoNNXdAttYh2zdAd0C0w1Sq0kB3QKIe2S9oQXdAcKvFTp1Bd0BCVWyJr0F3QChT4KeRQ3dAYdoLYhtFd0BEdBhYCFB3QI2XBB1MUXdAZNXV+ZJRd0AYx49c31J3QHZ5pmYoVXdAMgGs9Xtfd0BymaybkWF3QH9MU9E1YndAtMxzCydvd0BP69xF8293QELwMZefcndAfhMWBPl3d0CQ2QavRH13QPAE3PRpf3dAcgN0zreAd0BVurm0ToF3QJ5FwijlgXdAx6UXTRaCd0D4rPuyd4J3QP4bEYYFkndAH5YfQQ6Td0BuJLxuS5R3QNAXyHf4oHdA7KsQxZ20d0AO+CHfLsN3QMNGzBDl0HdAwEZLQGHSd0CUPosp6uB3QHNbYMop43dAy6cRZVHyd0DGB3kMc/d3QLq3EQ52+3dATm0ufEb9d0A4o4Yk2/13QIxmu7B4/3dAEsjUC6ACeEDqdtNuNQN4QCiiwGnnB3hAgANDyv0HeEBhXfdvAQl4QFPJnApEDXhA1Ntqn44SeEDtlOZGERN4QIbqaAUOIXhA4IErLW4ieED25LUNhyN4QMoBtpzRI3hAqI5SN5wteEDMMmZOiC94QLASemggMnhAhFGiVnwyeEC1pspUszJ4QL4F1NHcM3hA5LDOFLlAeEDqI6SVKkJ4QKjSi/oRRHhAgm16cXpFeEDhbZHRyU94QDi2QcfKUXhAI2VTBpdSeEBq1IDxhVV4QMKd6GXpX3hAYmoaN/pgeEDg74Z2t2F4QOePDfMjYnhAnk/poVJieEDU5zl56m94QNryHIg/cHhA523hSEByeEBPunFvXnR4QB7kuM+LdHhAa8wY4cJ0eEB8TrnO9nt4QDIh95qlgXhAEMD5G4yDeEAOF5Oo/oN4QGizw8KZhHhAgIcOH0+IeECGZbJ6BYx4QH4KHVaojXhAGlXPZZaReEB2VA+9BJN4QPoj+k0NlHhAhSOEsqeUeEDqctz2SZh4QD7xpe5jmHhA5gj8x7SdeED7oRJFqKR4QF6DTWM6rXhAkEmGHYSyeEDe9TiRqLN4QIK3B5XUs3hATjHXccvAeEBJzC4mCcF4QLYLo5lhwXhAckQlnJPBeEC/O6RJDsd4QJDfqQqE0XhApqxZC3DTeEBZG5jwt9R4QEK8uYjS2HhARMpoH6XieECShAzYw+R4QCqEWd2N6HhAwtUJTwH0eEDeDlrJi/V4QGawKw0l+XhAlQ81Nn/+eEAfdv9JJAB5QBQEi88NBHlAcltgdZkFeUCoUAeJkxN5QMJCDOaNIXlA3EL2DLsheUAVJNnbISJ5QJ9UcmROInlAj4ivNrIoeUA99fCBDC55QCnljrOuMXlAFBOEjWQzeUAx1j/VujN5QPaEcIDuOnlAH3pnR2NCeUCM2mcfj0J5QLhjBfX5QnlAVhZHX/lDeUAMwNHHrlF5QOQJM45xUnlAJ+ouWcxUeUCu22Kw6WB5QMUxh+5YYnlAsAhBr0dzeUACuOmx+oF5QKmo1YRbk3lAJBCvEGObeUAg0S2CG6F5QOIv3VBoo3lAiZcscYKreUDqWby3wLJ5QBkA26mDs3lA0qfYYdDCeUD/14jxXMN5QATPCfVA1HlAIoGj3MzVeUASx7HZUeR5QAotaIG98nlAW7MdDQ70eUDwKPv++QV6QP4TjDplC3pAO1ttg1ETekDIDBleVht6QJTAncejInpA7vvN1zojekDUGh8CKzN6QFMgpGgMNXpAdmlPqi03ekCT/QA3Mzt6QPvIZLExP3pAqnqCcBpFekCxbxtFJ1V6QDQ/juYiXHpAuoSgn1NeekA6jhn112B6QDqVMBEoZHpAFqc+GsByekAWiI20InN6QJrQz6kdo3pA3dW6kXijekBE7xRuJKt6QE7UA1MVs3pAP+6PPvmzekDb4zL+C7Z6QLI84DAUt3pAik/fBBq7ekAPGVwnv8N6QHYzm8QbxnpARJMH/8XLekBi8B2zPc56QLh0dT9N0XpAeJHYgMvTekDg9bt3ZOF6QEgSKhmf4npAiyxwP0LjekAhRMHtOuR6QFqmmd595HpAstbOGDbuekAGfEx+FvF6QFJeIlpa8XpAu5wAD7gBe0BWyNSb4gJ7QMys3qpzA3tA1CsakXsEe0AqjXchLw57QC9feV2LEntAkOaChokUe0DwrBg0TBV7QGdKIpHJI3tAypZy4CYke0C7inHuWyV7QPKrTcJ5MHtAEMV7imI8e0AzaaiEakR7QC/UGU3pkHtARsW9MySVe0AWiD6SUp57QHmUjZqwo3tAgrGWdnbGe0AikapPEtB7QNvMwQfA0XtAQ5nMCmnhe0BE0ArMjuN7QCSp5kon5HtAbohAupjxe0BS93HZMvR7QAf5dcuL9XtANMDkxm3+e0CduT0RjwF8QOScNsfZAXxAsEYlXPQBfECYxmWTvgJ8QNW6xq9lBHxA0m3CoJgFfECwL1xI0BB8QFAbd//SEXxAGKXzZPgXfEAWsulVyyF8QDCyjkK9I3xAMqYgM85BfEDCEagUp018QPT3slxuU3xADHvicJpWfECCkluKUFt8QMDXH8Z1W3xAtclKCQ1ifEBSvAjhYmN8QGwiiA2AY3xArKV6YWxrfECPKRtPK3F8QMD83mgHc3xANNvCPmt7fEB0Rtp2w418QNBBSFQck3xA/y9fbVeZfEAEPwFWyJ18QJqvpf+SnnxAkCfXWPyjfEAiuGiDv7J8QBSEQBZ6tHxAv/ooYXS2fEBOUivyfL58QPDyxcbRw3xARkHYP4jEfEDECzSL09J8QOLiFL/f03xAXJQADfbbfEDQ9cj8f+B8QIpZkiVY4nxA5AwzEBDjfEBOdc1oauh8QBCJ0VPB7XxAHK7W7RbyfEAAdR5mVfJ8QIEFmogd+XxA6A50sQICfUA2ZstgSwJ9QN2km4wDEn1A9KKDkkUSfUCdulHnsRt9QBbIWeg2In1ArgRwi5IjfUAsqamC7jF9QMYCU/g5M31AAnIyjkg4fUBMP/nM9Dh9QK4mnQajPX1A7t0Wn/Q+fUBaST9t+UJ9QMRpbysARH1Afm6+thJIfUAcZ3SIQ0h9QKHWPrcqUn1ASkW2629wfUBU/wrzoHB9QGv9g295dH1AZqZSsxR1fUD4i5rVhXx9QICouXWTgH1AttYQ7CKFfUDa5cp9l419QFjgik7xkn1AtBWNBKakfUB22ShHaMB9QDOa564jw31AokOuCufEfUDHFtkNONN9QKDI2BL01H1Ax1OBc9fifUAMKNXF/OR9QADC4OqS9X1ADgbj9A77fUD79qDtMwB+QFXXFC4vFH5AqF/2xTYffkDeOuZRIyB+QAL0croXKX5AFGDUO0UvfkA5odIuejR+QBhiLr0KO35ARk4XgBJDfkAMya1FiUR+QD6N4RtlR35AhHw0W79LfkCHz91I6VN+QMA6DxmjVH5ACOcvq4tVfkAfk5CfO2N+QOKj6uCdY35A6wMlI8VrfkAap+0H/G5+QBUO45VPdH5AxHhtV1V8fkAGWFbWT4R+QLbEXAD8k35AkPHrhBCafkCYmGMMbJt+QMaumr6RpH5AEpbsROeqfkDI4JC8CK5+QNmisQT6rn5A8VsRlIuwfkCMqjSvpbN+QBm4VWRNtH5AcO1tjKK7fkASrdZfpb9+QArDn51uw35ABGoLrbfDfkCff4FU0sR+QGjf+/0ixn5AanGE1m/IfkD5Arfxrst+QPlv0pTOzX5AifCtjLDPfkBlHuWe1tJ+QPizfc5J035AKM3+Y03ofkCAs62M7wh/QAZVEVE+E39AnRVCmKMTf0AEZZe4uxh/QJ6PI5WCH39A6HLR0mQ0f0COOMt/dER/QCgR3e9wS39AY6rmQW9Tf0B/TMBYuHF/QFoarby1gX9A8eMwI3iLf0DzJLGzbY5/QOC2woxNj39AjJZhQ5iPf0AAI7NTY5F/QNQpuuqokX9AUqWq80STf0CaniTdmJN/QN9/X91Nl39AtlGnzlmhf0B4siFADaV/QJqzLhFUsX9AUtYI+J7Uf0BrgGGV6ut/QPDqm8I3739A2L1gHZH0f0AE9OVW6fl/QLbAs5xD/39AzS92K38GgEBUPT3FhwmAQG0pZcJ4GoBAXQwOgRAggECagWWWaSKAQLnWsxHkJoBAH3ujjI8pgEB0rXl0cCqAQNx/oiSJMoBAUr8cYP44gEBUEe+5kTqAQJCtS6+oQoBAigOrufFIgECOWXKYDUqAQJ3/UGquSoBA7unaAOhQgEAFFmcqFFGAQEaxyBunVYBAXgpICuhYgECiv9vrDVmAQFqGbfYfWYBAWxDFZqlZgECgahyN4FmAQADatqxJWoBAyGnZEwxhgEANSV7rxGGAQJ5dPmNvZIBAlO97rk9qgED5tS9u8G2AQChAhA0pb4BAg3sOaCZ3gEDqxozhvnyAQBRqjGatfYBAthPAYCd/gEBItpOdPYKAQB0f88BIi4BArPgwncmMgEAst6R7O46AQCIFCA/ojoBA8O+vWh6PgEDEeRi7HJeAQAkcu8yJl4BABz7AcLWXgEBC38450ZmAQP4nFtrpmYBApoYMkFCagEB5j6qZkZqAQNyE5KZUm4BAiBIoRwqcgEC+E+iPNZ6AQEzyH1YQpIBAmagGRI2lgEBIvlRsYKaAQEbhLZXzpoBAZsFAMq6ngEBoZL0eh6mAQIwprFmJqoBAS5o2UhOvgEBwaquzRbCAQKYTPsQnsYBAyZu6V9exgEDUSCiu47GAQHPdREydsoBAJqtwORS3gEASqq4OVbuAQMX+YW0FvIBAkhhl7L68gECKT1H8h72AQAiyQmszvoBA+38vKybBgEBQtwCoUsGAQNqqRNSewoBAamnFZ6THgEC6EydOU8mAQOQo58+lyoBAgzes/n7NgECr6VNgB8+AQByufy61z4BAbmHQhOHPgEDUwdpCbdCAQHBaKdMs0YBARDd3SkzRgEBWPNInqdKAQOqXO0Jm2IBAeB3HN0rZgEDe10b/Y9mAQPOqK/y+2YBAoj1ExgrcgEDq3wmel9yAQND8afoQ3YBAP1W2FjXegEAbTkHYwN6AQDiawNVv4IBAVXVH0UThgEDi340dWOGAQDg2H/1p4YBAkIDVtRbkgEBSL5AqMeaAQLoFhxhB5oBAAreHg1zogECZUwks9uiAQI9V5vND6oBAkgUJQEvvgEBAuqTvc++AQFRsOrzl74BAyvptNErygEAQCSIkPfOAQCg153uD84BAlIe1sWX6gEAYUkVcP/+AQKVsc2ijAoFAkap2tz8HgUBI+ocEPg+BQG1Vawk3F4FAcPLPQMAcgUBUV/ahNB+BQP0XWPWxH4FAvkK7jOUfgUCcRgiY9CGBQKbXzkw2J4FAwGTWNO0tgUAwdsvs5C+BQMv6q//jMIFAZlJJ9UExgUD7+dj9uzGBQCD4+CD/MYFAHgwwDXUygUDExucVvzKBQFo9cpLRNIFAp37mUcU6gUBRlNG5KD+BQLzi6m9zQIFA5N0rjilHgUAqWCssWkeBQOKiM5fjSYFA+14JUAZKgUAWg0KRs0yBQOxkcU9sVoFABB9SaeVZgUAeRGaaA1qBQKxD0J4ba4FAJzdAk8F0gUDLUBgQb3eBQLLZNMG/d4FA+69Abzt5gUDcq4TwHHqBQAj/eRFre4FAWlk/9Z6CgUCLGYJP74mBQBrsjIoGjYFAmu6A8KCNgUAAzyn2VI+BQCQjVfmzj4FADb55ImmQgUDOt+VlhJCBQAb1dLTtkYFAFBIcAD+SgUAa/IRSX5KBQEvs1nzolIFAnuSlflaXgUAFBBkNPZmBQO5+oN1DnIFA8ISZE12cgUCynz0YnZyBQD8QnJwknYFAKER0rUefgUBbdmrZ5KGBQPRBcTb4oYFA5CdSvhiigUBu+wOntaeBQKj2xQ5tqIFAjfUyCZWtgUCIfU9hSq+BQM4bNGFNt4FATNrVLujHgUDzs83MSsyBQNOdqPiuzIFAp/CxP/nRgUBcU/OwftOBQBIDn2381YFAt0LnlvzWgUCsqEn18NmBQIp/wJIB2oFAbaPcf/HdgUCkeGQB7fmBQCQr/7QC/IFAwKjBZO/9gUD8OlTu4wGCQIINHqv3AYJAOBiDSpQCgkDjMcLUNQSCQIp7ZRjnBYJAWdHl8QEJgkD6x2Xq6QmCQDQ/JtBBDIJAfIcBqgIOgkDDGmNgABGCQEd6tOe0EoJAYnK99sUUgkCGfQCrZBiCQIqanm/YGIJAVxuulWcagkBurrjq1SCCQN3cRabRKIJA4Aa2OtUqgkBk2XBi1jCCQDNaxJpsNIJAVExQEQs+gkBTNqyTbUCCQBcYLv8SQoJAZUH/C25EgkDWSllMFk6CQP5hlE2rT4JATEOvi89SgkBwIGaP1lqCQOitUMmtW4JAAmPkW7NdgkD0ezefnl+CQDLwPYM0YoJAmIggIThmgkBamXW9cWiCQD639iY4aYJAe4ehcKlrgkBypz1b7HGCQNrLDt8LcoJAh2CbZthygkAVXf77B3aCQFhlWLQQeoJA6vYKwmJ8gkDedKUZfXyCQODwAacTfoJARuGXILB/gkDSksDk7ICCQOv6AFvlgYJAV5kDWEOJgkAFvt+3CIqCQMWarOKWi4JALJa/zhaNgkDgATawLY+CQH0nJdhDkYJA9s+tCLGRgkBKDutAr5WCQPgAG6TqloJAvEakAR2ZgkDyQZRoPJmCQAwk4E5VmYJAT3p45geagkDvSPdJ0puCQMQ878wOoYJAn6REZDqhgkA/rQVwyqKCQMbFRPAOqYJAYKKHJjWpgkCkEL9j0aqCQGWxm5oHsYJAHKQ7i+XCgkDjRCuv7MWCQMakhLIfxoJA2C3KhPDJgkC4hV4tE8qCQLoQaa3gzYJATdKJVfTNgkAOIzDEdNCCQEdeBxB/2oJAnk+M43PcgkC0JQTfgd6CQB2wnq2F4oJALBhVjN7mgkA47T8YIumCQEoPaUil74JA+gVOlaH3gkACBSeTr/mCQPGHB8zhAYNAVzgv8uQFg0DUljTQ3QmDQLxhuL7qCYNAHDGuSrkKg0AUmhFmZAyDQJoV7dW9DoNAskMji3kRg0De1gN2ehmDQARcZcn1HoNAxDuP8HIhg0Be5DS5oSGDQCbKFiJxKYNARFx5/ekpg0A4oa458y2DQHpn05hqMYNAS4Scvmg5g0CcvO+jokaDQMYQCK9QUYNAWmZczCFeg0BA1ZyC/mWDQMBmRjeZb4NAXB5HVfFxg0Dmr4tl6HKDQMRWL4G0dINAKDNrBfV1g0B/KuwV8XqDQM6H5DCgf4NAKdXSGcWBg0CwaoKRCYODQMUoj5XHhYNA1vDucb6Jg0D8rBOtwI2DQCqBfrDMkYNAmKJQDS+Sg0Bm1cnvErKDQLTn7eYVtoNABB58/Bq6g0DN0b3QEL6DQKOsaooUwoNAdCn/eR3Fg0D0+kFUv8WDQPgVtVbMx4NAuB2ExXjKg0BoO77JZ9CDQM651Z/L3INAkDNiCHnfg0CMpg+NJ+KDQELKiLe/4oNAeCLnEczkg0DJ/0nVn+uDQD5dgdeT+INACjqAHW0AhECGtUXf6yaEQDEO26PxKoRAhAAi11xChEDa6eWtw0aEQDDpCN+KSIRA3Kg2S3tohECHfDEjAGmEQIHei6xBcIRAek6GMABxhEDObbQ8uHWEQGzupjnKd4RADP6k4Ph4hECC2lzovHmEQPp5EaVqeoRACcphZBZ9hEDeDdtXwn+EQApJ8mx4gIRA2rnGMsuAhEAapcHMb4KEQNqkK5QbhYRAIFSCj8mHhEDIw900cYqEQNmjjkvJi4RAAHovIG6OhEAaacexNpGEQI/PucnDnIRAuNxXeG2ihEA1+9smIKWEQOJtrEy3p4RAaiVKHmWqhECCzBSydaqEQF5YMsGrqoRAcD2n4oauhEAWVvjWXrKEQGWwvXEMs4RAHJAaTei8hEDzG1NGeMKEQGxGFz8RxYRALdL1xrvHhECmN00aXcqEQJw8mMkYzYRAu48iV//NhEBlC9Ruxs+EQK6YtKG81oRADNK4K2rZhECsTJasAt6EQA4pZnhp4YRA1I0VgAfihEDe5vnc0OeEQAg52s1i6YRAcSfpQH7qhECAOCFMLe2EQOXwwUPZ74RAKG/l7zXxhEBzvki5YPGEQE9n+C6E8oRA6yq2ctv3hEAQyAEhNfmEQNzTA5Zd+YRA+ud51In6hECcRX9zNv2EQP6JzpDmBIVAPAVEqYoHhUDGY5dv3gyFQDJU9F1AFIVAclZsq3sXhUDTHLFI9BeFQCVat0kWGYVAPhO4DiwohUAEusZmRTqFQF7WiYl5PoVA6FgDweFNhUCqY9Cp3VWFQGmSOXagYYVAR+Tumt1hhUDygFNc5mWFQGajaeVMZoVABuRRt6BphUDMsH2xS2qFQFQkZGloaoVAqN11+JhxhUAQL9yUnHmFQLJHvCCQgYVAPCdyQT+PhUBQkXjfoJqFQDqb/gdBroVA8THM0VXOhUASuY2l5s+FQNqtjSd90IVAqoleg6zihUBiN9mNb+SFQO2mkaiv5oVA6NnOIrLqhUDdo7koOO6FQPZ58qKuB4ZAZ4kH2FoIhkCmvCPHihKGQMJ76gNRN4ZAbovuWslNhkAN1O4RtmKGQFxutLvBbYZAisSwYRSghkC9EYmHdKqGQEQc65wmuYZA2mm7OynBhkDnI/YV08SGQNf6iE/MxoZANY7nFMvIhkAoal0IzMqGQCV4O6bLzIZArVfLNs7OhkCq2v/N1dCGQPt+/DNU6YZAaP6CuobuhkAmR9LjLBOHQASzu7owF4dA0uNynzIbh0BehtgaOB+HQMGaYT+RKYdATvJsRpExh0AKsAxSiDmHQA3x4mZeOodAIzQi9Zg6h0CupNreWUGHQCSHBCuHQYdAGq4Qd8Bah0CSwaS9GF+HQPFduiIZa4dAmJkE38exh0CWJjg4x7mHQM+7fDLBwYdAbaqkmMDJh0BKTLGQld6HQEhVs/NQAohAonHu3FIGiECSsQwfdwqIQMYFm0UTC4hAHHLkX10jiEDKZTy6gC6IQAKvXDJ/MohAd7UvJ4Q2iEAYuxWgQn2IQGvB7TOPpIhAQ+QzUou9iEAepvbNeOuIQA== + 7BToB3LiY0AoFld2zuNlQNS+X4D+xG5APWWIPVEicEA9w2SRqTN3QJGgd7ctc3dAsWglgZk0f0AFRjinHXR/QAJSiv26QoNA7JQ2/KOig0AXv7j+79qFQGZ/VBpHW4ZAkanWHJOTiEA= - + - dbqXRGJqeUTM35RFFzNtRIUFlkQK9kNEd7MyRUjPYERK1s1EU66hRBsthkSkUw1HDtKhRL45O0R2W8NEe4e4RfagwUQuApVF3V/cRWI2eERZWKBE4GvrRpLGYER9cBlF/ybNRKxSeERUCcpEnDTDRECFh0TH4kBFvs9BRCUhIkW6gXZFo5eORNYbBUcvGa5E67EiRd2GNURT0P5FkK9TRNmNjkXCV4tF5iq4RH9TeUSjp5lEiphPRIbakkQh8G9GFDn0RAMQaURBpotFzXS5RHDa40S+rzNESSTtRNk3NkTb71lEVLqCRJlTkURlVixE1lamREoCh0Qie2NFFvWaRHmcDkZhCOpE7PaqRZEKY0WM+S1EEjxnRL8emUSCtYtE15JWRNwnPUSlrPtFPuioRF9APEUrC6tE4qhKRcyGp0QoW0tEON2WRPW/L0VRmmNEFqmuRBYpkEZjkQVFiXDTRBBjiUXb0ihFQhpVROw3u0QGp2pEexZcRDGRMEbqoRxHj/40RJk7i0RmoPdEDopgRhU3RURX9CdGLDmVRPpqf0Rr37pFBZZcRMdJUUTQKSpF3K2zRJIZo0SY23NEfpVuRHEbo0SuVyNFSxmXRKrnukRdvEpEXZ6IRW/8QEQroCFEcp+MREHfykVF+zBFHyBXRCYZcERftl1E/4JNRD1KPURjz/9ErOVyRGYITEUv91pEx0cVRVq3d0RzvLFEXRw+RRukw0dhVHlGCBQJRbiIvkVPJ1pElAQHRYE3SkUwBXVEQ73aRdnsvkQjNRxEjNNzRAiDSUTW3phE91ThRBbaj0SM2XxEPgg2Rx1xiUVFRgtG0ShURHJ+nURfN01EAfNxRSu9skQ8MDhFyapMRV/vgUTcCqRERVx2RIbY7ET3jxtFp6CnRHw9DkW5YXhE97p/RCc6P0T329FELJuqRONhOUVovWhE7gdyRWprSEWpmt1E1DhsRCPaLEU/RzhE/mFxRKf/lUXeIGdEq35eRDH3HEd6EVNEgRJtRMIkJ0WzV5REH8JtRMb9RUX00FNERJ2fRdng1USgikpEu69ORIHBbUVLWLBF66cfRGjiUkRMPWBE0Zv0RZT9K0XCmI9ElehKRFB9tkQsvapEVYP9RD09R0Q1dbRENvAWRXjOskTT2BZFXDPJRKEQ7EW6O8NEb0JmRZISqET3dzNEuQfDRI1eZUXwq4ZE3MVXRBCm0ETOs11ELgQpRbHjsURMGExEMmeDRABgOkYSeH9FjPXeRJ1kQ0SXorJEGAgeRZ50YkRgcatEaczdROzwkURS+0FEgsUfRYnPYETCPFVEQ9R+RIpxn0VpA1JEnxCURKnln0R4hwJFph1wRJwMNESURdFFi9eMRLraU0QFSF1EUgX3RN2gnUQOJT5EwsYVRkQ9PESIlC5E30Z3RE8TAEWV8uZEAkMxRFkTwEQU++JEiHcqRP5hmkTFjmlEF44DRbPC7EQ0CE1HVWnlRN90BkXEenlFCek7RCOts0QyYmtEVyw5RiiSnUXKcvdERseFROFKH0btOJRE3kxSROzjvUT2UKlFe1ZGRJIu2UQqv4lFYwPJREi83ESbmVNEQMNNRG2fKkQ2KYFEB7cYRQmLdEQ/zJ5EXnnDRD65m0T2VIBFVtYXRVL3NUSYjp9EVDOiRGzgbEQoPytELz/DRPDegERJPYpEGl//RC6Nw0RAd0VExauARKSthET68fJFslmNRMCtjEUn+1lER3OdRMDoOUTIjwxGDja0RBqRM0SxU6VEopxSRCzju0Rbnu9Elj1nRVQpCEVcjQNG9W2fRT0iukZ/yqVEnYUIRZ3DO0QZoFREcaRMRAxYcETEG5hFq5C/ROoIg0XMfq5E+xZbRQJQ8ES3XjFEBtFMRm/ag0QJ4G5EUpp2RAhjOUR+0ktEa68vRZLkIEUjU3NEKBxyRHd9XUT85XpECpV+RPMbp0QIy89EuvmARCDhYUSECtREdPAkRTS5g0XucmxEKh4zRfY8hUTv3W1Ew9wxRTrHT0TyJFxE2tUzRet2uERS5NpFjJqTRM+yZkQkxWlGveZ0RKqQrERr04NESQQ4RFPUU0UeOj9EKUAxRj6TiEVzrFxFoWgWReJTn0SWRtVHw4uDRHPiR0TX2StEsLCPRh1CvUVZ/HxFgF+2Rufvp0VVfpVFPL1iRu9j5UToEp1EHyCPRZOQJkW/8lpEcntURUGolURhsxlGEViXRdhwIkV1X5dE0ffHRGsclUThI7lE8AU+RElPhESGEKRErE5CRPlkdET6ztZEODKvRFtNi0TVmFRENCFWROdDjUS7MQ9FNOObROzb20UwS6FFRxyiRxy2pkQ7PRRFtzMlR8+si0TqT7dF27LZRW7rTkSRWYZFo/hTRFSvKkSjiE9E3iE4RaGClURLoS1G/NPnRFAAuERuWtFFfqhmRLGStkSh6ORExlmfRLNbmkQpbYlF5nMdRrQfdUR6OIdFPsaeRCMytETHdopECUvgRCkBL0VOCXxFOvztROzpI0V5yk5Edfm+RIlLREUpozVJUosuRQ8QLkj7GUFFKXhhRZL/d0c17DZI4Ok2Rz5gR0bY/8NGuSAcRWJxtUWqZNtErAWERhxG6URaQrFEnwpsRIbOTERXWn5EHYQyRExNjURwXaREKnkWRdr4GEWJ5rJEhiNORP4COET/C0NEA9AuRO/iMUUiHLBE94ZBRPwwR0RHzadEnnU5RWwk0kUyC+9EpfCURPGNdkRhlFNEZq6qRHs2KUShdaVE4EWGRiYOmUX+WJpEZOmJRiwHJ0aFStFFhOw4Ra6qMkSdwR5ETxIMRdrsmUSWV3ZEmWOuRFJal0RyQodESq9cRUrekkT7pEtEqQRuRAH1cUTwq7lG5rjFRbuKdURCBDBF9DVRRO7vHEWS9mhE95tcREGce0RUnOJFHhvBRIa8pESLXg5F/9KaRFdMsERPqslEmZqRRZzanEQOd1FEVdmURH/fF0YVbLtHIhsVRmK2MkXHcENEGSnERl9W5EREr8ZFZbVPREkjbUS/az9FregURSfXz0Rdq8hFxwQ8RCal9UQ3zJtEk9HQRBtOmEUoZXpEB9SaRLkMpEe/QaxElrkURyS1kkS9EZBEUN/yRWTHA0UnxppEdrFERFWuI0U+OYtEmoz4RLl+xkROL+tEI9JgROfSOUSbym9ERdT8RYabhkQMWUNEHKOARO51I0aBqrREzmv8RAcCA0XX8EJEY6eBRXjYv0QSdpdEYuQuRYxuxURWQXpEizipRNp57kTXQeZE8N6NRI6ia0QX0lhFeJKfRYhn0kSndoRGb+F5RK7wj0RKOj1GIqnLRNj9aEQp6wlF+7iHRd7odUTrJXJFTmRERLFwYUSH9GlEoJybRVngN0TDcy5Hs/tZROi1jkToqWFGgb1SRK2GPUXb5rREQT3WRFpGnEQNcXlEPkA/RPzdskURQCxFEDmORMVfa0QwxG1EoUwnRC7px0QUlJJGxdo8RB1prESh5d9FXXiERTaLM0S9A5lEXl8KRb97b0RRQsNHpdggRVHOk0QQCjtEj/8dRc7YyUZI6VlEk6UDRZM8gEanDV9EVENQRallaUQ1cm5E6T5pRDxOP0TJS4lEI0nIRW1vY0T1rMNFi6KeRFy55ETKUGtEEio5RN4d20RZ/E9ENYmLRD+5U0S4mmNFmdzkRlro10QWSoFEQJ+oRRDqPkU8Vp1ED3RXRC+qe0SlfTBEPy6uR5x5SUTNkoBGRJ6CRJh5qETNexVF/MabRIj+AUaX9udEsF3cRN7s+kQWkWhEe3BhRK2UA0crE4VFOJGvRMVK2UU5IpxEWriSRGKTFUWcX7FEaBMORYlUdkQqRJpE+FapRFg2sER+oLpFxJ3hRBsPNUQmbWdEbguzREX2oUR5rdFEuRGERJE67kQsP6BELcl3RCrkF0aRoGdEchzQRK2BokRtPZtEk/jDRFEtUUVgklpEaUVIRBU4hkQchZZEyWeVRIAbaUSvb/xEQnSJRO/xYUSiqypFxZudRGRsO0RC7CREitkSRh61P0XeE01Eicv9RO65jUXPaqlEBAZzRFYDTETLlMVEKEgwRHCzIkYhzHdE0byCRH18hUQ9xv1EIV0aRYxmTUQxK/xEblKIRFMuDkUIEodG3euCRnsWz0V9kuJErcuQRMrrgESre2REJullRFaRekcioDRF4A6XRKGmREbHR9NFaN+iRCairkQONktFIFMpRR+BF0WogYJENhUdRVxme0am1HRFYfa4RFO2nUUc7gdFE5/hRFg0TER8SDJE8kt1RGgh30TWZF5FGWp+RDWOKEUWN0ZFWVCZRMB3akSvdxpFesHRRCoVTETU7WpEdyqKRDTHqUQcO29Egy0YRn5t0ERe0GhEEdteRN2JTET6IIJECivTRGvieUQDvG5EpsfkROKMcERZ5c5Ev7OLRCabbUSg9U5EjJ9NRKkrBkU7aalErGqORUfZWkQqGYVENyPNRF8Hu0TAQ+REYpOmROTMLkW8JcxEDfThRF0NTES56cREIEsZRPnxhUgzJ0BIxmZ2RMkD60eOlCpHkI2FRHlKWUS+J3NEEfZ7RFgvZUSfU4BEbi6HR4cYy0X006FGKhZoRtE+iUSKW4hEM6tkRJ6qRES2E41ET/9+RKrZ9kTub/lEIWyDRVOp5ETxEodEhtJ0REuwQkSFP+VEovOtRQmriEQZkzFFvOgRRSXEU0QQSnlEe6BwRMtujkTlKIxEAzazROgEQUazjVdE4/8cRWo9TUWiDD9EqzamRLBtykYjEIJEX7RLRAnnakRnKplFxkIxRAeGNEScCjZEF+txRLWgwUQMroVExSmDRDyaCUZagWxEPM2YRH/sg0XxLj1E0oJiREpcz0XLNntEJPQuRQmmqUTcIgtFsuJXRdy6i0QyGpREK01GRchYhUVnG11EVAJqRATtjkRqs2tEdrUARfloKkSclCNFHL48RJ3EA0bqgyRFDL2XRHvDrUSoWBBFWNimRFFBgUSyQKpEjYYTRQfSVUR2s3ZEa0tiREBfC0YxyThEusioRYmQqUTXpitFmikuRADtiERKKxNFnKNTRE+hFkY0jL5EzNuMREimZUQEWWFE+BCtRvLr5EQIpRlGnHFXRHk4oUQ0mhZFAnB9RKrxDkeVM3FEIg52RihbJ0W9T0tF1BjYREpzZ0QyBLVEqB2xRLgTXUQfpHlE3ybURMaNSkT1aE5E0W5lRCDxjUS4NkdGm11xRG7bjUWHozVFeV5mRMHrYkQ+r1hEO+3qRO+KmUTLJ3NExOV1RDNWZEQS24FEHolXRCc8f0T7TtFEilq3RAAISURO0idGgzxzRWfJRUSELq9E87eTRAJ9VUQURzlEEVGbRFIXukRRzaZFr5loRFUOU0RT4itFgrpMROwYXETs/XpEXVIaSM7F0kS1m2hEMjSPRHirQESg9Y1HVmB3RCqXlkTxS9lELAVeRM8tGUdjqClFHbX5RBlKO0QtCrlFHQ0SRpi+GUbxrAJF9dR8RXh6PEUjFZ9EZuY3RHOj1UbyzTtEblBmRjJUo0S04L5ElL89RU+FYURtGfFF5ZhYRAjccUVlHa5EGLNXRBAscUQFUWZEgsJ6RMoiYkT9u4xGFdLZRdgI0UTLLdpEoMEORTEYN0RpRvBEIYYXSBMRlkf0KbFEUgwoRxQhQkSRjSZGAiSERM+QN0QCd4NF/fahRFERU0QNs01EquhNRABcaUTHgptEmj60RO8XmUQqHoREag/ARNJEi0QX1VxEgA/XRqJcZEQSGGNG4KuhRdIxqUR4ZDxEbhcHRWwh4UesX4xHkodfRiwN5UWS5c1EsliEReMXRkT2JFtFR5aTRN9Kv0RQfz1FODY4RWInuUT5FYNEjqk3RJk8i0RL6KpEQSRRRHuHiETLb1ZEIy5eRPs+ikSUectELLRcRMOvykXtM2xEkSI/RbCJyEV0Tl5GWc4gRaU2QUXcNVxICqJMSN75y0cjMUVEylNUROm+GEeqVhhGQzWWRR/zTURQb8JE9PF0RG78RUQxiHJEZfkqReRQCUWT2ZhEbwwyRG51OUTa1IBEOUGNRJndokR1LHtEawdOREVJakQiNSlFTzcoRZbjSESMI11E7EpzRLTQlEQ8vExE3l8kR+ID0kQLdqpGFBmuREa4IEaAHD9GXfgqRmnGkUU/Z01EjKMyRXfRk0WPAKVEWCf8RIVXp0RVgsdEbkQMRShpAkViKmZE3YZ9RHaOl0QnT2tEalhkRbh/RUQSRIdER/JzRLKjW0SzejBEP4cJRSH/a0SM1xdHaCQgRaKrRUQXQnJE5PyJRmi6hkS6VIREF64vRqTIoUVKk9tEaVa2RNloUUS7AmJElpBnRNL4V0RSAHFEB7vXRQ4AtkRcxKJFkzoVRaoGXUQaH3tEeAYBRbcjRUQ98j1EC8x2RJ/4bUTihThEX5VARBa8S0QMVohECVg+RGaBCkWNGblFwC4GRvCaFEZ47Y5FDUtvRVPDnkRJTI9ETYFLRJ6yIEYyc/BFVIGHRONKcEQ59ktGUxfeRfeLQkXeOUREccK3RIpnvESSV4FEgkUuROi5gkRr05dEc5cZRowytUX8H2pFplF+RKRLqUQGlg5FScKHRGtViESzXE5Elj9+RBs10UQV2GxEToKiROrPKUSU4VlEdLNRRNYxh0Q= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Ktq1+dvAckBAmsKlCMFyQLR6EY5uwXJANBY/DVHCckC8dAI+48JyQBYZnUY6w3JA6F73MsbEckCWBM1e8dFyQPCugsFD0nJAqn/Ql0bTckBsa1elzd9yQF80P5Ij4HJApp0Vs7ngckAopDAaTeFyQPqyZsdS4nJAmJ0RqJDickCY7XDTI+NyQKcxYRdD8HJAZJnk46PwckAiokqiNfFyQOEvlV5P8XJAZA+CasjxckAwlRFWTvJyQLAppt158nJAhn15BrjzckDwpTAzovRyQBrdiBjD/3JA+g9H+PgAc0DbCgC4QAFzQGgv+HOPAXNAigR5uzwCc0D9uoB5zwJzQIKnvz36A3NAesYaM48Ec0CQEV9yIwVzQGL/eXx0EXNApIaGu/sRc0DX/7APvRJzQLLPrOn4E3NAJdA5zXkfc0Ac33g/PCBzQCeDYsynIHNAZEJP3jghc0BSuSrxyiJzQOidVZYNI3NAWB8btc4kc0AMuu5OWTFzQKsBJXjOMnNAfnOLUgkzc0B0NmvANzRzQHQTLkm5P3NAG6x71HdBc0CvZA4fK0JzQOzfoKi6QnNAbOvMxHpEc0AeQtj0l1FzQBLh8nkOU3NAb8jlqENTc0B4yPfJpFNzQC2rApSGVHNAOMjwXRtic0CeBR+KHGNzQD7tDp86Y3NAlP/QX89jc0CEBl6WKm1zQMeB17BacnNAFgrcZoRyc0DE08dwmXJzQO+BYKi9cnNA3C3bNk5zc0CasFdUt3RzQHS8OLBKdXNAsq8Zit13c0BpWm/Mvn9zQMtlsuh4gHNA33DddKWAc0AVdWoPDoFzQNnGcXBdgnNA7CGNVQODc0CS3MDRWYhzQNwvs/yHkHNA6LUKofeRc0Dz+QONTZJzQCI4DuezknNACywlcGKUc0AI60k695RzQNUR3LgkoHNAUoeu37mgc0DvfAXOWqJzQE3JYSUGpXNA9Hj8TB6oc0Dyp2b6oLBzQAtUNKXLsHNA+qbptdiwc0Cfex4vgrFzQJwPgfBXsnNAOnh+D7ezc0DmKKIpDbRzQBjpmPxkwHNAaiZ635DAc0CVFjF6tcBzQMyj66D4wHNAS62TaY3Bc0AQHi4Wz8JzQFYx0x4pw3NARJ80wuXQc0AydVbXCtFzQGbSgNnX0XNAZvJCsLvSc0DdvSbV7NJzQICFw9Ik03NAkkLa0vLTc0CTeGX84dRzQFBUgmYQ4HNAvUe5P6Tgc0DX0YOYz+BzQCCW+kTz4HNANmvhRjjhc0AO5jKe5OFzQA/TIhZ74nNAQJ5ncQ3jc0B8xg0VouNzQHrPToWx8HNAGCiupN/wc0AGXIym+PBzQNm/PzrR8XNAj3sOxDX0c0CkI7QwtAB0QFfhBRPkAHRAK3BNPg8BdEBSe5WHeAF0QNjmlB3fEHRApmyWuvUQdED0Ou8+AxF0QJ1luRB5EXRAUEFJH40RdEBWqrpNpRJ0QJw0FQ9ME3RAzRhtqXUUdEBk8zIaSiB0QFfT50wTIXRA5WCrJbohdEC5S4bIXCN0QDlmokq5JHRArtvKIVYwdEBgtKorCTF0QEp/PFgTM3RAulohFuI3dEB9OhZXOz10QCuyjpdVQHRANJv2/sdBdED/w+TRfUN0QFKS+95ITXRA3Gqc0/pSdEC/dPct+VR0QFFHh6iJVXRAQGX1FSJddEBUUHWquGB0QF4uKdoHYnRAgeVOnHpjdEBU7OdYTWR0QMrhCikicHRAAIThQkFxdEAeSfTyOnN0QJ5Dz2qidHRAH75K5Dd1dED8GL4NMIB0QF5KQGhmgHRAgJVKCPmAdEBNbSYzT4F0QOGUuq4mg3RAOBji77qDdEAiOmEEFpB0QJSmCGhSk3RAjI4X5e+fdED3vdiuEKB0QI019RQ3oHRAdyHxO6KgdECe3u0X0KB0QMxnBYk3oXRArT+cDm2hdEB+YRhDzaF0QJQch2m4onRAYk4gLw2jdEBwvKKN0KR0QMAOiv4tsHRAdLTd+U2wdEA+1UTBwbB0QKK8rv/tsXRA1FWIdTuydEA0hBCRb7J0QKrgx2/8snRAqUj2usm3dEAEMO4dIr10QPx+O1Hdv3RAqMAssuHAdEC1gk0jdsF0QKeGREHrwXRAKpTtprnCdEBy2xeBUMN0QCz6Hlq1xHRAWOjNiv3OdEA/MoBTENJ0QAo7i4+k0nRANQoEleDTdECDtrTqIuF0QMQ99q+64XRAgX6ZwRzidEAnT19bkON0QEQufsVM5XRAWIwDdE/odED54WAWjfN0QFy8QEN69HRALcj896QAdUAMNVkqDQF1QOjZgTRdAnVAYx9FBaECdUCHzOlW5wJ1QDKuztKZA3VAYH12hiIUdUDhadS74x91QFbABhdRInVA6MPhXp0idUA8AcUBri91QCg1N2WqMnVAKvUZocs1dUCsoykcS0F1QIBGthTeQnVAlIDhGiBDdUAZjeT+D1B1QOazRHCBUXVADJQYcU1UdUD6Xm0s4VR1QByFJOd5VXVAmH6e9wVgdUDeooDbOGF1QOTrS4VkYXVAWLxMjM5hdUCedXRf+GF1QOuFKGFnY3VAWq4MYFZxdUC88RC87HF1QIb4Ssl1cnVA5pQ7bo10dUAurmjOd4F1QEiy60mtgXVAJrRO+X+CdUCo9MretoJ1QMC6++7jgnVAH0R6MqeDdUBS9PrmFIR1QALoQq2ahHVAotflKIyQdUC8BAsY0Jd1QPZzMlwjoXVAnintgVGhdUCoODyUuaF1QDErIydJo3VA+kTSdKWodUAhxBt4d7F1QGWhs3A5wHVANxrFfs7AdUDiAn8XYsF1QHLIfvn4wXVAhB27HafCdUBZ9W9vzdN1QCif6v164HVAio9sgMPgdUCjM5SoEOF1QFt5IQZN7XVA2NWMu0TxdUD+mdGspfJ1QFxL/mHw93VAzVhWDRz4dUABnZHmXvt1QMZxEQtIAnZATO6y7c8DdkCkBmbA/QN2QCQ317JMFHZAIBNw7AsWdkBr6gryOCF2QBiG5maJInZAPiyH7NIidkC1TGvTjyR2QNY+Ek5LK3ZA0iN9uQYxdkDcR8tfHzF2QF25BZcmM3ZAwMESEVEzdkBw9FrWX0B2QEy4fOAcQXZAhB2m38xCdkCio49tekR2QEIQ4C4SUXZAKgw9w2ZRdkDgVZnAO1N2QIgKeqLMVHZAxzAl84xgdkA23QoAImF2QGQARVt9YXZAkLzU07hjdkBqVIQP2WR2QGrXWy9WaHZAsPV1dQlzdkDQ5qLZEnN2QDCHspX2gXZAjYO6n2iCdkBFakLYjoN2QKjbf3cpk3ZAGkxXdnaTdkDakGWguZN2QKAvAoTsnXZAd2BF03mgdkDu5hpmoqF2QE67flzDsnZAfIMhH0mzdkDwmum/DLR2QGLpg226wHZASntHi3nBdkAe5U5tzs52QFS7Hlz14XZABXa6wpHzdkDE6WVpTPZ2QDwMZH8RA3dAa2eWbA8Ld0B7KKCudwt3QA5keFgBEndAaBwx1w0id0AefR8BcyJ3QCGgKkXoJ3dANJHU5EMtd0BKwlv6ezJ3QCW8PQCfMndA+Pz5L3wzd0AartgOpTN3QPCYOwoNNXdAigSX6jdAd0CiGKILnUF3QPGsCXuvQXdAPq5QlZFDd0B3tOCjGkV3QFyryQ8GUHdA6o70oElRd0BEKchiklF3QLrQTAXhUndA+39nBJxTd0DYjUIHKVV3QJKaMiF8X3dAmmDqVw9hd0B4Yju2j2F3QOAQCpKfYXdAh1mE7Dlld0As2aDQJm93QOBYNUCfcndA/BSqpPl3d0AylQY6I393QLZkCBZrf3dAIp0+87iAd0AQfBDg4YF3QJIDlvx4gndAjIR/mZ+Cd0BQu9Q0KZB3QEFxX+0KkndAkiLkAcqyd0AcFpLJ49B3QL8ozpeN1ndAfynjg+zgd0DIeMHUKON3QAlOe2FR8ndAcOCrU3P3d0DXRH2NfPh3QOoNcuc/+3dAjk2McnX7d0CkzGK+Rv13QAzvu6V3/3dAIsGQZp8CeECX6EutpgN4QIg90urnB3hAQCLUf/4HeEAmtp1CTA14QLY5giWNEnhAOGetCm4ieEDNg7s+PCN4QNk2ApqMI3hAGp2AVdEjeEDgzKq8ny14QHA5Mt2IL3hA6qGKVbMveECQzl/NIDJ4QP7f+ri1MnhAbrlQFd4zeEAPfJnIDEJ4QGirlkRDQ3hAzttf8hFEeEBihZzieUV4QCMON3/IT3hAGGIEEslReEC1XwRolVJ4QOYX1CkgVHhAJqmI1YZVeEBkZ3/r5194QN6teT35YHhAxo3febZheEANex8dI2J4QPDC06Hpb3hAosUcshx0eEDkpGPwKnR4QKTrHldpdHhAJsvxtot0eEAOn44qq3R4QNZjjM3HdHhAAv/4iux0eEBud5Ff83h4QFCkpL/2e3hAcA6mxqOAeECagVxWO4F4QD4VSGakgXhAojBYsSCDeEB43m04jIN4QIYPL4v+g3hAkhVrCHaEeEAwoGm9mYR4QDDBUV24hHhAeKY2fE+IeECYq7xbBYx4QOzDNEOpjXhA7PMYUZWReEAQwvMe75J4QFRHNe0Ek3hAsuaQSQiUeEBp8aCAp5R4QMSTxklTmHhAhuqNea+deEDEuVEUp6F4QOzt74a4pHhACSi2Yz2teEAZrGhVCsF4QErs295hwXhAx9uxYdTOeEB4eEkKf9F4QGpLN4W31HhANpZuGdPYeEC8seuHpOF4QNDIvOuf4nhAys//+l/jeEAs+15i/Od4QIOh9uIB9HhAWGn4p4v1eEDy1gQ2fv54QI1H/zckAHlAzHfZWX0DeUAMN+1kDAR5QLQ4Q5yYBXlAcoMvRY0heUAEbLxiuiF5QIIOFA8iInlA0nDaK08ieUAOir+1sih5QDcM3rYMLnlAF5d06K8xeUD6p6qfRTJ5QNgTc/FjM3lAHEnbH7UzeUCnc7TBY0J5QK7OPMOtQnlAHl8x+PxDeUDncJeozFR5QO+0K3lTYnlALFV7XdpkeUCVcWC7Oo95QNtSLx5ck3lAOmOJwmKbeUBp1lFUaqN5QKwK4FuCq3lAMo3IXxmxeUDmt/jovbJ5QBpQOT/OwnlAintLfFrDeUBhH69GQdR5QLTada/I1HlA1JLgHs7VeUC8MQygTeR5QI4/VkbC8nlAssxpiRrzeUCdMfojEfR5QPS8tRbOAXpAIzsz7v4DekBWCNrx+AV6QE4mVgBhC3pA+ULQCVETekBa+eMhWht6QF79aYihInpAsPqa0yszekDTmp2bDDV6QNIqqEIuN3pAWrFPPDM7ekDfxXkFLD96QPig/G8aRXpA7CxToYBTekA27clvKlV6QPa2swsjXHpAdC+/QylkekAIvd93wXJ6QJ9ODvijlHpAzpvAAiCjekDBKpr/d6N6QJf5/tkjq3pA/ajW8xCzekA1wh8ADLZ6QNpF2TMQt3pAfZFoar/DekBex8NExst6QJB0tiMqznpAVg5fP83TekAs+NXn0tt6QFOK3Y5n4XpAFF4QED/kekAFJcVmNO56QPY66N4Y8XpABn3dlT/xekDQscVhYfF6QODGA1FJ9HpAwIMnOiYBe0DMTGv6ewR7QNaD4waIFHtAJMvtEE0Ve0CPrMmWzCB7QOKtEWHUI3tALL7NbiYke0Cyk6coWSV7QOpsXMTAM3tAYNJb62E8e0DBACpKZ0R7QKANLqbrkHtA8VZr1ICUe0AOolC6IpV7QK5xERaim3tAnoDNWFSee0DlHJDJqKN7QCLtJxEwpXtA4l4Fgf2ze0CFCzpxEtB7QA5W8N/B0XtAhSSN42fhe0BG7F24keN7QHGixFMA5HtA6gEJZCXke0CE1n0gjPV7QPDHcmgs+3tAJl7dwKEAfEBbkqLGkQF8QPpph6HZAXxA/IB3/fUBfEDoEJrPYgR8QEx92Q6ZBXxAvM2Gp84RfEBcOyBAqRV8QI+QpfowI3xAWjHR3cxBfEAw0FMq3FF8QFiFCR5uU3xAAmBgonRbfEBxLHKWDWJ8QKaWkqtkY3xADkD+Yn9jfEB66YpFK3F8QBWEhoYEc3xAsEVO9Wl7fEAZfi8XxI18QMo7kx4ek3xASD3QlHiYfEDUGsGJv518QBS5AxuynnxAmqDJE5WlfED6Th/1xLJ8QHZ3TRB6tHxAooKhnRG2fEDAu9r+0cN8QE5VvKmGxHxAbKZqbnfTfEBZrt0M3tN8QOmL6ev023xA4Gws91fifECW3CUxEeN8QAo/aF5u6HxAXMKObRTyfEA+rjZrVPJ8QMGJvNUc+XxAKTR5SAECfUAwCQz4SgJ9QKl739VDEn1A8JgmrPoTfUDwIUrNVRl9QNOefLCsG31AKVsfREAifUBEd4B+lCN9QCDznsi0I31A7t0alc4tfUBChqifoDF9QMqT6og3M31AKMkjmJwzfUC27fQrRzh9QNwV4icsPX1AR2YbjKA9fUCub8Fj5EJ9QBDPP/H/Q31A1KJwSnRRfUDgteSeDVV9QDpl7LBucH1AyjEaIKFwfUCozQrReXR9QO66uMMUdX1AGixzbB94fUA0ZBcogXx9QFVaI5ghhX1AZKVRI5aNfUCy/s6K8ZJ9QHocv6gYnH1AJBSdbrKqfUCjO98QdKt9QAgasE4qw31A4H3x3ObEfUA6Y9GNe9F9QCK1vLr01H1A8DZKYvrkfUBGdd3MjvV9QNRBFd00AH5ACK0AX34CfkDwQQtXyAx+QGQ/+I1FEH5Avc3yn5UTfkCK0Q3nLhR+QPqqr7IiIH5A7MljaXorfkCrjcH3QS9+QOIdDwN6NH5A+9IGZwk7fkDxyxlbiER+QNLBHCcYRn5A6qangMFLfkAagiuaj1R+QFhoxaSMVX5AIJU9mzlZfkAvPN7CLF5+QNXXtwDSX35AMwx0H7JwfkBAfwKNTnR+QHZYvNAXdn5AQcnIvLh7fkBGKHq6VHx+QGI5LBmkg35AQ7+tnFmEfkC+6zDZxoR+QN9JJQFhh35AuKNhFuGJfkBAw+wJvIx+QN5rta/MmH5AvCQgXQuafkBfvZDPkKR+QI/xQWuNsH5A5GcGYKWzfkAKItxiU7R+QFLGnq+8tH5AKFoN+BC6fkAe9EG4obt+QLF3qhGpv35A6HBSVWXDfkBIjwflr8N+QGPQknvQxH5Aj+nVpq7HfkB6GmT/dch+QDQeMUS2yH5A1r1+nG7LfkDmmFsmSdN+QPp644Xg1H5AwCArrk7bfkByIKjezN9+QKFi8BU/435ADEhGZpcDf0DedN0npxN/QOHsGjNAG39Ahmh8Sq8bf0BlDU3xTCR/QOBqGwBkNH9AijZrYxE6f0CuRJC4rTt/QLaZBjdzRH9ANopDoXhbf0CV0oRMR1x/QKr8hY/9ZX9AofbC1Lhxf0DADZ3ajnN/QK4QYlGig39AMwgYj1KPf0AxbnKA05B/QKxCUDVikX9AxHB5SEyTf0C4iTR5Upd/QJg+cqddm39AIkbi0F2hf0DEOMxZnqh/QLb1FjZWsX9AwL1sh/LDf0AvsqVBGNB/QODnWnmY1H9AhSNAEEraf0AkAWuqmet/QIxhbWLs639A4K0u6Tfvf0Cp/B4uA/J/QP5x4nuR9H9AJl5ljJD3f0DEkfj25/l/QGa7WxKKAYBAGJaUZ2kigEDjUIUt5CaAQITv3VSTKYBAeGwzhrwpgECaeez05ymAQJjaSxZwKoBAFaRR02ksgED4X5kmiTKAQPDVqMMBOYBA+pAe+I86gEBYmI/WqEKAQGZE9TZoSIBA5geH2vZIgEBSHuzPDUqAQCiEql4mSoBAfnyBJMBPgEAkQvoR51CAQNNSE/8TUYBAqE+VTKVVgEBAur586liAQMA8JMIOWYBA25AWQalZgEDSq0FtC2GAQPvCF3jEYYBAZlJqDBRjgEAukOJwcWSAQMHK60fwbYBAmi7caShvgEACVmkk8nGAQFqSxcisfYBAHWYsFft+gEAV8V0IKX+AQG7L+fOwgYBATrVC3aeFgEBkrYJF5omAQDCJaZK2ioBAXlzVC0COgECYzA/zHY+AQJbW1fJDkoBA098ANMKUgEA6cpeV45SAQBcbrX0hl4BAfFnJKFKagEAgn477HJ+AQKTTMXeaooBAdXl+UROkgEBeYw44zKSAQEQI0qKEpYBAXAuQBYmpgECA5w+u5KmAQB5ZLKCKqoBA8yZWexKvgEBbsNQopq+AQPasuaYdsYBAJKe0UqCygECEVayl0rOAQAULi1DBtIBAvZ8P4gO8gECwPQ/0uryAQMeSkYB5vYBA12UtU6u/gEAoggv6ZsCAQDrP6qAhwYBAJu8MwVLBgEAMHEe6nsKAQJyWK4rjxoBAPi+rda/HgECfvls8ZciAQKDClAAhyYBAf61Xf1PJgECUd9WNh8mAQJcAzefTyYBA9GeWxKXKgEDInuFcCM+AQJDb8qgf0YBAaidboyvRgEAayS2LTNGAQNo+hmKp0oBAJJ2dhQXUgEAU8eB0ZtiAQHTSZKlK2YBAWl33ibzZgEBA+QpurdqAQDnYB6IQ3YBAbu/188DegED0L1i3beCAQHa+wn1D4YBA67YQvG3hgEAddLP/aOWAQIOf5DRe6IBAzpvHzt3pgEBWrnsd6emAQDFkfR9D6oBA52YOP7bqgEBw4Y/BSu+AQJqv6SZk8IBAqBqBmE3ygEC0VBCDP/OAQFhLyCYr9oBASb5PFFb4gEBiGYU2afqAQIheh8k//4BAgap+VPABgUBq5IuyygSBQJeCMfs/B4FA0mvegrEHgUBhiLIWHgiBQD7Ukx0+D4FAXjsTVHsXgUBciIuWNB+BQIZax90cJIFASRdE36IkgUDEucGQNSeBQM78pLPZLoFAQZaBlDAvgUBQN4tRvjGBQIHkNnRxMoFAWjjw5L4ygUA+MlXWRDSBQEeP9GvHOoFA8Jq0RCk/gUAabxpALkeBQHBGXUpaR4FAmujVvwdKgUDcYjR9VUuBQJKiAEayTIFA7gjCl8ZWgUDPDXQ55lmBQOC4UpXpXYFAnXN35PRmgUC02K65DmqBQJucE2LBdIFAasIMt213gUDQSow/G3qBQMvvdgTngIFAWCG/bp+CgUDQLjh6mIWBQKZsJ2ZBiYFAJi8Lg2iKgUD472qxqIqBQGo1qbAFjYFA3X7wTAqPgUDyscLtVY+BQLQLSeazj4FAVOjC9cePgUCgdWqrgZCBQEDL6+HwkYFA4CiSTjySgUBPutzBkZOBQHscpHHllIFAjrd5ylaXgUA4INai55iBQO3lZzbzmYFAjI6+EJ2cgUAfE6/9R5+BQEpwhwIAoYFAVCsvMeShgUDuUgE3+qGBQLjiv0XeooFAITIE5k6mgUDkZa4sb6iBQJNyUZMuqYFAjH1Zr0qvgUDCyiTMjrOBQD/A/M5St4FAe9LuVqe3gUCA8bYQw86BQIW1MV/50YFAGFh2YX7TgUAY7mP8/dWBQLLN1Y0C2oFAbpckwvThgUBHKg1GdueBQN3SMrPs+YFApGkKNnv8gUCS2Wqs7/2BQCamJ4DjAYJASLhE1fYBgkBg7Lup6AWCQMiUHYL1B4JAinv7dgUOgkCYMauh4Q+CQJQHdIS2EoJAkmSrRdgYgkC3p0AcDBqCQJHpp74NIIJAHHHYf9YggkB7jNVKPSGCQKIVjwXRKIJAYzMELKMwgkA0QfNV0DCCQPlwrP0EPYJA4G+MRT0/gkDHoGNNSUGCQD9GcaUMQoJAmpe7ETpNgkDS8IkHoU+CQN12lK5/UIJABBZrVKtTgkAmkVDjkFqCQIyQJAapW4JAoNYfJHhcgkBmJxrHP12CQJtSewoUYoJAcEVnZzRigkB+sO+sP2WCQFTm1Jk3ZoJAIBl4adFmgkCxYQfwn2eCQPjqMY0MaoJAMJdduCtqgkCM+DUV0WqCQEjS+HN6bIJA1HuiTNRygkAUcZaVaXSCQNzUdkA6dYJAiOE2rM12gkDl+vBVn3eCQODxm7QPeoJAq9iiwBR+gkBOQqr2pH+CQJAr0NTIhoJAPYB/aEOJgkBBPAfIA4qCQM5AS6Usj4JAY/MJq0ORgkCg0/COrJWCQC2k4EGil4JAHOAiWDyZgkA+KE2Ar5mCQJCUTmG1nYJAZlJlBw+hgkAOE/mcOqGCQPeQNk3KooJAfsN4ig+pgkDq6+TTM6mCQD6PWRLQqoJA5A8YVwexgkAsBOmt17qCQDqI8CATvoJADHHlhbK/gkA2bqB8pcCCQDNHFfpCxYJAyQDZvuzFgkCHVe3ZGcaCQOim3R7wyYJAuDkucuDNgkAsGZwx9s2CQEXAWADo0YJAdGBF1X7agkBqLgv3gd6CQAxlACqD4oJAdIhSV7HvgkBe8fGUivCCQKwtVeJb8oJAhsiNzbP3gkDycmUzrfmCQLcmIrnhAYNAC0IQrOQFg0BCmjFK2gmDQBRnLfG4CoNAYOqOJN4Ng0DE2JMpvw6DQPT4FYt5EYNAdKJaW24Wg0D4gQgjehmDQDR6GCx+HINApQ6tqcIfg0AGHaIecyGDQAxrqTCKIYNAPhwGsVkog0Bol1tocimDQBhEGIZrMYNAVz0kdW05g0DuH9FXlEqDQMzu5K63X4NARJlC8cVng0BIMCRlmG+DQLpn4W7zcYNALvNoa+hyg0AjkJPD+XWDQMjwBiF7d4NAMMI/COR+g0C7OO4ExYGDQAR7VZQMg4NAuB7qZsiFg0AZMk72v4mDQHivo4rDjYNAkA4vAROyg0DMlkzwFbaDQN6Qe2UcuoNAwrDgjQy+g0CI3bIRIr6DQPqWzBMVwoNAHswh9SDFg0CQGTTYy8eDQDZQr3N6yoNApPiKt7HVg0CCZ5BUttmDQCgoTPbK3INAAYRXfHrfg0Abk5tQIuKDQLSQfCqW+INAVGX04+omhEAKi0HruTSEQFC7Q7RpWYRAIKsLVABphECeJsmD/XCEQE4hJ7cEdIRABg3hG7l1hEAiOwAWyneEQAopgLpseIRAlDHJzPZ4hEA9bIW1wHmEQGSuHXxqeoRAWZCGkBV9hED6tGydwX+EQGqFRlHif4RAuLm2zPyAhEAvob3kb4KEQP6JwzoEhYRA6r5NOh6FhEDIiMaty4eEQKkKGyxEiYRATEb1qHSKhEA2adCdI42EQPBYrenCj4RAJrVmUnOihECXu7pOHqWEQCbUqDK0poRAsni+rTKohEC23sfluKqEQLhOXAmJroRA79ZpNYuyhEC652oKEMWEQJQPngsXzYRAsuCJssXPhEAFU2SoddKEQOPxzlJq2YRAbiFpKTLahECGbjHSA96EQKrfYLxp4YRATHLiCwbihED7Tfh/BOaEQIYm8CvQ54RAUDt3D2PphECPuOSXfuqEQLg75Jwt7YRAT4PigtbvhEAANcLDNfGEQHcYIeNg8YRAA82u6Nv3hEAkWOYgNvmEQKr8oNZb+YRAAxQRRYr6hEACERLZMf2EQN9yR9m9/oRARKSrSUYUhUBmhNC+4BWFQNIWwdd6F4VAe3tv5RIZhUCP/kCosRqFQFbafgbtHYVAqZy3u+JNhUCLdaCIoGGFQJJ9wyLfYYVAkHMlHuRlhUDWr2YbTmaFQCYLpHehaYVAMMMQo5hxhUAYHa7KsnOFQN9Y+xmZeYVAOMTJYEWyhUCyP9aVj7qFQExw7MGr4oVAQGJkotTihUAy23odbuSFQGhXcXEF5oVAos8lhq/mhUDGxyT0aumFQN/Gyiox6oVA4MJvSrLqhUBGpIj4WQiGQKsUKPBOGIZADq5Uvw83hkA63mYMq1WGQPJVSgimmoZApNuu1ia5hkDNxHAe08SGQDU0cyzJxoZAiNDObMrIhkDkLhuCzsqGQM4cFqjOzIZAGn/Fzs7OhkA6biPswtCGQJxNODT9AodANhKRBy0Th0AU0j6TMBeHQMrnTXAzG4dAzWGun5Aph0CmCKwdkTGHQMjiFFCJOYdAkaxZiVxBh0CYKZPPi0GHQPsAjKsXa4dAepIRz8exh0C2Pht1x7mHQGwc0KbAwYdAbpf1UMPJh0DNSrSMtsuHQDb3wYy00odAMgO/OdzVh0CacIGC39mHQHaL5Xzb3YdAEvozU1ACiEByA/ZfUwaIQOoG5I5TDohAghyCD03iiEA= + KBZXds7jZUAYxSyCnORuQKPid1q/AnFAxwSPFv6SdkDehPAvbyN4QO7F1o2so35A3uLMg8c0f0AkaZDsN3qCQDadjNHPooJA65Q2/KOChUBjozF3McuFQOvDJCZQC4lA9oPVsojTiUAJFeEQqJuMQBTVkZ3gY41A0ECHIBSkj0A8AS5dNv6QQA== - + - uthxRCunUEQjtLFFUQ/jRNUpTUQ69F1Fmt5uRFVoN0S5cgpH1akpRGGl+0R1bbtFlMC4RG2ki0S3/VdFQWu/RTXnrkSYxaREr4ehRKvxskbM1H1ExB8ZRQWFOkQ7cHZEuFNzRJuVs0ThO9JE2D8PRZr560TnvHBEVhVjRBO8UEXfgd1GWKFkRPUed0S4EBlFlJVXRDHHNkaWwnRFLuWsRLRQSUSMnD1E9BFoRnG9xkRTdd1EF4qORaLD8kSCiv1EMrEjRFV5z0SCv2tEhwNfRb6OgESKzNdEzzAdRvksn0QtR/lF7FJ4RH4aQ0U38YhEEJO7RIURv0TAhC1FaweARJt410WAZz1Fw6E8RSIeOUTfHlJEfnKkRIKhsUTPZftEm2K3RA9dUkSM5aRGoDCdRHdFlkQcqoJFfGaYRKOHUUQ+xqlETCoIRizmJEd4nDZE63v5RIoON0YN3jFEPRoMRimB4UWB36tE2Vx4RGO00kS/NnpEKpCBRD5ld0SyW4REbjIORd406kQd515EhmqURK5hNEVSYt9E2E8tRJqN2kWs5+1E0hqJROHiOkSZWFpFETXVRP6vdETfwzhEI2lGRMgjtEV2Xo5E4RalRz7+QEYowcVEJw/PRUUUWUQuoK5ExLCCRCzVjkQmM8FFkLF+REZ1oUT7iIVEgZ7CRNXBiES1hBZH2jWXRfWJK0aENHJEWb4pRQUVP0X++5VEl4uoRNzFA0XH/VBFpYaCRE6Cm0SB9idEclWnRK9aTUQ6PEdEZeGDRDJNiURsAQVFyl+NRWVGQ0Un7oJEUo6QRIXlf0RNLqlESSGuRIKGPkTQWoNEjndgRYCCKEXHVUNF4S0hRfsFykTfgKhFZd8cR2fBJkWtxHREMjFuRPNKQUQdVkFEak//RGpXqkX+b/dE9KR1RUEHq0X1NjRE47bNRdnNBkVt4HZE72WhRA9zzERC+kVEJmwlRGreO0UP7TtE9DvmRInjQURW11lE311GRIxo6ESTUNhEneVKRP6TGEbZ+4tE1GFzRaSQ7USBlntEa7HYRORA+EQUJ4pEAdBIRG2Q6URYWbJEnEfbRM+D8UWQxQZFaNWbRFstB0UScrVEsgL0RL/bJUVI3JNEVKhWRHojoUWbpmVEK3iKRN5y2ESKz75Fj8g7RNRuW0SZ+59ELWP6RM4dXEST34BEhuzrRYj7SET9N4dEOXorRa4l+kSBFYtE7Zs1RHtlQ0SYEqpEti5yRAWKUESMgKNEp4U+RDsnGkc3caZE+z68RPutRUVEaw1FTejkRVbdXUUB+LpE8rgIRj8cz0QtV1lFGDN1RA30ZkQ13GFEgDBQReqWu0S6tMRECIe8RB7EfUSSLqlE4I1bRGeoSEThrYpFmkHeRDheTER23zBFg+ohRXpBuERdhK9EeIJiRC0igkQ0ar1EPHuARBT76URwIutFDAgqRPnnukVjf4tE3HXCRKfVVUQzLQlGpTO+RJKYSETK8n9EkyGDRNnUSERGNUtFT695RBzl80W8UJpFHkikRFkIrkazqppE49AhRXOQeUSn6lZFKjikRGc6eEVgxEVFBqBPRE1QeUTkEdhFLzFBROElgUQmwjVEcJKnRNRqFEVD2BNF66g9RFbJM0SK+XFEYsRPRGew6ERy5j9Ega6lRNzBWkRNdVBEAv/qRP95qETtQBxFkPcuRIfGXEVR63JFGhkiRF9CQUXmfDJErOy7RDbBmESwiiBGtbLyRHuMUUQT9G1GTOE8RXpHkUQxAGRGy5ZiRbIbBEVtLHlE+gQ8RHDmy0SXP9lHvBptRKfYhEZQsKZFi1CYRbiKv0YmmktFDA96RfwFQkYrnOhE1lwuRCikwUQ/jVVFlIpSRK0lu0RUmbVEoLSvRDdMTUUmtAlG+uSYRQl/X0SU5mJEUvDHRPQvlUTgU4REI0zBREbzTETK97VEkg4/RKSzqEThTWNEDb+bRI+XOkWhPbpEnZ21RUn0KUVmTIxEnUFFRS+GkUeavgBFUosAR5DQPUQc3LBFNg2VRdtlDUWzK5BESCgpRe8dsEQ45VdEupeyRX44sURS9htFbXeKREx9mEWEnKtEM7JcRJQWrEQZWLtEaamiRaFDK0a8N1RE04yFRR7MjURTrm9EggsZRUtcpkQcfQ5FrccVRbagOUVuH/BE+MuLRFkxj0SIl5pFWKEuScXxzEWI4QRF2kGwRHrsS0QMzx1I8tlbRMeqeUQeeiFFQs1VRPZCc0V6yHpHbOCiRJkkMUi0ftNESrovR1PeA0ZLHKxGoUonRWtzBEVurWVF/ZGRREukZ0ZV3ptEf5GARKgCNkRKMIBEzXn/RIb86ESHz+1Eds98RAszRUSVTXJFuLmdRDiZNkSq6uFEn8A8RLIPS0TsTxNFoO+RRRRGo0Rl7DFEbnpxRNWlh0QumIpEmv1kRMM8N0ZaQWhFEDG6RLSOgEZCfiFG2RZIRYPdRUQ7cIdFEL6KRGttC0XIH1JEFQmqRDfAWEVtg8tEIQRXRDrBL0Szqk9GRwS+RXBSaERrelpEukw2RC4PRUXs105E1uuQRLFbj0XfJTBEC8pURCJRlEQssoREsm8jREPjukSH9TpE8Y4BRQXjqkTj3LhEVqehRWUxwUS0UXxE7WrZRWKKqEeBW81Fm3P1RJLBfUSyDqBG42OFRHoxE0Xz35dFqPjTRI+yjERcAHVEu7deRU3Oi0S+SHREt5wQRcJQk0VFlrdE1nIHSEWFUkeXY0ZE8kpcRt7XAEXccA5F7P6+RMHfwUTVq9BE7qNORM7suURjqW1EAbM2RN0K3UVmLbNEF7UHRmkxWUQiqEVEpg5ORZuqLkV4wYpEbDpuRehQsETkU1ZESihJRHGiS0U4s19E8ZKsRHiyWkQWm3dEPBl2RJgkhERSE/JE9UC/RAfzsUT/LJlENvhIRWmdTEZnTKJEHmg3ROlmu0T7QzZGGDUkRUES+0QJeoJF/Yk3RQowUUT4s5BEkV2RRQoBkUSyNx5HkCN5RkGphUTW+oRFfV3iRLK31EQMaG1Efc+RRNypiUV9LJNFWHj9REMc50QuhLREUlxQRA1eqkSZv9ZGJ6hjRDeZFkbeNYhF7sk2REmU6EQQBdREvHm2R+AYEEVHqVVEL7epRHNprEY2H4NEwfjpRLOBekY/gTFFwTzWRO+Cv0SQqURE9ZGKRLq0JUQndzlEx2qORLIvuUT6k2JEqEFlRBoO/0UIW1VEgAGrRQ98dkTFWvJEp4Z8RPVZYUT0P1VEUG2WRCinj0UJ+qZGwvCURGcl40Sug55FRau+RCUysUToOTxE2Ox5RNkNM0Tf9GNEZ3H8R2LFQ0Q9jKpG3Vo+RatnpkTRTm1GOgJKRN2xfkTg4Y1E1y7DRNEQuURxPFhFKcxrRKYupkQAHRBHvC8ZRaJhNEYDqExEIz1TRPIbaUQT0aFE84mARApgSUQWlWBE6jN+ROK+sUXOxGtE+4XJRJ/VRkVi6HpErclVRKwibEQcilxEMa55RF/jU0RQGVJEjPZpRKd8CkUfEYJE0NFORUCZQkQSHIhERfFKRKlV2kT0HN5E9Nj1RGWvTES3uUBFnGJKRM5ghkQxe2xEjHGfRNmyY0U4wsJEhjOARHseWUSvP5FEGUuuRIP49ER69lBErhmDRHd8aETG1R9G2vlARB/eN0R5Ti9FJSZ9RHKQXUTJ1y1EpoBORYMvREQ13aFE6xOVRJbTU0RmWAhGBlbeRMs3w0QVVH1ENdgkReydd0Tu8hNF9VF+RBKggURYKwJF1Vh+RIZ/SETgNLxExBlaRmWGW0TFWONFTiF0RAY9MUUlg91Eb5t6RwF9EkVev2JE4jRjRKJNW0SfBTdG9AKFRL7RC0Y2iMNE3ePuROh9hEXca0NEoPe8RLwP4UQ2KD9EmsJMRIAUDkU5j1BGfHFzRRcPbUQcJplFHgR+RJCroEQmdQdFGlUwRKZ/2kRaQJNEiLslRWSAl0RZKFpFZR9xRHmt0kT/0YBEPz6nRJKESkTxToRErr9+RHKtAkY2FDxEvsIxRLqsUkSSp9BEam+TRG2OpkRoY1BEGDyGRNzjS0SyiIpEl/zLROXzNkQimOhE0tCIRaXFaEQDgtVERQwhRRRdd0QaSGpEccSERNHD7USzWMhEgbhvRBE5U0QLNo5EJACCSBciYEgeuE1E2kOiRAk9M0VHfwtFPmrrR1DizUTjnshEPT5NR7LQtkTqObhEhgaZRMmldkeW7KtFPMmPRBRBxEarolFGAR1fRIeONkQvEqVEEmDlRPy4OUXDe4FFML/tRG2mTETcTbhFrktURLjDYERc6ldFueyARHYw20TQl3VEcnt3RApfgET/eVdEN9s2RF7xLUX8NiFGP95tRNCIgUQjwXhFhak+RMtkOkRqWodFZ85wRHnLrkZQsWxEdZaJRF40sUWflmZEAzGoRJBycUSxZXVEHcoDRuz1QkTJkgFFaqOERcVDTUS80atFayN8RaYqY0Q14NtE0cSmRCRkhkRV+X1EUvr5RE7sg0TvpmBF4M5RRV2+n0Rs8zdE6Y4jRX0egER7HZ1EHlm8RB4Id0RoTatEF4BeRCPTo0Vl14ZE7wxPRCkuU0QeoRBFpiWnRCoNhEQwmydF8ZXzRI8AcEThOWZEge4HRvEYtkUAyWBEQzN6RAR2mETNUW5EVgKFRGkC30TeMHJEQKTuRU9StURncZVERRqTRGYhTUS7+V9GoiCKROxP90XgM+ZETA0dRAWPLkTPFvRG/4FbRPBjf0bu9BFFTgdrRSle9kTaNopELf7sRLj1a0Qt/otEePk7Rur+ckRrxVZEPo5ZRURiQURAllpFigaeRPq9WUQHRUhEH6bIRF3YlUQzWs5EtkenRGhjp0QQf0tEBO2QROWPR0T0TZVEt+nNRGW0OkQbprxEoKYNRtlIZ0SEmopFPqmBRHP3A0WbBY9EOYVoRG4JqkQS+1xETam/RB9AUES0DxpFg2jvRGptVUQztzxF/0XMRNXLdkSSYV5EGVDhR0jCPESf9UxEUOY3R8fRlES8mV9EWJC/RgpaZERm5EBEEEnHRYAR+UV3th5G1Ma+RBbpJUWHcxdFsiCERGDoZkS5QWdEtGBGREXZZUTAYmNEtTKzRlJ9hkS7gU1GV0PyRBmATkW5X61Edu76Ra6sfkU4p9RE3t88REurR0RKy59Es81xRJr1pUQziHtG77HARabZxkSoH5RFlTH3RMjq7kR3MgNIg3ypROb5fkdYcm9EttiERPpYDUcWdiFFzz5URI8NEkZYe3RFuIBeRMHBiUQCKlxEq1h0ROBIbETEXuhEPWzyRAZThkRgTWREZZBwRC0WokbYNmlEb1keRlAYmEVvB6pEFUC5R0RVWkfZbBlGqMpSRXbxNUVhpwxFig0QRUMff0WcjSJFwKMURf68lUTVxkJFOByBRbrIBUWY7pZEQFyIRPgvlkTkdkNEo7XJRVsHLUU2g1JEO/siRZq6cEY/UkJEcZK2RNUAIEUgamFIHl93SP8bAkiAxodEqWFQRGuaNUf6CRBF7iEmRmKiYUWrMpxELZ6vRIVKL0TnfTtEOxwhRWDdK0XdOZ9EcX+ARNWTQkQ+zd1EJ9aRRP2WwUTYxBVFjhCgRHFjaEQ3IgJHvV5RRAfaX0UrDVxGncoPRUuSjUTdaulFrLcaRgdvwUU/NiBFDsUFRUD3jUXcZ2xF8ahvRXra1ETdHKxE8AR4Re07ZkTY+KpEQQsrRdQDdkXuZNBFIJzEROE+t0QMvlBEkLrBRK88D0ezxIFFGDdoRHAqVUQ+B3tGhOAURjldpkSFDWRFDizKRCoyp0SJ4c1FHp3uRHimsESGzZ1EpdinRei6aUStjcpE/62iRGMtAkV9Z2RESphMRN9ib0Rz20REHGlgRNxPuUQY01FGFB1GRlF5NkZsl/RFiiM/RX/0N0R/wIlEaS8BRk3A5EVjiUBF93IxRrv2lkXBTlJFWQuaRBSA4UQa1pZEsgkJRjPQb0UvX5FF+2WKRL5ybUQGwJxEGF1pRZexZEVWx3NECfETReUtFUXWP4NE1i7ZRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + - - - - - - w6fRoCXBckDeHntMbsFyQA2Gi2/kwnJAlFW9LjvDckDhHR11xsRyQMvmzaRaxXJAwg5tKEPSckC2KhgGd9NyQNooJNLO33JA0ATxZSPgckAIUA/TuOByQL9R95FP4nJArhKc9Y7ickBbfbEJJuNyQEwsNGZF8HJARPJbwqPwckAlXr+yNfFyQAyJQOzI8XJA4wkLPA/zckAjHnIoo/RyQGfgW8LC/3JArAolifoAc0B+vEwmEgFzQGptv46NAXNAjKeZgc8Cc0AATHms+gNzQN5KIst1EXNAlGnIbAcSc0AxUkmpvBJzQHwq8R1eE3NAMNm7gbkTc0A1oO5S9xNzQC7os84HFHNAiKoSvUwUc0Ba5C7vZhtzQH5aChF6H3NAvoCFg6Igc0DAuRHJOCFzQK+l96N7InNAMtFFcskic0AcovTYESNzQDcEIxrPJHNAWJsGflgxc0Ay4v2Y0DJzQJvH1Y4NM3NAQqhnTdYzc0CWi3SoNjRzQOZlMQK5P3NAXOYbS+FAc0Da1OEaeUFzQPwN4LgkQnNA5AITyLpCc0A+TUGLekRzQNBg6BubUXNAMxDdwg5Tc0CQjcqWQlNzQHYxGmyjU3NAGBI2YeRTc0CJrXPGdlRzQCQSwS34X3NAik5hcotgc0BI8+21HGJzQOOjYf0eY3NAGAl90jhjc0BqHQGHzWNzQPAU9LsrbXNACvlLi95xc0CodVAQW3JzQHrcF1KEcnNApFH0JFFzc0CC6sYhtXRzQIJ46u9LdXNAuJO1MuF3c0Dubfl3eIBzQK+jQAqngHNAUIA1hw2Bc0A8VGHzWoJzQJSA+KL/gnNAxoI6DVqIc0CyOx7GhpBzQJ5ISL2ZkHNAsPCt3PiRc0CUAaRSTZJzQJrd7jLPk3NATPIvQPeUc0DGrjDduKBzQMQu0BjnoHNA34TuyE2hc0AW8imMr6FzQBRxsABaonNABHhOqMWic0Cbzssk5qJzQCRNGAgFpXNAXPcLuZ6wc0BPdKLa2bBzQBqCcy59sXNALOotSVqyc0AglG0dfbJzQCpkm+63s3NAlpOYkA20c0AI4JIdZsBzQCdErhOQwHNAJPKnx7fAc0DGT6sU+MBzQJEuPD8OwXNAUVzKCCLBc0CJQ7SNz8JzQFYiwr0mw3NAsivl0sTDc0CyZilm5NBzQFJXOuXX0XNAUkxGT7vSc0Dw0KoW8dJzQJ4O/CP303NAVQNRzOLUc0CckVzPC+BzQO1eKSKk4HNAcHXuuM/gc0AFXoyj9OBzQJ4wMKQ44XNAhvqE7WThc0Di611C4+FzQAPEfph64nNAJK1ROaXjc0C7556p8eRzQEzNtfGx8HNAHj69nPnwc0DSEboxUvFzQGTp2ISM8XNAdm05qp7zc0AX+rw35AB0QPJPV1MQAXRAqAiG8XgBdEBEbgQZpQF0QEhrKLO6AnRAgjKd7g0FdEA4h3F09RB0QCjT0tmJEXRAE3jlMacSdEDKRtEgTBN0QFz1WaxKIHRAYdE6srkhdED+YOiK2CF0QAMgLZdSMHRAJvT6DwUxdECO0nCY6zJ0QNjKs7kUM3RAUWCUnOE3dEB8E8BIPD10QNYhz0rHQXRAag0k/pRCdEB1eB9fpUJ0QMTPGcQ8Q3RAjCxJgnhDdEDyG7R2Rk10QLZ99pqjUnRAwN69D9FSdEBoTc0g9lR0QPaHFseNVXRAbthIfyFddEBMPN3ccl90QLTMbMUlYHRAgrdsZLhgdECSUJz0BmJ0QIX4/yh7Y3RA+BQ+YA5kdEDSOKzRTWR0QEL7KD7GZ3RA2hpNJyNwdEBgySXeZHB0QN7HBhJBcXRA5gVTtzlzdED62nYqNnV0QByRcBZPf3RAQrh9Pi+AdEDc1pdz+IB0QK6GJDhOgXRAnugWc7uDdEC66RMZFpB0QNmBBukWkXRARyC28u+fdEDABpE3DaB0QFIiIWLPoHRApEJvGTmhdED1b1IVzqF0QAItNGh7onRACo6LbbqidED+uNmgD6N0QFs/bnb7r3RAaJljKQmwdEBoT2JUKrB0QMbx+wHEsHRAQv5k/e2xdEAkANbKSrJ0QDSLGpBusnRAVagqrP6ydEDHAm8Gy7d0QM/C1/kQvXRA86PK8CC9dED7aLr63b90QAKfhtNNwHRA7KN1OJnAdEAonsdY4sB0QHDjcQJ4wXRAdJYxaw/CdEAm0eelT8N0QAsT0Q0kxHRAiLOBoHnEdEAyVpGfuMR0QH6O9PLLynRAz77r7hDSdEC4x/3lpdJ0QLeyd9fi03RAKpVvDHjUdEAWqjofzdR0QDRZXvCN4HRAAdGhFbfgdEDMGru+IeF0QOTfaa5P4XRAasguA7nhdEAVveab/OJ0QBVokImP43RAvMHl8k7ldEDyZ9KLjPN0QFYyt1949HRAIZZUFaUAdUBtSBmtzQB1QHZZJLENAXVATAUgFRYCdUDyelTrXAJ1QLTrQCGZA3VAjsIpFysRdUDMA8JLJBR1QBi9zEySFXVA0gzKZZ0idUCVsBOBqjJ1QHbx767zMnVAxt41Fcw1dUDaC13ldEB1QHGphv1NQXVAHamiCAJQdUC8kEEzT1R1QI6sHUl3VXVAZMQsVjhhdUAtafQFYmF1QDqIyo7OYXVAzd5YbPhhdUDwnscBZmN1QCwSg+brb3VAuHsaRVdxdUDkCfkw7nF1QFFKCcZ1cnVAVEKEw410dUB3LYJHToB1QFmLmyp4gXVAHeegN62BdUCsxVRsDIJ1QKw9SjfhgnVAEf8QtKaDdUCN7i6vEYR1QH+bHtWchHVAOLIDOrqRdUBNqm+SPZN1QJiAw9oloXVAuCFd3rahdUATlmF6SaN1QFBygjWlqHVAiH5c3s+xdUCPMops57J1QHB4Agg6wHVArdZ4/szAdUA6I+XbZMF1QExRs+D3wXVAXt6fD8zTdUD8M2gq5t91QHR/3oB54HVAFzGYnw3hdUDaPqsQCeJ1QMpAx7g65XVA3eGkqkztdUCqvfKapfJ1QNgfHYA883VADmqJJx34dUDKffysTQF2QDi9aHBIAnZAtCeRHMMCdkCkQW/czgN2QBhXioXjDXZAxpRmHk4UdkCUdW6hGyB2QAKKDG6IInZAnGl5zs8idkB0c/WFkCR2QDlbhp1KK3ZAArYeYh8xdkAVu0zeJzN2QBYRm9ZSM3ZADk77bZs0dkBfQ9HlS0B2QB5CaoHjQHZAgijSwB1BdkBqjMwSykJ2QJ5vbw16RHZASMBMI8lQdkC3UyiFFFF2QE5rJQaoUnZAdrhIyM1UdkD8O0JPI2F2QJNSw6NQY3ZAFxCjR9xkdkAerEBJVmh2QAhgSmGtbXZA5SOf42N4dkBVZS2O0X92QHhvncdjgXZANsPMG/eBdkD44X9wZoJ2QGwwS0qRg3ZASnxakLyRdkABsPkCJpN2QLDx7lPtnXZAiBtF5heedkDQc1TvEbF2QCJs28nAsnZA3Jc0xwy0dkD6pmfNucB2QKTzTYlMwXZAskh8vRrEdkDXPnNVz852QMhiXee/0HZADamJsPLhdkARHzPQkPN2QATPbUw2AndAvXRDjREDd0B6DY4dogN3QNZ8pIoLC3dAbklah3ILd0DcczBOARJ3QLTKYnYeE3dA1nmQT7khd0DFppSwDiJ3QDgM8OboJ3dAdvW+YUItd0A8+ssjfjJ3QKgofUL7MndAVvnFaaQzd0CXJTcWDTV3QFXNyducQXdAWPcVXZFDd0DIgU9LG0V3QGQCxEgGUHdAJcHncEtRd0CZ0PsOklF3QJWoMDDiUndAmxdmaShVd0BIuAqze193QHmZxHmQYXdAYMTsKSdvd0BaKR8tjHF3QHDBNUWfcndA7un9hvh3d0AG0No2Un13QO97/T/kgXdAI38DcgWSd0BXtMEQTJR3QMFQGg1Bw3dA4miT+ejgd0BKscSlKON3QGGuo/FS43dAjt1UZlHyd0AnVQDRc/d3QPiubmd0+3dAbDOQZEb9d0DdvqaS1P13QNxKcKV4/3dATLyAEKACeEBe+/hn5Qd4QPTBEQL8B3hAXpKK/9kKeEA8DsbuPw14QDpREHlWDXhAIFKF36MSeECWLu8ZbiJ4QEfO4q2JI3hA41oo6tAjeEAJI7XPQSh4QArh35mIL3hAQ6CSELYveEBeN0zTHzJ4QE5JTlq1MnhAuKViWCpCeEBwdNRrEkR4QDw6HG16RXhATtI4H85PeECe95e0ylF4QBgZXtGVUnhAyC9WBolVeEDoUP3M+WB4QPDPqRK4YXhABJtl/CNieECsQ8WcT2J4QIULB29mY3hAmpxsnOhveEDlX7VAPHJ4QPg8pZdRdHhAraE8kIt0eEAfFRHHu3R4QHkWfQj3e3hAcomGIKWBeED61mYgjIN4QGvAWu7+g3hACAiPhpmEeEDUYjmUT4h4QArxQcQFjHhA/DDTgKmNeECMH3wnmJF4QFAVgW8Dk3hACLZjfaeUeEDYCDJYYZh4QE830z+pnXhA2Mgb+zqteEDHdy+QpLN4QJfcBcc9vXhAtMzCIs/AeEDNwExzYcF4QHz4ij2C0XhADhR7ZbfUeEAFSulQMN54QCOYg3Gh4nhAbfGmB8jkeEC06A43AvR4QCMoRX+M9XhAUqDOm3YDeUCoHf5/DwR5QKTsnsGZBXlA3FJ0/44heUDcl3dDuyF5QMT1XEAiInlAtrggRrIoeUDsCP8/DC55QFRo1AutMXlA3GHqy2czeUA6/erOZEJ5QPiyR3SYQnlA0wmbDfpCeUAIXSKTq0N5QKPmAwX8Q3lABDEVJjlUeUAMa8hWzFR5QDzC3XZTYnlAXGYY6dlkeUDJHhUdQ3N5QM7EdZJck3lAq4UxtGKbeUCSkEkIPaN5QOqH9m7BsnlA8dNUfdDCeUDS51sZWcN5QATP+YpC1HlA7NNFGcvVeUB0tgpRUuR5QP4pFkrB8nlARIA8lhH0eUB6E+a1Gfh5QEpYPOX9A3pAES36rPoFekBr12LyYQt6QDjLWTtRE3pAQhzLQ1kbekCMCG0MKjN6QLSLhnwMNXpAbpzLoS43ekAuY9ItNDt6QB7Ak5ExP3pA/lY7xRpFekDceE7321J6QACZ/0EoVXpA+GSXWiFcekCGBhUHKmR6QBbJ+usrd3pAHCQzQR2jekCaUHnucaN6QPg/9HMnq3pAfL432w6zekDOcJhR97N6QFZUp4wMtnpASQt27gm3ekD6GkJ/M8N6QPgIrnS+w3pA0swg1xnGekDE/Eo8xst6QLaTugcjznpAujBCRMzTekBKYig809t6QKhOZDJn4XpAuFr0YzvkekBjOKPveuR6QNpux/c27npAMrMfwxXxekCUh0swXvF6QAuDU6l8BHtA7DxZBCYOe0DBxPbmjBR7QPKJGoBMFXtAgPlX+9Mje0B4jPacJiR7QHVGAxpaJXtAbvfFPsMze0AVLMwWYTx7QOOpm2GUY3tAcgl3DQ10e0AmpZvmJZV7QNRYLr5TnntAhvq1wXmfe0DQoxccpqN7QLeJ319ms3tA2nwvPHnGe0CEUBalFNB7QPrkkuK/0XtAcTatAybSe0CAtYUiluN7QJwKi5Im5HtA7TRPoZnoe0AwfKr5i/V7QEhh4jLZAXxAiNSrL2cEfEDzGj22mQV8QPa63p7SEXxAlXHyms1BfEDv2ybo11F8QAzFWO1uU3xArkYOnHZbfEBwju5wYWN8QFRipaB9Y3xAgERMAQVzfEDceaxswo18QOb6w9PtjXxABR2UHx2TfEDGtggzl558QBq5VXvAsnxAOPpaRnq0fECOlJixC7Z8QDPTTgHSw3xAvvW1yYfEfEAUhYRWHNN8QJChmb/d03xAOW8ZZ4/UfEB62dva9Nt8QAIQhlOB4HxAk/OdIFjifEDkzwdeEuN8QOiXWStv6HxAMr08eFPrfECWrfp0FvJ8QGT21SJU8nxACEKgfAICfUDiVWBaSwJ9QOR/NFhDEn1ATSD5+WMSfUDYpnmc/BN9QE5418StG31AaCO0x0EifUAWifaGnTF9QHFSJfVGOH1A2HJQTqA9fUAEwA42enR9QBhH3b4UdX1ARP7/BliDfUBwhmF0IoV9QKg+l+wOh31AE9ypGpeNfUBwAzwF/aR9QKb+mTSWtH1AYhkU9ubEfUBA7gVu9dR9QD+q1f335H1AT7AuNQH1fUCaKOkvjvV9QJY0A18Y/31AcKaJODQAfkCuLr24RBB+QExXmDqUE35Al9Y+YS4UfkCu/a79nRt+QJi0R9YiIH5ADu04wUEkfkDGTEeuJiZ+QP3USMQ+L35A6DEw2jIwfkBw5YtjKTR+QGBMbgBHNH5AfSz/Eno0fkA+QssHCTt+QGrh47WGRH5AWmqwzO9TfkAY8mw0k1R+QPIS/eCKVX5AInqVpvBbfkC8t9P6pWN+QNu7R9BOdH5Akl+MJbl7fkA0hrBAVnx+QGtq9iqLfX5AvH1XDpyDfkCuHdwLuIR+QA69rDd+h35APnytoH6LfkCm7hd+E5p+QNllt1qRpH5A7vUwawqlfkDF06m+IK5+QA17QTX2rn5AEOTsYbawfkAamgRMpLN+QGA03au7tH5AwLvIaZ67fkCm13vyt7t+QGUPQR+nv35AhBTlwWfDfkAtUOGO0cR+QBLQsQltyH5AtM/g3EfTfkAYS3BLSdt+QL7ee/gdAH9A1hzGvEMTf0BS5qSuwhN/QJyhekVHG39A+g0gkXwjf0DwT+c6Qid/QJpc76llNH9AHuEMcqo3f0CIBf5cckR/QHppUe9tU39AJ9ae8m5Xf0C/0+Fckm9/QEmt5PO3cX9ATF2cXiRyf0A7dgI7soF/QAaJjtlMj39ApvJNFWORf0AgdoyJWpd/QC7rs8lem39AD/MGJl+hf0DsvjBlVrF/QLJtsjef1H9AziCHyKXcf0Aaf+s2N+9/QLDPTwOF839ANLjOXfHzf0APWasAj/R/QDSDICVC/39Abl/IAIgBgEAm6XjGtQGAQLBK6XvKBYBAxQyNO4gJgEC3wk5baSKAQKWdt45wKoBACLyEnN8xgEDbkcr9iDKAQMpeOMeROoBAWzHUUqpCgEBGmJKS7kiAQMza0oAOSoBAnmL0z+VQgED6fNkxE1GAQMhgSdOmVYBAQ2Hc7Q5ZgECZKPdq2V+AQHpekrdvZIBABtYclBxngECm6M+jm2mAQFTjYc7ybYBAZj3IHSpvgEDQdE5O9XGAQOITu4OsfYBAIGiAcyl/gEC+u/pXr4GAQPR+6GL7hoBATE2naMuMgEB2ps3SeI2AQAMq1Eoej4BADv1fiBuXgEBk6vDmY5iAQCjA3QXQmYBAqnArkwqcgEAKne/6zZyAQGA5cBkZn4BAXkPsfcukgEA4IhkS9KaAQKhH9eSHqYBAfgyJaoiqgEAAmpZY+K6AQIA+sUQTr4BA9KnePmSwgECn0L7xgbGAQOx2UO+SsoBA2LiQX1OzgEDw4relB7SAQNZc+CfCtIBAhYXQt1e7gEB277BLBryAQKex2V++vIBAEnZiR369gEAszIuzQL6AQJobZqymv4BAUCI7nFLBgEB5gBDAnsKAQAeMPxGox4BAKFS4VCDJgECe//kSU8mAQM9ogOqlyoBArLEujO7OgECKet8fCM+AQKYF9u8q0YBAgKlBBkzRgECZ5fwL1tGAQP79HuKp0oBAL87ltgbUgEACIFqiZtiAQI5jcI9K2YBAs3dHGq/agED6rrqeC9yAQJq/e1PB3oBADP6b2W3ggEDgJGvtQ+GAQITlo9BU4YBAjNPyx0XmgECsF5qbXuiAQFf9BSFG6YBAIlbzNEPqgEDwP3cFSu+AQPL1wHE+84BAAe6eLWj6gEDrywdmP/+AQPZJ0dA/B4FAhGc7upkLgUCN/k6UPQ+BQKlK3XM0H4FAEfe6o/ghgUAugZa9NCeBQAf8ciVXK4FAWgLux+ssgUDSJ8F7Ly+BQFJiAEC9MYFAMhFhTXQygUCP10XrvjKBQIDSfmjHOoFAIA7UuCg/gUCxgZEOij+BQF7VlL6VQoFAvBa6nQpFgUBDvNjbWUeBQGkiwcm6R4FA5OAUlgdKgUCFgvtjs0yBQKyc5WVjT4FASIyZImZRgUAU0lnYjFGBQLhLyNPbUYFAHoiU9OZZgUBoq8+MDmqBQKbcQ04lbIFA8g0KscJ0gUC6SqBNbneBQEAAaUwbeoFAQA6gEuV8gUBRSjufnoKBQEZAc7iAiIFA3ipHRQeNgUDIHWNq2o2BQLSrEcJVj4FAJIJ+PO6RgUDkOOljPJKBQLaN3eqRk4FADreENeiUgUA3mNKJP5aBQLT1w9nploFApt+guVWXgUCwWImfLZmBQJxhh3ednIFAKgu7DkifgUB0cbg65qGBQF9g/xv3oYFA5vQ3Sd+igUAM+ZPRmqWBQA3wOSRtqIFAK5MfSkqvgUCMG40fSreBQLeQv6ZnuIFAErcQ+/i8gUD8ELQP+dGBQB6MGY1+04FARdDxb/zVgUAwtIfkUdaBQJ+sYjP92YFAQM93gOz5gUAqRjcb8P2BQHbfFHOPAIJASCjNpOMBgkAB7yrh9gGCQPDd8Ko9BYJARi2Oz+UFgkDqyIcS/gWCQOX+kfMDDoJAJi+RxCkQgkDIYocDtBKCQD7go4fxFYJAYK+MZNgYgkB+qj4jZhqCQEcbAjjWIIJAhUOYB9EogkAUm0UbpTCCQN4D5crFNIJAmjgNB10+gkDm7bQlsj+CQJQo1e86QYJAaA/NRhBCgkD2L0fcYkKCQKlrlFDjQoJATw+WAddOgkAI8jJAEVqCQI4apHvYWoJA78n126BbgkCtTJ9EbVyCQNof2Q/WXoJA0xRsYzZhgkDWo1w3NGKCQP1Nwxk5ZoJA5p+bsnxogkAaBB5JOmmCQEZt2jQIaoJALwQ0QDtqgkAHHzJtQG6CQNenGIEPeoJAotxSVpl7gkDK+hposn+CQO4oCijTgoJAVy+fJXeHgkDEJhtXQ4mCQJJ+5T0wj4JAlE/2y0KRgkBOS7YJPJmCQA/LyIRSmYJAHq1mrNyegkBnwWG2D6GCQLCd5Ng6oYJAtgZksnKigkB6/TvDyqKCQBLAQVnypYJABRu+tw2pgkDmppZpNamCQKTLNu7QqoJAoIs3twixgkCYopuGM7GCQCXqVOV9s4JAPt6Jw/20gkDgGHWe68KCQOjNAMLsxYJAxGeFn+/JgkDQJ4TG9M2CQDZwqJxC0YJAuk0GS+vRgkBsTDbD9dGCQMzBxs1+2oJAFWekaoPegkBokZLOheKCQNiTOEva5YJA5EHNG6fngkCqV+q43PaCQLzP1EGt+YJA7HS7kOEBg0Dgi1+F5AWDQH6oHFvrCYNAbIdeirkKg0Cc6+divA6DQGaA/4l5EYNAyMwz7L0Sg0Bd3yFUxBeDQCDE3tl5GYNA4oXfqHIhg0Dh/O6WcCmDQOokpojtKYNAE6h4E2oxg0A4NzTtaTmDQEIXY7+wP4NAMFLvg21Ig0DWceiDlEqDQCb93hrscoNA2rV/L8WBg0B2DpgiS4ODQEDUYS/HhYNASBYPCb2Jg0CkzqRjxI2DQAS3jI3vkYNAzdBTE/6lg0CwvF0XU6mDQKw/2dkSsoNA2mGx8BW2g0AVSkPVG7qDQNa3aAURvoNAWF292h7Fg0C2WIyeyceDQKx9Ryd5yoNAUQN8DLPVg0BgWxh4zdyDQJaTciN234NA0njndr7ig0AIa+G6EuiDQAGk2ZmV+INA1e1B4TEYhEBix8B3ekaEQETJzSgAaYRAgn91SqVshECsAmcj/3CEQHLDyQxscYRAlu6hCrl1hECAPEm1yXeEQIDKjmb5eIRAQuNlH7l5hECI7Fr4QXqEQJL/vDtqeoRAALBmbhR9hECwJmgssH2EQJdcXZfBf4RAVHFrsnCChEAeKCvNBIWEQFCLYDAfhYRAUhedt82HhEAeuH0WH4mEQPTjk0p4ioRAAdc8EDSLhECIgdDbDZ2EQBATlofEoYRA+ciiiHGqhEBwcbK5h66EQAyZ5CW/x4RA1PCvHRfNhECXSz5Yw8+EQPDJCOlp2YRAPaJ5sgPehEC0CtDfaeGEQEYqA/QF4oRA2mfLa9DnhEBeqfY0Y+mEQAQoNxx+6oRA/z1jXS7thEC8Piw7NfGEQP5kz/Fh8YRAlNSpld73hEDAxamGNvmEQIpyxyqM+oRAOuxkqrj6hEBJqwJROP2EQLKdKkLg/4RAjTkfVZUAhUCOvgs4NgqFQDgoPhVGFIVAWrs9Z98VhUD6qPeLexeFQMYXUrQVGYVA1vTsu7AahUAp1tOBTxyFQFwEY1njTYVAZmpO+Z9hhUCeKHHW22GFQGoh1PfgZYVAg5mI+J9phUC+iRmTmHGFQBgTFY+xc4VAlojXEpd5hUANP5aCkoGFQCwZsyVimIVAZHWPsKSahUD16w/uQa6FQMvJ4fFksoVAQ+1jNjjhhUCSqClnrOKFQOIV4aLT4oVANDQu+GzkhUDpZUBOruaFQByaHbCj54VAWODMOLTuhUDcwVNU+wWGQP7skcVbCIZA/lCHW2+LhkAkANbtDrOGQFsbA7/UxIZA2mjG9cjGhkCgEZpvyciGQPQZx4/LyoZALMcCYcvMhkDtmTXD0c6GQE4X2b3L0IZAGq4SIiwTh0Aas7h/MBeHQKCtrvozG4dAwYYkzjYfh0A6D7KVkSmHQHLSmhmTMYdAQP/Wb4k5h0CGQCevh0GHQPtsOrIXa4dAQutUBYxvh0D97TL7HXOHQGRD6wLHsYdA6u9id8a5h0DePi9UwcGHQAJ8UkTryIdA4tCMlcLJh0Co51AJ3dWHQE3PI3je2YdA94KxKN3dh0AXvgMC2eGHQOjlmRRQAohA76F3f4U9iEBvcUWMT+KIQA== - - - - - - UQFpRE3AzUXam6FEXPSFRRP8EkWK1MBExAUAR0v+jUQFLfdEarrpRXIN4USikZ1Fr9S/RZ4TGEU8L5VENUKKRHUarEbUPVNFG8WNRMGr6kTcoiJFn7NURR+ldER3ms5E9Y5xRdboFUeWpgRFq3NtRAKQi0bJxUpEQ/5/RKevgkX/m4pF6paLRAq3oEQjFERFmGWXRN0BikY6bMtEwsCaRLMrjUS6I6ZFfzroRMaZGUXPN49Ec1x9RBXcqkTXmfNEFLd6RN89QUVeV4VEV+nbREVeakbJjzJF84IuRublSkVhKI1FBTlfRKoPvkQwaLpEZqqaRAEdwUQNUJRERFoERQV1rUS0LQlGCQHZRLcZYUX388lEYIWGRPp8uUQB7OVEUbaMRMMSsEaT1sNEBtfPRKw8VEWgl3hFw+/LRBNDy0TcFMlEZM+zRQ3QYkfh2rBEjPmBRtwfQEYDlIZEo9SSRBNea0R2PxRG1AvIRMGQeUSwnrdEpuCJRMOrhURLhANFBtiXRKD/XkTJNk9FxO80RYd/b0QmzLdEnS4iRfXaq0TXxndEVQSKRJ6c3UXXfvdEolTWRIh8rkSxHD5F0j7MRJ+jNkU+SoJEAYDZRRCf10RtUJtHDSwSRlBFxURN07RF74n1RHQskUR7qIZEkXMkRWd6kUQWcZxFvdjuRFSZR0SrD6dEnfdPRGFtH0fLvj9F3xJcRlnsy0T3n4pEMxVxRH7bSEXwaLhEQCxCRSoYSkW2efdEPq+xRJ7eS0R9VpxEvVZVRCyTgUR1AqlEvf+aRTIULkV/p99EPVGpRBIUk0TkHmlECK8LRbtL9UTYBW9ETT2IRCXJlkQ8qBZFY2lkRaxOjERGTolEEOBVRcUYikXluIdF8o+aRGZ/60Q02XZEqsToRQP8gUROAjxHbScSRaAIF0Xp/45EaamcRBIGZEWCTPFFCxVVRVZUxkVwYJBEET/XReChHEU7KMpERpe2RJ3p/EQb6Z1Es4oIRSm3P0Uw45FE6veXRJWgg0TrxoJEGZrfRI5AZkRvLENGyRCoRGXgNkWsE49EBqueRIs/j0QLBWpE2iBzRB41o0QiQiNFqUTERAqzPEUp+PlEwz19REZ1aEVTV5xEE6inRcB0P0XkdJpElEiCRCDWAkWZyIdEHCm5RCT6PkUAdlxEd8kERYYCp0T7nE5FC1gHRcxByUXjdLFETafRRBykWkQSRxNF8ZhtRGdnqEUrIqxElPRcRNAjTEUAJHxESM3URR68gkQoEYVEwoQiRSskhkSju49E0/jyREElZkRvcNVEBM3cRgHu90S4JvNEMMNTRVNMBUXRoktEv16sRRbiNEVxHAVFaEhJRp9dlkQIngdFz87PRTYTjUQc8GBEoxeCRfrV00QK78VEXXTFRIRMuURY219E+XfsRJbnR0WIQZdEC8ewRMjnoUThAhhFHq73RInGCUWqBJdEXImmRDvvxkRSRhZFZNzaRGFJBEWevZtEqcnTRb2KtEU2XYREGO2KRO1WYUR4A+5Fys6BRPfE4kTWt21Ek9bgRCjMyURRmShFU7PSRJukA0avldlFoyCrRrkRwESSAgFFpIeTRHW3j0RRCpdEJB1oRboB1UQ0mqBFz/2GRN6480S0XnNEzLNTRk68iUQxLYdEgdZQRa5YJEW+QJ9EhXuIRAHSWUTq5YZEhkZqRDoSo0Q0S+dE5rFhRPDHhkRmHJVEGER/RC8G1ER3UhlFoM+wRa2CKUUxe7JEZT+BROxbLEXPo3ZEON7yRA1PF0UnDntEXd4ORpiOmEQT51FF19OYRG7ji0byWaxES2uGRFINTUWkUvpFlLyDRQBXx0RqU4JEaz3hRFx/+0dZSbJG9BlpRXzuwkaqeZRFElXlRbVOjkar+BhFpYYGRbHjy0VeegtFbRdHRQ3AhkQp+jpGLfKaRWOOEkULBYtE1mqXRDEJ7UQDyX5ELQORRBdhC0VdUntEe3SZRE6RB0VWGitFHgOMR3TAk0RohKJE4aYGRz92t0XqmhBGnWdoRBk6BUUS1tFE/NSjRGCEa0W1srdEmJZpRQgDykRclg5FbQ6JRPJyYkWzQI9EgUiFRDFSeEUncU5Gnhh8RC/ZqEVDdcdE5NJBRc2L/0RS5yRFWTQjRZDZrERrk75E21uVRL8+gkRiGUZFultcSepooEVLCQRIlMM6RaIca0Wcd2FHCZxgSM7wNUe9aQBGDyPHRgb0FUV2WNdFxsmPRrRfrkRO+WVEskh5RI5LikTeqMBE4+OSRFNW50R9kr5EqkJ0RY3bkUSBa9BE+rOARATCjUUGbdRFRIODRIse+kTTEetEXTTZRJLEAEaC+VZF4quFRrcIK0aTJ5RFBwh9RfDovEQUg4VE07hpRDA1YkRL9Y9EQReRRDHmmEUgfqNEF1yTRNipCkXdnztGbG2PRYgjZkTMbyhFcQJ6RCI5jER7gMRFCvoERVM9uUTRFpVExz7LRF8mm0RgPMJEI7TeRNZ79ESAOzFFgbmeRMmY50Xx3tRHtIiMRSAD/EQ7S6tEFYLaRnSZaUR1mhpFtobeRV/i4kRl24FEPSWxRRH/tkRRdaNE7AgORarYtEREMdtFrGGnRKIwhEQyCC5IdtbeRGyelEe+0nJElzR1RtVt2ERkgclEhzI9RXzxlEQVc7hEMnsHRWI6rkR5Kv5Fg1OVRON5u0Q+/G9G/7a1RInUiEWXBzBF0cWTRHS/EUWDgI1EY0mHRJSBCEVe05NEoTqFRPXrwkRizs1EN92hRA8HAUUi8OVEo30QRWyD2UTN4RZFga5/RPPFmEbVZklGHycqRT0Ty0VSXHJFow+FRUSYqEQdgwJHmMknRhcEsETNIS5F3vLjRAC3r0V6wFBEHJtZRf3OeUT12CFFnBdrR5feeUQ/0VRGJ/smRtvahEQBJz1Fuyu8RMcnIUWczF9EEhXpR73pW0XEsJtE9Nx+RGOiKkVtfsdGzR08RZ09lkYltRtF0hy5RAvHq0TIcuZEGJiCREwUlETW4LhF9YpwRZhem0UBSFFGKh/NRNFgXkXXF6RET5znRM6LhkQsCaNEvE+DSGOxXUeBLKBFnXiURNt6PUVwuG9Eod6bRo/X6US4ZRRF/udbRTQEp0Rn3aFFQVKFRM596UTQgdxEzWl7RDCyi0SUp6dE+u0yRwS4B0VSEBRGiBykRGo9lETP/91E2cCqRMP+iEQ8TRVGdHWmRJfqkUWCOJZENUOaRHhR7kQ7W4hEWx6ERJAtjkTX5QJFs2yZRKJigUSVg7pE8FKlRF+FGUXK1HREa7yhRBNIj0S8BStFWXaBRSfWiEUkgZBEeeRXRcPelER4j6FEc5mLRJwb3UTxUJhEkxuSRCiOkETdMRFGouC6RJ6+TUUpDc1EFzOSRAB8ekQuvJhFOFCXREyWc0T8AKJE8Jk0RhRjLEXiQ4xE2IFlRdRAQEU6i8ZEuKmLRD5I8UV4h1xEEk6fRInOgEU0ZXhEWa0NRWEIl0Q3NcBEQLWQRLQyXUdXTlBGqOKCREUqKUaJoBlFFOBnRc237ET59ntEQAZERShrWUZdipBFMD+sRWTcj0S8b8FE8xqQRJ8BqkQEkQhFepgrRVvjtERkVMBFTtEPRdlwREWwTplEEIaMRDG0jkTcqwtGCQOnRIyv+ERkS5NE/XwtRQvEWUQms4hElyaDRDUgk0R3K/VEGZH2RDWwsURJmblFrTQARWGPj0QQFZFERt1+REZeikQWtoZEsmN/RF9vMUUjSZ9E1daGRIhUjEQptV5E64KKSKJaeEgkmoREENbQRJrh+Ef7X3hHQl2DRJzZnkTuHBpF5jKFR087i0RMDflFQiF2RGCr00bXlVhGa2sGRVq+aETI/fFEKLVVRXwSqUWknLdEfPyMRB7QjkUfVYlEDHtaRb7+BkUr2j5F5XIfRWB4XUYA2pdF9nRrREM4fUU3wshGYvFyRIT3jkVp6IdES3KqRGy9EUW1WfxER9XSRDNt8kVpp+tEnZmQRaAxiESVRXtEMVVSRMW2i0Xp5n9EpKyGRdzJxUQPp5dER8t+RIVyckRrk61E3bTrRISZlkS3FbZEjbJrRYRRj0WBYBRF2a6jRH7HvUXOJoZE0c1PRVB73US03AJGHajjRFMtjUVwGJlFkaDHRS5UsEXI/2pEV0EcRZ3FhUTVYRZGW69iRb1e90SYhcdEBh+eRKToqESq1TJFDyESRhSiH0XeOo9EbItfRHDjXEZesLRE5hurRbNqhUTEndVEroUFRywXeUb3KpBER5feRNkNdkU//2xEcvbBROLUg0SN0KJEWciLRGw5gUR3kolEQPBpRucRwkQqa2lFl+01RTn7Y0QvuIlECXwlRX3mCkXsG5JEK+WvRE5/oESR1ZpEpBZARexfk0Tlr5dEVTDIRGfnxkRCfDtFWTyMRLys7UX8DJBFQgTxREmhvESwGKJEhQDMRLyHqkQZnVlFbm6DRNvUk0TlmLFE+XmJRHAc1EcqzaxE8hEoR3E9x0a/8SJFEcaZRC29rEU9ENZFxbSxRHDGI0YJdatE/rxGRewjJ0WSTApFKGCWRIoUtEQ6rFBEOfWDRD5Uc0R7KKVGWT47RjrjR0VnU55EU21lRFHCfEROeMxFTh1lRXPnvkTqCYVE+/N5RLuTi0QuEdJE0MqKRozT+EWGc+ZEGZ2oRQoxREWXrvJHJf2URIx/BEXUwDdHukvuRttTEEYXsqREKrEURbrsgkQQ6lREZsWPRCqIyUTqvZxE51msRl6eqEQ+FyZGUbQ/Rc9NCkWZuGxEZDOdRDdfe0SQ5qBHeq1IR+aeHEatnYxFgP19Rd+OGkVUL/dEqmylRLzmxER+eQ1FMrSBREL8aUSxvH9EmYmqRD3sbESoB7VFOlx9RNSSCkVG35pE2yeqRRkokEbaRUBFwJPiRDl5AEUiXVdIjW1MSE/sw0TIVdtHFh0QR2YFjkXFzkZGZKkKRegjA0X4AQlFLL+lRJ+wrUR2SYxEaWrfRJiA10TmvYFEOQOFRBXyjUT71hFHwU4XRcmSi0brE5FEtkdbRa7vKEai9UFFuKyYRCKhfUUoAJtFnwbrRG7dBUUa9jlF2sqDRGDVm0Tj9JFEY3yERC6yjURszLNF7mUMRgi0Fka1hKpF6kSmRYtqbES2oKVEWoUKR6owgEWfabJE/xqKRiE5BUZBLwNFiTY+RfAUsEQED/lExDNtRGt7i0SkRFtE5esZRcXVtkViWn5Ft1ZjRRYID0Xg1AJFpbq3RM4vkUTVUq5E1suFRCLUwUTPHK9En3r0RfcHJkY6VQtG4pKcRdJ5f0S8mspEGH4GRtyk8UUy5DdFC7yuRBmSMUa3AqBF6ZWSRUi1r0TSVbBEHQZaRNtXXEQxyRtGo9CoRbqsdkUqAYBEp47IRA2BwUVSWHxFm8TfRKMwxUQG/zBFeD38RHM+s0Q= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 97jioG/BckAcy+aTUMJyQO6NUo3mwnJAOjQ/dTrDckCADaoqWsVyQExR7FZD0nJAf7fR/I7fckCVuExMz99yQMyR+Mgi4HJAP/jJsbngckD6z56iUOJyQFgtW4qP4nJA+pPtvyTjckAs/zA9NfFyQISe7g3K8XJA2ncfCRDzckCPOa9SuvNyQMvGZDSl9HJA2rGWVMH/ckCwpCHf+QBzQEnXuOM6AnNA8DnQzs8Cc0CvwOSK+gNzQITJQP11EXNAfAfhhbwSc0AcktxUBhRzQFxgR4xMFHNAwK63/ngfc0B0kdCGOCFzQDGcfFvOJHNAYBxsvEgxc0AO351LXDFzQLhcbwTPMnNA0Kyyc7c/c0Dn1UufeEFzQKSE7oV6RHNAUMP/OJxRc0Dk2PiqDlNzQFyH1WqjU3NATN8opHpUc0DwdQ9+/F9zQHRrjDgdYnNALPugKjpjc0Cc4TwALG1zQNzeCRVrcnNA4lFVeoVyc0AGlYXvS3VzQL7oLfPCd3NAtMVzmXiAc0DQcgiFpYBzQD5JW9MNgXNAV5wcIF2Cc0DArqwv/oJzQK/kZT6GkHNAiH42HfiRc0A/sWIkTZJzQJlB/LJglHNA4vChiveUc0BONCzTuKBzQFDQKrNaonNA3rmNB5yic0CM3SoaBqVzQMQzzse3s3NAPc9bvw60c0DwuBGbt8BzQHZFZM34wHNA0zgYjM/Cc0B6apPHJsNzQEh9gnPX0XNAvNgpoO7Sc0CLpiXU+NNzQPFGn0vj1HNAzbbE/qPgc0ACTr/Kz+BzQAjCWY/z4HNAwI78YDjhc0DKHVcZZuFzQOCEXvGj43NApqONJ7Pwc0AwV/xoN/RzQEwu0x7kAHRAS9I9zg0BdEB+O8+ceAF0QDPnod6mAXRAqMB1jvUQdEDch6ayARF0QBvonwSkEnRAWJhLiEwTdEAR3EZ/uyR0QEGZK79SMHRAKhDSGeI3dEAy3b5DOz10QCx50QvIQXRA5Ji9ZnpDdECMKv0UR010QAQKOk30VHRA94ZsHIpVdEDS6fXZIF10QGZ/g663YHRAEPwWnAhidECfvLNLemN0QKeJySRNZHRAyq2zryFwdEC44tv/QHF0QDPhjoE6c3RA7s5I9KB0dEBepGjv94B0QNgqMxJOgXRADQLC60iCdEC53DKhJYN0QH6K1nC7g3RABvGloRaQdED2zREh7590QALasR0NoHRAPL1P6M+gdECC10YZzaF0QNgYSJcPo3RAfO2PhW+ydEBhKIvuybd0QNjgaOsjvXRAVtCcquLAdEB6Liakd8F0QHc9QtLowXRADHV23XjEdEDBG9l7uMR0QJfZ+/0Q0nRA2naWKqbSdECQddjXzdR0QKCO3W6O4HRAIU06aSPhdEDcjNFpuOF0QLmlQJOP43RANNVGsYzzdECUF8sHXQJ1QG40BImbA3VAHsLg2iMUdUBQ5FrRnCJ1QDE2STioMnVAQtnlb8w1dUAe0eYl3kJ1QHIV7GvnT3VAokEsoIFRdUAo1veETFR1QKr62nI4YXVAKob9Xc1hdUCkYpvO82F1QElieRZnY3VAqh4ViFhxdUDe3QSA7HF1QDT9Rxd3cnVAXn2LUY10dUDOnNfed4F1QEbTmkatgXVAgJw0taWDdUDAqaTbmYR1QMS2PuK5oXVA+VxZ/EijdUAgYNJ9OcB1QP9yaD3OwHVAbu0K4WLBdUDYGpP998F1QMafcY6kwnVAppUraHrgdUAU8c9sB+J1QGAsokhM7XVA7sGRL6TydUC8NEwmSQJ2QIyjspCJInZA/bz9jo8kdkAUiB8TTCt2QPy7DmUfMXZAmkBOGR1BdkBQ137fyEJ2QNpVhkd6RHZAcqlhJRBRdkBBEm7PzFR2QBJBC3lXaHZADdLzPpGDdkAiU2CBwLJ2QNbQEmsNtHZAvuqSBLvAdkBi8cyFGcR2QDQfjAHOznZAkDbKj/PhdkA6ShhRkPN2QLwpWvgxAndALrukeBEDd0B53P34DAt3QEIpnI8BEndAju4UYg4id0DNt5P16Cd3QBq8+plCLXdAVlF1Xpkyd0BibUQBDTV3QCg/GlGcQXdAnQQ6+pFDd0AaEbM2G0V3QCja8dQFUHdANBCq9UlRd0AsH5I2klF3QO1/F5p7X3dA6o5KWXlgd0AiFeMsjmF3QHgpuKmfYXdA1OjBBidvd0C+uKQSn3J3QHYPeOP5d3dAUZh0pCjjd0CnKuRUffh3QFyUJcd2+3dAArMDmUb9d0DopME/nwJ4QNDhpXTmB3hAjq+kUvwHeEBmuZf2RQ14QH4fbEGfEnhAGrlK9s8SeEDjC2dIbSJ4QKjqAHbRI3hAROlXskAoeEBIASQzhi94QCSpDrgfMnhAXnoA8BJEeEAHckP0eUV4QMVt+uHKUXhAKJ5yoIdVeECJttOAtmF4QNonbcj/YXhAVHnSa+tveEA8dkWLi3R4QO5EOrf2e3hAtJXYFaSBeECAmyRxioN4QCZBLkb/g3hABiERqZmEeEDYfrB3T4h4QL2zUH4GjHhARDhHhqmNeEBKKHiHlZF4QPTDigMGk3hAgH+TMaeUeECGrkNPpLN4QIlFzoG21HhAyWS60dbYeEBULx8yAfR4QDQ75qqL9XhA0qyvhbkheUAKozBvIyJ5QKihUXmyKHlAt1+NFQwueUA0h050sTF5QLkp/IprM3lA6JahYvlCeUCPvmMx/EN5QDiUl63MVHlAOnWVfkVzeUBiO097XJN5QEKKvH5im3lA9UTeoIKreUDdlWbowLJ5QBxjb+1C1HlAxTP5vlLpeUAoREWFZAt6QI6oQWJRE3pAjgzhmCozekCEhb+tDDV6QLfSSr8tN3pAV18l0zc7ekCw+Y2aGkV6QCBpyz0rVXpAcf3Y3CFcekBUTO5ginJ6QND33G8eo3pAVMpgdSKrekC8CbZwDLZ6QK7cI6a+w3pAi9EM2BzGekBoL31gxct6QBgXN67M03pAdNGjFtPbekDb0u0jauF6QObKmpo65HpA1Yo4zRPxekB12iQgX/F6QFkzZE17BHtA4MY71ygOe0CkywNZTBV7QDSXkj7QI3tA2W5BPSYke0CcQg4YXCV7QApKA56BLntA0oOk4S80e0ATCYk4Yjx7QMRztl1bUntA/MjFW+uQe0At3tKxIZV7QNS0IU5UnntA6YpzQWSze0AQ+Z9xeMZ7QP7A8IUS0HtAggJ3vSXke0BGiBGfjPV7QEA2Lp/aAXxANADccWYEfEAQyU37mQV8QLlYqv3PEXxAuGWRuc1BfEAbWifoblN8QPSinn/lVnxAtqUeXXZbfEDBcIBxaGN8QCKMFofDjXxAQljtCx2TfEDMsu0perR8QN9h6cDRw3xAIqN+RIjEfEDD6F3y3dN8QIh9RhqQ1HxAVkGgP/TbfEA+5pkqWOJ8QBY6smlt6HxAYWMspRnyfEC2cTTPVPJ8QKWjLQYDAn1AVa5BSEsCfUAO8P0XRBJ9QDLbJ1lfEn1AEdWCtLMjfUDvsRaloDF9QFjKPclJOH1Awpge2qA9fUAHgEb6enR9QBXmnM0WdX1APuQ9NyvDfUAWmHKRicR9QNX9xmjmxH1ASQ3Zhh3FfUCIINny9NR9QGbmV9H75H1AN0J4qAX1fUBuUbOrkfV9QADfcPgzAH5AOu1gxUQQfkDMvo5SlBN+QNAYsCEvFH5Ajd/SIiMgfkAe6sZv3SN+QPSHL8s9JH5AoFQr6Hk0fkAEXGR4h0R+QPLduLbrU35AolkEcpBVfkAwme/fTXR+QN7IswtWfH5Axl4mGWGEfkASnKnMw5h+QBy/naginn5AronjtpKkfkD083KIo79+QCoch91kw35AENOOnNHEfkBqaEWCbct+QFQxV5BC035AvDnLmnTTfkCkp9m3Vdt+QOZ7uHOS/35AcmVUyUATf0AxM0SJwxN/QMCU/ihkNH9A+toNl3FEf0BmatAIuHF/QC+EFtOxgX9AyJ1E92GRf0Cq7TqMrpF/QNi4+1pcn39AWwiKXl6hf0DSiRZEVbF/QFTSg7qg1H9AiZcRGOjrf0BKmwOVOe9/QDR5q86O9H9ANQrSLuv5f0DQA+69NASAQBGsxk1pIoBAsqdfPXAqgEDHR4UoiTKAQCdM/1mQOoBAQoe0XqlCgEBqsogs51CAQErr34wTUYBAwqBrUKVVgEAtfq8HDlmAQNahV2khWYBAhnpaBcVhgEDs9LZEcWSAQDKPWAonb4BAdBbR1at9gEBklb7br4GAQNfb9m0ej4BAwLQSESCXgEBJXb8yw6SAQDgr5tiHqYBAGjpp8oeqgEAEbnAqE6+AQOs6F71gsIBAAa7nbSexgECDXS82ermAQHD4cjACvoBAGSiDsFLBgEBNHKGVnsKAQEUfcMuzx4BAbKyAmlPJgEC2N+zdgcmAQIBH7ZylyoBAfk4FIS3RgEDBKwR1TNGAQMrGWGRh0YBAjFjxn6jSgED6D2UdZtiAQITt50dK2YBAiofCysDegEDQUkh0ROGAQFZWgXBd6IBANtC55PbogEDiBwWaQuqAQEpRnQM884BAb6MuvD//gEDEvLO2PgeBQAwC1hTdCYFAM1eULj4PgUDq+hJDNB+BQLwu4zQ0J4FAnNaVLzEvgUCvCd1TdjKBQEi1dmC+MoFAOjPpf8U6gUDqczD5KD+BQExk3l9aR4FA4YLiXLNMgUA2Giuy6l2BQNhT70WyZoFA6nSPusF0gUDQl+C1bXeBQF5nvmMdeoFAOFQmDjh+gUCrFEvxnoKBQGpmoz9nioFATsOL8gSNgUCAYR5FVo+BQH4s8qzvkYFAAT3A1zuSgUCg5oD4kZOBQMpNR9znlIFAyUz9gD6WgUAIrWqnVZeBQCyETQ+Xl4FAGnKgFOmYgUA+i0CYm5uBQAkC7sydnIFANDrqiUmfgUA09S/S5qGBQMOeWgpsqIFAUSokekqvgUCIxr4JSreBQIYxLwz50YFAY0SIxfzVgUBeAO9Z7PmBQMJk1SXw/YFAWy/JleMBgkButUX49AGCQCxpcqADCYJAUAzAxAIOgkAEL2A+ChKCQCx+4QK1EoJAdXV2QNgYgkA83aK9ZhqCQBAe8wnXIIJADDdwudEogkA4/MCoWz6CQGyYrHOzP4JAiJTBIwhBgkDww10QYUKCQEKSFmq2Q4JAkKeRGm5QgkAhrtqPNGKCQG3vBU83ZoJA9GvkmQ96gkBihG0jFH6CQLx/5zFDiYJAdO/XRkSRgkByHL7mPJmCQPux4slVmYJA5t3QRA+hgkB4p+0pO6GCQPSwNlzKooJAFMfUCA6pgkDoWZdiM6mCQIFCdY7RqoJAJBRZmTaxgkCuw+zp68WCQLYTibw8yYJAdFm2uu/JgkAoUVaT9M2CQDSpABDp0YJAIsNwKH7agkA5HFcwgt6CQBCVtT9c34JA4lLfjAj1gkDSZyBIr/mCQCz886bgAYNAmGAZMuQFg0Bmqw4S2AmDQElg1QrwCYNARd2O6LkKg0BFrVi5uw6DQEPHhld5EYNAViMNdHoZg0DVu9X+8x6DQFYvaqVzIYNAWpG0wo4hg0D2bbI7cimDQBzJUdVqMYNAuPwP52k5g0D8miun8nGDQKjKTajEgYNAjmGp2seFg0AqZNUsvomDQO4xOL4SsoNAayTGvRW2g0CcoeFTGbqDQByrCNYQvoNAkQICURzFg0BYx6Eny9yDQEryCXN434NAWK1+3CLig0CctIpy7kaEQDgqmZZmYYRAtpxnzv9ohECj/HXi/XCEQHl6pVdGcoRA4uOxELd1hEBxwvqPyXeEQOknhRj2eIRAJi6v6rt5hEC1THd1aXqEQIxbrP+FeoRA1PWYpBV9hEAicNPCtH+EQOO+i1G0gYRAJCqmeF6ChEBiGCLGdIKEQKYvp20JhYRAby8G1iGFhECoUsA4uIeEQEcuPyJzooRAOgwAdx+lhEBvb32GtqaEQEDTfcPKp4RARqcF52nZhEDWoAjpAd6EQF2VuM1p4YRAo+o+ugTihEAD1H8ICeaEQFCCUL9h6YRA/oDpVXzphECygaSlfOqEQB0meLA18YRAvvS/L2LxhEBWJwD83PeEQJGBk2oy+YRA6kMWOVr5hEAGXSAtifqEQDuuApa9+oRA8lSj6TH9hEAu3Ss9RRSFQEql4FLfFYVABg4dvXoXhUC6u0kcFhmFQB7lf1SwGoVACIlBfkwchUBvhiJ7BiWFQNpSpFygYYVA9OEtmt5hhUDydrkb4mWFQBZFiZWgaYVAcJD/JN5phUDfnq2hmHGFQCz+F+iaeYVAsL5NAJKBhUCyh37mOOGFQL4RYQqt4oVAsOY0UtTihUCs9I1RbeSFQLkgKzQM5oVAztuhFa/mhUDItjFPpOeFQCtvGyRp6YVA3hcDVafqhUAGt0+4WQiGQBLvDy4KmIZAcITftLeahkACktuPY52GQKO2NwwMoIZAlLoxN9HEhkDT+m+RycaGQGCcZ6zMyIZARXVr/8vKhkBs1ie20cyGQMajNTHPzoZA/m963iwTh0CQRhz2LxeHQIuBjxqRKYdAkqw+MpExh0BigaO0iTmHQH5UaamIQYdAluYXQxhrh0BEAbv5xrGHQDaBTZrHuYdAivvelcHBh0Babyr7vMmHQN5AZI3c1YdAC/sIe9/Zh0BmxE431d2HQCKmNQxRAohAbDiTIVEGiECcbzzYdA6IQGZ4oitQ5ohA + NrgMGZxjYkBKAwDktuFlQOzQoK8iBW9ALYjxv8yBc0B2xqyr6ZN2QC3mzRMlk3pAdiSJ/0GlfUAWItWzPtKAQH5VvaYZG4NAQyh6WaD6g0Cpfz+pZVOFQA== - + - D9q2RS/DykTSgdBExM4eRTJ/skTPkghHY+2kRH7c3kR2NphFkRXpRNDwiUUHA5NFTArIRJuvdEZwhzdFoKisRHfVoUQWK8lE4aL9REoyyURf4epEh0B1RfU/OEeGVd9EmxuLRixVs0Umg5pEByCuRBn5qUaWFslFShoDRaHWwERvbqJEGoMIRYp2V0XqlCBGSRoVRQUr3EWPb3JFqsKDRNKDmUSbKMRENXoGRdN640X1NFZFc2CORSYS8URO4qNE21q7RjfJ00QqOxZFpRCIRdo3z0TveRtFvb4NRRVfS0e7WfhEbLBHRpwgMUZM3edFuDq8RILAAEU6nA9FVBjXROOmDEUlTq9EiE6XRWRfDEWI4R5FWf3dREOnxkTsQLVFVG9NR3zG90US78ZEcRbPRb4WwUSmMjFFDslTRbhx8kSdnNRGfCS8RPUTRUbNUsBEHsAORUoyGEUR58JElGFeRWLZy0QS6v9EJhB6RaE61ETcG9lEGZmxRJ7OwERwFNNEgxG/RD/OlkUvbmpFxIyPRcNqSEW1Qd1EoJehRQnwR0eyjQdFhsXxRFUxf0VueNpFJ8C5RHs9ukQEldhEjmfIRaghvUWOO/1EY2HEREjgMkU1gj5FcrrJRX5KKUVivrFEEgABRWxcOkWBNqNEUJ69RIr38UQgxypFbJUDRY3RAEVVnbJEGP69RFWmIkXSkU9Fm2CsRcY+CUYnZb1EjVc1RRfoAUZOkaBEBYAURYTO0kTTZbBEOCWeRJ0o6kSaPmZGC5nhRGF1KUU/da9EDGITRQEWq0ThjixFB68bRoIP3US5QJJFCyNyRaPvv0QnX91ETIx5RUt0DEWmxBZFYfidRA2HEEWMD8FEE8EVRfziv0TuU/ZFBg1BRdrV2EWsE1FFZWb3RfgbPUUXMc1GuI6sRd8OFEUedKBFM+M8Re1lEEYy7xhFS049ReqpZUW+J3BFdyPkRDgur0QvKo1F3PLeRPho6UQq19VEMorQRUzFxERJMWFGAJM7RfHyW0bkmMdFUIr0RGU97UfebY5GIfWBRRYCuUZPwadFxayPRdhgPEYCFdRFR/eyRMuuy0SKHhZFayPfRGmzR0ZJTV1FfrrNRPJuM0X7EwlFbuyQRzcA+UbzobVFnbX3RUeAH0VgjR1FSivXRNPulkX5SsVEDFIzRXlBDUXDVxRFu/FARbJEREbdxpBFTm4kRTONF0Uh/61EaeDeRAGGPEnvQ/JH7AUeRUudsUTJuyBH2sI2SIEwMUeGpsVF2vKIRp4GKkWXrENFU5N6Rogr6URumBlFxTGNRAALbEUIDVlFBzRxRQ6TKUVtBohGnCocRhEnpUTCMwJF1iPkREprAEVlIFVF3FPPRCI/00X1e3xFFRfYRE7YFEWX88ZFYqmjRKDYv0Sdr4BFDOTuRYrDrUfX2wRGccwGRRIUsEbxG+NE97K7RTlJr0QrYX5FSNyqRGD2DEar7itIwp/ERGe6mUc13JFGeSE0Rc+wIkU27fhETYEERYPL0EQzRZRFAWi5RLsnAkbomMxEPT4dRWdRN0V1calEFP6mRAl9T0VYB7BEeV/LRBIfrkS0M8dELv/LRCMbA0XbswNFeZ05RcYmakYAtzRGsIP9RN8+q0XXzmhFW3OuRQrmuUYm6qBEX672RU5j2ES8bdpFZwZnRcCThEgkvi1GKy9mR9tLB0U00alFqWXaRGJl2UfaQrFE2MHTRCWAvEbUMC1FTP2QRkc4LEUiT8hEC1HHRKj6skSO/6dFAG0fRcqDf0ViihxFo4n0RC9wA0UxEo1JAngnRaHVgEiguwFHLyJjRSVTt0R1XPdGAzBPRTK19kSYNGxG2njfRawWD0U6nS1FTWFFR2q6AkYRL6dEbLHIREXUH0agsThFUHTARIeI1UT4jMBE9P0LRQqf40QcVBNGcXhjRVw2KEX7+8dEa9WzRFm3u0QOWp1EQ/OwRE71iUVvpcdFiSTiRNvBsUWfcclEVjAVRrSVyETxHZlENy84RZWIH0WepA1FAZnoRFUM5EQuIj5FZaTTRPHzsUT+uP5GeMulRcIAJ0Z5KkVFShswRZrTJUX2UIxG8p4dRZgjnEX3sb5E1RtMRa7XCkXDbtBESHD/RQ1yXUXz2AhGjP3HRGpvVEVWA8hEKmgLRZj6gUUfZ9BE8h+cRFXd7UTTEjlFLmOwSOlQgUggcbdEy9QuSIXqqUSOZ4JHoEr1RNeTt0foYIZFB1jCRWI8SkbJJ5NGxgr7RAP6wEWxEzRFaWoRRdlDLUXtV6ZEnT8oRtbHaEVxoZNEyayNRRN9s0Z/ONFFUZrqRG7B9EScOxxGtSzfRO9CgEWGPXRF+njCRBgbq0QPFLZEGGdiRc+sc0U3xsRE67vFRBKehUVSkcZEkc0PRepq80UXC7tEEx+LRWvfFEaizyRG1DPkRfcl+USD5Z1FwbVARQgNCUVo+e5FcsaPRTP2aUV+cxFFMcgGRqEMt0ROwgtGnE/NRVlgzUbyXmVGHkzrRPqkIkVE9EtFF0YHRfRavkSD2vxEAR8sRnMWokQxoo1FyfZ0RSesLEXlTQRGP5SVRX5BGkUHyedEjtn6RH5K50Ub2qBFvjklRfIqyES2+2JIELvqR6+3gkdEB39Fp5XTRUXoj0a5kDlGn34KRTv6lUVibAlF1y2qRGfogkZ3jaBEdeIVRrVJGkXKiwBF0YiKRZibg0XOlKFE8CqrRFAJz0Q1EV9GgpbXRQFlL0X15sxEr144RWfe60SXVIBIIN8KSCms3kQHbZ5HDJMoRREHvEZXUNNFC30mRW8WyUQw1plGD+AXRveTS0WHcIdHYvsxR992JUZrq4xFddcHRRGIq0VjphhF7ELERI6fmkT8VqdEBbDbRcj3JUXJRLdES1lBRTC8YkY3BNVEPC9TRdwxr0eVe4JFwM2WR97nFUf92b1Esc+WRmV1FUa7rM1F/l2pRfuNMkWCnRZFN+ToRPnZQkWluutEgrhnR8yt2kTQz9ZGHiWyRCQ6oUSIBntGducERR8atUSsvJJF216mRc7ZYkUMu8VEFKsZRUqM+EQyH6ZEjvSuRLrkG0bUZVFGbcF7RuxDRUbWUNpFc7YqRfMV60TLIWpHaztHRXcBP0WrL85GWlPARH1scEa3QcpFkCYZRX+JTkUELd1FDIACRrwnnUW+PgVFvQWGRc65KUUhcAFFpISQRDxCtER4AzBF3DYMRUlyRUXb4LlESvi7RJYcnEWP5RRGsCr+RXicEEX4XitFNCoWRpopD0bSU09GwP7oRerUlEVZdwdFO+7QRBFpREal985F1J+BRYHUtkQsaeZFJP/HRQx2/UTaYDxFqM2uRA4y2kRoVaBE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - JrdMem7BckBYkcEWPMNyQA64dnxD0nJA4wB6Kc3fckDc1/jEI+ByQHvhe4K44HJAOC5qhVHickA0ZB9qkOJyQBjtMcY08XJAkU+RfMrxckC8EP4REfNyQHDStVWj9HJAQoe7RcH/ckDUf9w69wBzQFrPTgjPAnNAsL4Ge/oDc0Aer2LkvBJzQJTEoZMFFHNAFmhxmnofc0BWZm+fOCFzQNaAjwkRI3NAw51Ek84kc0DnIbTtVzFzQAKKXUKiM3NA7E67bLo/c0BXIzudeEFzQNzUw6F5RHNAJK+sYpxRc0AYtUA8D1NzQIDtSJmjU3NAxFVt8Itgc0BsEjpMHGJzQOREaXk5Y3NAu/z+Xittc0CXx+OgbHJzQCwp306EcnNAkxtyzUt1c0AyjCGceIBzQMxJyaQKgXNATjHe+12Cc0CkimY8hpBzQDA6nyj4kXNAWv7IAk2Sc0CWXZ8zYpRzQObiMBr3lHNArKLqy7igc0BL+XVYWqJzQKrpzgkFpXNAyQCg57azc0Bw1vUXDbRzQDIHIeP4wHNAgIQZ48/Cc0Bw/FkvJsNzQH5rRP3X0XNAItbl0eLUc0DwH2sDpOBzQHh8eg7Q4HNAytDBijfhc0B6nJKfsfBzQFK+hvo29HNAipP5yOMAdEBuCOmdEQF0QD+sDkh4AXRAClwEtrkCdEA8+YRXARF0QHrV9+9ME3RAr3cXqRUzdECIvlSC4Td0QO5A80s8PXRAfCGju8dBdEA2wLKYjFV0QJWjczsgXXRAAa7dq7dgdECSY6jcCGJ0QFCVK7x6Y3RAP/cGbyJwdEDyMbjUQHF0QJQxiFA7c3RAfHv9uPiAdEAABKpEToF0QKahev1IgnRAlqoyGxaQdED3MryV7590QCBr+DANoHRAKo8dnw6jdECVTvFlwrB0QCFXyClvsnRAPqUxfXrBdECQ/VVDEdJ0QMhWoQmm0nRA0p4mFSThdED6XFSV++J0QNRCjTmP43RAUJZi0IzzdEDAzoWiXQJ1QIiFqzwjFHVAmOljKp0idUARakUnzTV1QF6U/zQ4YXVApj8ZUWhjdUD65BpRWXF1QGierDp2cnVAV4zJX410dUBkPK+0rYF1QAZMQJqng3VA9KawNZmEdUCSm6WlSaN1QCrxeuT5wXVAMvs8R8zTdUAcDsE7TO11QFAGcruk8nVAn+fFO0gCdkAd7eVIiCJ2QPrCCuWPJHZAlJyCzkordkCFhzVXHzF2QL4vD81SM3ZAPujz1B1BdkDBxDs4eUR2QB49lBERUXZAvmfRTs1UdkBEwQ9MkIN2QFYevA3CsnZAEpDt1wy0dkCoBAPcuMB2QNLHv5jNznZAsCDaW5HzdkDLoIhhEQN3QAvPLjwBEndAk4Scmw4id0AwkxKA6Cd3QDDVn+xCLXdAnDk6fYwyd0A1APlqDTV3QOB1nO6cQXdAbOizypBDd0DnicYoG0V3QJKCV5YHUHdAbXb+H0tRd0CxWmPhklF3QBSChLV8X3dAlgb8bidvd0DIZAOynnJ3QNwJXMP4d3dAyoVIRWt/d0AMIs2IfPh3QKhlbcVG/XdAyPD3NaACeEA+1mVF5gd4QCo+7yH8B3hAPiAtMUMNeEB0a66ZzxJ4QFD5yxltInhADlRE6RFEeECsIpzTeUV4QJjf57nKUXhApA1x7YZVeEA4Rp+A+GB4QM3XiQ63YXhAjt4PnGd0eED2RqHni3R4QL5VGL6ndHhAAmAPGfd7eEAumXj9o4F4QClUd7KMg3hAhroDEv+DeED4TJ3rmYR4QLiiVb1PiHhA+iJeNAWMeEDswAoMqY14QBBlIDuVkXhAST/P8gOTeEDNLzv+qJR4QFC2Q9w6rXhAO1/iEbjUeEADZon2APR4QChYixeM9XhAnARgVrwheUCEDSgcIiJ5QOpwcXayKHlAFygSIg0ueUBbIi3MZzN5QLZ9bDnMVHlAQSQuFVyTeUC/WFIygqt5QGwUEHLBsnlAkFehgELUeUAFrrm7DPR5QG52uZIrM3pAVHigBg01ekAs+udKLjd6QJ95b9cvO3pA6qy34BpFekA1VTiMJ1V6QJzNcswhXHpA9AFtGB+jekDBZ3IA+bN6QCicRhkNtnpArfkKOb/DekCZVvnJGsZ6QKwDhIbGy3pA7pHpZ8vTekCigfTm0tt6QGX8g99k4XpAgvKOfz/kekCeVMT0egR7QDwqLSZNFXtAN4uhgtEje0DWkRPUWyV7QFQDOjBiPHtAmlYOhyOVe0BCvl77qqN7QHCxDZeM9XtAsKBJX9oBfEAAtWdH+gF8QFIFXN2ZBXxAdIfv29ARfEAiPzW9zUF8QNv6tl5vU3xASSbRnXdbfEAGJ/5dKnF8QHRZ3tbEjXxAArgp/iCTfECC3T6serR8QPvyx7/Tw3xA2n7rOonEfEBMAa7N39N8QGoZszST1HxAVdNDSfjbfECiagG7WOJ8QNMX8JEY8nxA+VbjDVTyfEChItQXcvJ8QGc5N39MAn1AivPcNkUSfUDMtDWgSTh9QJq+S9WgPX1AA+i+inl0fUAKH3lCL8N9QJDwAnaUxH1AibfjWubEfUB1mXADTsd9QD6kiKf01H1AzAuOwvzkfUDU/8yXBfV9QIpVSMczAH5Ap3MGxUIQfkDfyfKkLhR+QBnV9FcjIH5A0ADJEj0kfkACGvA8IiZ+QAjrUXp5NH5A6pK9BAU7fkDGtX7MhkR+QG5BN6RNdH5A4rxLoVJ8fkD+LUjtkaR+QH9riuUjpX5AfyN462TDfkDmVHHR0MR+QB3xEPBsy35AgmD0S8MTf0BvEYeuZTR/QH4dvum3cX9AKr1ERWORf0D2oBT/V7F/QP+g99M3739A6EnWXmkigEAm/f3qbyqAQE6LsSqJMoBACresxJA6gECQ4aRCqEKAQPupG2PvSIBA+w70keVQgED61TjfE1GAQEKGzNmnVYBAosb+7A5ZgECMK1NmxGGAQDYZqW5wZIBAfg2peCZvgEDpJlLQrH2AQGi8U1SwgYBA6NLHwR6PgEAoB3hEIZeAQJjb2DASr4BATU/xnQK8gECPZJK9BL6AQNA35r1SwYBAIDT3xJ7CgEAMz+ApU8mAQHEihaHiyYBAcLlx4qXKgEDM5FFCTNGAQA6rKETV0YBAoimQqKrSgECyPvcRZtiAQMI0QypJ2YBApm5KKKzagEDoojIFReGAQEDwp+1C6oBAdgJ6fD//gECKXEfxPgeBQJorU3I+D4FAbptodDQfgUCy9vSoNCeBQHGCuewwL4FAlDwO/XQygUCGiLLfvjKBQPp6794pP4FA5U6EaAZKgUCUyofN5VmBQDBQF4fpXYFA06Km78F0gUAQ1o4hb3eBQKA2Q8WegoFAjBKmBlaPgUCySPSXEJKBQH4ojtQ7koFAlu1s02eTgUBkZbSGkZOBQATnJB7olIFAClLZnD2WgUAT12Y6VpeBQCbr7EGVl4FAkzcxOp2cgUBA4lCoR5+BQEQRtF7koYFAdo++A2yogUCcX9GSSq+BQCuj8Wb50YFAflqvdfzVgUDbUpf17PmBQPKCdDbw/YFATquj3PUBgkBssJwmuBKCQIaCLjjYGIJA3PCEW9YggkBgnh6r0CiCQIMRbh0HPYJAhfTNklw+gkDhxzNCtD+CQKomUeEIQYJA0pXhnm1cgkBguOi/M2KCQFjuzrg3ZoJARoAIOTp1gkBqwUGxEHqCQOoPMkZDiYJAR5xna0ORgkC3nvCKPJmCQEC6uRIPoYJAxWoaKTuhgkC2Qj0ty6KCQGBcLA81qYJAJBdPItKqgkANe+wg7MWCQCn6qfTvyYJAuGaonn7agkCGFZzVgd6CQHTp+JrhAYNAL5AiyeQFg0C+49j7uAqDQNxpv5t5EYNARqRZznkZg0DULlWEciGDQHqKq/aJIYNAMN7RW3Apg0D6og9YaTGDQHJm6f3zcYNAlHG+ssSBg0CUYiEbyIWDQIg7FZO8iYNACkdwAvylg0AamnIOE7KDQCRsnHgKtINAekcFlxW2g0CQ1LCFGbqDQOLrZBsPvoNAW6EOlBLCg0BW+iIAH8WDQLpXK3vL3INA6W8B+3jfg0CZ+SEl/2iEQHKEYh/9cIRAPjWgFLh1hEBW4Q+ryXeEQE0KdsC7eYRASqIEF2h6hEAf8YZ7f3qEQFwAAigFfYRA/UR4nRd9hED+OvohtH+EQD9dVk1ggoRAi5JB1gyFhEBibSzXuIeEQBu2YEFwooRA8Yze8h+lhECaFlRJtaaEQGL2v0tq2YRAQp+eAATehECAygkiauGEQN5L+chh6YRA2qGNVTXxhECIRJUHYvGEQFKWWXva94RAYOMYbjT5hEBmb3qkRRSFQGjdXOjgFYVA1JUBO3sXhUDQV8LvFRmFQFNUX6qvGoVAssw2MEschUBJM2CJoGGFQDUtAizeYYVAQBeYe6FphUDI5A0CmHGFQKsytZeYeYVA8N8VpjnhhUBQZ0YXreKFQB5ehvzT4oVAIvZ6NnDkhUBkH+bDCuaFQPAVohCv5oVA+n/jvabnhUCsMxBwaOmFQHSWnCoMmIZAQB4A07eahkDqSOrPY52GQDMXwg/MxoZAvqbeC8vIhkA2n0TFy8qGQN21OAfOzIZAK1lhYM/OhkCCfUx0LBOHQOZhh5MwF4dARh2B/pAph0Bq5WUNkTGHQEenyh+KOYdAokhQYotBh0AgsT5dolyHQEJZcYMXa4dAkZ+83Mexh0Bas//VxrmHQGLmIl/BwYdA9wpRk93Vh0Cg9Yez4tmHQCr/uPJOAohAblOBP1UGiEA= + NrgMGZxjYkD60UzrnGVsQOzQoK8iBW9AOW9uKzezd0CReDjb0WN4QI/DcjDPI3xAkdYULyp1f0AqjwO1c6qCQEiaeEFBQ4NAZus0LJnThkCOvM3R/0KHQLnmT9RLe4lAID4VJBHUikCvZnMZPZyMQEzH8w+jg41AoaOLKkpSkEC9ZsxaAlaQQNN7DVwocpFAQwUIfoZ2kkAdbN/5U3aTQMMc/5LcOpRANO+xzIQKlUAKMa6N8h6VQEtyhJ+1npZAIbSAYCOzlkCShjOay4KXQDg3UzNUR5hAEp4qryFHmUCCJyXRf0uaQJg8ZtKlZ5tAtP+mAl5rm0Cvvzil1vucQP7veKCJb51ARQQom59TnkD5rwpDAgCfQIfiJSIUDqBA0RaMy+0poEAYKzvGAw6hQOBtWCk3NKFA2La20C7woUA5+YowWlqiQJhCMttZ0qJAxIMrMW3ookCcRJ/rge6jQIuE5Ed6GKRAJ4YIVZq4pEBLEGBSpfqkQA== - + - vHTeRZBjV0WfzQ9HyTsRRRB6h0WFLhtFE0N5RSf05kXOmlZGPF1LRXHhREX0QgtF8jZDRcwiC0UcPYdFjR8dR0GRZEaBc9BF3p0xRTKIlkZBbwFFLZydRV9OBEWOpf9EzUJBRbo/jkUIwRZG/K0SRaYHw0WLbq5FQC/qRPE4NEVFKTlF/yoLRuA+JUVzVgVFwxQmReSauUafuOlEIRmuRa60PEX0ZURFKoVLR4ScJUXASWJGQEDvRTw2FUY6sGdFVweARRcWWUWFY/xEsb2GRdWdCkXgfC9F2afIRTi9OEf5KOlFkczsRVOwgkUuJgtFBqbFRhtHH0UT8EdGscz9RCcuFkXQlrZFXAMxRSrFiUVFGANF7nErRa0lI0USMFJF6ZRjRWb3pEXaLzxFFPieRctCPUciUkFFlolERXt660XCD/9EL3uyRfTK50X2wQlF+a8eRQHdCkXKKS9GC/YkRVIxOkVIzN5E7LMVRZv98kRml0pFELK0RRiVs0XMzCVFfFsRRhn6C0WBhCVGh7EQRa1ANkUlIChFmj81Rvrml0WO5UlFBwMDRXSvGUU7KelEs5QWRUxfuEU8Y1FFBRvvRfGrtEXGIwBGvJaoRcKju0ZIpxNFAFmeRWnhlkUWvClFQZxTRgmN/0TteC1Fy+WMRRxVEUUq4FtFTjwfRZzOd0Vcu6NG/sZBRVp1BkbR1n5FyUomRQH440f6pLhGE/WdRRat1EYhi6dFNYGSRfKgc0YmRBpGdUZKRR2pSUZKp3RFX2cBRf3SCUWlYaFH7lMPR22XlkUvzzhGH4pkRSoP6URAhyFF2neZRcI6M0YBKLpFXigURaJTIEVpiR1F4Ii6RUUdOkkG4y9GavbqR8o6JUVnpxFF1Dg4R4DqP0hOFDZHvuLYRQKRykbD4YBFiQa+RUUPh0a6oyFFs+iERQz1iUUHjtFFCM46RViaIkUfPGZGRB0TRnF3gEUnho1F9Yr9Rb/c+kQUpkBFJifJRR3ZA0U1exVGN1y6Rz3eskW+jTdFrOq5RlKIDUWlqtVFpVaWRQoWLUWr5TVGjsUTSFxEJEU7UIZHB7uERpMAL0XKtTFF21/jRBjlzEX/txRGafouRbZiYUU1BBxFKnxgRc//GEV9JoBGwF0sRhhlDEXzmHhFDGqVRdpah0Xy0GdGM8R3RWkMBkWYuRpGvCQRRRZXAklUy5RFnNjlR8vIAUVnFkRGV0HkRBsfzEfPmClFY2mxRuYwu0VlTnhG3uNJRd2VekXAWUpFTLMWRWv090T7Fp1FzCEESqr9yEREivNIZJSaR2CTzEUTFPRGPxFuRffW9EZRi/VFwih8Re7o6kRFpyRHx+8FReZ/D0Z0MhNGk3JKRSllZEWScFVFsqCKRjZ60UViV+RF3c0BRiTvM0WkX6xF3OwtRlO9KUWjOH9F3R1bRq0XSkX8JIRGYAkwRWVWP0V0aAJFyNH6RIuLgUYNA1pFJByPRUOdk0WpUGpFOQntRKnj8EU0Fj9F9+8ERinhIkVSvm5FO0lFRZNcMEVTp4VIxAaCSPCm3keryQBFCzJlR0Bkekf+q/hEDhj9RR1B9EXC2TJGfrsGRXA4mkWPhn1FB544RhOVSEXLE25Fez27Rp16wEWQECBFXA07Re6aBUbvrm5F+MxCRVw9AkVnNuZEpRzNRSomW0WI/SZFuxb/RRcil0XhU69FX53zRNZh8UUSLm9GgUfKRdUw80QeI35FqQrVRfnJwEUFjQRFOZojRX7CHUamJNBF81eTReti4kbvAD5Gk8JmRS5fAEUshklGmgSeRbw2U0Ws5mtFt22xRVpqs0XZgopFxqnrRK24Bkbl545F12kGRafuI0Wm1P1Hb9FaR47IC0fqvNFFaLIURl5EH0Ye6E1FCiUzRU0OiEaT7hhGAmXeRdEmHkUZcldGRvbMRfaGhkULo+9HKEFZR8nGAkefoFFFPNjeRTuJF0V68/5EADatRjfPNEbo30ZFRXPwRCHYjUcfy+BE1gYZRy+lGEYVanRFzzb6RE56OEVzwDJFsMh2RaQD4kWtrSFF8mwkReIgmUZy0n9FXxwMR7S7AUbGObJGiS29RuB+GUcqD4RGeq4BRgwNZ0XuFyNF8R9NReIyTEWCaBxH5VILRQ2Li0YGuhhGOOpHRQ1OYkXS7RBFbfYkRReSJkbtfndGappuRuvtW0asQddFXKcBRQfiDUeGSbJFMQxxRnoJH0aTslRFCEVERRIyHkWLLp9FFA/nRTfF4kWIbhhFZUxzRXUOW0VDkoxFJCCQRWKIj0WF7aRFM84MRgkrqkUhOLpFQtENRTVaCka6bd9FsDhHRkdbpUWfamtFmgYORcuo/ESYyCFFgDnaRWTno0WJPXBF2kiXReN4BUXkGDlFOb0jRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - IFb8527BckDyNGAeO8NyQBgfxyxD0nJAxulBQyPgckCRQbsKUeJyQFBntACP4nJAe2BVuDXxckAuRAHwyfFyQNjY+57OAnNAAHykEPoDc0DqEjRtvBJzQP6VvWb6E3NAXPkne3kfc0AEQQajOCFzQMbSP9fPJHNA8IMTo3hBc0BDixQLekRzQHGY+GuZUXNAHnXW3w1Tc0A4lAzQolNzQCJInycrbXNAiNli/mdyc0Ayi7uweIBzQMS1bK9dgnNAByKP+UySc0CmJ4T79pRzQLnHqnu4oHNA1v4t11mic0D4cxxktbNzQB4eVp8OtHNAOBzJItDCc0BJ8YRKJcNzQCWfi/TW0XNAtvKob+LUc0ATplnko+BzQAS1vyfP4HNAagYdNjjhc0CQMEZJs/BzQNJ843zjAHRA2L41o3gBdEBOWW5sTBN0QJYkZr3hN3RAuUT2oSBddEBQXj9luWB0QG7/7WAHYnRA+OWS7iFwdEC0M5miQHF0QDClPmY5c3RAolgEoE2BdEDjHV3PFZB0QIyk8HPvn3RAVDs6Fc+gdEAm3YQPD6N0QKI6d7FvsnRAYX2VuozzdEDqlh30XAJ1QJC1uyedInVAnsWRQsw1dUBQGxHmN2F1QEpg9iqNdHVA1vySga2BdUBFq866poN1QEWn6QNIo3VAdXE8dEztdUAUbDfzpfJ1QH72lsxHAnZAalTvRYcidkAfs2vUjyR2QJJ217RKK3ZAcvRmgx8xdkBwmCfkHEF2QEyn/Rd5RHZAJAruKc1UdkBEc26B2mR2QHLJcWDBsnZAtBidfwy0dkB6oGQOz852QPBsGr8PA3dApkpOJQESd0B+MdBTDiJ3QBHdzzboJ3dAkHt3W0Itd0A6J9n8DDV3QJJyY+qcQXdAa8S7gZBDd0CWJJDiGkV3QKUme6kGUHdAgGYOYUpRd0CYH3t6kVF3QIdMaxx8X3dAULQZNShvd0A08tpon3J3QI2kCnv4d3dAnk0ne3mCd0DsAKAFcfd3QDSUIa5G/XdAamS2sJ8CeEBqJL1Z5wd4QFj1Vm7+B3hAa/ZZtUMNeECnLHGM0BJ4QEtAzMRsInhAkYfadhFEeEBjwTSDeUV4QCs9qTfLUXhAKsPjtfhgeEASrLK9tmF4QMCiG9yLdHhAzvsN7vZ7eEBlYWpmpoF4QOS+2Tv/g3hAhaMV0ZmEeEDGbBJQT4h4QPVsnA4EjHhAxC9KQaiNeEB6NWYHA5N4QPoFgAunlHhAdLo1H7fUeEAi0lxrAvR4QCJjBSGM9XhAaIo1ebIoeUDCwE5ODS55QNLQ5l/MVHlAKOdqs1qTeUC8j1biv7J5QJUnNTZC1HlAtx1J/WYLekBy7TMsURN6QOG/bBkrM3pAvlnfogw1ekDB5LsALzd6QKZ+LU8xO3pAyTPWDRpFekDA6pzHJ1V6QKohG6ciXHpAlRB4zx2jekDQHjOvDbZ6QASegSG/w3pADCFnCRzGekC97gvpxct6QMigSe7N03pAeIwCZnwEe0BK092lTBV7QMBugLGM9XtAYx4eV9gBfEBuoDICmwV8QIogMMzREXxAi+oSws1BfECGgbNRbVN8QLBLPVV3W3xAe/Fv5MaNfEByOWOVHpN8QFIC6r9HtHxAXxxcVXq0fEC4rAeO0sN8QMNeaOyIxHxAkmgKZZDUfEBLAvChWOJ8QKacCRRV8nxA/uRHCUwCfUBZnXmLRhJ9QFnZlElKOH1AlGpfw6E9fUBEb1FWe3R9QCnGPSGjxH1A9qXRr+XEfUDPmFtZJcV9QMdRZGwzxX1AKjoRjvPUfUB1GgSY/OR9QETP5xQF9X1AEF7mvTIAfkDSjFmZQxB+QCzI7F8vFH5AUjcERSEgfkC2/IwAPSR+QBtl9Bd5NH5AhNxqnYZEfkANbKzqS3R+QDrjWCRUfH5Aqrnql5GkfkD9GWAcJ6V+QKg6QRplw35A0gZB5NDEfkAW+OfSast+QPEGU8rf1H5AYsIpn8MTf0BCPZGat3F/QAKaq3NikX9AyDOktl2hf0C0muoyNe9/QOrqWGdoIoBAkqls2IgygEAG8MEDkDqAQFob7q+oQoBABIvpU+dQgEBSIrenElGAQKxUE9kNWYBAdOneSqx9gEBWjjzor4GAQJB6/Mwdj4BAAWRQewmkgEDC75isE6+AQJqis5UCvIBAlZuRuAK+gEAWpbx+UsGAQG7rXHSewoBAMBUfvVLJgEBf5BJ+pcqAQFxeHfpL0YBAjJLTaqnSgEC2HFhMZdiAQJph/rlJ2YBAKd/lg0ThgECOP6mxQeqAQLo/dY0//4BAxynCTD8HgUDeMO+zPQ+BQKD8wSc0H4FAloVKGDcngUDSme5KczKBQAJ+Kpm+MoFAFNacaig/gUDqibuFWkeBQPq3NCbBdIFA7xVjLG93gUC0YGC/Bo2BQNS0eTxVj4FAysvC0DuSgUBvNexkkZOBQN6XOL/olIFAGqGBGz2WgUBSKi1klJeBQDwbuLScnIFASf8PMUifgUB0igO2Sa+BQOkK8TH50YFAhDM0PPvVgUBQcgmr7PmBQGwp10zv/YFAUFwCTNgYgkCuHv9R1SCCQMpXDr0GPYJAnkzDKl4+gkDqbuZzsz+CQJNg/kAJQYJAPit1cTRigkAshFprN2aCQHnNbh5DiYJAwMM0GUORgkA6yEZNPJmCQIZU6o4OoYJAFIdDhTqhgkA2agv0yaKCQNT7YmENqYJAdEtqaOzFgkDsQK147smCQA3TMwF/2oJAxDMTJ4LegkANJKdG4QGDQDy+AXDkBYNAdgrbW3kRg0B3Zmu1eRmDQCRJvVFyIYNAKx5GFnEpg0DBFfmgxIGDQEwHFLrHhYNAWHtQQ7+Jg0Cy0+00ErKDQNYToRgWtoNAcBkRpRq6g0Ci2rm/HsWDQAfo7fjK3INAQCRUWHbfg0Dw2boa/2iEQJtcRxu3dYRApLR2kMl3hEB5/XznYXqEQOQVZu95eoRAEFun/AN9hED6DQPTGX2EQOL+dVC0f4RAnhPoimCChEDgoOPTadmEQI9JuJQD3oRAIIkphWrhhEDAee37YumEQO5Df2g28YRAiq4QoGLxhEBC+y2N3/eEQJqMU0uI+oRAjuWcMEYUhUAgbpks4BWFQPlZhoV6F4VA8GrYxhQZhUDAZ6t6sBqFQAohD7hKHIVA3h8VI6BhhUAA/oI33mGFQLJzIbjhZYVANGtG8Z9phUCY5/OTmHGFQO7eC3eZeYVAT5uQJT+uhUAqe6eYreKFQDFMbIbU4oVAemacJ2/khUB2/5ewC+aFQHl0b06v5oVAOAVGHKbnhUB0dnWjaemFQFjf6nsLmIZADBhL9riahkBquZ0FzMiGQHai5WvKyoZAtDLMNc7MhkBNUm2mLBOHQBPA3JEvF4dA0Fa1zTMbh0D6WcHljymHQBFagRWRMYdA69Q8eoo5h0BDjtMmx7GHQEGkcTfHuYdA/mWgy7/Bh0A= + KBZXds7jZUDEZV5bjlJwQBTpB48/A3JAOAsfS35TeEBv9VHaAlR4QFoUIXwBxH1A/Uye+dpkfkBL28yoWHKCQHUFT6ukyoJAQrpM148KhkCTVguW/FqGQAnm8ub7EolAJFuMLj4TiUA27JeMXTuMQN6tbCa2E41ANhuGtgnEj0ChbZshIdaQQA== - + - LDbtRbfrPUVVYAJHPAhJRYzJgEVhl+5FpVcjRuo8S0XR2WNFTIwRRy6wgkY1HJpFgr80RYndu0YZ6rpFLAV1RU6JHUZtaypFWjiHRYpkh0W6HPtFfNFGRUzvz0bvWHhFObxcRw5ESkbeEydGC24mRqkyckVCLh5FteMERpZtHkU1nCtFsryJRZQPHkfkiZxFZJIMRhQXKUV3nZZGkVxcRvoaVkVSFotFoz5fRab9hEVmAFhFQH6NRZSCVkcAZHZF+jUNRnUey0URZ6NFKP0sRZHtNEVEmclFv6oERsjp6UVLkzJGJysyRZYev0WBEzlGYFXtRSRIekVZo5xFWcnrRXxar0WhqMdFbxlbRUMgCEby151FruXJRnQai0UGOapFL65YRlH1OkU/Y25FEUKwRZisdEXj/D5Ff9mPRoQdhEXx9RlGk4jiRdLG+kd3B5RGe36HRUQj1kYzn/RFdVeTRf5POkYUvR9GBbpPRZNiQ0bt7nhFrWAsRShqK0X7t5FHvZ8mR2ek6UWc5qtFkM2hReRuREV906tFHuSJRaIIU0aM6ZFFiwgzRYKmQ0USVD1JuXjvR45bVkWeKRlH+c1FSKvRJUeXFv1FWSrGRlX6rEW9zpxG0a3jRY7YfUUqNYFFSSiIRtwt60UEGoFF+5HeRakAkUXNXbpFQU0eRQocVUXXuTZGb6WnRxPCB0ZBNa5F+122RtLQWEVYlKRF1xerRax+EUbByvJHTeJjRe0Chkcb5RdGRzTcRa7mDkZmzltGkZPfRbban0XXe49FB/7FRSEPYUYbwotFJgJzRYFxpkWDtDNF/QY4SZS2hkVpyCtI0GN2RnyZtkfueaZGcxyGRhjGS0XmF+1F1EwtRVKiT0Xhxk5GD0BCSjqDK0aZQS5GnucuSTofAUhO1hlGel7YRsWvTUWsoylHzwzBRQ/4/kVIewpHkjb8RUAYFEang3VF96iTRSKZXEWcYZ5GypsFRn+y+kVsRSdFmTlGRgcEXEUhXvNFrK1oReG6R0XDtvFFOPZjRj0SI0XaxUJFWo05RYvJO0a+VapF4TQFRhG3Y0X5/gtGu+pPRdf3akUOjzZFmMCDRcJlfEhx3G1IIEPbR4IPdEfIj2xHAI8FRhtzSkXwPl5GFLaLRWo1GUXRNVlGrXo8RRqFiUXM2qdGpyyXRXOLNkV/fgdGVGORRerxT0UvHnNFsuxARRMqQUVckvRFVBCeRWX2LUYdVBdG3RaxRbm7d0UY2t1FHgfeRdhf40XQM8pF4PA8RTS100ZiR21Gsqs7RvhXL0W3BrJFk0msRa6qGUbOVVNFBZUHRkjIWEVfr9BHmMoHR9VxwkZAPapF1gH5RQRKI0bhT0NFz+ByRpNC60VUXLlFtBhXRdwxKUaq2d5FDeblR1bvPkfR6d9GjhsJRlzY3kYZgFZGW9zFRfT4d0fywgpHW/EHRsAXMEU2FkZFT+WIRRvFx0Xq8axF34+aRk5y+UVVQX9GkQNuRrfl9EXkdspGuT0xRoMt+Ebrfj5FirhuRhmQDEaEQG9Flh5mRRN7O0VXT55FIE2vRQ/YM0bldlFGnwkMRuw7y0WjrXtFJofsRqfzzUU3R1xFDIdoRtLHFUYuIYpFJnk4Rc4IYEWmfAJG1oAXRrX3pUUnIVFF2Vo6RbGhkEVtRrtFdP3JRQVioEUAcjdFdQU4RZEiIkbn7PBFMGkrRapTFkYCDMJFwEBmRd10HEahabRFVphmRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + - - - - - - HIFeBG/BckCAcyB2O8NyQFiEkgVD0nJAnyGTWCTgckCgRf6PUeJyQHwuJxGP4nJAwMXtBTXxckBGfttUyPFyQAT9OPkR83JAPOrSCM8Cc0C6X8+F+gNzQA9hAyC8EnNAluPbKvsTc0AkFMSmBRRzQM7g7rk4IXNAoqYy8c4kc0BW1SXneEFzQEb6pf95RHNAhaNMO6JTc0C5Aw/fKm1zQLZ4LHZMdXNAHPQOZXiAc0AakiwbXYJzQGPUp0j/gnNAPB5JwUySc0CYMpES95RzQI+1wsO4oHNAVPpOtlmic0B0v8FcBKVzQHxxvqzPwnNAyEwC3NfRc0AuL4Ei4tRzQEoLw82j4HNAiLTr6s/gc0D0HUq3N+FzQOy5uR/jAHRAZKUadXgBdECIXL6wTBN0QJ5V6U7hN3RAwETeuh5ddEB9fdoVuWB0QH8RYroIYnRANghcQiJwdEBetfPaQHF0QAPDlNk5c3RA/P6J/k2BdECDLcuAFpB0QAbkxgfvn3RA2p1hmW6ydEBEABMXybd0QMFG6AyP43RAp0Gcs4zzdEBMBFbJXAJ1QJ5drDudInVASKPvTzhhdUCmI3/LjXR1QARTIKStgXVAcyo1RKaDdUAyJ8iQTe11QLIkymWl8nVAJH82ikgCdkDMJs3kiCJ2QP9Rav+PJHZAKstXP0wrdkBQqFpRHzF2QEY95QoeQXZAbtHKf3lEdkCesO/bzFR2QC66chnCsnZANMfMuAy0dkA0ODj4zc52QABIjdQAEndAjmzaWg4id0Bn4Dtn6Cd3QLwUkqdCLXdA6iNBOw01d0AaiSo2nUF3QCqM9N2PQ3dAa6wLshpFd0Ay8bxfBlB3QCq88HpKUXdARGxdq5FRd0AOjbkEfF93QHr0pLqecndAjJ3n3Ph3d0AsfauBRv13QBhLwuWfAnhAlq/+gOcHeEBiaWfc/Qd4QIbQOf/PEnhAqpJuqm4ieEBwr+XQEkR4QFNabNR5RXhAb4Pe38pReEASN9nhi3R4QMBEyg73e3hAMd8vpaWBeECezo0p/4N4QPplovWZhHhAPYqqek+IeECBwf4LBYx4QIAvS4OpjXhArgf0EQaTeEAUt8bHp5R4QM/AT+u31HhAA3cQ8QH0eECqYJELsyh5QIDhiy4NLnlAqvmYdstUeUDWQzW5WpN5QA9mofbBsnlAbuFybiozekDiBJuQDDV6QLnKM/8tN3pAftimExpFekBsPbzkIVx6QNWhQHodo3pAUGLCCA62ekDmEVGHv8N6QPOVw6bFy3pAetg+6cvTekDptrtEfAR7QOiEMCpNFXtAZDtOWY31e0ARduEZ2gF8QJOyeBLSEXxAO+k1xM1BfEAiTejKblN8QM5cU2d4W3xAPcWaPsSNfED8XaZxHpN8QFm9lHt6tHxA96tkRInEfECBlgFNkdR8QAiqSEdZ4nxAqRFHOlTyfECGD3AGTAJ9QA7l02RJOH1AyMoSw3t0fUD6odXXasR9QLjXrqGKxH1AIM+2vOXEfUB7GU6tVMV9QC9mngRzxX1AMIX1l/PUfUBE1Gh1/OR9QN5KZFgG9X1A+MqZqTMAfkBeW6JeLxR+QBS6gGYhIH5ADjbabzwkfkBnZg4neTR+QGq+G+GGRH5A8n9c9U50fkBKHHffVHx+QLDKfBmRpH5ACTW+siWlfkCT7WElZcN+QLzrOsTRxH5AQFPqimzLfkCYM5qXwxN/QG4E7/rRI39A4mEXI7Vxf0BU66DlYpF/QFj8BOuIMoBAGuBpGKlCgEB9RXjZ51CAQHtxryoTUYBAUNXZ1aRVgEBKdJUZDVmAQKIe3FrDYYBAXKffISlvgECmMrSxrH2AQNZTeiuvgYBApm/HAx6PgED4ar+TE6+AQAgrg18BvIBAiUUQ2gO+gEAyp7iDUsGAQPwyk5WewoBAOKhi91LJgEAbsPuipcqAQAYMbCJM0YBA0HEWeqnSgEDY/qmeStmAQCT2qLBE4YBAd2w6IULqgEDIapyvP/+AQEmewgBAB4FAAt1u6TwPgUDqcuRXNB+BQK1BXGAzJ4FABBrDW3QygUDqwYfPvjKBQBKYILNDNIFAAIdAoCg/gUDIF1/OWkeBQNXKYorCdIFAd+b/lW13gUCWUrmlVY+BQFjETqsQkoFASBYKZTuSgUBFRsgFkpOBQPub8BrolIFAGoQ2xD6WgUB81F3/nJyBQOqlzv5Hn4FABuDoW0qvgUCVuiJC+NGBQJgzkFf81YFADG0ph+z5gUBuLmIY8P2BQPA46S34AYJAahCG9NcYgkBEJa0Y1SCCQCJS0XIGPYJABmQXLF0+gkCJqfgcsz+CQJtsP0oLQYJAPM1L4TNigkDgoVt0N2aCQA6uczxDiYJA4GwTEEORgkAUt53dO5mCQOQ73VUOoYJAjaeizzmhgkB/FJvzyqKCQKU7myjsxYJAZ5bdrfDJgkCENnbdfdqCQBRXhlvhAYNATG9VCOYFg0AideCQeRGDQOcE0EV5GYNAzCsII3Ihg0DlrN/ucimDQIe4UgXFgYNANKjcFciFg0CWW+GlvYmDQDgYPZcSsoNAZvNirRW2g0DuwkggHLqDQPxQuoggxYNAGJWmaszHg0AJTQA8/2iEQEIkcf23dYRA1BqwEMp3hECVFDRLYHqEQASrjl15eoRAPAXguwN9hEDOfEjrKn2EQCBP8Wuzf4RA/zSf0V6ChEC/XgeEDIWEQHwAB71p2YRAarYXtmnhhECSPjLbYemEQPAD0JY18YRArDy+q9z3hEA+9n1dRhSFQAEcWFrgFYVACuhwAHsXhUB8+RLMFRmFQMwTr16gYYVAChBvad1hhUCqcTG4oGmFQBR+85yYcYVA6JYhYkCuhUB5hVcdOOGFQMyXJWis4oVA/bn5RtTihUCucrjebuSFQGpvCtQJ5oVAnsGKE2nphUAGZejeCpiGQJGjHIS3moZAUrSZzmKdhkCs4gCEysiGQIDt9nDMyoZAz/sJHy0Th0ACHBKSMBeHQNwOENaQKYdAB94vs5Exh0CDftvhijmHQI4RHGzHsYdAs33sgse5h0A= - - - - - - 2GrmRZG/X0Wfjg1HbQx+RVrYsUVntNVFysv0RRarWkUybTlFVj9KRSwhRkcG10dGXjCrRar1uUVhQbdGUsmrRQtNmUXRRhRGPUiTRXZGt0WAy1dFMPbeRqbTy0XZxXFFXFlAR4WdZkaTqvFFhJjwRQKvVEVg0sFF3uxiRUcP5kXZMvlGS+m9RZQaA0ZkN4ZGr1SCRoy+UkU29JxFoLlGRSbPVUVS/ppF/ajeRVWGSUffwIdFnNXeRfMF3kVZzt9FtZMwRh3JlUVYJjpFno7dReR4ykWezipGNK6kRayCE0bhtbJFSqo8Rc2SqkVRB4lFicenRR/LWEWG0sxFDoi1RZ90t0aRQpFFP+xPRYfUF0YCKDlF8rSERUJBO0Xa+otGUS5gRXdiGEZjna9FetH6RwZ3vkaLo2VFM5y7Rsia3UWiOYlFB1ZoRpHSIUZBZTtGizi7RVr/g0c0uyFH1cu9RRZntUWYhzpF0p2MRZDbXUU0xVpGrtioRZDdMkly2ORHViiARW7HFkdj7DtIRro4R+8V+0Wi+79G3aDHRXTXiUbEHl9FSJSKRUQTQEY4431F4iKFRXwrhEVBV4RF8j4TRrHcm0eifRdGfBeNRnuTrEXMUp5FueoIRluL7kejn0ZHOocLRgxkx0UTTB1GkPtZRktLN0Ztj15FVVitRd4vK0YGDmlFwwL7RbeKbUXnmGdJLBVRSIfWxUYVaqZHmiyJRtuKYkb3LaxF5SVKRTNk30Uf4MxFDR9cSsl12UWwE4xF9kZKSTGhFUhr9FdGwkbeRvlWdEeDwtxFdC80RqCA+kb3RhRGovnRRbbcgUUYFBFGjvGPRZXUvkbQkf9FtFsrRjg2gkaku5RFCGWqRZ5gCUYCrEhGUJuqRVOqc0XE8DZGjzGERX9qn0XoC2dF/ftTRZaV0kWN1VRF6r3ORVSJjEV/SrdFxQJmRTkhaEh8MWpIYs+8R9itXUepYGRHn2bzRa3rOUa0E25FVDRBReE0ZkZ4gW9FiXWGRcR3xEbJRapFQHV6RYFrBkbH5VVF0fCbRVcxX0W2d8ZFeLzPRRBXDEb+sXZFYePCRRV0OkYnAxxG30eJRYcZ4EV30nxFxuQrRpRkvUW6O35Fnh7tRryrhkZcvVRFL6k1Rk6ijUUak7dFDzjlRaiKxkWz+YtFDRA2RuLWt0UBntFHgWMnR3a5xUZenJ9FueC3RTLiAEaRM49GF9G0RQO4s0VM+TdGsMibRaafykcrNilHig/SRuyA/kVZTfZGjEeIRr1UnkUWI25Hw8H7Rj+UAUbaeFRFZNliRRBRz0WgKHhFg5WTRruDpkUeoXFGwIgoRiZasEWM6ChGNe+6RQU3oEVg6hBH4TB/RuusIEYBpoFFw0DDReUVL0ank3xGu59IRktyS0bcxQhHpSaFRf4iS0bolwJGOWRYRR3qxkWAj7dFwtf4Rd48akXVdYNFKLWyRfubs0Xpec1FGomBRdepo0Wrbk9FVHUbRhyttUXqxhJGvaP4RRDTaEXPTwJGUtmpRQ== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - J2jJym7BckCNVv2TO8NyQK4t8gpD0nJAHj83YVDickB73zIZj+JyQETozxU18XJAMB6A7RHzckD88hy0+gNzQD5QxMW8EnNArttoEvgTc0BX/9u4BhRzQLqrgL44IXNAO4wAN88kc0DEJaifeEFzQGpx4Pd5RHNAFK4AVqRTc0CmOptaOmNzQBKwj6grbXNANNCRcniAc0BF1U9jXYJzQFh0QFalgnNANEDqGE2Sc0Cod7tF95RzQGat2bC4oHNAjOJD61qic0CrX/k0tbNzQKHbCmPQwnNAOYRov9fRc0Dz27/G4tRzQAedJ7aj4HNAli3CVNDgc0AkRIY2OOFzQGVybkjjAHRAEvga7ngBdEC8/ZIOTBN0QD2i03y4IXRAHA6Lu+A3dEBscFHCOj10QGQrkn0gXXRACD1fgrdgdEBd+cBJCGJ0QCbxZtMicHRA8ladAUFxdEBCMYXpToF0QNLLvE4WkHRAPgPf7O6fdED0HQ3FD6N0QGB6qa1usnRAWjEvWLfEdEAmYTikt+F0QFT7KTyN83RAYp4yJF0CdUDgroCwIxR1QAC+MVCdInVAQHmlrMw1dUAJuuPoN2F1QELPH1eNdHVArlNeIK6BdUANbZAwpoN1QLWomQJJo3VAIZ6UbE3tdUBm+jLNRwJ2QHiM5fMmA3ZAtxicMYgidkDo96EUkCR2QLv36bhKK3ZAhK0JZR8xdkC8gTNHHkF2QOCIzgh6RHZAbEImFM1UdkD2i7ytwrJ2QEQEPm0NtHZAPOi9nc7OdkBb3S6UkvN2QFfAoDQBEndA8LoumQ4id0BIT05P6Cd3QOcbu2YNNXdAfQtdG51Bd0BMuw/RkkN3QBl8HwIbRXdAML/rZQZQd0CRkPXhSlF3QGyLX5ySUXdAxIiaqHxfd0AIsQ19n3J3QDA2pnT6d3dAdLUfUEb9d0BEvjBEoAJ4QHj/riv8B3hAyn27okQNeECo5zqd0BJ4QNx2jXxtInhAEDKrbBFEeEC+FqHPekV4QL5jgqTKUXhASBx6jIdVeEDkNJMzt2F4QPacIh9pdHhAAlDA5It0eEC6ekMV93t4QCzaliCkgXhAmScbOP+DeEBsfcpEmoR4QAzKLJtPiHhAmENEtgSMeEDT5qaUqY14QEZVCl+WkXhA4cPz1QSTeED3bF7NqJR4QLfL8vMB9HhANAo+zYz1eEA+0J0Lsyh5QIZEmz0MLnlAy15ro81UeUDqF9pOXJN5QPjX2XXAsnlAh0S9UULUeUBQlHh8KjN6QHsNNNsMNXpAKIh8qC43ekCMC6hLMjt6QOBEnvEaRXpAolXLRCJcekAoClphHqN6QK9dnmUNtnpAQo2eI7/DekAa9P1dxst6QCGMA3XN03pAPqMsXn0Ee0A8YnyGTBV7QJxrzIcm5HtA9F8hHI31e0CV5q1n2gF8QCz9pXeaBXxABG2OQtMRfEARFtvxzUF8QETTgL1uU3xADc26/nNbfED5rToBxY18QBxbF3cdk3xAzLJESHq0fEBs5OTIiMR8QN/SWDSR1HxAOL03zFjifEAjRh/RVPJ8QFDrQL5MAn1AccBax0YSfUCslNbaSTh9QML7MqdLxH1AY/uV+HvEfUDwTcRWtsR9QFwTHuDlxH1AmWziy3PFfUCCYX+LjsV9QBxikH3z1H1AuowXi/zkfUByr5Q9BPV9QCQ/HyMzAH5ApzBDNEAQfkCUy4obLxR+QAjrbT4iIH5ApZYvAzwkfkCcXjlleTR+QLNEND6JRH5A7KVpiUx0fkAWF0jukKR+QFxxJvompX5A6ZxAGZ60fkAosrZ0ZcN+QKLHwyPRxH5AxIaqWWzLfkCVdyXMxBN/QAUR3PPQI39Ampa75Ldxf0A+osxFYpF/QPbK68aIMoBATmhiiKhCgEAw6oinE1GAQKykSHEOWYBApDP1IHBkgEDcJOXJq32AQFIlcSEej4BAaK1UlRKvgEBxbwh9A76AQPYfP4BSwYBAQAWqj57CgECEC7bXUsmAQOD3ILClyoBAWdS+/0vRgEDOv4pJqtKAQPJ7mZlJ2YBANdSb4UPhgECFYub7Q+qAQAhl5jY//4BAJZnmij8HgUBKOfZnNB+BQGHNw7sxJ4FAnr+RR3QygUDeTezUvjKBQLKTUsxFNIFAWvsuDUY2gUCkDfbaKD+BQMpmrWlaR4FAYCSM8QVKgUBV1zlawnSBQClrahhwd4FAXmfdX1WPgUDU1Yf9D5KBQFlSEOeRk4FAgBFifJycgUCmLLyDR5+BQID8ZZVKr4FAQEPXxPjRgUCS2dI3/NWBQJUEia7s+YFAqMQ+p/D9gUA+yw9t2BiCQAykJdoGPYJAtuPiNVw+gkBbIc6Ksz+CQNY7aq5eQoJA3LW7TDRigkCeUuC6N2aCQC8PaQNDiYJAfyn2iEKRgkCytDR1O5mCQOjWaJ8OoYJA6B0H/TmhgkByEEnVyqKCQDCaFbDrxYJAngtT5u/JgkC8zDq7ftqCQD6OHFCC3oJAPj0WPOEBg0CV2D+R5QWDQIYom2V5EYNAVqdCW3kZg0AAl3XZciGDQMi3f29xKYNA9DSmmMSBg0Do1dHMx4WDQFbNCn68iYNAVtcjdsGNg0DZYH94ErKDQAbznasVtoNAcKbWrxq6g0CcMtwtFL6DQNai4i0fxYNA1OK2asvHg0BIeEUKy9yDQBO58aD/aIRA4CeIqrh1hEC2+aAEyneEQHI6dlx4eoRAQp4JHCh9hEBgfVp01X+EQMMbQJNyooRAT97Y+mnZhEC2J/MRaeGEQMKcQzNi6YRAvMweezXxhEAp8xbAZPGEQAG9tJ2K+oRAD9KvQUUUhUCGT/e/4BWFQODCS9x6F4VApR8ORRUZhUCph9c2sRqFQMlIgCegYYVAaM6tud1hhUAgpFrpn2mFQCo7/oaZcYVAYGALSZd5hUDiYkADOeGFQCX62oms4oVA9g685tPihUDd8gRFbuSFQAa3npYJ5oVAopoN+aPnhUAqWNUBaumFQINcbXQNmIZArK9J9baahkCzCUqmZJ2GQAAKmP7LyoZAShTQ1iwTh0DEx75UMReHQJJ492WRKYdALigWDpAxh0A8gxC7iTmHQH+tdE4Xa4dAdgsWlMexh0Aom2W8yLmHQPZXkOHBwYdA + NrgMGZxjYkAkaDOB0mFtQBu6YmAmQ3BAdsasq+mTdkCmwyum7OF4QHYkif9BpX1ApiEI+kTzf0AAF6kiBCKDQASajbIi64NAAEaXTLCqhkAtmhSCNSOHQA== - + - eXMDRrtXiEX7Sx5HVF27Rf5E0EVPZARGyuuBRVPwRkcXKaZGk7OURaKYokWxasZGvpvZRUUsV0V660VGh7qRRZHoXUV+5QRGfNjxRrMvvkXw9ExFYjdjRwU7gkbmQCZGOV0rRj98X0UtOchFJHp9RTDot0UZ4+5G3LWjRX99ykWZkk5GQDqaRlwWlEWtjGlFIF+ORQjsgUWCRLNFAIXERZHvlUVCIxJGJEZkR7wDC0YOIwJGZBXlRX2qh0WwAgJGFGVlRXODRkVJNNxF0MH+RcUpT0WAfS1GodWVRUN5xUUVui9GZ8sbRiJGlkV5qq1Fh3bGRWabykUv6ZFF9EvlRa698EXPFZtFldXMRtlSiEVK87RF3O1aRjj5XEXhWK5F2mKhRbLNT0Uze8lGwRFqRV4sMUaY9QdISbutRoQibUVQDvZG2uzZRaU8gkUxd2lGU1lORtBbWUa7cnZFBriXR/O6OkdT/OhFL0C/RR5GlkU/FIRFbg7FRYWXR0ZNPaVFKbNSRcgydUXHP5hFJV5iSZhP4kcQtmZF/hkaR6DAXkhZCUZH3aMNRjcM70aAQntFizewRe8ylEbzZMBFAnDSRQ8Vk0aaxOBFD7+9RaIdZEVqiJFFpzWyRdmc/kUR4dtHqV0TRqHMa0XljOJGakbARSzA0kWz31VGhqvZRzJmVEfPoRVGKgIFRtqcX0aXI2dFpM+RRtCdQkbV8qtFbjFuRU9GpEWukQNGW1OiRY/k6EXuIH9FokVoSeaUSkijEKJGjaDZRy3t0EbKn5VG6xKwRQESvkXiRhBG7tbuRdlLuUY3p25KCOwCRjmA1EVLcFtJn3ocSNkFgEY9VeZGX/KERRkkhUeBWudFdxY9RqYG/0bqY+lFGNkZRjaDi0ZX7W5FilR6RZzPBEdNnCNGAbmSRjfXeEbb0IRFZCegRTdJPkaiH15Gi8qmRdVtaUZ+8s1F2qtSRYQ7w0UIT05GEEvbRYTHjEWLj41IP3NjSFxa5Ef/pU9HO46LR9wPAEaOUWdGMAmbRbiFhEVJUkNGuKJkRc2MzEbGe7NFy5yGRe3Z/kWNSnpFVX55RZB9rkUE/cZFPuKMRWdlEUadXYVF6WEvRvQkYUV9cfRFokYmRpQnvkXJHDFGEI/5RXLEikXEqQNH1i9fRruFZkZ6AntFz5r6RZk5HkZfFF1FdUMKRvZdgUWxGcdHnRwyR5TV1kZ2N7JFD3XpRXT9CEaoMVpGe0IjRpbr1EWMfoJFyrovRlVYlkWRz/RHmmlWRxJZBUeW+QdGnSQjRxRoq0a6oqxFEW2CRWHcXke9UAVHChwFRpHLgUVthnNFlkt7RV9QhkUagKVFLvedRRlAxEZcV5dGX6vpRdPMf0Wh8apF/zQSR2pceEaHTztGIZupRf/LikXCj5tFDXNfRZ3SLEatUPVFkMcBRvTnbEUexA5HSJWGRZmFlUbbQy5Ggd94Rd4JCEZbwrtFo78IRm8nCUan4a1FfUybRUtZfkV93XdFS3GoRYuWkUX4xnpFp8kDRo6FpEVU1DVGPAnWRWDzh0U2RGpFDtEdRs5EyUXcNKhF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - QSEZSG/BckAZU9gTO8NyQEi9vidD0nJA5PFBTlHickCzPdCpj+JyQCjDefVU8HJAyNwEeDXxckAQroOoyfFyQCJJyc0Q83JARkMeWs8Cc0B/N+Za+gNzQM4qtmG8EnNAqrq9DAUUc0DmcymcOCFzQEq6AujOJHNADPzmPHhBc0B0cVmSekRzQKItejWbUXNA5E7gp6NTc0DFNUkEOmNzQBbI1o4rbXNAzK8OO4Vyc0DGxppReIBzQPyScYRdgnNA6zqdpf6Cc0DqPEC/iJBzQJzp6QpNknNASpVVMveUc0BTZXZuuKBzQGivrXVaonNAu/66VA20c0BKMiZ3z8JzQGogVCsnw3NApIjRZOLUc0D2UjrVo+BzQLbZGJPQ4HNAtNiG6Tfhc0Ak+/rI4wB0QBRpf9J4AXRAv5oq40wTdEDGmoihuCF0QNEV2Y/hN3RAOJjCaMlBdECcWaJyIF10QCqeaea3YHRA6H+K/wdidECMGdfoInB0QMx5bupAcXRAPmPyH06BdECiVxY3FpB0QO5qhGTun3RAKnbFcW+ydEBIq2BGzNR0QEbsIZe34XRACONikY3zdECFJK1XXQJ1QCgRonadInVAePScoMs1dUCeIYA1OmF1QHdJmcd1cnVAsmB1SY10dUDCzumQrYF1QLDS3Aumg3VAeVTWb5uEdUD+TWT0SaN1QPLvGn+iqHVANkCULUvtdUCiWzEOp/J1QMhk9FNIAnZA3gSvWyYDdkCEEeHqiCJ2QHRUN3iQJHZANLiknkordkAeg1JsHzF2QDwghG8dQXZA2moTJnpEdkBHb05GzVR2QHj+UAbbZHZARE9tvBF0dkDG9X6cDbR2QLpiu5zPznZA185M+wASd0D0g/J9DyJ3QDFRZp/oJ3dAckHwEkQtd0D8ivotDTV3QACuvw6dQXdAelB3RpFDd0CT0+DmGkV3QN4X5GIGUHdArjwJ8UpRd0DYMljKkVF3QE5ju6R8X3dArCD/eY5hd0BWlw7jJ293QDS5z0efcndAIljqSfxzd0Bb4Gsk+Xd3QAwEjZBG/XdAdqEkvZ8CeECuX9lx5Qd4QPrqxjT8B3hATTKTs0ANeEBCumoibSJ4QHc7Dr48I3hA8MosjEAoeEAeZNzREUR4QDzSqT16RXhA3r8oS8pReEC1yVRGh1V4QEg3hLu3YXhAyKyHsIt0eECi24jDsHR4QI7+XEL3e3hAeG9gKqOBeEAukUJ6/4N4QNIihSSahHhA8KKX1k+IeEBonBvtBYx4QFxDcKepjXhApKbMoJeReEC6TIy2BZN4QB8hZFOnlHhAgJUMUgP0eECqrqkDjPV4QOebJx+yKHlAJkMYmwsueUDmbYpAYzN5QFauQuLLVHlAEpJ7/FuTeUAgmXO/v7J5QGVw5h5C1HlA4HjsJhD0eUBI2dx3KjN6QLjXY9wMNXpAXCOG/i03ekAe9F12Mjt6QOg4140aRXpASMT5ACJcekDc4T0sIKN6QGEKi6ENtnpA+4iFmBe7ekD6GQs/v8N6QMoBY3PGy3pAEVbCUM3TekCw/jA5ewR7QCZGjy5MFXtAdB4spGA8e0BIorNqjPV7QOy1v5PZAXxALEuOBJgFfEAOfBpW0BF8QEKClP/MQXxAWGI0IXBTfEDJPl4zdlt8QPC/8MYrcXxATyynjcWNfEBo9aMUHpN8QCi7tEZ6tHxAbiWkvYjEfEBt1VWWkNR8QNJaE7ZY4nxAEvQucBfyfEBe+faaVPJ8QFJIrhVMAn1ASZoOQEYSfUC08BGuSTh9QHp4KYqjPX1AgWe4lHx0fUBV9+joZsR9QAl3cod2xH1A+BxQKKbEfUCl1kL65cR9QOnHHfRdxX1ACyYPyPPUfUBgMHITKdV9QFBZOVb85H1ACDjLeQX1fUAkjpCWMwB+QBCbMJguFH5AUhlUAyIgfkDkxRx2PCR+QIZXD1x5NH5AuKFUggo7fkAjQG3iiER+QGjLeHxMdH5AJLI16ZCkfkCgl1aVJaV+QILNWByftH5ApeoW0mXDfkD6FjRD0MR+QK9q155ry35AiuZFRVvTfkBEkFPjYtt+QBwlHCTEE39A5oo82bhxf0BznTuQYpF/QEhdaRZgoX9AdjOLO5D0f0D73cmMaCKAQGL2UcuIMoBAmqS0GKlCgECwkRMrE1GAQP8Y7ocOWYBAUlPz6NxZgEAsuXbuwmGAQML6SllwZIBAHhS2aCdvgECT1p3Hq32AQNZ9qRMpf4BADqHsFx6PgEAceXDtE6+AQOImk3cDvIBA5kkhA3m9gECsqflXA76AQJoH1n5SwYBA3oEnm57CgEAmXwCRUsmAQCFHG6elyoBAfCmXjyjRgEAQV+nwS9GAQC09s26r0oBA9FTNj0nZgEAmk8esROGAQKoSHeVD6oBApoGSoD//gEAYSlR3PweBQHGRy209D4FAQm++fzQfgUBVIAPmNSeBQBw52fpzMoFAkt2PjL4ygUB2QnFURTSBQDQwhz5HNoFAtguDQyg/gUCVsZ+MW0eBQJ6djnwHSoFAFAYX6MF0gUB8u+QzbneBQNpHTdMceoFA8ItLk1WPgUDP4AZNEJKBQBIAF4mRk4FAVL+1HueUgUCM+VVAnJyBQHrUd0xHn4FAEFAwXWyogUBhya5QSq+BQKDUZuf40YFAksOW7/vVgUCxrN8yG9qBQPKuzmTs+YFAIM+7uu/9gUChZBMc5QGCQMvVtkbYGIJAshlJ2tUggkC/TG7xzyiCQNwNp/sFPYJAuDlIsLQ/gkB8wB1vC0GCQCKbMnTRWoJAJ/L8djNigkBY7MetOGaCQDjgaLw2dYJA4vS+UAV2gkBYPT0LQ4mCQJ9TBM5CkYJAiWOTiTuZgkBcDkDpDqGCQCKeZzE6oYJAllwug8qigkBQ853N68WCQIJlfX3vyYJA1oc+Ln7agkBFPjimgd6CQKxO+EzhAYNACD7BqeQFg0BY76pheRGDQAYZsfF4GYNAB8K43HEhg0AS2ilQcSmDQIgZsaLEgYNAInniIMeFg0Cq434ivomDQHqrhLTCjYNA5GeebRKyg0AKRy6sFbaDQLJhiy0JuoNAOAJJqxy6g0DV6KEwH8WDQJSMZMTK3INA+ZSQ5nffg0CaHLcO/2iEQLbUA943boRAIELsy7d1hEA0hwTbyXeEQLQz3VR4eoRAFOB+uSd9hEAOtd6/0n+EQODuqNJwooRAhMx7wWnZhEDKeYOsaeGEQMeX15Fi6YRA9o8b3WDxhEBIT5WA3PeEQIrRKdZEFIVAw2EPzt8VhUDvYcZGfBeFQJg0mBEUGYVAQKEy6bAahUAS9eJwoGGFQKCuyfLeYYVA3pwv0+BlhUAA0bfrn2mFQLR0M3LcaYVAYQXyMZlxhUDjZQ/HmHmFQIHF+6BAroVAWAYuKqvihUBCXkfe0+KFQDSJ65Rs5IVA5Cf8kgjmhUCfHuoIseaFQNUF5dG2moZAOhOfRcfGhkCG+JwkyMiGQFPgA8osE4dAgHW5qC8Xh0AtuguKMxuHQNhJoieRKYdAgeMuW5Ixh0A0omnxiTmHQE4FQWMYa4dAJ9EgM8exh0AIscCixbmHQA== + NrgMGZxjYkDs0KCvIgVvQOh00xhyUXBACn7VSfXBdUB2xqyr6ZN2QJjPrtxsBHxAW37j6BoyfEBdbNgGeLqAQC3uX565oYFAWBjioAXag0CKcn2s2eKDQO6fR8ll+4ZA7PiF3Fzih0DuzjXzEYSKQOPXBQuUeotA7v0jHb4MjkBHBdAnIJOOQKkV9xylkpBAIxrfKOYNkUAlBTe0wF6SQKMx1j080pJAVUg7TIJelEBv9QhS7GKUQIUKSlMSf5VAbMsNH7PylUAFIkFoaEOXQLVNTuvTTpdA/s+Ot/SqmEAZogTQcd+YQGIkRZySO5pAfueFzEpvmkCValifewOcQBOmLBG8R5xA - + - Z0IWRoIMskVfDSFHcVSKRT/65UV94YRF+6IPRjHzX0WcBJlFVqpbReLAMkelKkBGUAvJRVGO40aQltJFCrKARX9oRUYBvitFvMi9RTRSM0UYRL1FnKVQRTerAkcHRt9FupFORTduWkVKI2BHmgSSRuSREUbHKBdGW5R8RW/O40WxFUFF8nK7RSo9vkZaQFxF0c7yRYpHN0ZNnYZGqSJtRXXFPUWRFIdFHd5TRaOgYEXjIa5FNZ/GRZT71UUXQ1lH8rTqRRMx00VUrdBFfw0tRsAKS0UdlihFQuzVRVFjFUZxzTFG8aCORV3ZmEVFADZFiRtIRgl2FEbqr41FhJ1WRZpavUWqnY1FWf+4RQjOfUUMOrZFN2iwRRcOtEVczxxGcKqnRUB2xkZ4PZ5FEy6KRYEUmEbr24NF7s1BRYh06EXI9I5FRsq5RukOPkW4PBBGRw9aRW5PCUgRSNNGcEKWRYTUz0YsXuNFyv2vRV5NekYMglZGbTE4Ra5TlEUUhYtGbtZDRYTLoUXOMJBH9fslR2WpvEUF6vRFg/l5Raz8akVTMm9FDyY8RQX8i0UE6YNGoynCRWKjWEVgVoNFq5BTSRC4hUVv3/9HB5CfRcooEkcj+k9IBP0lRwB/xUWA2c5G2ZSkRdxg00UAY5hGUnuaRbUuCUacUo1Gwx8SRm/FH0Vdc35FEh9NRfR3l0XskgBGQqxiRfq4O0a/8rZHtKIwRvSci0XALKdGZU8IRgHwc0XB991FubwyRXqN5UdAyzxHTOwKRtcuAUbx5gJG0ltCRYcrj0YuAk1G9xKbRUu2ZEWkctBFUYc3RmA8lkXLhjtFiU4NRtqPq0VEU0dJ/RcrSCxfhUYxRdJHuuhHRRLjtUaw6I9GnFeAReW3vkWsK15FVyRbRXxIVkXCE6JFLf05RgZ2QUpB+JJF/ustSTPZPUVg3epHWNM4Rv5ly0bZwVVHVTzNRdvOFEaUzepG98/BRbgl/0X29yVGL5DsRpNeiEXOg8tFv2UiR2ZQGEaMc49GFG6VRW35pUUxi4JGxnV9RSycO0bEJoNF822pRbKFLUUKQHNGjpmKRaVSgEbxQM9Fi0VpRalcrUVPInFFEh1lRVj9tEWLADhFl1dARpzqkkVrdW1FwgNjRQJdjEWlE3tINPFOSKRrqUf2sD1H5b0XRWO9hEd4hcFFgBOKRmVfxkVZs1BF+iiBRv/oLUUUZ5NFMSsAR89LB0ZjgplF2hTsRQndQ0X2V5NFserPRflYLkV4vU1Fk1g+RjleC0Y1eI9FusENRhiqmkXmVM5FjWprRd++I0ZsfL5Fc8hfRUkwSEa9ZdFF6p5ARc3GcEVe1SVH+LKmRmT/gUVtFFlGpmmFRcDVT0U5gndFwXrDRSSlikUqDUtFuQw0RiZDl0UT5IZFx6s6RWPf5UfAMTRHxQDpRmGY2UVmRihGo73dReM9d0aWewpGGAbgRRaGkUX5lDdGGHGfRYfc4EdzbSlHZyvMRjyf4kVrDEBHtAjARs6N9UXQl61FkeNYR/u5/kaiZo5FkCzXRQR8YkVmYINFVkOKRVpy8kVXFUVFRFbMRUBh3Eb6LMVGle8TRjjsjkWbp2hFiRQfRwtXk0ZVgTBG7xd/RTpYkkXHV6NFpkXzRThmukW1EZ5FJN6SRe1pCUejejRFoBhERUXVZUYS8WZFFcofRlKunkWU12xFsOi+RZ4iA0YkVXBF0/xiRZCDbkUrQJ5Fr5qgRZVep0VvhBZGx/wDRqNaMUVQmktG6L/VRbR8pEXSWZ9FqBISRptOl0U= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - XPJhjG7BckCdkxYP5cJyQO1/oLM6w3JAxBQ9CEPSckAqkttWadNyQL5o2AvO33JAosZ2dbfgckA8pyWxUOJyQDlil0WO4nJAKlqfdFPwckCYyGWONvFyQOhMUUXJ8XJA0GbwqxDzckB2RX0M+QBzQNUs/DPQAnNAvuULUvoDc0AVmpeEvBJzQDyB2u0DFHNAZziosXkfc0Bu8uTLoiBzQER+Zw85IXNAdEz/+M4kc0CcW4/zRjFzQPZEn1S4P3NAItWlQnlBc0BSUg6EekRzQAP4D1qaUXNAnWHXEKRTc0CM3DbphlRzQBFDckAdYnNA5KKxZDxjc0Au2iPQKm1zQDxci/FPcnNALc+hcGpyc0CZ6lauS3VzQHrf+B55gHNABCfFiqSAc0Dw8e0QXYJzQMReryCmgnNAdH/gcwKDc0Cs53Kih5BzQMy15bVMknNAA+UOSPeUc0CsKizxt6BzQPTmJQpaonNACk+7qgSlc0BOp9xPtrNzQH1qo3gNtHNA4ekhxvjAc0BElj0Nz8JzQB+CHFomw3NAdOWjrZPDc0Dwwh7h1tFzQNaYpTX203NACH82g+HUc0AK1TAxo+BzQPDvK7LP4HNAwKh7tDjhc0BS8M2go+NzQEqGSK7jAHRAKE5XengBdEBsvT3juwJ0QGrx8A1NE3RA1oVBF7ghdEBM6RvoEzN0QHL1Dr/hN3RAbEEEgjw9dEBnFtuUyEF0QNBhJCeNVXRAjQPujSBddECPoqfCt2B0QKjIyL4JYnRAeuzK4FJjdEC4+9wUT2R0QFfgVJYhcHRAAt5Y5UBxdEBeD4nTOHN0QA4+uJX3gHRAb9JzFE6BdEDH4NKyFZB0QMW2otPun3RAeB+WTM+gdEB2yDcGC7B0QGpF4UZwsnRAGGt7a8i3dED5lVMWFr10QJIL0CfjwHRA4qjlH7jEdECO18eQO9N0QAbjMTbN1HRAwciNgLjhdEAZFIHBkON0QAWl9sVP5XRA6oe0a4zzdEAwHMcpXQJ1QNOT67gjFHVA7Be3oesgdUCahTCrnCJ1QGcXdijMNXVAZM0Lzt9CdUC2+uL6TVR1QIJoUwk4YXVAl99jDo10dUADm+I1eIF1QIJRUq6tgXVA1lfSAaaDdUDIDcwxmYR1QLC8pgZJo3VARrV3nqOodUAIh5ul4991QK0dHxZL7XVAMHWwwqbydUA6OCOoRwJ2QBUgngomA3ZAyrKE99EDdkBWbglZiCJ2QMip816QJHZA0qKnHksrdkCwixNzHzF2QDszY3AlM3ZAiLNTH1MzdkAs3kJyHkF2QBbIuwx5RHZAtgRbkQ9RdkDEH6jazFR2QMMfgpPaZHZAiPtwjlpodkA0Wjh8koN2QERRIOW/snZAIEZFQQ20dkD6nVvGzs52QN3DwuWQ83ZACElJJwESd0DhOZH2DCJ3QFb3OgvoJ3dAzoyBlkEtd0D9OaYyDTV3QK6mKRydQXdABlasj5FDd0DJMzzXGkV3QL5zlB0HUHdAkRW4zkhRd0DH2q0OklF3QPrMftx7X3dA1Fh1OpFhd0Deu43fJm93QMTe156ecndAXE6S6/pzd0ByLtX1+Hd3QJKR02Rrf3dA4s200XH3d0DmfMspRv13QJZF1MWfAnhAouQx8uYHeEAMN12k/Qd4QBI8a2VtInhAp5KZjjwjeEAu7nbQPyh4QITUoPkRRHhAf0LQl3pFeEAJBBBVylF4QHINAy2IVXhAcdv6Af1geEBtq7evtWF4QAF32lhndHhAogunrIt0eEDmsToB93t4QKDvi8eigXhApsoJuP6DeEAGEeSZmYR4QLyamCJPiHhA21dKGgSMeECab3OCqY14QHdfbk2YkXhAkh0UcgOTeECt3KU9p5R4QJswp0G41HhAnlcBkfzneEAGBe4lAfR4QPj7pl+M9XhABox1TbIoeUCf4IgoCy55QIpvzHf6Q3lA1BdOVsxUeUBiT8woW5N5QLLqGhxjm3lA6V1zVMCyeUCzW8uUQtR5QIxDlG/P1XlAkJyhWr7yeUC+V8Ed+wV6QOq9mVtPE3pAElAynCozekCAmxWxDDV6QPJ6UmEuN3pA6NOs/S87ekBwxw4mGkV6QOQ08JInVXpAgXw4QSNcekBxB3zSKWR6QGgeUskdo3pAPLJyQg22ekCkBQs+LcN6QBJ1e8G/w3pAcGfc6hjGekB4al4Jxst6QKT0oDHN03pAEsdXfNLbekAOkvb+ZeF6QOKgXkE27npAunJ5jRTxekCbqDt/ewR7QCWoMrRMFXtASZ7WVdIje0DycaF6WiV7QG5dlcr+VHtAyIgNNSOVe0CAxFInqaN7QOqRvyAU0HtADiLVWf/je0BAIlfGjPV7QFqPEFTZAXxAjlt12fIBfEAkuksJZgR8QKapSLmZBXxAX+WBndQRfECM3FcnzUF8QLnZZbluU3xA+Ar7bHZbfEDe9plK+nN8QJ6H3PjDjXxA+rOdIR+TfEAesn4BWZl8QEAcRzFKnnxA4CSRfXq0fEBqpK+AiMR8QKnyg7SR1HxAsO8lh1jifEC3WXhZb+h8QAMvek9U8nxA5g6k83LyfEBGpxKbSwJ9QIAYbalFEn1ArBTvt3ckfUAud34XSTh9QGJUnLKhPX1AFFbsG3x0fUCZJizpeZR9QL7g1eCaxH1AeoK3cbTEfUDvSeoe5sR9QIBnGMYkxX1A+elp9vPUfUAEwndC/OR9QLI3cOwF9X1A8t7fH5D1fUDIPakANAB+QDhBCvUuFH5ACKMJvSEgfkA5+MV7PiR+QEA3fm55NH5A8dkqOgg7fkCVR+ugiER+QMyKNZVNdH5Aru202lR8fkCUeWIPkaR+QCmYZ1YmpX5AMvjIv/OufkCUchfTT7R+QFT02XCgtH5AwhhR2mXDfkDqVBPL0sR+QHUQ/OFsy35Awnp1SVrTfkDDU7U8Z9t+QJjp22fEE39A6N9mY7dxf0BMmRKQYpF/QMrCY+xeoX9A7iX2WVSxf0C4IRWfzst/QFhtXjGf1H9AYfMRsTbvf0Dih1YT5CaAQGr8WZqJMoBALJA2vJA6gEAmHdSQqEKAQIcLsoXxSIBAQX5RMeZQgEAkBP0QFFGAQBsKhDymVYBArkFOhQ1ZgECmFo7/wmGAQMxAxadwZIBAksfs9SlvgEDnRK3KrH2AQNR04mOvgYBA6iUeYB6PgEDAG7eGh6mAQP4ALkkTr4BA7HmtFSixgED0batsA7yAQK5C/gAMvIBAwL+jGLS/gECuD3pwUsGAQGR28ZqewoBAkpwnrBzJgEBkCwZOU8mAQBcTMrOlyoBAsNPBMUzRgEBVZiAxYNGAQF3DDzeq0oBAAmRWk0nZgECR5OkXROGAQLAidtFD6oBAoqDKgT//gEBA82CQPweBQAyWgWk+D4FAuLgluDQfgUDb3cbG8yGBQPqpZX41J4FA0eRXmTAvgUBoZWhxdDKBQBysiu6+MoFA/YjYY0Y0gUBQ97ntRTaBQHQa80hHOIFAPGztiCk/gUCiYVbFWkeBQEahPLSbVYFA8V5VbsF0gUCZP1FebneBQJ4OrYBrg4FAKOto9QSNgUASaNKYVY+BQIzoI1fwkYFAyr3lxA6SgUBHv8BWk5OBQFbLWuE7loFAfwoKeVaXgUA0vVqMnZyBQId6q/ZHn4FAmq4bc/apgUCypXkKSq+BQHNRZ2FJt4FAhzeZE/jRgUDeXvnlfNOBQC4BAdj81YFANN8DERvagUARPwnV7PmBQF4zykbv/YFAcmKWbuQBgkBhJ+nsPBOCQOaSPEzYGIJAalzrVdUggkAU6huc0SiCQOE4W1dcPoJAZgHJwAhBgkBWfD7hB1KCQN71xssmWoJAcNnUnJxbgkDMdWUbLFyCQNjSGu8zYoJAwP8b1jdmgkAaBdRVDnqCQE3F+khDiYJALuqZ5EKRgkACeXzIO5mCQMa/KMUNoYJA26PTFjuhgkA5dcZ0yqKCQGAGspcLqYJAqDa7CDSpgkD78j6D7MWCQHaJICXxyYJAOLcC737agkCv0R724AGDQNlZ4a/kBYNA2rCoINoJg0Ag8j9deRGDQBmjHYV5GYNA0mdvt3Ihg0AO25NbiiGDQITgQlxxKYNAwu62W2oxg0C2+u8hxYGDQObkEJLHhYNAUA2B7L2Jg0CMwOM2wY2DQPiSlsESsoNAZNQkExa2g0C23PlfCrqDQH5eKpYeuoNAbjCadhK+g0D2A0BTHcWDQH9rdeHK3INAnN3ObHjfg0ACuwmXIuKDQIwtsZ//aIRAcpknBzpuhEDhtrj+tXWEQD7Q/urJd4RAqClTQvd4hEANHPg5YnqEQNzU3LZ4eoRAjtsSgRB9hECryYQEKH2EQIz88xLVf4RAo/sUux2lhEBGEC0Ay6eEQIJQVKW3qoRAZjoL7mnZhECuOLJSAN6EQNCyAIhp4YRAgn+tU2PphEAWWuW+NfGEQAraSz9j8YRAty2M+Nv3hEAIB7CVNvmEQPQ4MZiJ+oRA9tVF50QUhUCEKiBl4BWFQD5Ao1gWGYVArDhiJ6BhhUCi2iz33mGFQBi++U3iZYVAckynRqBphUBQrs7tmXGFQEVFxOqwcoVAV3WbuLNzhUBBwosemXmFQFSNuLRAroVAdnW5VUOyhUCS+payOeGFQBTemNCr4oVAL5FFGNTihUAOshJPceSFQM0vHP+u5oVAjJF2kmnphUDdQQo2u5qGQCuWJU3QxoZAivqDtszKhkDax4Wyy8yGQGrr0KUtE4dAuzOdKDAXh0DFvBCaMRuHQJwJ92GRKYdAsEqH75Axh0CL/uQYijmHQNy7tSWKQYdA4AFGXhdrh0Df44QiyLGHQFv9BAfJuYdAGt/DaL3Bh0DOxHD6UAKIQA== + NrgMGZxjYkByWoXuS4RpQF7jFv1j4m5AlLmMQukSc0AKftVJ9cF1QCjPkTRNUnlAV8AqFo9De0A= - + - M3P0RX9zD0WYIRVFhqcDRyEit0QmvhhFcjX8RC14nUX+QZVF1gNMRWsGdUUN8WVFf8UPRajF6kTdPFFF3nomR+zsRUbotp5FDHsjRT5S00QCDaZGOZC5RQT55US2VOhEWNpfReNQFEZDMdxEZCR6RZzbukT0D9VEDg8CRewW2kWEzdREiQ8DRVZxJkWTn9BGmV4ARTMCnkVaaTVF2krbRGmXOkX8g0lHbfZqRuhcAUa2sQ1GgJQIRbk9TkU/nhlFTkDIRKdJt0Xa7AZF/n/4RJWd3kRsZ+BEU8SDReDWUUa9Bh9FBoDSRaa/5USBcCVGLJNYRqtaJEW2yzpFo/XgROiAIkXprHJFuWsBRTV71kT+MONEYc+LRT82x0W2IINFZ6niREb360Ryw7ZFz+NFR3NlPUWgIDJFt8TvRSWLoUX0j99F2dHlRNE55kRU4qlFTNJtRS5N8ER7s9ZElEZmRRqP5UR6vvdEAjYhRWOi+USJ18dEFW3ZRQtg60VczPpEUgVpReFmH0ZxGChFo/7FRAj/z0TpdkZFrlcaRm4qAEXagK9F7rxwRUJ4B0XuT5tFgoYIRTZIykS61IxFn0lCRS0fhEXAfolFRZbiRAs+UUXdMBFGoNirRaxjxkbf6fhE5A7lRG5kmUXwTJFFGD4BRU30CkaDIQpFFkvTRLkjIUWTVhVFM+meRSTvDUXWo01FHFmDRio8Q0XOHghG9z+bRbH17UdKr55GOPtSRUUwwka39cdFw1sjRX5maEY+OwxGm2DiRNsECUX7wlhGf9GhRZLjjEX2gwFF7YIYRd+8p0d+aRlHQFSSRZPsmUVdFlFFbgSXRaCqJkWDFIdFXXdCRhsIs0WMb3NFNRLpRLgB+ERjSp9FSC1PSYXNzEebfydFmrUFR0ujUEiFJypHpfGuRc0TqkYS9G1FQWi8RU02nEYEswFFlin5RAACgUVNb+1FEuVnRs8VyEX2ce1ENGe0RS4TNUVjGs1Eil1WRZgR50UDweRErKX3RPK9FUXh8f1EtRHrRVp33Ec9TEJGVgZARdCF50YCHWFFkFKDRUHsM0W3q0FFqY7zRUJ9/ESPVaJHlDEBRepVCkeAhS9GJFAQRSf3DEUF4uVEdk8URbw1yEUeriJG8X/mRGWbZkVXxVpFCa8NRVi+8kR9lTdFKR/cRLbWkEaP8i5GQDNYRdQbDkUdoapFFoFHRf5EjEW8mtZFnqoTRSpMbkVL8M5Frv+4RZWWAEUwTSxF7/vZSCA2ukfTIf9FJMrLR6kd70Tc06xGdqBORUf9nEY67k1FgBzrRHqJnUVIrRZFDBUaRTYgGEWCHKNFIRwjRrd15km5chpG9dvJSHd4g0cYwNhFo0jNRBbLk0YNur9Gl7djRXWsdkVRh8lGKjsORQqniUVH6dpF+f1tRcwMCEex6CBFwDcURRQoPkUp5fJF5T1aR2ZMmkV5+q1Gp89BRTV16UTUm/tFwEmORQSk4EWu21tF+ugPRRiVNkVcQtJEzVLhRFmr9kRJtCVGbvozRd2RlkWPIgFFnxE8RXyTV0YxvBxFiaOkRZ/1EkXQsRpFNEgSRagrZ0VPfRFFUwghRjsn1UTqOZlF2KUBRd863kT86NVEi0rjRE33hUhqAR5ImaoURTu+7UfLOA1HNVyLR01dl0Xk0XJFvyBLRvvDokVXuSBF0stPRijWVkUXC5pFj/fIRjlC5UQUT9FFy3cURSwpYUXUnMZFnY8gRbTtCUVofP9EnQV1RUWoFkUzYPtE50LWRaOKPEUU7PBEmRgIRfnY8UX7G9xE2xrtRIGuB0WhgQlFrDf7RAxKuUWO3bNFygm3RI8bIkZfVwBFzIRzRUC82kQgqDVF0JC1RR8O4Uagi2VGvwACRTyjA0UBiCdGUNCFRXFBK0WDFWZFhOkiRVdU4UQ09/JEknXfROEuJ0X1ABFGnWxqRROC+kRKqMBH4nIgR12ly0YMCrpFadboRcg20UUnYO9E8x8KRVE1M0bs6XFFfkaARdrWCEaTdZxFXu8JRU/g80ciSk1HU3D8RoqERUU8QfVFmM1bRVknH0cuqJxGhtLeRTiiQUWzyTNHMMrNRv2IokUQS3pF5GcXRT9SI0UUUnpFwlw3RXnZIUUPKO9F7EzvRGVWREVuS9NGPC8CRXJWoUVHIpBGwtecRQEhykXXRC9FIHEBRWz7PEW/vOtEx+EQRy1z/ETQ7oRGNPQtRpiaiEWC74NFX2CcRWMQ1kSU7nNFDE0GRYtvfkUK6I9FGjQBR2thf0WXS1BFNT+YRsRPF0bC5WZF1zAARYcbUUXdqjJF2nwfRVDOKUVhOmVFc5WLRe2ja0V7jVlFqiT7RMinBUU3S1BF7PQwRQg4MUVHGgJG8KijRSEbB0WVkhFGoQupRUoai0VhdhVFfFtjRaA/EUbT76lF49cZRQ39HEU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 5LUqOW7BckDrXEmvxcFyQMcqEi5PwnJAx+H02eTCckDitchZO8NyQLbEVrnGxHJAZpSKnVrFckDW6rpI+tByQDqVF31D0nJAsm9iwmXTckBQ75UVj99yQMqUgT/P33JAVO09ziPgckBWCGw0uOByQHqT44pO4XJAs4GUSlDickCKUteUj+JyQP6t/HAk43JAGLoOPlPwckBmyx/TNfFyQCjjDefJ8XJArvOQqBHzckCEN3GdtfNyQJC6EUCk9HJAAw8wgMH/ckAaYhhjVABzQAZ4tvD4AHNAzozosIwBc0BaWM6+OQJzQPiG6A/SAnNADHd1t/oDc0AqGhmwdRJzQMHxhLu8EnNAqqa33/gTc0Atn2aoBhRzQCbaoIR6H3NAYJJ5JKQgc0Cca+d2OCFzQDiGLnvKInNAhMh7Lc8kc0AEeMUmSDFzQBoWk7ILM3NAINuE1tYzc0DSYCs8zDRzQFxdAta5P3NAsM5Js+FAc0Bb8KdieUFzQMREf2x6RHNAbJZ9yptRc0B2n/F/RVNzQELx9YOkU3NAbXQOxodUc0BUasZS+l9zQDScDAsdYnNAyj6sOztjc0CeaNN7jmNzQMA1fS4sbXNAxPt+rttxc0A4RROBUXJzQET8dcBocnNA7Oelh4hyc0DUrUeounJzQC4IQo+2dHNATsoHvUx1c0D9aIyAeIBzQD3v55akgHNAXE8a7w6Bc0CSSBMOXYJzQNb2imGlgnNAwrjD2PyCc0AwjnPYWIhzQB+ET4yHkHNAxrxnOE2Sc0BmivhMzJNzQA4Zxs5hlHNA4Fc+g/eUc0AA5IeiuKBzQF67H0NOoXNAKJnwc6+hc0BXRhKZWqJzQOnJ4v0DpXNAUsEFTdawc0Bs2qWmNLFzQI4NG3h5snNAkenYyrWzc0Ca1I3FC7RzQOoKxMz5wHNAfrahUDvCc0AXNQFy0MJzQAA0cmgnw3NA028nnZHDc0B4Jhaj19FzQLV3Hzji1HNAO+00dKPgc0DU9wiAzeBzQKqT0mI44XNANlum5mPhc0Bgo+HxfOJzQGSve7cQ43NAcjgmdKTjc0D2NaMEsfBzQAI5qTFm8nNAfMhWWjb0c0DkVesz4wB0QIQLUQp5AXRAoKX+YaUBdEBGgRj7uQJ0QFyu4MTjA3RA8Z62I5URdEDwMM/STBN0QADww29LIHRA2/8aT7khdEBQJNLeZSR0QEPUA0VSMHRAGC9erBMzdECy3DtB4jd0QM9O8Xo+PXRAsARtecdBdEDsPqePolJ0QIYkapn2VHRAQrqFv4xVdEAqMW83IF10QIJLPnW4YHRABEsFWghidEBgjxnAemJ0QCeKP6lSY3RAgPJkk0xkdED23D8eInB0QEx8rNFAcXRAYqhRT6RxdEB6BoR8zXF0QNRK5mI5c3RAjitWxaF0dEBJ0zc+NnV0QEgLL9lDgHRAHPRjHfeAdEC0iwd2FoF0QBYRVRFOgXRAnJZMWY2BdED/q421JYN0QD5za1i6g3RAqn0+hRaQdECAQrphbJB0QJbk+owakXRAoftJ8+6fdED9MLypo6B0QAzu8s/PoHRAIRZ3XoqidEDmvluqD6N0QDvMoj0KsHRAuOa1LMKwdECWlSvFb7J0QJKYle36snRAyH1/bcm3dEDLskjT2790QDFq/vF4wXRAiNOb1ArCdEC21i+3TsN0QGoenvC2xHRAj7fnf/zOdEB/v2Ab4tN0QNyJBXl11HRAGN0lDc3UdEBQ94VHuOF0QH/ZFquR43RAb8Gm9L3wdEAH/hIljfN0QJBXJHR39HRAXjGwkqYAdUCzbcXkzgB1QIw9T5JdAnVAyhbgraQCdUBgjqQymQN1QHjJ7ZPOA3VAvtFhaiQUdUBMrSlk7CB1QPwMz6ydInVA/Ffj1qoydUDu5bsGzDV1QF4pB9d8QnVAlGteyOxPdUCsC1dNClB1QNOduSmCUXVA+xBxPHhVdUBFrYssOGF1QLBc03H1YXVApNeiGHVydUD0ICVEjXR1QALBi+TlgHVAK+NU/3eBdUBA4hZhroF1QPtVZVbngnVA4KdHQ6WDdUDy+5EHm4R1QHG/NOK/kXVAhdo5G2+SdUB+8HY3mqB1QLTTBeFIo3VARmWjJqSodUDYQ5ECNrN1QD6+yEfNwHVAUOXrd/jBdUAGsOR9zNN1QFTdzCLl33VAzNX/rAjidUBvRcR8Te11QIgbiUek8nVA3CuxrB/zdUBwvp4vSAJ2QH63eF3OAnZAMJ/CwCYDdkAEGa4R0gN2QM7OOV9MFHZAl2VAMw0WdkC/1bkqiCJ2QHZGlGqQJHZATMGiUUordkAD4YHDHzF2QPK+1vtSM3ZAPGU7Ep80dkAuSYIGTkB2QJXMUuAdQXZAG3j1osZCdkDvsMiUeUR2QFRHRZ4RUXZA+B2+L81UdkCYT72PjWB2QMvLq6ogYXZAAzFTulBjdkBmwX9t22R2QD6UphdXaHZAAyAsVRF0dkBwnOXhYoF2QJQ04x6Rg3ZAEjo2nruTdkDITVUYwbJ2QHAbaLoNtHZAVJAEV73AdkDXK4cgT8F2QLkHNo7PznZAxoyer5DzdkCWTzscMwJ3QNbaGuoAEndAzQUwfw8id0CsRbgZcyJ3QKqwwBjoJ3dAg8MkVEMtd0BWqvndpDN3QKirSCENNXdAFgXg5pxBd0Bw1HUtsEF3QD4mu22RQ3dAuDXQBRtFd0BOanDsBlB3QIbfwwxKUXdAduCU75FRd0AX46hKKVV3QAqYB1h8X3dAicChOJBhd0AwOZ7uemN3QIIxYk0mb3dANiTGhZ9yd0AU8z9O/HN3QKBhcNOQdHdAVDCK9Pd3d0CbHzSFQn13QGYPOFprf3dAtN7REQmEd0Ae35XaTJR3QDfDhYD3oHdAGpJEgpu0d0A0TzwZjNZ3QFTjWDnr8HdAvKJT+VPyd0B64mbNePh3QP++GM52+3dA8eB3Xkb9d0BAqP7t0v13QHUXue6fAnhAXa8IrOcHeECYP+MD/Qd4QM4pMHlGDXhAiDJ2PW0ieEAIyIDtOyN4QHcpgNnTI3hA7UMj1D0oeECCx7y9gDJ4QE4/SIBJM3hAoQrs0wlCeECgXdejQkN4QID8CWcRRHhAuJpw7XlFeEDuw6aYyVF4QDZjmiWWUnhATup684ZVeECe25eQt2F4QCIqOcW2YnhALCQcDqxxeECGx7sgLXR4QCqRsmFFdHhAQE0SXFF0eEAUbib9ZXR4QPzkCJKLdHhAKPhQvs50eEAxeQYd93t4QK51DRqlgXhAHhkyff6DeEDPyhdyd4R4QMv0QeOZhHhADJwT+E6IeECxep47BIx4QAzI4g2pjXhA2lB1H5iReEAw+nRkA5N4QDJT0B+olHhAjEeAZzyteECkaBzFzcB4QIAj8NYWw3hAfdd4hB3LeEDWowWdrdN4QAr+kMC41HhAa516nS/eeED8pJ3ioeJ4QEkzWS5l43hAQM9UkQH0eECVxNlijPV4QIgWbAF6A3lAYIeCF7MoeUDYZXHuDC55QJF10E1kM3lAZwX42aRDeUDwBtcb/EN5QEyq/NjMVHlALxum/0JzeUA6eLYgXJN5QEBhJsF/q3lAsiMAaMCyeUBUtCBeQtR5QGcXzurN1XlASOF2j03keUAo4EE9qe55QCrx/asQ9HlAuFi3Tv0DekD0EPI/+QV6QInTnAVZG3pAHtFm0jkjekCC4hOOKzN6QLbjR20MNXpAxNstxi03ekCyDpfAMzt6QORDaXcaRXpAHHdEkChVekAyhP0uIlx6QCjlWSEtZHpAP6U/XCZzekBNofwVKHt6QC4Pjesbo3pA3ftQkg+zekAyaD77DLZ6QIYJNRwRt3pANM4lCr/DekDHN1m/G8Z6QEpRgUPGy3pADtTEfM3TekCDJ+J2ztt6QD2HJN1l4XpACs193jrkekDVNahANO56QDclQk8U8XpAOEKT1l3xekAXme2+ewR7QFKNMtsrDntAIlOcYhIQe0AmZgOeTBV7QA2Nz4lZJXtAaiE5ZcIze0B50NuiYzx7QF55gOz9VHtAjU0ABA1le0BcUdW/gmt7QP4Wguq+i3tAlNWDayKVe0CIujwFVZ57QKCDhI2so3tADpD6JnjGe0BEWNgTFdB7QL46ee7A0XtA2Re8BSnke0Ct01uIjPV7QPj/yl7aAXxAvHEjq/YBfEAZpYz5twJ8QM3arZxlBHxAgdfL0JkFfEA+o9vyixF8QI5PvSHREXxAKJBcd7oSfED2zjcXBCR8QIuIf0/NQXxA0GU2+9pRfECS1Im1bVN8QCLiXU12W3xAVqHVKWljfEDzZbkiKXF8QITA7RH7c3xAyP3LdsaBfEAvrA9EHoh8QMJMczfDjXxAHcysHB6TfEBKh+a9fZh8QIeaXfRInnxA1G4DynmyfEDlVLVCxLJ8QE2EDKLts3xAHIxGBnq0fEAa/uK99bt8QNALOGGIxHxAWnQgJ5HUfEDXlK7M8tt8QMxSrRVY4nxAEHC5+RHjfEBVFrIoauh8QJ7MQP+Y73xAMqDP8xbyfEBI1eaAVPJ8QHQ+64hy8nxAXtYnUgACfUBMou93SwJ9QDiPRpNGEn1ABIWrrv0TfUBJtmJLeSR9QBwbhHibM31AjC9LjEg4fUC37SgQoD19QOxOjV18dH1AHnjoi6t1fUAY2lRx8YN9QEt9kfEtw31AMl/h4V3EfUCGqwwWh8R9QOAxdYiWxH1AAoc20LbEfUDQm6tt5sR9QDDDEGQ+xX1A4xHLvW7FfUBcCDRHqM99QAJ1Kco8031AXPt8lPTUfUAwlOer++R9QHvUjATm8X1A6NfPZwb1fUCrjDPvjfV9QEJ9Dko0AH5AVuDEPEgQfkCPHYOILxR+QLDa29s2H35AgOEvpSMgfkBM6pD9OyR+QPqm96Y7L35AkZZ/yd8xfkBwXnlEejR+QG8HmIoJO35AcjHNSw9DfkAeeA8ViUR+QPvneeXdU35AhmC58E10fkCcGMiSVXx+QDmv6qzAg35AWTHtNVmEfkBTCCaDkaR+QCyXBo8npX5AoIl6evWpfkD/F/Ne965+QOPuL4tPtH5AUqG5Np+0fkBABXlBZsN+QJO7FLLQxH5A/B8ASW3LfkC8IgIzWdN+QAiHZVB5035AAsqUsGHbfkDVEWz9d/d+QFRSh0I/E39Aa7apmsQTf0AFVivYSht/QBXzBD+3cX9ANZCLV7WBf0BOEJdOjod/QGRqlfdhkX9ATGt+ZpeTf0AHOzwbX6F/QOzvmYrLsH9AooLbZlWxf0CSkUpsy8t/QBBUMuo1739AvBW9vWrzf0B/CORleBKAQKaeIyXkJoBAoKBkWI8pgECBM5IOwSmAQEeDUBCJMoBAiJPdl/Q4gEBzlOK9jzqAQDIIjcinQoBAADb2nPRIgEDEN9dD5lCAQC5SnwIUUYBA8ICzvKVVgEDSEmCFNFeAQIChF/fnWIBA7t4L7A1ZgEC60rvSHlmAQHGFM5PeWYBAnmacMMNhgEB7+k5IcWSAQIgCGMR1a4BA903d5ilvgECerd3M9XGAQPysIhCsfYBAMc5yka6BgEBS/mvyk4uAQJaiL4Qej4BA5rAwIhuXgEAxhd/Cm5qAQCXjWNYbn4BAZbf/djemgEDxOXJT8KaAQJxs4h9mqIBAwuF10YWpgEDCVtN72amAQMKG6tWJqoBAYiTAxRKvgEBsDse1ta+AQHKpIhcfsYBAHH+0MpWygECApCxzw7SAQMCtZEZNu4BA2He26gW8gEDgkpVQOL6AQOLt9Q/svoBAmQ6ahFLBgECRGzWYnsKAQHZIFF7vxoBAn/heIKfHgECY/RE4U8mAQCqO/WmlyoBA5jHnGAbPgEDAy08mTNGAQJgFGHFh0YBAVkgu4qnSgECnY6OrStmAQNn6n6Ou2oBAiDK/kEThgEB2g1pa9eiAQJxR1YND6oBAfD8FlUvvgEBGU8hwP/OAQNnD2OI//4BAKijuGEEHgUAa0pu0Pg+BQMSKf8w0H4FA3Vs1Y6wfgUA8ty8L9SGBQPgsAvWgJIFAS7Hn1jUngUAmzpsgMC+BQHTq1lS9MYFA1JyVOnQygUC50XKFvjKBQPzCE5tHNoFA7PsBEsY6gUCuZtSXKD+BQDwT9L6bQoFApNUA0clDgUDueuUqJ0eBQOr9K4VaR4FAPE1RLulJgUBw5b4/CkqBQPTCi4nmWYFA7yvOMndtgUDolhpKwnSBQM0dDp0Td4FA2r9uBm93gUAy4+j1GnqBQOLy8QkqfIFAjCjwfVaPgUBiT0R6EZKBQAXAOpo2koFAFjZiW+iUgUBgh9/UFZaBQPl+uFQ+loFAfisvB1WXgUA49sC4aZiBQBDOIQWdnIFAQn60GEafgUCoqfPPWZ+BQKJ4amzloYFA5ii+bfihgUAUjXH+3qKBQAozhWhUpoFAxWxtKG6ogUAOAKkG8qmBQIyp3IFKr4FAjnzvhWuwgUBGFnQ+SbeBQEphyTb40YFAyZMsAP7VgUAcI1juGtqBQIadoUsg3oFAtE3Nmez5gUC6I2B38P2BQLiem9nlAYJAfA7FavoBgkDXoe8yngSCQOIdOy8DCYJA3tPz6AQOgkDKbSywPROCQMqK2QjYGIJA2BzpH9UggkBtx6XM0iiCQHZcoFcFPYJA/FmwE1s+gkDx6xvlDEGCQPfCUKQRRoJAtlClJkRNgkBSTRfJDFqCQANcnPOtW4JA8QyEdixcgkDLanVOO12CQLBebFQJXoJAuu2CjzRigkBRWT4XOGaCQAAMP+nQaoJAaLtxlydugkAYTPfxbHKCQJJdo3IReoJABueTXhJ+gkBE+3AQQIWCQBamSCxDiYJAwK22Yi2PgkDYZVMrQ5GCQJQt2EzWkYJAKNKN8DuZgkAZ61lSUpmCQFA2xTAPoYJAdH0O7TqhgkDwkUg5y6KCQNBQwfJnpIJAj440NwupgkCMy3OqMamCQOWL6uPOqoJAEJ5j9AaxgkD0xx6E7MWCQGz2MBXwyYJAqlD3EenNgkDdCLDVftqCQO6HiBqt3IJAbCf+c4PegkCo1h2uf/OCQIisDOat+YJAzwBgQuEBg0BY/CiH5AWDQHLbM2CpCYNA2A4SB98Jg0BF22J/eRGDQFpnr7kiEoNARQXOzzEZg0A3R9WNeRmDQILzpz1eHYNAnoRp2HIhg0DanGAlSCWDQEuChxhzKYNASinke2oxg0CepNa7HDmDQDsqMH8fOoNAej1qJNtUg0AjgeAlWV+DQIb+Xc3rcoNAQmsru8SBg0DkIahsyIWDQHBH6ZC9iYNA+Faiyc+Jg0Dysl37w42DQIeA5ijIkYNA1MCOpRKyg0D+Qn25FraDQBZLzaEXuoNAFEeOow++g0AIi1nRG8WDQH5BkjfNx4NAV1J9Jcvcg0DaMIxdd9+DQFBs29+84oNAw4kOXBDqg0D67OMdlviDQHPcIrrrJoRAEFRuVZdShECkI8wk/2iEQEbMU6r+cIRA9DlRLPR0hEAj9AUTuHWEQHJwy5rJd4RAbNe6Bvd4hEAOtq+8u3mEQAC7XIhceoRABQZbBHh6hEDRSTejDn2EQHLPAQEnfYRARnwGQLJ9hEAKWxrPu3+EQIxEb4vUf4RAoqDfe3GChECyabovB5uEQL+pPktxooRA5jN0oRylhEBwjSzyirKEQHA/UlZq2YRAwvV3F2rhhEBidlyh/uGEQMZ0YM9i6YRAXvm8mzXxhEAX90Y2YvGEQJZKKg/b94RARmwNNjL5hEBcrRVqifqEQN+htHU4/YRACgv4u+AVhUB04t0OeReFQDQDmjsTGYVAxNsete9AhUAovu64oGGFQOcQtiDeYYVA8/O+o+FlhUCQK78On2mFQDU7xariaYVA/sUksJhxhUA+RXY/sHKFQF+VsOizdoVAfB3ThZh5hUAMSX3kkYGFQCn8NaF9moVAjJZPNTuthUCwk6upQq6FQIho7MlEsoVA11GIvDjhhUAqnEaMq+KFQJ8vnGPS4oVAGAO1IQvmhUAv9fGZr+aFQEJR92Fp6YVALm2eifoAhkCOA59O+wWGQKjjIkimIoZAFv943Sa5hkBJhxaI0MSGQApEKxHSxoZARrKfZ8zIhkClW4vHIMmGQDAfzdHNyoZAtFvEajX/hkBWgDz6LBOHQMprBAowF4dAwp9EfDQbh0DK+YQ9MymHQC608wmRKYdAfNHRipAxh0C0XFH+ijmHQC5vZS8Ya4dAHFRroh1zh0AgQngzx7GHQCxGeHfGuYdAT8Pt6b/Bh0Do5ZxWyMmHQA== + KBZXds7jZUAmWGpEdaJuQKmavaDqInVATs6td+pxdkDkPDZ2mkN8QPHun+52UYBAaf2aaQS6gUA= - + - 1HHLRbZbtESwKrpENAi9RC0hj0WMXcpE7vvQRDbj7UR53RBHsZHVRMPic0THGBZF+AQKRbVuKEVFTplEfq1JRcjqoUXlAclEcVFsRbMqYUV624JFs0ZxRXeRoER5lXtEKjkkRQkHY0TBbwNFZv26RGH3s0SPkGZFqX8zR3Wvm0RuHFxGTmSXRXIpoUV8MxpFc4AARe9QskaANstEpTOcRYQhFkVR4s5EWavJRNgIp0SN+DBF87PTRFRdRkXekiNGxIUERU0zvUReC2ZFVIWkRFn0qUSR4slEzqrYRDLcm0TvBVBFBRaZRNymmUR0MW9F2NjGRFTUxkQtOeZEcHkRRTBk2Uak/ABFDKgwRV19oEVwkcJFQyApRVwA8UQ+F+hECB5AR7JW6UQTDTJFJk1nRvaBEkapqotEuKq+RBbl5UUMnCdF4Eh0REL5pUT5kKBE5DBgRag+5ESntsREtTKmRJvVykWdUAxFz9JERVGCbkUnw8ZFYuIzRi+zlkTDnexFFUGbRDiGyETdg7dEoRX/RHSLokTFf5BElmAyRQ4h30UEaYFGBeixRED8LkX7tbFEY4eFRK6eO0XtJtxE576eRANYmESuQbNEhnX3RF/A5EQiPb9EnKrURKdvjEQDoOREbIkpRUGFEkXfMZJFnceXReBpk0RIQQ9FiGGfRL1wq0W8EitHgJ+NRCqrqkSuivVE1IcKRRPsCkVZ+FhFoOYoRfFTa0Sg48pFR5p/RIHXpEQRGKlE1VrIRbgU0ERu1aBE3USRRVNky0QyztdEeY6eRCUXIEVpoZBEEZbeRIk200UFt+lE3ZosRbputkRbyyRFP/aTRCfs50RjGsxEzujRRKDmxUR1pN9Epg/kRJ9NJEV/rqREgMvJRKL+3kWbcuZEVtmjRNktAkX8b9pF3CvJRBq0lkQT9sNE8c00RQroUkU4xzRGnRKVRLaJSUWR+itF9PyvRA7NwUQoHZFEqoSURPkATkXUOq1E+3XDRHLeN0YsJptEGwG9RFN5h0Vrj55EhZyWRSJEukSaY2tEv8SwRP7PmkQWaj1FU2kcRR1pmURcMKVEnsA7RXylmkRqRYdEWqAERZlMnkWI4bhELWRfRHJickX0d9FE37cDRSj6CkVNPJpEZX/ZRKf4j0WnCvVFF9/RRTy7nkZe4hxF5H+PRPwVi0SAULNFy7DiRExbM0UHSVhFvYYxRjqBlkTXTqJEsjeFRJVPGUVbKgZFI2qYRSgBoUQhUP1EhyjURPYE+UTe7LZF42iWRN4zvkQ45XRFS/erRDnWy0QNsY5Gi8BGRZWv2kQFoidGRzkvRUsyAkWI+edHHE+bRjeYhkV/UVdFvbXfRhdcjEUH24xFwv5jRr+ZNUVV9wxGNjVSRcpimERp4htFUnQeRhLcNkaAObBEkfUJRp41DUUb28lEgYigRNxEkERfaZNEHXbKRCTjkkTpd39E2rSWRKZ0l0RCR4xEBWWiR+5Bm0TjtShHVF65Rb8GokULx5lFBzouRRWDIUa7nKZEJ5EyRd0ia0Shod9ETO2TRCZgrESPpoRF4I85Rl7WhEUpQANFFNwZRcy3LEXcz41E5GqBRFNpykS5EAhFRmYORbIpN0VlN0FJTIAbRYzAuEcvPStFA/cYR/V2j0RNFkNIgSgfRykOuEUSDc5G22MVReprqkVo0YVGisG2ROXIzEThpgJF1giSRIDhqkSesTJF8heWRJATpkRQ2pVE0JKBRTFKyUUyyddEz1ctRmJyrEX0sTxF4P4ERSSV90TM/JFF4H6LRDinOEX2065Ez7GARQmbr0VAvctE/XuJRAiulESzzwtFadXIRFVMrUSEDI1EA8mFRKXIQkZII8BHXaBWRin6IkWhicZGiq8TRXcC/kVMSbREojeERJWAiESgvoZFwZ7VRJL/90UM565Ez6+gR5/oDUXxpg5HU7DdRQHd6USpPtlEBjyrRMHOl0SIZe5EJpL2RMsWs0XB6YtEEtTiRO9mMkYyCCJFt98aRbEs6ERhwhtGe2PaRBk3ckTP2qtELA8WRSlFAkXXGwdFF3uUREKsLEXLNLBE9D/yRI2uhUbyFz1GIMbQRFEBy0Q+Yp9EgkKNRZPCl0S3kZlFjBm4RGfdkETZVr1FmnabRLE4C0YyToBFDrySRApCU0WChk9FJamLRLu+n0Sta9tFHMCKRfQqAUU/VCBFpkptRAxGsUQFVC5FrJxvSKRds0SujEJHzah7RZjcA0VC5N5HesBxRfTX1USahnpE/T8rRSSqzkbVyoZFBF7nRKxRjkYUUjtFhELeRIaxKUV2dopEVbCXRYBJKkUIszFF2VaIRBUfokSXIgZF2kGQRMX0CEWeUPpEs2KcRW3Lb0ltxA9F13LuRFRyk0Qu+J9EV69PSOjqyUa/IYZE+m93RfFgyET+wIFGTHe7RKt3YUYk8dVEYBSERSfNSEXmTptEi/WGROnfpUYKS7dF7n1qRdCb0kVuY/NEP+T2RSfEgEXd3JpE9nmDRK47MUejh4dEcSzrRJvNdUXg2ShFsxD3RdkPU0fVI9FFxluoRvz0bUVO+S5FMnYVRZExkEQpWOtEyMCyRTtAoUT/X41FQsbARO6gmES59RZGTbvDRHvPZEXinJZEv2JZRXsIk0WY0tdEeN6fRBEghUTIM+FErbSoRIAbqEQQ7DNGfFqIRNl/wERO10lFNmXYRIZDFEX+9GxGUp8tRdNU10RPh55E7/eXRSsz40TX0ntFyfxZRVcnG0U2YIpEqfzVRDIKeURo131FeoIGRUOWwkQAKTZGtZa5RBtrDkVYr7BEeZ1RRYGWBkXwN9JEKPSxRNCP/kRWX5ZEOziZRUlKwUSAvEBFYIycRF+v/0QktKdEWE2DRW9PskT9/MREuId8SHrdBkhMBJxE7paaRHMZ7UdI0fRGPoTTRKF7eEeLn2RFuLGORce2VUZMHI1EkGl0RVw320Qf2ANFNF22RBSlxETo/UtGuP6WRfPGr0XGs+VGICWKRLR7lkXA1TtFX5iPRfZA/ER3HKFEB+GFRQAOwkVN8itFQCMjRUTpi0XaabZEsvGrRKo5oUS+aPpEw2eeRPJwLEVJXhZF2dPNRJT2z0WLT6ZEKLCcRUSL/EQ1loZE6YnaRYUdC0VPAZhEsLgWRfHZ7EQtPcFEaJr6RHlmgkRFBhNGnwlqRcRMAkW8Nf1E0zMQRauP3USvtatEEY7gRMjHpkRfwh5Gc7K0RCU86kSv1DdFfx1bRRxoIEWGfrhEe9YCR3SvakY331pFeHypRD/nrERzCJxEr86yRNwDfkX55kFGsGFLRfRiJUWYBJhEl0wlRU2prUSt7pRErzbIRGuvlURWW9JEqbLxRONjhUTinRhFGvPhRY8pk0VRAKZEg3KJRMFppkSLaxBFOufCRNviskSw+MtHJG18RJ7MMke6idREYCC/RloTQUWqFapF0nYFRkLUp0U/iKRE2eznRIkkskR9hMZEY5AnRXSNO0aXj+FFXpGkRGw0v0WLg4tE5tYLRTtrhkR98rdErVvGRaGNPEW52JNEjtEBRdY/3UednZFEs2SjRBIyLkeQ+4ZEpJ3RRrN2i0SjO+9FLU46Ra0qlUQwxqNEij6tRJnjmESM5KFEYrwdR9b9k0YnKZFFv7M8RV8HyEVMDh5FhskmR8TLt0Yh06xFH//GRGOwvUTARPpEzppoRXQXVEU9W7BEHvSrRNaMw0Tzl6tEG48TReldyUWt39ZETmaXRLPChUUoU6hGpPXiRJVd2ER4CC9FS5i7RgbcaEUOnR9GuVn2RIWw/kTpPWRFwl77RMflgEQC3oFFoB7pRJBJokSVSgZHdtZ2RoD7ekTlyARG+9GPRYJXjEVyD3lFJlXCRIRbuUV8sh1FbmEjRaMuAUXnBLREncvjRAybCEdqSYpFNPnRRBQ6dkZ+lJ1E+kcaRrOjm0XG6zxFIxRMRV+4p0QEvvJEOACJRE4yJkXDj7ZElAYkRWJMT0XD0ERFBAEMRa5kwUQW2eBEvOyERHwrpkQ6ChJFFUnYRCFwz0Q2UABFi7TjRA5GmUTktxRFv6GrRPwd0EVe5apFMJk9Rb7KgkSTPkRGf+uwRewHgkXjb4ZFDGTeRJYO8EU6pqlFWHEhRdFUyEQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - E+Hj8QzBckDoNKzDbsFyQAph9XXIwXJAZlTOOlHCckCZgBxz5MJyQPoIep48w3JAanzj86zDckCcXf2/osRyQJqPLH5dxXJAs2HrTfnQckDPPTsQJtFyQORFW09D0nJAV5OCAtDSckAACImdZtNyQN4595XN33JArRtr6yPgckCgQyEyuOByQApB1aAZ4XJAZIheu07hckAIain9/OFyQLJuX09R4nJAfSPdpo/ickBsoHsfJeNyQEgfQIRU8HJAFrRcjzTxckACwjz9yfFyQB5lBC/p8XJA0mxdj0zyckA2NPo3EfNyQM7XrJW383JAnH+p2qP0ckAVOuT5wf9yQBIw8uFUAHNA+9cFsGIAc0D+IsfH+QBzQAzjIStOAXNAdJb8lowBc0AOhEVBOwJzQFn3sGDQAnNAUnHwrfoDc0A0P4BsCRJzQCuwN/28EnNA5h3KLiUTc0CriEZLBhRzQKBm3vpPFHNAu8vQpnkfc0CrqEitRyBzQGzUWAWjIHNAYi2asDghc0CCFJ2vZSFzQObJ0rF7InNASiCMAMsic0BS2d9VDiNzQMQNKtjOJHNAsMRP1Ugxc0BocDYSWjFzQEqNO5QMM3NAut2Y/qEzc0DU1eSRNjRzQMzckE3dNHNAhHEynLk/c0BH2R6RQUBzQKCea/3iQHNA43oWL3lBc0DKvqBxJkJzQGS1WBK6QnNAnku5jnpEc0CMKFXMmlFzQPNxD+EUUnNAMOVEOLZSc0CGYLuYQ1NzQFiuIq6jU3NA+2U+04ZUc0CoQIoDC1VzQDoDysr5X3NAoxHdKotgc0Awo9Q7HWJzQGRO4Qw5Y3NAriqk3Sptc0AOXR8+SXFzQGj/c4dPcnNAuuiT+2tyc0DiNXwYhHJzQIaPOS23cnNAkirM+7d0c0BosTO8TXVzQLhU5IjCd3NAmflvpHiAc0BhymmcpIBzQHw5jUIOgXNAHDTFCjaBc0AyKUAmXYJzQKpXqMClgnNAPgDmDv+Cc0Dhx+JTDIRzQJYxR4mIkHNAGGR5v4mRc0D0Gu60+pFzQOoD4XhNknNAuPA9dGeSc0BW4zLbzpNzQO9oxq1jlHNAOtuZjfeUc0Bor9KJjJVzQF4gpmK4oHNAY2/kg+agc0DzRcueTqFzQEEqixhaonNAwig/jZGic0DmJOO9BKVzQB5AAl7JsHNA8uvzxH2xc0CCeUJeArJzQOaGSaVasnNA4bNRN3Oyc0DFoFKutrNzQALHrBkOtHNAYE/D1vjAc0CocVbuOMJzQNOU2LnPwnNARjcycSbDc0CeRUX0ZMNzQEP5thCTw3NAwlQGAsPDc0D//XVGE9FzQKG1qPbW0XNAGCJTt7zSc0C0cQHx2tJzQJt2hIfi1HNAuGzQ6qPgc0Cyaf1x0eBzQJLriWk44XNAtoJ1Dubhc0Aqum6zeuJzQEqmtrgQ43NAPB9rbKXjc0DQW6b77+RzQAaszlBP8XNAy4k42jjyc0CGiN2+NvRzQNf5g6/jAHRAPc5u9A0BdEA+eFjgeAF0QEQgssSlAXRAnDjD7LoCdEA1E8v1TgN0QOGACdMHEXRAbKPcAowRdECUL/zd2xF0QHX9PvCoEnRAp4u72AITdEAiJWISTRN0QCIr0+XhE3RAt8oeMXkUdEAw2879SyB0QAXSJNO5IXRA4KrfRBEjdEB8XC9zkCN0QHOTi8RRMHRAtkFI/hIzdEAUuivv4Dd0QFFllqg7PXRA40IAclRAdEDujzyKyUF0QHJCbBamQnRAP+dOb3tDdECO0edqEER0QCYjfsyhRHRAdIzIEfdUdEAP6nlqjFV0QHyvMRfdV3RAwPoflx9ddECYu4TKt2B0QN6NT+0HYnRARoOTe3tidEBF4cvJUmN0QKKw0ClOZHRAvjzShSJwdEAy8PciQXF0QEpNG8zNcXRA/IGX1ThzdECEc/Qco3R0QOdoSsw4dXRAkNbnH0SAdEBgXCPn94B0QOSCoVJPgXRAJlQnfUWCdEAKiyQ5J4N0QJAvc9Vng3RAzqqF/BWQdECylnquZZB0QIq+yB+9knRAaFmCzVCTdEC4GU93TZR0QNcUYBTvn3RABk+spdGgdED5Q7W+h6J0QGj3k7O5onRAvisAFBCjdEBM0R05CLB0QMyurbDDsHRApCY9+W6ydEDGbQcW/rJ0QLTNm8bIt3RAoGtT+BG9dEDfCD6o3L90QL7hdxxYwHRA+s6NG+TAdED1CY78eMF0QLeU3SvqwXRAothufL/CdECuIB++T8N0QJAua1R8w3RAZKVLKnzEdEAee2MbuMR0QMiF6Yn8znRAqj1n+KXSdEC/2mWk1tJ0QA7sch4603RAx8Tw0uLTdEBCKzIqddR0QDDIwRfN1HRAsMRKz7XgdEAipVVEIuF0QDLlrD644XRAXuGPt5XidEARqvpHkON0QPE450xP5XRAS2BgnI3zdEDi2yClogB1QFs47nDQAHVAPwHGueYAdUCSIaqMZAF1QKaH5VddAnVArlBFU6YCdUDgd04DmgN1QPznxOPRA3VAme+vP5cQdUAS49A6ZhJ1QE+ytI0kFHVARraZhOwgdUCKWr0LdCF1QNqmFimdInVAqEPlsecidUBYwEwteyN1QN4hyCLLNXVAnNKUeX1CdUBCH3sDz0J1QHdmztHdQnVAKIT7aClDdUCY2v21c051QGqTa6/iT3VAfkq49QZQdUDS6M0Jf1F1QBhbM0dNVHVA1Yt6f3hVdUBArp0VpGB1QP9RFyI4YXVA5vktm/NhdUBAog2MZmN1QIigXvR2cnVAQCjpZY10dUB//QRHeYF1QELpUJWtgXVATw9ehKaDdUASLh+SmoR1QApQRRRlkXVAaME8XbuRdUD6vNLaOZN1QLJ94ugloXVAqiXadLehdUCXTmOAYKJ1QHlQR2z6onVAlPRckRejdUAQ2XWzSKN1QPNeAE7GsnVArNWxHHyzdUCo0qOnOLh1QEEAjW3OwHVAXAXusGTBdUAsKGIH+MF1QMfFcxM8w3VAXAOCEOTfdUA0zjd8D+F1QGA0rSsH4nVAXyVfV1PidUAmG+wYeuN1QLx6NZY65XVAcrxQXUvtdUCofI3Di/J1QCzLU9um8nVA1Ptx+tvydUDUCfPXG/h1QDbneqxHAnZA5Gf5Rc8CdkC1FDHSJwN2QDyo4UfSA3ZAeu07/U0UdkA1wbF7DRZ2QO/6BPOIInZASryuHZAkdkBszq72Syt2QIFeK6gfMXZApKMIEU4xdkDiC7qcJjN2QBHxJKdRM3ZAUotL1p80dkAfZpRZVjt2QEcnQVweQXZAljc/lspCdkC3rPHWeUR2QC/HOLLEUHZAjpLp3hBRdkDig+l4hlR2QDrvRM7NVHZAA3quZSBhdkCl/rFDqWF2QKzqatgCY3ZA1zla/lJjdkC4v35UumN2QKd8AnjaZHZAyETEV1ZodkAF6RgwEXR2QIrUzqT5gXZAT+k+BDqDdkD0JDOokYN2QHXnExGgk3ZA8fTQDb2TdkAcQE0O7p12QAImTCB4o3ZAlHSurMGydkDQs08pDrR2QGCJorJzwHZAgnCB8brAdkBEXjq8TcF2QEbxEBvMwnZA4O14cc7OdkDIUxS38eF2QJJ6vD5i8nZAqsEU9JDzdkAX5j+fNAJ3QCyYFBcBEndALrz4bNASd0AQA0krjiB3QJYUuMcOIndAmruS33Iid0DhjWwpuyR3QBYr5DPpJ3dAgZHS50Qtd0AfsMJsjDJ3QAIMmnqmM3dAIr4/Xw01d0B6pL9pnUF3QFDKsDGRQ3dAGObMiBtFd0CwuI6JB1B3QJIjjx5KUXdAVKSp5pJRd0B+10uNKlV3QGQKjI18X3dAxrZv5g1hd0AD1g2tj2F3QJbEkm96Y3dAWGUCJapjd0Ac5x1xJ293QJEd5OWDcXdAwmpEW59yd0DyuAB9/HN3QJBs4cX4d3dAGFnm1C17d0DGb4Zwan93QC/N/kvggXdA3r5UQHiCd0ASHdFVLoN3QDhTyA2Gg3dALOeNQguEd0C4u0TmTJR3QAxTR0mZtHdAVEmZ+BLDd0AWvNRtLcN3QAz4VATm0HdAMABy/+rgd0AG4o3kUPJ3QIbjLQGA+HdAfNQ2wEb9d0CAsPfh1v13QPjYQdV2/3dAc1twG6ACeEDmGaQ5kgN4QNk/1wvoB3hA1ra0+vwHeEBKH76a/Qp4QKQvuPBEDXhAhEKXFKESeECkxw060hJ4QD2mQRNOFXhAYFPycW4ieEA8+OO2PCN4QPDd1q2JI3hAgAXOsj8oeECQ8SnUmC14QEaIdLt9MnhAaBz2pkszeEDGK0F+D0J4QOUrgBu2Q3hAiV3hPRFEeEBuQicXekV4QEChqhjLUXhAdKfDw4dVeECCGdU3+WB4QLjb2k64YXhAXFiBQu1veEAchCZbAHR4QJyMwvwhdHhARn1DJ2h0eEDAaenOi3R4QHjizMbOdHhAZuBtidt0eED6Eav3/nR4QI5hwz/3e3hA+I3saziBeEAFW7GdpYF4QHi8bxH/g3hAm4wK+pmEeEDSfTfoT4h4QEyGUr0EjHhAvK1HNamNeEBhNpLTl5F4QDi4xjTuknhA+KIP+ASTeEBOv6JQCJR4QEB+ZuOolHhAJFvfaEuYeEAgsZ7wpKF4QGDmMuI7rXhA9p1HsZKyeECsS+6A1LN4QDpIx1Lht3hAsFEZ0M7AeECWgmv2FsN4QKW6qsUcy3hA0pUY3rfUeEDR1tgaDOF4QK6Nza2h4nhAdcOgIMfkeEB9oONO/Od4QAzvpCUC9HhATjuhXo31eEAou7h3I/l4QIG7SH1VA3lAGmQQh3sDeUBV2gwbnAV5QLLccB0mInlAUBg0n2EjeUA66Hq2vCN5QDaTSmqyKHlAqDnmOA0ueUBzAdYbYzN5QDII9sv6QnlAUksqaKRDeUAvej3f+kN5QNq5RNrLVHlA8I1uhdlkeUAK3Um2RXN5QB45H7vbgHlAJAwTZFyTeUAEApovX5t5QD9T9UUdoXlAFs6yvoSreUAdzsvbwbJ5QJzc2CXTwnlAmDcYL0LUeUAdi1yWzNV5QGh5MRFO5HlAfkJZ4iPleUD1FDaR2+V5QB4TidOq7nlArJJobcbyeUAMd58oJ/N5QKgdzecQ9HlALgZ2VqUDekBcOcnh/QN6QIJ8DBn4BXpAhCb6tmYLekAwwO9NPyN6QArOLblpMHpAyLxCGCszekCeWl3sDDV6QEn803guN3pAooditzI7ekCYQzwxNT96QIBYHM4aRXpAXHUjIClVekCZkG7CIlx6QIiNnUspZHpAJB64zDttekBaLQk3i3J6QChMMLUrc3pAuZbWI1qiekDSWZpNHqN6QHgo6pRzo3pAXvbMiCSrekCJmLuYErN6QKF9oK71s3pABupgRAy2ekDeuYsiErd6QAS5cq8qw3pARXVAOb/DekCnsV1VHMZ6QDiPfU/Gy3pAei+3IEDOekCk3m0kztN6QMDDQnLQ23pA11N5cgPcekAMZCWyZuF6QF//6ySq43pArHhgAuLjekB8iWZpO+R6QJx4cDl55HpA9uJpKDXuekBxY/JmFvF6QNvq85Jh8XpAeL0FmXwEe0B4xJOuKQ57QO4T3NQTEHtAylFlVooUe0AEEkOHTBV7QMo4ZvVZJXtAsmenoiYpe0DgCQUrxjN7QIxG6IthPHtAqOW6+mVEe0BMheTkD0l7QGjnHSj/VHtAKXOGkAxle0DJIGagu4t7QH5pcikjlXtAOlYRdamje0C+4Iw3MKV7QBTWqNx8xntAis9DtRTQe0C+SCxgXtN7QPo/+Dl42ntAqgJPsQDke0BnBgiVK+R7QKhoQDVK83tASMHSFJ7ze0BHNOqKjPV7QIS7GoCRAXxArOWlMdoBfEA9L4H2ZgR8QNVspDabBXxAtMRV5ocRfEAyArPO0BF8QLgwkcx/IHxAs3sEcv4jfEDyhjJkWSl8QLFf86/NQXxAv2m8NdtRfEBmAh9DblN8QLa074h2W3xAfSV6+QJzfEDK5NE9+3N8QF6p2rSYdnxAgkymHMSNfEACYD9kHpN8QI0uelZlmHxAdDDtKUqefEAOoBMHnJ58QOfAzg+lo3xATYhYR/ykfEBOKZCzjKV8QAAGScL5qHxA2AssXH6ufEBhlBqJvrJ8QAyabh7us3xAhi6EmXq0fEB2SwGq9rt8QD45SW6IxHxAqgczH5bQfED08SYkYdN8QGoy2h2E1HxAHnI52ZrUfECojYeAztV8QPMMYwn223xAXv7xN1jifEC89/VJEON8QIIBa8oX8nxAqij24FTyfECIIz2Cc/J8QGrbaP4CAn1ASpoahksCfUAJzOEORRJ9QP4hpxBdEn1ABihOM1kZfUBFJgbV/CJ9QD8BG7p6JH1A+A1IeqYtfUCwsECEoTF9QJa5ApuINH1A0KjVwEk4fUAbbTPPnz19QHNLyDh5dH1AD0ieooJ8fUAWAD3W84N9QKT+XnRDhH1A/GRuSpmNfUBOYnKJ8ZJ9QFxd6gAklH1A5JMXBneUfUCiwOY1LJZ9QFikkYmspH1AilYuyi7DfUDW0JxiVsR9QGYf8vfmxH1AoOEdFvXUfUDEm1QE/uR9QC69ahAB9X1A3H4vDJL1fUDkvXxENAB+QIKGi1RFEH5AooWR0y8UfkCPNkG83xd+QCzGeBU4H35AIlD0MyQgfkBa17XoPiR+QOpGQBcoKn5AAPPt2T0vfkDx5blgejR+QB3V3MQKO35AdM52gxBDfkCRwQtpiUR+QBArPKxnRn5ArE0KkB5KfkBgiRWyF0t+QBJaFhLAS35Amv6wTYJOfkB2cMGTuFB+QKP1D9HrU35AMOAfY45VfkDWFzbmMll+QOzMCHjyW35A2xxvBgtnfkCT436Hqmp+QGqt8FzHa35AnKd7pZhtfkBiroOXT3R+QHYG/4VWfH5AojCacQuCfkCMa9EGuoN+QJGtU/wrhH5A0CIgplaEfkDos+5tyIh+QEUQIU8qjn5Abwn5Q9+QfkB03VHZr5R+QMbx64wUnn5Aiqw4Dn6jfkBDbaMskqR+QFtRFI72rn5A9QpsXFK0fkA8J7Wun7R+QH5va3ekuX5A6OEWphe6fkDMPiTr/r9+QNDQirIcwn5AlEsfwGbDfkD6X10K0sR+QEy+FdWsxn5AClPv223LfkCAIicyXdN+QEpsqnp8035A5KugMMTUfkA6uraUpdp+QCziHbdl235A/ggTuCfgfkCOMZKdTfR+QGOHJGJa/H5AgqoIMkATf0DZLgsGxBN/QCq42ILrFX9ACcHoW1Akf0CYxKka5iR/QCwz0JKpN39AgdWqmLI7f0Acaz/h/mF/QPZgGdKhan9A0Pf2dbdxf0AgTTgbMXJ/QOQ/HL+acn9A2PTISAp3f0C0nN6tMnh/QDmOGpmxgX9AFf/oHqCDf0BKKfqGY5F/QJQh1sOak39Ag7zvoV6hf0CFJpEbUrF/QJDRiJbTtH9Avv8YBs3Lf0CYemUj19N/QCRwIlKh1H9AcFDUVuDUf0AEHUAOcuB/QJTf2L01739AUqu//Y70f0CtSkkgxQGAQIrpa6U1BIBAEC+nD9sGgED+mbnR0weAQCOr/TN3CoBAUpzHS3sOgECP053lzxGAQNaiKjHcLoBAACo6pokygEDcH2tn6TeAQPWib4GQOoBAJBLXK1tAgEBufhpq+UGAQGzIZ7upQoBAZIX8uPRIgEB2qCSMtEqAQJyPFypzUIBAPgMeK+hQgEAMgfreE1GAQHDQ3cgSVYBAYIcUFqdVgECGF5hCM1eAQMwvoFLnWIBAIOCDnw5ZgEBoivNtqFmAQGci/bfdWYBAEIbf4OBdgEBSsFuIDGGAQEazBh/DYYBAubHIVXFkgECUf9h/KmmAQMC8DL10bYBAUAM6bfNtgEAN4hNBKG+AQNi4Bf1EdIBA/naW2Cd3gEBEDZeErH2AQPrvBTonf4BAhoTeXLCBgECcV/FicYWAQLtLV/Qej4BAzTbR5nWVgEA4M6nfH5eAQJLrXnwhmYBAMW+9HRqfgEBVjQV4wKSAQEvdcDI1poBAXqoFe7OngEBKVIHthqmAQEOD4q+JqoBA0h6vdhOvgECMaoarqa+AQCqak2hssIBAxNQX6NixgEBeAJtBkLKAQMaJ7rEStIBAhSX3bwm8gEAmcYT5zLyAQJQjZ18/voBAIAl8m1LBgECNUpH2nsKAQC5ekP08xoBAmW3d16LGgEDGe8X5b8iAQI5dW3ofyYBAvGS6FlPJgECsXUnz2cmAQCohcyqMyoBAfKjPraXKgEDyKd9IE8yAQHDPcWAGz4BA6Sh6abXPgEDUx9wQLdGAQGjXNW5M0YBAtIlre2HRgED0plyjqNKAQBbv2Dy61IBAWO0u5EjZgEA2YYLKwdmAQPCdDITc2YBApPHsWPfbgEBYll/tROGAQBYVJuwR4oBAi/XsFHDogEC0rzKPROqAQJg5OudK74BA62lDA93xgEAWRx9dPfOAQHz+p8zw+IBAsPh9qGf6gEATRXpeQP+AQKT63LA/B4FAiCw0FHgIgUByBDGoOg6BQAG6tXI9D4FASjtYnT8XgUCR95/TERmBQMCOt7PiGoFASmxxz8AcgUAAfTHM6R2BQGCAiDI1H4FAnJnTiPMhgUAkioQJsSKBQGU2TOCeJIFAsPL/WjQngUDULBkVGCyBQCCjutsvL4FAWGNvHLUvgUCWjt/3vDGBQKwJg+J0MoFAyOMgz74ygUAqRc9TRDSBQKvNBAxGNoFAJiRca3s6gUBlTSY7KT+BQK5zAFMqQYFA3CSvRVpHgUDer8rWblGBQEAEfXYUUoFAAJogspNSgUBURKXyGFSBQPSE+XJaWIFA4hZCHedZgUCYqeGw6V2BQIDc6s2zZoFAoBz4DvZmgUAguGhEnG+BQBekoVmGcIFArkCakcF0gUDwU1Ufb3eBQHhfQGQeeoFAz2naWIR7gUAdO5EtYn+BQKnIZrtVj4FA/npeLLSPgUDkHhyM75GBQFgYsPIOkoFA4XnpdTmSgUD2U4rz55KBQASJ+/ORk4FApMVwahOWgUBeTV1KVpeBQKq/Al0XmoFA1pGG+bKagUDbLmTQ5JqBQFNIDOdpnIFALrbHZp2cgUB0TZ5jSJ+BQLgLTp3loYFAg23xQvehgUBug2cLlaKBQPMlPoXfooFA0kzdZ1WmgUBbL6BRbqiBQO4sB75Kr4FAVtdu5JK1gUAm7el9W7aBQBpjqmFLt4FAyBEZmma4gUDw9rIMY7uBQAr2XsIQxIFAwjSgjwTKgUCeWen8+NGBQMbPXCF+04FAObo4NvzVgUCEAxr78tmBQMaLNcEb2oFAwu+a9x/egUCEk9aVreKBQOW6wiO08oFAiPtlJ5f3gUAWfAuR7PmBQOhmFJFm/IFAzjM2pu/9gUDwxGSx4wGCQHATRYf5AYJArFkitL0CgkCVaOPJ7AWCQB6vpOUBCYJAUIDZMUUPgkCbsx9SFxKCQD7baK21EoJAMn2CLD4TgkAkS1xjpReCQEbIGubYGIJAJiW660QbgkCsxiE11iCCQCRJ/afXJoJALrreddMogkCiEV4rpDCCQOa7m5HNNoJAb6Ks1wU9gkDWgstAXT6CQAkAkno9P4JADoSRvrA/gkDaPhom/UCCQApT8ag8QYJA6FwCqNNCgkCN/eMa81GCQDIhNf4IUoJARk8QGEFVgkAKGkXc4VaCQEFB1+FDWYJAvNx80qFbgkBvl+tGcFyCQOg+ejk0YoJAnN9eVjdmgkD4JVtXnGeCQLJQ5towboJAGmD6QAJygkAgBrWmbnKCQCys5eb1eYJAGPAcghN6gkD0HGaeFH6CQHbvbRzFgYJA81mlkKKDgkAGxGFWQ4mCQGo+uCwDjoJAQEHeQEORgkAoehWoN5WCQBLNzW88mYJAekf8WOCegkD2mJGbD6GCQHLzy6U6oYJAPEFYUMuigkDzlyOPfKiCQPmfdWsNqYJAbUnc2DSpgkAf3avJ0aqCQLqfCdNqsIJA5Ad/MgixgkBQZRyegbKCQOVKyStNt4JAcC+f4AS5gkDyraWlE8CCQEhqS2rsxYJApuTzQTjJgkDWmItu78mCQH6E5Vbdz4JAuzv0dFzRgkCrlBkp+tSCQFEEylN+2oJAnGKjC4LegkCG7Gn9Fu6CQE6+ylZS8IJAZyiqtQj1gkCqNjVPT/mCQD/xhqmu+YJA/P9B97L9gkACVrnIBQCDQMQn9KrhAYNAvIJgyeQFg0BCjdO32gmDQNJRh7J5EYNAU9F463kZg0Bue9MPcyGDQKYQj6CKIYNANnF5/iEig0BKkLHjcCmDQPbyFJJqMYNAyVomSn4xg0CEYIDaLDqDQOhlLJJORYNAzUznQLVPg0B+cc3z83GDQJiVrDTscoNAh34txsSBg0B6MW4G4IGDQJyeabBJg4NAjvrDOciFg0BsDWFY8IaDQH4zB8e9iYNA2h0zVtSJg0B9Vbknwo2DQK7aNGe9j4NAo03diMWRg0Br8kOyQKGDQPo/E90SsoNA5gq5tBW2g0A8TtyOG7qDQIIpzDkevoNA0Ik45yDFg0D2FxUvy8eDQGpMQ1p5yoNA/yP/BVrZg0BBTOK3ytyDQKWgXvVV3oNASGArUXffg0DmRx4xJ+KDQJauECNC6oNAqipPFJX4g0CsQwxIExuEQJZgYmM7ToRAICEFXZdShEByRPxwyVWEQJR2pXgcXoRAchcBsCNjhEAcmu+UB2SEQNA7kVP/aIRAGH60MgdqhECMkGwPAHGEQJF+lHM8coRAMAUOagR1hEC6UzR2uHWEQJp5GDHKd4RAZnN1m/d4hEAEkNjvvXmEQEqk80F4eoRA2LNzSBB9hEBuOdUMKH2EQH4qblK+f4RAqlRMZdd/hED8Rqxh+4CEQCiV+Iy4gYRA3inbKW6ChEAqYznVyYeEQFwBsKVtiIRA2EN+7gyUhEAa19cecqKEQN+b8YwfpYRA57bMdLGmhEDE0WAmdqqEQLF9DUq9roRAKO5DHR/ThEDzXEUbj9aEQP4W+idq2YRAeL/TLZLahEAWO1FLAt6EQKgls6Np4YRAHJ1u1NXnhEDKvVslYumEQBDSPd996YRAfsogtRzwhEA00d3yNfGEQBqPCMZi8YRAAK7TAd33hEAuQPq2NvmEQLtg1+pv+oRA0KgBWYz6hECVbiqbNP2EQKpv7r8rAYVAXlJyI9kFhUC6buy64RWFQC5/q034FoVAhm0eCnoXhUBcb7xnFBmFQP6eKGcDH4VA1mghyodWhUDHpOCXoGGFQIN4c+rdYYVAMYCB4eBlhUCg163vTWaFQDm4/ligaYVASqslx01qhUDuGadymXGFQGSpXxCxcoVAxZDzJLNzhUCPD6VPtHaFQFKzacuZeYVAjJUK1Y+BhUDEOxm7mZeFQCR4LD1AroVAqIHCAEKyhUBcHzOYRLaFQCplpCML0oVAzkWvvDrhhUAulKvfrOKFQOhhB3PP4oVA2JNNLnDkhUAiZOcbseaFQIbCkCKi54VALLX/fWnphUD6diQFsOqFQO4uG8d+CIZASYu5G2shhkBnbSVGqiKGQIhb9RmrJoZA0sxCR5RGhkDUIEXNtEqGQP12luGOZoZAbCP2rqOXhkDITm+pJrmGQIwANYcmwYZASRW4XsXGhkBVTsRwzMiGQDAo9KPHyoZAkFx5JNHOhkA8Ic82+9SGQJ5/hwOHAYdAesbZaTwHh0DFu7G8LBOHQBpSCf4iFYdAOt3ZdjAXh0C+l16pMxuHQERDBtaTH4dATn4f3ZAph0AUZvEgkTGHQDWP+RT4NYdANreWuok5h0AvwaARYDqHQMI1/7tcQYdAwIGTBY5Bh0C7HFGDeEKHQJanuyRmSYdAuVo7Rhhrh0DkHzGcmmyHQBqtXqIec4dAmEM1g8exh0CQvg+BxrmHQDWREUHAwYdAjm7eak3Fh0DOSIKQwsmHQIDgIDv6zIdAstxrFJzyh0CeNqwlUwKIQLorUQ7aIYhA5kYFxjbziEA= + U6vsr5tiY0AoFld2zuNlQP9T9bnLQ2xA3OW/dP8icUDHBI8W/lJ0QDI6xHmXk3VAwZEQmW+ke0A= - + - NdKDRHqKCUZTH2dErKWYRBfxgUSVckhFloBZROYqRkTDY5lEAmzTROeBz0RC1h1H9+/ARCxREEXOZpxENQCpROos40SYq7lEF4PFRDv6W0QzvKdFln6/RYxjHEVlBpRF2WguRQi9REUdZ1BEPR16RDw1JUUIMqBEIm3uRE9bFkVmMLdEtr3CRIZZFkWLTGBExUKCRGXqY0RyHj1F0FoeR9rKrUSGMFtGMv1sRONlskUR+oVEKFt0RSyBWETQqANFrL22RhPxgkSYdINEy++vROkBvERjuatFUmWARCByX0TlAdtEUDKZRLyfgkQ72FhELl7qRFxIkES9i99Exp+2RQxob0SklINEuugNRo1mSUVbGlZEKIFmREMdokTgartFlz28RFHgZURdGJREZPibRE69qUTYLGZF4cdnRdlYl0Tmb+lEDe8fRRb4FUVfCmFE/FcERdUzDkVx3pNEEVwCRwEh6UTnhThFMNFvRFhQh0U6Tc9Fbzl9RBfRY0Tfnj5F8wGxRC6WiUSGzWVHrL9xRLptjkROz8hEZdNmRiQ1lUSQ2RNGs1x4RLhEXUQO+CNGEKOfRPmkDkVDr7tES5VyRMuSWUTuUpRECCdZRJ3nZUUoDjtFUcm/RBQ8aUS17NVFZIYURQ2Wo0ScQ2hFkadIRNpfUER1GUxFol3ZRIgmbkThe79FBko7RjGJDEUiNgtG4B/ARI5pn0TxV+9E7QL0RKhYqUTWmkBEBqpxRDPbLEXhZbpFSN1mRLd+gkaNdKZEiJxhRStla0RHD1pErPacRK3YskSpek5Evm1WRL4jhkXwioZEGGafRC/vskQ0KQ9FvkJkRPdEskSUBLxEqu0GRVddbEVuSj5FTES1REcdlESJV5xE4o6ARBuihkRb/21Ez8fORBMmAkWW4cNEPtpJRS4ZfUW96pJFGyMDRZzep0UjPs1E2TbWRTTvT0fJCmFEZq0nRVYHqET15M5EmxB+RfPuPUUur9xF8iFpRB5Tu0TKrmlESOyyRWsXZ0QNxm5Ea8akREd5ZUQCAaVF+X7ORDiWa0S9kLZET6Q5RRxI3kR7t3tEwwvJRWOxr0SgDkFFs/eDRBIevUS9NlZEx2n+RNkU5ERKdtNE9VqkRIt1pERTkGNEjknQRC8cDUWZRQBFgPePRJa5V0RwotpEhUreRBFwbERUnr9E3I/hRKEJlkQrrxlFz3h6RJW9AUXVAqNEnS3tRXcuCEWGNJ9ERcuhRACvA0VS//NF3ChkRIatq0RC3ohE2QziRPNIUkT1fRlFgipjRV3YgETyoCBG9BtgRKvspERzPS1Fzu5XRZVRYUTq/n9EfGVcRDeZh0RukshEOGrRRKbTgERN545ElG3CRLzehUS9rBlFdVeGRNdbqUTHTt1Ey3ZERiYr+URJSaBFDYSYRYV00EQv52tE/heCRJN+nUQ7o5pEhGzgRERzhET1nnRE0jpuRFmTuUVStl1EmD2QRJjcwEQZxJdENd7aRPPPFUXNhX5ElffjRPWPl0RORARF0LVMRE9DaESVaqlE3fK+ReXrjkQCyRRF2M9IRDS11EQFDJlFLovsRNlV6UQ8LMREpUT9RA66sEQa5oZFoMTpRdA7kkVPR79GUCRbROtFskQZr5xEQmXSREromUTfnZBFPg09RYO7U0VjfG9EOYAPRfeCv0SwR4ZGsXR3RPqOZ0SEC1lEBqSTRL1TTURjvWZFYAv3RB1GvEVdVp1EQS1gRBduGUW+2EBEnIvqROepqUSVjm9EM7XRRBQetUVEPK1EyQrFRLt93UQDlVFERJU0ReHUrUTUpJxEWi51RcSStUT+PapGP2XBRPCAgURrzp9FCfONRB8kfkRnSv1FMbh/RZNNG0U1SupEv+P1Rz+gvUZGXjlFDa7qRtqEjUX49J5FyIB7RhbW9URLOQBGka9/RHeGNEU/4G5EqH2fRABOdUURfb1EeiwrRgg6jkaEo8xFUcpcRK/Wo0R2L1lEJjzKRJt0PkQLFXRE5be8RL3Fi0TK4YtEK5pfRMvClkS/r15EDYpoRKOLv0QTjANFbTyiR4HdnkTRYXZE5Q0MR8aom0RnvA1GRDzoRVuujkRVrtBFi/CEREW7ZkS6lqZEeS9XRX3W80XSfsVEx10YRZhedETv0cxE0buWRB2uz0SSSHhEoEO8RVo+QkZFWaVFFsMkRVmEUUXw3FpFZa9cRIi3i0SI4vZEYQd4RejrTEkWXdxE+fijRG/9/kQ+KLlHwfCzRGjrG0VN1g1HSZBLSKfHO0eZlKRFUabyRrBhjEWdwORE2pSPRSLLAUUWOIpGcZHYRN6kfESsPqxEm5ONRB+ypETNGtVEESXcRLp5YUUJk5FE8O1JRWtXcETri8dEm7R8RB9DiUQqL2tFa6+0RTtCmUQ4UWBEX1WbRJQ1o0SpK11EnKZRRBW9WkRSbFVG31sRRnbQ4ERMzIdEegyYRDX5AUX9TGJFdXHWROEOtUT/iINEaXxNRcqOb0QDYJ9EB3rRRJiwtEUUWIxEP2AJRguwFUWF3AxF4d9tRGoeZ0SlxpVEFiVlRMunXkRbxNJE0dyxRF1jtUS/tKREjvG3RDAjV0SUHwNFf59fRpNux0eWxFtGdvyaRfr4oESywNhGWBPbROAK1kXIgcdEiCxZRAeYaUSdeXVE2Yt9RLY6Q0Xo7MNEAkKRRM9XX0VKSbxEUOYARjcKc0VBXRNFnHaiR6FEDkWCbw5HKX12RIiuxEUI9aJEoAKLRHH+yUTyQINE4IJ1RG9lA0WxLWNEXxf3RM1g5UQqgLdEtWTtRTt10kTetq1EDBm1RDM5KUbDeAZF8vJnRCMNqkTEpd1Eaf6oREEbfkTT0p5GkoVVRYM26UR1R1dFH4w3RVj42kRUsdFEKE11RSkklURY1k5ERWN7RHWVnUR2OpVEFcNjREiunUbt961E0SVaRjUkAUUdGqZFPr+KRDB2hkXO3WhEzdh9RBoOmkQ50+1FrlunRN+s/kV1sExFjh+WRI/jW0Vs911EGXDHRS+x1EXxowBFUPmjRe2rbUQlUihF3qFsRAfAaES74XNEG5p2RJKXpUSPT7JFgc+/R4xkTkVOK5ZGnwiURCDdRkRxRsxEmiO0RGUxXkTF6xZFtY3RR6qaIUXnBwhFuNDHRiClikX39vlETniYRvoJdUVa855Ehc5qROMRpERMNkhFzFWCRAVZnESGY3FEOOU7RSnxOEWSMQBFMGBxRApzgURMS2VEp+KYRIkhDkVLG9BEBk4tRaGDf0SypqdEZp8WRUvkhUQgF9pI69a0Rz8+EUZMjopE3YjZRMgXX0bnteZEgbzFRQ1aQ0QcvrZE2/9bRV5fhkR87ZFE7I2rRE1Yr0bC1SNG3LKFRaP/lUVySYtEeOiORB2Rp0RTxtFEsGRLRH3Ml0QEIOREgxwCRcl7SERhBV5EL2DgRItXWERyK5RE3cB8RLJM8EV9Dm1FnouZRFCMm0TgqpNEG1K5RFQcd0S5loBEgyWfRA07b0TljntEDhlrRNUGD0duTpNFY4RVRXcuskU6VJ9EVLGBRIyZX0TeuEpEm12BR/zFYkUb221EiQevRk6e4UVVFhxFKCiDRIMSfUQ7FWlFfTlKRJf1aEQZ6NVEVHSmRA0phURxqoJEN1Z7RCP3jEQ1OZpEYXdeRCQXgEQaK45EyEqbRTaPXkQUZm1EiFBSRIY5hkS+zN1ETq3ERLXcBkajNsdE1GccRUoL10Q6OYJEFnfaRTExC0UD2a5ENjeORDImhkRF9oNEFP/6RBQigETXiHtEeGtxRGU2rkTy/RRFmknGRPJcH0U3zW9EuzYKRvDhoET5HLdEa5iIRPfYkkQSLoRFyrD8RCESUEREWE1E3GNXRdFXcEZJk1lED8sXRWEsY0QjMrVEWLeqRe9TgkQdQHNFtcowRekSj0TYYKpFV5D0RLo6jUQDPF5EPD6zRMvhx0RxBaVEi3GZRIh4YEX4IcJEtGRuRDhmh0Qz3CBGNXdbRKVlEEU6rstEi7GXRHOflkTchXZEfwudRAPlDkVdI5RERSSZRb1GlUQshfdEfN+WRAyIw0RSopNELNCaRPU9NUUXZm1EFEmBSAH98UcojBBFc/+DRMqVbUSZDgBFMyTLR6nPW0Re/H5EOYHORof/dESkZblEXzeSRIsXm0TaCINHmjWNRbydUUU90OdEhCZDRjHnUUSIqqJEUW17RCV2m0WUFG1EvKuJRCJhEEU1JPFEwCNoRPd9fEQ8S4VEs8m3REmRV0Yn+4hFdaZ6RGLk0kSFqJNF53qERKvOkURzh4NE3JGdRCPzl0SydeNG7GPdRZTDhERsy0tF0N6hRaa1lEQHV/9EA0ltREAfDUUtHY5FYTSdRTaNZkRADMZEDluGRJaY6UVXJ9VEm/77ROK8ZURiyWxEQEViRMv3TkQ7H3VEOwOJRHSZi0T+au5E8fRpRG6VR0Q+MW1EsJ67RXFvmkVEgjRF8N91RCLrt0S0Ue9FBpwWRUDw/kTtZABFc7UuRaSwWESyMixFCfSWRFkeKUVt+E9EFVN7RBEeZ0SjcJtE1i0KRm+QfEWFDQZFqEwbRa7klkQNwItEQeCLRJWoHEX2HzlGPMGnRHRcXERil+VE/IRaRFtbcET8JXNEiOypRGcpPUWYYZtE7nzDRMO4eUQovFJFNrL1RGvqR0R4cKJE1SF3RGSf60YgaHpE9T5WRsmeCUUO5gpFUJGLRCWMmUR+GWJEK+CMRGk4VUQsnaFEQqBcRa72TUTT8itG8/S+RGXsj0VJcWBEvdSXRTrxpkRiaFxEiYOVRF05+UTM3aNEn9brRN3VfERDzINEWPNLRAxJZkRZU8dEna1aRAPZh0TPs+FESxrLRKTPkkUt1gdGX1jCRYOkQUUdYaNEgQuIRJ0yuUSvLKREyBT4RHPM6kSM1q5Eca6GRMVr1Efe/alEXMQqR9b0hkR7nttGLshRRFGCxkUlOgJGGlGfRccQiUSrrTJFup4/RVzq8kQCjKFETVHjRC+wkET9X25EoLKNRDEwY0R4iDtGi5dhRFSfr0VpC4tE3YhyRL6Oe0Tsb7JFtMTvRAcoZERb2WxE3lG9RFLAdUS6vNxERFtPRJNpX0RZScRF59MKRV92pUTk2OBHvv9IR54UC0dvKAlFPo2CRJaN80WNg7pEG2zGRHaxdUTsJEtEFOl0REubh0Q/xKNE4JIjR+wOskSivaBES4uRRjPNhEQHy8dFS7dPRUrKh0VkTz1EQjyCRHE2d0RYfRRH50G1RjzaxEXxO/BEwkj4RPeS60RWQe1E9utnRGzNbEU7io1EsHxdRYVm1UT2eJRES72qREfLV0RjS0ZEHTNiRPlIhkR3lVpEusNvRFl/v0SOmM1FyJVQRCuSL0V+Hk1FHqCBRKDPaEUTMe5GWhywRDARCUXFOtZG55bZRWMEF0YY45ZFF+svRWAjXESXJnVEXm3SRGLNgEQMW2tEoJSmRNpMi0UhlYxFcLyHRBUq0kQxgmJEtD6mRGLSx0SvgSBHm5/HREKN70S+tIJGLKWGRHMUMEbD459EJ5xfRCL0KEXks55Fl22NRbK4GUURpnpEgoJ0RXiMSUXcA5JEkyZsRCLWyESwoKFE7DwmRWaXvUR0G4FE+B01RB2eEEf7M7NFL4zeRBuRlEQj24NGEFuSRPbzNkanuqZFJnvYRAuoSkXkiL5FwUTBRDNL1kSGr4xF6ZzjRCx+hETHkIBE66d3RI6KHEVKdohEsxCYRH08DUX+dLBE/Wu9RLv/uEQygkxEEsKpRNkNf0TgNLpEk1lpRGjzR0RJPZVEYPtWRNhHrERNpqZErHa8RPRjvUTPaNZEaFhnRPKZhETdO5REPOpvRDeY4kUb43FEOS2gRQccZEX7GH1E36QtRuuL60UVWoVEvneKRQjVjURMSpBE3QP4RJwrZESB8zBEJnujRZSvTkR5KOpEliYkRjqVx0Vf+1RFiOaDRC+svUSi+EZEc2Z9RAzIjURolYBEBMvKRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - cndPzHjAckASSDjfbsFyQHY9go/IwXJA9s2E/E3CckDEhdyJpcJyQJZB/RLkwnJAkgDhRjvDckDcZp5QxMRyQBgYPqRcxXJAqSoTkvrQckDoIJZ+JdFyQOIaL0pD0nJARLg/+ODSckB6FB5ZadNyQFvxz9rP33JAaktQjiPgckBvOk80ueByQJdy5pga4XJAyOK560vhckD4d6sNUuJyQBu/4RGQ4nJAIJmrESbjckBKCPEPduNyQPQQYWVU8HJARt17FDrxckCsqwRpyfFyQIBvAEIR83JAluMP8LbzckBeHSuRofRyQAhnuRTC/3JAOPs8U2MAc0D0eELv9wBzQEPDz0xNAXNAkfRlVo4Bc0AMTM2BzgJzQPxlWIv6A3NATq6MHo4Ec0Br4SvmCBJzQObbq/S8EnNAcL90WQYUc0Dfh46Kdx9zQHgpIFqkIHNAPMbdtDghc0D4ZXe+ySJzQFn9Ms8QI3NAaABKXjokc0CtNXi+ziRzQNxEqlFGMXNAtWn3Mlcxc0AXAz5FIjJzQOsSns9mMnNA+yW5+HMyc0DG0YCj0TJzQMbKX5AKM3NAKLqxT9czc0BcS2wVuj9zQGWT5J9CQHNAmMAWf+NAc0CYU6+zeEFzQD6TONK7QnNAoJNjFXpEc0C0lzrrm1FzQP2f3dAQUnNAGTOIT0FTc0AQaweZolNzQNB+9N3iU3NAwLBzHYdUc0AuiuPr+V9zQNOivpOKYHNA8KsaFzpjc0BuyOk3LG1zQL551nNRcnNAwM8+KWtyc0CI+sgOhHJzQOaIiGOPcnNADZXNcr1yc0AeaXnVt3RzQNC4HBpNdXNAtdODRGp2c0DHmjVdxndzQBpIBLp4gHNATXYPu6SAc0DUWhoxx4BzQF6yIa0MgXNAXxjk+12Cc0CMjFJ2poJzQCqAqwUAg3NA4LYifVmIc0DwPH9GhpBzQIsf5udMknNAIhf3UWmSc0Bdi/BfsJJzQNTIpBRhlHNAxAkEY/eUc0DsttLxi5VzQB9CvFx+oHNArIK7r7igc0AfIw6O5aBzQOor9XBNoXNA3YObn66hc0Cqacp33qFzQJ6CLFBaonNA+osrhI+ic0CCMwPmBKVzQG5EwEg3sXNAELPTpVuyc0CODQ9htrNzQCR20iANtHNA/D5h3LfAc0AOzAzH98BzQDfP7XhLwXNAt2jRk8/Cc0Bk564AJsNzQLxxX+uTw3NAYOMQicDDc0ASG3vf59BzQBJoCKnW0XNAdHWQCbzSc0BARS1U2tJzQDaeqFH203NADfJyC+LUc0Drqs0mo+BzQPC9XtTQ4HNAeLzBjzjhc0BWYXAVZeFzQC6lGKnk4XNA5LcZJ33ic0Ac46UzDuNzQBZsSVul43NAZVVr/+/kc0ClOoA4ZPJzQJV1WRD78nNAeQHvYKLzc0Dw7KA4NvRzQKZE+xfjAHRAALP16XgBdEDHdd7ypQF0QCoq4p66AnRA5RalpOYQdECD64mzlBF0QNaezbdME3RAwCFGAuETdEC1qNN9dxR0QFBMUQxMIHRAXHUMi7khdEAcMzM4+iJ0QLpsk0VUMHRAGLm0pO4ydEC2v0H1EjN0QKwREWviN3RAghWH+zw9dEDIqeo/oz90QNMSU5pTQHRA5Pz/XcxAdEBeqmbtxkF0QBcn4pZdQnRAMewuvjpDdEDZHfqJekN0QAJdRTRITXRA/sppimJUdEBuf31x91R0QPYaEHmMVXRAovwvEdtXdEDQ07QoIV10QNqkoCS4YHRAGM7GHAhidEA6jHiUUmN0QNVdh6B8Y3RATiKf8ExkdED+o22KInB0QASIcRJBcXRA/ISfU8hxdEB2sdJwOXN0QBBOvr6gdHRAp19VRTZ1dEBs+UdZRIB0QINQlPhggHRAh8JYS/mAdEDCbHfBTYF0QLlFGgUlg3RAcrjaBGaDdEDkc5oJFpB0QL44WItmkHRAsFdfermSdECWIw8NUJN0QH5iezvvn3RAMmxWkjKgdECSVB63oqB0QCg+x3HRoHRAfAZguMuhdEDfbbh2t6J0QAxCG1oPo3RADNZqdgiwdECJ8855xLB0QJRNsQxvsnRAnbNpGNCydECSBS2P/LJ0QL0qoZrIt3RAsFksrlHAdEBW5ZdL5MB0QH4DBah3wXRAGmBqfu3BdEA8mKKhusJ0QPdCjQlSw3RAskGlQyHEdEDo2g1vesR0QJsZDWq4xHRAJIVPGv3OdEAovkTkFdN0QNTpfqc603RAwHRR/eLTdEAiWbpPeNR0QNHMd5rM1HRAH3unPSLhdEAuQkiLuOF0QIwwN1uR43RAqB4Fr03ldECYvjX/vvB0QKyTgeWe8nRA3zIuFozzdEBnUNAYYgF1QJ4vR/9cAnVAaA73tJsDdUAXjTjpmRB1QHz+WFWPE3VAhl2lISMUdUCPmW86uR91QCBCxf3qIHVArnPioZ0idUC+hLT0eiN1QN9SH5roMHVAMi7D118xdUAt8Z0fqjJ1QPSSJbPLNXVAHHSbUCVAdUBcjhLZfUJ1QERzWUbhT3VAlerj7wBQdUDIwBrKgVF1QM6g75AlUnVADkPHqEtUdUC8+zG+dlV1QOwq6uujYHVAlFPkTzhhdUDgvBDZZ2N1QKXyXcp2cnVAUOtrHo10dUCcibHAeIF1QOaouputgXVAKNY0jo+CdUA825/qT4N1QBz2Uqalg3VAtqV8OZqEdUDKuOlxjZB1QJx6R/27kXVAFFGwrrehdUAjUrG5SaN1QGQM3TqjqHVA5FHQc3+zdUA/X1L3xLR1QHwi8Nw3wHVAFEbeO2LBdUAYQvcQ+sF1QGycpijSwnVAHM0MejrDdUB3v49azNN1QMfu2/AN4XVABFeSU6LhdUDuxFHXBuJ1QBDNUMc45XVA/njDxUvtdUCQCap1i/J1QPKBn56m8nVA7ULzqv/3dUAv3/RXHPh1QI4iv8BIAnZAhYpkq5ACdkD0JTWa0AJ2QBI4icgkA3ZA49my+s8DdkDhDtB55QR2QBilQuZUEnZAzERFlN8TdkCYwcVuTRR2QNxDzT4NFnZA/plW5YgidkD4/sPvZiN2QKHvNdCPJHZAonEcVUwrdkBGNKB2HzF2QK5miXn6MnZARKrPH1AzdkC2FruQnzR2QG8Y2hBNQHZAeHN1sRxBdkC4BBjIx0J2QMJ6Er95RHZAVJ2tJjlGdkC4YXlD+052QNTESL3JUHZAiyAmeBFRdkBn+tohzVR2QDmdZjsjYXZADMfmEVVhdkB8tIIyT2N2QEAbdgDaZHZAKBlc71dodkCK6looGnN2QHrnbioRdHZAA0xtHWKBdkAswQncZIJ2QIYx4667gnZAknJexT6DdkBDdylLkIN2QO4fet4bhHZAjtish3iTdkDyfMR6uZN2QC6bumjSl3ZAoZzwojOjdkByFMAau7B2QFp+VObBsnZAluO5PnmzdkBuhhObDLR2QDD+T5evtHZATius4sHAdkBu0kELUMF2QI5sXuwaxHZATGOC9s7OdkArULKVftB2QIw+IRzy4XZAckaY1JHzdkDIrkJSSgB3QAzWggI0AndAeo2KRgESd0AWgNts1xJ3QMg9sAvUHndAEKeOVw8id0BGFFGAUiN3QBjBv7rnJ3dAouH6aUItd0DE6PS4nDJ3QHVNKuejM3dA7GquFQ01d0ANFftwzEB3QIroSRedQXdAZlq2NDpDd0AnFXtTkkN3QHr2czgbRXdArrgVBgZQd0DGjGbdSlF3QICwoqqSUXdAoElocShVd0CHbKvtfF93QACweHNJYXdAfpkldo9hd0A6CxFHomF3QJ2jVPF2Y3dAizcplqdjd0AsVAc1OGV3QD/iPW8lb3dA+gJQBT1xd0A7tvj9nnJ3QPDvITAmc3dAns90Qfxzd0Bxjsa7+Xd3QNCF52xBfXdA8Q7WM1Z9d0DQVfDyJ393QERXob55gndACsJmF5yCd0AwZ9stCoR3QAVatmEJkndA9ECVAEuUd0AQAjTgpKN3QLixqZWZtHdAvkVpxz/Dd0DwhY5t39B3QCh4oaCO1ndATUNciOnwd0CQ4L3nT/J3QFsWV2V7+HdA7EbBS0b9d0BwBYTonwJ4QBL5J8V9A3hAePQqP48DeECeI1zV5wd4QHrZFtT+B3hAhFm93QALeEAPbbjrQw14QGjD3kxMFXhAbruWqm0ieEDr2PCpPCN4QMZTpKyJI3hAyJPqM0UoeEDw/EuvSDN4QIf5wqGdM3hAfOf6rFBBeEBY7sQ1DUJ4QA7AG0K9Q3hA7WxB/RBEeEBnu3BzekV4QPnVpW/LUXhAxBAX6fZTeEDQ2j03HVR4QJ2iye6GVXhAslTp7fhgeEBrqerXtmF4QAYTbiG6YnhA3m2ZC+pveEDbI6z5iXN4QEi6oqqLdHhARBETDNt0eED0ymjC9nt4QJOWPJg4gXhA2aXdXaSBeED2wI/d9YJ4QDYDN+j+g3hA+Fo8nJmEeEAJtdwST4h4QLIcZBYGjHhAjBpWoamNeEDCbn35lpF4QATmUhbwknhAMEEjrQaTeEAc0NusCZR4QC6eixGolHhAIr+BOUiYeEDIof44YJh4QPRe4pynnXhAFkHWAayheEBmvbo8s6R4QOLlg9U8rXhAxzylJdOzeEDSxwzV37d4QITNXAbNwHhAUZH53vfBeEBQYN7oFcN4QMZUsWYfy3hAkybosrLTeEDeV8oRt9R4QNYyoh3X2HhAwJ8DGaPieECQmBDZw+R4QEb6E0H453hApGcruQH0eEBMOfSajPV4QCjLrCJ//nhADP05m5kFeUANpZMFwCJ5QBiPWqy9I3lAyIrZWfojeUDagieMsih5QJJl0eILLnlAjEVohWUzeUCKmvR5tzN5QCixK5njOHlAOo+2KD0+eUDoOtS+ikJ5QGAf1eL5QnlAuDAiwRRDeUAhnrDipkN5QEUSmdv6Q3lA2lcBi8xUeUCanb5kSGR5QBN+sr3XZHlAdDfRL0dzeUDCkbUUYXN5QLYA/IbbgHlAZV9OwV2TeUAGmBtle5h5QO5emMvAsnlApHC01M3CeUAMThu+V8N5QMAe6Ve303lAdOoE8UHUeUDDdKKGzNV5QPCkcr1Q5HlAfEd9WZbweUBsX9BiQvJ5QLy3azTB8nlA7wHsIg70eUDA/mvKJQB6QClN5gQ3BHpAXBvPc2ILekAY2mAyIRR6QOiwWbc9I3pA9O2uVGkwekBGdU0rKzN6QBSDQYEMNXpAgHAoWi43ekD60vFMMDt6QGYkGQI1P3pA0vbqHRpFekC0rKcFA0x6QLExqVZWUHpABnhrTIZTekCFXQENKVV6QBcLQkQiXHpASiIM9ChkekAEOPpxOGV6QGBr4GeMcnpAeN2bTy53ekA4H5LtF4F6QOoJAsdFiXpAwaOa3NOTekAuYqKIopR6QNIM2wAeo3pACU58BmujekAOBGZ4Iqt6QMo4T2sPs3pALqAiMw22ekAQNRy+Ebd6QMbyzZkVu3pARC9cEBW/ekCC0HjpvsN6QGgnyaEaxnpAYlW1ecbLekDwApg0Q856QEbTPR7M03pAuzEfEdPbekAHOsItaeF6QAgUhP065HpAhVr353fkekAh09Lj3eh6QDKvAWc27npAGjZEjhbxekDwUhS3XvF6QNZvmSfnA3tAZy9raHwEe0A0q2FpKw57QIV73OIREHtAaXF6VosUe0B0KOe9TBV7QDLNcS7SI3tAcG3Yalole0B8VXVUxTN7QKAgAKhgPHtA5tRJGjtMe0BQI/zS/lR7QAfd0R0LZXtAONviAMGTe0DzxED6IZV7QLSBL6RUnntAQm9WRaWje0Dqi4wUecZ7QFhmcEQU0HtA0AAqhSfke0Aa5sbDU/V7QFzGomyM9XtAPH5XydkBfEBtXqS89gF8QAgtAWNlBHxA5uTj8ZgFfEAi0euuhxF8QO7ur1XSEXxAEDOEHP0jfEDcVPmKFCd8QCUpOVo2J3xAg3she4c/fEDMNxj0zUF8QJBhEHnYUXxAKfxMl21TfEAbdixpdVt8QBdewakRYnxAnAK3cHtjfEA/LABblWp8QIUsJY4Jc3xAaTzTJPpzfEBV1vbZa3t8QFgWTa+RfXxAzsJL5iGEfED9m6Apw418QHCmjo8ek3xAGv2cf2iYfEDE/+TSfJh8QDpj51hXmXxA1DojncCdfECyqmZsSp58QGKPovOZnnxAsEhVaRWjfECy9ddso6N8QJbC4+bvo3xA58EuEv6ofEAiibCcwrJ8QLJdOPfss3xAA/UmsXq0fEAWP34d9bt8QAIU5ln1w3xA+wKABojEfEC90i10zNV8QGXITYf323xAbmX78lfifECoOZn6EeN8QKTLfNAB5HxAqHmDS2nofEAAbOkaFfJ8QPLOXB5V8nxA6/mqUwMCfUBaeNmSSwJ9QLwuKFFCEn1AjLPF6F4SfUD3WEsI/hN9QEgu+j08In1AqBYDDHokfUAVQnrpHCh9QENud6OiLX1AvrsXFaMxfUAc/y7RizR9QJZGz4dIOH1AOGRf/KI9fUD57PMeCUR9QPzgUDt5dH1AJi9BMOOAfUA0r/Ub+YN9QCy0Ajvtkn1AudpVLCOUfUD8J11Xf5R9QF40CsWqpH1AdAxUCCvDfUDHON785sR9QHOWtDH11H1AEvBbh9fifUC+YeLR+OR9QJK56UyQ9X1AoI/jODQAfkAl/gqCXQR+QPtnU0pEEH5AKzqxPy8UfkAsmg1OJCB+QCpUmPw7L35Awvvl83k0fkD4CdkHCjt+QASf9YxCP35AvBJ8gxFDfkDEJBK9iUR+QNLBoyzoU35AsDgt3o5VfkA4CdZs8lt+QKCf3Tq5Y35AEpzG+ZZlfkAUbLQQyWt+QIuywfHGcH5AINQ/d050fkDspYgWv3R+QKQS5RG3e35AphoSFlR8fkAtFqYXZ4N+QDmYqre8g35AwfxIGdKIfkCAYXWh1Yt+QErpOMHcoX5A7McAG5KkfkBCG9KL+Kl+QHIVnuX0rn5AJ9kjV0+0fkCIGcAhn7R+QFP3G56ruX5AfiCa7RS6fkD8pgReQsB+QCro/FRmw35AcNgB8tDEfkBo7u+VbMt+QBDGRJBb035AJqAGVXzTfkAY/g2WY9t+QHZtk2nn5X5ALtqxDLjofkB6Pm0EDOp+QA6oUU3V735ArCeaXn70fkCMZul1XQR/QKyxYZlDE39A4O8z58MTf0A9B2cLUyR/QO4OV0+rKX9AzF74sIUsf0AqcPlacE9/QDPZMvKobH9ABgrW84xvf0CtHIWLt3F/QPdSzMCfcn9A6rbMked0f0DoNoeop3Z/QEDXBMW1gX9AFKY/216Lf0D+iDI0Y5F/QOANSr2pkX9A4yaVJJeTf0AS3oswXqF/QCgSk/Ooo39A7GOTIl+tf0BiGMyx9q5/QJoYWkRVsX9AV/5rIc3Lf0AQ35NIjdN/QO7usGvV039A7VHt6tfbf0BSvlimpOB/QEr3DOxO5n9A4o9x6Dfvf0DY2EZQRwKAQAWkqM18AoBAHI7bOs0DgECMqq8kgQSAQKJMgoPNBYBA2mnJ8XcKgEDhtF1qeg6AQDyK3bKfD4BAxcPoL9IPgEDq9rhfIxuAQIwwGXzEHoBAWsgSweEugEB8NICaHjKAQDU8t5eJMoBAS7dr5pA6gECyOvzDqEKAQHInlRG9RIBAWc+Ii/hIgEDw7yuYsEqAQKKZ3trmUIBA6PBjuBNRgEC4xMbVhFKAQBZGzKqmVYBAQno7iCdYgEDLBO1J6liAQEWEy7UOWYBAlWMzvx9ZgEAjHYUw3FmAQFo9WMWMXIBA8IHRnuFdgEAHjcryNl+AQCoyzpJkYIBA9XcpH+FggEDLwbbwCmGAQFww7CzDYYBAGasgROBhgEBtzR0HcWSAQDIo/6YdZ4BAjHQp9/BtgEDabh/dKm+AQKgHapD1cYBALu72qap3gEBUpXa8qn2AQHKjirklf4BAvEqwhECAgECjhEtRsoGAQEoxtDP8ioBATn+g7n6NgEACbmesAI+AQBsCB9kej4BAYv2WSkKSgEBcBCDzHpeAQN4R7CzamYBApVfwwAGlgED0FFJmd6WAQAZ49VaIpYBAcvIV+0SmgEDijTAdaaiAQIKJNDiHqYBAxPDHwtupgEB0G1xVPq6AQFS23j0Tr4BAGLnC4tuxgEBTrGI7jLKAQPQ6xWhQs4BA2lilxcK0gED2uk7MBryAQDC2ol3MvIBAiw28HYa9gECInV6aA76AQLvqkSw2voBAUhUqnFLBgEAV3T7NnsKAQE5ahgaox4BAvIugk2PIgECINTJeIMmAQMYfmWVTyYBAbmn/nKXKgEA48fvsTMuAQFxAMODyzoBAgtLgUh/RgECSl5g7LtGAQBs4U1lM0YBA+IIM5WDRgEDakMDSqNKAQHttB0FK2YBA5npl4xThgECmzy/3ROGAQCwZ6z1r4YBAsuo6/9bkgEDI9htyqueAQMod6Rn16IBAVOu01kLqgEC+2yWAKe2AQNJ+K2RL74BAEFxitjzzgEAi9UKaP/+AQBKFSF5AB4FAZtA1qD4PgUAovcgkRheBQG4nRao1H4FABkhXbfMhgUAURvrYoCSBQDds8JI0J4FAcgI7M7cngUA2pJ3z4y2BQCSZHDAwL4FAMDwrlL0xgUCJFeSmdDKBQIDzuOi+MoFAQVmIZ/U2gUAIWiug8jmBQPrpxGh6OoFA4kPu8sQ6gUBOYvaSKT+BQHLckzxcR4FAKM1VUwdKgUCcERJUXk+BQAUdILAbVIFAnENh0OVZgUDgYTuK6V2BQJnL/c5TYoFAcsVEcqBlgUAsoOVYsmaBQLncfzZ8c4FA1pggv7pzgUAwklskPnSBQJbcnC/CdIFAaARWLnB3gUCqaVleHnqBQHrCjtjffIFAqQ32x1WGgUACv6u7Z4qBQOB6V7AVjYFAYrBuHDSNgUAQFtb1VY+BQNahycg7kYFA+je2u++RgUDWmcCiEZKBQNx+imI4koFArr34u7OSgUBcKNFOkZOBQEYMHdc+loFAhIGxN1aXgUDYb7PSnZyBQLp/2N5Hn4FAwOlVkeahgUBopBOR96GBQHRaKUwTooFAaEGzAZSigUDiiPic36KBQA+jO3qgpIFACfcC32yogUAEiNLR6qmBQMDnIxhKr4FA+tS93E+3gUC8rOPT3r6BQEy6+H9qxYFAgoG28F/PgUBQXn4o+dGBQOPzGfJ904FAfrUfZvvVgUAJGd8aG9qBQPYc1QZ224FAkCcXvRzegUAW0T12JOGBQBkcyGIr7YFAxDguXbPygUCGjamG7PmBQOLwBszv/YFAs7AkKuMBgkB7lcTn9wGCQG4b5fL7BYJAYMnMEwQJgkBlE1LZ8gmCQJ4NeCU+E4JA8ZQet9gYgkBkuyHX2hmCQGYw/B9EG4JA3l13Fa8bgkCVsDlM1yCCQAI9G3fQKIJAvMNNOgkqgkDc9bFN0DCCQGiNJQpdPoJAZHUNdT0/gkBq/wAwsj+CQJExF+ReQIJAjDy/bHxAgkC0NPNJ/ECCQJd324g9QYJAOkQG4AhCgkBKwWPXSUKCQDL25UgGToJAfhpdwtNOgkAoliSP606CQOpZblEMUoJA6e6R1KlTgkC2eF0aBVqCQLIC7UwWWoJArCTdvilagkB8EJ914VqCQD/9KakoXIJABBvdt0hdgkB07OPxG16CQHIBsaIKYoJA10UGQjRigkCu8E17OGaCQHohLKXRZoJAviOmnJ5ngkBlLcyNaGiCQAoGMmQ9aoJAgmooHXBwgkAY9D3Hb3KCQEQ9utTYcoJAJCIZpzt1gkAYNSDEBHaCQJRvF3DRfoJABru3gNGCgkA4IX5uQ4mCQNVyOEJqjIJAjbJgutSOgkCKVeadQ5GCQLkPao08mYJA/Btfh1WZgkAL9KXud5yCQFg57oUOoYJAAFWfRjuhgkDo8vYPy6KCQIX71SEPqYJAGh+8ZTSpgkA8HUSKz6qCQLiahszdroJABrJydQixgkAK3Yp/1rmCQNx49U/sxYJAPLIPo+/JgkDGoYsn9s2CQMavLs7s0YJAnLt3sH7agkDtWddZgt6CQAbyxvGG4oJAQunKSF3ygkCFTTyVf/OCQPCIBn+v+YJAGo3jruEBg0Ay6Afh5QWDQHLQ13OkB4NAAe+cn3kRg0BwPDz1eRmDQE1WNsxyIYNAIc+iZIohg0DEqFyVcSmDQOJGmiBqMYNASPBG04Exg0AAJF1UW0GDQG7G+rvyUoNAt72JE+xyg0DSvyjjxIGDQGyBDmLigYNAtDEdlUiDg0DqNHeRx4WDQGMPG9q9iYNA2mfs29OJg0DCv8XiwY2DQDZHqfqQnoNAdAq74umig0D6XmWQErKDQP9vOXcWtoNAZAws4we6g0CaxNm3HbqDQBCWvWWRvINAzqUEaxC+g0BnMsz6HsWDQNtvF7fMx4NA3CWvx3XKg0BYDr9xy9yDQIo6gZR434NAD+ZisCLig0Cjgw6FW+SDQI4AJJaW+INASAdkVW46hEC66xR1pUmEQHDe2P6mTYRAuHCeQlxZhECSh+PBa1yEQBoNHSS2ZoRAMn3Dw/9ohEBcMoDSOG6EQAn4daT+cIRAOp7bFjlyhECCT4EI9XSEQIZADOq3dYRACYmhzMl3hEANG/Rg+HiEQHzxaNG7eYRArtUpmnd6hEAZ/e3tEX2EQHdwBawnfYRAfIPoJLd9hEAqEvrFu3+EQKJ1vX3Vf4RAvkwSjEqChECumdDfbYKEQIaBk3Srg4RAVNkfgR+FhEA243eRtZWEQBl5CNNwooRAog72fR2lhEBCuaZosaaEQAaMPsPNp4RAvGc5K3yqhEAMWVt+Fs2EQLaIJv7Ez4RA3XRUGJLWhECsl/cTatmEQDcEEhBq4YRAGRFVqgTihEAUSARMY+mEQNMsEw+B6oRAG4qtLzXxhECk9edoYfGEQJQFrvM38oRAiswautv3hEAbF7u4N/mEQMpGtrFa+YRAik4tmYn6hEDG7lAFufqEQBATqHs1/YRAJ1rN8+L/hEABDXOkLgGFQOjYrQfiFYVAxAceYvkWhUA6eZLqFxmFQJC02JtkSYVA8to4AGJhhUA6WIg6oGGFQFrA/X7eYYVAIASHbuFlhUDXHuZLoGmFQKW+h6NAb4VA0nTRM5hxhUAOiK/xsHKFQKrGU760c4VAxn2NpbV2hUDIsIXJmHmFQExz1b7MeYVAgrl6kbd6hUCZdcq3u3uFQAjuGpGRgYVAKpidIkGuhUAF8BNaRLKFQAulF2+s4oVAdOZ4utDihUCh0a39dOSFQPC9MFCz5oVAKjs00WLphUBjVi/PoyKGQD4YqRSoJoZAIg/qIia5hkDkPtl5KMGGQHAdJiXTxIZALmPnxM7GhkC81BZ/xMiGQB3Xi/zQyoZAelRgPc/MhkB95xB/Pt6GQJK68BhC6IZA726TrIbwhkABswKgAfOGQOUqvYMw/4ZA8u0xZzQDh0Dh0YXpNgeHQICiQQIsE4dAqAsJbzAXh0CWfUK7MhuHQG8uGLuRKYdA8u/gWZExh0CsXFmeWzaHQBS6NbyKOYdArHlt3IpBh0D4voORYEmHQA3My7eFSYdAyyCzfhhrh0AmVC4XIXOHQCQXddXHsYdA5itUjse5h0D63UVcwcGHQOfWv2zexYdAVumHE7/Jh0Ac4THdQ9yIQA== + KBZXds7jZUCmvpxNHCRnQKRf3MUzAnJAO0xzspUCc0AYBZ21IwN6QDuqTwbuE3pAkf5TC4aEfkCMsbwEPoqAQAJSiv26QoNAubdhqp+yg0ACgXgnZ8uGQLCW4djWSodAQZticRgDikBkhEcRuuOKQG6hBxd6K41AkYrsthsMjkCRx7anLmKQQGhSa4DmoZBADbf2PkoukkDoaWKVPGaSQCQ6yRF7wpNARZNSkXhmlEBaqJOSnoKVQKRRwCbRhpVA2r+Kp/RGl0ABe7AiDYeXQBX7c4oWI5lAJLBcRSBLmUCVEmufbOeaQA== - + - hi6kREAr+UVxTxBFExWKRPlFbEQzxM5EezNBRYY34ERjm6dEbFElRfM3zkSNJg1HQ6hzRIKd1ERbzwpF1y5WRLkAlEStkq1EhX1mRATcTUXe6ZhFSIKMRAyRPkTPCZ1FZ2vzRArYPkWUSuNElpwXRZv+vEQhuOVE72SKRLG55UQlEqFEFDeHRD0tQ0WDYBpH8iRDRLmaW0RwNmdGUCOQRZi0zkSOD7RE60qyRjBB8kR5eQRFA8NWRJoapUU9vhhF3r23RJK8iURqs0REScwnRKxxSkRrxYtEmTWYRHg6D0VAYW9EcpYVRRq4hkWuhoNEsdAsRve62USyTJREXobqRDdPekVV6WREN+XdRG+/oUTjGohEWvkoRf97hEWJDJxEBy/PRGeahUStjGxE0s9yRLWobESdoxtFlyxORNFbNUTPa9tGPFu8RBXyPUQt8+NEaUmJRViOAUbQNmxF/sS+RB3iBUWCr2xHyGtrRAlDYkTT7bdEdQtzRqoKlESHnhtE78gARnvbiUQ6PnNEeovERK5NUUSBtwRGJ8mFRL5HEkV29FVEjaR5RGsMY0XCIhBFEu01RNKkIEUT0TREuYbaRTUvJkU8VUdFUmk+RDSxSETKXWRFhCdVRDFaYUTzfolEoqWfRVT+70VdxrNERy8FRtvFj0SrDLpE73NmRGwkmkRuegZFka9+RN6mOkRDbGlEueanRJBGC0VCLGRFGDeGRnv0wkRCF1JF2oo1RGVWG0SZRoRFfccsRBN5vUT8AaBE2C8dRdDYb0Sl5XlEnQhhRLKjJEXA2GlFodbBRClPX0RIkYxEEStBRMPyx0SBlThE1opuRLgLr0QdNpBE7PA5RLYnhUR1zL5EE0KfRGpvX0U2jnxFQG+fRR8KJkVWPUlE9gJ9RAt2okWZN09HJMdLRLqq6EQBnnBEJIKTREaomEXga3BEEW0XRVuT30WZ3ZNEiX+ARK0fwUWP1k1En/9HRNa/mUQKBpNFICGoRDTZg0Ryrd9EqkS1RFT3ukSYKxRFTUfNRA6rA0WcKL5Fa7A1RAvgnUQSdmhFGmRERP6oI0XpJZxEYo6ZROQSVkQaUWxEIXSZRMHN10QemRJFmt/NRAcyoUTvjbJE+lGTRAYfRURs7vhEwnqhRMg4BkXuradEbcjHRDnzjkRQgTxEmzLoRQWpokTZnt9FXxadRBC8VkRikopE5+4yRUPkMEQmAkpF80bwRbzdWEQBpzJEN2ZWRNfEcEQ0o9ZEhv0wRMrB/USWEJdE5I+KRDAIlkSpxHxEFWfYRKFVFEXxcIFEGO0vRQrih0Td8zlFAlYdRjFSFUWbjaNFp4s4RJ/M+0QkpXhFdWToRChtZEQb+5xEUGaWRO43gUW9TddEqxA/RKOoQ0QmlHZEDV3eRGRho0QmMXlEFoKyRNNr2ERp/95EapJ0RBCvjkTtsMhEyEK0ReQdX0RssGxE8rOIRFc0fERtk2FFkwNhRC6nMERcR3JEJpP2RIKClETiFVNE2apRRNR/wES5Q4FE/1CLRRXBkES+fB1GKrPHRVvzqkYWy1dEuZGTRPO6lkQ30oJEXmBsRSRrxUTPh5JF9VxtRAUBeEQSH6lEDfoWRW3cN0bzlHhEOAwjRNZYMkQB/x9FqJbiRFPVfkTNla1FMeByRE+WWkTlUndEfjFRRKIrFkXiWjVEn2iZRCQn+URbHMdET3x7RIrORkRUFUdF7MyZRIWtvEU/v1xE1idORMrvnUSBh5RENB96RXTWSURwZWtEROm+RNi8bUQ+ZANFATuSRja/UkQO1XJEUXuORZuPjkQ1ngFGDkeARTDnyESfop1EUD3wR4F3RkRFi5ZG+Y1FROE8MUWM2rRGLsMpRdcLn0UmP09GR5j+ROHqskVE3rVEFxYURZv3RUSCF4tEFlmsRMpfekTBJwxFnOeSRD6KQ0agCKpElkuVRkAG00XDzKdER/PGRMrJg0RwC3xEk8W7RPJmU0UVTpxEl82PRN9waEQvoaVEuBmEREDOYEQzGzlEB92IRBLl40S7xLpEzvOER35/7kbbWiFEPVk8RBL3yEW3jGVFDuKPRO5Dg0Ub+YpEntWKRZmC/0WeYpJEYUShRIUCqETwDExEsmJdRA9Wu0SLYkNES41oRQltGEaHPKpF1sFuRCd8XUSw5whF/FgrRQ9pLEU9ooNEaEauRMLaWkTjA0dJ7YqzROuZqkfgJS1E/bdXRYkvQUS08flGMqZRSJUtNEfhsXlFYciHRl5GEEWRUS1FlQ5XRU02hkQ/VppG/Ky5RHqY5UTiiV1ExCJBRMqQfkRDhptE0tCJREg+wUTtO89EI1WqRJ97o0USLtBEHx+ERLZ9O0XzGI9E6RKkRFL/XkRy/KZENC1pRbqkxUUQrDZE6g3ERInGVUS2G8xEHQ+CRB7ZMUZcqw9G+8PpRAcdnUSdnXREyLBZRGrneUTRx5lEqYV4RIpHv0RwUMlEOFCWRV6eaURcU6NEAbJYRDQSJUQcQ5REb4L0RJdiaESA2nBF9rmCRCyDR0S6ZCZEBpngRZU7iURnctVEJoOCRDvxekQC5A5F3jTHRM/1RUQo/ldEnFi2RHihX0RFJI9E9O6bRbUVFkbUeL9H5c5pRl18Z0UeLRVFvdHNRrCfTEQM55NEAf5BRLm7MUXQ76JFwtv4RO19mkQtmEtEXBOORAjYKkSalXZEkV2IROr9Z0SX0olFCX8zROfWdETzqvJEb3LcRX+LrUREYD1EOVtiROyYg0dtEH1EwywAR+5uskRR+udF625lRMmgQ0VUjPxEWGSvRDA/PUSRxtNEQgS3RC+5mkSnRWBErRHkRQ6y5UTn9QFFk6mtRAqYHEZqAmxEBo59Rbh/lkRDiXFEu89YRK0srUa8sZ9FowBqRI9gOUXvKZ5E8wmlRHRokURYBWNF+nmkRBr8KESh5Y9GP601RlqjBkXWnyVFbsCeRevbj0TEWF5F9zgBRTgsQUT0GIdEHPSSRIj60EUJcqZEeGDRRVdCP0W2sXVEt0ZQRHUEhEThdV1ER0E3RY8Ia0Sh9YFE6RI/RMDk9kXAsLZFAO1jROtJc0Q8dPJE92WWRCNgTUU3qYxEx+zQRKMjY0UaQElEp8ZPRMpttUQvyflF+0I4Rx4chkUjcIFEMbIKRmj/OkTbOGJEM4TJR8IWdEXWfn1E4/QPRa9t50T36MtGuoQTRWJWkUagxwdFqTXVRLclwEQpxY5EtGhARYroR0ToXU9E5c9lRIYGVUQteQBFoMRRRZX5TUR7XwBF2OTiRABSpESwUJ1E616eRNoqUkS9C71ES/mMRJ3pSUgRVSJHx0OURIsOOEWwgPVEonhoRrryLURJxt1E4FQoRQGkHUV9LFREoB56RmisLEaYTo5EZXeCRb3If0VW+LNEwhQMRSzPb0TM80BEwOh/RJylhEQEWmtEvee+RQ6TiERA1YFELfUmRcUWRERnB2JE1mxrRMHZv0TEykpET5fYRsf1qURL7+FFZCWbRY4DqUVQw3VECoo4RNeCfkRkhVZH9eYdRV2oqEbQbsRFiZrfRKxC6UT2vIlEm+dqRCVDY0T6RnBE0MI1RKCWm0Th7+tE1oF6RE8HcEToyotETFNERG2va0SO6DdEbVl6RM6UdUUKfjpEq9JWRL1gLER5kpBExeNhRDqHXEYIh8BEipIVRSYnREXGmjxEOSaQRMvzf0ROUiRF7NSeRQ5eRkTebytF01eERJHldUS92IZEeeCORNUbP0RnOD9EowtYRMH/AUXNnelE4uI0RY0vx0T83WhEnl88RHRqYESBL2ZEckhhRMySTkSCweVFbQzARG7IiEVAFXdEI9ugRDUcl0Tb8uZEgchaRpZlUERPKBpFfHtFRB9joEQD1qhFQbqnRE4F8EX4v2lEp1p+RVm4RkQ54HtEHsGBREYxq0RYshhFwgmARGvHHkVYALBEKeGURBeLGkW+vilENtRgRMym/USZm6JE6YVVRA5gr0SLzz1EUhpgRL9rO0TL/vtFnJVERIEZGUX+825EbehXRKSzW0Rq9VZE7t2ZRHDTcUSw+/FEinlORBDKm0QolbxFa+yHRCjWgESOUFZEJSzrRPsUv0Rja7VEfG6gRPjQRUTK9sJEBV19SHx5qkfYielEqOzJRLOn6EQ70tVHk02URhoOqER6MUpEy9BoRK6LtEQUlWVHiXecRcBPIEWoOWJGhrdqRE74mUX5HUtEC8E5RKrzTkRqCqFE6sMARb5wgESZaclE3humRGgHXkYaUrdFCwSYRYvyv0RvH8xG5lY+RvFjqUXPcaVFiJOzRBqFNkSytfdE5HHgRP/ul0UbGo1FwjpLRNzVM0QUk7pEdcd9RAaiY0XkE+pEzhv3RKY+RkTxBKtE1MVuRMSshkQnmoBEB3xpRBZ+UUQfcnFEidVeRN3cTkQ4d8BFCFSlRRsC0ES6pD5El9k5RF7B6ETBaKxE+DlMROtK2EWsrlVEsKEvRfghE0WLm2REn7k+RF5/kUQdkfxEdb8DRQ0Qr0UqWoVFuWl0RfmJI0X7sElErpeARIJnp0QMActE+7i4RPT8vUQgjSFGxWPLRCivQETmhj1EkLY/RKWIcUWHzsJEoaHlRG3fQEV/KzNExORURORrqkRRv09EUJGORPSv5UagmzlGE+EURXsuOEV3A7xEz/KTRL90fUQ/jJ9Fi5VERnlySkR78J9EGgZnRELZMkW42MZEvxzFRCP9zUQsk/hElWVgRBsksETan1FEKG7IRBoGl0R38pdEjQ+lRJJjQESW4wNFgXD6RHBBcETjPaNEeW5JRKd1V0SfazBEn1ZURHrDj0SrrsxEq8xzROZnX0SRVVdEvQ/QRfhJokVjyn9Ev0UTRc+QlUSPIMpEO2k1RFe8h0TNMIZEfIuPROF1rUSTxWZEPj0rRPLWzEfLxEFEVD6GRDHTGUcZWN5GD3TWRDmsW0SbiONFSD/QRdVPo0X0TTVFihgyRYpReUQiPZtETS2DRPBCMUSFGwBGrv2cRSPXg0TB6Z1EmYpFRfOfHEWkBnhEXOO+REz7V0QcKT9EcrbhRWfMMUV1rItE3HLqR7l3QEf/7flG5649RRBy9kWC10lFvYp7RPkMXkQzl75EeAiORC8f2Eb1kPBEJa7JRIBlQkZyMLZFOU3LRNWYSUWsnlFEFMxORNKX4UY2GpBGPGAIRaHVgEUMz2ZEl2TiRGAtx0RrDbJEKXLfRJP+LkX59WRFaen0ROGVYUQRGYtE+6ZBRJKpU0Rsn1ZEsk1SRP+Lb0Tz5F5EBEW4Rcb0j0QSCTtF8VKDRBIpk0QtHJtFHfDORoocF0WdlxlFOHfdRp5YpEWSfulFqdqXRH5qJEV4WHpF8FFJRD/JKUUK8iVEe2HpRDjxZEQt4ndFVOEkRUuebUQJVIZEpfmZREhWbEQMKsxEyQ+BRBtTCUeZ4YhGu+GHRBKvP0ahhIdERMp8RWSbSEWp60VEJ45SRZRByESGgJREXozARZvuhkRoehlFqMyZRFZ6uUQdE95E+ebkRAzmRUQzW2pE2J4rRISCDkfl8ZVFwlUtRQdxkUae+FREjmQSRiGKfEURWqpEFWx8RUrhXUXIDnVEjUyTRCMqbkRZdQlFHKtvRVjvQEXpFEpF10upRKFTW0RGD4FEfpmARCwpyURTpXREPHUcRcr+zkTOw65EaPZIRUD/vkTfpZVE9lzaREfjo0TgN5NENZ6fRHvbM0R4TKZE01ywRK64kETZe/JF88CpRWo6/USFGkNGLxrIRZhijUTvRVRFlHH8RDhJLES0Y1lEPvahRRGMpUR8wSJGUOekRQIfYkWnAytEqBPBREZhhEQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - n+sTuHrAckC5Lg3sJMFyQFR3oEJuwXJANIQg0sjBckDeH62cTsJyQBpAzx/lwnJABG6wpTvDckBCr3mCxsRyQEnzqpJbxXJAdjZQcfnQckBkAzlhE9FyQPgrL0Ul0XJAEhRNokPSckD7IcVyaNNyQE4NnmPN33JAVKckIbngckBQcbxTHOFyQNofMWVQ4nJAqhQ4YJDickBeUTKtJeNyQCRgqwhV8HJAyE6MVDjxckC+QURKyPFyQGhVp9Re8nJAXtJhXbfzckDo4xtCD/RyQAXpviWj9HJAvkJ3CMb/ckCYbT1gYgBzQOJlJmT4AHNAplpMPkoBc0AyWTtIjAFzQBL6+8TPAnNAmi6lmmMDc0DEcIK5+gNzQMKijyIKEnNAwWj5nbwSc0BZH/ls9hNzQLLWKbsHFHNAOBuG+k8Uc0CsFtAyeR9zQJh1YZQOIHNAMWmsfjkhc0CFSdaSeiJzQI7KCivLInNAgfipHRQjc0BgSrBROiRzQLZhnsTPJHNAFJeEUkcxc0AAMGfSZTJzQDqghZ7NMnNAMwqYPw4zc0DiZ+lCNTRzQOu53yJGNHNA0N5LWdk0c0BUc+e1uD9zQIiKyZDkQHNAiDemGXhBc0A0Ky79uUJzQAz7le7mQ3NAoAV3HXpEc0BUlOBD9lBzQM3evaucUXNAmwUglqNTc0CKZZlHeVRzQBQSnx35X3NAF4z/lRxic0B2dwwLOmNzQHZ8OEKRY3NAtK78hyxtc0BmOu+c2XFzQMcV2lNPcnNAyPfwUWZyc0DceeMjvHJzQMXlnwq6dHNANlxDlEx1c0DR2VVpa3ZzQBLTHMx4gHNAKEiBRA2Bc0Dex6iYXYJzQPjNnnumgnNAyuRua/6Cc0D4I3K9DYRzQBEjTdQ1hXNA0MLiilqIc0BS7cEWiJBzQHwVQ/COkXNAZNuBU02Sc0ByhvwjtJJzQCfcl+FglHNAGp3/HPiUc0Az+IQRuaBzQAzSb7dQoXNAwC5Pr1qic0DkI9VpjqJzQHn3rlugonNAgoiYZeaic0BFtoZPIKNzQE6rCwsEpXNA12egs9Swc0BsZMOhtrNzQPiK5qcNtHNAwsd41PXAc0Dm5iHqjMFzQPF553Q7wnNA3F98CdDCc0Bh9aowJcNzQLgGLfSSw3NA54oz9PjQc0Ci5Tnv19FzQMSOoJja0nNAQCEcv/bTc0BeIfba4dRzQDYfiESj4HNAHPx1lNHgc0AqEK5POOFzQOas06F64nNAGq2ZCBLjc0BiKsdho+NzQBIfNv409HNAuBqINo/0c0AAf/I74wB0QFf/VbB4AXRAeu+RnKQBdEA4upTuuwJ0QNhmxlCMEXRAcI3kHhQTdECOD/1DTRN0QNQPv7OMIHRAkPBx/bghdEC/NxqX+iJ0QFimSFdiJHRACtMlaFMwdECwjZT9EDN0QGpU9enhN3RATISyRWw4dEBoiFkSPT10QMD1Ha6lQnRAdQehxjtDdEC+vRvNeUN0QCjhhNJfT3RAMNCkhGBUdED/DGHD91R0QC6RqiOKVXRAiET2ot1XdECZE50vIl10QDt9c9W5YHRA7TfxZAdidEA2DKkoeWJ0QHh39LcnY3RAPv999FFjdEBqu5POUWR0QDkc/R4icHRAgoq6QdpwdEBi5yLOQXF0QARp5Bp9cnRAV220ZDpzdECIFAm0XnN0QN6NpyWldHRA8ArhZDZ1dEAbUkI6RIB0QHJKCBP5gHRAi6fCdE6BdECAxuRKSYJ0QMS0Q6cpg3RADP6ypRWQdEANUO84aZB0QDisz46PknRAUDfBL++fdED4cmGbz6B0QMmFrUk4oXRAYDnJJbiidECwpu6sD6N0QHxp6fz6r3RABuOEfAqwdECa4bKNw7B0QCzAMdpvsnRAhlcUJf+ydEAIovNAyrd0QKGlRcsfvXRA0FXwLuHAdEBi0YgC98B0QE1GUAp3wXRA3FPZLLrCdEDS9z/zT8N0QJqrDSS4xHRADsLSYv3OdEB0lPGVO9N0QICTbjhd03RAlpBYqOHTdEBsSLAwz9R0QBop9ee34HRAKYIzHrjhdEC+5P5T+eJ0QFxXMsKR43RAFVuaZ0/ldEDecfFkwPB0QJeAolKN83RAzBeAaHn0dEBOKgy0oQB1QIirNJVkAXVAoMalgF0CdUCBxyfz4gJ1QDphhjKYA3VAqBIR0ZcQdUB95bDXIxR1QHbY7kHRIHVABCdRgesgdUBaDzy9DSF1QBKywUSeInVAYL1OnH0jdUC+1Cte6jB1QFaNNq+qMnVA0Bt++Ms1dUAE09j9fUJ1QMKJNPDeQnVASEM4d9pFdUCCcTIJ20d1QByN6QXdT3VAWAHyvUhQdUDjKU4NulJ1QCKmRohNVHVAP+Qm63dVdUDAFLrSD2B1QHqQMlM4YXVAlrXe0tNidUDZKmLnZ2N1QDGVJu93cnVA+3p2Fo50dUAOollBeoF1QOCqCdytgXVAMJ8VbFGDdUDr0bSzpoN1QDaNumOchHVAAkSv0LuRdUCqquUwbpJ1QOgK7Z+nknVAQt3OTDyTdUCb2COItqF1QC4QTQFKo3VA8F2b7KOodUBeYEvjN7N1QOYKYnN8s3VA5/YnRM7AdUAQ1f9NZcF1QHLFm6L4wXVAtj5k+svTdUBj3fx8feB1QA6iAFgS4XVAKmaFMwfidUD7DvcRqeN1QBExv0M45XVArmOisE3tdUBesW0upfJ1QDbSR5bN83VA7mAugygAdkDyW4C9RwJ2QCJE+nXQAnZAGjlaD9ADdkDy+GzSTRR2QJT1hFIMFnZAySunTIgidkCm/jyqkCR2QNpnhGlKK3ZAHA/uQB8xdkCe6LIWJTN2QGKez8pSM3ZAtUpwrpw0dkBXGnzUHEF2QDz7AJHJQnZA1tLEWU1DdkAPJtLteUR2QO2Fd7rMUHZAUj6lUBJRdkCmOL+phVR2QFTS9nXNVHZA4C3aNxxhdkAMaXfoTmF2QK6+GJWmYXZAkyGLsdlkdkBVe0dBBXN2QGE1m9wRdHZAdDdmRGqCdkACJLdGOoN2QPzyhK6Rg3ZALHw9OCGEdkDeG6etvJN2QKci39DQl3ZAjbNeBKWhdkCEH9xPwbJ2QBz9z94MtHZAPqhfM3XAdkCo5bDSwMB2QJRUA1ZNwXZAhsMDeNzCdkAn4gZhz852QKr1HK6f1HZAEhOR2pHzdkDyVc6YMQJ3QIndC7YBEndA7/V9lA8id0Cg6/162iJ3QFAgA/VPI3dAEq1cDuknd0BBN0neQi13QHAKNGuNMndAcItXnKgzd0Alwmt+DTV3QAlyIVqdQXdA/s39uI9Dd0BAl2GdG0V3QDAdUggGUHdAscxwIEtRd0BDc5vukVF3QO4+59igU3dAsCjG0uxTd0AcpadOKFV3QELV2wt8X3dAYmcFe45hd0AQxbtVoWF3QG4YqUR6Y3dArjKuXqljd0ACpwxAJ293QGTEswWfcndAMtbANSZzd0AwAFKZ/HN3QM4q05SPdHdAEsFaSPl3d0CcO+mOQ313QCaLGTtbfXdAlyqenGt/d0BQu5CzfIJ3QGpKtZ4KhHdALEt7dweSd0BA/OiMTpR3QFS42ZJmo3dAyKOaPqWjd0D8zLDymrR3QKG6qk0sw3dA3sxHn+/Hd0Adkn41TvJ3QBL39uBG/XdA1DIfCqACeECROt7XkgN4QFAaKBfnB3hAslUjyvwHeED/uFT0/wp4QNpI9QBEDXhAAovqM1sNeECC4uH2bSJ4QCY6dMM7I3hAnGlMdokjeEBfq/8TRih4QASywN+ZLXhAwFIPJ2oyeEA5mCR2STN4QM6kUSAMQnhAu0NUMLpDeEBAaopZEkR4QJDqotV5RXhAwI4YGOZIeECyJC3Py1F4QNFtMf6TUnhAMvatmIdVeEB0ljV1+WB4QB7ylpu3YXhAowH2o71ieEDWNJTFZGN4QG5KgMftb3hA7pGedRp0eECIQTbLOHR4QDZ9fvRKdHhAbBRu04t0eECHMQCIyHR4QObsOxj3e3hARlPL3aOBeEAaATZW/4N4QHrzjXV2hHhASCMWs5mEeEAKlQE4T4h4QEaiE0QDjHhAF+6+yKiNeECm3uHdmZF4QKJU4cTsknhAXwknwgWTeEDO6gWKp5R4QPhIKY65pHhA0kxNRj29eEBdHNGVzsB4QOEvYG4Ww3hAhvouSB7LeEABB1q4CdN4QHIU6vcc03hAuNMndbHTeEAQCvquttR4QEmAVPrW2HhAxNGNI77ieEDA6MZT+ud4QCKbpMZw83hAS1JR4wD0eEAmXO56i/V4QJBU5TyaBXlAAD8ZUXQTeUC5ohF4sSh5QD4y97gLLnlAcHewSGUzeUARVwQT5Dh5QDjOMG6KQnlAOGOP4/dCeUAUk5NDo0N5QA7lxJz5Q3lAYByd0uRQeUC90lOPN1R5QE1wKo/MVHlAeFRq6ehgeUCoWOze2GR5QIbPBf0Ka3lAloHXBkVzeUA5Pio9WJN5QPTyhvK/snlAlM1Ka0PUeUDUsRssztV5QIbYM33T43lA9gWb56zueUALycQmv/J5QG9KxV0R9HlArsMnAPgFekAWlpCnZAt6QINuKMVSE3pALprpRjQjekDHmv68aDB6QGofCWYDM3pAdu6L1SszekBM455iDDV6QESYmxguN3pAF7/IsDA7ekDg1tpnMz96QPY0xhh9QHpANlqanBpFekCmDFWdn056QGb4QVFXUHpAKe9SzidVekA4dwICIlx6QFveWhUrZHpAlnX4rzhlekB9G6yTinJ6QBbQ9Kgkc3pAQ++hYi13ekA8Hr0c1JN6QE/FcjLlm3pA9CzY4R2jekCj+c7PcqN6QO6J1Kwiq3pAVANqKBCzekB6UkvO9rN6QPUPwusMtnpAEghhiA63ekAglBi8nrp6QM0U8wUWu3pAhh/KYgC8ekAQEJ0pKMN6QKMaWna/w3pAkONPkhnGekAaeug3xst6QBShsz4iznpA/pZcB0POekCmZDvKy9N6QJZyGxvR23pAMtzRH2fhekDczDnh4uN6QIdPNWg85HpAykdEOHrkekDkFPOrN+Z6QMBAiPE17npA0vUAjBfxekA48DtIXfF6QCUX47h+A3tAdJwLcnwEe0DMOwShKQ57QDSJSZgTEHtAlyweaX4Se0DSZtvchxR7QMDsYupMFXtAxGrsmdQje0C3Q4A0WiV7QDSuDlw/K3tA8wUhmx8ue0DmlFeDxDN7QJouSvxfPHtA+fE5YmlEe0BaN+18/lR7QO7tsdwKZXtAjFU/Ixh1e0BEKKJZIpV7QNzlX0RUnntAerZyI6Wje0Ais4CseMZ7QGTksxEV0HtAcrgg8f7je0BYwdZIJuR7QA22N3uM9XtA7Tr/8pABfEAgWavl2QF8QM8bGNb4AXxA/mZHYGcEfEA21EKUmQV8QHKLGxEOCHxAo3lJApARfEA+ZBvo0BF8QA6F6hp9IHxAEEUgjuEhfEDGDO1YwCN8QGh3CunIM3xAjg2VB81BfEA+TrioXU98QJZ/KPlsU3xAYFQsLExUfEA+HBKbdFt8QEA8J8pwY3xAyhpWVut9fEAYLNVNwo18QDJPNfock3xAiSSGuXqYfECAQVrGo5t8QEP2ciu8nXxA9NcTG0qefEA6r1imF6N8QMH5cT2io3xARsXh2h+nfEARXAbqvrJ8QIclumTss3xA7jDIzHm0fEDfm7Ub87t8QB8KzmEfv3xAotVZC4fEfECOiW+/9dt8QMg0tMVX4nxA8Gl5ew/jfEBEz54cpu98QPDGefYV8nxASAsIwlXyfEAMM0fiAgJ9QASI/tZKAn1ASkGvYEUSfUC8DHeh+hN9QBqxrtJUGX1A75CqKa4bfUAQW7GDOyJ9QK1Ijp55JH1AoWYd6ikvfUA0Z28TpDF9QHjCca1IOH1A3gFH1qE9fUAALpPOBkR9QJ60Wk99dH1A6uA7PXmUfUCcKSGOgJx9QHS224erpH1Afu+18ebEfUBQpT9wr899QHG5Ne+b031AVN0pjfTUfUBo1NkOAeV9QBCMYDB67H1AArbtDY/1fUBst3L3MwB+QEjJJV1CEH5ALcCoOy0UfkBW5TePIyB+QPC52H3WI35AZvO1A9MsfkB17qOYPS9+QG0wg695NH5Ahkg7vwk7fkD+yTQHEUN+QEr3ELZKQ35Aih+EiYpEfkAqu23T/Ep+QFRcyGUXS35AwscJksJLfkDcnBfE1FN+QHtMFQXyU35AvNNct4xVfkCgpwiV8Ft+QKTtUzZfbH5Az0duXU50fkBtrF84end+QCQwXchUfH5AL23dmjCEfkBB9HZ+WoR+QEoXtsnTiH5AIrl1UyWOfkDIkND34JB+QJsa7T/MnH5AbnQbCCaefkAyNx/UkaR+QCJ1nAxfrH5ArqcFKfaufkAQBZ7fzbB+QBmFNPRks35AchJQ3U+0fkB33OTKnbR+QBSDjLepuX5Aeo9l+2m7fkAKuOArqr9+QO5HeAJmw35AUoHa3VjEfkBus2Js0cR+QJxBvpqwx35AEFT5mbvIfkA/gyFUbct+QFWYI+pY035AwvM65HfTfkBkw+nDutN+QPsINvVo235AQPIlb63cfkBoVvoAzN9+QI7E+oZN435AvheiPVP0fkBSjztFsft+QGzqcDc/E39AFKBpe0Ukf0AtszZgTEl/QIT42mm8UX9AaffUYY5ef0Aw5HQzmWp/QBJh5Ie3cX9AKil04eN0f0ByTFUasIF/QG2Ii7Gjg39APC4VcGORf0ARbMtyppF/QAY9zIuck39A1iV+H12hf0AnwNq9fqN/QNFtqyhVsX9AWRFs0e/Df0DGhX+ty8t/QMlsB4XV039A+otbpKDUf0A6gDecQ+J/QHTi5SBL6X9AQttaGenrf0DYfPNKOO9/QGSia46R9H9AaiyEnc8DgECgDUdNegSAQAq47CjfBoBAEEk8MHgKgEDKvylFew6AQAsOjzPXDoBA6NQy0OQmgEAU1uEFkSmAQMDcWKvqKYBAVz5IFjosgEAgif1b6C+AQC4P1auJMoBAjnem5/szgEBJ0+8dHjeAQDr1SHHqN4BAcp4pGsc5gECe2kcXqUKAQBo/JdL1SIBAInbXTa9KgEBceqI76FCAQCxTX5YTUYBAwpVwl6ZVgEDU+OsuMVeAQIs8I1cmWIBAYt3vtg5ZgEC6omggIlmAQBHaTofcWYBAbof+uOBdgEDrUxhg32CAQFYfyNvEYYBAIf8seuNhgEAB1ummcGSAQEIqNI+GZYBATIv5Ph5ngEA2u5cp8G2AQEmnAKonb4BAmua79/JxgEAqgOuuKXeAQKDZqAOsfYBABgxwsSZ/gEC+OrWCsoGAQAZfKoc3joBA67HwxR2PgEB6Q0erHpeAQPanfJ5AmIBA8+iMQRCcgECCgWWUGZ+AQD4f7VcTpIBAsFH3Y0emgEDc4xZBhqmAQOgUE5XoqYBAQ+rKCImqgEAB3y9fE6+AQJ4rNLS0r4BAVHXG4iqxgECVj6u+EbKAQIgVILSTsoBA+v2f1OW5gEDwO2diAryAQMCSslx7vYBAgtnV/u6+gEBdlF6+s7+AQB805IdSwYBAe0TyrJ7CgEDD4JRJUcOAQOJgh80+xoBABCLOQqfHgEAgE07ZbsiAQIik005TyYBAVHIbU9XJgEBWGNSlpcqAQBRdI0rszoBAPD8t6gXPgEBzB5OWLdGAQBUiF2lM0YBAhCbbTWHRgEB6KlCkqNKAQAi3ZRxf1oBAoHPiWUrZgEBwx6dOnNqAQDqEBxBX24BALOmlxw/dgEAgc2gdwN6AQKQQD3gf4YBAGtz4rEPhgEB2smFkV+GAQF08tX8H4oBAuoTtcbXngEDelY/I9eiAQMil+69J74BAkjBPCT7zgEDEezc5ZvqAQCrjOu6H+oBAWCuDs3f7gEAL42qLP/+AQFvapzug/4BATs8TTS8FgUBwYbIjQAeBQAgXtTw+D4FAZg/R/TwQgUDuu4WVPxeBQDCfR3nkGYFArEHhhjcfgUDsQiw9sh+BQGCy7vXzIYFAvrnyB6AkgUCGaTWlXiWBQKK14JUzJ4FAbNe1Sk8ngUBWCPizpyqBQGS6t+cwL4FA9jHS7rAvgUDwZ9MZvTGBQPo3jOJzMoFAW90B270ygUDkpOG3ejqBQNGmSSMpP4FApqPUmFpHgUBI1fE1B0qBQIzFHE5vUYFAJLAWgMFWgUBc+5av9GaBQClAsPTwaYFAaFrDOLdqgUC2iDWsVm6BQGdfQwOGcoFALhtOesJ0gUCMfR+Kb3eBQAAjw/ZBeYFAGCVaBht6gUB2L3L1x3yBQEJVVG9gf4FAFNKfGMmHgUAEa2NLVo+BQDg5sEPDj4FAyE4Mau+RgUBokJOuk5OBQPAmuADzk4FAnl93zfKVgUD4KDF2VpeBQK6tnWecnIFARpoDpkefgUDgAjdL46GBQC6zeRP4oYFAqJJmyZKigUCnOEmN4KKBQORgd4KgpIFAjvfglQangUD17HzZbaiBQIV6VV3tqYFAfDt+KryqgUB6KsKPZqyBQCbAcxxKr4FAxT3ul0OxgUAWbd7tB7KBQIO3lGeRs4FAMJt4F0q3gUDu14XjAcqBQNTYtBa0zIFAJqjkbfnRgUDWqxpFfdOBQHorCumQ1YFAMm+i1BnagUDKKYxphtuBQJ+TxyEh3oFA6ngdcfLhgUCcQ424ufOBQNDjZmDs+YFAtvP6iu/9gUD8uMII5QGCQMSsDvv2AYJAaEPERjMCgkDe4V+a/AWCQEDHcrEBCYJAK2V1z98QgkAASgurPROCQJINyh3YGIJAU7Cu8kQbgkDER1WvUh6CQCJ/KwHXIIJAgpHPfKQngkA8iK/h0CiCQARHxGPWKoJA7iu/vKQwgkCKnyalzzCCQOLWypeuM4JAAMag1tg3gkBMTtE0XD6CQKRJBRxAP4JAsmokiBNCgkAoyF4BUEKCQHR2KeA/RIJAbkPgZnhEgkCX96kank+CQHYp/bs8UYJA15ZDABRSgkAeS01K2FKCQHGDQrI5WYJAZpPBrRBagkAKq7rO0FqCQAfusdDlWoJA3bvvza9bgkBloUrt4l6CQP0DKR0uYIJA5u8XRDRigkDFisNiOGaCQGoeIpieZ4JAYNynbHpogkAS2Z67B2qCQJhJ4YCna4JAOkaVPG5ygkAI8HAq3HKCQETOGl2ec4JAFCPyv593gkD185qvZ3iCQD0HVoMReoJAyDy6+Hd8gkBg6pIddH6CQPLMZPT+goJA+Lg1FkiGgkDI1ljIHYeCQITEdS9DiYJA71u1bD+NgkB2vjWYbpCCQKzJZJBDkYJA8iTqxIeTgkDLhLd8SpWCQL5KUTcYmYJATmAfVzyZgkDROL9XVZmCQAo84CoOoYJADNJXkjmhgkCuu9k9yqKCQIxwh64OqYJA40Y9nDWpgkDwlifF0KqCQEKG3oRFrYJAqhMMJwqxgkDSvZjIMLGCQCxULQvdvIJAuM8by+vFgkDi0Y3k78mCQLkEyQgz2oJAFtMZV37agkDQp8jXrNyCQBV5o9uA3oJAtDBy6ITigkAWa2RSLe6CQL31FuRd8oJAVETmVn3zgkBGps/pCfWCQBb2W4mt+YJAEMlZzeABg0BqqUw15QWDQOwaNk7aCYNAxd6qcXkRg0DEpE/bzBaDQFCzjFx6GYNARmArzSwcg0DcclN1ciGDQN5Ia6lxKYNAOaULuGoxg0AyvL+NWEqDQODw09xnT4NAOJRx+Txag0BI34LtUmCDQMEtkV3/aYNABShbJOxyg0BKQatxbn2DQDwD9e3EgYNAprcdQUqDg0DCBE9NyIWDQEba22+8iYNAPrjbqtGJg0DO9HJKw42DQO4axkrRkYNAOk7em5iTg0A4t8VuErKDQMx9xvoVtoNASqGDdQe6g0CyIx7gHbqDQMvpWeAqvYNAkneTgxC+g0BBt+AUHcWDQBKEE+jK3INA4P8Q+VHeg0DtsZdXd9+DQByy8KIh4oNAuQcAUJDpg0BT3Tr7KvKDQLMkHiaU+INAGfGnHxYchEBN3pprlzSEQCTN9B/RZYRAWoa36v5ohEAsqc4O/XCEQH2kY2a4dYRAvfaGQMp3hEDYC4WM93iEQOYx1gC8eYRAWOlr9WF6hEDFPB6teHqEQHKqwS8PfYRAkvDkbSd9hEAfEgIhsH2EQMyUnaXffYRAlovZ4r5/hEB11xTf1n+EQK3S59f0gIRAsrgLj2+ChEB9yITr/oOEQBq9Vd0ZhYRA+Ha26UGShECKwJJRcqKEQFJUU6YfpYRA4RFJCSS8hEBOads5NsKEQBbhY/UVzYRAZLpTZwzWhED0UDUuatmEQJFbw5cF3oRAhl1+2GnhhEC+gZKPBeKEQJHAiVdi6YRAUhzyPXzphECGK1UHJu2EQGaTlMbT74RA6Oef6zTxhECkdnFEY/GEQCpHVI3c94RAzzbgSjf5hEBZqWJbWfmEQO7cEAKJ+oRA+oNorzf9hEAKZzFdMgmFQOLDzv33FoVA0xrxe3kXhUA61HZJnlaFQJUeXhmmWoVAWH9EPqBhhUDODqNO3WGFQMQvp8PeZYVAKqTWe6BphUCje3EMmXGFQGrBcg+xcoVAVumi9bNzhUAE00fgs3aFQNg/VkKZeYVA/Eo5HkR6hUBTxNHpuHqFQMJFc1aegYVAazgJ0T+uhUAAs5qtRLKFQMCE50puw4VAoHrARavihUBiINair+aFQLF5FD+16oVATkve6KgihkD+hjxFJ7mGQAaXys4hwYZAlMFL0tHEhkDCjXYhxsaGQD55DqfJyIZAFCRyTMvKhkDY66R5y8yGQKBj9/oH3oZA/AI2djL/hkAAbmszlQKHQMaFDZE4B4dARYXVaywTh0DOViEVqhaHQGutDZcxF4dA/J9/qzIbh0BQEUAdkSmHQDNrnm2RMYdATpcsZYo5h0BKpY1zXTqHQFjsEF9cQYdAk02wvohBh0AamZDjXUmHQPxRBxIYa4dAdK1NXB9zh0AvsZmDRZWHQAzE2ubGsYdAVSBMMci5h0Cwp2qlwMGHQOdTAzC/yYdAnDbx6ygeiEA= + NrgMGZxjYkDfYiTgc2JxQFTDHQfHcXJA - + - BpU5RKG2PUSyrcRFItj+REDQeUTLhMtEEOoARVGvZURscqpEVriBRO8zF0QNDZ5EV2gUR8y0B0VmN9lEWyqERDtsoUQRIEFFJRSJRVV3YERID6xFdSLPRKz9SkUlES1E2lDERKS4T0SID6REvp+xRBNCWUSy1Y5ExgBHRNR9YUQyfSpFMZF+RGcuC0ds0J1EwSw5RkhgNEXAqW5Fp3OVRMDX/0TOjDVEecCTRp0fRkRlPYpE4MeHRNike0R/OpFFeJinRAJndUSZQEZEzgpPRDEhXkTZbRREksJYRBJem0SWBGNEkcU9RS2+hkS/NS5E1HcMRu2pKERT6AtFOFCCRd6AiERfdJhE8mt2RKcH80QZ8IREkJhCRToMkkQ9JZtEUKzoRJUol0R1gG9EKJ8GRTL2u0QGhM9GBiBSRJ+GgUWRbQhG3ya1RG17ykSwejJEEzuBRLf4nkQ2eTBEL5dXR/XInkRoSKdE6sleRteUx0XGsjVERGHxRf5zfERU/WBEoSw1RBVGfUQ2d+9Ea+laRJh/AkUEBBhFkYuFRIs3MUSanjxELd7BRS3350TILypF3GJWREJ0B0UaIkpEvbe0RCLSl0UUg2JFGWaIRELLuEWXMYNERULURPbEu0RIAqNEGxRlRJxiH0VTL2lGuq6FRNrvS0UJk+hEQLMgRL+CHUUjAGNET28PRc/TLUSj40JEPF6NRFapskQlmwlF9/5RRBP9AEU7fTZEMsFcRJWRkUQuGzNELrNwRKvSb0RSf3xEFo5nREQABUWYBmRFxugoRYsskUQwwSVE1kUmRbIZaUStcYhF6NEsRCcMS0dHOlpEWYQVRRoSQUSQI2JEEzGIREIUr0UcHQ1FQmoDRrZXn0QzA3hEHjSWRcoIu0TwIC9EdwxRRYqEtkRjzXNEN3kFRZ6ZQUWHMJZE4byBRBIIBUWvcbpFKbCNRKfmVEWhsYFEjzavRIjmLUS9ArZE8xSCRBmSXkXvw8FEnATJRLQ2LURaiGFE6lRCRFHxjUR4QBtEFrneRG19RkTD7ZBEY3qbRCmDQURkGtlF3uo/RBmQXUQfyadESoCkRS4hWkSNcDlEoc+lRKbayUQibzdEuBdERZvxLES5ybRFc9ScRKsVckT8j7VEciccRUCDDkW2tKFERKJnRJLsdUQ/0a1Es4osRDpDlUSh+2tEiCO9RD0qnETBLTZFcp5BRMjjXUT07QRFvHlWRrBNeUSOYa9F073CRLPqV0UJa89ENvGnRGYVUESpxGpECt6LRFyVtkT9n1tFDkoCRZ+9RUSVV5JE29S3RLevc0RhUcFEPWF2RGlmIUR1J3hEtraSRH/GOERsBoFE3+NrRTx+gETjh25ECqtvRG06P0X27HZEX5KXRP8sVESasqNE/RlYRScy7EU0tm1Fl1WwRkzcgUQt9MNEc16pRI/QhEWSf8ZE0zlCRP1/aUUBJixE36/TRBg9lETFmlxGgd+GRIAGRkQ6fR1E4yPpRAqoPURVkZxF674dRBvSpERThMhEbgtkRF/oZkQKMW9ESR8vRGjNNkXzyp1FOxSNRL7egET1cV9E+uY/RASaJUUBvilE69IiRcWoWEQV5YxGYAlvRSMtNUTGxyRFSsD4Rap2dEU8tWpEiQONRDqL8Uffx4xG4P4gRbOzvUZd8C5FLO6LRcbIOUbaq1pEedJPRGz310T1r7BFbwDCRGPRbUSwnkVEWXmiRADrI0WBXylGwfxuRKX1eUYtRKJE/TmpRZa0AUVeRTBEjfKFROqTo0Q4AxFFAfZcRAl6kUQxpmVEKLc9RFJK3URrglRE+KR8RPZ+u0Q2eZBHDc4SR35XtUSo4NNFvjr4RQrEQ0T29zFFxjWGRAvhZ0UZYb9FiKxPRCIIPUQc6aRENW8pRP5Hh0RT14tEEcVZRCPeKEXWgSVG8Zo2ROYfkEW5MtNE0uQwRdmdBUURAR1FXgUzRBA6Z0RAO4hEYL1qRHjAAEUrGfREFQdBSW8rG0XEOpFH6rECRePl4Eb++Z9E4jBBSCVHI0exMKZFPh+kRh0fIkWfZb9EprNYRU9vi0YvvmREDptURGLrvkRUYgxGHzLHRE42i0RC+zdEVYyxRL/0K0UJMz9EZTk2RJjqy0SB+UZEmwNsRUsFzkXTxI1EXWs8RLDR90VHqphF78YZRWhDoETs3uBEC0M3RMhOwkT1Hr9ExUE9RH6AXEQcnINFGgJHRAJtRUQ8gTRE7zqNRLxZnUSyYltFBp64RbXOy0SEoEFELTuDRCQ6G0XQOqpEWObkRJzhn0QkpCVE2GlPROd6XEY9yY9ER6MyRodzwEdZ+i9Gk8NhRcY2skRiYqJEARvFRjIgP0QLdzpFk/c4Rf8pfEX3GL9E91uARFJmQ0RHq9NE9FSNRHgLjUT/SD5ERdOMReQorUR6NIhEfM3eRO51bkRC99xF4VqzRPeoX0SZY4lEphovRGKGWERW52VHbFf1RObJukZaoVJEEemoRPwsQEW8Q55EAwOGRHAxy0TsKNZEyJYIRcBhRkRHnvRENMrSRHZG80RiE1dExvmwRbqr9kSjiWtEttGHRFJBjERQuhFGGnGiRC4RAEUU0CVEhQcvRE0rjUQ5eLlE2sdLRJjXoEbacpRF+NNARExdtUSzW6JE/jSIRP7Oc0Q7APpEmSGRRE6gd0TvN5pG2YXSREmJL0YAm/VELbezRLrwk0VLWYxEI0aAROhbWEVz2zhEumZ2RBIahETu5ixEZeO7Rdw1R0QUN6lFuislRJkXPEWWETxEgB1XRISw90UOA99EdMuvRJLaqEQ2b3FE/UNfRRqhYkQCtd5EfHaARKRWG0Us1KFFkCCMRtB850TJqTREQu8XRVunwESgjtRH7r+xRH2ZTkQhbgVFbM3HRvGp/ESQVZFGcn1KRaBtdER1Km1EliKLRK7BnETOVixFabtcRBR6gETbjA9Fo0mWRLnbc0TDyaVEtMedRDc4aETQQoZEHo64R7SSHkQpjU5EesGPRhU67kQiv19EieEeRfmWmUaePxJFdExVRBFPYUU+sjtESLJfRGpOZ0Q5jB5GAJ5qRuvEbkWLK11EjLMWRXnRZ0QbrdFEqkZ+RBtnj0Q1k49E4YlkRCuee0ShDypEAnjLRXhFSkQKtQJF3l08RKIRX0T2421EpCy/RGHBUERw4T5Eg/TPRBuuPkZJbC1EeI83RufpvURuknREYskbRmmTDUXPrx1FblBzRK0rI0QLUTpHk3A1RGNdLkXS92JEArdWRJTHnUbYaW1FFlhiRVhkT0QSMfdEqdx0RBolnEQXTldE7uY9RP3rTURgNJhE+cx5RCaVPUQFsWdEYXdLRMA7g0SQxXZF/JRlRFFVcESkDFhEZtQuRkumaESMtDdE55ojRYXjskQMFztFj/JNRK/makWu2x5FzGKfRBfvXkT0pDhEfdxPRAAmokTJFE5E4K9YRMFWWkTmuylEah8XRbf+qkR5zjtEcn+zROoUsURxJ2lEEWYnROvCR0QrRaJFsoY/RBkaBkV/oJdE6XpURCT5bkWr3I9E+oC5RBEpLEUuUEFGneIXRdjSlURzr+xEYT23Re1AqkQJoo9Ge23zRSHsSkT7qXtFqxseRS/cYUWNkBpEesaRRLYfkUR3ZC9FV1xmRKu1bEQvDHVFoSv0RC9pUkQV3IxE1nITRnidwEQ11yhEFLIzRE7WmkS3O4hE9bQtRFubJ0UqGStEkwI9RLv7hkWKY5tEX46mROlGG0Q7e9pEnYN5RD+MkkQIeR5ForicRDy/VkR0N3pIXjF7R2PkeUSzZGRERMorRZor70RX2/FHfk6DRA3oUUarAkJEGciHRMZDkERQF2lHdoEuRQVGo0RGEKFEf9xORv9hv0SzgUBEtfJRRAfiQ0StYnpEn2RgRcL2pUTdIUREU0lWRDmfiEQuhsNEFKyXRElujkQBD4NE7mRHRBc+R0bOjD9E9QxTRG4ah0WKA5RFTZHfRCUhhkRtTJdEIR/ERs8DNESbDlRGckvTRWpgTUSB4aBF6VSaRDRQbETUz75EoCYxRBVqpUT29IdFTeIPRSYockTN3Y9FLuKoROne9URjO0FE+uBORGk4OkQGsEpERTIyRH/zeET6kBtEqd+GRXbPikUMNF5EPSXORN6Gi0SeS0pEgO99RLVZq0UymlZEa/yERMbScURhAjNEw5NbRLG5/kQstMxFh1VrRc0GjUTtbVdF3FS4RDvknUQ2DIlES1kzRPYk50TA8D9E9QgpREShUERQfxpGTeczRA14dUTj+01EED3mRArYmETJa0FE9JFARVurdETs8jpEnonCRB2oUUTLv3VEjolIRATIU0SUWchGr0wzRkTHEEW2/xNF52VoROwnZUSBs4lEWzA1RMBJf0Xf0z1GAF6kRCC9P0T9dZdF56NERP9XBkVCGktEZoe2RIXYVUROj0BEXispRCMPRkTSQFFECNaFRL0/TUT+qDtEp2dkRFQUlkQEoDhEaJdERBGackRd7DNEVq0xRLxnm0TuYZNET0eyRIOlgESDyEhEFknmRfTqhUUYNIlF6AB5RG0Y/ESolqlEw6PFRAxzrETgFalEQdxhRBeSoESs+spEJb2fRGWbjkQMQSREPWo5RD/EL0SLuMRHwBlZRH8wR0RTjxdHCbxSRFGQRERUgUVELcnMRiVrB0XHN6FFnvKkRUg5bUVitidFij0wRRaYjkSWwjZEaKnpRJObY0SM7iZEtD/IRTo3iEWYRWVEQn4oRR6rN0QrLttENgKvRO49RkRzr8lECzZiRHaxe0QlUaRELk+URT0S+kSSiodEHJ3TR4GXJkQIfkhHZOaIRBpXzkZJK+xF2mlTRQHYj0TgzDtEjIMaRLSIRESftTJE2/VORNEaW0ScveRG7HSEROJxa0ZChoNFAAMYRfrgYkU4YEdEExUtRO6ct0auDVJGL50hRR+gFkXLKcREO7vYRJCqB0UJlbVEbM+RRDWCVEX8Ra1EtCd9RKtzT0TvZ19EJL1ORLRxWESKeZBEljjBRfFvI0VX2iJFy0rJRrLf9EQumylFl7JZRSVzjEb3GrdF5jE6RkGgjkTN2jlEldFtRZf6FEW/ZFBEuTg+RTy+OER46p5EK6FKROMyEEVw5UNFcZA/ROH4JEQGTrJEM9qORDGG9kZ4m6REAQ1bRgTWlkTuWABGaOqZRDfqWEQBSxBEzilWRQtrakXqR79FOuzwRHAPxUTyaZxFE0NPRc43ZEQZRZlEInKaRNubsUQlGE5EvhgDR30zh0W5rI9Eb9CKRko/GkbMZ4BFNhS+RAYeXEVQpUhFsYRRRPFvlkQOh0dE+P1GRcmoQ0VH1TBEMRMCRW4kd0QVEyxE8KsyRBc3AUXQF0dEiX1gRHMLAEUWU1ZF1qw0RTl4AUUi/ENETd0BRdHNjER0zFdEWXnJRcCIZ0QxwZxFhrUARXZ+HUZi+apFo3eORco3PkTUOJBEUubyRKgDeEQfmHNFFDjoRAMfOES0JgtGph6+RS5B3USRgepE1islRA== + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - r9O/BXrAckBFAIxEDcFyQCEGjNwkwXJAcJ4x+m7BckDARC+/x8FyQLzuXLFOwnJArgAAyafCckDR3Xnb48JyQMDMvlA7w3JAZwC1IsjEckBoczAEWMVyQE3YYihj0HJAunTie/nQckCOuoWaJdFyQCAdEGFD0nJAR1IDBWjTckDM+cfSddNyQB6PJwbP33JAtOqk1CTgckB2DDvNuOByQELxtvEa4XJAoiEAq03hckDMv2JdUeJyQHjBl2KQ4nJAwfV1qyTjckD+4h2Bt+NyQCzI1whU8HJA/TPwmzbxckD0p+rrTvFyQKa24ujJ8XJAdVGLjRDzckC4/SeItvNyQFFVpsuh9HJAUWq3BMP/ckCaRBUC0P9yQFIpQ7ZRAHNAz/JSvGEAc0CKBKMw9wBzQM3x+j1WAXNAbu16NYsBc0CsH9KqOgJzQEwc1pPRAnNAEm+okGcDc0DMKkut+gNzQHIQFXZ5EXNAKownpLwSc0AxhoLSYhNzQE20EtP2E3NA5hFVmgYUc0B8UeD7TRRzQCqEk6R5H3NAQtf1Qrgfc0AyXtS5DSBzQOjVyZGkIHNAR1h1JDkhc0BongFZ5iFzQI4UlR3JInNAvABYhRAjc0As/sJwBiRzQOI8KSzQJHNAxl1zVkcxc0Clg9A6VjFzQMBrqW85MnNA+bN6MQwzc0AJJ+xwoDNzQFw3gbU2NHNAxuZvl9w0c0BmUh59uD9zQNE1bavjQHNAzvYB8XlBc0APLgMGJUJzQDTge1J6RHNAWBxW6pxRc0BdqGq4D1JzQBYusIqkU3NAi1p1EXlUc0BQYjp3iFRzQFSqaWb5X3NAKmKQ7DNgc0BVoicxjGBzQEoCBpEbYnNA8v4M4jhjc0DWQboOsWNzQEIlP4bPY3NAGkpD9yltc0B/qYhC3nFzQIY9SAJTcnNAIfsi+Whyc0BnRNPmg3JzQPRVqDS1cnNAhdCK3AZzc0AS48aht3RzQFIZl5RMdXNALKBZJ8R3c0DzIgD3eIBzQBFn8CqngHNAMiSHzcuAc0COxvkcEIFzQFLZfEJegnNARqemcKaCc0CE04d5/oJzQHz0LiUOhHNApAdp3DeFc0DxJFnDiJBzQBTgeJP2kXNA+AtKBh6Sc0BqMPYNTZJzQFHCZka0knNAx08+us6Tc0D30dcsY5RzQO6u5433lHNANIOVYouVc0AV4Gk1uKBzQCtgYAFNoXNAvozkDXihc0Byy3a4WqJzQP6UXkeOonNAGkC++8aic0BjCmDLBaVzQO3NiFk4sXNAzOx/MFGyc0DuvXD0tbNzQKwWzwQMtHNAvAIpjTzCc0CoW4PUz8JzQMCEEtolw3NArVITimfDc0Dbq8oEk8NzQJioxa3W0XNAGverDr7Sc0Bc7Uli4NJzQMoCsp3303NAwimn3EvUc0C7bcxp4tRzQLYWonej4HNA5VDG9M/gc0DocAi+OOFzQBA3pYNh4XNA1Ul6anric0Awl1V3DuNzQKCWPh+k43NA9njy8zbxc0BKwZtrRvFzQC50beW38nNAxG1L8P/yc0A0w+aQNfRzQLCsCL/jAHRAahrIDXkBdEAqMayYowF0QKsBwCm7AnRAlCwcseMDdEAosQdylRF0QAaT//dME3RAGOb8fXcUdEC2pnnvSCB0QO6ME7aOIHRAaH6U0SMhdECh8TCutyF0QGC2u16RI3RADkhX+LkkdEDsfT8WUzB0QKdQLH0RM3RAd7zT+t43dEAYYZ8JOz10QGgUKeykP3RAMAsZwlRAdEAQa0oxykF0QBUGjHemQnRAiv8ouj9DdEDUlwGdd0N0QDgBMz5OT3RA4HpNatFRdECwnb9e91R0QCWfXmaLVXRANBnyGiFddEAwj8nlql90QISRtrS5YHRAwDYvIQpidEC5BYsMjmJ0QAAlUOfnYnRAKww1f1JjdEBwoQIoEGR0QMiU+jpOZHRAnp6I2cRndEC4mtSt0Wd0QO5gpvAgcHRA/s7cP0FxdEC8bUb6JHN0QA6Wlxs6c3RAUBUP0KF0dEBwiQIeNXV0QPqbuGtEgHRAVpIYXvaAdEAYIQHNTYF0QA6l30fugXRAlrkts0iCdEAw5+DFJIN0QIy52d0WkHRA+EZi/VGQdEAOmP3/aZB0QIqyHmW7knRAvEDbqFCTdEB/DAvY7p90QJp/rskyoHRAS9HdF9CgdECq8Bp9OKF0QDFnltm3onRAxdasgRCjdED4HZHZZKV0QPSlRP0JsHRAqd2OWcOwdEAk0TzGbrJ0QGI7ZMv7snRAK76Dn8m3dEBKHKBd5MB0QMxO7WB6wXRAoO2ryunBdEBEuS/rDsJ0QL5QJkNPw3RAc5RThH3DdEDaa8vNesR0QGMMpqW4xHRA/I1yZ/zOdEBHQpC4pdJ0QMRAz0VN03RAiJEHCuLTdEC6xUekjeB0QMWHhzwk4XRAaIvu2bjhdEDE/Tm7ZeJ0QBM8o2X54nRAStJ0TjvjdEAe3qwlkON0QOAFPKBQ5XRADsxHOMDwdEDO4kMXjPN0QFZsvBh59HRA0JIjBj0AdUBgLIVLpQB1QBqvrTrCAHVAzCE5+8oAdUChLZ/WYgF1QN7LpW9dAnVArBwBuqUCdUAUWuRI3gJ1QJp05PWaA3VA0qjd5G8QdUDGAcjFlhB1QCyMKAokFHVA3lQ1IuIfdUCtDWLy6yB1QB6OHBKdInVAMpYLdakydUAQ6XRpzDV1QEpbQch8QnVAptxJnN5CdUC8hyrl1Ed1QPbsF9bhT3VAljtSff5PdUDuJaGAblF1QKEmk8CEUXVA4y8fYudSdUDNgVmMT1R1QCoprDd4VXVAactp9g9gdUBwAUSxN2F1QHiboNzvYXVA+ifL8mVjdUAmOhY3dnJ1QEa6P79Mc3VAWmmNsIx0dUCwuM/bkIB1QJqWXMzigHVAroZGGnmBdUD8slaZrYF1QOaFDd1Rg3VA3jcZ2KaDdUDquTZ1m4R1QHCy2XGMkHVAn6ugy7yRdUAcoPnnpJJ1QHBP8aM7k3VAGpnVGJCgdUAcFMs/JaF1QDSviiO3oXVARvm6KkmjdUDiGDlTpKh1QI+Lvx38rXVARKgwaeuydUA4odkmerN1QL66Kr/NwHVAClQomGLBdUBI9vc2+cF1QIheW+zN03VA6gYUeeTfdUAFpgTqDuF1QBrSUjwG4nVA6Pq9F0vtdUDWqx+bqPJ1QLVALFga+HVALLVlZbkAdkAcTxVwSAJ2QA1xxN3PA3ZAjjAF6+EEdkAFEb/jUBJ2QOD0yXBMFHZAIPaPVQsWdkCK5LijiCJ2QKjLkoVlI3ZAgHqPqjkkdkCPGSFMkCR2QDxDL8dKK3ZAzuHvdR8xdkA4lpkUmTJ2QKxcBmMlM3ZAYtPnc1AzdkBgvFCnnzR2QHr2TfscQXZA8d3qCslCdkCegXXHTUN2QFY7fqN5RHZA6l0AOPtOdkCgoYJmylB2QOBTkgMUUXZAV1MoLc1UdkCOJHrtkGB2QJXBBW8iYXZAvASxRN9hdkAYOHRL2WR2QIFjwb5XaHZAslfRChJ0dkBJbmJJYoF2QK1bVT2Sg3ZA50L0PmaSdkDq83zGu5N2QPJhes22sHZAJjG93MGydkC80yg0DbR2QNxYFBp1wHZAvMUPScLAdkBgWnkuUMF2QF5SK1YbxHZAOIQ7Ds/OdkA2uKfEEeF2QPYHcWPP4nZAPNrSCJHzdkDYvBzPTPR2QCkwH04BEndAfYlSHc0Sd0AULtcH9hV3QBAIN2sOIndABIS42XUid0B4hxS5USN3QKZYUlToJ3dAwtFcOUItd0A9BHl3nTJ3QBs0IIykM3dA5HkG8gw1d0AkcxqpnEF3QDjK60uPQ3dAxVWCNhtFd0Dub68yBlB3QBAZ3otKUXdABtBmE5JRd0ARCRMH61N3QG4PmtgnVXdANmiAX31fd0Ag4y0kDmF3QP5spZCQYXdAeYcf1KFhd0BbMWHbeWN3QPRcZ1CpY3dAVzvpzzlld0AoxyzAJ293QIZ3TnyMb3dAasUe9CJwd0AV0jxyn3J3QIy6g1Unc3dA3JRpTvxzd0Dr3BV0j3R3QBp9zvD5d3dATuU1sVR9d0Acd+r8aX93QNDbBF54gndACvfRJwuEd0BrNo+fBpJ3QMRCrodMlHdAUHHIq4qhd0Cvq61RBLN3QE4pG1CbtHdAcjXzEBDDd0C0vxB5LcN3QFzsFS/h0HdAPliuX0/yd0CCdK3pc/d3QDwzwYp/+HdAaoXvX3b7d0Ay3EWYRv13QCyH2efW/XdAtj6CcaACeEBwL9OzMQN4QLCRBBmOA3hAJGt5YuQHeEASkb9E+wd4QPRizpwAC3hAy6gIjUENeECPi/NJVg14QI2s3p+rEnhASSlEUm0ieECekJ5yPCN4QKqRgfqLI3hA2MFwHj8oeEC3Kdt3nC14QBtqnTyAMnhABhmyGN8yeEAKRgGARzN4QDy9UvcKQnhAoHzwDzlDeECzY/fhEER4QOe/My16RXhA5RLAbspReECJm8KamFJ4QKPXYdiGVXhAd387yftgeEAzN6OOtmF4QLiu2dIjYnhAWkmNR7tieEDMn0Qt6294QPncT4vGc3hAGNP0kot0eECO6Iv9r3R4QGKu0iT3e3hAmj8dcjyBeEBssRtVUIF4QCr8p9SlgXhAWHNk6M+BeEBiYMv6+oJ4QGYRpRr/g3hAvqWUiX2EeEBqk0qKmYR4QI4H3U6+hHhAwloxfE+IeEDfWo1xBYx4QGbfFaWpjXhAkFIOoFOPeED857Uyl5F4QFETccABk3hACO64sqaUeEDFpen1XJh4QLLu/1FToHhAPz7ePh6jeEArtp+kkLJ4QD6YIcbRs3hAsG6xjt23eEBiuf9f0MB4QGMaYP+GwnhARCcmihfDeEBQk3m/HMt4QKsxAMEg03hAKNgu3qvTeEBbIhzcttR4QESDt4Wf4nhA8JO2HsbkeED83zIc+ud4QIQdxjeQ6HhAwmAhxETzeEBua8/IAPR4QCiBSESN9XhAmAdj6wMEeUACqFW1mgV5QLoH+3/BI3lAIMG+T7IoeUBxvppBDS55QLsojt1nM3lAvJxbRrEzeUDKnZQKvzh5QFBmxjaNQnlA3Bzn6vlCeUBqd+kipUN5QPKrqHf8Q3lAVExjT8tUeUAMn6mrgGJ5QIcq+n/aZHlA6oW5rkBzeUBNlDiR2IB5QPj+cl/5hHlAjB2CtB2heUAaEdYmwLJ5QNRZhWDNwnlA3JeBAFbDeUAhEUBTect5QMg6KRhC1HlANLGBkMvVeUB8e4SzTeR5QIIIT+mD8nlAkbtJNw/0eUCsJgx+Gvh5QGJR3fT7A3pA8+xyPz0EekDckw3uYQt6QFA4a1VpMHpA4v2LSyszekCnCyNLDDV6QD9I424tN3pAz/wKFjI7ekADtYpvMj96QAS1wJ13QHpARk3AYhpFekD0w01JV1B6QM5QUVAoVXpATZccvSJcekClz1gHK2R6QOqL0NY5ZXpA9Ln8nItyekA2d+YVInN6QHpaB360g3pAiFLDfNeTekDb7Aov3Jt6QHYcH8Meo3pA/AqD81+jekAYApbzJKt6QApLRIcNs3pA5p8dxAy2ekAOGmwkD7d6QBYUqTMpw3pAKbg60r7DekCOSqiR5MN6QNDE66AYxnpA6IcMZMbLekA0+/S3Ps56QBJItQLN03pAiho/6dHbekDrbMQXANx6QIGJO/pi4XpAdqMRB+LjekDROGV3PeR6QPAs2IJ45HpAVpoPAYXmekBo7cSjNO56QLMGx7kW8XpAJ6vMc17xekAUJS4k0vN6QJHkOKV6A3tAWIgio3sEe0A8l3poLA57QMjDKMYSEHtAxLACv4ASe0CyeU9ZjhR7QGgyc/lLFXtAq6wr2Vkle0BmWiUZIS57QC8JRMVSMHtAVOukY148e0AidV9i1kB7QO5xJcL+VHtAJ/sqWAtle0D5Kz+ou4t7QFbxnHUjlXtAPiH6RFSee0BEkefaqaN7QB5TwsQtpXtA2SPbuHvGe0CMvUWsE9B7QDRBy5nI0XtAdd4Rfyjke0A8yu1HduR7QC2h+DyM9XtArY8UBJQBfEBCf6DZ2QF8QJjPNan1AXxAFbFjlbgCfECjfH8vZwR8QKjecCCZBXxALpaQOIgRfEDCOXGx0RF8QD+7Kp/8I3xAGyP5kZAkfEDpqKGOti58QML/haPMQXxAuFb9P15PfEDmj40NblN8QFw7++p4W3xAvIKqMwtifEA00FTFCnN8QFIAno/pfXxAUi7RJ3eMfEByPvCIxI18QBHYTUchk3xAg7SqR3iYfEAq8JpvWZl8QJr/h5RHnnxAjjsB9puefEDqTiPyoaN8QL7bpn/9qHxAxquMrr6yfECUCIf87bN8QCDlme15tHxA+Qx1q/a7fEAoZdHHh8R8QBCcHh3M1XxAkMnicfXbfED9J5OzV+J8QA6B7QoS43xA6MzjQbfjfECOCz3Cbeh8QP551VcW8nxARokBGFTyfEDStMh/AwJ9QG4JgadKAn1ADqFy0wUHfUDt/rxH/xF9QHaYHCdEEn1AQErLaFsSfUBkAMr+/BN9QBQb8+V7IX1AOaYbLvIhfUDEp3YZNiJ9QL0pYt54JH1A4uAcgtgtfUAmQJpnoTF9QLi9d/8INH1AoCwJwYU0fUAdSWtcRTh9QMrSn9ppPH1AtkJ+V6E9fUD1dgUEPGh9QHr+jG57dH1AeC7dlfx+fUA4XlZ+l419QJadTXYglH1AWMA0GpWUfUDoGMTAqqR9QNwSJdo9qH1AaeFZWTDDfUCOOm0k58R9QKiKGjNqyH1AALNyX2fLfUBwW+yfl8t9QEXH2TU5031AV7OmZJ7TfUD2lnWI9NR9QDE1LQ3c4n1AqPFHeAHlfUBMweXhkPV9QCtyRmM0AH5A9E9HJEcQfkAhkn1lNh9+QEhorVQjIH5AqaVdHz8vfkCw2RJCejR+QMhLov8JO35AyO7b5kM/fkAttEBMEEN+QGI3F/2LRH5ADGXHbfxKfkDCn4FOeUt+QNW0462NVX5AUM+qDDdZfkA9fIzWFFp+QHMFPJ+2Wn5A7N30D79cfkAmvvR3j15+QBDfy9MgaX5A1+Sac010fkD8pQLntHt+QAEL9PJTfH5AEqd6fl2EfkAKLBXK0Yh+QPzw2sZVjH5AggMYICWafkDI0w4ua5t+QBAN5C8ZnH5AniK7G8CcfkB8Fxf8zqB+QNpmU/CRpH5AzNF3MgqmfkAwSFKE9q5+QKvox5ggsn5AbD9x+3CzfkB843KLT7R+QNgZWqGftH5A/WXPjqq5fkBbmFWzAr9+QMzM9Opmw35AM7wQItHEfkBYn117bct+QLVDciuqy35Asg8FmxLSfkC4k31hW9N+QN5gQ1N8035AVisUSGfbfkC/Vveiy99+QHsyIN/U735AT6Lxs5IDf0AOpfm/1BR/QMAMA6YfTn9AszioSLZxf0Avrn05pH9/QFDEaQ2zgX9A4oyx9qKDf0AGzR0xXYt/QGpU3ROikH9ADGPCmWKRf0Don9SjqZF/QA7/aitgk39ACukX3ZWTf0DnUcLcoqB/QNND21JdoX9AonDyHFexf0AUgj9e/r5/QHqYmPPMy39AdME1DdTTf0BUK+AYpNR/QO5Xqgk2739AAq1AI1fzf0DXU6I1kPR/QNCxUYnbAYBALz5DMNkGgEDruJesdwqAQHwgp4h7DoBAQH6fw80PgEAMZi469xCAQMRgmpYLGYBAIFmWNX8igEDNWRMyTSSAQL9hm3njJoBAMnoCau8pgEBQDjWkByyAQP6uFpU2LIBAIrLgxucvgEAL1gIlijKAQBxMaTweN4BA/qds78g5gEBt6x/glDqAQEvFr791PIBAOOtgJCA/gEDOAiWnqUKAQGvOMRvvSIBAOCSsiedQgEBZyTkeFFGAQKw64k6mVYBA4q2uQSZYgEBEjRoP7liAQKj+1BAOWYBA5X7n8CFZgECOOpXE3FmAQNY4KnFKWoBACL5fieBdgEDsMUibDGGAQI1O/A3DYYBAKt/boeJhgEAL6K1jdWKAQGBpaTb7Y4BAILidTHFkgEBIlxZmpmeAQJyTPICAaoBAZld7mylvgEASHL0fAXaAQOBVqXysfYBA883+zid/gED0gTjsbICAQCgJKrSvgYBAxsTfYgWJgED2xn1mHo+AQC41zOs+koBAdqfkb0eTgEACbU7ExpWAQNYU3yUdl4BAJKGdrZ6agED+HXCgG5+AQHLBZbKtoYBAJoEwVu+jgEB2TtSaOaaAQNBwhuP1poBA+jD0GrKngEBzbr3ZhamAQF6DYW7sqYBAdJJAuj6ugEA22zh6E6+AQPRcwe+0r4BAqAhoR2ewgEBXwgIhc7CAQKshdtMesYBAVxDtNhO0gEA0DNJWFreAQHh4Sh8euYBAVPJ71JC6gEC07dzqWLuAQI7L68QDvIBAza4xGRa8gEC+h1OM0LyAQNviFQdUvYBAdAnYSDO+gEA5ZxVtRL6AQOTcRyEAv4BAwNM79qm/gEBSmhCfUsGAQILDUglvwYBABv9Y4J7CgEATgpYWqceAQEktM5oAyIBAyIHQhlPJgECmo0ltcMmAQHoNN4mlyoBA4mvK1wbPgEDSPqx/TNGAQF8f5o3S0YBA9g3xEfjRgECOfs+iqdKAQKiZBSte1oBAohRM60nZgEAUaDfDYNqAQID905g73oBAOuIYkLLfgEANn1AZReGAQKjumFRo4YBAIAe30+7mgEBq1Vn0beiAQOZEgAX26IBA2K38tBDpgEA4+aLrRuqAQHrwCr5J74BA77BrBPLwgECOHFxz6fGAQB5P8hk884BAZBu/h530gEDqPgzDSPeAQDyVtNk3+IBAymuBsz//gEAleJZKPgeBQNZ+CWfqCYFArMeGLD0PgUB+/RERPhCBQDHp0V8+EoFAUYW0lz4XgUCZf5K7KBmBQBgnoK7lHIFABsFBfTcfgUAe9U5ash+BQLyMR6TzIYFAiF8qIJ8kgUBKPEldNSeBQCADEu+2J4FAIIQdb0cugUAb1q9lLi+BQCQvyKy8MYFAnFBGo3QygUC6Wrw+vjKBQByvbmR3OoFAeQXRASk/gUAEN38lykGBQIR2Df5aR4FA4ykuEAdKgUBUDdfUskqBQAJSyNa0TIFA3QmTKZNNgUD4h9aq5FmBQHpwJFgUYYFAVX+UtOFhgUBw04tvoGeBQAr/KrZ7b4FAMaV1fdtxgUBk2GVfRnOBQACh4uzCdIFA2N+VnW93gUDqMztSyHeBQNWn8BQdeoFAJ/76VMV8gUDrnAwy1X6BQBR3c8Rgf4FAqNulZq+CgUA0yIA6NISBQMLZVIBqioFALC+yKRaNgUDkpQl1VY+BQJIUpdOzj4FAE4D3qDaRgUC7OP7Z75GBQG6NAo5ikoFAztqeTgiWgUC2nD9lWJeBQB342Ek6mYFA9WwWiPaZgUBkO4KtnJyBQF80dSxJn4FAFpghH5afgUATYV6K5KGBQHsDmLqVooFAXToZrdyigUB2aA8BL6SBQEIabQDtpYFALOXu0m2ogUDYPuiOSq+BQCB07qptsIFAJuWJogiygUAACDMFS7eBQAq0tY1IwIFAM4DIB+bBgUDlXW+eCMqBQIwdqVuwzIFAzI1EcvrRgUCKABMGftOBQLC5xzv71YFAHIZ0IgDagUBm/lU9G9qBQHiDaSM824FANdiAlxregUBmUZrhtfKBQAoNxY/s+YFA6ikmVCL9gUA5yeMT8P2BQARG5nbkAYJAcCfUkfcBgkDAxP5AlQuCQEPIz1gMEoJAHsX4vj4TgkAUs7/0PRSCQMD799/YGIJAsBQPiUIbgkDfEkxT0RuCQMBytHTWIIJAyyiHwUAlgkDw2HW80SiCQPfM5P6kMIJAcmiqYXI0gkBEczu7Xj6CQJADhJXiQoJAfuz1Q25GgkBQ1VOONEmCQHI/IZ1HTYJAwuBwOwpOgkDMOJ1H1U6CQJZ7cw90UIJAELEIYj5RgkCVtJubeFiCQPoPlAknWoJA3IK1eeBagkAcAVh7cFyCQD6HT4g+XYJAONbEFwlegkByvyC+NGKCQIqdk7Q3ZoJAPktSOqpngkCuBRmwamiCQPxumCBDaYJAcgjQ3gpqgkAk5kBnK2qCQOpeNbHWaoJAClOGlwFugkACmh4rEnKCQPFM8TBucoJAbYv1UtpygkBbjSzBO3WCQOkaSYnRdoJAa1L806Z3gkCz/hj/HXyCQEj3wa7IgYJA/Oe5QRWCgkB0S0Y2R4WCQFOBu1kNhoJAfgBVhp+IgkBzKVJRQ4mCQNUfHp8OjoJAQO7vv0ORgkCqr5sKG5mCQB72Pb88mYJAgkzScg6hgkB48iylO6GCQCNopxLLooJABG8D5PKlgkAcX7j0DamCQDfPubkzqYJAdp/iadOqgkAhyDRrB7GCQF1YjIDsxYJAUBiGGfDJgkAnfu4S9s2CQMrA0qlA0YJAaKgX8QTTgkD+IYg1MtqCQLhe0pR+2oJAmMj3Ja/cgkB83/49gd6CQFwT9Qhm7oJA3NTRblzygkCidf2TBfOCQGCWH0F/84JAcocVt830gkD7/9sG6faCQEPMNBu494JATXqJV6/5gkBn+0it4QGDQLXpKzblBYNAAroAjsIMg0C2wvCqeRGDQAd98uDeF4NAcxMiAHoZg0Cedx+bAR6DQEzjFgL1HoNA2nEv63Ihg0CAFX9rcimDQMAMpId9L4NAgt8yCWsxg0BSbtMUHzmDQAHaimJpOYNAlBOSTKlDg0DEKAVJy0SDQDp24mPpcoNA1YQwv8SBg0CndQIH4YGDQBMFqA1Jg4NA0EsoKsiFg0CYLWB7vYmDQDBTiCvAjYNA44C1QhOyg0Ciwg7rFbaDQIJGapAbuoNALWY0X6G7g0Cqpw3AKb2DQJKWTwMdvoNArotoHh/Fg0BYrV8Zd8qDQOer5KLL3INAuF9phnXfg0B293bbV+KDQO7UZJq/4oNAjjrmNFj1g0BEIk74k/iDQN2HdorYVYRAsn09ZUtihEAfD5ai/2iEQNDKuik4aoRAcEFqJjluhEAKHkibfnCEQBsBNMuvcIRAFIQlO/9whEC+0xNWP3KEQPJW6M0MdIRAFGp5oLh1hED88jBxyXeEQJgBYiz2eIRA5J6p/r15hEBeZ6ZVeHqEQH7iYUwQfYRANBP96Cd9hEDl3K8fvX+EQGtIFi7Sf4RAgMCtScuAhEAuBRkf9YCEQMP011BugoRACY9lJ/uChEBYlldXHoWEQEg5QlXMh4RAqh0EVWiahEBUUFd9HqWEQF70ovOzpoRAsnS/gs2nhECMVxQLCKmEQIq6QtS1qoRACCECucq1hEB5jnb4nbeEQKp/OGtAwoRADr3xYxfNhEAcbXCoJNOEQLKVIf8M1oRAkCRer93XhED1GxAfatmEQKZqVc8B3oRArp9HvGrhhECM7TO2BeKEQARSHBZj6YRAaLnhfHnqhEB6nnEFI+2EQHuwZNrT74RAAhK/hzXxhECnt+2HZPGEQGegQRlz8oRAF+MBddz3hEDKk9ThM/mEQIqRJtN1+YRAaxwfxYj6hEDY13WFM/2EQNbQdG3e/YRAjnWbpXT/hEAa8AqgLgGFQKCwJOqFAoVA2yEykEUUhUBgIwJs3RWFQKSvUlp8GIVAV6/BjhYZhUAEykFcoGGFQE+KweTcYYVAjyt3buJlhUDqvkJRoWmFQCWp0P/faYVAvoA0BJlxhUAq+inPsXKFQHFjDx+1c4VAKc+ZUrV2hUCDNgEwmXmFQGBLsj+3eoVA0i+xHZKBhUDwrORIfZqFQIwUn79AroVAupkp7kSyhUBaQ9nsPLaFQBRR24Ss4oVALK7VLrDmhUAE7RLOpSKGQPJxIz73LYZAXELXHL0yhkBMr7LWJbmGQOFqE2L2uoZA9BDaoCnBhkA/G5bTx8aGQBXD7ujIyIZApvIw0c7KhkCeBrVKy8yGQBIYXMPPzoZALPrv6o7ShkCi1Z6YM/+GQFf3Mhk1A4dANg3dFuMOh0AgDcFILROHQCjt98QwF4dAohg+aDMbh0B8lDEhkSmHQO4yEMCQMYdAh4UAuVc2h0AwiGmViTmHQCvWlA9ZOodAgNAmLltBh0DgYPuMiEGHQGkvbbCTRodALM6icnthh0DK0zgBGGuHQMg8D/Ekc4dANm1aTMexh0Ag7D0mx7mHQBTLMgvuwIdApoAagLLBh0CQFo1qvMmHQNJMZT6Q2YdA+jrwNG8GiEDfWHqBk0aIQCZIDEymTohAhYUJQQR/iECzRxuaCbuIQA== + NrgMGZxjYkCPTWWFSwNpQAoahmk8YnBAxwSPFv6Sc0DRdBqjVJN2QI5fI1AWxHlA0dL29qykfUC+jpFWQnqAQJOT/X2iCoFA - + - 519uRCcPTERKJo5EEzTXRUWFzEQ6RbFEwZkmRGbj00TIqSJFz/RlRNuneUTn5xhEDmOSRMWamERVnw5Hw16zRMlXnUTCtklEEicwRIdO5ET3EV1ECKVRRJ1QkkU+XaxFoNVGRLWEQkRi3sNFmvXARON7MUT4VVxF2U9eRMCkhkRmiaxEFbmDRENbLkQj4EJEG3uARNSumETggS1ErQ9oRAOsv0T8J+5Ei0cnRPV5C0d30EJE/7pXRhkuZkSWvVxFgydHRbWTXUR9qiFFxPMfRDEiJURn5uJE6/unRtgKHkSKQ4tE2Y/FRAihRESVoJxFKiKjRAO9mUR6IUFE3E9eRIHIx0T9WVlEQMJURO3dJEU40JdEXYCcRaajg0TngRlGzAcPRSUnMETUgGxFu+F7RCk4VURMtrdEiz4jROpMtURfR5hEGLMQRa4nOkQfJVNEZHcBRURhQkT1wnNEnrjyRNbNT0T3vHlECQQDROEoqES8HxRFsLpARKal5EZCmuJEwNchRGTlnUSHIGBFL3YQRt/XOUXUc0pE1WI5REdA/EQoBFJEv7NpRHv1TEe0ippE4TE8RJ/+7ETTZ4FGg25mRNrNyUVu+UpErZ1IRFfu00VyZ0NExvaQRIFeE0VgwVBEBvAvRKPOWUVPh8lEaMBLRJwMakWj8htFlJUfRJj3rkTV6iBFUupVRKDWbUR2sthENtNtROociUV56mxFEtKkRKoS7kW9HFxEt8hDRAX/JUTlnrdESrlJRPc7KkSNshZEe4JURPGZzESaWERFm/CGRsYyz0Tw/eVEXJE0RA43qkSxNTpFtWZ2RB7xQkQG0YBEwaFGRC/QsET7RFhEgyEkRPgZjERhX8pE9l+EREw5sEQOsDZEyB5iRL77ZERmeChEyHpMRBq1XURbdCtE/QOFRO4JqkSS2eVEoEE4RRAXE0QPTS1Fva1GRVnOYkQKqC1Em3EaRYzhU0QMorhEDedBRM0pKkTpYbtFam1ERz9UKURDzPJEXCtNRI6oi0Q/QZ1FK48iRezczkUSSoZEMi8nRMwohEThZZ9F15lqROkyPERwbTFETPqIRGgGhUWqskFEhmniRAhvlkScO5JEcDgARTb2YkQEJ7xEEobjRHw7wUXQ55dEvjxURS0kqERkQLRETNyLRI2kgUQ11BNFaf47RF9Nd0TSh4ZEynuxRPlBiUQ7qTtEb/W0RE8cSUR/YopEmQ8ORe8PSkS3FE1EMLoXRD6Lv0Sdkk9EJRQuRK1mlEXiZHFElCs5ROmKZ0QqsZVE6fGORDrwoUTyWbdFvAhfRAukC0RJf5NEu74cRI0os0T8TkdF76JORP71fEXh0fxFvqm5RGwlM0W2OzJF+JO3RAtwl0Qko4BEha0cRa3yJkR6GGNEIvw8REzeNURIBLBE9DrhRAf22ESzalxEbRzJRMK3jURgoyZEDR3SRZitCEQQ8WVEaSjYRJA9okWPL5REIQaERWvOrUQ741FE8XaCRAr1NkR2UapEBVxLRGMeRUQ+uDdEggefRf+IGEVranBEX6UoRKQ4kES8PWxEvZFEROHlBEU39ZpEcI9ZRKK7pUQzWoJErIhRRRU+oERMcH9E6W9PRFs9XUWX5p5EM3wkRAT8M0RwcLdEkKeERNXrbUUK5TJEhgclRInJ8EWADqlFe/yqRsXZY0QWKd5EByCoREIkmkR0FXxFL/uxRDF2IkQHv2BFQ/wcRBjfl0Rv/iBFtJkLRjITNUSBW2lEYOpXRJCg2ER2aN9EfPqSRXLuXUS4Id9E36htRMrEzkSeAo9EONQVRdFlkUWEXINETx0WRPqckUSDhD5EklpBRdceJURzrUZEJ1T5RBLDbkRZ1ZxGCdxKRJZyH0QVHlNF1J1rRHxxGUW+KthFY0ddRWZfYUQVQLRE7DHkR9WykkYkB81EV6zBRsXs/ET+bntF7hM5RmdAiUQek8JEJq2JRWD0W0Qp48JE6DSdRIjkVES62qpEJTZiRP/7GEXZayREQek6RD/mFUYxA6dEkKA2RoPXWEQvwHVFcQ8zRGoViERf/rdE6MINRZLzikT0Dl9EFWVDROnkJkRjtUpEDgFGRHXKiUQYNJFEPQdhRPlSrURfGMBEy4o+RMBIkEfHV1dEEr4MR3kDbESR2pBEaPgARRX3xUXQi3VEnj0kRakhqkTO73lEGftHRemhhkXi7pFEdCfmRJNJ4UTS91BE80uARDGdXkRZaIBEGUQ8RDeVgEVVjQNG7ZWRRcdnQ0Qj9xdFbxe0RLlEHkVvjSlE2iZJRHA7qkQ4gotEZC02ScA2C0ac6pJH+tlKRMpoJERABTRFT0VqRE35LUShgMJG6YVFRXNMMUhcRuVE++T0RiL4LEX7BsJG7DWARImNGEWAfKNFP6yVRp1PwkTu3iREfI8tRPLzWESU6kBEAD51RM2kjkR8QSxEF3IMRiwvokWvMZlEJsIsRCC4XEVyaGVEKgt8ROBybkTiojNEFM1ARLUVL0Vyo5hF+1weRDLLdkTpUyNEcIUiRn9OjUVY/01Epis2RBVUR0RDWW9E8FWCRG7irETyXaFENf11RdV2HURChoBEV1+nRDhdSETkpzFEKWheREi8PkUxIqpE36MxRK15DERopZhFBmWKRD/vikQVGitEorxpRKPInUR+L7pEk55ARP9zUETj2+FG2r1hRslwokcuFTtGcTeBRaOfh0QJGoFFw3edRj2r20URvQpFLeyZRf3dyUQJM1ZEeAVeRKTla0Skfz9EF+SYRB81h0S6LIVFDBEyRHNEokQxs25F7U+3RdEGg0TQC21ECMlJR4yORESnfahEkcbHRg2oUUSFPlpFKbc9RJwWtETqorhE6/SaRLCBgEQi21tEaDZ4RHwbjkS8XJBE7PyQRJVPL0S/CDZEcq66RbgqfETfxCpE4fiNRMBVeETRBQxGQ68rRRUdI0QLPzJE6U/fRFMRZkTKopBGCymARYELq0T9kBdFvicARRJnkEThHTZEQTWaRJMV0ERU45ZFvuOBRODaa0S3MoRGWkmRRGxzF0ZXUghFF+mfRNSf50QsoJlFIAd7ROIEbEUj3H9EHz2BRNREW0SJMZFFEhIqREvAn0V7PJtEcSRdRHz9lETlvBlEKXAwRJDF4kXDRWNF5biqRPwZRUSWcU9FJDiSRGJtNEXi5nhEjtD9RMti7UWtRT1GACYhRe7xJUWS0VxEe1y1RKQMtUceVlFFfXAxRBHGOkTuZP9EmyqxRgkhFkUWVnNG0UFnRINfOETPxQdFWgRbRNZzmUQh/UhErYM3RCu0JUTeEtxEkrsZROtjpUR1dRtECa+VROfSz0T9CRtEIa7bRJd+SUSSehhF9ZcsRLk2wEQcAT1EivFDRIuUuURFeEhEHqltRMoIi0fuuCZEKZ9BRN7eMUQDYFVE0i5tRB2GN0a26C1E1nqKRGqz60SB/ZdGqz6SRCaIukRczo1FLGaiRMrqAEYPKz5GiIg+ROJHtEVsuPtEudZqRBTmK0RokcZE9y2XRC/jJUS8zBtEGmlLRKyDeUTgtRlErAuqRVAv20S+bytFlVOWRJRKaETkRz1EB/VdRO6ThkQCrzxEmnwfRKDLYUS3Mf1FQ+RSRIL3eEZMfmhE1ZWXRNAhLEY6BPlELl3LRfmBdETLpCpHEoEpRbQrjUYhOzJE7ZAGRDn6u0XkphhFV3ClRAH7NkR/2T5EJb5KRH+lRUTMvDxEcqdiRSz9LURtx4BElbK8RLPGd0S/gT5E4W8dRo5Oa0TrjRFEaq2iRDqrOkQSfxVFCgquRIWmdUTbhzJFCqveRMG/n0TmOaBEyIVcRE/HyERQFiFEoP1tRGRcCkX7paZEiSlKRJ6Xi0Rrdz9EGXQ7RBdrO0QNntBEn3FARNEQY0SOD2NESIiCRIZkk0UDke1E+OdeRRyFX0SZ9sNEaDYsRHxHpkUKE89EBKBARRw3ZkY5O7NEbvbzRGWau0T444FFha3IREnHoUYGjCpEwm4RRh61NkR5mCJF5yKdRQ7KLUSugCFEfS53RY9vNkTfQk9EIOY5RStqFUQgNFhF4sPyRP90EERqxGZE425YRAqZF0YJtiREw4VkRM7sV0Qlz9lEEh8qREC2rkQQuR5E5WxORBVeE0UXPqhE0IZQRG6+BEUKIyBESN1/RDwBeEUkFD1EbgYuRDynOUTCtHFEiZBQRCGbIkT2cT5EeU1NRBbt5kQ1DpVEPQSyRPNiaUQj5iVEkAmpRE+ErUT+9jVEq8l5RERBZEjAudJEXCxER7KwvUSuylZEG4nSR+i/VUQ3byRGBZRwRNIeaEdftm5EkalgRNbDn0Sj7otEr0E6RiLPJEQSeEdEaN9FRC0KpEUxeyFEbg0+RIA4SkQ4p+NE9iooRCdeeUQq6wtFtUU4RAq6o0SnzGdEtZo6RGC6OUQcn01EPDZERnhhcEWmfIBEEwdWRXhjpEQ8QJ9EsjuCRFeLbkQGGDVEBKfSRsvUUEQPilNGKm/xRZYjr0WiT4BEN90rRPX0mURY8vNEO1qMRcrSBEUGn5JExY6rRXS8yEQKYcNEWP3nRFXvO0RBbkJE21JDRPIPqES3xk1EQj4fRDdnOUT3bzFEaZxARAyxTER0ba1F9M/iRegHTURBHihFTY61RDh0IEQ40IxEpQRaRBAjiESa7klEAfU7RNNRxEWJU2xEZ/UrRN/KHEWcDSxE05E/RC3NzkQZ/adEY+MnRIYDzEUT15VF0Q4eRDlP7EQZ+O5Ezg9mRJRQM0S5iBhEkRUURURC0EUvHntEwEM/RD9z8UTMvC5EqdTCRFVPR0Tu4TZEMrUaRWqVikTmzJREhZ5JRHXm6UQedT5ECvZwRBqeYkTRba5GDXEyREUzF0ZVywdFacDIRFeOTESZiyxE2RxLRbPGUUQ4oTJGgTyDRMJJI0QK9nZF0XA7RKXiMEX3q41Et12ARN/LnkT9TzRElGgERLF9NERrQIdEta2QRNNW50TklkBEwZuhRGS9MkR+SS9E4ou+RCfSgkR6b51EsP/7RIczwkVzbHtFggeQRPM5ckSk2yZEGahdRAPcIUQAIEBE2cNXRKoVW0QPep9EZ+fRRACcV0RqIdlEMMi+RJ+ANUTA5YFETv5KRHCRPkSzhZFEpCJKRDIHtUcXJzZEcyQtR2A1ZUR5XuNG1SyaRQ5C4EUgVSpFacx+RDN3GkWPaNFEUNMoRNGjjURqG89FwPiORVT1VUSFrllEF0ugRP9M9ETE6IJFCWOaRMm0IkVkU0tEutrARKLQKEQS8yxE4O0yRPeXOkRHuSFEQZOoRLg+pUXy7jNFpBtCRHvyyEcyu0hE0DYxRz4eU0TwilNEYJvbRi/N00XLQj1Em8EXReXGZ0TKuWdE9vswRHjQN0RxZH5EKausRl+bkEQAcoFE50INRilwVkXmtuxE7xCjRoalSkYm1F5FLt6cRJDUg0SmnqREhx4QRa5POEQ/lWZFdee0RIaBWkSyObhEcf1ORLR5gUT3FJ1E9L5xRBmj00Xr7k1E892DRFefQUS2ojREk6NAReG/bETZqU5ENNdQRdYu2EZyN79EGk7BRHCwp0bMg5dFozLwRZvGBkV7j41Fb2k6ROMydEQAJn9EEiVZRGpaNkQ6JXpE5IaWRI1Ut0RSy39ENeZpRHHnfURV8rRETwJTRA4FNETWfltE8DJRRAfPJkTdqJpET4o2RFde9EbBxJhEZ0x8RgTuYkTooRFGMos6RXb/L0XS2bZEd72URQQkZ0XmnC1EbJ9pRQ1TuERrT0FETtlQRfmn2kT4SndElGZURFoUgETSojpE3TOgRAP3ckQZ7SlEdiOeRLi580YCJmpFaW4lRRzJXkZEJVpERP4hRtLbhEXlQ6NEhS89RRKkk0Uu2MNEF2uHRDwZhUQW2nBFbLgeRUwDM0TaAApFRyBsRKD1wURcgThEoIkkRMPQ7ESRWzZEuXhoRAQE2ERRSVhF/TsbRTLt+0T008FELEZ7RFR2TEV6XC1FOR6HRIjoj0UWUbRFhgbWREq4E0bsN5ZFj8eoRKyikUUQojpEKBRtRCA3s0QEG2tEbq0aRLp+nkU1PI1E7ocCRjtwikXEN0hE1namRFDABUVySD1ErcaBRHA1U0ToJzlEA2WORO6UiUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - CvWlp3nAckDG0ijsDsFyQE7bL7RuwXJAgLl/QMvBckDsO10yUcJyQJ7VQs/mwnJAmJWwCzvDckArEy+cx8RyQNrwNDBaxXJANDhA+fzQckCcNCxIJ9FyQIAsFKtD0nJAQGD7ImvTckC8V9byzdNyQOLE4fFj1HJAzkytEs7fckBu8iJ9uOByQHhpmtMY4XJAeDPJYU/hckCrq+u2T+JyQB6rLkKQ4nJApl47lyTjckAYy1bwU/ByQNpSlug38XJAojMtKsrxckCoEklQtPNyQEMoZASh9HJALSE/acD/ckA4UPPx+f9yQJDbAN5hAHNAJOzoW/gAc0AiPDkPTQFzQOIjuZ2NAXNAggy8wzsCc0CG4srT0AJzQIDeP+5kA3NAxqpzuvoDc0BM2nuPpQpzQHx8+39nEXNAYEg2QgoSc0DDTtXlvBJzQL3CwklfE3NAZuK6igUUc0DNWPHGTRRzQGRFxOd4H3NARGCFPqQgc0ASjKE1OSFzQJYfuXBmIXNALEq8+Moic0BatRhuECNzQHLNx5sEJHNAFhQO+zkkc0CQw9FNzyRzQB5X/yJLMXNAl53cYVgxc0DIBTKYyzJzQN1Pp48MM3NAU7M99aMzc0CYQowB1zNzQDis1EP5M3NAHUK2Pzg0c0Amrnsg2jRzQAb+aAa5P3NAgokfwUlAc0AanOi34UBzQL7PPMx3QXNAAph/mCRCc0DbtgaJT0NzQDJYG+p5RHNApYID85tRc0CkA9eUEFJzQMJxMZlEU3NAYtwwh6RTc0DMsHmjhFRzQDbboDn5X3NAiMOg4lZgc0DSgl1Hi2BzQLg+lM6oYXNAjwMbxB1ic0DQvT5nOWNzQDbnJzXOY3NAQTzYxy5tc0DOl98T23FzQEeAFXNRcnNAEJk4kWpyc0Di+n8ZgnJzQKD9eai7cnNAzsEo7rZ0c0BiVSN0TXVzQPukPHVrdnNA4ByeVHmAc0Ds9LjtpIBzQC6vjJ7KgHNA438LYwyBc0AOyzVxXoJzQK49UT6ngnNAbiy/1gCDc0DKMTU5dpBzQCJBFjWIkHNAjpcrSk2Sc0AN/s1+apJzQMZUfmCyknNAqmXcdtCTc0BWgpp8YpRzQAkKLOj3lHNAnKT6vI6Vc0BMdqyFuKBzQDaOj3DmoHNAMkHrJq6hc0DwBUsiWqJzQB5gwseconNAMijvM8mic0Aw1/N5JKNzQGB/dX8EpXNAdsEc28Swc0DHXhpw2LBzQJT8JxM4sXNA0bpXzn2xc0D6C59MbbJzQBRRE1O3s3NAAuGHUA20c0Ds80RCzr9zQCISEBdlwHNAcZm5aPnAc0CmhfkYEMFzQCYZcbohwXNA/oCJ7DnCc0B+i0Mx0MJzQAYVqYonw3NArnDxxJLDc0AEupds+sNzQCQkyCbY0XNAgJ1W4bzSc0B6nKU73dJzQHBHIjT203NAvuGZZeLUc0CIvKo+o+BzQOA6Qfg44XNAQGbbeGfhc0BYVUYbjeFzQK5p1fR64nNAPzzLRJfic0CQOcFGEuNzQPSgFeGk43NACN9QfvLkc0BG3lNCLu1zQHaI7dL78nNAbGpMuFfzc0AAV9VROPRzQLM/MUxSAHRAlBKy0+QAdEDp0IQheQF0QFqlAWWnAXRAjo2cTrwCdEC+I5itUAN0QIOGcxaJEXRADGUG2dgRdEAKZjk4TRN0QAKwaMZ2FHRAM/JTtUogdEDeXJiBuCF0QEQH0g5aI3RAf7Vc5o8jdED6cRE3uiR0QNyWAflRMHRA7HUbnr0xdEB6dL965TJ0QECYd68QM3RA+ihy/OI3dEDaNNO7bTh0QExfB6A+PXRAXD/STFdAdEAn/wibxkF0QB7SpNx5Q3RA0ujHrUhNdEDTPnIB9lR0QEIpqWeMVXRAqC0xbNtXdEDmq2VkIl10QG7ousG4YHRA7gPF/CdhdEAe7naXCWJ0QFFUxinkYnRARDwCp1NjdEBMy9qXuWN0QOyna+xNZHRAf1QgfSNwdEAYXzSGQXF0QGEWYyTKcXRAI9IBuuhydEAWB6vjFHN0QHRAxvE5c3RAQkUicjZ1dEAskBBcRIB0QOZjku1ggHRAENnOLviAdEBBqu7xToF0QBq6lXNJgnRAqD1cpCSDdEBoMqAxvIN0QABGMOsVkHRAsxTwsrqSdEDxfZVG8J90QBTmncYzoHRADRP8w6WgdEB29Iye0KB0QDqeLYs4oXRAulhgDHuidECW4IEgvKJ0QGohbnMPo3RAKZwgzgmwdEBuka5PxbB0QCttArVwsnRAhrUSfv6ydEBw58b4ybd0QCzyRVPjwHRA4laLqXfBdEBWWeAZJsJ0QDh7i9G5wnRApKMyDwzDdEBe/tYcUMN0QBZ05rR8w3RAKOSMOLjEdEB0EtLHSs10QL1GmRf+znRAgH/4ygjRdEB8uIHsFdN0QMG0hCo803RAnPuT6uHTdED8IHmrzdR0QIreWd204HRA4kEE/SHhdEBsmZ/bueF0QKamrH+Q43RAEj9EnFDldEDwgd90w/B0QBzkZtqN83RA8EYKZKYAdUCW/ZKXzQB1QOQqSwBmAXVAfDtBCl0CdUA9w3NsmwN1QAQiOObQA3VAjvgGM/kEdUBKXZjBmBB1QIQ2vwIkFHVAE/asR9EgdUAg2ZI27CB1QEE2r0adInVAXHjd6HojdUDmdUEGMyR1QASgWjqPKHVA2PUBV+owdUBI5ckAPDJ1QNyA8PWqMnVAUUrvtsw1dUB2uqvStUF1QCJUyMJ8QnVA0LqbieFCdUD6Tjk1KUN1QOWh+BGRRHVAvXM+MddHdUDEFij+4U91QEjYhykEUHVA7OgrMX9QdUDx+uDYf1F1QNa6FvZMVHVAyvuL5uFUdUCS0GhjeFV1QGDpEyAPYHVAlE2JNDhhdUAYUBJ/jmF1QA4ASSjRYnVAGmE8DWhjdUBwhHNwdnJ1QHcWavKNdHVA4rH21d+AdUCcBLHZeYF1QH0VCU2ugXVAssBUwt6CdUBE7ncwp4N1QKO1MCQShHVAXNTDCZuEdUC9jkDMjZB1QDdY9hiUkXVADykG+KSSdUCoXveI1pJ1QJh97wQ+k3VA6mCEbJGgdUCxUycTJ6F1QEo144a4oXVAjGBfG/qidUAeLbllSqN1QOVIKuWjqHVAtK0ij5awdUCWxKbuS7N1QJzCvHPPwHVAXXyXh2PBdUCkJ4WH+cF1QHgtcCI5w3VAgNtq/szTdUD/L0O/5N91QCj1ZqcO4XVAHOaqqwfidUBKTA5YOuJ1QPyClWqr43VAKNFLAE7tdUAaMP+AFfN1QO7EvB8d+HVATVQa0kgCdkC6d+7R0QN2QLYSsADpEnZAE9DZ7U4UdkCEd2AEDBZ2QL7dATaJInZAg+k6/A4jdkDg5SP8kCR2QKyuCFZKK3ZAvyqcvR8xdkCwTSIfljJ2QCRPU9ZUM3ZAEG7JbZYzdkCX5eaTnjR2QC6U5XhOQHZAyGWb7eZAdkAc/n3PHUF2QA5nUIfIQnZADIXpP3pEdkDewajZx1B2QP6bleoSUXZAJOVoFYdUdkAYSUWizVR2QE4fdGeNYHZAbEbQo99hdkDvPSDy6GN2QObZLc3aZHZAzkNF4lhodkDwd3t2r212QGhr3MwRdHZAwt+0jkCCdkCog61ah4J2QB30g0//gnZARrt7Fz+DdkDe5ty+kYN2QE8go4r6hHZAdHVH+XmTdkCFzcosu5N2QDIaHRsOoXZAvNSuD8KydkAF8VSbDbR2QA5e3YzCwHZA/ufFzU3BdkDZIt6JG8R2QA0mnLbPznZAGFRvHqHRdkDZrAot0OJ2QH5b1XGR83ZAbO/Znu0Bd0A6wFbLMgJ3QIl56ZObA3dABD/CNgESd0A2HeN80BJ3QAT18bYPIndAJHBYInUid0Ben1FUUSN3QMJyOeToJ3dARNm7cEQtd0DalcRifzF3QM0Hjc+ZMndAnMisuqYzd0A2uQ2XDTV3QKYiGhmdQXdAaj5xo65Bd0Bge/nhkUN3QBIPDWgbRXdAVCoB2gZQd0CcTGroS1F3QFB3M4eSUXdAZHcmhOlTd0B6IWQOK1V3QLvEXKp8X3dAtOPysg9hd0AaEUrlkGF3QExP75N5Y3dA+A/a8ahjd0BK4UPfOWV3QJfdkaknb3dAdu7V0Itvd0AWQ7AgOXF3QIRa8I6GcXdA+Y73waByd0Aem9xLJXN3QFURa9n8c3dAw3+08vl3d0C5QF5NQ313QAb3v7Zqf3dAfslb8XqCd0BbeTSSnoJ3QCV+NhwLhHdAQATP4QqSd0A6zh3iS5R3QOCSEP/SondAUrGNaJ20d0CEEzOqMMN3QIalrXZU03dAYOwbx47Wd0CyQbFtUvJ3QNbQuqRG/XdAzB+Bvtj9d0CrbiuooAJ4QNfd5i/nB3hAljAHPv0HeEBId8omAgt4QB1a1tJDDXhAAFGP4FoNeECQljJ+oRJ4QCrIVZ9OFXhAJB3ofHAieEAIMadWPSN4QJJ6GDSLI3hAKsnLctcjeEAU1+2tQCh4QDJAj5K4Q3hA/9nO6BJEeECdcg2BekV4QMjO+JzLUXhARKxpWZdSeECl+48n61J4QMB3SoKGVXhAPBHcrflgeECCGrWMt2F4QCuFmqBqY3hASujLOOxveECSBPSEuHF4QB3tuMkOdHhA3wmdZjl0eECkEC+aUXR4QI6YDgOMdHhAqA4vpLx0eECiUJU293t4QIxKzj4+gXhAOnt1jWOBeEBbAs9ap4F4QICRzpr/g3hAHZrNOZqEeEACg1+DT4h4QJUgdRoHjHhA8rEAc6mNeECTqn0HU494QH9rVQmWkXhANrqgoASTeEC61yt9p5R4QJgY8htLmHhArueKEW2jeEBs90kXraR4QHzgebAVqXhAJIEymTqteEBDyK3b1LN4QKBdOvfet3hAQg4xLs7AeEDVMCC29MF4QA6Tz6cXw3hABbfGqgfFeEBjM1taH8t4QNIxekAM03hA20hjcK7TeEA06LpWudR4QBKmcyAx3nhAgP6VX6XieEAUMbn3kOh4QBYI0gZt63hArmedHwL0eECc4cANjfV4QBCMuVEk+XhAfCLvXOr7eEBCL1L8mQV5QDxW5JKmDnlArp+sLzwQeUBigYiCjxN5QMF9HY76H3lAFKSngk0jeUAgpey2uyV5QOx8XnizKHlAsjzHaAwueUA6uxfzYzN5QKISjdkkQXlAWv4W04pCeUDF8Ujkp0N5QBzUJPf7Q3lAOn2s2jRUeUD+tFjmy1R5QN2dHbxRY3lAl+rXIdpkeUBhkFrFFWl5QD0+b/yvcnlA0U5ia9qAeUBZ0X7I+IR5QKzDN007j3lAb754aoKreUB1AFp9wrJ5QOQqqnf9unlAtjvJ10bBeUA23lJEzcJ5QJptztG1w3lANvJa61zOeUAyeJQAQtR5QG0+qXXM1XlAiCMRgbnieUDGpefYTuR5QPcREzFQ6XlAOHuqJ8HyeUAPE+EbFfN5QCqUhTcT9HlA/m+uV/8DekA6JIRPaAR6QC4aD5T5BXpAmuB92WMLekDU4Y3HdRN6QHIT/nrvInpAFOovXDwjekDQpfRSaTB6QGSGkUYrM3pAuTua2ww1ekA9hkKYLjd6QLRB/8ExO3pAI81oiDI/ekCMUcPJd0B6QFLKmbwaRXpAzrTpWdpKekDax0qy0Et6QCuFFVNXUHpAiAO7NYdTekAJVXufKFV6QO2UyLohXHpAXyLlZmVgekCAnKiLKWR6QMCqTp06ZXpA0gEEREVwekCGsn5qjnJ6QNiOMq4pd3pA/OW8L9OOekCUDPOQ1ZN6QM4Pxvceo3pAaBuVViSrekDKHrHhDrN6QGz59uVds3pAC/mBfvezekAEh0sZDbZ6QGySZl8St3pAjjO9aAG8ekDI/P+4vsN6QEGHg0UaxnpApD79o8bLekDcRtChRM56QI4RM/km0XpAgWUIiD7TekDERKEyztN6QJLYZwfU23pA5EOHUAPcekDryURIZOF6QKdNG2A/5HpA/F9k7XvkekBiod7KNu56QHetD6kU8XpAtCxfDmHxekCaPfT2WQN7QI7tCjx8BHtAjHcjGCsOe0BCQDcyFBB7QM4SMDmCEntAHqpOiIgUe0Aq7rrJTBV7QEJCGhkOJHtA1qtCYlole0BQfCBHIC57QMH/bDFSMHtAHkaJV8Ize0D6UQ3RYTx7QFj1mN7VQHtAJPhhDF5Se0D+K1O6/lR7QJDcdo/AYHtA5WndDwxle0BImJFcvYt7QH6+udAhlXtAdHt6VlWee0D4GW+trKN7QAqZoWYAp3tA/K33UFbDe0AaOfoGesZ7QH7CC0wV0HtABqX3eQDke0CpxH5PKOR7QGLyp5OW8XtASw7whIz1e0BXOZErjgF8QPgtRTHaAXxA/wnAf2YEfEAOBeHqmQV8QCyXNomNEXxA4A3U1dARfEChDBrRpxV8QCATaO/HIXxAKKDVeLkjfEDdMU3+/yN8QJVYCI/MQXxAyq+E9eFRfEB6JayLbVN8QH9TMsZ3W3xA/oI+FQ9ifEDToL0iK3F8QD6ws2/EjXxAxrwv7B2TfEChDaLqZph8QLZMBflZmXxAkvmWxUmefECULlK1GKN8QKaoIgaio3xAxpftWRenfECyQtGX/qh8QMm+ACzBsnxA2T1X/uuzfECgk4MVerR8QF/oZm70u3xAWABMO/fDfECmpHsihsR8QK7iu07L1XxAyiENLEHbfECmgcie8dt8QJQ38TFY4nxArA/bUA/jfEAxMysMa+h8QAyspOXF7XxAVskTVhjyfED+TvmNVPJ8QBA6ydtz8nxAIAA/vPfyfEA45oPfAgJ9QHpLU/ZLAn1AcMhJrgUSfUCMoxCVRhJ9QHHP4TVnEn1AdCQGVvwTfUAiYaNEUhl9QGgkGIY/In1ALRB3KXskfUA2AbFKozF9QM2iL21IOH1AwvKboaE9fUAC8TnpaVF9QFT0t2WzWX1Aeb2PKHd0fUBVGjKE/H59QHico3f8g31AOIjXKO6SfUA2fbOLJJR9QIq7qtO3mn1ApGIUsaWkfUChfwXlA7x9QHu5N/Yuw31AoBKwHAXEfUAiGFhj58R9QDJqT1eWy31AmHXOza/PfUAK9I7V9NR9QO5lIb9s4H1ATLkYSV3jfUBZ0Uuf/eR9QETefpxN8X1A8rHto5H1fUAoNBVSNAB+QC31VmIrD35AWM83j0UQfkA0YdJ1kRp+QCimLYs7H35AiOhZyiIgfkBgime67CN+QDhbY147L35AePGVUDk0fkBpH/bZeTR+QEKRWicKO35AFlLAXT4/fkDpJ+FeEUN+QPICuEqKRH5Arh/r5v1KfkA8G1FawUt+QJwds9HSU35A6nTjHDpUfkA81QYgt1R+QGZsp9KLVX5AiHHvysJrfkAAqtzcy2x+QMPB7KtNdH5ALqG4WrV7fkAOVW4tWHx+QKfr7aVYhH5AqFOWtb+EfkAYyjFUaod+QMOuYCnVi35A/NKKziaMfkCoSm4/E5p+QC9iChjLnH5A/YfrUWyjfkBGYhU6kqR+QMZdLFTVrH5ApCa/BfaufkAa+drDt7B+QPpS7pMYsn5A/v8RqU+0fkC2b/clnbR+QFb3X0xqt35AbMfnKqu5fkCmRGbvA79+QFUXUZNmw35AkNelE9DEfkC9Wq9mbct+QDd1+nFa035AtyiLXX3TfkBt+V5RZNt+QMrrE6DR735A12uMX070fkB0ngmGXfx+QD8r7J5m/35A596lVhACf0AYNuWPXQR/QHaei8hCCX9Awhz4T0MTf0BeOBnBIxR/QLbGf8BHG39Av42c9Ekkf0B7TNJXOyp/QJ56cm+jSH9AzqvFai5uf0AU/g0BuXF/QEZGuAexgX9AcgvdW6WDf0A28mr054V/QMCcs/likX9A89WPS6iRf0CL5VfTaJN/QAqiTKuXk39ACi6iTzOUf0BOLdq4oKB/QNikculdoX9A0YCzlH2hf0CDRLLdpaN/QMRBFgRWsX9AzfskvTW0f0AgtMSRabt/QH8tVYH1w39ARCRKDM7Lf0CfC0Nn1dN/QFBmRd1U6X9AVjuSierrf0B7E38+M+9/QALDQ14k8n9AWuvM+0vyf0DYP3HH8fN/QAog5pST9H9Ab0Wp1ogBgEDG/7LT0wWAQNTgZOF5CoBARHu+xnwOgEDGqJg25xWAQHB/fj3PIYBAjmWMBWgigEBqVuhmvyWAQFaXOwx0JoBAhL6Rd+QmgEDCDk3ZiTKAQACsWMUcN4BAyI4UU8k5gEDqgxsI6jmAQIhK0sOPOoBAFmtjOXg8gEAeCz4AJT+AQEboFI+pQoBAXhBrvGhGgECptS389UiAQF1TElqwSoBA6fXlw+VQgEDgvSD+E1GAQDvrMZymVYBA6sScfCVYgEDJFoPm5liAQHyfMroOWYBA0jtEztxZgEDtImh7pF2AQBTjk1PgXYBA3KpRP8RhgEA2Z+iE4mGAQK6lfgdJY4BABKrJ/HBkgEA2hnC9a2WAQJgSco08Z4BAg7BIGwdogEAAL6bATmqAQJwmPoTKa4BAthMgd+lugEAUloWYKW+AQCiXfbBsc4BA2qMsUtd1gEBun/1rNnaAQDzFePUid4BAZb4QJ619gEC1RMtNJ3+AQPnW0XPVgYBAm/MWbeaGgEAOqAE8Ho+AQLaiMNP+k4BARk8Ryt+UgEBGWQ13npaAQHoOHbitloBAG/lcGR2XgEDi/V15sJeAQO/nArHGnIBAJF6O+M2dgEDBbnQsCqSAQJy040d8pYBAND/hdzamgEDYkItMZaeAQEB05XhjqIBA6uWfUoepgEBx3D1l7qmAQHynOESbqoBAxB55thOvgECzrIANZLCAQJ6D98IdsYBA2bOa4tWxgECKUYrSWrOAQLVGw4A4toBAuhzy4eK5gEBkv1WYVLuAQPoHY6Sqv4BA1JkfqVLBgEDmtDDgnsKAQNseRUbbxoBAccpNg6bHgEBikZFeU8mAQITCSKKlyoBAPLlSLAjPgEDOpEVwLNGAQM6DJXhM0YBABbyb6lLSgECJiQdCq9KAQPy/S7ZS04BACJlJtl3WgECk8YcWStmAQKbiMVTE2YBASquvX8PcgEBm12asReGAQJFoIjhD44BAqzOOaSfmgEBe8Owv9uiAQEJnYDYp6YBAdDi3HZXqgED+PI+uSe+AQL3CGh8984BA3aD8lujzgEAXjXgXr/uAQHoohT8//4BApCnRIEEHgUCbfWlSOg6BQPSsoUQ+D4FANqmK2jwQgUCgS3XFSRaBQAjvMKQ2H4FA2YDDK7IfgUAraDuk8yGBQFwOYn+hJIFA3WDE5dslgUCA7hKNNSeBQC5Sgo+2J4FAsrW4puspgUCAX84EMCqBQJDQtGDMLIFAxt4cYS8vgUAJVvzmvjGBQFWuDCN1MoFA3GvDfLwygUDT8wUZ6TSBQHNlJJgnN4FANJWScL45gUB+V3asejqBQMLhEv4oP4FAwll6O81BgUAfRRAeW0eBQFa0BIC/R4FAqgT/XcVJgUBpffdNPFGBQB+S0PFuUYFA5QtMoG1WgUD436KP5VmBQBMm4kXNWoFAhnlCzC9bgUB+F6w/y1yBQBA7tSvjXYFA2glgS/phgUA08sLl2G2BQLYOd1bbcYFA5gOwd35ygUBy6KuNKXSBQA8zelXCdIFAQ/bakLB2gUD1ypXSbneBQBJbRN87eYFAwIoxYxt6gUDyLLEtw3yBQO6XNulef4FAGwfvbCSAgUDU+sUDfICBQPo/5B8FjYFAQ1//mhSNgUDC4Vga9o2BQOwBw+RVj4FA4p7WIbOPgUC4BKcJ8JGBQAD9QyQSkoFAu3eO9VmSgUBSQi4dE5aBQGKHagdWl4FAmBRruciXgUAyIks/PpmBQMHl/qOcnIFAPapbo0ifgUC6lakQ5aGBQFfuiK71oYFAGlvn7t+igUChqSt4pqSBQGOWSn9vpoFA7oFYum2ogUC200+47amBQCqFBbVKr4FABeesSku3gUBWAVdggLeBQHQ3K0DkvYFAhhV7LujBgUBqUbTWAMiBQJ7kCO4IyoFAFu8NwQLNgUCIinY4+NGBQFeEIQx904FAHqJVr/zVgUAXv1spHNqBQDSbxCMa7YFAMMAvTbPygUBUydux7PmBQBIeQRPw/YFAk0/bOOcBgkCj4C+X+QGCQAYKD5frBYJAjN1b+wEJgkC2wgcqAwyCQO5TdXc/E4JACFQekAIUgkCbfBzg2BiCQAYoqwBwHoJAStevbdYggkBS/A540SiCQM6ec7WgKoJApI+PXkIsgkBmA1aapTCCQC8u/MpxNIJAvSwxh0s1gkCkYg4nXj6CQDhrn1cYQoJA7Am/tahLgkBm2am4PE2CQGFkUNQOUoJAVF8prs1agkDsZKburVuCQFjBbWZxXIJAVvIb/ENdgkACeNQZqF+CQLI0KfM6YYJASGhWWzRigkCYDKzrN2aCQH49aRffZoJAIMs6jWZogkBs+Ajae2iCQOPNk5YEaoJAUpxjHjxqgkD9w6C10mqCQP88lphvcoJAfqCF721zgkABgQ1zrHOCQOitaRQ+dYJAvkBPOgt2gkDoeiyTc3aCQGio/ffSdoJA6UCCmzt5gkBI2zie/nmCQNKXVMYUeoJAGUj1N0Z9gkDmkjAMFH6CQA2so6fHgYJA/N/k4ciFgkDEAcEOgYaCQGQyYPash4JAHj8hdEOJgkC8HIgjhpCCQGHAAtlCkYJApeAMiduRgkBSu0Cv3JKCQM40V60amYJAKGATZDyZgkBkFkxCVZmCQHRXE6/KmoJAaD4b4w6hgkDM4JN/PaGCQDTqgqTJooJAOBPpLgupgkCeOhNiMqmCQOA7PPBIqYJATFAqpgexgkC+mI9d+7GCQOUbvqYTtoJAJCnCPku5gkD2JOrU0LqCQHJNZojevoJAXA/E3BnDgkAag7PA7MWCQH+LYFTwyYJAamwGMfjNgkDuGHy9hdeCQFarhDt+2oJAB86VdYLegkBKnpme/eeCQH5a/Kgj6IJANPW21mnugkC8914ipu+CQDqy1HNd8oJAHAY16Aj1gkATqcLKBPiCQN9PL+cS/IJAcnFtxOEBg0DYt5Z8TAWDQOY4NhPlBYNAhv4ITsYJg0Bsyf8e5QmDQKblTLF5EYNAmMBhDXoZg0DIIiMjEBuDQO+3huNyIYNAxyrEooohg0AyJLHleiODQEZKK61yKYNAZpzQ9u4pg0D0VhfW4SuDQFOmAdlrMYNA1L1x6O4xg0AWTWqnGDODQHp7PeRtOYNAADXzP8BVg0D4UuLoLmKDQK0RIrG3aINAtwViBexyg0C2wDepYYGDQGToTAjFgYNAQtbOlsiFg0Ccn5PyvomDQE2EW96IioNA4rv9I8ONg0CW/4af44+DQCQLAOHIkYNA1lNqtoqfg0DGO88WTKKDQBSPnLsSsoNAcU89Xha2g0AKteGwBbqDQDoLxlAcuoNA80oTQCu9g0Aku4EEFL6DQHW32nLWv4NA0yLk5xbCg0CdTXZIHcWDQBlh18HNx4NAJA9Pi3bKg0AeZVWQgdCDQCLSSsvN3INA7h4AvVXeg0AECY35eN+DQPhGEcol4oNAbkyIflbig0AgQQYNvOKDQD4RrpYb5oNAiJLxo5b4g0Dkc5U/8kSEQLJLr6h6WIRAfs+LJx1ZhEAK+CYLUFqEQB4kjJ5JYoRAAF8tHmhihECiC6ZW0GWEQKaVl+v/aIRAvCemGHdwhEDiuIt6/3CEQK+nKzY2coRApBFnQrd1hEAO0oxArnaEQJE5lxfKd4RAfIEEO/l4hEAX6JYdvHmEQESYP3dheoRAZ7lIRnp6hEAZCfotJn2EQOBPwHWwfYRAcOGXqrt/hEDB6gJZ1X+EQMCOljxKgoRARg05qGyChEAeudKiGoWEQJAUhIzLi4RA4EWkD3OihEAQ9eeyIKWEQLY9FlWypoRADDNuac+nhEBen2qht6qEQGL0PEtgsYRAMeOZHl/KhEB+TvWsF82EQHQtJdamz4RAFLNCP8XPhECnh7ukkNaEQPrc5F9q2YRAIjPLqKbZhEACuP5GAN6EQK1KNJBq4YRAeKB0eGLphECin3ZFfemEQHh/C1p46oRA9rubkyHthEDEAOOpIe+EQLbq0UrU74RAZ30DNjXxhEDeoywjZfGEQKZAy1vc94RAqXU6STP5hEDwBFb6XPmEQBIINquK+oRAPCgyqTb9hEDCAnCn5P+EQCMD1G0uAYVAvzk32YwChUBeUUi3QxSFQALJOv/jFYVAjAH4efcWhUDEDn0GuSuFQKjLy+tHOYVApi6hZRVUhUBKF5PZnVaFQKzTW8WgYYVALs2A6t1hhUDaBDmw4WWFQOL+EqChaYVAFD+mKWVrhUCW5OckBGyFQKrP8beZcYVA2GHN7bByhUAMmsrRs3OFQOp4/oO1doVAbncBP5l5hUByRLD8uHqFQGJG1PCVgYVAoEKuGC6dhUASmv83f6qFQCOuSqmOrYVACjD9wz+uhUD0gYY8RLKFQNnNRfaq4oVAJNHemNDihUBjuEHMf+WFQBZbAuaw5oVAUpo17q/qhUCE2GVKx++FQOWyUkz7OYZA0lLqqEqghkDan+hWKLmGQKhmJ1EnwYZASH44ssrGhkCmUwrDyciGQNnUGYXOyoZAusgbesrMhkBE0fcez86GQChkqYUy/4ZAQufFojcBh0CKHbWeNgOHQD4EWz86B4dA3hLfIEUOh0ClS6YT1A+HQDFQfVAtE4dAmu2NFzAXh0D8Xf94MhuHQCQCbpuRKYdA2f74DpExh0BezAx3izmHQJ6U489cQYdAFf7SuotBh0DmVKiikkaHQM6cZ1LhUodAPBI7seFah0CMSRRrGGuHQPYXj5Egc4dAXJOCLquQh0BLuSY+oaCHQNwsQDTHsYdAkwpsZMi5h0AeR5kPssGHQO+wCt2+yYdAioGYdrLZh0DSF0oJ6QKIQFSTRWrJSohAon35YnJLiED7IKwNp06IQIbajhmoUohAJFoWi3F3iEBlx1Cjoo6IQIBkSfoLu4hA3hRUL/78iEA= + NrgMGZxjYkCmvpxNHKRoQBu6YmAmQ3BAdWjQV5HCcUAbGD+0flR3QDzDZJGp83dAXsxmwixkfUCjnjACcOV/QMBqtPlXaoFAUX4GK2R7g0BRbzWSmSKEQOKCh8OlM4ZAfJm3lOVahkBzhwhc5+uIQHzIpb6R44lA17TSeHMEjEDg9W/bHfyMQNfjwKIfjY9Acfrwc1+0j0ABh6HSteKQQIH/OIZQNpFASgnintY+kkABFzCbpvqSQJOLImv3mpNA3A1jNxj3lECjeKzu4h6VQI4kyEVeg5ZAI5CjAznjlkDXpggSf9+XQKOnmhiPp5hAu7zbGbVjmUA= - + - y+6WRGrOpkTrIwJGCXMNRRLA10QEmghFnPRiRT9NtkTeycNEXa3fRPYDiEReJxRHw77MRJhMsET7NmlEw+wtRdspK0VNqDhEN9anRMtWdEVVHpBFx7OkRHSN+UWLmaZEGbZwRVUxoUTmhr9EPtOfRANIRURVDZ5EXebpRLpYUURktptE0hhsRMGNNkXLZrZEZes4R+4xyUTqZnxEiYyRREn0UEbsJ1lEajmeRQUctESLGVlFJpUIRXU7oEaE6jVEP0XgRMo94URcIp5EHvmtRLwYkEUULqNEmduZREgpUkS/joNEBEicRKpfXURVNpBED8SBRA6jY0RNhiVFQV8QROwDfURgDYpFxieIRDg4jERfw+1Ftyb8RF9sS0TwuOBEHiecRaMIwkSQwPxE4vNJRA9VzkSf6yVEmYLLRJXjD0Vhn1NE/ZOvRIPQe0Ra9a5E8rMJRQBdzUTV3Y1Ewye5ROsaPkVAMH1ElUXpRikK40TmOUZEMaYsRV6CjUWojUZGyUDjRIM8Q0S63glFXnRYR2dXlUQiULZEClB6RBhFIkXjIWxGcohfRD/Z7kXhUUhEu9x0RAISAUbx+XhEazCMRKE9dUSboVlFTIypRCOLKkSOJmVED96kRMCRLEQNnldFjI4CRW3RXEQtxpZE+p9mRF6DM0R72jRE4fW9RH0xrkWa6ANFMgoGRXlMT0TQjVpFfHagRLYaXUS+2MBEAQyURUD7KEXiEstFh1u5RFoP00QikOpEM2kyROCWgESUFQ5FBzGxRAlakkQ4ElNE2J5ZRLiYEkXBwkxEGbpERWsPgkb6grZEHQDaRJ4zXESMXJ1EI+svRM/SXUVkb3VEwoFJROltIEVJXW5ET5CZRAyFaUQQY7JEsf9xRHrfUUQfc+BEszc9RaiBz0RQgohE4g9rRGZTa0SaPJVE2keGRLWk+EQWVghFd0UhRV6QA0VY06hF+4JlREOAlUVk4bBEAfWpROwBYkSyMPREga/KRekAQUd+ztlEXeAaRKNoLEQQXuhENTrcRBgVCEbUwU1E2sVGRayyq0U9I7VEx8jHRNjFRUTLssNFhTqQROVMgEWTyJhEqpORRIuh2UQzaGBEt3KGRKR6SESF5C1FTp/9RNQvnESZcLpF3DjyRN6eLEWg9OZE6ZzERBwQVETcQYNEM2NlRBlJTkXq/6pEbQ9/RSPgOUTobgJF4nEvRGewW0TRpp1E5yiNRNwS3ESknqxERw2IRGQc9URqnx5F7SFERAHTnUQ//tpF8YjERNx4mUQXAOZEjMTWRXi91UTm461EiVOiRO/w2UTyTiNFTFRVRMixwEVLYA9GcP1uRK19WERxTKJEV52YRPvcPETd0FhE3H5jRdzUgURmFdVEEk9eRP5EUETaqTtED5CnRLdevkQ8qEdEALRTREXvi0RXk5tEg7VLRDDuAkWGNqtE9r/TROv9hUR4X1tEdAyDRHxAoUSC1ZhG/ndkRO/1LUWlz8VFokVKRKo1iUWcQXFEfQJgRUXcpkRPZEpEMoZXRBcmTES9vHJEcZ15RN4IMkRkP9RE/+hfRP2gb0XMvjtFYB5IRP+qkkSPinpEGG1DRL/7akV14oNETMnKRJmYr0SfMw9FEkfaRHg8QkT376FEeKWARXQdMEQ5TDZEIHCARend5EQAGFNEvybKRCFqy0RHZoBFl19MRLxpFUbuNgBG0JTfRj7avUTtR/RE4JX9RIdkjESuq6VEqux6RC1EpUWoax9FsjCfRZa8kER6V1dFxIRnRO1Eskb+NkpEgV4FRRejPESKVJFFnnGWRLFxlURkvYRFx9lgRPS+KESrmjZEvOxbRPjCHkVpG1FEY2EzRGKDoUSesIREgIxKRdiFlUUik4hEIJtoROWyt0QrdldFo6B3RLmr6kRC+/JE16dPRMh3rkTz2I1EqRqPRnCrsUTB3UtFgoO6RErwY0XIGvlFseHWRMIffkSMRINEHR/YRIWL70eueIVGMUGvRSnES0UzQMhGJ6JVRS/xtEWjSlxG1nA0RZMWJUVDFRJGfpVTRFJKEEWDzV5E2e9fRQtnnURH4ltFIYJcRJ/0YURCYJlExno9Rse4mUQ+8ClG0HizRTCNy0QhsOFE/udoRMfSRkTlo5pEWh5PRHr0dUQaRnVEY3CLRC7zpETbU0FEKlyFREySv0Tl54JH7btoRJzHDkcpjb9F97G9RTfGcUQuvnlFlJS/RLj8iURKRFZExRFDRQcJhkVS2t1EeXCTRHfoEkWlRnlEKVGZRaanLkbe1aBFMXCSRM0mikThbBhFariRRLarMkVGLX9EXj0pRUWQVERXr5REtBkFRVAVUEWhzUlJkAWFRQP4qUc64UlE0vRLRGYRL0VRuQdHijtGSJp0Kkec/4VFq2fSRv/geEQhTDFF9LqXRVSipEb81NpEJfA/RJSZokQML2tEqmLMREA6r0RMjUFEA/TlRD00e0RV1MFGVI5MRCuspUXC3+lEJeJORD1WR0UZUoRE6NcLRQDxYUSwT0NE//1XRQPhx0WkRcdEWLKRROgH0ET5k3JENCiVRPS6IUQ5YJFESGpPRIyoQURXMglGqpzKRUu9tkTfW4FElK7NRHJexESI0hhF6lZ2RC9zvkUTuyxEquOCRAQGaEQMw0VEMqVWRGNMdETifVFEz71hRD9QGkVR20BEWoIpREKSY0T0PvtE2iMjROcGukVDoexEzl42RGAo80RtN4dE8aGhRBqzbEQiBORELYnvROv2ekTbhKFEtlFYRBtWOURKlllEoAW0RNkfc0fieXNGxeHRRywFCUZl4aFFg8NVRNwypEXKteRGs/Z6RDQsWkR6hDdGN+2NRPIcKkWiB1tFCc6YRLppNUUt1XJEcdGIRA3qikSRdpBEpyU6ROh21ESL8ZFFtmELRbN/hkUrXztEwsrDRF6U+UXAKQRFmbZaRIJjbEdDjN9EMd7nRhZKYkSYIFhEyb0wRP73dUX2G9VEDY9+RN8DH0UDc6hEPPWfRH55z0QWvOFEvBNRRJ+Sc0RMXdRFTzTwRP0eQkSSRFpEhdmnRN00CEbrh0FEySJWRegWSUSlrHhEYOqwRFjRy0QPRA9FZp+ORE+mVEaE7llETrUyRbd5iESAD0hFW5DqRMtl0URyiYREHutlROIglUSx74FE/flVRDwzh0Rhka5FLp6bRqpmlkRN+1lGoCMARSV60EUb1D5EhqmWRdXf7UQxtoREcVCHRMnjwkS6scJFhLXXRDNkskVv6fFEMgd4REODHkUOXBJGoRjbRT4BrkR3XMVENbEmRQsXjkTxHqJEud+DRE8sWUREiv9EcfCJRaJXP0ZbP/tEKNzDRBK+IkUTfZtEECFCRMz1mkT2MeZHuzPpRN0XkUSDTnpEsRj9RE8LyEa/u0hFj0xCRO6g2kRB2cFGO51HRDmNWUWwPLBEz7UgRdvkmkR1zuFEp5weRbml8URPcDZF1asTRboOoET6ozlEL+YrRRlQxUST9lREMsriRMJ7mEShHpZEdnxRRKe2V0QgFIlE51gtRCT5eUcLj01EhukuRPgHNEbjhVtEYdMxRDSStUQ843ZEKEIFRd9evEbFPW5E/43ZROAcmkTXnrJE9jCcRXJaH0Ts/aREBqZZRNKp4kVugKdGdpuERF/w5UUu/gpF1s4xRalunkSVoU9Ei2ZfRBHfj0SPe7xEWj6IRJ8BlUSqsbdFk/PMRLRtCkUj62hE0o6YRJy5SUSSL3BEiwRuRN/RTETY/oNEti2VRMvKS0bG0pJEXLMBRzTluETrcn5E2OKMRtnBBUXmBXlEoW+nRW26yURbxSxHOPiIRVFBqEbNjahFbcwtRXTXFkX1wIpEkBCCRDBwhURFpk9E7n9bRMp3iUSFBnpEnrHKRJA/dUQw45VEP1M2RDOSokRl9RdEXSOZRBNcj0XSEWNEY9KnRB+UU0SyFARG5DvSRGq+jESnaf1EQIFBRFy+fUQxonVFE0RnRCpjg0QL5VFF1PE3RJjMc0RKfpREBFwsRQfyJ0WQ7mBEm894RBAGvUT6KpREKRqCRCkhfES2SpxEDxajRHWYgUSAFA5FyNX0RElOV0StaplEpqhbRBcYR0QLjnBEYdSHRDNabEUgOX9G+4EzRqgpNkRLN0VEdZKWRUv7w0Rq9oVFk/JrRFcNz0T2MsBEAXX3RM15e0Y2f9tEJeD5RHdrP0RzKs9FEQD9Rh2HVUTqN4lGKAqoRYdIHUWPgWNEThQhRWWibkRTcVNEtSNqRDIMaEQZ9I5EPXVwRIUgFkWWAlJEHgCcRJ6RhkTReWBE8OhBRbIDB0WzGkFEDqBiRCvBJ0ZnPlpEwCJ4RCjIdkTwZF9EsZu1RMdCmUSrUdhEYKOGRJRlk0TYYRJFjFodRRGdPkTtpj1Ey+/VRDTHZ0RWh4FES86mRXDkDkVyT51EViP8RLbGCEWtNV9ENmq9RKZEfET/quhEBO19SAp/LUeL11dEbNnqRN5J40dxVQNGvQWjRM0xrUSXu3BHMHBERB8WsESXJ4JEquLVRFhoVUazRDlE6XJiRNNPt0WBjFpE099FREqKxEQzF15EzMuCRHJL30QRhbNErEhVRIMLbETffkNGN2+yRRgiRUVuYnlFE3teRSyjikQDHvdG+Q+URO4/fUbEvJFFWdNZRKEEqkUCE55EWcF/RMDRoEQ71EpEehPpRGPx5kQFeHFFFQ55RI65gERGRVdEu2qERLQ2gkTkirlFH0s/RJ/TsER03VBERmBERICWRkTu8lpEbV1QRNzveUT5CLNE22eRREJUg0QEVDFEu3WARDU0qkQ88OREYkcxRK9HX0Tk3QdG4/8gRPucwUUrBUpEGf6bRB8WkkRuMoxErXwvRMTeZkTBFrpEBXp8RCDFjUSLzAlGBPvHRAIN2UT5j6JEa92eRIoTqUQXP4FFD+AhRB27cEQie+VF8fXRRdRbE0VonfFEaOznRFy1k0R9WzREapQMRQdDg0SwshxGCubSRGDhaESkUXVEaFbXRCd5eUSDu4JEUrK0RP195ETiuqFEWXdcRLks9UTJOTtEMEtlREZE6EZUeWBGORUWRdrmykSgHNJEPgaSRK7VckTL3ipFWCmHRJ81MEbVkbVEybo/Ra5ZGkWlI2FE4IdjRGQBvkQ2vlREE1Z1RCilm0QxcKVEtNF4RBiDTkRsoZNEDfehRIzwe0QCZMNE9AJuRMrfg0QthaZERXQERotvqEUxlCpF6TIuRFShskQmuRFFZvn5RGtuc0WV0ZZFb3KCRNB6XkRF7V5EnCCIRDUknkS6BcZEWnFpRI4TtUTvfXdE6vdqROkQ9ESQFaREpOJnRFGrSkSI6WtEGlDTR8VEYkRqRyRHV3FyRG3GhESyZU1EeCTORo1VvUSl531EqsqiReVc3EWtLyJF0oGgRJvBv0SbWqtEHBGSRD0xRUTcPGtEektYRJAjZ0Sbt3FE0vhLREV940WGP19FwUWQRMD58kQ3NpZFnAAmRXmpd0TBkYxEtvODRMJqV0QKds5E6/aLRITLZURT34xE96A0RbtThURhzwtFrOqARPdSWEQqRuBHXjI8RzUgW0RMzuNGkuHzRBTPskTdhiFGh9/CRIZbPURghUhFP8uBRFZZPkRt6YNEdds4RGadg0RPwmtEqzVzROMxIkQlRrNG1LdLRquGUUUYzGBEi0TdRGiUiETU/3lEwetHRBAkP0Q0OK5GEQsvRkiJvkS8CpFFE4BtROlArkR6ZuVE2yyHRMFyiESITnpE4xG4RLLknERvN4xFS8GzRPOVPkXxi0ZEH/22REgjMkQdX4dElU1DRDbvaET6X0pEl0NmRC1NgURZ2jxE0y5KRGPHRUSjysRFt5VCRKVIbUXpBUtEZHQrRd//hUQ5LwpHqjPgRBi0xURmM+BFOqSeRgKDN0Y/mIZEcs4ORbUqk0WpzrxELXOdRF1/rERHjLVEVVtIRdwu+kR03Z9EbuKzRHRqeUS4UWVE5IQkRAulRERNLG5Ek17GROvTekTiMgtH3JJ7RM62aUTz7o1GuR8MRoeXkURgpYpFOrixRe66bkQMkxdFyV6dRYM+VUVt9vBFRZ/nRByJwEQ9s2RF4CkGRWpJl0ScIAFFJaWuRLGNgETWQABFKNDbREwpL0T9/3lEbGJfRPQkiES2xwlH9B5PRYcpvURBMoVGmDtARA81W0R0CwVG4gLLRTQ5vEQvwYxFN4uEReYRAkVsEE1E9FXWRJD3OETrsmVE1zzfRcmlE0XhL+ZEYFzaRDjyQ0S0CYRE0w7vRP4+aURi6EREtyY7RIxsFUW1V4RE3VENRaNkWEX6EgVFKVKPRB56L0UZ1+5FkPdMRKkwbkVbudREBoXARCzVp0QsHrRF8l23RbZG4UT1skZGmMGtRW5bbkU0AoBE6Ea1RCErrESpPHNEbMhtRLKf1kWYteBEyTcuRBfrPESrjRZGE/euRc5VZUWMKBxFKu6DRB6vTUQqujtEe6QxRJDgWUULYXBEJ504RBRAVUSkRMJE+22FRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 5tzxF3jAckAF5MrrDMFyQH+HKMkkwXJAbm7MLG7BckD+nhMqx8FyQKowW0NQwnJAInOTyOTCckAOzDmCOsNyQPIQ8zR4w3JAa5KRlsTEckCkk4//WMVyQDxspQEl0XJAgkFKOH7RckAgAtcKQ9JyQMakiuRm03JAisJOaXXTckCQyolGQdhyQK4Jn4SO33JAFDPdxM7fckBW6+nNuOByQGV3Z1cX4XJADPmgtU/hckBTP00rUOJyQBQ9zYSP4nJAwnhgPCTjckDq0A3AU/ByQDbRhUI08XJAXfjWzk3xckCGF6fuyfFyQNqXZ9178nJADNBiQZ3yckCIhruOP/NyQAptYJO083JApIhelp/0ckA1iNNLwv9yQDr1X1NUAHNARtrJAPkAc0A4v9hYTQFzQLDqdMuPAXNA0r6wjDoCc0AwT5LmzwJzQLY+jnpjA3NABrkVP/oDc0Cq+2K8owpzQBKr0ujiEXNAAHVGPAkSc0Dsw3OpcxJzQJXeaXe8EnNAilXr9QUUc0DO0n15TRRzQDVAe994H3NAnjoag6Mgc0A0swgHOSFzQLYDhGVlIXNAKq6OKsoic0D8hzamDSNzQLLVn3gGJHNAHw0pdc4kc0BzYAVwRzFzQI6WrotaMXNA6RdTESIyc0CWC1amaDJzQAPfioUNM3NAbOyaKKAzc0AmyS1y1zNzQK3MB873M3NA7I7CxjY0c0CIXT223DRzQCj9CGy5P3NA7rEG2XdBc0BdSBR2J0JzQM12uzm5QnNAOKIJaXpEc0Aeh+UJnVFzQFy0m2O2UnNABmhXKaNTc0Au07riL1RzQF0M7sqFVHNAoKHYw/lfc0DHKlkf42BzQI6bBXKIYXNAYlqnUh5ic0BI3m1jZWJzQKArG5Q5Y3NALsFYFWNkc0AGm1EdLG1zQH5KcobecXNA0PCn4FByc0DY39flaXJzQNJEn8CQcnNAbp43tvpyc0A6fnkDtnRzQL4npjBLdXNARn4ldG52c0BjgPGteIBzQEGGc66kgHNA+q2mz8+Ac0AgktTNDIFzQDQdEvklgXNA1GwgFV2Cc0Ct34oXpoJzQD8h1x3kgnNAoEYd+/6Cc0B4XpCCWYhzQNJHTEuGkHNADm5v/0ySc0C4QDqFspJzQE/yhOvPknNAXuhoWc+Tc0CEKP3WYpRzQFD7wkL3lHNApnulbYyVc0C0fKJHuKBzQBGMhgtNoXNAJjhEV6yhc0ByIZdrDaJzQEd1ikpaonNAyj3FFJCic0CuI5OGnqJzQBRfmEO7onNA0LEi9yWjc0BaOEoCBaVzQDqLkzLIsHNADJAEqtWwc0AbtUc2OLFzQNbVD5Z9sXNAiBRPwFGyc0DXyt0je7JzQN+cpRK2s3NAjhS+tQ20c0AbPHK9obRzQBL1Y5r3wHNA28hLSs/Cc0BsrNMcJsNzQEG/Df2Sw3NAFu4cYcPDc0DwcKSg19FzQJo55GO50nNARAWIriHTc0C8D6xP9tNzQPeA+izi1HNA4DigYqPgc0Bi1CvjOOFzQJZ6pQhk4XNAP+p0bYvhc0CYdHfg5uFzQP+p98h54nNANLnXrBHjc0A+uHS+o+NzQMkjfuxK8XNA/wfwvM7xc0BExmodIvJzQFj+Z1H+8nNAJ6xiKDf0c0AcA76FjfRzQCjzGApOAHRAufkTQr4AdECe0TLq4gB0QKBVcYZ4AXRA/O7GJ6UBdECtMlVLuwJ0QJBZRwwNBXRAxRTpm3cRdEAs8FOjiRF0QBvf5+AnEnRARti/zbUSdEAYuBceTBN0QHRywUflE3RA4lIrhwsVdEDKbvM9SiB0QGgo4xpuIHRAKOwDjCIhdECfmAHLtyF0QBOotKRhJHRAvMEeirokdEDo4UVdUzB0QE4Atv3TMXRAbv1AxGQydEAct2PzujJ0QCQhkkLYMnRAOqzmCvEydECgK9PsHDN0QHOERDLiN3RADSZs1zw9dEAt7EJoVkB0QMI9GDPGQXRARYK6iHpDdEBO/iOebU90QDU8nCaIUXRA5jLQxs5RdEC9sfNcn1J0QJSvKsMIU3RAEJquwPZUdEDDeUMxi1V0QAwm6SQgXXRA1hDcRrhgdECgJrgTCGJ0QPoBUPJ7YnRAVKD9ACdjdEC9+WRaUmN0QHSTVHVOZHRAuLS5wiFwdEAS2mjuynB0QI7B9dtAcXRA9orgtgxzdEB0agGXOXN0QGm/NC+kdHRARkVyEDd1dECKeqUgRIB0QB+dM234gHRA3u76Ck+BdED4lO38N4J0QJ5rK7vPgnRArk3gpCeDdEA6lz7hFZB0QA4AuY9OkHRA/Jh7dGmQdEDur64H/ZF0QNB5O6S7knRAckqODzCTdECQ54ZTUJN0QE0/m8vxk3RAmeQ+ZO6fdEBYf2N8M6B0QIOmhFWkoHRAMr69Ss+gdECdUdkmA6F0QH5UVxF5onRAoZA4kriidECERhlUD6N0QFoDudphpXRABKC5CQiwdED65/Xvw7B0QELGkP47snRAlBaEd2+ydEDseslH+7J0QKXSeE0Ys3RAupu0HJGzdEAKAeVt97N0QH0ov0XJt3RAikyIeXG4dEAC6AAI5cB0QIR8MXP9wHRAXO4UDHjBdEBkJK2u6cF0QF5DRF25wnRAzqax+0/DdEA4Z9bEfcN0QE1obRokxHRA5tyEQnnEdECooL9CuMR0QL41wM38znRA41+z9j3QdECJVYdmp9J0QNB+LU4Y03RA6liZrjjTdEC0JwCc4tN0QBRNbffE1HRABm8DGNHUdEAL52lmtuB0QPmHrx884XRAVvc4gLjhdEBvJcM2H+J0QKqeaS2Q43RAbNaJoU3ldEBwjpa6v/B0QNgcp50Z83RAup9Lz4zzdEAbrbZX6f90QKNjyhKkAHVA0gbrLNAAdUCtfZYzYwF1QKR8jJJcAnVAiDmpeM0DdUB3610M+QR1QNyZaLqWEHVA4nVPlmoSdUDC1W34IhR1QFNQ3dviH3VAPeFPSOwgdUBE8u+BnSJ1QMvap7qRMHVAlO2J2mAxdUCt08xkqjJ1QLQGahvMNXVACghjRHRAdUB6y6HKfUJ1QMhfwETcQnVASjboldpFdUBatemhClB1QFROjD9+UXVA1tUxRrpSdUB8/o6qTFR1QLw7WXx3VXVA2rF+fwpgdUAOGZa6NmF1QApUiLTzYXVABAdCaNBidUDqy+AkZmN1QMoZeVZjZXVA8ohUQ+pvdUCgnB8aeHJ1QDjP3xUmdHVAzgvKWo10dUCqeAOW44B1QPxyQsl4gXVAlNtzh66BdUBSOqw64oJ1QLCZgvalg3VASqX0NRSEdUCcSa8pm4R1QPiHiOmdiHVA/rAzrYuQdUA6sIReZ5F1QLGBQc27kXVAuPtpQ4iSdUDdTI7t0ZN1QGY7SgojoXVA2BowWLihdUDfcIrjSaN1QIzU1VKiqHVANkavCf2tdUCYJGFufLN1QLJ6pxfPwHVASI69XWPBdUBqgNK498F1QNzwnkqlwnVAhrg+YTrDdUA997apytN1QORbZrbj33VAP9kJVg/hdUDuytXEo+F1QIgzhwoI4nVARFdvGUztdUC+cxLqpvJ1QKAL1d7O83VAgzuOwxr4dUBiw1vsSAJ2QOV8cfTPA3ZA8DdHaE0UdkDK5qYcdhV2QN4uyHoKFnZAigFmZ4gidkBhH+dQkCR2QOBy3CxLK3ZAypanOh8xdkBF3XgfOTF2QDkqQMckM3ZA9kDJSVEzdkAmqielnjR2QECjXalQQHZAHSsaHJVAdkC9bm2U6EB2QCKD0gkdQXZAAqSN8slCdkAisn+yD0N2QJjbDUJPQ3ZAVt7HyHlEdkCMM+JE/E52QGSAcznLUHZAptyOiRFRdkBa5uwMiVR2QEAQKwbNVHZAnrbVvZBgdkCOb7nPI2F2QJA4no3fYXZAjNFzhtpkdkB6ywKNVmh2QIQX8TKvbXZA9OOFZQJzdkD67ztXfXN2QJK2bUURdHZAxmIGDz+CdkBfzgfOaoJ2QPgHAqw6g3ZAOmf332iDdkDz7NeYkYN2QEqdlJf5hHZAyp608ryTdkCngeWX1Jd2QNT1jq0OoXZAuKLpbuaidkB4LW8curB2QCYb/wrCsnZAmNkDZAy0dkBg8ZqydcB2QGbngiZPwXZACrFe3xvEdkBWMKh8zs52QEQ2cwR/0HZAZFuYy/PhdkCcCyD40eJ2QLdM7puQ83ZAlrzbkFD0dkDBx22aMAJ3QGjSg7EBEndAS0hNQQ8id0B2WWGvcCJ3QEItSGdSI3dANd4Szecnd0C6WfHUQC13QFp9AoyZMndAnooQu6Qzd0DZAA4jDTV3QBbpjQudQXdA5BZE2vhBd0CEUQnAkEN3QLSVpPoaRXdAylml7gZQd0DLDjZG51B3QApHGUVLUXdAmv9YiJJRd0CDKFd+6VN3QG7zKSwqVXdAvP2cFn1fd0DA3nyijmF3QFR91h6iYXdAh9uft6hjd0Cl7A7kOWV3QGD4Hk0ob3dAeq3PvD1xd0AkB96On3J3QMh9GN8jc3dAOXaTQLVzd0DIYdlk+3N3QKjEaC75d3dAqnyHoTx9d0CePAhnVH13QDJzsYdpf3dA9jJx7niCd0CUpaWgIIN3QK6rV8YIkndAsVuuAU+Ud0BckmIYmrR3QFIQO8TNwndA7jPyOA7Dd0CRPRnd6+B3QLYJNaFX43dA4Z61BFLyd0Cn5ifZfvh3QFD1LF9G/XdARwICttX9d0DOWZMFHQJ4QPQm5wOgAnhAFgzgNaIDeED6Nd7l5gd4QGR/kCX9B3hArUipXQALeEBbqbttQw14QP76sTeOEnhAASNYmKASeECqu7PmTRV4QHAUODVtInhAEFgGnDwjeED7DvqSiSN4QIDjC2DSI3hAsgr9rqEkeEAGFM1WSSh4QJoZu+mULXhAd3I3ik8zeEBrMFWDEEJ4QJqKwP9EQ3hAZpMJXRFEeECdC00UekV4QDLdtLrKUXhAsU/T55VSeECqBnPk8VN4QAjUH3aHVXhAaJzbq/lgeEAch7b8t2F4QLSMi4G8YnhAUnDtafhieEB0JKqx6W94QIy9VK22cXhAYrH2dk9zeECu4B1ZXHR4QJrpDcaLdHhATzxn7L50eEAGw/HD3nR4QHa6RQP3e3hAdEvazTiBeEC4YdHgpIF4QIGDFRfPgXhA6jutLP6DeEBAL8mtmYR4QOBLRLNPiHhAFn+XBwWMeECW5nohqY14QFIk4WaXkXhAFi1LIASTeEDJSrz7p5R4QFntQOxcmHhAhnnRBLeheEDwygqjuaR4QG/GDu88rXhASHb6WNOzeEAYF8bJ47d4QF/UDxzOwHhADEKQqxbDeEAILGr9Hct4QFgfSj36zXhAskztggvTeEAK0Nx0K9N4QLch6xe31HhAJqvsXjPeeEDHdAQKOOJ4QFjiheOk4nhAdA70WS7jeEBNQ87qaeN4QCoDiwjD5HhA0O/NZAL0eED8AVwijfV4QDf6a8kSBHlAjGT+8JoFeUCMzuv8PRB5QH7c0H36H3lAgkr+NLsjeUDjp4oMsih5QB+R8OIMLnlAsIqLYmYzeUD0qOfCikJ5QAjBAD/2QnlAhivwgKRDeUDcHuV+/UN5QN5KmIU5VHlAbt02r8xUeUDIitxg6mB5QL4vl5/eZHlAfil8DEBzeUAXffAo3IB5QJI2T2T7hHlAP5A8/ViTeUBOS89+GqF5QGy2KSDAsnlARlIGq0HUeUB+4r9vztV5QETZKHco43lAgITxNFDkeUDy5LoMT+l5QGDexTCv7nlA3plxrBjweUDbLhN/SPB5QJIxkW8Q9HlAYCoHQv0CekDyR7REpQN6QDhwhST6A3pAp5IGsjYEekAgsmuE+wV6QKqhaQBpMHpASOpN0CozekB99j8XDDV6QAJVN40tN3pAQ7FFfS87ekCMzJiLMD96QH6ydCV3QHpA9eopKTdDekCoBV13hUN6QDiHUmIaRXpA9FBjl1dQekBDhedEKVV6QOfWOqEgXHpAVltBhWdgekDUH6QYKWR6QAXHF+kTaHpAl3umD0ZwekC8zEfMjXJ6QGwzPJolc3pAjLLwnih3ekDiqHWa1JN6QJjICLxTonpARiQajB6jekC3+Okd36N6QM9McyImq3pAkFdT3wyzekB8TXSS9rN6QDvvixUNtnpARvWFWg+3ekAOhwDqELt6QBa+nIcTv3pAAFtVaC7DekDWFlIJv8N6QLb7tdsbxnpAsHoR2sXLekC4+Oh2Ps56QOJxRjzM03pAhheonADcekDcAG3XZOF6QDg3xZjM4npAYoAw9+LjekBzf0DpN+R6QNp2JFp85HpArBknyTTuekCKusk7F/F6QIit7gBH83pAuChqzXwEe0AaROrlKg57QGCGYQ+KFHtAbtGlA00Ve0AWRG2NJyN7QFd/zCZbJXtAMpeYClwte0DKXBNqVjB7QI/vQmvWQHtAwjitDv5Ue0DyTxMrw2B7QCQVBTYKZXtAhtPMebqLe0CIQhE4IpB7QPKaWA7Gk3tAjNywh8KUe0A6XJ4EI5V7QMcrU6tTnntA7ITX+Kqje0Bq5+2sLKV7QP7++HIT0HtAKAVVZ6XRe0AK9TPCsNF7QL5FWklq4ntAnMhsQCXke0CFA0NYjPV7QBPCDHOSAXxAkFb9m9kBfEBEkNag9AF8QJIYClS6AnxAassgXmcEfEAYjqGCmgV8QENhZxSPEXxA5BxLa9ERfEDcHBwIVCl8QCaZQ+XMQXxA3E7j7WxTfECS82RpdFt8QIoo9TLrX3xAJc3w7Q5ifEDMnzzQ6n18QPx0YlrDjXxAN7mqYn2SfEBC1Dt8HpN8QLFPUZ9kmHxAMUKWp1qZfEDgnuChwp18QJqS7lRLnnxATGpoLraefEBSe+5MHaN8QJNM3c6jo3xA3ahSVPykfED07GkNjaV8QLYyBEv9qHxA+PLQY8CyfEC41FkTr7N8QOTDld7ss3xAyIE82Hm0fEBx9fQV87t8QOB7/vX5w3xAiDfp+YjEfEC4xplIzdV8QEBFHVf423xAcPmN2FfifECQ3q8/EeN8QLgRzQhv6HxA6OLg3RXyfEBsANJeVPJ8QLDRuwlz8nxAvGrFAgjzfEBKDtiDAgJ9QIiskGJLAn1AKN/00WsDfUC4fjbQQxJ9QF5g9J37E31A7DL3EFcZfUCcELU2PyJ9QKAqFmd5JH1AjKtjbaMxfUBjNSUsRzh9QF7Xeht6dH1AG/CzPP1+fUDyjJ+uko19QEAmxcrxkn1AVjdvOiOUfUCIi2LN5559QDBMIgC/qn1AIMNP6+bEfUC1Adbc6MV9QIgkYPPz1H1AKqRqf0/XfUDUp8PF6N59QC6v+Fte431AJEAeCVDkfUBoFJQAo+V9QBQYHEEN731A4lHFBJD1fUAao8F5NAB+QEU4QvIqD35ALYIMVUMQfkAExDaVIyB+QP2ndhtBL35AxfKoVno0fkBp+Hq+FDV+QANP25UKO35AWS7RpiI8fkBYKBoTQT9+QKajmyMRQ35AyDsfmqJEfkBQYoZi+0p+QER5nbAXS35A3wGSJu9TfkB09vrLP1R+QKK2CQGPVX5AIHym4A1XfkAmKi3mNFl+QHqK7O9TW35AfBGbsO9bfkAQ2MyqlV5+QNLLGcmZZX5A9RPedRpufkAKt/exTXR+QPG6r7W3e35AKjzDSDN8fkCefDP5V3x+QNaq0HS6g35AZALZ9UuEfkAUkFJEZod+QOqbxFPhkH5A3IZR7vuTfkB4Isk9Y5d+QDeXy7Fzm35AQ6SsALqcfkCVciTRCKR+QETskOKRpH5Aoovx48isfkBqATPi9a5+QIrApNC5sH5AglRLdWKzfkBMD1QLwLN+QCsx1uJOtH5AtgkM/560fkDz6gl0qLl+QL/A46gAv35AqLBxHnO/fkCS6hkhZsN+QMQUCSfQxH5AJqXqpAzGfkB+X/cFD8p+QDp8tChty35AMiRxTlrTfkBieQq0edN+QMRWs/N/135A+pLw01/bfkCeww6g0N9+QEJifXtW435A5DPVv2HrfkBunsr1rft+QKJ5f/jQ/35AzKFZg6IDf0A+EzImPRN/QItqE3QmFH9AYQxOIIcjf0BGd8gHt3F/QFJVXK8ucn9AIloHDep0f0CafhR4toF/QGZZedimg39AuEXr+1iLf0CKExyGYpF/QDiTuuKokX9ARsTRVTSTf0CshyHvm5N/QMZPogWioH9AEqkqgV6hf0CsAy60fqN/QKbjdm7hsH9Aie78olOxf0AIbiYluMd/QFEnfgbNy39AacJPl6LTf0DksmXnpdt/QBp6E99R6X9AkiL6tqruf0CQU+nOM+9/QBMuDXxHAoBABtsOKREEgEBGipj+JQWAQGMQgAh4CoBABE+7kHwOgEBUTBd4UxCAQI5dr6XKGYBA/gRproIagEC62pD/zBuAQPp6aBCxHYBA3elKVwghgEDG3BPmxCGAQJVEftLiJoBAx55ah3AogEBYFnG+7imAQK4YcnNjMoBAaMNJUIoygED7Vu6FzDWAQFR/sx0dN4BArvV15sg5gEC6+6TA5zmAQIzyY4qeOoBA1ZET3XU8gEAII1iJJT+AQMEFR6POQYBACn+a36hCgEBijf0S8EiAQNrWtlqvSoBA0Tn0vGRMgEDmB8Z+1E6AQFhr59jlUIBAunukohNRgECDLh6J01eAQNTTCUcmWIBAJvHOFulYgEDYNDgYD1mAQEyVZHzcWYBA8DGeop5dgECDB/Y44F2AQPYFWEo1YYBA80iLy8RhgEC+a5rh4WGAQHh4HSFvZIBAdpMJKx1ngEDSYeWITmqAQDjW3VWPaoBABbzNH55qgECeA+vcKG+AQCA/cXjwcYBAcz24Qyt3gECY3L9frH2AQCmMeIoof4BAwDy8262BgEAGuiRj1ImAQD5mgan8ioBA59klWvqMgEADcDba9o6AQCx+su8ej4BAEkeyUj2SgEAoWcjSUJOAQL3/GDbBlIBAShPsox2XgEDEIba2k5qAQBhyaoPMnIBAUvb1LsudgEBi+sy8GZ+AQMwrwPrDpIBAxsG/O3ulgEAE+YdWN6aAQOZoDZcmqYBA8vL8CYepgEDuPOLbjayAQLmVvCkTr4BAlflPpKqvgEBPmnrvbrCAQOLosFGUsoBAFJbp3AW8gEDcUAKTwLyAQN1E8hl8vYBAoEpt2zK+gECTO6OLqr+AQENPZSP9v4BAtJMnblLBgEDQxdvensKAQB4OWjFXw4BAIlvqRMvEgECU8yScBsaAQL6vqFOpx4BAi0c4zWPIgEB5dkU4K8mAQGWeBEpTyYBAcm0ILdHJgEBCmjz5pcqAQLJLULzXyoBA4OTVEAjPgEA0g3aVqs+AQCCxb7Es0YBArjWyQkzRgEB45ZEfYtGAQMJ6AtPX0YBAz7c7sgDUgEDln5uleNWAQFLbh/gv1oBAQ56rjF7WgECq7PxGStmAQCbtcFVh2oBA6KmWDE3bgEDxKeDBROGAQDyqPVc/5oBAUTMLLPfogEDivXkiQ+mAQKJ5a9OS6oBAKtGG7znugEA20NWFTO+AQNRNqBhR8IBA7Nqfru/xgEAm7ptVPvOAQHzdmeYH+YBAUHBwukP7gEBaQAmhP/+AQAUt51lAB4FAO7mbd/MKgUBEmwToOg6BQKT/8Fo+D4FA/LIroeQPgUDQIlOgOxCBQCNnouM9EoFAlJfO1NkSgUACeTKI0hWBQI8siNVBF4FAxmV8TJcagUBgQ7fOpRqBQPCtEF6BG4FApAychTUfgUC4okRFsR+BQBSEBY/cH4FAok1wjvMhgUA//ScPoiSBQBzOD/c1J4FAPHg4EOEpgUCeV7S6diqBQPg5siXnLoFAfCKY8C4vgUC99KC2vDGBQAKV3OZ0MoFAHCW+AL8ygUDyScJHxzeBQFmPMtt6OoFAPnCUC5w8gUA/huNMKT+BQEFvh7SSQYFAcjQyTcxBgUBSPoUj6UGBQE5vgydaR4FAqNWsasJOgUD2ZvElY0+BQCjxRui6V4FA7LiW64dYgUBeuFTH4lmBQLyUVuDMWoFAKasjdExjgUD+EktabGOBQFCPeCDSbIFAbdJIethtgUDb1fqD3HGBQAgYHMzhcoFAMPMhzlZzgUABac0HwnSBQDCJCB1ud4FAXoikEoJ4gUCKgFzGHHqBQK494uGyeoFAh5AobYt9gUAWcR6iYn+BQDjRc8GggoFAcjXqEUmIgUAq6Z9GZYqBQL740SwFjYFAhPOqX1+OgUCX9t76Do+BQFIf1nJVj4FATHstcLOPgUAqSYeXO5GBQNdBaIHvkYFASmxwZjiSgUB6KXdbjJOBQIOzcsJVl4FA3LCvIrWagUA4ZG4enZyBQNOeLrhHn4FAIotsVF2fgUCL9kyk5aGBQOJ284jeooFAGBOWwaSkgUCAIV6ru6aBQFJ1blVUp4FAHNNX7myogUB2feMXEqqBQOpxaXX9roFAWF1bU0qvgUAC83Sqa7CBQM7T6932sYFACQaxFLm0gUCzuVPlCreBQJgl4CAdt4FAtodkBEy3gUA2uZSB472BQEo7vxwAyoFAsOgEn7HMgUDUf0zmlc2BQGyIrSr7zYFA9uqMQ/jRgUCU8vJ6EdKBQEhdl/N904FACDCtifzVgUBw9isXGtqBQPCt0cwh3oFA4h9I2LHygUAlcQLJBviBQEWi9Tzs+YFAfdO/U7L9gUBydcsT8P2BQI4Ny2QjAYJAx5gHuuABgkB4FF/y9QGCQLAtXm4DCYJA4N5/lz4TgkCalq402BiCQHV/5B5EG4JATBVO2GYegkB4+N5c1SCCQLr2lnnRKIJAGmmWZKQwgkA4u2OC1zCCQNo2JzwlO4JANjaQ6CA/gkC0eUpe/EGCQMYhgo+xQ4JAKszGt3NQgkBus0nFRVGCQE+sqtUFWoJAnEwxLkhdgkA+Xsvb1l6CQLkWHQCnX4JAAkomJzRigkCBQmuomWOCQOw9jA43ZoJAI9O59J5ngkDFyba4bXKCQPhHzEadc4JAtCDA92p0gkATP357SXWCQHw0nV9ydoJAyUCCJ9R2gkDOLlimrneCQOxA9wqkfYJAq88jlnR+gkC2XlFyn3+CQKWeZDRDiYJAGwIDqBWKgkDcBkjcoouCQH4qONYsj4JAeEF3O7OPgkCsXc3lQ5GCQJKn4ns8mYJAlLqj7VSZgkA2w+Sqf5mCQNbk+mHUmoJAJFkz9A+egkAO8YxNDqGCQIFDyEQ7oYJAQ1qdVcqigkDAosUzDamCQJosjFEyqYJAJedfr0ipgkB6+G5jB7GCQL9W7jEZw4JA3+nkuevFgkBuZemR3MaCQMmXwgdbyYJAEnEG1/HJgkB/+eZt9s2CQHo+6d51z4JAdsTGmXzUgkCYeKGFTNmCQCwJG0h+2oJA1TaTzt7agkDGjRykr9yCQDBPsUuC3oJALJDFBIDigkCRZsIMZOSCQA6fsaCh64JAMy7w5An1gkBowGYfrPmCQBCW40TX+oJAFqd+rOIBg0DK/TLa5AWDQMrGfODYCYNApiK6iXsKg0D6VQ+dfQ6DQByPadU9D4NA+u0sUXkRg0Ci/7MiehmDQDSy69pUIYNAzHTC3HIhg0Da/Wf5iSGDQCLV5dFxKYNAJwlbPPApg0BgkUtk8y2DQEOjzxh/MINAtJmLNmoxg0AeC4qFtjWDQNhDECbwNoNA+Edrphs5g0BRzdTwPTmDQLLEfaASQYNA5i9PViRKg0DSWCl+j1SDQKCSdMqdVYNAdmlwnPteg0D/kKA20GiDQKXmiffwa4NA5HZWsflxg0DxJeVfxIGDQPUnL0fggYNAJc7guEiDg0BWs7XYx4WDQOFxSES9iYNAREFbS8aNg0DcHCXFba+DQKJXXEQSsoNAdONcRXK0g0BYGgutFbaDQFoTotMOuoNAyyoarjG6g0DGgx+BKr2DQHpvVxsUvoNAzPkVsde/g0DNTecVgcKDQP6FEVzNx4NA9ibdwcvcg0B+S9v0Ud6DQFoeHRZ334NA+n2hsc7kg0Ca9eiXiuaDQAJMplmC54NAscbMPkvug0CwPU83wO+DQIBIBtKV+INABpYP1+MUhEDkJKW8eRWEQPADs4M9GoRAvFYE9LsahED92oTFajqEQNCeLXBvO4RAWmVSQtRIhEC0TkQYmleEQOnrOzd2YoRACl+0Lc5lhEBRY0IeAGmEQFw1uzv/cIRAcPYT4bd1hEBElgzkyXeEQMTdsZH1eIRAMmb5/Ll5hEC8a893Y3qEQMYN8kF4eoRAln/ZmBB9hEDWgSe5Jn2EQIEA+Ou7f4RA8O1cL9N/hEA0iGTGHIWEQEwQetDIh4RAQgvOezCNhEAGd2BJyJWEQEjS4pZxooRAB0m8czvChEA0VAfRFs2EQIOLBmVHzoRAJgTIMsjPhEBWo3RMH9OEQGsaceeM1oRAs4XH5GnZhECQoyjQk9qEQKCaSCYD3oRAMIAcEWrhhECbIlAgA+aEQE6FVwJi6YRA1UyCvXrphEBPIK/ReOqEQE4hvxAk7YRAuf082dHvhECkIv63NfGEQA8e2ftj8YRAJ/QaM4PyhEBuxx5AffaEQNNNhQLe94RAboJftzX5hEA2QmA5WfmEQFqRpj6J+oRAMNDCyu/8hEDk1Rg8NP2EQLYanLnk/4RAfrN/MVkBhUAIN5U23RWFQPQLoFP3FoVA/nO433gXhUAsSNeqjRqFQGKdSx2qGoVAKZyhIvoahUA7+TQi3h2FQOTSy8IEMYVAAyvam6A2hUAEUnFsizqFQORsEm6hVoVAM+ZWZKBhhUDyhh+C3WGFQFlsEjziZYVArsHQVk5mhUDU6KpOoGmFQIKx95znaYVANE4GjUpqhUCocVKHmHGFQDKup8qxcoVAuX0+GbVzhUC+IB8ttHaFQHzG97OWeYVAIuVaa0l6hUBE+mcSj4GFQDRL4mOvooVASgDyGUGuhUBn8YlHQ7KFQA0iYz9HtoVA9rcl20i6hUCQX3I6wM2FQPbuwS2u4oVA8N9IHgzmhUBceg+Er+aFQFxYt7n06IVANPl1Lq/qhUBTlebJSxGGQNVkyTvQGoZAQsxPSgt4hkATaep0LXmGQABrzGwnuYZAOJ1P9/a6hkDj8InDIcGGQDSQ3JbJxoZA7+PzWc/IhkCcov3Yy8qGQL/arXPNzIZAzCkVIdDOhkBYDh8cOOWGQLoglmAy/4ZA+tlFoDYDh0Cgsqv1OAeHQORtFQaFEIdArIthCi0Th0CS4CXJLxeHQChKeWE1G4dAg/MhjzQfh0AyvyA/kSmHQCjdFR6RMYdA2FVVzTo5h0BcfZGtiTmHQMwfGhNTPodAbFA+VlxBh0DWiO8IjEGHQEg5Zq/dUodA5N5YQjVnh0AIsteCF2uHQK/S1W4ec4dApNBVK8B/h0DczJGKapmHQOhJQY7jn4dAipqnbMexh0AQUciux7mHQLKq1u2NuodA4q1KJrPBh0DoI39IvMmHQHBatT+nTohAVr59aqpSiECvgytCqVaIQK6KucmvWohA54VIyyWmiEB2tK4HCLuIQNzpJOhj2YhA + NrgMGZxjYkDibPs7jeFnQMZtNYzMxW5AOBGS194hdUCqEa9//pN1QCbPkTRNUnxAmM+u3GzEfED3FBO3skGBQC+VIYvC+oJAW0Ld0z5ahEDAmaIjBLOFQA== - + - L4rURHuVXkQIzIZEnKMlRt6ZEkXKF6pEs/7hRFSXMUWLSKpEryK3RJiwAUUV8oVEW9plRFubNUeh+r9ETAGcREqNO0RQVmlEeTQoRag/DEUHro5E+HndRCXWpkWiHtRFg3rzRMC2+UWEnYxENdRZRI9hekUsNd5E2CJvRHx8j0SPPc5E+BpgRI7YE0VixtdERh2/RPGqvURnVF9EUvq8RHmQU0UyfFVElrAmR67uEkVZ625ETvrLRNA8l0Smk2xG4z69RRgM2ESjdVlFvuv+RCdA0UZXq3REF/+URJLrqkQycGhE1nTiRdf1OkXo0t1EzeUBRX2thERJdWlEsKWSRNxBvERtHJ5EJ7fqRDNxj0Q5QApFl4OBRUwVXERM4PtEkAITRp93DEWE/5ZE1CCIRS3EOkTAsAtFXtauRDYccUQKBpNEmoq9RAYDpESydxVFlnVyRG9QPkUsDadEwULzRLblEkVRa4VEYOBBRNLn2USx9DxFd4+RRD0y8kbd0ARFUy43RCfQ9ERkpoVEr7vBRSv8LEbxh6NEyk74RHpZDEXGihZFx7pdR3y9ykR9sahE2u2dRDGiHEUtcoZGkGlPREnuEkZz//FEO5hBRJ1zoUTQthlGnlizRDA0u0QFouhEXWacRD5fH0VPvkZEgmBeRAKzi0QRca5E7eWwRM5knESvVKFFlXfwRDFdakRfExBF9eb3RZAzD0Xh4/JEqn5bRGLibUUW1oFEHqy/RFnAh0ROl5xFHgg5RXDYDUYa45FEFSCJRGFljkTdQs5E3znERBPyx0QR64NE/uE+RJwXP0RXvIhECfNbRUwJ1USdH1RET055RMEj9kQS3YpGHxe5RNLRzUTEL2VEnbbcRJ8XzERwAi5E7Ek2RHKSkEXr5oFEjNJsRAljjkTjg0tEqmuHRLRNA0Xuo0dE25xkRGaFFEXDukVEH89ERMtwxEQwMIlEAl9+ROJzbkVT5EpFeRHcRJLujUT8G4BE4M/gRDq/lERMHptEaWudRCX/k0TQVLlE7EOcRCHe70TBCglFPLWoRXXftkXJGt1EFiVmRKDl7EQY3rNE0rq/RU71m0TOg0xH/LqxRPhNYkUg/pBERxmDRE0MrkUcRIdFLBfxRUhHZUS+RoxEfCj9RMd59UWU2XZE2sGYRKeoNUQZGohEmleQRP83skQmElhEF1+4RZVri0SasohETj3qRKh1RkQh/7BE9HTpRERRXUUJaJBETxywRAg84kTRwFREcYSeRULjiUSdAYBEUHNeRM5TskREVrdEXGnPRAsgp0SVhVBEtij0RNiapUQq3bNEWmo0RevgEkUpC6NETnWURO41QkWBzAlFdwJYRFnoUkS5WmNEugFjRCJu9kRaCUtEhv+CRBtc1ETpv3dE0V4tRcnwO0QEkUZFc9XKRHCHc0Q8CUFEABrORRMrMUT4L+NEio6YRCYEsUR9YrxFsFd5RKQ7W0SsJNtEwdxcREbngkWrMaFET0KaRUjLA0ZH+1xElJxsRDzVukRCrENFsINWREp3tUXJJa5E8l2JRGyVokTJOWlEx/KDRDGIxkSsnitFkoepREJvD0XNo4ZEnEm0RGbquETzpaVEcTOFRCymAUVvpmBEKSB6RsXgu0QOGSNFwfGZRRdtpkT5+ZhFrZIJRcyPL0XeVkNElZaMRIvbakS8waNEpGA9REl0oUQQ4olEPfXERC1BZEUB8R1Fkd+cROtM1USCtrtEddiZRP0AqUQpQY1EJiqjRDwGrkSBcuBEX93CRF9gnERcHY9E6c1lRStRmUSHanJEdDFORAbZrUWbAglFnBu5RArJg0Q3pHtEfcGpRWdIJEYAHb1F1WXZRqg7fERjF7lEKQYVRQgnAEXiMoZE7zBKRHIiYkSXaNBFFoxERWHkaER5yYREEPGERcOMqEQmrLRE01uNRZnqcURP3qZGfClkREfay0TWQrxEXhwlReQjG0X8fZFE+bSHRCI7UURUhXVFS+6yRDiWOUQmy2ZEY1aQRAX8CUU7LYdE2KDSRPspbES0xotEVlWBRIIkUURPsDdFC8eWRUF9bUTDyKREFqWjRJEKg0U4QnJEYWfvRLv9qkTICgRFzd6GRKSjj0TmVZZGshBYRYG1XURGehZFKTLGRUpLoEW1FYNEh0W6REJzBUjLzs9GGIRvRBRIekVpf7tGPTp0RYYjPURcKdRFwgGJRr1VJEU7aRVF56ETRmSdRkXUwu5EBCucRYTTmETD44hFApFjREKEP0aOkJZEFDzeRFUtlEV637tF0qCgROndlESGLyRF/1EgRfqeTkSyDYxEiKitRHU/TUQpo1hE1yx/RB9Sw0RIHapEHtuORIYnd0RGvphHxMCWROZAjEQ8cBpHv1eIRAKOzUX6ChNGsZipRO18KUWR7JFErv+NRKaifERI6lFF2KmARaqe20RzJ15E4bV2RJ/nkkRg2ktEeO9NRPgnmERgh49E/U2fRRajckYV7tRF8t2ZRAQ/jkTvNSpFs+YpRbQPhEVuaqhEW31UROQONkWYGDlEgj6DRI8JgkX2RFdJb3A/Reo1oUTy2bVHAzlyRDdMQkVl9mJEX3DLRn5TWEid6ydHl1urRb8hwkbqn2pFYIapRUn4i0ZE/9NEXERYRMlYg0Tq98ZEsC3bRJXjUES7F+tE3ZMHR5PjKUbBF2REz9j5RMPnOETIW4lFNniSRFcJQkRR+ORE9EBZRIitYER/gmxEord5RWpUEUZe6pFE/g7sRF0LEUU8uB5F1Wp6RB38EEYR9/lFEGgURUkInUSFNsJEHXubRA4Wt0QhaoVEwOaRRWz3jkS685dEYGW4RP1KrkS456hE5rcQRWr+h0TdcWdFUCP3RV4530R1YmNERffRRAD/0kSUwEZEeZVSRP8Eb0QRBZdE04FaRM8+uERYhwdF5ZWGRFxt6kTXUMFHTdR9RnH340dKvlZGT4SORYfF60S6kBBGspQRRX21ZUScoe1GSaqJRrhIO0XoVbZFqqyeROQgIUWXh21E3kubRA/7jERCvH5EvmYfRcZK+UTvIEtEQ+y9RZ0fPURl67xEbdOOReAuY0RRNNVFIobbRCj+uETkbo5E7nV2RDFmXEfvjAZFxKmlRt7vnkSu+rpFDk8VRdqvQEWO1EREWd+pRGzhw0R5MpJEfesXRXwv6ERm/FREUoq7RfhX90QjprZEzoAsRtXDh0S7nxpFKpRyRFl5UESa82JFMG3HRUUDg0RGrKNEOdFyRNAtlUQQrMNEy06PRFxEh0WsEYpEgNAMRR+ypkTKPMVEnjGOROcZ3ESieXNEU7DsRLSrokYVzc1E6bBnRsv2FEUSjqtEjwzaRAz2mkWWOqpEXXuWRZI2f0QqqNtFp/mcRUBPU0WBGiVEnUiXRPx/ckRcQy5GoT9PREDRp0XZ0ntE+o3AROvOj0QgH4RFNQqNRPFQhkS7IjRFIhGkRHCBikSB24hEsAIyRZA8WkRBRZ1FAXdsRnNM0kSWKlVEqZUbRWNuvkTI/aJEFRHsRyp9QEX2vwZFxnhARQLf50bUaItFVymJRCR0VEUUZa9Gqw5nROh4XEWI3glFThaWRAK1AEUl09tEaQagRJhY9ETdrElFWqk8Rbbam0SPoWlE84EkRXJ8hUSNHZdEgV5hR42LjkQHcjBGbmuARB86TkRGzGdEO/5JRDq2TkQgLoREynccRZQRmEanW7ZEzSoLRTTeSUXwFs9EHe/MRfHZmkRaoKNGt+ZTRBKioER3+5lFo888RciplkSbfnxEJU2pREf7hEQRkMlEEc+oRJPjjER1flpEQjasRIMmkERCKaJE1V55RJs9C0apMNBEbsuBRErPEkV5nIpEB8tcRCkvnERgKtVE2nFYRHt6bkRmNopEgfODRJ0ucERfanhGlpKJRKAK8EbZOJpEqfZYROrtUkTTg7ZGhgRLRcGMG0YOycpEjXNjRB+XLUdIsxBFnM4KRY+3dESEwYlGGtScRTM7YkWA4oVEbZCXRGMNb0SFsDtECgW5RJKzk0RJVWdEps88RJA4lkTte5hELRBURJBxvkXgt5NEBGVURH4mp0TkAYFE3eBIRFNOQUbF1KlE97tXRA9ycESAlCBFZstjRaOQB0WGgZpE5MYdRVzvhUTSERdFxQV1RNMahUQViuhE1YFDRD9KmkTsoUVEVnJrRLaJfUTcR4tFHWmhRBFQj0R867xEL21hROpDlkS9LGRE6cGKRC3zREQU4sNExb1SRG+hXkRu2HdEipk+RZm2jEQxtw5HKPTcRrsNb0QhAVtEyNwaRosnJUVPS8hEpKijRZqUEEWhQ3FE43s2RNOoQkRPGT5FsWGFRskDV0SI13dF8NyFRIz29EW1VO5Gc299REZEjUYSxH5EtSaHRYAIg0WoJTBF116nREQTg0SQ2yJEDddoRP2qO0XdTltEiFacRJFqREXIMlpFVN5vRCe6bUQ1NkxEezhYRF/7W0TEEClGtmycRDzxc0Qi0UhEJIw6RWrEaERto3ZEpj/oRHu9oEQ0bBdFmcATReYMDUXiXnpEpygFRXhUYUT1ZMtFNDV8ROiWqEQXbYdFqk4lRZGQs0RUjL9EQoCVRPftpUSHsY5EhZChSKT/FkdksJlEp26ORG/gXUTecDlFSRo0RVxUsURaORdIgyzHRGjjAUZFMJxE/UbYRLD8p0Qi2bFEMG+fR/0JNUWThKJEzctMRIVXgERBKU5Ecib/RGRipEYPJZBE5PmORLpgCEZlA1tE2+SvRIhdLkVr7cREG7eURGrKD0Xgh3lEBnNLRA3PzUREeWNEF7ltREDOUUaathNF9CpmRHSCjkVIqJ9FoAs9RPh/bkVCRBpFIABbRH5mi0TNJZJEd4oyRC7YO0Q81lVE0uflRprojUQoozxEORZHRkFEmEUwbr5FQWWYRC0GbkTkp0dE5+7lRAZisETuQq5F8u3CRAzXP0SIbYhEYfBiRI2vkkVq1mJEjMKIRDYMQkT6z4dEuxJfRPQBZUTn3jFECaR7RKdUZETwYxRFhZehROdo00TcGGhEnQSmRQVDGkW+QVxEj7qHRDHr2EUFXTBGqbPvRLp4lUVWjGFEIu5jRJERvESuh5hEtANNRNnneEQhe7RETsNERGTxgUT2teJF35eWRPaekUTb889EYFFQRKTGp0SP6BpFyWF1RMQq7EU5roZFeVejRE+XJEU2jb1EvjeOREEeiUQOXHVEcXwCRVfExkQVGoNEbEk7RiddfUSaB6ZEv/6WROdGKkT/+DZEs8MNReOu60QxdbdEeym4RKycTURy31tEDXv/RCj5UUTWDvRE6GrhROoar0SJr0dExvNRRGbrmETowgRHwL5IROyxLUa/r3VE5qTDROQbgkViTeFEjYDcRHN0IkZuDU5EhZZlRDaHWkXHZZtFwB3xRMcyjUQKIUtEHjeERJeHgERElJxENdOlRNAloEQun6FEb5OKRMm6k0TORO9EzSzXRQwAqkSH5CVFJr10RJdIAEYSQhlFhR4YRQho/kTSqGdFKxiARLiY6URySW1E9TWORENLZkS1gjpIWnuMRKs9a0Tb6mdEy9aCRAP+uEd1b09HjiJsRUGvhkSA9YNEyYKCRPWE5EVAnk1GP48hRXBrxESwpkBF1CbJRLQO4ET+YmtEbNbPRZfFTEQaFWRE9xJTRSfc0EQv3kxECdRjRKZliUSTcphFnhB+RHh1CUVc909FVc6DRA26lkQUUmlEt7CJREJ+ikSFSWBEmHp5RWoGKEUkUNREq/qBRD78Z0SE0l9EG1w7SGFWvkfwROxEBZNRR6IXfEXM131GRbwfRaGjg0TfJkdEey+gRTO4gkSEY09EK4qHRAtAZEQtgzhEX3BiRL0ZUEQL/V1E/TmERNClc0TOt1hEoIeERCLmwUaWpc1EAup9RK/4PkbX3I9FzxTTRMP+b0R3X7NGedmCRNcBN0YDxeBEKMaWRGH6MUVouhZFGmEYRdaXsUQiv5VEYwaYRVnIVESfymZFHKO/RGnIUkQj2VFE9c1JRDUkXkRC86ZE5AVkRD6+lUS9D1lE13pURBv0f0T7Z09EwU1HRHWaVEQVbG1E3JXyRDxnl0Vo8i9FNx0qRXW3A0dbvNpEKWbyREr5nkWLUctGfrzNRYZ1YkbidQRFEpOrReSaD0VQEoNE/tB4RBEGdkRKslFFHTM5RNtwmET3D2lE4ZahRFhsnEQNcrZEWxBSR5nVcURze6BEjSSlRswNNERcXVRGAhojRcCIGUYUzwJGStwaRopcrEUOXJlFuW7LROISqkQU4kNF+ArWRM7GXkSb6ctFFyyIRO03B0UJyqNEIuacRAaVSkQh7OtEFh2hRAM810TRITlEJ1BjRHl+skTs/WpEYCBiREWsQ0RNzG1EeDZIR47LTUXFVwdFNof7RBqYl0absNRExj6MRNnZYEZIpMNFagQDRUPzq0WLObFFhtGARPv580R8zZNExAmIRXNdREWc95xEQ1X/RPqRgkR1kgVFKjPHRFIbxkQMf5dEdaA8RNOyQUQUb2lEMHJPRND6ZERopg9FoTCAREFOhkQYejpFwCw8RdLrDkWazVlF8OxpRPczSESVgQ9GASJdRcQyIkXW1UdEHHrwRSTrpkWn7AdFug6MRDyWTUZi7eBFO6LQRK7iekUc+UhEhaXvRLDc3ERpYDBFzcdIRIgTzEXaZUVF7JpiRDXjWUSEupFEYTVcRlTOtUXKKFpEKEXCRbpaU0WemCpF6bRHRYaVXESEp35E4/R4RCZY50TWQD1E + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + - - - - - - vBwHs27BckDlHKLpx8FyQGeJVJdQwnJAXyVf/OTCckBQm8EME8NyQD7uxNo7w3JAdHzEKKTEckBoSrwBxcRyQOT9KtlaxXJAAjU9LXzRckDY/MDfEtJyQIj05KlD0nJA46u/VdHSckCSCx/6e9NyQB4EGxyP33JAgq04RM7fckAg0oYoueByQBQa4jJP4XJAaiZIoP/hckAobZtxUeJyQPVpOhGQ4nJAuNIF2CPjckBzc8jbTeRyQKbkOlpU8HJAMrXR8VXxckD8qMnvyfFyQPY4FqZ+8nJAL911Xc7yckDGTeCAE/NyQD4KGA9683JAPM/pqLfzckBee5mLD/RyQH7ELNSl9HJAUbbX0cH/ckDar4gj0P9yQNpxhcNSAHNA4lk3/GAAc0Du7CmJ+QBzQFSdbAdMAXNApEXhfIsBc0CYqN/5OwJzQAHxp3TPAnNAMk1iDvsDc0D0NALYjgRzQA7NXCelCnNAAn2PNAoSc0CWzrGGJhJzQBBS6bp2EnNAE3haIL0Sc0A8AZGZBxRzQIc3D+5MFHNA6JfDsnsfc0BIiQaPOSBzQIjPzoikIHNA+HCmAzkhc0Am/+ADZSFzQAbcJgzLInNApsMZAg8jc0CG1lSVPCRzQGBkmL/PJHNAq+uf70cxc0DHWJyTjDFzQGHcAu/4MnNAYrSzJxUzc0DHK1tepTNzQNMAK+/4M3NAbtJTETc0c0C8IVWR3DRzQDD9lPe5P3NAB1ecqUFAc0Coj1CD4UBzQPtOUjBaQXNAXS8WynhBc0DQ4ShqJEJzQE0dL/26QnNAPl51TVBDc0AOXaevekRzQCpc3Pf8UHNAMFrDeJtRc0AI9y6MQ1NzQDVEp4KkU3NAiV6cx+RTc0Bq8pfLh1RzQLdWD5T6X3NAaAXBeotgc0Cq3gZgOWNzQEM6rjCSY3NATlj7JrBjc0Dw6bJp0GNzQGNPOr8pbXNARgPk7WZyc0B8VdB2tnRzQC/JJmpMdXNARuObCXmAc0C2FlflpIBzQO4XRJHPgHNASIRpCQ6Bc0D2uMEnXoJzQH7op9mmgnNATBF2lemCc0Cm6mFuAYNzQHS8aNc+g3NAttFEVIeQc0C8EQZzTZJzQMiRf+exknNAgKNkHM6Tc0Cg1xeUY5RzQIkEO6z3lHNAgrOV7IyVc0AuQ7vuuKBzQLzZosLkoHNADGJ+sE2hc0DYZokSsKFzQKxXiYcKonNAfHzcn1qic0CElrOgj6JzQGTWGtmconNAS/wIMsOic0CeRZMYBqVzQMtRsd3FsHNAfBe8iNewc0DWs7G2gLFzQHaGGhxVsnNAZlzVwxCzc0DYm6iHtrNzQJQSBN8OtHNAHLfF2aK0c0DU/f2P+MBzQISyh2XQwnNAdGJ4+CbDc0Ber7nfZsNzQFJ63emRw3NA5pi2AMbDc0CuyjMewM9zQIrbyWLX0XNAOhzes7vSc0B0yCq93dJzQARCp6Qf03NA1m5vwfXTc0AQiQn8S9RzQOXZvmWL1HNAwL9T+uLUc0ByWYG+o+BzQEAySNY44XNAie70rGThc0D2dTcajeFzQDIsuKXn4XNACK/II3ric0Aqf8aXqOJzQCRn6NgP43NA7kdLGaTjc0CWarGC0/FzQJTy7CtA8nNA6H/m5P3yc0AmKRg7nvNzQGCSDjk39HNAWFjZY+QAdEBkloUheQF0QIrH8dGkAXRATY1Kd7cCdECyrqDR5AN0QFgRNTKKEXRAKIEZHy4SdEC/79UlTRN0QOE8MlLlE3RAUODCp3YUdEBAlEGdEBV0QIU8Up5LIHRARpkAgbghdEBnydpw+yJ0QMQrcHtlJHRAJtmDs7skdEC4cKWDVDB0QIaxCdfmMnRATiJIVRwzdEC0+r9ZtzR0QKZSe5HiN3RAVgUtnD09dEDq4OdxVkB0QGBt/R6lQnRAFT7KdylDdEAGFMm/OEN0QEqCwoZ5Q3RATLu5+0lNdECt28Xj0VF0QD3Yt6ujUnRADmaXR2JUdEAAsA1o9lR0QCJIdT2OVXRAwPKkZt1XdEDVZaFJIV10QJ+R0I24YHRAku6o4+RgdEBQ4FF0CGJ0QDY2Ucl6YnRAclmyIOZidEB+oq1ZfGN0QLKvKcERZHRAtOl19k5kdEDQH+UtInB0QF5XCczEcHRALLSbXkFxdECGqYCZOXN0QOtvom+idHRAFNyfzTd1dEApukbjQ4B0QJBtjs/4gHRADXSueU6BdEDJAwHq74F0QC6+icxJgnRACtYxQiaDdEAiqK/SuoN0QF6bt98WkHRAVvtZWm2QdECEStX0+JF0QOSEMa5Vk3RAwbAg7e+fdEComUcwM6B0QPZUbPDRoHRAIHJDNDehdEDrV4yeeqJ0QPx+4mG4onRAWiIuzQ+jdEC8RxNpC7B0QPi3LVbEsHRADNuoSD2ydEBl+7tXb7J0QNqVOA78snRAkljwesu3dECkypaU48B0QM40j3MRwXRA8P70OHfBdECki1rg6sF0QG7CArsnwnRAowqSM0/DdEC+J+g8f8N0QGQl+PAjxHRAbJ14Q7fEdECI6szD/M50QKHGd6LZ0nRACbKiIlHTdECeaWiR4tN0QCnqsDl41HRA7NJ1n83UdECuUxMXuOB0QFIVauAh4XRAdsInyLjhdECKAgObYeJ0QCzLOz2Q43RAkgFYrMPwdEAyvJ/QjfN0QI84kuih/3RA9kUjOaQAdUA8CAeo0QB1QG5oWZFjAXVArGRLbF0CdUDhGhsfmQN1QIwoBLSXEHVA8st4TvkRdUBDi831axJ1QJRIl4gkFHVA2EWl/uUfdUAMk0Rp6yB1QOgsQyqeInVApnbyI+kwdUDiH/VHrTJ1QDz/wvvLNXVAqIx62X1CdUCHcgSD3kJ1QDKeZ1baRXVAOeqKh/BPdUCiZXEwBFB1QOwMqFKCUXVAPue4FExUdUAyoUJ7d1V1QLtq1zD7X3VAXDaoGxBgdUDPRiqyoWB1QKNA18A4YXVAmtccifNhdUAYMOWxh2J1QLB3EdvSYnVA3U7EgmRjdUA8aGV+g2V1QBxTS67rb3VA3DKwOHZydUBXvJYnJnR1QCjtnbqNdHVA+pb/vHqBdUDFUeltroF1QENv5aK7gnVAAszXJeaCdUAKCMYup4N1QJQDEfoShHVAnO4NVJuEdUAGBhUtjpB1QPRqCle6kXVAZtvhdm6SdUCOLsCKp5J1QOcwRZCUoHVAF2LIjbmhdUAkA9etZqJ1QLYx1axJo3VAGS8QCbykdUC/jkPvo6h1QCZ0XPg2uHVAPy0oAzrAdUAtJzgRZMF1QLAhCy/5wXVAAIDVX6XCdUAAqKKvOsN1QOy0zr5/zXVAAGwCNc7TdUB4j6/mD+F1QDraTOwI4nVAwgpACOLidUCUzPfBTO11QAVXRDup8nVAbraVK0kCdkA7xAhS0gJ2QDr/aJjRA3ZAJByZMkwUdkCkXbGaDBZ2QEKJYwV5GHZAKjr7k9EgdkAU3wYOiSJ2QETaK4SQJHZA1vef1EordkAyxSmqHzF2QHxivRBSM3ZAK5/cC540dkA0S10FHUF2QC7LzovIQnZArke4X3pEdkB78n1i/U52QMzJhcXJUHZAoJOwqRNRdkAmsbS5zVR2QCLvunQhYXZAJpJaWN9hdkD441GJ22R2QLccIE1XaHZAMqaL5LBtdkDYoe8oEnR2QI7NeuZAgnZAd1SuJ2qCdkAh9SLGkIN2QHekq9ZnknZApt+oiniTdkDeHCIGu5N2QNYMAafQl3ZAeonsPg6hdkA0wQ4fda92QC3il26YsnZAKsB2XcGydkAenHXnerN2QDKvwI0NtHZAl3YhpLC0dkAT/SIVdcB2QNQK6vzBwHZAagRMQlLBdkDmm0c5JsN2QDCiFkHPznZAdN5Tx/vidkBMqi5UkvN2QFYVSvI0AndAoKDTGmEDd0DoCpaaARJ3QO6TSg8PIndA9OfL53Iid0Dc537SUCN3QKhRR4HoJ3dAvG3BVUItd0BwWDP+njJ3QJUkaWWkM3dAWkXgfw01d0Ay2RW5nUF3QE0nUXqPQ3dAMOgjORtFd0D3E9hSB1B3QIziDc5JUXdAyhK1L5JRd0DBu1636VN3QHJkp6spVXdADaHeEn1fd0AIJTMgDWF3QG5PQUyPYXdA4IJ1N6ljd0AapYX3Jm93QAc687mLb3dAiPWNDIZxd0DNEw4ln3J3QLZGqiIpc3dASx+R+/tzd0AQld49kXR3QBmy1rD5d3dAuW911D99d0AJR6qDVn13QKiQPo9tf3dAHaw8f3mCd0CeDUbYVIN3QLqBshmpkndAcdWGTU+Ud0CkwrpBxKJ3QGIc4Nkvo3dAndj8cJm0d0DqbQc+EsN3QGDDA0ft4HdAUHTZn1Dyd0A8GjnBRv13QIpTFUOgAnhArKYpaeQHeEBWqTUT/Ad4QLNlXuhEDXhAABEyCaISeED+9Bs2ThV4QPE5LLtuInhAkBWoYzsjeECiLFZxiCN4QH40NoXLI3hAMtVxVKUkeEAaXI9CRih4QPPGzf+dLXhAo+XndtQyeECumKPjYTN4QL6PIrsOQnhAkCOdkrhDeEAuY0/IEkR4QNnWhpl6RXhAoQo1yspReEAMJalDlVJ4QLgVfsroUnhAzaXo/IZVeECqERtr+mB4QPvYQMq2YXhADHmA8GVjeEAK8v+56m94QLzOjVbEcXhAEw9KeC10eEBUUerHOXR4QGzRuSqMdHhAODDMbLt0eEBGdjIA0HR4QDgNJNfzdHhA3GzPbvd7eEDqgdfGpYF4QDrgka3/g3hALCZFMpqEeEAhY6ORT4h4QOv7RtcIjHhAKp2bEqqNeEAzAei0mJF4QMDda4LuknhALP9KcwaTeEB4GvLqqJR4QDTQWRJImHhAIDEsk12YeEBK9jvMraF4QDwfRB22pHhArc8IyTyteECaa57n3bd4QCI9jW/NwHhAu+mVJPXBeEAEdaYqF8N4QJyl7VoIxXhAzFhDxR7LeEB0xY9QDtN4QL+XmJck03hAd9UUlrbUeECGtVUz1th4QJI9vxkS23hAGG83qaXieED+X3NBkeh4QD5dmnkB9HhA9ELE+Iz1eEBSaGBDmAV5QBL0p0hAEHlA/G0F4NQTeUCoeaLr/h95QM5WBhRmI3lA1h0Jsb8jeUDgVMLN+CN5QKqCeoSyKHlAGI9EWwwueUC5mKflZjN5QBNtB8GUM3lA8H0lF7YzeUASWBdKj0J5QMyKSkT4QnlAZueby6NDeUBfpPjy+0N5QK5hr+nMVHlAptVv8upgeUD6bY2aQHN5QGd22bfAsnlA00fzxnazeUDot8o5XMN5QFZBfo2803lABmVWqELUeUA8G6Pby9V5QCA3V1Vv4nlAOrFDRCrjeUBSYciQUOR5QM4LkqtP6XlA4tuvkMDyeUDYR8wD/QN6QGmAqkc6BHpAQi7mIPoFekD+/atyZQt6QKGh2NdPE3pA4q3cRgUgekC4ZvdvOyN6QNB0zSRpMHpAALzSUCszekClteeqDDV6QCYOWdkuN3pAk54jAzI7ekCvhC0GNT96QEBbHx54QHpAGAiLrxpFekDcID0zWFB6QDQj0cuGU3pAwgqF2ClVekDHgYW4IVx6QFqzezFlYHpASJnWwChkekAeslfDOGV6QOAm8/BEcHpArAaxDSdzekD89DnKKXd6QJCwz0nUk3pAXYm0Yt2bekBQxHoxHKN6QNZ1ToF4o3pA7GJA3ierekAhXH6HD7N6QHN7urX5s3pAv7jWcgy2ekBIuPOIE7d6QCrpDUsYu3pAym/fKy7DekC77mYjv8N6QBFjmrUZxnpA1tzw1sXLekBdKo9uKM56QIQE6t/M03pAkR8sV//bekD0/wNtPOR6QOIEGPp65HpAsmn3CjfuekCCl8n3GPF6QMkPIwJg8XpAbNxU6Yb0ekC+l0sgfAR7QDBYOYoqDntA/DVvTYsUe0DEZFjQTRV7QI4kqOYfH3tA9QcSsVole0CJQySoKid7QJjdsvtQOXtATRnRAdZAe0CwUzYgYlJ7QJR5FXP9VHtAAKSTtVhye0BJEGpo2Y17QATZ210gkHtAajbnXCOVe0CBsGZwVJ57QDLW47yqo3tA9aaGOnjDe0CksLhQecZ7QAaKwUZ70HtA0Rl8D7PRe0DuKG/4JNJ7QKEKgOwl5HtAjf+5eufwe0ArFImRjPV7QLsSHzWSAXxAbCHYddoBfEAT+RPY+AF8QEg2Po+3AnxAu30DemYEfEBivTjkmQV8QK7KgTVQCXxAPuhU8IsRfEDqHRfY0hF8QI71klcBJHxAkbWsn5IkfEDm33EPsC58QLD5Q2jNQXxAJlMpUiBIfEDWNQ5kYU98QFmAv4LcUXxAJKFQzG5TfEAWpC3pb1R8QCbhPC91W3xAnTvHQw1ifEA8kKFMBnN8QIqjv4nEjXxABOs6IhyTfECrb0PYYJh8QPJkDcF/mHxA6lD+N0mefEBOHW9HtJ58QGHDfMSjo3xAtV8R4xCkfECMUosF/6h8QC/ySYS8snxAhPvNE+2zfEB4titierR8QMixWevzu3xAMTqN/9PCfEA6QiEMhcR8QGCzPr5Lz3xAPo7TUc3VfEDcys8mJdd8QEcZ+aD123xAHrGURljifEDmwgGxEON8QHY88TNs6HxA0oUvZRbyfEDuuCqVVPJ8QKrvobtx8nxAKqfipID0fECUDOOJAgJ9QHALJM5LAn1ARUmokxASfUDwyJUwRhJ9QFxI5f76E31A7MFQJTsifUDUHe9+VSJ9QLw/+Pd3JH1ACMphg6AxfUABytKCRjh9QAxkq0ujPX1AEostvOZCfUAcuGxe/kN9QJQ2WnF8dH1AfBx1/Px+fUAIctpQlY19QOjLIy0mlH1A4Fq04XiUfUC3pFwa7aJ9QBsTaIksw31AohMlE+fEfUDUT4K39NR9QFNJPPHW4n1AJsmv0QPlfUCayI87kfV9QPz86F0o/31A+HJOVjQAfkCysWrSgwJ+QNw6ls8pD35A8jx/zEQQfkB0BpKMMhR+QB6fFkQ5H35AAGqbpCIgfkAPHs5SQy9+QP02Npt6NH5A7KDZZhQ1fkC3NUCRCTt+QPoEBfsQQ35AoKnujKNEfkCGiD2L/Ep+QJLyzcIWS35AUMMgVcNLfkC+QyYiBlN+QA/b4jDZU35ADtPNnjVZfkDMVIpwTnR+QFxpJcJXfH5AyvV5MI99fkAIPyltz4R+QAAf98LWi35AeuyVXsuMfkCQmnGDs5B+QM6pFhthl35ApITZmlmbfkAYp+1BkqR+QKZyxJT2rn5AFirKKK2vfkD4EI+Tl7B+QCosyCZns35A1PWS70+0fkCIqEN0nrR+QEAuSPXMtH5ArlfFE6i5fkDCYHfvAr9+QFdyCaJmw35AQO0ITNPEfkCRRDiqe8h+QI8pJydty35A3H2SvFrTfkAJbHaketN+QGvON88N2X5A/Vg8WWTbfkAKZ2isDup+QDyG2dfV735AFYdeeAXyfkDksJfrKf9+QCqfWAK9BH9A2u/hPUITf0C184gt3Sl/QFY9+oxxT39AIr/qO69Tf0CQSsbJAVV/QJ6wf8y3cX9AIHmtjVp2f0BGrpk5tIF/QKMVo3ymg39AZXxXHM6Ef0Co6ixGFol/QFZaceI5in9AM++W1mORf0DczcDtrZF/QJRa1ERDkn9AWlnpnpeTf0CuJkpPoqB/QO52hTRfoX9AiNsZmlSxf0AEGUIQbrd/QFk5cxGWwH9A/injzMzLf0DMgcM10NN/QFYB65yX1H9AXLAy4ZHWf0DiQz1M8PB/QJ5icRvu839AqLKuj4kBgEDw1RO0SQKAQHDM2Xh5CoBAxL73ZgoLgEDKAg50ew6AQIYpMKzBGIBAuHYYcnAcgECuaFr95SaAQFrxBIC5KYBAUSt2g+spgEDR44cxYzKAQKTnRPGJMoBA3GrwUR03gEBcwgdiPjmAQMD+Wk3JOYBAGllw4JM6gECw9joSdjyAQECyiLTBPIBAcAQUnyQ/gEBa/7whqUKAQJJEpEr3SIBA9LoNVKxLgECveHzp5lCAQOgTLdkTUYBAaftA/aVVgECQWVf4JViAQGwF8TMPWYBA/sLVE6pZgEBrVnPr3FmAQMrBRnTgXYBArD1eLxxhgEB8JVSJw2GAQGIdYoXjYYBAHkGpoHBkgEB0Lt1G5GWAQC1Oc2SiZ4BAlj07IpVqgEDWOD3h8m2AQMAkFaIob4BAClSYzSh3gEC0GZq1S3uAQB0o3IKsfYBA0B3QRSV/gECM8poCr4GAQLR1vVaLgoBAUss9g7uEgED6a0V4LoeAQOphUDsej4BAPuG78zCQgEDOjtgYIJGAQLtf5w7ilIBArvitUv+WgECGfasKH5eAQDiaIyKPl4BAnJHv3MudgEA3a7FbRKOAQPR8wJjApIBABJv3WIClgEBv+rlTraeAQPJnstFwqIBAKqQwOYepgEAO5RU0x6mAQNRp/z3oqYBA9omQSxOvgEAExkiZYbCAQCi/fZvasYBAE27zLpOygEBGq1PyW7OAQDlkX6+AuYBAKtRDsJu6gECq0P2Ner2AQEK3aVVjwIBAmgLRzibBgEAqEvOQUsGAQBph+A2fwoBAKbL2/KbHgEB3SNTJY8iAQA44QMQgyYBAltrke1PJgEAmjex6psqAQJYjs8QHz4BAWAqTbSTRgEDQtZ+BTNGAQEzguP161YBANivuBl/WgECcsjolS9mAQH+TImy92YBAEEfC+2XagEB2EPmUROGAQJ6MBbRX4YBAx0gYIUDmgEDdoZiV9+iAQPPSg29J74BACMEZ2DvzgEBY+G13a/qAQLKdXbE//4BA2joi0MwAgUC0Q5R3PweBQBT8nWuUB4FAClpBwOcKgUC28r9vOg6BQKqhqPI9D4FAj73l9zwQgUCo5I/YaBCBQKVCpZ4LFIFAOJ7e1zcWgUDgKlVLOxeBQEYdZpY1G4FACs34JPUbgUCMAA19NR+BQPBReR6wH4FAYYLi4/MhgUBubvlgnCKBQGTziqGiJIFAEzAJRDUngUDQ3WSYuCeBQF3hZRyaKoFAGdfKcuYtgUBAcpYpMC+BQCynloAtMYFAh0yLf70xgUAz7y6TdDKBQOgucQMZNIFAHPyTEcE5gUDOiqcEKT+BQM79LfiOQYFAWiFlR81BgUD9/raWWUeBQHZjDBwHSoFAy7fy781MgUAHiU09GlKBQARwOIjmWYFADBNpAdltgUDo/TM3g3CBQHaQ5AvdcYFAKm1eOMJ0gUBAbBshb3eBQIaG+lEceoFAdQrCUbp6gUBsPbara3uBQCbHRaAnfIFAHDxcYcp8gUDW36yOYH+BQMwB29VVhoFANvhKY+2JgUAeFe5JaoqBQDQjFuvLjIFAra52cwWNgUDUpj51VY+BQKuzRpfAj4FAGKu5RiGQgUCQTk237JGBQId17kJJk4FAFkb2+faVgUDu3mY2VZeBQE5+OarQl4FA7fmx8Z2cgUCsBmuA8J6BQOIK7OtGn4FAlCl1teahgUC/Ms/go6SBQH/gve1uqIFAuwx0U7GugUCR24aaSq+BQKVPSNWjsoFAxZw4A0q3gUA+I6BY5b2BQNhTQuTqwYFASGI+AfrRgUA81d3bfNOBQHeUGSa904FANhb9KPzVgUDxV3XAq9iBQCCnAf8G2oFAkcgpghnagUBbWJebuOKBQAILTiMi44FABlDzkez5gUCurJjg7/2BQF5rko7nAYJAhCJa5fgFgkCSemHeAgmCQKA6Ux9/EIJADEi4MD0TgkBZc11z2BiCQLwTHWQGHIJAjlhGrtYggkD2oye86SSCQGjNek/RKIJAir7aFQAqgkDGilngHiqCQHIHhtWfKoJA8NHOtnYugkBnc4+3oC6CQOCgAAWkMIJAip4juBAygkBP7zFrejuCQOIpUivbPoJAihhnMkE/gkCcF/DOsT+CQMIIk65IQYJA2FmSPdJBgkAQojuq80GCQNLslEJfQoJASwCvNaxDgkASQk1DPkWCQGOWMEwFRoJA/N9xLRFKgkDoGZYNr02CQJJChXAGToJABn/D7s9OgkB4HPXPPFGCQN0nPywUUoJASeQjg6hTgkAFzDFuNFmCQB4sVBsGWoJAXTkGcdhagkCmJGJCn1uCQM1OI3t1YIJA9859kTRigkCMcBwVOGaCQGmiSeM7aYJA9Cu2mNhqgkBsZlSLeWyCQGCZdwlucoJAQsInHmp0gkCMNNPwB3aCQMrvckxydoJA/nIXoBB6gkD8eR+yc3qCQCYfuOl3foJAP7MD9jSBgkAhWOfexoGCQKJMZtH8gYJAJteTJsmFgkD2/7oC4IaCQHS1yZ6jh4JAaN8hi0OJgkCUbbCfBYqCQCw4IBzOioJAolqZWuWKgkD6pj22Y5CCQNmJnn9DkYJA2RVEVTyZgkCk6bCjDqGCQM6tzdQ6oYJA7JnLQMmigkC0jtizk6OCQB4SlHmsqIJArpKJFQypgkCE/XlaNKmCQD2pekWkr4JA0OrvRgexgkBu7xNV7MWCQEijhK7vyYJARAce5H7agkCYYvPhrtyCQM1gTm2D3oJAj7nEW4XggkDwfS7HBeKCQF6sJf2e54JAkCVlRwn1gkBUeS1+sPmCQCqzzlF//IJA8jB3keEBg0CqfP5n5AWDQMW0ffLTBoNASPCKpXAIg0B4pgQ06QmDQGaAKzylDYNAQLFsYHwOg0C6WYiqeRGDQM89N0ukFYNAYk46Q3oZg0Cn49gKcyGDQL/8vFqLIYNAfjHuv3Apg0C8J4Io7ymDQLz3z6FqMYNABF6S2aE9g0ChX0tvXEiDQFhcx6yPTINAJc3XKWpwg0C82+OIxIGDQMjK7xRKg4NAoK8E9seFg0C0waubwYmDQKIF6gDYiYNA6aNKG8WNg0BkjxBcoZeDQAQwbdo9mYNACuWE5BKyg0Abj9MDFraDQFp9aGIJuoNAajSS0B26g0CcBlY0ebqDQLPIfNYrvYNAtJVM2qy/g0AfKfpR17+DQLL+blKFwoNAr0Y5RB/Fg0Be8Cpay8eDQApc42V7yoNAZElsxsvcg0DFT4ZZUt6DQPvCp75334NAMsXZUyPig0AAImkX0eSDQNROfeBJ7oNAYs0IBJT4g0B4AkfBNP+DQFQUmFu9GoRA5LSWzggbhEAvVQk5sSaEQBh8Iou5PoRAovafU/9ohECKGWz5JWuEQCPq3J/9cIRAGhmIkbd1hEAjYAhsyneEQD6gaLVleIRA0W5Mcvl4hEDO2kw0vXmEQLysrTVdeoRAiJJuZXh6hED+YF9NJn2EQDToh6S8f4RA0Z3eYNV/hEBMzEqbcIKEQFJQlwlzooRAAOKFJvmjhEBk98fzHaWEQOJQHJPLpYRAxMERNNCnhECql30mQqqEQADCLae5qoRAhrqIYgnJhEBZHaUcDs6EQMi0l13Gz4RA4Vw1rSHThEAE3FlqatmEQPQ8RBCk2YRAOLH/IWrhhEBLZ8hxYumEQOC682186YRAxDld+XfqhEAacehqJO2EQPAJdnnS74RAac8zWzbxhECialM3YvGEQP5EFsd/8oRAxGKBzyn1hEBJqMdEf/aEQGr9wqne94RAiYahNDX5hECSlTdCXPmEQHz8e3OA+YRABjVRCYr6hEBQ7OhyNv2EQKqHIhXh/4RAb1WI8i4BhUBadHP5RxSFQOAj/oT6FoVANP+OxnEXhUBuZZCn4heFQNqyIkynGoVAwCJJgPwahUByJvJHQByFQHR2y/dzKIVAeytkQFFBhUDumDssdUqFQLY9YZegYYVAdkOQKd5hhUBeUPzA4GWFQOEYzgFNZoVA7AYwgqBphUAHEaE6TWqFQOvoAy6acYVAFwGrpktyhUC25n7hsHKFQKAUI/Ozc4VAoOEVwrV2hUDKJT1ql3mFQAhDaVFMeoVA1Eu6JmCBhUCEfpX4j4GFQC6LNt6jiIVAxle9H6mahUBdxRD1QK6FQCJ4oqBDsoVA0rg9XEO2hUAU2riT/LiFQE6EyYSs4oVAEv3jhmrkhUCOLptrr+aFQLDVfcAF6YVANH3ntBYzhkDjamtJmTqGQACLyH+9SIZAR7AQD7xdhkDqlcFUsY+GQLYrzw4nuYZAzEu2wczGhkB+xp/yysiGQOBPUSXayoZArBhvtcvMhkD2rDhhys6GQHQNoTKM3YZARYvTE9PghkCOGaTHMv+GQBVdHE+MAodAKOvxdjYDh0C8upGvOQeHQNosaESODodAO04lVi0Th0D7T7pcMReHQO+CQvUyG4dAYKyHj5Eph0CFDJnFkTGHQMgxbLlYNodAz5YM2oc5h0CgHsLPX0GHQAeAlxaNQYdAhgEoXJJGh0Bjuw4bk0qHQBpLKVvdUodAyu4b9eVah0ByGv4WGGuHQAgO59kfc4dApCnuGbSAh0BoWZEFXaWHQLq5u1fHsYdAYTI37se5h0CPGE3ltcGHQEmHATW/yYdAlMsw4a9KiECF4drFpU6IQKotB/GoUohAA4mc0KtWiEAA1VDQoY6IQK6deeoIu4hATpvUKxfDiEA= - - - - - - SxUFRoEKYUVmB5VE/BaLRIhChUTSEoFF6suYRPDD20ScU4tEqPh9RMGadUTK6BNHK7lURKC1Q0TaSUtE3nwGRftFJkVi055EHV4mRJDkjkWyw8xFFO6WRCnYb0SRjfNF7n+LROXoi0X42jtEDdtJRApT5USZJ0BE8Jq0RBb0U0TpDshEgALPRL6wV0SSlKZEFKqvRLrkOkXaFcBEZ42MRBZ/AUVe1gVFfKsjRy6ClUTtVyFFgL68RKX1oUTomHtEAxCHRszttUWgtdBEh54NRendpUSiU+pE8eK8RvBLh0TVwsBERlGeRFY0XUTeGbRFQbcbRWTPd0S0gkFEdNNHRKitiURMnIBELizjRITelUS/DjdFhNGVRO3TqkQx1EpEqTGoRXQzb0S6+a5E9LFlREKrIkZ3z2tE7Y8jRRpxkURBcWBF/whmROInqkSRUuVEfZuURC39ckVMw2xEWFSSRN1wWUSTTjlF2xX+RBvJxkTtdvBE/wcBR3pO1kS6P0NEL8oXRUQsj0U9gj5GOlp8RCprHkWu3KxEEOpTRXfXXUc0G3xE11PSRFtJQ0VRW3hG2JGBRJLXAkZsEIREoxaERIojpUTj+5pEuWseRkZXnkRKj1hEsV71RDzeSkW+SGxEJLljRM4nc0RWNDlEVj+oREd7lEVZt9pEvANuRGYJ10SIZd1Fd2L1RBHDrERld5lE3MeARAGfO0RroGBF6ZWBRN/gbEQXKoVE3fXzRAyQoER/PkpE5/2qRTb/GEXK/RBGn0asROTohUS7NXhEhHwARVIBU0Sk6tZE3XHNRDKnSEQ8hTFEAO5eRL3TQERVmhtF2FsGRTHNlEbb8fhEmCOdRBnWVURnfqxEC+9CRA+2gkWh839E/dGuRGUackSkCwZFSHAZRR1nYEQZj01E3oeBRNYcxkQNEHhED38VRnaUgESHYChFg6o7Rfsva0QRoUdEfYpCRMPFS0RAAyRFusuxRPYNsEQ8WJ9E8LkmRClemUQiRPpElJpPRA7/MkXaeZxFZmyDREXamEXkms5Ey2XNRJ7hgUS1FYVErgvjRL0Gr0Us80JEz2lTR7AbV0UO539EyKgfRUOSikXs0TpFZIfGRTSrrUScd4dE7r3zRCWPb0TsVdNFTkeJRB8vXUQbx4dEFQiiRT2bbEQ3yoRE/KirRIXBwURJYNRE8LWAReTj70SdHgNFYEmURMff1UVBmARFWVzaRDaSs0Ty6WBE7S28RHU7nkTLKE9EeF8oRbiyLEW4FbJEaTfwRMcTk0T0iklEONFQRPV05kSrYlhETazCRC2+akS7zo1EvnL4REMcm0S3s/NEaBF4RPTvAEaM5IhEy5jhRK6aiESG2spE2734RV9imUQ7VvtEqiBXREvzgETR7hlFsLqvREiFvUXu8OVFM3pfRPvfW0SdWkxF7PJRRRusskQW6pBEB6SuRM8nnERr6x1FLiKjRALN2ERxsqpEkjHORDh/RkRAwT5F6K32RMplPUTcwaZELmqsRKNGWkT5GpREjvkcRajhsETUdGtGa17+RK2Pu0WL1oxEbd+SRLC/kkVHyg5F71QgRe2+k0RMb+tEmJmURFbbqEQAob1EVvwaRfVbtkTiP+9FGSGbRMVY4ESGkElEpfc5REwJpUQC0M1EmLxRRI68gURhBltEWPKkRCpIR0Rlbb5E0MRKRAVOiEXEwk9Ezy+TRc/IbkTJ+LpEN0KbRHq3dkTmK2ZE1j5tRNFjtEUDuTZGvnS1RdwcwEZSTB9FkVwIRTGouUVf/QdFKvVyRXunkkTyIotEz2/FRBX/l0bx3mhEd6jdRCoVHEX0tRJFNuJpRHq9A0WUY95E0m8/RO6JI0WvbX1Eow2cRJfLwkQ/o41ETH2rROT8WkSjwzpEtuswRavZUESRQJJFQ4NgREiZw0SB9NBEotmWRHhXZUT2m3dFke5LRHsC9kQjza9ElJhGRF5blUaOY2tFLXmIRH/TckTs2Q1GlbaMRRl6XkQGidBEEsP4R+mLrUZSnAlF7+nZRuIVmkWKA5lFqANiRun7qERrnUtF60IfRvO1VkSQYzBFQoapRTXfSUVB/zZExlutRGfiRUb91pNEBQczRSTqjEQaht9FjBW3RGsB4ERwC9ZEnmnpRIXBUURvFndEFZvPRBkbQkRdC6JEkfxeRPGqqUT0TJ5E6AO0RIAhmEdKxRFHY6NjRWBlGUYrbWlFctZTRFBsgURnVKFFpLwJRRsWhEQ8OTlEqj1XRN3Zn0RvQ8pEXwA+RC6EU0ScZ+NEif5jRHAGUEVr/k5GB0mcRUJfsETBMoBEcsUNRfELLEUt8UVFXdJJRNJZIEV/qodEnZtYRAHw+kS0lFVJswOaRROJEUWJ/rJEonOQR+Z4h0W8S/VGwCRbSDNgJkdxtxtFfeKxRnwoi0UmoiZFa52BRbOXlkbAYl1EOB7+RODJZkSd6IVEFU7xRPUaZERU4uZEa3ymRHi4Kke7lalEy62YRp2fEkWkef5Etr06RSkBwkRebqlEfjbNRLbtxETgj31FQuXZRWd04ETQacxE5m/zRF+mv0QaYGBEQZCTRIWqlEQQ4C9GdorCRS9pFkVBUlVEAAi1RF4ezUSBasxEXKuMRAPg30T9b51FY8ObRGHXuUS8LVRFPN+FRBJScETGGE1EnSPjRY5NykSpX4FEY/O0RHvW+0S8StVEYbfNRBoBAUURBnRE/BqKRKtSlET+84FEYBVgRKjI2EQqMt5HbnprRvpD10e6wBRGyj/cReomEEV8OS9GkenRRktgvkYVOqpERyxJRYzjqkWZBiVFaH3pRLCEnUSVAbtE1FZsRD6fAkW4Tl5FqQ+TROzbfEWpt39EQc3TRJHCBkXRB5tEObXsRYZgi0WaV2dEovxWRLXSTkfof/xEqT6fRltoY0QfLohFP925RMeWjET6+4VE51zLRPxfxkSc1tNE4IpWRO8HAUaV68tEjlpvRAVIWUbLBYJE6bckRTQ7akS9toVEHEqORcfgg0Tf7TpFvqhMRCsMlkREncdECYoeRbATnUSfJoVEPUBBRFvhpETD16ZEH2i4RDh0DkU+jYBEyRiBRD36t0bRZ8tEvrppRuOrH0XUssREavQIRQxYwkVJZopERGM4RECdj0X3LRdFPbKYRP5FckQGwclFUnBsRPHBf0TRe7ZE/rsARjLQhES7b/JEFEFrREnku0QPjOtF9wwtRU4qp0Tm/J9EQ8g9RQPYd0RspWVFlyZORMuE+UQNl6RE933FRcJNEEYcrw5FISh3RDcQm0RiDZlExPk8RAA+YESfxvVEdATlR3lFDUUeVbhEnkQYRRb910YVoItFJLOVRCRkTUWgkMBGVRI/RGlShEUGZupEXXFfRF/POUTwjIFE/JdcRGdPAEXRd5JETtBbRG9cekRQsgRFC/81RYX9OEXpm3BFckZfRMHvUUSVQvlEmZhER6MkD0YAyaBEnByIRMlvNEVz4S9EVJBrRiZBZUSk7rZEQpUkRWtAikRXG9BELE93RbKGlkR1uXhF6TUBRTwApEbw66NFWM0bRYcCukSrbG9EcbGBREdAmkTsad5EOp3CRPlajkUzYbZEvGe9RP/0bURhl6xEjrpVRJuUbURymYpETVhQRD4Up0baHeRGU2OVRHgwTkRcncBEqqCcRrl3akUVdUVEs27zRZLsJEXm4RZH/ZwgRU14XkTOAZ5GQXS0RXsSH0Xi7IxEaiGFRQqha0Tj5MtEs9CBRDrljkRgL2tEOPrCRMJQSURb6V5ELUCHRENQMEQHNmtFcTykRADK5ETnD5hEsI9cRMb2UkRYx39Ep0hHRoLMeERcHHZELtcfRXjiHkXBpG1FzLAzRR9ylkQO8VlEXJHnRGLqq0TjEFpElvuDRHFkgkR9qYhESuKERMO/qETCHZlFNzSORD+QzERWF35E/3Q6RDOCokSC0E1EVA5CRKqdb0RdU0FFcptSRwxeyUQ/zy9HbBBhRJRXn0a2DcVEOH6ZRbNApEWIpK5ECZtbROT8IkX3E25GB7HiRGj9YEVN8LxFQa+3RI/qs0bgiBlGtB+jROPfWkUye1hFa/iRRWSSWURMrt5EpuaMRIFWpERXI0pFB2+CRB6rfkSZVElFKYGoRC2TvkRqILVEBIB0RKqwSUSFqypGPhaDRHEij0Qm7cxEAAptRIGOnkSGwn1E3NSYRIFvIUT3F75En56ERL7QxEQ27H1EaWPYREr3P0QRnFZEICXSRb2aT0U5OMtEr94yRb0rVkSy81tEu06BRHtmlkSkAJFEEBSCRAnyjUhZbLpGysGgRCJOpET+3QFFYoH+R6INtUWKBq5Ehg+9RHtgiUez+CdFkE3+RG/5UEaZxNlEB25lRGnlokUA37xEbJJsRLyUsUS8Ab1EFnDCRKNLjUSAlmJGsOlIRITnhUVuOy9EYr1ARIjqQEWuX4NF0xJgRZ75kkQF6HFEwVyARIqRbUQEUKdEIfLPRMF12kbnMt9EHnoCRpqSjkQYCXtF9dKRRWy+lETOo3JECvqERMKyB0Wn/mhEM90rRTPPm0WUtZBEzMZMRFZ90kUONUBErDhMRKipGEUVcIVEDO+iRM4ZOkTOU5xEwo0PRvN3g0QlnhRFVgrjRZUx8UXGLHFFT9d5RD2reUTrRm5EGkmjRM9u3kTbSO5E+8OFRCm8c0Tggb9EjB+wRAj+DkYsd49EKW+YRKihgEQadmNEcPxsRLx5PkXZn3FECZ+SRWRbLkSbYUlFTNIyRVfSi0T/4c5E1NBERGvKS0Yy03xEQNjpRP76SkWlll9EhqXgRJ+g9UQYPTNEX35HRAM2nETlkDlE6pGeRDazWURHpYVEtlrRRp0AYEYMly5FXZtnRO1hqURWqD9Ex1ujRPG/S0avmYZEA6hyRSiKXERbXRNFRzKTRMdha0TEop5E+PZnRHbMi0STeIFEHXuARA7JY0ShVW5EpCBcRMbjhESIFl5E/BRURHyMdkT/t5NE0rycRMK9uUQ55GJEqV+KRMN4X0RerEhE5/STRIq+ZUSaQj9ELsCERE2m0USJ2e5ENPjMRCcSpkQDUZtEEwgVRlptW0UUewxFBgR2REUJh0TfAzlGLGaiRJ7VxUTsFNBFcOzWRJfHAUWCV5JEG8JuRDbTC0V0upBEiZWVRFuhbkSoG5dEBTXwR5fEgEQKzoVEBXdrREwEbkRC+0dHHB3rRiUk1kUXWx5GtoDyRPfUb0RjHTpEBQT+RHkpUUWoC4pE0Aj0RMuUsUU/Co5FSa6IRbj3gEQnqQdFaNheRLhJpESFX4VEINhXREw8CkUi05xEm9ZtRRJJhUSQf2dEG/l1RLsHhUR8CXFE9ipiRN+7+UfsQW1EmhRoR3aaD0fTRktF12cIRomG40TsA1ZFHTaERExSX0TRYoJEHTVvRFYTj0ZN471EMfkrRtvOYkWU9MxEnvnnRKqZaETI9llEsZx7Ro09JUbQ2dtEGO0NRYAeUUQztTBFDF5rRDbNK0VzPhFFoW9NRIc34UTYVlNE+e0DRcXpeEQHvl9FUyzuRDIBTkQkWXBEnO67RIoqhUTQm6JEUUKaRLnfQETD4FBED0nORfhpXUSuYoBFa/BwRXiGAkf74WJE5LxGRX08m0QY4zZFiJzORo5GUUbwx4FFG4ybRe1svESMHTlFH+tLRHynOEXygl5EJ6SLRFksYUSguFRENvVtRMOnRUTEe2hE6TOFRF9JE0f+CJVE4Z6GRhoROUbBKc9Ed7RzRrWjf0ZAxjdGEeWqRSPipUWa8YdFEZoCRXr670QJ/RRFBocfRdFCekQQaaNE8+GxRUXBoUUouMJEkZ++RKmNV0RAZdNERGk/RczbiUR2LyVF47ixROL/m0TNyk5ETu9hRMupb0TsMg1Hqg6aRfN+rESI74VERg91Rv54fkRzZC1GsHpMRPVJtEV/1shETNtBRTZKkUXSxJpEkvVBRAawi0TLpTVEcFRBRPqkxEX6xapFF0CDRKOVb0TQvgdF9MWJRKAlqEQHQ6tE5eJGRM70Z0RLSVREfQ52RGBecEQiUuxEdaCaRAWueEWTRdxEg4iPRJV1lkQY5YVEZ6lBRNxt3UWvjHBEJntlRRqlrUSfj09EFdqLRWlgg0VweXNEIdodRtJCxkXVldtEUzs4RZG2lkTIsAhFp4sCRfz5bkSRjIFFm+5+RAzW1EVGRfJEJjBvRBhyaERdPzhGyevDRYcU4UVXlhpF4D1jRJEiI0Z9fOpFdlQYRfb+ZURE7/REiyWBRA== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - YKA/HG/BckAnClleycFyQIgHzFFMwnJA119HzeXCckCtCrucDsNyQNF4PLU7w3JABpJehsLEckDkWjfaWcVyQJ5Qj3QU0XJA7cR8GNXRckBqwDdpQ9JyQN7EHRnR0nJAeEYgY2jTckBAEptKedNyQAck0ITL03JAIT/0LM/fckBulfusuOByQBjgLdLl4HJAZg5DNk/hckBM/LYhUeJyQEXEB26Q4nJAmJWnt1PwckCeMVCJMfFyQG4XsbVR8XJAiPoSBcvxckDfz3IDfvJyQECX/nSc8nJAptJx77LzckDoC9UcovRyQOIMtc3B/3JAFJxX2VMAc0CmqXcZZgBzQG5/faf1AHNADpIyAjoCc0BVMWIG0AJzQGKHju9jA3NAgHwe2/oDc0BX/BYapApzQIio71YKEnNAaP4j7LwSc0DKG9TiYhNzQJKu9fv3E3NAE2lJmAUUc0Bu4cf4TBRzQPPC3pB5H3NAGD4O9Awgc0BIvl6zoiBzQBrrgiY5IXNArBV+pmMhc0CxdYvx5CFzQKO18SN5InNAJgLRr8cic0Cg5B8KDiNzQJNlLAs8JHNA0BD3084kc0B/wjJLvDBzQEr9UGhHMXNAtmfzUdAxc0CK4NHrzzJzQIhkzIn9MnNAzsCLuAkzc0BS8bV61TNzQPzDvyA2NHNAUHeWD9o0c0AKD9VAuD9zQFrN704lQHNAnFHzQVJAc0B269/npUBzQKH6DvV3QXNA36AjR7xCc0DkwHbDeURzQCQz2fuaUXNA+ZPTik9Sc0BrhOWNQlNzQOridLmjU3NAIP/GGntUc0C4aXqYhVRzQHBcXH76X3NAZ/QV341gc0DGSSkihWFzQJq0o6UdYnNAyK/hIDpjc0AkMOH+y2NzQPi/XxcrbXNArCf94Nxxc0Du4sS+UnJzQLgEDBlocnNAra32ZiJ0c0B0flNXtXRzQFIyB55LdXNA4guez3iAc0A9I0oNpoBzQCzHytsMgXNA41TXnl2Cc0AIMx9vpYJzQN6RjtfjgnNAeItp5f+Cc0CXJmR1h5BzQNxVNCeOkXNAxyVaNU2Sc0BW3sr9sJJzQNj/biNkk3NAA8HgRmOUc0AQnvH99pRzQHD+HGaLlXNAENHYSrigc0CeF4BK4qBzQNX0341LoXNAaLcXF7Khc0BWTnfVWqJzQLbcOcuOonNAxe7VP7uic0AWBpKrBKVzQFB+3UozsXNAr9ZI04Gxc0CoV00ccbJzQOEEwjbHsnNAIbqlTw+zc0AUBoRwtrNzQNQzbzgOtHNAtDZuZvrAc0CWS+nVz8JzQEJ0oeMlw3NAtx8IW5PDc0AuFqJO2tFzQJxRNju60nNAkjMin9nSc0Bw2fE899NzQBGskzrj1HNAWjXmeqLgc0B27WJmOOFzQGb0EJ1k4XNAz+p0T43hc0AU07PN4uFzQIY/3Eh54nNARO7UNRLjc0Ap1zq8peNzQNnSTWvx5HNAuqY0/2jyc0DeKSm6/vJzQIDb8rM39HNA7ON86I/0c0A/qAB34wB0QCrEIm14AXRAPKE7+7kCdEBuCmov4wN0QBiDh2sGEXRA4m3jH4gRdECKmfPETBN0QPb21zXhE3RAy/PNtnYUdEDeMwiKSSB0QBJ9LB+WIHRA4aYWhLghdEBCsz9EVDB0QKQ4z3W9MnRA+hGZoOMydECUj4mTGzN0QIzxgeBNNXRAstB/yuA3dECmW49VOT10QHkxYJdUQHRAQO/j8yZBdEAUDp2dyUF0QCiGDfVbQnRAwswPeylDdEBXRLOAeEN0QHARe/xnT3RAfF24jqJSdEAC2mprOFN0QMI6K2pgVHRAYKpoLfVUdEBxoX55i1V0QGqSvubdV3RA/penVyJddECufU2WuGB0QL7GCHROYXRAtvajYghidEDseGHvi2J0QEyfQ3zkYnRAnvEoIA9kdEB5mSzzTWR0QB6EbggicHRAcqm2BspwdED8mwdIQXF0QN856QzNcXRAmLrSWBVydEBLeN5dH3N0QErsWnI5c3RA/rylo6B0dEC/LGT4N3V0QBCr+lFDgHRA6jIIM/mAdECaHT1qToF0QJ56xpftgXRAITmAWySCdEDDIsuoSoJ0QHRQ0NTOgnRAaRMvLiaDdEBq4FqcFZB0QDrd78qOknRANC9e7L6SdECkXeRMUZN0QAQX+n3vn3RAT0REZySgdEDekywZ0KB0QG+xWbQ4oXRAnV+Y1kOidEB4hSGIeqJ0QJCMiTO5onRA+7CXHQ+jdEBvnrRr+a90QOrYJ/7DsHRAcvoaDnCydECWviqny7J0QDkYIif9snRAcI7+lMe3dEAOTuqMUsB0QHNFHgHkwHRAejAwgPrAdEByEc/+eMF0QAg8lpFPw3RAA8SnPH/DdEBYuFpdecR0QG/vhrK4xHRATHlTSv3OdED7ri9g4dN0QL5dTv111HRALdIWwc7UdECMIxvw9N90QHwwOtu34HRAp2IIvyXhdEB2fWWlt+F0QCKLDqHl4XRAvIF7l5DjdEDu8Pk6TuV0QAu/+Uq/8HRAzBn7UYzzdEAvBUcgogB1QOzESQLRAHVAHhkCX2UBdUCnCabQXAJ1QOXXT+umAnVAiL2pdJoDdUDd+F5G+QR1QHhbawCaEHVAklfeOCMUdUDy0EB16yB1QNZe5C6dInVAD+OaTqoydUDqe1AyzTV1QGCR0Tt9QnVAl6fCTPlDdUBKfDnv10d1QG53grHjT3VApkMgZBBQdUDsYdZ9gVF1QFiPGtx3VXVA9S5GaA5gdUDgdng1OGF1QCs6c+3TYnVAkFlGFmdjdUDe+laed3J1QHrs07iMdHVAPs2FzeOAdUACzn3SeIF1QBjManCtgXVAbOkFcOOCdUChwl9lp4N1QOIxefgShHVApIjrwJmEdUBw+5ttaJF1QLzI8iK7kXVACzOzuW2SdUDv2vmGPJN1QFdP1Z/Pk3VAvKyVS5OgdUBc6Mdbt6F1QH2cFLdIo3VAzMONKqOodUC+4rVserN1QBLKxNLOwHVAImnxo/jBdUBY+MW4pcJ1QAeavDXO03VAGki3AeTfdUDtkFrsDeF1QNUXQD0H4nVAf/OicEztdUAsyM75ofJ1QFtSrg8b+HVAvlPIgEgCdkD0XCtpvwJ2QJEXIBfRA3ZAjnFfu0sUdkDi9/gvDRZ2QHYApCKIInZAx21XN5AkdkAI6IsCSyt2QIQjz+cfMXZA3NFtAVIzdkBNgGLMmzR2QExnVIDhQHZAUhro0RxBdkBAdZ/3yEJ2QGT9uEZ5RHZAuoNZZftOdkD6Z+UZylB2QIhydGgRUXZA3MX9g4dUdkDlRwc4zVR2QMAYTIzgYXZABNB9dtpkdkAgROfzVmh2QK6Ooj8SdHZA+rxOKD+CdkAFUkWDaIJ2QO4C6mXkgnZAxH0y1WaDdkDyWxwvkoN2QGLxUWoYk3ZAHvFtX7uTdkCYBjTFwrJ2QPL4TB4NtHZAIC8TRLC0dkA2eBt/w8B2QPCpgDocxHZAijF7ic/OdkCLTEdZ9OF2QPg1P1qQ83ZA8Pb7NjMCd0AFWnZbFwN3QAL+ijkBEndAatagRgUTd0AGxst3DiJ3QFKD++nPIndA7LUvNr4kd0BDQqxl6Sd3QHh/KOtCLXdAdB6et5wyd0CA4nsqDTV3QESpgBudQXdANzmuSpBDd0AQpeyEG0V3QA6a7gAHUHdAUpb2P0pRd0BOS7sZklF3QMonlbzsUndAHYhheulTd0BqHlnnKVV3QJ6rrk7tWndA7kI2lHxfd0ANol7TE2B3QIzbbEmPYXdABunD96hjd0BA/kuYJm93QFvki1r0b3dA2F5dRYBxd0Blzyxvn3J3QDOp1nT8c3dAiB51+5B0d0DRLV2s+Xd3QMNR60pUfXdAUpcb0Wl/d0AkE2+NTYF3QDEcXFB2gndAxjZ6zgiSd0CRL0iBrJJ3QLXHLYuOoXdAdItgxriid0CUlV0jnLR3QD6X6wHh0HdA6GxChPvSd0CXLyIlS9N3QIvFdaSL1ndA3n6uXO3wd0C0KHi5UfJ3QILhD99y93dAQuySRX34d0AT7GpSRv13QKBdypv3AXhA9lccRaACeECo1XikFQN4QJKuqWqYA3hAEGdTcucHeEBswRry/gd4QMOg9PlBDXhAhReCcloNeEBk0POeThV4QE93HGdsInhADG+O3YsjeEBC9lLmPih4QJpzSjN7MnhA9vsFogxCeECvAtW3EUR4QLVtxvV5RXhA5QnnXcpReEAoKSH36FJ4QHAIj7SHVXhAlO4tmAJfeECipW0r+mB4QK97j2e2YXhAiGXOXitieEBOztpOBGN4QDTeCAtmY3hASKwArupveEDsguEyIXB4QFBQpncadHhA3Uz/ZTd0eEAi8HnDT3R4QNok1KpndHhAauIMqot0eEDW32tQu3R4QML7ZTvQdHhAfrdFMPJ0eEACPUll93t4QPtmCD2lgXhAerXGC9GBeEDGLmbx/oN4QBBQbaiZhHhAD7FZiE+IeEA+MgbGBYx4QK5rJISpjXhAi1CJEpeReEAc2c9xBJN4QJbcoyWnlHhAgMeu4V6YeEBGiOWcoJ14QDJiCmurpHhA8DsTvjqteECw7sYf4Ld4QKRP2qvMwHhA7PCN+BbDeEDY3+wJCcV4QJSnYH8ey3hAtPPG8QzTeECHCizeI9N4QHAIm7+41HhAKgIlt9fYeEDC4sHIE9t4QIaDI1eg4nhAgiTplxrjeEDaNVoB/Od4QC4CpKeP6HhAH5GG9VjteEDwP8kPAvR4QIAkAWmM9XhA/voBiij5eECFqKsdFwB5QJanufpaA3lA5IaJzA0EeUD5WnrxmwV5QLUlo9g9EHlADjUYZNQTeUAmn2J13Bt5QDCsMXb9H3lAjobk+/cjeUCCbQC1sih5QAeip78JLnlAKnEj/2kzeUBW38mRuTN5QP5+AKKKQnlAKyyKc/tDeUCI8Qd7y1R5QGjoQOzpYHlA6wKHm9lkeUCQKqaBQ3N5QHRFRfHbgHlA8F5dkhqTeUCoEV1ZeZN5QFPJmg3AsnlA2lN7zVbMeUBgCqFLDtN5QGBGvtBC1HlAuVfEoc3VeUAtWrTLoth5QORqpydO5HlAiuuzkFHpeUAoxwrawvJ5QAQks9YZ83lAfuVTtBn4eUCmAHXq+QN6QABfPi/7BXpAxnB8qI8SekD2rRn9aDB6QH72LHcrM3pAIiBsVgw1ekBvcHdbLTd6QCaB5igyO3pAcm+7KzQ/ekDnav7Rd0B6QNrMcQ7nQ3pApidvpBpFekBgyU0SAkx6QM36mYRXUHpA1c9mxIFTekCE8wnhKFV6QDghG+AhXHpAFgQTXD1eekAEflcA7V96QOUUYXdlYHpAPi/3RClkekBI1A2vi3J6QGpub5Ahc3pAIqYR7ix3ekDiM3UcLnt6QEHy44LOg3pA2maH6diDekDTWE1s1JN6QAQjR4bdm3pAU6vMAx6jekDGLVZkIqt6QJQShCsOs3pArrwQSfazekD26FlhDLZ6QKubIO8Tt3pADGy3gxa7ekBOSJUVv8N6QPG/fcoaxnpAHZYKpcbLekDE2MXLNs56QAo11TCG03pArgZvMszTekD1lYaE0Nt6QNhboez/23pAxhfuf2PhekCs5dFpO+R6QMaaOKI17npAYSLkLBbxekD71kwKcwN7QJC2f03sA3tA8FrP+3oEe0DqyZdJKw57QNMtnyKJFHtAqSuk10wVe0B6NgcOWSV7QNB1UJK8M3tAg5aZZbY4e0DDxT6QUDl7QMID6zSvPntARFyG7dVAe0A+7WTYYlJ7QAzW0sURdHtAknjRxMJ+e0CWAp1uH5B7QIAVK/nokHtAkDkqqSGVe0CGtqsOVJ57QNKXlUiro3tAJjQZ6/6me0BMJ8n1AKt7QN1+Jzx3xntAaCA0yr/Re0DLZ82zJNJ7QJbwc+f943tA0haZACfke0BQ9a5Uq+h7QII1ZuCW8XtAGmwhwUTze0Bw+FShjPV7QMRmesSQ/HtAdBfFNo8BfEAKRkBh2gF8QFLY0W23AnxAQHiPsmYEfECYG8bOmQV8QIETpYEUCHxAzAwWC4sRfEAH/xGI0RF8QByTKLMjGHxArmSdXLUjfEBDXT3ZASR8QDhNlCcVM3xAKmqtfc1BfEBHPxiobFN8QOZH62vXU3xAmWRgxuRWfED4B5e/c1t8QEy9gGhoX3xAcvOKSg5ifECmd/o0KnF8QE4C9v9Eg3xAbGjWlsONfECCDTedHZN8QCas99x2mHxAoFr3s1iZfED+nmoIS558QApZGKb2pHxAmjHSIRenfECR94BM+6h8QKAinsB5snxAXPokjcKyfEC8w/C67LN8QHGlcmh5tHxA3MtY0fW7fEARA9P7hcR8QHSfH/H60nxArIQCoVfifEDuNgJ4EON8QPf/7f9q6HxAAjb029LvfEDGg55PFfJ8QJFjCLRU8nxA3IX/9wACfUBENf/ySgJ9QOomT7//EX1AIA95REQSfUDWGDGf/RN9QGZrxjhTGX1AmaUpdTwifUAmgMPNoTF9QNi4PKpEOH1AFIRMr/9CfUBMZWq3/kN9QE7W6w30a31ADFgYpv1+fUCxtyBfSZN9QPAh3iIllH1Al0jZCTKkfUBaSAd/NrR9QFZHGSSxwn1ALvOSOCzDfUBrq6UA58R9QHLKUF+Wy31Agwm8cvPUfUBiJTqQ1+J9QEEqE+gi431A9CM8tpD1fUBiK2AnNAB+QC+bBJkABX5AQhH12SkPfkBot5f9Oh9+QDCOc7kjIH5AE996KSAvfkBenC5weTR+QPxpR1gVNX5AVeQZGAo7fkAY78JhEEN+QMWjelKjRH5ANr+udhhLfkBGJ7ycxEt+QHoQeIzZU35AmCJ/ipFVfkB1tSt9OFl+QJAj58ETZH5AQunRJaVkfkA0JzwOBGp+QOoH+UBOdH5AlgLYhLV7fkDUoQ9+VHx+QExRMZqgg35AOmK0jmCEfkCl2Opdr4d+QIoufxkjjn5A3kk8uQSUfkDi+Z6Yc5t+QAjrODHQnH5AfU2T7AuefkBRhwyhkaR+QI4RoTdhrH5ADqskvvWufkDuVXgmZa9+QHSs4BFQtH5ANcm9Ip60fkB5MeNOq7l+QMAstVX+vn5ApFCHa2bDfkAyxq2BpcR+QOxDoNHQxH5AykZYcmzLfkBqSOhNW9N+QPSd6nV7035AnA0VT2fbfkCGz9h4Au5+QFrcevKPA39A6J5GF0ITf0BaOW1mKRR/QNpY6nsTFn9ANFWo5Y8ff0BwX+iDRSR/QDzVGEdQNH9ALqbBtgU/f0AYJhvgxkR/QCz4OxLMUH9AnxLGGrFTf0CaLcd3fmN/QJwU+eCLa39ADsyysFNwf0AYWnHlt3F/QDQ0uDe1gX9A1csKwZiDf0D8ZJX9a45/QKRfidlikX9AJXthv6Ggf0AcxEdVYaF/QGquVrCCo39ArLTlVqajf0AZcL8d0aR/QAIm9SJXsX9AVnzBwiKyf0CCgvWWZ7h/QNYY6ubEvX9AOo6qU4zDf0AzcTQO9Mh/QNqeENU91H9AmFv7bx3if0BkQLrUNe9/QOAFQJ9L9n9A1E6Pu+f5f0DkydkHNQSAQGQlDadyBoBA3oXxYXgKgEBEONYlzQ2AQIJ6uI18DoBARnKsd1EQgEAYaae1eBCAQHzZiIW9EYBAqK05kjEYgEBY6o3eFxmAQDNe41ohG4BAwKHfj7YbgECI6SpctB2AQIzTpee0H4BA7nXlxXYmgEB3wXAZkymAQDHY5PfrKYBAHuy7xxkqgECOvb2eCC2AQEYjldaxLYBAHOZ4luQvgECxTVtgiTKAQDJRwRMdN4BA6T196eo3gEBwTItfyTmAQPJIQmCjOoBA1CgarXU8gEAy5PByJD+AQGRruOnHQYBAhLTOQQ5CgEAqijr+qEKAQP4yNt5PQ4BAjNfWXe5IgEBUfN7Pr0qAQHoYKMzmUIBABBV27RNRgEBwGREapVWAQGlp5QAnWIBAE62lzA5ZgEBvsl5d3FmAQEwLKR1LWoBAluoTgN9dgEBniUtE4WCAQAiDb9sNYYBA9HxBHcNhgEBixmwz42GAQF8hu7pwZIBAXp6GPxtngEBzWGaWs2eAQEiIVkpNaoBAPK7iz/JtgEDAAiNPKm+AQJJmXUspd4BA0WyjimV9gEAEzXXjrH2AQBRnHaknf4BADF4+D6t/gECd4r5pEoCAQA8sjhSygYBAwvaZSBKMgECDs1E1z4yAQOowg3R9jYBA7obYdh6PgEAGAlO90ZGAQHrcgyM+koBAeP0r6h2XgEDueGj7i5eAQL+1lIsdn4BAXJAqcQSkgEAFLorhxaSAQGLqGRKJqYBApvQc5xKvgEDPAcy3YLCAQDB5bZFysIBAh0r0oCKxgEAUwBnm2bGAQNYPfyyVsoBADFB3BI60gECMYb/mxLSAQOJZoGR+toBA0OyQle+2gEDi7k1hFreAQHdb/gZYu4BA/vYmWsu8gEAI8ElqgL2AQO6jE2ZAvoBAioufCHG/gEDu+gL5ZMCAQOdT32JSwYBAnWhiz57CgEBkOD6AAMiAQCSIu0VTyYBA8KKVSabKgEBkOYGAxc2AQH1abezezoBAUBskgwjPgEDhA77btc+AQIz8lqBE0IBAvtfzfCzRgEBP3ZNKTNGAQAJQjFpg0YBAQhbyIOTRgEAKsqIhXdaAQMNnQl0u2YBA87ubF0rZgEBMGo3vXtqAQAimcYEK3IBAMF9lnUThgEAh2SJfqOaAQHWkNSTz5oBA9oKjHrDngEBAjsaZ9eiAQPr5IZpD6YBAzK4YE0vvgEDQsBn4PPOAQMyKYRjk+IBAfYOKch/5gEAgDW1jP/+AQJ5FynERAYFASpmGIpgCgUAmG6XjPweBQN1pLxo7DoFAswpO4j0PgUA+cXWzPRCBQOqtoZI+EoFAg1uHyT0UgUBLQJCAzxmBQJIZocvwHYFAilepCjUfgUDyHmPJrh+BQMOh1LT0IYFA1HyMbJIigUDJS0BYNCeBQLnQEqG3J4FAuzmGLPUugUAmFaV2MC+BQHnTudO8MYFAUjCw73QygUB+QnNpvjKBQJhN+v0GPIFA8O5pUyk/gUCjUbsDyEGBQKhSfYIoR4FAlL495VlHgUDSmMv6B0qBQG7w5+CtSoFAZIq31otNgUDMQhQINE+BQOZbRI0WUoFAYlUrDdhUgUBck4Mo5VmBQPLScczXXIFAVRuvlu1dgUDYJPH88WaBQIuA66+/Z4FAmqIQqNhtgUAg4pdu3HGBQHbFuZjCdIFAQFfjpeJ1gUC8xVu0cnaBQJ5VteVud4FA1BiOK8p3gUBbUqcOfHiBQCb0VO8ZeoFACObYsmV8gUAOT0baXn+BQDIXBFQVgoFAZCxSLmeKgUBPrc97Bo2BQCCiQfZUj4FAy0jCQbGPgUBSoeRE75GBQP/X5XoRkoFAnBEI3IiTgUD6epMp45SBQBiO+T6blYFAcJThk/OVgUBW78cNFpaBQEZlDyRVl4FA0kjPcWCcgUAKghzOnJyBQCghULRIn4FA8qAgb+WhgUCOXiLA+6GBQKQV18beooFASgwhKqekgUBMKV0VbaiBQFwBW8hGqYFAETjAZEqvgUCYQ1weBrKBQFA9hdNKt4FA5HpEuPG5gUBsqtyE472BQNY0fLXnwYFAQC031frGgUD+oeiyBcqBQDbwZv4xyoFAvL97HdnLgUA6q+1Q+tGBQGr3Nx0g0oFAP/KPRn7TgUC4Ot5r+9WBQE76ioOd3YFAINvIVez5gUBHV7AFdvuBQDBuOuPv/YFAfUdYBeQBgkABtcXq+AGCQNSb+1PrBYJASpSQP3UHgkBSVE9yAgmCQEESMMEDCoJAskdd5UEMgkDMh8PVCg6CQMBeRG0+E4JA5XDLadgYgkAokLea1iCCQNZ6g7DQKIJACiQzYZ8qgkDinfCRozCCQDJ+5wTTMIJAKrYLBj8/gkBCzfxKaUCCQNBvkZ8zQYJAqxnS5glOgkBAAhlyR1GCQL4ifxsJWoJA5kqBYNJagkDtREN6l1uCQKIxLyxvXIJAdDJE+zddgkDbf+gu1V6CQOI5BbufX4JADUAu1DNigkCYzRrolGOCQDbmtMA2ZoJARk6KCZxngkCOFdHHrWeCQEX/KKcKaoJA2MRxYTtqgkB0HEzx1GqCQBTglN38aoJAsPj5H59rgkD2lyJUVW+CQPkC6UERcoJA6k15VW5ygkC/nHG2qHOCQJYb7LBodIJAGurSbXh0gkAmbqIuOXWCQP/gpGZydoJAglyTEtZ2gkC0ZUo7PXmCQJCKVgoReoJA6CRaXHR6gkBgawbsI36CQLMAHAvGgYJAJ9Ro8jqEgkDEHII2N4WCQGgQnyTJhYJAfm5WX0OJgkDUxgGVCYqCQACDha1DkYJA0ZStejyZgkAGSawsVZmCQC0y58VEnYJAJrFOyA6hgkD65IEtO6GCQKYYeyjLooJAHgXwgfOlgkDAlgIvYaiCQIyp8rAMqYJAmG9yyTSpgkDw0vlrTK2CQGhiG3MGsYJA2UA+CK23gkDUntAiJbiCQGxrGq7LuoJAshxKCOzFgkDSJL2E7smCQEa//LmA2oJAXYb7fLLcgkCTu4N0gd6CQIfh//6C4oJAiK0gtNTkgkA8I2QfW/KCQFqXYD8I9YJAtP2UzrX3gkDS+Qgy4QGDQAyNjPzjBYNAmjs6Zt4Jg0CsIYl8eRGDQJOZcmhJEoNAzwmlqnkVg0CiaBX8eRmDQK9w/QHWHoNAf5Y4zXIhg0AR4LB8iyGDQKhGqiKaI4NAuGZj1nApg0Di3Sy87ymDQKRO+OGmL4NANh1hGmsxg0DPknDrpD6DQMKX5xelP4NAyhGR8yxGg0A9XbmveEiDQO40msD+S4NAKjEwc8htg0BqG8xz9m+DQHLYQVg6coNAMi4iu8SBg0DcSMeZVoKDQG4UXwpJg4NAOiqCoMeFg0C1iXvxvYmDQMREUlPXiYNASVJt9cSNg0CUA+zQH6aDQIyTIcrmrYNAzATVYhKyg0DkNuD6FLaDQBCf6EgXuoNAH0+eVCq9g0DeH4v01r+DQNxeLOeGwoNAaEHv+h3Fg0BIa5N1y8eDQOZy9zsyyoNApmBM98rcg0Dxm3rKUt6DQLJ3KKJ334NAGgEWAh3ig0CXOK8kVuKDQHp/d8Q194NAvoabX5X4g0D21XSWkAqEQLbPrQi+GoRA7hxovLIvhEAV4RfJRkuEQPywz5pzYIRA7Gbb/v5ohECQHrin/nCEQA6Dtyu3dYRAjfc4F8p3hECLEt2j9niEQFXwG/C8eYRAWxgYi3h6hEAH6YNuEX2EQAX7cS8nfYRAXEB8xr5/hEBK55qn1X+EQBIejt3LgIRAwfoon0+BhECmgn/PbIKEQOC5Q/KFgoRAzA42icWGhEAks0ItuIeEQFJ4UqhqmIRAvM32CAydhECxxdKBcaKEQKg/wggepYRAccZE3YGnhEBsw4ySyqeEQFzK2XBAxIRACKjgoD7GhEAYY2jEfcqEQBMSiNbIz4RA68TlrxbVhEDbXI1GkNaEQO4Rxjpq2YRAMMkXsGnhhEAyG1pZYumEQEoE4eN36oRA6H6FfiTthECqMxV10e+EQP7rJ5I28YRABmidZWTxhEDk/olFfvKEQOat238m9YRAMMbxhH72hECwc4FDe/eEQEp1MVTe94RAPWYyCzX5hEC0DsZnV/mEQGi7P0eJ+oRAttsc6zb9hEDtA4u+3f+EQLDv93EuAYVAzDsigt0VhUBawlYh+BaFQNzTI5lwF4VAC+bbIeAXhUCMUoeuDRmFQGbsQHyLGoVA89NeSaYahUDmZ7bZ+hqFQAASc9xEHIVAML2rIhglhUAJt7u0PT6FQECVUiFwYYVA5MuGW6BhhUCmcSha3WGFQMYKgbPgZYVATUbiWE5mhUDYqZF6n2mFQH0NEg/baYVARoDIuZhxhUAGDCfSsnKFQLJCUACzc4VATJ6A4rJ2hUBw2prlmXmFQFqTg/63eoVAGC4YVpCBhUBugNiRQK6FQBekGxZEsoVAWtipqES2hUC83PZYIMKFQASha1IN24VAtdzs3azihUDSWhaKteqFQM/nSseH7oVA/kU8/nb9hUDynIW7+AWGQGSXc9imIoZAVuF/iKc+hkCwNfBu9oaGQAiQy4acnIZAEmtNaSe5hkC6pa9fpb2GQJA0NWQnwYZA6zKVIsXGhkDZj8uMxsiGQAjDRXEfyYZAP1So3MrKhkDgyhCdzsyGQFbEEZ7RzoZAHEh9FcbQhkCicMfzMf+GQC7nLh02A4dAPgl/yy0Th0CWMYirMBeHQMiXhNoEGodACf7iQpEph0B6LuoNkTGHQLAyDtlVNodAtHE7CYo5h0A0GrSGXUGHQGQAPWaJQYdAvrwGlm9Kh0Di1Olh3VKHQLcq2+LlWodA2LdgkBhrh0C6uPGIH3OHQKT0rpO6iodAaObmFCGMh0AOwyj7x7GHQEajaqXAs4dAcAsErMe5h0BuE+bzs8GHQGJoOgm/yYdAdQz2up3Zh0B+rjF7vuqHQNJ9gC1zCohAwKYMfXoSiEDK/iXmfjOIQCxA4E2WSohAuNxsqaVOiEDdZQH6p1KIQOw5UAWrVohAfFBftUqRiEBGhfjACruIQP7mbIcRw4hACnCqpybniEA= + KBZXds7jZUDc5b90/yJxQKX7jOV64nFA4J0FuyoDeUBkbLHC8LN5QISvJpnsiYBA/L0hFHrygUCv2aibOMKCQPzsDz4me4VAaSyJk7DChkD8G/5n0gOJQPwMLc8Hy4pAi0RcXf7LikAnN6/RUwONQItzSoeqVI5AUmEx1J87j0DbTuZEe0aQQPIyWbbw+ZBAO7WZghFWkkB9sGKYt2qSQLek2RktIpRAYjTHcfj2lEBGzTcPWeqVQL9dt20095ZAxuQuJK+ul0BxdBx8eoOYQHdmFpnYuplAIvYD8aOPmkApfXunHkebQKIN+wX6U5xAhqZro1pHnUAxNln7JRyeQGsq0Hyb059ArSWZkkHon0D702wvMaKgQAZGJujr+6BAHxWNlUFQoUCR0Mbo/omhQKqfLZZU3qFAUVxC8ylsokA1Ks6WZ2yiQHXmmfA03qJAWiK3ZX1uo0A1chX7X8CjQAk3r2ObbqRA9f2QBYuipECUwU9krvykQOg/Q3Kr6KVAubk4M8T+pUAAzuct2uKmQLlwAZzJ+qZAWVkaNf2op0AS/DOj7MCnQA== - + - uD/zRT5QkUXgC21E/xOsRFAcWkRfKyNFiI5ZRH3EkETXdBpEe7M1REIxDUf2/nFEuFwjRPOMNkQYNTFEgV0YRVUMBUXON31EBxpWRPvMgUVvSqxFfHW+RYyOLkTBdFVEHMBCRWaghkQ+UoJEPE+ORHkzREQgbPhExCqQRN29NUTHDhZEvWXYRCkdPEVIFFtEHl0/R2RrWUX+xLREEUkrRmikc0ScqZtF33yeReVueUQbFR9FoJZqRBYtyUSIAbxG/spSRGHhYkRQhnZEhDiSRA5LoESau4FEi5aRRcCEgkQP69FEo+8qRBygYkTtfiBE7+E+RHi7gkSf0qVEt51CRCMRJkXKS0NEuKRKRGovMURggH1FPTanRGNwGEY3GCJFxSh2RN0UyURE5YlF4ZttRBXZa0QKi2tEhduPRM8SR0TVej5EAYTQRIaCaESyztNEUGGURJ83jkTejBBFSSRsRLGrc0QVRhRFejvbRijXyUSzSgRFfA2kRdvE2UWEET9EBEJkRXkgIkVn+ZpEQJRNR7HokESN+k9EBMz2RMxSJUbCklVEQ6n/RezTYERbYYBEN/R0RF4MvEXTcJxECGBwRNGJR0VaPFhEJ1M7RIwZIkRCAUtEdh5+RHWtR0XMUwRFZG6fRMEmqUWt2ahEs/JcRBtb7EQqwJlErlxnROg2iUTW+69FXNG7RMz3+EUrq3xE3q16RK2tWkQFzMhEJZ+zRFupm0T3f21ErjhbROFsRUTT3sZErhqRRHj0A0XjKIBGJRqwRBlHO0Q80C5Ehe63RA9CQkUw41lE+S9WRNBb0ETDRSNEXm0LRYQny0R1UYhE+Gg3REX0k0YGHzZEIgt3RSDVe0TxkHVEsr1KRErHhkSXEjdEHzrYRNjtpUSJLkNEJfdqRKyENkR7V4hEvQtOROfw+kQQ4LBE3clERXRUnkUOKVREKAinRXsYdkTVB61EjGp4RHX8kERYPb1FV6mKRMqVPkftkoNEtwtLRGOARkRCgRJFHp7ARM3Re0SF1jpF21QvRe8O90XgKqpEfJE7RKo3rER6NB5E0WZ5RIthxEUVPVhEIqCKRKBWVUTcwIFFSeJxRDWRx0SSFMNEpiAsRAFe1US6po9EzFoWRfuAMkSyicdEoCnGRdkROUSIsI5Ekbq3RGz1KkRvQrtEbm8qRPV+iUTMI9hEShgkRWU9UERMWxdFglqbRN8UjkQMEodE4QvDRJtxeERmaW5ECotlRMqjBEVVuElEEmfLRHulsERkkUZEeQvIRZWfh0SYhVhE7EinREVwt0WZWKxEeHiaRCfjRETTGMdEI60BRb2qgUViyfJF3Ge5RKWNRUWhiipFAHtDRFVjkUTcT0FEIDCjRJR9uURYuYtEW5DXRCnwA0WvYJBE+vD7RErnxET3PjxG0xAzRLuVxUR5y/VFKa6fRM2cYEWs/fVEbBnHRAuKW0QHSK5EPBaCRPwdhkQv0TlEuhaNRKNMBUUaZ59FwrkHRVZAU0RxrolEjJ+gRBCkbUQZcbFEfOjQRCaq5ERxX9REHvI0RdN3ZUSiq1NETXykRbeHV0TkXN5E4S6LRJGyikTDoIRFxrcERrT4s0Vb2pZGckQDRWciwkRaK2hEaxVRReOSDEX6u4dFqWxlRLyGgUTPGDJFbYw5RDcWNkZEp3dEODYZRXGrxEReuZ5EJR2PRSxuP0Q3HEZE6MfSRAuL80TrDTtE7PuoRM+s3USFQkNFBqJtRKMdwUSDGq9E5iNPRfh0ZkTgz/tEOhuyRAPFo0RDrJ9Gkz0PRAPFXUXS1ShEQi9PRFyw7kXikK5F+uaeRNvz50eI2YdGxCwhRQjQxEY3SeFFF9GaRWZBOUbOcWRExNx1RCjP0URPGD1EYo0ERmyVTEQLv6FECb+JRVlGDUX4zoZEKb9kRDgcaka/tzZEyBxZROwnXUX1dRRFuky9RHUAjUQ+jpFEVbGMRGuv4ERufDdEP7lqROV/hERhHHlEiUhCRJfGN0SG+ZBE/rp6RKK/3kS9QpJEn1VgRACOiEeptj9ETngUR5cBS0RESCRESOioRRWTqkWqAVZF58d6RDkjskQiVFNFndFhRFPKa0TMXEpEKPJiRH7abkXHekdGVNJTRb3tpUQlKyNFY2U4RLkB90TaRRNFO1U3ROhCTUT9435EV5UrRUhGSkRldl1ERrysRCgjCkVpwJhFQdhBSTZzfEVglMVE2r+vRGRrk0d4ZgZFg9FORMMAsUZ0A0pIVan6RnMzWUWgmo5G0J9XRfZzkEUN+JlG+Kq8RNoiaEQmMdBERxewRNjhiUQpqshEl11WR2q8X0TQ4l5Gy6tsRXEnREUVaLtET74wROf1pESdn9xEL1IeRG4JPkR/zKhEVfmbRNaLZ0VfS/ZFR3SMRCvTD0RzbSdEBu1URLUWq0RmZ4xEd0dlRSjwbUQzp99E9itfRLTk9UWCYxhFBj61RKscYkS0XeJEC4vfRDluk0V45HhExn2pRN8AsUQUzXdEJD8vRDQ8LEQGbmFFHerbRMabQETDAMBF6bzhREp1LUQcZP5E7JatREJDD0XogWpEfb1/RFLMu0SwXkZEtxI3RP53tEfG44tGtuHRR02cLEYH6JNFC1jFRLIU+0WjEVVEEvPKRh+BgUS0a5RGXOJyREkIPkWzB6dF6ppyRMeMKEQnBahE05uxRD7KRES3mp9Ehzx1RGLEfUQDnhFEl+kRRK2gNkV+B6BE14GRRZ3uhkS934ZFeg4+REUc00VRYFtFWnaIROIQRUfakupEhyuoRtrBGkRRBBdEGIExRbzER0QEFqlEDDTURJ1Gr0T/LthEDkq8RErudkTC13dEyd2fRfN6VkQQDGtEQq47RkolY0URC1tESGUlRLxR20T8g3NEiypnReGFLkRflEVEaA05RH0quETon3xE11LCREw+yEQQnotE9ZP1RLzZUURyOo1E3kDQRIUb8kQo1nZEdoqeRPu2M0RduKlFpfFXRHGTqEbwRjtE16N6RG9cRkbzSpZElrm/RAPVnUXyj4FEfU2dRPalf0WPg15Eq09HRBBVwEQWNVhEUdKmRZIdi0VPAElE8UwgRBwKXES9cXRE4I6KRLAQTkT59StEZ976RT17q0UAfMNElcyfRNo/m0XGv11EERlSREreqEQshy1Ek8EaRfHQMEUCSfdFv3KNREBOx0Sk3TdEnUPsR5OqEUVdLMNEaRdIRIFBHkU7B9xGi2FgRcMsq0atlVlEwwxZRdcRqERQugFFo1qbRC+P4kR7v3RErImERPaNfESmESdEglAPRbAxX0S+rpRFFT+KRH+CLkTJdRtEttO3ROp8KUdNj2tEOkDiRUsdsUShIjZEEcfaRJeM7UUdykREQR6CRBBlVkSVmfxEfdCfRLIaaUVTZSdFF5uURpTyy0W9vBRFvSipRIvFl0QUSKREMflcRM4Kg0QLLyZEcsqqRP6PV0RogbFFLDDARLsHNkUeiyZE0atXRDVAS0SlSclETdExRKyPiUSa8+xEyRmwRJxl/kaVPpFEqv2XRgdPukThlGZGyTqSRW1Yn0VTKyBF2jsgR6/skkQWwU9FJEOLRj+GpEXhhgNFBda+ROJTQUSKl2VEhZlnRA3fZEST8TtECDiBRPThGURnmzhEJeFKRBXHJkRwz0RE4Ol9RAGgjUQi3TBEfwVNRMf+j0VRgdNE32uNRFY0dkTq+hlGxCvsRIZNL0XLSUpEk5FERFWShEQ6aAhFfF9mRKkFh0TduGdEHq8qRAF6SUSNUVdExrogRNDciUR7koVEy1RQRAvmeUQcDC9E+bN5RTcnnERmgrxECfElROyVdUR4xYRE3Cc3RBXZaEQAq11EKtKaRFav10SCGeVEZn4rRBGUL0TEXotEe4w1RAu6LkRu63JEIf9FRASA80Srm4ZHJIqjRC1PgUdiii9EmU2tRrN400UbHo9EB3EvRKIlmUVph2dE2gOnRFyUYUSuPhNFYmxaRjU5wET/VTxF0OynRd0ol0bCv0FEwK4BRoCOfET/HIxExQuJRbZtC0UNHgJF2g9sROELsER3PY1EZmQvRLJ6pUSqdztECUxxRD0E7kSgcqFEckw/ROe0NET2XZ9EpB5cRCBmT0STPsREQN4qRmg8XERkz2lEaEsBRYiTQ0Q/2KJEg1k/RLIkv0RTNL1EnW2bRYzCkUQwC65EP0ZNRJJa1kSjiV1EU4uMRGIzs0TzElFE0KZrRN3wgESTuyBFbBaHRPkYc0QY9U1FSnYyRHgzj0Sku4dIlreJRnHkjEStKuBHjtF/Resaa0SY2XhEAjCARIHBU0S6aIFE4YPXRAPwikca7XhFH9dHRMVeqkTiZiFEs8RtRhUvg0TKYzZEnFWJRYsSQURNIF5EKdpYRBqL0ES8oLNEGI3ERBpky0SCo4BEczaBRLnDMkb1aSBEz+E4RHIEXUWP0NZERKKIRXy3vkQZ3QFFeYquRHNT70S2eSpEFgDARoTTc0Tw0olFAalkRDvtjkWVhz1EmvdvRKRfIUWKOrpEM7WSRbijmUR3gEtE0ROiRTTWb0S9H1pEJZIDRc052ET1rDNEUJ0mRFSMOURMH1tE0wopRL43v0TEa0xENhmSRHiWdkRHX0NE5BwPRrQQmUVhEyVG7ZnERFSgVETZeMpF7euYRDHEyUSYiABFmLUxRCcOfET3+ihECPG1RFOsgEQv99JFQ5CHRFbtbURZS3ZEoM6lRBU9hURP5GJESkOORIFYS0RqQQdFIZZlRNxMrUVcY5ZFOrSoRANV3ERAsexE4tVVROCBAUWPaVBEub8YRlpOakQJT+NEm0psRDsfWERhZ5tEOwtORPvXpkSr/ixEuN5DRL4Rw0QOIUJEFfGTRMRkb0RrmSBEbebGRpiQTURBwENGmv4NRUYWEEUtjc9E08ktRJImo0SHdUtExjAzRBg+NkSFWlZEGghBRg+riUXoNzBFW5HKRDmAi0TLV5VEoy7TRFQjR0Qo7itEOxE9ROcvb0SpkYJEtO8lRFALQET+HeREf5B0RMjWmkS4EFdEX9PKRSkBsESuY1hFtRrKRM5ugUSuEshEDqWDRBa27URPLS9EstCDROTjM0T/ohxEEptHRhNhoUQD2VFEt0pqRHqsskTw9wZGfr8QRY0ZxUSlpbFEwPVFRVg5LkT7lYNEF3Q8RCcDLUR7jEtEm7zKR6FOTUTVtSRHUeLTRlOGIUWQmTJEOcO2RXKw/0X8lqhE4sl6RKV3k0RDwPhE+stMRV8FOUSlh7lEuB9fRA9AOUTMuTJE2gzIRdBSMEU+hjhFEzwqRPJtDEVb37pEfcx6RE9C3UT5lbhEJCNzRGdIJEUlsbdElrKNRHAd3UcS4C5EpqxuRPVMVUfHtEFEt3T5Rnn3HkXVpIFEgvURRpwZAkVInkBEaFFURZFsDkQUaWVEunlCRAoSVUTaADJEXbdMRE0VZESOvoFEPDt/RgMqLUSJCKJEzGboRSlwe0WJlXJEt1oSRaaFhUTkD6dEdCdSRsOUsUXP4iNFO2+oRW4doUXLQtNElgwBRUXfaEQwV3FE1JSMRaHT1UQhYBlFjc0vRCXqT0SgqElEJZuwRKLlO0SsMnlEDt1fRDl3aUTAxk9EZCSPRWbfx0RjRgNFYWTpRku65kTnKMBELwfoRjMhxUUPizVG8BhRReCaYkXYjKdE7T5URKbfiESZEqBEY/ZkRITyX0TCn1FE4oljRDiCD0USxLFEywMrROoHfUTnvUtEOPIXREmipESkXThEcZw+RNH0h0QdbQ1HjLdzRgeVHUYphqNGUjGORv7qVEYgYIFF7IlzRZSA+0TJklFEQKxMRTwXM0QcsG1FNF/2RKC3VkTPAp1Fzv8gRUb7b0RPq7pEpGeiRMja2ERGDeVEEJXzRFSmmURADpdEy+FBRGBweUTW8e5Ej0JSRO3mX0QlajREx9QFRx5qZUV25QhFhseFRLP7bUZaLb5EAE4fRg+7j0WvFKJEzTYfRYEYbkU2p8BEA+OLRBBoq0WsgxdFtsfIRKV7ckQbQTFE31QrRRDrLES8nzlEXU4dRNf+R0TwxHNE9xcuRDJzVEQs+JRE9uy9RKvdaUToC4dEHcCtRLQSJ0UgNl5EJsthReOp40T+T6VEdHdBRNujhkVZhCZFYHOmRR3BGkUsDIVEnpcfRmG+kkW9tmJExLJgRVIIqEQWpvVE7XLWRLlNsEVX61xE9yjFRRLaDUV/3kNE7xxBRK7dBUb5knpEuO+hRXc1lEXmojdFtMw4RLAjTETWuFhE/g1IRBGeMUT1CDBEDtdLRgJMBkZF/4BF30AwRJWgOEVt5bxE1CXLRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + - - - - - - TmaKAgHBckCoAi4FcMFyQMN+9zXHwXJAeoT/w07CckDT38675cJyQCD7jIE7w3JAIMYxynnDckBI4hlwxMRyQDpKdMpD0nJAca5gTNPSckBkxhRVeNNyQBwy8Vdl1HJAyIiCC87fckAuUSYbu+ByQFI28uZN4XJA0QL5w1LickCgbz7Lj+JyQLNC2YEl43JAAGb72U7kckCQJ/ewVPByQGp9nxjK8XJAErDuGbfzckAiUYRgovRyQGhTC8jD/3JANk4uAWQAc0Cyqspj+ABzQFbEn7NMAXNAtKu04YwBc0AUBzV+OgJzQBnGx/PPAnNA+r+4DWUDc0CuAiK7+gNzQKl5MKUlBXNAIXYj9qcKc0AkONTJChJzQJCtHDl1EnNAxJFNFZISc0BXPfb4vBJzQL3af/7iE3NACjX34gUUc0DUCbv2eB9zQH7+GGalIHNAlDR7Xjkhc0AwhdFcZCFzQM6Uz9N8InNAgGr0K8sic0A8ysCtECNzQJVJ8PDOJHNAkcdapkcxc0AkpZKEWTFzQJpVp2htMnNAYxaTi88yc0DSoUh++TJzQAMdil6jM3NA7MFnD9czc0BnZL4N+DNzQOSEAjM2NHNAqnmVSrk/c0CCa9V640BzQNjJ7QR4QXNAjMMKuidCc0A4kQvEekRzQB6OzRSbUXNASXzrWQ1Tc0C+7LQdRFNzQJwUYYujU3NAqPuy8uBTc0BXB2GnhVRzQIpy6IH6X3NAGrjCpYlgc0BquWOoH2JzQLwc4ug6Y3NAxMV0oJBjc0CUptEfLG1zQC3+uULccXNAdAhd805yc0B0RSbub3JzQADgLPy7cnNASfGyCpBzc0Bq+KSstnRzQFaywwpNdXNA1w7jPHmAc0DS4XO7p4BzQJ5vfBcNgXNAsh6FGl6Cc0CWJGq0poJzQJY9AEcBg3NAxjAx1jqDc0CY2D6nW4hzQHh6hSOGkHNA/WQSntKRc0CIfAwRIJJzQB67l4pNknNAi7G3m8uTc0CsttyyYpRzQBDRxcr3lHNA5Klrg4yVc0CK9yZwuKBzQKg0MDH+oXNA/pJv71qic0AEZCKykKJzQE9T5W3ConNALW/LoSSjc0BkMcojBaVzQOqkq1jJsHNA19lWLzexc0AmmV/Af7FzQHRpk2i2s3NAmNq11w20c0C1HN8PZMBzQJiUqh/5wHNAreK4M9DCc0D0KuHVJsNzQHgiW3D4w3NAzG8DENjRc0CTUUDuvdJzQMCeF/zd0nNAwGcs2yjTc0DT0bPa+dNzQDWB85zi1HNAKpUaJKHgc0Bn0sRqOOFzQNY0VVVi4XNAhvBzkA/jc0Co4hpvo+NzQFjH1RHv5HNAbHivsUryc0BPZYM6/PJzQC6Ii7839HNAgryIeuMAdEAYJTiQeAF0QFrMq+GlAXRAxIJ4bbsCdEC4JknV5AN0QORmAU4NBXRA/9oOpQcRdEBq1TDejhF0QKxyCYNNE3RAKKJBhuETdEAlSFlBdRR0QLgc8dFKIHRAjxWuMLkhdEC6CCHjVDB0QNJW54kbM3RAcplpeuM3dEC2N0TTOj10QBtL8JqUQnRAKDH+6ylDdEDONXJqeUN0QO8PIJajT3RAROLsl8tRdEDiatqppVJ0QISU3BpgVHRA3l7hGPdUdEDd4dzgi1V0QDEFQkXbV3RAlsvn9iBddECkbXwqdF90QDpwrE+5YHRAiJHpQwlidEB2jnCAe2J0QCzx0VMOZHRADhY/glBkdEBMQQld1Wd0QFSTBJkicHRAxkE5ZkFxdEDYZQp+OnN0QGpB1d2gdHRANbvETzl1dEB6sOAeQ4B0QN7Odvt0gHRATS2QEPmAdEAEfS36TYF0QN4GjslHgnRAtA3CCCaDdEBE+4nnFZB0QL4YVjhrkHRARO46Xe+fdEAoVE3xOKB0QBw+09imoHRACHlWOdCgdEBwZWDaOqF0QNoE5UV8onRA5uUIHo2idECQDzKmuKJ0QEgHZQwPo3RAsVmE0vuvdECToRVUS7B0QG61wszCsHRApkqmvzuydEBSeg23b7J0QPB6FXL9snRAjviD4cm3dEAdRdlocLh0QH5yVdvkwHRAYmir5XrBdEA39wTY6cF0QFpFffK4wnRAJrDFQRPDdEAAi2VvUMN0QBzpZ/l8w3RA+ZBWAyTEdEAwm9VaesR0QEJUwEC3xHRABig+0kbNdECG6qU7/M50QB09NQEg03RAfLMqCT7TdEAQgDuyiNN0QGTzG2/l03RA+tQNqXfUdEDsUPUZztR0QKIaMvb633RA9ouGK7fgdEDAbdH+IuF0QEbJwy084XRAUMKq4LfhdECBf0Vh/eJ0QEESmkyQ43RAy6pzBk/ldEAO6aoFAvJ0QPYAfS6N83RA0JO4NqUAdUDqogphzgB1QBC9zjJiAXVAwMUGlF0CdUAt9FaKpQJ1QLYALYuaA3VAkCWEkJgQdUCgWYmWbBJ1QKpDsx32EnVAtxIhgyMUdUBKdnGJ7SB1QLYNHOWcInVA8T6A7+kwdUDs4mlKzDV1QI4/zIt9QnVA5QpOliZDdUDMKFjb2kV1QGqisiPtT3VAlwnb44RRdUBeg9gYTFR1QMSvYxl2VXVAbES/uAxgdUAvIoa5N2F1QK5ErQP1YXVA8Cs5ZNFidUBV1XZNaGN1QOp9Mk53cnVApuRGko10dUCu8kPY4IB1QCM0BSd5gXVAZJ6y2K2BdUATB+hwNYJ1QDZXvHeEgnVAuadwZ6aDdUBCtExaFIR1QDxX6LeahHVAyrbu3ruRdUBLzD2DbZJ1QFk351mtknVAaukfwDyTdUB5WZyCuKF1QC7Mhy1lonVAJZnHhkmjdUByI6hKpah1QAE9Qc/PwHVAyK6PgmHBdUBc4Rwq+MF1QCFUq8oy03VA+CPlTs3TdUD+qNvW4d91QOQnsAkQ4XVALpCGiwjidUAvEgmFPOV1QAZjLuhM7XVAEqEMZRz4dUAemTI8IgB2QPq3XUBIAnZAqL8P5dEDdkD25zd7UhJ2QJCgsnlMFHZANehmnQsWdkDEeb+geRh2QAn6DCyJInZA9HCJoY8kdkCoKLCYSyt2QBisYdgfMXZAwHDgL5UydkC+YTnTUjN2QGZVgnueNHZAqLEf0E1AdkDWFUqZ5EB2QCSz398BQXZAuwFZcx1BdkCrkF5iyEJ2QCk/Jf4PQ3ZAs8e3kXlEdkBU7pyHyVB2QAK5ETYRUXZATIsDzMxUdkDY7TcGH2F2QLhJcwzdYXZAMS0IFtpkdkCQldXcWGh2QKidscGybXZAJL5GA2WBdkDSLDcaP4J2QGJbEsBngnZAcBO6cuWCdkAstW0HaoN2QAgtHviQg3ZAwpnFWhGLdkBwxnX+SZJ2QO6IAbC8k3ZAymz/fO2ddkCJIYLxC6F2QBGg7rK3sHZAupGUD8KydkB7i6i/ebN2QDLmbuIMtHZA+Snx/03BdkAHhJE4HcR2QHZHZXXOznZA7K3V4H7QdkBjcFlMkvN2QMTMvJNM9nZA3CNEuPkAd0Bcz0H7MwJ3QIA+zkIZA3dAUgXZMwESd0BEib25vCF3QJ8FYEoOIndAko58+Lokd0Aetdhk6Sd3QBrIAbVCLXdAXiDT6J0yd0BaCoxuoTN3QO+PRUQNNXdA2SNf0JxBd0BuS81lkUN3QJTWJzYbRXdAZO17+wZQd0BIo2bcSVF3QFVSYZKSUXdAOmhOeOlTd0D3LEsqK1V3QFx60q7pWndAuv9Q8nxfd0B8KCFqFWB3QCfo1uVIYXdA7LHm4o5hd0A49gu1N2J3QO5fuo+oY3dAThBdLShvd0DqdqDb9m93QGAeKhCfcndAwyE/Xidzd0BmXNI9s3N3QJgr3ECRdHdA3EpWMvl3d0CUb1aWVX13QBGVelptf3dAiJVwJXaCd0DyfrszrJJ3QI3Sm4RMlHdA1Bi+YL6id0DUGPP8KcN3QAHhBfa00HdAQFyJ3ePQd0AqOUByUvJ3QJhDUWXO8ndApfpkaHL3d0DKeOUrf/h3QMz9k8Mn/XdArq/Cp0b9d0AjGSz+oAJ4QBy4xDLoB3hASlIoif0HeEAQyJv/QQ14QGf1t3F3EnhAn/CxP1ITeEBIPEzjThV4QMJwOI1sInhAaXrORNcieEActSUaPCN4QFLcnliLI3hAD1Uo/dIjeEBEpZ3KpiR4QLeMWJtAKHhAVIJsZp0teEA40SRjizt4QDbXGv4NQnhA9gfnnxFEeECywUgbe0V4QAbdDfnJUXhADOAaH4lVeECqMqiO+WB4QBgaIUO1YXhAV8tB1rJieECgCqu85m94QCUrl/a8cXhAmFXnMchzeEDJ8O3jQ3R4QC7T3p1RdHhAtqkmPmh0eEBSt5Lai3R4QKocQei5dHhAyCtn+cl0eEBqg39583R4QC7VXilHdXhAWutmBtZ7eEDVlDRJ93t4QDhfF26lgXhAyHoSXO+CeECPVZr6/oN4QDqzOzp2hHhAJJe255mEeEAc8E0XUIh4QO0Lo00EjHhAi7KWzqiNeEDgGd6vl5F4QKpM7+QEk3hA1q7Q+qeUeEBJhyz0TJh4QJIU4vympHhARprJQDyteEAoFLXt4bd4QOo8qRbOwHhAIxjXrvfCeEBAZ0pWF8N4QDUb3pkdy3hANqoq5SHTeEDUaWivttR4QNDjTZAT2HhACDMr0dLYeEC+lwOBFdt4QJ0AOH2h4nhATEF+hMLkeECmNYA1/ed4QHRrKjUE9HhAGT4ERIz1eEAO12e8mwV5QGKXlc46EHlA8kTG1NQTeUBgzu2Z3Rt5QJRryLT5H3lAVtP7xbwjeUDCvEcU+SN5QJhKmyCxKHlAhnSbggwueUAs6d2XuDN5QDqjv8LhOHlA7E0aFYxCeUAVcT5V+kJ5QCMkehj+Q3lAjMz1olpTeUC2QrePzFR5QHYCEzTcZHlAm9b6dkNzeUC04Xt514B5QKBst+tZk3lAKmzAc+WfeUBqcLV4wbJ5QFJgT9TMwnlAsJN120LUeUBvV05jztV5QBbQOahP5HlAv4gVEU/peUDoIWNkHOt5QMBISTFC8HlAngjyrL7yeUDsdCFXEPR5QALTT3AZ+HlAupS8ngEEekAZPm+9+gV6QM8W9eITI3pALGv8kT8jekC+P0dKaTB6QIJ+SM4rM3pAqt1INAw1ekCFUV8oLzd6QISSRFYxO3pAFhu2pDE/ekDBNAdid0B6QNbzwPkjQ3pAkgN1knxDekBEFrkxGkV6QNPteJ5XUHpA7sDjWipVekAkNQESIlx6QJhyx3orZHpAgQO+S5JyekAuIYmHJnN6QJZYsBz2c3pAX3DUwSZ3ekDXrA4Z1ZN6QEa2BqIco3pAEAQw3COrekDiMWB9D7N6QH47MgQNtnpAkp7xDhG3ekAoJPGlFLt6QL5vaU2/w3pAYaNnghzGekCK9B5hxst6QLJfM1TO03pA8G3KVQLcekAk6QPvZuF6QKofTrb943pADmrfLz3kekCZCzeUeOR6QDJokRg47npAM85PXhjxekBsJVCbXfF6QAv23axN9HpALLUGE3gDe0D2hHMVfAR7QNg5z7EqDntAdJWKhocUe0CGOvMBTRV7QKOee2zVI3tAdd+Oc1kle0DwQWhHwzN7QEfgsXlQOXtAMl7PWNVAe0ASt1t0YFJ7QFOP05wLXHtARG0Mc2x5e0AaZJTtIJB7QKoDyiXElHtAYHkxsCSVe0AOidF4VJ57QPxRzvF/o3tAtv0EMjCle0BMiOHteMN7QIY20Y94xntAdlKe1b/Re0CUQY6sJeR7QLh0gXzk8HtApMa2qov1e0AEW5UAdv57QIK18w+UAXxA/JGuc9oBfECxQzEt9wF8QDDhND26AnxAQyN+tMoDfEDKZe+NZwR8QOvA4X6ZBXxAqv6XLRYIfEACTww3ihF8QIBfY4vREXxAVEuixCEhfECqvtHSASR8QJHkqFJZKXxAQrsMHzorfECb5SkZ1Ct8QCimMZW0LnxAD9bKpc1BfED1ptcZ21F8QFQpvkluU3xA4CVQA3VbfECzCSFnKXF8QFwsSjjDjXxAd84ytBuTfEBp+mMUeZh8QKQjBURcmXxA42L75bydfEB2H75hRp58QDqBbuydnnxAvBF2DAGpfECtjT+qWK58QMgB0UHBsnxAoc9dX+6zfEBuyY3qeLR8QFYeiv8NtnxAkgHV8ILEfEC0jtVRztV8QI1WxS0c23xA+oACP/TbfECjVZnlV+J8QG10ZMEQ43xA1rsI+W3ofEDzcC3FxO18QNYfE5wW8nxAwP2x1VTyfECr1GpYAgJ9QAJCNVJLAn1AOA9+aaYKfUCsUkBGARJ9QPLBveFFEn1AfO4AOlYZfUBwHZ0FQCJ9QAYMSuebJ31AKjDugaAxfUDl/ATFSDh9QC4RK7VyOX1ANpfhwp89fUCk2vGepEF9QKTmRF/tQn1A2i+tHm5RfUBQ1AcZg3x9QPGrsGz8fn1AdJ62tZaNfUBQPQ47JZR9QDmvZDqTlH1ADGxBcjOkfUAFOBhT87t9QDhTxSXnxH1AYBxS1fXUfUB43IrWlPR9QD4UNyaS9X1AIjnFPjMAfkBPy2wwRw1+QJTCnZNHEH5ArkJGIyQgfkAZaxALJyx+QNIwibQ7L35A4UIMd3o0fkA1LbWTFTV+QLKe0B4JO35AKHMKGUU/fkAGERyAEEN+QMrTT1mlRH5ARXTaiR5FfkAoeantwEt+QIrSCCPZU35AkuO7fI5VfkBMvgtgOFl+QOToX5JeW35ACePWzk9sfkDuGfp3s2x+QNjEBscDcH5A8G3qoE10fkBwzWL+UnV+QMo5IBFWfH5AXgL3tZGDfkBod5HGF4p+QAShlWh/i35A+ATB+uOQfkD447BYvJh+QAzj5R+SpH5APGb5eGOsfkBaM7tj9a5+QCF98ihQtH5ApNvaPJ+0fkD5ABnNp7l+QOj2XNlmw35A/ns4i6nEfkAHd0WT0MR+QCY4wodty35AzrzEzFrTfkBdRimleNN+QJmrica01n5AfgwVLmfXfkDecf+zY9t+QC4DD/7M335Ahw1gsdPvfkAEkb6BD/J+QLqn+3pV9H5AFXzbE1L5fkC/7VjDlQN/QJz22OA+E39AF9wZAB8if0AKDif9eTJ/QJA/1tQCQn9A6Qemp4FTf0BpZf1Pr1N/QI4/YLS0W39Af4YLC7hxf0BsgN3b6HR/QGlNGJqvgX9AUGC9h56Df0COX++gY5F/QJxSKdWokX9A7i1m0pmTf0Dn48SQo6B/QIuzXGNeoX9A0D1FHWKof0ASQ8p+VrF/QGuu74XXy39AVDkgUbzPf0DCSOn4oNR/QBa9CpUm1X9Au/tgxVDaf0DIp5Vy7uN/QB461iL55H9AE0BPjlTpf0AOXHa6qe5/QHqtLgJ3839A+SbIn9IFgED51PhsKAmAQDgws319CYBAhJuTaTkKgEA8cds9eAqAQBw5QSIKC4BAUh/ponwOgED8p1fVfxKAQKBXWOsRGoBA1u9GYU4bgEDSo7jjsxuAQNOP4nJ4HIBAcF0nFbEdgEC8jhPBtyOAQBh/+126JIBAgb6J5uAmgEAM2j2xkimAQHx52OXrKYBAgecwgZYwgEAEcjnHYzKAQGOV7iKJMoBAhjEeSh03gEBzaMYzyTmAQCdRtCmhOoBAEkFAG3Y8gEAYlN0WIz+AQLbFYJrrP4BAVMGobB1BgEDSE6xO0EGAQCiMkkapQoBAhkQaRvdIgEB86yRuFkmAQBCEzsuuSoBAHtFYdzVOgECgAOBuSU6AQK6TSdPmUIBAYrWIoxNRgEDXBBzoJViAQCv0Ux0OWYBAlf2irtxZgEAMI5YcCFqAQFDAwcTgXYBAeM/HbxpegEB6IkuDxWGAQAuT0OjjYYBAA0xSRm9kgED0Ea+SHGeAQFTsGFSkZ4BAElpe1ilvgEDmoEdxvXGAQIQxMjv8c4BAgrUN+xp5gEA09grDqn2AQMjMWTonf4BAisRdEWyBgEC8F02a84GAQKRt97I4g4BA4zMipx6PgECNvZoHMZKAQGYdsSchl4BAgMZgKY2XgEAIm22q1ZiAQPbRTuMumYBABFntFpOagEBp9oloOpyAQHqwMFXNnYBAgtwnqhmfgEAsJZYHpZ+AQItLL2wboYBAMK1LmM+hgEBNJKTaBaSAQGMt86e+pIBALgNekTWmgEBOg/zN86aAQMQrrH5mqIBAdl/i+yWpgEDcpmwFhqmAQIl8pQiDrYBAjJQdTxOvgEB7lh43tq+AQHIa7sxssIBAvgs5XuuxgEBM+8z2fbKAQCWwf6qjsoBAtpQl9E6zgEAF210vF7SAQNhLeRN6tYBA8PK3VBS3gEBINjDd27mAQPAz/JBLu4BAY/RHJcO8gEBwx0qud72AQJL5CJM4voBAetjH5zTBgEBMd0uGUsGAQCGb93SewoBABph0zjHEgEBosR068MaAQNLMsE2nx4BAbzgC317IgEDodtxyI8mAQH5I9I5TyYBARqeZ/n/JgEBW7LUEpcqAQH4K4NVNy4BA7nYIr6zOgECaw8JcCM+AQGYpYros0YBAOgi+jUzRgEAMOoUiYdGAQHAFI8SN0oBAwy0enKbSgECgo3HtXdaAQJTKPOQi2YBAp6JeQUvZgEASaPeQROGAQKjrVCFV4YBAdgG14f3jgEAFsJZMb+iAQGZJH1T26IBAegFxbkLpgEBEOZLvSO+AQCyLeSg984BAPAgQz9j0gEBCe+DvavqAQE5ytmb1+4BAIgzx32v+gECTO20gQP+AQM4zp4BAB4FAv7T63osNgUAJnlSfOw6BQLCPE2Q+D4FAlpW9Hj4SgUDishjdQRSBQGLJeCdDFoFAUiYxvgQXgUCnRPESOxeBQGThSLHMGYFAgov32dQdgUDaFDrqNB+BQAKRAxb1IYFA/nxAGqEkgUCvJvyMjCWBQHrgtSc2J4FAPCabArQngUDNlvZOniqBQHKgINovL4FAomLjgbwxgUBodIl/dDKBQLCNgHq+MoFAJcXQOPg2gUDsfhAwKD+BQJA3n5LPQYFA/B2W2+VZgUCCX9jH9WmBQNpoKDDZbYFASCmsZdxxgUAkLGp4wnSBQLgbhgrhdYFAfeVbvVR2gUCG+d+gbneBQP/u5QnxeIFAWbjkOPt5gUD0OhyKHHqBQDYOvmzNgYFALopYzxmCgUDqxAwRC4OBQHKsX49nioFArh/I6AaNgUA/u3LiVY+BQGT6uEZGk4FA5Mw64DaWgUB6i3btVZeBQER5i8zLmoFAmvEM9JycgUDs85X6SJ+BQGwl+ELnoYFATRcCvt6igUC3cO5/iKOBQP2gsvWbpIFAte3Lo2yogUC0VVObSq+BQAQC5ubZsoFAlsOSyUu3gUBRYRm85b2BQPRl9jMFyoFAUK/71PbRgUBQMQTDNtKBQMb1Wd1904FAj/Jf6/zVgUCm1N+xG9qBQC163j0J4oFAlS4uP2XugUDUQJ5vR/GBQHzbk8Gy8oFA5l+bmuz5gUACTZfz7/2BQGwaBs00AYJA77HNguUBgkAQp9gh+wGCQBLAnV+xAoJAYPP9NAIJgkCqSl3ZRAmCQEKJ0/0KFoJA7gsJadgYgkAxK1D41iCCQHS7LmjQKIJADzZ+wJ0qgkAEizlHoi6CQHAa/e9yNIJAMOXIBQU2gkAVNWFOPj+CQKnyGHyqP4JAYoO83URCgkAiA1H6ekyCQHJVBBjUToJAIbCTbz1RgkANHjuYcFqCQOYNiYGwW4JAtikJWj1cgkCUJANedFyCQN0ODgcUXoJAwodrPNhegkAMJyJgNGKCQNvp8xk3ZoJAODSXA2xogkA9ioItPGqCQMXraLFNcIJAdKieM5RwgkDMdBywbnKCQKbfzPDYcoJAauM5Tp5zgkCtxSLYeXSCQOYiK/5xdoJARvTtuKt3gkB1LFQx9nmCQOK6I4x3eoJAaq3uZXd+gkD+IiC/h3+CQCflqemXf4JAmwqul8eBgkA8D7VUQ4mCQCVnlhyki4JA6vlvnkORgkBI+Vy9NZWCQCr/wlI8mYJAzeKVmlKZgkD3NNy+D6GCQCSDeP87oYJAGsxAlPahgkCWwRKayqKCQDb1DM0OqYJAn8FcIDapgkB6T6vzB7GCQH4HFxN4uIJANkRhJ8O8gkCsZLiD7MWCQATbeqbxyYJAlgzN3ubNgkAHumphu8+CQLYRWYdo2IJAqksmFEDZgkBlR1OvftqCQCwKj2eu3IJA84Zw5YTegkAY7DzwefCCQHOpbahd8oJAaivTpLj3gkA7EzySrvmCQNkgGPziAYNAqPdcDrwKg0Aa8j2B3gyDQOPhkaR5EYNAmF0sTxAZg0BsDbMzehmDQBFBwxNzIYNAvKON+oohg0ABe6b1RySDQNG6jCVyKYNAtLsJPO8pg0AhNPan1yqDQBTS2uhqMYNApBKAcyE5g0AiUS9YJjqDQIJswl5YRYNA6iidh7JGg0DQ8dTXW0qDQDm3nqUCU4NAgOltsFZhg0CisQ3KUnqDQF+5QYfFgYNAAgyUsEqDg0BuBqNGyIWDQHjq7CTAiYNA3jd0s7yNg0DV8dn2yZGDQJFFsml/m4NAAvL2rMedg0CEVItT8aSDQL8N0htOqINAMA8vveatg0BQDgdoE7KDQND8vY4WtoNAmcgVfRy6g0CAu9Z0LL2DQKbNGSkTvoNAaIuPP9i/g0CKTO+TgsKDQN/OKLsXxINADKPpgR3Fg0A4zyiPzseDQMwd9q3K3INAIOFAs1Peg0Cm+7PleN+DQCkfOxAi4oNA+QH/Lczkg0Afjvxkz+2DQEC0VnAa8INA71Md1LcahEAkrhHDGxuEQKEWymyfP4RAdn1q0BJkhED0to9i+GSEQMDHx17QZYRAQFk6pv9ohEDiPlIy3W+EQIgYKSX+cIRAfNrTSLd1hECrLFx43nWEQFLpLyzKd4RAlhjhJ/d4hEDwqC3fvXmEQEF+yJ54eoRA8IUMtyZ9hECsrmY503+EQE5+q3F+gIRAgPeLljKChEDGsVtkboKEQAI19Faqh4RAKOz1MdGLhEAd7zv8K5aEQBoQSSFzooRA+xbIO7yjhEDdEIFMH6WEQLLEvue7p4RA3uuF8rWuhEBCP88NabCEQEvArqm4soRAibc9OIW3hEBiVxNoPMKEQJzchVtAxIRA3MkatRjNhEAi00d1INOEQJR2oSON1oRAGo4NVWrZhEAqD7siauGEQKyWo7dj6YRA5pBdHHjqhEBgZXcrJO2EQLpDcYjQ74RAvrTNcDbxhEASIvFSYfGEQGCrZKB98oRA1W6xnir1hEDQ1lyyfvaEQEIHNCLe94RAYrL012b4hEA2qfv+NPmEQCd4B4Bz+YRAChyVrIX6hEBHMZCkN/2EQMrYkCDY/4RABgo7Ci8BhUDNyMIh4BWFQCLefuv3FoVAkiQTm+AXhUD6Iz9PERmFQABjrNaSGoVA6ejMb/sahUCFCntTNR2FQO187uC/HoVAMvyW8OQfhUBKqfXQ8UyFQJ0FSlADUIVAdE5yfWNahUCtvc1WoGGFQOKV1gjdYYVAfqRbeB9khUCnBjyK3WWFQDwDd3dMZoVAWj3MGaFphUDFiek212mFQMA2ppUnaoVA6mgxtJdxhUDCO7NasXGFQJa+R8OwcoVAsbaHIrZzhUCBIxfLtHaFQH8Y9F2ZeYVA+HIevkN6hUAgVJdlkYGFQNM0bgahiYVA2DADKn6ahUCQpDFoQa6FQIQMwz5EsoVA/jZ4KArShUDMg4SAreKFQKnYkInO4oVAvmr+TPrlhUCVyhQbruaFQPLwygO56oVABxnUg2X3hUCiigTp8wWGQBbXljJzkoZATMXYwiW5hkCM7dG0o72GQAsX1gMkwYZAGGRZmtHEhkATUV4dzMaGQJfp28LLyIZAkCYXTszKhkCckkKwzMyGQD6ghM0x/4ZAk6wV7DQDh0AASUkYLROHQKiw7VIvF4dAAg2eIzMbh0BwmxzvkCmHQNjS1dqPMYdAlkPkkYk5h0CXTDZEXEGHQP4NyNuIQYdAsCB3W91Sh0Ag7cWq5VqHQGmyQo0Xa4dAZckgzx5zh0DzxzjKVamHQPKyF9XHsYdANEDvzvu2h0AAnLjjx7mHQJKKScqywYdA8BV1PMHJh0BQAMgtfDOIQJHKbL6lTohAuAIjM6hSiECaJ7/xrFaIQBaKk7alWohAvhfAjQ9+iECYXxwGCruIQPhDCnURw4hAlNOLkv/KiEDQhKJru9WIQA== - - - - - - zVAwRBUE8EUMdRRFdP+WRJIHVkR6L15FsOx9RBtHKEQnaBBHYlBxROVookRMD19E3UQORfwetUQzH45EYJp1RTC4tkXNW5hEtNJWRKcWj0UAkT1F5g7BRGDPm0R70I5E54FURL7Ok0TLSFREOgGCRPmMqkR4hBVF8wphRBOcCUfIl1ZEaTXNRNQUhUTBUl9ExTRDRDAFXEb+RRNE08B1ReLRC0VW+rNEo6GYRsPlu0R3/MlEsf6IRK/myERfXsRFxjOsRFMRpkSwGE5EyKxJRD/yXUSlWlhElNdIRC9DUEStLHJExJD0RBd+RUTOPnlFCr9NRICkDEYvSxtF/Zc2RBJjLkTvUZhFmrpKRJ8Et0Sj5ZxEmU9mRN3edkTkKhhFI06hRAUBCEXW4HlEA0raRPGucESX/x1EoXY1RAnndEQXZOREj27hRuGQjETmqKREE55HRQC1xUWl0u5EcJ6xRJ8pgURsJdVEtSdxRMfklERrY0pHJWtjRIq6GkVkFG1GM2FGRJ9yB0ZfMC9EJJexRShOlkTR98pEgn9PRBGbF0WiHzNEMjSARGoWc0T3AUtFKcYIRez5nkQvEeVEsfnVRWTZtEQ/bz9EVfcdRbc4gkQ0t1VEC6YkRMXbiUQa+JxFAnzQRG2Qz0W+VHhEZqqQRNAwwEQ7aUNEB5M+RKKj9UQoochEc2PzRACvY0Z0g7REpoV+RCYRMUSMZFBEwV9LRGAPkUR9k4BFWN4qRGpTlUT+FXREdaMCRf5MukSw/bpGiKvURHJNPEX5joVEdqknRf7NsETfgDBEu4WDRDKzPkTALjFEfflnRGtZ4UQq94hEIhIKRdBxGkTXFpJFjFolRVacakTPbFxE+x26RBe8LUSVQq5F94c/R8NRSEV6fWhEXKOZRA7BzkRXZINEgkIzRSwRt0XovbNE4mTzRPo+gUVSTFJEFQh8RXUkOEQwDFRE8MS+RCcaYUSKGnNErD4qRBsAwkRQyjVF54xrRGzVVkQgZvtEN5RaRNZ+tUXbzNVE7GUFRVnvnUQOl/JE2grARKuoi0S5sLxEcsFRRFgLkUSNQDdFuhCRRHo3gkTeoQdFpX+MRDtpiESj9x9EGoh4RDv0iES7Dl1EVpCERHFQ1UTnBl9EVAhiRHe9lUTFzTZEnkMARZo6ZkTvg0dFyLPWRNf8TEQhc7xFC/l7RAZ4oEQwN4ZEDZX9RWtliERyoJtE1yWLRDO2M0T6CytEFF/CRI8VWEXBGdZFT2JnRFQXJUX6VTNFE79mRPxcM0SCdn9EGeNgRMzne0Rg4dVEjaVVRIJFFEVkC1BE8Dl2RJkvmER8EO5ELBYGRrWJKkSM+81EXFWcRT2qa0Tk/U5EKICeRXmg2URoAs5EUyY5ROVkWkR0vDpE5jx8RO07p0Tp8C1EU8O7RbQK9UQxLVNEKDRzRFH6JEVoXSVEPzxsREdplUQfRY5ES/E2RDJrqUTFK4dFhpxWRD6VR0QczD1F0KSiRIZtZUQ4LU5E6MvKRM0hWkTS6odFSh4DRuXMvEWOVqFGGP1bRCVw50Rz5qtE1SgJRde8SkSM2DxEI5CLRQLyHUXR9INEEEt6RTk/sEQf0UFFHtAdRsLPOkQWxK1Eqn7dRDIwrUSVeYhEjIRoRL0/7EVAclpEmD6bRGDS7kRbH9lEpxRvRFZhnkQOBMVE+cZJRN6TaES2ZWNEUi8+RbANWkRMupdFD0OSREkXckRl4w9Fg1yFRND2w0Tib25EgpRQRPSrlkQhy6JE0n9yRp6ie0RxdjJFSlVqRGxGr0UegexE/mCkRKiCb0QXP9dHnIGKRtVH+ESqYrlGmR4ZRl+jhkV6wCZGdjaORKDJC0Xd3F9EDNPIRVHIqUQ3CLtEfyIGRSOihUT9m1lFAX87RR5i1ES66BBGaFa2REuMb0TrS4FEPwaFRZYG4kSo8KdENnGPREzbA0VuU6lEYnOyRA5eU0RVuTREOwVMRBeOt0QfqGdEb0GIRL01SEQYnFdEMSdmR04sCUdYdI9FffLNRZiER0UwF1VEpeFjRFOue0S6LY5FX54VRLKQ3kRx9pJEXeVWRChneUR4H9NEEFNeRFnWLETuOzdEWG2TRachEUZ7oYxFrzMoRYJC8UT0QylFdRZERExniERHOXdEcB5lRFwpn0SSpPhE0ArNRULtO0lfDWhF84nXRIRB1kRb1I1EGBpqRItAiEfNM9FEF/kNRIg4nEZLvvFEPzw/SPBpHUfrdI9Fied+RtKeGkV9InZFoFyORmZkhUTrPWVEiULaREIsakTMQPVEp/heRIMwjUf0yatGsgy4RfMrM0UiYDREp1BpRBW/ZUQFMPdEjnRZRPCsvUTCLlFFLKe0RTGu5ESE6olEmHnnRew8BEW+4K1EzIhbRHbifUR6BBBGhaZ9RTeog0QMtlJELjBTROnXt0SUH7tEnN07RCFGgEWWhLxEwffjRGO1XESkLmNE2QB7RDVTTEW8S4lE8LS3RUAvl0Q/I/hEsAahRGvxK0SNnElE3r2wRDi6okSBY2REHI+YRFXMnkTdomBEDL8cRPqQYEf3SppGzni+RwD6HEb+ietFAtn/RNZYy0Ve+4VE/ZQ5RJZGt0Z9rBtGRJkrRVrAp0WCsIpEQE8wRGa1REUl4yNEtOCxRBJ2UUUl9FZF1FufRKWBXkX7RpxFA0IiRUUucUT6WDRHlsfJRBnTWkbK0DZFWbvYRFO2/ET3C15EH65vRVcBrEQLWmFEJa3ERPfjwkQkfStE9saRRFZ+skVRrqFEGy99RNWiCUatejVEVisLRfLhn0RvdDZFpk3MRH9If0RioT1E8YNzRD6cqURNtHlEQfhJRdmILUUvwEpEh1UyRM4jZUTxJ29ESTUeRTSBK0T5UQFFqJSlRlJsJUQ4hHZETc41Rt4RPEW6KW1EYExdROeBskTiYKhFBK1VRJ5YmETDyJNFw7QbRNjh2ETVk/5EvCtARETPWkQUeUpEpUaeRev4fkQmPzpFfaG7RCSms0RWYdVFNjybRY2jkkRQS5pEhKN9RDJ6dESfFWpEKi3ERDAPWkQk9MdE6agMRfV/tEXPnF9EJ5jZRLCkSkRRYjxEe4nNRLDJzEfr8+BEV5yGRM6Tk0Sj6jVFOZKsRpBkB0USqnVGv/xJRLYQOEQ0PV5FIu1MRI30vUQodk9EWeCqRB529ET9O3hEeNz9RMaBQ0R4AzNEEsguRKPoVUR78fJEkljfRLkrjEVhzX9EspDSRCxf00TOxAVH27DDRdeZn0ShjNFEORrFRUjVV0T+bjhEBxQNRXLpKUQARIBEHAsRRa6lCkVkxChGsdhWROEsnUXWjpFEVKp8RA5giUSvJqZEpk3KROPDlkTzCVZEUmk3RAgtV0SmaENE6r69RVXYQUQPbNlEB+ZyRNXNZ0TDTjpEAyBfRDb7q0Sj7whH9IZXRPCdMkblxapF7o7aRbE5WEUbQilHyutWRLBvEEWOUoBGKEipRTayP0VbJSREDfw9RJ1oJUVODmdEH6l+RNcGO0QN80REdcKhRCObpkRvavJESEeKRIH4h0RBOzxE6mxbRI/rvUTmv1pEpx2eRUOIi0R7lrdEd629RAAYHUadQD5Eusb9RC4DMkWq+1FFRT0zRBjoyEQAVSNEzHZeRAaHRURSqzBEIGBmRPJfMUTNRGxEmtjLRHFch0QS4o9Esu18RP5BVkSK8SdEKi40RC8o/USqoVdEHR2pRGF5Y0QTYBdEGxtiRJObqET9FGZEZEpzRAfFNUQNzkRE442LRAO/YkSr95lEhrMaRAxbREQlnNJEj3a9RzT1lEfXM5VEFTgJR7hbUUbHyzpELdrsR18AH0X3uJdFfxu7RGNxgke5J2pEgO1bRDP6TERTGh9FviJARizoDUVUVqBFzK5bRkl34USA6bxFpvOORLPgVUUpjLpEclm3RHs8k0T3r51E36kTRQ19V0SJSmpEDMVORFgdDUXNsKJEWxSqRPURXUQRulJEcrERRqR1PkRrJUJFl3llRM56LESXDTlEu4fcRO4AWkRbn5hER7F4RA9EQESO2FhEqw8kRDDfWkQMR4tEng2yREIlHkSrjFNERwdnRD8FzUTwV3FEPqyTRQabfkT5M/JE1tZ3RE89gkQLkHNE/kLNRGX1R0S2MbVExysxRElDckSUXCtFnT5KRMyDk0TdLaFEq4kBRa41g0jmVG9GRy9BRKT3skTyuo9ELVlvRDja0ETTdu5HpS8mRKU9Q0Wy4EFEQAtSRE+Qx0Qbn/FEQxaAR5wOfEWAbI5Ebdo2RD9kaEQT+1RE9fxNRtbvhkXc565E4+5HRACHi0RL3q5EcEd/RDHxokTQs55E7RNjROiQgUQ5ID5EIsFCRJcSTUZ0jVdFnyhAROsJnkRgJnVFNSrMRKhDQUTtEkBExr8uREt5akQ7DpNEhbY9ROv+uEZ9noRElI1VRK21O0R+D6RFdcp1RMvqikTWIdBEQC4QRdYLd0USsoREEGVaRK0/g0W3FXpE5SqWRI+CKUQWaG5Gon/JRWSh3UXMd8xE8DdnRHRIzUXBxo9EN4a7RD+wTEUSfxBEd96iRMX+M0QSNd1EuISaRAh3xEXDE0tER4V0RBvKEkWqZxFE0ND4Rdzmr0U+QBZFrP0dRcGdN0T3zGZEhAn+RNetEEYwilVEdwXNRN+ZnkTvV+FEDLDgRJE7PERqyYxEO84IReaeeESzf4dETgwiRCfJYETUKkxEA8K2RjRc80UyI0ZElyhxRToy+UTAVUtEriNYRC/qc0Q/KYdECHkhRiiAbUWn1lFFAn8ERX3qbkSpqydEvztJRL9BN0RoSOBEABwuRBwMQ0Rs3KNEC0ptRBsNQ0S/3spEHbBERNTJxkRx125E3he3RPq6tkW1thZFCT1KRBpneETun1VE+UYlRO9oQ0Y1DVpESf1+RE66dEQ+LCpG3ZcyRP00OURBJOpEnJ6dRH3VUESPk0FETCECReqgyEetyVNEJd0bR2PYXkTU8cJG6KQORY77l0UQx+tFXObZRK0IpESAjh9FaFcyRYZGlUTZ0UBEBaCCRJ9ShkWACDlF76Y5RHTZNUSa3GREfA40RDkeK0X1v6xEdxPQRINBakQlneVERy1ZRMGK5URT4g9FyehdRMVkWETftvpH8U8iRC45UUc6pAJHklYFRemtZETSEiRG2tD+RD/zeUS8m2BF1twzREm4WEQikWpEtd4yRPMgYkTRF5lEMKBWRHtLOEQ/FoRGPQCNRNw9CEat+ZdFAMdqRM1vSUSRwTZErbFHROImL0Q2mFhER8KlRHRLFUZGFfJFnIWEROtAukWc1kZEbE95RUO5iURTjkREy6KCRAo0tERHsS1Fs67zRHIkOEUPhV1E0MtQREIBUETe3phE7uZYRL+AS0QCkS1EzhFnRMyJYkQSMTtEqmjARawxc0RMKhlFFqfrRLehR0RQZAtHVRzMRC6zpURXnrxGA40rRuNRuUXzZyhE26GVREKCAEXo7StEtzssRBvrLURmpWxEluSRRC7BCUWvRVBE7O9cRDykV0TRuf5EAT0oROOGnETc1zVEryhKROoahkTLLzpE70MCRyewZUZ8OhVG1NiNRkxLi0bFdu5F/gSORTp9TEUCz0xFLlUMRfpvKEX/df1FvfNDRMAs1ETxe3ZEN6SSRQpFxkQY4TREcpi0RB3j30TTzaFEU0zvRHkLSEVAw4REHWKfREXGLkQmtzVEhm40RPD8QUSDS0dEHs0qRE3fFkcpBoxF2ZE7RAkHt0SwHcBEuC2ARvWnhkSln2NERG/mRduz6kTe4SVFTLGDRLw1M0VDPz5FG/uhRElJh0R1OTVENz9LRHhniUXRcXtFb0orRC0ukETkC0pEgNlfRG28YESu6HNEJ0tERPGCOkQway5E0JHYRIjKsUS3ZHBE6qOQRJYlgkWPPEpFIjdyRRWGAEVewI5EW/aQRJBlVkV/7BFF4gWTRNnZG0ZdmtRFRIVFRexUdUQIBddEAx+NRRIbA0WurKpFtFPERMkbOkSRHABGRad+ROsctUXLnhtFzZXFRPQ7mkSZEjRGdIPQRehxrUX254FE6m+SRIMZQkXBntVEFO53RETbKkQ= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - RPlx0XvAckAcDRMkDsFyQOLJyylvwXJAUUiOecjBckBLVDK4T8JyQM71IhLkwnJAAxzghTrDckBIToU2x8RyQErgJ/tYxXJAfIriPqPQckAWej1WQ9JyQGtJ4gXS0nJAc/8bjXbTckB2dmbiz9NyQCgfYwmO33JAV92Qr8zfckBsM7JgueByQODx9rFQ4nJAKbU0uo/ickDOODoMJeNyQCAsUri443JA7OcNoVTwckAUTsdTU/FyQCRS8wrL8XJA+CefnHvyckDSpEIdE/NyQJAbVMe183JA0OBJCwz0ckCubO2po/RyQLJEtVrC/3JAbIeWm1cAc0Cwf0GU9wBzQCI9JdYkAXNAApAjHksBc0Ae1mvljAFzQJYTfcM8AnNAUFHTyNACc0DYmZja+gNzQPv+mDUjBXNAqL+f/qIKc0Akf8CJrBFzQKARmFW9EnNAuC5ZBl4Tc0BADGv0+hNzQGLY0q8CFHNA/dUq/UwUc0BFS9kreB9zQCB39MijIHNAOqSmCzkhc0CWTPSeZSFzQPS8gOTKInNAROmCEwYkc0C7I+wmzyRzQIpOVGCKMXNAHulMw9Exc0DWlfqdyzJzQABRsJcNM3NAgKYy19Uzc0AuEevSNzRzQNocpSu5P3NAxaMgb0JAc0BWoVLq5EBzQKCZ1rR3QXNAWpnJ1ydCc0DcRdQUukJzQMS288F5RHNAlKd8mppRc0Dr4+dUEVJzQOr5AnZBU3NAvNVeSaRTc0AGgW6e51NzQGRL98x4VHNAICD2d4pUc0BkTsciDlVzQDa3gGH6X3NAc9rCDo5gc0C6miRoHmJzQDIlJE05Y3NAOuYLvs1jc0DgsnNFK21zQGRSqfBIcXNAAoYSCt5xc0CQTPoiU3JzQLTEo4ZpcnNAGErLBJVyc0DkNUM2tnRzQDxNYkBLdXNAPuoERWl2c0Cem9yfeIBzQM7tcaWigHNA+HUwMQ6Bc0B6a7iYN4FzQOXhfqZdgnNAJPT+EaeCc0BmIzOA/oJzQI77IOs4g3NA3nUtqA6Ec0Ak8AcrVYhzQFT5f38bkHNA0nSA/omQc0CMN9cLiJFzQAmC2FNNknNAWv/8zGaSc0DayDEy0ZJzQKxhq/HQk3NAoOZoEGSUc0AQFhXQ95RzQEIj5uqMlXNA8kewoLigc0CFl/sI56BzQKtXxvpNoXNA3VqPVVqic0CP9yPPjKJzQIDQq7EFpXNAF9L21NWwc0D+t2BGNLFzQOIIEyF8sXNA2y5wdRGzc0C+KPIgt7NzQAPIvcYNtHNAOUr2hWLAc0BAQIT79MBzQLRnRq07wnNA+0uVnM/Cc0D4FnyqJ8NzQDxn+KnW0XNAorzR3vzRc0AA18rK3tJzQLpEB20j03NAbnsubVTTc0Aww4x85tNzQGDJQXX103NA6Y77DeLUc0DfvCmdoeBzQDixtQk54XNA7DaFhWXhc0DqJSojgOJzQLRUyGoQ43NAmj8DLKPjc0ASIZv7/PJzQBh7WVc49HNAQ5dj64j0c0CmRumzTwB0QPM0kMzkAHRAajEgJ3kBdECcgrYZowF0QA2lJTAHEXRAOlnGhIkRdEAiHpYveBJ0QLRqfZJME3RA8vaNM98TdED6MviXdxR0QNz5OylLIHRAFt9GNdEgdEC354pBiiF0QA1Hn3G4IXRAJE6PbKUidEDUSXyHWyN0QBxyRnRSMHRABGM5270ydEAweQYSGzN0QIyw58fhN3RAmzyy91FAdECc1AlUJEF0QCIeQeipQnRAZDguDChDdEBMrBS6OkN0QKVIDOp5Q3RAsMSkeM1DdEBGiLBycU90QMBsK8+iUnRAc7+2XvlUdEAKqwUPjVV0QFRzHQneV3RAhFzYPSBddEDGEQ+4uGB0QDp3anwIYnRAOmPuE5FidECsSuhyD2R0QP40jgZPZHRA5i/EoiJwdEA+zzCwEHF0QEIsozFBcXRA/LNMkfZydEDWdEeBOHN0QJb+cnCidHRAlHqYiEKAdECWHagVZ4B0QMuU/OH3gHRAQAtzr06BdECKwb14joF0QJQEVmLugXRAA5DfZ0uCdEDxY/4aJYN0QPxTDLoWkHRAohxtOWmQdEAKbORHT5N0QITLL0Xwn3RAUkYirR+gdECo2IyqoqB0QBy4I7rOoHRASs0maDihdEDX50K7eKJ0QDZfxuG2onRAFAqmEhGjdEB6zSvbY6V0QHhKH24KsHRApCwYscKwdECozth3b7J0QFb/MqL9snRAj58OMcm3dEBMA4XXcrh0QPSILApWwHRAksYu0uPAdEDcv3jyesF0QAtGls7pwXRAbC+B3g/CdEBEj7uIusJ0QEDw+7FMw3RAwLmP3H3DdEATpizPI8R0QIZzLxS4xHRAXoUP0izIdECVs3sCy8p0QGQW3vH8znRAdk+flqbSdEA4V9724tN0QH5CJ3121HRA5IZ698vUdEAgEqNPtuB0QGoUYJYh4XRABGgVt7fhdEBWLsfuGuJ0QMw/t/9p4nRAkSAEi5DjdECBL7u7uuR0QG9Jqem/8HRAfGYZtyjzdECDX0UKjfN0QI/4liGmAHVAEQom7r4AdUCeCKJIYwF1QNYGVmNdAnVAv/S586gCdUAaOwypmAN1QKo9ntTQA3VAqOiv2JgQdUDS6uHqahJ1QPiOc2uME3VACHqfrCQUdUD+S5ObixV1QHB16NnsIHVA2pKxioMidUAaQX3jnSJ1QP+ISHp7I3VAr0Xaj7kjdUDq4/zCNDF1QPreYFxdMXVA4emJWasydUAON3XozDV1QPZTUH/6P3VAgicyUrJBdUCIeGKHfkJ1QI6PbHLeQnVAlJEh9NVHdUB+Qe1kA1B1QBqD7QEzUHVAbEo4YExUdUBuSnyCd1V1QE5gA5IPYHVAdpJZ66JgdUCqhTP7N2F1QF6PKTD0YXVAJDdWOI1idUAKwzUZ1WJ1QKa3IJBlY3VAc5sTFfhvdUAIPrkldnJ1QIBMQuySc3VAWqQqKiJ0dUBYwG6WjXR1QEjtGL5QgHVAJQR81HmBdUCWAuHzrYF1QLMXgGulg3VAME5SUhSEdUD0FqKJmoR1QD4vTP5kkXVADAnce7mRdUBvQQ1IbpJ1QLosFwEhoXVA8N7PtrehdUBgzAF85aF1QOq94HZkonVA2SxW20mjdUD8vDmvpKh1QJzCU9v8rXVAQCMKVnqzdUCuKdo60MB1QFR1ItFjwXVAKn1hNffBdUC6YX2HKNN1QHwa8TvL03VAPM0jluXfdUAkASF4DuF1QErOfWKi4XVAousXLwfidUCv1bonn+J1QD1Y6KFN7XVA9m59p47ydUBKLl79p/J1QFIg+Ctq83VArkl1ps/zdUD0c53ZA/h1QMIawLUmAHZARGVi8E0BdkA2wYlWSAJ2QJ2arlbSA3ZAEMhVsVUSdkDkH+kVDRZ2QHHSsEqIInZA3lc362cjdkDNrQB0jyR2QDybwtJKKHZAodF5E0ordkDAlM4+HzF2QBYO9BdkMnZAybQYtCQzdkACDPE4UjN2QAAZ2WSdNHZAxRvQP7c1dkAM17MVTEB2QJ15aRYeQXZAZ6+qVshCdkA3W8/36EJ2QIN/zSUQQ3ZAKhBwkHlEdkDuwr9y/E52QEwwAe3GUHZAf5d5BxNRdkB+X2kQi1R2QI6i7MzNVHZAy2dHnYxgdkB8h6oPJWF2QA4nyuZDYXZACVx5a95hdkAiiU5ZUmN2QJUfh6jbZHZAJFluq1hodkBWTNj2sm12QM4pk//ncnZAoIHTuQ90dkCfOmKnPoJ2QJz3RYhmgnZAojdvBmmDdkB4ldmmkYN2QAQ/yWVOknZAMDb6ZHaTdkBooOMtvZN2QOl34QTQl3ZAP5TGxw2hdkA8p6E0Qqt2QFp+HnjAsnZAdLojFg20dkCkNi3KwcB2QKQNXIlNwXZAOiko0BjEdkCCc7FTz852QJiqzL2B0HZAn42XnvDhdkAHjutjkfN2QHBfDPRL9nZA8mwG8UoBd0AyQz53MwJ3QLa81dwYA3dAShdQlwESd0C24rfSjhN3QGz7npj4FXdASYRNAg4id0C+KeNZvyR3QNPgtenoJ3dApM5YwEUtd0BqeU+mjjJ3QCxBjbukM3dA/zi/TQ01d0AQbhsA0UB3QBqfHDCdQXdA8PN0u5JDd0CZtcDZGkV3QCSlHaoGUHdA9zNsBUtRd0CfHxW2klF3QJfGm+HtUndAIVFcUyVTd0BXVUotLVV3QPaOvIHrWndApBWhOHxfd0BUSBbbE2B3QNjghkuPYXdAuDFXt2Zid0B6iNFmqGN3QDyWw9snb3dAAuOg0PVvd0CYZB5GJHB3QPcusgiFcXdAILet5Z9yd0Cyl5wpJnN3QDz0DmFkc3dAZUnicbJzd0AEeSlz+nd3QK4FB21CfXdAGLtUKlZ9d0D6relXa393QHSDxFnjgXdAFLAAsHiCd0DmxsJnCJJ3QLowMxCrkndA1+VjUUuUd0AqROL4EaJ3QOhOi523ondAsgD2FS+jd0BaxO2lZKN3QAhkTeLis3dA/HA3A5q0d0B7GOhjEsN3QDL5wSPy8HdAGRucy1Tyd0COWonW3PJ3QETZ4IRw+3dAJhPBoEb9d0BkmX13nwJ4QCZ9e4vnB3hAmPJGOf4HeEC0QTi1/wp4QBzMgjBDDXhAWoeRqFkNeEBUlw8VWQ94QC98q5uLEnhAr5GZsqESeECOgwknKBN4QJBE8fltInhAmkh0FD0jeEC5G5wM0yN4QIB3nPM4KHhAxapA03oyeEBe/N0IjDt4QA5Qg2INQnhATwmJKydDeECmuXuXEUR4QEKE5LR6RXhAwc1l3qpQeEDwazAculB4QFhcOv7KUXhAin8nr5lSeEBoNNTVi1N4QDbxWwWKVXhAGr+Hr/lgeEAe7GkMtmF4QNca5vjOYXhArOvtZBBieEAQkSEh7G94QBzaEvtXcnhAu7EJoot0eED05Erdz3R4QFzkJGz3e3hAlq7tkDiBeECQvbfspIF4QBqgT6wDg3hAjdmY2P6DeEAwySyymYR4QMjW7WRPiHhAimNPsAKMeEDPWTE6qY14QN7ZjaeXkXhA+9s3XQSTeEANjHuQp5R4QFGKl5tHmHhAsUjoNKOdeEAXt/b7s6R4QMF2FQU6rXhANHUoEZayeEBQ5ea7lLN4QKCZEr3Ts3hA13s/COW3eED6oigvOb14QCSRjEXMwHhAnoG58BbDeEBu3wRiHst4QNxkcv3XznhAawzgbg3TeEAsVzqBJdN4QKZ4+t621HhAN4dBXBnbeECwentCoOJ4QChVmqsd43hAHFU7rZDoeEAljCgAjPN4QIIYBggD9HhA5hhasYz1eECESqtXPxB5QBnM0lnVE3lAsbNaWdwbeUCUvAooeyF5QH1R8nlRI3lApmpNysIjeUDjt0NG5iN5QIp+6SyyKHlAMbWEVgwueUCcrkD9ajN5QNz3aLaTQnlACjg4IPhCeUBCsOqdQUN5QAC/6CX7Q3lA1Jt25eFReUDAjssymVJ5QBsrCL7LVHlAaEXrpEJbeUA6EN/k2WR5QHYLca7/cXlAEtgoDkFzeUDQSGM0+YR5QHSOiHwaoXlAjshBKYmjeUBoYyPFwbJ5QAog2wfOwnlAWs5Jg13DeUBg14QHsMN5QHwWD9ERyXlA0KkPB1jMeUA3E3/uQdR5QPzg7+zN1XlAc2rd7lDkeUBoty3/T+l5QJBgVD0d73lAtLQVgl7weUATPBcUw/J5QLhJiU7L83lAAHO2AhD0eUAOAG7NowB6QM+Jqif4AnpAOzfUB/4DekAC32Yqkg96QOs6tTVLEHpA9igGeXchekCqkMMb5SJ6QD6ELEBOL3pAdepbE2kwekDNvfz8KjN6QJxgKWUMNXpAlijHtS03ekCGuScvMTt6QFwZmgAzP3pALj1ChnhAekAUgVFrGkV6QB/18YqkTnpAUEZaDVdQekBgmCtUO1J6QDWKwVITVHpAQLDPeypVekBWupZSIVx6QCHVUdk0YnpA8BnG9ilkekBsWBfrOWV6QCIm19srd3pAVFSAl8aSekC0ckSO1JN6QEhZuzwfo3pA4MPWFymrekBAXdEzqrB6QMwrs4cLs3pAXI9MAfizekCE3dH5DLZ6QEi7WWEQt3pAqo977RW7ekBGljwSLsN6QDIz6A6/w3pAUhxKDBrGekB4RYnyxct6QJ5ocesjznpAldCKUT7OekA2SLPZt9B6QNGyn4TO03pAamqnJv7TekDeLSAny9t6QKwwWhIA3HpA/4OB7DPjekD4DB4X3+N6QLY8c5g85HpA3ISfcHvkekBthQstN+56QG5BLTQW8XpAwx+hzlvxekA4l2lhewN7QNYHTjR9BHtAqEDU5mQLe0A6pXOMKQ57QAiOt1aNFHtAWK97fkwVe0AVbgGJviJ7QHRnRrVaJXtABoBqmGkve0CfjOXdwDN7QDScILtSOXtASMA9l15Se0B4BrTD65B7QGBxckMjlXtAEHH07FOee0DkAypBr6N7QMrfv3QCp3tAvhY81QbEe0D+lIR7dcZ7QCS9vUUmyXtAw/Olc3zOe0DE3gwbauF7QL/gp9G843tAbgHLZP/je0CgJqCJJ+R7QAQMvrPl8HtAdM0cboz1e0DWYxVZb/57QCdno6jaAXxAvLgW+bgCfEBS9dY0aQR8QCqpjF6ZBXxA6Go+CBEIfECOYE3Kbw18QHd8J/6OEXxAmb2hTNIRfED8Cffk/CN8QBRac944J3xADjLJGVopfEAosS79zEF8QAIb0Pr2QXxAIZh1SNZDfEBIuwVmX098QLaaV6jZUXxA1hgbd2xTfEAb5/CUc1t8QL4sGk4NYnxAQ85BzOBnfECE4uShKnF8QLFRxsHEjXxAnrApYR2TfECSiXQrYJh8QISaqgx9mHxAJytK+FSZfEA9lIEzSp58QKn6y3ednnxA08dVpGGjfEAXRpXZoaN8QPZ7QoL+o3xA9ntAZMGyfEAwkQ/M7rN8QEwlvbB5tHxAnY4IfxO2fEDja/S58rt8QGJCkw/3w3xAYGNxZ4bEfEAmvUX+zNV8QPZsuwb323xAJnoIplfifECQRbT/EON8QBLEJcL743xAKbsayWvofEA29ExMGfJ8QACV3WdU8nxArkD9AfryfEAkrS4JRfR8QLi/kw5QAX1AbdZCKgICfUDY8Ww2SwJ9QHCB1cJCEn1AxmzLAvoTfUAQak5W3Rx9QLfOtXOtHn1Ap/Is7ToifUCY8Jm0oDF9QHQek8KcM31A4+Qv/SI4fUDOrUW0Rzh9QPwZpi7mQn1ASMdg5gFEfUCj9xJBa1F9QOeJe24WdH1Atx7+g3h0fUDR3BO1CHl9QEfOpSOEe31AtP42J/x+fUDFkcuiMoN9QGrHqNOWjX1AzIA+PiWUfUDqfyh6SZh9QHpyMr0xpH1AtiE+UjOtfUAPDcW6Lb19QELe250sw31A1SVZ9ObEfUCyUXVWPdN9QH/XZ3P01H1ARqQnNvPhfUAyvuFGeux9QBBKALSR9X1APPcm5TMAfkAZezZhEAR+QBauSptDEH5AknsritITfkC67s3GKxR+QIja9VI2H35A0pYuziQgfkC0hNzhtiR+QCikxmElKX5AMNh3REMvfkAqw92LejR+QCSQ8mcUNX5AS9fcDgo7fkBgjwd+EUN+QO1HL0uMRH5AQA1yrv1KfkCeEJqUvUt+QE5pzWIFUn5AVAsqBQVTfkDdfZyv2lN+QEB85aSMVX5AHtY+FdVYfkBrrj96OVl+QOK4JB6/XH5ATufrmZhlfkD0+wrbEW5+QGdxVMoJcn5ADEvcg010fkCt/5ZtI3Z+QOmB0GS6e35AYulMqFJ8fkAsbma8xYR+QIHj8rhvh35AYfcv2MSIfkAEXwuqE4p+QEjvLeVHin5ANtty7KuKfkBuxbX6GZx+QIEA8U3RnH5AfZ812ZGkfkAGWs/1Yax+QPI61inGrH5AaleYJfaufkCKcTq7ZrN+QPRTJ5ZNtH5A9oAPiZ+0fkDECKulZsN+QCi6aubRxH5AoCaoaLbIfkDG/gmubMt+QB65CIhY035AXmjTKXnTfkBUKNGLudN+QKho0Vhc2X5A9nkVnWbbfkC3X3Q9DuR+QPhsnZ11535ARroDqK3ufkAUuvIE0+9+QBU5Y8la/H5AnCWMboz/fkCsdmpDIQB/QEgyH5iaHX9AQFcvHbNTf0AQQSCQuVt/QEauDd+Hb39AN8XFI7hxf0BmaFIW5nR/QIPJQequgX9AtgdsXZGDf0DWqydHroN/QPID0IwRiX9A4ujnwWORf0B8jQD6mZN/QK0ZfaqgoH9AjYieQlyhf0BcegYdg6t/QPVYe1UKsX9AgDdUWVSxf0DkUuwB5rN/QA9u1OKGx39AeGYsLpPUf0CF8VCdJNV/QGpZRkpT6X9AxJuTC6ruf0DUGFABCfR/QIhj8MGQ9H9A9quOFfL0f0CWWV0I2wGAQFmSvbJwA4BABMvNK84DgEAcTzWgfAaAQFqJo8bQCYBAYSbXzncKgEC1fEqXzA2AQCTaoW58DoBA9ArXLegOgECEvPDuuBGAQMYJ/551GoBAFuFPzCYbgEA+uDm3txuAQN6Sy8+wHYBA6nAJJrYfgECpcqei4yaAQIigKAnvKYBAzD4bKCougEBCA3QcHTeAQP7kGUjqN4BAyPh408g5gEAg5MajezqAQOjGw351PIBAfo/XTSI/gEAoZRk+HUGAQEFeWv/NQYBAlJ3mg6lCgEDOt3P87kiAQLIWl1oWSYBAnqmGIOhQgEAbvl0dFFGAQF3urDKsVIBAx2IZiKVVgEAeo/bS4VaAQGTL6I8uV4BAdAXyZCZYgEAsI+XB51iAQFZqnjsNWYBAhdIoDqlZgEBmpP/b3FmAQGHyNyoJWoBAPHOSheBdgEDu4HgqC16AQFAs1aDCYYBAuE40OFVjgED4zvrkb2SAQPegyCgfZ4BAFnaDl+1tgEDMKGhjKm+AQMbDxmFdcIBAMhJOdz92gEAAzAtNrH2AQPUV0xUnf4BA5shWLP+LgEDs3pbtxoyAQPT1jSwajYBAEhyp06ONgEBOdFg1Ho+AQCnoW+2gkIBAbhYYQj+SgED0kMMc35SAQDvqUf4cl4BAurr/uZCXgEBvVWlV3JmAQDLl0GRNm4BA4OvROf6egEBA2sX1HZ+AQLqgLvrNoYBAiZKiAoqlgEBmBJTiNaaAQB5rJKz5poBAOisSIoepgEBkh25p4KmAQIwkzg3UrYBAlX/Caj+ugEDaYJd5+q6AQP8MuXwSr4BAqP44wEmwgEAyrJn7Y7CAQPDi5aEisYBAZqFVNImxgEDtEl5s17GAQEOUzm6SsoBAnpVdGRW5gEAqwG2IK7mAQGKXVrnMuYBA2v1gUuC5gEBUkB0zk7qAQMydvwxJu4BAfvmzgg28gEDMXzFKeb2AQD4VMa6zv4BA5nCQu2XAgEAyukRsIcGAQMqmFXFSwYBANy226W3BgEDcJIOSnsKAQJRpFFKBxYBAv4nPBz/GgEC4UMmztMeAQFM4X+dkyIBAxvBpdBjJgEDMcVxxU8mAQJRKZu7lyYBADj6fd6bKgEAMeipFB8+AQOhC+5lVz4BA2uOdGCzRgEDku5mFTNGAQNg5PjVh0YBAZnQn+uHRgECpxLRujdKAQCT11tV104BAxMKMNg7UgEA62+JTStmAQAok2zQu3oBAXfN7Q0ThgEAqD7FUBuSAQME5LI/26IBAhIgqJcnpgEBQ5+TmSu+AQGJOgnst8YBAKunrwjzzgECxUXeTXfaAQNAsWado+oBA6v+JRD//gED2v2gg6wGBQI20OW9AB4FAE3yspXoIgUB8k/S0PA6BQMQEjl09D4FAGlStlT0QgUBzkBgxPxKBQKY+hIVbE4FA2N1Jm80ZgUBsOD3pzhyBQEBJXYkMHYFAmltCAiAdgUCUEgbb0R2BQO6a8Kw0H4FASEt51lofgUAb6YKb1iGBQNKjUgH0IYFA5gTVaLYmgUAl9sZbNCeBQCeT/qW1J4FAqMut/UMqgUCQQngxLy+BQA5WChi0L4FAqDfzFnUygUAUFe6hvTKBQC5PxKq7OYFAX0/lWno6gUAqh7JfKT+BQOQlBFDMQYFA1s8xCVpEgUBac4ebEkWBQOl6E18rR4FAbka3olpHgUAc1LzNJ06BQIN394DeUYFAgq7+sBRSgUA8RJlQGlSBQIgeHBm1V4FAFNTn6uZZgUA61gBXtWaBQI8h1v5KbYFA/PjH39htgUAyw2pmQ3GBQMQgCQvccYFAQRlhy8F0gUAuBDdwNnWBQDghM+6NdYFAE/8vKuJ1gUCs13j+bneBQJ0UUzE+eYFAIG8oCRt6gUCI6RgJq3uBQIHqG53KfIFAkMoXcpyFgUAb0VWi5YmBQLglM+hlioFAmIHXQhCPgUDmdzamVY+BQPZvCJiVj4FAVsBoZjCRgUC0NZ/w7ZGBQCIUM1I/koFAJAyuhVKSgUCWn4c7SJOBQBmuYz6Ok4FAUQboJeKUgUDoUE3ycJWBQCbKMW46loFALzoEKVeXgUD/S2GfjpeBQKlvVjacnIFAmXhqaUifgUCppxDI5qGBQFqYQv34oYFAFNvgwJSigUDSj+tK36KBQJavWF+ipIFAYYkr2m2ngUAYNniWbKiBQCIUhcwlqYFAQKB5f+qpgUDuu1PdSa+BQHZOJepqsIFAb0kFXLOzgUACD4UhSreBQGz/42pgt4FAEPP7+8u3gUDfJwjisruBQN3Xc9civYFAiLYly66+gUBEGY2fBsqBQD7YTKiyzIFAKr1lifjRgUAQrE4VPNKBQNzmfiF904FAEEDgTP3VgUCSVWSTsfKBQDBqri/L94FAMjz5BFz4gUDgKFir7PmBQCwSVN7v/YFA2Oj3GuMBgkAU9Vpe9gGCQEZ7xZXsBYJAiEeue8sOgkBgZ4eL2BiCQBRO7vL8GIJADvUytHQbgkAiaAUg1iCCQFz2dmLUIoJAXPE7+ggmgkBg31CZ0SiCQFPCvLmdKoJA5V9dRqorgkB2Uqngoi6CQKoATTXMLoJAE+x8nKMwgkCHf7Fl0zCCQIvmMzKpMoJADuFueNoygkB1cAwkLzWCQIARFBf/OYJAbKHg6l0+gkAWNTjcrT+CQHwS1pRuQIJAsM4OEQdBgkBErDypO0GCQOgcmjTtQYJAiMDHUAZCgkAUkq6FVEKCQCQCZER+RIJA2j/DQqtLgkBL25+ja0yCQAypr+c4TYJANGtiKdFOgkBmsJ5XpE+CQCIJ9GJ7UIJAjwXZMKRXgkCTRmoUF1qCQPi/ioHgWoJAbmBnU6pbgkCYuOxLdVyCQAo+dclKXYJAiiTfmzRigkAsEKYXN2aCQDw9BNzhZoJArmieHGxogkDEgZc4SmmCQNIHBd8DaoJA4P6aUDxqgkC1ER2gzGqCQPR54AUTa4JAZ8f+JG5ygkBwQuzj03KCQIQKMq1pdIJA+qEgqzh1gkAQ5/vgcXaCQNP+PL7RdoJA8HbmTaF3gkBGKiDNdXqCQMQ2Guo1gYJADqDxCsaBgkANPNQmQ4mCQHO9LLVDkYJA5vJ/h/KVgkAs3kqZjZeCQApNJYc8mYJAtrboYB2dgkBYrsV9DqGCQI/9qJo7oYJA36YkUsmigkDWVb9jDamCQJawzDUzqYJA8JC/NQaxgkDOr3jOBrKCQP7osodYvIJAK7j/2urFgkBiCQq1oseCQN4LNRfxyYJA0N/fMn7agkCmv8xKrdyCQFiNd8eA3oJAQWvj8lnfgkBekUPuXfKCQAxQ1NoH9YJAzP085LH5gkA+ZTFiwf2CQMEdfltjAINAgh3AvuABg0BDz5vzQgKDQCpFwfbsBINATJ6LVXsKg0BE+M265g+DQFw7FIF5EYNA2YHCrWkWg0BEaesIehmDQHoDEXCRGoNAA8184qQbg0D2vsmOcx+DQKjf99lyIYNAOr6sAoshg0ASpyZZLSeDQP/4gYfEJ4NAsKFJRXIpg0DM5t8E7imDQCmpkALDK4NABGYwXGoxg0CAqTdsHDmDQADAKChlOYNAr21rmmhJg0Bnt9UwW0qDQNhPv7K9ToNAiCzWxi5Zg0Ab8dv6mm6DQKZq5eMFcoNAyoFQBW51g0C6kSY7PneDQOaLz2cdeoNA/fsqx8SBg0DxjrfNSYODQCCLWRrIhYNAJlQMzb2Jg0D+EH8/1ImDQGJbFqDCjYNAtm5vQTCXg0DxE4Tt/pyDQMinX5hAooNAJ7VgW+etg0BKBLrcvrGDQJ58QvjqsYNAPfZyHBKyg0AUmzDo4rWDQJyQqy8VtoNAkBt3jXS2g0CimK/EGrqDQOAjS58qvYNA53N8ZRG+g0BU6xU+17+DQJDMAPtFw4NA2TGrSjDFg0B4O6YPtsiDQFIksiMp0YNAykPADcncg0CU1qsrVN6DQPK3YVJ334NAlO8AViLig0DluxsMWOKDQGLkoAzA4oNAo2Wts//ng0COsr3ZlPiDQGpnXOpD/4NANgzgUlYBhECucdeuZQGEQIrzoB2kBoRASs04HpEIhECMoWCd8jSEQGpgR2HsPIRAnD61utxBhECAyTOCrkeEQAQwreFsSYRAzcTH6htRhECYbKJ00FWEQK2fE4y4VoRAPloiTQpfhEB09ei6/2iEQHBJ7n+EbYRApCeJZgBxhEC2VHGFt3WEQL5nBijKd4RAnG4/O/l4hEA+RhHqunmEQDZYDVldeoRAYoILNHh6hEDMXl52JX2EQAxD3z+vfYRAYIFXs61/hEC6XhnX0n+EQHZV/GRdgoRAaKd0enSChEBaXDPdJYuEQA9fDqnJi4RAGgKn83CYhEAa00TZD6GEQPwltI1wooRAslEjXXzBhECq9Mg5PcSEQKBdSP0ZzYRAqICHtCHThECwlTekkNaEQBh9Oxpq2YRASF0WR2rhhEBUPN2cYumEQE0AHet36oRAPipg5CXthECH6NVG0O+EQEb1cAk28YRACn8HTWDxhECKmQjofPKEQGwk9k8L9YRAZrZwd372hEATo8dw3feEQJ2Tihg3+YRAdGGfMFr5hEA5kDuqg/qEQLz6M+Qz/YRA5FF9HIf+hEBx1mBv4f+EQBYMXq2BAoVA9qdaczAShUAd2nvYSBSFQC1QLqT4FoVA0PBqyXIXhUBZI6m5DBmFQDNSQr+oGoVAJKv8nfsahUAgzSBZOyCFQIa/ZDTaSYVAinpHI3lXhUCKpHs1oGGFQEm/KITdYYVAEMf5CuFlhUAMzwKBS2aFQKBSQHSgaYVARHRKBdlphUAb5Q+i822FQITZIsOYcYVAGpNOMrByhUDl+YyutHOFQDQBwJm0doVA6E5xe5l5hUDS2BIjioGFQERuen2fgYVA5gKybneChUDM00oy1J+FQFzRrUxAroVAc1hE1EKyhUBGp+Z3PrqFQB9o/nfZzIVA4JOlXQbOhUDHUFS0jc6FQFIun8mA0IVA3AB/dT3hhUDRw2ZvreKFQIKKc4LN4oVA8gI+MGnkhUCImhqcreaFQAPI/8GX54VAADvvD7DqhUCSxbeSrzCGQGERmdTvTYZA/Aj6BhpmhkBgfjl+t4eGQCLFp9W5joZADAIGKsSQhkCfjH7YTaiGQLDoKJ5Ms4ZACAajxSS5hkDv110j0sSGQP3wWOnIxoZAHcRTSM3IhkDg1afpyMqGQEvi9jzKzIZAlvbpdIrNhkDDI899x86GQJ7DUTzI0IZAMn4AizD/hkBI4NGZLBOHQBCsQBIyF4dAfvlrLTIbh0BXMM1dkSmHQHoC85SSMYdAYH1m+Yk5h0AU/m72W0GHQKSYZVWMQYdADposYY9Gh0Ce7q763VKHQK0ruTizX4dAVYBLrxdrh0D0jJshHnOHQNQ3zokQoodAymZMycaxh0Ake6VDyLmHQPES0L7AwYdAnqEaasLJh0DUXsGMwu+HQGoQsHZyDohACEHc40gSiECFg01bOBuIQIgFvcx7M4hAN8qitYU7iEAqoJ0Dpk6IQDBhgbOoUohAKNP2qqtWiEAgC4uCrVqIQGltp6AkXohAkLthAQm7iEAhv9WLEcOIQFbiBUdaz4hAgH0jFQH+iEA= + KBZXds7jZUBOGswAeMJsQANJK5hVInJA - + - aBxlRPDCVkTCSvBFwUE2RUL5tESdUIJEP6sXRTGBh0RporxEq4MRRMHSBEcTEBlE1WCrRI+YcUQGaUdExYLMRNzpvkRFoXRFVirMRbA4qURtjS9EhuOwRdFarUQHbF9FSU01RAfHNURjlGZEJRloRBswhERTktJEG9OCRIJCMESIahpEt0JhRNbnmUTNPnxEiXYERUMlGkd8XlxEP7vaRGbFN0QEYVtGCQBcRI/FeEUZHHdFS/mMRLNt70S7jepEjxGpRkSNO0Tw2eVEGGspRIWlokXQqiREWZg3RJWKf0TcvFRE5YGCRL+9/USSweREFgSJRAPlZkRHEoRFyrIURJ0XjER3xCNGdnooReYcKURzguREfINJRXMoPUSJ6K1EbnuBRFzMVUTapsFEYFs2RN/OOERMS+dEtT5mRETumURNjGFEvrFQRPLW30SYqtxETjtaRPNcrETrkQFF2S6MRMtIuUYLMrtEn8GURCTvkURIH3pFRio+RV9XBUVSSEBEz1ZQRPfBRkTj3x5EtPILRfVRVkSgRB9HnVRsROwITUTyhYZEC6zDROpRQEbFd5BE4fbURa8ufkTFPb5E9AuPRYOaUEQPjilFPNZQRHhiTkRyJnlEYs41RLzXOEXO4RxFo6B6RBu4QURVP2tEg96qRX8Gv0S+aylF7h8bRHoxO0RMn2pE32CaRBvJHERyolFEi8FKRaBMYkTLLrlFJD9QRIbIQkT4YKBEI7SeRFOC8URrn6RE8+EwRGl4VERxuI5EWdhjRhMktkTeKihEnzbFRMm3DEQlSB1FVXpzRKF/hUQPVFRE2YgYRFrQiERcwQJFoXIlRObMgkS6FrJEUOSARFexkUZb5UlF4qxPRMriTkTjZzVEf2QVRbhqjUTw7YNEaAFCRA6bbUT2aIVETVv4RPQlvESK7SdEuaouRaNRgUVKm1RFuepQRDe+WEQEc4BEXvyQRZo4UkR0NSlHozgNROXaF0VU6JhEz2KTRBp7J0QyCw9FfdzMRcjxTkRh4zpEFkG9RKAyjUQUqbhFhCdTRHNrYkTYBUpF7WIaRIwgO0RGsctECDCDRPmUoUTXCaxE0TobRaB2P0SZTMJE07gKRdGBlkXQSvlEvojBRFCOMUSe3jlE1o+mRCAZqURouU5EuRthRLenlEQkVodEZN8lRWiMR0TU5edEwwFDRD+sMkRIH7tEEfJERNbHtETAwpVE3EOtRFMQZkRC3UNEGd8LRYTUH0T1upJEeE5pRYXokESuY0ZEMQomRK6or0VLH9JExFMyRDThp0Rqq7hFazOrRDC5L0SCwixEcb87ROgXb0TgwS9Eb0fjREIdV0QdCGBF/ao8RLua0kVlXkZEh3o1RO+qLkRLR1xE4hHARCKvA0VzNSNEHlyHRIfhMUVONJhEW09CRFFdy0S1/UtEAcZ1RD3apURtX4FExp9CROTVAUVcI5ZE8TgeRAd0mET/UpdE0E9fRN0/sEQCHDhE36xFRPJ1C0Zpsh1EHgAJRV1jhEUdxDpFTf6bROyKxUTR7kxEwCdkRGA8aETr4E1EIj6iRFziTERl0zlEST+0RWcs8US5oYVEsgUYRFtnwkRZ4VNEMoanRLEYK0TbootEEMGHRLuQh0QbtLNEA8fHROAQH0TxjPpEodJZRF/1SES5GDdE8iwURCYGIUQQQDJEXHosRCdMcEUu0Y1Ea2BHRPgdrkRnr7xFEWFVRLBC6UXZcC9EO5KBRTtDuUZG3SpEsg8dRKXeiER6TJJEUh8uRGElT0RHlpJFhpnCRChUFERSdohEDnFzRWM0SkRenShERzdDRccDaUTfwiZGEZ1DRP5RQkRawxFErr6EROKfaERMq+FE34WqRJ6epkRmAHFEcolwRE+sOUaulG9E2vcJRXqA2kRXg3ZE6/t6RN28EEXO+pxEUTcdRAMjPES8FOxEJZKORdBdOkSSFYJE2ghfRH90Z0VNEzlErtMvRCitEkWNNzNE1+cSROwSs0QiTXFE5qFTRgXMG0SK8XVEq9cmRXX+TkRswF9FyEgXRdM1wESbAQNFoXnKR7eKn0SSF5VGNaOmRFKcoEbW44BGv7+mRctNLkb2FkFEuWovRJOpe0TVxoFEsUeCRbTGnUTuAchEgKYeRKfPU0UIOXBFxfMRRQHMJkRpTylE7500Rsc/a0Tz/B1E44lORJc9mEWwhlZEPkCZRF76kET+nVlEKkY3RMHepUSZDhlFkNFaRPKvEETBnEVECZ5fRHemZUTC3kVEEqqrRATsW0QNnDRE9nymRKjrE0T4tS9EqNCERwkWB0dys8BFHjidRTnXoUSswBNF0m2KRP1QGUSMIXhEIV5mRGVbKkQTVENF4SGFRJD0KkSLb81EPZEhREsJgESQZpJEX+NPRFnfNEVHPAFG5IcNRLUbG0QX82VFQMFoRGauLkQ2V8dENsH/ROYPeEWlXxpE6s02RAL3hUQx6VNEXUkoScRGrUQgS2RHxsIXRHfcKEUxShhESnaVRkmYNEjN0w1H0dw0RWLtYUaojQVFgz2FRUkKT0ZH8mtEHtxXRLH1ikS7UV1Ee1eGROKpDURBVS9EpsDnRBw0WkT1FapEjU2jR17U2Eb4nzRELxekRceJVkWKeR9F/OeIRK8gCUU4L0dEcEtARLWfEURjsFdFehRtReUnc0TRLwdGG0RiReg7DESZwx1EqLwuRMJpU0QfPOdF0059Rad1NETddIhEnUWGREwwj0QGP+JEZU1hRKoRlETQqy5F3X8GRIGoeERnvzBEIk6nRPFzQ0T6GkhEpGcjRFgoJkUjA5pEa34JRFjlS0TsQoxEI6OtREbgkUWCumNE3bWWREVLZERirElEpiRJRIIwikQyERBEGjkJRZnIRkSFZS9EXwG/RHyVX0RhAzREnFsbRDzLEUTf/yZEB90FR10mikbML5dHBMZXRm7QpEW3cRlF3vtERb+FlUaT9GZEf+PLRV/t2EQrFh9EtIejRBXyVkUaUztEH1ApRV4+KURJSmNEvkkvRB6wU0XMns1EWXh+RKrxYURh/U5FlwqNRBnslkUhqG5F180tRW8CkkSy2gtHUtPJRHwci0bU7jlENeuCRPvUOURxXWNFl34PRP4JNkQEellEzdY6RNEyRkTkcKNFEOxaRAZcvUSx5ZBEtkN0RM4oPUR8kLJFBBQGRPdYmUR4FWdEBNvfRQNdD0SU999EuWkSRC5zu0SGpIpEVAuJRFILBkUDhW9F9zaqRDafkURQoVVEh9AwRCbHs0TK9h5Ee5svRKrpF0Rl8TZEY00/RG0A1kQ0Mw1Frw1SRlSzKkTl/jpGXXxsRFpmx0SwY3BFxnY6RIVqK0Td/xpEEsuxRYc8y0S0HxJEv1DbRCuiuEXBMEBE1SJVRDYYH0Q/q5NE+kmCRXVwOUQUdIZEUsEpRJwBA0WE9t1FKHXPRYGbjUQ6XIhE/yVCRHECfUVAq31EbHssRO3Tc0QKwRlEa/ukRMATSkUPjsRFFPZnRHghyUTMGo1EyzVORCFUb0Tg8KlEaIK/R4HY0kQLcZNETTOURA8KAUUxpqpGwHRHRHpagkSs+dZEPx4hRQVdikb7cSdFJqbARGxyZkSmRkdEuQy+RFV2X0SrohtECJJMRENKY0RHcS1EgftXRPX0oETzphxEaZGDRK3/GURWahdEs4x4RLTAL0Si1atE5yeeRTtvMEQmM4xEApNoRD5fM0Sh1EFEWu0IR808kkQBPMNFG4k5RCwCIEQoHtdEkGsPRhSKgERv8HdEtS8rRJtsQUQzi7FE/5sjRX1uKkQSQShE8piKRLdXP0XJdgdFc0MrRnAmi0UxOchEgIZsRF70SETgNj9EyB8TRCxPF0UIZpBEZEZLRArPuETTYzpEjCU6RCXnTkSxhDVEubKtRWw2WUTSyFtEMsLiRPK5RESiFEtEppVKRKYp2ETwcCRE2CVORCUihUTPYC9E7o/3RlDJNkTleElE6GiGRclDT0RdHRhFZvOTRTcXMUd6AWlFngZXRCWPp0ZSeKJFS1dZRbwkV0R8T4BEJ9dERaWXQ0TWM3hEAHU7RBIck0ShR4ZE2J0lRJ2lQETkTB1E4DXfRG/4sUTpERhEKmmBRc1zTkTAr41EGTtGRAKAUUTgX3dEIUYpRvAXgURyNuNECCoERaoNbUSIJk1E3oQVRapOOUQqtHtEBq5SRCzpJkSmzohEm96ORIHfN0TgvCREZ+VHRE0UPkRRqh9E69tBRP7tKkT0d3ZEmw98RbVrVkQ1ddpE2cYyRDGHFUROsFJEewl9ROO8dUSzf0REI1xXRCfT4UTKSLFE9l6ARMFtoUev4JJETcGYR1X1UET+QgRHV1IORpbb90fFeQRF/dVnRd0mrUTU3oBHVC80RW+tSUbpVCRE6ArXRJfUVkQ2vUVEGuGxRIFTjEQg9oZFf/ZURBGAKkbKfzZF0LSYRa6RzkSM0TJFPg0PRJq6GEXnBZpEFC9GRLf73URgvFZEY3NgREAeWkUw8LtEJJ8WRCc1nkT+lUhEc1IZRM5iHEZJDBtEis5CRFdUqER8XxJFeghJRG/dIkToNE1EoKJkRK+1eEQHjnlEfQifRF8yx0RuuY9EfUy8RDdpg0QnKoRENBOcRMAAW0TPaK9FtANTRBJau0RwU7NEG2ZMRIb3k0T7uMtE9OU7RGmhZEQJvqNEtCJwRLARU0Q3dn9Eck2kRORnnkTeyDFEJ1CeRKE3iERa2nRIHKisRLd+N0Ypq3VER++ERAZEQkRuh9tEGSKjREHt3EfguFxEHewVRfj8lES9uW5EWUqsROkCekdxJmxFE11WRHbGTUTKzjtEUeR6RG3qRUbLA6pE0N6HRUg0dET4lwFFiulCRN0Zt0TfaDxEvLlJRJwULUQ9ybBEf25GRnI1akQ6G1lFJMNERDDju0R7LqJFl5vCRBtHLUTChoZE/YkeRUX1aER9JBdEagpARFPKTkSQn7xGzwphRBT0QkRKGZ1ECJ0PRLPZnkWI4elEEjoTRNJMuURa3VJEdYpkRZ7mlERMIEVEBMotRKegskXvOYJEmnwkROjvVkSBgE9ED7+vRDrLGESx+ipEYJE4RKMJY0QcLVpEA/YcRILThERV8UJEDDh8Rt6mTkTVXORF64LXRfVYJ0QZgUBETBcTRcPskEUeTElEDHgyRWmGKUQBvJFE/8pMRKItDURtYMtEeyVRROq/3UV4rT9EHSthRHFWrUStTj9EpEEqRCVqRUTwW5tEbeI6RXDOOUTSecZETd21RO+zAkX9u2BFVFi6RcLTBEXxhT9FK9k0RKn4F0Vu+r1EA8hKROndF0WdKUVE0H4/RKqJJkZwz29EyqU3REIetERj/RxE3/s4RCG1RkT7YiFEhqxBRMTFpETfw4lEZpRtRbimTESE5LNEAUMnREsDkkSSQ1VEes9PRBL8tkaGHURGH2EDRZcX7kSP8Z9ErtkZRFq3L0ZE+jJEkvtHRL/2aUXxJEdErg5YRLhnIkVO9iJFBxYnROmsN0RhMyVEGYyDRPjJi0QajCdEEZxnRO2HFEQfjE9EwWFZRAYP/USY7S5ERbXLRM1wPUT+MFZEp/aNRDgZxkR3GqdE8WhhRKbpTEQLdZFEUgBDRAcb9USGeqtE0YdXRP/Mc0QIojdEohxbRGlhK0Qyn0tEySebRcNNCkWzjV5EZiaqRE1ppkS0lpVEvUFwRIkEnkR1zEREkLVKRoXUIkR8V5dEyLobRcas50V/aaZE7+1uRH7+MkXhYzlESSANRR1B30fDPD1HhqFURLm8iUSyadBGjR05RLe3pUWeRhNGlEdtRKFNEEWMCBNF9BXKRFf6LUTdDgtEGDdJRU/2HUSFDw1FB1AjRafHdERW0uxEzkxdRMip20TWwVdEinRiROuQqkS+hxVE0VsJRUGWsESQ09BEpKkgRPGtPER9fudHq2BZREv1ZEfimQ1EC2kgRKdSgERW3QdHIJo4RdI+LkSJSztEfD8cRv5wR0TbN01EkKlGRX9pP0S2IshEOSOJRFXfPUSFHThE5dtgRGm8JETTBENE/w0dRDboLUQkIkJENAB2RpqPXkRXjsdF8TcvRTAbskSCPdNExyRQRMHJGUQ+PzpE4wNWRfionUSgCnNExjUBRjQDGkS0MHpFwylpRNTgzkRlBJ5FC44iROG0bkVU2x1E1mJnRPh9K0SoWe9EYKmaRLDpD0WH8PVEd0uTRBDiS0TT5YFElAJMRFKamEQYKUhEMlo2REErJ0SEGTlE/kkbRLW0PEQ1oklEFoJtRIrdIkSTh4JERM8RRCSygkTnRX1EW6ElRNTDyEUPxEpEsAs9ReDF/0QYaB9HUOyzRMO6lERZEmNFGei8RvHnX0ZapUdEkXrIRJCFwUWpwxRFdhzBRPY6WkQYfI1ExuMiRKaZmkRIbJtE7mcWRGZObUSz2dVE5wmXRB8ufETO7RBHXaN/RuFMKEbIQCFGOFscRioydEVCtFJFqJVHRdvqAEWMtRdEYtKARW74l0WSGXtEYqFTROLfakUPNwpFcT2ERG6emEQwrT9E/eMkRBa0kUQCQiNFzfJURT0aE0VWxRpFwsF3RHixMEQI7ytEGdcJRG9cD0fZw0JF6jFERTK9jUQh43pG40NURKHlg0R7qhZGVpKuRcRh3kSxfjdFwgBpRTw+T0QAQE5E3+AyRHjnRESRpftFqC9vRX0PckSMeEJEVTt1RIFlMkRjU3NEmjsjRJlTnUSFq2FEFrkzRLgYdkQLOUREKqc2RGO6HkRN9UpEjJAkRMBmi0RhEjdENTEnRHPXRkRusRRE+ou7RLWejER9gr9Eg2l3Rco5CEX5lb5EICVORAkzz0S4hUVEFNOBRCONiUXyPQVFwbaRROBmKEY8G7BFpreCRTqJkkS9xORE9SSLROZwwUXDyZlEnmO8Rd/k+kSQNF9E0T3yRRb2jkWEkuxEXcTRROIYZ0TpTBBEKGoiRI7jZUTJpwVF8c09RMj2SkbRN+ZFKDJERQQai0TDcWBENuZ8RVvc+ETk3IVElsAPRA== + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - ys93523BckBoNn9ux8FyQEZz30ZRwnJA3jE1LeXCckDsx+k9PMNyQAzDsaPExHJAwiNk/HvRckBoDK+1Q9JyQHoyh/aj0nJALbeuhNLSckAnLjqS7tJyQPcSeyx203JAatOnTWLUckBAU2Cizt9yQFbk+ku44HJAPsK4AlHhckBG+0eb+eFyQOWkzslP4nJApb/pSpDickD+3OmZJeNyQLa4FZNU43JAsA+zd1TwckA118G0UPFyQJIQSzbL8XJATqZ3rMzyckBWN53utfNyQDYfs7YN9HJAnt1uoqH0ckDN+79ov/9yQHjkHg1PAHNA9FSHumMAc0DK9m5R+ABzQPrp8I6PAXNA/t17HzkCc0C7RIQfzwJzQKDFOgf7A3NAuDKQriIFc0ATLp7lpApzQJMRUPAKEnNAUOy1mCgSc0DWaO6sdRJzQKTmMdS8EnNAjWyO6gUUc0BwkVZUTRRzQJIUJYd5H3NA6kDO1Q8gc0DeAa8eOCBzQGhl4AGiIHNAglgdCjkhc0D8GnLOxyJzQMY6Ar8OI3NA8q2rZc8kc0BCq8QFRTFzQJhY5ndbMXNAQ8+9ySQyc0Cf6HfzzzJzQHBs+OQLM3NAlARaUNUzc0D5UEZr+DNzQI0UvYI9NHNAEkTALtw0c0CuoKtNuT9zQOeSEwJDQHNAPAYuWuJAc0Cg6D46eEFzQMJFVLclQnNAL6owNrtCc0AYLJAcekRzQLQ9XcubUXNAO4iV+kFTc0DSdMQvpVNzQAJZFcHhU3NAA90D9XhUc0COyEH8+F9zQMVND0CRYHNA6ys7c4phc0BkFQbhHWJzQNSOO005Y3NAEMI0O5Fjc0CgTdvZzGNzQKCuUVUubXNAOjN6wd1xc0BwJygNTnJzQIjurLNncnNAjw8ai4Vyc0DGZ7nEt3RzQORMjC9MdXNA+k3YrXiAc0DPsnlHpIBzQJh7pVsMgXNAuSSfxl2Cc0AGot7lp4JzQNRqLs3/gnNAkJ/WuzmDc0BGCnxlDYRzQEKm201ciHNA+qOFqoaQc0Bf+NhRTZJzQHE4PVxuknNAymfnObSSc0BGQZLhOJNzQDW9WsBilHNAcnQBI/eUc0D+4A+GIKBzQP5UPZi4oHNA9y5DXeWgc0DxIlPyTaFzQJDJUvGvoXNAK+S4m1qic0DiUVC9jaJzQB9p0TQFpXNAz29zldewc0CA/CMMN7FzQPhxEoB7sXNAgmtXbRWzc0D66Vxst7NzQCbJ1hQNtHNAuKhoh9C/c0BEEyir9sBzQJyyw8ZFwnNAK57Lfc/Cc0CYEwSXJsNzQNRqWOuVw3NAnBJnXtfRc0CcxA/MudJzQOQl1ezb0nNAgmRTSvfTc0ARN9eQ4tRzQLf2Ad6k4HNAXtpjmDjhc0AextpKZOFzQFYxQz3o4XNAFMQconric0BmNQlhDuNzQHjrtPGk43NATWqPCPDkc0A6C5U8TvFzQP36BTjQ8XNAOfoD6/ryc0AJWeNOovNzQOha8I829HNA+tVPiI30c0AMjScveQF0QEQ+yxaiAXRAej5YE3sEdECjF1ibBhF0QJlOmOl3EXRA9htPIIoRdEDunQ5q+BF0QECnjFVME3RAQv2D8+ATdEDCHjj8SyB0QECsPsQiIXRApbZkULghdECusfNqjSN0QCIhhdi5JHRAzdGJpk4wdEBkV+XL+TJ0QLKL3CscM3RA/iKzIeE3dEC+Y1CaPD10QDMYwHBSQHRABRrX6l5CdEBapgV8KUN0QBoBiOpJTXRA9NRNmmlRdECmZBVfOlJ0QH4VHXWjUnRAoEPKLTNTdEDEgNOu9lR0QOccZiyMVXRADs+RCCNddEAMXf3PuWB0QOIz+/QIYnRAPBPi9HtidEBAK8g752J0QLZY7kNPZHRAng2wUyJwdEB6c4I+YXB0QKJF8zTNcHRAp+EfekFxdEDm0KvxFnJ0QDoMMLI5c3RAwFpCQDd1dEBqczsqQoB0QHJCQqFqgHRAWRGjpPiAdEBaHT7wToF0QBfY6yxJgnRAS6p9aNCCdEBZpIT4J4N0QF40eW8WkHRApZs4++6fdEAGJ0qkz6B0QJS1T5A3oXRARq+nM3qidEAuDEDsuaJ0QAP+sTIPo3RA4JTi+wmwdEDWu0W/w7B0QIxNWBirsXRApuiDdDyydECc7mnUb7J0QAJ8peP7snRA79BUnsq3dEDyR0Tr4cB0QAVHSbh2wXRAX12aKevBdEA2pOTkuMJ0QD0YMQFQw3RAbAK5JHzDdED2r1fT48N0QEyWGEkhxHRAx2M4YLvEdEDsqLNw/c50QMTxvTGL03RAle2N4OHTdEBejlmUOdR0QDtHjRbO1HRANO75VbjgdEAXWErHI+F0QMRVSc+54XRArOosp2bidEAQx0EEkON0QPLpJgZS5XRA0fnrwMDwdEADrvhQpPJ0QASTPaNO83RAm4tz5YzzdECTgYybpQB1QDxFMtHOAHVAFB2kfmIBdUCe254aXQJ1QANNr1OlAnVAQdtnqeECdUD6z2ODmwN1QElJizWaEHVAOtEViWkSdUBESFRdJRR1QFUPXjfjH3VAh1HbrOwgdUCUGItFniJ1QArKtl7mInVAUBPTb6oydUD09urtNjV1QJRTHpHLNXVAdlZv791CdUAxzlvmJ0N1QB6dvyTbRXVAVjTURt1PdUAKHfqOFVB1QDZx4IaDUXVAu0plvL1SdUDGxF71eFV1QM5KjfTtX3VAYGc80QtgdUDgYkSjomB1QLQpW3I5YXVALlo1qPRhdUCsGzsdz2J1QPrWYFsMY3VASEX5N2ZjdUDbsXvndnJ1QJUGYC6Sc3VACMS4vyZ0dUCw51tVjXR1QCKqCTnkgHVA4pFetHiBdUCzARVfrIF1QA0mDIm/gnVAscIUkKWDdUAIDSBCFYR1QJTX2u2ahHVAIKqW4ouQdUBcwB+0wpB1QPBUVIRkkXVAchIjQ7yRdUCl3hh5bZJ1QHdVZv47k3VACHQscpWgdUDu07xtJaF1QHab5yW3oXVA8fhtskqjdUDajm58uKR1QA5bsnGhqHVA3gt/Rv6tdUBwvfCLqrF1QH7aMRn0v3VA0Xu9p83AdUDgJL5AZcF1QEqeon/5wXVAMsiIqaXCdUD+WInHpNB1QIzdLNbL03VAcKUv2GLUdUAmdrLZ5N91QAycWRUQ4XVAnpmDEaThdUBACXb3CeJ1QBqLAEo54nVAn107dEvtdUBc7QncivJ1QP04MxIZ+HVAaA52QEgCdkDhQJVP0QN2QKmBYgzdE3ZARkKFR00UdkBaNzC2CxZ2QNyV/cmIInZANRn3a5AkdkAXNfe1Sit2QA4rNLYfMXZAgT8DfpQydkCjHx/tJTN2QIR6ngxSM3ZArpcgBXIzdkAonCgVnzR2QB7CDSpYO3ZAUDE+6x1BdkC+5/DacEJ2QL6GXWDKQnZAn8rnNRFDdkC5R0EOoUN2QD7iX1J5RHZABBnGrcpQdkC61eT2ElF2QPlaPVXRU3ZAEP5yoIdUdkAAcepvzVR2QDYOnYINYXZAPrBUNiNhdkBnvskj3mF2QDYOcS1RY3ZAssVFItxkdkD667bbVmh2QLKF4i4Dc3ZAPgD+An5zdkCd6uoYY4F2QHmWE0s/gnZABvkrvGiDdkBAoTpfkYN2QI7J5WFMknZATX0AWmWSdkBiEGaeeJN2QDJ3GLK+k3ZAL8cK2NCXdkCATZ5POKJ2QJgB/h6PrnZA7p4aJuCudkCMmUTHwbJ2QLJpXD8Ks3ZAfHvRjQ20dkCmLmS7c8B2QP6n9Ca/wHZA+JKtTk/BdkAITyFcG8R2QG4L3iPQznZAzFwv0oLQdkBfyx/n8uF2QGmQxULU4nZAyZGzLJHzdkD1634vTvR2QKkmFwsyAndAvmnpehQDd0CQvtLgABJ3QJO8zS0PIndAsitainIid0A/Vsbi6Cd3QPIu1B1ELXdAfvEv4p4yd0D+nui8pDN3QPs/a0UNNXdAeHJPqeo3d0BPqAcVnUF3QJzfYyA9Q3dAqG8jP5JDd0C1dqZCG0V3QE6PdeAGUHdA/M0iwUpRd0ATEyeRklF3QNMypKefU3dAoKaOqypVd0BpAlla7lp3QNbgdJ98X3dAJPVXtRVgd0BeaLX1D2F3QIjypzaQYXdAxDMQDaJhd0AmZ+yyp2N3QJCP8Ms7ZXdAgM3gpiZvd0AOrVPJ9G93QNAsSplrcHdAY6qp84Rxd0C+vledn3J3QKYyJ3Qmc3dAqFFhQ7hzd0A8DMEg+Xd3QGwR22hUfXdALCLfV2x/d0CnNnFOK4B3QJS2rU18gndA3iIGSAqSd0AaJz7yq5J3QEZHt39KlHdAeo/KWreid0Cym3jooqN3QKp3bYbDr3dAiQL83eGyd0C8Y1dxmrR3QFkiBj+P1ndAw4hcqk/yd0DGh8TeRv13QGOktZBhAnhApoeZU6ACeEDIztk35wd4QLK6fIX8B3hAmhRi/UENeED374M0oBJ4QNxIQF1uInhAoQrFjDsjeEDCSZyuiiN4QFUiSiREKHhA2P5idZoteECYjUfK6TJ4QEd1ldGKO3hAQoSD5MFAeEDMcpqoC0J4QBtqmpQqQ3hAVAi1io5DeEBc5wnbE0R4QHxdA3d6RXhAnuGZf8pReEBHlj7/llJ4QEZikneGVXhAWg6xMvlgeECIdQd4tmF4QDTRgHi9YnhAtM4DJ+ZveEC0RPCArXF4QAdhDAK7c3hAhvO30vxzeEAyD+wIjHR4QIh83OgidXhAupVCK/d7eEAoy0vBNIF4QJhZQMujgXhAZw6nf86BeECY5PI+/oN4QKRqK/yZhHhASoiDtk+IeEAoF/4HA4x4QGRFJhGpjXhAC34lOJmReEDxZBnbBZN4QM1+wzColHhAXNz4RFuYeECNZUFpT6N4QNxCQwy0pHhAablW/jqteECY0oyZlrJ4QJ08HEDgt3hAh4MFB8/AeECwIeDS9cF4QLf4CQgXw3hAcPCPXgTFeECYJ9aRHst4QNuXYUoQ03hA3mlhkiPTeEA0uEPjttR4QMNuEhEW23hAtm09QTHeeECwhhOioeJ4QMAeCCrO43hAxN4UjfzneEA4HcaZL+t4QELj0zVz83hA/U7nkwH0eECOk1bli/V4QESCEv4f+XhAHm7/0H4DeUCYUTegEQR5QA7hNnqZBXlAjLG8edQTeUCrIIce2xt5QAMojwGxKHlA/40emwwueUAkWcCjaTN5QKhrXjm2M3lAxMUxdydBeUAxUvup9kJ5QGDslyP8Q3lAGs5G/fJFeUC7i3dNzFR5QAhpNk3oYHlAfDvxGthkeUB4Il54QnN5QL68iqLZgHlALOlivTqPeUC7qPPNv7J5QJPsuNzIwnlAIL+evq/DeUAT3icWV8x5QCWacP9C1HlAmh4B1/vUeUBoNtOaT+R5QEyY67Mm5XlAasLW3lDpeUCCwbikwPJ5QD5goMsN9HlAtKgmr/0DekCKJAW4/QV6QERTKe5jC3pA0VXqYTkjekDmm2EVryt6QHVF2CRpMHpARCxoIiszekCWiJZ62TN6QNdE8rQMNXpAXIboQy43ekADQo6eMDt6QLbBK/Q3P3pAuMfFKnhAekBiBz4wGkV6QOpZsWxXUHpAHjUlzidVekAkzU8mIVx6QHwt5WQpZHpAU99L2zdlekAFaYWFLmx6QOlTGd2McnpAjuBFGy5zekBkY7ikKHd6QKxVFifVk3pA40zGLaOUekAWq4uB35t6QOwXO3keo3pAiZNxbiWrekDfto7FM6x6QFp/OrQQs3pA7BpPkP2zekCj8wcpDbZ6QIwj0xwPt3pAeb5IyhO7ekBo+/x3MMN6QKZuQ3q/w3pAKvhvtRrGekA0uyfjxst6QF9497K00HpA3EOJj8nTekDUIKxX0dt6QG6iYNFq4XpAP7Gk+zvkekA0z88DN+56QBKK8y8V8XpA51pni1vxekACyTLJTPR6QFKwFXFs+3pAamSCzk0Ce0ALPwCnTAN7QCBYZxh8BHtAK0udhyoOe0BeqIBmwRB7QMSZqMqKFHtAKsu1/UsVe0DwlsaT1SN7QDbhiupZJXtAaLS8g8Ize0BEbIy6qj57QHhGLPoCRHtAtmm9JF5Se0AhS+zWbWJ7QOtQJekRdHtAGBCdhL+Le0Au9gs17JB7QDS+/+MilXtAMhW00FOee0DIUk82s6N7QN5yPpIwpXtAkJdeFQGne0CUuGfcAKt7QJBGSEG3s3tAFcgPs2C7e0BNYcI/ecN7QEj3eE17xntAbtmEEybke0AoTCUM5fB7QMJld+WL9XtAzhxFOG3+e0AE8nTF8gB8QHzkql6PAXxAoCj/SNkBfEB27dk29QF8QO4eiLi6AnxAUFB3GcIDfEAMp8RdaAR8QIpHvGWaBXxAvv5IWM0HfECTfW2viRF8QGxZGMbQEXxAPDy/JgMkfEBYZQXeUyl8QIYAfJsLNHxA5p57ES47fECibeKGzEF8QD2onIZnT3xALFt3NNlRfEBka/RUbVN8QMAckcV2W3xAI4/xEg1ifEBQjXnoVmN8QMSkXRIrcXxAngptrgRzfEAqUKjMRIN8QMjLfMXDjXxAiC+ElhuTfECMstNEdph8QEXVUgJamXxAr7DpHUiefEAGGANdGKN8QMwCqRb6pHxAk1pVFo2lfECaXDEbAKl8QGB0/G6msHxA3as2eb6yfEC21Ccq7rN8QEKr0vt5tHxAkecUGc/BfECCaWyThMR8QFqj50nN1XxAYKI9XyPXfEAo1EXl99t8QH67xqpX4nxAJs/aiQ/jfEDqzLB8buh8QNJpSGVA7HxAO/2M7bHtfEDWIOo1FvJ8QNws4oBU8nxAz8TK5nPyfEBEhmMZUQF9QN1rTT4BAn1AvBfE+EsCfUDX5WW7RRJ9QNDWsYVkEn1AwlsmK/gTfUCQ9LubVBl9QF6/DLwdIH1AoXMF3PIhfUDUhx9+PSJ9QCq7BEmhMX1AFDW+2dIzfUCgRocgJjR9QOyKk6hHOH1Ac5+Axp49fUA0tZ1x/kN9QMfcKyGsbX1A1r7v73h0fUCyJsDDNHt9QJKPGiiDe31AoyY8LfWDfUBisMf38ZJ9QB5l5awllH1AGvWmxjCkfUDGO2YZo6R9QLPxTUYFp31ARukS1ivDfUCkI3Hh5sR9QIYbrkZey31A7jYbrvTUfUAIuwYC8uF9QGjN0hvV4n1AzqGVFoHnfUAMIo9aOe59QBhHurOP9X1AxEHoAjQAfkB8Wl0QFwR+QGRFzpY0DH5AZrgthEQQfkB4UawnJCB+QE7E3l/0I35AoAalrz4vfkBFvTaseTR+QL4P9GYWNX5AlZhnXgo7fkAZz88kWDt+QMjoyTgQQ35AfO+H1htLfkA4BpDNwEt+QInhWtHSU35ApOMHSI5VfkCMquQ0NVl+QG6hOKBOdH5A3IHSY/51fkC5JbM3t3t+QFwDhe1WfH5AAov5bBqDfkDgC9F6VoR+QLCw82QUhn5AqtrrskGKfkC4Qz5FxIx+QN/9I3yXlH5AAuXDiPaZfkCgluKSapt+QAY1xG/NnH5Az1GHIJKkfkDO8GFAYax+QFSyfz70rn5A5fqRf26vfkDX/39yVLR+QGi5maiftH5AmV45oLy4fkCqZUzXJLl+QIpShl+Vvn5AwTt7qQXCfkDG+LtSZsN+QOYT4xerxH5AdSdUFdXEfkAG1WBXD8Z+QJZ6g5Jsy35AAhsdyjPTfkAQ2/rsWdN+QNqaJ8h5035APKoxjGfXfkDqniO8U9l+QBBXMANj235AplXz/8zcfkB4mIRiy99+QKb+nbNw435AA6Iv6ArkfkBqjn/5aOl+QJd65oWM635Aj8H18NjvfkAmg0+cVvx+QHhiaFrpA39AdrxAKkMTf0AC8lPKYSR/QOec+FWwU39AZLJmP7dbf0A6m0V722B/QKTLuWyZan9AA12l9bZxf0DkB9brHHZ/QEDloRTrfX9AstN+gqSDf0AIq2fTq41/QDSpcUJikX9AIMMgdamRf0C2iQZJnJN/QIGaV3KkoH9AAdMDcV+hf0AHPiD8C65/QOYL0ZtUsX9Aeu+Uammzf0D4w4c2ptR/QGubulrd5H9AToyIVHfmf0DruT6XSex/QBTwTHSq7n9AVPXkvDrvf0BFeABhOfJ/QEPdHNOU9H9ATpseIfX3f0Ag8KXgJgWAQN1PfN/bBoBAMXoTlDoKgECcp4pNdgqAQDr9iLV7DoBAOFrBv7wUgEA/DY3/DhmAQJIYmWdzGoBAXgC7USQbgEA7glzEdByAQARnO0RnIIBAbhUWs4sigECoBRSx+yeAQJXYahAAKoBAbooh1ugugEBx3YC25S+AQAIjsodCMoBARL9ZeooygEDaDokRHTeAQHqUQNvqN4BA57OTwXw4gEAWangDyTmAQLgKSx+fOoBAGdWhWHU8gEAaqU7zID+AQMQ40UsdQYBAt+2eE8xBgEBEPO2sqEKAQK4lJ69/RIBA/nums+5IgEC9586X9UiAQKmfTksWSYBAAf8Z0a9KgEDCMW2d5lCAQJlYTAoUUYBAvHwRVKVVgEBy4rkNKFiAQOyqSx3mWIBAQDdsxA1ZgEBydCUhIFmAQNcG0XaoWYBA3lUYvttZgECkqbobCVqAQAAK1zPgXYBA5XAeOQxegEA9UGEGOl6AQKaMRDPAYYBA5PDpgt9hgEC8TGoUD2KAQM69lP9wZIBAt7PzYx5ngEC0CdUky2mAQJAbq2Eob4BAykK5FbtxgEDQJ4r0xnSAQD5CqoFodYBAEHiPPkh2gEA1eWFv9XmAQE6gwg2sfYBA6BGmpCd/gEBkBJ6xsIGAQJEm03gdg4BAjCvdDv2KgEBGIdjNHo+AQNib2YAfkYBAHCCptuCUgECovZNlHZeAQIyMzXeOl4BAARtck7aXgEAM8Q+LuJyAQKj+s7XMnYBA5mdDDBufgEC0+9AwN6aAQGFAkPWxp4BA9E6c+XGogEBa3e9LBKmAQBf2Dy6GqYBAas1qkBOtgECJjT8ME6+AQNiKkJBksIBAFLDOsR6xgEBe/000iLGAQBH8lHPZsYBAJMOMtpKygEAQXh9zOLaAQJasNIIRt4BANPwG5hu4gEBQe9IVSbuAQJ/5j6YEvIBAqJA5M7+8gEBkla9wd72AQDhG9Rw2voBA2kBjgVLBgEC5lsCDbcGAQIQ6i7eewoBAnHSWZ0/DgEDL/ytBAMiAQHFDWrBjyIBAYj1cjlPJgEB+AHpAQcqAQKrvu26lyoBAbmTXdEjLgEA6lbgnB8+AQCq3wWtM0YBAmuEsemHRgED2WDZB4tGAQFhiZe1T04BAsulrEUrZgEDT92r73NmAQOfq1kyN2oBAaWHDLzTegEATQvrbROGAQNQfDzye4oBAuHDaFPvmgEB+xDcT9eiAQHDEErZS64BAUoav8EvvgECH1YpbPPOAQD2ncPMn9oBAZraMSGn6gEASOuiSP/+AQAL15UOFBYFAZQldpvYGgUCX8kBTPweBQC3W3DtCC4FAYp5KjV4LgUAaILbUPg+BQMQUpvc9EIFAKkknjHAQgUAETBXyXxOBQE0MSArOGYFAV/pQt64agUAjjl7m0h2BQCQlW4I0H4FABsj6sLIfgUCsnvjj8SGBQMDjcjM1J4FAlyeyxbQngUA88rPblyiBQKNBFa4vL4FAWRwJHXQxgUBOSL5jvTGBQERD5wN0MoFAMv1NdsAygUBPcEMrwTmBQFrbNS3fOYFAwCtDESk/gUCDTMRHc0CBQFiBMGyXQIFAkhdkzs1BgUD+pVf2DkSBQFtun0PQRYFA4yfGCilHgUDXk5+SjUyBQA6zulFuWYFA37amKOZZgUBDANg8YFyBQF1CVRnxaYFAMDbAtrJqgUAcxgZmXGyBQPwYBTzdbIFAW1TSuthtgUCSV4NkVW6BQB6yHjI+cYFA1xUfENxxgUCHddDXwXSBQKOQt8TidYFAp3RUjm53gUBW4x07vXeBQEgGfcJ3eIFArEm7TON5gUCkVpCZ9nmBQC6xeG8beoFAGwSSYst8gUDvnut81n2BQE18//iKfoFAsHn+nl9/gUBq+SMwJYSBQBeF17JlioFAvvLqeQWNgUAjyjvDFI6BQIBt0upVj4FAuMorr7OPgUCRIO+U75GBQPAWCEpHk4FA5hu334mTgUCKcBzz4JSBQPOta2xVl4FA16dxl4uXgUBRXI00fpqBQPbh9TOdnIFA1XNObkifgUCOfeYmYJ+BQLsC9bfjoYFAhomRJw6igUBaa0oQ36KBQKpdy1+Dp4FANuH4qmyogUC8Zcu48KmBQISD6SdKr4FADjT5dMevgUAPdqLCbLCBQEmNCkxOt4FAa5CW25a3gUBtaIdxYMSBQIEFR9MEyoFAtyc0hLDMgUAUdJQ+U86BQCBUru9gz4FAtavoZ/jRgUBOaEdIO9KBQNwevHh/04FAdr+8KbHkgUCpVNiQSfGBQOkXI5rs+YFAtiEYByf8gUAyuVqj7/2BQDgp87PhAYJAXE+cs/UBgkAF2YjxAwmCQKhiP4n8DIJAkRE2wSAPgkDygt8JvRSCQLp1O0DYGIJA/D1tdGgfgkDoT87o1SCCQNq9bpYHIoJA4t8SQtUigkAGCISBnyOCQNAeptDaJoJATAIt8NAogkDIi0eNBSqCQHtE6KKfKoJAFFZO+qAugkB3GteSpDCCQLDWZEKBOIJA46LdGW5AgkDq2f4qAEGCQHZRfiTuQYJAEIn481lCgkDubn3A4EKCQMOMnsabQ4JAlX4fJgVFgkA/kf3F10aCQN7913WmS4JAeDv47HpMgkBKZfNwoE+CQL34ucLdT4JAMBur3otSgkDqwzwhNlWCQKLIWifqWYJA1nlwHwJagkByjAQ1clqCQDB5ahHUWoJA6O9NSqBbgkBAf73vMFyCQHyTX9VoXIJAFp5RNbpfgkD+P2fUM2KCQEUbymecY4JAi9+7XQFmgkAeNMcVOGaCQFzlD/U4aYJAKAFzXgVqgkBEvwYA3WqCQM3zAvZucoJAAJLKaKBzgkDweIshZ3SCQCCnVcNGdYJAOAEE9HF2gkCAgyxXc3qCQPiNqjFAfIJAS6YBXBR+gkAPVNSpdX6CQIzyN13HgYJARAaF6viIgkA/tN5FQ4mCQIPf34xDkYJAIizgrVaUgkDqZrT6cJSCQPJOOJ8olYJAoOGUbM6WgkC8p9OLHpmCQN7bNpY8mYJAiGBjWg+hgkA/roZiPKGCQDyZibPMooJAwl4+lfalgkAI5NUWDamCQP6CNi80qYJA6D4//vOpgkBgI0/q/KyCQA7O2gYJsYJAxhoBnkO6gkDuTxf368WCQKv7oQPxyYJAi7y1hzrRgkCLJN0AttSCQEookjl92oJAVThiFKzcgkD9SaHrf96CQNjGqlVd8oJATDGqYAn1gkC23I4wrvmCQK6qWidb+oJAJG1Rs7f8gkB4hQktwf2CQAUCoevDAYNA9HbCVuABg0AZ7/VYRAKDQFj47D28BYNAfifviXkRg0B+MtPJoBGDQM8Tci0DFINAaYiL7HkZg0DW924KcyGDQJfxxXUcJINAUECNJ3Mpg0BWpnXmxy+DQHqvjIVqMYNATtdhux0yg0BUkvLJpjiDQLe7kXZvOYNAlxQsxzRNg0A6buk1rFWDQPXLwfFGYoNAQK3kzMZug0B2U0GBAnKDQMSwhqLqcoNAeLdrxBp6g0C7hQzkMHuDQMYOdaLEgYNACzcoh+KBg0A2Th2cCIODQELA08xJg4NAEhdmzMiFg0D6DUb6vYmDQIiSjqzLiYNAwlFnnlaMg0AgCVosw42DQO4xJdbMkYNAkleL0z+Zg0AuOXlfdJqDQM61Hwk3m4NA66J9X+etg0D8rPrJ7bGDQEFTdGASsoNARGY73hW2g0Dkkz9Md7aDQHQK0IweuoNAkDJ8Qyu9g0BY3jlFEr6DQPLTya3Xv4NACOGKkh7Fg0CSgqb2qMaDQHkVbHdR0oNACzT+ViPTg0A7yyD9ydyDQNZASlVX3oNAaIaWFHjfg0BOlPU4I+KDQBfSQWpX5YNAiTChCP/ng0B4dnNjBgOEQKbVsWvPGIRAJFSFvLwahEDbtQPJe1eEQEh0GfqIWIRA4xoJPWNahECe9CagJFuEQEES71T/aIRAQp4zL/5whED29KrNt3WEQCISNTvKd4RAAJ13q/Z4hEDn+A5iv3mEQChGo+B3eoRAEw3h2wR9hECQ1v2eJH2EQEQvbqezf4RAYCdz69N/hEB8gus7YIKEQLDT/oUNhYRACFcZRkqahEA4PGvHwZ+EQM5n+o1tooRAyj6r6b2jhEBAjNjzH6WEQOJRNei4p4RAzijbj2/ChEBoRvyaGsWEQAv89QJGxoRAqCP27hTNhEBi8CSfIdOEQOUoukhq2YRAqiOQoovghEBeg71jauGEQCpUbbpi6YRA6LMXynjqhECAzeQRJu2EQCSpkCPO74RAJhvA2TbxhECKcOpeY/GEQMkqO1F28oRA3KBRGifzhEDGFiqB5POEQAAApyJ99oRAHkRcE933hED2LzvaAvmEQFgBZ38z+YRA/KUKglr5hEDHLFKPifqEQFjH7K43/YRAKmXN9YL+hECXl/cV2f+EQBzwbYQtAYVAHKNaWJwHhUCILrRvRhSFQFizuNDXFYVAXtfogPkWhUCCYkaHdBeFQP9BqIwPGYVAge1n0qcahUCwETL4QxyFQH5iMMP6HYVAHNA6S6JWhUCPY2dcoGGFQHvvb4PeYYVATsu9H+BlhUA+O9WaoGmFQHTZrVfcaYVA0FXdiJlxhUCgRbFAsXKFQLGeICa1c4VApBDhWrJ2hUCI/p3Gl3mFQODKI264eoVA8s9U4ZCBhUAyVIEYApWFQOOnptMvnYVApv5scrGihUBwsC3fP66FQIjxX+xEsoVAktLSmczKhUBwS9EcDdKFQLrMefus4oVAtvCb8MXihUB2160taeSFQIL5yvoC5oVAWf7CSJ3nhUDkWwmbhw+GQGg0ZMsbH4ZA9/JRyl5AhkCq54LFskqGQDH9XGaeVoZABAF1oJx+hkAKi3SZb7eGQEQF0LYmuYZAswr49SLBhkD2pv8F0cSGQEcUaynKxoZA7vbrrsvIhkAK62hdzMqGQGQAjw7OzIZAIu85Fc7OhkB8z4KJyNCGQGjH8xI0/4ZAasPLHC0Th0BknGAHLxeHQOABLXN/GYdAo0q+RYchh0AMJihl1COHQATztsGQKYdASE+TMpExh0AYfQkNijmHQNR8jXmdPodANRLmT19Bh0A4FWl9jUGHQMLjjiuySodA5Nc0ld1Sh0A4nKO55lqHQFLJoQIZa4dA+MhWah1zh0B6YACgx7GHQIw6/OnFuYdAvWRzusDBh0DEtHAlwMmHQIrz5My50IdAWn3bbrfVh0AOiN4Xa+GHQAKA9ZNvBohA3A0+UX0ziEBIHzSfhDuIQGIyr8KlTohAevq76qhSiECxXLbAqlaIQNxnjSyuWohAVsTk5gm7iED5uCktEcOIQKx7JTtj24hA + NrgMGZxjYkCmvpxNHCRnQFf+/uF9UnBAGrpiYCbDcUAeWZMbloN2QFVc2zXW43hAdK2XIC70ekA= - + - 4e8IRjl8BEWkp5FEnbyIRHEpQkVbbIdEg0BMRFh1GEfyNzNEHvhbRLJdDkTwUbtEA0p4ROKprkQWgKlEUWJKRBOoW0Q/T69FK9vDRSqLrUS2UVlE/+iBRULrw0RorkFFtmtjRB7JrURTCIFE60DKRG2eg0Rc3TRErl6ORE9j6ERML5hEjmGlRACaD0Xu8A5Hde49ROP4V0TakKZEgUpZRLAMMETUwVJGLYyuRXgCkUQGRFpFgOZBROOWLkR5h6ZE7HGVRoIyj0T6KH9ECguURQjmi0SERXJEVMJ4RDDoNUSSeDhEjyBcRBJahUQ0ZEZEUoxQREYuNEVfHIdETYKSRLFESUUYkopEm/iZRCXDE0aaLCFFvs0JRY6Zi0UsG09ErozPROR430QvVJdE0/oeRNZuTUT3BSJF2yZVREzFLETeImJEaWJZRNOaakRTLpdEuUaDRE7LhkTX7QtFI4y/RsY3u0SF+thEu+yPRTbGREWk1x1FWiR+ROHYb0TAroNE2WklRfufOUd6bCtEJuQyRHnQOETSr6JEoQteRkKbOUSLh+dFTtB+RI7ZN0Qd7hpEjKDTRVsCfUR4bCFFgJ8hRCTFNkS8fWFEG987RIh1SUU7slFFGPk5RPtjy0RXF01Eh9qkRUpn8UT0KyREORw2ReegT0Tr/I1EMxDhRInChEWhbl5EdN8FRneN0ESqeUhER9JIRErgZ0R5/pNEO5xtRCpcSES13zFEkB7PRI3gD0TdBaVEUfGDRLE1QkZFZ2NEqv5dRC/MNkSRondEOtKfREq8LESjszRFZCEdRJjIjkRDW39EH00IRd+hZkSzUy5EM/qNROjrU0TcJTtGwFl+RQDR8ERCIoJEQzAoRLqItUQx2DtE+u0YRPJ+JUT6JkFEgwYaRIXDlkQfX6BEyvDNRHNMWkW9NnxF76S3RCCWPETI4DtESufRRfgXZUQXRy1ErwYwR/UZN0SEy4RF5SiVRCqt1ETI/qBEnF/hRIjkAkbum5FEQyyeREkEjUSdVJ5FwtxeRcyh6ETaDqNEgTuBRAq2WURYBldFiY4MRSZp7kRCEQ9EcdhAROfoSEUOaKpEJ/0NRaDqt0T5TshEU9aBRH00hURlmMpEzmEVRdUFPES2ETREo2V6RJ2CAEXldoJEzxnZRAa8T0R2WZREnIOKRAYFA0XdKRVFOLciRJPYh0XYnjJEYIxJRKexHUTZYz9Ey5PDRZ+SqkQ/0yxEKCqrRGTVzUXi1SZEilKTRLg8hEQW8pZERdqVRO3gzUTIZWxEMo5XRSFJx0WZJEBEdgplRMI+KkQWSEtFE1hoRFgcOkR6Z15EteFnRB0GmES2Z41EpMRxRMrGxUThjA5EWcfpRCzAikQOJCNFc9k9RA6WyURZAFpEOYnJROyUB0VGoSpE6gY/RDsBCkZNTlVEKUfsRIK5lEWNliNEeEGERcfnkkQvHrJEyiWKRBCoEEQ2EYtEgUJTRMwpakRsXcNEb2x3RH88OUQJqGhEV2+ZRVaXd0RpN7lE1e6FREEvI0QGNRlE2bu/RNfDP0QoIAhFJPlUROpzWkRfjoRE99aCRGvHhUTal2tEceNMRGQrnkSz6C1Eyu4yRbqMwkQuVXFE4WKZRZY19kRWskBEo/vaRHxTiUQf4qlFlzD6RW1SmUUtRrlGvVRCRL24jUTFfZBElsM0RANTWkRBSVJESs2WRQYpKUQANHxEpp2nRDyrIkT1KEFFHCeIRAdlLUWNZkRE2NFORDt/GkYAUINEcTwrRAyacEQaK1lE6Y0SRas5T0TIQCBEmlXSRN8fHERWgSJG2SVMRZK6okQfOsREqkNERJ/kVUTsM6JEETp4REWGUkSlhTZESmIpRAUiPEW5/B5EqmdPRV8edUQvF3hE4LhTRPzBiUQi4FVF1K0gROCLrETpbSdE5UoDRUsyXURc78REktSLRFNYi0ZOymtFwY9rRADQsUW441BFKENXRDSSHUU3UuZHct4fRJl0okY10g9E/jsHRbC+xUZ2KIVGQHpzRYw8N0b9NB1EUV7dRDSuVkRcQExFwwGdRIXJQ0Q275dEtBOKRHtOJkVmtG5EjypxRaReCEXLMl9ESPpGRATJYEbY5khECDM2RFj9rkXwDLNEEbAeROxRJkQORqpE/TGdRLEdR0WOXI1EuMJURJkEVkRFmh1EguwlRLzSp0Sc1GREkW3jRBXgZ0cn0jxEMFTsRkbqe0VZsb5FUEA8RaYQVEQzjEpF6ueNRJHpqUQuK8JE6qlBRH/nbUQfu8tEC7pQRLoknEQlWlVE1ToTRAYfbUVLxCdGaxeSRcKEJkSeBBVFm4wmRbo/L0Xyl19E0qJZRBh3QkQ/oJRE/qYHRNBOL0mN7GREcY6FR9bsX0Ts1lZFso8dRHyEvUaQljtIU3oDR7xkkkWbhlZGOhtCRSRNQkWnXo9GTVu0RB5NOESRE6REOs4nRSjjXETTB/NEQp/wRLskUUS7vbxHhaBFRPZQ90bQZddFOcrSRRQtRUW1NA1F/aNIRCB4D0UDBh9EzJQWRRkRUUT1l3ZEdvpHRW+DlUUXKVxERkAtRNLQeETiuY9EySkxRoVWMkV8CLNF+PQZRQrsRUQBPp1EYrQVRJAym0Q5QuNErrgzRI1bRUXuflxEABWQRBO+d0TW2nlEXIplRH0DOkUCHKNE1W6cRNq7vkSzIc9FCGeRRBlHAUUCtGVE1QpzRLnPOESQh89Eld6MRCcLekRVyqREbHSZRJWvEUQ7A4lGllCNRnVMHUTnfJpHxfR1RkwkmkVF8uVE4PvlRLOhqEYQvh9F52vTRD4Bm0XfvEJFJfKJRCrSUUTUYa1EBK4pRNkljEQAAipFMLZjRGqfY0Q3XExFnQKIRE0JMETQuo9FRN46RPrRqUXwJhxFOBLNRJl9ckQzGA9HWVCwRB5Wk0Y5pTlEOwIRRfQsRkSA7MpEZhuoRTaj70SLTt1ES7msRFRGOUQbtjVEDckzRGQRWESw8YpFK1TdRFxJDUSEPlpELBQvRr8oWETZVjtFxYaERLj9lkQr7UBE0/BERNSjMkRHvX1E69YXRDoGM0QhrY5FCxzyRBFe+0RYlJVEWR91REseXkQ6TktEXMlPRGK4I0SZSgVFJyuZRO5h4kRSAnVGK+8kRA6hPUTo4l5Ez3ALRhS8IUWW84NEAy5VRHOOwESBh1lF6kEaRIygSkRqKpBFipXQRPhUhUSIVyBEU7VbREO1hUVduS5EL3gqRGf7I0UK0VlEm8ndRMpeT0T3uoZEHjcqRM3gCUVVyA1GGw6PRXZIwUTFHy9EVa70RATMMkTU/WlEB+48RL8OiUSDpTtE+xICRXDdJ0UgYb1F1GdRRCy3R0QZN21Ew9iJRKaeiERJ5btH65oxRehkXkRFvUtEz8eQRNNQ2UTCaZ9GBAw2RTSo/UR4bCpFxMyeRvYFYkUa8sJEvpGQRK8fD0V7YrFEYfYsREbYc0RDFz5E28csRM3Vx0ROluZEd+2WRFBuKkTm2iJEXZauRCmQTkSIsYxE0XWbRH5zLERiZYNF22yARKuKg0S/NVJElRiRRO7R70bCLEZEvCyzRSYZOkTlGldEEa4cRCQsa0TfKQlFzPBDRjylW0RbhOZECwKZRCkzckV0zFBEamODRJZCOkU2qoNEG1HeRfGZJkR913xFqweORF40fkS8DEJE4YhBRZREqkQcS4ZFubc1ROzDb0SY+BdFtdQiRNcgLUSJJEZERfInRJX2S0Q8JWxESmluRBO+WEQH/CdE38TDRiT8nUSgEwxFB5A3RLwPfkQbjpxFReFBRNRMSES0VYZE15FwRIkMakfKcElE6ywXRXAXZkRjxthGQS8jRD7MxUWN5mdFLHxKRNgpPURL7YNFKBNDRAzaeER0ZXhEa4e4RGnARERLITNExj6ERJFQPUQDyjVEF7ZORKjcGkRplTdF0bvKRLewTkQgyy1EToGJRcY/NEQC6D1ER0NdRITnLEQZ0gtG4uIxRD9bckSM6dJEyxtRRWTXhERetD1FhmdiRE1JWkTo5VVEiDgzRPyOL0TT0DZEpMFSRDW5V0SklHdEyrpFRKipb0QtcU9EtV0xRGWxxkQeCEdFZv01RK20T0R9VHNET5M1ROsxV0SlZTJEOd9KRDDbHUQZuy1ELbJaROkrmkT++jREQc6ORJUHqEdPu4lE+089RNe0i0f6ejdESJ7PRt1aCUZ3ofRHAmqBRO7ol0VSVEZEx6ZhRNYeYkSurYZHiwSSRGwKKkVYkzlGhWpeRCwMzESaCl5E9rhlRZP6mUSLHJNEow4SRlXi30VD6W9Fmk0/ReSRlEQsdJ1EPd9/RPYAPESEQvxEoleXRJ33XERwUDJFNj1vREK1PER3AThEMGKHROeaCkTs3eBEL/a0RPopakR9cUNEg3+aRK4ZLEYBZDZEs3nRRF6oE0W62tFE4BAvRBzZX0RlqS1Et2GWRIN/DEXlqbFEh5x/REnBSUQ1j6ZEjitFRNBookWhkWJESpQORUqLI0RmWRhFcX30RNuYb0R8H1NEzF0+RMdAGEQorudEVafPRNq89kSKI59Fw5Z0SK21ekQouS5G3H1QRPtnPEQ5arNEdx7lR5YxCET8gQ9FT7A+ROc9hUTcsUdH3709RSCJa0S9ZkZELeMoRiPyaEQXKsdEbMonRLUijUXyTSdEtH6DRDQLmUSoKUREYLK8RDBuxETlsCpEa/u9REm8ZkZwc0dEYQQdRKEGckXd4UBEYskjRAoKqEWqyaFEu9VERPlsXkRryI1FYHMbRA34D0VkRNNGHodORKkTT0TpS6lFNLGvRB7NTERZts9EWVQjRFZz10QlVX5FyOLQRMRlF0SntFdEjS2oRSlfL0SiwFRENXucRNYLcUR+dqBEU1dfRK/9LUS1pztEK/6aRJDsPkSfEkFEhQmTRKlBh0Qsv3VETGSJRm4ZRUQRxzdEBtzqRUIy9UUCQuREtKIGRkhqSERjBU9Ef9yqRDLIeEQ+LHtFY/x+RLKNQkSf8iNETOGIRDmAp0TZBmlE8CqLRET1X0QIF9xFmGfuREpKv0QEtnZE3eOHRJ8hhkSwoS5FhBjORBY2OETggtNFrKKIRWy9c0SQ/utEZ1QZRDhG+ERObjFE98oRRXR7PUQRzCRGMzM2ROLrmES+ttxEWZeYREyzQUSJ4uJEiiYdRZLiNUSsCIFE2uSJRDLxn0QPA1tEanY4RKn/iUSz3rFGDMFrRHluEka+OsZEaOcNRa0bWkTenj9Ehr1KRG3/IUTeAhdGEd86RPRkX0XqcTxEp2OhRIdjQUT1iz9EadE1RT4RRkS9dxFF8UjTRIQSSUQ54UJE9dFGRNR8sEQYHpREc2EfRLusV0TJ11pErZR0RNRSZESjKjdEf/osRJr/vUREQGRE/0ttRKkxCkT7xQtE8fdkRM/2hUQI06pEzLL5RJmrEkSlkbBEUmgzRE6Xx0VVPXJEstKCRLLC8EQV88NEulSrRH6lQETL6VRGybuHRDNWgES9UgtFuQkLRqZGw0RVeEdECRdQRNrih0Q6RJFEWFo3RCxkyEfmqztHgdpGRPEfXEQkuF5E++tTRNW2EkT2FtdGS8CcRbATBUbju4ZEYzl8RJ5qIUURdBxF1nZJROGUTUSL651EjCsXRMIJmkX+ZDpFc8cwRHxTJUQd9uNEuedhRFreCEXg6s5EtJixRIk/vERnL0pEDRshRHQNd0X05MxE/BnbRCjcQ0SgtjtE/23iR96KgUSoWkdEJSJIR6dwAEdpDEpEiO30RSeCGkSQigxFJERyRMA1ZkT66EdER+ZjRCeGTkSTJUpETTRsRBGGC0Tg8F9EdhI4RP19GEQ/pEFGV3KsRH8ZS0TVz2NEYCwDRtkE40Ss/8tEBkU/RAnD5UQ42z1ElxN5RLVcHkQNai1EeU6URTI2C0XcZwZGmDR9RWtRg0Q3bJNE9Z5sRQbjgUTbpi9FXfOVRB62QUTb2ilETi0qRIF6bEXFXU1EIjgCRZtDt0QjprhEgTCqREDPGUQKYj1ElUNBRM/0LUSvYVBE5ksmRMdlOET1/rFF9Z0hRWUYBUVHtBBHDv4ZRUKJZERPifZGQWjORYBQhEamPJlFw+WMRXtyjUUXe9dEfnaARHeplESlse1ET3jIRBzMlkQCNlFE05KBRGeBSUSm5j1EizRUREMnvkRelhhHcDgvRGDAjEbw7hxGM8+fReTAkUXvyrpELDB0RYenhkUVxJZE0z1fRAb7QEThCnhFqECYRfCZYUTQJt1E3WPVRFENyEXM6B1Fsz5gRNnKWkQAtcREMMMyRBukRkTahYdFB38ORUUHYEXUUT5FBRYjReOSykR6MxlESmA0RNHjAUdzPjxFYfIWRdEFb0ZvQi5EsmgbRjuQs0U6HGpEgzDCRACsa0W1grNEN2U0RKjNHkSL6ihEw0E/RBeH20XuS4pFxiI7RD5/gkSpcalECklFRC6nwUQQnB9FoGO1RKmuU0QMbkJEchejRDdIOURVjZdEbjVfRGg4SUSgya1EFsJGRAvQJETKPU5Fr3RjRZSdVEWLrdREa2g8RChZSES7eV9EJISHRfeCFkX0iUNEKxIiRImSlURYjBpGXmq2RazGPEU+nHhES82MRFGW9kRnKDREpW6wRQ/dF0Utr6NFJ8kIRbmsLkb5k5NF8aciRUGk4URVQDhEyiwSRMNYjETbHohEZsIvRU4OUET3VzFGZrUVRkXikUX55LVEk+LJRe68vURKfxlE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 852qvQzBckDbIdTdKMFyQLjaQXMzwXJASMMJ/G7BckCYwh7Rx8FyQLBFju9OwnJAIo/ym+PCckBkxX2PPMNyQEQ6id/DxHJAHAfrtVnFckBmtQdHfdFyQNCayUxD0nJA/t4+sWDUckDUyRQEjt9yQBAS4jXP33JAgDTwrbfgckBSSZrJTOFyQELA0iz74XJA8cLkuE/ickAGNccrkOJyQM5MOtkk43JAdPy8+VTwckC3S6pKTfFyQKZA1BDK8XJAVNJ8dU7yckA2Bw3le/JyQNACPrW283JA6DpG66P0ckCtohBxwf9yQODRCNBhAHNAANnS2/kAc0DU+IJtjAFzQKH7qW84AnNAOlxkx88Cc0BoFS3MYQNzQOjsH536A3NAg4siOCUFc0Di8OFvCBJzQJ3NUa5WEnNAmk+OHo8Sc0DLCjmbvBJzQMlHK53ZEnNAGDzDU+ESc0BKklVuBhRzQDqVQV16H3NAmjVhbLYfc0AJ2F+6pSBzQDwTDLU4IXNArkjzT2Mhc0BustOanyFzQEvfS0N7InNAGhyq+Mkic0Cixtb2DiNzQCyGC6k5JHNAHmkflM4kc0BR1SHaRzFzQKzdalFcMXNAaNHRByEyc0DvWvs5zjJzQDJB75WgM3NAQk8Kztgzc0CgDHsqNjRzQFjJxpK5P3NAHoMkCeRAc0Djdix6eEFzQNrvtoInQnNAjxKUYblCc0DDKeMd4kNzQLgwB/d5RHNAgeIF55pRc0Dcbp6PEFJzQNxn0bxBU3NABYGBKKNTc0AeJ0s9hlRzQL6xuM74X3NARP53vo1gc0C8uVxQi2FzQEARiLmmYnNApweAqfxic0AaRq94OmNzQLuv1T9hZHNAwjabIyttc0BkQ9Iw3HFzQKvuJPBScnNAZqWn1Wdyc0CC2z7vt3RzQKhcwBlLdXNArGHaMmt2c0DsV61weIBzQIJDQX6igHNAk3yqVgqBc0A4ZtYnXYJzQFpYDhemgnNACIFNhOSCc0CuxiLq/4JzQGl7gck8g3NAwMQboVmIc0CWPL4xhpBzQFPF0iz3kXNAwr1yyRqSc0CqxnvYTJJzQLRNRc/Ok3NAxPTO9mKUc0B1Q1hm95RzQPtMKMO4oHNA9C/EN+Ggc0Dm4TARTaFzQBo8moavoXNAHoZL6Fmic0ARfPwTkKJzQEZevi0EpXNAXlH659iwc0AwwNhvM7FzQPdSar9+sXNAKtfZjLazc0AspbaCDLRzQBoIwVT4wHNALJO8kQ/Bc0C1M/RmO8JzQIS0iMPPwnNAvrO00CXDc0A60PnA19FzQFjLIZkl03NAKHMOD/fTc0CyV9PT4tRzQJ6fzPOk4HNAqsRTtzfhc0CK87RiZuFzQPZy4ceM4XNA6Z3z0w/jc0CIvrCCpONzQIDGNk/x5HNA9wt3Jobyc0AjuA/T/PJzQJqxWbmi83NAJoHMIzf0c0AkFSY75QB0QKEjwL14AXRAKv07EqQBdED3VeARJgJ0QMKrJUm5AnRAmLtyx4sRdEASHTXLSxN0QKCDvtF2FHRAMW4GjrAXdEBH9FdwSyB0QBDfPy+4IXRAoP6GN44jdECs99C2UjB0QODkj5S8MnRAiCgPURozdEAIxtcGUTN0QH4W4nziN3RA0M1jezw9dEAYZQA0U0B0QFIjqwE5Q3RAXjngQtJDdEBshnRozVF0QAjJME85UnRAZZFa7WJUdEAloqRT91R0QF7nFfGLVXRAmBvbtd5XdEBaJ8zhIF10QA4Q5ti5YHRAa4G1x+VgdEA5sn7MS2F0QBnlvK4IYnRAK5LpCnxidEBwMSmET2R0QMdYq5sicHRAmoSRSshwdEBwbhkXQXF0QH4SaeYVcnRAhRwjDjtzdEAHwhOyDXR0QGyEk1OjdHRASAcRNzd1dED8P/f3QoB0QBTB4nf4gHRAgcj3Zk6BdEBotZWMiIF0QO7H9bXvgXRAvqXovEiCdEDiZB6w0oJ0QG44+5cjg3RA0hZfTbyDdECw6kZWFpB0QEO/0b5pkHRAICOpal+TdEA+Apgc7590QGh0hgWioHRACo4OzM+gdEBKaEbAOaF0QKQ6ebS4onRA/Oty+A6jdEA+VUXJ+690QBLbUp0LsHRAjoRaWMKwdEBU9UzobrJ0QKohWaT9snRAUBUoBvmzdECAgGLuyLd0QLB8g5IfvXRA9G10fuHAdECqlH0r/8B0QBuwfiF6wXRAaqkO4erBdECD64hducJ0QNiW+tJPw3RAXPjLqH/DdEDcOCiZt8R0QFiWA7D7znRACK4pqj3TdEAILpUa4NN0QFtqaJh11HRAYp8l+8vUdECJZLdijeB0QPxm/3y34HRATg4gISHhdECh6qlkt+F0QJZM2yKP43RAwzEJ5k7ldEAACXnpv/B0QMzP99+M83RA6XbJjXn0dEDatu9fqfR0QCZeNf6EAHVAlLIN6KMAdUD1eT/hzgB1QFQKabhiAXVADFgV01wCdUCsdmJvpgJ1QHRzwRTmAnVAlwYPu5oDdUBiZ5JQmhB1QAlGu7VqEnVA/ZsfxyQUdUA6QNPN4x91QNpGKYTrIHVAONaUNp0idUCOgsy/rjJ1QP0dVuHLNXVARHQbTLJBdUAtWoMTf0J1QDTCuVfRQnVAdpil19xCdUC+keQoJkN1QEIXkvXXR3VA6XJzOfNPdUC2AHUhgVF1QEyKrQ5MVHVAV/xplXZVdUC6EjFuD2B1QDjPpvakYHVALil9YzhhdUByYuaj8mF1QOq4BmJ4YnVA+JoWEWVjdUCWdCjDDXJ1QD6VaaV2cnVAEJM7enRzdUCQ//mUkXN1QDjXipwldHVAaYWIZ410dUDNmhZF44B1QM+wOlh4gXVAWORX/q2BdUAqBc4CpoN1QAQXgh+chHVAcq0VGYyQdUBe/R00upF1QPrJMuGKknVA9V+nxrehdUBr6/P0+qJ1QLD8EaFJo3VAanE3zI6jdUBwRyMCpKh1QN48t+X8rXVAE4ac8ZW4dUAj6U4wpb91QBXxnyTPwHVAJJXc82TBdUBcyLI79cF1QJBIjvalwnVA6kolKaXQdUDgdtwazNN1QKqNCT3i33VAJBxHxA/hdUC/oNl4o+F1QFKSQKwF4nVAUHzcEuPidUD104jDPOV1QKh0IsFK7XVAVlvb06PydUDCsX9dSAJ2QDAwYBzQA3ZA/H8nF00UdkCThXXnCxZ2QFas7C2IInZAbJ48OpAkdkDodV38Sit2QCyu40gfMXZAzKMdayczdkDqheC4UjN2QCfyaGmfNHZA7VzIKR1BdkDyDZlQx0J2QBmmr7APQ3ZA10zbOXlEdkBk8GmeylB2QNZnQ1EQUXZA1C+pSChRdkBezyPAiVR2QByt2jLNVHZAAqzSWVFjdkBunpj72mR2QH4YImCvcnZAOPpSTHtzdkAB4XzkEHR2QETOf8r1gHZAHjr0P2OBdkBita2/PoJ2QByBvU1ngnZAuMoJ/eiCdkBHqNX5O4N2QPoi6ZNog3ZAcBWQn5CDdkCayZTTTJJ2QH/2eyt3k3ZAr+RUCL6TdkDAB2XeDqF2QMsJEnOloXZA6MkztHqjdkCMtwIPwbJ2QIGPwQ1Os3ZABD/6CQy0dkDcjmJOuMB2QC1o6H/OznZADEmBH4LQdkD3M3bg8eF2QEYRdzT68nZAIJ+svpHzdkCXhP54MwJ3QDwNmhcBEndA39H+jw0id0DIlH9TcyJ3QAY5s9PoJ3dAor5k8EMtd0D8xp4XnzJ3QHKf7SqnM3dAA8XOEw01d0DgIGownUF3QJDxSiiRQ3dAmMBk2RpFd0DUWeL3BlB3QJUfclpKUXdAzeZ99ZFRd0DxXmxaK1V3QFjlByzsWndA5AcpeHxfd0Do0SQQFWB3QFdxEbALYXdAw6b0hkhhd0Al1S/Fj2F3QFykJ9jqYXdAbkVWgfNid0B2/KnwqGN3QEqkB4wob3dAmjyKrPRvd0AcOHprn3J3QKr5wt+xc3dAGj2B3I50d0C8P+6B+Xd3QBKKVqFCfXdAO7SunnmCd0C4QmoBrJJ3QJIv9f1PlHdAVLAdSLuid0DiBMMwhah3QKoL/66etHdAAM/dXevgd0COjoHieuN3QMQ1RrLq8HdAs8eoDFDyd0BMIJ6refh3QG69tnhG/XdAREuuxJ8CeEDY1CY55wd4QAhMNVL9B3hAesxTxEENeEDGa6mjbSJ4QEq08TeLI3hAiADOgqUkeEDDqE82Qyh4QLZzmvGVLXhAEDLcJXoyeEAxE0JKqTJ4QMLEvXqKO3hA3yI19AxCeEBux08FckJ4QFY03GUwQ3hA8F5s2YJDeECa/BkYEkR4QHKdv0h6RXhA3ozj8MpReEDMjjx7CVJ4QOhASTOHVXhACtdJnvhgeEAqrIQGuGF4QA2tjG28YnhAwZ4AzupveEAgtfs2xHF4QMdw7g4mdHhAeKJOA1x0eEARpI7Li3R4QA7moHvmdHhA1KnXBfd7eEB8+xVQOIF4QLDBgECkgXhAr5+bdP+DeECY/rrNmYR4QF6c+WZPiHhA8CZxYgSMeEDsrL4rqo14QDLPEZKWkXhAXX1uX+ySeEAqVhSZA5N4QMTpdJynlHhAoq4bN1CYeEBYlmw3pqF4QBIBW61oo3hA4udt64SjeEDYwn8HOq14QHqoLNyVsnhAsjVqeOO3eEAyfLLsy8B4QLw7TtCGwnhAuq0F7hbDeEBybB3/Hct4QN2DCtb9zXhA5nK6LdLOeECepxMUENN4QOpvrLe21HhAQ5A2dRjbeEAacbxDC+F4QJA6xymg4nhArRm669DjeEDCv1yqwuR4QPyiakX653hAJAncA23reECkhRCBAvR4QDCFBTmM9XhAfzR+wyL5eEAa4clOf/54QFBvNZaaBXlArJ4rINQTeUBbAOWe2xt5QEzSa6W7InlAtcpI4E4jeUBQdjjdviN5QBzQ+JyxKHlAZFvRwwwueUDAkY5xZDN5QMwqM3G5M3lAG8mSCopCeUAOZo6O+EN5QJiGn6bkUHlAx6U7z8xUeUA24dV/2WR5QE5SbQhGc3lAuDDNCvWBeUA8uU97bo15QJuYGHs1onlAkj97TMGyeUDMyl8uy8J5QNYwtY5Yw3lAR50qLVbMeUDt59aHQtR5QFNsvH//1HlA1JiP+s3VeUAs4tQ9T+R5QEPwQuAM5XlACvJE0lTpeUBwBq+mG+t5QNbgeLAe73lAlgcUt5bweUBfavriwPJ5QJaLe7IO9HlAb2C2dv0DekDAeYOK+QV6QMgU3UKVD3pAGZUyATojekBf/fS3aDB6QEKD+d4qM3pAeJowPQw1ekC60jVCLTd6QHgvPncvO3pAtCS4/Dg/ekD5+dpoGkV6QBLdw7BWUHpAlnDR3DpSekB0RQ/9J1V6QPJsb4oiXHpANFbg7SlkekB4YNujmnF6QKrqLEmNcnpAfrYK8yJzekAtzTsXTnN6QPhPXL0nd3pA1p9SGteTekCKo6iY25t6QGitiFQeo3pA6rbG7najekDBBI4cKKt6QLokJw8Os3pAlN3fvfazekA6TX71C7Z6QCYQNysTt3pA4fADaQ+7ekDirWEYMcN6QHewcSC/w3pAKMRqMxjGekAg6H0Uxst6QPQjrU1AznpAMPIv0bvQekB6o4xQWNN6QAsFw67M03pAW1MzeiDUekD6JvyXZeF6QN9Gzb475HpAFB78EjXuekCcwD+iF/F6QL5y169d8XpAjt+M7Er0ekDGGJoxeAN7QCYeS7R7BHtANUjs/SkOe0BU3tTMiRR7QETpfzxMFXtAtKek5iQfe0DjLtB1JSN7QMwMSe1ZJXtA8ETGzMQze0DGGDSWekV7QE7r5pkPdHtAZkCBpiaDe0Ak9aJr65B7QB7OcTgjlXtAOswUo5Kbe0A7a3WXU557QGiRzYqvo3tAXBGr2QKre0AFneZNecN7QCgCu/d3xntA9pghbyzLe0A0bz90d9F7QDmCRLK243tA1cWGh+bwe0A8DU7di/V7QKbvvkJs/ntAF2Gu2ZABfEAVNZ5w2QF8QNxMPrj3AXxAELQcOGUEfEBGeYZSmQV8QHg55a2JEXxA6vhHvNARfEC4BT9E/iN8QOg6axGOJHxAIhKUT1UpfEDyGss1zEF8QDruMYNuU3xAIY/Yo3VbfEAjJ9IyDWJ8QAXEdnrtY3xAJBfvBypxfEAqmuJsBHN8QIg7seFHg3xAWo1gS1WLfEBix3Ktwo18QAZH+Bofk3xAP5d32WeYfEAcf659e5h8QO1IA8lXmXxAuZJJW0eefEDiMA8Q/KR8QNhOmoMYp3xA4av2oL6yfEAS8qGl67N8QEfRlJp6tHxAdyfp5/nBfEDof7UEicR8QLYGVsJEy3xAJCAz7MvVfEB5oepP89t8QOptKKZX4nxAxrZf6BHjfEAHF+GEzeN8QAAfme1t6HxAKibR7LftfEAO3v02GPJ8QGTEr6lU8nxAIin6T1EBfUAaKAt4AgJ9QLRKO/FKAn1APfJ4Q0MSfUCymG3h+RN9QIiBc/o9In1AiqTsQP8ifUBJpJd1JDR9QJgJerYoOH1AdHxRpkU4fUC8uKhsoT19QBLZdGbKRH1Az2+FU2pRfUCj05DHd3R9QLSdIVyWjX1A7Jirme2SfUDihSpLJJR9QOCI9rrPlX1Ax7i/FTHDfUC0uNVV5sR9QErdtDY+031AwLs3JfTUfUAU8y4UkvV9QAy+ezw0AH5AhHy1I5wFfkCRkCtJMwx+QAJ9X55DEH5AvhejsDkffkBOgkjLJCB+QFrRph4YJn5A0IH/Zx4sfkB+UWR0Oy9+QKyMRHYwMH5AyjvjY6kxfkBHCus7ezR+QKqG9wgJO35A1N8EfFQ/fkBgIGlTEkB+QBjNZ54PQ35AzJtvh6NEfkAX7EZH51N+QB7p1tCOVX5A9N84/79wfkASaY1mTnR+QLpqKA2+d35AQAZ1G1V8fkCk4JeTuIN+QPMrTTN+k35AA4/RAnmXfkAj7JcpZJt+QL3kB/C4nH5ABJ5ldpGkfkDRWc97Yqx+QPiiQE5lr35ABuh0YbiwfkBqYAe4ULR+QOB451ehtH5ArEpjSQy2fkDSLV3Sp7l+QLRLoVZmw35ASkwtuM7EfkAHtadsbct+QLxxGwpZ035AcXhpmnnTfkA5uQI+1NR+QLPF+E9j235AFNt7aWzjfkCqR+Ar0+9+QCgIZKtU9H5AFlOxp9X/fkAY1ujOSQR/QDvWLI4+E39AMpzhWiUUf0AA0Ws1vRR/QNAK4etGFn9AVmi4jEYkf0AYBCBTAy9/QHFZC+7bPn9AOOrM6HNAf0BOdO82V0R/QGYxYgSwU39AhW7KRbdbf0B4RswvaVx/QMDQ3Xacan9AJqcXR7Zxf0AKJOtK5XR/QDrKe6WxgX9A8GLbnaODf0B+BAEf0oR/QFSDAp8OiX9Art5AxW6Of0BJW7ehYpF/QOJOy4mWk39A+g6g3aOgf0AFp4m+X6F/QExIB4apoX9AwKlcDfCuf0AqkuvkVbF/QLq1TlkczH9Ak/fx8h3Uf0CyK8nnOtR/QLQaRcpT6X9A2pWwPTfvf0CDBl6Q4vl/QHGaz5N1A4BAOPnnlHcEgEDO7F89DwWAQBK3Bp/MBYBATFNHcHgKgED01Go8eg6AQGQPPIe7EYBAfQPQHIMSgEBAmEAqoxqAQDYKYdCLIoBAStaaqyElgEBo9WTSjymAQLIUCErpKYBA+yi21ooygEDrm8j9HDeAQNyIUQbJOYBAZDfdWZ46gEAY3qOtdjyAQM55hTIjP4BAnLMi+tBBgECM7nL2qEKAQPIT1f3ySIBA3pXvOedQgEAmOYbDE1GAQMzN2Zy6UYBAXpEm76VVgEBmWHZgJ1iAQCbry0IOWYBA9ORhdtxZgECTeDIhCVqAQECPXuSuXYBAK/y75N9dgED0A1OCDV6AQE6xjD3DYYBACZKINnFkgED6gbpPGmeAQGCS85SjZ4BAKSarcU1qgEBEFYsbKW+AQNWzfu66cYBAUMhvf151gECYzL+Fq32AQLrDwWYof4BA0LecZbCBgECMPbWsG4OAQDBKJIf/joBA2BPX4B6PgEAA1KKvBZKAQJJEOeM+koBAHmmnKB6XgEBy9VFCjZeAQGJL3n4omYBARBMp/cqdgEBP55DDGp+AQE4IR0pVo4BA6beAXHulgEAaiJuvhamAQFGLx0kTr4BAvm1mrLavgEDmtMJZYrCAQHgKEIZ1sIBALlsDftixgEAGJ0XNk7KAQBoF3V9Ns4BA+HGetAu0gEDIzAl2ALeAQDKwRPlpuIBA4eoSOAe8gECSYp4fer2AQDqLXi6nv4BA/qHAdPy/gEBN8Rk7UsGAQDyO3fptwYBAaYziOp7CgECLi38xfMWAQGR9hQH5xoBAwFM0dKTHgECgiLnmUsmAQLr3s5SlyoBAcNXzTcjMgEDvTsZVCs+AQCZ7W5Uk0YBAzswhOUzRgED6F0s3YNGAQHSvL/QZ1oBAXFhgfF3WgEDqfxGfZdiAQPBDOptJ2YBAfomZHcHZgEDKfTLSYNqAQNpwNnKC2oBA2K75xpnagECcwhHBwdyAQC+IhsH53oBAGiVa5kPhgEAgunSgiOKAQDrG9PoM5IBA+IKkrS/mgECUNc+z9uiAQKbOEh0I7IBAjtfnlU3vgEDiHjMNf/qAQCGPexc//4BAvFCdCEAHgUBONxD/PA+BQFhVHg/nEYFAJGoow6QSgUAjPX73HhWBQOKxxgXrF4FAMD7F5s0ZgUBe0oF80R2BQMNnyIs0H4FAVBWtLLYfgUAuHsIcNCeBQO7/mty8MYFAyLRmwXMygUAjS+HkvjKBQEqAqq0oP4FA1pvTk81BgUCqQzzqKEeBQNZT0iZbR4FA+ielpm9RgUDmTVr4GVKBQGJoOZIdVIFAdLvBo1hWgUC/YDai5VmBQE4drz2+XoFANgwsxLFmgUC6seweY2iBQJbrZVXYbYFAuiaYtGFwgUBcbb8G3HGBQOKPZQTCdIFAZMFHcD51gUAumSgI4XWBQM5oOEdvd4FANk6hKTF5gUBvI4D/GnqBQBQRxWnifIFAX18i22B/gUBwHNb+24GBQNY3nO1zhIFAWOGDAbmHgUA8KttznI2BQGfSardVj4FAZzLCwvCRgUDslhwiEpKBQEoQ3c2Kk4FAHCyIm+KUgUCJVhH4NpaBQLBACBlWl4FAjHJ/kYuXgUAGh33UDJqBQCjVDQ2dnIFAcjdgAUefgUAeEJkwXZ+BQNAaBmDnoYFA4WwUh92igUCcpKIdoaSBQGBZSo5tqIFAhstVVeypgUB1oJ+OP6qBQKpXTKxJr4FA2I+iimmwgUBuRiljDLKBQGKoYTlLt4FAzEu+TPbBgUD0w0BUMcmBQDyhu8ADyoFAohQhttzKgUDbbhONscyBQPafrhH40YFA61GIXzrSgUC0/yYS6tyBQNubQVqx8oFAZJ3f1Oz5gUBmG+M97/2BQIwdrg/T/4FAQF8EePYBgkB8SCTaAgmCQNp0BeSkD4JASByfHXERgkCfdp6dZRiCQBjx4ULYGIJACEjdBNYggkAnxTrPjyeCQBfIIfvRKIJAUMh59PMpgkAF0pQjnSqCQMKQHq+gLoJAZkojgK4/gkAKsUsa10KCQI7jKByuQ4JAVLWOSqRPgkDEbmhND1qCQP/YRNxtXIJAAoypCjddgkCUvx66B16CQGYfFZQ0YoJAj2nS5zZmgkDEOY3pamiCQFbXyc6ga4JA4PGbIT5tgkCAf+gjbnKCQIj4nH+uc4JAjHuOenF2gkDkozXrbXqCQBrFJ2+0f4JAwBq7AceBgkB8b1/vy4WCQNy6ZEtaiIJAhL+ADUOJgkDmWAGiLI+CQHpkdIxDkYJA7rhT7wGWgkA9W8v1O5mCQKjoTI0OoYJADEs+PTihgkBkh0M6yaKCQJ6gEnfQpoJAD9C4MgypgkBSS1LaM6mCQHpvOnqrq4JAkntw15GsgkBfYKG7tK+CQKJIwA8GsYJARJEnoy/FgkDWcFt07cWCQLyba6nxyYJApiD3runRgkDokBE8ftqCQDQWKqus3IJAirXoCIDegkDcIQUpp96CQLLBssAC4oJAgI44tQ/ugkBkNaCJWvKCQMqvC92//YJAFDzJRsMBg0BcHz1G4AGDQFhoi6+2BYNAmsZnuMAJg0AGO6kIpw2DQKYT4iUMDoNAWnD9b3kRg0DsovfwMxSDQCwh8aR5GYNAOiT9/m0ag0ASwh16aCCDQC/CmFVyIYNATpCfN4ohg0BeF0nmciiDQNQlrstxKYNAQj8r1Icsg0CGSsorLS6DQBAc+uGKL4NA2GVBwGoxg0Any3n/3zSDQKUEJaa/N4NAqjw3vZNDg0A4PjV2qkeDQPBIiuDaTINAjYS4H/hSg0DzDjc04lSDQCwQ3ZDEgYNA5to8VeaBg0CUMYQsSIODQBIhI3v/g4NASBG+lMeFg0D4JLR4vomDQHu/XGu6ioNAtUKZ0b+Ng0ClCxSaQJmDQMlM8nscmoNA1KOjL3iag0BzcVsy9qmDQGTmPFLnrYNAt30+S+ixg0Bm1nm/ErKDQJ0TkicWtoNA2GrSwuy5g0D2Rfb0dLqDQLKpV24qvYNAaN680ta/g0DMwiukzceDQKzutVHK3INA9fpooVPeg0BEPJQSet+DQMBoJVof4oNAEYZbaFPlg0Ag7NmyAOiDQL+KwEfi7INAxxxkTyvug0CdfseogveDQL/6Zu2T+INALU31cvUjhEAYw+rblzmEQB6zfiA/SoRAqCgSKOtUhECWY7v2xlWEQKbbUe3kZIRAAvq7JLBmhEDqWVP1eGiEQFgV6lv/aIRAB7Bte/5whEB1GJQ1uHWEQOJJ8pjJd4RAkgFo7vV4hEBAUjoFu3mEQIDM4atceoRAeHvHPXh6hEDsTWE4Cn2EQEaX5MIjfYRAhAzvc7V/hEAya0CCYYKEQIz+rboLhYRA7banP7iHhEDcQFKLFZGEQD4hbkLXn4RASEN13xKlhEAxtVZ10aeEQBjVE39iqYRAAIltTLmyhEA/1R7zcsKEQGq9Yx4cxYRAX0QijHvKhEAJyESklMqEQLPlRvAWzYRA1mBLjMfPhEBSeaJsH9OEQFSDzyZq2YRAkub16mnhhEBjoUOVhOeEQJtEFw5j6YRAOksTbHnqhEDyEUTQu+yEQBu94u0k7YRAoi9p4M/vhEDAGuj7NfGEQHaIyelg8YRAb4vI5H32hEDwoj1e3feEQOrsr24y+YRAD/KsbFf5hEDGJZaih/qEQOgxVws0/YRAWH7wbeX/hEAQjhMqHBOFQK+22YXaFYVASK18HvgWhUBrQmgvcxeFQMBKeIkOGYVAFLB3fvsZhUDai3T1pRqFQPRpBv36GoVAo5n8TEYchUD0xtlT/B6FQBzMsFGVQoVAF58PI8tGhUCf+QPVn1aFQF5vtSiaWoVAOvCoLqBhhUBYQLFX3WGFQGbpcorfZYVAaiF2jExmhUDf55cXfmiFQHwx4zmgaYVAO6JDAJhxhUCS4xu7sXKFQGYfONazdoVAhgC9z5h5hUA/K179uHqFQEaxLeWUgYVA3NTmTxWMhUAKLk9MKZ2FQDehuilAroVAtKkxHkSyhUCk+AEUSbaFQAXbwgNOuoVAzttRLc3ihUC0QR/BZ+SFQNIiLn4E5oVA5i3HDTjphUBV44YWcPaFQD3t0C91PoZAMyQnlGVLhkDfc2DFI7mGQDaL9gbFxoZAQgY7js7IhkBmYXZuIMmGQNmWo43IyoZATbfk/cDMhkC4YX611dCGQCB3buYrE4dAw0XYgi8Xh0DuX9TckCmHQHsxAnGRMYdArIgavok5h0BmWxHuCzuHQLamWR6gPodASWx4WIpBh0AxPZMQo0KHQHp2rrGKRodAQcl8i91Sh0BmhF245lqHQPa1ewwYa4dAiOKlcB5zh0BfgqdMx7GHQLZ0FNXHuYdABpGFBcHBh0CiFx2Ev8mHQNu2bPasJIhAukLFC34ziEBaWnn7hTuIQJaGAi+lTohAnN6ZT6hSiEBo5dNxq1aIQKQbimSqWohAXmMCOLKZiEAf89AtCbuIQErvsUUQw4hAM/EeJf3+iEA= + NrgMGZxjYkB8yhB7okRtQIAj0Oo3pG5A4hpqJp/CdEA+w2SRqbN1QA== - + - U2hNRCwxNETnYiFEf2/QRSgIgUU8aLFEIshjRNkKSkU88YhE/ez1REwIhERrzg1HjI18RLbwfERslrJE2OMhRSpWjEQz8KFETUyaRfqf70V/S7xEuQhmRcyMR0TfYlFFvLysRJCFXUQsYwNFr+C2RLSVMEXav+JEUb2fRFv8wkRFf6REK+4nRTwRZkRwOyhHhymHRL4Ft0T3kHBElOSBRGpPUEbi2x9ErccaRE6Mj0Ve6khFSs+FRMI+sEQNZslGFCGpRIFwK0RCe5lEmxOXREtatETFVJxEaVK0RRzyq0ThDcFE1miORAypXkQdWXpEbZ5jRJ4UikTy4z5FWeWiRBi9fEVQHEdEaOKiRNZiV0Q5MCxGh499Rfbnc0TdzN5EYQqkRcVsykRIzetEnNKWRNz8dESeoktEGt5rRJjzEkXU4ElEwky8RCbb2EQw8K5EDxrdRKj6iEQpWy5FkM1SRJaf5kZul9tE43zaRO1omkVxGdFEQoyXRCcjk0TN211EvtaoRPzeEkVNMGlEPklTRAjOS0eiy7NENZsDRdBjVUZ5OfNF8W16RIHXoEQmYE5EmBgERsa9gkTZWi1FJGV8RCGUh0Te6J1E09SGReyNLUV+ZQdFy5JpRNS0r0Slc9hFIQqiRMAkCEUpMIREZF4IRebOh0XsaqVEV0QKRsres0SWQn1EbDnGRByG8kSbAVhEB4GLRJ7Y6UTq7m1Edh/pRMSHmERdJndGQsBLRD/bgUQjiuBEmkg5RN4IWEUxEGFEpCxjROaZwUQVihRFwtxFRL0TlUS6kYVEDh0ARiXXNkRJrYRFcXJfRJLzXESjO6FER0p5RJU3TkRqnl1EKPBVRLhtukQ+tBdFDlasRIQaVkVKdVdFA8SNRDw8gkQk1d1Fju2dRFDj30TXqNNFSrxQRIfdO0f1RjFEG8xORUd1Q0SBGEtEHANRRDw1wETV6zhF0Z4bRoNoPES+RI5EAAvVRDCTc0QmZIJEKuN+RIaHtUV9qI1EOWg4RLSYd0XcFodENCFlRLwjhUSaeuVEtMIoRZafWkRB3+xElTEGRd8ykEVo8dtEbeJuRFJ/50RnIl5EkYCRRJWLIER/uJ5EGfe6RHwavkTqpqlErG6gRMZ+HkXqH7xERamRRBrEwERgWpBEOiDORHSvWUQvucFEF8NyRK9p5kTImiFFNcKpRCTF2kQr9ORFnuqXRFujc0RLUjpEyd68RJeznUTibLVEqIH2RQZolET6hkdENb2dRCimX0RFbKFEA/PkRFlykESjOphFXk0dRpswVUTH10FFfBtmRCwC4ESApiNE/yomRDt44ERoyYlEeb6NRKsGfEQx2ZBEw7fyRB2dm0TlMoVErMLfRLm/EEVyEYtEqhrpRLUbMEQyqrBE14VqRKmKhURbgN5E80uMRqeLkkQzGeVEwj7ZRRr6nkUrippEoztcRPtIv0RJcINEpTDJRAbRpkSGhq9FhIVaRCStJ0XSlHtEHklORKkkcUSIGIBExhSCRC1av0TDqlZEBRA9RN8MokQX/7ZEI9LIRKX0tkQtJ9tE7T1lRCVqWER19L9Ed1twRAKojkXhBgJFUx/9RMHb0USWfHtFxP4SRimh2UX/8s5GFRqURJJs80SrpIBEZNuLReVS/kR3PJ1EJTSCRcouzERUoGJFnTE5RDOGn0T1NalGyMOwRJ0Zk0Vh9FFEe50HRb0nZkT6lIdETwNpRIjPVkaetYREVXE1REcVcERjmlVFZk80RVzulETCI31EDNlkRH95cUR60YREMK1RRA59PEUt9z5EqvKfRYI3TES7roBFIyxYRMm/YESB4VhEUSXXRFIrukQ6plJG1F9hRWoItUTa96JF34bwRIYyRUT9NJFEovf+R3cs1EbJ3BdFK9fQRhefjkblMKRFCC+DRoww8UQihX5ECxs6RU/P/EQ8m1dECRywRNCeP0XNR0FEyW58RLB4CEXaYWBFC8ZbRcIvPUYPnkVEr1ttRLw33EXYhw1FcXYCRQczGUUi6KNEUXV2RJynaUQZU25E8bWkRI0rREQFDDJEm5b7RJsbvERJxIpHzTgTR01VukXGh55FZ7oxRURoZEWFnJJE76NJRFEFvkT0gYJEtw2MRIKSU0T9mRNFT+WjRGXxMURDhSxEwkVmRIzTZUWz+1dGC9ewRU6BV0RtQRlFKr4GRZeQgUU0PnNEmbGNRA71dESk4KFEkXgsRfNYUEmf2YpEEwuCRyAnfERe8FFFo+ypRhRRUkhcXxNHEgtzRQgtrkZNTXBFMu6qRCQZjEUhhpZG3uudRIJ1P0TlhmVE4eM1RNGxGkWoSHhEp5qERFkND0VEfTpE5h3cR3wND0fWD1dEbbJIREtAFkYe5V1Fq6zaRKliaESxMUBF1s6ARCgPVURwvElEzFRYRFwkbUXkGhNGh/WiRAAwe0SWqK5EQtcsRmwMs0XRaVlEVmEkREobhkTYRgFG61kwRfFqwETYlJFEpOmRRHqHo0SVM1JETUONRf3tD0UQj4JEORNfROiUQkSKGKFEZnxNRaLefEQ642VEPN+NRNwu0kWds6NFtZYqRbIq70TjsHZEPvCJRG4ZPUSMUUZEGceMRFJV7UQt861EFycTRX9VzURaMLZEZXNxRBH/4EVmWJNGnoXZR8vRW0ZV7bFFUURxRLFW9UYCF7BEPc2GRFN+MkVo7p5FUCgbRWQYO0QeDLREAZ9JRRTEXkSrb7RET/m8RK35nkQ8nHRFQVZkRBZxh0SDbcVFo3OYRGcSv0VuoypFHgA2RdGsykRuay5HvybfRHTdnkbauIBEkMR0RASPSEQ0TPJEEohIRFmOVEX7S8lFZNo7Rf6dD0XUga1ETDOKRFuBjERyruNFBmDtRGzviERNSDlGNE5VRC8gh0T9jRdF6fFXRPOeU0T8z55EYpdzRMBsb0RLdG5FuO81RHaGJEXCp99ENrGhRHh2jUT7u15EUE2DRIizS0TAzWdER8U/RRCYlkYAYY5EYV3BRE8KYkZ0AuNE1u++RIoHx0WsSodE3oynRUSyOkU8ZmZEgOe8RLZHukWy7gpFp4uYRLfnhkQPJEdEquD6RD2DSkTjNtBEarhnRAM0CUbgDq1FMZrFRAoTiETj4oVEz44ORan6UER+b6REjc2xRKqG/0RuLM1F3XaBRAjevkRXqz9EPpjLRFSRrUTeNuBHHnyHRealNUTcJn1EW0uCRLbF9kQ9pORGvk0URR0BHkWR0rFGtw0PRUAp1ETK/OhEAgNCRAD2KEXIcdNEVB+0ROwc7kQM+UBE20qcRHPH1UQY3clEDemWRL2GJUV6soZESO/5RIA9+0ZluoJEASWzRZbGaERHhK1G9RlHRHz180SKhy1F626QRD/RjEV/eGBE2dlZRB1AeUQKFV9E8uo0RMXB3UTLINJFOlxKRGq+P0TAzyVFDRFiRGFir0ScDuJELjiTRM7RjUWLnnpEQZo/RQ6wUUS236NEie98RBG8ykQfGeVEs1+ORmgf6EQFF2lExHSXRNvY20T3rPtEvR2LRNksk0QjtoNHbSiORU6J3EYfJgVGf2eHRbh3dkSinXlFd6pwROsMxURFR0lEtsplRKeRLESCqcZECwugRDoXi0Sk0EtE8tNmRHGSpkSCD1lEdR5bRBonVURz2+hENYwIRV1WPERdpGNEpC+qRYH/hUS/I3tEVVXNRPqbh0QqQ1JEZVBLRMERPkYIsJZEmimtRFGqNUXOoUlED7V8RCduT0VIbopEZy1SRPFmZESjgFxEOTubRGqULkTfyndEHEqFRI+1tkRCaZtEz0CARYPvK0VbIn5E5txsRHpoyESRPlZEu6yRRPP3TESLCldEB82xRL4om0fpamRH5XBhRG6btUZ30yVGm0G7RJjHg0VIxipFkQqHRUA5l0bTgkBEJwwYRa2zmUQnmLZFHaryRZqJEEY5cZVEf4BYRR23YUXkCUVFcIwRRVlFnkS0HYVEouaxRDv/YEWw3nlEiQRRRHyo+URxgw5F+HlkRDcUT0Rr/zJEBZ4fRtrhSkSk22VEeZYHRWkLYkTAH01Ec9DDRBYNnERFyl5EEwWQRHiJ5kR+hNtFikLpRG1RzURF2IRE+xzNRJbyzkQRn9NEUM6EROeIVUQ7R4BEash7RA1ElUWTOKJEMlJ+RC3+g0gOJZ9EsSIURg3YUUQIo5xEgEDyRIY96EdyShpFOw9NRKYCVkTyCLtEwoB+R4Q3h0Vsmk5EykieRC4ujkTs6GdGnf1URDuUfUQ41ldEgueFRKIglEScuYVE1+GLRXuAmERoIIVE0HiCRGdZp0TbQ1xEnPjTRHzzcETzGlBGpf+kRS6OoUWJ44xEQKV+RBdiWURTc1tEhwpuRU7VhkSjlf9GfthzRKL410VjRvVEAXuKRaj/bEVc789FSILTRCOgO0S0rr1EYG8zRLE5I0Qtf9hELOhdRHpmekTnBoRE2MOvRG02i0TMk5JGizlxRNQ5ykUnskpG9eOKRK4V90Q/EuBFNhSGRFa3cEWEuHhEM+xwRO2qJ0Q2pJxEYCY+RCDZWkRk9BRGRcwRRXbzZUR6k7REeFAeRddkAUX84S1FaYGNRCefQ0SlQ7JFdzI3RdYd00Qea2hFJPPARHyxYURDxwRF/HaqRKKJNUSG5jlGiQNYRM+kc0QA21NFBRpCRAXsYkTyLK1EATp7RFBSFEV3LARFMOo6RB3TN0TiVoNEfK23RofIVEaQVFtEGTcpRabniURzYIJEA/57RBuOjEQbZ0hGhtaDRTrFg0TUYmxFsD42RFRlI0V41VJEC9P1RNbcekTgbT9E65m9RMsjQ0Sji1lE+QOrRPdJq0R8EO5FjeSSRaGePESqPJ1Ec3dQRP2DNEaHvJpEOA3iRbXLekQYEEFEfOWdRDuLqUS2h4ZEwRvjRwtYMkSuLj1HOfo/RA/2x0YXJLlFpO6+RbNJp0SzTGdEOCfSRDz+KkU0Cm5E0kVyRFMATETWlbdEQXlJROqqXkXEnBpFkeYtRInBE0WGoZ9ETb0BRep3kkTGp0dEX7BjRMMzskRHudpF6wFXRZ0RCEUVW2BEz3eCROA2i0Ti9T9EOEDgR0FIYEQ3Lz5HtyhXRJwPqETGlfJG868LRTvgXkQy2d9F1PiPRHp/e0Q7VFNE1Q45RWFVcERbiGNEMsRvROjui0Q2WExE+e90RKe5VkRHrU1Gk59ERHEHuUT6JkJEUl0VRuKxLkXVm4FEKySeRDf1j0TtgZtEvvF1RFndjUSmBIBFNLEdRYhIm0X864VFCriURGzPl0Syk9hEqi0uRWOrj0S83w1Fg+0dRQPlHEXAS2JEyFPnRItuhUTTkT9ElEFCRCKlYUSTH35EopFaRKE3O0TCD1dE8RtARH84z0QQra1EXPKcRKtCkUQRl/NF9Fw/Rdm2xEQF8BJHSc/CRDZ4B0VBcGpF+K4PRxodbUa1SqtG+1qCRmB6R0baPZtFJtXSRHshiERu+qxE4qXfRGEUUESe8YREMCx6RBhT0UTAhVRECyhuROA/ZkQxabREU6XERGcU60T/lRJH3O+aRgue+USRnE5GZ/kXRekMQETkcpJEEzO8RKGHb0U0QotFCLKERf5+vkXFv8JEDtZ1RFOsiUU1wiZFUV+ZRN7xW0QKCx5F4+FaRXXrb0XdnD9FM+BORNNdUUWfe1JEY3VaRM7mZ0QLOWFEk3WzRHkH1ERhrk1E6kwKR+OHn0UGn8ZET+MSRTC2lUTm7ndGj64IRmn4gEVe0SBFwuFzRbUYsES9z45EcPo/RD06XkTwBXZFFC+ARbcCzES8MU1E6P+CRNzSyUSbTwRFQXuBRGX2vUS3O4JEg8M+REykn0Rmd/JE+HcURchMXUSZC5FF0aMcRaJGNURe/T5Fha+mRHYfMUY1LL1FesuGRfsEXETf7BVFAecVRZX9nUQPGk9ExrzVRTAhuETa+sFF750kRagKMUat8HRFY6cWRfxB8kQdxjtElWowRTG/fkSJy1dGbNUpRiqggEXJPK5EzKFbRPQQzEW+SR5Fvdd3RA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - +C3ys3bAckBOXFL3C8FyQDodr/FuwXJA+iLsmMjBckCgfN/7TcJyQGgKywrlwnJA36qjizvDckCYLYJvw8RyQNyOxqBYxXJAVmTHomDRckDxS34E1tFyQPqyaFMQ0nJASoQFg0PSckAZC1zidtNyQMSmOewH33JAs2KANc/fckC3r6N6uOByQAXQt0ZR4XJAywx0pfjhckBML6gCUOJyQBVpXamO4nJAvEcLYibjckC8bcQTVPByQKYN0VhP8XJA7IPrlcnxckCONXJyUPJyQF21gmZ98nJApUae9J/yckAR63R2HfNyQEinV06183JAAAhwkE30ckB2Jqp6ofRyQGKI3EfC/3JAwM9CflMAc0A/4tXu+QBzQNffyShNAXNA3vTOw4sBc0BqGXdx3QFzQJ7mv8Y7AnNA6MiKVc4Cc0C5ZCbX+gNzQOE2HQojBXNAssLyKQkSc0A43JpXdRJzQASTvqaNEnNAPuK69bsSc0A0zJ8+YxNzQPCuKSP4E3NAnq5Ei00Uc0CvMyMReh9zQHL51744IXNA+Kx2aeYhc0AaIKh6yiJzQHqUo+YQI3NA58mS4jokc0BtFZ12zyRzQNCfCZxEMXNAZWOlm1kxc0A/GFMbzzJzQNYLILX8MnNAOmX5HaIzc0DEWxBS1jNzQHKNJ7T2M3NAhEmM4zc0c0C8l7fNuT9zQFC3UEtAQHNAGu5gquNAc0DqQhI7+kBzQBiyMz95QXNAbpx/9bxCc0AifeFbGUNzQBaj5rR6RHNAVMTXBpxRc0BcigJmQ1NzQDBgXDGkU3NAqhjAT3pUc0BpF137+l9zQC6K3fCLYHNA5lkDMIdhc0BYV10MHWJzQBkWMUplYnNAojM8/zhjc0CyCvIPs2NzQCO6m3YqbXNAvivYHExxc0DFj4pN3XFzQLaMPR5VcnNAnWTTY7d0c0AKPg5/TXVzQLL15oh4gHNAbEbDWKWAc0D6XWlFDoFzQAJvqglegnNADAIlnKmCc0DmTLsuAoNzQJP8ONs6g3NA80VwbxGEc0A9YUslWohzQBBgvz2IkHNAL/Acy86Qc0BcbBgCjJFzQCi2hYj2kXNAKBcoxiCSc0CwYbQyTZJzQBzSwT9nknNAhxnIq9OSc0CNUvK0DpRzQAaS5o1ilHNAzTgMM/eUc0AP5N3SjJVzQHm1g2q4oHNABjMAf+Sgc0BU994jTqFzQFnhItJaonNASAXiqI2ic0DqGBzlBKVzQILTcJLZsHNAZINEFFyyc0B6EXtofLJzQGwNxqrksnNAs5ZD87ezc0C7oFN8DLRzQNL3GcWitHNAEYKPM2TAc0AiK8zx+cBzQMRB+kU/wnNAWpcHINDCc0Ak4FUiJsNzQFb66CXDw3NAdHGI/NfRc0DGSQ/qutJzQGpzjqIj03NAKEgQdvTTc0Aq2z404tRzQHByZM5533NAlGm3AqLgc0DSQJQUOOFzQBczbd5i4XNA3HcAbXnic0A6+Q6BD+NzQLyoUAQ55HNAWteaN7jxc0BkU5k4/PJzQINhfxs29HNAsBBGPeIAdEChzP7feAF0QJkHC3SlAXRAyh456roCdEAWuf2dCRF0QDt0Rk+IEXRA5uepb2QSdEBx3gTOTRN0QDj9QbR3FHRAPmFyKkkgdECBo/cejSB0QAK66KCDIXRAiPaF+rchdEAd6Gp1ziF0QFjZpkpmInRAeqUmt6widECP+QV8/SJ0QCh9anlTMHRAEu3KW2YxdEB2xTeQuDJ0QPvK3oUbM3RAbVrrBk81dEAMlcE+4jd0QDKspJ48PXRAfd1r/sM9dEBcraJFoz90QNTBDBdUQHRA5d865MhBdEBVDYGmJEN0QPJf14E8Q3RAFAewgnpDdEDxAN8tcU90QAldrJbSUXRAaF1SZD9SdEBiZevOolJ0QHxUYgv5UnRAp97o12NUdEB0absg+FR0QDqRx7GLVXRA/NwwaN1XdED7y9glH110QF5yo025YHRAruo+3E5hdEA8ack2CGJ0QAUbu8h6YnRAgnfka41idECoh8luD2R0QKZ5xMhPZHRAJnnQYyJwdECw6HrbX3B0QBqICRbKcHRAXAqnZUFxdEATRCe9yHF0QI1QEuYQcnRA4kCMV+9ydECGdYTTOXN0QDS8cniidHRAHinZxTZ1dEDytYcBRIB0QGx6L/FzgHRAgq2KIfmAdEDe3T/+ToF0QD1Cz2ftgXRA4GOh/UeCdECa8bePzYJ0QFLEhXolg3RAHg+pchaQdEA4hEoh/JF0QMjnvXtQlHRA4NHN6u6fdEBmSDbFo6B0QLCER7nQoHRA0AFevTehdEDUqFM0z6F0QGycmN62onRAtDbQQxCjdEAqpxAg/K90QMfNV/zBsHRAW65dYG+ydEC7xulo/bJ0QC8bpocps3RAjVRmZsi3dEBiLe7NFb10QDg2Hw3dv3RABmDtseHAdEBYVfAWesF0QEgS7HXqwXRAtlhGhSTCdECSzWy5ucJ0QD9suhB9w3RAql/P4STEdECDyE99esR0QMSRLW24xHRA7qMOzvzOdEAJGgu+e9J0QPDJRGmK03RA0kxv7OHTdEDcP9kXztR0QCqblX4i4XRApfxMzrnhdEBIVh3pHOJ0QO4sE/xl4nRA7HmaE/vidEDmnjzsj+N0QHTGEc1P5XRAZqSMkL3wdED+aop4jPN0QCTnrCo6AHVAAM9MwaQAdUA2gCO0vgB1QOILkVnQAHVAdCUyGOYAdUA0CF9OYwF1QO3BKz5dAnVAeCg6iKQCdUA0rO6r5AJ1QInnEonRA3VA9nDwv5cQdUAoIaB2JBR1QBQap4njH3VAoFC/guwgdUDcx3VbciF1QFdqYgGdInVAygujnOYidUCkYXeKYTF1QCJSThSsMnVAMMJ/ccw1dUBI3nkwiEJ1QOnyrHjdQnVAGCnyuCZDdUC0HYGg5091QM7PTuuBUXVAPq6B/nZVdUCy7GZD+F91QD4VOqA4YXVArhgD6fNhdUBkhqaka2J1QGhAkzLSYnVAthzuUBRjdUC6D8CYY2N1QFVKuCg7cXVAunmXuHZydUABs5eR0HJ1QJoNDgUndHVADgxNu410dUBUtUpG4oB1QF7z2nJ4gXVAS20Lza2BdUCuxcpiNYJ1QFF7vl65gnVAXjSsXaaDdUD0K45xE4R1QIRsW9OchHVAvUQFNYyQdUC90UelZ5F1QNKigSq/kXVAOm1lF0GTdUBZqrNhuKF1QBs9cWRlonVA4vAaw/iidUACJb7USKN1QO/9aLJro3VARaqdSKSodUCqh55pAq51QPYchvRSs3VAzltURPfBdUD8xojEpsJ1QNQQjYA3w3VAMlqGk83TdUDZ+99x4991QEbPmjsS4XVAanfRoQjidUDgGI4P5eJ1QEY8NAhM7XVAyDvKEijvdUAgDAkP8/J1QPazZs8c+HVAHb10IkgCdkC8fC4r0QN2QNgszb1NFHZA5vvWRwsWdkBKMAuLiCJ2QIyrztmPJHZAmN5NikordkBbbL3PHzF2QBYTVNeTMnZACq1/9iUzdkBigMNSUDN2QDzYH/vWOnZAUppwZh1BdkC+4ZjgyEJ2QKZ+YF96RHZALqNcEv5OdkCgFjqtEVF2QCs6sgN6UnZAFSsYSoZUdkCmyzSLzVR2QJpK1AGRYHZAbd50GyBhdkCAWRXQ3mF2QOZWH0LaZHZAAeoJ+XxzdkCazbIhzoB2QIjtTZZkgXZA4O45+z6CdkBoUyg78YJ2QDIgeOZpg3ZArAu7qpGDdkAkYpVkS5J2QPKioiRmknZAhn4oXXmTdkAC7B8HvJN2QIqaHxHmonZAouoBQLawdkDwfNLALLF2QOemwIbBsnZAa3rEvQ20dkBe+cMfeLR2QF/pfj2wtHZA6CJnj8HAdkCcqEOtTsF2QJc4duvNznZA4GfrK3rQdkAojK/dfeB2QL541+ny4XZAprF/aSvwdkDkNf/vkvN2QPvpyF9Q9HZAuLp2YzcCd0Dy+QqqcQt3QDJjz0EBEndATEJSXNMSd0AZhnXZTBN3QNS23y4PIndAGvlj2eknd0BxEeIOQy13QIC+9FCiM3dAZmpTEQ01d0B4QiF3RD13QAApb0jMQHdA5B2oDp1Bd0BMtelViEJ3QPa3C5mRQ3dACG7a3yVEd0CoAEjhGkV3QF+3ktQGUHdAaCVNO0pRd0BSD+fBklF3QDALmy02U3dAkss0fidVd0C05ADGe193QAyvI3cUYHdA2cqpxo5hd0AImz5prGN3QAcEtdAnb3dAFHT5q/Rvd0Cz37DZbnB3QHeb/LOfcndA1QUD4yRzd0BGYOSXuHN3QMq5Q8r3d3dAFzBL0kF9d0CYDVgoeoJ3QIYhfC4WkHdAkLVuiAmSd0C8/LT1qpJ3QPhABDxOlHdACEcJo7aid0A9j6DDzaJ3QHK/F/Auo3dA2qxhav+jd0DUOCtOmrR3QICydrdJwHdAHKAmNw3Dd0D2wV3waNN3QFbwE3eN1ndAPNE8+Ongd0AhWKuP3+F3QFYqky5S8ndAFpRkHoD4d0DH2afaRv13QI4G0jja/XdAI6rB658CeEAIckboqgN4QN7d/obmB3hAzxT8qvwHeEBuinqqxwh4QCz8AypBDXhA3HTyLlUNeEDIIRWbIA54QHsNZeJNEXhAiKFhvG4ieED6WSfIjyN4QDToQ0alJHhAZJisj5oteED6Yiu51DJ4QKUCq5WOO3hAOLq6Vg5CeEC0mzWgmUN4QAIRtqgRRHhAXnvYRnpFeEBy5xw/y1F4QF6lgfKVUnhAsgCXWIlVeECYYYoJ+GB4QNBkxju2YXhApiagGgtieEB+xq0tumJ4QIS0Uprrb3hAohwuoD10eED6lUGvUHR4QGq1udqLdHhArs5BRPd7eEAGWGwFpoF4QB/XimH6gnhAAARloxGDeEAViSMo/4N4QNE5PAOahHhAMm2cYk+IeECQwj1gBYx4QBiUTFupjXhATipxWdmPeEB+HaLomJF4QFQrju/sknhAcHn7vASTeECmmQG9p5R4QL4TIEJemHhAkMmLebudeEDgYkixIZ54QIAq9Om7o3hAqm6y2rSkeEA0ccbfOq14QPAXS9pWsHhAeJ7lWc7AeEDG4T3dFsN4QCIGIw8ey3hAauoGug7TeEAWeP40uNR4QFYTjtIX23hAq/sqoqHieEBvKm2Iw+R4QPcmeH+P6HhAHHhcWgL0eEBR6rMXjPV4QPfNnlYQBHlAph5erpcFeUAx/2Ye1BN5QBoXJ4XcG3lAJjvGt8AieUDT2DLbZSN5QP4e/WayKHlAfLbFkQsueUBBCcrwYTN5QKnAxa21M3lAp8TNcYlCeUC6qoR1QUN5QAOWpUj9Q3lAveTjq5FSeUDG69hbOVR5QOSyeEDNVHlAKvW+DuhgeUDc+5702WR5QOLu2IcCb3lA13JEu0JzeUCenanMNqJ5QOAJfR3AsnlA8jjQNHa9eUBuy/MICsl5QCrJ749bzHlAZIMxU0HUeUDCDXPp/9R5QExz2+PK1XlAVG2xsVDkeUAUVZAvD+V5QGI5++lK6XlADu8Q50nyeUDz4NBeg/J5QD6onzS+8nlAbEgbQP8DekC3sPWf9wV6QH9uy3VhC3pAoA5jEZUPekBjPgqSCiJ6QPoK83UyI3pA3LjC42gwekC7pAcCKjN6QM49g5ctNHpAFi8Siww1ekALOckGLzd6QIr6fb8wO3pAKKuT6DM/ekDs/XrJeEB6QLYIgFxJQ3pAe0+kgRpFekAMr0eCn056QAgwklVYUHpAKmmPad5SekCCiRWtgVN6QJepvA0QVHpAInVSdSdVekBGnp+oI1x6QB5197YqZHpABs2pIytsekAiVLF+OW16QJbgVm4lc3pAdyvFmEh8ekD+bV1YKX96QDxvDJDzgHpAlNOk89WTekCIv0+UoZR6QGXVTgQgo3pAqIB6PCWrekCqEUeQDbN6QBrTNLj6s3pAnCrY/Qy2ekCCOiRGEbd6QBopBWUWu3pAdBUuGL/DekBenoqRGcZ6QFcWlEzGy3pAJiHf1iDOekBjVSCbRM56QL4q13zO03pA9P4d+gDcekBm6VvDauF6QGrhUOk75HpAdBrIQjbuekAOqtz+FvF6QC6g7KFg8XpAzh8Rwkf0ekA9DSY2avd6QKRjie97BHtA9DVc4CgOe0BLs8efEhB7QITGslOJFHtAj8aYZUwVe0AiST0y2CN7QOAqsu5aJXtAC+dBwsQze0CuQgrBZ0R7QD1Jeoa9i3tAgsgc7eqQe0BO3nPJI5V7QIbl7ZBUnntAtVD6sC6le0CJQcxbdrJ7QHp5zj7oxHtAN4oJ6nrGe0Dax5rnkuJ7QAGenq5X43tAwKROXv7je0DgohjzJeR7QCqKHr1m5HtAjl9yg+Xwe0D4XvPHlvF7QOhp7SaM9XtAWJTc+5IBfEClSM472QF8QFi9EMW4AnxAevHB/WQEfEDA1WSSmgV8QKHj8bMTCHxA35yt1oMRfEC/vG/e0hF8QPKRGfynFXxAcjU3oeYhfEDyF7Ts/iN8QLRa12KSJHxAmzAUqTUnfEABc95aWSl8QKlS9nPNQXxA3qlqkNhRfEB6YNu+bFN8QKjUSe0LYnxAPk0IA95rfEA2XI0pKXF8QLpQ399Hg3xA0a79O8SNfEC4EKvlHJN8QKqM+NBjmHxAdLBXh8KdfEBAZkMiSJ58QD3AtgfhonxA79rNjRajfEA7Ltx8C6R8QPbLn2nAsnxAjpZ/9u2zfEDQDfYuerR8QFqrYaryu3xAdxpQhz7BfEAy4a/JhMR8QIhYHJZKzHxARp4rQyTTfEC+FUjuUdN8QM5Bf07O1XxAhJ1n/VfifEBSHYtgD+N8QMR0YZJq6HxAbmZ8nsntfEB0KxhGJvF8QIZP+lsX8nxArTP70FTyfEC+gcMqBfR8QHFv4qxOAX1AFJE4a/4BfUCcDRJjSwJ9QKaIth9HEn1A34hgKjQTfUAv65Ea+xN9QNS4CkdVGX1A04TGuz4ifUD0JYLEXCJ9QJ7RdUqhMX1AuhGd3SU0fUDgZirnQzh9QFKKsdejPX1AdsBYci5AfUC2mMKubkR9QKxWdBxrUX1A9Av1I0JTfUCwRqB9DVV9QDKghQt9dH1AmmlsiDF7fUDKLTdhe4J9QPQylRSWhH1AKKcqcl6HfUDRTJg7lI19QAQOmFLxkn1A+Hnc3SSUfUC4pbSUyZV9QH90hfQKp31AKmrRp7y6fUBmzMYun799QGjfk83owX1A4I4rPzHDfUBfcv0J58R9QELQfKj01H1AwKuNTtfifUB6oqalkfV9QKxIxAKH/31ABGCK7zQAfkBI7nX0Mwx+QC+8VS9FEH5AaGBE+TkffkBEywy7IyB+QEA3F5b5JH5AiLKWjxomfkCsXkxwMjB+QCDF01N5NH5APmtuFwo7fkCkZsY/Gz5+QAgwCN8+P35AK5KU9hZAfkB8/cbADkN+QEQfwFmhRH5AthWC5NxTfkDUqAPOj1V+QGUCSEc2WX5AuMcG+gtkfkDG2l1QuHB+QMLlJUtPdH5A+JAABLd7fkBWtEEjVHx+QKtHkF9pf35AlOCF0L6DfkBwIYJB1o9+QLpDKWiYlH5Aluc7Z2SffkB2n7n7kKR+QHmNQFlirH5AliyZeY2wfkCA5kfqZbR+QC51jFagtH5A12Cq7GbDfkDoCKk90cR+QCK2XrULxn5AJjE1I23LfkAvUXF4pst+QIaOMnkHzn5ALnsnZhXTfkA+JZeJWtN+QAh8bP96035AdMUmPmTbfkD/9CxH0d9+QPGNIqxn435Ambi06rDwfkBLY48N1PN+QHgEnP9O9H5AJgONLKr3fkCmgSf+P/1+QGwdDWtjA39AMourBpYDf0CKg0OaQhN/QDqWi8nbHH9AiO9AaM4jf0DGPNCt/D5/QEm2xF0+Q39AhDgEqq9Tf0D/dMdC4VR/QCY0tXUwVn9A8Bmas95Yf0BO0Q2zY1t/QFJiTmO4W39AjBtDeX9jf0CciNSQt3F/QLFQfffjdH9AuGEt4rSBf0Cg9M5dpYN/QKcz8DpjkX9AwM0uJaqRf0C/XBjQm5N/QFTphTs9l39Avjp/baGgf0CODYvTXaF/QKLoT0j2rn9AWEGpP1exf0DggxryJLN/QKBSIWJfvX9AQBKykYC+f0Ab9fTHAL9/QLpb+jzfw39AtqFeb6nuf0BQyAHd4/B/QD59r8jh839AYw3kZXcKgED0qVOhuQ2AQC6UTfN6DoBASps2W5gXgECE3RNAzRmAQIZDjYgVGoBAFrPxRSQjgEDGzmMe4yaAQD+z3r4kK4BA1kq3bjgsgEBT8pKS0yyAQJ8585FfMoBAsQa0aw41gEBz+hwUHTeAQGpNSMjIOYBADs+fh3U8gEAwH6wYJD+AQEpGDSumP4BAZhxLHtFBgEBgi9KtqUKAQPbCnZxQSIBAiCmxx/RIgEDoKlTMr0qAQHhgC3X8SoBAQkzgcOZQgEBj4E+hFFGAQLyFQn2mVYBAqveTWyZYgECOFvtJDlmAQDdaOIndWYBAWwgQMQlagEDbMegT4F2AQO24IcoNXoBA3ZBuVwthgEBGQWMyxGGAQO1GAxLkYYBAOXkuOXBkgEAwV0YtoWeAQNP8Ah1OaoBAsE+cKy9rgEBTT6mIM26AQDdMVHIob4BAfa2NB1B7gEDifDIJrH2AQLQV5aMof4BApgbdF16AgEB/Mq/e04SAQGI2w9QTjoBA+mXVwB2PgEBpOIzYYJCAQFQVJwEakYBAmB8U5EGSgEAJzIbfS5OAQDSipVnflIBAQlviJR+XgEClvrv4kJeAQDNaFwEKnIBAGDiHq8udgEBet3EeGp+AQFyxM+OcooBAsk7qZBSkgEAVu1ILfKWAQBbJ0Hnnp4BAvXg6z2aogEA8IUqPKamAQLg0t3GGqYBABKFKYtSpgEDDZ7DU+K6AQLkM4AoTr4BAfULRAh+xgECztIYq3bGAQJJ6YWaYsoBAlNnkvRK3gECbU+URtrmAQELH7urUuYBAriOSa0+6gECGLajgm7qAQMtjNT4IvIBAyZDui368gEB+mFuww7yAQC5rhW17vYBAtmBllzS+gECOsAQZ/76AQOMOuLj6v4BANu+dilLBgECKTWVR28GAQGKZ8f6ewoBANFajh0nDgED+H+YTWsOAQIkLNv3GxIBAup/vxfjGgEBuMsaipseAQFvYZlNkyIBAw1zUQSHJgEAZz8NbU8mAQIl07STWyYBAILo7xKXKgEAQ0mcxS8uAQF0kgG4Fz4BA/ArJ1iTRgEBI/WI8TNGAQLzZrqnX0YBANqWmaV7WgEBHFFYRZ9iAQL2TQp1J2YBAPrG6xsrZgEASQMFJ8tyAQKYGL7lE4YBA/epI/ZfkgEAIBZJ23uWAQLhtjNT26IBAzo76SFPpgEBLgp23Te+AQFQFrZg684BACG38y1L0gEATfHNLpfyAQF2oa/A//4BAyn2PkUAHgUAgixBgOgmBQA5+ZWo+D4FArt6DTc8ZgUBvQovGqhqBQH76WojPHYFA/WE2WjQfgUBY31GCsh+BQDBwmgvzIYFAGs+s5zUngUAycS0/uSeBQJ7HN78xKoFA8RFlb/IrgUCMP0nfLy+BQLaYWny9MYFATM2ulHQygUD7LPEGvjKBQNlhrTbFOoFA8/kt/ig/gUBmXCd0lkGBQCKjyl4tR4FAcDimo2BPgUC85eTocFGBQGyi0bhCU4FA+gCQYB1UgUAsfRKuq1qBQPGFva6xZoFAAijCEW1ogUDSwtCGf2mBQG7CIsWhaoFAr24kV9htgUDMn56e23GBQD7V0qrCdIFA85kRyeB1gUCahOYbb3eBQFYfkZXreYFA62gy7Rt6gUD9mZI2HXyBQONf80jIfIFAch4609t8gUBezrx+NH6BQChr3O+ffoFAL+oKzmF/gUAq1hhK24SBQB71JrSfhYFAw3BcSceHgUD1wAaoVY+BQObK5Ru0j4FAw55XrvKRgUDoh7LQEJKBQIjt5e9Ek4FAgQaGXmuTgUBqDFq6jJOBQF+SaNW6lIFAtkCeX/KVgUAMsHuPFpaBQL1lYtE2loFAkFDbuFWXgUDc4wrfi5eBQKzu/4c+moFA3unSyCScgUAST7DNnJyBQGJPlGNIn4FAGqWBZGWfgUCMvgXu5KGBQIcGDBjfooFAOg6xrtSngUA6iqN0baiBQH7ECVXuqYFArZ6d7TqqgUBn0j/q062BQG4UccdKr4FAuPZ6r2ywgUDOOmOwnLCBQO5CKZ9Lt4FAblO0GWW4gUBMOpYk/8aBQGbVswe1x4FAuOErrALKgUBpXodQssyBQLCJulhQz4FAfKZ3xzrSgUAi+b4IftOBQBjEXhMF1oFA7dkzabPigUASZhgOB+iBQNLIzoq/6oFAmrV2rirtgUAUbspuF/KBQFbcRHns+YFAM6z6M+/9gUDQ3RwR5AGCQLql1Ln1AYJActxK2OcFgkCc7akD/QWCQM40hjwECYJArDIuhZALgkCuSLHBmROCQEQpRILYGIJAgQfuLiYagkA7Pt6kFB+CQLqrgnzXIIJAQ41WNS0hgkA44vfq0SKCQKdGGnrRKIJAX7ZGQS4qgkCnZA6nnSqCQIgv3yJBLYJAJt0mu6EugkCA8cCYojCCQO1oI3ddNYJAvN6tZFs6gkAiL/uCWj6CQDopToKyP4JAHBuThXlAgkCOb5MCAkGCQKqD2/cVQoJAm/QJF1pCgkDiEGsk1EKCQCCpSqOxQ4JAhqVW6ytGgkAkwA7YA06CQAv+3q5IUYJAXBkJCIlSgkBblA+WlVeCQPL6dgY5WYJAo5q1FHJagkB+b/Hh4lqCQCrWu0SfW4JAnX7222xcgkCQlfI51l6CQLYwB3k0YoJAFPudiDdmgkBCls+O02aCQPLC0i1raIJAcCWe1jtpgkCuq/tVCGqCQC911HM5aoJAsoEJvxtugkB6ut0lfXCCQJycskVucoJAob95MNJygkCSO9DOj3OCQN4S/wY6dYJAIpUDMnJ2gkA4Fdkz/HeCQM/Ha2J2eoJAWpKP30l9gkDeZoSKXYCCQMhhRPl2gIJA0LezIMmBgkC14+mJpIOCQOb1n0hDiYJAGwxkrJyPgkDUDAbMn5CCQFwy9cxDkYJAG8nTPqOXgkCO6nxYPJmCQGDt/6pUmYJAVhjp76ObgkChheoXsJ+CQJlC5aoOoYJArnKHzzuhgkDn2zUVzKKCQGoR0gHwpYJA6CBJkwupgkCqP10jNKmCQAx0V373qYJAtOXKvQexgkBlRBAzObGCQBjc+XPNtoJAbrKSI3a3gkCFXHG3TsKCQG7eXvmUw4JAXufVuuzFgkDqOQSN78mCQCp74scE1oJAwRbVXxbWgkAVlXBkftqCQLTB8bqC3oJABqNtAV7fgkAmXYhCw+WCQNYVPQJr7oJA/HFxucfugkCGeQDyCPWCQFGoFv2t+YJA7sQB88D9gkBu3mbQxAGDQF7r1RHhAYNAyOJuTsMCg0D0QiDEsQODQEod/Iq3BYNAJASDNOQFg0COEU62HQqDQLT3ibpfC4NAEGWL96cNg0C6VzuFeRGDQP9lqOyhEoNAjOiAzb0Xg0CwoODneRmDQHo/+ANzIYNAix5/HXApg0DibHHyazGDQNBR0dkcOYNAlB8nVJNGg0D6o0QrVUqDQDfuGKUGVoNA3N1UqD9ig0AbM7pHZGKDQHGEu+j7Y4NAUh8WToVng0CIKucUYGmDQJQxuXvkcoNA6gE7Skl3g0DQG2pjF3iDQCO4trLEfoNAcLubBpyAg0CyWLpUxIGDQNR8oJxKg4NA0jAGpMeFg0D0nx64wImDQMqnki/EjYNA4kdgFkGZg0CcdgX7Ip2DQFyVst/2qYNAAF4dTuetg0AtJVY767GDQCfXOQgTsoNAEuyFyhi1g0DWt1E/FLaDQHw0eIZ2toNAatvg5iy9g0CJIfdj2b+DQDThrdaIwoNAz/uLq8rcg0BEQAOgUt6DQI9w0LV234NAkP4scCPig0Ac3a2/U+WDQMT2U7ex6oNASvPem5Xvg0Dg+yFHBfCDQGjNwHWB8YNAD003mdL1g0Cc0ImAlPiDQExpvGcrAoRAzpdsdE0ChEDpWV300ieEQEIYIHUMOIRA9G5GO545hEAixBdrrD2EQJNTUGorP4RAo1fyJfVEhECWk7I1xk2EQKRADGx7WIRAfwSAhGZchEBqYxmbBGSEQAra4Kz6ZIRACm+phP9ohEAcYl5C/nCEQDjXhWZccoRA3bbgz7d1hEAKJi5Cv3aEQGDR5XDKd4RAaJ49fPZ4hEC9Hn3Gd3qEQCu5/sAJfYRAADh8gSN9hEAu8iATsX6EQLhcNgG2f4RAQJaHhciAhEBptwcDYoKEQE4TDal7hIRAagNYZRCFhEAM5qyhvoeEQIZLZCQRoYRANoAFfXOihEBC2P4evaOEQIzbozwepYRAM4tqxnSohEDG8Vc2zbiEQIs/HjZywoRAIHcb+hzFhEB9dQt/zMeEQANWRUoYzYRA0J8tn8bPhECOrpJYINOEQBoHAU+O1oRAIPyrJWrZhED8eU9jauGEQERD4qhi6YRA/OHNdyTthEDk7BFf1e+EQIazw2E08YRAiJM2NGPxhEBoNOC3ffaEQEg9TLrd94RAvhNb5zP5hEAoZad/W/mEQNZ6wY6G+oRAErUMOzP9hEA+1INR4f+EQKJPr9kqAYVA+6CxMdcVhUDA6dl6+RaFQGmfU/VzF4VA/PZLTAsZhUBce8MGqRqFQJgpZzX7GoVAR/XjzkQchUAV81A1JCeFQNJdva2eVoVAA5hkb6BahUCwDDuToGGFQHxCSYDeYYVAyDaCIOBlhUAkLxMSTWaFQHmhGbefaYVAzDDklNtphUAmhd2fmXGFQEvFMDCycoVAIW9tnbh1hUBkKmaVtHaFQKCXR9uZeYVAA/aw8Ld6hUAy9yyXm4mFQDCPiAJpioVA7q+INkCuhUCSIHCyra6FQGJC02VEsoVAtyWt3kq2hUDMKJ9+SrqFQDrRJ0IEyoVAAlIpOFXOhUBiq5vgt9GFQPpnucoA4IVAxGSbEMbihUCSTvBhZ+SFQKIMtPcA5oVAa+EjF7DmhUAep8j1m+eFQAJK5u026YVA5SGdZ18KhkAKXOAXfxGGQNagcmOjIoZAAJF4eZRGhkDn2PpaqVaGQHS0sT7OqIZAnni3qVCzhkA21aXJ7raGQK8cNowluYZAA0icASfBhkB54CBSz8aGQOjEU/rMyIZAjG/UE8rKhkDlP6dCzsyGQNwcWrNM6YZA+qt+PpbyhkCKRjFZg/uGQJ/uVHQuE4dAMHKvhy8Xh0BmT0ykkSmHQINz0h2RMYdA9rDiU4o5h0CqIiT7WzqHQBqtmySgPodAgs+rulxBh0DGT7i+iUGHQBCo3kqjQodAlj4aPF9Jh0B/Mez33FKHQBJSZIjlWodAsE8ZKRdrh0DkQD1oIXOHQLf3xYXHsYdAq4ZzicW5h0AuzZGVwMGHQNDAGlxawodAUKs4wsPJh0CAuOfQS9OHQMw2sapJEohABB0gin4ziEA45Kh/mDmIQKLTNYKHO4hA7NW4T6VOiEB0nfhkqVKIQKwTf4arVohAghUqXLVaiECiSSyHAIGIQLkd230Ku4hAAve5KxLDiEC2GH1jf8SIQA== + KBZXds7jZUA/KJil8iNpQG+XdYaqQnFA - + - uwJjRKiEEER+sdRFiJutRZy0WESG8ZxE4QkLRRNTWkQlK21Ek/QiRJWhUkS2pVpEg0oAR05egUTUMy5EeACVRCi6AEXFQj9E5aFARCfdj0W/LaJFrrmmRN0Md0V92Y9Ea8AyRSjIUUSVWolEqa02RI4qJETbx9pEriwSRBqL60S3yaZE2PYjROb0ukSMu49EjOFvRMWyJET1z7NE6JCpRLMq3EYMpj9EIpNORDLZkUQYVXdE7nK0Rc45gURcmJZFvLCoRLpGMUXph59G11lLRDOKlUQwBZxEVr2ERLpLiEVg+YNEBumiRHxebUQrk15EVMCVRAMZWURitkZEr4VgRK8X/USsqJpEGT/CRHwhI0TTxTxFRFqYRLxKY0SvEeFF31tnRXCO+0SnvIRF3P6TRDRTnkSjcp9EqflIRFmRekRq9JJEvJrxRPvMWESKMnxE8xdfRPaJuUSNLAdEf/GJRJah/kThFqdGvU5BRM+eK0XwdqBF1yuYRKmfuETEr0JEvHtQREytRUScIQJFlR8SRK5zLkR+YHFEHSZ0RDYkN0frFXtEeBtqRMzgKkQJvOVElCZPRrm2lERRs6JFNASGRPYwUESb/dJFlAODRF1p2kQmuE5EAyWLRPGOO0T2ciZEg7I6RaZ9M0WHlrhEox5LRAJc6ER/2BpE2ACVRWLCpkRmwktEhfkYRXKxMkTaAXVEw9zQRDaBrkUy4CdEKNWMRDHFzEW0Yn1Eo/jORNbUgURDHg1EoSk6RBpOuER2jZ9E+0q7RLw6OUZd/mhEx2q6RF0IPkRph5VE5/lbRDUPWUXMEH1EV/eLRGYPQUR5sRRElw9FRMkcPUTGJihE4zcjRGDyLETt24BEfUBhRKpFWUQx/L9FPygzRDYLLkVt8NtEO2xSRAbmIUTz5HREjpKiRLb0KkQzNdlEl0pVREJfVUQnQFBE0qpURAvzOEQsZXJEaP9nRJwtyEQZ/f1Eng1GRCCOBUWwVk9Faw5BRHi+20WN9VVEjdg9RGsmWkSOFLFEQ5yORXDjQUTh3YlE7349RyAaY0TEJRxEmUdORMZcJEWmUaxEL05+RMRBmkTrmiBExgilRI8CvkXXByZEMm37RML3V0QLtZNEVb+dRYGJM0SXuClEgp6YRX+Uq0SlEtBEnObAREehQkTdA5pEPXMdRer310TRk8BEvkI8RWbOXESYEl1E2TwuRVvIL0Tiw4JEFXyQRDHuXERG9SdEwRI9RB7imkTPValEEQgzRFREK0RTncZEMsyXRKK/M0RLViREexC2RDHunESbKVNEmeALRXeQWESWd15EbmGDRDu5U0XtojxEzBhuRIe2kEVGL0hES57DRJEuNkRIijxE3+GERKL2nUSJuPFFxyJnRASjdkTIJUZEw5CjRL+UMUW4oUJEWnj5RGMRMUTG/BpGO5CDRGi6PkTY+sZE5sdQRU4eSEQtv5tEr69yRFcXxkTJTK1Ec6gMRQEXI0Rr4gFF9S/HRDNLHUTIwYBE01c7RMcPQ0RTIkREWWPzROJ1M0RG0oZE8N4VRiHDc0RrXalELjCcRThGLUSwVahEM816RUQ9VERDBP9EAs2mRPggV0QYGBlEhMcOROWy30QKfUpEJQBFRMBa3kVRPzhE0nICRU+ZkkTs0FBEBw8RRUZNh0Rf8y1EUrOHRL/MTEQWvnBEH3CxRK1Pi0RgTcdEKwVtRFF8PERN2ppECtuKRd/j3ESPj4tEORz+RACqsEXqr8RFrvCCRb96v0ZwY0FEB699REt6GUVKTBtEnuiYRXBLCEWkMBdF2WxKRGIRS0V/WylEyogmRGPEOkYFdjpEfcOIROePt0QiJBRFIKOHRW36KEQjDGJEX80cRmeEIETFMSlFquPnRNaSq0Qia2VEdHSSRGsOj0TUKlNEQFt4RGkyDUTy9DNFa0KFRZ/npURo0ilEFS6nRI+2ZkSuRo1FcWmNRJdncUSLj6VELV0hRHALsEQ2nXhEcVl+RHUINkSPR5lGctsjRKaBS0SH0m1FsuY2RSPFfUXyaTdEpc3kRz/YHERBMhpEOlSgRizuOURQbAVFmWRNRFLWxEZap3ZGNTekRWG3ekYgYCFE+HbCRJDYHEV586ZEW2b5RDfFlUR+TExFCMbRRBNGHEQkySxG2U+YRLWgJ0RxVYdFPQsDReI2yUSmsClEDqWARGY4PEUrnLxE3KoeRPmGI0TmEGpEDsU7RAtgcUT8mxJEb547RF1CUEQ+sYFEjBhdRHytHES3y2ZEQlZgRMAsQ0ccjENEdQTWRtmOD0Tcrn9FZ622RcjPh0Quf9ZEK9KwRNcbj0QA3HREfU5hRcm6Y0R/6klEWw2SRNHzHUSvoHdEPdxTRINNCkRhunRFaI76Ray/jkURfSBElNGnRIIT/ESoTQdFDTsSRPatg0RtsaJE2bTGRL3GD0WR0jJJlTRQR/Urb0WMfBdE09EyRCkmn0a4PTVIAxPaRml5MkVO32lG5CgVRPFwUUXSIJhENAN3RVSGYUanN6hE/t5GRKEkXUR8DgtEnoZiRKRirUR6/jtEr84WRaQDw0fQwgBHlEDiRSyudkWxd11FegXMRPn0RkTzkD5EjjqERYE/p0Vol2hE0eqyRMa8DUZ7/llFrVgrRIJIRUTQTNZFGoybRVJO0kTnWDVEYPJFRLudQETUH49EWGccRFolgEQGDQ9FUIxRROO8W0RGnyFEfw/HRLvbPkQ5wk5FOFAkRH8+dUTX831EKLS1RXWz5UUbT45ELxPuRHv/9ET0QElECHkiRBAISETpjYJEOb8MRetOf0R+TyRExfVeRJEdQUREVBhEi32VRTd5O0YfTWJE5XulR15qSUYwUIRFTzohRfEdHEQ1ejREMra2RnFdTURyFkVE09U0RHMghUSG2KZEVTYpRdrYXkX5Jg5FGn8qRFHkd0QsTTFEZkNGRCKJYEQbnjpEStQiRU+4gkQrQkRF4572RIWRB0VZxqxEkhzARfSPY0WJeGdE/XAWR7ACiESaXkpGQkY4RB6EPESzjzJFfxyTRHHEq0T6W61F4cQARa9RkkSPzJxE/7OKRCpOPERuUKBFZzafRFKDNkQ6dJ5EeMA3Rpe5l0TPyftEQPY/RIA+I0QfimlE6C1NRIOTX0UP0ytFw60/RA8yH0SaTEpE6P2KRMKhFkSvkzFEHWtHRH2sbkQQWjhE288WRei+mkXlFHlGahr/RGaYOkYG2VhEhNrGRFu/okVROVxEjfxpRNBbmEWzLShEmAVEREKa+0Tbb2tEI4OCRO8mk0RzJNdF/iyTRETehkQUgnREVblzRHQ6rkQvJ01FT+AORhSGyUWfQ8lE8ngsREw930TavShE+F2/RAV5H0QfY95EkjTtRMkFv0U/pZJEf5kbRGPil0TAwBVEdg0ZRFupV0T0wk1EjYa8RzB3LkUhoMVEsOBVRH1tb0Szh/5EEO+dRkOTJkSYqMVEUUKPRD5KhkaHg2JFL8McRFSi0ETl4HhEIe07RL1tIET7tNpEwaOLRA14EkUqOKBE0/5cRFa2IETxj4tEMIuNRGVvKUTx3ZBEktRERIdWS0RI/FNEFcSCRHP8mEQ/pWNETyI+RWPxWUSeFzpETkKSRJAsSERvh4VEU9ClRFbkwka52n9FpaeQRHc+UEShzFhENbziRmnICkU4GzRF7c6rRNFYz0WHXVJER/hjROkSdkRatt5EVeN9RbKrPESSipREWeFuRHX4AUU0nJhErIl/RKWO5kTXR5NEx0kdRI7cLkSmaFBFDA4bRGvPj0Re1l1EfJqZRJcgLkQ2I7BEEGpoRG9CYkbESxJFnjE8RMnCakTVfRlFBzaMR1VDY0Vd0llE1P7rRvdWU0TkYDZEBkVmRDc5CUbeKHNF8ANJRV5fY0T3k31EiWxuRGPgO0Qbe2tEead/REQGVUQkZHZEksmhRNdxbET8Zy9ErWsWROR2RkQ15DFEnur0RKqkMkTm1ShEOo4yRPfQLkT5iIpE6CUXRA5P0EV/aJFEKY1uRADgbUTG1itGn56jRHAxvETLeplEPYpXRDSB40TeQWdEfUULRUW6FEQqdyZEKMpHRIWUWUStWxBEwNU2RJ7vUESOSyJEOMX4RO67KkT/4KJEfasqRHhDLEReoDBE4PaDRGmjmkRnvEFExr6HRGsZRkR5XCtEpZVdRCJXgkdwNFxH5h2kRranm0WIIyBE27N9RLWtUUVAXzVE6SfNRBdtMUQSRR1EvzkSRQKDZUa8Dh9Fro7uRHLZ0EW7uOpFPqUFRsCNdUXYz1FFhLRdRL5WZ0XhEFZERFFSRaGmsUTj/LdEY4tQRLpXSkT0lS1FzylWROlM6kT7LNRECbEoRJhFFkRLfSNEAE0uRg1geUQxzElEPwBDRIScPUQQZzlEAxckRX2jK0T1bxdFKzvYRBD9ukQU+X9EnXy2RDVzSETDAFdE/46MRBBrWERVff5EZkVPRDksN0QdkcFFLDnhRBY7GkRaKqhEKvslRPbREUTcI5hE4TooRLfEKEQesoNEFFBxRCvT10RFm09FDcugRHr/lESRXUZEHQZPSJONGUTzSPVF+QNKRFgwR0QA7zJEi8ZNRILno0RmyyFF0O4BRWlnwEcHgblEnQ7OREC5Z0Qi911EO24sRA4wS0eIMypE7EsjRZL6WkU0RShGTj0sRELZTUSdUYNFQUZNRAR+MkTG/LREJZo8RGHny0Tn7lFEq5Y3RHF6LkTATUJGi3+LRXZyQ0TJpXFFJqCvRMFwLURLZYREXKT4RpHbb0RQlWhEhwHeRfvGOkR+2SREXJaARMuF0kQlwcpEc3VbRcjmM0Wkh3ZEQDWqRYSYUERkaE1E2ChbRH4PbUTedGFE28cdRHnAYERmPLREvl0vRMjqIUSdiUdEDY1PRleJ10VLAz9G6cvlRJDF2UWLd5hEaIaPRVPNSkSJc5pEggobREWcckTkEDdEu0+LRAQSVESbIFlElDY3RKqJ2EXm9HJEJ0MrRRGIrESPJmREmCyERBFGH0Sr7GNEJN9xRHEsPkR0HLBEjlc+RfGkt0RzVE5EuuJDRDPr70WXzGFF6I2QRLYGGUUCQeZEL58MRDFVpkRz84pE//o+RMsF9ERnwRZGSJhZRBK0TkQYdQlFhW6BRJbvekSAgWdEMR+gRAbAw0R3XUVEuM5YRJNapEQLlStEQJRcRPW8LkRP8j1EG+E7RFAsCkQaQb1GxQ5gRvwdAkU4CRJF3AaBRCTcQESA7rdE1hgvRBhHYkQeVyZGgc4gRNYuYkTeiEFFqMM1RLeVTkTc71BFQWwTRGbKMEUGKCtEz6WzRJYPp0Q3EY1EtUceRDcTOUSv/IpE1GBkROLzN0QqR7tEPjK5RLiJUESu/1RE7ykjRL+skURHtrhEDSiIRNKHPkRxzIxEE4BFRBplh0RvkZJEB7+lRGx/WURpba5F+XxWRRCKAkWUAt9EAca4ROFuY0T9/apESlNzRGKWWETvxiNGJtnVRJ+/NkTWhsxETb2bRRvHiES9YNdEy40yRDmalUSss3NEfL+NROM/L0RLr/NHDfgyRGUJLkQZP1dH0Yp6RK5+6kZb1zBFKnRRRMSDQUSmiYhF92H3RWAZiETDZodEuNXJRDWaNkWKFBpEcn64ROONY0TqITNEsNRFRJfoaEQjOydEhbCpRVFmK0VhlVdEAVs5RAFWI0XOM8tE+t1gREapNUSl4pNEPUNEROB9M0W+FPJEx9UPRqsLgEV/ZfNEilODRFSgIERvzXJEfXGkRBzbSETdiSpE7EqYRG71w0enTjZEaiuVRH+aOEfTjMpGz5+zRTAcTEU8Li1EYgZTRBoqKUTziB9ESdZJROlAQEQcsDBEsE0zROzJY0RvdCNE13YvRPEickSkykVE4gVTRKZQTEbBH0dEpLipRdZASUVpCNNEySrPRAxlNkRVrMVEzwK8RRCC3ESHna1FWMhNROPKNkV0tdlEL4eVRBf/JkXnUTFEYBgQRX9DBUW9+O1ED9LPREXx2ET3NElEGUQVRKquYUTpQSBEDZ6ARIZ1ZESmZ0pEZxBRRGnDK0TBoHFEKk5MRNGEHERSpytEUD9rRNJ8J0QlQTFE4qQuRIEu2UTy0mJEAmrxRTEEOEVyzGNEe82ORJHbXUS3RiNHdqvNRK/1BEczM7RGWLiNRq6upES1HLtGTC1ZRBRgIkbGVRxE2O6nRdfeHURKCO1EjZ95ROY7dkQ78L5Ek9ArREprZ0Q9cQJFKtCnRBcDX0SAUI1E+oeXRL91kkQbyY5Exc8sR0LBpUa2qVRGlknkRDNOp0TJC1RFqyyXRQyZVkVW7rBFT/SaRE84dETOzlBFhJQJRf7UvETR8INEAHvlRC2gV0VPMkJFy4aLReIoFkX1eZJEDpK4RBwdO0RMY8ZEqv86RIWJ1EabPl1FXhoLRbXrWUQbl0hGUSKSRIay0UUhhYhFc1R2RLlpUkX6zR5FDP5iRIjWRUT6doNEMOHkRZOkR0QnHJ1F3dfqRKs1mkSSpZFE6jNKRO7tdkT/WzhEROdcRAtJbkQHYhNFBo+NRFInk0SUGjdE6UxZRP32MURQumFECa5ORNU0QkQhGTpEKE47RBNnH0T6X55EES+IRAV+CUVeb2BFN/Q6RVFUfUXviEREawtBRIhYI0T5aWhFceoYReGDM0ZcG6NFlaqDRZ7Of0SI3XFFZIvHRDyZ00RkBUlFFmkyREO1h0UapiBFgwrCRcC7w0QwtOxFdLNNRak49UQR5xRE0Y+VRCzoOkQh6itENoFMRXnmKkTdn3NEAwFkRqNCD0ZmjUFFTn0tRIU8C0Tq/69FBoDaRAiGb0Q= + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 6BcbBHjAckBC7dpADsFyQBmCYiJvwXJAIQsdIsnBckDjg63+UMJyQEQT8ITjwnJAJUlLsjvDckAqHcQ3ecNyQAgXvVvGxHJAyAPhoFnFckAHzavgKdFyQGpylb180XJA7q2viBLSckDmYtVTQ9JyQKCmoEHQ0nJAasptqnTTckAOL2H0ztNyQNh1zOZg1HJA0cXbkdDfckD4w/LDuOByQGwp2m9O4XJA5Nwnj/vhckCYec4CUuJyQIX2eGSQ4nJAgA6LfSPjckDi/wJOVPByQHJdodLb8HJAuuY2ezfxckB2nAOJUPFyQIqlEmjJ8XJAomKf6VPyckCc1wsFnPJyQKSbrgu383JAPmSVyQ70ckCo0rXFovRyQAb57H7B/3JAkou0kWAAc0ADL6Sx+gBzQCdqs49OAXNAyvY1RYoBc0DQ4fxEOgJzQCsEqNHMAnNAnfwQr/oDc0DvYjhdIwVzQBYJdYIGEnNAP6g6OCcSc0CqrdbzdhJzQNqLD6mPEnNAhvDcCL0Sc0Cgx295+RNzQAhd+NhKFHNAp4x/hngfc0AkR4//DiBzQFpT0OeiIHNAErpa1Tghc0A6r9XhZSFzQPddhu/JInNAECad7A8jc0AIBEg2BSRzQAIkV3U4JHNASGF6Js8kc0CAYrnORzFzQAIMQJrRMXNAyC9ob9Ayc0CAJ1R4DzNzQFgsa4Y3NHNAyNbPZ7k/c0CgPgtO5EBzQO80KNJ5QXNA7BvI9dxBc0A+8USDvUJzQDwaXGV5RHNADk7xM/xQc0CsR+oUnFFzQKwG5h5DU3NAmuDv2aNTc0ADyn+aglRzQJiqcTn4X3NAEmUy+Ylhc0C01Tx4HGJzQNhJLP45Y3NABASQR5Bjc0BWpJK0zWNzQFYH2TItbXNAeLn74dxxc0AyuRTLUXJzQEy0x3uYcnNA+TM+xrpyc0CmNLJ4uHRzQKZEvl5MdXNA5uxJlniAc0C8XVd/pIBzQMINvvcMgXNA0GQatiGBc0DHNDDZXIJzQKxiIcSlgnNAjXs+aeCCc0BA/CatAYNzQLQNOZpbiHNA0g9GbIeQc0BacWvYjZFzQM0EpAcOknNAtzM7Fk2Sc0DWP08s0ZJzQDeoLO9jlHNAcgVpzfeUc0ACq9uGuKBzQF68InPioHNAW53yDVqic0A+a5HEkKJzQDhntbgEpXNA+H4ulNewc0Dko1vcNrFzQGbPbTNbsnNA0fEFfrazc0CElxSxDbRzQEh+d3HQv3NAigiFSPfAc0DUkDiEEcFzQDp99lE8wnNAPfIbnc/Cc0ClOmfXJcNzQLXwQM/Aw3NAaK7xkNfRc0AheFm8u9JzQD4bXCtT03NA4p46dfXTc0D+LkSFTdRzQM4EVvHi1HNA61Ehog7gc0At8USMouBzQIIY3Us44XNAXGzo8WThc0CZYrsoyuFzQAiRhl7m4XNAQsgLPHvic0AeCZHwDuNzQOEV3omm43NAN+voU/Lkc0Dt5YMHZvJzQCOam/eD8nNAaIuCivzyc0C1MeXgoPNzQBBJsdU29HNAeBMASI70c0C0TCod4wB0QK5wTHV4AXRA+PZ5faIBdEDg79PZuQJ0QDip/tCjEHRABBbN54gRdEBq1dpTYRJ0QJJW64JNE3RAr0Ue5OATdECPYdmvdxR0QDJd9BhLIHRAiWWn03EgdEC67tP/XCN0QLXmo4G8JHRAO66A21MwdEDYfOOWGjN0QAIltzvhN3RA4peLn3A4dECRlx4OPD10QFb2ZpmkP3RAFWyP9VRAdECTx0+UlUJ0QIn8WBA7Q3RA61iWZ3tDdEBjFWDcSk10QFQJ3gjRUXRA9NMMkPxSdEBjAo/s+FR0QOd3GJaLVXRAIAUj69pXdEAg1y4LH110QMAOJVu4YHRAmPb5XAhidEDIyEYGe2J0QE5mU3gicHRAVqbGG0FxdEB1yXv/ynF0QOix6LP8cXRAjkmdhg9zdEAVbATkOXN0QOQYM/KkdHRArPI+rjd1dECirWD1RoB0QFc/42j4gHRAwKr1Ck6BdEA+yi8VR4J0QG3oNWXPgnRAdEnXdSSDdEB6SAdDu4N0QCxg2gsXkHRAhA41se+fdEDO8tpSJaB0QH5BxrCioHRAaA9mws+gdEAcgW/MfKJ0QGL5wTa4onRAwChWfA+jdEAizEi5ZK90QDtmZHAIsHRAyq93CcOwdEAGkPlLb7J0QDgiFtL7snRA7gOhdiqzdEBxg8xfyrd0QMYuI7QVvXRAVobLf+LAdECmoMfP/cB0QBE2H3sPwXRAIN5meXnBdECNbY0f68F0QM2B1Eu5wnRAWLs5/U3DdEDmuVqYfsN0QFoWx3i3xHRAYhtsuPrOdEA+A0eRONN0QMcW/dLg03RA9ELna3bUdEAogBSWz9R0QGALuXu24HRAqtLYbCHhdEBsFR4St+F0QEpBmWL64nRAhdlzhzrjdEBrE12okON0QM2YjL5N5XRA4jXLGljxdED2b/OUjfN0QGJH2eB59HRA/p4HhaP/dECBNTE/7v90QOQSFVakAHVAgRTkYNEAdUC2Sq92YgF1QAKv9D9dAnVACUfWhaYCdUDCvuY15AJ1QKRvUeqbA3VA6UNpsfoEdUAFqwSfmBB1QJL7sjBrEnVAYAwjUDkTdUD2wSr8jhN1QCILL84jFHVAqdJXe40fdUDvlZZU4B91QMSc3l/QIHVAeK1ZluwgdUA8r946nSJ1QOYtDZ65I3VAwBgmYYcodUACd066XDF1QKiRdjOtMnVAHvv7mdQydUDw8jFZyzV1QLysScreQHVAaHdJQPZAdUBE6EO6skF1QNKzb158QnVA0t5RuCRDdUCBob2vY0N1QNaDdSHTR3VAIURJEepPdUBLBaY7DlB1QCjGjtyCUXVAsOSmQbtSdUD8r5/VdlV1QP6OK3gLYHVAtsykV6JgdUCsW9LbOWF1QJgH/xbzYXVA3G3M6dRidUDKgRvSDmN1QBgUIO5lY3VA1CcxgnRydUAOnRawJXR1QDf5ky2NdHVATLF86eKAdUBLkVgleIF1QJxgwJWtgXVAsLGEe7yCdUDxX0Ma54J1QJmDdbOlg3VAl0YWFRGEdUDGhTkymoR1QGScMya9kXVAKnw6l2mSdUDRNRinO5N1QGxgWZ6SoHVAnxYAxzShdUAQ52AjuaF1QMUus19Ko3VA3v25/aOodUD0Jps3/q11QCMuHBHNwHVA4DzylvnBdUCn6hTupcJ1QMj/ujvJ03VA2tHo++TfdUBM++whEeF1QBBWNSyj4XVALGJqBQridUB84g4W5eJ1QG+l+pQn73VASJkiNaDydUBOOf1wSAJ2QEt8u6DRA3ZAzgtmN00UdkDexoUMCxZ2QPV5ZP+IInZAdmd4qI8kdkDz4QNTSit2QGiv+GwfMXZAYccCkiQzdkCIpjqSUzN2QKDolS+fNHZAOB5a3UxAdkCoNzlx4kB2QI4wGd4cQXZAbgK9qshCdkCYIwj8EUN2QImo1Ch6RHZAx2PIWMpQdkAsmmvwEVF2QEgibC7NVHZAtnHaehxhdkBqKcGLvWN2QGdweb3ZZHZAJDY8w1dodkBUPRVisW12QHw/6yl7c3ZA25+HCBF0dkDytqq20IB2QH7bCtjkgHZASCa+PviBdkA3K5oWP4J2QJ7TAqBkgnZAQMpCCWmDdkD+XFQzkYN2QBjQzqtkknZA47ouzLuTdkDNU5PGz5d2QP90md4RoXZAMQQ7KnejdkBb9iIpubB2QNwhkWvCsnZA0puGTA20dkAzdB83e7R2QFiTU/+utHZAoDP6f1O4dkAWT1qIdsB2QJ43JejPznZApkrBoH7QdkB0ve/79eF2QIm/cJiR83ZAWCpJvU70dkA6TOzxNQJ3QGxljvhCC3dAAoxivwASd0BH2viMDyJ3QNorSxZzIndAmU0FrLkkd0BkVFED6Sd3QAr1lLRBLXdAYi3HF4Exd0DzHPKJijJ3QECN6i+kM3dAF6f09Qw1d0Bk9h0VnUF3QO5rQluTQ3dAUkoM1xpFd0Aq5sTWBlB3QIdwk1ZKUXdAOUx/9pFRd0BRCGtUKlV3QN6iD1Z8X3dAengchRJgd0CAWtkqD2F3QIif1NpFYXdAoiGvVo5hd0DQYz/C52F3QANlSuaoY3dAaB+bUydvd0AohwyJ9W93QHKFWk44cXdAXqlU9pFxd0DCMoJfn3J3QMouKBS0c3dAPt1Vfvl3d0AyhEoUVH13QEYwaKl1gndArorvGK6Cd0D6l9+bCZJ3QGx7UFurkndAF7pkeEuUd0B87u7xkKF3QGanSGDOondAw9Un9dGud0CS2vKFmrR3QF2k7eAIuXdApse0eODhd0BhU+E7VeN3QG4it37t8HdAbuKoSU3yd0DpSga1gPh3QMgD6HpG/XdASZMXdWICeEDOAMEkoAJ4QLxkpbjnB3hAbh56v/0HeEDU3ztCRA14QAVOI+VZDXhA3PrKNm4ieEAEyau4QSN4QBLkXxZAKHhA9NbhapwteECKx9vrezJ4QN7ya3s9M3hApPSaLZkzeEDQQMwA3Th4QDouFS6OO3hAEhmtb7Q7eEBJOTCzDEJ4QGxkjxIkQ3hAZDG10XBDeEBqtEbZEER4QIS+Lhd6RXhAbplZ0spReED1GuYLH1R4QDjxv5eIVXhA6IhDE/pgeEAEoXqMtmF4QEHJS6O7YnhAqofHQmpjeEBSAVcUv3F4QLdDJ7CLdHhApMvNIs50eEDIuI6m33R4QCiEws/3e3hAvdEwrkGBeEB4xKUTpYF4QNZExlwRg3hAxodCn9uDeEApJ4WE/4N4QARqIdmZhHhAKEr2+E+IeEBKMdMw8ot4QFQtUgAIjHhA6VapUKmNeEC2B+2nlpF4QBlz8fPsknhAHh/91wSTeEAGEyZJqJR4QACDcdpMmHhA9pyjULyjeEDdNUyPtqR4QDyyNWQ7rXhAeJAcU5GyeED1Msh04Ld4QLC4j37MwHhASorsv5nCeEDefbMWF8N4QIi5Lvkdy3hARrRsBA/TeEAMMIOnItN4QKIMmbq31HhAEe4bFtLYeEDlkKr0FNt4QMQ4Kzih4nhATLg4dcPkeEAU2f+2jOh4QFo0RU0D9HhAldJyxY31eEB7ORA6EQR5QFoOWc6aBXlAhnohWdQTeUDabMhB3Bt5QCLIF8TiI3lA2tXW5LEoeUA+NjPyCy55QGaedAloM3lA2uvU67UzeUBgKmOW+UN5QOoNA6PgUHlA08D2wsxUeUCEbI133GR5QPQj/sNAc3lA1upOxtKjeUASQ04zwLJ5QMsAQ8/kv3lAnExb5rHDeUCJD2MPV8x5QLx5uR9C1HlA5skmx/7UeUDuvEbLzNV5QFpTMExO5HlAIoH/LgzleUDe87dxHut5QADgVNGr7nlAtHNS+yPveUBBxpyRwfJ5QDDX+o4P9HlAaaAULB74eUDS9No2Zf15QD47kZYwAHpAWtqeef4DekCc9EmZHAR6QPiHVXf6BXpAtPipB2owekC2hKQZKzN6QA66+FkMNXpAnNAWqC03ekCSHqJlMTt6QJQMw0k0P3pAZXacmCpBekBMFJbkJkN6QOPYvkgaRXpAXx8ur/tLekDg0bdO0FN6QAi1byMOVHpAGv22oyhVekDuQqXQIVx6QBLwWYKNcnpANF/9ISVzekD+IIskK3d6QBAgzqZHd3pAqEnWDUp8ekAWEriI1JN6QKlKeCiglHpA1KozGNqbekBE8RvhHaN6QHaoCcldo3pABFM9MySrekDGC1PgDbN6QIz9HuMMtnpA/VqSohK3ekARdZi8F7t6QExE0elMu3pA6ILVNb/DekCWcvWPGMZ6QEGKicTFy3pAk5kYmEXOekByWoMauNB6QPRd3xsr0XpAZT+72srTekAqMPe5/9t6QGqIuyNo4XpAWL47FfbjekC4QABIPeR6QGGr6sk27npASKHtohTxekBSz3gdX/F6QFIIaac983pAVoo+fXwEe0DPOhLWKw57QJiz3rkSEHtAwuvUkooUe0Cu2nu+TBV7QLF51t4jI3tAoRSGftAje0B0wIp6WyV7QNQ3vq3EM3tASzS2bW87e0Bk9rlVZWN7QNzF2BgNdHtALJCt3B17e0D0hWxGToF7QEB4qmIilXtAxIGm5TCle0AkWquuBKd7QKQr6Oao0XtACq/ETVHSe0DytSdmJuN7QJ0Mw+z543tArkuyVyfke0By15bt5PB7QKLE6GeM9XtAsgUm/+8AfEDmUtRKkQF8QNcaESHaAXxASDUBW/cBfEDaLBjZvQJ8QGSQNnRnBHxA2ILVrZoFfEBoXnPFJAl8QCzZ++/QEXxAeYd+NB0bfECOejbTNSN8QG2p6T67I3xARl+NWf0jfEBvrwJmWyl8QPsfsbHNQXxA4la2KdtRfED4NF0bcFN8QH5oh5N3W3xAUlPFGg1ifECW838UtGJ8QCgWHLIDc3xALLIUv0iDfEANHIEvTot8QJKS0LPDjXxAIkuuNx2TfEBI2b4A9pZ8QCLve1h7mHxAtsPY/cCdfECsbJjHSZ58QHMeX6COpXxA2mPoMFuufEDmmmTcea58QAqr1PfBsnxAoNRB3eyzfEB9jRnTebR8QNKjZfn5w3xAI7byqYzEfEBW/fkgzNV8QEgdAE7423xABqNuGFjifEB4zK94D+N8QCNvd/zh43xAGUQ2LWzofEDAq5NGGfJ8QM2NG7NU8nxATJVIqlABfUDaLJT4xQF9QFE3a0QCAn1AbspSJUwCfUCKiFWDXhF9QIXk6E+iEX1AHRUZaUYSfUA4/L4F+hN9QPIxLWtWGX1AORNOmz4ifUAosix+nzF9QJSgJQ4kNH1AQtdori44fUC2nZBdQTh9QDNLNRkpPH1AKkS7em08fUDOcN6JEkN9QOj0D9l4dH1Awl1KfDR7fUBADG0Be3t9QPlZAHyyf31AyVtNA5WHfUCkObXhmo19QLgY73iQk31AHvaOtSaUfUCg075vIqN9QCRSWwOmpH1AiDHXm3izfUC4BRQKMMN9QJ38eBjnxH1A8zhEfPPUfUA4aRIJGuN9QNDCQbuQ9X1A+z75uhb/fUACgv6UNAB+QGpKj4QWBH5AiDOXATQMfkAHXLJMRBB+QA58irg5H35An2AwdSMgfkDwV8CjPC9+QEzqUhJ7NH5AJ9y/6wk7fkA8zKX9EUN+QIkt5FuiRH5ACpDZFI5VfkAD2rKiMVl+QLIjN96YZX5ADu5MpcNrfkAOaUzHTXR+QFF8OjzQdH5AivPcrbd7fkCOcpCsU3x+QHw6Ibdkf35AHGnK+ueCfkBfrHj1XoR+QKUJr5jRhH5ArPYqyWeHfkA63C8vGIp+QI4FrjLlkH5AMAbbypmUfkD6vBQZJJZ+QD6tMIHymX5AuXcNKdGcfkBO4AUBXJ9+QGogKNyRpH5Amo8wpl+sfkCEOB8e865+QGgjXxANsn5Adh2dImy0fkD/CZUIorR+QGo5vFqQvH5Acur552bDfkCaZW6z1MR+QBoXwKoNxn5Awb4rNr/IfkAOjgtObct+QNABdAkj0n5AHFtEZFvTfkBWutL4e9N+QDKWXTJk235AwB8QE8zffkAKCQghYuN+QKV84B0I5H5Ak+MXmdrqfkArOs/17+x+QI5rrn/X735ATaEoXGAEf0DWqDHo2gh/QB72HwKbC39Ash0X4oUjf0CH4QDpuTR/QFsxDOUJRH9A9iB+9a9Tf0DsQMobflt/QFDLIAq5W39AMDLDY4Fef0CmHdqjtnF/QAwwHdzldH9ARFDGPid1f0D1Ci7OjHd/QKsCIE60gX9A9I/bcaiDf0DuQtHHYpF/QBBOZ8OqkX9ASGFoR+6af0D77KCvoKB/QHK3SvFdoX9AfG0f9ECjf0BiyPSUVrF/QON+4iaFs39AorH/PFTKf0BOrxiiscp/QJII4fzu2H9Al/vnF/bgf0B0neAvaep/QBu/ntWP9H9AmDaQ8VH6f0BOyBvMIgOAQLZ19PJ7BIBA+pKbaK0GgEBf1WtWeAqAQLIyzt65DYBAUFR4oM4PgEDyBNfkdhqAQMFjKVXEIYBAFpxqcRQpgEDioVD1izKAQGwrjQkxNIBA7l1bZR03gEAPaIg1/jiAQKYPIYHJOYBAc/0XDXY8gEC7D4zmIz+AQKdCmUrrP4BAKoFWfM9BgEBqSYwKqUKAQLZejKZRSIBAcLpHWPZIgEC/VX0SsEqAQFrVNVlhTIBAuhpDW+dQgECspLLUE1GAQNqWeDMlVoBAEopT0SdYgEBd7RXx5FiAQOR/nIoOWYBA+9hcdaxZgEBejVrg3FmAQCxVyDMJWoBAhEt7IeFdgEBKlvH/DF6AQJBdgXzDYYBAuOgPbeFhgECWMhENEmKAQB5Mwb1BZIBAhicyJHFkgECPaVgdsGSAQCqVPA05ZoBAf+Dkuh5ngEBU/9eWoWeAQHuRT+OuaIBAnIHnTU5qgEBup4lS/GyAQJyfL6Yob4BALRc/cCd3gEBciafRq32AQPUZSjkof4BA3NFNx7CBgEBgNyDdOIaAQCTu0A79ioBAY192LoiNgECeZHlsHo+AQI8Fyvk9koBA4m12QuOUgEAjA9wOHZeAQKZ/S11hl4BAEjEk6IyXgEBM9gsA5ZmAQMZthI6gmoBAEj7vkMqdgEDUpDDjG5+AQDo14XWkn4BAmFGKwsGkgEAVHSfDh6WAQBaLkMLwpoBA+AjsIa6ngED2BBEDiKmAQAYRj+gKqoBAKnolhGStgECgklS6NK6AQAgz2SkUr4BAGItSOWOwgEB+vKVUH7GAQLOsoEvYsYBAhsExE46ygEBODRJxSbOAQEjrndAYtYBAtGkofBi3gEDAFu5KE7mAQDCI783huYBADiWO8Vq7gEDHfTrNBbyAQG7l5Gu9vIBAoC55eXu9gECKVLAnDr+AQETjFsklwIBAYPCuMTbBgEBKn/OMUsGAQFbJEjKewoBASWjmVgzEgEBuqLKhYsiAQDb9Dg8ZyYBAYucThlPJgEAQ13W6pcqAQLamNfzVzYBARsI1VULOgEAYqTyMBs+AQK7G++Ms0YBATJffWEzRgEBE+GqmYNGAQJCVktmg0oBAzqMGS0zTgEBgbybhxtSAQChJzstm2IBA9HpKF0rZgEApJU0jYdqAQAdh4xaM2oBAaYy+uRLcgEDLOyAkEd2AQIDqheWo34BACc1PBW3ggEAStEGdROGAQMgGZXLz6IBAEHFCrkPpgEBphfuePu6AQFzKg8NM74BAeAb1Lj3zgEDaic7zaPqAQFBpPaI0+4BA1iZFwT//gEBuhOLaFwGBQPnPyq5AB4FABmr/49sLgUA27JmpOw6BQN4tnFI+D4FA7MB3W9wPgUArBpVfPReBQGB/e8O2F4FATa8xZ80ZgUAsuQoGzx2BQPT+65k0H4FAuU3wx7AfgUAOwzrGECSBQDGpV6czJ4FAAC5o37kngUCty7R5Vy2BQMYCEIDyLYFAjxepBTAvgUAdTBfwuzGBQA5yl650MoFApHMEaL4ygUD4pkIk9DmBQHuxIf59OoFAJz2Xg8Q6gUBs09zcKD+BQODXw0C1P4FAGg0UPZZCgUBwyIyqLkeBQE+aAEPeUYFAGh2PBxtUgUCwG5+EnGWBQLzKwsmzZoFAmHP3idhtgUAJHZNo23GBQNsHKfLBdIFAbFjbruJ1gUDIA0FIz3aBQKcSb6Rvd4FA9is57R16gUDEKbDjQnuBQPAOeHfJfIFAAjPEQmF/gUBITcd3U4OBQL5GXxTLhoFAgmskfEWHgUDAVDK/ZYqBQAxsANJVjoFAZKFXd1WPgUB2C+58+pGBQEzy/8ASkoFAZQ9wauCUgUB81AyuN5aBQKdz8J1Vl4FAJVctG+WYgUArPCO96JmBQDSHd2KcnIFAYeQfSEefgUDKXd4RX5+BQK0DBo1zoIFAOALNKfihgUCePFkI4KKBQH+ihXh9o4FAMKexT6SkgUAQha9nwKSBQIK9FdhtqIFAsjQWB+upgUBIBQ1W5aqBQPw41e94q4FAIqOLdNStgUB2yPt6Sq+BQEfHTU2Kr4FAp4sqYm6wgUDmXnNp17KBQNtiZC1Kt4FArBQwiYi/gUAdfxUNbsOBQPEU4bozxoFAPWppjCnJgUAP8IBCBMqBQIDMZDVwzIFAbA92MrTMgUAkl/dXmM+BQLuPZtf30YFA7lE1en3TgUCFh965VtSBQIr/P5P71YFAUpd15dDrgUBco+FKyO6BQM4aIdAN8IFAY/4bvOz5gUCuqgzcafyBQHIL2A/w/YFAToDOA+QBgkA2YvHE9wGCQOx/TWToBYJAbVE72AIJgkD+7X8hcAuCQHDbW0lsF4JApMDAetgYgkAwNwcjVR6CQJeNeJxtH4JA5pzLVdYggkA27m1z1CKCQAaKSr7RKIJAIPM4oJ4qgkCjJNsLqSuCQMobbSWiLoJAE91xF6YwgkB2OAFFZjiCQBMJmqeuP4JA5qyeiQVBgkAi9cG8XEKCQPqafYrhQoJAkAZbBLZDgkDUJ9BQAEWCQIq3X9bxRoJAMSvxBg9KgkDqtfHHNk2CQI1a6QEMToJAOuxXF9JOgkBMlwHU4k6CQK5HGyCkT4JAGumezW1QgkAK6WrJFlKCQENhJwvYUoJAeh7jcaJbgkBuPV63bVyCQNEB/Ww4XoJAoPEr5zdhgkD4mTalNGKCQC5iCJ43ZoJAdkB0Nm5ogkAAF83PRWmCQKjZegEJaoJAUN5dzzpqgkDAV7Wk1GqCQITaA5U8cYJAkEL1fsBxgkDfLjt4bnKCQJOsl9Kqc4JAgMTNRW90gkC7LWLNBHaCQMR2BQZzdoJA0BBxFt12gkAiViRzn3eCQAoSUhBueIJAFEPIVwJ6gkBCV5mud3qCQPyL4/SVe4JAUi5DhK57gkDWCygBEIKCQKhDv7XTgoJAcMDl5cyFgkCDYZ1R2oaCQM+NPWpDiYJAeFHQYp+LgkD8wAyVbYyCQF5sRvj5jYJAX6iLY0SRgkDW4fxgBJKCQMpoXa4MloJAjHmK3G2YgkBw0qbgPJmCQCQuqB1WmYJAgKawX1mcgkBmroGYDqGCQEzt1Yc8oYJA2TBt7fChgkD/8v7QB6KCQNnHCNPwpYJAXhmpBw2pgkBa7PyBM6mCQJNA9vkFsYJAgAUvh0GxgkAYYb3F9rGCQMIEIIIOw4JAKtXju+zFgkDOkTg4UMmCQJcqSnTwyYJAWj3CKoHQgkCwdHbyx9GCQDbQB7d+2oJAwnQ6E4LegkDRIfXOxeaCQCSKJ2oI6oJATvMdFlzygkA1S7wJ8/SCQI5d4tQG9YJAGzccs7j3gkDQIWb2r/mCQPLN063B/YJAwNvcCjz+gkAoC11iwgGDQDYGs4nfAYNAxWJtIqcNg0DkHW+heRGDQJVvcUWuEYNAHG+ribYRg0C4trF6oRKDQB6w0Bd6GYNA3duoY3Mcg0BS1pUKcyGDQH71Lh1yKYNA6BlF/Woxg0BM221NIDmDQIWYCIVpOYNAcGGfORdMg0DY74D8xVSDQKzUZZVxVYNA9n39sLVcg0DHURFMWWGDQPYGL7FlYoNAwlwgx39yg0DGqK0v6XKDQFh39XNodYNAEPttaxd4g0DK4+c7xYGDQAx73HLlgYNAwQb1tkyDg0BW9M2tyIWDQNIYhxCmh4NAd5oqT7yJg0Ds/qvMzomDQDtgFeEni4NAjo0MZz2Zg0Cb7kT+eJqDQFRXFJvTpYNA2lcRcrmmg0BgcGnh96mDQLHlhPLmrYNAZBL5xeqxg0C20KL1EbKDQGznl1bqtYNA1Ep72RO2g0CWMrTEC7qDQH/nyYuPvYNA2KJ2tSDFg0Bd4DULysuDQIFypvR6z4NA1rv56szcg0D4GBXHU96DQObpDwl534NAyjWp4STig0DVLP+QWOKDQJJ9tttT5YNAZgO21Xzng0AUCS3ISfGDQAIivjOV+INAbHq9UiP+g0DQsbtruxqEQHKcW+VXI4RAxJ5menZQhEDMlfA6t2aEQBABYlyZZ4RAkunAyv9ohEDEwYqE/3CEQEgNWki4dYRAyMoqiMp3hECe2etm+HiEQIVc5ARceoRADofStnd6hECMiQlaCX2EQLaXU54ifYRA/yk107x9hEAYNVZetn+EQDsb3bbGgIRA5iHA0mGChEDmY31iI4OEQOS4X4sPhYRAAuHjLAaHhECWPPWXuIeEQBuQdlvsjIRAGDEfNl+ihEAoOrCzH6WEQIbzA5hxwoRA1frm5x7FhEAe0UuRxseEQIoMJN/Fz4RA+PlJoR7ThEDjFcVJatmEQBSYsF+U2oRAe0fYiPXghEC2vC+xauGEQBZtASPG5oRAIuLnGWLphECvtR2RfOmEQH/1JvB56oRAGpAQmTXxhECDnDQyY/GEQKQsJxl99oRACojN79z3hEDetG+FOPmEQHpX8j5b+YRABTelKor6hED2qUIZN/2EQOgDV0yB/oRAGtWlNeD/hEB+V+T2LgGFQApXp7dgCIVAPQtklUIUhUCQMF5E2hWFQB/2qaz4FoVARnPQfnIXhUBlq04EDRmFQO8EAlarGoVACsAjAPsahUAMLEmkQhyFQNrK6OYIIYVA/HK01DsyhUCHFcAYbjKFQO59De6hVoVA7YB9haBhhUCTBxCA3GGFQJQuA83iZYVAJpK8g09mhUCVekfcoGmFQF6wngiZcYVAdJzXs7FyhUDyJxBfs3aFQORM+6WYeYVAuzBuS7R6hUDIvp5HkIGFQI3caVRJjYVA6rGhnN2VhUD621cI15+FQEAq2BNBroVAm2MSckOyhUDIpuXERbaFQI6jH4EEyoVAsC8MKg3OhUCvO+yua+SFQL787q0D5oVA3Pa10HnmhUCh9h+xm+eFQPYrMMvuIYZAYwDgvS83hkBaqOlVsImGQGAkclUouYZAsE9HcdHEhkAGyWBP0MaGQBYByXPMyIZAsccZY8jKhkAQiuR9oc6GQBRRkaaGz4ZAd85inIj/hkA4m5y2LBOHQGxsJ2IxF4dAPvD/0zYbh0BFaQVsTRyHQAW0jIKRKYdADHxd8JExh0D0QRkYizmHQKSgnb2mPYdAYcWcZKA+h0BeDD2bjEGHQDqKx52iQodAFli1XtxSh0DJGqwi5VqHQH5CEJMYa4dAOivDBSBzh0DsiAeAHaOHQB5wiHjHsYdAQv8FMsi5h0Ci5tRQwcGHQMPqXV7JyYdAePcQDHIGiECOaK/voBqIQHDLIbObIohAJGtxMH4ziECX9pbQhjuIQJiU/pWlTohAfg4wIqpSiEBaRfuPqlaIQPqu+KqwWohA0lL3oAi7iEBMsQojrr+IQMMXc3zpwohA8c1rFA7DiEBDy8360OaIQA== + NrgMGZxjYkBGCTcNzmJoQBu6YmAmQ3BAo+J3Wr9Cc0A5Cx9LftNzQA== - + - FhxERKAtIkTjO9RFNf2HRdxjCkU8ZLJEPHpmRVCOV0SsssFEyymVRHBQHkRlcqFEqTR+RKSxGEcqmXdE9mi7RLboTkSt9otE/PPeRBQm1ESCRTtE7G+5RAPhlkX7ntBF6vKfRGn/N0X6AkVEP/mGRA6igkTxE4lF1OsuRFEOmkT+m9BEZiVmRJcX5UQkrgVF96yHRKg4qER0tixEKW1IREbF4ESj1r1EDaMER8V/lUSlEYJEndB7RBCdk0Snf3xEArYKRvdvoEXJUn5EOrIyRVrMREQe165EFTOmRoCDX0Q8hkxES6N7RHncK0Q98I1EdN+DRWwd/URsUFNESRV4RPLsrESekl1EjB04Re/jwERT3yhF3nBORKWtqEQhDARG2+xPRBtMOkVpzqZEkstgRbCQhkTGy4hEBWBPRJj0c0RPMA5FzImbRPEXPURlQ2REc1HCRDKcqEQv6jZEplb5RLjhfEQBM/lE+ATIRreu3ES+hRJFamBMRBA6ikWJFgFF9ORLREqtIEWrDVREgTfoRHiTVkTQMFREBBE1RyyFLkRJAf9Emrg/Rp9BiUWRiTVEayvDRRnfg0TNsPFEbgt9ROm/fkQ7kUVE0ZkvRW4QQ0UYU3xEpFDiRPsMRkTRo4pEJEWPRZ6n/kQlLmREADlcRX2nUkRz8m5EjBgBRUZkTUSUsqRFtoEsRL9vpURSJNhFGtb6RNF4XUTIyj9EEB+oRAJ9cUTD2sVEx+QyRPRkTUQjLlREICpzRH0oUkTR/sVEoUHDRA2gtETucmJGSdM1RBAm7kT1rl5EV+DHREFoYkSqLCZFisZERBIMX0R+wxJFKfgsRMCdYUSmlV5EzyuDRPQqXEU0bTtFhyNSRPp5g0SBHmhEKOiTRJPeS0RgaZdEF4NGRBbUgUQx+OREkziVRMiL10QZ2tpE7kiaRCsxSkXBzz5F6IGwRaTfnETrSbdFn9Q4R8UoQEQ4npZER0FgRDzikUX7p0xEhVzCREAatEQGUwhFbMvdRdOpdURf8UtEBeLdRPfCbUTgtoNF/x2ERTHdPkQkdbNEA/XvRGpYbkQJ9XFE0ukJRVL7MkR5eDtEhlEKRRT5uUXjJ6BEE/OoRCV3/kTNBzREFOXERDATUUQWSypEnnyaROflZ0TfkoJEpWFCRMiWqkQTDU9EpvrNRIeAX0RuLsJE39Z7RKsbmkT++YhEdwc8RKBnjkQkeUFEkVEkRJi8NEVmDZVECPY2RHo3q0WevodElVlPRGKIL0SqS59EXoJORMYRoEQIVgBGi4VcRA5YtkRX23lEJLs7REKW10RwkpZEdRg6RK74bkR5SwVFWG5wRBeTHUQyzz1EDeswRQMiC0ZBZk5E3SdDRHfnKER15cZE4TIZRIM0E0V2OHZEH1RJRBgFTkTah5hEgp1+RMd8k0Sh30JEWoCmRLvL9kSgIXdE4UqDREVu90Rho7BE6T6oRAGyDkVdU51Eet0xRCb+OUT25sBEzePIRI0+y0RvCBNGkAnqREsU0kSA4JhFmEqIRKu6U0R7yz1FWHJARCQXz0TMxp1ESBcrRHoIbETyPo9E8uERRNExqES2V7pFYYNhRdf1rUQovopEfvAcRfv660QylFVEyqiDRD3BgERBQ6NEAwjjRJmR3kT0B2hEZpleRAoAmEVPbq5E9vfoRNGQa0Q62KVFKdy7Rf92tkW4eLVG9rPuRPchnURqg6NEWXuLRDAVikRtyKtFBhIJRT8Xh0Sr0FlFEYHjRDn0C0XqEGdGBx9ZRIz4UkT13DBFR0VWRI56i0RX13xFxhQ6RMkoN0Qw3h5Ee4QqRARF90UmLnRELegRRTpn00RmZlNEqsbXRJtmJ0Q4kCREU85DRAhlhETTRedEG8urRU0iU0SJYEFEO7gvRPfnTkR9pHBF1hllRCPia0SWBuhE3mxVRI/5NETigTBEpFmlRslBRUU+X5JEHQmSRHmx4kUIhBZF9zyiRKz3RkShkjxFG27qR+b/nkYwaANFbJ28Rp6hcUZ9EY9FGgtgRjs40kQD6wJFRjGWRITYQkQFXVlEx04uRVi8NkQCOwtFTddCRSTxF0UUBFhETixLRCfQIEZ7nkhEd9aMRZ77YET4ioBE6LAqREtNN0Rr37xE0H7IRPTmgURwJoFEc1ojRAHVgUQY1IlE3BY3RC8+VkRrej5EP+G9REWIfESgE1xHhlJcRE6p1kYs579FsRi/RfbAHUUQaltE9M8+RT65OkS7x8FEz5twRO+JcEQ0FXxERglIRKp2VESUQp9ENscmRMQ2g0SLFD9EDDUTREpyhUX3+ylGJUSIRbRpXkT/HQFFrRH3ROokNUVJvYhEqLAoRGG/I0SNNzZJJYqTRB8sxETuIl5HpYMZRL1HSUVCUopEnLBlRGzWikYcfzVIxvjqRveQlETfsA9FVk6aRvdxQEWyy9JEdBdvRXGvgUZk+slEVWd7RCYHtkTPqMZEcMSDRDew3kQvHNpE40FQRN3sy0eEoP1G2TCbRcM1lkX+D8NFP0ZZRM8jRkWdZwFF+A1bRJkKg0RWcEJFbxWaRRjNXUSETplEsm20RVrEHkXA41lE7sXdRVyyUkUK16xEUa6HRBi+ikQyL0REem5lRQiEbEQL1klE6J0eREVLY0WqhlNEgYnRRPuP/kR3+PxFRHWSRgC1KESWXctEbwk3RRRuTERbcq1EJEpfROQg1ET8A9dElEohRHtylERmFQpE233iRAmSXUSZE85E3M7fRDmKj0YmsKlHHcl9RnQh40VA2UdFPegyRJ5Hl0QD3K9GroouROIqHETxtTFEP3D6RFrLqUU5DYdEHIa0RIjOjUSIUllEQ8EnRBsVI0WcH3FEJn94RHNlSkU92iREN4SqRKhguUVXj61FbCcSRQIxA0U7mWFES3IaR8xXXERdJHRGfPJlRCE1bUT8+xhEEr/dRG/DaUTdWSBFK9I4RKELTUU2ZfZEHWQNRWbDq0RBWW9EtgucRUbP4URVkDhEoROGRLsxGEavhI5Eb20zRGWj8URPLC1EhdhkRAIQUESMg1VEeNBHRIG/N0QNbeZFhB0JRaMHgUTa901E1DhMRGOzIUTVO3JEaAKkRI5lAkUvqoFG6yhBRGj4lkT6ZzdGrjsbRTuOhUTtMqNEyBxWRUxziES3lIVF07eERINaYET5gjBEWEwgRWVpAkX0LL5FhONlRJaZCEXXfpdEh6NdRIbmFUTQQDBE5e0+RX86dUT34CdGrmy3Rc9MhkRJKcdEO1+PRGzU80RWolpEBR9bROZ0Z0Ry97FE2wYkRZMWlEWGPIJEwccvRMHgl0Qr0N9EODvCR6zY3URpiV5EVIa/RBAuzUSBqphG1IQBRY1Aj0T5EwdFhfCDRrGnKkQUZC5ES25CRaEkwETQWAVFRhxNRLxma0TeuKREitkcRT+QHEV7t6pErO5MRHUsHETZlARFo3t/RGidI0RCpYVEibFyRPVmqUQeGDFE3VtRRT/2KkT+AUdEBWVfRJdYbUQR/rVGx+ppRWkcFUQf8NxEYF6XRNld5kaVj01EieOfRNlqkUULyF9EtVX0RYS7kURhVNxEbE9PRTXawUSmla9ExmaKRVzq20Q3/p1E6/ZcRM1th0Ux3SZE0rCbRMiQuETnVjxEOAlpRBIsg0TqG3BEXLzJRGGGNkRWWY5EksKzRJ6rTUS1GtZEA1SJRJysg0QUeWxG7sqPRPC2fESwr4VExwZPREfUJEXwtBZElEamRyLfHUV28JNENZ5bRAlJCkexwFdEnUMJRoFPj0VubIxFFCp6RAte10SS7j9Ej6JERI0DQUQ/D6VEnYErRAldKkQmIoBEYf8tRPK5TETwqilEKHznRMdvVkQIJoBE7v8qRIV4pUUKEsNEvGxoRLdNaETkpHJE2Dq+RM4mJEZY+sREmRZdRC7WUUSG2jVFsl52RCe81kR9WnlEyPV5RJybE0Tz2GlEVr/tRMyMJ0TCZkpEt/6KRNBddERh9xpEEs2FRAtpUUURHydEb7S9RHnNeUQchoZEULhCRJtGiEQKXnBEcayLR0yaC0UpUGhHy/HORouwoEUYc2tE4ISBRHtjsUUySmJE0tzuRKYRykTIVyhEHfkJRVlreUbxSlFE+QCvRGPvnURxE6hFZHdDRB2i9EWU/zFGar4TRX+M8kWK/4dFnkkjRDK7zUTCiWxEcr4pRfs0KEQei1tEw3SIRBawrEQTWWNE5HKFRNQlMkRQ2DpF5I10ROh1oUSV5KpEzBMvRL66S0Ski+VEbXJFRBi3PUYgPo5ERmGrRN4jJkWr4jVEZc6XRL8nj0TzKmpEUkrRRJvRtkTVuVVEgdaXRHS3a0Xg96NEJQ2SRNCTskRHxIFESIhzRKv7KERbk8NFhnqNRLiX0UTJ8LtEYrqQRJ36RkQkfzhEiTU0RIpgSkSQtEVEq7hkRKW9ckSuZ4NEgFECRQpIYUThIEBEe06vRF5lb0iJu9ZFUmOIRJJE1EQG/5BE4grMRxGVBEVkf0pEoV9FRNNdhkTRA+1EBHxlRwyHTEV0oUFEPgStRMjrM0RFWbtF7F9PRv9IgETgk11Ec+WPRL9SUETpLjpEaOXQRDCsU0WjKl9EnYCQRKn2iERX03JEHnE9RLLisEQg9E5E6FJMRqCOUUTuUZ5FUFSBRJuWc0S8io1FWK0tRI6LkkRsIj9EQTSqRBck6USXduxGK10tRDoSUUQ7SYxFS/OPREvjHkRF38xE3pqzRH3Xt0SC6FFFWXMfRYjzjUTyc3ZEue8pRCgEn0U0PHhEzMN2RFOUKETkRC5EWpiGRD32R0Qki3RETXobRrPSpUWSfhdGxdfIRIpQSUSp5edFlCxARQ2jgkQWZsREPyRMROF9REQUn4NENklhRP2xfUStAk1EYRveRab7Q0T97JxEJadARcEP7ETdEyZFoF1/RPSSHkQ5srFFBoI6RWSiskRezjlEO6BVRSkaAEUcl4BEoduxRFZQV0QmZudE6ZBrRIiJT0Q1dD9EsEmXRLZALEZJokhEnlOmROTlX0TgrdVE/MQbRLlXlURYSU9Epv+BRC8uVEXCJZNEVvUFRd3zdkTdXapEGWY3RF8zUkTN0ytEwIQ9RE5hIUSdKy1E8XywRupULERx2hpGy03+RJG730Rr6GBEMQ05RW3UJ0SeMH1Eg8Q3RjBvg0Qq8VpEMiuERcMXd0SvpitF1qn6RLAng0QkBDJEsz8xRDimXUSOjSZFav4yRaMdoURp9ktEqtyjRAuXa0QSjDJEghZiRA4Bm0QY6pJEtkIqRIJMpURQPopEs2VERKFZd0SZYEhEoew5RRZ410RXh2NE1fpURAz8skUxVs9EnmEiRejSrUSvwtFEHAZoRJqj3US7ZVpE/fstRDaPR0bW2G1ExToqRDtKp0QMUa9FPwZMRDn99UTLA7ZESPpARP4tI0TNX3FEA48gRILcSUSu83ZE2TSVRP9HL0RmqR5IJke1ROkRQ0RhW05ElYWZRxZbIETrbTlE5+WkRGRQMUdRCBtFuIg+RBvfyEWEYXNGA0wuRINpVERWLrpE0kbFRGZfhkUZQY1E+HU1RHCuL0QjhiZEEt5cRdrgJ0TC39xEjDc+RJ9RHUQgMmJF8bEFRey7KkQdHKFEruTlRMMlhUQnFG1Ejg4XRNOOnkRcCuBFfUKSRABIO0WDccNEO2+kRFO3BEhJ2ItESJKRRJpHOERp6IFHi75ORGeIHkfExiFG5WJCRdjdRkQXVMlE1adNROuhIkR+uEVEcxc+ROIkR0SFkidET8x6RHH9UER4LqVEnpiMRLOOQkaoxHdEVJg4RNesvEVKnzlEcwoPRQvWtUThi1dEWZmORCdxuUSgCIBEBnZSRIfvFEXufphFmehURdbLlkXj0pNEjC/gRFUXkUSnc3VEsnFlRLp0Y0R8vDpE3ugcRX6oDUV2hBZFTYCJROpw00QWoQtFXDw4REJgfERN3FZEaOJCRLFCHkSFUEVEw8cvRFGmTUTdCIVEuGq7Rd7nGUWhvh1FJjI3R4ouCEVHYB5FwLsWR5AP3kZLnpNGBz5TRDFyAUdiZ0VEj3yFRoRxQ0SDorVFxXg0RECSuER4llJE+Oq6RBRb6kR8gDpFORH+RBCGokTyKWhELZJYROHbS0dQpzlE19RyRLlkuEa1KDpElSYvRoxt6USZQzBE5C1NRWaUnEVaD1BFapCrRfQGGUX20t5EMHPFRcBHWEWBmkZEzmf3RL9hrESlaztEKzRpRK58tEQb8x9FF96CRQTqZEU/tCtFlBQwRY1PE0WPRytE1txERHBzXUQEcUpEEZIOR/kt1kSW2AJFxm2SRDpXV0Zl0yJGjcKmRQyhG0W+OJdFOz+WRNscj0Stgi9EBjMjRArwLkSBvQ5GlkWORdqOt0T4InVEMEUsRHMYF0XuRTBFYK9MRBCdr0R6NalEF+GBRCSMVkT/eKNE83TsRBYpp0QgKzBF1hsYRYeqI0RYVz1EStZcRHX0e0UeqARF0OSDRIKFMURpID9G60nBRccrekWeGyZEPYupRaFa/0Rcz3hFx7Z+Rdh0ukQAn71FE4sARU4vmkSDkBJGxktcReWvhUXkjU1E7dSIRARNVkRMYUlEz+sKRUAXh0R3yiRGiyQqRpZzTUXpiIVEUFatRaK7jkTZtCRETxwdRcU7eUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - P8UUCG/BckDkRmdTx8FyQB6fhZ5PwnJAQB9o7+PCckB2Ji24O8NyQPDqn1Kmw3JANQVkasTEckD314XpWMVyQKGTK3tD0nJATLO+U9DSckD974AJkN9yQEwmryXO33JA9pokFLngckAZE/zuTOFyQI3dW2Jl4XJA4Djpx1DickCimTsVkOJyQCs3osIj43JAUuIL61LwckD0hD2as/FyQJt5UqvI8XJAZlCk9V/yckC0Ov5ce/JyQLICLaab8nJAgFpR/xLzckBKxPm1tvNyQA9pI+mh9HJA3glhWML/ckDbopI1YABzQH3VAvT2AHNAOMdoZU0Bc0Bq+d3hjgFzQFRYnE/YAXNASmsD2zgCc0B+51BczwJzQNSvWo36A3NALM6+K6QKc0Cs24FQCBJzQIR0pSV6EnNAHGO6cZISc0B2hNoYvBJzQGRxyHD3E3NAbOUJ8AUUc0As85BnSxRzQA4zsuV5H3NAYKqqfSsgc0DvcjxDoyBzQJ2Npw85IXNAR5funXsic0CqiXrBxSJzQATc384PI3NAGFAZYjskc0B41r9dzyRzQICHF09HMXNAhHBEefkyc0C3ny1zDTNzQKK8YtiiM3NAwVjJutQzc0D2vEbdNzRzQLtkHti5P3NA7Zuhg+NAc0A0/8vFWkFzQOies/B4QXNAKX8Rhd9Bc0CISVfkJ0JzQAIragu6QnNA5q4LL1BDc0AE64hmJkRzQK8eRmV6RHNAgHE1L5xRc0AkKEyLRFNzQHzTjRqjU3NA7myPFINUc0DPGhfJ+V9zQF7zj7WKYHNAhoPK+hxic0CRV/3hOmNzQMBF1iCRY3NABGzGWbNjc0ANE59EKm1zQKJ83D3bcXNAdpyHwU9yc0CDKOELaHJzQHQY2AK4cnNAaFddkrZ0c0A8Z2jnS3VzQLrKyHxrdnNAZt23sXiAc0D1t5tDpoBzQBJWhM4LgXNAthk0wzaBc0Dmxj0eXYJzQAVvie6mgnNA2Nj4iOCCc0CaN7Qj/4JzQIbiBQ44g3NAZTpbugyEc0DdQo6EVYhzQJKBBJiKkHNAeqqT3LqRc0A6w8goTZJzQGuuXFhlknNA2EPrRdKTc0Buh4kzYpRzQK5lOM33lHNAkmmSrYyVc0By9/8uuKBzQPhraENMoXNAAr/R6ayhc0DRQNBjAqJzQDdcgzpaonNA7mNtUY+ic0D2WncRJKNzQAOREwsEpXNAZNrgs8uwc0B44oelfLFzQF21veRcsnNAwGM7x3eyc0A3YQXrnrJzQHRjND+3s3NArGuRDQ20c0CfRIQpnr1zQEYj8dHOv3NAONHtvvjAc0CC3i19EcFzQBqEREYkwXNAxPlNujrCc0AqI58f0MJzQFLy8/wlw3NAmkiqQ2TDc0Aebbyj2NFzQK60fSQL0nNAaivsRbvSc0CbW2ym3NJzQLJFF7P103NArmbJMovUc0Bm5Esi4tRzQEhkg/Sh4HNA1McVwzjhc0CSZUYyZeFzQPG8MPt54nNArr5OFRDjc0A4jbYyOuNzQAniXr6i43NAoOhBe/Dkc0CVIKDI/O9zQCZO2lyH8nNA4BJrff3yc0CrOE0UN/RzQATpxpKK9HNAGGmOak8AdEC5tzmR4wB0QNrF1+N4AXRAGgE6xrkCdECSsJcZjBF0QIotf6WlEnRA9EnZXEwTdEAmdTj0dxR0QKyGqdaxF3RAFCOHDEwgdEALLRF3jyB0QLootNu4IXRABJi7D1UwdECLTZfSjjJ0QF/uypy6MnRAWz/b4RszdECsgTme4Td0QDOp4b1uOHRAQpSr5sdBdEBgmK4LXEJ0QLrya2M5Q3RAzlvo93pDdEAO4OTADkR0QGi/iLB7T3RApojq0NBRdEAGt5jJPVJ0QCt9ne24UnRAZJoqmPxSdEDyqQrR91R0QI2V/SuOVXRAWe5trgtXdEBRrF2021d0QGUudzf9V3RAHJ1IciBddEASsJjVt2B0QJR6/iEIYnRAwIIhe3didECWYzNJ52J0QJpv/vAPZHRAZkQ+fU9kdEDqd2bvIXB0QIIjkcpfcHRAWI2JI0FxdEAoYZIMOXN0QH5tRPOhdHRAngo1vzZ1dEC6DAyVQIB0QF57Qpf4gHRApkpy6BGBdEC8vMSFToF0QLxwD2GLgXRAdleI7UiCdEBWqQPCJYN0QIGK/0QVkHRAEv+sQmqQdEAJNKWJeJF0QC80qKO8knRAUnjPeu2fdEDgwN5Co6B0QN2gLcjPoHRAgJOIlzihdEDqo9YleaJ0QGkG+5G3onRAZ/lhzg2jdEA4hdc+CrB0QNvuiVXCsHRANkLblkmydEC8o9sCcbJ0QIJ9P+r+snRARbm2uy2zdEBAiYswx7d0QBZY3Gm4v3RANa0zeeHAdEBUWutE+sB0QIzM6QV4wXRAKNd+fe3BdEBmYZ7ZDcJ0QNfwFBciwnRAHiUvvm3CdEBecrRBu8J0QM20Mr1Qw3RAX2J3HH3DdEC0edGleMR0QMBlQCm4xHRAiWhOcSzIdEDWZwrY/M50QBIno4s803RAklFQiOLTdEBVi0aceNR0QHMx4l3N1HRAhKGZ3SLhdEDEYDXttuF0QCIBpPG34nRAvUjdPvridEDUJOotj+N0QKxWx8dL5XRABqdZecDwdEB3X0rVDvN0QERRnzGN83RA3IK1Eqf0dEB0XMEEtfR0QKJlL9egAHVABIBzdb4AdUDg6ytd0QB1QI/npyDkAHVAV1XzkWIBdUAbU32OXQJ1QI743zHjAnVAZMOtuJgQdUAwhDJDaxJ1QExSSgEjFHVAQeVPLusgdUAGWyCxayF1QHx1hfGcInVATKFag+oidUDJ5nK4rTJ1QLDniRk4NXVAkuFCkcw1dUDgFRe7dUB1QEbgODvgQnVAsOf2HSdDdUBFUo+o10V1QJ4F1KsRUHVAwItO439RdUD04zkQSlR1QGQLYHN4VXVA82rddg5gdUBQDpcvomB1QPCZbw84YXVAFWjPyfRhdUA+Jy0h0WJ1QBM+oNhjY3VAKYmtlbZwdUBns6ZHdnJ1QOE4zy0ndHVA0pteRY10dUA6BtcAUIB1QKR/WsLhgHVASjKDoniBdUBAHptGrYF1QJS8OUM0gnVASBPSuaaDdUBrbXd+m4R1QBC+JT+bkXVAeazvnruRdUCYawQoi5J1QMbmYA60k3VAjr2zw5agdUAglb8zt6F1QKKobF5Io3VAKF7/HaWodUDxZr0RObN1QIzrrtLNwHVAOH9iWGPBdUBxkyiT9sF1QN4HpHWlwnVA5gMJpjrDdUDD07E4y9N1QIC42XjF33VAoLO/8+LfdUCz5dyVDuF1QGoBgZSi4XVAG6JySAbidUBSjDnCNeJ1QELLp2g55XVAzuHMVSfvdUCiaiqzjfJ1QH62ZL6y8nVAEyAeWRv4dUD4AaB9SAJ2QOlmUqbQAnZASBSud9EDdkBEdhMYThR2QMYCyLQLFnZAEqr0P48gdkAytqTYyCF2QK5LNGCIInZAF0mryo8kdkDnA4FpSyt2QDjusngfMXZAVNYiFJcydkCITC+9JTN2QFsqhnNSM3ZAeEMd4ZczdkBtMVpanDR2QJJ21pQdQXZAgwAc8chCdkAQPYUeEUN2QIAVaWx5RHZAjHiEUcZQdkDwIhAgE1F2QNRv0RfNVHZA0sxzP4xgdkBUIXGK2mR2QNR53ERWaHZAR0TcFrFtdkB0zntEMXJ2QCzV6anLcnZANBhU0nxzdkBEhWTiZIF2QMKSMUo+gnZAdGnFamiCdkDqlp9PPoN2QLh8YW5og3ZA7oxeeZCDdkCiTip0upN2QAdR8szrnXZAWmmFHxChdkD4N35Kw7J2QHC/PmAMtHZA7WMEvnq4dkDrxYrxc8B2QKBAzuZSwXZAkDtHwxrEdkBO+6R9zs52QOom5cK/0HZAolfHxfLhdkAUrKh2kvN2QESAjygzAndAktD+ZD8Ld0CCHQpUARJ3QC6atZsgIXdAIklprbYhd0AO9zzmDiJ3QAl5OUZyIndAMLvYfxUjd0DMdV0vhiN3QAyhGg26JHdAEcb9Jewnd0CSMrb4QC13QG/28gSlM3dAFOWfIw01d0D0z8RFnUF3QKln6mmTQ3dAN8K9QydEd0Bk2BX3GkV3QJ0sK2EGUHdA5vrnFUpRd0B4rjH5klF3QPC8c35EX3dAJLp0IHtfd0DwEBGvjmF3QD4iACDmYXdAyYnCEzpid0CZZwu1qWN3QEYiSas7ZXdAoJacnSdvd0BE1S9/9G93QB/QIrSfcndArm5drft3d0C2WQu5RH13QAid+ipbfXdAzgSKbyWAd0DImvxFeYJ3QJIYdgUlg3dA9L1BJAiSd0Ah0WURq5J3QL7E/TROlHdAo6utEPugd0D6yEb/+qN3QByiAmSOqHdA50cEPJu0d0CHaXD44dB3QMp1/Nfs4HdA7E1KrVHyd0Css6FURv13QMMzxZ0hAnhAoMdlg58CeEB9AJwF5wd4QOFzUpb8B3hAzbR+/EMNeEDXl+7hSBV4QAY0IB9vInhAzM8xpzojeECo/KQmpiN4QDY/hYemJHhAnAuijkAoeEDCBmgwmi14QCAAT6EMQnhA/DQSxytDeEB9GfpkEUR4QDO0t655RXhAhvA+lJhIeECMBRZGy1F4QEZhlxKVUnhA9lykZERTeEB6QiWv9lN4QNdg27yIVXhAlvmtaPlgeEBOXcUWtmF4QHqXGmECY3hAP7HgH1dyeEBFh0rARXR4QOzKIZFddHhAThxQmIt0eEDin22NqnR4QNz2WkjIdHhAwh21/vZ7eEBf5gbBN4F4QAINMLujgXhAMksGg/6DeECMWbmkmYR4QKSy7da3hHhAwfC4DFCIeEB3++eVBIx4QIoWkjmqjXhAKkA8npeQeEAtnn2Al5F4QBSHkygEk3hAPZe9GQWUeEDq196Pp5R4QM5Q7gVLmHhA/bzvny+deEBgQgaFtZ14QD2ujcW8o3hAoBqNdqakeECoUBNAOa14QPTs8QQ4vXhAthPt0crAeECTSwve9MF4QKacdPkWw3hAjkJ+XAfFeEDt+BPyHct4QNAGdhgO03hAvQcO57bUeED0aWxw09h4QN73K8oT23hAzOKJfy3eeEAejT0aoOJ4QArMJoYZ43hA2M40pTDjeEA03A88X+N4QGYGQ3z453hAnkQ/cQH0eED4DUAVjPV4QL1aDt++A3lAuXkb2JsFeUCqqyNd1BN5QIigsMfbG3lAtIMherYieUC4kcO3sSh5QEDJC4MPLnlASINlZGMzeUApZSu4vzh5QHDXrPSJQnlAhH4q4PRCeUCOOgWZ/EN5QJ6vYxfMVHlA4h9ZeOhgeUBtr7AyumJ5QI60njZEc3lAttDEHeOfeUAVVYjdwLJ5QHaDhxKbwXlAaXFzVcvCeUBO+nlZssN5QKbReo9WzHlA/s/IuyfNeUAcMRrRQtR5QEZRa63+1HlAkvVPMMvVeUCIj9b3UOR5QKKdzb4L5XlA1rhD1FDpeUCYKlKmp+55QLNVo5FC8HlA+CN/McHyeUAKV+mLH/N5QIRAwYoR9HlARpZQaxv4eUDkJ7e3/gN6QJkxAACVD3pAjgfgtjojekACzS7NaDB6QK5rFt8rM3pAuD9OcAw1ekBVVVKwLTd6QJjp0a0wO3pAL36y4TM/ekCkHWkPYT96QPNMEaQiQXpA7iaa7DNDekBUShI4GkV6QJZCd1j/S3pApbQIxqBOekB4frN5E1R6QDHZor4nVXpARXG5jyJcekBbps/IgWB6QC6o3ZspZHpAKmmwTI1yekA/RmjHInN6QKwNFOUre3pARoKOz2uLekAKbY7kMI96QPCHIFHUk3pAEDpWBB2jekD8C5M5vKN6QM49Nr0pq3pAURlLbw2zekAJFB4a+LN6QORjdAQOtnpAzulokhO3ekBi3BgiGLt6QJqvK8QQv3pAHvPPtRzDekA2SOP3vsN6QItW2t4bxnpA9vELfMbLekAe5cJSIs56QGbkJxLN03pAf1+EEWjhekC4qwLgO+R6QCJJLb135HpAHCDJYzXuekARxTfhFPF6QAa+t9F9A3tAXEdQ+ugDe0Bhl1IMfAR7QHqMqvMpDntAElLywooUe0BoY3x0TBV7QL2ZR2XSI3tAvm9Yylkle0AsRHXFvSt7QB5b0O/GM3tASzPvu+Aze0AOUnYGX1J7QKLE2mNhY3tAqGbKDSOVe0CqoTtWVJ57QCp8/3gspXtAe1gtJgGne0DArY6GAKt7QHULEXQMr3tAh1Qom+TDe0BgKNg258R7QCYepFB4xntAgnJb3AzJe0Cn+CtzwNF7QA6Gh5Ij5HtABvhY3+Pwe0Az1g3Ji/V7QD5aLOZu/ntAwsbDio4BfEBMKI6m2QF8QBqC3r3yAXxAlMMUFr0CfEDDqIgbZgR8QPH7Vs2ZBXxAyJI1tIgRfED2ROEM0hF8QLpfX2wAJHxAUl1Pzs1BfEBaT4J33FF8QF4KttBsU3xAuBCK5XVbfEBMugK/DGJ8QBlUHDEpcXxADNIixXdzfEB3p1bjRoN8QDjS27tQi3xAkIaUD8SNfECZTQx6HZN8QDJjrVBkmHxAiFN8LlOZfEAOM4XcSp58QA4ZN7gfo3xAMIZh1KKjfEBAu0jfjqV8QMgBxBa/snxAQmF29fCzfEDKx+VnebR8QPX+W3aFxHxARecxUM7VfEBBCH0HJ9d8QNWrSRJY4nxAabRf5xDjfEBYdMiQbeh8QPY+GpRp73xAbB6fQhfyfEBCTKzrVPJ8QHB2Dd9x8nxA/eqXXPbyfECNRPtgUgF9QNx+uQH/AX1AQEd4EksCfUCgP+AJRhJ9QNafzT5kEn1AxBH3YvsTfUDFzHXmVBl9QOQfdSQ/In1AHATFnYojfUDV1yFjRC99QJapq86dMX1AoebJPyY0fUCeGtULKzh9QJjjYY4iPH1AfC47WXI8fUCe4EaKpD19QHGOMrQlRH1AxqQqQEpTfUDmfYf6dnR9QBpLBxGFen1AfALuCTF7fUD+li2rOoN9QNAWkaKGhH1AX9KNjpiNfUAYauiL+pJ9QN3LE8ollH1A7wu5ZQiXfUDILQctcq59QKhYFhUpw31A0jCYZefEfUBkL+p8och9QOtA9TQ+031AIRqMFG7TfUBQo7rc8tR9QAww8Qsx7H1AJKpVhQzvfUA8eP/wkPV9QFZqi/E0AH5A7jtpzoQCfkAGw/qiMgx+QNoH2YJEEH5ArUxx3TsUfkALMNRCNR9+QCIiN8cjIH5AgBw3ekAvfkAVuGoVMzB+QM4NojN6NH5Aksr9uws7fkAl7xABEkN+QDwzpXGgRH5A9PwGg8JLfkAMAfppBlN+QKwyofneU35A6IDq+IxVfkC4kVlLOFl+QCeC2GBXW35ArNXpoQ1ifkB+Q8rZRWV+QNDL9PSVZX5ARG1Q7U10fkBlVUxYVXx+QFBktRmkg35A/kL/MVCEfkD3J4AAcIR+QBPubakShn5AaklBntGIfkA/ZazQJIp+QCD0bRtQjH5AOC4vq+OQfkCmx6kQmpR+QJTb1HfxmX5Axlcy83yffkCiW8TYkaR+QKwc/MNhrH5ATQHDRvmufkCTSEyHjbB+QK/3v3PAsH5AGT0vCxWyfkBn3nQ5f7N+QAz1xtFstH5ATsvlip60fkAadSTJb7x+QBvS/NZmw35AyQnZTM3EfkDYR+3WCsZ+QDipE2tty35AN3+m0ILQfkBcyZxMWtN+QLoWG+l6035AbuPqW7/YfkDityW0Y9t+QBB0JGyR735AAqKs39PvfkBSCqmNlAN/QDLy9/baGn9AgDIFb+9Bf0DcNdcvckN/QFUzRSofRX9Aaj3E+StKf0DyKXZEe09/QKxcCBWwU39A/89OXLlxf0BQdf9O5nR/QGQFM/qvgX9AxpJljUCEf0Ba0//yYpF/QMqxRfWnkX9AeImdgJ6Tf0DeQMWR3pp/QIgqr481n39AKig8EKSgf0BUSvC3XaF/QB66iYk3pH9A6PjGvvWuf0Diwo31VrF/QOyg0umDs39AMHTJfrizf0BPgteGQ8J/QAqr36sWzH9ARNqpsoHTf0AC5iTLINR/QKf22/mi339AS2dGB1Xpf0BGE3EmkfR/QNRFUO6pAYBAfExHFn0CgEBSFivbOASAQFiHtTxHCIBA+f0frHgKgEDqbjGO5QqAQEIaAyO5DYBAIP5wOXwOgEDnQiYPeRCAQEASO9UlEYBAbCuN04AWgEDEHuZlLBeAQCJpa6TJGYBA5HyfhooigEBcwWsCeySAQJPa+tGOKYBAvBnMgs8rgEDiHrcG/SyAQLARhbKHMoBAEZtihh03gEBeZ6ecAjmAQC7bGUjJOYBA5QJWJXY8gEBO6I3qIj+AQDrzssPPQYBAQlLZ+6hCgEDsEvee90iAQJjt6gq0SoBADET7/eVQgEB2Eg0JFVGAQL7OotI4UoBA4IH2RaZVgEBWR51cJliAQBhMIPcNWYBAZO8f9h9ZgEASGX56i1mAQK5AvyStWYBABIA0PdxZgEAB14OACVqAQNwymLTgXYBAG/Sg2gxegEDV3NXd+l6AQGAXdpsLYYBAT64UMcRhgECQtK7+EGKAQKLs7ONvZIBAVhDMq4tkgEBJ7RO4FmaAQCASHSmjZ4BAEuPe8E9qgEB+tiAxKG+AQPECsYjGdYBACK+d1ip3gECWmnbYfH2AQDy6XYqrfYBAFpbktyl/gEBaHMcr/IqAQIDYHqoej4BAlvtkwaePgEBgYuUpP5KAQOor9OVPk4BALoshiyCXgEAvcNKFkZeAQNG3gFhzmIBA/hbcwdKZgEDmaLEHJJqAQLb6FSZSmoBAYtWI7ZOagEB8THBESZuAQBeDWzUHnIBANFMIqsudgEDF2abLFZ+AQPBcNVRao4BAcjZ+3Q2kgEAiDa9xwqSAQHTV6mh8pYBA+jcGIbmlgEDMNN2B8KaAQCGONdT0p4BACeYUo4apgEAwG2IR3amAQPyaMQwUr4BAKRIZ+6evgEC0uaysZLCAQH4cfMgdsYBApvxZb5GygECNgj7fBreAQHnouUs1uYBAlhh2JYC5gECN9VFfsbmAQBppigXiuYBAtl9N5kG7gECQSY7JWbuAQNJngoPIvIBAkqVKp3q9gEBpAFKE+7+AQDCO6IlSwYBAzgrdH5/CgEC7fFRBj8SAQJaNcprsxoBAMvfuLabHgEAGhumIAMiAQOib6T0iyYBAzV3fo1PJgEA2hVn0fMmAQMk3xmRayoBAQsu6VZTKgEDM/5sWpsqAQHrXmo13zYBAESn8qdbOgECFESrrBM+AQJybVgFZz4BA0PfBhizRgEDQGICZTNGAQArbyqxg0YBAgnVl91zWgEDnsChgZtiAQGpVUT9K2YBAIdasRMPcgEBGAWkiL+CAQBA2hipu4IBATqq71kThgEAAUGEwtOeAQMk2KSVf6IBAcuLOHfXogECu+t+uSe6AQCGeDrVM74BApdeZJejwgEAscB0PB/GAQNdkJZv88oBAZCxYPz3zgEDte95E8fiAQDh8v5Gd+YBABun6nmf6gECQLX2IP/+AQPI+0J5w/4BAzG5/Wj4AgUCCMsvqiwKBQJyWpXb8BoFA8U0Wt0AHgUC4B5lF7AmBQIiT4/A9D4FAweIFIc0ZgUBamJz58BuBQDAFkpfjHYFAtKcRlTQfgUAuLdG/sx+BQAKxDobUIYFAFHV6MlIigUBRDGirNCeBQFS9bozYKYFA9zimcjAvgUDevpysRS+BQGjgyxS8MYFAWvEA/3QygUB2KgrNvjKBQOj0VEzmNIFAm8eXOHk6gUCLRuvqKD+BQLjhfbsoR4FADP07VlxHgUC+RltamEqBQDz5Dig6ToFAoheV6HBZgUAswMvIbmOBQJcuXcayZoFAQ+ppBMBqgUAIl2uDl2uBQKduZk4VbIFA/bSX8thtgUCOimMS9W6BQPa0kQbOb4FA6N2L+txxgUDYVVUjs3KBQHxDdf/BdIFAyfrB0OR1gUB4YX8tb3eBQEGQcpcdeoFAlW0fbb18gUCQfUJ/4HyBQJJFYQRff4FAJD7uy+mGgUDE7aluWIiBQITQ2Q5wiIFAvFwehoOIgUAY7kvEJoqBQNT7fTxnioFAlsdSCweNgUAwCoMrVo6BQIuvg+5Vj4FARjHn17OPgUCZhXK775GBQP4LR2ZIk4FAEPlGp4yTgUDI3QgZ45SBQExXCI85loFAbf8431WXgUC8oiCpjJeBQN+kY6PkmIFAjbQm5fiZgUA2DfI6nZyBQIzsPbVGn4FA2PsshWmfgUDiC/0+KKGBQMeF77zooYFA5mmtpvehgUD+KKyqE6KBQI9YYc7eooFASoEWRqqkgUBodUWkJqaBQEigWxvJpoFAFmjFG26ogUCyL+5U7qmBQLV6m6HUrYFA6Hs300mvgUC0ux44m7WBQKw8u31Lt4FAIs6xe1a7gUBalxDErMKBQKbFWVECyoFAdlmEKrHMgUB0UAKVX8+BQBWNPwr50YFAPskonH3TgUB0k4m4+9WBQEYHqEQr2oFAgfAW+mDegUDtt6FRy+OBQOqrFAIy64FACLEysrXygUCGbYerxPmBQAjiTqjs+YFAw7JBbPD9gUACAMQQ5AGCQB7gUOr3AYJAoMxDa+oFgkCb1yLAAwmCQD5C4CjNCYJAYqtBJ24LgkARbo2k/xCCQATe27xdFoJA1vSvsNgYgkBn5gupaByCQFqBEiXaHoJAVAAO/NYggkAuQBwphyWCQP9wKxylJ4JAtJqSYdAogkAT7tFXniqCQJBK1ICgLoJAVaBTm6QwgkBaG4tU0DCCQIwxOwnJOIJAV65yd1k+gkDdechJrT+CQL5aa+gDQYJAHmt8eOBCgkCLepZwO0WCQCxGMI8RSoJAmfCPkgFOgkDY3Lz+Fk6CQIy3PP74ToJAyH9bZaJPgkDclvOVO1GCQBQamUsHUoJAshjaUxJagkDufu7rrVuCQFmsDRV2XIJAutloFTRigkAW8aBqD2aCQDDek183ZoJAImgKsa5ngkD864tlzWeCQN42emByaIJA0PwHGTppgkDkmb3YE2qCQM5mISA+aoJAcY+5tW5ygkARbi+Z4XKCQHpT0iihc4JA/qX9nm10gkAr4+4wD3aCQMYr5E9ydoJA/oDaT0p5gkDxN8+1dHqCQH4HwVX3fYJAANUfKqR/gkCMPD3Mw4GCQONzdovIhYJAfZIjw0OIgkAZX8VTQ4mCQDUkZKQPioJANmQfcUSRgkA24B1/GJeCQMyDgUKfl4JAruDRLGCYgkAyVQwyPZmCQIinZxlWmYJA3fy/GRCagkCc1VX7opuCQDRzD8PpnoJA4+At8Q6hgkD1H3MuPKGCQPC9WT3ypYJAdtwscQ2pgkC5etzrM6mCQKHu60lJqYJAeqV7CPWsgkAGSx6FCLGCQOvM85szsYJA6ITZUAS2gkBQlHpkd7eCQMwWU9rsxYJAfudD5ubGgkDgpBAH8MmCQFu5DfyA2oJApIbNd6/cgkDme2mXgd6CQIRHVRUN6oJAYM4lRfbxgkDmtRQlIvKCQBDEmO9X8oJA+R6Fqgj1gkDi/T8bFPiCQJDm4GKv+YJA3vJg3sD9gkD4veXuxQGDQBa2dki6BYNA+JxXAeEFg0DWvppX4AaDQHR+Y5k0C4NA6LqxQKUNg0DQB9ovjhCDQPCD25B5EYNAfPzRD38Ug0DmN38sehmDQKZ/Gvn6GoNA1k/ZPnMhg0AAuC3x2ySDQPbV8zL3JYNAag2k+Dspg0DyNJCZcimDQFGIRbQMKoNA0hmcfiEug0AMjlXeajGDQKDCAQ6CMYNAHBA5cig2g0B2k2S7xTeDQD8ajRtqOYNAZGhAW/s5g0AEh4fnvEeDQMRcWn90SoNAgsyRU3xMg0C+arBSD2ODQIqIPuO+boNALXDaen9yg0Bsui34iHSDQAT2jYXzdYNAAgGHWhp4g0D8e8e1VnmDQGJROWHFgYNArDCkBEqDg0C+NB4ZrISDQI6OlAbIhYNAalhUILyJg0DQ5MPR04mDQOeYPB8/mYNAhjkGjUeag0CoLZBaIp2DQLcwi7yPp4NAnn5k4Papg0A2thpM6K2DQLoExFDqsYNAcmlcNxGyg0Bm3K4q77WDQOx4UO0VtoNA8G/iPXi6g0DSnPsmCr6DQHYAfkhlwYNAEjg8VszHg0ASBJufLtKDQPdyaSDM3INAINvqGFTeg0BeivGNd9+DQIgsmSdV4oNAIPPAWVLlg0ARB8Hhe+eDQPAgGz8A6INA6t8b0ZT4g0DgsGectw6EQDC9EliOD4RAthwFbQ4XhECU11rVdhiEQLoD7htzSYRAgM9+9idZhECZ0QjyeVmEQLwOOsH5YIRAhA/6NP9ohEBWAKds/3CEQBDKRIEec4RAIBvrjrV1hECGPoh1yneEQJaDKwD5eIRAj2GdWr15hEAzj6vkd3qEQMffA3IJfYRAaOUv3iN9hEAeZypQtn+EQHeHzvqEgIRABWzde8qAhED4MNSIYYKEQP2g+RMOhYRA6ttPRLqHhECjbZZJ/ouEQKMUGRFdjYRAmlaDCoaXhEBiTy9fFZ2EQDLKZjkknYRAnuI8hNCfhEDIA4GbEKGEQBHji/tvooRAEMlnIr6jhEBIBf6wz6SEQNnMDqUhpYRABBJXi8qnhEA+iyuD46eEQEAU50T1s4RA+DPAGSTAhED15CbOb8KEQF4tyEYjxYRAelBhfcbHhEBmPabSF82EQCBscOx7z4RAkPinVh/ThEBWcpclatmEQJRLMTaT2oRA+Fpgk4rehEC0W6BjauGEQEjzUQJj6YRAU32iSHrqhEBwr8GPNPGEQJXQ67Bk8YRAjiZ0jH32hEA8x/vN3PeEQGRXI2Y0+YRAZnfNcF75hEA0dLNgivqEQD3v4Aw3/YRAjHX1HuT/hEC4mNlBLQGFQHICM2DuFIVAFmcANN0VhUCKWWRa+RaFQBwV2qV0F4VAmBOckw0ZhUCUsCwJqxqFQHzO6L36GoVA9C66rrodhUBkNuYAGzOFQBZ86j+nP4VA6yWJtOU/hUAkPVsPjEKFQNZ8rRORUIVA/lEd1HVShUAi6VdBb1uFQDydDJGgYYVAaBsNAd5hhUDxmrso4mWFQCQ7e01PZoVAmp3006BphUAYnMoRTGqFQHKCnQuZcYVAIwX+UbFyhUAasmaYtXOFQI/Scei0doVAjsabNZh5hUCgGHkykYGFQOwFi03eloVAwqShtj+uhUAMXjEYRLKFQMYJbXtItoVAOr0QEEi6hUAmM7ZNbsWFQN+UHtEJzoVAmHAYqX/UhUDLxgLGbuKFQA+TsHLK4oVAvF3Ya2jkhUAerZvLA+aFQOCEOjWf54VAFAEjbTnphUAhsBq00OqFQIrXjBs+F4ZAe5QcQZwihkCjdebz7YWGQOa8iVcnuYZA+rMEGMjGhkAoxEDj1caGQO+yRebMyIZAYljpZMvKhkBvq4B30cyGQHmSETnz6oZAmkd3bocCh0DGMD/epwaHQNDHqjstE4dAGr/DWS8Xh0CWCumoMxuHQP6b3UORKYdAMF6AFZAxh0ASR4i5iDmHQAAFZRyhPodAT/j0JV5Bh0BqtRLpjkGHQOxUEJejQodAKrdoXapGh0AA0mZ3I1CHQE/LzgPdUodAKnVyr+Vah0A9w8LBGGuHQJtVM+cdc4dAhPwNJn2Bh0BERK+zY5WHQEinRsEbo4dAc84Y0Yyvh0AReiCLx7GHQEh7BOXIuYdAQOqcyb/Bh0AV7waawcmHQBpofBH7yodA1jS3OnwziECQf1/IgzuIQBLkvBpbSIhAmAB2t6VOiEB6lhp/qVKIQJm5LbSqVohAwMBbn7BaiEAszz/i7Y+IQGXIV/7uqohA5Zd4iu6ziEBB4VulCbuIQA/KOL5DwYhAtQP5YhHDiEA= + KBZXds7jZUBcG3g88iJnQBTpB48/A3JAdWjQV5HCdEDLvNRcKTN5QNfvpWLlM3pATPshm0UygUAwZjNhFrKBQHX7qGpYaoRAWWa6MCnqhEC6aYkafAKJQD8Dch3agolAai30Hya7i0AcbVgEzxqNQGctXx7ZKZBADk4jl71RkEBLQzImD66RQA== - + - AAPSRVT79kS5fJ5EiMcPRbNFY0VE4kdETTiXRMxNWERQqSZHbm0wRAY+b0TdobpEoA4jRaZBRESvvTVEVJ6ARU2A5UXi/aBEFCZERVR6D0SRjEtFJyJpRClylUShAk1EBSNcRB33f0RLFK9EZObKRKQyPET7f5hEGa5kRJr4cUTuJjpE2suuRFbe9kRYfghHyD9JRHQxg0SNH01ECY+VRIyOJEaMmq9FlAabRb84rkQRoiVFHBkXRHiDrkRTj7xG1rxaRKo9q0TS33xEgRpDRIiZjUWYuwVF8fMxRIbETETKT4ZE3DNJRGzeeUTy1hFFQwDZRDqkPERkKlxF43xAROy6NUQXVgFFVjVkRFb9KETl3/dFZZdJRYiznUS3vKxFL4OKRE0qB0X1ZHNEJ6CqRDhvaURaB2xEeaRORL3UpUTrECVFp+KaRANTtkQSF4FEKXXFRO/GEkUs97BEpZzFRqkPtURQLbpENvYURPCCp0WY5rhEVC5fRA7yDEU4Bq9EkZKWREZKbkSYHOFEdtxqRJH9LkcN0CpE8ggjRMjBH0VtxjNGV+0xRMv4q0UkGYhEgLc/RMnhFUTbeLhFdUtgRG4Sf0SzuB9FYlIjRAHvrES9mE5EZhxORHqzUUQ7BXNFhKhVRXOASUROPZhEdKHcRLKcTEQn/yZExUC6RDEP6EVtxfBE68+4RFNkNUVJYy1E102QRLzQXkS3Vk5EMahWRFYquEUSqOFEp4DURZi5xES8h+REPzLGRA5EFUSsRYRETkNDRLXzoETImS5EdCGZRA/O90RQF3REwvk4RF40f0Q5mm9GAN6mRHsOVUT9H6dE+9FKRdUPq0Tc5YJE/YXVRHrWakSedspEkkLLRDiaK0SjXD9EJKZNRVp+REUfNY5Edce1RNIETERpwrpEdCS9RIWVdETCdR1EqypBRLc5WURXFzpESWw+RPdim0SIKMxEUTBNRLCZXUQgEEdEylgHRV5ra0Uis6JFQYezRBBnK0T6LFZEPyT7RFwW4UXz4FBEfOYqR7trk0UfecZEgluoRD7MT0SShwRF+ZsaRCXytkUiySZEd6uBRM5tIkVVdp9F5b1hRADOVUROKzdEBGyYRfM/k0QNVCRFynaTRKG9CkWGQxtE4hQbRTnNlUSXpxlFE3dlRNoYGUUw7GtE3t6ERIwLIkWBOlVEzoLRRLmPSkRGjNFEddxmRMY9ikRwDyBENgd6RCa6TERyUG5EAQ5ARGGOPESK/+REA9woRI9dpUQHxypEOFzNRHSGRUQyigVFnMiqRJmYD0UZuEFEjeOGRNhjKEWuvY9Et+tQRGOnQES+pMtFWXo7RIvcS0R5IYREplRKRPf2cURt8B5EBXOnROvV3EWMiJFEOuiMRNmskUQK4wBFSapDRQ8UJkQB0wBGrfMlRISCcUQlAUpEiSkTRfR0XERO8I1ERRrXRGrsRkQPbDFEvy+IRH5cXURacJ1E3EHGRPueckQfluhECmqEROUGd0QHmaZEB7AuRKLgw0Q9qtREVgZcRg+oV0TZLbNEr8nhRO0hpkWEvx1EwjlnRdLMBUVV0DBEO4g9RAAbHESVloNEL1RNRKWfm0REE7xF3IotRbN6UUS7K2VEU1ORRD6x2kQY1MNEYQ9HRDpsyUSjLwtE5LGhRIlq/ERUo7BEE++6RITOJUT8OGJEsCk+RDLPe0TOHRxExmbHREPOSEVtwKJE7dihRJLJ0EQDUaJE0TgkRHWMPUTzNJZF7vTNRQocqEXR3tVG4mQvRARWnUQvhKtEa71ERNt9fkRv15hFuX7wRLW0vETuTohFA8dmREcKDEUZqpNGT1OGRB+1B0Wg9JBEPpd2RH9sFkSRQw9EKj5zRWxEXERb/HxF6pAyRA1tcEThjA5FkNcLRdABBEUocDVEomQrRCp+xkTgbYhF6XIzRJ/Pd0S6EmlETPyhRCrPW0V4mEVEzBnRRNqyAUXmdLRE6pmkRLqge0a1nUpEHGkdRMT9S0UK0J5EHVswRHtrNUQQKZZEM7vpRDQNpUSnYBhF3eDNR+Qip0akdudEM9HjRBqhtUaR6yFG4/1mRfuiWUZusYZEdJLxRDomEkV+6p5EwiBaRE2GnkTqoz9EGVUuRbcq7kRnTjRGTwGSRRQQxERv4YFEarE1RPRLmUSqwTZEfcmmRJ1tlkRqL4tEFdkXRCWdOUTY8W9E6CtGRO7fUkRDs3xE6DfkRPxJaEdnpSdEzFbyRnFiakVf2oxFqeE9RQ5AZESBnVRFPqpnRP1ZcURbmjlEMLiTRHzjaUST11hE0eyRRGY+RkVARxhGXFInRBRljUVlPpdElug9RNS0iUTKzodExlgGRUwcrkTde35ECQo1RSs410TKhitFLS4vSf4250XroxpFFRhcR8e9VUSSfR9F1z2ORmYEM0hjS85Ev47GRp4ZWkXwWFJGHgApRApcSEWI9odFoU5vRIpmaEa3SY5EHq9VRCjbTUTwSb9E7dl+RM1j6UT3p0VEvgxJRGa3YESQXqpHhAAhRB5YBkd6S4hFd4qgRbSsiESjzLJEn6piRMRcCUWIOmpE6ip3RMQcCkQvw6VEhBUgRdqpukUSvBNEC7aERPJyx0VitPxEs9k+RKrpz0USCSJFPR+8ROkHOUSFXoJEVro9RCPWGUXBpmRF17pURNktH0TGto5EhQdwRMFwZUUTbg1EIAZgRGfjS0QHhgFFTPt4RD5ktUXloslGZennRLwIq0S4y7dFA4DnRAGiO0QycVhEnNlhRLTGdES7WHBEXVKURBmZIkUOVVdELTiJRPbEs0Qf0phGXAe3R4bgXUZcBOZF9wxPRRF+OURmIllEt2E6ROSBqUZOC4hE2ZNbRJxMjURLIgpFuF/DRb2QMESJpglFzEcdRJX2wUSaYghFz307RCBOYEQ5KxNFU8ULRSoPJ0R2IIBEJ0JgRQgBwkT51ZhFDMk3RfL0oESi57VE/MtbRL5lEkc4QK1EfRcvRrfFbETCGtpE28IiRZXVGUWqvElEXuzFRFd/lkT+smVEZd1lRPH5pkVD5ghFEnGARKXoGEYFhDZE3af+RMnsW0Q290JEVUQeRF9zlER/70JEs5OpRbZApESzroJEklvbRIeXdEQC9QdE0swqRDlhi0ShSJhEBrxURCTd90TP2YNEPvAlRdY8hEYg7j9E/a5rRPr1KUaPkg5Fq/qPROPzyUSDtHZFaJ2gRMl2kkUEYMpEkVq4RYV1vUSBNLJEG8bGREv6tUTIbGNEfN1ARCq260SiElFETmsLRjdz6UXmh81E62oyRJ1iykSeGjxESGrDRF+ua0RJsbpEBV/uRClqqkVJVIFE31bJROt8g0S2qMBHr5T0RFtxSERmojVERqEtReXBtEYV1UFF4F1GRLtywEQOX6JEUs2MRo44U0VI5GNELOUsRX1umUQEcJhElIUyRC6UKkRWGIFE8Ak4RSCLPEVxjVpEAh1GRDNKqUQYWRlEeyxDRIgYnER/BiVEKMr9RI/DkUTumj9EXAecRFExNUTt5xdFJI5tRMOJa0QU9LhE7cnERkFmV0RSN5hEHY8mRJfdhUVBvWFEI3VTRDCfrUTinwdHcrc5RJGSqEQa/IJFF2BJRHyKtETx8c1FNO+XRA0RmEQhzbJEmbsqRXlUjkSxXIVEW1IsRIWSI0T079REwU5fRc+ibETZgHVE5ad8REj4KERS1BpE/E2KRVLQDEVV7xdER1JJRDDVU0Qp9TxEVIJbRKrjTEQbpzpE/4hNRIb3M0UPps1Et9hxRCe/mkYHAglFCFI+RNHEhETX82hEVHxfRL3XhES8uulErm50RZlRIETP+plH1lUoRcOebURbB/dG2R0dRMNmBEYLm5FFgQRNRJ2NgkW5KCZE4Ox6REqBlEQdVkFE09tfRIJXH0TDyTxEepZ4RDw7NET3OQhF7MCXRTXYaUSSpsREr9Q6RHjLLEbE3YdEJ8CVRBGMM0SRL2JE4x+eRLqXSkX0F0lE8LdrRI2pBEV3Z3RE41g5RFUkhEQPwFFEtJkkRGK5RkSPXUNElk1vRAz0pETmTUdExYwhRE3oNESsszNEmBFDRcIFLETl/TlEENirROBTV0RvelZErsg6REMaMUTVrJlE73I6ROzkWERAjkFEoeVcRL7TMkT5LUFEeAOPRzif5ES0J15HfAe5Rs0ruUUHogxFQH6FRSjEB0XAkzVEW+8NRUsDm0btJ3FExQoERcjOuUTnhbJFdxLbRJovMkT/1CtERBXIReESFUaKhYlEWz+ZRRrkKETdU5RELhy5RRvqX0R/th9F/rYXRD2VSEQnGEJEJeRPRHLLV0UpIElE6PFQRL0/T0S+tKxEgqzWRDXnuUTpXyZG5/GERKhYEkUNN4ZEFaa6RKS+iUSvXk1EkpokRAsOGkRRzHBEk2jJREN5QERYp1VE05aeREymN0Qk0URE/FlERPNEP0T56ZJEoxQZRPu/vkRB9zVEF2P5RJdYbkQ9brZFONzBRPmNvUSXpDlFV/CERF4qfUQkTXZEFi1hRATWQkQI+GdEYwpoROWNoESW6llEWALqRN9tYkRo7YlIXHvjRV1GiERpRJ5E1Pq1RD34PURp62NE2DH/R3SbkERlAi9E8Lf+RDy17kQgO29E9qEoRNk0j0TmgTVEL9vtRD8ui0cd6E1F61y0RIROO0ZR1llGV8ZHRL2sXETdL7dEPkeORYg8okTXdxdFUbF5RM9JZES0bYpE448rRN+WQURYwChEDJw1RMaFOkRwNyxEMb9tRG7yTUaMtS1EP7IrROWBU0Smn1JEZoF+RXTpWkS3BWpFWdYORSXvjURmBFtEJcrLRgJueESPAkpE5h5ZRABHnEXJiQ5Ei7m9REDIP0Ttzf5EWWFtRafhwETN5FVEVktsRNmJvEVwiElE11BwRLPsVUTBOjVEPkhFRK7uUURivPdEvphMRF3/U0TlkyVE9h0IRh2ENUR2SdlEw3NcRaw5XkQ+XFpGXV6dRPVdI0Yw3IBF2Th1RCyeTEQOaXlEOqOTRMd9LEQgwD9EwvpORBjCJ0R9lmlEwgNfRGZ+eUTTxgFGowdQRLwaj0SIoWREdk3lRIXNJEW2u49EEdBGRalkjkSQmi5E/NR9RDxn3UXGZ2VFaaaLRAmOdUQkP/RE5ny/RMpcp0RZ8RBF9rNRRPJ9aUQLYmlEOZsbRW+xdkRvlctEnFEKRkoTXkTcx8RENGF9RN12OESVsV1EJHcXRehLlUR2BthEMndsREThSET3uy5EOBVNRDV3RUTOqilEVAFdRMNCkUTAiMdGfZUpRsd4BUUEjzdFFsK0RH9p9USGpEpEGByiRNmAPkRXnz5E7jo1Rk9YK0RNdCNEXE5XRVyEN0Taq3NEXQszRUWBdEVBcx9FGIC5RFx2b0T9xRtEVpSKRL08pkTLgg5F2MwqRKYMRkTL31NEwERPRM3DdURzKIlEqzmTRCsCs0QkE2dEvRVGRKw40kSMXXdEpXN9RU4xZUTzZfJEviDtRD6CmkSDbCNEZCHQRCHu10RaHOZEG2w1RqGNlEShN6BEPW74RHdQ2UR1xXtFxQSnRKx5CkX7nzhEJhRvRD4emkR8tWlEamqGRG0UOkigjkpEXNjBR02lKkT44kZE2AQoREvpV0dGGW9FyDFORLRXN0TF/XVEO42SRZxbdkbtr+dEh0rTRLpslUXgxwBFNEVpRHUAkUSL/b9E3y4tRHFjUkQ5S2VFs20zRGCVwETvf7lE6Z2URPnzpkQl3ZJEwzJKROZ8bERqCVZECTaERH6tKkSxhlREYHH/RRT6gkX07YFE/3dfRMQbN0QbzBtEmAeuREZOQ0QckCBIcl1FRBqfqUfIJDlEFZ88R2XbMkQoQGlEHWtORDk+Tkb7qjBErYx6RNVegEVjtIZE9J02RN2TMUQX8U5EV7EzRN2rcUQffCVEHQBmRNveVkQveh9E5BeHRL4tYUSP6BhEb0JgRCH7RUQXrSxG01qhRBpLdkRkGpJFVrfgRI7ohUQQSkxE6wMuRMo1pkRdXT1ErwPrRFi9dEUn6ChFRohaRTTUM0Ti3UZF6R9JRAFTUUR/8UJEzBWlRDNJT0ScjlJF98E1RTxdwkRSnLlETRaNRN+KKEQb5stEhtrgRARzIUSGNHJErYNORLsUMkRMNDBEev0zRA1PfkT3tkxE5cevRc+61kSkp0BE/iGJRK8FLEd8RwVFzGeKRJRmJEfLUNRG3klyRmhu50ZYVYVEq3KARKNYn0bX46RF4UWzRIdAI0SF+TlEn3Y8RPthIkSerxpE11ohRAYrAkUjOwpFm1zzRNaPJUSQQd5ErLM2RIwOQkQp8CxEEfFfROnXRUXi8rREv71WRBr0TUQpqThEJAuWREJ4SEe3wHBE9840REuJvUY5HIJGDUqzRDeyeUU47MBFd2VYRbTc00UlIQRFIw0fRdioBkbsT0FF7MKQRBTnd0RiQzFE10a7RNfNfkXxTHFFwfZBRcwg/0ROx61EqB+ARHvdaETob0NE0RY6RFHGLUTPz0ZEOyNwRBIBKETd6iZHm9NFRaxyzkTqTqpE9nmZRhbWUETtqUJGVmOKRanhnkTkUSFFDS9qRfhuo0QQbGdEaRfwRZ2Ov0XDNzBFMqJxRBJnM0Sh9UpEudY2RKxINUS00U9FdE7LRIPiJUUHclBEX9zdRO9hf0SjuY1Ec1N3RIULOUTxuNZEKPhsRFq3YkSemBtFTY48RSbhaUQ+N21E54BSRAnuIETvG8JEDZuTRCr7VUTbH0dGjJ8DRhmkXkVoSbNFhGKoRJArFUU4915FFdGiRIzBPEQCxDpFGrt7RH4Hh0WlUIBEPwUqRBA0WERECitE/+FMRM7L9EUyq5lFTwVDRdBaoUS00z1EhQcARdLBj0TB4BNE61oHRnKX+EUwqeFEpbV6RHt/d0R87EpEYvZlREwOpkV1o4VEOCW8RA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - tw7wTA/BckDQrklNb8FyQPmBanPHwXJArsfO7E/CckD89P3B4cJyQG2NYPs5w3JALlJbhqfDckAmJeFlxcRyQNpiyOhaxXJAjNKO9AzSckBq5UiEQ9JyQH+IU1Z603JAeNkfX2HUckD/ZXRdz99yQGCRzfG44HJAIBvGoeHgckDISe47UOJyQGxupGKP4nJAvlhQnCXjckC8mVZHuONyQKr8ENdT8HJARoOXyU/xckA8chRTyfFyQNriSZgR83JAcsooLLXzckDCV5Huwv9yQObApN5eAHNAiermePoAc0AsvbN0TgFzQGa2h7HOAnNAvxaRzfoDc0Bs1g4HJQVzQKhZUNkIEnNAVLTJ/rsSc0Aam75iYhNzQCBpf0f7E3NA2kJN9QMUc0Ae7/uNThRzQFjqFgh8H3NAEG4JoqAgc0AWd1DPOCFzQPR0CkhjIXNAWL/49Mgic0BYkY2pDSNzQNb6fzYFJHNA+rbuRDokc0AdlXBXzyRzQHtqEgBIMXNAIDe8nVgxc0BSIR2NDDNzQLzYltXXM3NAEMiX1jU0c0COY2Kk2jRzQNyeGBi6P3NALm4WLVlBc0D/SM+peEFzQNjHBMG7QnNAmaEdciFEc0COr71TekRzQIJ+o4iZUXNAb/gZWRBSc0Bk0S5RQVNzQDjIaomjU3NAEvRaMYZUc0DKYbVF+V9zQHT3GgCJYXNAQt1io2Vic0B6jTTyOWNzQN7UF06QY3NAMgq3TM9jc0BENt8HKm1zQAaauKLccXNAvFx+l1Fyc0AUQBI7unJzQK5MCXe4dHNAaoRQFEx1c0DA9mK+eIBzQNBWCMejgHNA+8cIUw2Bc0BF7hK9XIJzQOL5ERCpgnNA8vy+pv2Cc0D4kUxPWYhzQIYDHIqHkHNAT5csF02Sc0Dyu1TpYJRzQDwQDFP3lHNArDaeyLigc0Dg64jcsKFzQGL4TAZbonNA5sD8CI+ic0DwWRu8JqNzQGaHe7kCpXNA+YEYwdawc0Dm98vYfLFzQNCoYxu3s3NArFN+fQy0c0Dl1p+jorRzQOmEZD7Nv3NATDL/hffAc0BqFb5k0MJzQN4T/0Qow3NAkD8yKRnEc0CiqQqm19FzQKzgMhHd0nNAQBLlqvbTc0A03edk4dRzQIMjsqGi4HNAvsCZdTjhc0CEy/J+ZeFzQLdvD8t64nNA6vi1qg/jc0DA6FANo+NzQIef5Xk45HNAZqPBee3kc0DlCN1qZPJzQOxA9ve28nNA9CFKvjf0c0Dw64YevP9zQOmzQk7kAHRAAjthpHgBdEC8q8SCpAF0QPSs9WS5AnRAVB85HIwRdEByIUVoqRJ0QEx5CS5NE3RAeBtx9N8TdED25nyZSiB0QO+0YNS2IXRAqROhn1MwdEBkk+YouDJ0QLCjiI7VMnRA+ElNiRszdEDkvdTA4jd0QGVkOmZrOHRAfqZ9yDw9dEB30FYDUkB0QPMXLGmZQnRA6FpuBDtDdECDIMuGeEN0QEz1He5QT3RAwEzPIXxPdEB1vPtZOVJ0QNybNm33VHRA5Na4s41VdEDye5BKC1d0QAJV33vdV3RAiq3cQCFddEBK9PHZuGB0QMSOB04IYnRAJpAZ+YhidEB0pFxOTWR0QA7fdfkhcHRANG51HmNwdEB3p35EQXF0QMz8hho6c3RAI/1wAqR0dEDv7I1oNnV0QKht/YBDgHRAauFT8GqAdEC4BnGL94B0QOLBDvZNgXRA4uuwDUmCdEBhu/t5JoN0QOwhdSQWkHRA5lUY4mqQdEAuLad/W5F0QDAyQEHwn3RAyvMSmNCgdEBejtJYNaF0QAxHylt7onRAft1TPrqidEAhpo+uD6N0QHC0IC76r3RAfoAxLgmwdEDcTr8wwrB0QEJpTkZusnRA6SYVL/6ydEAKs5bY+rN0QL+pgYHJt3RAEEMGXre/dEDsw2Ay4b90QDXJCM1WwHRAaNNAEOLAdEAYKcyseMF0QHyYcZe6wnRAyI/a+U7DdEARMhELI8R0QMTWGGZ4xHRAXVINP7jEdEBOU02Q/s50QMAUeds703RA1s7Rkd7TdEDIo4XDydR0QDgYhaq74HRA7pCvESThdEDQrypmueF0QO+/czj84nRAIna9DZDjdECw7wK3UOV0QFCTlTqN83RAsi/Oy6n0dEB9egr1owB1QC6cIPnPAHVAq39iOWIBdUDX/Q89XQJ1QCqmNkXlAnVAjJ51ypoDdUCgxd1JmRB1QESRZ/VrEnVAzPKpAiQUdUCfAobj4x91QItpfDLrIHVA1qlfZ50idUBQdjjBzDV1QOxWUFHeQnVAUuyNf9lFdUDKiycS5091QGT5eDz3T3VAugwQJRlQdUCBUCMJT1R1QPbD4WB3VXVAeBCftvFfdUC49HWTC2B1QL0max84YXVAPdK9W/RhdUBMNbjuc3J1QOX/VIYAc3VALU3o4id0dUBiG/NpjXR1QPZ/d2h5gXVAOOEt8K2BdUCi0kRjuoJ1QLoiDVCmg3VAHjJLAJuEdUBqHqpzjZB1QKnbcr65kXVApAkB4YeSdUBgJLSQt6F1QMMkLU1Io3VAKNzez6OodUDkimPcz8B1QHS9LqNhwXVA/Kw4j/jBdUCkfCfppcJ1QICzXAam0HVAarZ07jXTdUDslpLuy9N1QPj6afzh33VAh7dy8wzhdUDGGTFzouF1QOK8h3IG4nVABgI7WEntdUAPwA7+G/h1QJqCBMNHAnZAFVm7vNEDdkC4f4gGTBR2QJBv1coLFnZAYsnm5XoYdkAy1uQ1iSJ2QN8PDkGQJHZADqHt50srdkDCAwmVHzF2QJm0g8RLMnZA7vj0JygzdkC2K7PuUTN2QHeiqAicNHZAHCF+8BtBdkDoWAiGyUJ2QHbx3GkQQ3ZAOCF6r3lEdkBLio5hyFB2QAXnndkQUXZAlVJULM1UdkD2MdnpjmB2QCakPjDPYHZAoFNg3d9hdkCaHFmX2mR2QFI7agBWaHZAxAG9eHxzdkC2BT0ZY4F2QNjAP5E9gnZAHiTip2mDdkBZXr9jWpJ2QHAB0DS/k3ZA+FlZj9KXdkBq8jQGwbJ2QFY5RGQMtHZAdVtw8HLAdkD6aIdCTsF2QAJPMFMaxHZApsM9IM7OdkCxVYeaftB2QCcXAar04XZAJnQ/s7rtdkCoVJ7ZkPN2QJaoAtIyAndAMGZpPAESd0BIyCbNDSJ3QCcN7M7nJ3dA/3iGbJsyd0C+IqjrDDV3QJKu+SOdQXdAya7TlZBDd0ChxPOiJER3QP41xtgaRXdANwn1BQdQd0BYi4FBSlF3QJibOYiRUXdAZstuTyxVd0D06NjPe193QDSCdPDeX3dAQpwuJwthd0CsmNfSSWF3QPCBZSKPYXdAyFTgVaFhd0CMLXBt5WF3QFDZUeuoY3dA/FzbCjlld0CNBn5sJ293QKaRoZ6ecndAu5lUhZJ0d0BH9Owq+Hd3QI6zipFCfXdAEn7EcCd/d0AS+LYEeoJ3QJylUoavgndAmN4IckyUd0Ac2nrU9qB3QImERhXMondAvk7AvC2jd0CyPnVI+6N3QLYeFwaatHdAvH3cYwi5d0AY6unucfd3QPx+/Y5G/XdAMtSbl6ACeEA1FXt95wd4QBxsFk/9B3hAJpZcTAILeECCpU/1Qg14QDAjJe5MFXhAy6P0gW4ieEAcPFC5iCN4QM9hXmoSRHhAr1ENm3pFeEBhokj5ylF4QA/uMAmHVXhAshU5+fdgeEDAg3xYt2F4QBmiHz8nYnhAVqswFbxieEChy16JV3J4QPIF7H4ldHhAYkjQjTp0eEDegEEhUXR4QIHSCEBodHhAvgJhiYt0eEAm7V7yunR4QGa7WlTSdHhAaqld6eZ0eEBIU81h93t4QN2sNxOkgXhAlKTA6dWDeECEIeZ7/4N4QEUQ7151hHhA8z2ok5mEeEBW69YgT4h4QP2amTMEjHhAbswfuamNeEBVvjb/lpF4QHS2WVXwknhA3gcPE6eUeEB1FlOmvKN4QKRN8raspHhAwiJeSzmteECSKqBR3rd4QJTnDeQ5vXhAjF4U9szAeEBOxYfWFsN4QD6z1NJCw3hAoWXlAx7LeECYk0vB5tJ4QCKkg9AO03hAXBoSISTTeEAARWSTtdR4QE4qRVcW23hARvIQ1qHieEAU5eVa/Od4QLhGKjDp7XhA4sRyiAL0eECIYHtUjPV4QM+EWDuaBXlASkldVdUTeUBwnfcU2xt5QFNBMnnhI3lARgnEILEoeUDYfhn0Ci55QLkSb4tkM3lA/zPtirYzeUBX0auq+EJ5QJi00e75Q3lA2m9WOsxUeUCOB2/b2GR5QC56x5FEc3lA9eDJ+PeBeUDhKtA3HKF5QMpxJW/BsnlAblKRYlXMeUCOszhtQtR5QEA/nBD/1HlAp1H6e83VeUDcDHVGXtp5QGasUvJP5HlAIj1IqAzleUAKQePmI+t5QNOkxrOL8nlASMs7K7/yeUCQGCpqD/R5QC5g2e0Y9XlAgBgrff4DekByMUpe+AV6QKhFn6NmC3pAWg4ZCDkjekD+fG8qKzN6QF5QgtQLNXpAjct7sS03ekBweFKCMjt6QFLqnfIwP3pAnnF+lDRDekD4Q2STGkV6QPkYL8TLS3pAKZWrT59OekCieItggVN6QHgPd9MmVXpAHjbogyJcekC69In6K2R6QFbncIWkZHpAwAhVdThlekC1/QmbjnJ6QOQSaVclc3pAgQG8/Sd3ekDQoIgyK3t6QBRFF+zVk3pASIAXOB2jekDkYoW1I6t6QAp3wpcPs3pAKkCKdw22ekA0Oql4Drd6QEyP8KUYu3pAWor+Sr7DekCwimueGsZ6QKmgMxzGy3pAKBlB9dLTekBWnz0wY+F6QM5O+xE65HpA4Cs0RjXuekAMDb+YFvF6QDSq0oxa8XpA2L/Q4XQDe0DpWw7N6gN7QO0yqGd8BHtAGvOuFSgOe0DjC9WBTBV7QFhjUnIgH3tACOBIriAje0B0BSGwWiV7QG2niSZDK3tANNC3Xrkre0CF76VRwjN7QPxVUstjPHtAM6fUXlxSe0D++QQt6pB7QIstm5QklXtAoMDUK6yje0CCheW0AKd7QGLRFYAIqXtAE3EgrXfGe0CwSBpYhtF7QEmRXYq/0XtAoWw6vyPSe0Du0f7lQNJ7QALka8Uo5HtA+GMpNuXwe0CaMWJSjPV7QHhKV/pr/ntAf4gjYNkBfEBEJ9IW9wF8QMaGd264AnxAsj1bFWYEfEB8iPO0mgV8QOlULXUTCHxAReep+9IRfEC2QC02txJ8QDDAGVWmFXxAsscr8f8jfECOiJpkVyl8QOcjK1yxLnxAXl943sxBfECILmPra1N8QF6SkXsLYnxADrGmFypxfEAcUFgtA3N8QBoBGPnjfXxAtonC1T2BfED4yumkSYN8QCuDpvNPi3xAhdTU+MONfEAKPXLTG5N8QAIC/XdjmHxATIjprUaefEDDup2mF6N8QNQneWuko3xAPE8+dcCyfEBUeD1i7bN8QNMRT5B7tHxAqGMOBfe7fECFERNK0cN8QPgjsrWIxHxASMac+ovKfEAC2G58l9N8QIboeMPK1XxAvCosH/fbfEBwc6mkV+J8QAifVEQP43xAht00zqbjfEBzUCajbOh8QLaqLWsX8nxAaTAj/FTyfEBquUhn9vJ8QG5Vle5TAX1ABYASMgICfUAMRYxSSwJ9QBo+REVEEn1ApmaOS1IZfUCAZzYBOyJ9QMEYMnFOI31AyO1bZaAxfUBE/5WNKDR9QL/RoegrOH1AKLg7+kQ4fUDYvj82oj19QEc8twOcQ31AO28FNTREfUBmvPYEK0t9QJI6FsNrUX1AnE2JF3p0fUB4e+rkMHt9QA9LJYQzg31Auhg3SPmDfUC6QLgIJpR9QCKlcTHmxH1AKVmEzfTUfUAyy7g/2uJ9QIwZAtGO9X1A0lAaHTQAfkDUo92IFAR+QM7BxX2iBX5AwFLw3UQQfkCGdGVjIyB+QHehF+hSI35AegibZj0vfkCs1yyyCTt+QDiGHW1DP35AMMBBuRBDfkBWHkuTJEd+QPL6g8RTU35AjS5qMNxTfkBUT3vvjlV+QN74+iU2WX5A3DYdWkx0fkDI5zCVVXx+QBS5zrScg35AjmFevNiLfkBE77zBI45+QLx+JJKalH5AwivLYmKXfkBqGLBuyJh+QOK4p4n5mX5AVa+ObZGkfkBe/n4WY6x+QLHIkWiMsH5Aq6JZndCwfkAGvCRHfLN+QFQ5Y0FptH5ACrqkI5+0fkD+JeEwZsN+QPKU312mxH5AFtQ7A9HEfkB2c/wnY8d+QGwU0YRsy35AtM3GwlnTfkCilp1oe9N+QAgUVA+9035AMlhI4d/UfkCc3AcKZNt+QNTthrS+6n5A8rSulyf/fkB/MUKwwwB/QK58eQE3DH9AL80RGLFTf0AModLdt3F/QIdbMSPjdH9ApHnVapR6f0Blv6Ls5nx/QNd37/qvgX9ADG4t4kGEf0Bi67sj9IR/QMtNwo7giH9A7KJ1+6+Of0CEmJswZJF/QOi90EuokX9AwNPla5eTf0C67qxuX6F/QAh7yJXnpH9APGoPGVexf0CsXhGX07R/QA1sXqFQwX9ASLq9gcLPf0C0XqAFUel/QKg8mMQ1739AGqBzTAn0f0B6+kIQ8/R/QMRQlEXr+H9AHISOlGUDgEAH2aAhdAOAQChmaMkPBYBAj5x0iB0JgEA0ZxnVBwqAQB4WvFZ4CoBAxK2ZticTgEC2pO3JJxqAQABQh1DOHoBAsqeraSglgEA3+lkS7SmAQJibYAIdN4BAKbBGE+s3gED6u+ek/ziAQDtyOA3JOYBA1t2Dz3U8gEBQaNFKIT+AQK5mHdfMQYBAQgsFG6hCgEBmeud++UiAQJZhjfzlUIBABvIaoxNRgEDGeyGep1WAQIqeBMxXV4BA3nBt6+ZYgEAfUya2DlmAQKq2IpOpWYBA4eNOFN1ZgEDyp1btCFqAQF64UqGjXYBAwuRR3eBdgECeV2c7DF6AQOKpMvkKYYBArCVEUcNhgEB4/iUUD2KAQLkZgiVwZIBAok6mSxxngEAqMpeRomeAQLb24ehOaoBABlDynSdvgECqhwh6XnCAQNQWBbitfYBAWLMgECd/gEDL+HS1eoCAQJ5grLsdj4BAtGDC67iPgECW92wfP5KAQISdYVH4loBAMiQlPh2XgEBeO670r5eAQMhH4LU7moBAOYto90aagEC0DgndUJuAQN8UOhwcn4BAbJEXkc6hgEBPOz+cvqSAQFwNRY44poBAXK3Z9CmpgEDC4Q71hqmAQDrKMC4Tr4BA39/DXM2xgEDAM8Z237GAQNP/JVegsoBAtjMUnMOygED0f7w1TbuAQHbP+WUCvIBACUYmT8C8gEC+9hnzBL2AQN4grVB8vYBATutb0zu+gEC3dJGPs7+AQFZLSzI0wYBA2pp1QFLBgEAhnZDq1MGAQAqRFF2ewoBAOt3WfaLHgEDq3JHbYciAQKpVPpUhyYBAfpZzSVPJgECwVhcEp8qAQGU8UTCCzYBAjMW9igfPgEBiMzSlLNGAQOpLHXBM0YBAyNsqXGDRgECEXBLdgdKAQEaLQvBd1oBA5olBFGbYgEB/s0x7StmAQI4nTP/P24BAIsrOdZfcgEATxikeN96AQPLIgPlt4IBAaApBwEPhgEDAi2KfoOKAQMSJgc825oBAOuWGVbXngEBC3mAOXuiAQIz3lnj36IBAQFzroxjpgEBeCh1JQOmAQBADp49L74BAoxzVVDzzgEAazjozafqAQCZ6OUOo/oBAMCmbPD//gEAvfFVWl/+AQBDuNoM/B4FAMkkSMT4PgUDfjLnMLRaBQLi60C3OGYFARVya4uQcgUCEbV1ENB+BQKVD32g0J4FAjw9IOb0xgUAkux0UdDKBQLKVHxB5OoFAquqLDyk/gUC6ZqIguT+BQFbqWmLNQYFADTesxlpDgUA0e8RFBEqBQDwN3jxyUYFA6E6jJE1bgUCeWJLc+mOBQNwv4LayZoFAICOFOLVqgUAwj1y6122BQPhc32PbcYFAogjH/cF0gUBUJoB7bneBQMRufTwceoFAYGkVBGR/gUBsji8HVY+BQHYR+uPvkYFAvKSTPl6SgUBbKXNTRpOBQLR4/ECMk4FASsy56eOUgUDgSYiu85WBQNpG0/w3loFAHJBjX1aXgUAVnBz6m5yBQDAj8r5Jn4FAekZi7eShgUDgYp7O+KGBQGPBs88XooFAZEJxCN6igUCg00ha2KSBQCzQcsMwpoFAhYQR+muogUCDP9ef7qmBQD6rHBzTrYFA5SjB8EmvgUC3XG7/SLeBQCMqWdOtuoFAFnfCagTKgUC4b1xdsMyBQDYtpTj50YFAr4+EJH7TgUAAoTqJ/NWBQJP9juD36YFA5no2yIn1gUC6t6cy7PmBQML5dufv/YFApavG3OMBgkCYkQnG9QGCQJD/QJ8OAoJAd5TwO+oFgkDvA4B22RSCQHk3dJHYGIJAQsv8EigagkCCWNjXNBqCQBn9+mnWIIJA1KQuitEogkByjguODiqCQBYad0SeKoJAwLfshaIugkD6/XjGpDCCQAB5K/bOMIJApq7g1lo+gkCEWggdrz+CQEob5Av+QIJAmguG5wxDgkDHfVz+q0OCQBqmpl+gS4JAFrFyJ6VPgkDQDeMf6FSCQJPJbIkQVoJA+n2HBG5YgkD0bQdJbVyCQOh9pybEXIJAGdxkUzRigkAmQ+JM1GKCQKXkZfsSZoJAUtijAzdmgkA6TwFIbGeCQEQe58ipZ4JAseRdCXhogkB98KYmDXKCQJ75VzFucoJAefCR/JpzgkBmQUGjRXWCQPjr4AlydoJAyKNm5Z13gkDgNylLOXmCQIL3G2B0eoJANYCoiz19gkANAP9YA36CQNIubunnfoJAj8L9/8aBgkDwh6o0Q4mCQA5srVdDkYJAdjHaXgqWgkB8i/q2dpiCQNvD9hA8mYJA5fJ6IVSZgkBFqySKD6GCQBSEoO45oYJAVBN2YfOlgkCFJRA/DamCQEIc4yA1qYJA7G7IkXmugkBCWuYHBrGCQHRK53DsxYJAEuTuk+/JgkAmIaVO9s2CQFb9yyR92oJAZnv/L63cgkCqYZYff96CQIXwKpJd34JAf9zrThjigkBDOdlQSeSCQKwzEfFO9IJABqmer675gkDqRWqCgvyCQMyLkrm//YJAtsauY1sAg0C4S67hwwGDQOzIq1/gAYNA2B1HbL0Fg0A8yKIzJg2DQF3vY5Z5EYNAOmE7M6URg0DcLg/SeRmDQEOK9MJyIYNAekVk5nEpg0ChhJ3SajGDQBdrnEN1OYNA3cRe4apHg0AI+0rZbmmDQEkm6DNndYNA7LgvYsWBg0Dwwax+4oGDQAB+HRAigoNAbkYzuseFg0B4xjjNwImDQKiAGEjJi4NA95FiCMONg0C4SVEIPZmDQJbqeo32qYNA6WgRVOitg0A6i8uK67GDQBJzlG0SsoNAlqEumhO2g0AiGWgMGrqDQIZSPDLL3INAwOS5eHffg0B8aqXBW+KDQDota7fU5oNAwt952ZP4g0BC59+W6ROEQMTsHumBL4RAPpdtXtRFhEB4cO6fkmeEQEjAyAH/aIRAoy+TNv5whED0UlA4uXWEQNIqhNjJd4RA7ItgDfl4hEAZxvNyuXmEQBg42jB3eoRAuit6Mgh9hECnlmgfJH2EQAXfbWC1f4RAxHWhzPiAhEAI09MwXIGEQMkfZldFgoRARATnf2KChEBiE/+XDIWEQLxkVwG3h4RA5GqaEk6RhEAoYVRrIKWEQKxYDJJzwoRAwrIHfB/FhEDu93KWpseEQB7t0+7Mx4RAYterFmrZhEDXE0ULauGEQGDR43hi6YRA6X9w9jTxhEDYt5oeY/GEQKStGQ2E8oRAz9GIJZjyhEDRrHzUfvaEQAxbHA3c94RAzWuW/zL5hEDWk+Y9WPmEQCALtFWJ+oRAqEvkczX9hECdJoL+4f+EQLCnGDknFYVAHqQ2JdUVhUAhxKjH+BaFQBDFMt5+F4VAZpDMkBEZhUBoSzsgpxqFQHgHCXb7GoVAPh0DZeAdhUBovjC26z+FQG7uMjaOSYVAjOhyh31ZhUAYCe1DoGGFQL6VmjzbYYVAgvFmPGNkhUBqAMca32WFQK/AUf9LZoVAUZ3At6BphUC+Dz7242yFQBZkAZKYcYVABukZubFyhUDEtf3RsnOFQN7mFnK1doVAuPbNR5p5hUDq7bAFuHqFQHSonr+6foVAgKL26CedhUBeHGPfQK6FQCCs4nVnsIVAA06HHESyhUCcAxgSR7aFQGCW/NtruIVAJOtM7wLKhUCUCmfjBs6FQKviDn0K0oVAlDfSw83ihUAvPu90ZeSFQABXtdYB5oVAmq5im7LmhUCdOJPlmueFQEuW3dVLs4ZAZLkFIya5hkAhLs8/x8aGQHRqqMPKyIZAwcUVBcnKhkAkWZjCwcyGQN7+5WHI0IZA9F/fGC0Th0Bo5HLWMheHQCf0O7iQKYdAWou485Ixh0CSf6koizmHQClXHWOfPodAch3TMFtBh0AOQLu8ikGHQIYHk7SfQodAVAr+w6JGh0DYDgqRe0qHQIqH4UXcUodA6VI6Wxhrh0ACqnaCZZeHQBgS+WIco4dAVF5UP8exh0Baehw9yLmHQN4mggzBwYdApA5HRb3Jh0Ck3+F8fjOIQBIRzLKmTohA/w0yPahSiEC+yhuVrVaIQF5q0f2tWohAFm40zTl8iECcEgNNCruIQGzzk/MRw4hA + NrgMGZxjYkA2uAwZnGNlQHzKEHuiRG1APWWIPVEicECUuYxC6RJzQA== - + - rnRURAZZ5EWmrClFxdBWRGIVlURzZF5FVt9QROdJe0TX0qxEhUhdRL/yEUcy42lEa0WYRHQWJEXwGdZEHymDRGrwYUU6/NlFZ16NRPrrakSvQBlFS62FRPqzN0VmIWpEtl2YRAX9LEU1dy1EEWqjRFozY0QvgPREJ5klR/a2WkTHzXdESv1ORoVgXkTfUnBFgSFxRcuFkUR2G+tEeMtLRAPKqEZHWGxENQTxRNlGk0Sod09ENiSGRH7fnUX0xpNEprkvRPFaukTxVaxE0iWrREm2aUSYRdVE1s5LRKa/NEU0Q5FEA01HRACwFEaWxI9FkKZHRDyF40QQiaBFx9yAREF7kkTJVEdEgnJoRPfbFEXQjZ5E8S1nROFBUETHPmRE4sjyRANGYEQtAOxEpN8JRUDByUbR8sFEaJ7rRLdnlkWNSlpEttvkREkarER7ZQ9FtANGRxk2tkR5L1JG6/3QRbczSkQgaNZF7j6CROaFQES397JEKGHPRN0viUQfMmNFbcZVRcmdYESDKIZEgpeERKTso0VAIaBE1htjRLgCPUXW6oVEqtqiRP/Lp0VbNnxEl7P0Rac5j0TLYZFEPXaWREOQZETZKYNE899cRKxDbkRTtCtEi5ndRFXXQUTaRYVEnuuLRvBp0kT0EYVEinyPRNnIb0S693hFix9WRK4xu0SdiutEyL+VRLkkm0SClGlEyw+6RFTkBEXhAH9EhBHKRGxMn0QU0F9EyDjRREALwkSSzFVEbvA3RNouZUQJf5REuM5VRBq5PkSjPzZE++3IRGm6ZEV/tb1FCRhrRCzvs0TpfLNF8YtjRJAnN0exoBVFCQSPRBwLwEQP4aFEDyk7RACM8kQj1sFF723wRIa2pET96sxFu7JXRMXJd0RSsVlFTWnxRNi7VETybLtEcOCrREZmIkUloI9EE8bERIw4gEREH41FVpBORIpNkERPVvZEdkttRGzRV0TE4kJEkbm1RNIei0TfK5NEgAWsRD70x0QSZ09E5j6vRVGnskQ9JWVEBxKFRMFCrkRlkklE2e5CRCJ3y0R663pEUZ//RPd2lEQh7fFFcAh1RMYT4UQHIZVEtZzARG4CwEW+vLBEtACFRMu4oURLXINE/1sVRYlGrURZ6uBEEwjxRVkXHkXFGIBEXgFhRDbzlESPKqJEGqQyRE2sqETABB5FeOFRRI3npESWyQhFRvRfRJ4vfUSq4l5EblSXRHgOXkcYVd5E3aN6RVfgQkSYNy5FRBHwRQmJ0UQHrI5EjSt3RBzahURARptFpCwURaoMj0SWfmNEh2PCRF5m1EQSuI1EyxtIRCxw4EQnsmNE0XuSRBySXERoxmxEXLn3RLMhoER/AJNFC2gxRe2/wETStLREnAeARIS/bUU89fJFlNSRRTx1sEZtJEFEeS6HRE6kBkWY+qtEhXKWRb9l6kSsY5xEGYVGRbeptkTKUm5FjCiCR4J5ekQrxypEnI5oRLnaTEZ6r4xEt4xMRbXyR0Tsuw1FKiyrRNnQRUQw4ptEONWhRGyZIEVNsapF3s1NRNZJqkRy+4NEGPZmRSb2eESca7FEhKIwRKRsI0UEuJJEsHd5RuW+CUXEroNFGxKTRLINCUii24tGjz4mRfOMXURcDMZGhCMBRvTihkWniShGyyy3RBXOC0VDbkZEBfM8RLzup0Td8+JE4uqGROvEcER6KvxEL8TbRMZbJUUIQgxGp3hcRFJla0UrgKxENsVURB2xuUSqYFdE2065RLZWa0QMIUxEWUk4RIRsbUQA5KJEFLDgRLt/gUSukFxHdnb0RpzgUEUOB4BFyIxhROpTLkWVKAVFg5MBRXeuckTy/l1FK8l0RpGAgUV2PDZFzjf/RGUvMkW+ok1Eb2hQRKgkO0X9Vr9Ekr1QRUm3V0UIAOBFvrVXSbMRtUXrzDpF9e8XRaklPEc4fhdFBbFSRCzLhEZtXe1E51hcSGXB3Ua7FxpFq7w9Rt/KLkXMvR5FhtGoRtSf/UQme4pEJRG6RAppZkTCIHNEcH0FRRmvh0eNXktElWbBRk4bNUSONoRFcrReRVe2FkWHJQpFF7WVRNfif0Td/1lEORS/RB78Mka2vDlF4f1iRSU44UQNjF9EFRO8RaIcRUXtm4FE8mBvRB1OqkTxYI9ECV3DRfNlBEWTm4xE7SmDRBDjSEScfjZFbmHLRMXtxUUv6A5Hp3IyRYMjokTPJppEHre9Re0lYUS7LCpE7f8BRfyI6ETU3WxEPMEKReFlGEXMvlVEVsdYRAnHtkYiYg5IwjyNRgUnv0UYPfBE+AdRRH6QCUfz2UBEjGw8ROvnlUQUVHlFp4SbRXL/pETTgXpEcBpDRIlYR0SBT3ZEc+67RDlPkETo59NEfAU6RalYckRU/C1Fq1uuRVAwJEXbra5ErGrLRsQYvETfMzlGROHPRF7S70QDOaJE4bfzRPsd+ERC1ddEb1peRJoCcUR+VaxF7AvMRGjQI0aIKIJE+zmSRCrUKEWqBClEMUa0RBEUkkQ2t29EH65YRJix00Q4S/xE2WiWRMdUjEQy6FhEoTVdRLJFokTbUEVFZRAIRY3Gr0QhCbNEAXLjRL8DzEYLc9lEtL84Rrk9AUUiL5lEuX3/RAmMx0VW+dlEocFtRRIzn0SGf5lE1ZVeRfJbEEXao4VE1rySRdSCCkW2yZ9ETDYqRRFdkUScVTJEFZg/RCSaLEVT/1BE3T41RmyqKEU6lcNEd0AJRXFsjUQuCPFEz4ccRaEWokSJ8T9Fn0VwRF/oXETcxn5Eac9TRJjJSkRywNdEbsHURBRU7EfO+TJFl/czRPCEDUX82tVEmlvbRg5xbES8jD1EQI0WRSxGokbWkXBFFDXWRGE4mETdfldEQWzVRJ4PfETA85VEP/KiRL9IkkSdv2NENas5RN+WUES4WspE5A/ORGoxAkUtnfNEpcxIRBNZd0WsYplGI7uZRXN9ekSqb7tEbl3RRgdcOES9jDxEu+klRapTu0UHcZxEQhCFRHcphkRYSjlERQ2MRKRIjkRpNQNFsY49RCQpcESnPc5EUQRKRUHk7ETsNY5EHsNIROXfm0SlcPhEtpJRRIN9dEQUyOBEuLCqRjk8SEXtgVJEMWJAROKUgkRPvQJFFfdFRZ6zhEe/2mRE6t8aRamDWkTW6+RGIIXaRTWelEU0lW1EokVmRIhMhkULJ3NE1EFoRIT+gkR1fHNExEOZRObEjUWfDpVEpm06RImGZESo0dNEEuxfRGqyiETK5WZE80Z0RAPbJUag6YZEak2mREBzLEVnOE1EiMIXRZkddURpgnhE32xORHsolUTlzoVEi5pURNi8OESXBmNEVbcgRD9GMkROOGVETl9vRMAldUSP7glF5RRWRCIueUStbW1EvwmLRMQeVkQMYIRHbuhpRBJbAkUIxy5HgBCWRh2IbEVhvgxFCpWHRUEyn0RbMitFqZRiRrprI0UbpUREVQylRGsjr0UyS6hEaYJpRb2zH0Zlul9EQE/fRAajoUWZ1IRENJX+RNLVyET+Z95En1naRFeds0Q0G/ZEAF5NRfCxOUQ68+lErjqvRH4la0SbnxFG6Y9ORH6aykRl2XREyb9ARawQlES/EWFEhutcRIw3eUSTcZNEMOJYRPwmpkT255xEC6lSRJpWlUS4MaBFQ+6SRAKnFkWN+L5EoXVLRPWxLkTp2nVEAb2ORJa4mETBfOBEB5uKRKFVX0RPn/hEyhyNSPtIokQYQONFQzCBRDvjUUWBpvREFyYDSHZlY0Rfw5REUdmTRGyTq0Sc1oJHgeZoRVXkTUQIz3pEi7GORk8rfEYnlDxEeoGHRMcxbUQQPRpFbwaUReQAjUTbWY1EWZxRRD84m0WlX9xEaEOnRJxSfUTmWwNFtKGXRKdbcEQE+U9EL4kwRmVJUER/WC9F6PCKRd0bnUSLa+hEyPaKRPuxyUa+w6tFC5nBRIyOgkUnUUBEw3GHReQbNkQFTXhEECCERFwIXETFCWZEze9GRGi7MES7o0ZEPsyaRHPG1UXV37tET1VRRonSBEZlVzZFK0hsRAzH10WP6cJEfSJeRJZXhURd2KlEggmeRGYBYkQ0L5JE9OK+RIqUPUUZIChFVGkURVVSwETIv4FEN+C8RGj9akQ3ulFECYQ8RXwRrESC0adECnsORtAZ3kT4xU5EKNUCRR5PnUQAkONEk9yRRDHMr0TXUmJE4RlOROd0nUZxQBFGK3fRRAP3HkXRflRE3WHfRKePVkRW7zFGLbgrRKZmUkQ6eWFFGe81RdZMcUTSLA1FMyjfRMvYgEQq04dE2VlbRCT2rkQd7H1E6L5mRLyayERfhm5EU3pnRASpeUQozbRErbgyRIAgLkUneD9EXl6+RR/CcESARslEHA8mRbWdSUR9IkpE2ijZRGJavkQm/iRG6FJQRO6ZeUTWKa5Fq4q+RGgtpUSsCb1E//WgRCU0d0SBemFETvW/RP6I1Ufz0ThHt2/ERGs5nkRqkNxG2IwzRcy9skUDm+RFDuWhRGYq0kR5tghFSK+bRKQ7lEReJH9FSCyzRG0hLkT2ZAhFWzHCRJtVi0R9WWxE/PY6RHwrS0TtnVNECLyuRGlGSkSTKYJF5OekRNnO+0RQGBVFw2eoRMU8XERC5/ZHWUo8RDiwYUcAZgNHKFQgRqGHTkWv8TpE1eOQRNkddUR34j1EZ4YHRqWnoES76y9Eout2RTFeHEXwhkxEgWGIRK1aj0QgYddEV/onRcvKAkUv1XBF5KmiRFX2R0Tr2h9FT5jqRNgSUkQltmJEeBiDRB70j0QfukxEpwNGRNxvR0T1I+RFjDYNRaUSn0RvLTRHPHHKRBIXdkTgQAVHHjOIRsjvdEZM+qJGFX4yRERx00QGtj1EaBYwRusjTkX71ZdEdJCERFVFy0RLk0dFw9bXRDYFWUQXlWxEtG4ORwrckUaDkzVGnDSURdG9mkXNpk1Ec8QsRBO4JEX4L/VFpk35RJ9LakTgt8xFKdZERTsi4UQNRENERJBARBzYZkUJLXdE8QoGRS138EQb/bRE6be5RI97iESO0KxE4QFrRLLmEUf5gRxFSM9IRIRHjURrBK5Eum9rRo3gdkRiihdGf4DDRAYrXEQV/TxF/DKDRbxUkkQh20NEpf6oRGpvHUYWd0hEtPuQRf7OP0WTbD9EotrBRMcWYkTJgUNEv5+9RK++9kSIQiVFS/ozRL8gD0WRXVhEpi63RINAc0SPjARFZ8xGRO53cEQkIFZETdYBRZ6qj0Qezy5GH4PgRXUNnkWyUYpFyV6fRIcOE0VExZREDNKDRKh3XET7KL9EhXhxRQvkbEQ2WAxFDd8GRjoPnkVRRzVFD+qSRLrsM0QUKxJGyKrKRS03TkUYkgNFpKxrRJtMZUWhsrJE + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 1Rx7wCbBckA42F2Pb8FyQB3IVAHJwXJAk1nJaU/CckAxMv1G5cJyQNG76yw7w3JACnhINMXEckCoRoZUWsVyQAhZmbtD0nJARfwLInfTckCjLP/9zd9yQGZaKBu54HJAMhwayE7hckAYB1gnUOJyQPvIIZOP4nJASm2zByXjckAjy9lnu+NyQH4w8xBU8HJAiivVSsrxckASqPTH6PFyQFCKLyHN8nJAL3BMLefyckBk/Nz6t/NyQBY+AtQO9HJAzvpEiqH0ckCpkgrQwP9yQBBfqmZiAHNAQhLCV/cAc0CemqT1iQFzQNBPUAM5AnNACjoSINECc0AcAJ/Z+gNzQBnolxikCnNAJ4E2bwoSc0BwbnN3ixJzQBj7YX68EnNA2C+RRfkTc0ArK9tFTBRzQF8/lal4H3NADMePbrYfc0DuTDxmDiBzQA1WL3elIHNA3iV7bDkhc0B4nn/GYSFzQFpXIzZ5InNAJbRPO8cic0AeghZsAyRzQLibPFM7JHNAxub1cc0kc0BUVCs9RjFzQEuBL9QiMnNARE5jJc4yc0AidSHbDTNzQArvAqGiM3NAWsVpcNwzc0DCXO56NjRzQHzRxZPbNHNAfJlNIro/c0CGYi9M40BzQHOJpjl4QXNA9pehrSZCc0AzTxd1ukJzQOLpfhB6RHNAlNcvFJpRc0AiVbYZvFJzQJ+B2qFAU3NAPDW/GqNTc0AL0e+mhlRzQLASCir3X3NAOiOFpItgc0CAvzw9imFzQHgbmbmnYXNA7ACOqhpic0Cif3I7OGNzQKGsDQ+vY3NAuJepbM1jc0DHw+c2SXFzQILhvyjdcXNAxN1XR2hyc0De+HkzTXVzQC7Jggx5gHNAmVe176SAc0AilWSuDoFzQD9jkyBdgnNA4DyfzKeCc0AIG9rhAINzQIAk61YNhHNAInsQhYeQc0D+L9vJipFzQN0Vmq5NknNASlRFI7OSc0B+fR5OzZNzQAznBP5glHNAzLhuVPeUc0Dw3TQ7jJVzQPomuBW4oHNAd7gFbE2hc0CelUcesKFzQFrGPG5aonNAJrmjZ5Gic0DUXEOH5aJzQNjouIgmo3NAaWgOuAalc0C09Ayf2rBzQJngN4k2sXNA+nKbVn2xc0D51PErtrNzQOTUHqINtHNAVjkPLPjAc0C2O1ueDsFzQFetjkM2wnNAg+vNSNDCc0BKVC6LJcNzQD5A93DDw3NAuApTKdfRc0Ag/kaQvtJzQI7WIWtU03NAlH2VB/fTc0A9okRK4tRzQKmhwPqh4HNA2rT4uTjhc0AmMI2PZOFzQGzfyJF64nNAQE7FcA3jc0DKsGwupONzQN6Iqq7v5HNAm48H6NHxc0DSwLlTZvJzQPzUdxb/8nNA8pHTkDj0c0BS1ASTeAF0QIzO30ujAXRAGQAy+boCdEBc+wBDTRN0QDsPAZF1FHRAYARiz0wgdEApNtSStyF0QNJ17v38InRAgEGsrY4jdECcU5LyVjB0QOg47CHmMnRAGLGQjxczdECeLgon4Td0QBuMkY5rOHRAxjoypXxDdEAGrcr4pVJ0QEyBoW0AU3RAqMpR2fhUdED0mwOSjlV0QBjXIx8hXXRAyuoLRLhgdEC6RdwmCWJ0QM4u2i5NZHRAHCBZeiFwdEAwjVHey3B0QLrwcy1BcXRAMAlKW8xxdEB4HrUv9XF0QH5RG0UVcnRAaCRtPjpzdEA4mi4wDXR0QBzgcwqhdHRA1i92wzV1dEDezwGNRoB0QNENMFNngHRAzGuh5PiAdEAaECBQToF0QCQTX+hHgnRASua2vs6CdECSmZ6CKYN0QJS34QBGg3RAdgibCBaQdEBC/EMQuZJ0QPMFmefun3RAKprwLM+gdED+l11wfKJ0QFmTg4O4onRAr8D4ow+jdED+czy5CbB0QMoXxhPDsHRAruG8pW6ydEDYe1Kc+7J0QA3qmmMss3RAvEmXNsa3dEBWLGZq4b90QBH1xg3kwHRARMjw6BDBdEA4bt2EeMF0QJyWBoy7wnRA+Jxy8yPEdEDXGport8R0QHQebff9znRAMGJmisfSdEBwEyq1E9N0QJYWwHXh03RANfLHis3UdEAhdiMn+t90QDu+9DW44HRAYsia2CLhdEDe/k5uueF0QDgtleWO43RA/GEF6E3ldECCDHaVjPN0QGhz2ht29HRAPg5yD6YAdUA8H6VD0QB1QIhI57/oAHVAbAJsemMBdUBKjptR9AF1QLrJMjVdAnVA7k66xuQCdUCSCMxjmgN1QO68UTKYEHVAXBwXfSUUdUAlJigE7CB1QNo1XjudInVAJgCwReYidUDc07auzTV1QKTaAxrRQnVAHgvL8N5CdUCirWNC6091QI44OCyAUXVAGRaWsE1UdUDOHIbUdlV1QBsXgjQNYHVAF+0pkDdhdUDqOUPNzGF1QCPssGf1YXVA9KPOmmljdUC2lfvyhWV1QBnCxvF1cnVAilGVgCZ0dUB6dpygjXR1QJ6gM6l5gXVA+lZ5oK2BdUDUdmAMu4J1QKbnKdBQg3VAhNNNAKaDdUAw6eXpE4R1QHThIBOchHVAOE0ZZI2QdUDoQvEal5F1QCGM6YK6kXVAV4QiuaeSdUBku9AOlaB1QKYjge65oXVAxb3wIEqjdUDc71a+o6h1QAwY6LlVq3VAQ/dy6PytdUCuGpsE6LJ1QC6P0QHFtHVAes2bA2HBdUDm7UXN+sF1QDAJLimmwnVAqcBucszTdUC8LZGwD+F1QAmJBbwF4nVAiiETOTvldUA/s0kcTu11QNflYEEb+HVARJwbUUj7dUCyhm3ARwJ2QDRDoLvOA3ZAEluJZUwUdkBKL/fgDBZ2QIZgpYMPIXZAGg2fDIkidkDKrGyaEiN2QKq9X3A7JHZA21pGHJAkdkDtjrPUSit2QOwjQXcfMXZA4sG4a5QydkDH5I0sUzN2QFPjrORMQHZA6NBt1+FAdkBueDHVHEF2QJLlbmHNQnZAKlzi03lEdkD92jKnxlB2QCKnJsoSUXZAK03J5cxUdkDaTxHUjWB2QC7Y9tMfYXZAJvHsMNxhdkC5Uw0wJmR2QByjQyrbZHZA3MQiOlRodkDOKptOfHN2QN3MEwv7gXZAdg46+z+CdkAf1F1paYJ2QCv55+mQg3ZAliCMWw6LdkBkK19k5JJ2QFJcg/R1k3ZA3mxgkLqTdkDokqkoEKF2QBpdwXK5sHZAtnmQBcGydkDWtBYfDbR2QPwWbmmutHZA3+Rw9YW/dkArwhd+dMB2QFwzbHnAwHZA/FbcXkzBdkCI7FnDGcR2QOwxM/vNznZAdSFm+33QdkBqjPkd9uF2QNy42ceR83ZAoA9cNUz2dkD4xvUGNQJ3QDBROalPA3dAf+UYYEMLd0COZiN4ARJ3QJ56VDkOIndAeoJ9GOond0C76qXrojN3QERYdTYNNXdAoy/ils5Ad0DWD6cAnUF3QMt5ZdiSQ3dATO6PxCdEd0BCr7QGG0V3QDi5n/QGUHdAWLcDPEpRd0BWeYCCklF3QBTEiPUrVXdAX5jOW3xfd0A0ovdPj2F3QIi5SZ7pYXdAnCvIBahjd0BrRQ/eJm93QDiJWCU/cXdADWG6Bp9yd0Bhw7MjknR3QFnh2Xf5d3dAUvjJXEh9d0DKQUeubYB3QFbQtNB6gndAWSFB15+Cd0D4Ki+5CZJ3QM6Ax1JNlHdAyQ/xCNiid0BmBMvEL6N3QA7h/m/m0HdAMquZolDyd0CcySHHRv13QDRQok6fAnhArpTV1PsHeEDLt3viQg14QOZq5OicEnhAwX3Eq04VeEBhoCXibSJ4QBSvBOmHI3hAyERa440teEAg7+nRC0J4QMoL/nW3Q3hAy8wXDhFEeEApmxCQeUV4QEnsmATLUXhACgBfUopVeEDI5Ibr+GB4QOM1HxS3YXhAHmNPZFZyeEAlkA4ZGnR4QGh0xqCLdHhAzKnz3690eEBwvj9e93t4QNt6/1ykgXhADs/uS2eCeECZo0eb34N4QICwfj7/g3hAWzZ82pmEeEBC7BKYvYR4QJoKzydPiHhARDDg1OGLeEBPL+TXBIx4QDRiXD+qjXhA0w8iK5eReEB82UbDuZF4QDhQHvIDk3hA6oOB76eUeEDugxvnUJh4QPq2QKxZo3hAZRtaGr2jeECwgt3EN614QFYYAx2XsnhASgoZsNazeEDwcZXMzsB4QCKLlycXw3hAjngliQfFeEDFWzwKHst4QHYXDC0Q03hASq7UIiTTeEDWTkd+uNR4QGhRaDjW2HhAfFEExqLieEDsImcqZuN4QLC4t+uI43hAomnyn/7neEBgKM2QcPN4QHCvnAwD9HhAdQdeLYz1eECc1EGiWgN5QCA/G1KcBXlAsiLdgKQTeUDU49/p0xN5QN/ftn7hG3lADFyvwL0jeUD0r94vsSh5QG5HcsUKLnlAV47iB6o7eUCJPp20+0N5QMz5qCXLVHlAlgZrdelgeUDEC0yQ2WR5QFtJYjxDc3lAnvO059qAeUBZs2yV94F5QB5oWZY6j3lAbYHiIxuheUBgNZ2IsKJ5QIrNICrBsnlA5G5O0M/CeUA/sJipQ9R5QJ6hkfj+1HlAXZ7QnMzVeUDC6huLT+R5QCpLsSMM5XlAWHKSar/yeUDg/qvQDvR5QLVhEcb7AnpAdtt/8P4DekD3OyPU+AV6QNCRa7UrM3pAcAsdqww1ekCDp5dyLjd6QOr09jczO3pAwMWRqDQ/ekDI4ZtTGkV6QEZ6ETvgUnpA0H0S+ydVekBEH3R8IVx6QGTB0nQpZHpA7J7pnCRzekBtgQEuJ3d6QMAL9F0re3pAkutt0sSAekCZk2n+1pN6QLYZoffcm3pAb5n3MB6jekDWjlDhDbN6QBRvq1ANtnpAQy7c5g+3ekB+hmecELt6QL7xnzwRv3pAw2al+ifDekD6/dAsv8N6QPR/AJ4axnpAqUIN3g/HekDhlCRKxst6QC8QN8FAznpA2gGWZcrTekCeUDdGAdx6QB6IIptl4XpAsi37DjrkekByGb5ZN+56QBT74cEW8XpAWm8c4F3xekDh+/T+ewR7QNDY1fApDntA7Sr+kYgUe0AbXge0TBV7QNrxJpQhH3tArYbFW9Aje0Dg/Uj1WSV7QJgqTIG7K3tADzfh23oue0CCUJozVTB7QD0VuvrCM3tAIMPjTmQ8e0DNljf9W0B7QCE0ewpcUntAQpJgtl9je0CGAnBU7JB7QNvt5E0jlXtA2AYpo1Wee0CQYiIdsqN7QKBkZ7IDp3tAfEkr4Aare0ADm01A6MR7QFI1leF6xntAyHknzMfRe0AiGj2aMNN7QLJ4Oin943tAprLMeybke0BeQfef4/B7QPBfsyqM9XtArImsa2z+e0AHTqFW2QF8QKRpU8W2AnxAQBDBMQcEfEBwi5mUZgR8QM4tL86ZBXxAZwfxWxYIfEA2/z5viBF8QAJtWEXQEXxAGBdc0/4jfEA+6NcjVCl8QCSSdqyzLnxAwCp8isxBfEAX6/pua1N8QC7C1454W3xAnPUAfwtifECbjTpSaG98QMioSpRIg3xASqpAIq2EfEBOUF5Cwo18QIxe4lAck3xAXG4XrniYfEDa3XTqWpl8QEDZkn3HnXxAapfIrEuefEASgyCM/KR8QDoH0dnAsnxAwIgrI++zfEB3apRcerR8QPB+SbYPtnxAsPFAv4TEfECGuFvqy9V8QGR9rmH123xAEl7vKVjifED0KcGpDeN8QM6SynMV8nxAX+Gx8FXyfEB5C/8yhv18QFYpyllQAX1A+wKDxQECfUC4gP7PSwJ9QDCtZi8AEn1AkkV32EQSfUCmvsNC/hN9QBD7ogtVGX1Afc1pNj0ifUCESYjlojF9QNqA9TYiNH1AdYWM4Ss4fUAU9+diMHt9QBRRZvqUjX1AfB5wx1STfUDi0d/PJJR9QCrD+kxhm31AgGyxR+fEfUBdTNGA9dR9QII9iC/T4n1AXIrTvpH1fUCuL0TlNAB+QHiaULEyDH5A4uHl5EQQfkBo2yRoPh9+QA6QkEYjIH5A0EUFf7kqfkDwdyLgPi9+QJLw7i86MH5AMmTTGng0fkDg6w25CDt+QDJKtTQPQH5A9t/QL6REfkCEYiuR1ER+QLs9EuRSU35ALB/UyYtVfkBIFXx7W1t+QPbibUH7bn5Ampuxw090fkDoEBgnHnp+QALpc1u3e35A2ABMzVV8fkDvcIv0sYB+QA95m0llhX5AcFv1UZyUfkCet1bk95l+QDFZUmuRpH5AOJkqomGsfkB3pmM4kLB+QIzb6dfPsH5Ars4QmWq0fkAQV9GQobR+QIJcL6P2tn5AMCAmvGbDfkCKDGtO08R+QID5UD8Myn5A5vblCG3LfkBUbXGhBtF+QOg/hCJa035A7OkMqHvTfkAW7ly3ZNt+QB5VupNP9H5AfiQh0qj5fkAkjj4Yy/x+QHasAgbU/35AqHj34TwTf0AjG4pyOxl/QI+JRy2tU39Apn4aobdbf0AcCAn5t3F/QEBOmWHndH9AsvcES6mBf0CGDhuTEIl/QD47o1Rkj39AwPXriWKRf0A2mgojq5F/QPw3xs+Xk39A9it7FV2hf0D+txClVrF/QMbG6rYAv39AdeLVnUfSf0BShX8hNe9/QJPX9jaJAYBATP7ygSIFgEDBIqhe0gWAQDH0vBd7BoBAevo/94kJgEDSXPxydwqAQEwrtKd9DIBAJ/bPjbkNgEB7BnZ0ew6AQPZ6sVfPD4BAdq0nlboRgEDd3h0yBR2AQHi2Jsu6I4BAEM/ZweQvgEAn7885hzKAQAAo1F8dN4BA0vuMQ/k4gEDjwe8GyTmAQOuTw7YQOoBAEEOihRw6gEBoahdWdjyAQNpHIWwkP4BA9Feu86hCgEDuqOsH7kiAQPhjtzauSoBAOKkhdeZQgEAoxduWFFGAQGKAFdemVYBAdrsBtidYgEAH0njmDVmAQHImdTQhWYBATt20GKhZgEC4H5Qz3VmAQM52KakJWoBA2DbXKOJdgEAQHJo3D16AQOZfFX40XoBA3wcOAgphgEDmJTnUwmGAQDJ+D8gQYoBAqeOXZnBkgEBEwTOtHWeAQPKTA1TZZ4BAysURN05qgEAka7sP/GyAQEy4w8fwbYBAVjCzCAFugEBexC93KW+AQDBm/KAsd4BA9sC5sK19gECsU5F0/X6AQGCi3aWSgoBAFlc7PoiNgEAQ4j56HY+AQJbeJm0+koBAyFlayx6XgECQGvbQHpuAQIN0GZjMnYBAa3xpcNeegEAUlW8FHJ+AQITyzdjSoYBAGXw0bAekgECBbNQ6haWAQAxhG8VHpoBArEHnst+mgEB+px0chqmAQKRXoFTjqYBAnApNcDmqgEBUXStcE6+AQP6sN9Gor4BAqpLO+SuxgECiQHr82rGAQAjy9pGRsoBAZXVi1c60gEDC7Qs4m7qAQIqYh+dLu4BATLX7jY28gEAvsWspxLyAQFxwP1tCvoBA5rN2OO++gEAOSNuRUsGAQCh9X0xywYBABfFMCJ/CgEBXvhvG6saAQGoR2eggyYBAWLUJcFPJgEDatfnYhsmAQJ7PxUfVyYBAcJ2M86fKgEB84UlAS8uAQO8fBTaDzYBAThBgHQjPgEBEQ0LuU8+AQNNz2RNx0IBAVqWonkzRgEAFrGLRX9GAQCBXdwJe1oBAQGYbt2bYgEDzEzyDStmAQHCzCI1u4IBA/Bqe7kThgEC6yD/VXeiAQChGyAT26IBAKA9btUrvgEB+B8ZlZPCAQLTtiJLO8YBA4M3ucD3zgECgbrD0P/+AQMBJAAhBB4FALyDkkz0PgUAwAE1yzhmBQME2PmSmGoFAln99jzQfgUCv0O/+sh+BQLmssRg3J4FARfff7LcngUApGHpFGimBQAusKp/oLoFAonH6fy8vgUBOoyMeQi+BQFoT/G+9MYFAsojBt3QygUA0d3Z6VTOBQJbhujaAM4FAeAV+yXo6gUC8Ou48Sj6BQAgJPqkpP4FA6MYyIP5JgUCUbEyA5lmBQJpHBKmyZoFAZnwKy7ZqgUAG4MEY4WyBQHxuJ9/ZbYFANCmlOt1xgUA64vC4wnSBQLZzOwdvd4FA8MDx1px4gUBIhH1GNXmBQAwVkqgbeoFACEYxWct8gUDoDpSc932BQO5uoIoAgoFAYCTEaxuCgUCR6/KvnoOBQCoxgIKchYFAofHfdQWNgUDOhBCdVY+BQHgs3fSIj4FAXsqfTz6RgUCgOebu8ZGBQKZf0LNqkoFABCLQk0iTgUDm6xAljJOBQAA9qRLhlIFArhma8zeWgUBiznxDV5eBQABFMfl1nIFAw3jJ9J2cgUBmPu59SJ+BQCAf+dvnoYFAfXJzwfqhgUAsUx0osqKBQGrGTLnfooFAWE41OWKkgUBVcK4qpaSBQHLk0xrcpoFAoyuUi22ogUCzwwXg8KmBQOrRvNLSrYFAA947AxKugUAacCQeVK6BQMX9I7ovr4FAZRF1f0qvgUAadIqQ1bGBQPikb2RLt4FAagDIZQXKgUC0LeksssyBQFkuzZNfz4FA3M9ZDLPTgUCK3wy8W9SBQLbC+KnD+YFA9SL07ez5gUC8gj5w8P2BQIKG5ZnmAYJAMlJqPdgGgkCeQHGLAQmCQIaVtt7NCYJAZ0D1dmATgkB/n9ul2BiCQBr83lkEGoJAzBvUESgagkDyHxHhDR6CQDHsKCQhHoJAUryMEFcegkCzJ5bu1iCCQP4S7g7WIoJAADaNK9EogkBx6myJOSmCQDBu1yaeKoJAyxpqVKEugkCKSaozojCCQOZwdOWjN4JA+fKYwVo+gkCaFWcHrz+CQEwjn3wEQYJAQnjnMyJBgkDOV2KBWUKCQPTikyAJRoJAMxFTmndMgkCl6tvXFU6CQBUjs7nWToJAkjXiX9RSgkDE8Y5sdViCQL7D0FwSWoJAXCR5N9VagkDh1k3inVuCQNQfJO1tXIJAdPXWkjldgkBsyrQpCV6CQPwJJRGtX4JAN2vKYjRigkAYgMLKXmKCQLZza7Q2ZoJA5G2aH5hngkAydd2orWeCQIswB3ttaIJAf7JDwjhpgkB0NminCWqCQJfAMojXaoJAOtC+ORFygkCgtoXRbXKCQBDZVB7YcoJA9rY9cjp1gkDCpGuocnaCQH5kmzTUdoJALmMspRF6gkBxcI21oHuCQN8OtlBrfIJAGokIpHeAgkCvuntuxYGCQETPAGNDiYJABJ6cUaKPgkCuYTdRRJGCQLI42P06lIJAVuIqS0GVgkDs7RiGxZaCQGaDzIg9mYJAvKJNs1WZgkC63KG3A5qCQJN+KkZMnYJAdGLPrg6hgkBWE1pTO6GCQNxkpyf7oYJA6GY/1POlgkCnvOoRDqmCQGp6hkI0qYJAkp6oIfepgkB6Hiugea6CQO7XNKkJsYJA4MtwBTaxgkCQ8nM/AbSCQF4xLdrsxYJA4qEQCNzGgkAK8A/w8MmCQILsDXv0zYJAChe9sn7agkCMLCVvEd6CQNbYY0iC3oJAHjcklijwgkBQC5MOXPKCQBwHjE4J9YJAajskGq75gkDkAy5bwv2CQDIh1RBf/4JAnsPoUMMBg0AgCJkYuguDQHflj6qlDYNAozkmnHkRg0BcCzFOehmDQI5rqT5zIYNA/ImeUnIpg0CKPJVhajGDQI5DWxogNoNAdcN8tB05g0CSX2EtcDmDQJzp29T7Q4NAfg25Uc9Fg0CeVNHmUlGDQDSEkIWLb4NARkUyrxtyg0ALyT68j3SDQBGLo6lodYNA+gtrZcR6g0AuJ+yWxIGDQDxaI+vegYNA6OEAXsiFg0A4EyhhWomDQNqSEqrPiYNAu6Km/8KNg0DqJ24D9Y6DQGANRi62j4NA2GvqWj+Zg0CSMw74Ip2DQMSf+in4qYNA5b3sp/2qg0BWX1WF6K2DQGrLkmPpsYNAWDT8zg+yg0CI3Az46LWDQPK+w5MXtoNA12pPFAW9g0Amb3N7y9yDQC0j8HhT3oNAnoQz23ffg0CZxqzuJOKDQBlVx1pX4oNATHoKZqnmg0C0Nw3USu6DQGnPlbKd94NA7lLbvJb4g0CMpJwrPvqDQDMVbnFBEoRAc0Nt2OAahEDmgGPtuR6EQMgCpaVKOYRAkHQj7tBBhEB4BITL1EWEQKbUveguYoRAPEj17EJihECX4JML+WSEQIWVkpzMZYRA1AMv5qNnhECwpZ3N/2iEQDxxGLz+cIRAnLEaRU1yhEAxi2YuJHOEQNJKpk0WdIRADI9Qfsp3hEDAXDxZ+XiEQFrcSqteeoRApZcMqHh6hEAgJZ9UCH2EQBM8pgklfYRAkkmt/LN/hEAiswJV1H+EQM7Ar2D0gIRAuNkSflqBhEAQ3PRDX4KEQB9VSJx4goRAdJHwEQuFhEDK629jvIeEQHz+JkdbioRAGYS5dAichEDXmBaNcaKEQGVF+fG8p4RAlMyXrEyyhEAg3KhDcsKEQKnDBKMcxYRAoExlM3DHhEA+vMJcz8eEQJ6/XqZ0z4RAzBnpDmfShEBGOmOlHdOEQNvH7AZq2YRASOgM0xbahEBdAoHpauGEQIAEL/Ni6YRAJ7m6FSzshEAivvKnNfGEQJg4HPhi8YRACKLxI332hEC/6niR3feEQI+L+So3+YRAfopRhlr5hEBFP+NOh/qEQEhC6p41/YRAoXliwuH/hEAwFFGeLQGFQCA+GwcJB4VAmcBEyEYUhUA4H66gPBWFQLv0HIP5FoVADLOiP3IXhUCrIYufohqFQCDPdR37GoVASluHCT8chUBuOrZ1Ah+FQBK5sHR2UoVAFIabqqBhhUAAW2bO2mGFQFDqGJ/kZYVAKXtki0xmhUCDcTq8oGmFQDjrq4tRaoVAdOebEJlxhUASJWyqsHKFQA6p/QW0c4VA3Zb7l7Z2hUDkOW7ImnmFQCop22SQgYVAPwZh4nyahUDOIiJyq56FQJrmS+VAroVAGVtsREOyhUCQ5thbRraFQMBvn+BGuoVAmgmF9CLChUByVlCGBMqFQIz8YS8oyoVAUIHgLgnOhUBOVVB8zeKFQGK/m1Fo5IVAvBQRcgLmhUBIXnaWneeFQMajcomH+4VALiX4AR09hkB4CDElJrmGQK5o/BEiwYZABHChVtDEhkCw3RyBkcWGQIbvNnTKxoZAYMtd/8nIhkA2AXo6w8qGQCadMXXOzIZAeCCTRvLqhkCgAtHhevyGQBb/3Q4sE4dAqee7FZEph0AuWgNNkzGHQMb/YY6LOYdAJQ/agZ8+h0CS6p5NW0GHQHpRACCKQYdAXBswrKNCh0A1wVVdp0aHQArrO2rfUodA1Iq0+Rlrh0CCL0evHaOHQIgjgfEmq4dAsLSmOcexh0BCygO0xrmHQEcErhvAwYdA0jrltr3Jh0Dcnq95suKHQHJMlnd+M4hA+3cOCaZOiECiN55TqVKIQJR1OlSsVohArO/93x1giECU/ZdQDLuIQHKyPz4Uw4hAMLbpQJX+iEA= + KBZXds7jZUDiYBUjzERuQDeULWxqYnBAVeXpVsLyc0CYcdKIFDN3QEOj6bMwI3tAvzIaAMNDf0A0spiV75mBQPP5sLs4qoNAyJI80UaihUDq2DDqb0KHQHkBj9+bColAXHPgDJ6qiUAKBhB43cKLQFyizjZKM41A - + - NAyURFb/3EVY8F9FHUOuRE/MwEQerydF0j9ERGwXgERv5gxHISl1RBu96UQnnwhFmcGJRM9ddEV0ErtF6L5MRAmgJET9owZFQglURTKzbUSzhkNE9myBRJRkZES75l1Eqo7bRB5rgUQ9AE5EtZeeRGTzSES2HqtECYDPRJbIDUefaWBEIdNYRB/iWET8275FCmp3RfVycURruhVFBOktRDfXMURsWapEaWufRn67V0RA1j5ENAiuRFANP0TJfUJEIddZRSkos0QGLTZED/laROhUkUTkF5REj1JaRB+ooUQvfyREA0vnRNiWn0SKVV5FSc5bRDB7rUTFvwNG3I4MRYOLK0QHgbFEzkOVRV9fjURAsJBEjQ+8ROnXW0TaOSlEf2pFREz0DEUhG1REJ6I+RKBGPETMRJJEFWcCRfXKxEQJbsJGexyIRKrmAUWYY7BFvBCbROFyYEXFEHZEhYS7RBkLgURZujRHaS48RIkqdkQo0lJEOFk6RrdUPERGPKRFwmRCRE/vLETd3rxFPWdSRJqTL0R98F9ELhr+RJ0qj0R52pdEFU5WRMwpOUVu4RFFqZDIRJxtTETrCy5EF/x/RXyk9ERIpEBErET5RN1iNkT9lCxETHydRMdvgUW6S6lEG2MCRolB70SkfuhEpAmGROiQh0QbKWpETYpaRAdmSkR4EzFERsqMRNzwUkaCeU1EIA2cRGRVWkUiqGNEEM6NRBrksERbC3REH5U3RO9XikSnTmZEAq2fRM7kPkWrxV5Eix6gRIR5TUTlgDpEht6KRKeaVUS0OndFSDSZRfb19EXvQrJEiNqdRZtkN0QvgkBHlzIQRM/KgkSmckNERnrnRAlEWERNUaVEjEJlRPeIPkRVrpVEB0sURabIt0W6B4tE2FJoRPlScUSv9DpELYW+RffeKkQB1mhFtNEaRT1UFUUU/YdEDU06RaOn20S8NatE66eqRU/on0SpTJBEv3LhREZ2HUSpIrpEAhsvRJNpp0RuS3BEKBhTRKye90S6S1hEPDEaRDsFRURhxadEZ/HHRBfzOkTfLzZEYBpIRGYMrkRxj6NEsiRaRMqRxUVeUkdEl8WoRB+HM0QF9ydEjGCvRP8KLkTym9NF1dN+RIFnjkRys6xENXrfRPSKBEW4vhhGaGJ9RIaqCEVXF2NEZQWORLiuZkTBN4pES85QREO2t0SigtdEeLjVRLk9YUQ5JZlEbb5MRHCbR0Rjld1EfNyuRBCVIEZxqqtEimSXRaCCXkQVQG5Ey3pJRZ+QMESwDbJEHt6yRAuVJEQh4jVEE7JBRG4KhETk6YxEU+3PRVkNPEUL/ZhEwEl0RFn0L0SJyjhEgG24RIWIXES/ZkhFTrJHRCK0Y0RkMeBEfYyTRE2IWETasjhE+T1vRI//l0WDDsREpz88RLZhkETMvCVEz85cRQsFQ0TH01REaLTLRc84gUVG3cxGbfo7RBA7kkSdozhEmZEyRMgegkWt8oJE6ApIRWWrKkT6DlpF4ddQRtG5UURJvKNE9L99RBTdKUQyXypF5dlkRDQTCEXIRhhEdketRH7wVES25fVE/kgoRNSLI0SJvnBErPrDRE3FvkSOUV5EdckPRUJaSEWj6YNEIxYhRKiobUSuRZFEbEViRPpcRkTJJUFF0bYnRBmzVkQpwpBE2KleRMRPvESTmVlEkH9FRNkUlEYABVxFP/suRawBwER+Id5HpxlSRH9ioEbyoyBFmWWURKp9o0ZeIQFGQwl6Rc5uYUY1j51EWJ6CRMUPDUX5xuhE+R+9RBImIUWy23dEzrdgRiNfNkTrwlpFwJ8jRDCwOETj62tEQL6oRPwhVkRLBHREl7orRME7o0SoqE1E/nSGRAXmOkffb6BGSwuRRYihoUROS5VEn29ORJ5gz0TCRINEGA5DRFLNvkThV0FEYlAmRXeECUbcxGVFxPHIREz2A0U46y5FMG2fReUEmkSVBTdJziqZRTEhQEdN/VRFoENnRHfStESJpkVGNRg8SNTIbEQEPr5G21w2RAgeJkXk/RJGiM1DRS/TOUSJ6YBFJvydRnw1j0T7yRhEbeMUReZkakRnMmVE8/huRBNjskQA2nFH2J0yRCnFlkbUOXBFQShpRRHd80RCrB1FZs3+RBz6N0Sh2zJEeAp+RDWQbERoMH1FSCSYRQPxL0QU8p1ELxFcRI5OXUXjtX5EpLiAROQWlUUzEepEfVkhRIQtn0QdJGxFklBdREtaZ0QHRbBEMPy/RDPjSkQpryVENhaQROxlFETuGllFCq5bRPlVwkXBTxtHCHbpRH2ezUROf+tFAjZiRFqoo0RYZkpEuN6tRCduqkTCSXtG8Hm1R0UoJ0ZzqrBFu1QARRhBrkZJ/T1EvPMjRV5Dg0UOaeNE5M/ZRGBsXkTWDpJEHNk7RIXRtkTmcUhERmoSRY9sVkVKs5xFln5AReevHkQRbjtEf1s5RLFzzEY6NrxEcssuRKfOAEaaZ4xE4S6IRDJsOURbMeZEv4dlRFfl3kTZAsxEMQeCRINWnEV69NdEziFAREUvJ0bpFjdEqZMjRPSuP0VTnr5ExqM7RI1SUESGvqhEuWwlRLp9GEQJ7V9E7ilNRCI5NUQYdrVE5qj2RMOqmESeqKhE1hWkROt+KUTjPYBEXwEyRbpBP0R/GHhE87dhRCnSqkSMQYdG3pqQRN0FJUZkO1JE1UgpRPGK40SntqtFgP0zRDClTUQ6wFZF45dmRS8fdESfEjNEs4yiRYNJ6ETe7lZE9ZqkRHfrRkRosatFgyxJRAXkGEaxmOVFPlqxRKFXgUTndF5EP5e8RC3mVUTFvppECdUZRdFke0WIsS9ENQQlRLMkV0R6ZLJEcIe6R5I54UTYBe9EyQXWRqooS0QKh7xEjHnsRK06i0ZAxTtEnDQoRZOChESEMVREEV1yRKrHXUQUuw9FowArRZbBDEWj5epEIRlERNj7dEUS7VhEsSGTRhwOgUV//ypEhsSeRAVNt0YosrdElKnlRPsoQUQ71ZxFGAWHRKhOrER9KTZEaXW6RGfg9kQZfXJEG8YqRBOGO0T8fh5FEhSERLcqmkQRj3FEnqTQRGW9T0RB3X5EGXiCRNaTJkSRY1tEUsd3RDYhjkRoC6pG25llRcGmYURzGcFE/VbNRAeWTUWX4zNEvIR9R9g76UT8KIBEKYTdRs2kf0Tzhb9FZjyMRW7hWkU/xI9EgYhqROChSUSo2T1EivBPRH9GTUTo8LFECrxGRJv6wEWo9VhEzGF0RAVIWUShaY5E7h35RRE6gES/UadEGcMzRd6//kR93ltEpZRaRGPEoEQ+m4NEXlYzROUpVERorlxExxkpRDK3GEUtRmlE72+JRLRGeEQ2e3BE2K9ZRKRAFUS0YlRE2JYmRHoTJkTsdGZHg2zmRFQ3LUeUsoBEqwteRKk7WUaFNn9FPtiVRanxykQOCVxEEBAMRRP7qUaoZBBFgyNURDFjnUXFQ79EA7zhRPrDZkUTkdRFddPLRFIZd0XeA4tEys2ARJKHMkV4R6ZEqJ4bRZYemUQoZGREneSTRCcCW0QOaD9E+ORQRIE0Q0XpnZNE8ImLRKM/fEQUPFdEiR65RGL/C0ZyT/hEfCE5RVpvaEQv2VdEo/VsROudmUQfshpEMOXeRA6ZNkSBqFxETPUhRHQpDUXGFpFEsUwmREgypkWg4wdFv0RURAj9kEQB/ZFEHOSXRLK8XkQajXhE/ldeRJioxURVxz5Ey8LORObSf0giesBE19LORao3xUStGBBFxI/yR3coZETYFYlEwbpSRDjLSUSxKitE35edRM4qSUTNdlhEhx+HR5K0X0ULM2ZEUVO8Rkd2S0a3bUNF+SerRQh0rEXXX45E7JTGRHo7bkRJqTpElHdKRHPcR0asT1ZFN19FRWL8pkQZWS5EM7TCRsXXqkQNuZJFc3d4RJDbTETQCmFEeH+/RO/ctUSWV81E5j+fRSITOURNPklE9afMRNjkSETkbLZFzJ5bROyZSURYdEFERcdWRK6eO0RKB8xEHjanRM2YW0Y5p/1FTPlARJ3YOUTt4aNFMkHTRDY7eEQMp3dElaU4RKrDakSu81tEyvedRCBQyEX8dSNEN5YrRLyMyURB7YJE27GmRCviXETDeotEkHPDRKtuCkXt/VVE4PSBRRfiLEWbLypFXarRRNVVWkTqUdNECkBPRHwNUEROkFdEtYjwRKJiTER7Iu9EJzcvROj4JUS53lVExjvqRczoJkQfJRdFHJXKRN/MF0W2N7NE7LdXRMlsTET6LqBE5O3GRp7OSEbTRVVFq1g4RMuSzUTQDjtE/8E+RGXTKUbk4SREzDWDRD83HkRgoDlEuo8sRL1Za0WFKWBEfpJTRcKiLUSsVfNExwjgRByugkQT+S9EmV1uRHz97UQpljxFMZK0RIbAZkRS4DlEugKIRDWiIERbDIFEw7PARH1SWEQKNp9EIeESRWYkiURpowRFVE0oRRRscEQFzIREZqaQRVqKP0TE+8lEIvZDRImKXETkVrlEImy+RJBmdURxX1hEo8y3ROzN10W8rcpE6u/pRCLSsEX/8LZEn5Q7RLLXhUQZ/ZxEw24uREHdkESH1kdIE6NcRG491UcHWUZE5wyDRFCFNkRvNFlHHSE3RU9OdkTb3U9ENHGNRbulfUagDlZE3QMkRWIu/kRbzo5FAAeTRLk5y0RNNZpEU5lmRLLdd0S1T1pFuc0vREOIAkUDKIhEYQ8IRRTJUEQq/KtEBt49RIXn30S+DnRES5JkRKYcFUXPYTVEA3yyRF6VS0T0o1hE8BMgSM1BoEciIjNH9UpARqDSjUVPk0pEFzBlRL7dQESpjDJEqhs2RJ0Bk0QRDS1E59I1RDvLU0RfXJVE83NJRGlE9kXHsppEF06nRWnSIUTt4alEuGniRKd8KUTt6VREVTuyRGasZUTCWBhFaPNoRLKddEU5JgpFmmPZRNgtfURuh+5E8R0wRAdi7kRZl/FEr2XlRNcKiESPLWhEJbokRJf6e0SwskpEiiieRLyUMkS3ZypE27toRPldIERHu41EqJ5ORDJES0SJDT1Enk4uRILWN0R71gVFpfhURE9Ps0U6jSBFZJZYRBQAWUStkWZEfgwsR/tmKUXVVJZFrEMQR9OlN0Y42HZGt0FdRkR7l0UjfjJExEaURIQG40VBAORElozYRNv1iESsAjxE/BQ0RGm00UQVTVNEqnLSRI5z9UR0VyVFR21mRDbCg0ROujNEyVuGRCYLtERNoExHHoOxRBoeskaFeltG6JCURIVhd0XwBo9FIv6PRaxU0UXwSs5EhEzkROrrrUWcyGFFLsqsRFUelETz1D9E8yJkRF0SUUTzaIxFGbmHRVK+0ERjHJBFVz9PRO7tRERc0p9EcLARR0Cz3EQUp3tEluqWRPBBg0Z8OJhEi2M5Rk40Q0VgrGhEfuzxRBMGkUX5iIlEswyNRAvGUUQYoQBG+f2gRTHY0URPwmZE5SDJROEJn0Q5c0JEptRuRJ+frUQvG0FF6yI0RYE9ZkVw9SBEPVQoRMQEqkRcJ2NEbws3ROKQUEROi09FvBmMRIIqd0S2CPhEvLA4RN3/NESv5eVEND04RvDjtkVKQXlFNgP1RH29u0TXGBJFYlKrRPNvXURhD3BE8NEaRY0QAUX9iz1Erp0MRmZaikW5wRdF/CSSRAjwQ0Qot0FEtCEjRkkv+EWlez9FqalQRKjCVUXa6ltEdey6RA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - yFgzUQLBckCppIjlbsFyQOIz/bPIwXJAkIO5703CckA4yN/P48JyQEI0+WMOw3JA3P+HjjnDckAKEztdpMNyQF6tozHHxHJAhh2MtVnFckAhRXBUENJyQEYtMZFD0nJAsrkSXjnTckC9u2WTZ9NyQKKwSm1103JA6ul1VwjUckB9Q+mCjd9yQAr1zDPO33JAr7gd6brgckBvdQcyTOFyQObqyUNQ4nJAzq0pVZDickDmWpAxVPByQGag74VP8XJAIW4wVcvxckBaz2wEnfJyQCBJVpO283JAj6v/PKL0ckDA+fj4wP9yQPy6CRhgAHNAbBKDXPkAc0CUDSftkAFzQEIsMAU7AnNAJgtpps8Cc0AXAcpH+gNzQHPR25GkCnNA1F7S1RwRc0BOeni+ChJzQFoqKnFqEnNA7HqYU3YSc0A4SamsvBJzQBoC7jwFFHNAktKUS04Uc0Dok+8keB9zQAXz3mcPIHNA4KBlxaIgc0AQLcLnOCFzQHq5Qk3kIXNA9joDCc0ic0DyWMi9AiRzQBkg8Ww6JHNAsPrVqM4kc0CNl6mXtTBzQBXADVVLMXNA5KEsl1wxc0BWSb6ODDNzQIcaHBygM3NA0/sQL9Uzc0CCKPyt+DNzQLhSkaI3NHNAregPh9s0c0DZZuTYuT9zQDp+hDMoQHNAN37fjuNAc0D60QUDeEFzQARA9u+8QnNAX1PDXnpEc0BKesuYm1FzQK4WPY8QUnNAbl1JQbdSc0CCkXg3pFNzQN4m/A/jU3NAqtjzYodUc0AreTwxClVzQI6hUvyKYHNAG9FKj4phc0DQpLBZp2FzQPo1gYAaYnNAFP2kJDljc0Dc2gmMzWNzQBjxr9PbcXNAGPF2SlFyc0AKfpG+Z3JzQCBdH622dHNAulf6/Ux1c0AQo0ymeIBzQBD2PfqigHNAEiQthw2Bc0AMhObjXIJzQFj/SsWognNAlkntWOWCc0B0AkP1AoNzQByXhf07g3NAHJcZAxCEc0DUvaAWWIhzQMc39raHkHNAUsvB0rmRc0DkmohL1ZFzQE0G8LcMknNAP56g60ySc0BE5L+K05JzQJAFicLNk3NA1hwJjWKUc0AqNiQq95RzQGoRooS4oHNAsI13j0qhc0DL8kcd5KFzQN523lANonNA5iCCEluic0CTigvBoKJzQL73yz/EonNAPiGtZQWlc0C0CvKW2rBzQHCJpLg0sXNAItSU8luyc0DKGD8vebJzQHT7CeoPs3NAkT4y9LWzc0An4JOhDbRzQGJXKA/5wHNArXBkic/Cc0AT24ehJsNzQOPnzbzFw3NAjM8ct9bRc0CIfJkKNNJzQDNCByC90nNAlDlCf93Sc0DeF+nbU9NzQNyoX/f103NACqxuauLUc0CsyxU/peBzQPz3MIU44XNALmMWtWPhc0DeIDbk5OFzQHTfo0J64nNAZM+a4RDjc0AyoCh7pONzQPnxwI055HNAVsOE1IXyc0ANe2tx/vJzQEz8GbU39HNAqFt6q1AAdECyYr8O4QB0QI7Rbet4AXRACFI+dykCdEAAcx31ugJ0QHqSw/6NEXRAutBtek0TdEDaOvWPTCB0QOpTDbcjIXRACwOb7FMwdEDg8Ox1uDJ0QNaFqOvlMnRAAgo+z/QydED4T79dHDN0QPzYS8DgN3RA5fG1LTs9dEDeXhI1U0B0QAxESwPIQXRA7DPSTqNCdECqLtacJ0N0QGt+fZd5Q3RARNMbR0lNdECE2d+gbE90QJSzRjHRUXRAqWRIvDxSdECw8Ap9YlR0QK34R/z2VHRAEF65MItVdEC0CEZpIF10QBSAR/+3YHRAck3Q+eJgdEBiLYgpCGJ0QBYLPOh7YnRAGvfSk+VidEDqfQkZEGR0QPRiIvxNZHRAXygMY8ZndEDSOy9vInB0QEV6+DsQcXRAo5tYBEFxdEBOX7bXEHJ0QKK2+qYKc3RADCiPqzhzdECfseZzOHV0QHr3eMxHgHRAnsE/eWWAdECZxgq/94B0QJrquwNOgXRAdrfluO2BdED/Ii5JR4J0QC8jMFzMgnRAfNS4wCWDdECch/WaFZB0QAQsoKFpkHRAsEBFS1OTdECORclCF590QPT9xrTvn3RAbnhkwaOgdEB+yqXp0KB0QOqpCTo5oXRA8KQIzEyhdEDar2SR/KF0QMo1gV16onRA0utAYrmidEB8v1+HEKN0QBREzVwKsHRAFvYB6MKwdEAA3UDpbrJ0QBR0OEv7snRAYKyWocq3dECSjajp2790QGJwJYThwHRAuDvP4AfBdEA1rJmMd8F0QNZ39azswXRAXvMm7wrCdECemYUsK8J0QJx1CotNw3RArdSzBiPEdEBCpCWKeMR0QPJKhL62xHRApODwPv7OdEAg89qC0tF0QNeAzzfh03RA+C0r13fUdEAo3Bb/ztR0QGlhHFi24HRAyGeZQyLhdEAc1DDSuOF0QMYDT8Fk4nRAyBFsbZLjdEBRLVZuwPB0QM4f2Ywz83RA53AaDY3zdEB9h07JpAB1QEv3Ld7NAHVA+GKC8WQBdUDEANEkXQJ1QJloYf/lAnVAmK9AR5sDdUBdZhcymRB1QPaTqnMjFHVAa47DLuQfdUBy3oxe7CB1QDBr2cpQInVAJu9Pb50idUCYwkMv6iJ1QK8awPxSMnVA3b35A6wydUBqiO1jzTV1QNpjB5/eQnVAjBB2aChDdUB6RBzJxUd1QHBJvuJxUXVAhUbf6oFRdUDJqrTcT1R1QLgRImd4VXVATmUQ6eJfdUDS8yg8OGF1QJw3GKzwYXVAUHvfkGVjdUDuN3d0d3J1QL72jOIldHVAfKGgFY10dUBxDXAveIF1QBwCyXKtgXVAebnwtKWDdUAu/SttmoR1QKpU2TGNkHVAxmpjp7mRdUBiD2G2tJN1QKokB1GToHVAQIWq9rehdUDVWu4jSaN1QAxBa0qiqHVAsMZFFQGudUBVdiSexrR1QAllDFvNwHVABGcasmTBdUDiRFLl+cF1QH7XutCkwnVAwgFYTOPfdUBtJh+wC+F1QF6mbhsG4nVAKJcl9zjldUAqpMljz/N1QALSH2FIAnZAJcFXftEDdkDYdWayTRR2QM7DSB0MFnZAs/BdXTghdkBIeSZViCJ2QAcsLv6PJHZA5Mh710ordkAOK3B3HzF2QG6ft0F7MnZAurvpcCczdkCGK4tRUTN2QCaIjASeNHZAPsOKcktAdkBIkjLBHUF2QDLd7GzKQnZAHfVmwhBDdkDSrUgqeUR2QAQPpJvLUHZAo9I5MhJRdkBEPAc5hlR2QDiu5bTMVHZAZpkfoFFjdkBkCp6e2mR2QNY+/J9WaHZABodTZnxzdkCEqsCja4J2QD7mVR6OgnZAO4o+/KOCdkABlWthkoN2QDhwYXONk3ZACGBlb7uTdkCsud8Y05d2QB5hqYAwoHZANhgUzKWhdkByIlg3t7B2QMDCxLS/snZA4J5RjAy0dkDy2bOqr7R2QFSA08bRvXZAnlPYnMDAdkDYnt0nGcR2QPzyt/QyxXZAsiRVOM7OdkBYcXrogNB2QAoj1y/04XZA4uEAgpLzdkDu0NgMMQJ3QEbA3cgAEndAUIk4jA4id0BjxlSFCyN3QAGSZv7nI3dAN3/7Eeknd0A0vfMZvCh3QIK3gFhCLXdAfNDAYqQzd0CG+Wd37TR3QGh36hgNNXdAD2UgLdFAd0AYjX3WnEF3QNfiRluuQXdA4s/29I9Dd0DMFSENG0V3QNQ0IL8GUHdAnofhFEtRd0BUTD1dkVF3QKQAjWsqVXdASJA6I31fd0BogF2MSWF3QEqnMg6OYXdAPoIKMuphd0BvuC6UN2J3QJ3QI9imY3dAfrJKWCdvd0CAiSV09G93QJL+HKuEcXdArM2aeaFyd0DNHav+j3R3QFz9OZH5d3dAeJcB2HWCd0BO6KwuCJJ3QP56kJhLlHdAh/RUG72id0ByujtjLqN3QBIcHdiatHdAVnaO0y3Dd0AhWnpj6uB3QEzWtDDa4XdAHQvmOe7wd0BrLeHiUPJ3QBEmuA19+HdAkG1ipUb9d0BmnSrC9gF4QFKiV7kjAnhAUG+zO6ACeEAC0dyB5Qd4QFjhLnT8B3hAbnM5H0INeEBsXg87Wg14QGItUN9MFXhAJVxho20ieECDXQo5PCN4QHV7h0ilJHhAfJSuG0AoeECZVUVoZS94QOQhEJQLQnhA5lG5Ub1DeED2ZmQLEUR4QH4MG9h5RXhAns4BO8tReEBjXi01clN4QC1WBBGHVXhABrGObvhgeEBxuqIjtmF4QIShThC4YnhAgUYrAmpjeEBgPOE1vnF4QO6Hk/hWcnhAhDjLffVzeEBscynJGHR4QHHMLsA9dHhAGp+iklB0eECziqG/Z3R4QMpGwnGLdHhAGrAkY6l0eEC+7DF6u3R4QHwyMIzydHhA9geGuRZ1eEAusmIZ93t4QGLKjRClgXhA7EFtMWOCeEDQZ9Uf3YN4QDyYLkj+g3hAShsmdZmEeEABpP9ut4R4QEROWBRPiHhA8GO7UAGMeECi6wwiqY14QD6EWLCWkXhAgnKRq/CSeEBwOC9ABZN4QODQhtBxk3hAzMO0g6eUeEAsNpNLvaN4QB67tNe1pHhAu7HUrzuteEB6Rji/4Ld4QDRTDNtAvXhAviVxCMzAeEDOtvvYFsN4QI7aZTAdy3hA7Yqozx3TeEBxFHAft9R4QEB3nd6h4nhAkt/EN/3neECKZJsbAfR4QEDyO5iL9XhAjXCuSH0DeUC1aFS4EwR5QFV/K/6ZBXlAQm73ZdQTeUCwE40Fsih5QAWODUoLLnlAjOaOLdgyeUDOW7kkYjN5QAW9ROS5M3lA8UBAAfxDeUA+pM2Ly1R5QJNGS+rYZHlAXblp+tmAeUDRmMPY9YF5QFK4pHbhn3lAdrebhjiieUDBDX1hwLJ5QGqmY1LRwnlAPKbhvbPDeUC594SB58N5QP7JOvpB1HlA3UXJqf7UeUDY5TySUNV5QFfQh7zK1XlAJaja8F7aeUBWTjXoU+R5QNXKb60L5XlA4ZKN1E/peUDAw3QVv/J5QCj4mZ37A3pANuoMzPsFekDyq7h8ZAt6QNgdm1ziC3pATlWo7SszekCmKsQYDDV6QObj3v8sN3pAUiphwS87ekA39gOuMT96QAp03AUaRXpAdscTqCZVekCcMD2JIFx6QH4vmwspZHpAuK5/AjptekC+w5+FJ3N6QCQxZm/Vk3pAcmieHaGUekBrL0gc25t6QLLVeJEeo3pARGg4wiOrekBXYdWIDbN6QMgE0P8MtnpAPHJzxxG3ekDkxybUFLt6QNJd8NxLu3pABJJk6b7DekDk/7cOGcZ6QJS0ZI7Fy3pAZlsSySHTekAvmNkLAdx6QCKJAflj4XpAR+YEdYDhekBGbniQ+uN6QM7q0PY75HpA/uNawX3kekDIi2m2Ne56QLEk/GYV8XpA22fM7F/xekAINl9nfAR7QNdOb7GKFHtAIAsrn0wVe0AEF6jMWiV7QB6nRp29K3tAg7vwQFkte0CoCZXpGy57QH1zapJRMHtAZr84vsAze0BAaOVntDR7QFm5VY1iPHtADDfx4F5Se0AFCC18UF17QLyirVTBXXtAgBfnRWdje0C6CQ9+I5V7QM6avQ5ZnntAX83Y+K6je0Amk6Z7K6V7QOcsDdl6xntAlJ++YL/Re0AyA+/iJNJ7QNxlCrQn5HtA7jYireTwe0BRYpQclvF7QPYOZzIC9HtA4o8eVoz1e0BsJ79Fb/57QJ4UGFyQAXxA7CDeNdsBfECt62vB+QF8QBkXwIG6AnxA3FRZsmYEfEAhZEeDmQV8QPgpMCkNCHxASk0C4Y0RfEDo8ONi0hF8QDsoCyX+I3xAbs60QI8kfEAUyqQKVil8QI448LWxLnxAS76RkctBfEBk7rhZ3FF8QHnxuPJrU3xA2guv0nFbfED8k09oA3N8QH01b0FIg3xAEicnbVCLfEByiuAnw418QGE2XbQdk3xA2rfvuWmYfEC+dNKBWZl8QIDiuFZKnnxA2MTu1Q6jfEAUFGbspqN8QFL3iMu/snxA0qwdi3m0fEBapWjY9bt8QFNy1quHxHxA8sVGO0fLfEByL8VDItN8QNdNA9Yl13xAloOnWfTbfEDIgyylV+J8QGLEI1oR43xASGdHxmzofEBasa3tdO18QJD/iAq37XxAD5q9nhfyfEAEJTSCVPJ8QBqOekIAAn1AIBowpUsCfUDqAarw2RB9QJbKIVtFEn1ALW7k0PgTfUDoOmtdVBl9QH4+XwU+In1APlwdP1cjfUCLgcMHoTF9QKy6fi5GOH1A3Ez+4qA9fUA4TqUCIHN9QKZwbMeMc31AgSWWMi57fUBvVwgbCnx9QMKc+rA0g31AyOe8XtiDfUDszqV/Jot9QJ1QKoGZjX1AhfAtFSOUfUD+oQ+0N6R9QKqoq49svn1AKttZgyrDfUC4QvmQ5sR9QCTa2H301H1A6sM2JNvifUCylrPRj/V9QNYAcSkR/31ANqhiqzQAfkBoZnhygwJ+QLImQi5DEH5AZTtx+E0RfkAfr3/GRRx+QFAcx+Q6H35A+dQA1iIgfkByIEtzsSB+QMRDbo49L35AvFdjmjs/fkD22tWiUlN+QO66UJzbU35APt4ovo1VfkAqIKOJN1l+QGGlFLAqWn5A2bJ9UFlbfkBNnxHE+lt+QEtev/XHXH5AlJgesNFsfkB25SY6rHJ+QAK58PxNdH5AZogmlKd0fkAsYUNWuHt+QFrZmf1bfH5Aws26/WOLfkBRVObzpYt+QEf3JmEjjn5AIjJEh+mQfkAAAl5CmJR+QDii8k5hl35ATHe6iySafkCxH8RwkaR+QBYNQ3rhqn5A+I2jsmGsfkCg/Di2Zq9+QIID3Ph3s35AAgn8Lmm0fkBZ6B3nnrR+QADrCY3StH5AkEusZWbDfkAC0WU10cR+QMDhDQpty35AGunicbnMfkC98M9oBM5+QKhXbkNa035A1tHJIXrTfkCQSv1sttR+QIrLCM1m235AaMB9YtLffkAc9bGr1O9+QNOOKhQSFH9AzAGZIIUpf0D/8leur0t/QJwiCZKzU39AuiACTJ5of0BwhT7OtnF/QP2lvVXmdH9APgZ2P7CBf0AWQwGLqoN/QIyDzCTag39ARTjwohOJf0D9QEi7aIt/QHKAoORikX9A1qTkuqqRf0Bg3FOqmZN/QE5ygW4yn39AJBT1p2Chf0BYRP2/UrF/QLiTHMTZvH9A6sCcjAO/f0AxbZltFsx/QB5TwNgmzn9ATWT4rZ7Of0CuliTg1tB/QOacp9M3739AQk3yb6rzf0Bc1l+1o/d/QN6oL3J4CoBA/fvzhrkNgEBKfp4HfA6AQLw24g8mD4BAjqE+pHkQgEA26ePwvBGAQJI+t7kXGYBAOovTF+4pgEDMkE+PETKAQHaFmxkdN4BAwSaBZAE5gEBmgBJhdTmAQOtzqImBOYBAnhdKBck5gECOm/X6cDqAQPByOWZ1PIBAFhOOPCE/gEBiFNpVzkGAQEmAPSipQoBAu5E8T/hIgEDA/bE0sEqAQGxM1cDnUIBAgAlEwBNRgECW8RUWplWAQEIPtU8mWIBAzWzCcg5ZgECK6FVlIVmAQNNbFgLdWYBAonZYPAlagEBFtD9HSVqAQAqxrISfXYBA5AcyMeBdgEAkeokuDV6AQHLCRHzCYYBAuutrVd5hgECLVCX4CmKAQMmH5QBwZIBAujOWQR1ngEBcprZqoWeAQPxsxIZOaoBAAsA7pyhvgECeczo+92+AQIpbYLKrfYBAbKPOiyZ/gEAAmLXfAI+AQEUKfycej4BA8Azuaj6SgEA2vxPSHJeAQLBrbP/bmYBA4dyzOROcgECrZ9sXzJ2AQIpZCocZn4BATtkMosykgECoENlDeqWAQIHeDWg4poBATgwa2oapgEB5WUp8x6mAQAhzHNcTr4BAHEjnBWWwgEDO1TVcKrGAQIBCni6HsYBA1CYEGJmygEDFFf+/FLeAQK0Rl62mt4BAbwUYlNC8gECUmdeRer2AQCaCBqY+voBAMo3B9PG+gECIuNtnUsGAQN7OzfeewoBAfI4RL4rFgEBCzWn4MMaAQISreBftxoBAjFhWB6jHgEBW35+2YciAQO58XlpTyYBA0LOlmKbKgEBmGniTB8yAQOR47h4zzIBAlgYgFgjPgECKsbFFqs+AQAoX7oot0YBAFV14o0zRgEAICJn9XdaAQIAGLIhm2IBAdP/tZErZgEB2pI3QbeCAQACOdXVE4YBATHy2/abngEBYPyh3XeiAQMBP+nz16IBAhszux8nsgEDYKHpTSe+AQOi+gLo884BAMRUsukb3gEDKxn6XVfiAQGWapDck/IBARrD61+L9gECbcIAbQP+AQI+kKKl4/4BAOg3exigCgUCuLprdAweBQF7AbyJAB4FA9ylA/D0PgUDTrdan0RKBQGB6uTAZFYFAbuG/4s4ZgUCM+SmSphqBQOAyuRDmG4FAidIG880dgUAG17aWNB+BQC5mSpWwH4FADZ7nTxAhgUBVrrfMNSeBQOWjX+K3J4FAeFXeNJYqgUC4811t7CqBQNL+hQ92K4FAQguvRTAvgUBiwp3cvTGBQETNiyh0MoFAmEj0Aq83gUCCFRJBeTqBQA43Kr4oP4FAiGOHwDpBgUDKQzIXpEOBQOpb9UEGSoFAjCiBcZJNgUAp1tp8906BQB6CFHVvUYFAsmPL5hhagUD4nOTbdV2BQELqIKfNXoFAWLhjpbFmgUDAWYXXtGqBQEgMEkSfbIFANKkNr+RsgUBU4LEnn22BQIaXXXPXbYFAetXAO9xxgUBub9ziDHSBQF4AtGjCdIFAzHe/LTt3gUC4G15QbneBQFjEX8QceoFAzDyAnu97gUDWp2bnyXyBQIok7tAtfoFA4NrhomB/gUCEERD2m4WBQEih+BDNh4FAIz6bgD6JgUAkT3qt8omBQCLmA9MVjYFAPatAZO2NgUB07Bv1VY+BQMef9IOjj4FAji+s3oqQgUAwDhZPDpKBQLQxBv1Hk4FAcMnS/IqTgUBMV/ceOJaBQCr91HZVl4FALrTlg4yXgUBIQF3g5JiBQGaDQRmdnIFANBUSREifgUCmJw6k5KGBQDkAlAb5oYFAxBgS0N+igUDSA3RHbaiBQBSvVHnSrYFAZ0lSU8eugUB5mr6mSa+BQKSpgxdrsIFA9mRecEq3gUDYb/GjBsqBQFB3xByxzIFA4CNNNVzPgUD0XDm8fdOBQBITzikw3IFAVI966ez5gUAUkVqYyvqBQJGu4bqT+4FAXhVYm+/9gUAw61VK3wGCQNCjKYD1AYJALodtu0gGgkCQ+e2KAQmCQJqw1Y6ZF4JAae5GZNgYgkA69UwyKhqCQN5axlMrHoJAWxZupdcggkA8BYaB1CKCQKSXpFqeKIJACKHSINIogkBwsDuqnyqCQAq7hQGkLoJAon2T0KQwgkCCUsOazzCCQGVaidEaM4JAjooU4kU1gkB8MGDFCTaCQJh0ZmJWPoJA9ZtfL+M+gkBwZvBtqz+CQAsG1ewNQIJAFTzN2QVBgkDeQqS1WUKCQNnX40gUToJAtvzdsdNOgkCh6ZoPnE+CQMUEm6g9UYJAG78cXwxSgkCQBk85O1WCQK+gwWEmWIJAxLSDCAFagkDqO/hV01qCQCVgxcnmWoJAhy5deJtbgkBs3vpPrVuCQHx+r011XIJA0HOdIAtegkAtO5AiNGKCQLeLYow/ZIJAOd/n9TdmgkBZpXpRcGiCQMgDRAtFaYJAbVM37vtpgkCgAl5rbnKCQLveyJmec4JA4mGCiXB0gkDKbFnzO3WCQLzRlD9xdoJAomEPjKN3gkDuMfKtnXiCQCQJUdR0eoJA3glPQeV+gkB6B0SQZYCCQG1E6WtuhIJA9X1PU82GgkDq+l47Q4mCQOQih9BDkYJA7klYy8WWgkBLNrDKPJmCQAcqBGRWmYJAHZBFtg6agkBXj63JDqGCQO4G4+86oYJAaC32u8uigkAY7jMRlKOCQJLGP/lNpYJAIFUDE/KlgkANOJjZCqmCQGnCZcM0qYJATFOwNfapgkBMoGTyba6CQHL9gg56roJACoVq2wexgkCgN2QbNbGCQNTLHTaWv4JAMv7R4+zFgkCyHfgH7cmCQHjiXQKDzIJAtJi1S/bNgkDmSeTpftqCQBo4ghOv3IJA5VhMhoHegkC6XNsOYOWCQHc6B/vK7YJAdhWQllzygkB4VIAvCvWCQKiE1N6u+YJAIJxTzmP6gkBLTEYswf2CQO7MiPBxAINAwp+5icMBg0BuO46pJgmDQD2Vgye8CYNARl+tXXkRg0BcBUIMehmDQP8K39jdG4NAb07CpXIhg0CnW4WiiiGDQOo0btWZI4NAgJoRVnIpg0CzyXHJyCuDQNeqDZhpMYNAoxgwoes2g0Da2oXsaDmDQGRXrM72Y4NAILyDgE5xg0A2avhK4nKDQMTkH/jEgYNAupN7neKBg0CA8HbjA4KDQCYIVRJKg4NAYHBJSsiFg0AmmgHyvomDQBnnTSrDjYNA18lf47iRg0B+w/IvPpmDQHsINgv3qYNAPF4oOeatg0AYNtD6E7KDQGDwnjgRtoNA+fIMaHW2g0C2XzBWydyDQMWQPRRT3oNAN0ZOv3Tfg0Bqbj9WJOKDQGLlD3pV4oNAQLebL73ig0Aqubs6kOiDQA4V5mXLB4RASgXETBIThEAoIHZ/IjuEQOAq41rRQYRACSLN7ERIhECeAuQRn1eEQHARi09vWYRA6EXLBv9ohEAYSuSbAHGEQEoPdnS3dYRA52mYbsp3hECFpyW293iEQHggUQ5SeYRAbuK/S3d6hEB8NrPlBX2EQAE14nwkfYRAy0Q25Y1/hEAB+ODDs3+EQBiTxdfRf4RAYoPY4cuAhEDLv+sfYYGEQB8Dm/djgoRAZlxbb36ChEAzTkePy4eEQM/Unaq8n4RAuyfUB0GihEA+lQEZcKKEQLCygCfQooRAXOG5QiClhEC7UN1+OaqEQHDD9D5wwoRAHDxSeh3FhEAD78lUyceEQLbISFt0yoRANUglLCHThECMRapFEdaEQBiFrEpq2YRAyzLTDBHahED9HEkXauGEQFXv5wdj6YRAoEpDBnbqhECB+TbMNfGEQIjQYghi8YRAR3VPRX32hED0fOIE3feEQJWpeYg0+YRAlFxfGFz5hEBw7PYBivqEQJq7BIs0/YRAWFBNFOP/hECT9DMjMQGFQLo+Dc7oFYVAviDrT/gWhUCLAuk/fxeFQAjG3dwOGYVA/sflvUoahUDABKKopxqFQL6emW77GoVAFpPlDfsehUBaeqo0bCGFQBymHL3TPYVA5oiHV3FZhUDSg1JooGGFQDw6wavdYYVAwKkMBuFlhUAzEEfZTGaFQJYMiHKkZoVAQrfmnKBphUD30QtgmHGFQGrVMPuxcoVA9qVkxbJzhUAmL4xCtnaFQMRHYp6ZeYVAzGjSvaWBhUD4ITP7RqqFQKIoyq1AroVA3i+uxkSyhUAimBmcR7aFQAUT2OxJuoVAArtfViDChUA8yoWxBcqFQJxalMUmyoVAIg2OY87ihUDLjn01ZeSFQGyyDdg45YVAp7Y/qQLmhUAunBjUmeeFQKgoWtc26YVA5nDttYsJhkDQ+WvJqiKGQPAllOqCdYZABgpfzbKahkC6dRlKJ7mGQCKopiojwYZA0j2plJvBhkBw20sTzsaGQMiqt/DMyIZAKNjH9jbJhkC2es37wcqGQEAAlS7QzoZAOjk2nR/RhkDMEax6j92GQAjEN8la7IZAnAoYeLgCh0Dwsi/WKhOHQBguppMwF4dAwm5db7och0AOHzSeeSKHQL3w7RORKYdA1CyqEpExh0Ds1Wf1OjmHQJRDKNWJOYdA2FdWFl5Bh0Cgd7i9iEGHQAx6jHufQodATHWEs9pSh0AgYgRrF2uHQLbgZqivlodARjyZAR6jh0AryyyeJquHQGgEY2fHsYdAbAnV4sa5h0DYTlj1wMGHQIDBMynAyYdAFgPwOqrih0CQU+jBpU6IQNJrWgapUohAdq4rkatWiEDY49dYrFqIQAJ64qxYYYhA5v/07gm7iEDg/f9NEMOIQM55AGK39IhA + KBZXds7jZUAc6N63HmJpQBTpB48/A3JAnMs7e+fBckBl6RUuZXN4QJwpGM8/03lAh/IXX+jjfUAyQlYELIKBQNbZL2tL+oJAKSHWMmMahUDWCB6V94KGQIxOoE/vsolAOjbosYMbi0CMfY55mzuNQDEVaOC6s45AEC+ZWvmhkEBKIZl+I6aRQFmx2SYa/pFAyjiQk3lqk0BtMZ2OI5qTQK5OY5uv7pRA7UiUo3lelUD30KNn0EqWQA== - + - +vFLRJrfBkYOmH5FoSGiROwcskR1O15EOQomRSJiJ0Sf7nVE6F+DRFvMU0RFMgxHVxiHRNp3gkT7paVEPZ8WRBa3hERNCtRE842yRAYZtUTdjllFzQrNRVXmt0Q2SX9EMrItRZVxWETDtsxE6s39RKLVwEQNcjNE0s+4RDgBdUReYbZEwEW4RPqzD0e/4lVEcvJGRBG3sUTUVDFEwAlLRCwbH0bq0I9Fdm6NRI6hH0W1LZxEVc63RKF4sUaTYVVEWKGDRLa1VkRvijVEUKieRTGnN0QgEM1ELhOeRHKQz0SFf5ZECVJSRAvHbEQZiJREFdt+RAOzLUWXvTREAujERJrdg0UWU7RERRQGRp0xdUWqgTRE9zVWRHYFd0Wn9DNEYh7IRLDzH0RvmBZF6+eIRJ2CSkRak2hEE98nRb1IakS4XMhEdMKuRDelx0TSDa9E+ZgNRT5B1kZiwa5EM+4ERVNNZEVTKi1EwatrRACjJ0UexFVEwABzRNZSjUSDKxVFRG9GRHQ3bUQczBREvYJCR1wvW0RmGLpEgGuxRL5cV0YToctFMI4+RDeVLkTkflREp/XWRfaxRURwUUFECSP5RNxXeUT4+3FEjeGERI5nV0RWUllEKWE8Rer3GUW+ebVE/FXKRf9s/ERJyzZE1SwtRQdiYkTQYoJE/0RaRFYYjUQk0bJE+ZeFRT7yXkQ2VdlFANs5RDF6YkQZY8lElihqRH/f1kRIijpEGrJLRFQzMETSM5pErKhLRLgooUS7IUlGsmhXRDiCoETGc1JEDk5hRQ6utUQRQl1EBhW1RN5HYkS7Xh1E1m8YRD2yjUStvA1FlHByRBpkMER9r2dEUZwxRAAiZkRDS45EMo0pRGBkOkTeG4ZE2j9lRA1zZEQYf91EZOyoRKQ2G0U9nY1FeTQ4RC3V6EXRBpxEEM1HRMW5ZUQSnslE6LR+RNLtvEVO6TVEZS8xR06sNUTY12xEJ5UBRfdPckR69ohEP05KRAf5EUWSV8pFciVIRFB4vkQxVmBEAoODRPHHzUXu2TBEens6RK1qNETR2oRFoISYRIRQBEWX4LVEYZUWRIguQkSBgM1EoDSiRFX1JkUAos5EqivXRD6nIkVf/GJE584XRQbrU0SvYhdFb+ElRLMdwETSUEtEuwArRBWZHER0F11ElDWfRGMbPkQcCxJFnkpLRCUUHER4PuxEAytdREURnkTHv4dE2nqkRFbuIkXS2mpEFMFsROguS0RQ2CtEMnG4RUVIlER7U19E8PGeRJIErEUzgU9E+R01RBCdUETBkhZFAxh0ROfrYESulCZEF2sdRmbHRERm8SBEbNScRJBbBEVViZJE6a1JRFajFUTrnEZE0UFYRJVbb0QWKd9EVhw2RDEk6kShLYpExhMERVXj7UShG0BE+O4qRspD7EQph7VFSPuBRQpxz0QIdYBEo+hiRNceQ0QTUI5EuFTHRPm+6UUi1g9FmRBKRLUQaUTRMJFEedBPRBkxjER/HVxFvtZfRO6yjETI9WlE2h5sRN1kKkSc7JVFimgARZnCtETrF5xEeEwzRP0+QkWfYwhG0tRSRc/AsEY+IDVEjd+4RK3Il0R37YtES94qRF2XiUWoXtZEXCO0RNcEZUU028JEmyFKRQtxTkRrAxJG0JpNRL7zBkWPETJEMGq2REtuiUShFCZEx2sgROUmmETH0CBEPjGfRMijlkTlhDVE6qM2REBKq0STRc1Eaem0RRzmhUR6VyxE1gZyRORMiUSZ90pEocxqRQ61YkQhjs1Eq6HeRBqfRkS7K5BGAQFRRUn2MERKJFJEaoFaRUFYLkS12iNF1MyXRBhfkUQ0A/JHFDk8RF7CiEY3h7ZFwdgGRbWlu0YdnJ5FadlvRQ7AKUaVRNFEomysRKF7hEQA1bBE/05BRU0xV0QGEXNEMcH7RGCaXUR3tUNEOuHHRU9yW0TAhkVF8LegROPqtkS3jktEUhk3RNsjQUSKt5VEzQ9ZRCYce0TcmS9EqptuRGfps0TPvUdEHwtHR4KrKkTq3DhE5wXPRry9REVAm5RFEYksRYXGyUTWXJtEmC6MRct+rERSgC1EKGXbRNX+X0QyBpxE3BlQRMNXREW3ujZG0mKZRWi0WUSeUBxFv97/RBsnFEWF8IJEZGhBRPRhRUSj0JNF/FGoRIEFw0RRJfVEjDpVRdD32kUrjz9JE38pRiGCbEVoH+REOUHQROFSPUcPrURFo56cREYKnEQKh1lGKlY9SN2gMEVBX9VG864lRU2RjEYrKzVFRJOSRGLMHUXQi0xEw+1wRli6MUXFRa9Edq+nRE900USiaYZEGkHoRIL4SUcjs3JGJD89RctdQ0WmDh1F09iYRKVQuUX3SdZFHT1hRLhyR0TaILNE93g0RdLj5UV0mDNF8CtHRG2bg0T3tDdEFRGURO+vfkVci0JE1ipQRCY+gESeEzJEDHlHRDT0I0WlGjREt/tARDjGN0SKx9BFA4wRRwefJESgU79EpKe5REyFvURcD+tFezvWRGXvsESIcNBELNFSRM7aRET0r4FEHXi8Rqb/xEfuRJ9G6pXIRTmiG0VrYdVGmg4mRQ2iZ0XLUoVEJoI0RIGXiUTOksREqstwRMaXi0R1UGlF44u3REV3EkYdDbFFUJmoRYkvwkRWGztESRjFRo1ho0S+pBpGuHcJRCiYQkSLNgdFhuZnRO5cH0SeeslEBSQ2RKcovkTuTnNEFnCiRBLJpEVqzpNExGogRj4xTkUbgKpEGeNGRIHndkQl12dEsXumRO5OLkTW+19EAaWSREkHkkRrh1VEliZbRK07N0XjiEZEqUaUREj8MUQdRLhESrQvRUcB3kQyNqdEUkacRI0GmEWXmZxEaVuKRjhYhkTNOaFEZ+BQRk9p4ERe7oREV7EBRaK7fUUmJENEIQizRG86fkXkEKFFA907RDWmcUVW2RRFFd6mRTDTsUQyt7VEK3ZFRLmbOkS6Lz1Fg2bbRMS670VS0ORF+1jKRC/hwkRb6uFEeNlwRJW9U0RUEZhEZlKPRYKGdURLddlEcYmbRIFNTEQMf2FEmBzgRMP800dUKE5FVn3SRMaoXUStoS9ENWb/RITVzkZpRulE9uKXRriYcURtG0hFpk6TRJ5yoEQ/WrVE+q82RP3uiESwte9Ebgh+RJ31hURjyjZEWskqRd3RRUSYD4dEzSo0REDvPURgHOFEKgRkReFNY0SU30BEBluGRM0DpkZUHDBFlP2mRDlxDUW7FFFEIBOiRl3BdUSN9RFFPwhdREt8TERCzI1E+96ZRXxiV0SQN7NERYiPRObmhEUD6LlEgYlXRJpYRkQnloFEd4HbRMa1PkSnkk9EkClxRLdhJER72TdFf6ZJROpMb0Tc4HFEBMWLRDCYf0QQQbBElXowRFbq5EQY0VZEugdaRL/ynkbw259EexfWReKYMEQUKbpEB2/gRLP6n0UFm1ZE/eZkRwX+D0Ve3cJGeP9SRDS4bUSnD8hF+cSKRQbqgERNeglFjYBDRF2jWUQ8kjJEmt0vRHmRLUTqaNVEPrs4RMjfcEUGjY1EjB+sRJmsvES/ECxEzFO6RD6uckSoyjlGmINSRPI4u0TKITREiDBhRXjsDkWTEEdEfIkzRKXxfkTkglVEl4RRRDqaM0TOCmBEwfo7RKceREQiJbJEAHBcRAzkx0Rh4k1Ep1plRFHNR0TduGFEj7mlRIwJOETC92VHYfftRPUSU0Qk/EFERNxIRxMHNkSMcH1GJg6uReZC+UQAU6xF9aLzRBl3bkSwzxdFb0ZeRvf1CkXExVJEKpmsRVWfJURYrgJFHivvRd5pkUTiR0lEGKd7RBqSmEVmA05FBVCORGaKVUQwIAhFaLDPRJh1lEQje79Er0U1RbpGYET+BwdFr+rORMKOVkQy/ilGgYX8RGhTAEV3mIJEXG8/RA/opEQxPplE7PeqRAK7QEQqARFF7H0ERe4yNURxMK1FWVSKREvm0kSS5DVEt4qyRId5RkSKV3dEA/WbRHLfqEQVEoZEZuMTReYbgEgZx5tFWbLgRIFTcUQkBOtEgCMdRdZ7CEWDmO9HQfSWRKOUK0Q7pnxEXB6bRAUrV0Qv7KREevSER2G6T0T5fvBGc4plRoasjkVQ+EhFmRlHRINosUXWf9dEwABCRGsB1UQf18FEaQWWRMcPKkSmODJEnKp1RCPyP0YY70hEr385RNTWN0RyZYhFDimkRTiJN0QWqUpEDLICRaClREQTqIFEnHhFREwh1EY6qHFEkvxARFTQs0WkXYlEK0eRRMdDPkRl42tEa/sTRd0I4kRpIQRG1o1JRPBJmkT4TKVFWoQ9RHh/OUQOx4ZEFL44RFOhckQPDmxETeU2ROj4cUTosyREnrOpRORvaEQ/71tE3VpHRFMLk0T3QZxE4pQ6RHA9JUQyg39GBOWORHO5x0WR7mNF4owwRK6vqkQMpSJEJ6BiRDNFQ0TPZjtEJw1VRBoANkSNKThE399tRGKcwUWYR3NEejiIRGkRWkTD80hEsuyARFgbA0WjiOdE+Zl6ROwSMEQEsu1FQQpuRT2qw0SQV2VESXLfRObMIEVa7hFFH3aeRLD7H0Zz0ohE6pojRbLMyUTY/OVE9UaLRDqLtkS2n2JEJ7i1RpYYhUSAIUJE3V8kRq0BeUS+HyhF9i1mRFdRNkQ42TtEwiI0RoL2qUSr6otE4CZFRRHggUTCDolEc1g3RfjfDEVFNoREG4l1RJTwVEQ4mCVEgiWhRA3QV0RHchNFMatIRD253ETx7G1Ey4IvRWuZiUQI9htFR++0RCt4wkQc6KxEUptCRHqcH0SNlSZElQCHRG0KuUTjgH1E3rs3RD26W0TfX6dE9QNjRMcUq0V/JTVEcrYtRSYIpUTDBuFEkg2TRF4PHUYCW4lEDGJ7RL1ooERIyahFdhY5RL66gkT+SQZFkqHHRIrYM0RL/TBEJ1KpRH1J7UeZ52dH31grRIjOB0dgAAJFBUIrRNR92kVe5BlGLIN/RLq0b0SRJZhEPN40RcCU0ERKhC1Ft1eQRHrmUETZ5HNEaXCURPHZMETAxzNEht5JRfZIzUTMRF9ExgpvRBnUS0XNA41EF4RORDltSEQ16UNETlXPRE9xf0QqpaZEoTI2RG++kURZmChEUfB5RBvCY0Q0Y0FEu1v+R4waWUcXazxE4+4RR6WESUWaSlVExRAYRmeNSERN/kJFUTJmRCOKSET09C5E9Uo0RDXCOUQbGRdG+ii7RLCwFETk8YBEPrU8RWAa/EQBe69EevqPRN8tVEQhBXhFR24bRWNM3USK5YJEzQ+GRO3swEQzDglFawePRHA0wURDK8VEpiJkRCvPeEQQnUZExoIbRFomMEQmh51EPD42RBuEYkR8k1RELhTERRBCOkX4YaVE7tU3R27Fu0TybkFE7uMdR1yOjkW0PXtGIfklRJp46EWUseNFJ62TRFsWPkTndUVFh3JJRcjKmkRyrkNE9XSARMgN5UTkcFZETJxRRA2eOkQU3RtF6LL1RBaopkT5SH9Ex2O0RAxTyETPkBBHKJiHROHvhkbKwCdGSvxnRFgcfkUMV3FFEFBoRaOuj0U76aREKGeLRGBenUVjwyhFFweKRHMHl0QTs0tE2RSPRcTykESOWItE/q1IRJRJQ0T23VhF5Jd0RPL7X0TgwEZE2oozRFoSB0duMMhEaZ7PRPAx50RJrn5EzV9kRk7HJkaOJhxFFn+tRCce7kTLtJtFZj9cRNBbi0RODgJGtVK1RdSUCEWyyYFEb8yKRdjtFUXwK5tEp1RXRVT9QEU3ZFVE/I62RWiDDkVigIlE0P5gRPlkSUSXzzFEGHIhRE06qkROBHhEoTtRRNglWUSb3nREBB9mRPhWxkQHqFJE1po2RJesMERoUUxEa0tGRNghl0TV+I9EBBNYRCKcUUSY3BFGbIOyRTq/XUQA9XBF+WRiRMLw4EQ/tklEUT6lREsX90TsGUlEBo8oRURNb0Qwxv1F7SWERbJrW0XBrNxEqslPRBIAGUb/HOZFoCgtReBiWkR712hEpbWCRek2kEQ96jxE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - QKDhLXbAckDMQrJLCsFyQMobiLkkwXJAnLdtBG/BckCsWsXmxcFyQKiKXe5PwnJAFwcXH+jCckBSaJZwOMNyQHRdCu3DxHJAEnmwRVzFckC+uGARDtFyQCaYgU1D0nJA7y8LUs7SckCM/6U1a9NyQH/McsB003JAoEXcB2LUckDK7fOjzd9yQCiUGka54HJAgDP4IE3hckBgRddyUOJyQKNL6S+P4nJAclkSzSPjckCQwrtbxvByQKSn4SxQ8XJASFh39MjxckBQafnVSvJyQOnGkeGd8nJARHD1jRPzckBas1xWuPNyQGBAYOSg9HJA+gTv8sH/ckBeJrp4+ABzQIjJY4OLAXNAGI+6qzwCc0BV05BhzwJzQGpqKqf6A3NAnRjFcSQFc0CWP6sXdxJzQJYb3++8EnNABDAG5mATc0B86vfS+RNzQOlTctNLFHNARhnJ4ngfc0BoLRz4pCBzQEwJ5cE4IXNAyjyFB2Uhc0CyAA8weyJzQGZ8IzHJInNANkce8g4jc0BC8/h6BCRzQEEAvSTPJHNAI1qgbUcxc0Dm34teWDFzQNablTXOMnNAlF2z/Aszc0CIMErbnzNzQDH8NL7YM3NAJLvG0jU0c0CeNkbc2zRzQF4ESkG5P3NATvj9VeFAc0AkCqnHeEFzQHsj6bxYQnNA8VGpNnFCc0A6cxtqrUJzQNH+lpu6QnNACN5+V3pEc0C0gxiZm1FzQB7/qpW0UnNA/jHdnkJTc0B6CKkDo1NzQP/B/6mFVHNAzti4Mvhfc0DBsKzKiGBzQCs9PcvnYHNApGBI7xxic0CQLP02OGNzQJbxqovPY3NAVNaoqttxc0CejAxAT3JzQFa/X/pkcnNAOvGju1Jzc0D+UV7ZIHRzQN4hmj+3dHNAFsCS+Ut1c0AmbBX6eIBzQBg2TxKngHNAeu1eYA2Bc0Dfpjs3XYJzQEwEb82ognNAIHgC/PqCc0AMwcvPO4NzQBLvJnYNhHNAhl0l/ViIc0CzFw4JtI1zQN499EeHkHNAUjMK8BiSc0BA1z8jTZJzQKCtQo/Mk3NAHQsjdmGUc0DQGmIY95RzQMBJiJ2LlXNA5O2KCbigc0BjHycI5aBzQAsqKUVOoXNApPRTpK2hc0B6UpIw46FzQAOxFZdZonNAEwUzGIyic0CWHJR846JzQLyPBMQko3NADxFEQQWlc0BieDEt27BzQHmD7Fc2sXNA5s/5ZH6xc0BaJI63t7NzQODhGogNtHNApqICnGTAc0D6mn/Z+cBzQCoMEIgRwXNA0CzxjEPCc0AYPcG2z8JzQMgBNeAlw3NAtm4PbsTDc0CkVrUWdtFzQBC/9dHX0XNATZlXR73Sc0AfRtrII9NzQCwMntJT03NAUg4g/fbTc0BIi4SI4tRzQJSQByYN4HNAaI7Po6Lgc0DdzoOiOOFzQP7RNnBj4XNAvzpT4nnic0CMkuxDDeNzQHjQcqKn43NAcOMwjjjkc0DKE9QT8eRzQJvz2lor7XNARzdBwkfxc0A48qLsWfFzQJA4fPL+8nNAu/NYzDb0c0D+FZFlTQB0QD2fl9PhAHRA/V5L5vcAdEBRDhe8eAF0QIH3+o6jAXRAAr2EmFIDdEAsemyOEAV0QPgEH+UJEXRAaoDo1YcRdEAgWRv3TBN0QFBMTnHkE3RADec4TPgfdEC2UMoPSyB0QBQ9iL27IXRA6gCUlPoidECH5rzCXCN0QASXiFlSMHRAj28KvLoydEBHV1OeETN0QBsCqJDiN3RAZyPjh1VAdEAC+f0zx0F0QAM4dHukQnRAYNT0iuhCdECsJDwGOkN0QNJh6k15Q3RAkBapMkRNdECgVlWrz1F0QMSA6VA9UnRAYQChzvpSdECUcfGiCFN0QIa8apX5VHRAA6VgRoxVdEB5nLxZ21d0QAB+WGgKW3RASD8hPSFddECsjh2LuGB0QLqe1WoIYnRAiUqe9LdjdEBUFmCqTmR0QFj92ZsicHRAlhcJJUFxdEAkWLESFnJ0QI5bhKc5c3RAxjGHOKB0dEBMf3lvOHV0QCPDOjBDgHRApDZ2fPiAdEAiQqp/ToF0QBx796/rgXRAGhb7NkiCdECZ+JP40oJ0QEYOC/cmg3RA9Vyc3rmDdEDeb3wDFpB0QFTDPXLun3RAHnGKlKOgdEArLlgA0KB0QOBW7rs2oXRA+XZGlV+hdEDIYrRHe6J0QKh+0MG5onRAAkko6d+idECNa5s8DqN0QJEHdygKsHRAMEfhhE2wdEC/Bi/lwrB0QDypnoNIsnRAZXQw92+ydEBIwgWo+7J0QIT8ayzHt3RA18nxxuLAdEDXoD7P/MB0QAaDuhwTwXRAbL/ErXfBdEA0TxCz6sF0QEbBEKW6wnRAhOQUjyLEdED/Dj+7d8R0QAl0nDC3xHRAfs7EVf3OdEC0o75J6dJ0QIjRLDfj03RAK7Vx8nbUdEBSOaOxzNR0QDkhm+P633RAkPa/TbjgdEBUXQKeI+F0QDgBMy224XRAfOrAnfvidEC0A4DPjeN0QEb3JP5N5XRAd/e1aJrtdEBK/zMawPB0QGMBWRL98XRAoDvphYzzdEBQLivnrPR0QEJbWrmi/3RANrtv/TkAdUC7nYoafAB1QJqyw9mkAHVAoBONEs8AdUCfjfWsYgF1QOuGZWRdAnVARFUmZaQCdUBwT8Y9mgN1QOkjh7XQA3VAinrQQ5YQdUC0QF4TIxR1QF5aw1DkH3VAiXadRZ0idUDQDMFU6SJ1QBdaH7RfMXVA5BMRCKoydUBuN5lx1jJ1QFZTvujMNXVAUQNY32g7dUD2cjPRjEJ1QFayF37fQnVAEMjL7CNDdUDqBWom2E91QDo2u94AUHVAF5DOWA9TdUA68oXvTFR1QECzojniVHVAaBPdV3dVdUB4zmt7/l91QM6vN7URYHVA1AnG+jhhdUBOrQBE9WF1QKYKpRNmY3VAr3Q24RFydUDii31gdnJ1QHKJnGMndHVAbtpKRo10dUDWNyHW4YB1QGQqTLf7gHVAsjIbv3mBdUBh4m5irYF1QDl8UZnpgnVA2vmxOqaDdUBRn3XaEoR1QDbNeXObhHVAfqlefIeQdUAGh9fMZZF1QKRqVJm9kXVAmKe22WySdUCsE7DUNpN1QB4b7uGuk3VAf4/zR5OgdUBhT2rquKF1QGQ+c/nYoXVAq/X1pPiidUD4SimlSKN1QP/lRWy5pHVABdhMq6OodUAwGXUu8q11QIZirwWTsHVAQCeUt83AdUAbn9d6a8F1QKJDBkb5wXVA4uWtn6XCdUAA94qb0MJ1QLz2HJXN03VAvfBT8eLfdUDEmH+wD+F1QKQSnboH4nVAVJI9F+bidUDaCiDjTO11QPu3nXQ583VAYgRG4hv4dUB0O2bQLAB2QEPWX41IAnZAPg6ZPtEDdkA+JYObTxJ2QBvKkiFMFHZAF5Ra9XQVdkCWK15eCxZ2QI198dN+IHZASuEHQzghdkDUWfjLhyJ2QAIrGHGPJHZAPzuOUEsrdkCXQDlUHzF2QKQbHu2SMnZArFHRMiYzdkBF37ufUzN2QGpXtO+VM3ZAbUj8OJ00dkAZsv+xT0B2QJdKbjbjQHZAmaNIix1BdkAMt/a1xkJ2QHI7qs54RHZAvEQ92/lOdkBcqVWCyVB2QGSs4TESUXZA7NV0K01TdkBjElCuiFR2QB52qxLNVHZAEEyDtAtjdkCebDwKj2N2QLJukN/aZHZAWEckcFZodkDW3y7AsG12QItPa5l9c3ZAjvHJHhB0dkCggjc3zYB2QMKppVn4gXZAhC9rSjqCdkDIs5Eh6YJ2QAZKLJWQg3ZASsfPO/qEdkAMPGgQGY92QKaI2B6qknZABgtqkryTdkDAAB+U05d2QEDtCw7Em3ZARlzgNWGgdkCy74Uxk652QEgGaKBRsHZAB1bD/rewdkApP6V2wbJ2QDglboYMtHZANoVgBLG0dkAe1b0bcsB2QIXJwa6/wHZAVbLQI0/BdkAvgeWXGcR2QOjPGCE0xXZAn+0ZGM/OdkCyU8tOftB2QJ0sHyF/4HZAiJTCJpLzdkCGTVY4SvZ2QCc2EpQ0AndA6L81TNEQd0Bab+mDARJ3QK9ula26IXdAIkAx0Q4id0A0RHHFcyJ3QLYYMd3mI3dAFu5W2ugnd0AvhCdsQi13QO4pgqemM3dAB4WtIQ01d0BLxqYVnUF3QPg6OjeRQ3dASj/usChEd0CgorFbG0V3QDoukIrYTXdASG+kngZQd0DLJ+jTSVF3QMgkPSaSUXdARCXfNe1Sd0BpLCIxNFN3QAflZjMsVXdAGL9Ouexad0DafhSRDmF3QNhKaz5HYXdAM0GY1Y9hd0Aywzn76GF3QFp7cNU5YndAoJ4v1qpjd0B+OoxhJ293QDxreUT2b3dAeppw5p9yd0D4WNjI23d3QObXHTH5d3dA2SgaYSd/d0CUbPy7S4F3QBJQwYjtgXdA41x7GnqCd0Dgw+m6BpJ3QDfJrkAznXdAWMUvcNKid0CitchJ+6J3QEouo2Uso3dA4lV/gaOjd0AwCNK9A7N3QCbA0YebtHdA7gSF5sbCd0AMLOLbKsN3QG44ZTjn43dA3JdGqunwd0CCfnnVT/J3QMZ41qr48ndA66m5Q4D4d0Da38uLRv13QPC1lfufAnhAFmcXj5QDeECWXvpz5gd4QFI5ZSD8B3hAIJzB2kENeEAKuDSpWQ14QJ5FJeCgEnhASv/KD24ieEAg/CsjpiR4QCDfl/Z5MnhARJTDN9QyeEAs2tNujTt4QECzzOYRRHhA/CF5uXlFeEC8hz1Oy1F4QKABvoOIVXhAcBGak+9XeECiqOaD+WB4QKyNZXW3YXhAZ1Rzh7tieECLTKdb6W94QNems4i2cXhA2ltOtsJxeECiNKCPVnJ4QAwx0AsldHhAPOxhxTl0eEAI7OA9UHR4QGb8Zl1ndHhAdO82q4t0eECiXq0ku3R4QHmL2yPSdHhA1nyxlel0eEBEXvZi/nR4QNzqWAf3e3hAtGOU0aWBeEDaSIK5ZIJ4QMhjDGCog3hAp6QdP9KDeEC8620z/4N4QJg/9d+ZhHhA9EIIz0+IeEDRN72s34t4QA4hBf4CjHhALFPb6aiNeEBe2K5EmJF4QO3C1GtnknhA46bDDQKTeEDTwlm0CJR4QD/NT9OnlHhAwkOpYaSheEDePT9WvKN4QPElRj+mpHhA32CvdzmteEA47oGXkLJ4QNAebyDit3hAGVxvl8zAeEAUuKXi9MF4QCdhl0kXw3hAeLJvHx7LeEDoi0ggD9N4QIrJPxAi03hA9JzmxbbUeEBM232AE9t4QMRiIAAO4XhAxN1Z/6DieECkq9KMfuN4QKYDiiLO43hA9l13K8bkeECqaatL+ud4QA07PTKU6HhAoDhX/CrveEAmoo3VjfN4QPNDqqQA9HhAlkRdQIz1eECabj5xEwR5QN59NkWZBXlAlbChCdUTeUDb29wt3Bt5QLqKLFuVKHlAVvYpSLMoeUBTMCU3DC55QBDhrWDWMnlAXh140GMzeUA4gRfuKjh5QOq+mBmHQnlAYsqi5vdCeUAQVwLA/EN5QN3vtu3LVHlALDBdf9pkeUByVTHa7Wh5QJtyVgjncHlAVlPASbJyeUDYwWZyRHN5QBgO0h85j3lATH2Z+x6reUAIHbIWwLJ5QPJ1gDXPwnlAyl4IY7bDeUCWIUegD8l5QBSc9ChazHlAzlok7ULUeUBKXSzp/tR5QAqUgd/L1XlAT/hUH1/aeUCAFvSRUOR5QBTd9dQM5XlAk1xr9VHpeUBUIQYZEOt5QCyD6W4c73lA89qY4UjweUDAk1TyEfR5QB6V0Xcb9XlABG7jb/wDekDso4PO9gV6QKJfGPbgC3pAJ8tVd+gTekDiAwYCdiF6QDpKWfY3I3pAuFUamyozekASB02MDDV6QEaZNJwtN3pAFoqJOTI7ekBjURZSND96QPouVDYzQ3pACo3FWBpFekAvNbKJ2Up6QMiIeA8pVXpA/5kkQCJcekDv4xdIKmR6QIBOO7gCa3pAPs8P5zltekA0ZylMkHJ6QMZnLX8od3pAJrZaD0l8ekDsugDM1ZN6QGjL+/GilHpAn0GZI+CbekBibKqSHaN6QJxwc7Ulq3pANStHaA2zekBqUEXlDLZ6QMbbrV4St3pA8Oo4GRa7ekCiV1CXSbt6QACc3lkbv3pA/GgHsirDekC/12tov8N6QBu3h9QaxnpA0OjV4cbLekACFLm2P856QCYTBMkd0XpAZCzUl9LTekAPELNVZ+F6QCKO0z0243pAHQqp0vTjekDsZfSzOuR6QPwHgMkz7npAeW6ghRbxekDk11UidQN7QDSrWdl7BHtAtieY6yoOe0BkYmxHiRR7QNomRm5MFXtAuJSVR1Ace0AE/iR6WSV7QKS+wau7K3tATi4lYlMwe0B+E04UwjN7QOXJHuxlPHtAAhonstRDe0Bec+lFZUR7QPwJfK5jY3tAIKplYQ10e0AsziC9Znl7QCAw/zXXe3tAwogEJCmDe0CWZnWX6pB7QEH3yVohlXtAKbnAHVaee0CQgFBctKN7QJK+/hMtpXtAOib0wASne0DuOchYBqt7QAqtEofoxHtApC/0tHnGe0CYsBACg8d7QNiP77/743tAgFyBYinke0Ao4ZmL5vB7QI+W9pyX8XtAhv5yQIv1e0DoR3fdbP57QNAW2xaTAXxAHORKJNoBfEAc0aqLuQJ8QFTqKSJnBHxA1LQcTZoFfECST7eFHgl8QLg5QflvD3xAyoKwfY0RfECoFNbP0BF8QB6A0ZvKIXxAYmhCoP8jfEBzkmK/liR8QHo/op5YKXxAIJLWSbQufECuKwO7EjN8QNYnEpk5PnxAiLFEEM5BfECDF1zs7UJ8QN0J652PQ3xAgal2hw5IfEC6BUpRYE98QEgF6MnaUXxAMExOy2pTfEAinwDdd1t8QBo6Ps8NYnxAuUP2h2lvfEBc6iKAL3F8QJGbsRUUc3xA+JprmEiDfEA7Fzs4Tot8QKbNCtnCjXxA5M9pqRyTfEC4/WXzd5h8QCIi1I5ZmXxAFOQVeMqdfECmK/zWR558QOdHRZsln3xAA2Z0qdKifEAXGdovGaN8QPxpHGiro3xAtUwkThunfEBWICt0wLJ8QFTYcW/ss3xAwAyX/Hi0fECC8cAY0cJ8QAAA7MyGxHxAPAZ62fXbfEA+mnUDWOJ8QOTY//4Q43xArCVLexHkfEByOT4QaOh8QNBwqqYZ8nxAS8FE3FTyfEAPyHrGMvN8QE8n9ZICAn1Ar6o0RUsCfUAsQKKtRRJ9QGf86NpkEn1AhjBho/0TfUATzOe5OiJ9QJi56BedMX1AEDiY7kQ4fUA7F3tV+EJ9QMifVTCtTX1AVGtt7AlVfUDVB368UWN9QCut2E0hc31A/JEsWHt0fUDu2b5gL3t9QCq0AsM3g31AJAHvU4KEfUDq/Jx+qIt9QD7ncejykn1A8C7pnCSUfUD0qTX6HKN9QNgQYcCnpH1AxPj8kifDfUBklq/X5sR9QGMY0i701H1AQjf7byPgfUDARW+61+J9QD6DllOR9X1A5qPzPDQAfkD0MlmqSgN+QIXnsuM0DH5AnFctzUQQfkCcZheBNx9+QDIv5v0iIH5ArO9aHT4vfkCy0696eDR+QOaxs2OBRH5AX5TkQVNTfkCZt5DP3VN+QHxi4HWLVX5Aghev3FtbfkDIsN3qDV5+QNi6qPljY35ALBNCdOhjfkDjy67ZLmR+QHh7SOSUZX5AXmwzpr9rfkDBugVwDHJ+QLKaLsZOdH5A9ZVFmLd7fkB7NSxjioF+QJ2ErvOpg35AtJah28yIfkCA4xylKol+QPKKYCXYi35AzKICj5aUfkAezV1DYZt+QIZDGYu9nH5AylKcskeffkDPWlrqkaR+QPiAXJz0q35AKp9ItmKsfkDdrt4qY69+QKjHiVXTr35AWDdz4XmzfkCg6kGEarR+QKBUNVSftH5AFJ74gGbDfkCYB2eIz8R+QIFhDEuvx35A3gybVG3LfkDCFpiAzdB+QCyE+qsQ0n5Ahl9pf1rTfkCUREQie9N+QPKAvill235AzJawEc3ffkDwc4WSJeB+QEHxfm1d835ADAwwvlH0fkB8Ppy6l/9+QFAwcqHT/35A56YDWPcTf0BfmXxcJBR/QHswiUmvO39A/MiGRlVEf0DL8Tew8lF/QKyfwaOuU39AeC5ZPrhxf0Df6aPW4HR/QMouXpuvgX9AOHo1wYiDf0D4vo7JYpF/QD5T9PJbk39AFlJl/pOTf0B8irCjX6F/QB6BO+3Hrn9AskGkNVexf0BfAGFXaLh/QCxl0K5P0X9AWoa94/Lcf0BcRfb7U+l/QGr6zDpH739Ao8FUg03yf0D/LqeUjPR/QHC5Lenq+H9AoxeC5EL/f0B6bHSYSgKAQFFU49CpBoBAqD8O9nYKgEDaDjdxyw2AQFQ+McV8DoBAalss8gsQgECnmmSljhGAQOiiZkLNEYBAH/ghueIWgEAUOKFCJxqAQC7RzggfIoBAE3VVSGkigEDniw7qZiSAQFpJS4gpLoBARcMAJx03gEAnnlvbvTeAQJeqHd7IOYBAeqbvICI6gEDJSn0+dTyAQP5FBKwfP4BA3NhgwNFBgEBm7Kj9qEKAQEv1xYNNQ4BAEDnflPdIgEC65Qa/r0qAQK73x8fmUIBAXU4sthRRgEB/GQ7ovFGAQHg6IGqlVYBAhqjsNulYgEBc0r9CDlmAQKgAE3IhWYBA0snt/alZgEDutG4z21mAQGS6R2IJWoBAUDXf/t9dgEDAFqiXDF6AQBJIc3ngYIBADrKKGqNhgEAb+nf7w2GAQFA2n5QOYoBAVPuuwXBkgEC9sTJ4H2eAQL4s982gZ4BAjPIceE1qgEDhFNucKW+AQMLy4saDdIBAQuX4fdR8gEAyIaherX2AQK+Mucwnf4BA4lf9u5aCgEAhoeQc+4qAQK7LaJ8HjIBA6ggdoR6PgEAsod/JPpKAQHxTHashk4BAJDo87x6XgEDl2Cfyj5eAQPfsONfhmYBAWVxrzpSagED8Rj5qy52AQPMCxyAan4BATuG7LV6igEBK3a1zEqSAQJbSEXt6pYBAnEPzQ/GmgEAhwwMJu6eAQKjxeFQlqYBAXqbZgISpgEA4Mxkf8amAQBgl9zM5qoBA91XOUhOvgEAkyjcjt6+AQCBkWAQesYBAINliNuKxgEBKRuzhi7KAQKj6Qh5Ps4BArDBv3Iu2gEAigrFYBbeAQHg9nzQYt4BArr07vei5gEBiOQ9GAryAQBZU9lO+vIBAA6zs/3q9gEAktUSr6L6AQD6Cvm2qv4BAt/UdglLBgEBiKu5gnsKAQArGsTnpxoBAePVlCanHgEA+1qFuAMiAQJCGhBtuyIBAa+VeZyLJgEC0UhRgU8mAQGIXVU98yYBAExkL/dLJgEBjtVjYBs+AQDPCQ6wt0YBAwmp1m0zRgEDMcljvQ9OAQOHOz2fP1YBAYv/j9DTWgEDpJ0pfZtiAQEghO+9K2YBAENAmSJzagED7y+WHW9uAQKSbnd3m3oBAuOwsuG7ggEDCDDEoROGAQFx5pjld6IBAkuiXgPXogEBIE0GaQumAQC9HUOxM74BA/IMcU2fwgEAGKU4s3PGAQGqSPbQ884BANMWzd1L4gEDZZ7PZQvuAQEDslIzF/IBAal/Vam3+gEDiq2p4P/+AQGrq76k+B4FADmkPMRMMgUBcsRcHPg+BQKLJ8xg6EYFASO5tqOsRgUCuBmCqzBKBQKrVBTZEF4FAdyEcFdUZgUCe6OXU/xmBQAx+asvfGoFAAiDilzwcgUDKCtTNzh2BQM3jNjj0HoFAL3lqYTQfgUCOOlqXrx+BQJ53d77yIYFAzCYFUzUngUBm0jistieBQBsE7pKMLYFAduFiWS8vgUCFkbbnuy+BQPqUcU/xMIFAbBIuZ7wxgUDWUcVDdDKBQFvEA7F5OoFAkNg2iik/gUA0k3OIy0GBQBwJn6eBQoFAJgIKJtVJgUD6oS9QzEyBQEDQkgCDToFAoIGX8sZPgUDQ1KG/cFGBQJKgwikOVIFA7MgqVxtUgUCNDyQ55FmBQF6tWEFZWoFAPO0JfJxigUBcgT4OsWKBQN7zJlG1ZoFA/rFsxQ9qgUDX8sXAtGqBQI6XqAjabYFAiv/x48F0gUDy79L/bneBQOjHskvweYFAtzLrohx6gUBE2DcwynyBQAzbi17wfYFADFQ7KgCCgUD8WRye1IKBQL4+fIOHhoFAWhGi4ISIgUBMBQmO6ImBQJL31jVRjoFASiRvCfSOgUBjgrghVY+BQO3K+fOUj4FAuEeBlrKPgUDZ8ZiL7pGBQKJT3arilIFAhksyPvKVgUBxp7hDCZeBQLaeL3hWl4FAxHEudfuZgUC+57NPnZyBQJDnTTZIn4FAbN7GDGGfgUDP6fC456GBQAHx5enfooFANJZJKKGmgUBehcwcbqiBQEfUWPbSrYFAeGTbkUqvgUByYUHU17GBQGDhz7NttIFAfH/jRUq3gUDy9fO9HMGBQI7QVwV9x4FA1hwR7wPKgUBgZHIqSMqBQEeKYWmzzIFAZzAP93jPgUBngfvP+dGBQBytiW9+04FAXECbQf7VgUDY6+WeA9+BQEYsudoS34FAilRpHRbngUDAHh7w/ueBQLbNpuO08oFA/ZBOf5vzgUAkNpR+7PmBQF8Sghzw/YFAQAIgeuMBgkBKaupr9gGCQAefpxPrBYJA20VSQnMQgkCF8TAfjxeCQCLmuGjYGIJAvnFSaf4ZgkCziT/pJxqCQOqQWUwqHoJA9pMrNtcggkAjoUd21CKCQOqXMsenJ4JAvmaoVNIogkB2K39lnyqCQDKmNKaiLoJAYBFDtqIwgkAwgYFe3TaCQILvIJRYPoJAxpu0yqw/gkAFaRngA0GCQMCSNVkMQoJAIYK9X1lCgkCusXTvqEOCQH/etlnmS4JAb+7EEqVPgkAmqRJ4O1GCQIgnKfULUoJAFmwB3BBagkDG5z2N0lqCQEC0K/7ZXoJAimKrtzNigkByeYspD2aCQBrdJq84ZoJAKhhrzp1ngkAY9ETXbGiCQNS6KgUHaoJAHk9+A25sgkDEfll8bnKCQA24airccoJA7sVfgKtzgkAqv3r7OXWCQMLxXXcRdoJARpLOAHF2gkCQXppBaHiCQK2Z0wICeoJAqkAXEXR6gkDgYFOnsn+CQBTsF3LFgYJAgHmNFwqCgkCc9tuFWoiCQDbt2EtDiYJA+jADmEORgkA83ItNmZeCQG0o/YVtmIJAcp1lqjyZgkDDwFzaDqGCQDiWCQM7oYJAfOxxsM2igkCsUKye86WCQPUWBkx7qIJAvDqdDQ2pgkAf6OlaNKmCQCyD29j3qYJAIRLxOXaugkCWr2emBrGCQNyE3e17soJAKMdXnmy4gkB8/PJb7MWCQD5bgq8wyYJAYQ9M633agkA45U0WYdyCQCCCv7ms3IJAtKTo84HegkAWrG7wWt+CQCRs8LoS5IJAwPB1003mgkDOsl53aeaCQP7m77Pc64JAKMlicV7ygkAfOzRwCPWCQAKoy1au+YJACzPmVbH7gkAlK1Awwf2CQNJtPS3CA4NAbO1X5agNg0DU95KFEw6DQFY8IG55EYNAZGZf0nkZg0AbmXcOcyGDQPdRYmwsKYNAPLEDDnEpg0BYlzSKazGDQLINb34cOYNA4CxkPUM5g0BOJarnjESDQPhbCXSrR4NA/rRtNFlKg0A0fYVROGiDQLAERyjBaYNAl/rhoDtxg0Bw5sR+9XKDQELeQjiDdoNAPiLxLiV7g0C81hK6OH6DQPwhKtTDgYNADgbJj+KBg0CiqtxpSIODQIYZlsrIhYNAruCD0L2Jg0Asgnpm0YmDQDiJWtDAjYNAKM3aAPqSg0A0/+ivPZmDQFKu1REJnINA+UA6dEWhg0Be6tJNGqaDQEXtK8L2qYNA57pb3Casg0B2bu2I5q2DQPkiDq7osYNADJMFWhCyg0Dv9r8QFLaDQMqCVLRIuYNA5D5a/w3Ag0Br7PaiHcWDQAgfNJ+wy4NALN276Sjbg0DSVJOEktuDQOyQYUfN3INA8bvvHlLeg0BYyJhAs+CDQOyIpIoj4oNAejE+Bc7kg0CIrF7zaPCDQMwbog1J8oNAVlhy0ur1g0DPZol7lfiDQDrEL9jAFYRAultBDboahEDd+qUTLyKEQN4wGH+QP4RAFNlyOtFBhECSobWpxkWEQBAq5DJ7U4RAfrqUrqhehEB0uUvWDGSEQBpYzGGwZoRAlp7ZIJhnhEA6U3mZ/2iEQA3f9kSQcIRAlxhdiP5whEBwfWXXAXSEQJxd7Pi3dYRAE2KyL5J3hEAOiHeAm3eEQA/O+irKd4RAfOHI3/h4hED0jkDldnqEQCGb60MlfYRAIhcezdB/hEBsHYrZy4CEQCowyX5bgYRAilGN4leChECKdK4PfoKEQLwpUREKhIRAmlcb1x+FhECKZ9ytu4eEQJbeedR1ioRAAgAtA3SihEA+rZJtHqWEQAh1oafNp4RATOBcE1uphEA0HUi4uLKEQKQos05xwoRA/UsAwR7FhECi/ED5yceEQARzecITzYRAlDzx7h3ThEB0XGVAEdaEQAz49hBq2YRA8IggkRTahEB4fAouFd6EQF03XyBr4YRA8iLkQBDihEBdTPGpY+mEQN25NwQ28YRAcokXnWLxhEA3L0fAffaEQIim+/vc94RAqMETmjT5hEDHAFMtWvmEQG5wpBiK+oRAHlqMljb9hEBqWZHv3/+EQL0rc+ctAYVAl+y6TokChUDPrHYoaAiFQHhwGzSYDYVAKg+3wrgVhUAAKHvN2BWFQGLmntf4FoVAX9qrSHEXhUDADY+jDRmFQL44+pOnGoVAVNuTN/sahUAOQGcA/R6FQMBKTuv9IoVAdm24yE8yhUC4r95e41GFQGhnnrJYUoVAMjvua6BhhUA8zRwd3WGFQF40K3XhZYVAoyNLSEpmhUAdc3qEoGmFQHswgbLWaYVAGiYjo3pshUDt+Z5VmHGFQOxw8x2xcoVAIkPfhLRzhUBiuHKQs3aFQCiguXSZeYVAIMqh57Z6hUBeuOF2kIGFQHa+Cj17moVAGFRQ1z+uhUCHLta/Q7KFQOpi6eFItoVA8MgnnSDChUB8HeQjBMqFQCgDhdAnyoVAvB3nWwfOhUB1EvksqOKFQB4ExgzM4oVAJ+zeimnkhUCqf0AqAuaFQFp/oNOr5oVAXHsNzZrnhUCaLgN/z+qFQCW+Zrts7IVAeh4OUQXuhUCIG+UaPQ6GQLQ+jMFGQ4ZADomRZrxIhkDeEGZtz1qGQPLkVui3coZAQhVMxduFhkCCgh6UKLmGQHp2yA4hwYZA5G3BXtbGhkBWNYyi08iGQNZSfzgeyYZA5J4cFcrKhkC1LG4vyMyGQDjKEbf00IZATG4Sd4rvhkAuqzQ4lvqGQKa/BWBu/4ZAcgkshC8Th0CiS+ZyMReHQOp5fLgyG4dATQq/dpUoh0A3DfMHkSmHQEopMOCQMYdAZIJS/ok5h0D3RM8QpTqHQPyRBqBcQYdAspsGbYtBh0CPYk85h0mHQPYpKv8Ya4dAqD6fth2jh0DeNektJKuHQKRX303HsYdA5lqKAMe5h0BZU6FzwMGHQIZT16rAyYdADs9e32Lfh0DSvGKtRe6HQAQy0a5yBohAPBxGuKROiEA+AxqIqVKIQCQuuwetVohAyHsdYa1aiEDCfY7pC7uIQIlWwuYRw4hA + NrgMGZxjYkA= - + - J8WHRIXqM0RrVkhEkuUFRqVmlkQeIqZEXjmHRE6e90QYgk9EutuFRJ9KG0Rn4fxGzlErRPqsbUTcEX9EG7EwRIxM80TqNfBEB3d0RGVmdEU9cplFWL6lRF3DDkTnNHNEzlBhRXJ9TUQ0rWxEqbU1REsqgETAeslErCSgRDNWyERJfjdEwbuHRMPsFkUD2Q9HIDJ6RE/dhERZKCxGPrB/RCLZiUVQji1EUS4cRfzvmkSmXrNGYm0yRFB7OURV6W9E+reSRCJ7I0QeEq9FGeJeREf+ikQAaH1EJCweRDgefkSSiIJE6AdkREGXDEQ+Ru1ElsDARDUkhUXj3yFESxFSRN/yG0RzKkREkzDiRRHLYkUD70dEKL++RE6Ab0WIBapEf3FkRPjJWUTO0ktEF1cyRGeJCEV1e7dEpIG5RK2dx0Qz9idEBNFzRKK0YEQh4sxEOKcBRZnX0EZcSZdE4yq0RE10uEVQtE5E98xjRCK7KkS9sTZELyk+RDloP0T6XOdEVQwlRInpPUd0uIlELz2vRJnfGUanLiZEdazrRcwhLUShfZZE8Vs/RNaPQkQx981FQ8JRRJMXVUQMJD9EOJwXRcl7d0SK7INEpsOJRElLTEWv3h1FZEQkRCHjwUQFPC9EOHkbRI/TnUW7TuNEVaVoRFTYMkTzDSBFMzc/RGbzdkRYJt5EBJSPRPXPeEXOuSVEB79jRD5lIUaVW1VEBpaXRGLIl0RbSKREH/UeRPFvhESsAWVEIrNVRPYpOES0/KpE9tnXREc8OUTaiKBE85UZRBYdW0b4SYZET14pRFTbOEQcayRElUa1RI07UUVN/ylEGLUyRGg6j0QjoaNElqdVROpzWUSprZ5Exv1GRJxgx0RysQdFpBpqROnCxURK3xtEeuM0REg9qkRaLaNERsA4RH4ra0S16yxEva8uRNtdN0TGooRE8Zl4RMb1q0RqzQpEX8LfRP6XqUVhWZ1FQfwRRFsinUQUnqJFl+84R0rQYEQKx0JFAUZlRKWn5UT7VlREZHJeRZ6BxUWHmjxEJTT8RB8rHkQtb6BEPeaMRKtxmEWaZV9F/nCvRP6kM0UknVNEU1YPRCMzyURt5ZBEbEJORNNVn0QkapxEI2MyRD3f9ESFGClEqDaFRZ0PkUT45LVEpzmkRD7AMURKLkhExcnRRCSNk0QnQYVEM3uLRDS9TkSzebhE50d6RMibEES4+odEAAlKRNSj3ERJFVBEJv5KRHvtNkQVE99EovJhRFgQlkSvg6ZEs9kZROeRkESKnBlEmTqXRRGAAkQjvC9E9Z5fRG/DIUROG5BESj2PRFhBZEQzxMtFIHeHRMrjiURlHidEgX2ARA2G3UQv2nFE7XoTRt9sakRZc1FEskF/RAVdUURUpe9EMQtaRCaSBETdUylEKSwqRK1ZJEQLkbNEvFneRNmlhERCOC1E+SIaRUaBPERZXIhETg8rRbEfQERvp5BEOcIgRHVv4ETAuJJExKrRRcBgg0TpghdE11zMRE6vkEXRrR9EZ7ldRWirQkSCa6xE4wApRNfXc0TziYpEsO8+RKulJES3W09E3puYRLoioUSj6SNEwm4vRNPisUXYAVVEw/gJRT/JUETJ4lhE1sSeRCO/UERTxKNEjasoRedUBkQSX6VEAq4RRGPWwETFbE1E/OQtROCQ4URkbT5EGfFBRAKyI0SknIhF0aBVRCruFUQpis5ENAU4ROznK0SnfEJE5fZhRGeKRUXcPANGW/7NRSAHukbAs11EG6ZtRCmuyEQjTyBEU1ZmRH2MoETZ4olE4cmfRXRFtESJAEZFVIQ4RN/ZkkRWkzdFVSI7RBNeS0R/DylGAi8MRKjQr0S9pqxEQgl7RP8XaUQcljtE0wUuRDEBJ0RlhktEWUQkRFP9I0STiwVF2ignRMG3XkSGVxJE4Y7MRDm2H0QNkUdE//MYRLY2D0RSI4dEKd5vREob9ESBP5BF9hJNRK8+c0RnbI5EL2WiRA9onkTDYVJEGV9hRZQMSETZ/jZETRPURElpWUT5vz1EcrNJRDKRjka/NDJEtIxERQF2xESPcalEw61aRVS2tETanm1EV+zeR0mElUYP0edEQeZPRFSRrEbAXydE4c51RbV5iEX0jxhG2KBYRL7ODESRH85EHy8XROcATURt4odEjzQIReYQhEXAwVFEwpI6RP8oU0XLvD1EXSsHRtQPiUR+UX9FVCFzRH1bLUQ1UgNEybPRRG5zQUTgLSdEo24TREZeFkQAEXpEb5IyRM3hGESO8n1ECqtGRAAyKkR8XhZECKhIRPxsq0QPMRVE+l6iRKz+S0fJW9RG4h5SRF3nXkWYmrRFjZ+qRGlIgkT5WlVEAgJqRROBZkTxeGpEzYIYRGYJQERlbWdF8D4YRlQ8bkW5bqtEpGJCRCO3+kTpWoJEjqOORGFnU0SqvwRE0WMFRLD/mUXFD55EOfjRRI5wDEXy55BFmOgrSd5cXUUXdQJFadm2RDu/Z0TnFzRHTv0+RTiWlkSfsPFDfHiTRNfgPUZhRS1ICR3ERgNHoEQ+0sZEkPODRiHwKUVR2T1ESKeKRdyBKEQyoXhG/z8kRIj8vUQCalVEw4/ORMxfjUR1GBJF432PRBIfZ0RtXzJH0qlIRr2IFkWijTJFs20wRQ5MuUQCozNEMHcERSZmRUSaaytEPrA1RL1yYkT4tgxEHO9pRO73fERDiYFFfraJRYGXEURiH4FEKjDkRERoI0TUaCZEWGWGReDw6USSjo5E7d6DRBSnpkSObjdE7FJeRAiv8URzHCxFxUZJREweDkQmY2FEdhiQRN5dhEQrNCBEX24URHD8cUWw8UxEFdKFROy7K0TdLJ5EyhzDReae40YO555El7PiRMf4iEQ0g7ZFDqXQRORvZ0TYRipElPk2RE+9bUSj0D5EgaTQRLyrLUSEB4JFr6CvRIHREEQtBhpEL/GiRkM3mkcHKX5G+18GRnTJ9ESQc3REeeOJRpDudUSgN7JEv359Rcxo7URLBTNELAcSRMJxPkSZQ8lEU61GREeklkQHsHJEUwRMRPjxZ0UPY/9E9yeqRS9iyUUMQDZFzxTFRM4onERmdEJEeT5JRNy9nEaPvL1EIkQbRvAxl0SjpSlE2n+NRJoQwUSTpCtEa72HRJHbhESBYtlE6/K+RMjbpUQjoK9FaIV1ROvGKETs2gVGMYIxROqTrkS66dtE/211RJ4CwUS8wIVEtjJARBW0YkS8q4BEACCeRBN4Q0SJTypELLAjRL78dEToGylF+dnBRO/ojER01hREYu4+RNJntkQUCkhEeYeqRDHSG0Tb7IFED0FCROgYj0SQ6YZFE655RmK4okRGmLBEv445RmWpzEQqoL5EEjWDReQhL0SwoxpECU1ARInmgUWbooBEcpP3RZzlG0RWOYFFux5xRDecT0Q7HwxEPfPERfO2OkQv3jhEdOQwRGV+cUTUiKRE1PWzRHsMlkT16ztER8gyRPUnMUSXBCZEqHBbRSYQxUQTUPZFDmwGRtLO7kSK0YJEUHpZRPxkmER5iiREYWYpRKFWq0SLTjZEraBkRGezjEQbLYtEmehjRSCeOkRbj3NER2EhRbCyukdmi09FJdwwRKoWtUSR8eJEYKGvRsqnGUT7MPVE5FWURr/eZEVNZG9EL6nHROw6ZkRx+HpEV5EaRbXESkQFNghEsxIgRKo9OUQOmDpEr4zcRCiAE0XtcSxEQCYdRNbPIUSSv5lE0HIRRUJ3GkRgF3JEQnJlRJu3nEZ3DmVFGaFUROc2ikRr9q5E5X+bRlxNTESpNqVEXZP+ROyKs0TR1ZxFxeR0RDIuU0SF8ClEsmm6RRhTgUSKt5VEjrQWRTeMcUR3XKFEdzJGRIjeMERqZxBEK4ZRRFo3bkSz20xFonV4RNu/HESasBxEFc82RLu4MkS9MENEN7+vRMleRUTnBkRE9ds8REbYh0ZETSBE8swIRt+FokQuVDVEYNc6RMBVIUXLMBxFbAtWRxtWRkVQGCVESPKjRrHsaESxikBE09azRXOoVkUUzplFOoajRM1RLEQrEjREiLd3RKYWNETXjBlEIPA0RCmSnETrrlZEvZgyRA2XGkQ9o/NETJSKRTe9i0S82GREht2VRImnJ0agERxEC7W/RLGrQUWUXTNEq5//RHpRNkTP+TlEDeiGRJHPUUThLBBE4q0SRPbaX0QilW5ErDb+Q+G8I0TMEVBE3ORRRfVyoES1qoNErAgjRKqqIUQvpa1Eej0eRM5WHkQy5IZE2xdaRBp7OkSYEy1EN4Z4Rynhh0SxQUJH4AkcROWkb0bw85hFbaWPRMyrpUW3ZSdEdlbvRBrmzUQbHC5FU559RjJcKkTXfUtFLOkoRJf8WkVpGJlEcY0ERcP2u0SWmtRFR2yGRNsEZEWeLkVEYWIlRKv8SkVThW1ErMXfRExLcEQ96gxFf39fRI1d80QdgGJEIqkkRIj2iUTpTOxE9PFERI++MERehihEGPoaRsBiMEVNKjVEhHeyROkBtERTVUpEvzBwRAnsQ0Qug2BEc56IRDnzikSdGaJETX6oRAtphERgWl5E9MC+RBDVF0Tq5BtE7SOZRUfXjURlXYxExoC4RHMwpUSGKpNEX/EeRA8zLURagmhEk0rDRCgf10Qmx/dEcNVVRIqvhkTWS3FEGx1uSNBlxEUgNi5EiwqHRDzAR0Se0QZFzjFnRBuK1kdZak9EtU4pRP3RhkQRyk1EphpqRxjFLURpHxZEXDF5RLqQzEaTfVBGc9ieRLIjGEQkPTJE8vZeRT8Jh0VbNLpFUz3wREVxhEQ1861ED7xDRGntQkSe9XxE3WEpROGSJUTRxSZEFflyRJVpZ0aVj4tF24UsRHxAp0XpUkdEazokRLhoSUTp/w1E1cExRPasNEQ7ETBEv7g2RJduNkQ7DGhE5//eRhbQXES08mpEtHfERUtZ0EQy9ThE1DwjRd0fgERiyoNElFKURNEwG0ZUKRtF+0JuRSEbr0RPJDtE5QciRLRNOETJrhVEWPNPRBwIPkTjiCREHXc3RNIXkEQcGCNE8/dFRF9XIUSInsVErcEbRFSVpETuxhFE46JERukEKEZBJRFELMB0RaZvhkTp9ytEyngMRDPkHERMRiREPflXRB9nEESKHj5EKXpJRNTS/kXiuWBEE7OdRMAu3USwqaFE/tgvRAWBMkRDPB1FGbV/RK02tUVSqBNFYg2JRBv6EkUzJpZEYdkrRKGUwUQE7zZE8MASRiLvRUQSXjpEc2fhRI7eJ0Q+PwJElkQgRQyxR0SD5edEWgQXRGoSwESk/NpEg/1kRNYSJETK2SVEAQhNRA/7NUQ/KktEh5MRRNuOkEZT9wJG0+bSREGtmURYQFVEwIwqRHXKM0RzDylGOZlQRG6qJUWzv6lE9ZtwRdP/H0Q80VNE63VMReQ4N0V8kMlEzGiZRMhPFESvPBNFcAmGRcnLVUVNfk1EqybRRMM1QUQtmzREhru0RHvLb0T+KoxEPkOFRHuqqUQHB8REGWaURVYVpUTQRq5EoEhoRN9c+UQuGPpEvE5hRP/x6UXf8IREcaoURLcysUS98V5E1Pu+RYXNWkRJDJNEKCWTROWJQEQqKDBEmox4RIBcZET1bdVHzQdCR/b1LUS8OJlEzOftRrR9okW66PVFRmcQRFcqx0QaczdED4obRR9oJUVA41lEsSSBRHXBoEQB8DdEXq0iRCv7Y0U/TkNEqYIuRdYzHETj9C1EN1ZGRKrjgkTBjSREm9dtRCCJMkSqi3FEwG1GRK1pL0TjhoVESpxDRE9jSET7fSpENc5SRJSzNUQdhtxHqaVIRxJEAEfd4ipElo0LRidbZEXrYWBEDBQsRH6jJETXA3BE9emPRDmoUURAvjtEgUIoRPDdLkRwy0tE/jAcRCF7SEQkh+JFu3iTROhbikQK71hFQ220REprOESrzaBEd89fREqHxESWPEJEhYyCRCynUET/iGJF7bc4RPPATkU2MUJEXYkLRXoMOURzUVlEGG9NRHI2I0Q+6zJE33BYROXzPUQVNYREcS2YRLezMUSgWH5E+MxRRJItLUQU4ApE8UcURLo5SkQICCZEF9E2RNy+GkRAFxZEZ/1zRO8ZD0QKZSRExi0iRB1DW0T90IZEEQEzRETysUVcfSlE5XXyRGHCUES7jrhEDOY6RDcyPUSGdUVHN668RHtLMkcGj4FGrCrORTckJUTZVF1EwtyMRGMF+EQ8YyxEBatxRITHjkTxAy9EPhV+RAeFqEQSCnBE9GcmRDPiRURyeQBFo9WaRHJbzUSh1mtEut5lRFMbikUxnwtHdkZiRW2VUkSbOIBGa2cWRKvuH0bhfaZFxveaRYcU70RaF+1F3qqURMJ8yUQTKXVFR6lCRernzES6C0REZwcERcSdKERBLWBE+tJaROsp20TWkQFGczMxRb41OkXSZK5EnNVNRW7awkQJTShEvbckRHhbHEQtYE1E5X4GR1VnVkQ45WlE+X6SRNJIfEYfxTxEYJBJREPoFEa8nC5FCpZNRHLmQ0VUGUVFhq3IRLb1bUR7ZYZEFu4FRhLLrUUlmxNFPfspRr+4QESh5kBFxQiVROctIkQDcedEEEjxRBcCpkWe7SRER46ORccbj0QkjyxE5RUcRH+omURW9h5EcUF2RBDtR0SnhwZECos/REa4qURPsT1Exog4RNvJ7UTRezVE3h29RPs5PkQnbzZED3CBRMGmlUTC6h9ETrNcRHWliURJI3FElogbRPNqPEZqcKxFbz16Redfm0QVHKNEeUMARWtzQEQbgbNEy2iaRQuy7EQYBv9FA0rDRSgQSEWFjZhEYnZHRDEBP0Sig35EOVPsRWCHy0WRRfZEg0GKRIDrL0WvQZhE + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - a/UbkXbAckAEB3e2AMFyQELitb0MwXJAzXrFwm7BckB2XjPYx8FyQOIGCT1PwnJAvOGCoOTCckAsV+LTOsNyQD0mjlyrw3JAqArPBMTEckDOqbTLV8VyQIiUp4N90XJAuMbuIhHSckDN0vNcQ9JyQKavf0Fz03JAF2kfF83TckBrH9bmYNRyQB4ZgKbP33JAlabefbngckDJQYLNTeFyQCjvhudl4XJAlMEt0FDickAQ56Vmj+JyQBg0gVoP8HJARqinM1PwckBodjd2NvFyQGpqGIFQ8XJAhtApJsrxckCmidEAX/JyQMKERC0k83JAfKdPGnnzckDY3hMCtfNyQO6+Qfmg9HJAGuRxNMH/ckD4NX3ZbwBzQIRWVkn3AHNApo9xGyQBc0Bt96GsSwFzQAg2197PAnNAXCWYQPoDc0Dm8U/FIwVzQEE990ulCnNAF0iA7wsSc0B2e7wMvBJzQIZurcNgE3NAZqxWsLkTc0C8zkSNBRRzQPqkaeJMFHNAACt2HHgfc0Bex2ISpSBzQMbisrE4IXNAy5M+X2Mhc0B6ouUheyJzQAD/IPDJInNAG8CWvg8jc0BYMfo9OCRzQKuNixfPJHNAcKWanfkqc0ASjSewRTFzQCvnbMBaMXNAOl/1vDkyc0BaK8oJzjJzQP7v3LYLM3NAAP3nMqEzc0CMJdNN+DNzQILE+W82NHNAfgPl/9w0c0BCy1EFuT9zQL7px6zjQHNAKiIxa3hBc0Du+r3LJEJzQH6CmCW5QnNAKB2i9XlEc0AGrnBom1FzQJq6ki9CU3NAwDRcdKNTc0Ca7PQvhFRzQIcGdqv3X3NAMibNSIxgc0AcxzWdiGFzQDBZmVMeYnNAAa9uaDhjc0A5+IG6j2NzQFD5p4OwY3NA0ZSRAs9jc0BKOQBpSnFzQGb7aSDccXNARZlpuk1yc0CtK+BoZHJzQNqE48iEcnNAfhBv3Lhyc0BKNhWU+3JzQKgS+Au5dHNAlJfbPUp1c0C27xJ3eIBzQMzeq8+jgHNAHFVl6w+Bc0CGb6pdKIFzQBRVb+FcgnNACJGyuaSCc0Bb8A+B44JzQKSmD+H/gnNAbJdC6DmDc0DpCwSXWIhzQJraQueGkHNASInXZo+Rc0C8LarfEJJzQB4FdsJMknNAa8N5JaCSc0B1GnybzZNzQGAxiihhlHNAhwgWEveUc0CZCTu8i5VzQL8/amy4oHNALpZY7Uuhc0AIi0Nuc6FzQMdfREeuoXNAJwaxj9+hc0CSlQoJWqJzQKFD4zaQonNAJFulTyOjc0DIVVMpBKVzQJZDtYTHsHNAFA46kTaxc0BCxjhAgbFzQPyC3ohcsnNA7MzzVLazc0CQNKUtDrRzQPT33+bNv3NArKHsDfjAc0Bmgc9bicFzQNVRMy46wnNAvCqnK8/Cc0AQmI+KJ8NzQK4an7Jjw3NATozK+MTDc0BsA+Rd19FzQMI5PqS80nNAK5HKKlTTc0CpghpN99NzQLzcAe7h1HNAooCqGKTgc0CLbtXAzuBzQCTAMbE44XNAi0/Z8mThc0AkOmPNkOFzQNJ6DmV74nNAPBu0vQ/jc0AwaVxxoeNzQGCN6IFW8XNApCZEOYfyc0CkGW8HvPJzQJpSJwsA83NA+NFPRzf0c0DCiQ7bt/9zQMyZW3hOAHRAniAtyuIAdEDgQePHeAF0QDxRqZWkAXRA3C/DvrkCdEBW2lY5UAN0QHZHS7FEBHRAvDjtXToQdEB8WETcZRB0QK6Dk4kKEXRAnkZI1oYRdEC89EsomhF0QIjjXBapEnRAxxOVEkwTdEB2xe2Q4RN0QJTVA3B3FHRA7LLeLEogdEB2l3bztiF0QGaehneSI3RA4EcP4CQkdED4eZQdUjB0QFtSUSNmMXRAPYlnFHUxdEAWtMLX1TJ0QIvROdUQM3RA2NSopd02dEBrAV8M4zd0QDQPxCY5PXRAXtM/HzxAdECWldg+VUB0QGaZbG8jQXRAuMTkCcpBdECeNt/kPEN0QH45MaR4Q3RA5OGZaUlNdEAipfpaX090QF2WPIbRUXRA5iJb5PZUdEBqWXVAjFV0QKyE6QPdV3RA6nh0uiBddEBXfBMAYWB0QPwTyQi4YHRA5GbmBAhidECVQNqEeWJ0QGWS3duPYnRANu6SEhBkdECET96OT2R0QK6FtWIhcHRAJCXSpkBxdECjQlOjx3F0QMcfOzwKc3RAgu8qeDlzdEAY2sxon3R0QAKExDk2dXRAdvXMDPiAdEAt9lAxToF0QGrlzvKMgXRAtNAkPLOBdEAW6Zzg64F0QJRUNuNIgnRAxkGH8M2CdEDc8wDUJIN0QHSChku7g3RAYhuKBxaQdECkU+tuaZB0QNzU8z8VkXRAXs+E9JCRdED832bqUZN0QPo7T6/un3RAbHPfsqOgdEDeOw05z6B0QA1pzosGoXRA49acHcuhdEBFv3wefKJ0QO4v9tW3onRAkHM1dw+jdEC4eZiSCbB0QB986x7CsHRAUBhVtd6wdECPi3SGb7J0QGR6Ubb7snRADEQx2pWzdEDcqg3Yybd0QKOvE/O2v3RAw3xmt+PAdEBSGFnvecF0QNbvLUXpwXRAW9fJDrzCdECky12/TsN0QE8m30V6xHRAtAtDtLjEdEC1tNaK/c50QMl0NV2j0nRA7MC4czjTdED2E6u94NN0QN8UrgB21HRApAsHL83UdEBct+Qm+d90QDIGyYi54HRA7kksRbjhdEDEJ/TSHuJ0QCfchFZk4nRApNKK8PnidEB25Uo2kON0QIDRNEtP5XRAGop1tozzdECkLzPdpgB1QKZvm3LPAHVAE4A402IBdUAuuVzkXAJ1QLoT4xOlAnVALUuAOpkDdUCjrYo/0AN1QNhgoQWZEHVA7gHbP+IQdUCz/G+7aRJ1QEpcHTkkFHVAhe1MG4wVdUD+Z3CH4h91QDZZ9XPtIHVAsWMk+ZwidUAgxQd2qjB1QFLzUVqqMnVA2XdAb8w1dUA2eh+RdUB1QJFYt+OMQnVAYTE9vN5CdUB8TEeS2k91QGc0zV1/UXVA5IIDOLxSdUBkgXi7DlN1QGRktppNVHVAgA4guOBUdUBawzp0dlV1QLVFNi4IYHVA9mLtnzVhdUCYI/lLZ2N1QKme20X5b3VA6Jguk3RydUAqBjnvkHN1QMMZajAmdHVAzFq26Yx0dUBIfD+ReIF1QD9KV2etgXVAcmxbd4SCdUAoS67MpYN1QEIh6PqahHVA40LvpY2QdUD+xXkavpF1QIxaWeP6kXVAxdyLtGWVdUB/jOj1lKB1QOAjguEioXVAci7K07ihdUC4A6/ESKN1QPh1ZYC9o3VAKXo1H7ikdUDK3xRhpKh1QM6KCAvDtHVACMwk68zAdUCOCiuhYsF1QJl+A0v4wXVAMMhiRqbCdUDqKmMmO8N1QNjzs3hkxHVAQACHhDjTdUBgkx9lS9N1QIQAvqfK03VAjXSy9ePfdUDMb91UDuF1QOftoKAo4XVAbC/BeAjidUBbc5taIeN1QLQOVVQ75XVAKIvdQ0rtdUCkec9Hw/B1QPA/x6r58nVAbEaAaGfzdUDjScCLRwJ2QAaVWazPA3ZAxeONqU4UdkD9glZpDRZ2QE4Jjk6IInZAzMu3EJAkdkDql2rISit2QNfj1xQfMXZAtO5ft5QydkBlnCgqUjN2QAb1IPCaNHZAxnFc801AdkABVy5M4UB2QAQt0+ccQXZA9SN+d8lCdkCvy4KNEUN2QBCJE7V5RHZA9sdT1chQdkAOhngmEFF2QOGcVOM9U3ZAzS8x2YVUdkDSW0JrzFR2QBLyk9yMYHZAYK4me5FjdkCYtPeM2mR2QMN07SFUaHZAfrQypmWCdkBWLyhA5IJ2QIpR1t2Qg3ZAuoVeE/qEdkCbu/zlu5N2QHxGhx3snXZAlts4BF+gdkDs9Ik8DqF2QAc97TZ3onZARa9wfsKydkCN63+IDLR2QDtoWJV2wHZA/bsBmb/AdkCH0wfQGcR2QFeATWDPznZAzohfen3QdkDAxsdyodF2QApLJbfz4XZAelbiIyrzdkC6T0qfkPN2QABhMiHN9HZACfQW1kr2dkDSChtkMgJ3QI5vZ6MAEndALuIgHA4id0DI2dK1dCJ3QHaDLEy4JHdAoN7Sfegnd0CsZb94RC13QO/vZRWjM3dAXq+ypAw1d0CUHfCOnEF3QE1KJJI6Q3dA7gtTwZFDd0CGlLJZJ0R3QISWs6kaRXdA/tEB9gZQd0Au0VstSlF3QOwBR+SRUXdAkMa2XCtVd0Alq6dbfF93QHobsaBEYXdAQGYpkZJhd0AS1m1s6WF3QMqQNtg1YndAxhye86tjd0BuBSpCJ293QFKNhek7cXdA7BsmK4hxd0D4cVj4nnJ3QOtaPYbdd3dAr4p8ufh3d0BJVt8xWH13QLgR/gErf3dAkrzJVnmCd0CwjyF8TJR3QFatNI+7ondATvcd5qOjd0AILRLLW6R3QJQu2TU+sHdAoNe9yJyxd0DmKT/T49B3QKKSN/Tq4HdAgpR57Fzjd0ACnvcd7PB3QFj3yUJQ8ndAeuVKUHz4d0Bb2bE/Rv13QOXTtEagAnhAO2VmcUMDeEB+NKUX4wd4QEJC5aX7B3hAWtOfrEQNeEBgvztPUBV4QNJPXyD8IHhALOBX/m4ieEDCjmRYiiN4QJ5ltnDRI3hADUuSizwoeEDk6o30kC14QPDR4FJmL3hAPJFcDwtCeEADjjNGekN4QKhcF2m8Q3hAONPSFhNEeEDwX3z9eUV4QJQuEZLKUXhAJLz9dnNTeEA+H84ph1V4QC9fNiRRX3hAY1JR/flgeEBM776XtWF4QMxJNPe9YnhA4hjiHnxjeEBfVdd0V3J4QNQazv04dHhAYKM7r2d0eEBEVHkoi3R4QDjRRkKpdHhAV7A/4sd0eEAZV+6l9nt4QIjIfJgZfnhAiF/jbjWBeED8hGGno4F4QDh9tmBjgnhAYoHuHNWDeECc3im9/YN4QHt2pouZhHhArsyTJU+IeEDc4eRJ3ot4QPEEPpoDjHhAQuYnG6iNeECjk4CCl5F4QDBICHPsknhA4tKwigWTeEAgr0Wpp5R4QGgYK5tLmHhABO46TLyjeEDoXRFWtKR4QJSv/RM7rXhA1BbSrIexeEAmcimAlbJ4QAwoExDVs3hApmFrdN63eEDef8KLy8B4QC4FXXmZwnhAqK2qpBbDeEAPDnVHIMt4QOqYhOsM03hAoFe0qLfUeECactaGEth4QFYsMmMX23hAnDwasBDheED8p2YfoeJ4QAovnbpo43hAINYpBpHoeEArJjnk3Op4QNA58aUs73hAgIoQ5QL0eECrQV6fjPV4QHT1FlOA/nhAnCS3SaYCeUDWVD+aCgR5QObLW6WaBXlAPjkji9ETeUDisJaityJ5QD4ZCqn4I3lAKLOwCbEoeUDYRyOHDC55QDybq2/SMnlAGNW8Vy04eUCXH35g+kJ5QPQ86u34Q3lAIGgohjNUeUAsPsjPy1R5QN6RgfnqYHlAzpqUWNhkeUBpF5jNQHN5QP5Rvk4OdHlAHmBuU/WBeUAqxmifNo95QAilE+cKk3lA9FAAOgKceUCFbwblGqF5QOrbJUPAsnlA4vQ+yLHDeUBab3BuWMx5QFyfLSZC1HlAwljcw/7UeUCSlmo0X9p5QHdYsxUu43lAWJzcX0/keUAWNz9NDOV5QCw56WMc63lA9DEDMrDueUBhGjkhI+95QKQq+sIR9HlAsH71RRf3eUC8qNAj+wN6QLG33m72BXpApHJ45N8LekDGcimE6RN6QLrgzAhpMHpAcLLrzSozekB4xSgiDDV6QG2DF90tN3pAppj9pi87ekCI3LeNNj96QCepgwgaRXpAOsZw/NlKekAQwzyDJ1V6QIYYQvkiXHpARcF2XylkekAa6tbvJnt6QNjmN+HSk3pAXG0BkqWUekApWfxcHaN6QJJjrAV2o3pAvjBR/SmrekCqL8DBMax6QBCFsPQNs3pAwAgqxzq0ekA4nRhlC7Z6QO7Pi/sOt3pA0hz65Ba7ekChzzANEL96QCM3I1Euw3pAKM8g4L7DekBY1JLBGsZ6QAEFRK7Fy3pAcCEsCCXOekDo9hNQQ856QJZBfuDS03pAShiRj2LhekCBkyXGreN6QA5/Wc807npAsqs3+xfxekAjCcpXdgN7QL8dsHd6BHtA1nT7jyoOe0Btbz0diRR7QP+kd4xMFXtAuqXaIiAfe0BTTt/YJCN7QLCL0yJbJXtAkUsu/vQoe0Chtw1Guyt7QIPG0/ZaLXtAUGIlYh0ue0B8imiRrzJ7QOMOBPvCM3tACUYEJGA8e0D0oWGg7pB7QCq3+33AlHtANtcCwSGVe0CO6GoVVJ57QMrRpRyto3tA0JQjAgOne0AWt6LBBqt7QO75XKQAr3tAPh2Q5XnGe0DkgX7bv9F7QLJE09f943tA1PJ10+Twe0DsIVKJlfF7QHLMOeiL9XtANpRACm7+e0CW/nQGkgF8QI1Dg9TZAXxAFLb4X/kBfEDq25DaugJ8QGA6utVjBHxAAPlsMpoFfEAuqd4gkBF8QDqF4+7PEXxAlIsbhZQefECdidxTgiF8QGzbBfXIIXxArgyB6P4jfEBMvWgzjiR8QKSZ8n5XKXxAMo5RZrIufEBq5sZDCzR8QHYsiGhPN3xAf6zY181BfEAurgSc2FF8QGCzzgVmU3xAjl0c/gpifEAY2D7CAHN8QBZTtTKVenxAnhYJFUiDfEBhcRH/UYt8QPYihW7DjXxAQtZD8BuTfECwy5e7Y5h8QLeEjLx9mHxAAHswiFmZfEAWZGgLS558QFLRtDiznnxAH3H4TNyifEBQY6UhwbJ8QM51G3zts3xAbZDqhXm0fEC5A/RRJtd8QHadhJL023xADHSKoVfifEDunDzmEuN8QOJZ0W/743xAZap4BKPkfEAmkeaxZ+h8QA9haeUV8nxANRYgN1TyfECMgn/lcfJ8QHEiTPhRAX1AQGL1bgACfUBZTFgrSwJ9QOSltuw7A31AdLve4UUSfUClEuDa+hN9QIWIe3lQGX1Ai0n+lq8efUBuKL1VGh99QGbt/i0/In1AkjBcRnUpfUAwfZRLRzh9QEieV8MARH1ALednZ2RRfUDk5uWlH3N9QIt6CLR5dH1AWHR9ZDB7fUAwKSsI5oB9QDS++EU4g31AvSnklWCDfUDoJmYd2YN9QLm2bPL1kn1A2OcdCSSUfUChNw1Bab59QGhqJWMvw31AmZuMe+bEfUAs7+lwrc99QGenROL01H1AgF8R2tPifUAUHW0WD+99QOpWP6qQ9X1AQ/7/WRP/fUC+ZzVTNAB+QNb36H0ZD35AvSzu3UMQfkDOAMTfNR9+QHTe5CQjIH5AUpUOwkEvfkDuCde6eTR+QOpLQZwJO35Ag94m+0E/fkD78GOSEkB+QLf4QKWhRH5A4vp8TXFHfkDS0hXHU1N+QDjeDX3bU35AbMXqdI5VfkCbyJGJNFl+QILXke5ZW35AcUISDY1efkAyAiebN19+QGf46H1lY35Asqx/8BBkfkCyfAT6wmt+QGrNNFpNdH5ACI0sbLZ7fkDqlo+hVHx+QLsS9zt7g35Azl2Xj8WEfkDuYEMOE4Z+QLoZFViZlH5A5uCuZ/eZfkARZmiLIp5+QGz1TwORpH5ATLihinmrfkDJWxH/Yax+QG7bZfoPrn5Ae8wb/iSufkC20/4dIrJ+QCyUWo6Vsn5Avi9xZoyzfkBcziV3arR+QGqEu02ctH5A2FUzmnC8fkAsdwSQp75+QE02ZXJmw35AOM58YtLEfkACR6FYhsZ+QJ53ULxsy35AqOdZD9rSfkAIiEytWtN+QNTdghF5035A2+AMt8nYfkCoG3EaYtt+QIgsnueS735AFSQhcdbvfkACbQSHafN+QDS8WvRY9H5AWg1xlin8fkDxdsuwXP9+QJwXZATV/35ABhk14DcJf0DuV/foOhN/QFg5M5ZxH39AFIMWSKg5f0Dei9SDezt/QPqZb92sU39A2BvZrLhbf0D6Uw5QBWJ/QBaH79qSY39AatE0wrZxf0BA4PUr4nR/QPT3Pae0gX9A0yei16ODf0AIfN0NGIl/QNUqNBhikX9A6LVDhqaRf0CC2ItolpN/QIjrSQ/ElH9Atst1s3GZf0B0TIBH6qB/QNhVsKJeoX9AXmc4pVaxf0Di0wYWn99/QJEelkMK4n9Arj+C+d3kf0BqvRVoU+l/QEvTHNeq7n9AX5OuQTnvf0DOV4cPJAWAQJvnLJ/aBoBAfIPpw8gHgEDPNOj1dwqAQIKhDLW3DYBADXBq+iMPgEAcPg0LzQ+AQGj6lMQNEIBAnWXHcHgQgEDCJWFauRGAQJO1KtLTFYBAWpow7JIXgEC2dVAbKRqAQL6RYk70IIBAnqExT2IygEC8T7sYHTeAQEquSL0LOIBAhH2bsf44gEC51fJ1YjmAQBRejA3JOYBAYtle/SA6gECkbPVWdjyAQBzuLNsiP4BAbytbqOw/gEDANbi+x0GAQKKJuseoQoBAwlMKIvVIgEA+Q3A5sEqAQJ0PjUz2TYBAxAD8peZQgECGGGbiE1GAQLT+91A3UoBAFSHSH+RUgECM9Fo1plWAQKAIujsnWIBAgNZoh+VYgEDSlk5tDlmAQCyO3iQhWYBArkDHmahZgEAlMO/V3VmAQHlyqBkJWoBAlBdLi0lagEAsmm8C0VqAQMJLQbwNXoBA/YbtaQ5hgEC15tPzY2GAQME0pTPDYYBAPSqKPxJigEDGde0ccWSAQMfa24UdZ4BA1HeYLaFngEBffsoTzGmAQAHe2BpPaoBAJRdagChvgEA1ywVMh3SAQA1iwQ0rf4BAsGyyq6+BgEBiBtMoNIiAQEJSA48dj4BAzkcGZT2SgEC2JIPoYpKAQPAl09uHkoBALl7X7H2UgECq1vcq4pSAQBqKjtwel4BAQUNzepCXgEB+R6G0GZqAQKwYdBuLnYBAAoWH9RmfgEDe8uVHXaKAQI6pKDbLpIBADLw4yDemgEDP7ZD48KaAQBVfMsGGqYBAJlT8aDiqgED0xjlkOK6AQDSMvtDvroBASkiQLxOvgEDwVjc9ta+AQNxDyf5isIBAvEBRjtexgECAzpR/f7KAQFbyKTdQs4BABvjo/ku7gECS6uYItLyAQIJA13SHvYBA4lWUBDa+gEBShZfCrr+AQHrFu7D8v4BAgG0FL2LAgEAZ5l8ZGMGAQG0FqylSwYBAHcvER57CgECQ2cwc98SAQMAl8TJux4BAyPg72aTHgEBk2MoPAMiAQFl+usJkyIBAqOsjPBXJgEDBMv5GU8mAQIzncBfjyYBAUM8Qw6TKgEDtImixEcyAQEvQFK4Ez4BA6M0hIOjQgECz3M0OTNGAQEB1LrRg0YBAkEGIadvVgEChPmUuZtiAQAlW1JpJ2YBA2uTgHGzggEBiii8iReGAQPaa9Y1d6IBAtJtVD/bogEA3ObadzOmAQOqMv/H18IBAcA4OzD3zgEAAGhKkaPqAQNFHBxnC/IBA8oLjcz//gEAuoYczIAGBQAz8j08/B4FARidXrT0PgUBAoXvZzRmBQNYGDCjWHIFAblqz39AdgUC3jqMnNB+BQE5/9zGyH4FA9HodQTQngUBkeVLwfieBQCyp5te4J4FAfG1MLC8vgUDiKQ3fvDGBQEpT0A10MoFA8ty5H3E3gUCkSCyEPzmBQL5GizV6OoFA93xX8Cg/gUDYnREzc0CBQJ0j/KaRQYFADoYa649CgUA2TXLCzUWBQCCRKWZZR4FAdhr7JcxTgUBs30t6BFaBQE6vpstPWIFAhTnuPuZZgUDoV9CeBF+BQIQftdv5X4FApZ+lx3VjgUArp4UTt2qBQHC+vaoWbYFAoEb2TaNtgUBKCr4FwnSBQCru9p1ud4FArTdqfRp6gUBSnUM4snqBQKxpGEyJe4FAsqpF98d8gUCb3bzGX3+BQNhcLqmJg4FAV6vX/SWEgUAMnQdIyoSBQL98IeQOhoFATpJo5HSIgUB4ENA47omBQMePLpDejYFALHxBslWPgUCkhoqPr4+BQDAcIVvukYFAVvF5/kmTgUBW5DNZ4ZSBQMv13qI1loFAxKMb7laXgUB+1Vdu4piBQMo0LgESmoFA9FKtn5ycgUD2VvI6R5+BQH7Eh8tcn4FABPtDYuWhgUBoXyw4+KGBQGV4RKjgooFA5z3oOjKlgUAmhqzUbaiBQFgWUWhKr4FAs/vmvwaygUDepOmNbLWBQKTIlcxKt4FAID3xe569gUAo3YSIBMqBQFfoCW2zzIFAsDkHGzPNgUCvH11yWs+BQPJIoOum1YFAwiXMlv7VgUDWW3r/s9eBQGT0KYrs+YFAheKJfbD7gUBvA2lL8P2BQMjh1EXkAYJAEcbR2vUBgkCa0wCMAgmCQPhuCpgtEIJAINbCANgYgkD2hBrSKRqCQNJp/WQsHoJAiPseFtkggkCEfRy6MSKCQGV16WXXIoJApx6OStEogkD0cFmlQymCQD9d4TAGKoJAwYmZGJ0qgkDT1ewqoyuCQJwTriyiLoJAFH1vqs8wgkCEJ4u4AjKCQDCosbBVPoJAWfsMjq0/gkCkLN1WdkCCQH6kzRMEQYJABB4zjFxCgkD2uhu6rkOCQFyeTNwqSYJAxhgoCEVNgkAAhXkoEk6CQND22gbZToJAdkN09KBPgkAYa5v6OlGCQCzS1IoiWIJA+kV9m+BagkAM63+IoFuCQCqfW0s4XYJAVN855ghegkBvZO7jmF+CQHo4fh40YoJAjLIdRzhmgkC+44bsNWmCQHCsW0YHaoJAij3uNW5ygkDOp9aTOHWCQL9DPuhPdYJA2psjlwB2gkDShipCcnaCQMtfsZ38eIJAzRRJzgJ6gkAwFBMWdHqCQAKwLj7KeoJAavAP1UZ9gkBsOSLQBH6CQBC350c3gYJA4O3Pi8WBgkDNFJZBTIOCQKQ2zTyxg4JAZlrT9NiFgkAY8dYHQ4mCQPDWkOMGjoJAqll6EMiOgkCyRTk9Q5GCQNoJ/9pvmIJAN3RB0BSZgkCqXrUkPJmCQJZ/saFUmYJAC7pcPDaggkBlDXEtDqGCQLhOM+k6oYJAn8H9XPKlgkAAZPFdDKmCQJG+/7A0qYJAnsBMkPSpgkDMkUpPf6yCQMWBRSj3rYJA3anrAnmugkDMKQsAB7GCQC+xUlMAsoJA9ra55j+1gkAoX08mf7aCQOx316LrxYJAk5a0+qfHgkCe4sP/7cmCQKVZczd+2oJA5t+4QA3bgkAai7Uxgt6CQP4gatWG4oJAYItyzZrpgkA9TOlNZeqCQEr4MZ9r7oJADJvdWYnugkB//C6iXfKCQJVqwFiu+YJACL4XuQX6gkDQ8PzNvf2CQGneFFvOBYNAWJOy4vkHg0ADu+0GBAyDQLDjqtekDYNACDXgc3kRg0BmkLZqeRmDQICKfjLgG4NAJAIlYXIhg0AOiLzHiiGDQGqnLshxKYNAMMhG1Goxg0DeWTtdHjmDQGy1TnBtOYNA3YNtZdA8g0A2994yq0eDQMbANS4tUoNA1zPeMbNVg0CCJ3aAPFqDQODY3sy+YINA7CbITutyg0BcCIBGxIGDQO9DxRjkgYNAPF2SQUuDg0DuU11UyYWDQBTqU8bCiYNASiAVlcSNg0DSYWJPeY+DQH71NbiZj4NAlwH0Zz6Zg0CKmrBLC5yDQGv3dQEQnoNAwBpEE0qhg0CV+KvjtKSDQBGyLgX3qYNAVoSyXOitg0DyU/Mk6rGDQPgriHIQsoNAcg5NDBW2g0BXTWOXXLqDQPhl5R8Qu4NAUIMebDDCg0D+zUVyQtaDQPZK/nTK3INA8sK1q1Leg0BSXAdaW9+DQF4Sgy9434NAgENy5lnig0DhTDr+VumDQGs4byeX+INAK3CNHpUAhEC0qLmU3hSEQP6uG/y7GoRAims4ht0lhEDwbioG2zeEQIQVJW9wOYRAvhf1RuY8hEApd9MDqEaEQLZte4h6SIRA+I7XHgJJhECtPEjBYkmEQA6UY6B7T4RACIe1mnVXhEC/9bG4fliEQMy4V5UoWYRAJkN1Hb9mhECO9ioF/2iEQAZauT79cIRAXM8u1VtxhEBCAPfJ73SEQJGdS5+3dYRAHPWj78l3hEAeM57E9XiEQOFSmHRTeYRA8F8MIV16hEDhtyeBd3qEQHSa2PIkfYRAtkbndJR/hEB5HHkQ0n+EQGD957E5goRAqgxPGn+ChEBE6C0wJoWEQCruitXrioRAl4VoOUqahECXieakcKKEQHN5zTg6toRA00jlxm7ChEAiMIwoIsWEQChMCm8XzYRA0kuMqx/ThEAQcTkAEtaEQA5T/vZp2YRAonp0AhTahEDf8LDOlNqEQLre1tRs3IRAmXUtWwbehEAAmlYMHd6EQMAYJ/xp4YRA57WjWRPihEA+PFQAY+mEQN47ohvT74RAWtU7QzbxhEBYSaZgY/GEQOQQ+It+9oRAcizYhdz3hEBMoqcfNfmEQK13x9VY+YRAomgz94j6hECk28TrM/2EQGLS8R0xAYVANo28ATsJhUCAXKmhUhGFQDA0FqPfFYVAqPySKPgWhUAia8h0exeFQPgbItwRGYVAWIrvtfsahUARM6RD/x6FQK57AP2DJ4VA0uwDGqBhhUBXiaYq3GGFQCYhlQ/jZYVAEhAIhktmhUAwaqqdqGaFQOIDKDygaYVABxzXKapqhUBcCOdzmXGFQCQB3g+wcoVA5a04lrVzhUCQNqYfDHaFQKw+tcyzdoVAB2u/T5h5hUC969mluHqFQOU8BOWRgYVAVk/adNmOhUBU0VXNQa6FQDIbXj5EsoVA9L6JckW2hUAUk7hqP7qFQKoTWLAgwoVASKvySQbKhUDum8ntJ8qFQE5DaDIq0oVAq+qGUxXfhUAxfMFqzuKFQMAtYNJm5IVA1g5sVAHmhUBICf4bneeFQCbAesc36YVA0GBeas7qhUDi79/OVu2FQKjRu4uiP4ZAVzq4K7dIhkBfCgmzT2WGQGDzRqAejIZAJhzmTSa5hkDgXCQL0cSGQKf3fUXQxoZAGh0unJzrhkAcxxqQLROHQDcEQswYF4dANp9LytYch0C03oqfkCmHQKfJBQqRMYdA1CCrcIg5h0C68IaOojqHQO9Z8CNdQYdAiLmpm45Bh0AkgOyxXUSHQFbTwU9TWYdAKAppcBtrh0BJYzqGc4aHQBlASoYco4dAYHzIPyerh0Cxq6djx7GHQBKx9yjGuYdAdii33MDBh0CoQZEiwsmHQDoo7QK30YdA+6MwxYoRiEDsyxZwxEmIQFhUexylTohAGOtZkqhSiEAAPwMKr1aIQICMUnOqWohAoRAfhQi7iEA= + NrgMGZxjYkDiYBUjzERrQKz0JpO9sXBAlLmMQukSc0Bv+8RmY+J4QOW5muEOg3lAAwtXzGYTfUA2VlmgexN/QEix0XUfkoFAf9j27EmigkBI4L+fyxqFQEngv5/LuodAZjF8iiOriEDcwGPbIsOLQMpeRqevw4tAB+vl3W77jUDKjTTRW0yPQJkKNHDdGZBA+1vb6VPCkEDijHQ8/nWRQETeG7Z0HpJA+KG1PSSSkkBZ81y3mjqTQHi5rFJ6VpRAbwieuMBWlEAq0BFhwOKVQLn4b1bsWpZAufhvVuyql0CefNQvLeeYQDkQZ2tCb5lAUJM5PnNzmkAdJjpzePOaQGQ66W2O15tAAqqeTLn/m0B4uqzVl3OdQLMrhsHiC55AwTztobjPnkDWUS6j3uufQP8NrC8HCKBA - + - Bi+BRPddGESs0EJE+rbqRcKG50ShIq9EILMURSYgUEXCSkxET6+hRJSmkESZSIdEJt6OREcRI0eBWWtE8TxERKODdkQPJ6VEsoPcRKWZXkR2m3NErEJMRZA3+kXnBDBEAIXBRP9lRETiSDBEk1+4RejLHkTmmXdEeA4pRIjr4UR5AYtEp2y/RLZiLETvosREHAZHRLYMlEQcCDtFuQgWRw6EREREy4dEOt+FRM62X0bmlTtE+fKhRH+tlEWoGMFEm+Q/RbbB7kQVkbBGlLCVRCCZPUQ+frlEh+uBRJbUVkTRBphFNJYsRNf/80SICUJEQxkzRKPUVEQOlXhEarCMRBjyMkQzdbREM/dpRHzKSEUR3atEiYeNRbLBlUT2+59E9NwjRl8Tg0Xu0rREe3icRTsJrkTE2YxEto2MROufiURT2IFEKAc9RZ9XN0QFqVNEfwtpRIhzgUSEOvFEYw+TRIyDS0RD1EFE/GeIRE+JNUSV9NZEmFf3RH2C2UaQsKVEqJHURAcGIURl+opFeONERGr3nkQPbkJFJcswRH4zmETYHg5FITWfRI0FUET+zVBHoyZERAsZeEQcKhlFsh5wRrL4ZUTsgcVFW0WpRMs4RUSXKlBEGfBSRDD87EXA39dEG/J4RNGK8ETQXIhEU093RNxiQUTHerpEvc9hRTtHYUV9NLNEhYTBRGbxL0QJCY5EjQDORQCt30TTlnBEjFxjRGMac0Xt3KFERK8mRXvGAEWIQLZFZHdYRE8cJUSu3EdGWxAERTh4Q0THuphEErXRRB/cf0Qqg89Ek70vRHOsJ0SQ5T9Emo/vRNaVR0Qrb4hEtv3iRNJMdEZrofBEP82eRP5Iu0TwbTtEbMEtRIzWgkRA1mVEDxiZRJCxMUScHiVEv5FARbj0SES1q2BEdD3tRCzw0UTmhDxEnyybRGis50T8zjVEtzw0RIbVtkRnM8FEAY/PRCSYskQJ0qhE6rtHRAUtlkSPiDJETz+9RELptESqObBEwhK6ROlot0RfPIFEWWiORC9knESDhY9EIFqPRZS4KkR7dplF6fjIRS2LtkSj2IxEYv6JRJXH10RFY8dFAddAR79ObESee2NEAPJKRRa8aUR+jdpEYegzRRtzzkVbfSdEagZXRE3faUTpqAxFOKmqRNavm0RKhNFEI67TRZysb0SzyyFE9M5vRDvDWkSBd4VFWG7gREKXW0X0htBET6UrROSYvERLe1FEp4IFRakfy0QjpThF6cc9RPXDj0VFqqxEf7YNRFVp9ERJQVBEj0DBRBw1uUSjA0tE8aRJRFWvuEQq18dE3vmURCkLt0R2SC9ErRaeRLc5uES6WolE2LHERL4QbURYSZlEs5lhRd7LTESmkXRE3LVbRE3msUTKzNRELZuqRUlzg0SADDpEOa2CRA4R0EUDeX1E+DVaRFSTVESJHr1ESWAoRKotdETPHh5Fb4uFRLxKb0Qf3IREyNc9RpCVJ0Q2HYZEHK0+RU/7VUTIAkFEB8i9RH8ihUT5TLdEb8d5RFTEMEVH75ZE4kNFRNRlpERwNJJE/D0KRbu2sURudTZEK9EYRTbsgUSSxfBEVwoGRgMphURQdr5Fn3YpRGgtikVU0o9EhYNPRCniV0RhCHhEr49PRMouNETvppJELJ17RNHZB0ZIyL9EvQqDRJS38USGqJVEXKM1RIFPaURmyBBF2EcSRX02OURUyzpEwCVQRBTMEkTsLklEy7K7RBV20ERotUdEieWIRDT7N0TXB5VEVr++RI5WGkQONkVErgWCRNo+vUVKtsJEv799RPCIsEQtC2NFIvnZRQC8n0VcRMlG1LdPRAveL0VFTS1EL6jHRCjEXUQP+JVFrhSdRBTGlkQz/oNFMejKRO5xIUW+sxVEcvabRGhT/EWWiHFEwyyCRLRP7kTrEI9EX6MhRMB0Z0QHbbxEh4w/RETtF0Uv/mtEPYd6RObOz0SyIJJEeP5hRCBKo0VcGEJE+POGRKNflUTSEDFFRGOcRKoKnkQJWLZEajg2RL6g4ESof01Ebf1GRKJYxEQC8odG4+xhRVLkkET2OmJE8ut8RY21gkQYPctEE3vnR7uTr0aRahVEBoM5RdNnY0REwr1GdccdRTkDvkVfHGRGIfbTRPbWnER6CzdE+rSqRHsrU0Wr2lZEyXYgRNB9WkX9s4VEIp4vRKv0H0avIFtE1yGtRTEzmET5GYJEkguwROo+pUS+AhZEREd+RLS8TERYemBEcU44RHB+ZkRgqEhESoQdRFYejkRN86hEIOBNRA62V0fw5cZGFVJLRPCssES7SL5FqTX9RA1xYkQJDUJEPFSbRdWVZ0SEaE5EZt1zRA9fTETFb1REAkKeRNohQEQR/iVE6KhTRZ2cMEaghZNFOUl3ROd//ERHNjxEsJ8ERQWZAUWikhtEH2kmRBDLz0URfNhEQ5d3RWHxPEnUAMFFmrypRMC0MUeB2xdE1baERK41bUUIVZpECulfRSSCcEZ/f0RIIvrORkVP/ER9hyRFfU9gRrX/Z0X5epdES0IiRQNZikYht+BE8x0ZRRw1j0T1eMVEW1ELRIzTnEQuG2hE4O+AREdFNkSNGTVE/2IaR5gx9kVrtjtF3xK9RY1mOUQ7EIFEUP1NROMdRkUoTH9EZOCfRMTON0SCiUxE2rdPRWrWlkW0I09Ez+YyROFnQESZ05dEmUFzRG4DVURYCkVEK3J1RUXwFEUk97pEqIS/RKacNUTC9LxE8QdHRHN6c0UmGkhE2u10RKOqZkQVFEVEONM3RDswgUS1emNEb2peRH0dmERLWoVFblSiRFnvsER0A/JFzRKrRjVCjESI1zBEqgvORN8nc0XhK5REB7qJRDCgQERMbIVEwolBRGo2/0T7DVtEl/WyRatODkXCiKNEEfbNRs+NoEduXaJGr7a5RSj0FEVrG6ZGlNSGRC3rDEWbs7xFbCuxRFZySETtA/ZErSBGRG8hmkUxY0xE3Ux3RGoRLUTY8A5GRsBLRDcC20X6r4tFvf29RK1w/kSquFhEVaOTRvfrnUTn3ydGxf16RHpxUUTuKFFEQ0Z3RAwiKERduRhFFsXHRGxwRERjHtVFs72aRH5ej0TUUBhGOmuFRM0K4ER73h9FBzGGRHUQK0XGiE9EYaprRLvQLEQaYg9Fd2KMREDhWET0N2FEG9yCRaoYFkV/QwdFMa7gROdCZEQNe0lEE0rORMXr00ThzbFEHzSRRApPpEWkHXpGNhwrRCbmwUR+dkRGB+ABRWqIA0U8VMFEWCeQRZ36Z0S2l3dFxjxmROh+UkTa0HVEWXIWRj6ycEQJGdtFMeCyRF/HtkQvPi9EjROxRQbAN0RjRT9ErquMROvYukRGhTFEcOqlRSk3CkX0I1NGszzJRVL2tkRn5EpEBu2ARCYHx0TkDXREHdExRFs4lER1gbtEydFhRZL2MURs2IhEuHrHR82fBEVs6l1E6dJNRBqVvUQJRyFFldOvRiOkW0XruJNEZjoRRdWToUYo63FERUtBRSQJCUVvppdE9Eo6RC+kLETcXblEVhxcRNT0wESoTDVEIoFLREq+hEQLF2dE4qOfRYqoUERaBwZFRr5gRDetG0TYBGZEWzq7RBgsiETpsAJF5XOXRiYQVUQhH4JFAa17RI46nUQYggRFfoBtRJDHzEa4oCdEblpFRXeJskTjgrxF7CPRRH4DwEQrLaJEtx9nRNnuXESGvTdE4LZbRIBQG0a+zWpETrqQRAR9QkTkLoFF0vNzRLCZREQCfVtEPJ0nRFElS0ShhMNEu76ARBWem0SkElNEvmwZRFYAX0STDqJEKOGeRIrigURR3TpG4faaRIUyL0bqY0tEvqI5RE+Zs0RRqZFEqPo9RJl2LEUrB/hEoR1nROgvVURpZzpHMWUqRRGDYEQAhopGQkpuRDZbt0XQZnNF9BtIRLebeEXkNkdEuUuPRK/wSkTmqnZEmewrRMjzikSA739E262GROLUMURKQEtEubRWRCaafUS7uKNEKw9wRLLcikQMQmtECoaSRYAewEQoTfFEEOWkRBz/Q0TJDyRGpuOGRDRtvkS1tIlEvSGVRPO7V0SGgAhFrHoYRQRQWkRi5kVEEw0xRDMy6ETH9tVENW3KRHGWiUQSdFZEaLV0RPTj8UQn6cdEyOtmROLBMERsKYtEWdewRDrqk0QzKT1EtsJyRB+ilERcDntE9Te0RIYIcEcCrD5E9OCLRM2SdUTFEUJHS4K4RCeznEYQ3YtFbbdpRJXfpkSgoLRFqEITReH0bkQMC2VE0IwoRYuVcUavM2VEe36DRAPnGkUvPZpEh2aZRG87r0UXPLJExJcXRfUc6URQ3qtFv/xSRIM9gkTYiY1FxcWLRC54IEQnGZRFoBazRCSlP0W9KetE2UB/RO7QYkR4ZrBEBI0SRcTeTESxaZJEeBqhROdwhkSq1C1G1n9GRcXEp0TxjW9EEKluRAkkcUTEKeNErpKGREjrRkR7oSxEf0DERCj3AEWmoR9FY/oxRT0d00QlvuZE2VKKROrSU0QDEkBEoj3ARS4TsESTqMtEtlbxRIXheETKaJtENlddRXWab0R6wcJEkqlPRfHHQESJ9WREP6FXREGSaERE8H1IVbHKRWM8lURwYkVEpcqhRCEmkURwsylFIpGfRHh360eTRANFs/GqRBecV0T+ypNEPqBSRASpdUecQoVFHMEqRLFrlUbE819G1EGdRYScqUU62lBFcY4IReSsS0SzJChEHOlsREtzpkQt2iFEAHqDRt+UHES8fJtF9i+1RUdncEQ2bWVE7Z1gRAUw9UaDioBEqW6+RSyAT0TXW55EHBIIRSWKxUQk5CNGU2lXRBRXikQ5sAxFxrDrRT9jU0S6MkhE8lgrRJjxg0Q5ehpFEYMtRIZdRkS6n0lEI8A9RKkVSUT5Mk1ENMltRI9JckRJ121E519KRFnNXUZKil9GfzNrRV0YUETXhYpEiWBqREFczUSMVl1E0Uh2RBIiUURayFNEnIxWRJsGLUS0LStEcUzvRaIHO0TD9pJEyvdHRFAKTkS6QDJE+ZIdRS3QakSBTR1E+cTYRaKISUUAfM5Eb6QSRVnFsER6UwJFoqxoRC+/A0XNaRBGyvNQRJ1ql0TTOitFbzdbROxuY0VN+ttE8/FVRPbEgEQLy5REWqZ5RFvjSETlIrBGjZQeRKnPHUb5EslEasThRCtF5ERDrUlEcBkjRo4OrkW7WppEawwqRaWAaUR+2IdEEhk2RQEJu0SujUZE7dgrRU4mjER9xKNEdmiWRAZ+okTLvEVFlazVRX+6ZkT1octF3R+ZRHqSD0Xqol9EqZwvRF2itkSsU6dECEu2RO0drUQFD1BEc8KERFtPYkS/PaFEoqnCRGF/Z0SVIJdFLK8aRR4tU0QU465EhAv9RR8nukQ8gWBEQgihRBTXkUW+KB5EwmCJROoosUTgHTxEhEmCRHUcpkTJ7X5EAArORE3WYUTIbUBEy1I3RI46/EfV+1FEwllHRBcUZ0cqOCdEp41BROXw7EaudxFFbNKERGvZy0XJfQ9GAfMoRSjvu0TdZmdFyhfcRB4/c0S9PX1Esz6qRKvMvESpQihEWrFiRE2ZdUTH2DxFzyQ0RGb1wkRizgNFlEliRL3n9kTIgENEmgKVRPkvb0SIUopEodkyRAIa1kQCI8NEAG9qRPcBVkT5WSREIgx7ROc5Q0TTBztEYrn4R4ohZEdNK0dEg3b3Rs+Qh0WZ5wxGEVMdRfLrsUTJrDpExQxvRDnOhUQDCThEvbZJRNRROkQhXWNEftVKRAD2uUXAO7hEy9qLRGixGEWixzZEWw2WRN+IR0Rhx1VEBdNSRMOjPkR+kjREIH06RLBQSkTiYUZFRQEoRVxdu0RKlAdFhT9bRImBWERQxStE6Jw/RJaRLETnl4ZEXErjRIoHTURK6gJFXqVURMKfP0TK2axE6cNtRK4EF0SvL31EwyNFRAo5P0SS2FdExolUREk+QEQPSDxE+s83RCqrh0RFPYJEy01pRCI9g0TLa1REXTm8RHJL3UVHNCtFPL9bRIEGRUTpzsBE6rA0R6U0wkSYWmJEeaddRfk2M0efiLJGSysuRNuAEUZO8B1EvgLmRPg9aUQcBldEN4czRM38pUQ5DiFENNanRL1FTESAUG5ExAmuRA00+EWR3hdHb212RThBL0SDgkhE4JlWRNaan0QKzZlGbhBdRNDaKUbygUhE/e6JRcuckkU/kRZFObzqRYsjEkU6IINE6TjTRQzbYUU9EQFFnKdARL01TEQCMxRF/sVTRiIfz0RPm5FE2tPoRYVmWkXhizdETdINRzoo9kRi85JE608BRY8NtEQ8wWVGAB3HRJRCPUZ6iYhFyahSRMVjIES26CdFd1pORc52cUTqbopEV+VTRIs88UWSietFYSfnRJsDd0TR3clGhOjnRDD880X3qadERc+CRD+1XEX5J6xFdlGxRTpFRkW7DKtELSHeRAUynkS8YFBEZTUwRIOaO0QRSFZENSKlRJQvdEQXRNJEfKmARGtLGEVKbp5EsuAsRG2yRkYkuttFiUdZRdE6okRE3ptEGkX6RD2HI0Qv+yVESbxIROxZNkRwT6FFaI2oRPO0EEb3B6BFEH9rRUIAUET7gz9EgQVURD8LkkSrrDFGquvMRc1jNEVNji5EyMPZRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Ki0F+ibBckCI0E2fbsFyQDAHrfTGwXJA3tsFuU7CckD4tvWaosJyQHSMd8TkwnJAPtev3DrDckCq/Mf1xcRyQJgNtINYxXJA5GHD8n3RckA7i7RIQ9JyQKZ4+OE903JAudysOUnTckAA7io2dNNyQLkKg37N33JAc8otybngckDKQk7AY+FyQDxo9zRQ4nJANvz1LZDickA8iHmaJuNyQNQLUVtN8XJAFTlZfcrxckA1BG3ttfNyQMAj3jYN9HJAm/1HMKL0ckDAHKD5wP9yQI2HzepjAHNA2EdPIPgAc0BW9HjJEQFzQJTz8tZKAXNAYIS+YowBc0DgquffOgJzQHorG0XOAnNAGVFlHWUDc0CvBj5m+gNzQLRTc6MiBXNAIk7lFgsSc0CoTyuOKhJzQJou1tq8EnNA0rOlc/kTc0AkMKJ0ThRzQD5wPBJ7H3NAEu51C6Qgc0A4ZDj4OCFzQK2S+DV4InNAse9f1cgic0AU5FuzDiNzQNqKOXUFJHNAnYrnUTokc0DolkALzyRzQKJRvU5IMXNA+6smf1kxc0CstQkJAzNzQE7rI2KhM3NAGPER4Dc0c0BqIXqw2jRzQHoLK5e5P3NAaIStmeRAc0CwImbVeEFzQFgy63B2QnNAjgR0SrtCc0DsQ38oekRzQGqHxyp4UHNAkPrJX5tRc0A2pM5FFFJzQOaGjXBCU3NAivRQGqRTc0B+Nd7QhVRzQLXBcLX5X3NARMMeKotgc0BwkMBliGFzQH2hhfinYXNAKBtclx9ic0D7KpZVpWJzQGkmLO84Y3NANU1lTs5jc0B7+K2CK21zQNDCJIracXNAnBX/jFByc0Dgh1QAvHJzQJVUEohPc3NAn25ry7V0c0CHV8UcTHVzQI7UX/Z4gHNAKMxcWaaAc0DW2yxoCoFzQBtA4l42gXNAVvXTUF6Cc0CTihgZpIJzQOuv2u7ignNAkuA8nACDc0APGnmRDoRzQFhWk56HkHNApN+PC4uRc0D1a4ox1ZFzQDxhUEf4kXNAon2xVyCSc0CKqf1GTZJzQOyoJM/Nk3NATmBA+GGUc0DkUszZ95RzQAUN5DiMlXNAFD/pILigc0BkBYLk5aBzQHYLS2dOoXNAoPUds6uhc0BE0KKqDaJzQEKTcrxZonNAK912BiWjc0AonL7PBKVzQLj9g0PYsHNAMpnQQTOxc0ByhnkHXrJzQPAvr+J7snNAT2esfbezc0AShQcrDbRzQPQXYPz2wHNAFpCXrIjBc0CfUnNGOsJzQNhfksjPwnNAJO7DRCfDc0CAjc6I1dFzQAD6O8BD0nNA3Bt377vSc0C0sNu2ItNzQL8rqx9T03NAnD0nSvjTc0AO8TCHi9RzQIIDEx3i1HNAXCmlL6Lgc0A11yiBOOFzQLdeFxlj4XNA85NVmebhc0B+QnJeeuJzQO9JYWUQ43NAkG1lkKTjc0AD2PQeO+RzQESnvyfw5HNA56cEuSftc0Dsv9XTR/FzQHCr4rSl83NAeY9T4jb0c0DoWvfXi/RzQM4rx0PlAHRARibFC/4AdEB5ybx/EwF0QI6++Zh4AXRA7Oe0+KYBdEDiBeAPuQJ0QOWQDXmJEXRABh2tIk0TdEBUv/wJdxR0QJI16IEhIHRABKxqN0wgdEAipftouCF0QOKFoQyOI3RA8KKS9WMkdED6/NXBVTB0QPhFYewPM3RA/jWrRN42dEAkTddi4Td0QHZ0MOk8PXRARGOA7lFAdEAtEqa+yEF0QCylvm89Q3RAUGfssnpDdEAWGNACSE10QIMmowrQUXRAaSMfUqZSdEBtmuJv/1J0QOBdcXb3VHRAGh+Qp4pVdEAQ/kEJIl10QL6WD9dWX3RAGo0bnLhgdEBCJc2FTmF0QGbpE1kIYnRAWGi5kIBidEDKa3ZKD2R0QAYbWgtNZHRAMrafqNNndECGrWePIXB0QOSda8NgcHRAMp248EBxdEBkzCiyzHF0QGUticJ9cnRAfneRoQ5zdECEKH/1OnN0QOoPN4cMdHRAzKNZpKJ0dEA2Yxa9NXV0QBggydAvgHRAVrh84/aAdEA80c4yToF0QK2XssTugXRAdlIwTEmCdED2PzXbzIJ0QCBiIgkmg3RAs0qrL2WDdEAb5lHRu4N0QNJAgtoVkHRAebUN3GeQdEAolBIsuZJ0QDUMxULvn3RAHjOStKCgdEDRP1du0KB0QOl+lrsGoXRAQIF4TjehdEBwp03HeqJ0QHx2RqG4onRAVDhWIw+jdEDIkDiuzaR0QIhCQKgKsHRAaHKUfMSwdEA4UJNQcLJ0QPQjXTf+snRArqiEuMm3dEDE4sMj4sB0QIYVXRt6wXRAsPkKRuvBdEAA0OeLC8J0QKb3XNe3wnRAQrhGDVDDdEB5J4IqesR0QGoSIsC5xHRAjJxJLjHIdEBC+PjNys10QMNOKv78znRAyj+M+vjRdEA0HHiV4NN0QCy2rBV21HRA2GtE+c3UdED3V3v7jOB0QELF/VO44HRA3qf8GiLhdEB97bFqueF0QGzX8iX84nRA1O540TnjdEB4qGFJj+N0QAxkjg9P5XRAKksdhtzxdEC+5uGvS/N0QHq+WGuM83RAnsYy8qQAdUDSOl/5zQB1QJ4ryB1kAXVAGtCN8lwCdUAVjIi+mgN1QJPt9uPTA3VAEhh/EJkQdUBU5lXtbBJ1QNhDKj+QEnVAZmEZliQUdUBA8LR+5R91QPbEEovsIHVAvxcLOJ0idUDqMWt8fyN1QNDfcV2rMnVAl6pZS801dUCkeA2akUJ1QDk2TADPQnVA4/f1WN5CdUBDM+QPjE51QF1rBO35T3VAIfXSURdQdUBaY8z+gVF1QAfVSYq5UnVAdeUL+hBTdUBLHqYUNlN1QG7kAklPVHVARrHRHONUdUBk7sM8d1V1QLKRYOD7X3VACuwjfw1gdUCUoORpNmF1QKic11RlY3VAeMHCdHRydUBQQ2L7t3J1QBg0rqgmdHVAtjJ1ZI10dUCs3U1yeIF1QCD37ROtgXVAxkXk4zKCdUCc+w7DpoN1QNL52tcShHVAnE/YfJqEdUBLl2gHjZB1QF2HzQtmkXVAug0Mz76RdUD6Zw9aOZN1QEzOJJizk3VA8168jGKVdUDnOMJpk6B1QDGCwt21oXVASdhh9/yidUDM2zDXSaN1QMhJue27o3VArDRIraOodUAyNx3V4Kp1QKHMAwWNsHVADp38prLAdUCk4eA+zcB1QNwqAY5lwXVAesTiGvjBdUDwn3XsosJ1QBIppTs6w3VABAjmIVzTdUBaJtRlzNN1QFTU5y3l33VA/+SBFL7gdUCqvnLSDeF1QIx8h/kG4nVAbMkgbQ3jdUCu0+NBOuV1QPzyq0g583VA0x97XSgAdkBqfiH8RwJ2QH59bkXRA3ZAGpGkd04UdkA5b6RvDBZ2QBdwmeCIInZAWCR1TJAkdkCuRea0Sit2QM9fjV4fMXZAdq/PDiUzdkA0CelxUDN2QAbhfomfNHZAGCkb8R1BdkDEWWVQzEJ2QKpU46xMQ3ZAy2lviHlEdkC20nn5+052QM1obdzKUHZASKNk4BJRdkBaTOUwPVN2QM7LmvPNVHZAPIZnv45gdkDQB+1u3WF2QAuEVdLbZHZAmmOjE1ZodkCi1vu2sG12QECcP0cOdHZA60FtWNCAdkCSiVRf4oB2QAD2wWuMgnZAHDDTmWiDdkAEdZbQj4N2QGbLZ4ysknZA3U4tKLuTdkA6sCmMz5d2QNxXAe7Bm3ZABwq03wyhdkBgSNH/ubB2QEVBSybDsnZAhIrqtwy0dkBm8YnjisJ2QHmDRnPOznZAXsGnpKDRdkAMxm998+F2QPDaeoeR83ZA6jaed0ALd0BBvS+CARJ3QPbps+u1IXdAzeH+sA4id0B0ocZyciJ3QI6ZB97mI3dAbrLnnecnd0C6Cig8QC13QFLDXR6gMndAfiZuRaQzd0CKT05y7jR3QGdzaDYNNXdABtZjBsxAd0B99hfynEF3QHTQ92aRQ3dARJr+NyZEd0ABMEo1G0V3QCxPjU4FUHdA3SihT0pRd0DjKp+zkVF3QEa2AoXtUndAPftYoypVd0C7D9UKQlt3QJpyjn18X3dAnkw+0Ehhd0AlfsgNkGF3QCArIBHpYXdAxEoHJDVid0BiCl1NFGN3QCYJx+yqY3dAWO1h+zlld0A86EivJm93QKipF7ZrcHdAXfyldidyd0Dyfnh6nnJ3QMx0VXGSdHdA/rwHxPh3d0Cy8th8Qn13QLxUdv1LgXdADp4TtniCd0BYdtUam4J3QGwG0VYIkndAKq+ofZuxd0BcTyDGmLR3QBr1wfLj0HdAXsx91o7Wd0BxllCcTvJ3QGfka1Lb8ndAmnp4h0b9d0CypEv8nwJ4QCu9v5abA3hAOinKIOYHeEC833nM+wd4QCp08BZ2EnhAOI/Qdm0ieEBSP6fNPSN4QNeRAc6JI3hARiPM2j4oeEAMANnCfjJ4QMx50+t8QnhASfmKJr1DeEBc5OqqEUR4QBi8Mop6RXhAZvo7/cpReEAaq3OTmVJ4QLqABHN4U3hARqjP36VTeEDIirmkh1V4QABQ4vD4YHhAfNjKBbZheEDshSCHtWJ4QKCbgX3+YnhAuMdDD1ZyeEANsHM3rnN4QPw9fmtbdHhAbywDp4t0eECs8VFuu3R4QKDrBuwjdXhAAm/MNvd7eEA7IPF+O4F4QJoceeekgXhApzJf3M2BeEDY/yr8+IJ4QF60wdLYg3hACs+u5/6DeEBAt4C0mYR4QOx7P0ZPiHhAXm+9hd6LeECE8YEaBYx4QGIzjc+pjXhAjMwIKpeReEAJRUsY7JJ4QFtG6joEk3hAvBGijqeUeED02BEmvqN4QBzcC/24pHhAAcEzgzqteEA4vj7GnrJ4QLfvSW7dt3hA2f0hIM3AeEDyLxdV9MF4QOcBRMmAwnhAi/3alhfDeEAIpLKqBcV4QFpZrrcdy3hASNH3S9bOeEDT160ZDNN4QIAFAby21HhA03Sj8tPYeEDM+Fr/Fdt4QMh5b+rc33hATnFpRA7heEA86+2YoeJ4QFe4aBob43hAymYw4M/jeEBHAYeA/ud4QEgBwb4t73hACFEhCwL0eEDcAmldjPV4QArkB9VVA3lAvYSxo3oDeUAo+FOCmAV5QJ1jv4PYE3lAypyDTbkieUCYAZCSYSN5QEyIV/WyKHlAW/ef+wsueUCuLJtOtTN5QIZ4WqOQQnlAluHEfPpCeUCIW/etm0N5QPrVkfP8Q3lAxvhRZN5QeUCxUgf/zFR5QDJSFW1Cc3lAtDCYpjqPeUDeORxnmpJ5QA/DdKhfk3lA0hdyXBuheUCS2mAQwLJ5QODNHOa2w3lA+HPKp0PUeUDhJOFv/tR5QHomFO3J1XlADmcUo8PWeUBhXduuTuR5QF3wW+IL5XlAOy1lw0vweUC2hO0yv/J5QC6nRR4O9HlAQMklMEkAekBEgd1L/AN6QCiFa0j6BXpAus4OE+ALekBbj6ML6RN6QO7HWYk4I3pAA8qrMWkwekCWP5sLKzN6QDQ2KEYMNXpACnOGui03ekBJ9zj4MTt6QBZqvk82P3pAXsBywTdDekCg5jXlGUV6QGpCBDArVXpA0jGqnyJcekC7QgAfKWR6QBTuKqY5ZXpASWxMI4pyekAnt4LiJnN6QNalzK4nd3pA1I3ck8SAekB6u9tZNI96QLYtqxnYk3pARsB8m6CUekC3pCsk3Jt6QGjyGNweo3pA0qtsWiqkekBIoSQrJqt6QGP1lzcNs3pAwU72WPOzekA9dECwDLZ6QBhjgrUPt3pAarFzjRa7ekA2+Nu7Rrt6QMTovzwWv3pA8jT+XyzDekCBq5NAvsN6QKr0IyYcxnpAHOiRGsXLekAE4IRdQcx6QGZlBSZCznpAe/iTdD/RekDiF0lTztN6QMUoKIBm4XpAoCl2OzrkekBCsbJ2e+R6QOZXnpE37npAiI5nJBjxekBlyDOeXvF6QCCTyRB3A3tAeoZKCHwEe0Dio+syKw57QISsqK5MFXtAUKV9AVole0BsgSRlvSt7QPAPTohTMHtAKmjkvMEze0DiYbDsyFt7QHxp8ApgY3tAAKZ9MuRye0DQuL2EDXR7QKbPDHZThntALOyoq76Le0A2bOjBN5N7QMCBY5QjlXtAEGm5KFaee0CtA85nsKN7QMAUH6P+pntA9sY4aAGre0AoK4J7ArN7QHx5nBd4xntAxflWZLDRe0ASvYhTv9F7QDcW/lsk0ntAYiUJEf/je0Bvv3etKOR7QHsPTYeM9XtAhDx7RpUBfEDMdn7r2QF8QOK6Q7j2AXxAxyd8NL8CfEDcGV5LZQR8QCv3NgmaBXxAbpoEcJIRfEBoT/VA0RF8QGZcpKi/EnxAuI2MdOMhfECaTwrd/iN8QKqveNY1J3xAtPBHbVgpfEDEot1usS58QPERdWUINHxA5h9VosxBfEAVGgAqiE18QDramd3YUXxAmhdFn2tTfECsnUJyCmJ8QOm2wkBJg3xAhgxqhcONfEA3KnYtHpN8QFYbXturk3xAbg0D+WaYfEBOGZhRV5l8QAHiESjOnXxA0CJtgEuefECXZNldtZ58QB6TDUzUo3xA7LNii0ipfEDAErAyv7J8QBwN37jus3xALAyPnXm0fEDFtX+g97t8QNNgkQwi13xAgdvh9/XbfEAcF+HvV+J8QD3Nis8Q43xA1KklfGvofED0nVIb++t8QJwyUjwX8nxAOH1XNlXyfEB09ZN6AAJ9QG+F9uZLAn1AnBs7lAESfUBGgc6nRBJ9QElJo077E31AC05kQ1QZfUD4siKIPCJ9QI8XR3arI31AnOq2sCY0fUAGCzNaSDh9QCbX72CfPX1A/FHKVw5ofUAbyxHRqm99QDYwSWt4dH1AaBZTYzB7fUADFUeaOoN9QOtpI9b0g31Azhb5HCWLfUA+HvVSlo19QF87EihHmH1AgBx07yrDfUDXCNnH5sR9QOlvYnnz1H1AdE8NIz/bfUDcun0JkPV9QNhirpgX/31Ajm3+VDQAfkARZLAShQJ+QJV3gPtDEH5Adsx2KjcdfkBNeKXRNR9+QDcBS9wjIH5Adi/7yj4vfkB9rz29NDB+QHZNjTl7NH5Aor+8QQU7fkAE3Feph0R+QAJX9pNFTX5Azu+knFNTfkAQMUWP3VN+QCCdMoOQVX5AmIxleHpXfkBrTbUzNFl+QIZF0d9aW35A4hBKbsFcfkBKmoy7QmN+QDREjABkY35AyCkK0E50fkB+SbNp+HZ+QArcz3GRfX5AyXYZoyGCfkBCo95ffoN+QIFlBFq6g35AtusYKFKEfkCyZ0n6z4R+QDDGtvvJiH5AZGAUAg6OfkBYShvp4pB+QOwk+I65mH5AUKYyBMqcfkAirpCGaJ9+QAABruaRpH5Ap8vJZWOsfkB4Esg3b69+QJ1XiSC5sH5A5A1JYCGyfkB2ZvvkabN+QN4shPdptH5AgGQriqC0fkDsZUS+fbd+QN5TUuJuvH5AJyuRt2bDfkBCY/A6ecR+QBjSzz7QxH5A6CEugbHHfkD8hnt3vMh+QIKlv7Bty35ASLQ3ClvTfkCSKtmletN+QDq4V77g1H5Aox6JvATafkDcseSBY9t+QDA6w/4q4H5A5EBD8tPvfkBkuBS5Zf9+QFaJzk2UA39ACOt03MoIf0C4mgeGOAl/QKTje5FLC39A4tgWjvkTf0AmlOtEgzN/QEroY4ilN39Ar0KTeiE/f0COQIyolkh/QNh4015VU39A8RPFYbJTf0Au3mnk61h/QAAxCca2W39AOlFLTrdxf0CooGtb43R/QFygie6wgX9Ac6bdmqWDf0BbwsoBY5F/QAxtQKmekX9AeEtoRmaTf0BXmEg6mpN/QCyBH0pboX9AKqzxCZihf0DsGVwgDK5/QDI0IpJWsX9ATao+GP++f0C8EL3zncd/QAgwQi4ZzH9ABkpVOSLUf0Au5s0Cot9/QGh1lGLf5H9AXYRz6VPpf0DBmATMrO5/QItajnCb839Am06qa5v3f0BMIt/3p/t/QASGRyt7BoBAcuJPG3gKgEC6CDFzrgyAQEv2AOW5DYBA3afKr8sPgECnKHFHfBCAQNd1JNF/EoBAwKgf9XgagEAAT+PscxyAQOAivVgeIoBAnKTxW2kigEAOS4sijiKAQBZr4X/QI4BA2P42I+0pgECapkA6JCuAQIqn7DrjL4BAFL2m9YoygEAmiiUIEDWAQPz/+3MdN4BA3reFoks4gEDWH2S/9ziAQGjDj+ADOYBAvtI+Bsk5gEBw6BgKITqAQBDmCOR1PIBAIvb8Cck9gECEFrDsJD6AQIoRbm4fP4BA3honbetAgECs9h8ay0GAQPDeYWSpQoBAsCUGvHdEgEAIdE/I9kaAQCYR1l34SIBAxN336q9KgEBvepts51CAQPrfYK4TUYBAFEVohOZUgEBcs6c5plWAQMQVEaKRV4BApG96FCZYgEADBiv941iAQL72RQAPWYBAAqEHsh9ZgEB2YJEHplmAQBa1DnHeWYBAlFhchwlagEDyrm1O4V2AQND1i/0NXoBAXHeDGAxhgECbhk0SpGGAQH4FOZXEYYBA40QEaYZigEB5fFYLE2OAQNZvlYdBY4BAhIAiDXFkgEAWbrYMHGeAQKoMb8OlZ4BA6skx8E1qgEBGLxou+2yAQJBPuZApb4BAo2WHg0F0gEDe1ODWJ3eAQGnh9AWofYBA5pL7oCd/gECQIPJJ2IGAQHpGprdgjIBAIjWPCjqOgEDZAlkt9o6AQMhkw1cej4BAoKqR79qRgEBljLGsPpKAQDlEWO4el4BAXiPdw46XgEAe0tt9c5iAQJDYkVUsmYBAACjOctuZgEAB/HsPV5uAQB/hzFLCnIBAnubmdYCdgED+Yfqry52AQI5J05M/noBAs4hwDl6igECKvdVDpqKAQJ4wkZdwo4BAozRRAAikgEAkSQtndqWAQCIvSJ/vpoBAw5gnF6yngEDwfgZc4KeAQFqpSNyHqYBA9E8W1TiqgECYp+HDtKqAQCLtYQCxrIBAAH/sNROvgEA+ZXbFs6+AQAhpyUpxsIBAECFU9xqxgEApiaocLLGAQCND9fYGtIBAPOofCcS0gEADIIQ16bmAQLaaIN9Vu4BAQDrY0nu9gECgIXh0UsGAQMSjyt7WwYBAXvzNs+XBgEA9daD/nsKAQJidlMWDxYBA6dIEejrGgEAZrchB/MaAQNQifSWmx4BAOOIgdlPJgEC5cguIlMqAQJyfHOsHz4BAYBLyRS3RgEAUy81hTNGAQDmRhv1g0YBAWfetCdnRgECvvrzbi9KAQE1/iJCZ0oBAKEC9uV3WgEDc5svzZdiAQHA4h+En2YBAdjxILEvZgEDPt8m719mAQIKZ2DSd2oBAzijU0DPegEAAdXRSb+CAQPrADxVF4YBAykYUAFnhgEB2ny73beWAQO7e/ate6IBAtO6PbPXogEAIKkcgIemAQC2N5N1K74BAKD6DWnz4gECc7eO7afqAQDiAjVfA/oBACOtOqT//gECGtF1u/AGBQPGFC2JAB4FAlD8IxuQJgUDkCHR1Pg+BQPv7mblDF4FA2AIfbMwZgUAGnFCMNB+BQCxOgVG0H4FASzOce9skgUA85qY+NCeBQFEK07olLIFA4navGTAvgUCDnNdLFTGBQAz0tBe9MYFAC3Y+p3QygUB0SMm1wDKBQELocfl7OoFAZidr9Sg/gUBQHQdPaECBQLw+2MqRQYFARAUA4cxBgUDk3/vbpUKBQGJn36XRRYFAmPVoc8VOgUDR36iys0+BQAJMDiIdVIFAuG4O8hFXgUDjiO3W0FeBQIynjfxyYIFAOBzHILNmgUB8HQmo9WaBQFwY2RMuaYFAHmWWXrZqgUC/ex2amG2BQGi0vSeEcIFAfkdh/MF0gUAR6NlZbneBQIJEH+z0eYFAzHeh4Bt6gUCGEBidyXyBQDAGkpZMgYFAjYgQjJCIgUA2u76EBI2BQPyyO7tVj4FAEKYudO+RgUDnIdUTVpKBQAZRGczhlIFAIDcfHDqWgUA/rVAyV5eBQJAbcuGNl4FAUYfav5ycgUDog7M+R5+BQNDqy5DnoYFAPD54FxOigUDE9tdnkqKBQF7eO9PfooFAqdTvTaakgUDmam4hDKaBQOww2vmap4FAsh1AUE6ogUCuLciRbaiBQEx5TMjtqYFAxFO2QEqvgUBIv6HhrrKBQMJaJ1d6tIFA1KF2tUm3gUACwtKezLeBQJC69wQIvoFAhtCchQPKgUAXS+tQr8yBQHy5ai1/z4FAtCLHuvnRgUCTYVdtf9OBQEDvtawj4oFAuAhd7bLygUBpPxTL7PmBQFBD0JHw/YFAAL0FhOQBgkDS+ldK9wGCQKN/3kHnBYJA3k3sbAIJgkBO30U8EBKCQJge02XYGIJAj/XggCkagkBgxwivHR2CQJ6uNIwsHoJA1qds580egkDKsIg01yCCQJaRFBI0IoJARGtu99QigkBuct7k0SiCQFrqQeMIKYJAZFl+z50qgkCmc5JZ0CqCQJyx00miLoJATa+VKaQwgkDL1k1azzCCQMbqKq59NIJAakHT1VY+gkDmOtkHrT+CQOzwDylwQIJAWsXqYgJBgkBW24ltWkKCQDqnTLzVQoJAXuF4WLJDgkARE/R+CEWCQF8+oAUGToJA3P8PTqFPgkCwhi2salCCQJKJr5I4UoJA6LNfCR1XgkCC3RCn41eCQMKPINMEWoJAN9xNN9FagkAS2cK4nluCQN4eslpYXIJAZnfV7jxdgkDi7sp7B16CQAKCBZo0YoJA5qq7JDdmgkASJeku4WaCQFE5pySoZ4JA1pKcakBpgkDmQNl8A2qCQHoDTQQ7aoJAft1er9dqgkB0vToga2yCQBy4vffzbYJAGmywa3NugkCa0y8Lb3CCQOSQSggCcoJADBwlnG5ygkC4c/Rv2HKCQED86iRsdIJARDWTdnJ2gkByycFT03aCQKwVRogDeoJAFqAxyXZ6gkAg0U8Fx4GCQEzoxREAhoJAaoGhP0OJgkBGFy/EnY+CQMV/XuZDkYJAMOvvdTyZgkBsRzdnVJmCQB4dYhbJnYJAPwWcGbmfgkAGH6ZlDqGCQGZkrbc7oYJAEqUQNvOlgkBMMLw1D6mCQJrvUwMzqYJAkrer4UepgkAWAwqd9KmCQL8TUSUHsYJAu1Eg6uvFgkBFyeTc7smCQI9OewgdzIJAIUC6UtXMgkBOYortedOCQNxtE7V92oJAYHcrJILegkBGtp5/A+yCQDqEgGNj74JADsJLoF7ygkDMczBJsPmCQCvMZha7/YJAeAlRQl4Ng0DpsVxPow2DQFKcq8RnD4NApPu7fHkRg0Ba2NccehmDQMUVMooBHINAMgsOfnIhg0Bae5oBiiGDQEhRqGhoJoNAYGG8+HEpg0Au2A4oOyqDQAqPY6VqMYNAaqBeycVHg0CSnrvUV0qDQCBL2XNXTINATKuYRyZOg0CGe+qntU+DQN7pOoGWUINAYfmL879Tg0B4Nqg7KlaDQOhjvRVKWYNAtyHRhYZcg0DhfNCBV2CDQPirAz/CaYNAmAW1A2p1g0AIs152uHqDQB/Hk37EgYNA2j0O/+SBg0BHwsFvSoODQOuIt8DIhYNADrQp/M2Jg0Dsd6EiP5mDQGCm/MojmoNARqKa/dedg0CqhLjDh6SDQHZ987D2qYNAeA1K61Gsg0D8v16s5q2DQEB3rBPpsYNA8mlVDha2g0BcopqrBLuDQOAcYE83zoNAYiY6i8vcg0B89a5ndt+DQBcoibJ44YNAPk3+qB7ig0DvkKdyVuKDQPb+sxRF5oNAECnkWX7xg0BUbIBHlfiDQAb/d9K8BYRAolRtArsLhEAYZ7iyEAyEQGy84CS6GoRALtXfOhU8hEDMS0rPz0CEQF76wLxxR4RAnmqxJLJWhEBrcCXWvVuEQEC22s0FZIRAhETkVc9lhEDqf280pWeEQL8xGEf/aIRAvJmeXAFxhEAQNDAPInOEQGi4w165dYRAMKVG9cl3hEDML8gd9niEQFoa2/u6eYRA7Unktlt6hEB4aRi3d3qEQHLhpxMkfYRAGmSQTNN/hEAg9AYky4CEQLrZ8zD9gIRAMHfTgj6ChEAYFN9eZYKEQE/RuWt/goRA+K1fuwKEhEBL3P7SFoWEQKgXhrX1iIRAi9XPXpiPhEDUP234cJCEQES3KZ4jpYRAR2ZhPXLChEAmKrNwB8WEQJLLcDSKyoRAoNIK7irNhEA5Jdzgrc6EQAgiqqgh04RAwYiDnhHWhECBo+QnatmEQHrl5PgU2oRAZJotdhXehEDS5hoDauGEQLpg8aoT4oRAVtDlFmPphEAu+mJDJu2EQIa2Iuo08YRAKCi7RmPxhECYmhOof/aEQCVorvvc94RAlls82TT5hEBcxZE8W/mEQEh+4GqH+oRAXcpQ1Tb9hEA83Vy8hv6EQNq7hEjh/4RAAkdjLSsBhUAAXuPdVwGFQEZ6A0uLAoVAYV8+oi0JhUBaVLin1hWFQL61lIj4FoVAaO6CVHUXhUBCCUuzDBmFQIVGI4T7GoVAaMJqUv8ehUAauycsY0qFQE5ugIdxToVA4/sgjaBhhUAtBGfQ3GGFQBCB3iBOZoVAQO0bIapmhUCgRuxloGmFQJ4mkN+saoVA3sD1BExuhUD3gipgmXGFQIqo8Vu0coVA4d6dgrZzhUABMmJPsnaFQHY58BWaeYVAji7NTLJ6hUDsMKw9koGFQHV0+9IunYVAJHaRX7amhUCW/OJiQK6FQOYWX/hDsoVA+Hk/MEi2hUCxenfw7LaFQBxba/AgwoVAmPtKkwTKhUBwBwXuJ8qFQPb1SUkDzoVADmNb/y/ShUBzGHOVy+KFQG5wM0Zn5IVAbI7MvwHmhUBv5MWynOeFQGZHBVA56YVAiNb8k83qhUCavoqXPg6GQChKSqojWIZA/m/lfCW5hkAba24iKcGGQBckCY7PxIZA2ddgCcjGhkBCI8PC6+CGQF10+UuUBodAmP6I/t8Nh0BsDlW7LhOHQGTkWh4xF4dAEC4fC5Eph0De16xkkDGHQPjoU2KKOYdADPctiag6h0AM1qehqT6HQIj9GwtgQYdAQjUldopBh0DqojXhhUSHQIiqkihaWYdA0IbfsEFzh0Dl59DRDpuHQPWMuR4do4dAwfnuOyKrh0BTK8aJx7GHQJZ9exjIuYdA4vwmHcDBh0DpLveCxMmHQNT7CXlzCohA3yIia6VOiEA3YwRiqVKIQPW5EfGsVohAePNrDrJaiEC0cvaC2H+IQPLarL9GsohATKfcSQy7iEA= + NrgMGZxjYkBImCMySWRuQFRnpVdMhW5AeiAWnryic0DMvNRcKbN0QAh4Yr2Us3lA7sXWjawjekBezGbCLCR+QB9jchbpSYBAk5P9faIqgkCCkDwzdeKEQCSYfhbk4oRAiMVIM3D7h0CCvypdIWuIQIj0Nl0chItAPBILVZlrjEBCRxdVlISPQDxB+X5F9I9AULfhzWiGkUAhu4I/oIaRQJk5IpqJ4pJA09HnTebSk0BLUIeoz26UQOdRq7XvbpVAYWXIqfWKlUAw1OuBEMuWQEV7m7ErD5dAeVYsTjEnmEBbkNyyUSuYQF1s/1Vnq5lA26fTx6fvmUA= - + - BO44ROfY3kUzyY5ERu81RGadP0SvCehEP+FTRVhWUETj24xEDlN9RLGlBUcvwBVEvowORNf3lUQDveVE3dvkRGLvG0RaXpFF/AqTRbUUhET7xihErTFcRcyCnET8LotE32LXRDmXoUQrAD1Ey2R3RDyNK0TVvXhE3IiHRERhPkQhlhlFTmsiREO46EZ/j7tEM4cWRKFkU0R1GEBG5UqVRbl/aUTPNudEY/7ERC/dkUbtWUhEqT2BRIm5EkXODRhEOuxiRMlumEUuYsBECvS2RHYnOUS3SKREfeylRAHWgkQmTyxFQWSHRFbmZEUGrxREDFSsRIKF5UWavRpEsyKBRe68O0RYorNE6ChIRYAZxkRnVwJFIaamROzVYURmzCJE4c4wRNl6S0ToPSRFB4HGRKDLYESwPcJE47CyRCzrOESv5rhEeOPYRFGs5USNj8pGJfabRFYl90S2RF1E3vp9RffrdURXL3REOhqtRP2+iESz0OxEmHZLRPvDIEQPI3ZEUViORF2aPUcfeZlE+1YCRdI5X0ZeU49En2LsRZ1kHkTlS5JEF484RDcFIkThCqtFDl85ROL5QEU6mFdEmWKTRB38vESuMA1E9R0dRU01OUXAiZJE7D4dRCXdTkTLXKdFYLHjRGdd4kSiXF1E+TCPRBDkN0Q5UwRF6HM+RBK7Z0S/0KtF3XnBRNpkkEaMVipFikJoRHyOZUScoMpEp36cRNaTNkTo+iREbK9pRIPz40TvlQtEkUgSRWnyNkQ6f7pEJkRIRAujCESLZ4FGVgqoRCpfgEScJZZERLFTRbkuPESusEBEsyKeRFg1k0Tv11hEksRCRCGvZkTAZJFE20+RREAG8EQ10plE9gc/RBNuSUS2v21Ev2uiRLNewkSRYUFE3ossRL4BbUQdRbVEGEiuRH5wF0VYriRE4PGDRS7jX0TFSORFRg6SRIQWVkSNXHdEUotKRMqUaEUJVF1EgekTR0b/RUSpmjhElK+DRL8uXEXHtC9EpIWJRDJox0RdCD1EWD4BRYdZxkW1sTlE9wqdRNbGQURdj9ZEFlYhRELEDEV/S5VFbFiQRMYXaEROQy5FzHlARDjdVkVGcOFEBQmMRG/2g0SyDLpEtuhEReYXOkRi/exEaLf9RBnHx0X9+2RExJHTRH/hDEWHzKJE/268RPofakT+UTJEk6aFREptRUR9rqNEiTWKRKWceESrmppESOIpRGe2pUT2G2BEy3YHRX0+LUT9vTVE6UqjRCzZIUXj1D5E+upMRMpCgUQieTBEVkcNRK1AekRLqatFuEqtRDU1bkSTEp9EP42+RefHekRWYytEVjWRREivgkQAdD1E0WH4RGiAPkR8bjRE4YIORih0SkRZFHpEV+AGRZ/lOkRIZltEnltVRCqqIEQCuH9EwdEqREDonEQfUhNED4CqRNS5R0Qdt4lEPZBDRH8dzkSaFhJEBwSHRDDR7URdt1xEeUeARODePkSvdIdEsCrnRcC1dkTYYqVF02l4RITOREWc3CpEMQW1RG1UkURPQydEpu+GRB1dUUTbKXVEoewqRCiIaUSD0pZE9tJaRPJI6UWM6blEuDxlRcw6e0RcXy1ER2k8RIBTq0SGm21EawIBRcYmlEQc8CxE21stRD/ku0S40LBEjuI3RKam40Qb4KxEqgsgRCq1OkTyuTdEEFxdRK0FkEXKwahEYA13RGueRESKkGBFxC7zRQ62mEXvzL9Gc6gbRMAKnUTY9pJEr1akRaZnnUQTu0xEUtODRZPKR0Qhp2dE4RQkRSx4LEQN+A1GSTiDRJN1UESxSgJFXc2NRGu2KkQiuT9E9tclRIu0JEQVjDFEkDkuROU9xkRpv0BE11r0RMuXLESBiYxEB/BQRJX4OUR1VBpFDmmIRSB5EUTWgnxFQdysROZVXUQWqSpFUl9lRI78dEbLUx5EBvtFRWGci0SoZt9Ec0IwRdJIBEWt+SNEyU+eROtFTUS02N1HVAA+ROFYk0b7+sFE6gKGROTYu0bmBC9F6pqeRQpaQ0YixDxED4LlRJBzLET0HdlEtGKJRJun/ETI1wdFNrhcRKeUG0RgZkRE4U80RPoqJUXP6ipEWEwRRDwy/EXnPItEnFB9RV1iwUROIVpEyA2YRPT7kESDIjtEj4YdRNbajkTZFzJE+7kmRAt1hUTmQjVEe1BKR8WayUZarBtErjOBRbtdr0WUA4FEfa9NRT+4O0TljJZEKGiQRBvxL0TR3jBEYt6JRFKze0XBWCRGMklrRVUUOURr3zhEXoAcRHSilETWoBRFbu0ERUgVr0QhSWBEeXJSRRZOVERP3SpFvL0ySVQEVEXlw4VEMhgHR7h8gES9tkdFa/taRGEeMURDu15FuS46RibsNkjw/qhGh9qARM3h1URSK0lGg5dFRbbWNETGGClFOpWIRokKtERIHnBEGzsERa+IDES0X1tEx5m6RLp0YUSlvAxEPzPPRlVshUSNqgVG+LY3RLvpwERdPoRFZJ9vRF9RtESUERtEajB8RKi0EUVWsBpEjHBQRFSOj0SYLn1EIXtfRZ+AnEWKwCZExgXxRAAwo0QxXaxEKkKXRDQMF0RtApRFRxNrRYboRkQCmLlENQHCRJZlM0RwE8JE63Q3RD+OO0VyQXVEGhBPRGywPESofCVE3DdlRE3h4UTa5IREQ6ftRSFFAUZISqZE3ScYREUR3URuTRBFhnA5RHvTpUQR25VE6bYuRIIQwERfk4JEVCgbRmwNK0UvpatEOsqERYKm7kbhraBHjOyyRo2euEVMBuVEfmi9RKWroEY+Q+pELMquRetCiET+KXdE0YWNRGDss0T1GulEYlolRJ3YjUTgH7JEKfEkRMBOPET/cnlFbIVkRE5ls0QW0tFFJdODRN63oEUs0H1F6mlARbzWi0Q42uVErJBXRG3NgEaS671E4Cy2RXMKLETY3m5EocEcRENl0URXdAJFS34sROXdmERKBrZE+9a+ROwatkRHQmtEjsafRd1EVUQcoRVGPj8cRZqtF0VHrItEJn4BRc+mH0QKtkFEmzMpRPfwcEQU/0FEzGhQRO6FEkThekVFRyGNRDd9qkSU9qBE/y1ZRFxAPUT3AnJEczbLRApe70T/17JEx6Q4RLhcWUTxpnpGFxPuRA+FOEapVA1F3SeaRCNTqETQBZZFbvA/RHIoaUWHkhtEANOKROwviUaSwhlEJj86RjC+YkUAPQJFy3TkRVHXHETUuHFEn3CSRMFEkkT70BlFrz4mRhfCC0ZBzjJEtEQERXzTXkTlWmREoJWGRA++K0Tqyg5EFgkXRF9z30T+ZQ1FUKGFRe0+XkRJmaZEPgmeRE6ywEfwyzZFyg05RMjqJUSWMtNErbCyRlcbDUWYIpZG/Y2ORPLOHUV2bNhEVSvHRIZynkTAmi1EsckxRJss20QILYxEfnZ7RG2/dERQVW9Eom6XRX48wURjXWFEV0VQRIoF1USK8tVEDpuhROsZeEYkoiFFTbU+RAfE2kQD4GJEuGnkRvpHIUTLWWVFvuBURGiNJET41cNF+Ox3RE9bWESpqWhEi1JGRG3lFEQZJzxE5Ll0Rs8Wm0QnT9tERDlqRC68OESNKLxFDqA0RDaUeERTh+pExM/RREtqBUQ98kREJOpbRNejfES8gzFEn9MiRKouSERngIdEMPUyRAi1n0Q6HD5EQpynRAEmTUSYw7pFqmURRjI7S0RUd4NE/s0zRNHWjkR0ccVFW5KQRD9mTkTinIZE2HYsR0jQF0SU4kJFQrBHRFqdQ0Toq3dGJmCiRZ9yIUXks11EaHJGRDL+2URcJYlEX5c/RINljUTO0XxENEGIRHU7JUTLjCNEgB2oRFzeJERdk2ZEpLY6RL5zKkROZBNEWIcJRSqoXUQY6XhE6DhVRaUkPkSG6INEyyiRRMfjJkaHjB9E9VcpRFzEd0SijP5EKk9gRB4DIETXmxFFSXpGREYaeUQcIWZEv/opROJSX0RCB0NETRXDROG1jUTr4m1ENvFARDdeaUQLDD5E6RmHRMufNkR7VIxE/dRrRDO+IUQy0lFEY3cmRC5e4UQcRVFEt/NhRKgIVkR3xFtEozhdRNqWR0T24xdE4xY6RNM8S0QcL1xHqjI5RD4xlET/SX9EZC88R85qmETLa4xGVHJjRLX3TkRZSFtFI4oxRAmefkTlIbZFb4+rRBELTkS2zcVECinVRMztCEXc62ZGA7eARGE5UUXHg2ZElBP8RDrbZkSE74tFysWnREEUc0RaW8FEH1nwRbKVa0SlRUJFnKphRLRkWUSvSCVFDdFgRD5SPkQUrhFE/LFQRbbb1EQadSFEbYdKRNirgUTeyERF7eQuRB9skESuSTVEuEDPRGKGV0R39ydEYcA+RLq1Y0SZNAJGkyw4RNI8D0Xpu8xEde9wRP9FMkQ6JTxE9fU5RGnYs0Sns5FEgXbCRNgIpUSaxStEZlHpRJEYW0S+Kh9EtujeRGxJikR1n0lEalBaRIeJMUSdLQJF0MokRILmF0TwV65ER4aiRWQUskTuoZ5EJ7D7RP66LEQ4REFE3bI2RDmCbETf/WhEHBT1RJwdckgFqm5E1n0HRCdDn0VOrB9EddLZRNdVnUS5khNFbZ3jR9lF0USmUJhEmHGjRCYDdke40k9FmUxKRAsNUUSLHClEArs5RKT85kUbZDhEZSVeRkDjNkT/imlEAvE5RM7FgEQ18JJFv5MORA+zRkRdSRVFQ9mcRN0xVERPBfdEwRIlRNN4lkSgQ0VEhCxjRljeXkSeZHpFM8hjRDyDjkVryyNE3AWVRDvozUY2u0dEy7Q/RDD5vkVHe3JEJIoMRYbUTUQhSY1EF6PyRf4pUkQB9MxEk4+fRRc8IETdT2dEQtPdRKZYIkTsoEFEvOMiRInbW0SNOnVE4i09RExQV0Rs1jJE5uutRIawQkRAPUdE460pRJunWUSJIl1EZlMmRuzdFkZE761EGRNMRb9z1kT+nlxE9QM2RMtgnUSRLetFvh52RHV1D0R8sJtEe831RNu4AEVEfqdE0lWZRVSjJEVi4fVExT1gRBe/mUREib9E6LArRBpRokTppkpE74VjRK0w00RYD2ZEmMUWRvWBPUS+TBhEDx3uREWZWUQHJo5E6nRURS99EkU0iCFE3yiVRDCopUTG8RpEMmlLRL5cikZNvexFpMKRRJy+nkRI1FtELTuLRDvPOkQv/jRGG8fmRSotNUR76FRF1ZEvRHx2cEWQ0kZERQ6fRJk8FEXVVRxExxnYRDiCKkRLjfdEvsKFRENxikQG9zFEQAhiRXQ2xUUIkqFEajHdRUBXd0UAkK9EpRWKRGvcqET0BYxE/dSxRLQFk0RfJjdEy/4sRHYtSUTwviJEqILARCB+/USu3StEW6KhRKiA7ERxD2dFpJnbRJ1LcESZ55FEgv8nRJmjXURiHD9ELfBJRHvRjkQP9FpEbts7RK30d0R1OoREMqkLRl0udEQUAo9EIWWARTYaWkQxTPxEXymPRNwazESwU0FEEYPPR4oAVERE1CdHcVfWRin+GkXWIUdE0GctRIpijUXEMP1FOZGJRJ/K0ERDBOpE9ZZfRHIugEToSbxE9s5hRYbtCUWNHzNEhZYZRPHlS0TI7fFElgWLRFvqH0QFeCxEeCNiRNcRtURdLplEz0p9RKLROET6dWhEsL7aRx2cQkeWjQ9EsqniRsieREXuua9EacoJRopiTkQchTxFxHdEREKvUESbGT5EqaUvRB8qIkTJJUFE0F2CRJDUGEShBD5ELtN4RIhoR0R7DJRE/qxjRLyVWEToDbZFbX3ZRIUCsESfKEdFuH2NRDyYyURfzRJEwTpGRKSJP0QpS5JEYy4hRLVg40QLHK1EptFmRA5tV0Sl3ntE3wX2RDPznUR/IihEotiXRLDQ70SPqhdEF+xBRM4Et0ROz1BEh590RGthD0SXRJdEetgoRJmvPkTTTyxEg3I0REmtNETJCDZEcNqpRJnaQURKTrlFRBMDRR0DQUTBpKtERXBJR6wrq0SOPVVEU60hRcaxD0cSGMRGjC4QRt1TLUT4gUpEPUAeRBbZhkQfvAxFxUpjRHAnc0SuhDtE7z9nRAZei0TGaTxEwzWORHNLOERdEQtEFh5EREG2HESP4vJErIRdRlreCUfcsQNG1LFGRa5CikaYAuBEchAZRsIMHUSvA59Fs/5uRaOhDUVMZq5F0YbrRDEinESojKpF5fYlRdZ9mkS8frNE5cdMRCpWHkTXrlxEpwd+ROlumkQeMHBGB3qlRH4Q8UT9y+JF7zKARbTAOERdGCZE6Gf/Rpcx30RTMrJEsI84RTi6YUaet/FEhpYiROAuIkb7ar5ERLqIRIIUA0VVmExFzfdJRO1wkkQoeGJED+tLRLDXG0YY8qhFbL8ERXLMK0TgCChH4mp6REXULkYrO59EnJDrRJEeJ0Vr7RtG8TTQRUNalkXFF/tEaIzURL+ELURicg5EtOLoRFcUHER7ED9EQBWPRLxETkSVHldEHOGARPVQgkTJqm1Ef9QpRkeP4EXiGDlF6lE/RD60nEQSU61EUv6KRNz6MERYEEhEORNPRDoRTkTGZpJFCeh9RDWUGEbgdZhFLgVSRZ8Ns0RgiC5EW+/cRVdAuUWSzFZF22MyRNF4HESdISREGLRYRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 8x8jG2/BckDkIBQAxcFyQJpOUCFOwnJAMDXFiufCckC8EnqiOsNyQL0XekfDxHJAEn7V41rFckBiarWvQ9JyQDAsP6J003JARXZapc/fckDr05Tkt+ByQKHWJL5N4XJAmJsSUVDickCRAiBOkeJyQA6V7I8l43JAwFYO+E7xckA+tO1SyvFyQLiHiLRO8nJAAZydD53yckBDErFmt/NyQELebJ+j9HJAtG8U+MH/ckCMn4IR+QBzQBzvT8mOAXNAPmhGyNcBc0DHqEJvOgJzQATeVpbSAnNABalCh/oDc0Dfj5XVIwVzQLy14S0KEnNApDBYoSUSc0BuBfn6dBJzQOzsQcm8EnNA2IiIrfgTc0B8ahwrBRRzQMLEYxJPFHNAfCkBf3ofc0BOfnE/oiBzQM9ZKRs5IXNA+8IAXOchc0APTxNmyiJzQBgjLkQOI3NAywdB8zkkc0ADESf1ziRzQHdqfCBKMXNAqMcers4yc0CEJNyNEDNzQJJekGr3M3NAjW/pWTY0c0AAsMp23jRzQBl8OMK4P3NAx1mzs+JAc0Cq9n92eEFzQPSPRsi4QnNAeAE3o3pEc0AiIjh7mlFzQHqvgUcRUnNAwBHZJEJTc0DmDV4xo1NzQLI4OO96VHNAbSa/Oflfc0BSKhdljGBzQNLR3u4cYnNAGx4g8zpjc0B9Hce7zWNzQEDcNsrbcXNAvC6KM1Jyc0AEaKG/u3JzQKfCGapPc3NAEFrDToJzc0DCpq8kt3RzQGOFq8VLdXNA+FpEH3mAc0AChz2opYBzQOLW/VUOgXNAPjRQw16Cc0C9FVg3poJzQJ5ZhRz/gnNAXr4D9jiFc0Cq0i3aiJBzQMSgd0UXknNAPuYaR02Sc0Atu/qpzJNzQMIQwqVhlHNARRGTEPiUc0D92clDuKBzQCotAp3moHNA5VttAlChc0AJ6sRYrqFzQH3nYmFbonNAeL1iowSlc0DyEd1p1LBzQOFBC4kvsXNADkZmsTyxc0DSt+m7fbFzQDArRTD/sXNAF/X7f7ezc0Bk7YMODrRzQHK66Qb7wHNApFCCVUzBc0D+78q40MJzQJvCRqgow3NA1s4aJ9jRc0DOPEnbutJzQEOlyG7d0nNApdpxDFTTc0ANNNr999NzQJKJChHj1HNAMCNfM1nbc0Bon5Vro+BzQObF2Vk54XNAjcCvLmThc0Bqx1S3euJzQA607wcO43NAMrizC6bjc0DuDYLT8eRzQC5uMDBI8XNASGnwI87xc0Bzcm4auPJzQNBL7tU19HNAAkuYDFMAdEAw/a0+4wB0QHLYqBB5AXRAz+sC3qMBdEBgBtvivAJ0QOR4T2+XEXRAgdq79EsTdED21gqoexR0QJadmVhLIHRAgqHTybghdEDGKDzx+CJ0QLYJcw9dI3RAzYZsIGUkdEAIEh1zUjB0QGb2uvC4MnRAfSM59hEzdEDB51lojjN0QMryq87iN3RAfGH0fm84dEA6SPWRPT10QIahW/nHQXRAjDfBgaVCdEDo8zkFO0N0QFIR8aZ5Q3RAwITMoEhNdEDE4U1TCVN0QN0AfcwjVHRAnLUyh2NUdEAAFBW9+VR0QCIjynyMVXRAljzdxCBddEBGGrxEuGB0QKZqAefXYHRA/lk2gU9hdEAec3STCGJ0QHvctSp/YnRA0g73GORidEC+a4njI2N0QHSs3ZW5Y3RAOt7D1Q9kdED8Th3QTmR0QHQfEDLDZ3RAFp7NiCJwdEDOgrAnQXF0QFontYIYcnRAyO7nfDlzdEAoaP0eoXR0QKzh63g2dXRAgBek0mWAdEACC3o5+YB0QNpRwclOgXRA9Gj1R0mCdEBcBwNzKIN0QCFwvca7g3RADjh2IheQdEASS/r8a5B0QPQYjxm6knRAIXU5ivCfdEACNt13o6B0QMHgWH/PoHRA1/SBawihdEBMRXxzN6F0QDDR8Sq3onRAh2epQg6jdEB8kKFJpKN0QOxjUh0KsHRABURlE8SwdED5QW0lbrJ0QPRoljL8snRAtu7lqMm3dEAJcvBb4sB0QIji3R56wXRAnDr5cOrBdEC0pWyWC8J0QPeY0Fe6wnRANPx4J1HDdECDDlcBIsR0QK1r5FS4xHRA3OuwtfzOdEDg1lDzOdN0QEZeXMjg03RA7ZusJHbUdECY7JymzNR0QBhOgrqO4HRAPOqG4yPhdECegEnTt+F0QHSm8KJm4nRAFKuRKpDjdEAgOkat2uR0QDSuBGpQ5XRA1XEsswnzdEAYjzJpjfN0QNgchOLOAHVAGB265OkAdUCkR1BDYwF1QDlPhG1dAnVA7cGTRJcDdUDANGkClhB1QLiQESIjFHVAkEu+vuUfdUCJMelR0CB1QNvwhzOdInVAoBwIZKoydUAqHkdSzDV1QKCETNDeQnVAZKwY2CZDdUDc9l4yzU91QKAWzHqBUXVAq6djNQ9TdUBcVWmWTFR1QO5Lotl3VXVA1h4bAxJgdUBl5pWaoGB1QL1sOfQ4YXVAe/VDcvRhdUAMnfmP1WJ1QG5/uhtmY3VAvuQZ/NNjdUDWVgG14m91QGrJ/T93cnVAIQ1Eqyd0dUBYnZ4WjXR1QDy4AxDhgHVApCNkYPeAdUAOqKQTeoF1QBIKNByugXVA/KO2RTSCdUB0t9itgoJ1QFkduIu4gnVAj8zdnN+CdUBgcHHLpYN1QKxyMveahHVA+2N6JIqQdUDmswdkupF1QO4XYgJvknVAkHJiXaGSdUCeDUPorpN1QMNJxo2VoHVArNpm1iGhdUCnXiSRuKF1QHBv1uNJo3VA/GMG7r2jdUB2ewNZt6R1QBUiCGCjqHVABZu8//qtdUB2yNExz8B1QNCWRrBlwXVAmDLoH/nBdUAYxRddIMJ1QLBMU66nwnVA9mahlcvTdUDq+EsV5N91QBysJCQN4XVAngYtKgfidUDhHWI3OeV1QFbjlldL7XVADHuoyrf2dUCGoQFlHPh1QG5xnCR1/XVABJTIE0gCdkAI1Dka0AN2QHSJUaBTEnZAnL04X0wUdkAcl/06DRZ2QBqTqjl6GHZAmvjGZYcidkCyfRV5kCR2QN67Tn9KK3ZA1lO5jR8xdkDUlqiUIzN2QJ9FjTJUM3ZAw2sWJJ00dkCwbz2THkF2QFBRPPKlQ3ZApEoEcHlEdkA0rPQky1B2QPTchfQQUXZAikX/C4ZUdkCi/CVrzVR2QEK1I76LYHZAThpb1N1hdkCQ8ssM0mJ2QKhfegzZZHZAlb+orVZodkBQT631E3N2QCRXz7TpdHZAxejeviSCdkDtFDibY4J2QOhTc189g3ZAAGjxZJODdkAMqtOQjZN2QDwF6W+8k3ZA/v9xe9OXdkAsVR2rDaF2QL52+f61sHZA/4l8FMCydkBlECCYDbR2QKKwuB3BwHZAPFOgIlDBdkCKlXazzsJ2QIzVNocZxHZAUrBCYc7OdkAA85RfndF2QPp84y6P83ZAzonFbAESd0ACOENjJiF3QEzdxPQOIndAPxObIXEid0C0ouBh5yN3QHCWAS3nJ3dAflRd10Itd0DQrR1lpjN3QMg9jkMNNXdAaJvr68xAd0Aqwl/1nEF3QN+qxfKQQ3dAQDECDCZEd0CCvaJDG0V3QK3QILIGUHdA3HedjkpRd0DGW2p4klF3QLD7mUElU3dAXnPxUSpVd0B4OuXCR2F3QIOza+uOYXdA8W3R8KFhd0CoQwsI6WF3QJid2YI7ZXdALXFS4ydvd0BiYNZLjXF3QLEXSoyfcndA17vXV5F0d0Diruwm+Xd3QAQDsJdDfXdAuu6tp0yBd0AfG1bheIJ3QH4yBJlLlHdA1tsqBy+jd0AMVy3rBbl3QNC7JBuN1ndAsnccmk/yd0AFnkNnRv13QAy7OIpdAnhA7SK+uZ8CeEBv3fGq5gd4QLe6kWH8B3hAnOu580ENeEDUsUlJUyF4QG19fF9vInhAjL90R6MkeEB+8ETcmC14QOYmFRx8MnhANAK8siEzeEDSfvTmTjN4QO7a3a0LQnhAUe5i77lDeEAqzNarEUR4QArVvIB6RXhAfwIDsMpReECgzv5ZHVR4QOJ7ZQaHVXhAp9lLSvpgeEASn8J5tmF4QPydJw3gYXhA0n247SFieEB6yfQCuWJ4QMJpfxLnYnhAVHPsJclxeEDvvED0V3J4QDQcPVk8dHhA0ocdtlB0eEACGgOKi3R4QAUGFqLPdHhA/58Zpfd7eEAwbOhyOYF4QGDpxDekgXhATGxNONqDeEDu5A1K/4N4QAjWwNGZhHhAvxmAb0+IeEDcsiKW3ot4QNZUL9gDjHhAWkSDfKiNeECnGqOkl5F4QHuuk7zxknhA32AR8AGTeEBa5ij0p5R4QJhpWldemHhAjjhwilOjeECmO5a5u6N4QAffajG6pHhA0D55ZKezeEA8rFMA47d4QGqz4BDPwHhAVsG/YhfDeEAFU3NvHst4QJL11o8M03hA0gRi5bfUeEBmegHREtt4QCxRUrKh4nhA1ai8OtLjeEColXFG/Od4QA+fBoJB7XhAPCOXBtHzeEA/w9l9AvR4QB5VSj6M9XhAcHIDBHsDeUCIP+ATmgV5QKwBQSG3InlAkGU8zLojeUBM0AYRsih5QA8FOZEKLnlA+n7OpdgyeUAq01bLZzN5QKa8r8ziOHlAixqZCPpCeUBlYRj8+0N5QOYgE8bMVHlArkWNEOtgeUCSOCUq2oB5QHaBZhT3gXlAukVnPvaEeUDW8UC8n5J5QBYeZHIWoXlAhFmBhMCyeUDGmnQEzcJ5QDZO86Aew3lA21njFlvMeUACkTUMQtR5QE53p2n/1HlAl0ERssvVeUBUcThsUuR5QGxJ9J5Q6XlAQ5fFJRzweUC6zsm+wfJ5QEb9B+MS9HlANGfU3voDekC7y8il+AV6QCCKcHTgC3pANo3st+YTekB2GqP8OSN6QMjZmlVoMHpA9JjwkCszekBELM57DDV6QBn92+ctN3pAnrU7Ki87ekD08GgQLT96QIGU7b13QHpAZipOmhpFekAnOAuzVVB6QFAa2cuAU3pAUpiGySZVekBOzwWwIVx6QMRoj7OLcnpAYdwXkiZzekAQsukTK3d6QIi03+bQk3pAHl59kh2jekByGJlZI6t6QOYYqq81rHpAhFTTjw2zekA8HKo99rN6QHBVB8cNtnpAERZuOxG3ekBsn284GLt6QJ4fjYVMu3pAsKaTO0/DekAOB7f/vsN6QOpqHBUaxnpAt0W7csbLekB4I5A/Rc56QJYB0NvO03pAFLS34WThekDcodZhOuR6QIPVNjJ55HpAiKbE2DbuekCgomWvFfF6QJyGD9Zb8XpAWK00PGb7ekA2AUmQ5QN7QOUz7NR7BHtAHjynbysOe0B1RmH/ihR7QPxZswdMFXtACEweEyIje0AwiQnnWCV7QMxIW7q9K3tAgNKJ2cAze0DKSWgJYzx7QBhYMH4TdHtAqvHjHiKVe0CiPU6YVJ57QHJ1kskspXtAIjt5hwKne0Cs5zs1BKt7QBO3qzwlt3tA3OzNCnvGe0C9WU/5jNF7QMK9h+2i0XtAQgj2khnUe0ASTaZjAuR7QBjGuogm5HtA/Orf/+Xwe0AddEdwl/F7QBJ1Tu6L9XtARDme4Cz7e0CO5i+H2AF8QIiuKav0AXxALtuX7bQCfEAu92t+ZgR8QJibZ5OaBXxAhCsOjYoRfEBf1tM9zxF8QKrfv9X9I3xAQFYIw1cpfEDtfTXZsS58QLqbQm8DNHxA4oqUu81BfEDSgsHn21F8QMyj5yPzUXxAjnAi12xTfEAI3YLdBnN8QJK/njRLg3xAFems/E2LfEDecU6dw418QEdUSDQek3xATjqU1nmYfEDiWP7rV5l8QByHDAbEnXxAjPbNYU2efEAEuwFDqKN8QE69mcy+snxAKWeozPSzfEAlvYvmebR8QFy8QBhnxHxA3B4PqDbUfECRCY+SzdV8QB+wTEn123xA0t80zlfifEDsPqctEeN8QH6KrBVu6HxA4sautRXyfEC/sTHiVPJ8QDSh+3sAAn1AUaDWn0sCfUDebBNERBJ9QLnCMsX7E31AvrSdjasefUBOnh7OPSJ9QM22DhOfMX1AFv4NcEY4fUCo5SvToj19QAsRtWuSQ31AvFEo6TpXfUBkFE9Sh3N9QGoA5c0we31A4C9STDmDfUCe0ZIMI4t9QMgtKaUhkn1ALD2fS22ofUAptBj4uap9QORPa4cqw31Ac3UKl+bEfUCgLsspuc19QHQ2Gx711H1AxpUJytrifUDtOZqt7+t9QLijmayQ9X1AAKY1uDQAfkBfFuBfRRB+QCQMDCY5H35AOZWxtyIgfkDom9pQQC9+QHLy9Fx3NH5AE+HF//dBfkDdvxrTo0R+QJzN0VBUU35Aroe/+txTfkB4WKtbilV+QJwjsEtbW35AxKFuyVBcfkCUFrMlR2N+QFDjQVtpY35AeBi2J09rfkBj1qk/gW1+QEzzevlOdH5AgklWnLZ7fkAoR1zZvoN+QGLka5B5h35AVLkotV+MfkAGyqin4pB+QAQRdYXdk35AU0ezCnybfkBzRl6AE55+QHg0TlJIn35AZqQs7pGkfkCY1MSsYqx+QJ4yN7O7rH5AOlDdqyCufkAOwEYthrB+QMRN2EWYsn5AjJqDT2KzfkC8eVglabR+QAL3P0KitH5AoGPyynK8fkA49f1Xe75+QFMIBbNmw35AFv7qVtHEfkCMamGfbct+QDALEalb035ANqYTfn3TfkAKSeGaXNt+QDiuK8l6235A5QKXHc3ffkBAeaUKz+h+QFe496jU735AzIv24277fkAzYwHo+B5/QILTHiYOMn9A/iDaIlZTf0CKx359sVN/QHy0YxduX39AShmA28pkf0AusmS5uHF/QMkeLYvkdH9ABihX2W17f0B3FOTipIN/QPWLJsZujn9ARjlmBWORf0CiGJroppF/QDozKmKVk39AUMAPIaSgf0B8uhATX6F/QIYJWAqPo39Amjl76lSxf0AkPwJd1rd/QLqPjwP6w39AuDrsllLpf0DBlovLN+9/QORuBlrx+H9A7kleTaX7f0Bguf/uSgKAQO1nHb13CoBAXH4wZbsNgEDnVGyKfg6AQBS34RV7EoBAYAulmigagED4W8N7IBuAQDqcJJ14HIBAfOZWdu0pgEBDf+CFejCAQChx4tE2MYBAw63kLBA1gEALMbYtYjaAQKUG/zAdN4BAmESLIck5gEDkMFXZITqAQFFZAmt1PIBAXkg5aCI/gEByNl100UGAQA6Fr2qpQoBAqFqZa/ZIgECOdzEar0qAQGgvy5ISUIBATkrzaeZQgECg9EsYFFGAQEqqn6z8UoBAqTwBEOZUgEDovhe0hFWAQIaIrxamVYBAIuJ5ACZYgEDAzH7M5ViAQC6Ml3wOWYBARk0osqpZgEAis3EJ21mAQKup32YJWoBAc20x8AxegEAx2xs0xGGAQKyMeztwZIBAP5oMlB1ngEDW215loWeAQAtKT2ZQaoBAhH1nZ8xtgEARfPV9KG+AQEYDQBAod4BA7N/XIMB8gEArJhHCJn+AQFFZm3G1f4BA7j30UveHgEA1A1GFzomAQDovEF0ej4BABmZRbauPgEC6xywNP5KAQIzs/gMel4BA6/Ul6Y2XgEAOif6ccJiAQOw1aVrKnYBAnGinnT2egEAv5U37Gp+AQNSOciNfooBAx8CA3EyjgECIi4WfCKSAQIbA98jepYBAWQEYQjSmgECfaT9Th6mAQNB7k2hAroBAucZsaBOvgEDhtKpYqa+AQNZlWcBnsIBAjvTMSSyxgEC6ZqbGCLSAQMLxOkG9tIBATh1nvhS3gEAyEjidMbmAQH49tCLmuYBAct2MzJG6gEDlrOX1B7yAQAZ+eSjHvIBAq5ftu3y9gEDeOHYv/b6AQKDpGYhSwYBAkvPUZnfBgECE7nnInsKAQAteq5YTxIBAVc73N3bFgEDMCSXO9cWAQPQ8KFD5xoBAMEtD6P/HgEDatxt/XciAQI/qp5xTyYBAoaZTUwfPgEAdXhhHLNGAQKJ74ZJM0YBA/mERdGDRgED6VT8G59GAQMId7DuM0oBAb25geGfYgEBkkC4Z/tiAQH4OiaNK2YBA3iyRM+ndgEBA5bXQROGAQAKJ9fn06IBAuCKaBkrvgEAYh6OkFPGAQOBVNz+V8oBApjkwsDzzgECDOcdwI/mAQASxUu8//4BAYmRlypUGgUBSI09sPweBQNa/KvpGDoFA2C9aaD4PgUA5oth7zRmBQN/q2Yw0H4FA8vIzq7EfgUDsrY1p5SGBQDA1u3Q1J4FAxtGbULYngUAZwfj9Li+BQKbPxg6+MYFAzLy+BXUygUApAjmcvjKBQDOqFivEN4FAFw118Cg/gUCpiK6PJkGBQF0z4M3MQYFANq5l+EZEgUCD41Bx0EWBQPSjV1kqR4FAtM5jUVpHgUC2ek0DJVmBQBwl2fhNXYFAQB6Lre5dgUCYzvSQsmaBQOLCGz/haYFA2TVV4rJqgUDiG1zpJ2yBQMKOCMXBdIFAEI5zs253gUD2kpzcyHeBQPK77ugaeoFAiCSHTHJ/gUAOAMWeBY2BQBaM2axVj4FA6HohuEWTgUBaD6Gj4JSBQG/dJrCYlYFAmj6X3gyXgUCGHxK8VZeBQLKllCbVmIFA/ujLQPaZgUD80PQRDJqBQDJRFFmdnIFAhiERlO2dgUCmjxhGSJ+BQBzUlyVdn4FAobZiseWhgUCc1i9c+aGBQFhPuEaVooFAVw3DfN6igUCIPsASbqiBQABshDr3qYFALvuBYkqvgUAINlF5y6+BQDi50KYFsoFAkA7JYEu3gUD+zFBZZbiBQK750SYFyoFAG5J227HMgUDqjqhcXs+BQCpHjtL50YFAMJ+rsKzXgUCS2g/RidiBQI8eVodK4IFAnhc6zJ7ugUCt7uv2svKBQIVEyJlg9IFANiPG9Qj2gUA43jGz7PmBQOJ7j3JG+oFATRF9cvD9gUBWwHvjAgmCQIyGNEvYGIJAaK+EgCkagkAEWBKILB6CQPQBq2TWIIJA/03WKNYigkCQlfikcSiCQG85rhLSKIJAStLAIfwogkDRIV5nniqCQDhKC4fQKoJAWlKG/6EugkB6qfySVT6CQKrMzpysP4JAsOQQ7plAgkBMudZrA0GCQGpkq7ELQoJA12/OsllCgkDAx7C2B0WCQCYvYTdbRoJAWhHHk29MgkAAqTVsO02CQFTfAQbUToJA4YvJcOhOgkBcLFv7R1WCQF6p4EkEWoJARi0gmMtagkCy1ENl3VqCQFQTuGdwXIJAvjUpBTZigkDG9frONWaCQNKOq+FoaIJA+AJWjQlqgkCer6CO12qCQCDQE49tcoJAiA/x7991gkDs//YcCHaCQAR0IVxydoJAkhi8htN2gkDDLcPEa3iCQF1P0rgDeoJAQYRt3nV6gkDS4UNz0HqCQNy+FUM6e4JAODwmUMWBgkDz0HrR/oGCQIIouz4bgoJAClrjPUOJgkCkFXuA/4qCQHp5aQCtj4JAYJcb+EORgkD0z/ODgpSCQFYTSBMUl4JAKo9TxDyZgkDUikmdVZmCQIbgbcydmoJA+k23JA+hgkCoEYZcO6GCQLqY/3s9pIJAmOear3SkgkA+UwXY8aWCQLIkGJ0NqYJA4t3LfjSpgkC1kDMlWbCCQADxaGwFsYJAxLdl9++xgkDHY6noGsKCQLAeoBrtxYJA4GqGJ97WgkDxbRQEftqCQOrclMXS2oJAIK9u+lzfgkCqa4CQi+SCQPYVzlZb8oJAOdY+YQn1gkB9IlF3sfmCQHqw5WvDAYNAEIKAxrcFg0B6zbmqpA2DQDxhDnB5EYNAe5pn8DoSg0CEo1LMYBKDQBJqE/Z5GYNAJyFZcFAag0Au44/eciGDQBMo0IRxKYNAKiOTn2sxg0BwHTzN3DaDQJSw7FlmN4NA8jZJ+5E4g0CjjnJwaDmDQFqf9mMVToNAI3dqRVRWg0CCTRkdnluDQDB363zEgYNAqt+ckuGBg0Be/wtUSoODQJAPLBXHhYNAPEPEg9mJg0CiZbDV0IqDQJH08TOXi4NAKxF2PT+Zg0B0BWz9RaGDQAh/FINNqINATDmBhfepg0C0hOeXT6yDQEgBfsDprYNAwkAoyeaxg0CYV+hHE7KDQA6j9p6AtINAxgFulZC3g0B0AZQ9PNaDQK5fLdFT3oNAqPAUMHffg0Ci6g2ZI+KDQASRYA5Z4oNAxXO2+lX4g0BcwVhTlPiDQN02xZc5CoRA+QsdFroahEBQz3jgdx2EQOiHBEGZR4RAS4mLZudkhEBIa+y/2GWEQAZ4ig2UZ4RAz54WPQBphEB+kG5u/XCEQLKaizrAdYRA1q9cV8p3hEDgrB4Z93iEQHri7J13eoRAFo0kCSV9hEAahx33uH+EQJgPw7XSf4RA8fLdE4CChEAEnlEUIIOEQLZV1wu+h4RA8XbGOceQhEDwUaeSa6+EQByAC3vHx4RAo+JsG8XPhECk1MDxH9OEQFQTx3sR1oRAuqwT52nZhEBjN8xwFNqEQLIWxS9T2oRAdu6d+BnehEA4eZuEauGEQNeEGEcO4oRA0AcG7AjmhEAGRJan0OeEQPwcIxBj6YRAeq3D5DXxhEB2tYSJYfGEQDB+VTF99oRA8vVdPd33hEAUt4jINfmEQPhbYwla+YRA/Dp7zIv6hEALe3s7Nf2EQF4RfXjg/4RAYqetoS4BhUBoiurafBSFQHrQMlvVFYVA+mvEv/gWhUAfKmH9bReFQE54p4QZGYVAjhKI16UahUCmVEzM+xqFQFp85kveHYVAX2lWlP0ehUBSjOIEAiOFQNl4BtBGW4VALOA2bqBhhUBYZlwc3WGFQGT6mCTgZYVApvhVbExmhUD2lNjlqGaFQOJHYJugaYVAEn0Y2FVqhUCSpTYvq2qFQEpX2ISvboVASprq5phxhUA0pc8YsHKFQJY8hyW2c4VA2uNc3rN2hUDY6Bzjl3mFQJQd5miNgYVAWnIRr0GuhUC02s54QrKFQIc87r1GtoVAOHAUgU26hUDUVFK6IMKFQEI0NDEoyoVAp3P9v+fNhUDEzJoeDM6FQCZrjXgY0oVAFOd8Wy/ShUCrQROZy+KFQETCmONm5IVA6G1urADmhUC4IV3dnOeFQDTvFa406YVA0n/2OmvshUASTzYo0fKFQGxVBSU9DoZAPgEk1qEShkD4SaiFEBaGQBpFHCopGYZAnjH4j+o3hkCP+BQy2F+GQLpybPIouYZAn+d32CLBhkCPuSZ01siGQP3hlfTByoZA9kVr4ywTh0CscXfAMheHQLLWfKGQKYdAw+4+bZExh0DkX+uGjDmHQNw7niimOodAAtGjTqc+h0CaPy3GXEGHQBaS2ByGQYdAHQn3jF9Jh0AsXDGni1aHQDKBJQnfk4dAg9cn0xyjh0BERnHdIquHQNy3DgLIsYdAbnYawca5h0A++13ivsGHQJxePpS8yYdApBOpatbmh0AOYCTg/TCIQCoSorWmTohALNGhSalSiEBCUVSyq1aIQDeNFt63WohA+CMDM61yiECHdcFZxKeIQP/k9WIru4hA + U6vsr5viYUAoFld2zuNlQKmz0iumAnBAFOkHjz8DckBqPQyU13N2QA== - + - 8o/ERcKaMUTEJrBEKzG4RFpkBEWbf5lEKs2bRN1nD0eOVKdEPDPDRG18B0VHTTtE0Vx3RfVZL0XzvZZEgthzRP77wEVtAkBEF7FIRB9MUkRRJKBEfTHURNvltUSTxWVEjxyJRN4nfkTwuHBEzesOR8kThkTVcLdEHJldRBMxJEQXx15Gsb+GRUerj0WAX3RE/Xf/RDN0xkT63J5G2+88RMjitkRlJItE9wdjRM3bsEXttJ5E+E1DRH2pGUT4NphEFkmuRDUOMkTam8ZEC9eYRMA+XUVTN0BEZaweRgKYFUXaYVREJnVuROm3iEWBFnJE67uVRABLO0Qb/Z9ErzQMRUCrSUQ79rhEJYfmRCyRd0SWffVEuT9YRPXhX0QrAB9FjV+1Rnr+PkQYw6dEwWOQRU15mkSMg8xEYGcuRMQ0q0Q1TUREYnU1R97xgkS7NMtE4p10Ruh2AUYjACJEl43xRFirSkRKdfNFMOUiRbohi0QTfylELucDRDlpa0T5bidEKtZQRWRs3ERqt79E/QVXRAWfvUX85MREiKU/RZ8lkUR07WFE/8qDRFOzykTJp3ZFyWo+RGa0XkQiQNpG9f9bRcLAX0R5rVtEIDKQRLr/OkQDghxFuG8hRAPDUkTkCbpEuSkdRAQ7mUS9fpJGxhoJRQ7gmUSNKKlEJ6XsRAKKQ0TpC7VEYp+mRFVndUSbuB9EkksfRGETZ0TMSItEIVGaRLU2FUT65/hEaggoRK39bEQw891E26IvRJ53f0QSwZNEg5w/RB/EL0TE1ixE2zB1RKxyW0Tym7dE7rOkRJzAKUXD0jBEWAVQRJckCUbWaktEfWxURF97SETNPUNEgqBJRLE920RkAVBElxy4Rd34NkfcoGNELNwtRXNnbUT6uLlE4ARBRApNJEXis+JFe5jvRBMpmkS80R5FaNyhRRzGgkRSqTREvZIkRf6GxkRO8ARFdPISRXQjiEQod49Eh0YdRXOQLkSsudFENDLiRBNWXkXg94JETqgURRJkrUQsMI5EKXg8RHFsQESLYmpECMW8RH9ccER97o1EXVK3RCpDqESxo81E9zaGRCj8s0T6lkNEcrJQRB4lCEXHnYBE7X1tRDsAM0RiSylEJ54rRBOLtkUgS4ZE1qw0RMijsUSVY69FXHFdRCLtuUReQzhFayJ1RIuLP0QSLhJGEKqhRD2kAkXAtm5EJ8GMRNHYP0RGl3dE4fSeRGYSVESBRvlEU0WIRNmbUkTNHBlFyylGRG4yJ0QBw5xEmV4sRKR2HkS+CMBE8OabRLtpIkbdbEJEl0EUROUFykTlNJ5F2KcsRK7URUQQdIBEo8YqRLs5dEV4eAdFvHFeRA+ptUS5RKVEkGFKRIMdGUQ2j4FEmHF0RPzlqERznMBFX6DdRDnNTUSopy9FjtlqRLXJakScO5VEVsjDREipJkSYXWxEnBqnRP9ucURWK7JEf+K1RCJyUkTsd21EURkkRPVAekSRxt9EthyJRe6T40TeEDlEBZSARLZfjkT3n1NEt5g7RYdx60WaQsRFDqTGRmb6f0RYfmBENh2cRPvTY0XzUX1EytBFRbrInEQCFzBFNTSARFhYFUY1uINE53OsRETbGUST5PBEMPU8RAmPOUTx0jJEa29TRA8VbEQn5jJEXgDLRJEOP0RTEdJEPE+BRGE+j0TV6JhEcaT7RIIGi0XneKNEwP6uRJvWckQmLjJEYWNpRYAoT0Tj+sxEEqt1RlUaMERwaDBF1cBiRK92o0S+mIpEc2ACRVL6pERYuuBHO/5kRGfuq0ZeAf9E5mSJRBfhvkbCLwdFpIWYRcA6SkYzUB9EPiWKRLH2TUQCxNREmCuORIMpUkS1MZJEQ0gSRWleRkRwbtdFz5BaRHogiEUMcHhEE+RNRERV7EQgcpZEMs1DRNc4RESOEY5EeMR8RAstJUc1OC1EMOGrRq/tFkX90T5FLKTSRFe/K0Q2ZBFFE3+ERK6RgkTaw2ZEKfQ0RIbrNESSzaNEh32DRLOwFkUA0SNG80t5Rbm8IkSZmphEPOPOROPRKkXYiEBEiyohRHzMQETHI3RElNpRRPyyBEXrhLRE0o9CRXXGLUlVeAxFtB3wRqXJIUQuMCVFYdQMRaSRGkYtoi1IfJJXRq5Iv0RnHltE8bgCRmaTZ0U+oNVEpCbiROVtcEYnIHFEQFtXRD9ciUSMcF5EqaYpRM+viETiUaRELrqTRoDBx0XmTtJEDBQyRdU8UkSQ6ENFN4l5RFXx2ESY+khE5XYiRJBtXEVNznpFN8DbRGw8okS0k7NEo6GARKczR0UvQ5REA/FLRP5xmURefYJE0jRdRAPqo0THCVpF/LpLRH6vhERbqllE15NARL0URkS7OjJEMPA+RdS5jkTgHSdEHR8uROmqqkVx2DJF9ZOZRO5Yg0QrZ5NElK4VROP0g0ROucZEugzOREuuaUTWbbtFocRJRCRgTER9mGNG9FWwRv94lUcny5JGTjnsRRgp90SviuVEDH6aRtOnA0VVgYRE8RiJRFjUjUUuk5JEUl7URIQKXEQ6BqpELmWIRb/YSET/NDpEHI/HRRckOUQHepZFNnuKRRAry0Ssw95EzepXRMaddEbHgetEaq/NRUr7KURwqbNEIV6gRLjalEQYIEVEI8XoRM6q7kQmqfNEwukhRCARZERA+I5FXk7MRGhXPET8UhFGodqnRD4MAkWxodpEEHuIREnrmEQ6pDxEI3s8RTkzt0Q1FyhEVq2GRKmCjUTFS05EsFK1RLngRUSdoo1EsIxvRFGJhUQCcW9EZSoqRGYglkXRTGJGfOE7RE3CGkattFNFibd+RDcNtkR3goJFV1LhRIqgUkWH5edGX+92RrYrj0XvxEVEu1GyRUuCVUQquThEV/hTRPT9SURpkSxFgOmzRCqSPUY1RLZFupXxRPK0Q0TgRItEvy+vRPakOkRVh7NEUxlcRANsI0VczxpEirUbRFO5gEQ+vsdEGB3CR3XSH0UPUgNFnV36RIeWuEaA6/hEovB9RordNEVBzRJFfVZERHzNpkQiX1tEJEDKRJf4tUSj8UpEqYwXREgSP0RH+rNF+SmrRL+UbUQFZ09EQgA6RP8dKUTYHllEDaZ6Rn2bUUQHHhxFCXMnRMcJXUQqVs9EZ4YJR3BYL0WdeYNE5+nnRVqagUSlGUREAj1VRAgiDkUagapGcRkiRdYiaURcvQJGFNI0RHQNQEXxsLhEEf6xRKINXES6MrRE+XktRBOXT0ReDktENrOfRGXGbEQJVoxEFMw6RDgtREQhMBREPTd/RTzAd0b9vl1ERJ+HRKjnSETBNjhEYfWMREZa8EXe15pEzqjBRK5pHkSPVhhH5K95RQBTXEbQJ8NFCR/DRII/3ETw3pVEIlKHRE5GakQUfk1EtTEfRJJ/MEQOQW5EdnAzRNdynEQRgzFESu4zRNpAhUWuKd9EsUMnRHvFWkTyyxpETIwyRjlPx0TqgnNERQaiRLVRWkXevStEcS1eRe16LURWhypEWC5BRC2f9USm6VBE82NBRN57G0RLBOpE3xovRHjPP0TiMItEyXiERDE4V0TDeEdEPJSURHt/bERq9ldEMEglRFk3akQXQGBHzvw2RwKpVET1dJ9Gg06aRaWn60Sf1J5FjaRhRCdJr0SjiSJENVwERVnHYUbtWl5EoRfKRAWpO0Tx4kJFFwkgRe1UVkQ+e6BFVl+ZRN8sgERtvd5FW2QxRWMY+kSmQvxEtK7QRLLUxESuF6tEtg0iRNZ4IkXAiYNEoI5CROElAkVakkZE3rllRCQ5MkQaJxtGBURYRMMU40Ris91EWL97RDYmoUR0B4JE/+ORRC1wiUSwy1BF91tsREO0VkQ7AxxE1yFoRLw680Tl/E9EWouVRUZ5EUWYiZFEY2GjRMGgwkTzeItErSsuRPZ5MkT0rlxE+Qk9RGRJn0Twa7VEllGgRE7JIkRbzHdIAc9YRJp3fUVkZWFEd91LRHsHKUQlHUpEUmY+RNdcj0RbYONHkM9wRNFnqkTB3ndHcYRERYPphUQHOz9EioVARUJKGkQXjXNGlJg+RFMXuUUs/2VEZEHhRKfKgUS8ckNE0cNMRNf3Z0SZpzFGRR9DRGi7bUUL6lJETCWLRSwTkkThtcZG0P1kRMlAOkTdVbFFrUmCRHQ770TkX69EOkZARQvaSEQe43BEPvSLRTu7P0SycsVEQBpuRDnbkUShzZpEwmheRNeDQkSZG15EJMgwRN5Lq0ShAkZEYNo8RDg0QUTqk3NG+DEXRma5JkR9aqZF93U7RO+OwkSmjZ1FIx4jRN60YkSEw1BEIsVjRLFsJ0VkZShEVYCNRBcEF0SWzyJFH9QURItvEEU8YoVEDTYrRfqPhkQzk4dEGxUHRaAqA0UuGA9EzWjjRZrUSkSwCixEMwEBRWxAdkRY0OFEkqfFRA9QF0W5p5xEmyyDRO+0IUTfkldEGmcZRFLKMkRi36REm4mAROLUd0bma25ElRr8RSd5pUS1aj1GP4glRivuy0UF4FBFwsitRDf8TETs3RZF+jCrRGG/bEVs2C5EKsCfRPGqEEV25atFbS8KRCzRr0XAkvBEli0sReU8c0R5yZFEKnSORPUiLkTkqrBE4aF0ROexJ0SoiaZEXBddRLRrV0TsF5lEAck3RQAaw0Q0aY5Ee9KuRGylkERSd6lFUOGJRHhAKkVvPZdFnGOgRHdIYkTA89ZEvpPCRG4xMkSasxREdodWRKRZQETa0RlEABHvR8jEXkS9EUxEMQNaR+8KTkQniTFEtwQPR0NFEkWJkXFEcam8RV03EEa01yFE3uM4RIqnqET6nSpFUrIjRdsbIkRZrIREJPhwRDIdgkSmqSBFL9A4RDBJA0UjFVFEx069RDilN0TOuXdE5VBMRO0Mi0QkmRNECKBDRObRgkQyIfxHuOlCRIgKKkQKFWZH1t9FRLt4E0f4NBhGKMpKRfoKRUSc/iZEHyrWRDIOX0RoZxpE5JlFRJyPN0S/BbRFrhBcRAV6bkQwZA5F48NlRPF2NUQqRjlEByIRRV4oVESdfXxE8wwIRU/aSkT4RgpFvA5hRO/Wk0R06VREm9QtRJ04X0Q1S/FEE5qVRCAQhUTypV5E5lAzRAyZj0T9QB9EfponREvBNESr5YBE5bMwRPYnOEQeUihENgbERbWlDUX3W2dE+g0rRz4u40ReNiNHHJefRp3chETFnvdFpEfyRNVgekT2tYdEHslFRHheUURY+CpEyW6wROVXskR9TaFGK4AaRy8RU0adnx5EXw5IRSS9jUYLqK1EERJgRInHPERPHB5GoaKWReJFbUV8ajFFckUxRWHD50TDuY1EPF+DRTW8W0WX06ZEoQ27RO68TkS9WJ9EE3DtRmVmdETLOpZEcVz6RP3kQ0YZ2n5E39G1RVqV0kTlkktEhJkBRyVkwkSa3pFETkQ6RLCZokVYkVBGiCVPRIPAPEXf2oNENH0nRmeJDEVCaVJERoJ7RF2NdEWV1LVElAzjRZoClkW1LkxFIzMdRLvZW0c9kIFGr39LRFTbf0TKbgZFGOQgRdLxdUXElK9FrobtRQt35kWStBtF3jmGRMy0VkSC0zBEd9dNRAlqLkTCQVVEsdo/RHMwLEQ50LREsggoRLpK20Ruw4BEZ/q6RAWVgkQZfSVGI3umRZCmjUXo7bhEX9mORDfxpkRUkuhEcBpARF/CdUQ3JGxEPsVdRe3d2EQJjeZFB6aLRUpNWUUqVKVEdn2+RDM3IUSHI9lFRV/VRctnHkVSrD5EHASCRCA4X0Q5bRxE + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - oNqTfXnAckCEsIHND8FyQHC6fG0kwXJAgxJYbG/BckCUBKVmyMFyQBrdMINNwnJALflTo6fCckDQRYgy5sJyQF75RZw8w3JAHQMJI8PEckC67SRsWcVyQBnMMkl50XJAz9OFlg/SckC5ZT+OQ9JyQLLxT8J103JAD/gHEA3UckCJgZn5YtRyQISgke2N33JAFKoCHszfckA/8VZZuOByQGcyFkRP4XJAS/gPvPfhckA2YlOfT+JyQKAqY12P4nJAdpijdCjjckC839V2t+NyQJiPSV7K8XJAUwm6RHfyckAPg8OVmvJyQDX2NNi083JAwK3Z26P0ckAUq6B/wv9yQA9olTliAHNA3PB6VPwAc0DMgldWDwFzQAespDSLAXNAepC3CNcBc0DDdiwIPwJzQBDk2z3PAnNAQ2gCwfoDc0CAXQlNug9zQAw1aaIIEnNAmqqxRrwSc0DZdndj+RNzQBaqHKZ5H3NAsCstCBEgc0CWm90QpCBzQBYm+iQ5IXNAOoJ1J2Qhc0AIdf5J5iFzQIW0uGjJInNAZw6xKhAjc0Dl+T9TBiRzQBHI7KE6JHNAY8jYMs8kc0AoXwyCTzFzQEx0w+sfMnNApiLUeAszc0DtdNob1zNzQBZYVFX3M3NATvLWkzo0c0BL+Dto3DRzQEvZXlm4P3NAFUr9wOJAc0AWTfFqeUFzQEC8cffdQXNABH87c7hCc0BCvecFekRzQEj4iD6bUXNAyAOKxQ9Sc0CQmz3MuVJzQEHBZV5AU3NAWvTSAKNTc0BoYIWxelRzQOoaWGP9X3NAFrc4Coxgc0B1szhUHWJzQNqlEgalYnNAeLBybThjc0CCrfxVzGNzQHL1n3TccXNA8NMWCE9yc0BCyT5mZnJzQEAj8dGQcnNAYdiWlrlyc0B894coUHNzQL//N+eCc3NAlCVvdLZ0c0Bo51+tTHVzQCNbRDVqdnNAKnREg3iAc0DUyIEApYBzQI8JPugOgXNAUaf5wl2Cc0CwhLGc/oJzQPhAUWo5g3NAJMPXVw6Ec0COtH0TWYhzQBnifWKHkHNAoIcP6tORc0Bd9iFSTZJzQEQFM7/Ok3NAWxRQOWOUc0BCNwmk95RzQNBMpL9tmHNAEt6bJrigc0CxABc95qBzQAqxxgFQoXNACiBB03ahc0CZuFoLsaFzQIZSb3hbonNAVF307yKjc0D2AE2jBKVzQGhLsjPXsHNAXZR/iDKxc0C6eFUZf7FzQD43ZhNasnNA7Z/dBH2yc0AQ6VXgtbNzQF9yXCYOtHNAkDGeYEa/c0DSJUE6+cBzQKPFA/1MwXNAYNo+gTvCc0AwA5Laz8JzQJ1IZowlw3NAYLkrS8TDc0C2MtwqpdFzQDQ3UyTa0XNAS060R7vSc0AT3aE2KNNzQKyRuS1V03NAmV0GLPjTc0ArgA+64dRzQAmxoXOj4HNA1tKgMTnhc0D2wq3sY+FzQCLm5ayK4XNArrj298zhc0Bz4OZi5OFzQKy5rTh74nNAwOudXqXjc0BRSdP+8ORzQNbUrTUs7XNACAb44kfxc0DytPnVjfFzQBTVahr68nNAeLCcLTb0c0BSNlp/jvRzQHi5AxrnAHRAeg6HCXkBdECE07BFqAF0QC/OY10jAnRAaBG5jrwCdECTswsdeBB0QNhRXNkMEXRASpJkUIoRdEA7acCe1xF0QGZLyN9LE3RAgQOfvnUUdEDGLa1VSSB0QN5lsBAkIXRA47dZoochdEAG2CPKuCF0QEiG2LFnInRAPOo8afkidECjGR5rUjB0QHqz/b8mMXRA+hxtibkydEA6dT375jJ0QMYET0IRM3RABmlAiOE3dEDSVbeYbjh0QNbBABXIQXRAve8uvV1CdECgVv3gqUJ0QKy1fB88Q3RARl9BUUZNdECYgbRHz1F0QM7oPw1YVHRADgDg/vVUdEAyUShIjFV0QOxVrTQMV3RACnycs9xXdEC0b+7xIV10QOQ1XCe4YHRACbU+b+hgdEC2+bZiCGJ0QCh+RW1+YnRASICFHg9kdEAHr8+jT2R0QKjGByYhcHRA+JookF9wdECR8j1ZQXF0QJ6WeQIVcnRAT79EcDhzdEDSYu+NoHR0QNFULoQ3dXRAlL3TUfaAdEBzavEUT4F0QOktTn5HgnRAcu8YCNKCdECUWdbvJ4N0QNhAuRO8g3RACF4+lhaQdEAo4f2taZB0QC4uvjW7knRAZm2I6hefdEBGDFmP7590QHbqgS2ioHRAnHq2tdCgdEBW6J50B6F0QApuhDM2oXRARO8dWo2idED8XFpcDqN0QI57k00LsHRAy+02msSwdECYCetiULF0QL6zlExvsnRAoIHWyyC1dECUs6m3y7d0QKbdL9DiwHRAloH1KXfBdED8RMVO7cF0QBDyIQkOwnRAEngTgiHEdEBM2PzteMR0QJbM+1K3xHRA0qIL9PnOdECiwL7rOdB0QCDqNkSo0nRAhOm6jhXTdECMXsgeOtN0QCIWLC2I03RAeQBXROLTdED4SrEbeNR0QBhunTLN1HRAlKxgBbfgdEARYLVjJOF0QLJN95K34XRA4bHTZ/jidEC5whrijuN0QPas9+BO5XRA+zaoK43zdEAYA5Xit/R0QDThgounAHVALGVvKdEAdUD8Yt3mYwF1QCBejLNdAnVAsus3hJkDdUAu5TQR0QN1QHffjjyZEHVAxPIVvOEQdUBIvsb5IhR1QNqpJVKdInVATpnxm+MydUD4MWRoOTV1QC6RGx7NNXVAslbPd9xCdUC7W941AlB1QM6M3gp7UnVA2K/Tlw9TdUBS7owsUFN1QFa0WMtPVHVAqgBAoXdVdUCkPVtjomB1QETxy/k3YXVAEjUuB81hdUCRXSHl7mF1QNYaFmJjYnVA8L0k2Y1idUA/0YMjZmN1QDJ7UBYDcHVAyLsyN3NydUCmX5m+JXR1QGi5baONdHVAiP9GTOSAdUCYPRYXeIF1QIBI88qugXVAPeYo6aWDdUBYyXU9nIR1QLcwybuNkHVAdOmC4GiRdUAQMZLclZJ1QDHdVqQ8k3VATkaiwrihdUAh/uINSqN1QL/sC/y9o3VAEuJKkqOodUCgiWu2TbN1QEQ3ydS3wHVAtSeDLM7AdUCYWGcDNsF1QIYaemZkwXVA7hC26vnBdUBckbhCOMN1QAeEnqjL03VADsPdMg3hdUCeLBDuCOJ1QKo56/yp8nVAShzdzTfzdUDZBGrvafN1QFV4g2sb+HVA29/TE3T9dUAsz3WNTQF2QCq1qy9IAnZAKMD1YNECdkDRYiqKzwN2QLBsoYtNFHZADO34tAsWdkBozMkCtCB2QGIBqkiIInZAd5WKYpAkdkCGq56mSyt2QKopJI8fMXZAwfQkBCQzdkDaxVezUDN2QKhKbKe6M3ZADmG72J40dkAcOUrZ4UB2QFb2yXocQXZAzoCGvC9BdkDmZsFXpUN2QETi0rd5RHZAzcvhbslQdkB5+5K1E1F2QFQLhjP7UXZAPftHiM1UdkBavJu+j2B2QDbLKDokYXZAEqA/+NpkdkASpVoJU2h2QP4OMBxveHZAr25QPGKBdkBfOkcwkoN2QLzMA2S7kXZAKYzcFq+SdkAmmN8LvJN2QDiwaUfRl3ZAjpsQT+iddkAAnnCmD6F2QDYDo2KhqHZAFD9/PrewdkBY5E1vwrJ2QDwDISwNtHZAIKpjRdC4dkCuKl+BTcF2QDJZWOHOznZAtKhDTX7QdkCj2HkTv9B2QIQ5XX6g0XZAkitz2vXhdkC+8X6rt+12QKZnyK8e8XZA+7CIqZDzdkDg2xQqUPR2QJIHgKYyAndA2vSjD3gCd0CnaEhspgN3QPiPWbcBEndAoZ4N+84Sd0C9f5FHjCB3QOhchma7IXdAZJv7Jg8id0A7uVEodCJ3QFmt6xHnI3dA6lBWRrokd0D51Ar/6Sd3QATGw+9DLXdAitg1U6Yzd0DM7VkpDTV3QDoEttecQXdA8vGp4TlDd0C+HH+kkEN3QGCi4RwmRHdAXR+7OBtFd0C+oJG9BlB3QESxfMJKUXdA2LYfB5JRd0DNO5gveFN3QPqzSRYpVXdAM5grmhlhd0CGegWYSGF3QHLwgzeQYXdAXkuL+qNhd0C9z4nFq2N3QI1NdJo5ZXdAwoWUqSdvd0Cqob2Kn3J3QAuDui34d3dAYoAkgEF9d0Ddfap8ToF3QIoVeJHkgXdAGq9/+HeCd0BAT6/aCpJ3QFx3Fv30oHdA1zwODI2hd0A+DGumm7R3QKYae+4KuXdAcIYjly7Dd0B5A8pP49B3QKtsAm+J1ndAJWWhc+3gd0D9OT526vB3QKDMwEFQ8ndA06bei3D4d0AAALfuRv13QLAeuTSfAnhAsCKX92EDeEDIeI1W5wd4QLz/SBL9B3hAvQafzEQNeEAgJZkxhRJ4QI7oGHehEnhALFuWh28ieEAR0wdAiSN4QGwvUDc+KHhAPDpASWUveECedk4D2DJ4QFokIKEMQnhAOmMZaLdDeEBLUrK3EER4QD83oeF5RXhAmmZr2spReEAGm66hh1N4QOyxcukdVHhA8z9UVkpUeEDP5UQhh1V4QJAtYDn6YHhAVWLs9LZheEBQ+B7jtmJ4QBqvN5CmY3hAkJ5J0VhyeECaokpGJXR4QENavlQydHhAS/6MpGl0eEDwkLXci3R4QMak1uLadHhArBMQ9vZ7eEA58sz8PYF4QFygb86lgXhAzFz6HdeDeEDadYiz/oN4QLzgx+iZhHhA2dMbNk+IeEDcck6H6ot4QL0490cGjHhAEp5MOaiNeECsAIZ8l5F4QNagHWUDk3hAZJvhNKiUeEDsMFvpUaN4QGDKLVq7o3hAxsKkyjqteEAd6BK63Ld4QF4xjZc9vXhATqqCJtDAeEDAROp1JMJ4QGUKB0kXw3hA4ExbEgjFeEDq3n6nHst4QIkZTaHVznhAuu3vIQzTeECPPkR8ttR4QIpRNELW2HhAYumhfy7eeEAGfcxbouJ4QO4P6c7Q43hA6v+8/PnneECrEDG6n/J4QMJAef0A9HhA+K4qU431eEAuW5rIewN5QFGH46+ZBXlApbhdxysTeUB0Pu5vjhN5QNfUdHJqH3lALI5bG/8feUDVaCTXtyJ5QONZLlziInlADNaBy7sjeUACvjKETyR5QPxQspqyKHlAVPFpuwsueUBC0ZXP1zJ5QIy9Ju+4M3lAQLk+OPZCeUAqbiCt+0N5QFk8hK+OS3lAtNuEJM1UeUAMpncs7GB5QBNHJ+PYZHlAnOySDEBzeUAy22XU14B5QGpuFUTyg3lAmWUrhMCyeUDkvW2Vs8N5QOpsi38IyXlAnrvHyljMeUAWCZdigNJ5QLKYvk5C1HlAHw2SNf/UeUCJ1Nc0zNV5QDotpVsS5XlA7hcgeyLleUBpDYomUel5QNHd9YKs7nlAZhW/rxPzeUDA9JjFEfR5QDy5kK38AnpAODJ22/wDekCWdwYo9wV6QLZqVMDhC3pAqBG23+gTekD0vBqsOSN6QGnOVlxpMHpAEHWmAyszekCJ2cmrDDV6QGeKoF4tN3pA/hUdnDA7ekA5phkLND96QHMp+PtdQHpAfIG21HhAekBkI0BeGkV6QKTGhrymTnpAUyclpFdQekAA0YTGglN6QPp4B7gmVXpAJwTyjiJcekBPpi2PZmB6QI0oYEEpZHpAiBp87ThlekDGMtQjRXB6QK+SuVMLcXpA7ExD8I1yekBjk5XxJXN6QLggPG4qd3pAlBchXS57ekAOXtXHxYB6QCjFGOvTk3pAlqeLwKGUekAv8RQF35t6QAgm52sco3pAlL6NEyarekAWbEXrDrN6QG79fs0MtnpAOHHfmRC3ekCasFK/Gbt6QCZDs8lGu3pA8MDvkr7DekAwlmCyxst6QD6VltMpznpAwUHNs0HOekCi2dyry9N6QPyaSjRn4XpAWhyjeDzjekDP2gh9PeR6QJwT3mA07npAd0sWDRXxekCqAURGYfF6QJSYktERAXtAF/R9CnwEe0BGMex4Kg57QDhN9AOBEntAlqr5IokUe0DYK9OUTBV7QBS+XGEfH3tA0KJDBpAie0Aa5PtzJCN7QJ0Ge53SI3tAsuox6Vkle0CaoP3FIyd7QDKSNXS9K3tA+K3iZlIwe0CY3MFOwjN7QGT2LLLWQHtAvhAN2VtSe0DQoKqXZ2N7QIyy3OQekHtAWOano8GUe0DsQlQVI5V7QAJ6xb+vo3tAAA1LNTGle0BmzWVTAqt7QHaimy8qsXtA3F9uOnfGe0DBMkpphc57QJCrCDKPzntA3IYhqRnUe0C403G6JuR7QBHd+g+W8XtA5D0CpYz1e0A0n09Vu/17QAZeMNBs/ntA4HFaKdkBfEAEZY0H9gF8QACGA1W5AnxAguesuWMEfEByRAJcmQV8QHKzWuKFEXxAukwjTdERfEDwbspRqBV8QA4894n+I3xA2kUilI4kfECk95SYVyl8QOBrTpuxLnxAl50zeQw0fEDYz17CzUF8QHObu/s4Q3xAoSH1r19PfEAgkpk62VF8QG9ohTltU3xALF4X4WVffEDMwIq3C2J8QEgAvN8ncXxA7M2vF+h7fEBszQKhJoN8QBEEYMlIg3xAjh3dYVGLfEAc+kDRwo18QK1pI6gck3xA3N6UHWSYfECEeba/R558QDsCHQC1nnxA6X4PgxKjfECsnTX/96R8QBCBGwaOpXxAtgqPCcKyfEAi3Kim67N8QBojXAN7tHxA/T1eZvO7fEBDm9AIh8R8QF+uSpbK1XxA8JF0rPTbfEC2J5jrV+J8QIfrsywQ43xA0RyGV/zjfEBiyeFsZuh8QNA1ZUUX8nxACKlGOFTyfEDtrRmo9/J8QHt1w5sF83xAENXYgv0BfUBSLaIOSwJ9QJqFax8PEn1ATqsMQEMSfUCmvzhkXxJ9QAkpkub9E31AlY12NU8ZfUB+nn8JQCJ9QM1KI2GgMX1AHrXV1z04fUD8ZWqlPz59QPyLwO8ve31ARLVsrP1+fUC0pLt9NYN9QA5AUksmi31AzBM9epGNfUDul3oWHpJ9QNSWLQPukn1AtOykEVaTfUByZ2Osj5R9QP39f0hMmH1Apfm9rJ2afUBg1Dsfuqp9QGorvbcRrH1A+JPkvf6xfUBaJ186MsN9QL0bf01TxH1AeMe3GebEfUDqXajVYMh9QPorxBc/031AyVFMh/TUfUBO5GG4ROB9QKrfwdfU4n1A4O5Xpw/vfUCFxLAuj/V9QJOR9kgz+H1ACHfytTQAfkC+el+yfwJ+QH5gT+QoD35A9zBYeUYQfkAyQfJeNh9+QEus2cQjIH5ApINbtiIvfkAWtGVQNDB+QIBkPuBCP35A96Wr3KNEfkCc9O6AUkx+QHQ9jsFTU35AGqP51txTfkA8373hjVV+QJJM99BaW35AtmcNA0hjfkCU8iqFaGN+QK5f+nc7ZH5AnEwgS05rfkD8SEqAEnJ+QH43q9+hg35AHoYyz8KIfkCMe7gVdot+QDTDulLXj35AtjlTXbiYfkA9GtXHkaR+QOQ6bQFirH5Aju2iz2GvfkDWIuzdlrJ+QJxWhWxptH5AQb3M35i0fkCwWAWkXrd+QDdGq09uvH5AVony9iy+fkCwhJ42ZsN+QCY80pLRxH5AEsxdJXbHfkDuElGQbct+QOjkj4hb035A5nuXHHzTfkDe/GgpZdt+QGNdaBzhAX9AOD8dDpMDf0CjLC17lhN/QJaxtUymOX9AHq2o4mQ8f0AyA4MWMD5/QKBQoIlzRH9Atue+3t9Mf0Auyo2zslN/QO9sn2WqVH9AzFT/27hbf0BEoPpr+2F/QJycLQi1Y39AkBZjfbdxf0AOHh0H5nR/QMDyOWezgX9ApzjakZyDf0CqIoZZjYt/QPN0PIPYkH9AZIYruGKRf0B+u/GHp5F/QHJqae9ik39Ak5FXkJaTf0ChDdF2i5t/QLKjulakoH9AUKk88V2hf0AONOE9yqR/QCfUgix/qH9A0Qr64laxf0CExGk6/r5/QOXMOz4fzH9ATsouIkfef0DDJfZk3eR/QHp2mHJW6X9A3H++lYPzf0D6gm2h8fR/QMg/y+x4CoBAnJf0t7kNgEAWfWK9JQ+AQJKlBQ7LE4BAEyRCqyQrgEDWAkTSYTKAQPi6K6cQNYBASmE3KB03gEBYNKPU1DeAQP737MZAOYBAOSSorsg5gEByNCwJdjyAQN6qpDokP4BAXs0jKalCgEAE9Xl+90iAQIqFXxYASoBA3BIBu69KgED8OmxC5lCAQHZ/WOITUYBAtedvOzpSgECkLoKm5lSAQHjRAQhpVYBAHlW076VVgEDKWQ8QkVeAQG0HAzwnWIBAAkUUs+ZYgEDTx+EEDlmAQIi0LGIfWYBAwOIJmapZgECpRK3Y21mAQBYhlSkJWoBAHKmCsQtegECKqEU6Ml+AQBJP2RvEYYBAg9GeaW9kgEA84xtwbWWAQOiOU+2hZ4BAEMdur01qgECAicP3J2+AQGLdCmsld4BAFa/+53l4gECifD/gKnyAQIB9QlbBfIBA6iEKnat9gECmo1PAKX+AQHu8YV+rgYBAT8cIt/OJgEC1ANJdHo+AQLLlKjOvj4BAPb1wjDySgEAmAtCF4pSAQPJqmSgel4BAOI/25yCZgEAerjsaQJqAQACgJBFUmoBAVhOtSJKagECg3GQVVZuAQDiEqfwAnIBA1Duqp8WcgEDxlcgxyp2AQCg9qBg6noBAQgZNZRmfgEBMdMCCcZ+AQP5WO29voIBAlIUJJ86hgEBMDY0+XqKAQO/gy17BpIBAMrSyPIepgEBQT1qG2amAQNR1LudkqoBAQRQXb0CsgEDYKlkq766AQIA+edsSr4BA+iyyhKivgEAIY3ccGrGAQD1FGArksYBAjGRvp36ygEA6WDu1j7KAQB26Ng9Zs4BAl8Ju4QC0gECRpmE3EreAQN866s4quYBA+3LfTFa7gECUKbInCbyAQDnzOC2FvIBAUkDvIHm9gEA+qP+pOL6AQE6W9I/wvoBAfzWRUhzBgECueyV4UsGAQFMtNKOewoBAMmmpUADIgEAGdKEEZ8iAQPbOMZUpyYBA1iABTFPJgEBxhiWQMs6AQFzwhvMHz4BAEpfaUSrRgECP1uEjTNGAQLCZ2pZg0YBAebohVpjSgEA8OB4xZtiAQEOZQFJK2YBAvp37ZjLegEAM9QY3ROGAQO/v34Js6IBAWGOND/nogEAksfH9Su+AQHcjUXIi8YBAdG1mjTzzgEA0CHIiafqAQDJR8oU//4BAGGJUdj8HgUBivOEl1AeBQHMcLO49D4FA3hUtG+8RgUCCryGLPxeBQIbxtxmbGIFAvliiWMwZgUAmyOt6NB+BQOA1qMCxH4FAqgV9zTwhgUC+FaxNkSWBQJMWlr80J4FANc1dWrYngUCMqpYA+SeBQI0v/2zpKYFAWGWAHIgtgUCzaWbG7i2BQDSM7mctL4FAZKCWG7UvgUCEvp0TvDGBQB6MWMB0MoFAyNPGz9Q3gUAaYfpCZDyBQFFjmezmPYFAaNFAdSg/gUDsMdDuy0GBQFqXln7RRYFAMFgc+CpHgUDUoA7YzUmBQE6LUFYHSoFA7vztVGtRgUDOQy+S3FSBQBzOz3q1V4FA/FIUvbJmgUCegyz1umeBQJK8OVHCdIFAZsVo7G53gUBWtJcoP3mBQPkyk4PyeYFAKH4v0Rt6gUBc2Senx3yBQGDJp8obgoFAjAjSj1WPgUAeulbijo+BQK76iGjwkYFAnqhqYJuSgUBEeY4naJOBQI7O8G3wlYFA+hj9YjaWgUAIFR3aVZeBQHz5/+BsnIFA8LyFs5ycgUDsY2qdRp+BQMuO2INZn4FAeuKvJr+fgUBgzNsHMaCBQLIWOd3loYFAKtptEfmhgUACJH4U3qKBQDTeXu0SpYFA2N8O1m6ogUCTcupZSq+BQDzIdmxLt4FAWnrgwjPGgUDgSdW8BMqBQITQSgSxzIFAl3B4t1/PgUB4zuPVfc+BQIBjjlAq0YFANr6lQPrRgUDq3LiXKNKBQFftSfd+04FAWifPFB3ZgUDy193iYd6BQARJMQSy4oFAgDpU4Oz5gUAu8xoU8P2BQPycsx3jAYJAHNJQ2vUBgkDgeJ7t6gWCQCgCAVYDCYJA6M9BAM4JgkBwhS6L0Q2CQAzzPG3YGIJA+o/nZSkagkBWWseiLB6CQPYLiW9nHoJASPjQUdYggkAi78/BISKCQJxUCnY0IoJAPd0rEdQigkCASdNoOCaCQLqX3VnQKIJAhrsMN54qgkBTxwzboS6CQMYFim9zMIJA3ij4d8wwgkDSDtVzyDSCQJ45Z9PoNYJAXLjDcAs2gkAq6lMUpDeCQFjYqy9YPoJAbiNs86w/gkAF2u/GA0GCQJwBFHw5QYJAJE4qoApCgkBMD8mkWUKCQKCF0mCxQ4JAIJIS09dGgkDwaT46O02CQIEO2xkJToJAmhVT995OgkABlhStcFCCQHewMBQNUoJAFoc6bQBagkBkixzo01qCQPBShNlsXIJAQ8VbjeRegkCuuCdVNGKCQBh1wMBBZYJAE0MrzzZmgkCGrsBaqmeCQHuj3AdxaIJAz9clPARqgkCuFVldpGyCQBwMKNBucoJAgle9JGl0gkD0a43l33WCQLc124VvdoJA0HPZxtF2gkD0qN3oAXqCQMJIO4BzeoJAsPxF1OJ9gkCcBcoGAYKCQNQvxZRAg4JATC0PPkOJgkD0XFulQ5GCQP7B+iNjlIJADTtQsTyZgkCd37zBVZmCQOP57m91nIJAuinMpw6hgkCSuDv4OqGCQLAF6t3ypYJAFPW9mQ6pgkB6IA5SNKmCQFS1iyX3qYJAAvDWsjKxgkBk1SiESLmCQB5siylew4JApL9VruzFgkDgwmkI78mCQArYsJsV0oJAU5oAznrTgkAe+xY7eNmCQAxIsnx/2oJAAziEJ4HegkAnCA4YDuKCQJay+uap5YJA/jxn9gbqgkAQtADWquuCQI7hQJu77IJA2KCaJp7tgkBbVRQLPO+CQDc+5IJd8oJAqkKm4a75gkDUpZJlvv2CQLKrRYzGAYNASg11Et8Fg0BW1TFivgmDQLVqipN5EYNAeGNR2wsSg0BEemrZeRmDQMw31LEmGoNAhIWS88Yfg0B1SOT1ciGDQLw12sYpJYNAbldwxB8mg0BkkwSK3yaDQDzZhmZyKYNAhIQ6Qcwsg0AxsJafazGDQFH4THNqOINA7oZgT404g0CI3R9Vdz+DQObP1DLpRoNA0OKlScBHg0Aw+WM0WUqDQC8f3ErBaYNA0qYeoLprg0A9L6AU322DQGhEiKjEgYNAsAyhmeCBg0AebTp3x4WDQGxXftTBiYNAl8njtAiKg0Ak5uwwy5aDQJg+ZBFAmYNAXvOyPtWZg0AictILD6KDQFvUCXb3qYNA8nzM5jGqg0C2Z6bh+a2DQCg0NrbmsINA/LOvwOmxg0A+3eMmCrKDQOFSDnQdxYNAEic9X8vcg0AoNE7GM92DQC33VjZT3oNAbNwgoSTig0A2zVAuWOKDQI4H2Kkk84NAMG8DrJT4g0AO12QEOPyDQFAH5AhrBIRAOjc+76gEhEDfOH2Jgw2EQK6fGng+OoRAVCvt4H9OhEA5Qrd9zmWEQPyZCh//aIRA59w6pc1thEDnG8Bp/3CEQCMe85GwdoRAJo0qiMp3hEDvqOkZ+HiEQOxeTgt3eoRAHVHWdiR9hEDsnLihu3+EQJadLLvTf4RAsgtEL3+ChEDQH+jXHYWEQBpcrLB1ioRA2snj/h2LhEDehfb3XqKEQLSLANR0ooRAit2lrx6lhEBV72GGObKEQFae5WzBtoRAK3/DmCHThEBgqIbAEdaEQE6TVDZq2YRAqgkRjhTahED8xD7UJtuEQPWNNHQX3oRA4cPB52nhhEBW/glsEOKEQGo++avQ54RAGfeMPWPphEAPLronNvGEQHDLhjNj8YRAhpb4Hn72hED8mESK3PeEQB3yS8Rm+IRAAm2PjQf5hECLp/tjNvmEQESI9JZY+YRAvjKAKIz6hEB0FVrLNf2EQAohITPj/4RA+YeceSsBhUCkMCpANAmFQHR8DI9FFIVA4Fq+odoVhUDmhdK6+BaFQLQM4BN1F4VA1skDdw0ZhUCAFTGpshqFQJhFBvn7GoVAkLeASkMchUA44u823x2FQOzNDr7/HoVAtc+tawYjhUD45CQULiOFQL805W7CSYVAgMw8U6BhhUB8m9Rr3WGFQK+aO4BOZoVAvfQUb6lmhUCx16O5oGmFQOj+zo9PaoVA3LcJsqxqhUBC8MqEr26FQDwgChGZcYVAwJCjd7JyhUCMY8ShtHaFQMx+4n6WeYVA/OMNjpGBhUD+akLkYJiFQBJyd0ktnYVAPN7MeUCuhUDEMfJZQ7KFQCxD/8pEtoVAm2ygGCHChUCbclZCBsqFQCp6LCsoyoVAwAyJkP7NhUCkKhPhLtKFQOhMII9A1oVAlwunq6LihUAmeWpgzOKFQB4JI9pm5IVAHQKLXQHmhUBeFXCsnOeFQAwg8lNH9YVAlH9Rb4H1hUCJamhD/AmGQPh8MqZ6DIZAlvt4Op0ShkCA+snfIRmGQHQLYW1iHIZA1pLSTkE2hkB6rC+a6jeGQJLOfEuJUIZAXM51Q2VrhkCeT+o33YWGQKjn4QkmuYZAUNM7tSbBhkDiQajk0caGQJQ2WRDOzoZA/ABwzs/QhkAK1k9HleKGQL+GdRcrE4dAcjgmpRoXh0CDJXGmkCmHQErYoRGSMYdAsMRSC4o5h0D/GL/upj6HQPDaikiMQYdA+yVzUIVCh0Am8WdShUmHQCaW3LY0Z4dADJkr32KZh0Au0YYTHqOHQPSJOCgUqIdAEOGLisexh0CS5ivrx7mHQOTXDezAwYdAzD3fkJvCh0Cavu7TWMeHQLIaCYLEyYdAPnH2gYsKiEDZmDNStyuIQJpd/8+kTohA+zR8JKhSiEBcOpeCq1aIQIAiKs6tWohA2ptPQ5VsiEBe603JALuIQA== + KBZXds7jZUDPIQhxcmNtQNzlv3T/InFAPmWIPVEic0AyOsR5l5N1QAXAHHdpU3lAiI7Ifi8EekA= - + - gp6PRDK/QERLPk9EH34ARixAgURysa1Ehd6HRALmp0SPy4FFbbyrRChv+ERNTp5E6mvSRHBn+0YvwKZEnNhMRBHCRkTQrk5EOGuKRJqmGUXsdFlElmAiRA/6SkW0QsxFjGOQRDJZRET7qzRGkIk0RB4ng0RYQK5EfFPVRNWjfkQLoY5EG5exRIWIU0ROLExEaZWbRFgROUSbpCNFCiMDR+UcQkQSzZ9E6O8fRkJnqkUlwGhFmbI/RIPZq0QEbY9G9wSbRCOuhETa2K1EVGW/RDxKgURqOmhEuaaGRTfwkkTuHDZEi1CRRDQLg0SfdmpEPg1bRDgzQUQnLwRF9dW2RG9LbUUr6TtEa4yZRCIQ2kVngVVFHKOgRKcpJ0STs+1Ex2GGRbayV0TaV2FE+bWXRHMCjkQ22SxEbD3xRMhQaER3DtFEdsCrRAKm4kRTO21EgTtjREbNFkXAsZZFmVaGRPXKF0UOzV9EPiWqRgEKa0S9pAZFfZCgReYo80ST4SpEg64sRMaIl0S+gixFckkIRKD2M0dFfqtEAaH3RPR5YUaLtDNE50S4RdHjXETY0iBFMUN5RHp/QUTuGsZFIUWgRE9ELEVuU4REiDKAREpOR0Rvj1JEDdRiRLvEI0WdxgBFN51ARAEp20TNPBFFvBpYRLePsUWBdh9FiQZ/RKsKP0RD0gdFd46ZRPO7HETX1eBEEx2jRIfxtkU/iE5E3+ODR4GLhEVsuXVEHMw6RCREhkQ1k7FE4F2kRHEfM0Q68jVEdt+9RVcQi0Rrhi9EGigARXSqSUROClREogmSRgef2URYsjBE0c8JRSzwKEQaS3FEWavPRB/9IESFHUhFHKyHRGhGQ0RBIi9EZTBORLUUzkSwHIdEjcaMRGCwnkRPoTtEM1iQRLw+TkRYtJdEY6PwRP82qUT2RqxEMVhnRLaqGkRM9oxEZRphRJkvbUQzLxREkY27RAfcAkUuXZZEkeJuRCXLIUVDGo5F4jhdRBWQ6EWCrQZFKL1rRHf420TlaNdF4NBdRIfjKke1qEJE1v02RcARuETs78BEl6rAREOviEVKYYlE/mqRRFJjsUT3rxRFzoaTRdWaRkRvGF5E/6RNRNuzS0U00slEJq45RUa8+0RMfEdEq98+RHp4DUW2J6ZER8KxRJI/eESxO2BFjc82RP4xBUVL5R5FJQD2RLpsTUTFpbpEhL+bRDyUF0THLg1FQSyVRMKtJ0SwIU5EH5M2RL4NHUVQBnlEqFeyRObwQkS7od9ETWZ7REwZT0Q5sCZF2no5RNYJm0QZzslENWqmRVuwJkTh641ECMeRRIu4f0QCcsJFrBqORLXrVUQSXu9EN6cxRKDm5ESOtTxGzpNCRIfbhERTpQ1FtEdfRDiCREShf1hErS3iRM0uOETvqoREE+PwRNanKkTvyfpEszRGRE9wLkSoiPFEvHp1RNO/pkReoIZEs8ObRLFfnUT/dYpGhXCDRMGhEkWjoVJFMad6RTQQbkUAxIdEBB85RCFBSESz36FE/by3ROc2AEYFAPlE2DgjRcy2P0RXVSdE9EINRT6nPUQYFwNFS/fSRIjIgETqzK5EdjHiREvLwUSF74dEkXBVRNN1HUT4L9NEop5xRAnMUETcd5hFDwE7RNpqmkSGj+dE9wjIRFDckERbiixFpGLqRbVa5UXumbNGBb8vROELJUX7d2lEjuK/REbsPUQ/DGZFZOKWROz/L0S6f2RFns+JRBFOC0VQTVhENU28Rn/0YUT7pkZEbN95Rfb/SkQP/z1EgEpiRPOT20QpEy5E0ahxRL1MnkR2UIxEDQ96RMb6yUTAkRVEGFJwRMhHLkUGjmFFN1d2RMBjBUVkwFFFofm2RN0EeETt0d5ErpyNRFAhYURJ5i9EgsO+RLM1IUQ9WMtEskYyRP64XES/q3FGsUcsRNVuWkRiGjREw6UhRYj0gkRNhmREc0xKRGDCHkXARldEn6DkRKju8UfWIbNGAMIiRHhBGUW1rgBF9ZXBRmaQ50SwCaRFQvVVRkdnK0Q1MPVEjTFDRLPOl0Sh2+VEgruJRHkII0Qbw59ERDM1RcFICUaLg5NFxDLIRKJXlkRonUxEvFqKRNNmpETSaTREtMdSRP+XlkQfoWtEYOKHRFeaekQWYSVESS9GRFKGQ0SN55FEd3sURCPKLkfO9I1GGYcoREUel0WFMa1F9SNJRbjeN0TimkBEH+4+RSeCr0QN6ItE03x8RIt6LES7B3pEY1M6RCBjg0W3ByxGc4anRaxcOkSbHzJE5q5xRIJwFUW1bypFfpMBRXDD7UT1nx5ELOkYRKgfjUQopz9EAR5rRTbsN0npIqhErncNR39XW0SYxxhFtQ8zRRH29EUD9DZI0OuuRpefW0SIbN1E6hQwRpnzM0UfB1tFEg6TRg7IlETyt2xEEW61RK8fikQliiVEjZ+9RE6fNUSWAGFGh5qBRKJLg0Uw4TREKSO5ROcwlkXb4lJEmR67RLW/VkXnr/9E3W3vRFG7SERVi1tFPpG0RTmedUQlULVEH9pNRFymS0Q8LzVEBjA6RIjxmkUoXwJFeuyYRIIFekSVZ7lF5KENRda+BEXUoIREABnjRCwpV0Sqki9Eiq2MRTk4eERibYNEhbKHRD+waESTxAxESeIZRVbdlERnlzVEauppRGByP0QTfKpFkf1kRKODlEQKHBJE6AYlRJE57ETLtX5EEe4gRBGB4URBLoZEgqIeRSVApUSauy5FigCbRCrrqETgeURHDWLLRsVPt0dZdnFGLybcRexUHEWrgZpEWuleRVqOqkbSoGlEQSP9RT2jQUSruRpFn3euRdmFU0QN6GVEZEKARPX0YERLSiJEXoKCRP5hdkRrzOZEAuecRGWsQkRlWYFEThpGRDyOgUQAaGJFUxWwRM4xK0ZmjpxFcDG1RYAk7ET00LFEpJx6Rh9GwkWUhntEuGdaRGAizEQcquNEEAYoRPyVf0TnKf9EgszBRIpNfERql11EtMinRUtsM0Qc40VEs05MROb1DUbl2JVEdDFhRF3ikURLr3tEqL8VRSacO0SQH2REg2dnRF8khUS3wMxE17luRD+8IUQ4qIZEu3c6RIl9eUU6GVlEtCTARKJGtURgJy9EgUSPRN9YD0RXUQ5EKw+7RNM+ikSM9aZFBJmVRq6FbkQzy/VERMAoRpMwNUUs8/1EZeOcRBZooUUdAmdEhfmmRTW2Q0SXAgJHnjlcRNDGnUabzPJF6jqQROLJ3kWkqW5E7SM8RLGsikQz6KREnFZ0RAOYzUTfiUFEfORGROkPKESUP5JFHpC+RLrKFkabFRxGLWEZRZIx/0RQsCJE/0WRRJbtaEQiFkREeGLaRGP1fESUiyhFx+dBRKJOV0SlbrpEAvitRHn40kdja0hFVZJcRG7HxkSodvhEwperRu2zGURhYRtEyXq7RPNNkkb/7EtES/TLRDlasER6XaNEhvFtRH68q0Rwk9NEd3UlRC2ttUQxxp5FV0hZRFqlAEWM0IpEXzhnRPhTWUSToIxEti12RPsshkTU53tEaQZcRFzdIkTrsz5E/0QZRFbdU0QC6ShEEoBCRk1gh0Sw7TlEC3ZiRUTPOEQgdmFEx5k2RF9jlUTqkT5Er9QAR+pQZETsLmJE/zYaRdd1L0RrONlF2jg+REyFYET85IxE1bS/RCuFTUQWvxtHCCN2REnOLUWLVHZG07U4Rdyo2ETo3B9ES9PHRG+dhkTLry1EeBpWRLkngkTPR0RE9ocxRI8ch0Wq7JxGf1JtRJBjxkTVQx9GRS8kRNE4dUQXtN9ERHk9RBbLCEezS8NFpWFiRGCWcUb4qWlFohYIRQNeVEXnVz5E9eRRRCS1UETPX0dE/gU4RLfPMETNBT1EzkRORIEpp0T+00VEWxZkREU7P0TPTxpEIRSBRRyJnEQTwblEYnV3RKmwKUSWb0tEEucbRvdZcUSDQ2FEijp2RHbJk0STxhRFiK1ZRe45P0QkpohEdugGRYQCiER3kyFEbwt9RK2rNkS9i7NEzLIyREA/zEStXNBEJNdyRA8wKkQxvHBEzaxIRNl4SEQFLsJEVhpnR7raZkRgTR1ECAU9R4lvkEaRn7JF8g/BRSZttUTbMD5ExSVfROb2E0XpI2NGFRLyRM3XRUTMuRtEG8MXRQgunEQXbQ5FvmuNRK89pEWQhwRFotjWRMAFiEQ+yapFg3k+RebfU0RhTpFF0Tu3RJXrV0QWBBJF07/PRJ/iCUUJ0j5E6MgeRDkzVET9SkVEiElWRPd4rURzX0lE85Q2RKA4L0ZWun5ESeulRIwIDEWncwFFrDlIROkkF0SZs2BEYiaVRDU6UEQBRjhEfgmFRLmZo0T2y2dEkuQ7RDo0OkQh0H1ExnCFREOCw0XpzpNECBTNRPLHfUQKAstE8x0jRJ3GQESWNtRFFazURIvtwUSEoMZEAPaQRJMqkESiNsZEuTl5RN9AOESOtkREauqfRGORjEQZO2BEZybFRE0BbETAFbpEgN2iRIHZaUjCX6pFD488RDUDeUSgT7lEkFfTRxZYLUQD2ZxEXipSRZLjZEfI+VdFH/X0RMLo90RAsUNG0QM0RIcWnUW0SmhEFVHoRFd0v0Thh25Ehh1ERKULVUQDf0BGGV2BRYhjTURNG8lF9zZhREkfWEQtBHFEwRs7REvQ4Eb/EJREDPZFRO1qcEQ7gq5FEDyKRDQLJETadSBEKppDRJDKg0TLQJFEnmd3RFhkmET27SZFwnUxREF4MEQ/0RlEEIjiRQDtrUWd6D5EDbqmRAPmPUSoRwBFN7FURGCzS0QgeoZEmnzBREBwIERHQWdGTcoqRrDqokSY3TtEfsWsRVec2UQoUDxERp4KRiH4VEQRykJEbbVMRKa3RkRiB0REKC6WRJ3+zUTa5UZEVylrRW1k70Q8+45EsCImRDaNJ0RKPCBF890+RBzBYkTURmhEQhOqRJcyJ0bOqdpEy5liRK3JnkXAVJpF4feARFF+MkRK5CZE7kN/RA6GxUR28IxEV7JURIVAv0QlFD5EAiuRRnmXGUaBRl9E8DVHRbOMt0TWK91EhX3ARaluDEWqLzlGw+mURq4FTUbXRahECGWIRUNc8kQ9NNZEOHGtRMDhQ0TjCEdFYWdMRVUByUQsYkBEwWCDRGxUJkS+kkRE5fnmRMaQUUR92yJFAomzRcB9VEX3hzlE0keRROYIlUWYLJREPlZzRFGOSEQvPcdE2FeaRFuRf0TbwXZENC5BRA5vQ0XoWIVERKhNRMlHdUW0dkxE4LUgRfdPhUQPcHtEK/i+RPw8e0QcnN1F0CbGRABP80T346ZEUmhxRE6ix0S2kqZEjViMRD76ekR7cTBEYgr5R89OckduOFREIlwIR8pNMkU6sHRErm6uRf5VIkZiaMhE06YCRbN9fUVOtVFEqN3JRA+uQUQ5eF1EpTJERSF3+0QlMGBEUjAtRCZfj0TjtZ5Eo4OwREDIFUR7NUZE9SleRAl2TUT6Yk1ECkpiRBa1SkTYXqZE/pa+RDzBHkV1lYBEJMIcROoZakTmFeFHFpMhRGCJRkd8okZEVi5LRH586Ea/QzxEnWRvRJiLQkQ77gxGsKSDRL6yPEX3oJBE7YwyROVOZES+lkpEzTo6RCgSK0SNvo5Es9RSRKX+WUQV2pxFFqJhRMuX4UQXmqxESbZhRHdwYEQ12EdFBZs5RFQoW0STvbBFgM+LRLWXNkXHcEBEn1/0RE3sRkRCaZZEVCX4RFKJHkS3YGpExs1SREpaL0T9OXZEKhlkRFfcVkSdrllEHLJaRBXYIERMs05ELB2GRLdcQ0T62pJFVXkrRAjYLUUbGldEHBdOR/dQr0SarFhHxl7DRvKHIUUYV8lFBmcwRXqSeETTrEFEQIK5RMSFhkSMmptEm34zRP07bUQcEBpEHnGpROvI/EbjSiFHvO+JRqDrnkQhvKVFfkCJRs2nJEVQHTdEM+E9RhpEk0XlX2lF4t4ARdCzs0XwwhxE6uo7RM1nr0QQI9pELTaeRT7klEVkwIlE68ivRGUSOkSckxJFsyx0RW7jFke61Q9FBcv0RO37s0RelqBGR//oRBe0SURxdvZFyeE4ROL/K0QUu4VE4GgKRy9dokQojLtEwJY8Rr1/V0bF0bREWrzhRYGEcEVjWBxGTJ02RciUBkVHMUxFZWNrRHQxnUR8TcREILskRgDpCEaDURZF2DOHR90FIkVPpZRGpGNHRLWpXkWOFztEulArRDH2LkVU8K1FziL+RX16VEV5N39EOwwlRHL1vkQEdx5EE62iRN5KT0QryfxEUpFeREsvPERFSRhEFKskRJ37ekTb3JREEcBfRDMawkQl8KxEh7cbRCNJikSzvnhE99FdRBuFJ0Yz1sxF+nOgRRSVNESVigxFLecrRM4kV0SXBEZE8kAuRCa7LEUSYRpED4ogRnKRkkVC5xtFyVV9RIq3iEThqO5E9KenRAlROUT+ZO1Fm0UHRpdd1kQ7GnFEwJ4YRDSqOEQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 85LIfm7BckBjvunzUMJyQGppRjXkwnJA9GfeNjvDckD2S36Uw8RyQHpC081YxXJACncNGH3RckAEDUfsQtJyQDyV3+mk0nJAgNVgSEnTckDamQStdNNyQIarTuth1HJAv8HZMc3fckBF/QtfueByQMIuyg1R4nJAFXsfm4/ickDMLSttJeNyQMgr+vBP8XJAWJfpVcrxckCPAwCQe/JyQE4v3zYR83JAwFsa/bXzckDYdtbSDvRyQMoLL/Wj9HJAvhP4DmQAc0DiyrrV9wBzQNxL8uRLAXNANWtgeY4Bc0AgzAML2AFzQMBfaOk6AnNAdN5i988Cc0A04xyl+gNzQJlQamULEnNAIgi/hXcSc0CcW8ZvvBJzQHJySc0FFHNA2yV0yHgfc0DbiAM9pSBzQIgAINY4IXNAmjubNGUhc0B/9ZKU5SFzQPCdusLJInNALTb9hAokc0CV+GkZESRzQKZei2M5JHNAP/GqTc8kc0D4jf4jRjFzQL3F6ZJZMXNADCnSBCIyc0CFse43zjJzQM53yRULM3NAOh0l6qQzc0CoVnjH+jNzQM+OK3M9NHNA3MgKCts0c0AwoqGKuj9zQPMqMNVBQHNA9NjQn05Ac0BO1DeE50BzQGW7Ev54QXNAOgGHIbhCc0AQ6T4lQ0RzQEannFp6RHNAqPMg+5tRc0Avx0nWD1JzQEen8mpAU3NAMJ5JrqNTc0C+tL7od1RzQMAA3tX4X3NARXIcXoxgc0CLd9o2h2FzQN4pcZEdYnNAdLdevDljc0AUZn1+j2NzQLb9LwrPY3NA6ZpST0hxc0AWRpED3HFzQGJ9Db1PcnNAPDlSaE9zc0DyzJePgnNzQMI9WxW4dHNA+l8bqUx1c0CF58LDeIBzQEE+q8qkgHNAICyswwyBc0Dtz/piXYJzQApmuVqlgnNASp7JNf+Cc0A2loDWkINzQCjMO0+HkHNAwPvtIU2Sc0DMD2KrZJJzQEIjJvLQk3NAnyP7DmOUc0AQwTdr95RzQP5q/uu3oHNAckeFJk6hc0CmA4GGrKFzQCQm7bL7oXNAetZBv1qic0B+YX+QkKJzQHDl6GKeonNAnpTtUOaic0CuuhZ2BKVzQIivzb7FsHNA9Bxjf9qwc0CEsMrRfLFzQByWm9YCsnNAhOR82Vqyc0DeDg41a7JzQEDLu8O2s3NA2d7zTQ60c0AWp/229sBzQBKXk6RLwXNAUWkhPI3Bc0DIvSWYOsJzQP1X5jrQwnNAJCTHbybDc0ABk6/NZ8NzQPKP+BDX0XNAD6tUpLzSc0Dc9/lm3dJzQLCEX7dS03NAy4AYDvjTc0Ap3iTR4dRzQCDonKIN4HNAJlNdnKPgc0DmN8oEOeFzQJQFPHNk4XNAdMGVKYvhc0AyiDzKeeJzQF5P+FUQ43NAlJcNxaTjc0CRp7c08uRzQCrx5uhG8XNA/k0LV4zxc0BG0D5OZ/JzQMC2k4v/8nNA+gg5TI30c0AQFgy65QB0QPH790pJAXRAvtLs7HgBdECyfUW2pAF0QMDd2Mq6AnRAyEpAXXoEdEA5aWOBeBF0QGDSv2CKEXRAckmVVkwTdECvfKpzdRR0QK7zwfJMIHRAt+ENALkhdEAseZJxWyN0QFYZYmZlJHRA2FM1DlQwdECY3Cl5FDN0QGTMrxDhN3RAvN6A9cg9dEBkNnr2OkB0QN0ufeVSQHRAvB8reMxAdEBws5fkxkF0QOJ/ly88Q3RA2sIRYnhDdEAmm5EHSk10QBKB9vSDT3RAeOzVUwRTdECqFUQw+VR0QDzQBwaNVXRAoJ4iDSBddEB0Qi9/t2B0QDafAskIYnRAfcoA005kdEA9bfvemmV0QHAq1vAhcHRA9xVf/EBxdECPwSqg0HF0QIgknzAVcnRA4t9afhFzdECsWci2NnN0QPpSHsA3dXRAKsUGf/iAdEBQYTpQToF0QE8hTTVJgnRAN1idpCWDdECY/GQZu4N0QBZ1RgkWkHRAlP+tp2yQdEC07rppUJN0QJ6OeH8Sm3RAFFWmEfCfdEDrRSKwoaB0QERiJ9PQoHRATg6VygahdEDMTyrKNqF0QHzLHBV6onRAh5lKB7midEB5Gq3hDqN0QIpTb8oKsHRArkiaf8OwdECPdvA8NrJ0QGBHbtNtsnRAMP5q3/uydEAFmUp3yLd0QOwOscHcv3RAoHQ+XOLAdEBU5xqHDcJ0QBVJ+FIkxHRA9NMy33rEdEBtHmKhuMR0QNCXH+X8znRAYoYwFyzSdEBL0bobpNJ0QNiONME503RAMUlG+M3UdEDwkRfB9t90QAvZdSW44HRAcIrxG7jhdEDyEq5qT+V0QDCAlPe98HRAiFfDRY3zdEAuaTtXe/R0QB04W2GkAHVAVlxu/M4AdUAQzvifYwF1QCs7mhhdAnVA/TBO6PoEdUC5c6ohmRB1QJiZyAxqEnVAzHoxIiIUdUArYbNfTSJ1QB6esR+dInVAsMDCFOUidUA554yeqDJ1QByy/YbKNXVACtkn8bRBdUAitWmo20J1QGo1l04lQ3VA6ay+s+hPdUCCkSEjB1B1QN4Gq40mUHVAiusg/YBRdUBqqicyEFN1QNxnunlOVHVAODW1IHdVdUBx53/wDmB1QFhC4BGlYHVAOqgVCzhhdUA6FTau9GF1QFxxetViYnVAxtWfZY1idUCDuwLV2m91QLO5Z4Z0cnVA30mwn4hydUC6A3IqjXR1QNjNfdh4gXVAOHD/g62BdUCIsUmGhoJ1QM7gI4HjgnVA1nAvdqaDdUAaxChTmoR1QKwR4CyMkHVA1EqbYb+RdUDAdyxPcJJ1QCzxuxe3oXVAYM+VzHeidUBcS1ynSaN1QLAcdRu+o3VAAjPs6qSodUBb+/ZG/611QF4GtGTOwHVAMlbAQmPBdUBvnLyJ98F1QFju7eOjwnVAdh+LPuXOdUD3iX9fytN1QIqZb5Tk33VAxRnr3w/hdUCZyIUzCOJ1QOhxDmA65XVAivVtpGbzdUA5DCG7HPh1QD528UN2AXZALHy1AkgCdkDxo4J90AN2QMb8b+xUEnZAYOLmrUwUdkBusphyDRZ2QFgxMCqIInZA+wGMK5AkdkDsFDFGSyt2QKAbGj4fMXZA5JBUBlAzdkCGP7q8njR2QDZvgXMdQXZA5nv0GsdCdkC2SqsApkN2QITaztp5RHZA7lySpclQdkBseQsbElF2QL44R6yFVHZAr/fPCM1UdkCPJGnC3WF2QFLAu0n8YnZAXFWKl9tkdkCyWS7QYIF2QC6eaZylgnZAYvSyFuaCdkDDoJOPkYN2QDKtXWaYknZAfE41NneTdkC8n9Jxu5N2QBbbTLPPl3ZA9m2R5A6hdkDyFUqCNqJ2QJi/hRe2sHZARotn2MCydkCaxO73ZLN2QELWpbMMtHZA8JYO1q+0dkC28uycTsF2QBL4JcwXxHZAqsI3V87OdkCth0Q5n9F2QDbSUbB/4HZA/n584PPhdkAoXeH1kPN2QJTpOn0BEndAZ/i6kIwgd0CKgOzFDSJ3QEGRiG/mI3dApUKj/Ognd0CA51MDnjJ3QNxZ+vqkM3dAXLpyAQ01d0CZ9ffNzkB3QHL9gqKcQXdAX1Hx+pNDd0ATd1BsJkR3QMhhmDcbRXdAMvzYKgZQd0D0idK0SlF3QP6F332SUXdAGsWMmnhTd0DukMJtKVV3QJzr9l9CX3dAYphXFhBhd0Cg7/NQSGF3QB73kLyOYXdAzVfk0jRid0CMY0NnOmV3QFF4kBgnb3dAYJVH2Z5yd0AQkSgM93d3QEqdxaJCfXdA2EKvCFCBd0CE5P3Kd4J3QBzMqWgskHdA/EbLt0yUd0ACWg9woKN3QMwsq1aZtHdAhDRQ7yrDd0CVEfUY5NB3QGrcG6jr4HdABs2z/FLyd0AEnd35RfN3QFj6LZpG/XdAqrmHBaACeECYz7bZ5gd4QBKbCvX7B3hAFVS7slUNeEDE3IR+TRV4QD9rkshtInhARBJN7YojeEDI9FjBPih4QPONEoabLXhATBmn/XkyeEAFrXRJTzN4QCFOZXZ7Q3hA65tmtRBEeEC/FBQFekV4QPms66TKUXhAxIiokIdVeEDeO1Wb9mB4QJwbol22YXhAdoiM5yJieEC/uhfQt2J4QChpE9vhYnhAsvDw1LdxeECSFKQl2HJ4QB8Lf00adHhAwo97FC90eECHvWkdRXR4QCr+TauLdHhADP4VWqh0eEB41ox4xnR4QNB6TEz3e3hAob8PUaWBeEBUIqNz14N4QOou/yf/g3hAcjM3upmEeEDTiPb2Toh4QCwizZ4DjHhAzEyHqaiNeEAh2dzqmJF4QI7lVV0Ak3hAOoqsKqeUeEBbU8R+LJ14QFKRE5KspHhAnsazljmteEAC/W/e4Ld4QLN7Ymz2wXhA3F3H9hbDeEDn5dAeH8t4QBAZY6EQ03hAK6N2o7bUeEC0CniPFtt4QC1nJZQL4XhAwo+qEKLieEDsUv8l0ON4QKyFVoL853hAvAZYjwD0eEBREEiWjPV4QDqsovt6A3lAwmGy+ZkFeUDn+sJU/B95QJb9Wj64InlAEHmGBeQieUAkzSbZuiN5QEZr9UVQJHlAmrR4+bIoeUBuI5IgDC55QHcp0KTYMnlAlAIISWMzeUDHjqpHtDN5QGr70c73QnlAt+wvCvxDeUAK7TtOzFR5QJ7FYDNEc3lAHn9QrJqSeUCFX5J6wbJ5QFZp60fNwnlAugWPlLLDeUCuNFMqCsl5QGbJ6HdC1HlAkHPxMv3UeUDR7eU7zdV5QGZxnhlR5HlAvglAZB/reUAQo3PVvvJ5QNWyMk4N9HlAzjk5BPkDekDuovDa9wV6QJh7ppjhC3pAunLJQecTekDELdgZaTB6QPrtZSErM3pAJloLbww1ekBX2U/QLTd6QPZluZEqOXpAPDOPnS87ekB5I4RcOT96QGIIVVd3QHpA2EwlExpFekBndrdeV1B6QNpDTJEoVXpAimvznSJcekCiIgdkbWB6QD665qAqZHpA9893kNSTekBbMJcSWKJ6QKKeLVodo3pApl366iSrekDuRR/UDbN6QPgPkhcMtnpAbr77SRG3ekC60hYvGLt6QJaB5xBKu3pATxar0CnDekCIw449v8N6QEjkZ/YZxnpA/IbagMXLekCCFx4gQs56QJjXz45m4XpA4DCUkTXjekCaTRBgfeR6QELYqEM27npALXfy7hTxekAk1idsW/F6QA6+afMQAXtA3xszTXsEe0AUU0/VKA57QKRdMG6JFHtAexI50UwVe0CeMJhRWiV7QPL6pDNhLXtAhMDYDVMwe0C15x6vwzN7QAN9PfhmN3tAOKvK0tVAe0D680DuDHR7QDp0Ye24i3tAuAqoZiKQe0CXs+gcI5V7QB5nhempo3tA2U09tgGne0D2cyAaB6t7QNHy74t4xntA0KZterDRe0A2ZJGlF9R7QMgDKv7543tAdBl/Lybke0BZJHEGmPF7QNzndFuM9XtAHMKaXm7+e0Ag5sQr2QF8QOquX4v1AXxAprEHnmYEfEDWbKV9mQV8QFBk9VKIEXxAneXCzNERfECWdxGEpxV8QPCj9RXAI3xAfIiBHv4jfEDGPEsHWCl8QI5ENKToLXxA4uHGw7EufEDAPsUqDjR8QOfLKu7MQXxAyT1fWN1RfEDSiLWQ+l18QKjBmjUOYnxAJi53mVZjfEBnpC8sqm98QGhqd6gGc3xApooNzEiDfEAxB6JOUot8QOoRlfrDjXxA/V+3xUCOfEDgHnnXHZN8QEBu8xuck3xA4ujz0yiXfEAOXI5iYph8QDgVWB9+mHxAbks1XbqdfECYkNAzSp58QJro8EqunnxA9n/Rm6WjfEBgS8hL96R8QB2wU+f8qHxAPub0A76yfEAKOt+07LN8QFVVES97tHxAOt3N2xG2fEBypCBLzdV8QDoKH9sk13xA7DCtmybbfEBYULA09dt8QHgb4fxX4nxAqCxffhDjfECAQvxzE+R8QO48+K9o6HxA4HDpoJbvfEDk/kSpFvJ8QJtQnDpV8nxAv9vgiQICfUDX7t4ISwJ9QPIBMYJEEn1AcjWRjmQSfUCyKfYw/BN9QMLIm4OBFH1AUHXK91MZfUAmP9HE9iF9QErblBM5In1Afo2EJUk4fUCEnRJVBDl9QPLH7fQve31AsExF8fx+fUDwW4DBO4N9QFI1tGKTjX1A/bsa0vCSfUAHYuz3IpR9QHg9PomEln1A+uAJEqWkfUDInV9C8qt9QAbVfkQtw31AHLVYslPEfUCZQZeA5sR9QCL0xQz11H1A6gyqFtbifUAwFHnQj/V9QBhrTTo0AH5AcoBejDMMfkBO4o0LKw9+QMXjt7JDEH5AympAETgffkCc4EjDIyB+QIAsOBZ6NH5ACUETDkM/fkCBd6TeokR+QFyYTiRUU35AapYHvtpTfkCgOz+4iVV+QHLdwRJbW35AjIpr/UdjfkCQIrD4ZmN+QIgTBspLa35AvJ1cO050fkD4GsisooN+QPvF1I29hH5AT/aI8MCIfkClq4LYuaB+QH9B7M1go35AWaXGL5GkfkCACwBHYqx+QH5o2KyVsn5AJiuqdWm0fkBNnmhjm7R+QKpIqadtvH5AABiIOmbDfkDSUjQc0cR+QCbdh2d9x35AwlPQ1GzLfkAGXjNNV9N+QMjGBFt4035AYmz9GeHUfkDOmZzRZNt+QOAcuGnR335ADphuGNTvfkAkN4r4TfR+QBwavEd1A39Ab0HZt5EDf0DvTaXTWQt/QKGNSkyaE39AZ/yQk65Tf0B6XaDCt3F/QGiOCU7mdH9AhNNaYbCBf0DBPCfmNoR/QMZmgdJikX9Asi2j6KSRf0B6NtqHmJN/QPNV8AujoH9AONeTXF+hf0BcmE8SVrF/QIBAyGYGv39A39+TuXvrf0Aq6w+TsO5/QFugSJdW+H9Ac+R8rJ37f0C+ZEIXywGAQGKMBV9JAoBAujLssyIFgEBbsGRpzwWAQJqw2o0kB4BAfFhbVs4HgEBMDuB6eQqAQCAp1bN7DoBAbi4N/s0PgEBK44x4ehCAQD4jdcQlGoBAKNGHW9EbgEBvWYWe7imAQJIaPTUdN4BAEKK+N+o3gECnBVDkyDmAQJ4TdZsfOoBAEuWoF3Y8gECd/FHcIj+AQBaQUDfRQYBA1ERdM6lCgEDWw9UzgEiAQPKUKlGuSoBAOmN/7edQgEDinDw6FFGAQFrMj0c4UoBApm8vCeRUgECgdKhMplWAQBzJ6Vy7V4BAy0e7TSVYgEDCFom65ViAQB/+IvwOWYBAEfgsLSBZgECQPjJOqFmAQO0+gkLcWYBARoqMuwhagEAMEA2c3F2AQAYWsbQNXoBAcpFEUwxhgEA2gRYKxGGAQPZa3AdwZIBAbO/z7jZmgEBmxgBrHmeAQN8HXNGhZ4BApCrLgE9qgEA2m/nZKW+AQBMNOY6sfYBAVi5clh2DgECowrS14IWAQKZk/SsrjoBADRzB6B2PgEAZ3lIyPpKAQGoOebwbl4BAoBiPW5CXgEBYSHTdtJeAQOxP2csMnIBAhzkrWcydgEDMWFCPG5+AQLeaZNDNoYBAsE4UjF6igEAkcunnBqSAQGKUag2/pIBAVqcV0IepgEBAcGiq2KmAQM2QrsHsroBAynLAgBOvgEAfQPA5YrCAQFHnkqklsYBAuOzxyIOxgECQQxW817GAQL62ZYCfsoBANd/KBIG1gECBliHDFLeAQGIv4jtMu4BAAmZ0dAW8gECGfZjjvryAQHWqrFk3voBAVKBDu/O+gEBU73JC/b+AQEAYdtoqwYBA8DcGblLBgEBCBTfjgMGAQFv/g7+ewoBAeTpWyg/FgEBHlxzjPMaAQBSoo/Oqx4BAgpqD8GDIgEDSEyFVU8mAQE9/GfeRyoBAmO6S/TfOgECM8fEgLNGAQKxK3WFM0YBA6haEiF/RgEAajp6jTdOAQLoyHbll2IBAFQalnkrZgEByE+fDXeCAQCLSI+tE4YBAIiIu9/bogED4XywZQumAQFavsekX7IBAsE8CbErvgEBQHkRByfGAQG4fiQw+84BAfc2w+Wb6gEC8IJYE7P2AQM7rKhtA/4BAWmH+C0IHgUB3cVH3PQ+BQLj3haenEoFARuuMUs4ZgUASkjSH6B6BQBDLvU80H4FA9Cz/TbAfgUAsl0+QBSGBQFCQIl80J4FA9nwKKEAqgUBKzk6DLS+BQI+fCb+9MYFA53jFWXYygUCSM3IeBD+BQFISkb4oP4FAtIYL4MxBgUA4ZRj3m0KBQNDz3kbPRYFAWcfFBS5HgUAwuo4nwEmBQD4BAVAHSoFA8BOms+VcgUDe5zSZsmaBQMBeMxu2aoFAGGdCexZvgUDgVMZjXnSBQGKrvqjBdIFApo4Cqm53gUBuOWYDTniBQNBVaGUdeoFA3jrBTs18gUB6xJ6FYH+BQIiABW3mgYFAc8E7/Z6CgUCulATDCYeBQEJxhuwXioFAjPPjzVWOgUCUzclQVY+BQI5XeFezj4FAMExW8u+RgUDUDDrDR5OBQMqOHhw1loFA+rBA41WXgUAFrfhbnJyBQBgVU6RGn4FAhWAEqF6fgUBI4a/96KGBQCLY4hjfooFAK6IdzG6ogUAb9clOnaqBQGRqWC/mqoFAw/ApY0qvgUDw8kSNbLCBQBzMFSj2tYFABy19O0q3gUCspc2OAsqBQCodFAIrzIFA5BGdcLLMgUBNbw7vfNOBQHVmQaFt14FAgBdMFQDagUBwES+A7PmBQEbgIvfu/YFAoBv0gPUBgkDoGOeTzQmCQFcZZvXQDYJAjHuLQrEPgkDqBt4A2hGCQNfb33TKFYJAZcXLJ9gYgkAkM+IqKRqCQAiatNplGoJAKFhmhiwegkCO16/61iCCQCRFGdYfIoJAIqlJojQigkDWZqpm1CKCQNpK+J7RKIJANtCMdZ0qgkCoOe1+oi6CQKbx6xfQMIJAHgNtSqY4gkD0j7vRUj6CQGjpOZitP4JA+YARrwNBgkA+RqalV0KCQCShRnnUQoJAm87bzqxDgkDQjSD1BE6CQNRZL+TTToJAiVpo0OJagkDzoPbloFuCQFse5OYFXoJAzm5LAaNfgkDTU9BSNGKCQGrdcm84ZoJAYJ46U51ngkCzEUMlJ2qCQAw4mtGia4JA0EtGIbxugkDy1FanbnKCQDBBQSRrdIJAMO5ve991gkCQ/a7dAnaCQCnhJ+9vdoJAtGO2Tt12gkBgh+JE5HmCQLA1B1QCeoJA5GdqdXR6gkBh/zG3DHuCQFf55YYHfoJADfc9OsOBgkDOfptOQ4mCQFhKkVs0jYJACJHMnUORgkD1NZ/0O5mCQL1x4YpUmYJAsFfjcw6hgkBkEURLOqGCQCYcARrzpYJAOS8qEw6pgkDwE7TlNKmCQDfF5ez0qYJAS5ZWDX+qgkDSozZABrGCQLKneZ3sxYJAxDStEX7agkAg1yyyrtyCQJh0KRWk3YJAWZagWAjsgkCf5MBo1fCCQHBVc38J9YJA0uPr26/5gkDrkljUKPqCQIqhUUfB/YJAILoEbCX+gkAuSuxCxAGDQCZgLfzMBYNA+NKMt6QNg0Ac+6yFeRGDQJs1b2+pEYNAxt11+HkZg0A119eFciGDQPseK7mKIYNA7yE7VKghg0DefCDjcSmDQHIVEIJqMYNAJH/SIPRSg0AaTkjH416DQJBunmvFgYNA0E1acOKBg0B8HQOISYODQLiDTEzIhYNA2Kd4K8mJg0C2ydbi9IuDQJpQVio/mYNAvHRBOfipg0Be4OPx5q2DQJID3Hv5rYNAUvNkqcuvg0AACh8L6rGDQLq26YwBsoNAhi5jeI+2g0C8ivdM0b2DQG8wGei8xYNAGbEpJczHg0BeIjolScmDQERRyqPM3INAAOolLXrfg0DwEEpUSu6DQG/xCsuh74NAfvgajZT4g0DvYlUeASyEQBzosBcBLYRA7FWjDlgxhEBX1/uklVKEQGyxd6gIZIRA6E/S3P9ohEDxw+M4/XCEQDVjcyfKd4RAu3oFn/h4hEBkDes7W3qEQARFLEB3eoRAj7bZXyR9hECuEr1S0X+EQHzi4R31gIRA9OybLn+ChEBjPAWszYiEQHV1qMqIn4RAlofYbP2fhEDhjPZpdKKEQMASHvIfpYRAwRWXu/KrhEB4rpWWH9OEQD7AAqIR1oRAAj51GWrZhEAEsjB2FNqEQORhM6wN3oRA/ZB66GnhhED851kEEOKEQHutWGx04oRAQQnSPxPmhECpRh9t0OeEQEIaChlj6YRAAMfBKX7qhEAsz6pHNfGEQHCBcixi8YRAwJpaAoD2hEDGYCNy3feEQK9gAQc2+YRApiVO/lr5hEAmL5c9ifqEQBRfVkw3/YRA2Wv0QuH/hEDG1EmZLAGFQGjXr0DgFYVA7q2XZfgWhUBAVsGqdReFQF7+41MTGYVAWCGH+q0ahUAyUqIA/BqFQN41jcL+HoVAVuKiLAEjhUBp+ls5kz6FQFY5/RDYRoVAmA5qWUVbhUAsj73Vdl+FQGSAcyWgYYVAyc9CL01mhUARvCbqqGaFQDnKoSqgaYVA/oiQ1qxqhUCXLA3Tr26FQLhhXV+ZcYVAmI6EtLByhUBiAxwts3OFQAzzSuy0doVADHEmJJh5hUCO2HPizoaFQALMrsBAroVAaXUx9kKyhUBsBatdRraFQDFbdsJbvIVAP7Vw5CDChUAanApbKMqFQBc1tywv0oVAHnNWeczihUCIzWp2Z+SFQFYOLmQC5oVAHLrUBp/nhUDtjTGLOOmFQFpUS+nT8oVArN94oID1hUBqXlCq9h2GQM4T7KjtO4ZACnSf4yJshkD6ywX/4YmGQESUjgkmuYZAgqGAZiXBhkA4qJ+vH8mGQJYyl1vv7IZADKMH6Jz2hkD7/5DoKROHQAagTKoaF4dABfa45JAph0AaAEW8kDGHQBbw8xOHOYdAxIH6vFxBh0BeO7Zii0GHQGgsDRIco4dAROwHhcexh0BSkoeux7mHQF6cue2/wYdAvuKGRMDJh0DCC7TapU6IQJHzy+L/UYhAhwG+JalSiED9MrJjrVaIQEtdRfapYohA6ZjIYT+2iEAitc/VCLuIQA== + NrgMGZxjYkCwLijacuRqQFf+/uF9UnBAk7mMQumSdEBXXNs11mN3QA== - + - 2UnZRfe1wkRSiKxEXmUuRcJFBEVUtZNEo2CgRCn09Eb5KGJEhgKERBmlxUQDLqJEH9nrRBx+wEQjmZpFtXXFRa0UuERzO5lEoghwRtRbTERLlmJEAzmnRCKik0S8a5ZEJdC0RPlR8URgLZZES5OIRLPskkS8EqxE/yI7RWoyLkclkeREehypRInGbEZDYbhF+WdPRW1gwkTWeaxGg6dxRLWwgESegMhEDnMcRMy9JESenndEBb2iRf3E2USgA11Et8pkRNSXo0RHa41Ev3+ORBIvaETL/CtEsqNeRLsN9ERx6UJENoE/RP03kkSY7GlFnPXERO/PN0QOxTVGLRw8RUeVq0S+go1Em4+fRc4oxEQ4hJ1EvjmqRBH/akR/WZNEhiAVRRp0kUTbynpEnMqQRADf8ETx2LtE+WQ+RblC/EVWhtREVNIDRZO7ykbStY5ExHLURPTcz0UnMfJEXARWRNlvhEQUlQNFmBRkR5LHX0RK+IJEJY2PRPF0a0bojORFSDY5RSDOdkRdzGhEoXnvRYCfZ0Rbqp9E0rBtRCp9PEW/2IdEuqmpRPrsdEQm0otEiA5hRMw2PkSAnZZF81HpRK10wUTw0kFF2s5dRK89V0RlD/9F43HERBp3QUR//j9FkqTsRB5dhEQL1rhECaS0RHOLuUW9jDxEEeRGRIGYl0f9pN1FnH3LRKxNpkSJ8tZEl6LiRDgqW0R9t/RFF0F+RFZBPERrnmNEW/tdRNzvxkRWQoZE7EvtRtseO0UhPjJFTOJSROejx0R/YAZFr9KRRQmtf0RDvX1EpqQeRTlwokShmERERzT8RDClmERscxdFY2lYRE/GbUQiaFVEPkFWRO1Pu0ShbddEA1aXRGarmUScJjlEXOQ7ROfXqkTNn8NE+xfeRHgVJ0WGZStGiazJRBYjSUROXcVFUmRERxxuTkQnMqBEk7+iRNGjy0QFEfdEpiPARGV87EV1HJ1E7CKiREHRaEVLxtJFqzerRM1BiURKd4FEngQqRc3JgkSY4LxE5PCQRHG4i0R0j4BE5SIHRWvgJEVQbPxEkOEURSDfWkTw1wlF0DbDRCWbtUQ3XUhEpJEqRVJTZkTq24VEP7yYRNmGE0V2lHFEZ1dsRGQWdETMh1xFKbuSRLcVQURQOmtE1yVARYBAo0R0u3hEdVu7Ras1eUSxoaNEHfaoRAdd1UTvYsdFvRqGRLC350RWJV1EcIu3RL8WXkSjKz1GWyZrRATJ9UT0yANFl2RGRPuZlETY7M5EAjQZRdLqZkQIdmBEqI6gRJDyuUQx23xE84HtRNREhkSwFHNEVsMcRfoJXkRbIHhEOELFREkdSETgnypF8qWVRCVfLka2kRlFjQTARRcgUkSmqoJEuVBFRXjd4UTcvHdEw5BGRB6zpkQK8LNENfYsRCO8AUZi4RRFDsIxRW5FpUQSWyJFZeDvRCRQA0V3akdEcdY0RPyG2kTioH1EVYuqRKkynkSa5JNE5hqDRIyVQkQagVtESQ7hRWIEFEUIRVVE+lfRREjDnUQF3C9FRd0oRrYml0WB78RGWTsoRcNa20S1krBFbui+RKN/40SL3XRFsCeAROr6OUUWXKdEcMVORni7n0R9rSlElKkuRUJsgkTmmkBEVJdqRFy5GkXxInNE7O2AROBsxUSlFJREP9rmROvbX0RhJ0RE1fMORbBxVEQ0n6dFA6qdRDZbDkUgZ39ESMuBRV5xmEQ6qW1E7213RFBsWUWKYJBGSTJURJgYk0VJ1q9Eehg2RcRoQkRzOoNENBX/R+3wXERrJphGxAGwRMT+2EQFuN1Gw5VzRBmVlkXFFkZGDNi1RJfBzURg2KZE2wZMROYbVETrtNVEZ7g7RIBDhkQ8OhtFy0EFRoTPP0VHCRFFI9RoRJl5EkWy4W1EFgWkRD3UTESkstxEYByVRHzVXUQUqapETc2BRIv1XESTIidH5yS+RjBmGkXEXmtFgednRL4Pg0REuIFFIr+mROCQTkQHU4dEY52YRKDZdkRTpEdEn0yARW2+TkZ0SKxFBd8uRciV60Te7zBFoDduRI6sNUX5fqpEXWFlRLqTkkTak7VEHfM9RdU4GEVgJlVJEMgNRsHxMEVC/OJGIMc5RdD1/0TvBCJGUdtbSIElckYseDZFHnoMRsbhcEXOb7FE3gmiRudng0QB4YBExgYTRfIMokRWo/BEoQSPRl4XlUVR2cRERhZYReUoTkSB7F1EU1hYRe45l0SYh2xERLBCRY6C9EVpZmVEdWnRRD2BnkSOR9pFLpr0RA3MTkT3HDRFFBqCRU4O/ERo2SdF2a+LRAHMykRlzhJFZoMMRaUAjkWnsKlEK/x7RNhxgEWir9tEs+MnRfiXiUQ9MO5F3JalRLVyA0VT9opE4ALiRH8LeETnH/VE1uOdRPHdukQm7iNFq8uURLg6i0eBJ+hGFsHGR5XzpUYE0jBEk9f+RRDLjUT5ntdFecPURgNUT0au1B1FI8yBRdUFcEQXiQJF3IEORQY3T0Q022xF4wFORfOqtEVs6KdFeZHhRYTcLEWXQ6BEh9FRROdtKkZP4/FEha25ReOwl0R6UgVFevN6RJL0jURCvxBF1hiuRInMtURhBz9EU6StRcqmB0UAZpBEMbY7RpCWUkXCo1JErELvRACowkQk9YdEaeVfRUGYvUQh+bdE9slVRNsqDEVYPNtEsXtARRVMYkTN+exEeJzzRNmOFEWV4FtE5Ye9RD5Gq0XpDq9Gx8c7RLJhMEYcb1ZFkr/bRN4cskVVrZJEU5lxRRIAVESnOWtEybAiR13Z30ZQQYlE3nf6RbU6EUXQyMNFkrOpRE+IjUTJfolExOROREUePESY6alEmsvgRBNKtERJ8GNGAo29RDQTBEb+vS9E8mNCRPvb50R+wqVES15bRLEns0S0sUZE/a1lRFpAekSmZHhECJMaRUnvhkQqmB1Fg8DZRFfNn0QEsdREUr6aRNPhc0SQrtlH1bxiRdd4QERXmW1EctlcRLBDvUS3C+JGrRIfRZp4zEavnS5FOUqARFTtA0WsEYNE3LeARNu2R0T0oW5E4/DeRFBIdUTV5LlFlR9ZRLJqk0R4D7FE2MU+RAeaekSmp1NE1C1mRA7ESEQ5gc5EOdSmRMNraEbnSxVFAKCVRF0uDUW/fdZGXriiRMTEuUTtZCxFKxidRJBxsUXYWolEDqeaROeei0Rg/TVHRPDHREu1YERyXJRGCFdRRRnsNkV0ZXxEZEGmRLBtjkTagsxEA+JbRBY+eUSu/EFE2ifNRXTgqEb8f2hEzSUMRr/6ikSNO/NE2NIHRznurkWKsrNEKLBRRj8M/EQ4QwxFNFBoRLGaqUSpg2hEJhOdRBoVoEQ9LJhEnHF7RFzZhURazWFEkTbmRN8QiEVtvNlEcU6sRGmxg0RIdC5GYEVUREkHwUTfklRF5qo0RYEcHEWEPzFE2+BkRPGglkT85zpEZKZxRPsUTkTjWKxEvbZlROcgp0T8TqhEbMhvRH1ohkQmCIxElr2FRH4qqESpaIREGgSBRLnAzUR1mIZH/oOKRDKdSEfGpWpEIPKURqegfEWLwG5Ea5u+RRdFe0Q3HuJE4PlTRbWYM0amLiNF20vzRAXbjEUmD2NE+AWwRPxQk0Q4lK9Fd1mhRKw5mUTVIbFE+AeSRQ1rTESSBCBFJPRRRMaEGUW46wRFk2pxRODcpkSykQZFHGH2ROKCRUXrrERElgilRNF2pERMKpFELD01RjfGaETBEPJEH0qfRAOmeESODF9EV22AROpS2ESIqFtE0P/KRVd0x0TQWiRFIc3jRGdHkUS0pnJEeDG1RciJp0QPBIhEUtuSRMm7YUTm3lFEdqNdRAcCoESGvo1E2szCRGLxxkTXjelEyCSRRIuwdUSlaeFE7HaRSNJBqUSpTklF5xB9RJs+wUQ1Uo9EWTa9RK9C+UebHwNFsw9KRKmwxETLf4NH/6GZRfqwi0SQ7yVFc85xRs3NskSfo7JF6E+cRM5BoESkcXhEx1scRRfUYER5BwZFjkV1RG9uakQGzk9GLieKRQ3zrEUG+2BEc1euRM1Mb0QdVOJGTr+PRL/EP0TwW8lFW6wrRKNblUSU+pZEVudcRI9PT0RcsclFYlWERWGpVkTxrgJFKiyRRFQsSkRWbSRFK76ARIo71kTccY5EO3J9RGtNSUTVZllGYsFdRi66RUROhXNFXfyKRCrLZ0TMAGJE3fCzRGZxKkQoyFVEVZNaRDH70EWhwLREss6wRCUgk0Rs5etEt2mtRBzcB0XBFbZEJRKXRNSUhEWkO6ZERaXoRK7hPkS6GXNEWtEeRmzzhERikodElTXqRDmWb0Vjmz9EDXAWRfjSIEVGaH9E2j11ROrQikYRg6NFkgXNRJO8JkY59MVFq0KjRGU/jURKHkZEwU44RhmGvkbc4chEyrwjRmoji0V/1uhE7obTRJ/W7UQkAjBFR00ZRabfw0SrhWxEnvs+RHTgrERLXHBF1hd6RWZN0UQXX7tEFWujRL9spERgGotExO6bRFFFakV9kERE0g1iRNpVh0Wa/oREz9bDRPEiUETFBWBEUkVVRAYd8EVcA5VEaGm1RcTPTURychtFrX6aRFPdH0WwBIhE7vLcRJVVhkS9rrhEFUKIRIDM1EcQqIFETNpFR2tMv0ZgnChFbg/RRRzc/kUJ6xdFCUvwRCeuHEUiyphEyQfLRIxmsUSD45FFamzJRDFpkkTv1npELJF/RO+KwkR94ZFEJjihRJtORESNBcBF9bnkRK9YJkVUQWxE/ErXRD+N7ke0x1dERK1jR6lnA0dMmFZFma1RRKAGE0apeEdF+zFYRGcVoURVJ3lFjmxaRFhpm0TvEh5FzlxvRGRuL0RWdAlF9+CNRekbWUWorThFASFURPF/S0XNJ1lEksc3ROOBOUQdkVhEjiB4RDsuUUR6K7dEKxZyRNcYNER8jF5EtTWKRG6fZkTBWTxECuQ5RHyIgES4lG5E6HKvRZAWwkQBqXFHKMScRLJaD0U+VzhHsvS5Rn6aQkYCF4RE8NjmRHKlRkS70mxEkNhIRE2nh0TI6KBEVxo6RCcHzUSR5xhHsHMMRwy1y0ZihMtF04N0RsV2MUVr5FFEsyWnRGw8sETiBThGaQwHRfbbl0WME31F0tW3RPvNk0WlOAJFCyLQRIAO1UVGq5VEDpTwRC0WpkT1AwVF9ToHR2B5f0XObnREw/x0RBnIi0avNqxFjL8PRYaUVUSfklBEViSuROjwY0QdixRHFEK2ROH4J0bXdIZGVXYGRvX4PEVN7AtGQGpmRWvnzkSAiw5FKxeSRbwqUUSSczdGIUkARqOP8kQia2REQlJZR4G9iEal4TNFDEBERWm8lUXMxiVFrZMjRfUUJEUwQ5tEQLiQRJAKwkRLDlxESSRBRLPwakT7AtZEUnxlROgzSkR/AGREumXjRFsVrETvgKZEAdUcRrybyEXM3IVFvlaKREtM40QkUjhF/KwgRjtupEWW6ixFu0vbRNcG4kXjojtE7ma5RWxdIEWBiq9EMyqFRFeVhEQ= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - fIqgH3DBckAjdTBGycFyQBSGOCNSwnJAUvDSdTvDckAG89a+dsNyQKjyFWHCxHJA9s4Bh1vFckCSMfteQ9JyQD64sIrP0nJALXdRGnfTckD8iX3RYdRyQLw33ybO33JAbjddDbjgckDSbBdHUOJyQJI/HsKP4nJAnv5IXCXjckDAyIpmyvFyQMao0Rqc8nJAHlnv17nzckAyKPySovRyQFY7xTLC/3JAIG/z0/oAc0DE/dzoSgFzQOjQ1UuPAXNAUBj2KNgBc0CaKygnOwJzQJRAei7PAnNAA7K9QGUDc0D8fY+I+gNzQJQ1ItMKEnNAlaZVRr0Sc0Dtnf70txNzQHxxFnACFHNAjz0oc0wUc0DEakJoex9zQEzH/e+yH3NA5AJlUg4gc0A2rAuHOCBzQHBmSu2kIHNAQLQz2Dghc0AeZUkmZCFzQJCcpb7IInNAuxWFKA8jc0AwBrFGByRzQPjecZg6JHNA0krtAM8kc0BQrRvDRTFzQLhs40PTMXNAq/K45iMyc0Dq8HW8DDNzQJGwAjT4M3NALAMnXDU0c0DOFyk63DRzQDDNJ1i5P3NAqC+oaOFAc0DNV/Dtd0FzQDMGpvu9QnNAgoT1I3pEc0AReWOfm1FzQJbs2qoQUnNAoFlatkBTc0AbqsHJolNzQGJLhYeHVHNAxXvnt/pfc0Dgco0tOmNzQJTlaqtJcXNAKE12Bttxc0AQ7SspUXJzQDSd6bBncnNA3E2hCbtyc0Dkc4WIUXNzQNKpMnCDc3NAv/Ttnrh0c0BKSjH2TXVzQCDOYp54gHNAnG8V8J+Ac0CA4vuSDYFzQBDYKs9dgnNAsI62zOSCc0Bn2K2F/oJzQKBdcCc3g3NAxk0WEpCDc0DF+rP1DoRzQFLi3K5ZiHNAJswRhIWQc0BC6rT7TJJzQLJ3wtTNk3NAwiQ7pmKUc0D9LAsa95RzQBi8FuKMlXNALG22Nrmgc0AQS3JzT6FzQHBLcFhbonNAKgLA4Y+ic0BQS9RoBaVzQLJjxAHZsHNAut8Ogjaxc0BYtt2jdLJzQAiYjFa1s3NAtjHfSwy0c0BMdrlUOb9zQGxKsgT4wHNA6oAHAUzBc0Aqx3CMz8JzQIaqcT8mw3NASsvxY9fRc0AD5+/kvdJzQE7WGa7b0nNAyINg+vfTc0CIbaAj4tRzQPi9WgOk4HNA4OrRADnhc0CK/+auZOFzQJp+I2aK4XNAmgdOVnnic0CkhqpHEuNzQOTI/yik43NAxuYQ1O/kc0B62ZycKe1zQOZPV6xH8XNAjLrdRnLxc0BQLP10j/FzQNibHivQ8XNAtto7P//yc0BWx99QNfRzQDBFUbfjAHRAxERD/UcBdEDDcbYMeQF0QARZStOkAXRAxg3Ra7kCdECuGoZYUQN0QPXavOELBXRA8DwpAgIRdEDWbvSXihF0QBQ9ffGXEXRANQl630oTdECeUBwueBR0QDjkKM/4H3RAv1ycwUwgdEBqXwu0uCF0QIbvtYwjJHRAQIw5GFIwdEAU093suDJ0QCRbdR3jMnRAuqdN6xozdEC8J0Plazh0QNyxPeQ6PXRAq/Xn+8hBdEAIOsv2qkJ0QFKXGPR4Q3RAyN9Z9KJSdEDK0A7I/FJ0QL2Ik5/1VHRANC/ODo1VdEBG2XYHI110QGdP5dK5YHRAnUHndAhidEDEAudcJWN0QEtAznYPZHRAbNgI0k5kdEDteHRsInB0QMCU90NBcXRABu6EXc1xdECz0RjuFXJ0QGoDY2A6c3RA/MTIQjV1dEDgdVErMYB0QCm1C032gHRAzUkGR06BdECQkUgc8YF0QP7ZENFJgnRA3t2dSNCCdEBiGZ0bJoN0QPL8FKi6g3RAW70JRBaQdEDujVxv8J90QJYRggCkoHRAXIrazM+gdEBUO8GNBaF0QDWDNgA4oXRAWBBfDWWhdEAs+JsOaKJ0QOp/I497onRA3hv4hLmidEBghLQBEaN0QIo8Sp0KsHRA6tRAKsOwdED6bBjibrJ0QFi4whe4snRAqHHcwv2ydEBMl9Ebzbd0QAa7E+DiwHRAPsG/mnjBdEB6taQwDcJ0QLJV9HVQw3RAdA4zyWnDdEAYk60eecR0QICE0X23xHRAViLLI/vOdEDnl2BmzdF0QJTZxxOm0nRAj6yQOwDTdEAooeO4OtN0QO7K8mvg03RAjCU9ZXjUdEAOVtcjz9R0QMxB3Ai34HRAUHh4qyHhdEAn58ZvuOF0QBZv3HVP5XRARl3phYzzdEB4yLlMowB1QJxkRcRhAXVA9fs9Z/gBdUAA0MZSXQJ1QNBxUCOcA3VALjrS7eQQdUAmubXiIhR1QAm9X6udInVA7DcgFuUidUDi1e+HeyN1QLJmusmqMnVAxW2Vbss1dUDSBjVK00V1QNWekInyT3VA9kBeygpQdUBDHNQ8glF1QFgvQOpMVHVAijpndnZVdUBqIqYCOWF1QGQbamxjYnVAVAPboYpidUAOwNPwY2N1QLe9B+BxcnVAAWbveoRydUAUHB7EKHR1QOagnz+NdHVA6PD2anmBdUAVeNx/rYF1QO0nfvwggnVAPAfEULqCdUCMM687poN1QFbd3MSYhHVAGNQN47uRdUCuQ4V3OZN1QK59o7+YoHVAXRV+7COhdUDLQHuat6F1QI/6DnT7onVA/CoKAUqjdUCEptf8vKN1QLiBjrijqHVAnDtr1v6tdUAAAYLL4rJ1QHKpnnN9s3VA1B1ME83AdUABDXCVY8F1QKbmJVP4wXVAxv8ztWPEdUCOQCc+d9J1QJHCIQI203VAZMpOy+PfdUAqUew4D+F1QNoqzj4l4XVAvmtdPFjhdUC3a7X1ouF1QCrkEEYJ4nVAPJ6KUHnjdUDH+5A8OeV1QPSd+tFk83VAFB/lTx74dUCBCUozSAJ2QNBwgT7PA3ZAGhmGS+UEdkCAnp+CBxF2QGAlf8RTEnZAjLNgkVMTdkDMCrV4TRR2QPmAW84LFnZAPsrJU64gdkBh+45AiCJ2QPSLUw6QJHZAZmIduUordkBFfVlYHzF2QCSvbX1WM3ZABQZBOp40dkCFWWXZ40B2QDssfzEcQXZA1BFFCy9BdkAmvNmNyUJ2QDoInZCmQ3ZAirRhSXlEdkAMCSr6EFF2QBHH4RX5UXZAzNfzmc1UdkC+GIvpI2F2QOZVs4YaYnZApT1z8pBjdkC6TH2052N2QFh6LLbZZHZACEBU4VVodkAaAgl8YIJ2QFU7xPuMgnZAradg/aKCdkDTLLdf/oJ2QMzKKg+Rg3ZA8P9lOfyEdkDQHGw5dZN2QOmNHNa8k3ZAiEi9A+uddkDFOiCNDaF2QOAjDws5onZAOPCCJ1KwdkDvbwxBw7J2QL4Xlj9os3ZAy0X8zwy0dkAQgkoTvsB2QOFGKqVNwXZAsxzS7BnEdkAfXe1kz852QG6VeOF90HZA4Nr8OKDRdkAWOMOskfN2QESghoQ0AndAUmhzPgESd0CAKsvgtiF3QMCe3yANIndAahD/xHAid0C4E+qV5yN3QBIY2dc/LXdApsmi7qQzd0CQdt3uDDV3QPTlXCnMQHdAWPcA4ZxBd0AuDxetkEN3QDL52pomRHdAVKqdoxpFd0BsDDSwB1B3QPw6MARLUXdAUjGlW5JRd0CSG3mK81J3QAq+fnp3U3dAYw9uWSlVd0CW0Qv9W2F3QNF1TZeOYXdA5ONwTjRid0C8360EOWV3QFj8WIEmb3dAtroFfJ9yd0AS0okOknR3QGTYRL/3d3dAgKidF1R9d0Acshskd4J3QAh+GuFMlHdAaPUslpS0d0BSmq2I4NB3QHD/nFJS8ndAoFB+Vj/7d0AE9b0hRv13QPYIWe33AXhAThar+J8CeECMlPo35wd4QM6+iF/+B3hAGB2RoUENeEARKfWI5RN4QETRv79NFXhATJ5G6mwieEBWiRORPSN4QPDZ6pmbLXhAzdNO13cyeED0uxPmSTN4QEktpNwNQnhAJYSkZbdDeECsHG9IEkR4QA4SYwZ6RXhA3NlPv8lReEDkpv8cklJ4QD+z5/kVU3hAIECgoIdTeEBvOvRP8FN4QLZdSjGHVXhA7suibvpgeECI0XYmt2F4QEh74cgnYnhAntbt7bhieEAOPFjj5GJ4QLQVjlTEcnhAyT6kaNdyeEBqsEfK+nJ4QE9ZaRoldHhAhgsZPDh0eED6e34MXHR4QIaRxU6LdHhA/CAlJbB0eEClIaueaXV4QEE8Tfz2e3hAIlj4CziBeEDYFim4poF4QF0Y48vYg3hA26MXXv6DeEBk19qjmYR4QMbvMXK+hHhAaiFAJ0+IeED+GkvP3ot4QOqEVpz+i3hAmXWx8qiNeEAZ1GsVP5F4QHi6FGyXkXhAiCb73gSTeEAkf4fgp5R4QFCxgVZfmHhAoLV9azuteEBusqWm07N4QDYiMB7ht3hAyve1q8/AeECuJrtV9MF4QKb5DZsWw3hAgm1E/x3LeEA12vRoDNN4QKwzAWy21HhAkm4gy6bieEBgivWEz+N4QLQB0mPA5HhAhB4n/f3neEBOYZXUdfN4QDKhPDsE9HhA7miRLYz1eEDcbvlfIvl4QFwkj2VQA3lAcAVmrH4DeUBIZyoPmwV5QFqFrSA+EHlAlOLFVtETeUB/QDZm8h95QLryYCy4InlAEoxW4+IieUCjuZd6uyN5QPblnzFQJHlAyDzeObEoeUAYqey8+Cl5QInepGqxLHlA0LJBeA4ueUCaS1pz2TJ5QISTgpu4M3lAr8Svxl80eUDQRPdLkEJ5QNBKANb5QnlAZGni2/lDeUBEtLMSzFR5QEpQ4aBBc3lA36aMyiKBeUDqLPij9IF5QIr7JXQcoXlAxN5IG8GyeUA20j/os8N5QG/AQfZWzHlAvYnSaUHUeUCUUebrztV5QOij421P5HlALa+hVSHleUDyIkd5vvJ5QPBQU+oQ9HlAmB43zRr4eUAep1tKXAF6QAxQTzX6AnpAijeRJ/wDekDenGCFOwR6QJuMi7LlC3pAMGZOcm8SekBVXwxpaDB6QLA5UJErM3pACgsUPQw1ekAi7tv4LTd6QJzwfLUvO3pApKQo5jM/ekAkd3wyd0B6QKRRbdszQ3pA1RZmLhpFekAAry6NV1B6QCvG4O6DU3pAAkHttSZVekBSFT6AIlx6QFyFp6NmYHpAOmZpRsljekCcsA8hKGR6QHIRUQU5ZXpAAApHB0ZwekA6oSotIHN6QOKLbdIod3pAIQQOInWCekAUDzhw6pB6QO6bDoLTk3pAqq/wb6CUekAnBX9uHKN6QAZjeNoiq3pAzlsHQw6zekCeLjzK+bN6QPZf2NYMtnpA70DtxBG3ekDrkAjWELt6QM3b9NIJv3pAoLqnC7/DekDk/tO+GsZ6QKC0hrzGy3pAbi3OLEDOekDcccXe6NN6QLrMnTLS23pAGuX7HmXhekCcAJflOeR6QEwLSb965HpAjVTZfjXuekDs0RSlFfF6QCIpHX9d8XpAnuJC5R38ekAKDPblfAR7QHfXtYQrDntALuPYfxEQe0DyRqIMixR7QAJmQVdMFXtAIHHstNMje0CoVMHjWCV7QGCE4R/FM3tA/nKZE9VAe0AMHqIB5lB7QCS6wZK/YHtAAlQe5RuQe0BQOjHCIZV7QMz4D6BUnntAlm5j1QCne0DMG1vCBKt7QBdE9U96xntA/h5Y+27Re0BYdvB0sdF7QCoHAe7I0XtAuDiNBxjUe0BpVibT/+N7QPTyiqwj5HtA+mmmFIz1e0AAA+swaP57QKrjqiGRAXxAU2JobNoBfEDUc/RkuAN8QBIMRnVnBHxA/JyW3ZkFfEASRgv70hF8QA6qGLenFXxA0k++fC4jfEA0zh7q/SN8QJb1RpJYKXxAVmy2EbAufEDwiTmSzEF8QOjt3KQOYnxAgzjVJqljfED+CCCPLHF8QJqDWJgLc3xAGJ8vpq9zfECUowsTSIN8QFOTwAHEjXxArIVilhuTfEBuSeRTaJh8QAgwDFkvm3xAGba67hSjfEDYgtBo/aR8QEIOALUXp3xAg6sJ4L+yfEBYsMbXebR8QEpABQQDxHxARz2lxGfEfEAyUKKphMR8QH6wfwPM1XxAWFtYfPjbfEBUoyeVV+J8QMsQStkR43xAQGEJsW/ofEAyDqtnFvJ8QDdrGmFV8nxAqYd8GwICfUAo75GXSgJ9QJEmEcJFEn1Asnm7XPkTfUDvD5RtPSJ9QDTvqiCjMX1AXAubiEg4fUDM1Y8iMHt9QPd0KQL9fn1AAoTKmTiDfUB4DAdaJYt9QASkHIyYjX1ASYOQM/GSfUAyjZ8JJJR9QKd7zseQnX1AgKIUpS/DfUD+p9yvdsR9QDQricLmxH1A/pwIIvLUfUCpDpDY1OJ9QG3lP3i25H1AEoz6zY71fUAclrJ/NAB+QMBwoKw3DH5Alm9hZSYPfkCQ5vdPRBB+QGoX2iA3H35AYAOpBCUgfkA5aRA9Qi9+QA+uG/Z6NH5AXEXg0kE/fkAUyb7To0R+QJVPG8pTU35Ap736ht1TfkD+jPqgklV+QBIxVbo2WX5AfoGNZVpbfkCwQ01dRmN+QBlVPGlmY35AZS/iSzVkfkDjlW8eX2R+QD2SuLZPa35AKiBMicNrfkA6f+3Ls21+QATf0KficX5ATP9Ilk90fkBQaHlaDnZ+QCJUD0Gwe35AaN0P7rGDfkAm6I3yU4R+QF2ItqwJhn5AzGcH/GejfkBQfuxXkaR+QF0QyexhrH5ABiWblG6vfkAS7mISl7J+QCQm1XNotH5A2D32MZy0fkC+F9Drb7x+QBjorJgOvn5AL6/x4mXDfkBeSSxA0cR+QASCdwIbxn5AsYKfpB7KfkDFSv87bMt+QEMrxztc035AMHecNeDUfkDlsq3aYtt+QNW6XycN3n5A1nr2EsnffkCMTjze2eB+QIr/jcvC4X5AlpeSS5QDf0Ci8wJozht/QHBOuUyuU39AaaNUS7xbf0BEQLCYcmN/QP5zOMS4cX9AzgroY+Z0f0BXX2zEtYF/QA+Utjelg39ABsHYv/ODf0CT8WeJYo9/QD1QbWhikX9AJe8qsaaRf0C4jmOHlpN/QE65ZIujoH9APt8nvF2hf0C/BWw1P65/QNS07KCxsH9AoMSUzFaxf0Co79rYbLh/QP6vSj7EuX9A6dcxV5HAf0BJ6Pe7ysB/QJT/eO9T4n9AeqVbSE/pf0BH52L6re5/QNl+dqA7739AbCvs8lwAgEAmk6g20QWAQGiBFhp4CoBAeBJdDrkNgEAIY/OkJRGAQCqQddoGGIBAd2GuvbYZgEBO1EUoCBqAQCoaAHPNG4BAj/pU1yIdgECISYezZyKAQGqMBxRjMoBAadlN6Rw3gEC6GghVvTeAQHNwxyDrN4BAZjcrPPk4gEDy9B/OODmAQBI468zIOYBAAZGC7iA6gEDYZ9a3ojqAQF4tpPl1PIBACqm1JiU/gEAmxP7k0EGAQIPemOOoQoBAWvTSlvZIgEAg6YR0rkqAQBgOQiTmUIBAAmqHcBNRgEBixrs2OFKAQIC4GSanVYBAHMiKPJJXgECPkdUwzVeAQPTDJ7gnWIBAaN6TqetYgEBUzleMDlmAQGSJBrSqWYBAfsAZ1AlagEAFt1h3RlqAQHSvvq0JXoBAZj1VbMNhgEDA0NUfD2KAQLar9zuDYoBA6hO4l3BkgEDtFIDDGmeAQASAUkChZ4BANnFkrDRpgEB9U0NCT2qAQCmxxQcpb4BAJEmyJSN3gEA0nRSCJ3+AQNItanbihYBApVYkOOeJgEDwL48lJIyAQMWZPQcej4BABhZmFUCSgEDM8yxT5JSAQMpv1csgl4BAFgUuCOKZgECMBoM/VZuAQKr8g4YUnIBAJgUWasydgEDFDYC/GZ+AQJ4CVrfOoYBAOtFIUV6igEBorqihgKWAQPQ16D71poBAMi30EIapgEDwdGBdZaqAQDO5Ql4JrIBAfvdatxKvgEAk3rNyqa+AQIhtEynZsYBAVGMzs5SygEDrlb26D7SAQKxn02mTt4BA7FJ9xVa7gEAuiNLGBLyAQHmGi86CvYBAVHFcQTS+gEDwkdwarL+AQPEp0mpSwYBApjrL8m7BgECv4DsKnsKAQKd9cuN2xYBA6fAzW/jGgEBa+b/7dMeAQF6dI9Smx4BAWwKmQzjIgEDFifXYjMiAQOdmGGMiyYBAgiGlaVPJgEAcsyku+cmAQFSQqgqTyoBA7giNraHKgEDYkm7JN86AQBaE4ylIzoBAxv4B0AbPgEBFlx0cLNGAQB/86mpM0YBASoYhr77XgEA+FEpUZtiAQB4GRQIq2YBA/MgmYUrZgEBKaUg8Pd6AQEhB1EPU34BA2FY3aGzggEC8hOntQ+GAQFRu3yFc6IBAfhVXv/bogEBYleOVQOmAQKsLlOpL74BANwx/d9/wgECoj7f8ivKAQKSUOyE884BA3PBF93T4gECaRLzqZvqAQJBrdsc//4BAzushQ4oBgUBejEsxPweBQCwYTUuLDIFAtja1iT4PgUBZ6daH3xWBQKzFEfvOGYFAEv9iO+8dgUCZVxdjNB+BQE5qnXqxH4FAupHAEiYhgUBs9jfmUyKBQAYHOKc1J4FAIj1Jx7UngUAxuhs17yqBQAxgCTfsLYFA7tNYty4vgUDebPFaczKBQOiFBiVENoFAe3QBHig/gUAnOgyGNkGBQM+bNEHMQYFAMBx0UM5FgUAi4Dy2BUqBQKz/Ppl0S4FAEerTtApOgUBG75n7T1GBQG2lIAODXYFATbN5Q7NmgUAyvSTC/maBQMuAtTm2aoFA1uRC9AtrgUB23FFVVm6BQH/P400Tb4FAnm1NgPxvgUDCEyEHwnSBQGzfBCV9dYFA8lnBpo11gUBsMp31bneBQOLHHUvKd4FAtw+NORt6gUDiKzU0yHyBQDPca6Vmf4FAEvdxNMh/gUBq9ewyn4KBQFmuTtEhhIFANJ/bNtOMgUCynRgzCo+BQOe6QX5Vj4FAA+tn3jqRgUA8trL67JGBQFJuYaiplIFArxcj5TeWgUBmRO/FVpeBQCpGmy+kmoFAqNxsuJqcgUC6PKMASJ+BQK56JXJdn4FAAN35LuShgUDQuEi7+aGBQKD7XZDeooFAR1Xzem2ogUCE8Wy29KmBQJiliwhKr4FA6E6N3v+wgUDkmMywTLeBQOTOVLcDyoFAsT7Ew7LMgUA6OJWN+NGBQEhKT5l904FA+8pvc/vVgUBCp/y8U9aBQJIErNhU2oFA+fSM0c73gUBaIxy76/mBQPFYumvv/YFA1rHRvOMBgkDCgfy79gGCQHj35hfoBYJAF8roZPYFgkCSKszCzQmCQNSF/MTQDYJAaa4uKsYRgkBuXSLq1hGCQKcd6bXJFYJAJI+7LtgYgkASxu9aKRqCQJJSY8tlGoJA6uWTvSwegkBos0ReVR6CQBID403WIIJA/0d7fzEigkAjIHXw1iKCQN3WXMZ0KIJA74aS/tEogkArqgxUQCmCQJSYQj+eKoJAGkP/PKMugkCruFw+czCCQJwzWv+jMIJAam8tEBwygkAwxk7rkTiCQBgDDiWjOIJAEi3HdFc+gkA8XF0ArT+CQFyhmqsDQYJAfwtxAVhCgkD6vBNBs0OCQJwJfhC8SoJAhtJ34dFOgkDlNb/LblCCQHyDKZHbUYJAkrojy9VSgkBDiv2C/FeCQGaI4lwhWIJAbFmBDg1agkBguwVc1lqCQJ5SpwFjXIJAM/ctRjtdgkD83QlW116CQAqyd2pxYIJAhguhBTRigkD18qhNOGaCQLMEhi7ZZoJAinUdR21ogkCi+K4NDm6CQA5ztELecYJAuui6jG1ygkCA+VUZ2HKCQAAIT3Scc4JAeMfbBOB1gkAIxP90cXaCQLja+gLSdoJAnvZBKWx4gkDQ9Uit43mCQA9+L9cBeoJAkXy6lXZ6gkDsTRfpCH6CQK8vVPXffoJA3N/UI/WFgkB2ebooQ4mCQCoAc7ZDkYJAFGjdeuORgkDEG38rOZWCQLcRUCwYmYJAjlQ9IDyZgkD7+gwRDqGCQCzLO8g6oYJAJN10/BSigkDGY52M8KWCQNRBLlQPqYJADHW6lzSpgkBUaD789amCQDaQU1l+qoJACO4ko4KugkAMylzDBrGCQAhVV5o0sYJANt8e1e3FgkCgFFml7smCQIb6IrHkzYJAMWTI/3TUgkCb+cQbX9eCQC0XakeA2oJAcuuhkm/dgkBhUf0FFuKCQJadm5oG7IJAcBnnvqHtgkAgC3e1O++CQOxUydrW8IJAGH7F8ljygkAuoeEtsPmCQDQtL2nB/YJAALId/cQBg0Aa6jJ2wAWDQGAvh93fBYNAprIBWnkRg0CISxGgeRmDQEtsmFL6HoNAYUo9aXIhg0DUAImYiiGDQPHX259xKYNAsPwpm8Mrg0D6xqLGxTCDQFG5XMBpMYNATNmp/IExg0CmGBdtEDSDQI4UfuQrXoNAxMyjjcSBg0AJvcSg5IGDQLKTjNNJg4NALO/MQ8aFg0DEX+6AwImDQIn1sm/ekYNAkvikSj6Zg0AMo8ON96mDQAAOT7XorYNAqtLAGeexg0Bc/G8ABLKDQNxTX/BuuINANLcTjZu6g0B4Pzq8FNeDQDxdz6XJ3INA75FmpVHeg0AZdTzwdd+DQAofyTO74oNAXZcluJL4g0CWXQVNNAqEQAHrrij5EoRA1bceA1wohEDeOPavGFSEQIbl+ZqxZoRA3pUf5f9ohEBsxsgc/nCEQC43ovzJd4RAqkEA0Pd4hEClIBT2dnqEQLplWbIkfYRAuFIJldF/hEAcXlWt+ICEQDj3+eNogoRAJA/gSh2DhEDqh0pFyYeEQAoWrG1vooRAaMezYh+lhECEKbfKdKqEQAyjYFelzIRAAhN0IB/ThECIw291EdaEQONqjWui14RAKr6RBGrZhECz/4uFFNqEQOLUDGgY3oRANKZjL2nhhECTa0gdD+KEQLzPNQ3T54RAhotJT2PphEDqrJJee+qEQI4k7xUo7YRAwPsceDXxhECoicC4YvGEQAqLPEx/9oRAxNtgM9z3hEDeuhS7N/mEQJ/pkwBc+YRArCcY0oj6hECYSa/ENf2EQLzzInnc/4RAYED4uy8BhUCQBuAmRxSFQFmU1wXfFYVA6sHEU/gWhUB97m4dcheFQJYB7bwNGYVAJkcjrKwahUC8DmXM+xqFQMs6H51FHIVAod460P8ehUDhU/X8AyOFQI9QizhLL4VALkxcQHpJhUCIPLypLUqFQBplsrRDW4VAKJPa+59hhUAW0S313mGFQMjFVANLZoVAhCljFalmhUAi/xj7oGmFQBRmj/JQaoVAkWKC86xqhUDURq+2r26FQIgTCUaYcYVAKq18iLFyhUCmeBS4s3OFQGBhSIuydoVAFWgEn5Z5hUCb2+GKj4GFQGKdzDFimIVAQ2+8dSudhUChv9Gjq5+FQD7+Z+KwooVAT54NK0GuhUAMp+7jQrKFQBVm5htHtoVArqstxyW9hUBi3ZadIMKFQAy1YTCXx4VAlM/ECQbKhUApD2aOKMqFQJYItIMNzoVAzjgrljDShUC2BhDZx+KFQPrHJxxs5IVApqaX5ATmhUA0EMUNmeeFQL7zljrS6oVAGvhQkwnthUCjIp6M1fKFQGYDmjWSF4ZA5jnbGS8ZhkAmDv/buRqGQIDkgSViHIZAVD0Fg0QphkA+3HgxO06GQN8YPgrTpoZAFWQxvyW5hkAl0av7JcGGQJVty/LOxoZAjt8/5rzKhkBO2uXOwsyGQKmY8DktE4dAJ3H+fBsXh0CWVfPUkCmHQEP/NpCRMYdAjVN4QYs5h0DAevBjWkGHQEyiEUOJQYdAlBzMFxlNh0CwvzEgHaOHQC5jM8IIp4dAHdG3QAaph0BFpWFCx7GHQAF/t8zIuYdA1uI7Fr/Bh0Byo6LEwsmHQGAoJFmwFYhAgHA5VsI2iEBaRvoOpU6IQKJD/lj9UYhAoDfquqhSiEDWbIScrFaIQI+iL5SuWohAenmHJQxeiEDPv7mXCbuIQA== + NrgMGZxjYkA2uAwZnGNlQN9iJOBzYnFA3mIk4HPickA1tyjlC9N1QA== - + - 6U+9RZLBMkSMlkpErZosRYPPQkQNomdEV9SsREnB8EZjBnZEXXuhRJTNRkRN7PREm3YKRQYKdUXmQaZFD1O5RFS8pUZoZWdEVB1MRPB20kT9rNZEWE9+RD2fMkSA61RE62/WRO07p0QSR/FEfqhvRMFnCEe3EuxEHpdXRt3RRERl309Fd1eFRN2mDUUVfT1EpX2FRIPqKUTAgN9EHTZeRjUcO0S/Y7BEeBaURG7JW0QqfIdElvCMRZY+u0Sc4m5Eg/lHRO7tQ0TGC4tETYnaRFIeQkSALBBFe6twRDZbREUISJBE3XL4RUiSFEVEstJE0WzORLPiY0Wq7sxEXK5cRF11AkUSalRE/rCORGTlwkTHHa5E+4pFRFIJH0Ugi51GwlyfROoE8kQ/3qpGDJhPRAOJxURca3FFTvUzRC4V8kQtx15Ehls4RVD5KkRJfE1EegTURNb6OEdU2VhEf5OIROJGXUbZg1VEqTywRZ4yOEUESZ5F4x+NRDpDzkSqyZREUkqWRJ44K0TXZh9FxhwjRVtDQkRRDZZEFhu0RY9h2EW497hE+Ck/RQisv0Q/FoREj+vDRN38k0UiVl5E6P/nRx6I5EUGuopEzn+jRKarmET25pNEhx+ARFKkU0Th/RhGO1pERGt3SUQvp0dEObZCRLnvykR1o5pEfYfDRPNB+UYD20tFChH8RDn7NUT+OTJEt8A6RBw69kS+df5Ef/QZRRzMdkSRfUNECCOlROscuESvKqdEiEheRC0LN0Th7I5ElydfRNNWbUShAGdEFPODRI+GKkSP2G9EtNiARDAGhkTnnj9EVhQBRcG6cERzWjlFLJkDRoZmX0TNWiZEBy3SRG8MbUXPqDhHXTk+RN2OMET/cBpFzciiRDQyWESh2/lEmuDyRT0zQkQ5hrVE3AKHRN0WckQvJo1Erh7NRZgGM0VwMMtEcRBARYvmYkRQpHREgQA/RBqBGUQJ9o1Ejs1dRK2wA0WucXlEU+RMRWovZkUGVytEq6+dRA+OiESweg9FzWTCRN9trUTBH2xE5iwuRPARVETqnZ5EoqlbRNVXLEQh5YNEJoNeRGt510UJlm9EARozRBK3qkSUkItEkRpFRC3qI0XLo1NEvb+nRZLue0SbptJEadIqRJJXgkUBFClEjSRdRCM21UTt8/5FqTpkRI4BHUS0L9VEtqoSRRUNWkQwl69EQ+s2RLmqOkSKg9tEcNXKRIjrD0VjyNNEGvyXRBaRMkQAzYFElIECRb+/RET2+h9GlVmYRCMvzUX1SCpE7QUuRFl3QEVgJq1Ei9J2RAaSX0QBLJ5EpUpqRJ1OxESMHzJE3D4ARl5AHUUJrDtFqpOvRMLQR0TChE9EKJRWRW8230Q6bZ9EDKBFRMEfPUR7r1BElUh2RM/GnUTz2UdEWMuTRHQOWUSoypVEQJw3RIuBY0SNX3BEJxSERFaRsEV8EehEsVpjRL7WMESLY1VEpZqMRNnAeUThOLVEDDtwRPinLUVbEwJGVNeFRc3ipEbRJ5xEdXKgRIm1jERWFDdFRkFqRHWRnkSe671Efph2RS5tBkV61HFESaBzRkudZER7piREmStmRCXyM0QoMQ5FdGdnRDIhH0TTOLlENIEuRHLgPkSGjJREvzuHRBflZ0S/IP9EZMNJRPxE9kQPzodExrRFRD5tH0W7HXBEfci3RcONpESax/REciB2REHSNkV+cy1EqaKuRGg1EkXta8tEDoGIRgBpH0TtuT9Fgq+YRAsMwURwmXZEyysFRTD95kdnIjpE0q2dRlK470T+mqtEDvDARirEk0TmbK1F9TgzRl8iQUTdMhdF9dC4REcLIkS9y+NEQEiARIUbWEQqkN1EZKW5RRbifESGTyhFHpJwRNrLw0Q80HBE4qgoRA71c0S6FE1ErJ1nRD/GE0fXs0FEvWWlRkn5kUU30jNFm00KRRcksUT02zpEhqlyRSqjg0TlmJJEAO8xROz1IEWebp9EH7RCRGasEkWX+iNGRON5RVKzWET9XcJE/zd5RGGqYUQa+BpFKMAFRT6oMkUDKJZEm+L6RB5SvETsR11E87baRCBEN0SlgcRETHDlRFQzg0WirjhJFpXBRd3EbUSApeVG8qaCRGQ3C0WoEjFFHI28RenzQUiTQd9EvmFrRt/OUkSVeGNESqjmRfE8gERYzc1E4g5LRU5Jcka+e45EvrMNRXiHlEQ6UBpF1BaURP6Ll0SiCjVGTyBpRQvtgERWCCdF7mwbRbdngkT7p0xEq5oLRSVcO0StUFVFIXO1RQjKYETN4ytEDQ9CRAill0S3H6hE9NorRO68gURs8ilG+d2GRfCfvUSzzu1F6S6XRUVrbERNFYREzLrYRH5RnUWNA31ExR3HRANuYkQnb+JEgKYiRdEZY0VhtV5EA50dRPMkQ0QhipFEITFtRRWB1UTLD59E2NqMRYb3jkTzkZREwudLRCiHgkTl6PpEn8jaROh4NkSjakxEoaCIRKyLSkQIDSxEkxo8RCW4xUdhralGE5yxR7mbg0ZSJM1F3a7ZRHPvAUa0GJdEWDWnRhTCgEaT439Ek3mYRCwKS0VMnt5ELsZpREEjiUQlhqBERVlzRDHLt0ST9wFF99JIRBokJkT1UYNE6YA6RCS6MUVg0VRE9LrMRXLcqkQ7hZhFfeeTRU/1DkVG2atEtlUuRuDPpURF+EJF66ZTREK8KUQ9rV1E+CK4RNpzXURpTnhEJgbGRLIKMESu159Ej2tCRElub0UyT5NEtqVIRAZEXUSmoP1FZSA5RMMoL0UjY1dEHM9eRefTN0TXuFBEovFKRK12wET8VPhEXFN4RB9SE0VsQZFE5UByREXmA0UGrlVFsJNNRRfFhESyA/REFhiGRhaHWkTzUolE2MY1RhcCZ0T7rrNEGbmRRVYGgkWDYRdEKiAsREvR00ZLzY5GqmgCRs4WmUVfoDlEa6RhRL1wXkT0h0VEs9UdREHuNEXVK05GAB8LRoNzxkSC3FNEGK66RCDiJET9bTdEDsPGRD2qTUU+zRNEqa9FRNLWTUSyTF1EFGpNRBDawEevnTFFg2aBRAkt50RmlbJGI8QTRVGCi0aL2fhEfPqPROCFk0R9umxERqc2RX3zjEUqJgNFwO7SRAWIq0RFkaxEPHZFRK4W2EQ0WWtEdoUFRU3EMkTnpYdG9hImRQnkkETo6kdEnbT6RNxwTUa40FFEhjCmRDyOFkXO811E+duFRf+thkRV4lhEsNFdRIj00kR4ZmBHT1toRCbJOUTO0JdEgJivRvPZpkVNHi1FdktbRCSET0TrxQVFCgZTRABLJERZzlBEQY/JRKGsc0SPiGZEQQUiRClzgkTsN2ZEe+11RMJONUZl6oBGddyIRO7uu0QaMhtGxrenRI5hDEXpiUdEUwv4RisOukUvx2ZEIM1VRPiARUYs+k1F7kWRRJpDnESok5tEu3tzRE3+hETJWGdEiVfQRFK2rUTD5+hEQPRrRAAYgEQBvJ9FCNpwRJYacETy8sBELGY3RIPfjUTPGB5GV2yORCDepETdqJFFQAdyRQRgQkSeakdEuREyRcLAP0SFhyFEqxtoRMl8f0T9aldEJwafREaKY0R9klBEZrWDRBtzPkQp3Y5EITqwRGNFn0Ssw2JEWT4zRGNjKUQ4vlxEMr17RL1sHkRjdZlEyMVwRxCwR0TvU5lETnimRGXxHEXwei5Hjz+fRPPRUETAY4BG+RKiRTFYLEVdqLxFt8UtRHvdsUS/MclE0AtNRmTDk0QE3RVFqvmsRCtKNERHJgxFEMpMRCLqq0WyiK9EDmilRTcDOETx/t1EfdsPRUmITkSP3kRELWCWRIKDSkQ1vrRE83l4RKWX00Rr6B5F/slqRPjBqUTRatFEkvd+REXwQUS6AiRGWOJsROIA40TG3AlFoInaRLdC10Swm0dEquKqRJdNWURVb0hEMOaaRVReW0SHwPtEidc/RZ3kqkQiZpRE3FSMRfd4PET6hhNFWZe5RJTmSkTPlCVEeVE3RBFTukQZUeNEyfKJRGlVl0QZj3ZIcS2KRAP6hEW7l1NEpstsRBVtNERQ9XhETm5XRF2bTkSl3otExaffR5aiOkRoNJ5EEf5eRKx5TESmcD1E3tx1RCsUpkSO8W5HxXgyRLrhzkX0jyxE4gVMRuN0SURgFmBEOXFTRLV6ckVJB45E4qmaRBzyU0Q2+uhEbSFCRMcIhERlJspEVeJjRJ1FpkRQgj5GhGAtRHUVikXEFGlETB+MRZO9e0TUHadEYyM4RH+Dr0ZUlDtEWZVrRDFsTUQyFqhF/I6rRIoAQ0TuuFhE73DFRIGg6kTvqWNEAWCcRXKwbURdubVF47TFRF0geUU+xTZEmIN4RJ66OkSx5HZEmpuxRME5TEQRm49E3epVRAakbkR4y8BEwsRGRIFsaEYK4D1EUrUmRFC3NkayKeBEuTbMRQN6FUWTAFtE5Vg1RLN3+EQlvUxE1U5ARPXKQETA4dBFMqowRHgziUSbWixExi9yRBzAEUU32UpEuwW4RErYlkSnlEdE5FrhRGZzikQQmDBF4XToROiXXUQKag5GimlGRMQ0wURHk/5EwqAARcZAYkQ7LIJEnmhCRB0Rb0RMV1FETRR+RMX2VUbFcgZGlBVURFUSkkT0caxEvB8kRK+wQ0fqY9ZGh8A+RReQL0XPR+5EMjcsRlW2zka7EZBE85qLRsDrn0SsuYVFbCZiRYO3Z0TVWVFEpFMQRc1QQERfmghFoX2iRFnqtESAEmREVp8dRKVXFESN2SFEsUqlRFPpHEVPgnNF54VMRCEQh0TOvjtELcBZRAY6h0QEfiBEBmOTRKy9WEQaLlBEWhUpRPKwAUWXQ6pEEEx7RJO040QdrUNEC9lhRbLdy0QYpYdEirSzRAKvL0TZDTxEsYWZRX4gdUS0J5ZEylyYReZgR0XynatE8zqoRO5QeUXxqJdE7uJ2RDmpwEQsy0FE3lpWRB31xkevVhlHCQQ4RFpHWESz2zREuNG2Rr7aiEUneutFAk1cRMlW7ER2mOJEDSE3RdA/A0XingxFwDw9RGsWqUQQWVJERBFMRXSCiEQX2JNEOi4uROv3RkTBRNZELrEqRD9CZkR3V4pE2GMfRZEutEQpzBVFKsOARHuEOURrAfdFXPmJRQMdzUT1fktEewzgR5lERkdLoyVEG/LeRvV9LkXPietFL+6ARPbTgkS6DgVFOM6oRNG6O0SFBWhEcPQ5RXfE/kQKQ8pE+gu1RDVmPERmbS1Ec/QuRTVupkUOSHVFR9gIRVfFSkQO60tE5VEYRPZ9N0RoHJREFBeIRNeonURxAypESHiURLE+LET9YDZEkgFZROj+RUQxlHhEHJKeRUQKGEVoKVZHGliXRAD/PEfqwMtGYNcARnziZUSXSL9ElSA/RO1XZETvVYNEJVFrRFCEaERi+jtExBIJRfHQIUeIQk5E5MAPRyVF1kboU9VFOAdPRtrtRkVttwFFtsIZRjoPXUVngi9E8uOSRYgvYEXbvwdFEtOTRX3F60SnLepEdFSwRYMFB0WgKVpE4tJdRIoE3kTsGj9FC//4Rpl7N0Xp/iJFIUeeRFrCm0bZ1FFE9ji4RbACvkRFSD1ELO8wRESQWESRaoJE24EHR07gWUQFlbVEEaM7RsevYEbPF5FE50fmReafN0WO+Q5GYQw2RVdtg0TxG5JE244/Rde4lES7mYNEQTpQRDSfRUTLN4ZEqz43Rn/x20X6JRpFWG1uRGkoHEeUAkJE6G7ZRBGsLEYoR21EeLiKRAcrkkSVem5EgknNRIna8EQJ7SlEJiBBRCavVkQvOj1EZoCfRHnGTEQdcsZE4p1bRDNZS0RfJihEIpaiRNl7gUS/b71EHnh6RIf4RUShdIJEaMwBRc2wCEZbfLBFmCOBRWDMRUR9Y1BE7V5ERAzT2URjvrVEUFU8REncCUYmK4ZFtPISRSliV0R9MptE+g6dRCooE0Zzo0NE1BsORqdQNkUyIMZEy4BiRNjmP0Q= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - nyOWJgrBckDMoNQ/b8FyQHKqvNNQwnJAkNHvjafCckBL0H5Z5MJyQBopFOMRw3JAohUxdDnDckCPXTMAxMRyQGs/X3pbxXJAap3Q2nvRckAuzxyUQ9JyQOSCMx3P33JAnp59uLngckCj8NgHT+JyQNr93IOP4nJAiMFyBjrxckBarBTryvFyQKxKMXq383JAgHV1RqX0ckBL+gdnwv9yQEL20x/7AHNAvBzxCFEBc0DuaVI/jAFzQGcObBPYAXNAhtnq8NACc0DomXvS+gNzQLbv7ugKEnNAdKTsrrwSc0AY/zVmZBNzQK4nKKYGFHNAu8nc0E4Uc0BFFolzixRzQNCPevJ3H3NAthirVjggc0DAvEfvOCFzQGsbTHVkIXNA46INwHkic0DsdS3HySJzQMrqoyQQI3NAsEXAY88kc0Bk8SbSRjFzQCidXXvRMXNAsxWgTA0zc0BmGK1R2TNzQHyTPU33M3NADf5Zxjc0c0CjOHQO3jRzQLq05Ue4P3NAMj1CgnlBc0Aem0FgekRzQKqgbaOZUXNAyzPUPxFSc0BYFZ0aQ1NzQJyo3JCkU3NAGcil+YJUc0CQ26fl+l9zQDT4tIkbYnNArA65njtjc0DuUPAGZ2RzQIOCpb3dcXNApDWrkFFyc0CVB3GUaXJzQOoEy/BPc3NArvzXN4Rzc0BOmFcdtnRzQF1dbtlLdXNADIDKPWp2c0A76xHweIBzQBvM9ASogHNA2F3dWQ+Bc0D7Si5NXoJzQFWf3VulgnNAIHcwMQKDc0BHwn7Wj4NzQOU47yULhHNAbmRJmYmQc0CSoxZRtpFzQEx/JW5NknNArBvOm86Sc0BCxJI1zpNzQDRAiHNglHNAdg6KWviUc0CyvaB4uKBzQK7EOUPmoHNAPppVtU6hc0CpVTNhWqJzQHY5TXTzonNAwUoKBQalc0AKvYe0xrBzQDVPL7fYsHNAg/vXyzWxc0DswHdRWbJzQJwrX3p5snNA9Gun7Hazc0COFACQtrNzQCAiXFEMtHNA+P4Yz/fAc0BGjliYS8FzQOziZILQwnNAgSCANX3Rc0BoydAY1tFzQJgU7+i80nNATq9VWVXTc0B1NIMS99NzQJygSi/j1HNAqECrVqTgc0CJjxssOeFzQMSkAThl4XNAdJsW/Yjhc0APZUkQeOJzQJPJpaCk43NA/ev8fe3kc0BFrgVPLO1zQJXKIR1H8XNALDC8w4vxc0DTBg/azfFzQPddXvA39HNAmBYy5ngBdEBjb2+KpAF0QHsm8lG7AnRAiAq1ZIgRdEDkLpj+SxN0QELdYyDgE3RAcOevz0ogdEBKU+1OjSB0QN5qHhO6IXRAmxRYfWUkdEC2+2JnuiR0QJJuTxNTMHRAefjthZQxdEBFro0nTjJ0QDTReFTiMnRAznVh8hMzdEDHJyPe4Td0QPAtFyBuOHRA5Cgdrzk9dEDIxKMOyEF0QBo+qfh5Q3RAGRmBm2VPdEA1+5bkqk90QDvDCHSJUXRA6ksj0gpTdEBkk0BV9FR0QFfVaTqNVXRAzOd0XSFddEAITclwuGB0QFIehJgHYnRAwPvw2nhidECquoZs5mJ0QHyWUjRNZHRAVpfL4iFwdEDu7EExQXF0QFTUgskYcnRAdvg95jhzdEBe0+CZo3R0QGQEigA3dXRAJETAsPiAdEDimepHToF0QCKeTQFJgnRADEk6viWDdECizhHCFZB0QBJB5dDun3RAxgBvUaOgdEA5QYvI0KB0QGmEtTA5oXRARn7QgLqidEC2t8xdDqN0QFlb7RgLsHRAuKa958GwdECr/mhmcLJ0QAHRBpf7snRABKhZF0qzdEDc1o7Qy7d0QE+ri/7jwHRAlAie13fBdEBFl2195cF0QLEWAoANwnRAeyLmz1DDdEB0S/zneMR0QMr3gB25xHRAkj2A1PvOdECTwflT99F0QHYdgDU703RAbZSSXXfUdEAyrXizy9R0QCySCRq84HRAZCCTVSLhdEBAlGgyuOF0QJ2iMTb44nRAk6d/y0jjdEDIUOohj+N0QKKO805O5XRAoONXa0vodEA+yhJfwvB0QDrPJamM83RAGKCx83n0dEBSsbhOpgB1QCm1v1BdAnVALgRkDJoQdUAavJ4KJhR1QCwxkY6dInVAHUXIyyQjdUC+wMWCqzJ1QDKAOl7MNXVARkXjx4BRdUBqnV1oTVR1QFTq9oR2VXVAAVGI/xBgdUCIlp/ppWB1QB3l8JM4YXVAzLorePdhdUDWofVoYmJ1QMav4xyPYnVA/m1BgWVjdUCN+V3e7291QIQJ3eSEcnVAyVJ8xiZ0dUCO3jovjXR1QAKVh8PfgHVAYoVHTHiBdUAcSJH4rYF1QGxKf4dNg3VAiNUQbqaDdUCyU2NunIR1QKyM4Ja/kXVAWkz2Mz6TdUB7YNEluqF1QCx67G9Jo3VA/g0ShL2jdUA6rmFcvqR1QIl0Rc+lqHVAIMYbucm0dUCy5lQ2zsB1QAsCDIZjwXVAc/0lv/nBdUA18YHy4851QF4pNDTN03VAfzVDmuHfdUBwMwcdD+F1QBFGvL8I4nVAUM57HvTydUAMbvVSaPN1QGYu5hRIAnZAy+E9JdICdkAKcq2v0AN2QJwAKpVUE3ZA6ru9Dg0WdkBMcadi8iF2QLDgBCSJInZA4Jm1UJAkdkCPZs33Sit2QAD/P14fMXZA8d6bB1QzdkDbkicUnjR2QGgMc28cQXZARWegjshCdkBNQcnHUEN2QK54otumQ3ZA7nostXpEdkAKQolZylB2QOTu9icVUXZA5Lc1EfhRdkAYGTxgzVR2QFJ21jAQYXZASgmAmOBhdkDEi24iGGJ2QM8nrgXcZHZAHQEQveNydkCO5H72FnN2QGAQp9nNgHZABIDRs2mCdkC5zxTckIJ2QEx/VfqPg3ZApFxfdXeTdkDsDBaBvZN2QIYocg3Nk3ZAjvav+wyhdkDKfPm+VLB2QCztqwi7sHZAXW0jY8GydkDZPajBDbR2QFeb2ACutHZAqnNpw0/BdkCwyLTEzs52QBJOAOf04XZAnoWDj5DzdkCqA9jOTQB3QJDQztkAEndAtA9HJA8id0BO7K6guCR3QO5b6fjpJ3dARhxyzEItd0C0+wVdpjN3QD7PZjkNNXdA2IgCmcxAd0Cig1ecnUF3QJKrLAyRQ3dAGkUUkSZEd0DGg1wBG0V3QOkdNmgKUHdAqKrgpkpRd0BeIwYtklF3QD5z/6l3U3dAGL59SSxVd0BrWeN1fl93QBB1oYZFYXdAtCcjc45hd0CyUhPpoGF3QOw+kZE3YndAbfIiC4pjd0CaTN8ROmV3QFCFCNEmb3dAcGIiBqByd0BKkdkrkXR3QPYzN+b7d3dA/jVKSkqBd0BhAfrqeIJ3QB773g2mgndAonmb/giSd0AOLko+S5R3QGTP0uf40ndAxrWTnt/hd0CypxaBTPJ3QOrNxDAy83dAhiwrnkTzd0DRacn3Rv13QPrb1iagAnhAvTlbaOgHeEDCkeLr/gd4QEBzrn5DDXhAhDbU+uQTeEDOSGIleSB4QMBnCotvInhAgIsCFIYjeEA4e8HL8SN4QAvEpLhAKHhA4L8f/HsyeEAml00uSjN4QHZ9LAh2QnhAsWMWmUZDeECMqj4IEkR4QHTr6f95RXhA4h9LnspReEDXri2aGFN4QPWqJvnDU3hAbmd0AfNTeEC8gFwMiVV4QKkOSif5YHhA+P3EjpJheEDKRqARuGF4QApHIBi5YnhAron7n+RieEAklGQwv3J4QBuYfgjZcnhA9O2TjVlzeEATnA2JJXR4QCjXYy9JdHhAgGlfDFx0eEDwQVPwi3R4QFVCAmDGdHhACMyST+l0eEA/AYD+9nt4QKa+E285gXhA+NZeMqKBeEDf7zqW1oN4QHzYkm//g3hAzKlubWmEeEDL1uevmYR4QFRyhHJPiHhA8qdQ8uOLeEBOxK30BYx4QOF9D7WojXhAitWCZFGPeEBUyWuRmJF4QHQypdTsknhAAqR/sQWTeEBGa13WkJN4QJBx6FKnlHhAUD0AdbOkeECEdANNOK14QIaOV7iSsnhAarxnl8yzeED0q3Lf4rd4QMeYx4A6vXhA3o1F9c3AeECEplH588F4QOhzglYXw3hA9aT8lB3LeEDawEKl/9F4QCgNFnYO03hA1tp7KCLTeEDE0KO9tNR4QN6Zcmyj4nhAwzMJK9HjeEAbaAsM+ud4QOSsersD9HhAd1ZgxIz1eEAmW3xRfgN5QFRikCmaBXlAOFyWZT4QeUAGEoDg6hJ5QFYgyRn7H3lAm1UEf7gieUACDsgW4yJ5QHNScnq8I3lAmHDyCFEkeUAlAog/sih5QLDF48GyLHlAQ1felQIyeUCv1tB12DJ5QPIDBwNfNHlAXQM6l/hCeUAWfiwI+kN5QFxcqL/3UnlAdBLesstUeUB204k+2mR5QE8Y5v9Dc3lAmqHGFgCDeUD4OiLFv7J5QAzgS8PQwnlALmVlALTDeUDkvPfEDcl5QGJ9/i9D1HlAOEvmkM3VeUDZNG5AUOR5QCg1P44j5XlASI7yENrleUAEVMGgHOt5QO4T6Y0O9HlAosdNKGQCekBUB9dF+AJ6QBLcAoT8A3pA/DN+KfoFekDop53RaDB6QPRxsfMqM3pAqkccfQw1ekAYWTmpLTd6QAgEVG4xO3pArsmjFTE/ekBsFz5YXkB6QLZ3Msp3QHpAuj04+iVDekAx2KRlGkV6QOjesq/aSnpA1M821ldQekBiv352KVV6QCRwzvYiXHpA6FeBAWZgekAu22BNJmR6QDGnNOVGcHpAKPxkkyVzekCWTa2nJXd6QJhzzHodo3pAmDWKVyWrekA6iHtfDbN6QIunGeoMtnpA7XKhhhC3ekAMWQJpF7t6QHl+FXoXv3pAS9XW5i/DekBSQVQrwMN6QOjUBSkZxnpARDd0VMbLekBGSdTtQs56QKJgV2Rn4XpAhmVIFXrkekAsO2sCNe56QBPT0Roa8XpApExxKl3xekAah22MbwN7QCI2EDh7BHtAmg46MswTe0CucMjtTBV7QHeNNx8hH3tAktG7XmIje0D+GikC0yN7QCWdXAFbJXtAYi4R0l4te0AxuJ+f1UB7QE7rGol5RXtABT1KeVxSe0BU6iKFxGB7QESBVTQnY3tAtfmcQA50e0BBQNQdH5B7QKQBiL3rkHtA5PbBZSGVe0BShksZU557QK7c0iSvo3tATgdMkXfGe0BY4VMdsdF7QE7AweoW1HtAsWes3o3ie0DtQOZ1/+N7QJKx4QQl5HtABj+pXoz1e0DTFfUu2gF8QNrdxV74AXxAiDi2LboCfEA868JVmQV8QHb+HMgPCHxAya7FBYsRfEDk/3Vt0hF8QCzo43WnFXxA2g+1tf4jfECo46YLjyR8QEbTqv5XKXxARqDCxrIufEC8wlWYCzR8QMiRcGvNQXxAdesZDw5ifEDIdIpiKnF8QGbNe2JIg3xAWRxNEMSNfEACFW0FHJN8QBWWpJMol3xA8pYqe3iYfEAXgy4eWpl8QBZDXN0go3xAGVoO3qOjfEC8t6HgwrJ8QDiER9fus3xANGFXGHu0fECG+oPS9rt8QGS1GyFownxA8Bc/5frDfEAGeqUhWOJ8QNSvrYMN43xAIDf1WxHkfEDaWvnJauh8QHW2w+/Y73xA7rPujxfyfEDmpqDyVPJ8QDpi9v8BAn1AGosuRUsCfUAMN+QOABJ9QJzs231FEn1AkjWLdVQZfUAYlqepQCJ9QCoauLvRM31AB2k6o6c9fUDl9D/3MHt9QGbF6v38fn1AMLWLlTSDfUDuYqzYPIt9QPLxD8yXjX1AoLah6R2PfUC0RoERJJR9QErxLqztnn1AlhAgKouofUAIvzVlMK19QJXJBh4ww31A/IgJ3ObEfUDYfrUkq899QPaeYHTz1H1AItNRApD1fUBr37WFNAB+QLIszAaBAn5AH8rUqSoPfkACoqoHRRB+QHA/i6k1H35ANq2QQSMgfkBwgD9JCil+QHTYrGEeL35A4RWC+TgvfkD+boH2ejR+QJrFVQQmQn5ALyUQbVRTfkCrHIAc21N+QCSHjTeqVH5AeEp4G1tbfkCIS0fxRWN+QNgx3TBkY35A/xKPmk9rfkA7PBG7wWt+QEIYVUNEdH5Ai1bZr7p7fkDT7leFDIZ+QJr7xSXhkH5AMoetUW+bfkB8hRYeG6J+QDpTci2SpH5AtDsnemKsfkCyBpMpurB+QJPJj0uYsn5A2k9AYmq0fkBY10mLnrR+QEye5b9wvH5AWNV1gGbDfkDvo3sa0sR+QB6+Qv8KxX5ABE7lHGvHfkAwfBwgbst+QHooMaBc035A1I1Mz3jTfkBM4GVv3tR+QKzpmVZg235AvHWhc7bsfkBkBdhpVPR+QEphzc/eAX9AyNDjDNAbf0AyB2Vx3yN/QILiiC2ZLX9AN6Z2X8lMf0A1672RsFN/QI4MM++2W39AVIKv2M9of0AitdWOuXF/QAfSCzXkdH9AXkZ2pKyBf0APZxpcp4t/QJy5yTFjkX9A/maQl6+Rf0BSj+bhZ5N/QCDW6aeZk39ASFTpB6Ogf0CqzE1FXqF/QHDr1BwRpX9ATh0fdlaxf0CXNsDnU+l/QPL17lew7n9AquwNW3gKgEApIT+RyRGAQFtNw4DSIYBAXNHOGR4lgEAjuwQSuyyAQPD8YLAUMoBAtX85zYcygEAanT3pDjWAQFKJ5CgdN4BA3OQQo/g4gEBj99uTRjmAQH4JjmnJOYBAyFE0/iI6gEBUz0X7dTyAQNAYh7QhP4BArN6HFs9BgEBaysp6qUKAQHn8wCPvSIBAjNcWmK9KgEBm972QJk2AQMRw4a+WToBAUJqJCeZQgEBAs6JSE1GAQD3dlCqnVYBAnKkf+iVYgED6a/vrDlmAQAqE55GsWYBA3kM3wwlagECAhueODF6AQKYsop3DYYBAetDYn3BkgECfno5SomeAQLq9BiJNaoBA2jJarilvgECUhq1jKHeAQIFNBxqsfYBA9s91fCd/gEAFvb861IGAQKBM1wDhhYBAeols9uGJgEAawaBDNI6AQFX6qolWjoBABRuIqR6PgECunFA6IZeAQK6ulMqNl4BAxBG4dLiXgEBaKf8ob5iAQC8LDrUemYBAHDjl8SqZgEACy86hNpqAQN2L6F35m4BAuVJAEBucgECd8W1hzJ2AQFH8kAdfooBA0vHK5FijgED8LHyrhqmAQKJfvgdmqoBADMpqEhOvgECSG9fhsq+AQOgyNEkhsYBANjLItduxgEBsjI83n7KAQIQHboUCvIBAKnwzthW8gEA6UcjVv7yAQARZcxbxvoBAslKCrPy/gEC2Y4LlZsCAQEZ9L5UpwYBAXqiCkVLBgEAAlempnsGAQIviI42ewoBAXop9vTTGgEBkQn2mU8mAQBSd0tTWyYBA5UpvN0LKgEB4TqkmB8+AQMolz98s0YBA4EYm0EzRgECAqZEBZtiAQNgL2gBL2YBAO6T74Q7cgEBO9D6yeN2AQOCcqT9j4IBAKPPcaW7ggEAEEifQReGAQKRxkpcE4oBAlBBe44DlgEDixYcmXuiAQAQORbr16IBApL1qp0TpgEDKBTqSS++AQO9ysjuA8oBAoHQLdTzzgEAIXpQjbP6AQFwbgWI//4BAZA+Wc0AHgUC69a1VPg+BQOgjW22XEoFA2ydFOUQXgUCeYetKDB2BQAdlaEPmHYFAzAVFejQfgUDIvShzVSKBQMCMoDI1J4FA5xzSNwQvgUB8/eedLS+BQO99HKy9MYFAmIaoyyk/gUAQd857zEGBQHofh9LPRYFA9fiwDCtHgUCkuMIQBUqBQDJSva92S4FAHJFc0MpNgUBAabjpw1aBQFFAeR0mWYFAjlkfY8hZgUB6CtEatGaBQBNiyJ4Ma4FAKGkHIsJ0gUAKdiH0bneBQJZncdwbeoFAMNV2zWh8gUCSStCSyXyBQAQDEnvifIFAPumCIWN/gUBCRzyknYKBQEihc/7fhIFAR/7cBAaNgUCYmyuBVY+BQI64XcSSj4FAyQ2IKkmTgUASJOn28ZWBQKBkqnJVl4FA3iP4pT2ZgUDi8LZpY5yBQMtAaeqcnIFAvNHP7EifgUDK8TJUa5+BQIzlk0HnoYFAlO1Tk/ahgUAkLj2/3qKBQPQorUtuqIFAN0QTfEqvgUBxKEvq17aBQAW/ZnBLt4FAEISooLC8gUBwQ9ngBcqBQBVY9BFCyoFAQq3CUZzLgUAKVrtNs8yBQCYyACPXz4FA+LcoDv3RgUC/d4GUe9OBQEqNrrzo1YFAV66KM1XYgUC8YO/37dmBQAby/+NY2oFAkjSThFHcgUChRo6T3OKBQO6r/8+y8oFAKYgMPO35gUBuszm5KfyBQMKULzfw/YFA8UEC2uMBgkA5jsou9wGCQAb8GGriBYJAxgYFegQJgkC547IHzgmCQOf3g/BHDYJA8pakBNENgkD0Jr9syRGCQD7XYr/UEYJAwJIGYMkVgkCaKkML3BWCQGuFLt7XGIJAnv86ANEZgkDM44l0KRqCQHbeFGtiGoJAgvzPziwegkDO1VaJ1SCCQAzEaNMgIoJAdmCGEjQigkDYT7/X0SiCQDLRa7ueKoJAF4yd5KIugkBUXUJLpDCCQBpJLD7OMIJAbTtU41s+gkCmYteirz+CQO6g4f8FQYJA9H3dgT5BgkAoV8Pz1kKCQMaORF06TYJAbhrZzhVOgkCCcDPD1k6CQFggzLc6UYJAicVTAQlSgkD5zLRb4FWCQHLrSiHTWoJA+Jt9h5tbgkCpaNB4NGKCQJyC+M42ZoJAShLUPqJngkDydKp/N2mCQNvsHjDSaoJAIZKWYR5ygkCDpovMbnKCQLBPthNrdIJApgYqujV1gkD/SyUu33WCQA6WQVlydoJANNU1hN52gkBsYPgK5HmCQPhBG9UCeoJADgrE/XJ6gkB8Q6VuAnuCQGJWvXTkfYJAH2K9YbV/gkBc1uSCDoKCQDaswXJDiYJARN745QuOgkDUG6m5Q5GCQJWyM4A8mYJABpzxH1WZgkDcLtqXD6GCQDJyYkw5oYJAQME+sfKlgkCdTmZvDamCQNqhJAE1qYJAzzBj9vipgkBHgY+yfqqCQEtmX36CroJAdHXHVQexgkA3kPZaMLWCQKQbG8dquIJA2hUi8QW5gkC/NRzI08OCQHhzdq7uxYJADMSDXPLJgkBII6RZqNeCQP4X2PDX2oJAkjlUtnPdgkA99FqfCOyCQF9LF4ig7YJAyte/hT3vgkDGrUe71vCCQGoOHpBf8oJAdDTVC2/ygkBWSmk2r/mCQFiWRQ7B/YJAbNOf9sQBg0DZajVZ5QGDQLreI+q+BYNARu6o1U0Kg0AMhFQrOg6DQLa5+9B5EYNAgATPMnoZg0DNc4qIVRqDQA4zZx1yIYNAoAXBVIohg0Dws+I9cSmDQGL6XatrMYNAxJDqAsltg0B8VEQfw4GDQKYHlZvjgYNA4d9ofEiDg0BDagLoyYWDQI5oHSDCiYNA2CXsd96Rg0DOFJZdPpmDQJa6a9H3qYNA/15b1uatg0Bo7OeH6bGDQPZKxc6S1oNAJuB533Pdg0C2giBjVt6DQAocpEHP5YNAex0b5fHog0B/0caEKeqDQOn4oZbU7YNArnk6/ZUAhEBiOy7H2SWEQAKf8EPqVIRApNLWcCdjhEB46ev462SEQLj3I1D/aIRAHm4/6v5whEBmN9w3yneEQEi4tbT4eIRAH50cfVp6hEDexBegd3qEQJ7oonkkfYRANlWrX71/hED0ZICk0n+EQHJWFwGBgoRA3EmO6eqEhEAInSrsK4WEQIU0T5YbiYRAbzpzYHSihEDQUFdTIKWEQKX5pS3Fz4RAN3eiRx/ThEDuWM++EdaEQCMdX3lq2YRAahLzhhTahECaSnmAB96EQJKus/8b3oRA8OB8eWrhhEBqMLgFEOKEQHqvGH4Y5oRAonAR39PnhECQHhnhYumEQB+Lj9p+6oRAEOc8wyrthEAiYtnJNfGEQBtfeUZj8YRAAH44WID2hEAD48QA3veEQJis7gU1+YRAXln2ZWH5hEDOkF4AWPqEQPBPjpGK+oRATgSIUzL9hEAjPYC24P+EQGZ/zokxAYVAmuTBb0YUhUBmDiYL4BWFQMfqpZP4FoVAPARNuXsXhUCtgMuiFBmFQEsiTwCxGoVAB3YOnvsahUB8jGyeThyFQM5RDuv9HoVApq+I0QEjhUAYH8FgS1uFQCshmSynYIVA3XvMfaBhhUAF1R2K3GGFQIZAl7xNZoVAwUvWOqlmhUD2hTeSoWmFQFfhmGpQaoVA3DfTX6xqhUD+HU5ctG6FQPgQkcmYcYVA/B0QN7FyhUCeJFsZtHOFQBRNMMm0doVAitTaNJh5hUDHqrCWMJKFQBuU2Ct+moVACIFEPEamhUDu7QaqQK6FQBv9OkJEsoVA1nPsGUq2hUC8rUl0IcKFQJT8mSrLx4VAOLFjKwbKhUBUQkV5KMqFQCICGXkEzoVASgtsMWfkhUAVNgV8mOeFQKpTB2vz+4VAzv9XQpsShkAfT1KyLRmGQBw1P/DDGoZAvtLy9V8chkAozNfaJrmGQK6uNqInwYZAIv7TgdDIhkDATheBf9OGQOxJilUC5oZAoLrwxRYXh0A2gq46kSmHQBS4fFGRMYdA3j3i/4g5h0B/YhHxXkGHQJwMVESIQYdA8PPPG11Jh0AKqEZCCamHQIqopcTHsYdAvz6J5sm5h0Dj1rgzwMGHQKoBcRK/yYdA2ACXLHfph0AK0CKTxjqIQJMEekGmTohA1T/GyP1RiEAtB/RVqlKIQNU23A7/VYhA/5PYza1WiECPOH1aslqIQJZUkL4Ku4hA + KBZXds7jZUAoFld2zmNtQFAtpBCXEnJANpQtbGoidEByNqZBGoN3QIzoMXECk3hAYPSlnoizfkBTQ8aqGsR+QF0A+PQlgoJA1ycI+26KgkACUor9usKEQMEtwhGymoVAK1IRzc36h0DBXLA7XiOJQEmjzbcli4tA361sJrazjEBJ0rvh0ROPQDlHCLEGXpBAoNgdiARWkUC5Xv/FXCKSQCDwFJ1aGpNANU4/XXjuk0Bq4OY6hh6VQLVlNnLOspVA+QhFMLLmlkBEjpRn+nqXQHkgPEUIq5hAWA5YzwMXmUBtI5nQKTOaQCs3oVNON5pAhKZro1rHm0BCunMmf8ubQDa90LGgU51AvqmzvZqXnUBL0hGzxm+eQAcs9Im7855AlFRSf+fLn0BLKqm/812gQDy1ksMOqKBA - + - TwhWRBY1FEbajYlE/zhsRBH8s0SJq0tEpjkNRS+omESsRVxEa+CPRH6F10YaUQVFCW8pRckcN0UPGb9FunmhRCqW2ka9fZVEVsSTRKdtA0Ubc5xEB+85RFdw5kShhi1F5ZIbRd6wLUcVDgpFF49hRgXiOUTQyZRF+hRyRJ6NW0RvvvlEpkhQRN2IgEbopSJEBYGbRJ3O6USprq9ElAi9RWi6hURX8H1E6cWDRDZDK0QK3pREiNe1RMBlUESUkI1E8zNnRUuCDkZilidFt+25RItU4kSQyGtF0YA2ROLImERaWbVEAqKXRFYwWETSRYVEcF2TRMKQoETxQ1hFepwwR/6OoURFOxhF7n1WRC/PqUYJxV1EHyagRI86mUWXZWdElb4vRB6pXUUL4zxE7f+yRJQZK0SlaExHtdacRLPjgERXlaJE+xI9Rm1Up0WxknlE6wqfRY+sxUVM6TBEaorwRBOPe0QrkZlEoyDARBZJdURuH25E315HRCIxQkVPLx5F5wmJRFp/xkVq0atFr9iBROnbzkRG3axEfEeHRNHBh0S31HtFReNQRJm2DkiMeehF5em2RIKfgET/G5hEZe5dRNCKNkTFO1lGv9GYRMNhX0T5ZqtEWZEgR6o5QEU22vdEP/lRRV78LkWL31VEF5yKRB4aTkQdVw9FiaJqRDaYg0Sco9JEPut5RBKnQES97IVErrBuRBJKnUTv12JEK5u+RC9ZqkRhUdtEFZ0qREXoJ0RhTFFENQXZRGr7Y0RA189EB9ALRUF/HUV2BilGMvW0RFJnQUS9I7FEzQWaRaxZNkcY86BE1fqXRIUJgESGNIhELkDHRBAt9EVJIBhFN6qTRPEOgEUfvSpFhjSnRMA+BUWsd5ZEMlDxRFi5qkSwx4xERDrTRIWKb0XTdHpE3QA9RFM5eUQMLvVEFp/zRNLGgES0OPZED/yiRAHzVESZcCJFp8S+RLXtP0RoHVJG+LphRHCg2kTD/VBEV7KNRIlHT0VlR09EMp++RI39akTvFZpE+LVnRKrIX0SSzIlF7rxYRH3uhUTQALZFNIt9REP4AkUDsCNGmq5uRPg3wUSLH8xE3s6jRI3nmUR3npxEU/nNRFGBaES3UJtEer2vRNxxhkV7VhVFVAbGRCA0NETqLhVFTyzGRHCJDEbT/i9E0NnKREQ2zUV3M15EZ5MiRVgk8USNvDVEdU1HRKEWcUQbBOlFYwmQRCfHXUS9NT1FIZ0zRL8xhkWmThtFeT/bRD27gESMb4FEs1VvRNg4pETe/O5E8vh3ROa/S0Run55FsbVGRG+j70R23YNE7d7mRGCHXUQsrj5FiV0KRmmna0WGdL5G2iyoRM/pvEQY8X1F32uNRN19lkQ2cHVE04FKRZv9nkSvrQJFLaCJRNi8KUb2cVZEG6GDRH9RjkRVMilFb94wRJIThkR43VNEjSpCRGtXoUR3c85EW2qKRBClPkQ2ZitEFWR/RXIyQ0T2epFEsqHQRER+dkUf/JBE20slRcGFbEXL+25EaoAFRfgRVkSbAJhGeL+CRZmRZ0T2zOBE2QiKRHI/G0WpvuVH9+csRDAHi0ajMSVFcKLwRGq20Ua7jYZEEyRlRfdsKkYA03JFVVfqRCzShkQMt1FEJG+ZRHX/4ESsBANFSnZAREStdUSBAiRFcxL2RSNxgUQ0DDtFFfueRL3c/0RO9qNEKE/eRIO/yERBgE5EYoRSRLaogUSFtGZEg61GRO8u7UZzepFG4tt3RbRyqkScnoREGbyWRTQAO0SHP3VFdnVKRAfxWkQGelBEsC6TRCtugUWhIjxEjrMqRPaCXkWAOjRGjhaBRTpsuET810FEP41BROPsR0X+QQhFYkNyRH8KMEVf3XpFDRzyRNcCckREpLdEZYZrRMIWAEUlSBFFYmGiRcPNTkntY4tFtq0LRVjJj0YVmotEc/8BRebgIEU9DPdFssexRIXzU0jyCFhGt11ZRHTuHEWVO5NFi+QvRGM3J0Uph3BE8bkdRU9EdkQvv5tGxibDRJK+kERjn3NEP8wxRBuw0kTup5NEfVCrRLGbw0Tr7RRGBIZDRSElO0RNJX1Efn1qRDBatkSRPoRF4xNhRCy330RmhVZFPcUIRqdLQUSJId1EgqvTRF7IgkQqJQBFalukRs1RGEbwOUxFaTu4Rjw/TkWadU1FBouRRIZPIkaFxStF2CLERMfcoEQ6fCdE7w6vRaivkUS/arNEAwoxRBJCZUWZHoBE+Ky6RBBozkSqBNRFlmvBRJ98zURbYD1E540sRNWBp0T9L9VE1SM4RMAZoERKitBE2ruQRB2P+EdH/phGJVLoRyyJpEapHQhGwSZcRd4IpEQOEixGwrY2RNPY7Eag5oxEQxKvRqIcF0U4225FJ8P6RB6/kkQNs3ZEfp/qRGkQUkTsigxFiqaSREQ0BEb2Yi9GLC6aRSM5IUVOMMNE/bKCRJ/1CUZ0DvhEkrGJRSONQkSlcRlFrnyTRFai50R5SJ9EFh2zRM2qMESBTqZF5CNBRPVgIUYoUExEfeaMRMn8NkTC1zRFSmJHRDwCXUVEPWVEStJ1RDzLlkSBrSdEk4moRExwu0RmU0hERlbVROFh70R+t4pEwezDRE5i/kQDTkZFzNmmRCWRW0RbTvREdbOKRkdVL0bAdwJFmZGiRE36oEX3Z2BEOHSBRMeShEUStENEoEmZRh+4ZEQWPRZGngCjRZ+5yETkZopFjlZkRN5X2kTK3kZF1h40RoXqCEagTWxE5ek0RR4YNkSr+GdEUdqNRPN4mUSdqYxEQ3IpRVTQg0RsuEpEmV2BRKs+2EfwTbtEPK05RIrd6ERHRrdEqWQdRZM5vkbMQttE0tuMRm3BSESV1lRF+OBWRHzUykTlCDFEYzmBRF3mfEW3z/BENYL3RA5TVEQYGZpEKZ9JRALRaUW4qVFEwcs5RIdEYES2j0VECCArRsSscETdia9EK90yRdHZJ0agUJJEFairRLTCgEQWXapEI438RHikSERklYFEIjxTRN00bEQ++IhE7YB+R3Nty0RJ6zBEzNncRm6blUVTqbdFEdVMRbSjX0SuDyxEvPl8RP2uWUTqmVdEPBcvRNCarEQplfFG3T10RlALYkSPYBpFiovqRVXopEVuxuFES9nqRhxgl0XbsklEndRkRM6pGUaaVkFFwO8YRQZCjUQbEsNEd/9cRCxTVUSK+zNERh1FRam8lUTjTFBErhdxRFI760RweVhEmesuRHK4jEUJlmhEWmyqRM0YNETXkAlGwipRRAqjaESPnJdEt3WfRZ99A0Xc+PFEMbG7RCpXkUQyg59EPqrjRJv7ikQwTHREDeU6RMHcjkTSeURExoN2RJLLR0SqknFHE5XsRABGjEQvGi9Hb/PLRF5Mm0YBpLpFt9mhRCJTrEWP5qhEulm6RB9geUTWPUVEdEIDRZucYEZwxh1Fle3vRJfdhEX5o2lEqy3DRX4WD0VLyNJEX9kQRXcXAEVDKQJFdxsbRexCk0R9lUdEtxf9RP/7wUTouRhF8/qPRHNwbUQFuyJEZichRoiJFUWHQIFEslZ+RAcksUTarEtEYP8nRLshKkTJKYVE6tV6RCwqi0SGKJZFCVGtRLA4tUQldpFEYju1RR2xU0TZNcNEHXqRRPKM0UReyONEGgibRA45FEWVkHxEhhZURCUZBEVCshFFg9eBSDSPzkRk8VJFn62RRPZ36EfAdZxE6qJVRPPBMEQXe3dEbiWBR4VcZ0ZG9VZGPvhKRG2LkkS6prtEH8eqRK/Uq0W6ak5EjoA/RDL5P0UEWKNEVKOfRA51qEQAvFdEiqqXRM7gUkQgyE9GnqJaRacamkWjNGNEropgRACSKUTifG1E/4KwRrQEnkTXzZJFKys6RMIXykRUG+pEbb57RbWdhUUXvixFQN6SRKsVKUX9MExEI/lwRHvbn0RbHzlExJZGRKsf3URphX9EELZkRsb/WkZzYoxFz126RPwr00QvUm5EPlZ1RAWmmUQxFfREW9V4RFzmwUXGVlpEt4BbRM+rgERNdO5EzG6TRMg5K0SD6FxF8fjwREHKRkS3tihFcf0qRX5iqkRULN9E2DPYRQwmcUQE+s9Eqb/WRG8+dEW+Yz1EqJRdRCD8L0WtRFBENecuRLl0rkT7BfNEOrlzRM7MgUToEntEn5JwRJ2ZRES5AUtEiCg8RlUJbEQtrt1FGTGNRBo7AUUbOjVEJ+6ZRDTb3kcSgSVE7eBnRwkNNEbpujVGgbWHRdRgLUXvvwtG0SsTRYrG8EaI1htFkd+ARrTwgUX3LPZEa0FYRb0EGkWgh4BFbBCZRPvmJUR/sGFEFjJHRKbQrES1QmVEdQVnRFUaYkQB7LdEjYygRNQqSUQne5tESdTCRPPAakRN9MlEy0pTRCJDdUXDJ/RE0f6tREYg10SGq6RE2fdoRMMzzkV7DAFFDIyWRNFwgkU7WGRFNG2URH5kEkVl6fZEWpTbRPR2YETghFxERcJERPr0TURttMJHghCORHqTHUfS1a1GbXcFRavcy0XLRb1FEyE3RXZ8zESCbxxFgMOVRH/Ol0WhHyhFSRttREUTP0TGiWxE/XtGRLtxSkQRe/9Ed7bKRLd/LUSn8FJEbHr9RE2W30TAY9hESO7qRBywmETBp2xEi+t/RHEkzUT4QhhGfl+lRcr7a0Qbxn9ERT2DRGsnxUSxdN5Hf0BOR+9ML0R1NsxGrgVyRUTh2kVrLFNFcDQ3RETIH0Uz90tE8N6kRAqR3kSqwGtEXII1RJYwPUVQTKxFYNqVRTvq4URe9jNEC+5bRGj4hUSGVEpElf0/RJlPOERMlc9ELvlfRMnqjkQTIj9Ewr6gRERDTUSRkctFpksjRe01UEfq3PJEkSkfRdr0OEcoyrNGVWSkRIiCjEUsdR1F9tp0RGQsn0RWxnBENSBgRGVfi0QSH4lERK31RPRVD0cOtwJHRxK2Rg4+XUXKpahF8xeKRoriQkUKvI1E97yKRBEPEUbgsIdFKze4RAIfmEVdVjJFBKnIRN5jsUWIm+JEGoInREUOcUTJmY1F77EZRWAktkT5k5FEFsBSRfzXskVcHYlGbIPbRT3wwEVTGkJF+rMnRl/BkkSCrpdFWbSyRHL3SEQn+0VEK1D0RuB3vERlSLFEEzoTRnhygkbf135EPRepRQreu0TuohxGvEuuRBhgPkRM4fVExYo2RcpcQ0RVfXBEqAE1RK6nLUY/es9FJ64MRXM7n0aUeWdER4apROQkt0Ww6LBErx/bRJ0SckSm1SJEih62RKTzoERS5YhEPlyCRDvc2ES1g2NEExC+RJ2qNUTBAlpEUOOORCRiJkatn5tFvgZrRUuxskRLFHZE9YSHRLy2qkSuvxdGIUFnRZ8q70TpRbpEeuecREkOk0RsDx1GzSaQREcCBkaOUZ1EQ6jHRLPFp0RAQ3BE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - lVEmKm/BckAoJAAIUMJyQAD2LTPlwnJAPSzd8DrDckAyanrqd8NyQEoTw4HDxHJAtoe2SFrFckC6Pw+iedFyQEggDIJD0nJAsdCZ5HXTckBpp+58zd9yQBNEAKu64HJA2jEYAefgckBSG/47TOFyQEgyMXdy4XJAEmpneFDickApDVoukOJyQE5OM/Am43JAVOUUfk7kckCUWzgIy/FyQHxPCzsW83JA9P1k27nzckBQlbKNDfRyQI6KwNSi9HJApI/jxr//ckDs7s0t/ABzQPYlGEQMAXNAvOi4AEsBc0CSH6sKjQFzQAb0fFvYAXNAUF9RHs8Cc0DaMuFmYwNzQI4+lRv7A3NAIjsX5AkSc0A02kT+vBJzQF+78Ln6E3NAKZJAxgUUc0AwkOVBeB9zQEYAPxQ5IXNAzsrVdWUhc0A1KduHeCJzQO6G/xvHInNAPFvuowwjc0DpbS4H0CRzQC5xntFJMXNA1KvsStIxc0Ce2Bms/DJzQPzC3GelM3NAWj1ff/Yzc0CINsR2ODRzQH6SYSTdNHNAFAy7brg/c0AJDcXreEFzQFJ7JR25QnNApqjSgXpEc0CYM7SNmVFzQOA/CuwRUnNAJd8HP0BTc0DE2ymbpFNzQKCmrTbjU3NAfCBOAoZUc0Dmy1zL+F9zQPW/o66GYXNAxghQhR1ic0B2HkBFOGNzQOLVxcXPY3NAQEO1r9pxc0CCJU3wT3JzQIqluipocnNAOIN6BJJyc0BSkm3mT3NzQBF5TBmEc3NA2hRJELV0c0CsCzAOS3VzQDjznlF5gHNANo19IaaAc0APSg8jDoFzQPM6CNNcgnNAehxP46WCc0BgQKZvkYNzQBt6KiuGkHNAO92ztk2Sc0A2sMUQqJJzQCZtE73QknNAeixzkiKTc0C2NL1LzpNzQAqECpJhlHNAJIc/wPeUc0CwQoojuKBzQMh77QFQoXNAOJ7iVlqic0CmSpDsjqJzQCZE87EEpXNAg2rY/tWwc0CCE36UN7FzQOT+TKxisXNAdsflkluyc0CrO3GutrNzQB/2pv0NtHNA8VzWAPrAc0AT0hzPS8FzQO5Q+NKHwXNAPQ2mrj3Cc0BZZ2u80MJzQLb+Q3Iow3NAuMcsW13Rc0Ak/eJ/fdFzQIh0jd6g0XNA0VQw2NfRc0AMvmwDu9JzQGkWVaLi1HNAmMl/sKjgc0DO1XhZOeFzQPL/Actj4XNAzjMAnojhc0CIPXqYeeJzQAg8UEgO43NAkCkhZCntc0ACjzuxSPFzQLYKd45z8XNAypVxqY3xc0BiATaXIfJzQBKwpmI29HNAClerdEYBdECxp5NkXAF0QBqSvgx5AXRAjrHybqUBdEAUnbetugJ0QJwtVmABA3RAxIJc+AoRdEDU2tO5iRF0QB0peOOyEXRAjHgPhxkSdEClbUX3PBN0QJzBE/9KE3RAiWhA2HQUdEAmahIcSiB0QAMtC3C2IXRADw7UN1MwdEAcOTKoRDF0QKj1xXGaMXRAGAIsDOMydECo911CpUF0QGTtrBXIQXRAoISsxDdDdED5KE4Md0N0QCig1XFfT3RA3QdMVm1PdEDMmFRWp1J0QOtv17llU3RAMOseBmFUdEDOWohA9lR0QB6odsWLVXRAtlQwRCFddEBw5+I/t2B0QN7655cIYnRApnbl0XtidEA1U0EPT2R0QGRBgLsicHRAPR+tvtBwdECA6gOHQXF0QMVOpKF4cnRA9mY8JDtzdEByjkJFC3R0QIlHXKk3dXRAhfHwI36AdEDJ1m9p+YB0QLi+EaBOgXRAUS91BPKBdEDGqIhlSYJ0QL2iSeIXg3RAUstCzyiDdEBKcl7su4N0QADunxYVkHRAttfw4hefdECzVKRy7p90QBD297WjoHRAOP4Fls+gdEBWdusUY6J0QN7tXSe4onRAOqDp5g6jdECGloqm/a90QCyuizvEsHRAbct9bjuydEAyC22Xb7J0QL6Uguj7snRAjtBWQMm3dEA4sQgj4sB0QNVTwqx2wXRAU3ihKenBdEAOApLhDMJ0QDiOGXa6wnRAOCcDKFDDdEDU/0B4eMR0QPagBdW3xHRAuBfxnsbNdEDGRddFzdF0QGgAmzM703RAmLznxM3UdEDys5rNueB0QPY4gz0k4XRADguGxrfhdEDquwsYSON0QNOb4nuT43RAsgkIhk/ldEC5dY7EvfB0QNUUQV2O83RABtlXK7T0dEDBTI7v0QB1QMpD2YZhAXVAPmZpRF0CdUAy5nicpwJ1QHjJLt4SA3VAkmaC750DdUDBucOzIhR1QDCcNyGuIHVAwPo3Vp0idUAg8tLTrTJ1QDysNsY3M3VA8pNBYjg1dUCUYjLbzDV1QF7no//aQnVA+GxcoidDdUCsWvJf4U91QGjiBw31T3VAFGmhs1FTdUA64PPxTFR1QIpA+0x4VXVATNACqulfdUC5Vvl6CWB1QHgLxLI4YXVAaD8tImJidUC2koDijWJ1QK3RvF1nY3VALwxRCYRydUCajQEkJnR1QB6ByjqNdHVAtgvVz+eAdUC/Rv6yeIF1QAxa9lqugXVAaLUGs7iCdUAgAzedpoN1QHrdb8+ahHVAEp0J0YyQdUAjWxt0v5F1QLaR7pRuknVAbKZb1DmTdUAO6IQhlqB1QNALAdC7oXVAqPkYAEujdUAoSQ3suKN1QJ68tuukqHVANGWMSf+tdUCAZewjNbN1QOPuurHOwHVAvusYU2TBdUD+RDAm+cF1QAQYoxXM03VAcFYsmOTfdUAK5vVEEuF1QJw0T99a4XVASNzcx6HhdUCqQY0/BuJ1QDnsObSq43VAMFCN5KPydUD6P0vXRwJ2QIziu5jRA3ZAAIKeGlQTdkDegr5ZTRR2QAhacA4MFnZA4gmMFLAgdkB3WDfniCJ2QMLXD1yQJHZAnb+4hUordkDQW1iXHzF2QAc7H9RQM3ZAq1hd7R1BdkDix1AwyUJ2QHLje7OoQ3ZAah4AjHpEdkAMbRA4FFF2QJ5Ggs75UXZAiDD+DSZSdkDOvQDDzVR2QPogujkjYXZA2rczBN1hdkCFMRjXGmJ2QK8UDgzZZHZAwroLMGiBdkCUs3ALaIJ2QBINbfnQgnZAEEbcfwiDdkA0tA/bkIN2QJ9JoFYKk3ZAYpMjpneTdkCa/QhNu5N2QCVAA1nRl3ZAntce0xeedkCzF6tnDaF2QATzZrpUr3ZAAjWuQFawdkBQ4QNXtrB2QPPtaqMisnZAjHyfe8GydkBW6E5oDbR2QN5O0Q5PwXZAjoZ1qhnEdkBmQZRMzs52QBgTHPLD0HZAztc/yX/gdkCpJucI8+F2QK7So3n/4nZA/5l4jqXjdkBWNqwyJfN2QM4UK8iT83ZA4KxRPjMCd0BTxdm+ARJ3QAkMCpQOIndACOLsdeYjd0C6LU7F6id3QEAkGjelM3dApetyJu80d0A+E3MDDTV3QNJrk3XOQHdAibwK6ZxBd0AIFcs8kkN3QOj7bAe6Q3dAUNpFCShEd0DiaxcaG0V3QEblPV0IUHdAx7XRx0pRd0DLlZhzklF3QIVeRgh4U3dAVFQtWpZTd0D1KcKQK1V3QGB2neh7X3dAWlD0GJBhd0D4hQbWN2J3QHqiFgw6ZXdAPJG8HyZvd0D1rpQ4i3F3QEjvWvygcndAOyNqpUxzd0DI2zO5i3V3QDjUpqj3d3dALU/Tbkh9d0Ai+ir3ToF3QMYZ7813gndA8m6hoyaDd0D2avJpCZJ3QFamA4yOoXdAmV+6j9Oid0AUYzmBpqN3QKiYrNAaw3dAIXQWyY7Wd0CTmY2iUPJ3QLAaa61E83dArmLhO5X4d0C6EhiJRv13QJJq8E6hAnhAWqKnS+cHeEBAiqZM/Qd4QJxnlQxEDXhAa19ineQTeEBwcArqTRV4QKxm6A5vInhAihdyyYwjeECITFVi9yN4QH0h/PBhK3hAl8hUjngyeEArD/ltSjN4QMmohFBQQXhAGmca1AxCeEBIVgKaWEN4QC5sCmERRHhAwIyqR3pFeECIElc4ylF4QIuBkBQaU3hAHn1I8YhVeECRfEdv+mB4QOa9+by1YXhAmN/dFyRieEDC2vF2uWJ4QIxbESTlYnhA9LFDjsdyeEA4APLl2HJ4QCobUhA6dHhAe7aDvIt0eECA0G4Uq3R4QM3KimzTdHhAyRVntPd7eEBMUGdOOoF4QHDhwwKlgXhA8f2K6GWCeED9xsUp14N4QPVHS0H/g3hAgsKWAJqEeEAsXd6Umod4QH56pq9PiHhADsOVmgSMeEBlcGYrqY14QNOdXPxKkHhANnIZSJeReEDDr3ksBJN4QMZ4v+mnlHhAmnUTw6iheEDsHUjbOq14QBxoMirht3hAoosetfbBeEAT1B5kF8N4QOoDxKogy3hAZNQW3x3TeEBe/+ZHuNR4QMewnRTS3HhAHJIzkwvheEAgU6GrKeJ4QACJjgWj4nhAvEbGT8rieEDGaUib0eN4QOAWSf9253hAEWrF+/3neED6T2i9AvR4QKaUpFKM9XhAEKjQCcoCeUANMIJVewN5QDek9SGYBXlAVhGFGj8QeUAAm0wM1RN5QJBTINv6H3lAYGV527gieUCisBwz5CJ5QN6KwRC8I3lApg5rt1AkeUDKmgbstCh5QLQZSoy2LHlA/T9Dwf4xeUDgg/TaETJ5QBZekrTYMnlAFlXX6bQzeUC4lTZ0zjN5QLzO2vhdNHlAnuKXpWA3eUBIc7HBY0J5QLCLBnrmQnlAtmlEYfxDeUCkWRvO2FJ5QBmRPsnLVHlAtCYBespyeUCqlK6IQXN5QNSW1TYTdHlA+pQZWdyAeUArcVrlNqJ5QNypNyXAsnlAXBAloMvCeUDm7ugms9J5QHk5hLpC1HlAVjsIxs7VeUD2eXB9S+R5QBSXKhwk5XlAjFkSJUTyeUBOwM+Mu/J5QLSRFOEU9HlAuI02RPwDekD5NDQ88SN6QO8FUt5oMHpANHNsGCszekBSszuMDDV6QF71cFotN3pAEMncejE7ekBiDwtGND96QMK5BjtgQHpAehfS0HdAekCPswUsGkV6QKnGUyTWSnpAlCX181dQekAYK+LJJ1V6QMIaYg8jXHpA8I69s2VgekAcZFzL2WJ6QGLEfCMnZHpAJkFoA0dwekAWNh5njHJ6QPxAbagjc3pAYttKKtWTekAuckUtW6J6QMTEd061onpA/+rvAB2jekBIcv9MIqt6QLA5l040rHpACBpGZA6zekAGQRc99LN6QDzScoYMtnpAtWIrRBK3ekDribhtHbt6QC3JN+UYv3pAzDgP2nDDekCenIDrvcN6QGbbHzcaxnpAOawuTsfLekB6BfIXZ+F6QFjviBk743pAKmBg8aHjekDovn7Fd+R6QMxeb7Y07npAdInofxTxekBRyIwQXfF6QBDiD+BPAntAhx9Gc3UDe0BCcsojewR7QO8u3TIsDntAVCpMLcwTe0Dmc5KzihR7QM456cxMFXtA9AFlpFAce0D4QLRFKSN7QDQp/6JiI3tAwISrWVkle0DLnXrKwDN7QOwMsV/VQHtAGH7HY1tSe0AuvfGQwlZ7QEYltmEmZ3tAzWQU18KEe0De0QwlwIt7QLZVRJEgkHtAXYJcASSVe0AQyqRYV557QI27spmro3tAoHlBbjSle0B6Wv8jAad7QCaFr/QGq3tAGGviYH7Ee0DBLQnOeMZ7QHjDkIt60HtA+rlUMBjUe0Da7OVLjOJ7QEIRnWD943tAFFyVWiXke0D+2KNmmPF7QPwZJDs19HtAPPlxJ4z1e0Dw24sEkwF8QN85xo/YAXxA2E7Tp/QBfEDI1PYYugJ8QIaIc2DIA3xAdOerEGcEfEA2U2PimAV8QB5zKVOLEXxA+22MPdMRfEBEz/w6uSN8QO6RE3H+I3xAirM5r4kkfECUwB8KVyl8QASp9VmyLnxAAIkOcs1BfEB6pBY1o0l8QAgjTuBEU3xAGFVYDyZZfEAvDxYz6Vx8QPgO1T0PYnxABke+n6NjfEA+bkeXKnF8QOQtP5MCc3xAtp/h50GDfECF/FNdTot8QC/DBRDDjXxAOEeKyhyTfEBRKLu8KJd8QBKIuzF8mHxAENd/J7+dfECjldhBE6N8QFCHI9P0pHxAKs+zyPuofED4QnYewbJ8QNqy4Lp5tHxAPZBFWLLSfEDiQNGHx9d8QK6xcnb223xANq2/BVjifEBkMv0Xaeh8QHjJd60C7XxA7Lb/1BfyfEDykQXUU/J8QKAfdKZy8nxAYTLHgkT0fEBH0I6ZBAJ9QGJ7aCtLAn1AE4PZ4EUSfUBJwa/l+xN9QNSYJQhVGX1AIaTFVT4ifUAKX2LEvGp9QJFK5uURc31AWjKVrXZ0fUBYaT/oLnt9QD4w6Ij8fn1AhCEOyDSDfUCiLb4rWoN9QCSVAgcllH1ArGFBNTOkfUCrQOoB58R9QK3E7O701H1AQM29LZD1fUAQqaVeNAB+QG78ShcrD35ARosrGUMQfkDy+1uzqhB+QEJV6Bk8H35A+L30qSMgfkAPBP7hIi9+QGTT6ls7L35AIHUBpudBfkDCxSIvVFN+QLkCWYXfU35Aiq1FhFpbfkB+qjXML15+QMqTYhpEY35Au2fJqWJjfkDWoXe4NmR+QDhajANRa35AMMqr6HNrfkCw07lsvXB+QHeZVeZcdH5Anliwwr50fkDBMNTtTYR+QIpdALIRhn5ASANPpOGQfkAKgq6EYZt+QJBj16gbnH5AznTV672cfkCdR/SWI55+QBSbxBGSpH5AhpM2kGGsfkBgzwYUDq5+QIQCPKuYsn5AnHfPi2m0fkB8tMjBn7R+QOOO17Mjtn5AV2F9QG68fkB+PjZnZsN+QAu96wZ4xH5APpbmQKfEfkBKnSzb0cR+QEJkF0Miyn5A0NGQ8GvLfkBT0XTOWtN+QHxfKel9035AGD9PPt/UfkBmfCyUYtt+QCCrYEHQ335A4N6fzyfgfkDwQwmhaut+QPzhTpPY835A0Ou9Ua0Af0CWtS+XlwN/QN9/dBpDE39AH+gG1M8bf0AKe7EX2SN/QLRlcPVvRH9AvM1cLaNMf0BahwYkrlN/QLj/tFS4W39ACleqbuVgf0Cc1VvPhG1/QFwCBJq3cX9AiBxIMuN0f0Ca1ZoisYF/QDwCNdc8hH9A8PbE1eiEf0CQYAtDrI5/QJo4dUcej39AvP91EWOPf0D8LgCIY5F/QCxNCCqukX9A7/5o/5OTf0D6zrp2Bpx/QIUo16GioH9AtzZV216hf0DoVCJeFaV/QETvDltTsX9AAQMCQsC9f0CJydsOUMF/QPig1vMT0n9AeEX3WZfUf0ANWfkDy9R/QCCpX5yo3H9AkSV2SvLcf0BOzo6ZUOl/QJoq3Tqw7n9A1mPzgH/0f0B+DktG7/R/QAR1VGsNAYBAxcpYTDYDgECoBdDD0QWAQHD2YZ7VB4BAfZzrtXcKgECObzp5uQ2AQA7NjBymF4BAJzvw1hwZgEB4N8o27imAQLZ4WrzQK4BAVzTWxLgsgEA7G3n9Zi+AQA70ZBtiMoBA1CM/GB03gEBy7YxSyTmAQM3DJhN2PIBAkITCpiI/gEBibLnmqEKAQNJkqDj3SIBAGwIsLa9KgECHRTEf5lCAQClMqIAUUYBA3hNrUjtSgEBei843p1WAQMa2TrHdV4BAdskAgiVYgECq9YfGDVmAQPBfm+0JWoBAMJOMfvxcgEBkYd3o312AQGE6V/gNXoBABtWrzQ9hgEB9vDTLpmGAQKMcV2DEYYBAPqdn3xVigEBON0MwcGSAQHcD8XDsZoBAxGn5qhxngEAuYKahoWeAQJjvRBlOaoBA6+kKY/drgEBqdweOKW+AQCWcJa6pb4BAqZBfpl1wgEBMlKIH/3WAQFlvmV4od4BA75g2Vyx/gEAogoNByoGAQFZSKY4bg4BAKc80v+CFgEBSZ+Lj44mAQGccy2GHioBAfsiLleSNgEBatghJMY6AQNzEAnMej4BAAOXz4+KUgECPxgnWHpeAQNFk0JgcmYBA4NysYk6agEBbtXv4UZuAQL0Wp6XFnIBAKn6II8ydgEAgMLm+Op6AQKpmuccan4BAw6IxX16igECWTT0MfqWAQGbNKLE6poBAsDG+p6ingECZms4WZ6iAQAtZCBKGqYBApM6MojeqgEAfzt5t9q6AQOWxgDwTr4BANTjQA6WvgEBCxjp5ZLCAQDyZpuAnsYBAMpBcbp2ygEC2XK906LaAQEgt9R0Tt4BAcwu79Ai5gEDIMY1XCbyAQAEI7C/NvIBA4sM6GzO+gEBea6mT8r6AQFJmzYtSwYBAGl+Cb7rBgEBqXsjYnsKAQDJAl20TxIBA9c5WQT/FgED2dbOWtMaAQNq7AGP3xoBAMawa76jHgEC+vA2CAMiAQHicfasYyYBABK+TlFPJgEBS9VjJnMqAQOE+pn4mzoBAQDU3z+rOgEBOO1OEdNCAQC4bH1Yt0YBA4NN3cEzRgEDqJu0BYdGAQJasNPPh0YBAfBX6ngHUgECHX1r3vdSAQM7Z0mlm2IBAnNpKjkrZgED3qZUzEtyAQD/chd9t4IBAO399cSDhgEDZdLJfROGAQOQwTEFd6IBAEi5voPfogECpO2E41u2AQK9uY7E17oBAxF7pdUvvgED6mB5cY/CAQEz8sII984BAuLzM+qX0gEDgVVZvV/iAQPhZ1T1A/4BA1C4UxYUFgUA0rSM52QaBQGVb3wlBB4FArCBn2j0PgUBSbLT2PBGBQGAk0bTPGYFA9n/XwPwegUBoAxSdNB+BQL22gKsKIYFA1zS9qFMigUBphNodNCeBQBj375B7LYFAJ6UdV7wxgUAoW5fmczKBQPTxjdAsN4FAskzoASk/gUBcupiVzEGBQG3rIJTSRYFA8D5NlkxGgUCXS354BUqBQFgIhq0IToFA4ho4IBpUgUC7XwADtGaBQIFjPEINa4FA4myjYVZugUB4HhI8FG+BQIasnLQLdIFAg10d/MF0gUC5XvU1b3eBQGIj+OEceoFANs80Fsh8gUD0KDx/Y3+BQBidAt2hgoFAHgUm1FWPgUBUG+w7PJGBQKAHDnI+koFALjLvckqTgUBZQsKclJOBQLDmjR02loFAg1Z6PlaXgUBCpcGYMJqBQLQYlu6cnIFAjrQAyuOcgUDckss8Ip2BQMtkf7lHn4FAdDiaLmifgUCsbT4jP6GBQCA4YH/loYFAfjp9hN+igUAg3ZLSoKSBQB6WOFfDpoFAWNzh6muogUCyMv5iiqyBQHY8DqRKr4FANdlo20y3gUCe263LVbiBQKByJQb8v4FABV4LFQXKgUD6x4V2ssyBQBaCnUxgz4FABtmxDCvQgUCuhl4xB9KBQHTMqeR904FAtquVbenVgUBeuWluUdaBQMBny37s2YFAWkAOE3XbgUDITSHe7t+BQBkfIdW08oFA9Lkz5Oz5gUA0ugWf7/2BQOaUHYH1AYJAv8yD7wMJgkAQw6QMzgmCQNourZLQDYJAzBs//9ERgkDcvQuHyxWCQOKc7mXYGIJAwifK6sUZgkBHgZxDKRqCQAd7MJFmGoJArNsY/SsegkA2PeItUx6CQLD6NB1nHoJA6Gvo2tUggkAoctbUMSKCQLZPsyTXIoJA+CDqo9AogkCw2rPYnSqCQNb1+S2gLoJAOuB1yqAwgkAtEpSXXDSCQOVdkKg8PYJAFrjFTao/gkCcRFmJBUGCQMrgicDXQoJA9KhWhKJPgkCcq4G6dlKCQA7EKIAiWIJAEqwtmTVZgkAugVoJ1FqCQNDPKcCsW4JAimFLSEFdgkBYHP29BV6CQL51OIXXXoJAzRVj+7phgkC7KCrUDGKCQHSFGow0YoJAljLSD2hkgkDWeeehN2aCQIzkI8bUZoJANgdrgThpgkCwiyCtoWmCQASkfrMHaoJA8stqoNBqgkCtMJ1Gb3KCQMQIWR7TcoJA8LBKXZRzgkDCM/8pN3WCQHGEzWnfdYJAIlKYJXF2gkDVfQXqznaCQLR1FRnjdoJArGLrbm94gkCFFefC43mCQIqrFn4CeoJAvLx5FHZ6gkAX1Qy+bIiCQLw2KjtDiYJAEtIluYeLgkAGfMmnoYuCQH78uxFDkYJACukEU1eYgkCAm7HmPJmCQJhjWOgfnoJAfAoLiA6hgkBv1lCGO6GCQE4QZB7ypYJA9p+gAQypgkAAKB4UNKmCQPx/+KzyqYJAWQprR32qgkBMHHwxg66CQCPd3y4JsYJAXae8aezFgkDa0F3X7cmCQLrsYnIX0YJAICmrgmvSgkBtjPh4fdqCQEfMlV5y3YJAJl0WxGLegkAl18Evq96CQFByhZV24YJAgAAcpQnsgkBXIXXRoO2CQIigPVU874JA/byU8anvgkAGM1g92vCCQJLaXtxx8oJAeWZ2u7n3gkBskEoasPmCQLBCjp/a/IJAIF4KesD9gkC63vvbxAGDQGygMZ0cAoNAQJ8LbMkFg0CAcxzqSwqDQBQfm7K5DYNAvjbAfzoOg0BAOi+xeRGDQJrdf/x5GYNAQJkMmHIhg0BOJIg5cimDQPLVPSiZL4NAWMUTEmwxg0B4/takq0KDQCSNQuBVRYNAqh4di6pHg0AoQyHRFEyDQN/+/kHDgYNAdl/rFuSBg0CXRL2GSYODQPOM5YjIhYNARPYrJcCJg0A+dXU8P5mDQNZTsaD3noNA7Ndmv0ehg0BA3SaF96mDQK1rgKPnrYNAEJdPu6Svg0AFpvl/57GDQNjU4p3otYNATmjQzOW5g0AZG3D7yb6DQIKTcAO4y4NAZo6Mbczcg0BcZElfdd+DQLoluAkl4oNAmN84RIPlg0AN2DRF1O2DQLJYqMTZ8YNASJSyRFfzg0DGFj8SlfiDQPc/6yLZ/oNA18xnyIkPhEAmSvj9DU2EQNaGAEWUToRAuQP5jrNWhEA0Homm/2iEQHhOAL78cIRA5gjoXMp3hEB0SStj93iEQNlSidRdeoRABJ9qOnd6hEB8r9KBJH2EQIXiE0zRf4RA36K2wn6AhEDQIbcHyoCEQCRwOab1gIRA4OAHm4CChECr5V4kc6KEQGIVKZC2o4RAFoy4a6OnhEDV0J5FzaeEQGwTlOdUuYRAfL2QBO67hEAw7Bh7INOEQG1I/Z0R1oRAVbFLMWrZhECWbvG9FNqEQHA9lsg32oRAJIh8DhvehEB0Dc4bauGEQB5IIAUP4oRABs4uMhjmhEAKDjsp0eeEQGzXCPpj6YRAp5BrsX/qhECsnM05Le2EQCeMJUrZ74RAih5WSDfxhEDRYbgsZPGEQAEqouxz94RAsblCLd33hECjbCV9M/mEQBbwaTVe+YRAiRfSe4n6hEC4O447qPqEQKYM4YdB/IRAQsdUYTf9hEBdaDgN3v+EQOQhqMEsCYVAhnEeV0UUhUCgPMPC4BWFQKHhSLL4FoVAJhzH7noXhUDzg+wlFRmFQO1KedmvGoVAnoFKxPsahUBCaw+7SRyFQHi0zhP+HoVAm6wKW61dhUBNHhZ8oGGFQObJHyBNZoVAATQNiqlmhUDmHF5ToGmFQGFHEjJQaoVAFBsNwq1qhUD2kNYKtm6FQOLgPOeZcYVA52ITE7ByhUCQdXYAsnOFQLtubTKaeYVAh2lau2KYhUBMbpnhQK6FQIf0JO1DsoVA/rzXP0m2hUC2uXD20reFQPQVvhxBuoVA6BKPAiHChUDhE3kymMeFQHgjILInyoVAYBWp4gnOhUBJ+aEsjdSFQFB6mnj844VAgJ6MK2LkhUCMrF5JAOaFQIokJUIr5oVA1AJfe4P1hUA2z4IwmhKGQHJftTCQF4ZAwAAkLcEahkBQlI4JXRyGQKjhLLIaWYZAwAdvY96FhkCAQrGVn42GQMiV/iAmuYZAdJEjPiPBhkC6DCdM1cuGQE2WGMt994ZA+wSylpEph0BgRWmWkDGHQCiv2cg0M4dAdiSpW4o5h0DqREw4W0GHQHqm8MSEQYdAMVaDmWhsh0Bi1+ATBKWHQH5XWHYHqYdABhQz5Mexh0BoaiQvyLmHQLYmU4nAwYdAjvs5+MXJh0DADclpVumHQB73wyPDNohAkIz7sc83iEAgoRsoNEaIQKLahB6mTohAhL5x7/tRiEBsFQLZp1KIQGCQIpr/VYhAVhxqAK1WiEBeBXwy8VmIQPCchNH1XYhA + NrgMGZxjYkA/KJil8iNpQBu6YmAmQ3BAdmjQV5ECcUDRdBqjVFN3QBsYP7R+VHdAdiSJ/0GlfUDR0vb2rGR+QJST/X2iaoFAaJhppQL7gUCUwuunTvOEQGjHV8+ug4VAk/HZ0fq7h0DByJBNsBuIQO7ONfMRRItAkyDI+6ZEi0DAJm2hCG2OQO79Ix2+zI5Adaj3UapSkEB3FokjtSqRQPW/7mYAF5JA - + - wiQdRijV9kTV7MREDUtTRS7+dERdy9pEBO2eRPBNZUSxMt9GYQ+BRPwRukSPTR1F0txJRKTYfkSE83BEMIw+RSGt0UXb3olEKGfiRBfIGkcRCjtE8H+IRK35XERNQoJEf06ERGGQj0REplVEM/aoRG1Ix0QqelhFWzTyRJtTkUSeSgNHxklKRTtvfUZab01FobdLRfdKEkXGm25GRztzRMrkjER23ZlESgEuRFHup0XFo4lEaO+WRDqpJ0RCWHVE7iLvRMZ+xES+Y5tEIcYLRSJSFUUOZ5NEfpgDRhQz2ESwdMVEpWyaRP0LJ0UqRD5EfX/CRH0hSUT5rmxEtiN0RHXD/kS2aVFEQqjWRIvWuUSefzZFb0R+RFpcM0VQHqlHODd8RPO8gESAc5JGYnVZRP+pDkWIgFJFzT94RFb7CkZfPalEoMNLRzQbR0QTBT1EmTqbRDXvpUS2BX9EOVxARoEU5EUt6/BFaqjJRcErx0SU6hpF1b94REetqkSJvldExrxKRNcfJUWhMTpFZOVCRImKCkbZv1dEOBY4RAsl4kVRwJVE8gNERDI5ykRLvS9Ed6EXRXfEs0RUUopF1FVlRDvxP0j7iVdG/I/GRODX00SAKZ1E9AGEREN8lkaLeK1EASkVRf5bRkQd+sREEPDmRNi/l0QLgDRHkKh6RWyYhURyFENEmjCRREiigkWusC9EHBmTRPHGGUWV2hBF2jtgRI+c4EQDhgtFe8vbRGGWNkSjro9El48qROfeR0T+UXxE0NpnRKnpmkSZ+kJEGGIoRB7mMUQB+6tEw751RPtscERnl/5Ej+YCRWftXUWn6AFGRwDRRNQlvkRBsKVFEak6RN9CJkfWKUZEY4T1RGZ7ekQaeulElYcvRCOtmkRKlepFSEkpRJUA70Q03ilEOG1rRJ+fm0QkJ2NFYohdRCWfEEXqk6BEKj1CRaXhSkSihXJE+PnORC/aZkT4fDBFSE5XRNKEdkWgIlREiri/RBUP8kSgOdBEjKZNRHCXzERpt3ZEU4GkRKX+cUQVDRFF2vylRHgSjkQsvaxGO1T/RNDvf0S0qZVEp5o7RT2OGUVeIFhEqeO5RKPLdkQJcZNF9BkkREYpfkRHnUVElhyQRUqbekQc9W5EA4O6RAiXC0WN5NtEGD4vRriLo0QGDkNEZ81+REO9PEVkC3JENiGGRMlKAEVFrsJEr35hRDjn2kT1totET5WGRDiqyETw9i5F5OH/RbppZUWVLc5E77iARY1Lg0TX+xJGpQM0RHbp20T517tF8sthRD2De0UKj6xEP7w8RH6dl0SBd0pEyZ5QRIz5fER8V2pE7xbWRWqUSUTAL3NF9gqoRKXGQkTiepFFfIVxRY8DEEV2XFtEymdbRMOHtkQVf8FE7fySRGTBlkSx8bJEeL1PRGiQnUWrQtpE2nBqRatslETJqY9EV3yiRCizZUWtQg1GHN+NRTNmoEbWcs9Ec2toRS/51UTxm5pEYq9zRQu7GkVqvbVEPUSgRJZEEEYVr3JEUOGBRDDS1URLXfBEHBs2RCUBTEQ1+UZEzzyhRLWdJkVGO1JEQLiYREtOlkSj4o9Ep0BVRDpcM0XFxTlEGKlnRLL6XUTPxYNEeBoaRQz9TkXWJ0pFnzKARLr7GUXDHXpE7W88REtBnUQyHkFE+AhvRGtkK0Qo97FEhZ+YRLKXjUZ+uVlF7i9bROs7yUTVyX9F/8kkRGdP+Efw9YREV02MRt/ZyUSzl0BEa7McRWopskYxo29EIjJfRQTFNEZsINZFEAZMRAYFY0QuewtFNU0nRQPXlUSPb05E0sQmRWFF10RpaL9F5YiYRBKKWES6RoNFFhRVREI1lkSMoepEqAlHRJZqVUQcxpdE0j0qRODVQUQWmD1ElPqGROmsdkR/YJREYXMqRFqc2EY/ElZG2KUwRZOyKkWhs7VEE10ARnWmWESaEi9FyQyORLnXj0RjOpxEK9eCRHgcBka1d2FE7ouIRLfd0USx1FlFI/k7Rs3JYkVf+tBEV5vuRD2EM0WWmMpEIsyiRKm3YEV9hctEttmVRKrDDEV96iNFNU1DSS1s1UWfL+xEwc23RgJOikSoKi9Fp2RWRNCC6ETOptBFKR9ESPsMk0RZbElG11auRIB0nkXSzG1EwfEqRdbL00QUNZ1GacovRBNEvkQvxNxEU84hRRlfCUa/bCJFHPZyRB0oG0UpOtBETdKFRI5Jq0TFsJJFMbGGRHcR2UQ8cYpEnGufRCiVYUWosttFnVgfRbzJckTlyplEtnnaRO9TiUTW6hhFH0wfR93QiUadlYFF4D89R6vX4kTGYKhEvrn5RPPGwERvDqBGs42FROulgERRyMBFyRYTRfrGQkRcgy5Fcx+gRG7NtESOvIhFoiyTRG7X0UQPzDZEOd10RL3TgUTx2WBFsVSCRKxrREQXFINFHXCLRMauYEShPmNEO3diRML9iEQL/cFEtF8lRV/8C0W49upH9W/JRme+xEchfqtGkNUARp0sUEUTJeBExKcyRqMVo0axsKpEbPmmRhRSN0VEe6NFlrEbRTC0FkSPpNRECXR6RNfeVETczvZESKyfRK9YdESybFBEUoOQRYuLd0QE+FZEXsAORvlIk0QN275Ff5fLRVH8ekTo1TJEtEg9RAFE90WL8/hEEfhrRV4n8ET7SGVE5LdARMvhk0QdAZ9EXX0DRYyWbETmYOREB7NmRK6Kl0VvraVEYiiiRD7YT0Qf0P9FZg9kRGNkakQqtqdEJjYCRQQxfEQH2YRFHCFrRII0WUSC9jREINiFRNHBmURc9btEZlECRSTzCUU9QDZE7X00RCnaPkT1VBpFGsuERBGrWUQ6039EQLGUReRrNEVGxodEp949RZyClUVvRYBEeqB1RpBwnkSvWD1G6CIWRaZ5C0WMCt1EZ3/lRNMIWkUVhpVEh+p9RffQeUQtX1JG6ymERGt3okV9K05FYmCBRdApR0SnkohEIfNFREHqYESgVZtE9WtHRA0XX0SPItJE2XC4RAN1ikQkkHlGq1/nRcCL8ERHhyFFEAueRIHTu0QkBU5EvapeRNxTuUQg8CVFZ6CwRO5MNUSzoLdEufrBR3wH2ESg4i5Et+XnRCT5qUbXtnNF/HM+RFEbCkWKE49GJSYZRdwCMkXP3otEUa2uRH+weUQAY0REORJGRBtBQEXjeRNF4oqpRIE0XUTwLDpGzGNpRZlZQ0bCASJFxQ7gRH9x2EW9LpxEFsJ4RD9KUkQ+9ZJE/UGTRJSBT0SVkDhECDRORD7DqUeEasVEXW8RR43+hUSNJ2tF7+8LRm9IGEUZjopFJkmeRKWcqURe+0lExLqIRFxOikTWo4JE+e5KRLu4UUTmrVREe3h9RIEgpkQ46ppH6/M+Rsq5gEQYdbtEnGqrRd8aZUbkRYxE3aUBRRvp1UYLZZlEA0WWREV9jUUSWHZElqk4Rrz5j0VhqxJFGt6FRCcnjUSMR1pERhlMRLGWa0SEEalEoKyRRDRIgESHOH9EVZGURXGdcEQc401E268uRBeMBkWEm4xESnhNRJWVW0TzjHlFpdfSRPXNtkQoNGVEgT8iRCFQLETrTHtEaqD0RBqgG0YVy11EUF+XRDDvRkSdGqBFgOLPRLFIiERqorhEssyFRDkcgESgXX9Ea+w2RDnBT0Ttf5ZEzl9qRPokx0QCJtREl8xYRE9Yc0TBOVJEdtBnRAnVNkTvP4ZESvexRKWeUETC4ENEYEIFRS8KYUSBJVpEJ28TRUFda0SuQHBEn6pTRw52QkfWD3NGCgOyRds5xkWMYLtEiI+uRLxn60TfxlRGQyx/RFfHAUVb12FEbDZZRVl/FkVWVKBF19YeRAZvhERRRCdFoEVsRKFmVERK6i1FKdOQRC0NU0WF8lhEbspgRPyNz0RXYihF6JxWRK31N0Wpf1ZEmIhzRMWdnUQjiUlEjAOERAl8gETLfldEiYIjRZGIm0RGjlREAB5VRLD3dURwsCJGCQDWRDx5yUQ3LMBE0ldeRDi+iET21dREIQ9dRLg2IkSk33ZE3EqxRRZq20TAREVECKtlRPI7bETzeulEXjBhRABpvUQtzpxFHGlsRHWZ6URcmOVEdKaxRAH6U0StrEBEvQxfRCMB8kT8nLBEdwnWRFL0j0TX9XBIX4GJRIBHmkV/tXVEZo+IRHEONkTd8tFEfDOaRIJXV0RxQR1EO2/WR+Gfa0Q9THpE2SZSRGjmdkSSQohE68htR+ROXUVAH4REezdSRIW/ZkTbXMtGE2JRRhNyaURHrHVFZ2mqRDG/e0VyDcJFush7RPNJWEQWCqVENkPIRHMplUTGdnBEbClAREApSERp2FBG+4IoRPOPgUS+tJpFCUOIRf3oTkRWF7BEeIReROcyuEaOJmlE/XXcRLHciUVFDZBEGofjRMROqURb4UlElWqURR3lrUXaogxFXGasRGk610UeqBVFwCKIROPbykQ4245Ev5qkRCBggESgu3BEYg2HRjAGXUbSee1FVgP6RH2/q0Qk+rZEYADRRfS+uETVtaREAjNzRJBau0Txa5RE7bQURdt0NUTI+OhEBAxqRJyXbkRvsflEetonRG0GcEQtTypFDK8BRWEIZUT9jJBExdANRaTiX0SALQhGypfCRA+pNUT41lREhwApRdAl9UR4Kl1EzWqDRA66VESjObVEuod7RT/7UkSyNqFEZmOsRMewUUQgMX9ER6pcRg73CEYgPMtEenCqRAz3REgOK9tHUPy9Rp6aC0ar8z9GWZi5RAdqEUfUx8JE4lpsRp+AgkSyY8JEWnNZRb1Nu0UdJfFESj0oResgXEX9x9xE+cFCRDC7WUQGhkBEhFyaRGcQm0S8wUpEU1Y6Rb4ib0RWRV1ECg9gRP7WTkXAGHJE5EiJRLujikQIraZEaNNcRITcX0TWyVxFdXSRRBaDDEVYiLhEC9zWRI+uR0QFzIZE2mSlRLZAfUUCgKdE3twpRODQSUS21KFFwlEeRddmrkSiuXFEPerPRDKTwkSk+1hECYqFRP8iX0QPNMRHbxV8RDp7fkRxJBdH0ShNRFwjxUbItClEyYuPRUg0ykUULOlEhN3nRDlWL0VXCIBE+NyaRWGhPEU4/sJEjtM/RQdWz0TR+VFESs10RBQ/p0Ssum5Fmr07RKYIYkREuStFIkCDRIUVCEX40i9Fdqs1RPfggEQKfaxEdDhmRKz1b0T0V2lEjF7/RV2nV0VIZDhEiil+RCw3vESo1Y5EUQThRIo11Uc7RDlH2qXXRmydI0Z51IxER65VRc9JW0SOWpJEpY07RJlao0RHbwdFLXXXRLkJakQtAQFFK2SSRMG7TEVT90lE1E1mRLEEqkUGz7ZFEyNxRCaaA0VHaE5ETvKHREwIe0R0ckNEygSgRAHsUES0Pz1Etn3qRJQHE0Umv45EtKRDRH6Hn0TgEHNE1TdFRPAl8USP0kVEpU2PRHycw0V9Y0hFL9hWR5Tg6kTuLPBE+Zc5R7By2EYfftlFi9SJRB/dbkQWyWxEg+4rRVbXmERNxbNEoFQyRLaBiEQJ2adEwEdORE/o60TyfyZH1777RjhtvEZTwXxE2Ia8RXZqfEa3XaNFSGp7RGakhkUmFxJGwsrxRLCsBEXcSLFEm1InRTIFXkVYrXlEUtCVRQ47tEQHNLlEs+K9RVQxB0Uzy3hEstozRRAb8UTFAYtE7Xg2Rgx9kkY+yxpGj2y+Ri4Na0a5XwVGwhcLRsETJEXRbk9FQ55aRP2gCUeFhMNENeG8RWpBbEZkxE9Es5ymROwFO0RyIRNG6eceRbzMgERcn0FFQUhRRCVwHkbRf81FgG0eRX8mP0QiH1pEXW0tRtaqvEQ9DVFFsi2kRFaEVUQIFFlEwX5SROJfgkS9zDJEWK7DRGBqYUQ52btEd7QjRKvqA0USe85EzO99RHL2VkRXhHxEWPFFRJcBS0QU3UpEQs8bRnlnqEXnRk1EhBpFRRcgVUTOmrVECE2kROwx7UQZymtE0Jr+RU55kEXj8DBFJJ+WRDfgfkRb7ENEyt2ERKhDR0QIHRhGQgooRTltCUa3GhNF3Tt+RQ96eURCOIRE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - R66bAQzBckAghnObbsFyQKCwxYFQwnJA+rucpaXCckAYkjks5cJyQNiU1LcSw3JAOlBByzvDckDmTjOPqsNyQBgr8DDHxHJAmkYGoljFckAwt1/MetFyQAQWlUBD0nJA1JW9KqLSckDAth5kZ9NyQCQtv2p503JAGm2s01/UckBCUlUWz99yQEqmKEe44HJAqiXV/3DhckA48xm2C+JyQIHI60BQ4nJARAbrOY/ickAUIRhaI+NyQKx41+JM5HJAYNowisrxckCEcJQDfPJyQMI4EGeb8nJAZCaBJrfzckBwnUa3ofRyQGxv9gnD/3JAWBo9jmQAc0A021e++gBzQLC4B35PAXNA7BISsIwBc0AMoyGT1wFzQCo58NE6AnNAS+lNPtACc0AS9gaLZANzQKhJOX76A3NAYsdCEQoSc0AOOkZ1KBJzQLjXnIp4EnNAm2EJurwSc0B7DDfQ9hNzQBY6MJQHFHNAcpiT1E8Uc0Coe3B6eR9zQN93RvYJIHNAaqxiiDghc0A0X2pfeCJzQGqkdUrJInNAYvG69Awjc0BGYYtQpSNzQJIOhRPPJHNA4IWda0Uxc0DOQTQdWzFzQN87J3IkMnNAdECV580yc0DcEMU2CjNzQDdihZOkM3NA7e2GEPgzc0DMNR0SOTRzQIZpMk7dNHNAfkPZ3Lk/c0AoOaD5eEFzQJDfTU8nQnNAr/k0kbtCc0AvzptqUUNzQLqMZA4iRHNAal94XXpEc0C98xwrnFFzQNyVi2cPUnNAlq1b6EJTc0C/kji0o1NzQNJ+TvR2VHNAghJLOohUc0ChFZbi+19zQCB/dw6MYHNANIECmx1ic0BmIdA2o2JzQJHLFWL6YnNAJdkBojljc0Bout6pj2NzQFKiFsOxY3NAJqLTAmRkc0A+Qv4D/XBzQM7idNrccXNAURBMdFJyc0BOuourZ3JzQDSYvYMFc3NAenk+LVBzc0C0UrC1g3NzQOe/xJS3dHNAFMUoPUt1c0DUwz+teIBzQEJYBcCjgHNAjlH8mw2Bc0CLkzU1ZoFzQDi9PZldgnNAeAoNegKDc0Cg+pSuXINzQMYK09WQg3NAzEUhrA+Ec0Bu9Y/2sI1zQNBWBtuXkHNACCwrMs+Rc0AhXrmw9ZFzQAAYji5NknNAHNYYbZCSc0B8NYnVIJNzQIAmwc2fk3NASYAp/dCTc0BHlA4b95RzQBO+x9W4oHNA+pyKdU+hc0CG01JNr6FzQOB4sUtaonNAlVTfS5Kic0DmVG/gBKVzQMRCqjvWsHNANqwmRjWxc0BgCnJHT7FzQGnT/+h9sXNAsrfo/QCyc0AApIvntbNzQIdYg1sMtHNA2napT86/c0AXkcxkY8BzQNTZu4f2wHNA4ozqrkvBc0B2lPjVjMFzQCBhMVjPwnNA69iBUybDc0CEYlc5+sNzQOe9lLBZ0XNAGjKml3rRc0CYB8WRp9FzQIWhS4bX0XNAxD7vFLvSc0Db72/CU9NzQJC6+8/403NAklvoveHUc0C2zvTxOOFzQDz0HEVi4XNAxcLR+Ibhc0CbqURpzOFzQDxoPKp74nNAs1ZKEA/jc0BVjRl7NPFzQHY+pQtI8XNAGlQ2427xc0Bvrk9oivFzQIXQAKkf8nNA2tlMjmjyc0DQnDp4/fJzQIKoeJI19HNAIOZVYOMAdEBoPo8+SAF0QMpxS5ddAXRAn+9VfngBdEA6Yoz/pAF0QBQI+jPGAXRAZK22HroCdECCMxLLdRF0QNfkVyqJEXRA0klofD0TdEC6oPWpcxR0QFjHBaa4IXRAi8Clc/4idEAKFbjcVjB0QK8Fx5mdMXRAVCr7a7oydECeWUw35jJ0QMC0nmbiN3RA7MgFQTw9dECdXWVVpT90QDcSmpTIQXRA+v0ltTxDdEAGqOI4d0N0QHLEOfaBT3RA9L9HinFRdECMLNj5ZlN0QFBMJ631VHRArigqWYxVdECMRkARp1d0QF1vO6UfXXRA4VBJtLdgdECq2WICCGJ0QBzUkpt9YnRACYMzyUtkdEA+vrmKInB0QOKzsOAUcXRAuu0VykBxdEBf8OVdx3F0QO0ATRUXcnRAWi4SZ3tydEAmIzkfEnN0QEylsMs4c3RA2ge8rHdzdEAksvjxN3V0QIiln8wugHRAPhVv6PeAdECTrZ65TYF0QCBIyHpMgnRAGqXH6ZWCdECS9/ZPzYJ0QBCpcmUkg3RAPmD9cbqDdEC4aGbyFJB0QMOtxeZrkHRAc+5i6lCTdECP00xp7590QDpCNHHPoHRAHK613TihdEB+0P1ZaKJ0QNKWFNq2onRAvL7caeGidEDQ018CEKN0QHCWDSplpXRAUTPI/wiwdEBAxO1Hw7B0QHys4e9vsnRAmQLvGfyydECR0A7dGbN0QPKSTnXGt3RAgF4DuRK9dEBA9QxpT8B0QCLwUVPhwHRA7wNd4HjBdEDgzlnLDMJ0QPiu6F9Ow3RAFO25PXjEdECX1BSqKtJ0QP5hkXSk0nRAGLqU4SHTdECPea7fOtN0QBjOdd3g03RAUBJ6ps7UdEBAui1dIuF0QDlCwG+44XRA0qQcEEjjdECU0n9qj+N0QACnynhP5XRA1vn1ML7wdEB0cIbyVfN0QDXAbguN83RAqnwXjNEAdUDQEYI85AB1QFZO/nNfAXVATEu2iFwCdUAWFzP5qAJ1QESltJ6cA3VAPREZTo8TdUAR814mIxR1QEMNq9ScInVA+ni0EawydUAnOMBVOzN1QJcKtzLLNXVA2xblcd5CdUB/S+Ls4091QIq57gMCUHVAlLw8+25RdUBcuOQigFF1QKTTOZFMVHVAu94luXhVdUBvKzSuoWB1QHJt8S44YXVANpDTWmJidUD4sYCWjGJ1QOjAKqhnY3VAKxOCTrdxdUAqlUC1gnJ1QHuQrrqXcnVAfP9GxCN0dUDtIhsCjXR1QPnMFI7kgHVAyggyvXaBdUAySwAarYF1QK6B38ekg3VA2SHqoJuEdUBjYCsUjJB1QNyHap+6kXVAepwm74GSdUB7lm4gt6F1QA6IaffooXVA4gSuw32idUCZJKTAJqN1QHq6N1hJo3VAYsLA/aaodUBGD7Zk/q11QLYm/AqUsHVA7NpsPr6wdUCCMgM2DrF1QFh2U7DksnVANT/7fM7AdUAVu5blYsF1QNp/saz3wXVAsCa8P9nQdUACo2K0iNF1QJ7xgxLO03VAyHq9BOXfdUAKgqziD+F1QNy61/xZ4XVAEERHCaThdUB05h9NB+J1QErrTNxB8nVAkhOJj2bzdUDMfiupG/h1QCD8J8NzAXZAzsn0oEcCdkBkgVdq0AN2QAhJZn8IEXZA9iomA1oSdkCokumpVBN2QPFtHVRNFHZAFAQ4yQ0WdkCBmoqisCB2QDgIdWw6IXZAtqscPocidkAWEsF3YSN2QJ52mUuQJHZAkpgevksrdkDxHxIVHzF2QOPqpc2OMnZAc2b1kFEzdkCOo4a3tjN2QO/xIeSdNHZAyfmTCB1BdkAmzTkOx0J2QIJpUNF5RHZAeuCvsMdQdkBQ2dYdElF2QKsgGnH6UXZAxuOoeClSdkCxNKfChlR2QL4nb6LMVHZAdjy8aCFhdkBSLo5CGmJ2QOTcuKTbZHZAgDwU+1podkCmyPHC9oF2QKijv8FognZApsJxgI6CdkBa3GouFIN2QAQN1VGSg3ZAbbBCXrWRdkBARyHKWpJ2QKZpRyGsknZA40ZOyHiTdkA7l4zbupN2QAa+KCLPl3ZAHmJ9h+2ddkDSNAsxDqF2QLhXKPt6onZAiqQ/BVGwdkCQr+ARwLJ2QO6bB+kLtHZAWlgSOrC0dkBk0w3OvsB2QH+qyPdOwXZAgbwJyp/CdkBVF0EGGcR2QLtd4k/OznZAXkcn3cPQdkBK+kaCLtN2QB4+dukk83ZANiBotJDzdkBRd0uHNAJ3QJ6IOikBEndAyDHDhA0id0AcvVJo5CN3QBSU6u66JHdAeMkk2ecnd0BUe1unpTN3QBBA/t4MNXdAnIWFF85Ad0AkUznMnEF3QKgh1XOUQ3dAjEn63SVEd0DUqfH0GkV3QCKbj2JKUXdAjRbCCJJRd0CHI/nh7FJ3QNrsPJd2U3dAoGDXfylVd0AiKqLqe193QLgxSccRYXdATRQNvklhd0BqXxURnWF3QMTlxdE3YndAKvjWh4Vjd0CMl2/yJm93QMQgpY+JcXdAKgs8cp9yd0Ak2DZIS3N3QP6BiPCPdHdAwrgZs/V3d0AuA+wHuoB3QErUFxBPgXdA4d0FM+WBd0BY3HJweIJ3QGb6hiDKkXdA9LPPMwmSd0DFkaQNSpR3QHJGpROPoXdAWkogYruid0Ba481S2rJ3QJQWB8SZtHdA8fDdvUDBd0CO/fOMecF3QMSUUkItw3dA2AFxmI7Wd0BuoIFlUPJ3QFuirl9E83dA0JH7e0b9d0CkNzkxnwJ4QJLMZHvkB3hArJP41fsHeECi+o5kQg14QFjKjDBWDXhAyF3bigsTeEAYbk/i5BN4QCCv4YJsInhAjKzDPTojeEC84arajCN4QIYOkBfyI3hA1GB2SmEreEC05XOTGTB4QB9Chd9JM3hA602ldQpCeEDKMUy+VkN4QHeCg+i6Q3hAmJaeVhBEeEDoTwXdeUV4QGYsqPXKUXhAMwcdJhhTeECcZorU7lN4QLysYs2HVXhAfConbfdgeEDO8K5dt2F4QHqN3e+3YnhAhtDCK+dieEDj+MO+13J4QDSG9Eo9dHhAt66RN1F0eEAGlkuJZnR4QOHnDmaLdHhATAelmrt0eECKz+zp0HR4QM3FaJz2e3hAVEAK9DiBeECyvwc3pIF4QBbti5nNgXhA+N6Y7I6CeEDb7Bu+1oN4QC/1Szr/g3hAIsYT75mEeEC+4urLyYR4QBASvjych3hAtn3xTQeIeEBEFIZsT4h4QEYzhGLbi3hAxuABp+yLeEB4PKhRqY14QAg3/qJRj3hAaBa5eJaReECg4NucNpJ4QNusOSzyknhAjjHr746TeEA+cia6p5R4QLjjavKUl3hA2B4Q3EaYeEAoxXMp5Zx4QGSts1GtpHhAANSE3DmteEBaW7dL3rd4QISEKi33wXhAKttVlxbDeEAGxy3jIMR4QNBkSqUFxXhAzFBW797HeECwFeGyH8t4QER2vu211HhArI2Nv9LceEAUydYYLeJ4QMrkft2i4nhAOEsQUcvieEBqqdgX0ON4QLz0TaL853hAlqKbOy/veEDEUn+aAPR4QBTc4oOL9XhA0n4ErEcBeUCGgimPygJ5QEbVfs57A3lACga81jwQeUAM7QcT/R95QE+Lz/G4InlA4A1CjuMieUCvcxjcvCN5QJBcZHZQJHlAyjhX8bAoeUBiPK08syx5QCqTmIsEMnlAwTu7i9gyeUCamDaKajN5QNL464ReNHlAcMwu01s3eUCWE/Nr5D95QJLRcO/RQXlAAPopluVCeUDNxWJWK0N5QN/42Dn4Q3lApMYpSk9HeUBK2mRW2FJ5QBXdCAPMVHlAdRhYhutgeUDaUfRiw3J5QMxcRHlBc3lAVjXRhzixeUCQXSWswLJ5QARqsHXLwnlATKNRFLPDeUDjjlLDQdR5QKCcX4/N1XlA+i6vWEvkeUBekTqfH+95QGq7IoRI8nlAiptPjfsDekAQ4Kma+AV6QD4qxvFKEHpATGsHNncTekDECr1SOSN6QDcWVzzyI3pAB2YEs2gwekBaUP02KzN6QBzGpn8MNXpAcrggBy43ekBoIlVpMTt6QFRpKNgzP3pA8O0CNmBAekDaDbWLd0B6QAYGTFszQ3pAe4Hh8BlFekD4pk6DV1B6QGbznDMmVXpAOrca8CNcekA0OPcIaGB6QB4agrOvYHpAIjeGx9NiekCv/eV8JWR6QLzQMIQ6ZXpATKRRqidzekAEtFSrJXd6QDdM4Qcve3pApk2oL8mAekDy9chj1JN6QOBDGT26onpA1YDZhR6jekB0juVdI6t6QLzqG6ANs3pA8lmsNAy2ekDRbldxEbd6QAm+GgcNu3pAkf6IvBW/ekB2erovA8N6QII1h6Iuw3pAcCHeJ77DekBM3H1gyMt6QBCGYnlo4XpAW7MNUjfjekCKnFvbo+N6QEYZppl45HpAxRf4kjfuekBOMPVZFfF6QB4ILqNf8XpAI1LV10oCe0CwyLhTewR7QCnOLLEpDntA2GGJHgMTe0CQdHkpzxN7QDCFAg+KFHtAUoMB40wVe0ArcEQdkiJ7QPL/b/UlI3tAcPgJamMje0CS5l3l2iN7QLj83ndZJXtApMGxbF4te0Ae7UMMGy57QA45wofDM3tAkAm7vdVAe0D6OcjKYlJ7QGcvPmsKdHtAzAmODxN4e0BzUOLkd4B7QP7L24Q8intA9nOgKB2Qe0AQ3vmJH5V7QB3D41xUnntAhjBH5gGne0Bw6S37AKt7QNRPbbF6xHtALL4+qnvGe0De7V7svtF7QPBRqFol0ntA6GpRYkDSe0Ax+xK/F9R7QAzSEPyK4ntAyu5VoCXke0BMk8wKjPV7QGVOySnN+3tAbmq8Smz+e0C3QOIVkgF8QE0gfmTYAXxA2uKy3vQBfEBg7wPTvQJ8QDjpKCTSA3xAjkng4GcEfECc2cX/mQV8QDGSHW6JEXxACBlb/dARfEBAmkW8Chd8QBT5LpX/I3xANHRDKVkpfEAhIYI4zkF8QC4Ld9zaUXxAIOe+f0dTfEC7BXuVA3N8QFb2UMdrgnxAemunbkuDfEBwqBVhT4t8QHVifujDjXxAHjMIIR6TfED/efF98pR8QFfGIvonl3xAYaD2yWWYfEAliSrBWZl8QB7LFc3CnXxAIHZpVo6ifEDFn24+D6R8QJxfDu/5pHxAZDAQ0RinfECc9shewbJ8QPp/vU8Fs3xAWc8fw3q0fED44lW3ItN8QKrVA2bI1XxA1n6UzfXbfECI4OQDWOJ8QD4QNMUP43xABEJQGw/kfECI5Eeoauh8QJ7wemHC7XxAnGrhWBfyfECc0xytVPJ8QD8Ikplz8nxApDJhmwICfUC0eDvOSwJ9QJdvrS1DEn1A9FtcTGISfUDyxXXe+xN9QMC4Z85YGX1AOJnV86gffUDrtfj7PCJ9QLKcFdugMX1AOPsQp5o9fUDBcV7RKkt9QKI1GU0TdX1AmbrO6994fUAQkWz5MXt9QPlNBxr+fn1AzpIdFjqDfUCDnF8kV4N9QC5/2W+Kg31AgvNwrfiDfUBYCSpb7YV9QMrxqISRjX1AhPmJQCWUfUBIlWUfhpR9QJ9kirDNlX1AwtwxDHiifUDwX/bvM6R9QKwq4s3mxH1AqObFvvPUfUD6FZ5L2OJ9QDZ8WlmC831ABsqY9I/1fUBu/cadNQB+QCg43DuDAn5A103e0ikPfkAU/dEzRBx+QCboOe81H35AbHx+6SMgfkBSaKo6XSt+QO6NrEQ9L35AFDSAb3Y0fkAJ/rMQVFN+QGv+Oo/fU35AukEMdFtbfkA2zCROR2N+QP4+HmBlY35AFXS9cDdkfkCafvFxUGt+QAwjiGtua35AutHa4cFwfkA2iXKTWHR+QMbpSTDNgH5A5chAlb+DfkD44QN/+I5+QE9snvf1k35AMsv1immbfkAUF2tvG5x+QPKl3xQRnn5AuOv5+pGkfkCmMUAtYqx+QJANR7SSsn5ANr272mKzfkD7GXuaabR+QIqll5eftH5AjiO0Cmu3fkAuYOu3bbx+QD3VqRlmw35Aq4nOJqXEfkCMrVL6zcR+QFmXmflty35AZSq8Jl3TfkAg4F6ddtN+QGmKuYph235AXbWx0FzwfkDBVy+f1/B+QI0PkSza835AoCVN/PQUf0AEsCMizxt/QIKSKwP6Hn9A54/xJ9Mjf0DnVrGqvlF/QNh72yuyU39A2BYycbdxf0AZJosC5nR/QJzohE6wgX9A6zUYXaSDf0BUN6zAP4R/QEKqAQ5jkX9ApvXJHamRf0AMJRAXoJN/QFIVJeyioH9AnnOFWl6hf0CU6JxqEKV/QOEu3zQRsX9AgjMiJ1Wxf0AQQwiBgLt/QI5lIg7+vn9A8HdmT1DBf0Cp4kz42MR/QLRXystdy39AQ1pV2xvSf0CuSDTXPdR/QH5ilRVS6X9ARNU2lAf0f0BQW1Wgd/R/QJFvWoDU+X9At3wDenQDgECIYh+rIAWAQIaS3UV4CoBAzo+7kLgNgECxdKJSeRqAQNwWlaftIYBAl7xOwmgigEBO7eUo7SmAQPqiSZ+4LIBAtxYbp2QvgECauyPNETKAQDUVYTYdN4BAorJS/sg5gEDlR3vL8DmAQCDg8yt2PIBAJvZijyM/gEBxsaNVqj+AQBJMlbXQQYBAFf0b6KhCgEBEtfdI8UiAQPSv3bGvSoBAfl+F7+ZQgEA2EptiE1GAQL4I8pKnVYBAdo0apIZWgECUCJcpJliAQOB0/KMOWYBAHNHlr6pZgEDwvYd0CVqAQEjH3YANXoBAg8PRwOFggECo8uCYxGGAQGkWVnNwZIBA4LtCSaFngECbxFDcTmqAQH1Z8ZL7bIBAeagXRilvgEBC3nHBJ3eAQC5hLif/eYBA9FjdJ4x+gEAsfUBlKX+AQKpErrvghYBAEfFX9uWJgECdIIEtHo+AQGS0w+8MkYBAxJet58mRgEBK/FOcMZKAQEQOtEQel4BAc356apGXgECSRAN9tJeAQAqigEwpmYBABSBuKOOZgEAzIfkxOpqAQDE+3caQmoBAEdHF6RqfgECYRuzYEqGAQE4XrVYuoYBA5ND67V6igEDIJ43UEaSAQAy9HAN9pYBAjp8OrTemgEDCSOD786aAQABvVF2qp4BAYHrlP4epgEA25sIkFqyAQOeCR3ITr4BAgEsboaqvgEA6JAksfbGAQPpEIR2SsoBA4wY0BKCygEDwApbqR7OAQF6YECc7toBAEcIzoBC3gEDeQyD7V7uAQF2R/s4FvIBA8HaVv8O8gEB4aYqKe72AQIAT0SJCvoBAJrP5QzTBgEA8X/Z9UsGAQHSFm3GfwoBAKgR2I/3GgECUf976p8eAQO3NKcsiyYBA+7+GO1PJgEDBGX/ntMmAQEBXMlYIz4BA+CKiJGfQgEDj2aSPLNGAQIFU8XlM0YBA6iGzRWbYgEBYKjNpSdmAQHYHhL1X24BAXW1OQ27ggECCVYWyROGAQDcz/BGZ54BAEFkLqgfogEBOZh9CXuiAQOb4hHn36IBAqEMv+krvgEBu3WJZA/KAQPbizSg884BAvlU4sSv5gED570qiP/+AQLLxFfXiBYFAhn2pyHEGgUDu05hS8gaBQDYUjxE/B4FAeN0qXj4PgUBlvwxYMxyBQMfz+3A0H4FAwlj7p7IfgUBG/13kVCKBQKa84bg1J4FA0NarZrcngUBtCvaoOCuBQHwzLSvMLIFAkmmEkS8vgUBinsl/vDGBQM35dMSaMoFAJQe/XLwygUBT2cpwKT+BQLx4OWGWQYFAs6FX48tBgUBUmccOz0WBQLon8PwqR4FA3OwLhgVKgUCGaV94x0yBQM5wVLQJToFAGIC9F89OgUBQAInW9FmBQPIGM2jkYYFAzxzYSVVigUCGSNf7Z2OBQBwUFKDjZIFAhD2g4LJmgUBaBAHDtWqBQPZUQtALa4FAwfO4bqRsgUD21MH3wXSBQOQ8Betud4FANxPBWht6gUBUtp7xyHyBQKShXuH2gYFAfOTngJ6CgUD3kZkaQ4eBQOrvc29DiIFAu3bnm5mLgUBf6fPaVY+BQK2iGOI8koFAljigUJKTgUAPrw8HyZSBQFQlzw/nlIFAwgoXWfSVgUCXJDpvQJaBQICiRcRWl4FA3wgzOZWXgUDYYmBJ+5mBQOCy4+UZmoFAnKYtOJ2cgUAgwLRFRp+BQKNwCUHmoYFAtIM3BhaigUC4oOlapKKBQMuWvGDfooFA4nHcc2+ogUAofqyZ7amBQJzjqFRKr4FARBdiU4GwgUAeGuxc0bCBQLXxn/QBsoFA29szDri2gUAegTboSreBQLPrVLAywIFABZqUYyjGgUCcShSZA8qBQApUfTCyzIFAPi3ls2DPgUB07UKZ99GBQMD2pxl/04FA6f39a+nVgUCIf+pFT9aBQK3I87vs2YFA3FlAffHdgUCOtYh4Id6BQFF6g2my8oFAytMlgAz0gUCUID7B7PmBQFz9cg27+oFAn3FmLPT6gUBsiTRy8P2BQFDjpZPjAYJAq3UCg+wFgkCQ7t0WmwmCQPLjb8TNCYJAtjlWlb0MgkCarPY50A2CQF0a66xoEIJApNgQm88RgkCNuaIWbRSCQAjOyY/LFYJAMvjwZNgYgkDa2UqovxmCQFCP5GHTGYJA9LemnikagkA4kWSWLB6CQIDbAnNnHoJAIOFS8J4fgkBe/hwv1iCCQPwDLKkyIoJAhY3yo9QigkC66xwjCSaCQEhdIEiZJ4JAKdhbNtAogkBU8fyWKSqCQHlAbxmdKoJAoPvsQ6YugkB/FbswdDCCQCxB+FTZMoJA/rL8P0lBgkDSwqHbXEKCQIaur7wuQ4JAmk35Z8VKgkCQZ3YPL02CQJ6+EjMIToJAGE87Q9xRgkCZDOzMdlKCQJJlS057VoJAACYS/M9agkAm++8xOl2CQOoG5K4VXoJAjtwUInpggkDuw0PPumGCQEIDFeMLYoJAPn+GDjVigkDnyC0PN2aCQOZ7iJehZ4JAsG85EnNogkBCs2xVN2mCQA5xWpGoaYJAtfCzAFJvgkCuV4o3b3KCQOiBB5vTcoJAZuXMWapzgkASMYSeQHWCQICOu8vedYJACjazYnB2gkAmRYsiy3aCQP6z7bzmdoJA1A1hoJt3gkDryvHvbHiCQPTuVRPheYJACxnsTAh6gkD7yauhdXqCQM8xlpLofYJA/qgZ17F/gkA6Y+7eAoKCQIXvhsnWgoJAhrGE0AeIgkA6s4xCQ4mCQJZNf44IioJAxrPIv3qMgkC2A58wN42CQOCa9AVDkYJA1Hqo6b2UgkC42XY13JaCQIAln3c8mYJA0HOtx1SZgkAHS3lhcZyCQHfIvPsOoYJAeiETkzqhgkAG6/tk8aWCQG9a+JoLqYJAW/vnzzKpgkB2+sly9qmCQIb6Amx+qoJAHpJYhoOugkD6ovMGMLGCQLhhohiHtoJAJsOiJKq5gkDUVk7RNMGCQG4Vx5rsxYJAtivvuO7JgkDAwNat1sqCQGJwsw0yz4JAomvOQTjRgkAbi8xHftqCQBCyjf5v3YJARl0f2lbfgkCtdiSJdOGCQD/c/7aD5YJAeDvoglvqgkAWumVlB+yCQMDYnzqh7YJApvfoAT7vgkDilqwx3PCCQOMXRwRe8oJA+NhtRwr1gkAamn0FrvmCQJijgJ/g+4JAcxHw4nX9gkArZOdVwP2CQJR8/1LDAYNALrMhVU8Kg0D09uBl+guDQKYeRk5GDYNAepRagDoOg0BcG9iSeRGDQF9dWzlQEoNAjvuej3kZg0CShuGnXhqDQBRMfHNyIYNAzItfqYohg0AWs1ugcCmDQHgOjqhqMYNAFPGBIdw0g0Bha5HgaEODQFEzmnsWRoNAztvmwFpKg0C4QsLJFkyDQGFses67T4NAuna7EXhag0BmTBZ072eDQKKhl5WZboNAdgtyWFlxg0D+C/gLE3uDQHjO4zDEgYNAmT998eWBg0D+/9H/SoODQES++gTJhYNAgMZUceOSg0A+3LlQPpmDQGpGe8Hym4NAUHNzpy6dg0AU1vkVHZ6DQPZCL6dHoYNAozkz4Pepg0DG632H562DQKawIw3nsYNAZwGf9hOyg0BxvxMOeriDQLIp1MfQyYNAEgesPMzcg0CxweMfKuKDQP5bFGBX4oNAhOdf8p3lg0Bw4OCvp+eDQEYjYp1M6oNAWFUnm9ftg0BJT0fm1fGDQO/GIVXS9YNAaYEQrpT4g0C+/t8rXgGEQL4+UT2FCYRAzTELtzQKhEAQB5wMURWEQEwwoYw8N4RATEr/DTs6hEDDPw9yD02EQNbrG16zToRA3NaUdbxPhEBwt5Y/EmCEQDhWKBMAaYRAiFiq6P5whEDbHjdDQHKEQDZM4ejudIRA2nmJpcl3hECEWK6I9XiEQO5Al9G+eYRAM7FmKHd6hEDeOcptJH2EQHZ5oZ/Rf4RAooxinGeChED8+W+af4KEQJFYBdyRmoRA+Ps1fXKihEA4EkgupKqEQOb55liPsIRAe8SPEnPChEBVbCEnIsWEQH0lLgQ1xYRA7iyweSDThEBwPfrJEdaEQM6exjpq2YRAH6AWZRTahEDi1Zt7Cd6EQM6PZaEZ3oRALGwSCAjghEBuwFhiauGEQJfEUUYT4oRA6guEOaLihEA46FE4EuaEQPIdWb3R54RAh+vLfnjohEDN18AyYumEQJACE7F96oRAIuXOuyvthEB+7mXCNfGEQMKU7xRk8YRA51i/sn32hEC8GcOPbveEQKCX6/jc94RATGvu/w75hEASD7FrMvmEQD7vzrVc+YRAeJICOon6hEAwmEdEqfqEQI7v4NA//IRAvtwt+jX9hEBkMIQ43f2EQOLLTqHN/oRAZa1ozi4BhUDSkGKksAKFQMhOIg4sCYVAisxTbEUUhUDbcOBY4BWFQKr6shH4FoVAL68Z/noXhUB4QCkJFRmFQLYs5JyvGoVAULbPpvoahUDXdsO0ShyFQLTdrk7fHYVAzCI25f0ehUCjGBpD/yKFQFN+1XgiN4VA9G5d1IpAhUDWRNgFuE6FQArSc/Z+UIVAaD1Z/J9hhUCoVH4z3GGFQNbZ415NZoVAjo+n86hmhUB2TxJIoGmFQHuwlJSsaoVAZk8RdGBuhUDkBexNmHGFQP9dQWKwcoVA8JHbarRzhUAIwGAWtXaFQPQlg9d6eYVAhBhsSJt5hUChf9OckYGFQIseQHhPg4VAPVnkoyGJhUCqcgZJPJSFQN/GQcBKqoVAq6kSFpKqhUCHaVB3QK6FQBZUOYNDsoVAX7zZAUe2hUD3x+khT7qFQEAZyjshwoVAKn80zwPKhUC6H3BtKsqFQOwSdc3CyoVADAMOCQTOhUA1Gr9amfyFQG++Op+hEoZAGvV3JFQUhkAWaWIPjReGQOQxalAnGYZAjmf+PWEchkBVIDQQgiqGQNtY9dHfL4ZAg8xgPO03hkAktwNhgVeGQHDSvBnEeYZAf5rQBye5hkDi9qWUz8aGQEY2t3jZyIZA7DlXgx7JhkA4MhsvtcqGQNiobW0l0oZAgkKsvh4bh0CsAeCgkCmHQLfHB4iRMYdAbdCReYk5h0BK8YNGXEGHQKb5JNuIQYdAeh4xUl5Jh0CgTJAMo4+HQCV5LDkHp4dAuw0PsMexh0AV25Grx7mHQAz20B7BwYdAgz5JGYLCh0CqfzGtv8mHQL3y0Onh6IdAWgnhVcn0h0BCv0jUpk6IQLZuj2H9UYhAEtbboqlSiEBqwY8AAVaIQKzTFWCrVohAYMUzNwBaiEDXKRGbweuIQA== + 7BToB3LiY0AoFld2zuNlQDAn7Gl4w25AA0krmFUickC/1D2sanJ3QAOnB+ytM3lA4d0/3e3ifEAlsAkdMaR+QILzIIe4KYFAo9wFJ1oKgkCCIg+xZLKEQDa9qWKxEoZAeQGP35tKiEDHwSr78sqIQFbqiPAek4pA - + - iDxiRF0RDEavjbZEKi1oRB6T3UQRukxEEeNpRfuQRkT2M55EQ0OnRGmkakTiie9GMfqXRPgSR0SFfopE28l4RCPmH0WO6k5Flv+cRDgjlURRZ2tF9vv/RUrngkT+5CZFtHYyRyvSNkSbymtEzif3RFGOmkSdNLxEbIaKRMDu0EStpcVEXwwCRc3LlEU/vntEG6w/RYc2SUSkaxBH+DCHRcwpZERQqrJEAiWGRot2VEX2mYRFramCRG+K3USBpURE9DFqRvm5gESoOfhEvOyWRO88QkSjI61FBcenRKt+mESMoDREwU7MRGZeakTLwlBEyk0TRQLicUQ7QZpEjAUoRdzyIUXISWtE92SZRHHIe0Ql+TxENXAYRuY8cUUNGfhEvE2tRLB1l0WplJBEyrWdRAIXdUS9/5VEzdTNRLquTUT4vo5ERWMuRXiusUSP831E4n2hRCrpN0R7et1Ebl8ART0pSETbAFpEFixPRYgJ1Uf3JdREJB4BRXW8rEZ5MHNEv5SARNbWJES2aJtFeYyHRMG/OETB+klGlueiRGITa0SIfbpEhHw+RNndNETpil5Hu5VPRBrnHEXqPMJEhnGDRO6NWUY8fLdFtsMFRjV/ZkSLyOdFMnBuRLQ40kTkzalEl6ktRRaPoETZgkxEEoh7RNPnMEUO7S9FRfc9RIhpiUTFau9EJrj4RTpOVkQJQ9ZFxOTYRIn9aERO6HlEdC6xRFL9xERrFSdFRhuaRAylZURKX29E0EZQRQO/W0igZXFGDZfMRCNtp0QDMQBFSFicRM6U4UTnvKBGTAEXRUNvz0R6+opEHSJURLXXXUR07rZEbNGYRB+iFUUrnJdEuTZtR+bws0X0nTdEpc2bRHE7vEQQrIZFq/cjRcSFXUQMygJF3ZiORIxmTkTru4NEHmQxRDWdc0RTWaNExWikRDLcgkSgU71Er+xZRHZlvERwrYNEWQ9DRNhg5kTP839EWN2QRO5aPURyU1BFWY1HRfBdOkZdh6pEJ5GDRNMJiUVB3kdEYPFeR8S7NUS6n1pE3TdyRG9YSESFYdNEA4G/RHHJpUTmcH5EVAULRWr9AEaOrj1E+bc6REVPl0QraKRErwJrRMEwrkViQ2JEE95wRM12EUVHdTBFcO2IRFgCoUTpdgVFqbtDRC9/LkVei1pE16GLRNvPGEVmSE9FqTqpRG7Ba0THzU9EE1t4RPADg0QNEtFEF/HbRATZHEXXFqBE30uZRAqpi0RqH4VE8uGVRLKI6Uaxz0dExm/bRA5C5ESVCX9FVpFxRRaSwEQOQ75EwG2oREXwLkS1fbdF92wxRPrdZ0SIsGVEBnOlRdePWEQ6S3VER2NGRJPZTEXKSBdGFrHDRFwnuUSMlxhFDzyqRAq8s0ThgLFEPVVpRONBlkTYSrJE1P/nRLZnXkQZJyFFJ9huRmjcgUW/F6JEgeVaRI54rUUYO0dEV6CPREI880UrUahEaPUXRTAQzUXfciVF1iFxROefeESyWqxEPPCeRAbVu0RMLplEl8NjROh2e0Rh7SpGa14QRWgF0kSUqolEJ6FcRM6zSESagTREkTvRRTOSfUWgOBVFzoprRCATKkQKtY9EbemcRLbrEEU7QttEeei9ROJQs0QRT1FECGyQRI5nFUXFoVZEKHOGRThdcEQYkH1E/JZYROCDokX1XnBExxO7RMBp4kRTLYhEDGFKRVCOdUSJoA1GZTtrReivvkZ3hztEd63xRKUwqUTLbI9EnG09RZev8UQq1XNFGZ65RGf2G0VID/VEmLSERJxtb0Qfad5FDWRzRFiajEQW5shEnbNdRHqXg0S6W5tExVDgRHINU0TczBhF74KRRIKDUER0gqhE01nLROXN10Sgac5EwchbRJbSqUU5cYhE3rdDRFQnOEVN1ZFFgCVeRF/xjUSe9oZFU5U3RBMCoES4kR1FS1lQRF+bjkTb6S9ELzI1RQsWVUSMvJtGAQE9RXS8YETeZFFE9F/QRBl0ukXEEQNIB/eORInQnEYrkQVFzXhyRVOF3Ubz56xFWb1pRsN9gETtcgJGQ5QFReOtIkXJuzhE2svhREEfyETqTJlEieznROZwJEVkvLlEXIrvRfEgzkRkEZNESnV6Reg2YESg0ptEqtOCRGndEkUojkNEbWh+RNaqikRIoKhEcEVZRO0WQER2aXVEB+YwRPAFnUTAlXpEPGxzRANF2kQHmJ1EM8biRuF0QEYSWOFE2e88Rc3BnUSZc4JE5JtoRMVbOkZvGIVF0XlCRKp8dkT4tdhEXkPiROIIDUXxzyJGprmxRK3CHUUdMJpE+9VsRUKVXEYpVXBFJpjKRDFQaUQyjR9FBNAZRdyfVkVpOKdFkyoYRfKBSUXHKypFFECcRWjmvEWlpUBJxPC5RV0VU0UwhIdGS7r6RKq8ZEXkDW1EYtRiRGvb50T0XNVFxdxESBz3tkRtvmlEW+Y5REG+TUYJlLNETdpmRHSSw0VOhzVEUH9dRfX51kR5TrdEquEVRW7NZkaxJIJE4oM6RGYtj0TL2WxEsmScREm0iUQwrB5Fp4HfRYMxbUTocWNEEnZYRAdtrkSqQTxFJ5hARUMXDkWOe1xFzVNPRFqCqUQ9vwVFYwy7RAzHEUXf2YdFTWBAROjnQkX5zcREgCPeRBvJ+0TMj1ZHirnARizusEVkFYJHPvWRReL+VEWQYmNFzQvgRrOXckS1UQ1GD0fcRC2eOES3+0FE7FtgRZpuRkT84a5EjvyxRIw7tUTi3lFFgsBLRHKIUETvUI1E9P44RLNIlUU0w2hEnFCdRNbSl0UHeN9ECRCARN5Zp0SjtFhEZXohRaf5gkRdvS9EHLwzRJLGY0Tyy4ZFDBDSR/iA9kaWjqRH+lGQRoxlEEbSJSNFOmsMRfnd70UjYWxE0Xm7Ru7imUaGLgNFrYtaRXhNhkQtoPZEb6RHRBDIekSeEDlEvLnUROIWo0R10ZpEXPNhRPk1v0SlanZE4EeBRXVJmUS0rQpGk7bMRVRGCEaDAfJERqPJRPdnoURQYMtEIf/kRUz7U0XnVgFFFYyeRJ/CjkQ1/0BEOfw1RVH1skQHrp1ENusoRYjfokVy2sNEM39KRG3LdESEKqhE8f0gRsXqXETDL6REgg6DRK7nNUTslzJFr6xsRDJYlURr9LxEzBVJRSTrNEQvCktEbIlIRHMofUQyDj9EeZCSRKY24kTEBIpEjwTrRAfeq0SAz6REzYyCRBDwIkVPoShF361+ROjerEXpudhESg+DRTQkh0ZL8XpEXF9FRKx+g0Ri/f9FbYoqRW+npkQRtwdFI6mPRMsBaEVanYxEUiWDRX1TZESg+rJFTVRNRW6sikXDcKhE+swARdRI+kR0sFtE1+DDRAlmfUSURE9GDcHzRanbSURJSERE+FMeRVtYQUSTp3BEyoVtRNsSS0SC1cxEB/VpRNRSDkXHQZFEtDEPRUijNkQhx49EnFCGROHcwkdbJxNFP1eKRFrX5UTlBWdEDuwcRVgU00bQVh5FgUDMRABxlUayhDlFIcGjRGJdq0RZxydErKQ1RLhnlERhHmVE/NtWREPufERLtohE9q6/RGFRjkVjEQFFE02URGP9r0SstzFE6xyERMifXEQxn2lEHBu7RooYj0Tq6m5EHvLaRJJfrEVFgUxGOIDbRJbvkUSDb1tEcSEWRaSwjkX7UZlEH8y2RKf6vkS/dopEoveWRAxtaETCbkdEdg1BRA+UyEePnZpE8qkfR13gyUXSmupFlrYoRWh8XEXn26hEjR5oRGjedUTObGREMOZwRAPER0RpsjFEXT4VRd6jXUTCfctEXwsHSJMSTUYpM4tEmWogRRku90UisuFGRUxARPoKwkQs8LNGSNEcRdokNUXJ6wBGcVQFRfMJPUV9P4dEz/RgRMYroURDxEBFDVuCRPMNukUokHZECiPyRNYCr0TemqJE/s9qRSpEdET9P6ZE1pNiRJoiTkSNxyNGaopYROVSU0Q8o3RFgZluRYkv6kTyADREP3XpRGg+jUQR2UlEaaBaRACXrUSzB4lE4BBHRMxRHkQG48dEiGiFRDpcjUQnqYtEE7x8RJMyXES/N+pEt6GqRGJcXUSEZlFEHTOgRCUehUSgiz5FTpGBRNkGgkRlaWlHfSlKR3lKd0TjNmVG7/6VRbkmcEQQJ4ZE5G7bRaseIEXvF8lEHug5RQ+KQUYxqB9FSq6JRELphUXU6alFw4OmRK+yvEU/nd9EzHBwRFxQKEUtdTFFlSwsRdqSEUUao2NEAX5WRSEdhkTrDk9EeL2WRDu6rkR0w2pFAHp+RMgqMEY3fzNEAcs+RDCLJkSJFRBFkS6PRJsCd0SCGmlEPu2RRNppQERz3mpEetyXREjRmkTucmZEUgGWRX0AbkSwH5lEI8hgRYVzRESE1ZhEvB/pRDJAR0SHr8RF7AlSRIfSLEQ6aLtEy7hVRL0XrET5u7pEiPNxRPDqkUSIyLtEfMYCRU9pvUS68ENEnT38RPzBc0gjfYNFThnqRBte3ET2scVE/5e/R5E5dEQSjpBEWRYDRbUfxUQpv2xH7f/2RgFgO0ZDaG1EN1yQRaHunkVjgZJEzYyXRICXykU+7H9EJ7zLRFIZI0TSbbpEndVTRPQSW0aLRVJEX9JURLJlXETKzmRFE4mBRawaLkQM+cxGCBKqRPQtJkVCVuxF8o2ARICbTEQiqHpELc/dRC6tuERt9UJE3F9wRLowh0U025REyiTDRf9W0kTr/VVENp7TRYwBgkSHjAtFvURIROZXd0TT6oJE4QVsRHWSkETP4nVEjxk0RYtZZ0SdZ7dEaBM2RK/CnUYblCRGe44CRvyRuUSWilBEwXu/RJ6uVETsqVZEaC1lRG8z8kUjaFJEvQF8RUxMeERniwJF0pFbRORMhUTapFNFKIacREPYtEQ0W3FE1833RCk7u0Tq7URFs9R5RIyuNESdeQlFxbbqRMUttESflR5GVadwRCpeZ0RGfUdE71s5ROQI4ETtcmxEivZaRGmhWUUt1h9F2h7NREM0dES0KMJEHmT+ReOLNkTr7bpFEVRoRF01nUSkxHBEWAyCRFEANUbKA2FEKcFIRB83LkblBtBEAjCeRHa3rER5FYdIhrF8ROOJF0gKFmJEHcQVR5X5QETgcEtGxCwrRtfJl0SG5p5EOKUdR2iBnEbVQuZE2FtdRCVZekV/QJ1FI/fqRFKUYEQmNnBE+UGERVDot0T+R9pE7NCTRBeWM0TPWjVEUa+nRBJ2gkQVDSdEIpliRIX1gETXjF5Fk4doRBgJiEQowLNEO+IGRUMUgkTSkUlED99fRH/7Z0QQOZJER4ZyRbK4IEWYiNREfrWKRD9j2kRZ+0tED+qVRHZaiEWUgZFEqLYRRddJpURbGgdFMskJRfPdpUS9aH5EFUtxRCSKTURX3rtECNCKRHk4rESs8oREKkuuRDPmREQEq0JExZt1RJUNsUfzv4hE0fpORIzFaESSRhRHSmtNRGYHTkTXdb9GiNP+RJz6kUQpwZhFO5gARpQKsESVFs1EsI3JRKnlu0QUHrVF2L8HRdJTqETao6FEcA+FRAOVRkQr8zRFSCXvRPQEg0Shzm5EFnl/RASC3URosRRF7XWNROtZYUXifyZErfFgRGyKr0SXFStFggfiRNbxzUQ6zglFe4fWRFmxdUQmhmlEi7eERAjDp0VAXkBF330GRTxDrEToPVFE51+vRNxc00dKBzdEuxs8R78URERdDuBGL9EQRf8u70VYFCtFpmNDRHrwVUSOhWlE4R2NRB3mZkSoBWZEHftxRGN5R0TJ/mhEpjZqRIAzQkSJLzdFhtdPRD++RURE0GhEZkkdRLk8TEUJ/TVECxtgRBK9RESYsIxEJO7eRSJitEWt1NdEyvc9RNu6YUTA95JEIJGKRHR1aER0i49EALyBRJATa0SOdF5E1d92RRBSjUTsH1JE98PbRN/IaUSDe1RE2RY9RM1JkkSeEXFEKzxkRGZFQkVzX0xENschRfawXkRb/blFqaUpRZ9L0URvpIREwR9nR3kb+kR1oYBEWztcRyxUy0Z97QNGyrqpRPo7YkVwfSFEdZCtRKbyaUSofkNEjKFORCujXkQLCF1EWAzdRBvXF0eiwgFHPzfGRiv8tUUhxa5FP7ljRBOpcEZ1kDZFHKdZRJWm3kSUYXBFWcFYRHqJA0Yj8atFzoU+RXTNhEXFnFlFRfLfRKmPa0Tt6ZNFCqWcRO/Zl0QcDI5EFFdYRRxpVkV2GBVFzeoYRQaokUQyrYxE0b2MRGAeLkSZRXpElGG5Ri5KSUfrb8pFcbIyR3sy1Ebck6dG9o0XRR3k/0V9xNBEBF39RIeFRkRMQndEcwGcRCcigESd2zZEuLr9RsEIV0QtaRhFf/c4RT08SkYLwaFE88czRAJ390UPkcFECJmKRF1WuUSZPlJEsMV7RYL330TwAVBEm7GERN+CiURyPmtEHItcRHVHTEZEPfVFn9BJRTdeP0TFH7FFYECwRFw9k0SYtIdE8L6pRApESkSKw21EP6SORO2+l0RZ3pJEtuhtRDJsoETB601EHCmERLv+mURpOWREThkNRal8AkVPmqpE+B9UROH5WURMPgJFMF+hRATgM0bpdsRFud84RY6aakRvLMFEeUw8RJTJNURhQ79En7z/RTzyokVTeAFFf/o9RMjxnkQOKKdElcnLRH/rFEZQMCZFD43yReEcBUVD+lpFc8t0RIVzXkQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - +pdLY2/BckBVCXJuUMJyQJaPGh+mwnJALkeyn+XCckD3y1H3O8NyQN4GUHzExHJAd0gSklfFckB8drHhQtJyQJm3s3ii0nJARqNESHXTckDFDP9sztNyQF3kES3P33JAbMh9N7fgckAIUnrL4+ByQJwXk9JR4XJANOI6FAfickDSXIXGTeJyQANUu1CP4nJAFsaxoSPjckBCvlyeTeRyQGDgX57K8XJA8x63yXnyckC9qz0kmvJyQPcl1H298nJADsbJXLXzckDUXJstovRyQJaZvXq//3JAaM3CBPcAc0A+YAXiiwFzQIxcAXnYAXNAAN2xWjcCc0AYzqeVzgJzQJzj04/6A3NALrU2hSUFc0CDhqVzChJzQMa+kpu8EnNAPLftlmQTc0BBJ7oE+hNzQPKqpnVMFHNAibHHAnofc0A6UGEJoyBzQBgO1hA5IXNAumPM4BYic0CEeNKVeyJzQDZevQLJInNAndloTBEjc0A/xhRjziRzQDjS14ZIMXNAdoz9yVkxc0B88CcJrDFzQJakH8fLMnNAftEwGQ0zc0A2//ThoDNzQH/r8UP5M3NAyphebDc0c0DoIISeuT9zQP7AilXjQHNAI36vJHhBc0CwYe9DJkJzQAiw5tq+QnNAPuXxc3pEc0D4kA/8m1FzQAvwh2wPUnNAfwT1bEBTc0DQg/Euo1NzQCRVKEgdYnNATNGKKDtjc0AELkiszmNzQMguBaj6cXNALseX/1Byc0AMR5PHanJzQDZbOItPc3NA/aQ464Nzc0AAlnS1HnRzQEyhiDy3dHNAsNgWs0x1c0ATVoxuanZzQORO1Tp4gHNA9AtRlg2Bc0CNc5k7XYJzQB5H1TMBg3NA9FCjNpGDc0CrtleBh5BzQGDA1a+SkXNAndspVU2Sc0BQSnphIZNzQF5gelmfk3NAtFqzyMyTc0Chc5BZYpRzQC7OJyr3lHNAJILGELmgc0Bdvczv46BzQEK9edxOoXNAhGY30Fmic0CYRVR5BqVzQAag88DYsHNA21CfNDexc0COytNEX7FzQO6voTt5sXNALDkfq7Wzc0AgUocxDbRzQDZ+CBb3wHNAgNHeDiTBc0AbJ9hQS8FzQMOvawGMwXNAstU9sM/Cc0DmRfMVJcNzQPLHe/lZ0XNAsDBgOXnRc0ABDR+ipNFzQKjBlE7Z0XNAat79dtrSc0Cw7j1VJNNzQJzQjvP303NAt/6/+OHUc0CvaToFOeFzQGA5oIRh4XNA7H0u64bhc0CLZH+5meFzQJ3hIWXI4XNAmC33X+Phc0DGCrZDe+JzQAKfSf4O43NAzHPPcqPjc0BgnPcQOORzQKmh5tlH8XNAqD6uP2/xc0BY6c14jPFzQNISZNAg8nNA9gTG2mXyc0CoXx/9hvJzQNUneppi83NAfIDQYKHzc0AZvmLiNfRzQAHGSYfjAHRAjCDrz0QBdEAAYVIIXwF0QMi8zJV4AXRA/y0UJ6UBdECKa1ktugJ0QBIjfkmJEXRA4ozBOksTdEB5GwC8dBR0QP4fwclLIHRAfLgtxokhdEBDqPsatCF0QHbZa5lVMHRAFoj5vZkxdECagdem5DJ0QJdnemNTQHRAPlW8TztDdEAy0NtZeEN0QGpPmGBHTXRAkBdY725RdECwi/BvZVN0QHApus73VHRA80u7/opVdEDINrl0IF10QISuBc+3YHRA0PlWaAhidEDOzfVXemJ0QIRvVFEOZHRA+q06dExkdECagbGFIXB0QD6n8aJAcXRA4GFLvRdydEBmA1VLfnJ0QHEb7v7zcnRADjIkXDpzdEDOqElEN3V0QHzzjWNFgHRAGPXu/veAdEAaqJBpToF0QA9mHKBHgnRALu/PKyaDdEB83kklRoN0QEj7DzgVkHRAdqu3pO2fdEBdIfszo6B0QA7wyuTRoHRAnVEQmWCidEAAbIngdKJ0QF1tDXS3onRAy9vSwxCjdEAw4FndCLB0QKiO4AvDsHRAkNdjzHKydEAKMI/S/bJ0QFKgGSj6s3RAQvJIUcm3dEDXuIAk4sB0QD75uIx5wXRA9tg+w+zBdEBKCYAJDsJ0QNNHI7N7xHRAtstMBLjEdEAQpiug+s50QHRqmvbK0XRAokc2rC7SdEChJSxbpdJ0QMAzmbY603RA4q0RiOLTdEBRWPwFzdR0QLrM45K14HRAQPAFziPhdEBoFlRxuOF0QOCUGaxH43RAcOgxqU3ldEBQTs5av/B0QCYHET+O83RAba8pUWQBdUCUpIG2XAJ1QMXUMSilAnVAghnAsJsDdUAkNlXAJBR1QDRs7VCtIHVAYuwS3ZwidUA1QSkyrTJ1QJ5y41w8M3VATmowLMw1dUCk2KsAdkJ1QOvqDjfdQnVAXcamLihDdUB3wsb86U91QMQ5XckNUHVAgF6aPX9RdUAwhT+pVFN1QCparEZMVHVA2MeN7HZVdUDxQiHrN2F1QFbsvVI3YnVALn88z2JidUAKQL8qjWJ1QPAGrwwNY3VAjCboiWVjdUAYm0VggnJ1QGEKEOckdHVA6GTsa4x0dUAOf3yh5YB1QJQNnip3gXVAVnpl+K2BdUDaLMmRCoJ1QKKXJEmPgnVATzXiGbeCdUBoPXsfpoN1QADXaPWahHVAt+uqDbuRdUCwe1x5zpF1QK06Kh2EknVA36ej1ZSgdUAkm+b5uKF1QL+yuwYqo3VAcpkn4kmjdUCpaLoLoqh1QD67V2PCsHVAMN8zYTSzdUCEb/t1xrR1QLjSp9bMwHVAPjypbGLBdUCD+k/u98F1QOyXTHc/w3VAQvKsB6TQdUCgeARP3dB1QIzQgiZ60XVA5GH7pxDhdUAwkQWUWeF1QJqThqCi4XVAYbOC5wXidUCC2FGma+J1QEJ0sPc35XVAezWX8EcCdkDQA5Q/zwN2QCCP9jZWEnZAamaBJFQTdkAgYnxdSxR2QGrMmRMLFnZAdDZxgbAgdkCq2Zj1hyJ2QM8UQG9gI3ZAVHEsDpAkdkA/PjQzSyt2QIYN/yUfMXZAAuvpkSMzdkAv6HdLUDN2QE8C6VS6M3ZArVN9CaA0dkCjqb1sXkB2QH6BQDMcQXZA0VyE88dCdkDmpgvOUUN2QHTy4rh4RHZAHkmzuchQdkCgPyv2EVF2QMahDuf4UXZA7ByCdylSdkAeu9D6zFR2QP4i9LQXYnZAGAhHgFFjdkB6Z5jv2mR2QMYk/PRUaHZAqi0Cj/eBdkDOyn2pjYJ2QIhPjOqjgnZAJhxfYBGDdkBwGraKkYN2QC5ds2a3kXZAWPg5wXiTdkAYTj//u5N2QAINi3PFm3ZAem+yXA+hdkD96gJnOKJ2QH7Lt7t6onZA3gvtbOWidkAbEGwNwrJ2QIKu6YR4s3ZAT20mtgy0dkD2wg/fsLR2QFNamhhOwXZAaHA+Cc7OdkAu51N3vtB2QHCiJpgx03ZA0gLJQNDidkDe/XjGj/N2QBnf3LtK9nZAGTZZQTMCd0DQ0UagABJ3QDjgFYkPIndAXnHKdk0jd0ACGUFk5yN3QCwejNukM3dAkIvpJw01d0BqlVGLz0B3QKK9o5+cQXdArpsxcZVDd0DbIxGqt0N3QC7GQWwmRHdAYMCtlRpFd0AqBQorClB3QIoA5+NJUXdAYkxpf5JRd0BILU87d1N3QORqXRKdU3dAWGBYHCtVd0DOz+OQe193QPKNZz4NYXdAEhGK1Y9hd0CWEg21OGJ3QHLa0BFnYndAwe4a1oVjd0BM5uzDqmN3QGryrqcnb3dAzmQyeIhxd0AiCSTennJ3QHVtertIc3dAAkgSUZB0d0Dsq97S+Xd3QChZBulLgXdAMuMBtneCd0AGFAEhyZF3QE4wlFhMlHdAzptyRODQd0DKNEFeTvJ3QARtqT5I83dADiMnj0b9d0AarJ0DoQJ4QOTspdj7B3hA/ONZk+QTeEAiURvdTBV4QJwCBjxsInhAxhuahowjeEBU9+kO8SN4QC2mryJfK3hAaNgkhmUveEDOT0fNGDB4QMEdg1pKM3hA1SZDJAxCeEDcBxzlc0J4QID/N/JYQ3hA2FXkQhJEeEDW3K5+ekV4QIng0jiIUHhA8LwCbctReECPr0+jF1N4QClvXgYcVHhApJ230IZVeEAowsDq+GB4QJihDp61YXhAEt4N87dieEBoJBac5GJ4QJXr9FxjY3hAYUTcE9hyeEAIdTf+LnN4QAAcZcdIdHhA+NgrFlt0eEAH41aCi3R4QNPoYfn2e3hA1sFEdTiBeEB43HDeoIF4QOKrpymQgnhAVruxV9iDeEA5fHWj/oN4QIquar6ZhHhAaAHeIZqHeEAoAOXdToh4QASybpsFjHhA2vdQmqmNeEAgPlvNmJF4QHgphk84knhAWQiKke2SeEDXKpqJBJN4QMT6rDeQk3hA/2a/9KeUeEBCpXH+nqN4QPLt5qxPpHhA/LT+ybikeED23UDCkbJ4QKuwScCPs3hAIoOTUu23eECpkV7lzMB4QKq/4uX0wXhAqvvdXZfCeEAiiLqvFsN4QBaGrQwHxXhA0vpWGhzLeEBwdkSHttR4QNTXEi7U3HhAOQAFqw3heEC0MFCzLOJ4QE25KtSi4nhAMoezUs/ieECgk2jv/ed4QEaD/YzN63hA4O9GAaPyeEBmcpUg2/J4QPz5LbwC9HhAN7ocRYz1eEAYj6Mu0fh4QHSou7/KAnlAeixSE5gFeUDgOQ0uog95QHCMWIzMEXlAkDl6AekSeUCFDX3quCJ5QGgUhWjjInlA84FKULsjeUAmDNmIUCR5QIsrS5qvKHlAjYMYabEseUC9O+XsCy55QPwDlSIHMnlA0AG2YNgyeUDWOOb6sjN5QCw/AfnJM3lAvOkLml00eUAgkJQZWzd5QIYjiXOtPHlALnUTA45CeUDkJEPH5UJ5QP4Qkor8Q3lAVuspBWZEeUC6km5u31B5QFnKkY/XUnlAqg3H68xUeUBXr25X3WB5QFg95VraZHlA2ktlasVyeUDKBA66+4R5QKDHWZa/snlAxK/TeHbCeUCrFF3VysJ5QLHwJTS1w3lAPBiLa1XMeUCjWiuXstJ5QBxJZUZC1HlAGAspb8zVeUAeRwIeUul5QLagAvfE8nlAf36xJBH0eUB4k8vi+AJ6QPVanGD7A3pAgWCghTUjekAUrUgM8yN6QFPsheloMHpArl2oMiszekDhWgAlDDV6QE5HJK4tN3pApVXB8DA7ekAGnc4GOT96QB5oLGx3QHpAjNoZRCRBekBYaJCPhUN6QHK4vh8aRXpAdxWRp9VKekCqUOhdnE56QAQ8si1XUHpA/Ps8VYFTekAVLTlIJlV6QDh51ZEiXHpAaj2rIGdgekCsXR+psGB6QFHxFSJlYXpA74dkcylkekDPZZmUA296QASmCwJFcHpAwNroVCVzekB1WGJuK3d6QIxwlhUrk3pADNH2etWTekD0tT5NHaN6QNNt0DQjq3pALwN2+gyzekBZeAYzDLZ6QJbtmmQRt3pAbMdx8hS7ekB4Cmo7Gb96QKfPpVgJw3pAF4a4jL/DekCeVGr1GsZ6QFRsp6/Fy3pAS9irtGbhekC+CgXzNeN6QKOMDljz43pAgq0zoTfuekAoV+mHE/F6QJrDlHFBAXtAWF4vA04Ce0Cc5152DQN7QPy4ZBt8A3tAxrF8dnsEe0CkP5PmKg57QDjT1JRiEntA37nY88wTe0DWIGM4TBV7QKzsmNCQIntA0Em5bCUje0CkFnCgWiV7QNomCgVaLXtABKfaELIye0C+27HfwzN7QArtKezWQHtAwlZH6Qx0e0AQFsmevot7QDPQ+NYfkHtAuudENtaSe0DoHEv7IZV7QMDKHctVnntAG7Lnjf+me0Dq6GSEBKt7QAxwfIZ6xHtAlhFt4XfGe0DQBYA7GNR7QDgKy7qL4ntAnRBdErXie0Cog15IJuR7QPZM9ZuW8XtAiKKK34v1e0BknxX5a/57QPIAHBeOAXxAoD3OBtoBfEBGhY9eugJ8QMMojujRA3xACANdlZkFfEBY3zJTjRF8QPDpGEDQEXxAHFGmv/0jfEA+JlyBVil8QG8/Vrb6KnxAmLP5wLAufEDKqBCmzUF8QCEs149GU3xALJxiJlBbfEAIIaWfBnN8QDrcNaLWe3xA7P/q7m+CfEBEhjndRoN8QAbu9n3DjXxAYK/2IGOSfEDuvFW5HZN8QBKrAeJpmHxA5BQUgHyYfEBv1xIXz518QKRrjSK0nnxAy/H9MY2ifEB6yh4JwrJ8QPocx496tHxAnGlQ8BC2fECIEfd30MJ8QJ+OF/fL1XxATVW+3/XbfEBYBIiZ4eF8QIbu9QNY4nxAwJiCtRDjfEAzcOPDFvJ8QMt1KvxT8nxAK91HvHLyfEACml6o//N8QGSWsXX/AX1AI75HSUoCfUCC56b8RRJ9QMUdQCz8E31Aag2cWlUZfUDg9rEVPiJ9QASQLgrQM31AlquSC0c4fUBMA1NooT19QEs9uSUvT31A+vMa4ftrfUCEO5OMJ3N9QLCN4KmAdH1AmNna9DF7fUCyon7u+n59QHitgyEyg31Ai8Kc4mCDfUD6KR6OJZR9QKYr0JF5on1AOFuPkqqifUCpoLBuMqR9QNBODNoxw31Ad6CPmebEfUB0A6TAeNF9QKCM19j31H1AlFlGyFbbfUAAdDt71eJ9QOD8ja+P9X1A8oJA+zQAfkBKH036TQJ+QIwo58YvDH5AZL2lrigPfkCwMWIyNx9+QPwIVJuOIX5AFr1ajNcjfkBMNR1VOy9+QPohvxbTMX5Alqe3o6o4fkAhOu5aQz9+QFCCqE9UU35AcpF7mtlTfkB4C6jlkFV+QDq1RnIxWX5A3Ou6JFpbfkBUYqoDRmN+QKt+txVlY35AzC6VhDZkfkDQ4IB5YWR+QOwyoeNOa35AihNtUW9rfkD2pn3D6Wt+QFSK3Q/RcH5AyIhxYFhzfkDPy07XW3R+QPDHsp7IeH5AcoNJvZ+DfkBasB2UJIl+QPsQgYG3jH5AmXB3nBiOfkCAGLk64JB+QN6cvEhjl35AwgoCyx2afkBwR9/VZZt+QNdSJRkinH5AHgo/1ZGkfkAOkcfhYax+QPL4jm21rH5ALHsLMA6yfkAAEY3ClrJ+QLbIz/xptH5AGLWQe5+0fkAE3sO4brx+QM78Rullw35AXH69bKXEfkDYWpsKzMR+QJ5nOX9uy35AomEut1vTfkC6FAiYfNN+QNr5YefJ335ANuQNkNnzfkCeHQmszAB/QEhbiBaaA39AihXUgp4Of0CEVR1Xzht/QFYbuCTWI39AmI7o0lYqf0DIj60jokR/QCLhzQGvU39AgeiG+Mxvf0CqADL3tXF/QAH/0KvjdH9A+5LZfKd5f0Aho/REs4F/QKhE4S2hg39AWOTK2NSEf0A4SYjTYpF/QCLOb4amkX9AWiGTFmWXf0Bm1xROM5p/QOm6MoShoH9ASNmmFF6hf0AdDx/AEKV/QLipW3xUsX9A4ot+RWHLf0Bza852rdx/QCxJSxc3739AeN7vUXHzf0DOxvUr0AWAQPNtNzp4EIBAdhMt3RURgEBsvQbAuBGAQJQkbOV4HIBAp0pKBrosgEAGhejzZi+AQEYp4/YcN4BA+vePLAI5gEBQDtTAyDmAQCYnQrMhOoBAZXIt8nU8gEBDuFT5Ij+AQAnaKJbJQYBAtJl0b6lCgECut2VS9EiAQGw7dvqvSoBAelIJ4+ZQgEAhejHlE1GAQB5BOCmnVYBAEK65EthXgECa7sngJViAQHTnVPMNWYBA+hSVPyFZgECgQbZK21mAQFljRKIIWoBAEM9PN0VagECY9Rkyy1uAQLrDq8IMXoBATJPqpAthgEDD4wcPxGGAQCbJ3+IDZIBAVqQmKHBkgECyxLzCoGeAQAqW2XEfaIBACklSnU5qgEDSr0rs/myAQNtMiqsob4BAqiuhvdqBgEDmLGv4foKAQOLlYHLhhYBAk0rwA6iHgEAunnny5YmAQDe5j1z7ioBApEsTUB6PgEB4BUENIJeAQKhSCyiOl4BACEImxxyZgEAsE6DbQ5mAQNX2uAfbmYBACsjq4B2agEAE000GlJqAQL6ZGB3KnYBANL85HvGdgECsdjIu4aGAQGDqnXVeooBA6gQ3hsukgED2uSV7uqeAQOusxQVoqIBAdRg0cISpgECs1aW54qmAQCY44j9lqoBAzXMz/xOvgEDu471QtK+AQB2uefptsIBAUhaKl+WxgED0UKSBn7KAQJptFuoFvIBAVG/5rvG+gEDYjk+MUsGAQOTknzyqwYBAtLzYf57CgEA6xCd/b8iAQMQjN4sgyYBACWtr+VLJgED4yGB3osqAQM86/ZtrzYBA9Lo+ywrPgEDQafoit8+AQMYNU1lM0YBAesncnw7UgEC7FwleZtiAQPB0MjZJ2YBAnBxpmgXcgEBaQZjHbuCAQAK1lC9F4YBAhTtw/l3ogECcXtRf9+iAQJ5f48lL74BAwYaksmv6gECGn0qXP/+AQDDkyY//AIFAh//YpUAHgUCuAsxnPg+BQJJfPe62D4FARlPND40UgUB0KEQ+zRmBQH5X1oUQGoFAHpNc8fMcgUDJsAVpNB+BQM7NRXCyH4FAjpW6sgohgUAcliFTUiKBQExnJ5Q1J4FAeFy8US8vgUAQFhPbuS+BQCJLxYe8MYFAqyDLgL0ygUDx0IjpKD+BQBq71Qu7P4FA+7u95cpBgUAEDCJVz0WBQHBp037ISYFArDlPtQVKgUALXYhUw0yBQLwVchQJToFAppNr4GlRgUDZ0CZy51mBQOKui7qhXYFAIb+dA7NmgUCpUbG6t2qBQCYE2UYNa4FAwBhfsINwgUAUQQZFwnSBQIBe2D1vd4FAk3PBpBt6gUACdJfJi3uBQKOo+sTHfIFA8bD1HuR8gUACCdIlYX+BQJhJE3cTgoFAMCIgQKGCgUA0ar/CVY+BQIrABrDukYFAI6lWWj2SgUAWXTMySZOBQBT6szaPk4FA1hNzx+eUgUCYSIT6PpaBQEKACSBWl4FAIwmIlJeXgUClk87GxZeBQC77u2TtmIFA+GTRL5ycgUDoNpWiRp+BQOeY0ZvkoYFA7KRPlN+igUAS+aguCaeBQHOZDxNoqIFABuPGTkqvgUBct+EUMbGBQHxZM6pLt4FAqs7MGQXKgUAnRJaassyBQKY1svRgz4FA2zHjvQbSgUB8FiKKftOBQJ7lu/ro1YFALuB9KMjYgUDdJnYr69mBQLqvgsMb2oFARimT6c3cgUDk0OTy8d2BQICuD7z44YFAU23LYSXkgUDEceRz9emBQLBRfcvs+YFAI166LPD9gUD+LZxw4wGCQAbTekb3AYJArpGwhOcFgkC85o6vzQmCQLDNNo3QDYJAqOt2GMsRgkBChiY9yxWCQPKLPEzYGIJAvHe+Uc8ZgkB4cMvL4BmCQAztUy4pGoJAGhlmM2QagkDqbff/yR2CQFpXRSAsHoJAShjN/V4egkAgPhQo1iCCQOZTOMoxIoJAEkDDwFoigkD7OvhV1CKCQBsFgFnRKIJASLMQTp4qgkCw2v7zIS6CQMTNZMajLoJARGhJw6EwgkA7s7NMBkGCQEiANfb6QYJA8A7uUrhMgkBHlVS2P02CQEAadgjVToJAeqR/MttRgkCcfaqte1KCQHIjScneVYJAVlgwUXpWgkBqhSASD1qCQHyk/5WCWoJA/SSf+G5cgkBbLiEER12CQLTAfpi6YYJA4kbkbjRigkAmCsVqzGKCQMUOudjAZYJA/vjmNTlmgkDUA65y3maCQCATFxxqaIJA2CipMDdpgkDe+xY2p2mCQAT02mw9bYJAEzab0lRvgkDWm3IFbnKCQKo+DZeec4JA6D3fZt51gkCMMKGfD3aCQKjHvnZydoJAET3uruF5gkDQLHOrXnyCQBIRX9vIhYJAwO5uUUOJgkAS8cnYCIqCQH7T90pDkYJAPk54KKmTgkAsHjC/O5mCQCC3n4BUmYJAZTZcbA+hgkA+4V+YOqGCQDMdf5qYoYJAF7kUx/GlgkDwE3h2C6mCQNcRmKAzqYJAwOa+IvmpgkAycf6FfqqCQKgo9+qBroJAVy+/XhqwgkAsbXyTg7KCQIyyAaCps4JA0/mkqvy1gkBuuAxjB7aCQKx5pzOouYJAiE+NN+zFgkB2lOJc8cmCQJmUKZ6l0oJArs82kX/agkDa7uPscN2CQGoJuNmC3oJAtHkZB1zfgkBx2TrYq9+CQETolJ4Y4IJAdNoUhHPhgkDwZ2s6iOGCQPDsU/x95YJAuohhJ6HtgkD4SuMUO++CQL6gxj6u74JAal2czK/zgkBEQ413rvmCQC526lEz+oJAgSgr6r/9gkBK9GWWxAGDQNsJGze8BYNASD6iRtMIg0BaQwsyTAqDQAYcZlM6DoNArt7Vl3kRg0AOo2kpohWDQGV9YJNCGYNAUlcXwnkZg0AzSnqaQB6DQCjEDQhyIYNA3qBYgYkhg0D3bP/9cCmDQGjwhhBrMYNAPQSKViQyg0D4xWdcxzSDQBkG6K4HTYNAmvOT3rZNg0Al70j80E+DQBsyn0a3V4NA4oZU98Fpg0C0idlPxIGDQNYPjK9Kg4NAyJ5RUI2Og0DiyqoIP5mDQBJRMZNNp4NArGjYpD6pg0BZQBin96mDQLaTtEPnrYNAgS5pkeexg0AFqYY/FbKDQOP4zH/ptYNAFkFrcczcg0Cg/1GjAOyDQHJpkybW7YNAkNtSotrxg0D8g7MFhxWEQL5EFFtyF4RAEBAnu00qhECdT3oToDeEQJhlchpOQ4RAbcyxJGFKhECF401OEE2EQGKtoTW6TYRARlXGveVUhECcmDChvlaEQBogL6v4ZIRAILjg1P9ohEBAWb+8y2mEQJNS1JLebIRA+Cwbo/1whEAQbhNvC3SEQC+xBljKd4RAjVrRkvZ4hEAIOhQAd3qEQGerQvgKfYRATGa5JCV9hEDUzY2X0H+EQG75ha5qgoRAgzxa6IKChECSyxYY+4KEQGh9nPIKhYRAqFC84hmLhEA825+bgKCEQFu1b1UApYRAJN/d9R6lhEATx6fFcr2EQFW3uq4exYRAMBXPzcnPhEBouWUskNKEQC0vLoAh04RAEpZqLhLWhECS+SiVataEQKwgo0Fq2YRAjfI3hhTahECgYsh5MNyEQFSD0H0Z3oRAqoSxDGrhhEB81Xc4EeKEQPAomtPR54RAAcezpGLphEBM/1JMfeqEQEsXxJEo7YRAbKvTR9jvhEBfXjOqNvGEQOgaSTNi8YRAfuAo4yzzhECvjKFVH/SEQKEVkP979oRA0sexenX3hEBASaKI3feEQI5EjHYL+YRA0IL7p135hEDmFduFivqEQDim5hw9/IRAJCkN2TX9hEBCZL7J1f2EQBoEvI6n/oRABpAvOG//hEDRhAom5f+EQDxIs2hFFIVAzdiad+AVhUAWlqme+BaFQFp319F6F4VAlnFP4BQZhUAc33XLrxqFQCig6Hf7GoVAnbTZhkochUD+/2JQ5R2FQGIR1br7HoVAdcJKc34fhUDIS+ezKCOFQIk//C9kMYVAttS1NKBhhUAivmN/qWaFQNGc3h+haYVAEB+/XFFqhUBoUMevrGqFQMcQ38yXcYVAUCfSRLJyhUAcb1hIsnOFQEZ5LnS0doVA6m9sQpp5hUBGHoNVKJ2FQI5zDetAroVA4JVgbESyhUAUnS8rR7aFQF3vPvAgwoVArvcXn5LHhUAyQ85xBMqFQBwRdOolyoVAaO1EHXbKhUAY9zR4CM6FQFfU0KVn5IVA6TNIMP/lhUC+2wZWl+eFQHYumY2H/4VA/FGE2DsOhkBybQCxnBaGQDweivUvGYZATql1RsAahkAAKBrp0i+GQPadsNp6QoZAwASF37tIhkBAF5kiOViGQEqKVVI4ZIZA0AwD3y5thkBSY/CIJbmGQAfSiRm8yIZAAVgbAnjNhkCmMicmQuGGQB7Gp2wtE4dAHDa2hJAph0CSEJncjzGHQBpcbzCLOYdAqK/FkFxBh0CCrsgakUGHQOLxfhQeW4dAtjUIYhJhh0D9J/UsA6eHQBBwG6gFqYdAcEJDwcexh0BUdLpHxrmHQKwvCX3AwYdACA2TEMLJh0DKCLu0FNmHQMtwJHfGNohAsu6LGsU6iED+9km9pU6IQCbQvTH8UYhAGhBZ2qlSiEB8FI+DA1aIQPjmrFWsVohAgrmxM61aiECq6ze2/l2IQM7DCWsHu4hA + NrgMGZxjYkCAI9DqN6RuQN9iJOBzYnFA - + - WIAiRn3Zt0SGmDdECTesRPZhP0XOy6VE/d9qRCMPq0YBrYREmNmnRAUyiUSVBaVEBlogRbhhiESiKIhEFI5gRKzI+UQ1sytGvs65RDT+0ESAk2tH8M57RL1ToUQS0EZEyOx+RErKu0QWnqJEc0eBRPyOI0U+jZlFWHZeRFImJEUuKfpGUZ2JRMYEVkWuQiZGgOJfREB4akVQ3XdEyJoCRXMrdETRjVFGYwRCRPq6AEV5l2FEDXnERKkDaEVgmbVEAW6HRH9Fo0SiJHlE4U17RMv0i0Rr/5BE17igRNT4EkXl4adE5WgKRVP/ikSKKaVEQ0LLRWtdL0UE9fdEd8DGRGhClUX6sINEo2oJRcC3jEQjqm9E0SufRP4/aEQcna5ExFX6R0FHUkSMILxEvnIQRVGmR0QbT1NGkIT3RPY0mkUdU2lEffyGRo8V6UQccFhElKI2RxsUSUWzda1E7Ya4RHOxr0RWnUNGqkiJRackiUTmYkBGAxPZRYAa5USmqndEg8kBRa9hokS27FVERihfRasMXUVGFgJFSnGSRHQ6F0Y8ZF5ESZm1RdHNq0ShIGtETXM2RcU630TA1fBEBKSHRF5aeEQAhZVEoHCARXLvf0ivrH1GwKbfRHppu0TCOWhEmnI3RFMcs0SPHddE17ShRHApK0TrXctGG1erRIn8CEUZ/qFESC2PRKJDk0S6HlNEPVFSRFWZ1kQAZUBExBmYRLg+i0Rv70FHv811RWILwUTo+IBFiXFbRcjBd0SDOZdEhJyARFYd1ETfFFZEJweYRLXyBUWbrJNE2VVZRLmGrUTddcZEWl7zRHeVKUXJw11Efyy9RDCDbUWA2y5F4gkSRhnFxER1TJdEA2SXRGHsqUV21klHWlaRRJpvN0Rt1VJEOv47RQhMh0RMm21EBWLRRPrj+EUUDpxEmsxhRBFYTERfKolFISszRdL8qkRCeQFFwCmJRLRlZERwYodEvMEQRTTVnEQoADxFgNklRe4ziUTvJXREiOOmRO9kzUTKtA9Fq4FVRBjOXEU15VVE0SsGRXrnk0Qe5I5Ei25ZRDZ5rkQeBThHQiaNRL8koUTIE59EPtmeRGinMEVa4rZFMoGPRObdjUQXTERFBG6GRLJvjUUuh8tEzH9+ROMG8UQqhdxEsHoURivmekRdPMJECEAYRadflUQdG6pEZLJPRDfOfESJpYtE8KF/RK63dUQPqKdETLmzRNVWz0SMDU9EtZzRRoH5zEXsdYBEJrbkRG9eDkau6UlEchHnReMlm0SwWs1EWkmqRRUeZkQx2JREPJBGRD1ASEUkuQxF48F0REltnEQv1ZJEOsg1RAK0nUTiMKpE094+RjQnhkXHgUBEffJaRL64bUTZ8dZFqp9KRayA80TkyzFEX39BRL3CnkT2+VNEhCeZRHs+FEWHm2ZEhrhVRCODkETsE1dEKY6gReO/50Qs849EEF2+Rf5EVUStEqlEqRoDReMCaEVvv0ZEi+H9RWOjrEViB6JGiCFGRFXRwEQlObdE9ce2RM+EU0Q7h35FveGwRCBMP0SNEmhF7AnPRMsxT0Wwp1pFhuSNRE7WG0Z3T+lEs0iARPZ2xUQZTi9EFRFpRJBRmESAEldE3+i6RHT5l0RxacpEweiLRFkoD0UFiVhE6RmARRjPnEQ6BnJECbNURKYM0ESTH3REdjOgRbSvjERvHT9FJ8VRRRlSSkQWAKFElDuTRBKOmURqgXZEAumfRDeYj0Zzy+FEcH5KRNvdaUT60wBGJprlR8QorkTV3odGf8a+RFM5jkQrOENF1GXURqTQh0T0P29FrREbRk4oVkbAeoJEs/yYRPIFOkUPJ2hEWHEQRRynx0RO1klE+rP4RP9IPUT/fNRE04C9RGOa2UX+7qtEnQiRRGjVCEUtretE5fAPRWnPWES+rLZEb3OSRFcDo0SObuZEAs28RpcVYEY3L9BEPymCRooFrER5LwRF2kGxRAFvFUV/7aNEKo+4ROOFMEVx8oBGHhx7RHHTPETJ9d9EW09dRecuHEbBWZVEDkCZRdZj4USfEE5EZtUcRXNGKEX/Uw5FYqajRY87gEVrKnBEZv8/RbjWT0Sqge5Ezm9ZRTzrPUmsPplGQVOaRLbvBkWkt69Egy+gRCkK1kVCuEFILXRLRJxK9EWjIzNEZW5vRVUQS0WqQglFN3OORDcbm0TiH2xF+JaFRk4+Y0SCE45Eqbd0RIDziUTGajlEkZFFRKfYdkTsRg5FJm2BRJ/8DEb4fE9EMr0FRVxgUEUIooBFcQegRAJ7rUSCAmtFgCvPRBz7vUQzkihEVriGRMO6R0Q2fmJFFTHBRduSYEQJt2JFmgerRKdhcETKiWdEYb4TRRWXuUfaayhHO4LeRXnTlEcfJBNFJwFURdchlESIyVNFk1UvR4Ibl0QGU2JEC/kSRoViz0QfirNEkq9LRPc26EVu4chEvctKRKuKdkQmfYJFuWCERR+PPEQX0b5EmIq3RBoOMUQQmGtFrDNHRICZVUSG2cVELDG9RNQXVUTTnaVFM+eaRB3OfUR8FkJEfZ+MRMyTpkT6ySxF6LJnRJIsmEWjsZVHmMq8Rld1s0cbYohGfrWSRSE6EkXmQ9lFHBxURAJCL0SPr7xGnYqgRBXcOUQ6NTJGRJtvRANPIkUvQWdF8TnKRJx5ZUVJvTFEucy1RKk9V0TqGm1E4lHXRC4GkUSEpzpEIaCVREl0YUWKC/tEgOmfRVVB3kVRN99F8tIFRXpZjERPNXxEaimIRZ9R+kQFBlhFWu5RRUZksEQe6TFEuqwYRYdS00RiZWdEfr8nRUNaZ0TS/yZEK6BKRfEazUQCXzlE+yPNRON5I0ZQlDdE6P+ORGnyEkXFPjpEaXZuRNOPYkTCyB9F6UHCRNMjtUQud2xEMgXoRMVBKEU1ap9EYrJuRAlR6UT9aTlE0tGDRJI9nkWMjQFFiaZpRGQLaUXdcZlFpSGMRhxL5UT5xKBEQSQxRnoRgkRtkb1EjNCYRcR1mkRfwVFFsVLDRVpOCEW5l1RED+D0RIlUlEUjNvlFnpsoRcdJmETa5m1EoSnTRHFg10QksmtGHMEkRV7f40XGYY9EpXSgROOHPURjv21EhmS3RBvbnETC0j5FcztgRDutoUSGZdpEV7G0RMq9XUTyI7NHajR6RejQE0ViS6NGD5ddRYJZhURGBwZFuCB8RoHxPkXvsr9EnNqbRDY7mERd/3pEJC4MRZ85pUT2GUlEkJiZROBxREQPDnJE0LYwRRNmi0QSs6FEbiCZRLZNFUcvo+lEvUlJRCsS2UWKEJBEc5gxRn9PT0RkahBFSfV5RFz+vkSGmqpE9FODRe4hZET5aHNEgFDORGnN2UTXjqpEI8lcRDKhsETRLmxEC5VMRLyBSkRzT8RH6ae+RFR5jEQ1eEpENZY9R1Hw/0UiYvJFfZFsRevMyUS5T31F3SGoRGBcTkSYIZtED3yDRApyZkQWbUtESMp6RHeiXkSf4ntEDrlcROXsP0TwpYdE3k6ORH0BxEQwbJtEQFkuSAIwUUb4kHREsuU6RPvMekQSyJNF+V0LR9M2mEQibcVGUYyLRcR1BUXDidlFpwFERargeESLvlJEhOpYRYFhfURgsTdEzRtvRHojxUVdkEtFUA2BRI47YEQfi2BEQz1BROz2gkW5LQBFykBoROrLlUTDt55EIkpARC0B/UXS6FFEODdnRLhNSkTiPEVFKZsZRdfoWETvoNNEWStzRLo2qkTtflpEg8yPRFKAlESdIW5EP/5aRLlqfkS1qnlELLrDRNplC0Ve4XVHcVqLRGjCVEc9t0xEXWqSRpS+c0ULpNZENxwHRiMyq0ROhrBE1yfVRPeIckYQ2RVFjcBoRMMjoEXFJKJFyC5+RPtbfETXy5ZFsOdVRLAbQ0Sxzv9EHEmeRPTaSkW+bEhEE/T5RBx47UTBGF1E8GACRa71SESpSTNFA3umRIP/VkSg2x5FFSYyRMUm90Qc9LxE4rwFRklUJ0VlIYREWB9TRBbVM0Q4l6BEMhg5RDT3e0Tgg3hEwhAzRDbmSkRRA1pFMuqNRJN4MkS/i6ZEvTRDRILXXESigpdEavmYRdGoNkWXXKNEDXyPRMlcV0RtRNREXc6URIDOTUiF4WtE7EmORdbKlkSlrD9EpRWmR6X0X0TNhDtEtfZORFWYfEQ4hkxHS5qBRBZ+70b/pSRGZINMRFJwl0UNpF1FqOLqRfZvtESD1+dEbPHORHXBU0aiy4tE+/x5RRVcikWjL1BElh6FREZ1qER3pShEhk4uRBipzUaxQ5VESWk7RG6WskTbqYhFYyDwRN81eERSbo9E07GCRBC8wEUc3HVEp0CwRfVUG0Xm+oxEAZ2CRbsYj0Twr0tFuaJTRFQxPEQ6nGdEPe02RUfYs0TcGG1Er766RF5glUYu7V9G3W3fRTRe1kRQ/zVFTvRCREgTw0Qv5ZBEFZrPROjJrEVNOYBEgB7xRPXtiEQs2K9ERxA5RZ4nf0WjVhlFv/24RPezmESppF5EFHgERRhQ5UQsIQ9F7tnKRPFLVERIY+ZEJAn3RaOickTjGAFF2oGPRapaakUUeBlFvDazRB3wd0S7ASdGkJaDRCQjvUUUMJZEkCycRMkgp0QShk9EJrGJRMGKg0RHNJBG3P2/RaonlERp791E/faHRHUtgUgoPAdIH5b1RhB8OUaGoCZGsS2+RJgXtERxUgNHI3brRGzGh0TjeJhGCmU3RHAgQkXsHnRFFps5RO9o5kRRqS5FWWvaRBSycUQyyQVFyseaREgbcETcgXhEOJGLRFGqpETBnXlEKC8dRUPRg0QbYnxERA2qRDD7nEQALWlEG86NREd0lUQVqf1EUs58RfX/Z0SWFYNEd6SzRJ4nwUQ53bhEIRRKRCvRVUQcw2xE5WZeRB+RrkUwAMJEvPtURfBhWERuG7NEi6+ARJowaUSEdzxEoJrDRz2JbUSLiQtHK+piRKmeo0YSuhNF0GSDRa9T+kXyloNEXfoQRTU22ERUiwFF1CYpROzckEX0lydFY/o6RDed30SXXT1E7H8eRDjuN0RqIbhEiAQfRY5WA0XeDH9EFW8GRbcwk0Vvkl5EfdGLRE5JWERaAFNEocAmRWgWfERXD/NExvM+RSHsFEXDRN1EsaYzRIu/gkRrPzhEO000RUqWy0QLFIBESt6LRJhsCUU4QYlEF9i4RwPhZERKq1tEjJsNR44NgERMup1GTdwpRddCvEVNcgZFS+eCRB4Yg0R4ln1E4+aYRAehhkQJkjhEujeOREss6UTngFNEYzQpRIttgUVl+jtE3BEsROn+pkWKpJ1FuPkRRUsIRER4al9EjhZoRL+kPUQL5pJF1QRWRdYyPETzJ1hE6T+ERI9TY0TfSE9EhqcrRaOSUkXBrWJEILuxRCWkRUREHmhEOzrTRUz2k0RxC0REN+ICRZ4TVURCPGxHiCTlRGOTeEdd2w9Fmg+7RgQDFEaYZ/FE1yHPRNvJdUQFLF1EDUyORA+CYkRWwihE6d7wRC0xlER8WnREYfZJROwlakSYyNRE/7AfRwqrWkRMT+pGY5GzRtErOUTGNwtGdaFVRmVcF0Ww+LtFrwwbRgZu0EXfJO9Eeh2DRM/rXkUzozpF53MwRAfbQERFua5Eo+u7REVd0kXmjetExb7RRLqMiEWQEKREo5BSRS852ETBP0JERsTvRN0ioUTPcBVHC4GYR7tYfEVsU5dHx74NR5uBokaOMBRFWSULRnvkoEU4ElVEF1GbRAecWUR5GWVEaO3jRu5s1USveD1GVTKoRKC4q0RgxMZFmiLiRPB+WkRoTbVEgQ96RUAlXEQFIB1GARD+RbuZ/kSmxAZF/MmqRKWsxUTovqVEN0RBRE6iuESuAExEy8pyREh2jkTTxjREK+pqRBtikUQqE4BEyG1qRJgrbUQ5ZkZEtweOREaSTERCAdpEn1xwREAkvkTk1WhE+jxARLJqikQ2VoZEvUMVRrdgrkWFf31FQrDURGFxiERbQ2JEgSBYRGEeAEVQGbNEhQTsRZeugkWtpwhF9iC/RPjHQkTr3GFEGWhrRE6ANEZs3ZJFFAPxRUGKDUWQrmhFSrudRPaae0QsmURE + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 4KlccXfAckC6hkBlBsFyQPBmAdduwXJAQY9vy1DCckBPzXJ85MJyQCvOIz06w3JArq3LuMXEckBcZ/O5fNFyQCrnJP710XJA+h4UQ0PSckAiSHnE0NJyQEq4zC3N03JAvilwTmHUckDvmoy0zt9yQPpkbYK64HJAYB0diU3hckAm9FS4ceFyQPi+v8z+4XJAPqHplVHickCjS19qj+JyQA4K0hYl43JAmMENu03kckCmIZ9yxvByQNRIJe/K8XJAMCUhYpzyckByi+C2d/NyQCaOrGG383JAZFaEGqD0ckA8tCf3XAFzQLnC3lqOAXNA1OtkcNcBc0C03uOQOwJzQPwjcqDPAnNA1tqMhPoDc0COVJptJQVzQOlxlooJEnNAB1ZVdbwSc0CPYO14BhRzQH0HYu1LFHNAJwevNnkfc0CyYkkFoiBzQA4xDDQ4IXNAiK0YEXoic0D9ZVBPESNzQGvcOTLPJHNA/tLZwEkxc0D6734o+jJzQMhRpdgOM3NA9l/gzPgzc0AkydaJ2zRzQND66gy6P3NArlA0NHlBc0AvRLpnvEJzQAbVG8FQQ3NA+DvxZnpEc0DQjt5dm1FzQNo1wLASUnNAjs4P00JTc0A0kggno1NzQNxqipt1VHNA3JAXmYdUc0DrnPae+F9zQINtqCccYnNA+hPFIDpjc0CgJX64jmpzQOZK1iFKcXNAHG+5rWZxc0BxfkEIlHJzQDKYuSKEc3NA8Ciirk11c0CE8rlYeYBzQGNbARQMgXNAnmNRBF2Cc0B9YwpTqIJzQPWqbnCRg3NA6EoZGA6Ec0C0ryAyhJBzQNqjav6VkHNAykYqVE2Sc0CAu9XrIZNzQJBryLLMk3NAHKtoDGKUc0CvCwfl9pRzQJ+mIXu4oHNAXlge6+Sgc0BG7Np1T6FzQEOd0deqoXNAurUYvVqic0A0RcGUBqVzQMTI0IvYsHNAwihiCzSxc0D0HgjCTbFzQKb3mC1esXNA7drcYHyxc0DLFb3ItrNzQMKNv6wMtHNAbHyCmqG0c0CovlM10b9zQFjaN2f4wHNAFjz390vBc0CsyuiqJMJzQE4CYMk8wnNA4gVyidDCc0CL5ofUJcNzQLxZBLf8w3NASunCvxbRc0BsCD0YWtFzQHAqmg570XNAy0XYe6fRc0CEQC4C2NFzQGzwSRPg0nNA9o1QVCTTc0DAZ6Or4tRzQMQXmzs54XNAm5FPzWLhc0A+CxohiuFzQAMfbhfL4XNAyDeelnnic0D8duVQDuNzQOI0glal43NARjTAOSztc0Ac6RE9SPFzQIdspRFw8XNAieCgCI3xc0CWNW1w7fFzQP0ynb8h8nNA9VrthGfyc0CasoNUNvRzQEu0PL79AHRAFOn523gBdECWsMjDpAF0QDpy7XG5AnRAQbzPzogRdEAgLhW3PBN0QHSAcTlME3RA9s1zvlAgdEB+jfjsuCF0QICj5dhRMHRAjD0/YJkxdEAozf1t5jJ0QNVmncrIQXRAytZ6mjxDdECtx770d0N0QI65lSJoT3RAZzcLEXFRdEC0iLGMZVN0QN4+t7yKVXRAv4aljiBddEDCJac4uGB0QF+K16sIYnRAjwpmcQ9kdEBvvOVMInB0QFyYe5YXcXRA6LJHK0FxdEAbw5UyFHJ0QLh5IPbycnRABad4CjpzdEDIlAsUenN0QAIvyQxCgHRAeEq85/iAdEBqLeCtDYF0QHAy1dZOgXRAAE1XbIyBdEBaZR8dR4J0QP4r9pYlg3RAGZxUeBaQdEDMCckG7590QP7AbKqioHRAxIWE+c+gdECAWiSAOaF0QBID5LW8onRAquSzrA6jdECI3O2i/K90QKL5wpLDsHRAoMSxNnCydEDYyQyb/LJ0QJavthsltXRAEuQmGMi3dEDmXISD5MB0QPmqeEp4wXRAYrlFW+zBdEAg17SBDsJ0QLSH9/YkwnRAdd1xrk3DdECA70uGecR0QGafFle4xHRA9DWQDfvOdECKEr75zNF0QNE9Q2st0nRALspTLDvTdEAIXR6y4NN0QIB3fGzM1HRAc7ERrLfhdEDqM4uJZeJ0QIw6KChI43RAoDMoMY7jdECp3ZelTuV0QLyFn5GN83RAgLU/s6IAdUD/w5KDwAB1QFAwsONiAXVANjtsvVwCdUAAjWnjpAJ1QCFXle47A3VA/KJSMJsDdUDC5snYmBB1QDb8wa9qEnVAq5GHDyMUdUAutdSorSB1QH9TgV6dInVAhLx/oKsydUBsapkCPjN1QJGOpP3LNXVArsEniadAdUCmivors0F1QIh47ld1QnVA9uvlu95CdUCaIAsc5k91QI6v/6kLUHVAspE3m71SdUAjJgqxdVV1QJeRUVYLYHVA9vZREqJgdUC2//rvNmF1QMbG4QT3YXVAPZs202JidUA6LzJljWJ1QHjtBXdnY3VArIWhIldydUABYXEtgnJ1QPw+CUEldHVAy/sgao10dUAyFq7seIF1QKagvs+tgXVAdjvAoJGCdUCDXeUSp4N1QF4k6TqahHVAcojVL5aRdUBIs4HDypF1QApevO6EknVA+FVwap6SdUDuNzWv4qB1QNgDh7kjoXVAWme5crehdUAMP2nk5aF1QBxHQv9Io3VA0qDxk6OodUCo4zXb/611QHt8tXzKsnVACU5jsM7AdUAiD5TCY8F1QGD2SZb4wXVAa1BbcDnDdUCEji3/jtJ1QBBbEDfN03VAphSinBDhdUDy/A/lWuF1QOs87Pyk4XVAcgSSagnidUAo3nP+auJ1QMq75vTm4nVA1EtxekgCdkAQbAJQzwN2QJiXfK5TEnZAaKh8WVQTdkAWa3ifTxR2QHozi7OvIHZASXxLFYkidkDHC8WdYiN2QE4ICWiQJHZAti33NUsrdkC4k5MWvjB2QFjETkwfMXZAhJP6kyMzdkC+jP94UjN2QHxBoHu7M3ZA4pLJAps0dkA+eud9TEB2QJRT2ZpfQHZAzl1hPB5BdkBstPR2yUJ2QFu8y+15RHZA+E0YUvxOdkBnpvOxylB2QO00ozgSUXZAQKncSPlRdkDYwwmHJVJ2QL80gfXNVHZAmOEdayVhdkB3u+BbGGJ2QOVGmeHaZHZAqBBnfa1ydkBqIhu7YoF2QH77kaOOgnZA3h2OKhCDdkB4pcoTkoN2QI7hNgq5kXZAOiAwBJuSdkA+xYI3eZN2QKSqmX+6k3ZAOTKPRw6hdkCUlu6CfKJ2QP/nprshsnZAeD6P98CydkCJZLu4ebN2QPbkcRYNtHZAPlqMR3fAdkAmJuGhwMB2QCqKNFxPwXZAEb2MCh3EdkBWd09Izs52QBbmtqox03ZAjv1UPNPjdkBU1P95KvN2QNnkJP6R83ZApwRjfgESd0CAN9JffRh3QMee2kMOIndAgZ6ea3Yid0DO5p8f6id3QOz8SU81M3dAOsFcVHozd0BMSs9JpjN3QMuuS3sNNXdAZmAgrM5Ad0BQqIodnUF3QIw/0uKTQ3dAEo1Z5bdDd0B8tDQsJ0R3QBWfORkbRXdAMP8s1UpRd0CYx/ZSklF3QMWxHHh3U3dAgFNN3ChVd0CYLSbWfF93QHohV5kMYXdAxNEs3pFhd0AXwQ79oGF3QJZhSC83YndAoBsCmYRjd0CKD+qBqWN3QPuOJE47ZXdAGFO9qSdvd0CsDp3jjXF3QCwneUefcndAL1Fcqklzd0As8mfO+Hd3QHj83fFHfXdAF7rKo06Bd0AWTUqWfoF3QCZhPB54gndAm/42rG2Rd0Bcnp9tBZJ3QP5xeh+ikndAssDnrkuUd0Bw9EOJIrJ3QFeqhvoAtHdAk2BPl0/yd0BY9P7YRv13QPbxDRigAnhAYt1JCekHeEBY14VF/Qd4QIaYHQ1FDXhACubVxQkTeEA6fFPY5BN4QEJ3KrJLFXhAkUMKs2wieED+779m0CN4QM5PPRjzI3hAzk5LzaYkeEBGHZPhPih4QOySdaNfK3hAkdaZ1mYveEDkPvDhGDB4QKImD5FKM3hAdh9F8AxCeECEGq4KV0N4QBqSLmEQRHhAWLnIuXpFeED6ZkcUh1B4QI6MYH/LUXhA0Nnw5pRSeEDRGPfhGlN4QIx7d0nyU3hA2or1FolVeEBcf8GUl2B4QPWXuX/6YHhA7Ddo2pBheEChM8nUt2F4QPIaDU65YnhAYG3R5ORieECO2oP4bGN4QB5iDfrpb3hA6ie5a9hyeEAMYe1PSXR4QJgYqPyLdHhAzeRZmfJ0eEDmpuQB93t4QOjOaRI6gXhATMefG6WBeEDarYUJZIJ4QJRG05DXg3hAGDJcF/+DeEBmLCBLmoR4QAB2rANPiHhA2Aqw5wSMeED6/XqgqY14QMy2iHaXkXhAroxwnI+TeEB6FN+hp5R4QLrFwl+Vl3hAOVz0DDuteECHyY9Fj7J4QPLu09rit3hA4LXPz8zAeEB//Ptk9cF4QMpQlT0Yw3hASFqh9xzLeEBQx0joBNJ4QN5oru8R03hA0xWiX7fUeEBgFoEQ1Nx4QPS84/YP4XhAEupxCzDieEC8zurso+J4QFPEc0/N4nhArIhunPzneEAWMVIDLut4QNlQ1fAC9HhA1iiU9ov1eEB9LT5sUAF5QMRLIcrLAnlAlgqZSIEDeUAdKJW7nAV5QH3mqIPqEnlAQuui/rgieUD6Afe+4yJ5QJSbswO7I3lAjWDqp1AkeUD+iajssih5QHqCt/qyLHlAfL+RQA4ueUBMkbW5ATJ5QJDZIx3ZMnlAQKI+C7YzeUAsHWbnxzN5QDqKuK9dNHlAMGTs84o/eUBshF6ljkJ5QGKjsv7lQnlAUgrQzP5CeUCGYagA/EN5QCclU7fXUnlA+L0TMcxUeUBt6hL72mR5QNgvoJfGcnlAlNQm4yKZeUBIcgDWNqJ5QHVDPJvAsnlA8up2NrDDeUAyWfGtDMl5QJr+08Cy0nlAru7c2ELUeUCqaSRsztV5QH0sR44j4nlA2DSB51HkeUCoFQwdQ/J5QAkiUD8O9HlAeiE5tmMCekA2x4Gl/wJ6QO6QZHH9A3pA4JuFNfkFekAYRo9h8iN6QH6J1Y9pMHpAMs6pFyszekCqW+11DDV6QK7Zp4ouN3pAbGGBrzE7ekAu9KxmNj96QB0JIrZ4QHpAHJW6dDNDekCsl1k8GkV6QMuy/PvMS3pAd0z6lwJMekBtbKhKVlB6QPh1WYmFU3pAis/WbShVekBBC7WDIlx6QBm4KOJlYHpADeMAv7BgekBaQ51XK2R6QJogDL85ZXpAc0EOZTJsekDcQF05jnJ6QIIbQmQIc3pAom6FNSl3ekBf8ECwIX96QNLrBB+ggHpARenEltaTekDU2KBUHqN6QJrrXS4pq3pARHkMew6zekCyg9CxDLZ6QI4jpFcSt3pAquiJiRS7ekBW1OLwLcN6QJy6Qz2/w3pAJAYTQhnGekCmcpc1x8t6QPrsRvNAznpA+ivivmXhekBwycVjPOR6QMJClZc17npA97NLXhPxekASHEZTYPF6QJ4nSu9OAntA6n3+WngDe0DxiZ80fAR7QMrpCTgpDntAfVhwUQQTe0Du8tBXzRN7QJRJGnxMFXtAnkWJetcje0AyNRx8WiV7QFJ6/8nFM3tAYC2gg9ZAe0DQ6MDTiEh7QD5MoVoOdHtAwONRYWp5e0DMlgaBwn57QFiUQ3G6i3tAenuMeNeSe0AYyk7FwpN7QAr60GwilXtAOiQbd6+je0AhVJ63esR7QBV/U4B9xntAZEP01BfUe0COqD9HjeJ7QJDvckX/43tAQKyzPCfke0Bo0zh4lvF7QKy9xb2M9XtAIIBjEM77e0BOpD3iav57QNz+Zk+TAXxAhI+oSNoBfECcUuED+QF8QCyaG/XPA3xABhF3DmYEfEDeCToEmgV8QKjWp6WHEXxAiBrVVNERfEBy1K5w/SN8QPOd5Z5YKXxAyO57Ys1BfEB0nl+z2FF8QDxoXI5IU3xAEtK8sE9bfEA4vHxsBXN8QIHRv8lugnxAdoQyFkmDfEAR3rlKw418QEogzxVmknxAfjgP3x6TfEBqcc6zZph8QNarQpQmm3xA8KiJIrejfEAqkxzCw7J8QNejvWcNs3xAVjFegy+zfEAq1fwee7R8QLTNpO1IwnxAvA+Q+ALEfED2TRGebMR8QMjJ+T2BxHxAlHHwNfjSfECI+sOPI9N8QBT4dq7L1XxABXNvh/nbfEDma8M8WOJ8QBCpOuYR43xAGOQA7g/kfEB+aatZGPJ8QGmj0KVU8nxAWyAzXAICfUDQ8AU4SwJ9QEiC9ExGEn1Ar/ayi/oTfUCMePBBoTF9QFwzN97LM31A4hO5nUc4fUD0sxxsoj19QPITUuYOVX1ANMi6LolzfUDmBHEPMHt9QIObB9swg31AlpXAoiiLfUDSKlJvmo19QNJBaQ4mlH1AeBHM/3iifUDUF94BpKJ9QGYoMjQzpH1AJ2DlnxmsfUCX4PZC58R9QC0Fm6311H1AxnMp/tTifUC4/sEmgvN9QPQpuwOR9X1AGLMdvpH6fUDqZ7PTNAB+QBw+PCtOAn5ADoIh51kDfkC/y0XVvCp+QN0fy34LLH5AY/UCRkM/fkAiSzBPVFN+QEd6a7HVU35AJDQERVtbfkAs3/tuR2N+QNppq7BlY35AStKvkDhkfkC2fubBZGR+QMD4l19Pa35A9CJBZJNxfkDfyVfXWHN+QIZzAZo7dH5AuIbfe110fkDuGhm2vXt+QMIO5ylaf35A4o14JGeDfkA0A0IOCoZ+QCTQKJyii35AlMtYSeiQfkCPH7ZbxZh+QGQKe04Omn5ABpWjwSOefkDQePldaZ9+QGqzJP2RpH5ApYufHGOsfkBGZjucs6x+QJZMsKtos35AM4yO4my0fkCMv3Lon7R+QOxtV69rvH5AS2RN2CO+fkBXUlbbZcN+QGGoR3CpxH5AfLJPINHEfkDTI2JhCsZ+QEea989sy35AA1i/n1rTfkD5g0TYO9V+QDtGIrdk235AgaIYjfvxfkCF39752vN+QDYkE/yRA39A/kz8Xs8bf0CwTeVc1CN/QMa26wWpOX9AhkhQ4p9Ef0AuJbZgsFN/QAcS+DK3W39AA1NyWhlef0D0qq1QuHF/QJxqrXHldH9ATrIqHLCBf0AB8n5po4N/QDIJDLDVhH9AAY2HGmKRf0B2Q3Z4p5F/QPKBuuWTk39A4F2ZAqOgf0DGuiYxXaF/QLZwEnx8pH9ADEfTJxOlf0AwL8OSuax/QA5pmkNWsX9Aw1CX0mPLf0BgyiL3YtN/QMAkgmqq3H9AyetpN4zjf0BkbhSGUul/QOmfz+as7n9A0f+0qzfvf0DwOgPJuA2AQG6HjtB6DoBA1hehrGgXgEBKQ5bV7imAQIHIJ566LIBAO8z6AWcvgECnunBl5C+AQAx7s6sTMoBA6MzNEx03gECsStkxyTmAQP2074d2PIBAoON96SM/gECn9EeL0EGAQLSXSk+pQoBA1jpo6vZIgEB7Cv/usEqAQOyL59/lUIBAcEs0txNRgEBPIdB0pFWAQMqF5AMmWIBAvGur4OlYgEB8dWllDlmAQDLLgtMhWYBAUhjxktxZgEDenPu0CVqAQIQ51qgNXoBAukkXj+BggEAuZMtgC2GAQGLNTgfDYYBA7OcuMXBkgEDii8olomeAQFRIt2VOaoBAhA/yXPtsgEB4Vf08KG+AQAdt8EOnb4BAm5FLbrtygEBmam2dKH+AQGnOP/rghYBADCnhKk2LgEAUhuq8Ho+AQO87Rjkdl4BAFCSAypaagEDQ0ZGHG5+AQDypnGyrn4BAPiXOGF+igEAKPXFfwaSAQOZOssqEpYBAXIFjh/KmgEA+tq4Lh6mAQGDE7ypmqoBAGu9yTIisgEA2xfIYFK+AQNSUqZ+4r4BAnsXrdImygEBHDvHZTrOAQNi5wPzBtIBA9F3Tvhm2gEDjpP+OGbeAQEZKxmGcuoBAoA2h0T+7gEDyL+/Ye72AQLrXYcg0voBA9FXkDfa+gEDo4syuUsGAQMyQQaCqwYBAeecoHZ/CgEBO9p9vU8mAQAYWEfAHz4BA5ilwanPQgEAI+3OmTNGAQLfwGWBg0YBAchbBVwbUgECkuMm3fdWAQFS4t9tm2IBAIHavcUrZgECWBzbFCNyAQARO4jRv4IBA9rm+aUThgECUt1PWVuGAQIzzwj3u5oBA/uGWwV3ogEAruAMB9eiAQJNWKxpL74BAkqhhFQbygEDg+d36PfOAQMQQyQBo+oBAWJNKAsL8gEC2uwOkP/+AQELK2SU/B4FApOe/+T0PgUC9oT1VNRKBQDoeI2nPGYFAv5zWv/sZgUDIwHsZjRqBQIT2feI0H4FAZiM6y1MigUBMSvAqNSeBQLTK9ZezJ4FALBJFcy4vgUCYpV6eWC+BQFgY3HW5L4FAnrIRfr0xgUDsjYipdzKBQBbisse+MoFAbPPNQfQ2gUC2hq/sKD+BQDx4RDjNQYFAkQadF9FFgUDQZqcIxkmBQN+RkZUGSoFAwC0emQpOgUD8IrrHtk+BQB6PHg6hUoFAKO2RFJdXgUBWC7XusmaBQIp3oA3saYFAuxmsjgxrgUAwFkIG32yBQKNJsYfCdIFATzBFI293gUC2IewR4nmBQOjzdVYceoFAgPCZFox7gUCgR7KGKXyBQENl86vIfIFANGMbPuF8gUAirZ4FcX+BQOjRzSUogYFAhEJozZ6CgUDeH6nZKoWBQBLT8WTziYFAqFE4wWiKgUARLgyJJIyBQEKg05NVj4FAqFRjqu2RgUCOCiPfOZKBQAWBN8ZHk4FA4+QWz5GTgUB+SqF46JSBQFkPFKvxlYFAwmJNiD6WgUBbJ+EbVpeBQFioXgWVl4FArIF9v+uYgUC43lIwnZyBQARKZBRcn4FATjN2VOahgUA5BLc296GBQJK2eEIZooFA1sIsFN6igUDSL1WqJamBQGeppHD1qYFAeJoWBmOugUCCOhR0Sq+BQAgtbRndtIFAYJ5ql0u3gUAQkrJfEb6BQFi9CKvEv4FAnKQaaCbGgUCks+t34MeBQBfbtS4EyoFAPKM3hLHMgUA4xhNpqdKBQMaJBKbj0oFAzyQqCIDTgUD+kTde6dWBQDudw7DK2IFA9jGFbezZgUDmAoqgd9uBQHoop5TP3IFALC6TbJvdgUBDV8k+8t2BQPMH0wkk3oFAdCrsYufhgUC6JIfWKe2BQBJniPzs+YFAtO+mDvD9gUCaeEtR5AGCQFwBWpD5AYJAjDFM6TQFgkDVenF5AgmCQIhdNffNCYJAIClsvNANgkAuxmUk1BGCQDaxFaLMFYJAjgWagdgYgkBfxpcf0RmCQATu1zMpGoJA/GGcWWQagkCKtCvKgBqCQAhnSZHVHYJA1WCHBS0egkCOqXbWUR6CQHy683/NHoJANPhaxNkggkAgME2+MCKCQLJaf1nWIoJAtFumIjUlgkCgDlcz4SaCQMD4M6/RKIJArlFT950qgkBv53urojCCQADd6lC+NoJA0CqWRXU4gkDTom1Ulj+CQFNfcc+sP4JACjP9TWhAgkCq3n7M5kKCQJWJ/Q1BRYJAchXhcqxLgkC43BQo0U6CQDWJdweBUIJA8Bo2YNxRgkCS0ciFeFKCQCYuW7TfVYJANJkCXnxWgkDhqBHrd1iCQB65xFVHWYJAc3TD6ANagkAum/FFcFqCQMMITZcRXYJAznIXeD5dgkDy0TiHFl6CQEJBeia8YYJARCyohjRigkAMRCP4NmaCQAa89UjRZoJARinlaWtogkCChoQ/C2qCQNDtLWjUaoJAhfFr125ygkCRfpRJQXWCQISzS8HgdYJAbK61QnN2gkCzNpIf33aCQODcqCPjeYJA/hyQ+AF6gkD4YEK8A36CQCbOBPTafoJAWMXkI7F/gkBSjMXueICCQHYoey7LgYJAVNT1nXSEgkCugJpxQ4mCQOIADUsTioJAMNZeN26MgkDrq9H7QpGCQBbtYV6ykYJAPhZhqTOTgkCeVkYYPJmCQIywQ/1TmYJAEgZs3g6hgkDdTdsYOqGCQJIwmfTypYJATrC+2jSpgkCMkTdH9amCQGZbGHN+qoJAPXDhmoGugkA3ZOhUCbGCQM0IxXA1sYJA0q8EBTy1gkB2EtABaLmCQMCy0w2quYJAPSFKg+3FgkCZCyi8lsiCQBopxtdeyoJA+FZ/qvLNgkBcpYDVANKCQLi7BXky2YJAfDJc/H7agkDOYysRqduCQNZqQvRx3YJAaWwj13bhgkBkfhcdp+OCQLQVn/4G7IJAjMmmFZztgkD6uA7zPe+CQGZWeoLX8IJA7jiueFzygkC4LWhDdv2CQI4eA1nB/YJAL0Dv9OYFg0CyiPt0ZAeDQLK8gSFNCoNACvoL470Kg0AycSpyOg6DQBfQfdR5EYNA5JgDrXkZg0DqUoB0ciGDQFWVgf//IoNA9AwWp3Ipg0DDGQaqYDCDQGqjn4VpMYNADgjgokAyg0DIrB95mzKDQNiMhdYgOYNAfjEIGKpHg0A0AOLNv0+DQNYGVBYnUoNAAJLUTcJgg0BIDdt2wWmDQLjKhTcxcoNA3gLSptd1g0BT0+r25IGDQNnBTklJg4NApikHSMmFg0DFQTk8qZWDQKc+sT8/mYNAEiYw6n6ag0Cy3yJURaGDQGDVTXf4qYNAmmYp7eetg0Bk3jTZ6rGDQKxjMKbltYNA03eEGZHEg0BSh4vFUd6DQMOUQZ7W7YNAsnTm1drxg0AztEMSm/KDQLzBM5qR+INA28V7R3YIhEBgR3H3GDyEQIjyq0QGPYRA5BeXcmJKhECcoVwoD02EQDBqRa27T4RAQM2sPLNWhEDY5g5K2l2EQCGRTGc7ZIRAmSVOLv9ohED5eXdxAHGEQLTBB8tYcYRA0kTtnQR0hEDCxeZeyneEQAZObRz4eIRA4ALT73Z6hEBQLFGrJH2EQIDZzju8f4RAuurIXNJ/hEAptgHIfIKEQFolYpIBhIRAgLHhKIOYhEBC//SbT5mEQCAfELdwooRAQnvt1Mm6hEBYhM5sIdOEQMtpRbsR1oRAlrCDY2rZhEAk2JxAFdqEQP+XjFpJ3IRAHtzbp9LdhEBc84FTGt6EQC7yYI1q4YRA0va0jQ/ihEBk/HV6Q+OEQDb5ci4V5oRA2ibXs9HnhEBmS+uPY+mEQFiIlA5+6oRArd36ayvthEDyoeIZNvGEQJOmv0Nh8YRA/YCg1X3yhECWCjDxcfeEQN5H9kPe94RAd0DK8Ar5hEC0lbLcO/mEQFQuo2aK+oRAbvmPMD38hEDN2FtsNf2EQFhgCtLj/4RAEqy6eAwBhUAcFE4TMwGFQLbccn6OAoVAW+0wongShUBGkK7uRRSFQBoDD7PgFYVAwrasDvgWhUDmg8/5eheFQHJLMgMVGYVAJtGnfYUahUBuYINQrxqFQM8rE376GoVA/kV2akschUBy9atA5B2FQCypKBUAH4VAZmpx0X8fhUDkImeA2S2FQNpiZYsbRoVA508Pg6BhhUAEa1KCUGaFQERqGDlWaYVA8g3JMaBphUDGgipKrWqFQKZ2oysnbIVAsks3+JhxhUCizZ0JsnKFQHljS6G1c4VAlNl4Arh2hUAAD4domXmFQBHwcFZFmIVA0Phj8H+ahUAZrnMJMJ2FQEmi7U/FqoVATrxMXkGuhUBwq/SvRLKFQP9KCflGtoVAQCXOd0e6hUDgl5+c0ryFQOBYUFkhwoVAamXeijHJhUDI6Tl4BMqFQP4JQZB4yoVAchu4pGPphUDM/h3hnxKGQFbTz3RZFIZAhJw706IWhkDPETeRqhqGQJY4DL6IKoZAG1WYWJs6hkCp1ZI54ImGQFcIMssmuYZAxdZShCfBhkDmdp9l28iGQIT3WDzJyoZAd0+G5iwTh0BIs8X9FheHQC6Ozv8kG4dAch0kn5Aph0DMhbezkDGHQGCz34uNOYdAmARgnJc5h0D0tVbOW0GHQO57ew2KQYdAm31nBthZh0AMJPciDKuHQDpvZcHHsYdAnKvniWa4h0ABB3aQyLmHQPx1A3O/wYdAwAZpgqk8iECo03woED+IQAK1g1ITQ4hAXShT16VOiEA91vxK/FGIQAqYfKuoUohAeQ6FTgFWiECTjH5ArlaIQGJ+2+/8WYhAbBBg6VloiEDI1vmGhX6IQCip+iF83YhA + NrgMGZxjYkDiYBUjzERuQOO2GkbmYnJAk7mMQumSdEC1wo5zbAN6QAp4Yr2Uc3pA/BoxjQHSgEC+jpFWQpqBQI0fsiVDioNAIJJgQJWyhUCNTqBP7xKHQLGW4djWaohAIC9Ei0Ybi0BEd4UULnOMQLEzxSOI041ARKZzPtr7j0CJG8qG7fWQQGtVeusNWpFA50S6gikmk0A7Mi+VM0KTQIS0b2FUnpRAMTWMIFUqlUDNNrAtdfqVQONL8S6bdpdATU6nQsu+l0A= - + - zZZQROZ3UUQIwQNGbwhQRMAUoUTUf0tFsR1vRHlblERuhVxEniGyRm/Qh0S9v6BEsrSDRLA96ESE2DhFECunRHctEEWQAYZE73xNRUD5LEZ+EJ5EFa4VRT7ZU0TvlolHVyZqREhyU0S6cJVEZwLGRNXs4UQVMchEM+0FRruMjUQfjC9F5SH8RqAaZ0Rh0D9Fo9tSRqQNhUWvCWhE2wAmRQ+jh0Qb9UdGnZLmRKe0wkSB76JFkIOZRB91XkTWr41ECm4lRQC7h0QpoAJFJGIfRcUXskTaGG9EB/fyRYlA8kRznv5Em/rSRKW9UkWk31VEgHSBRN6bfkQcMaVEC6ccRchwaUQEMl5ElRZTRGfIwETAsxpIXf73RIv6g0bL1stEQw2XRTnYdUQX7KpGjm2rRLWdB0U7sHtEGXs8R4/DlkWx/nhEUJ68RJg7Gkb3UHVFgtmzRIkKTUa/0GBESKDiRcc0AkXjdLlE9/rqRPQVokSaCoxEddhHRI1zZ0U08D5FstlFRLAHVURQh+ZEXoxJRvWwUUQjP4ZEtii+RaqfGkXy+3pEGDeNRLy7wkTEIUFFD5uYRIB7EEUxjpxE/HWiRLjmn0UZUo9IPGKiRhO1LUUmlv5EfiACRSwg60Sz+JREtaqCRGQ130YHFfFERKJNRYFPVESHa4hEpOd+RBblpkTMrG5EaZ9SRxj5g0V95rVEYbGIRVJUNEUY+i9FwX2NRD8BJEVcBZ9EKcMERZHfEkVJck1E7p2/RDCqokQD2ztE4jKbRCpwfkWDTnJE71dWRXvINkW4LiNGG8OSRJQpsUW2RYpEHcE7R//naERNmMNEd38HRbu/p0TdC25Eh0HNRB5/TUSaeMRF+eB5RBAas0TLBqtEFNC3RY2FakV3yABFqVRFRaPfekRkO6REfsk6RbUttURbXQBFhDOIRQbUnUTxuFtEsbHLREW6DUVJI7lEQnVaRA2jcUWlQmVEx1aDRN3ElkRVs1dFpcW+RMdR3ETZ4mBEPUF6RzOClkT5r9hEGAFLRWLIg0S8cwJGgCz+RJXPgkSRqqlFvFxkRP++i0QAoY1E0YpsRfb+iERBWJ1EaDOORA2ZeESzWEFEoosARUOPO0Wc3gtGGxzYROOfAEUvWixFELZ2RIIKp0QNSr1E6LSyRAspw0QiFnNEnpGkRHSI5ESgVI1Eohx0RCfKzEQFtpNEsTENR7a7okXGheVERbBGRLnfFkam64xENRdTRqGn70TUyq1FyoyqRIY9K0VY8AZFGmpxRMKZt0ThjcFEzzBMRJpNjESQUGdEiJyKRKzZ3URMeU1GtJqlRe/H3ETcIEhEElwJRkCscEXfqLREhZWGRLvFVUT6QN1EyUivRBEqF0XGUcxEZpzNRKIQh0R5Z69EoUKGRSWtC0UiHoJEhB8hRtzMo0QwFkNFyNBGRQBqn0RQ5gpG17KVRQMzcERQYLZGC3SiRAG4A0W8zrBETWR0RCaZqkQx4JpE42FARfkSM0XqB1xFb+CXRLUez0QAfURFzqJKRZBI8kSMKltGb81vREzMv0SV+lFFdj+URFsUqkRKSwhFrr2nRMMZ30TEXbdEz0qzRK9Si0T20J9EC6PaRXYuz0SltHREBPohRS4taUQ43oNFfiqpRDHrhUTFv2JForShRIYsDkV0ueVEQijbRIAQn0S2bw5FefKFRlCPVETLUHBF65aMRMUrfETh+4NEN/NmRDK1Ekb7hvJHMNbMROmUjkYKFAVFucSWRPrelUXKuMJGW0mpReQZTkaBoI1GJbAhRZH8zEVvp99E+5kYRRMsF0XYm9dE/PQ+RWPOiUTB8Z5ElwNvRTCMfkTvb91FylKXRMTodEV/2o9E/248RVW5nUTuW0FFto+cREg0hETseUFE6QKoRGjLgkRs2ptEBbTiROCEq0a8YGVGrCX7RHW4YUUeEbZEx0WJRAtYSkY7AXpENIlKRUBlgETC2hxF+XmbRBId0USDeolEQl8dRfbEMUWKvMJGIqlcRDF6XUWFOVlFqZUwRjGUS0VfeWtF135QRNP3/kS6aYxE+ikARczDY0TCNzdFL76IRLhiQkWvmc1FdABARVjBekRDxMFESFyVRcvRqUTL2FVJ1SS/RN7ll0bCMaFEJ3YeRXqkmERDCQlFaFbJRdE9V0geJRZG88WjRMpI8EUi7UpFgCd3RU2RqEYaqEZE4GQLRZMjhETlad9E6QzARPy93kQwf9JFs2lDRdkndUQeNEZEiUQwRdHvf0VQAXJEmWOoRHRaGUWtnkBFs/zvRIfhY0R+EGVFUQjuRW2+dUS0Y5NFo+mZRD4A20T4rXJFOCngR2n4LkeS5gpGeNOSR7O3VEWs4BRFNqxoRNhEbUWknWtHQ3quRGwV20S1FRxG/UWBRIR5bEQgFPNF/fW0RFJmpkRQuXxFaVqHRWmTvESJYPNEkJdRRPy/VURBaPBFPFPzRK55XkSdW6NEc+fURTxowERvXI5E6zjHRMxWi0RgKdlE1idZRGKEc0QVITBFqTy5RBrrH0bWDSZHML3ORg0T5EdLoptGjGwIRv98B0VWwn1FYzV5RIzZ20a6eXNE+qFBRMwN60WmJ4REV8JnRQLFc0XgdqtEEnuxRcnvdUQGqbxECf5sRJdVXkTx/UdEl2/QRMUpZ0QNhGtEiKeTRMUWT0WdXYFEjkX6RU7Xy0UjhkVFPD8yRYv340QZFhJGsTcARbYnckVrIQNFtyjcRMMYqURgCSxFJTKrRON9w0Tv5m9F4NOGRAhasEW/0NJEeG7iRNujK0W//CtG7B19RBeJLkU2Cu5E0NrgRMJAL0SIp8JEX5yPRA+GYkSwWJdEhVXSRDIZmkQ7JAxFowu8REbTzUT5UV1EUQTURXOghEVAiaZEIkaKRd5bt0WvI6NGkMewRLYO50S4vYBE1i5bRg76MkUi2FJEN+7XRDzspkWIGXVE/CyhRT9sSUVDMvNEwxiVRdJoUEQ9J6xGV3ULRgqctkSyEANF1Y2wRCXyaUZHXQpFeWvoRW2OKkVgO1hE0ASuRP1RkUSTXXhE1dtnRGIOO0Vx01VEC4lFRIq1bESWSk1Enh5eRFs2T0TMt2BEbmaORHVpwUeaCjdF8iCYRMml9EQsKKVGoNfQRAwukkYTnEJFTFfERK0SrERa81lEJ8GmRKNNxETbt4ZE99tuRIK8t0SRPGZEl4rBRGzysURcER9Hj/AMRQW3nkQzZBFG67dyRKEhJEYmxhJFy0zcROGqy0SGH+JE+GICRdg2lUXbXIdEYy5yRP91tUR8wolEOU5dRAFZ/Ecs1s5EuipIR1ynUkbZ6xFGbXerRcXa9UQbtXhFM6SARMeRm0SAgINEy5raRBuPXETzllhEUleEROIQ0kREv4BECRSJROm55URxyopEM7p+RK2OW0SiNldIY+R2RjbITkSEKJ1Eaba+RRl1OkcqnLREOgSBRBlAoUbRy7hFqWIeRWc4l0RQkyJGD0uSRaXIfURvXY1ElgdoRBjJlUXQlL1ErCWWRVBC/0RSapBEZjOJRJJNsUThloxETvRqRIIMrkWCOwBFXxVZRIWmPkUUMUJEttIORuQotUS7caREwGjARJMlBEXKSW1E8xjPRLkufUTqIR5F4P3DRFf/lURUV6dEVYKFRFogl0Ru0u9EOCKeRI5c3UTnfr1Eq3OJRMzKgkTl7HZFjZcmRayOjkQ4lLhEpZJ3R1MsJUeZ+55GE9ufRRuqE0W6xwZGTo+ZRCsf8UToIPNE4niDRiq0xkSl1X9FP+GrROmEn0WMUKdEUl3LROs4ikWUHChF+7fVRHAs+kTJ/khFHQUARZSNMkUVZMREJGR8RBJLb0Uh27REtkaBRGm21kSjJU5FMWF8RNhKM0YffUNF9JagRIEm0UQi34REYm1uRY7pnkR3sqlErW3eRFzfFUXnY5xEuilkRFSzpEV5+6pEyC52RCDo4kS97IZEn9dfRPf2gETzKY9E/fyKRLqMAkVKVG9ENh75RDmUaUiIw9tELlyRRcfYukeolcFEmLB3RH6JW0elwY9Fe7tiRAgbi0TG+LNGIQg5RnfigUQzv3JFEfaERY6r/ETazItEgSi+RSXElEQ5t/hE982kRDYRvUTk/7ZEmnyFRHMcWkZGLYFFXSB/RdGiaUTLgphEy2TjRKCug0QJ5NpGcrHTRKgc2UW+PqZEa5D9RKXykUQ/5HdEYo6bRNDhSkSUOGFE5lVURLyQkUV8VrlFPpkLRWZ8gkRvRoRFKQdyRAJPbUQMS4xE8K1NRDqECkU6JYNERL/yRBqyYES1qcZGK+WCRuj5l0SajxdGSBCLRGfzfUTZtSlFAg2JRIj94ETjBmREJ+5uRc+Gh0TZKrNEwlBDRPNzj0QocNhFh1+GRGLggUUnl5BEygyFRWK6ykUzFbZEvL2CRRp63ER/jQRF7MHiRGLbY0XvC59E9736RBOBkESfyoREh8jFRN+Zh0R9THJEnJBUROqrEEaYPXhEDj8JRfJ9X0S7Q5lEqxGKROFWUUSKAglGTyhzRb56aER7aWJEU1SuRCqn0EafspxEmH5mRjhRi0TOL+NErEmERNsTdUWRRvFEMFfORIoIX0Qbh5BGvJkPRlUp7kRSOtNEk4CVRAMCkkTuqlpIT3L3RwoGuEaNEDxGHLAsRuM9ZUWp2gNHY1WERMM6S0QeuLpERiCQRmh4i0R/yp1ENKxRRWZNykVOmTFFtbDVRH4QhUSzbiZFyaIeRXqAk0TdfmZExsqbRDvUp0RlZtpEnc2CRJuAO0QeIIZEZUh/REH6A0VJvqBEXL4gRYkqPUVZRt5EvX31RKeGgUQNBgJFhsOkRMrHaUSFPI5EqWAEReGxT0SODxlFWa0wRf0Ri0QVySZF5kytRAwHFkUFDt1EkfaXRYprlETA57BFE4UJRU8Yr0TSYexEqYlZRE6zgkQKdIpEhMTERFIrrERIMoREJsRuRO2ZxkdzJ1tEHaugRORvLEetHKhEEMZORCPs3kYKUjhFrpiqRZ6TykXncFlFawFPRQdxH0XL0VFF6qMjRUCkukSyokhE/caRRPt9tEQN94VERkQTRYZTfEQEiYBEKBZ5RGKykkT7KnNEJxKqRAVtT0Tg0odFKG72RDY5fkSwsgdF9HdXRHIC1UQXjK9EGhACRX9tZUTM8nBEUBSORIOcpUQyDQ1FK+KARN8tLkVl49RHNkAvRxgT40ZOFV5Eo7oARqhiSUTQqsBEU/GYRIznY0QVuExE4mKtRM+Kj0Q0KLFEn4yFRKuUaESTY0lErjypRPTAkES8ZI1E4XOSRLgVYkRcF3xF+12ERI8R7US542ZFrCUTRialv0U0KH1Ebg2DRMveqUTgbZtF/dk/RcjCXESStZFEcp00RG/PfkTUqVVEkqOVRY9NqEUX/OZEujniREmRhkSvbe1EYx20Rfy+FkWt0YVE2xu2RFs8fUeUd8BEzGhoRy6Q30agVq5EOagvRsV2dUVPvVtENhCDRLGrWUSbDJxEVrtqRPqD/ESPUzBHs9UFRxKSukY2mHxE4vyrRMNK0kVZCYJG9PyDRVrqh0Tt569E3XrORUvNNkbqjrJF6VOPRQ68UkXGh2VF6p5LRI7oFkVFYdRF1v0BRU7prEQxzeFF3KHxRAvdekWznaxEKwmrRAh2gUQDBn1EcgZWRKH8lUf3eANIGpmOReRK40css5tH792MRIrwCke3fc9EAvVQRqwSsEXNu6dEntQeRR4M60RtmHxEm372RhKXvUSm9kREz5VgRtOs3USMuLBEXe7yRXnftEQWn8FEW+vHRO4IQEVszLpEo+1xRHZ6e0ThhlJEcUVURqvQBEYoWQxF3sPDRJqZYkSkGatE+eidRMyEgEQsqKdEMTg9RE71FkUrwFpECkZxRLXOgkRDBkdE3BuIROleckQ/whhFnwuRRB8OnESbp4BEB3ebRIAY60Q99qhEu+sjRpzsvEXHW41ESGiORA0QokS4QqdEFfeGRG57hkRW/whGuSZaRKdDt0Wu/1RFi+NfRMRo30SjEb9EGQA8RgdRhUVtjR5GfCT7RHc5WUWI8ddESFmCRIHMW0RTMUtE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - C19E+HrAckA2vdiEbsFyQMpBAZ9PwnJArnqPDOXCckBQ2Sz1D8NyQBzpw3k6w3JAhAObP3jDckBSySxgw8RyQBO2AaxaxXJAns7CHEPSckCUUn49V9JyQBOWLwLN0nJAxjfPys7fckA+tAHduOByQG6PTxhN4XJAyQXbnnHhckAmKCGh++FyQBwJDCFP4nJAoIBps4/ickAflACtI+NyQHwgBe5P5HJAFLO5ttnwckAJOIMLUfFyQBh40YnK8XJAqDfaGJryckBsFzI5ufNyQLuHZ+Gg9HJA+hD+VsH/ckCOxo3dYwBzQE5I8OcQAXNAAzplaVoBc0AgKpvKjwFzQOW6LqLXAXNAiLnTS88Cc0C2yXdG+gNzQOj5J7MJEnNALlLsqicSc0BWRVlqvBJzQGhYMbIFFHNAnOXMZ1AUc0BA6gAmeh9zQFjtx+ekIHNACzBeIDkhc0B3heQ/eiJzQJWMBUXJInNAeqlMnA4jc0AgNGUtOyRzQAwPMNbPJHNAzvGX3/gzc0Ae/+nZNTRzQEak+Dq8P3NAuCqibeFAc0AWGJHZdkFzQDKrBgb5QnNAz0pnBnpEc0DnbH+OmVFzQExtbD8QUnNA/be8E0FTc0D//L94pFNzQNamsY16VHNAADhlDo1gc0ACnkvOHmJzQGpc/5U6Y3NAJmi6S5Fjc0De4Y6GzmNzQIiUYlPdcXNAuPiUWlByc0BTZ7aGlXJzQA/o48i5cnNAIrxN8Wlzc0D+2ba/g3NzQFJ0oiOWc3NAqnQSM6Nzc0Bg0bKltnRzQBC6lCFNdXNA/oEMeniAc0AM7qt6p4BzQDdZvlkOgXNAwsOv8FyCc0Cu86YTp4JzQA2gcVEBg3NAZlkfepGDc0BUcy08EIRzQJxXXgGIkHNAkFEO5h2Sc0ALuyoSTZJzQLmdU/dhknNA8Craj8+Sc0DaiCHqIZNzQNyqXpCgk3NAujq07tCTc0Cww1G+YpRzQLYKK7D3lHNABImUjYqVc0Ac3hiMuKBzQPJs7+jooHNArGW28U6hc0AOLgxec6FzQKYVnHsOonNA+OIgulqic0CQlSayBKVzQJ5y1+fYsHNA4YIEazWxc0Bcp4wXe7FzQGAZc1pbsnNAGa1w3rWzc0Cic7UHDLRzQDnvhFj3wHNArFl0XiPBc0BHKZG1S8FzQMSYRxPPwnNA5xW1QCfDc0AUD3KhFtFzQHp7s5Vc0XNAGgiQpnrRc0D9qJv+p9FzQKdidznX0XNAPgXG/7TSc0BwIAtp3NJzQIQkUQHi1HNAtl1OZR7hc0A8P1z0OOFzQAaty3di4XNAyIm90Yfhc0A3QMxhzOFzQBWsC1R+4nNATrN/dQ/jc0A6qa9qpuNzQEy/1QPi43NATmD8Ke/kc0CIkqKKKe1zQMoD0YlH8XNAHIp0f2/xc0B/NK7KivFzQGSor58j8nNAmmoHcPryc0DCGGn6NvRzQE9XMlyK9HNAHNP0lP0AdEAKFAXFRwF0QNown8Z4AXRARLm72qQBdEAcYYcUuQJ0QERPWAdcEXRArE5pD4kRdEAiKmfVFhJ0QKIwFCRfEnRARuxSaE0TdEDOiGANdxR0QG6F9KtPIHRA9sVEHLchdECgufPqkCN0QJ4cSThlJHRAMt84lLckdEBNGhCvUzB0QMwxrTxFMXRAxhGQcpoxdEBqIZMW4Dd0QBDqL5bIQXRArLEMwKZCdECPeFiDeUN0QMcWKTV7T3RA1E09q29RdEARaYQTZlN0QHry6AZgVHRAWWPwg/hUdEDuPcELj1V0QA1Z3hUfXXRAxpfloLdgdEACNWR5CGJ0QIZbOmd/YnRAjsKCEJpidEA5QfKU6GN0QNYLhJUPZHRAqcS9Xk9kdEArSt39IHB0QL8CJPZAcXRAvugaQXxydEBozVbB83J0QLC6c+QQc3RABtiIGjpzdEDRwswid3N0QJjIn4g2dXRAK+Ugxi2AdED4wclU+YB0QNC2SsBOgXRAwqW+nUeCdEASaoLCJYN0QEN+E5oWkHRATsIxr2qQdEDDSzbMC5J0QFCW31bvn3RAXBja+COgdEAAmn0VoqB0QObiXfTNoHRAMi+5HDihdEBeKlXCX6J0QITuNdB7onRARr8wu4OidEA0F4WZuKJ0QJj7o/AOo3RA+s92vcKwdEAoKp1cb7J0QGah1uDgwHRA5+ZGIHfBdEACTpLaDcJ0QL5tsR15xHRALPqeEbjEdECCfPNSztF0QCNvR+Ao0nRADL9IADvTdEBsZXWYiNN0QBS6fWvh03RAcvpasc3UdEAck0A++d90QOoVkcMk4XRAPMwFP7jhdECqD4hiSON0QIrKhu2O43RAGL8yaUzldEBD21tojfN0QMP3hsR39HRAijLWtlj1dEAy/9qVpP90QB7rH76mAHVAz+49Tc0AdUDkSrkmYQF1QGQxr8RcAnVA0pCQ66UCdUA4RZRHihN1QFFwZx4jFHVAeFL4SOQfdUBEjPrvqiB1QKIxts+cInVA14hBk+YidUAVvM1NPzN1QHvVmZrLNXVAkr5rdd1CdUDvg14hAVB1QC8JpV+BUXVAyK+SaUxUdUCMg5zkdVV1QOh38u3aX3VAGrVuwTdhdUCOrCaY9mF1QCQtQyliYnVAqJ2/d41idUB9VwjYZmN1QAuEVdulY3VAJLcoDW9ydUCLuJkohHJ1QKZTN3oldHVAdM8JxIx0dUCrecZfeIF1QCgEb7ytgXVAUBIK3KeDdUCmWlYEmoR1QFpbNmW5kXVAfQsxys6RdUAsh0wGOpN1QM3uUp0goXVAIE8c8LWhdUAgxDIO5qF1QGAQec1Io3VADImAoqKodUAgH7TBCLJ1QECeF9c5s3VApJS1vc3AdUAuDIdBY8F1QKjDRtL4wXVAv0v4/dzQdUC+Y3CtztN1QP4Gls1k1HVAposUKOTfdUAMMSJqDuF1QNLhCUFZ4XVArhtOBp3hdUAwRDLkCOJ1QOm0ft8143VArv18NDjldUBu8JwRxfF1QNIpszFh83VADvz+lRz4dUBAy8z1TQF2QFyIbBtIAnZAnD8sIyQDdkCyd9KezwN2QOYrEutTE3ZA6HRqJE0UdkDAw4EMChZ2QN7p6NGuIHZAM1OK5YcidkBhysyqQSN2QJZXdEFhI3ZABCNE+I8kdkD9NYA2Sit2QIbhqQgfMXZAELsuf1QzdkDyyHwvuzN2QKZutlSeNHZAFd5xqVtAdkD01oxy70B2QKoiZ4wdQXZAzAh6iMhCdkCyPHlnekR2QJGoPsPLUHZAi7v1UxJRdkBF4UEy91F2QD8E8F8kUnZAgjtuUaZSdkA40HnV0FN2QGJ/mqSJVHZAsHxTpsxUdkAie1dTjGB2QFa4zT4hYXZAoGSkQRlidkA/ABO+2WR2QETWJ4yic3ZARKGEdtB/dkB6uKLwYoF2QLQI0iVlgnZAPBwmIY+CdkAwm/Yq3IJ2QHoKgkORg3ZAhv8eqPiEdkCilmlPt5F2QPk6ULqqknZAsIwpqruTdkBXOI6oz5d2QELkgGgOoXZAAqCB6DmidkDcIp2Ue6J2QIUJYIgdsnZAohpersGydkCmcUmbfrN2QA477HQNtHZAQA6AC77AdkDEOOu4TcF2QIhmMvnNznZAvpGsM3/QdkAQT/R8L9N2QM0cv/3x4XZAF2wFHZDzdkAeF4zOT/R2QNJLYL8AEndAQSMDsg0id0ACViR0cyJ3QA7GkSkNI3dAxmeu7Lkod0DsTwTeyjF3QBap2YGlM3dA9j2I3ww1d0Dq+WhdzUB3QBhwlbacQXdAWFuU3JRDd0B66hGQJUR3QKtSxGYbRXdAFlUHPj9Pd0DiS2rVBlB3QNnY6PZKUXdAL62MO5JRd0ApDIIJd1N3QPb93ZGbU3dAsXE7iidVd0BD4Os2PVt3QCxqzxN9X3dAIiP18A1hd0AeA1soSmF3QGadN9RYYXdA/2bf4I9hd0Be8++yN2J3QNhxZVyFY3dAzpwZkSdvd0AbNb7NiHF3QOQDJsGecndAJmGGrEhzd0B6vcXa93d3QL/I6dFqf3dAyqgeX0+Bd0D2PfZp44F3QALlxXt4gndAksJdXA+Td0CSjX1TUJR3QIRkgvebsXdARDQRKAG0d0Du322SM8N3QODd9Vvo4HdAZ5jMBk/yd0Cspa4XR/N3QIRBcYFF/XdAMjRv5Z8CeEBCcBiT5Ad4QIpngtD7B3hAANHGJQELeEBgchLiUg14QNpoB3XkE3hA0rMKUU0VeECqtgOxbiJ4QB/1AiiMI3hAErxOBfQjeEAh9uoupCR4QBJlS/lgK3hAbwXvBWUveEAIqfTnFjB4QAOVbNZJM3hA8BnsrSVAeEAExQhqDEJ4QNDT3LtWQ3hAws8FYBBEeEBqhP3heUV4QBy1ALMsTnhAKNCO5gdQeEAq1XL9hVB4QDwrZa3JUXhAuPMXzBdTeECwuNkGh1V4QPok4Rv6YHhARGisa5FheEDLzkJXtmF4QJTV6g25YnhAatv6O+VieEAmZpMzamN4QKijucPqb3hA2sRqJNhyeEDu2rU8UXR4QCQK+OtndHhAbIBqfIt0eEAFgUf1qXR4QJkRIP65dHhA5FrHcvd7eEBu+EgmOoF4QJhgaMOlgXhAI1+mpmKCeEAqkqVf6YJ4QKCHTovYg3hAEFQ2K/+DeEAytRlOdYR4QAhFb8CZhHhArGB9obeEeEBoreWWToh4QCHfV5KnjXhAWqziBJeReEAt5ID4NZJ4QNkIUNAFk3hAGPeLaI+TeEDAKJxnqJR4QCJU/4iioXhALl+AyZOyeEDGXbo13rd4QNxjFFs6vXhAI9dQTMzAeEAe7osv98F4QL4DP/CPwnhA8z1SVBbDeEDQsE+VHMt4QBZClrm21HhAwbGuF9LceEAE+lvgEOF4QG4SZDgy4nhACvgEOqLieEAW6n9YzuJ4QH3eEUOH53hAPwUoT//neECmd8aXRe14QGwWkmgA9HhAhCdWEYz1eEAaSnOIygJ5QIKMrkqWBXlANI3prpcPeUA3ByG86RJ5QJQtwYy4InlAgHh0hOMieUBjryh+uyN5QAoWicVQJHlAVvhoFLMoeUB2ZJrjtSx5QHU+s/cNLnlAYtmqkAQyeUD07++T2DJ5QCqka+tiM3lAgkQk+LMzeUBboL7SXTR5QHztD31UN3lArAaHI4pCeUAWB8t05UJ5QIh+iln+Q3lAiQiVRNpSeUB5eh/azFR5QED96rLkYHlA7kJwg8dyeUBi/wDxQXN5QPI7+AWhkXlAUiXOZ+6SeUAyDL+cvrJ5QFzKCDfMwnlA/8p9JbLDeUAYmIV8Ecl5QCrkaSJYzHlA4r9gRUHUeUA222ZfzNV5QMHmIzZT6XlAes1J9R/reUBU7tLzIu95QKA8hyuU8HlARi/4VNLyeUDmmxqED/R5QBOfx3US9XlAJF1GMPgCekC/ZpPR+wN6QKzk1i35BXpAbiVGNTUjekBSLiMA8iN6QPx+VMFoMHpA2BAm8yozekDF/Q96DDV6QGqFv1QtN3pAJ9X/iTE7ekDCLaAzMz96QLxY8+peQHpAqCCTO3pAekAMfmTcLkN6QKAWr6CXQ3pAFHJ61hlFekACiTrZ2Ep6QDZEEdGlTnpAlGnriVhQekCwrzLrLlV6QNp2L5YhXHpA3joSfbBgekBBT7yxKmR6QFyuHJHAcHpANrcBdSRzekAQ/FcwKHd6QGjpj9nXk3pAQENv4B2jekCaUWAbIqt6QLilwBoOs3pArz7hoAy2ekC4upF/Ebd6QBPBoWkSu3pA0jE78C7DekA1247tvsN6QIpaksYYxnpAuqGbW8XLekDAmd8YQ856QPndIbI40XpAPT1Gy93TekBQrhfbNON6QB6YG+t35HpAXhAzQzbuekDmxy9ZG/F6QCA3reBg8XpAWQk6gk8Ce0ChighuegN7QIhRTaJ6BHtAHs+QzicOe0DGwWLPWxJ7QN4moJMEE3tACO449YgUe0CuIYMmTBV7QKyjsz4jI3tAOlVgWWMje0Bptpos3CN7QOfbIzBbJXtAUqEQlU0pe0AaPDaGvCt7QIU8KwwaLntA3tE4qLYye0AYpu6UwzN7QKSKGS1FTXtAEnTueitje0DWP+3WDnR7QM3oGZXZkntA/Li94yOVe0BPhDk5VJ57QP602ZOso3tACBtrmwOre0Cm52pbfMR7QLigG893xntAaCHXp7/Re0AU8NpGGNR7QOo6X1uM4ntAJZvh3rfie0CX8kBqJuR7QOyur1KY8XtARLVTRpXye0AadlxxLvR7QD/+igiM9XtAwR20YJIBfEDkTbn32QF8QH75dCj4AXxAYwgUdboCfEALqo2EZQR8QGSH4uyYBXxAoAtl+NARfECVMjXCxiF8QKHdUpThIXxA1hPse/8jfEBctuS6WCl8QExpJba1LnxAMCDEtc5BfEBEqdqDSFN8QDZJzX9PW3xA5iMJlgxifEAG4/kmOWN8QPwf/T9VY3xA0qqMSwRzfEDqinysR4N8QNaoQh7EjXxAoNEbNWeSfECRPSc9HZN8QPPo7yplmHxACrLs232YfEBd5f6JtKJ8QGMqSbCko3xAOzHeuvmkfECxG+AhwrJ8QLfgSLgKs3xAyyFTpe6zfEB6xhT/ebR8QJaHZmHSwnxAGr1eQMvVfECJvNgIWOJ8QOllmJwQ43xAsoW3P2nofEDO1BC6x+18QO7LEUQV8nxAVotRh1PyfEDxfWfocvJ8QMyFhzD/AX1AejM/QksCfUDe4CPuRBJ9QFSwIzP3E31A0AByhFEZfUAiFheWPCJ9QEQJBBL8Jn1AkdpdONIzfUB3bUTURjh9QLSBAA+iPX1AyHGu0bNRfUCLCpdyhnN9QFaqA+N2dH1AJuk+BjF7fUCuN0dC3YJ9QC9eVj+WjX1AeCktlvCSfUAxD563JZR9QGJ0GGN3on1A+um/dzOkfUD2ooJ+oqR9QKpOSXNAtH1AVkJTmObEfUA6fP6HuM19QFr0NHb11H1A8NVuH9XifUBLiq7RkPV9QLqsiHCS+n1Axgr+wan6fUAx7qI2NAB+QEQHGWCjAn5AnhInwW0ofkBVajb7uSp+QOIyE5QPLH5A2/MwIjwvfkDYL9/tOz9+QGxu/ElyQ35A8jHYMVRTfkAqPUBl3VN+QBTbm5ZaW35AFxCWoo1efkBXDdhcSGN+QAZx+R1mY35A6r0KIjdkfkDWm/FmY2R+QHrCPhlRa35AahFlCGRvfkCbmjBXF3J+QO5O8+RZc35AImWA8sl0fkCUrdLMoIN+QD3DB2dmh35AbMHZERCafkD4h2CQxZx+QPCVZvvunn5AznQd2V6kfkCEthj4kaR+QOocQMtirH5Au3e++Ge0fkBr0INon7R+QAK3Z9dxvH5AXrUGuCO+fkBYFS+sZcN+QOQcPdt1xH5Azo2M56bEfkCg6BGdzMR+QCrAAnYLxn5ADBZ1pWvLfkDQpuM8WtN+QGDhZFBf235A8tqvYHLffkBoC3xm1u9+QDX2527b835ArDTranb/fkCNW9Abtv9+QGjS6cLQ/35AXsgZg7kAf0DSZ9qyMgp/QPt9Up7QG39AzGuyidgjf0AT2faGbkR/QPsPF/KkRH9AiLAIj0NPf0BOT7qRr1N/QDo24ADfWH9ABayN1Ldbf0Bo8J1QJV1/QGT0hlEWY39AbOry+bZxf0DbAFy06HR/QEhetPM8hH9ARjBfXWORf0CxDAX5eZN/QAwdz6+Zk39AWBDi0W6Xf0A0IxWMkZd/QESbfY+ioH9AEucrn12hf0C2YrgaEaV/QB/pMppUsX9Apvj+/Vezf0A4Dvj/u7N/QEcX2PeAu39A4fPzrF7Lf0BuDKiijc5/QFYtdpFn039A4WjzA27bf0A6/cwkVel/QBSWr15n7H9AKM5Ijavuf0AGFOkzd/R/QIwr5A6/AYBAf6Ivyn0GgEDSdQU2QgmAQH17tm8gD4BAStdiLbwRgECoCtzdGRqAQK+c3d2nHYBAKDS3Cc0dgEAZCHGQNyaAQOHRIDLtKYBASrNe6LcsgEAnQVFxWC2AQOpPqV5mL4BAcOS6GRAygEAMJZznDzWAQAuzPwodN4BAYP2jrOs3gEDGkGwGAjmAQEgK9fc+OYBAkJKg98g5gEDsGV7RdTyAQB7tjukjP4BAkb8RNMlBgECB7Dj3qEKAQA0unO74SIBAXVFIcOBJgEAaqBJBskqAQB4bdWbmUIBAIhbn8RNRgEB2FR/ZplWAQMWV6vQlWIBA1gSnmPBYgEDBt3zQDVmAQNii36OoWYBAqzuKUd9ZgEDc9K4SCVqAQI4955sMXoBA3beLxAthgEBADfrvw2GAQNHz/fduZIBAiOCS3KJngEA0nUySH2iAQPBmcWrOaYBAqlvsgE5qgEBZUrIi+myAQC6XyVrkboBAwe/AAilvgECacMvVKHeAQJ7IhX4pf4BAiqD6OOKFgEDm8vRQ/YqAQAfFsAMfj4BArSa6QrOPgEDoJJpdy4+AQPbcrnW2lIBAggInheGUgEDGwDHmIJeAQPO12OuRl4BA/qd1x4+agECjg0hPzZ2AQILi//Ubn4BAwN/WhV+igEAae874SqOAQBZrfNIMpIBAeznY9cGkgEDcYG7SfaWAQJjCcreFqYBA2r/Qg2SqgEBsfZgFE6+AQFvoynGwr4BA7Dx9htixgEBqwz8cf7KAQMgfj2iSsoBAMFSqCU2zgECOIrTK1rOAQLxIdWMZt4BARAYMfsy8gEDCY6Rj676AQET5xsu4v4BAtMW/vTTBgEBasHyKUsGAQC9PXg13wYBAMes/tZ7CgECq3z09PcaAQPbNVg3pxoBAiA3ge6XHgEDvLZV5b8iAQMLP4UBTyYBASNHWkEzRgEDthghZ5dGAQPFdAptI04BALvi6NGbYgEAalxd7StmAQHkdKLGP2oBAysmzTnDggEBy2oWcReGAQMQhmK3W4YBA4t9o91zogECTv+ISNOmAQDczYDPz7YBAbDHA5EvvgECS7ySlPPOAQG9pCT9a9YBAjpk9imf6gEAwACAA3f2AQM34siRA/4BAfLfQUHgAgUDKCdVmPweBQINcuxY9C4FAbzwtUz4PgUDkKXuEPxeBQLpm1PXPGYFA+AoN7/QZgUAa2I/k4RqBQKKy0cA0H4FAfvLn/qkhgUAKoVjNUSKBQDt3/D82J4FAlFUpQ7YngUAXDkvwayiBQDbCr4sxL4FA2N6D7CgxgUCg0xLqvDGBQOljZTXYNIFAwsb3sCk/gUAaqprklUGBQDBRhdTLQYFA+DAN9M9FgUB49V4gBUqBQPjAsHIGToFAij0HVWBjgUCgg4S7s2aBQEztn2S2aoFATn2yXg5rgUAI6C4vh2+BQE4RmSnCdIFApMW9m293gUBR9FVXAHqBQFRzYVUbeoFAtjpNW8l8gUBMB9gyYH+BQHXbCcB7f4FAQG7WD41/gUA+OEttHYKBQHunpzqfgoFAPnqXYtOEgUCHxC8Tm4WBQKQmAWunioFAFa7lztCOgUC5/c4TGI+BQMVNEQFWj4FALizSmH+QgUAgx17qK5GBQJgWUrb1kYFA/xruMDySgUDuFTiIkpOBQDaV2acplIFAcrf5CeiUgUCKoMTW9JWBQDlaK/w+loFAiJlcZ1WXgUDcyq1NlZeBQMv9iSjJmIFAhJTZZ+mYgUAQzgl7R5+BQLZBWppdoIFAWENLseehgUDWym2S3qKBQKY8n3oBpoFAIb6NrGyogUDlp7br7KmBQM4N4GXlqoFAPrzCWEqvgUD4/8UOcrCBQNJFmA7ktYFAhE7TK0y3gUCgELFYWruBQPq3hY2PwoFADrk61d/HgUBEtiVWBMqBQGFJkiayzIFA73ffkgrSgUByRnW3ftOBQEPamzHp1YFAnuTbFsvXgUCxAhLP7NmBQKIl4yd224FAXNucDc7cgUAwjFX88N2BQAspsk8i3oFAnDuKuaPtgUAncQAgk/eBQF7yNUDs+YFA0r3JJ/D9gUB0M73ozQmCQH7NpnTmCYJAzV5WvtANgkA21q+n1BGCQJ0FUw7LFYJAyMrm19cYgkDIQS4u0RmCQGr6l40pGoJA8CAt/GQagkBYG4mxLB6CQBEGLfbVIIJAm+kA8jAigkDkbSlg1CKCQCYel8iIJIJA9KlprNEogkCOEkTmHCyCQDyrRL+iLoJAUGkdl9AwgkAlbxEFmkCCQCtpDJA8QYJAFIXcOFZGgkAeGQbSCE6CQE2FNqvVToJAneHSlZ9PgkDD7MvbPFGCQEmjRIp2UoJAaHTL6QRagkAdHln1bVyCQJi3beURXoJA4r5aZLpfgkCCHFpEZWCCQJxtXEC7YYJArkSEBjZigkA9Vrl4OWaCQEab78p6aIJALZXs9ENpgkAgduNnpWmCQMrMChIEaoJALmdTbdBqgkDUvyRbCnKCQLxkN7ZucoJACMT4l3V0gkC8UKvz4HWCQBTKGeJzdoJAXmcy9NN2gkCF+XY9DXmCQPr+MJ7ieYJAZGHNhtV9gkB4lXprQ4mCQGxXLsD4iYJAkn4uJv+NgkAGrO7uQpGCQIS3WxeykYJAnIZk+LaVgkC1zrWgqZeCQEfG3ck8mYJA7ll1XA6hgkAMnbMUO6GCQMLpMSXypYJAk1sJSwupgkAM/4EANKmCQPa+4zX2qYJAbvA2J3+qgkC2XaO2A7GCQH7vgKUvsYJAvEAt0nK2gkDaYioQ7MWCQJw3B3ftxoJAwM66NfHJgkAk6rUefdqCQDvBIJBy3YJAWF9+fHbhgkDiQyXxtuuCQBJcdAml7YJAAxSfttPwgkDuBImFrvmCQICPIkMxAoNAGkYSbW0Eg0AK59LfSgqDQFAYwNY5DoNAWSaatnkRg0DeLKqeeRmDQOmXcdZyIYNA1jDuGcgog0DGWnpBcimDQKsUtNZGMYNAHv2iiWwxg0BmB4M4czmDQLjACrbaPoNA3VtmhXpKg0A8xobpFEyDQCLD2J/ZToNAbywErllRg0Ccfd0/426DQGawhCHWdYNAKMVM4cSBg0CyxPLE5YGDQELPCNlIg4NA0pc8iT+Zg0DYjTTERaGDQI13EsT4qYNALVmBnO2qg0DYnQmb562DQKtkc+3qsYNAvhs4meC1g0AWGxAi7MODQMAR4vEzy4NAFxcqCuzVg0A2JTALy9yDQPTDU0XX7YNAloF0e9rxg0AzrS4JzPWDQA8J/BWU+INAPtJvhdP5g0AAY37r3AWEQLCLM0qgEoRACQWcP+QjhECi/KwT2ymEQJblIftgSoRARrH0hQxNhECCXkQCvU+EQJhyepyVV4RAe6H4cmpfhEDA30yi/2iEQP1Nvk7/cIRAOmKaGRF0hEAo71lsu3WEQGEOUZ3Kd4RApTOSr/Z4hEDalj4Qd3qEQKVj4UskfYRAGsQ6k9F/hECSLRU2y4CEQED5vCz5gIRAacYa3FqBhEC4jzZsToKEQN7xhWt7goRAdvnnPXKihEDwvXUtt6eEQBBap47UtIRAOynSmSHFhED8QObtrMqEQKzg0nmk0oRAFc0wBSLThEAmjbaAEdaEQOS5cTxq2YRACeetjBTahEDa42mJM9yEQC21hqwY3oRAoqQ50wPhhEAIz+4aa+GEQLIpEPkR4oRAfor+L9HnhEBVk1IKY+mEQCAWQjZ86oRAZDW5iCzthECAKngsyO6EQD5X6P7E74RAPgmaNdjvhECHkLfDNfGEQKKKmPlh8YRAmBZSUnPyhECXgYcrGvWEQFThEm/d94RA9D0cGgz5hECFYcExNfmEQIyJ6OeG+oRAorLQnTb8hEDWuw4kMv2EQDjx/frQ/YRA8m0tt2r/hECQfDcR4/+EQDH60VgtAYVAnEzVTpkGhUD4QWXTRRSFQBbWgGHgFYVAGsD2JhIWhUA6kWct+BaFQBl6JaB6F4VANDgCJxUZhUBI6X0OrxqFQG560RH/GoVAMWQao0ochUAexLL84R2FQFGMsHUbIYVAxFK/30JZhUBITY4qoGGFQF6hqgFNZoVAhMrUU6pmhUBxRKFAoGmFQNr4Aq5Yb4VAMhOgPplxhUDC1VgvsHKFQPKJ64Ozc4VAeGKiybV2hUD4o5mtmHmFQEIDWgqUgYVAEu4OJYaihUD8olgEQa6FQDwykVNDsoVAmOvSS0i2hUByN9VYmOeFQGxRnbifEoZASVoJs6EWhkAnrTWYkheGQBC0lZioWoZA2p8ffE9chkBAJQ2lJrmGQD3HUpMqwYZA0HptwdDEhkAVFRQs08aGQHIAMwO/yoZAPn70C+jchkDrQ11FfuWGQDop9XMbF4dAnAacFJEph0AzXKkwkTGHQKCLJI+LOYdAuOvRKV9Bh0CpbZ1Mi0GHQEhPzaNdSYdAzvURF8exh0CgfLY2x7mHQCgMBNa+wYdAFTpjmL/Jh0BZYhl4cQaIQAi+WXMPP4hAzC+sCKVOiEA+EJZb+1GIQGxNhteoUohAWsH9gABWiECW9087rFaIQI7hdzoAWohAQExmXq1aiEBCQs+bgIKIQOyYYT4Ju4hA + NrgMGZxjYkAYxSyCnORoQI8BR/y9MnFAU72qemajckDgAVWb46J3QBoYP7R+1HhA4F8x7zu0fkDH3v9Rt2qAQBraGvppkoFA8giCVAOjgkCr3puSq0qEQPI3cH6vK4ZAqw2KvFfTh0CDPPEW8eOIQNY3DL+jC4pArmZzGT0ci0CQiuy2GwyOQK6VYUPppI5A+lvb6VOSkEDrSnQJfu6QQKxyQPiZHpJASHRkBbrukkBeiaUG4KqTQA== - + - Ykc/RCSBAUaMl7hEj+e6RAgMeEQDg0tFqfVuRPBbrESBw5lELpnTRjkchUQHlzZEXbqaRAXWaUXjwZZEJBOFRATIH0RY+SVFVdA6RqDnp0SqDzNFAqGBRKtUgkSXulFH0bGiRE2Lt0Ts+61EshmoRNzCfUQhEXtE0cQvREziFUVYFJ1FXcsFRW73+0aVQ4xF10qARFbIckau9XpFFIiiRNHw9ETDgatEndBrRlXprkSd0QtFdffiRC7kW0QdVapFU+0MRYXCgURPa7lEpPZPRN52KUUnDHdE1uXoRYSb1kSkscJEUtG8RNlqOEWrxYNE7sSFROyb1kTmhBZFpD16RCa8ZUTmc2ZEyMjWRCI7jkQWbn1EFz33RNe9EUgScmhFaAiaRDw7AEWHAQZFmpyXRqnzkURenphEoECBRQKRgESz/dVE3KOeRgaXmERqSLhE0qqxREdZPUdymrtEXghbRBShLkXwP6dEIKqPRCU90UQuUltGFbGTRCi8xUV8q4lEFVsVRr4qPkRnhohE0nIORsl4HUVNQLtE+W80RT9VbUTPj1hECwkvRUGo+URI5I1E9MeWRBMZEkYafdVFaWwKRayCf0QffbFETCGnRPljaERZ/QpFAIxGRPeDkUSkV6hFTIpCRf8KZUjZnpBGONX3RP6kqUTERJ1EHcbCRGALlkQJ/FtE0veaRMo3fUSqF75GEG4HRbxH0ETsHYpEJNpiRLazAkUxX6REA993RGq0CEUI0GxHgd7HRWmPrkS1KGtESyWXRSfxS0TvEG5EQGuNRf03SER/TjtEQzvlRLhtPUT0E59E3lRnRN7xikQ4725E1EbXRPPN5EQLFU1EZL5yRDYw60TiEXNEceGXRFk/gUWvAZ1EKDM3RLsQkUQ7x6hEIlB2RVySEUaLl2VETLsrRPUDYURZnkNEqVCQRGKhjUUxFklHPcmLRM8EnUTvmXhEXOIiRVc+h0S/6EFEiRxBRPzkCEXQBwJGo3m0REl/30TV1apFv293RI8WXUQbJj5F3jFERFDq1UQcph5Fxs5hRJq3mEQY0SZE4espRJfuzkQ+1fNEIvjrRHO8qkSeF9xEHyiSREB+WEXEZKZEs4yYRP8VtERIAoJE1kUiR2ZBR0T0usFE/dK4RKnHXESbleREs2s3RY5y1EUsqsdEGHeWRBXfsUUT1oREcJNGRI2pW0S0K0hEvb87RDyd00RqlYBFgYhnRDkxM0TKoy9FdHZ2RA76vUQZFwBGvUw0RE6MzkRv2hFFT23FRBQB4URxRKdEwQCoRGBT2kRtTVlEipkKRYiooERRZY1G2VCTRQ+9rkTg6pBEkM+SRFMqvkW0LGBER0IDRsHNg0TVt9BFkmMMRX1mxUR8rG1EPZyVROGok0TOuZ1ENjpGRHcqZkSukDJGLYPnRNtYdERmVndEka/1RRKxaEXTOidFFMaZRPDAsES5BWFEx4SCRNhOCEVJc/JEjppSREDPXkT5XmFE35R6RCzeg0SbmVpE8hByRM+iY0QI4IxFwjQyRJqQtkQqmghGSJiJRGrBQESopPFEuCcXRU52OEQQ0lREx6kYRlnClEWwSaxG1FfcRApgkERjAq5Eq8TiRAB0kkSAZ3FFUJTiROB+dEVGZIFEApUkRYEj1UQkLGlE+V5RREMxVkTwhIBEE0cbRnN/TkSvo4NE5VGeRCoy4UQ9DDBEQVxERNGFjkTeHFlEX8iYRNJGREQeL+BE/FFvRFxUjEQo8GNE7EsIRcY3l0QmgKVFsCyKRF1qvES+ymtEHM36RNLOQkSpuKVFf4SWROXHj0VcnjZFI5xVRIAZq0TGspdE2EsQRSWiW0SCKZxGyrxnRcb3U0QdlGZEEBSSRIWWjURuBatFDjXpR4hquURY6pNGJ4wMRV8KhEWE0txGSalORMUpYUS3DI1FNPhJRjCvPkay8WtEpuC9RO98XkQ9rpRFHpByRLOmNkTsiVlEs7MaRSA6zUT2J7REPF8kRaky3kSWUs5FrVaCRGazkUVe4X1E9zMIRQkPRESt3y1FedhZRLWolERfR4dEUCCYRIfLWkQvoEREhkViRPJiq0Q+qdxGrWRpRmri5UTX2DVF74lbRBdBoUSrnSFGAQJERM7niEX0jmxEJBXbRK9JX0RCmuRE/hUcRTbkDkUYOz5G71OFRAAE1ETzhdNEermHRYYgUEan/4NEPpV2RFmToEXI6pFFvSOIRIzTRkUDyj5F3WNPREfWJkWNab1FYGRBRaJwOUSHcaZEmwtIRfzWVUUzaBNGIMs8SfWEUkbI56RF+LVQRmGqGUVV/NlEMNO+RLtiiUR29CtFyLKcRfmoJEWDzjtIL81MRQcb60XIfJ5Fy5UXRXgWNUTJs59EsPYnRd7mlEa1dYFEP2+tRIcWskQWzltE0XaMRAIeM0WYFYVEBogNRunx4ERT1u9Eqf+7RE7ZbkQSR3RESbyaRdh2qUR/0UBEcTKZRPuRokRdDlpFegeoRQ1PbUUxmHBEXm9ORC12hkT/f49HwbXrRmn0uEX1blNHvZe5RJbf8UQ7l3REHWRCRYuxIUdqFEZE0QiMRNCm8UVQk5VEPLyNRJZzt0V6AahEHcApRWB6ckWrpzNEt0AtRBB5yESDo4REk5syRFPAmkXdUY1EHxaDRFsNgERM9IhEXqSURf6PhURqc1VEMtxQRJoGXkQuZ6JELL4pRGNi/0RnfYVEldiTRDV4ZEWMlaJEr4CQRA75LEb8e5FGeM4NR3VIs0davsxGdhFERmfvZkXYM4JEYP/JRGgWzEROqCNEvmmcRs0QvkT9hmdEN1xeRe9sqUSgL4tFOY+8RdPtwkTP1kNEl+fAREiBOUWs/7tE1/1cRf2rb0Q/MEZG9x/PRSu2JkYuP0JFlGjBRKI4rUWwt/hEV5xaRXRaekQgI1ZEHtRyRLtWgETLSXNETGHnRA60gES14KdENlIaRQYme0ShR5FF0tmMRBKKmUQG7WdEIqyORFITGEZdsIFE5itPROKfaURADgdFhL8vRO+kZkSEVXpEeB6CRDdfpETro4VEenaKRCTACkVV9ndEfrUdRXR+uERqZ5FEiNTeRM7EXkQeRtxEFtxLRSVLtkVPAhBFrtOFRCLMhUWOr4ZFh0ouRApAgESIkotG9xegRCaRKUb3Y31EmddrRO5kvUQwpWlFiX1WRY30iERJApNEer8CRfQQKEVSPUREsHdgRQCOREdvIo9GlROxRBcwikTni2VFgNZ0RKpPyUSdzE1GLAiARGclGEbMM/FEnnbERKN+LUQNg3pEmB97REJehUSIPt1EYlBzRC3BKEUuM5RE8j5mREYpvUeebW9F6tsTRepyXkTatu5E6b+ZRvk8WkWobQ5F/v91RhX1Q0WZpJ1EcxKdRAbmuEQPIlNESGKCREt9J0WQQU9E2bNCRPlB00TIzZ9EbXQuRUysm0ReZMVE9w9HRCFJ/EYiF6RElh3JRbsjZ0Q4kF5ErLczRmQ45UTASOFEz4u5RPuCEEUpZNdE/zuqRKpDR0VF/gdFhrueRNLto0SYYLVEDnp1RH/wUUQNNFpE4kTWR1uAvUT7LkpHUotgRH8xJEbuEB1Ga8BgRb4bsUTgBGRFDWFARMYSVkQYDDREYAN3RHKIikSFaeJE33Z+RNDbZEQrOVhERJoDRdn9Oki2VjxGJjmZResFFkdQkLtEgv6vRBFHgEb7O0NERxOZRSbAFUVTqtRET7YDRqTLLkUQjI5E6qhdRMblWESKjFBFsrSCRJlZV0QD+ldE346EROAFgkTO3Y1FAKMHRcJHVkSk8J5EImJJROYrokQVAYlEprhGRKwXQESeQo5EdoiURVPa3ERb5bFEBB4ZRkowq0TNb79E95heRM/hl0StCYpEit4bReQ6R0RRobxE5eAtRIfviURZPIZEBfOCRcjxn0QwlahEJ5OERKxriUTNcnlEkNTXRKYUCkWGZrxED7NNRBeie0RArm5EFQ6ERO4ndESuuHREukt5RG89WES+EJZEXmnZRL8aLERu4FlF0l5rRG2qw0S0d11Hd46PRMHvCEVMDq9ErIIyRwYakEZJ0+hFc3WxRFZ5+kVjMeBEw79TREHelkQy7ClFB6JVRnPkCkVOaohF414tRAdeVkXNNK5ErCmPROIjH0X5m/dE9UyRRKxvMUUY4sJEHnbnRIwKdES+hVhE7Y6/RDSysURHSk5E4zFiRXI+WkT4OuxEATuGRCbDWkRsMBZGCsVKRGSTbEQw9FhE7VOeRFWTwkTon5dEpoKiRAXvakTwRKNEcXwvRRSeh0QvkUdEsoB1RGNNz0Qt5MVEb1WIRN/RwkX5OalE9fFIRVDhpkT5qaBEOy2KRM0oUUSHz3REhugqRDXXPkTqM5pEg+cPRR1LcEgErbdE3u2VRWiKsESbZoBEr5RiRCWKWETJLtNHd3psRxmvv0R3OpZEQXKBRo+LO0ZQkpBE1qO/RC2WwkUnWYZEQvtsRYFMe0S1zYtEAPwURR0VE0UO4DBEowh2RHW0TETO3ThGkkl8RIywekXRspRExEW+RS8jHERSgY5EM1uoRORmWUTXTMBGcFosRMl6kUQrB31FbBzhRIGWgkQiiLlEnZuFRPktxES6kW5Ewd2FRW7QakT/g4xFtXfFRO3kTUW0cd1EuzCcRG2VCkUn9dlE0a2zRGhmRUSogHxG1lxfRgDPsEQkosFF5YXYRBUGaUSHYHNEMJ6BREBsiUSYvINFDdeCRGt9oUTcjURE+hQ2RJEsVkRQR7pFWgZqRHARS0SPz5hELBagRG1n/UV2uXpEDFboRcVKhUTeecJFE6rcRIrv8ERYY09EwvRvRJ7rw0SJA3pE1jIcRc1BHkWEGEZEJafhROFwd0Tja0RE/DMPRjJ9Y0TQLlpEvrzSRLlJS0Q3j4RESEC6REhMjUXElktFiwBaRBZN+URYsOJGzOxIRCvdika7Z6tETQnhRE0IjEV8yF9EAHGARH/gtUTi8T9G6IXURfX8GkijXxdFeVWXR2dcZkadagVGqooSRg2VzESPjAJHAM8RRdVleUbDZUpFHp1xRVgmGkWMWIBEOHM9Rc+N0ESwn7NEsa/BRF3lQEQja0RELY2TRM3pTUTCuIZENaobReMR4ESFfKJENaVeRJkSS0TTaptEwVJXRHJ3UURDVZBE8pUURRpPzkRSJYNEUAHURNjdeESXnbpEjYhrRPgByURA4ZJFLK/ZRKAqcEX5MoBEZy1ZRIQ7aUSoSdNEWrpzRPOXtkfz+1ZE/gRmRJKOCkcRx1hEiIiFRFqsm0Qb39dGTxCdRS0Z0UXpRBVF785eROcw/0Qlv91Eay4XRUVwpkR2m4JEGwE3RIrg/0RobltEsHHlRIK7iUTBDxxFL5WvRIrhWkTLzYVEXEyaRNlIakTBvIVEpKFURDV4mERJSSxFFHPiR9LnOkfkNvVGMUwrRF1bKUYop05EIhx0RapAT0RRxlNEMG2kRLz1m0Rk/3lE8dZnRB8sT0QgsGFEJmmXRAAbQ0Qs3p1Ew8S1RT78+kRL5DdFRqi4REzO5EWxg5JF/2XhRO3zM0RQZWVEJqJYRGo7p0TVt65FedUARaWlM0Qp909ErZVXRNKgbkQTHWtEixFjRN2rxETHyIRFfTbvRP47B0WAcF1E3LTXRKkEm0UF8A1FVUu2RADhiEReVnpH31npRFLMW0d5m/NGb5IARrgzeUQce2hEeclFRNhViEQapGxF+Z3eRC3TekQtsVpEGChNRJJaNkTo3mZEUQbWRCC2HEd9auhGnRebRi4ShkTjfp1FCElkRM5WQkbIah1F/MnhRShhCEY7ishFiCOgRdUUg0SWgWVELI+CRPb7gkV35kZFgyWYRPk5hEQSQOlFIGJrRcmpDkUKSIxFW3rBRGqiRkW6JplEZHJyRMOj7kQiRqxEyZ+NRO/Tk0e2TAZIouBtRFAjakU+d+pHdl6eR45vPEe7FaRECKqFRrLQu0WXB2REW3xvRNWk9kajhAFFAa13RPhee0YZD5VE9MQSRtlrvEQUQ5tEj5VkRCqVQ0VKvn5E8ISARCjxVkZnRBZGkHFURdmoMEQWzw1FQdnWRIqqeEQbCl5EkFNdRB91R0RFvIBEWU47RAI1i0RzabNE62lHRK3vTURdsupEivjoRRDFjkXmD4NFNlaKRA3Dq0SUOqFE4vj/RRsvi0WCnTBFE9/WRKmYWERDP8BEnQUTRioBhUVp8wBGX9guReZKSkVb/VZEQfqXRGjGQES0NElE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - RgPR0m3BckDA1KvQUMJyQJ64MoXnwnJAerPyQj3DckDHiR/+w8RyQI1XU7hZxXJAkfaod0PSckCqHLIneNNyQNCcTZth1HJA3EQL0M3fckAc0RfTtuByQL9Y12Dk4HJAyDGoylDhckACCKNH/OFyQMK4JnJT4nJABCNFro/ickCVUE7+JeNyQFrIk36343JAwBI8g0/kckCo4byIyvFyQFCJv4p38nJAyr/+wZ3yckAojRVuEvNyQPWRlXp483JAnMlDr7jzckDEV9AAo/RyQLrIiEbB/3JA8KyMEo4Bc0Cgp7B51gFzQDAkWWg7AnNABhjU184Cc0CUh165+gNzQDqbGgwJEnNAPDywubwSc0DYV5W++hNzQBrYshRNFHNA3hDrfncfc0DHA5B3DSBzQOHZQEGjIHNAw95HPDkhc0CrBOARZiFzQLyusjkYInNAwck2o3sic0CqG3tsxyJzQLRNynMPI3NAgHlZaAEkc0Bc4wDxziRzQNq/bGFVMXNAzq3W3GYyc0Derp1apzNzQGhPjMb4M3NAUfkTKjY0c0D8nBCA2jRzQH177+i3P3NAhofvNeVAc0AauQ73d0FzQMaqROq8QnNA8zbAO3pEc0A0KUMUnVFzQCCvmC4PUnNA4opnz0FTc0CGNYR2o1NzQKiEvgd4VHNAGtjUBIdUc0B88cIE+l9zQARj3d+LYHNA30scwh5ic0DUW2+sOWNzQP47REKwY3NA/DIrac1jc0BUdKhY3XFzQNmwJXZQcnNAMrYgBWVyc0A2tXfZTXNzQLxM3j1Yc3NALzNj1INzc0Cm3t31tnRzQITDRjdMdXNAVGcDgniAc0D20Vbmo4BzQMRRg05egnNAcjPU4vyCc0AuuFIOkYNzQLI5VT1biHNAeY58z4OQc0CRCyYwTZJzQFw9P6khk3NAyOmKns2Tc0BSQrLwYpRzQIgnP+r2lHNACjX6Gbigc0Buaitq4aBzQHSuvEZPoXNANw02DK+hc0AkT1ZbWqJzQJJBHkMEpXNAV00v4DOxc0BYW2wZt7NzQEI2i2EMtHNA1x1wUffAc0ArbfM9TMFzQGt2YrDPwnNAkJYe2ijDc0CC/wxQX9FzQGJSMqx80XNAzj/CW6bRc0Ag//uT1tFzQA8AkN+60nNAUNfzlVbTc0CYJpt39tNzQMtbdJdM1HNA5oPfPuPUc0CiQLTyOOFzQCJ8lcZh4XNAFBo8Uobhc0BMdUR1EONzQNxDOjVI8XNAflBjyGzxc0BpY+6zjfFzQBJiNfsg8nNAcO/teTT0c0CezeMDj/RzQEakyS7jAHRAslhlY0gBdEA4j+2qeAF0QIgJXAqlAXRAVu65+c0BdEAMwnnMeQR0QLrdb/AiB3RAI5mBXH8MdEACIpv9iBF0QKTj5U85E3RAhsZFrUwTdEBLR9XbSSB0QAS1sH1qIHRA5jcJHrkhdED5V0rDVDB0QL4lxARIMXRA1j0dcJgxdED2dKMTujJ0QNDS2QfrMnRAIPzm+hUzdEA1mTtdIjR0QEAcv0TjN3RAtIDTacZBdEDSXG0lfEN0QOhpLKVtUXRAexLEsWZTdEDgbEN1YlR0QFkY3lv2VHRA3G1fKItVdEDIp6oHH110QII3HSa1YHRAfACR8wdidEAS3TPnh2J0QDByPixxY3RArtnHow9kdEAr6XC8TWR0QMZ6ZZibZXRA3L00bSNwdEBwA1ILZ3B0QOBhkN1AcXRAgH03t3tydECUdRdG8XJ0QAcdWUM5c3RAPqXu1Tl1dEBxBJV194B0QLxS4iRPgXRAOAAlpxWQdEC+2RrlGZF0QMiP2ikRm3RAWM39iPCfdEDCao8io6B0QDAe56nQoHRAGiVZa1+idECwrAMXuKJ0QGI6NlYPo3RAe+bHqvuvdECB4rMKCrB0QFiMlUnAsHRAdNq4vm6ydECerc4chrJ0QJgkqezJt3RA9lCH9uLAdEA4yTY6/MB0QKEZ06J3wXRAKPh6kAzCdEBOBDuGuMR0QANu5Mr7znRAcFyK+8rRdED+NAN5p9J0QCL9N6I603RA2dMfgOHTdEC6Y3mNztR0QNw+soi34HRAumr3TiXhdEABVUCdt+F0QAhJycb34nRABgJLWUfjdEAea9mnjuN0QEv3xkxQ5XRAg9WfTcDwdEAPSXyYjfN0QOSr1paiAHVA92C6wcsAdUDOM35CXQJ1QGlsvA8iFHVAOr+wT60gdUAEAogVnSJ1QFXcm/woI3VAhXjss6oydUDBIAEuQDN1QN6LkWHMNXVAzNZwzHVCdUDIcufm3EJ1QLYn3iRgQ3VAVkKE6E1UdUBhmjOpd1V1QGrxUQsNYHVAmicBqjhhdUB4Q+8rG2J1QIoP3TliYnVA7h6SF45idUBS49Ybh2V1QASjIbU/cnVAdeVWBIJydUA8SXRuJnR1QNsgWliNdHVAmhygA+aAdUApgNtEeYF1QFTLKPetgXVAcFV3UjOCdUCq+BrOkIJ1QIMqnR5Og3VA5P8qvqSDdUBliyx6m4R1QJj+xQ6NkHVAUzjn2syRdUCuQCaugJJ1QKTdrtw8k3VAkrYRvrmhdUC0HX6q+aJ1QBLgTV9Io3VA8PxHTKOodUA4NpHH/a11QDqq9annsnVA+cH5TM7AdUBCIFCVYcF1QCaC1jj3wXVAdBfPRszTdUC2o5LND+F1QMg4UM5a4XVAOghtUqbhdUDK8tqaB+J1QMpNCQs683VAuV/F1hf4dUDmwz1tJQB2QHCw22JHAnZAc4YmBc4DdkAe3Ir/VBJ2QHw0FmxTE3ZAdE12Jk0UdkB+EIPaCxZ2QIChXNSvIHZA49zA7IcidkD2UUkbZSN2QCt6pASQJHZARTeiekkrdkAgkH4oHzF2QJCj7z2UMnZAalzMi1EzdkAc0EBmujN2QCwGQA6eNHZApoj5rEtAdkDIk1ZHXkB2QKggpDPxQHZAxgSo1B1BdkD1GxUSbkJ2QLIGc/LHQnZAeqq+jXlEdkDyEFMSzFB2QO6RdiQSUXZA8b++4/hRdkCuX0mCylN2QBwwkvHMVHZABDuIRBdidkBhTimt2WR2QOCGqtLfcnZA6LlPCviBdkCsDEO5jIJ2QEzug/APg3ZAAEsrxo+DdkA+n7M6tZF2QE7o7gd1k3ZArtqy+7qTdkDX7wwODqF2QMj8C+NVsHZA7BocRMGydkDd+6hferN2QNhlXcwMtHZALCEFAXjAdkAeREf+TcF2QDKIuFrQwnZAPDj7Es7OdkAGRmnLL9N2QJDrz8d/4HZAG2+bu/LhdkBhU/j3j+t2QJes98uR83ZAiqErbUv2dkB6BHpReAR3QDZzlrQAEndAz9vNt6ISd0BgDXEIDyJ3QB54w8foJ3dA7YdM6rcod0B4A9uopDN3QFp0AwvDNHdAoMsw2gw1d0Diyp8my0B3QKfOxJScQXdAbHzej5JDd0AJYXc7s0N3QMQr7IgmRHdAnSj3oBpFd0CLUjGXSVF3QO3yHuiRUXdAS9yNSndTd0BZMXIXoVN3QHqc4hZ7X3dAviSXpGRgd0ATs4tLEGF3QHrWWyOOYXdArD/QMThid0AY/CSaiGJ3QO7mg+2FY3dA9k2UTyhvd0A1sy8ehnF3QFQqZGigcndAMAMWU5F0d0BiJSMO4Hd3QCSszZn5d3dA72sOwEZ9d0BfmQ/JaX93QHfuSRxNgXdAo9NrB+OBd0DKcrqneIJ3QCQwfqPLkXdAzEpAcAeSd0AMDJE+mrR3QJ6tbh1D83dAPTdPMX/4d0CCajZwRv13QB7elcGgAnhAFNO0a+cHeEAOq32o/Qd4QPodEOpCDXhApuNjZ+QTeEAMeWR0TBV4QA524blsInhA0ZOP3IYjeEBIkg7I8CN4QOitQyc8JHhAVF/kFmIreEBzEcCzZC94QDADazkYMHhA7bF5/kkzeEBomegGVkN4QAi57OMSRHhAGFLOSXlFeEBO0TT/hlB4QKwlOQjKUXhATp50wxdTeEAJeJar9FN4QF7IeWWHVXhAKA48qoxbeEBif4nj+WB4QBaV3+K2YXhAtHMRDbhieECAxkdJ5GJ4QEzWVD7nb3hAre0r9XZweEBIhsCn13J4QAi1n1Y2dHhAFm9532l0eEByU6Uai3R4QOmLW3XHdHhA3mUAptt0eEBWUVnc9nt4QL1xODQafnhAZ9CrXz6BeEASWKDnooF4QIJ4hAz+g3hAsD4klZmEeEAcCwrTT4h4QKQnASYEjHhAblAWDqaNeECYD+Atl5F4QHpspI8Jk3hA9qJmRZGTeEARhoFwp5R4QIiWjFi5pHhAeJwyl/XBeEA9GaBUFsN4QNAqIX0dy3hAaDcQYbbUeEB0u6pL09x4QPiG9FNs3XhArsNC8QvheEBew+0JouJ4QMgS/nnN4nhACDTKqPvneEDmlolTAvR4QOS2zuGL9XhAmM55BKMCeUAAhj8QywJ5QNrdx8XpEnlANvBoYbgieUBs0kDu4iJ5QIh2mR1HI3lAJaYND7ojeUBWJZVl+SN5QFUx3sVQJHlAj/sPS7EoeUCQcg98CS55QAJaFqYFMnlAuumkVdgyeUBgclVHYjN5QPZxlre1M3lA/8Dul8wzeUCNzzUTXTR5QKgZD03lQnlAHNE1HfpDeUDirOEw2VJ5QCiMVCXLVHlAXoDK4ONgeUCMnokW2mR5QAwvHK3HcnlAbJuY2EJzeUCedTaSHKF5QHxFXrs3onlAtDTzOb6yeUDGrKLsz8J5QDokkl+xw3lA5l73eg3JeUBjdTQyWMx5QBR2LwtC1HlAqiGiSsnVeUCtBpy8TOR5QNjS7V0c73lA+py9WizzeUDJ0DirEfR5QCiSHoT7AnpAAaKpBPsDekDU72y8NyN6QFDwu7DyI3pAUnYhtmgwekDoivGUKjN6QJnIABAANHpA+yM2Cww1ekBwjP5VLTd6QOs4+wIyO3pA4o/tdDg/ekAWismCeEB6QO7H0PQnQXpAkGySIChDekDOMjvkGUV6QBTwMnbXSnpA9KQ171RQekBYdtmm1lN6QLFO2JImVXpA++Fu1SFcekCKO03frmB6QCIGEKllYXpApuBgPJ9kekBsqa8/InN6QPhm32keo3pAR97v9A6zekBUQ9ZdDLZ6QA4V2hkSt3pAtk8JCRe7ekB2KxcHGr96QGt7MF2+w3pAiJJlwRnGekBi1Mayxct6QIgf7DRAznpAWl+FgdnTekA9FXWlYuF6QA5UBAg37npADvJsNRfxekC4IVMiXvF6QDJ8BFhq93pA0JsFwyYBe0DSa5yDTAJ7QBEOaH8VA3tA2HrdBXsEe0DqmA08Kg57QBmUjWPNE3tAoPpraEwVe0BMKAepXSN7QMDN0pPUI3tAdcqjEFole0A+k2+YsjJ7QJqg5NLDM3tAQoM2ZKRTe0AmlO1hDnR7QNhD7Ky8i3tAMksGgyKVe0B8Q8ENVZ57QAqQCMqro3tAmOiDjQCne0AsYgH1fMR7QAzfpaN4xntAOo51RBfUe0BKoECVi+J7QI5sL07+43tAl47x9STke0A4RLPOlvF7QLWYZQ6L9XtAfkbE3NkBfEDQFePK3AN8QNOK/KhmBHxAlCP18pgFfED6bfgViRF8QEZT46jQEXxAV3L7kP0jfEDAA5pkjSR8QLR6xm1YKXxAaD49ra0ufEBuHCiAtD58QJ1AJ1nMQXxAeISQ6UdTfEC6t/p2Tlt8QKQrMtU4Y3xAgpMGD1djfEA3cPY6WGt8QKSwM/4Dc3xAOJH0nW2CfEAEq58nRYN8QCAa/enDjXxAqWX8kx6TfEBj+vWWLZd8QDaaM3hnmHxA3RjQjcSdfEA+THE2HaN8QO/ysEu3o3xAAH8IfvWkfEDsd6meerR8QIz9YFMSw3xAYkrpU83VfEAmmsHwI9t8QETP70n123xAX4RkYFfifEA0x6k6D+N8QAQjq9Zn6HxAHM/QgRbyfECO0tzPUvJ8QLXW2ceE+HxA9GUtkAACfUBqc0pqSgJ9QPwdUbJBEn1AkuLLUPMSfUBF5XztVhl9QDxTl789In1As9ch10g4fUBSZtdZnz19QDenR3QgWn1AklDEwDJtfUASHIgdL3t9QPouKi7agn1AgozuGPqDfUCqUURr75J9QEPtROAklH1AXgnNZHeifUCI96rKMqR9QA0BI7SBqn1A7ttB9ji0fUDds/2je7l9QCKr1XDmxH1AqD8tPvPUfUB5kfgIPuh9QIAj1g2C831Aer/bAJL1fUAbAvDbkfp9QP0mDRM1AH5AURCkj54CfkCBJkVGOR9+QNY3HgjcI35A8h0WSiImfkC4VYnmf0N+QARwbP/BS35A5NU+jVNTfkC/x1mQFFR+QJ8SVt6JVX5A6EI3vjJZfkDfPSPCWVt+QEF+9U2QXn5ApDCoRkZjfkA+xvWVZmN+QNB0Lvg1ZH5A8gPDmWVkfkCSUDPLTmt+QIovLGFadH5AeJyJtQV2fkApQdF/pIN+QEwkRL+/iH5AGKP3YBeKfkBGSQ8lYIx+QPneKh0Kmn5APO9LgGabfkAanItokaR+QCq2OjZirH5AAjqJwiOufkAlVR2qeK9+QFpT2jdrtH5Au7Xl3560fkDDAqx3bbx+QMrB9qJlw35AZq4OBKXEfkD4hXaqz8R+QBo9j1ERxn5AduVNh87IfkD213OqbMt+QEg6+KsJzn5ANQ2QI1vTfkBwCXKgYNt+QAZ766Gp835AEITmVtrzfkB3JZW8zxt/QPY052TYI39Ai/+DzTYsf0DY7BdW3DB/QKUAZ1vlPn9AXo55OxtFf0BoMjqYsVN/QCcgChGJa39ApKIY+bdxf0DjtCtRLXJ/QPMoX4HodH9Anmp2SrKBf0D+Ylp2PYR/QKLLWcRjkX9ANxbhTKWRf0AMMLHF85N/QNTMFSNeoX9A9gUaMRGlf0CXGXus/6V/QJVRUjxVsX9AqNVJgPDDf0BXPQP0Xct/QH4FQbZCzn9ALq7k6WXTf0CoL7RTT+l/QMhjZADe639APmKbZnj0f0BSpYwo+PR/QOFJ9LXQ+X9AbL0QJ0cCgEDQ3vRlIQWAQCA0TMx2BoBAGtIJlP0KgEDa4gokuA2AQPXjiM4gD4BA0LN1iMoZgECKQc3sJRuAQGJ7Ad3RG4BAmm1TrCQdgECeNT1LzCeAQMjG9LLrKYBANM5DobksgEBzUf+vZC+AQPv6GWkMM4BAKAodpBM1gEDG1nHkHDeAQNyDGObIOYBAzTzcyyc6gED2jgdXdTyAQCdKGKsjPoBAeMPpoCA/gEAMZci2zkGAQCRIpcaoQoBAKh8vH4FEgEDGn8kke0aAQNDPMRX1SIBA4DD7h69KgECwoqF8/02AQBBfH5fmUIBAxk49HRNRgEDUH0PepVWAQDmdWZwlWIBAHAgqWuZYgECfvz0rDlmAQKxnHpQgWYBAGDbYGalZgEA3jW1q4FmAQLsYOLAIWoBAVhLP6wxegEAImDA0LGCAQHQj4tLDYYBAqb2Pfg9igEBnmW2lbmSAQPSJWyqhZ4BAplM/nRtogEAMSmWXT2qAQI9WdbX6bIBAu81tdipvgED+3YxFx3GAQN5ZTS4OdoBAuHBrRCZ/gEDAkkqZ4IWAQCpgyZtui4BAVPOdfv6OgEDp7/jfHY+AQKbBmJHglIBA3BrZ6h2XgEBm72fraJiAQLZljc7jmYBAMcTiGJiagEDyjopj0ZyAQPt/jig5noBALhGhHV6igEAjkSgmgqWAQOER1c04poBAfINrI/imgEDeLDrzZqiAQE7rpzcgqYBAhIR0B4apgED0uNnhfKuAQA6ckSETr4BA0LwpbrWvgEBfGjkNcLCAQArgxFXYsYBAIqWwnnyygEAsloR6lLKAQM7y4ScZt4BAmFzst4G5gECJxlml4LmAQLtGEuAGvIBAzIwvXga9gEBiHApSe72AQIfmgZezv4BAk3WXPVLBgEAko17HosGAQFGZfEWewoBAW95odT3GgEA+UAkHU8mAQCRrOni3yYBAcKzXewnPgED/ZEBJTNGAQJYVmOhg0YBA+gwS/pXSgECKn1BcZtiAQMacDoYM2YBALPEYZknZgEB5074znNmAQP43489C4YBAPxt1yTHmgECsDyT9XOiAQCCM91T36IBA7oLg7D/pgEBkgXqjSO+AQNJRfJs+84BA7LewA2n6gEAt++qPP/+AQFptVeBaAIFApm68Oz8HgUAtAeFzPQ+BQHaUn5fLGYFAnTd2WjQfgUBEkOTcNCeBQIhM3VyzJ4FAxGglJ2sqgUDUpxKHLy+BQOYJ94UzMYFAkE33tb4xgUDIFSCOvjKBQHpBMfooP4FAuvTDCsxBgUDujCTtgkKBQLBFshDSRYFAQB+jBgZKgUDD/MpgClKBQCTG3tvoWYFAvIrwMOVhgUBEAZhgsmaBQMEHnxvAZ4FAOiEwTrRqgUBWbOwMC2uBQORei8rebIFASHJEqcF0gUCiP25Zx3aBQIDdElFud4FASftvtvB5gUCXdECuG3qBQFZMZVA4eoFApCZ4Vdp8gUBz8O15an+BQG8zovGdgoFAgij1KniEgUABrs35PomBQLobT/WmioFAkhT93IOLgUBREjl3VY+BQBJ14Dw7kYFAvAqKRzuSgUAqtZNxkZOBQOM6XaImlIFAavv+7+iUgUDBRgL5PJaBQPxSGI5Vl4FAuJ0nFZWXgUDBLokO6piBQF6VivPmmYFAhCdRmZucgUDIQD0+RJ+BQNIlvWbooYFAvHZDDd+igUByFigfB6aBQH2/du5sqIFACMq+MBOqgUB3TXlWSq+BQAzVjneIr4FAxkh9xm2wgUDcJnceM7GBQAC34H9GsoFAVHGujrCygUAPXxgo2bOBQBnILg6wtIFAHqFt2Uy3gUCy3km838eBQPLnFcADyoFAUqH/ILPMgUAwIBuHYM+BQMvETGF804FAiO7GuTnVgUBUeNyj6NWBQBEqE4vs2YFAwGo0+XfbgUB6BoRjztyBQGCQ1oTx3YFAehdob/XhgUAmd9HkauSBQIWauwCy8oFAuJ4CAO35gUDmDDNya/yBQEiTm8fv/YFAXxXqmfQBgkCguXP11AeCQKZ9GbLNCYJAw1jZd9ANgkDEPvMU1RGCQN3NAUXMFYJAS/dKWdgYgkCm3RA2zRmCQG4ro/koGoJA8huvzmQagkBan2Y5LB6CQA2jujTXIIJAsXuQDjIigkCKZXvW1CKCQMxpotczJoJAGGOfuNEogkB4MaiBnSqCQGJ0MxHLKoJAdeZksqIugkByovs13S6CQC6A1hjRMIJAfhkkL5g0gkCUwt42qj+CQATDYeNFQYJAImUQPaNDgkAZ7wM13U6CQMvLDLc3UYJAzAwz8txRgkAQcD0SCFKCQEJwh3N7UoJAqnEb695VgkBdHSctaVqCQJhcT6bWWoJAm2EntQpegkDOAtF4NGKCQAb/6SM3ZoJAdPvfGGJmgkC+GKzSm2eCQMZEzLVvcoJAeHSKc2h0gkAaYLTz3nWCQBy/+fkDdoJAzz9NEnJ2gkAgGRUqQnmCQBzFfj/jeYJAIJ/hSnd6gkBpndbp5H2CQFhTaYHTfoJAgvUOk+mBgkDkslKTJIKCQPkurn/QgoJAHL9BHXeIgkC8jzP+QomCQEZfLuEPioJA3N6VFzaNgkCSu/r8QpGCQFCW5TBmlIJAi+Au4TuZgkBXi/nFVZmCQLD1/dKpoIJA3mRBTg2hgkCM5YADO6GCQJV7HhjooYJAGl8WQO+lgkCuNc0PDqmCQL5yhM8zqYJAKKuRg/apgkBk28oAf6qCQNTBwHUGsYJAREWv3uzFgkBgh1Lc8MmCQCAhivAryoJArgXc0X/agkBwVH39cN2CQHRZwA954YJAeyPBdujigkAUpyxmCvWCQE4vRD35BYNAYNrNQaQNg0BqVn5JOg6DQBk4MVN5EYNAxq006z0Sg0BaYsqFdxiDQOizz655GYNABHGBrXIhg0CMTkg4jiGDQKLnijZyKYNA3aN4u6srg0BT8EQyajGDQBr9qLh6OYNAYBHqSBdMg0AwMm37W1GDQGgVfhY2UoNA7HbdqNZ1g0D+J9yhxXiDQPLgpW/eeYNAlpUjXAJ8g0D82ECEw4GDQH5AHo3ggYNALgpZuxaCg0DuKMJtSYODQLuaMI2+hINAVNiHVMWFg0DeGr3VPpmDQBSHwBezpoNATKEe2X2og0Cp5gDT96mDQCjQUyTnrYNAAOlQ7Ouxg0BwgRnV4rWDQB8V2m12toNACFiBWdbtg0AlA/zw1/GDQPKNJGXU9YNA53sGAk4RhEBqizOUqUKEQK6OE5RiSoRAxq4JQw9NhED4QM/suU+EQCRIuaHYUYRArcIV321ShEAIEZ1YzF2EQA5li66gYoRASpAQNv5ohEDN7Yic/nCEQPnhlBrKd4RAnEi5GPV4hEAHc84Bd3qEQOz2bvgjfYRAdO+oLtF/hEAAGPopgYKEQHLKYCMehYRAkqQN+8KfhEDsJNDbIaWEQLz75749soRAMF551sq6hEBW+GUOKLyEQBD2tnJ4vYRAxMMdDqzChEB6Dr1hINOEQLKN62wR1oRAPtKhN2rZhEC5rV/QFNqEQLx/iecY3oRA2nVFeGrhhED9rkNCDeKEQMaIQm3R54RAtY2dR2PphED6rRBkfuqEQBNJ+QAV7YRAqPdcxyvthEASUhEJx++EQMRKFlM18YRAzkQ/0WDxhEAkLyflvveEQFq0CKnb94RAbpahHQ/5hED5VS2yL/mEQNu1QBlY+YRA7p5JbU/6hEAuOL+PivqEQMjqryxD/IRA3F20EzP9hEAaUvgIef+EQHSLyMKM/4RAUS33jjABhUAYSJKnNAmFQBLKSrFFFIVA2MML+d8VhUAnnWirPhaFQLBaTGH2FoVA4CXJuXoXhUA4TRztFBmFQHLqjVWvGoVAdObnKUochUAo+iMc5R2FQK9gNcWAH4VAVwUyAR0hhUAKT6Vw0DCFQB7GaauHVIVA2sMMKaBhhUARuf8tS2aFQJ9L/Q6gaYVAoLW7SVdqhUA1Ddsaj2qFQEDcfMa+bYVA4XTKs5hxhUDGH8tBr3KFQAByIFO0c4VAvMFur7R2hUC+Dz9smnmFQHrq2RSTgYVAqMaPCYKVhUAaSuKGgJqFQKzO9Ps/roVA9JtHIkOyhUDEbfmCSLaFQA9YSmAEyoVANocVXYTfhUBsGm2bnhKGQNRqnEKYKIZA4Pv/iDsphkD/kTE7+DyGQHaT8sIPhoZAnONqUia5hkDlfXGX08aGQNa0ux/CyoZAriMMhLvMhkAiPr9ymM6GQGRXu/Vd+IZADGgcyIL+hkDpx7YN0gKHQKSmcZ2QKYdAVLXF1o4xh0BMxgxziDmHQLrWRnVfQYdAXUQlzolBh0DWBjANTI6HQOqvf4THsYdA5A09Zsa5h0CA5LaavcGHQFrMivqiwodA2irC3cDJh0CITC7CtTqIQHF9wgALP4hAFjVxlBFDiECEwRFjpU6IQDp+iL/9UYhAyKE0k6hSiEDIRdbrAFaIQPZt4fysVohA6+WgYgBaiEArrUF0sVqIQPkwuCBU8ohAMlRYvVP2iEA= + KBZXds7jZUAgFMxS+VFwQKPid1q/AnFA - + - iqLWRb82gkRlPi5EVE3jRA3Rs0QZxY9EiKusRhuGWkQoC6JEE4ahRKvKAEU/Vl9EieRMRBtXcEQAih5FzX9MRpLEs0Sl9E5EDIEIRVy3P0eR20FE5WL5RF+YS0R290dE9NeVRN1hykTQx6FE70dGRfCyh0Vf83VE3Q//RHGW9UbjsIdF/yh5Rp8IO0U/II5E8zzeRC8FgUS6YUdEdHBRRsEzTUQu0TVEWV2BRJi9ZUQrqd9EOXNwRN35mUWP52pE2/BFRC3LNUQHSuxEFPBVRA7dfEStbsZEwglkRIchOkUmAYREPM35RS2vQkWfDSZFb/GqRNYgd0XArGdE30GsROXrfESIxVNENsVtREku/0QGoFBE0/RLRFh+fESPuchEzht6RFobLESvIFJEUKANSFj2hURS0dpEGuaORuMGPURDN1pFIqqLRNX4p0ZKyKtESXa2RAtBPkeh07FEXKFwRO+onkSokmZGzIGrRSzdGkQZKBJGuVRiRMgGzEU92thEe7AaRV3DSkUlIxxFYcuzRA2gC0Y4UPFFEQTgREmKWUS6TFlEijN5RJpiB0WQwKtEdxeXRJaahUSxTEZEBtN3RQEpXkiqf4BGow7qRP/Ch0TR/5ZGG8WiRD9c9kT63LVE6n29RJ7VWkR63LZEpqjqRLbncUeMLuBFfFyORBtGPkRXtahEpiKLREp6lEW1RA5FDqveRBuRcEQ1K01EFhDuRLuEokQP1l9EAtfHRP+BR0RR27BE5I+KRN9kMESPy2NEo/aeRL+OVER+f5REXJgWRRKyPESOomBE76DJRJi7+kQBi9tEDUTGRRROJ0SBYV5E7Ss+RBe/1kQHOjFESbidRQkaOUQzTEBHdrdxRHT8SUQvJghFN1+DRGZu9ERPb8NFjwevRUneMkSVKqlE9h3jRBwH2UR0PTJF8SGKRLKWpETMcwxFEymCRCM+pEQflf5EXe07RbGMdkQNvvdEfGYlRVRVUER66vdEEiDxRPkZ8USr0EpELjimRM+JkkT+oCBHzphRRF1T0kSEvHlEM9+bRKFukEWlH4pEAiucRVfOtEQo+bJE9bmDRBo3tEUZPFZErn+nRIbrYkWOIPFEXgS5RAh830X84TdENklgRPZQ20QVpTNFhvxORAvwekTEBE5E2DlyRPNYyESVN9xEuiziRHE6Q0QLSIlG8CGrRb3bXUTqN5NE4rfvRUEIVUT43+1FhnHUROtLlkQ34tNFl09DRMqJr0S6E4dEo85FRQJUqkSV7WhEJ86dRBAdlkQATFdEDViORCkKWUQMfQZGx1BtRSflsEQLIHBEM3u+RR8tZ0XdxbFEZuSTRLPR/ER4wc9El8uKRO5PtETt+1pERmqwRNucXETuk3JFSWOORNdJUES1G9VF/KcURYTMlUQb/KFEmu8uRTrlRER1aCxGhKZhRRdYqkaPoHlECgiWRPowxUSDUK1ENo54RLYJ5USSxHREy7t9RY04RUTuFC1FmbBQRQIqUkRDTrlEqKX5RBHsPEQn4ilG5AjKREadEUW41jZECEexRADUtUQv291Etwz1RDwHO0Quy0hEObLlROQ0e0VheD5ECC2lRJoLm0QTLnNFz7VqRDQrckUf3V5Er7orRRk8A0Ul1U9EhHSiREl9LES2vC9FeXiKRPQuNkRVyohGaqxfRCIYO0Wwf3lEoVdyRIh8xkW5f0xEIXHmR6MwpkSq+5BGjsffRJz/XERoFZRF8I26Rrmql0V/YUBGh64eRjqPTkR4jo9FJflNRICBjURy4O1EIUDERBGoMkTC0c1EBUcFRdgbmkQHpc1FLmtyRJ4LmEQv9DJFN2eNRJjIjkRXBLJExW5dRAueF0V/uXNEyHBjRPlnWUTS0aBEGy6ORHdNzkbqPyRGLcMcRaNinURgo6VED4GhRQszakQ/N3FFUih6RBsMukTO9jNElfsBRXJbxkQSvV5FiacqRhmfHkXBoztFDXw3RrdC3EW2qq5FzeWmRLsrUERS38tEQcFERB5NF0W8PgBFBbSTRXEXM0VBRqxEQjNDRJCCMkU0O9tEfGZsRRH2P0lrqJxEIrnGRMpuXUZ9QTZE1C9JRKGVDEVQYG5FYI9ESO2rNEah579EoiQhRWpfOEUkEV1EQbINRYqPg0a5L5FEJmw9RVqhsEWEw9VEyBENRSuPrUTYtoJEa/KDRGCChUVgLpBEgLKuRGnRd0Vu6rZFXJZVRDv2QkWsYshEOb6DR9c750YuYDVEPpQ5RTxaKUTu9AxHkuhvRQSXskSGKIpEr68FR3eCOUSX54NE/NmERDk9nkWncdhFaJTHRKJ/GUWhLE5FWGOMRFQGaUQDMrdE9m+bRPVWX0QsqG1EWy+JRekvhUQM1NZEJXwPRedRuESoQWRFhWKhRGQ1XkTeqXpErWybRL87aERBtYFEfDQ3RXbjkUQNp+xFknoFRgwI9EZp/aVENXOsR3WKzEaujxZGLacrRQM+mkQT/INExxKLRCgZm0YekE5E6faZRMaDSkQcvSFFzYOMRZwxlEVj/mhEoVBXRNk310SI3upEAe0hRlPCuUV3xhtGThWORbBBPETzhexFg0PSRASxDkUR03xEnWt3RPCto0Rd3NRERcZhRPMCuETt31FEWyNwRCkQ3kTPWE9ETvSKRSfirEQhUoREjZAbRhMtfUR/K19EVINYRTQucERinmlEup5WRB5QnkQnjZVEuy4VRbUUqkQjFtVEIfeIRKFBg0QhyLdEx6eyRQZuAEWoXbpE4xNKRaTajkV0A5VGBT0pRlcwP0TgIZBERN2YRTE2qUS/m3pFuNkgRep2d0SfMz5Fl7Y1RHffJ0RsCoJFDH6pR1Vy9EYLmApFXD63RaI/zUSi491Efpg+RJUqm0Sq5EFGqpAqRnPLjETgUhdF/omqREHJt0SMYzVEvwJxRPnDr0SD41dEDDZQRJlgf0RKp8ZEnEG1R7lCJkVQNKxEEQkRRW2pgkZ6rUJEYRk9Ra0UVEZVphlFGUzvRPr9kESnwKxEJhA7RDlw4EToq25Ebv14RNOxHkVIP8lEToVORFQ4oESbKKBG5/ifRN5slEV+6kdE605JRLFGnETtZRBG3PtURGr7dUQoGhZFwi+9RFBOgUX5aSRF5WxiRS/7oES8O0REsKx9RBEEdURqBYZE6lzuR2INL0S49ohEJghSREUTTUcT5UNE7x7kRR5YzEX7jmhF0czYRKcDrkX8uolExRUkRIAgqESTuFFE+CthROMRj0QYBEdE6D2yRK+CEUil+yhGtGuqRJ+cXUSMpHNFJNX+RjoHo0RoY45GNtBnRba6JkVDMWJENWh6RA7ls0VSf2ZEbL37RFJstESF1i1EERs6RVhEXkXQACNFhMSDRKvZbUR17j9EgFRpRMV+nUQ0219ExLJtRf9+WkS//oFESpCdROx91kQpFxhGoQ57RMVmP0RXtk5F04WHRAV+fESRyBJFntwqROCJZUUDAIZEsTUTRaL0vkTabktEKfP6RB54yURk32FEQq57RAZvOEQDLY5Eg1iLRBHmZkS32mxEi7LuRK7w0kQ3ZKBE9wNHRBrLY0StXatE/c8ERb20+kS2mEFEuiNuRDNodUdHRlpHZjPLRMKjgUbjwWFE+DOkRTpTnUTRgvtFln9QRAK1cUT4y5dELX8MRdouLEQpmhZF40E9RmhIqUQyAI9Fo6tqRAqndkVkLehE+BWSROzSsUStuVNF7t22RP9gQESRTQJF+Ih0RCYX1EQAWAVFytGvRLaX2kTKVIFEQ0oQRVwyN0SJ2nVEWb2kRJvF/kTeUTREzPySRDfkEEZeIL9E1CkGRf6eh0SsstdELIqwRJgLVUTsoZdEC5wSRYIBhUQ728REcxWERBHPnURcP6xEMJK2ROWlS0QSV59FYV+aRAbF7EQDmhhFrPyYRAf1mESntnVEb+tRRBzcjUSn29BEbStNRMO93US/s1NEi2xvSN1NNUTDPm5F3sp8RFosxkcRXWpEUDNqREvCWUdb2mhFa+FjRNEiCEbpo0NECCkjRnnsNUQJ2i1FHUF8RKtrGUVvXI1Eu5ejRPPtV0STCvJE6lLkREwcTUYDMExEVJY/RelMVEUl10BEvN6tRgQ+pUXuC3REdCVORObTBkV+uVRECviZRInHT0RovIFFt4OURUXniURzrutEu4QRRVMCdUQ535BEnzo1RN6sLUU5j15EC+G4RHfd60QBQIFEGGdPRtZpkUTdwTZGh4BARCGLxUXX85lERCqARMrxlURsWJxF4LRMRKNVakQQR3lECcpQRCOY2kWjgq1ELUWoRZoyBkac9IlEZMXrRU5kaUWZoM1EzXWJRXnqMkXl/EJE+SHZRFJIi0SXbzJFSFMYRUMjZEQ1vjlF2G9fREYf0EWCQklEnjx5RHvnXET2pm5EKQIcRGbPWkQoPHBEcPXqRP+GAkW7/YRFoFWDRdEAWURqGRlFqTVfRL87LEe1UthGiAelRKexf0QDj6pF9P6yRP8MUEQjUpJEpC0lRjSMb0QdYLFFbaSBRDMgaUTbEq5HKGkdR1ld9EVnoHlFH4kwRjsvkERlbtxGkZf6RG4ickaWpYhFeLVeRTrTF0VlLVREknEVRblu3kS4A3JEALaDRJNBSkQmfE9EMhhIRDo1TUSLOl9EuT+MRPwIckTpOkBE7EadRGp+RUS2OINEEol8RIctVUTFQqVEWTlhRP6+FEUs1QpFdYFvRGhtgUTQYGNFXwlQRMX3tUUysoxELDAnRXKiakSYUsFEt7yIRElHYESfMnhEbg5VRLvHRkQLlslEENBPRLG8skcIeVxEkSKGREh/DkdyYXZELlSzRiG4s0SO94REDiSjRd4+yEUB8VBEWQqPRDtHBkU1kslEGU5YRMAcCUV/bpREoK8KRcHPfETalT9EXraDRLTinUQ3wOFEjKVuRJ6/vEQc0oVEwCKBRM1j6ETs7ddHYym4RP7dNkSJhS9H6SbTRnDT1EQl4gtGr400RFNqEUUuPVVEkIl0RNfvUkQNlFJENgISRf+bWUQ3MIlEEc5NRGTCjER12MhEMe6VRAlxsUS0NI5ED+9jRAiQkEWTKj9EGIl0RITaMEX/HgJGH3p9RZ6h0kTSb1ZEzMWvRQCXR0W++YpELv9iRMtogURtJjpF9s5eRd+ubkRrhGFEJHlaRLD7hkS1PqZECjzNRVEGFUVjwl9H0OC/RCo7UUfnbvpGbLr6RaiUB0W11H1EKf5ARC9TjETe0JNEDNl7RFE1LUQj6WJELqonRIK7CEXzN9ZGlLXoRqxui0bEw5VFqRZaRo9+70RKqSxFumgCRkbrTkVj3k1FNCcGRQ2jQ0UOfUtFnzYdRfEkkUQm6klFtWwZRYs0oETwNl1EnOhLRILa3UVGxw9F3t9+RbUTdUQGokdET46NRNgNS0Qu76JHRuYDSEgpm0To0cZEXuvqR/MMm0fKjTlHiZeIRgJup0XSJQRFigWLRI+7ZERLUm1E/iMGR0ZxnkSP6lhGLI93RE2xc0Sh9KJEWsf5RYqTk0SGhVNEupOOREC2AEWI1L5EY4eBRP7hLUQd8zdG9RKmRZF+I0UsgYFENalGREzL9kSHUkhEwiibRCODjETSC1FEzOHmRJWUfUQwkdpEZU2DROHxYUQV+3xEug1hRA7SXESbvQFGEyZiRfUvN0VV4o5EW22eRMoNf0RP2A9GxMmkRTZnMkVqsIlETBiMROXaZUSYh6FEVf2VRGHQ90XbY3VFORHWRSQ/FkVbukRFMdYERaEQRURhtTZER7NDRA== + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - TnBgwW7BckAnN86UTMJyQJwyb2s7w3JAhAkMLsbEckBVwPfnWcVyQGq8WW590XJA6AvrAUPSckCsDgDPpNJyQK6/fpnP33JAMByP4LngckC1sz+FUOJyQJrX0iKQ4nJAU3emKSTjckD4F9IETuRyQLaD0cDK8XJASrp88HryckAor52xnfJyQJBDQyvh8nJAPOjlFBjzckDDT+GDC/RyQLuymTCg9HJAbUSOk8H/ckAgmCi1XAFzQPYbYsWMAXNAq5ZDUdcBc0DM0vKyOgJzQPYLFIzQAnNAyNQER2IDc0CyPuKe+gNzQEIjiQ0JEnNAIfIYbSsSc0BdO11fvBJzQICa56IGFHNA05xaeXofc0Cu3rBgpCBzQBc7A5I4IXNAWjK+X3gic0DE65DTySJzQHLSh+kPI3NAskctpAQkc0BeK7pHzyRzQDgd+LBIMXNAIjccpoUyc0Dlv8SEDDNzQG0fSNmhM3NAFtDzKvczc0ACxjyJODRzQIRK12fdNHNADoBkOLg/c0BQowZ85UBzQPaYrHt3QXNAiDmdaE9Dc0DZ97v2eURzQO+EaS6bUXNATkxV1BJSc0DSyaaOqVJzQA62byq1UnNAPatBqEFTc0B79WjUo1NzQMoFPDp2VHNAeF4zRoZUc0Ama7/y+l9zQE4S31uMYHNArQQfCh1ic0AyJ+sNOWNzQDlshnKSY3NAy8FZ7E9yc0BteUMChHNzQKxOk55MdXNADk3toniAc0A1hofMC4FzQHBfvOtegnNAFLgkNqSCc0B/Np6WAINzQPFzHTyRg3NAomfD4IeQc0CgiC8RTZJzQKBvuJAhk3NAwBT5JM+Tc0Cd+h2dYJRzQJCrqnr3lHNAf/T4P7igc0CCEfne5aBzQHRKzqVPoXNAbQrii66hc0Bw0V+IWqJzQJzSrUmPonNAxO2PF56ic0B1F1XG6aJzQIjRPUcFpXNAXiceqdGuc0D0wSDl2LBzQHAO9JE1sXNAAjGdMk6xc0AhseacXLFzQGThahITs3NACOP1trWzc0ClBSzsDLRzQGHWJsn4wHNA86Oes0vBc0C8DJZq0MJzQNVPldImw3NASNj0vXrRc0D1L0F7pdFzQCVJZvjW0XNA7N/DwCLTc0BYv7Qs9tNzQDoD1jjj1HNA7udG/Tjhc0CuY/X5YuFzQMAhX0qH4XNA+PC0SMzhc0AFLtL25OFzQAzTdLF64nNAGYUXNw/jc0AQY7zKpONzQJiGTj075HNAsgdCZUfxc0BGW9G0cfFzQHA8oH+M8XNAGDC1yiLyc0BEjB5TNvRzQJIzp9/iAHRANBGzRUcBdEBO0XBrYAF0QEgoqMt4AXRAGKjo+qQBdEB6KoYD0AF0QNYW+mq6AnRABLK3BnURdEBMEijUiBF0QLVQ1iAVEnRA1gY1zzoTdEDuKsH0SxN0QLwCUbdLIHRAQA6rkbghdEDc5B58UTB0QFBKfjGZMXRA4mbOLeYydECgdfcKFDN0QPJ+x8DhN3RAkcGalshBdED2sTTb8EJ0QLdxZPY6Q3RAu5rrpXhDdEDAZAqbW090QJh/JOxwUXRA6qZij6BSdEAes8/KZlN0QNd2giX2VHRAl7QY5opVdEAWy5MeIF10QBYgwcq3YHRASQ/XpwhidEAch7Tge2J0QLYmb0nmYnRAPtMnprpjdEBYTe6ATWR0QPgnfBHSZ3RA45jW4CFwdEDUAV7gQHF0QJjrfPgScnRAG7TvxPJydEDvjz0TOXN0QLCd4E94c3RATfIzlQx0dECEqAxBN3V0QBKwOnpDgHRA3QwqQ/mAdEAYz7Y3ToF0QCS77FRKgnRAQneCWSWDdEBYlh7kFZB0QG6KnCzvn3RAisTWFaOgdEBSLFIJ0KB0QFiCxoE6oXRAvcfn0mGidEDyy4TouKJ0QBacEMQOo3RA3LvAQf6vdEAMr8o3wrB0QCQObWdvsnRA9PbFhPqydEDD2I4GzLd0QGrfHAfkwHRAKlJMcvzAdEAaY+a5eMF0QNo8MiftwXRAAkV6jQzCdEBegCHOusJ0QIo8n252xHRAp1wcsrnEdECytyQBy810QKrQ8sP7znRAXEhubs3RdEBKKylCLtJ0QAI5+DKJ0nRAQMFR6zrTdECsWnPOzNR0QO7+vbu34XRAjAd3YWbidEDyM6fc+eJ0QGLyO7lI43RAqj0dSZLjdEC2B0LPUOV0QIMa/+e+8HRAQd/cA9rxdEAgLCG8jfN0QFkz5dvNAHVAdI6YwlwCdUD9+kFXIxR1QAhx0+etIHVAsjRO3pwidUCGJHNoejJ1QLk9+WyqMnVAoL4N0ss1dUBMN50030J1QPrV2zvbRXVApglgrvRPdUDcbJ8gClB1QFM5c6mCUXVAhHXfoUtUdUCQW25cdlV1QPDccV4HYHVAiIb3AzhhdUCCtA7jR2J1QFqyPp9iYnVA6CEwqY1idUCwhlJXs3F1QHAVt2Y8cnVAthFy2HBydUAkCEXignJ1QBD+oQEmdHVAQLUj7Ix0dUA0Ki7M5IB1QO6EN3N4gXVASAdTmK2BdUC4iohMNoJ1QOhllRaRgnVAbDT3Gb6CdUC9VRNepoN1QFBHPWuahHVALHFW2WWRdUA8ClydwZF1QMQHUY6PoHVAxi2woOahdUDBfAEeSaN1QOxRUdGjqHVAqLL61wiydUB4jVaAzsB1QLBl4ltjwXVAKmGhAvnBdUCac9WNOMN1QI7NAm7i0HVAdGrLxnbSdUC+hLaHy9N1QIZnNt0O4XVATt4tgljhdUDirwx+o+F1QFw4NVsH4nVA2G32hjvzdUB4tBUAef11QIgL5HUnAHZAuFCcckgCdkBT6Thn0AN2QNvh195+D3ZAhEGi0FMTdkAWuXeWryB2QJp7XzeJInZAoiBXK5AkdkBgWsasSyt2QAw9bCGwMHZAju9kNb0wdkDcBAgSHzF2QCx3XAtVM3ZA4n/61pw0dkCqPdrbXkB2QNji/xvyQHZAktkO4hxBdkCkqrGwyEJ2QEpZ37V5RHZAnKWlwcpQdkAAMxt8EVF2QJDpgg35UXZAiBE6kcVSdkBKvl49zVR2QMZ/lkbeYXZAPs9gyxhidkDILOs422R2QEStuVDPf3ZA96IEafqBdkBwk0gHjYJ2QG2SaJ4Qg3ZATGHtd5GDdkCI4+xsu5F2QFAIN4J3k3ZApL6qibyTdkC6jaeQ6p12QDCXvLEOoXZAtNIJBzuidkCQL+T/wrJ2QIxG0T0MtHZA7jOs5a60dkD4B11idMB2QGJTv6NPwXZAY+qffw3CdkBStX/8zc52QDgcxOu90HZAIadNBzDTdkBaCa3n8uF2QGkzIXTS43ZALmVFSpHzdkDumGNLSvZ2QExZx9A0AndAirIPGAESd0CAgnSYDiJ3QKHqeulyIndA9iY1Vbkkd0AlkAR9pTN3QOigljsNNXdAafN5iMtAd0ButyUDnUF3QMlOhCqSQ3dAd1fHlCZEd0CEZZhDG0V3QELfDdRJUXdAwFyfYZJRd0CePvc+d1N3QIhwomooVXdAxzIacHxfd0DweAZOSWF3QK61RqCNYXdAAT0otThid0BmVBvihWN3QB5avx+lY3dAPi9uLChvd0CKODlohXF3QG71BNagcndAnBgb+0Zzd0DfWYu9jnR3QKYhKnX4d3dAFpxNr0Z9d0DKYthWa393QLcGFNFOgXdA5PNLLXmCd0AcCh3voYJ3QLOxxt77oHdA24aX2Y+hd0AEppyqT/J3QC4usQZE83dAsOk+UXD3d0DKJzESR/13QOQ/WVmgAnhAJL0VaucCeEBSuDWz5gd4QHvXa1X8B3hAsMq1zHcSeEBua79e5BN4QLCwQfc2InhA8xwY/W0ieEBivUHPzSJ4QOpWDI+KI3hA6rwlJkMoeEAWjAdvYCt4QMgvY7dlL3hAQq4bPRkweEB+2ydNSjN4QMv9obFnM3hAardlx7IzeEDCSiAHLUN4QJvuUzBXQ3hAuf+XmBBEeEArDnEmekV4QOgmYpKHUHhAhVr6KctReED2y1VPGFN4QFwgQmqHVXhAuvlhy5hgeEDUvqqE+WB4QHel/HS4YXhANLCiaSFieEBJEahQuGJ4QAEFGvHjYnhAThncQmljeECEcB2B6294QMFWRg15cHhAcj026thyeEA7HtWGDHR4QAJePBkkdHhAOj72ijh0eEASUKnrSXR4QGiKsBFodHhArr6I1ot0eEA2Xl4Tu3R4QImuzt/FeHhAKEPxVfd7eEBAq+3FOoF4QLKW0ySogXhA/Wo3TJWCeEDy6Ohc1oN4QGCpmG7/g3hACluH45mEeEBor8wMT4h4QBKO3mKqjXhA6jyGWZiReEBm5q+akJN4QES5QPqnlHhAmoczJ1qjeEDizQUUtKR4QDgWW/w4rXhAaOywpuC3eEAZgen098F4QNjZnokWw3hAla4wJbbUeEAYVWrADeF4QAzPzlqh4nhA51WoBs7ieEAAR6z4/ud4QNQD6KYA9HhAXIIenIz1eED+AablywJ5QIJzTp+aBXlApqF/uyIOeUBQo4+o6BJ5QPuKaV5tE3lAOKM6zbgieUD6ECfr4yJ5QPKMXDi8I3lAlpEFkVAkeUBohaWaryh5QAQU0VENLnlAZPPDHRAyeUBq6fpr2DJ5QCx1cNe3M3lAJDQuol00eUAWxLIh5UJ5QKnJJFb8Q3lA4M5w6tdSeUC0ffqgzFR5QO0oSr/LcnlATABkn0BzeUCjk0GUEnR5QJ2+Gaj4hHlABuPVNSWTeUCWQYF3N6J5QDupolvAsnlAYmJCubLDeUCQMQyEVMx5QMbR3/xB1HlA5HQs4s7VeUC0JUPGUOR5QPzUVBE08HlAzcac5kbyeUAy/pBNvfJ5QNq9eq4L9HlAwzJeZ/oCekDIel3D+wN6QFuikN/4BXpAMhNDdDcjekCeCo8G8yN6QMZD6iZpMHpAztuDqCszekAO0UHiAjR6QBamxmAMNXpAvX50Ti43ekCC8F8UMDt6QIL5t7czP3pAokTtdDFDekD0V/8nGkV6QLa9dKMmS3pAgGGbLt9SekBwLtIzKFV6QKiyDx4iXHpAK5A04q9gekCL2rbEJ2R6QIOsxTA5bXpAGgqzJCRzekCp0uk+Jnd6QLHZinsdo3pA1pn5fierekD+RqxZDrN6QCYLJ4wMtnpAO7B2/RC3ekC+B+GXGLt6QJplhmYWv3pAQjqixL/DekAUEh8sGsZ6QC/gdqPHy3pAtMn4RGjhekBu0jthOON6QF5v7LP043pAGamCCzTuekDw/aF6FvF6QKpJioxc8XpAqIpqg00Ce0CIW6dWfAR7QHPTItsqDntAq7oEUwMTe0Dk1MF6zxN7QFqR3XeKFHtAie7UvEwVe0AbOvMUkiJ7QDo2om8fI3tApZ0+iWEje0CybOvuWCV7QJarU4bCM3tA+kmlklpSe0D7/drBDlN7QA/FO1QRdHtAunydrLyLe0A49HfHIZV7QEKdSSxXnntAat4TxAGne0CmtMFvBKt7QC/ONkAGr3tAFisz+hjUe0DYDr5hhNZ7QF7JU4qL4ntADBBJKifke0AIkZV9jPV7QEyEJxJx/ntAmLPO8ZEBfEBp4mp22gF8QGLn5of5AXxAfBSBmGEDfEDS8qmFyAN8QCic+vJnBHxA2E8UG5oFfEDgdApLEgh8QMlpOyWKEXxAoNhk79ERfECDbxdsRxN8QKCbtVX/I3xA3O5+l4wkfED9StetzUF8QBzyg63bUXxAhDX5zEhTfEAi0AbLT1t8QJdZoWMLYnxA1Wz+WjdjfECXx2JnVGN8QJ9qjSxAa3xA/UCSpQRzfEDqs8VMSIN8QC4qhNrDjXxAWj+dkR2TfEBpTiooK5d8QCXSHxVemHxAWud/S3uYfED7mcolWJl8QMJLauK9nXxArj1OOa2efED44iEA/KR8QG6fCFfBsnxAZsjvnXu0fEACOyyNh8R8QItzKzSI3HxAMlKn6VfifEBKBstCEON8QJwuDOQT8nxAhoSvB1XyfEDO6qUlcPJ8QOL2bToEAn1ADv5ylEsCfUDtnBaaRRJ9QPgwoebyEn1AgHW1cfgTfUDcLl+RVRl9QDLTrbM+In1ARIHpNqExfUCAphB4RTh9QMu3KSfOS31AW3CDVuF4fUDMTtiZLnt9QPKoTO2of31A4fYdydyCfUA8ujyEYIN9QHbWAiP5g31AgN7k7PCSfUCCjM6CWZN9QFihPkgllH1AnC9jB3qifUAEH/nuM6R9QMHsWUeWsn1AnJvmk/6yfUDnDj65LMN9QLBe0BBZxH1Aen2k9ObEfUDAp5brXsh9QFzJ6W761H1AuAbW+ajffUDpcPnXDO99QBSw4zuG831AIMUDtI/1fUBB2ngGkvp9QPRDXbE0AH5AYkbGUpwCfkAeOc2/Nx9+QCSWwUIjIH5A6RXknNUjfkAbaBfiU1N+QHKY+qnZU35ACN+DWlpbfkBEd17Dll5+QB8huyFHY35ANb6gn2ZjfkC/UeUtOmR+QAnFbihSa35Alu4lbBxyfkD7J4sUV3N+QIHdjlK/dH5ASM4wUWN7fkD+vn9etnt+QP9RxH3IfH5AvLR8eHaDfkAiEmxc2It+QKqT+7NbjH5ASHRnypGRfkCxCtWjeJd+QJ5PFXl4m35AdfcBrBicfkAX4YCFuJx+QK4cOH4rpH5AFL7PPJKkfkBSFIM+XKt+QEpUYMJirH5AXW/ohWm0fkC81+yUn7R+QNZmH9Nlw35AHNKX2HLEfkA09FK1qsR+QKRISUTQxH5AKp0jq1nHfkBEVA50b8t+QBWfJNJb035Ag6oW5MfUfkCulUhvW99+QOSZBdTV735AxjNxMdzzfkAG81HClwN/QHOo1g3PG39AohsOp9Qjf0AMeHL/qDl/QKD+EyWOP39AyzIQJ6BEf0CMtKQDe09/QBooHv+vU39AObCGZjRZf0CGar3E3XB/QOuahOi4cX9AoTtrWuZ0f0CUJBJqsIF/QBaTQYejg39ARFknMz2Ef0Aj7p4dZo5/QCLEwqxikX9A0AbwK5uTf0Bk4N7Gapd/QGfQumBfoX9AhmNedBGlf0DBePKYVrF/QCUJL+MItH9AcCApHeTAf0Dg1t8pXst/QHe5TjFn039AwrCL/QLVf0BUMPhnVOl/QLJgoMdP8n9AKCo7P3Lzf0C6rA/5dPR/QLEg3S3P+X9Ahjq+bCf/f0A4gyWweASAQGj3ot14CoBAvDClp+0pgECQK2iYuCyAQPqAk25lL4BA1tIXCWEygEAQqmIyDDWAQLYaUGcYNoBAdn2kER03gEAGyEAmyTmAQLpH+hR2PIBAmrcv3yE/gEDxLEWG0EGAQHZqmjGpQoBAtRgzxe1IgEDh5A+Or0qAQFQYAZ7nUIBAmhw3/hJRgEDfJkuppVWAQEgzWJsmWIBAGLRScA1ZgEBFW/NXqFmAQJDqZ1gKWoBAoXf24gtegEDxXiK0xGGAQGCPPFhxZIBA1QoB/B1ngEDQePLcomeAQENhQd/taIBAjvsktU5qgECGmNdY+2yAQKpoT44qb4BA9Fp0ZQp2gECXpnZjDnqAQFGhcOsKfIBAa1G0Cyl/gEAJpUHQ4IWAQORAkHgej4BAVRdyQR6XgEBVXv1IKJmAQN6xUyeVmoBA4ZSB4F6igECYBE0Sw6SAQFe86p+JpYBAZriEFfCmgEAK61fVhqmAQHTRzKETr4BAEsF1r2OwgEA4M2vRG7GAQKNwrs9/soBAfR/r6Qu0gEBecHLrMraAQNh7HNEFvIBAr+TEmri8gEDaiaBser2AQFd1gi0/voBADnhM0e6+gEBBMpnuqr+AQJjVd4fdwIBAymtIl1LBgECthfx8pMGAQLQNOLmdwoBAWLqNqgPGgEAjrtN/7saAQMRNoUQAyIBAGe6QIx7JgEDil7KfU8mAQO23VgsDyoBA4MGfaYTNgEBMOaYpCc+AQE7uKfss0YBAgGdGpEzRgECmNG2/LdaAQIAPf9Bl2IBAsotz30nZgEDbexCqROGAQCKv+8tW4YBAvveXcBnkgEC1ic2YguWAQFEDidj06IBARMNgDEnpgECSWJo7i+6AQP7F5glM74BAZjASND3zgEAbf0S7FvqAQM7abEFo+oBAAh2doT//gEBQIMFiKwKBQNCkZtwKBIFAYcIPMj4HgUBGUuYBqgqBQKSkFSM9C4FAhtnpGT4PgUAAVhm00BmBQDpn8NQ6HoFAyvLbfTQfgUDM7NIiNCeBQBJ2IKi1J4FAzpEguWgogUCab8R4HSmBQH6dJUTwLIFAVu/017YvgUCiEf4AvjGBQGKwoEopP4FABcGsoZRBgUD0zbU4tEGBQKxIJc7NQYFA6Rw8HdJFgUD6eh04MkeBQIVCdggFSoFAPdUuzG1RgUB1JE+zsmaBQMFU7pO3aoFAWIooKgxrgUA8/0oouW6BQLBvgEpZc4FAa04cNMJ0gUCAroc1b3eBQEY5JDUbeoFA69t0cMd8gUDxVQZ453yBQGKGx2g5gYFARJ0rvJ6CgUAJVOd7IoSBQNNgSNylioFAnAoTkFWPgUDf5axI75GBQIjmMrY7koFAgWmgc5GTgUAx9e4x55SBQMKsPndAloFAHFoB81WXgUCm01jMlJeBQBCVYMydnIFANalQs0efgUCK1uaa6KGBQKoC9vTeooFAgwds0wqngUBCQUu5bKiBQADdLMtKr4FA+utiY4GvgUACYPy+37CBQMn/RARKsoFAhujYlUy3gUC8Wpdxqr6BQFWydDVEv4FArTPB8IHHgUAsh5Ix4ceBQJEVHBgFyoFAuy6KzYvKgUCGUsPNsMyBQHcGCrx/04FAeqJOU+nVgUAgtGcz7NmBQGdSGr0d2oFAQO1nYnLbgUCINaL8g9uBQICjUzXM3IFADuwnYuDdgUA93JZU8t2BQGK1X4nj4YFAbbf2s/jhgUBkbGjbs/KBQNryRhbt+YFAQn7Jft38gUBnaIJL8P2BQFQDXU3kAYJAqHSB380JgkBuLTG70A2CQAYgPRnFEYJArTP+dtcRgkDGEcu/PBWCQCCu2wnZGIJAsiPdRikagkB8A3jzZBqCQO7Jozz2HYJAamL1DSwegkCKsmZ3YB6CQPTDSdrVIIJAsmMY1DAigkAa7ptD1CKCQJWB16PQKIJArKGshZ8qgkBtImvp2yqCQOJ9r7CgLoJAAJA6rXMwgkD6/SvrpDCCQITaCkjQMIJAPmIz+KE1gkDbmslX2jaCQPjxsDRvOIJAQWjVDgpCgkCUeUslEEqCQNCAV3PMToJA/F3k0OJOgkAqSppxPFGCQN7yFAzdUYJA0DEg13lSgkCMu9xn3VeCQDqz7aY3WYJA+s2vOp5bgkDJIyZ7fVyCQMSLDoBEXYJAHoreUTRigkDaS3joOGaCQBy77t7OZoJAEQQb0ZxngkDEzqymeWiCQOh5ZgzYaoJAXDoJ4glugkBkH3+BUG+CQH5gwCxvcoJADpyeS6JzgkC8nAaUbXSCQMYadPLfdYJAsdudRQR2gkCkHIXScHaCQF95+QnOdoJA7q5e/mV4gkDDEXk+43mCQE4F4RVveoJAobb6WG1+gkDCVVS4EoCCQEDHUQl4gIJAHhd8BQmCgkCiCPWkqoOCQMGcA4BDiYJAES4oSRCOgkAY6v6cQ5GCQEjLrzK1kYJAVX9nOdKSgkA9I5TaZpSCQGC/Z4iql4JAenUnBjyZgkC2meoCVZmCQETYhI4PoYJAczzVRDuhgkBwRNS686WCQJITJIEPqYJAaZRKFjOpgkDE8Hl28qmCQBaI2/V+qoJA+DOKKoKugkD+a9iAs7uCQFjXVVURwoJAkfdMWuzFgkCuVNXr78mCQBGLTc3Ez4JAVfPE6VnagkABlrB7ftqCQDFHqmF/3oJAHDh7V0DpgkBFFUGq0vGCQFuwHd+v+YJAQsywe0X9gkBIK8Ye6gmDQEi1F986DoNAt9NO1XkRg0Dd7pRAoxGDQCWl2+I9EoNAOUm3t3kZg0AYCpb9ciGDQJ5pc5JxKYNAEoXeEXYvg0DA2uxDaTGDQIaPxItsOYNAOBpHtGBVg0A+og8UvV+DQHTgCK/vcoNAhdRmIth1g0BZk2a8aYCDQIlg+ATFgYNAhRr9neaBg0CCJ9kPSIODQFhM2jfTiYNAHLiS4E+Lg0CH2aPanpeDQEOaCcU/mYNAtwDxGEihg0D+E/bl9qmDQBDE9RHorYNApF10+suvg0DgFg9y6rGDQE4nWegStINAqxUW4vK1g0BOnmvMz9yDQBFxH0B434NA3hFDmtbtg0CiTwxO2fGDQCbUnmk284NA1gyyKN/1g0CfLO9TlfiDQMqD+hPcKYRA/jAh22FKhEAZkTjFEE2EQFHlTl26T4RAoLmBVJhXhEAIuw+JaV+EQNavBAwCYYRArFVRSvlkhEBSuDk6/2iEQLyBjrP9cIRAg0q4tlNyhEDy+LlcyneEQEjCaWL4eIRARXjSQnd6hEB+k6iiJH2EQGj0M/3Rf4RA0Aix222ChECLnduhfoKEQJ70uHwvhYRAigbTs7yVhECgblZEeJqEQDgam0cfpYRAujDSHWzChEBEAPM1TsSEQNQ0ljAh04RAsNKYyxHWhEBSRbJ+atmEQND7dRIV2oRAxhJKzRnehEAgW5dDauGEQG3xOPsN4oRAbBxEqNHnhEAENGGVYumEQDg7zmN76YRAHh6n233qhED2+vAIGO2EQG95M43E74RAkgdGFjbxhEB+4j/sYPGEQLqr7Wty8oRA1UxgVIH2hEDUMnbxbfeEQJSGHkjc94RAFMQ9ZDf5hED60bD2hvqEQJI6GtI+/IRAQR1K0DX9hEAJE77Fz/2EQI5mJpIvAYVAq6+5r14BhUD24c4FRhSFQA3XfNbgFYVAKNtdhPoWhUB3L82qeheFQLp7A1cVGYVAyk4vfq8ahUDUX2R8/BqFQNH+iRdLHIVA9VBsyOQdhUDWELIbfh+FQECmXVaKQYVAf2bM/vRChUBizu82oGGFQFJgP2CcYoVAFvfbK6hkhUDgxuptTmaFQNQNJ9unZoVAIlCv3KBphUB+TeSoimqFQE4FqcCYcYVAq7YPdbJyhUCSWuJXtXOFQNYqNxSaeYVADKnbabd7hUAlV2VPk4GFQC6EeBxvkoVAwKTSyH6ahUDHKfQpQa6FQIbQzqpDsoVAvWYGREi2hUAwKtnYK8mFQEAK19oFyoVAdjL+yp0ShkAGeOpwoRaGQKG/kIw+XIZA3cs+C9mFhkCCBMGvI7mGQJJhe4Q1F4dAGjwfmJAph0ATpt/XkTGHQD75F5+JOYdA+V0Z9YhBh0B+QFS5fEmHQDeNRw7IsYdA00swjce5h0DsDzpVwMGHQLCcjO2jwodA9p/ejsDJh0CyfCGsm+iHQOgRfRARP4hAGlK4DaVOiEDKkUK0+lGIQGLHqPCnUohAdhTzgQBWiEBC63PHqlaIQERjkfQCWohAkm0TevxdiEBiHOjZvPSIQA== - - - - - - sUApRn9kqEQ+pvVEUOZ/RL/QbUQ51p5EOGXURh0pdUS89sNETCYqRQxzAkWLBHRGOVyqRHbE4UQpiUBH7p2vRJOsEEVFuIJEBm5xRKV0fURXf7JE9TXhRPUXUURwQM5E3g57RXdXgUTsDgFFechFRL0vF0dSZY9Fl/+HRPLhX0apG41Fv+qvRDnc4ETn4XNGV+u7RJlJEEW02whFYwpcRJtd5EW+yLtEbFhQRI/TkkSCR55EOcn8RP5NW0QJVXNEn43+RGkJfUTQil1F/G1yRIUZJkb1RDBFiMYQRW0bfkQPYoBEa1/mRBLXY0Uw27lEtnKoRFOyv0RMv69Eb3n8RAI6+EQ1qpxE6IzhROnEBEiuyRNF9VC1Rj5Wp0SB7pdFZMCXRO48HkXjvpNGg98FRdmrXUd3JSZFrtzrRDQJ8ESTCXdGQtP9RVb2oUTrltxFAVJ0RN2D/0UW5DFE7nFBRHTeRURj2hVF5bxlRJh5t0TvpL5EkP6nRJAIjEQuzK5EIjFhRdMwL0Xm5qFEuOoTRkey1UXk3PpEGq0IRdibvkSqvhdFmJFkRHNuokRDEJdFg11fSLaVhUYl3xFF0QqURMuBg0Sa1rVEh5iCREOofUTyzmBEvlTJRmJxr0QDfg5FL6CsRNNet0SstFlE8lzNRL9tYES++FRHPSW1RdwRqkSqtptEr66ERKI7gkVoTD1E/9I3RbcJKEV91Y1EqpoiRS9GV0S4X8dElvBbRIRbZkTwIKtEQriuRLy3NUR4ymVEJayhRD9Mg0TnbYVE/HGWROzLPUVc7ZNEskSiRCZx3kSAj0BFiwYqRsDvvETO10VEcrNYRGNujkRf7WxEi4ifRaSrTkfGPqVE49OJREMe2ESbhLZEt6xkRJxwf0RWY49E4MAMRUXKA0bjfbVETESDRA0EtEUJDCtFG0bcRNA+FEVaJX9E2kyqREj5rkSrrVdFF7Z3RD4nQUU8otpEKjhpRNqbo0R7KrREgypYRDzEFUU+7lpEE0QZRXAAekTiwpZEz2DZRLWVZUQYPMlElxB6RLR9SURS+jxEJkoUR7ONw0Sd2FVFQ51SRD7Nq0TMBZZFz9l9RGkorUTTbZ5EE7WARD08pkVK2kNECdC1RftnPkWJ2DRFapj3RbjnWkQfSIVEZEttRb5Dr0TDOVpEJOq3RDCAlUTHvXlEBsOjRObsCUUaPHdEdrP8RJE2VUTzFGZG9byfRZSiTUSPcMxE72LdRJYzsUUPOGNEGVMaRuoEvURpQs1EP2nsRficy0Tvv81EBfySRAYQhUUAvwtFbAxDRO4qX0QyT2FE5baNRB1oC0ZcRRlFKExRRFCM0kXhazRFW/gFRV+DkETZmWtEOVduRHJcrkQQHtxEcgjlRDK+hETpCJpEDudMRLvMYURF+3hEw2mZRcCljUS/dXREq4TeRWdwE0U+2llFJmU/Rr+bnEUM/CZE0HouRP6atka2fb5EHGkARU+O3URaMoJEyD+IRQmHKkXsyYhFG0yKRAToIUVv3vREA8VFRLG6K0YAd7pEm3q6RK647ESSLV5EGhRpRDPsBEVv27REmOQURYMKdkS1OAFF7aDCROnAiUQHWalFGvU3RB9+hEQNE31FziKIRKbMhUS4psVFceqDRJD1dkV1VE5E5zmARISzlEQYgkVEGuo8RRxeVEQpn0NEPSmZRvjwe0UxyKNE5F1GRPGZ1EV+gfJHOguKRPeOl0ZOgfBEjHlTRb153kZRGpFF3EssRhHeHEb75wlFRvLnRbmFi0ST/a5EXxHtRIv2JkWZyl9EBmEORfl7b0Q2qqJFQv2gRM19dkSZd+tEZ8K2RIa/kUQzxl1Esw9VRXQfZURt7ltEhjrMROajwUTUXgtFl/uBRFt+mkbK8QpG8DxPRJEPBkV3p1VFG7g+RLv+nUXDAGFEvCKmRSuWeESXkARFRHnLRAJkSkVuxhhF4jaQRVYEMkbXjJVEEBhDRA3KZUSCggBFq55zRf0iWEbDcyJGR1eMRR3xtkScRDBFLc9aRL1nIEXg7jFFBsyNRJu+wUVtFBVFIPqWRGnloUTHmKBEPlxnRQnn7UQ/0hBFBAvfRPJioEQRW6ZF1LVcSdSFJUVxkURETe5MRlAc1ESgaAJFM/VWRIS2kESCBtNFcj1lSEIpJEZvdolFJKQeRTY6/0T8z7NG1daSRFtStkQzUIdEnU/ERPURVUUc1JRF1OiRRB7BuUQSVHhFZNbwRD+SF0VDmadFJ7YNRnTbJEXujMxEzpJfRMecFEWSEX9Ek3h/R3Et1UaZWzJFPMimRmjC/0SrUEtFd7NZRPHj/EZE8vlE8l5tRapkt0UoCcpElkszRVNoy0V0BV9EaQufRN4ls0Tag19Ema9ORMSlq0TMS49FimO4RAc5kEQso9dFo1jOREHliUQBlYREGgGCRIa8jETss4xEJe+MRJMEf0WpVJlEIemFRHH+o0WP6KVFBsPBRunCuUTG5ORH/2DuRnWYPkbOCk1F816ZRAYA0kan9nBE1yw+RGUxLEXqZ99FRP+YRQ315UTrrnhE55bXRFq24ES44iNFERiGRPukIkYTN7dFNCJHRjCROEXMdLZEIceERTxOz0SDsa1ELL9NRYrxT0TLd1VE9UfsRF+I30Q8jahEE9JFRfonxEWtpKBERVqdROLXvESc3G9EI1QpRn1taEQI0o1Er/vARLZhXkXOqKJEcFw+RNNdZ0TlBwBFpEq2RMlLuESRP8JE+IUwRVM/8UT7WaZEAAS8RYNTXES4YRFFvqpORWsnm0bNosFEGUaARPoGcEbPeR5FBSpWRD0PVUTpIapE5nq7RV7BoERNs4NE7EtZRWtCgkROUj9FrcaPRGJUhkU6aX1E+87rR2I2LUdOZ3JEQ8kmRWAbr0Xi99lEJuWtRKJN5kSf261GSK71RQ2uikRH3b1EzIVvRYMTmER6bMVEDfJNRGZSgURguY9E5fUMRfr6YUT8anhEjz3WR12SNUUuw7NEiYnZRkY3M0VFcSpFSmWdRuMxKUX9m7NEOEsfRYdmkURDFl5EFVBxROnXvEQ8hWtERx9QRAOQJkXvYllEXjYxRZHrZEQKdYhEVtrWRGcKZURZYGZGZAqgRKmDTEV15WZEDJumRCXRuEQKMoZEBS8uRk91eERkFZZErlJKRGMexESiMrREWJfPRH1an0XxO2pFnI5vRW40tEQWkkxErFOERPNP7UeiLGJEdy9KR69FTkQM+TJGjboGRvswLkVCcK5FDs6TRMpRz0QFgINEaEl/RPH7aURxN4NEz2ZeRP49eUQ2IatEOW5ORHS9mkSvFZRE6mJ4RLyNUkT64XpEmzDQRz91ZkQVgjFGjWasRco1n0a08IxGzllDRO2vA0VK8xFFUBprRMYqvkUcHv1EriZJRCPrc0SnwZlErDHrRPEkjURTXZZFroiURC0PnEQtdJNExVuqRNUIsUQxCJREYnxXREUtbUTTM0pF5bOwRBHvk0RIQ7BEGfChREbPfERqiQNGQ3+IRM+aVER6nxVFkyyXRCQEBkUua3BELYBSRHJRuEW1dbtExZOgRNCaBEXlp5lEuFtzRAFrUEW2FK1EIR+9RDnbAUVpi1NELrJvRGs/VUXA+OZEvEPNRJqJeER0RFxELPZ0RxqLSUcYWKlGyGmnRT/qnEQf/gxGPQCnRGJG4URH3xdFlPxLRs/FKkXcOZJF6mOqRQMRkUTG3VxFJfacRKc2+kQN9sBEOSZwRPXgJkU4AX5EWebjRKg4ekToGIRFM7KFRP6noESI71dEe3MMRanCv0QT8hVGQucLRbXJXEQ7+11EU5n6RF7RrER5fmZEy6zHRCA7lUTRMr9F9Df3RCzf0EQv4gRFdM9nRJQtbUS/ZOREYYWhRAYAq0TPCLVETNaERAYhZ0QmzTREErqGSBHJDEUcL4RFtMnMRNOd3kR3f2FEnS1nRDguAEhbuWZET+aWRK8zjEReY7ZENtiDR2VZjUShyaxFTkpNRlx3oUW7WddE1OKIRBJgP0TJX8lE3PeiRM8hX0SJ6v5E16H8RKSVTkSEoZdEEmkzRr/ackQqSVtExhdVRUjmcETHNm9ExmGaRc7gjERvj4JE+hK9RkxsnkUq+pNEe5aQRNjxWUT+B51ExU5nRIfE/0S38JVFFQ2KRFvibUTqOHhFYv2tRICTTURMpydF3lRRRJK4iUXdNOtEWvwORQ+MVkSSXltExqOWRqEMZ0Y1J8NFsqHRROVQt0TacoREwRWuRRjIhUSs3Z9E+cvtRQ5ZjkRqeYxFHvH/RYYqAEaUoM9EU2fURAjnQEUtS4JFyLCMRGmZG0UBDxtFHTNwRPnQAkVzmfhFq66IRFGXmUR4h5VE3KP9RC9jeEQar5dE8meJRN94n0QE7YVFhSCMRKaukUWF6g9FOYNmR+T/8EZuwdNEYgg0RLYxfES+4qlEa/8ZRfLnhEVR1sdE/BaARABYkkTJWClGoqJwRK0ktEUmfbxEggs3R/v6vEYdfNpE/hhhRXaYY0TBOzFG1My+RiUlEkXs7VFEP7xZRu99jUSfoXNFR4RqRVqcBkXMChpFS5q8RPCxT0RadVREdug9RI6dg0Q4CW9EQTZnRE48d0Tyhr9EU73LRPNVQ0RdH1pE3K6iRBNCvURXqgVFwwmDRBsloES04cVED98hRdOWpUT5cF5EaEdIRYPyuUQ366xEnGiTRBTC/EStPJpEE15NRNqJXkRVKzxFtN0lRdOZTUSxSthFDeJzRCU7KkWv5YBESbOERIlwEUXRNlFElQaRRDJ6XUTTwIhE9aJjRLQPWERdjr1HB8F3RKTfF0dwoJ1EUMF6RBVfy0SfSVdE+eXGRkBFEkVEtbtFOWfiRft2BUX3UulEoDYMRQ3BoETGzWdEGb2aRGWpmUSriHdEAwo4RRdYG0UUyWVE6apBRPtDhUQSjrREXmZxRHRZg0TUV7xE9PV/RDpxUEQBbAhFirntR3+UZ0SZL4tETTo3Rwgx/0aYf/RFHzGARIPdKUUCB2lEZCZaRCg1TUSDd2VEd7MlRT5UZkT0s4dELdu1RLTMv0Sq3SxE+75KRJSZlUSS155FLVyrRHATBEXAXCBGFhJCRDeetUV0FI1E2vrTRBdtVUQs+a9EKeCKRVlS5kQb66BEm1ZzRJnHfkSaknxEXIcdReIhlERk+pVE76d4REj+mUTvBr1EuzS3RBxkuUUgVTVF108xRCpkZkeVxClFQ6dZR0iT5kYsUSFG8LSSRHVfxUSsFqFESp5nRKXtWET76t5E99eNRBVuY0RKQNpEB5f/Rhb98kasYZhGGyuqRVyQaEZiQN9EM51hRRKKEEaSa3RETvBgRcmtZ0U13tBE+BmsReA8CkUBLg1F0WNPRDXdhUSjQYNFHJQXRf9stEWnIhNFtQQxRR7iW0T0hK5EIDVDRGENi0f93utHN8kjRe983UcwsJdHUSUiR4ilEEUomP9FFZuwRTZMtEQEm5hEHQCKRFbgCkeAsltErruLROZJc0SkcU9EeIplRhA5ekThfg1GWW+vRPJ1qEROlHlF1w50RI4ykUS1J2hEYfSJRCYbIUY9AgJGycEGReRFj0RE9spECvccRXWDv0QtaUxEbaJQRM/ArkQGCGxEkb4kRp7flEUOM2pFOOyyRLr4RUQijA9G2NO+RepyVkUfHtJE3zqRRM7vjUTFGPJEbHw1RnHTo0X/NBZGpLkkRaXKZEX4F6lEP0d/RPf5WEQ= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - LGsXBm/BckAKDviXUMJyQDrrD67jwnJAEf76NzzDckC2eWuTwsRyQNK4V4laxXJAQLP080LSckCLx1MQd9NyQPpslXHL03JA4tkB7c7fckBeOwHxuOByQPZNu6Lj4HJAWr4n/E/ickAuXxQxkOJyQPRBcVcl43JAxyR3YU/kckDogweHovByQPZlgLbK8XJA3I5ft5zyckBGtfWuc/NyQNDsc6+283JAuHiGrqH0ckC64WLdwv9yQEKZn5r5AHNAmn52y1wBc0BaevHVjQFzQHjRRzTXAXNAHiisATsCc0DVtfW4zgJzQOrDYm/6A3NAWe9nviQFc0DXOgdMuQ9zQJ6IItYJEnNAegJv9iMSc0Dc4aHjeRJzQN8vgVC8EnNAB4r08wYUc0Am4xc9TBRzQHdVFqB3H3NAhhdcYrcfc0AicIifoyBzQLSNKaY4IXNANIuBcHsic0A0WqUAySJzQClMu4sOI3NA0rjuec8kc0DXBm21RzFzQF7+pY7SMnNAGIpfSv0yc0COBFKPCzNzQD55IOKiM3NAHwNprPczc0BOiHgROzRzQFqTupW5P3NAYul9/HdBc0D/O2J3vEJzQPqdkNdMQ3NAnjEMVHpEc0C6dElgnFFzQE37hz0RUnNAfDrwtEJTc0DmlXPfo1NzQEMLtauGVHNA6lWS0B1ic0DGS7dJOmNzQOp6kxSRY3NANf6Hwdtxc0CTowMLWHJzQNKpCZ2+cnNA/VxYME9zc0Bs/ZTQg3NzQH4SlLa2dHNAZE7SFE91c0COL/eheIBzQBlhpzimgHNAGo6dog+Bc0Ag0df7W4JzQKg1AoD5gnNALjYltJCDc0CmED8OEIRzQFjEfd2GkHNAk3JUaI+Rc0AihicuHJJzQLQslx9NknNAZFrkiSKTc0CMpJePzZNzQPlqyddhlHNA7Oa3V/eUc0DY+gIuuKBzQLG+qIHloHNABwYSoU6hc0Dyz4qUWqJzQNU09BsDpXNAYt7XItewc0BsAgaKNbFzQKCgfOpisXNA7re7nHixc0AiMbmd8LFzQPKtG71/snNA0DQ15rWzc0AgdFXYDbRzQD4pZAr5wHNAXNFWB0zBc0AcCS90PMJzQMyWwOnPwnNAilI4ZCbDc0BavDMtXNFzQPn07Rh60XNAPJEEganRc0C0/dEs2NFzQOpUGQsI0nNAIZvDPLjSc0AG0pm/VdNzQPzQsHT203NAgQg7COLUc0CjuFQGOeFzQHZZv0Nj4XNAtqybXojhc0CyDptQfOJzQHIVJlEP43NA92IlLyztc0ANKeF6R/FzQK7wr+Vw8XNA0F8Z3o7xc0B6y7T7I/JzQKw9Sjv48nNAqajKkzX0c0CcqnCvj/RzQAsvmTpHAXRA/PYDu3gBdEBAwE/bpAF0QCCaW1HSAXRAGnNF87kCdEBOllaw4wN0QAzdM6khB3RAE2vlKX4MdECFXCZ0dRF0QAa0xrmJEXRAxmoEzT0TdEByYdzvSBN0QKeCYPV1FHRAfiwzTEwgdEAzO27ChyF0QI3ki6G4IXRAf5tXI7skdEBwt0PKUzB0QN5t/d2ZMXRAtmRXpeUydEAY+X7yjTN0QAfBDGw8PXRARq1dR6VCdEA4Z2RvPEN0QLjXVP14Q3RAHkqJKVtPdECKPcghplJ0QAj0G+xjU3RASD7eTPdUdEAoyHM63Fd0QMJ4CjohXXRAHoabELlgdEAmvkK0B2J0QGtS69FQYnRA2YOnCRljdED694s/52N0QOIisEYQZHRAqja+6U9kdEBW3X0JInB0QIy4nblhcHRAkivX40BxdECwVBx0E3J0QNKlteXecnRApyu7bg9zdEAW+/9pN3N0QNOLOWB6c3RAwldh0g10dECe901yN3V0QKz/YRX4gHRANH98VU6BdEDCClT4uYF0QEAxf25IgnRAAHpqbs6CdEBjdH5qJoN0QFFplJYrjnRANvk0zBWQdEDb+XjWbpB0QL8wiNe+knRAPrY6T9SddECLTlsa7Z90QM+DHvaioHRANCWvDNGgdED/x029t6J0QF2dsccOo3RAvt8w6wqwdEBtu/1mwrB0QMxbZBJKsnRAzm5p0m2ydEBETdT6/LJ0QKbsVc9Js3RADWC0J8m3dEAhZwPq4sB0QAY+QoZ4wXRAhDC5T+nBdEALosAUDMJ0QCqhoDe9wnRA0nhki03DdEAiA+ahecR0QEJWQJW4xHRAgO9pR/3OdECyDVMledJ0QOP3bnI603RAFqgID+HTdECE8w8NedR0QDUIEBfO1HRA6X55XyPhdEB4jfCrt+F0QGKE8QdJ43RAdKuURpDjdECEDP1HUOV0QCZIJFTA8HRAaf3yQ9jxdEDGNyu2jfN0QAQiKHV29HRATB4xuc0AdUBpdCDHYQF1QJD4o1VdAnVAwBPrDJ0DdUDbO2Vn+AR1QBh/9M+YEHVAnj9W2WgSdUBu7TYiIxR1QJHaAjPkH3VAkHSddK4gdUBq5Ym9nSJ1QDXpnhlxMnVAfsixXz8zdUDgVslLyzV1QGYY2cmnQHVAbVXpI9xCdUCuYmYQElB1QNiiGAOAUXVAzFA0bhFTdUDjMXm8TVR1QHor97t3VXVAzLSZdgxgdUAk5I4GOGF1QMfk4/vzYXVA3O4eiGJidUAi1ojIjWJ1QD72+ZNnY3VA6EtiXjtydUDwkC+wg3J1QFyYNvQodHVAdJCBw4x0dUAAJeOb5IB1QGi9iN93gXVA2qPjB66BdUAkGF1NkYJ1QOL9GHK5gnVA8DTcqaaDdUBMz+AZm4R1QFzRBE7HkXVA92fDEDiTdUAyxGwzlKB1QB72X2xMoXVAitsYc7ehdUBZ/nH85aF1QIem3MxoonVA2vpvzkmjdUBO409auaR1QFCwKXyiqHVAbYaCj5awdUDUiAuBwbB1QOopRFnOwHVAzkvvmmLBdUCkfE2TjsF1QBGm7t/4wXVAB/lKF8zTdUAwNd6QDeF1QEAvF/wp4XVAP/4jFVvhdUBt75Qi0eF1QBMT20MJ4nVAngdY9DrldUBh074vpfJ1QCbXOOll83VAo3KRtRr4dUBI7WiiSAJ2QKyiwSDQA3ZAF2hMU1QTdkDGQaK8TBR2QM7NUaULFnZAvksuGLAgdkDSRnn6hyJ2QCPwokNiI3ZAIKDr2o8kdkA16felSit2QAR+7DgfMXZAjtQFaUsydkB0sW1RUDN2QC7d1/uVM3ZAbgXhPrgzdkAKTW93njR2QLyiU9dcQHZACNtkuBxBdkAYIA68C0J2QFUtQRnJQnZAXB+TNHpEdkD4GJIyElF2QDZHji75UXZASXbT8MZSdkC6K3fczVR2QKeofvFNYHZATeG1/RRidkAGizDfVGN2QNQbecDaZHZAJF7XW9dxdkBcKi3ceHN2QIp3xdjPf3ZA3xqBbvmBdkA3oKy8aIJ2QHc61j2fgnZAOAdPnuaCdkCqIFh3kIN2QMT9q5N2k3ZABCZqUp2TdkD8XJYlu5N2QPSYJA/Ql3ZA/11lHe2ddkC0kMCWDqF2QLy96UuhoXZAwX/RFUajdkCMRvtJK7F2QDgPS+fCsnZANxA6ZQ20dkChoOx2sLR2QMwnY3NywHZAPlXgfr3AdkD00sRLT8F2QCIKQhzPznZAtufocDHTdkDUlhxYkfN2QKwB84MRA3dARzg+pqEDd0BKHHmlABJ3QDACnC2kEndAlHP2dA0id0AFcCLBcSJ3QCiPLIKlM3dA6qo88ww1d0C7tObnzUB3QDJ5Y8GcQXdAhlr9dJJDd0C2oIRfskN3QDMyMMfPQ3dAeKlP2CZEd0BS9aPNGkV3QM4NR6pJUXdAotiYQZJRd0DQ5g2rd1N3QAMvoxc1VHdAIqaJ9yhVd0DIgby4fF93QOqbtL8LYXdAkkgRd49hd0Dm0xc3oWF3QMJQ5aY3YndAknwm6WFid0B/CK0ohmN3QMMghhgob3dAiieqeI1xd0C5iafWn3J3QNqWWtRJc3dAGRM0rOB3d0DLX+N5+Xd3QABefpZIfXdALFMAbWt/d0BaHfO3TYF3QFYCg353gndAqLujOQmSd0DmeIqB9pJ3QOYf0gVPlHdAu7MAQI+hd0AGArTYpKN3QPGze2Xh0HdAgI+sRqbSd0AykSa86+B3QO+NeI1D83dAn/Bktkb9d0CVz+ZEYv93QCtsBYcfAnhASbsiQqECeEAu4dx8awN4QHUqvxftB3hAFBmEwq0SeEBqMAVf5RN4QJwYD2X2GHhAkCsRXm0ieEDwCtWliSN4QPo6j86lJHhANkIVa2UreEBZS58xGjB4QHIxvPdJM3hA5sapggxCeEB+K78OKUN4QEfyoLRXQ3hAOk4hHxFEeECUt1XteUV4QFdKU9+GUHhA3siyhcpReECUfM1aF1N4QKsfhhGHU3hAXvhvyfFTeEAvsbS7h1V4QBUd15iUYHhAWKsYxflgeEA4GhC7t2F4QMRSzjW5YnhArLGereNieECW/LBf6294QE7KiYzCcXhAJjnoG9hyeEC2Yxcj9nN4QPWe1A0bdHhAJdTklzd0eEDoEW1si3R4QH20YHa7dHhAxiXntdN0eEDD7a9g8HR4QL7fFrH2e3hA6HFHFjeBeEBLZbH9o4F4QGxqeniUgnhA1vyYu9aDeEAgUv0b/4N4QF7dcmZ7hHhAtRZY+ZmEeEDsZwEAT4h4QEpSMF7fi3hANSr3CwSMeEB6EfDPp414QBKCTQ2YkXhAD7W8cwiTeECOzEMcj5N4QBS6bX6nlHhAHg7IsSqdeEBSoJ1VtKR4QGJCt646rXhAEoEiDZeyeECC/sIQysB4QHYsCbP0wXhA/MF9TIjCeEAH27NYt8J4QEI8u/0Ww3hAMQh8Ax3LeEDmCVkuEdN4QIZ3AwC41HhAmqW2wdbYeEA8uZzXDOF4QEw0wD474nhAoGOTRqLieEDAwz0Uz+J4QNJZbA/+53hAxf96tVjteEAMbeED0/N4QCCkt9YC9HhAaeMS4Yv1eEAmGgOOTgF5QGiH13fKAnlAwrcQAJoFeUA+lxqR1BN5QIpEzUS4InlA3gmOxuMieUBecIMxuyN5QMSmmGRQJHlAZJEV87AoeUD1qMqZCi55QBN/UVjYMnlAHH8WVWM0eUBhmuxzjEJ5QJb8ZsrlQnlAdyRDXPlDeUAmyFr/41B5QCQLvBvYUnlA4ghNdstUeUCwfRNB2mR5QB5U6ZtDc3lACtqMoneAeUCjOiza94R5QEzuRe4zj3lAAvPW9BaheUBQF+pyv7J5QLA198qzw3lAPpMJCULUeUA+RtRpy9V5QFL3jRxS5HlApBSS+yLzeUA4mBBjyQN6QIBlHhn8A3pAhbBMJPwFekAM/11QNiN6QDFb29fxI3pAsEIE/GkwekAav5WuKjN6QIyIR+sCNHpAilzhUAw1ekCYEW6JLTd6QIQ+U7swO3pAfNPihzU/ekCof1zTIUF6QGK/sVYrQ3pA0BOPFBpFekBKl4nz2Ep6QEq2L01UUHpA7DF7sYFTekA5vdVTKlV6QAi8tLUhXHpAyMJY469gekB1WM0+JmR6QKeLt94Ib3pAjiV+ICZzekBysqz1Knd6QADBJ8nvfXpAna9RRceDekC4+ML31JN6QCfWgUAdo3pABrUSwyOrekBca1+XDbN6QMik9WD4s3pApl2w+Au2ekD/wDudELd6QHaqJ6UUu3pAFttcBBW/ekDU+JR4v8N6QKbq/BcdxnpAyx+ajMbLekBCKHnmQc56QDADogZn4XpAuuRkizbuekDDQcrhGPF6QMLh0Ete8XpA6D4DKQQCe0DytFAtTgJ7QHkZlNx7BHtAVmKuuCoOe0A+iy9YBxN7QLQqfwHOE3tANd6Z2EsVe0B2jQtjRyN7QJYIx97VI3tAAvAXOVole0AUPo7jWS17QLNnASjBM3tATKjtWWc1e0CWIzt6JZV7QHrXpidUnntAEFACVauje0AEK8mGA6d7QFLNhY8CqXtAK8o35wCre0CtN/0RBq97QMTWDgZ4xntAvaaM/33Re0AwfIfgxtF7QLAs/ehm0ntAyMNgWhfUe0BI54e1ctp7QOguiS+N4ntAEduTVv7je0BQUfSDKOR7QPibK1eX8XtAloyFEoz1e0BPPUL+zPt7QEwkdt9t/ntAjaBexdcBfEDKE5668gF8QJxZ6Wu4AnxAnJsuyjgDfEBUkDnjZwR8QA6XAfqaBXxACsE7C40HfEBBEqTMEwh8QE5YRsofCXxAQlwS6IoRfEC5LDjL0RF8QG+TNUskI3xA+HDHl/8jfEDSVL7YiiR8QMjPFOxYKXxAjLYA67EufECjtTVPzUF8QFoKpzhIU3xAzJj6FM9TfEC8nEFwTlt8QAyYSXPBYXxAFA8+JQxifEDKFEFHOWN8QGU/if1VY3xAbikRAkRrfEDDwbV2YWt8QOKxjuApcXxA1AZpkQZzfECKO29LRYN8QLOE4bnDjXxAbsu06RyTfED2y2r28ZR8QNQSXvt0mHxACjqbV7ydfEBAuAQk+qR8QDZRYvG+snxAmKlG+Xm0fEAriii7osF8QLDT3FEjwnxAKMlj//rDfEBEOAaSytV8QOCNDSfx23xAhDCvlVfifEC4PsE5EON8QHQFI75n6HxA+vWxfRnyfEAepHH0U/J8QMjcd+Fx8nxAys8X2P8BfUCKFfwXSwJ9QObgGcJGEn1AyS36//ISfUA+0Gz79xN9QPI06RdtFH1Ab0QSEz4ifUBSnQB1ojF9QGxcHR9HOH1A5el57589fUDo26jP7UJ9QAttY3o1bX1AzGQc3IpzfUCfeKhkMHt9QHIUOUPbgn1A9ker9/6DfUAcOtPu04V9QGLZ2QPkin1AMFA2wyWLfUC0bo4Wlo19QN4s9YoklH1A7CZmhQuafUAkaKwndqJ9QGgkTQAypH1A6jCPvP6yfUAaETYB8rt9QG65RZBXxH1AdHampebEfUB15Z1u9tR9QEYFboPY4n1A6uH+hYDzfUAEgJAwkfV9QMSR3GSR+n1AnLdrCTQAfkDYJ3mnnQJ+QL4QhsKNA35AYHi8+6cKfkDiyvq77xF+QJa6AQ8rFH5AIpgrDj8vfkDltPO6eDR+QMyzRf6SQn5APWR5jlNTfkAkkK2vjVV+QJyJdHVaW35Ai2uebS5ifkA8qy7bRmN+QEiPRUJmY35AMXnylTVkfkCL3b/gT2t+QFY6EdNta35Aam42i3BvfkDq6upOVXN+QHt2eJRjdH5AzFtcoZ2DfkCa9aBzRoR+QEnOp38Mhn5AxHKr+yaGfkDmHTIbvIh+QAgPK4rjkH5AgH8qkhOSfkAx6zjLEZp+QKK2sMvNnH5A0B0ZAmWffkDBch5lEqR+QN3lJImRpH5AknxM7mGsfkA62X/JCa5+QJp1CGRotH5AFlekvqC0fkCkQkXQvLh+QLuQg4luvH5AcBXmw2XDfkByaUx3r8R+QCbEDXJty35AhtCWnFvTfkCIwYpiCNp+QLb/on6a435AJpD/BdXnfkA8hGoP0Ox+QOBIag1F7X5AhEXL+NrzfkAGPR1JnQN/QPIJ5cjOG39AiJQ92dYjf0CovVvHYzh/QDIl41NTQ39A5PuEV1pEf0B6Ccxbo0R/QJM3XQWEU39Aw07j8a9Tf0AQe+wvbl9/QM7mgTUea39ArMayOBtuf0CljnGBuHF/QN7hxZnmdH9AZivSH1J8f0B0wyFHtoF/QBT4C7c7hH9AzF5qhfGEf0DuRiKPlY9/QEZyGGJhkX9AJpgDJqqRf0D6Vags45N/QLKjX4gunn9AsfMX1Vyhf0AX4HAWEqV/QMynYDVVsX9AKEpIyg3Cf0Byqh17XMt/QJL1JqNp039ASads+FPpf0BkCS21le1/QAYiFlm07n9APzVjhnT0f0BwPKkjz/l/QP+Ur3wq/39A3ls9MbkNgECJ0z25exCAQJ2dUoxFGYBATs9Bp7gsgEAGtUglYy+AQNoBu/4cN4BAI8nnM8k5gEB6PvQodTyAQPS4OQAjP4BAuEVT+oJCgEAg50KDqEKAQHCs9k30SIBARtykUbFKgEAQcw1l5lCAQJaUgWkTUYBA9M5FOKVVgECPJ3MbJliAQKqgro7lWIBA4UWyOA1ZgEDWraVJ3VmAQHLUT9gIWoBAhuOgS3RbgEBWapXY3FuAQNBiPYd1XYBAUI1xyQpegEBnWG8aLmCAQB5TTgpsYIBAMkltnRBhgEBUnaVsw2GAQMc7N1NwZIBAkglbnxtngEB9Pu/soGeAQK6a9t5NaoBAbB3meSlvgECWBSwDp2+AQFp0+n8nf4BAPZeXo92BgEAKS9sRHoOAQNJ/yOrghYBAI4kzZB6PgECWFUldoY+AQIL0Q0TYkYBApxGEROGUgEAo+e5XH5eAQApU/DONl4BANE8+IGWYgECcjELtHJmAQMBvu/7kmYBA72kfLzqegED0hKHHGp+AQBb0bzddooBAmBulSQikgEA/IpwoeaWAQEaO8CrvpoBA2HyxuYapgEB4fKE5Pq6AQIhSlGASr4BAsDLWoR6xgEAO+twH1rGAQKbEISd9soBA5Gv4K5SygECNnOgySrOAQLbVkysMtIBAnCAuI3+1gEChGExYxLyAQJ70KI15vYBAqSnkgTm+gEB26QGOq7+AQBrPEGdSwYBAqChC9p/CgEATlejeesWAQK5JUTQCxoBAfH7Q57XHgECJp100BMmAQDKL6KIeyYBAhuSBH1PJgEB4WLOjA8qAQKiQDOeSyoBAnLRyRkvLgEDO19D9EMyAQNaUNWgGz4BAVBuagyzRgEDKbMtLTNGAQAKJGxK/1IBA7k1sZzXWgECGdSpwZdiAQHaJdgtJ2YBAxm1nC+bZgEBKLeOiROGAQJroSUT65oBARhCxDffogEDbw/fpSu+AQEKfU8I984BAE++FYGj6gEAGY1jWQ/uAQKAxfU9r/oBAUYRHFkD/gEB+Vv6/kACBQDz8zjE+B4FAXjKUnNIIgUAH9dKzPQ+BQAjRULRLEIFAvj9YC2sQgUD2o5RbNB+BQJI8AQhUIoFA6NYJM4wlgUDtRy8BNSeBQMJEDqmQLYFAnghExSsvgUDWBIETQC+BQMTGTjW6MYFAK6WZ+/k+gUD0mc5UKT+BQJArPEPHP4FA9I+FNpNBgUD0cU+Ny0GBQNiOKqbPRYFA3CPR4ghKgUAaAvbJCE6BQFX3EADnUYFA9W24RN1cgUAf4oNSnF2BQBRgrNVPYoFAWHhR/7FigUCkkLD+smaBQBK3dOG1aoFA9jsOqwxrgUDQETlE1m2BQPImN+sRb4FAzxLbx0pvgUBw2obLt3KBQDCddZzBdIFAvLCh/2V1gUCIwJ5953WBQBTbd3pvd4FAgk85VRp6gUCutRy8anuBQC7TwWHBfIFA+NGnxJ6CgUCoCKbMloWBQOSl7tDyiYFA3FmL3qGKgUBynRFrVY+BQKhIEbo7koFArnj655CTgUAEPAEA/5OBQGBPvfrmlIFAIsKWl4uVgUDYMO+hPZaBQARFGGBWl4FAB0xtrqeXgUDqh7hNQ5qBQBYce4ugnIFAzq1MLvSdgUAW6Xz9RZ+BQKSUtiptn4FAPm/rQ/OggUAsR9J25qGBQLhnIhjfooFA+aRgD5+kgUBqwbUgr6eBQMh+mR9rqIFAiAUpG4argUASJEcxSq+BQAE9bGrRr4FAZmlpJEu3gUAK66qRoMCBQGr4paGDx4FATi+gotfIgUA6JR5SA8qBQASn0yywzIFA1fEJJmHPgUCk6R4KC9KBQJHt4IR904FATi9D4ejVgUDAQAgT7NmBQGC75A9224FAdTDh183cgUCIoEiO3d2BQGbnTg7x3YFA0E60cSfegUCe0Sk84+GBQPIwgur04YFAdc840ZzigUB6IEaP7eWBQGj4PeV+54FAbIeTorPygUBuH/e+FveBQMFKYrXr+YFAXs4jbHP8gUAzV9sshPyBQBTrJfvu/YFAEtf9PkwAgkAgpRwZ6gGCQNKmQbBoBoJAcRMgt80JgkAseB/WLA2CQEb0uE7RDYJAlMPR89cRgkCjlT9u2BiCQOjbDzE5GYJAB5pWFCkagkBOWti+NRyCQA/6FWpFHYJAWkXhWCwegkCZ80RBUh6CQDpEOHCfH4JApm2UV9YggkDQyHDwMCKCQBLkUWvVIoJA5CK8odEogkB33UI4KiqCQK4yEMSeKoJA1qM2V2MsgkATeKakoC6CQM7T7u1xMIJACG8f8qQwgkARW06W0TCCQNoFh2IONoJARxQe4Tw5gkDStacOb0CCQGdAQiZSQoJAEr8yYtdCgkCjj8s2b0yCQGqBPv3WToJAnCFdM25QgkA2VZbo21GCQFFUVRt0VYJAecGM3gpWgkAhAmB6E1eCQAwzVxZ5WIJA7mrXMRFagkAE8FQCb1yCQLhbrrkKXoJAJ+qwIjNigkDY06xF4GaCQCIjlZOpZ4JAwWImaGtogkDs+SR81mqCQE7dLeGea4JArl4TZaZsgkD4eYCcF3GCQGSY5fFFcYJAmqKMW25ygkBxWV7n3nWCQNinXWMIdoJAGroVxnF2gkBGeFi14nmCQAbICTlyeoJAMU3mcDp9gkCEvgHc232CQHr7Zq0chYJAJoKs9IuHgkDGzzb5QomCQOxmpQ3MioJA6/hBnPyNgkCKvN8JQ5GCQNG8oCqwkYJAMjWHz7KVgkB6hC37ypaCQD0k68E7mYJATDWYolSZgkCsyPMFDqGCQI4D1HE6oYJAIr46U/GlgkCOfP9ODqmCQIh5NVYzqYJAeyX14/apgkCv7hl9fKqCQBR60KIwuYJAWPQ1cMS7gkDkazr07MWCQIZxkBDxyYJARhuWDCfVgkCiNKhXfdqCQPapEj2v+YJAyKb+Ge8Jg0CXZ6dXOA6DQC5JhnB5EYNABJ0BbnkZg0CO6SBgciGDQCYXhdZyKYNAFkdYLGoxg0DYbcJSwEODQOJpmgWzU4NAXLJ6xxpag0Cq1Smag1+DQAbEtr7VdYNAUeiSp9l5g0B3o5tC1XyDQM9FI/xbgYNA5MlY2eSBg0AQnh6wSYODQEzgKkM/mYNAHCRE00Whg0Am2Td19qmDQNdiVV/nrYNAfEuCVeqxg0Dm84Gs4bWDQDAS0LfU7YNAUiuApdvxg0D0+G/1k/iDQBeCDQiqBYRAQts6yWIohEAepLvptkCEQNIuwgt5SIRAtByaUGFKhEBAU+Cd+UqEQFbHWSUQVYRA+TVXk21ZhED24xTIZl+EQFblGsADYYRAJM2nk51ihECxcc0n/miEQK41Ik39cIRAijNkukByhEAPJUk8pHeEQGCjZiHKd4RAbFEIJXd6hEBv7NlBJH2EQDagw6DRf4RAApAHZX6ChECgqALm9oiEQIKHyr09iYRAWJQjiRithEBuU/SmCb2EQFSE9zluwoRANgH4GyPThEBiyAHhEdaEQPrLmVVq2YRAokTa+hTahEDU3WbQnNqEQNMuqJAu24RAOB8jyxXehEBEBr4QYt+EQP0RQB1q4YRApM47EgzihEBm8nnx0OeEQCypo+Ni6YRAPYZ4wX7qhEDmr4sGE+2EQN46F9jG74RAVNq+/TDwhEB7tQfjNfGEQBZp/Rth8YRADwjWL3L3hEBEE7Iq3/eEQPyifuIN+YRA3YpmajT5hEBCKxUVivqEQLiELmWm+oRAFritDTX9hECYPbW0cP+EQGOfi8jf/4RA3gPbCC4BhUAeMDK8jwKFQOgQS5QxCYVAgY6/V0UUhUAejS5b4BWFQOLvTXn3FoVAsGD7mHoXhUCC5n0LFRmFQE8IjimwGoVA5FF3NPoahUDa7pRaShyFQEib09IkHYVAmiyyoOIdhUAQjMAjhR+FQCh3yxB3IoVAr3LR9lJShUDaDBkqoGGFQD+UAOxMZoVAaapvKKlmhUDyd72072iFQNtZQyygaYVADP2+VZhxhUClKbsArHKFQN55crC0c4VA3A0Msph5hUC5bOz29HyFQGixMqkfhoVACBRDH8OmhUDwnoybQK6FQC+fejlEsoVAmD0upke2hUDAM4wCBcqFQMbio+sIzoVANBef9PblhUAtF6UfkeeFQJ7Dpwst6YVA1h+GOZ4ShkC2LavlohaGQOzm3s/sN4ZABq3q9r9FhkAc5K4xJrmGQEJjOA/e2IZAbt060bn8hkBYxVQqHBeHQIiNVVgdG4dAdc1q25Aph0AYKlIBkjGHQHRprEOLOYdAf+tGAltBh0A0rJSTikGHQBr7XW+KU4dAJsIvoTVnh0BGBNzLwYqHQI6KXjHHsYdAjltbk8e5h0ATMaVawsGHQOEAsWWkwodAmLFyFMDJh0AShY76pE6IQIPLA9/8UYhApaooS6hSiEDnZkqaAFaIQMiSmtGqVohA0n/e9QNaiEAQh/+Vn7uIQA== + KBZXds7jZUC3D8dBTiNqQBTpB48/A3JAo+J3Wr9Cc0DX76Vi5TN6QKNAVK4XVHpAGf73VlRCgECzI/nAXkKBQNF0tau20oRAfCvCc+DahEB8WrCdjGOIQDSif8hCa4lANNFt8u7zjEDgh3q6GPyMQH9sm1I4RpBATP+bhz3GkEAw7oLHYVKSQGOCblpuWpJAsAV63LcWlEAUBFbPl2aUQGIc3+r9opVAlBtN5O0qlkB3MSDsI7+WQA== - + - qJsqRse57EQj+NVEGwo5RSSWbkQyjpdEEpDIRjFlwES0dXZEdJPXRLJqaEXTzbdER3A7RTC1p0bYStFEh1DqRNejj0TdulNHedcmRc+mWUTppNZE7kuqROZz/0SgQJZElTyERFS0SkXspIhFCeYYRQqx/USFIihHbRySRK/BWEQR4IJFuleTRJY/kUSUbHRGc0GwRYOP20Qg3x1FfxGZRFB8o0TQaKBGHrCnRJ/VX0S0JK5ESuOARTbU1kRVbYBE7f5eRFsJYUTm5m1E4vH4RBbIgEQqkjVFwqQiRYHVk0RbUEpEZmofRquHS0We3mFFyOeRRPyndUUm/IhEzvfrRLz/KEUn9odEYmuRREUnkUTm8FNEFQ7CRENd/EdRs/hEf94PRchSq0Z6GLRE3UsJRWMAeUX+NHBES5qCRthbi0RVcRFF/demRArjSUSn5m5HC8nzRAABEUV9Ng1F1KFQRqZ09kV1NF1EPnIaRlj5DUY8FihF0vDNRP51SkUB1FJEncphRF9yoURRv1pESxYzRbY0/kTBMKFEZ70PRgny1ESa9+hFcQveRPoPzESAjQpFEi8CRUCrQUU4wVxEAr3BROBgqERHvLZEu1OKRYAOYkjNg4hGqHY/RV9a0kRUadVE7xmPRBcTsUYDitVEr+nvRCDm6kSUvnxEZY6oREvJaES2gZpEcyt5R4FW2kWzChNFnXWjRJC/aER5Y0JFfL7ARJnnsERXbpFF6Lw4RVjpN0X+z5FE3Lt9RDCHdkSwWg9FBF+qRFWw1USGlatEYSg3RdjrfkQF/51EfjN7RAPQd0RFc6BE7Q+SRNHvk0QoEchE/ojtRK5O9kR7OWlFlKc8RQUX+kVLbpZEKeJKRIOuuESnJMhErzK8RLZurkWWVldEoR1VR/0voEQo4UlESlp8RPsIJUVKUUtEnlVrRLCEzkTHaPJE8GHaRVGsk0QdM5ZEzJllRJni/kQYpHRES8CsRa6jWESlFZlEEPFcRH92F0VzF8BEC+MrRRubAUUJtZBFQsbrRNMSR0VcGlBEzKJwRY8l20S8b2tERJU7Rdtj1ETYDRxF52WdRBXvNkUcF4tEpM2TRCrymUT83xxFS1CfRNUj70TLIvNG/2RfRKn0VEQrnRpFx76LRCE+FUUBE2FFn67HRPqhxUR1BXJEZZq6RAEE50WCsoxE+wydRMqZkEQpW65FbW91RIw5gkSJF39E1/2URPrTGUXUOsNEsK0ORXxhCEZ6NVZEOxfiRF7fIkXmVGFEkQXORGhag0TVj7FEfGmZRPf2EUXmdo9EjTLoRKaVq0StYl9EaPFwRibYnkVdIs1ExILBRIOUCUbefoVEoDEwRhrEnETj1xlFly3dRSybbEQvq4dEbN5+RaSVykTsWqdEemBrRBuys0Sx2jtE6CC5ROZpoESqgWtEtMkDRmi4jEQvoI5Fie+aRGINvUT4m+5Ftr+URZs0mETFlClF6EiIRM0cBEWBPEZExlkdRX9gjURS4tRE89DyRKWmakR4I5ZEbRmvRETzsUVNA+pE1uHIRblW00TMUbNED1xFRRa8jUVgkchE7C0vRk2wzkVp48lGVEY4RMZcAEVcWIJEtyq6RMZanESc3UxFyRNfRZYoUURN8UNFi6CQRWXCckUX6R5FvUZqRBcgO0YmJVtE1vGTRBNycETTmBFF4aRmRLAVgESe7aZEobuSRE9lnkR1p61ERb64RPKWGkWupK9EJNFZRA8Z8ERPyW9EYRe7RHCExEVeoclE/tTERLeZQ0RmqMdEp2/SRdzWjUQd7LJEoVZuRBShgkXbwYhFIyavRK05NEWTSYJEvzugRBe8lEauBwRFQ/NxRWcth0TFTKxFI0HwR7qTw0Suo6JGjmbQRLC4qURwp05Eod2NRQC+0kbPbr1FOm8/Rji5H0bKU3BEGngXRfvWB0a8+KdEt8wOReETrETMAuNE1YSORHBgukTTKllF+UDFREW51kUhosxE+XakRPKGXUWnwq5EPZujRNfcCkWCLCNF8o+LREt1V0TZIpREcanMRLgrhkSFH7lEcoOzRKuWvERYXfdEh13YRrcJn0S6CpxEDfUGRk1pP0RZg49FR+t6RHAe2kTXqHZEgYKpRc8JwkSxD2tErLDLRB5bK0WgCkJGpXNmRHnaeUSCTBlFAHJZRZJTYkbXF01GEFmMRTfB60RC/4pE3zjERM0uKkVvuMZElqBgRXnmbkV1/t9FZQEtRQ03rUSt869EYytqRTZ3kUSQTrpE2rraRLTqVkmlhVdF3U4IRcelu0SV8UZGjoH6RHuMZ0VOuIRE0pzDRJ2stkVQ951EKTJYSMs6R0ahn5RENwCYRHncj0X1oRVFyMFxRAnYLkWty6hGTxJ+RAYnt0T8QgVFzflVRMW7nUQu6O1EfVWiRGjqSUSM4dlFxwytRH5dikRIBRFFiYp0RKjZyERbxLJEoI0nRbDOoURQ3P5EL6GgRHQAY0Q14nFFUUrpRSVhd0T1lkpF1QSLRHRugERkUHJH9mbVRtpuUUXlWR9GVnP9RJo0D0X4nhJHa7l5RGmtnkRJpq5FHpQARTldbkSfpiFF+BakRR7skESEksdEcCJpRFZGY0RD1WREnfhhRFHRiEU4OVJFNjubRTuGBkUDUWJEqbqXRMcauUTtMntFQSB9RCojv0RvMqVF8XoCRY6VDEft7qNE6T7VR3/QBEd4EFpG8u1TRTC0nESX25dEXHrmRrlptkTHTpBEfz+XRGcEDEUGC4FFDd54Re7XokT0jHxETq8XRZNaokSkqUFEJqBuRAOPkEQEdSVFuu65RCG6kEYEIJdERy7cRWYbBkaIFUNFTn+ERB8VkEW64aJEp8w2RVYMo0QY2BtF/F7SRLu7n0T9JuZEGidpREO7EUV3FqdFqqLvRFV0tkQiqaBE33ZTRhhNSESBaqBEpHotRb0aUkSD+6pEc1CARIM8nUSwCPtE3I1uRKD7z0QzbY1EZmnwRLlz8USPi6ZEIjh4RNvZKUURQk9EJvL9RY6LaURffRRFisCkRJboJ0WV66BFbPKWRoj3DkVGN7dEiRb+RZukMUUM25tESxiTRF43E0VIvZZFv1eKRAYXpUT0TndEhbxbRBYnp0Wn1g5Fn0BgRU8AnkQpu/dEdLO7RLmiwUVVeyBI7eqTRBMihUcXhk9EtnJ4RBGwlkVMqUdGkjpJRUZaxESJBWBErVwcRfavBEWIyJtGwyIRRrHSk0RfdyNFEaF/RFmjxkSnGQJFNwolRb8pekTi/IdEfrFYRLhUdkQJwb5E52LfR7FCI0WfwctEISfZRPFbu0blRj1FwJlHRQjNqkYrVp5FTJ8HRVMPmkSvYq1Ez/BNRCqBp0SOozBFA6qnRI/IiURlf5REo6F5RH3nKkWjkJpFdwKIRC2Xs0R/6nVEMJSYRPnpAUWcX/9FgvmDRN4No0QYURlFti0RRRZ+sUSRW3hEyV8qRsD9EUVGFLtEg9uQRI7mSUXal/dFwolgRUublkWZDWREUWoeRRrthkQDv0RE+haMRAslekSgEHhEeYH6R5GJikR2lmZHWKqCRNjeVUZ6fAtGoslURRNujUVkXZhEL3WIRLuJ2ERg4ntE2XWcRAPug0TvDpREy8i2RJdoq0RWxXRERkeTRCdBmkT3QpNE5PyJRCOxRkQsJ2JHRWkORjELjUTD5ItFkHgIRoxop0T0341EwSJ8RhEC8kTHzgRGOpM/RYxtmETxwIJEihedRIQBkkQ6+5NEC+OqRByHckT/CYdF07GJRCwIU0RXgCxECyPNRJ7owUSy8LhELMmERF0w1kQcDIFE7GugRLBmkkVWix1FjiacRClwmUTEjkxFgg5iRI2PUkRq0gpGZe+nRHzPfkTJn5pEr2QxRZcpDEX7LllFZjiWRHdFjkVjmq9EAY2RRMegR0S8c2FEZSuERR+KREWb7ZNE1DDVRBrTdkTaM55EXzgHRQiXqUT2JIRH5SVYR+AylkaJHg1GcOlURJZKNUbe2M9EfQIHRcqkBkUroXBGKCARRcQLuUX/88pEBfeDRTf1tUSGlH5FTA2KRMcPfER3d5FE+4KZRJgwqERaXYVErd7JRIzCSEWJthdFrX5gRLs+VkUYvKZFUwH4RFnCd0TNIOBEunO4RL59dkTOOTRFoFYuRvGOXETciE1EOy7ZRMp0LkWWsrdEv9OGRJMlvUSKXmBEnafKRMBPv0QRNwdFqS2YRC5epkQw5bNEn5kKRZzWlETKQp1F6TUGRajhzkSCGY9E69/6RPSNU0RwnWBE175xRNjjvkSKO5VEOLC4RNqmk0TfDohIwCgdRajNV0QK4BRFYxGhRJBvgUSHJPREE3X3R8/clETPi51E9FJzRCZ1f0TrfZRErpaIRIgEhkcI2VVFqLfaRMNGKEVG7ztGyIyQRMe4vkUzKqJEuJB3RAXHmUTeLMFELNugRG5wYkRcPU1EtvZaRpMJhkSv425FeHxkRK5XtkWkvVpEUeeORIve60YQUL1EwVJuRDWq6EUC6V5EOl+NRDkwgkSZpIxEem5vROW9tUW4blxEHNp5RIzDlEU6CRxF8F6fRDV1nUSn+HxEiQ98RMmFbUSrDUJE1TOWRHvzSEW4I/hEr1WuRL+AO0SWv3hE6Wp0RE8fh0Q/fsVGz31pRAOZXkTWn6hGXY7hRY69iUQIcRpF5dWXRY0toUQ1HYZENORcRCGa7kVkuRNFMtlORfxwUkQ10hNFBJN+RB+RIkVK4QdFMZ1eRNMTpUTXZ+1EcvawRIn/2EQSPW5EBqOMRH9LJEWPKD9FBW5/RBYUakSTwK5E+fqURPDDM0YJWJFEpx8qRTBGX0Sro4tE7x6ARL3xtEVxl1xFWSvKRCuTpESXaN5EASGTRyvuD0cAE7VEqpmMRMUYN0VF4RFGynuMRJCX5kQhTE5Fzd2eRMyvdUSF8UZEUay+RIbcsESqp0RGwmeIRFHNNESBs8lFrmBVRHBNxERVsoFErhSIRiUNjkSvtwxGyga2RFx5E0boX2REeGfJRuWugUSLQItEglVtRvSGmEQ3WXBEYGl8RcuPjUW5vfhEFTEFRWU++0SnjcFE6EBhRKcYgkRMbslE2OSARG7JjUT0ooFEObNWRN61nETXauhEp/mNRDF+SUTcFQRFxrjlRDO4BkWz/p1EgRWYRDYhg0T2SF5E+03cRCKWzkSXtVtEPlVpRf/JzURpwaRETXRcRQw2i0TtqQJFzl56RCbhUURqhbpEsElaRXqniEV8b55EotpkRTbWJUWVUmREFrOpRKBQbURp5E9EQ6VQRHLcx0dl8D1E0FGNRHd4LEf2HllEsJ6KRJh6dURdR8lGFGoMRSBos0V34NZFIcFjRZ+8CUVOpfVEjDntRAVtoURiR3JEad9bRG2wIkWE+wZF8E1eRAzr00SBULBEW0eCRH9e0URYpvRHrZNaR98r5EZMqSlGCIVhRePqikT/g1NEnRqtREVIjEQQ8QVFxHx7RDD8fkQmK4ZEeDKpRC9zq0QSWM1FOQa+RD/9iEVnLApGRSyORYmw9kTxH5xFistSRUbypUQEkWxEhjCeRH9DlETEGXZEE4USRSqNU0Q+XX9E0tVxRDXkzkSz9B9FhojdRPUNtkVlrChFRdaQRI54RkQZSGxHHh5dR5OP30YzLkpGWqaJRYnk30Rz+J5Eca2ORBHSakTwyH1EDmA4RYu/+kaGrwNH3/GkRqbcQ0QGeIJEwhdyRUx1XkSJIHNGIU28RKVfFUVgpRpGbKb0RPw+e0STrFhFOdCFRPCOpUX1z0tF2/gHRXxKOkUnHQJF4g8vRW4/mkWCxvZEq4hzRZvfl0QiKf1EsNKlRJTNa0R+nVhEy6AsRywRw0dEDQ5F2LiqR5jlhkdbNARHyVuFROWnLkZ14mlEvw6mRRKX30SIWWNENDpuROXnAUfY+kBFjlrFRGbrh0Rz4INGEzIuRlLJSkTF6+xETzmVRVa8SkR+UlhEit18RLHihkYZvgdG5cKERe71ukS3bpdEr1vIRFL+nkRosmZE82zFRC49aETFtsNELU5cRJvS2kRMlJ5EOxVdRMgOoESagAlFVqA/Rts0z0WowJBFECt/RLtAC0UoBXtEsQmDRMu3U0QA3i1GUJaoRY+JN0UDcNZEnzCrRPMnMUbvG7pFM1/4RXcemkXqNXxFTQ2KRAwTiEQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - SXnmVHfAckD7DWGbbsFyQIoSMNTFwXJASrIiGlDCckCq+tzlOsNyQD7/wjpaxXJAKasNj33RckBVV3QRQ9JyQHxvBobL03JAUIysdM7fckDyxV3quOByQPj8DaFS4XJAWMFy8lHickC+9bk6kOJyQMOetEIn43JAeMSST07kckDEOhUj5ORyQIs6OLPK8XJAvPJh/pvyckB6/hDfEvNyQMGicIe283JAr8rOZKH0ckAGm6xDwv9yQPFh/CdjAHNAWEUcklwBc0BwMcULjwFzQEpIFQHXAXNAdj0flNACc0BBs3S+YwNzQFKxx3n6A3NAfHgLHwkSc0Dq1t6SKRJzQITQl6m8EnNAnDx7WQcUc0D468C8eh9zQAC7TBekIHNA3G2t+Dghc0DkSJbIYiFzQPAuNft5InNAsxE1b8kic0A0mqtbECNzQHxbOlHPJHNAWixxUEcxc0BUvGLCVzFzQHM3a/H4M3NA3yciXds0c0AiKrICuj9zQHRB9kvjQHNARKLQ8nlBc0CUPJOLuUJzQL5ckXMFQ3NAdunGz1JDc0B+ib+1ekRzQJD4AjmbUXNA2FbfVhBSc0DReNsGuVJzQLwpYy1CU3NAQsn3tKNTc0BYmnYieFRzQATvQ5yEVHNAu5qcqfpfc0C6iqOMi2BzQGjttPyJYXNAWFKj3R1ic0CjhbTbOWNzQK/IGB/ccXNAuDweqFByc0Bp9+r/Z3JzQIZv0vODc3NAUCgS5rZ0c0DvwS0zTHVzQL/B4aF4gHNAEIJX7qaAc0BeC8YbDoFzQIJIO9Y0gXNAOHYu8l2Cc0C5wkFB4oJzQJj1GxYAg3NA9b54rTyDc0BSv93XkINzQJqffQA4hXNAUFx0rIeQc0CRp2zf05FzQHCNOaMcknNASgpYCU2Sc0B97Hp4IpNzQKumOCnMk3NA5EVNJWKUc0CS4kd595RzQNaE4KO4oHNAWuoMM+Kgc0BdNeT9T6FzQIumgM9ZonNA0WJYY4+ic0BOGOQTBaVzQL7wXDzYsHNAskK50zOxc0AuR8BgfbFzQIoE3kv0sXNAX07vRrizc0CUFs3MDbRzQKZKLwrNv3NATv+R2fjAc0Di6AFsS8FzQLBCuHuLwXNAFn5qss/Cc0BKmZIgKMNzQMBC1LPFw3NA4GGrAVnRc0DgnTCLfdFzQL5pU3uj0XNAKu/+ANjRc0BFL/jP3NJzQI/0PNhR03NAMWR90fbTc0BCBpVT4tRzQEr+sBk54XNAcwebvGPhc0DBfY4piOFzQHqP/x/M4XNAzCIMNXnic0AY/khYK+1zQPpxKz5H8XNAumMr6nTxc0BdX7gxjfFzQBEnbYgg8nNAPMs/dWfyc0C0EtWeNPRzQASPZ6njAHRAcLX4EVwBdEByOcHKeAF0QKpBdUWkAXRAHqqaUNEBdEAGsZCjvQJ0QGfKvZ93BHRARiTstCIHdEBEEbineBF0QIDrvRCSEXRApaIymUoTdEDTWpct4xN0QJbbSRV6FHRA7Q8eB00gdEAshyrcOSF0QD1uXf+gIXRAtrlFxrohdEBm+nSz/CJ0QIxfO9hbI3RABLrF67gkdEDiaOimUjB0QNDpBeeZMXRAJEU7PLwydEDDjmXp5TJ0QMarnV/gN3RAwAEp+Wk4dECUhjHRPD10QChZWe7IQXRARoy19DlDdECS7p6eeUN0QPr3Eed9T3RAPtIhQIVRdEBEavFeZlN0QAAQOuH2VHRApv//B4xVdEBCSUVOIV10QNpHNu+3YHRAWY8SwghidEARt4AsfGJ0QFEyIEjnYnRAlCFPjU9kdECwV1w3InB0QBozqcFAcXRAl7yuHxVydECnffIVfnJ0QJSd7dY3c3RA3qMCPA10dEBeJFrfNXV0QE5vid/2gHRAlnRiQR6BdECGJIZxToF0QNBnfnBJgnRAnNyk2RWQdEDVL3oBa5B0QFyWxwoUm3RA5Qc7d+6fdEB6ElVPoaB0QOQ87nLQoHRAcIJ4xjehdECUXTr4h6J0QHfensy5onRANKo1QBCjdECkyCgZCrB0QK7BX0rDsHRATGcVdG6ydEBiNk9N9bN0QHQfdBHkwHRA2CzS/vnAdECntYprd8F0QLZjRV/qwXRAwIVcSg3CdEAnbQ4LtsJ0QDDTU3F4xHRA3pbiIbfEdEAQoJfn+s50QL6wCRXN0XRAdLw4THrSdEAK0AS0OtN0QDyQw6jN1HRAqrYH8PrfdED8JBpmtuB0QG7LFXe44XRAWLS+0/ridEB0t8uESON0QAB9MWGQ43RA3PsC/U3ldEB6ZZgzv/B0QEBT2F+N83RA4aAAv3f0dEBC9CYsrfR0QHQM54PPAHVAhBm7H2QBdUDPk7629wF1QPCz8mZdAnVAQwz8riIUdUANwBlusCB1QMUpDNCcInVAZ/OuYuUidUCkX3SizjV1QAOSZErgQnVAXttGodlFdUBQnV6szk91QAQV1sDnT3VAWKdEXh5QdUC0UT0iglF1QBAou8dLVHVAWZZeP3dVdUDkx3CvDmB1QFoEjlk5YXVAx9psJGJidUBy3FwwjGJ1QC3AK6A4cnVAdfbuTYRydUAgz1FtKHR1QKdvnVqNdHVAYeh9qHaBdUDt99FJrYF1QPAjjCSmg3VAgv2XAxKEdUCM6zH9mYR1QAAX/sC6kXVAOOJTEGySdUAG/fMAhaB1QOcu2cGVoHVAwqhNrrehdUB2uP6vSaN1QKa4O0W5pHVAXFKMHqOodUAlqLydzsB1QGgtrUNiwXVA2BG3MffBdUByhieHy9N1QFL4s1IO4XVAPuGMTF/hdUDgL1JdB+J1QLxcUv8a+HVAnhufjkgCdkCCTosQ0QN2QMSiFulTE3ZAMs1Pi64gdkAnhQPKiCJ2QBxs6vmPJHZASuRWLEwrdkBmFFFMlzB2QApXJWcfMXZAsmkTulIzdkBWqQ+YujN2QJrWwSKfNHZAQ9aGs1xAdkChVMbaHEF2QCaDn5TIQnZARt6m+lBDdkB1wKhmekR2QGeWQW3LUHZA8BTJvw9RdkBnW6Xp+FF2QCoD7UMpUnZAdUhyLM1UdkCVKSYUi2B2QED1OQQdYXZASkv3cN9hdkDV2PizGGJ2QABSQQnbZHZAqllYVxRzdkDl1w4vdnN2QP+OIFTQf3ZAOe3dAM2AdkAwoHIsZYJ2QHq0MIyMgnZAjr9Sr5GDdkAXLgvQdZN2QGOuHksPoXZAilMYmXSjdkCEQknktbB2QD4x0EXBsnZAXHHxRQ20dkDaJhMTeLR2QITDMrK/wHZAfByLck7BdkBdufQ/s8F2QNDuBIzOznZAGPIqcsHQdkAerUQgoNF2QEfir2HS4nZAn7EuoJLzdkAoP4idTPZ2QEJVnhk1AndAbllTuQASd0BZXykvDiJ3QCnluix1IndAZz7QZ6Uzd0C0ui78DDV3QKuiktjKQHdAOLWLlpxBd0BMl4huk0N3QEiEdQi4Q3dACx+cRCZEd0A2IVWvGkV3QJDkh3xKUXdAhLKof5FRd0A2/U/X71J3QA2nzcR2U3dAu+GBdJ9Td0DcwSd5KVV3QNr44mR8X3dA9pehhg5hd0CwJTaxR2F3QGTnSkuRYXdArAoqiJ9hd0DZzkKpOGJ3QM7w5bg6Y3dAlLR4Uihvd0AC75bRO3F3QPb/i2+CcXdA1mD9IqByd0AKgc8oTHN3QG4BiRT6d3dAgM2HgWp/d0CoXfniTIF3QCDgbG54gndA+kZkKA2Sd0BYgr8ASpR3QO6ubgiQoXdAucfy8v6zd0DuD2tyd8F3QF4asPLi0HdATLt1JFHyd0AocB86Q/N3QBhaKmqA+HdAyJGpvkb9d0AQPcjKnwJ4QF8XK2RkA3hAIB2zCJMDeEB4ApL0/Ad4QFKqlL1BDXhArqeJBlMVeECqEljlbSJ4QOy+ATGLI3hAkpHvoF8reEAQ4dQpGTB4QDYS2BJKM3hANIBhGg1CeEAw2OYAWUN4QO+xwmoRRHhAzxDNW3pFeEAmTpq9hlB4QDEVT+3KUXhA6tIIghhTeECBSn+/iFV4QG7jABCVYHhAK9ZsAfpgeEBWdIl9uGF4QNcoScW4YnhAfemnmuRieEDc4vqEJ2N4QH4HEp/qb3hAkuduLHlweED1elgk2XJ4QBwlHkpUc3hArBLIgBl0eEBJ8JKxJ3R4QHHFzT1JdHhAEoVQHFt0eEBegzuJi3R4QP6Q44TGdHhAIlDOK9p0eECq+cvh8XR4QGBVHHr2e3hAWPUe6TmBeECtgpQPpIF4QN69FmnNgXhAbOhKf+aCeEBwZhLo04N4QJIv65D+g3hAcuGZnZmEeED9Nv1XT4h4QCi/U33li3hA1I7IBKqNeEDwQ0SxlpF4QBAnc44Ek3hA1SpVL5GTeEDimnJiqJR4QF7MPV1RmHhAVIwmu1egeEBOOnv3hKJ4QABjJVZFrnhAVASWZ5qyeED4RkVblLN4QD7pkYbLwHhA47TUL/bBeEBCIswYF8N4QIHDLrIey3hAPmglX7fUeED+RhDDDOF4QHya3Xg14nhAEqDTLqPieEBofmhp/Od4QHdWk8sB9HhAHkaVh4z1eEAQhv2CywJ5QKBZ9tENBHlAzrRBiZgFeUAsqgeW+CB5QNiHKnG4InlArqnTqOMieUB+44mhvSN5QA5C5kJRJHlA6sVJmbAoeUDWdOb2DS55QKg2HgfYMnlAFapZk7UzeUC1RFDcjUJ5QNrZzoLmQnlALaK5UfxDeUDugLVP2lJ5QNZs+c3LVHlADkiv6uZgeUBaWxcB12R5QA/LElVDc3lAKkEezjiieUBgkLu1wLJ5QI3lqsPOwnlABiJ0lLDDeUDe53B7Vcx5QEPSWvJC1HlAXkJuBM3VeUAGecHjTOR5QCfqAi6363lAojRzDUbyeUD8WJtQwPJ5QLyU8f4Q9HlAs0iby/cCekCKf3CB+wN6QJhWCeg5BHpAy5ME7voFekBdTIUh8iN6QNLNOelpMHpA6G1ftCszekDygMp1DDV6QFdWaqktN3pAVNtSbzA7ekDoQkQWNz96QNtelBgaRXpACG99MLxTekArwpM4KFV6QMqwY4kjXHpAuLIAvq9gekAO4reUOGV6QKapzY/gcXpAbt3lLiNzekAacBt5K3d6QKy9INPkkHpAepmjMtyTekDruqGlHKN6QGRrxjUPs3pA7LoKqQy2ekBJ2czZEbd6QFrtogsUu3pAafCxTBm/ekCnhDNFMMN6QIa9R57Aw3pAHinshBnGekAmLFU8w8t6QHMjfCPM03pAcIbJ8mnhekDgZSp69uN6QONJx3V65HpA3S6VQTbuekB/KtlDF/F6QFofJdlNAntA/mxjuA4De0C8k/Yo4wN7QOoTI1h8BHtAx3vQ/SoOe0C+q+12iBR7QAylCf9MFXtAeP32iFYce0DeVxj10iN7QN5WiJdaJXtA3GBbjsQze0AY2AR8X1J7QMh65JEjlXtAaOGO71Wee0CoLIzaAKd7QL2yFRcEq3tASid4VAGve0CLp79VGNR7QI1Ksw6N4ntAWEOKIf3je0CYFRfZKuR7QLMYqVsp8ntAhnbVqYz1e0Ba9ig1zPt7QPx5zGBs/ntAVm992ZEBfEAxnsHc2QF8QIAhGxz5AXxAkMgafLgCfECOAO+SZQR8QLBV4JyZBXxAegtOnRIIfEAoLNFl0hF8QEyqgtgDFHxATlhk3f8jfECkfv6HVSl8QLIIjOqvLnxAEO51ksxBfEAwzaaj3VF8QCRGaGpIU3xAcDqa5E5bfED8OAW1DGJ8QDI1xAc6Y3xAddo2KVZjfEAIU1vsQmt8QA2TvINea3xAZCyQXwFzfEDig8wvQ4N8QKJcWBkHhHxA4Kk3m8ONfEDCm+OvHZN8QNTGW82Ek3xAz/UGaCyXfEBz7AaLXZh8QPI6oOl7mHxA17YWosKdfEBSG46IRJ58QIwAJvAOo3xAB/Mel8GyfEBKI7mmeLR8QHZ7qFJrxHxA+DPUuYTEfEC0KwYvJtd8QPL7t1Lz23xA2CuPAFjifECmSCttDeN8QJi2KOls6HxA/MmnThPyfEAOzTqpVPJ8QJTma/Zv8nxAUZ1eRUj0fECI9FDcAQJ9QPDOyvxKAn1AZVxV9AESfUCCZ7yPRRJ9QE72alXyEn1AGiIUzPQafUDQ/CiQojF9QHeMxjtKOH1AqsNCxaE9fUCtEv2DKld9QCHh+MNJY31ABhzGHy17fUDradfs0319QNA12Kjagn1A78xB9jeDfUBtWHuM9YN9QMt6CeyYjX1AhxwM5yaUfUDfgi5yd6J9QADp+omAqX1AHCe0uMGqfUBwUDUvE6x9QFk4t1D+sn1A36HP1gG8fUBy/slKLMN9QBSpL6JRxH1A/iqj3+bEfUBSqBZB9dR9QHA1YHbZ4n1AAHR1roLzfUDzURv4kfV9QNja0/SS+n1AkaZ9o579fUAEqZtKNQB+QJQc/sFMAn5AhuZeb50CfkAC2jhjswV+QLDQGwyfEn5Ax0MnBY0hfkBYDz4l2yN+QA4FJe05L35AKcL8P5Y6fkASeMQlQz9+QGQdH+ChQn5AUNgU01NTfkCWE+oe1lN+QA9R6BpaW35AeslcXEZjfkDed2SoZGN+QOJg9UM3ZH5AVKEh4U5rfkBKuexqxmt+QCp7oEp1c35AhjKuR7d7fkBR2lw5ooN+QKxtg8PgkH5AaJpQ1GKXfkDiwRsmCZp+QHSmdp4kmn5APBl5kmmjfkA6IaqrkaR+QF/21wJjrH5ATtKhGCGufkAmjNaYvbB+QKecJXtqtH5AuCwWK560fkDkvq3Ecbx+QP7lxNNmw35ATrCuLc3EfkByaSpdrsd+QAK3OAZuy35AQAK3mVjTfkBcUi+YedN+QH4JgTJz135AoVqnSS7kfkDSQMxcwuR+QGBerkaq5n5AhvcnIWjrfkD4/WIYD+1+QJJgHQjSG39A1ncO99Ujf0D+P0mTNjR/QN9leE6oOX9AiHmgOqJEf0AEp4jEpUx/QFSnWKSvU39AUNVvg+9ff0BUAzkdt3F/QLZuBfSRc39AxmsdJuV0f0Apydn8s4F/QO1QgCmmg39APYUh2TyEf0Ak8ZWf3YR/QDbadycTiX9Alvrt+WCLf0Dor/wSXY9/QKmJfhVjkX9A8wK3Q62Rf0DMErR8XpN/QAJTe5ebk39A9ynzTjacf0BsT0SBX6F/QKK34cxYsX9Asb+z+/60f0B6QnQHK8R/QL7QlGFfy39A/PzH6u7gf0BsWtLnUul/QBhwoQCr7n9A2JRTAnX0f0D8POO4RfZ/QKNRzhqe939ATBIEYNH5f0DsrVGKNf9/QNnFZhtHAoBA6eRp3HcKgED4/CvmuxGAQElai9BoIoBAbJbeG+spgECqaIkFuSyAQDf9ZtmLMoBA+1OODhA1gEA5Y9gzHTeAQAJw4shpN4BAaUh7Ksk5gEA6u2Z4IDqAQFaKSHR2PIBA7D/apiM/gEBAQQjy0UGAQFUSpVapQoBAVrbW0fBIgEA8LoE0sEqAQGyGiXLkUIBA6JKILBNRgEDAFJD9plWAQObZdiYmWIBAtM4kWQ5ZgEDt/rXJCVqAQJxS3AENXoBAaKBeNcRhgEDlzAHfb2SAQPBpoYWhZ4BAkvnnsh1ogEAXYBi1UWqAQAzkWrIob4BAs20nrNN5gEDUg6eNKH+AQECkq9DhhYBAbSiiDOaJgEBNiEy8Mo6AQA6OuGkej4BA1IG0tuCUgEA4kGGXHZeAQMF2SKiRl4BAF6Bf8AWcgEAC8UxwX6KAQG5WUEFBpIBA9oTW886kgEAyP3+CP6aAQKLZNLr4poBAqFu1g6mngEAeliAZiaiAQDJ9aFAmqYBASN5XXIepgEDGsJqOPK6AQOXDfYQTr4BA/uOdmRyxgEDYR0Bb2bGAQIIAREl/soBARKM+3JCygEDoEYjt+LaAQKw02yRquIBA6/eucwW8gECU7LdptLyAQGYFRq3MvIBAFN3o23m9gEDvib7sLcGAQDyTEohSwYBAqqx2zajBgEDQSmekuMGAQDoxm9yewoBA5dS5zQLGgEBL3tbiN8eAQNZmViKqx4BAIOBjzWDIgECgKdV0U8mAQCg1fAQJz4BAgFdmDmTQgEDL7hRPLNGAQKJ0kFdM0YBA0rI2dGDRgEAWQnJHCNSAQIYHax1k2IBAttJtpUrZgEBbFJvIxtyAQIxGZiVF4YBA2gitWvHmgEDb78IsQ+mAQEEG3mZM74BASn+osD3zgEA4EvIwaPqAQL+P9Mw//4BARq1QWUAHgUBGqMzPPg+BQHLzNS0/F4FAgqIQFMwZgUCaGuQd4xqBQKoFlZ4JHIFAvGlohTQfgUCF7JUUNSeBQEYkK324J4FAIgtK9i8vgUAqBF5XvDGBQHzDl4EpP4FARD+bepNBgUCu7HKLzEGBQJCL7TjPRYFA7BXclexIgUCqkGiMBEqBQCPSsBfbW4FAidgfA7FigUDlkaMMcWOBQGSxhp+zZoFAShrNALZqgUDgoOMYDGuBQMIQhmUjbIFAHMgusINtgUDfmRkFuG6BQNb6mjDCdIFAdMr6Qm93gUDu/Kp+HXqBQLbEm7rBfIFABZwVjZJ/gUC5U3mWnoKBQA4lXJPehIFAEUV8mY6LgUAU+W6JBo2BQE6NaDlWj4FABPCKxLWPgUAg9n8tO5KBQHtJXv5qk4FAINNDp5KTgUCKpHDw5pSBQMc1cLE+loFAFpwKZFaXgUCcdPb/qJeBQKTzhhDTm4FATHo/2Z6cgUCiEinG5qGBQI79qfjeooFA6NVAi3CogUDY/jmY7qmBQEDTOZDmqoFAjmd+Ys+sgUAs1AdgSq+BQNBYW08PsIFAJHyxvkeygUC+yw8nS7eBQFBOpVD4xYFAKIObPgTKgUDsfNA4ssyBQNCtB7lcz4FAC5q2cH3TgUA7Dg4t6dWBQPXuKuiI2IFAP+jyLc7YgUBPvzFt7NmBQCy0w9Ae2oFAR4usSN3dgUCMin988d2BQJO6Favi4YFACBO+KvbhgUBu7Ux+tfKBQFRYiJLs+YFARFfyEfH9gUBCc6G34wGCQCTGx84ZA4JAThqBkgIJgkAXiubNzQmCQBa+qiDTCoJABhFmd9ENgkDaWO5y5g6CQOB1YN9DFYJAyRuNsNgYgkDyhmFYKRqCQMh8X8BjGoJA6PdMUC0egkCsNn0A0x6CQNB64GDYIIJAOsBJ6jEigkBVH25S1SKCQNB5uHzRKIJA/Num154qgkB+ll69/S2CQIKdZ8WhLoJAjI2zAdM/gkBtST79O0GCQNaWeA4TQoJAaCS7r6lLgkCVrkkNoU+CQBE96WVAUYJAymAhh91RgkAAZM9B3lWCQAGEBppEWYJA4F4uNahbgkBs+A1KaF6CQB+wbVk1YoJAg+pePjZmgkBm+VFZnWeCQLB3YcNqaIJAZGLBbKVsgkCcGDuibnKCQOr7tw01dYJAWh0p6tx1gkAXhbEwcnaCQFJT0OPjeYJAPOxzBAd6gkDg5rAGyXqCQHjag2mue4JAQIdAQ+J9gkBYqGtb6YGCQNBWNXPAgoJAlnk8X0OJgkBg6dWyQ5GCQAOxqZWukYJA5pJd0beVgkCDQdwS+pWCQLQWs+A8mYJAuc/iEQ+hgkBQXhP1O6GCQCBabTzypYJAWKa8qQypgkD6BZLiM6mCQDONgGTyqYJA2/6L2XyqgkBWtMjpgq6CQN6BKf8GsYJAtDaYaHS1gkAcT4Hv6sWCQJxPirrwyYJANs37UnjYgkClTdk3KtmCQH4E81t+2oJAsoKIi675gkDG1QM8KACDQBUV7Oc4DoNAHrjUsHkRg0Ac93gjPRKDQPrTLUZMGINALPj9vVQZg0DUORAPehmDQGl7L9pyIYNA6x/Dmx8ig0AYE2xFcimDQL+JnvlpMYNAMrcV0Wg5g0DjpJygdUGDQAIzDpLbQoNARxhVmaxHg0DFmorev06DQDi2kILXdYNAqFfVgER2g0CVU9N/2nmDQFSoLMvAgYNApNlcq0mDg0BcUhmTP5mDQM3+aXFFoYNAtnuefcOjg0BpQxK8+KmDQESrffHnrYNAur24K+qxg0DVb8tNIcaDQA9KvwJw6INAZhTbudXtg0De9tlV2vGDQGyOTb2T+INATMJAQgADhEAmrt7daA2EQCbvqNZ4SIRAq/u5ylxKhECKagas5VyEQFhSUsVnX4RAEmA45/9ohEDIwcJG/3CEQK8tkNUic4RAV1GIW8p3hED+d42X+HiEQKCmRkN3eoRAXqOBJCR9hEB00+an0n+EQAyGh67IgIRAFgKZJX6ChEAmYPhceaKEQKFUuekipIRAcOsYP1qyhEBIAq88w7qEQHh+LWIh04RA0CsFoBHWhEAQTJxaatmEQFasDWMV2oRA0KYrYgfehEBMhEDxG96EQCNK8rdp4YRAEKrklhLihED0Ng51YumEQJychVlt6oRAuHs67RfthEBQAz9Lxu+EQLQYJiI18YRA3osd+F/xhEBMpamscPKEQBUwppF094RAiAN4gNz3hEA8I/YoCfmEQH0Ax6Mz+YRAls8fe1r5hEBT4aoqifqEQHsu8f0+/IRA0s7/KjX9hECE7KxEFAGFQObhNFQuAYVAUjZPXzAJhUADJ8xhRRSFQMTS5AjgFYVAR8lDrvsWhUDuPTYoexeFQOhyek4VGYVAz2e5fLAahUDMVdkq+RqFQKzxVktKHIVAah3N3OQdhUC98B2+gx+FQHZHMmegYYVAltiqoUxmhUALFz98qWaFQAk3VeGgaYVAeLZizJdxhUA+HuW1tnOFQLh4p9CYeYVA7unZ1o+BhUBqSDdYKp2FQHpq7JdEpoVAWl3xY0GuhUDz2nxmRLKFQMwFndJKtoVAsvw4Mp4ShkAC/AcPoRaGQFbIT82aJ4ZAd8FY/z4yhkBZP81LRk+GQLSKOJORWoZAGh6xoVGchkBEC55DJrmGQB6SiLCs4oZAjMMnzKXkhkBor2TkugyHQN1ltvEcF4dAICsPaZEph0C8J62hkDGHQAii9ZuJOYdAt0r+Yl1Bh0CAZqMxiEGHQPVr70vHsYdAs/eVNcm5h0DaWhaLwMGHQMxQRj+lwodAB3OzKsTJh0BUxnAN5A2IQOybAie2RIhAEN/ZEKVOiEAKAKtk/VGIQBYwf7SoUohAXhzQLf9ViEDU3I3Zq1aIQP/EqAT+WYhA+7ktvPtdiEA= + NrgMGZxjYkBML328ejFwQK9rGHLRYnNAaoA5p9LBc0CI0fWRKlJ3QNYsYOl/c3tAKBbFZaFBgEDOQ3oRTFKCQF1s2AZ4GoRAvPZoofhJhEDslDb8o+KFQIb+MVR6YolAgHXaN/vqiUA= - + - LWN/RIuhBkaXymhEMF+zRGNQZUWeSqBE19ZdRGn64EZHBrZEewYaRTc6F0XRMVxEaOc3ReN+mUY5Yb9E0NPuRM0Dh0SBIRxH+66vRLEVgkR/fnxEhMixRJ7Wn0T3T2RE32H0RDVF8kS51CVFjFEaRXgxiURKpSVHXw1ARaB1ZkR/LZ5GJgOoRchHB0X10JREPz5gRtQ6SkTY/79Edq8RRaBk8EQIjXpFW63oRDvfw0RwOuREKHJJREXeDUVzg4ZEyUQqRUGUuUQ+zS5EzQtjRJHVF0YTxhZF9I/1RP2mQkQH6W5E+z1bRetsqkT6Za1Ej+eqRCJtjURiB1hECCeARM3pSUXC0qNEXDkpRR2BnERSwqxHi4G5RNFBMUXAn5VG7USvRFGjhEQUVytE41qcRVgyhkT5ZNZEHjdbRLOJHUZi0IdEwOHrRF1rb0REq6lEjEFZR2N7m0SKsaZENPgCRb7HXEZWZ+1FI4h1RFcw6UVMRvdFnwOCRMw9RUUA86ZEmifpRDhGPkTdNL9EEZtFRcrBZ0ULxFFEY99yRMp49EVh311E5J/4Re2zwURrDGxE5c51ROM7iESvbHlEp5s2RWbDfUTswaBEBnaORM84mUXTPSxIwLJLRs3RQEVgaqNEMteJRKTiVkTBSJ5GtJvYRG5AqURGs7lEJv0+RJ/RB0WkSZVE09CVRB4YYkcBtdFF/YcQRbmab0QwlmREOhEdRUf7rURT2GhFPnZ7RSdwP0Tl7nBEmHmCROuuPkQqsCxEPLsZRXK3bkRl9U9EBWY7RMns5UTNEodEgYxkRLwtnERYkqlEtdlURLHQTETDNWlETXVkRN3tu0QVwoVEl92MRG5KpUSdsI5ELdHSRNs+NUUWu1xF5JMIRmukv0QOPIdECoW4RE8gq0V0ZVBH0laLRGa3i0TiaLVEDjGTRCzFhURPPuZE7/c1RD6vC0aS4q5EvYmURT3ulkQDV5JEmnonRRa11kSgtSRFf3+6RJDxQUT/tAlFuGkPReNKxkTGgj5F7EhkRQ5NS0QxNw9FMIMrRJzaxkSjdopE2wYsRSzDU0SYnIJEv/gfRTSQs0RvHmZEMsr4RN0rvkZ3rq1En7laRJG8kUSu6INFx3tTRK+sNkUwSHtEO9XgRLP4M0QnW6VFYpWSRNgcKkTZgJVEiiCKROgNdkRBiHNFPrViRdhGnkSZog5GmINvRJjy9kSi2FJE2UB5RJ+qOURPJIhE/f1URA35z0T4xpdET1zPRKeqhETJIJxE6SILRqn4XEWhubxE9TZgRXi/XURuUzNGEX7aRLpYAEbMG19F79ZqRNxkAUVTIY5EHA5IRGleVERvOk9ElKazREhgCUZQn2xEJOdVRaJusUU+s11FHhj9RHJ3l0TjcPFEtbuERIOTeUR5UZNE2ZiORfhh5URxDWpFr5OHRMv9J0XUdy9G9KugRW+EOER/trxGtGbaRLKwp0S9hblE2MwCRSdwg0XgxBpF85ddRPxxYkXFRpRE374lRd44hkT8LFJEHKh/RhVdjES+VoVExpNpRGCrjkSay0dFAk1FRMSjLUQUB1dEKtZNRJXkZ0RFnbpE+iSVRCscmUR4Y11FZbk8RIXsrEQ1ijdFjM2hRTLOaUSnP5REXjmWRXVLPkRapGJFSCZaRHaTBEWC4U1EQskPRTkEjEQeT5VEIh2aRnmZX0V64rxEhglxRf3C8kc6nZNE8nGLRsfe0kS280lEtDqKRT3Z30a0dJpFB6M7RqkEnkRaP7pFrfs6RCA+60QrSZ9FCruNRAhSpkTBP9pE0kLSRIPUZUTfkitEKqIWRaCPTESnhoZE40G5RVqVWkQrIHNFO5ieRDfPrEQT1g5FVwtGRMk4n0QHiaFEzE1NROAMc0TBnjpEz2J5RJ8N2ES4YFtEHr6LRvy6QUZ3909EWEBcRH1KIkX0mt1EFUFTRHFshkVJZ9VEedD7RF/RHkWSzsdFTMaBRMzxzEQdl1ZFmQ9aRv8SbEY5EI5FJyPNRJZcAkW7661E3DB1RY8F/UQpd4RFmmyrRNAJW0TTzgRFbF4PRedX+UTbsktEXwKiRMgty0Rw9VNF0RmERfwpWklsKZhF02XSRD259UTr50tGgJjNRAP6eUXfoUFEnKtdRD4+BEUk0pVF3tdZSKS7CUZ8cFtEgsVcRar8CkUW7xxFY8yjRCCtiUbOIWVEHM9tRJFjRUReAVVEdjyZRFw4N0QRwntEGb2+RMGKi0XpQvBEoNGlRPstmURRU4FEgUa3RQvAz0TfiFFFlGPBRXf/2UQepFBESKLBRJCWQ0RZ4hJHTq5nRh9N60TayoVFc0VLRVuAykRcnqNGseK8RJ/jcUTxi1FFVKm+RPZe7US85JZFIqGSRHBTa0TDCbdEQn+xRH0JbEUcl2VExrLgRGz6b0RGeY5FUrvwRJxgpkQWcEtETSB1RFwio0TApolEy8uWRKtSWkXBtVBEJJ3aRJaStUQuWVtERJvzRg8H5UcVIOxG+yEtRt/FFEUkBddGdbQ+RFJxXUVbJXNFDzNDRbIOo0R0XyxEIcMDRXbnoERCY3JEu41VRLTqYUVj+FBGotPPRRMb90VUN0RFH2bWRNxRnkTWg1dFzNGhRL9ArkQ9gDtEnLHQRN9mrESm8qBEpgmdRC3w9UT6wttE5Od9RJJLTURjS4hFONPcRG5kh0SDsTJGLI08RJ8tgUSXgzFFB4PARPhkh0QZwZJEs7ySRAw77kTDa/NED6RiRByhl0WsIK5EgL7QRMzGtURXZcREbNmqRnZUz0QXDntEcMtpRClnL0b1QMJElyraRE10xkSJgIxF/PK2RB54jEWtaHpEE5fKROj0DkWk34hEAyVoRb6CkER5XSBIuSOER5wslUT9f2hFr6FERrbG7UTjI71EJJnyRO5mUkQdkXVEozuDRizYG0bCD0ZE9G9lRALZr0QjhVVFVcW+RJC5iEQDCXVEh9WfRM7oGEW1NCpEU+E6RKKAakQlDJtE/KreR5IWHEXbyJ5ESjGlRLcAy0bwtEJFbRllRPXEI0UA6JZGLWt2RFw2M0WxCi9FbZ+CRD56pURK2QNF9ftZRHv3T0Sc8nlE53IJRQ4BK0S7dUdFReNhRH2zbkQ5oIxE2dNfRQIpcEScQoJEBnhiRDVFiUTdeQRFFvOZREllaUS84GJEiHo4Rsb7qERyBX5EJDTQRJ0SFkUA0stFj3xYRKJqNkVF+kpEw158RZzZI0ReOZFEukNbRNHolURaqFtEh01zRMxwR0RDqWlEWLffR4hLhETl4ThHSccVRitCFUaCTMlEl1BhRVDGZUQBPMpEtReYRMDSukRCcmhErPaMRL5/QEQVi3xExjh5RHkly0Zk8GRGUDkDRWLfgESeNLJFqfqWRZljBEV7c4BGGS4ERWAKn0SjnL9FkaLIRDoxo0QCuWdEyRhwROm7eESj1aZEJ19WRKT/gEQ8Hc1E0txtRL5Pa0TY3KVErqoHRWust0SdgKpEbCqBRHQrcUX9qGVEHuaxRBAel0QkMJREPWksRVQcJ0QOBmJErzdQRH2MuUR+UxpGtmJgROPod0TNvzZEBQ1kRAy7VkWNGwNFsEVhRFI3QUSdex9FZlo/RHBws0TEEFpEXT8+RTFYTER5+WlEc2Y2RSiUhEQTtbBEpOlgRMVKNkR+iGhEGthkRCVBfES0nHBE5BG8RJLbgEdmt5dEEWhhR6hiZEThB8lGouOzRRgWykTwdTdGY1mYROzdA0UZbfZEnewvRk9TMEW4VLxFmKirRSg1G0WeX/xEQcEJRZsp9kQN1VlFHOtyRJ6WkUQULGhFBe5ARHl5y0TxfphELOxmROKxmkTtuChGUKfnRCAI4UTYh6xEqgRIRNwI50TuopdEk3HFREUtZ0TXpE9Ex922RHl6g0T9EHdEnei8RCV05ESGf4VFLA69RB90HUU32qpElg2dRDrvgURyMi5EM83ZRATsSkSHJr1E7vnxRAVHX0QOQYRIW+ewRItsfEQ5oBZF/28CRXNWgkTRLnREBXXVRI7S/EeNl9VEi7jLRBJEsUQ16HFHAPeMRZyQ20QyH6tE7hpfRp8nSEQK6YdFz6VdRNcIf0TCIN5EsCYXRc/ypUQRtmhGO6CQResLnUVFfU9E9YRRROawpEQqRYNEw37FRgDGo0V4ANRETPfbRAqA70QTPbhFB6V+RI4Ge0WgKBtFcjeaRH8M/USGD3BEwyJkRLehbEQEoYVFoWgQRfQiWEQMdV1EglWFRI6UbUQH7G9GwVZ1RlyMlkUFuptEzEFMRIqw8ES0lkVEUnZNRIb9eUSm659FGsJjRNO8E0UNtV1E0PR8RU7BOkW+Es5EAbAZRfBMjUTKnTVECUPVRCzNGEVZqwdFw12rRPSOhUSsKI1EH4dmRMLw8UUXEnpE7fdMRO27CUWHvm1Ee/uGRTSiRUWZgQ9Fu3e9RKkOf0deFVZE8T+zRO/+EUcfnXVEcWALRcIEzkUeSK1EnunLRMY3U0T46xpGA/BiRdDwV0SPOEhEdrCXRMZZkUX5hHREDWNYRWD0d0QJQzVEISgoRkrCp0Z7xMZEqecrRuahcURmWYBFs2cGRTM/yES2EThF5/mNRA/IXkSUfqdEW0aQRE2cvERfNaREVgxZRCT5pEQ4DXtEAzK0RKLFQUSVaKFE9z89RGinSkR/pddEXA2xREAAhETYzc5EY1mWROASUUWBBbJESn2oRAI1IEW4JvNEGzWrRDmhRUT8vFhE9E1mRIiIY0SuLUlEZMW3R6FSK0dRVYZEmYtoREDgkUSgI89G3bqmRaW51EX+ay5FgZ8LRU8o8EQ494BEng+hROBgWEQHtRlFWxpbRDQ1FEVdDOFEnJ57RE4SZ0TZgb5ElVuDROiRZ0TpoRhFKy/yR6MNjEQrZHFEisafREpYX0f1lQNHvlWURJkPKkamkBVFRfmXRMPmp0TTWmBEA9GpRJARUETkFydFWBVERLjnfkQ5CjZEEnZoRHhUpkXpvrFEozuBRCMQL0Wi8P9FFhKCRaAwPESPv3lEwAecRTv2PkWiR89EOk2CRH3pfESLwsxEn/pnRKdMm0RwoAVFbHGxRRWNR0VUN15E2JyAR+bu5ER/uF9H/OHvRrgHN0bw8HJEecJDRW0FZURGFVhEg494RF1fW0S00QhFBpnFRukjCUdNNHhG9OjeRH8GfUUbyElG+SeZRODBJ0a5SHlEubagRdPxg0X17alFcQgtRdMRgkSqcu1EaoeLRXqMl0QOrh1FiGTYRKefgUV++pdECzU3RYFJTETSXrpEkGByRC8jGkee0I5H8aLIRFFQhUdlcjVHHeaGRiQQZUTBGB9GT9RTRaLgXETFQRBH0qEeRQY32ETgGHRG5WwYRsfndUQRuJRFK9rcROKEcUSyyWBEFX48RgX8BUbMRyBF8PcVRQEnWUSYUnxEmGqORP61TERZtzFE01FQRB4GDUWNdktEGtc+RMWsWEReL9dEkUIfRo7bp0Xj7VdFadPIROT4nUQrtBlGTliQRSscU0XCPAxFmfi2RGJooUQFyWpESt05RrfDmkUe+ORFZGBdRajWQkX5nRFFjo8mRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - MpQjmXrAckCojmSkbsFyQKdpq2O+wXJAEYKq2eTCckBv41aVOsNyQCKpoZnExHJARP3uxVnFckCUmcG8fNFyQG63GqcP0nJA0vnCOUPSckAFYC8OpNJyQEgQY2l303JAXXjNA8/TckBZonHqzd9yQHxm+ym64HJA4pYNwgfickCMr4FAUOJyQBuDWC+Q4nJAtKSiDibjckD4ElEEvuNyQALCITlP5HJA50qHn9nwckCyAOyAyvFyQNxACY/k8XJANDmfsnryckCHZk45nPJyQFq4YOQO9HJAMNMXY8L/ckBuYEcwz/9yQH3olNX+AHNAQa4EzIwBc0CM/DVN1gFzQP54x/o5AnNAx+GOZM4Cc0ChIPpo+gNzQKDkAGskBXNAbANxteURc0CutMgZCBJzQPD4uk8lEnNAeGXcfrwSc0BRtXQ6BRRzQDKn5LlMFHNA234LkHkfc0DePRzaDSBzQKBcQN44IXNAiiQReXoic0DoGLCPyyJzQLNTm2cPI3NAUuMDPzYkc0ABsFR/zyRzQCSN0k9HMXNA4XmR+c0yc0BeFrOG+jJzQF79z7DXM3NAecBadPYzc0DYpIbDNTRzQKxHApvbNHNApVuu4/o7c0CU64J+uz9zQFC4YGDkQHNAmf2SB3hBc0BCfZ/Bt0JzQBjocvV5RHNAEhw83ZtRc0BxlkllEVJzQHgEqEE0UnNApEtOHuVSc0AkdOm4QVNzQKRjYa6jU3NAo4dz/ohUc0CYWSt4/F9zQKuBQT+MYHNAhtphzjpjc0BSdsgnzGNzQITO46diZHNAucaEx1xnc0Bx08jhSHFzQNT9Kc/dcXNAPh1hvFByc0CulC6hk3JzQKSAkvNOc3NAzEwN1INzc0CsZwygt3RzQBaeQ3hLdXNAwx+mVW12c0AkYymueIBzQEGHUNOlgHNA2GypEQ6Bc0CVimVFXYJzQKwJW9fognNAnB9O0f+Cc0DY7ny+O4NzQIzFZH+Rg3NAYQi+MYeQc0BzagfBG5JzQF5GIhZNknNASAgKLSOTc0BEgDTrzpNzQOm4iJFilHNARgx3SfeUc0DSnBVajJVzQOAlEv24oHNAhGTZTeWgc0Bi7hLNTqFzQCoc2fWvoXNA7E4K7lmic0DgeybCmKJzQFcpTiIEpXNAnNo6mtiwc0CGj32TNLFzQN18ndf1sXNAxs8K+wCyc0Ce4ZBFE7NzQF7srK+2s3NA1CeiHA20c0AuHQ04pLRzQOLtY2n3wHNA7qBBwhTBc0CnE/z4S8FzQD/bmCaMwXNA7s8/Gx/Cc0Ber3jJz8JzQMKfKCD7w3NAltqaIh/Rc0BEiEgiXNFzQAvVcvyk0XNAVG/4vdfRc0CwPZ133NJzQFC7ycf203NAEmyY9uLUc0Ak0+fzOOFzQAS8C7Ji4XNAMEA0x4bhc0BKYeefzOFzQOotLJh64nNATBAI+Q7jc0CsCrqHpONzQAeLpMRH8XNAVM7Bfm/xc0AewOPwi/FzQCcE+13N8XNA7i6S3CHyc0DAzuVOkvNzQLSVoq029HNAmbmlp+MAdED9PYTTeAF0QEcevQylAXRAC0a8dM8BdEB7IVewugJ0QAgmSvd4BHRAtmpKNw4FdEDOmyQ3IQd0QFhfW1x7DHRAvr6fowkRdEBD0E7udhF0QA5R+UeXEXRAu7d9bMkRdEAQlIpRVxJ0QND44cSmEnRAisivn0oTdEAUczZw4xN0QASMwDNKIHRAF5YPYjshdEA14MPXtyF0QPYz6Sj7InRAYJCx8FQwdEAQ/tL+mTF0QKKwPmTkMnRAJgKXtxMzdEDIMgyjOT10QPmu8eokQXRAHgk9jz1DdED4NNuseUN0QKaHOCVJTXRAkLN3zxVPdEBcambhaU90QHqWeBtwUXRAYv+OHcxRdECSwrAg/FJ0QJhGXbEFU3RAYN2jWmJUdEBDM8hIi1V0QIjdKWEfXXRAGFl/DrhgdEBK4qhcCGJ0QEjFDMF6YnRAv7bz35tidEDai3q2DmR0QIqvtLBOZHRAiMd1jCJwdEAwof8oZHB0QLSl3NtAcXRAXgsoChZydEAzn/84enJ0QLtz3+30cnRAtKMSezhzdECwJSdQnnR0QMSOIvo1dXRAnIhoOPeAdECbSr7yEoF0QMzG44hOgXRA41uKeEiCdEDwEagn0IJ0QJGkHhYng3RAYgFlJBaQdECm/jC5kpF0QJh9PwpSk3RATM1A3e2fdEDQ0nVhz6B0QBgAHWA5oXRA0tou5mKidEDjDKEnuKJ0QCsDplIOo3RAdHw6fQmwdEB+4Pxbw7B0QC4reMNusnRADhMR2LaydEATPhfJ/LJ0QGHxgvTEt3RA29zTbVTAdEBJPvEj48B0QJRSgrL4wHRAaPetOHfBdEAszNtp6sF0QEZBiSUNwnRACcDVWE/DdEBaA+woucR0QBSL9yr+znRAAC6FA8rRdEDE5tWdLtJ0QB58f5940nRA4v+CrTrTdEDeZvku4tN0QOjuW4F31HRAteMdgM3UdECRIlyLIuF0QKB3XUW44XRA4Le9FObhdEAsUzjH+uJ0QAv8FJ5I43RAVLKT/4/jdEDkk+zCTuV0QCQplz+N83RAkqSWGc8AdUAxlUSNYgF1QFkC/xddAnVAf2n79KECdUDotylDnAN1QB3zHxyREnVAwOlO6SIUdUAgczSfiRV1QBLPIx7kH3VANpieoK0gdUAUUQ9DnSJ1QDjFwezjInVAvreByzY1dUC60+nXyzV1QAikS2/eQnVAMDXLoyNDdUCs192TTFR1QIwQpfx1VXVApla8SaFgdUAtOQzjOWF1QITC1I34YXVACHyuG2JidUBVEcwyi2J1QHEtki7TYnVAYO7TjTtydUCYERocb3J1QG5Yk2KEcnVAtseoTo10dUBIderk44B1QCYbLvt4gXVA1vYPia2BdUAGIpOSDIJ1QNgEBBC9gnVAHdcSJlGDdUCWdgxlpoN1QD4CKAUUhHVAYU0ZZ5qEdUCUO2BXjJB1QNJuA2u6kXVAl5pz1meSdUB2U1QzAZN1QIYdZLm6oXVACumch0mjdUBpj2empKh1QAffjo78rXVAB8uG+9WvdUB1pnkXkbB1QF3Vxn4MsnVAfCGfPc7AdUA3dU09M8F1QEx/bdJjwXVAuI5b2vbBdUBaxZXyOcN1QOyUeNIr0HVAcqSsmEvSdUC4xAs+zNN1QCddA+Lk33VAjmn6DQ/hdUBlA7iCWeF1QKJPecuh4XVAu0MoZwnidUBMrw7t5uJ1QMbKYnod+HVAhG4ueiQAdkDQPqIoSAJ2QCJSNbuSA3ZACoKF588DdkAYuTjLVBN2QCDRUypNFHZAj/YjPnUVdkCAI2KYDRZ2QBZookawIHZAYnbwEokidkCgPTTgjyR2QHnoX6BKK3ZAwVaSvB8xdkB+XacCkzJ2QL9GcVRSM3ZAHo4v77YzdkBpnhI6nzR2QBwcvj9nO3ZAFVjCI19AdkDSxNK8HEF2QG8kp6rIQnZADLe4L3lEdkCQcm1tD1F2QOKQjSz6UXZAmIHuKydSdkA56Zh01VJ2QONbsBQ9U3ZAXurI48xUdkCmGu57tGF2QL65MpUZYnZAxZp2gj9jdkDG8EPY22R2QO4y3PPRf3ZA+m4jIcqAdkDejErCioF2QDxx5jz3gXZAqV7nQiSCdkCCbyK8ZYJ2QP8P5Z2OgnZAqrUQShODdkC2VMihaoN2QFjY2TaPg3ZAEngBdZmSdkAaK44yr5J2QE4lj212k3ZARLkWJrmTdkA+5LGjK512QILjDh/qnXZAOgnIXGCgdkDg8hQiDqF2QJhzjuo/o3ZAVLpQqrawdkDXt2qIwLJ2QPE5uhENtHZATf0Ffq+0dkCIklrEvsB2QGD6YT9PwXZAqVVY3+bBdkBn3wUtGcR2QNlVRXLOznZAii2ZfVrRdkAS/Ea8n9F2QFAv47Z463ZAhvMt3lrwdkC6+K5JkPN2QNL55Ns1AndANvMn8RQDd0BO37vwpAN3QFTnnGMBEndA0dEqBaUSd0C6exWMDSJ3QFBjsWB2IndAYtNrlaYzd0DLPDnhDDV3QJbICQmdQXdAMJoLj5BDd0DeTbrT0UN3QMZoV2AmRHdAvpqXxxpFd0AGE2Z9BVB3QIJ5Yx1LUXdAxIPs85FRd0DundYT8FJ3QFYFsVp2U3dA5MVOjzVUd0C+2vnZKFV3QNjcF2Z8X3dAf96pP0dhd0DHLZsvj2F3QDj2ZUGgYXdAQLVAqWJjd0Bk1QALqmN3QOKwWLU6ZXdAHmnQHyZvd0C+1yk3PHF3QILG/heKcXdAYc6rAaByd0CV/BpOSnN3QO5txhySdHdAxALOQ/h3d0Dcr2koR313QBVMVBdrf3dATNcjhE6Bd0DvhbiW4oF3QLzEWxR3gndAWl7UBQmSd0DqkRtBTJR3QHBhhfSbsXdAujRR2f6zd0AQU5gInbR3QK5lCDgsw3dAyiThL6PSd0BO1lnV6uB3QDBd1GlQ8ndANKtwGfjyd0CGIfdRRfN3QOUSrEhe+3dA6CbsREb9d0CVc/Zw9gF4QD7zedqfAnhAXHiAFjYDeED0QxQF4wd4QEY4G177B3hA3NlTjUwVeED+2K8ZbiJ4QMpGAAOLI3hAWAiQUNQjeECSrOCqpCR4QNliP99kK3hAckusspkteEAcuUniZi94QPRbsKcYMHhAVNF4mnoyeEBJi3qkSTN4QCuU8gRoM3hA5z7TeApCeECJ4PreJ0N4QERBsCxYQ3hAWubVDxFEeECESEM+ekV4QCgRSa2GUHhAahisIspReEBqGegIHFN4QEg6z7BLVHhA+N2esIhVeECU7XWm+WB4QLxtaje4YXhApdfGL7lieEBCroCD5mJ4QAUQ3MAmY3hALUzrXulveEC53AqMdnB4QPMp4WnYcnhAhJcOmEFzeEDsK0XKS3R4QClNxJuLdHhAICfUxcd0eEAsxl+m1nR4QOYEJXn2e3hAFFs5UTmBeEACVhwHpYF4QBa8mWz+g3hAlgcryJmEeED6+2EmToh4QDasTqCojXhAPGVIbU2QeEA6kGh2l5F4QIQB0B7mknhAR3koSQOTeEBpmE3Up5R4QHW/SMFSo3hAhqOAALmkeEC6yRAmO614QDpHU8iSsnhACaWICM7AeEDCDZZd9cF4QOj2wf0Xw3hAiAJthzzDeEAOrbmdHct4QCh+C29P03hAmvOgfrfUeED2V3ASDOF4QGvRo5Oi4nhAyZLmpszieEDW2MJg++d4QPK+kEEo63hAnOv9rS7veEBsFJGcAvR4QAdtus2M9XhAaGcjC8kCeUAM+rUCmQV5QKI0JnSZE3lA9oyVsbgieUD9aq8O5CJ5QENKkFa7I3lA/PoW71AkeUDyn2vdsyh5QAoBmdgLLnlAKrm2fdgyeUCG+2RCtzN5QAx7jV7KQXlAviTN9/ZCeUDM/w0h+0N5QEqD7F7gUHlAKM77WddSeUADV39vy1R5QJAlOyrjYHlA+Hu/1PVgeUCA1xuF2WR5QDiUfIjBcnlA2LE0S0ZzeUCixgDUrIJ5QC3N7dQ3onlAy58IvLWjeUD4WEs5wLJ5QDqyS2l9s3lAnk5ItHXCeUB20MqxzcJ5QDCNPMlRw3lA84xr+rLDeUAUWvGICMl5QBg7rumC0nlAfIhENb3TeUCQ2qs4QtR5QJdC+s/O1XlA7k2n1E/keUCUhTZjre55QCRGaEwX73lAtNkOFJLweUD6bRhqRvJ5QGrTFel98nlAWo5h2b/yeUBb47fjE/R5QJhhAx3A+3lAavHGe60DekARLAqT/AN6QMKlbbf7BXpAh1ICgnoTekBto197QyN6QCZqsJXxI3pAdjwEpCozekA41aEKiDN6QN9aJUwMNXpAsMnSxCw3ekBTHN9cMDt6QMMZ6rMxP3pAjmDr2StDekBNV7RyjkN6QDxzM4waRXpAlOWCJ9dKekAw0tSJu1N6QA/cJyonVXpAMno2HyJcekDa9acQsGB6QC1hb34pZHpA2IJlJTltekCMRwMQJXN6QBtcBQQpd3pAovWUUCN7ekDAPKo3FoF6QAKM0dfPk3pAQKaKakWdekCOhOqOHaN6QHJjRMcnq3pA5CcAtaywekD3VESgDbN6QG2elZr0s3pA6iMWtw22ekBGlGiNELd6QLYq5L8Vu3pAwCP4ORW/ekA9BeKR+sJ6QICQn+sxw3pAH/yzhL3DekCf2hHwGcZ6QAJBBAC/y3pASoIKpj7OekAcDJyjfNN6QF+itlXa03pA54J1rmThekC/xohsf+F6QFqZYZE343pAznhSfX/jekCilC8Je+R6QC7a0KQ27npASh+4pBjxekAmHy8nX/F6QDQu1DwBAntAtxAU+E0Ce0DtU4QyfQN7QDsPG165A3tA3LI3S3sEe0A+dlEuLQ57QMy46vHLE3tA2FxCoUwVe0A7aNcuWiV7QNp8o3IgLntAdAniWXkue0AovYoCxTN7QMboUpIBVXtADlpeiA50e0B1Q9Ljanl7QFuQgYXWjXtAzAdRSuiQe0AsF+KXJZV7QP4mDfpUnntAr4CYArGje0CIVH9tBKd7QNZJGcT/qHtA3gnoYHnGe0BP/16dEMt7QEUF+n6N0XtAuUB3XZnRe0B0Fe1XGNR7QECeQzWN4ntAFOGAEiTke0DIuWBfHPJ7QEI7Pb2M9XtAtAGd6Gz+e0BYpRhRjwF8QFoOycfZAXxAfCk5ZrcCfEASc/XvzAN8QJ4xeNBkBHxA0fffL5oFfEB++yaoEQh8QAxmuQlfDXxAUPM9Vo0RfEDGNJ4A0hF8QCokv45tEnxAGP3fArkjfEBaPwjW/iN8QOoK1rRcKXxAKjRZErEtfEBoBVPBzUF8QM+ybp1IU3xAlUfBJE9bfED2WgZkOGN8QOb3yU1VY3xAUOmb/0NrfEBRYPM+Wmt8QNJg4MgqcXxAvM5N7QJzfEC4ztljw418QPruaqBmknxAI0WQ+RuTfECkBoV+ZJh8QADuGrJ/mHxAzjLPhlqZfEBi8R3LFqN8QOvF3yW9o3xAwuXovvqkfEAgJtcFvrJ8QBf7cV93tHxAeQs10/y7fEAye6GyzMF8QLLBWkxnxHxAzBsrHsnVfEAvz4L399t8QGJ4FQpY4nxA1P7OHRPjfEDATD4n/ON8QGskKzhr6HxAoFr5ABfyfECgw3VOVPJ8QJcXhTpy8nxAquGfTwACfUDLR0CtSgJ9QCddKoMLA31AqiHCX0QSfUAapwhLYxJ9QGq4Gs3wEn1ApnfZGlcZfUAeDHwEQCJ9QDFXMUeyKX1Aj6n1qJ4xfUBQrP24Rzh9QMIALk6eSH1ACiBw3mpRfUDGo8Q84Hh9QAxA6dswe31A/tEEX6h/fUDgLcG27IB9QIoSnFHZgn1AzOEb+x2DfUAkQzm99oN9QJTBew5rhH1Aa5Y2KeSKfUAKFWkfJIt9QLplSxKYjX1AB8FFzPKSfUA2n9UvJpR9QLC0imqYlH1AgLIBfkqYfUD5MqC+Cad9QDRtqpr+sn1ADB1z6le0fUCspht8T8R9QDdFj0TmxH1AMOPm2hfPfUBp5iYQJNN9QCkEsW3y1H1Aqg5IKtjifUA8imtf2e59QFh3CNmj8n1AdX4gLH/zfUBKnt5I8/N9QEY+lKKQ9X1A3BWgrWT5fUBoOHdAkvp9QEqP8lU0AH5A2vOSy5sCfkAuvRXWgRJ+QMwN6UslIH5AbszwGZU6fkAZ+/G0QD9+QFnacx6XRH5ASsnE51NTfkBrt2GS21N+QD4zltk6WX5AMjG7blpbfkA8FZ0QRmN+QD8k6rhkY35AlsZPe85jfkBeNWa4OmR+QNClAVF0ZH5AcnqZ+ktrfkCT8rD4bGt+QBiav+K+cH5ASJNAc2dzfkDySWjzand+QCdm8ba3e35AvuDU1yCCfkDUne48c4N+QIiGtKa7hH5ApGbGVQOHfkBu7siKy4h+QGL7PG8Win5AV5NvEKaLfkB6soadzph+QLs9xG5hm35AVgsO97+cfkBFlvrZkaR+QBpLSlJirH5AWoV5NCCufkBGmODLZK9+QMobRIJotH5AdAVQeKC0fkBOW5DPvLd+QCRzpVVuvH5AclyaDhy+fkBe408PZsN+QOzOQYo5xH5A7k0Rms7EfkAIWjPlD8Z+QECRPXRsy35APIrukbLMfkCOISyWXNN+QITHtZF5035AhJPFjGXbfkBI+mV6z99+QMaHjAt3535ANCJvFLfofkCEksnUTPR+QNxI8voh/n5AvlNGB8AIf0AKuu+xhxd/QCapdo7OG39ATDTDutcjf0DUmjp+MCx/QPBZ+kmpOX9ACQ34E6NEf0CMLh9jXkZ/QP7UJailTH9AGpZlNM1of0C6HfN1tXF/QBj8Wv3ldH9Ajq0deiJ6f0BVKxrwbHt/QG5Z6h+ng39AYsR9QkCEf0CWewmdXIh/QIqGtbTRiH9AQmSSxWGRf0D64B5OmZN/QOqKY7ZPlH9A5u4fRPOUf0AGHvKrYpd/QP5oT7GjoH9ALkfI/1+hf0DfvTBSEaV/QOZ/1844pn9AqgBA4RCuf0BoZwWrWLF/QMJiK1Zfy39A6lMz33fNf0D8Ime8Z9N/QMyL+vI92n9AV2Koo7vmf0ArsO9fB+h/QLTi8OJT6X9AT8QnOXb0f0B08S+20fl/QMzFPEDz/H9ALcnHPCz/f0DSHsc+SgKAQJ6ERGh8BIBArBreO7kNgEBczJYXExaAQOqf/GgtFoBAPtrsJsAYgEBAr2pqfB6AQB4BrdppIoBAwA98r+wpgECmPO2muiyAQJZ81hRiMoBAcOrixQ41gECqxmUYHTeAQJO/X+TIOYBAZP2xCSE6gECXeLzGdTyAQMAGdmQhP4BAjIK47s8/gED+MdoXyEGAQBBbJfSoQoBAcvR8BvZIgEDGLAmMr0qAQDqXDhnnUIBAceCJLRNRgEBobHeopVWAQGwlzOCmVoBAiKGhTyZYgECoGAHj5FiAQODezR4NWYBAY0RWgx9ZgEDIEX00CVqAQI0lLutIWoBAUZMSIA1egEDsjDlc3WCAQAg6ZI8cYYBAq8LewsJhgEA873qH3WGAQJhQifGhZ4BA2KjEfB5ogEDgnezATmqAQAYs0+X5bIBAVs4WrSlvgECmClqHKHeAQALuR331fYBA9GNAqCd/gEBYCkdf2YGAQE0pxspqgoBAQmLm9eOFgECH5sgkSYuAQMI4Yf8dj4BA0IROvOGUgEC5+oDuHpeAQH5s5qKOl4BAvMxNhCKZgEDwg3eqGJqAQKBs+5o7moBA6pbiZ5KagEDYGk+LW6KAQJmP3OFNo4BAimZEhz6mgEApmAl4+6aAQHm4cLBqqIBAx+3Bv4apgEASW4Xm+q6AQE6eMxUTr4BAJmKF9bSvgEBtoNBDH7GAQCoYfwt+soBAomUhrQq0gEAzXDVIQraAQHJznAe1uYBAsud4neS5gEDio0XsnrqAQO8RpcFOu4BALrn5Zb+8gEBcXI2Qeb2AQB10VNLtvoBANyPEJxTBgEBmDaB7UsGAQLI2uA+qwYBATsTZa57CgEAGkSk4M8WAQNqJwRMExoBAauhRhPvGgECe1N+n/8eAQNWUuU5TyYBACuUtSuzJgEDkquXGA8qAQBORo+RPy4BA0CvNEgXMgECiP7i+8M6AQPJFUfAHz4BAAbVYzirRgEBsWiB2TNGAQC5BECdf0YBAxHQrB0rZgEBEawxaXdmAQB6LHo4Q3IBApQe/lkThgEAwjlFO9eOAQIlsqpY25IBADpelyWLogECWbHTu9uiAQMB2rHZD6YBA9Ds/PFzpgEC30+dmS++AQJY82xQY8YBAFj6eYDzzgEBXQnx6XviAQIoYBuU//4BAo8U9eT8HgUA6AhZC+QmBQJpWQp88D4FA+l5PiWwQgUBipQkcQxeBQLwsri7jG4FAsGHOYDQfgUBqEFagsx+BQPLO7Vg1J4FAHmY0LrcngUAxs7Kg4CmBQKLWZ65QK4FAcnbcYC8vgUDyuFo8RC+BQNjm/tm8MYFAtr0qUWs4gUAGojaO0juBQLp+xdgcPIFAgfgkSYY+gUAJbYYWKT+BQKwE1tKuP4FA9s/vEZRBgUAXCt2WzEGBQO5XOHTSRYFAyHAHzSpHgUDoYmAaBUqBQIShDnIIToFAY4vnh7JmgUBC/IJKtmqBQP6R0YcPa4FAAtqw58F0gUDoXKd0UHaBQJj+PdPqdoFAqkw/1W53gUAkJEi9PHmBQPvRjAQceoFA7o8dp8h8gUBoq6PHY3+BQIKYld+fgoFArRPHnuyJgUDdsNsHVo+BQGdwXeHwkYFAQwummz2SgUCoCm9nkpOBQBrfAr7Dk4FA6iKAduaUgUAAagL+VZeBQDA0h7Ckl4FAyxuy/sOXgUBwWaYpVJqBQL55iPmcnIFAzNSBrlafgUAx7D6S56GBQHuDUHjfooFA0pIt422ogUBcWNzC5a6BQKKv6F9Kr4FATHw48mywgUBs2q39n7CBQCKZPKgSsoFAIGBx7kq3gUAsQPx6mrqBQFX8hfqpxYFAEyYfrQXKgUCuiSOBsMyBQJIV547UzoFAXj4P/l3PgUBu8D4kftOBQAX11CPp1YFAg9U5A+zZgUDguRQh0NyBQHTrMFbd3YFAajvwa/HdgUDAVpuu5uGBQOY4tfo78YFAulC9skT2gUCylrjF7PmBQAaZdoPu/YFAiWJ3BDoBgkAvoKoQWgaCQMLCUkQECYJAqCXNlc4JgkCSMYv30A2CQHXBZ1vVEYJA/M2Z/A8SgkAGCZCY2BKCQKwCm5nRFoJAMByaV9gYgkAu0CON/BiCQMwlz2EpGoJAqto+pWQagkDMYiiKLB6CQOsQ6txnHoJALC2sudgggkBKMqPjMiKCQO97dijVIoJAiW5TTysmgkAfN6W+0CiCQO8vEFOeKoJAzqYGlaIwgkCgmuS2VkKCQK71HeyqQ4JAXomBvFxKgkDq28JTbVCCQK4Tmi3gUYJAOFx3rgtSgkDisDe+3lWCQEb0ZxKWV4JA7sIrmQRagkDKr3wc3VqCQHl0k5ugW4JApPbanmdcgkBTXoQYP12CQDS51VgyYoJAPMqaGLxkgkB6l3cPbGiCQOI+8QY4aYJAWH3s1ARqgkAs2PFH12qCQF39IGSpbIJAEGELiIttgkBPU45o1G6CQPyD/8xvcoJAMv83cp5zgkDiAd6e33WCQH5OQF5zdoJADbUzvQd6gkBJmtnsy4KCQAN3gBcxhIJAfDrtNTCFgkCMYCo+Q4mCQLDiivQGioJAqtGSj2yMgkDaeURZQ5GCQFASLQewkYJA1rOTOjWVgkBGr7OkPJmCQCfqPLqSnoJA6jbHRQ6hgkAyIKJuO6GCQJ/nY3HxpYJA6A82Hg6pgkDSSvOtM6mCQKo1obj1qYJAZks+3X2qgkAIALx0gq6CQG9qBSm1roJArGfF7AixgkDu2WgqKMGCQFwGi0jtxYJAtlYKm+/JgkCb61yMftqCQHKwwhH324JAgLzkcHz4gkB4UcrPrvmCQCZcgmzm+4JAiGm7cDECg0C4wXD96AmDQIqDf786DoNA7KsWF6oOg0DcK4eQeRGDQIG7F8A8EoNAEiZumHkZg0DwkWkZUCGDQFYYWFJzIYNA7dJeIZ4og0CIQ4FNcimDQH7h1NTnLYNAFPJ/vGkxg0B69QbfaDmDQOKXs/jeOoNAngkTLvY6g0BG8VWUWEqDQN1mQp2vTYNAzqOZTXdTg0A8EY8cBlSDQEJq9E9pYINAtqiwD79sg0Cf3zsIs3KDQIFBtcnWdYNArZIP0MSBg0CqKRAC44GDQIwt2jVLg4NAyuv9msmFg0D+pAtwPpmDQJ7iK8Dpm4NA8lx/7EWhg0CASTFG96mDQC6ClHHnrYNA7X2k5uixg0D0g+S1e7KDQIyTexDitYNACsHGe+O5g0AXQbQY98SDQLCJFyIpyYNAXOPi6ljmg0C6UXuv1e2DQCrbSHvZ8YNA6iZDfpnyg0AIHb5Z1vWDQO0A7uCT+INAPNoQFNX5g0BACNWE/gKEQH5vPx7ZKYRAleCId1gthED4s36PzEWEQLzqSXkFSIRAXF+SvT5LhEAOXZcF20yEQA5NJP14WIRAYNW2hMxdhEAsND/TaV+EQChRhvwCYYRA9O/fr5hihEAi5kGE/2iEQJfGlFv8cIRAh6hwMhxzhEBsjv2+5XSEQAZvGjjKd4RA4/wjs/d4hED8aiPvdnqEQKdFAxAkfYRAfn57s0d+hEAQQ8NTgH+EQKlecqvRf4RAUqlS132ChEDaOeKQeJCEQHcSo95IkoRAewQqKcmVhEChRy+sSpaEQLylRFEbpYRADTCsL8+nhEAOD3lONKmEQKs2TyV2yoRA1YfA0BbNhEA2xhQXIdOEQJj4v2ER1oRAKhlscEnWhECcDq8DatmEQOFKrrEU2oRAFo0nyRfehEAg7YUdauGEQMaPqbkS4oRAlxZ9MzrlhEDzBkIvFuaEQJW8RlZj6YRA0nUEo3DqhEDNJw4xG+2EQDBJmtHH74RAuKqNtDXxhEBMQLIzY/GEQJxF32Rx8oRAhMiHM3T3hEDyHpLm3PeEQNpgjVcN+YRABhtwRjf5hEDtyKorW/mEQCwMaGGK+oRAOxopxan6hEAgaMahNP2EQC5vMO/g/YRAuJuhbHP/hECZxY925P+EQE0E9couAYVALLgNHo8ChUB4PqP0LQmFQJjTRR1GFIVA/Ss12eAVhUCCDae49xaFQH3RmEN7F4VA+FTwphUZhUAhnnlGUxqFQE5HPI2vGoVAsjD5w/gahUDPTW4tShyFQNh2uL/kHYVAK13TIH0fhUAINvJhiECFQDqaf3vOTYVAipHISxVbhUAOaLUioGGFQMomLpNLZoVAkkv0naBphUCKLxu0TWqFQEqZ3eIhbIVAQ4svcphxhUDE0GVErnKFQLwTBQqzc4VAPHUo85d5hUCI9ioVk4GFQNAdKKIXgoVAgFp57HichUAMyubnLJ2FQPQpCQ9BroVA+DvSm0OyhUA6mGUWRLaFQKdL5QAFyoVASU9NtAjShUC2qtQEseKFQIT1b5625YVAdCnJ3z0OhkDKKxQMYRGGQH6+qF6bEoZAj5B0XaEWhkBQCspG5BqGQJq8Z5WhTYZAXyH4cUlThkBONsoc5IWGQJvynC4quYZARKWZadPOhkB+OaSQnPKGQI83xIIt+4ZAxlRrJi8Th0ADk2EYkSmHQHg4U0CRMYdApEoEXIk5h0CwXOpQX0GHQJTftsyHQYdAYmzwAw1Wh0AwbtOex7GHQBYr8efGuYdAB61Zo8HBh0AqIjRdpcKHQJgzMbG/yYdAebQJrhI/iECoAQH6L0mIQPZct6elTohA9Emz1fxRiEDOGOKwqFKIQLDsJNT/VYhALzCa7KpWiEASzpzNDFqIQNLlS0ewWohA1lTcZ/pdiEA= + NrgMGZxjYkCmvpxNHCRnQHzKEHuiRG1AGrpiYCbDcUBlJtC0/7J2QAh4Yr2U83hAhy/S5YIjfEBZeHBcumN/QOFopV0ZooFALGsmWIk6g0B0SUmZcKqFQCyaFII1w4ZAvZ6VGnd7iUAIKu3Ux7KJQL3Ng0QjBI1ACFnb/nM7jUBe/ji3Z0aQQATEZBQQYpBATUal4DC+kUCo7gpVk0qSQM1dnPWGgpNA8t7c8r5OlEBNdZMK3UaVQIEHO+jqFpZAYfVWcubilkDKiXu0C3OXQN3klgkCr5hAFHpNUjd3mUCP+/sXSDuaQF38jR5Y05pADxPzLJ7/m0A= - + - Ygo0RBU0+kVAPDVEtO7cRNi5OUUWbaFExQBVRHjEpkTgEFdEh47eRhgpLUSjUKhEc1CSRCg140TgsBpFTrJARBzwYkX7HIxGb7/jRNoeckQaSixFvsqERNaH9kZo8VZEL2lZRDBMD0VFZzJEBNqHRJKHRETrySZE8N4sRRWdLEXlSb1EdGkqRZOrDUeyAIdEz7NdRKcXK0X+cFNEyXePRp6XrUXdMGdED14DRTzgNUTXdYVG2v+yRLklqkRbWbtEEEZQRLXCzEXJjmNEVRuXRALQ00T8upRED4XQRLKMsUTfOmpEIYI/REsd4ESuMJ1EMLc1RdX2lEQf9xFGBYIkRSgBQUVg8B9EkH14RMOXyESvMYZFO7/rRKPMPkQngEREUVziRM6FkETfMmlEhJJ1RHXGI0RlXoBEOwrsRCRZS0SQblRED2WRR2oNrkQDEOVEmymDRO2HuUauMs5EknX8RIz6Y0WYSyBEdv/5RKVvc0QXswlGgBbJRGaWIkQlpUtHPE5eRKhGrETx/v1En7FTRrYtO0Tb+sFFN0ySRNfun0XCz15EDL/lRU5YIUTrHR5F4l+JRP/ozkTqUqZE9XSRRKdiFUQX+FtFrvIDRag8VkSrir5ErHRFRMqQwkUbgUREfIlARFCtBkZmpmJEIwg8REtBd0TlgqtE1PwARU3/aUQ39KdE3hh5RfsjLUixITxGHqSFRO0brUTWlM5E6Qe1REZCrkS25ZpGEBaMRJDtgETOC4FEnAJ0RLRfK0SLncZEp2hiRHpyOkd306NFmPL6RElFoESd4lJEOih/RKlzLEUBxaFE0GlMRAuGxURUqnlFh2eHRCUgI0SshFBEzjpARR62RUQdWcJEG0pHRO2/TkW1hkBEn3pRRMHINkT9gN1EmZv2RF2JfESg+TREgPi+RMPgrET5E1FEw2RJREUBLUTrnl9EKg9XRC9hJESWGyZEVsRQRE4/kUQ/c29Fqsd2RaDX60V36wlF8Z5FRE5bZ0TjFJpEJG/KRV7RS0Tj+T9HxxBMRAi2SUTyJYtE01cbRaIjPERYdZhEgiwbRSTPZ0SHq/pFubR/RPyxQESo1I1EGn+2RVxhTkSgc0pEoJAyRbbkHUU+Kq9EQyCPRAJfr0QcXU1FggnQRHMP10SVSnNF4T50RFbMdEQpgyZEIlJfRHBU+ERH8kBEx06YRDvSjkSxVAJF6luhRDoI1EQkHlFEbhs6RCwjV0SAWKxE3yaJRhbll0Rqk4VEU1ekRBO+g0R8FoFFaB42RKy+EkUmwEFFw1qlRMErvUTchbRFjBSRRBpjokTTH41F3K4/RM0TokRYvkNE+Mj6RCvvTER7gF1EhC/KRHqJ2UVGcJBEBalXRDmXKkX6LLFE/JtmRND710SgP7FEiT5GRPWDDUUkDy1E1CLbRf6lEUVNqnNE/taOROCPeESXE4JFs4M1Ri21WkSPRqlEeR7jRVyOh0TmADZEmXtORBAYmEVmEuhE3icLRZvUrkR7PKREK1I6RHf6QER6gYFE/SAPRn4xo0UZ+mREgcs2RDAUXUT95mZEtVuhRbzAA0UtnVtFwjgWRbW6WUQoojlEfcozRMJbGUVbfa5EXaVGRTso5kTM3mBE9YLORL3XOETnZLpEy1E4RJjxLUUhZkFEmpuARLB/SUXfEmFE46s7ROTJmUQ8x75ETRRhRdCgKUacWLhF+nG4RtygMUQoI9BEtVWnRBffiUTvHjREdeQgRcI3g0XAgoBFFKqMRZ1YF0V22u9ECdecRIAOSUTIAzdEcxBBRkeqa0Q44phEiWg5RLsj7ESDXnBEUJtVRMDPG0QUoZJEx8GDRPn/c0R5paREFyUtRBvtdUSB0/xEpgwdREUHXURkA7dECZPGRGqZgEQ1jGFE9vUzRNCfiEXFkTNEJVCsRCmrFkW6XHZFUo6NRF8CyESm6nFF/8pOREK2k0T1ZzlF1yQzRK+LLkWjnyZEeu5xRIPnSkUGrpNEEL9FRMGNW0RwkpJG+4DhRJyKj0VcVVdE4Q18RVhh90eOJZdGEkoORRCHcETyWG5FOyXQRql6lUS+wZdF6LIzRsPzSkTk/7NFN7NkRBIq+0QVe6hFRlZZRK1R20R9RYREDEAfRB0wRURof79EhLZSRZ83VETYZVVE8IeuRd9Vd0RN32JE8akIRbMEdEQ1EolE7PTBRGP5j0TFFtJEIyiQROTRWUQRCDhE7JZsRHTveUTZ5B9EWtKCRM4cbkTdpj5ETYiFRHiGu0QwZz1EH5aIRiz9ckShHCNGTHMrRJ3bt0SAnzVFZahuRL06XEVhW+dEJ7KBRPrCoERmqX1EqPE4RLZYmERWoYtEdtRuRGf890XeyTxE8v6ORP7THkQSUsdEA1FRRYTbT0aefHtGjH+LReiSS0SVYV5EcpBORRGBPEX+2WtFVEWnRdYJCkUgYYlEh6f0RNP39UTKeQBFQY96RAShFEUV1D1JTUwtRQz2CUVZMCpGWjHyRBPcMEXU1nBFQN1CSEXnz0XvvpdF8nlaRJUhTEVJORxEoFS0RC25iUb7iItEGt+pRAFomESg6mtEUXpeRMTM4ETfGatFA+pARGA4AEWEQSJEq7HXRJOirkT6BbVFSlVkRIWegUUrz11EBQERRcOeZ0VwGZxF4CCZRIzzqURqF0BEJ9H9RlpaQEZpdrZEIKgSRQTcP0VZFN5EfZhyRjmY2UT81G5EU6oYRdFurEQAs3dEuP6NRPVfckVLaB9E1BtaRLaeQUQiAl5E3WOFRL5eHkTbx29EXKJnRNdedEU2X2BEz4pfRAFrnESR6UxEeN8KRSCjkUSlvHVEQJZNRJbjkUVJ+41E96UIRSzPPERd6F9ENRg3RIGJTET2UEtEQj5PREi+iUShoI5EVt5ORLnTi0UewUREhZc5RDtsT0Qhx65ExacYRz4QIkQuRLxHdgkDRwt8VEaCCiZF9faRRHfuFUTkcKdGOCNKREuajETqswpFeTA8RZ16+ERwIOpEh7lPRK51MUXDxBNFw4xmRKG4P0TGWWNEXEpCRFddKkXMkH9EoRoeRAbGREaU2yBEIF/IRYn5FUZ5yUZF2keqRNyXD0RUgmtE/zV2RXoBqESSXWlEnM2QRMYsb0QOw0ZEJEWWRB65g0RcxZhEFPE+RNAPu0SgnANFiAC6RAefjkQHa+tEco+5RI4FS0RbHDVEDoayRf1yt0QjAqZECwIfRoZDEkWbhoREQOFLRDDHi0TLIoRELLPJRLIytERqcDpEj/J/RFn4v0Q5MJ1ENu9tRL1gYkQSsIdE9A/KRJdhlkRepz5Ekbh2RAbpjkX8Ir9Ec9Y+RdA3TkRcjYdGBrlSRMJJyESh0iRGNgXCRNQfjkT+B/BEP4aDRfSThkR5ajBEcKZaRASwOEWd/F1EdPZ7RMl0GkXt74ZEZeo6RKuFkkUc8gZI/ZhSR3x3V0VuOQRG7dHhRACri0SqxqJE8V/HRJh/jUb7lUFEG1BARvyvNkVhstREBuylROSVrEQ/1kZEU4m8ROfxDEXiZ+lEEzgwRGL6XkTW06JEtxWGRGelUEQSHMVHxRzjRKoa5EQ6NbVEqTgTRfLMw0b7zV9FvPoORQwhi0Zz3bpE0kwoRYJdmUTKrhhFrRnYRCi0f0TJiTNEItdCROXTnUSONDBEzMWDROrgVET5FulE26J3RLjol0QxNElFi7YjRJRxj0RiCVNE0vlxRLmyp0ShSZlEi2+QRFbxC0XJzYJEk/GDRKnrRkSZPalEtZpsRCNnqkSXByRGhSxEROdAPkTBy7VEgsuVRCdbOkR5EDpEv1uEROOsKUSwxiVFifpdRG8jn0XURCZF2n1tRZW9K0TKMTdE3ymLRHX2ZURW0jNEKT35RzaCC0W0IbBEuwI+R4VZOEbh9i9GrK0fRIL+MUT5yCFE59E5RU3d8kSRqTZENVJeRAZfYERy5UxEeER0RBTvpEQ7p4FElANGRLSspkQnLVlEjyiwROIJlEQhjihFC0NsRJljVUYlcW9GvwCGROOuikTeXo9FBbQBRYfejESysqBEWZhdRAPQZEYXAU1EB6noRHSPS0Rw6atFAw+oRKjH10R4LMJEhqpuRLJDJEStIJBE13CGRBT7WERbAD9EVBgtREp/hkQb/PpEeeugROHRgUR8gLBEadgCRXuyR0QJV4ZErOaCRKN8dkXbq2FF0vKDRBQlZkTfgYZEdUYXRdHEPES+kJtEx0zyRbAyhkQVHDZEO1FpRIg+bUT46o1Er7M3RUNzOkShWj1EEVE3RDSJ4EQP9rhEDTB4RLhVR0TcjC5Eiq5bRCzBHkSyI8VEWBC1RRtGkUUg4U5EH8qNRI4QlEQ1VFxE0uiURIYXwETwWEdE+ymDRNz6PUTZ2gNFpvmjRC2ik0SreO5EMWhFRG1ihUfg3GpHC1PxRJ7xw0Z51q5FpmJfRFUs5UTbsEVGA30RRfD5CEXCVwtFVdZNRvae+ESYQ1lE+8OjRSJXTESkk4JFopfSRJ5GMUWeADVExFqyRJIfbUTFgJ1EiT/TRMl5PUQd/T5F6KWJRHppOUXjUgVFO3FBRS81TUTlwUJETaGVRE3spUT4PIZEJ3SbRCW3b0Qoxg5GL5sIRacHbEWHVq1EGZeFRLMJX0QEEIlE/JG+RL9lbETdaXxED2p6RGbzj0RWclhEG3oaReW5jETeT6dFp1fhRLXiJkXI7DpE1VriRFHaYETQJC9ERotgRAWxQUR5Q/1E0eOzRDKjrkRs95REXEWORNOuekhSQVpEq/9WRRxKRURJYApFaxDgRLUph0QQ9edHekdIRJGVikSbYHREQTH7RLZBd0TzqINElBgFRZwGcEc2yWdFnodWRkle0kSN3VpE4faKRcXZi0SZUzxEYwrWRNO5bUTHTWZEffUZRKITOUVSEGxEFSjaRLmhPkR3iGVGCQxsRXyoUUS7K05FEBZqRK0OnUTa3E5EbRjTRobhjUREi8lFQ2uyRLvaQERtgktEqOwBRbsYlERxmrNELGpcRO/hJ0RktHNErmGTROJDt0U8hD1EqvZbRMQrSkWGXYFEDJdgRBJASUV9evVEgjyxRaBU30RSKENEO3l6RmZMakTW125EmC+DRmm2TkRdQ59F7aTHRNvkdETiROFEGpY7RBzMvEWQardEkPr9RAyXtkS6pV9ECeaxRLIXEEWfT5BEsZxnRKYf2EQswrZEH8TnRCdBQkVf9DBFSqPAROlcXkQG4xBG93uzRIsKeESZ9j5Ey7rhRBsfT0SII3FEAHs+RUB3hkUBtE5ES50MRcMc9ET745JHhkcVRwMRTESqrSxFEwj9RcGcR0VaojREVvAtRDbAGkZMbHZFOdN+RPowTERPLpVEvu40RY6t10QY0I1ErkOBRCnVjETVZShEYiYxRtQLNUS9OKJG0bP9RK+fSEYyGTBE1XhPReXWQ0UHAtFENO5QRAI1D0XTbBZFvyCdRKJogERBIqtENo5HRDe0ykRIPL1EzIqDRH8zYUTRwTpEV+qERL9tmUS18NlEvixkRF5e0ERgqotE3A6dROi3pkQ/1cdE+vSTRH0zBkUbtilEowqGRED4LkQrdzNFtaOjRDQxVEV9NoJEc9VuROYIY0RffkZEhkhQROyWtEf8ZZxEvst2RKFkGUdOXoZErVRoRMfb0kYfRmpEuLKoRdaBykVGMMhEzNYJRWa00kSYFDtEhWWnRB+QjURwf1pE/wTeRI+lPERacQ9FB82iRLy2rkQ8sEREFftLRNkA1ETsRy9ERW9pRHEaKUSpMdFEm3eCRNFt0kcPdLhENMtCRxrcPEQnFv1GVXRcRCao+kUukyJESqxCRYNlX0RztpNE/BhyRNeSVEQBUaVEbBMxRFjeOESlCVlE4bImRELwmETvG9lEJunURJXpnET15IZE1nAqRO3Oz0Xky49EVikIRYTihEXJygdGwFhsRW5qSkQ2+E9FgdJXRPoIZUQk5zlEY5ZgRPigj0WRcx9FUANwRHwNgkS3K4ZE1uuxRMwuWkQ+dYNEZSNiRB0rNERPn4hELdFIRJ9fWESJu01EBUWiRB/0xkSo2K1EriuhRJ3/kEWaQCBF4r05RH+0YUSnRHRHlqKQRNIPdkc3/QRHSQp7RK4gPERzqSZGeqvMROQxPERLsRNEjRsyRByPR0RBpFFEnKxWRGESQ0TUtEZEcI1LRPIJ0kR+4+NGVCGVRM+pBUc1XJNG7ZWaRf3fY0ZiyuJEPBc/RP9VWkR24ipGougaRXzJkUUVPEFFzuSFRamYK0XUdWdECA2sROqSl0UQ3TVE0la/RORAhESD0ZNFS78/RL4lLkW0GPlEcuCWROkPeURHANZEllirRKescETVhJ9GdHQzRz5KBkXySSNHgTDmRjQlUUTKkWdGD1K+ROOqAUawfwtF2hs3RFr/YkS5r0FEeMXGRE0mBUcDuP5EtgFuRvvMl0RRLmNEQncYRgrSoUSZiZ1EEmVpRXhdlkSFE6NEwHSjRGbLgEQlu2ZGTkDoRRt+/kRTJAtFcviARHNxbERRTVZEyTV6RN3KOETGmj1EJVr5RLmwIkS4Fz1Em4BPROwDUUSp+Y1EukZkRIyyL0SrGlZE21xERGHoF0bge5dF9Q9FRW0ot0Ra7K1EhYRhRIboG0aAnLVFIbF0Rf7D6ERlgYBE+pw6REtLs0QClC5G5G5XRauPEEZ44EFFr1mnRU9JCkV63zxEGh5xRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - GLOfOuDAckD4PvnvBMFyQK4CQD5vwXJAz2r7s1DCckC7Xp/R5MJyQPeft3w7w3JAIa/hravDckDQp3NTxsRyQMbAkFhbxXJADCe/VGfIckD0V5bifdFyQDzpgZVD0nJA1GveEtHSckDNi57+RdNyQIrRzfBh1HJAGxZjbczfckDmyqxbIOByQAWMXwu44HJAWDj2/+PgckAHXV3FTuFyQOjAkOBv4XJAvuDNcVDickC3RWjRj+JyQCS06MQj43JA4ihIYU/kckDUyIZeyvFyQK5Sf4br8XJABIo5J5zyckCultqWE/NyQF4NQR+283JALH6CsQv0ckDO8AJKo/RyQARhaUPC/3JABAe2J2MAc0DFpXst/gBzQDA+ZWCMAXNAyCnLidYBc0AmyQ20OQJzQO+9zAnPAnNAAfLChWUDc0BEhm55+gNzQFh834YIEnNAUtYSbCYSc0Awon0AdhJzQAhfDu+8EnNA4HC6MlwTc0ATsXqDBRRzQG0m7jV4H3NAQIBS8aIgc0AGDvo4OSFzQKvq4iVjIXNACrGvQHoic0AKhb5DySJzQF/WP04QI3NA6NWhrAMkc0CR9QsyziRzQJZBcHBGMXNAVA6bGtAxc0Dk8TMa/TJzQJruznH3M3NA0QK3rTw0c0D8Bri92zRzQHrh/L23P3NANilvFeVAc0BhFVC6d0FzQESY3A+6QnNATv2lgPdCc0BCF4IhekRzQPBbIU33UHNA9k4jbJtRc0A92JzKEVJzQIq4WSCkU3NAUwuAtIdUc0AUp2EQ/V9zQIm8jyaKYHNANA+HM4Zhc0DeBWG5HGJzQHiUX1I6Y3NA3nmQJM9jc0Ccq2jmT3JzQN6IjAiRcnNAPnNZH4Rzc0BiEpPmt3RzQD4+bf1KdXNADd9nNXiAc0Bl7VGdpIBzQKRAs+kKgXNAi+ojTl2Cc0BCtxLAA4NzQHS/BSeRg3NACBt5yw2Ec0BiOQsCXYhzQPJKyf2GkHNAtmeVAxmSc0CgtOLEIJJzQMZzeDlNknNAojkwMTmTc0A01E+jzpNzQIK9IylhlHNA7OPpOveUc0CQZO55ipVzQFrya3+4oHNArQONYk2hc0DcRWC6WqJzQN5OJgEDpXNAiuCdldewc0Dz2mRjNLFzQIAADzj1sXNAHF39n3myc0ApMA7od7NzQOcCxNG1s3NAH+ynMA20c0CzvGUXorRzQIbcyURMt3NAhLpeZ1O/c0Bgkxrq0L9zQAg2g/z2wHNAQ+hbREvBc0BKE1NJO8JzQEkPxM/PwnNADmMvdSbDc0BWLZLcXNFzQKiifMt50XNATB3ErtfRc0CuShhsedJzQCLPdBK80nNAHALaX1TTc0CsfYoc99NzQCdIljbj1HNA6XDej6Tgc0BsquwAOeFzQERTjnNj4XNAetfiIojhc0C4TwrhzOFzQHZonp/l4XNADK4J3Hjic0Ao7PrJD+NzQMx4Sgph43NALPUraaXjc0BPN1LlR/FzQL2mEO108XNARsj3a4zxc0B2z/gNIfJzQIpdLjf/8nNAfQUC36Dzc0B8hPsVOPRzQPph5UiM9HNAKon/MeEAdEB+vvBQAAF0QFbYWex4AXRAyIG2sKQBdEAVLdCFzwF0QA4+UBy6AnRASt2mDegDdECLjHK1IQd0QC+ayuF1EXRAelWmc4oRdECCXm1u9hF0QFKKD6VME3RAmlGrveITdEDdqMH6dxR0QL/cavG2IXRAhhbU1fgidEA0LXSeUTB0QNJpXqOXMXRAtHOIoLgydEDaArro4Dd0QK6Jjf48PXRA1hrl3DdAdEAeCofYyEF0QNLg1Rk5Q3RAf5uzRnlDdEDABHTGSU10QOLcrzsKU3RAGmQb7/dUdEBNn7iIilV0QGplT6whXXRAetHUfWNgdED4oGJWuGB0QJPn8x9pYXRAug5tnQdidEB+P/06eWJ0QN63MUznYnRAVCIO8xJkdEAwoHKVTmR0QDJIfWEicHRAPtppidNwdEBryho6I3F0QLujE/ZAcXRA+f7yjqNydEBCBfjvOnN0QEEsk4mjdHRA9iVNLveAdECShQrjTYF0QIk4oSlHgnRA0DLWNM6CdEAf9a46JoN0QOQjtJQVkHRAFJxFZmmQdEAUFKqdTJR0QIoL55zun3RAlfr4kaOgdEAgznqt0qB0QF+DED05oXRA8nvV/WKhdEC62MtjY6J0QNjQhHJ6onRAEeM9dbeidEAa13OYD6N0QK6RqNz8r3RAaKwzxQqwdECCxDCewrB0QFh2pKtusnRAuuwyNPqydEBoRLQylLN0QFPL1ZDKt3RARqMzqePAdEC4BVPGAsF0QLpqQGZ5wXRABjQc/w3CdEAWyAO5vMJ0QOlBW0i4xHRAu6JkO8rNdECm8gmo/M50QPqzTy8s0nRAgsDY0XfSdEAq4rmgOtN0QFFvpRTi03RAElI6AXfUdEB6omBPztR0QKG6+Hy24HRAd4nCSSLhdEDdRmM1O+F0QA6xP6C44XRANKAJ1h7idEDScamdZuJ0QDFRjEf94nRAMKgeWUrjdEBMw3UujuN0QFaqa2JP5XRA2q7whsDwdECLwl4I3PF0QJAFpgiN83RApUHiWKMAdUDVTH08YwF1QJZO2uP8AXVA9k1WzFwCdUD8w399OAN1QGLzt5SaA3VAkWGxc/gEdUAdpqy5mRB1QLK/cyxnEnVALg5dCiQUdUDx53sE5B91QJ7rniWuIHVAECq/0pwidUB+2acv6iJ1QC02LASqMnVADoLA58o1dUBcxmW0d0B1QJDQ2mmmQHVAnhbg7txCdUBu/O4ZgFF1QMkOufxMVHVAdE1++HZVdUAEaLnuOGF1QMQRYCAvYnVAAAtMHWJidUC2D5JKjmJ1QKgRZP9nY3VALuqqTjtydUCcs5CvhHJ1QCx7YtuYcnVAzUQHrpFzdUASA5EljXR1QGw9jSzlgHVA0sONrHeBdUB2soLqrYF1QKDyE08zgnVAXpP+dKaDdUAAYEIfE4R1QMxy9yaZhHVAkOWpDI2QdUBYjeGRYpF1QFvAJny8kXVA6DUtzjyTdUCU4yMVI6F1QMRagbG4oXVAtaBjFWeidUAKRIw++aJ1QG7YzpdIo3VA2NmvJbqkdUAYBcjLpKh1QHQwAcT7rXVAeyloy5WwdUCff1fGELJ1QFDc/ufOwHVAfF3K3DLBdUCub9KTY8F1QAk5jTv4wXVAMUMSVcvTdUAvTwGND+F1QF46EEha4XVA9nub+gbidUAMkyaGo/J1QLkZOF1r83VAoRtjHRr4dUD+zjiDSAJ2QNp8F4fOA3ZAQ0dar+UEdkA8+DQfVRJ2QLjXvJ1TE3ZA6El9rEsUdkCIkt7FChZ2QLKq0gKJInZAMMGQXpAkdkAMa2yaSit2QLKcDywfMXZAJsComlAzdkCw/FGfuzN2QCDBbmOeNHZAtvuh5V1AdkDA23FfHkF2QGS3ftQQQnZABjSShMlCdkDQ8V1QeUR2QF7Ea+3JUHZABsdfpBFRdkDuwR5c+lF2QK5t3P0oUnZAShuDX9ZSdkCLaTMKzVR2QB6+A00gYXZAcrl6Fd1hdkDUPt97U2N2QIkNHhnnY3ZANGsI8dpkdkCYfZdW2HF2QNrKjHnRf3ZANK8fJ/mBdkCqAcJMaYJ2QFgi1B6OgnZAqnvStLCCdkCDN+YjkYN2QHxho/W4kXZAQN/J1byTdkAmD3MtDqF2QEAMH5dFo3ZACONXkE6wdkDeVXOptrB2QIoUAAPAsnZAXMIyug20dkDooDtmwsB2QCgngi1OwXZAzMKA9hvEdkCmbbzWzs52QLSvLVyA0HZA0hck6r/QdkDtRuxnn9F2QBKmj7/14XZA+H/PdSrzdkB4zAzekfN2QJiRiW0zAndAahMWyQ8Dd0BADDcYogN3QFpKMAwBEndAWuvPLA8id0ChteSg6Sd3QBX0eLamM3dA1EM5wQw1d0C9Mgm3zEB3QFpfUrycQXdA94rroZJDd0DBmR8iJkR3QNDgWuQaRXdAjOfRNkpRd0A8KQMLklF3QL6P+x13U3dA40t+BzNUd0AyCODHKlV3QH8Hast7X3dAhp5uqw9hd0CuFTltkWF3QH+LUeA5YndAWk+dxTlld0Ct8MUlJm93QCRxjEw8cXdAtgJqXohxd0CBfo0Wn3J3QEpYMypMc3dAxjJxsd93d0C2W6H0+Hd3QF+Gdr0rgHdA/gRnDk2Bd0DiHmS6eYJ3QBblJUIlg3dA4F1XSgmSd0AdMX3RjqF3QK47aOelo3dA64Fs1AC0d0Dajx0FmrR3QHTx3OtjvndA6w4Z8Ojgd0B2/BU3kuN3QCxwnhJF83dAHDq4Jkb9d0AsLpfYX/93QPY8LrWgAnhAvjK2i5MDeEDOVxkO4gd4QLFFOI/6B3hAzye3UkQNeEBAerjJoRJ4QNz+6MRNFXhA9YfW8W0ieEBotF6eiyN4QF5mlTLSI3hAklRSX18reEB2m9bISTN4QEK5jD0LQnhAzyJwkVZDeEC7AKvlEER4QCtEMxx6RXhAkJga24ZQeEBH/Rf+yVF4QADH9biHVXhAIMb1ppNgeEBOJIZb+WB4QO9Sy1a1YXhAsRGairhieEBjfNQl5GJ4QCa3zI3qb3hAQAmK5nlweEDg5g/72HJ4QF6Qm+hUc3hATnxtPBt0eEBoveDlaHR4QOpHDY+LdHhAitn1Ibt0eEAuSxpI5nR4QMqvABj3e3hArpmimjuBeEBPHDo5pYF4QIdSSPyOgnhAFtragteDeEBSufKX/oN4QCUfcxp2hHhAxgljrpmEeED+XxaBToh4QDjFU4CpjXhAqyAlNJaReEAcqmWLBJN4QMg2p9CRk3hAKmoZJ6eUeEBwvpccL514QKTKbR5OoHhApN6W+FKjeEAq22+us6R4QHQfF1Y6rXhAOQQRTuOueED8lOuilLJ4QHtYwA/Ts3hAJHqWzd+3eEDiW7MCzcB4QK9qMDD1wXhAvuXEchjDeECk2a7hH9N4QGISQGm31HhAQLZknBTYeECDPjrpXt14QNmnFLML4XhAOt9g8aHieEAJPHOc9ud4QJ79guYv73hAhm8eCwL0eEC6GzpyjPV4QPTkw+HGAnlA2TlFmpoFeUAUbRBJpBN5QNpm7su3InlAwPr4BOQieUB+g590uyN5QNSKBFqwKHlAAvBcBA0ueUC9gISY2DJ5QBxMGfW3M3lATECioY1CeUDhVnBH4kJ5QIo43Yr4QnlAqi3bCjFDeUDxeNoT/EN5QNgpvV8xSXlAKzejROBQeUDAjlwF3FJ5QHjWOibMVHlAGnn6VeVgeUCH2u/B22R5QIrnWBhGc3lA1X8nSxJ0eUCo057h+oR5QFgjJPw2onlAIj31O7+yeUDmWw3fs8N5QOngLDSHyHlA7XWiHw/JeUCuri3kLc15QGYFUgRUznlATCPNbELUeUDy6YK4zdV5QPdCG+Ja43lAYKKA0FDkeUAsDRpVUel5QIZ73vHE8nlAaIhixQ/0eUDFEKURwft5QAFEI0f4AnpAlFmAlfsDekCTzzW8+gV6QGIcTPuUEnpA1JYLlfQjekCQke8MKzN6QKwXVW8MNXpA76TSHi03ekAszAwFMTt6QEkcbQ42P3pA1T8QZzpDekBqzG9ZGkV6QLtKVbX6UnpAUs8B8b1TekByY8n2KFV6QAxqPeMjXHpARkcsvPdiekD6cHnkKGR6QOjNcs81bXpA7ikRLCRzekBagJLSHqN6QGoG6Cwoq3pArvPQBg6zekBSqG2nDLZ6QFm4uC0Qt3pASgm9PBa7ekD+JTWAEL96QGYQ4fgWw3pADL5pIn/DekBoIpHDv8N6QK6tG5sXxnpAdZFEc8bLekCaiSvM7dN6QLrGtgU27npAxbSJOBjxekDEtwbNWfF6QCaYEAkAAntA+NT7K0sCe0Da+hCXeAN7QFuB9Mh7BHtArIBccyoOe0ARQqc9ixR7QLcQvfVLFXtAHj7bMiAfe0CfavK0IyN7QFk0gYpjI3tAnvq2klole0Bz5HQzuDJ7QJB7gz7GM3tACHj2zAFRe0AB0P4L+1R7QFfTOFqtY3tAxKeyqWV5e0Bws5sa2JJ7QDojLvIklXtAzhkkbFSee0CWf45hsKN7QE5C61kBp3tAaQlfHAKre0Cqtp/Pe8Z7QFjJUjbA0XtAdPzWLxfUe0DYrKYnAOR7QKJyi5wn5HtAZqCxhLzke0DmjF/BlvF7QLYVwiIj8ntA8s3zJIz1e0DcRxzGzft7QHrNgHpu/ntAhpBgStoBfEAqTvgM+QF8QKjYMYu6AnxArLnNhcwDfEC26b1MZgR8QNoClwmaBXxAbxrK8hEIfEBkDS/3iBF8QBnwxS/REXxAXtvykGoSfEDeW50k/CN8QE46thWNJHxATcIk58xBfEBzXlhAJUt8QFQc25dIU3xAwmeiek9bfEBspd2XDWJ8QLyET4g4Y3xAaFfUxVRjfEDqE0qtJ3F8QPD5WBMDc3xAccj4t02LfEBEXPimw418QJxwU2Uck3xAjoNyqmGYfEDs6MfqfZh8QOj8SDgom3xALLvtYcadfEDaiWkQ/KR8QMAmml/BsnxAlxd8WHy0fEDSQMHaaMR8QBoSCqDM1XxANFr0oyfbfEBG1QAJ9dt8QLsHgWEP4XxAjhjJ2VfifEAcPuKPE+N8QP3cHVlu6HxAviVGNhTyfECpZuWEVPJ8QBnda8Rx8nxAxjV+Y0b0fEC8lrKOAAJ9QEBWrBxLAn1A/iDS90ISfUDUobwWZBJ9QFdKVLH7E31A1paa3FAZfUBuNNrvPSJ9QPEhCtCgMX1AaBwruVkyfUBU1jb2STh9QLLqM4jpQn1ADsVVaTB7fUBJDx+3IoJ9QDSi/Lrcgn1A3yCBrVaDfUBwl/194op9QExMEu0mi31AS0U5TfCSfUAs1PXqKpN9QKSXBDgklH1AgF+uhwSffUDc83YQy6V9QCo0STv3q31ACP+GJf2yfUByKsoWMcN9QDZ8KGZSxH1A2wPKRObEfUBNXS2dYMh9QNU9cpf11H1AqF38JxDvfUAOt3EzkPV9QH5Y0DuS+n1AbpsfXTMAfkBUGy9GnwJ+QAeJ6qebBX5A0/MLaYMUfkDAgPuOfBx+QC5pJDM6H35A+rHtRYsffkCqApkRJCB+QC7CV46xJH5AYlqFlkMvfkBiKdpfqVF+QNQVzKdTU35Ah9lGT9hTfkCkA5P4jVV+QBgcbVw1WX5AvtVTKFpbfkBuZdkaRmN+QHoYv9FlY35A8YOA7zRkfkB4XJFHT2t+QJAK+6Yibn5AOeqYJFZzfkCWed3STXR+QN4iKhVNfH5AhNNKcqGDfkBWGqc3V5Z+QC+pk4cinn5AYGDZtn6jfkA2r0zNkaR+QO6lX6m1qH5AHLj5eGGsfkAz+Ho3KLJ+QNjrZW9ptH5AXGr6OG28fkB05ji5ZcN+QIolnBXPxH5AjiN1RW7LfkC037fCx8x+QJr0WHRd035AgEELdWXbfkDAsSRD0N9+QLwTHNxx435AiUtQri3kfkCwPCMOz+h+QGcKR4t6635A9H4nFzXsfkDzwFRfFPx+QFUBmaaVD39AeZppDb4Pf0Ce6emoTBl/QKZEz4HOG39AdDYdWtYjf0B8zWMLpER/QFnyU6C3UX9Aor+dU+BTf0Bn5iFpuHF/QCbcE6DndH9AqwZx1DR2f0DqSVktBnd/QAF7KSKrg39AvtF1+T2Ef0BO+2lzY5F/QKgeltaXk39A59QQtaKgf0D0rATIX6F/QH6KyJHpo39AtwR6FhGlf0ACHlBkCrF/QD3f8LZWsX9AslBlQGa4f0Au+BE5X8t/QILEhNgP0n9AYDk0SGjkf0B0VtcJVOl/QEJjYH8s7n9ALnjAT6vuf0C2tPGpCPR/QA63NRt29H9AJGp+HM/5f0D3M5n4OgKAQAR0CDF2AoBAcFgQSCQFgEBBcYTPEweAQFbPDTnACYBALH7sPXcKgECQLTe8ug2AQCS2erwQEYBAmi79oL0RgEDoGqAVvxSAQOW0JgZqF4BAyWUeENIXgECaKcfuvRiAQMrrYIVpIoBAgKeMYOgpgEADyBCfGTGAQI4XYbthMoBAEuStzA01gEAEDbsmHTeAQKUQjwXJOYBAQmj6wnU8gEDqOj+CAD6AQNpw2S4kP4BAjA2PbsRBgECDep0bqUKAQKbVxKjtSIBABsSry69KgEBkj7a75VCAQNQlBuATUYBAwEX84qVVgEAGAMzAuFeAQMNMaAMmWIBAg4qVx+pYgEDIAbDGDVmAQCuqzwghWYBASqLZyqZZgEDA7fRKClqAQETz3nCgXYBADDcWYAtegEBS2lzjC2GAQAWoCV1wZIBAZhV5NXlmgEDYZSuZHWeAQAyxhYKiZ4BAh74Ixx9ogEBOb5d/TGqAQCRnfu35bIBAWM3UBylvgEDwKYtPJH+AQEsc/pnagYBALnm5LR+DgEDMergI5IWAQJTV7mnPiYBAl3HNHh6PgEAq7tMeq4+AQGr6d9HslIBAsKqgzByXgEComO18IZmAQBz0e7zXmYBArh8WvOCZgEDB9uzEyp2AQGCf+Ms1noBAD69Xe8qhgEBGuiFPA6KAQPPCMnMJpIBArAQR4zukgEA3y4QGwqSAQGTZ07R8pYBAvSnERTimgEBirC0CiKmAQA6t0LfRqYBAvsp0yuCpgEDKAPQr9K6AQHLi9loTr4BATJvmDqWvgEC4SWmwt6+AQMuvowFjsIBAM8o3KimxgEAEaxkdkrKAQJhdgXZKu4BAVM6d2Ae8gEB8ZKXPZr2AQNbJyqN5vYBAOiUm1uy+gECEDa2NZcCAQEbIaF9SwYBAVe07AZ7BgECl/RhLnsKAQDSkzeoBxoBAiO0Ui/zGgECvC6vFs8eAQNjpIYVfyIBAudnwgXDIgEDuZ7QXKsmAQMo201VTyYBAXlJieOHJgEC2Y89iA8qAQKRn3ugHz4BADQcDmaXPgEABMlZR4M+AQDj4Bn1m0IBAQhu9ICzRgEAjdgE4TNGAQAIxztlf0YBADlpbWqvTgEC3fezOQtSAQE+dCohK2YBAoodIyb/egEDIKdK1ROGAQN3YRKvO4YBAb1ECfj7mgECforrZpeeAQGK3bgv26IBACSnx80bpgEBDP+KROe6AQEb5FC5L74BAHmjb2j3zgEBKks2SP/+AQARirS+E/4BAOuotbkAHgUCtShkGWAiBQMXMavM9D4FAith/vLMPgUA8OmKiUx2BQOK5eZc0H4FAern7lrAfgUC04VRMmyKBQFoOfuY0J4FA01GP1/MngUABuiHQXiiBQOLxQJ3mKYFA3LZyl+QtgUBEcQP2Qy6BQMLJpD//LoFAONzzHTAvgUCYzjcYQC+BQOcEuPi1L4FAcHNOxHIygUBoQNo5vjKBQFztuWxWNIFAbMjUZ7s5gUAgPolw8jmBQDQSNgUpP4FAUjND65FBgUCShbb8zEGBQIqyJ+CVQoFAgltX0mNDgUAiQ98o0EWBQDXfs50uR4FAPf57BMVJgUD4eQQpBkqBQIfoT90JToFA2FvkUW5RgUCu9wzB/F6BQMLoBM+yZoFA9L+v5LZqgUAe82gga2uBQB/s0EXcbIFAT3Jg11VugUA9p6fFtm6BQEwa2j+DcIFA/lc/L8J0gUC0FwNWb3eBQE7WugTleYFApJQq0xp6gUBIV2nXyXyBQKj92B1xf4FAGs9dKfqBgUCWOVl8n4KBQK4XqaBBh4FArhN83qaKgUBad7O/VY+BQNQEJfQ5koFALBIz9eiUgUBM4fwH85WBQOS3sbxWl4FAYsL1/aWXgUCmnr6dWZqBQBuAe3WbnIFA2rM1AVifgUBcgtig56GBQOB6h8zeooFA5V6qZG6ogUD8CZx45qqBQJx3CyQjrYFAZEDQ6XWtgUDLcepK4q6BQD+1qMpJr4FALE8Ob023gUBqgO/eSbiBQC8w43JnuIFA5IdLwOa6gUCFkCT7kceBQEphXa8EyoFAqJxXX7LMgUBC5H0gX8+BQL/ttsR804FAAsIU5ejVgUAaDyD769mBQFlc29th3IFArl+0M8rcgUAMmPut8N2BQGb46yrm4YFALgpSG8X5gUC4Hr3j7PmBQJg/RJPv/YFA5/T89eQBgkCCJz+F0Q2CQLWik7y/FIJAUArdqBcXgkBLclGI2BiCQBD61FMpGoJAcBivr2MagkCagZDXLB6CQI9NSQJlHoJAej+MytYggkASJiaMNCKCQHpD8/bTIoJAiPbREvklgkBskrQKMCaCQPiw79HRKIJAgP6awJ0qgkDP9ox8oy6CQKwqGh7QLoJAJAeG10M5gkBUR2SG/UCCQOIvWZcNQoJAgB9/weRKgkDoqQih5E6CQPHBdz/eUYJAZfIEWTtZgkBwiPj/4FmCQFAZSyoTWoJAkzhituFagkAVSKxuo1uCQFbtEwNtXIJAMATXMvhcgkBlMAR/016CQCyUDb8yYoJAgqM920tlgkDGjbdAD2aCQM6afo42ZoJA62nLRm9ogkD/ubbaOWmCQCnFievXaoJAuNkRbm1ygkCGsgfXRnWCQL4CoIdxdoJAGuJeTwB6gkAMrpk1YnqCQF8kNiAIfoJAQVP5nGSCgkBpRw377oSCQCwqIhtNhYJA+AkrFUOJgkCZIRz3+omCQL4xlY5DkYJAmmP7jWWTgkBFGeOoPJmCQPjc0P5VmYJAtg9i60GcgkDI0lYpB56CQL+ijYeRoIJAMmxpVA6hgkA++ujhO6GCQPCzKtLzpYJASZPGjw2pgkD2yeIDNamCQNTPrItIqYJA4Ed6q/apgkB5gMbWy7qCQMq1ayuHvYJAIgfWUKm+gkAZK4qQocOCQAQJTH7txYJAusbgenrIgkBQ+nSM8smCQMOEZauC3oJAvvRZIp7mgkC187yFS+2CQKC0BCb67YJAIPgFFXzvgkCuEeFNXvKCQAwMKtO194JALng/3LD5gkAt+LwduwqDQAM7EvE5DoNAUnE1bnkRg0B8PF9CPhKDQLLHH6Z5GYNAWAf4HHIhg0CMI9XScSmDQIJfatAfLoNA72W852kxg0AeCIN3lz6DQCFpDPDkQ4NAupgoVJhTg0AwRYHHU2GDQAQm1aXZdYNAfCFzAAx2g0DWU0BFFX6DQNizW61Kg4NAGxQWawCJg0DKu7fzGouDQEZ1dMtRlYNAzGZjED+Zg0CFCsHedJqDQE+cA6tFoYNAKFhE4/epg0CekKEF562DQH4jlm3rsYNADqU43vG1g0A6X4MT5raDQNlmU9DjwoNA8n0UknzKg0Dur5Kc1u2DQBa8xA3a8YNAhvpjtYT3g0CObUzCF/uDQDcabeeI/INA4GWh1P8ChEACZ2t88xqEQHyfwHGGKYRAW5smqdophEBMkG1SrCqEQOvDAToZPIRAJzlSC7FWhEC8wEr+CluEQCBIPfb7XIRAtt707cxdhECAN3QRal+EQPYA/HkiY4RAkPqwNABphECdTm18z22EQLisR6n/cIRAst9FMmdyhECQCQ4jkXeEQK10WDbKd4RAxiAQu1x6hEDeRRjqdnqEQMQM3hzmfIRAJri50yN9hECcfq/TrX+EQGj5HzfQf4RASJoxTD+ChECVcno6eIKEQNalgEIug4RA7pKhMSqFhEBtufYZfJSEQLP2OQu2lYRANacUSXOihEANpINyK6OEQIIbzK3Op4RAcsQmFBCwhEChDzqeubOEQINxkuIh04RAqpKmZxHWhEAajB42atmEQIoHAc8T2oRALWbvGBnehEDn900MauGEQDziQjwS4oRAWgeri+7lhECq9dtqYumEQPguahNv6oRAzKLxbRvthEAM5qr0Hu6EQAyX+E/L74RAvZm99zXxhEBazTR1Y/GEQBwoAtUf8oRA2BgCAnbyhEDsSh8DI/WEQO6xHG3c94RAlAzUOA35hECDkEPYNfmEQEz2R2Jc+YRA9x0ftYv6hEAotb/qMv2EQCbxSEMvAYVA2+BEvpAChUDbvKDlxgiFQMwg2jksCYVALi8JOMEPhUCD7eunRRSFQCDlQFPgFYVA4tEMAfcWhUBO062YeheFQNC3RKgWGYVAcLVwiK8ahUBUZsi5ShyFQJa1v1LjHYVAGlt/Fn4whUA8zK7QQTKFQATAf2+YSoVAdzDxO6VMhUBsOXEiVVeFQKRtXTKgYYVAGLAPVkpmhUByqAlbp2aFQNe1PwShaYVAcrdAf0xqhUC85avUmHGFQALjLkJYcoVAkuTp2LRzhUCQgv7NsnaFQLwNVv+aeYVAximCMrt7hUB+5DYOk4GFQCk6B6wYgoVAuG4mWSqdhUBCORcrVaKFQBIIKOpAroVAJjBiRUSyhUD+GD8PRraFQK6q3LM/uoVAnNCKkQLKhUCzqhH0+9GFQKQRX7uZ54VAS8JJqjHphUDcplvrPg6GQDYexuroHIZAqtFlAmAphkDZtffpR0+GQJTbuMXgiYZAldJTJ0uzhkCYyqWkKraGQGR/h/cluYZA9k9k/9LGhkC302glkeaGQJXPSzeSKYdAzE8p15Axh0A67Up8hzmHQGbH7iGLQYdAgue7zMexh0ARv0ILO7aHQB5GclTIuYdApn6ircLBh0AMTJz5o8KHQPoA+Sy9yYdAB0Ofh5rNh0DaoJEwpU6IQNSir9D7UYhAvU4+jKhSiEBOnlR8/lWIQOYuk7CpVohAZJCo/QBaiEBEiW1cr1qIQKAlFsbfaohA6sQP5ZB8iECcc6Sz44+IQM8ly5T09IhA + KBZXds7jZUD+9P4gH+NsQG+XdYaqQnFAnMs7e+cBckDF63mLQrN1QJwpGM8/E3lAxUlW35rEfEC+MhoAw4N+QEZSdYzZeoFAo9wFJ1qKg0BzWBoyO6OEQKML9FAGE4dA1oXkTsc7iUDMC3sgGUuKQGpmiIoeRI1AYOweXHBTjkBKswetGD6QQOKMdDz+dZFAxaJHRDQKkkBipGtRVDqTQA+TGeJfDpRArJQ9738+lUCPqhD3tdKVQCiEfYabCpdAQcF1BfwemEA8BEHupKaYQIuxR6MnI5pAhvQSjNCqmkCfMQsLMb+bQDgLeJoW95xAH0kCIIeDnUBPjkptR4ueQMGqfnPDp59AgNLXvcYLoECFlt8f8oGgQEBeU8jx7aBARSJbKh1koUDL6PPIBHyhQGmssico1qFAVipdMh1GokD07RuRQKCiQA== - + - 50c0RHK3Q0TmzwdGjiqbRIQEk0RkyVpF6ag6RBu7UkSyYplE3AmSRNsbQkSx2AFH19lXRI1INUQ13GhECGlcRPMyVkSxB/5ERrJGRHppm0S+XpNE6LKVRY82UkbLSchEtwetRAf94UZM70VE8rGpREeIakQTCqpEVpQ8RPk4j0SfMP5ESHs5RHG+nURaQLZE4G5IRZEvvERFQCNFs7iWRII2EkfHD+dE+sFMRBERRkScYVVGkHZiROX1hkVv0hdFj1TkRNVllEbd0Y9EljbDRC6K00SEOxZFTqWeRDR+l0Ug7QhFFlRtRIdXk0QD151EAuFqRLGjs0TdJttEq7lHRNZIRUUEmvZEIMA7RBDTCEaWL0REK+jxRMHNC0XUBX1FjcW+RD7ATkR6VphE46ppRDObjERQjw9FmtmSRHx9FkU6jWxEEuYfR9OUv0SnO/ZE1equRmKnt0ShLMRENAWERVfHrEQyBFpFddBbRMw4YESwPStFrYEcRGRaLUS9T0tH7wRHROVjs0QC9qZEOO5SRluvlkRHXL5FUPmYRfvB0UU4pqpEDmbWRMwA4USD1EdELd6ERFF7VETz+FdFeaNWRRZ7SkTItYZEe6xDRCIZaEQRtchESQWpRZ8tQETV8u5FWujjRMNjNkQ6h7hE7NcwRUi/PETo+wtFLPa4RJIEq0Ta0ZBFQoyWRMtuFUiwjThGBGWaRNqps0SJo3tEHaWIREPXyET97y1EkPqcRLTpaEbV1IpE95HIRCIDlUR/LmtE3l1FRH4A+0TjNIxEDrB4RDlVe0T4tRRHJQE9RdRBy0T6UaZECiJMRCNynEQUA5REayMzRUmuSkQ4pUpFZHCfRJlKk0Qxc/NECilzRKa9q0QL0HtEtOFfRLSYn0SaKWpE8uRyRHgBWETIEZNEdDSsREojaUR2ye1EEVq1RBMweERVgY5FNz06REvwhUV8hkFE1JOTReo2vUTPMYlEN1U1RI069URkN+NFHwVdRKyhi0TeAkdHJNZERPi9FUXuc4lECWYARXJkmUUnJZFE1MtBRGazkkSNHaxFM2ibRNILXERTgkhFZVelRHz880RDgHZEDBh/RCHccUQOQl5E1UHjRNy2AEWBxIxEWMSbRItJC0W04m1FSorERCGMLUTRe2pEsPEERa+iN0Qrp61EhIPnRFmfkURSSgpFczGeRAkpm0SDSZNEAnn4RMwUWEaFOu9EiUFGRElL0UQgRItE3gmwRMXyVkTZIfRE0Bk9RNZUckQqWqNExQLaRNsmyEThN6tETAZNREQCO0TDBbxFE7GtRDQ0s0SNDEVEGT7VRaaESUQ7t6tEqVpoRPe6gkS/f45EGVNGRXYptES45YVE27ULRtVVM0SlG4dE2yohRQYPc0ScXYxEKsV+RJUduURt0qVEdTMBRZq0J0WrwjxEJjGeRbbSBUVa3TRETtxLRIcYEEUjoWNEwaNIRBOCREawcY1EXUrBRLjw6kWC2zFEP8CRRTdEKEViGtVETViXRO94SUQTE4ZEoXM+RJ5+iUQ7quxEv3E8RHMCVURC6ClGqa12RODrjEXy3rxEhfaLRB3ZTkQD07FF8czNRCPhAEUgYvVEX5/fRK7sIUUv5IZESd63RFspUES5s2dE/FeJRN4UaEURaxRFuto9RIZ5c0QeASpFaPqRRB9RkERigzpFxZclRt6OukUFZbNGAR5ARZdBB0XqCrpEoYAlRTcygkVe6DdEbcwyRUoriUUhVqRE3/L8RKlsiEQiT21EHLVZRItieEZM/V9EjaaPREs6X0Q+pIFE69QBRdqeJ0SAkBVFjg6aRMdmYkSE2YpEj3BMRMSJN0Xm0GZEVXvmRGZ3iEXhbVdEOgSPROdaukQaqwhFC3KpRbZacETiBS1FZlx/RL6FgkUjNFFE0hmhRG4ZqUVaajtEqptlROpioERjd41EJpw2RLZjdURy2opGT/4RReKiW0SV1UdF4S3yR/+fVURxfpdGqMMJRfK6wEW4j79Go/GTRZFvUEYNenRFHBmJRAEbiUTOQo1FaTxBRGx3Q0UFzJJEnn6kRG9qPkU1MmFENTutRE+riEW8jJtEoH+RRN6yFkWNSDpEIvKhRPmWH0UiXkhEPo1QRH/+mkRF1zpEk6LxRGllykRp2ZVE4wWXRJH1d0TKnLREK+akRsk4YUTug/ZFg0A4RJGRgESiZ3FFWnOSRK8kh0RU6nBEX9luRdLirUQaIzREUJKmRCF7f0XJioZE3XeQRIc+ckVKazJGpi83Ro+alkVBZA9FNdLXRMoWJ0WtjQBFcC17RTtmBkXXDZJEiWzqRDPt30R393VE/TJ4RDA4o0UaVE9JetKURW06zEQYdTdGXqKwRKRwKUUG2TJELdkbRehJtEXV+8dEWpNRSBop6EWqdghF2oYwRV74+UQ4osdEeRiXRnN3R0ReKFVENfdZRKy+okR+jYdESUxAROC3vkTBoltEd0ffRKh0aURN4ZpEtpOBRdDXPkRwyQxFDLICRVJeR0Q5SIpEpI7URUngGEV4VcFEbcmURZbd9kUUAK1EFP+3RJYXakT/OZZGBkgLRk7t+UQcHC5FCgGcREttIEbWvsRE2KCzRPrm60QBQLdE/8CVRKCQxEQM5TNExTlxRN8xtUSBEMxF/KNWRPoypURPINlE7nhfRAv+aUSFKzlEASl7Ra0kSkUydnxEtGi0RJeya0QLUjNEKLy/RbB/C0U3e01EMZjWRFuVg0QTfEFEnbiKRDo0NUXK2YxEUut6RTOwr0SPuY1E+wmKRC+tIEcwndBHcCjtRl/wKUZWHm9FZnCXRJTfykbCbDREWauuRJgoE0WVbx1FdKQ1RMfmAEXvllFEHzwKRUYDOkVV14dEmadXRqScq0XXjTNGUxO7RbPnjESLKUtEM41IRCSYiUU1HctEp0KBREtqikTBJSFFDqKyRCkqlUQHhhdFIeNvRJZ1gkTwOs1F57OVRF7ihETFKRhGetQuRLwCwUTSueNEqbUuRY/tfERbX6BE+mY3RMqDckRfAk9EkJWwREuESkRo3xhFxUSoRH3vn0S3pFJFLFk8RRL3jkS43ARFump1RarDiURVsAlFyL2dRAiWoUX3OgJFp6qWRvL1s0RDCwNFzCdSRlm+4UQP58JEgfNeRK0S/0Qh1aRFh3jVRK/hfkQkV4tFn35BRaEJskTiJYJE0jaARRnOPkSJV7RHwq4ORyPxrEQeMQRFGZLTRTqGjESgbMpEtUhZRI+YlEbplVFGV4YcRTXvA0XoKnlEHYHJRC+bekQB981ETrmFRELNHEWnUoxEDp0zRM1Tg0S0AVlERDm6R99NMkVq6P1E11znRDXovUY4FFFFLyaIRAZpHEVPgJRGG1QqRcF7q0RGngVFn+1WRLngk0TbUItEpf9DRIaWEUWy1YNE2ZoPRWYtSEQHpANFltVhRBTgP0Rt5hhF3L+GRCcZpkTRG8hEwyVYRDyAV0SCnGhEBVWURBiYQkS9nQ5F6VcuRuzFdEQVOtdEggZgRO7Q10SA1HNF5a6ORZFgCEXwAzBEhW9IRO6GhESIsL5EZJeRRB/SsUT6IThEMOzaRAD+RUT6Y+dHW5yVRONlmETYZZ9EwTFPR6TsCkZvMApGOcn1RNJHlkUwV5FEjAAQRXsuS0TLAVNEiUc3RDzAGUS/X0VE67BfRBn3/EWPteBEQoM2RjuVS0QR7qNFbAjORPM9R0aXMixFrNyiRZRZakRTvM5E/FqBRGHTTETdpmRE0sSkRM2LqkTc4XJEUZGGROd0eESn9GZEm2s9ROw+XETVRpBFmrfKRJ4gCUVFBbJEeFoyROecp0WgZh9F5eMvRPZ3OkRiyWlELGjrRBs5GkbYoM9EB4cTRWyNWUWbHqtE5Qq8RM4rPkRJhQ9FA4mXRBkSpkR9wFhEsXeERIt+zkT1Mz1EZHuvRJNRoURd4UFF3GvpRHbAbERGf51EPtaNROqbgUSc9UdE5A+KRMzZgUQh3XlElH+YREiolkTE29VEfqiERF1GWERDCAJFIXRYRIKFQ0R3oK1E8ziIRHC2ikcMkWpHo1elRtOlrESvgYRFdT2DRKJGWkbJc8REtmtVRb3XukQNE2RGMLkfRVMMY0RuJqFFDj9TRBc6ekWZqKVEcBmHROl2UEXN2qREIg61RB1poURQY3JEH/d8RJp5hUSTIpRFMhiPRIC7QkUoxZVEUkUiRa+ie0R8u0BE6beDRD1OW0SPU6BECGQnRnclMEQTpFFEZ1sXRTGbzkQiox5ETcUjREmvsETQxlhEh0x9RBNMkEQwuIdE1so+RKlSEEUkJc1Ej1+LRBQ0A0W4DpBE8GLTRGc2W0Ri+sBFdO24RPbEeURcLghFB3CKRJoOdkV52RNF+RroRGghYkSnx0lEUr6bREIHhUQtPIFIiYSdRFmUWkW0Gh9FKCKDRKFc0ERp3ohE9AiZRFMHdkR0iexHIyyGRMQtnURd5xpFitBBRLWzmkSQYW9EWd+bRO/PcEcU6pdFJE9eRM51VURTfXBGHzRkRJO7k0WWhGxEAA5PRPSFYkQz34pEAyqSRHnvaUQIQNZETnQgReVYdUa4OFpEh7JDRYKZRUTBdqBF9+SARDEhUERdYuJG2IqSRF3qnETd+KRF8MmYRDSTgUTzEl5E0CuNRNMTRkTzodJEBk8rRWa3a0T/n41EYCFHRCtQXkTJcUBEg6FORBstZUTZBuJFHJp4RMoFk0X59z1EPu42REtlq0TnLEhE1nOIRImOo0UEHihFHCk+RLXKNkSkablFMcqiRW+kakQh10BE5FKBRM8IS0SF0X9ER3OVRlydRkagUoZE4yWyRU2txkSywc5EbPQ9RJZJnER/enZEo45PRFMu80Uv+WdE/NJwRQsdNETExcNEOQD8RCHRm0R2+O1E+PdTROkYOkUrm3dFBe7SRG14cETzJH9E8jdbRP5RVERBCSRGZSUgRXsxU0RiPppEM4ZXRJimRUTyeadFq8OyRZkAFUVxyMZE7r13R2DrBUcQ0VZE/whjRFxRGUa6kxFFhM1MRHXVDkY2PphFSWmSRG2afUQj7VxEhwE7RMjWJ0a3Z6JGKtYWRWLYE0Zg0ahEWw6JRazVEUUkeAVFoI21RPDonkS3TVtFpRK7RJjOYkRvpUJEFWo3RJ+XckTiMItEDVRCRGa6hETFCuFEPzOuRNN/S0TEW3NEKtSTRN2Z10R7ucVERRZDRLccckQgjx1FAsxbRGaZSUQ5rlpEhZHARAp4FEXVVxRFACYvRQ5KlkSGIw5FcaBsRLogbETYKg5FNkNxRBBtXETKOmlEE7XcR5eWrUQUUkRHTCE7RC6G9kaFsQpFxPxERMtPaUTmvYlETqrBRWTN+0XiyQlF6ZMeRdpfBUWDQQJFnz2YRBbXWERB7U9EykxZRMSXckS5hPBEW39IROqxbUTdaoZE72NxRBKamET93VVE+gVGRI4zTkSKPkNETXPXREwfJkQ5HxhFV+jmR/OR0UTaJV1H+TjoRtwII0ZN0ZJEgDZGRdyOZURqNEtEDXF2RA5jRURVbJNEKmioRFPgP0QCtYZEbL1QRHJdNERH2HVEfWQDRugYo0Rx+xlFn41CRYEdFkb+u71Fl2TKRDJdXES9LUdExcNQRG4ClEVKxkxFsiBkRH0gSUTEwihE+Vt5RLAfRUS8ynZE5qNyRF/qWUTQtU9Eemy3RN71RkTsPWtEAmgURRwsD0U6W2dEYZ68RdpcZkQV1+1EvthlRMfegkS/wnZH0fYeRbjLekfc6jJEYW8URy76bUT18SBGfos1RCYRzkQm42REiwaxRExsVETbYnJECd2nRDNvTEQZll5Ebeo5RCw6YkScjwpFmS29RpcJIEcMZoVGEmOhRSxajEZwKRVFx6k5RFkdJEYqlQtF+IA/Ra3EvUSCCw5FTDeaRR9ck0UlZ4hEoNq+RP+orERIlLlFXF9nRDpb4USTTp9EWZCWRSai2ES1AKJEBm9lRFUCUESyM4pEWdVTRGWeeUZCsOZGSPezRLoLuUbJIjdGYaDjRRVMtkVU9ZtEv1pFRD6iUETyOTpEeQVARMg+gEQASRFHVDC3ROypYUTUvYVGVnbuRMdqGEY/K2REbiOJRKvNPUQNEpVFlilHRGUYrUS4X4BE3EM9RP/ENUS0ZW5G5LIdRkWRVkWnJLFE/c/dRE5WSkQzzbdE7ndLRC3Vf0RKhz1E4KdHRDT9gkQnNIxETX9fRGJ1b0Rrw79EcGjfREpSX0T1NDNGWuDARUFzEkWDkQZFJeIaRsNdPkTsN8RFb5xKRVIJjURjFHZELjNeRPT0E0aS0GtFF0jcRchsb0WlQzBFODDyRNjFxESxyWdEbkFLRABHp0Q1KUdE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - n3mGbXvAckDPwgBc/cByQGDNG/duwXJALiuk707CckBOnfU75sJyQLZDrlM7w3JAUZk0dsXEckDSAM00WsVyQGEGdFp80XJA0NJsgw/SckCmMxp3Q9JyQNmu8zzO0nJAhX0xMzfTckCOWc/Fc9NyQNShiUnN03JAzlEIEGLUckC0rFvVzd9yQBSVFZW44HJAeFolYlHickDGuewLkOJyQC/d2Jgk43JA+I3/jbfjckDSY14FT+RyQFQORIRN8XJAVK27isrxckCaJZXUmvJyQPZfW6e583JA9km02aT0ckAC7O2UwP9yQKgaW0n2AHNANzD/74wBc0AzINr42QFzQH7JlY86AnNA5FtNlM8Cc0DuJ5f4YwNzQBIaaO76A3NAXGy7VCYFc0ASv1S2BxJzQBvMFbi8EnNA0if9B2UTc0Bg+B7lBRRzQM75+sZ5H3NAOD9T8qQgc0AeoY2sOCFzQKWaa6JkIXNAMAuFJnYic0AM4u7ryiJzQNwaIkAQI3NA9qL+cwMkc0BIpyY/OyRzQMo5cmTRJHNAzTxV0Ecxc0Cse1J2WDFzQDY9UNrRMXNA7JxowPoyc0D3+xI+DDNzQInYtQ6jM3NA+xbhF9Yzc0BMgxFx+DNzQOwuBdM3NHNAllxbCN40c0BqwO+muD9zQNReIKniQHNAjHHg3HhBc0AFJ3Veu0JzQFT56rseQ3NApo8j/npEc0A+9AxD+FBzQEXxGwedUXNAMj9isRFSc0ASx9nuQFNzQBkKu6KkU3NA8iIUZodUc0CYH/4KC1VzQI4ogbj6X3NAaKDHLY1gc0BcYcBgh2FzQI3Is1AaYnNAipyY8Tpjc0Akm3hBzGNzQNHB7TpkZHNAjrBwqWNxc0AK1PFn23FzQL8AKvVScnNA68alUbtyc0DUjF5cg3NzQE7JKXO2dHNAmtH0uU11c0AsfLpKeYBzQCr/TtOkgHNAGp9B+hCBc0DCvlP/XIJzQDz0fj8Ag3NA8uL/jZCDc0DyRqY+EYRzQIonpIyIkHNAxLd9GR6Sc0ACccYxTZJzQJNt8pVpknNAskTojc+Tc0BWm04TZJRzQEs8Dzn3lHNAHOltVLigc0Cwn9Q1T6FzQAI4QVZaonNAyIhEbZGic0CWaN4256JzQNYNzBslo3NAkvPCawWlc0AGSQsL2bBzQCQW+qk3sXNAB3ho832xc0Dslic3V7JzQNaY6tBtsnNAHlfrDBWzc0Bs2/7etrNzQOczGRkOtHNAMqw0Icy/c0CUPRntY8BzQO1e4xX5wHNARo7vM03Bc0A8vKKrOsJzQBwKvKrPwnNAgWbqlybDc0BNd/rdY8NzQBRhk7Z70XNAyn4FM5LRc0B9b2Xv19FzQMmyZQlG0nNAk+kCG73Sc0BayxJUUtNzQD6e+fD203NAoi0tteLUc0CMEHZ/peBzQCjLijA54XNAeItjY2Xhc0AcSYLwiOFzQIQiJUzO4XNAtJ2po3nic0Ao8RwC6OJzQGHjZm0Q43NAJG1D2KPjc0ArcwBsPORzQAjAAcTw5HNAyIVENEjxc0BUjw6/IfJzQBFYaLFo8nNAT5wXvYbyc0BGfXlG+PJzQJTX6t429HNAbK5dmecAdEAALtON/AB0QBiPo/ELAXRALr9Or0cBdEABjLvneAF0QL6SpUCkAXRASDiBKroCdEB36FGn5AN0QI5f7ukKEXRA2ktGfooRdEBYPxsUzxF0QLMkv8dUEnRAXhz/EEwTdECv3qUh4RN0QGCO7wJ3FHRA3VAPvyIhdECuJsF/uCF0QEqjDlK5JHRAsOktwFQwdEA0QbW0aDF0QNS2r/aZMXRANLbLMhEzdEBI2nL1TjV0QKjpQaNTQHRAtIYup3pDdEB6bVjBXE90QAY9QciJUXRA4mOuVqdSdEDPQdp9CFN0QEY1Buf3VHRAuopcVIpVdEB4CRZuIF10QEsJK6G4YHRAgVdK0AdidEAG4PKdUWJ0QNC9zkl8YnRAqR4oIRBkdED7ep5dT2R0QPkj8IIhcHRA4MJQDsdwdECR2V7pQHF0QCXhVorHcXRAAhLGEBZydECPUjrUN3N0QIqqbGE3dXRAcp36HkGAdEBY6A209oB0QOUkARBOgXRAOBbLmSWDdEDtNm3kFpB0QBtxscZskHRAuK/2YO+fdECGUxjv0KB0QK+DZxM5oXRAGrwsBLeidEBC43csEKN0QD1A5t8IsHRAhfZuREywdEC4PGxxw7B0QNTEoWdvsnRANMGArfyydECqdWGcy7d0QJD/CunjwHRAvgRMzHbBdEC0vlrY6sF0QAnISNIMwnRALyI3OybCdEBEQJNWucJ0QIoldfdOw3RAGByH1CLEdEB8pPu5uMR0QKSw8cDHzXRACfR9Tf3OdEDRB65hEtF0QKe/UO300XRAe5KWQi7SdEBfbspjedJ0QDP7AtM603RA5sZpVYjTdEAOr2F74dN0QJpR51TP1HRAKkYK1PbfdEC0Vv0pt+B0QAxGwPQh4XRAkUbqiLfhdEBgI7vLZuJ0QOzIFlb74nRAUT7kfA/jdEBWKl0fkON0QDoCp5FP5XRACQHI/GvwdEC2zqvVjfN0QBfiqGl49HRA0AU5hqb0dECQLsSmogB1QKz3EN7OAHVARZ5b9f0BdUAZ1gItBgJ1QPiBaqldAnVA9HiMrKQCdUDPVy2CmgN1QJLobOuXEHVAx+PC62oSdUAW9RQnJRR1QChdDOThH3VAlr62KawgdUBcKlCRnSJ1QLpFHn6MMHVASvCoK6oydUDSZ81Q1TJ1QOWoeDrMNXVAlodj2kBCdUC0Gwmj3kJ1QHMcEAXkT3VA8R3om3NRdUAyt8qdTFR1QGCdv+51VXVA5pC9Dw1gdUByXJEbOGF1QAjKH39iYnVAftGDE5FidUB8FBfXD2N1QLwrRSxlY3VA8lSpZ4NldUDstNjDdXJ1QCr4UMOJcnVAwzEhBY10dUADglcZ5YB1QDYoR7t3gXVAGJKzAa2BdUBqYdUAT4N1QLRQ7Qamg3VAxxwiKxKEdUBcrhZwmoR1QCZ23x6NkHVAFj2WE7yRdUBUxJqVlqB1QNQ+28q5oXVAhrjWb0mjdUC5s6GBuaR1QF52CX+jqHVASRO28OeydUCSqdw5PLN1QGQ9mKruv3VA+o2RPs/AdUCQjTsRMsF1QHff2BNkwXVAjH9jTffBdUCUVee/NsN1QKghyJjL03VA9ng1bA3hdUBCjHUPBuJ1QC6XnSg55XVA6M31wGnzdUAjBZ21SAJ2QCCZrvrOA3ZAKTosQFUSdkCAYoCaVhN2QOyy/70LFnZArj5PFHoYdkALE522syB2QNJFD4WIInZAFkxhYJAkdkCYLJKiSit2QLmk+5ofMXZAjMStqk0ydkAYggquUTN2QPKCR8aYM3ZAjGbeNbkzdkC5vBCgnTR2QBa0yWdMQHZARfuOJONAdkCFtPk8HUF2QAzV96VuQnZAsJfhusdCdkANT3lVeUR2QMLALQj/TnZAMoGF+8ZQdkBuHIuMEVF2QA7uSd76UXZAY1Yk5IlUdkBAP2mMzVR2QMLPpBKNYHZArHGCeSNhdkB4NJ3J/GJ2QLQAThHaZHZApnYhhMt9dkBYrErD+4F2QJUkOJyPgnZAhlfZRqeCdkCehxKn5YJ2QDCR6EiRg3ZAQLORiJ6SdkBzD5Zxu5N2QBD+Ho3qnXZAlQKQ8Q2hdkB1lTPXoaF2QIhGDHe2sHZAuVMjFMKydkBC7urSDLR2QMXDpKevtHZAql5V1rzAdkCJFr89TsF2QPEoTEgaxHZAP+GJ3C/FdkDRbDgfzs52QBJh0/+e0XZAGrx6IYvxdkCAzWeWkfN2QGuTsMwzAndA7O6BkxADd0DY4WlwUgN3QGz9jDQBEndADWdbqKcSd0CKHi3xDiJ3QIB1m8O6JHdAVr4UdOond0Cr8dl+kjJ3QOWU63qEM3dAzJ0BcKQzd0AWkQAZDTV3QODukfnPQHdAOpzHx5xBd0AAJhUwkUN3QGqzcYYmRHdAooNw1xpFd0BCkp5XSlF3QHBkYV+SUXdA+i69EHdTd0D6kMUoNlR3QH55ueooVXdAmWgz/nxfd0B2ogi5DWF3QDYrc3mQYXdA0DOqYDlid0BOSG8+OmV3QMoLzsEmb3dAUVUBKKByd0DATncCkXR3QNT+vrjyd3dACo1p80yBd0AMMlopEIJ3QOrijKd2gndA5LRV0n2Dd0A2erIrCJJ3QMZ5WBxPlHdAGXc1nXS7d0CqwOjiitZ3QIpC29AE2XdAGm6Bsenwd0DmAZX8UPJ3QIe0ZhpG83dALlh8xV/7d0BFzA90Rv13QO1RdoegAnhAgYGwnOYHeEAZB3wq/Ad4QE4s6mREDXhAgMj7Am4ieEA6QqagiiN4QCYAgd2kJHhA7KVavTsoeEDMzsifwTF4QCbXVzBLM3hA7kAR109BeEAQYnxnEUR4QB0IeFh6RXhAjdaR6IZQeEBATeORylF4QHSLFgmKVXhAUhr++flgeEAAhmY5t2F4QOKWTc+5YnhAkO9N5udieEDusfyiamN4QDipxCTsb3hAGsqJmXdweEBOl5lSwnF4QF2Iskr+c3hA6kF2i4t0eEBS4SJJsHR4QDaDekfIdHhALJ94ytp0eEDfLUIg93t4QMXDKSY6gXhAXrRznqSBeECq/b+jZYJ4QE7tNVfTg3hAXno3Zv6DeECvLVPkmYR4QO9Dfr28hHhApNURdE6IeEDClWf/3It4QDu00k8BjHhAe4qg3KqNeECn3FYYlZF4QLJx8mCtkXhALAPeqQSTeEDQVXW6p5R4QPIYe7dNmHhABBLeaKmkeEDVHyw2uqR4QBZ6ZWk9rXhAbsvWN1eweEACU3T4lbJ4QNoMNXvMwHhAfJCpFfXBeEDO+6mBgsJ4QAQ8CAAWw3hARyTwO5/IeEBpDmrtHMt4QPZBCU3XznhAOry8lRPTeEDm5/FuuNR4QN6z0a4O4XhAnziHJqPieEAAOUVS/Od4QDCME0ct63hAyip1O5LzeEBydQS0AvR4QJTyQ3+M9XhA8ld3fQ4EeUCWXiHcmwV5QDqwg0G4InlAUIZWVOQieUByQnqGuiN5QBa16SWzKHlAjuqPkgwueUA62iz12TJ5QNAwSr+CM3lAk250KrUzeUDJw3CW90J5QPkDQqD7Q3lAtKyk4cxUeUCUhduC2mR5QAkW2C7dgHlA121PrPmEeUA40Clu5pJ5QIOAZbQcoXlApnL22L6yeUA4lucCcrN5QOgNQSyyw3lAOOsxD4nTeUDeig45Q9R5QCGh0avO1XlA6o17zFHkeUBAE7Aww/t5QNSNJo39A3pAhugUyDcEekBzurDt+gV6QBj6xQ43I3pACEv8zSozekCYdd9PDDV6QNnMX/QtN3pA8kSLkTE7ekBm6AR+ND96QCaxljYlQ3pAYr0MQRpFekD3JjJ1OlJ6QDTF0FC9U3pAbIWXVSlVekAXT0mrI1x6QOrqgTMnZHpAljlHgyVzekD0tgSftHN6QITa4YIod3pA8uWU5NyTekA0/su2vaJ6QHT4H9Ybo3pAiNgPtSSrekBYge1eDrN6QEkZn1b9s3pAtH4S3wy2ekAQyujLELd6QJoKUV8Yu3pAAku3LRm/ekDApUKnK8N6QOKcCZq+w3pACcEUkhvGekDizVrhw8t6QObKTOI/znpAMuwhb1DRekCCDDzOUtN6QMjLUT1m4XpABt87QDzjekByEpTGmON6QHwbSTB75HpAiiWw0TXuekBz1AgRFvF6QLGe1Qdf8XpAoHSntTH+ekAgN3bf/gF7QHaC9j9QAntAiEqtjXUDe0D4YNE04wN7QKA6mD58BHtAaFUX/SoOe0C7oAmTwhB7QIjBHZBMFXtA495Gllkle0AqZoS0xDN7QCavQBBfUntAaPncaf5Ue0BV9JS6bXl7QDOy6PjqkHtAwlXwhCSVe0BoUfdSVZ57QGU86SNFo3tAExukeP6me0AwyA2PCqh7QDg1Q8sNs3tAJi2V03fGe0Cw5WwgGNR7QOxCJzqN4ntAhBb1pADke0CRei1GJuR7QGDP8eW95HtAkqTbDinye0Bll341jPV7QKIjBWJ0/ntAMGKzVZEBfEAu4kRh2AF8QHwxDmb0AXxAXw2ubbgCfEDLBw0mZwR8QFoDOZGaBXxAuHlHwxMIfEBmmlZIixF8QEA4/u7PEXxA6wsmTGwSfEBk/JlgDBd8QFocAKq5I3xAqTRX6/wjfEAA+niqWCl8QBkk1ILNQXxA/nqvQmBPfECLhQSXSFN8QLl62UxQW3xA7qIGMw5ifEAWPT/oVGN8QEqOM2niZnxA8LT9/ylxfEAgDt+TBHN8QBK+apXOc3xAqrQmfDiEfEA8ZAXow418QBGCzXsck3xAEgwZ2SuXfEDjrZB+cZh8QAR/PiAom3xArm2Xhx2jfEA2Lv1Ew7J8QERgzWZ7tHxAPvWPNWXEfEDAzoLJzdV8QPgBG3ol13xAtKcETfjbfEC/tz/SV+J8QJJr9VES43xAdJoOLG3ofEDSxIJ7FPJ8QICCHFBV8nxA4ESKkwICfUDWdk/eSgJ9QBLW/y22Cn1AXjQ6AwYMfUA+BoDSRRJ9QCT+cCjxEn1A5LUKufoTfUD4M0ThJBZ9QG7gCMA9In1AyCJ7osgtfUDMLCJxnzF9QKW0MFZIOH1ACJEuFKE9fUC3c4tlJER9QAi2s3QvYn1AeFw+xm5ufUDQKtpnL3t9QB75FK3Ygn1A3hFqCNiDfUDNcLl8JIt9QL/3c5frkn1AEfN2jwGzfUBZursYKsN9QCh2vtxTxH1AHLWKVubEfUAmZRkjYNR9QBI72zf01H1AJSEcCtzifUCKmly1YeN9QMrVIzGA831A6Am5wI71fUCCzr5Pkfp9QMcJjII0AH5AQIYoeqgCfkCgWBtcmQZ+QBTzXBNEEH5AMots6jQffkDqHr1HJCB+QG2Nwpk9L35ASvwL71NTfkAoGcja3lN+QH9qTw2MVX5AlFO1vTdZfkDQunGKWlt+QDUCG5tHY35ACuhSzWZjfkBqHZbpYmR+QM1GdM1Qa35ADL6UZFtzfkDIZtJLuXt+QK3FqJEmhn5AdOc/yXyXfkC2dR/6eZp+QBpechevo35AJEPS55CkfkCLiaiLYax+QIQqlBlxr35AzsswPpCwfkB5YV9dC7J+QCk1rJRqs35AFa9NLWi0fkBhXPzTZcN+QOIMaFLUxH5AR6zkB2zLfkCTFQQmXdN+QAN+Z3AU1X5AJhS+vAbafkD+tK5RLuR+QJi+kW+56H5AZFfblzQTf0AvEZUCZhN/QOwv4fPOG39AMFd+bJkdf0BaLAUg2SN/QFA8Pq4uNH9AMAKBBOQ7f0AGisx6AT9/QNYM6bG5P39AMFfxkqBEf0CO/yLHNUl/QNj7yf2vU39AaAEDlpBef0AoOrVjlGN/QDgUXc63cX9AmJXspgtzf0BRLISk5nR/QPRxfwywgX9A0o1zb6KDf0DBhZ4/P4R/QG/cAalai39A5tIBYGKRf0AuQyxMmJN/QAap6EeioH9AbiO7WV+hf0DgGwp15qR/QFC2wzgQpX9AmkikbFexf0AkKpJlf7N/QI76yGc3vn9A7n9tWovHf0DS+W4/IuB/QLB62C9U6X9AhnVjhvLqf0CGa7nEwO5/QDWQuMPw8H9AKCF8fkfyf0BWUWkLdvR/QAakki5I9n9A5GAdepz3f0CSp6sTxvl/QC6tHsZE+n9AxtQTZNgAgEAAxGf00QGAQALficRKAoBAjt9IzIoJgEBcynPNuA2AQEy3e2dFD4BAiu1vwnUVgEDm4HerIxuAQJ49KjHzG4BAFBSUYKMcgEDoCOZjaSKAQLR7icebJoBAbmdsF6UugEBePTs5DzWAQNDamlAdN4BAzt8BPMk5gEC4cl9PIzqAQDjapyJ2PIBABpFlEQA+gEAyKKenIj+AQHiS6fEcQYBA1Gu2I81BgECmtJopqUKAQAXPPsfwSIBArlElIxZJgEC8z4JwJ0mAQOlKg62vSoBANXXC9OVQgEAo12fiFFGAQBNpjEilVYBAAGzhIyZYgEB8fSqf6ViAQD7r2vwOWYBABCuLdQpagEBEVYyGSlqAQJJQGEYPXoBA1CJyrAthgEAcRBKyxGGAQDRZPZIKYoBAXldhwXBkgECxLrJ1JWaAQMUeOW+hZ4BADg4jghxpgECW0q1VTmqAQL4dPuswbYBABrefuSdvgEDiCjjSJneAQHjhRSXWeoBAL6SEaSd/gEBUOY/PcYSAQAD15GkvhoBAhK6tH+SJgEB1y4VihI2AQMX7wVCkjoBAXqVuav+OgEDEBKg9Ho+AQCqvpWfhlIBAJDZXZNmVgEBOxHsuJZeAQLhmpf6Ol4BABMezJt2ZgEDEVu4ClZqAQAmF9XRRm4BA0E2bJgucgEAqTs44GZ+AQBvoXPQVooBAPHlnPF6igEDiNo4NBKSAQDXZ53LLpIBA3I2YyX2lgEBmDew/NKaAQBR/BWrypoBASjaupIepgECQqQhs36mAQGI8XBMSr4BAxNMfNi+xgEDiRG5vmrGAQEpgZYTbsYBAn4OcNX6ygEDH4mzAk7KAQJvZiUNLs4BAfA+w9Qq0gEBlIgY/E7eAQPIW7PMCvIBA3WoX38m8gECiXjJ08b6AQEHkBfOpv4BATCZseFLBgEBw6u7znsKAQOKXJJiGxYBARjhZiALGgEC87n+PsseAQKXsZHYeyIBA1tk7I23IgEBC6wD7H8mAQJBU0ylTyYBAMnC1mXPJgEDJIbAqVsuAQDsZCk0NzIBAbO9aiz3MgEDmAaEutMyAQJitQfwGz4BA0Y0Zc3DQgECiJzo9TNGAQGWciDlh0YBAFKxj9dXRgECSpzGnwNSAQBp8R0d61YBAgpCRSTjWgEDAPzStStmAQHoCRzCN2oBAXlSzDZnagEATo3qhO96AQPr+dfdE4YBAJrPj1nPjgEAitIIgsueAQNiOGRD46IBANDNfzkDpgECizjxP1umAQMYKKdQv7oBAyQ7aNz3ugECRFhXxS++AQFzxzCPh74BAOquQGhfxgEDtwq40PvOAQLpkgclF+4BA2E3V2D//gECwOAeNPweBQBJ0v3GAC4FAVA5YdT4PgUAs26On2BGBQLhp5Ms6F4FAgr4YUqYagUCwSpSXNB+BQP5i4y76IYFAVNyDpxEkgUBI1EFTNSeBQFN662S2J4FA6Go4YQIvgUCkMshrLi+BQApD+VfqMIFAETq/6boxgUAwCXghAjeBQHKxLfelPoFAUkcpiyk/gUBmX5GqzEGBQIrGYQM9RYFA2M3hic9FgUB6v/8YKkeBQAKb4hTHSYFANPO3+QVKgUCWNmcmCU6BQIxeWLe3UYFARGeiaQdSgUCESQM+zl6BQOdyxSqsX4FAsHzfPQZkgUCee/eEsmaBQOr3eUa2aoFA4is/hLpugUCodGCJEG+BQB6gT73BdIFAEQLTxG93gUCYoK8D+nmBQBBNH2IceoFAttXBqcd8gUAxw0mtpH2BQGg9rcJwf4FAGmWFa56CgUDELaeHJoSBQJJ17aL5iYFA2W1VwwuNgUCeYSgonY2BQPj2i3JVj4FAbuEsTIGQgUBAfdRikZOBQEgQhoLnlIFAlwNDP32VgUCU+4mjV5eBQNsaJuqol4FADm9e0xyZgUBgTvzJVpqBQFvq3rubnIFAZAdvgDufgUAyHMFvWJ+BQC9tbPZtn4FADhbb6uWhgUD1q9geIaKBQGiZVxzfooFA7osIoW6ogUDo+TPdAaqBQCwD8jNKr4FAlAvD3ViwgUAxgl/MS7eBQLSpAthouIFA7MU4nDu5gUBuSp4ClLuBQLasXinfvYFABBfPIQTKgUD/D01aM8qBQC7G4uyxzIFAh3S0EWHPgUA4ANTI+NGBQPN2MvN904FATmhqCOnVgUASUJKNydiBQMKsGEDs2YFAU5HYHXfbgUDGcfQqat2BQExb84Le3YFA3nmTp/LdgUB39qCl4OGBQNzJ2dTz4YFAFVgB4fPlgUB6gk26svKBQO3kuQkU94FAlOW7JZb3gUBbnjHzwfmBQO/nBnns+YFAXhDl7vD9gUAyzp2liv+BQBrmspLzAYJAkj+hCboPgkAJoGEI2BiCQJsK8M8pGoJAYJeMb2QagkBqKhfoLB6CQKgDPgpoHoJAwsHnrGwfgkDAj98d1iCCQLQgd10wIoJAJERyc9UigkAkXRUA0SiCQMhKoJ6cKoJARMBN19MqgkCG/roirjCCQLRqsVOiOIJAhwpBqhlCgkB8gHbmsk+CQPhSYQHZUYJA0UovYZ9TgkCGFg4oBFqCQJ9WOMzRWoJAxs+JDaFbgkCIw44AOl2CQB+eF3rZXoJAtbZpGTRigkAYhOuwN2aCQHZ8F7bSZoJARkP1A59ngkDNFXaUbGiCQJ9HPRsGaoJApUQcbdhqgkCWFySepGuCQKYA/j5Vb4JAFSAye25ygkAwtWR143KCQAqRXqVvdoJALh/7jQN6gkDELk1hYnqCQOxTYkQafoJAUMECvnWAgkCWBdpdDIKCQAYvH2VwhIJA9Ob8J0OJgkBJe0WeBIqCQFVo6e/DioJAQjrzzoKLgkDr+XM8Q5GCQGg1z/2ukoJAPCuI9iKXgkBc0Y9Id5iCQHzy7CQZmYJAuZvJDjyZgkBTQGxNGpqCQHwMJrYDnoJAvh+ETA6hgkB90ihbPKGCQLLHmHhqpIJAVL4MMvKlgkDkO6QTDamCQLbphAY2qYJAyZID0PWpgkAEzR1Dfq6CQPtHy40HsYJAIeq39C+xgkDAr3Gx7MWCQFH05JLvyYJAnc2u1XzagkAYj7XyrvmCQFnsDq3m+4JAQLfpJ8L9gkBKZ79uFAODQDaL29IUCoNALC+hzjoOg0DGPdx/eRGDQFBNkKquE4NAEqgDoXkZg0DyS4hp3h+DQPqVYAlzIYNAZdkpnokhg0A20EspcSmDQB03O0xEMINAHBZPIGoxg0CQ0IiBbTmDQCgVIPToOoNAZh3Fl+0+g0A21KnXKUKDQHiK9C5USoNAUW+0s0pPg0CuN5K+n0+DQBr9fq5DWINAGhL/7N1ug0CXyO8zNnSDQJ2TWHw+d4NACnmXjcOBg0BwMvDK44GDQAY3Av9Kg4NAkxXz4O2Pg0CkvH9dtJGDQEwzP/s+mYNANyrFpHaag0AP/lX+RaGDQG5sWLWUqYNAbIeeEfipg0AgscjM562DQKjO14LpsYNAEEDkSOW5g0A3DHkYDsyDQC8wAzzN3oNADU+gTqPfg0B+Hy1F1e2DQCb+ePb17YNAEhkrSdzxg0AqdXMnRPqDQNoolGUAA4RA0XocW9ophED2VOEFyS2EQNL1+p2CMIRA+7Lv/086hEAq+q6y71iEQM0RbpwDWYRA8EiBqcldhEClwmV+aF+EQMIV1a4DYYRAsRYTvc5lhEB2T/Th/2iEQC1spvL8cIRAVr6gF891hEAdbyY+yneEQIJwyc92eoRAKSW4/CN9hEBqMkLA0X+EQB04V7F7goRAeEm1FhyFhEDA1rgc4oaEQGKNwNe7h4RAb/zgHl2ZhEA6db3i/5yEQMNcDp50ooRArpG588ynhECWjYhctaqEQA5U6ZJxwoRArJYDlMzHhEB8caONrcqEQIxTThMWzYRA4LQasiDThEAqwDGHEdaEQFAUDQtq2YRAvpzc1xTahEBWPpVPKNuEQADqJ+4B3oRAf34kRxrehEADgWSQaeGEQDQ0eT4U4oRAptHEQtDnhECCzSNXYumEQM7zoHhx6oRAysR55hvthEA2gZnWGu6EQLB66InK74RAMVq64TXxhEBWIEI7YvGEQM45Kevd94RAoKX2wQr5hECF/OyqNfmEQKbTAk9d+YRAJHn4Bor6hEB5GvAKqvqEQOwGSVgy/YRAOn1x6tv9hEACIw8e3/+EQAf9d/AtAYVAUHvyoUUUhUBidUeu4BWFQPs3c7v3FoVA9gvYwHoXhUDyC+nhFBmFQChurLOxGoVAduXHPf0ahUCYf5zBSxyFQLDx2mTkHYVAkEtrs4tAhUCG+uoB9kKFQJhZAVagYYVAzsx+E0xmhUASPHDJn2mFQJiW8T5NaoVAQZUwsphxhUDUdeRxtnOFQMvE1TC4doVAzjxdSJh5hUBEgVP1kIGFQA/4xaqml4VAGIatMICahUDFmPTDU6KFQLWfyHwBpYVAJl0inamnhUDQwidlQK6FQBQLjJ5DsoVAvtZUqUm2hUBpOr03KriFQHNO/ncDyoVAXupeZAbOhUD/ou+/YOSFQEhIHTX65YVAiDEw3ZTnhUAfJefWLumFQOiSP389DoZAIBRc7ktPhkBYfsPBJbmGQHVURJcKvYZANC2PTCfBhkCQ2QM3xciGQCenpPyQKYdAf3yNv5Axh0BIzg2EizmHQNaXIzxdQYdA3dr774hBh0DQ7rQ2gUmHQK5dIGJuWYdA7FhYQs5dh0C0Ne+EMGaHQE5zi23SmIdABh833Mexh0BEOr+2yLmHQEi9O2HBwYdA1Mw6PcHJh0DH7gJiLkeIQHM9cpkwSYhABoTvJaVOiECQj30//FGIQBsho1SoUohAjCjny/5ViEAh7VC4rVaIQFoh028AWohAwplgq6taiEBXHRQoWHiIQA== + NrgMGZxjYkD60UzrnGVsQFRnpVdMhW5AxwSPFv7SckCF75fDv8N2QO7F1o2s43pAhU10FxjVfUCwtcs+TnKBQMJVqDU4c4JAP94pNHo6g0BRfgYrZDuEQD8NGF4mw4ZAC9HmItw7iEA/PAaI0kuKQJ6xil4zRIxALdroU18MjkCD//4uS5SOQPqCx7FlipBAQZd2rHsOkUA= - + - h0ZcRAEHSUSLWAFGThS9RK9wrkQQlCxF8SqpRE8Jr0RwPYFEjKFcRBz3B0c4mF1EpMuKRNbGN0R6QaRE2t9pRBAx3US3Ei1FMSGIRWx3MkaskQBFgHWNRCbU1EQabntETa6cRhZj0kS3ymxEHrpWRFify0Q7jIlEGxTXREfXlkTX+KhEEWwjRSByh0T8tjFHj0E6RMikAEWRPnZGILVRRDScrEW5OwFFMnDGRI52n0ZiBZVEDwSVRJeFIkVM4ElFci2hRAE5aUTpKatFqCzgRKM5fUQMrYFEVlp8RNw+g0QAM3lEqU6zRIrOeURWq8hEfiafRIeC+UQbwnZE4suHRTvw0kSDnVxE69c7RjxlhURwsP9EddaeRAWyjURQ6GdFU7z2RPA7UkRhiqdE/YOYRMlZZETStrlERPS5RHgvfUTpjWtERZ85RE2cpkRsmNRE74lORBESbEZg8OxEXg8jRdrh4kZowoVEKb+ORMlGm0UeR19EXVH1RAymXkTrzC1F2RlgRNlLXEfK+JJEjJ1hRF9d70QL7mNGQfURRrjriUVCFeFF2RHKRGfUhkT+tIxEsz4tRQOqzEQLHM9EGKN9REbcZ0TXRH5E2GyURMngjEXuOSlFUy2SRJUjSkRKsBBFE8qRRZi3n0QK0aZFbC3cRLYueER5I75EiZxERP3yNkVMwFFEKpKGRMOqAEVOyqZEUx2YRdTzi0TABtZH8Ni6RVKOoURCsa9Er/GERAvQNERpfeZENW6FRFRUT0SMbJNEomHxRVwRUkSiBz1ExsdLRDJGgUS2SslEnxFyRIC2KUS3yThEbEZmRE8VEUfYsUdFhyS1RDMgR0Q/E0BEmlcvRfyddUTAYVZED6dXRYvZgkRxsG5EYVJ5RFjO/URd/UVEODXVRKPoNkS5iWdEn8Z1RLcNSERpeUFEQFbAREXNpUTJj1dE0kdaRIFCC0XhgodErQ7XROgXtEX6sIZFWlbbRWqx7kQnwlZE7v9LREb3AkWmnJ5F3vM+RFWxQUertnVEn1+DRGwkL0XToYdEq+xoRNuV70TJGvVFuvyMRN63v0UayGBEq240RTr+GkXOg5xEWmBrRJiWG0WtxXhEgKpnRDWt6kQw1r1FncitRKkkAkWbGY1EyrqCRLxviESrmLZEbIs1RAO1b0QFFcxEQHuPRAHk4kQze4NEOeKmRKO0OUSzWypEogGZRECtnUQTfaxFsERTRNUAsUTEFcJETJtxRN1uqUTlcYlE1xg+RWEQMETSy4BEfaskRDY8hkTam79EW5AZRPdKwkUKTZtEiN1sRG+mlETbxLVEUJ87RPEaNUSIn9FFFPBPRCt9sURVP3REsiFrRFgN9ETQXmNEFgqkRBCID0a1rntEUx+BRFOxLUR27j9FzKZHRLGSsETR4F5ErSxNRJU5x0QgY75EuGnWRO2OSEXr6yFFgrXoRNh2pUSP36pEoU5NRJp0z0TYU61EF7xURlMtoETiFpVE6hTcRUCvUETcB2pFdGE6RTGsGUV/CKdE7J+ZROEbjURdp5xERBFGRjPhhkS4cplFoAx5RGBwk0ShL1BEeG9hRUe46UQ3GxlFMrfwRLvvmUR26YVEXH4CRQxc0kSB3mREyclrROjnYkWVC9NEfbtARO5Qb0SuWsBElqNKRKYIn0RHlH9F3lgIRhYnuUVElLpGDdmIRMaQk0RpFVFETy05RaP6WUSV05NECXFJRCTFq0UaKFJEH9+rRcnXh0X3H6JEJKeBRK7RF0WuDrNE3pKvRC87hUa4c09ESiO1RFVIK0RZIy5FuwVURPEtUUT8F0FE5GRlRHeCXkTqKC5FJ1hrRGKGl0QGnuBE1wkrRWvQgkTvNa1EzDjuRHJloEVWzotEodc0RPVqGkVnwZJEQZGfRNCMWkU2rF9FnrJkRKp/GUWEpPxExolwRD+mO0TiGZNGR8KNRFG+lkU5EWREdIqGRCiiWURaQTtEAr8kRVMd8kfrOVpEKe2eRnojuEQWwA1GAJPQRqBeq0UHoyZGPG/NRLujWUT7gA9FIE5LRa/HekQmoQRFDY5dRGw4UkQJN0RFoMaJRaqFwkSdGg1F8XqDRHngM0QkQcZEZP9/RCJxrUQP5pFE6Q08RC3JYETYi1lEtj1qRL+p4UTTd3NEk3VJRD5vpEZzi+NFPiILRTPqJ0Vm551EuBaQRYfNf0QtOK1EmTanRJAJPUTP9QtFRVunRJr9TkWQOmRGAFkVRnfSq0WGBvxESgsfRU2JGkWwJxJFGRJvRAn0LkQKMIBEz1OERFtSg0S5GsZEhnBSSRQbj0WiXgZFZp3eREOMQEb5uqFE1NYqRaosOkSshahEu8mNRYxiVkjkv3lEqu+sRWvMnEQlHWREXojtRMkvCkUeQUFEZlxlRBrPnEZlKk9EWmE1RLZMYEQigqtEDmU9RAXghkSftAhFc33sRNPZRkQn54ZFi0l8RCVWukSKujhE/Vl7RIsWPUW/Rp1EKMfRRSTOnEX0MbNEhJJaREIbs0Vk8bdFIWV5RJ2KdUQ/JBxGD8lkReIts0SUowpFs7sBRZ6MiUUo3zpEmJcaRQslyESiwllE6BG4RfgYo0QCTVdEoSJ+RITxSkTGV0NEvFaCRccFOET1kcpEiW9uRDmFq0WCk/hEAO2PRBLGk0RUO15FAUFLREmOmkTIW4pE3pEFR7eIw0fuvNtGziJJRgCyI0WPGHtEUabDRqupoEQdYHVEZc8fRQQIY0V9vYVEG/NgRYAdaURQvMJEh8swRJmHmESQ/IRFIS8MRWwHi0aa5YFE0+auRfLnvkWgmSRFMii4RHKjh0SDIYNFPfedRI8rtkS5f49E7NugREFVGkTZysdEd+J9RPV6IkTqHn9Eo+nxRH9rzUQX8e1ECcctRM++TEVTdGFEBL5zRE9GWUQ4VqNFqpGkRGUIQUSdARVGvwYvRVHkgUTyt5lEzJW0RK84ikT6uadE3F89RRf5AUXWHGZECm+CRNYcTUT8gFNEwaZERF4aUEWNPEZEljpMRCpw+0R4PJREdV2bRIs3n0Yy5EJEL2fVROsnEEaSKylFe5a3RMzX4UTPEIFFiAenROz7bESW9oJFbykORZ05UEShcoxEfHOsREGIy0R888RFmOKxRCJwK0cDpHdGNS1rRNkufkXx42RE0pzNRHA8AkVMtU5E9NFYRL/qmEa2h05GZFzNRNJ1PEV2zE5EH9KMRPJ3kUQBKBFFz1bkRHH1y0SWPoVEaXBcRO2d4kdbrdREQwsRRSaZ7USQuelGvnYjRVBQpEYO/7RER8mPRA6kXkWtP09EY/OJRJJAh0QK4gBFs5F1RDWOtUSGBglFoBXBRM8qVkRjyH9E3+pjRDfiyUQ05KhEI/BNRIHcPUUQc5JEGzWARO8UnkSvnB5FWCkqRkGuSES22qpE0VFyRPmSf0QtCPZEArzMRJQKR0XZpsxFByBaREIKV0SdgaxE/DSdRBkApUTLu85EAerJR/+qqkQbHXNEBJtQROSJF0fPJBpGWYPCRWx0jEQ2p61FGOuMRIg8nkSLRZREcApARLjKQES5K1lEcjS5RayaN0bzPIJEYy+ERFB4uESkBbJE68N6RSuzhUbWcv9ES4ivRQ5WD0VWzGBEcl6NREEdGUWZpINEoqJjRLxyhkRQlZpF6QJsRFkUs0T0IkNEhnM6RNjmQ0RMOJpEJ9YZRaKLRUQKVJJE0+mcRJMYWkTwR7ZFA9BbROPUIUWo94tE8/iURLjspUToP6hE54IiRuy46kSUkHRFKjswRRW0YETID7BE48zVRKKzrUSOdHdEVPaKRPCKXEQYBLFEGLBZRPD3x0RYPmpEiguJRAsILkUE+o1EOoeLRDWKTUSYtD1EUAdyRDvti0R1co9EbvtDRK4rjEQh3YtEaGyCRMDigETEWkZEJhlfROZJQ0VCtD1E3no7RKKMy0TNGI5H1iNtR2/rWERpp9BG8yKXRIHU7UVuIO5H2mlERZu+SEZsEMNEwi9/R7q4jkV8l2hFka0aRRECgEaRDCFFzq1fRdYsjURZv5FFq+7XRDZEWUTr2tFENDGARKbVsEQU9D1EkU4URaQPP0TBXYBFPTaPROU5lUU8F5ZE9DIWRfnMgkT+41xEfNfpROZug0TgmXpE/SdqREJ3O0RbKlZENvOCRKMHMEYAh5lEFA5IRD6UpUTEIpRE+uzkROnhPEQe/dFEqnrRRFKdZERML2JEjfCiRNo6lEQoNpZE+z6IRNINgUTCimRE6IcGRZTQNUQXpbJFGb25RG0pJUShP5BEzI40RHCg/0Q2g+lEXzCcRIrBqESOwM1EY6W0RDD/zUT9j+NEHGeKSCr7CkWm84VElgvGRC8bdUT9Ii1ELxLERPZ0fUXb/PdHUSaERPEiQkQ+KYJEExZDRPZceERJGpJEjnyLRJhrhUcgjltFURc3RKMaiUS3gnJEKixVRPwFVkZX1HhEoopaRNW6d0QVX6FFFydmRChDk0QqGHxEMEaBRBD1i0Qc6Y9ERguXRElqxUTEgqJE0bV4RLKssETg12xEkPF0RsR9aEWYwmJE3bjQRVMgRUSLeYZELNo5RJuQ30bTMFtEqP95RJEdskXBzXJELZIJRSd99URN7zlEDwfERHP+eEQE2UxEtaqyRbhxIkVoyjFEXBwVRdT1skRXemVED/KcRdaTkUQl0kJE+CBpRCm6jkSilIFECRWTRBdXL0bnXoFFpowuReYqi0TWsrZGWP9iRpEoyETHwBdGjKOKRcGQakQrIUZEufzqREflgEQr1nBEpy2CRGnRN0S0dwlG4MImRMtFRkWl8E9E3PhTRFWeB0UOG49ElhhhRA4OmEQIGPlE6rh8RBLtSUSIlEpEmCU7RVmnjESdmwxFGm0ERYcGYkSnQi5GPcJuRIK36ETSaLZEk4U5RA6XcEQLvmdEWL2ZRaBuVkTn9fJFWB29RCuEZUTN+txEibxnR4WtWUR+o81GjyhlRA48lUQsJCtF4veqRSUIXER8QHVEHaM2RAGyrURIpHhEMgI0ROcQy0Rsk+RFEVitRZVrMETY5iVFCLCURAa4PEbvvnZGK426ROEHAUaEV3tEddVgRMmoO0W49TJFlvNJRdcv4kTHHY5EN7bRRBTKdURrymxEXIt8RHWfZ0RwX4BErWx1RJVDw0Q4I1dE8Jg1RaMwq0QhS21E63/rRMOgQ0RFgtZEENfERNpTQEU1PF9EYyE4RbHiX0Rsd5FEpEg9Raobm0Q70x1F9otNRNJ6NkQG8VBEuYmeREHbeURl339EQDW5R3XdhkS4419EkTBoRNrjHkf7O3lEGOKDRE6IkER0LCJE5Dm9RlD9TUTFBYtE/pXDRVZh20XpeKlEALK5RIbzrkRbxSBFmWN8RBvlnEQ25d1EPPFfRNB48EREYMdEOiiZRGOvlkTXvl5E6yySRHSTZ0QDcwJFolISRRhE5Ef9Jz1EGTlWR5vnP0R86ABH+/P+RGr1D0ZWeFtEHh4pRUOsV0SmINREOTtVRGJGZ0SY7y1EkSNBRO9WvkSArD5EiGZiRB4JT0R4qDNEmFh8RB8QmkS93mxEA12cRCXtKkQF1RRGHnuSRG9vSkV0fqpE1PIbRfdH3UVOOlZFO1ffRD1HW0S61WJEyUZ2RGrjhUVYXFhEQditRBvwRkSD1aBE7bxKRA9oc0Rw2ItEjSh1RFKMUUQ372VEWE+TREfDu0S1vGxEkBWRRJn+vkUoEvREUnxxRKrZkkdlYZFHFq3+RqJnG0Y5IVlF1bNuRGKUgURF0jxEwapVRDpsVkQKEHFEYIGIRMgrW0RF59tE3uFkRD1JZkTl7W1EEr+6RE+wr0bUzQBHs1ZARplfVUS7i4dEsXpKReERakZu2PpE1Hk1RGXvFkbpfR1F5FOARZbvRkSr0x1FsASVRd6XWEVRT6ZFmMeGRAua+ETJsrtEY/6TRVt0V0TaxCVFnBJvRDRm6ETmycVEEpbaRdO1REaAuBZF61p1RrFhT0bMSkpF+OzJRLEDmERaKvpEGqWCRAkCa0QB1ANH8+QOReV1WkYXE6JEiMIIRvcKwESzAHhE9+6XRdFWukQM+5REQ5JVRE2P50Sl6DJFvDyFREYnZEavpwdGT748RbA+vESIwKVEZaihRGe6skT1WiRFDnrQRIBNDkV3OmlEhrOIRKeAtURpMVVE646nROLfu0QPFSBG71uuRYpmjkXV359EesizRHfwaEQMZ1tEZYNjRHheY0Rk4YxEmJ8vRhMki0XqhW9FIqzKRFM3aUSAr45EiZgaRl3qZkVxKApGa6gBRRM8c0Wyzd9EwSKZRDUSkkQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - fl1vl3jAckD41tDNDcFyQJP1VWpvwXJA/p4Pk8bBckBejMNMT8JyQILGfDHkwnJA4rulJg7DckBuxTekOsNyQNpUWNZ7w3JApfCAscTEckDAkRE3W8VyQBiHyjF70XJA6Px00RPSckDmGQGmQ9JyQDBSalnP0nJA4FpDFXPTckAvMJTtztNyQOTldx9j1HJAN7iM78/fckCTTgk2t+ByQEzJQYrT4HJAGTpyCE3hckD6++7FUOJyQK5y3jqQ4nJAwgIsHyXjckB2NQiwovByQHTuT69O8XJAAlAiOsrxckAwtUIynvJyQJiJ2/Dj8nJAWuHJqBvzckBjvl2UQfNyQMQtOIC483JAstTQ1aL0ckC4o/ldwv9yQMAzv7NiAHNAOC0TGfkAc0BoVz4WEAFzQOd14H9OAXNAaxyVdY4Bc0A4mxaA2gFzQN641Sg6AnNA2M1a/84Cc0Apqjag+gNzQKmptYIjBXNAvFJ0jggSc0CmRriXIxJzQGoaAMG8EnNAQLpImN4Sc0BmqVj+9hNzQLpZ+TMHFHNAf6IT9nkfc0BuD626pSBzQL4yzMI4IXNAIYKyI2Mhc0DijnMheiJzQMopA6TIInNA2XJF4Q8jc0CejPicBiRzQHQk17k5JHNAquJEIs4kc0CmMUXpOjFzQE37KY1NMXNAajhaT/syc0DYwWH8DzNzQKrrbX6jM3NAeuAowtczc0AIdUo4+TNzQLhH8Su6P3NAxEWm51BAc0A3VT61eEFzQNQqb4G5QnNAuukOznpEc0Di6qfZ+VBzQPYTeXSbUXNAvxKh3g1Sc0ByHUkM6FJzQOOFnnBBU3NAhnuhNKNTc0DSo9FhelRzQDxCnFb5X3NAipLITjVgc0APs3kajGBzQBjgyhyqYXNA3BA5wTpjc0COk1bpkGNzQNHjLtuxY3NA4OkAaNtxc0CEOETwUHJzQES4yqiRcnNAY+cunYNzc0ChtL3eIXRzQDyeDCS2dHNA8AM7FE11c0CN2GO1dHpzQLadiuB4gHNA8RrNqKaAc0C+elsHDYFzQOGRyRBdgnNANjoz3f+Cc0CwqIHrPINzQO6oW06Qg3NAcFHc2A6Ec0CCjeehWYhzQOu+vRKHkHNAmpe8hI2Rc0CKH5LuF5JzQK7xCyRNknNA6LpyedCTc0A8tv9PYpRzQKAY+tf3lHNAnKJ7yYyVc0BsMKcJuKBzQOQQ2EbjoHNAJhWZnk6hc0AXKnWUsKFzQPT7Q5xaonNACOOgW46ic0BuHuQunaJzQGbGV8u1onNAyhRcDAWlc0A05Z410q5zQLyQOQbYsHNAb81OpTWxc0DVjj/mULFzQNq8EkV9sXNAYrVUYVuyc0BGjKw/trNzQK4J9UcNtHNAylqYs0i/c0DVbiOm+MBzQJEJLZJMwXNA/l27+c/Cc0Br2HBeJsNzQLrebn5jw3NAlv9b1MTDc0A/Kr5getFzQCPtUgzY0XNA8mc9WwXSc0DGdMxnQtJzQC0CWmS70nNATANiftzSc0CPp7lYUdNzQE7o92P403NA3AW6pOLUc0AlOJDvpOBzQCKw0BM54XNAQFSKYWXhc0BqY9lyjuFzQDNnvbfk4XNAiKUr7Hric0AcAwTWEONzQBTz9Z8p7XNA5oJmnUfxc0B6SyyrjvFzQKCUZW029HNAp3e4eo70c0AKtj2f4gB0QNB+IaR4AXRAisq08aUBdEDEQ6YiuwJ0QDzwNf56BHRAwkElyIgRdEBW2+jMTBN0QPQKftWNIHRABjiWurghdEBfLmuE+yJ0QHwKX/25JHRA1XMYh+kqdEBBqz1iQDB0QE0b83lTMHRAHCxXiJcxdED82hs+uDJ0QLozjY7kMnRADJIDMxUzdEBv+xfBITR0QAQgxn65NHRACDjSiEs1dED8LpMs5Td0QM6eeh7JQXRAjoi7F15CdEDPqBkWOEN0QFcr10x5Q3RACqQeckVNdEByl4gzSk90QIZ9RHFgT3RALM0xRM1RdEAWp107CVN0QL/+ULv4VHRAxHI+GY1VdEB62nZ1IF10QKBpBEa4YHRA8UxSsAdidEC8y+9/UGJ0QBA5WTp8YnRAipiFD+ZidEDcVbbDJmN0QGQqyrNNZHRAzuVCDcVndEBR1QFoInB0QNn5tgVBcXRA4cTfe8txdECuyLPwFHJ0QE2+58k5c3RA54Q+Kw10dEANsjMbonR0QGwvC4A3dXRAsuMZVIR1dECa4azB94B0QKVYDjUOgXRAYNIZPk6BdEDAmfZPOIJ0QKJOefDOgnRASNmOkCaDdEC+vFqNY4N0QFaMYQIXkHRAVIypTGmQdEDhS3hgvJJ0QJxsrMsUm3RAfBJJFu6fdEC2jtjYpKB0QMTsgzrSoHRAO84HUjihdEAY+OfNQaJ0QLZC41i5onRACl8lKw+jdED6LBtJCrB0QAakoubDsHRAvTzHsjuydEAn7/m4SbJ0QDw2lrZusnRArAbry/yydECLxPmIHLN0QII8BccTvXRAHN2FYeTAdEBEhLWc+sB0QAgcHsN1wXRAwzapAAzCdEDDRWChJ8J0QP479b26wnRA9lzka0/DdECSfOamecR0QLBLlVu3xHRAVo3wUczKdEB4+Qw4ys10QEtM0xL7znRAGHoo9XrSdECAU2CAItN0QOHIXiA703RAIrgeu+LTdECi4rf0zdR0QC4wrNT73nRASl0QxSHhdEAt0RGouOF0QGlV32vL4XRAiuTprmbidEBkRibA+uJ0QPCbim+O43RAP8Kdp7rkdEB/rXbnT+V0QCBPcPq+8HRAXKFri9vxdEDz5K06jfN0QCRR2yimAHVAOqjEss0AdUAalrlmXAJ1QE7oQ1WkAnVA3mUyvJgDdUCiknX40AN1QCjiaXaYEHVAUzcGxyMUdUDiPtaD5R91QMrxyG2dInVAS4HBOuYidUAk21/uhzB1QNzJDwOrMnVAYKX7fDc1dUCfUce8zDV1QFQAMnQJQHVAGl5zmzhCdUD0cWVa3kJ1QNu+lVcNUHVAJu+PXIBRdUCD7NoXu1J1QJp/ig5NVHVAeMvgDnVVdUBgEOVYD2B1QGTs8p03YXVANOa3imFidUANVW1F0mJ1QNntTGkPY3VAUsE5pfZvdUDkWfY3NnJ1QFKxA9NccnVAIf6+KHJydUC+7+KwJnR1QMNSsqeNdHVArfq6QuWAdUAIqIVneIF1QEyQvuysgXVAEt+VnDWCdUDCl2WHpoN1QISGgpwThHVA8JX9V5qEdUAXxwzJMYh1QCLBRla6kXVA+B+reTuTdUBSFa58lKB1QMS4nQ0loXVAp1QYjbahdUBeM+zAKqN1QNLh56ZJo3VAWDi1QqOodUDarewOlbB1QNGIE+glsnVAhvgNjOeydUBKOd8DzsB1QCSBmi0zwXVAFOmMNGLBdUD20EQW+MF1QJr3yTzN03VAMG6lY+XfdUDAD856DuF1QMiNdA8J4nVAfEeauxv4dUDJhGJQSAJ2QIQYzS3+AnZAch+9MdADdkBeNdOPgg92QDj1E/PoEHZABfaNIVUSdkBNcuuGThR2QJOYBcoMFnZA5G1zeYgidkCyE+gAkCR2QPTHFolLK3ZABcihER8xdkCsCeCaljJ2QMdMlnUqM3ZAbt89G1IzdkCQFOuluDN2QHd8PdadNHZAPjbtYktAdkDyEGto4kB2QL7NNaUdQXZAguH/qshCdkD861+GT0N2QDIkZbTHQ3ZAH113yXlEdkDjR6Ki/E52QChKagYTUXZA9mIhCPtRdkCYsC6Z0VJ2QBlw5ACGVHZAXJ8NL81UdkDCZdR+GmF2QOwHhnW8YXZAovuSlOBhdkBUiOe1HWJ2QNpirNfbZHZAmqOHR+ZydkDiA/LZ0H92QPs+sT7kgHZApPm8UmOBdkBmUiqw44J2QKxJUbCQg3ZAzfkoHLyTdkCmlAbbw5t2QFLy5FZcoHZAusdojQ2hdkD1mgOoOKJ2QJZA6LPlonZAMPSWrUSjdkB2gnCIuLB2QGtyK+DBsnZAgg6JNnmzdkCC7yPoC7R2QM5uCgh7tHZAONPt5bC0dkCEDPWxsL12QIaT1u9OwXZAfMHqsd7CdkBGYut4IMR2QOM7m7TNznZA93YYrYHQdkA8xy/vn9F2QBcL1Xus4XZAYH6WaPThdkBEeEZZHfF2QGa6ISCR83ZAdhTpCDUCd0D+yRcsARJ3QJEw38KnEndArN70ao0gd0AOr5HK5SB3QDBr1WAOIndAE1AZ5n0zd0AWuZ8ApTN3QHTgPMwMNXdAwNigx15Bd0Bq74mznEF3QN9slD2QQ3dAChINgCZEd0AmDNCRGkV3QEpIw25LUXdAfLL1HpJRd0C27L8FDVJ3QCYvvFF5U3dAiPo/rTFUd0AGeM3GKFV3QE5RUMl7X3dA1lCc4xNhd0DcTgNBSWF3QEK2X1SOYXdAGC5j9Tpld0DE9TH/J293QK7G7LaGcXdAxY+KfJ9yd0AvQtbhk3R3QFCPXRmMdXdAnJ/ThfZ3d0AoD20nTYF3QH5C4NjlgXdAbgZT/niCd0A1KPeLIYN3QI6HQmkHkndA+vyDYEyUd0DvAECs4bN3QLpE+fuZtHdADvoh0wW5d0BrliGDPcN3QIQngf+k0ndAXCC4rvXSd0Csat8e6uB3QBI6l6dO8ndAouiTPXf7d0AS+XcHRv13QEi0TR6gAnhAMAjjx+gHeEAi57pD+wd4QP8TpudGDXhAyO+ZiXgTeEBvEat0bSJ4QJSD30jSI3hAMMTrjAokeEA4zGtKpiR4QCz7yGKxMHhAiFJsi30yeED8k9HiSjN4QGB7zbTkQXhAIb1xMApCeED/GxLqEUR4QFo2lft5RXhALF5LRdhIeEDwOCNshlB4QMfTXqjKUXhArFFsYsVTeEAMoiAf/1N4QCqt9aQeVHhAL4KiCIhVeEDkt/lH+WB4QO5h1a62YXhArFz+OtNheEDZjST9uGJ4QAoLPrd6cHhApIjTW9dyeECuMo0aXXR4QNyoWV6LdHhARHctjMR0eECccamN53R4QCwpPrP2e3hAnRZYXTiBeEBzXtFopYF4QIyi0rjVg3hArJrG2/6DeEDEoSrdmYR4QI2/dLpQiHhA7Ave6KeNeEAnuK7UUo94QMaIL5mXkXhAXn+LgKeUeEDQ+pBnUaB4QABgGAvroHhAcS68zqKheEAMlaSWtqR4QBCrsE86rXhAe6b5ntWzeECU3pf0ysB4QIiRVtv0wXhAPKw7fxfDeEC2Vy0ZCsV4QF2QSVYfy3hALZQqziXTeECaVdDkN9N4QKR0isW11HhAEAZsARTYeECCFH8oc914QMKJOXs64nhAQjtwJ6LieEA4PHOR/ed4QLxMZUwr63hAoDUiRUfteEAuX3qYoPJ4QOw4E7kB9HhAfn75zIz1eEC99LYoLAJ5QHfUSW2aBXlARETb9bcieUD9i3kQ5CJ5QF6vX0y9I3lAmgj9GLEoeUD+LOvb8S15QBpLUOUMLnlA6ovu7dcyeUBq2dQIujN5QNRdgxHnOHlAHC6lUo1CeUAy1w0N+kJ5QExHyrn7Q3lAiO2wTMxUeUBTh7JE3GR5QOg/aRtEc3lAItQE7viEeUBQFB3Nv7J5QB3f8bvOwnlAInKtEQvJeUAiXkdCV8x5QIiUZhJC1HlAFudbf87VeUClRcQnT+R5QJXXekYa63lALCgH4a/ueUDOrUnjG+95QP49ay5C8nlAui1oc8LyeUCv9HYpFfR5QO6Np52/+3lAIGJgJscDekAIvdHq+wN6QH2qGSg5BHpAlIoE6/gFekACELf9lhJ6QNSqBWomIHpAGjByq3ghekD4cxiXpSJ6QGGazOg4I3pANIitNSszekBTxfqmDDV6QED7yuwtN3pA5QL3ujE7ekCkPa+vJz96QNGAtsk3P3pASIPl/y5DekDSjvE/GkV6QH/3O6KdT3pAyFm5xoZTekCrAqqLJ1V6QBAdh9QgXHpA2ttlWCpkekACB3usNGV6QIW/B74Gb3pACo4q9CRzekDwX6uvKXd6QFIxtBbNgHpAD/nuTi+LekDcZf/Z05N6QHgJNAfim3pA2BzK8b2iekBQYordHqN6QCEpowcmq3pANE0l/8uyekAvtKzaDbN6QJMfiGEMtnpA/gFecRC3ekDOShYUEbt6QL8KzSfBw3pASrT/dhrGekACDQqZw8t6QFzpo9I+znpAOnkqv9rTekAplWcqaeF6QMpLvrZF43pAM7rTRDrkekBExUwweuR6QG5+HH447npAqjztthjxekA3HnSWXfF6QJR1zMMmAXtAjCD7aAACe0A6Y/ppTgJ7QEIfjqx7BHtAmmMECisOe0BoKjrwixR7QHDwGRdNFXtAbJP3UlUce0AcHudRIR97QMQ1UFxjI3tAxvp3blkle0ATamlbait7QPo2tIfBM3tAOCfmDAhDe0Ag4hxnYFJ7QJAPaDL7VHtAYBZJsRB0e0CkcQQuaXl7QASwCKbskHtAqjt/wSOVe0CwGYEsAad7QCPu2BMGq3tAaBUKyX7Ge0D0Eo+SsdF7QBgDuA0Z1HtAynSl5DnYe0DGQ/Di5ON7QJZ7SyUA5HtA6JODiibke0DO8cCcvOR7QNimZPEo8ntATArZGZXze0BWepUGjPV7QEeyKa7K+3tA+5OJDGz+e0C8UaHY0/57QCodlFuTAXxAYTxMv9kBfEC/fXw69QF8QOAiXrm8AnxAfs2xtckDfEBEkmNqZgR8QNzN+IyZBXxA7Y1YCiEHfECWZH20EQh8QD1ENPWIEXxAQngLWdERfECEBWsUaxJ8QHIANISnFXxAzZq6tnUifEB09yVMASR8QICIzGZXKXxAynGwP4QzfEBfNCvPWEF8QBjYRrPMQXxAi/gRi2pEfEDG+SoBuFB8QPpilO/dUXxAWImhlUhTfEBYpcv9T1t8QN78SlIMYnxA43mACjljfEAz0YkNVmN8QHkVCFgCc3xA8t95W+qDfEAnrVkRxI18QFT5xmwek3xA5G86cSqXfECSsRV0X5d8QBytZE9kmHxABBDHuiybfEAmTKO1wJ18QNtchaUtn3xAkaySKRajfEAEm3Z8/KR8QMI7PvnAsnxABRTgqH60fEDoLzbixMB8QI5rPiVnxHxAtN8V6iDTfECQP7dPJtd8QHATBOn323xAwnyM9FfifEBsZX5HEeN8QEbuQ0Bq6HxAaMt87hbyfEDxrUxoVPJ8QN4o5qH78nxAES2ZdEP0fEDugi9lAQJ9QAY7pR9MAn1A+2deF0USfUCimnv8/BN9QFokSTxYGX1Am450g0EifUBkuyTNyzN9QMarZOZHOH1AflklJ6M9fUAmAhxkenR9QETGc1Qwe31A1vUt5ByDfUDL6lUM9IN9QEpbXIrsin1AvNWkxyGLfUD138iWlI19QHyYq2Hukn1AnJcKTXWnfUCq9TyJKsN9QJQkDBVRxH1AHgVZ/ebEfUBOrUJ1OtN9QPs+kRL21H1AbtJe7dvifUAW8sHNjPV9QDiVsziV+n1AMNA2FDUAfkBWPkY/RBB+QGDezVA5H35AFXOZnyQgfkBA/zUcwyN+QJSk9rp2NH5AYkp4vEY/fkAUtwJrh0R+QN73vJPGTX5AYoMeCFRTfkDsolxiE1R+QCBOdN+MVX5ADBFvG1pWfkCyqDP0Wlt+QFw86vjAXH5AoHEkD0ZjfkA3hVTOZWN+QD50gy9Sa35A4NOBRfVufkDeKjzYWXN+QGpisOm4e35AxrX9phGCfkCe9GD16oJ+QEFFeG6ig35AEG4PvTWGfkC1HM4z04h+QCjtgbeTin5ABkgcXwuefkBJns6TkaR+QNp3VmFirH5Aci4bLh2ufkA4bPHYrrB+QLLnQGXMsH5AnHwN+ja0fkAgsr/MarR+QLXMDiGjtH5AicQ24W28fkByhLixZsN+QDhlZsXQxH5AcA39aLnIfkBmvf1Mbct+QKSB3gl4035AZJbExcvffkAC4GboK+R+QB70ab817H5AFo/l54vvfkCWGCdeyPB+QEwCcX1V9H5AqQ8P1dEbf0C4TtyA1CN/QMxuxO0xLH9AAKKmZtczf0Dz+rXOPzR/QOBzL2wGP39AfF8nOqFEf0A6ilBO5UR/QE7/ZqmoTH9AANIso1xTf0Auh7G5nlN/QPqigz2OY39AbPeF3IRkf0Da0UvCvmh/QHq6aR25cX9AvD78nuV0f0DUBDiy4IB/QGLPKqSygX9ATnxl1DWCf0C4A0FjQIR/QLGfw5xOjX9AplLHOWKRf0DN+yParJF/QIXFdOaVk39AOWJg1aKgf0Asa5RiXaF/QOBNub3lo39AlKtAgBOlf0AD0MuU5ah/QO/pbi5ZsX9A//PEiNa4f0D9hg/lkMB/QEbVz41U6X9Ayp+tzKruf0Ccx//sB/R/QPCB24l29H9ADmPa+/L4f0D2/HPez/l/QEh/r1Wo/n9AtPBono3/f0BqEG9dHwGAQB7s+PW5DYBAoIbgfMwPgEDqQ2ZOvRSAQG7CeDsUFoBAklxfdCcXgEDpIOpqCBqAQPPn1fNpIoBANOT3BckjgECHNcvz7imAQBcuzrqoKoBA2Ib+hWIvgEA+YqsEeTCAQCrl6YxlMoBATLJXDx03gEDNeptTyTmAQIpYSAd2PIBARr7vx+M9gECecOwSAD6AQJv9THciP4BAkN85Wus/gEB+lyX7HEGAQPh8nNrMQYBA6TdAdKlCgEBLxO9B5kWAQHRJgrGlRoBAfPgIJe9IgECwwnBVFkmAQF8UATufSYBAv/JQx+hJgEAqhqCdr0qAQDQG0M3mUIBA9DAufhRRgEACcGJ+tVSAQDxQxG6mVYBA+r9BxiVYgEAKifoW6liAQBC1oqAOWYBA5qXsQApagEAF6y2YR1qAQAjRd8oNXoBA0klD/jZegEAjhKSeDGGAQJNK12DDYYBAz5wC5m9kgEBwm4FCHWeAQCYsIeOhZ4BAs4skZkxqgEDkMX82+2yAQDT/y4wpb4BAsHkxM/5zgEDScR92cnqAQJjuI5QFfIBA0luziyl/gEBwxt7HNIKAQEp9j7dejIBAyPtQ2IiNgECaZyRyHo+AQKzRsra9j4BAY2kereaPgECcBXR84pSAQMyV3Cwcl4BAT5uNzI6XgEDYp2OLt5eAQF5xSAramYBATcVB0jyagEBqa06dT5uAQJurbaQQnIBAjeTydM2dgECnJmM6GZ+AQErPAd3BpIBAGIA1yYKlgECUR9n1+aaAQOE+hLdrqIBAVjlEcIepgEAs/+P26amAQGIjxvn5roBAcLU4SxOvgEAHmbaNqq+AQCuoBd0dsYBAqJCeLtmxgEAccC3ulLKAQInzGxxas4BAhneGtDu1gECCSUwvFbeAQCz6G/xHu4BAAjIIrlm7gEBYc4R9DbyAQKmVgCdHvIBApOvL9Xu9gECfVjRuUsGAQDvVQlyewoBAkRUMy8bEgECQXJikgsWAQGk7TtkBxoBAEkDXIQLIgEBvsZxNIsmAQEBhKHNTyYBAlk8J+afKgEBb0HoXUcuAQEK3nkYIz4BAbqkUwajPgECkFzxrcdCAQPJV5mpM0YBAnPQpsOrWgEBHuIJeStmAQBI97gbF3IBA29ChsYHdgEAkn58nReGAQHg0xhPD5oBAOCHjQffogEACGGjtKOmAQEgWVWt/7YBAKKaa3UvvgEC+p/dOaPqAQK4YLf0//4BA7C2KH/cGgUCwPpCFQAeBQH2gTHE+D4FAlhxw9NYZgUAPuL6sNB+BQKxxYvGyH4FAssFhBzUngUBgKdz3cyeBQJKs2h63J4FAeCd4IEQrgUBzVc2iLy+BQPqrkKi0L4FA2nfnP+k6gUB+YI7W2D2BQBy8LXZAPoFAWS+sJCk/gUB7YZhpy0GBQIO2X/ziQYFAyM3hgpRCgUBspIE66EOBQCYVT7jPRYFAyiVwyTNHgUAmU1MNBUqBQAz5IJUJToFAgEfchwZSgUDP3ZAUWFaBQFtRGt/iWYFAalSS8T5hgUChwkYQs2aBQKtfNAK2aoFAhn3O2w1rgUBOytwSKGyBQFRN8lwebYFAsI+Ee7hugUD2QoCG426BQICvRzbCdIFAuGuXZW93gUA6DzrwG3qBQBuEWF8pfIFA8NZ2fcZ8gUBLuNxZYH+BQNZkkAKcgIFAwLaB7p6CgUBcXLUGnY2BQA3BlAlWj4FAa5uBjvSRgUA1zNseQpaBQFIWvQtYl4FAADlz5hycgUByxJjQ7J2BQJ61f6o5n4FA/2MuGlmfgUBeKlut56GBQKf34A9wooFAVkwVv96igUBEWHH7z6SBQPqrugKTpYFAQAjIV22ogUBDZHzKFqmBQNNEEG7uqYFA7ns8M0qvgUB4isdh37SBQNY6EbVNt4FABNnQiwTKgUD87EILt8qBQIDx6rWxzIFAHDS/mQbOgUAkv7WkLs6BQASuuclez4FAYD6hkAvSgUBu9dVwm9KBQEq5SzB+04FAvKjC9ejVgUDeNc4i7NmBQOD7QhXe3YFAeo8wi/LdgUBu5P34Bt6BQBtNR/Xm4YFA1DXSFfnhgUAk1u1m6OWBQJ4iiuUX8oFAILD+Euz5gUBa17UpcPyBQF2NQAno/IFAPH5/1+79gUBAPQpB5QGCQJIdr8alF4JAzH+CctgYgkA+ExhnKRqCQI49hS9mGoJAWuKM9ywegkDq1o7w1iCCQFcG7eoyIoJAuMx87tQigkBYONxTJSaCQGr8j0HQKIJAlJfc8NoqgkASpdVtozCCQLTaq7XSMIJAFK22M9o6gkAsxAng+0CCQLx71nNUQoJAMNdFOgRDgkC6XuNFqUOCQJ6yhaEHToJAinSxO9JOgkAC0yt4OlGCQFq8yGHdUYJAjGZQy+VVgkBF1r57dliCQJKcESLZWYJAsJiy1RRagkCexVPw21qCQEJPbb6YW4JA+miDOapfgkBq504INGKCQOn9Ny3gZoJAqLyIpppngkCW64Z7a2iCQGIeLyRMaYJAkG4vHAtqgkBPHFBPNmqCQNKE/azdaoJAumiwzDZtgkCkLZkZyG6CQD+Cv1JTb4JAsvTmbm9ygkAsGGwxqXOCQJwk/nVmdIJAtarDrDx1gkBmAKqbBXaCQAQ/BY5fdoJAkOD6O9Z2gkBOpAsiYneCQCi4koV7d4JAXg2ehWB6gkB0CAckrHuCQPAY0jb+fYJAGlm0T2l+gkASDgtern+CQFr9BIBBhYJAADIlXkOJgkBWZp2UQ5GCQBj/ISxnlIJAXp+HOAeWgkDUSCpBPJmCQNM0/xnpmYJALFu62SCcgkBDeSB2DqGCQLJnhvg6oYJAnDO0yPGlgkCyQHYKDamCQAAd9Lk1qYJARPz+Ok6pgkB4Rm0X86mCQIAfqmkIsYJA8BQ/anG4gkD8uxyBCrmCQB8OjU/sxYJAdbGBJFPIgkDmuMur78mCQL6HRbrMyoJAnxL+60nRgkDu2by5sdOCQAkK/K+u34JA+U8S+J/jgkB0icDdXvKCQBAbtfiv+YJAlnNbbcD9gkCfZ65pxAGDQKG9e997CINASCdeXzsOg0BMXHVxSRGDQHJT1XV5EYNAiUHuHHoZg0D8Zo+9ciGDQNYRPX6LIYNAUUh9iHIpg0AQS8kchTCDQKodmrBpMYNAnG7H32w3g0Abt69ObDmDQAYXXUXpOoNA4DVWPSNCg0BvBH7qaEeDQKCFWeXFR4NASNXD8nhIg0CWOZE4fUqDQDKiqxBgS4NA9LORzb9Lg0Bl3CeoFUyDQI3HE/mwTYNApiInVbxOg0A8JBJUSk+DQOUfuNnFYoNAuol043xog0C+c57yRG2DQDRCOQF4cINA52+AfOWBg0B8AZXsS4ODQH8nYsADk4NAnO1p8T6Zg0BO+pa8RqGDQJoavoZzp4NA2iJrFvipg0BiJGOP8qqDQAasbnrnrYNATo2mwOixg0CW6MGesrWDQCAbr1DutYNAdDCOA9ftg0DEg2ey1/GDQF1BPeKC8oNA7RNEwNv1g0BS9FV+kviDQIxPmWoAA4RASmEHvMwHhEAMqSi1piqEQHZUIFLNLYRAW8lO/q8uhEA+SVgmWjmEQFh2YLjwOoRAe08ieL1PhEBsJB+6k1eEQBSp3odCWoRAv2F5GRhbhED+9aLKZV+EQChWLKSlZoRAdoTi/P9ohEDyklrT/nCEQPVDVB0VdIRAdlZVWup0hEAW8QDsyXeEQBBWql/3eIRAHMMK3HZ6hECkpjZ1I32EQNUy1QvSf4RAbrRRN/WAhEBQ3T0cXIGEQB75pMiBgoRA+vZV5bGThEDaz+rFAJqEQC7SlJNuooRA/QevFSKlhECrQd84G6uEQGr3SiE80oRAHDIyWiDThEBQ3zNoEdaEQFy8+zFq2YRARJybRhTahEDAL9m5Gd6EQDj3GvBp4YRAuF8SLxLihEBdlgUi3eWEQCCKBCAe5oRAtGgIeWLphEAwe8Cjb+qEQNgn1/Ad7YRA3/PEnx3uhEBWPgHkuO+EQORQeT418YRA7TdQxGLxhED8z1InIPKEQB0Ipuz19YRA6rH50Mj2hEDLkm7Z3PeEQE5WPrUz+YRAfLAG3Fn5hEBKy6wJcPmEQLMgK8eI+oRA7heEVjf9hEDe/ha55f+EQOWjA2YvCYVAYX6w7kQUhUBmhG6W4BWFQHVmTKX5FoVASnaZmnsXhUAjVrReFBmFQNC7gjKxGoVAd0wkvPkahUD4X69wgxuFQDxpg3RNHIVAqA0ozv0ehUBu+HUuE12FQJ90qoCgYYVAHIZZ3O1ihUCCa4ADJGWFQLiuxP9LZoVApsf29J9phUCCUJXoqm+FQPzUbL6YcYVAI4BDA7RzhUCwxSd4l3mFQI3b4SO4e4VAb9rmPTV9hUCIKaDdGIKFQKi0CmhHioVA7ilfXX2ahUACYt8DU6KFQC//j9X+pIVAqnieq0CuhUCfkiLoQ7KFQGCf6kU+toVAPKHmGQTKhUDzzgItf9iFQDCDiWD55YVA7zrtt5TnhUDJqDsLnxKGQOV7yhNsIYZAGPjLyp8ihkAmaK8P1DaGQHYptgh7bIZAq0sYaSq2hkAkIUwFJ7mGQHY0m+4lwYZAppj+U8rEhkAk2Q921siGQMxheT2m8YZARF7bY8AGh0D7qiqlkCmHQJyxFbXqLodApq5d2ZExh0DG/Po0iTmHQK556LVdQYdAHIDj1V9Rh0D+jgySi16HQFalsvaSdYdA4NQ0kcexh0Cyq/D9F7SHQNgDvO3FuYdAgodT8L/Bh0BIXCVGvcmHQHwpD3GlTohAgEqrxjFRiECdFVzr/VGIQA+CajmoUohAHo2lYwBWiED2qu6hq1aIQIyn8gcAWohAE2Cp0adaiEBc6xto/V2IQF8EvkvXaohA8pORyMxyiEA= + NrgMGZxjYkBmiwPJSGNpQHzKEHuiRG1A7mf6OVTSc0DNvNRcKbN0QHy/Rlks43lACF9NMtnTe0CeyEiKr1N/QLG1yz5OEoFA - + - a1jWRIRcPkTSPyJGbbiORBhE40TNfAFFm27aREiQZUWKkoVEIga4RMLpyURqb9NELvWSRBnJ9EayQWNExyygRB0Li0SS22REIaDqRAc180TS5StETDJhRNN1fEUvkSdGc2kSRSfMdkSHa4JEAd9gRl3EqUSweZpEZbUkROtEb0TA1a1ExIPmRA8/D0UhsIdEINuTRBMtSkTOcU1ERpucRMRE0kR2iYxEKgYHRQsINkd3oEhEYDniRPlJhkT+GIVGmbNNRJmGjkW7g41FY3g+RU+cAEX81shGR4ZtRMMl50SE6AtFnrHyRC8DMETiNb1EQFOuRQSoP0QZMc9E09mIRGS0YkRnOJBEDH2ORNvwwETZCXBFuZxARByImEUEh0lEuKZARt9s5UQ+DzJFqyldRDIKgkQB8ABFg7+URaOOtETU4fREbds9RDHQz0SNCMVEUt0JRTCDVER3XDlEgGHAREPt8EQoCZVE5yATRp8lWkRg9bJEiu4QRQLUQkTQUvVG8pCyRHKp8URA1aRFeToJRcp+p0TTEqNE3L3eRJKXYUQC5G9FYolrRPFUjURwD2dHN/JXRBl1t0ScQnhGx/1QRHs6B0a9clREEhhJRYqJbUSbNORFqphnRHJ9gESlyUJE9UFCRdREeERlm9dEPpNxRBLcmUSs+k5EanBvRKTOZEVAay5FN15oRLbD5ETYLWxFTZn/RS+X30Ql9zBE0V7JRD2WrERAV0VFRUs9RPGFUUTgxsFEzrnwRMiCO0V+SopEqcmqRXdiiETHwaFHPP2eRUk7WkQS6FVE3iL3RHd4wURNKQpFr9LLRTtUakSmTvpERy6nRHGbvkTyWfVGMNI9RQ5TlEQcGERELjNBRdktj0U3yY5EST7jRPMpOEQ94qNES+NzROubrkSZtsVEuZtWRNZH40QDgbtE3dmQREjgcUSHuT1E4Zw3RLqjM0Rp9G9EF8G1RGTAXkQgE75EnIZWRGjKgERPfoNE+fGJRKEKgkQwHohEmr/NRK+ZqEWScIFFqnIDRnjfjES8iilFdum4RJSwgERuD+VERHnUROZts0UIU0dHoinPRDEQm0SWV0RF5cc9RJ6KUERUlg1FxQVxROEgM0UajFNEud3vRTZHeES83JlEemCORHYfTUT9RL5FOEOVRIZMwUSqCapE+XJfRZRGokRKy9ZEdc/ZRJcDoERdxSxFCvVdRVZyEkXO0+pEuoaORIxLhUTtNy1FmCmiREwPLUTFCoREC77FRK1XRUTxqARFSdqjRFkbRES8pLREE4DMRJjbgkQTV8ZE2ZYsRBDUE0W2zcJEYSmIRFGfM0TNN3xFUM6fRJ8VD0W33ztEUWsMRTZiPUWTOX5E3oNyRKit/kTizaREfidGRMCsq0RQfItEJwF8RIOs5EWIybNEDJiORIjHwUWTBpBExsGmRONDVUQzD8hEj4gTRXBZgUSIYRBGQGtXRIPWNESmDtpEXpdCRJ2jQEVDxXNEiV5ZRF+kvUREUeVEZwWMROkJT0St9ZNEK+QxRVdq1UTQIxVFAWG8ROpSXUSNTb5EHTM6RAW4VURedWREea1pRB4dO0QHyQJGpwBwRKee9ESMwvdFwOpYRNzLoEVpuUNFXkI/RUmJL0SIGe1EXxtzRJzChkQIEEpE0mFJRB8lHkTibAxG+LqfRZuQW0S0jVdEr/+SRIX6HkX/+iZFq7H5REbjCkWytBJFUkeNREyZ5kRGg6xElyH6RIJTj0UUApxEGZu0RNoHV0TzFmBEMW26ROPUgERds4REXR+ERaSEG0YtP8tFjuHVRiTUPEQyw1BEqxsaRRtGTUV0IsxEXY2XRKtniUSCh6hFx8WyRVXqsUQEOIVEsJykRUQPRUSbLmRFFo88RJwGKES4CGBEeT9ERifdVER74ltEPHTuRDk/fkQq3TdFZA1QRDmccESmmTREe2hzRIDrnESMLCVFO/cYRUOVcESlxl5Ej83nRDkEYUQuGIdEx2FyROUPX0QZFzVFukRoREKFg0V1r25E9VE/RPrUbURa3wVFu5eZRIFRiEQrhI5FWYCKRPlprUVPL7JEb9GQRNNtjUQ6rzhFwEByRDKIlkYJPdBE+lehRD95QUSCX2hFMFddRF4/PkV8T/xH0XdORMkXrUbWG85Et+JARicT3kYi3YhFRGZiRlwJL0Thr4pEFAqVRIs2z0SRSglFR0lKRP591US0Qg1FqsJgRI1xZ0UqZdZEvzOCRY0ki0QIREZEzhkKRRHBrkSQwZxE6P8XReEkpUQ0/ZREcEN2REgzMUQn1H1Eh6yjRMbTeEScckNEuVNgRKK8jURQDdVEMbpERDziokaNBkJGXHUBRT90v0TUjMJEO6mDRNChw0XIbFdE+IddRARalkSlIzZED4G/RH6m30QX8GNEcECxRG9KNkUUZkxG51+VRIEexkUVxatFCMoxRJDZX0ToJnBEtrkXRXFKFEVGg19Ffjo0RCE1TEX623REOQajRCWfU0XaHUhJFoAwRWy53kSGAzFGw0DeRCMPNkWuXedE9ryRRYLXRUjZ69VFDp0yRUN0fURsdldFM6mPRpmjjkT06iVEIVySRPW7p0T1UKdEwquCRPxg80R9LZpEH5QtRVn3TkRl+UhECw5DRA0GT0QVFnBF+taJRCbjfURxdGZErEC1ReMihEWEzIFEZrehRLKxTURm8itFtJ2aRXqdVEQKw/FEclKaRSANKEWBBotEt+/tRMbDbESvNNdEZb8MRTO0NkVE9zdEskrYRLep2USVfw5F+R2yRSjEcEQM27hEoUmARAxFd0VlKoxEAFeSRN1Vf0Q7HbtFGAZiRM1d0ETGLIREzAQ1RFwRqkQm2YJE3iuLRC/uekQfGA9FgtyvRJwMckUSoI1EBL93ROF4y0QuXlFEx9Q9RP0toUR2EA9F4F1ER9WpuEcQaxpHKqlbRrmn/0TsgM1E9Ez7RIy+mEb4KFdEMTU/RFCbCUU5RpVFT7oORX3CV0T9ik5Ec/r3RLai60QaxTlEbE5ERJkJh0Soo3BEXHsVRV13o0VmN6JEY/CURDpIqUYzb8xFA/M1Rl8Ew0UQYTZFJG6bRLO/vUQZDYxEIEhVRLeaHUVXTENEBLt1RAy81kR5cLBE7j8EReGonUQi/1JEAyZgRflYmERIrZxFYIGWRMJV8ERDsRZGJXeKRF6jh0QaquRE4I1hRbboeURkS4lEf2dJRFbZkUT+pXxEOLikRJfZgkQ4qZJExbQcRSaABUXG0wVFbfRCRHTG+kQ2mxhFExyCRBvZh0TAnaxE+t+WROpCIUXFUT1EXuxYRGc7ikYzD2dEepcURXF6OUSTs6NEhvRCRqC38ETVF3pErQaBRKrNoUQGsr5FN6I6RHsq3URdh4hEIxljRbq4TUXpZV9EuLxMRNOZQUWe+wNFm4A0RJ28O0Q8SqVF3zSWRG/ggkTVnI9EqtqpRts/Ckb5dtZEe1EpRPWPGUV4fbdEeyGAREa64kbNrGFG+/nVRIybkkR0nHdFt6CDRKfq9kTaxXREdn2IRKYsp0QtfOtEpIsFRVZCLESMjjhFvZP4RF88WUR3kpFESNrYR0apkkXLZyRFDm7pRJkvy0ZKjVlEheuWRL5X6ESXJ59G8olIRW33yER5UJtE55XaRFoWV0SV2zBFQ8aXROD5nkTK8+9E+dGSRLvKh0REf2BELYL/RCKaikQXq5ZEwqcjRI2OckSvMpRFJ+UaRq01h0RHmhBFoayoRDeQ0kQT+n5ERot8RjH86EQutaJE/tkPRRoMQUQ0H2pEmtSIRF7YZESwIUNEd+e4RxJikESRjAJFcr55RDaoL0daA2tEYw3zRRWZ+0UwqbpFrA6BRE7w4kS/9YlERiRvRHF9MUTgs0hEA51oRBRplERtqlhE4U+IRKDSlkXVgylGIOLpRCaRcUTBTi1EVO3YRHxyh0VlfqNEj0bKRD9GjEY6iQdFikujRAhfBkaTWoBETPBxRLzYx0RAo5BEHK1URHp0c0RYSExEuu9MRZflkkQ3Y9lE80MvRNdNjET37YJEXdziROkWhUQKHM9EYyRORPugwURWDE9EhqWERNoKikQsX5FFQbhQRdMac0RRzqNEZwF+RIu9h0TmpmxEnts5Rq78tkTOyLNEwRGwReT/OEX2P59Erty9RGe3iETpRwRFNIlZRIQH2kRn73pE5DxrRHuJgkQBvrxEZeHFRNqpk0RZ65ZEvWwjRBCHi0Sr90NE3yWuRIgYmkT6WplEx6OZRKhhVERGYL9EyAFvRHbrkETRSjJEyv4xRDveiUSWc/pELJinR4q8f0f06+BG2OCDRJ/PR0SVuAdG5DloRJIO9Ud9uDtFWTVqRmumD0US/3hE2NDERLYrmEe4z1NEeKiCROwUQ0W5mTZFYq+ERk3aXUQK8/VEMWEtRW7bv0TQFsNFlfQJRe2faEQ6y3VElbmbRJJOl0TxDRhFYnL4RG05v0SUK2JF1AMvRXxgZEQn00NFujKnRCmUikRtyphEEewIRXibU0StMXdEpBKGRBwNTUaBsSxEu6dDRE/NtkS2axVFC/s2RbdLR0Ql22xEoLuCRHJBmESJZCNEx5CuRFGCz0RdbbtEOL/kRHz/PUQRJclE0KIRRZ3MeUR8j9REvA+wRQuyWkTc645FvBe9RLjTgESTH2pE9mpLRE8ro0SourBEWaDiRE/RR0SyT0JESaD7RPtaj0hkkXFFxn1aRGPYl0SlDrxE9NinRD+zi0Qv0/xHDXRvRG5CYUSDOW5E8z2LRNRFhERj2YpH3YFvREjlgkbDB4REJSxwREZF80Wvp09Eg1hdREH8S0SMKHlEA6kdRTGqikT2X29G0oOMRCB8S0USvZVFITxGRIijAEeERI1E5zS+RR2PhkSAkb5EcjhtRK9PGkVdN55EsjU9RJpYekQItXFExJKpRWACMUWqwXZEP7p0ROhNf0SVHxZFMyitRMzuukVxritFMtBNRCOyYkR5umtEaIiWRPacnEYuWhtG+r1mRPCchEQmU11ETQ9TRQcBf0QpUrVGEYJuRhUlsUUVpFFE32n8RPGm7kRz9HhEDSq+RA3scERUTRZG4r1oRErqikQhBUVF6KhiRFIrYkQF03FEVrfCRFTdIEVIQVZE4HNoRf/nZERNYmlErCcqRWxjnUSmNFhEQrIrRtRuk0Qgp/JE8Q7YRSO2j0QvxmNF2ZR+RIMTgEQmL1FF2s1cRLqbZUQJMelEaV41Rw6B0EaWOE5F8qKORbyXX0TnBzpFJyRbRMUaZEQWhE9EC2wGRgxiiETvmF1ECotcReLuyURajmhEr/82RoBdhUZfHHlFrmM3RtXye0VpVgdFwSNFRTZRgUS5uydFcn3sRDR8sUScZm5EVQJNRLouEUUiFlBEAbVtRD7PrESG93BE1niOROxQ10QaeZdEvTRlRKOaa0SDKTlEZhicRAw4hUR1g3VEhIlNRFxgtURVvhxFq1ZSRNF8U0RtVoJE0jA0RKeGSURg/0NFHzKCRAPVhUQ313xEER0wRY/XCEUmxqBEIjl3RH93sUQdrEJFPnmCRLIPR0Tn/CNEyEqcRCQKgETeoT5EYelURIGJz0RSq5JEFVvqR9jNTEcfR59EJ4VvRI+h9kaZeTJER9JkRO1au0XOpvpF3fJ6RZ3wWEVW/0JFlBpTRKrZ+0QpDOlEBClmRItXgUTYzYVFvU47RG7MzUTvol5EuK1gREJtnUR4HntEzaV0RECvkUS8QYVEPdFGRdeF30S0oHxESfQ8RaSxj0RxqgVI4TRpR9K1F0eyv0ZFIrAtRsBTUkQz6B9Fi7JgRLs5oETh5SBFNLylRKbCO0S7OHNEUj9kRIlhSUR5jppEHuGIRHW+GEXedFxEAOJ2RBiVr0TCSlFEe/KfRJm5Q0TK8mZEdXq/RDgWg0S89pBEk204RptvlEVcx4dEqeQhRS8hUETHIcRFWgmERdgRKEQ8kJ5E5mE6RVDoyET5mSZEWvd0RNGvjkSwwgRFNiiBRPJAYUQAGMdE06p2RJgBLkQ06UVEHEFRRLGUcURIo0BEcuNpRJJVU0SOMmlEnj3PRa/BQEV9IFdEyV5nRKI4k0eAjtlEHviPR4JEHUdoiUNGWPddRMFUR0TSpWFFpCJKRNGJkESnV5FELxLERH1cRURf+Y5ECMDwRKe4oUasIAlHc5dfRp0inUUxZ5NGIrT8RDAPZEQzNj5Ell45RvD5E0UCRjBFW6yIRNBPI0Q1TFNF2AaLRb4bh0Sq43pE2chaRGa1l0WfMM5EqxDYRBovSkTwSJRF1HXbRO3tWET8gHhE+tOsRbNNM0Y47gVFFn1DRkot0kXF6W1FIAjRRMV6LkTCZwJFzFgtRLfpi0QC/AlHRVCCRF2VQES/TjVF7BODRvyVTUQ+OCFGncCkRFACa0UsxG5E9X+JRJlIhERD33NEAKmiRNETIkU6v2ZFq9CGRr+nMkb1XiNFH9bGRPQbkESM86REU3QyRbbRiERQ6FdEw+0xROSYvUTP6DxE7WNiRMeoxURfBH5E4tazRJqxikQBZClEj+tRROPsTEYKaFtEmD2kRRK8eEUSP9ZERLFDRBLsbERecYJEHN4QRsXCfES2pIlF095pRWHHB0Xc5EZGy5GEREFEhUVlFSJGTENdRZ4ZUkXCbohE8MqGRNf+TUQDNDlEQZqdRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - YoUlb3jAckApcozhbsFyQEwRVLNPwnJAlcGVQeTCckAaryQiD8NyQOAbTwA8w3JA/Uu9L8TEckAug2byW8VyQIr34uIK0nJAvw6CoUPSckAcfs1wztNyQHUFbVKN33JANqmmoc7fckAKDiAfI+ByQAyZW5254HJAol8kyFDhckA2ppPnUOJyQDRRWVGQ4nJAL/ZKXyTjckAQnaxit+NyQJ7OlsVN5HJAipxVpRLwckCscJGUT/FyQG0BEhbK8XJA4IMe+LfzckBJN3XaDvRyQJGnNdeh9HJARGhwI8H/ckA04q9D+gBzQDr59xFNAXNAalx3l9MCc0B27ZvK+gNzQOj4Z2cKEnNAor4ht3YSc0BC6z/PvBJzQHagBgv6E3NAeDLl1ksUc0BoqCwseh9zQC05kZwOIHNAjQF6/Tkgc0Ca8hHxpCBzQP1kzi05IXNA8kU372Ihc0DmnWP4eSJzQPsKcIzKInNA+k0gQw8jc0Bi9bmLBCRzQJst6x87JHNAhJxxUM8kc0C6K+jZSDFzQJHrBE/RMXNAdBK/A88yc0B6bMSVDDNzQExk7nKjM3NAR1WoPtYzc0Bpaew6NjRzQGJAlxbcNHNAtlSDXro/c0BK9VG44kBzQHR3Gtt3QXNAIB9g9b1Cc0CDbnfhekRzQMZxhTT6UHNAOBSR3ZtRc0BiYNRCFFJzQAM+f0GnUnNA2puLtUFTc0A6jLVdo1NzQAwdw1XiU3NAbOX4QohUc0Cq91zq+19zQLQ39SKNYHNATjTuWIphc0DoXq2ZHGJzQDJdY4E6Y3NAlfxUZd5xc0Aqo1QmVXJzQF4vWjdkcnNA2hkI9pByc0AwistTvHJzQMbFB8ODc3NAWEmgO7h0c0CS4EtwTHVzQEIxgsZ4gHNAvFLXlaWAc0C29eiVDIFzQGRRIsxdgnNApl+BTXaDc0AQXJAID4RzQAn3S65YhXNAHFi+xYaQc0D0DsN2TZJzQFXWcHnNk3NA+Dl1tGCUc0BU8Z2T95RzQK10UY2LlXNAR+KVG7igc0BnE5MwUaFzQNVSRG9aonNAgjEYBI6ic0AGtStSBqVzQDgGPe/FsHNA3HC6uTSxc0AuQ5Zq9rFzQOh1sB9asnNAziRwjA+zc0BbzZ0Tt7NzQB7YB40NtHNAsnqV72TAc0DQYHzI+sBzQAKIWNxMwXNAeBmBMdDCc0BgbJkFJsNzQGRMb5Njw3NAHtSk7XfRc0CmZI/j1tFzQLYHvUG70nNAJ8CGTN/Sc0Aey3TiUtNzQKiBjTTi1HNAbJ2pcqPgc0Arz690OeFzQAvV1s5k4XNAg2qCSIzhc0D0+SopeuJzQKx+sGwP43NAvMQBFO/kc0D0ciiFLO1zQJ5ibwtI8XNAwsm58fryc0AlYJG1NvRzQIqiS6yN9HNAK5txJ+IAdEDQ9UfU+gB0QHiMUFVLAXRA/REyCHkBdECIDsHzpQF0QEGzAP65AnRAdgiU8uUDdECMxdPcDAV0QCQwJ193EXRAe/t3tIkRdEBySbokmRF0QKXZK9VME3RAYh1Z8oohdEByZY+VuCF0QK4cXZD5InRAgSsUD5AjdECo0OjxUTB0QE25+PxoMXRArwnIqdsxdEBqJZC9uzJ0QEFmShDzMnRAoZDPP+U3dECKccZCoT90QP5OcORVQHRAHNsKxcdBdEDK51ssO0N0QLyE6TV4Q3RALgCQlElNdECoq1Pt+VJ0QPhf8/MKU3RAHIhOCvhUdEAKAsLlilV0QCoEuj/ZV3RAvLJlTSBddEBQYOlmuGB0QNRFKPUHYnRAWlS9AX9idEAK/OvhDmR0QNBUYqxNZHRAMjSUKCNwdEBAsgmoyHB0QMrihjxBcXRAKCj0SzlzdEBClliGoXR0QEu5CDE5dXRANoZ45/mAdECQ7ZtgEIF0QPg/B49OgXRAHhrbsEqCdEAs7aopzYJ0QM+T5FQpg3RA7uXrdhWQdEBRUddjE5t0QEdD/0Lvn3RAWBS/v9CgdEAqx0BrO6F0QGzs2H57onRABNMx/7qidEDKLkWnD6N0QN5942Coo3RAos//f2WldED4dCwxCLB0QI88HA7EsHRAPNO7QECydEADEOA/cLJ0QGoiilP+snRAgTTgPse3dECRJPTI4sB0QD5I0/z5wHRAMOp82HjBdEDfYoJqDMJ0QMuLuOe8wnRAWPNH/1DDdEAhF4t2tsR0QBxs++TJzXRAX17gj/zOdECBQuJwO9N0QBZdcV3j03RAJZFON3fUdECu/tGRztR0QLfeN+f733RALgSnnyPhdEDE897EuOF0QCPo0CZk4nRA/LuWBpDjdEAyG6z/UOV0QLhfSNlQ8nRAxHxel4zzdEDMCbDvePR0QKRvPdKq9HRAILx826MAdUBGmZB/0gB1QF7jcJBiAXVAc+s0i10CdUDI3ZalpAJ1QG5gBS+XA3VAtn/PsZwQdUDqpAVeKxN1QAgh+YgkFHVAqcTEYp0idUD2UGVmqjJ1QETlEzDLNXVAw1Ty7XZAdUA3sC/UqEB1QNi9GVqIQnVAhGJx5N1CdUCAQNq+J0N1QORjHVjkT3VAOigrb/hPdUDslFCxR1B1QEYHVUlzUXVAhjyE6oJRdUCO+NGWTFR1QCocSVx2VXVAsCVPoPVfdUDvM16iE2B1QEcqBtk5YXVASuh4845idUCK4HelEGN1QHqeaAFmY3VAdi+WA7pxdUCWpBXidHJ1QJ5SIL+IcnVADiMP6410dUAKEBj+ToB1QGJGMXR5gXVAtiyvF66BdUCi4SXNgoJ1QMZCydmmg3VA0yoYjBOEdUCam84Km4R1QG101k+LkHVALgb8fbiRdUAofhgIcJJ1QLyohVg8k3VAt5cL8JOgdUD/ZBCpIqF1QPEdaMG3oXVAgJUOMXyidUAwRpeaSaN1QKbtab+iqHVA+mKx8vytdUDAFthfkrB1QIJR4B4hsnVAfB201OeydUAw6AE6uMB1QCjYqp3OwHVAlEgKpDLBdUDBTCR9YcF1QIGcqJf4wXVAnhJ2J6XQdUDg/LjBzNN1QE4a+OwR4XVAlGV0egjidUDQhdTv5uJ1QAg6HM065XVALaGVi0gCdkBFJdVO/gJ2QEyK7ArRA3ZAWV3V4EwUdkC8pazXCxZ2QKJZSaCJInZAwJYLiJAkdkAeF79DTCt2QNvxQnsfMXZAF3BGXZcydkDoMU0zJTN2QAg+2ztSM3ZA0nixl3EzdkD5dhQ+ujN2QAMMHb6cNHZArGSWzQk+dkCcwlemT0B2QHJVnIwdQXZAzmC+CDRCdkBU8OP+x0J2QI78NwNPQ3ZAWs2/gMhDdkCOQiLSeUR2QKBjwaX+TnZAtiZdU8tQdkBK9SvqEFF2QK7wuKbNVHZAcMiBEA9hdkB+D1X7IWF2QLgCjtbaYXZAAEIXmttkdkDuQr5DV2h2QMiqfT/Pf3ZAjlvh4aWCdkC8Qq3S5YJ2QFNg/WI4g3ZA+FNjdpKDdkCuD6oZeZN2QNmrc+K8k3ZA11gi3u6ddkCPtVKUDaF2QCFrCSSmoXZAxqxPzBSidkDwlu+25KJ2QEgIVIBRsHZAXMKeZSCydkCrYfNvwbJ2QJmZbz0MtHZAXGxP25rAdkBlH/SawcB2QB54125QwXZALn4r1xvEdkAFTYuLzs52QN6eQ3B80HZAWDlzd6DRdkDLQNDFf+B2QDgzSL7x4XZA5VtiMh/xdkDims9zkPN2QIWqGyFL9nZAKUBunjICd0A+b9s9FwN3QNhTSsUBEndAocgW66YSd0C6WO4ObRN3QOKFb5u4IXdAQqeGYg8id0DcA33JdiJ3QNhoHhCdMndAmR9KfHYzd0AGTANjpDN3QGggDnoNNXdASqQU8MxAd0A2EV9JnUF3QOy59DKSQ3dACsG3qSZEd0CS/WoLG0V3QMq2d5YGUHdAVCmIbktRd0CoTNm6klF3QDJi+w7tUndA/KKbNndTd0Cyqq4ANFR3QE7eaosqVXdAALz3vHxfd0DNfSQ0SmF3QHG3vSiPYXdAiNb27KBhd0BwlWMpOmJ3QPo1JhvmYndAZvoiaThld0BW+DEpJ293QL1yUmF/cXdAwoPtu5Nxd0CMXEmBWHJ3QGLRPe2fcndAmNt5+d53d0CQNnb19nd3QEyLZpYrgHdAyC9sKlGBd0B+NFy75YF3QJ5A+vJ2gndADb8XOK6Cd0AoZaBpCJJ3QK7DqmdMlHdAMqF4Mu+id0AW0MR+mbR3QFILRF8HuXdArhAAH3XCd0BElz+F5tB3QEzJsa8903dAoD9KrozWd0DkJHLY7OB3QL5hdK9Q8ndAPrJqQEf9d0AYeSfZoAJ4QL4eZwfnB3hA/tcgCf0HeEBQbu9/OBN4QKvNCfR3E3hARjL9vU4VeECOzcqmbiJ4QBxUg8OLI3hAzzwMBNIjeEBAxL92DCR4QISxANiULXhAarPRckozeEDuMxRwaTd4QNUlJ94JQnhAvkM9/zJDeEAwREJ5fUN4QAR8RWYQRHhA8kOKQnpFeEBYOPUliFB4QKxmsYPLUXhAprqL44hVeEDsgRgs+mB4QNobyWq3YXhAusG1nrhieEBIUiuq52J4QF9dQUFac3hAPLclMsZzeEAC78Q32HN4QJNh0jYldHhAYZfEv4t0eEDMCq9ktnR4QKcJS53EeHhAlF5VXPd7eEBuGVgFOoF4QJ7t30+lgXhAhl19hNeDeECZ4Ks4/oN4QByHY+6ZhHhAIPJ93k6IeEDYJuluBIx4QMOax4uojXhA4rdR/lGPeECIlSyql5F4QMIWxZQAk3hAmOoPgaeUeEDO7iQEO614QLwOOu+TsnhAHRwCD+a3eEAdyB2mzMB4QJL0d9H1wXhAqrGTTRfDeEB+6UuLB8V4QBLp6Hgey3hAKfI0PP/NeEAEecbZttR4QE0RhRgO4XhAuuJnraLieEDwIhSi/ed4QDoNSgeO83hAUv6G8QH0eEDgE9SUjPV4QLn8ULt8A3lAlPIwb7cieUBVKFpd4yJ5QMa6GBlpI3lABxnfPrsjeUDJxXeEsSh5QCi5J4cKLnlAkgNHKtcyeUBeQ6LstzN5QFz9VAn8QnlAbozsWP5DeUDpPBRCMUl5QONs4BDNVHlASCLOydlkeUBG+63WQHN5QEc0mAeVg3lA/EyKd0yjeUCA/YIQOrF5QGiJC5+/snlA8pftcrXDeUByRDSDA8l5QJj5SvFC1HlAmutuYs3VeUA4AZN4UOR5QDJ2R5xR6XlAS8A0fx7reUAcgH43JO95QN4VCY1C8nlAHt9WxRTzeUBDWBTlEvR5QKrv3jrB+3lA9j6IuvkCekDccJt+xwN6QDFMOjP7A3pAAexd2jsEekDgGH9YlBJ6QJ+tsmQ5I3pAEtraHiszekAhcy/GDDV6QELqvNwtN3pA8aiFaDE7ekAQIupBND96QC4lUSM0Q3pAEvfWqhpFekC29+EYKVV6QOoAry4iXHpA8OrhLitkekBnhRkaOGV6QJRHQiolc3pA8q9lHCh3ekA2tOol05N6QCSDJqe9onpAOnh+Wx2jekAmnxO2DrN6QBvsdhINtnpAtJP/cBG3ekC/DjEkFrt6QLsB6FkSv3pAeu4c4SvDekACGF5HvsN6QCI0zI4axnpASnZHuMbLekD0vmtjauF6QKHANwY643pA/YkyU4zjekAoqmJS9+N6QB/+mn085HpAWDx48TbuekAGl5U6F/F6QBI9YxRi8XpAus2fcf8Be0AnPDgDewN7QGpVQap7BHtAwaL+jioOe0Dwwy6ETRV7QKsix7xyFntA+K7aCVYce0A215eKZiN7QJAc0ZClI3tAn+PGR1sle0Dcp22hwTN7QIBzZikBVXtA9qFzGg10e0AwLrK2aHl7QFBt/tm8i3tA+i5DmiOVe0CVkIYUVZ57QFT4dKEBp3tATyuMGQWre0A28UE7B697QC0q84Tkw3tA/GNEennGe0D3ViU9vtF7QENd2gkZ1HtAL5L9i/zje0C+vOGWJ+R7QMa1kLC55HtADBEHgBD0e0AVNmjgjPV7QKQhZ5TL+3tAw2i/Omz+e0DWZfRD2QF8QELS7on0AXxA7q1RtrYCfEBLh1/dZwN8QIjVS/jIA3xAeu6gZGcEfEAk5k43mQV8QC5gH5MUCHxAwkQjrYsRfEBwNAOS0xF8QIoIkmNtEnxAItVPJv8jfEB6zoc4Wyl8QFr8f5e0LnxA9BCHckgvfECGYl3nzEF8QNCHMPsgSnxA9AzEYtpRfEBQqOC3SFN8QKZAwW9PW3xAvH2VMw5ifECpZxfyUGN8QOWzliQqcXxAVhQB0ARzfEDkYFoQxI18QPO5R075knxAvwBLmh6TfEBoyagoKpd8QOhklXVimHxA9bHbv32YfEDVNgdNu518QGLzZk/RnXxAuHZF3UaefEBCVfEmEKN8QKe5Ixyno3xA/rg0BBenfEBSPn5Lv7J8QBJ9jGZ8tHxAUrbSlGnEfEBNzavF2dJ8QIP43mYi03xAzDnjUfXbfEDf6bWGWOJ8QNIGIEYQ43xAuIBX+GrofEAm2E9WF/J8QKx3nqhU8nxALNAnLQQCfUCi47t2SwJ9QGz8QxnVEH1ADspObqkRfUAvOCrRABJ9QGqjFsBFEn1ABmTzeGQSfUDUEhaDPiJ9QOJSKDWgMX1A8Azj2jczfUCLE0JRSDh9QGq0+nOjPX1AfcTD6Qg/fUA0YPEP80J9QGy3PeR2dH1AEqEuwjB7fUAL6OV8an59QK5VetQxg31ALvgWVWGDfUDQrGwd94N9QACOfyEni31Az4yKCv6LfUAJZyydlI19QMAkLFcckn1AmmA0I/CSfUDK9tjGAJR9QHi/+R3UlX1AKWzWsSmYfUCK/7HJ+6h9QLyR8RKmv31AeC27EVLEfUBahx5C58R9QAy6L59eyH1AySqwml/UfUDMP5S/89R9QAVRpurc4n1AIeaedJD1fUA5EYndift9QCc5qA81AH5A8o6N6icDfkAY2cSh/wV+QPbvKAZDEH5AbsPutiMgfkD64P70RC9+QBQrvFN1NH5ACtNBPOI1fkAqVIviQT9+QNJFSntUU35AmT4fIY1VfkA64OW4Wlt+QOZzH0P/Yn5ApeLvsEdjfkBrhRLjZWN+QIL+p7qeZX5AJtd0E01rfkBgdw0fbmt+QHigWm6Pa35AcpapE2tvfkCCRddsXnN+QEI4UpWeeH5Azt/MpRqCfkDoSPtijoN+QEFHCA0Qhn5AepaDEmiHfkAaqqG1dYt+QDYdEhgpjn5A4C2z9nOXfkAYZVTWDZ5+QBoV64mQpH5ApFx+CGKsfkDndBtrvrB+QCNXvP8Qsn5ARG93NGm0fkBKq+uaYbd+QHAsxGzDuH5AkBuXl7e7fkDWcD5Kcrx+QEUzNJlmw35AYWfZ/9DEfkDTJgOfQsl+QIx4tqFsy35ALhQWN13TfkC6RhWb4NR+QBH5o07P335Ayxy4c2jjfkAWZT+YLeR+QG7MaQA47H5AKbAf+ybufkA1HGKb1e9+QM6BqD7e835A7XtkPtP/fkC6oPXFIRZ/QErUOyvRF39APE6+z88bf0AiJi7U1iN/QHpKLNc2LH9AU+suw2A0f0BjaLgABjZ/QHzH84NYRH9ASrCT1aFEf0CdEQTzmEh/QCzI0pyoTH9AAuzjdLhTf0AGUuxJt3F/QACe69zldH9AWhPoVK2Bf0BsNnIApYN/QJr+NC49hH9A6ke2LoaGf0AYugm8Yo9/QNCSxJFikX9ApRAARpiTf0A0RkDoOJR/QIxxWCE4mH9AEmd49aKgf0BcN5lFXaF/QM2DdUOIo39AZKBtoOyjf0BA6TAkFKV/QAIv2KhUsX9A0k+BamK5f0CQG/hU4bx/QC/MeyqRwH9Aji/cKVLpf0BIkwQVr+5/QEwaEOCe839AtY06M0/2f0AVTnx7SwKAQOf8dDOtBIBABjSW1AcKgED5ZMRPdAqAQNG42o+5DYBAXJe7lx8PgEB6TVkZvhSAQKAUYWN3GoBAjEhxr2kigECwzcEB7SmAQNuiq32qKoBAJL8SCMgxgEDZrZtkJDKAQE/ysdpjMoBAGL2WgRA1gEBmfn5zHTeAQCrS0S/rN4BARiW3gz05gEDCq14wyTmAQPRZgKChOoBAXl6O7XU8gEBwv6uO/z2AQBrMQ7UjP4BAntZiaMxBgEConGSaqUKAQKqpeY7lRYBAVKajMe5IgEA4ddhQ6kmAQGB5rOKvSoBAhH+jTO1NgEAj9Dep51CAQK5IS2UUUYBAyplSpqZVgEDoyMv8JViAQCk2dq7qWIBAkEIH6g5ZgEAkl81mq1mAQH5ndF8JWoBAxqlmHA1egED9hy3pMV+AQMynN2MLYYBAmFkNB8RhgEDU9kpEdGSAQH0xkZeiZ4BAIogrvMtpgEBWZEioT2qAQAbzvCL7bIBAEpOPCChvgEAwWjb5KHeAQOYYGmbYeYBAZCXshNZ6gEBsQmtUJ3+AQBR+iU3JhIBAD4wZDvCGgECAa9vs+4qAQNYQdMpgjIBAVxqVDfOOgECs4/77HY+AQDKEH4C1kYBA3GFcpV+UgEDwrqsCHJeAQHxYVGaOl4BADOnwNdmZgECM0895G5+AQEIiaZFyoIBAnhxyvdikgEBC0JMeiqWAQDIu05M0poBAhN9HiIWpgEC4nLOZRK6AQKAK0VcTr4BAiDGvoqqvgEC5UFl0YrCAQNKKBt8esYBAoX1B0IWxgEAb5Y841LGAQJxKqO+NsoBAdt6brkmzgEArmr8lB7SAQDDmZY3KtIBARYvNeRK3gEC4oBXy37mAQG4hY6lVu4BAVBPmRgW8gECu5WVKxryAQEKXGv10vYBAdm8qvjK+gECGwPawUsGAQHoFlCGewoBA+uJLsQ/EgEBgwUNRAMaAQN46tKQ5xoBA9AWAcu3GgEDm4Ej3qseAQDjbw9VlyIBAbqPqvVPJgEBSJmr91smAQPp02renyoBAHHZgecLMgECY/Ht1Cs+AQPzRUDot0YBAdhmJBU3RgEAoBTPoWNOAQLb9eOR71YBA660BhRjZgEDV/19KS9mAQHbhCgkJ3IBApS1S3jvegEAOQ9P7Q+GAQGhQxjf244BAMBznsQ7kgEBIcHXh9uiAQOz0+3ZF6YBAJipmdyvugED9RBw0Su+AQIqMqv8z8oBAZnaT6gD0gEC50YirZ/qAQEa9Vp4//4BA1H38WJQCgUB4pFR5QQeBQE6u+F89D4FAo2VIvk0XgUB+Ce3ppxqBQAAwOm0OHYFApgW7EDUfgUCNxx65sB+BQAga55U1J4FASU3TzLcngUCSes/iyyyBQJclTAkCL4FAU+n2VC8vgUBGd2jsrDGBQMQ/VMMpP4FAZFlZAM5BgUDaj4jZfUSBQL2icwfQRYFARUviWwZKgUDAkHVTx0yBQMJlTDsJToFAyrVognFQgUDZGz7SX1OBQKwQumsRVoFAf+XmRwNXgUAA6JtXcVuBQPwtp84rXIFA2OExqIxfgUBi8bqNGWKBQLLaBdIoZIFA/DNU5LJmgUAs101wtmqBQPxVGO24boFA8IOF0MJ0gUAMP2acFHeBQKpT1A9vd4FAlM1cBh16gUBZEsausnqBQJKTSQPHfIFAUA7GsSJ9gUDyXZ1M136BQECyoSRjf4FAwjt77Z6CgUCoY1FEYISBQDagV57ehIFARD0DwECLgUCMmCSwVo+BQLICi5XtkIFAjkzbbzqRgUAKYGkglJOBQNYQgANAloFA+6IzjVeXgUAlbSernZyBQGrbJN9Tn4FAoM3DIuehgUCko4/t3qKBQGQNm3Dnp4FAYgK23GyogUAPsVem76mBQMgVsfPlqoFA/AOpVUqvgUAgHBWpB7KBQE5eCbFNt4FA0cdyMXjAgUDa7DjAjcCBQAb+MdoEyoFAaP7H1rHMgUACvFcPLc6BQJJ97Axfz4FAFNXEagzSgUAGP0uYftOBQOLE4Cbp1YFAfjRoFuzZgUBY9y4Z3t2BQISTyj/y3YFAWEDrw+XhgUAoPK8uTeOBQISfd9vq5YFAtny0ue/xgUBLQyYy7fmBQJa5HjLv/YFACj9EpwoCgkAM5q8mBAmCQNve4Xn+CYJAqMv2A58XgkCKXiPG2BiCQNU+dbkpGoJA+2LJEGUagkB+KDrILB6CQPhmVj1iHoJAHHMld9EegkC2X/YQ1iCCQDjvRwsyIoJApmrfS9UigkBMISUeNCaCQIIk9QXRKIJAToBp0lEqgkDmUPc4nSqCQJeRz1DbKoJAIoK34Z0tgkCtY9K/oC6CQKtXlOSjMIJAK5audgYygkDAoF21OD2CQMkSl9nlPoJAcFnWW6k/gkBLxpvI/UCCQCIa2hNURoJA7tcdoc9GgkCG+aqQQE2CQB9oNDrRToJADiwyFJ5PgkC4X/94clCCQIOwyQ3eUYJA1ILM7iNYgkB5XSo5FVqCQGoRKhHWWoJAxH3gs6JbgkAMMgZmb1yCQFS3fWguXYJAo508flldgkAk/w+hQWWCQEgJzlY6ZoJAxW0duuZpgkADJQQG2GqCQHzWno6va4JAYEqnb0NtgkCVWypFb3KCQKTJEF7dcoJApJ5M12p0gkA29yAlBnaCQABmr15gdoJAkDFMMGJ6gkDK7WB6o3+CQKah1V/gh4JA0KNSlUOJgkAN8bUwRJGCQPD7abNFlYJA0wIXSAWWgkCnlGhX0ZaCQM2iCgE9mYJAFovr3lWZgkBhRzZYZZ6CQG6sc9gOoYJACHdh5jqhgkAKI7iQ86WCQM5eXw8MqYJAruIpGzSpgkBRG8G69KmCQL3kEn9+qoJAvmm4S7msgkAXeapoga6CQM1scA4IsYJAzH/+gDWxgkAAPm/Tp7eCQAqp9Y3rxYJAbHT+qx7GgkBqBCDO8MmCQDiYu3bxzYJAcMJrn3zagkCgJM4X1+KCQJ71p4Kw+YJAuORooMH9gkAUAfQZxAGDQFcR/uYPA4NA+gZ0feoFg0B4tAQ2rweDQOgFC87ACYNAYHVBxnkRg0AGonO0PRKDQHC5wYN6GYNAHMcML08hg0CYhMFAcyGDQHuFZunEJINApqVeSXIpg0CPMcE7/y2DQKLHxtFqMYNA8bruamk5g0DIsQNd6jqDQMhYm6o9PYNAsjvr6e4+g0BfFaLi9D+DQAgdDB6PRINALlezSYFIg0AWSgB+FkyDQOha+NzFT4NAX7mcsEmDg0Bk4BxL34mDQCxaNFU/mYNAgIoL4EWhg0DaiLnEUqmDQPa3VEL2qYNAXSsGcOetg0Aa337s6rGDQHInhkvhtYNAOa5nBUS5g0A2/LV06bmDQLjaivYsyoNAveKWrdftg0DQ+4RM2fGDQIDDYbji9YNAdmogx1T5g0C6BQNGkACEQLapjNABA4RAG+mITM8thEBQX5Wff0GEQP6U9MmzVoRAGR3xkUhahEAk57OS/2iEQNakd5T9cIRA3Cv8ncp3hED4fo/W93iEQN6jrCl3eoRAeDnAoyN9hEC3VWKO0H+EQD7/3F/LgIRAtOlg5viAhECOr79yP4KEQIidr0J+goRAOVC8ikSJhEBULM79f5CEQEZq2Zt7k4RAubQRov6ThEBU0tiUGMWEQH4fOcwg04RALFKezdTVhEB0PQ6yEdaEQM7LxZ1q2YRA0hhI6hTahECsjoxYGN6EQFg97l5q4YRAej03khDihECG5GhfEOaEQD4AEpZj6YRAOiPFtHDqhED+rESvHO2EQE082/Ad7oRASLMTjIjvhEBS45osNvGEQOW4UWpj8YRAb3qgJd33hECUhzSkMPmEQIQsJUZZ+YRA0i5V64r6hEDeV460OP2EQGCjld/S/YRAunZdEt7/hEBKCEhILgGFQOwmNrWZAoVAwt43ezEJhUCX5ztURRSFQFjtuBrfFYVAx8ZzVvkWhUAMxd1xeheFQD+SBAsYGYVA4gc+LrIahUAab9KX/BqFQLiEAPhJHIVAZA4WoqBhhUA+sDBN62KFQNbzaw5OZoVAJnIHwqBphUDjLTJDT2qFQGK8LvXAbYVAprA385lxhUCoZfXdsXKFQCZ6MuO1c4VAtjHgS6x2hUBFdS4zmXmFQA7FA2uPgYVAL7nKXBiGhUCSCDROeIqFQG5UfGKimoVAlhzD1lKihUBEyU9vAKWFQE7INhypp4VAf85wvliqhUD8mrGhQK6FQOwo+8ZEsoVAwKD1xUi2hUB+jmbHBMqFQJUqmZYIzoVAih446V7khUDQKNuYk+eFQJKslpsv6YVAvMy+2G/vhUBC3eK3fiGGQHrD5mzQQYZAKJz7mlBThkB/RSt3gVeGQFzYoZLehYZAN///Uiy2hkBKdExlJrmGQD0pgrUuuoZAVEgTmNHGhkCHpd5K1MqGQCBdqtS+zIZAUimgNoYYh0Cz4ZjRfSGHQJCDXTuRKYdAnF5oI5Ixh0DqThlCizmHQPnCGyxcQYdARtpUy4dBh0A68NV6lk6HQEqf8OzHsYdAmINwLci5h0DHb7PaxL6HQCAFShG/wYdAappVmnfGh0B2VDB8vcmHQODx+z4wR4hA++uQRaZOiEAEVVCDM0+IQFlugWv9UYhA/vFQgahSiEBu/MJyq1aIQMi2VbgCWohAfSjVU61aiEA35gm3znKIQPdnAJvXeohA7olnHTTgiEDmAf4nvOWIQA== + KBZXds7jZUCRGlyHeVJxQBTpB48/A3JA - + - QIKIRJK5+kWVb8NEv5WWRNBOm0TR1gtFwbpiRPoDgUSaDTVECjcjR3mRUERXk1JEMlTrRC4vVEQUYJpEuAdZRJO+mkUlWMFF6CMaRQ/TOkQ+HXpEckIeRJWjU0ScDihGwsmSRE0mdEQcLapEeyQJRclv2EQ1X2BEZM6WRGoPB0daxr9EhLxvROgEV0ZslIhFv2dmRC+l7EROTjZE872EROr3zUR1iJdGFh5jRL6AsUSHZNpE0mvPRH1JQkQzmilEly+4ReaMe0TDgDZE1zGYRETIeETX2zlEUFuJRCQT3ET9Ao5Em6UeRek/TUQqbydF1CdIRC5S9kUeyYpEM/84RUdmoUR7h0BEPBXhRMU+g0XVTi1Ek0SlRG5P1UT9gkhEtOFjRKAaQ0Rc7AdFGGeERCMurUStJZFEn8M8RNLsS0QH3VJFoPylRBj46ERbK8ZGWoemRNErukRCsmJFQURDRDx4gUSe80dEfjvpRGubOkc7OK1Ew2n1RJsKSEZkIWpECwq/RXygoUR+rsFFXFyQRE8XFUUFWHREPUGeRFk2NUQXMj5E8TUhRFOsUkUBOelEdt0hREyRvEQ17uhEYnqpRRxhBkVrDZREWkM2RLC/JUULg4tEoKegRK7YMUUftHtFt2qORAEqVkdH8D9Fbl1ARPfw2ERXGNVEcvRfRP49aUSrN4RFMcNQRLVJ6UQJGJlEcsZGREiZYESnRlRE5pSvRkdzA0U3wY5ER02URFvANUTMTpdEZ9wDRZkJ40TnuEJFmN83RIsBB0WtNC5EqKw9RBhRo0T7RSZESo5kRD+62EQ4C1dEOsZnRPsETEQ3j5JEriOuROp0UUQo+l1E79ydRPeaU0QwrjFE9RHYRPvRg0RCWCdE65txRcw/aUV5xZ5F9Y8FRbkqhkTnDvVEQGWPRZTalURIGkFH0ATlRLQUzkTFEZpENz4KRch8LETPeu9FpslORInCPUS4P05EGFioRSsYUUTjxkVFswXTRHXVe0TGA6JEqCWERL2DAkUE4XZESIA7RJ1/dESDXPJE154kRDGhWEWLF6VEcfXORJ2FCUVWu1ZEEtegRNGbkES39IlEYYBSRJC8AkXBdnlE1JydRB2RGUUJvNZEAs/CRNcVuEQoEjNEuRcyROX6LkV6l1NEo7UpREsxN0Q73W9EFqyqRfV+PESdZydENe5/RN9sgUSaQNhEBVKQRRNOgURfPItERrtlRHs4O0S34RFFmjr0ReFzjEQDKylFaJ1TRNGAPEQzJTJEvOzHRCzDNkQDAqxESPaKRKsgdUT3rmZEi1JtRD+h2ERnnMREeX+GRFzQMUT/1s1EqN6TRIdKhUREVTpEkbhZRKqNhURhsz9EeY8ARgH1U0Q0ialE/PesReD4aEQs4VFF9CZdRQ4pykRf84xEGYqTRARloUQN0k9E8sk/ROGmaESfoKVEZqsZRPidNEYUUI1F2oPJRAn0dURUWiREzENWRDsKJER9xuhE2ljWRKtQrUQsJAlFNVgsRHh6gUTwe3REn3+QRFHzfkQkmY1E3niWRdgwT0Q2mHdE8eDVRCYIdURb9SJFGv32RY2w2EWkRbtG+lcrRNOiQUTs4r9ExGNARAK8Y0UONIBESJZrRLQbfkThPbpFdAohRJyNKEX1f35E3LVvRFOjVEVdNlFEeC24RLy0KkVDAjlGZKA9RL2egkRoOVpE01cGRc/0n0Q5vDlE+GI2RIPwhkRs4jFEeQT2RKwBTETj64REmC+jROr0x0SBGUREPLApRF7xlERXL6JEP4ldRHSWEkUufY9FsvAyRP/+bkTW1sVE71ArRMacY0VE13BEPoKDRd/cIkT5WmlEGCFZRIhH6ERg9iFEpWnBRMxNSUShrodGZIWKREkuI0SEO0pEkc0ZRWk4YkQDaFBEV0ZwRJzdqUTX3OFHhBs7RM99kEZ2rcNEolwvRukVvUYWWi1EycGhRQYcUkZo1DhE1eSURKkwv0T7dL9EEs0ARbvmlkRlZfREXsDARGwOR0RQty1E/85AROBFLEX92UlE96ViRF9EN0TAKHVFXI9HRJCq3ESBzjpEigA8RKk5N0RoF1pEgt8HRAI/nkQFvj1EZmkURNYfkERwkZBEiecIRNMzM0TQzIFEzTxlRAUhPUS7x6xE9nuRRtmS/EX3JulE3/KhRILKHkSqCitEovpuRFRYh0U5YbVE/NRNRFP3SERVYiFEPh1+RESXMkTRv2lEicQ8RK6jXESFVWhFpp0iRrxJSUXf6KFFNffeRKgeD0UxVllF0ibIRHW6XkQm0VNEBYKbRM4PYkS8jPFEJk46SSpbN0VoJo1E6kxORhwtnkRDEVFF7rv3REz0QEW+cDxIxJXORaRTlERjdWpFICdCRIQ+HUVD+2FEs2WSRgsFOUUFHRlFk3+HRHv6vUR9C2xEvDw5Rf+eJ0RFvWFEAS1URHx9S0Wk4GBE7ei8RUr9GEWXP3JEk9U5RXMD1kXJhCRERZZMRT4+tkTozS5E4iNwRHsMCEUCw+BEVlKNRO240ETk5rpE+avMRJzEX0QNQ59FGzZVRHrnv0SOxVxEoxw2RG2HKER5/2FFKXwDRa4QJUSkTspFzxbPRKbYxET7XHJELFBCRN8qV0Tasz1EmYIhREDEpURmGuhEJi9RRJ2NTERNwzlFV5RYRFFUqUTCBKFERJARR+lDwEcecR9HNv1bRq5OUkXY9BFFkji8RlrSFUX+O4FFwxYKRSqGOUTS+DBFdAt8RE64dkQb0kREcs9/RZEXgkYQxuNFqnpDRmRKwEURQCFFg8ZiRML5NUUjcBVFbedkRLIE7kRnMRtEE+otRPiFO0QepYNE+cqkRH/1yUSXvKdELsIvRbdbcUTTXY1F8jJvRMxQFkbJgCJEGwdmRO5rr0TFvjdE7kD8RPIdokQ020NEG9y6RKzIcERdn5FE3MM1RS7vq0QpZjJFHbLURDp/bEQ7Gz1EGYXZROhXAkWKCqZE1b91RL3WlERDewBFHpUdRC2Yh0Yx6WNEvMrdRHQ1JEZL2AhFoI6XRHtQI0QmbH5E6KW1RDUefEXITIpEIfmURI31jUXnjytFsJQXReQ+6kRAm4NE1VUvRAg3sEXsykhEuGwzRLaKBEZZGVJFxBRIRNWsSER0OH1EgjJKRGRUwUYNkzJEY26TRlIcpERMRSdFjtQBRePtlkSQVZ9EenWPRG6oZETdPDxEnGSDRMgblETaGhtFQpACRW8RY0T7cF1ErEmjRMTYvEeWcDBFPIojRRlcykQwCbVGKgwDRR5gk0bh3nNES19UROysOERIJA9F9ExVRLIxtERDCZBEkEpFRC5LWkWZm3ZE3pUbRGTqMkQNIElEjnb6RLJAjUT1fFRE241CREU7lERaOsBERk2zROe9q0QvAmpE43zYREBfbEQuz39EFeEWRHIalESKXkRElgiiRaPqI0Z52YhEwA9QRJSB5USNkndEpZTMRJxkdESgNoZGPL9JRKrRREQ1ifBEIaR3ReXFp0RsCIREFmbQROGhJUSkwJ5HFJ/9RPYO/0YMQhFEDkMERm8L3UVTHi5ECwUMRQWehUSgEXREdyxFRLk7qESgcClE86JcRFvHcUTQNJFEudP1RPF+RURMEF5E4B4wRDW5X0QtSD1FIFAGRgZjTkQk00hEfIJkRX+5dkTW+kFEChOURHJW6kRU0C5G89kHRQa+TkTDee5FLNv6RD++HkQYemBEfyIuRPehm0SSBXxEwElMRIRuPEROVCFEKs6MRK/zhUQM3whERvttRSfrgUSkikNE5ZFdRJCuXUQpJ1pEy10PRT5YLkTKAohElkVkRNO1rUUSQFdFAKyNRL4pzEQSWaBEYoqWRFvJNUTn9RBGOIXSRDN2XETgcTZEjxe5RaKwBUWyHoVE9bw+RHv6CUVszSNFQBonRJzmMUTFmIVEaArIRFQb10QjD2BEcmZKRLVJU0RkSzREUGtoRA9yLUQ8m55EkEBIRDW6hETRzUNE1rUFRZh2qUTUcE5EIsF3RH22PUTX095Es39eRD+JikdAfYhEoW54RCOsXUfPsEtEZjjrRt2gokQYHZxFaGIERUgQb0ZOmzdFQJu+RFrT3EQFOlJFX3J5RMYxG0UVxVNGd+AMRet0rUTE60VEyKecRf5bgUTUnPZEPba3RPEWJESMy1tEzevfRKsKYkQ94yBFkPVFRCsWMUUsCpVEroo0RbivyESuTXdETeuMRO063kQHNU9E1MmIRG2HPESa6UdFxghFRCA3GUa6HHpE1ahTRMDY9kRInOJEo1+IRElgA0VIAkhEO69BRKvrG0TbGlhEzM6ARIfcSkSIdNhFobCkRB9SqUTuoctEBS9XRA1CbkQlwphEJr6GRPN6dURRUSlEZgg7RBWhUkQHbkxENM+uRF+nZ0TVqblENDyyRJYDgUifzyRFn5g/RLgl5USRr3lEKOuoRDqeg0TdqvtE6LH3R19T00RiQIpEMRlYRDHklERheqhE2qSGR1wxOERO/oFEDSsdRGPhVEaUBk1EIHY5RAGIm0XaEk9ESNdNRHVb0kTJ9YBEVD1tRNFnDkUPFipES0JJROkhr0T8Vj9G+IgqRNCDhEUQlYpFiUNLRBR2fUSJFDNEhFHdRtinmkQvP6ZFMegzREecLkQKUr5EJd0LRTEKDkXbFLhFBbV1ReM1jUR3TeZE2zytRSkUL0ScBgtFr2IeRHlnQkQjn2lEQLY0RFzRLUR18kpEL1R3RAcp7URzNzNEZ2uMRsLSFkb1to1FRGaoRgazL0QYe2pGxocIRtLdbERLzTRFkHk7RA32UkTfD5ZEWZp/ReqvW0THvFZETOevRN/C9EUIrChEwpdkRLfWiEQlq4JEGtM8RQCpxUTzU9tERbRlRWH/A0WtrlhEt5AeRZnqREQZ509EDCIURqY4aEQT3xFFhMkaRHC9PURhAbxFPE2fRR4BhkQOc+VEvxdsRIcS0UT+MyZHQOuhRkUT4ERDQY5FGK0FRQu/JkSLwYhEdNIoRJdpy0WSkDxFd21pRIHxwkQ6fRxEiY1cRO0cQ0a6KIBG5IcWRQh140W+hp5EeXpSRJN6akXzM9pEpRtJRUAFtUQAc0lF+6I0RP2Th0SZ25JEG107RNRTK0Q0SYFE4QdCRETIeETQCVNED+YaRCg930SnSGJEZ2c6ROapOER2dC1EEGAFRZwDfURTB01ED591RHe/j0TJvo5EikuMRMPSAUWmOTBEwjJaRDeJYkQwXjlE251ZRKsJHkVMDzlEUe9LRC9q3USKHMNEFHWgREspxET5Bg9FCqT0RG6UK0TjICFEMCzvR6QsckdxzqtE7HhXRDLrVkTuBANH0RscRY+nGkS9Ep1FtQEZRps6uEQ+vt9EYVpDRb2M/URlI1FEn8I1RHk5Y0SH2NZExD2FRB59T0RWIwpFNm8wROSCx0SXBT9EmUiTRAp0cEQQgmREvxCpRVALNkUuYB5EDHdIRFUfckSZV21EntgFSKW0l0QpfoJHcUwURBjGE0cZSE1EIOgsRtsfa0Q2UzZFT+qARLjxDUVoiUFESoSTRFP0HESATD5E561eRA+yT0Tk6GpEVENMRFQiOEQMfztGBWNFRa/LOETKDjxFJFviRfD5j0UUgp9EJvtQREkvUUTJQ0hEQo+9RGPMg0SG32xEMkRBRHY2Z0SKGvtEgs+ORPDCXUTovJtEo0lHRJd2q0WvJz9FU+SQR+wkqkS9W4dHfPILR9zJFkZlcnBE/xBwRGn7WkTVnz1Ft14kRIK0cUTPXEZENtQzRPOXeETcX1JEFqs9RExqi0bc6RlH2UYzRuXggUUSy25GVwsgRffuVkQOsi5GyKe9RM/isURmDKZE7boqRMBrhEU+j0pFssjeRRwRPUSVgopEzZWkReN36UQ/pjtEPC+TRFVxgkRqGzBExLCDROyNmEXIv5JFnTIFRRLVwkW4GmRFjZI1ReCu1ERCrq9EAKwOR+aktkS2XHBEQQSERlxDVETiFzpElJYxRjxZRESaLLREYwIfRKz4ZUWdQLVEjF06RPmgT0QYT2ZE1BNRRSowpEWe1wJF0qn3RD9vZ0Zd/hFG70RFRdAtskQXP6JE6Vz4RD16DkUsn65E/SpZRCr+KkTINDdEhwovRBZxVkQm9XJEreeQRF6svEQKnF9Ee8CHRF5HvkQZ3XhEQfaHRBttLUSCuS1GybmyRYLoPkVAH0NElwvtRMzQQ0SLPfJFnpuyRakCMUTWE0VFKxSyRLY8tkSTWX9EpSYcRigPNUQByGZF+tMHRnZ7NUVZ1YtEZjfARIFtVEXWmrxEtHpIRC45YUQ= + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - A1d1kAzBckDCEB8Fb8FyQNyog0FQwnJAi+YIo+PCckAQ3BqFD8NyQIq95tQ6w3JA7AYzEVjFckAa39z4DNJyQLSExjtD0nJA+LELmNPSckAMZZbURNNyQHtNvI9y03JAeAdnTsvfckA+GEmotuByQF3WqVlR4nJA1NCOCpDickB8ogb2JeNyQJykHArK8XJA1kOvzH7yckClTgLUDvNyQKBg9L2h9HJAlTaBtML/ckBI3fwO+wBzQFAfyUnZAXNArF62XzoCc0BGHWPszgJzQPgahb36A3NAPpAjVwoSc0DOCTBCJhJzQNW+L0G8EnNAOzvvi/YTc0DWZ/YwBxRzQLDwtCtMFHNARoBRl3kfc0Cw5GEvtR9zQKhjYiikIHNASvtSNzkhc0Aa8eABZCFzQOqWTcCWIXNA6L2Z+3oic0BO2dGsySJzQGRxydsMI3NAGnLN3jokc0C4IOwiziRzQLws8HFGMXNA8bKkq1Uxc0D5uzlbzjJzQBq5ooL8MnNA5tC4Xvgzc0AYJuts2zRzQEKfPxW4P3NAPDWSv+FAc0BgaF94eUFzQLNCi7K6QnNArAcAe3pEc0DEDUAY+lBzQF6lKUObUXNAB1fMZhBSc0BsTUUPRlNzQFx/1LmjU3NAhHIGLYVUc0CuItcE+l9zQMQC7DONYHNAFCbZRjhjc0BjvgkQ23FzQKw17bxQcnNA9/0uQmZyc0DeRJiU9nJzQDzLUnq3dHNAWrJM8Et1c0ANvlr0eIBzQD/S7IykgHNA1PL0bw2Bc0CjNZmTXoJzQDjBYJoEg3NAYDXBiYiQc0DweSscTZJzQE7hFUjNk3NADPpdnWCUc0C0z2bT95RzQIq01wq4oHNAyB2qi+Kgc0C4iRj0TaFzQJCWMLyvoXNA60tc+lmic0B67r2qj6JzQPFNr2AFpXNAQJ48hsWwc0A1++hG17BzQH4LMTg1sXNACFLN2Vmyc0BWmPTDtrNzQEZA2ugKtHNA4tmdkfjAc0C6rMINS8FzQHClngs6wnNA8hB0GdDCc0BifhyRJcNzQPnGm3tlw3NAMAQc79jRc0D50+7c8dFzQGLuw4VE0nNAcJKLob3Sc0Bcie8O29JzQBC5MNtS03NAwGRp7vTTc0D0SlTt4dRzQDq37v2k4HNA4cgysTjhc0AuZJzuYuFzQHEPQU2M4XNAdtx5IHvic0BCxd4xEeNzQEpngKqk43NAhdeLvkXxc0BDWA74N/RzQLYpEIyN9HNAACbTAuQAdEB0/bDreAF0QB0/6rikAXRALs18cCcCdEBwOUc65AN0QEKxdMJ3EXRAKqAJuYwRdECWjP431RF0QMa9umZNE3RAVpoJmd8TdEDirOZaSSB0QC4IqCEjIXRAI4qVIrchdECgSPqCVDB0QKlF5Oq5MnRAdn0UzecydEBtyXM74Dd0QEyNrAc5PXRAKu+mol5CdEDu0kBdqUJ0QBb+ajQ5Q3RA+Hoy93pDdEDypEbqBlN0QFCiduz2VHRAPau0XoxVdEBvLebg3Fd0QObnme8gXXRAwl4XU7hgdEAGClgXUWF0QCZr/5oIYnRAUVBuuHlidEDwNA4K52N0QNCej/MPZHRAGKYiWE1kdED48JGDxWd0QAiRS8YicHRAXsxe60BxdEBMiJtpzXF0QPOQpQsQc3RAFj4RvzlzdEBIOzLXN3V0QJTavNn3gHRAsZKPhBOBdED24nKGToF0QKooOpdJgnRAOsZkKM6CdEB+h6yKJ4N0QIRPRAz5g3RAMOmiNsCPdEBWlaW/FZB0QFCcgBJqkHRA/F9l8u6fdEBJxT9G0aB0QNTNWss3oXRAQh2hT4eidECr/pwcuKJ0QE1E+PEQo3RAmAdVeQiwdEA6MLydTbB0QM9CMjvDsHRA1X0fBnCydED8+JcL+7J0QCHluif4s3RAEvq81yC1dEAw8WHmyrd0QILcYNC3v3RAbZ71D+LAdEDI901vd8F0QNYbkS7pwXRAxm5uK7rCdEDL+hZhUMN0QC+nCiB6xHRAN3z447fEdEAM+FGk/M50QJ8ycn4+03RAXF6nteLTdEBUe7Rmz9R0QDFlFVT733RA1WmVvLbgdEC8Uu93I+F0QFy4oWW44XRAYF11zvjidEA2kUxzj+N0QLymXSVQ5XRAPDvhaIzzdEAApip+pvR0QLDAaf6jAHVAnqx0NmMBdUDpmTXgXQJ1QB8IVDKkAnVARsN9c5kDdUDO47jH+AR1QOrc+GUkFHVAYqaCcZ0idUBXkr+PeSN1QHBxcW19MXVAEZCHHq0ydUDicIRPzDV1QHSc95clQHVA4Hcsat5CdUBwc+ul4091QPwg5x8QUHVAHEVrpYFRdUBeXM5XT1R1QLza+Md3VXVAypXKngxgdUA3Nv3SN2F1QOYChyZkY3VAN3vOcXZydUBWeKu3jHR1QIQYXGPigHVA2oE8KHiBdUBvdR2brYF1QBLD94Cmg3VAYDZ0GxKEdUDNTqdhmoR1QEZ5jPG7kXVAV6zvIDmTdUD70T7LI6F1QIdqh4W5oXVA9l5DTWOidUCyHma/SaN1QPEi8uGkqHVA7P26ds7AdUBDaTy6M8F1QCrB9BBjwXVAx5e+SvfBdUDl//B1zNN1QIzI/qDk33VATsXPNg7hdUDNYMyMB+J1QC5xaDA65XVA7PV1vDvzdUAo0hSEG/h1QICzKRd3/XVAYzVn00cCdkBng/Zg+wJ2QCIEwmjRA3ZAcGq37woRdkDQ8BVMDRZ2QDpaHZA3IXZAvi2eGYcidkDKJzBCkCR2QK5L44FKK3ZArm9vjh8xdkCq0gQOUzN2QHWvddG6M3ZAJKH7DZ40dkDAvGYvS0B2QMT0rSUdQXZAoywglMhCdkDmD+AxeUR2QKaDD1PLUHZA//BKwg9RdkCk7uG6i1R2QGKbp8nMVHZAQphMloxgdkDaqQQ03mF2QPysxvXaZHZANCDW9GCBdkAnWvo7ZYJ2QMy0uNyQg3ZA8K/pYruTdkCgZoDrz5d2QGCAlS0PoXZA3STADkajdkDXSgVbwLJ2QEmk/uoMtHZAKuYDDY+/dkDmK8UYwcB2QFTJBkBOwXZAU/NvGxnEdkAKnzk5zc52QNQt84p90HZAcjhxxZ/RdkBGC24H8eF2QMdZhRWj43ZAShlLr7TydkDo1GIBkfN2QGgbBbEzAndAKJBsswESd0DWp8jPDiJ3QE5N8dtyIndAeCsElqUzd0Bu7AbqDDV3QMJi0OGcQXdADDyxlZNDd0BCDOHpJUR3QKRiehgbRXdA4C+HjUlRd0DQdwDrkVF3QDb0bko0VHdA6l84kilVd0BuLlRjel93QOGl94ZHYXdATzBzD5Bhd0BimplTOGJ3QO7cs/U4ZXdAyS8vyiZvd0BJweyJn3J3QKiAFtf3d3dAEsX2LDh9d0DMREI7VX13QFscb6l3gndAsPUUnQqSd0D4aMuKTJR3QEIWx8mlo3dAtc1m3Zm0d0D8tYHpe8J3QF4Xy+fGwndAQNVvGufQd0DQDDzLUPJ3QFI5SeRF/XdAjF+kn4f/d0BxX18QoAJ4QDTWtqvmB3hA81LfGPoHeEBcp6FUbSJ4QMItVPfTI3hArHfQF38yeECuDGM3DEJ4QFWK4lmDQ3hAg6JHCxJEeEAwFpwJekV4QLE9dPzTSHhA19CNwoZQeEB2YqH8ylF4QO6C2d8pU3hAMG7KkIdVeEA7Oa0VtFt4QFK7Oxv7YHhASBkT8rZheEBhLHJWvGJ4QBwc4MG6cXhAQBNMNjF0eECkWmsDRXR4QEAaMtBodHhAc1HicYt0eEDrhVTuu3R4QF9pNRXIdHhAuOD9DOZ0eEAQudKd9nt4QNBm8Lc4gXhA6wDKG5+BeECagaAJ1YN4QKBuVC3+g3hAepNC0JmEeEASXWlQUIh4QD/ATj0CjHhA3AnphKiNeEBsaRtLl5F4QIICJh6nlHhAv748jVigeEA+xmIxtqR4QAak8ZI6rXhAqknOApiyeEAIjyV44Ld4QOZNy+LLwHhAmLTZHBXDeEAGIKCTt9R4QC2po0ih4nhAOZWTGv7neECykxXBkPN4QKKU1x0B9HhAXWVCRIz1eEAMtX3JmQV5QOOYzgFtE3lAK7AWbLkieUCGLuzx4yJ5QGKBIWC6I3lA7ysOm7MoeUDC1nQZtTN5QMf1IK68O3lAFQGY+I1CeUA9Ka17+EJ5QIgb5nD7Q3lA6Npza8xUeUCyu4cO52B5QLbhPC3ZZHlATeXapw1reUDeVIl4EG95QJXlPFdEc3lATzAhjDiPeUCklZGKwLJ5QHQEu5yzw3lAFNrIrw3JeUCRBc4+Vsx5QHvcYAJD1HlA2OCyMc7VeUDie3cgT+R5QIaGGHQb63lAu+ubg6XueUDcg2/dFO95QOJrQ60R9HlACUR6uMD7eUDZ0kqaygN6QNxnRy/8A3pAuvP9+vgFekC4ADWclRJ6QMoDna44I3pAcwYlUiszekCUWSyZDDV6QM5eFmktN3pAhIWeyTE7ekDka52fMT96QBoNzQY9Q3pAJf7MHRpFekBtGKe2NUd6QODv0gMoVXpAJooYEyNcekB287/lOmV6QFhN6g2LcnpAHC7UBSt3ekCSC16OxYB6QPyjYtQPgXpAKI8MAt6bekAFiIlYHaN6QGs09l4oq3pAoDR8JA6zekA5mY5qDLZ6QEnOj90Qt3pARyCiMxS7ekCg2tYbIrx6QDBx/HgXv3pA5lYJ1CjDekAUHwlMvsN6QMw2eKUaxnpAn9kJLFLTekDCR4DmaOF6QMDWRTo75HpASeALIzbuekAqg9mBF/F6QEIJBxvQ83pAXdQ7yP0Be0C2T12ffAN7QFpyjl18BHtAh2ZcIioOe0DiGX+bTBV7QFEMsQMgH3tAvpTQ+WEje0BU4yqTWSV7QARg38leLXtAY+TFvb8ze0Babs98XE57QL+KsKZeUntAEDdAwg50e0Bsm1TRuJN7QH6htf4hlXtA/mexI1Kee0Di41Cxq6N7QOZ1FzgBp3tAylSZ0wKre0DccQTqBa97QAmUay56xntAXoB5JBvUe0A2rQojAdV7QDNfG67643tAQkrAiSbke0AZOL9BvOR7QLaCejuM9XtA4bzfwdD7e0CKwBh4b/57QGmk1BXZAXxAI45CufYBfECOfkd7ugJ8QDrXDgzFA3xADksNgGkEfEBMhBE1mAV8QIYuf8yPEXxAAL1dJdERfEBqo+z1ahJ8QKDFI1u5I3xAHAmXyP8jfEDB4sPSDjR8QCjXMqrNQXxA1tqujttRfEAWJPt0RlN8QCwcudxQW3xAO/37Fw5ifEDSdUxKKXF8QEytiihFg3xA6AIB7MKNfEDCxBPEHZN8QHOPLu8rl3xAl/yyM2SYfEDWUCqVfJh8QNhIxni8nXxAOMV0WxCjfEDzLHsWwLJ8QDj/8nh8tHxAkmK84MrCfECMl/YvaMR8QIJf2DL323xAbihG01fifECWnc6EEON8QMxcdmZp6HxAekBBDRfyfEA86z6dVPJ8QMDGg3j58nxACNCwDAECfUDoKS3cSgJ9QK8mNKBFEn1AGI3yoJMTfUDIsnYn+RN9QPm/BGk7In1AuN7XtqExfUBweGjKRzh9QAyVie6hPX1AJYLqGfxCfUACBXgbLnt9QP7+3Z45g31AWFhTI/iDfUDFd9p2J4t9QMjXN46WjX1ADu8nwPGSfUAnFtF+JpN9QBa1jBg8pH1AAn8MvKWkfUBR5liGLsN9QPaA+qtRxH1AjBlk4+bEfUBa12DoXsh9QOghInDZ0H1AxOA2yh/TfUB0zHTvYtR9QCwEVaD11H1AlkbxO471fUAUgYwZFv99QGfwEsY0AH5AYNZxJEQQfkAa57kXJCB+QP/DZYZAL35A3Au8HVRTfkBKDQhrjVV+QI6WU5paW35ArIrRapBefkBt5vdaQmN+QE7EnbRiY35AdbIxb09rfkCci+QDJIJ+QC4Yfmelg35AlT6pMCOGfkDmb0tNBod+QDIjxz3NiH5A3eBsOAiUfkAWqLHqEJp+QC+OIgganH5AkTNhNmmffkBs6/XFzaB+QJhfro+jo35AZJ8lEPmjfkBL0TlckaR+QARm9z5irH5Ay2/Poh6ufkBwM3ISMrR+QMYhsIRqtH5AvdTQiGK3fkD0MMJrcrx+QFCHdNxlw35ANTNYQNPEfkD2qZ/rCcZ+QCyg+ni7yn5AwMrJu27LfkBKgOzLVtN+QHCKvqHK335AVdA/sjDkfkBMK9x/t+R+QPNa1vFY835AN3BHGpQDf0CV33W0Rgh/QFBiK/l4C39A5AMcBl0Uf0BUm6zxzxt/QFzQnzzWI39AKtmuKcgrf0D8mww1czt/QKJdYvmgRH9AXRIdMK9Tf0CId8qct3F/QFYyGWnldH9Ayp1HKqSDf0C4+wTRPIR/QPzL6OzxhH9A5Ac+FWWPf0D2F9uQY5F/QJwcZpaVk39Aem7gBjOUf0AIgdejoqB/QJD8PtxeoX9A8DVd9eSjf0AROdCEE6V/QBWQU9ausH9AsBTqL1Wxf0CtNoP/aLh/QPyXOtj8vn9AbL2ukJHAf0CMYh6AOsp/QKUxRbJT6X9AyEZvKKzuf0CGRtP9B/R/QOavHldHAoBAaMRZs80FgEDv1D6NfgiAQCg97t11DoBABCI0cg0PgEDZgrs6oxOAQKxP3h+/FIBAtwsjcxMWgEBmYlAeaReAQLjRIEYdGYBAq46rt80bgEDW5NiTaCKAQLpYCg7sKYBAovJViDAxgEDw8lN0YDKAQKxLLzEdN4BAdaoqHeg3gEBbPAZuAjmAQNYPk/jIOYBAaorNKnY8gEDUv8u5/j2AQPbTPG4iP4BApEFBLsZBgECC0T78qEKAQA4Bs3XmRYBAVve6d+9IgEBymkuZ6kmAQL7KKy+wSoBAs4b9dOVQgEAoHEogFFGAQCQ2d2mOUoBAJFJeeqRVgEAJcO6RJliAQCKcrMTnWIBAqzVr4g1ZgEDmDmDSH1mAQEgAyfQHWoBAsPH/w6BdgED7xe1aWGCAQMzcQ5oNYYBAQBz4ZcJhgEC40I7QoWeAQPQCwO1NaoBACFZnc/xsgEDEYZfWJG+AQBKZStEqd4BAeXKOLmJ4gEAap9HueH2AQISEdTUof4BAnLhFed1/gEBu+CvIXoyAQMiOZgLqjYBAAtEXMh2PgEDOnM4dIpGAQLHHVPW5kYBAEJNwfWaUgECxNr0o4ZSAQIuiH+Ial4BA2nMNYK+XgEBYVsWsOpqAQA5USuMZn4BACyz7+8ukgED0NCwJfKWAQDhStiY3poBA/t4uwK2ngEAMFFe3hqmAQIpXM7UTr4BAVK+KIR6xgEDl3JjW5rGAQGYaRM6BsoBALFUKlgW0gEDlaAjVEbeAQFC42kWVuoBADzatFEm7gECEfkzue72AQDqahBczvoBAdPjftWnAgECoGyFtUsGAQN+xfKSgwoBAaIDdQAHGgEDa3RV97MaAQN+dD5qkx4BAF3X6UrXHgEDiCcHcIciAQHS16OFiyIBAnnisl1PJgEAYGuSd1MmAQMAiHFkDyoBA9iLEWgfPgEA4JUWBLNGAQAByVodM0YBAyKYfiWDRgEA4HpYVktKAQCZdark/1oBAFhHodRrZgEDHDyKhStmAQGhzxRZE4YBA7P1rp/jogECs9sKqQumAQI9T/9Ut7oBAl1E2fUrvgEDgEAdsPfOAQCdPttnd84BAHJPQ30r3gEATDMUqFvmAQH5wYpho+oBA+a6H68b8gEAgXsWpa/6AQHTSt74//4BAb9b3nyUCgUAw/9I/QAeBQJGT2nM9D4FARtDhxDQfgUD6aRn/RSGBQGqrb5Y0J4FAd1995bcngUCOyU7E/y6BQLLwCP0wL4FAjuJP4bsxgUC6GQmQwTKBQNSG91+6OYFAJBZW5yg/gUCqqfIBzEGBQHyXyIXQRYFAso27GwZKgUDjOLWhCU6BQBxX0bRGToFAGE6N5BtigUCiUVjIsmaBQOZhLMS1aoFA0BX5S7lugUBcThLCvXKBQFYlvzPCdIFAmrMwQU53gUCuvo3PbneBQKbouWH8eYFAHIfqgRx6gUC+DhKPx3yBQApJkhufgoFACXVEOqaKgUDxryXjOo6BQD6Q/GJxjoFAOBkNMAmPgUAe0cIfVo+BQJwdEYDwkYFAhMo3FP6RgUB2vV+kWJeBQBxjhc6ol4FATy7sNZ2cgUAHkrSjaJ+BQBS+ch3moYFANs6f/9+igUDmVDdrbKiBQGPFBiL0qYFAF7sxKkqvgUDwY/qBs7KBQMINHMYctIFAHzr5Khu3gUDKX8ssSLeBQF4LGIXgxYFAvigGeU3JgUBK5TpwBMqBQAQ2XCmyzIFA/my841zPgUC0eR0OCNKBQGC4kL9+04FASg+tA+nVgUB5Dgwsb9iBQByWRgjs2YFA0cxuWIbbgUBZlYTR3d2BQL4gp8vy3YFArG4qHE7hgUA4LkOf4+GBQObbs1P44YFA1DTZ5FLqgUBUrU0j7PmBQMw/RwBu/IFAGJ/EgfD9gUCo1d/o/wGCQAwNVuAACYJAQZMFRNgYgkDVa+w0KRqCQOD1mY5kGoJAcK1mtC0egkC2RTMLZx6CQHxnwGjXIIJAXvJLmDEigkBG+lrk1CKCQGocKqkpJoJAJKwQqdAogkAojyc1nyqCQCQOwFvcKoJAkAwckqU/gkAVQ4C5+kCCQJc7Y8I8UYJAWYq0bdpRgkDg2CyJOlmCQPaObxMGWoJAopDMAzpdgkBOah42OGKCQF+YXsAHZoJA9y1gT2xogkAYzYcdRmmCQGRnVzIWaoJAcTEbRNZqgkB+K+QypmyCQHhAU3VEcYJAWmX7Tml0gkDCgxgGNXWCQGrcGb0HdoJATpGczF92gkC6jgDu3HaCQHSQ8hxkeoJAaPbpOkOJgkAQepCibYyCQAxTMWsKjoJALN4hmUORgkCmIhiEPJmCQKAa3AlVmYJAKIQaOg6hgkB+nfqCO6GCQGRSrrqvo4JAYG+7jvKlgkB/K9w6DamCQGgXrJ8zqYJA+2xrM/WpgkAdkIaNfqqCQNkKVvCBroJAkrKRNQaxgkCEgcM9NbGCQFVDrkgIuYJANtfD10HFgkAq2NIz68WCQBzH6xLwyYJAZVwyRPLNgkCYl05N2M6CQClXCRM/2YJAOfZQ8HragkBMXqwBB/WCQLZQdMev+YJA5toK/8D9gkDw3pPVwwGDQDruHe7RCINAhgKanDkOg0C2MMFweRGDQCBeRf95GYNAwBfXmOgeg0BuVf9ucyGDQHCTZ8tyKYNAtvdOeGkxg0Cdvup8gDGDQFRw2JpRNoNALMAoOx45g0B6vSv6JTqDQD53xrzoOoNAdF9jku4+g0AfR74VXUWDQAH4r91YSoNAfNiBbxhMg0DOQTiQBE2DQOieQauvTYNAevFFiQ5jg0BQ6IFA3mODQPAfAlt8ZoNAw9uj7N5pg0DOOIpekG+DQBTql2rDgYNARODXleOBg0DY15IQSYODQOxsDg4/mYNA8tYANEahg0DOTCpdUaODQFyWRzxMqYNAYrwSL/apg0CdLklM6K2DQFb1w/PosYNAO4UxTw6yg0AgPtrj6bWDQB+lQ45bzoNAxEjizSjcg0CnO5kz1O2DQF7/pL/W8YNAKrdOoZX4g0CYwA8DAAOEQBhM1VFRGoRAOC6hoEMrhEBZ9Fa+0i2EQGSkw83FVoRARoC+4mpfhECHpZCza2CEQByRfMnlZIRANOJIdrVmhEAaGXESAGmEQO52OPj/cIRAYqcZS8p3hED0bhFn+HiEQPxq6uR2eoRA0mV+KyR9hEBAVkOp0X+EQMKJZhTNgIRAGH6x/3yChEDNhHbBc6KEQNCTxEccpYRAltaY1iLThEDaCHoOEdaEQGNLMiZq2YRAoNxx+BTahEBtDqdzGN6EQNYBrmdq4YRAZHDLGhPihEDqWwQgY+mEQHyVXSUd7YRA0rlIshvuhEBWUt9FNfGEQHwst99g8YRAoH8E99v3hEAl0UgCNvmEQDiGrDVY+YRAGm3p0If6hED4fOXCLv2EQOTCrl0uAYVAhyyHRUYUhUBQe6Xk4BWFQOnSwpP3FoVA9uEeCXwXhUDJ18BJFhmFQPxOQib9GoVAuDaMNodAhUCA05bs9EKFQM8qxnppWoVAmCBuqNhehUCBeUE7oGGFQKA/3lZNZoVALHdEj6FphUAhthiiTWqFQFhQGqKYcYVAwCLburFzhUC60DndmnmFQEZdHYiQgYVAOrXFjpCXhUDA3TCGUqKFQMKstJj/pIVAoNevm6unhUDUeOewU6qFQG4thZsBrYVAKkuiz0CuhUCQWdu7TrGFQMHNtsNCsoVAYlH7Pke2hUDksq9/SbqFQEyWcecDyoVASTZT1HXKhUBeRdTCCdKFQFqISl355YVAm33ixJTnhUBRwaL6hBKGQLIsi9UfGYZA6n9iWtFChkAAhELETE+GQGY1yRxIg4ZAvfKnkCm2hkAwlH7NJrmGQNpjf8gkwYZAklQKEDLChkBghPkB08aGQGzJoyIbF4dAnNRE8Rwbh0CCRM2UkSmHQLqYwBqSMYdAYrUgd4s5h0CgnFhQW0GHQMD3U2KJQYdAdSLMXF5Jh0CyKTzaxrGHQOxlAgTGuYdAuTbl2D66h0APtyjOv8GHQAbDDyyMxYdAkw2z5sLJh0BAnVx4cQaIQLIe/IulTohA99xzz/5RiEA0jm7rqFKIQDZLw8z9VYhAwAnAkalWiECyYBJY/1mIQBr3msSuWohAnIDyuOBqiEAJzd8GznKIQAzbtMLVeohAMjruyYXOiEA= + KBZXds7jZUDEZV5bjlJwQFAtpBCXEnJAWHXwwJGDekDkPDZ2mkN8QMqLNMsg0oBAcU0JZXmqgUA= - + - iPxoRB/XA0bPS7ZEMOpnRCtihEQS7ztF72idRB16fERO6xBHVx9fRLwDPER9ymNEQsmgRCsf3kTBlmxFqS3BRbTEEEV/ZfFFJgxcRJbdMEQM7blEAMcFRV+mwURgV3dEcAWzRGWvC0XpjhNHnyaZRL+tnESUy1VGg7EcRUunmkVu8WZE1EEWRd73ZUQns9NEi5qvRrDZk0TTeB9EEqBPREMd1kRebPdE4VmDRJisiEUSE6lEyaKNRBhljUQES3BE5nyDRJIvTkQ4Bx9FbWRNRAbkVkUl6pxE6q77RS2AkkS1HA9Ff1CSRDshUEQS24VFigrHRFDF3USOWYJEd/8ZRT6ZoEQrwcNEqt5NROjNNkRw3r9EN33fRCo7yUaqmdpE2/bgRFPBj0Xd0IlE8N7TRLNlSkeqXIlEvWPdRLIrRUafhsZFIkegRNMj+kR6nmxEVjPwRbVJaUQPX9lEy1BhRHygQEQtG19E6RNGRBInLkVXjyxFHC7qRI8rYUTU+IlEiFqyRd1b3EQpr1RE+zkkRRACO0ROzS9E21Y/RJ6RWUSd9xZFyZmSRBatgUVLvYtE+JrlRnB1BkVMNpBEUnDHRFKPw0SBmaBELLYfRe7q5ERP2ItEP3ucRLFBikb2c/REhW42RDc+jUQ1eLBEH07ERF5dXERMxUlF3wkzRGDEs0TCR3BEg2DWRHsiuUS6CbJE9oRZRJfQaUTdcTNEuPg9RBopcETCQbBEpuLhRDXxUURLJL1E7BvvRKE130T0BM5Fle1/RXN6ZkRs6d9FMzqXRESlWEQtIUJEuBmZRLWajkT9hJVFDhxHRyGNJkQsHqJE5VU1RRKomURQ0PlEAgudRLMk5EUkT6lESkxQRDgvgESuh1pE7slGRMM1q0WDxFlES5opRarZtkSm00hEaiQuRM6xokRn9BdF8UzYRD7iP0Tuk+9EGVdGRVaKlEQUEWtEYIlURCENCEXHBDhEHWTARKh56kRjUrBEiCp5REBww0Ru67VEnRQARapBCEUImL1ExVG0RO0LcUTaATNEKEpPRBiHfUT0FAVFrYiHRMm3uURdhWJEUd3dRe2XTURdZqVEVCGfRGEis0W/kH5ER5anRAMYO0RSl9dEkyDsRSrUfkQU6EZE8xejRK+bKEXkDDZEXtupRJYKlUSIa3NEk9G1RE9ugkTPOQBFsE7nRPOH/kT8XExEIwIPRRd2FEbquI1EwZv3RPznqEVSGVtFXjdLRdYZDkX+f6hEIKQ3RDw9VUSanptEu3IwRFPfRkYasEJF6TwARexdoUQkvKJE4foFRRnCv0TjnChE0aPiRCN3z0Te0YJEV3pORFiW/ER9F2tESYKFRVkFf0TaxftEMFhMRKRAoERIXlBERiFbRbs6GkaiMNVFOUqmRhYkmkT3KSBFX8aeRFf7SERR5ZZFKQI2RSaoekWQim1Ezu8VRaS/TUR+NlpGs+1TRHkF0UTYry1FX3FRRGMGXUTnEtxEwE/ORMXuk0TAMphEIUlZRPrHG0X95bVFAZdPRGr/lUTP/OhE0ctnRJXnfUXtUjdEqQ00RUkWakRK1UZE9OVTRLXdNUW4OJRENvt9RmCjG0UokXJEK/Z/RHxl7keIN5xGcBipRNl2HUbdksxGERKTRSlGSkbE1M5Ey8P2RDp2gEQhMWtEdhUJRb6VTUSIZpJEyVI5RXxpmkVu8xVFQ2JqRED7YUSgFblE9hu3RC9DkERt8TJEScyJRGp4KURQYi5ESg9aRK/4q0TG5YJGneokRIlW9UUEWIZEka3xREp6gEUN3pNEwNdIRIYvkkSHu0tEEeleRefSPkZt+Y5EIogLRb9/m0W4f19EyA0pRXKrT0TR6SlFb+w5RdYGhETFhGVENPKrRBhXBUVUO+RFmEVLSa6d80SsSw9F60OyRNLFQkZ0GplEH8XbRINkp0Sk2UNFBjdFSIit0EXt5pJEnFgARfP7GEUOgIxGlDCSRO71oUT1fvhEyXGrRJnynERjEphEsK+7RGfOIEXFy6lF9VNnRSvjYkQK43hF1cvYRdmklkRQEjhEiK3IRJ7pbkQr/4JEwxsuRS0ggEQ/fV5EA+J7RCizjER8PKhEAk9yRXoYlUSuEYVEn9GMRDSkjkSRh7lEgmGCRNvtN0VTDj9FMqrORKJLd0TUqrlF+RTMRDPmqUTXmQ5F+ShoREcjJERKHY9EG+yBREsvXkR6HWRFw2/JRBWHfkTNN0REdDYQR0ccy0eW+AtHF89CRqdpG0UdAeNEMdvYRinnhkQXnOVEWgdfReXjukQNtmlEvSjsRNGWTUQ63lpE+UlFRHaxmkV7929EHa2MRjATsUX0pGhGUA7eRVHUJ0RhUTlFNZjRRDOnokT3bq1E12E4RL5l4kT/LQJFyOyuRPk0vUTusSxE1UQGRcllX0RNE4pFLfNLRBgaIEYjtoNEXW/0RPM2FUX5BHpECaBpRJ/KSEQj0Z5EC7GYRIAgZkTHCspEHqJbRM7SnUS5zDhFJKbGRKaXQERZl8ZEDTpLRCVhUEQUUyREXeClRDSa8kQvz5hGCVlaRLuonkQ2czdGkNHSRLNe4kTxHNRES4+nRCgPlUXWimpEvkaVRSlv5kTFyzxE6/R3RQLDQkTe2KVFJ+eaROxY3URre8VEl+p9RBF+ZEQYKDhE3/vIRu5WfEZ24aREUWwmRfseYEXqIpdEWRdnRGqIsERx0DlFd1VhRJ7S7kR8Y19E5Z7ZRz4aH0UcOQ9FeRXfRMONxEbboE1EyOL7RMFdrEZSvjNFA1pJRKuWj0QiCrpEGAdLRFPVDEWjhghF5gpJROmAxUQyzUNEai9tRNMtbESMhVlE35dvRJo8gkSb1EZEZDlFRGay7ETRithF9cQTRs30oUS50lhERPZORNJfr0RP1eZE9RnnRLRTU0QNEsFGXTcyRRRkdUX2eKtErIaVR2ers0Q85O9GuSmHRC+bLkUGgKBF22whRZdH7ESxbGBEsfXfRCHsP0SMBOJEZRWFRCrlWkTeukFEDUqXRJiHVkTEpiVEiXJQRIq+HEXxfitGP8BoRGB2aUSojX9FuwI4RCBupERjbwpGhoXERBpQSUTMtjVElRuLRTvS8UR6b5VEObpoREURYESWJGxE6m++RB+5NkS752dEmYw+RMdmuUQmg9VEfYp4RM0JO0S7rKREdKZsRFXvpEWJWFhFF3q3ROWes0S5FkNEX0ugRIzlGUbl+bFE8zbNRIdsiUV0NT5F4cJERMD8ukTrvFBEvLL7RB4lwkTJvXxEEB3PRPTsx0RWpAJFq3AaRfj2kkSY2aVE9VCeRArBRkSomaxEwF5mRP+AOUSps4dEpOPFRMR+Z0Rzi1pEdfltRLvlIUXuC2FEHH1mREnSgUR0xYZHkotlRJIA1ERIwGJHPUHJRhHsZUQ+MxBGs1duREwebUYffZVFFc7lRDTNMkVi8SFFVSwERYUuVkaXe7hEaeoSRaNCVUTyf5xEgqG5RZwhzEQV7wBFDMmURIKceUSqXM5Ete0NReASmEUXtYtF5imfRCXa5ES1XoNEzZJYRLHOVkTlMLNETd9tRLN3+kULYGpEwsY9RtmSY0Q+wEZFgJpORH/tzkQPdpNE+PBYRLmOTESK6J5EXuhEREhv0kTdmbdEHFeQRIzNzkSmRd1Fs0K1RJGMjETLI51Efu6oRIZZpESpvZJEPay3ROTGCUX0fVZE3eAaRWY0jUho4xBFwW1MRDsZ7kQ58uVEb/gZRfVGZ0S+jJ5ErLEBSPhhmERkkD1EJht3RNo5q0SdM4ZHr45hRalNOERQy15E3aQqRN0WgUZ7dZhFd9XIRFUvuUQPpYxEQzMERZ+DZESx/mdEoJdXRNdwWUTX4QhFowljRGJjTESkx0xG8cZqRP3baEUQtqJF17P6Rj5xVESfGK1FChiGRG5gCkXhfN5EQ+UNReXcSEQ6JYFElQ3FRTSwJEVytw1Fii+ERY/JFUViN0NEe1EiRUA72kYjrH9GDVZHRS0gnUTzNp5GNsySRBrsfUYhqbZExpzbRUpODEWlYxpGhMnJRJvxR0RJR4lE2Zc/RA7vAkaOSlhEjuRdRLL49EQiUmFEIVWXRKDpeEQSiwdFAqEYRbgP/ERIW4BEYEAiRk66TUSR60RETKBeRHVk00SbalxEpWaBRAWsDEb1KqpFWBv4RLQVc0R7F5lEgU4GRyg4OEQ6DoxGlbw/RFVcq0QeTFNFqsJJRMhmukQwiIxEuvaJRCIImUV7YmtE6OFZRQ+lPkT2y4NE5NBDRvvdF0bVoANFWuisRaPfn0QFLYdFebkFRe0/fEUBILNEAPgSRXMAs0SKbJdEZ9peRHzMDkWIcWZE2/CsRJlr0ESPy0JEos4tRLBEgUTtAJdEaZOMRAYreESA1EREn3j4RI10BkXPPDtEx66fRGoihUQXvIpEtrwfRaAVXUReAJ9E1WUJSKLMY0StKm9ECPBlRxFtC0ecdzdFDM/HRa5hGkZplj5EXRA0RSzB8kRx1gNFQSSXRPQ/90Td4pxETiKjRAZ1UUTs5pdE0BtQRPBiBUWSewtFNRVXRHWsXURFv7ZEmoyRRCHKP0S7klpEsFkJRnpLhUWJTF1E9xZvRPjgBkivmX9HOEtURA6OFEcWbShGUNZORcYTlkTbMDVEKDtpREG1dETlLAhF3dVlRRzmlUTPv2JES9J7RG8rUEQW7axERX2ORHpNF0TSey1E6C5TRNZHRETHUU5EX6eaRBCxe0RQ5z5GCMclRVG9O0Q5UoNEa4DQRLQOukUBXyRFPcCMRAJStET13alEfsMwRNxx3USbK3BEtH2DRBR4DEW+EldETss0ROgLPkQhyD5ElT9yRLs1QUQnrkpExnJIRJJkxEULICRF0BiERygIp0QEUYRHqQX2Rq43FEbmYVBEfjlIRUHlTkS2yolEIhjJRGSheUZGuhpHc60nRsedf0WcGolGnO7CRJ+yKkbjoJVEaY6GRErQhEVnSipF/q2IRdMlCUXHRr1E4jhbRbffrESA5K1EspCHRWk/50UY7plEJp04RWJO+UQVarhEVxVRROFImET9oTdEJJtDRBoTJUfRG8NEOpZsRk1vIkWpki9GpfWYROBmh0VcLX5EC8gsRP0Al0WK0axFhK5ARcZWl0Rp5qBEDkiORp1obESUSANG04tORa0HYUSGm4NE88c1RDC3aET7tqpE5CGdRFctTkT3aZVEYnF6RPyQVETVNzZETD5WROeb1UTOqG9EoeA+RIA5nUQ3GT1Ekg9eRIu/KEaiJaBFEfhqRcuCYUSQwOBE5QxmRClI/UU1sblF8gI7RKrdTkVt3ZFE9WOnRF14eUQa2QpGFE4HRfMLG0ZBhsdETWBVRTNGqETYactEr6wqRFXM2kUzBhxFdl9FRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Tksr2XjAckCqvA/obsFyQKwSKn+HwXJAqEA2S0/CckDsku1lpsJyQNqt+wAUw3JAea3pbjvDckAWlnK2etFyQOyftS9D0nJAE82nNHjTckCa9GQEjt9yQKMs3dvO33JALqnIabrgckC0UCK/5OByQBDJPG9P4XJAwhIE6vzhckASxw0vUOJyQK0Hw9WP4nJAbu32NCTjckA0JKLyyfFyQJplfONU8nJAKvH6ji/zckC2ksjqtvNyQB4GfYAN9HJAtlo2m6H0ckAFqmkQ0f9yQLJALPL3AHNApjL/kUwBc0Alqig7jQFzQHLITejYAXNAZsUsJDoCc0DUByvBpQJzQMuHW4rPAnNAsrblpvoDc0CqTvW+ARFzQNjJUXWQEXNAV8Pd4AgSc0AuEZaJJRJzQDabmO27EnNAJY3BBQYUc0Dtil0oTRRzQMYSiwJ7H3NA4ILZ96Igc0DwnaeyOCFzQMamIoVlIXNAmRjOS+Uhc0Bgx03ZeiJzQMo5Zv3LInNASwxE8A8jc0CAVs9wOiRzQK8keTXOJHNAsz83/vkqc0BLFZPfVjFzQCb/97z9MnNA0Bp3waAzc0B29u351TNzQH5DJJE1NHNAUu+CBbk/c0CCKoekI0BzQA6RPA7kQHNAWw0/rHhBc0BQ/vhdJ0JzQKCD3uq6QnNA+cXTYFBDc0AsBB6uekRzQHqj5/v3UHNA8krYx5xRc0CTISM2E1JzQKeQNohBU3NAaqUx+KNTc0AvEm8+gFRzQMZ4Dfr4X3NADwN+2Ylhc0D2QXO+o2FzQIX2+DskY3NAktJgfzljc0Buq/SBj2NzQFbKs7bNY3NAgXyn2kpxc0AyMQ/O3HFzQCDvpUlScnNATklpfmZyc0DquMQotnRzQDg1KwxMdXNA0MvhIex4c0BEv6rNeIBzQHeMGt2kgHNAItai5gyBc0D5IdGjXoJzQLDgzt6ngnNAmnhkMz2Dc0BGaH7ODYRzQFbXhxBaiHNAGMPnNoaQc0AbF/HljJFzQCkzN0DLkXNAHLf1ThmSc0CuLiUoTZJzQBAwtQFok3NAgqHLrMyTc0Bv+VcFYpRzQArofmP3lHNAmkqgnouVc0C8DHYKuKBzQIM91oBMoXNAMCEypa+hc0DijILFWqJzQOaSlW6PonNAt2q+XiOjc0DYRm/sBKVzQFj7ka9/sXNAlUf3IQCyc0C2TfHpebJzQJD2R2S3s3NAd9gp5Ay0c0AwN+xIzr9zQApjFg5kwHNAhHLN6ffAc0DnzlWMEMFzQPir8nlMwXNA0qGq00rCc0CXk+/5zsJzQAja3RUmw3NAtvR1mRXRc0A+BPmZ2NFzQMhA8Ni70nNAJFLeS1HTc0DQi4jj9NNzQMfees3i1HNAC+aH5zjhc0DUoSfUZOFzQPblJ4yL4XNAlF3ZGxTic0ALdWrLeOJzQK64ZuwP43NA9htDuqXjc0Ar6HE4SvFzQHY+q42L8XNAoI2FydLxc0Ca3AdW/vJzQBfYwuQ29HNAkAKLuk4AdED/kAnX4wB0QBjH10N4AXRANrX6TaQBdED6q/fIuwJ0QETwIAtPA3RAHJJcynsEdEBOnf74ixF0QBhC8pzKEXRAiqQRJk0TdEBgEH2J4BN0QKu3n7l4FHRAzq0qk0ogdECNjnryuCF0QA/+YmtmInRAfD7mE/oidEDfos6zWiN0QGy57splJHRA0tl6LkAwdEC8Qc6iUTB0QJh7djW6MnRA+GI+XeIydEA4O68eEjN0QHqH26UiNHRAwqKqWd83dEDEVELHOD10QBGntJhTQHRA4gZxyMRBdEA5Ev9DXUJ0QHyLEtmmQnRAGhYvrnpDdEC63Xdqz1F0QMbSM/wGU3RA2uHXiPdUdEBP8ldVjVV0QBufynraV3RAkj4SDiFddEDgijMnuWB0QFIgY5dNYXRAwJh5FwlidEAkZgg7fWJ0QPBWMCTnYnRAMLHieCZjdEB4jLgOuWN0QEQrgUDnY3RA/vzaUVBkdEC4isM4InB0QDBAT9xhcHRAz5yuA0FxdEBzKRzY0HF0QLYC7L85c3RAF2GZrBF0dEDzKoU3pHR0QLybaPI1dXRAnDTI0EaAdEBIaF64+IB0QDJnwFxOgXRA8KeIE+yBdEAeF/3CFpB0QKeqTdf8kXRAtVesVr2SdEDQJSDiUpN0QFp4LbsWn3RAuqOd+O+fdEDC6bIfJKB0QFJXtyWkoHRAcb9VGNCgdEDO2GedNqF0QIP9CS4Qo3RASArsU/ivdEA4DWoRw7B0QAwtO4hwsnRA2v41bfqydEBVYOuBybd0QJ3NBuPhwHRABkVV63rBdEBZdvKi6sF0QO5NENW4wnRASvEKhU/DdED0vuTnesR0QEFwTX+5xHRAm/IaksjNdECsrV2t/c50QLyheIs+03RAD6PvuuPTdEDvx6KuzdR0QNVCPR+34HRAFMAOuLfhdECw+EEMZuJ0QJOgw9j64nRAMlj0VY7jdEC+vyETTuV0QL/6ST6/8HRACHRoTY3zdEA6m2rwpQB1QHYmnKvMAHVAxBN3wmMBdUCo63BiXQJ1QNcUJC6mAnVAgpvj6ZoDdUDabAsbYA91QE63JcqXEHVAxGHj3WsSdUASUjkrJBR1QCBKft1LIXVA9v3wSp0idUA6y13X5CJ1QIyT5FyqMnVAKk42N8w1dUBPWg70lkJ1QOoK7gvdQnVAYGzjyOtPdUB0hBMfglF1QKOMHgyeUXVALD9BBotSdUDX5I1wTlR1QECpLul2VXVAR8I/6A1gdUDsHkc1OGF1QJKR1O3xYXVAbm9r+Q9jdUBMPS8WZmN1QPgD9Jbxb3VAgVrTSnZydUAQ4yOhjXR1QFB9wP54gXVAaPDmFq6BdUBXBCZupoN1QLJ/RtIRhHVA+HTKvJqEdUB+3cPRi5B1QBKwVe5uknVAcSc43SCUdUASmuYelaB1QCj0A0ojoXVAXpBRakmjdUD+cpoLbaN1QIyQ/MmIqHVAjlAIEaKodUDFCfU//q11QCqq3ZXpv3VA+vDUb83AdUCna7drMsF1QB6/BJBjwXVA+YN7rfnBdUA+MUvcmtB1QBgwjtc403VA94fyWc3TdUDMzBVQ5N91QE3PGRIP4XVAapvgpAridUD+EU6rp+N1QK4o1ueF8nVAV/4XQ4/ydUDMkhiwHvh1QDLqO4pIAnZAoAhf2/4CdkCldSNvzwN2QJaCOGxOFHZA0mmN1gwWdkD4nAfMiCJ2QNnTrzGoI3ZAp7sd/48kdkB54w6gSyt2QG4tO1IfMXZAwM2Za5AydkDertAeUzN2QIxbikG4M3ZA1LoE/EpAdkCau1q8HEF2QAQjPNE0QnZAbgzojMhCdkCcYjKwekR2QC4u62vNUHZApIaOBxJRdkCTMQD0zFR2QIZhpCkgYXZAnPGS1txhdkBKiihgUmJ2QOCoEtn7YnZAzuzxVNpkdkDkYFaxYoF2QOFZIshngnZADtLk64qCdkAezE4tkIN2QKgpdWFDk3ZAdqOY0rqTdkDOScL50Jd2QIwM8gTEm3ZA50k73OqddkDyRLutEKF2QIhjrRShqHZAprJ1wsKydkDApye9DLR2QL5o5DPCwHZAbJPyw1DBdkCraUaFvMN2QJxISAoZxHZAjHwBN87OdkAK2kEehdB2QGk7Js6e0XZAKLMRWfLhdkAmrgWpkfN2QI7BTxY0AndAyHH99gASd0CEG8TNuCF3QJbKhu0OIndARFrh+HUid0DcALVb6yd3QPwgMjqkM3dAKGr4bg01d0By+V/unEF3QFu4caw4QndAL6szkpBDd0A6cOSvJkR3QKJelPgaRXdAoL7f7kpRd0A4xcbDklF3QIWCN7A1VHdA8mhgwilVd0Cf/jGpfF93QNR+8ghGYXdA6JpzEY9hd0BkOD3ROmV3QDUb3Igmb3dAWk49d4Vxd0DDDi/tnnJ3QPVHctyRdHdA2yeB8/R3d0B2bKGyeIJ3QBzktcYIkndAkkNg9JCSd0DaEazeSpR3QFwVcCdho3dAggR116Cjd0DKcXhY/bN3QGqG0ombtHdApcJ0oDrBd0ANE9VF5NB3QNT9p4Ts4HdAUNomw8Xwd0B4ekweT/J3QLX6OzZ5+HdA/r9K0Eb9d0CNGH4ZoAJ4QLLT1EDwAnhAsSx4+uoHeECXhslwRA14QBronzhOFXhAh4OdvG8ieEBw36bCjCN4QE7ZiInTI3hATGkCubYweEBiQOygDjN4QMZBrl4NQnhAQumtfxJEeECu1eOuekV4QCSK8eGGUHhAAdpt9cpReECtdgdHrVJ4QB5IcKuGVXhAcO+BcyReeECYN4x0+mB4QGoWJ1q4YXhAklXI7LlieEDOMNx6ZGN4QGQX/uxIdHhArjSmtIt0eECGZU6HLHV4QLLzdZD2e3hAj54kT6SBeECXYNTi7IJ4QMrZnOWhg3hArjB/2dODeEDmtZGg/4N4QLxqZ9+ZhHhAdXjr7byEeEDNz5ykToh4QN0T5Y7di3hANK5BSqeNeECJEphqlpF4QP6ilGf+knhAjgONNKiUeEAlXG1yKZ14QKzwtJ22pHhARH5jqjiteEC/eLtNJrB4QOSwHkGUsnhA72qJPdOzeEDqiRuszcB4QGSQlQ0Vw3hAV23bq7jUeEDw+a/tK9x4QKw3GVRf3XhAMmTkd6PieEAyB9X/xeR4QLT7exr+53hA8AoylCvreECUk0XuV+14QLgJ5GMu73hAGHWKZpbzeEDsb0nqAvR4QIJK2AWN9XhAiUSDln8DeUAyNoPYEAR5QIB3/xyaBXlAclwJWCMOeUB36KitYiN5QOo5tme6I3lAXl7fFbIoeUDOJR/hDS55QGYnH2m2M3lAs9GI/I9CeUC8/hqL+EJ5QHVc/wD7Q3lAa+lUm/9SeUDwdBqIOFR5QKInQA/NVHlAottOAudgeUA4MlFUlGJ5QFDJYyBSY3lAZJJpH9lkeUC2j6SuQXN5QIBSq2nTc3lAijZddNuAeUDwEUVAv7J5QI06WojQwnlAjodVzGHDeUBC9rIbssN5QLaUPN0LyXlAGN9LSVjMeUCghNy1jtN5QBUVlQJD1HlAX6jP0s3VeUCge6ATUOR5QKJ6S3Qd63lAIB2lKh7veUBez/vPlPB5QHGu1GZH8nlAEAtV+L3yeUDSn3AFF/h5QCikUELB+3lAZIJ9TWYCekDmhj+1/AN6QMxSQNM8BHpAWWnguvoFekASfHVgkxJ6QLbccIYrM3pA0om4jAw1ekBvz5k5Ljd6QC5VRp4wO3pAiyr53Dg/ekD6QeCHNEN6QAa17xIaRXpAVufWjSdVekAca6wsIlx6QC6gshgrZHpAPADE2jhlekBKHX2vOG16QHh/2yCOcnpAmIMkKCVzekDuH3mGJXd6QI+T3QhVonpAbY8/SB6jekDWeFwhJat6QPCoy9sOs3pAAAVxkgy2ekDKCINREbd6QIZnL/gXu3pAZAvC8gW/ekCg13RzG796QL3xRlsdw3pA5jyGnL/DekDasNQWGsZ6QFOqe7YOx3pA1ARY1ELOekDi44QrkdN6QGZw2EJQ1HpAggwHJXnfekC0Kz1zZ+F6QAoB8A8743pArs8p7qXjekBmutszO+R6QMxIBu017npAwiOLRRbxekDmFUTyZPF6QHUdA/L/AXtA8igt6HwEe0Ay8TYsKA57QDLqeg6OFHtAAJ1Ku0wVe0CqB8WbHR97QP3BjdRhI3tAbGB/H9Qje0D8hqyZUiR7QMzKsPRZJXtAyESg96sye0Bk98QcxDN7QG2OqYZiUntAgi+qAml5e0DqKTGVupN7QDgV8pfAlHtAoKezviKVe0DZf9Zss6N7QHjrzbfLo3tAf9Sf1C6le0AAi8nqAKd7QBaNiAkEq3tAjQdNewmve0AV7gEIecZ7QHZTT0O20ntAyKRI8hnUe0AAQ2clAOR7QFhtUK8i5HtAtG4ujbvke0AsXpIOjPV7QKqv9dKTAXxARDMFStkBfEDnhSVW9QF8QLi7nYG5AnxASAmQERIEfEBsJwXgZQR8QHiJoH2ZBXxADNAjtYoRfEANOxY00BF8QGYvUsFqEnxA3XGiYwAkfEDIib+xzEF8QHYYm5nbUXxAKr2+00lTfEDc8bJZDWJ8QLnyg+vDjXxANN4AVh2TfECyV6/hV5R8QAzftWUil3xAiiLm6l6YfEA0B6ONeZh8QLw+FZLAnXxApQNN7xSjfEBctr7Iw7J8QBvWvJh6tHxA6uPcZ2fEfEDSoaZacct8QIbS8sfB0HxAntY9683VfEBCzCf89Nt8QCSCvhpY4nxAGnwOVxDjfEAfHwXdauh8QLZ3qtET8nxAxaevBVXyfEAGfyNh/QF9QEZIocJLAn1AhmCy6v8RfUA5moMdRRJ9QMEuClL3E31AiuR9r1YZfUD9sB2zPiJ9QKIMTMR8KX1ALK2J22UtfUDU5BkaoDF9QIhuYqbMM31AUIOAs102fUDO6eqmSzh9QITczn2lPX1AyG01EAlDfUBPuikPw1p9QMqaCwmibX1AOkswfy97fUCYARu89oN9QIYxY/0ji31AasXjKZiNfUC3imyI8ZJ9QGUPFXyCqX1AOHku5lHEfUA0xPBe58R9QDdr20pfyH1AT5r3aTfMfUCWe7IpYtR9QK4Hp/fz1H1AwOk8bfXjfUAoAeIs2+59QI97hLTv8X1AODbwP4HzfUAwV8AIj/V9QDb4bKw0AH5ANnQB5UQQfkB+bm7sNRR+QEStlb03H35AOBrpgyQgfkB+TxxlJCJ+QNgcLaXKKn5AYMZ5Nz8vfkAE/VvqNjB+QIY14RJ3NH5A2Kw0ySs8fkDbdFylRT9+QEBX9hFUU35AAIKSvNtTfkDiPUVOjFV+QF5uNzZbW35AQvN5qvJcfkDDe8t+219+QPwoJylHY35AFXlpzWZjfkBmyGmeUWt+QDae/14fcn5AoOadvE50fkBRSNR7LHV+QAHeR+u3e35As1xdrJeDfkBmi9l5zYR+QKxM6Ro+hn5AOstcMq2HfkASiGmalIp+QFZVsbu8jH5ArPo1HQyUfkBZERtNkqR+QBc0+fLFpH5A1O9VwHmnfkCIK8YdYqx+QNjYfsAztH5ABu6DM2q0fkC/Ma8Q0rR+QPTepZxuvH5ADAbj3OC+fkCL5lcJvL9+QMjZZSdnw35AR9G8l9LEfkDQkn8IZMd+QMB9oDFuy35AkhFjRVjTfkAM+kmyv9R+QD7T0/4J135AK/cloCzkfkDY3OwtVfR+QGANBHjPG39ArHvShdMlf0DuWpdeNCx/QNCyySrQM39AUc9kFD80f0DwucP9zTR/QDHiza6kOX9AIxaMX9s7f0AgaQa+oUN/QLE0SLaiRH9ASl5efatMf0BVuFr3r1N/QBBYKjPaan9AgXowaa1sf0Cyi6RvtnF/QJZixUHkdH9ACIZOnbiBf0B6de06pYN/QPSjjRs7hH9AJBYrCGORf0D6D2AgmZN/QNQbSDo1lH9AME4t7caUf0C9ZnjdNph/QF+Bz4OEn39AdxDXYqKgf0Dldi84XKF/QPzpnyfno39AfqirtxGlf0D4q8FvFq5/QPQRL+tWsX9ALftSdXuzf0DO5ugsI7V/QKImb3w6vn9A1qMfqZDAf0Dg/Tq8hcN/QBXphBPUw39AnAV92PDcf0BOgV09Uel/QBqWAamv7n9ATAL7khXvf0DmYH/8N+9/QCREGSec839A3Azrjgv0f0CO8py4T/p/QDyD8AQMAoBATJqDC0gCgECE+MI2PQOAQKCMMYx3BIBAlU5TCygFgEDMjqhz7QeAQFyPwWkhD4BAUzRHsdYQgECIlorSvBGAQOoRzLa7FIBAYBsIPRMWgEBGejKkaxeAQCOXue/AGIBAcCRrzOwYgEBm6q9JzRmAQKOHs4tyGoBAhDVNH3kcgEBW//0SaSKAQC4G+CtxKoBAzpTaaGEygEBa2bfSEDWAQBtFPeopNYBAtBk5MR03gEB7poo9yTmAQMAMw8V1PIBAZg448/89gEAEuFsbIz+AQIQdPHcdQYBAoq/cM9FBgEAYiAFnqUKAQNKHXobmRYBAx87t4/ZIgECqL9JLFkmAQPzyhM7qSYBARJj+FrBKgED9qNFX602AQI6dMlLmUIBAwIXAQxRRgED4+cX+6VGAQGyqn72mVYBAz5jkMSZYgEC5evAi6FiAQIEjT1AOWYBAVjpA0dJZgEDUCsLxCVqAQGW2fw5eXIBAFJUotQ5egEB0N+j70l+AQP95xWsLYYBAnEuwqcRhgECwhbtfmWKAQB7Voo5wZIBADeKuP6FngECigXWUTmqAQIQWpRl0a4BAmEVjEPpsgED8SiC2KG+AQHgOkM4qd4BAtun/8MZ5gEBtG/DTc3qAQCWlYhrWeoBAzH4l8Uh7gECkc9vjAXyAQNLBYYoof4BAKSeBEVmAgEDogoVCNIGAQPbAaMTfhYBAy1x8alqIgEA+04P0XoyAQFzsH2gOj4BAYRcCcreRgEBIPTH0ZZSAQEjwB/filIBAKMBShB6XgEDkmSkUj5eAQM2m53qil4BAqFumPx6ZgED42XJo05mAQIYCeKY7moBAqFP//ZCagEBYw9yjUJuAQKAwI6LHnIBA5zWnh/megEC6MWPwGp+AQFGtzQI5poBAxjC65oipgEB0FH8JE6+AQISTFHypr4BAACX2znCwgEDuDazwHbGAQBjGKVbYsYBAaAtfxJSygEBI+S81UbOAQNrP7VG9tIBAAad0gUm7gEDaUEK2BLyAQJgkWZK/vIBAdEgtMX29gEDO/xG6M76AQDrlmDnvvoBAENX0HWbAgEDKSbPkKcGAQAsWlopSwYBAoPL05J3CgECA2Thxj8SAQOJqYJgDxoBASNJxV/rGgEDUR6eXqMeAQP4JjBAFyIBAVxHKoRnJgEDY/4dkU8mAQMQJSXjUyYBAXP7JrpPKgEBP1OzxCM+AQAhJDtcr0YBAp7RYh0zRgED4Jg8KYNGAQFBbQxXe0YBA3dQ+glfTgEBQg8e7NNaAQMFDxB1K2YBA7HmG5uLZgEB4TSMiReGAQKs7icNX4YBA4v8i5YHigEBufyZHUuOAQLgdC9A+54BAaoA09F3ogEDoCVy29+iAQATO+SbU7YBA29HHvy7ugECCegT1Su+AQOgTXSqZ74BA2rvNHPTwgED7NMYXjvKAQEcO+Wzk8oBAbY/shT3zgEB41FBgePWAQGvvPVId+YBAiI3aumn6gEA3WuhTP/+AQE4n2qwpAoFAjm/aYUAHgUDE0tcWNw2BQL9m5OA9D4FAnhcGhzQfgUAZaIe3NCeBQA5I2GC3J4FATtr0tQEvgUAItmSZMC+BQIAd9Ny1L4FASC6Re7wxgUA+AE1Eiz2BQOyBxTApP4FAzhDp08tBgUDjqRHKy0SBQP4kggTSRYFAsAX4aSdHgUCfxzBdxUmBQMZ2akkGSoFAFPuPpwpOgUBg0tHi21mBQFU/kIwBWoFACe0HFxtigUDO/4DZsmaBQCz1QQYlaoFApEj3G7ZqgUBMwrUEum6BQCbQVlWGcIFA0g+1Nb1ygUD4vWE7wnSBQHDsVtHAdoFATivx8253gUDuTReE9XmBQMyvwPIceoFABoIZdbJ6gUBqBn19yXyBQDYYQqlwf4FAAtnxdZ+CgUAtJk5dxIKBQFAJ0yjfhIFAnJftsIiFgUBLL8xd34WBQEHv0pNThoFAtNldjQKKgUCmV+ULpoqBQEOpXicGjYFAKM8nelWPgUB60ryf7pGBQLgkKM6skoFA+oiKUFaXgUDGPG+AvJ6BQGaHV3tVn4FAisp7I+ahgUAAWBSgFKKBQIRk4E3fooFATpL6ACumgUBcd8PKbaiBQBLowsc6qYFAwfggh0qvgUCOHgYkTbeBQMhbj+pfuIFAFF3bQ7u6gUDiCPJpU7+BQFC0rcgEyoFAmA6rj7HMgUBivYxi5MyBQJttgShez4FA2qelhwrSgUDFjyvTfdOBQIbTdajo1YFAHQf+LezZgUBOTkGlwtqBQABAZ3Pd3YFArlU9u/DdgUAKyOJxUeqBQHLL+fJY8oFAKIDZjBb3gUDs+/siPfmBQAzq1z/t+YFApFyj5e79gUCiGV7E5wGCQDzygNEDCYJA9gY3tJoXgkCjTeSZ2BiCQE+Yb2cpGoJAwGAG5GUagkAIRQvLphuCQFoUXGmQHYJAVmRIXi0egkA28ZrdaB6CQNukxsHVIIJAYDRWuDEigkD4qb7tiyKCQI4Vn1zVIoJAOGdFBh0mgkBE8u7NKyaCQFrIzhrSKIJAuLFLWJ0qgkDiVF9Y0S6CQHKf4HIQPoJA6pMqefxAgkCsojigSEGCQAtZailVQoJAoL1bANJCgkDXpljZrEOCQPRnooUKRoJAlBnPpUNNgkAUOf0W0k6CQIRodFd9UIJAjxj6wtxRgkAdhn1cB1KCQPyqDqJlV4JA+hcLcQxagkBAyvBG0VqCQLdWMXScW4JAqPsD1W5cgkB88XJD316CQC3FrTM0YoJAdJ0F7K1lgkDe2M8cOGaCQMZownzdZoJA0wFV/edpgkAF5GoyCGqCQGUrpYbWaoJAEm590KZsgkDkOld4b3KCQOZnxSvgcoJAIRky26RzgkAWvL3danSCQJBNLEJ0dIJA3IiOpAd2gkAoerWkXXaCQMqD49rhdoJA7HIJIgV6gkDOn60hYXqCQCMQxCmQe4JAKyKvxjWBgkBwJA7kiIKCQIfeAKyrg4JA4yX0HnOEgkCA7JNCQIWCQEhOz3FDiYJACly0AaWLgkCRytMZ1o6CQItRcz2ij4JAZAQJq0ORgkBmgAQ0EZaCQL7rq8ZtloJAviRVv6OXgkDOHv28PJmCQOPh9MpVmYJAtLnN+qifgkAEribfDqGCQA5QXaA6oYJArAMxR/KlgkC/zDgND6mCQPJo7WczqYJAu3OX1vKpgkAD2JVcfaqCQG7PdRr2rYJAl+RwHYWugkCQxgKmBrGCQApPJVc0sYJARBIAVrjEgkBSv6+77MWCQO6vOGESxoJAtHdfDqvJgkAV0sLT78mCQHw13CV/2oJAzjTdJAr1gkCGpeP2wP2CQCK9ri/EAYNAIVqCzrYFg0Bg9kn5ygWDQKQAVyrGCYNAyregwsAMg0ChHgn/OQ6DQNwrmJB5EYNA/hLBPjwSg0Apswf7+hKDQIZHjiN6GYNAoOYL/3Ihg0BItQJLcimDQKgqNjnnKYNAqmflodMqg0D8zU9AazGDQEpLfPoTNoNAe0PJyx85g0B0RrvPZjmDQAS7x3npOoNA3LNKQ+0+g0Dm2nqp9kKDQL4FPIyZS4NA7rSgtBNMg0DCNozQrU2DQESDDiKyVYNADJw033Nkg0DoPMWqRWWDQNJiAvZUeYNAzpRImf55g0D6ND/sxoGDQKicMPDhgYNA4NuDk7CDg0Cc9v+I2Y2DQDqA1ss+mYNAL4kY90ahg0CCVlIo+6mDQMQ1BPDnrYNAxK/TJs+vg0Cae8VV6rGDQKoOnBV5soNAiIha0eK1g0B52qpymr6DQLIi0LGVxoNATCL4/mfWg0BsGRuIYtuDQKCeR8kd44NA4ckK1dPtg0BeqVbt2vGDQMAPJ95O8oNAsE6X55P4g0DKQC10jgCEQDgeM2cBA4RAaKMTpGkFhECump68BguEQBqK9w+3DoRArUx3FdoWhEA4rnQ62SmEQHrNXoOrKoRA3pPomLw+hED4Mlvmi1eEQAq+u9WKZ4RApq5HiQBphEAyKUhDAnGEQPOdhhodc4RAIQ/EpbJ2hEAZOzRlyneEQCW21xz3eIRAnAUDDHd6hEDf72xoI32EQORhkJLSf4RAA2x75fiAhECwpkwtUYKEQKhWO1h/goRAfqVt8yGDhEBZ05JbSoOEQGbMex4phYRAUkVghPGLhEAggwQrLZOEQPSvT5tTmoRAnD1+xnKihED+OcrWH6WEQIKQ+VG4p4RAWzf9/0y6hEDYtMHfINOEQGD3gXYR1oRAmRYoU2rZhECeTmj4FNqEQKSc6yig2oRABhqWEgjehECzpGG2G96EQHShWjZq4YRA0fKDvQzihED2kUsOGOKEQJCGH6dj6YRAdBn5n23qhECGmXySHu6EQDL2zd+/74RAr8ZvaTXxhEDIroUsY/GEQOIY0ggh8oRABDVDU933hECH0P4SNvmEQK5JC2Ba+YRAPjeh01/6hEAA6YCJifqEQAwHwmTj+oRADkFg8TX9hEDC6gIzLgGFQKzJf2wyCYVA3vAGAEMUhUAeVYgF4RWFQBFfDPj3FoVAElM3An0XhUB2icL0FRmFQAKYiUexGoVA5GqWOPsahUCBRRhS5x6FQEwq1531JIVARRSb/I0whUByvWqAtDKFQPcUBk3UPYVAhNINJYpAhUA81R4x80KFQJbd17psVIVAbgvPiKBhhUC/VcyRS2aFQMg91qGrZoVALzm3Y6BphUAva5DaTWqFQI4IkH1EboVA8tNcNplxhUAMtA6rs3OFQLCvwCmZeYVA3jAvepCBhUA1UKNG3Y2FQAipkfuKmIVAsEKioSqdhUAC03mcU6KFQHGIlEf/pIVAwwEpIGKlhUBwVPiArKeFQLS2bM9PqoVAgCvemgCthUBCUX2mQK6FQLsD6GpEsoVABg8nc0e2hUA4RMV5BMqFQKIQghyT14VAN2EiOPnfhUAPacvrZuSFQDAatJr75YVAqFLJBJfnhUDDz2yrMumFQEXWVTaWOoZAMf+XkXVChkAmJPgWS0+GQBIS3nlLgoZAPHWk9iy2hkCeW80WJ7mGQHCuzRMkwYZA3DyZP8zGhkAk4uQR08iGQLbbMS0fyYZAyGJjA4/ghkCcCee7hRCHQOTteUQjG4dAlBm4mnInh0ATEvXwkCmHQCyipjeSMYdAmHFiRYw5h0Dc6f2pWkGHQOQeXkKLQYdAIG2Ofm9Jh0AZpLtCjEmHQG7+TWLHsYdAljQNK8i5h0AvURBKwMGHQEL4WwcDw4dACaMbYnfGh0Bw6l8c2caHQJ7jRbvCyYdAclJ+pb7Rh0AYawzt3OaHQKSQ68ClTohAjyspkP5RiEABN4rEqFKIQBV2HsMAVohABt6uF61WiEDQuQHAB1qIQHVa+A2xWohAsM/XyttqiEBSRNRCmW6IQBymHF/OcohADn/Mxix5iECofGYK1nqIQISjBG8ygohAngbVqYnOiEAszyWEjtKIQETkApuR1ohAavBMsUTgiEARtdY1NO6IQA== + KBZXds7jZUAYxSyCnORoQNzlv3T/InFAjMDylKaDc0ADpwfsrTN5QLOBOgxVlHtAFLSnMS6igEAeBBYtoxKCQFh3oNim6oRAsuS5aPoahkDsV0QU/vKIQEbFXaRRI4pA7IYyPqp7jECq8ifB3TuNQFC0/Fo2lI9A - + - yL5TROM8BkY2hz5EIC28RLRajUQrh1hEOZUCRRkSkER/hhxHKdiGRDonLEQHKhJFIrBHRFUWTkTWBfBEOTdfREGMoUWJi6NFk4cNRRwa2UWIJxVE0AcwRB0V0USkh3REl+PzRG2/SkScMa9ElP2dRFJ3r0RONG9E5gGzREIyPkQ20VFF6BsCR4yxVESZ/0lEmOSnRIJ/i0RI6DVGA82QRctUyET/VS5FPZQRRQGUrUb95F9E7O4mROuZVUT6JtdEbTnURAj+mkQzHbtFhhM/RGdQtEQjeUFEqZqBRAW6ZUQt08hE5LEsRaXJZESrxcdEzbFVRZixbER4gsdEaL0pRAbbCkaz4bZEtHgtRbtWnERQSuhEntNTRUUYeUStYZ1EppZVRDKZNkTzByxEUfoLRWWxdER2SmhEFwRURFoQnkTT/MVEIWrnRNj4oUTd8DJFEQkeRKeuvEbb81xEvRMJRaT0pUWsEVdETfZHRMQajUSRmbhE7k8uRfYlUkQsJRtE/KqCRLE1MkewZUdEqwqYRHnz70QoDnxGoms3RO+y9EXx5NtEVy9eREIMw0UhVXRE0P8qRNUkGEVlvVhEDCVGRNWwdUQZ3ydFfKXSRMO5LETM4ElEGBzGRAJLUkT0k1dEmcloRIIyjUXm78FE2/hSRCtPXUVw37ZE/bUIRTcc/0TfDLFFHt31Rl1BKEVSDzJEVlVIROpCwURU2hxFAGOJRBkxIkUdbCxEQGuHRFylLkTogstE3x6ORITvxESOU3lGDo6ERCptzEQHoJhE4x9FRKJOiUQeBFVETOlPRa16X0Sso6NEvKxTRP9otkR59VFE4adURDGKaEQvyFpELm6QROdcjUQepTFFY9NVRAT3jURIJ3REmxRRRGDCLkSLT8BE8HstRJrvbESW9ldErxqlRN0QhESIHrdEMYimRMXBnEQ5JKBEB+WwRZniVUVDHoNEVXaeRWu2MEXpZmpErB8jRJ4qK0QZY9REeJCBRDVx50WEqIdEASI2R+MOJ0RYsEVFl0ouRNL/lER+08NEwiKxRG0pGkUVac5FW7iLREnmokUQL1lEJ0RCRCXmW0QNDFFEoa4oRUp+KESr8YdEWJ0DRZxRuERS3b9EUYt8RHh2J0UdY1hFliKARFtBD0U+IK9EY2SLRD0yiURJ65FEyqAURQ3NgkQppchE2oZFRMQimkRXZBVF6TR2RFSX8EQm6nJEeCXYRGAoQUQd8eZEBXynRDmMg0SqkJ9ESf+VRQJJWUQmdklENhOwRAJpyUVuM4pED3GKRPTBZUR4FsJELYKTRJnT/UQ1E2BE3PwdRm2hsURtO8pEK8QJRTznK0Ry2bhEtnigRAJoTkSJXE1EVAdURO+mXkRuAMlE3/mBRI8+/UQjwYFEeuOBRJ8Yf0Qy4z1Ea+PHRPpUSkZCxcNEFHmQRTHGmEXs4GpFig0TRWKw0kSilLRE9IE6ROqSMkSFK1RE8e9BRnnQbUQldmBEk814RYdAz0Qcwj1EwNvERPzHjkRknp1EI8naROv8OUQ6Q15E6LF+RFOysUReW8RE3h/ORKFJSURxfA5Eri8WRLMimUS6RI9FUhR0RFw18ES0Ir1EsHawRKLalUVpjFdE0oUFRqYcqkX4qtVG7IQ8RKrhGEU4zUtFgN10RO65q0WQu0JEdEZHRQfGSUWhkF5EATAxRYlickZL96REYrNFRJP4NERDlj5ESZ1QRdCqkET8q2ZEyyM6RFFqF0V9FyJE5NnpRHOkZERW9KREETnORLIGdUTbkG5E0m/ZRJIzj0Wb8pxEsVKURJdxN0SsTTlEJX2oRS8SKUSUUhhF1vOdRPp9DUX8uJ9ElfiERpqXikRjfXxFcstmRMeQoUTZaJpEhGjoR4TmjUYvsl5EEtS3RFe4IkYFwr5GPwp7RUPZZ0ZKPodEHRa2ROfCn0SfyWtEuGsFRW3NT0TSD+JEKjdARIruv0WgJkBEMHIDRZYC5USBZYZE7HEiRI56nUR2qkhEjApWRBLPRESJKYxEAj4hROttuUQmGHlE9rNnREcO5ESwj0dEpzuKRnrY20WjQ09EAAYeRaZ+7EQJYUdEPgBWRfGcc0TMcmZEVC01RMREJUTtf4tE+2o6Rci4Jka3BHNFp2udRZWnt0TWNwNFVOpcRIBRXEVacAtFtyIaRVCkfkQwbUNESitFSeOaZkT0j0RGR1dkRX/0QERuKTlEc1jSRGX9LkWPR0BIP19VRCdLiEVzfINEw7ETRe2tjUX0UTJEyZ2BRppeckTM8rNE3bPxRE9ULUTPnb5E2ymARCsQxkROSvJE66ctRUi+J0RrWYxEW8vdRSq7nUQ3ziBF8xbwRBiykEQBWSRFumhsRGDmfUVjUORFLhVAROlGZkTyjwhFaH0hRNRas0QFl4RExt5IRWs3n0QtwqxEo9luRBCJbETOOBlFvNwhRK2Sf0Sf8Y9F556ERAnzbETX5FFE14OJROe1iUQbso5EnD+GRMK8I0UeuplEFTw5RDhrbEVlE6tEJEWYRHKjLETy3f5FYnayREeKCkVgTpRE7cSARIWGhkR2uXlEt4VpRB06YETAKMZEO3c3RMISoEU0GylEXOCPRJ6YgkSpGyBH2kfLR1Ar5kY7WxpGY/kuRaDvokRIV9JGQyE+RYIXsEXzFHdElPpFRMJ7UERMEYhE5v9pREoQlUQ6oDNEffiBRWk+7USZUpdGPWHnRabNY0ZOnXZFdY9BRL8a4UQOhVBEGniVRI3KpUQ+y8RExquYRH7mPUTg2zxE4nYoRA62tERws2hEOB09ROkUM0WEk+ZEhKyQRFcclERGsa5EKqmeRSxdlkSmdFlEoGsYRoJWmkRYEXtEr4ttRDG5MERfNUNFa7MlRFm6kkRiOnlEX6gnRAPvu0TbTU9E0scSRaikm0RwSFRE2g5jRLH5H0W++xhFbr6jROhKuERd3EBEBq9BREyQMERclGxEYAR9RTjlokb1CI1EnPA7RujuN0U45PREqK8lRMLs5kSkJaZF0OJTROu7f0VYL75EIyLlRFn41kWaObBExl4CRf7CTERIadJGBxCCRkUsX0TcHmxE91HaRPGC1EWuGNREbpqMRK4TuESUlWdFX4mWRPBVTESZAFZE6feRRCUFpUQF4sZHwZFtRXqU8ER/BhdFdrO+RnX/jUQGnZdGb1dERA7mVkUwS0VENZ5PRN5v00TRcylExC04RCSKrETxykxE0kVcRLU/EEWWWodETawYRCofTUQkGmhExYMSRQCEQEUot7dE2p4dRb+OUUS0D5tEdmbvRWVMJ0Yl5pxEt9AtRP8Z2ETDLptEFP4mRPGeakQ1opVEyRVjRMe4xkRRUPJGRPVLReBioUS9N8NE53OuRQVIRkTMPopErKWwRCVDSESYRD1EQmtfRMf/eERaO49HlrH3RAMrfUQihO1G5vBPRPnyRkRcKglGgDO1RZ6plkV76UVERNh4RFDGIkTS45lEUx4sRO862URvgEREgR5ARBsuJ0Q7jopEns8/RBTPjkWGqXVEcBNdRBp0NEbolJxExv+4RdM0UEQsKZZElWE1RNmPXERZBTlGX6EzRfOsWUR6OkJFqR6tRDgMQUTgID5E+Lf2RFhPWETZMIhFaSXBRL9EbESahZpEiIxcRI8gLETvModE1q8pRBVuHUQSKrlEWVqPRDJ2UUSDfCxE3yZxRP7npEXcnZ5Fn5C5RB160URewz5EafgaRiKWzESJ+RRFYqw4RN0cgkTNQH1EFqaXRYX1/0S4glNEDXd2RKwCRUQBsvdEydZFROkIaETpSixEBAKHRNIJQUS5EmhEE/CRRCxsv0Q1iCtEX9Q9RGasokSg7qpESQeXRN/iUESG70hEnHuFRF0RTURjpTNEI8yKRHiLJEQG3R5EaAFERD9aUkRpzkZE/VaARfyGtETapddEDchRRMfVMkSH85FE1maGRGcahEXYJndEi8iaRK2xjUSx+VFEzraqR8DIjkd7p9ZGUtppRCp6AkbV/Q1IPDGlRHLnoEZVNbhF/k3XREVMlUdZVfZEENtyRXTqTUTHvftExFCCRrF+KURMa2VEfrybRInF2kRI+6hFNm/tRHfgNEXwORpEanRURGS5WEQ4MFNEgH51RJI7aUTdSZREoq5CRa5/wkUJ0z9EioPVRKClLkWJdoFEX2oqRFJqi0RQM1lEOxFkRJk0O0QGBrVEzLySRFc8lESvelNE1pVhROJmh0aNjWpGFalYRTBQ0ESKDNZED7wfRRlRukRGfoFEtE93ROLSh0THQYNECUI+RPbnSkTyG5FEQaQyRCaosUTEWrlEUYujRDhg8EUMT2JEw7SqRCtfakVE3WNEoenRRPHSbEQ10CFEblygRNohv0S+lsxEH140RFYYp0TEFN9EMpetRMVTbET98G5IiGFQRbgFjERWPDxE9dqMRM+qvUT4v2NEXsRIRPKN1kdPeIREklS4RCld9UTwDZNEAEt1R8w1akV1sqZEFCE+RJCfYETgkkpGVbbtREw+i0WO2cREV8h1RDKNKkR2kXtELCeXRLCJiUT1901Ekw9ERB5ID0UR8GtEImSERKu8dURblktEbV2oRNo78UTtLoNEHcRnRasEdEZp9iNEwDyRRSWgl0TvTYpFoOH3Rka2BEYlriVET9kbRYMfFkWJzpxEvqvOREpYLER/w89FXEc/RWtSV0SoyKpEqeqQRAbeTETDeodFv174RJL1bETnhFFE0DzwRVVaJEelH8ZEEC3FRkxU2kWhp3RE/n+pRAE21EarlaNE2/CoRmxeWkS1uNNFF/dIRHR9S0UMfFhEDdaGRpjzOkTYus5EujtYRIXjSUTdWXREQY6DRKxZhkUSwS5Ec7/pRTBljUS0qndE4Wk6RV6nO0TwXB9Fu9dIRWlMiUQhtV9FkYxRRCng+0TBIzZEMupKRrzB4kTkpB1EdglvRKa7ikT/HhBGhFWwRQ6/b0R3I8REXxjUREj+eERT2wVHiqioRpjbV0T+TJxE11i/RdkWiEU+UZZEkvtiRLCzZkT7Q4dFjoYhRf+6aESIErdEUKswRDuFRUZGCWpGcbT0RAhOUESDFjNEhckMRonFT0QT739Fqp3ZRGsBLER+pbZFTYJNRC48QER9HiNFkUv8RE+wcUT583VEGEbARD7nQEQOM2VEcaKrRAeGukThtPZEIJ6gRGM7pUR3HqZEHyGBRHVxTkQ34zFE3t2pRBkcLEUlDKlEScHNRNtaj0S4D0lEFOJVRAuYlETOCNNEQiouRJAno0Q6ePdEFb26RDkz9kRuhnpEF801RL18OkRbyz9EMrR5RNiSBUXhD49ECZOfRLlL5EStPVZELr1ZRGR7NkTudE1EsC4/RH3JXETNufhHSCWvRIvgtkSggmlESIdMR58rxURYO3RE+zd5RJ+rAEcO+yVF+UklREyplkU9VARGQ3ddRcBMGEU6niFF3CiARARI9ER4bHtEkQt/RCOckkQDJVhEMxRgRK9qXkWDRVVEYnRmRFV+0kSI/3JELq9xRJXaSkbZGodFjn23RIYhvURX2DZEqztwRPuuwkRwruNHoFp9RNYfX0Q4plNHTmcAR3GLFkY4p0REuRtiRIWRNkWrHyhEfsY5RC8slUTmfCBFMrgYRQTLmERhmypE542BRHlni0RyPklEBIkbRCjnSERnX0pE/ZVPRLyqW0QcFG1EKeZQRHoLNURkLHNG+PdORc75vETipRNG7zNPRLroTUVesI9EW8lQRNR+ikRW30ZE/nRiRCLJW0SKqidENO/PRPCooUTC8C5EIHVFRK4YRkSH6T5Fa617RESIhkRtKqxECQopROsBv0TxfIFENVuGRGiXZkTalHFEQU3pRfmoFEUljbZECgmfRFmqjkekvAxFpVOhR84IGkeF/UNGvX5DRCXwhkQo1oFFPOxERJDlRkRXnFtEj8ZJRGkrQUQIqU1EQ6iKRKrul0SEOnVE+stkROOor0SWeIhGE7gbR+poI0ZsdzVEwywERV4Va0Xcw5tGAYEqRH5zLERU0EdGCvxLRKWoikR/yMxEWAxsRVzwUUVmfF1E3Y3NRQw27UTAMJVEPHFcREawlUXgM3NEmwMoRaOiZUSh5kxEDVK4RPu/2kUnw5pE7UyURWcaGkWT6P9E6vy8RFX/SkTJcEFE9KUSRIaUh0TUNTZEyIjNRG8hRUQGi1lEmzQCRxheYEWNHJtEet5ZRkp3LEUWvoNERWwmRq8QtkQ3zYVFPHelROogK0QyGllEpyJ3RIinrUVOZ7pFOOw3RJpihkW/OmxEs8V7ROHucka1khJG9GtBRXTI00S+3YJEOsg6RKV7RkTJxxFFqQ0RRfUjQ0RtP1BECi9NRBxHwEQDNwFFq0L9RB2xo0THT69EaYZBRH+VaET5azlEsiFrRNoOOEQ+PjdE9vSIRKr6/kU7dtdFGGirRWljakSN2wBFg3srRF07RkTCXBZGCM6cRdM+M0Vi82BEZR+bRPpOLUSRoJREZ212RISjn0QrIE9GMHYQReNfKkY5txhFVKSBRbYBcURfi+VE8buNROvZXESDXwpGDIKzRGYLZ0UNKlpEZKT9RApnDEUkAlpEB8kwRCazMkQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - jEQhGXfAckCFF+8a/cByQEB1Y3kOwXJARCdC3m7BckCYp6sfUMJyQJAaA2TnwnJAeORo2AzDckBygVOJO8NyQC39ouR6w3JAid3WO8bEckDZHwGyWsVyQITHFOeM0XJAOosiRRDSckAEUplmQ9JyQDJvyVKi0nJAcNA2YXTTckBE0UmKy9NyQMc7ZHSO33JAVqbaO87fckDGGR6XuOByQJhwwXlP4XJAiLPgRPvhckCwQZu6T+JyQIAMVuOP4nJA3GPIDyXjckDC9ZuryfFyQFFoLLTm8XJAVk6ePrbzckBzOVKMofRyQLxZ8UTB/3JAGAiGUmMAc0AdAkkm+QBzQADWHwePAXNAzeYknTsCc0B4VXjyzwJzQDJvnSVmA3NATo98hPoDc0BsgijSJQVzQEpFY/cKEnNA9g1C5ycSc0Dy5Ux4vBJzQGS4t63/E3NA/xG4DE8Uc0C0ttwpjhRzQNYomZx3H3NA7WlG+qMgc0C9nv7lOCFzQBtpZQd8InNA2AF/gs4ic0CcUMIlDyNzQB7BYAoWJHNA+JmGeM8kc0DUb9V6SDFzQFu4ns7QMXNAxpHRlw4zc0CSPR/voTNzQIrJSwzWM3NASQPCLDU0c0C8hEdMzjRzQGgTbcbZNHNAeORwC7k/c0DAes604kBzQIbIjl94QXNAbOESbiZCc0BEtxHvu0JzQE1q7m16RHNAvDZvBPlQc0AWtNqCmlFzQHaF4sJCU3NAyqFQ16NTc0Ay2REjhVRzQCit/RgMVXNAqFuzaftfc0AQ5PSci2BzQAwwD/IZYnNAd4tSZjljc0DGMLcGsGNzQDYe2BRicXNAWalffNtxc0BaaK/iU3JzQBJ8EmdocnNA/LxEgLp0c0DVRDh+THVzQGc939J4gHNAoyACkaaAc0B6oHnfDYFzQArvxOxdgnNAkssqhqiCc0BEwZSI/YJzQO2bztuHkHNAQpanME2Sc0BWRFjmZZRzQMyHYKz3lHNAjqOKfLigc0ABgpQlWqJzQCx6k3yPonNAK7/Nuuaic0C052ZHJKNzQH1bcpkEpXNAq01wZtewc0Df4rMkNrFzQH9l7uN0snNAl/EasLezc0Bhv9+xDLRzQNQTUOSgtHNAXQAVVfbAc0A6Mx8GJMFzQJ45MKrPwnNAzIWdSiXDc0AMEzSg+8NzQBxU5tnX0XNADj4LcrzSc0Bc3ZJ6JtNzQBNeBLZR03NAw/NQN/fTc0A24kOa4tRzQGyXvxKn4HNAzwEgjDjhc0CKjSBZZeFzQBx6k6B74nNAyTtAuBDjc0DAtcTcJ+1zQKJ2CZ5R8XNAdnDwos7xc0DmZ+sR/vJzQEtv6yg29HNAiJQNBIz0c0AUOTiR5QB0QIX/olR5AXRAG3gtUqQBdECPKqKYuQJ0QFLTpOnjA3RAXAiyBIgRdEBggWxeqBJ0QAOwmPJLE3RAJvfVLnUUdEA+dW0MSSB0QMQS+zQjIXRANkh0orkhdEBG1bFzuSR0QGxMjS9FMHRAJOVwZFQwdEBFcyU2uzJ0QMvDzmCLM3RAp1NTSeI3dEAO2576bDh0QCpTyddSQHRAhKGMv8hBdECMKr9tXUJ0QIsGOXOlQnRAhPs2QTtDdEA+2iH2eUN0QEL0wq05UnRAngraDwhTdEAubz3f9lR0QLfblyyMVXRANDlU2iFddEBkQK1xuGB0QH7ngZPNYHRAkuWv8QdidEBrs1n6eWJ0QADcJfPkYnRAAoJ6vrhjdEDUY/i75WN0QLRBlX4PZHRANCilDE5kdEAeFdB3InB0QDDFRxdBcXRAsEjlpspxdEBZjaQF9nJ0QJo1s446c3RAlqJPQzd1dECDQ4lrQoB0QOjfLdr5gHRAomrgtk2BdEDwxEh3JYN0QAC1n+NGg3RARkWQ7BWQdEB8efIYbZB0QG3Uo3wTm3RAa+y1U++fdEDRV+q0z6B0QGDEiNU6oXRARnWRrLeidECEJJ/1DqN0QG4jbMano3RAHFcdmE6wdEBxbpHCwrB0QLuj4CBwsnRAykv9o/2ydEDXHtrtx7d0QLlkkMIXwHRAGN8LfFTAdECFSITB4cB0QHr0Khx3wXRAnkH6BOnBdEBHCwrgDMJ0QIFoguVPw3RAxpswViXEdECvq0XdeMR0QLB9iwO6xHRAAjPAQMrKdEBaeeKryc10QCDwk+L8znRAUFM8IqbSdECBj1L9O9N0QGYHwUvi03RA5jxOSc7UdECU/0LWSNt0QLJD1ZCN4HRA4kfFfbXgdECCe6ZQJOF0QIz8QjK44XRA3AA5ufvidEB4/ZPiT+V0QHQcwT5v8HRATsm3CcDwdEBsf1T/BvN0QBzfIB+N83RAbrco5aUAdUBUHehuzAB1QF/MzShjAXVAwCxbW10CdUBSGynMpAJ1QO/HQWeYA3VAvrqV5pkQdUBY6EazahJ1QEZIm34kFHVAcJE3lOIfdUCLX63onSJ1QPywHqZ8MnVAzlm1ucs1dUBS/rbgJkB1QJ8e61zdQnVAZKQMVSdDdUC2T10+2kV1QJRm9lnjT3VA3sdBS/dPdUC/xDJZE1B1QBZaohNyUXVAdPUSuYFRdUCjFBiBEFN1QBLCe913VXVAtNtJggpgdUCOAeckOWF1QDSHFvHvYXVAVqoTkn5idUBqSkklEGN1QBOX825kY3VAfkmgZ/1vdUD0DH/Dd3J1QNZcUnWNdHVAarZmLXiBdUAFrm3QrYF1QLDWUHemg3VAZbwRRRKEdUC7C1JHmoR1QM5/9TKOkHVA7PJTmrqRdUA0IhpFb5J1QLeDnV2WoHVADYr/GbqhdUA3e8G2/KJ1QCT1Sn5Ko3VA/YL39aWodUBO7uf20MB1QKceJUhkwXVA+DUKW/jBdUDuFGbqWsd1QGKUTfqi0HVAALJZycvTdUCTWc2O5d91QAjtCAcO4XVACVlKZQbidUCcg1Zl5uJ1QMwzSz0c+HVAA/CUskcCdkCohnUazwN2QDhpd0NUEnZA1FTjndYTdkCtdELLTBR2QNRxH54JFnZAzIMe6vgddkDo5fHriSJ2QJQ78nSQJHZAutK+tEordkB/cnIlHzF2QIKyLVF2MnZAG2a+97kzdkC+bw1rHUF2QJZZskduQnZAQGqR+sdCdkDgcNvLeUR2QK3c2c77TnZAqOhYycdQdkAo80/9EFF2QMll9B+IVHZA8E4wCs1UdkDeVvVpjmB2QBKsJZreYXZA6nSAVtlkdkDoGTEJxX12QACtxNFpgnZAkiW9o6aCdkCXXXnm/YJ2QCw5zKOQg3ZAKdL3GL+TdkAn7sCQK512QAIWHOAPoXZACr933C6hdkAVb4XAea92QKo7ODBRsHZAyJbmB7awdkAX2oEqw7J2QOerfCUMtHZAjgFdn77AdkCAfwW1TMF2QGA36o/ewnZAhy5pc87OdkBy/SF/ftB2QPDsdv6e0XZAhOqth3zgdkAKBgii8uF2QHqBvYuQ83ZAito230v2dkB2bG1QNQJ3QH7abuQAEndApMHQSQ8id0Aw1ZcppTN3QEJI9f4MNXdAzGz2pc1Ad0ChhkMKnUF3QAx6hdU8QndA+mFA25BDd0BMKp5KJkR3QOIL7R4bRXdA3uCBGkpRd0Bixa+PklF3QBgt+g00VHdAaFnE+ylVd0AbGSVrfV93QEIRfQSQYXdA1MFDFidvd0DqlKSzn3J3QGbnXbCSdHdABCr9hfl3d0DF47bxI393QBC/iIZ4gndA/oQv9geSd0BKHgcUUJR3QAb1dwvJsndA23ZNjZi0d0AwSyIRFsN3QFYgLw7s4HdAenFmilDyd0CaDgIURv13QCGmQcz4AXhAOMIT+J8CeEAIzgsr5wd4QJyjsqVKFXhAUnjw1hEheEDu8jETbiJ4QM5qX3iKI3hAou+aOn4yeEDkOnbJDUJ4QKgPHrjlQ3hAijmpqxFEeEAgw8o4ekV4QC0AMtSGUHhAzKcqWcpReEDgPhZKq1J4QNrkOWyHVXhAy1AFqpdgeEC7FTS4+GB4QJYA7jCQYXhAlMp6NrdheECe49IluGJ4QBr1GE57cHhAUoI3Eb5xeEBkZVO1SHR4QNLurc9bdHhAIYdlq4t0eECwW2BHs3R4QDw+bmfhdHhAPnC4efZ7eEBcuPEnpoF4QFYTjhvVg3hAYyL98v+DeEAeKkIGmoR4QIFjCFjChHhAhvz0WU6IeECasfXzBIx4QEvGe62ojXhAxP4sm5iReEBsBJbhs5F4QOikq6oFk3hASsebc6aUeEDiN3luoKF4QIHH4n21pHhAWAMjfDqteED6ncGp2LN4QMZjRp7MwHhAmih/MvTBeECmyz2gFsN4QGWwd6wkxHhAOprXLR3LeEDU5eOtttR4QFWIiXOi4nhAnMhRIMLkeEBEysqF++d4QCxHeFct63hAlnDjhFfteEB+F9MOLfN4QFCYgFwC9HhAWvvAJ4z1eEBQ4vR6mgV5QPogdD8jDnlA/unWNWYTeUCeDdYUsyh5QB6oO1QMLnlAqmLUSmgzeUCklVn9szN5QM5bLvSOQnlAtA5H1PZCeUCLabJ/LEN5QDheeSP8Q3lAXyIBKc1UeUAffoTiRHN5QDUyzO/Tc3lAGFgGlhF0eUAgppql94F5QH6VeTwcoXlAkDBXuoOjeUBMKJ2cwLJ5QEQxTlmyw3lAswynLQ3JeUDC75ohQ9R5QGiSQX/N1XlAde4kw1DkeUDiLmHIq+55QNtQTtwR9HlANl3G+777eUA+qVV4wwN6QB6+J7b7A3pAGK3aIvkFekC/ZUs7OCN6QJ6Hgx0rM3pA5jDakww1ekC+r8r7LTd6QHVoiOQvO3pA/HDjxzM/ekCymfQrNEN6QNs3e14aRXpAQVb5k6ROekCO63FgJ1V6QF7ky0chXHpA7uGJX69gekDU3fppKmR6QMXd2q/8anpAhq6J1CZzekAM1n3uKHd6QP3rlG4se3pA2hF67m+LekDstLUt0pN6QAIaqt4co3pAELW62w2zekBFgDCFDbZ6QBfC3P0Qt3pAobgMcRS7ekAXDa0iC796QISjCR8Ow3pANvQdFTLDekDaQsPCvcN6QBYOCbkaxnpAHgjFHMjLekC4AlR+19N6QEJwDZ1j4XpApHT85PbjekBMlPVpPOR6QByiTkd25HpARynKcDbuekCiSfblFvF6QFD+eCxc8XpAZuaOO0j0ekB2qi8r/gF7QL0kxjR4A3tA9mLEHHsEe0DxflQNKQ57QGqPrclMFXtAIUvgyWYde0DY/CRPJyN7QLvDd5lvI3tAHkPlnM8je0AO2AgBWyV7QKrPegVfLXtAjLkc+MAze0C9k3/8jj57QMAfmETdUXtA63YqWg50e0DQ1FX6aXl7QDYaE1K9k3tAloAjFiKVe0CUmMFAraN7QNAX8Y8Ap3tACfznAgare0Aow16ECK97QBby4X93xntAKJT+9rDRe0BI7BI2AOR7QN1eeEYr5HtAr0nyAbvke0AW1sXblvF7QBjSwFuM9XtAu4/Fom7+e0DUWP0zJP97QNFh+c2RAXxA1In2stkBfEBGv1R3+QF8QKQMN9i6AnxAvpJblWgEfEB8E22kmAV8QJAsI5LSEXxACBx4Em4SfEAOQA17tyN8QLz4TzP+I3xA+GjluVYpfEDQd9cvzUF8QGWjhSbZUXxASHsp8QtifEBp4c3KuGN8QGpLbKnbZnxAVjK2KNZtfEBM3imxB3N8QFbl/gJEg3xAHMSoTeSDfEAyRx9Hw418QG4cOB0dk3xAamhYBGeVfED+VfPTKJd8QDEnDz9lmHxAhMQiE7udfECKjQry1518QIZMjwi1nnxAHvCDchmjfEBaWKfNKKR8QC7+MMqPpHxAPaBpkvmkfEAqF989w7J8QBS8ait8tHxAOlu27g+2fEDkr7jDZsR8QOjiD7Cv0nxAV+fIvfPbfEBWbEe+f+B8QJaNyNEf4nxA/czv0VfifEA6gH8gEON8QLAFcVH743xAZjNAVW3ofEAikErdFfJ8QIxM3iJV8nxADprZiAACfUA0NhcPSwJ9QNhv5CymEX1AsExFb0QSfUBwY+UFixN9QA4CK9j7E31ArhVDgVYZfUBCvTqcPSJ9QOCLa/JhMn1AzUo9mkc4fUBQWgr5oT19QPYx8UHJRH1ABxBF6zddfUCDqsD5s2p9QIpy1Gt5bX1A4nV5hjB7fUArFeCV+Ht9QBr2WKEcf31AMqfwOPeDfUB1aHPwIYt9QKmwb5yVjX1AlsdWoPCSfUB8D4o26Jt9QCNoOUozw31AZqC8jVHEfUCe1alo5sR9QODEkUhe1H1AMKj0i/TUfUBjxGQ93OJ9QLERVImR9X1AY8nEPDQAfkCdPIh/zwJ+QMOQAOcSD35AcoqwYkQQfkAeX6nIQxR+QDWtROg1H35AULAdnSIgfkC32xSXMjB+QKAkhSN+NH5AP3VAzlNTfkDeE2io21N+QIjX9u7DWH5AII7GwVpbfkCj23nQRWN+QNQIVhNmY35AY+Tr0lFrfkAetT99aG9+QJ6E3uFYc35ARrAbdnVzfkDMsMXRmYN+QIPbPou5iH5A3YOHVN6QfkDE4QbmDJp+QIIEva18m35AqlQS9CKefkAyfwI3kKR+QOiScaBirH5AidDY+B6yfkBEdU4XN7R+QNz31B9qtH5A6hvXgZG5fkDY288zhbt+QDQu4hxwvH5ANm+2eh2+fkBsWKP3ZcN+QLYDIJ7Aw35AYXUmvc/EfkBNAGqVIsZ+QGcRt/W7yH5AuoYDDW7LfkDgGEiKWtN+QDpxDdh5035AVS4JY83ffkCExA7+K+R+QIeYZYPV735AhBl0KFP0fkDIT1n94xJ/QM7EmXRCE39AcrXIXM8bf0A6+fGq9h5/QD5GBR/7JH9AZ4E6wNUlf0AmcuVjZjR/QA5UIUJVRH9ABjKLgKFEf0Du8Hs4qEx/QEazeak0WX9A0C54b81af0DQaSc3tFt/QBoWBuUUY39AgoxU2Ilrf0CvHnmetnF/QGrdbZbmdH9AGHIn65R6f0C4OgKdo4N/QLouiW88hH9AyG/KA2ORf0A6q1Tnp5F/QLh66ZqUk39A4Hi4ALOTf0BESRddM5R/QPypr6o5mH9AUgva5aOgf0AslQJ3XKF/QH07IF7mo39AXjfk9w+lf0DChm7E9K5/QGIT3KhSsX9ATohQAEG8f0A05oc6x71/QGJVqoH/vn9Aa95BEpXAf0BeS7UUAM9/QEI1uYrg5H9AFETUI/jkf0CXZLljU+l/QHpmUQGx7n9AxL5AdwP0f0BonuGoeASAQKq8aGXbBoBAwSrKZbkNgEASBvvmdg6AQHzRQj8mD4BA6dgr8CQSgEB+reTXFxOAQMeAdAK0FYBAEjqVohUWgEDQlgZTvhiAQJcPkAHNG4BA5AhYImkigEBC+9te0SuAQOa1LygdN4BAYJCEs/g4gEApRTndRjmAQMNaufjIOYBArsmrb3Y8gEDCZJKoIj+AQGmr6kgdQYBAmo6H589BgEA4dCUCqUKAQGI60K56RIBA5gZl1uZFgEAbsbhk9UiAQGgEVyoWSYBAXvTINupJgED0+0vZr0qAQG2JUA/nUIBAsHN4LxRRgEBAbrlfDFWAQIl0C6CoVYBA8oViRLpXgEBvyak1JViAQBF2/vPqWIBA1kFJPA5ZgED2C94hqFmAQEDvX3baWYBAbMRDMQlagECgdLtFC2GAQIxY41vEYYBAGC12WLVkgEDrVnNsoWeAQEyAVX5OaoBApK5O8fpsgECqzDTkKG+AQCzQfgwpc4BArvZ8Pyd3gEAV4sIvc3qAQBW5bf5wfIBAEILsACh/gEAQ8Z/E2YGAQNT4I3v3gYBANMv02nODgECwxnwtX4yAQGDxgrT0joBA8Cr6mAyPgEA+dDPWt5GAQJ5DDyBmlIBAi0ipd32WgEBoyQfNH5eAQLAqvGeNl4BAlNR7tOWZgEBGvxtBDJyAQJDparIYn4BAisJK7aufgECvt1Gwz6GAQLg+fggDpIBAjhptAxGkgEDGZVpweKWAQC57AET8poBAbHtcj6qngEAcMhrbhKmAQI6p/u0Sr4BAoO2/62KwgEDaNURBH7GAQPOwlfSPsoBATaWOEdmygEBsDAqsCrSAQJaOTgS4tIBAWzl52Cu5gEBkWjujVruAQFaAwc0DvIBATqlhAcm8gEDe9tZLfb2AQOCMaAfyvYBASHx7OTS+gEBhxrshDL+AQJj+Fbb8v4BAXtJhZizBgEBKkfhuUsGAQOZkbSyewoBAHoxVCgTGgEBaAVE27saAQDsyAZ6mx4BAzFJH1PHHgEAgQ5hRU8mAQJcbCQbByYBAqMazAdTJgECEqRpd68mAQB7B4ANUy4BASe+OXojNgEBam9dUCM+AQO7YaCos0YBAXDeHOUzRgEAGjVO7Z9iAQBcR5qZJ2YBAEi2HUd7ZgEBANiyAROGAQBPwNeNX4YBArJ6ZHDDmgECdHtmi9eiAQEitpJvQ7YBAVyIrn0rvgECaYSEI4O+AQAIYhGcw8oBAL/wvPD3zgEC63MOCaPqAQC5iuRBA/4BAJZJx7nACgUDyrmGGQAeBQLM5/M0+D4FA3tYNvPcTgUAefdp6GBSBQIqNNFj3HoFAXqMNnTQfgUDgt4Ierx+BQMVHXVo2J4FA5sIImrQngUCffes2eS2BQIUQT/UBL4FAfv0V8y0vgUCu0wH/ty+BQL4s/DF0MYFA+XVhHa8xgUCyAzYpXzSBQAQ6HAPgOYFAPBnfRYc9gUC4uzWmWT6BQOx/13ApP4FAQuIiEbRBgUBYVm/zzUGBQAyMhpIsR4FAN5PsAwhKgUDQSMDDw0yBQHK/a9UKToFA9uNwgG5RgUDpVokoGlyBQASsZWONYIFAYs9TFhtigUAuaDm8smaBQNZq1GYiaoFAzHBVIbZqgUAzFyFPnm2BQOmAC4dZboFAVNK0z7hugUC6EjudvHKBQFjn3UbCdIFAqmbZ/W53gUDol/0R/nmBQMjLP1IceoFAXpcqAG98gUCAXA9pynyBQLILvMKegoFABmxT4beHgUBEDKLnpYqBQJC4ZLhVj4FA5HXNlK+SgUCixxnmVZeBQPvHxXqZnIFAoAmFhVWfgUAIvXlJ6qGBQAAqQs7dooFA2mhOaJCngUBY1huSbaiBQPhU7/FJr4FABhfFrhiygUAbs/IBSbeBQH6zKqIBuIFAncewK0u+gUD8U84jBMqBQHeS76VCyoFAGgOHl7HMgUAS8FZlXs+BQFpVAjAM0oFA7fbGTH3TgUByOE0Q6dWBQNLX9u7r2YFAUiwzJ/DdgUBOWsmYUeqBQBve2aSS74FAgAspDljygUCSVvumsvKBQBG4KVjI9IFAm2bZhez5gUACDUqT8P2BQCrqnyINBoJAJmjv8QAJgkDXLy5B2BiCQINgCUwpGoJAP7LWdGQagkBucqxbLB6CQLDxqvHVIIJARkhO2h8igkDim4ZR1CKCQEah7fzQKIJAwCGgsSwqgkA2NVVTnCqCQL49KuLcKoJAPHwr2qEwgkDBxntQzzCCQFmOUU9rOIJAzZjSiKg+gkBo4Iol/kCCQApiu5oLQoJAQg7UOf9EgkBAQSCba0yCQPw9CwkUToJAWcvI/ttRgkAh1ixV0VqCQOtWwOSeW4JAYvPa+LJbgkCo2PGKnWeCQP0aPGA5aYJAkbDrbdZqgkD4Cl5fVW+CQBIjk7tucoJA1lPD1jZ1gkDIv72KB3aCQAyPlihgdoJAtOQTcAiHgkBC7bwvQ4mCQBj5RjQVioJATDNdG6aLgkBaAzwWM42CQCae3VRDkYJA5GOMz/KSgkDQ4EdRIJOCQK88/Xo8mYJAbDYm3AaagkBCpzQlKJ2CQLWHLLb3nYJAFqQ/Tw6hgkAnjXkNO6GCQOyedevypYJAJ9c75A2pgkCeAW2UM6mCQPq1CC9QqYJA6/uKyPSpgkBNqtGNfKqCQGarMjYrrIJAjz4QBAWxgkDIb1F5PLGCQLJ8VV/rxYJASY31Pe7JgkBtvtCdktaCQJMknf482YJAwLyxVH3agkDoobvDOuCCQIx4qbiu+YJAGCt5WsH9gkBhkXjexAGDQCMk7MK1BYNA/q4K2KkJg0AOG9JtOQ6DQDfeE1DwDoNAkrD/YXkRg0A2VNcpehmDQAQfPL1yIYNAnLa9xYkhg0COuj2s6yaDQKbntbxxKYNAmDn/1uIpg0BkD1hHPy2DQDTk/19qMYNA2PduuScyg0BWwRtIpzaDQADN/pQgOYNAIPaq/Wg5g0Cl4cvC6jqDQKKqOBvtPoNAZqKUI8BDg0C43t+drkeDQC53N9svS4NAwkUG2olUg0CiE8LCwYGDQCw3P+HkgYNAAE7UAUmDg0BhiXYD9IuDQMxdx+65kYNAd4B3PJqXg0BCXkQVP5mDQLTXMp54moNABCo7gbGeg0DBVUvIRaGDQAiFIdD2qYNA7orAWzOqg0D0Q3Ln562DQOKBZULrsYNAiO3/OOO1g0BqJmuwctmDQKrqNKL62YNAhf6NVtXtg0DmbbTGlPiDQH3lTVUBA4RAGA5A+0UKhEDmInZmCAuEQOARF8rVIYRAp2N4YdwphEDzYttUyi2EQPemhbNGOoRAtnLBrbFWhEAA8MyBLFmEQB5bqz1pX4RAGugrte1khEDknC0ZAGmEQCSbLLr9cIRAgma4xm12hEDu5DsQyneEQNYGnWr4eIRA0GFd/nZ6hECy7YKNI32EQNikFp3Qf4RA6BD+8MuAhEDEchG2+oCEQC4Y+wt/goRAbNGZwZuPhEDew6GdFZqEQF+/hIwInoRA4PoXCa+ehEAPfGkEEKKEQJIijZxxooRAa+kmTCDThEBlHHM7EdaEQKwFjhVq2YRAyJdeVhTahEADU9mE+NyEQPTzkGgZ3oRAJqFgJLHehEAcECF/aeGEQCaCiOYM4oRAErzrJWPphEC8ZftHHe6EQD7n/lw18YRAsxz5CmHxhEBW917acvKEQE1vfYLd94RAWIumqTj5hECUZ0KKW/mEQHtQtXGJ+oRAraUIezf9hEDeutPw4P+EQKZ97ggtAYVAYMWHBo4ChUCnaPo8RxSFQDSZaTThFYVAAt19wvcWhUAmY0cAexeFQDeBqncWGYVAHS+nrrAahUCmC1J0/hqFQJl8q0rFJYVArOZ5UM07hUDsprjPiUCFQNjUd+v0QoVAhlmvQ6BhhUDY8EhzTmaFQLXAmU6gaYVAbz0NpE1qhUAo3SpGmXGFQAEng7e0c4VAt+TPdZp5hUDG4Vybj4GFQEQvDtZTooVA0Go4vP6khUBmi/3xq6eFQE18vl1VqoVAQoFlMQGthUAUGU26QK6FQOj1AgZEsoVAcgU6rEe2hUCcoecEAcqFQDgvjmwIzoVAZj453ArShUAsJM4sXeSFQMRgKZ/55YVA3P8LEp06hkDg5uRevkiGQDf5d+4XjoZAihFegiW5hkBm3vLdLrqGQARCddbSxoZARlZaU9DIhkAUOSHLzcqGQERZAxqI3oZAaom99iPqhkCEnWSCgwCHQG7VQVaRKYdAwjxxfY8xh0CQZZvsizmHQJVxoqxeQYdAxFLYrYlBh0AgC5gpXkmHQKRd2n2CSYdA3kfqGcexh0CYLeqbxbmHQM+6i02/wYdACt3U8HbGh0C7LxSBxMmHQFwL/ytJyodAIO7Y+C75h0A/a5eNpU6IQKFEuiT7UYhAgsdU76lSiEDeq+RpAlaIQPMeeE2sVohApEu5IwNaiEAjFZafqVqIQArB4yLhaohAa5ztAM9yiEBg0CKCqXaIQFgf0GXXeohA1pMiCTWCiEAUKu43h86IQKS0oPOM0ohAzk2hf5LWiECwOCfPPNiIQA== + 4qRcexsiYEA2uAwZnGNiQI5NZYVLA2lA4mAVI8xEa0COAUf8vbJyQHEOZ2W+s3RAsApJLUEjeEDHYmtqViR5QAZfTTLZk3xA6Wttm9mUfkCD3hTDmNKBQFjjgOr4YoJArgiXxeQKhECDDQPtRJuEQBI2YeJwY4ZA - + - kG8wRK7HOETvSlRExkseRttEnkSPC1VEOs2yRO7oKEWXK1tEqGXJRA/Mq0QM80lEJLZyRMVaCUe904ZEUibERHM+V0RTB3hE6GGURJVOB0UDx61Es2ApRMSSWkUEK7tFjhAXRT18SEUOW1tEXFxYRDJD8kTiEbFEO2CbRHyhm0R+EHxEk86CRHk8AUU/0lJENpgbR/+zT0Qs829Ewy9GRHIXnUa5SW1FJyuHRM5oSEQDD+FEihylRBXwo0ZWhbJEmdeARK8J+USIyRpEVNDWRUsf30Q7NTtEbD9ORPx8WURQmqJEzLu8RFvmckQ3um1Er6UtRWJyiUQvOo1FOkFkRKHhokSNAR9GiswpRarLPkW56bJEjpRdRYkNt0TLy3tE0sTwRPGngUR/QjxEL6HJRBDYNUTLPDpEm8F0RBp4oUQlx2dEnr2ORA749UTdythGW2ZURI6omUTFaZJFixMqRLVfdUSUG+lE5JlQR2dfnURWgoNGusAJRhzl5UXa8I1E8ShGRNRAb0Q6+C5FA4K4RL3gp0R1YSlEBkADRdBZ90RUimBEmg3LRBO1QkTCx+ZFONWGRPecgkQwR0RFfoyLRB9kQkSxIpxEX/3JRGSqkkVEeDNE7idkRl3PzURsuahEHXCjRNRZRkTOSMBEoreVRLRHJUTu8r1EATJSRBqKq0SOiJJGXPoLRSiRVERLIoNEr+IBRQ5cK0Sf7mxFdD+XRFULbkTCsW9E4dQsRZwPQ0SHx1lEt4CERLY3BUXTTkZE1clxRCXAVkTXZFVEoChWRLCsdETXo59E0wjBRAmi1kRtqXBEv1xrRB29wEQDqLRE+QaDRcanY0XgnXBEOsR+RY+fA0UnX6lE24SARJGDM0RMVptEtf3kRFMVtEWnI0RHYHJTRHF1MkScN3ZFhXSlRDauikR68c1EGPfoRWTJvURbJS9EynyeRTVwiUQXftBE2G4+RfTw2UQcWTZE7wekRBxbEkVKFkNEMt9HRAlzxUSzWj9FfFLHRMgXpkSdGFFEybJdROjll0TLKLVEaUSAREsEZkQmQANFm0hbRP4CYURxu6tEZRBFRDjtbETuwMlE6iZSREnvzEQGZGhEY4umRBufe0Qe/HlE8pCRRE0pj0TZEB9FoW+BRNXX1kTIN0RES/trRNxvMkRy17VFv6U6RF0hj0RzYp9E6xi3RR+BcUQ+A3VEfGKERDjNaETbojVFZfOiRM0aAEYHqYlE/2IdRYY5SEQe7ItEffPMRNQbWkQ2zCxEQx5ERDHAl0QHHSRELIOQRITVy0QHkhZFW8xmRBOkHEWO21NEdNJxRDiqM0QKSUBEoDNTRMRIEEUKHwhG6uQIRfzUnEVnKndFq9T4RMmgyEQwFlVEFfxxRNG+yUQg+1hE2gh0RAT2SkSZ2B1GTn4zRVIWtEQ0YZtE+t4MRYklMEQcEI9EXE3LROgjlET36cBExUjTRL8KekQ5w6FERKN3RfQ99ETIUzVE4ytuRIEev0Tfo5tE+w1HRNXQMkVxrAVGjO7JRd5tskZl7GxEqQYKRSZ7iEUD/IFER1QuRVQHlUXmI09ET1SaRDw1O0VHa05EgMkIRmTuwkS8BYBEmH8eRUKnQERGZDRE5bVWRKSnOERG9xBFTjHRRNinckR9uL1ENOgcRENwKETttjREnSuARHPw70SElmJFo+p8RD9ykkSra5dEg/9ZRR/tf0Q9YcNEOMFYRB4bwERAkipFBRttRGbBR0TNYYNGSV4oRXUvv0SaCexHwxWWRBWhoEYXca1EpPYCReMa3kXrnLlGw+eBRTN2SEb2vG5EG6HCRINHUURT9uhEWc5ZRdXtVEVBwn5Ekx7ZRBupWkT+L9xE6tGeRP+pWkQzrkhEWfKFRFhkUERsG11EY29tRE6Pg0biVFtE6jKXRfyck0SO3HREnYUqRARKOkWsc7JEg0qPROjUl0QDqzBEPeVvRfMPLkblYZtFv5x1Ra4cUESn2jpFgnVtRFpszUTMD41EgAFQRUxOnkR4NUBEoU6DRDs/m0RZ9rVFsGtGSXvAnkWX3mVErPggRld/AEV9HgVFs11YRdj/REipXZFEBYuDRRcdQkTgHs1EEaMoRXoTeUT/EqZEUeulRrC1JUR2ipFEYhUKRUp+UETS3KlE30ZIRAHyDEV9dVFE2JduRHzDPUWVWfRFrl9fRKX8b0XndUFEh5lGRQdTfURN94tFZxnVRVJooURIgFlErUkzRNqRakW1SlxEKqBSRDLG6UShGMNEPcSmRP3UUkTUGbFExwRyRW7a90SV2YFEWGFeRM0dVUSTgIFEHJMkRNHWLEXX0gxF54AMRc+rrEXJgs9El2ihRDDLXETgXXBEtPmwRAxhRUTrj81Fw5OTRGuZYUS6IzVHZbK9Rxt9MEf35p9Gh8TnRVD4MUVPxM5GqhArRDie7UToUmFF1z96RNK7vkSLInBExFqQRD1RFUXlBoJEs3GQRNR0ZkR1NFVFuW98RirdxUVn455GTIQCRqTHs0QtN15E7J+PRPbErkQczINEv4K/RIOqj0TneABF/L6QREfNxUUxbEdEaq4HRYSysERW1nBExbZ3RK5TiES1T6FEmcqkRabbr0QqvhhGQKRMRMxneESzLCdEFxtpRHKxLkX/nopEYUASRQ6QTURAFzJExIhsROdoIkXt3cNEPUcFRelqokRkwb9EQrH3RHOxo0Tl0K5EfYwcRV9Ud0SzjZBE5eF7RW3DqkUc75VGO2CIRCdbWERW5pxE4+xFRh0pukRqD1JEY+IMRUXlkkWeSoFFKBtdRAxqlESRBb9EbhgMRcDvrEXhgz5EDgVaRG2NH0QPjjtEK1KCRFAcv0Thw3NENWIuRAWzv0YB3G5GmKK0RH7xAkXB+ktFZQuvRMNnrEQ8OVREXBlPRP/KjERK7HNE2/SoRDZY2kRsfmRFwaY/RI2FoUSWxjlEdr6HRNGgzUSUUTtEMdvSRxCxRkVeroBEVLFSRbprEUVRartGYO7/RHQci0ZHAndEQHtORTCDV0TU+p5EyBJNRGl+zURzKmdEJksDRfyL6UQiszdEcwRTRFSUeUS27CtEpUNTRcfsSkT22UZEGvwDRVlUdUR7MdFEIaijRBzROkSN4EhEv9UnRnpCIEat5NZEazffRHI8nESiJbNEmTbQRsAcJUSO5FlEnSUPRd35METL3ohEEIi+RbnNRkRNX0FEKpFlR32HcURAOV9EbSjTRnO3lUV4MaBFpcgERVcRjURwOx5EMzYzRCQtUURA/pNEqBKfRMIET0TNdmxE7KtrRJhLGEXhmSFGBqdeRHTh+ETrY4lFN4OYRJb/nkRn92tEM/FWRFfaAUZfajpEUmLuRJlr10SxZWlEb4plRcaU5kSRDsVEbjqNRMdKyETzFYdEbauQRBIBKkQlBFZEdjwcRQtXLkQhG3BEjb8gRY50iUSSsyBEpwDvRP8U/kRTvU1ESnxXRBanS0S0MEVEL7q+RDpYfkVWTDlFesBURCdKUkSnPZdEAlwkRrMqtkSYbMFEbINMRF3HXEWtpSNFEIkPReb/IkUoE5hEuHK9ROaCVkQ61uFEtEoqRPf5SESOgZlEErA5RHJ3VERc8klEuUVoRBal5USBHIdEwdBWRLibk0QDN3VEPC8/RIR8MUReHVZEmEovRO74pER0Z0tEE6uARCQ1hkTlZkxEEw2gRTQ8PUR1551HkX77RD8jX0S/B3NHzyjdRi6hs0VEsPVHR5sERSmTlEaONsVEL9LIRW0mzUQ53YBHvKCBRdz2bkW0uxpFsz1iRpfqiUR6x2tEoJZyRJdOfERq21pEgAuURaj6m0QdhYRE5ZixRFA6QkQyuQxF1RWVRDHKikWAOjNFLfjdRHyFTkXbeHxE3iukRFEyd0TwNzdEeGPcRI9zh0T3RKpEmk5QRLALtkY2tXlE1suCRlQOMUZYcxdFRO46RKBPMkUrSoVEXzhARM6D0ETjdE5Eq/8vRHBcWESRvs5EJhKoRJ872UQYB0JEu+pORPWM4kSbE6BFl+A6ROPhMEViOTBFdNc1RCYlYUTSDVZEZR1gREMLxkTqCBZEFStxRMifMkXW8tBE9cgARbI7TkSaqEJEy1PsRM23gkgM8CdFSpevRFsVK0UJBrxEX3ktREXt70fJzRlE48jlRPX6SETXojtEQz05RDbXikRcXpZEFKGCR+okQkTdaytGRyBvRCzymUU/5qRElC5dRNZPiUTMTU1EX4uuRDauQUQaxENEx5EQRdRiqEXYlkFG+/daRGnZnEUJ3JNFIjp1RB/6PkRKkjxEV9TWRruZMUTPQLZF5taBRIW7PEQOlQNF9Ve8ROUIRETBrDpESUrERJmlSESazldEu+09RBMPakSAL8tFPOUyRH+w90QDSEVEF/LpRBT1OUT/lJlEUntsRF5zVUQtMWRE5QIXRnlvREfw2OxEZ0zeRs9eZ0RvJFtE/AEKRi+86URnioFGzr9xRsaeTkQntstFKe4/ROqDoUQ8wphGcNkuRELbe0VigPhFMgqGRC8IGkV055BEVcYrRUtxGUVfz0VFd55TRP7PoUSVrCFGu6tGROH3rURhiB9ERJZZRBWV4UVp5EBEyAi8RTFcakXiP19EHlXNRMnS5kbCmD5GdrR6RUOnuUWNJ0JEkDSdRNVKhUTylG5EyE5CRbEaKUVzw0pEOQRBRNZ4WUbQVlJGcn+jRAn93kWTBkNF3dWrRAZpr0UtuDRF/c5tRGPErES3kr1Eah+KRP2gfESHRWlE7IdKROhRC0X8mKdEjb82RPE7WER+iaJEInpaRMNpWkQZrutEapcnRHQakkQpvdtEsPZbRCACfkRBDvVEffeLRHLCpERJRrNECwtBRORvvEfsVUhEfARNRF96kUQXzD5HtGxlRIkoVUT7H8ZGP4GxRLnbH0TTcT9Evfe0ReJ540URvy1Fq80GRQZs/0TeMVtE5+GAREIQnkRUk3hE7+mkRGKPOkRnrQFF8ATEROJ1TkTmRahEbmgURS4sSUSPddJEILImRktkkkU/0YtEHwQlRFrEh0QMEkBEmcLlRw4KVkdM/PxGUewZRTcGg0QANA1GBIwxROQ1akRBjThFMqiCROMFSkS51zpETR9cRJHdOkWo549Epf2RRHtuXkThLDlETdRGRAbZW0Sh7b1EMnLXRMKUWkSySVtEktGqRD+JaEYUMpVEYSpkRGnlZEX+GytFxgBIRHhWuEV7gVBFfbJGRLUQSkR90EhENDC0RHjibESpcTRFT/c/RK3+Z0TiR1pEy7K6RMUZtUQvEnNE3dk4RPSST0R4Q11ERCk9RIcMw0VlPhBFXsIuRNA8eUdkpchEok19RzJB9UboBz5GYcd4RBIvpUSLStFE054vRBsuU0QHaZZEQSdrRD49TET9zERErevsROEJakZZUfpGqFwSRhb2SkRwdGRFkoVCRDpbgEYACw5FiBYVRh9l2kTIaYpFprJ9RcmSOETugZBFwISaRJjWbETmMWVFjBm5RG9llEQgdqRE9ZpbRGbfIkWHNWFFWJUpRdTXmUXA0SVF71G4RJN4S0S51/BE/HOgRE7ukEQfJGFEywAYR4d7EEXU2oNGQSYBRXBOJkbcVaxEaD+MRSCtikSegpNF3xOhRT5lrkUpQbJE6Cl9RCMqdkYQ+yRGQg8wRc1atUSHLLJEQ4y7RKggAUU61CFFJZmyRMomWURo6kJEMj23RCLhdERXmmBERm2SRLK+g0TOgEJE4E1KRIEvlkTe9xZGVP6gRUn7bUWhGKlEI4b8RFtuNUR0/oNEaDoDRhIovUU+tk9F1UGjRMcQD0XsQ3xEGo+DROvbHkZHyQhFkEnTRXRWiURoalRF/RppRJxDWURQnXtE5dMIRu4IUUSdaz1FKwieRB3CJUUvZ8pEGv+ERH0shkQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Xt0MPgrBckAcrCKAbsFyQIjtxVDGwXJAIf6SelDCckBgDzzy5cJyQLSkzEc6w3JAtkN488PEckBithnhXMVyQIZjXIl70XJAi2zrXEPSckB0XRJNTdNyQGyu4U9303JApcM2ec7fckAS/Ue8t+ByQB8oyBtP4XJAN0h7DfvhckC42FUMUOJyQHyUDvSP4nJApAIeRyXjckDYWa9JUvFyQF9Nfo3J8XJAzxKjAJzyckCwdgqbtvNyQC6eA1Oi9HJADoSzbML/ckBL0xJ8YwBzQAfdWKb6AHNAC+GzlUsBc0CRG/MajAFzQN3KhoE6AnNAdNo0XdECc0C5KOGl+gNzQC8vfJWOBHNATLdzMCIFc0CYPVvuCBJzQN/2LysnEnNA1uMiJ70Sc0BwaWQ23hJzQMy8sdkEFHNAoqEDW00Uc0Ca5qW8eR9zQOGpOEgNIHNAaOOlRKMgc0A8odMJOSFzQC7iDuhjIXNAft+1xXsic0B4gJ87ziJzQIyePQgRI3NAvw0zPzkkc0BfJ7CKziRzQKMVHvBKMXNAHDR9jc8yc0CAvJqfDTNzQAgvMkCjM3NAEAyaVNUzc0CSvt369zNzQCJ5Guc2NHNAoIShU900c0BijtYZuj9zQCm8s57jQHNAAg+qxHhBc0DYla1tvUJzQFY7y1t6RHNAddm6GPhQc0Da5EKjmFFzQJTcrzkVUnNA1CTx06RTc0CSedO+hFRzQDF2IYD5X3NAKgiftJBgc0BC1NQHAGFzQBllBJz4YnNAmazCLTpjc0Ch3rsS0GNzQOr121FIcXNAQuEtumRxc0BaCEVT23FzQEb+M4JRcnNAQ0kvw2hyc0B3WbLpkHJzQK5saI+2dHNALYU9C0x1c0C6lw1SeYBzQAoRrRmkgHNAQmq4IwyBc0B2dgiMXYJzQMz/5T7kgnNA8Www1f2Cc0A/8k1dD4RzQBJBHD2IkHNAoE71pcuQc0AOo9ygj5FzQNwes+TSkXNAIC6oHE2Sc0Dhpg4r0JJzQIsUa0LMk3NAbyynkw6Uc0C0sPV0Y5RzQATg/OP3lHNAj/4iK7igc0D0bPNf56BzQIRbn/2uoXNAcSXUaVqic0AqxZ3wBKVzQAKdWGTMsHNAyn4RGTSxc0D0NCbYWrJzQPjf4KwPs3NAnSSIvbazc0ByMWhkDbRzQNxBWT9hwHNA/jmmovfAc0DKczQGGMFzQMMdT/M6wnNAGsNsglLCc0DiEmuIz8JzQOgbuOAmw3NAlsPAaRzEc0BFtYOLF9FzQDyuZnun0XNArFjSSdjRc0DuqmxVu9JzQJCWbCTb0nNAUZYcaVTTc0AwsuzL99NzQPwBJcLi1HNAZpn9sQ3gc0A0ZwA8pOBzQIJ4yJ444XNA21ygM2Thc0Agkp8AfOJzQAwnGnMQ43NAviQlWabjc0COhhf1WPFzQIa54qI29HNAGXRwoo30c0AQ22utTwB0QGyfIFXkAHRAPQMc2HgBdEA3FOt3pAF0QDMxd2SJEXRAZsfs2KYSdEAP9+4lTBN0QDCGJgHhE3RAGudwC3kUdED0rLZySyB0QF66sLa4IXRA8AxCUrskdEBCvMnLQDB0QDC170tVMHRAVgHRFLkydECozvtQGDN0QOu5TzA2QHRAJu91W8xAdEDqUz55yEF0QOKX9QFcQnRAyqLHxadCdEBorvCjeUN0QITnnWrXUnRAgEOdCgxTdEBMdyGG+VR0QOZtpdWIVXRAILxXBSFddEAy00dJ/F50QO+0+iO4YHRAvjiL201hdEAslWbMB2J0QFdYT6F7YnRAHlUxSudidEAu33Lv6mN0QMzdFUdOZHRADE5AAMdndEDJMw+/InB0QErv+AlicHRAONxFZEFxdEBtM+6VFHJ0QKyo4s44c3RA4IQ4CqR0dEBk/c01P4B0QLrHtPL3gHRABQH2AU6BdEC4kOAcR4J0QF7ES026gnRADogYMCeDdEAOc/jUFpB0QAgR1dBmkHRAF/elUVqRdEBgkbq8u5J0QFNLkBsXn3RAn7+Uy++fdEDWhxSEz6B0QEwyTr05oXRA+puZfI6hdEDeEV3WtqJ0QE6rTCoPo3RAECz2QvmvdEDXXHCbCrB0QO7QIsfCsHRAUqI800SydEAiKWHIbrJ0QHpWXpb+snRAFgMjGfazdEDw0JBNy7d0QBmDS1u3v3RAeA9McePAdECeEAu5ecF0QMxQ0J/qwXRACo7iIw3CdEBCjmQNT8N0QLIu4PAjxHRAbibsp3jEdEC8kjelt8R0QJzjB2rIzXRAdJcBhfvOdEAgEzzO5dF0QM/BEArz0XRAkux2vqfSdEAYAQMWPNN0QFpJUxri03RAek8VuXnUdEBclRkT0NR0QBCAzBC24HRAUFunLyLhdEBaBV/ht+F0QJLX1Sv54nRAut0o1o7jdEBUSnFCTeV0QGNM72B08HRAjP6OCVLydEA4tAqsjPN0QK8Dsfmi/3RAzo8mTKUAdUBuUkS0zQB1QMiyAMVjAXVApiUrhV0CdUDs3V/nowJ1QMtJkGCZA3VA5A4oePsEdUD2oCQAlxB1QPxitsNoEnVAGvRimyIUdUDzEyMJnSJ1QBBWuITnInVAuj73qV8xdUCw1jTtqzJ1QO1P9d9PM3VA3ZxYxsw1dUBdPkkUdkB1QJ54H5mzQXVAHWuLRd5CdUBKGliDmUh1QCYtPAGCUXVADgfWd01UdUBBUnwWeFV1QGZjZusNYHVAfrCp1aFgdUCSa36YOGF1QOC6uuVnY3VAhv7ZBf5vdUBG+ja3dnJ1QGH/JmCNdHVAWJ1Oo+CAdUDigjqMeIF1QDHbxCqtgXVAdXryjziCdUBo6LYjpoN1QM/r2xYThHVAVKkmuJqEdUDlqfK0jZB1QFgYfYS7kXVAwnwtdW6SdUBsn8HPPJN1QMxESrsioXVA4Ei51LmhdUCCjHAaSaN1QMilxLSjqHVAIu77Mf2tdUAQwWVvlbB1QJukJrynv3VAy7jdmM7AdUAQTO8iNcF1QBpvhkRlwXVA+D/xhfnBdUAcX9qOzNN1QAfVn0Pk33VAFE7LXQ7hdUCKZHEYCuJ1QEq3uG875XVAXF5ixSbvdUAK5K+lafN1QBzBZXVNAXZAlGj8W0gCdkACJ/pVzwN2QIIRj26BD3ZAcDqJrwYRdkCNEFRgTRR2QN4h714OFnZAuXp7s4gidkAeaHc4kCR2QNxMpFRKK3ZAu7TImB8xdkDUHQ2EJzN2QDohrE5RM3ZAKt2IWLwzdkAHoJcLnTR2QLKo+yPpQHZAlnu8JR5BdkA8si5gyEJ2QPfr6wp5RHZArD+RX8tQdkCskBCeEVF2QPkriFCIVHZA2I3TB81UdkCu30K8IWF2QKkQk4jgYXZAZLjTkehjdkAKYJHJ2WR2QIppp3RhgXZAGhAXW+SCdkB07n7jkYN2QGuIBRy/k3ZA9NatBdGXdkCJDODquLB2QNZebaDAsnZAaOfeSQ20dkCcxG62sbR2QPgCh7h0wHZA87Y+V7/AdkBE4jZF38J2QKo8BokaxHZAnZwbRs7OdkBSmKxvn9F2QGK8nuHy4XZAjGDLmtTidkBCuBUlZfN2QAabga+S83ZA7pUcwKcDd0CzOYsjARJ3QGU29icOIndARMEDsnUid0CRch9GuiR3QAQ1FHWlM3dAG860Rw01d0CA9LIHy0B3QI9kJHqdQXdAIgL+6j9Cd0BAiHBRkUN3QG6MUrQmRHdA7LtfeRtFd0Ake/K6SlF3QA4UqqKSUXdAJ0wH/itVd0BXcCwkkGF3QLckJVahYXdAwm91jjpld0Aa+RYVJ293QB6WpGKhcndAvumQrJB0d0Cksw7R33d3QFRDzSn3d3dA3G1i+yd/d0AYC2vXTYF3QF0IO23jgXdAtqBlRHeCd0DwiwycnIJ3QAqn46EIkndAeWcWckuUd0Cl3Yt3t6J3QCbO8kllo3dAno/B1aSjd0A4bbf1mbR3QIhgcBVhvndAXqSEbeHQd0DihxMjOtN3QGLz5uaM1ndAfCvYQOngd0AN0FA1TfJ3QD4/1LtG/XdAUuZeaKECeEACAFC3OwN4QPzwpSzsB3hAACeXH24ieEDwidCwiiN4QJBu6fsHJHhARJV5ghoweED6wwXrtTB4QKJKOqd9MnhAkIapvgtCeEC6SZ/QEkR4QBRjHpB6RXhAqG1tTIZQeEAUtj7MylF4QOp+ftCrUnhA9c/+9vJTeEDW0Yo0h1V4QJji6Dr6YHhAgq+an7dheECWxDi3uGJ4QHdvLXh1cHhAZO70Wxl0eECrrKbOT3R4QC/X6NmLdHhAoCVsSwp1eEDU+ADw93t4QFJ3OOWkgXhA1zyLINeDeEDN4/nW/YN4QFbnbRWahHhAwpfwRVCIeEDsMBalBIx4QFykRsSqjXhAWMt15peReECMvz08CpN4QAF3PM2nlHhAtB9GbbekeEA0Of0uOq14QP4jg1nht3hACe996MzAeEDpN98PF8N4QPYuDpIiy3hAuLZyXTbTeEDhEZwjttR4QDAsI6yh4nhAHrPGMPvneECw2ydmKut4QHiYjUpH7XhAmT3UTVfteED6CIZCLu94QLj/XkQs83hAA2+NT4rzeEDMPIs5A/R4QB5R4RU89HhA9cLVbY31eEC8xQQSWwN5QDajC8cPBHlA0a06frcieUDsHYlGviN5QGR7h6yxKHlAZ4HxqA0ueUCwZ9GHtjN5QKxLSL2QQnlALLXHgpBDeUAZdkVdzFR5QCtdnUflYHlA4FONGG5oeUDuAZQx1XN5QGxWAJE6j3lAEX/FFBOjeUBalF8fmKN5QNzDJqfAsnlAmCKEu9DCeUDXZ4BTs8N5QLh8do0OyXlA+NkdjVbMeUBpS0IhKM15QMozjVFqznlA1J/t+ULUeUCGx0r5zNV5QF6TfU9P5HlAG+Di0VHpeUDdGCkVHet5QKm3utH8A3pA+DiZpgwUekBWD5KnNyN6QISRQTkrM3pABV/+zww1ekCMR8RCLjd6QAnLJe4wO3pAElApjjY/ekCQm/ebLkN6QCRZE/fhQ3pAPFe1tBpFekDQE3V9BUx6QNDFXpCFU3pA3u717ihVekA+FkHtIVx6QKb7p7axYHpAWG7r+ihkekDHsZbciXJ6QBoiovIkc3pA5pO/Xid3ekBpoDFHJ3t6QOp6nG0vi3pAqqdqKR6jekAU83RwKKt6QN3ri5AOs3pAGXoXVv6zekAIv5MpDbZ6QEymWkkQt3pAisQ2hxe7ekAwcmqTR7t6QGLOtrj+vnpAsCdjxxi/ekByLwjuK8N6QB9AYyu/w3pAuVepBhjGekD0t3jsQc56QFO3LplO1HpA7khETWbhekCaJfUrSOJ6QO5f14A75HpArvlehXvkekDwy9yPNu56QPpvegwV8XpAb0tWBF/xekAE37i3SfR6QKDbhZ98BHtAekI+CCsOe0BwE9I1iRR7QFD6CoNMFXtAPn3zzWMje0CQqztw0SN7QKANmQtbJXtA0jVvMF0te0CcQZP1jj57QGhR7rF9QHtAiHE1OexLe0BkkUWLEHR7QJijotJxjHtAsFBkbruTe0B70MwKIpV7QPwWvcZRnntAyy9lyqyje0BGBq1DL6V7QF4Ls54Ap3tAQDCJsAmre0DMuiOcBq97QCKvzosGs3tAxEA773jGe0DJDdP+JOR7QIJ7p3685HtArCk8SJvre0BYDPkpjPV7QFKhjOHM+3tAJvu+SW3+e0DyLEgevP57QLIEIMiRAXxAxvCs/9kBfEAV20d2wQN8QN3CzKBmBHxA2QsQbpkFfEBcgrIEFQh8QPZ3mFaJEXxAeh7AiNERfECEPxYO/iN8QC1AoShXKXxAbCLfbgwzfEB6IwIxfzN8QKqxUxnNQXxAhggAd9hRfEC8o0g2DGJ8QLpzQDgDc3xALMyD2MONfED3dTwLHZN8QOSK/8lqlXxAIkRWJy6XfEASRMP9YJh8QLhGzup6mHxAqt9Ol1qZfEAKVSP3KJt8QJarvWHAnXxAMKhNUBijfEAJZ/gekqR8QJLmhyj7pHxA97UNscOyfEDSgQOsfbR8QHA4NIlpw3xAeAzkFmfEfEBSxYHEy9V8QIEXwHcl13xA2ou8KvbbfECmm5e6f+B8QA09citY4nxAIWuRFA/jfECAAdDAaOh8QKH46fwU8nxAfN0AClXyfEAa3NH9QPR8QOdfUDOU/3xAJMpxPAMCfUCBrSGKSwJ9QNxxYjdFEn1Ah4Q5k40TfUAjf5XWUxl9QBJDiTY4In1AKbStEqIxfUA8wUvTRzh9QAqmTWyjPX1Ausa0yMRpfUCLECVNLHt9QGHAfvnKfX1AYYTahPaDfUA7OKTUjIR9QB75rK6cjX1AEXCJuaWkfUDwj9iNK8R9QEPBUDxSxH1AWgH84ebEfUB2o6QHXMh9QGtCirdh1H1AetZwb/TUfUDaQtds2+J9QOuruaGQ9X1AnPz6jzQAfkCuodgbhQJ+QCK/hWFEEH5AtrqL1nYTfkBfLOYRNx9+QDuHTVkjIH5AIHQNlLEqfkDkKIFeQi9+QPm0C01WS35AzgBYLVRTfkDeXGdhjFV+QK/DMe82WX5AaiBptlpbfkDk8ansR2N+QBJQP5xmY35AVM2+8U5rfkDmOlCP/HF+QM4YJFDogn5AHYQUlbuDfkAC8UIfvYR+QGCUieorhn5Abj8JQ8iIfkAhPly6FYp+QPoXXcuTin5AAssMSgyUfkASYhXjIJx+QPonjte5nH5ApIFsC5KkfkDSnA6AYqx+QJA9L4h4r35ATKZGIpKwfkDQkhCbtLB+QIkJdwc1tH5AUL36+Gq0fkAP3ajUvLR+QBiZhUy1t35ANEwvGW2/fkBgJv9XZsN+QE5aQpeoxH5AxLHqXNDEfkCKdVVgAMZ+QOT3201ty35AqO5olLrMfkCbDWJr0d9+QJ7VG9kq5H5AbbAUkDTsfkDu5cG60u9+QFJvnSjO/35AIsJbN5QDf0A0w0Ja0Rt/QB0iFBrXJX9AnxuzBTIsf0A6BqfS1TN/QFJReiZkNH9A/JDM/uI1f0DChyEoozl/QEmYqCKaP39ANsY7k3xAf0A3jUYGU0R/QNyqSRWtU39AVD3rJLZxf0AKJHxdQHJ/QIDEi6PkdH9AVnndd5J6f0DaysY/s4F/QDMc1FQogn9AlbcRFaSDf0BdgsmFP4R/QFxJ+vHvhH9Aaqf5QKeLf0BgFGXB8Y5/QF+Agw9jkX9A/BC9+aSRf0DQrKcolpN/QDZ4VyE0lH9AbC5zbziYf0CUirVwOZx/QB+e2bs5oH9AMGVBeqKgf0AY3zpyX6F/QIJk4AZAr39A2hT7V1ixf0CmsKSOZLN/QAlT2b79vn9AAP7oLBTDf0AmALQMVul/QNHBS4uu7n9AjhXKLO/0f0Ae6QDFzQOAQFQK7oO8CYBAtTC41XoKgEDoAdt5zg2AQHWmAoMNDoBAJdXMSZYPgECstGUieRCAQKBhl/qLEoBAKi4/9hMWgEA83oV+whiAQAJSGuYgG4BAmA9lC2kigEBWc9sw+SiAQLZCL7FvKoBArd2tl2IygEDoXsdphTKAQHJSLd8ONYBA6jBfW3U2gECOjvk3HTeAQF0MiAbJOYBA7PCNpV07gEBXNdHMqzuAQMitFPp1PIBAbv4taCI/gEAtmZgmHUGAQCGzpF3PQYBAqIpdP6lCgEDyjAPm5kWAQPcv4nTuSIBAsqvdaBZJgEC6Q6Oh6kmAQBxRufCvSoBAf1B+YOdQgED0gkOiE1GAQF1HXCQMVYBAmVWl3qVVgEAKcMlRs1eAQM6I6MEnWIBAAG6YC+hYgECihicxDlmAQBLZoKcgWYBAWm08SqhZgEAKd2L2CFqAQP58FIhrXYBAFvjZB+FggEBOaHw8DGGAQA6GfI8lYYBA8BHfUMJhgEBeA9DlcWSAQHKW0zCBZYBAUT0EQaFngECM2WbNTmqAQLSFRij7bIBAXtBFASlvgEB+a1c/LXaAQJ642lgnd4BApnHwsHJ6gEBqXSmdKH+AQEbE7v8OhYBAcxQLAyqMgECOYO0pX4yAQFQOxhwNj4BANNqj2biRgED6HsIXXpSAQBXO+irilIBA2FJs4RyXgEDv48oGZZiAQP+cGmIhmYBAHgIL8jqagEAiJ2bhVpqAQFyKAZlpmoBAPGyAyBOcgEApubFexJyAQBaPWncZn4BAyWP8miKhgECjtSWZBqSAQPAMUerCpIBAgA66332lgECwd0XVN6aAQDI2wtrvpoBA+xWj3qungEDwXEPUhqmAQLowhDBBrIBA5iV6i+eugEBOTexA+q6AQGRRZPUTr4BAiN5o8KmvgECi4nNebrCAQHlCGXcosYBA8tT4POKxgECyO3JRf7KAQKA+LSRRs4BAdICjHva2gECtt44gGbeAQFY3v3MVvIBAkdZJgsK8gECm2noye72AQCuFdEPyvYBA/1WjGj++gEDmvjT7/7+AQDYse4xSwYBAdEya3XDBgEBQ0Y/m9MGAQCRz+2eewoBAM3zpcOzGgEAp6RBnpseAQP4+OPsAyIBA+EGZCSDJgEBGneqQU8mAQE7Xa/CQyoBARsuK1AjPgECG0VYCLdGAQARTD4xM0YBAH02d7YzSgECwRUyqQNaAQM7jRmNB2IBAjGmIy2bYgEACFZxMStmAQE3fmTbl2YBAZP2z8o/agEAk7olICtyAQDuW/x553IBAqiftmEThgEDifK5TWOGAQBm2FEmi4oBAMkq5W3flgEDigcDSU+iAQEk5k7j26IBAmEm8nUDpgEDaJ3XWS++AQKMOCeg984BAqR4kbzr2gEA2unAxlviAQGLBV5lo+oBAUq/e/j//gEBIdfpRbQKBQMPwBUcEB4FA6d5t2j8HgUBYuXsxDwqBQChOKKc9D4FAvAKjwCYRgUCk+CdxQBeBQHSSWkByHIFAep+y0jQfgUAmaG8fsR+BQNJbC0+zIoFALt9XSjUngUAGG0IitSeBQJRxuqgAL4FA6GoSki8vgUD0W5h7RC+BQPyb1rS3L4FAtAHgnK4xgUBiK7tivDGBQMcMQ29cNIFAhgDmFyk/gUAI9vrbzEGBQCAoAAGaQoFAfuIRsM1FgUCNg8wX+0aBQNZcVsYvR4FA7jnuxgNKgUAEp3eE3VCBQPRz0KYTVYFAHqS6oRtigUB4q5S4smaBQNBQ5PH0aYFAILj5rCJqgUCQH15AtmqBQPmENbJUboFAFu/X9LhugUByrMHSDHKBQPuchbG8coFA7JMGSMJ0gUBQXOc7UXeBQBGwYYNud4FA3lq3bep5gUAGHoRBHHqBQFKYXi3IfIFA4Ao/KWN/gUAcyHUCn4KBQEZrUm26iYFAP1EfvaWKgUAwqIAKBIyBQCy0FKNVj4FA4Fq0bOyRgUC4W0XFt5KBQG4WxIlWl4FAlVBDXJ6cgUAsbWgqD5+BQOR6L0FVn4FAHqJL0eahgUAAIspRFqKBQFQtgzzfooFA4t344cSkgUD66WJubaiBQNaWQ1NKr4FAbtJZoo2zgUAQ/Ihh3bSBQE96SipKt4FAQiPqtGW4gUAYWSITBMqBQPIxIf6wzIFApLEjF17PgUB4Q0sh0c+BQHY7UQr50YFAoPLk637TgUCARxIu6dWBQDa5QoXs2YFAPlfwHiPagUDcJMlcOtqBQABFUSHi2oFA6K6D5IPbgUDkSyre3N2BQEbqFqLx3YFAYjlB1+ThgUD+pWQ08+GBQJoOTHNS6oFAYgZYRBzsgUCnmBPD8+2BQEKEbocl8YFA+j9VC1jygUAERKjOGPeBQNvkDaXs+YFA1wPTGkr6gUA+Hrtn8P2BQBiwl2h0AoJATOnpKwYJgkBtdgRQ9xGCQF4CpjG3EoJAvfRZOdgYgkDg2yiKMxmCQFJd2H0pGoJAczugsWUagkAreEF1LB6CQDC0FFPRHoJAqskcR9cggkCMpKCNMSKCQKBKhQxUIoJAfkukBtUigkAA8hm00SiCQFJHXmycKoJAqGNYgdsqgkBJJ0erpTCCQJJ6x/yiOIJAmKfqkjtBgkAEihIXFkOCQK0EJhcFRYJANjiYJnlMgkCuCfS1106CQOB2PtCeT4JAn7+/nttRgkDC2gLCE1KCQDSzJp8FWoJAihiYkm9cgkAIgwmfO12CQKAes/AEXoJAovxAW9hegkDMw/76b2CCQHj0pIMzYoJAqADhfA5mgkCctGlF3GaCQN5YMNE2aYJAUtby5ElpgkDPN4dK0mqCQA9248qia4JAON8tqKhsgkCul9WLVG+CQDNw6GpucoJAqGsj3N1ygkBmuCAWaHSCQF4YNLc4dYJAd2zLmgN2gkCqA5PxXHaCQI4VuWhvdoJAUN6BctF2gkDUx9T5oHeCQHJe18LOhoJAnnPPYEOJgkBVdD2eQ5GCQNJi0ySvkoJAjGKMxzOUgkBGObHWWJiCQE545Wc8mYJA5mL8KFWZgkBWUgsrBJ2CQEbTbbNkoIJApizR3Q+hgkBbfI+fOqGCQDgO/5rypYJAFcqZ5g2pgkDwhQPJNKmCQPsWofX2qYJAL7As4n6qgkAFp1NXg66CQMkD1JAHsYJAelgKjO3FgkB0N/EiZMmCQEnvYjDuyYJAsvPvHFzKgkCjsmOOrMqCQJ4i0qC12IJA2GeNgqbbgkBo71VpTd2CQEa11D1X3oJAgqVRON7egkD+iSM/Z+6CQNZ6ud6u+YJAYi1Q4sD9gkDrmPaQxAGDQJwxJsrNBYNAkUFs98IJg0DmV4fNOw6DQIg+G6x5EYNAekXPBjwSg0BrPOhSehmDQNoLaKNyIYNALvMU3okhg0A6aWtecimDQBV835DXLINAFvQuJmsxg0DE3R5g6jqDQJCGTT/tPoNAsKrM581Fg0CL9OCxV0qDQATp2olUUYNAXU+1gsBTg0CqCdHp+VmDQLRKvgnLYoNAkEzON9Jtg0BgLGp6cXCDQPXRgiM/coNATBq7xFl7g0AgnPuKDHyDQBTrrkatfoNAUqwDE+SBg0BKqBaOP5mDQIzOixkuoYNAsvS15Eahg0BR8fWfSamDQCifq9b1qYNA8o0M4derg0Cp4Gvm562DQBwFZC3ssYNAM8ue5e21g0CudNfV5eWDQLFu9H3U7YNAMJWqJtjxg0AYnKb2lPiDQGz9JEau+INAtazOOQEDhEAknBXDCAuEQLMQl/ccIIRArAR66aoqhEDtmqpuyi2EQPClwpD6VIRAc3LRgv9ohEAWx7at5WqEQILEPObkbIRA1ex9meduhEDN7DwYAHGEQAQ4VTVrcYRAeA3JEj9yhEAOATqc7nKEQK7MD3/Kd4RAdPkIQPV4hEAQwij+dnqEQH4f62okfYRAtfLFh9B/hECGNtwHfIKEQBrurEl3ioRAMK6nzneYhECd0fvoCJ6EQJjwV+RHnoRAhMDV0gyihEAazHf7jcuEQJrlvgMi04RA9bkTshHWhEBUqmNSatmEQERhy1YU2oRADqLEhhrehECoVXRma+GEQF5c4TgQ4oRAoI1S1RTmhEA/m1U4uuiEQIiC9Opi6YRAXwXfiR7uhEBogGyuNfGEQFPooCpj8YRAahwMrCPyhEAApiqc1/WEQBKEwvLd94RAEQ5LyA35hEDAykwQN/mEQFxmtHBc+YRAuL+66Yr6hEDQiUNfp/qEQIEuy3w0/YRAzOVw/14AhUDeXN00MAGFQDTgR3LICoVAb+byoFkOhUBHiio1zxKFQPPtfBVGFIVArFm+/uAVhUD+OI6k+BaFQMLWQVV8F4VATLg7NRYZhUA8tdcTqxqFQFvcc9WMQIVAriKlLPZChUC5pCC6oGGFQEoTh41MZoVAqmzcbKBphUClhcUkTmqFQCFqNwmacYVAcvUWMU9yhUC9nTKus3OFQIr9azH9dIVALaV5n5l5hUDEjDTffHyFQKTO1IB9moVAy28dyNCfhUCGLvmRUqKFQE7kU30ApYVAKUIlHKunhUABuAi6VaqFQOFXEOoBrYVAKg8I30CuhUD2Vko2RLKFQMnsDY1KtoVAA2oNJ0S+hUDz9L5Qj8GFQKIpdkkDyoVAVAn4gAfOhUAQ19Qv++WFQBB/xj8q5oVAKkk/dpXnhUAeXWK8+AWGQAYgPpZQIoZA47m9G5s6hkD4MmxJuEiGQJTS/maLZIZASQIylCq2hkBALJJUJ7mGQGYH6vXVxoZATuWx2X0Bh0DOdwgWvAqHQIcu+TUfF4dAEe+dy0omh0DWdn0kkSmHQAjuX3iQKodAAhVzOpIxh0C4eKxRijmHQGey2sNcQYdAAtlEAIxBh0CqwXw/yLGHQLyYaebHuYdAcfyXHCS+h0C0Y8rpwcGHQEie0k12xodA8xQe78TJh0CCijNbd8qHQBT3027LCIhAGWLiRqZOiEDGOdoD/VGIQEkHpJeoUohAzexQKf9ViEBF4VECrlaIQNCEvP+QaohAfD2ILt9qiEBuyeuTznKIQAmdmnjWeohAcJfLkzSCiECjgLlCNoaIQAtTbRUHiohA3msrerGkiEDaSOlVic6IQAdp9JyM0ohA+eWdPyLViEAmqV2VjdaIQA== + NrgMGZxjYkDEsXzkG6NpQBu6YmAmQ3BAOK1C9yVCcUAbGD+0flR3QKxSA+cVQ3lA4nLT7ZaFfUB0+j3e4jGAQHDo16B3S4JACNvhGTo6hEBwF8bKI9SFQJy7hVWRQohAARxHY2WMiEDIR+1y0ZSLQP6+VD/kWoxAyHbbnH0dj0D+7UJpkOOPQOOMdDz+dZFAFT1VQ+iakUAsD7UIH9KSQF8tJ+ETn5NArCasHXWWlECpHfl+P6OVQCw+ozLLWpZAOEZXdGtrl0DeVAhBEeeXQJVvR3Cna5lAXmz/VWermUCrhIhxzYeaQPKYN2zja5tA3oP2ar1vm0A= - + - wIA1RP+eBUa7Y0NEffSYRGy2zEQuhQ5Fk4S/RPFjM0S3wUxEbycZRwRzKkReHndEBsA5RTjVCEWEaoVEglxfRGeXa0WfkpNFaJrNRAQ3bETNk5VFzIZCRM8TjETLerREQ7MSRWhnPkR2z4tEJp6nRMc9mESTTEdEYklzRSAMGEfbKktERM14RPKCrkRPXUhEoTmRRkSzXUT8y6BF9OWuRA/FJUULHo9EY2ieREbGi0YYgIFEEginRKWP1ES9ncFEB5OLRDSlnEUBRLVEjBlfRMx/50RVMVlEg34uRPZoVEQvOf9EcR9qRHliK0VkG6FEanhxRZKOnESjBCZGvynaRKk3hES23p1EdyR0RVK4lUS6vrtEpB1NREqyOEQx/ipEvOAgRViVr0SBMURE7ymDRHIzzERCRPdEJx8ORQ0iPETB09pE4rYERXTlyEaIl8VE6LX0ROXDn0VfjSVEyXw0RC6qPkTRGc9EG6RbRKndQETiV0lEE65MR5whRUTsGpZECm8kRELgx0TD4FxGevABRtkZNURq6H9Em+y+RSoFLEUZUG1Es0dcRE6ZekT/2jVEPPsLRbxlN0Vn5ypEupsCRWSSJUR09S5EN242RNNa10VVrs9E/XdZRANSJUToeihEOhJTRZRwcUSpuWlEbwqwRDk7tERepZFFeMUuRPIbjUQRRkJGSDbVRNVfqkRMp4JE3N9GRLZYMkTuyBRFZz2PREOYZUQUC4hEhBKJRr5DkES79KJEEgFRRHqHSEWum5BEGgF2RPbuoETIQQVF1Wh6RGrujEQfCXpEPtouRWxiOkTTQz1EvxdKRPzLS0T7i8REFlNtRPKC2ERtC0dElh9HRO8HlUQsO3pEWNWIRSXaLEQ0aHNFHgVxRCcQmUVNA95E2BhPRP1uhUQmbKtErB9QREtCoEUSN2NEvq09R/60ZkQfb1hFSTE9REmMLkSJZQtFV779RZhrikRxAVFE+z+lRE4R+kW3vDBE9j80ROQtcUQ0yJtE0NlVRf7G8UQR8pxE+po8RKlzckTvDjZFyllARMBdk0TFxs5EJNoeRO5hFkWYZ6REFGBQRGoo3ETFvlJEEWjHROQXtEREhqlEKTyRRLE0l0Rar1FEACRmRNeH1US/G7FE0RG8RBO/IERK30hEyfBkRANF20QRVnhEO2+GRDxz80SE4VxElNKbRAX2HEXrIKJEV1gBRbAwbEQhri9ETNlARMTGs0VBCJREbGJZRMHIl0Tqo5JEDFa1Rbu9hUSP6KhEebh9RPLRpkR+VIBE8lD/RFzoBUa/eXlEhmhYRPYEsUQymj1E37FORTDBRERye4BEdFJ2RAi9RkTpjDREqC2YRNkjzUTh5ahE8Wg7RNypJUVtUCxE4lE8ROttO0UfaS1G5fFaRH/j+0Rxvq5Fq60tRPjSZkWNG7dEK2DyRE1TYkTaJ75E5e6pRLWJg0SjUalEsCFgRCREIEZwRCBFs1pFRDzcPERn5ilE88ObRGsDLURCOLNElnHkROb1gkRrp9REh0OtRDH9hkRRe2pELNBhRDlRI0S2hTFEU7RbRWQ/1kTPIUdEDHhIRARqv0QHdGNEiRptRbvS+kVDntZFHwHBRvduUET6PBRFhm2cRC/nk0T7mTpErOqdRU/RRUVx72hFe56LRLbodUX2iEVE6a07RoLdV0SDMmFE2hhqRPt/IEWZBEBEzOglRL3s10S56fVEfPeQROcZskQi9QFFu5iORalGg0SxPohE21KZRAxrO0Q8raJEGcAfRRxHV0TrIpNE/cY6RBsgWkRttqJEGcdYRFEhh0asIChFysGXRLEqakRoyadE+/3jR3wWdURHy65G9VKZRObKLUUV96RFi+K/RgtdmkWeukNGJTPIRM0n6EQqj9NE4wikRGpWP0WxQydFQdGdRKpPgUSE0e9ExLxORBF8oES4Dj5EB3KGRN6zckR6JjRE9YuDRJ3FMEQ0ejJEwww8RP0vjESStG9E8AqHRJ1WWkT4T0BEB6ObRIybh0ReAkNGwSKORVw5PEROjBhEoS+IRUZTg0RxJqBEJMYJRYDtbkRsr5tESP+bRAkyHEWygVNG3IHnRc45hEVu45NE6qs3RAJmNkXTNwVFo1NsRS2DCUWU5KNE8nmuRKZXBkXlDz5J8E6tRDUzBEbSWUtFtO0ORbZzJ0WAnkJIFzZWRT51aURzPz1FAYIrRYFtdkSH8JVGi9muRL4EAEVctJBEN5moRK26CUV09DlEOi1DRH/AK0Xo8+FF/2pBRUDSWEQ/fI9EgBpoRNAQZ0Q8SHJE2ZpdRBrBi0XLlzREZ5GqRdJWXERFaUZEl4p/RL/Xk0ShlMtEyNOdRC7og0SzenhEmigzRINYVEW8R0xE/vBRRMMBpESJ5ntEdDZjRHjfIUQ3aghFzYEtRBtzckXgnf1EamJmRMO9hERk+1VEnuenRX9XekR4H55EX8dSRN/whUSSiRlGoiJZRI8OOkQvfDFHs+yqR20oNUeVLVhGgsInRdYW2EQ+WSdElG+qRq0EckRjRj9E8hPvRJEgokVv055EKUwORXsYgUQCOx5FsKZxRPp3jUSeh55EkR4QRYzmNEQ89LpGYsZJRC0i30U03ZtGri2pRY5qW0Se1mBEA704RXUOqET93ntEMzK1RGUHeUS5k25EMwPcRFOP9UR6EglGWRGMRBUSxUT4jtFE8eKQRChipESOFW9FjtzBRBdlhUQ4QDBG5XsqRGIZa0S8HDVFRwSQRDQiTkR5Yi5Ee04cREbOnERn9DFEI/2ORKv9FEUpuT1EqR+bRNV+bURVWTVFdnqvRLGjvkT5DI1E1U2LRCwuHEQ0sKBFFrlQROzdh0YJzK9EuC2gRPsNF0R7D9pEU9ksRs7wkkTLeKtEjqiPRWzpU0SJAX5EJpJlRYFW/kSfJ+ZEgL5XRIggb0Q5gJpFGPy2RBxYn0TNuJBEX8q2RgzPiUYsQwdFbxZJROqZEEVi23hFHfOERH9hbUTI7wlFDnqiRAntzETexj9EDweKRHmwJUWUEEBE9FmlRJiCXERt6qxEIqL3RNH/+ERpqchHBtY1RTDSkUQFY/dEtJirRqzLkkTJuEtEW+ggRX/CiUYvR0JFLCXKREfotkTbJotEpDKaRPADNkUWu6ZEvRg4RLiGmURFeUREyB8DRZYYhkSBjaZE48s0RKD3KEXq5h1GMEYyRhYpukTi3jBF+aS5RIwoiUTQChpFy0+eRp7MY0TawsVEnmk1RM4Ri0SlcZBFAoNFRHRAgUSRTQtEfIdlRxNMckTShFZExTSmRoKPpUW3pjVFUBwdRS0ONkRKg0hE1geFRFBVmUQBeEFEWBJFROUlkkSi5ilEO883ROsQd0S7+kREYJ1yRVOnUkZs3YBEQB1uRDDeKUQgRq5EPAQtRUFJskRbf4tEySQqREVWHEbY5WVEH/EGRTDiU0St7WRFOTtEREl6ikRSL6VEFWEqRF92bkSTHzxEmDhFRI81CkXMr45FcYx7RLUZm0SPUXlEUvNuRA5dXkQd5ZNEOIAvROyBQkRqRX9E/75eRfekZERUibBFaAc+RKVPhkRNM4pEFxoBRYtqt0TpX3lEHWQrRLRgWEQekAtGP8aERIxdq0RDZ2FFhUV5RYGwd0WDoGREzWjxRBWfIUVE6DlEqFD8RDkjV0RY0DRErPxWROyc4UR2HspE5qKmRJ0bRkSsT3BEtMnPROiJTUSySUhEE65bRCobTUT/2oREKzqYRG19PES7r7tEycrFRbYWgET836RE+djvRC9wpUR+QElEZXVRRANsmEfMpoRHsQBeROpfIEQe8s5GoS7QRfpX6kcZPRhFZoKpRr6/7UXlso5EBcWJR07kMkWNzoBFjYspRbSlWkZNdotElYSHRBRoL0SVWq5EnEafRDJupUUtJXZETV5XRKyTl0SRlC9EL6AsRAt4jUS3Im1EDt/qRIB+uURkEYZEHgWgRUBJjkUN7sJEgqFuRWbfpUTwjlpE9G+vRK/axkQXMVNE7Qc4REeeBEeBQN1G4hnuRbBaCEUnpdlE2goPRRZkQ0TwtGJEZeFcRH7ZIkS3+ilEAvd6RNrus0RX2FpElM5BRGwzgUTtDkhFUYOqRNWEi0RbvCtFk7u8RBdNCEVQw05EYAA2RM+hYUT/WadFf0UARebSm0RjHwdFreEORQGjSEQf6BlEZFtARNjtiURR+I1EkqY4RKLAE0V4SyRFaIGORDlCM0TOpn5IIrU5RCaBnESpezNF7X7uRCkPfUS04z5E1eaiRA4K5EcftSRFpMOaRAmulESY/3xH0AyYRDpBOkRv5kpEgmQ6RSbPV0ZQVMdEyjhcREHNuEQjM1tEtrWfRSNHc0RngU9Eo90sRARdMkQmBIJEs05CRED/80Th6nVErzNJRKLCLUSeWadFildDRouqT0R2RSdEVbGCRcO/PUR2Q5ZFJCtZRJLChUStfhhE2+zoRpclw0S32GVEluy1RWdRlESvOw5FyrsNRZCjbkQFdnFEfjbnRI2r7EQzxzpEFHbeRWTbgkVQmClEPzWMRMTrHEQFG6VE7Sy5RCFFR0RVICxEImpxRs1nhkedIi1Edd8yRZzr/kYrnSZEJMYORjuIgkRP1QVFzvuGRu8tVkRWfItGdxVQRDzU4kVXOAxF1JpDRHwDyUaqUSNE5faYRfJFUERhJeNFj52/RC9oD0R/WUxF3Tp9RDx4ckQEEQNF4eBKRTEoxkS4JhpFj2wjRIwHA0WlpxhGjrVrROgfNkQ5Pg5Fsu3TRMb0yUXERtxF8DBeRdoPb0SGpvdEvM7WRJFtu0bbH01GFoJSREPXRUQKzjFEHGZPRLivj0S9KYtFODVWRLUNeUStivpFI/5WRLRAV0S7sE5EZ0PjRJ2Kl0S41EZFxHtNRHDcRUXcnTpEtG1DRF93N0QvvRNEpfQ3RhXHNkTl4z5GHvf+RIwQ+0WfnI5EP0WIRXC/yESj3ztEDXT5Rf1jLEXQblpEaZYLRT2MSEQKaCxEifFJROIhW0RB5TRERu18RBjTWUQbIZ9ESUSJRDnIikTFdYFEP469RFFkr0SwDzJEKjBrRAKKYkTE9oFEiv2JRIxnL0Qi2pxEXEVSRBh9jEQ/1IhEwA+cRFkugUSatZpES+x4ROBpd0RywQFFTXo6RIadQERMcEdEZ5qqRDVsukQUJl9Eu+C/R/YuHUcUaF5ElidCRLh1SkS8rsJGn+MRRc+7PUQKrEpErELMRX9mAEZBdfNEe63xRIxfM0W1adlEZ2YlRU0iNESY+7pE6DJCRX+9TURzN55Ee985RGXnQERY2UhEp8icRO/JI0RAfHZEoYMqRDDHLETPuYpEBXDpRclSZEW6H1xEoOuhRD+TrETMLOJHsIhNRE3lXkfFH/ZGuwkgRTlD7kXaDydE0klPRWl24kR9ppFExNRkRPXtUUSOwltE1FtORICbaUTr9oBEal4wRNhJLUTtJVtEF3NdREXzP0TcwE5EHO6YRBeDn0bKOxREqe2XRSjrjUQwI0RFgVE7RDn02EUcAYFFpUBWRAJPVERSN8tET1GmRO85ekSzi2BEMoNXRYS7SUQ6vklE7k1KRLT/mESle8dEtXWxReL/KkW1BjFEgpEGRdTI9EQW1zVEzr7qRJ70K0T16IxHt+SORBCrg0dA0wNHIjZJRtWrC0U810hEIKNaRF0I+ERy2WREmeIURUQ7K0Qup2BE4u9dRg7cE0eN791FNvb8RNriUEZKcQxFH8x6RBRoYkR/CR9G30FrRGZ0Z0WcqJxFE5BvRLr+dkRfjKlFiG41RN2YAEXfI7tEpvdgRdDvI0RX0P1EwSEyRLOfd0TrQGNEv9thRNCYZEQcfFdFHcJuRRFSD0W3/g5F3lmORPhljUT3unBEUaqRREcv+0baqhpFPTSORlTSHEWsyURGHJdmRHW1ykTdRUVEAjp2RQl6j0Sg32tEoVA7RNfFpUWKApVF6VtmRbWMm0SvAn5EIHJhRtqrI0bYmyJFBG+BRPmGYETeB8NEphpqRKWxb0RyMiZEKlGBRBIjL0QgGk1EJrdBRI7yWURJnm5EERmgRAZN8URZtoREL7M6REfFcERZHVpEI4BIRIyhNUbr1zNEU5ewRehMaEWRkJJEQRb+RE/LA0YliYlF036aRHzOSkXh4HZFuDkGRZDlT0WU8UFEOFtCRoo7OUVtfvhFSEf1RELBCUVXKSlEYjTGRMaa80WL3AlFijdaRDMvqkTW7lFEQXlaRFn5mkX7vMBEsSmZRO9xq0Q= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 2FU8ynvAckBmv532CsFyQFn6dwlvwXJARmzcLLnBckBSuIsNUMJyQMIm66zmwnJAqqpkgg3DckDw0ZG1O8NyQKEB/jF5w3JAp67WB8XEckCxz8Y1WMVyQB9arhkQ0nJABsKtbUPSckCxFk28ZNNyQCAOaBF503JAKua2g2XUckBS3zkjjt9yQFDTTtHN33JAEtExryLgckD0Am+WtuByQMWXB75N4XJAa/z0E//hckA2dxbZUOJyQNY7d2mP4nJAA2IYJCTjckBceCKFueNyQPN3jd128HJAFzVgfzbxckCLEFNpyfFyQCx6JPQO83JA37F9RbXzckA4hNaOovRyQFi9aM/B/3JA5dIFOGAAc0D7hvOq9wBzQCZJD/4TAXNAEdlwQIwBc0AprfxZPAJzQHptrm3QAnNALcgunPoDc0BKW+5GeBJzQJSUY1a8EnNAVNat+iMTc0AEwVSG9hNzQIjvQtoEFHNAvjQSh0wUc0DSYtwzeB9zQNGliki2H3NAPnlDRKcgc0BJlhCqOCFzQLJYi+tkIXNAMVsvZngic0CpnQqFySJzQCQPua8PI3NA6p6Vczkkc0BQCFrgzyRzQFS9OtBEMXNACZBt210xc0CmEv0dhjJzQJoU7GMOM3NA1p3NCjo0c0Avr8yy2TRzQH6SbQS6P3NAiVo7ceNAc0Aa4qu4TUFzQEgNttB4QXNAWvVb+CZCc0AUcxc+ukJzQPD5lN9OQ3NA0ZjlaHpEc0BALVqZ+VBzQO6wnAmbUXNAhU2cm75Sc0C+cTB8Q1NzQP7idrejU3NAKoovhYJUc0DcbcK8CVVzQBKYlNOLYHNAatyTLxpic0AP4lwmOmNzQFxpnSuSY3NAc0bmO85jc0BYzzd2S3FzQKFTzDTccXNAbCYZjFVyc0AqtU9AunJzQB1xZbG3dHNAOdXfDE11c0BUcRGo8H9zQEXF9e94gHNAsLk1laGAc0BySbUgy4BzQMBiLawMgXNAsmHyml2Cc0BujhEIqIJzQOTfp4rlgnNAiBK0CwGDc0BalijjW4VzQCxUb1mFkHNAJapPuNORc0DWzypmEJJzQByTqiRNknNAYy8pjc+Tc0CS5RhxYZRzQKRK0kb3lHNAAikYzbigc0DV4Hfy0aBzQMl13GxPoXNAq45gf9uhc0DDIC0pWqJzQLc9dyaOonNAn0JTXSejc0At5z6ZBaVzQEQfQUfYsHNA/FiC3zSxc0ByRmNmfLFzQH71b8F3snNAqBX0WhOzc0DhbuaHtrNzQF5UfdUNtHNACvgc9qG0c0BSzmXJzL9zQHAQF534wHNAwuZ77c/Cc0AvpEEMKMNzQMO8NOvCw3NAVN7hNNfRc0CODPbEudJzQGD2P+Pf0nNAShmzhyTTc0AAl6wUU9NzQFGeJkX203NALn8sQuLUc0D/BAEwpeBzQDAEszw54XNAXdB14WThc0CqxdczjeFzQEQbNSd54nNAgL6Paw/jc0ACmVAd7+RzQOzndmIr7XNA1vrQghvzc0DQMwDFNvRzQEJEglblAHRAMmdBGHkBdEBuRGNcogF0QOwQer4lAnRAAcHo97kCdEBfC7IUixF0QNpUo2jYEXRAYUajtXoSdECGVZFRwxJ0QI1GlK1LE3RAN20v6ksgdEBZhytQkSB0QAjCqk+3IXRAEsumalEwdEC+VcCvuTJ0QELqKGjmMnRAMWYC7OI3dEAqEw3QU0B0QNUi82jGQXRASLW8tV5CdEA6XvAwO0N0QGh3QE54Q3RAEvPexVBPdECAhSAKh090QIieaqPNUXRAyWPt+KNSdEDGITy7CFN0QChidNBiVHRA9qZlEfZUdEC2qC4wi1V0QH3rWmkgXXRAGx9uvHVfdEAfPKQuuGB0QBajhtAIYnRAVZE0CntidEDFY9mz42N0QHOa1I8PZHRA0LZOj05kdEAi3QQvyGd0QPbMkIQicHRAbo7S3kBxdECSQn9Kw3F0QJAhTg4RcnRAQpiPxThzdECudsbboXR0QApHF9I3dXRAvj4AlvmAdEBISmeLTYF0QHAsVGlJgnRAEoeqTiWDdEDQ5gkYeYh0QACIP9gWkHRADPNqfRufdED3/m387p90QIO5wSqCoHRATJ+ZdqOgdECoc1fez6B0QPpke6iOoXRAQCUhs3iidECq4klQuaJ0QCor2ncPo3RAWC+jPfyvdEBcV9KlCLB0QIHm3LvCsHRALaSS222ydEDtBY1b/LJ0QGA8OA6Rs3RAOiP6QeTAdECTs/f7fMF0QPaf/y7rwXRAcxCbNQ7CdEAnNNDQusJ0QL9ABaJOw3RA4CyhAyDEdEAxIT65ecR0QNG/5RS3xHRA2qKL/svNdEBLLyAk/c50QO8CruQ903RAeNNnyeLTdEAo2OApztR0QPQo7aO14HRAQpbaPbjhdEC6jXG6kON0QISZ3/VP5XRAPoRNlubydEBaN0jIjPN0QNSQL4mn9HRArDxYiKMAdUDui0ZMvgB1QMa4QNjQAHVA5JLcjeIAdUCKVmu7ZAF1QPZeSRFdAnVAxnk45qQCdUAnguPKlwN1QB4LeZKXEHVA0VzPVzgTdUDAoSlJJBR1QITzc/k+F3VAxVwffp0idUDhCLb44iJ1QAqPWiGrMnVAEC5m2cw1dUC9Fzwu30J1QE6DQH4nQ3VA0u4Hc/lDdUCPkrWg+091QA4bYrWBUXVAelOPxU1UdUBaCx3hd1V1QJpWY8I4YXVADupWJ/RhdUA4PNvOZmN1QDK+7dF2cnVAx6KsSY10dUA2HAO4doF1QI95LXCtgXVARmZW8TOCdUB4CvbcpYN1QGvIT1wThHVASizippuEdUDemgngi5B1QNZceu26kXVAgAPPkiCUdUChLOtmj6B1QHELeRw6oXVAypASGkmjdUA79Cf1uaR1QJMDmgKjqHVAbEqVPvytdUAOKN/8OLN1QH6NS9zOwHVAQfswEWLBdUCE+oi998F1QOj3EdnK03VAAE5N6ePfdUCgDzwYD+F1QPbnzWkJ4nVAbIcUA2jzdUBw5aeKHPh1QEmRQYFIAnZA3pcx4iUDdkDoBXYx0AN2QMXJGuBMFHZATVHUFwwWdkDgt2ZDiSJ2QE7Qa0mQJHZA8KU5pkordkCVEUbwnDB2QOveyxofMXZAwr4YAvcydkBE/rIgVDN2QIK949+6M3ZA9L6ANR5BdkBQbdzOyEJ2QBkBGyV5RHZAxh5kYPtOdkBa8LRkzFB2QCQzYdkSUXZACqDC4sxUdkDYypqiI2F2QBA15jreYXZAxFjAptpkdkC28e6t+YF2QJ5ig4BognZARGsL5uSCdkBX2AEx/oJ2QFpClamQg3ZAdUNVCL2TdkDidoCzz5d2QDT3G5nqnXZAT5c/WRChdkCSDk+bRKN2QMMFK/q3sHZAQw9BrMGydkCqtoNTabN2QNpDe4YMtHZAD5NN8tW9dkCHDbpse8B2QOYZng29wHZA2TgyK03BdkBOnUWttMF2QGZ1PyAaxHZAE50lI87OdkDeWZYmwNB2QOhX/4aQ83ZAPczn1TICd0BfhED/ABJ3QBEzZVm8IXdAsU/oDw4id0AgBa8edSJ3QGazzH6lM3dAJ/Fq2gw1d0BIC0SA0UB3QGU5OoecQXdAIppFBj1Cd0BrYcDCpEJ3QLL1pf6SQ3dAIm6zeiZEd0BKQXy1GkV3QLWIU9pKUXdAM0MXa2tRd0CVmcgxklF3QE4C1nU0U3dANj9qlShVd0Dzvt6fDGF3QFRZGNBGYXdARG+0zpxhd0CK/gKWJm93QNr+gCGgcndAyO4cdY90d0CYwymA+3d3QDv8WTJMgXdApjqX63eCd0BEKqFwT5R3QNIsIWmbtHdAJJBVbDrDd0CikMAIUuN3QMYb32hF/XdAPmqR2aACeEBgWViF6gJ4QOltLOiCEnhAblNBV24ieECidABiiSN4QGOvxlPSI3hASX8xI6UkeEByZpVsGDB4QCnwv5F9MnhAYtoAJW0zeEBwhhP3FjR4QMwHx9rkQXhAddj1Mw1CeECswDzlEUR4QIQvRq55RXhAHvVzJodQeECCyyZwy1F4QG5NFhysUnhAIiP8eodVeEDwXxUClmB4QCBnVyj4YHhADqvyCLdheEADc6/idnB4QJrfsujtcnhAvGxmEDl0eEAaw8ANXHR4QEfRBlOLdHhASmHrgLd0eEB+GODx5XR4QDLjJ/D2e3hAvmqMrziBeEDcQHHdoYF4QETev27Ug3hAamBKHwCEeEAmKwOLmYR4QCa656hOiHhABlusQt2LeEDHoheQp414QALed6WXkXhAHaOGmqeUeEDpuV+CtqR4QC3QD4E5rXhAl7mLJhfDeEBM/BVDBsV4QLxJDXXWznhA8l2X1rbUeED/csD0ouJ4QLhMciL+53hASmgl+inreEDKP+tHWO14QOjfQaUs73hAnt/JGS3zeED0gZXkjvN4QKxTA2kC9HhAj6pFUI31eEAgyYvPmAV5QAjrlwe2InlALANQqbIoeUALI/J9DC55QFg457u0M3lAGizJPn9AeUAqzFqy+EJ5QDIJwlw4VHlAFPYavM1UeUCLlcSbC155QGia7FeTYnlADD8mb0JzeUB9PF5c03N5QFRYUBCSg3lA0PVTbMGyeUDKsqq+z8J5QB75I8Nbw3lAFX7Vj7PDeUDyYMpuCsl5QGAFcY2C0nlAmekPFkLUeUBClpGwy9V5QJ3I0TVP5HlA+Jecw1HpeUA2FG3IHet5QMq57xKX8HlAoACHuA70eUBYgOYsNQF6QHnGj4xkAnpArSTGQPwDekDW3ptw+wV6QGBFjd0KFHpAJQbUcUMjekDqLNQzKzN6QO92jBUMNXpAEGBx5C03ekCTg6HeLzt6QPhhuvo2P3pAhC/A8xlFekA4BCgLhFN6QK7PnhUrVXpAMl8lUCFcekA8tQQDsGB6QEI/+5QnZHpAts1PwSRzekDd7HbNLHd6QL77nQ73g3pANif+Mh2jekDU4xlYIqt6QLSBFsMNs3pAKJu3Bw22ekBcMV8NEbd6QOxuf2MUu3pAYG1GJgq/ekByMGxiLsN6QDu1kNFiw3pAGX1Mw7vDekA9GI0nGMZ6QNbnyKvGy3pAh0zDl07UekC5Ej9JZuF6QIiIj1lK4npAwD55807jekCci4tOPOR6QNQl7lx95HpAgNx//DfmekBAXsj4Ne56QLaIE5sX8XpAXkcYZ0j0ekD4a/VndwN7QL2SLefkA3tAXKw9f3sEe0BmxVkdKg57QBKJkd1LFXtARHrOICAfe0BmNnTrZCN7QCOENt9aJXtAPlbzYVMwe0Do3ijfvDN7QM5AY0LtO3tAVMDPF2A8e0DRNmT+jD57QBKjQNTqQ3tAUD49qFxSe0AMr70PEHR7QK+YJfXqkHtAnHy6mrmTe0Dkx1rIwZR7QH1KPcwhlXtAIGHM/VWee0DKDRF4SaN7QJSj4QGLo3tAhk3/zv+me0AqQFV3A6t7QDJe/7oHr3tA6JYK/YfKe0DOUzA//ON7QIw99cC65HtAarGOHJvre0AoQaxkl/F7QADQQnai83tA+8Pa1ov1e0BiD6bKb/57QN6we4VD/3tANOh3ftkBfEDsrFNB8wF8QK/6Bp9lBHxAN2BjapgFfEAW+55qEQh8QMQfV8KDEXxAOpzMidERfECBlb8X5iF8QHF1EBz+I3xAScr6pH8zfECygaKCiTt8QILO3SDNQXxADJLTCwtifEBTYNAgJ3F8QEqUQScFc3xAUADuKMONfECt1i4NHZN8QPj1CXNqlXxAdgdS5ymXfEB+usIzYZh8QOmBkqB9mHxANHPL4CebfEDov5Lnv518QLaBJYHVnnxAkDM7UuiifEDRq81glKR8QFGaKgQXp3xAht7Oe8OyfEBAm0yle7R8QAZD7X5oxHxAs3gOQiDTfEDL8xk+zdV8QLwiceH423xAKA++53/gfECd3WuZV+J8QE5YSjgR43xAQJ+5vGrofEA0dhW0jfB8QOrWtIcV8nxASMQf7FTyfEDEBUq1bgB9QP79hKABAn1AyqCnIksCfUByy8/DQxJ9QAPZc8djEn1ABf0dlo0TfUBeW+Ex+BN9QEg6QANUGX1AbaiatpMbfUBsMrq7OyJ9QJouCMOfMX1AAxebNkU4fUAaGDy/oD19QKbYNPhGSH1ABjZzr6h1fUC+ihQfMnt9QIMmqkUhg31ABWTGE2GDfUCrIldG+IN9QA6E4pYii31AP2ZEC/2LfUCv78wNl419QCW+4lQFlH1ADmKDuri6fUAqJuzOLcN9QBe3X5xRxH1AyI/O1+bEfUA4528MMsx9QCe/Sz5g1H1A6MgrX/TUfUDYh/OUF9h9QLD+4zHW4n1A3b8IfZD1fUAEKne2NAB+QEWR9XFIEH5Aj/Xu9zcffkBzu61qIiB+QN7sebhAL35A6DE7x6VEfkDUgvvqU1N+QK7YaADdU35AGRMmgChVfkBsD+lLjVV+QKsL9JQ2WX5ADfSRS1pbfkCwWONpSGN+QLrF58xoY35AZEFFjU9rfkDqsAD7xnN+QOYjPWcYfn5APVBuFr6DfkCU1AxgDIZ+QKq0HaZ7h35A4xxW8O6PfkBwQELb4pB+QPbL925kl35AV6tN68yYfkC8F0dquZx+QBybSNtzn35AxjpD+JGkfkB3ctNwZqt+QKGJSOZhrH5AiaKDd7SwfkD4eIB9arR+QOS5qiaxt35AXEumdM64fkDcfNfFb7x+QIv8nshlw35AnPzIh8/EfkA66pabDsZ+QHbsj9V7x35AnoaFLmrLfkBe+fxUWdN+QA42KEAu5H5ASIhvjI0Df0CSkHG/ZBN/QJTLyWOoE39AJkGVyq8bf0CC2OjW0Bt/QHGm2gEpIn9AKBYZPNYlf0DoaIHP6Ct/QAFCWgKMLX9A4Mm33WExf0CngvTrYTR/QMJQ7LbhNX9A/amPQaU5f0BRLQ0hWER/QMAkzLyhRH9AIgHdUFBbf0DASB7S02R/QC48imi4cX9AsmJg+OV0f0Amew6rIH5/QNr34UI+hH9AQhVaX+uEf0AwnF125oV/QNqfDXtWh39AkyXSNlqLf0BaGAIXYpF/QBPYLgeskX9ACA6YNZmTf0BKHUDKMpR/QB7C8Ro4mH9A3vCrhZmbf0BsT56iOpx/QIh76QaqoH9AMjy6vFyhf0CYGDA5e6F/QKoRoGKQo39A+HuyHN6jf0Cy52aXV7F/QHLJCufHvX9ApcxcdJzPf0AIDNAZeNN/QLJQkKqK039AqFPm6mnjf0A6wezPVOl/QEnpO2Ss7n9AemyXkqUEgEAsYCdXhwmAQGwbsTMnEYBA/tXqxroUgEDC6Brn9hSAQLTjayUUFoBAgiiUoiIXgEBCCamCaheAQIyUTcCBGoBAtpjyrmgigECgJziBJyWAQAUN/pxuKoBANi4MHEYsgECxyBxkZDKAQGDu0EmLMoBAzFue2Q01gECS52YhHTeAQLqrtZYAOYBARmZvL8k5gEB0yHw0djyAQOzM2GfVPYBADtGOIQA+gEAMKi0KIj+AQN7d+r/NQYBAjMEtFalCgEA6+Gvj5kWAQEiO2t7pSYBAzOiegrBKgEB4DQAftkuAQBRt1WrtTYBAJ40peeZQgEBe8DW8E1GAQN9g9GKmVYBAznSgjSZYgEDLBDPT5FiAQLYEoYcOWYBAaGis5iBZgEAyEb8MB1qAQKCMKh1KWoBA9hKaCLNagEAqkxxpCmGAQPZV0oBwZIBAFSNVx6FngEBIolp3T2qAQD5hyDD8bIBA5hGMXihvgEDZ7KMlUnKAQCLcvCXmdoBA81Q+s3J6gEAe+gxuRnuAQP/FU2DmfoBAOqOK+yh/gEA+j37D1X+AQLYM3yRBgoBAuogfCnqCgEAywq8Op4eAQAalH8UUiIBALopQOF+MgEAWuze1DI+AQIweqWC3kYBAIsQV92aUgEBgF/GkCZeAQPTR4lUdl4BA9OwwnrSZgEBobDVck5qAQDj3dKP0noBAgLV37xifgEAe9z6jj6KAQACv8pMTpIBAWYH3cs2kgEBddZiihqWAQFxk7HE2poBA9M3bd/OmgECH6+pAq6eAQGRxUMWGqYBAKMWuuhKvgEBceFa1qK+AQLm8XDBjsIBA+m0Ohh2xgECVZ8BkkbKAQASZ85Jas4BAjW/r0xi3gEAWvPzHVbuAQIyNymKeu4BAygDKmQa8gECmUi+Efr2AQBJPfKTxvYBAAidV7jW+gEBGKvLU776AQGY7OrNpwIBA3HktXlLBgECGXMvi88GAQIb5ANSewoBAPkM9LQLGgEDi31G2IciAQJhdF6hlyIBACCVIqBDJgEBovxgrU8mAQCiCvzLiyYBAHUyL75TKgEApza1no8qAQCsZbGgLzIBAZPNSnwfPgECooCxgLNGAQAz5f4BM0YBAVPtwoAXUgEAkXSVLZtiAQEAzB+hJ2YBAmJuv8OXZgEA0ga7RCtyAQIyoJzT/3IBAYLhMa0ThgEABcH1oOuOAQNtTdIzR5IBAuGzpV17ogEA27Z6y9+iAQHR0VoYd6YBAlR7Tx0rvgECcG5tu9vCAQG06grc784BA53s7xmj6gEC0n++vP/+AQGayZtToAYFA3M6BsG8CgUD+3/xiPweBQI78qEQ9D4FAYHNvUzQfgUBhKYP0rh+BQD04u03nH4FAJjPtIlUjgUB2VqS2MyeBQMp/Apy1J4FA/8kgxgEvgUCyrA9jMS+BQFVkeEd1MIFA/meTWq4xgUDsuAa+5DGBQLA++hMpP4FA2Llql8tBgUBLCUb9z0WBQFrV62TwRYFAMyAV+S1HgUDuiBGV00mBQLprt1fuSYFAJi+7x5hKgUCeMU6YCE6BQLDeBr51WoFAhEhHgplfgUAWiDiHG2KBQDaX1d6yZoFA7qfkviFqgUCm8kU3tmqBQMm91tFSa4FAgrX8vIdrgUAE/JHSuG6BQDryb+YKb4FAHPvI1h9ygUAgsN3Ou3KBQL3/7fLBdIFAYDAuJTN2gUCtlgRwbneBQImr9SBCeYFAUrcMZBt6gUCel/Axx3yBQGA4ufJgf4FAmoKiRJ+CgUASQZWn3oSBQP1r1qylioFAXCmKJqWMgUDcV+d7VY+BQAd6PafdkoFA/h6pRZKTgUBZ8e2Z8JWBQDkeOGBWl4FAbkKRVlSfgUCh0KKjbZ+BQEbMUILnoYFAMDyFqd+igUDc9E7Ja6iBQP4KsIvwqYFA+H9DgeWqgUBW1KjKSa+BQKqs336atYFA4VRsR0q3gUDIduKOA8qBQJar6uSxzIFA6MnJs17PgUDfXyFl89GBQAoHzDMM0oFAsB033X3TgUAsonH16NWBQHxtgGXr2YFAEf/9oznagUDiG8Kp8d2BQAzDQTzl4YFATu2ZplHqgUBHumJ7WfKBQMbCVl0Z94FA9xoScOz5gUBIJpLuS/qBQKyhdX4w/IFA/IE0me79gUDmqjZU3f6BQLYIKcwCCYJA/zWzGFoOgkAjA9zp9hGCQKgfZ1rYGIJAqJ2YkSgagkDOhttLZRqCQHY8GYEsHoJABhoUh2gegkDI823F1iCCQOqg2H8tIoJAXgYcxtQigkDNDgFADyiCQMpJ+6rRKIJAAOdvq54qgkBdY5rY2iqCQL4QUdr6LYJA6Mo19qAugkCvPo6UozCCQOD0X8xwOIJANujWOrc8gkARtyLsCj2CQPzo+r40PYJAjlErAlc+gkCwfEDkrT+CQIIAx2oCQYJAcnD4zFhCgkB8C9/G30KCQIZMh0GwQ4JAIBmtamtEgkDG9qSqQEWCQK7wdSc7TYJAuoHUvA1OgkBiooIL5U6CQGB5lORmUIJAfMnRndJSgkCIFWzW4FWCQKbuCgYFWoJA4GrJ8LVagkAFuG4a0lqCQJbI8s2jW4JARhxlQ29cgkDsGCd2Ol2CQLpZh4cPXoJA/CL5SjVigkCez/emzmWCQLArApGfZ4JAwPnd/XFogkAEVtVJN2mCQN7ouxUHaoJAOVdxHNRqgkDy2wyWp2yCQNxzS2tRb4JA21t8G25ygkCcKUr71HKCQFBITyVidoJAuqf5MGt2gkC3I5md1HaCQFhtr46ad4JAKiIkrhh6gkBQLJm5rHuCQFQ9l18+fYJAfuAOO0OJgkBE4NaPbYyCQLB2QSlDkYJAagj9mqySgkBMUPuT9JKCQA6HJ9mBloJAlzIZmLGWgkAeMOUfPJmCQBbcEhFVmYJADr8w7w6hgkDd5znZOqGCQH79JWHypYJAxPwk4QypgkDUA1EuM6mCQA1P/t72qYJAb6cvI36qgkD4LLjHI62CQH8LYtAGsYJAyO4oiD6xgkC8MSVE9LGCQOQE3ufsxYJAUlLF7O/JgkDXIcxTycqCQLrW74Z+2oJAjPoYN4LegkADNfBfDuKCQFDEPGcG9IJAaLSa1av5gkAcFavzwf2CQAJocu7FAYNAqL8QhecFg0AQfzgNLwmDQI45iH6+CYNApvmqFjsOg0BKIDJgeRGDQDiU2Kt5GYNAhhCDA38fg0Ckv1nuciGDQBiIofFxKYNARVUYVwMug0B081vHaTGDQImI3L15MYNASibyLU04g0Cfr3fijTiDQLoNsjPDOINAfLv9umk5g0AkVfUL6zqDQOKhOTrrPoNAwo29A7xFg0CKCoOFE0yDQAIk7U3IYoNA7ESPowJkg0BCJMJ4sWeDQJJS4GU3eYNAAEUW9qd8g0BSz54iA36DQB0TNHuGf4NAjGQ25TyBg0DmSDth44GDQJW+zJdJg4NAHk1qiA+Ng0As0578P42DQPQRZQE/mYNAY+oDaneag0D4kDEmRqGDQJgjKKPGp4NAFzDHI0ypg0CyzKnX9qmDQJJo1kxtqoNAmNY4ouatg0BShQPK6LGDQHIol/IAtoNA+ONd96jGg0A2gjuaINGDQJ6lA6rq6YNA+Nxx1/rrg0Dl+9Ug1+2DQGZvcMLZ8YNAd+KKsv8ChECWfPOGvQWEQKD++XYHC4RAK+21raUPhECcVVrFZxuEQKQVHr3cKYRApTGsSD8qhEDo4g+ryi2EQCR/iBmuLoRAG5mh/80xhECdokBWEFWEQCBoZvrGZoRAxEw/Uf9ohECJvLn2T2mEQOI4QB/laoRA+Qu0jehuhEDe/6dR/XCEQIh6JXbrcoRAYpiTm+12hEDQLB/lyXeEQOgoj8z2eIRAKiZGyHZ6hEBk9RuIJXuEQFAjPfMjfYRAiDdKFtJ/hEACA4dwyYCEQB4FpCg+goRAx9dezn2ChEDjZ8pPCJ6EQI7MggALooRADPoh1W+ihEAArHj22KWEQNKy4nsRpoRApH5hAc2nhEDkjnpzzbyEQATHmqhywoRA8nnVfrrOhEDsGN5pIdOEQN1P8UIR1oRABfQkFWrZhEDWD0aRE9qEQKSGRysF3oRAPle0dBzehEC85NgBauGEQPLE1MEO4oRAck4XdGLphEBIHoq1NfGEQIWVT8lf8YRA7bG52dv3hECq7zT+NfmEQOT49h9b+YRAQD9sJYv6hEB8kZK1xPqEQN8mh/Yz/YRAsMs4Ji4BhUBoDRtUeA2FQIzaJHElEIVAUe6OQ0QUhUAigP/82hWFQNsWqaP3FoVAen3jmnYXhUBH8GyeCRmFQIg1hZ+tGoVATvU+1kYchUBUkkJq4R2FQONdNLqxMoVAe6TREolAhUBqPA9mI0aFQLg+ufSNSIVAo+XYc+JLhUCLClk0oGGFQDjqIwdMZoVATAqSBaBphUARWI7dTWqFQGpeZn+YcYVAuMEM8rRzhUAHH5PIl3mFQGa4mNK6e4VActIgevB+hUCAkpSrkIGFQDRA1zUcioVAqECvAFSihUDGEn6f/qSFQEBPO3aup4VAjLE0cFWqhUDZgCshBa2FQMZsRVdAroVADbN94kKyhUCaDDCoR7aFQBQ5NGtHuoVAnPBglgLKhUB8+wtQvcqFQNGUDQIGzoVAwikpfgLShUC+2O7aZeSFQN4YQg745YVAMWjmWpbnhUCMk5MDMOmFQBCgF0SlGoZAuKJ54zIfhkAIulchflmGQHLmIpYMa4ZAUfnlMCq2hkCc8V6SJ7mGQHmXv2kvuoZAwBrlqijBhkC0Y37u8tCGQOI2+/J34YZAXlnoZ+nihkBmXIAAkSmHQOgpDgiRMYdAShpRPog5h0B9Q2ogXkGHQJR2zsmNQYdApJKyYzRGh0AVJ5ViXUmHQG189uL1bYdAk54a3sexh0DCyCwfx7mHQHihMP/AwYdACPRGV3XGh0AN5Wi/xMmHQHB94Yt5yodAHgFTxnrOh0DpKt4Lc9KHQGsjsCOmTohA1zQcKv1RiEAm3pn2qFKIQM+wmjX9VYhAQqEdF6pWiEActWIK4GqIQO0e577NcohAI6491Nd6iEBviudMeICIQI4Rtk4vgohAoa83bjaGiEAO9EbzqsqIQGISC5+JzohA+oGy/YzSiECgEWKrj9aIQL4MXqWQ2ohAjCQRhZbiiEA= + KBZXds7jZUAsECBNt2JpQNzlv3T/InFA2Q4uegHidEADpwfsrTN5QMfMLddvEnxAnyTA4C4qgEBbxRYab6GBQJYDQA9mwoNAUqSWSKY5hUCN4r89nVqHQHD1UjP+yYhAhME/bNTyikAE1vZuVdKMQObEDlYnC49AaAPBi+Hqj0AleWy52RGRQA== - + - JalURCHfT0RBPA1G3TdBRHuTvkRPrfpEg12bRNfCEEUQwo1EXGh1RLekp0SCScdEHyscR5w0w0Q39VhEnIg8REsMUUStgtFEYV+FRP9RiET7dW9EKL1MRM8xm0WesX5FHn4GRe6IY0R0eFdEJzdhRAJcaEVvZ05EOmi3RF79z0SCsrFEchdKRBLsi0Tgd21ETmyWRFynAkUbxTVFNSo7R/L/VUReNE1G4LluRBHxkUVdP2VFcAGiRJqLF0W8sklEgktnREw1tEa+eYBEwACpRIDayUTZZdZEL8bcRO9up0XiUchEXNiBRKxGLUSHuI1EQf6jRKw4qUSeUiJFJlC9RJSSFESgwElFfq1uRAHhp0TVa19E0rUVRqsio0SSD6JEEDE1RKdZ3EQT7m9FJsGVRDWLTER9N6lECtWGRF7cMUUV/V5ElYmQRM0AqEQ3BrREILbTRG2ELEQZU5pEYGn/RJEIMUQLJNxG8l19RFXmK0SGm/NETj6kRW2uMURtq2ZE73HURNAvPkQn0PBEwIuXRFWuNkQDGWBHb5qwRNrS3kSciEhGzlvKRQw0MURQg1hEv2dCRAswB0bX86REJ9ljRKei4ERvaaBEIFGyRA6cqUQv0ZhEydRLROrQk0WXmAdFfY6MRATQf0ToXaxEs1mfRbjgwUS4h4NEhAdDRcR3nkRJ8ZREw/FzRDppr0QN16FEM/mpRaZa+kSUlhxG8rYKRS7YNkTKh4FERxOwRKO1m0RrDG1Eqfo+RP35C0Ua1ohEzF9eRun4YkTxjoJE5CKaRBil9ERLuUpEU7ZeRMUlJ0QOXz9Fi8/ZRKfzdkQAbS5FaU4KRVPIH0ULazFEsk9fRKJBR0SzzJdElG1cRBLQokSJflhE1RJRRKhpiETjQT5E08hoRJzkBUXG0U9EKzjFRPqx5ESVKGNFUbAdROurpkX/U69FtA+BRC5nY0TPGI1E1LqNRAs+PERoULRFcjZIRz5JJ0QvaCtEqFQsRR8TX0SKSrFEvQ3yRKX5lEVQtWZEYeTFRP17OkSZELtFtwc7RMiWLEWfFi9EMrKRRKBvtUSjt5FEP553RLdJ+kS8ZBtFnVWSRJh8kEQnxANFRKaLRSYYjkTEDGtE5QbURCIPJUSS8a5EurE0RF3eg0Rgz41ESF1CRBb2mETL8ydFzPbnRCFdskR/5fREd3OkRMor60SVEDlEK/hCRbxuBkWEH4tEc140RB2g4EXG/ylEBaxLRKpyY0RwAYxEryg+RM3/oEQAgrVFPkfgRN48ikSXy4REwp2ORNZtHUU27oJEK90RRl/2f0So5KxE3TsTRb+USkSRIKRErG58RN8qWERpmbRE0ty4RP5D+0TIuMhEMN2SRFAAU0QFeRlFhLYdRldHH0UE2KhFQc41RKYxOUVS1/hETgbeRI9kTkTkq15E4YwuRH6xOkScwWdEfZo2RmMGSET8xI1FVAk0RAc3M0QM8rtENeSRRGnQt0QYpqxEj6CJRIWVnUQhgbFEKkRDRFLfSUTGxHhFC4ORRP+g/0RI22xEm4ezRIOUZkX04uZF2fb6RVVoVUSlzqdGdDxWROw5t0SYNaVEQB9KRaLNUUW6d3xFuuAzRIOmt0Qe5EdFRCAxRocYq0RpQqBEUrwdRUqOW0Ro5XFEigcwRKqKI0SQkutETCwVRR5DPUQ3A+JE/vQ3RAx4iUTmVH9EpcsURWO4Q0RsApNFV+NARFItPkT57pVExU83RJhjaUT4R31ElNaLRYt1P0RoxsREczWARMIqhkbDik5EgiyFRYomWkSR9JNE6IzvRxGgJ0RH3qdGR5GuRIXyQkTBB+xE12RiRSRTokZJKoFFlLguRGVTVUYHoSJEQkAORWaVRERJxo5EGwEBRZoVTkX6mIJFGNSERErh10RNhodEIZiNRFbJUETqL7hEClJSRIiLfESsYiJGt2K2RRVYTUQFZRtEPwBxRVJq60QAi4ZE+OmIRAkGakX7r4BE6CUsRFuqa0QBI1JEx1JjRBgOgEUg0j5GkI1ZRlajpUUFOZtE+qZSRSXP50QPZhFFsKpPRUBw5kQPwHtEvJOmRGjnVkV+nUdJSK0URZSx3kQ8cvZFG4yYRHPYKkV0hcJE3QFRRYafREi/T3RFOodwRKv1q0TznI9F+qCXRgiHqUQpU39E2duuRPCyl0TQjzBES71ARcofq0V7QjlFYLLARODndES8E+VEwVkyRNc5K0VcT1pFDmu8RbiT50R63j5EXBgxRRUtGkV3R6lEB0IxRJS3mESHh1NErzZLRc4lQEQPOEFEBaqDRIp24kRliVNEPnhDRRC3UEQyW7REXnbORBuuiES2BnBE2SulRR39p0Tm4tBEq1d0RGoVzkTyoE9Ews+JRHQuFkSqEzJEg5mHRjyFw0RduDxF/XEURHkQIEe/ScRHM0sRR/ipX0Zb4oxFVO7HRo2dvUQzYvREputTRVU4U0XtNABFO6cBRUvsu0TR9C9EMZSLRZ2xYETyxcFGiMGuRZqjbkbOcPtFekvlROwFhESI0j5EUA6FRIuhvER/B41ED7nIRNXxeETvRdJEvkgVRIbHOEblJRtEsXpHRA5hDUWxfKZErSMvRQV9jkSiFC9EQjyMRd8HyURXZSpGfBiURG6/bUTAoDFFR2WpREUijURCnztEm3JPRD0W9URclAJFurhaRCCQm0QU+IhEIIW9RNhnI0QTvENF2z90RP0iO0RsIj5E5V+LRJrsD0VV2LREoy6FRLjieER6JKFFi+SwRHxxo0Ua/IxEufymRqc6rUQ8RT1E6OAXRoq1C0XhSfNE5aWxRWHxhETzY0tE+P9uRe9DckRiSO5EqiczRZ3lQESyK7dFY5CIRGYquURLe4xEw1vaRusqTka3Q7lE/AYRRX96N0XgnIZF8PmVRLzTuES0ezxEpd1GRH+SfUQYAi1EKRWpRKW+DEXzVUNE+UKNROJ6zkTb+VZE4Y4VRiX030cdxzJFp0GORLofkERtn9lEkdr3RviRA0X04hlFMNKYRo15WkU3C41E36vCRFzMiESZeZtEeQtERJWuxkSMMG1E2LsERTjb5kTN22FE+GyTRKIz9UQ5RllEnOk0RAIyn0S+VrlEE8+BRN3UikRZaxVEW29BRNF1q0T50RlGnlwqRq3d9ETVeKJEwTufRNkboERCofNEp1bwRD5lUEZvsYREeK2FRFiMNEWMJj9EqjfORKjhV0dMsj1EjzpCRBmQ+0RuDJRE9LaVRjQpp0VYWzNFeM/pRJi4KET3M1pElPBhRP2S5USEollEMOBvRC4ZcER/VXBE4SdLRLt/ZkQOSFxEjp1NRUYDRUTRXvBFzEdMRGgZakXVsVFEwmpIRHtAuERdWuBF20/5RHxVnESfu2hEfTQCRSxHg0TIq6lEhv9hRK3lIERRYNdEZrBsRA3KokT3MUhEf8oSRvDCKUQWn0RESqZHRNImhUQ2rO9ES/EbRZD1RkQBub1EjEuVRPGdXUS3NDlFbgS7Rf9hZUSbogNFTUE6REcFcERqc3JEC7SHRKr7E0aJZHVEOMVHRFZ4o0W7+qBFo7t8RHpifUU9KWVE+hkORT7jukQytGlE4LgtRHSu9UTfq4ZEaK9JRNOrOERxMTJEiFxYREce8kS47qtE6Rl/RBKlhUScqV5EsR2IRIcvOUQTRq9Eq+s3RDiE10TQ4VxEEoeQRWAURES/XI9EVAE+RGyB9kS3hzFE+1KJRCFQnEe9QZdE8GuGRz4bpEalFk5EBBZrRI2vr0XTyAVFWfu3RoTmkEUrH0BFjSyWRaLGNUS7KYtEP0o6RStcRkZJCoREY+3hRD9rp0TxC4xF2nTVRPGMqkRKCEBEwQ1PRB2EcESgicBE6UiWRZJ2kkUdw5VESjxKRdP2MkTLaVNEB15dReFAdEQxkHBEIvbkRE6eV0TT2I9EifYmRHN4VkSLsT5ElGwjR5SBAEdQwEpG+jptRfaQmUQvVLpEJpc1REtvyES8FIREQm+2RH5jjUSaapJEtu2mRAztwETr/pNEfsJRRPHxTERKwt1E0LjORXSxT0T5G6ZEIKiCRP54iEQae1xEYE5ERHHa4kQ871hEinRBRL62xkS6yG1FMjrPRDzFSUQmqHFEGBx5SKIKrURpsURF2limRA2BYETxm4NFGTOBRBou3Ecsbw9F2/Y3RMvuSESOjVVErf6cRP2Bz0TB7IRHJedZRJZsn0WC2lZGdIBtRFJeZkRIfkZEN/enRb21cETMKUREgQaXRCv22URBYWpEq0MrRYnJNETZHOVEIHiERelhW0bZzWREez3DRJ2TLUVQeKJFo8XrRsfnkkSZYpJE8aBQROHaskV8QKNE4bUWRUE7NkVB4jFEpcbcROQRckSd7ahF8SdJRRcDm0SdsD9Ei3WaRDVfhEQ8DD9EQ+pRRLGqlESyOo1ELlQzRF3Ek0a+ZI9HfKc6RZ1JCkcrzk5EUbRDRP34M0Y6YjhEyvN5RCGZC0WwW59G1AdrROXohEaBIyREuE83RoL+REVsuqBEVx+QRt42OEQxGoFFFC9dRPiK7kVZNTdEIO5VRHtlYkR41whFEY8ZRaaeSUTF9DVFMpYZRWKq1UTAma5ETcxsRFo7KUYUCa1E8OUoRTLRAEamueRFWZllRZtBe0TUglBEyq3oRJDGzEZdkjNGGFZvRLa93ERInHdEJNowRmf7+0TwM5BEfpiFRVevPkSWl15EPyQARYtgaUSDCZVEalReRE7vgkQUEydG8CsNRi3PJEWdfZFFB2+8RFaUa0W3bllEbZaCRoIALUR13zhFQ+GdRGv8KEWMVHJEG/E3RB78k0QjyzJEeHo1ROY/SUTn25hEyCiDRIrCwUSiO6tEpM5ARFhBvERKo4tEOFyRRMMxNkSuuTNE9xylRMe6i0TjWztEQpA7REVXi0Sd8lBEjnEfRCcIxUR9hKREEMsRReJgH0XUyV9E5NW1RKfZYkR0Nx9Fx+SaRKg+gkQAApBEuYjURHkqzkQutm5ERbMCRQ+GSUSHXJ1EygmdRJSdlkR7n41EdM0wRKQ0b0Sf0W5E+szJR5FqZUSEnBlHO2lHRFG6MkU4vDBEejpNRJrTxkYf7dNE+yy0RSfKBEZEyVFFCrLURJ6+xkTBm2ZEcknAREunh0R2IQJF9e1eRDAOOUQ16Q9FXNO7RJoQbEQUfMFEdRKcRCYwL0RX11xE1OGPRIwhfkXlWYVEfihZRIzhI0QlsDZEpohIRMUG2UfClTlHBakrRO46AkemQwBGWMEzRL9dIEW//4BEetZURKQ+PkSO7j9ESoWORKcJDUW7nC5Eo91gRHc6sUS3HVhEkK5SRI0Rf0SCEWZEpqNJRD5LG0SBBoFEV6tIRGu8kETBx2dEiF0sRBq6O0TpXqlGwPRoRHoU0kVT+mVE7HbBRN0PdETwb0ZE+acGRp/5C0UvxLJE+yMkRA9EYEQ04mNEdqctRDx5DEWMIa5Ee4iRRXYZVEThbfdEAU5sRBbTE0UMYglFHQdRRC1eC0UQ82ZEHHegRDnkfERlcqJEz3SzRTSNW0R6MJRG4IkzRrZgv0SMJqFFkDCaRB4SgkcN27FEqQmCR3vRrkS6iAZHHmtARgG1bETKS6JEgw1NRePyl0XCa0JF2I+PRNEad0Q++2VEdvNRRODQP0QLaG1EJP5SRNxmu0REWDVG7c8AR5Vw7EUAI3BE1cANRdmmcEZQ1YJEjRPvRXktlUUlMFJFSQ2ERdwxEEWk7MdELkeGRbmMM0QXEOxELt+kRAyUpkQT6VFEkjglRaecW0WpyhNFF1vtRX3JLkVwl7BEUl2vRExvk0R+AllEA0T5RLBNRkRXa1dEtPxJRLC/AUcrBUFFYjpjRgbxPEXE+gpGRzFaRNgNRUU+UJJEyko/RNcma0SS1C9EKXQtRRn+iEVS04RFZUohReiiwkQ5cIVGj/EJRhhTTkWfxCVERwPXRJuGOES+bJFELBZyRF0OUETGKP5EmKCJRM9UoETjJk5EeARURF3oSkRcy1REgWzFRHNmj0RFEeVEJyWQRAMXYkSIZHhECEkiRPYCQUYicrpFjmszRQUhnEQD87dEZJlqRIn9SkQ8zTZEWfzlRT2RgkW9PWxFPcRARi0pekSCzxVGafmaRbHvvETW3SVGZ28zRb/JGkYNRlxEXJFORdMMo0QRoopFcwolRMLiykScrHVELDv4RIFrGkWInJJF5LF4Rb/1N0Ur4WNEyyCZRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - /oLkUW/BckBKLGQSVMJyQKe/o3/kwnJA0j4VEDzDckCzqFYzx8RyQEIm2yFXxXJAnsEwbirRckBqPuS8ENJyQLINkJND0nJAXpjhkGbTckAwH4xaZtRyQCnD2waO33JAsmu7TNDfckCmBL97uOByQKAH//1N4XJAx8mZO1DickCIooWwkOJyQF6Nfb0l43JAjpbh1+TkckCw7p77OPFyQAjVfSnJ8XJAz3T4cU/yckDg8A5lePJyQC8GHagS83JA3v5b3LbzckBtVI0LDPRyQF0jNL6i9HJAUIct+cD/ckAKgzvd+gBzQEI14qpOAXNAMn+RX40Bc0Au/6kAPAJzQBLfsvvPAnNAIrtQpvoDc0Dqad1tjgRzQG6FyY4KEnNA5hD8I70Sc0B+MHmA4hJzQCw5O0paE3NAdnFuNPoTc0DixGCmTBRzQIBut+B4H3NAyEYxh6Qgc0Cy+AZZOSFzQBZuXDBiIXNAJcp7C30ic0DqzBtzzCJzQKTRoyAOI3NAmNyFy9Akc0CtND5DSDFzQIqBfqNYMXNAoJ8Pzc8xc0AA7wqaoDNzQGa7PRzdNHNAqiAsHNM+c0B0mHfxuD9zQChCeWI/QHNAYDZqKeVAc0DYoAvxeEFzQLzDqqOlQXNAXQgvcLpCc0AMSIG9ekRzQPAlru/3UHNAqEbbGptRc0CR6gMMEFJzQIS4Sj63UnNABq5whUJTc0CYVmd8o1NzQIZ8oiGJVHNAfD/lq/lfc0CnZo2Ii2BzQMxN8n2IYXNA2iLOszpjc0A8A4r9rmNzQIA21eXMY3NAnHm7QmJkc0C0W8pNSXFzQEoCuxFQcnNAytFmM2pyc0A806P5j3JzQKyfdre7cnNAaOb6qvdyc0Cg8SFjuXRzQAxEnnpNdXNADXPG5XiAc0A4a9B7o4BzQI7qc0cLgXNArBihZ12Cc0C1k0ZA4oJzQE6y1t8PhHNARkwowTiFc0A6Z8QzXYVzQKBRiGqGkHNAtISvWIyRc0DGm2xe1ZFzQOquND1NknNAtCNozs+Tc0BiDtiUYZRzQGxgF2v3lHNA2KL1oI6Vc0DgFbXYt6BzQHCTrurkoHNAfidWv0uhc0CuRulQsaFzQDgO6gZbonNAkA7osyejc0CKQvR7BaVzQFQ6f4HWsHNAayKB+4Cxc0D88P7YW7JzQBtb7/R7snNA8oDYZ7izc0CSJqaxDrRzQLAW6PlCv3NASh71gffAc0AW3vQDisFzQJMeTYs4wnNAwu49qmjCc0DVk/v6z8JzQEh2PQkmw3NAoum7NWPDc0CQdWlN19FzQAoyiTq+0nNAkOzNLfXTc0A5DEyX4tRzQDysXEak4HNAXCuknM3gc0ASB+PeOOFzQCZ+WIBk4XNA5qvBKnzic0AEATuvDuNzQCjCsQvu5HNAK7OsNyvtc0B8is5+wfBzQHTprQ5a8XNAsBN8HzT0c0C+0M+CjfRzQKYIAftRAHRAYORwkeEAdEByHOQJeQF0QGpJSt+lAXRAVqSxr70CdECG9rqodhF0QJ6B7VuMEXRAAv/fjasSdEASKqJOThN0QN/foeB2FHRAivADuU0gdEBKgeWgjiB0QEJqVOE2IXRAtbaaeLghdEDERLZyVTB0QLqwEFq6MnRA/BCn4OA3dEBcWniDUkB0QMZhzQeoQnRAeKX7Nj5DdEDTaiy8eUN0QFQACB4RRHRAzLforM5RdECCzEY5CVN0QCoQshv2VHRA60rzMYtVdECeJMsVC1d0QNJ4mNQhXXRALI24xrdgdEBmf38cCWJ0QN51H996YnRAhpAgOhJkdECWmSAYUGR0QHaDjfkicHRA0jJED8ZwdEBAm7Z+QXF0QNpynvHGcXRAlo/QTg1zdECqXwhjOnN0QLadC8GhdHRALDud9Dd1dEAnKkoRKIB0QCbIFI1DgHRAjNf12GGAdEAiWOos+IB0QGZw2x5OgXRAZGruWe6BdECwyg02OoJ0QLFqYWYmg3RAu+clA2ODdEDKbAf3FZB0QHxdqQhqkHRAOixRU76SdECsgGFkQ5N0QGQNyhEZn3RAzUAt0+6fdEDq9+Qp0aB0QPyMFIA5oXRA+FkjMpChdEA+NC0vvKJ0QJldAfgOo3RACJsd/wmwdEDyv0AuxLB0QMppOMU8snRAljz+UXCydEDIgvlw/LJ0QPAB0x/Ht3RAcB9oquHAdEBodn9FecF0QLuo4rnqwXRA/pJp/7vCdECyI5uWE8N0QEpMfjN7xHRAZPzqT7fEdEDmFWrxMMh0QEL03g/LynRA/xsgO8vNdEBOpHM7+850QGBlcmIP03RAzISh2UDTdEAMKO/s39N0QIvxBzXM1HRAMG564/jfdECWs8mwtOB0QE6rYs0l4XRAHv0q6bbhdEC00tMHXON0QOAdTbGO43RAm3tR2E3ldEB8nOMqjfN0QIYJhnKi/3RAaPDg6WABdUDo92KnXAJ1QGr9+uiZA3VAOe/HApkQdUCWjojpjxJ1QBLjfTA6E3VARD/IrpQTdUBmQudqJBR1QML4VhnhH3VA+iSx4pwidUBeUyfa5yJ1QCkXDD2sMnVALJdOPQ0zdUCQSxRlzjV1QOxblN5wQHVAM0tw4K9BdUBa9aLy3kJ1QNKsMVTbRXVASZToL5pIdUByPU91gkp1QETrDWfuT3VAPEWU3YFRdUBKlwLXBVJ1QAOcJ/klU3VAVh0iYEtUdUA2OyEMd1V1QGUELoH4X3VAgFEi76FgdUCRk8WoOGF1QGaXvhetcXVAKHlZW3RydUCgistkjXR1QNxx2S92gXVAhDnm862BdUBG+wPAhIJ1QGfEudWlg3VAilOBeROEdUBsAvxfm4R1QMYf/+65kXVAqs55m22SdUAs0/w8IqF1QJTz/E64oXVAXVOk6EmjdUCAtCyiiah1QGYtvGmjqHVAWlF0gfytdUAxRwNCH7F1QPWsQK3lsnVA6NWsKYCzdUDaJ9saY8F1QF6yMjD3wXVAlNoyysvTdUBU8FwA5N91QMyuFmB44HVAvwl/tA3hdUAGT7HXB+J1QNfH7PM75XVAPS1v/xn4dUD6ySwFJgB2QO4oD9Z2AXZA1nfY00cCdkBOH6TR0AN2QNBZ1SdNFHZAmoGSKQwWdkD0jT9oiCJ2QCj7eaePJHZAHbEnhEsrdkBCTIBzwTB2QOgd8X0fMXZAaw4DeVEzdkAQ3kzFlzN2QISp16K7M3ZAYnNeuZ00dkDGfEoIHUF2QMIwVMXIQnZAhiMyXXlEdkA428gUx1B2QEIKXOgRUXZAcsI8is1UdkAItMcxjWB2QMwmVvogYXZAVI+mO7xhdkDQ9iai6GN2QOLwOVUiZHZAnVhx0tpkdkDO/WcZWWh2QIZ9/AgJc3ZA3si43T1zdkCGJROf+IF2QPyjSfbmgnZAJCMY0TKDdkAEW/vfj4N2QDWj3IpokXZAAvHzDryRdkDmDLE6vJN2QD7Zd67tnXZAH9l6YQ2hdkBM5/18EKN2QGR6z7rDsnZAvjTTNGGzdkD6vo/MDLR2QEw8u1KwtHZA/I5Z1cPAdkAu+w78T8F2QOU2q2h5wnZAdH5QhxjOdkDaBUhkz852QIDJqcVa0XZAn6n2HvPhdkCEJz/8o+N2QATQO1+Q83ZAEi8GBDYCd0DyCRNKARJ3QF9h+JIOIndAiErxFnMid0BsGZ+btCJ3QOFneSy5JHdAvqcPLaIzd0CyjCf5DDV3QIcqi4TEOHdAupRyJ51Bd0DuxWwUkkN3QMZqtNImRHdAPhqA/RpFd0BMbd+vSlF3QP38nTSSUXdAPZ04UMJSd0Bzf/2jKlV3QLgRLiUMXXdADouWqHpfd0CQCH1GRmF3QGIzB+2OYXdAoIihoKdjd0DSGaC/OGV3QHwd0uUmb3dAv5YQ5IZxd0BQ7SlzoXJ3QEJRFyqQdHdAhVruSk2Bd0B7jMDu4YF3QFiSOhJ4gndATCyKYgmSd0AOmvtuUJR3QCrayhKLoXdAyla4uKSjd0CzzBMA/KN3QGCW25iatHdAJgoSbge5d0AIBoqVEsN3QABACnwtw3dA0FEqBY/Wd0Asjtks6eB3QHP+nrRQ43dAGuwIrMfwd0DqnSh5T/J3QHYhp3FG/XdAtLiK5Z8CeEBGPbGc5gJ4QKzZtwv6B3hASn8bJVYNeECxsTWyzx94QJKjOKBuInhAJpoGG40jeEDjoCwm1CN4QHhf0xAJJHhAGgsq7hEseEAsf1dyGDB4QPSGSz59MnhAXJ7qyW8zeEBnjzRuJkB4QOXwFm8TQ3hAKDsbkBFEeEAMxLGeekV4QER64DoIUHhARcDsK4dQeEBSmkElyVF4QNQXlcGqUnhAcIH5YIlVeEB02Mt0l2B4QJM/HgT6YHhABpRaIbVheED0WZwPKmJ4QEIJ/cZ2cHhA/qhvmbVxeEA0w8XHl3N4QJ+Y95mLdHhAOBN3V890eEAx+8OY9nt4QJA689ykgXhAaJetzM+BeEDwa3iP1oN4QI84Ux39g3hARNCfCHeEeEBNzmW3mYR4QOa1dzVPiHhAlBd2/gKMeEC4mtTir414QHrewJZSj3hABFNiFJeReEBw7nnlp5R4QKuWwFq2pHhAkofrlVmpeECCLcGEOq14QBxZtNcQs3hARuUeU9ezeEBER2DVysB4QPRlO7cVw3hARGcHuLbSeEAi2X9yt9R4QJ3aQBDA2nhAI80FkA/heECpi2cQo+J4QIU/kQHF5HhAcobmE/vneEBjkEjpKut4QGZuGcZa7XhAZq5JAy/veEDUIshQj/N4QEqgfZcC9HhAs4WmeYv1eEBUvl6+mwN5QHZZPk6bBXlAbxBd52IjeUAG+QgY+SN5QE642TiyKHlACNFf9rYzeUA+DsmquTt5QAtcvwWKQnlA31k9CfxCeUAI94m4+kN5QLr4MbC8S3lAYGB2xMxUeUCuZhr82WR5QNHbrgEPb3lAo5+d4UFzeUAgURTE1nN5QAxO0PrbgHlA0E6aOxaTeUCK8YPMG6F5QC7t+VfCsnlA/s8GqMvCeUAsda4FWsN5QDi4flmyw3lAKuO+Qg3JeUBCGbe9Y855QN+v2j/O03lAqogPZEHUeUBWANybwNd5QMbAuc1Q5HlAYBzm9q7ueUBY737WHO95QG93FJpE8nlAJBaq7RD0eUDAefv7UAJ6QBrfQTX8A3pABWT61fUFekDynFK+NxB6QAb1BYAIFHpAatSL4D8jekBsHN2QKzN6QI4SiUsMNXpAX2Asvi03ekDgbFPzMDt6QPhby1c1P3pAvuvWEyxDekAABREwGkV6QH1GRi2EU3pAOkgwvCdVekBm5j19Ilx6QEwvisOvYHpA77YJlShkekCx+84W/Gp6QP76wv8Gb3pADLBjlCNzekAIBD8eLXt6QF4KiAGegHpAUYGz3OuQekAGbjWMopR6QJWSdd8do3pA4MsxtCOrekBAGKj6DbN6QDhLbmMOtnpAs9dc+xC3ekCyAaaaFbt6QGqohK4Zv3pA8DRlRj7DekBYLusFGcZ6QC/ZPpaX03pAnh1FvE3UekDYgAWKZeF6QMS2FUVK4npAypULHjvkekD6Pd0dOO56QCxQKysX8XpAsAcw5FnxekAmSFpbSfJ6QBxDGopK9HpAm9qUpHsEe0AHNs30Jw57QDWElyCJFHtA6QKt4kwVe0CUcrjnWiV7QOagtXKQPntAeqYR9OlDe0BGpUhaREl7QBRm5htiUntAIROpDApce0DOE7qC6mJ7QEbzYBUPdHtAJ9G152l5e0DBYZv4vJN7QPWU8hgilXtAii3PIlWee0BNPy2Qr6N7QHM/fYsBp3tAW9EKnAOre0AUkNeKBq97QIhCJ9x4xntATP8ApMDRe0A7k5j7KdN7QPg3Mvn+43tAUqMzxbrke0AR4YTrnet7QFhjUxWh83tADnmO2ov1e0DUitsSy/t7QCqGC6Nr/ntAik9jP48BfEBKWM8+2QF8QJDVbKn1AXxAXrGWtroCfECze+o4ywN8QN0URXZmBHxA4/ylsZkFfECS8uxUEQh8QPiqru+IEXxARsgGK9ERfECyhZibtyN8QNSro8L/I3xAZ/7oFVkpfEA+/BKkfjN8QGz8S1mFO3xAUn5ltMxBfEDjoWLG+UF8QCaQYYvYUXxApmPpEX5VfEASAxmCEmJ8QHpPqgyJZXxAUvdCpQRzfEAOrRV1w418QEWic2Mck3xAUHWhhmiVfEAGUMyvKZd8QAANtVxjmHxAWNoiTHqYfEAoxqlFWZl8QCyDsh8tm3xAYGkBi76dfECyPOIPsZ58QDAZkuceo3xA95Ymwu+jfEB6JGDU96R8QKYzysO9snxAeNGTTl2zfECuJ9QAebR8QPIYrK4StnxAQBjZWLG/fECud6ntZsN8QLgdZXhjxHxARLDbWIDgfECtnliUV+J8QG3NEw8Q43xAmBQejWrofEBsjj2+jvB8QHZXlo8V8nxAAtDcjFTyfEDQ7M1GcvJ8QFroJJk/9HxAThIb4mwAfUB2bJ7qAQJ9QPZ9m1NLAn1A5P6+lV0JfUDsFTJDRhJ9QCCu6DWME31AlqdIYPcTfUAaPIZJOCJ9QAqOtjj9Kn1ACMz/8aMxfUBLw9wGSDh9QFRihp+bPX1AtHEnE/dCfUAC7ANlZVN9QOB4ls8FVX1AYhAIoKd1fUCemdWJL3t9QOMN31Qcf31A6DbRHPaDfUCmtMxFlI19QAT6aZvxkn1ATND1kh+UfUCc7Rh4Y6B9QBBm53Quw31AfOMFPlHEfUDO68Z758R9QBiQss9cyH1A9ook8zHMfUBwCuY9YNR9QOJII53z1H1AzHl14dnifUD99ZCXi+19QKnYq0CQ9X1A3axaaTQAfkBITNSaAg1+QFyntGE3H35A0Mx5NiMgfkCOW9cGPS9+QO0znh9NNX5ADoNxoKREfkBKNVQN30R+QMhEi3FTU35AKu4wBrFUfkDUQnmgZVV+QMr5F+mMVX5AkjtC72BXfkCMVz4dWlt+QN2PLFxFY35AdD0g9GZjfkAbyQp9TGt+QJTzRoS4cH5AYlta7oBzfkDpbad1in1+QJzgiCS6g35AFkdq5eaEfkBIkrNY3JB+QPLHZ+LOmH5A1HG3AX2bfkBvGHB3a59+QEp9iTqQpH5A7COMBmKsfkBMJHWMYK9+QLN5REEisn5AJvkF6Gi0fkAahYjdk7l+QH4FDQFsvH5ATJ6Y2hXCfkBqipQ5ZsN+QNIsotw5xH5AbcB3j87EfkBgEK+hC8Z+QOJYKFF1x35ABJvG0wrKfkDETTa+Z8t+QDgugNl3z35Abmqa71nTfkBy5UCgd9N+QDy8ZH/B135ARKt7y7HYfkB916SmLuR+QHKD3kIz7H5A4/9jgmfvfkA7uqA72e9+QBynrMrO8H5AJRXb3pL+fkB0z56+t/5+QJQi2xKfA39ApGtKi2MHf0AVh9auphN/QM7v18jNG39AffYz/NEjf0B7f1isTiR/QEPBmgTWJX9A3iC7quI1f0DKtrWtUjt/QEAv0kahRH9A3mK9ealMf0Dji3GvsVN/QLJBF50pX39ApKm5G7hxf0Dn6c/T5XR/QJquRbTSgH9AW5VgBbKBf0BKdRpAooN/QHq18kQ7hH9ARHrGYPSEf0Dssl1oxYx/QJLmePuPj39AYuIpT2KRf0AKa5/5q5F/QJT0YviSk39Avk348zOUf0BQvZD7N5h/QDRdBLw7nH9ArSM70V+hf0Bwpu9hD6V/QCOrGd5TsX9AcgWoBeaxf0DIgkDumbl/QDTocWYAv39AReipvAnAf0BPt45oUNN/QOCIY1Vc1n9ADcx0q5vff0ByqQfGVul/QJIaZJ+w7n9AWL9WHCT0f0CmXI0otvZ/QOwQFT8F+n9ABImdHdEBgEBkyNty2waAQD48o4zPEYBABFLRXcEUgEDcdGgzvxiAQHDQVyUlGYBAo3Dv7nYagEDQjHInyhuAQF2IzaNoIoBAsLVqwocigEDAn9iYay+AQOLyz+FiMoBAgA/C/IQygEDW0n9hHTeAQNqri3CTOIBA7y+m78g5gEAqrEe3dTyAQPw+ZqYjP4BAYAsqGx1BgECKXEMOzEGAQJ9gTRKpQoBAKHP5QudFgEBuBr1U7kiAQAYNAh8WSYBAYkqtZOpJgEAKLiiNr0qAQHLFaleDTIBAzqvI/OZQgEBQwrJeFFGAQOrn40K1UoBA4BLJM6dVgEDb+gVPJliAQADlxrPmWIBAhmpWlQ1ZgEAZXbdOBlqAQPcp9bRvZIBAC1sBh2JmgEAq1SO4oWeAQF429adOaoBA80lKBvxsgEDxkDxox26AQJyhB6opb4BA7j3HoKpvgECiN29KJ3aAQEQTPU49doBAHt4m6iV3gECF0eIZc3qAQHwUxlYof4BABH6qDxyBgEDaAmSseYKAQJYmhJ4IhIBAaKDFLeKFgECA8gu4XoyAQOItDDINj4BAmzuJn7eRgEAWOEXv0pGAQAy29bEJlIBAHYToLGSUgEAeXXy4HZeAQJSAQeePl4BAen2zm7CZgEC+6KgIUZuAQAD0UNAOnIBAlJ/iOhqfgEBPa9u7fqWAQM1Wpq84poBAdCQy8YWpgEBsqdpjMq6AQLrn2SkTr4BAVdroWbOvgECesIpbabCAQCZKse4ZsYBAEujJi9CxgEASeMkt5LGAQOXq2+SPsoBAH7aBnxS3gEDdiD8hwLeAQM5A3uWxuYBAR+5rqJy6gEDiTq1BSLuAQLfCEq7ku4BA8ESIQBW8gEDERrLbvbyAQKu+RfZ2vYBArF8dq/G9gEDrzax2Or6AQOErrR76voBAfMWtkKe/gECUJMFZ+7+AQIgYS1BSwYBAcEiF7/LBgEC2uxU/n8KAQHqMJyZsx4BATMT+qqTHgEDMQTxBAciAQLSI5PxzyIBA+PNCS1PJgEBuz2mh1cmAQJj5P+VMy4BA+OT/2AfPgED45aOTsM+AQNqV3AJk0IBADh6nNC3RgEDWR8ldTNGAQBSqszph0YBANnCa0APUgEAmNJIWM9aAQPJcpFpm2IBA9gMEEErZgECqnQ2Ow9mAQOUk5Unl2YBAQqkzUYbdgEAObwyS+d6AQETMdt5t4IBAXBCDNUXhgEBnnHlVWOGAQMy3dUWI44BAbdv5D+XjgEDKLTZ3XeiAQPlhdgH16IBAvAKeC0HpgEAIpOtTTO+AQKpnYcs884BAUOSFuEv3gEDugWPwZ/qAQMSuJoc//4BAOa3J0FUCgUCKLcKNcAKBQMjyJzE+BoFANqmU2z8HgUCUw0ob4g6BQHhwksY9D4FAk0WXX4APgUD0JzcYnRKBQNzWjhxKHoFAJrf3TjQfgUCGmEZgsR+BQILOmuBsIIFAD+Zl2oslgUD74QurRCaBQJrmcM42J4FAjrKnr7cngUAU+hzlRSiBQGxP3BdqKIFA11PznO0rgUCkDhRZzCyBQEozsNUBL4FAokCZXzEvgUDZyaWSuC+BQOnFhP+uMYFANi2ZZREygUA8C21rWDSBQElSKI3LN4FA4uwzzSg/gUAaYk6+zEGBQIaRdwuWQoFAyChQNc9FgUDl+e1730mBQEnLkATHToFACRYTNZhggUBwJAoqOmGBQG3oqDMbYoFATu2gpdVjgUCclQn9smaBQDztwmVUaIFAUQm49yFpgUC7IeUkImqBQLoe9PW1aoFA2XproLlugUAnnIwvyW+BQAYh3/lUcIFAnRh/jYVwgUD4URX+uXKBQNTv+v3BdIFASI4Lcm53gUDWwbGFg3iBQIvxbuDueYFA6gxOaxp6gUBgi29LtXqBQLYR2Xo1fIFAtsphM8R8gUAi1Q5WY3+BQMva4y6fgoFAImO/xKWKgUBnYUotVY+BQFworXKpkoFAKistIN6UgUBQTh8TV5eBQIqSwHaOl4FArvMRP9aagUBaUS4xVZ+BQI4/QKfnoYFAqGhkCN+igUCbjpy9bKiBQEG7zxPtqYFAQsmaGkqvgUBObcfgarCBQC1bMaLXtYFAkreULky3gUD0p8GzkLqBQFQHOEJhu4FAEUYeyiO8gUBgi0miU7+BQPDP1PnZyYFA2tWAmATKgUD4iydAscyBQOZpqHcqzoFA0LL6tV3PgUDkYSJI9dGBQImGp3p+04FAHNVwsujVgUCioa/cj9iBQN6oS+vr2YFAkhhl5/DdgUCyWl9F5eGBQOYvd4R06IFAjgVYpJvogUDIMbBdUuqBQJST3mBY8oFAzLJ/abPygUCYSLBlFveBQHLZyWzs+YFAMqE4H+79gUACS+YQyAmCQFWgSQS/CoJA8WI+1fwRgkDAw8N42BiCQOv40xkGGoJAymzwsCgagkAwQzbXZBqCQIJ6Ng8uHoJA5veGMGgegkDp+XdX1yCCQD6/FdnUIoJAjVT/C9EogkDiTfFGoCqCQMQKOXHbKoJA7O2tpdougkD89TEhzjCCQIzcvoDeMoJAtMMEjWg2gkDyO5kXqDeCQPYw9VyIOoJAUDZI/ABBgkDA6J4fokOCQMw7NN+ZRYJAGDqOBHtKgkChliezoU+CQCWo8s5rUIJAnbLVuEVRgkB2PoVh3FGCQNDaoQrVWoJAdPDzeJ5bgkDOLp7as1uCQI/WiHI6XYJADn4UMMRigkB4RgisQmWCQLWxLu9EaYJAYwfk4qRsgkCBV9n6OXGCQAbSottvcoJA4B61j6BzgkBbCu/SenSCQHw8JB86dYJAHvKGogl2gkAZ3GPiXnaCQFb37/LVdoJALOHZ0J93gkBm1t1RX3qCQECAaWJBfYJAecZRydyCgkDEXx0kQ4mCQOw1/gcOioJAasUYM7qNgkCYDrpkMI6CQGTkEyB+joJAqesOvZuPgkD3iBfzjJCCQFwEIgBDkYJA9gaw3fSSgkBz//3bE5mCQGBWiFU8mYJAjAXMaASagkDgZtsl1pqCQN5KVOz7moJAfDOBpDSdgkAXwOE3DqGCQEYzB4M6oYJAjgmmPDGlgkCnpIda86WCQCIVJj4OqYJAwE3FxTOpgkCUbUCYSamCQOy3hhT2qYJApN4ir32qgkB4ob8UBbGCQFzASXpRt4JAim8OvUjAgkBKYOaa68WCQDjFUVjixoJARp3+mfHJgkBAN/wc982CQLg4ny6a14JACn61/H7agkAcyKH0/OGCQEZY9EJU5oJAFoXJz2vygkCM8J5YrfmCQHAlUO/Z+oJAoVD2UsD9gkDwneVFLQODQDvKJU4UCoNAjZewHcEMg0D016hqeRGDQAXSal0+EoNAvmSJpHkZg0C4goWDciGDQBDMaCGLIYNAuN/BBnIpg0AEkPjmFCqDQKQHFwguKoNAt/HkZXUwg0DLc3rrajGDQNwX6qx7NoNAlJFKG+M3g0AaqN/OjkaDQKPygJpuTINAoajZv7NNg0C33TNOUU6DQHLuzIRMT4NAAPb28Uldg0BPaDTSyWKDQNtiLpDLc4NAei3xJOZ0g0ADlYKj5IGDQGANnf4+mYNAihhXPGKag0D4Vcv6RaGDQLfDVp9vooNAlq+Djxulg0A6lVvDS6mDQObzmCX3qYNALad09tuqg0A6kPMI562DQOUvks/Nr4NAQmv9keixg0CA28+RAraDQK7lF5z/uYNAKB+3infCg0C1adgLZciDQKTaFKNr3YNA+l3ggebpg0AM/N+h1+2DQBTagh7o7YNAX0Zl0Njxg0C1FxOO1PWDQKfaimyV+INA7SxNyDj7g0BoKgWckwCEQI6mmuwAA4RAsnbLJq8DhEBbfnjaUQmEQPJ2UwIHC4RAgOkbQlYPhEAIYGDwmyKEQEwHWMvJLYRAIW/62yk2hEDY/09XSjqEQKMinpZEQoRA1XyQpwdMhEC1uzg66U+EQF32P6s1UoRA2qoBnJdahEDiu9IIBGSEQI51gO//aIRAnAffduVqhEBusyWx6G6EQHoXmtj/cIRA3SuD7DpyhEDT2viw63KEQN/zvsvsdoRATHik78l3hEBOvxEk93iEQAkGBUFNeoRAh8kGr3Z6hEB0l2a18nyEQCJmb+QjfYRASetT9tF/hEDvpzjRzICEQH38UUeAgoRAgMpKVgiehECt47Fywp6EQAClxckKooRASZ7kxB6lhEAb4TvOB6aEQA2+2cvHp4RATun6AA2qhEC2azY9nreEQJo7XnhjuoRAYduoBAvLhEB8BcKDHtOEQMtmmfgQ1oRAiugyAWrZhEDQ0BlmFdqEQE1aWqgL3oRAvBbXqkLehEB4Il3fauGEQMXoDGIU4oRAbZgxATjnhEDcHURa1OeEQJS4EFVi6YRAzKw9UjXxhEAQitxRYvGEQKdcJu9k8oRA6rC0mt73hECc1KOWNPmEQD3EwEdd+YRArD2uYYr6hEBYrhTfqfqEQNMPq4I4/YRAhsYInC0BhUDwFqLgBwyFQDJQpK3MEoVAMqRojUIUhUDTbES71xWFQKCj6vD2FoVA9nSzgnMXhUCM30pKDRmFQBYVMcWoGoVAOArv9/sahUBhNBWFRxyFQHPzgXcBH4VAgA0VNHUfhUDK0AXGdC+FQF8YBEKJQIVANvdqQvZChUA0w5iqykuFQGbJ/m6gYYVAWu0z7nVkhUC8v/i6S2aFQDOfGcefaYVA/K+T401qhUACtdfkiGqFQKzee0eYcYVAcO2Aq7FxhUCIzYmSmHmFQD6pExORgYVASsvmSheChUAHEypMqo6FQHjIweMbnIVA/ALkmFGihUDg8lBGBqSFQJ48byO8pIVAbuzU9/6khUAoxcfkqaeFQIN46E5dqoVAdp2wTUGuhUBeDwpQ1K6FQHxv7fBDsoVAElH5ska2hUBS4fdBC9KFQNaflJlT0oVASMUeyQTmhUCaRl/aY+yFQHa9TGz7BYZA6kJpX6IShkB3h8KgkxqGQAhXfwXsN4ZARhTxZJc6hkA14CKkmVqGQEbLVL2npoZAQ6yQiD+whkADQZxzLLaGQAhuRccluYZAghnWgyu6hkApZuucI8GGQBggicem6oZAH4n1Ja/whkD+C+bskCmHQKaYQRuRMYdAKIW1Noo5h0A9ztTqXEGHQHbOLuyDQYdAfPfjlypCh0A4u6EWjUmHQCCmoraLpYdALDASSMexh0Bk6lH1xrmHQLAW3iG9wYdAoGbY13XGh0BAq12kwcmHQBYqwJt4yodA9ECrJ3rOh0CdmjGIdtKHQD8EsYrh0odASVR2onTWh0CL6h+apU6IQOnADFP9UYhALRVQNalSiEDC8MrH/VWIQGNpZ9GuVohAJ+bi5a5aiEA7ypHT9l2IQJoCDsHgaohAVATfocpyiECSJfJHMYKIQDhK4/jJqohA6Mw9cqvKiEBMZ5YVic6IQO4cIoON0ohA0N+w+rLSiED8waM3jtaIQNOMM+qg2ohA + KBZXds7jZUA= - + - 7sD8RfCZYUTA2CxEsIcPRawfW0QVtHZEsn0pRCqUSET0KhRHkM2aRe7LLERglX9EMKaaRH+NB0XEKSlEcZiaRb4WckWx+YVEFccyRPcifkTm7VxFIJgORPuAF0S11nJEScTFRLODgUTkocJEAYijRPlqw0RVaDVEcYW3ROJ9g0ROmC5FgLoHR+ZLYUScGlhES6V/RoZPRESXqANEq/VpRXVMckQfnN9EDQ2qRN+Ej0ZRd1xEFF+DRH2qr0TE8KlEMJN6RdgvWkQkVJVEnbA6RHVRJUT7FjxEHwMdRJufAEW6xz1EpYpYRCYXgEUbPEFE/ugLRSt4B0YWJ31E7gnHREzTN0QI4FlEC3OTREVKe0VrSrpET7ypRJxGiERj/YpEW28RRavvTUT/+oBEobV3RINpNkR62n1EYb2WRDpdcUTdfCZEiLMORGNhi0RsVrtE0zGxRr61RES+UrJEJpFnRY2jSURnb1ZELBlWRNJVGUTJjw1F1wNBRMpVHERTjkFH14I2RFA5w0Q0rTJG4dQ5RH9E6UXFyo9E/wV+RAyFnkRWwexFNVApRMUH9USP3GZEDSujRBWGYkQK3mdEzAoYRRMnFkWZiCBE5j/VRIIFFUSQ92xEfXOKRKGbuEVLh4REW0lFRJ0GI0VVjnxE9XuCRLQ4jUWcwUdFxoo5RAtT4kW0sHxEhm+WRB6hdkQEkgtE1NhSRIegC0RGBXBEVFw+REytbUTxxzZETh/0RBlaZUbZKKtEzXOERBN6TkTHMr1EeDZFRGtkCEW5vFxE0ipiRE6UTUQJvBFE/OTNRBNuUkSMan5EuUQ0RKDhiUQRgE1EgJF6RDZihkTDDDZET4pPRJc6YUQBwpNENvSORN6ml0RHyYtFhFxwRfzPckWb5h9F2BxKREi7u0QXhpxFNqpdROjSSEfJylhE7QcnRP/FSkUKFzlEjgSJRL8UJETys0ZEgFlFRI3qJ0XAittF2A0mRCx8ZkQtZVVErolHRCSArEVUDCJEinGIRLg5fUTztzZEQBLyRHMw9ERBBsdETLpgRAyg6ESTVTJFl26HRFpC7ERZMldEe0V4RVj9kUQ+25tEeZqmRJ9QfUT1WGJE+uiERJluO0T6Dh9EdEJCRKG/PET9ZidE8jyCRO+/akQpkExECE8JRTJMiEQsRcNEOY1hRN2NckR08YNEIenmRAKoNUTxZiBF2yrlRAkOskXBZEFE4hyVRNSeq0W8S5ZE3KGHRMvUg0Q9vZREZSgQRFMp4kQ8AkZE+U/wRaWHIEQUNmNE4EdORMwZ6ETfywZERakZRDzL7kRw6xdESN8jRK7pO0R4k3xE/bI6RBRgNkTtihhEx3o8RLuLyETQTDxEWUJRRB8Oz0RcEgNEixABRb7R4UWBvdZEBUWwRW3aL0Tahw1FU9BIRCjU5UTiAIdEWHF5RKqHP0TYKFFEDhs6Rk+IY0QVj2VFN4g4RDJBOUQfKypEnuwcRG23hkQqI4FETX2QRFkzN0QARBpEfKLIRJ9WR0RcbppEfddLRK4WFUT5UBxEQjkxRa3qZkRSipVEv8YhRGwLbEUnEwpGcnbGRW9cGUTXlqdGLZgGRWP6MkSgbyVEidF8REqGg0Xjvk5FiEx5RXU+kEQ8W0lFJY0jRhJ2IERV4IFEFlkZRLI1g0QROV9ET/PyRE2/QkRO6RFE1fgkRGGGQUQUzylErQwKRFZEHUXzACxEMPEVRNmP+ET/K2VELEdCRMAlKUQqJcNELzUzRAU7rkWQ+VVE9eM9RPkOdkSBwSJEF4M3RL7xZUU1mRpEosxmRD+8GUTdGyJF8DmFRA5xkUb7X0BF+2JmRNPlOUSAOa9E2uGTRMVH2Udl9ipESwpyRi1dhETRuN9E0MXFRk8eg0WnyylG+2d+RNIg8kQOwSREcZZoRH1te0SDtt5EEE5XRHSejkTDtuVE9oQkRBxdDUVeUS5EoGJpRIs1TkQr2rJErct+RP79ZESNrCNER7F3RIKzI0QhLoBEkGumRDBwKER4gWdEA+FgRKgao0TlGaVE0UQFRJFu1US4yRxGilBrRaj1OESH0b9EhHVMRBhsGERzjlpFRcdwRDTlRkReTSpF8QGfRMLT40VfTD1EGnMkRFvCakQ58w5E5x87RbGRGEbt+X1E+ftSRidDlUWI9WFE9vGPRLs75ET+yu1E7eQHRQFPeEQAXgVF/fRSRDI6QkRQjytJaQOHRDtt1kUKuyVF0LRBRACqRUT27CBFPBGARIqCLEg/iAxF14NOROLbb0S4rChEj80/Rd7VZkaXowtEKcUjRKgTBEXx3BREbaWiRKqxi0S5Cp5E1Us6RRX6J0VMqFxEEHJhRDB7hUXeSiNEL797ReVPQkRaxV9EWReYRG1WBEb2f3BFDwp2RUHa9ES5MUlEOHNoRB+5QUQKpWZFM5itRAgSdEQTqmVE3jFfRLMWyETLUyFEmWkbRTcBMUQoTlpEubSNRBwH5kQ6SVVEZywVRN+hTERQjTVFIqtXREW0TkTgrT1FcDm8RENmJUSP5lxErwaZRa7dI0TZ49lE4QorRHPRoUT7ckZEeIi/RKMlD0SCKHBH+HQqRJJ3M0SUygpGGStURLP7GUcIv4tHm+UhR8Y+PUb9/JtFRMfLRGydjkb2qlNEugvQRN00eEUfX6lF/VLURPFsKESbZD5EEzPkRI780EQx6C1EnaUiRBq8g0S0VipFu0HARIloeEZql7RFue+SRjUW2UWOEydFTw/aRAOuBUU1lDBEgWJvRCRlrkTzyi1EUIEpRt0JXUSb6h5FrQHeRNeoFkQ6xr1EMQe8RZ8Ei0Q1U11EGEEIRvVOJ0UFcDZGdcfKRXgur0SuclFE7rwdREoSKkRVpspE/k6cRF4MZERo9BNFDH9uRHufB0W2IRVFth01RXOxVUSmpsRE2LjBRNcPXUTFvIlE79efRX6BTEWvUQlFMy1mRmVxvUR5A2xEHMaVROzGEEZpJgtFs968RKk5e0QUHrNEuvSFRf4zQ0QEyXlEAq6SRdsQfUSLAMpEQ3eFRFlcFkWuVbVEF4C6RYgoV0QEvk1EmvG/RRxigETg7YxEfNmQRL2/4EZbqZRGSx15RH1OyUQfUkBFCMIiRQ8hkkQpRbJEUEwtRRCAOUSVeJdEwWkwRMt8QkQ8lrpEpRBBRASL60RO6FVEmEIIRHj7gEQ6HYZEKxSFRnvIq0fqlgZFw4bbRDikjUQUbLxEknmbRg0cGUWD+0RE8a1QRfCX60SobXpGATFQRPp8QUWyRaFE33iHRBWinER2oEREGSKPRK6MOkVPoJlE4iCRRJLfTUS0NxtEIqK0RGJVqUT9FBlEO2TTRPA6WUTMj0pE9F0lRNgALEQZ56xEDY8oRqHNCkaFLaxEdT06RH7e00RibOREhmSFRLlTjEQNEfBEEcq4RQDXP0SOjrRE0xPSRDovYEROiz5EVuKoRfuFSUTdcg9Hvxq2RNBzPUTR0VREKhhXRD+CbUbofz1FF04JRUh9j0Qd0XpEyVM1RD80METueoJELeW7RNnHNUSSGERERBUkRBn6ukRTwXRFtqPcRYhrYkTKmzdE3eNZRW+KuUQmG1NEa16aRJPoA0YsGzhEYd7sRJ5Q1kSnUGxEKjFLRH4SfEXnxkJEyKZ9RPTBSkTGVDxEtpYGRLsIfkSB445ElRIxRDesVUT2/CtE+S9dRNRqY0QDdiJE0OdYRFEzf0WddOhEPF0sRHrUWETKZzpG43wsRUeEEkSzLXVEvQdSRDHOO0Rku1NEa+haRbt/x0VwTSxEM4CzRImZd0RhuwxFSptpRN9jXUQZe0hE2WYeRrn9kkRJLTpEUJG4RUWyJkVp0SZFCGIZRVbKOkRtG6tEBMwzRGJzWURQ8ShE7QkrRNKBIkRTGUBEiHw+RGzOqkRa0H5EYaY0RD03IkSQxj5ERhovRJc5qURSzGtEfo1XRELIO0T5IolEWSMfRGRgbETOv3dFlvxJRNSTVkSl09BEtIZORG3fpEfom2xEfHKDR25ZukbaENZFHZ/LR5g3ZEQbl+9GStcuRb0pk0TodWpHfKWzRB3vqkVgklFE9dQIRQ2EOEYZkItEFCo5RJK45URbSCFE+8J0RR0ErUQsULtEGu20RAnyZ0Ww4INFLq/JRPovdERtnfFESwWERGVIcUR8mUhELhPKRGPGw0WtZKVEjiU8RJ78q0SWfUNEO21iRFnM/kYVCthGgzNIRmpDfERd0TdEjPpIRdZ7zUT7Eq1EgxseRCX/u0S6K2xEVp5+RK2NhkTEdqdE6RH0RHQ+KESr/ZlFoNFgRMa9TEQ9Li5EMTAmRK+1yET7aPpEAwyIRGtfHURRzzhEyBYeRA9OFER4i2BEUjNtRGadm0SRG1BEL7Q8ReWK00RDarBEEG2ORB4ZUEQIQVtIxsv3RPd+LEWV8DREGRGNRJWmd0SWv3pEbgzHR5MCUkS+GrJETCaQRCOOpkSzmrhEIc5mRAf0aUdD/hZFnppRRHNDzEQWURNGPCxHRoDNKESBgg9FTeZeREBPOESFf6pEGe6NRR6FzUTEbCdEM0YfROHnQUW5lJVEWi5yRI8h8kTq9VBEXauERN/CxkUJJFNGTVo/RGZokEQgeFJE9FKgRX9JWkT1wotFEb48RLOHRkQ/c1NECrvxRgdVd0SbRB9Eq0czRCmIKESr3NZFTBSIRKhKJ0Q1nkBEOCIvRMwPI0SlWq1EeuESRfwBVUTb8AVFdhAuRIq0G0TG1gREenuWRWujs0QlakxEIqKdRGnORUSn0KREya4SROTHP0QCs3BG9FJwREwLaUf85TFEIrE+RPPoMkUfQhpHj6sERoEXMERFGCxEp7eGRP925UQQQ45GPoOCRihJ0kSmXltEBlXDRe1BPETGM1ZE/F6MRJK1REQCgdFGMDfkRQkWm0WkzNtEvkFtRKNvC0XTNJ5EXLc3RKWf+UQ8BhtF5fkvRcwYnkTDxTJEgXQQRuHmYUS72EFEIMsdRXk4WER8NFNEBwxKROgjOERAJ1VEt3TZRbpNoUVYyjpEDLJwRVLALkR0g5xEF2GKRpIaL0T9iw1GZGNURSy9KERYSkdEfjpTRJAo4kVoHrNE3r+cROvlLkRe/RdFP5/HRPSQBUQ4KotEnE02RO0YD0aX2j1E2Wj4RX5WukTzBXlF27MvRMOQQUUTYhhHpkBgRa1mQUT3bwJG0iw/RICujkT33G9EMp2JRJIFMkRO9WBEIgiwRIlCTESoDF1EHuSRRFpQh0R8O6BEPjUnRLZDZ0QB7fpEWlDQRHgohETW/xZEbPogRECnoETyIqVErpdyRA1SJUSV8UlE1um4RPw3g0RoQoVEkYqmRDg5lUTaLr5EAZkaRE/Le0SZLF1E7O8mRMClp0dkAoNEzN1hRBU+HURXxSZEgI8lRARxPUQWOxBHMW63RctOLEQZlbJGK8U9RFnYj0QvOOlE6dgRRFnunEUborVFjJo2RH/nvUQsCNtE7WDeRM1EqUSyU5FE9Qd5RORFcUQjJ4pE6IdARADxQUWp7GxEGV3ERJWhNkRkzo1EpqluRMMKVkRBTCBEZiRBRBDaeETKSD5EITa+RD3/H0RRV6RE6MNiREzXx0fRzXNEbHwgR89cukaumNNEgWn6ResCHURU5lFEG1BsRDtDKkWCIxdE6FZARO+XJESe9odEWMtTRPNlG0Q01oxEu+8xRGYdiERYcztEU2IcRHJajUToQfFG4RcaRMq5/EW08phE02ttRF2TAkWDBtNEUrRaRHOHhkVEWl9En4AxRaK7ukSafi1E0olaREwve0QeWDBEI3poRXfmJUX79iFFDrCqROxIRUSNTj1EudM5RHCPGkTe8dlFRmJHRB0UTERBepdEgIoURPyUdUTGNfJEz3tBRDmCCUTs0jFEZqc1RBmaH0Qtmg9EpWAbRANOhkSAaqdFcq9PR8a+CEdUlBNFtjAsRJCQR0b53Q1FiExgR/o4j0QOfA9EfK9cRxUgOERezs9GI2n8ReOxQEQyBmFFN838RWgUQERGYpZFqnqXRDSHtUQzqDBEQuZNRHD2PUTFMEJEoDxXRL+Le0TIINRF32DqRkfzs0X1MhVFxnVARET8Z0aBI1NEFGZNRIkme0SKSApGTVw/RcrYQUUk/w1EPQRrRXAP0kTh8N9Ehuv5RLPhoURCYKhE8T2WRKwYF0S44BpEdCXcRJJaz0VLBs1EOG4kRjXaHUadj4FFm36mROeB0kQnnDVESM2VRFM9H0RQRtlEvuJRRKoHEkRZKP5GXrcoRD4BRkXiMElGBrmBRDSBHUSVN+hFGjmWRAC2YUUni4ZEQc1PRE/JPESzkjlEu3oiRea8G0QINB5E1TlCRRkdMEVHpaZELnh1RhyYL0Sc2edFDRZkRS0JNkTZPptEH6SORHZaOURbLM5Ebi1hRCc4e0TG3TREu/1tRMKBGkT+WgpEGw4zRNwWi0Q34N5EiEamRGFlMUS78Q5Ev90LROJXLUbq87RFE0gnRVuYq0TObqNEKwdnRMYHKkS9wiREA5kNRlsrl0Ve/zlFKidXRxYEokS9qxxHYTF+RonttUUFFhpEJhP5RLJmFEaMNitFhF4CRkZXOkX+WiJFYBhMRH3yPkQZCI5EmfiXRGHTlkRP+Q1EtYKARog2aEWBRDNFE3+mRXen00RsPZVE + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - A1Zqlm/BckA2UNk8x8FyQGGFxcnjwnJAAnRjtQ7DckCwlmo2OMNyQDQW0ZmhxHJADzajMcTEckBj4MDcWcVyQJn1pgF+0XJAzoc1Yw7SckDh0iPpQ9JyQJzdtGHQ0nJADEEHXmbTckAAcS7Pzt9yQAQAJJYh4HJAUKQdXrrgckAkpRz9TeFyQJ5slPJR4nJAzGpUGZDickDJVLD9JeNyQEd5eOVz43JAkLpnzbnjckAo0i3GzfByQBQI7c418XJAmvF0a8nxckBZY0nt5fFyQHj63+h68nJAyMnSlBDzckAe4eq1tfNyQPXPSubC/3JA7DbOgGMAc0BO0Jk7+ABzQKzzUbmOAXNAnhQilzsCc0A8KY0X0AJzQFothB9kA3NAFEIUlvoDc0BSFGtMBxJzQJwPqhEoEnNAIiyMmHESc0CMwCTSvBJzQAi+FtQEFHNAJpdCcU0Uc0DuB4lueR9zQHqtHx+iIHNAO5rz4Dghc0APjfcsZCFzQFTN8PTJInNAtNijHg8jc0C6LxALByRzQPgT42LPJHNAyH3Udkkxc0DMK+6UZjJzQD6W2H0BM3NAChvNnaAzc0AB+BjS1TNzQMSfcL31M3NA8dcLSjk0c0DTe0//zTRzQER5xCreNHNATUxbSbo/c0AVrkRP5kBzQDZf5AN5QXNAe9gVVrpCc0AahgLneURzQEwfZ8P4UHNAcLeWPptRc0BLSXJ7D1NzQDbYllRCU3NAengfS6RTc0DVdhOgeVRzQBwTeX/5X3NArpV7d4hgc0C4mXK+iWFzQLBOxyYcYnNAqOrv7Tpjc0Ao/g89ZXFzQA7xTY/QcXNADPbfF1Fyc0DsSNiDaHJzQFQy+T24dHNAURt3kkt1c0DxoPlpeIBzQPdI3BekgHNA5vxq6wyBc0AqsVaUXoJzQAszIenChHNAoh/AWYaQc0BWgqzxi5FzQL5Gld3TkXNA/vpaFE2Sc0DYM60AcZJzQK1ilZbNk3NAgJsrAmKUc0BM3RZO95RzQCHetfC3oHNAQuE2vKyhc0CumiMXWqJzQFSm5IOOonNAZ+LhXbmjc0CzbJHzA6VzQM5sXpXYsHNAXtB3KzWxc0DoEjiWebJzQCY0qf61s3NA1OHD4wy0c0CMS5pI98BzQF+OpDo6wnNAFPolemjCc0D2ZnZVz8JzQFoQ2zgmw3NAAJX+imTDc0BkrwIL19FzQOLDZXm60nNAcbBfHt3Sc0B9tWQC99NzQNZricPh1HNA8o9+kaPgc0DrnrwP0OBzQOc05bU44XNAGAdfKmThc0DAp/0ZjOFzQE6QoQV84nNAqD6vvw/jc0DZkybQKu1zQERrdblJ8XNAPhFF1aDzc0DBywnENfRzQPSQhvDiAHRAJlI9q3gBdEB5X6U8pAF0QBcbYkO5AnRAVjs5kyUEdEDk+ttZBhF0QPeIMDKMEXRAyH/tt6MSdEDRQnErTBN0QMQ7If7jE3RA/7c+BnUUdEB2HcViChV0QHLVdmROIHRA7HjI1LghdECtq+H4YSJ0QGTLWlH6InRAQIh3qbkkdECsXjuiUjB0QCAVD2doMXRAW5CnleYydEDYbn2pITR0QBkEPkjhN3RAwPd/6XpDdEDgXi3+0FF0QHKA0LpiVHRAWs3X9PZUdECqkCm3i1V0QFngCb/aV3RARqE2+R9ddECQWZGZuGB0QHa4F/ziYHRAhiEGbwhidEBEwjGee2J0QOVky8C4Y3RAEjqaVhBkdECCIHUrTmR0QGgZhljEZ3RAHs+JmiFwdEAlZ5ssy3B0QJLrfHgNcXRAAOBkY0FxdEDSCoecxnF0QNZwUI45c3RACPuftzR1dECiT2yCRIB0QDZHBE73gHRAIptq+E2BdEBg0dxGSIJ0QPp5JWzOgnRABHVolxaQdEC6uMb14pB0QBis+U8bn3RA2Yhs5O6fdEConZzWo6B0QLNsmorPoHRAAMR6cTmhdEDM9uRIj6F0QHp6wmjOoXRAU7/sYHmidEDGs63FtqJ0QFOmR/oOo3RA5X+i+wqwdEDC8QePw7B0QC2ziThusnRAgl08Uf2ydEBuAx40ybd0QELq6xsRvXRAWMM+cSa/dEDbAF6c4sB0QNRDuy13wXRAlohoz6TBdEDmRTKw7cF0QKyHGmMqwnRA2k59cLrCdEBGFwD8TcN0QBxw+na4xHRAPuL1MsrNdECaexk0/M50QOT6Nc0m03RAiVnL+TvTdEBZ8OKYT9N0QDOAw0t31HRAmuQn683UdEDKrioqtuB0QOzutzYi4XRAIOM7n7nhdEAeCGuF+uJ0QPYXc+iO43RARqNJLk7ldEAypFPTdPB0QNxQDsmM83RATIZecnf0dEAOE2Q3zwB1QFv5uIZiAXVANUoZr1wCdUAO+u9UpAJ1QFhy1TuXEHVAphuwXyMUdUCoT5EQ5B91QDh42zqdInVAVoypvuYidUD23z84qjJ1QKS+kXbLNXVAdR7ZTrNBdUBnLsTq20J1QL3PTc7qT3VA4s9LHoFRdUACpqXMeVV1QF61mB0LYHVAKj0xUDdhdUCKo2a8zGF1QBmPG2X0YXVAKHBPuntidUBejxCX8291QLZZoZQbcHVAGOQiFXZydUBMD9DPjHR1QLkp9ap6gXVAA6IMaK2BdUBW7yQYpoN1QKDsxtGchHVAhuYd84uQdUCOY96pvJF1QAjGlQTaknVAYsm3kzyTdUAfLm3glaB1QNblanIjoXVAv8mLibihdUCArLOxZKJ1QF8SGB7+onVA3vM1U0mjdUB7dzfooqh1QBY5PLr9rXVAxt7CH8S0dUD+TpC4o791QPgCl8Y6wHVARMyY487AdUC9LlnnY8F1QHAiF5OUwXVAlsKEdvrBdUCKtW23OsN1QDo7Zcnw0HVA7lSIWMzTdUCL31c44991QGLTxMB64HVAhqedTA7hdUC0V5s8B+J1QGzYvyc54nVA4SHgUkgCdkB8LwVwzwN2QEuFn2dMFHZAeuoE7QsWdkBypt7w+h12QF6B3zuJInZATF25948kdkBRwRqwSit2QAk2kAcfMXZAZYulM5YydkAcNj60JTN2QLKdKTxPM3ZALhpHXZs0dkA21KPCHEF2QElXizfIQnZAkuTDr3lEdkB8wwlBEVF2QDh/pN3MVHZAHeBGdSJhdkAG+4HbPGF2QJpB/NBqYnZAULLUCyNkdkBcVYOE22R2QNrvq+mvcnZA9uHfKPqBdkBPbGVpaIJ2QLBDFUU1g3ZAgGEzOZCDdkAmm6HFeZN2QLSjlca8k3ZAfoitS9CXdkCElmCP6512QFSSG+0QoXZAEhf16UKjdkAsGR/tubB2QIHwCYvAsnZAC9Srxgy0dkDMXBKCwcB2QK7+n9NPwXZAehOwJd/BdkAEsbAB2sJ2QNk9dHAlw3ZA4/p05hrEdkDPnU4Qz852QFoKc8t/0HZA8GxJSb3QdkBUwomT8eF2QC7U5UqQ83ZAuq2dxzQCd0BYACzDSwN3QHjG7hunA3dAhkIJGQESd0DoJgcyDiJ3QPLtjqljI3dAmN95xF4wd0B6jr0WnjJ3QDxONdMFM3dAzTBFoaIzd0CMNUAxDTV3QKZE+O6cQXdAaFyO8JBDd0DyMWVWKUR3QHLayzkbRXdALJcq2klRd0AM8yBSklF3QEZldL0pVXdAzENlNHxfd0Ad1M3dSGF3QJsoEOuPYXdALILNcaJhd0Bcy9ONqmN3QMz2kLR8a3dAissOCyhvd0D1L7gZnnJ3QJJkE7ySdHdAVqN/dt93d0CGVq+N9Xd3QPD+oiI9fXdASCVsl02Bd0AiibMJe4J3QCyvzPkGkndAlNNmdU2Ud0B43gVi+qN3QEhXWWKatHdAUH5HfAa5d0Cm9sfwPsN3QA54yuXj0HdA3DSOz2TTd0C1vbY63uF3QPHbr/ZR43dA2gIuhrPjd0CGRTGFYvN3QIUpWC9G/XdASUVrsJ8CeEBG820nbiJ4QJokCfOII3hAFWopldMjeEAEPqOaCiR4QJC/cqikJHhANi9B+xEseEBaAfI1GDB4QAaU6al7MnhA9rwdQCZAeEC+IA2MEEJ4QOg46wERRHhAfvKt8HlFeEAi9kn9ME54QKyjbCuHUHhAhCny5ctReEBiTEkoh1V4QHQ5k5SWYHhA1m6zZPlgeECuawCztmF4QJQ05oS6YnhAEEW0dXdweECXiEYjrHF4QFJvrX0xdHhAieI89kR0eEAcB5nIW3R4QCM6nYuLdHhAL26hxNp0eEDql5w8xnh4QOuREGT3e3hA2CObM6aBeEDW33os1YN4QMF9L1D+g3hA9YH9qpmEeEAC8IYLUIh4QO8LpDlPkHhAqv6Q0JaReEAtDzbZqJR4QPA/FZamoXhAFnvMUjqteEAoUUrmk7J4QO9SayK6snhA5IMf+uG3eEAA7inXzcB4QI6Mfir0wXhACOHW6hfDeEB7i51qjMN4QIAVLx0IxXhA6FV6FLnSeEA8xeq8MtN4QK5Yj9S21HhA7t/+tL/aeEAM9prfNeJ4QFs+wyyg4nhAkO2LO/vneEA9ex4MKOt4QFxaFppJ7XhAZDzK+jLveEAYzN44j/N4QEbifxAC9HhALOOiZoz1eEDsTvRnnQN5QMkjcLMMBHlA+OSFTLUieUBlX7LB5SJ5QFRGRupjI3lAaEGFMrEoeUAYkYdytzN5QINdqn38QnlANoZuWN9QeUDAoZM2mlJ5QHecj104VHlADGJIgcxUeUAAj/hcE295QFr6DLYXc3lADVHW0kVzeUD8ZEZJ23N5QAxF/e7Ze3lAHI21TNuAeUDl8iBzOI95QOJQS5fAsnlA515xI1jDeUAOEhEss8N5QNCb9yoQyXlANWboCdfTeUAs4psaQ9R5QFAXyTTL1XlA6k3Qek7keUD0NeReIu95QLRy8gO9+3lAvI0IpvsDekCkI43C+QV6QBCy0MAJFHpAeISjjDgjekCw+41lCiR6QEkda1kaJHpADumJJ3EyekANXDlbKzN6QN58slYMNXpAdP8GOC03ekAMMhLMMTt6QPIyUdszP3pAPDCngDlDekBbTu8IGkV6QInClTE9UnpAGFyB00VTekDQfYgtKVV6QP5dqNohXHpAmGMtI7BgekDK/thsKWR6QIQwHdb7bnpAZBUMh4xyekCL135VKXN6QMoIO84CenpAhDrk8A+CekCqdVkX5YN6QDIF+hEdo3pAdB6G5A2zekDuSMnBDLZ6QKdZcRASt3pAto7RAxS7ekC5H9t7D796QEUEkG5Dw3pAlNPvKcLDekAeXmEQIcZ6QPJ66IdR03pAyllLhtrTekBewj2JR+J6QL/r5zA75HpAE83kZDXuekBwUZG5GPF6QNyDWk5k8XpAEAfiqU30ekAeDhuz6QN7QPR+crl7BHtAoci56yoOe0AeaxYyihR7QIy4NJFMFXtA1dTNilAce0Cq6bgKHCN7QMaTBlfRI3tAkOoNc1sle0CqRsyFGyd7QAeF7v+1K3tAGoNWWXoue0B2r4dlxDN7QJV0IrKQPntAwsCr3upDe0Cwso32V0R7QMg03TBBSXtAgl1g6/hee0DJXN6+EHR7QNKt595peXtAYlaCMO6Qe0CiQbksuJN7QED62PMglXtAJVSWWKije0BYlJLoy6N7QFx/TzUCp3tAV/xQMgSre0B4SbULBq97QAZpbdkBt3tAHhRky3zGe0A4cZba/ON7QCG+Nl4l5HtAu2nwprrke0DGRUhKnOt7QEosLISW8XtAWp5u96Dze0AGH/e5i/V7QFo5kXRs+3tAhNOgkMf7e0B6uCLakAF8QLTj3PfaAXxAst9uq7kCfEDyeyDA1QN8QLDNcpRmBHxARCtmGJoFfEBDVIH1iBF8QGJkBkbREXxABrSv3KIVfEBKP7oA/SN8QF6V0W5ZKXxAZHWXrX8zfEDSgn02zUF8QKq+AUN+VXxA2wkDRQ1ifEAeGvwXjGV8QFIic5Vvb3xA2otCpSpxfEBGyGC1A3N8QAYPFdGwc3xALc26ApZ1fEAErGpSOIN8QCwQdzLDjXxAxHy2Sh2TfEDv6ESZKpd8QKxL4Ux4mHxA6do7RSibfEANA8C2SZx8QFS3+66+nXxA3pmpvtaefECgjvf+OaN8QIaU71yQo3xAwoEp75SkfED54MBs+qR8QNPhjG7CsnxAfj3fISi0fEB+zm96erR8QBA/bZwLtnxADK4+pxy8fEDpKohK0MJ8QESjW4Nqw3xAyig4LdTDfEAt+VlnZMR8QEAc7UMg03xAwHhrG87VfEDl0cUV8tt8QJUbhs5i33xAXvEDKIDgfEB5/J3DV+J8QOw92mMQ43xAuoGtjSTqfECQijgSxe18QNoEtBKP8HxAwqf0CBTyfEAaRMYnVfJ8QFI9A9L38nxAPnep/5f8fEDtPQeXbQB9QDgLMlUCAn1ATpuLIUsCfUBw5NAWghB9QCKMqUREEn1AhOLXNmQSfUCWNavd+RN9QNIq/jg+In1AGryw6qQxfUDSi+Ic9zJ9QLTpSvdIOH1AsAvOT6E9fUCKfVbW9EJ9QFimOuZHSH1AMOgr6DtMfUBmdRXNLk99QIBbfXVsUX1A5oadc2FXfUB2nLf16WV9QLqVikX6dX1AL8LQZjB7fUA9DD0nIn99QD78EJ70g31ApsG8NcWafUAqAQPVRLN9QHl6vkoxw31ABPIXDFHEfUBUiNpI58R9QECeKtNcyH1AdFoR/DDMfUB4Aj4EYNR9QFhemfjy1H1AtvhZGtrifUBOxSFZjON9QHbK3qwM731AGYt3UevwfUCMAnY9kPV9QPBbuW0f931AYx+abjQAfkDQZEnPPB9+QKy+YaIhIH5AjqSDiUAvfkCSrV0LezR+QPKXyY+lRH5AgQyMNFRTfkBkd7M1r1R+QJ1H1CWNVX5AtQbR9VlbfkCXSbmbR2N+QII1R6FlY35AwmsNP05rfkB0OWLhZG9+QNpXNv6TcX5ACo5WfrJ7fkA2977R44R+QFj97vsLhn5AnuJfn22LfkBih26cX4x+QIKXqV/hkH5AQL4NxQaUfkB0rxlkwpx+QDnU8TmPpH5AhA1x6WGsfkCQIFxYjrB+QPQ1kjkosn5AhIW1ETW0fkAMISbma7R+QFRz1KMbtn5A9CGbJrC3fkBCG6/cj7l+QKKRm4Vmw35AMzJge9HEfkCPDBwcKMZ+QHKoysTIyH5Awobib23LfkAqwcTpfdN+QB86VVQv5H5AwWhf5VXkfkDtTHKu1e9+QIx+/cNT9H5AE1Owp5cDf0Bc+zX9lg9/QNPn/ASlE39AcPTk17Abf0AKhIk/iiN/QDkAjzDWJX9AMgMnIvcqf0CeipG9kC5/QHzF3zMhL39ACDwulmc0f0DoiWct5DV/QPn+J6qjOX9AVlCMl6NEf0CRqMaWJl9/QAc2B7nKYH9ApWyK0rhxf0DLY4Xb5HR/QK+Rv6GxgX9AJJpEc6ODf0Ba176pO4R/QOZPIvHxhH9A2qeGl2KRf0Bi6r9TmpN/QG5REDg0lH9ApM3GuzuYf0DI7Cq9QKB/QPh38nddoX9AD4FBYcykf0AcdSukEKV/QIb8jCQNsX9AzCZYN1Sxf0AgrE5O/r5/QPBqJnkDxX9AXD3ZO8fSf0C5CGC6ftZ/QOxBlpV62H9AiETR6MTYf0AIRsXI59x/QEla+/VY6X9AdLTJ3f74f0CcM6pXUv5/QLaEmlUgBYBAApar/dAFgEB15Jg8uQ2AQAKx2qVqF4BAsAGCcmkigEATSJnRzSOAQAzO2noRKoBAVqTaRrksgED42Lh6aC+AQPCryFdjMoBADE+03BA1gEAgn4ATHTeAQKShxgnJOYBAlG7tDXY8gEAUZ32DIj+AQM4a6tRkQYBAXFTmn8ZBgEDsIpp51kGAQG5agE2pQoBAlqRXX+ZFgECqBy8Ex0eAQFvpN7PySIBAxFLr3ulJgECPQ5dLr0qAQAo8MkrsTYBAZ70xoORQgEAouz3YE1GAQJBsLxINUoBAerhcDqVVgEDxzWKCJliAQHs4o/kOWYBAWPESpeFggEAe1ikID2GAQLJL8bXFYYBA0vAA+3FkgEAf4pBnKGaAQPXDv4ShZ4BAEGxwRSNogEC+S55pammAQEZ6G2JPaoBAaC0CjRpsgEBC05tL+WyAQKyV/vsmb4BAlz/QinJ6gEA6utbsKH+AQMy2t8x5goBARAuEOI6CgEDmMAqQX4yAQM5vQW8Mj4BASfIOKLOPgEDr4x1ruJGAQJ7qZE1glIBAUW2bnOKUgECw79esHpeAQOhnQOiNl4BAnXIvJZ6agEAQH4LYzZ2AQDqwKgwdn4BAy+twRW6ggECEaP5RhqmAQDIuoe8Sr4BAW0quvbWvgEDqLkpXgbKAQMCx6OpQs4BA3lchNBS8gEC++sChv7yAQCAw4P96vYBAqJVf4vG9gEAMPokaNr6AQGbnUHxSwYBAyHpV5PLBgEA1ndOnn8KAQBw3WzRqyIBAOj3oaFPJgECwKvAT2cmAQBq8c2wHz4BAcGHNcUzRgECqiGfiX9GAQK7/GTzV0YBAy7zVDA3UgEAiugtxZtiAQDrAsUFK2YBA+HkW/WPZgECcsxvCntqAQFI3HIUF3IBAgp77WMPcgEA2Nftgb+CAQAqpPVNF4YBAbJtjYFjhgEBZ0Ek1I+KAQCcopTBc6IBAbqPcwvbogED8p8XISu+AQPZDeFlk8IBAAMbsbz3zgEDdpdSfVPSAQIpqWCdo+oBA5AIIPtX+gEBOD7xKP/+AQKpPrtMzAIFA3LV8k0IAgUAiBTlebwKBQMDqQE2lAoFAkLqWcUAHgUA0odlYpgqBQNTlvp09D4FAnoZ+YzQfgUAC58Icrx+BQEFu5Vw0J4FAeuzf6XUngUDEaCK3AC+BQMjErhYvL4FAi72fU7UvgUA9zTXqvDGBQEFAUbrmNIFAXfNqiAg/gUAm2zvuKD+BQHn0gtN1QIFArI/eSpFBgUBIRXYEzEGBQNp0yVxcQ4FAIjj82M1EgUAbP0xpLUeBQMhPP9uCR4FABSnYnsBJgUAqbh5Ah1GBQCoiPOJ8VIFAMO1h2NxUgUB1+lR6G2KBQBYAIduyZoFAljb3lSFqgUAgc78FtmqBQFIUi+O4boFAUO9QyLlygUACWpdHwnSBQGR2GHVvd4FAOA2e5Rt6gUBqpZR7xnyBQOz3F8AtfoFAoPapbVOCgUAqS3v1noKBQMmsXZalioFAtZw1iQWNgUDSVCaSVY+BQPcYfxfDj4FAvn7/KH2QgUDY9E2aXpKBQMtGeOCRkoFAwMB9K76SgUDqpwLgNpaBQABVHqpVl4FA9GYEuY+XgUBy9+5Q+pmBQIAX1odRn4FA3Bid6+ehgUAyclJ136KBQIxU9+rLpoFAX7IHpHCogUAe/nkPRKqBQIH7KjBKr4FArBGBo+2vgUBtLGezTLeBQK246pXWwoFAvPCnywTKgUB+vRxFssyBQDilzh43zoFAv2NormTOgUC24hJeX8+BQC/8oT2Gz4FA7qSLdAzSgUClF4dQfNOBQJPJBWev1IFANPIzHunVgUCOaDv769mBQNJjUhvy3YFAtRRuLY7fgUDwa6AJieeBQDyU835R6oFA6OhnD1nygUBYCJxSsfKBQHLdgze194FAORrz2uz5gUAjMmkgl/uBQFTTNgPv/YFAu+siPPcBgkCYP8rNBAmCQMarphK/CoJAqrlcENgYgkA1XWe1KBqCQL9S/gdkGoJAQXziw+gcgkBIl05xLB6CQIYN6ghoHoJAWnOundcggkCKczwr1SKCQCBMDMCzJ4JAe2TpN3EogkA6pG3Z0SiCQIge1yncKoJAwUrlSaMwgkB2XdFN4TKCQBULL5VrNoJAiOk6fGw4gkAMIAFXgTqCQPC24UusP4JA49gmFgFBgkDwXUxaB0KCQHV1bBN6SoJA/uxu9MFMgkAwPIUQOk2CQN43hwjUToJAmBiUpaZPgkBMBARevk+CQEqPj3RtUIJAu+d+RdtRgkBEaLKn1lKCQMxMML6iV4JAMxqNzRVagkAJZxMO1FqCQHEqhe6SW4JACgQTj7FbgkDWKSLUclyCQPQoYhVKXYJAoOi/pRBegkDyq9xt0maCQH7JdVygZ4JA803HxWtogkBKuDqdpGyCQJC3IT5Ub4JA3Fi70G5ygkAIpnbLaHSCQPZO8q8/dYJA/hsCQgZ2gkBsIgS3YnaCQFgIMuwHeoJAICt5L2F6gkAMTIsA1X6CQFFA5Lauf4JAfOu0PUOJgkCpmt9OvYqCQImRFhtDkYJA/Fqc2tOSgkC4o7k99ZKCQCZGT6yyloJAdjmBcTyZgkBEwc1XVZmCQKoqgw8NmoJAknOKgfyagkCiDVqgbZ6CQOByxdcOoYJAjx3aeTuhgkAck6My86WCQFa0RIwMqYJAbOYHvDGpgkADAisr9qmCQM/UUe9+qoJAC8ZKMrOrgkA1/Yf65LOCQNIt+p7sxYJArO2M6fDJgkC0BfrNDdCCQLRKZlRX0oJAKkZjBsPXgkB6KzbCBdmCQHT2OGyC3oJA4BbuOXvggkAc7SpPNeKCQH3NShXU4oJAnlJufeLqgkB43RtnMO+CQN7FkN/v74JAMOrpP6/5gkD9FEE1LwqDQODZHvk6DoNAzOPHknkRg0BQfVt3PhKDQJzBlcB5GYNAuNVlPGMgg0Du2CrIciGDQI4VKdpwKYNAls03TF0wg0Be43nnazGDQAVXSV9AM4NAUJK/0642g0CQ/BW5jUSDQFLk6D8hRoNARR/PcqtHg0AmF7uewk+DQGwt9bPIVoNAnMAwV35Yg0Cso7PKY1+DQEKPAh3JYoNAT/2xjXmQg0Bk+mdQP5mDQMZFrDRGoYNAXggo8m6ig0DoNxHxGaWDQMCm03PKp4NA63N4/Eqpg0A4XzG596mDQC0C7+ZwqoNAKq/YTuesg0DjEUIl562DQPh+mHlur4NAxIVrl1Gxg0By24a16rGDQEP81yHdtYNACNEjQAK2g0DwVS+uBbqDQKzUtfGTyoNAxMOmHAjMg0A4ZD6dV+GDQPpjPDHn6YNAsF5MFOvtg0B8ICEg2fGDQJ5IUV/y8YNAMOo1GZb4g0CzvdVjAAOEQKTHeKcHC4RAqL4DPZsihEAAwPwXeyeEQI6J/h/aKYRA9F6KvqsqhECr+R5pECuEQPdI7vMjK4RAT5r80skthECleyE6zjGEQFBNJjrbPIRA1jxNPQhFhEDWBI92yl2EQH80MQWZZ4RA1PhM+/5ohEAim21y5WqEQCKjwqboboRAQLvneP5whEBEKgAQP3KEQKK/UvzqcoRARqqKte52hECkxHD/yXeEQD7/DTD2eIRAtDhoxXZ6hECKUd677XqEQIiXZWgjfYRAZ9+rA9F/hEDSBXkpf4KEQPDW1n0rhYRA4EtOpweehEC0+hLrCqKEQOKYhQ8ApoRA+W4w+hamhEBAl3MeZ6eEQCwl0XMEqoRA4LpM4iW8hEAp4C0RzcKEQA1KIYFwyIRAdastWl7PhEC43OJKb9KEQGXPMe8f04RAIFyrGFjThEBItZq6EdaEQFA+rA5q2YRAcrA0XhbahECuyiOcaeGEQF6Ui8QQ4oRAbWTu4dDnhEDOUwV4YumEQPQn1mY18YRAMyKBkmLxhEA74pcW3veEQNx3wE79+IRACF5uxjX5hED8PAhIW/mEQEznMeuL+oRAkqat7TT9hED+6XuM1v2EQLYUx2nf/4RAytc4yi4BhUD/F4HKQxSFQO6Hd0TYFYVA3e6huvgWhUCIhydndBeFQIURo2IOGYVAp2un86cahUCyO7PlQxyFQG4sxEbdHYVAjJztNfwehUAUCfufuSGFQCtck6ZsKYVAuoT6l3gvhUDQkpyYiECFQAAiT7knQoVAelgYBPVChUCjm1fkdlGFQN+zliigYYVAfLfL4UtmhUCkfdxtp2aFQLKByROgaYVA8Q2mQU5qhUCoSwZvU26FQC5m0HuYcYVA8xs7j7RzhUAtZzg+mnmFQEB1bvx6eoVAaQvRyEh9hUBO3VB1kIGFQHtpzUQWgoVA26Cy/BeGhUBypBedUqKFQFiQJmIBpYVAjDm2XainhUBBuyrTWaqFQAX1bZEEroVA1iKdeECuhUDkKqfjQ7KFQLpOBxVGtoVAsz3WpUK6hUAotDxGBcqFQBx7mkwIzoVAuG0hpDPShUC4ZGykWtKFQH7OjLhk5IVAZi+WOPnlhUBpsVAfPrCGQOKe7oDusoZA1GXINSq2hkBcSuxTKLmGQFV8edcwuoZAhTk/fkq/hkCm3WQjGcyGQLLD83UVBodAlmuGYJEph0ACSgUbkTGHQCoWkDWJOYdAEpthpWFBh0AKMO9QjUGHQEd0UqhbSYdAJuS9tX9Jh0Byi14Xx7GHQHhtBzvIuYdAm2ZQH8DBh0BeSRjOdcaHQIbLHVPByYdA7vB2iHjKh0BOzzcWe86HQANnsbh40odAZnOz3X3Wh0D2JJnad9qHQGi966ClTohAy5RcFvxRiECdHJXKqFKIQCdDZ1n9VYhAWLj/rapWiECoq7GABVqIQDBostrdaohATOEoLpdyiEDy1zzKMoKIQDruzW41hohApLRtX6vKiECMAgc+h86IQOpHQBiy0ohAssFbJZDWiEApD8pZn9qIQPBxe2G+2ohAhEv5OZLeiEDIYq+cpeKIQFLBij1X5ohAOl2PSGX/iEA= + NrgMGZxjYkBcG3g88qJlQI8BR/y9MnFAdWjQV5ECdEC2wo5zbEN5QAl4Yr2UM35AW5C1Y2IqgEAEa5+IdqKCQL69f4DuQoNAIrxbc84yhkDcDjxrRtOGQIbpJZBaS4lA3D0qlfJbikCGGBS6BtSMQKZF80d0dI9Ajfzb+i5ukECFuV4ygAaSQOolzPZqbpJAnDwxBbGak0A= - + - 3xLHRduopkSULKNEqpUwRGgfxUQUaVREESSSRGYUOUTX5kdEllh9RIIx8UaFPj9Ed1FBRnzSvUQAXqFEEyeRRBNbbURtEJhFIRiPReAfuUSXLNVEwnJORP8PbESHHChF/OQWRfp8QkSNbU9EwAy3RFhip0QCuOlEfl4tRNH9e0TWs2BE/eKHRFivO0Um8ThErLBGR+5wGUSOI0BEo9cqRExSOUas55VFZnGURKsA70Qfh4xEZv6cRtjTmERWOKpEPmK5RPP9VkSGQ4xFWgvpREJQFUQc00lE+aNMRDSkhkREeZ1Ex/SaRIRgKUROZUdE11fiRNPV9ESD+k1F1Xa2RMmtCkZOBdBECtXwROaQP0QL35lEHEN6RbiHqUSuhthEneJORNFXgkRvf8xE1IKjRJTLjUSCgzdE0xqLRMDcJUVx0JdENkniRJ5itkawD4xEPgmzREwHsEWcTyVEgvy0RExVZ0SNrixED+JER983JkQ3GC5EhLUGRerDKUbloNtFvlZHRL7T6EXr26VELaQfRBMz7ETTLnhEZw2XREdtPkST6m1F9qkaRaALykQpkUZERZOjRHYZgUXaVQ5FrrDIRIXkLkX/+6NEW3VjRGmhxEQYpG5FFg2xRcSpl0T4YxBG/DwfRIU1TURvc0lEicxvRBdYbEToXoxEt4orRAid7USrrINFEYBgRpOklUSz9r9E0hRARB9HQES0Wo9EHQwvRC/CQkW1DyNEkTNuRCDfMkS7GZlEBT2tRM0RLUTL7WZEbncyRENsMES/wSZEEE54RC5BP0QWd35Edht6RP+PHkTLRipEnzuDRFuov0RjRItECU+kRdGfbkV5oItEuM+ZRW3xkET6D1REEX2KRBkIg0Q6cD5ExsibRWSXiETNziBE6p40R1pGWUSsiNlEy5GeRGbK4UQjRdNEEevXRchcskSZfWhEhdqYRZuhPERG31JEFQofRe4WpEQ7LdZE3ec+RGqQi0QvSy1EczeBRMTUT0TIrTlFrzjDROlaA0WYPD5F0BxdRKoYvURVrTBER0k3RIHBaETapN5EIW5aRMWXeERF4TFEi1JGRE9rWUQWCGJEyXvJRGxriESpCZFEmXlcRBGQMETClJhES2LCRFUvRkT2VIhESPnpRDgnbES2wFBFppiXRKEcQkRB06tFALtSRLKQh0RVnpVEOnmxRXY/lkTrSadETlb6RFIcj0Tg5wxGsIBbRD9UNkQHgT5F1utSRHIvoUS+0YFEMv5ZRARem0Ro8LpEpjsYRS4hJ0SNdWZEFEcdRHGRJ0SlOS5ExbfRRFyvBEa2KbNEyF61RZDDM0U3J7JEMWgoRDjInUTj2kREGj6TRLehdkSxu2NEfvKqRKtPZ0Qa+CREh9sRRhZWmkXRaalENx2tRDwTWETsQjxELmZ7RJrGgkROzVpEs36ZRMXLgEQo4xxErvPnROPZw0RpzXhElH2hRDghuESD5hdEYpd5RUOTYkRlZyJEIUKKRIHCLUR/zmJFM3zlRS1HjUVVG6NG6OmDRBz3OkT7zFVEt6WQROTQdkVkxi1FZuGHRSXd4UQCq/VF14mvRGdjb0RnSC9EzQVsRM9nFEXiADREcWIvRJPlhUR/dxJE49DHRKLmUUQWwu1EVxwvRIh63EQKq1hEBD2hRNO4K0SoZvlEbYueRcmkJ0SRGIJE2gknRFEuLkSLd3BE3TtSRJNpbUXw46JEXWB/RGMiWkQc0cZEWlPCREMSM0RYUU5E7hOFRnP8M0WU/DVE0Rs4RD5+NUSnTidEYyzeRKbe3EcjQ3ZG4cagRE48+EQFz7tGkB98RVONH0aZ9wJFWgGDRCq4tkSdSdtEhv/LRE09S0RDM11E/ov/RCDRgEQ9ooxE9hy5RMhIkkQssDJEdk9JRBxrZUQ4RYdEdT9uRMB1VUTojtNEALxIROoQU0RQ4E1ElA9tRLqANUQ97I1EI3UgRBg8E0QBqiBGSiiARaHbMEWDn2pEelmXRH9CfkX1+oJE7AewRCxLv0UEnDhEP5iHRErnh0RyVj9FqDA2RnBol0SLHVxGn1xoRf+m5kSsuOREX50zRYkbLUWrNolEn2PXROrxaUQ+LElEakepRH9/O0WlRzFJf+yHRAcM7UQygLdFByovRVbPMESB8DRFVtE6SKdxjkSeRxJE1EFnRRMacUbfUV9E2SF9ROGAYkRnei5EBw1HRBryAUVnoGxEhk1XRDdzHkRCGmZEUKyWRWmha0Rz/9FEi6PzRL9hSUR6eZVFWsBhRbQ+FEU6XE9EWPhGRN5Ku0ZzXYdFk+yKRSiFO0UoyV9EVZsyRBfCIEQz3DlExa4fRTjnGUWxH3xE9sFLRCbXi0SVuFNEwmB/RfdCNERQVmVEsYxNRBNem0TpLDZE4tVzRCY0ZkTfTohFK6HQRCQI5UTiI5NEdlJFRNZazEU+02hEsPCnRLeCbkQwmGNEoLr7R4B1xUTzh7hGRu04RMwfR0QYNjlECMIaRDUpFkeWc51HcvADR80RNkbi859FvWSKRKZutkYuCldE7oShRFQpC0U1xUZFo8sDRnUrrUTkBjFE6aeLROrlhkRxe+tEgGagRFDmYUQuSGtFdZioRnEO0EUK8VRGb0xwRWifL0Vp0HpFtFyPRO8AZUSqw1FEBq2GRDodgETP4JtFaRKcRHS8qUST45lEDio5RHKUJUQ7pmxF/1a8RH5ROUSgbwVGl0sSRGN0IkTvyjRE7/UNRRp3KUT3dyNEyhaARPlgVES3G3BGOfP7RfNmE0RBQxBFDV9eRMOJ2UQlDUZEdsXURMcEuUT/jaZEy2E+RMA4I0Sj4flESF2sRGvofUR6rTNEKvq7RJW/iET+rSVEkKnbRJ3SQkXtt5FFk/y0RBEkiEYLFitE8RB/RAlkqkSvvDdGKzT/RJivM0QpDolEJyJ0RZNgIkSWMnVFbcNMRIl8v0QUnpBEzbtPRVdOv0Xy6x1HJ1stRLDSCUaEa0tE81WuRHABMETjcEJEEqFLRMW6NkRpsJ9GorKmRg/3jESOe3JFZrTcRCCkPUT0nQpFX4BTREpDUUSrTCpEFMhzRL1NbUTwo4BEUX4XRGmUwURnxTZErrhIRDeiRkTb2i5En1AqRBX0k0Rx4FdE2B9VRKr1WETn20tEq5OvRkKaykfl1mpFU4AkRGi/ikR5Y0pFD8WbRAzBy0Y8ZX5Efv1FRBOLq0V5cQBFBiCSRoreQ0S21UxFiRayRGaJVkSnb1hEcLE7RF83KUSS6QdFp9uORDVHZ0SkG25EDQ2PREt3XEQaIoFEQPsxRCBDkUXjQYhEfVebREdDN0Rx5q5EfAFdRDtRSkQhTHBEW6kERvYFy0WBzqZEK3xuRP1YyETHLsREGzmNRPamNETTZUlEVGBdRG09OkRB3mJE8I9hRfdzTUTn0YJEJ0JWRJUXe0QNk7JFfPDyRhcfs0TmYXNEPd1jRgm7QkX+YABFfp6SRNHbPURZziVE4uZhRJ0SaEReQVFELLo9RKW7KkTCCzFErvuDREtMNER/QhpFiDQHRs1D2kR1D0NExzTWRMNXTkU3rTJEQQIpRLTq1URVQZVFwSkYRaeeV0T1YV5EKjeCRGHcOkSFYl9Eu9mJRJ83hETtzSZEO6Y0RKIYkkSsHbBFs4X7RNHZJEQ3AQNGhY8wRJ5mTUQ4DmJEEWhOROP7C0WrMmBEvTekRFQGcEQIIWVE7gSPRSCg7kV94m9EhDdtRCkHiUQmFolE1QHwRSKgkkQsvwZF7gaIRMsAcUTmdhNFv8ooRBcTA0XFYkFEcYPARAtMKUQ8IVxEJW48RCrSOUSotDREVZlCRPazTkQ3D4xEo0pGRCbEfUQsiZpEnBX8RLkQI0SAli5ERixGRWCGYESkxDVEMaeYRGnZKESLn5dEDvn7RGNGjUdkcFdHEKmdRuj61EVomHtEapDCRAfnhEQicxRHOgFLRV6ZdUSLPKNE9QTdRM+V5kWjanlE+MC5REj1SEYyoD9Eav+ZRD3XIEV5zLJFnlU3ROFPxURxyCFFmv1uRI/sNERKKJhFuX1AROMimURbQ5BFfeOKRF+sikR6lRJFAYBLRsw1pUSujF1F78l1RBOq5EZV5a9GncuoRGT5IUZNbSpFHbQcRb0EBkXbi89E28AqRFPpR0Qsl6NE6bBrRPJtw0RM8LNFegZYRK2dfETg4mtEWhzNRIpZqUQQBitFnzfiREEICUXmSGFIjn2FRHQ2MUVt6X5EZlHQR4obe0StA5lEjTxpRz7PWUXmh4lEoD1mRDk1UkY3BVFG/OFLRFAOR0SauhZEvPJYRAbu2UTuTXlFDmJkRJ9QRETCvjpFX7RzRFJSxkRonIBEZc6fROg/T0QLPBNGGjeQRO8PMUZqBxtEPq8dRPcPx0Tn7G9EVgVPRYcxQERBAVxFbSndRt8QM0T4o6lFFSM1RFKfPUXwIv5EsRuXRLhKw0SatpJEN7k1RJYa00WVjlFETv1cROJDiUQ6cUVEwD01RAosgkTTHSxE1kkdRGzgKkTzExRE1l8hRGGj1UX4t3NHlWa8RGG5CEe1tRxGqaCRREEitEax7pNGlC7TReYXDEWPqhJE9tslROxZQkd9eS5G4ANURPL8pkWjHnhE3CJjRB92aUS43lJEXfQRRfTwPkTILBFFso6HRMIufURhdIdEDtUgRVrWLUUV3CZECq7WRMC9LESCZvRFKjVMRIx5BEVrHiZEvpgJRoeVAkbUriBEmWHQRCLF/ESk3zZEB6fCRCzlN0TqNmtE8Ax0Rmrv90WvhHJEQX8ZRPQ7dUSju11FcBeHRNslTESd8BtEXT8ARZ5GPET14bBEClVtRBOTPES4+xFFSEkcRsUaqUVmdeNEWGImRP7uTUVoPnpEOw+TRe/qhUcS1DBEeupnRNSfT0Xh2nZGHS+LRGJKOUWEK3NE9jmURFu1P0RfbZ1EIbdpREkYKkQtpVtEo407RLYf3kQV8CtFjne+RNZRu0SbDRVFJjtrRFEhC0UHqzBE1Aw+RKo/rERnKVJEdUdyRDO070TarzpE8bLJRIxkVUS5ordElUNrRDsTw0RGH51EF9S9RP02OEXj8W1EDOOiRLQcZUTyWitEhfBARH8QPERMSTNEtJ6vR0DYNUQTeAlHQy9cRFkOAEaiL1dEl8+1Rq+f5kRI0U1EU+QMRYiRJURgzrlF2vkJRiJsNEWkQxBFW82hRMd1x0SD/49EJnO6RGCPbkS6o/VEP23ERFlLKETBgFVEgYdMRPHbQERW4TFEwXWRRNgfRkRuIo1ELgsqRIAoXUS42DREBSGMRNGxPUSpxDVEx+C5R7PucEQswyxHPQQKRTidzUY2/7FFcLdFRIvoVkUMOCFE9101RF19WEQBJRBE37WRRGxNT0SwsWNEiMojRAmtgETGTaBERV9kRKu6SEe92VFGuMwNRdzBmEX+DaNE0ZcRRVV/8UTqkzhE6PBkRF58jEX2OT9E2q4pRFTUMkWxXY5EOc6qRFymjkQunVlEEClBRC6fNkRPs0ZGAL/MRY0re0RPmYJEl7FcRJa8z0WsfI9E+25BRF6EXETjLo9EibQ2RImIIETmpAtEm0UFRfMhukSchBJEyrY5RK8ITkTZB3xESHm1RVjQl0cbi0dHMG0kRS1Xn0TEEIZG2yssRf0PXkf7mmxETmdnR3x8qUTW99NGXpVVRq6Ax0R+WXhEQUY5RlKoF0ZZNNBEv3ZtRPQtJkRxLqZEQ7WDRJoVIESHZT5E7G0mRBSgH0RCPE9ExJ+RRMQcv0Woce5Gz6CkRZFaUUbMASxEFHq6RAhmAEa9eWVFWCBuRQbYZUUYGF5EC1LZRP2AvUQQXQVFY04ZRYkSdESx4kdEcnpuRCdHtETPoCdGAEklRbYzUkaNnmZGY4kVRkHhjUU/aOBEZHMxRC5Up0QDQSJEe+i6RAl640RzJklE/eFKREwRN0RtNfZGeNgiRegQQEQjCUtGv9jeRHOfSUTIxdtFTLxPRL4Ph0XG6BpEYW0wRK5ygkRqJl1EK8cxREP6tETtzxlFZHVZRBPZY0TGpBxEw9dKRngrBUaprFxFtZGpRMn2ZUQQIKhEyu43RGCtc0RerzFEDzRuRMlCQkR/LnxEyJS7RKedpkTCBVBEORdrRGe5Z0S2/iBErkUGRsEkn0WcVzJFtAlzREtHzURxIEREsMtuRGmIE0aM2bNFtjYYRShu2UduPopEUkOUR+iS00YGAERG23p0RY1nvkSyvU1GfNZzRUpK/0XwpXVFIkhRRblIf0QSUqFES7wnRDZWBkX/k+pEtdcwR0aIiUV1n1JGVwWsRLRQFkWI/xRF2o0zRCsOZkTCBSpE1SdTRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - dGd0Z3jAckDkhfjl28ByQNC8NxwQwXJAXZDUj2/BckCa2oPvysFyQDInWSxQwnJA4kOfDuDCckDaVAEmEMNyQLBVjqM6w3JAxwt+HnnDckDh8Znpw8RyQHdVQ41XxXJAmbTl9HrRckDugC+BjdFyQK69SIMQ0nJASR/JSUPSckAoFjApQdNyQIvVM6tm03JAOvffPmHUckCgw0Um0d9yQLwQMjcl4HJAaO3i6LfgckDGW3scUeJyQN4q3WyP4nJA8fKm9yHjckBYAsvndONyQIYDKu1M5HJAhtriluHqckChbkDjUvByQMq0bhvS8HJAUwOTTDbxckDxgma8yvFyQNwnZRZ98nJAxrwashLzckBhpIXdtPNyQONgIiKj9HJACYbX8MP/ckDadTyRYwBzQPJEOTf6AHNA78cCtxIBc0Aanr9BjwFzQNyV0AQ+AnNA1MSbys8Cc0AEKLVg+gNzQKDIQRN6EXNAAu1ShAkSc0CuMXe1JRJzQOj3bnu8EnNATiYb2AQUc0BOHvhPThRzQBnQ+P96H3NAQIFfVqQgc0CTVpy/OCFzQFh6nwtkIXNAvvu9g3sic0DyrTxxESNzQExjVj3PJHNAqtjEZEcxc0DmiGYvZDNzQFr8z7SiM3NAaBQoL9kzc0A7Bn03NzRzQEYpjpXaNHNARdTUZLc/c0CMclLi4UBzQO6Irdp4QXNA1heRtblCc0CRusyoeURzQIaL2sz4UHNApuFI1JxRc0CaqkUzFVJzQEwbdc8NU3NAd8lfPKRTc0AeUF90g1RzQDDGDuL6X3NAmlwP345gc0BvjHkvG2JzQKKV4rBmYnNAdPJ4MTljc0BpGm9EkWNzQJDWW2nPY3NAiKa0+dpxc0C3u+TwUHJzQCC/qG1mcnNAW2av7Y9yc0B6KHRItnJzQIE+c8T1cnNAhNejb7d0c0DQrRMpTHVzQLhnFSpqdnNAlt7173iAc0BaIu2OpIBzQFyJGJrIgHNAjlXoQBKBc0D6qw6VXoJzQK7mH3Y7g3NAQ5eO5IaQc0D4RdO+mpBzQKZxXSJNknNAiOkIn2GUc0AmWC5s95RzQLqSOYy4oHNA1sChr06hc0CeBbnnWaJzQKr7tb/monNAeo2ujgWlc0BpecXq1bBzQFdUXftasnNAKrqwirazc0A9TaK1DbRzQKu03oD3wHNAiamz0j7Cc0D+xGQcaMJzQBqa9kvPwnNAttU1XifDc0AwRluHY8NzQOkK2znZ0XNAyoTwKL7Sc0CNxU2M2tJzQLYwQOUj03NAegVmq/XTc0A2GAaw4dRzQBCSo3uj4HNAMFf1oc7gc0ACaurc++BzQBoGaCI44XNAGJnY8GPhc0DWDEFHeeJzQLMcUywO43NA2jKRGO/kc0A8z7JuK+1zQCR64lm08HNAGjk6Ffvwc0BU4spxVPFzQDb5aFmV83NAGOAAijf0c0AyVCE6jvRzQFjkjFDkAHRAQMo6O3gBdEDkFJlsvQJ0QJMC9bf0EXRAljcwZkwTdEC8fJqxSCB0QCSRpN+5IXRA6TkKoucqdECotm8MUzB0QPpJLCa8MnRAMuS0gecydEBSFDOeWkJ0QNHC19Y/Q3RAe1IpP1ZPdEAkFSmOElF0QLV5ouX5VHRAhmYhTolVdEB+tl9fIF10QPg4CGe3YHRAxRH9LghidEC8h3OFe2J0QKm+hUwlY3RAbklY7A9kdEA6wnxeTmR0QGcfYl7HZ3RAzAvTqSJwdEBC3k1NQXF0QADqIsYTcnRAfY6PTzlzdEAI7T5lonR0QDZA9YU4dXRAJtTZ5kOAdEAhRV77+IB0QJa+uc9NgXRA9Il4jUmCdEDvPv4nzYJ0QOSLHeskg3RAd9aNZRWQdED0oMiWu5J0QCaV6UcTm3RAyHN4NBqfdECOL5L/7p90QFavxvyjoHRAxrmR+8+gdECsmLrtOKF0QHyZQqOPoXRAQ3H5Us+hdEAA4XcHeaJ0QMoJ5DC3onRAclxaUg+jdEC8me0NZKV0QFUyloD5r3RATI0ShQewdEDAIaQjxbB0QOSYM7rssXRA79KhyjmydEDilrjnbrJ0QMuUIVedsnRA2qgR+/6ydEB/qi1Nwrd0QBZ4qIIavXRAEiSQ+be/dEBwCvJU48B0QGx/4cB3wXRAGBk/4h/CdED0FFvAusJ0QLjyc8FPw3RAHIi2myLEdEBMMOq9d8R0QPrwDp+3xHRAEup1icrNdEDHypkB+850QI7yvEUR0nRAcC2YeaXSdECWRwLzHtN0QEqVd48703RAgOLy0ojTdECO11Ft49N0QKqObOXM1HRA7C/se7fgdEB0ApRrI+F0QIxKdKW44XRAsIvXdxridEBbaaTTj+N0QAkddS9P5XRA7hWc6L3wdECuE/zfTfN0QFEGz3yN83RAHdEDSnv0dECEiRDCp/h0QB+NmB85AHVA8D+IC6UAdUCp6GA30AB1QAi5xZ9jAXVArkX/g1wCdUDiYyO/pQJ1QAgi6WybA3VA7BeaW/gEdUAsl6D4lxB1QKYp2NdpEnVA3aEwOyQUdUDyXjW05R91QLALcODsIHVAeKg2LZ0idUBqEZwD4iJ1QDhtwzWuMnVAbGB3rzU1dUBISlrxyzV1QLjO7OooQ3VAZJaA9flDdUDtZGSAmkh1QLLIWbPeT3VAAcGiTSdQdUCu+5f+e1B1QCpJ3cOBUXVAxmwQ2kxUdUBsn1z3dlV1QE6FOtYQYHVAyKpX4DdhdUBZutqC+mF1QEan57xlY3VA1xMLwPRvdUBR8t4/eHJ1QEUIyB6NdHVA4UqAFHqBdUA0BlyDrYF1QJZrp2e7gnVA06wQx6aDdUB/EUEpnIR1QP4IeSa8kXVAwhQ/Im6SdUCuo6KZOpN1QFgnlpuToHVAeKnhaiOhdUDNlPc8t6F1QA6DFK5Jo3VABOq6r6OodUDkBsq/xLR1QAfiTSyjv3VAsp7KF/W/dUCvoT2ezsB1QCi0ay5jwXVAaHWL+/bBdUCvqdYNO8N1QA91Pnn30HVA1oH0wpXSdUAiNyLzy9N1QIjkQ5fk33VA6O6PxA3hdUCMoPjcCOJ1QI+JVFur43VABNR+tDnldUASzoFiOvN1QDLv8m8b+HVAZpcb30cCdkBJhOQM0QN2QHZbiyZMFHZAhljpxQwWdkDqSfESiSJ2QMiDfpGPJHZARgd3vEsrdkCw5TEQHzF2QBQVepYfM3ZATCGwxFAzdkACtkoEBD52QJ5w6FlPQHZA9cykUxxBdkACUIXdyUJ2QBgVr+t5RHZATY53BstQdkCqPXn0EVF2QJ7wtBnNVHZAhziG/rdhdkATmG9Y22R2QJLgNk1igXZAinsXJmmCdkDdX/xYkoN2QLKtEGv4hHZAcvtCbbqTdkBiUEkr7J12QK5R0FwPoXZAcsGbzKehdkDAp7U4wLJ2QCp3rswMtHZAzv/NRLC0dkC4VsARdcB2QBE+Fge4wHZAYsWRfU7BdkBQOelpscF2QIaFmxDOznZAuNpNaHvQdkCmGpJwz992QPqJUGmA4HZAhEz+YfThdkASb6jzOuN2QPVuNQwm83ZAg+OKNJHzdkAuGvu7MwJ3QIvSy7WnA3dAFouQ+wASd0ASX0g1vRJ3QJDO77mMIHdAl4hZ0SUhd0D5FWdqDiJ3QE6UEdRcMHdAYM92/oAzd0Cm2CGgpTN3QOhofyINNXdAou/GpZxBd0D0ZrbUkUN3QEhI9VcmRHdAjwvKpBpFd0DFCHHxSVF3QPqPlxGSUXdAShl45SdVd0AyWLYnY2B3QLcbT4APYXdA6gMvYpBhd0BYKy3DOWJ3QD6DdMapY3dA7DGEBShvd0Cas9JxnXJ3QEIi/3KSdHdAvKClofd3d0DGUIlv5IF3QHILXxd3gndApsgKvySDd0AG5cmJCJJ3QOIiHpJKlHdAeuZMcPugd0DodtBNBaN3QEKjs6alo3dAxE/d9Zqud0DoxGphCbl3QG48uU5b0ndA/HS1tOrgd0Ckr3AYU+N3QBJF3c/q8HdAsUikCVHyd0B6uxniRP13QG6TOCCiAnhAkDcWcfkHeED0t7+NRQ14QHjW0cFuInhAr6ZI3jsjeEBi11/J0iN4QP09m/AJJHhAX+NQu6UkeEBwJgDhESx4QPIzRd0YMHhA3FJVdrEweEBuU4l65EF4QJY0ifgNQnhAf9iEqilDeEDwkIB9EkR4QLYjGUV6RXhAGg9uZQZQeEBk7mhwh1B4QHz/Pv7JUXhATvjbLBxUeECdYVOhh1V4QAkp6BP7YHhA47EDT7ZheEAM1Wh7t2J4QKar/6FeY3hA+ua/wkpqeEDM3QMEeXB4QDKASBf7cnhAxjBcgot0eEB4JfaYx3R4QBo5faDrdHhArQXEM854eEBEXDmq93t4QEIJlg8kfnhArOT+tKKBeEDiILLkk4J4QIN8sszUg3hAZBn8JP6DeEDyI4D5mYR4QKqq9y9QiHhANhEuMVGPeEDG+P8il5F4QMBFEpEBk3hA6N+EiaiUeECCKX6Dr6R4QKs3dFJArXhA7hI1bVaweEBcGR/zy8B4QLUVBVMXw3hA7FXHLAfFeEA6jIN5o8h4QCUv8QG50nhAEJ7mpLbUeEBGqJB3wNp4QGRMv9yj4nhAcJr8bnnjeEC2Wz2L++d4QK2XI64s63hAyiVhhEDteEDKWLRAU+14QJC5K3w183hAKHvubI/zeECX/Z5YAvR4QA7WobKM9XhAYwjcuA0DeUD71JxumwN5QB/t+nkSBHlAYJR/2psFeUAN/jHoISJ5QGbCVmhWI3lAEluRD7IoeUDdSh7DCy55QPsjuf8cM3lAosGsZrYzeUAUC1bPiEJ5QFRsI/L7Q3lAebcAxERQeUCBTB1AlVN5QDo52aTLVHlA2H852thkeUCWV/RODGt5QMRys31Cc3lAOijQTNJzeUBS6SaeRYJ5QFCsilL5hHlA8BOEDoSreUDmp/SVv7J5QNzYYLFZw3lAnT2RNrLDeUCaZ2FJJ815QL59MUZC1HlAfFAfjU/keUDmuiJxIu95QEb0R0dLAnpAA52rVfsDekBUKVyR+QV6QHwnPX0JFHpAI7FxwAokekB+3E/vbzJ6QNoFl0krM3pAIXU2RAw1ekC82RGALTd6QB1n5Q8xO3pA8chW7TM/ekCYdvA9GkV6QPbrVXxEU3pAWzDROSdVekBgjqHSIVx6QEQPxnavYHpARrsUBidkekCrsJ2Qv3B6QGKo6sMqc3pAtmLYIid3ekD60tsvAnp6QA7fF3wre3pAqg1eBJ6AekC7q4ONxoB6QLRDTn9qh3pAd79C/yyTekCiKSDEopR6QCRJH/8co3pAmdqjPw6zekDSCvsxDLZ6QOy9UR4Rt3pAbNfA+BW7ekDcFhAAFr96QCL2n78Zw3pAeszneEXDekBEkc50GcZ6QFIw0GpQ03pA/WamRmThekDLUwVYO+R6QPxLNVE17npAUl4BtBXxekBMhzuTXfF6QAJZCgZF9HpAtcwrVxIBe0CQSeNtewR7QOKx54ooDntA9tgOt4kUe0AYnUZnTBV7QNQii7RUHHtABqs1yGQje0CHuGEzWiV7QDQ7h6sdK3tAykvpcsMze0BOSMhvkD57QNPETIHrQ3tAOZR6oEFJe0B4+VX6W1J7QEAD2x/4XntA3rUhSQ90e0Ay6dyqZ3l7QCSBy4m9k3tAtiVZtiGVe0AedRPnL6V7QDA9+Cf/pntA7NBLEwWre0CYoEkfBa97QNAZ4RDPs3tA035uYOfDe0CcjX8U/uN7QJCGjDch5HtAMmopz7nke0CMSrhynOt7QOxbGtKW8XtAnCz786Dze0Cxsz65i/V7QMBawGql+3tAaqv6x23+e0BaPjknkgF8QJALSm/aAXxAQS54BbkCfEBQIupH5wN8QDKMDH5sBHxA8Yu63ZkFfEC+x22YDwh8QHafDzrREXxAPj0fsoIcfEAEY2iFACR8QNHjKLGZKnxAdEVwSX4zfEBk3Pb+zUF8QJ4o7aFhT3xAiFiJGH5VfEAkizLaDWJ8QHDdSpSLZXxAZKiiowVzfEAgY8nOnXV8QPD5X3nDjXxAmNQr7RyTfEBiZE3QKJd8QAebNFB3mHxA942cC8CdfEDmQE6iJZ98QO4B1lwao3xAHlXkKo2lfEDiOl9Re7R8QKDix9zTwnxAt0/d5mbEfEDs1Yr32c58QMkSfmsh03xAWP2ceMnVfED+iX3Hf+B8QGN2g4hX4nxA+edTSxDjfECWXGUWbOh8QM6pmDS07XxATDDwz4nufECYYqZ/jvB8QEBXuagV8nxAOOoE4FLyfEAoF/qkbgB9QBxKErgCAn1AbPr0HEsCfUDa9KR/QRJ9QOTLsb9bEn1A6SBawosTfUAqVipv+RN9QHzbkGw/In1AcPPv3psxfUBb7pEGRzh9QHpC90ChPX1ABHwehEJIfUCYMwtCO0x9QEjpJicvT31A07oYcgxVfUDmMm/F6mV9QFgDrBwxbX1Almj843h0fUCe7237+HV9QAZbjC8ue31A9nWfF6N/fUC6RwrP9IN9QCGwFNCYjX1AyM2TzZGUfUC2FSXSgal9QISIYV+usn1AU8I1VDO1fUD2wrTZfLl9QBvvDBZRxH1AVHsrGebEfUCeJMoBPMV9QCiwpDRfyH1ALge2OmLUfUDaaMuXmNR9QC4tJrr01H1A5t+Hj9PifUBNq5VzkfV9QOHX/qM0AH5A7gLXulsPfkAUFufAEB5+QPs1FmE3H35AkykVYT8vfkBav5IApUR+QEq/bbdTU35AD2Gxw4pVfkDJCl/XWlt+QPO2cgtHY35AblOZ2ExrfkDGKXLBbGt+QI/yJF/ZcX5AunHYdbd7fkCa4i0Xon1+QNRxK5alg35AmmaAce6HfkD6VKFsMph+QM3jMm2znH5Alc8tTZWkfkCirwQhYqx+QKajjwKRsH5ATCTxo7+wfkDC7xFSD7J+QPZGjiaWs35AdIurUDG0fkDdyE4EabR+QFJvSmyptH5ANJDNVKq2fkAQUhugkbl+QAoabfeLu35A3nlwI3K8fkDi0F91ZcN+QLSbvHjCxH5AnQ4lu23LfkB8OTcdYs9+QPYGetHI335A4FLOZijkfkBM6WqTWeR+QNV7+otJ5n5A8l8SkDXsfkBTaWW6jvN+QArTW+alE39Agucleb4Uf0CPQ11dhRt/QO2hXYusG39AlCmtiEAcf0DX39nulyN/QELkM//UI39AoPv+jBMkf0B64/3E1CV/QIE2zarjNX9ABD8wua46f0BCx2oI+z5/QD8kdwVVP39AzFLBvp5Ef0AtsAo7hEd/QBnQuDeqTH9ANtKKRYJPf0D9707iFlx/QMhEsfcqX39A9rGdcbdxf0BgDDgk5XR/QA4Nf5azgX9ALs/656GDf0CXjUrHO4R/QBWHYvHyhH9A3nBf2vaFf0D2uyx5J4p/QLI+dAtikX9A0jZ1JSWSf0DnUTzPlZN/QIDDTSc2mH9Aml2bH1+hf0BoUlt2EaV/QLmBkd1TsX9ALBu8jmq4f0DcaW5BTsF/QKZSENPCzH9AKssH757nf0CQx5FzU+l/QKm8Ykuo7X9AdnhSvsfuf0B2NZuLnvN/QFjYc3vy9H9Abcm8guv3f0B/nW6hSf5/QOYLtHzMBYBAgIoo6/QKgEC0aq9euQ2AQDDzUhQiG4BAk0hrWssfgEB8KAqiIyGAQKUbp5xpIoBA0pOdOIsigEDV+iGz7CmAQA47ozhkMoBAlonpyQ41gEDB44XpHDeAQGYDszzJOYBAwJHwSnU8gEBEoYTzIj+AQMrg6kSvP4BAlrF6Ix1BgECQE+3nrEGAQH0drR6pQoBAyejVpTdDgEADc7zO5kWAQDxiUYDvSIBALp46DhZJgEDQo/vpJkmAQNjnhQQ7SYBAPg4YyK9KgEDUMNFe5lCAQIgyE4sTUYBA6ZwlwwlSgEAug0eVs1KAQESi/FalVYBACwsQYCZYgEAAk0Sj6FiAQAImxWYOWYBATDMuKiBZgEBQ1mTIDF6AQPolODyfX4BAPxPOh+FggED4+oUlxGGAQEQz1FYSZIBA1xSzIHBkgEBk1qs9omeAQKVt9OMeaIBAjoNZCnhpgEB9tmBbT2qAQDXezOUbbIBA5LpyjvtsgEA33amhd22AQM0DruEnb4BA9DYhU6lvgEAUsXzWcnqAQNCT0AWPeoBA4iKWzSd/gED0Xohq2IGAQDD2CZB5goBA8889A1+MgECVOtwQDY+AQPnmk524kYBAyOBj1deRgEBBAyJXZpSAQBjteRLjlIBAXvquWh+XgECHGkOOkZeAQEbVzfKll4BATGVhz6KZgEDtTckKbpuAQIyhm2mtm4BAcNLQlhmfgECW2AfmTaOAQONSVe0EpIBA1WbM8nylgECOVX8fh6mAQH5e50f4roBAznkQ5xKvgEAqCOmtY7CAQPxm6WkhsYBAWdTs7t+xgEDGVBCBf7KAQFbDwtNNs4BAlJ/Ox3K1gEDywUtsg7mAQIiXVhayuYBA0I17BpK6gEDzb8sXVruAQAElYth1vYBAM31jXIG9gECoYYIB8b2AQBi99R3rvoBA6iRjA/y/gEAAM3NKUsGAQISssgj0wYBA835AU57CgEAYM5IdwsSAQD9vWQkDxoBAHlIONjzGgEByTUNf6saAQLFI+7+zx4BArH59WmDIgEAFzYCsNMmAQE7TbPNSyYBA9A3vQdbJgEC8N78tBMqAQIJEhrSUyoBAmk+zv0zLgECOk6ZWCM+AQGyof1ypz4BAVKUfGeTPgECutkgYLNGAQAfvSDVM0YBAvmFCP9rRgECwUc08ZtiAQJQ9rIcm2YBAAcqL20rZgECk7S+QbeCAQKYwxPJE4YBAiDB/BV7ogEB46S259eiAQJ7OcjEj6YBApi7zdUvvgEAjZjDKWvCAQHbQx7U984BABjq3kTj2gEAVs4xuaPqAQNkkLURC+4BASwWSYT//gEBl8wRDbwKBQOg6Ys4/B4FAmHg+0XEKgUAntvL9MQ2BQBEBD+m2DoFAMFsUQj8PgUBghZtkuA+BQEYZChNDF4FA2o8y4lkYgUCK4fWFphqBQG07jUI0H4FAWrZu6rAfgUAPwjEJKyCBQEp56zomJIFAJbzJrTUngUCeMYfatieBQJUB5hBrKIFAhN/sKS0vgUBQ6Qn4QC+BQByOvt++MYFAYahlmEs0gUD0XwGnHTiBQJEu/YMoP4FAgOrmYs1BgUD2gk52lUKBQCxmsZAqR4FAlCcTCwpKgUCBwKCl3VqBQJUURHQ1YIFA4KiLXhpigUCmhtW5smaBQPFLctI1aIFA1BXKuu9pgUAMOTsYtmqBQIfQEQrhbIFAY6cx67hugUBUklS4AHKBQCw1AAq6coFAZh6M7cF0gUDQ4+q3bneBQNSm7f4ceoFAnkhKjMt8gUBiLej7cH+BQCDh+HQKgYFAocGfGJ+CgUAispbKpYqBQNzwJHwSj4FAjOD/Q1WPgUAbSHCIvZKBQBDXuPyIk4FABJKyyd+UgUAvXkwNNpaBQEBNIx5Xl4FATQ0OJQiagUDw1PdJrZqBQDa80FecnIFAzHagPVSfgUDmoE5S6KGBQBY2EisDooFAaBWYXN6igUAKdSr/paSBQMqUCBbHpoFAy2q70m2ogUDhrGaE7qmBQLHUci1Kr4FA0kuWe22wgUC4X/X1rbKBQJRqxuZKt4FAOLks/3jHgUA+wCpW4MeBQDbCOGYEyoFAZzXEKbLKgUDEDdMTssyBQNzRQoFfz4FALhOoYgnSgUA3lO/nfdOBQHCqWJXo1YFAF5rVXuzZgUB+rDmTc+OBQHK7B0oq6YFAQvSy1lHqgUDAHlJEt+6BQDS5RGNX8oFAFvBR5Oz5gUDsyD8O8/2BQGJjpWHX/4FAbu9FOfsFgkBq9YoZAgmCQJfYU36+CoJAxl2H+2AUgkDCdoPR1xiCQPyJuHkpGoJAkDxU52YagkD4XYMnLB6CQGV/dLNmHoJAwz6Z6NMegkC5cS6m1iCCQG6bB/7UIoJA9rYIKLQngkDYRopH0iiCQJZmLWQHKoJAUCN1aaAqgkBGeD3G2yqCQNywISihLoJA2V5uc6gvgkCkJq0HpTCCQBLy0SzMMIJAcgHP5OAygkDK7GwJEDaCQJ48GNxqNoJATXIW6Ww4gkDQGOYiojiCQIxZlBR/QIJAziTVuQ1CgkBYzm73eEqCQCgPkUo6TYJAzvYPagJOgkBKJlygf1iCQIHwDzChW4JANbpuYFNegkDaQFrNPWGCQFrYjjvNZYJAbB0EUuJmgkASh8htm2eCQOROrFavZ4JAEqiNiGtogkD7vslqPmmCQM4GI9/caoJALBjin6RrgkASTlQFpWyCQB+qNbVTb4JACjfbcGZwgkCokx1wb3KCQNlECXZpdIJACkUhc3l0gkBaE6xhR3WCQLpP4YEDdoJAaER779J2gkBC43rXoXeCQHKyykp3fIJAsBDPCj99gkCcY4dds3+CQPAHXXh0gIJA71dVj2iEgkBqbfNpK4aCQN4GsppliIJA6EwlN0OJgkAI8wA234qCQG60zyJDkYJAsk5Aw66SgkC4qqCW9JKCQDAhXYYxlYJArad8QzyZgkBrO72zVZmCQGTbNwb8moJARgNEtPidgkATwRz5DqGCQARsY2k6oYJAfr9lC/OlgkBhbOGfDKmCQIROa8MyqYJA1DhACPWpgkDqZ2gJfqqCQMDqK9cJsYJA8Tw/Iai4gkCAK79FR72CQFG5ck6ivoJAls+5JafDgkCoaeJ97MWCQC4HKsbtyYJAXkVErFTMgkCnOE3mGM6CQKCJmzAi0YJAUeYZ8I/cgkDabT2ANuKCQCDK/QNv4oJA6LVNXdTigkBROYWtieOCQLqtJmzd6oJAONY7yprtgkDmuT1NMe+CQKRjDJas+YJAwoCiZGT6gkCUsks9LP2CQErDOFleBYNAGmF7mBIKg0AmqsU+VBGDQPmgiGJ5EYNAhA0fljMVg0CYtI9beRmDQNYoi7FkIINAU18NjnIhg0BiB2uKcSmDQEmdNbRqMYNABg0AOCQ4g0BqPKtyGzmDQPdrxZGqR4NANLcrcWpJg0CyC2RXW0qDQF6jXAUzTINALAkg391Ng0AknXx8T0+DQEjbqiUnUoNApqDWJqReg0BSw0RbKWKDQB5udzHKYoNAgUbAcSdlg0AA5dMB12eDQKYEUhxQbYNADLHmrr5zg0AKYR1VWHSDQKyjfyTmgYNAKMKX9EeDg0DsmWUkP5mDQCJXk+tFoYNAtFdvu22ig0AMQIXsGqWDQM+GWLjHp4NAhnmhGEupg0D196uN+KmDQHYy/fxwqoNAKn1aCf6qg0BMqzutFqyDQDQp0PjnrYNA6SNQaOyxg0BO5vZMe7KDQLhcAG0DtoNAZKbbleu5g0DhCEfuBLqDQC8m+Q0dxYNAdPbqDLTVg0BAwrN5/tuDQP0i/WyX5YNAS4/E7+bpg0Bg69Ye6u2DQI4LiY/a8YNAZO6Eqe7xg0CDozQ89/WDQJBGZMWV+INAAANCNwADhEB8TlABdgmEQETXEBUIC4RA+yTVuyUbhEA6wDAi2imEQMX8zEylKoRALMrtsMothECuwdGgzDGEQJBPlGVyR4RAvGKOFMtVhECym9xMslaEQHCEzrLMXYRA2Be7G9BlhEBSN9sO/2iEQClb2IzlaoRAMoE6eehuhEDhlSAA/3CEQDtWEv9tcYRA3oVAdutyhEAfVz5s7XaEQJNDQ+vJd4RAz3rCBPh4hEBcfdA1d3qEQFkN2fIjfYRAxGToWpV/hEAWbrkEz3+EQDPes2A+goRAEvDXjmCChEDsjkPvfYKEQOIjlZwphYRAjEtdLemHhEBZ3omuE42EQBFw35MHnoRAgk3MzwqihECyZm3VH6WEQNTCH2YPpoRAXgZmrAWqhECK8hKlD7OEQNRxwFi6vYRAAgmS33DHhECi8IKKA82EQEKiqowR1oRA9oyA5mnZhEBMMyj1FNqEQOyMo6kZ3oRAlpRqj8fghED/6FOcaeGEQDeK2O9i6YRA/njnA3rphECRxMERGO2EQAtUYGs28YRAKni34WPxhECKlIbD3PeEQCWgU5fw+IRAWaxzqTX5hECqDyWUW/mEQNodEpSK+oRA6AF0Hjn8hEBwOnFYOf2EQAQkOQjX/YRA2jeXMPgChUDfkmVVSQiFQJJAZ+lwCYVAosng/j4KhUDCdIlDRhSFQKbtaZHYFYVARhok/PcWhUCdVfCmcxeFQJT8OGgNGYVAsCKJzKkahUD+02YpRByFQIr9/5fcHYVAnCa/RHYvhUD21S/4iECFQFEz4nElQoVArCIxQGlahUBIppRDoGGFQFpnmsNLZoVAT7jsCaBphUAY67KmT2qFQO7Y5ptWboVAci9659duhUDF1SelmHGFQNJuprW1c4VAKd/kl8pzhUApvEEJl3mFQBt7Z1KKgYVA2ZdMcoaKhUD8e2tCsoqFQDTtYYHemIVAPzDZFECuhUAqbyHRQ7KFQDT/MKZHtoVAnYfhwUy6hUDAdiNJBc6FQMMT+1Ng5IVAXjZi6fcFhkAIvo5umjqGQDz/WE9ZRYZAguVFsr1IhkCseNunObCGQBJ6VxbpsoZAspWb8pa1hkAsU17gKLaGQJoMRrQmuYZAIvgfmyy6hkB0FDNZJMGGQPyrgJ/VyoZAaPGPbX0Th0AES8a1HBuHQD+tckOuI4dAoiFtp5Aph0Cm7yQZkDGHQPVB+qtvNodAZEDqtIg5h0CfJ93edTqHQABT8uCdQIdAZhTTD1xBh0ABjx+Qh0GHQGpGpEZXSYdAOjyoRcexh0C1P7CyyLmHQIDJiNK/wYdAbGfRiXXGh0C4tvB6eMqHQNDFIl15zodA9GN9vHbSh0BWrLwFf9aHQMI7ROJ42odA1BIcVpbih0Ao2fMzpE6IQM5gARv9UYhAcurHiahSiEAuVgIgAFaIQA4T+OyrVohAemcSB/ZZiEAmz2NZ32qIQEYWAAXncohAbncQyzGCiEDCzd4MNoaIQKoexygsjohAKPSvAxmaiEB2nbSrIp6IQLgjM5qarohARp7fEFnAiEDjc2KxlsaIQDw8lnWryohAPIEsNYrOiED460B7stKIQJJFZVaN1ohAHgU1HqHaiEA+pSBevtqIQIKQVbGm4ohA + NrgMGZxjYkA= - + - obCARE02W0RSD2tEfr7oRYeim0TM9ctEGgylRCKiVERbpjFFNPd+RPU6lUR2jE1EiyWERAQwJ0Tk8axETlD3Rpz7XkQQf8VG/ftQRLUHe0SH9KpEEZPRRL0wU0XjdolFJb/gRMyvLUW5fi5E67OcRE+CZkTP+opEy1GTRVwWaEW9+75EDPa0RC1TekTZYtlE4bpkRBKANkRx6J9E915lRFEdh0SLjcREEEtQRUHaF0d2bDpEeVNpRJaFjURA9hJGLIeRRQBCpURbtiJFUjioRIzMn0Zh4H9E7ORiRPNgeESVWkdF1iyIRA6QVETQ1KhEdqAzRKEkTkQEqXFExvIKRdJQ20TaZFpFHkWuRLr76UWxtJZEu9QLRUqhXESkSp5EpfI/RZJUVUQmLnNEO9puRBuWTUQQI2REXr8ERQxMlkT/poRE0oNZRM/AnUQmodZEU4qSRLh0RUTOekZEe3iWRKAnJUVfnnJEsrXARuCB/ETeyGlET7y7RLZ6iUUijJBEs84hRaOtLUSzVkNHH4nDREnNJEaoZQdGJvCHRPqKuUXeOTJE6RHJREcGhkSxj49EzyZnRdgsHEWFCc5E3tA0RB88+kSjBaVFOjjWRKfzYERkWz1Fy8p2RLo/XETS14BE4v/JRHPclUUVyktGzLOxRPhCW0T9nAJG8R1MRARBskQsZ3JE6vyYRKwZgER06oZEd5Y7RJlHOUSbmBxER/zmRMMegUTrK7NFDD1cRllN5URx+kRE0YQrRbdxXkTLT8tEw0o8RM5SxkQiTrFEmb6CRKCIdkTiXU9EidowRDzGfkSmz0REHFl7RMY5B0ZesWBFbbpiRTdCSEX452BEQRFIRA/2DUUiv6lE9TOdReXWQEfvdD5Ew+I5RXeUekSLC+hE1gyuRK9qC0WV0N5FvKdWRLe0oERgMpNE1uikRWUXV0TE4TVEeq2dRMF6FkVqqk1EAoK+RJ7jp0QbCoJEINteRLyePkSJp/VE6zRURZZHekSPNGhEedpXRB5bBEUeHG5E8Vx7RK3KYUUYyRdE5J+oRJt7Z0R+i1tEo/tRRLvXQUQVpblERhwnRK7BtkQ4wrZE9vWaRE37hUSkONNEhC4dRebMxET6c4hE8KKVRBRneEQk0b9EwBtpRHSs7URHKNFEGrY9RHza+0SwohxFrElPRM+YN0WKQ2tE7mNORHcRQ0RHW7xFFHlTRJteYES8WkBEutrIRMyAjESGiJFE8gitRZy57EQbvrBESl5CRBEOrUR31XtE6HXbRO85gUSrPYNE8uAFRjvJg0QZ4mNEF589RBRh+0TpkitEtPkyRAywNUTVFEBEZEAxRNWeR0RXNSlE7zJrRFPVrkRuGJ9E1QM7RdyNGkR1TYxEoo9JRAqA/0SKNCxGFpYWReFwrEXpJEhEJJ+ORZ+wAkUDrllE7AVnRDVoqUSyPSVEP/g6RAZ1xUScgxtGC61aRR3LOUQv3XBEeKopRMFN0kSHv0ZEIZ2kRDYIh0SWMp5ECXQsRH7IjkQnPbBEI+ZmRNL410RCqmBEGsWHRMo0V0SOZIhEGOJ2RYUWYUSRYmhEbt2wRIlvdUVj/vlFOp+NRQcIvUbczGFESN7eRJ2lL0SG4XREFNyMRSNuGEWgkIZF8LdERJKlOUW+AytGuow/RKEyE0XIqVdEm4BNROUE3EQLQHhEcitvRFnBg0T1FmNED+NTRA+TDUVKcpRFWmKHRKxKlURwMkNEy3LuRJZVS0Tl72JFbe9xRNDdSURDUVdE3/7jRAsMIkR7TiNECygLRXA9lUQGeG5E1zeFRhRVQUSY/StE6QhRREPtXkVTgV1EIfCXRPOIAUUGZupHVqKTRm1i0URSYWJFjR62Rk+1hUXvhGRGjN/MROOiVUSD5mBElxsKRQvQMERMNuhEj4gdRW4aG0U5cmJEuZN9RMJ2W0RTi7xE/gthRBJgkERF6kVEvSdORHygMUSmL1tEUmhCRAyjB0WcQzJElad1RNSesERaXzBEcUdBRM6npEUZVDhFdXewRB37ZkRTuHZFbQmNROLBR0TcpptFBq9jRMycy0TPmstFDL9jRIqBRERQXYREpXpHRMvrGUV24TJGt4egRG3U+UULjLdFelRlRIofFEXxKO9E/kwVRdgjV0T+KD5EIPcfRHu3jUQm0a5ENdkySThHfkQ8U7BEZcMsRIbVakXqg2tEOuYLRZjyQEQgtKpErMEMRY0cPUjOqwNF49RbRNjQfEWc6UdESEhWRjiCXUS1mFxE4TRFRKTptUSi5I9E3jlpRAslg0S5JfZFQasfRZkLM0Vt5yZGEIVHRB5twUXtng1FQT9zRM9qZESuVE5EBQoWR6xFgEUKQlhFPRVJRF7BrEXPTohEjaGWRMylfkRSCSRE1iBBRZFLmkQ9wiZELA88RTB/hEQVb75EjARwRH/tMUQpWmNFFU9NRK2aV0T+Qd5EnyOuRCZMfUT8eFFEaK6RRPEkhkVTjpVEaXlGRb1uYUQ0KcFF+LitREXMR0QAcntEuYFPSIO4QkTo7wxH+QEkRau0e0TIgS1HFZWiR4eJ8Eb8AEJGO22nRZLjmEbF+HREtvEbRVdgjEWNMPRFkrQDRRdmN0SwMoBEAqIsRFDwJUUQU49EWW28RNNrPkSa8mREm59JRLUKVURFWsJE4V+fRjXfvkW0W6ZG6i0YRpPd8US88ohEQUzeRfNnyESSJtxEFEh8RD96N0V0eZhEEHPBRDnF50Q9okFEGug4RNvVWEU5m6ZEYB96REMsBkbJZEREqLVDRDdS60QpwyJEzvSzRAN1g0ZZlgFG8tfZRAoBRESl9z9EYkTxROglp0SxNFdEpk35REC8TERLWKVEtR4ORcfb9UQ2wx1EAYyjRHHsqURFi4pEgo2VRCw9pUXvB4FFFG8DRTksekbb+UREuExbREpwqUTuPhBGpphuRIlyUkStuq1E5Xx6RZA9rUS27GRF+1EyRAzgBUXi+0dEa8UVRcyQkEV+GU9EpjcASGxMTUTxwQZHNmBsRH+znETItwBH1th2RqFmIkXrZHNFUV9cRVGBYUTa81VE3+0qRCBtw0RKN5VEdSE4RFWmJkQqrLREHp+RRHiTmEYkdbpHdyd+RV6XukSlrIRExYdRRMzsG0X/T/NE/geTRuuweEXQ96NE0nF+RoD8v0SeN8ZECfJ9RLOlp0SzdPBEbeqTRNXlUUXeFMBEFUxaRN5tYETgQ1tEruk2RHYvmUb/kxNFpPDBRE8QgUVzqdFEqQxiRERz8EQDhIJENyxxREQxRkTIDohE52FqRW0geUQwwQpGrI0iRmDLLEQswddEU7ClRGW2PkQcfOdEzgunREo+sERULyxF9sqBRCJBZUQkgYZE7JuZRJHqp0W/s9hGMlKRREGAI0Zw9lVF/2dBRNs3b0SPcX1E5E9xREJjkETJNYBE4UN6RBzpYkQp1mFEygQiRXte4kWtP0lEJaVqRO7QLUXKEzpE+KVGRBvWZkWHh5VErnGeRAFtnURBvD9ELvbORJcOg0X+VrhEYQnnRKKlGkQvGCVExEWARLsSWURZ5FxEL9I4RBqSPkRMTqFF0zM/RB2GT0QjX0VFb0UvRBLUMET5GmJETSOMRJaKtUWZ5NBEmWg5RJvHY0T6tU9EGmnWRMCQg0TgKppEtSAvRBuZRUThIJxEFhCERYU6NEZfS6NEa/J4RPLNo0S71UVFw1N8ROs/QES43xVGorZSRGmx3UQeSh1FLBhHRXeGGkXeTBZFmti9RATqPUSHRZ9EEYxxRPL5okSBtVBEovOiRAeIbkQHCmpEgV07RKrSaERSK4pEXStERAFwdEQYSFhEhm5pRAsmYUQg55JEV9dBRDBymkTmyp5EIN3GRMMqokd2qG9HeGfMRjPA2kWx4mFEdSDaR6BXcEREwUpH0MFpRJtbM0VXy6xE4AR0R/dSqEV2cIdE7Og4RnahsER9WlZGXDtuRLgVyESUCFBEFoUKRR+uokSWxpdF2UiqREqPh0TzNFNEjuM4RF7paUQupTREkoNERG8YoUVsNFxEtDpQRHdKrEVbeadEH+IJRSfmYEQ69CVFwTVSRKbRikYz+FREVi7yRNMXgERBnXhF9uXtRlG9tUYTJO9FgvxDRNvwMUWrLShFqogxRf5pe0TUd51EWkFSRDNhSkRaalREYXCkRHYPbET8YoNEV7PvRApWpkQ+ROxE9R2mRW+zC0WLr2ZEdVlAROATvETW+EtE9+9BRHmJekQfxSREBLGWRB4InkSR3oxEFNyJRPfAJEXYYaBEZ6pwRFyPYEigioJEAwUfRX78XkST73NEGP14RLp5jETRUVZEletCRG8Ov0STj71HbYrRRLGIa0RMhmNEfClSRPX5hES43XxEBe1VRBWoyERRvEpHOwqZRJaNSkYTe2tE5hhARo1tFUUwhGpFzVaYRZZVkUSqN/hEETKdRAJ3gkR5ZQ9F5GlRRF4LSkbMkEBEFXJVRiQYR0UBfY5FhkpFRNK+KUQ6JkhEHr6pRfKyYURFvYtEedhSRMfnH0R9Tu1GENBTRCRUQES2r15ElMfnRfXgj0SsqkREmsaMRAmce0SoWLxEDPXRRJcjo0TO3s1FztUXRZaaPkRjxKVEWAF3RLdDHURer1dE19byRAiUbUeuXDZEXvMgRHso/UacC1dEo3cARhYZfURC7utE7bHURj37nUadN6dF2skNRTU/oET63ElElReARwuaZ0Zcr2xE0CjZRcPrbEWQcoNEW0t6RTNfUUTqa+BEmc2TRHFEfES0Ei1ElLLdRCYEIUWpZlBEY1dzRQEUI0RyS0lEaYnoROEknkSALCVG7yxERAx0yERpQW1EvRK1RK6EtEQSyDZGJGo7RE0FAUZi5tZEBSSKRPGzoUTD+SZGFUvuRQK4f0QvfGJESJG4RGQQeETLCVlECir2RHf2XEQBeX1E+hM1RI1NuEQIzhJF8RdaRA2nN0ZncLVFkl87RGE4kEXK+19E7tM1RHlcbUVo7+dHtptwRMvQPUV2GjBERVwwRGmx3kYj+x9E+NNMRAZbuUTGj1NEG3t3RdVRQkQ9gipFICvbRNB1QkQiTXFEdOdlRPHM1ERaVGlEfc+MRFr2SkSqy99EfdxOREjwx0QG20NEJbFMRKdSwkQsboBELXIKRZggWkSVdqpEWjgsRGOhxUQFX4dEBy5zRGHRlkRLFnhExOE5RC4nMkRAwEhF0LocRfdLQkX6k3tELU5LRI7ea0T6Y3BElNxyRKZDPESCbpNE7ki+RzLltESDChBHQLSIROqcEEaqG1FE6/DJRisI3kS3fR9F0sc7RGRArkWGQNpFFalsRYDL4ESYnBFFO4DzRMx+qURW95ZE1vWNRNCZTUSazyNE5sdPRH0sO0WJkoZEZmZiRNOUPEQe8DBEJxNERO/q0ERRjERET/FERaJOTUTPrXFEh9+KRN7EekSJFm5EPmY2RJTajUTq6TREu15mRP89ikRMpcJHTxJeRNdOL0drrNtEEWi7Rq44AUbzyzFFr6UoRP6oJkQ6MlxEi4iURFINbEQcdTRE3A2FRCrubkRPtIBEamI3RIkEgkTz6pxEktXuRM/RykRfTWBE2tRHRLiiV0SVUWFEaQShRBxGbEe5cq5G2MuBRbo1vkUaCRZFK2lYRUtIWUROXFpEdbtSROlPj0R7GoNFqCrIRDS4hUQu4ttEaCReRPfk60Q3L1REyohbRG8+jkTUYltEPSetRm9YBEakfRNFVU0IRRIZdkShEmVE0TSmReP6UESERQRFMJVNRH8vjURsvolEXJVZRRC+40R/V1dE6sk4RJ/iJUQvdlNEyC8/ROJmn0X6aZtHYdk9R6ao2kT0ZGRE3u9+Rlspn0WjpXxHWcvARE6FY0dMPABHYQYtRN+4ZkaS/U1EKmh3RCgLV0VQj/ZEoJx1RIbAakRXO5ZGj4AjRtW5ZESqRZNFoEm5RPbNQ0SIWVdEE1tJRFjmR0RglKpFTPEGR8ZeekU9EHNElpCDRLRtX0Zv1wRG97CDRMwjWkT58V1FZ2hjRaQXOEXbFGhEsYAJRWiCrUTjL4RFK1ynRHGeckRY/bBE61hNRBKIOUQZVFFE6LFIRKoydER6ZG1GMRXGRJORjUaqwLlGQyoXRrxaB0Z8Fw1FWLRJRA6x9kS3UWZEKSx2RASm6kbD/FRFlElORiT5UEVCorBELoE3RPQm0UXgjj1EQb9TRJ7mL0XUeVhEq6BlRNmjRERum1pE2aBeRtEYLEbJ3o5Fw6CeRN26qUSUtjtE3z+DRAgxtESSQJtEZX1sRJ3Go0QpPC5FRI7bRJcgi0TwBMNEsed/RLANhkTtjJJE49ExRBRVW0RTJaNERkATRnjopUU27yBFpUNaRWrgAEUJVi5EcBh6RGM1vESU3ChEh47rRXFymkVB7hlFO5j5R5ECzUeKxC9HyptZRmgoaEV3cB9FBi5BRGXgK0aF+FVFGhUORrFFmkTWBlZFXvJWRC1uyUSzzzpEqJYRRXAKq0Q6cG1EJqlLRH30WERxc3xExWNxRPbsXkQ/iYdHbJ1rRcIsoUZ6P9VEdG9pRQG3OkU0T4pE + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - tLByZnbAckDleUfr3cByQAFPydIQwXJA+llx4SjBckD3PymlbsFyQK+npZvKwXJAbdCsXlHCckA2skVx5cJyQIqq1qcPw3JAgunuKTvDckBQsohaxcRyQPBlIuxYxXJAKuPedVbOckC8HBhMENJyQESix4JD0nJAnmomhGbTckDMUJKMid9yQH2IvE3O33JAKDpEEyPgckAh1vvxUeByQG1shUe44HJAKIQJ0d/gckBSSWMtTeFyQGTPjhNQ4nJAMua0Vo/ickAm2GfXI+NyQGCbVPp143JA1sOpvVTwckA0xEWhyvByQLIlRuLa8HJA7oUJajXxckDA17E2yvFyQPkdCe+b8nJAcsgNXRHzckDuRZrStfNyQEbUz7EM9HJA/jocw6f0ckAm+xh0wf9yQFBxC275AHNAhRJrzV0Bc0AIB2bjjAFzQECtpNY5AnNANFQVvs8Cc0AARw92ZQNzQKDAv+fEA3NAS3QxfPoDc0CQlD8nIwVzQMXmLlUKEnNAILIY4bwSc0DZYLu8+hNzQEbNoY5NFHNA7acYnnofc0ADvsRqOCBzQCKz2hajIHNAEqxDqTghc0BnX+HMYyFzQOQfbt96InNAGrx2N8oic0AYSpWnECNzQMr1bPEJJHNAkcOFqM8kc0B8+i9oSTFzQO40GDZmMnNA8Ifnzssyc0CeUYEmDzNzQLo7CnmkM3NAsgVYJtYzc0AqKNaM9zNzQGyTGS82NHNAeljMXbk/c0DkXJvpeUFzQGCtIGgoQnNAFottKrlCc0ByiNS/eURzQJKiaFf5UHNAkrBBu4hRc0ASWO+Gm1FzQMbTnd8OU3NA83iWlENTc0DUqCRYpVNzQP7oq/WHVHNACvP0Avxfc0A7STuxjGBzQPAkEWkQYnNA4pd56Tljc0B+6db0SHFzQMLfxGbccXNA6gpx9VRyc0BC5ra+unJzQBBjR4j2cnNANqp7WeBzc0BUnkYVuHRzQKphDUxMdXNAzHMwpfB/c0APK3xieIBzQCDDbL/CgHNARsIxjguBc0D0nMveD4JzQMW/4A1egnNA+hQJtw6Ec0DuPnTShpBzQITq8/D3kXNArJ1drRCSc0DkUkHrTJJzQJJMkq1hlHNAKliOjveUc0BQu9I0jZVzQG6aHK+4oHNAboC+1eagc0AmVoP4TaFzQFbibr91oXNACM04BbGhc0B5QDh9DKJzQG95hwlaonNAqt5Kxo+ic0Aqtiv056JzQAqUHC8no3NAxh8r4wSlc0A+dnp52rBzQNXO/YN1sXNAGKE0jluyc0DMsZtkeLJzQIXx/Ky1s3NA5m+2/Ay0c0DJstqqzb9zQAR3MJf3wHNAjNkzxzrCc0AOU31UasJzQAhgRlvQwnNAv+PruSXDc0B2ltzm1dFzQBzVqG0k0nNAjLqA8EDSc0DM8ua3i9JzQLalkUra0nNA4B0Ae1PTc0CEZbRY99NzQMZsTZri1HNAxJ0C3qPgc0CiK3x10OBzQCzBaFE54XNAGNxK7GThc0D2kT/5e+JzQNSiPhsU43NAe10KNTjkc0AOQPGa7uRzQCojTtex8HNAImLz61fxc0CkHHmVufJzQOs0Kfz/8nNAJO7PRzX0c0DRxEO/4wB0QEvBlwsQAXRAZlk4hXgBdEDc1sq7owF0QJKiUVsoAnRAlM1ka7oCdECuOyY8ARF0QEKiX/WMEXRAZlSJk5YRdEB6xVzwTBN0QI501Y9LIHRAdq78BLkhdEBsQQiTpiJ0QFRdRWD8InRAVN369mIkdEDRjGAJUzB0QM7a8mvhN3RAmOLLM1JAdEAwfvY5O0N0QHn6i5R5Q3RAEz6w/1ZPdECH6Np9fE90QAW1++P3VHRAuQCIS4xVdEAqRTGNDFd0QHCCm0XZV3RApqbmBiFddECyY5Lgt2B0QCJR8gcIYnRANIGgQ3tidECWAPvX5mJ0QHziKOsiY3RAvWzsvk9kdEBARr6QInB0QPffAJBjcHRAgLTdBUFxdEAzQVPfzHF0QP+SI0E6c3RABRDaxzZ1dECc235fQoB0QKDHl532gHRAoISC2k2BdEB34tRzSoJ0QBtq3THPgnRAEiHxGxWQdEDqjayZ5JB0QECwiNIbkXRA9q+H5hSbdEBketjpFp90QEbOkgvun3RA9ImPB6OgdEDojIuezqB0QJg/X4s1oXRAfo532Y6hdED6t71Ly6F0QGpX8gF7onRAZrGIibiidEDSXHUqDqN0QMSZr/wLsHRAWhzTWsWwdEBEWL008bF0QA5DP75xsnRABtJeR/6ydEA42CXZyLd0QPCIm+ZQwHRAnujanOLAdEDbqFVueMF0QG/eyGfpwXRAD+UR87nCdEBEnmAKT8N0QJi6WJQhxHRAkswHbHnEdED3noIfucR0QPkdfe7JzXRAa/ruwvvOdEALHvx04dB0QEy9qXwQ0nRAusGC16bSdEBSxtrxPtN0QJ4vcBbh03RALqYAJnvUdECYbh5RzNR0QEDSfxe14HRAFBxHaiHhdEByxJuVt+F0QOUmk8qP43RAabKq0E3ldEAo36rvOfF0QP/RvJOM83RAJh0O9jkAdUAM0wnVogB1QDrbhRdhAXVA7F5We10CdUCqIa0iqAJ1QMDlOF6aA3VAmQFIRuAQdUD2wwEvNxN1QPSVapIkFHVAhlok2Y0VdUCoK8Ne6yB1QPgcXsqdInVAtVBg1aoydUCOZe3hETN1QICaxMzMNXVAIhnH/NxCdUBgF7HQKUN1QCpxmEKXSHVATCQnGfhPdUCakQKSp1B1QAcNhSFMVHVA/vMVs3VVdUC2VrmDOGF1QMVSPI3OYXVA2GpXCVdxdUAz0SOr7nF1QFrW3Zp1cnVA6Ezo0ox0dUB9sq5HUIB1QE2q+WZ3gXVAiNOzjq2BdUDC7FnUTYN1QL2bklqmg3VAfN1db5mEdUDeomUgjpB1QHQxXbo5k3VAkuNThZWgdUB2ehknIaF1QHr5Jny5oXVAbB5DxymjdUDrdcYcSqN1QOIaPO2jqHVAJMnxIf2tdUBtC/gt57J1QM6ff5k4wHVApUcQKM3AdUBAY34t+MF1QERcnoLL03VAgLOwfuXfdUBJVlnUeeB1QCZHCCcO4XVAiieVsQfidUAds0mtquN1QIbxPFo65XVA7N5/Gk4BdkDyI92aSAJ2QPa82G7QA3ZAhnI6wkwUdkDmSwIsDBZ2QGbjP3AeIHZAIqI2VogidkBY3zQTkCR2QPnEx9dKK3ZARsgfcx8xdkA2QXGWUzN2QFWfQbOVM3ZAFtr4YZ40dkBslP+dST52QGSdEzJOQHZAbRECiBxBdkCosf6tbUJ2QBq84ILJQnZAXyBJRFBDdkAX5mOppkN2QNMtdMB5RHZAU6IvscpQdkACOwchElF2QDa3wdiHVHZA0CEiLM1UdkBkqmz832F2QI7epzTmY3ZAiiNurdxkdkDPLz/POnN2QHxc2dZ8c3ZAymfEqNB/dkDmSAdz+YF2QLYlWgZngnZAC/uj/SeDdkA0ugg9kIN2QLzeMdH2hHZAnwQciLuTdkC8l9gj7J12QC6VtW95oHZAcmlxogyhdkC+FCk4ubB2QLbvATnCsnZAlEHH8Qy0dkAyn+zSvsB2QFhMPe1NwXZA5MFVdxnEdkAq6+y7MMV2QD7rhjG7yHZAT0N//M7OdkAyEkQsz+J2QOAPYg7+4nZANh31vk3xdkC9T+wkkvN2QOaVxGpOAHdAPmy2pTUCd0CejHfsTAN3QFp8wZ4AEndAdyvSXYASd0A6tX06+hJ3QDuQcS8OIndAaeKxcLokd0CBeel3dTN3QFgp7LmjM3dArFNPAQ01d0CQwjxrJD53QKjXYvOcQXdAgoyCB5NDd0C8SVEUKER3QKv6UxkbRXdAYMMLYmZQd0BhqKf9SVF3QC2+S66RUXdA96BGWipVd0B42beQsld3QD5ZuzR9X3dAWCAB1Y9hd0Bmt3yaqWN3QM2rrdUMZHdAMAYhMTpld0D0RtfBJm93QH5fJsg/cXdAG3UDGodxd0Bkr5mkonF3QMggPiWgcndAtGt24993d0B2u/26+Hd3QIpjSSy5gHdAaXW5D02Bd0BX0hrZ5IF3QPTlkYR4gndAKB3a4X6Sd0B33NSGS5R3QAO+UBT3oHdA+OKR7m/Vd0CCW4p1i9Z3QKSTQBRO8ndAILzFFkf9d0BIl4Td+AF4QDgLq/WfAnhAdmyXYW4ieED9/1BGiiN4QJnMd0HWI3hA+oLUOgskeEAGO9poEix4QFLDY/8XMHhArOWSLcJAeECPVBeyC0J4QLQATVcQRHhAnl5Z5HlFeEBWAVWOBVB4QCIbXmKFUHhAvHTjJMpReEDImdsthlV4QMOrjXX5YHhA9Gq6bbdheEAu4X+UJWJ4QBz+u7FQYnhAq0bHQ75ieEBM+5NHbGN4QD4Haq36cnhAzAEC+Wd0eEBdnIZli3R4QN4s63m8dHhA0m2n4st0eEBgpAQv4XR4QArntn3ydHhA3MJMrPZ7eEDY/1xRo4F4QKhwTKDXg3hAlYFz2f6DeEDmz17lmYR4QChjxvu3hHhA1O5TfkuIeEBjZcJgTZB4QFhR6t+WkXhAzoklRaeUeEC9OzLJBKR4QKnZRAuzpHhAYr70SpWyeECuvRZp17N4QEFFnWXMwHhAYjhMomTBeEAAVx7aksN4QIK0TMy40nhA4IkHZbfUeEBfqmQDFth4QPwVLPXA2nhAOD61HKHieEDL42TJ/Od4QGoksD9Y7XhA7lhBd4/zeEDjAyMHAvR4QA6xL9aL9XhA/n+f0Z0DeUCwi+v5mgV5QON9ZS+8IXlA7ipm/CAieUDdRbyauyN5QJ6ownuyKHlA8qdD7gkueUAyT4PCtTN5QEZOLD9kQnlAkAHSF49CeUDKnMa2+0J5QIqxqK7EQ3lAyEjVTP1DeUCKtNbKQ1B5QEiYZBWVU3lAcV+Na8xUeUCMxpmhQ3N5QGDokl3Uc3lAxoQvBGd4eUCx2PT4NY95QJdoaPm/snlASaGWjVrDeUA25KNetMN5QN9WfdAMyXlArtC76mjOeUA3pSr3QtR5QMOXHZBR5HlASk9XlxrreUAvmsUSHO95QBJX4e8X+HlAiodakk0CekATeWV91AN6QNzCeST7A3pArm/PkEMEekDIWz2BCRR6QOZYzIMOJHpA5EvhEHQyekD344ZVKzN6QBKsVNJNM3pA88FrpB40ekA8spONDDV6QE4hjaYtN3pAaOLU+DA7ekCyp4HtMz96QK+s8hEvQ3pAsobdiRpFekBkhiCjnk56QLVEfFxEU3pAPl/OA4JTekAeOQ2dKVV6QH5QMsQhXHpAejP9gbBgekCTM6YfKWR6QMB8Zs05ZXpAkga05L1wekBRRZabIXN6QBLvpPQld3pABqltEgR6ekDMaGHzn4B6QLmu/WrJg3pAC1q2khujekCMkrL1Iat6QPgBwB4Os3pAWEct7wy2ekCPUD4hEbd6QPIuqskTu3pA0/oKWxe/ekCYHFKgRMN6QDrKepMYxnpAaSdaVFPTekBIUjyraOF6QDwPSzU75HpALjjzOHvkekA/SQyz3eh6QCGkBtA17npAGvNufBbxekCsjLj8WvF6QLanzGl7BHtA8leYIysOe0CieiyzihR7QJjhiJxMFXtA6JxfySEfe0CwcBLnWSV7QEyK7zokJ3tAmH7ZB8Qze0Bg1x4MSTV7QKmZYzqPPntAPEsUR+pDe0BuYTXfQkl7QLrRA4vLb3tAmntKEBB0e0BFJY6vupN7QID2FZwilXtAkH7I31See0CywBldNaV7QK5JWk0Ap3tALiV3Hwere0A8wyfyBq97QHP9SdkjsntAVvBo+geze0B9Sg5G6MN7QJOP5sR5xntA3REygv/je0Ds+RTaJ+R7QEhuMku+5HtA4gfN1Jvre0CG/IHgi/V7QKUCieTZAXxAGjMg8MoDfECzD+Rv5AN8QBo/UJxjBHxADJsfiZoFfEAAJ81kKQl8QJSen0eLEXxA2lMRQNERfED3POsZdBR8QNDsD+T+I3xA6L30ClkpfEB6AbbAgDN8QG5GkM+FO3xAWwUXFs5BfEBEzBR+2lF8QIYJp+VTVXxA+7QtQn5VfEBEIkuKhlp8QGDB/ECMZXxA5O4P1QZzfEBglTjOmHV8QCRsyPfDjXxAvLjpIR2TfECqvml5KZd8QPxIlHl3mHxA1Ng+Di2bfEAuga8Zv518QIsDyp3YnnxAukjOFyuffEDAnX+dv7J8QJomYGxrxHxAbrXNfM3VfEDuBGZ89dt8QE4EWsV/4HxA3IlPuFfifEASBbNiEeN8QLZWWkvH43xAXswcDGfofEAH8+iFkfB8QPXkwnAW8nxANXv1SlTyfEDxWAqxcfJ8QEKPSs+S/HxANB0WA28AfUD3A4wEAgJ9QLPGO1lLAn1ACs1tdUQSfUAYppLZihN9QFD5L3WrIX1AQXVYDVQifUC+wWEESDh9QKBHh8qhPX1A1Ig5yDdMfUCyJiMExVd9QANC5jnrZX1AtofSZ/h1fUAcEqFkMXt9QKVkqNcUf31A8Bl8BmCDfUAuO39794N9QG/R8AzVhX1AqArD76eyfUCg7E1lM7V9QCYGwHYtw31AkKwWN1HEfUDRW8yr5sR9QJWn8VdExX1A9ERJyMPNfUBSfMNu8dR9QCyaPqfc4H1AOiqUDtnifUDJDWArf/N9QI6BP7KP9X1AyqWj/jQAfkBMnqPvHiB+QBPBncmmMH5AMhBFWz0/fkB7hS5wpUR+QCCCE7ZYT35A5EYhB1RTfkDc68SmkVV+QDCpIVpaW35AgHvVZkpjfkDVHqk9Z2N+QHtPHkgKbn5AOOeTxnxvfkDmZ47ttHt+QEfre4BQhH5AdgOnqh2GfkBQRl0QJ4d+QJhTYR7IiH5A8GKn/maLfkC6QXXTpot+QDjHSe/LnH5Ab/G/Cg+efkB7/OeXkqR+QIyBzvxirH5AdLp1HLewfkDmX7uCaLR+QCC+y2C8tH5AYkbdSGbDfkCOY4wV0sR+QM4BBlBix35AuDzfXGnLfkBk/CCobdN+QMD9nWVk135AchLZiIrbfkB9GeXR/t5+QOyCd77L335AiglNRSnkfkCOrd1LFuZ+QJZv5jgi6n5Ap12foqUTf0ANL16crRt/QMpYMxOgI39A4ZBF8NYlf0BEOnW+6St/QKwl7yo4LH9AkHUl2+g1f0D15QVXAD9/QCqUZ0UfTH9AvrKIMH5Xf0C4yTRrN1l/QByUOlG2cX9ABFqXZ+V0f0D1QcB/sIF/QISeBDKlg39AdSoUQDuEf0CsyyUl8oR/QAxM6WNhkX9AbDQJl6uRf0CtS+/jlZN/QGHiCrVdoX9Arm4tuRGlf0Bkp0EG8qV/QHj6avv3rn9A33pnElaxf0DB87zYWrl/QCAio7Ohy39AJQ/Orvfgf0BmqlTTUul/QN4xdQfF7n9ALGHDgZr0f0AAt3TqvQGAQL8iTqPTAYBA9D6AYEcCgEDuAW1I5AOAQLx4Ya1+BIBAWL8TE8oRgEA896qjFhKAQBfPApIjHYBACg8hy3wegEBYGg+L6iCAQOW/d1lqIoBAOhNNG2YvgEBY9RnJYzKAQJLUjq+IMoBAVhLySRA1gECq0v50cDaAQCx25xQdN4BAhC1k98g5gECgn87LpzuAQCmTowZ2PIBAFikKuCI/gEDUdhAZg0GAQDuNaY/KQYBAdpSmJalCgEA69Upb5kWAQPIE9YvcRoBALRDqFe9IgEBU1xg56UmAQN2qoRSwSoBAQW7vs+dQgECzJyNuE1GAQN5/kq66UoBA+G7TYCVYgEDQRQ395liAQDIbFYQOWYBAkp/oJg1hgEDy/iyAwmGAQD5tJgsHZIBAfvCojaFngEA47B2qHGiAQIsnacRyaYBAjpPuOMNpgEDSohFITWqAQAAUl/oWbIBAJt6Jk/tsgEAv619mbG2AQBzRPXXEboBAwGflkShvgEA3Q3I6qW+AQDGl1MtycYBAjtSXX7NxgEDuXR6qU3KAQIIDxCpzeoBA8ak1oSh/gEBGTpHoeYKAQLN5cZB9ioBAVuEaml6MgEB4AZvaDI+AQA4D4uq4kYBAlyKzZUSSgEDkk1jqZZSAQLACgBnjlIBAvOXLLx2XgEDo/Utwj5eAQMQ1yOQqmYBAqNTS/RmfgEB+JRYTe6WAQCLJAlEzpoBAJeUBgoapgEC2wOTq2KmAQIXRbTv+q4BAbGGK+vCugEDHuScsE6+AQKD8H4V5r4BAnxUjX9ixgEDr/AETlLKAQA47vWpOs4BA/yLdcxa2gEBu7yDaE7eAQIRauGd9uYBAXGTtrRG8gECkaSryvryAQHoKjrt5vYBA2mIAX0S+gEAvcu1zqr+AQEoiFJb8v4BAgviLf1LBgEAwkwJO9MGAQL+oQx9twoBAfDl7op7CgEDuxwHwAsaAQFKO+qU9xoBAVJeJferGgEDs95b0pceAQOJ/KmRTyYBAGRCT/dTJgECW37Nfo8qAQLXSx79Yy4BAmObD20DMgEDM5abBPc6AQKNrTeop0YBAsC10JEzRgEAebuA7ZtiAQOT9369J2YBAAmRAL9bZgEBxUDxaItqAQGqE7JRt4IBACmvnoUThgEAihetNV+GAQJqzmOgr5oBAnBwumo7mgECnj7Q1+OaAQJp5e+tf6IBARmmnX/fogEBrRBb/QemAQLSj1AVK74BA89K8yDzzgEA+lf5ts/eAQPBpglpo+oBA5nWO4pr6gEBSs3aKP/+AQFx4wE5vAoFAB382VUMGgUBjeBY7PweBQCZxBqDgCYFA/pDQNXYKgUBcXZ2t8QyBQAAtx1U+D4FAcDmrJRUQgUBWYYukNB+BQBODuSuwH4FAP5SgQYkkgUAOoLWj5iWBQAEv7yo0J4FAvYNgt7UngUAIl/up6ieBQCj8DzOYKoFAzjLj0v8ugUDTt1CcMC+BQC/GR52tMYFAA1bZ1LoxgUB6PEIM5DGBQLYFW8E0MoFAQs5OfYM1gUDIVXsjDTeBQJKaxbg0OYFAOMIzuSg/gUAQtEe2vT+BQO4c/6nLQYFAzfkJC89FgUB3h+e4KUeBQAEdwyXwSYFAGT/W2cJUgUA4kgc+GWKBQBzqT+6yZoFATlI9JrZqgUB/WocdnW2BQIRDylhXboFA/qKHR7lugUBWwuGou3KBQJ9UusjBdIFAuzuzsW53gUAv9o6pQXmBQEpGFDLyeYFAyB1eFBx6gUAhD2DNs3qBQJSE2+zFfIFAnggoGGJ/gUByI2N64oGBQOZ1HjefgoFAWgr+E06EgUBYoWG084mBQKMjORumioFA6mZYu1WPgUAutKb8s4+BQK48nPS8koFA98mGoN+UgUBsV4vANpaBQDjOwBZWl4FAuBayg8aagUBcW/V+V5+BQHhj8yPnoYFAWon0MdyigUAUsWbrO6aBQOT8UJJtqIFAcNh/BeWqgUDmewsMSq+BQJC3Qa5osIFA4ArMqxeygUCsF8i4SreBQBpx2F8muYFAnMiqwiPAgUA4FPDRBMKBQITZ662+x4FA6q3AdgTKgUB/WgMTjsqBQNDW1V6yzIFAJOgXTV7PgUAB6IEUCNKBQCykNLV904FArCubLenVgUCmFm477NmBQCJAxUhx24FARWxLs/HdgUDsc7OssvKBQGVQy8t284FA6EyFuE31gUBQLrlB6vmBQFoGO3Pv/YFAtiBWGwYCgkAAXQPnowOCQADYzU2OBYJA2r1YcAIJgkB2BocmvQqCQNQNU0+GDIJA4kqhLtgYgkD8esLcKBqCQLch1ldmGoJAhmEcOCwegkCyi/TI1SCCQKiZOnkvIoJA/Epb5dQigkAS4S3N0CiCQMdpokM3KYJANpCUzNsqgkBLUTn4pTCCQA4Q1knfMoJA4KMt0uc6gkC4uXcP3z6CQPk50vRQQYJAOkRDieJGgkDSm1+DekqCQGP41JBrTIJAPGAKrTpRgkAA0WJjgFKCQOpAh8UmWIJAjHI3FwZagkBie7BunVqCQHx053/hWoJAEMTBs2hcgkA6S6DKC12CQMYjw+RGXYJATvKQBA5egkB3tmoKxV6CQALwXNncXoJA7VBLQtBrgkDQQIwpqWyCQC5Rd4RRb4JAjmskOd9ygkDUNpP0Z3SCQGxQNc9fdoJA+4kt4/x8gkAiLRP/RX2CQCynzwngfoJAqUuIuWaAgkDSx44vQ4mCQHNxoeBCkYJAF+AC8geSgkDc+yeUrJKCQIgrHqj0koJAeIdgbyaVgkAXrA9bN5WCQMixdJ87mYJAECg85PqZgkDjsFEY+5qCQA4Okpc/nYJAvCpxDA6hgkDz0sHVO6GCQKj3P3fxpYJArm1xwQypgkBWRgp7NKmCQG2i06H5qYJAucKtTX2qgkC0SaGh1ayCQJi9DQ6DroJAzF5BbHWwgkBFRjslCbGCQJQROMa+vIJAQrXMN+zFgkDRgjSb78mCQMifs7oYzoJAukGB3HvagkB78e9McNyCQDL+lbM14oJA+0Hfs23igkDYm/tc1OKCQKc+48Q46oJA2tzdx9vqgkAcs8euOfGCQMKKvc229IJARv6n1uj1gkBsODcFrfmCQJJCZC/GA4NAoJFd/UUJg0AW3IZgeRGDQKxXlEBwGINAld3nbXkZg0C8DMYcYiCDQJCpKHlyIYNAVpqXeaAmg0AIwpnCcCmDQFy11DhrMYNA/j78ufc2g0DMMywAHzqDQIpKlUXWPoNADvRFbxNCg0BDfzt7KEaDQLhyC6TKYoNA5KN9ryRlg0AlGDY302eDQOK2C8UAaoNAmgdKaH5qg0Bke8+iym2DQDm9yn5vcoNAiDULAMR3g0BsO2eCqXyDQGw3n3p1fYNACKdlPEqDg0DYr+5RP5mDQEgS6LJ0moNAYFzT60Whg0Cl8QtpbaKDQCiRp04bpYNAzC9/Tseng0A0KEEXS6mDQDAB8mX1qYNAb2BeHuetg0CcSDGzz6+DQMiEm/lEsYNA0hIdoOmxg0DGA7w2ALaDQEeMCvKztoNAI6vGKizbg0AcLkZL5+mDQEKvqJXq7YNAtgStaNvxg0D0zOmH9PGDQCD7kKfq9YNAQmfxLZT4g0DhkOHEAAOEQMrJubMGC4RAROlhmNgchEDgZBq4oySEQPtn/z7LLYRAmGQAjMsxhEDMEkTeXTmEQN9BktYBRIRAg2qFhsFFhEB8JDVyYEmEQKyVbgtyTYRAgo9wFFBahEAEfRPEyV2EQJdzIlUiYoRAawsdDpdihECms4lj9WSEQC2mBTLNZYRA66b2yf5ohEAY1q2c5WqEQN4iqevoboRAzMLWsP1whEDKiuJo63KEQNb3R1DudoRAnP3tFMp3hEAo2fSw9niEQDwJm7l2eoRAV1wFN6l8hEAgKp9iI32EQG80bEOTf4RAP/szStF/hEDEVCYbWoGEQGM62SdvgoRA8Bv6QoCChED2A57jB56EQCiOaYcKooRAcBRRT0GihECWK7pGEaaEQBYJyngNqoRAbNCBbnGqhEAsvmhqWrGEQOFsSCmVwYRAU6rT0nnChEAs/QCSIMWEQJuJWoeFyoRA26InPx/ThEA0dIz1ENaEQNHvmtFp2YRABJQRaRTahEDH2/8kGt6EQLp+YwVq4YRA0ryv9bjihEDk+zZ5PuOEQAqyT2Zi6YRAj4fxrX3phEBgpYqccOqEQLo6oOEZ7YRAzDb8wTXxhEBESXWhYfGEQANWkNPb94RATnFgQfj4hEBO+vDlM/mEQOCl10ha+YRAQEqj7HH5hECtyyc4kfqEQDB9ze3G+oRAosfjljT9hEA8HwfB0f2EQAA2ErQG/oRA9zYATgYBhUCWKtBRKgGFQPjg1AHCEIVAzqe0f9cVhUCF1BAQ+BaFQFQH3PdyF4VAsr4Xmw0ZhUDq9naKZhqFQNtyfbKnGoVA5lFGc0IchUDMJhrJ2x2FQHJpRyXdLYVA7fD1SYpAhUDsRAKaJEKFQJSq4Y5PQoVAUnVLHqBhhUCoSk7YTGaFQMF9gf9PaYVAtpbYZ6BphUCtFFyoTmqFQKLRotuYcYVAqPK1mrRzhUARb/DdmHmFQGK+TP/Be4VAekkhUdB+hUCMjZAynYGFQMWmxS4YhoVAulxvdLKWhUDaYPKPQK6FQLOfnlFEsoVAoAmWRTu2hUA3glkRRrqFQH4gyrkFyoVAOnFGMAjOhUBhh247CtKFQELw3pAy5oVAinb9mVXrhUAHVyqq+gWGQES6H69XHIZAvEoA8ps6hkChxOH1pnmGQFUQXIvKqIZAiwnF7+uuhkCSvUaKPbCGQAntddvpsoZArq0oyZS1hkAqgwieKbaGQPtfF2BAuIZAgI4G/CW5hkBjtKTTK7qGQMFrBPQxvoZABliE5dPEhkAYlP2B18iGQMM/OnuQKYdA+gOtpsQwh0CUOz+ykDGHQNYHnWyiModA9O9emHI2h0AOws7yiTmHQMzhuC50OodASgFj3Xc+h0BaDHi3XkGHQLxb8vWLQYdA/E/Gpy2Dh0D4QEwdj5iHQJohptzGsYdAIgYDTse5h0DFLd/PvsGHQGkxWKwOw4dAIfwHznXGh0CsMz51xMmHQPiyGnp4yodAkfvm/XnOh0BCIFMnedKHQC7r2HB41odA/MGsN33ah0BqMADp9wmIQHwqg45UJ4hAyhsUjKVOiEDdvzt8+lGIQFwLWVuoUohATpZKdv9ViECAk7EBr1aIQLyObHSQaohA+IW/N95qiEAZ2Gou53KIQOUhsyMygohA3MeLUDaGiEBf5rjBa5eIQPzjKa6ryohAl5qt3ofOiEAFwC/wstKIQGmww0SN1ohAyL3lzJ7aiEDsJUXbv9qIQCJlWSul4ohA + KBZXds7jZUCmvpxNHCRnQI4BR/y9snJAO0xzspUCc0DkVUsBViN3QDuqTwbuE3pAAqcH7K2zekBZ+wvxRaR9QHMpLAiP2oFAS9vMqFhygkBzWBoyO2OFQEsKu9IE+4VABF2bynwbiEBLOan8sIOJQGiKZecINItAaYpl5wgUjUCVkAqNalyOQPiyw9w03I5Ayl98W4vykED88FiDcDKRQBF0K1ah1pFAE3QrVqHGkkCgnIlLzZ6TQMWKkGTnUpRAILSAYCNjlUAODdEwCK+VQKDLd3V5J5dAjiTIRV5zl0ByOptNlPeYQIVP3E66s5lAuU5KSKrbmUDMY4tJ0JeaQDlmQV0AoJtA4XjMSvazm0BwoSpAInydQINWE/srpJ1A8LghVXhAn0A= - + - m6d1RBHBqkQgQoZEYF14RHS/DEYLccJEYhzaRP5LiEQq3lhES2tZRcQoiERM96VEkbtTRNvneETIYhZHI1vnRpRGhETNywxFXBXHRCmNNURnhSNFhn1LRKE0r0RRQLlFzsabRURw+EQHbxVF/cixRL3KiERt/5BEfKyeRYooS0WUt29EvYEWRdIXoETf8XlE4Ao7RJWfoERTt6VEEAc/RBLBjUT0CYBEshJERd9IjkRH0DxERCQPR31kS0R7jE1EMEKJRp5WrEVZ2pFE1fXxRAMgUkRSA8xE0RWfRruOskQwcYxEz7F0RD/GCUXfyaJEJl7XRRolEUWDo1ZEPQ2QRCZRkETjhYxEz+NNRP/uR0TYFbpE2F1ZRU4dsUW3Zn5ESP+gREVjL0ZBSqJEQTWaRH9sIkXfaBVFoj6FRDp3hkVXa55Eej+TRFpRgUQI4UxESxEIRR6yY0RdzItE756fRFFQNES6KHdEiPEvRF+x/0Q4TA1FeX+vRAbn6kbuyylEkhDPRCNKR0QZ/IJFOg2CRKPrPEXANYRE3wCYRL2UXUf9Qs1E3xt2RilJW0Q4GRtGEuOZRKycSkRxDkxErnihRD00X0Q5UAhGwT+LRE8SikRF/FxE5pYpRfjcnESX8SREs8sORS9iWEQdJZdFUCQSRRzTgESSy9dEW7CnRLjJpEQkNLhF2pDNRIrs/US6/EBEfgFBRBzSOkQ9T2REOnmIRE2Lv0Qxj4hF8N+XRqUBe0VvdQ1GBi/HREq1Y0TelqBEeXOWRPHjuERk8vlE1pifRGpOhkRAsURE4uLIRCXlLEZkBsFEolSMRqCp30S1qUJEODMPRcR/lUQJ2otECGqMRAc+ZEXE9cVEyHYsRRGxcUQ8etdEpat1RLImj0Qc9sdExuimRJHeeETIYZxE6HZ5RI9vRkSKjK5E3YgCRRFdhUSi1IdE5HHhRYHQdkUbuoNFkwgwRZClUURNrlZE8eGURDPIykXgHGpE+M9QR29XYkStQIRFTErPRHAkvEQpXTdFpqfpRemeiUQSkq9Et0ONReh4d0RUNWxE9pfARMIrh0RiPw1FEt5bRKX7oEQK4W1EIRCVRKjoW0RVmJhE1kKvRN2sFUVnkblEwL3TRJdHQUTWEB5FZkQhRZXRG0X8NFFEhppfRGjkBEXd1IlEifHZROvUF0Xa9NhEjfvIRFlTlERiBR5F/CGXRE4JBkW+bUtEC4euRJb98UTycLpELVOCRAnT4kRpOdtEfTaoRBa/4UTvwUFFvGnERHABN0RVhOhFzspoRLmgR0R4vppEo9mNRRyZokRc83RE0hdHRHojkkT+kCRFltGERIPK4ERs8uBFvOx+REZgXkQbvC5Fl/vKRKYpjkTX17BEiXnlRD7uTEShXvBEl9SMRMKwekU9NIREW5ReRB4wZUTapS1Fmo4ORpKMd0ScqN1EXdXZRW6HgUTv321Fot2vRHJcqESCDmJE0YBtRIoYrETOFZpEGYKQRO0a+kVrR7BFLdQBRd51kURJD2tEVNoRRaSitkSV5Y5EuhCcRBqBgUQsAx9FBcqnRDr5g0Q628dEfqmFRCRygkU05odEj3CtRKW4o0QMd2FEcnSdRTsmCUYt7tdF+5nLRtGnsUSkfmpE8sKWRA8YQkR4WxBFjsKqRei9XEQpQDNF+TFhRL46mURY9ZZFCpCURArt40T6cGREsfAbRligb0QGjoVEcmOYRCmrVkTGw5tE8sFqRDRjoESdcGRE61ZCRCtB+EQM4FZEx5fHRNM3BUUXLI9E0tkVRTcxpETJeStFDJ6XRaLXpkSOYwdF9RWwRGjTU0RVT5NEEoduRU7hY0T9x31EoQ1eRMAuS0V8EF1Ey7asRLUoiUQInZFGiKBVRCGAM0SkzmBFetyXRJg0f0TRSVJFrl74R617pER4BrRGA2RQRAvQTkVDzMRGjNk8ROA+q0X7mExGPCvARJ/9gkTkgJlE0b4yRWr7JkVdp1xE0xWfRDJMS0XcJoNET7uMRO0mLkQoLIpFJmJzRFWigUSnOlNEb9W/RJROakRuncFEfSp4RNRY30SvoVlEjZtERGYBc0SY6L1Eb7sKRp6LikRit1ZF22l9RVYKnUQvbW5EL2aYRXh0t0R0tM9Fi3BDRDRRsERpOJpFwY5HRujJq0QiLqZF3x+0RZmaAUUPgFNFiKxbRW4jwESrppFEWndYRFHyWESE/vtEggGWRS3hQkmaF2NFvHnWRMmnzUQkK7JEm6TpRQ78SEVUtl9ExLMhRXZ3Q0jA9QVFFBw+RIZ/k0Rv2kJFogWVRh+GQ0QszLhEajScRB9FyUT8wc5EnheyRPulNUTiGU1GrKNbRY5ctUTrwjBFy86gRXZSVUVgumNE5pwtR71NiEXSY4xFgmTWRVLYmERqPG9E1VuORG8Bj0RDhbhF368LRXfAMUWk4mFECNJtRPjInkSkb7tE9Ei1RDOOvEQJlVhEl39jRdb3mkQOZYFEi/NGRMQ7UkSZfZRFRN3IRIg3jkVYSx9FWUGuRCXl0kWWlbhEjuWcRA4NN0TPbpVEVqagRClSrUT4GW5IYNWDRDZkKkclJC9FTB6mRGqXIEfRLY9EKKeCRAK4lEf+dxZHLahbRm39lEUyZLRE0u2RRki6LES7YitFNGqhRE6480RiBJlFJKwDRrdA20STNlhEjjTaRJXrdkTHA3xElhIZRaOKokQ8NclEpF7mRAWPWkSOv/ZG/dThRYK0uEZLpB5GYnVHReM0JkYpGapElDH3RGyFCEUnZZVE6r/NRLc2g0SVM7pE8VD6RHT+mkQAvLZFDa6SRHG7ekSs2xFGLw9bRC8FBEWGcWZEAI2sRJ+kbkRftlRG8YKkRWzo0kT+oKlENUMJRb/QfURH0uNEOOWERCfRXES1oDdFPEs7RcXsskTPN5BErsS8RB+aDUUQF6REegaTRBXN7USDJ0xEH/cLRTiAcUaYRg9Gnz9hRD5BiER4MXxEmC+LRSwegESJ+3tEdOEoRQpnVUT/xexEnpklRU3F50QOWFlETfiXRRWfjETjiaNET9CKSJW4Z0TaopVHHSiRRIsIyUUBvgBHBUPBRlf2P0UKcKRFQ6KHRL3IL0UQKrhEzCuvRCtIuUTZBXhE9mVaRF+2NUVfwmRGnAW5R/ZoCkX1EDVEx82tRML3qkQXMf9ELCe1RudqM0XAUhNFCV3WRNJl60Tl9p1GTp04RQHTWERAEr5E35dhRF6rhkUMErtEI3KJRGPAlkQ+WDlHwYU8Rut9hkRp01hE0xthRPDJzURaA6BExNOpRGeWCEYs1/dEIBD6RVhYzkWezo9EQNGERLLsAUXTX1pEICnDRH0kdUR2CtREFn4bRSFfX0SqcZBEyxlRRIJmiEXjdYxEHa7iRjoLWUS0P0NGFnQHRXpFw0R92T1Eq+B0RJV8ckTh0kFE1g+1RJD8T0SQ6WZEvg9mREnUkkTXeo5EInTgRCz5fEVjugRGFK6NRIfsOUU1N81EeGBMRYQXF0XXpfhEJBkYRS9qYESeVIZESzNGRMjCZ0SANX5EOJq7RCzNU0SvP6xEL/RkRWhFX0X/j5REximFRdyRfkQyk2xEW85cRCyI8kQEHWBE3N+fRLdjTEQMflVFxoGARjD9sUSmvJBEaafIRHbuYUU6PS9Gj7aYRF2UcESinS1F+XB/RLZOoURSenpEbn4rRQSpqESRymRET9JlRITe1ERe5TFE8DtTRPVshkQsaaNE0tWeRAQ9P0Q3KIJEvKJxRK0ifETjEJBEqBZsRLVXgkTYbKREnUOBRGEI20QzCXxEJfB1RLxHZETNLKVHV3aPR+WEfEQJnLRGVMmMRXrmgkRri4FEZ4CLR8hIHEXCTUREBHy5RJy0+0RqGVVG+bsPRXZuV0ai+sJEr59NRaxnfkSBYZhF0ApeRJ/MiURdI4pEqbqwRbX/n0RuXABFPrlhRKapwEU5k8REoeQoRX1JW0StT9NEuL0DReV4i0TCbIREPVpRRDnecERoQc9GYVqTRPKU6kV8YnZEerv1RrcEn0bSGOlFqcBeRGhoYEXPOKtEa6M6RXBQhES2IBZFQBjBRAASK0Wy+9JErzK5RBp6nUQt14lE/nawRJWQ8EUxg4dEOCCDROcXxERANwRFT+FcROEjnUSGV+5EDjNfRGso9EROLC5FAi6eRE8zdUSetmJEY1RwSDJxlEQsdlNEMDosRTbL2kTQKF5EIYiaRLMTVkWFOddHwwAdRcMbXESzG2ZEnJeLRLzch0RDVO1EIctyR7jaMkYlfkhGAoC0REYgR0R3a/NEy0KKRXqTyET8C21EjSljRFKPcET84jlFRmGiRP7Jj0QfoKBERuMnRVlYpUQ6Fy5GTMSKRIdldEYWlRRFHLF+RPr9hUXeJJhEEARvRIRDR0RJ/7FFlbZHRKgh/kacPKZEhSRbRKzVhETXQbBFCR/LRD9qXkSs90dEBliWRC0SF0VPl8FEgNKqRFnBskQsl6REu2dMRJAXkEQwoXtEiRu3RSq/k0THdARFrsFtRFJMkURE7IpEAId1RB2nbER4vYJHV08IR4PpgESvIERFuWAmRjedQUXz2b1GGwN/RnGYYESJFzhE8+PeRb52RkTeGc9EgqSZRBFEOESCM5NHcNhpREjZiERT+G1G5qUPRqaEiUQqV5xF8h7URAbOZ0ROUBtFY1XWROm9DUX6CX9FN5L5RDBcRkSy1BVFd8qFRDsdRUbSqWNEAdE/RHhHDUVyGGNEix6FRK97ZUS3VohEMYrBRaYhGEUNr6RFTcAQRXeEtkSgF/lE6psrRlkTnEWiEqJEE22MRI5+vURyWndEtmI1RDZ1xERRd9ZEiKyDRHRpYkQ/UIFEnwh7RN2c70SVY4NEyf0qRvH6+UU40otEkjOIRQwFZkXn+4dErlsbSOmfTkU4kb1ES14NRwCjVUS8TtRFAU1pRA+2AEXa72JEjmyjRDaxvESvlmtEBXpyRMCTVUQfaUlE9FPGRE84tUR0XU1EnvvFRP4ha0RAvPxEXm2NROUlZkSn0EBE0eZzRIUtl0RQuG1EmrBLRDfNzUT/yJ5EBS9ORDTih0QoJptEebpWRJaTwUdkrRhHwk+xRL+84kS7fyhGxE9tRIRibERjPq5GTqKGRGpJNkXVQH1E1SWeRUaNw0VD2FxFnesBRfUoP0U1vZFEz7C5RDKEgkQEuaVEWI6JRL8Yr0QpwnJEs6QWRQuN0ESTW4ZE6zpyRFEbbETP71ZFRImQRBFjtkXuCZJEypquRIx2oUTQbjZENxFDRE3ttUROq3VEnLtdRPSv3kes9alER68zR/BVjERrVtNGpzdGRJM6B0Z2sVZF9RdeRMhyWUSseIVENLSQRBkMbkSo9aBEn1L/RC61AUW6oqFETmP+RKgPXUTcaX9EFWybRGOhlkS/5oBEG22LRKIMrEfcfIBEWK28Ri3LtUUte7ZFvZkIRezfX0XI3d1EacKmRfAxZ0RYEJtEHlELRZkBQUUY45lECOxFRKIBuUZFoWFGJvf/RGmU80QlBM9EzSGaRLtO9UUrAtlEwTmERC3eVkQ5yIFFvGrVRAJuUERUaW9E11Q+RJCoSkQhInJEiCRbRCP5akRykkBEjoF8RNpHA0W6gqhE3ncBRn0yIkc65O1GrFchRa7f+EVixxBFoSt2R3oh50RNbIFHG1F3RFgwBUfbSo1Et9QXRsNpcETjY99Ev+Y6RdP1pUbKFnhG9RBMRFBte0VNoc9EZll9RMtoRUSKYz9EKUc2ROLMd0SUgFJEEDtwRGW/y0WveQxH81ZGRa6Ie0SGmFRGzTyZRNuLcETk6QVGKymYRJ8qZkRN8m5EJ1yPRWrOSUUUXbNEzmyIRNoPwkQSa4pELx2DRPGF+0QbqnVEy2WCRP8VgUSjpo5EE5pkRGJEZ0RlZdBEEuRmRk52DUWQvKlGE+CiRjVcZUS8uDtGeeTcReP/LEUUTJJEM4IDRb5yzERe5adEK7sGR1unW0UKGYxE/YqFRtglx0QrAhtGelOyRPDqgkUTBjpEYsKJRNSjcURedMZE5iaDRM3ffUaceiVGv5PgRDD+R0T+QVZELVSWRMsIT0Qo33pE6Z1jRN0fhkTyvVBEKIaMRAJaVETM305EWSpNRKltBEaxXbJFziI5Rb4UikT55QVFgau5RPkLfURevIxEQBGARHW7hUQvJhpGlBV+RJ98p0XbSTNE+gjGRfdZkkXAnctFfqMJRRrcAEXHU/dEEaBrRHEGiUSADDFGn8CsRUVCP0W9YUxEtpARSOGwlkQ7Jd5HVyY4R1jmZEZD4ppF0GTQRGuEZESnI6dEnfA4RgpWIUUjPwpGAV9DRYKXzEQnz49EQIQCRYtDcESdlRdFQitcRQbtbEQgTHdHRfcIRUgBsEaKYf1EvZCYRUIoA0W8D5tE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Wg8ksnjAckCPQ4PS3MByQLBReKILwXJADOuJFCHBckBAXjflbsFyQFnBdtjHwXJA0cN4u1DCckCb3WAG5cJyQKUNp847w3JAjDooDXjDckC6GKuNWsVyQKirN3FqyHJAiMKB0X7RckBAmuw0Q9JyQKojECJm03JAZvKDfs7TckC3PPZBzd9yQD8wBPYi4HJA6BlX/VHgckBVlHSntuByQIDBDR/N4HJAllB13ObgckDUDc5VUOJyQCVJlACQ4nJAbDzi4SXjckBcT0qyc+NyQLAhKF9T8HJAuNtWicvwckCxrGc82vByQNIIQsk08XJA5hVeblDxckDWR2NLyfFyQA+su2Z+8nJAbIAfLhPzckCgwOKYtfNyQMQcP4Oi9HJAqnX0CcT/ckAHU9OUYwBzQL4Bifv3AHNAX3dxj00Bc0B0MNuxjAFzQDyBu/c4AnNAprSGZM8Cc0CnqqiY+gNzQIR4SxcoEnNAIm5fzXUSc0BsCV3rvBJzQOgNzT4FFHNAXDG76UsUc0Aa3CDXdx9zQOhl5XoNIHNArW/BzScgc0BkfjDEoiBzQGhnsrA4IXNAkdBiC2Mhc0As3Lv8eSJzQIKfTkTHInNATJK+9Qsjc0BQJijMAyRzQEuCUGbOJHNAEhXupEcxc0AhCyEpZzJzQNZ3S5b1MnNAHmt6zzg0c0D1bhgM2DRzQAynHZ64P3NAOuMzHeBAc0B9ml1/eEFzQD4jizsnQnNAcgyjN25Cc0BmYwTOuEJzQKisoe55RHNAhKqVbRlQc0CSZo2S+lBzQKYcbeWbUXNAJYxK5BBSc0DNt0HuDlNzQJzCecmjU3NAQdOIH4dUc0Bwh/NC+19zQHHv1ZONYHNArrlpMYdhc0AAAPc1GmJzQKDDnBc6Y3NA4GVlea9jc0BEhe8nY3FzQKCBLZvccXNAaj1JuFFyc0B8hGSgkHJzQPxb9gi2dHNA8sIqHEx1c0CGcB9beIBzQKPTI4SkgHNA1/VuDA6Bc0CFnq7oXIJzQOYUmKcNhHNAVj/lHoqQc0CGmiJwKJFzQKQDT9z2kXNALyvxu0ySc0DDamMXY5RzQM5xuej2lHNA6sppq7igc0DtFkNSTaFzQNQ0rhetoXNAdaB4wVmic0AyuSkXkKJzQKuBfm0io3NAlNBKcrmjc0CFQzmkBaVzQArM413ZsHNAcZB2Pjexc0CybRjdWrJzQDKB27O2s3NABKP9kgy0c0A+A3Rno7RzQIsidtq0wHNADmiI7PfAc0DGgROsOsJzQDA1yOdownNA0VFhp8/Cc0CE1/I6J8NzQDRqv6XW0XNAOvlHELrSc0AyNjSjU9NzQHTmJzf303NAJcpVBOLUc0BF4L5vo+BzQLZ87YHP4HNAVjMAMAbhc0BeJIGlN+FzQKboo5tk4XNAVnHC+orhc0CycQwO5eFzQN6L1hB64nNAbMMKgBDjc0Ai91uHoeNzQLauqWru5HNAlLAhPLHwc0Cc0tQowvBzQM528tlV8XNAVO4DwGjyc0ASMpwbt/JzQI7EypAc83NAPHcKHTb0c0Bm1ULJjvRzQDmZ88bjAHRAY0JEgQ4BdEC6G8eVeAF0QCKvpEWkAXRAcPl+OboCdEAyAvLvTwN0QNZEfi70EHRAveeAwQURdECWdZGfhxF0QB9PVAIvEnRAwLSLfKYSdECazDaoTBN0QM2nbkx4FHRAQmMH0EogdEC5TsMuuCF0QLQvNDH8InRAATvmLF0jdEB8ZG8NVDB0QPKi3AfoMnRA6/xeOlJAdEBI+FoxPUN0QA5gdvN2Q3RATNAtesxDdECwl4uECFN0QGy/Rfj0VHRAIHxcvotVdEDc6zO1Dld0QMSZU+MgXXRA5IrABLhgdEA8TVgrTmF0QHy563EHYnRAwv1H3X1idED/0ZM4UWR0QAZxfEwhcHRAYp83OWFwdEBpQRXEQHF0QPJQ1h/ycnRA3VFDazhzdECXhl7PNXV0QMBf6h5qgHRAlWJlT/eAdED2tFnETYF0QNq+8sXtgXRAzAlOvkSCdECeGpUf0IJ0QLcn7rclg3RAWpPNfBWQdECsPHsw7590QCJjuLsNoHRAbNWE/iOgdED1IrXAoaB0QNhnO9XQoHRALurdRDehdEDI+g2TzKF0QLKM20R7onRAYEfmbrmidEBRnueQDaN0QObl8K5jpXRAjicBPwqwdECSop0jwrB0QBhZSjnusXRAUEhjVG+ydEBSloIF/bJ0QJPQI2fKt3RAyB1EEuLAdEBk/mUweMF0QAzL0WHqwXRAoPisRL3CdECufMEgT8N0QNzfgJK3xHRABkFGScvNdEDu8ck//M50QJB4P8rM0XRAZbomYxDSdEDL3YJypNJ0QPYWnY0m03RA6CnMgz3TdEDwWKXj4NN0QFYNWxvN1HRAN48OZCLhdEA6cESYtuF0QFFITd774nRANIrjE5DjdEDG0fuPc/F0QFhAaJaM83RAXBPw/3j0dEB6nBfxo/90QGnc0hClAHVAngEF+c0AdUAmlCVfYgF1QGDjSG1cAnVA/UDSmaYCdUAnzqXplxB1QC4ArSgzE3VAnDyeJSQUdUAfg9Ol5B91QEFBn3nrIHVALKj4Cp0idUBULu9+5SJ1QMa1cjdtMnVA8CfsDKoydUCup+k3zTV1QHahIVjdQnVAJAP7K/NPdUCWZecWMlB1QECwEaKAUXVAR+6tnExUdUDI0a8kd1V1QIK9V0gNYHVAG3IV1DhhdUDs2+G1+mF1QH5MANTTY3VAvEAkAFpxdUDoA4qo7nF1QGF16px2cnVAzKX1a410dUA0hWqKeIF1QOxftaasgXVAoO4B7qWDdUB+or/QmIR1QCCGqqaMkHVAF7RVLLqRdUBCJgG1OJN1QCFSrgyYoHVAGpr2RSOhdUCiOFXzaKJ1QB/OtCtJo3VAROuiOKKodUCkth+C67J1QLvj7+03wHVA4H5Nys/AdUDwrV5Z78B1QL4PhXv5wXVAkJZXAzrDdUAvueUezdN1QIorCCTk33VAQjRTvHvgdUD7RvM1DuF1QCXOszAH4nVAThjiYzzldUAvLozouPJ1QHTlOzYc+HVAwJJqX0cCdkBoR7djTBR2QB52J3UKFnZAPDKn1hwgdkAs3bADiSJ2QEvzivmPJHZAtPV3CEsrdkA0D4QkHzF2QABPh9ZSM3ZAoNyhPZ00dkAQR6OeAD52QBCkzWYdQXZABa2RvJ5BdkBywVWJyUJ2QEqe6595RHZAdvI21BFRdkCRw5DCzFR2QGg26V4gYXZA5j8oC7dhdkDyil+g3GF2QJyHjQ1QY3ZAkpGoedtkdkARuT/09oF2QEzliNFkgnZAhdmYX5GDdkAmel+6vZN2QFNg72bpnXZAQIVPHg6hdkDW1Jc8trB2QIRGXjPAsnZARutOvwy0dkC0bwXPd8B2QIuLP4O6wHZAGOezBE7BdkASsYqnzc52QH0cFDx+0HZA5p0vWfLhdkB2zKgr0eJ2QIsPBkv94nZA5q/8HUDjdkD+PowUIPF2QDd/NCld83ZAxiipVpLzdkBeZgfjMgJ3QCsmaWOZA3dAWmibngASd0Bc/R0gtRJ3QLZsi6IOIndAcjnh46Izd0DAu0fIDDV3QFw/RK+cQXdAuUnSkZFDd0BrGuumJkR3QGoMghYbRXdATJo+uU1Ld0CigCTfSVF3QJYqkBySUXdAxA+whPJSd0C+hmN2KVV3QFayiCEMYXdAulhSt49hd0DWUNLiNmJ3QL1iZI2oY3dAWoO7Pidvd0AKE1K/n3J3QO2cNXWQdHdAM92Py9l3d0CM6f7TTYF3QGRnxErjgXdA/NR6G3aCd0CIWFhuTJR3QPjsqJb8o3dAGxfkFwi5d0AD5Kh94dB3QPBKNFFh03dAh67aiHLid0Am7KxxUfJ3QOJV/XBF/XdAKpQOQfgBeEBkYsqjHwJ4QOTUeNegAnhAZg5NljQDeEBwlkr8kAN4QNCyUpn8B3hAKMQ9nm0ieECi8FzHiiN4QAQRKpPQI3hA6w8NTQskeECvjHsZECx4QAeCdyYYMHhATgTB4QtCeEAh+7sYEkR4QLMHx7x5RXhAjpe4kdVIeEA0kP9Fh1B4QJ+cqyrKUXhAYh6nr4hVeECMqqglIV54QDiNP9D4YHhAHrXArrVheED2nYlBJGJ4QJB0NP5RYnhAXuLWbfhieEDDdR/wEm94QAzJ1fC3cXhAWheqFfxyeEAqMyTjR3R4QLg4OEqLdHhAau57gtN0eEAYPZ3z8XR4QMYsWX0QeXhAMHOOpPZ7eEDuE3kaIn54QGYMaOSkgXhApq/T+9eDeEAkzndr/YN4QArK7biZhHhAnSQa8E+IeECOfnM6l5F4QKwG5rGnlHhASnruJaWheEAEyZaPMaJ4QAqQUNa2pHhADE7YYjGmeEDidKAvN614QMTgn8XLwHhANk0IlGXBeECsIywJjMN4QNRiRiEExXhAAGhhKrjSeEBMkGCvtdR4QE7VIva+2nhA1E/anKHieECs2yE9++d4QGjDAyYu73hA1T+3zS3zeEBabp/ejvN4QKqg+kAB9HhAHitU8Yv1eEBQu3IifwF5QIIeOx5YA3lA+YscB50DeUDO3RLSEAR5QBB7NMCaBXlALDD6V6YTeUBQIYCvuCF5QHwRMOYiInlASKw1OE8ieUCC2q/vsyh5QBVEEA63M3lAXlNQheQ4eUCcHQBAuzt5QI8FJgyMQnlAnLbSYbpCeUCAj+OVE0N5QMAmM+wsQ3lAdr5yR/tDeUDcdQECRFB5QNBVRdfLVHlA0HqY1epgeUCRv/SnDWt5QNJXYDtFc3lALcuuJGOSeUDXH1O7sp95QCxdUcqCq3lALwLvXsCyeUC4i5Fn6sJ5QHhosTdYw3lASoLwabXDeUCiASgtDcl5QENwuTHA03lAorw4VUHUeUBpoan8y9V5QN6TjntP5HlAUuS94xnveUAooOFgEfR5QCYZgbO/+3lAVE4Mbk8CekAwKW5Z+wN6QCQGqdIJFHpA9nuGNBIkekDgMXDAKjN6QEwJGysMNXpAkdHK+yw3ekAM0+DmLzt6QBY/5j00P3pAFKRr2jJDekD0NqACGkV6QLYUcSuiTnpA4m93U0NTekBgObG+J1V6QAY1JyciXHpAE2IQVLBgekDS+HOeK2R6QJ6wMhk6ZXpAz+S+VyNzekB2LWZPA3p6QFZx7eqegHpAcX25Fc6DekBGPqfxHKN6QMaM3ckkq3pAWDB7Bw6zekCaVMkoDLZ6QH5oFGUQt3pAFPwYrRS7ekBUrL0zE796QD2t4GEWw3pAakYSqETDekCk1Ap2F8Z6QEqhzt9P03pA3znpjWrhekAvdYVFPuR6QGb6VlZ85HpAPQ/AHSnqekA2siAuNe56QLtm3VAV8XpAuLFBf1/xekCrLyDGewR7QLZz+bAqDntA4Kg1V0wVe0D8h2oK0SN7QHR3GllZJXtASceLFlste0A8kowuxDN7QEgRtYuQPntAEkwwW+tDe0Ag+heXQ0l7QGCzenFcUntAO6Flvslve0Bw/8NjD3R7QNqDeA23j3tAKvBOGiOVe0Bup39uUZ57QHa35UEEp3tAyxWzsAKre0CoPDROAq97QHk+qo57t3tAnMCC9eXDe0D210kbd8Z7QGh+D4XF03tAtIu6sODTe0BiGYE099N7QLSWJRyM4ntAxo8owP7je0B6TghWJ+R7QEIZjkS85HtA5k/Sd57re0BUg/iBlvF7QJIGgTuM9XtApMqak5UBfEA0vtg22QF8QGJeIcf0AXxAakP9tboCfEDIUy5s6QN8QBiyCi9mBHxAWEYbNpkFfEAudpNkSgl8QLqWP+zQEXxAQ8EiBuUhfEBuIgxzcCN8QARRPP/8I3xAAGszK38zfEB2WYuX9DN8QBjrVdLMQXxAcF9f+n1VfEAZAlboi2V8QIRZUEIEc3xAVMEIOJl1fEAklZjegYR8QKoNTprDjXxAyISpFh2TfEDctbpsKpd8QKCiA352mHxAYusghB6bfECs62s1v518QMZ+DOzWnnxAZntSMRyjfECATqmclaR8QE0QQAD3rnxALnEFs7+yfEALnbHRd7R8QHTxM6FmxHxA6TWQWffbfEA2YpYpgOB8QK7ZLsVX4nxArout/A/jfEAdbFrsauh8QLjWAKsj7nxAWYPsl47wfEBo6Np+G/J8QMFY0ipU8nxAwn5o3nLyfECMwmHglfx8QFpIYaBuAH1ASs0KWgACfUCUFNthSwJ9QJQyt8WcBH1A6LPzRUMSfUB8uHHGhRN9QGLRfd77E31AYEgGBzcifUBkQLxCSDh9QOAUHcWgPX1AUED9swo/fUCKlNlh/kJ9QK6Xo7ZBSH1A/uthAz9MfUA2ACwC62V9QHm6X3wzc31AhAgTQ3d0fUDY2hU4+HV9QIpQIn0af31AqvINuviDfUC0J94nBYZ9QMuwg+P9i31A7w780ZGNfUCrQhas8ZJ9QLC350SCqX1A50XvBamyfUA6t4xINLV9QABi3/srw31AyK8Zd1DEfUBaf6yT5sR9QIIMkK08xX1ABOiL4F7UfUCfbdOd9NR9QPYtB5TW4n1A02e/M1vzfUDFQvZ/gPN9QGQkYdyQ9X1A6J1nab32fUBW0xd8MwB+QPttRni+HH5ASLdDqTUffkDidQpz8EF+QD+qLHGlRH5AvLeHGGdLfkCuUjhqU1N+QIj84r4OVH5A1Ms2/41VfkDo4ZCsMFl+QPYssmFaW35A1AnK6khjfkASpzNNa3N+QMjaLhe6e35A+OT4AY19fkDxR8d3foN+QAJLKzGZg35ApOsLhoqEfkCe6dOmYYd+QFFHyanSiH5AQMdvnyiKfkB6sep2K45+QHKs3w/Qk35AOkBC/x2efkACcQoxUaF+QEq/iVyPpH5AZknZBbKofkBGBz6pYqx+QFR6hQRjr35A5vpJxr2wfkDsc1iQGrJ+QLTST98ytH5AAO8+wGq0fkAnfONBObp+QFU8in9vvH5AlNwvvtG8fkDTiiQ8vL9+QNaR7Z0Iwn5AJmzutWXDfkDamwsx08R+QNA0+atty35ArE97ZPnbfkBAvI55wNx+QKfHfvf93n5Awj8TrcjffkB88LilM+x+QLqLKlaJ735AqOb89GrzfkCy5rKLy/x+QPBLfjag/35AJnqRf9P/fkAfahwUNgR/QD4mRTGmE39AcXf+aK0bf0BSRYv/1yN/QJsugGjWJX9AnhT0Jt0zf0B7cyeU5TV/QBIV+c1DNn9AWhIw6aQ5f0BbrMj6/z5/QEgVOk2kRH9ArOw8hKxMf0CszlAIq2x/QAFOJpe0cX9AfINDC+V0f0C3mMP9sIF/QEa4SkE9hH9A+CaHbPKEf0DTcuSFE4Z/QB4ZTPZhkX9ACHJ4gKiRf0BYNuVilJN/QMqoUDX5lH9A2YwDxFyhf0CmP/EfE6V/QKk74VpSsX9AfRWR5ru9f0Dss95C3cF/QDDPUjilx39A+M6Oa6vcf0CsvqQTVOl/QKD7cNqN+X9AVLQcmUcCgEDqAMZLeAaAQOoNPavSB4BABHQaPZgJgEB+cWjvvg2AQKpQAHSfD4BAWE0qyhMWgEBnrqooaCKAQIiN+ZAfJ4BAKjDFzTYngEAdp1w07imAQAimHdRjMoBA5GO5FR03gEB6PZwTvDeAQF1cD8vIOYBAWJ3QRHY8gEBeGOJqJD+AQC4pA36CQYBAorFwWMNBgEAi9c0w0kGAQLpIaTCpQoBAeUxu3DJEgEBofkul50WAQLgepUXuSIBALiktJOtJgEAs5PLfr0qAQAac18lUT4BAlqGVSedQgEDSmvePE1GAQKZJkcCvUoBAZYMpqa1TgECluYCJJViAQAji/znnWIBA908kmw5ZgEAsrv/HCVqAQOiyyZkyX4BAWJZI0sNhgED/uWsVcGSAQKyRTdOhZ4BAcIXQVWlpgEDEwKzETmqAQO+js90ZbIBA+ncy6/hsgEDxR4PHyW6AQHiT0qsnb4BAkHk04id3gEByNEvzcnqAQBa9/JUpf4BApt5mWHqCgEDE0wVYfYqAQNYQusZejIBA3l/95QyPgECzaCj5tpGAQOLxYDLikYBALskEw2WUgEALTYQTCZeAQFJz8B8el4BAweo5+ZeXgEAmwomyuJmAQK7USJnbmYBAEGs5ZAehgEAIb8wytqGAQJDQ31tNo4BAkgCNGQWkgECCY6zxwqSAQMymw304poBAaKkHiK6ngEA+tVMNhqmAQLKVusYTr4BAemgpabivgEDzqwgWZLCAQEAyowWAsoBAcF7fDZOygEDAYp8MVLOAQDGQbvYQt4BAlOssgAS8gEBVGT7Rh72AQLIRpLnyvYBAkcuxJzW+gEBgaWcXqb+AQEI2tWZSwYBA0Be/9fLBgEBxo5lTnsKAQKTUjJACxoBAIR+UEPbGgEDItj0gYciAQKSDLDIiyYBA6gipB1PJgEAjv2vFCM+AQBqxeSUc0YBAifNnPjHRgEAzw/pFTNGAQAZ57KPr0YBA9C8YaWbYgEDL6iobStmAQM4tsxdr4IBArmyk9UThgEDCRDoE0+GAQAVD8qfi4oBAje327lzogEDsTmyBS++AQCgExZvx8IBALoLafz7zgEB34ZpDaPqAQE7QOY+J/oBAuKHgkj//gEA+nNQBbgKBQL4Agxc+B4FAFTUWnT4PgUDGUzGvYRuBQGrrA23vHYFAIrLxezQfgUAzeEqGsh+BQCGregE2J4FA0YDTtrYngUDbNTihTS2BQG7NzeH/LoFAaPQ+JDAvgUCMLWmzUjCBQIKeYtm7MYFADjOD4r0ygUBbSmj36DKBQKKXf8IoP4FAnDgTjcxBgUBUfqU600WBQDIe8/QnR4FA9EzNh6FlgUDMyBHIsmaBQOhNa/e1aoFA5oy/4LlugUAicEnTzG+BQNBPg0m9coFAsrtF8B10gUBUekIownSBQO1QPYEPd4FAhqnrWG93gUDU0ndqO3mBQKYdzpgbeoFAyoaWEsh8gUCwJEZ2Yn+BQCIUngifgoFAHtTx6yCEgUCk7qgJpoqBQJQUSaZVj4FAUImUXM+PgUBGInAHO5GBQATZ9sTwkYFAdQbr3r2SgUBK4W4V35SBQPqQxZFWl4FADsmRWq6agUAoOqPQxJqBQAaCQXtUn4FA5EtA8OehgUAm6IiG3qKBQNIa9VwNqIFAkd8nwGyogUAWILG+7amBQNQBf2ZBqoFAu4VRHkqvgUDoVidqS7eBQPqXC7fJv4FA8orRkODHgUAMnkPMBMqBQKYJjuKNyoFA3CxV67HMgUBe0TLHXM+BQLJsV3wH0oFAtNmhWsrSgUDI7t3df9OBQIbe87To1YFAxpix1OrZgUAYeLMynNuBQAg9tLzv3YFA9+p6VAPsgUD0XLfc1POBQMYW4Mrr+YFAdHhWZvL9gUAyyov7HQeCQL/OHI6/CoJAjc8VNtgYgkAEa1qyKBqCQMZcY20tHoJAhQ6JXGQegkCxDbvz1iCCQIopTQPVIoJAdxzT+s8ogkDqs/692yqCQAxaxpvOMIJAUgS2uN8ygkAumjbfazaCQKhZMmrlOoJAa9cF7WE+gkDCdvMd+0CCQKaOXhgJQoJAZK6AmIFDgkD+IVCxeUqCQPWH38QPToJAhlig561PgkDfIYrtbFCCQPJ+Bn04UYJA1SWDNttRgkD5wTClDVKCQN4e8qXdUoJAaB8syW1UgkDoY1IWAlqCQE/hPrOeWoJAHfriC89agkCAOFRvdFyCQPre8EDTXoJAmKmvzg1igkAwJnzbZ2SCQPKLPxnTZoJAcH9CNjRqgkDwhiDEqGyCQJJeSmildIJAfkxrtgN2gkAExw71YHaCQKOL2WFwdoJAiNUhym58gkDm/aaqZIiCQFD8OQlDiYJAB4BzaqeLgkBmYvJmQ5GCQNC3+98EkoJAUKGDdKySgkA20BoF9JKCQKZaaVGYk4JAIyfizzuZgkBkW0Yk+5qCQL48FG8OoYJADqVC/TmhgkCG4H1D8qWCQLpT1vALqYJAjii8EDSpgkAithm+9qmCQFTo7PF+qoJApa7PRYGugkAOsAuGB7GCQBKxW8EZtoJAlAkVTe3FgkD+VX637smCQIICbZV/2oJAp++77oLegkBQg/4ot9+CQK/ihHtF4YJAPNAjfjXigkD45Gna1OKCQNHjyfsH6oJAwGHkgD3qgkCkRthh3eqCQIHSj7Sl9IJATI3IEq75gkAm7HEgNfqCQD5AQng6AYNAEIuf8HUGg0DrUO1YpAmDQBQ7WKTBDINALtMAnHkRg0BQ0MXbXxiDQLw3aEt5GYNAuO+m4mMgg0A3j1yociGDQIksoVGKIYNAMvICFbkng0B69AfFbymDQBr2DVNqMYNAKLLJL8M3g0CSAsOYUEKDQAvS+R9YRYNAjZ5PiONKg0BurvH1a1GDQPYw0xhTUoNAGoe3ER9Tg0C69dlyFGSDQFEczIAmZYNAbfCoC9Rng0CKMho8fmqDQJj3tE4sbYNANxpXmutyg0AI8dzJ83qDQAW5v4B+gINAEKRv4+KBg0C6gL9hSoODQKq6gyg/mYNACKzj13eeg0Clup9nRqGDQHSsi5v9oYNAPEP6t22ig0CuOQ4MGqWDQJ75WanIp4NAQkTBukmpg0AkgDQj6a2DQHL6Lhk0sYNA/lzraumxg0CYhJD27bODQDgDWYz/tYNAtFmStQS6g0D2EUj3k8qDQOU3dgjn6YNA+tbWountg0D8+IUR1/GDQBisFrDv8YNADFR0Oe31g0CohX8cAAOEQLlfId2fCIRArlpOTggLhEAPrqd7yy2EQNyBjqDPMYRA1gvXXJ01hEDygzMFcUCEQGyhgKPQToRAKLdKIoBQhEDEBBwQAGmEQEwuMlzlaoRA2vZWguhuhEAj5S4lAHGEQNDzB3w8coRAkOgz1+tyhEDz/lNr7naEQH5JawPKd4RA9B3pOfd4hEAkDfLGdnqEQOO+OYUkfYRA0sUSm9F/hEACopEkW4GEQFDay11/goRAyOTRRAiehEDsgHxFC6KEQAoG3+1tooRA8EtMxh2lhEDebC62D6aEQLkdz9n/poRAiKZ9YwCqhEAbFvBPHdOEQFCU2wMR1oRAdBzRvWnZhEBE25BuFdqEQPqJjnQo24RAu/rj3mnhhEAerK0eEOKEQFRyUqJj6YRAoa1LOazwhEABns4MNvGEQDyjXiNk8YRA+sZSuN33hEBuKqRZ9/iEQAlxn5c0+YRAWH2xHlz5hEDm5z3PhvqEQCFYIKad+oRA/suxfIf/hEC3fXWB5P+EQP5lLk4uAYVApOxPF5AHhUC+wF+cwQ+FQOJYm+FFFIVABvwwUtgVhUAA8SAd+RaFQN7g3SNzF4VAsgd4PQ4ZhUBKjNhtqRqFQKbSuqj1GoVAdPcYhUIchUBIO8+93R2FQL4mO6oAH4VAMI/gZ3MfhUD04quNuyGFQAhAoc10L4VAvp7rPotAhUDmx8QpoGGFQMsz5OlLZoVArrmuX59phUACMGbDTGqFQMFIcSqWcYVAVgbv47FzhUAAXyixl3mFQLbVxAqTgYVAteoF4xaChUAlSdjgU4yFQKqgAZ/Un4VAqnLmHeethUAmXPrnQK6FQPc6qnt9sIVA5IxTuEOyhUAamElMR7aFQH4na+sDyoVAstCWcDHmhUDWk9tAjRKGQMAT1G89sIZAdc/CzumyhkBgwHa8lrWGQPwZGjUttoZAg3OHKUO4hkAAPqeYJbmGQAiMOB7MxoZAsMx9C9jIhkCMW6tTi+aGQH7WxyJ9DodAsct+6ZAph0DAednJkDGHQIOrxpBxNodA/LZi0oc5h0CUxtX5dDqHQIZY72x4PodARDfAol5Bh0AAO1XrikGHQL37qnguQodAaqyX5HNCh0CIeNYUx7GHQEq/pJjHuYdAwg0ff+W9h0BcwUBFwMGHQHoFo/+HxIdAjYK1lnXGh0D8NFRFeMqHQLHHhGZ5zodA58cK7nfSh0C/GpJAf9aHQGgf+o1u2odAZMgTibMKiEAsyQzBpiqIQOlZ1fulTohAyxjGavxRiEBC0kXLqFKIQPLG24sAVohA7LO+xKpWiEDN/JXfsFqIQCowZ+jcaohA9r94OjSCiEAABSfTNoaIQBqNw8k6iohABBGUtavKiEDAomaMh86IQCrHAGGy0ohAHABtzJDWiEAxPI0uoNqIQJbHzbC/2ohA + NrgMGZxjYkCmvpxNHCRnQBu6YmAmQ3BAxwSPFv6Sc0AJeGK9lHN3QDuqTwbuk3tAaGl7e1ZSgEDo3PC1eOKCQC+VIYvCWoNAFeOVW9oKhkC8EEsHhVuHQBUShIWGk4lAUPHuQtxji0Co8ifB3ZuNQOH1b9sdHI5AOA9n6CRSkEDUEIv1RJKQQIGRp7RFrpFAHgFdk3CWkkDLgXlScbKTQJ4YVKjGWpRAkT+OkNKylUC1myZ79+6VQHVVYZgIN5dAmh+LVDh7mEAnbMamToOZQPdIe1B0e5pAo1sGPmpPm0BUcmtMsHucQCNz/VLAE51A1IliYQZAnkA= - + - kFiLRO1Af0Wg3ItEfDxoRAHs4EWVHllF8FPiRP8g+USYCUtFAyKLRHcyA0VGrXdETrymRNumC0fHvcJGMKloREJSBUX23EhF+Z5lRDzFI0UDD1lEBuCmRM5dYkXR4LBF7JPWRDlsTEUuoG1EylCdROCKs0QbLQBGCXRyRE2oPkVHH4hEW3z9RN9hhUSe22xEvJizREAuQET5o/JEOxOcREdppEQDcLRE2LJMRSeAMUfowmdEl0CERE4uZ0axUZpF2LR9RKzPEkV3PGBEwJY+RAkP60T7q59GIxWRRMm7J0XSIYBEZwFXRBQRdUS1Wa5FM0/YRJEfQkRc2FZEFvbZREFQPUR+IDVFFwqNRAz/U0UlUUhEUnJjRCbwxkT3tBFGi5mERJdv+UTAs+xEVWSQRMIqYUUwznZF2UbhRCj8nETh86pE0Tt0RNFAUUQbfehEbJwzRNdSbkQqvLlEXirgRLafi0R75OtEIiUORTLWwEaa9oNEA+4TRfFGs0XTE1lE3kC+RHY0KEQtsQRF0zpVR7yDS0QC5mVGTlsdRsbVN0RaYFFEuHfqRRSzlESjgapEdLWARCiYlEQMTo1EEZV6RL1JrET7q2hF46nORA+2mkSKQoBEijr1RGd1l0SNyL9EsNLIRRvx4ETigj1FP26iRDXdV0Q2VwFF/bSmRSCmukac6JJFU7ZaRLP6F0aNybBELlFzRJFKgETg/pRE3MWWRGrMoERPtHlEMRMGRWIj4EQg70lEDzNlRHx3iUTVboBES4LwRGAQh0T5I1NG+yTmRCBAdEYhO5hE0ZCzRPjZhER4Hp9Ewt+VRP7duUSNcFBEYv+tRMxjdkXRvpZEeQGZROPR7USMn4NEJuJiRGdwkkTrbGJEsT2kRGzcdkS1WmVE/sRfRN7Dk0Q4l5ZEdbYERV3ntER6euRFyDmYRVzdQkTiVlxFwVcQRULnt0S4vNBFvDOFRGpDQEdk5XtELbgJRUK3z0QWQoJEO5gVRYnmDEYv7GVEJ/VNRD/JnkQxacBEPWK2RTmx2ETM2atElTNXRHgYU0SAp/1E4JijRLH/mkTFe1BEEI+3RNMkGEVVDWlEaa+mRPTIGUUbc7xEk3o4Rf1mykSalJdEeTYJRbt9GUXaU6xEkHSIRMRRIkW5RqxE1yGdRORauUS7LWFEG8GKRP32yUTecMVE4Lv8RNNfjEQtEMNEdjXrRJE45kS2mMlEtssWRZtyvERTvrxFwtymRDTcfERWq4ZEI6KZRMg11UQ+zK1Fcu+6RCVjkETULlZE9vsQRcjGa0RSRw5FCbEHRmY+QETFTllEgHSPRLMH40QCN51EVoKSRPt7NkSVMs9EXQeyRBhQ2kTXfIRE7tOnRXJDjkQ093NEl/duRNxK/EQ32NBE/lciRhk1GEXpk7NFlYlyRTHbiURXRaRE8jihRFdPOUSSF25EHrq6RNpxQkS6lhxGwWBoReRja0Q2a65EWLCzRPfWN0SSIQlFoWqqRA/xn0S9YlZEQh+lREy31kSaEq9EBc2ARChBJ0TBvE5ETSWDRa58h0RdnJ9E9QaCRIBDgkUv6RNGKB14RV78jUaIhNtE9mkHRYMXXERC8VNF3PdkROemHUWw3aJFFq9BRYONMUY/3LxECchPRFwlXETpTIREnN3zRGsQjUQuOmdERctMRe4ElUST1+JEcwUaRTLJY0QCehxFxA2SRbdUgkThArBEKvjvROB5YEWwQV1EWHSeRC+Th0S3c09E06aIRAlAgESVkjRE4DQQRZeQm0QsRndEOC6TRu6wUUQsDl1FryzFRF5n3keYdJhG06ngRA7gX0Vshr5GSEWRRDuGdUWfHkZGTCeARNYg1URuKm5EyLIvReEecURAUx1Fqx8ZRR27NUW6CYVESIRRRCXcgkRxmUNEhy+7RAkYd0Qr8JVEaDuMRDsTjkRCuZhE5xGERDTZvkSGna5FCFaCRIW9U0Rly1RFWPl2RO4pSkRUCqhEImOORRdqfUSuC5pEMXJpRfu7AkV4ltdF7EjSRLud+ER5JTlGqcerRIa5e0Wo24JFvzEGRU8wNkQFKg5FXeEmRfxNqUR2Tk9Ewf9ARI7YN0TnzGpEwoXFRB7NikR49z1JlI+/RB/2zERnjktEfmi5RSafqURoGRRFIit1RFRFF0XlYz5I6C4lRU6KHEUPcIRGtc5gRK5PoESKMa5EWCS+RASViERobq9Ed1J0RA0Ct0QI8apEO9ALRrJwH0WsawVFRD7SRZ6bM0WFnphEFoJZREH2G0fht3RFgz+sRQ6FQER034hEH460RSlMzEQCYWlEII6sRE+DqkR1qgVFMe6ARKUnFEXegQFFXpuKRCoMlkQYlM5E48FrRGxTJUSaCktEVcwjRRVOpUTHO4hFcv5LRGXzi0Q7sHFEEAdARCLXMERUU1xECJaeRf5lRUQMV9pExtocRcvICkVEhIhEKVmzRSjCXUSfw95EVESqREXZz0TMZlpEodOWRGKQUUi8IwRHOO0uRbrZL0cWWKBHi2vfRpX4VkZ4Uq5FG6gWRQNOlkbndHlEpWgURQu7wkRE0Y1F0sopRgdJCkX6vnVErwykRMme+ET3urdEazdzRFdqPUWUmcZETgqtRgrtqkUlkqxGvUoBRqb3DUWTcOJEm9YoRtfXQ0Rt6u5EZu+2RMZJl0R6VZNENwBHRJNJDEWVNIhERb7GRLSLjkVoIItE6aEkRvwzmESMPC9F1hRmRLngmERoevlFXoxaRXpy50SJYIRElBwBRTgeB0Wzt31E/SD8RCG/QkTk0A9FJXkKRfZiHUWlUW5EJXUERXepeURN22FE1548RG9PMkTmcDlEmhqMRLBxsESRY2dEF/IiRcz+iUUh2n9GIa+5RDK+LEaS/8VE0UetRMaYekQY08hEvxlbReNhZUS3ZoxFM1qVRLxWOUR6QXxE0yEHRWskg0ScOpBFaK7KSGjx1UfMtUxEe6URRkJKUESrpcJGO5eYRmr8BUXIOONFo5SyRIJ2WEXa78JExJsMRZhFiUS3qH5E2Cu1RPhi3ETUFKNEmsh6RAm4C0ZhgL1Hb3adRfI2R0UesGtEO4B3RMvVc0Ts3bFG1e8wRSV96ES3b/xEzzIxRXcXfUbWMWFE5yYURfeWi0Sn4L9E5qKOROVpQUWnZvlEnxmLRPN6nkSNjDdEtH24RIZpgUdzmjBEJ0NIROmFdUa03nVEtPsDRaigDEXMsK9EtRtgROJs0USqAm5ERX6JRMPNJUaweGBEjnPfRUOB/UX5pOtExs1PRHw120SD0JVEH2JfRFABkEQo2f5E0DVkREGuZUWcm49EoVbURAq/ZUSamQBFlgSORLXjykbwp0pEDGOCRDMwh0QO9QVGH3DGRDqar0QpS5BEfP6aRNlzdESh+C9Ern9zRG7bc0SaYYhEvzFpRD51SkTBtbNE9EhrRNizUUQyxAdFkOp6RCP2+kUfZqJEtuZERMX8fESCF4BEysBVRejaRUSynVxEBWZyRGg0PUS72kxE6AV7RVr7qESbx7dEvvVNRGb1hETLSndEzZtrRB9jVkTavGtE8eqFRD5SVUQpvz9EIZNnRD75TUSzWGlFiJ2lRMZuVURbtopFnvJARH3VkkRrTJBEFuiSRCe5t0SZRwJF96ymRBpGQ0TADIRFJ19/RofWkETQa5JE2QiURXQGXkQYTxdGiVeUREzIUkSyaGhEM80TRVDGM0UO8vJEKXuTRIC8OUS4zIBEVfyWRDkqUkTlRF9EdQGdRPs9hUQ4/H1EYEZGRDg7tETKImxEXLtAROv1WkRGhUVE9F1lRDz6gETe+GBEmoejR/38qEQMRWhHVsq5RqTDrEWz1UNEuUxzRGAE1ETKX5RHFYFjRKitCUXiR8pEbjpbRIEij0Z9/y9EkMPVRFjDUEbp2n5ENrRkRAu9GUVXbqtECc2gRYh6eUQQeD5EHzCNRKrBkUSFjulFgy2QRFc6qUWAUcZEGPGHRI8blUTEIChF5gd4RK6550aqdbxEXwLnReGvdkSrMQVHjzeNRiky10VRNoVEFwo+RcjHW0Rz+tdEOQpXRGy0eESN5qVEHE5PRDE9j0SX5YBEj6v2RERMg0TzpExEy+LbRMpP5kTWI8hFPQm8RCVXvERoj3FEx19eRPtVv0TZPjRE3MzbRKZeiUQRiKhEKM5zRIjQgkSv/GtIzsC4RJNkPEUrNDBF3WSTRKWBgkQIPUFEocrBR+2MoUTmjLZEFNVORAced0ewpo1EbbHVRd5SNUYXiGdEYiqPRbyYh0QVEGhEQaTBRI6qAUVK4U5Esx7YRK81W0aoJ2tEM4ZNRkGIC0Xz5kdFSYKBRfO9iUREmGdEPlfiRjza9ETzX+FF8cerRP1FTETo6D5FX32YRJnCa0TgpdhEy7KcRDq4VUQpxNlFwUkMRSy+rkRNxpFEbXZqRP+JX0fko/NGQNAORopwfESWCwZFZB+ARCm8u0YvxXxEN29oRhJuhkQOGeFFktdPRfeXmkSGcYJHtctnRNawgEY86BpGTA6WRG7Ej0SJlcpExgT1RfdNmUSXjftEmyaPRKC7zkR5/rNEOqfiRHP8LkUnAH5EJ/LBROHTcUQ0zItE0xwuRoC6xURsY29EPLAXRWdT+EWgCCdFDoYlRuqCIEWtoNJE7XpYRG/8nkQw9y1GTmmLRScAR0SXM41EAYd9RNhiXETcHLFEXS2aRM46YUScptVEm24eRuZfoEUdKhFFYsOVRCMCZkVBDiFI0B4HRWgEKUdY3XdEpGTHRXe7iERs761E31lPREavdEQVtQtFHytjRCFhCUUrWIJEb714RHFYoUQYK+lEVfJhRBVkgUTmQo5EtvNvRH9uiERa3MFEqlWGRBokjUQVNFhEe9h9RDJuY0SAcnRErNW8RNJ5AkWScEJEVQqhRE/0P0Ti9TZEdkIIRfWhb0TlK7RHfLU6RMCOEEfsGEhEGNDkRKYiCEYc4FNEOPDIRuoS40S9xslFM6TaRRHCXEU6XgRF1EkfRaoGNEXKP3lEZzhzRADdykSxYmtEc4U6RSMvd0TVLkRE/4FdRGb+RERQ+lNEy7lxRdL7vkVV7z1EoNCzROaqxURNc0VEmuGgRK8KXURF+0REaPBARKm2QkRDGWREd2LFR4VxWkTivBhHGyxZRBDkyUYh+BNFPoVzRFiav0WyzztFBtJSRMqtTUT7iW9E/EZjRDbgQET+0DBEAfA6ROAjUkQXedNFNIJVRRl5lUWh+nNEYwGTRIp1mUTKko1E3iypRHaVTURggpZHxwQ5RNjrvkZBg2hE92efReAyc0VmTBJFtBtORXwYbEU61VpExTw6RYxmYER3M8xEfp6lRHZ67USsJZlGwQAHRuD500TF3ghFf0W1RHkVvEWhH2pEdxEHRb3xkUXuBAVFUXY3RFXdREQ+TkZEHJRHROvPq0Vud9tGmtulRmtsQkVghJxETSTbRZneV0T8q1tHhsoLRexUVkfCKsxGWOMCRsbWdUS2zRFFL6WzRqGKUkbYVo1EdMtqRA3ClkXdA1tEX2BRRMUOdERclJRFabf3Rr2TZUXV4oRE9TJwRlx/o0Qcqz1GitdWRHqhhkWTbSJFwhq8RDNKpEQ43clElWOeRCD1nkTQYJBE3c5RRO6hpUSnh+pE1HlmRMNmc0TtL2REFTs8RrYduEShs4pGfyy2RnNmpEZYWodEqRZ4RUrBMEV3JIZEO2xtRKASZUQRSZVEq8DMRAno3EarRWpFF0dGRtG+lkQ9s7hFlnmIREPoNEWwlspEt5GtRCOflUQBxFRErV13RHGekkapSEJEeawDRpJccUVUjnpEIh5JRP14MkSXRahFxB0QRnIE6kURzqtEi1XhRDRbzET9EHdEffmVRDS7WUR9TppEqSguRl/StkWwjB1GF7I2RctCB0YuSZZFKu7VRKspm0Red19EO/V1ROul90UPBolFelenRH3rL0UzEZxEe039R3jpukfQLj5HMZR0Rl/8UkV36YFEF75GRKViRkR10klGdi/gRJR5IEZdHdlElNd/RdjZYERjyNVEUctLRSWk3ES8Rc1EValHR2AZX0VOMolGgj6VRJYFIUUQptpE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - NkPxbHjAckBKAKhP3sByQMgNfkcMwXJA4Ie2JW/BckAZgHjfycFyQHRu6t9OwnJAs6LgQ+XCckDpnoXeDsNyQAGDow07w3JABJmYo8PEckB8Gc4mW8VyQBQKzRtoyHJAWAR11Y3RckDwcNWaDdJyQL5Iv35D0nJAtjA0h2bTckAWAymOYdRyQIci7Q3O33JAm01mYyTgckB+60nst+ByQPSIPgvm4HJAOpI3lUzhckDkmiZwUOJyQH3qYviP4nJA7FvhqyPjckC44KgEduNyQEd9beq543JA+9MaA9rwckBcwYwRNfFyQL74zGfJ8XJAjAuYRRDzckBqH89Nt/NyQIKRjTui9HJA1yuUL8D/ckDEYscP+ABzQCji8V07AnNAUlIMhNECc0A+QKOi+gNzQDJYvf50EXNAYE4bSggSc0AajCBrvBJzQE1RzjYHFHNARUWuok4Uc0CzUroIeh9zQMPmXV+mIHNABF0A5Dghc0D8F0tWeyJzQAxXVj/MInNAvB7c8hIjc0CkXW6TziRzQCmIOrpIMXNAGCWqhlcxc0DwiEVAIDJzQKkHSn7QMnNAMUFdXKIzc0Da3Hq4NjRzQATPNyq2P3NAKG4eFOVAc0B5xFEyeEFzQJbmecm5QnNAZquaE3pEc0Dl40I/+lBzQO74ehKaUXNACDnCJw5Tc0BvVnDkolNzQOCobeiCVHNA5DEGjfhfc0AUhLCNjmBzQD2gcqccYnNAeR9sEPlic0AGCfaeG2NzQB/vQOQ4Y3NAMqzMqGdyc0BJATk6uHJzQNjRUW5Hc3NAFPR05Ex1c0AmlKvFeIBzQAzTljukgHNAJG1iGQyBc0D+u1eMXYJzQHtvIoSognNA7EYk4YmQc0Dz3apz1pFzQMszFb/1kXNAHGxA90ySc0DK5e7Z0ZNzQKqGwCZjlHNAX444EPeUc0CNbXFYuaBzQI4hIsTloHNA0CcgjE2hc0C6deCKW6JzQEt/3yGPonNAfMkvAQWlc0AA+4ImxLBzQNa3HR/asHNAZiLo3jOxc0CsUiTrebFzQOe+hWNasnNAn8ZkDrezc0DoojC0DbRzQAwHD3U8v3NAQIo7GmPAc0C9s6aMtsBzQLy+9Pj5wHNA0vL+ac/Cc0B0ThHNJcNzQDcgLroV0XNACgrfz9fRc0BYyPWO3NJzQCQif1D203NAXvf7geLUc0BUmRLVo+BzQHIaF8nP4HNAspFTcwbhc0A4WmVrOOFzQBR71Ynn4XNA/B3BlXnic0ADvytfD+NzQBZfEd+n43NAwPar6yntc0Cg5Ie5sfBzQGkbgVpQ8XNANGGs9mbyc0BMTi8sN/RzQNKXI/WL9HNAqBV7Y+MAdEC6fMOaDwF0QKfJTFF4AXRAWBYIJaUBdEDcA1qIugJ0QCymgTFSA3RAfqefFwIRdEBwf0HxixF0QH69vw6YEXRAx/WxNU0TdEBz9qyvSSB0QFj8YwS7IXRAMMslLPwidECsA5LpUkB0QFsaVC3GQXRA3qbJg6dCdECYqyzlN0N0QKKrDQBjT3RAlfbK7wRTdED4tIgFOVN0QAcwYsL2VHRAePj51otVdEBeUTfFElt0QB/kPhchXXRAmfEwGbdgdECg9N6rCGJ0QLqJ8c17YnRASawC0RBkdEBQLLiAT2R0QG7ndyXHZ3RAGC4BTyJwdEBVbQsHQXF0QKwbMUE6c3RA2pg/XUSAdEAYeihme4B0QBx/QSr4gHRAekMhw02BdEBqVmpuKIN0QOo/sK0VkHRAieYj4hqRdEAmdRBVFJt0QPq5Wibvn3RA+fBFrw2gdEAqKuo00KB0QBj2AsDMoXRAqCjmF3uidEAcfN4rEKN0QAw1gmFlpXRA4hJ3AwuwdECVcq46TLB0QJR/HHfEsHRAO7vCZuyxdED72b79brJ0QLeJ2YP7snRAzDcVJiK1dEAEr8+vyLd0QAhEkurhwHRAIB2hwXjBdECRDASdC8J0QMSnCMa6wnRAzgdywk/DdEDUM8qIIsR0QLS2P8C4xHRA7ontL8nNdED8UlLl+850QCHAlYPK0XRA5EBuTA/SdECsUqSTptJ0QMDCjcFB03RAaqUb0OHTdEAsd6MZd9R0QEROpBPO1HRARqsmof7fdEBgi1IOIuF0QPG7uUO44XRAGGJduPvidEDethJakON0QHqVuSVO5XRAzM0y+nTxdECiJM/JjPN0QFLgL+HkAHVA9mxbMWQBdUASql0dXQJ1QL2Q1qWYA3VAmHbNXZcQdUDi8KrKKRN1QHuC80kjFHVAsibLI+wgdUCl/grDnSJ1QJjW1GkaM3VAh+YQMsw1dUCAbt923EJ1QFjpaQoTUHVAhhVK14FRdUB+wZCiTVR1QPTNDWV3VXVA2bUsSaJgdUAqQ46zN2F1QIpaysXPYXVAzLGzgfZhdUCQEyc5ZWN1QAyDvq5VcXVA//br7OxxdUCkzusAdnJ1QM4hB1GNdHVAEGvPSXmBdUCVhqTHrYF1QMww6oqmg3VABsy79ZuEdUAKOjert5F1QBxkl5E8k3VALyPI7SShdUAHJB80UaF1QCswrDq4oXVAoNESa0mjdUAt+rzioqh1QHwYYCn9rXVAxuXO1jrAdUDcTb2uzsB1QJTg5cv4wXVAeBm6vznDdUD4N//5pNB1QJtcsJrj33VAhXbGOHbgdUDePE7GD+F1QHZX+iUH4nVAVkHH8hz4dUB7EnTrSAJ2QNL5egzQA3ZAg2b/RAsWdkDIp+RgiCJ2QHS3VTiPJHZAlFIKukkrdkBFRAmSHzF2QCojdS8jM3ZAiYR5j1IzdkDg03cBmzN2QHJzVKWaNHZA8MQwu01AdkBiVSecHUF2QHLjX0TIQnZADv5S+w5DdkCcddfMeUR2QIS25QP8TnZANBK1khJRdkDAmU8MzVR2QJ4MaKeRYHZAyqDBACVhdkBopNqE2mR2QFr5ye74gXZAjtt4apGDdkAw0NjC6512QO4FHx16oHZAeqQRNQ6hdkAP83wxtLB2QCnNK1bCsnZAroRlJg20dkB63dlQucB2QC/aXw1NwXZAs2/DohjEdkAn1U92zs52QIvsNE2C0HZAoC9rUr3QdkB09mAG9OF2QKIg5HCR83ZAxN9e2zACd0CqIC/5ABJ3QKoAwHj5FXdAoEYj5g8id0AHSFNIWzB3QEAtIQ+lM3dAuO560gw1d0CiNJ4jnUF3QNYW4uSRQ3dA5sc19yZEd0C4Kw7QGkV3QML8TV5KUXdARoRbnZFRd0BSt6A+NVN3QPip5scRYXdAPOJGco9hd0DCopubqGN3QGaAxo0ob3dA7u6ofaFyd0Bq5NqI+3d3QFJQjSe6gHdAQWC+r3eCd0BD4nH7S5R3QHZJ2fD7oHdAfIIvQJq0d0A2GK0KCLl3QEoMzggOw3dALK5v5z7Dd0CSY1hsjtZ3QIeJjLxF/XdAPrKDI6ACeECN7xG5dRJ4QPRD+lBuInhAeHcUXwskeEC2D1mjESx4QD51IhMZMHhADPycsCAyeEBy/RFPGTR4QALjJhS8QHhAxLrjVBFEeEDMTtSBekV4QLLAJ/6JUHhAMkZFLMpReECS0BpciVV4QGeeyBf5YHhA1mJ/CLdheECWI2AmI2J4QLikm325YnhA9DYye0FyeEB8YAmA+nJ4QNIDE2L2c3hAe7emDWJ0eEB9WfiOi3R4QOYM/sfedHhAtkS6hQt1eEBJBT+yIXV4QC48azDyeXhAoy+mnfZ7eECIDHFYloB4QKhqhTqkgXhAQx9SUf+DeECGWTCrmYR4QMAN/sDci3hACDEv25aReEAWit2Lp5R4QL0OYOa4pHhA6pg4ZTuteEBm0vObzMB4QNAdL8VhwXhArN8JqwfFeECcWtuSt9J4QPaO4la31HhAkgB9eL/aeEDQ43xdY914QPukq/yi4nhA4Vme7fnneEDMS62oRu14QEVYDccz83hAxkq3k4/zeED+9wf9AfR4QJihBo2M9XhAatPz+Z0DeUCrVqJSmAV5QBT9FCgjDnlAowC2PbkheUAyZ/V3ISJ5QPMcuhBPInlAejBgGrsjeUDuhf0QsSh5QNCUBNsPLnlAyp+Uq7YzeUAjGKc6vjt5QC/9JQCKQnlA/1lWS/RCeUBUVFxO+kN5QOBf8eFAUHlAPHHP6pRTeUBUxh2CzVR5QLD8w6jZZHlA+lPyrtRzeUA6dSSh24B5QDTOVOO+snlALRtXulrDeUAUKit6tcN5QAv11ssLyXlAFwthuGfOeUD6BUXfQdR5QJoPAX3N1XlAchki5k3keUASM/CyHOt5QFKLP+EM9HlAuOXnYvsDekAJerLr+wV6QBLG5uoJFHpAnutnew0kekDWoGl+cTJ6QB3lMXIrM3pAyH4qyAw1ekBOxAlxLTd6QJQddMwwO3pAWkTZDjU/ekCaoXTaOEN6QFXM+loaRXpAc4zZeUNTekB80W8wJ1V6QOoW1sAhXHpA7MkoYrBgekAkBztqvHB6QHiE52Mmc3pA4NaX+il3ekDAwABZBXp6QHSRmJDLg3pAhUwaYjOLekADd3RaHKN6QIA4kIgOs3pA+ubC3wy2ekDfMoN9Ebd6QBDEZT0Tu3pAYUzKWQi/ekBo0CFTIr96QNRjfscUw3pAItVtUkTDekANQL8cQ856QPffovRQ03pAMEk83GXhekDqvVNGqeN6QLrBXkA85HpA07c/XzfuekC259yDFvF6QPDM3lBi8XpACJHBVHsEe0BEfPvwKg57QEg8Hu2LFHtApTOMZUwVe0CuflhujBd7QFlLAPQfH3tAgnT4AFkle0CjBdF2wjN7QKENGmSPPntAXCRkMuhDe0CY0WF3Q0l7QJNKF4LaUntANEPNBshve0CxEawWDHR7QKzf7IUilXtA/LCQ1gCne0DGZljkAqt7QF1SPb8Fr3tAvuViwebDe0Ahz2hZeMZ7QDwYxC4n5HtAn4POdLzke0AimLSqmet7QNonEIqV8XtAfNh5zwL0e0DwjisHjPV7QAO+dcjP+3tA6QxgTtoBfEB6kAR7uQJ8QOS+CiDHA3xA7vVUoe0DfECcCafWZQR8QCyk1kCZBXxAeuUeRhAIfEBEngE90BF8QMZMTA7/I3xAFt+tyYEzfEDuw1k/zUF8QG2GwgR+VXxAwrtJ6YtlfEBbSxUHmXV8QC1JCiLEjXxAthScVx2TfECEcpXzLJd8QOZKDlR2mHxADO/4HbydfECOrUpT2J18QDq+PzYgpHxAfOTwwJOkfEAeTaIRwbJ8QO7HugJ5tHxAxjb++czCfEDEasMcI9N8QApi2YXN1XxASDVKTfLbfEAyiQqcgOB8QLShealX4nxArA+65g/jfECBx+tCbOh8QA5mJ44Y8nxAckuSTVTyfEBQ938icvJ8QLLkh4WW/HxAdK0T7GoAfUDtF2shAgJ9QMDmSGlKAn1AQBptsQsSfUB/peGDQxJ9QHo27MtGOH1AvIMobp89fUAa/hQ0QEx9QCcYIBrrZX1Aq3pm6vh1fUCYJPz1IoN9QGJ0ahL4g31ASp5FmQaGfUC4ir0zI4d9QNy3H/EztX1AcpQfCFPEfUAYdpVE5cR9QMQfmmNBxX1A50sdFzbMfUCJ5YwWu819QNyjR79Z1H1AgNxnSvLUfUC/4kKO1+J9QPxCsHSO9X1AOvmNKTUAfkDQBlRSghN+QPijz+JRG35A+s4DXTgffkDccW6EPC9+QGOv8bF8NH5A9X2xijs/fkAyNU73X0N+QPbRxTKmRH5A1WBOLVRTfkAzVxmX01N+QACTTjCLVX5A0M724CBafkDKh15MW1t+QJZeb4m3XH5AjmMmkEdjfkDdXpTkZmN+QDBIcsopbn5AKOroiZ+DfkB9Qzvxvoh+QJk+2r61mH5AhNaeKJGkfkCETIkwYqx+QO9skFTOrH5A1kgmC2evfkArAkRaMrR+QNDlP3FntH5ALP35Ua7BfkDcOe2TaMN+QKouqCXKxH5AhaBHJx3GfkA8CJyMxch+QCIKigFW035AUFMX3irkfkD+Dqw90u9+QIzw2ROmE39Aak/RvrEbf0DWk/oh1iV/QGR72R59N39AQLJXQ6s5f0ACJ3TBokR/QDHMzr7DZ39Am3vdfGNvf0C4RmE2tnF/QA55s7HkdH9Asy7HZN2Af0C6U+YGtYF/QAGggCOmg39AilLdADyEf0DqW7gc8YR/QOI/51x3h39Ad+22U2ORf0DQuMiKpZF/QKhLEVWTk39ANMa2riyaf0A2eaAPX6F/QL7kGf8SpX9AxmwcS+aof0ABHDnVVrF/QGwQ7CU+vH9AMjfZY1bpf0A4D+XFyAOAQGjXSZIbDIBArpnw2nsQgEACEy40ARKAQAwK44gTFoBAMICyuCEZgEBi4gPtDRqAQHlhX6THKYBA9r9DFs8rgEA5h9MoNi+AQNpXAN9jMoBAYjXBcEMzgEDkwypTEzWAQO9LBzAdN4BABCTHq703gEAGrvj9yDmAQKjH26d2PIBAew+2aiI/gEAk//CR0EGAQCnK2kGpQoBAv8gIb2VDgEBIDftNfkSAQIffcMXlRYBAeD3BAfRIgECc8Jk+50mAQJCMvb6vSoBATGFT8uZQgEA6i0WxE1GAQDMpbye0UoBAXEznuaVVgEBWHFl1JViAQEahOtYNWYBA2yKDDhBhgEBAxEtVZWaAQLbVmFeiZ4BAh1plI05qgECUbgCGGmyAQH/6fcr7bIBAh9I00CdvgEAu+JaiJ3GAQPBGvvNyeoBADkxbDih/gEDXHnaxeYKAQGlLV1iXgoBADgO6gX6KgEBldRl4h4qAQFtY0eRejIBA+K1MxsqMgEABVmpbDI+AQNjurs23kYBAoO3a3GSUgEAM9a5EH5eAQPs4IBbmmYBAIBmNDkybgEDQhB5lf52AQPpNSChEnoBAbj5OHh2fgEDo5+idxKGAQJDpCN40poBA5K4G/bCngEB0b/eRhKmAQJBlZOISr4BAEANgfWSwgEAYskQYGbGAQPu55bLcsYBAtAvRVhS3gEB09mBRf72AQOYH4gHyvYBAYwDOZfS+gECWuv3wG8GAQPYVz3RSwYBAzw0Ca57CgEC4C6SHA8aAQOZBPIqkx4BAw3D3SmfIgED46AD/H8mAQLsXkt9SyYBAeg8ziNXJgECu1Npdk8qAQLC+eUqjyoBALOMPtLvMgEAIVZ1vKtGAQPT1KlZM0YBArtT4ymbYgEB90kMoSdmAQJYSFW+a2oBAch1Zw0ThgEAGW44kXeiAQBSXD6D26IBApoNO3EvvgECs12a5aPqAQFjBprY//4BAzO1Z7aT/gEB1InwQbwKBQAx6nQBAB4FA0GiRVj4PgUDddDLi9haBQILx7/U/F4FAmZdXYDQfgUB4GDjVrx+BQFLsRmY1J4FAFrPD2rMngUBGp7N1AS+BQNVy9V0tL4FAPGSnL68xgUC42JGswDGBQEEPv7ugMoFA/foID2w7gUBKGB/0KD+BQMR7B5l0P4FANWMGas1BgUCUY+tVdEWBQKo7vRfAR4FA9F0QQuZMgUA02EsFEleBQMiQDhazZoFAqeHjWLZqgUDu7rOquW6BQCQ1M6W7coFA0cNZdxF0gUA0cClownSBQPiER+S+doFAklBjpm53gUBL/86JG3qBQARiRbCueoFAwEJE28h8gUCB8sERYX+BQFNybT+fgoFA9rrnCaaKgUBaERie24qBQCuaBsdVj4FAOyi8rr6SgUBAcsSs4JSBQHTloeIOl4FA3OkmpVOXgUAovr5g7JmBQIjDMtrGmoFAPLz8/ZycgUD+lGxGUp+BQHH9OMbnoYFAiUL3Ht+igUC482M/bqiBQC87TBdCqoFAWjxuQ0qvgUB+rzy5SreBQNmICiXgx4FAsu3yvwTKgUBsPTAcjMqBQPBAejCxzIFASQOQwzjNgUAaAKWCX8+BQDbXtw6v1IFAj1Et5OjVgUDL1gST7NmBQCiw5B6D5YFA/OZ5Suz5gUCXBuUZafyBQNXEQvHv/YFAdDesKAQJgkBo9F0+vwqCQC5pCnLYGIJA9BhqBSoagkAo/6C8ZBqCQFC8Uv8qHoJAwpzCy9segkChNXz/1iCCQGNUZ/jUIoJAA2y3eNEogkCa6W7M2yqCQJo9TyakMIJA4GG93eAygkAsfYWDnjOCQAnh71W4M4JA6DMC8OQ6gkDexXhO3EKCQF4WYoHhRoJAmsXh7HlKgkAN/uSaEVKCQGUiRsHTUoJAJr66KBVagkAWtaIin1qCQMphP2KhW4JAEPpo7NNegkCuvcAm32KCQDxIUZCWZYJAIq9Z4QdmgkAAT2Inn2eCQNwW6ytpaIJAKjIApntogkDAUmKSOmmCQAyz7ZQFaoJAYE+jAaRrgkB79trypGyCQA+6RGFRb4JA9HyKcA9ygkBCKLVNmnOCQKYNMUIDdoJARHWKBuOCgkCYmrZPQ4mCQObKCyJqiYJAyCwzS3KQgkDOTzY3Q5GCQDFvZVQVkoJAiTmLUq6SgkCu+Gue9JKCQAJhFdS0loJAKBo++zuZgkDSNGSz+5qCQHyIMGKXn4JACs3SKw+hgkAYQRmJOqGCQF6FjdnTooJAvI4QeTqlgkBYaYpn8qWCQPBk/rcNqYJAdxIx2zOpgkDcNNh+96mCQNixccKCroJAkTuTa52vgkBAn7ViB7GCQObFzeu7uoJAmnrYYaW7gkAS4qkT7cWCQJCTSkVYyIJAVjR/Cu7JgkC36eMnVNCCQJOEnuB+2oJAQGs9kTXigkCwnF0nauKCQNyfJhLV4oJAms3hdjvqgkCHHvYo3eqCQB/t8wNq8oJAfJc0uG8Hg0DRavYcNgiDQErImTQZCoNApNZ7psIMg0DVoLF7eRGDQEjE0G15GYNA+T/bEQIbg0C8Jr+OciGDQDPpYJ2NIYNA9PhWtHApg0DemPpebDGDQAeCSZMeSoNATrqQ9CVlg0Dski+21GeDQC21O9GAaoNAU7oOPSttg0D+AQqK93mDQECQ+WI/mYNAIt+znPKfg0DsyXxJRqGDQEVBJMhuooNAcY3y2hulg0BsjUwfSqWDQGTqqKVKqYNAq690efSpg0BkDyp66a2DQMupNb+DsINAScBnvOuxg0D6iyBZBLaDQKH1xq6suYNAlEJctZbOg0Dan/N4KteDQM5Gb0ky4oNAMDNOK+fpg0B+Pd+w6u2DQP78c+TS8YNA/qVBrO7xg0AvYGHsk/iDQCBrqdYAA4RACaVSTggLhEBgnFi52ymEQIbhXezJLYRAPIjuZMkxhEAYXNUz1DWEQEDwhSr8NYRAIAW+6hBVhEBSCVbtjVeEQIbfEj7VZYRA4Jno+P9ohECAaFeC5WqEQCauRX/oboRASSjBYndwhECMekLI/XCEQGJwtSrscoRAFCwAKMp3hEBGcV9k9niEQCU2beN2eoRAGgrXsSN9hEAkTS4o0X+EQEuDJETJgIRAePEhPX2ChEA0Lg9uCJ6EQGGcXP4KooRAWgj8Yg2mhEB9E0Asz6eEQL81Yl+CqIRA/GYn8AqqhEDMXsMgI9OEQIh9vV8S1oRAVrJbLWrZhEBF0YBsFNqEQFYNFi5g3oRALEmvZ2rhhECcBfRPYumEQFrQAtY18YRAdDADpGDxhECcwe0w3/eEQPwmIF43+YRAQnvBMon6hEA8TLLnPvyEQOBX+bE2/YRAt5tc7tf9hEDUpERF7P6EQKKbpmcvAYVAmpPqVfUGhUAJ6Zca2BWFQM9uKMNzF4VAomAmeA0ZhUAU75leqBqFQDgOFYz5GoVAK1BnwkUchUBIgOfI2h2FQINkTEFyH4VANoeTSK0ihUAoLaJNei+FQDK+OVFIMoVAkDHjj+M2hUD+kUP+iUCFQCwU7KwiQoVAxIVjTqBhhUBIBAPoTGaFQDwwaVugaYVALGlRKU9qhUBsOjBHmXGFQEBzwKO1c4VAoVNXipV5hUAx70xVjoGFQASyhuYUgoVAh/87hUCuhUDwNOLIQ7KFQEXhxaZCtoVABJwTqkW6hUBdRzpWBcqFQNuTJucIzoVAcD4vSs/ehUDG3hYV9wmGQPRKORdEPYZATCenw4NihkAjaL6P8YeGQBJzfrw8sIZA4vNWnuiyhkCQt1PclbWGQCRFCXsrtoZA+J9rl0K4hkDL9JYoKLmGQKLRfAGRKYdAOlEcqpAxh0AqTxJrcjaHQCPSjnqJOYdAvMmerXU6h0A7WrPdej6HQA66mGNwQodAry7Fjsaxh0Btl5aOyLmHQJ67IOO+wYdAVAoztHXGh0A8PwxDxMmHQCvMD7N4yodAoKXm9nnOh0CUUjhSedKHQMSfFct61odA7DLY8nfah0AQ60vxpU6IQGgc7/P6UYhAGpnF9qhSiECs4Mqo/1WIQMRerwaqVohAHkr8oKpaiECJETc94GqIQH4axQs2gohAXtA9dzeGiEBMg0eyq8qIQBBo2W6HzohA/3l267PSiEA+8vqJjtaIQB6Erryh2ohA + KBZXds7jZUDOIQhxcmNnQHZo0FeRwnFAiTDsKtfyckB2xqyr6dN4QLDxM6KFA3tAzBqxsIFEfUAGRjinHXR/QJOT/X2iyoFAZCZrvWHSg0C+vX+A7gKEQCtSEc3N2oZAheklkFoLh0BWfJPPGROJQObs9HmtI4tAg4I4dXs7jEARF3d8+VuNQK6sunfHc45A0nsNXCiykEDXbdTQOf6QQLuDp9hvgpJAL6X9V2SykkBtmgzntQ6UQA== - + - JFmZRJqGiUXksVlE0vwARjWNNEWU3eNEOnuSREG6dETOi1ZFi7ucRGj2sEQYUYlEDtZdRCgleUTuCg1H5K2uRgqobESsSgxFZi8zRZ4GZkUUNQVF6lSLRCKRf0Wvy9FFUbObRG2Cs0SbiWlEGP8TRbkpGEaZBoFFfMulRLJdp0QpJMtEDAapRNB8AkWW+ohExLZXRUTxAUfAktVESal/RPmBMUYABYdFO4a2RNRD+0RuPpREz/aWRlCFCUUZ7cNEvJGVRFsf2UUYT8NEJb92ROwyYERe9oxElfGARPMPuURTCcdEoB6fREwxS0WllqBESSEPRhzookQUWQ5FMi2QRV67hkWjloNEqQJcRNgAlUSFaJ1EQj9zRFnvYUQOat1EhBaHRB8Ws0QWlE5E/F0URbjPr0Zi7oJEEyIMRTXTl0Vv5FVE3VEURTp3gET2DiBFjQU8R8c5fETh+glF81RzRlvN2EW0xaxEOaTIRDgitkW2S7tERKkHRYZ/hEQJjYVEVsWHRNRjVUTvy3tEkTNARUyiA0V6b3JE/6u3RDTqi0TWldVEg43dRc5uvUSZxpJE+JUcRQxgsEQiNXREHhScRRFm6EbEP6VFtEvqRGutBEYojoBEMhW5ROeJ10QztFFEEbq3RMZEJEVDYFBENtF4RH2WlkQlqN1EMTFoRvUT8kQtEWNGo1e8RG0d80RU42pEat3wRBSTXkTxCT9ECQNwRba9mkRrz8BEAbf7RJXblUTCDqxE+TlfRHIClESjeWxEEE6GRNlRTERYlXdEtOgLRd24jUQwnfVFqlR8RWfvkUVmjPJEb8mKRPBM+ETE3IJEXlqjRRlwMEcpBoRFg1q7RItKYkQrGOZEhOrLRXay00Q32I5FEw12RPFhHEUgmOpEPyezRI8DBUXEmLtEN4yIRJIWF0UJEYNE5bMARW/OcUTLmbBElvKXRJvHZUUj06JE9ROJRGuhu0Qxnd9EUlURRQGRckQuxr1EnOxhRVK+u0TPh+ZE5zDzRIhjuUQVrtNEbB7tRHx89USeDIREAY3FROlBbkQvL61Ej+5dRCbZ8ESoe+dEulKRRJw5H0U66a9Eu6pkRTtIqUUQqWNE5IDORHkZqkXJTPJEcqWnRIxWz0SFP+RENnv1RGzqJUawqXtEYOk6RbJszkR+HldE39eRRLIctEQj5dRE4MlrRGCOGkZ0FYZEb7HpRNtMpEQKN5lE/lPLROJGkkQo0i1GSja6RFnlr0UiA4BFKlvsRNwRj0SyJGFE84meRH/4XkTPe3tEXGlFRoyxW0UYW79Emf5lRLXc3ETL2v9EqLLrRDG0eERic5NEmOxbRMUWjkQWn/xErEl4RGgjXkXn+tdEzKS9RHrZjkWlYOxFOPu9RVDYt0ZmA55Ec2nQROhQikQbu5REN8fwRE/LakU6YQlFIClYRLbfX0X5so9EdTYcRXrqOkY4AGVEqrWkRFoEX0Xm+pBEd/kRRQa6/kSv6ppE05GJRa+xcUQExABFF8aBRbUr4kTf4QNF6X5VRL/SVkW10ItEV6W3RKyn+kTHX/lEy46SRPQel0Y3KHZER3LjRKfHikQTN0BF/ZHVR6msmUbeo79EDKMBRcwTxkYQf4ZFDPhIRg2GkER7jlhE8WLjRFQpI0XnZAhFSV+yRC2olUTLJ7NEXDXoRHw1gERSlmJER4OERGH9xES9NIdEo81LRAKtd0SK9ZhFAIMYRSpykUQVCixFXCVsRSpSpURPWd1FOJetRGVTW0Q7QZJEiiI/RTFPFUZJ6pVEbMBZRRRGAEV2mQxFIN9URdatpkQUpYdETjNXRO4LBkXr2o1Eh3q2RLH7RkleIplEPIrZRB4P1USgY3xEIgm4RfsfY0T4sGJF0MQKRR+bRUi81HhE1B8tRdtRj0aQGKpE8OdrRJCpwkRFNJJEBVGfRKUQdEWcNENFOi6kRAsAzERx5yVGKZaaRXK+p0R4x4FENMcAR3SEgkWVJ8FF0j6oRWZUj0T8v0ZEdu0BRaC53EQ11aVEL0qhRJ965USsqLpEzCtMRff0kEQWGM5Eq2GZREMQr0SuOfREX0ZuROrDbkWbA3BEuNHHRAiiW0QoqxRFkv4JRQloLUU7ColEDxfORLH32EUt3whFIKDdRJbM7URxrJlETgYzSCuWi0TeavtGLOLSRDjPXUQFAjNH/gCmR22eJUdaeTtGLp+XRY1XqESTB49G/dgLRagk0URuqD5FMjooRhWMtkRwFmREB67KRJKws0TrodtERmq6ROVWCEVKI8pGcGuYRXwWg0Y9AM9F2LwuRYONqkTC/7BEfpAuRtxmo0RtuB1FI5zKRNEmnESEx6tEJYsrRRyzE0XQdJJE7KlcRTIkPkVjnWdE2m//RbwdfkRX0H9Ed2MoRbX80kSJjUVFy3AORa0RekS+OWFEI5BORdG8B0UWdElFTIUGRcodPEVbsK9E7tUfRcele0RB969E83iZRJex/USK04xFmZyXRNlweUb9WnBEGnYtRlonc0QVRIZEEpICRUvsmURVy35FOa+FRMO2lEWNgaZEzpnZRPXfw0UALBFJITsaSD/7VkYHZxJHCpCXRqzbikTXnbBF66TLRDEFxETA8kdExmyQRMlfpkRQYKREon6NRMq/akQMOGhExLm4RLlkskXGP71H5UeDRfVGNEU3mO1E7xWYRpSzKkVJX2dFC8CHRGZIOEUHgHlGxgqNRH0tQ0XBlJJF2rw1RaYKlkS9LadHhjC0RqQ6bkRBdAZFdl75RKIB9UTmLG1G0rvpReV+xkUrJJtFgx7VRJUEiUSP8JhEIreWRHTpoURmLMZEEG87Rc5bdUQ0ZzxEppGcRGspmUQEO0xE1FBZRO3FYUSfkLREyxe/RhXZQkTA8GBEB+aWREItAkYAOIFEmJ8eRapJ/0Q28VNEt/i5RP6DWETyHnJEtV5ARe+rBUZXQYlEdb6vREQva0TJ1+tE8bRyRGlGWkXnIKtEBQmhRG6nmERdc3xEDa6cRCVTi0Rz/CtFSCXHROsORUXEe4tEddiBRGNNyER5kIJE6HdDRMJoi0WagalG/8CGRBH93kSRSZBEQEPpRKR4oUWPn41EoNgRRqXZpES1t6ZEajOHRP8TTEWLCjFFImOORJcyDUW665REcTbCRIqmbERdmGZEl3uCRNn2Z0TcHI1E7PaeRCz2V0QW3Y9E8R2HRC+Nc0Rijh9FTktvRL8vhUTlQLFH+72GRB92jEd5VrFGv8UTRsam70Re2KpHCnR+RFF5Z0S7UR5FKBu0RMr4pUQUUpBGU4QHRZ+wX0YoXBtFcl5pRKX/XEWnq3VF5vCjRGTLa0SwFspFQjG3RciPVEWVc0VF4u5ZRQd3W0TwygJHDGcbRREm5EVZk5hEtsplRI1Vg0S8kMpGjvBdRL0so0YvOVhGy4joRML+RUWqzcZE2MbXRPuJiETdymVEROCmRH+AVkR6qAlFI7R+RHNWjUSAL/RFlPl+RBz2W0S6mfREEieERMrnB0WzDqFEmiBSRCBNmEQRjF1I5d0+RVMN2kSc1c5E5BGqRNDTBUUpNrpHTM3SRF/TikRcfkxEj7JrRGLcuUQ3UldHGpaXRYN4J0Y/HYJEeT5gRQfVh0T8FdpE0p3bRDr3bUbhpGhG3d6KRFVOVUW/E2ZFWZaoRQQpkUQz6YpEvqfvRvAlj0SF+M5FsbZoRME5UUWV/rBEzlG9RF/hXUSwNY9ETC9/RJeAw0V62oVEN7D5RNLrdERtC5FEcD1hRGsad0QduXpHHuv1RgYTEEZfUipFR++NRGss30buYFlEp+KCRispHEbZrYpETcy0RLsJaUTEuZ9HRfOiRmCbW0SADwFGovoRRg3hZERnL0dEv58fRfyAhUQvXedEKhpsRJXD/kTxyrRENfpFReSaEkXRWyBFlVoVRrhSG0Ui/yZFnOo8RphJZ0Vj+ilGxQ2mRBcZv0XtTIlEwEsyRu2Db0VMI4hEJz8LRZFMk0R1YrJEcgKiRIWi60Tw+ixGZ+9qRVfQE0XHHLtEyH2GRB77VEUGgDNIxtgbRXkzOEdfk+JE57gARl5GTERHpmZEwqahRLbUVUQtYIZExWERRU4Wi0T4JmVEhu96RKZ5k0REm3FEpQqARNwWWkR1yWVEMlsnRRwjvUSV98FEVqaLREIMIkVRN19E26dSRMHVm0T7rJdEHp5bRFyxq0RbqpBE6pRfRKNowUddtwpFP/9XRGd//kb6PGFEu/8ERWas50WLSLlErLm0RuIDwkRXrHVEEGzARYnk0kU6Am9EK2KuRMcsNkXPnAJFg/7cREUajkTmfG1E3iujRFtjskS1O3ZEAbSHRF9R6kQNbmtEAOu9RLl3T0TYTwFFjSXpRan8jURzYb5Fxoj1ROddyURhLmlE2epeRLSQdUReTLdEtXlnRIotxUebcSdHeUqORF5TvUb+lZ9E+gH+Reb6L0VNoohEk9W/RVKt7kVI2BlFw32WREpDi0RU6I5H8aOFRIN5pEaYJzpFDiAHRcEwd0QuF0BFP/OhREqcO0UemplE9fcWRUOtEEXQ7Z5E5RGURD8Gu0RP7MFEHIWXRnz1C0aopr5EI+1oRW13tER7QPBFVJgCRXAsl0ShymlFoB2gRLncyERLGWlEf0NfRAPBTESeR0FEa9TERSmXjUbQBVZG94fERNYxMEWmPlxFug1oR0eLdkRruW1Hg83aRgEdBUb8G5NEljNGRcHa6UbvD3lGQIG5RaUkjkTKdFtEV18nRRWekUT3EzFFxr8CR49zlUUNwnFElT1tRgtZ7UVFtmNFbuFBRY7mgUS9bINEf70mRclYaEQ73pdEghd1RAaRgER+7YhE8tGNRPP4JUYdoaFGk8C4RngLI0Yv/9lEE/GlRY0llEVifq1EHs5FRAptaUQdYJ9Ev0ZpRM4PHkU50olEdILrRgTZDUXcS0xGCk5XRbibKUZJFHVE2y0gRRwWr0S/nYdECnlSRoVSIEaUG+5E4OatRLjkb0TUJ8xENGqSRGC9WUQwAn5EkURfRNqHb0SWrwxGKki+RXXCmkVAduZEklcyRavV8kSBhRJGBMqURXt2jEZyuIRFvEhDRhCokEXAtp9EBCbjRZ/5qEXfzQ9FkoL8R9PiX0Q7ps5HoSgmRxsmYkZEiqBFdd64RA0BW0Z/3dhEungnRsAjl0QNwHdFN1F7RFAZCUX+KCdF5XoERau3H0ftqiRFVagqRoA1rERH4NBE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - bICw/nTAckCilEAX3cByQGjWUbJuwXJA3mT+XsnBckBSIj6xUcJyQPIEM/3jwnJALABHUTvDckBjxC10xMRyQMJXh9haxXJAvmnWbEPSckAuaU12ZtNyQIzpc27P33JAmJGloSTgckA6d2/quOByQHsWPOzk4HJAvsM+j07hckCVJbn5++FyQMiFwwRS4nJANqX1x4/ickBUxt/VI+NyQKImCZ5w43JAVYCvq1DwckBOZAq+p/ByQIRQTGnY8HJAifvtETXxckCa8YyJTPFyQF2n9ivJ8XJAIH7iwnryckAooKl0D/NyQMSpF2mg9HJAE8rlAMT/ckCcgjw4WwBzQJaLxED5AHNAeLfAmD0Cc0CdW34i0gJzQPbh8Hb6A3NASA284yQFc0DlLL5odBFzQIg7hycLEnNAgKGAy7wSc0DmQOGFBhRzQGLSiBF6H3NAXzUQLaIgc0C/9hG6OCFzQONjx8V6InNAXAC1cMoic0A4Fws6DyNzQBQT5TAJJHNA+GKDhM8kc0AWseVWSDFzQJy35uwDM3NANqXyX/kzc0DmZrFLNjRzQFENkWS4P3NA2SH5q+NAc0CuqyVOeEFzQDJ3pc66QnNAb2MvbHpEc0BMxVEWmlFzQMQgaFAOU3NABB9JgEFTc0C3zulko1NzQED096J6VHNAsPTrffhfc0DT9K18i2FzQF+13dMbYnNAHMpPpTljc0B+v19I23FzQA1UL6q2dHNA8OnbPEx1c0C+gUBINoBzQORT4It4gHNAmgX3NKSAc0DbEzQlDoFzQHpS/SldgnNAjzWlL4aQc0DG4zz3kZFzQN+rsrb4kXNADPCeFU2Sc0CpmWLeaJJzQM7tr3vOk3NALuKXf2OUc0CoQ/8C+JRzQE9Z4Rm5oHNAki0M002hc0DyA3PiWaJzQKRRReCNonNAbqHKZASlc0Bee50h2LBzQPRUHD17sXNAHu45pLWzc0CvJ5c8ELRzQEDsMBqRwHNAt4I5fbjAc0DYJhNx+cBzQJKQ84/OwnNADU6YWtjRc0CgkbpMv9JzQLrzp6H103NAple/s+LUc0CCUwsHpOBzQM61OgjQ4HNAZhN71Abhc0AuGcF/OOFzQBjtGU1k4XNAmDiKKnric0C75Tp7D+NzQMwZgvKj43NAeufZgTjkc0BkRtZpKu1zQKoY1dy18HNAqjEsSknxc0A6cIwJN/RzQBhRKhPkAHRAMXoffBEBdEAWtI+aeAF0QFbPEpi5AnRA+qJFVfMQdEDqwPNsAhF0QMY6bAiJEXRA1IJABqUSdEDg/N4z2hJ0QFJQoa5ME3RAxgkEtLchdEAT4PtM/SJ0QGZDYe+4JHRApaF8DFIwdEDejGBppkJ0QLXI07c7Q3RAIfhG+3lDdEAsJpzhzVF0QAPdR5YKU3RAuQyr9fhUdEC+YpFjjFV0QORN5esgXXRAYr47mLhgdECF6eCHCGJ0QEo9QIV8YnRA7gt+YeVidEB8+OSneWN0QDGAX/dNZHRAf2Z0SCFwdEAX5fHmQHF0QF4Su9XHcXRAfsIYXHpydECkgvu4oHR0QAzdqnr6gHRAlID5W06BdECxuO+6RoJ0QLay/DcVkHRAFsVFvBWRdEBUYZbyFJt0QDS32a3un3RAkWoRMQugdEAiEQOZz6B0QLhjbvw1oXRAeL+q9cuhdEASmLobuaJ0QFgfvdgRo3RAG4WYtAawdEAQbYlYLLB0QCazOyTDsHRAp1lbO1KxdEBonIby7bF0QA7S63ZwsnRAhlV8gPuydEBBx4lvi7R0QHonXM3Jt3RAiI52eLW/dEBz/lUu58B0QLNhEBF4wXRAHN5nplDDdEDsK9AZesR0QJYj8ze4xHRAiSAWI/vOdEBayoJQzdF0QIxM/YAP0nRAQjwwoKPSdEAWDKfqP9N0QEIwha3M1HRAMDoYSyPhdECfH7hVuOF0QAz0lyH64nRAtA1eVo/jdEAXo5INv/B0QBKGH2pz8XRAyoe8wwHydEAhFJnoi/N0QEZ8TgamAHVA4vHxoYEBdUDMGcIPXAJ1QOTvvcyZA3VAxUTXoJkQdUCYO5fBJRN1QJAYmJskFHVAwLFgeosVdUCrGS5rPBd1QFRyrdzqIHVAgqHub50idUBV/CPy6iJ1QP3EwFfLNXVAeaCnMOBCdUDW+HpT2kV1QHS02qzdT3VAYhbUcO1PdUBPhlcBglF1QBTMfydOVHVAg97cAeFUdUA29N+FdlV1QCziijcNYHVAul86yzhhdUBxbzfCzGF1QJna7y35YXVATJ592lVxdUD2qzbb7HF1QKSGRSl1cnVARngEK410dUBVqbDc44B1QIkPV/h3gXVAxnzhEa6BdUAIFr0VpoN1QAIHm0SbhHVA+n/KZz2TdUC8wsEeuqF1QHZ51u/9onVAxt6JL0mjdUBMmUeAoKh1QBM+LN6esXVADhnasznAdUARFKc0zsB1QMDDRn/5wXVA0M5I29/RdUDUIuA95N91QCaYRbR54HVAANH08w3hdUAKSpxwBuJ1QAjiaIcb+HVAJiYaRU0BdkBs/s0gSAJ2QFkQlgXNA3ZAKN5mtQsWdkAx/disiSJ2QNoE3NGQJHZAvFsjwksrdkDeJgxSHzF2QP6ToAlUM3ZA3nH0u540dkDGvlTcT0B2QGM3bnwdQXZATYUxNshCdkDnGpPceUR2QGja+acRUXZAvnjHXs1UdkD8RDpZJGF2QIzql9bbYXZAZxPeV/pidkCFd59/22R2QKd+JxvTf3ZANp/ChWCBdkCULGQF94F2QJyvK92Rg3ZAvvj2aPCSdkBlwF3BKZN2QLThnarrnXZAAIRoow6hdkAaAX4HPKF2QKp70JdFo3ZAhLWIlY6ndkAks3Y9uLB2QFz4K4ujsnZAYB69HMGydkBkKiOre7N2QOKnDqINtHZAaFpN9nHAdkAeNF1xvMB2QFrO1ZRPwXZAAGOJ7xrEdkAc6ygZzs52QAY+63590HZAJdHFNvDhdkCtQCF3kPN2QNZ28cMzAndAHsYrugASd0DBxrcdDiJ3QHww58t2M3dA0qGBOaUzd0D/7Mz6DDV3QGnlwqucQXdAUFBFcpBDd0AeYohFKER3QH3N/FQbRXdAQ1vqHktRd0CIShpwklF3QPxuRrIoVXdAVu1b05Fhd0DkRMNaOmJ3QBsxoUioY3dAxjyv1Tlld0BOW6mqJ293QCDwWnyfcndArF3O+5J0d0DQMIAYJX93QH0RWDXjgXdAKoswW3uCd0ArU86fS5R3QAlxhryctHdAUapXUhHDd0AqnJ5t7OB3QBXNiBBQ8ndAAjYrU0b9d0D+faGVnwJ4QELYFfRuInhAHmGx5AokeEB2RWDvECx4QBy9JS0ZMHhA1PTBIh4yeEAOfxVQJkB4QGW6K4MOQnhAHGd+wBBEeECKvAbjeUV4QHaGFeYIUHhA+ojyFMtReECcWHmCh1V4QNwbgw/6YHhAZKeQrbdheEBfFi5NImJ4QITqk1xOYnhAaLaqxrhieEA05KGs+nJ4QOplkj5pdHhAYIacr4t0eEBQBcsGqnR4QLQzW4THdHhAJQNHruR0eEDg3kG9yHh4QBr42v72e3hAqlM6d6iAeEAexs9BpYF4QHq+Y6IAhHhAVrxO6ZmEeEBcsO7ftoR4QKL8NDzdi3hABrhB4pWReED+Pu6Np5R4QGShlnqmoXhAcGzegbSkeECmitiu1bN4QJO5lLi11HhArnmzP6LieEA8/F+V+ud4QG66ag5H7XhAflXHU4/zeEAQZfobAvR4QIIP5I2M9XhAXgZujJ4DeUCwnfFYDQR5QBT90a2ZBXlAIh9Wj7sheUBCNkEQIiJ5QD4MS+SyKHlAZ+Yt4wwueUChlNpHrjF5QFYlMc1iM3lAVu+FaLYzeUCeykN6ikJ5QIQsf0X7Q3lA1adDqkRQeUAM4+KjnlJ5QKecBr7MVHlAvgMYveVgeUBG6Rye2WR5QJA/Tk0Ub3lAnfCECPpxeUCm0r5YQXN5QFLqhED0gXlAXI9YXcCyeUA4EdmEWsN5QN8tkH20w3lATLPFmQ7JeUBhsOYTKc15QLgFartC1HlAjk9Kas3VeUDE40qtU+R5QLkyFx/8A3pAdMcCIfkFekBlgaKKCRR6QBAiL8gQJHpAcvhqKSszekBds6GRDDV6QMBCtyUtN3pA88CxljA7ekBm5ZW3Nj96QGsi3m82Q3pAYg3McRpFekAcXrohPFJ6QPtHz+0nVXpAesDU2IBbekAyLxKjIVx6QHgL0+mvYHpAFDIw5QNrekCrbUj0vnB6QNRVNECggHpAsTNZ+AiCekCG8kp2HKN6QLBi/uYNs3pAjj/kUAy2ekDa32khErd6QBTzNSIVu3pAsN1gywy/ekAWSylGFcN6QKTBeJpFw3pAAvoX6BzGekCmRJnxUtN6QBAe+ppn4XpA8K4nUaXjekCo9cnuNu56QOA/6PAW8XpAD3mNP2LxekD61lqJfAR7QJgFvSgqDntAum/njEwVe0DCx30JURx7QOF+fZZcJXtAbv31o74ze0BIvM5NRDV7QJBEGiFkPHtACmb7jUxFe0CgYQFRyG97QNAyyCcQdHtAhzDWKOuQe0BLK4OvvZN7QLbuJIAilXtA8NAydAKne0D7bFb4BKt7QLLwvnYDr3tAMxmeLweze0ADvhdR58N7QHpndKbA0XtAvKA7av7je0CrEaNpK+R7QLYWWF2+5HtA3CnqqZbxe0Byj/eBo/N7QMHqg8GL9XtAIbc5dZIBfECO59Bp2gF8QN7cwJ63AnxAAOgyJ+0DfEC7DXRKaQR8QCq9SZaaBXxAsOfAVUgJfED8EhLemg58QABQTd+JEXxA+A18+NIRfEDWDdbn+iN8QNT4rr9FKXxAjP3iHX4zfEDQr/FkIjd8QEof18vNQXxAoEvqodxRfEBa/R/kRFV8QAKr/tl9VXxAQMWhEKRVfEDU71iY4VV8QGj6J4MNYnxA5LK7A4xlfEA4UgLtkmp8QCcdphkqcXxAtLg7kAFzfEBQxrS8mXV8QHrZDRfEjXxAV/e5sh2TfEB4wJ9CK5d8QEH5u/94mHxAtAu9QiSbfEAlfgWxvZ18QLH37q8so3xAqTTIZcKyfEBZRxinINN8QDgrAYF84HxAgMNbo1fifEDGbkYkD+N8QPwXlRZq6HxAKDrKJBjyfEA+rtiNVPJ8QE66y9Fw8nxAKdfoyJX8fECiM9QUAwJ9QOzxyR9LAn1AMb0A6J4EfUBsm/Y8RBJ9QMSXP2ToEn1A5/yhM4sTfUA2RtCuOyJ9QLayqregMX1AZYyerkc4fUAiAKILoD19QC79fxRpUX1AID7sK+tlfUAo7hCH6W19QJRqr9f4dX1AjFWPhAaGfUAOnmOBUZN9QBjzbP93qX1ARfDfnferfUDghW//M7V9QOf5wK/ru31ApAuH6SrDfUBWpAxvUMR9QNopqJLmxH1AKuKyvT/FfUCe+4pSus19QL3zTck8031A11i2qo/1fUArE0mLMAB+QFTwqDUJD35AfouATcI0fkCVDXRKJk5+QADz8Y9TU35AmNpYtllbfkDT6asxSGN+QGyHFLVrY35ACrg4AFBrfkD2esPp6G9+QGAm8by6cH5AfANAvbZ7fkDIQm4hUYR+QOz80YUNhn5A7BrvTWaTfkBwrrSuIqJ+QOH9G9qRo35AGtNfpZCkfkDEyAOrYax+QIR8GKMern5A2xqmA2i0fkAkKsFhZ8N+QDh6357SxH5AOSLaDG7LfkCmZgqYKeR+QHi3YU5c5H5ApN/9GNXvfkBati+FzwN/QIITcpamE39AJcy2/qkbf0C7X9V9zxt/QNSf3mvTJX9ASKKfsKY5f0CgqQqEXER/QKiAcMulRH9A1kZHZbdxf0Ad3Srx5XR/QOhfGyOygX9AplLx/qWDf0DCOKS9O4R/QOxehCTzhH9AIpucxV+Pf0CitZnPYpF/QOZgmqthl39A0oKC/4Cbf0AI7p9DXaF/QGJ4x4ATpX9A+hDngQmmf0AZh2XGWLF/QKIk884J8n9AgME6IUsIgEDoMf3reByAQMgZ/KwPNYBA5QoFFR03gEAT3D08BDmAQDTYos7IOYBAZr588HU8gEAP+DjdIj+AQJXAWizIQYBAxhCNLHJCgEBVoPUQqUKAQPEOqYLmRYBAbA0tLvZIgEAcdz+R6kmAQHL4z/yvSoBAmLcDBOZQgEB6CCTnE1GAQELiFu+0UoBAdrZcOixWgEDPdXVBJliAQKWV1ecOWYBABrqhwc9ZgEDGMmqj51mAQKjUa0rEYYBA3Hz3bqFngEAz7NtLTmqAQCsROpkZbIBAEvcFbPpsgECyXetdKm+AQABhiJuqb4BAm/lB5u12gEBYVsFUKHeAQJIxxvhyeoBAWv37RCZ/gECTtp8fgoCAQHfgUcl5goBAtT9qlNiJgEDAFmYJgIqAQKuYFtxejIBA1w4vEQ2PgEAxYvXWt5GAQAFioONhlIBAsMj2eB2XgEC2E6NJIpmAQJl8ImwxmYBA66UBJpmagEAUdShXEpyAQMQonRGtnYBAaopX56yngED9mHqUiKmAQHRkuap6rYBASscP2PCugEC2MXcLE6+AQLcARvDgsYBAVrbgKJiygEBgXCQ3mLqAQMxFbDl7vYBAOHSpxPC9gECyJOnt7L6AQHu0F41SwYBA9WzyrZ7CgEBUqMf6AcaAQK8ZMgY4xoBAvlBEnKXHgEDxzbYyIsmAQADDG2ZTyYBAyQyQfuvJgEDYKY30A8qAQIpX850RzIBAArzbmAXPgEB29qjKLNGAQFT6QXJM0YBAmlhDmGDRgEAiGyiu89aAQDwTkThm2IBACoIbtUrZgEByL7tBa+CAQDBx61tE4YBAAse3ppDigEBk7t9FX+iAQIr/7ChE6YBARjpOkkvvgEC4yzAo1/GAQD9O50kJ8oBAVsooJj7zgEC7djBnaPqAQL6Jtp4++4BAT5YrkD//gECIsv3SbwKBQO5esc5BB4FAVpzJbXEKgUC/7+OTPQ+BQAxrzVwmEYFAekCJgDQfgUBVMbp2NSeBQD6th860J4FALEC/sP8ugUA4qTLJLS+BQMtl/rw7L4FAWjCwra0xgUAgbFD2vTGBQLwU3o5yMoFAWPm1hyg/gUC1ku87/kmBQHMJTu3+ToFAzm+OfQlPgUBE7j52wleBQNTC0OrEYoFASBPJCrNmgUAqxqPrtWqBQDe2Y8ngbIFA+dhsn7lugUDGcbI4vnKBQKraU2nCdIFAVgV9XG53gUDfQWclzXeBQE91zhEbeoFAbhwAP8h8gUC7hO0wn4KBQJYPgzUOh4FA9i7Z5aWKgUCU9f71VI+BQEdTRYmCkIFAH2d3dTmRgUD/DVFsvZKBQMDFJNTmlIFAAKrR1FeXgUAgGMhTyZeBQB7mNhnGmoFAOmESBFKfgUCukvG9aJ+BQPYCi8fnoYFA5No/296igUCqhnEIb6iBQJWr/GntqYFAkKyzzEOqgUDRWer6Sa+BQIimWxFtsIFAypeyjLm2gUDCwiKaR7eBQGDdoD/uvYFAIk1yPuDHgUCubGyqBMqBQEtBXcyOyoFA6DQbPrHMgUDArsN9Oc2BQBJyx7Zfz4FA7ytq1AvSgUBmBxNDftOBQEuiuhzp1YFAb7rmCezZgUDy3Mj2792BQPhpieXq+YFAToBxsu/9gUAFylyHvQqCQBrmyzbYGIJALDUUHigagkAEvoThKx6CQPTunZ7WIIJAFMPP99QigkDEX9L4hySCQF6r49PQKIJAXF+Gy9sqgkBy9uo7MjGCQPYlCbvfMoJA2jHSfPxBgkCWbxpveUqCQCazsJkMUoJAVkVpe9degkDeTb2bq2eCQKSfCfo4aYJAFJnmhcxqgkBpRGJiqWyCQCRNIaw7bYJA+7Invi5xgkDkIseJOXWCQIAYYEoGdoJAZFXabNF2gkBHUSEvqIeCQOpFy0FDiYJA7Bj6mEORgkD6/tc19ZKCQEEDv/w7mYJAl8F3ylSZgkAg5ojb+5qCQEwAgNkZnoJAIGnNlw6hgkBkM0VhOaGCQARpb55NoYJAAreF0/KlgkC7rGeIDKmCQHQrHkQ0qYJAMItScPSpgkDwVoFuBrGCQIgia+kitoJAQH61XuzFgkDYRqt+8cmCQPgTIPFP4YJAeAHFmTTigkB+8Zm31OKCQBDcS6JA6oJAUEbrNAsLg0DsF2iBxgyDQHt8T2p5EYNAeKWRpnkZg0Cpuuq3ciGDQF5D4JyKIYNAmov2v5oog0DS/pgYcimDQLf6KddpMYNAEucfoRk6g0BCgq6+pmCDQAt7CXEmZYNA7FkHHtNng0C8uTBxfmqDQAEwBH0tbYNAh7uN5Opyg0D05R3aaoCDQERp4c1KgYNASd2Y4uWBg0BCgmkLP5mDQPihROtFoYNAFmDba0mpg0Dszt7r6K2DQI6P6wvnsYNAAV9ovwO2g0AEZt1EtLaDQFCsz8UCuoNAl6dugZXKg0DmMHHml86DQFJrtY3n6YNABFdd39ftg0AyWjMb2PGDQAD7sz7x8YNAZtITxwADhECMpoci3SmEQOwEhYTKLYRArk1Hm8wxhEDyAfX59jGEQEZHxZ2aR4RAAvkdd0ZVhEC4C+nEJGOEQMxMrLD/aIRAYUaaB+VqhEDW8tgu6G6EQMYlmrz/cIRAZYYwqOxyhEBe75JByneEQDeYuj/1eIRAWC7HM3d6hEAMt+jpI32EQK1pjCjSf4RAxROOrBGFhEAESMzMB56EQMwl9M4KooRAkE8eWG6ihECSxHC/EKaEQNf1T+XwpoRA7tXpAQqqhECYG6ZLCK6EQD7mZJZzwoRA9F1N0R7ThEB+fr5mEdaEQGob8ltq2YRAIow3khLahEBwv+1taeGEQK/mQ3di6YRADz0H2RvthEAk9RdiNvGEQIL1B1Ri8YRA8r/YP933hEAtLxqbNPmEQK4BQ4Zg+YRASbibYKP6hEC2IIOeN/2EQGh6kg7s/oRAkCmOyCkBhUBVh7FlOwGFQFLXO87vAoVARtpW54URhUB6FYq8RBSFQKJxFjHZFYVAoGX+AfcWhUB/E7rncxeFQHpXBtMNGYVAdkqFraYahUDgdRQL+hqFQMDqJAlCHIVALLdM9vochUD2Y9Yu3x2FQISw+BmJQIVAIumrSKBhhUCX4tXeTGaFQO7YtmKgaYVAbilud05qhUCuH3jQmXGFQAYwIg61c4VAIGhJj5d5hUDMz+FVtoqFQN5tYfNAroVA+BHFjUOyhUCC40UVR7aFQFgZfXsQuIVA5rA8PkG6hUD7N8mgBcqFQL6eTHUMzoVAmurATlPOhUCUQyJX+QWGQEgY1M9mEoZARLeeX5s6hkCmeh2fnUKGQLpaHh/4boZAiINakzywhkDD+NFp6LKGQP9iloKWtYZArhyw3ia5hkAKgJUz7bqGQCT5+qDSxIZAEpix9JAph0CFeRt5kzGHQB2qiiNyNodAL2tjcIo5h0A591RXdTqHQIKKEuF4PodARDEVBl5Bh0BvmP0CjEGHQLJmfHZ+QodAiGaaIMFmh0BkKDF0/aiHQD6898HHsYdA9EzjWMe5h0DVhN3PwsGHQNckL991xodAl7aBVnjKh0DUoFuBec6HQA7ntcd40odAwJzcVnrWh0DuPHkXeNqHQLDWSF0m9odAMg0h6KVOiECeUgaT/VGIQI55ddWoUohA5gBUEABWiEBerOs1q1aIQAjD+tLdaohATAoM/zOCiECUCsmW9YKIQO43Mms3hohAyqfDCPmGiEAYNzYSNYqIQHLnU4isyohAhPrQUIvOiEDI3+uwitKIQOp8Ky6z0ohA9KCAR47WiEA56ti9itqIQA== + NrgMGZxjYkD+9P4gH+NsQMZtNYzMxW5AOQsfS37Tc0Chg4HBEuJzQJQXaZZBJHpA/I/LDNYyekDF8wsW1yGAQMm6IvXMmoBAkObIBDmjg0DFIvo/g6qDQL3sbaqay4ZA8iif5eTShkAdUyHoMAuJQE7x7kLcg4lAgYDrBL0jjEDi0ZJ+M4yNQA== - + - tCKTRNwWMkZmiwZGwD24RUGTnkRm5M9EqRhSRRISo0SI0ltEVSwDR+yvN0af7NFEpzN1RZXqTkVUxRZFJf6rREaKUESHTUNFKvuPRc/P3UQZc8lEqEqWRN3slES9GphFVqsqRsQ8okRBaDhF+eSKRI6RvERTD8dErjCDRIdSU0T4i+BEpGudRKmmOUXB0BFHGlWNRFMjmERZMnFEPQUzRq7Cm0VWKyxFErGZRI0ljkZoIYlFPuvbRH/ym0S8o2hEl86YRSyq7ERjsUJEpoCFRLxLZkSLShBFfGC9RJS+T0WwnntE4kUGRm7z3ERuVfxFse3QRCoZikXgdb1Ejym6RH/9mUQpw55EFTglRW7Q0ERdlMtEqgECRUUXZkR8OZlG87HSRA3+lET1tq5FkvTKRBxMvETf5z5FxME9R6/dfUQGjWJEMU68RIKFQUavuP9Fa3+rRG6VrUWGDrJEja/+RIFrxkS3lZ5Eh7cSRdQwAkVpAJpEFxucREszt0TMZJ5F/cIiRWf3hkTZ6m1ExMCwRTqKHUd3/axFfoV1RWim60UvoddEtqieRDcmAUW31MxEcmNtRPhsl0Q+PiRFHzufRK6NxUR8mYpGcldmRB+jV0YBudVE0tC0RK4Or0T22MREuDDgRKvzgkSL+zlFe3vsRKlPvURc3oFE0oW7RLFYiUS2eIBE6ZCZRHnWi0RVGXlE5A+URDXq4ESesspFv3M8RT+BgUWQT3hFg1dyRGTVgUQVBt5EslacRW8IQUfeinlE2Zd/RD/6jESh2uNEPDPJRVIKkUTEiqxFRVNDRMuhrESfSzdFZjqjRL9qikS9oYFEXyl4RGJfuUTAcgtFgkeNRMiUqkSd0sZEeSxxRFCfyEQ4+UJF+mbhRE53nUS3f5tEuM+LRDZtmkQI+i1FtFwtRXV9o0S+1z5FcaKRRAZv00Qu6+tE/fkYRYk5dES3+sVEauKgRIRzDkX3x+hEouHGRC4eh0SOH+5FZCOHRKrYuEUHdr1EVH2ARCFEhUXSAapEZkKSRDxCD0VrzgxF1eltRN3OmERT+RRFtoroRRrEskTAFTNFL2ehRJ2VqESR7V9E57dbRDSl0UR1GJhEBu1dRLZk6kT92cVEc2AkRtQ0i0SJeixF7ZgfRRDlD0XQk61EAh9WRq+HsERSsMVEdj23RbRnJkXLxxlFGjxvRMWWkURcF21EBuwgRvTAHEX1b6BE92e5RB/C/ESSDK5EQRWARA83iERMgptEL2W8RI7PekTco6BEQ0GCRArOh0VIl5ZE7/6SRIUaSEVz9fZFbMO5RXajlUbPK89E682IRLZco0SNcYhFAAn7RPwPjEUMslBFkKyBRo4b2USiZHRE+2WDRHWyXUXdmbNEK0t4RHQZiURXSdZEakqCRDEGdkRkfSBFDtlPRerG5URV9tlENqbeRGc4q0T5cOxEkGHDRNVEr0RP7IBFU2RjRIrv1kSmJFVFUz7qRG60YUXytZpEixGNRHfUB0WdtNdEiAx6RmYxL0U8l5pEbxShRNnr8EeFW3pGstQqRZoSu0TArr9GqVyKRXZJSUaFxAhF23y1RAT/f0RhQjFFSsyJRF4+SEX+uE5EhZdpRFVPlUQwgoZEZOmTRFmrn0Szhp1EVg3rRMjsjkRqcLVE8rd/ReL13ERsd0xF4eZXRfoesUShHqZFlMvQRBG1kEQyZ41E9BdBRZeQPUaCzqFEzUGHRSFFDEX8gfxEoEAyRRZ/0ER+0sNESxyqRGOxnES+it5FUapKSf6VIUbv/g9FyOeQRH94ekRXjbhF25WfRG67F0UByyFFLthOSPYRNEXKCZpE3y+DRcVZlEZzOJxEPSiIRJUVgUSc18BEclMQRqm0d0U04IRE4BhdRk8icUUkaOFF5Cs0RUZ+lERPMPBE4ukWRfYHHUVAqU5FT2l/RCcmlkSoKIZENKJFRaW9nkRU0nREyVbYRDo1Z0Q3r5RFfGuIRN71j0R2/ZBEQ0y5RBZ3nkRA3XtE+wRIRckFj0SUuflE9fT+RIISrESQv/tFb1LqRDBWoURJhqpHQQ7FRGZTNkYO25RE0bsRR94gxkdcjABHRvdgRtA4l0VFoC5F28SrRsJTsUQLQR9FdjR+RGaDUUXM2DVGqv21RLrdi0QabPlE7uNaRD3YPUXXuMlGHsGZRepNpEZFfwdG2sa1RC0l1US1zuNFS9uURIoyzUTVloxEXDAjRRuEqUQpG8xEQjPjRC/En0XG+sVEsvIeRrt2k0SV+CZF3zmBRGvopEQ7Bo5EMXJsRDHNk0X+/vFEypcNRZQwcEQbNsxElKiBRVKjHEXY9Z1EWKJuRKRUN0V7Lx5FDqbBRGCKkUTvpZxE6NOJRXD+gUSNmoBGg1aWRFGmQUYh89JEotWVRZ/ntERt7rRFuV7SREs2ZUQR3opEq+Z/RRYMBkUDPWBECazBRMgjg0SgnndF0wiRRCWwJEUnBixJWBwCRveRX0SiVIhEP6ovSBOglkRd5CxFL26ERJCvgEbOQAZHFFTGRiII3ET+zkxF3FavRNa1TkWAW4tEpg6kRNARhUR1QvVE6D7lR3lDUUWI1AFFkRsPRawhxUa0x5RFyBN4RZaq40QtuJtGIrWMRBmwdUVOLldEsFq4RPreuURGQqFEW6+mRehe30Rgkv1E1BbFR4YYa0QhzcdGLgExRXVhckRJfp1EyxkVRb3KhUYRVIxEfQm4RE6KdEW4O9RFMO1tRchHlUQOnahEYb8LRdVSzUQ9FnlEPAZ9ROTYd0TJinFGE0jfRUvF3URguphE4pamRDJie0RnfIhEgzViRJ6aukSYoKxEYP12RM7zckRqA7JEIscpRcO30kX7xIREX60tReBw6kS3QNREhGO8RMeAtkTfuoBErEiTRAEFb0TU4E9Fe46ZRFY0tETaxsJE+1acRP6mmESdQb1ECACBRUegrEY9pY1E+VtgRBKW4EToYoNFEQyPRIO37EV5sW5EP4uSRByBNkVAte5EOd1yRKxttUSMMqNEROxTRDrKg0RLpm5EuMajR5hx3kR5Q4NHv7CxRjRt5EWk/hJFxcKZRKhKyEd7OvVEOB+5RHRaWUT5GKpGOKr+RJhlXkbAXDVFgC+YRHt+C0XjH7VFURuWRDeqW0T6/25EzTHBRSAJxkWgI7xEercmRR0z30RPh6dEramNRGWxbEQ6rPtGT1n+RJM2wkSRNw1GEPWLRI9pikSdbMFGm2mYRqMRC0b3dUtFIA41RTk0aURLHo5EmmZuRPVV7ETWhYNE+YusREvj20RZv3REEBWKRMOlokVz+AdFVFLnRIB8d0QdQIRENv+URK4GA0VLl4FIAJUsRTPZGUVvA7hERcKERHz/l0QczepH5s2LRPGjjURm6c9EMcSJRLfKnkTEGHpHt/mLRePuWUTNK7JFDcRYRqGAUETrE6hFYc5+RMTLh0SFytlEy4PFRN8oXkRd/IREnzmwRHJfwUaJJZVE9axHRiCqtEV2wUxFwXVTROYhfkVoaZJEwR3VRrsfsUUWsdlE5aZFRVGKoERB041E0cokRV3p0ETTInVEzmKwRaicgUS1yHxEa+GRRG9le0Tpeo1EpA9sR2t3/UZ5ZXREy/fVRZMoo0RHYspGxYS/RsA6f0SVRBBGLfRSRTZx1kdOoG5EJDHKRkd0ykUN9p5EywSNRNYUDEbcKXJEbcuyRHsxkkTdrg9Fnxy8REYzg0R/PA9Fq2R1RdUUgUTPyJpEFzM+RWCg70WDKpJE0k9wRGqTnkRhnYFEq7CURS9fM0YYm5VFw8AVRnJvv0RIKoVFl8eHRGrmo0Ryq9NFNlaMRTy/yUSa//hE4NCnRK42u0Tqyi9GjCWfRYBY7ETcJW9FAtc5SKOShkQo7CtFpnhJR+RakUQp2fNFwTpXRBAnAkUG4JVEVRqwRDxZw0Rnws5ELeNYREBAEkXTrr5EefuARK+Ie0SjKAJFa2y1RBgYgERRibpH9g8jR3n3+EWrnMhGeygYReBllkT+nLpEFmXcRS1VuUWRaMlE6/SSRZ3R0EQ25yFFzvJJRY70k0TYAoJEEVw8RSs6D0WHJ3pE0caqRVyPSEVxH5hEIYdcRILfmUT4+tZHYoY5R+b+0kYYaAFFBlKLRP1D30UB4AJFaBhwRC8tg0SG5eJFjpEIRhvfYkUpb5ZEMHaERMoqakSB4nREYBRQRGaXIkeRACBGP10SRcNCqkRngLVEwQLiREaigEQED0hEBcP2RIZvnEQc+uNFsT/QRUdV00RctX1ExqadRW+O1UQWNIJF5M7URGtQd0QJ8KNEfmOmRHaYqUQrC7JFsOC3RbfaSUWWvfFEPweXRKCreEd/F/BERJVdR+LXpkZllCNGCDiDRNAn6kZSSadGYgawRDYaj0Uo2oJEbvoMRaBylkRocphEmRrKRIPNSUWFoQVH4BepRIOcaEYr2RJGQKoQRZEelkW/E1NFR3MLRYXh10TvE6FE7G1uROlwqkSJR0JF3adnRJbZZUTGWohES4iLRCu+A0V3RRFGzD7rRL+Si0YawRBGvtn5Rbdu20TD6h9FNpCoRF+bM0WaiphEzpABR0RllUVCk1pGKsnSRBijJ0YQcNVEcFMmRcaW40RS2jxGQY8mRt+MakUSJ3dErjhiRISozURSvGhEPoGRRPdBlURfT2ZE3rGIRKsoWkSQg7NE+FvERadEz0WiQYBFjQPoREuUsUR3HbBExxIfRtf+lUUtWrJGcporRSzOfka+7ONFEKuuRCBR2kRx0rZEmAefRKZaZ0RbfNpF83CURTo0OkXzfeZHiUamR8g6CEeiy1VGxUkdRayH0ERKOnFE4+qDRgI5+ESh+xpG7Uv6RMUIaUW35aBEAQdZRVvJgUSLM7BEqZmyRI+D50SWelZGiHD2RFy1MkX5HXtF3RWiREsJgUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 30XN9NzAckDmbwdob8FyQIG+6hfIwXJAoPxg6U/CckApqu1T5cJyQNdarxw7w3JAEBZlwVnFckACzbub6dByQF4nMNF80XJAOt53mQ7SckC6J+82Q9JyQP7HYWHQ0nJA/nvvvGXTckD8knMP0N9yQAUOmJ0i4HJAqL/KkFDgckDqknWAuOByQIDRAXLk4HJA9m/HxE3hckBIYeTc++FyQP5pkw5Q4nJAu8f2YI/ickBQdl3HceNyQObepScw8HJAvg0/PFPwckAFI3xW2PByQAqCuLk08XJAeIsONqPxckDmK5ZXyvFyQESOsUcU83JAlqlrPrfzckDE6UtrpPRyQLKtdkHC/3JA0XP61fkAc0ByMTRliwFzQCQuuhfQAnNAFsWFLPoDc0CgjyjhcxFzQERT0DcHEnNAUA66uiUSc0Be53jTuxJzQLndW2YGFHNAG7OIEHgfc0CW1zNhDiBzQDTiZCI6IHNArqLT5qIgc0DeGyo9OCFzQNj9EDllIXNA7HJdy3oic0BUFrPyySJzQLB9/hE6JHNA7yTmE88kc0DIDwJRSDFzQI5A3wpcMXNAD7C2RCQyc0DaaGCshzJzQL1R8uX2M3NAIgvhQTc0c0A8luOl2TRzQAJl2WG5P3NAAEEPYSRAc0CAfkna40BzQCWpAM14QXNA+DSsuN1Bc0CcobEyuUJzQO6PPeF5RHNAov/x4BhQc0CrUodpm1FzQNrHhiQPU3NAHpjePUNTc0AiN8a6olNzQEjldKOJVHNA4F1svIhhc0DkLlOLHGJzQA10dbI4Y3NA/OKFZN5xc0BlVpnRtHRzQGpuI/NLdXNA9BNw5HiAc0CM1LPApIBzQCzOtjoNgXNAWpJkv12Cc0BiFdyKpIJzQOAa016IkHNATldmRpeQc0ButmSF05FzQBP2WR33kXNAfp4E50ySc0CMztihaJJzQEE/vdOmknNAMAt7L2SUc0A/Latx95RzQF5tPQq5oHNAckSHMU2hc0BYbriLWaJzQOsTuaKQonNAFGxZWASlc0Aa5ggK1LBzQLRxNhd+sXNAuIi12bWzc0AAw/A2DLRzQNBOlTNjwHNAnAJCKZHAc0DeqYyltcBzQNCX/Bn5wHNA4pXTq4vBc0ByJTsFz8JzQNYRLXImw3NAHpVdR+XQc0C65OVw2dFzQJRsXHC70nNAuOYcB/rTc0BG6Ke+4dRzQLq1neij4HNAZgGMe8/gc0CGGb0OBuFzQP5HrRA44XNAl7fbMGThc0Dh8DzeduJzQDzM7eEQ43NA4Afs6qTjc0DyMWtSKe1zQDpF9Mqx8HNArXMHs0Xxc0DuCTwUjPFzQBDYAmjS8XNAgBtsNjj0c0CwlaGa4wB0QCS2u28QAXRAISXnq3gBdEAg4xTpugJ0QMzKodjiEHRAsv/20gERdEBhbkvZhxF0QJ7D7bylEnRAQynYdEwTdED6ltEEdxR0QHPvwANLIHRAZudd9LchdEAVADjp+iJ0QC6chINSMHRAsOFfldgxdEAOqLejOEN0QMROFCZ4Q3RASHKZnfhUdEBUkcp7jVV0QKhtD4sgXXRAIIu787hgdECCocrFCGJ0QKKnTRd5YnRAcKp00nljdEAA1zUoTmR0QF6W/jrEZ3RA0gDj8SBwdEA8fLHKQHF0QPK9zDDUcXRApWQ65xVydEDW124gOXN0QBqVRaU2dXRA8rjHCfiAdEC/vMO2TYF0QLuqcqkjg3RAJFXcYBaQdECAu/a4FJ90QBzxsOXun3RAF9R1/Q6gdEAtZJgun6B0QKYhXN/PoHRA3D4rLDahdEBYMWfqzaF0QPzqx3QPo3RAMf+HqAuwdEDcD+EKLbB0QKRlHwHCsHRAKA5Oym2ydEAls0kB/bJ0QNLVVKjKt3RAtmlE2ePAdECOn1Oyd8F0QJaQa4jpwXRAfeqzQE/DdECqsf3WIcR0QCxjaFPJzXRA8RqAZv7OdEBBV655zdF0QJLZnOoQ0nRALhHGVKfSdEB36IYxPtN0QMKfSbXh03RAnO+daM7UdEDWE6EJjeB0QGj4G8ch4XRAuXh+ZrfhdECqgvFUGuJ0QLL5YJP74nRAatqmFo7jdEAiETT3c/F0QHTIUcKM83RAbnHOS3X0dEC6j1GoowB1QAAZjg/OAHVA8A+urGABdUA85QFKXAJ1QJCYu6SnAnVAzSij2DkDdUBzCHGemgN1QPIOF9aVEHVA2hZUxCcTdUCS34XuIhR1QOqarZk9F3VAmJw6KBkgdUAIM36b6iB1QFUoTiydInVAeiuZC60ydUDBtXIwzDV1QGxGMkL5T3VAmacOLn1RdUB8qInkCmB1QPL14jc4YXVApKb3hsxhdUByRGM1+WF1QBQ+KwRkY3VAKnh+Y1hxdUBWCb7J7XF1QFxCieR2cnVAVNSdbYx0dUDOju8Y4oB1QCgSmE53gXVAp/+quqyBdUAwGoCBpYN1QEb/USabhHVAbHg/JgiLdUByH6KXuZF1QJvCkIgjoXVASvkCkD6hdUA+VPFpSKN1QIdjmYikqHVA5l6MPpSwdUDKrWJ8obF1QGQOLE85wHVAVA0LJ83AdUBxAgpKZ8F1QMZYzZ74wXVA7Kde9DrDdUCYfiC6KtN1QI5NMDzN03VASpeTKOHfdUCXyLAQeOB1QD7yvLEN4XVAZHNZpFHjdUBhvRe6RwJ2QMJy1GzRA3ZALClukeIEdkAn50TBTBR2QELwNL0NFnZA1NltOxsgdkBc6VQlOSF2QAKkxUmIInZAAqvGBpAkdkACQ73KSit2QHOYeBgfMXZAvB2sZlAzdkDyxyUrS0B2QBNwLtzhQHZArfhMTB1BdkCMO21ax0J2QHxaQQV5RHZAiNQaExFRdkDesZcRzVR2QGvQgkogYXZA2mjWiNpkdkAczkeu0X92QECUYMJigXZAcmGf3/iBdkAWNLYpkYN2QGZM5JXsnXZAFD9xQnqgdkDy6A1nDqF2QBTk2H87oXZAdvdSi0qjdkBI0cVSfKN2QCWN/DS4sHZAYMrbLzCxdkDZzm3so7J2QGXWJ6fAsnZAuN8fSXizdkCnU3jnDLR2QAS0tZa5wHZANRNoQk7BdkC8hzPAF8R2QCs4LxHOznZAuIIUiH7QdkCuXzt80+J2QBZlqSc743ZAVMcwDpHzdkBDX3QnMwJ3QMyJz1ZKA3dAwj3gswASd0A095UUDiJ3QKBBOoC5JHdA1HZS8Rgyd0DYziYKpjN3QNo5udoMNXdANoFozjZAd0C2IwU7nEF3QAConUGRQ3dAYMRhWCdEd0AGZbFlGkV3QBqbncVJUXdAoI6NupFRd0CMbSswJ1V3QK32BSiPYXdA6kpajKljd0A8/3seJ293QEebtRY+cXdAHpI1nJ9yd0DkRnjfj3R3QLDFFDm6gHdAJ6nvbXaCd0A8UbM2SZR3QPYmXU/7oHdAYAJRlpi0d0DW5uPPD8N3QBo6890ow3dAem1SOVHTd0Bet/XBTfJ3QMN20w1G/XdAGxR63qACeEAeFWqsbSJ4QBYkxewMJHhARuKJgaMkeECsUtj+FzB4QCUiG5ggMnhAyE7YsnsyeEAQVXNjEkR4QIzHPwh6RXhAOinrsMpReEA0mH+KhlV4QJlqk6X4YHhAsqSWvLdheEAeV6NdJGJ4QIKdXWlOYnhAFCZ+PeRieECMoPRtyXF4QMSsF5kXdHhAJDJXaCt0eEA+9wv5Z3R4QElLJECLdHhA6dimdah0eEAM8y1qzXR4QOt126PndHhANoHLbvR0eEDaNxiWx3h4QDlfcBz2e3hAHtSn7aKBeECIQeO2/YN4QC65LKGZhHhAvvW/tJeReEAeDUN6p5R4QMBcVhPNwHhAGd1FLZLBeEAin5K4utJ4QGDKon621HhAGbRf9qHieEBHqFon/Od4QJ0Flp1G7XhAUHWSIyzveEColMqbjvN4QDI/yHwC9HhAsiRKbY31eEAWv4rZWgN5QAKOuLeaA3lAngcEbZcFeUCbDd+EuiF5QHI3MVEiInlAMpz4pE0ieUCRiwXGsih5QEaUYtavMXlA4rKxC0QyeUBCkx+StTN5QETpB/RjQnlAxqvhVY1CeUAtDou2+EJ5QNQjtAcMQ3lANEURP/pDeUA2biAWRFB5QOaBl4XLVHlAee1ZSuVgeUB82YKCgKt5QBh6EHi/snlApiLPHM3CeUCLdBmbV8N5QCRyVoazw3lAsaF6BgvJeUBQipOnQdR5QF4yEJlO5HlAIJQO9WQCekAONbrK+wN6QGj4OJIJFHpA82YMGCszekC2fA1aDDV6QExHl1wtN3pANiHMDDE7ekDCjWJqND96QESBJIQvQ3pAw+IgJRpFekB67XM8J1V6QLDcrkuXV3pACsqVlSFcekDWFoQZsGB6QHiOI20qZHpA0NvSATllekAAT9fZv3B6QGpGcYcpd3pADfxmXaGAekDq8/aWz4t6QDESTSYfo3pA8CkConGjekCiknNWDrN6QJ5QqBoMtnpANZ9EmBG3ekB4d+ltFbt6QPgBGvIUv3pAArV4Q0XDekCp5Ps0Rc56QLxTf1xO1HpAgomaxHrhekAk2ViApuN6QLq7uOZ65HpAjQE6zjjuekAlFGurGPF6QFAZxH1c8XpA5rvAo08Ce0DsHzTL5QN7QJgbaRl8BHtAi0GOvigOe0A7CtTLTBV7QLiKI81ZJXtAL9SvWMMze0DEqZCJx297QH0mANsPdHtA8nrDCml5e0BgXKtvIpV7QNDCf0ACp3tACHaUxASre0BOdFum5sN7QNKoWlEm5HtAERPeIrzke0CoO4RGnut7QHQd1yON9XtAVC+4FHD+e0A+dPEc2gF8QGolcNT5AXxAFNKNa7cCfEBTJBul7QN8QGCs7SNnBHxABmHbLpsFfECifjL4Rwl8QO2iSuGcDnxAZ9jftYoRfECW8iDT0BF8QMmo4vz8E3xAKI8HcIAzfEAhPUTtzUF8QIqA36DtVHxA1pGv1gdVfEDwvuNLU1V8QOktnt19VXxArBW5VAFWfEBrztkBDWJ8QMwMHpSLZXxAIixF/Jd1fEB4Tytkp4V8QM+4PR/EjXxAKOglsxyTfEDqKMFieZh8QOIsKLsrm3xAXqih37+dfEAvokMi2p58QH6nox0jo3xANC3urL2yfEBfMmhqd7R8QD75YDtmxHxA3CUxf1fifECt3JSBEuN8QIvOQ2lt6HxAEjgt2BXyfEAvCmvmU/J8QGq5c06W/HxAiniEoQACfUAmZ8ixSgJ9QAKFLmedBH1A+pJPVEMSfUDkSav8ixN9QEA4wjOXG31ATi2Ph0c4fUDosEqKoT19QM+ChpRGSH1AfKZqiDpMfUCi3lDBLlN9QEm6pzbrZX1A1FvoMKR0fUDJe6zH+HV9QMAQeLUbf31AEGWU9viDfUCSnR13BIZ9QA+ajc8jh31AkF8ZJemSfUCkc/rlM7V9QFwRAYNRxH1AeYJQ6eXEfUDyNwJPQMV9QGYms5dh1H1AKMXANTIAfkCW9yocOR9+QPYsHjw/L35AbSjT/Hk9fkB+I7MLU1N+QLBFkc6OVX5AyNGXO1tbfkBT2mFFYmN+QCnq24sAZH5Ax57mQCaCfkDS5xBlY4N+QEq+YOeig35A76CPT1qffkCAbbJyk6R+QPVdcSlirH5AOTcgPXyzfkBVjLvzarR+QDsjP3Fnw35ANP+e59DEfkDTHPo8cct+QFbl9p8V3n5A0C7g6jTsfkCsX+Gb1O9+QO0K3/qx+35AYuU0S5cDf0AABlvZphN/QHqUXmXVJX9A9R9mDqY5f0CGV6B+qkx/QPOQdiEgZn9AxDUeTahsf0BGNdAct3F/QIxvpKLldH9ARjkAEjyEf0Bu6Y9V8oR/QGAXtBqfjn9AQmTU/GGRf0CwvbYeOZ9/QB5PzbJboX9A8misWRClf0AEwUD4Pa9/QLCyTn5UsX9AgQWYxTLef0BUHAe3Vel/QNiHDbR+EoBAmuXPqnMcgEDSxZ4ZRSaAQLTwY9PwKYBA2HE/GossgECoIXvOYzKAQMj9KX6IMoBAbQjCeBA1gEBfnFUeHTeAQEgVNkHJOYBAHNCquXU8gEAy6E/E+z2AQOZzhm8jP4BAETLLL6lCgECCg+ekKUSAQLBAYI71SIBADRd/1+lJgEAs59Pwr0qAQHDLsejlUIBAduKe1BJRgEALE+YbtVKAQH6jyDklWIBAqtNkpehYgECCrB/BDlmAQFATWQAhWYBAKrct/AthgEA0A+XComeAQJmVx4ZPaoBAjk763xhsgEDbrglT+2yAQJWpxzsqb4BAphvkXahvgEDqVhDGcnqAQNzefcYof4BAupPN7nmCgEDU/C2qf4qAQPGNTtlejIBAJCq46HmNgEDRlpsHDY+AQG5xDk64kYBAabl+HGSUgECmhIg64JSAQMQujG4el4BAaKk99QOcgEAnuTK3Gp+AQDtPkjNZo4BAfZidOzemgEC1D9lH7qaAQKcxieWGqYBASF0bGkGugEA8YBMP9a6AQLEdjt8Tr4BANoMtH7SvgECai5olYrCAQPHsAv4dsYBA7uGXu9axgEACTKBqfbKAQEA9cWyKtYBA1j7b3ci8gEDyq3+l8b2AQMV4WWBSwYBArgNWJp/CgECTwSi+AsaAQJLVP7wwxoBAVjjTnKXHgEBSP8gRU8mAQP0GojjYyYBAYDn3lATKgEAUrrVKp8yAQB/9h8gr0YBA7oReDUzRgEADF8OJtdeAQDOnZTxm2IBAOnmd+krZgEA0rXv8Q+GAQMhDdpFY4YBAUOXhwr7kgECqjCMhXeiAQGuGxF5M74BAgHAalzzzgECiqMxZaPqAQPzyVxFA/4BAJ/C/Qm8CgUCkwRACQAeBQBIf8MhxCoFAPMBPxD0PgUCVKR+XNB+BQHRXTtCwH4FAEGyUFjUngUC2DJXK/i6BQDwXi9MwL4FA9pOceawxgUBYKqcdvTGBQEgkq1/RNIFA1rQWdQQ3gUDdpE+gKD+BQFde8rPNQYFANbIYLw9EgUAhOtTasmaBQFsmOQK2aoFA7+pP9bhugUA0ZmssvXKBQBB/IM/BdIFAXWTbXiF1gUBaS5bEbneBQMGq+PcbeoFAjNi3nCN8gUB0zGHFyXyBQBWKP5Vmf4FARI81Dp+CgUDg1a5gVYaBQFFtg03Mh4FAWLcZk6WKgUCBnoG0VY+BQAbovSm+koFA4jTDseCUgUCchGpbVJeBQDC2b5fGmoFAsW2f6FSfgUDCr3YJ56GBQHfGZczdooFACp2EboulgUCUAhWxb6iBQMZZG79CqoFANuXT6A+tgUAUijNFSq+BQJTmp57psYFACqLe3kmygUD2Al2ZRreBQHU7BAXgx4FAZJGpQQTKgUDUGn/CjMqBQOw9yVKxzIFA2Qv+UznNgUBIKUOdXc+BQP9dPg7pz4FAuHAi7g7SgUA2vY+R6NWBQElQpg3r2YFAqjhY3/nhgUDzrooH7vmBQFIX+PssEIJAEKQndNgYgkBcGV5iKRqCQM7nQrtnGoJA8G7Npi0egkBdMnqs1iCCQMPl+NLUIoJAeGhqDdAogkC2b4vi2yqCQLSYeT2lMIJA/FDuIeAygkD/bUmxQUGCQExmQ1R5SoJA5sT7N0ZNgkCaFULkBFKCQJCpI7jUVYJAdk7a0DJWgkBB1tGacVyCQDQXxZOgXoJANq9etJ5ngkDCrer4N2mCQASLaXvSaoJADs91951rgkBxyzmzp2yCQC63qz4MboJA+g3VlaFzgkBglSTRCHaCQDCadRjMfoJACLktD2iAgkDuCXUdQ4mCQOAUj9v2i4JAHqGASkORgkAzei7jrZKCQL7t9KH0koJALrV5K1WYgkAkzavHO5mCQArKTxzUmoJAMhKk0P2agkAfvYvzDqGCQInBEgY9oYJAznbJpMmigkBkF4IG86WCQNR/n4wNqYJAuudPfDOpgkB8l0JB9KmCQIY8bqt+qoJAZBPiJAixgkCWTa5mMLGCQOVhLTKQtoJAVDtCH/HJgkAQuM1rQcqCQM/lfdo14oJAQtnCRdTigkDHXB6omu2CQAxPXUVp8oJAsHFMSa75gkCl3I775vqCQF7CKXaWAYNA2JR1NdwGg0BKm0UdwgyDQLQhhpF5EYNArz+bEhMSg0ASUA6XeRmDQMTy1EaqH4NACJhsGHIhg0DxsIvAbymDQKiyp7VrMYNAFVr4ICZlg0DEtQE602eDQBj4EbWAaoNAzGMSL/Bqg0BNFZqTKm2DQPGs9LXmgYNAVg8wqEmDg0B5b1KkuoSDQAVaPSKcmINAuulO+T6Zg0DyTuMfRqGDQNaV6oBKqYNAFmu6Buatg0DUWS+66bGDQHeOsdootYNAMdeYRQG2g0B+MS4kksqDQEQ3c9Lk3INArlY0q+bpg0Bq8x/w1u2DQJGvPjjY8YNAXow/Vd/1g0CSy2MTAAOEQHC2Su4GC4RA7iZXqMkthEAmtta0zTGEQH4tX2f2MYRAnYWWIk1KhECZF7mIMWOEQOqvQuT+aIRAKOfwLuVqhECYBgFh6W6EQFSsHN3/cIRAnB68NMp3hEBW1EFs+niEQM74BY52eoRAavOZ9iN9hEAeHmEq0X+EQMXZ3eR+goRAqhFz+QeehEC3xvpZC6KEQHz3jskMpoRABK8EIwWqhEAAvIFaHcWEQJYuE7Ye04RAiCiS3RLWhEDW5REFatmEQFKoVuAS2oRAbPIE42nhhEAmxzvwYemEQKMLn2Eg7YRAcEPCkTXxhEA+j+qZYfGEQOob6AZ38oRA0DrFK933hEA4TBzLNfmEQAWAuWlc+YRA3BwwTIr6hEBJ246+NP2EQIgv8RTt/oRA1Tg1F/AChUCK6SdpRhSFQP3EiVPXFYVAKutbofgWhUDV+PpzcxeFQBKrb4QPGYVAuoPxmKoahUC+kI7h5RqFQF4PCvb+GoVAbc49AkQchUCmLwskoGGFQNBevk5NZoVAdGN7RKBphUDsCQyZUWqFQNrEKoCZcYVAa5OVubJyhUBca+nktHOFQAXKQG6XeYVAnY1ehECuhUBoyGrnQ7KFQEBGOBxMtoVA7U57ZQPKhUDqN92cz/GFQKx/ytowGYZAzh8Fk5g6hkBArqk38GqGQD5xh2H1boZAGBNkXNqFhkCucbs/e5KGQP6uQGI+sIZAQjJhF+myhkCqWibvlbWGQD1MzBLSyIZAggqzzbQUh0CdeLkjGheHQEDbGvWQKYdAy3L3kZAxh0C4FloPcjaHQJsK2YOKOYdAmw4GU3Y6h0CN27LSeD6HQAwcV5eLQYdA1tVWznlCh0C9L4Etx7GHQHcJWjnIuYdAmpora7/Bh0BygiLldcaHQGPt4xd4yodAHvok+HnOh0AIuXr1ddKHQPq2f0161odAlCK0pn7ah0AabtNdpU6IQFBAUyj7UYhA5PVSDahSiEBIKXdRqlaIQBJNwVyvWohAyycoiZBqiED5qQs532qIQLx0T+kygohAiYnDtPWCiECmIvHTsIaIQLfGK9v7hohA69B/gy2KiEBsw7Cw+4qIQFigMfRum4hA9qkdg6vKiECI97pQic6IQPgDbLGL0ohAo4XOprHSiEASek+QjtaIQA== + NrgMGZxjYkAAVPW5y0NsQEMdzoN8QnFAJ2tCVJQydkDRdBqjVFN3QA== - + - CWlgRs457UXq0LBF1j+gRGx4k0Q/TDJF2RB1RMvruEST5mpE/riIRHOvCUfadWdEAWMTRl2UxkTT8WBFmHKSRKs1h0UILX1F1EB6RO5rZESK9jhFYwWPRWDYkkRlvllEmGWHRGzGd0VplkZGR9WURF11U0WfxL9EQkLpRNrNo0ROn8ZEezv4ROXrXUQ9OkhFcgENRw07A0UxpGRElWjWRFsMS0aCtoRFwFckRblEe0TTtLFEdzUnRX2Rk0bZ9H1E6ELVRXoe9kTlTn9ESG+mRelAuESGUGREwEh3RMpve0SjbohEsIG9RCZkdkSkhA5FyKmKRFLumUSekhVFoqmEROihmERlxT9GHBqERBvR6ERCXwBGWOTlRJgXeUXSpJJEJZeTRIK4g0Q6agBF8/ycRF8oe0QwvetEwzixRkg5nUTgli9FlmDBRahDkEQK8GFEzplqRHp4a0SJZJdFVuhZR9RGnURNvnxEAzi+RJy7PEajRwpGw02XRE+640VlqZlE+QQeRf5/jkRljn5EBeE5Rdl8EUWlgoJEIgtzRPeHuERM5gtFa6KqRAQfqEVX4bNE1d+pRENXPkUVMX1Ejx+QRIblhkWC/ilHjYjhRRQdR0WrmcNFNb6UREmMtUTO96xEcuOWRMmmj0ShpZ5FSnqPRHcphUQtXGlE1R3URJ+xk0bZYAlFAbg0RoG9IkU/18ZEdD8fRc7CjUQrNRhFlj4+RRiHoETu2tBEZAuwRCDgw0QwYodENTpaRHkf9kRIB5RERe6dRAJohkRtFM9FeAZtRQmYmkXni+REDEzNRMJWAUVzZblEGWymRThVV0eNc2ZEXiNwRAuF/EQGiJJEwd8RRTSGAEYJ/6lEuDvFRcVihUT9BQNFL8YNRQAAbUTd1aFExDGdROjD/ESnnSRFzSWLRKWNlES2A/1EpUO2Rfh5C0UQzIFEoOPnRFZbJUVeOoFE7pM9RT3TuUQCFBNF7w21RAD69ES3AF9F1eQERbZ1k0SlA2ZEXh74RIECXkQmadpEJ4/vRJGLfkQ2JKhENGflRL4SEEbCRsZFc6SoRGBGAkUokWpESRVjRPNjqEVC5ppEEDmcRCRmmESBivdEsI0ZRaVj4kTDwaNEoj6DRB5VDUWmiOJFqKuhRH3iGkVGPItE5x9lRBUzbUQzW3RGWpjwRHGduUQEmoJEblw1ReEj1ERrYMxEw/rcRc9B0kQTIwxFilf0RV6yX0UXfrNEy6xpRLT1qkQFPaBEfk1sRB3QNEZ8ZW9FbASZRMcCtURtb69EDSnORHhdY0QSvaVEeDK3RCqmR0Qgpr5EZJWERA2cwkStiyhFq+2bRLr2VUVOuZFEmVaORP86ikSv8bhEic2ZRDnkhUQtGIhFNx/wReauxEW6QalGJquvRJmnjETdd4FErutORUA35kS6LxFF62jpRM9S20XrHvVEG9GhRMCrgkTTc4JEPQSVRHFiBkXWlRhF7XrVRCWGhEVe9SRF2t2GRA9nvUT1G45Ec132RO6UB0W2GQ1FcgVxRHe9nUVABQVFmxElRVwOnUS1NBtFQTBvRB+ykUR6WYVEqcAsRdy0jkSv6ghFaUCdRpynXEVQJXVEmzRkRJGM4ERNyvhHE1VqRIVTlEZchdlE37fmRCkRyUb2Z5dFf2RURjfMS0VmSDhF3KLhREF8PkVKC4FEAEO5RMuxqkSB/5pE3dOkRBJWokSHkIxE4Z6zRGinx0QxwktEmeBgRPikn0SzTxxF0m25RIfKPUWivRtF1qCwRIxpjkVXrOZEcmRdRBS5UkVZrlNGTdSNRSd6BUUaDfNErTMdRYMG6ERjTq5EtIJ5RFNpb0RxxOVEHLLhRP+WdEWYUTtJn1/GRY58qERzfZNEkEnbRHylikRhbspF4tPfROlT3kQMYTxIsQZNRVk1cUYbyA1FSmtqRBqktkTI2WJFvlD4RVT4rUWaFIxEHcmxRJahHEZeaVFFivtPRdr1gUQzgqNEbemJRKwAc0Wx+R5FkO6VRKJiwEQyVMNEjmibREDWEUXQF5FEXJmVRE67a0TtZ1NETCKZRADgxkQNLltFs4eBRFq+t0T6t2ZFAyWpRNoDxES/xGdFeNQjRb77vUVxluJEsGFqRHU2Xkf3mwlGFdsrR2gMm0dofvRGf7cLRqD4okUDENdEhzKgRqjcykRhooBEb0GBRaiFJUbZlKVEHSeJROmbjUTx0pxEzPPBRHY1iETBOClFCUNeRDkM7UZZX6NFP/nHRlYXzkU33BVFPfqERXLybkTceYJEvcKvRBquREX/UZdE3mXWRLbKoES1rIJEM7mDRLf+Z0R1iZZFrJbhRG3GIUZyUg9Fb8y0RH73q0XJxwxFFhdlREM0AkWfC6xFsJb1RFCvDEVggpBEhnvkRIHYrUShKnFGnp2ERCxZOUYxkeFEPL/GRIfmo0Vir7lEyGFuRbPCLEWk7pZEdIFXRA5mckXccVJEcqCeRH3/okVJFuJE6jq3RNMjSkUlRzBJqdndRPZd0URtsDlIZqimRkN7cUSgAQpH7TyKRsGD40UxGKVEPicxRWvlgUR624VEo+OwRJRAo0QgkVtEPei3R2P6M0XANpVE8d3dRC0BlkbvpSVFYEf5RDfngkbfW+FECd9KRZtCfERwtpxEqya9RQiCOEUmNplEdK+bRJh8d0RvldpHpRGQRDDIzkb/rphETT6XRE51GEUJ+b9E5thNRFGPpEatY4VFyP/ZRUWkkkVeT3xEcNbmRHi+nES0+6FETAaUROsraEYOmJNEBwCvRU5GA0VM4LhEKNCqRDzoxUTIPolE7w5+RCvsB0VF6tZFWG/dRMC0O0VgCuZEhhIKRSW7iUSv+HtEnDpmRH8xfUTuG1tEMFiJRE9bBEUknsdE2R+URFfhVkSAynVEsECgRKw2aUVT1tJGXOPsRHZD2kWiv4ZE+8AbRk3Rg0TUXQtFdJ6fRGLGfER3bS1FWLWFRO9l3UTMg8xEk5iCRIozaUQg75BEBrLjRLGZgETiW49EBbGzRH1jm0fFKoVHbAXJRhwFT0RlZKlFprHrR52ZkURR3PpEmThxRG5I00bPxQBFxuMmRsF6L0XmAdxEJauzRDg0kUWzhsREbSSXRA3nvkWGHJlFbRmdRNAaGUVvwvpE0FMNRfrOBEfFdKlE7MQGRr8WekT5Q+BGSA6cRO9kmUZiYORFbAF1RVx93ERynRlFBIPYRNYY3kQxvY9EEp/ARPcmwURF+MhEfF+VRK2CekR56atF0IDdRMbpmERxNqNEbBrHRGl0nETlbWRE6S+kRJ5YuETczmFIq9EgRcTW6kQgeIxEmEbhRNGwu0ci5ZtEOcLiRIs2bEQkYq5E+bVJR/qAbURiztFF25hGRlwHbkWw2J1Em85zRCfL2ETK98xEpJSERK0j10bI5TVGM2GiRQtQUEVepotETBSaRb8Z8Ebk+8dE5YbTRRHUN0WysQhFGAnHRCVum0T79o5EfeKCRDFIwUXlordELXp3RKltaEeLrQ1H3KMdRgmtzURJ3qhGB/54RAc3sUaorcFFmgtgRIPjKEXC4GVEhJTuR81CtkToNHZEmdTkRhm99EUSbw9GIIl4RMMP2UTNeeJEJJPsRGPq40SoLllFtJ9JRCyHpUTquzFFEZlbRHCsOkYq7WdEFI5/RCuYpUTyNKJFdjBxRr1zQUVSoCVGbfoJRUwDRUWnu7ZEHYPARGxjwkU6U+tE/TF1RG6A30TogXZEEZQdRkubc0VRKdJEdYrmRO/Lj0XHxj1IqbkORYHrOUdSIYpEVMoCRqhtwkRNLUBFoOacRKBnfUQSV1hE5ZttREZYskRVTmhEQw7AREBEP0QtEd5EzFKcRMCu6kRfAJNE96uJRP1I1USlhctEiC7VREF6tEc6KpxEyqgcR3Zd60Q5DOVFyD58REsguka5AmJEoKbIRNsYoUV3UrFFxpZbRAbolUX5KBlF44DkRP349URwBcBEnxb2RI4hdkSqVFFEqXT8RBaMiESfDHBFhrsHRah5kESkT59EEdDDRPCplEQClnhEdULFRENDgERZXspHP1J9RCUwIUe2/JpEt8XLRqZGrEU6DkBF0MIFRk5kgEWB4jBFgdR+RG/FlkRsw2xEnrGXRIeYnESZr21EzIXqRgtKB0b1CNtEnBJ/RVvWD0Ue06lEX8KfRGnw4UTBT1pEmimIRVCRgUVnzRdFbvOTRD6xjEXpy5BExmMKReUX5UR3AeFE3g1uRA43oUQBtcZF6UaFRWKbGUWrlgtF0X1XRyooyUQw7DdHqCfWRr8yM0b3pSFFvYQAR0+5rka0TpBFNsfVRCKsi0TOXJxEUF0CRdIVAkf6sq9ENKpuRtz5/kX6EdVETD+yRbvqM0XlRndESbYXRe8eDkX3d/1EHv/+REoaiUTtZDtF9YUPRW1Y70Q+vthF84EmRYBZG0aFX8pFnfeoRR8hxUSSBKVECpmGRdJW5kZ8HWxFpRddRkVeykT/mwFGZOCtRBoyeUSt3B9FGKeMRu3oF0az99BErPFwRIuxckQinHJEnzC0RE5nuET7JKdEonxkRMwmqUROFPhECitWRYpOFUXR161EmGBtRO7uYUTq9h9G7niwRa3hnkYnMzVFJItdRu0vgEW0gJlE+5DvRJ39FUZPOqRF/uc1RdelvEdCypJHBNTjRgMlKUblOolFfZu7RJ6kXkbnM61E9VrzRQ54nUXPXgJFDV6SRBgBzUTzdB9FZXcrRTp2f0SpwslEZAaEROnGmEQ0AYBExsS5RdyDc0V8vWNFAbfgRJ+gqUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - PiTeKN3AckC+KJaDbsFyQKyibpvIwXJArp0k5U/CckBOKdZo5cJyQHCtq5Y6w3JAYvJHLlzFckDSHH6e6dByQD/t3ZYP0nJApZPOREPSckCm1cyekNJyQFu3HUJm03JAOOngFc3fckAutASaI+ByQFrnQMu44HJAW3diLubgckCaMTvPUOJyQAgeE76Q4nJAX9CRbyTjckD1tet4UfByQCG6l9ql8HJAJBny6tfwckANgaNlNPFyQO+uH8DJ8XJAzPK+CnzyckDIZlAeEPNyQK80kDi283JAjC4IlML/ckDCAevL+ABzQABecYFQAXNAdwmFXjkCc0Bm0MlT0AJzQJq765v6A3NAWtPyHiMFc0Ac+kVx2hBzQPuhhGN0EXNAxjjJ7woSc0Bmy59uvBJzQDAw6PH3E3NAQFGsnAUUc0AkXXY9SxRzQIC3P5h5H3NA4bPtxqMgc0At2j1QOCFzQNtP/O16InNASFy4IMoic0CKnppsOiRzQIRZs4/PJHNArBLNDkkxc0Daw0MOWTFzQLSUlDOgM3NAvLnpwNs0c0Abmy7BuD9zQEjMxPniQHNA9sRNtnhBc0BwMk/2u0JzQNdD6ul5RHNAQgKhL/pQc0Cor7QCnFFzQB62QPINU3NAOnglBUBTc0DW4E2Mo1NzQKL7NLOEVHNAzAwlAPpfc0DdI90njmBzQJw+YueIYXNA7OKBIR1ic0BW/0kYG2NzQOA4coU5Y3NAC9z5Z85jc0AL/doD2nFzQLoAvvBQcnNA1SvZTWhyc0AQ9vQZt3RzQA2ufPZMdXNArW9DR3iAc0BBgO58pYBzQIhIZL5cgnNA5F8kr4aQc0ACNLWY+JFzQGBp6OxMknNAhGPjk2GUc0C2d4qN95RzQD5DEq24oHNAePpqWOOgc0AZi344WqJzQLY/umSQonNAEHTrqiWjc0CnQnGZBaVzQHpi89UzsXNAJHn4Dn6xc0Dq4NrjtbNzQIoAq/kMtHNASlM3mWHAc0B8X+Hyt8BzQOBNAOT4wHNALqefw4jBc0AdXwyMZsJzQBoi5NbPwnNAOOKWCCfDc0Bal8/rZMNzQNwsHQHY0XNAm+wsV4/Sc0AKCrGMvNJzQMSa8ofc0nNAMtgsX1TTc0Bdx1ma9tNzQATZNEPi1HNAZBl29aPgc0BhVAkM0OBzQGWlpvgG4XNA32SaSzjhc0D6iGGweOJzQNsBr1oS43NA7L5uGPHkc0CWJvQ1K+1zQKqrP/Kx8HNABP44qkrxc0CfXyn0V/FzQDGlthc39HNAYHUIuo30c0DqGFIX5AB0QLQLzTYQAXRA2E+/cHgBdECnD/u7pgF0QFkGv+S6AnRAyPSzu/QQdEC+fjpdpRJ0QK0UxwrZEnRAiOTaNEwTdECOtYZSSyB0QJ6wDg64IXRA8qmC5/oidEBO7GXtXCN0QE4kfEhSMHRADUxfxOkydEDyTqb6UkB0QKr0V7U5Q3RAYM8YI3hDdEAibKxshFF0QIbAbcv3VHRAagorNItVdEAeEr47IF10QGiM0Su5YHRAKlvb2gdidEDge9pKeWJ0QAcKa/R8Y3RAjuP6tyFwdEDsyXeBYnB0QBVURnXKcHRAVgzJ0UBxdEDvxAoCe3J0QB73K44bc3RAGuUNEDlzdEAiGca7oXR0QBJJd6E3dXRAoL+ZmfiAdEA+B4KFTYF0QGc3RPomg3RA3FxdiRaQdECYkYztapB0QLzrhGjun3RA5vOQpA2gdEDZFtYCoqB0QKVfurDQoHRAXKPEvTahdECCTgjUzKF0QBEYx4K4onRAH7GlyQ6jdEAa9AOrLbB0QOyPehzEsHRAqKsZT+yxdEBmvDZbb7J0QM2lmDGUsnRAzgAPM/uydEBP4q/C97N0QO5tVEtQwHRAUYRPA+LAdEBaZ6SH+sB0QEDla+p3wXRAH7bALVDDdEC4Npw+fMR0QEK0NlW3xHRAnmtqhsrNdEBe+zBq/M50QKKE2sPM0XRA3yQ8zhDSdEDdaZrnpNJ0QLyLy5A903RAvZi9Wc7UdECCpHxj9t90QHHsen4k4XRA6NifgrfhdEDJO+bHGuJ0QDRLjRGP43RAgqiSmU/ldEAHAKmHdPF0QAwjnx6N83RAvw2CsaMAdUBmQf3o0AB1QIZFfrtcAnVAA54ot6QCdUBObS+AnQN1QOLfrI2ZEHVATaVUuicTdUBY0S00IxR1QDTQuRIZIHVA35lJn+sgdUDwhK7snCJ1QFLr12HoInVAPMJqcKwydUASA/WZyzV1QHwldq7gQnVAqFBrYeJPdUCEPV0F+091QAiz4zSAUXVAX+nlzUxUdUCKdNxCdlV1QPqp6+kKYHVAmR1fODhhdUAEZ1s7zWF1QCYGlv72YXVAPX59wSZxdUDUrK/0V3F1QNQ3elDrcXVAW3PK7nZydUDC/uR1jXR1QFa9qWdOgHVAvjN+JuSAdUAORe7eeIF1QHRyI8CtgXVA4IltdqaDdUBHSdGZmoR1QP5Nw6KLkHVAdT8HzryRdUDOG1RLPJN1QKr8fjiUoHVAnhrkVCWhdUB4nfa8UKF1QBA8+yC3oXVAloRVHEmjdUDAEQzDuaR1QF47UGuMqHVAs92zLKOodUAAP7DSn7F1QBmPIWo4wHVA+DbAl87AdUATPZc7+sF1QEgYleykwnVAzvKpXjvDdUAa+B015c51QBebJ1vN03VAqgRJs3ngdUDUQ0f1D+F1QCpzP/UH4nVAMuKJs1HjdUBCBJVdOOV1QI3sSna/63VAN00yxx74dUA3fprRJAB2QEV+cDr2AHZAyhmFAUgCdkAY2sWo0QN2QHR8E6kLFnZAGHoGGBogdkA4ejBBNyF2QHSTMdSHInZA1QUV9Y8kdkCilbg5Sit2QJ7xMvUeMXZAvCLaT1QzdkBSmbXQnDR2QHjw6iQdQXZAuLi/H8lCdkDaumxxR0N2QH5CAeB5RHZA3OBdeslQdkAP9LRRElF2QHkuVgJmUXZA9/feHM1UdkCKJ4Mnj2B2QH/7tkIjYXZAmqxL791hdkDwUYAPTmN2QDI4bgbaZHZA0b8Ax2KBdkCdvK/bkIN2QOukNjTtnXZA1G0JYHigdkACo/gkDqF2QK2X3oc6oXZAha5AAUejdkAK5vpfeqN2QCjuxnQusXZApjggfKSydkC+Kcl5wbJ2QPz9uRh4s3ZA2CYgFA20dkCsKQYCeLh2QCeIpxFzwHZA0ReqhbnAdkCcbGrnTsF2QDYSZyLOznZAvmQCBZDzdkDO67Aw3QB3QJKHJWE0AndAClZFLU0Dd0D8ybLZABJ3QBewY5KNIHdApEUONw4id0DsOBChpDN3QGb2pSINNXdANN19WjdAd0BBWh+uyEB3QJYNd+icQXdA06dNqJFDd0CtecEPJkR3QEa43SEbRXdAomE45klRd0DYYcPwkVF3QOL328ooVXdAgHNaLBJhd0B8kJddjmF3QMj7ghc5YndA4fkJmKZjd0CX1bEMO2V3QCddoHomb3dAMCU6UaByd0A+0to/BXN3QLSoVsm4gHdA9KcEQHmCd0A+9CsvTZR3QBr+oqT2oHdA09cGJpGhd0CmQVyTwqJ3QH6eMB6mo3dA/Jztw5m0d0C8AW3jDsN3QMuta6eL1ndAFmrZAezgd0DEJS4vRf13QAqxd+ShAnhAnsqLRk4VeEAr/6MNbSJ4QMgPzFCII3hALKWjeAkkeEB7dyosGDB4QNCBlfQgMnhAFB/GxnoyeEBdWLFvhzN4QItYOUu7QHhAiBEtIwxCeEBkdH3FEER4QImRZN55RXhAFA/pxdhIeEApSxijylF4QLzBMJmHVXhAZJMgofpgeEBvcmRjt2F4QM7Ii40kYnhAPM9AfX9jeEBJ/DxULHR4QNpeA8eLdHhA6v24M+d0eEDkOCU2/nR4QHHNBVzIeHhA7ixGlfZ7eEC/oGDrOYF4QAC+L3ekgXhAgExnuf6DeEB6Dt7emYR4QDKEfTa+hHhAORrKu0+IeEDmwOTFqY14QJVcGmRSj3hATyRnzJiReEDuDUchp5R4QPJA6Ja0pHhA5g6bGzqteEAWtI+jkLJ4QPQc9UnMwHhA4AfdXmPBeEDC+mFJJsR4QHLHGhaH0XhAK9vPv7jUeEBSl33/E9h4QFpJwJg34nhAPgL2WaLieEDasG/g/Od4QFANAFEr63hAs8uX+FXteEDNr7zfpPJ4QC2vQ/6P83hAAMZ+pwH0eECEligkjPV4QGuH0zqgA3lA8HWtPhAEeUA/wGaAmgV5QMTeD9GMIXlA9nBbkroheUDUOQMyIyJ5QELRwFFNInlATp4bWrwjeUDen1mfsyh5QIy4pymuMXlATujQ6rYzeUD+CbqnvTt5QCzyohJjQnlAdnZLCP5DeUACR5k/QlB5QO6ZAWjlUHlAAPTEyK9ReUDQ9XZMzFR5QFabzhbpYHlANS2XVtpkeUBqfY6hQnN5QF/6GWWEq3lAx4c8IsGyeUBKVvt7WsN5QOrRqQq0w3lAFNd7xIXSeUDIU9U/QtR5QM8hOPnM1XlAWkciKFLkeUAoXhMFMfB5QITrfxH8A3pADm3a5/gFekDN3URoCRR6QIzXge4qM3pAHC7Dbgw1ekCA50lALTd6QKHdtDMwO3pAzziTHzI/ekDJF/qKN0N6QNDfA2EaRXpAdW8qZShVekBtG4DNIVx6QMj3HXSvYHpASgWbTylkekAG3koQ3XN6QMG9ZjrNg3pANu8OkB6jekAY/DU1Jat6QHO9BMoOs3pAbLDp1gy2ekBi0LegELd6QHQH19j7unpAsHrt5RW7ekDSSVp2D796QN3GhIIYw3pAxlaih0LDekDx2z6uvsN6QPdOyFIaxnpAmVs2IGPhekCph4AfpeN6QI88Xzp45HpAQtiz5DXuekBBpK5qFPF6QL2QOI/lA3tAjDWfU3wEe0CQ4hwTKw57QPjOUMwSEHtAEN3CxEwVe0DuW8oNUxx7QKKvkm1ZJXtALlxJ1MMze0Dm7EtayW97QLSext8RdHtANJe4lCKVe0BGs4ar7qN7QFEcPl8Ap3tAqMyRKgWre0CoW5886sN7QPpuPwF5xntACMHuuWjhe0CY9MjcAOR7QNdsM8Yn5HtAMiKlSbrke0CS/xAFnet7QA2Vny2M9XtA7sTtVpMBfECyrJp42QF8QGzoQ4vtA3xAHMSzZ2cEfECnpWbAmQV8QJQY5QRICXxAwE6mPNIRfEDTRu6W/iN8QCzBHoZ/M3xAes+p781BfECYrZhACFV8QIiQBAl+VXxAfepWgKtVfEDejkCRaV98QCgd1sqLZXxAql+B9wNzfEAu2rnUmHV8QKKAyHE2gHxA0G+dhMONfEC1ku3uHJN8QJRl47gpl3xAxOwxPF+YfEAvqxUae5h8QL536Wkrm3xAd3QP8b6dfEB+GQyZvbJ8QPiWk2x7tHxABSVsfyLXfEA0aRnhV+J8QKh6C34R43xABPx1QRfyfECqsww8VPJ8QPeo5Dhz8nxAgsSx00L0fEDzHtvKlvx8QPARw1EDAn1A4mNsmEoCfUAYXb0IawN9QBUFcURkBH1AhyEK+Z0EfUAgaJ+NohF9QH5wGZpFEn1Au2h+losTfUD4YQ8x+hN9QASGxJuhMX1A2Pk5rkc4fUCyuL5wsTp9QGw5OOaiPX1AoCYpRTpMfUB8eQHv6mV9QGQ9TPzxbH1AThWj6Ph1fUCumNXMMXt9QJQhMLv2g31AkLrUT9aFfUC0dq3qBYZ9QGoi4dkfh31AdRIhW6aKfUAeLQ0U8JJ9QC45OXd4oX1Aytc3/qOkfUCiUoa5ILR9QCTJGQU0tX1AHY5FDzPDfUCge/M8UsR9QKZUz1iaxH1ACEKQ2ebEfUBYuiPjQcV9QERcexj31H1A+RIxZNnifUBBqZWmkPV9QNqSkbAyAH5AVgL60KAdfkCJ/E/INh9+QCCDa9dILX5AeEf9OlRTfkBSKCqdMll+QFisCVpbW35ApR9YcEljfkBkVk+XKXJ+QOCXLzNMe35AouY5RIp9fkCh7uL7GYJ+QN248jPign5AfqxBy6CDfkBudiwYx4d+QEJoyK8Jkn5AxNhnPBCefkC+UIBdaZ9+QDAwCkyQpH5AfGuqQGGsfkDWH/3SC65+QDpNJVdotH5AgM56YmfDfkAP793f0cR+QAr92Bdzy35AZLnc1MTcfkC2vwAL/95+QF8Dk0Er5H5Ahz4k3lXkfkDHi7+8NPJ+QJNe5QPW/35AkPDzHaYTf0CEcGOLEhR/QGNUOrfMGH9AVXEGqtQzf0AHrniAdGd/QJ8Dm1e3cX9AO088UuV0f0De1PuGsYF/QPAQshujg39ABFx+MzuEf0DA4Vff8oR/QNT6EhtjkX9AgvGDnV2hf0DgCZ7uEKV/QII5N5ZXsX9AEofEPWa4f0CsOIBUGsJ/QNuMee1S6X9A/GOP3n8dgEBWzDbnECKAQCknFZeNLIBA38LtJDgvgEAgiKSyYjKAQC+zsPEPNYBAeOMIEB03gEC2LsziyDmAQLgwVvh1PIBAc5BSOyM/gEDunp8VqUKAQF50owjlRYBAs5yIpe5IgECUu1hFsEqAQPyjOzDnUIBArzBC9xNRgEDVyX5xtFKAQPTlY2AlWIBA9DyfbuNYgECaEHb0DVmAQEpaLPB+XIBApApf2yhmgEAejOlmYmaAQEZOd/mhZ4BAzNX5LoZogECh59VOTmqAQNol00H6bIBAQogErydvgECoqMBGj3KAQLnfqlgpd4BAbikZwXJ6gEAo099VKX+AQF4rRM4YgIBAiy6zu3mCgEAw7f4AfoqAQCfjStFejIBAauXFYQ2PgECSlOXMuJGAQGTCOdZglIBAUnZkfxyXgEBC2dwZ3JmAQBKDolcZn4BAFDtZ3w+kgECiCjtovaSAQAJhugOApYBACPvlZvSmgECs1ftJhqmAQPcxyEITr4BAdgLoS7avgEAAsGedHbGAQJ/djzR+soBA0U6pvMG0gEDeYgDQGLeAQOK+ejJIu4BAc+BfAgK8gEBOhoTPyLyAQFxiRk7wvYBAbrePajW+gEBEJJNbUsGAQKXKrMLywYBA0tx3x57CgECi1C/yAMaAQE4xpPGnx4BATnsEI2TIgEChLzIXU8mAQDhW7YsEyoBAl1wxeQfPgEC9f+0gLNGAQEHciC5M0YBA+lKih43SgEBYDW62DNSAQJla7EZm2IBA/HYk00nZgEDNX2wZet2AQOpy89f+3oBAcnyoHG3ggEAmUdBMROGAQCLm/N5c6IBA4q7dYPbogEAoYzB/QemAQJzUVAlL74BA9OtClT7zgEAGvWgjaPqAQN4h7YK0/IBAlgZglz//gEBsPsxObwKBQCrOZSg/B4FAUGFHGXYHgUAn5k02cAqBQLjEDKs9D4FA2IyCu0MXgUBtYuJoNB+BQGoA4JKuH4FAOuMxtTQngUC95MIIAC+BQB/WhZwxL4FAaqaL8K0xgUBSdfc6XDSBQD+yHykpP4FAUXl0zLdBgUCMWvMKyUGBQONNDQLYTIFAyoJdhzxhgUAflViusmaBQOfsqse1aoFAlNOSfp9tgUBkg8j/uG6BQOK7CH0Nb4FAb/4JybtygUAqOsO3wXSBQPo9YStvd4FAgpxvNht6gUABNj6CxHyBQIZiVuUyfoFADkOOW2B/gUCOd2D+noKBQHxrvJaVg4FA/SXgoOOEgUB36+2ClIaBQLiqtaYTh4FAtgdm2KWKgUC7knQ1VY+BQLwBox+FkIFAPBWxkb6SgUACgdorVpeBQD/fD1uCmIFABoIPD8OagUBID0B3Vp+BQLdLZBrnoYFA4uyXbN6igUB04aNFjaWBQMATvK9tqIFAMgwx8UKqgUBkg000Sq+BQMgKu81ssIFAyiFOdQWygUCUP0D8IrSBQMCuDelOt4FAgOvFJODHgUA2XaQ9BMqBQE3gomWNyoFATv2OLbHMgUBS44OeOc2BQEKRLCtfz4FADZ0sOPPPgUC9XiolCdKBQAA6nGF904FABn2rjwnVgUBm0Cnl6NWBQFCeQd7s2YFA10mesPDdgUD21G+2GuyBQLqY0PkW94FAs8Vo7mH+gUAutjjTQAOCQBDyzFyPB4JAzN7b274KgkBMD2cWPhCCQBTevhTYGIJALm+MWikagkAay44hYhqCQJnsJGosHoJAgmP0H9gggkD5FBzk1CKCQJSxouPPKIJAqxgIwQwqgkCZT2y62yqCQGIHiODfMoJAZtO09sE/gkDTZb2jSUKCQB+xeOASSIJAwtAS2HhKgkDUBfzpbUyCQKBCh+sIToJAlOaoTONOgkBo8x4AEWaCQNMzD+WeZ4JAQu5zSQZqgkAyO7S+4WqCQHQ5FBqmbIJA7L14X1VvgkCP0yWqBnaCQLbr34k1eYJAAQ/k19V+gkB5J14QQ4mCQIjEJXi9ioJA9ngJ89KKgkDM9dDsQpGCQEO+N/+rkoJARUdF3s2SgkATc/MM9ZKCQFW7mUFBlIJATB3Z/TuZgkC6qZqkVJmCQNFBbJz9moJA4qyQHg+hgkBi/osnOaGCQAkQpTbypYJA5NMqdW6ngkDOYGb2DKmCQPeV4iI0qYJAlEk4J/apgkAK4AFdf6qCQEyj6f0FsYJAnVe0M+zFgkBsUL/3SNWCQKdLktA04oJAWDO3+WvigkDsb4qf0uKCQNSjUaeo7YJAkvpbMNDwgkB+TveSrPmCQKo14GhiCoNApp09X3kRg0DHleYaehmDQK5jDPllIINA7vjzCHMhg0CGcYNJiSGDQEl/xdNwKYNA6taqvYkpg0BMrxnU/CuDQAIeZdBrMYNA+GKPJ1hKg0AAcaqcDVaDQLi+ixYmZYNA4ol0+9Nng0ACs63cf2qDQBlLeHPkgYNArKRZ6EeDg0B/rb3iPpmDQAS88vdEoYNARneBFuetg0CZfuDz57GDQI6k7yWWyoNAttII3JXOg0CKJcEE5emDQDTQHgnW7YNA1iyzA9rxg0AZkMSHAQOEQL5Va1XYKYRAEDsoycothEA/2I70zjGEQDop4D/1MYRAqWtPqMs1hECOSn7MdziEQNACV/yaPoRAbnpprQ1FhEB+UcZqek+EQBPn0lMHZIRA5qYHSvRkhEAYY1PH4mWEQHxZRZi9ZoRAdBBrJf9ohEAcI+NA5WqEQGZ5EvrlboRAwAAtWP5whEB6e/f+yXeEQFyTLeh2eoRAUdflSxx7hEAYLVyZI32EQJ6J0RiPf4RAYM0BHbt/hECnTOS70X+EQNk3TlF9goRAFrDBzRCMhEC4SzssCJ6EQCaF11ULooRAyfLzDnGihEBk+pWrDqaEQCQLzPAEqoRAkL4hdB7ThEBUM7IyENaEQN5k5QFq2YRAIC759xHahECa70etaeGEQHqZRI1i6YRAU4iAtW/qhEDWIjEIG+2EQOCjrAg18YRAeoal/mHxhEBkyIAh2/eEQHAzDOY1+YRASAoSMYz6hED80p3h6v6EQImgJO8sCYVAL4WWSkYUhUCa+yV72RWFQOy4mVH5FoVAojkD8HEXhUAOlaM/DxmFQLzs/XCnGoVARjkut+cahUC4dDRRQRyFQDHEKG/eHYVACD8xqugehUDT9LaDoGGFQBycLIa6YoVA2GbL80xmhUDUM1cToWmFQAoKW7pOaoVAcDlHv01uhUBcfvO5mXGFQJVMOaiyc4VA0vrSPJp5hUCVRNZSkYGFQOzfSrBAroVAELpz/ESyhUCE0cGLRLaFQF7DSX09uoVADIuHwgTKhUAZIk0ZMOaFQBjKkZnwaoZAf9N2gfduhkAKzAO7KpaGQDltlms8sIZABIG70+eyhkC8vBM6lLWGQLct3lovtoZAxEjVoyS5hkApcuQJI8GGQDb8Cb7TyoZATDZT6Y7whkCY3eeDjhCHQOqXdxKRKYdASAJZB5Exh0A8wTMYcjaHQBpYEQuLOYdAJCK+PXU6h0DpcdLMeD6HQGfR3RhdQYdAIjL5Z4VBh0Cbpuc6cUKHQNOHUscbjodApWe8dcexh0Du2wiYx7mHQLSvOwC/wYdAEpKvpXXGh0AuCYgewMmHQGAYf2J4yodA6g+whHnOh0BmZ/7Gd9KHQPm1C+N81odAFlFx56VOiED+eOcd/FGIQF6JGSupUohAkL2j0v9ViEAwcQiuq1aIQDZrN8ivWohAjX3idjKCiEAIaYQlN4aIQLtBpp/6hohA8keruzyKiEBS5SP+qcqIQNlQK26JzohAUkYOco7SiEDFNQsPjtaIQA== + NrgMGZxjZUAoFld2zuNlQOJgFSPMRG5Ab5d1hqpCcUDMvNRcKXN1QMXreYtCs3VAG0B+kNojekA= - + - ksGgRh1a80X5U+5FJ9MlRf4xDkWZroNFnbLyRLuSwUSCbPlEtJ4mRxFVUkTOmYxFQ1P1RA0vlEWHFq9FGGVeRcGijkVUGKFFkn8KRWq/+EQvXp1E88C+RSUkfEZogFRFuXmKRALGwEQSSq9EfGsNRd15OUV67ZlEBiTORKBXS0X/myxHXLGDRIo+mURZYSBF6x5sRJogjUazzV5Fj75wRfZOmEQemwVF+loARRnfrEagcvxF+kUURUyZkUT6PO5FkZzcRAX/7ERA33NE+Ed3RGkfHkX8KNNEssOjRadUr0QMQCBGiH+WRKujGkWWGkNGTnx9RDrEckXrmLxE9R+oROoGmUSmzKhEF+LHRA3HwkTUUzBFyQOWRDIbZUQlCq5EhRXORJ9T6EQHryFFIYO3Rr7ipkTxNcRFn4QxRelbYUU6tXdH6TycRGzge0b4e0FGBteDROZ8HEZKiehECsGmRKLDHUVIn5lEl2eoRP5de0VZXXJFjqKZRBBi70TOPrlEeFiSRO+EcUTjUQ9GcGDnRMfAj0TPU2VFBHN3RMSEsURZvMdEXCmfRDUy8kSRBMpFphBIR6g24kUypINFnQHxRWEGfkR1uLZEKIyeRGsGsUSCjGhFLp9cRFWgd0StlY1EGGWYRI+h00acw1xFLFWARie/zURBLKFEQDwBRX2lFkVjpfNEUAdfRYWXqUSHahlF0p0FRcwqjER/rZhEBXqHRO2ZpUTcSTJFSfSlROl0hUQUz9lEBfj4RGsqK0b/V0pFMDdfRbxpIUXtq5ZEGfPARXXKhkT947FEZa6BR2Q0p0RWGGZEM8crRadXoERhOp5E18E7RbYECEaJg7tEkb7WRSCCnkSbUA9Fk3gBRSWyh0SupZxEGxK8RIhhKkUn1whFc0Q8Rfq0gERh0yRFQ7+sRMCjHUVhpHBEo+IeRe32c0QegY1E1wTcRMr+d0SmLBxFDkxSRSCAk0RGAa1Exty9RGJl4kQmoghFQT1ARZ1jFEXS+9ZEwhMRRc0ca0Sv6sNEnA4vRYprekRY06ZEFv63RNrKVkYds9FFXE+1RILBiES7WqBFP+iHRL1hgkQyG+dElWgbRRefLkUIKLJEBxQlRSrOHUZVa5pEa5q2REtiIUVJVI9E+UOYRMu5mUTLca9EGvDORNnwsEQ8WYpES0iIRomk20QqA/JEvg2LRMGnQ0WBchRF85mIRSD8Oka4FbxEAlOZRAwaUUUCF/NFsWxzRQG83kQJw69EnyG+REw5hkScipdEYRzJRLFxj0TwrLdEGls+RmDueESuZJFErwejRVDzoERTfCBFNgnCREWckUT1WmFEWry9RHLmikQeO5NEQCUxReVI2EQLMZxEKLq0RPggkUSCLKdEIsStRLkIkUQFecJEGSSZReXE8UTCMMFErwzhRHR8skRNLIxFBLpZRgESl0VEQMNGNqwLRfoY+UT5oI1F078ARZiYh0Ql27RFcxKpRHxDIEUuoo1EgC8yRjBXr0RBogtFMb/iRLLafUTNupZEV6vKRJOCEkVA9N9EvWfJRAscsUWdUzVFcHXeRM7qdESlTdlEDv8LRWjNbkUYLLdEkgK8RdsYnURZIIxEyCZTRWQnYUUxUYRFHfQTRVmhUUTVKYpEGO8LRYVJw0b5KpdEcveHRWn+t0Q0xAlItMWMRMCRgUQwUalGlmgVRe4e20QRDOlGuvjYRQc+QEaU6x1F2x1vRI0LyER/smhE1w14RIyci0S8RjFFHDnbRM0Qw0R2u9ZELt/TRHiCt0Qd949ETiWqRPlPh0Tt8HdEJOWkRFR04ETYKZ1ECFWTRAxeb0WywK1E/Y6QRH8sw0WUq4lEXhGORZtFaUWPPxNF9ZqqRP3dtkQ3EqBECbeURP9/U0XWp3pGjny8REiXh0XEToFFbd8sRQzvaEUrj71EfOzARNoP50RLfVxJMwPnRMSmwUSZDaREnUjgRTsBckSwbStFhQwVRRU6ZkgKu5tE8ImzRIPklETgAoNE92EGRaZnr0bYXYFE2L3cRKIQZUTR7w1F+V+URGwGckSMuKJELt/jRK7wnkTxEYZEH4xSRi9uv0WO/cRELifkROj3mEQfrrRFdaaVRawJsUUuuYNEVCySRGHErkQ1DYdEXn+YRdt1fEXgj45ExzOKRJxBgEUAIqhED1B/RQiYnURY7sFE0OoDRbXzu0TsV2lEd+JnRNNsjEUDrYVEhDWkREX3z0Q21o9EaVCmRbDfFkWc02JFD5J7RGJ1xUXZj5lEB6DARP2vkkQX0wJHy6ShRJQziEXyjTFH8qTJRxhNIEdyXItGw2NARd0BX0UjQr9Gzzw0RX2jV0UVzfVFFKntRASxxkQqxgVFRcBSRW5AqkRJygpHft29RZnXvEae6AhF588qRpa0QEVX8g9FL9EhRVq0tESQvQdFv/yzRB28MUXhwJpEAJb3RH+2v0QyD4NERAOIRQQ1oUS9IahEK10+RkUnekQyd15FZTq2RCEvnEUIy+dEmoumRE/flkTF2NRFnIUtRVkI0US6/QBFDbyJRE/upURR5hNFuT9YRS7CykQDXYdGdWumRHsaLEZMcoBFilwfRT/pqEWwWHpF+PSSRZkjUkWWGJ1EibSzRQR8rkSh6RlJDwtdRX3igERNNRlIsVCjRBSGaka6DG5EkPYSR7QA00bXrxNF/Y5mRYWnxUWfQuBEIx4MRZbmeUSZ47ZEa/SoRFQK2kd8zFxFCs8TRalnxUZbvEhFomRzRKVzOkWv0N5EGaGlRvm+7kTTtrtEgdjbRFdpdEQug4VF5eEvRSSJ0ER4ZoREpUyKRfrab0RRSYZFzfIuRX/K1Ue5ZYpEQcK6Rv9UlEQ4MsZEmcKJRGxFXkVxJNBEHwB8RPKF/USJmpJEp/2MRA3C5ETxupBGZybdRPhhqUWLfYhEXwz+RY6OgUUcOJxER+mdRCiUHkWau95ECxieROPU40SfRppETzM2RicjhkRlnJNFvrazRIkNqUS/hIBEBJe4RHnjgkSHn5dE6/CFRGLYfURn4pFEQxcYRcJ7EkWFLwdFlz7LRV9m40QwPwBFNBMvRf+SaEVw65dEJXahRPKw4US0/pxEtOdyRM35XkSwf6FEtb3iRH/EakTgyIxEapuGRBOZlUQWFIhFtD1CR9FKrURaQrFEon6nRD6PDUZ/nA5GYHFJRUa/BEWy1jxFRyiGRC3rhURGX+FExTyrRNI6k0T72gdF9kGgRDXeI0U3K7BE+WuiR7VDg0frt7NGz5UhRikxPUiaJwFFgFTRRDoSKUd91oxFtm9FRhLCyEUlbRdFfVmFRIGQpUVpqIdEtf+zRLuemESvGRRGMw6CRJiqBUa/H/pE+olhRU4nkkRdFYFENggFR49pvkSpr4pEACbsReEvlURCaAFHu0SNRrYdR0azR2NF0UIURdibokRalKtEbHqjRDMlh0RWootEhXGCRKzW1kROtdBFdIXnRNaarETj1KdE+kFmRGULVkRYEIVEqeeJRGhkbkStqApFmtaNRBCFiUiwXddEym0hRSkQskSDp05Fnoo+RdWw9Ef1BQRFYKXkRJbMq0TPBoNHxdWXRDraokT9tApGtbdlRnEZnkSxCIFER5ipRNA2lUXAT0xFdSGKRMLzqESjzBNFn/q+RO5JyUaAPopE1FtARtsOzEVYc3VFtv90RMw0oUSF6otFCMKARArK60Z0R7FE0frnRQLTLUWLLxVFw7z6RBtq00ROZLdFwm1mRP3nWETTkJpECOmLRE2+fUfeIOxGJaCXRHR9J0ZBRWxE9kY1RdrxsEb7I3pGhRfhRUOKykTZYGJEgQwHReEV5kcRpoREC6xgRMxKlkQDXIJEElzbRiTqEUblzW9EDZw1RqpsDEUT7bREWMoXRQXWBUVUs2JFILWFRWfkv0QxTPtEwZ58RQsYUEbm+Y5ETzOIRAgcgUSQeBRFHS0cRW/WNkYYwddE4X1ORtec3ETms4tFjxCIRPadp0REW9NEnwJ2RFGrwUXDY3VFm/PiREPffUSj9cxEoZkdRXL0kERgm5ZEye6LRB5Wb0SklyxGCoVWRW0mlUQqpyxFLg1+RdNMNkjd9jhFjVe6RDpeLkeNIA5GRWK2REjAhkTQaWZEowyyRMtHs0S9HeREzP3pRC8ebEQAyIlF8Sd2RCHmiUTWQhRFKWCbRLnoL0USRthEuZSxRBbrykd91JxE/kNxRJunIUcYtJBErDKCRPUJsUWGpI9EiR7URqhWCEWsSq1EklHWRecauUXoPZtFMeeKRN3iOUX/zVFFOeULRSFFqETw/cBEqLZpRVJJiURbtxVFqiGWRK0oqESeD15EHG9vRETU80Sd1ZpEYP31R8t/TkfApoNEvwgLR1b/FUVfcR5GwcLERI6rfkRy3GJFHAuKRATgokTUO6tFLnJPRQLiA0V+Wb9EIu/BRPFekUYPMqpFgkM1RcMfs0Qq1zRFNmjLRPPIvkTjel9Fs1sPRfxlakUu0xZFiYmZRbW5DEX7Ad5EkxJxRLegZ0SHbJ1EfLN0RMoxaESxE81EWN9gRMCuj0TFjnREoXYGRkXJgEUy0gNFq/cjRRsONUelXzZHa4+CRHs3ykZuS4NEhbOiRDDS2kW1/3VFSvRyRCOGFEdW3K9Gw/KuREXL6EWOduNEZvmCRLOzF0XY9gVHIVG5RJj2eUa6ADBGJpPBREAXNkVKYZhFjp5yRWBIRUU4AChFr/OTRMAUGEVAAnREASrCRH1ucEV2exlFuaALRtuF1EVsFbdFbs9IRYmeRUX9JOdEcfKwRGljIUfSPr5EFrlgRch4g0ZfuxtFX4NiRLpqPEY1zuVE4vxORTxakET3oGtGbsEpRuJEUEWzlsFEg8mSRMFVk0Qod5tEqNiFRKzWgETvCA5FAY2tRE2/k0RxRo1EFiHdRLLLlUS5Xn1E2xyQRKduikTQtTVGiRa0RQN1P0ZY14xFL74BRkZ7kUVov7BEq6ilRGIlqETc5LFEwRouRn0mvUWvHSNFFiPGRyCFpkRXT5JHF4fkRjQFKkYHpmxFZIg/RmWfwkTxzfRFM4rlRERihUULX6REwI8/RfVDtkRLyyNFx+unRF2KJEXNMilFirAaRQIPu0Q= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - pK8o+9zAckCPF5p0CMFyQFSZneFuwXJAmjnsK8fBckCgpNa+5cJyQHw1uYEPw3JAiCA27jvDckAKyhLOw8RyQG7jBs9YxXJAVzPh3+3QckBEHedkDtJyQACoMlFD0nJASvrWEmbTckDaEda0z99yQB7AJRkj4HJAvEqqJrngckB72gKG5OByQCaRV/BL4XJArZxAcnbhckBexEgSUeJyQNxfLgSQ4nJAUUl6KiTjckDGatqB2fByQI8qLyE18XJALDsUycnxckDQnQedevJyQN5fKxK483JASPJ8LKL0ckAGjNCnwf9yQMLhOYD3AHNAeMXrrE0Bc0AEkUR9OgJzQD40I5zQAnNAXnObVfoDc0CXAw1KdBFzQI5J6b0JEnNArEzTEycSc0BsWfyzvBJzQHLkg24FFHNA6BtZtEsUc0CGgvGMeR9zQKjyphSkIHNAeSJc4zghc0BHi+GTeiJzQJgh7M3IInNAmqTZxQ0jc0DJugq4ziRzQAYEDBxGMXNAcjOS5Fwxc0DY3lQfaDJzQBo0VMTVM3NA6YWA5rk/c0DRKYA95EBzQHojxm94QXNAXl5JS7tCc0DG8fEhekRzQDyYLlxgUHNAfC4ZVZtRc0DXUbu3DlNzQLQWMteiU3NAU6xJEYZUc0BSPDtx+F9zQEE+l2WKYHNAKrbpD4dhc0DuPjVROWNzQETlO17NY3NAHtXwyFhyc0CWvzp3t3RzQDJmbfBMdXNAJ5gVMniAc0DCCMg1pIBzQIDIWbQOgXNASCmAHl2Cc0CExwHhDIRzQILund2FkHNAPMXBO/eRc0DM1sLOTJJzQMQGfVTSknNAmLk4AM6Tc0AGuCHoYJRzQJavYJz3lHNA4adYfbigc0C0lYqDS6FzQL98y3laonNA2BxZrZGic0Bq+O+eBaVzQPy9mp2isHNAtkd/AMiwc0DIoLT4fbFzQKfbOIARs3NAnxvCYLazc0AWqH2JDLRzQJIR6gq5wHNAYlfjUPnAc0A68OqFO8JzQDiwcZ3PwnNADs7WtCTDc0CS3/vSwcNzQB7aSs35w3NAEKqif9fRc0AOLIgRu9JzQIrTlObd0nNAMsmwvPbTc0AkHAme4dRzQJyo+uGj4HNAV6NHStDgc0Bgu7opB+FzQKLCEME34XNABLWr6WThc0AZGn4qjeFzQK72pe7j4XNAm943XXric0BE0uVADuNzQEDyk6qk43NAYEL53rHwc0DZOMEK3/BzQB5bQE+28nNAbDb6o/7yc0DzJcHjOPRzQMxz45iM9HNAo3Fx7OMAdEDc0RkYEAF0QFQ6I794AXRAfJeCEqQBdEAAJ5yjuwJ0QBawrvTjA3RAssfPwwwFdEAsA8m89RB0QNLXLVEEEXRA7v6ctIgRdEAQaB9NpRJ0QIkxpbXYEnRAaDGKZ0wTdEDeVWuKSCB0QH265Ze3IXRAQMV9e/sidED9YlNvXCN0QN24ZcNeJ3RA/h8Tn1IwdEDc5EBR5Dd0QNI5ZUjJQXRAPDlOHzpDdECal21ZeUN0QAyIKIdYT3RA9EK1f2FPdECZrIEjiU90QPbQReQIU3RAgP82fPZUdEC2UWskIF10QFiTmay3YHRAJBdCygdidEDQ8Wd8e2J0QFAXkMZ9Y3RAulVx5E5kdEDe7ZQVxWd0QLx3XZUhcHRAjvdqpUBxdECEReaD5XF0QNNvb0V6cnRAni9NaTdzdED2BMKCNHV0QPjv3uhsgHRARm+Q9/eAdECWcPQ5ToF0QAvKMmhIgnRAJIkoYSeDdED2E7gtFZB0QAug2Sjun3RAxUFy8gugdECkXZ7VzaB0QAgKCP45oXRAomYnmcuhdECLia79uaJ0QHswNUsOo3RApmac6giwdEB2AMQXLrB0QOCBpXHDsHRAotRPMHCydEB9eKuBw7J0QJiE9kX8snRASAt1ExuzdEDbTEACyrd0QCjWen3jwHRAmnoo6XjBdEA7NU636cF0QKpCEBNPw3RAW8KRcSPEdEBiI+9aecR0QCpJKKa3xHRAc3voSsfNdEDahq7m/M50QLjY1SPM0XRA27CaQRDSdEBdu5YUptJ0QBT2Wo8+03RAPYlyq8zUdECuoMr88tp0QHRj9ra34HRATEEviyLhdEA+VJe7ueF0QOJ2BMeQ43RAM+NLhk3ldEBsJzu2v/B0QNCunBF08XRACj5vYozzdEBBkXqvowB1QOwGnEXNAHVAb8GAIGUBdUAtYvvYgAF1QNqVuDVcAnVAkEU4hZgDdUC52+Gy+QR1QCDpocWVEHVAc83+fygTdUBCSyJqIxR1QHSS6+QaIHVAUZDeeesgdUCm2trWnCJ1QI0BJ+aqMnVAYBQ0dcs1dUC6rzn/10V1QALmGSr+T3VAci+kZHZVdUDEe1tKCmB1QC4jOl83YXVAbOt0P2NhdUDizEaQy2F1QBgNtOP2YXVAxu7CWWRjdUBmz8aSV3F1QN6/vMTscXVAMphWg3dydUB28QASjXR1QIrNbeDkgHVADAEQbXmBdUCPiVB/rIF1QO9pmaylg3VARC1x5JuEdUC8zQ79vJF1QD6SNYyUoHVAqnKxHrihdUDCkPYF+KJ1QJO85qFJo3VA1Ge0YqWodUA6gH8kpL91QP47Fkc6wHVA1b9k5MzAdUD0rXZFZMF1QBrrquX4wXVAYER/3zrDdUDSPOis5N91QDCVQIx34HVAvrxfdw3hdUCO+73WB+J1QF/QnnN743VALSdUhbzrdUBQAXoGa/N1QLxT9kxIAnZAfssAneQEdkC0nLBLVBJ2QBZRJhsMFnZAWV5J7foddkCKzYtIGiB2QL8DqRk5IXZAcPuQc4gidkAS6T3NjyR2QCOwfidLK3ZAXjPL1B4xdkAg5phqITN2QPN/Hb+cNHZAkquCDeJAdkDyu8aEHUF2QHOjvpjHQnZA9tkif05DdkBC/EqveER2QHaVpRsSUXZAUIOow4dUdkDm1nehzFR2QDBcahEjYXZAYutd+dxhdkABA0vt2WR2QOaQSjEBcXZApMcTVtJ/dkCc9nMTj4N2QKwf+BBmknZAtG/cI62SdkCQDEF7u5N2QMopQjPpnXZAS+NP4negdkC7eNrXDaF2QDZPf9Y7oXZA3GQg8kKjdkBoG4m2jKd2QCaPQk8xsXZAqpkHqh2ydkC9IV0tp7J2QDgfKPi9snZAX8jY6XmzdkAkdYTyDLR2QObzvrG4wHZACPyMok7BdkA8Kvkje8F2QF0Zg4+0wXZAMtvzz8/OdkDDgHoEwdB2QL6wFmJr0XZAR9oXJZHzdkDrc8/FdwF3QCsvkzU1AndABreDYEoDd0AMNHG8Twt3QFZ9vRMBEndARd7kMQ8id0Dh0zW1DDV3QPuaXcOcQXdAVI9jJjtDd0BopyeckUN3QHj49PslRHdAKdSwTxpFd0AeU0IICVB3QK3VyKhKUXdAxbLd95FRd0BjRAg+KVV3QChov7JFYXdAspcTQZFhd0ArTAa/n2F3QJ63Gxomb3dAp+J554Zxd0C4mDZdnnJ3QGb6Gv+PdHdAHqnCtPl3d0C6XRj6uIB3QDJCMSIPgndA0PWxjgiSd0DiLpZ3T5R3QFTbxFX5oHdA6m0GePqjd0A6Yaj1mrR3QMoFN6wGuXdAheYLCRHDd0Dhz4BgUfJ3QATkA7ZF/XdAHE/bnZ4CeEAodytquQR4QOj+OmOQEnhANj+teU4VeEC+sDdjbSJ4QOytxSaNI3hAW5uLYtEjeEBoq38UCSR4QBpDK6ASLHhADqByhBoweEDC/+7nHzJ4QPoduWqHM3hA799TSgxCeECWoKBbEER4QOq0pPx5RXhAgMGmfddIeEAaP486Mk54QMTbM43JUXhAwomNTodVeEAGJtyb+WB4QHB2mRe3YXhACiu02yFieEAQ5vyRUGJ4QBBfcmmycXhABu3F49FyeEDIIdksA3R4QHlAP/sWdHhA6moCZi90eED6u1MpRXR4QB4+el5cdHhAK1GPCYt0eEDawXXMsHR4QDYrQ+3DdHhAIilv0Ph7eECzVRXDIH54QAuh1BqkgHhAD80ucjWBeEBsCgwfpIF4QDpZPafQgXhAtRfj3f6DeEDUl9h5mYR4QGrcIQaXkXhAvP0TZqeUeECdi4HWs6R4QEYB2RjOwHhANHiAkGLBeEDdp+yAhNF4QLJZlt631HhAdiKUYKLieEDfg+Rr/Od4QOOckpgq63hApB3R9VXteEDCVybkLO94QBR51z+O83hAVIj3QAD0eEC9wzyUjPV4QLPofywPBHlASHPr3JsFeUBuYw6cjSF5QLcEccm5IXlA9SBDriMieUBuT+6xTSJ5QEqG4gNhI3lAn9V3HLQoeUAGtMtEtjN5QEfTsu67O3lAN/3HqolCeUBlQ8Td9EJ5QEj9w3fEQ3lAutMgFPxDeUAiK/cAzFR5QE8M7qrlYHlANUW3QsNjeUASiqInG2l5QOY38rULa3lAOscO1OtweUB1fNktRHN5QBYs77vcgHlAcFLay4OreUBGFJs5wLJ5QFGHPDTPwnlAJenBtFrDeUDaZ2NQtMN5QOa3tukKyXlAKC0usifNeUBwgh+QQtR5QNaMbgTN1XlAhCpTF0/keUB4IRNS+wN6QJTGZiU4BHpAR3KFQfwFekDlIOmm6wt6QHrwSwwLFHpAMVPK1CozekDODL1CDDV6QOzyGTctN3pAkEuJAjA7ekB8OZ/rMz96QLw+Eg42Q3pAjv+UqBlFekBAPyVXgVN6QARxVMcoVXpAQoAb8R9cekDp7Nl5sGB6QADQCoklZHpAIvQ3IItyekD6tr7HKXN6QDesUn4od3pA8d3u8sqDekBIPgyvGqN6QF7GLQYOs3pAyMO0LQ22ekB8zeYVELd6QC4wGMYUu3pAeJQSgBG/ekCuLiefFMN6QFZOxaIaxnpA9ABMXKfjekCjiFPLe+R6QBxbEqY27npAEF25mhTxekAS6tqGYPF6QDrIDaJ6BHtAcsScHCoOe0C8qwEiFRB7QDeLFVtMFXtAdJz9A1Ece0BURm+LWiV7QGeaGv/EM3tA6VhIOcdve0DqPgvDEHR7QGFog8H+pntAqcaUVAOre0BIxNa0A697QK1AvRJ4xntAsAjrPpTNe0CCh+Udp9Z7QNWoh64m5HtADq1OXrzke0BIw2XOi/V7QGC6dLrYAXxAJioHXfUBfEA6tUf5vAJ8QFgEEc7vA3xAKcdOoGcEfED8oqI+mQV8QGHjs8JICXxADuupRYsRfECt5Swm0RF8QIbJwEX+I3xAuFfuKz4pfED7W21qmS58QHDdGjt+M3xATPW6I81BfED0PUOg21F8QHDAOdJ9VXxAaLkR2axVfECy+6A4DWJ8QAFZhLKLZXxAiBDJEQJzfEAU4OOYmXV8QJpWEcYSg3xAxEdpOcONfEDCgtc2HJN8QDI2qvcnl3xAt/ghLneYfEDuveiiKJt8QNv9YTHAnXxASF0ELNOefEC0OwfmGaN8QDYtDM+9snxAwue/dHi0fEAj1212V+J8QKVsbLkP43xAco9h62nofEAghyZCF/J8QK5u4JhT8nxACIYLgJb8fEAeftXgAQJ9QKBf6IFLAn1AxhI6zGoDfUDXxoMgnwR9QOoZwdpvC31A58brHvgRfUDOCEsYRRJ9QHpLqsBrE31Ak337L4wTfUDsJ8p9PSJ9QMEaRuyiMX1AyXHwJUc4fUDW59jNoT19QPgYE/vrQn1AbrPEGD1MfUDuU5gC62V9QObquln4dX1ASjCPjS17fUAXCFcZHH99QCMG/ocbgn1AigAhHAmGfUA4lgYYlI19QDbE+Ralo31A4sssxiC0fUBBRZ/cM7V9QG0sfppRxH1A/GGQ1OXEfUCLMH0wPsV9QNRUeAO7zX1AZgtUovTUfUANJMmKkPV9QI2lw5AzAH5AUAclCh8gfkAkWEg6JCZ+QDRjt/94NH5AIMSdBuxNfkB4YFGvUlN+QMGSTYlZW35Ar8DDokVjfkAsQwymJWx+QLCdbG2hg35AMMNWVBSGfkAM43gTMYh+QAlWgO3Wj35AQkDBysKgfkAHHOAqk6R+QJwprbRhrH5ANNs1mwyyfkDEusfYabR+QKCBTVJdw35A2hO5f3vDfkDbDm/F0cR+QCH0gnS5yH5AmN+7gGPTfkAzGoE3ce9+QPiJhR7OAH9AC6yXMaYTf0Aep1Osrht/QMvhuZCkWn9Ab/Wma7hxf0BDdkw85XR/QJ26/oiygX9ALJhAPTyEf0Au+V4o84R/QFxPvZtikX9Amm7+wZmTf0AySyx9/ZR/QI2ecwZcoX9AaYsWMxSlf0DCWFYe9q5/QDQpNV1TsX9Abh8/qFbpf0A2F2JUeASAQNEBFWp3CIBA+JhpG/ULgED/3vSHlg+AQLazWgHyD4BAYxSsiyEbgEDghzGB7imAQK5aRRWLLIBA1ACAbTcvgEBAmghMZDKAQJA4kDIdN4BAjeWy2sg5gED6AlxCdjyAQAJBCCcgP4BAtbQm3RxBgECu2G38qEKAQMs8M53kRYBAtxzomvVIgEBEkfCxFUmAQKDzi1rqSYBAqqFoV7BKgEAOQfsZ6FCAQNr5BTsTUYBAbO4427RSgEA1X9fMJViAQAI2Q9PlWIBAgXcDog1ZgEAKC4uvuFqAQECRvNYLYYBAiss9IGxngEDXhe0YomeAQGTKaHxraYBAjMui7U1qgEAaxcSF+2yAQHDaPKgqb4BACrsaelRygEDHAd7kcnqAQJRPPnomf4BAijXXiHiCgECUbcRvToOAQKJKeRx+ioBAvOEikV6MgEDGNX45746AQMB3JZUMj4BAmVQAa7qRgECs2BOSY5SAQOKPvAYdl4BAZNozZK2XgEBSjqF/T5uAQFxsDS/NnIBAEACfBxKkgEBkzCGseqWAQEJHitn4poBAvrJGMIepgED0T4IAEq+AQL3Nfiezr4BAPkI922iwgEC477Ic3bGAQEr0bLN/soBA2lsU2xq3gEB0++5T2LmAQOqmJEBLu4BAHog+cAS8gECvnebSwryAQJgNoXzwvYBAZBHJLVLBgECqsinHbsGAQMDEHiTwwYBA3NxUKZ7CgEBWlOvlAMaAQOs3c0I+xoBAPGrBcuvGgECNgIBYsseAQDR4YxJTyYBAWCkV0tbJgECamz7LA8qAQPSMrA0IzIBAxLGKmwjPgEC0s1SsS9GAQMbKKY511YBAEnLNO2bYgEAaXZxiSdmAQJI4QYDD3IBAROR7fW7ggEAoKd+tROGAQIJiPrvt5oBAOFsXwl3ogED6gYuW9uiAQKhLDGTX6YBABZFtYhjqgEB1GdnNAOyAQBZdJBRK74BA4JTFFefxgEDUryDoPPOAQC1kJexn+oBAou04Iz//gEDAbFjMbgKBQOhCTnQ/B4FAxizVqrgKgUBlR4d1PQ+BQED7lm80H4FAotb0ZSMlgUAkKnEAMyeBQHL2dtABL4FABmNwNC8vgUBWGQvqrDGBQMTBjHe+MoFAmWvOvjQ5gUDMZZ2KKT+BQLxxOCHNQYFAvmjS8JBLgUCQlKC4zVeBQPKK6+PLX4FAu3+0IsRlgUCCYLvIsmaBQFrvjDi2aoFAa/1yg7hugUAIZe4Vu3KBQHv6BdN4dIFAvASPmcF0gUBWbB7ubneBQNwY+L0deoFAMIo3/o59gUAiBISMYH+BQPQd7Pz8gYFAuQdYHp+CgUBGjdDpgYiBQLhFB9OlioFAi+kr1lWPgUAV/pKAvpKBQPwPbHBUl4FAsKczHMWagUA4OhjZUp+BQErrg0bnoYFA5oiNfd+igUCWz3Pgi6WBQAidu/XQpoFAtT3X6G2ogUCettRnj6mBQFGN3JNCqoFAKdIYukmvgUC8MKOU17CBQPbFf5ZKt4FA0MXNVBLCgUC4cuPy4ceBQLKqRmkDyoFAFHA7R7HMgUCQQAA8V8+BQFz7ljkH0oFAcGAKOH3TgUCOkqN16NWBQNEMZSTt2YFAeavfdIPbgUCXY/d5DuqBQOIUIuDF+oFA0K+WfgMJgkAqnL3uCAqCQGaMDTmBDoJAtvxc/9cYgkA2Nh1DKRqCQLASbnlmGoJAiCSLVu4agkA9kBq8KR6CQDYcvhRoHoJAgSe1wNYggkAumNqWIiGCQCAqj7rUIoJAlw380dAogkBQapnf2yqCQI79R+lqLYJAHQ2L4+AygkDQttMayTqCQFgojbnjOoJArOzYEPhAgkAcat3WeUqCQHXNm3Q4TYJAkmzwztJagkA4yLuSq1uCQI+hxhuVX4JAspBDOtFmgkBGG/VqdmiCQOLNedw3aYJANz7DkqZsgkBZ1ab9U2+CQIjq8lBob4JAdXuIgGx0gkAKm4W8OXWCQKxHX+UBdoJAwjFWG0OJgkD2dHQjQ5GCQMixhnKtkoJAOC8xefWSgkBxfBxZO5mCQCNOAYhRmYJAHihtZfuagkBUwBN1DqGCQMIclDg7oYJAIoOkn8qigkDActbQ8aWCQMUIc/UNqYJAtHd0LzOpgkDqv2BX96mCQDLtZt4HsYJArIoJIe3FgkDAOKUE8cmCQHZ/Nr33zYJAyI277hLWgkDii9aIW9uCQMBMIGhw4IJAym/R/jbigkBew1B6auKCQOgRHCau+YJAbSFK4BUKg0B52OdlxAyDQLngyxl5EYNAKiqSt3kZg0BYpV7fAxqDQBRRgBVjIINAzxjVnHIhg0BfSd7hcCmDQOxKXOJaMINA1OJiG2gxg0CX0xPaIWWDQHSgyeh6ZYNAJEKpHUqDg0DU1x1GP5mDQKeTQcdCmoNAYiF0fkWhg0A6+4pF86mDQDYZvxjnrYNATV20luyxg0A0yTjb/7WDQLq81mqTyoNAEqlaRtbtg0AgjLknAAOEQD/VntgJC4RAFpv2pNophEBy8y3pyi2EQH6Wg8rNMYRA7JfYJfcxhEAasGlVmT6EQBZC44z/aIRAo565s+NqhEDuRmAH6m6EQPQn6c/9cIRA5rr79cl3hEAoNzSE9niEQGvQ+tJ2eoRAUM7tHSR9hEDWhYbe0n+EQIjfK9P4gIRA1uH0m36ChEC2wEJ+B56EQECKrTsLooRAXnh+9A2lhEBEYM27DaaEQG+r1FISqoRAkBII9hzFhED8+Tm5EdaEQPDD3b5p2YRAlIKlCmbahEBUeYr8aeGEQJBQFpJi6YRAGqIqu23qhED87zAjGu2EQI9FhzXK74RAigxg5jTxhEAUG1VZZfGEQNB2yfE0+YRABGFroob6hEA6XEhhLwGFQIEh773wAoVAijbBgcEPhUAuu285QBSFQAp//CzbFYVABHkvLPUWhUARlQoMdReFQEiNn5UPGYVAOPhGSKYahUBM0ppV6RqFQJ3MWP1CHIVAMl7eq+wehUCcpweSvyGFQFlV2l/1QoVAvNCei6NVhUASehohoGGFQALiXFa5YoVAVIqwB01mhUCvU0Fwu2aFQMc/oFagaYVA+s4PCk9qhUDC/KF7mHGFQNABFiG1c4VAMkJKyph5hUDC/UgOkYGFQPd5ucleooVAlFaB1AGjhUDW58CPQK6FQES5TjNEsoVA3FbFuEa2hUAsGhnDPLqFQJAEaSD8BYZAUCoIUXw0hkDgfGNESD2GQHFkODHTsoZAbjDifim5hkADMnHbLrqGQGKsqXyw0oZAVaKkwmTzhkA055DxkCmHQLhbXsuQMYdAbqZa/XE2h0CO90pHiDmHQCYkQSV1OodAdiB0KHU+h0BZCXkoXUGHQBAdDpqIQYdAOJd/TnVCh0Cdo/xIWkmHQNTQRMzGsYdA6CtEeMa5h0BhTzOjwMGHQExSD6p1xodAJLRoC8HJh0C0RpE2eMqHQOARZh56zodAmpfkRnfSh0AeUpB9dtaHQI4+CVN92odAOomZRDYviEBnxn28pE6IQCkno8/7UYhA0QcAvKhSiECNS830/lWIQEiX8farVohAVOyZ9dtqiEBaUa04M4KIQMCdvT33gohA5Jc7DjiGiEBuO8qJ+YaIQKJigsSIzohAhtzuII7SiEA= + KBZXds7jZUCYE/Y0vCFwQNvlv3T/InRAmHHSiBQzd0ACpwfsrTN8QDBmM2EWMoBASP+pBUMigUDquBNZjjKEQKwsdCLPOoRA11b2JBtzhkB+mbeU5TqIQAKBeCdnq4hAArBmURM0jEA47JeMXTuMQDgbhrYJxI9AXoGjpEUakECyIoTcKv6QQMg3xd1QGpJAqHF1QnEekkB6TirslqaTQAWbZT6tHpRAXmT988wqlUC3scpM82qWQKhUz5H4LpdAN8nBYUkvmEBaazSgPnuZQIG5k/90M5pA - + - haCVRtAMc0TSPfBFBzOsRcQyDkVl+LVEHJAGRYUo0kRG1KNEFcviRDtYpUScNxNH+HsVRTKtBEW8MplFvWyIRftlTkW4MK1EWQBwRC1omkUZS5ZFyCGrRNToskV8MzZGzlhtRQR9tERLcA1FMnjQRFtbDEVlneBEDsicRMLTHkXjuytFW60jR/khFUXicwVFCVGyRPEUn0Y9dphFDZUDRSnR+UQTooxE4oeVRjNV1EXEM0hFMBejRF0L5UWeTRhFQuGeRPuNyETRMn5EpgohRWdsnESfa4ZFwDetROLLQEY0A15E2qPtRDqHNEY1ZrVFFwftROJoI0VF45JEwxHMRMzSUkX31o9EQMOJRKmm2ES4pwhFMpbFRjDln0S1hO9Es+ewRV5AikRjLRdFQGqERZrSb0fPT69EYPyZRMrajESkVX9Gd0QuRjDIp0Sf2wNGvwjSRH9scUUPTm1E90pVRD6/lURQQLhEFYhSRTrHQEUQ97VEln0FRWIwfUQFFgxGFbHYRBn8jERfj4dEWStLRa7I1kTS9ItE38HORKr9jEVARkdHRb/TRaJ/fEW9c/VF3VWURMY7okSCO7FEpRaqRDlqikShcJREtdepRReufUSnNaREVQaPRO9i4EQKc3ZEeprIRscNYEVFjXJGEAzjRDbW0EQd1IJEkSmURPjh30Q7csZEF6LyRNPEsEQ06gRF2LBTRd+ikkQ6/iJFRoCYRA5Sb0SoeoBEX5DcRMTfr0Q9cYtEXyoCRQCWt0SnjVpEu4RwRPuTckS65wpF3dmZRIOsAEbkk41FFCOERYTWJkXWN4FE+n/VRGrM5kQ4+ZZFFdBpRyP6iUTjEtpEcAi9RNFtjERtVGlEOi1dRYgJBkaJyoBE5laCRAUZwEV0EQRFckDDRIpz5UTmWK9EVYKcRE2U6kQV60JFdtD/RB+mb0T3SQRFcCZZRZokq0Rp1BVFQTZ9RIR3D0Ww69JE/GwTRcRPfETjfgdFmZSuRPCqr0QixMpEZzIiRfSJtURhE+ZERbBURXZfMkVg4K1E//PhRBzifkRxTptEImUXRZH21USIEZxEBfKARIV5gURQZTZGk+vsRd9So0T+0nxEVZeQRGr/8ER9eoJF1KRYROrHkES9SAlFaUrjRPEw7kThraREkGmmRNKJAUbClJtEm+tRRfQgi0QFKapESvjZROVwfUS/719GE5V5RL3o/ESaSQVFuIWFRDiRYkWUBWhEhc/ERJahdkbCCoREu4e9RBUxBkafPyhFngrBRI3HvESY1YFEVtiZRBuAq0TCHwhGUu4/RR2KpESyUwBF2aH6RCXetET1juREfIi6RFJlo0RQ/ulEdMrLRGDOwESnFY9E0Ha6RIR3eESN0yVFERKtRDpLskRhRJ5EddHYRMSf3kSgXa9ENe5oRahEIEaI+UpFsbvGRopQcURDrMZEfpXPROfiaUVwTANFJnFfRDJfiUUUqNlEPfyUROnChEYfetxEIVukRCozXEVWKXFECW6jRNGYl0T9EqhEMK6CRBaLE0UQKANFGD3GRNGhfEUp559ETonKRPkbjETH6YVE5X5vRB2W3ERcoUFFeOmERHlXukVDJS1Fw1pORcdipERL8HlE8LE6RaVZkERw3IREcVFqRR3ccUQ05ZVEJv46RYzvmERAq6ZG/bJ1RSUdAkjkyq1GSMOORMj3SUUvel1FxYXdRjhxa0TC+LZFkCE3RtfNG0VDJqBE/1wIRX1pAEUYlVtFtFdrRKnmnkQE+4FEqyzWROX9gUQLrHdEKa+aRAqym0SM5qVE3ZiHRApkgESKZIhEw+7XRMNtgEQ4cyZFoykWRZMeg0QJIoBEj8G2RIJfykWyKZ1EIhwBRe5NKUWqDbVE+mExRXP55ETfCYxE3RKxRFpBOkXYBDVG9qC+RBu9ukTkPKNFnLxvRTdqJkUs5ilFXxnHRLQ4u0QRnI9EiAuCRL/SqkQ10wFF+KYFRTAsJEXbMrVFSgFcSX7g3EVA3GBFkv14RVhviUSQzXpEeT7DRP/tHUVOGn1EyUMVRSWYWUht6XZFYCC0Rmm8n0QDmgNFZn/ARJn7b0RdEgtFiBUlRol5u0Wx7+1EIp3qRKHZx0S8p1pFsaZVRW/rq0XLjbZEFhewRBT5k0TooFNFyXlARYzRBkVGRnpEvBxNRQ04pkWp9Z9EIdm9RP76hER/RoNEveLGRCm/p0U9i5BEU4ykRHCVnkQRgpVEuhOJRBnwsETqNoFEAKOfRHc2i0UiWLtEJIcoRZo8QkWi9xlFE3GGRMnlvUUUh6JE5fLiRDj9sEZX/WFEAYClRDmEckTWkD5F3XFOR9RVvkc78xJHd0SJRgyHbkVOqhpFpOXKRjYmjUTygA1F1y5dRb2xikXcKKZEvoOMRPCMpERIdCRFCC4vRTENVUX7DwpHNXK+RYVR6EYFeFFGbtmFRew/FkVuASZF62wnRSGtlURg/vJEG63RRBcBgESGZoNFQbWhRFJ/4EQ0Y0dGcGJhRNPxKEX3cQdFDG94RbPXIUW5gk9FsZd5RSTdKEWNLaZEAsdiRBdBt0Ti5HlEoDqJRQnKbEa8KxNGKzpmRX510kRfkq5FV7wCRbH0eEVFA1FFzzrERDdHg0W1ny9FKCbeRFNeeESFV5REM3m8RSNhs0QrE9RIOVNdRTe92kQ6WNtHRTfNRPfBDkZ7j4VE+c8LRwo1n0agYv9EjpvgRTQJxkRg5ppFfSKERFlsn0RtIPVEiLIORVeY0UcwX5BENd4jRe95BEUR+bNG3C32RAPLDEW6SJpGrru8Rcgav0TO8LpECzaBRAZoZUWDKuNEZ4T/RN4d2ERjT55ELSFkRTTYhEUsv2tElZSQRARbhkcyYohGQn2LRBkP0USr85NEmqPORERqrkSuM5BE5u7RRDDGX0aMpXRFn9zsRU7NF0XDSohEzKK9RGeoFEV4cf1E94+LREqIekQMg7tEOTV2RCNrYEapV6ZFX33fRGtlhERKLJFEer9uRKyan0SgBIBEtoGtRIwVlESpIt5Fo8MoRUPaK0VmewpFD8bYRBF0L0WfkgRF+gf9RDpomkRUYZlEZKMmRdBu/ER7/51Ei8pARcUMvkeerJhEDgKAREw/mUY5CjZGzbvjRMLrOUWc3AhF2Ai0RIa0gkQf8SZFj0dqRNkqjkRpIJlEJDGJRJfjg0StpotEAtZmRFLpvUTqe/5E+EsIRTI6qUT67JVHGIuFR+60ykb0TdVF3knIR+rjx0hwEpxEzBLnRMpYc0dCtK9EvoTAR78ZRkUwA0pGMQoyRizALkXM+HZEd+WTRZJM1ERG/q9Eq2qFRL25v0UIr5JEQ/EqRhsWDEVj7TdFgceMRILr8kaHXflErqTnRREMkkT6V5BE48DbRg51jUSTRMNGNralRWFNEUVEkxVFUOqSRJOfs0QHwVpEAkCnRPdJ6kRUoHxEaMbbRPz1ukWY3TpFq3MZRUu4vERmRZJEndyYRAPJpkQ95xhFx5aXRFC7g0TqaIlEOAyESBs2wUS6JJVEuhc2RR+83USHvsxEYKelREjfvEQ9APJHYwfERL/z7ERMA4ZEdYWURAf+fEezlV9Eb/g1Rr6oRUaSuoFEZTn9RI6nyUV2tJhEBYZSRXkzBUVLxaBEJ5CVRKr3nkTXAZtEwca9RJUYFkUvRIFGYMhdRsiEdkWX54FFAPiNRIj4rEWoz+NGmBWFRGigoUWINSxFUV/xRHMrREWlSnBEJiWARDcDwEXzJo1EO5JQREoahUSUX5JE+qSBRLAQikcH1fZGVEgURoMs8ERrD4FE1XaORqoFUUa4V4lFUVNxRCuOrkQqhm1EJrmhR45ifkSb+5ZG5GvlRTosK0YvfAJFp6M5RbpAFEWu9YdFx4tfRSb7sUWtX5REEvjfRDqFn0SPxiVFQIMTRr0XoEQf5xlFi1GSROm6j0RLPy5GFQQmRmzVPkXjAyNFzGgmReeWx0XJKD5FfSSnRFfxg0SN7HtEx+HARBTulURgo4dEqQw+Rs+UDkURTIlEH39nRHf7j0QrjIpEMXxFRTqYhER4jzJI4q5LRX0fK0cKCvpECZXeRRG6g0SyEdZE6PqFRAB080TJFfxExewwRU1k80TWo4dEe5CpRCMaN0VLgB1FiA7YRJc2o0SEh5NEyfsbRWI7XUV2VStF4PnCRzJYF0fcAipFVYLHRb+IukZxMURFkZ73RDzjrkUODQlGz4WkRNpGKkXtXzRFLPSuRGnVk0R56vVETu7XRPnK7EQYkoxE3d6GRN64fkRehF9E8sO5RM66j0SR4LBEsebbRHlYlkSz0/5HVNVIR0UZjkTp9nJFbFXxRlViCkZ52cVEPDZFRZxl0kSNFI1EiwCMROGoWUZLfopEjWdnRewgj0QyMTNFOHvKRADS1ETCMcNEZqJTRV3akEWyHIREHWUMRRmhjEUl6jhFCTGGRC5XGUW3X7dFfyaiRMUUk0QeOVRFkrI5R3yusURD9TNH0h7DRhVf7EVoJqpEaPEyRfPOCkf6CKxG9A6aRHQMuEVFIRxFRvdnRJyG6ERY1wZHaBRURBqSYUYIbxtGOhZLRfeqkURLtQpFXw+XRbvwPEX4NQ1FSzHIRDmtt0SccwtFPIB9RNezC0VLjMNFikqjRHvR/UWO5qxFPkYuRQXDZkVwNGVFECEARc7lhkQ2V4dEDqlxRPF7FUfttx9FHTKXRbsOB0V52JpGLo4DRQbhGUZl/spEDtSPRVGWc0TLRolEkMqzROhZbEZZdStG7Kc/RQ/wnkQui35EVNlnRIvnZEQnDnxEkFeMRHqGuEThZH9EI3GCRIkjLkbdNolFfdq4RdDNa0Xskr5FGy2wRCrzxkQUzgJFCrqTRCeJdEQP2f1FogjfRXBua0VKh5tH8eAGRYU4YEcnTuZGxM4RRhS4LkWoXd1EmABvRHGoG0ZrtC1FuoQJRk62M0WwootF8EOgROldGUU2pS1FC++PRJzCGUUjQXRFahgoRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - OB8VLN3AckAw2QOwbsFyQKs68yLIwXJAxjvqTDvDckA0PUni5tByQKL3kEAQ0nJA3qAcDEPSckDIbRkTaNNyQJy/tuR203JAkh98Y87fckDUEAp7JOByQJJs4Aq54HJATvdiwOXgckDLjCehUOJyQL7lIxmP4nJAtgFRNSXjckAqy2x6UvByQNBjwv/X8HJAtpSqTDXxckA0FE3hT/FyQEZtD6rJ8XJAnKyfKrbzckAReFWNoPRyQClKa+/C/3JAqIbonfgAc0CUP/KrQQFzQGaKuRY7AnNA5dEMlc8Cc0CMELeQ+gNzQMTCh78JEnNAqTQ7qbwSc0AKLKtUAxRzQCyO6El6H3NAVn78gqQgc0AYdm7yOCFzQNfhjHp6InNAgKByXMkic0BobOT4ziRzQFyNY+w4MXNAZV9or0gxc0Ag51Y6WTFzQJO1rx/NMnNA1Izw4gwzc0CWI+BQNjRzQOrONmO4P3NAQb5DlnVBc0BkAG/eeURzQGqVKpP7UHNA8uZ66plRc0BTkdmlDlNzQEbjvpdCU3NAMphU2KNTc0D1QJ/8elRzQE6UxSb6X3NAtM9qEIdhc0ACX+CmG2JzQInYo7wbY3NA/Jrhejtjc0ATARy12XFzQACOTYq3dHNABsAW0U11c0DmNaxSa3ZzQIeXkvR4gHNAVhRB0aGAc0AAfM6aDYFzQPlJxftcgnNA4NY0HxCEc0Cy7LbYhZBzQMSLB+33kXNAohmoAk2Sc0BYY6DEzZNzQIDTuSFilHNAttODZPeUc0AOOQl/uaBzQLdLsSVaonNALeUv+yKjc0DIsCDMBKVzQKrpie/UsHNAsidXsVuyc0CczgHVt7NzQDwYtuINtHNAXm1lA6O0c0C0akGlt8BzQLKMk774wHNArE/Qjo7Bc0BBI31B0MJzQDr/ZRcow3NA8uF64mPDc0AaCdcu5NBzQAwf4FTX0XNA8M3Qgr3Sc0CEyqLj4tRzQElrb8Gj4HNAHEaAktDgc0DiGztCB+FzQCS00BQ44XNAUhHp82Thc0BYzwn36eFzQJt4Yqd54nNAEkiPsQ/jc0Ayvtx07+RzQHgkd3go7XNAPuc4QrPwc0AalYOtN/RzQPXrIKPjAHRAarxDnhEBdECmKwtPeAF0QKSH4I+lAXRApzRVxroCdEDE69wu8xB0QGtmhD+lEnRAAPcoWtkSdEBuY4cCTBN0QM6uqXd5FHRA19kKCLkhdEAbTIwcUzB0QER5XGY8PXRAWvbDGjtDdEDQAlfaiVV0QLKc5JYhXXRAWiHcPLhgdEAYlOqeCGJ0QNQl5M56YnRA99PR03pjdECeYAbiTGR0QNDmX2HDZ3RAosSyRSJwdEBu4LwVQXF0QBCMgu15cnRAFsA73DlzdEC/MkZaNnV0QBlxuqj4gHRAQlpIbU6BdEB7KMx+SIJ0QCVE6Y8ng3RAsDM27xWQdECfv+g27p90QEiQA+8NoHRAzOWLejqgdEDL9sSMo6B0QHpI3ZbQoHRA/pEq4syhdEC7m7ZLuaJ0QPR7nSoQo3RAnTYZavyvdEC0WdLcLLB0QP6AhVXCsHRAOCXLLe+xdEBsp+j8bbJ0QODAyxL8snRA/CfYV+LAdEBWYURqeMF0QIN3inHqwXRANAb8Ok/DdEBITFnTuMR0QCGpHUjIzXRAVm6P1PzOdEC4b9JgzdF0QLPhrvAR0nRAfkTt86TSdEAYIXPMO9N0QBvDB1XM1HRANncRcLngdECgm6mKIuF0QGphQHa44XRAfS79qk7ldEA68tqudPF0QDyGGXOM83RA/Hi0RwwBdUAsWjrYYwF1QJv0o7V/AXVARhobv10CdUB+FeRsPQN1QM/7wVCZEHVAYpzBvykTdUDOOBGUIxR1QLzOPCydInVA3B478Mw1dUBopf7o3EJ1QCbWt4PbRXVAaKoncHZVdUCQSS+yDGB1QODLLW44YXVAAf3heGNhdUD6/KOx+GF1QMASR5ZkY3VAoHPJ41dxdUDoqoZb7HF1QJBP+O91cnVAokU4gY10dUBQZm6w4YB1QBhQErZ3gXVANyFCLa2BdUA/ItanpoN1QCR/8G2ahHVATPBlqruRdUAomNvulaB1QH2Lj6QhoXVAjkHwxLahdUDYRcz1SKN1QBxilbykqHVAIRmQtqGxdUCeN3NjOMB1QJyzsvDPwHVARFAUB2TBdUDIaxuf+MF1QFohESk6w3VApLBF1+PfdUAzPfCiDOF1QBjia7IG4nVAtKGW3VDjdUBkra1pSQJ2QCi+RdzRA3ZA9uvvc1YSdkBEi2NkCxZ2QJC0Nf0aIHZA1iVzEjghdkB7N/77hyJ2QLbGONePJHZA8v1LXEordkD+aFEPHzF2QHyzIYO7M3ZA4GGGjqE0dkC9lcsOHUF2QLY8EL2iQXZAtASs9MdCdkBj4zCteUR2QDNe+sbMUHZAZtq+0RBRdkAgx+3XzFR2QP5MP2KNYHZAZKakAiBhdkDE2a0822R2QB6TbOaQg3ZAbbVhNSaTdkAyr0BJvJN2QCDLrE/qnXZA7XjR1XegdkAhRavsDaF2QF7BrbY7oXZAGMWZ5UOjdkAoCKJhLLF2QLg20COksnZAxgxqFMCydkC+pHHADLR2QJBv9BW5wHZAqczHLU7BdkBWRB+EGcR2QNZawMPOznZAKBxOeJDzdkAUWiyaSwN3QMbYrhwBEndAZrZ8jQ8id0DAK9/QDDV3QAZ0wfvLQHdAysJ/jJxBd0AKHHi5j0N3QIziL00mRHdA2n1RiRpFd0D9YexGS1F3QLv9/G6SUXdAo1U1S+JSd0D4f7PZoFN3QHDHhmgsVXdASyKBxkhhd0BtgcpvkGF3QKAx9QQmb3dA2P1IU55yd0AYb+T3kHR3QHwvGD+5gHdAth+rkk2Bd0C201dy4IF3QGTBf/N1gndAl2FJ8E2Ud0DGmABN+qB3QAaKT+kQw3dAKNO4QS3Dd0DS/JKU6eB3QP4r9TtP8ndApQJkeUX9d0ASfzidThV4QEaxHklsInhAgFJK4YsjeEBM2zgJ0CN4QGRnUp0MJHhALBECJRIseEDUpyfKFzB4QNpFMqsfMnhAYGuycBFEeEBSAXwSekV4QM5d3UvVSHhAGjYV1MlReEBu2m1uiFV4QBk8R9j4YHhAulGLGbVheECc59VoJGJ4QICBt+FPYnhA/jrlnlJyeECTc7FFUXR4QLuxSjiLdHhARrKua8d4eEB7FeZs9nt4QA5Pe4CkgHhAXGNevjqBeEB2FrGKo4F4QC792A7+g3hACRMT2JmEeEBBVAUal5F4QCa5GI+nlHhAOvKw6mLBeECAJZQQuNR4QFNDCEyi4nhARYs1zvrneEBWzu2PKet4QGzEfT9H7XhA5OM1rJDzeEBU51Z+AvR4QIv+JtKM9XhAHqFagpcFeUAAfLB9uiF5QAprXVIjInlANgliGFEieUC0a/kKtih5QH8zvd0LLnlAj4gRkLYzeUD41HWe4Dh5QBRPrKG/O3lA6nRUzWJCeUDmP5buikJ5QHNqdan6QnlA5WPmUjZDeUDS615D/EN5QEjxgCrNVHlAWN0vf8JjeUAS69eP2WR5QG7kCRZ+q3lAZdEXgMGyeUDaRRtKWcN5QIgnyS6yw3lAZEVD1gvJeUBA9daqQtR5QMlKeTPN1XlA3K2ouE/keUD6RUv6ZQN6QA6r8TL8A3pAq6mJyfkFekAi/XwXCBR6QJg5bSMrM3pAMJ1jOQw1ekCHklN+LTd6QCIfVSUxO3pA0B+uCTU/ekAaO1h8NEN6QMiOLTUaRXpA8mtduyhVekCxI3y6Ilx6QIVy3YywYHpAfutqqaRkekCqPDzQTm56QGvBY+kld3pA3EcbFsuDekAi2oxdH6N6QNKWah8Os3pAkkivYwy2ekBQtnDvELd6QEhU0zgTu3pAeOTrKwy/ekAwMrtDE8N6QLhKviM8w3pA0B/y76PjekBUzteBOuR6QPK4fNk17npA08i7xHsEe0AU/m4nFBB7QFY7eH1MFXtAOlyo3R8je0Clltn+WSV7QEgMoe/EM3tAovnuw11Se0AgE10syG97QNIQ+rsBp3tARsPn6QWre0Cs5XufB697QOadR7t6xntAuAlY4f7je0Da4AP5KeR7QFIkutK65HtAMFtkXZbxe0BagqRFjfV7QAI1sovZAXxAuiB46fUBfEC+vks67QN8QG0m7PJmBHxA8ec6tJkFfEAoMey4Rgl8QDxdyo7UEXxAHuiFz1QpfEA29A15fzN8QLifFx/NQXxAvvx7Bn5VfEBcnmPRi2V8QNbHnSaYdXxAFLK0vfaIfEB8VjZdw418QPLJeugck3xAdPTyeiqXfECYv6nuYJh8QMdOCAJ8mHxAMfq4JS6bfEAu1S4IvZ18QDCWMdu/snxAYlZ8Y3i0fEBLhWqKV+J8QEsR+qYP43xANUCvWWvofEC6HWTLFvJ8QAjAebhT8nxA2bDtB5n8fED6n6l/BAJ9QFLxEx5LAn1ADAzAK2sDfUCMLiVidAt9QOopuatHEn1AABYl0T8ifUAMaH4JojF9QI2mvfVGOH1A1ON00aE9fUAe571450J9QDrTvdM8TH1AhwP72UJUfUBgXXWE62V9QJwLJq33dX1AcmJxAZmNfUDEWHxT8JJ9QHRWiiCio31AHSox6jO1fUA1nnOkT8R9QHBMB4nmxH1AMJnDOEDFfUDEbNkYk/V9QJSVEsQzAH5ArsHulKNEfkAY+vRwU1N+QAI0QAVcW35AhO4yJ2VjfkDv3gAdP31+QP7ikBlfg35Ad2gi9pqDfkA/f3ozDIZ+QDk/fDYkmn5AOa+Z8nSbfkAcqh1lspx+QP+dLVmSpH5A7E50B2GsfkB+31P10LB+QGN7C+xls35AetPpuGm0fkDOYrNbhLt+QJKXpeJwvH5Ag37l87y/fkC0r2WKaMN+QC+kn4zRxH5AuuytBW7LfkCbe3mYHNZ+QDp6glz/3n5AuBXzvFvkfkCs/cu4u+h+QDzE7fa+7H5ASJzBi9TvfkBLlBUOXPN+QO7YGvi8AH9Ap19VwKYTf0AXVnn2ORl/QIq8E9LINH9A4JosH+VIf0AaG8A1t3F/QOM83qHldH9AGkjd6/OEf0DGvpkvjot/QFpQxo1jkX9Abq7UYZWTf0Bhvjlo/pR/QPZPT0xdoX9AhGNsNwKlf0AMTuIvVrF/QA6WBbRkuH9AwMSYCa3uf0Ae8QQn7PR/QBSbraAcD4BAm3VQv8ApgEAIxqSLiiyAQCZlTI44L4BAln1IZR03gEBTGsgpyTmAQKTezw12PIBAsPUqjSQ/gECmFyFNHUGAQOZ9CvvOQYBATCTZdYpCgEBQIbT9qEKAQO4P3afbQoBAVPGtHO9IgEC+U08uFkmAQBwmQdnqSYBAXPKCVbBKgECwHxEG51CAQGZVBQITUYBANGeI77NSgEAG9Fm/JViAQLZmvIMMWYBAmBJhprhagEAi0/y6cGSAQPLXK3ahZ4BA7FTamdZngEB6eKvbTWqAQKgPS24pb4BA8qYIZlRygEDIDayqcnqAQGBKK39Le4BADgV4TnmCgECPnLCrXoyAQIqYzfsMj4BAk8MPB7mRgEDRtbZ4Z5SAQH8ETeXflIBA8Pi45huXgEAYpbnktZmAQIkcM8Qan4BAfjVHBE2jgEDH262gfKWAQPjqqxQTr4BAacdOcrSvgEDOnv4QcLCAQAjlySMesYBAIRvTJemxgEDGsY8CfbKAQOAaN/pVs4BAqv49RsO0gEBa9utnzbyAQNZ0uLHyvYBAyOjuVjW+gEDHABJDUsGAQJfR6TKewoBA8OZefwDGgEA22bLbpceAQOzOsy9lyIBAuFh/HR/JgEDQj9PrUsmAQC5hW0jXyYBAtJrJxpTKgECoxSnaS9GAQNbZFodm2IBAsnN6uUrZgEC+D7m/BtyAQMxgkc1r4IBA/INDICDhgEBASYWrQ+GAQFZVkhtV4YBAbHC0g6jngED6kL7JXOiAQAu0avQW6oBAxlgawUnvgEAgO4fIEPmAQL7k2J5o+oBAea/1JD//gECgS6BObQKBQLbqogs/B4FAezRAmD0PgUBEWP4q8BWBQAA2Zn00H4FAKDDuo+YhgUDat2nDNCeBQID3zQQAL4FAQtDUDTEvgUCO3/zlrTGBQJWO73YpMoFALPSpB1s0gUDSs2PXBTeBQMbnCoYpP4FAqrOP0NlkgUBKqoLcsmaBQAblXBu2aoFAVSUAkblugUDyUgOVuXKBQJBc8+TBdIFAivcc/253gUAuKdr/GnqBQKSxPDfJfIFANH6ghF9/gUCpCj3nnoKBQFjyt0Jsg4FANIy+P6aKgUD2MRIvVY+BQCfmUCa/koFAPEMSaVWXgUAkKdi+xpqBQBhNEylTn4FA7qcZyuahgUCw5wElsKKBQFqIrY7eooFA8GDgrIulgUCFn6X0bKiBQLbzUnuPqYFA/tC98kKqgUDyY4pa5qqBQEfFWX5Kr4FAzPCGXku3gUC27WwzVriBQHiZU2sEyoFAM7Y6jejKgUA2sc9hscyBQCDaqFRez4FAVFgVjwnSgUBS0VueftOBQDa10Afo1YFAZbdHtuvZgUC+7SVrwdyBQII1Y6XHDoJAYgl9+NcYgkCyLjulKBqCQOnNy9XVIIJAFidBx9QigkBadcN6zyiCQNgqeeHbKoJAIuTwr2wtgkAGNSt/pDCCQCRex1/RMIJAPiLk/94ygkBqPkFvbjSCQEwC0IoJNoJAWbFIpmM2gkCq3ZvM5DqCQAIaF780QYJAdlTH3XhKgkCkYGg90FqCQI/1xSCdW4JArH4AS0RpgkCmz9AQU2+CQISkMHnOcoJAlIiYVzB1gkAq6k1cDHaCQIwMzjJDiYJAZBA2oEKRgkA4afJGqpKCQAyrxbz0koJALF12OTyZgkAwGxhrsZqCQBrMuPgOoYJAYv5ZFzqhgkCl7sP+86WCQEi73TQNqYJAyEUagTSpgkCsIUzL9KmCQLpVvQlrroJAkIMwcQixgkBC0FxP7MWCQKzGoMHwyYJAOKC3V4HPgkCzX6kZVtuCQJzEfjtr4oJAnDBF0W7mgkBmHMbN1AaDQMMZaSkTCoNA4FodT8EMg0DQPnN8eRGDQL27H5V5GYNAI0ng52Mgg0AaOf8OciGDQP4Q9BGLIYNARnFk27Ung0DeOh9RaiiDQGPZOzhyKYNA2Dg7Ilswg0BM2CI0ajGDQMiQfchTWYNAaGkMxidlg0AliDJLG4ODQCkaZQM/mYNANrTkT0ahg0BCrMAl9qmDQFDlHz3nrYNAEMmXypLKg0AAcs4mheaDQB7qCiyM6oNAQNsWB9ftg0Cy1YpVAAOEQMawZazbKYRA6oVsc8wthEAUbXBN0DGEQBqlcTz1MYRAiE6TDj46hEC0WjQ8mT6EQKJ67nT/aIRAHKLiV+VqhEBW510q526EQC6zhHuCcIRA9Agu0v1whEDuTv0hyneEQN6e3lj5eIRA/jpqp3Z6hED2I2C+I32EQKDdDYikf4RAIAtfFNN/hEAg1DP2gIKEQB3LWiRimYRAnngBYweehEBwqBjUCqKEQG0eaeEPpoRAtJmZgAOqhECZ2iZECq6EQD83o/gQ1oRAPgOS62nZhEDqEZiSaeGEQI4BSfNi6YRAtyeu6G7qhEDSUO76ye+EQHwCb5I18YRAzk7rB2PxhEBchSu+NPmEQCRJ/nmJ+oRAaHdgKPAChUDWjD5dRhSFQN/9ngzYFYVAZE48FHcXhUAmiGbdEhmFQOTWWAmqGoVA4sXEVucahUCde5qCRRyFQHgQ7iY+HoVAgnsbFewehUC16Ydh7yKFQHsjUCygYYVAF2V8jbZihUDFkjN4S2aFQLNjMqq6ZoVAWqpYyJ9phUB6cDSoUGqFQLYmMPm+aoVAOMcbFJlxhUBT6KD7tHOFQEBQ6a2YeYVABCVgvI+BhUCNUo11QK6FQKr+mZZDsoVAk7ohTUq2hUDSzr+RPLqFQB5wHzxna4ZAvdS9OSS5hkBMraUfHReHQDZ/tL2QKYdAv12sxxkwh0Do3OJrkDGHQDKxA2NxNodAXEBB0Yg5h0AOqQM1dDqHQM7DgXHHsYdAdO7DcMe5h0AnKVjmv8GHQClaSNF1xodAFsAddLzJh0C2HftneMqHQGl2lUt5zodAUWr/nXjSh0DWE5mId9aHQDKv3gMlK4hA6kPZrqROiEAw75vH+lGIQDcZ1gCoUohADSlsiP9ViEBqFO80rFaIQEKu4ROlWohA9m26eZJuiEB2wGv6M4KIQLidi1T0gohApWJJujmGiEB9GaNZ+IaIQBKcVrz8iohAqg9L2IbOiEDujJzWi9KIQEhmL2OC1ohA + NrgMGZxjYkA2uAwZnGNlQHFahe5LhGxA47YaRuZickDHBI8W/lJ0QOMU95k+dHlAx2JralZke0BxbEO5FoV/QMfe/1G3ioFAx97/UbdKgkDHDe57YxOFQA== - + - oYObRm3C/kUX9wBGeVBrRWooAkXOfJVEjRgQR8n2pUR43apEWpAaRa1nwEXqWJxFzxVYRSrio0UCc4lFgDjNRBEtyUSgvnVFKqZ2RrPSukQe6GdF80LXROb/m0RIbcxEDKRoRfBGEEXr7jxF1b5VRYRFS0ds2vVE8qZLRo74zEXP5R9F3XjeRD9/qkaJ6/NFRe/0RHfj1EU4ocREeggbRYHK7kRqmudEZfl9RGQsp0SjUB5FXT0BRbVhMEYI5JZE17bYROMzUUbOJetEw/i8Ra7TiUSc29hEqw+aRNYbk0TfqQ1FiTAcRfnYz0Tb/c5E0bXtRCOKiUSPSb5G2XexROYVD0XXXtJFrvOgRC9L7kQqYaxFfP1NR8fs1ETkOeBE0pBHRjIEK0YWqQZGRpnWRNGRL0XVWLBE8PvCRNBWZ0XLXitFWfmLRIkIQ0V1oQFFfTXeRLYf30WEgwRF4HuFRPPYt0S5MDtFD1esRH2+k0V7oFRHGKEWRmCevkUvw/pF/154RHZip0Q34ZtE23+SRMLhn0R92YZEN45YRS56E0WVbb9GWMg7RTiBSkZi9w1FedvHRBJjNUVMkhZFSO4ARfVBYUVagJNED8DxRJMO80RNg7dEsdFYRanyJUUjG+9FsVphRXLNKUX7OYJFAQEIRbhGoUT6FKJE3VLRRei9TEcrUwZFdlP3RMN98UTgZBtFgPoDRjb+ykRlIKZETPn/ReUsBEXWtA9FFljFRDkZwkTgAwtF4JoMRXoiCEVnUKNEf1zSRDoNxUTLmyBFV0elRI4bQkUaOjFFG8uWRBXFKkWizqdE8GjDRHDJJEV742NFfk7kRElt90QH1K5FKZWPRZ95vESKpidFUL2dRMydC0UHLwBF/k/aRDQsg0bayZVFpnOmRKycxETYzKtEG+abRePdlUT2GvxEMpQCRbX9FkUDQDFGiZw6RRg2rETWnpNEfBjHRI2/tETrZYNG1mK0RHp7yES575VEGe6LRaqxMkX+JNVEzmVSRgEa9URFv/BEbpfgReZqkEUW5BtFpFqCRJZglET8bKNE5LzsRPkUJEaBa4VFEbO/RPhxDUWf2OVEMNWuRDi1C0WTPuhEqeCvRGBbo0SiaCpF8KDKRNx4gEXjZAhF7A2QRB5J5ERFrgBFAbSoRGo0kkWqGRFGCaO3RTVDvUYVPpNEYw65RHFfp0U98H5EkAPdRJVHcEXxIYdEM+0VRfiUiUZlx8NEd2bhRNpmZEWCTSxFe9ibRGWg00T3phhFNMGdRCokZ0Wet61ER87iRG3RnUSJdg1F6+UqRUBFsUWcUh5FG2uDRW3Uk0QdbGpF8chbRcKl3ESLH4tGxgmFRY41Aki7rpVE2XChRrbFFEWOuntFXg7LRrEHXkVpT05Gr2/TREwskkSPls5EEp3ORK9zJ0UfoltF0DenRC6S/UQ/DLdEKmarRKJjkUTIEq9EkO/GRH12rUQYOOREVHqzRNUJ40ScTdZEGMkcRYeIjkR0nJJFSEm0RI0ydEWGawBFO5CSRLnAlUTvLDBF+vx1RXsuPkYo0M9ER1qnRUqZ4EQJ2yJFaCBGRenuIUXoSsxEtWueROndI0VZSlZJZZkQRQd90kU4yAVFt5DsRCzOUkXdW1xFBYBcSGm+XkUCWohGd63LRNBcCkWm+zlGI46eRW5yfEX8LatEx7ETRWjAokVZx/JFax7oRLP3l0W1IEhFsKuiRJngOUWq5xdFoU2iRY5QhkQiksdESYgLRarW4kSrmKFE40aZRAu+uESwCYZFQjTYRI7FlET0a9RE+P4nRZ8RZEVeHgVFJiigRMY7rUW/AexE++GtRBjsoERsSZZGCKwWRThu9ETYeDRHk/zbRy5f/kZZ3ZpGoESGRTz16ERHINZGwaJjRSnFW0VYW7REktm8RGuws0R8OOpE9pjyRP4FR0WcnApHW/ioRRQW6kbHDExGz354RbJENEWWbJJE70LDRBJe3kRgFhVFHyfaReDRCUWjJShGwhexRMQFTkVfB75EbHG8RHHKD0Wj/pNFi+JnRfDzu0RZnexEpE2fREQJoUQn8ZlFCseXRUbhmkZeiE5GwV4CRTsup0WE1bxEz1G3RdHRQkXZHIxFujbaRCiIw0SwAJxFb7yHSOoajkfIYLpFPZyRRNDBKUfm+uNG2O1xRerGlEVnPs9FnD0VRT53MEXx0gdFiMERRbDx3UeNly9FgzgaRaFYGEXSgMNG/DEURenks0Qf1axGu4tJRorylkXLGo9FTNvdRIeyg0TpHclFieJARdGv9EQmU6FEfe6QRJvgL0dKwhVGojveRDJREEWlGNFEcQftRXdlM0WVQ89Fg+XURMmS2ERqvFBFRJvuRPVxHka6AJNFWx6iRBRKnkTILa5EkiDQRB2GskSK2LxEYxOaRCtB0URSuOBEYrusRdghpUQem69EwYomRZT0wER3ddpEMu6sRLoIL0X75zRFh42dRJoPoEQAHxdFt4v2RMa8qUTpM41ElRnCRA7TikTcVapEZl4zRZRLnUTTJ7NEFWSkRPD2mkUfqXBIP4pkRxkVjERBJRxGz+OuRA9QpUUikQJFHrSRRPe8KUV0Fd9EA7KgRBagwUSUSfNE4L+9RNvbekW/OTJFN0CUR1PmgEf9L8BGWx3bRRN45Uf+1IJFlI8BRQlYaUnqnJVEO30DRQB0dUfARr5Eh19ySPVLK0UDV1FGzb0NR8jr/ESbKXlFpGOvRc6mjUT1/8hFj5+eRC4IoUaG2vREPUpCRTXHx0aeSpVEVTPHRSFgBEfyPK9Glof+RX16vUQg5PdEZ0kPRdxMi0SyqsFEZ/EBRVSdTkV3aM9F59L3RKZKIEVmDCFF7uyuRHSVmUShTedEJFq2RJp0ykTA9I9EFivDRNrEh0h3u35FVpIRReyrKEVhuSNFjKT7RD9e5EfyYvJEUnCYRH/bcEcxFmFGhtRYRrEvhkTj+K9Exw+QRAO4kUW2t69EPE6KRH07hkXpIEJFR/TPRIb4kUTiwh1GP0NZRn2DCEUSqUdFsauZRbacokQJUw5Hk0nARE5nAkY5fz1Fdsj2RATYdEVeCaFE4asZReUrl0T6kg5GcmSYRKztiEcXQRhH5hsQRnWI2USMLKBGRn60Rvuim0X1YXVFMba9RFl7P0fhBZ1EwFY/Rv9C4UXtpRZGy2wDRSyNF0XWP85Ed3zMRALTDkWwulpFBWBuRieV1UQnV6tFnTwKRdolj0SiEDJGYDIWRTfOjkR5b4dGLmDvREFTGEaxi5RFr9QTRZsy4URdOZBFpx8TRUNtm0TBz4pEDaU5Rjh6YUXm8T9FCy4iSCkfNkVNmx1HP1ETRSzDoUS666dEAYDMRU0MlkTfgdtEtT2eRHsijUQA0rREpTDfRLnKrURDN7xEoeiiRBufYEXoIdhE2XngRDonyUTVItRHaQofR4vM0EQzRaRF8uPARoxyxEQecqhFD2rdRTUJT0VR9bBEd4s0RRifJEUUjJ9EKge4RFf3pERerk1FJzuTRBcVl0TLjqVEyh6sRGEGiUQ5StxEtBjWROeK4kd8mjpHU4vERUvO3Ub/jDJF+CyeREoDhER/Ys1FTYcDRS1wS0XhudxEozidRN43lEQBP4BG29iCRQzG5US/ODxFAyMsRYnDsURtn49EL38wRbhRVkWEld1ELxudRcf6SEUunSBFZ/6bRO4XV0UYneVFG8QsRcYmpkQ7kcZEBxFWRQxcTEcwKt1Ex2IyR0D6qUYZ5O9EOtukRXRmIkVU8PNErJUXR3XiuEaAeNlFnqblRB34iUQMdjBFDpkNR92RhEZVBy1GjuQkRa2e10SwGZlFII9jRVnvN0WyQqxE8ijoRPYLEkUkP9tFeIIARm1qoUVgbbpFg86cRcp7RUXz6ZJETeQvRak0q0RE8/tGkOIcRll0j0VDIGBF9e+ORuxlL0XWtxZFJ74YRn/SyESpYoVFEd32RAytg0bdyzxGwH5FRV20pURkmpdEo07RRHkFsUQomyFGyauLRIYA5kVBBFhFIuw1RaMKA0Uy0h9Geo7DRWV7VEXhRaJHHWDORBnsZkcmwc1Gbff9RVa6HUXPs7REBsxfRoTqeEVYchdGZYxFRdZdXkWuAbVEnQyKRM/8t0QKUZ1FQwmwRMUaZEUM6vdEPf5oRd26jUVDOJFE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - +FSlp9zAckCS3d9oDMFyQGVu+C5vwXJAevETUsfBckBq9u69TsJyQHQB05YPw3JANigEKTvDckC899x2WsVyQDZ1qTnq0HJAJ0H2GkPSckBwTeiHadNyQEKmmjTP33JARjeImSTgckB6zoGYtuByQHPnn1nn4HJATDPJw1DickCeOiwVkOJyQN10AR0k43JAsJAQlNfwckBj9AayNPFyQN1TfKfJ8XJAjZlldrXzckCpzSlFovRyQF5tq3LA/3JAYQhYgfYAc0AeLHkNOQJzQI7YiNPPAnNAht7rJvoDc0B8NGCkvBJzQN4cghv3E3NAyKhkgXofc0AR5DGNoyBzQKLpd/g3IXNAtkNlf3oic0CUTiazziRzQHPzwiG4P3NALPydbkFAc0DgWG/EeEFzQEp6ikK6QnNAd6ORL3pEc0AcmeqSm1FzQD7BeqsOU3NAhqGJtqNTc0CG5Vx6hlRzQEjTKyc5Y3NAHEWu1dtxc0DIkcxoZXJzQLxf6F61dHNAJpWsc0t1c0BYC6j8d4BzQJBOVDCkgHNAZERaNV2Cc0BVXTH5hZBzQHw3cGH2kXNAZYJOLE2Sc0DAeqQd95RzQByq/P63oHNAfr5BcFqic0AY8MmLBKVzQArW5aO1s3NASFnD4Qy0c0BO4FLLtsBzQFsrDxz4wHNANVB9CdDCc0AikJ+yJcNzQBCEtMSD0HNAYUtO5dbRc0Cd4REw49RzQHG/armj4HNAXMFR6s/gc0BgKw0cB+FzQMpqFd034XNAAmf3SbXwc0CGS1O14wB0QOISJNMPAXRAOkT17HcBdEBGLAlOuwJ0QKDXLtbyEHRAo2rLzQURdEAT9n9KphJ0QJbF+ClNE3RA5f/RsjpDdEBIAnlRClN0QHD2SJEgXXRAgFNPuLdgdECq1JZ+CGJ0QC4dwxh6YnRADLKx5iFwdECCCYhCyXB0QCa6D+FAcXRAi8iWXTpzdEBVDcsuN3V0QKvScmz5gHRAUkRdP02BdEDKr5ISFpB0QETFhJW7knRA2d/q7O6fdECAAl99DaB0QGLXHrLQoHRA3sWfPc6hdECM7OKkDaN0QN4DfDctsHRAXAIn2sKwdEBDOfLtcrJ0QATnvJH8snRAooQykMq3dEDCBRCseMF0QNRGo9NOw3RANu8b07fEdEDyrCqFyM10QKDVVS7N0XRAmx5vIRDSdEAWxBWtptJ0QHJD4Mc/03RAzzbKb+HTdEB0HYzPzdR0QGyRVoNP5XRAzq6adXTxdEBXsLY2jfN0QNyQCXaCAXVA8oITuF0CdUAWmxuPqAJ1QHWnBBM9A3VA19LVJSMUdUCo9/0xnSJ1QFKpV0LMNXVAz6aqVHdVdUBo1IC7CmB1QEQVb4o4YXVAfN3BxfZhdUD6R+5uV3F1QM46fXLtcXVA2ZReuHhydUCuNAJAjXR1QGA75Ph2gXVAOlAinayBdUAknRgfpoN1QJR0ZfOZhHVAJaz1r0ijdUCgwrh5oqh1QLhty/o4wHVAEt047c3AdUD46CGtOsN1QNiwPhgO4XVAwtaKgkcCdkBcqTy60QN2QBiMGI8LFnZAVW09mYgidkDA4zLFjyR2QA1hxrFKK3ZABMZQJh8xdkBcDDMRujN2QOpYO0IcQXZA6+1sHshCdkAkIsCieER2QJQ94qoRUXZAUpm5/8xUdkBYAAgAImF2QJnm3PbaZHZA4EbLpJCDdkD+zKbDvJN2QDpCOfLrnXZACx21G3ugdkD8zUyRDaF2QARz4npEo3ZAmlQtfcCydkDOuypzDLR2QCB0ZR+5wHZAwL7ii07BdkBwayXIGcR2QDACnaPNznZAICtTEo/zdkDIjsiHNAJ3QCJYJOlIA3dAUnvn2gASd0AubC7ZaRN3QNekvQkPIndAGmG76gw1d0Bi/CjKnEF3QBY07jCTQ3dAFCpBPiVEd0DTp8OMGkV3QJwgM85JUXdAQNZ9VZJRd0DDYfriKlV3QC77f1aPYXdA6gkNhidvd0D/RSgei3F3QOzszSL3oHdAOn4yCRHDd0D4mvKLRf13QJqYoEhOFXhAVm9M0m0ieEAEpdic0SN4QLZz+5sfMnhANNRx9QxCeEDCsuE8EUR4QNhxIRZ5RXhAzrUxaMtReEC7AzvWhlV4QB5vuAP6YHhAnG7kJ7hheEBnw2/jI2J4QKzJaHBedHhAkGnZgot0eECIBPHxrnR4QCS+RUzIeHhApmnKfvZ7eEDeIcB7pIF4QGgB0k7Tg3hADvbPEwCEeEBS+SfGmYR4QBK5H9WWkXhA1Y77o6eUeECCFedTzsB4QA/h5bq21HhAoBr1P6LieECsb+jY/Od4QLbX8Hsq63hAo9ad9o3zeEATdXWzAvR4QMQ54geM9XhAZkGoiboheUBQW4QhIyJ5QBFdq1+xKHlAbzIVCK0xeUAGvWdNtTN5QK4BOIPMVHlATtJ6Z71jeUDAGZ7CDGt5QA5viB6/snlAHAd/fVnDeUBAlDXGsMN5QFA+QZhB1HlAZb6HUU/keUDe9oiEEvR5QIYJ9a/7A3pAuHx6+gkUekAYZVPfKjN6QGDbXW8MNXpAikTA3i03ekBdoAD2Lzt6QLqGxQQ3P3pABMgSui9DekDWJUIFGkV6QDc6MUcnVXpA8aFsbiJcekCCCsIXsGB6QIqAP6Qlc3pAQ7/x891zekDuMjyKzIN6QIGHk1HUi3pAmsv/bxqjekBXvny6DbN6QJj6uJEMtnpAyDqx4RC3ekDmewpnE7t6QFbdTHUav3pA6Qex5U7UekDKwb7CXuF6QD+LPRIV8XpAnIhT+GDxekAGQkplewR7QPQDPBgrDntA4DQxkhQQe0DqW2DiTBV7QMukQVFaJXtAkS8rkslve0BazGriD3R7QKAj38QhlXtA1uYWq0Oje0ACisFq/6Z7QK5xWWgEq3tA7Luuwr/Re0Dn9RM0JuR7QJBSF7i75HtAXtR2Jpbxe0D6Iq4CjPV7QLb8+BzaAXxA9Yv4DbkCfEBKSv8J7AN8QP1ABVeZBXxAdpqcT9ARfEBM/wqUfTN8QK3GZlbMQXxANKPUCn5VfEDBO89Aq1V8QAoY2pCLZXxAKM/CRJl1fEDkF3uOw418QCE2dRQek3xAckE12CiXfEBHFLWudph8QO0uhm4tm3xA7YV2Br+dfEAegdCNy9V8QPXIcd1X4nxA9f8vcRDjfEDftoztFfJ8QOI3pv9T8nxAFBLXwwECfUAbwdO3SgJ9QOiJC4RrA31AvuDWgnMLfUCcwUzERBJ9QP5C2aB1E31AjNbDvXwbfUBmZc1MoDF9QLruCmJIOH1AYLt/faI9fUCEs0DuSEh9QHD03Vo6TH1AqCDqe+plfUAcGd7/+HV9QAJzR1Q0tX1AE6GBy1HEfUBw1/5R5sR9QAZRjELz1H1A1hk96jzgfUDDI6pDMwB+QOhgVQ2jRH5Alrcnh1JTfkD+sNZ6Wlt+QLjZFqRpc35A7nXXUrZ7fkAlYLgNoYN+QICD6p0Nin5AZg9V3rucfkDk2TdlEJ5+QJIWXKSRpH5AKF8TmmGsfkClWKEoZrR+QBRgfgZjw35APBLQN6UTf0BV6njo/j5/QLJDk+u3cX9A1ADbq6Z0f0Do9ItU5XR/QLg+vTUddX9AqzuZxfOEf0BK9OjiYpF/QL4Wfzf6lH9AOr8KXV6hf0CN2wfaVrF/QE4oHZYkEYBAMKSYQskZgEBQPG0cdRqAQKLvmPiKLIBAPHfD5zgvgEDQ3lIoHTeAQM4LL6jJOYBABiN3Mnc8gEAQOLvyJD+AQF7yxqgdQYBAAoW1TspBgEA7ghimqEKAQGRXUsHDQoBAk7SA8uVCgEDMMK7z9UiAQJyWVdAVSYBAAG5cua9KgEDcE5wby0qAQPgqpX/mUIBALgOjnhNRgEC6+iYqtFKAQLl98EEmWIBAx4jeuA1ZgEDS9sSzt1qAQAS//AUQYYBADoMhVKFngECQc2aETWqAQJMuYoYnb4BAqODtfVRygEBgj/dQcnqAQKhPHTl5goBA6n8ZUF6MgEDsa9RBDI+AQKPydey3kYBA40UVx2SUgEC4TywUG5eAQBqHHtx9pYBApLA1QPimgEDezTBsEq+AQNTTAW+1r4BAfehwqY2ygEAc/V3Ox7KAQKaokZ15vYBAK/ptDlLBgEDchePYnsKAQJJnp+wBxoBA2NALgGTIgEAslEvyHMmAQLBxAY5SyYBAhlWfCE7LgED+xpifS9GAQIrsNd1l2IBA3ieR+EnZgEAkdwUlbOCAQJRg2xpF4YBAdoa1E1/ogEBUW4tcF+qAQH4oAi5L74BAUc26AGf6gEDP0cwSP/+AQPhbXwxuAoFApm9uWUAHgUDOeH5sPQ+BQFZBXCs0H4FA+oyruTUngUBepi0RAC+BQDF5A7euMYFAhourCygygUCsyZYGWTSBQFo1vVQoP4FA1ptV7cxBgUAYjcprsmaBQL5/w9e1aoFAdeVp07hugUBc1TDawXSBQOqqZlNud4FAzIJTxht6gUAWeMiJyXyBQMUeuKuegoFABAncz6WKgUCxWqd3VY+BQM9rUsq+koFAvvPXHVWXgUAwfDyj8pmBQDvPJ/XCmoFAhfasklWfgUCQ1i9R5qGBQBKDEK/eooFAIqJ1sYulgUA5I/Sya6iBQFBbxZaOqYFAQec6XOypgUDK0WzYlK2BQLvHBg5Kr4FAQE7ZtQTKgUC4Q35kscyBQPRkKfRcz4FAakdAsAfSgUA4PZq959WBQMBzxBvv2YFA9A57dtgYgkA4DhkfKBqCQHiMpCAsHoJAP1wpqtcggkAf3pO11CKCQADojGTSKIJAUp4Kb78qgkCQrpq62yqCQB3OVVhtLYJAjbuNluAygkAmBfWmEkKCQI6cmml4SoJAJAfGsTZNgkCf2t07blCCQEL2z2c7XYJAEXa0WThpgkAYXGyOpmyCQN4zCwM/gYJAPCDgxEKJgkCgGsdnQpGCQAwpsGypkoJAnF47pPSSgkCBcg/kOpmCQPOTPuMOoYJA8Aa9rDuhgkCK8iyd8aWCQB3L+mUMqYJAiMxzKTSpgkBmP7y3W66CQDpYdqQHsYJAzPhJUOzFgkC8BX3HNe+CQLlZyFDBDINA0UoHRXkRg0A01XgweRmDQDWc32FjIINAxewEtnEhg0DiXmywaCiDQHIp6aNwKYNALna40Vswg0DW4wn6aTGDQKLiJ68+mYNAIINUKUahg0BwaK5T1+2DQAg5xdEAA4RABtraT90phEAEmvunyi2EQAg16ETRMYRA2gD/wPk1hEAebXgHmj6EQCWa32icQoRApiNip0NKhEDS2IIq/2iEQEp4k2vpboRAKn2/6QBxhEDBDuqvyXeEQBhEzgd3eoRAaH+nTAt9hED+T7fuJH2EQINtZnjSf4RAYP3zf1uBhECN4X74B56EQM82VpULooRACIhi4w6mhEBM+i+mBqqEQKR7NB3Ez4RAhFz04GnZhEDaKcxjauGEQL+s6SNi6YRAV6T4jRvthEBhM8oyNfGEQITMc3Jg8YRAFxQMWTb5hEB8cL9v8gKFQAjnrIrWFYVA4jP0q/kWhUCqM8YQcxeFQIqPzFANGYVATIeu0agahUDsXd9R5xqFQABXG9ZDHIVA9La8nekehUB+Te0ToGGFQAYLa3a2YoVAvRZG30tmhUAGCYppuWaFQLsK6uifaYVAwJYsiFBqhUCcFkzYvmqFQHppKYqYcYVAQMmQTbRzhUDQqHjVl3mFQOmn8hNAroVAVvoPmEOyhUCwev8PSLaFQFjWm9UluYZA0kNL3ZAph0AIQ/1qkDGHQOC668eJOYdAlz9xrIpBh0DSaegMx7GHQKtG9YTIuYdAzk0TMMDBh0DR/QWmdcaHQOh+rzZ4yodAKO/GOnvOh0A6McwBe9KHQHSvWUx61odAMA7DL6ZOiECmyCXc/FGIQMqoljCpUohAwA3Gev5ViECy/w6frlaIQGqAC6L/WYhA6GajEq5aiEBUCPF3NIKIQDiPXuP0gohA3lUniFuDiED+b5Zx+YaIQOSQZB+HzohAHAdtzIvSiECs2heVkNaIQA== + hH7jX0jiZUAoFld2zuNlQNAWPk/8AXFAFOkHjz8DckDbQ5zIVzR4QPfXhcaqEnlAhi/S5YIjf0C3KReXrTKBQCdFs49NqoJAUm81kpnihEBKCrvSBDuFQHcQYHhmY4hAUp4jvEVriEB/pMhhp5OLQArxA7S9a4xAm/WETP8jj0AShWyd/puPQNLE9hogKpFAF2sURCuWkUAu7uYWXCqTQBy1yLhLLpNAMzibi3zClECuBd4rsu6UQMMaHy3YCpZAfShtKajGlkB1MYQ7HpeXQFlHV0NUG5lAYqzRAulSmUAUwzYRL9+aQKM3KeF/H5tAlNotJoWjnECHTfzotaOcQNDPPLXW/51A - + - sfGLRildr0TqPLBFluumRSilvkRSUPhE/8c0RSJU5UTKZhFF/BYNR3WKnUR63rZEKuuiRU/ME0VF/tlEpIaARQyrekW2RMtEfaDhRPk2WEZSc0JFjMjNRHwr4EQ0heJEDLoCRcJEPEXTqwxFAdYMRyHmR0ZwlI5FzCz4RD/dvUQoDXxGpOm4RXrNzEU1uM1EmxbCRFh3cUU1yMBE8C4FRu0/90RyKwdGlUlmRbrprESEGRhFwFjmRNVsu0T4t85EIKw2RRIAnUZk1rVEiCvERZGnw0QVqGtFyZInR6gldUb2TBFGxXHWRTkXGkVReV9FBVn+RLESIEUKNPRE92bkRblNFEWvEdBE6LRMRSQOjUXquUJHNhkMRuJOnEXwecBFZJ14RU5Lq0ZbBxZFEmguRquIA0WFA/hEvITMRMDp+UTWB3hFCAxvRbCKpERwpSpG3F5rRYEpDEWkqR1FV5GIRT9u/0SxOiBHM2MXRQS0xkTEXkdFKbPqRTNaukV4OPFE/FAjRZIB+0TXj95ELBgVRcyiAEUwdcVEU0vaROcwyESY2RFFBO8IRVKq8kTPC9REddDjRClQDUW/S99EGR1cRaLOHUWpnL1Edp7BRFAsCEVU38VEwCaKRsnMpkV08cJERQqcRbdy00Sbl6dE/0i2RNlHAEZWEh9FE4O2RIlexUSH1F1GRzsKRZHjkUW2rx9FEyLJRGj6MUZ7zrVEVWaKRdvhgUVPvBpFHOQXRnRsWUUZZQdF/isBRaOu6ERWdehEtzlARWHA4EQ9aa5E0qmBRY4kBkbMpYtFXzCuRo574kR7/pZFq8APRSVSmkXeOBJFKuZmRtH6z0QAtxRF+D0QReQT1kQ6JdlEisHMRBBMOUWKAiRFZU4xRQ5pekXKihpF3LiwRI1SyURrcWxFuIH7RETtr0RUuJNFRdyXRneepUQUyXlFXGLfR/VkqkZ/yP5EaAOGRaHtt0b0i6ZFV9taRo9J7US83hlFfWhnRTuLr0Skq9hEwcvHROCxGkWf1LtE5kZKRV8JsEVqDD5FsLmnRJV/V0WFOkxGwauXRaByHEWESiRFj8NNRUHJ/ES+GqJFtzA/SSl32kUXQfdE0emrRc3lTkXTl7tE+jUPRacHPkgFpF1FGfGgRp7h2kRoNf5EC8AeRhjNtUUPNwRFKgMbRU+jekU2OchFfEabRaipG0V6hHtFlkMSRS1QAEb0XH9F2B/OREbC10QHEBRFnFxjRQxSB0Xws9ZFsggLRX7MyET8tjRGl+MZRQIYLEc9Q65Hf9jrRopxQUZCe3pFt7zpRPPLr0bVgDJFEx9lRXZKr0SxujBFCRjERCWvKEUoVdREXrT1RCOFA0ciDbpFkmnwRkk7OEYLkkdFwoDORLOn8UQf5QBFT8/iRNfrlEWbyN5ECjroRJObBkag8kRFzff9RGso7ERDmgNF1pOxRD7InEWeV6VFfk8YRTGU3USPt5NFWQyeRZEfiEbiXTlG7NMARdAAG0UW8XpFilyVRewcwESjWK1FikAoSIT5wkTJWBNHX/yCRUFoMkd5iLlGSvdmRfw8mkWCQMtEE5FbRRD53kR35LpH9vJWRbxiAkVGIpdG5BoeRcH6h0YEuKJGBcwARi+/bUWfqgJFpFUCRQxDuUTeUcNFBW5SRf+HvESkt1ZFGwyxRvnC40XEX0NFSa8bRVMn0UUDgQ9F+qTdRFzB+ERMQjJFeMQARvXudEXvUutEnxHBRI5lLEVgqwlFmA4eRWGTBkU+CRlFK1HeRUziB0VfJhBFF4wLRdQQvETzvX9FqbRBRX0Nxkg/QDZFQ5PLR52xBUYQehtGengoRcqH/0Qciw1Fq57CRNJtAUUeSDdFH8sIRXa7n0ft9G1H9FXFRln+uEUSr85HP6wSRcQYuUlMWDxGn3o2Rdt+o0TI4mxH3jK/SPpjXEXMP91ELVBIRgc+dkdtMRpFHgtcRadt20Vff7FEY4yQRauMzkbETlhFGjaIRXwbqUb2MqpFhYHzRuFbuEZC0vJF5/yHRVK8lEQ57ihF/2cGRWphyEWkdghFTrnLRK5dt0TSUBpF27pZSNvVaUUCo7tEEf/bREH0skQrnLBHXqLVRNXSX0dXATBGM8o1RsraBUWX+1pFUP13RdOYhkV8qBhFo0OwRQ6wcEaAo6tEDYpjReURhUUM0fVGqzWoReRMgUWtVztFxUS3RM8Uz0RafMlFwBDBRB1wZ0fcUPpGfL0oRtwCwUZ3fV5G++PGRcEhUkV5ortGrLyXRTjF3UVnbRdGfOwKRRYRsETbwRFFWgwTRYrkMEUYwotFMuO4Rqiiu0RYGkFG0n6/RIieH0UQCDdG4MVNRr03MEbjdMpFhjk0RV95B0XYZ89E81sdRuhQ10Syt+REltdYRWlsB0gzHwJFt1ISRfk0CUcovEtFt9SDRSmBsUT3GxhF15/MRN5M6EQJXwZFzWomRRL82kTdyuNExk/PRxv4AUepaABFPNyORZGAskYFDmJFhwfuRZf23EX/J0BF1idhRYHDsUS9WMxEt4VTRdALrURYgQFFI/zWR5DYNEc6f/5FxkDFRhmw9UQLwgBG5aopRdDoFEUmF3dGN91hRQ1S90RzBwtFQFfXRJlPp0VS1xlFTZT9RBs160TAzBBFwADKRAjw1kXrbtxESMgYRTEfLkesZC9HZkhARdUyh0ay9Y5FVYHBRNPtBkfP0JlGhRXEReXNSUW1d+NEDw8JR4GhT0Yd4glGrBjlRJ34S0UeIiFF4xcFRbhvu0Sv7TBFX1vHRF954UUSxKtFiMekRTCVrEWh/fNEyX1ZRU17+UZ+v2ZGKbuqRTJVEUaf2F1GjSZPRUeu5USTZRdG+VqrREYVP0VEcYJGveIhRkjSUEVlC7lEgygtRsGylEWSjF9FvDa9RBhPBUY5oaRFO+kLRQUbjUfE5VlHeSqeRn887EXTc91Ej3s7RtUeFEVNegtGTCoARSZ4h0XOuAJFhL/8ROqwv0TIMmFF/CbnRAc8LkXqPYBFUQkzRT9D80Q= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 5NCpIt3AckBi96u0bsFyQAgIsTbIwXJAVszhkuXCckAQjQj2OsNyQPVwdu1C0nJANivhXM/fckAIV4YoJOByQCDxtku44HJAYrwMq0/ickBMg3uBkOJyQJK7pFc18XJA5JgawcjxckC1RYUWOwJzQHKg85jPAnNA8IQIMPoDc0BsOv/ovBJzQHSF5D34E3NAzGaujHgfc0CZ3k+bOCFzQL692TJ7InNA9vwCx84kc0D7WvaJuT9zQNiBdhl4QXNAwUKXXHlEc0Dk1eimDlNzQNirOHCjU3NAoMIfhzljc0DsuOaGeIBzQGxYkg5dgnNAOpdpnImQc0D+73iI95FzQJ7p6rFMknNAMOAgAGKUc0AgdxW59pRzQJZMFHi4oHNAbK1zQlqic0DwEdJwI6NzQO0bMysFpXNAwP4BpLWzc0AoEVVDDrRzQHwjfcjOwnNAtiHs09fRc0BOH8em4tRzQOLzA6Kj4HNAcez63s/gc0Awz2IYB+FzQJlrSZI44XNA/jel27Dwc0DzXZEkOPRzQE4rqZTjAHRAho7sgXgBdECZEDqp2hJ0QLoauddME3RAVtqQ7lIwdEAEOewhOkN0QK6io02LVXRANnVqtiBddECMOJAkuGB0QGAXeLIIYnRANHoelnpidECOvqigIXB0QFDSR6lAcXRAckGEHPeAdEDGYW3xTYF0QMIOoKkmg3RAXBqBJxaQdEASHS8nzKF0QMe/L2kPo3RAjPritG6ydEDqrPkz+7J0QMtvuLnjwHRAoJjOH3jBdEBzz4/wyM10QNNfggEQ0nRA5xjIqKbSdEBRw9FsIeF0QMWFpXp08XRALu74x4zzdEDLCPevXAJ1QCriVMecInVAiImxbss1dUDAeLTpN2F1QGj2se1WcXVAkvYS6+xxdUBG3MUXjXR1QF3Xwjd2gXVAKqQoQK2BdUAO+NuCp4N1QOFE+EyahHVAX/jor0mjdUDOyj9epKh1QF+jGIHNwHVAsDix0UgCdkA6+1LXiCJ2QC+Kyq6PJHZAMfo6VUsrdkDaKgUAHzF2QJos3Cy6M3ZABBAYzhxBdkDwjUQUyUJ2QD7hbK95RHZAuK+AgBBRdkAs7igNzVR2QGh512TqnXZAomTdgw20dkCkd4KHuMB2QORN03DOznZAQB2UYJDzdkA48X7BSQN3QGCX/xUBEndABjhHjwwid0BVhe2vDDV3QFle9G6cQXdAgna0R5FDd0Do4tRVJkR3QKM9BUkaRXdAzBTkCkpRd0B8ZJ+mkVF3QLgQM90nb3dAMpy/MHeCd0ByyR69Rf13QCxT9bhtInhA6v/oKdEjeEAelj+qIjJ4QDifebwQRHhASltVxHlFeEAC1ynEylF4QAqBPNuIVXhAXgBa4/lgeEB6oax6t2F4QJ9+58ciYnhAz9fYc4t0eEDGdc/49nt4QBi66pejgXhAMrfQpP6DeEB63Rn4mYR4QK7krZqakXhA5Z4GraeUeEB+3JVnudR4QEQpV66i4nhA4Bblp/vneEBCjoPCi/V4QGeFOxm6IXlAwtvmvSQieUAe1WYKtzN5QJBabO27O3lAfLo3CvxDeUDvNJoWzFR5QFIzqtAMa3lAlkkF81nDeUC/nUxaQdR5QJzYkfj7A3pAjQhM1iozekD2lvhiDDV6QAIPeZstN3pA7A4XbDE7ekB+VTwlNT96QFxj8Jc6Q3pAmPjz/xlFekCsIQwjIlx6QLlpdvIoZHpAJiiuccyDekD4JOWPHaN6QM5e4nsNs3pARGp5+gy2ekBlcV3VELd6QArPpJ8Uu3pAuGljFxy/ekC6LMYEE8N6QMG0Gd58BHtAWgAWQUwVe0ADEGyPDXR7QIqLaMsilXtAejQWMQCne0BuneZjBat7QBV7H1IFr3tA3A3aHbvke0CUz+CDi/V7QGxIbVHZAXxAvrLDd2oEfECaeDMdmQV8QKWcQ7XSEXxAQHgb9P0jfECqxQU4QCl8QM7orMPMQXxAQg+QOX5VfEBDw3zMi2V8QOYiGH/DjXxAf08aNlSOfEDyQpnkHJN8QDjuCDkrl3xAGkVjOGOYfEC2xDV5eph8QDD1PXHCnXxAgkw5276yfEBouYGjV+J8QLcsMOUV8nxAvsnAOlTyfECbddPwSgJ9QPlTS3prA31A+AljK3MLfUB8182keBN9QMQ4ojpIOH1AU9l9jDxMfUC8jS3g6mV9QCIgDwf5dX1A+sROoxuDfUAyAbOWM7V9QI8hjKFNxH1AHcsPBObEfUCnkYjmMwB+QIxfrnVYE35AYOzPX1RTfkB6rm2+eld+QOuwZ5lcW35AWKnA02CsfkCu3PtDaLR+QPWrndnRxH5AqpXiuivkfkDfO0yCuXF/QLNBVlzldH9An9w6/RZ1f0Cuhu3c84R/QLZTiU5jkX9AAY0sd/qUf0DMtBC6A6V/QCwalD5YsX9AYFj+/c8HgECih9LhiiyAQKLkFTwdN4BAsaOveMk5gEDYfXgDdjyAQLaQrpUhP4BARVPqix1BgECKVPf2hEKAQMrdzJOoQoBAwAZdHdVCgEDwlKafFUmAQCj263evSoBA67ANPeZQgEDIGSnDElGAQMAUZPuzUoBAQWlK1SZYgECxBAgvDlmAQJbF4i25WoBAXt3PVKFngECwGUp8TWqAQJhaF09TcoBAHrrfm3J6gEB6p/iQeIKAQG4bgH5ejIBAqpPS8AuPgEAJF5iWt5GAQDwR7yQbl4BAHPPpW5aagEBNw3XRe6WAQExUL+oTr4BAbop08VHBgEB6u7iGnsKAQLSCaF5SyYBAYG0MvEvRgEC+ObGpZdiAQPa7aj1J2YBAHKhXbkXhgEC/DJ+wXOiAQJZC37wX6oBAAS1MK2j6gEDkPVMfP/+AQHZvyIM/B4FAA6hiljwPgUCkkCYaNB+BQKSu5/M0J4FAnksIRAEvgUAmkneurTGBQEzK/FYoP4FAbocnWbJmgUCgkqmGtWqBQCBPmOW5boFA2Hf5rMF0gUCMKKWEbneBQHYIzoAaeoFAlhPaVmJ/gUDQfRCVnoKBQLoC0r/fhIFAMBFgE6WKgUCCzHFSVY+BQAuwafu9koFAmJjqEN6igUB4apari6WBQD28op1sqIFADMsAL4+pgUD0tEoYlq2BQKKpfoFJr4FAEs9/Yku3gUAo9UTcA8qBQBTupLqwzIFAB72nJV/PgUD8YbHj59WBQKr7CLDXGIJAA1HRh9YggkANoFKz1CKCQKWD+9nQKIJAWV+O+L8qgkAknFyH2yqCQIJLbqNsLYJAMyleU+AygkCBELZQ3VqCQAuEog2gW4JAMDI6abBngkC79MeFUm+CQAihn/VCiYJABJsFIUORgkDGt6gyq5KCQNLoQjf0koJAqUqG/zuZgkDu0RHADqGCQMzJQyU7oYJACD0e7++lgkDOVELkNKmCQGZh5Xf3qYJADCc7gOzFgkCXHrkWeRGDQGgqcWt5GYNAL1oUxWMgg0Bh5+9JciGDQCxAv81pKINA0iziznEpg0D2VsmSWjCDQCuLQ8w+mYNAmv/Dy0Whg0Bg6fly562DQJC9FEYAA4RATs9hX8othECujRz/mT6EQBRPoUj/aIRAWocb5v1whEBSMefTyXeEQJSPynZ3eoRAkhZtQiR9hEDAj+rY0X+EQI6PFi59goRAEhbfnweehEDJP9FoC6KEQMKCtjsNpoRAoHI85mzKhECg5gzLadmEQDipOzlp4YRAKv9dmGHphEAeiN3cNPGEQKiIVBFi8YRA9HZgFUYUhUD/4ZX22RWFQOSufSVxF4VAvik89A4ZhUBCn/iKpBqFQMq4vEznGoVA62HHfUIchUCOdpbw6h6FQKS4QxKgYYVAlliIzrVihUDw3WmtS2aFQHRNxga6ZoVAkonhv6BphUAlZR/eumqFQBTvysyYcYVA9ozEGpl5hUAqiv/3QK6FQKSBUepDsoVATCc4KpEph0BOJvgwkDGHQP7bbYSHOYdAI9+basaxh0B6gi+FxrmHQJG0i0TCwYdAePO0wnXGh0DMiDJMeMqHQPhkG3R6zodAzjGPW3fSh0CFTF3apE6IQEzJVPH6UYhAZxyl96dSiEDas1C9qVaIQAhh1+zzgohApCQC1PmGiEAkSVQ4h86IQApkoa6L0ohA + NrgMGZxjYkBTc4twDaJpQOzQoK8iBW9A - + - QTWURoYB/UWSfc1F1rQtRfjjbkX7NgZH5OIgRZ0psEVuNDVF5YKtRZYftUXCImNGPw6RReolRUXEVZhFexAbRw3xfEaS1KJFdRxPRZ+LhkbEgJZFEuzSRaZ1Z0Us33hFpGUdRmSaA0a5zVtFo3U6RVXBxEYFlqtF+qQ4RWlmY0X9pTxHMmpMRSZsbEaZlzhGzqoBRoOXOEU0DSNFbcqBRbkLM0XQZNpFLwGCRVMeYUUSoDBHAyz6RXBPrUXZR/hF4T6ARRWtVEVCc85GOWBcRhhHGEV1E1NF+OYsRQgLVEXtfhFFwTMwRiGNS0XvGR9FM/KORVICuEV5Sk1H5x1kRWBOEUa/wiFF3ODWRd+WI0UVFXBFHjsiRTIYJ0U5Pw5FsSUtRfs0HEUFqVpFblNAReQ7NUW12C9Gt07ERaFKm0X5xSJGTjZCRfv2PkbjKV1FbF82RZXOR0YPGC1Fsd22RZsoSEV9VR5FvE2fRQPUnUV4FjlFDJCNRSmBmEUECSdGUk7NRbCpuUZQVzVFU9GlRanSWUUIIJJFCYQwReuxd0YbBHpF/ZqiRS7GIUVX16hFAKBJRctdikXO3oxGZQOMRZXC9Ec8BZ1G0mc9Rcjm9EU5QsFGvQ+rRRE2T0agpE5F0f8VRTUuTkX/F5RFrwwVRusYG0VJ3rNFYutpRgIUq0Vi9CVFzuYhRUdWf0U+ZSNFjclISWNbrkXry2xFvnceRQQ5S0hf6SFFsvuURoFsMkVdnjhGkhnGRdRRxUXXk55FCeYmRWNt80XIRoxFnbsYRa/4lEVYLVNFn8eaRbJTy0V320xGp+QqR0XVw0fpSTZH2MGHRrLY10Wr72ZFFn+nRn3BikVrNkVFGVewRdnuhEVFWgtHIOTSReRuIUcJ7VJGO9Z9RTpKFEUgUbVF/DkgRqnYNEVPL2RFx830RSYirUWVfU1FWIGaRQ7AhEYBFmtGrmAnRQpWp0Uf6JlFarF9RUIiIUXhsJxFvfmmR4IsoUY+tz5HNvsmRSl080aKCkNFXL6xRWh1b0VZInRFztEbRfkEvkep+1RF9gm6RgD4iUavjQpHMCWGRuyVikXkfJZFP0E8RRwlVUayIiFFtQUpRXnQY0UTBgZF+oHwRb8fQUWjxBdFiskPRjWJF0XKXihFdtq+RVm6PEWlsU5FV8UKRQjoc0WEOiBJ2epVRdmyH0ikpxJGExKgRsLFWkVcTj9FnUk5ReHde0VuZG1HJKhNRzoG2EZRq79FtnHUR8WXEUZTXiRKZ1TwRaQrc0fVkiZJx6IdRRCBJka/gAFITNMtRbYJyUWs5D1GipPORQftSkck8hVGbHaCRrOfnkUBmtJGTxWsRgjTE0YyTwRFqeYaRbf4IkWLjphF7zuASKE7zkX9e9BHBul5R9pNWkaLO05Gfo2mRaXmZkU2ay5GhKZWRSlXNEb3HJNFUGBhRSr11Ea3191F4ldtRUCfa0Vv+fVFiiWFR5HdEUeNLRtGe5CFRkXQWEalXr1FrsMFRWwVLUZY4g5FdB85RR7gFUY19hxGG6toRdt7LUfL9h9FbcS1RtZXd0XdEUtGXvYjRVnWikamKCRGcxegRSetR0VLPlxGOtUwRcArB0iL3ExF7Zj3RRSzA0d1w7hFFy2JRTXUHEUKYl9FYMQHRXg6GkV5mBBIo2FtR52PlUXki6FFLYMOR9Htz0XBfTRGBLgaRf3OjEWRDkFFflFoRfyCF0hglntHJ7gQRtW/JkcVaSlFHcNORuMQk0Uxg4ZGT5HKRdv4gkWXPW1F6FKLRTY9N0VH3d5Fk0NERX79M0ec+N1GS+OcRmrcjkWR+1hFPVkLR4bPoEaPK6tFS/oTRf7OM0cFsplG4WBORviWj0UXnmxFsvMcRTXM8EUG6rpF86zIRXI/TEV/Dj9FO0oTRcMaNkVcGDRHc83QRtRE00XHbFZGq2OXRtSejEVBsEBGLW2CRazXgUZt3QxGPplCRtxB3kXJqGRFLPAsRvB1n0XukGRFrOuIRyIRXEdPvaNGakT/RYbWSUZ0LI1FIKrhRW8xGEW7OZpFeJp1RapTQ0ViL29F + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - enOtmtzAckB8WL05bsFyQKbjrRnJwXJAyJv/xkLSckASv5BZI+ByQOc3THFP4nJAGo4tZI/ickC2QgKSNPFyQLaIq1fK8XJAxouG2ToCc0Cs6r16zQJzQLAgb3f6A3NAQEEEK7wSc0BBRg2n9xNzQP56sCwFFHNACndFYjghc0BsGit3eyJzQFigs7zPJHNAuljYjHhBc0AA9U0XekRzQNub4OIOU3NAqPzBCKRTc0ATxv5ueIBzQBiizchdgnNA5pNzXYWQc0CcjbZv+JFzQMqnOsFMknNAjhA+WfeUc0AbzqSAuKBzQBUaC+lZonNA9Fni2rezc0CGIkoTDLRzQDH83qjPwnNAAlXqSdjRc0Ar3qER4tRzQAJNTq6j4HNAzcJKK8/gc0Cm/DFsBeFzQPUQsFA44XNAqtbiYLHwc0BTyYlu4wB0QHTeD3N4AXRAyn24SboCdEB+V/U1SxN0QIy9C9o7Q3RA1IcP8B9ddEB6qg5EuGB0QIRUK3EIYnRArEd9VHlidEBm5HNPInB0QKDqTuZAcXRArYLBevmAdEBU0CiLTYF0QK7Co6sVkHRAfk/jxA2gdECVsFehD6N0QHwiMQ108XRANGjitYzzdEDY9tKkXQJ1QB5ZC26cInVAbiR1Q8w1dUDyvKnsN2F1QAojYneMdHVA9jtMAq6BdUBcud6opYN1QJZjfrJIo3VAWpwnLaSodUBU35/tRwJ2QGrvkvWHInZAySCz1I8kdkC+3OpiSit2QAa0++AeMXZAdpaQURxBdkDARovueER2QO6Z3qHMVHZAHnSaxNlkdkB8CMmt6512QKierOcLoXZASEcnNcGydkAnpHB6DLR2QPgOP3S8wHZAl9DOy5HzdkDlJi1KSgN3QLOMQIgAEndAWeJklWQTd0A4K61QDiJ3QPxZ/40MNXdA9Cq2VJxBd0BaJyB5JUR3QGNOoWwaRXdAQq0Oq0lRd0DQ7IMpkVF3QEPIZbmPYXdARL5LOyhvd0CqGXnM+6N3QAa91yxsInhAWltC3NAjeECQKnCOEER4QOK1aBB6RXhAnAYZI8pReEBrvHzStmF4QIxEGVqLdHhAQjfpDfZ7eEDaexappIF4QEYcH6+ZhHhArHAgHpmReEDTL0UeqJR4QEwshPWh4nhAPF2Ik/vneECQCO/mAfR4QCSXGMOL9XhA3DCKrroheUCEXImKtTN5QKaGJ2C+O3lANKBXScxUeUAUzo5YwLJ5QPqOspFaw3lA6KQrRkLUeUD1dxUS/AN6QNqbUCMrM3pA0T+VGgw1ekD0OqF3LTd6QEK2e8cxO3pAs+0RkzU/ekBtRnxtNEN6QOzqrAEaRXpA1F7+jSBcekBstFtNzIN6QM3ZC4YOs3pAOhyyVQ22ekDWRgFvEbd6QJi20FAUu3pA2noXbRW/ekBHTXTDYfF6QCjcM418BHtAHq86vEwVe0DOatj/VyV7QEDvlX4MdHtAeDo17wCne0AGoh8cBat7QAF4ffeL9XtAkOLIG9kBfECXgncVmQV8QOzPLdnQEXxAeE5BOM1BfECIHVEAflV8QES3SDqLZXxAtp624cONfEDINWPOHJN8QN6EKcgol3xA52MsI2GYfEBFNInVeJh8QIlv58S6nXxAns7hIYHgfEBBWuOnV+J8QJ7aVgpU8nxAlAXDLEsCfUBQwhPZawN9QDDnYpNyC31AAFo3S3UTfUC5xGSvRjh9QIK7quigPX1APBhqvullfUCEnQ9m5sR9QAbatw41AH5AptBDAKREfkBhYR3HU1N+QKBkxShirH5AdtVJmgnGfkAHMSe0uXF/QDhMe1XldH9AdvdxBvSEf0Cwe5qgYpF/QCXENi/8lH9ATh5O9AClf0Cqo9d9HTeAQCTQCn3JOYBAZ5JyUXY8gECLSTcGJT+AQHSQlaEdQYBANJsBFzJCgEDGQUDvVkKAQG2IFfByQoBAikPrZKhCgEAuzjOK2kKAQNxl6Mj3QoBAqoKg2P9CgEBH5HSxFUmAQHB94kuvSoBAKkZALudQgECp7gJRElGAQGr3BfizUoBAIi0mQQ9ZgECD9JNguFqAQPg1ruCfZ4BAlotBH01qgED4j09dU3KAQGSPsy5yeoBAK0U2kHmCgECs+hw/XoyAQGUb2fAKj4BAmvrjqriRgEDO/sV7ZpSAQEe2k2YSr4BAWXRpi8iygEDWOCAaNr6AQGgYLuVRwYBAED/qep3CgEDzPisqUsmAQFRJ96hL0YBADn4ahWXYgECy81L2SNmAQBoo4ZJD4YBAdkj4CxjqgEDyX5DpPv+AQFvR+09AB4FAQD6CcD0PgUAyave6Mx+BQJVbySs0J4FA+45D7v8ugUCaO9zQrDGBQBvgk1QoP4FAxNdfg7JmgUAl+hDutWqBQAAJSrm4boFAbbant8F0gUCZ79qLbneBQA61o2cZeoFA63aeoMd8gUBgkcImnoKBQLDcFWtVj4FAftmFOb6SgUCIJAIR3qKBQCDqrqCLpYFAWkC0PGyogUBkZpT5jqmBQEL0mXWCrYFAlygkhpStgUBCtEosSq+BQDN5TwEEyoFA08hmPrHMgUCCDO+IXM+BQO6ppy7YGIJA4GwW5dYggkAeytaj1CKCQEJhoVLPKIJAooumZb8qgkAHvik02yqCQOY9pLdsLYJAJ5MUGRkwgkBwpGBr3DKCQLRhZgk3fYJAa9FexEKJgkA+kgY7Q5GCQEBU0Zc7mYJAJEqLWVGZgkDQojbgDaGCQO5Ig1o6oYJAfSglc/GlgkBoPz7PMqmCQOjh7KH1qYJAHaTy4uvFgkDSgX8geRGDQHimEYl5GYNAFtot6mMgg0DCaTsfciGDQLnbzhJxKYNAjWzRQVowg0AwSntqaTGDQNQ7m6c+mYNAgko+wEWhg0BKkl+NlcqDQMpg9CnKLYRAHR9lENAxhECsw8u9nEKEQM7USnn+aIRAjhClqf5whECKa5BnyXeEQGps/Ot2eoRACtfaqSR9hEAYuQio0n+EQKKoof0HnoRAgLInLguihEBYuQCqadmEQDr2Cz9p4YRAyEfWgWHphEDcLukxNPGEQA2m4fJh8YRAtLKqpNgVhUAoSz5DdxeFQMgm40gPGYVAp6sTCKoahUAA/gS+5hqFQBfWueSfYYVA/fYaIbZihUDm/tlZuWaFQOhYg/agaYVAtIEPtrxqhUBki1ZSmHGFQJiLKCJAroVAMKrl7UOyhUBGJIn0QraFQIhexKKQKYdA4BkL2pExh0D+LR3WhzmHQHBjFqbGsYdAtIbeosi5h0CfaAQfvsGHQNY+I491xodAEmzNxXjKh0CMuZGRe86HQLbHPGR90odA8GAW/aROiEDoavci/FGIQMwjn3yoUohAgJ205P5ViEAs2vVprFaIQBbtvKv1gohAhGDvtF2DiEACopqD9oaIQHlXDb6IzohA + KBZXds7jZUDAf1LOpONtQNS+X4D+xG5A+TZ8X1dzdUCnmr2g6iJ4QMCREJlvpHtAAqcH7K1zfkCfJMDgLsqCQKpQUX+56oJA01DYTswihkDj57iHpxKHQNN/xnh4q4lAROuHcfoqi0A3rZCVBMSMQKgYUo6GQ45A5Uaa6C1mkEAGI45VCW6RQMrK/sFu8pJAY0x+UUVuk0Df3z/DlA6UQBVj41+LupVAKdARYcASlkCRUiP3poaXQEBT5DPxppdApdLmXrAimUAkabc7JyuZQLxVuTHhtppAblmJ2VIvm0BLfhcnDX+cQB/bcE58O51AYgHq+T0TnkB8BGFKuDufQOIY4Q6U159Alw1jLP9joEC4oB8C4M+gQCJPzJUXLqFAdpi/ze21oUB72v6cOvShQCStt8sLtqJAwu6tl1DYokCv7iA1JICjQOfmlmZm2qNAb3qcP09ipECnchJxkbykQJRyhQ5lZKVAMrR72qmGpUDbhjQJe0imQOHIc9jHhqZANBJnEJ4Op0CfwBOk1WynQL9T0Hm22KdA5tTCnutQqEAY3wKB2Z6oQKZgPqkWM6lAxvP6fveeqUAxoqcSL/2pQJ60bjkMpapAeLZWDUXhqkDDrFcIIqerQAP4v3Zdq6tAtTdBDD1prEANuKEqYnmsQEB5qnVVM61Ay69B9m9frUBlcZNEazWuQCQ7dP2Sha5A8PszRX7DrkDTT2z7sIWvQPEe81jPBLBAlW1PAepVsEADm2dA2oWwQEGz6IT7uLBAr+AAxOvosECtkyLiBTyxQI+mPkkBWrFAlIYvowPBsUAWrAH3FMWxQDo2WfQfN7JAjaeI2RNkskAA1w0pLJyyQDntIV0lx7JAsrIW3zIos0CsHKesPS+zQPf3Zl88b7NAcr1b4UmUs0A= - + - GGM+RvDu5kUbJAdGzhMUR8BVk0XfL2RFJBJ8Rc8+F0Yz1HtFh8h2RdX0Q0XC7xBHZslMRu0WnkUqYI5FQtWKRq6JM0XC1JhFcPlVRQmUMUbjAMZFUCiaRQ85sUYp8a5F1RUzRa6hQ0VzBUFH04dXRtwhK0aKY+5F2GI3RbK0MkXAuMBF5gtGRTzIrEVwXgBHGU+yRdcZOUXUqdJFT4lHRf5HjkYqPC1G4kowRcShLEWPtklFqKvFRQgPc0XI7YNF/aCpRW1/jEXIO1NHsWY1ReB8AEYcKMhFTZkeRWNLc0VaXFVGQNThRUrvh0WwjwlGKABLRe9RIEYyh/5FFXWxRVA6dUU0iVpGIlbVRX3mlUUMx1ZF4XjjRdQZX0XFKcBGnBm1RV0DcEUgDTZGu6QdRbIYhEWQmiFFQC9pRf+nXEXwhjZF4CcqRUsrgEWmI6BG8GcpRYR3NEXSMPRHbzChRuSA2kUYI7lG8bGERX/jP0bpQ1NF6hxKRb8AIEWqt4pFQPNyRj8FTUVKEUdGsjbTRefpT0XO7DZJUJ6DRVN2QUXzCzdIQw1KRfbUYkazzy9Gb8fMRVdyaEVmlpBFSCY1RSvnRkZRoYhFFo1sRYHnZUUmk41F/eaxRYEOMUZOxhxHZHGaR/M970bkAmNG8QGRRV4fJEVbw5ZG90WBRWHUoEV9w/lGPr7nRelC0Ual+klGcypTRa/cJ0X1yHhFf5sVRjpBXEWp4jtFqIuQRRN7lEX7Zn5Gub0iRpkWckWeqpVFDAq4RU4MC0dYfNxFvGMQR5y2wEaJvIdFtv09RTAv40XCuVhFnvaYRaUy0UeBZrxGO6qJRgibLkcuck5GR3S4RTQozkWAH59FaV56RQ0OvUVkDFVF6UVERfDegEWb9YpFjE0/RfX6XEVhSEVJhLY5SCZJBEYkX6tGcrqARWiWhUcWGlVHm6mVRkohwkVqDchHSlI8RT50yUUBE+NF/1Y7SvX9AUYesY5FouinRfqGaUdSHDtJAt1DRdrhN0bU4xlIP9mJRUvoTkaitLRFv75DR3asBUagAHZGrfVMRUXi6EaUea5GBy3/RWCFW0VTAa5FIitpReU4UUVZ6HJICMXTRQwcw0fYKndHKAQgRrziSUZr751FnZ5CRg0mHUYkmo1FP2+fRZqP+UYtWK1F+bsvRTKCg0XeDspFql55RymWFEecafZFy7afRnypjkaZnPlFP2AqRRbgYkUiXf1FpTwARrmKZ0WOlYxHRfAXRUWnDkdFQYFFObDhRWyXQ0bkuWpGfrk5RnE9+UW9ziRGfsdHRZRJy0frsTNFd0f1RTvtyUZrHfxFT++DRXnuZUXmPoZF2lANSITxZkeEnARHfsRKRQvvu0VQOyFG0QyhRQBCRkUmLn1FgIt1RboKGUg6/ohHPudGRra6FkcE9UNG+VZlRaL+j0VJqtxGGlX2RU93GUXyDpdFp8kwRfc2L0Wv9e9FQmVXRacfIEdSewxHjZ2bRp731kUwN8dGEbabRuoaH0eevINGSBkhRhUYlUWZCJJFeDmlRfC9cUXV9vhF1vJcRT9vKUVqFy5HhrjpRqP1tUbBjIJGDHUVRneCLUad8X5G15IaRmhVGUXte1ZGUgfhRSuLVkVNpidGwsObRTGcY0UM+YZH70NARxLFckb2l6VFf/BARlw3a0UrKgdG+G0yRUPkX0WkXjJFYRJdRR2blEVAvW9F + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 7ANy29zAckCS9UBIbsFyQHJA0CzIwXJAarP5yDrDckCVsprFQtJyQIyJHAcj4HJAXEwxeVDickAI28DVjuJyQKREJps08XJAn6Xd18jxckDydvEGzwJzQMnCOBv6A3NAXNYswrsSc0CKMupqBRRzQO6NAoc4IXNA8otsq80kc0DSNO9qd0FzQFweqSJ6RHNAzG/BwQ5Tc0AGo9Y+o1NzQMxQhXk6Y3NAZO67yXeAc0CXeLwXXYJzQN8GwKhMknNA+Eb+4/aUc0AGxSo2uKBzQK3HPDRaonNAILF+u7ezc0BJ5sUcz8JzQIq7Fozh1HNAaySrdKPgc0Dq+pAn0OBzQICkoQIH4XNAWJWAxzfhc0DQd4T1svBzQBxxcrviAHRA4tTSw3cBdEDQfOP+SxN0QHu34tQ5Q3RAan1S2CBddECCWX0Ft2B0QCZQ3sQHYnRA1PKYw3pidEDsmYlCIXB0QGpASMNAcXRAA0cnbPiAdEAv1QHkToF0QN7XlbwVkHRA5HwFfW6ydEA5WZT2yM10QNBgUcx08XRAmVQFyYzzdEDyr1/sXAJ1QOCcr2KcInVAmHjJkMs1dUDGKQm6N2F1QBAGlKGMdHVA0hpSxq2BdUBWb6cCp4N1QOPQChxJo3VArqd3N6SodUBCDD5tRwJ2QG5ilmCGInZAA6rTyo8kdkBwNi5MSit2QEoAoAsfMXZAylUFr7ozdkA6eq1eHUF2QGImxEjKQnZAFE5UVnpEdkBw2TTCzFR2QJRD9ZHZZHZAopa6D8GydkByOqtRDLR2QHo+9DnOznZAwcjpOJHzdkD5PdyOABJ3QNsK8VVlE3dACp/HMQ8id0Ck+BEDDTV3QM49SG2cQXdAGJ3h/yREd0ClH24FGkV3QBg7bFpKUXdAfqrV5pFRd0BCprcD+qN3QHjAuWZsInhAkFSX4NAjeED23JMU3jN4QMCmOEYQRHhA2xnmknlFeECvCJ6TylF4QC+t5362YXhAyNQrXYt0eEBmG0qU9nt4QBbIWaCZhHhAy9BXxJmReEBIzeAGp5R4QDzbbUSi4nhALnO1a/3neEAQdmghAfR4QMCUCSyM9XhAsoMvqLUzeUDI+Lojvjt5QKA4nDrMVHlAKCihBw1reUDrjx0SwLJ5QEgtOf1aw3lA/MH/9EHUeUCAI10d/AN6QKbann0qM3pAbrLaKQw1ekCFXIvNLTd6QDSyuv0vO3pA10C/3zQ/ekAk4C1IGkV6QGGMtscgXHpAYbovosuDekD/ZXqxDbN6QMSAzJkMtnpAEoGdLhC3ekCwwukrFbt6QJigGp0Zv3pAUAOo+HsEe0DMk3rNSxV7QKGTUyAAp3tADynR9Iv1e0AMyshV2QF8QHw9sKeZBXxA52CGus4RfEBbksyxy0F8QPb62It9VXxA1q2nBfyIfEAAm6BIw418QCJr3MdUjnxA09AtKx6TfEA+KdPHd5h8QBXcbgDBnXxAz3tH2X/gfEDMjqBhV+J8QLYhYIVT8nxAaliElwECfUD1YfjySgJ9QFBAuv5qA31A+KVwGHMLfUAJMx9uBwx9QH660hhHOH1ASUDv/eXEfUAqueVRVVN+QK0G2aSQpH5ASCTR2WGsfkCI49OXZa9+QGCx56S4cX9A5vbvE+V0f0AGnuiF84R/QOg2iTRjkX9AdAniEfyUf0DwvbZ1AaV/QK4rYXodN4BAQ2IDZ8k5gECIatYydjyAQMBwwLkkP4BAIG75gh1BgEBevC1JqEKAQD7AA4EVSYBA6JkS4ydJgECWgjUQr0qAQDjL/awSUYBAxlrECrRSgEDcqZdWDFmAQAyA1I+4WoBAfEEcP6BngEA8P13pTGqAQD4sbcMnb4BA1oQ80VNygEAGAcO0cXqAQMZCKwF5goBAuONJbl6MgEBW90XUC4+AQNFmxwy4kYBAUFkkYBKvgEAaV4utfrKAQEi7btLHsoBApLZ8uFHBgECXmeBhnsKAQFxRQkBSyYBAClN0HNTJgECIv7hBlMqAQAQqkGVL0YBAONrLzGXYgEAiVbRKSNmAQC56OGRD4YBAUFA0ohfqgEAcJFulP/+AQKbqek4/B4FARYgo9D0PgUDkbV/6Mx+BQNu59Kg3J4FA0njLGgEvgUDLUAySrTGBQJD8lrIpP4FAQl5uKrJmgUCkun+gtWqBQBk4GaW5boFA3vZRcMF0gUAqoWNObneBQLR5FFEbeoFA2gDvMFWPgUAlzJWLvpKBQK4OvSzloYFAOrUpxt2igUDIDuaOi6WBQJ6kVMeOqYFA1L51joStgUD+ZKQ0lK2BQOl8e+ZJr4FAFoV95Eq3gUCufd25A8qBQCLSlQ6xzIFAJ9gFIF7PgUAQTYCC1xiCQHhVIELYIIJAbl/+XdQigkApXPtHzyiCQCwYJd2/KoJAXM3K09oqgkCXdUMMbC2CQMCrIyAZMIJAvML5oEKJgkD2fNtgQpGCQEAwm/iqkoJAvDleczuZgkAifL/6DaGCQKSYgKM6oYJAqMC+5fKlgkDCehR67MWCQBgxiSmF04JArbDiFXkRg0D2HdM1eRmDQEnX1ehjIINAPVnmA3Ihg0C2V3LocCmDQOJ8g3RaMINAgsvz4P98g0DI3UxpPpmDQHenDJZFoYNA0ixf3+atg0CeWNgE9jGEQHKrmlSaPoRAWC22hf5ohEAmDRd7yXeEQDBvrll2eoRAjiZhESR9hEBEqFaD0X+EQBPfd1IHnoRAPMO8FQqihECKmYFAD6aEQGT2wmlp2YRA0Su/SmnhhECffJuDYemEQIm/HcE08YRAdpkt2mLxhEBiN7tD2RWFQBgYQ1xzF4VAKDaacgwZhUCwepRRqBqFQLig48efYYVAENwNpbVihUDznRjRS2aFQAtS4NK4ZoVA0zcyrZ9phUAapC2ku2qFQNsutQ+ZcYVASrQ7v5p5hUAU0plvQK6FQEYue4NDsoVADuE1CUe2hUCSrdbttUKGQDnUQ6mQKYdACBtdf5Exh0DqK98zijmHQP4NwK3HsYdAoJBZrse5h0DuqopRvsGHQHkSh+F0xodAaE4vQHjKh0CnoDA+e86HQPq1lZ530odADnVv96ROiEDFdgVb/FGIQOL+HdGnUohAGjXqgPOCiECYFmA+W4OIQILRIpL3hohAepHYCIjOiECKPD+7jNKIQA== + NrgMGZxjYkA/KJil8iNpQFRnpVdMhW5ArmsYctGickCqEa9//lN2QABms4SWxHpAQnuq19TTfEBj4CNf13qAQL+OkVZC+oFAYw8SiYMDhEB54XFOuvqFQJAVty7lK4dAQA0YXiYDiUDPNXZTUsuKQFodgOFmRIxA/Dsb+bPzjUCDHQexeXyPQBIeUWTjlZBA2BFWq21SkUAfJgWmgzaSQPehtT0kIpNAAzzYrbm6k0AOJYgQVbaUQGBlyKn1upVAjjx/Jat6lkDvjSafIYOXQEBT5DPxBphAVmglNRcjmUDUEYt4Yg+aQNZ/HEpt55pAuCdegJiTm0C6le9Ro2ucQDg/VZXuV51A - + - R20URgvTIEaS8DFGtgc9Ra+WHEeePGJFSQ/URUOxwEWY9RBG1ZyERTBQI0UKaQVHy7FrRrrSjEW1pY1GBCC0RUAxSUUkhS5GU4BJRXAV00WrgzFF8K6kRtQg2UWV8VJHjAdWRtsi8EVfrBxGFrhSRTNx10UDTMJF2vDbRtAGjUXgK1BFdWPDRTuyQkW893FGXWVnRnjsbEVcHY9FR9wTRuVOX0Ujm49FiomMReA/BEbXlENHTCs+RQEU6kWf1+lFDGupRaU0iEV3yqxFAtjJRWvPoEWE7QJGYcw2RXhFx0WGzxFG7N+XRVirWkVGeCdGOzl6RYNNnUV08ZVF+oE0RoWYj0XdVsFGBD47RadtiUXN+jFF7bduRTqSP0Y6+FNFajpJRS8n7EVzdU1FRYtSRW/+kUaEMp5FIC50RdwP/kdWFZ5GUXYZRr0U9EY62rNFYUtJRnE1m0Wsd3RFORyTRvAEd0U5citFkSByRtIXu0U9NGlFEJFISe0VoEWvVlJIxAw4RcqTnEYVpAFGf1WgRSyXcUUk9LpFAAc1RrCoZkUQE4tF4IZSRchBV0VBjXJF6DjxRdY03UWpeShHtQDFRyou6EYtVkNG10iVRbdB0EbIzXtFloATRigIGUcXT9dFbr8HR4zx+UWsUXBFeLmeRYT4TkbVbY5FxMeVRmYuSka+IZdFDeM7RSC/p0WPrjRGvBdgRX5mKEdDcChFBfPPRrML/EXI1jZFpTnKRZxDy0enm8JG/RNaRTcIikb0mBFH/IdFRpGqV0WZ1stFItrBRQ18jEUQrylF74RwRbB1PUV2c35F9R9NSYZFQ0iD0wtGJW/jRtYUOkXUMoJHJjs9RwEGTkabbZtFsnCrR2/jPUppNDpHJUV2RRSGQEkBok9GhSAXSNPUe0W/Gm1GV4yCRY5/SEcSWUFFG2EMRh6DDkZ+cGZF247nRrMCkUZ7eQBGKdK1RWdXUUWN8I9FScdiSH4fvEUGvLlH8aRhRa2BIkXfEGVHXDO7RXc4KUZ5IXdFuHcjRuSuLkZn82hFmVGhRdfm5kYxsrJFaxaNRZFsVkV167tF3MiCR/At00a9sdFFmfXwRq35m0YhFfJF6jzFRX7AukVkyT9FTtZ3ReATkkeNJR9HF5v4RZLe40UYsxVGDAUwRVfTjEZNFVNGtDezRazYRkaQKoVF/kypR0u/OUV+wERGLAiFRlBySUacRWJFvALDR8+4IUdhKkRFV7i5RrQawkVlKuhFp2FFRcrgMEW1gC9FUeLfR7oWQ0fmpB1GeefaRmy6EEbuyF9FQu+FRZcZ+UZBxAVGCqpLRe4EPUVlA3NFLInURQxcHUfF0AxHi6WVRobhBkbETKdGgqSERtoDrkVMAAZH0WqBRlmMFUZYonhFUvuXRT0wgUUKTPdFC4LHRdLONEUtcApHi2kVR4gWjEVG2eFG3smGRoh4u0VG4zlGSVF3RSxVU0Y5vE1GH25TRebNY0V+dh5Gd5KrRU7riEVWaBlGCwfbRVbCO0WQH2dHQPYuR55GiEaW89hFHxsoRi0HakX/MeNF8ZSLRa+SeUXXxWlF1HpFRS7KfkU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - VMPqFtzAckDUJO5obsFyQOt3i1bIwXJAbZCr6DrDckBmNpLsQtJyQLG7hXZ103JAFGxRZiLgckAKK91st+ByQHbJwzZQ4nJAi+1SE47ickB67TniNPFyQDKOnkjI8XJAoBkEjjkCc0ADSQ2NzwJzQFRwBx/6A3NAW6jWQ7wSc0CgDS5M+BNzQOxWxQB5H3NAXgF8Qzghc0DgR8u4ySJzQJ64hwEQI3NAwlLEm84kc0DaaDiQuT9zQDvNvdp3QXNAQ8bI4LlCc0D4iICxeURzQDJ8VP6aUXNA4WXOKQ9Tc0AiF2hholNzQLz0AAU7Y3NAEDKx0011c0D1DDwxeIBzQPKE6QBcgnNAxN5NbYeQc0CF1MXTTJJzQCxH+P72lHNAvMYjmLegc0BIEZnpWaJzQMu4X8sDpXNAJh2WFbazc0Ao417pDLRzQDyWgwj5wHNAYFEq/s/Cc0DmlwIz19FzQAFm4lji1HNAl8WpjKPgc0BN0ESpz+BzQLb9bRM34XNAP/p/R+MAdEC0Op7WdwF0QHpGuQS7AnRAUFKXi0oTdECyBulMuCF0QGxL1a06Q3RA2nAUMyBddEB8acfCt2B0QBJ/JkIHYnRAvJ+BRXxidECQnvqhInB0QBQEa5ZAcXRA2jBojDlzdED1MNS7+IB0QNAXl9hNgXRAtKNHLxaQdEBITi+17p90QBfVC4sPo3RAvH/nJ8KwdEBUFUFmbrJ0QKWiOG/9snRAepjJKnjBdECOAQYAyc10QBtYDbWl0nRAOEfv07fhdEBFJ5JFc/F0QN4K74SM83RAigHxBVwCdUCN76rnpAJ1QHS/6qHPEnVAOH98iCMUdUBs1dhznCJ1QOI5VUXMNXVADdfXijdhdUA6Q/cLjXR1QACr4hKugXVA1uO0SaWDdUBMSmzHR6N1QNQTsf+iqHVAmBgODUkCdkDiIMYziCJ2QEKJjLyPJHZAUGXvuUordkDq+zj2HjF2QHbsi6MbQXZAT351hMlCdkBO6H45eUR2QOlUIznNVHZAI/fWFeqddkD57RRhwbJ2QLReFqsMtHZAGaiytrzAdkCmM2XAzc52QJsNURSP83ZACufRBAESd0C6iBHVYxN3QIp1vW0PIndA/sKZxQw1d0BCnq5znEF3QJS+LkcmRHdAFCYZ2BpFd0ACzjftSVF3QBAtnr6RUXdAzv8bfJBhd0Ar5nfeJW93QHD28rz4o3dAdkGWYm0ieEBuReRk0SN4QErm/6/fM3hAV4ahqRBEeEBTOwCzeUV4QPtj9/zVSHhAIYPQx8lReECOIWel92B4QOi7oeG2YXhAYCWvbVt0eEAOzst6i3R4QEokIm+udHhAKqahwsR4eEDcQczF9Xt4QDS2DrukgXhArsnbsfyDeEBX9ZqqmYR4QB4rj1WXkXhA4KiyDKeUeEAqHJdDuNR4QHFIlR+i4nhAatUZBfvneEDqYIzGKut4QA7VJScD9HhA1QXcToz1eECR0n0NtjN5QHiqxbG8O3lAeoJVMsxUeUDW3OQawLJ5QLPHKdRZw3lAcn2zB0LUeUAiDnoz+wN6QHamQAArM3pAZtznSAw1ekAg8OIrLTd6QE54IwIvO3pApLvQPzU/ekD6AhCNGUV6QPoJbTLMg3pAUdGt2tKLekDbZXO1HaN6QACqaPENs3pApg69bA22ekCSzmlSELd6QLwrCMwUu3pAhWh6Uhy/ekBC6UKcYPF6QDqUtQN7BHtAxfv7vUsVe0DUMLJzWSV7QGGId30jlXtA2I3n5wCne0Dehqb7BKt7QO5d8Dkk5HtAFj8TfIv1e0CntAGt2QF8QHIJoESZBXxAyl7oONURfEDnyyUjzUF8QKE0n4J+VXxATCeasfqIfEDFpmn/w418QFLXFUEck3xAhyHHTCiXfEA8V/tuYph8QI7VZZN7mHxAsk3l037gfEAiMnqSV+J8QP5hsy4O43xA8bdSDGvofEBz/MusU/J8QKr/Y1Bz8nxA/hdr5EoCfUBIliRnawN9QF7qatX/A31A/euEcnMLfUDsLry+Bgx9QKCZ47pzE31A1Fako0Y4fUBprAXboD19QMTWTZ30c31ASiLjw+fEfUDco/jAMwB+QIZS2KiiRH5AWfwWiVNTfkBvEMbKj6R+QPYcuwRjrH5AHBc/xLpxf0DId00r5XR/QLBlKeE4dX9AVuyz1POEf0AEasn5YpF/QHLsAdb7lH9AlmKPeV6hf0DgxlHaA6V/QHwXSjcdN4BAOquQlMk5gEAi8H14djyAQMqsRqMjP4BAffoOWh1BgEBS26xZPkKAQIYzdSF2QoBA4EKep4NCgEBwzq1jqEKAQI5+mvjCQoBAfASoh9RCgECYO1ubC0OAQJLjMbUVSYBA3CpuqIpKgECAfac8r0qAQH5feCjmUIBAOnCx5xJRgEC2POgXtFKAQEk2MBANWYBAapvIGrhagEBjvWSroWeAQHQlZx1NaoBA5AKaxvpsgECya8ZlVHKAQFexo+VxeoBALJg0lCh/gEDMxYV0XoyAQPydiQ0Mj4BAEaiLPbiRgEAkxzzbYZSAQP0RVEjCpIBAFHOSZPiugED4vBHLEq+AQD4+jiV+soBA/q1728iygEAUlpwMBryAQJqOd+y/vIBA+Gcbu1HBgEAOXoYSnsKAQMTOmn1SyYBA0qyUjkvRgEBsixoVZtiAQD9KJrBJ2YBAIHveq0PhgEBg8caqF+qAQNS3WINJ74BAjeE9vj7/gECW7TCRPgeBQEEnnvU8D4FAeMgBRTQfgUABrvQVNieBQMKx9DH/LoFAq5b8pa0xgUCObAHaKD+BQCKzGIyyZoFAYBI577VqgUACWyK0uG6BQGolDbO8coFAYvpKdcF0gUCOmV88bneBQFjDeSgceoFAXGYVKp+CgUCimPyVVI+BQNwJ1O+9koFAXHF2Md6igUBg+KCli6WBQPqT+ARsqIFAyuGh1o6pgUDaUl2vg62BQCTdMTuWrYFAdMm8tEmvgUBW2esnibGBQDLHlBJLt4FAAEs27gPKgUBAMpAascyBQHdUH4hez4FAoJ2HFwfSgUBUKzb24dyBQCIeVUjYGIJAzMELKtQggkAmR3ap1CKCQFhJK7PRKIJAIHTGOcAqgkD2sxr02iqCQIRL2U1sLYJAvI5TtBgwgkCAXSyXyDKCQE73aIDfMoJADscFxd1mgkA5w9qjLnmCQMvaG004fYJAEi1kvkKJgkCDfrCnQpGCQAaJVFmqkoJAermFrzuZgkAo98dKDqGCQOpUD386oYJAZGiNS/KlgkC29WAnMqmCQERVBA3txYJAsLt6C3kRg0Bc7gH5eBmDQN5UEDBkIINAZqzUQ3Ihg0A++czccSmDQE6lX3RZMINAUFmDoQF9g0BUrdBXrH+DQNLiXuFagoNAaHyvWAiFg0DCJduXPpmDQBx5AjZFoYNAavERk4Tmg0ByefFZ1u2DQA2oo/faKYRAFMfJtMothEBUsWNrmT6EQOQ6wQX/aIRAZu/3Ov5whEAALLF9yXeEQH7Ubel2eoRAeMThlSR9hEDcrsoX0n+EQEYAxndsgoRA+sSidweehEAimiDjCqKEQDuJCooMpoRAKk9Ut2nZhEASTFDHaOGEQP5pWc5i6YRAMHUtvjXxhECugeq4YfGEQFHhIq41+YRASrOpetkVhUAeSKg3cxeFQGccRjQNGYVA27G8C6YahUAo0Jn6n2GFQAavPvi1YoVAvl3jJ01mhUAFzCFXuWaFQIQnK6GfaYVATj5ic05qhUDN6HxnvGqFQM7KFGXAboVATBAq5pdxhUBuhw/FmnmFQIjDpR5AroVARaOBa0OyhUByxWaOR7aFQISGf861QoZAS+xRv7pGhkCunDOfkCmHQJg0NqWRMYdAarC+VIk5h0CARdmhxrGHQAZLYPvHuYdAhNa1tsLBh0CI05VidcaHQDrl6oJ4yodAnWRNe3jOh0CtUy5PfNKHQD8gKP+kTohAqxUJJPxRiEDMkIBPqFKIQNYLUq2pVohA+u2sq/SCiEDaUofzXIOIQLrS1gGJzohA3BOdGIvSiEA= + NrgMGZxjYkAmWGpEdaJuQN9iJOBzYnFAooOBwRJidUCiacKzGZN5QP2PywzWsntA+TRoqZ8BgEAq8ucItxGAQIo56UHhuYJAjh+yJUMqg0C5STQoj2KFQO5ms15tUodA4km796GaiEAbbVgEz3qKQA9QYJ0Dw4tARG3f0+GyjUBvl2HWLeuPQLk+Fd3HLZBAaeKV+dyBkUACwVWp6ImRQH/31voCnpJAFkEZEfIlk0CWeqnNMzKUQMfCAIYbMpVAepB81Wm2lUB4ROj6RD6XQPZ/vGyFgpdA - + - GKGvRTX/AkbO0u9FhfRFRUWVCUf0kxRFdbItRZ7pDEX/Z5VF9dlsRdYkw0X0tlVFGnhpRS/oc0WJ7QlHY8GURqmhc0WA2ThFEtWYRpAsKEXKUhRFO+h0Rf94M0UEbXFF78b2RPKfA0ZR9BdFaxQoRa4XlkXdoSBFGjAZRUZyuEasa6JFuPAjRdz6N0cyYVNGzUMdRm1q30WIIzdF18VmRdx2TUXcWQNFJCgBRuJnWkVRrmpF6DnTRkbJkEUPCJFFDLtIRvK3bUYH8BJFsRorRfK1JEWd1YJFjYkxRjhfjEVzkh1F/YdgRfcCokX2cURH6nIZRWSSXkWYevdFtrq8RXUyR0UJjXVF9WsDRW23JUVaY0lFr6MVRQlMgEV6JQtFZlY3RVuRc0VA8dZFB9WKRYz/D0WtsAFF/25GRaLgDEbaHDNFCtB9RUsK50Vdz8BFiL5WRc458UX0Sn9FgtaKRafxVUWGFlNGof/jRXgi3UYEMqRFNpUvRUlshkV/rg1G7ukrReI0GkVU14BFtcgjRTSeoUWOWSpF2aOkRgAakkXbIFVFxVD4RwhBn0b7K6dFrifIRp8ZskU4dEZGKT5FRbMlC0W53ItFsI0kRRPImUZt1kJFnMtWRRhPV0b3m1JFzVKURR/FAEXrCyZFEt6bRVsyMkkJEptFuRYzRZvNskV0AStFC4AJRbLaM0hHlzBFla6HRs44L0Vl+RpG1dKcRa5tVkVRaYJFXEhyRS/xkkbSgd1FGtxVRVXYlEVBlkdFOne1RSAIAkYScEVHOWqRRxz9BkfzGCtGRBRJRV0di0aBJSJGj/unRcIMU0XCcwhHhaG1RdV8GEfkbTZGTDM+RXsrA0XU/7tFHqoZRubVPUXF+FJFMViIRTGLSUWxxApFlBeHRsq9HUYKx3BFzjRoRbWInkXi3NVFjEubRZgdJEcoFr5GYAYpRYt+i0UVZMtFHLHeRXQ4tEdpDB9FdVBPRXuvpkaY2UlFrEKBRtLb5UYULK9GJt9VRvitMkb6WQVFRR/LRU9TOEXDTRJFFKvHRXAaLUVVJilF4z+9RfrpEkVJDZFFXvUvRbaVE0nQbm9Fxq0RSBmtF0bLw6VGCMQsRbJAHUXwVm5HAgMfRzd3iEYrBYlFru6oR8BpPEW3eN9FdM6ARoW4F0qeYING85ZtRjFTFEVWsFZHjpF7RaUFFkk/YhpFXccuRsJi7Ee9BU1FCQYkRj1wLkWEOSdHvzwORXAJ6kUn0yNGm28FRQxuxEb4xrJG6X4JRrHdYUUIXw1FFQcTRUqNwkWYNMhF+/kcRV2EXkXTYhdFn2lrSJbisUX/2tJHP/FnR58ocEWjYUdG2LV0RQhcJEbbTABFQWs6RkAIbkVtEptFkt/sRqgrzEWzWj1Fuls+RVuC10U7m2RHdsnrRtKP8kWj2yJFJ9azRtTBJ0bfXvFFZDciRVsE1UXu+YZFJxyDRYIXoEdPNgZFg5U6R+3Q6EWxgsRFSh8dRi0doUWwfgZFjxKTRqCGXEZ0/aNFoTA2RUAOEUVwkDZGpY43RTpWgEcNSCBFC+JkRsMTfUYwuXFGd9jKRYLN/UTRmhhF8a4QRQGTLUUAXQFF4KrTR9/ROUdrvGhFCvrYRvD4tEVrVgdGb6h6RddjLEV4xDFFIjkBSPY5W0dWTTxG1Q/tRlS3H0b3ZidFydqwRQ7MT0U6/SpFM9QNRRt83EZYVi1GUBwPRdhSGEU/mxZF4tsqRXweHEXHNOBF54JaRX2VEUf+fgZHy491RrgUcUWGBgJFL7GsRr2AUkZ7hbVFargJRzakfkax5BZGlfaORf8tZUW4aT5FdZBvRZ3410VcXdFFT3FWRcHVFkfhKw1HeiSfRX4940YxtHNG2Xo3RSQ+CEaqLTZFbwMDRicgm0X+GERGSzUVRpiMV0XJKxlFALpTRZVaG0Y1x7NFW+VLRdO3IEZcBrtFgDQoRXl/Xke8WEJHwM1NRud40UWB4x9Gg0g5RXdunkX4A2BFpDtzRfqIO0WohA1Ft2tYRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - a/0mUdvAckCjQP5GbsFyQPRlbmLHwXJAYnMDoU7CckAw/Q5lOsNyQCqr4jJD0nJAzLWJE2LUckBILTGgIuByQGdEujW54HJAqpnvhlDickAJVTeSj+JyQADoyIk08XJAkh+xn8jxckAy/vj+OgJzQKgb99LOAnNAQa7LTPoDc0Aqk3O7vBJzQID748D3E3NAidsCSHgfc0BqrZ10OCFzQIjRiocRI3NAjNjJIM8kc0C2/ichRzFzQD+WlupZMXNAOMl5Q9czc0AUVJsduj9zQGIX49l3QXNA4tgIertCc0CwbnpseURzQBTri7CbUXNAfpubqaRTc0D6exFqeFRzQHLris6MYHNA7ytcZThjc0BDVbvw2XFzQAepAr5LdXNAmHypjHiAc0BqR65IooBzQKZ4RikNgXNAePGSaF2Cc0AUg4Pmh5BzQH5thOxMknNAk8xcUdGSc0B+PbeIYZRzQGCeU673lHNAJb0SeLigc0COCYBRWqJzQP6PoG4jo3NAbm+koASlc0AWIkjStLNzQP7XD+YQtHNAZNmt1c/Cc0BUczxM1tFzQGY4dlzh1HNAyIZwVaPgc0BjEqNP0OBzQDwKpL034XNAZ515Jnvic0DC7rvlD+NzQBauB4Kz8HNAdorDU8Lwc0DXhJJfN/RzQASy1OXjAHRAauJBoXgBdEB6gDQKugJ0QHa+/LdLE3RARF6Rs7khdEAIsWBNOkN0QCa18BcgXXRAdg/1ZrlgdEAe5toQCGJ0QCVybQR6YnRAsl7WmcVndEAmQaXYIXB0QM5VuLXJcHRAUC2Hx0BxdEDsROPBOnN0QBzyWwT6gHRAMqqQb06BdEBoMmx8FpB0QIal1Lfun3RASusckM6gdEC69KKBN6F0QIZsgVIOo3RA9Nk91QiwdEDuq2kvw7B0QN4HnZttsnRA6Fg4IPyydED+0mfqybd0QGMBze3jwHRASjab47bEdEDm9P8tyM10QJwjKXWk0nRAYmGD0CHTdECwylr3PdN0QHPLyDfO1HRA+BiuCbjhdEDuIoj1TuV0QPU/WsJ08XRARvwHcIzzdECwjkf4zgB1QJAdXhddAnVAtAx7wKUCdUB0r53rlhB1QBqwKgHREnVAKuBOCToTdUCqvZqwIhR1QIt5Y8HrIHVA8A5BlJ0idUCclRWRzDV1QCZkOmuOQnVA+nl9DvVPdUB45a21S1R1QFyx+VF4VXVADvVpGgxgdUDXzNPFN2F1QLw0j8BycnVA/A2/94x0dUCaVGfud4F1QBOf6WmtgXVAz8VkMaaDdUCmDF8JmoR1QFNtdR1Jo3VAcpyAFKSodUAm7laezsB1QAqsy9nN03VABpAUPgnidUDQi4Z+SAJ2QMaXDg7QA3ZASCWps00UdkAwbPfHiCJ2QKjsa9mOJHZAD379LUordkBmywtJHzF2QLgKO05UM3ZAQuZuZ5w0dkBkLKNuTj52QMLxj5YdQXZAn+4+fclCdkATQRvweUR2QE5P1h8RUXZAQP/D88xUdkC3r6Nh22R2QFzoDfaRg3ZAKoeglfeEdkC8qJ0x6512QPTt0ltDo3ZArHY41sGydkC4j2BbDLR2QLi0oKPNznZA8oR/TzzxdkDpZZq9kfN2QIzbwVJHA3dA/pz2PQESd0AJTiZupRJ3QHAvU6ljE3dAxVVArw4id0CoiYq8pTN3QFhwZcQMNXdA+yA8vJxBd0D6fP4wkUN3QJLHcmAmRHdAwh0nkhpFd0AtCGUOSlF3QEs2/U+SUXdAEmjJZo9hd0DiUhgPJ293QO0lwOL6o3dAG2xUeUT9d0DysBQ9biJ4QHZ4IYuII3hAMNZXOdEjeEBaYpXECSR4QD9o0aDgM3hAsoo5dxFEeEDu51xIekV4QCT4+fLJUXhALPNeu4hVeEBZQkCZ+GB4QIMFmT21YXhAONxdP190eEA3dgB1i3R4QJdSVYL3e3hA0iXaUKSBeEBStovO+4N4QKPAscOZhHhA527Y02uLeEBCAIJ7lpF4QGhpoByolHhA+uATSyejeECoOZInzsB4QEQK2KO21HhAVDllK6LieEB2J6hh/Od4QBAweF0n63hANtC/ni/veEAQV/9uAfR4QLOYt1uN9XhAzDY/qpYFeUB6Nj4MPBB5QOddaJ61M3lA6xEHHb07eUAHqSorxUN5QPhOLDbLVHlAtzithAxreUAkLVDbwLJ5QPgpEBlZw3lA9I6uG7LDeUCG5sAmDMl5QK59LgFC1HlAht+gV1DkeUDgqLjj+wN6QGRkvOL3BXpAsg+N8SozekDgpGhHDDV6QDbl1lMtN3pAaGNG1jE7ekDrIZRAMz96QIRfkjYaRXpApGV6zChVekA3gvf8Ilx6QDFfDZ/cc3pAjNzWnsqDekBkUGGo04t6QMbaTbDak3pAPFEtcRyjekBY/zmEDbN6QDhgHx4NtnpAINpwxxC3ekAMMfksE7t6QESV6K0Uv3pAY85odQrDekDj4DVtGsZ6QE6BwiJ65HpA2lxf3TXuekCV6M2vFvF6QCgqI9pd8XpAFjktfXwEe0AoUzNnSxV7QBH69EoQdHtAhoh3mCSVe0BmMJJiAKd7QP4veawCq3tAmRwsdoz1e0DeZbIH2QF8QKfTztv1AXxAOk3azZgFfEB6ukLr0BF8QDQmtebMQXxA2xf4PH1VfEDKUDXz+4h8QD/E267DjXxAspCVFFWOfECwL0Q4HZN8QLMIfuMol3xAg+SZGGeYfEDa32lsLZt8QGyWgC7BnXxAP9vDlb+yfEB+FVAtJtd8QNQa6u9+4HxACKpVyVfifECo6azODeN8QKbsjRkZ8nxAFSvInVPyfEC4YeQJSwJ9QKk2oahrA31AQqlJRgAEfUC8JC31cQt9QHrzEHoHDH1A5duKzEYSfUD8mcmTjRN9QMwmCRAOFH1Acu1aiBQcfUCCYxQpRzh9QD+xobChPX1ASy2IH/VCfUD2a1mxOkx9QACUpIH0c31Az7jPpuXEfUC+bnJgMgB+QO/24HelRH5ANGSeTVFTfkAy4HA2U1V+QI6qIu+MVX5AGJvan1xbfkAUA5SLX2V+QOpZBhWSpH5AVQeN/mKsfkAcB6Az0cR+QGIDlFQC335ACNrZ9NPvfkAd9bcZuXF/QNnesCq7dH9ARfDPPOV0f0BVBL8pQIR/QKrOwa3zhH9AqzpF7GGRf0DGJukbFpN/QJV3eNj9lH9AODF+7F6hf0BqA9y2JAWAQEzZk3sdN4BAQGJFdck5gEB/6e9/hDqAQKt7EaJ2PIBAYfx2CSU/gECgZbPaHUGAQN9W9DHNQYBANHBTy2lCgEC1Jr8/hUKAQIAQu7yoQoBA2XeensFCgEAgeAsI1EKAQJW53UgWSYBA8fw0qa9KgEBasf1SyEqAQLbL+63lUIBAmTB18xNRgECEvoL8s1KAQKJRVgAOWYBAI0XQa7hagEAkhaG4oGeAQLnJa71NaoBAXFqJZPpsgEA4ZohQJ2+AQC7Lao9UcoBAUh8pYHJ6gEDKDIfJeYKAQLvdlI1ejIBAcAfb9QuPgEAuXANkuJGAQLPE5DBalIBA12GUsxqXgEDiw3uPHp+AQPyfeiZ8pYBAXcR+5xKvgECyLD5fHbGAQGspyyh+soBAxSlft8eygEBPWuksh7qAQK7APok0voBA7OJBTau/gEAUPhsbUsGAQIRkqGJpwYBA7JXtrJ3CgEBTOQ2jHcmAQKdkcfpSyYBADAjF7kvRgEDusxUeedWAQD5mnBNK2YBA0jZID0ThgEDGk1QrF+qAQGearRAe8oBAoLEHST//gEChV+YhQQeBQIogmlU+D4FAJAxPDTQfgUB6b4MRNSeBQF1rnhHkLYFAvd8W7AAvgUDWzGJxrDGBQDWMhSw+PoFA4BKyxSg/gUD6Cf7YtmKBQN0Qn7GyZoFAA/16qLVqgUD8j2p1uG6BQI18PeLBdIFAVW9Sim53gUDmtzECG3qBQKkXNpHIfIFADkQdXp2CgUA0DBiAVY+BQE7C6sC+koFAmqYpnVWXgUB6+SGKUp+BQJHjI/bnoYFABJJrO9+igUAI5E+ni6WBQOAUhJpqqIFA6G73K4+pgUDU8y0KhK2BQGfiy02WrYFAHmoGxEmvgUDq86BoiLGBQPBSYqZJt4FADRcKNATKgUDr+BLnsMyBQOZW7Rlez4FAPrCr6gvSgUCpU3mG6NWBQItWjVI82oFA8snd4dYYgkA66F4g1iCCQHg52ZjUIoJANBp9MNEogkBmxRD8vyqCQCOGdV3bKoJAdO4jPG0tgkAzU8b/GDCCQNKyd5/FMoJACPhNTuIygkCUkkT/Ek6CQMizIbYHXoJA4kbHDAZqgkBk7Z8SVG+CQJzlZv1pdIJAGoF9dzt9gkARF3nmQomCQNbKZtRDkYJAqj6SE6uSgkB6rQLJPJmCQBgZzTEOoYJAg+0AkTqhgkAK2bxu8aWCQCCyVxIMqYJA7ncyjDSpgkCAQ4r38qmCQGKoZ0PtxYJAUrKqtZftgkDCGCZ5Mu+CQDKRLeTM8IJAtuX+NhQKg0AqiEIfeRGDQP4v+f15GYNAWHVxEGQgg0B2ejklcyGDQOhML1iLIYNA5KDGy3Epg0ASvmlxWjCDQFQv7uhqMYNAlJRgrQF9g0CUzR3brn+DQHLKCH1agoNAY/YdH0aDg0BMS9vPPpmDQHOjYk5GoYNAgEvVO+itg0DukPgJlMqDQLI3bjSF5oNA9B9RIdbtg0AA2ckiyi2EQLRl4b6YPoRAA8qSg51ChECXq9VU/2iEQKtEIP38cIRAjPlDfMl3hEBeaH/Rd3qEQBGxFp8jfYRA4KeFL9N/hEAFx3chB56EQCoPi+ELooRAsFHIvxOmhEDFiUhqA6qEQE6xbBVq2YRAm3sA+WnhhEB6U9qyYumEQKM2Bzk18YRAWk16tmLxhECEOY6wOfmEQM4tZKpc+YRAdvxSLEcUhUCqide82BWFQKI5srlyF4VAJgaNOA4ZhUCMFcr+qBqFQMiu74tCHIVAIiYgV6BhhUDWeU8KtmKFQFSo7ZZMZoVAYYcxQblmhUBM+0l4oGmFQJaEANRPaoVAnHK+6LxqhUABP8bBxG6FQDEuN7iYcYVAcCpXhpd5hUAGRVzMkIGFQN2I4pxAroVABtd1UkOyhUAAoN1CRbaFQITid7q2QoZAzsJibLhGhkCIaaHtcbKGQMAjHcOQKYdAHZY5L5Axh0DAIvvviDmHQNQmQ27nOodAyJJ/YV1Bh0BVK03R+6aHQIjhszH/rIdAPRmgpcaxh0De46LlxrmHQDYBmfy+wYdAVFqZaXXGh0DmAsjKeMqHQIQsbHZ7zodAf4/y2nTSh0CARz1+fdaHQPWCagg4O4hANjKEQKVOiEDYIRgH/FGIQIISWzmoUohAxgULqQFWiEBmUVVUq1aIQAv3kSD1gohAhJy6OlyDiEBKxV4A+IaIQDBvgO2IzohARtQXhIvSiEA= + NrgMGZxjYkDGbTWMzMVuQD4omKXyI29APsNkkamzdUDmbmCMEcN1QA== - + - j60CRaVI+kWOF6ZFUXDWRDPldUV/uR9HPvzbRHIbB0UeCxlF8B99RVPqk0W+KbtFQUtnRcjQM0WLFKNFZC4URwM6L0Y5o7ZF9R9CRVW0sUZLE+pEFeqjRSJcFEXlzAlFfi/KRFQCSkUm8oRFZdHDRCZsGEYyuQhF7OuNRTmq9EQbgPlErFxVRc9E9ERepBlFpCXMRlt2AkUJcdBE8x+3RSROCkUzzUZH8JjaRAmwL0Xx5HlGMQQGRrTW1EXtft9ExsRPRUpKKEUA9glFUyDORUOWP0VI4pJFxWKkRuu4VkWCCgBGmyQQRT/Y40SZms5EjF+1RHiAKUWg+TNGD6E7Rs1/EkXap4RFYKPiRM/9HEWWZ0VG4Y4zRXjeEkXCW55FkxMDRWE060Uz9dJERnE8RyHOYEVr7OdEmWTJRbMhokW5cwdFVtMyRfOgNUWupj9F/l3yRL8H/EQBUCpFPhYPRfnkIkXhYPBEaXsZRfJHSUVmyuJETum/RLwOCkUsIw1FzOQERb0F+kSyzzZFG4mtRbHR1kSjQX9FF1sWRb8nwkQDKhNFUq7JRADTEkVuLgpFS5kqRurdF0XZislEgkbzRPMv00SJSN9EIHXXRMipykXvnNxE7rOWRnroBEXucqJFSFuBRVUzUEXm+U1GXlNxRfZ16URkBO1EdckURciuyUUIYBNF2Vr6RM2GiEX3F+1FI8DURceG3EY7fQlF6K3WRFQRE0VYfLxFdI0tRYnZV0WBn3lFaDewRkigVkW9sAhFr0rXRE08fUUFlNtEYUBBRdWej0UM3SBFsCcARZ8dOkUBbwRFAD+RRrwx50SuZKNF6u9bRXQR9UQ+gP9H8LygRq55JUXn5WdFhzTfRhndtUWrNW1GiBP3RN0nSkXImJxFIrvURFxge0VBbPhEkvKfRq5q8kTKIjxFEW+FRWtzPEaKdcVFMoU5RZMoTkU7jCBFaZ4hRfNsSEkE98VFekScRQLpS0UkIExIR/HVRKW/RUUXDqNGHEGnRbjoM0UmJ5xFS94qRg/83UWrAARFj+TfRKiloEWVsNxFy3vLRANH/UTKvsNGGm7kRSPBPEUStIdFQuTtRAnVV0WS1pFFIt07RTBT9kTkRvpFE2wdRR2W4UWFsr9E36chR2gk0Ec6mgdHRnR4RvbWM0XeV9tGZY02RV87eUWeKAJFLM2HRksxoEVtbQ5Fj2/+REHPF0cpHqhF5EfURlVkgkbDzJJF5j7pRBYDE0UoIMpE6Po/RdhODEXeb9FEaGy7RRGEJEalj8ZE0XxiRbbFmkWO91dFR0KIRtQHLkbFI1tFXIS6RSDgbUWWbulFw51ORcjkokWg4z1HPlIzRb0zCUdlBJRFlk7GRTBxL0XU/PlET8bNRGy9+kQi19RFiP3BRy+OQ0XIv+xE06KZRtX3mkb3+HxGp/TcR59cAEY6P2ZHSHx6RRrrH0WbRFZGkUjvRBfj/EWdb6xFKtb9RJW5CEX6Gi5F6gPgRYOLN0W9xXtF3nySRRIN2EVN0c9EaIYGRSiVwkQoLlhFYwKHRVRMKEVlqiNFaugMRZW000U0nB5Fz17USF3hVEWQN9JHMqoKRmjyDUVc0h5GAfwiRaoRBUU4zIRHKmcmR1701URb9o5GIGugRfMULUhAUvlEr9R1RSGNy0UMw85Jsr85RmdGgEUsm79HsczKSPgaLEVDQRVFXl+WRtMqiUfQwdJFJ/vQRRjH1EXDTAhHOwUuRRWvJEXp1a9F+T0NRlQUEEU/BCVH7QP/RiefL0b0sBJF84oRRfz26kSJmghFGzbiRQJ4PUUG4j5GYpn6ROEZDkVJmURFZMbPRNKdpkjc/1pFSO6VRb/MJUVoGR5IyPOkR1GcDUWN835GJKJ7RRsA+0UX9+ZEmg9ERld8skVIrrNF2qcIR8Yq6EXN7OZE4COFRUMTEkWVpL1EWePTRVK5CEV8mYRHeHLxRioy+0U6ss5G6xmGRp+M/kUeSetEH2z+ROMAEEb6S1RFxhMSRaBoEkVKfYRFDk+DRbqYi0dwNCRFkKANRyAYpkUnf5pFsXk6RmtoYEUKYA1FSGaeRvmoa0aiXppFu9lLRbVwJEVihNFEBUIcRtNKrUXlamJHDPIYRfDtaEYSjl9Gc1MeRoV26UX5NeZEHJDhRIGC/ERwuS9Fk7LaRITOGEWdpAZFCaHmRJTgakiaCtRHhGhgRYmRgUcplNdFTS6RRrh6a0W2GhdFsPrTRQ5iC0VwgINFJ7A+RQQ8AkU6XCRFTdNLRZSwckgx9PZHF4ACRh9XiEf6A4pFzdGrRjZvbUWAztZF9dnGRWUkiUUYhzdF8CvMRKFY5kZykstF44LOROZHL0Xsu/JEwlcYRVmnikWEODlFZd7XRGZc20V+U3BF1pMdR+s/8UYbCaxGWBagRUZOtEYRbz5GeDdZRfz94ESHKW9HgXDYRiZUeUabmoVFD9nJRdF9+ET1DQxFg4bfRJx+Bkam78xFlo4RRvUTpkUPMydFvO9lR3uJMkfQ2qNFIES0RgsDv0YaDIFFJpQkRsA38kRZFH9GBOnBRUlX/ETnnHlG3U8WRkzwFkXOJzlFhZBuRY0/2kTytldGrnnVRZ3TrUWTTyZFF/i7RAQj5ETSQMlEh3UcRmFHtEXY1jFFsTKXRy1uckf6xadGWFwKRvCOgEXClAdFJStBRo1jBkUojfRF9bIPRbHySkU/vlpF7jpQRXFsY0VlRLZFtIVERQ== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - JNr4kN3AckBgWND/bsFyQLpZHv7HwXJAgr/UXVHCckDbCrn34sJyQBrwYls7w3JASMZGf8TEckCJ0WZBD9JyQFut4SJD0nJAhmYPT83fckAgUQatIeByQCLn0u664HJAMOLQ3k/ickDCIzayj+JyQCpQ+9VR8HJArahLETXxckAoR+rcyfFyQJ56zNWc8nJAKxjTlHXzckBhvi9Uo/RyQNJWwP7C/3JAM8KiQ/gAc0Db6X9XiwFzQBbirjk5AnNAwvcgwM8Cc0AoRwxQ+gNzQL2TBn1yEXNAvKk5YrwSc0D2lAMsBhRzQMOOuj53H3NA8UbCI6Ugc0ChA4mWOCFzQOB38oJ8InNAapFjp88kc0BgYgobSTFzQAU2MeBXMXNAvIB9QaMzc0B8Ga862TNzQLKsTGbcNHNAvcwp3bk/c0DW27VVeEFzQBxmT+C5QnNAIwom4XlEc0BKVznMmVFzQKY+YGUNU3NAXajGL6NTc0AWNIHsh1RzQGr/uSj5X3NAhn3y9jljc0Dc55fOYnJzQILjmA65dHNAVq9iK011c0AulDPceIBzQOy4LPiigHNAs2I85gyBc0D6T94iXYJzQFJJS8aHkHNAwYx+x0ySc0A4rCXPzZNzQEoySshilHNAqvD1efaUc0CCcC+/t6BzQNaDKnpaonNALq80/J6ic0AZZ321A6VzQMHm8IzGsHNAAFsDdNiwc0AC/SmHtrNzQJibAr4NtHNA5O2Cp/fAc0BYBhGE0MJzQHPJsJYmw3NAe9n6RdfRc0CAqomCNNJzQOuJ/ei70nNAgk6FB/bTc0DovY3E4dRzQHhDKrOj4HNA1BpyRM/gc0Bc+KiJOOFzQNxxcHwR43NA7FkrMrDwc0ACuEIDNvRzQHGbIhGN9HNAynnF2OIAdEAZ904WeAF0QITRIWq6AnRACGwrZKUSdEAcfrA/TBN0QKdYXs9KIHRA/sfFPbkhdEC+BI/jGDN0QCt1OwPKQXRAPk6aDTtDdEAwF6DAjFV0QDEnhkwgXXRA7WdXgLlgdEB9hcwNCGJ0QKKZnpZ6YnRAqWK4sUxkdEDw7SKL0md0QP+LZV0icHRAJHaAZchwdECNAea1QHF0QDue6IM8c3RA/nI3gfeAdECJ7uGNToF0QLwcWTNIgnRAntpWcc6CdEDM5ikDFZB0QE79C+USm3RA+pRKau+fdECCTmFfDaB0QBC/a6+ioHRANjcIVM+gdEDjxty0NqF0QJ5wvafMoXRAfmuf0riidEAPaz2tDKN0QFnRyYIIsHRAyG9ke8OwdEDM0QoLb7J0QIyOPz78snRAqG+NpMi3dECZDzMUesF0QNI1v8a7wnRAULTjx3nEdECS/7LBt8R0QAY7Q+fIzXRACWtRsfzOdECMZ1BdI9N0QMLT3ls903RAmrcGhCPhdEBFQDqpuOF0QBQ8eRL94nRABEIcXpDjdEDEfjnovvB0QJxSN1Z08XRA12+sKIzzdEBo3rzbp/R0QM5Y/+CkAHVAYqFGUGMBdUD+J/VtXQJ1QF7r4mGlAnVAe420azgDdUBOORDxmBB1QM6CarPTEnVAe/RDhiEUdUAG3hVE7SB1QHYyy2mdInVA38/Lrcs1dUDM/Qrns0F1QJabYILcQnVA2DrLc4FRdUAGhYYjTVR1QIqVfk12VXVAjKyPBBBgdUCpnZ2BN2F1QGLwEhn0YXVA/k2aJHZydUBSxy+0jHR1QL4Hx/B4gXVAZKxX+62BdUBibnzZp4N1QCJEcRObhHVAQQaWUrahdUBoZCFKSaN1QIL4NYykqHVAEh2bSPnBdUAY3owDOcN1QMISsYfM03VAcJYr5g3hdUCMAab3B+J1QCvQhI845XVA7JVMuEcCdkAW0c2d0AN2QJnWQI0MFnZAJO0vmRkgdkCfcpz5hyJ2QMY1zcKPJHZAYDL6P0srdkAJLy5WHzF2QOo4KqecNHZAIMLLkak4dkAeBD4CTEB2QKpV218dQXZAAB1JTMhCdkAykUu4pUN2QBgm5Vp4RHZAjjw8MchQdkC+jkAqElF2QEAVuAPNVHZAnbpIApBjdkDyfQ9S2mR2QKqCHTnqnXZAFo5UPEejdkCeca/Niqd2QO3P8P3BsnZAemXQhQy0dkDUlIiGdcB2QHcBrLcwxXZAae4j8s7OdkAE0BcUO/F2QH7KUm6Q83ZALBE8dDECd0D+C0kGSwN3QEyVUSEBEndAILGPjqUSd0Bwf5CYYRN3QJypx1IOIndAjuSRknIid0AaFXG3DDV3QHJHglucQXdA/D+Ida5Bd0CcSTzjJUR3QPp/soIaRXdAcLqykdVNd0DiW2kcSlF3QKKkoOmRUXdAcQ7OTSlVd0CmQRxHkGF3QHYYquUmb3dA1G726N53d0Av7a07doJ3QGag3okEkndAlGvPPv2fd0BNtguN+qN3QPVq+URG/XdAlu9tZW0ieEDEATYeiiN4QHtkk+PQI3hA6NjvogkkeEBCvJIVfDJ4QE4n/kTeM3hAiWxZcRFEeEDUxG3+eUV4QN/J1hDWSHhA72m1fjBOeEDC1RoOy1F4QJMuH2SJU3hAKLEVm4hVeECVsgEd+WB4QOwCJvy3YXhAsH5gQyVieEBhfeYOY3R4QLq1l1+LdHhAtD6aQr10eECingfUw3h4QBA+HiP2e3hADtaAJyZ+eEBBcyJSo4F4QKlpR6yZhHhAe+XK/JeReEAk+wq9p5R4QGpUSuAlo3hAw4o1x7mkeEAbP+bKNqZ4QDiOXkPOwHhAGLpGPqHieEA4qQ5Y/Od4QA8Yt+Io63hAItcFqy7veED+xnmEAfR4QAXEDO2L9XhAeA7FeZoFeUAQt5HyPBB5QI2e8yW1KHlAgtD/+7UzeUB60dzTvDt5QBUkPwHEQ3lATviz5vtDeUCY7Xzxy1R5QBKuZanaZHlAkIrwXg5reUAOn3abwLJ5QLS8HXpaw3lArjPsRLPDeUByYhUvC8l5QJZqqaJB1HlAFCgZPczVeUBWE5RlUeR5QAogNOwe63lA0kDAAg30eUD8gWPy+wN6QBXpR1D5BXpADuqXdgoUekBYPMZHCRZ6QLzgaJ8qM3pA9rHH8gs1ekBlEVDqLTd6QACQuBkxO3pAduYddjM/ekCGXAm3M0N6QHgUo7YZRXpA6jBHryZVekBYm7qmIlx6QPqphz0Fb3pADQo9fMuDekAL081h0ot6QMv5crDYk3pAspMNsB2jekCAXiy0DbN6QCYkCPEMtnpA1HVDKxC3ekBQgPRKFLt6QJYT5HUQv3pAK1pI0RrDekAm77lVGsZ6QLCEfSvs03pAaHSpgjrkekCw1/MjN+56QBuQLN0V8XpAXnbY/lzxekC5E73GewR7QJtaSiKKFHtA5UOLWksVe0BTnvHbWCV7QKwtU4cOdHtACZnynCOVe0B9gPC8Aad7QHTDydsEq3tA7HjHrwSve0DWNCzkj717QFqQcxF4xntA664SypXxe0D+kEyvi/V7QBA8NAHZAXxACO8y/LkCfEAqG/NVZQR8QIouMXKZBXxAsZU5hdERfEAWsEcjADx8QHhhGijNQXxAArlH6H5VfEBCYaQEDmJ8QIB1pgX9iHxANv8nZsONfEAKln2/Vo58QKfn+Mkdk3xA1s2edJiTfECeb0E5Kpd8QPJHnH16mHxALHr5xVSZfEDW0IG3LZt8QI6zjK7CnXxAULKC1i+ffEDsUiYsHqN8QBKrKKZ8tHxA4AMFX4HgfECBrRPkV+J8QDuWbYsP43xAnEiSzmrofEC18O0pFvJ8QBL2bdFU8nxAygB6OHLyfEBIx62BcgB9QJxiBOAAAn1AbLyxdksCfUC2FKlAbgN9QKMCuUkABH1ARF/X7nILfUBApPy4Bgx9QEiyO41FEn1AYIZbnw0UfUDLkhyGlht9QEoW6joWHH1ATODnujoifUC/hWI4Rzh9QHA51KWfPX1Ak+VkJeVCfUCFFOTsP0h9QOhd8Gk7TH1AIgh4LPRzfUDrNTJz+Xt9QHqPXU8XjH1AnIVJn52jfUCgtGagpaR9QDbw0frlxH1ADB8lMrrNfUBoEU9mKtN9QBiFQQPv8H1Ar39SXJH1fUAZ9kH0NAB+QB4MJB6jRH5AEtk/plJTfkBov9PdVFV+QJN2fShfW35AlcyopWFlfkC0oVW5jn1+QBqljuaPpH5ATgRVPmGsfkCc34H4mbJ+QLP91HprtH5AvlS9kArRfkCTSKLOAN9+QI38oAo65n5AQO9ldWM0f0Dg/XDCqTl/QLShavW1cX9APmrzQ+V0f0Bi8Fg6PYR/QMMgaz7zhH9AtuZevGKRf0DLhLgAFZN/QCT0jib/lH9AgJxBjlyhf0AxpdkUVrF/QL9shVes7n9AxqwbUScHgEDs6amLfAiAQCwfNTQdN4BArnubM8k5gEB+mPVTfzqAQMbLmbB1PIBAUvHQWyM/gEB0IElJHUGAQC4bC4WBQYBAUed9MdFBgEBET8DdqEKAQEdEP+kJQ4BAOwZmV/VIgEC6aWvuFUmAQGP81fqvSoBAlbnJAOZQgEBCBgYdFFGAQNrviZW0UoBABUWVFuZYgEC6tf32DlmAQPa5QGa4WoBAx1RXaaFngEBI223mTWqAQAT/odUYbIBA/k7BSipvgEAtQRM8U3KAQM+88lxyeoBAtxp1Ij1+gEAo4HoFJ3+AQHigoFF5goBASBpYfl6MgEBG0xxRDI+AQHRUBA+6kYBAYCv4ImKUgECPLPpLFpeAQEkaf+7FpIBAVIZdXnylgECVelWUhamAQDYFztUSr4BAgKZk7R+xgEAjwXTAfrKAQCBOL9KesoBAU3vyzCe2gEBsv0TuEbeAQBiN0JiFuoBAwuEJYDO+gEBE9WMhUsGAQMAxwGKfwoBAgh05bbLHgEBMkDJYH8mAQGylu+lSyYBAhCOIH5HKgEAu/fmxo8qAQDz2hgdM0YBAwLYhLmDRgEDy+rhiSdmAQFAjyo5E4YBA8DfJufbogEAsvSdTGOqAQFVSjNw884BAqOOClD//gED2OUzKPweBQGhZJa89D4FA9B86cTQfgUBLY9cZNSeBQGS1OJAAL4FADoZQ1S0vgUBWWyetrjGBQBiXVsZYNIFAam6yTig/gUCU92n0y0GBQBGxhBUrR4FA4FUu1bJmgUCif2lLtmqBQMDhzPO5boFAKQMB9rtygUD2Lv/PwXSBQFHwaIhud4FA5FarvBt6gUACSsvkxnyBQLSGkEE+gYFABga7fqCCgUAkGUW5VY+BQG5/2SK/koFAh5mP81KXgUB6nuJ3Vp+BQEri7QXooYFABHgRUd+igUDf36nWi6WBQLCUuipuqIFA1A31+46pgUBcTQdag62BQEVLsYCWrYFAZEDZ7kmvgUBm4cJDi7GBQJhu8mZKt4FA9P27TQTKgUBc+lf1sMyBQF6Q3CZfz4FA8sHe7gvSgUB6prtL6tWBQLaItjQ/4oFAys8YBVrmgUB0FC8wAgmCQJNKXqTYGIJATA2OG9cggkARfoPP1CKCQHCbLl7PKIJAZjtxA8EqgkBVrKrr2iqCQBQcvVdtLYJAOU4YPxkwgkCyiysrD0aCQHA4EHSgW4JAakX6gHlcgkBk2IPyn1+CQIa0BCDKZYJAQ/d9QJ9ngkBEj4DuamiCQJa9UWSpbIJAjspBeVVvgkALbFf9OX2CQAJlfQxDiYJAu8kLqEORgkDEfhtbqpKCQJCzfQ08mYJA0GxvoQ6hgkDHYLmWOqGCQBhg0YHypYJAsgoW5QupgkBqSGQGNKmCQM9jvm71qYJADoUK21yugkBNo+zfBrGCQDQhBvLsxYJApBflNCjHgkD8zice1s+CQGoQcuMA0oJA+mblgg7SgkDugUcwg9KCQLppaxSZ2oJA+f0ZSJntgkDLS5vPNO+CQBr2q8DO8IJANjsCDGnygkBQpO4cA/SCQKCoK0uv+YJAuvxMwhUKg0BvtcjOeAqDQGDxJ055EYNAet2vMzwSg0C8tkVseRmDQPJK0R1kIINABNk3nXIhg0DC2NLraiiDQLhc8aFxKYNAtnfI71swg0AoU21iajGDQOzGwenvQ4NAjJYreYFEg0CicBWpS06DQGWw868qWoNABjhKeQF9g0AsICxwrX+DQBrjQ4ldgoNAltxgEj+Zg0AURuk5RaGDQAjpgjjorYNAwA6n0ZPKg0DClHSdheaDQNqefCXW7YNA3OH6eJb4g0CuvU8UMCKEQL2bvLzYKYRA34wZeMothEBm9IwO0TGEQJYgo6H0MYRAOULCwpk+hEDGGW47n0KEQHBociT/aIRAsBwaUf9whECQw3eyL3OEQNrdhYXJd4RATt1X9/d4hEB+ZK5Nd3qEQAO8vtEOfYRA3risASd9hEAwEZti0X+EQPhjsAh+goRAnNY2L/WIhEBKRDaqB56EQNgNgvYKooRApK3jhw+mhEB5xFDPadmEQLTv2QFp4YRAGFh6quDihEBU35REYumEQE+y2mY08YRAPkJPgWHxhECak++/WvmEQDPSdfqH+oRAOkr/uS0BhUBZCP3ZRhSFQCSu3/jYFYVApQBnnPcWhUCCWrwldBeFQHBy+LYMGYVAdZIs76oahUDMmJFYQhyFQFbHnxjdHYVAbO24WqBhhUD21qBGtmKFQDX4cUdMZoVA8Q5AzrlmhUCETuien2mFQMwWF9BOaoVA4L2MLrxqhUAZ9Wy3vm6FQK36wbuXcYVA4vq267NzhUDgTsf7mHmFQMKbwL6QgYVAJrBoHUGuhUAiyiQNRLKFQMBAF0ZFtoVAC6tU20W6hUAzyHumCtKFQMYLhVUx5oVApCghz1UzhkAs6jGOtkKGQKUef8S5RoZAXh/TudFNhkBWxvxV9GqGQLQMIS4luYZAk0pg/XTehkBvF3YnkSmHQObb4yL2KodAdnoHa5Exh0BcH1WQiTmHQBFORbTmOodAM0nQrew+h0AoxPHNikGHQMbv7s0VW4dAamsO//umh0Cichq5+6iHQFoCPRPIsYdABnShf8i5h0DwybFPv8GHQOa2L0d1xodARq6KsHjKh0C+vemdec6HQCCgBKR60odAtHHH0HbWh0B2WWqwODuIQMKpZGKlTohACnBT7PxRiEAU/12cqVKIQD6gHcj8VYhAJ3Uj8atWiEAAUNcs9oKIQGYaH41bg4hApOAEm/aGiECk0CSc8ZyIQBqQP/6HzohAkznbUYzSiEDu/OYukdaIQBaSIfnM24hA + NrgMGZxjYkB61vaTY2FrQI8BR/y9MnFAKyn7JiDhdECPXyNQFkR4QLqAR0b48XpAC3MKz4NqgECKxsjIXaGAQLfMbW6/yYNAAlKK/boChEBG9ctj65GFQC18DAAHO4ZAkanWHJNTiUDa1W+fQpqJQL6ve8L0e4xAB9wURaTCjEAi3UXfgJSPQH9dyrltLZBA2950DWzOkUD7TApRifmRQFv2ayLCkpNART3c7rT9k0CMUYvpyuGUQNflq7ndXpVAIdZ9Vwljl0Bx1e/CC26XQKHtdGxfJ5lAu8XBYDdymUBTBNp6pbOaQDe1AfhSPptAOIg+VOY/nUCBpdOVfkKdQIJ4EPIRRJ9AZik4b7/On0D/M6jEFoigQAygzr6CraBAJCyRkyyKoUDMK0rJrY+hQPEjM5jDkaJAF25DAE3QokA7+Jr9V0KjQK8b02PRd6NAYPCDzG1EpEBvp05u/FmkQB7oI5h7KqVAlJ83PRJcpUDc38NjiRCmQO0qakQ1IqZAZyEtzaHapkB4bNOtTeymQNH3BbVwsqdAjBkWnLfcp0Bcgqa1g0CoQLCjbZnCTqhAO+XWAtsYqUAaekaBkSapQMYmQGzz4qlA66oEq684qkC4sSlwDqWqQKs2gLXaGqtAdqnJOxyLq0BaS3iz+BqsQIBpq+8gWaxA - + - oBPkRCCzvEUVIENG3AD9RAQJtUREQQpFZGSkRLq5sERgdvNGyF8yRfKLy0RvtfFEHXkuRawgmUUBytZECjWbRaOcT0XsE4lE2/aMRBc6DEVxGt1EVJnSRFi2lUQjh8pEl46eRZ4HTEeo05VE8zgtRotPykXAqs9EIyUHRSNLvEbPqbBEyG7XRf6S9EQ3X8hEJozeRBDcs0QKx6pEoJUyRRWEXUXOD5ZEHHsjRo1EH0UAZPtEMY+ZRQXSsEQuV7RE5OgiRf94ukTOOJ1EAqUqRemOwEarCPNE0zIQRWGL8UWdgyZFfkRKR+TjiERhSw5FEitIRmKGDUbLFe9Fg3+QRO+g7kSXl4JEeiWfRK6OWUXyOUdFyK3FRC1de0WqJNNE8bsvRUPwt0R3XKBEtq/RRJCKsEXsek9Gz1YxRV3e4kVPAblEBNieRMyco0Tdhr5EvwYIRlywUEbCaMFE27HJRCYNeEVG8ZhE90iHRK5ghESA7ZNECkoRRRdt90R83jBGw0lTRQqIpUUUT3NFnG7mRGnykkSFML9FXPnCRK29O0d4DZxE009CRVB9A0aI+6pEakqoRMHHz0XtmbNEJ+EBRd5Wu0TGGptEiVzxRHDyvUQBjKdEYTsiRU6aE0WWYedExRCkRLZNYUUYoOVERBfcRJe0tEQ0l9pEDKiRROmBVkV91yhFW1q9RBL6zES7nqpEJm2uRIh3AUUN4pdEqNCbRDOVrUTQbPxE3JHQRXPttUR+iwFFu/+0RMPikkW9MSNFPbmpRIWiC0ViEZ5EBJbjRHgbvUT1IhZGCKcVRdHgykReZKNEcB4RRe+lwUSUr9hE+BCaRBUbVkWuWY9EbGHjRIboWUaE3CVFBfTZRboRS0V64dFExsG1RG2T+kXh2QdF5obnREo7wEQq+xtFHBDjRLRC4UTD249EgF3RRTs3IUXTiJFECD66RADbh0XBt/9F12bARY5/r0YF+6lELlufRJUkmER4+Z9FCfHiRAUyqkRcpI5FIle1RGmiHUUwEWVG2vKzRNNbS0WdTIJFURKZRM5W1USPaABFsxe+RToNokToR6REiUNkRWhU00TobRlFsMubRJzwJUXI855GvJo4RSUCB0UeKhZF5OCeRKaH+keTT6BG2binRS7YFUVWydRGXxnWRB0SmUXwbT9GH+PPRKFxG0VBsTFFk0ecRBv2uETgnJdEm/snRS45X0Ws3alEPV2NRTsoxEQcDm5GwOTERFO2kkTBXgJFZe1oRfrWUkYHNelEG5o9RYxCoUUct51Efn7HRCD2PEVSV0NFnwTJRH0RU0XGnF1JVpYoRcu4lkSusXBFKDWkRCIyiEXVIWBI5SKGRbw8iUYtZmRFj4fURBFsnESpQjBFeIkrRkynM0X+mOlEom7ORCZSbEX+3xlGorEHRfzxsEQ0QsVEHSf9RiOBDUbsR/hEEnavRFVLw0VwDq1Egei3RFFFI0X1B29FUtobRS1p9URYlMlFfXLiRBJA+ERHKt1EG8mZRGTTiEVgEdxExcrIRHXmg0SHe9hGc57rR6oJy0YH0FBG7jR3RcD3CUUR6dRGkHR0RVT0gkXmiK1ETaKRRnZEGUbF87pECElgRdNw2Ubn4OhFVGrORiyFSkZfyHlFsjewRP7q9kSDQ5NEGCSiRKDFu0Sa6QJFv7LJRD6OXEWPSZ5EvtEaRnfTLEWQOL1EM+zMRDeDpkWC92hFJOdNRYesg0RqNZ5EAjKkRWD+nUbRJkpG0oK9RBbstUTF5bpFeVtuRYu9r0QMw5pF4SgcRUNS8kQRUTJFgpgfRy9FE0U53OZGHynqROxXuUR1J8tFDH2rRBN7F0UTRZhFWpyyRMHenESOSMBEdYWoRbnQ9kfbxyBF78tGRdknCkWB/utGo3lyRd1okES8YBFFJt6vRichqkVp03lIIT0oRXP+BEhr23ZFBl4GR7PNtUSwMo5FQPq5RLHU5kUWOZRFzQihRF03n0SaOOBE3Cx0RZgToUQN6vlEMWGnRDmZq0RDJMVFaiKkRHET/UR4PqJE0NC3RHLjQ0WYRlFFhiGGRTHLNEZQhZlExBw5RWPG80QnGC9FAf+TRVOeskQh69pESuTZRFE0vET+lo9EqFrrRKJhnETvl49F7u9sSLmM50UekT5HkVMaRqBXt0TpSa9FPUkQRd1wzUTUz6lER3WNRJL0lESvbFFH4XMvR0phC0UcCrlGob6FRTzzCEh4xgFFJMM8RWtJVUlKpN1E85fWRNe8iUcIylNIQltNRUHZcEZGwuVGc+WYRDMuiEXA5ixFWSJWRb4bXEY1SalEY5UdRbadEUWzDwpGkbuKRKbZzUT2NARF5vHrRtyI70ax1gtG+1TgROtnlUS/QfVEaBGLRIkLv0RZTPpFmnPARB7fjUZK/yBF3zCKRHXr4EQrg4RFnprsRMkIiUjxuxxFc63QRNqE7EQ/QelH4d2LRBqVgUR73IBHKD2ZRe3cQ0YhA6RFtqqlRNIOiUVPX9JEFwMoRoa8j0UGy59FKPfwRuiqy0VjpZFFnsXHROkMLUWpGtpErOq+RTu6o0SbHLNEzy9fR0GpyUYCT6FFWP6dRGBJuUaGBblGcYsHRsPPDkXEX5ZELnT8RMvn/0VjH3ZF5yrLRFp85kTbnA1FzlRpReulIUeg0FNF+K+gRkauZEW7I4VFZFgjRqRj+0TWKyZF8kejRqzvWEZod5pFLxM7RRPClEQBrZ1EKGaXRGCMlURgIixGBcVzRd+1HkcT9RZF78o2RsPdD0aOGxxG6liDRbAsl0T5LeZEDuniRHiD10TDhKdEr4qNRAyy8EQbA6ZE5wvaRLdxm0TJfPxHWmNjR11YTkVD2wlHSa3NRb5kG0ap/6hFt1D1RA0AbkWGvhRFYUGgRIe/t0TafENFRaWjRJC0EkVdXGBEjIBqRJ0KE0UfaZFE8+L8RGQyKkV+kClFcT2KRRkKo0R71eVEsfOsRDGAzETBM/NHz4ywRJ20R0cpBjNGIpERR8IrvkQ5CyxGxQQxRVElR0Xb54dE+QnURFUojURQPJpE5umFRamSC0V5c6VE5bynRgE6tUUkp51E3MnhREgRGEUB/k9F6E25RHZ4lET57AFFyA9ERWaewkQgjUFF8zZkRYmdqES1CdVFF9hGRQ8CuEQW8AxHUUXZRNBHC0fab3BFtogBRkDz9EWhy/pEQEaVRMwuk0YDiiJGbPk5RSSUHkc+e5hGYpOYRB4+J0axc39FVb2WReU0o0QyLpxEbPfeRLdttERf/6FF39uwRMg6jkUR9sVFndlORSyNKkVv7+xE4nQGRx2NAUeL0I1FroayRjQBWkYnIAJFXTMSRuaeCkVUoQRGQjWmRPTfSkW5PuZEi81LRs0UFUZiA/lEQBupRIzLukTiK6xEws/WRL12AEXpPK5ETEMBRac70USOebdE8NKRRCatG0aTYJhES5WpRbclfEXx1G9Ft3RJRdi7xUTvq8pEBvqiROAGOkUg1/dFzCyXRWI7T0VvHp9HNJ57R+g/sEb7lTNGOUEDRcJWFkXqdRZGKhAHRbIV9UVU9ABFELKNRQ6YBUVgNfFE2KIIRZJ/q0Qahl9FgcB1RQYeGEVrkaZE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 7l9hntzAckBuLzPRDMFyQG5ckFduwXJAxFvOusjBckDoQEIpT8JyQOzTlyPjwnJAmM5YlzvDckCcbnF5xcRyQOvS4SJaxXJAwNt1vQ3SckCxf39PQ9JyQDrdUHR103JA0Ad3Il7UckDsQXuq0N9yQJrYpDco4HJAIrX9+bjgckAwt923T+JyQF5EbBaQ4nJAWSRy5yXjckC/0baNUPByQFVv+PY08XJAY21yBM3xckAl/U3cs/NyQD66VwLC/3JAB90YZWEAc0AA7L4q+ABzQMAvypJLAXNAHD52BzwCc0CeC9NKzwJzQJflH2H6A3NARpQzxJIEc0CFKUu3JRJzQHZqFv28EnNAlzn/z/cTc0BMKCQxBxRzQGTN0LF5H3NACnNWnrMfc0AzYhhhoyBzQCJN/x45IXNAHidMVsgic0AkMgNpECNzQEqYlJIGJHNAHcPEEs8kc0CE1c6/SjFzQBYxm6DOMnNAShg0TzU0c0AWOKN1uj9zQJb5tdbiQHNAqvkwwHhBc0DAXFLreURzQGd7bx2bUXNAlhpvAkJTc0ANXUjXo1NzQGiltGx4VHNAfJZ20YRUc0CQupRg+V9zQNj1j3yLYHNAmcLSD4lhc0BrXwXrHWJzQJBK3dc4Y3NABm+QQM5jc0A84nBr3XFzQAR/PxhmcnNALp/r27Z0c0AEW+rRTHVzQKryeJh4gHNAYvMjOaeAc0AndPBKDYFzQFzv5tRdgnNAOv2zOTyDc0DOj9UQEIRzQJcuLIGEkHNASRjsb/eRc0CqHG0KTZJzQCg+JLxoknNAYYTvEmKUc0AZF2RY95RzQKif5Ia4oHNAEMonllqic0Dw803BJqNzQNjfAP0FpXNAEEqxt9iwc0BAVcYuM7FzQDw4JP21s3NAWgEqAg20c0AoTQoez79zQPzoIuP7wHNA0dvuOE7Cc0BMwUojz8JzQHCBjpomw3NAU4+o2WTDc0DkHZbG2NFzQIBD8sHb0nNAUUeiSPbTc0Ac0IZK4tRzQCQF30Gj4HNAbKzHx8/gc0CoAIk8OOFzQERRUE164nNA2Id4Wg/jc0AQlBX2wfBzQDyUEGU39HNASN+Mb+QAdEDepGbNeAF0QJRlurW7AnRA93ev+fkQdEDiJ46DlxF0QId1oVRME3RANkhJSnYUdEDNxTGoSiB0QHK6Qoa3IXRAZgkNhFIwdED9WZVQZzF0QAaoIoxbQnRA6gSHtTpDdEAsD6CF9VR0QJziH96MVXRAK/BXMCFddEBjpZ/qt2B0QECMWXMIYnRABhNmWnpidEAsqfuRemN0QA4MyohMZHRAhKcZoyFtdEBGXoQgInB0QAJO9/9AcXRAGn2A3spxdEBy0e+zOnN0QAT01TijdHRAIm7eIDh1dEClei9FQ4B0QIZSdTn4gHRAIxDjNk6BdEBEmNE9SYJ0QHYCjQ0ng3RAD+dSZhWQdEA+tuNaApJ0QJDUD7Xvn3RAqXi9Eg+gdED2/zBno6B0QH6yoxPRoHRALGBk6zihdEDwlephD6N0QNLe4AcKsHRAWy6JrcOwdEC/GITMb7J0QDL4X4/7snRAgUL83CK1dEBHTeJG4MB0QBK3xtR4wXRAn8fDbLjEdEBWK3U3yc10QGoPJZv7znRAJhibGKXSdEBA6AaAJNN0QF5lhyI803RAMnEdruLTdECMDx7jdtR0QEZcAnzN1HRAamKB8o7gdEC1TMHBI+F0QMA8Dtm34XRA9CD7RZHjdEDiM+ESTuV0QA64lr6M83RAkk8tV6MAdUAqJl3IzAB1QHuJlcFhAXVAu5z9/lwCdUBAlEzkpQJ1QOqIzjuYEHVA7vi4xs8SdUBm5bCOIxR1QB48TbDrIHVA/G7GOZ0idUBALiaZqDJ1QMxijoDLNXVA+v452OVPdUAKpFn87k91QDLLQc51UXVAVB8jZU1UdUDzceLYdlV1QDwfmqMQYHVA2HpA1zdhdUDwnE8n9mF1QByX4K+MdHVAwFSCA3mBdUDO0hGqrYF1QAKV42Cmg3VAZoxKapqEdUBUQhMWE5N1QBhn9TEioXVAfmZ6ULehdUCjKzNnSaN1QCJ8l1+hqHVA42KZgvytdUA698oOkrB1QJLKy1DQwHVAWG1yM2PBdUDZyTEV+cF1QA/NWC7P03VAX8xAng7hdUBCMgyqCOJ1QMEzdm9HAnZAigVALtEDdkASspfhTRR2QIr/QiQNFnZAhs4rXYgidkBYWjizOiR2QARHk+SPJHZATaeRd0srdkBA9cwmHzF2QMK3lPgkM3ZA6/xWdpw0dkAAWNiTHUF2QFznc/rIQnZAVnrO9XlEdkBAIJ/qy1B2QMQnQEYTUXZAPNE7js1UdkD6/AwHIGF2QAiU3z+RY3ZAfnSgG9tkdkBsLRZAkYN2QGIVVQV5k3ZA7FF2XOuddkCQ3PvBRKN2QEASiHPCsnZABjIWYgy0dkA61z2EvcB2QDQiOQlPwXZAjodgqJDCdkDQYKrGG8R2QKoLN2jOznZANPL/ytDidkD8uUYBpON2QGpUmk2P83ZAx8vgH030dkC6tJTxMwJ3QOALCqpNA3dAAB1HFwESd0CL7UQ6phJ3QLR81g9lE3dA2Z0YFg8id0DCibzSpTN3QD4PeCANNXdAryRIC51Bd0DEXsv7r0F3QBJfHOOQQ3dAFpzcQyZEd0CAQRP2GkV3QAtqqDhKUXdAPQSSwZFRd0CdJE55KlV3QM7vyT2PYXdArs8erTZid0A4oOspJ293QG71wll4gndAJmJvI0qUd0BAHpvJ/J93QBcGESj7o3dAbB7F55u0d0BW56diT/J3QAs2BHhD/XdA+P8UDk0VeEAQ71WWbiJ4QLU/9JnRI3hADuaoYAokeEAIg+Nv4jN4QAVG2kkNQnhACNmNnhFEeEBsPfv8eUV4QCbsWSPZSHhAtIwbvMpReEC1YYgGi1N4QHiqmxiIVXhAJVbY3/hgeEBSZJSFt2F4QM7H/tq4YnhAcIxJ2GBjeEBtDp13i3R4QL/Ll7/bdHhAUuMGi8V4eEAwu2vA9nt4QMS1NVw7gXhAqI+PW6OBeEBoJtZU/oN4QJx9NOSZhHhAbRb1LpeReEDkvDb5p5R4QKZUb1soo3hAktGfK83AeEBBAWdCBMV4QGj3in+41HhAdVH3jKLieEC1R4LS++d4QA/ZVb4p63hA6GGLZCzveEDKX1eZjPN4QJwXhtkD9HhAb41XgIz1eEBj3fovmwV5QFJT49e1KHlAk4fEMLYzeUBK7aaavDt5QKMzlLP6QnlA7QLm+8FDeUCupHlY/EN5QCtqsJ/gUHlA4FVhG8xUeUDMjYpE5mB5QAPzueK6YnlANWFppttkeUDFGZuOEG95QEfw8FODq3lAsuD5e8GyeUCVqdzfzcJ5QBCwg3BZw3lAczAihLLDeUCO9ZkrDMl5QDR/u1RC1HlAhGs4ssvVeUD707/MUOR5QNkFoe7M83lAOdigBA/0eUB0AVYL/AN6QAT5vB8rM3pAne+MsAw1ekCg7G8JLjd6QIfooLkxO3pAdoteBTk/ekCihlLQL0N6QIASws0aRXpAb3p2HylVekDgL2/aIVx6QPLNrXMqZHpAJFe7n4xyekCyBJjPy4N6QGwHcqR/hHpA9ha5KtOLekCq2UDv2JN6QARDAc8co3pAswH6mSSrekClwIaVDrN6QK+p4qANtnpAuI9ZTxG3ekASINQ3FLt6QEA0jGcYv3pAcqpyZxvGekDQwQeUZ+F6QGP8as885HpA5PStvXrkekDsINqvNe56QFaI6GsX8XpAEjXzeVvxekA0fj19BfN6QDNpnmp7BHtAJv8VgCYOe0AczXORTBV7QH+/6jXMI3tAjKhhw1ole0DOUMbBDXR7QLSxfIyzk3tAykOZHSOVe0AEQFj7Aad7QDCmSFQHq3tAFOWvKAeve0DO1f5eAbN7QBIIBd15xntAIMsibvzje0DwdpG7J+R7QORkZBaM9XtATi2CtZMBfEB36wqL2QF8QE72zEH2AXxAfkj81LcCfEBA55wlZwR8QEp7RWmaBXxA6/vVhRIIfEAiRe7h0RF8QAipY4H+I3xA0g6aSAM8fEBG4hjAzEF8QK3RKc3gUXxAio+O/H1VfEBuIDUgK3F8QOVUMYT8iHxAF9n9PsSNfEDwfvbGUY58QEo60bgfk3xAzKUIJyuXfEAC1/+Vd5h8QAQDTFJVmXxAHrN12RqbfECSEkeeOJt8QP6S5jk5nHxAELswH8SdfEC66HYII6N8QLp/YTF7tHxAlfoVS2PEfEBkQpLZfuB8QPpEWjxY4nxAgsWSDRHjfECvqXOAF/J8QBGx1vpT8nxAVnpFjJD8fECm3IltAwJ9QHl4eGNMAn1Ab4a5X3IDfUByCBKwAAR9QOiHdh8GDH1ARKmP60QSfUD2uw+LjBN9QLoC/QkMFH1AQTuPFpMbfUCuTkXkEBx9QPTG/DcXJH1AR8r8X50xfUC8T3e4Rjh9QBYFsAagPX1AMDdGdf9CfUD8V5wAPEx9QCN6zyU0T31A7pmDQfRzfUDA0WMb+Ht9QG7Nu8IWjH1AUHxCARmUfUAr/BVDVLR9QGoRwayiv31Ap9Sszk7EfUCusM/k5sR9QKRcJEJfyH1AvD+9wLXNfUDx8VaKHdJ9QAabjdHy031AUBwpzvTUfUDr7X/+6vB9QPZwEjqN9X1A8QpbODUAfkBceLuy+Dh+QCKLaFmkRH5AiOEtd1JTfkC00YROVFV+QNvUqkyMVX5ASWMNkmJlfkCDToMZu3B+QCr8kNXRc35A3S8xT3J1fkDaxeiXin1+QGp1KRfmgn5A5MpOsqCDfkAZdluWt4h+QCZvRuCji35ArO8RA5SkfkD0nGq+Yax+QED1jOyZsn5AYGZbOdLEfkD+2mJNush+QCAS0YAB335A2JqZES7kfkB2Ax3FXuR+QK4NgQ6VA39ACAfc5qgTf0Df380hqht/QMSMhQFkNH9AbjuMx7dxf0BIQ35n5XR/QP7BQMiygX9A0domraWDf0DMIf5iPYR/QHAE45vyhH9AbdgLG2ORf0DQIi3aApJ/QIBKa/EVk39A3kVEBkyUf0Blvqrz9JR/QAPn/taen39AKFpecV6hf0D7L6kv3K5/QCR9LzZYsX9As5iQ9Au1f0DWGRzjabh/QBJH8RFY6X9AUaVTbq3uf0CKKTi+DQiAQPpVwfK9CYBAWD98L8YPgEBvcVSgzRGAQPCcDulBFIBA5rBhu84bgEDsDTSdRyqAQKoF51/bMYBAapHgGfc2gEDQq988HTeAQH+zqt7IOYBAyKF6nX86gEDe0njZdTyAQPa4mBMhP4BAUnl0Fx1BgEBSngQWqUKAQH36/oHAQoBAQOw7nO1IgEC6SOsoFkmAQFR8XBOwSoBAaOWbJ4pNgEBpjXyk5lCAQM5/268TUYBAGLwvL7VSgECotYC8JViAQNHurE0OWYBAJnG0w35agEByiXKWuFqAQALiCOmhZ4BAPnN7WE5qgECi09dC+WyAQNyw1pAob4BAbs5AJKZvgEBg4hbecnqAQJaQ0YAof4BALGsHiHiCgECEhVDLXoyAQBD52UgMj4BAOwFnWruRgEBMijpoYpSAQK5Ni2cfl4BAHL4S4beZgEBmtapIGJqAQA9GXdAEpIBAqEHuk76kgEDYj6ZD76aAQBDw9C2IqYBAaM0RrFiugECgDiHu+a6AQASNR+oSr4BA7NJ0QrCvgEBrAN/aabCAQJjii3vbsYBAcj28gn6ygEC0NDgLEbeAQBYt82aFuoBAGXqm38O8gEAQZVQS8L6AQEoAbgVnwIBA9NCOalLBgEDQPzAbncKAQJJvjLIAxoBAC/MfS/fGgEDIYIEQIcmAQGLPCi5TyYBA2HZgX9PJgED+ryaGBMqAQIrIGdwZyoBAouT6A5PKgECg6xBKL9GAQDiFIgJM0YBAri64BXzXgEDInxaaaNiAQDgE4H9J2YBAfII6ygbcgECCcG52utyAQKzIj+Z73YBAO/U48TjegEAOtS9WROGAQFzb0F9h6IBAoBJRqvTogEDo7qAbGOqAQHfarSdK74BAiruMFjzzgECDAjiGaPqAQL5oN6U//4BATtWrwkAHgUC6vNd0MAmBQPQ1HzGWDIFAsvlccvYOgUB6jb+7PQ+BQKzD41rnHoFAQNb9oTQfgUDaWamvNCeBQIrKDC+2J4FAgbRL3eEtgUC8ZpKOAC+BQCbSWSAuL4FAdLnmc0IvgUDKSfuoti+BQMK28KqtMYFAkYhI3CU5gUDYIbl/KT+BQKCIqdIkR4FAEmuNyLJmgUBuXIUCtmqBQJ9wJURxboFA5l+KJblugUBFJcuXhHCBQKgqUFe8coFAEotEMsJ0gUBcM8L843WBQJ5Qmadud4FAUu+j9Tl5gUB8zySQHHqBQETpJWfJfIFAhpoUGJ+CgUBOlGN434SBQBg+ropVj4FAv2kv1L6SgUDoypG3VpeBQPYeehPumYFAvCyF7FSfgUDsYaIMFqGBQOZBFBTmoYFA9O7fFt+igUC6FCCwi6WBQOqNVVZtqIFA+t6AZI+pgUB+wv64FayBQDIFw0KCrYFAhJ4daJatgUCDqvB4Sq+BQNbc0glOt4FAiNSUEATKgUCW8mrOscyBQJ2mm6pez4FAYhfdmAjSgUC6xJ0zH+KBQHjdDZJR+YFAVcmqn/v5gUDSzQ4I8v2BQKj94t3iDoJAjjrEXdgYgkCfdwzj1iCCQGRc1sHUIoJAk8qO89AogkBnvBfJwCqCQD7g62TbKoJAu0ru9mwtgkDUBqw2GjCCQGbhHarMMIJAmuTu8MUygkCZvEgV3zKCQPNqw6E/QYJAU7nCtwRCgkCuV++DO1GCQKL0X5cGWoJA6t7WhzxdgkAAcbR7ymWCQNSfITreZoJAQJWMI6VngkCImGq3M2mCQFLQksYJaoJA9JT+ttRqgkDxhLb6pWyCQF6WtQxVb4JAMrnmI35wgkA3uhDPP3GCQISG7esHcoJArDt3eTh1gkAaQYH7E3aCQGrxPqc1fYJAXFtzEEOJgkALq3jEo4+CQKIMZWxDkYJAKjW5OauSgkAcor3QO5mCQHF0ZvEOoYJAXtzR9TqhgkBWuBedxaKCQBCxxIXxpYJAjVsgOQupgkBqSanhNKmCQHAyhfNJqYJAwnpVu/ipgkCglSNPXK6CQI5C3jsIsYJA1qDidGCygkDOLovDCrqCQEzGbGXsxYJAAldYBfDJgkCDmlPU1s+CQPao9DiC0oJAieVQ2uPdgkDCUQjzl+2CQB72EKNP7oJABaRtjTPvgkD+HxI+zfCCQEHeoPTKAoNAwEy/7soHg0Bu8xfCEwqDQMuyR7/CDINA4n/IKDoOg0C8J6qIeRGDQGww5Nm/EoNAjobeIO4Vg0BkJFHjeRmDQMma5pRkIINARQOp63Ihg0DMwxbaLyODQL3ELk5sKINA1ZO1anEpg0C5h6n09iqDQJhsMhBdL4NAni2mHLQvg0BKgk8HXDCDQJwLkiNrMYNAqohqqGAyg0BoxxmYFDWDQLjkJuZROYNAq64ZSRpKg0Cww/YvzUuDQFRrDmQBfYNAJ+xUp61/g0BiRQmUsoWDQJePpZLjiYNAmR2jWj+Zg0BowPXmRaGDQMAMyaSovYNAZKHpzJLKg0CZRA9tnM6DQLlwAJOF5oNA/pZT+Nbtg0C/ZjuH2PGDQGGNUuoy+oNAsBxvE9kphECAZU1fyi2EQP8jEMbMMYRAcPbRP/MxhEC6UnKSmz6EQKjIayCeQoRA0DD8d5NShEBKhvGoxVqEQNScjX1gYIRA1Dkul/5ohEDcdOqT/XCEQM58QIbJd4RA0o0tXfd4hEDksjbJd3qEQMhqFPILfYRAZqRDuCV9hEB9hlAbvX+EQNqVYLjVf4RAkgaooGuChED0Y9JMCJ6EQARhQDsLooRAI68WLBGmhEAejJD4AqqEQGszk4fesIRAsp3/WGrZhEAANKbKaeGEQJ76DkFj6YRAWmQOy8LvhEDaVRUbNfGEQDn+iA5i8YRAKCF4F+D3hEA243jxM/mEQCJqFUZb+YRAxhuosoj6hEC8MGA/MQGFQDRSaDXUFYVApLAnivcWhUDOuHX6cxeFQOQ7nhUOGYVAqtgmragahUAULA3FQhyFQG8gRz+gYYVAFV9jqrZihUDCbTexS2aFQCrClJW5ZoVAYsSUnKBphUAdXacxT2qFQPKiGYO8aoVA/gBH7cFuhUBEgEGnQ3CFQDA9XJ6YcYVAVE76+bVzhUCgXUrLl3mFQD6g/r2SgYVAMoW8g0CuhUBWyuYGRLKFQJLin9JGtoVAlmwJRt9AhkDO8WbstUKGQKRF5pW5RoZAC8x2OXlIhkD6bh4o0k2GQHdK4fLwaoZAaoNcGUeBhkBfExfB1KiGQOIauB3PqoZAmvadLya5hkBaT5Kb0MaGQIqzbXUK44ZAzle5t5Aph0AoC8EMkDGHQFe6NqSIOYdADiqeVuY6h0AieYOx6z6HQCsOdiKIQYdAQ/w87etCh0AGfMS5pp2HQI59dTzHsYdAVJ0cose5h0CEc3MEv8GHQD2NIeh1xodAsw3wVr7Jh0B3ckJ+eMqHQCAzHNB5zodAHPT8p3fSh0C8Zd1setaHQHmUDJt/2odATPlgYtcYiEB0rmobTS6IQAb2AZY6O4hA6QbEqaVOiECQPXeeqFKIQDi0eJL/VYhAbBl7SaxWiECNHpelp1qIQIrp9BT2gohAbqZ2jlyDiECPBWSQ+IqIQGz6IhaIzohASQaQf4zSiECyUm0KktaIQA== + NrgMGZxjYkAQHUC2t+NsQN9iJOBzYnFA - + - e3nSRJKejkSn6/xFjOYKRhWNr0SwzeZEZE9DRfeOGEULY81EfvXbRMciBEdC3sxERkiERHhswET0yqBET8klRbdqGUVuGKhFQ0zFRPca40QcvUVFEYIcRQevq0SonA5Fn5WRRDDVE0W9UIdEmC8FReKoeUW3riBHa5mORPFrmkRyFlFGJCGgRbnijEWHFeBEtiewREGbCUVrbLlGQlKmRJ/D3kRolpZEdWGWRQlY0kTZF81EyZXqRBqaEkWPyg1FhftoRQLwD0Z/4/tErEv9RBQ3qEWew5FEgtybRA1cBEWph7dEMBmVRC/J50ROP9FEI0uERO6MoUSPzPxEPHGIRMZ4U0VehL9G5uuBRKj7BkXp4eNFEkqTRHFpoETtqklFc9CGREkSSUcrZppE6UkCRaA/jEZvYvNF3lLyRRiz+ES12ShFCjDKRCJ/u0SYPlVFykRcRRYfnUTtfKxEWN2URAQbsEXn+xZFWhiuRNctIEXBA5pEi8HcRJK9skWyyjNGGuUbRRccv0UBMPhEVhLARP2D0UQQFvVEKYPnRQOqiUY0fg9FkkhtRD1Zt0SWLVVF98CJRB161UTuddJE9PvyRH6noER0hq9EgIM3RYI80URQ/vpEhmxORksKX0V5+odFpLLERfJBiERpxoVE1VyyROSb9UXHBkdH0RC7RFNujkUEUa9ENPvnREpWfkRejkZF8rvoRdYb1kR3iMxEV5OyRUmpWEQSNypFvYHdRJMSvUQuT9FEkUbeRGaxG0UVya1EycjBRLt4ckUbZQNFeYjARIl4uEROy+pEkr8CRZaTakXjy7FEWZuxRAAZ90T1m/tEurugRDcAnESEkyVFawSBRB3GwERW9R9FNDudRKOmkUSP38xFJELpRIAkv0TCz89EBqSWRXlJXkUnouVE9w2ERErCIEVFjz9F1U5GRvFEokR2vFhFq9mMRH+ZkETeAJdEMkOZRMJxBkXH/apE1t9oRU2rlURhjxtGOnIVRXz05EVEuDRFm6zDRD+zdURmlqREJeV2RNSqC0Y6f4lF341JRY30t0T8sMdEBHCSRKDsxUTHcn9ECqX9ROXdwkQ5oMZFj40GRamMkURCKr9EbOJuRakDnkQiHr9FMX5RRcxQrkZUCZ5E7MrxRP88qEW+ZRdFvdRARTpl6kSYXy1F2k1gRsHKxUQnZ/BEeAoqRafU7UQjhYVEvI6DRUiY50TtRwlFUNjBRXvUk0QMqZ5EpWqmRDIfm0TyQHFFVPK2RNpnk0QeFxlFdfWKRDViEEXfj51EvuOIRq/EEkWaVBZF4XpbRYGd2ET9PvZH74XBRv/W30Vsv/tElNoTReYS4UZPl89F8QGMRhjbwESA5h9FTkmbRMgHikUlx4ZEyr3vRGdwhUWs0fNEKnGBRPW530TfY6BEQUWfRD2FoEXcRBNGZzheRWAt6UQvENFEjeuBRSfQXEZUpLVEsZzXRf2mmUSNQgRFBir6RDLgY0X3PIxEameMROuhSEklS8hEsSpERTJWdUUQhKFEjmVERZnuxESVzFFIbjJNRTTplkYGB6FFJIa5RG/ijkTzKGFFrK4ORhfmlEXW4p1E6aelRPOwgkQ+xmJF7KbCRbocx0S3KwJFqq0eR29AT0bPt5VEomK9RO8h5UQjl6ZELj2wRVsgkESCqIpEZ3GBRNSW6ERKTJdEok9BRaYBlEQRCnxFG14WRShdjUQ8ZuZFFe+vRJcm6ERGPn5EvXKKRGR5ykXaTepGc6u8RxrBw0agd1RG9kc2RXtXkETA3sFGhLQERdciY0WScQBFPQy0RGqBx0Yll4lE170GRqGnD0U0hdVEcPuKRE2I/UZ98s5FGGUVR5VQJ0bVs0tF1JaQREfzIEVJdw1FI/umRC1N00Qezw1F4Xm9RH36aUSud31FzcKZREMZCEZl/rNEEso0RQNZmURucolEK1NARUEgQUUqnYhFBtX3RCJCgkQz86hEJM/WRCKRj0TeQZJG7UASRR/tI0bIZVtF2j61RJCg0ET0X4RFG6qERPEVlEUR6u9EQX7eRHhrVkXsDZREeO8MRcZ+pETgc4ZFixg8Rwx6zUSLFbRGXhNtRezctkWLVL1ENoK7RC1YokTsz1RE4IEPRVn7yEQO3AJFAvSLRDBzKEWBac5HpEwsRRBtG0U1jr1G/oGbRB9D/kQ9p41GFf9RRXGRLklFYMVIO0AHRZDPZ0USBPNHLmcpRVRFgUbvBwZFRQ+eRPLrw0V1TuVFWGnsRFbyCEVMDJ1EJIWCRVlI4kSrWKdFQLayRGVo4kSQPJVEsn6eRP3EvEU0fr9EJi2GRGQohESk65BEgS2cRKCGt0SvA5lEtGgURaJLnkSnkxRF4Ok/RWNdJUf+Ri5F+gUWRhvgkUSLBJBEWHerRG/o70SuF6lEVYvgRFQtnUQ3k8lEYoAKRWhtSkVufp9Eio7KRBGzt0QdfgFF8iGdRIUHmkT1dJ5EJazCRDj0q0RkDRxFJX2NRVei00fwiLlEm0vkROKTIUaXeK5Gg5ItRpXDiEQzkrdEt+UjRdbIz0R5wpdEL/kaRavonERXBwxFl9bARNsdv0QUA81EYeWRRAnHh0TeWHtEloqkRJ/Jj0Qr/aZExr+RRLKP+ER24ndEdsGQRDK+XUdtQUJHwbT7RFMnkUbeo4JFApsASMRmxUhbihRFKNLqRCGUjUcbO8FHGGSZRLagJkX5IV5GXLohRoIx0EQy3MxFR9/ERNQT7USdkbRFNd38RewylUS2CBxFnKiMRApayEUnLAJFoxECRb+N8EZIntdGaIzRRWPItkTCSlxFpS2SRFO9p0SanflEzx+mRMzRkURqYMpEAspyRJmQo0TG7NxF2lsBRcZRj0QlANhEfqTYRg+UmkT3UZZFdkv0RFBd2EQ6SP9EK3R7SK+BMUW62vREKA8IRSx50kSb5MxH0X/NREjtlkQwe4hEIyW9RCrTsUSaAHlH2keKREqTh0TNV1VGECOMRMzNbUS57JREKxmTRGzAi0UifJFEXqSORNGlv0S4drFEWUqyRB+Yf0TAymFGCqF6RZ+sl0Qfc5lEHMmtRMxjjUXD0o1EPen0RvshvUWzhqREEU+bRK06RkXEesJEskqhRPRbr0RO23hFsSTGRJ4e1EWzBoNEEnFiRwWEAUd0PoZEXJMRRqgF5EQXzNJE62aKRu31gETAAYZGWbCMRBm3v0VX4vREsOgAReQ2oUTHHPBFTl0NRT8TQ0XYtsJEPF0DRa33jUSsCNJE8JdqRYz/8kbWWtVEbfCQRpfii0TDcyhF88w7RUbrX0bZz9ZEi9irRguwZUbMRKlFJK5CRXDsrETcIIpEXNGsRFDjikRaQKBE0hpKRqMAekWu5AhHo3ZgRd+mAUYrQAFGMoDZRUkqHUUmFXxES+DAREwKtET+1nVEZIIxRbdYxkQ365tEAoQyRZZlskQSDaRE4BSfRCcau0Suk+JEhSblRGghuUSMZelEP4CTRAGBdET6CLZEEW2nRIEHtUSo/JVEaTLvR0UijUTqnTFHKmFXRaQRzEY/as9FvlzkRWzXf0SWdNhFAIoERVUkR0XEIpBEHOmERFGrm0RVE6xEf3vYROc3dER3GDdFZxqwRHJPD0VldLxEd9GbRPP5mkRFwo5EMA4uRQoxcEVC45NEM/cLRfVd+kT3SQZFmWXqRBkn6EfOoYBEOxu4RD5ATEfztC5G/6LkRvr8lURhILdEV+T4RdlPlUQocpFEDyiLREFWTkVTuixF5TIdRX6xg0Sy+oNES4GhRDQxmkTbtyRFZ4iURdiJ6URwzK5EAyxARjWDO0VnOoZEF+ZZRdpLD0VApSlFRZ3jRIvAj0RlNI5EhGPDRI9YWUV8fOZElVySRAuGDkXRMfVEX//fRFtNdkSDLndEPG2VRTqdJUWkkvZG5LMjRQlf1kbqoRpFOicJRu3DCUVmCnRFHx7MRPFKlUYz2AdGGrB4RcUwuERbPKREl3gRR0t/hkZ1O2hGlOSaRO4iSUXCRY9F+aWTRCjA10Tkb4NEV4W2RJwcqUR97L1E5cEWRX/780XkestFe0yQRZ2dCUVPN/ZGtFQER5KJnUUEHMtGJ1RdRg7/S0VW2xxG1gEGRYEdqkQrLB5GED5/RIPwSUVLPrdEBwWHRlXv40X6a0ZF0qSERHoZFkX7fMpEvpmhRAR6o0RSKMBE6F9wRLYt/UShLptEi7TuRC/YiUQTfZ9E4BMnRi8pqkV+NZJFH6STRQPsGUUslbdEj1LgRB294EQmahNGP8KJRTv2REVyR9ZHrAXIRCTZoEe4eQJHjBJHRsWTPUX4pZ5EWJbCRJwMf0QoxQdFseoJRnbLv0VisdREg3lBRcA+skShaidF64HrRKN5DkX1pKZFtp8XRXY8nkQ= + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 10r3dG7BckDEg6i9x8FyQCpd+XpPwnJAT3LDCTvDckBE9Zt/D9JyQKjmhyxD0nJA5miIPLngckCKccsRUeJyQPR+ARiQ4nJAMobim1PwckA4HEmANPFyQBsut37I8XJAQFvQ2KP0ckCWvy42wf9yQBFXa475AHNAfEkzYDkCc0CRsmV6zgJzQMh7NGn6A3NAApOfaLwSc0Bg1roWBRRzQESHIf13H3NAUzVelDghc0D0S5yYziRzQKeZH8G4P3NAQOasIXhBc0CG+gLNukJzQIN3LMd5RHNAyAPitJtRc0BqeWCipFNzQO+2c+c4Y3NAbgPGqNtxc0D/jNF7TXVzQIQ3sZN4gHNAJIK5sKKAc0AK+1ULXoJzQIBmp0GIkHNAlKFc/0ySc0DmW91D0JJzQNadsEP3lHNAMU+6xrigc0B26zENWqJzQEqEQJoEpXNAnFKImbazc0CWX1gSDLRzQI6U2nnPwnNAyoI5RCbDc0C6wY6D19FzQNKdaDTi1HNA1kV0k6Pgc0CbleOiz+BzQNH9J8E44XNA/mBrznnic0AlI4C84gB0QCScWhN5AXRAjZ/jlrsCdECC9CaCTRN0QJ6GkzFLIHRAewtL17ghdEDpitwBujJ0QEhLQj07Q3RA0IJJFglTdEBxIEx7i1V0QK4t0FUhXXRARgj3urhgdECiY5xGB2J0QEiH6oV5YnRAlBSiBk5kdECwFhQ4InB0QAbCDNhAcXRABr9//TlzdEAAUxncToF0QNB0QLJGgnRApnXBpAKQdEBIwVpEFpB0QFK/bBDvn3RAAgXaZtCgdEBz/jdOD6N0QCqyN/bEsHRA/Kvmo2+ydEAolSgM/bJ0QEq4O+y4xHRApZMrR8nNdEDWkxdA/M50QP4QJko+03RAI7SvI+PTdEA7CRebztR0QOppviG44XRARBN/Eo3zdECJixHOowB1QLhBUyFdAnVAO/hA16QCdUDES0pCOgN1QI7A1fwjFHVA2b8EYesgdUAiIC1xnSJ1QChxRlerMnVAfoocn801dUAEnHyW3EJ1QO2LrYTqT3VAq1P0lPdPdUATJtYUB1B1QE/pvng2YXVAYgvKlo10dUAFYY8veIF1QHXzG9CtgXVAfNiwZKWDdUAoeytum4R1QAT0IyxKo3VAkDk3GqWodUDn84vNzcB1QCboXvT2wXVArumD0w7hdUBeC+gXSAJ2QMzoVf/QA3ZABlUwgU0UdkDsKK26iCJ2QAHxS9GPJHZAPbD7x0ordkDmjlcxHzF2QKioTfpTM3ZAiWlZ9BxBdkCrIZPmeUR2QHBDQFQRUXZAUM5UM81UdkAPInBF3WF2QBK06TyQY3ZAl/Il/tpkdkDqAbCgjoN2QKzaRcXqnXZA+K5SI0OjdkC0SF8Rjqd2QJan/HTAsnZAatb1cgy0dkCEk3Tizc52QATDUz498XZATINcBJPzdkDs31MxTQN3QFhHYxoBEndAkXxlAqYSd0CAXB9QZBN3QFCJmX4PIndAuPv2/ww1d0DSme+qnEF3QJzE+5QaRXdA6mKhlUpRd0AoXRrPkVF3QFEgSqeQYXdA8upqzCZvd0C4WotwTJR3QBzhOpP8n3dAirlTwG4ieEBDbaSC0SN4QMaJ2zEKJHhAIM3qmQ9EeED6Fb7JekV4QCO8MkPXSHhAtupB0spReEAvhpwG+WB4QEpTPSa3YXhATh4XQVJ0eEBmsRF9i3R4QG4uLsuwdHhADB/XO8h4eEAaJkTV9Xt4QDbvT1IifnhA9kIdGaSBeEAmyiVf/4N4QNlPIgSahHhACRmy+paReEAUSNhkqJR4QKCU0oMmo3hArnUt4rfUeEDvTWFpouJ4QPB6ZMH753hAxK8581TteEB87DTMAvR4QGotZo2M9XhA6Ha6iLEoeUBqRAdBDy55QDEiNiO2M3lAXJAQer07eUC+3HOAzFR5QOBHQ6G/snlAqoYkcs3CeUAWnyFZWsN5QDws0EWww3lA8I05twrJeUACRV02QtR5QI/+e2HN1XlAYDjpG/wDekDqLjcXKzN6QMxvb5cMNXpA6hbKMi43ekA0YLDGMDt6QBp/lr4uP3pAGCnGpTtDekDi+V9SGkV6QNLJqpkpVXpAdMy7VSJcekAcuh/BKmR6QFKkzSPMg3pAopnVVNOLekBMofDk2JN6QC6Oo7Qco3pA3/RTqQ6zekAQacTqC7Z6QGDXp/wQt3pAhFUw2xW7ekDCLiYrFL96QICbgdcLw3pALamibxnGekBZukWD3NN6QPjNWWCo43pAzxc8BTzkekAwTnS+Nu56QMw01WMW8XpANFeMylzxekCm61NcfAR7QMJ8az5NFXtACqOIVlIce0CDBgK4WyV7QPwIHzvBM3tAKBOMYCOVe0DU5SK4AKd7QME5Pn8Iq3tA5jGv74v1e0DPQ/H52AF8QFRZAyj1AXxAKl80HroCfEAaGFKSmQV8QHZerT/TEXxAQumhRAQ8fECcZoVfzUF8QPBGV6EGRHxAlSDaWX1VfEAZpmHN+4h8QAP6C0HFjXxAbmCLilWOfECYy3a9HZN8QAG9ExEsl3xAXHDVqGSYfEC40NmNf5h8QA7D5OUpm3xAXB486cCdfECMMHOZv7J8QOpvK9X023xAYLoiXVjifEDeXoevEON8QDVrCAhV8nxAMnrrov4BfUAQle/8TQJ9QHQaEZm3A31AYIrTYtcDfUBKIR2BAAR9QDCE/MY7BH1AZMmFTq4LfUAb2Nv1vAt9QCL5afMFDH1AYjvctEUMfUABpTntRRJ9QKroKlSLE31AWl1HkQsUfUD2yj8TEhx9QForhYgWJH1ASIfd1kc4fUC39jGVnz19QPTlJGk+TH1AoA9Yt/JzfUB+H+Wz+nt9QNWn4IcWjH1ABOEdrBuUfUAOhIfJVLR9QBXQaFfmxH1ARtedbzMAfkBQPSIPo0R+QNaEfy5SU35AGDfvRVRVfkCwhEqCilV+QCzof99hZX5AfBQ6YGx1fkBhMI3Y44J+QF6NY7aeg35Al4KzqrSEfkCWZ4TgoYt+QBbuEVvNnH5A4t6R7pCkfkDag31BTKt+QPjD7k1irH5AodQo17SwfkAiSL3KabR+QKdeiMZX5H5A6yz05GI0f0BDYdSjt3F/QInte4fldH9AjqpxPTyEf0Aw3w0G84R/QGjYSV5ikX9AcgWc90qUf0BoH0N5X6F/QISaDJ1UsX9ADkVrHgm1f0De9r4GKAeAQNTSsSkdN4BA1kItLsk5gECukgF+fzqAQMdJYWB1PIBAMegqriQ/gECI+BwaqUKAQE9lSRuwSoBAYDIXguZQgEBAd06bE1GAQAQ7LKWzUoBAHic1vg5ZgEAEt/FooWeAQP7dAk1OaoBAuumGPBhsgED8xg+DKG+AQE6w+ulxeoBA/1L1Vil/gEBE7GToXoyAQFh+C9bwjoBA0x/eTwyPgEAaN9qttZGAQJbF5C5clIBAi4y93h+XgED2J41dIJmAQA7J5Hd9pYBAy65PaoapgEASU8jNE6+AQMUnZ7B+soBABRmtrYW6gEDgIYCqvryAQGhbrEh6vYBA8vgQSVLBgEAuzheensKAQHSWrxhkyIBAMAzvKlPJgECPIeYgTNGAQB/mE5xJ2YBAflX+DkThgEDZF40Y9+iAQBaTY+1J74BAbIr4WD//gEDUNr9gPgeBQHSOmMQ+D4FA7IRBw+wWgUCGnE4ypxqBQLJordg0H4FAI7qcfTMngUB4DBtX/y6BQG6n1souL4FAxlhvdYkwgUDYODLErTGBQFT0yGbjMYFAso5DPyk/gUByAkipsmaBQDqNwMq1aoFApADpY7lugUBvdGmFu3KBQK2oJx7CdIFA6bl7yW53gUCweW5bHHqBQHAqLbbGfIFAAozU2VWPgUDUdRyGv5KBQJ0EEvlVl4FA0uT5slSfgUAI58jz5aGBQK63wyrfooFAyi5LBIylgUDJnq00DKeBQAbWOIOPqYFAeo8b8kmvgUCGmNMXTLeBQG3H8YcEyoFAgpP0WnDMgUAdtF/fscyBQMLNZnlfz4FAPO7yVQjSgUBub4aj7NWBQJKrfEgDCYJAnF2e09gYgkBqMdJo1yCCQIrenvjUIoJAOJ3xnNAogkCk8Z8XwCqCQFp0UCXbKoJAeLoi6GwtgkAGGCKPGTCCQO2GthcHToJAeZGSRANmgkBGQ/O+0GaCQOqi9uo1aYJAJKFfJqZsgkBtN//wQomCQPU2S9hDkYJAPJ9iGKmSgkAmD7fPPJmCQMiGELdVmYJAIARUFQ6hgkBN2Ul2OqGCQJRqLqDzpYJA1mOXKAypgkDGsOqUM6mCQIrJr9PrxYJAKPXx2ZvagkCW8qxPeRGDQJCTm1l6GYNAZt7fZ2Qgg0A6uFgYcyGDQDKkiDGjJ4NAVgInZXIpg0CUhBeusy+DQNob9mxbMINAYvBHNWoxg0BPllLVYTKDQOr7inVpOYNAbAGIOAF9g0ASUGgmrH+DQJ5uYHhagoNA0id6z7OFg0Ce62SsPpmDQFUjTjPmrYNAqCZup9btg0BwtQOd2vGDQPovaZDKLYRAaEZCSPYxhEBieSIR/2iEQEmQ73T9cIRA6wHa4Ml3hEDB1yYN93iEQBSf0Eh4eoRARKf6oA19hEAB3+RvJX2EQOiSxem7f4RAMfg23weehEDeSLcsC6KEQJHDa+sOpoRAOhacAGrZhEDjJ4i0aeGEQNMUC7di6YRA4CQ3sMHvhECDF9mPNfGEQEr+btlh8YRActrmnjT5hEDiAi8/2xWFQISogRZzF4VA7vUeHhAZhUCSi/kRqxqFQERBGCCgYYVATn0iWLZihUAsFgXgS2aFQKzCjuC5ZoVAxteQEKBphUBU2ZwRT2qFQA759UK8aoVAZgfcJcBuhUBR8yNKmXGFQNY1uu+YeYVAQFduYkCuhUDyVKpmQ7KFQOzLIA5JtoVAxRXNj9SmhkAKbT8r1aiGQHuRJOcJ44ZAZPcPVJEph0BeasTPkTGHQOJHX9+IOYdAlp15YIlBh0CbN9r2xrGHQMBliO/IuYdA9LnND7/Bh0CId4mLdcaHQNJCqjvFyYdAMDcGfXjKh0Du4oXDeM6HQN6bEyt50odAEE/kTXvWh0CgWOZ8NzuIQHqKzZVDQ4hAmLiEqaVOiEDIG6TVqFKIQLjsPBawVohAjQmgk/WCiED1dvo1ic6IQCpRB+yM0ohA + NrgMGZxjYkBxWoXuS4RsQEMdzoN8QnFAAAjXMD5zd0AKeGK9lHN6QCfJHqjsg39AmBxVmiFCgUC+jpFWQvqBQOm4E1mOMoRAj/vUyFjahEAeJDO+hKKGQIJR/doQu4lA2TIZyDADikDQEZn2Z5uNQBYyoRZow41Ah4iQos+tkEAyeR6Z39GQQOSPg6clXpJAK6QyojtCk0B/RRPaIJaTQJVaVNtGspRAp5NyOVcOlUCrb5XcbM6VQPGDRNeCEpdA9V9nepjSl0CjmqnlyF6ZQKd2zIjeHppA7Yp7g/Rim0A2nyp+CuebQA== - + - rJweRg41rUXAev5EDVuXRakrC0VSqxxHHmYbRe0jkUUl9JJFvYppRcrpdkWzkkJFSqf4RPY57UQwdTJFYewJRXZxVEWILfhGMFhWRi5lkkUQbD9FW8SvRg5sc0W+NDRF5+V5RW+CA0UzpRVGZwY4RfLQpkWlLC1F6R4hRZ4s/kQQTdFGMY0BRQRc/kVP++9EU5xZR8B3CEWug0pGPMboRbEe6kWbbSxF0R5TRUCoHEVkFM5FC2USRQLDaUXW/tNFPR5IRstvE0Ux3uNFg7IORaUwqUXhgWxGJqkORU/ofkVjWO9ET/nuRNSVD0X6FyRF9EVfRVxtE0VGOmdGpDunRYWHl0WU5RJGym4IRYfLr0V4oUtHZWm+RUgy30XFGN5En7ZtRbIJvUXNyXJFfTHzRPSsD0UtLfBEQHJVRZa3XkXI4yVFtBeCRTRsBkVUDiNFLHPZRJQ/20TBOxxFTdj8RTDv+kQs4YtFULXRRbPk4USGOTdFixJ9RQQHKkZ3oyhFR+k5RQvED0XsJNtEmGzFRDuVvkS1UuVEIshuRgVpF0XSespFVneGRTH6OUXoXvVFHVoDRXDp5ETUVghF3jkFRTAHt0XYNPREUHsMRf1XakUSpP1FAI7uRQhq3Eb88v5EpTi3RR1fa0X1pHJFDoG0RoIj4ERXqh1FTiGjRfGf0kR2XwBGxN0VRVXDE0WzYDdF3NuFRcMCakXZuQtFLn4ERdZV6kRu/IVGFwRKRQrfWEXFZURFyKILSP5HpkaUzddGVOeURV72WUYhqC1Fw0F0RVyr8USbLEVF3FqORU5jw0Uh0zFFh5ZsRauuLkb+gwxFMpG8RZ5FK0XGK0JFntVKRQaVUEn512ZFZuoeRa25vkU8HOBEfIouRVNEDUX39VpIi1aHRcVXqkbpLbJFBXvORbKT8UUpWNxFMYtVRVCNjEWwce1FFOj4RI2OFkVgbkJHIoqCRr8zqUWo2WlFijHkRBQ5iUXRjSpFCAobReiW2UU7OAVFg3LQRS/sBUex+t5H8/7yRrvnK0bb6UpFC8v2RCEI00YmczxFhQV1RbYHOUVarLFGLxJQRj2RkUXB9URFfeUaR+d4s0VIcedGr9k3RjlLtEUN3gZFHqLhRPTs1kT/me9EfrFaRTAVMUV/BNdEdIQBRSzMgUUbAR1G1TLTRHJqNUVExgJFJtLGRXCYfUVnkyhFqd2tRvHaEkaDRF9FJWTpRHMGlUWwiJVFynQnRV2QxEXHS/ZED/8JRWI8hUUlPhlHVHokRU4c40ayhGdFDUS/RWO3kkVMRTFFFp8sRZnR30QP7u5EBc/ER3ruFEXd77xGoRjwRLCBgEZdVMdFn7LeRVimykl6E95FlV8gRTvlWUU6flhJH1NsRQMOBkVELxtFzGGJSEefPkeK7b1FqPDXRWfurUVVfBxFBZVERV4h50R0kpJFA5f9RG6AE0Xf28NFokmiRTbrg0X6+nFFtQDFR0MzfUXB6bFGAhAgRdAA3UT5Zy1FLRTmRBXE3UQIRgBFgdRrRaa01URMakxF6pc+RUakPkWrNfBE5vNTRblxpEXuzy1HAORtRpqgCUYtR0NGgPRCRZtlOEUMiC9FJTVuRRE6JUUn+GBHLMswR4gj/ETXt4FGadJ0RQEuLUgq/BBHhuoIRdofh0YSjItFgI4IRnFSfUUkdNlF2z4gRdTVK0UlX5BFmW4JRfdjG0ckmzdFeWLsRgvyMkYdvG9FFAEeRcV0K0Wn8lVFdoH/RALE20WEmA1H9sThRS2kOUWbwwdFuVCkSKlXMEUCbRxFCl8JSPS5oUdWmo1GR4/RRfeg4ETNlgNFr+p0RloeYkV2eL5FNyQJRVmZLEWwMOtGqdmxRTf7f0V4ti9FOpAWRaBDN0WbZwZFmJjvRVWkYUcZSu5G928IRlbgVkXYydlGwqB+RsSsvUXXvSBFZg0pRgXMNEUOXStFeqlNRZjNGkUpsmNFzauJRlEy10QQ69lF94A8RoLEV0UssXJGSjkQRctbLka5LcZFMyjYRLzx2ETOKQZFp7Q4RolBpkWj8/pGsYpNRTlVkkUkmdRFcfgoRcOF00Rg+/VErJkeRUC4BkURZzZFF5xkRamxWkhp6OFHHPcYRbPPfkePoFxFctbnRTNPeUaI/pZF7GkNRYOb20WWKPhEydobRQK/WUizvshHTPdMRjq1f0fwur5ESDlxRtGQ7kQB645FDbCzRfKiMkVUnPxEqVbYRGXFHUUjGdFEc1YGRWhf3UVzh+JEQxPARUgMykTU2kRFxEEFRZdJ80WEhEVF98DXRvu0F0XrcKxG/qM/RawyHEbLaSZFhE16RnoyBkb1w1tFKtxeR09sykYLUHhG/i/+RETOmEU/2p9FVY0IRZppsUVU9M5F0S7QRUpwmUXU/1hH9B0NR9WPe0VhFb1G/YW0RshLaUWSaQpG2SUkRQ/KSUYNaulF+iRuRqGcJEYU0yJF3cDXRYtUaEUvyi9Fjyp2Rs5CAEZuYHtFPtIPRWgEJUaryqFF5sFBRWOt/0db+ehEbBO5R/4KIEfbTFJG+TDdRXRGX0XEwM1E/DcDRuVAAUZw4AVFtmYVRd08iUVVamlF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - aOs3YW7BckBzyZhwx8FyQFpngu47w3JAme2E9ULSckBC0nBIUOJyQHpGUnqP4nJAp7MY31LwckD1mWiINPFyQGiKSPbJ8XJA5iONjdECc0BUo4Af+gNzQMa3tD28EnNAMDFRffoTc0AyklmnBhRzQLqjYJF5H3NAw/qWMzghc0DjWzN8ziRzQG4/RdV3QXNAXpC09XpEc0DYf3SdmlFzQOC8SL2jU3NAwWbbjUt1c0B6tOsaeIBzQB3E/eFcgnNAIDg86EySc0AUkNtG95RzQFDFR0C4oHNA55aK6Vqic0D4Yd+mt7NzQFIHK2vPwnNACswud9fRc0Be/RY849RzQH5SMtaj4HNAXs+F7jjhc0AkXw2h4gB0QDJC91h4AXRAYK42Jk0TdEDfGHnAuCF0QJrgHmIgXXRAkii+HrhgdEB+U2fyB2J0QOp5V2F7YnRAriw0SSJwdEByJ7e5QHF0QDixejZNgXRAmG3NLhaQdEBA/UzhDaN0QEqr4ARwsnRAUOXR4PuydECVM2ALy810QObAasaM83RATqAtYV0CdUBBL7WQpQJ1QJB3TqAjFHVAd6ujROsgdUDGlbctnSJ1QC+xIXQlQ3VAyi+lGY10dUAJ6F59eYF1QDRR3tmtgXVA7eRVW6eDdUBUmwNpmYR1QNBfs29Jo3VAJAJ9RqSodUAIdmMFRwJ2QMiyAReQJHZAVSjAa0ordkCms4B1HzF2QBnaxQEdQXZAoSmzinlEdkBOgJ1CEVF2QHZao7bNVHZA5NoWxJCDdkCAs1CU6p12QIaTvwUMtHZAAhw5tc/OdkB2mRqQARJ3QG83dx0PIndAs5CP7ww1d0B7FLbwnEF3QHzYS/4aRXdAQ+97KUpRd0CFXFbXkVF3QCvnfcMnVXdAGi9nwidvd0CMz/Sx/J93QLIi9S1uInhATeE8PtIjeEBmFpUjEUR4QNIuGDV6RXhADCLgeNVIeEAu98bRylF4QBzh/lv5YHhAsZMtr4t0eEDkru/qx3h4QPtlzC32e3hAoJf2H6OBeEAY3O5NmoR4QFjb4f2nlHhAynA29CejeEDgH1dludR4QOcBYyKj4nhADdtNy/vneEAwcoIlAfR4QJBVMKWL9XhADAeHIrYzeUBhZQ+jvTt5QHoL0WvGQ3lAgIbR4sxUeUA4MD3zvrJ5QAUuctBaw3lArgaqwkLUeUAQUDSd/AN6QIzp3ugqM3pAqsAurQw1ekDgLeYVLjd6QN7Pgc4xO3pAxxU9jBpFekBMl5K1IVx6QAOV5rLLg3pAWz9+TtOLekA+JWtdDrN6QEbrX+QMtnpAuoAnEhG3ekAU+rwtFbt6QNZgmZoXv3pAgr1FiDzkekD/djHTfQR7QCXyLUBMFXtAWUXRTVkle0Ahwhl1IpV7QDtJTCQCp3tA+2auxQGre0DqRI/wjPV7QErvC5/YAXxAJkWFvJkFfEDlWjxs0RF8QMJcUnECPHxAvFCi8cxBfED8/fyCxY18QPszyLkek3xAQjf9OSiXfEBzRaHXdZh8QMB+nEIwm3xA9IhnSlnifEC8Cs0SVfJ8QG+ULxBQAn1Al6e4aJgDfUAzGmAIugN9QA7rSWoABH1AqmLKPYgEfUAiBxuCoQR9QNhf/PnXC31AAjLOuAUMfUCrl6ARihN9QIO7otQKFH1AJzNpvhEcfUA0SLIVGiR9QOHTZeRFOH1APDlBPp89fUB/5CTbGn99QGAw6QQUjH1A0oE4R+bEfUComyDIo0R+QLy79NVTVX5A+065zGFlfkCIazXgkaR+QJzR3pRKq35AOpUZnmGsfkApdAy9t3F/QB9Gpo3ldH9AKByf9juEf0CY0Iau8YR/QLqBaABikX9A2mwgygm1f0Dg3IxGHTeAQFGBC6DIOYBA8A7d5XU8gEC2Ps4UIj+AQJ6llSSpQoBAOjDu269KgEBrlOO05lCAQKqzfF8UUYBA39lwXQ5ZgEAK0OiNoWeAQPDSCr9NaoBAahZvCXN6gECi/B/iXoyAQDA+Yl0Mj4BA81Eo8biRgEAVJJxhZ5SAQNSDCIgbl4BA4ExHqzGmgECA4stfE6+AQMzGLM1+soBA5gNS0IW6gEDUjiZFvryAQJFf8284voBAoCPAMFLBgEBxqQVzncKAQHKkTmBTyYBAKrPMc0zRgECgyTqyStmAQCLRxcJE4YBAL/gIV/TogEAvNpu3P/+AQAJ7EEVAB4FA6hnViT0PgUCcKm51NB+BQBCkFMRRIYFAwT1LEzYngUA09t7j/y6BQJa1pMqtMYFAILMwBig/gUBejlymsmaBQMiID8u1aoFA+Sz/GLhugUCeG9G3wXSBQPAh6cVtd4FAKkB+lRx6gUDL8eqFVY+BQCq4KkXmoYFAeMkeq96igUDqQlqAi6WBQDL0GgGPqYFAWGc89kmvgUCkqSplTLeBQMw0vCEEyoFAljlq17DMgUBEw2shCdKBQMAxcvwCCYJAonJtTNgYgkDBO5QJ1yCCQKSLzqLUIoJACaUvUb8qgkBkLgRQ3CqCQAsjXMRsLYJACA/qcp93gkAUXFoPQ4mCQPL5WjlEkYJAsLz5dj2ZgkDBvkhrD6GCQGyuRFc8oYJAFAzC0/KlgkAYqF6CNKmCQI78di8zsYJADG/K2uzFgkDmv9Xe78mCQBldLBWd2oJAFpDCzZ/egkBYp/MgeRGDQN5yZWJ6GYNAx9/9gGMgg0BGtYU+dCGDQC7pYDBzKYNAHL8oRbYvg0AsjisYajGDQECDys9jMoNAuGRormg5g0Cs4xFnPpmDQAD2/jSF5oNAfJVkecsthEB4TkMX/2iEQGQS6NDJd4RAHd0kf3d6hEA0M2vlJH2EQADupADVf4RAXLvffgeehEDkkO49C6KEQPKsZPlp2YRAItEyN2rhhEDe5C0IYumEQJQbgXI28YRAlCQl9WLxhEBVhlw9XPmEQCf+OBDXFYVAMyXN3HUXhUACKcsODhmFQHRWHYKsGoVAoGmFOaBhhUCklcz1tWKFQB5QZSFMZoVAVPjy5rhmhUDftW5CoGmFQKYS+lxQaoVAiDYgu7xqhUDIos5JmXGFQPYvpxmYeYVAdypfXJKBhUCUKu3IQK6FQPSUm/RCsoVAUBYUBka2hUA7vOGO0qSGQLYhbT7TpoZAJoHLYtaohkAGQ93L1qqGQDJyMYbUrIZAfhIwIAjjhkD0ojMGkSmHQGixZAOSMYdATqMWyoo5h0Bqg5eL5TqHQGB8Ar+IQYdA+rCID8exh0Dm2XWFx7mHQC2axwK/wYdAgIW0iHXGh0CUOXdoeMqHQBCXxNF5zodAmQvAAHjSh0Dz9wtmetaHQGEPN4WlTohA6ylsTadSiEBm/nb7h86IQGrl882L0ohA + NrgMGZxjYkBML328ejFwQBu6YmAmQ3BApzvHBz6CdkB2xqyr6ZN2QJjPrtxsBHxAbpZbQVazf0DLlkWY4oqBQGTRUsYMAoNA+JzqPUSzhEBkAEHwuIqGQPUEwoj6QolAXMq0WtBLiUAiC2cuXGuMQInQWQAydIxAIjpVWAj0j0CO2P6dRD6QQA== - + - nU8uRmR8WEWg501FpuAkR20FikVFWrBFAfqWRfGfYUV5yjBFWOFZRX4/FkfGVmpGu4myRbHCwUVLAUxFClfMRske3UW9g7xFAUUYRo04g0UAwItFPMRIRcUFzUY5tZRFh/owRzA2Z0YB3xtGUWngRTWIX0WOQxJGA1NrRW57mkUlQRVGgu3TRf2wrEUOzIZGKtyRRca+MkU0fIVGgcufRS73NEV+TvlF3syiRdzDOEeOtqtFzaS+RaFJb0VOvlJF73OYRWvtjkV5KMFFCuavRZ5kNUZpGlFF0VnORaC8O0a4n4NFJIBmRgxeKUU+9qpFKjtmRcrSS0Vj+RZG/P6KRXxWoEXuFxBGyFS5RRUaDEeCvfBF8kWkRfDovkXbNolGdqJcRe4CHkZgVn5FDotCRWp0eUZpBJlFhgHrRz7EmEaJFMpG59GvRTygVUamwS5F7vQ1RcOxcEVJsV5Ft5eLRVMOpEUaKRpGsTQ0RcFyf0XoFWRFN2Q2SQsLP0VUzqFF4RiPRT5tQkgfH49GV4F9RfIRh0W2/xtG0bW4Rco+TUW8YqpFpz5URxkBpkYIFIFFKdxcRcXVdEVDIotFiQCeRc6c+UVJwytHTUKpR+YcAEd70iFGCX2jRj5+mUXr5+VGtOYeRl9gNkdNvJRF184hR3KpTUbCDqBFU24ERkqhgUUBeg5GluhNRU9vlkUbCcRFJOmgRQi1cka7aQRGbumaRdaYyEW5zDtFmsqoRcnvJkfOYe1G3qeWRZ2+NUaNqz1FXv6ZR3SfhUbLgEFGFCXcRR8exUX0Ui1KmQKwRUa5eEUkA+tFAhO5SfEMMkUBvO5ITw2jR7lC30XV/yFGyFV9RfcMR0XlRqBF0AujRYKIM0V16hVIBzkMR0pXiUVZE1RFp2FgRStmBkbVF6hGdlInRmGPhEXaODJG+ejmRcM9g0eBMSdHBOyCRpTsuEWoA7dHIgGtRt/yM0X/DdZGlSEyRmtxXUVfnc1FWOuGRa3QC0cm6RdHh9DoRam2n0XQU0VFomUkRbzvDkaVdeVG6p+iReArM0XtcUZF5agESe4CSUUvFnZI/gwNSHTz4UZGIidGNHB7RTFRb0Y1X2RFdR+fRY+RBkezxl1FFdTMRVRwikUnFKVFQ9f+RePpVUcLJvJG11YxRo0Gn0YBf69GrkbMRYGdGUYggzNFsTOXReZJ6UWdBJpFa4EgRhHMUEXkk55GGc9KRobAgUWOUYtFxKxTRmQmjUWMcspGulmmRVrfmEXVYcBFkJQ5RcEtwUhlO1RI+f/yRx8EwUW5agFHmwiWRe0qOEaEWkhFaNhARdUfVEUjv1tFHbExRSx/AUm/MJVIEjUPRlrfIkjQF1JHExqLRW+GO0bcqE5F8xM3Rchgg0UvJnNFA4hNRRlI1EVqp9pGOi7/Rt5LNEbHqHBFEH9MRkBi60XqZLZH8yw0R4loykZZX2ZFDsgmRqsBjEVmJqNFkwu1RbDFMEY1J0lFNtDHR4XFFkfWmLBFrX/bRksbSEe2XEBFkeUPRnx2+0Yo4kVG/2hiRcDOTkbzHvlFCHcyRUKVkkWFUcZF46a6RQ7ZTkWoNzpFUvDeRRNioEafXjJGOcDCRa4ff0XvbU9FFxmVRlC7HUY0TI1FiNYRSBR+1kebnCZH56B/Rtxtt0UY9BdGgNoHRiuenkV5t6FF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - w3VJN2/BckDatRgsQ9JyQEKuwxdQ4nJAVAsOZI/ickBmFRkKU/ByQErps1Y18XJADJCN0s8Cc0BaCJHK+QNzQG79jLK8EnNAyDbD0PcTc0BRX+cKBhRzQH8/zxx5H3NA1k9r7jghc0AgknwFzyRzQD8ez0Z4QXNAphz1fnpEc0B/lLY0o1NzQMg0PoN4gHNA3sMc1l2Cc0ByrUnxTJJzQM9BUSn3lHNAHk4SNrigc0BihOGyWaJzQArrzbG2s3NAOj8H0c/Cc0AuHeP+19FzQHKQlMPi1HNAtlbbm6Pgc0Do7ttdN+FzQJYW0R/jAHRAE4oxcHgBdEA3n6+4TRN0QPb6HMIgXXRAedgSQ7hgdECgoHXxCGJ0QB6G0DR7YnRAji759yFwdECyZSHBQHF0QJT/Y2s6c3RA6HD2l06BdEA3lh2kApB0QMq9bQkWkHRAKU9Lom6ydECUNv1gjPN0QFuIhUNdAnVAcEG6waUCdUBkSg5j7CB1QG9zcjadInVATlnSvCVDdUDYNYsYjXR1QP6PLs2lg3VAo4FG8JqEdUCYCCwsSaN1QAjXSFWhqHVAasW6X0cCdkAygUC3iCJ2QL7zrCOQJHZA2NRwRUordkCS5bB0HzF2QLCaVwIeQXZALG6UdshCdkAXXNpszVR2QBT4kOzbZHZAYQRA0uuddkCmbfWCF+t2QCJMMlgBEndAKIrkIQ01d0BEY0TonEF3QBSfxNoaRXdABjQ8C0tRd0CqgdgRklF3QAXTd178n3dAYbG39BFEeEC72J6kekV4QMsFhiLLUXhAijpb24t0eEA6TFCTx3h4QF63BUiahHhAvR29aJiReEAMwaRkqJR4QG6ATQUno3hAZGWbdrbUeEC0AE7SouJ4QMJ4Y/z753hARkrIo4z1eECgXtOOtjN5QGge/229O3lAqn0N3stUeUBG88AxW8N5QP4PJBy0w3lACv9P9ULUeUDRcdtF/AN6QLR9U4wrM3pAjShD5ww1ekDa2TTeLTd6QMfahRk0O3pAGL9xShpFekCqvxQbIlx6QLjs9uXLg3pApigb0tOLekCdHSUeD7N6QELcteYMtnpArvjNDBG3ekB+yp/zE7t6QE4PtnUTv3pAs47aXjzkekBQ9u8lfgR7QKZ/YH5MFXtAZnhHJSSVe0Aci4l4Aad7QHaWfeMGq3tA6rMTs431e0CS3Zaf2QF8QDxgeoacBXxA3vvQ69IRfEDc+UkmzkF8QEziDc3FjXxA+ruN2h+TfEAbv9v/Z5h8QFC/HzCAmHxAhLwJ/FnifEDu94x+V/J8QKKIglJSAn1AZsmtEmoDfUAwDBvNiAN9QGa98Yy3A31A1EIRrgAEfUD4CxojMwR9QP5h1QKIBH1ADKnUMaYEfUDoUlrCuwt9QEbwb4kFDH1AvnFlAgsUfUDmBfuBEhx9QPLHeYwWJH1AToJIoUU4fUBma7EEFIx9QMqOq8/lxH1A0Usx41NVfkCirXTkYWV+QETV6vdwdX5AvPmhCbhxf0CyqEkQ5XR/QNqdjgE9hH9AfcgrqGKRf0DP7RGcCrV/QKgvBiEdN4BAwU1U5Mg5gEA8i7UQdzyAQD5Xn9MiP4BACMaRKKlCgEDHnJLkr0qAQMjQUu8TUYBAmomhWg5ZgEDlzUZOomeAQG4fZ1VOaoBATAapSShvgEBsicoSX4yAQD4g0ggMj4BACgtLpbmRgEB8ORSmYJSAQFjntS9hmoBAqtLM2xOvgEAysWvkfrKAQPLeAFxSwYBAclzSEVPJgEBsHpgNTNGAQOoe6vRJ2YBATFThuD//gEDujTXhPweBQDRACKo9D4FAljOtUTQfgUDM1O28NCeBQFSr71kBL4FA/pylsTAvgUCzDQV3rTGBQJhNDSApP4FAmtsgqrJmgUC+xZk1tmqBQD46Dcu4boFABoME4cF0gUBYUALCbneBQBglQ5wceoFAJCi6FFWPgUCupBqS3qKBQIPWJYaLpYFAZWbS+UmvgUB0j1NcBMqBQPKxUrqwzIFAu8Q6mF7PgUB9U/r9ZuKBQHc23H/YGIJAEsahFtYggkB4oBIb1SKCQMpoItbaKoJAPP5AL0OJgkDi3gKyQ5GCQCt3MZ08mYJAlEAiBQ2hgkBmzZ7OO6GCQDAqlErypYJAri+5azSpgkCuLD6768WCQGkr2rCd2oJAI1bzbXkRg0BY/lOSeRmDQHQ2RWlkIINAt9bjnHIhg0BKgMP8cCmDQMZ/JWK0L4NAVwmekmoxg0DQheezYjKDQJYVu32F5oNADmcDxssthEAcg27KxFqEQNIumCr/aIRAzdxGvMl3hED+dsJIeHqEQDiQQGYmfYRAjvkH09J/hEBj+B59CJ6EQFD92O8KooRAWKIFFWrZhEARaNazaeGEQMJJu6tj6YRAB8xaAjbxhEAaoI2fZPGEQIxpJ/BxF4VAeNggyg0ZhUDQ0wKIpxqFQLLSmVKgYYVA1HvqaLZihUCG2M6DuWaFQKC2+GCfaYVAoHXpV09qhUBFMQoivGqFQLF7SwuZcYVAsWb76Jd5hUCxN2TKP66FQFy36QhDsoVA0tLijdSkhkAgpPT+1KaGQHYhCAXXqIZARfVu0NeqhkDhxisNCOOGQFTGq7ER64ZAzBb4OJEph0CzfS7zkDGHQGFWV5OKOYdA1J3lHMexh0DjqPiZx7mHQE6rEi3AwYdAXhZtxXXGh0D+A/SQeMqHQNTfUG54zodAgM7MtXjSh0C8csLQpU6IQCf7h86oUohAnkqLr4zSiEA= + NrgMGZxjYkCwLijacuRqQMZtNYzMxW5Af9hb5OeCdUDjFPeZPnR2QKaZo1uWk31AHrdvb+6UfUAdBBYto5KAQP72UzAXAoFAgTHgSS+rg0BiJB5NoxqEQPFMfELP4oVArFtiTHvjhUAPnjgtJ3OJQEA8BojS64lAD80mV9P7jEDUHKrDKfSNQDl9+LkvCpBA6iXM9mq+kEA= - + - ymQBRmkOJkfyNqZFudGmRVZ7skXp/FZFJFtdRQVCBkfFTi5GNhOQRfrshEW0R19FWwizRgwG70X7949F0ALhRa+NmEWqL7tGxg3aRQPPNEdJlodGDGbSRf2Tx0VFnINFngXZRYR2b0Xun6BFAPj5RYv920UmO5VFaKdCRqvGgEWgM2NGZfKzRYNSwkX4xa5FM0iwRZ5KNEewIolFmAfURba3Y0US/c5F3/a8RYoRxkUTTI1Fd7+YRrdkpUUltkJGRNz3ReDXp0YRXapFBKZxRTdByEXbUopFX0WaRfaph0WsXOdFb1qkRa2QwEaEM7hF52uORXUv00bbDJpFX4JuRafErEXEHopG3WkASMnnqEaP8bdGfsGsRXThYUZJ6YxFDc6NRfsoLEZcNJ1FPUdSSegKgUWbzE9IBSqMRQUUmkb423VFCDvKRdqiKEbRNc9F9bQWRvivb0eikqdGWLu5RRUwgUXVDINFOHzsRbF76UXS7/xGFuvKRzXcv0b2W7ZF/J7KRneAn0UXA7VG0NIGRtISGkeQR8xF4aAARx0bVUbPJ7BFVQtfRoDFUUWJPutFDhuMRfjXmUVMkpNFs+VRRkKJEUZ14YxFnaFvRWpLzUXAkRRHORDARkGAiEUzw7FF/SGcRxSmfkZE5lJGdNy4RdOAEEYr+kZG+55kSibvskZ4OBdGyM+KRX8v8kU6kvhJRyIaSUKH7UdvtCZGi1CcRULEn0UrwplFUW4/SMBUSkfRCI5Fa6vIRWjvQkYk9vpF4BYbRqqUAEbzbDlH+GEWR/KqQEbsa4lFcQ1xR4RSOEaK5Z9G+dmgRaUWoEUyCeVFtfF2RRg6NEcm3iJHNZg5RgsISEV3jU1FqVX5RdWxp0bdrJJIVzb3R759jUftlIFGbR+GRjnVgUUKusFFJCcFR6DGxkW07LNFc4SGRc/8lEUPQQRGp6NORxqN10b4gR5G25i4Ro5Db0b1ZbtFht0DRkdohUUpqYVFHkMwRuZJukbr51VGv4cHRnQgn0UImkpGfJ+NRaImt0aR/b5FPZRHSBBBtkc4N1dH4KCxRVnQdEbLJKlFZdXFRf+vkEXhPs9F88goSNc8nkeNgslFoDIkR0JdY0bHjJJFMfCNRTQdXkVMhodFp9mCRXBTZkW+T9pF3yC+Rqu+3kYrBB5G4+65RTB+N0bXYeNF3hZURysuwUZLhH9GHySMRUYhyEXGA89FWlgsRs1N70XgKihHsCIRR+/Q4kZKTaZGiCShRSktJEbTvCdGoRefRauPOEbXlhZGgpRGRuWEiEaOaFVGYaESRoAtbEb5wWtFdAZsRvPkz0XtIIhFA+IgRoN1iEWSEldF0uEWSLWg40dDsTVHyVeXRnXy90UzuelFCweqRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - hfhgfm7BckAnBXfgQtJyQMq0usZQ4nJAlkV+MJDickCAcx/CVPByQLg5JdrPAnNA5Z5jT/oDc0DMO8glvBJzQCqnnPEFFHNAk96D/jghc0AQ8AiSzyRzQELseWR6RHNA7snycKNTc0B+hC+7eIBzQDsP6JJcgnNAwU619kySc0Ac59zS95RzQNyNGAi5oHNAmpvd01mic0DhBdNUz8JzQDzcVsji1HNABJP3X6Pgc0DajN0vOOFzQE8dnek58nNANNhuWHgBdEDmt4YnTRN0QGCxLRC6MnRAjvmxzyBddEBDaOO1B2J0QKQA1iB7YnRAfj8ZgCJwdEDP2wE/QXF0QAYGCSpPgXRAUHqZ9BSQdEBkH0okyc10QBATCGWN83RAAANEFF4CdUAIwV3wpQJ1QIgpDmWdInVAH8U+fiZDdUA3BnXljXR1QPg1ZXytgXVAIqS0N0mjdUBC9OD5o6h1QKipyihJAnZA9cbLbIgidkBebTX2jyR2QEhQIX4fMXZApq/FO81UdkA+LYbG6512QLa4+qcMtHZAhuh3Cs/OdkD/T3oPF+t2QDw2sqwBEndAKQZcJg01d0AO/87snEF3QJKof+MaRXdAE/fp5ElRd0BBuz0JklF3QA5zDbNtInhAzJm1lnlFeEB8tYEmy1F4QM4MR0hrdHhAYar+9Yt0eEBErlpqmoR4QBzJwpSolHhAMPpNRbjUeEA4YfA9pOJ4QC1MtvX753hA7r15SI31eEAQXIyvtjN5QN9L1BG+O3lAaK43KMxUeUA7JMuwWsN5QCw2jLuzw3lATKA/iELUeUC09YdH/AN6QIRwNxkrM3pASGsqwgw1ekAUcM4XLjd6QJaXKBg0O3pANBmJpDM/ekC+53TxGkV6QF5hlUQiXHpAAJaYacyDekA/w32c0Yt6QFp/NKkOs3pATkPmFA22ekDT5iJAEbd6QDzu3B0Tu3pApOGGbzzkekA/pfiBTRV7QOnRLYgBp3tAnr/3W431e0AWcSpg2QF8QJiRpy+ZBXxA56uaVM9BfEDcBNkwxY18QMhv5c0fk3xAFib7aWmYfEAqPflqWeJ8QKAtysRU8nxA1M3IkVMCfUBGdVYQtwN9QNvx4IXQA31AFCMBegAEfUBFhktmPAR9QLRemQ4FDH1A2PKbXwoUfUBA8jBMERx9QNAFxQccJH1A8Mv17UU4fUCeNmOwnD19QBWqnMmjRH5ABBDlhFNVfkAwtnRcYWV+QGghGXJKq35AoD2jB7dxf0DwQXKC5HR/QHydaJ9jkX9AysuRTAm1f0BQetLAHDeAQKyrpyPJOYBAc6FPFnY8gEDou1LNID+AQMRDrPuoQoBA5ZSZLq9KgED7qOt/E1GAQE5ux3MPWYBA3luxE6FngEBUXP/BXoyAQAJ3c74Lj4BAeNqafLiRgED2Arp5XpSAQJtYnGUSr4BAWDs+zn2ygED6oykpUsGAQKSocDtSyYBAcGPGzkvRgED4ZwiuSNmAQASiRdg+/4BAOB2WToAKgUCCEdVJPA+BQEwmT2Q0H4FAmKge7jQngUD3COcUAC+BQEvAleqtMYFA8p7j6yg/gUBggueUsmaBQJTcc361aoFACCzzXrlugUD1u+oawnSBQAomqFJud4FA1qK2thp6gUCwXoKUVY+BQGQSFlneooFAxAjF/0mvgUCwj+NFBMqBQD27XjyxzIFA8me+fV/PgUDMGISSB9KBQJJlbB5n4oFAyOYS3tcYgkCom+7G1iCCQIqiRzrUIoJATnXz+UKJgkD7GdEKQ5GCQHTJEvg7mYJA4iVRGg6hgkAVwmG5OaGCQKKgo+rxpYJAttl/CnergkCOGtLRnNqCQOrlI0x5EYNAeBi+b3kZg0DYkfK1ciGDQH7Bl1hyKYNAeSoTi8RahECpIc9d/miEQKIjSgTKd4RAakNzzXZ6hEBRN9HmJn2EQOxRAibVf4RA3OGmzgeehEA6t8XbC6KEQIuOS81p2YRANFfunmnhhEAcIq1/YumEQNYBo5hxF4VAh4WjrQsZhUCP+PSIqBqFQMxXmlCgYYVAkHmJP7ZihUBTnsOIuWaFQLdrfnGgaYVAA166gL1qhUBYX0rvmHGFQBQ1Xw6ZeYVAsLoJFkCuhUAyQ4WeQ7KFQD5JU9XZToZAqEwCR9OkhkBSgXf41aaGQJw7Tx7YqIZAiCy9H9eqhkAhcNyZ2KyGQJ4AopDZroZAlP9YrwjjhkCudyBcD+uGQBsIbhWRKYdACi/+SJIxh0DOV9rQiDmHQDLdOifHsYdAmi6tQ8i5h0CkASf2v8GHQLHGmnV1xodAEpaxiXjKh0D/4D2iec6HQOIZ17J00odAzCiCMX3Wh0C+rZBrpE6IQIEZCeKJzohAyLurnI3SiEA= + KBZXds7jZUDEZV5bjlJwQDtMc7KVAnNA4rYaRubic0CMTIFRu3J5QKW9uBmME3xAG6TNcJODf0AWItWzPlKCQFGVX19CCoRA3U17w6pahUCymC5JlSKIQAZOApO9kohAQcGMPsHqiUCaLqbOFJuMQEHwemhtc41A - + - WovOReoBx0Yzm3VFaLeWRc9QZ0VndIZF+rH5RsVsKUbAnJlFHq+tRi29iEWdeNpFMtqPRUJxtUbk3cVFVV1PR2HoLEYl4LtFQdsHRlTPiUWX+OJFAUpqRREe1UWIw4RFRMkiRn58hkUjOp5FwQeDRhf/vEVBd+FFpkmHRT80PEeJPeFFcVakRR7EkUVjyq5FWiCDRZtHnUbbA09G0JDrRc73H0a1PtVFlqHbRdYqkkWUO5NFidiMRf5w+0WXAcBGAWdpRjKQcUVbeqJFKkOERQEo3EVnjYpGZwXuRxHJm0YDhMBGA4OsRQurRUarOIlFSBs0Rs2xlkUQc8VFPE5CSVNdR0gimo1Gx1iLRZab9UX2LI5F+2vwRXyoYUe8v5hGj4iLRUV4d0UDF3FFc+PGRZolskVgB7VG1QzFR0Oqw0bQ4cFFl5aCRR2nw0ZEQWpFJjR4RlGt/kXj4gxHhve1RS5I00YOdDVG8xq1RtGM8UWZkeZFXtBXRvfk9kW4UpRFvzelRQRFFUetM55G2WyqRaqDdUdGm4BGRjEiRqerbEZpeOJG8ylySn1NlEaFKAJKOtsdSfsp20fP2TBGHoGaReNsoEWICalFXxolSNv5I0ftY79Fn/CURQTaBkbp2tJFSbAKRsyVEEdPGQhHjNFNRqyUj0U66RpH1fv8Retjb0aLvadFcZOjReIeJkdoIvFGGBkqRoTBZkVMftVFQDMMRgOzcUhnc61HlRFkR21LK0Zyc1hGQRR8RfW8fEXTesRG3kStRXCJkEWTaZ9FALPSRcnZMkcfk9VGiuUQRueEdkath2NGLS+nRUiNAEZvCIZFEaxRRskBskbPzohGLwvYRR28bkXiVrdFIM4hRjeWm0X9iE9GFvn8R+BDT0cKlghHvnPJRWJCC0YMgadFJu5zRfNYdUVGRuRH+L42R/7B4kbafSNGajp3Rd1wzEX5YtdGzeWeRrnyIEYD94ZFhYgBRtOc1EWQSxhH1p2LRiXOJkbfJZ1Fo4+URctImkXEd/BG/fLnRtPjpkb9vnBGagz7RVe3BUZBzY5Fd3FFRjgYC0YOOYpFyED9RoAOIkdm7qtGIMlkRta0+0VzpIZF5zGsRr/s2kX2pBpGldrMRcQooEX3RARG4qy2Re0gdUWMm+hHSBeqR68i9Ub4aEVG57eERWzz60WjKsJFsxJ/RQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - zwS6hm7BckBwbpYgQ9JyQF4QR0RQ4nJArs9ySI/ickBiVvOJzwJzQPGHTyv6A3NA7GhHN7wSc0CO5V7qBRRzQGIaQLo4IXNAixgTA88kc0A+dJPld0FzQKjREBB6RHNAQJ9ZOJtRc0BOkmPXolNzQByG4Fd4gHNAAsryZV2Cc0Caq93xTJJzQNuEKHf3lHNA852uQrigc0AcoyFNWqJzQLWLkJu3s3NAit033s/Cc0CMDW1x4tRzQBAUnqI44XNA8KAgOHgBdEDXrhsQTRN0QGaH/TC6MnRARa8ubCBddECP1Vg2t2B0QEQoWmkIYnRAzsuN5ntidEC20KMrInB0QHYK8NVAcXRAKBJI0U6BdEDIdkTXFZB0QCUfR7RusnRApa8cmrfEdECaVlMiyc10QO5gKD6M83RAfy6j9FwCdUCYtPTZpQJ1QCh3vPKyEnVAzjzh55widUCClYSeJUN1QEDQKgaNdHVA1KrbLK2BdUASHIHASaN1QAsrjHxHAnZArnRTT4gidkB8gnrgjyR2QLoZCAdMK3ZAfF67ER8xdkAwgwiLHUF2QHgdo6N5RHZAFtZUHs1UdkBrXy0RDbR2QIilN5zOznZAILHcvRfrdkCGcJ5PARJ3QPZGv0cPIndAmBXvFg01d0BMFjelnEF3QMTKxsIaRXdAuu/n+EpRd0CE4RmpkVF3QKLTcHqOYXdARFE+Tm4ieEDuzgbDeUV4QIjlz9rKUXhAkOMX4ot0eED0YQk0qnR4QIEOKO32e3hAox3qIZqEeEAgMatKqJR4QAmOMrGi4nhAP25mkvzneECkkJBfAvR4QAuTF4WM9XhAD5yhDrYzeUDq/w6QvTt5QKyD8O7MVHlAFMziOlnDeUDeK6LZQtR5QLg/Dvr7A3pAugY72CszekCqfSLvDDV6QN6rtfstN3pABoHqUzE7ekAXw2OUGkV6QKZ/7oshXHpA3IB87MuDekDcVKOR04t6QHb9nOMOs3pAXubMnAy2ekDilHZSEbd6QJy3sYgVu3pAqgX3rBa/ekD+/9KvO+R6QFrvyu9I9HpAC11fmUwVe0DcEVLRAqd7QIUWlZgHr3tAOhivmY31e0A3bH+72QF8QMZ/caqaBXxADl6DatMRfEB3jV5Mz0F8QLAwUfHFjXxAhOvyiCCTfEAwlfieLJd8QMAGUgF+mHxAyO0DI1rifEB2LnGbVfJ8QOCF+PRSAn1Awup95tMDfUAIUVlrAAR9QE5cDrpJBH1A7/o6D9ULfUB3z/0eBQx9QEQFTIoKFH1A+sTIFhEcfUDmnKowGiR9QFDnK8ZFOH1A8BFB4qA9fUBr6vyvpER+QObFychTVX5A0P2tMGFlfkCg463JS6t+QLFlbl2wsH5AmC/SMbRxf0AifZbw43R/QBGEKGZikX9Agy/BzQm1f0Cj6/mMHDeAQDBCN/XIOYBAMK4Um3Y8gEA1jrIHqUKAQBgyx1WvSoBAMaC1QRNRgEC49WwpJFiAQNKwE0UPWYBAOhW8HqFngECl6ClzTmqAQGfdicVejIBAAXMPFgyPgECw9kW+t5GAQJmOK30Sr4BA5H97Cn+ygEAqAQQsUsGAQKmDo81SyYBA02GsAkzRgEBRjaUESdmAQFjDGilF4YBA1E5TZj//gEDUcUVMQAeBQFaEog8+D4FAhXMDbTQfgUAqHl1WNSeBQDr+NzkAL4FADALiW68xgUCNXDdKKT+BQG2xy9OyZoFADgIu5rVqgUAOxdNnuG6BQIJ6ndHBdIFAZuFBwG93gUBObNspGnqBQM/YWZlVj4FA5TS1m96igUAMvVdLi6WBQFrdgghKr4FALt8UAwTKgUAAK11iscyBQJAyMTtfz4FAJrayz2bigUAqws9R2BiCQKiGx3bWIIJAjABHuNQigkAyZnARQ4mCQH4qSbBCkYJAAgImkjuZgkBzYnOcDqGCQDAm0Rc7oYJAcvT7xJzagkBU3xpGeRGDQPKrF/94GYNAalLd1nEhg0COZiEecCmDQIL0ZQD/aIRAjMC3k8l3hEC59QADeHqEQGZIl/cmfYRAGGgv5QeehEAvltgNDKKEQFBJoOdp2YRApB/CF2rhhECOCXNvYemEQKYIm5018YRAzEsPPGTxhEDPcIFrcheFQCzAljagYYVAwFi7OrZihUBCJoSnuWaFQIJ3Kf6faYVA+BkX3rxqhUDEqd6zl3GFQB5rNLyYeYVAIGSaLUCuhUBgzUUNRLKFQCTJgLTZTIZA7z0il9pOhkDabE702VCGQFDxXJzaUoZAwPFzstOkhkApnudh1aaGQLoHY4/WqIZA+kdSpteqhkC6Aqr516yGQFC4ezgI44ZATr5J3g/rhkBgURSakCmHQFgPCQWRMYdAtDEHhIo5h0DNCXcox7GHQCRMVYjHuYdAdjlIznXGh0A2cQ3GeMqHQKCfBrZ5zodAiPtzwnfSh0C51r7hODuIQCby5DSmTohASuYXDahSiECWt/Iwic6IQGBwpd2L0ohA + NrgMGZxjYkAc6N63HmJpQAoahmk8YnBA - + - F7gBRnbZB0e0loBFoqPbRW0ljEXviQ5H5gx3Ri8xkEWqh4dGp+u3RSydo0UPMiRGm4OARbvYg0WjBL1Gs/nrRSW0SUd4jD9G+KXvRXHA3UU3R5dFrZTrRbLMjEUXrLFFg01/RgOOnEXygI9FsxqERoBBlkVedLtFHvr6Re9mskUcxlJHianfRU0L2kX6zo5FjbWIRRM3ZkUfqblFSwaiRSZCl0bTwmNFOmZLRsXGQkYonC5GBkvlRSV01kUK5bhFfSODRbW6GkZu8KBFrCquRmSas0V+iatF4X08RuZVmUUinmFFX90SRuqqmkbDQIFFy3f1R1SEh0acotJGI7iqRXPKW0b2E3BFT4KqRabuO0ZYAIpFMC9SSXmZCkY2Q99FxU9NSDmnrEYP1xlGq6ffRZprikVKOQBGWFA9Rx50nUbuiaFF0XaQReUX3kWG8cdFuu/qRl2JzEfsoLxGMZg7RuPN10Y3ZmBFf61MRiO0tEWSEgBHb4LDRcRQ5UbP0FdGxkS1RQYoyUYvtIFFYOURRm6Rx0UZ2GZFDANtRtPD4UVdXZ1F3eZxRZ3JhEUJTPZGNf7LRn3pmUVn4ahFBm+XR6LUfkZVt1hGrIiKRrNrcUrm0gBG4P8QRnSnAkry3hlJWc7iR2sOSkZsoMRFatOAReMa60XQQtdHw0TERulYmUUP2WRFuetiRXO36UUHpx9GV22dRdLCF0dt8AdHyN7/RfbNB0cswAZGB+FORp2ef0XubZZFeRTVRY25ZkWnjSFHIxAfRz7oj0YlPNBFHtb1Rf7lh0h6LNpHKIV8R9wGK0b5KadF+vJmRsEaekUk7NlFRy7qRq/KsUXnNHVFDX+RRd2w2UVyxhlHxvu+RhSozUUxBW9G2pEoRu49tkWv1/JFPRmKRWJojEV8WVRG/D2ZRsJqhkbBzbVF4uWTRYFyS0aC84NFHYcPRnRm10dF2BhHCSLARvftskUzAgFG86jGRSvc40dHpURH3aTZRsQ5DEaxO8RF1YyaRkISlUbEB/dFMQMMRoNziEVv6xFHSFZcRucTCkY8BHhFT7GIRRUDmUVM7AdHl1rhRg73lUYcp1JGR3LBRUWRE0biRptFQ18gRtx9zkU0FrJFCA68Rc+wxkV8939F4DvgRkamUEc/rtlGRhLyRtc8IkY0FaRGgSjoRfGyJEbr3pNFvStvRUlNJkYIhbdFPYHVR/PxkkcO6PVG0ldCRrNciUXN+JhFKjJwRXQghkUYbo1F + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - EVCeY2/BckAagWpPQ9JyQDjL0KZP4nJAPQRyyY7ickCs6yEJyPFyQCRMhin6A3NAvJInVrwSc0DT/iSkBRRzQBwR9wR6H3NAbn6pljghc0AMpYXHziRzQO5eIwp4QXNAcmNoMHpEc0Aaonqfm1FzQK6sQQSkU3NA9uYULzljc0A/Qi5CeIBzQIkcVSpdgnNAt+0rAU2Sc0B8l+0t95RzQOjyd5u4oHNAfmGzilmic0Co3cYMtrNzQBgS5wwMtHNACTCAss/Cc0CcpsQO49RzQJCOr4w34XNA8or2wHgBdEDURkmVTBN0QPDXzNogXXRAgDzY9bdgdEAvP7iwCGJ0QNTM7BF6YnRArKGxqSFwdEDCFJ7EQHF0QLSLuElOgXRAXpM9bBWQdEBepTWTyc10QFQ6flu44XRA4xfHw4vzdEBOohluXAJ1QAomAK6lAnVASCAzB50idUCavlDhzDV1QHFH8bclQ3VAO+9csYx0dUDPGMg/rYF1QCQMYmqlg3VAwrytL0qjdUBABQ6mzcB1QLFNcs5HAnZADuXXtYgidkDuZcD1jyR2QPTPnctKK3ZAzZyg3x4xdkCRmcNVHEF2QJ6Mbkx5RHZAiFTxu8xUdkBqr+JJ6512QPKxGEMMtHZAox0gGRfrdkCmmKAQARJ3QDgbhzMPIndAeLLm8Aw1d0DORtXLnEF3QP7fSdcaRXdAUIFuzZFRd0DAeDCdbSJ4QHBsB/sXMHhAL3O2ExFEeECwgrJLekV4QD980GjLUXhAGEFynYt0eECmLvVDq3R4QAYBk0fGeHhAGv4GzvV7eECWXQYhmoR4QDcaOgqXkXhAGORmI6mUeECcOpepouJ4QMzEGkn753hA0poBwgL0eEDgpKdmjPV4QGpoizm2M3lATIfvwb07eUCKyi0eWsN5QPqmiV5B1HlAw6KN4vwDekCotnvMKzN6QICpXq0MNXpArq73bi43ekDUvAB4Lzt6QGElpsUzP3pAzHozYBpFekBcq/dCr2B6QA4KV3nLg3pA4iupNtOLekDrP3OhDrN6QNo+5pgMtnpAyB7/dBG3ekC1k0HpE7t6QBALr6QSv3pAvn4AqjvkekAM1cLyR/R6QLjSFYBMFXtAAiKWZgKne0D95vs6jfV7QKge7yfaAXxALvIvYJoFfEDI4drKzkF8QPmaRxLGjXxApuT0uCCTfEDO5bLrfJh8QFzbA8BZ4nxAjkDuCFbyfEAGjh/NBgJ9QKRxJIlTAn1ApGYF1ZcDfUC42sn7vgN9QL4QMzoABH1ApFJvEQUMfUAKROAvChR9QGQ/6CgRHH1A7m8m5hkkfUCoEPFNRTh9QO//lyHmxH1AukAhS6REfkAPkA65U1V+QBxHE1BgZX5Ae04ogUqrfkBatEmJt3F/QJautQXkdH9AlN1l2WGRf0Bv26mwHDeAQHgAbH7JOYBALmrnFnc8gECS0NwtqUKAQIgICqSuSoBApPSfHRNRgEDMdofMDVmAQHqV+tAnb4BAdWIqHV+MgEDmyRnHC4+AQLrFz3O4kYBAf3d2imWUgEBMF5q0Eq+AQOy5F8V+soBA03ARIVLBgECuzGeqUsmAQN6k2ctL0YBAYf6Q2knZgEDWzlbqROGAQCeLdXA//4BADhiXsUAHgUCT5aibPQ+BQCF/k4M0H4FACnDSpzMngUBYWDPgAC+BQB5X00iuMYFAh5XtOig/gUA0tmHhsmaBQExu1821aoFAeAUZSblugUCo7bjcwXSBQNzkYjpud4FAA62r/Rp6gUBMmx9wVY+BQIUFxOfeooFA+qECUYulgUAlET9/Sq+BQFwzLdEDyoFADDWtSLHMgUABlf1nXc+BQJ4oYG5n4oFAjvGwa9gYgkCECWM41iCCQAhW5zjUIoJA+h/0+kKJgkAk7sSdQpGCQAZFcXk7mYJA/YC3jQ6hgkC0cnrxOKGCQIoPRsh3q4JA+GOXeZzagkD0YFj1nt6CQAQ+KDZ5EYNAYKWYWXkZg0DY3WItciGDQC2/PmxwKYNAFjfVGbOFg0CG0YeZYAmEQAQvRwb/aIRAlPl2h8l3hECokA4veHqEQA7QbWknfYRA6XGbe9F/hECIvIMACJ6EQOJ3J4kLooRA1L4w0mnZhEAUpyS7aOGEQFAVwBti6YRAPoH+7TTxhECmIq5kbheFQDJdGH7nGoVAWBdyxZ9hhUDPfUhftmKFQB4C1LJMZoVANP/ThblmhUAWwectoGmFQLrGMn+7aoVANpOnrZdxhUB+K8CZlnmFQHBHfzhAroVAfmColEKyhUCeiVEi206GQCKv3ljcUIZAGrGzH9OkhkCYuDA51aaGQEfh58bWqIZAPPHw/deqhkA2Aiq02ayGQPLYN0kI44ZAw0iclA/rhkCmQWibkCmHQDZIkTCQMYdARHrmBcixh0AS4vdYx7mHQDY+lmzAwYdAKb0AwnXGh0BIyXMJeMqHQF1ierd6zodAMA5YJHfSh0CKQtI3dtaHQDz5Qzw6O4hA3MKx7ahSiEBUuhxdiM6IQLRZM2GM0ohA + NrgMGZxjYkCmvpxNHKRoQFf+/uF9UnBAQR3Og3yCc0BFvP4+7IJ3QHy/Rlkso3pA0xNLXsSTfUA= - + - eD8PRjnuFUdoBoxFmneiRavCfkVHfkZHehyDRgsMvUUZ0WtFwgqoRluJtkVeoZ5F4/UwRmHHc0Xwx59FCi1kRRUoykZaRppFFSpBR0mfZEaipvJFYu7FRb0qd0XaYlNFyJAbRmaVm0XfN9NF7kRfRtcAjkX8IoxGGcKKRTVkp0WrctVFkCrZRdmJQUfqNg1G71ThRSelaUVQXF1FpY+3RZKkqEUHEZ1Gpk5MRqIZXEWuVCVGMR4eRrW8xkVgzYFF67afRSC+jEUcfZpFHOt0RYAR/0Uyr9VFzfqiRpTrZUXIVZJF4e8xRrHVtkVtcGtFm6bcRbWggEbCuX5FXU7jR2dAjEYtlsVG2XdCRjRvk0WxSaNFVO+DRSLvL0bCKGNFMHQxSb61lkWeeppFjnSPRSAiMkgQ4oZFfUqTRp96EkaCSKRF2kabRSppuUXTsjdHcJKVRkM/VkULW+JFIAzGRTUC/UZxBo9HSCKaRlp0S0Y7fIVFM8iXRiChzUWdmnNG6pvbRekOO0cCRKNF59snR6vsdUZVl8pFNTjBRtItoEWlXhBGjOJ6RYNzV0Y3TPpF3dhQRULbikWg5yZHEA3HRklt6kVQknlHnY5pRusce0XQ3hFG0JoTRtQ180XoNmlKQ0T5SdwvHkksF+pHg1xSRoZYE0bNiZ1FGV1ARrTDVUf6nS1Gp32sRTxBrkWCzLhFm7o3Rvo2GkdpPcNG6jT4ReMMAkfrcMFFmg9NRpBdlEW4d2FFPVBDRynuKUcko0dGKEd9RfiyBUboVjtGOHCHSLcM7Ue/pYpHnXB5Rnixg0W7cXVGkaeNRTzKtUUC9AVHHPPqRee87UXbvJRFJ+3fRQNYF0eb0b9GaA60RU4ph0a6fCZGYpFoRbjlCkalKYJFLcKfRSxFFUZ9uYlGuilSRtON5EX1gp5FdhsgRnXxfkVl+QVGSCzBRwsDIUfzzMxGDaXDRVFO6EVTEpFFq9DMRf6Um0UpR/5Hi4xOR1VbBEeIXytGfmxsRfjoakU1gLpFQl+mRrcWYUaHmgxGD9eVRc2NK0YGrlJFmycNRzNreUYG0SpGqE2RRV9BdkUouYVFsrUGR0yV4EYoEO1FRZrERo/8YUaRlulFBxIHRkWFkkX67S5GPbqqRVgrJEZ6oxBGIl8JRykxPkfNgRpHt16bRiRk9EV77mBG4wi6Ra08HEaMYp9FYDkPRpXnyEVnhYpFRx/MRwLeikfeTONGng8xRvRcYkW3L35FHmaHRUmDt0UIHHJF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - QNSUqG7BckBelmYEQ9JyQBzD3IRQ4nJAGkBRW4/ickCrV5MyyfFyQF1FzSv6A3NAblMkdbwSc0CcBH9k+RNzQABAABsFFHNAOkrNx3kfc0B0lAOkOCFzQFPXrEDPJHNAviHpuLk/c0BIav4+eEFzQPcDT7N5RHNAKslPQptRc0DcvTX+olNzQLuUCCp4gHNArnNahVyCc0D85o0ETZJzQNAiuVz3lHNAFHOHv7igc0CBCa5AWqJzQAxPLBu2s3NAyApmyM/Cc0BTwnpz4tRzQPy47dg44XNADNG2n3gBdED8pcKwIF10QFCUplK4YHRAsiKyXghidEDkBUf4eWJ0QBR3G30icHRAvOHXs0BxdEBs0shjToF0QKxjV8oVkHRAoqJ0Zw+jdEAehCnub7J0QN5pQl7JzXRA2Z+p+YzzdEBc2c4dXQJ1QFgzYIKlAnVAFkO5Yp0idUAfuXlvJUN1QNoIxySNdHVAvgtyXq6BdUCGQqSVSKN1QO0aOavNwHVAaLWB7EcCdkBC5nQkkCR2QLhLL3dKK3ZAbXlXJB8xdkBQRKOYHUF2QAfq1q/HQnZA9JAXenpEdkAwU300zVR2QNKuJi/bZHZAAvK+SuuddkBSztfSkKt2QMyV0PkMtHZA7fTSWM/OdkDE1qQVARJ3QLAVryYNNXdAZL1DrJxBd0Akh0CdGkV3QLzmwW5JUXdAOOTHW5JRd0DxvGA3GTB4QMKzQiQRRHhAeZBzOXpFeEBFErG/ylF4QOg0jNSLdHhAoH1etsd4eEAAjwQG+Ht4QHpDdOoefnhAPFvcQJqEeEBGxMzLlpF4QDztaLuolHhAmKcEZaPieEAyUXA8/ud4QLqeXIYC9HhA0tUnk4z1eECW1YcCtjN5QIovY8e8O3lAW2dcYctUeUDnNqSrv7J5QBwk5VBaw3lABhKP80HUeUCJhkm5/AN6QPYMjaUrM3pAi17vqgw1ekCEaX/PLTd6QCHKJtExO3pAVsBnaBpFekCcIE8tI1x6QBJEZZuvYHpAtrvbYMyDekDECYRK1It6QOyZOpMOs3pARUMT4Ay2ekAGybY3Ebd6QAcg9vkSu3pAqda9nha/ekC4UWvkO+R6QDJSPaV8BHtAcjbcWEwVe0BCO4LLAqd7QAI6xdcEq3tAejfDvYz1e0DCUwYH2AF8QMq3zP/0AXxAQg7lhdIRfEDznEws0EF8QEAYh/DFjXxASDPoHR+TfECMZR4te5h8QKgXN4TCnXxATl5d+VjifEAehUq7VvJ8QNmA8LVRAn1Aw0vQL7YDfUBufeMgAAR9QMc3TKQ6BH1AroMV9QQMfUDcjyAEOwx9QAT+3acKFH1ATlQMNxEcfUCU4UjEFSR9QER9Jy1HOH1AypdmS6I9fUDs+3D890J9QIZ1+33kxH1ARr1OpKNEfkDGLUFlU1V+QLuGIDdhZX5A36OZp0irfkBXoPmbtHF/QCw0jLjjdH9AEAtr7GKRf0AcvfFdHDeAQP7MZoHIOYBAmxOPeXU8gEA+/00OIz+AQLZcwO6oQoBAPqvaIbBKgED8lwAKFFGAQN5Jcs0NWYBA6lFH3V6MgEBuMoABDI+AQKKhwqy4kYBA8nZgc2eUgEBeebWmE6+AQOWIv43ZsYBAZ8dIR36ygEBGwzAUUsGAQD4MhZwLw4BA8jv68VLJgEB4dL0ETNGAQPRnmSJJ2YBAMPjSe0ThgEDIERYnP/+AQPbYkclBB4FAatZ7zDwPgUD4S+I6NB+BQJtJ4s80J4FAvz8oBwEvgUA3RnPdrTGBQNKUBxgpP4FA7v+vTLJmgUDSHufmtWqBQGKl5Su4boFArxfyHsF0gUAVog3ZbXeBQEhK4U0aeoFA1MSlGVWPgUAgSlOE5qGBQC4ZrS7fooFAoJPUGEqvgUCctgx8BMqBQJnxD9ewzIFAIgEkQl7PgUBA7dsI2BiCQN8iBZrUIoJA4vzc40KJgkBW1XChQ5GCQAh3AJGpkoJAeewIPDyZgkDGi+a/DaGCQHQ9iQE6oYJAehA/sPKlgkAMMr+KM6mCQNiaXtF3q4JA9K0KT5zagkCOAFQHeRGDQOixWRR6GYNAz1Ros3Ihg0A6aXC7cCmDQOSyf55pMYNAivIaGP9ohEDs7+TtyXeEQPqJF6l3eoRA/5QW/CZ9hEAwOvwICJ6EQOkW5QYMooRAes+y1GnZhEA2hy0nauGEQBYP/c5h6YRAdUdJATbxhECIJxN9YPGEQNzN1zqgYYVASNGQF7ZihUAqmwnCS2aFQCBxL0O5ZoVA8fDEr59phUCX950WvGqFQLJ8bCaYcYVAGFxbTJl5hUBtlKQ6Qa6FQJow06REsoVAgmtYhdhMhkDpL73U106GQCrgkMfaUIZAKkaKW9tUhkBDftn906SGQMG3/m7VpoZAGrRKKNaohkCwh2n116qGQCBCuo/ZrIZA6CfZqwfjhkDCz0mykCmHQJgRKsaRMYdAxg1rDos5h0DQklJsx7GHQPaIbvTIuYdA3ZAOe7/Bh0Cg/1SKdcaHQLi4Fy14yodAXKIAbXvOh0B2VcOmdNKHQJN2hhp61odA1HwND6VOiECMfb1UqFKIQOl6BcaJzohAWXJP1ovSiEA= + KBZXds7jZUAnt2DdIQNrQNvlv3T/InRAHOKhPIISdkCiQFSuF1R6QHfu64dFY3xAv5EQmW/kfUAKcwrPgyqBQDsm5O1OuoFACqL4+C+zhEA7VdIX+0KFQArR5iLcO4hAO4TAQafLiEBmrkJE8wOLQAoA1UyIxItA9dagOR/MjEA3Bnry6eyOQFkEa1ar5I9AvWS5TLGakUDemJq5mz6SQNTnix/iLpNA - + - vdoGRsMeE0ed1IpFKdzLRewEdEUsY0FHsiaARm9DokXRO6NFvu5nRdNXrEYZG7dFqpRrRSPUjUXLyxNGKN1cRX8VyUVMKM9GUlPIReSMKkfG6WVGONPRRXjO7kUgoU5FTiz4RdlXeUXsgbpF77h4RjcGv0YOK5VFQw8GRh5SyEXBeJFFZbghRy/buUXhycVFIE9fRYBFakW3D6JFcBLRRZwtkEU6NXVGP+JRRmnjuUVUSrhGQ2ymRanLmEUuJ4FFwteoRcfiBEY+Bw9GD8LGRknjnEXnnmdFfXmkRd0L50ZM1aRFdKrQRdYmgEVZIMhFxDiNRR3ik0a8Ne5H8gWQRpmztkZFwahFa3ZVRuze2kUYs1tFsEM4Rvahq0Wx+0JJNxmERWltgkW7lG5FpZ5FSKL7g0XFlXxGCX5DRpG2hkXqc7JFz2seRryeUUeZmH9GTkmoRWZUXUU2GmFFZ1XRRSrRjkX1T+hG1uDPR1qCxUZ6MDlGtfvhRrxSWEV+e/NFpz6URtqAtEXO9ShHihSRRWoTEkeTKHdGNczlRc6FVEYdqIFFsEH7RaCzo0XwmqVFMr1MRlLk7EX4ZoNFE1N+RUlVbkWT4ChHoGPRRtggx0UTX3tFDxGfR7jDk0auuG9GZu8IRqtqY0opPFtGANvvSXjNvUWGbBJJrf/WR+mcIUZM/B1G6SloRcgzVUVZrpBFiVFkRrpZrUZWgo9FA9WiRcgesEXe9NVFOFMPRlZxDkfsZbVGyN/zRb7jZEWX1vFGEse1Rb7Do0ZmDbZFmOpgRyuDUkevAEZGVuKhRc5UuUXhinhFAZOCRvM4sUhAh1xF6i8hSBf/uEe6Io1G15biRWlXX0ZjRltFKrqtRYd1Bkf52OdFjAjKRQsvmkXgtRRGydYtR+PuvEapM6lFnXloRuZrQkYro4tF7Zv0ReCnfEWCfqtFXl1NRj+Di0Y+ZFxGMW+3RceAKUaYWhtGDo9CSHnowUfXVIlFnDBZR1HDt0U8RURG2gGgRZTTmkWMx3hFOPHMRX3XaUicfONHgopvR26XgEY+zr5Ff7vJRbc9e0bzIXVGbha9RRzyqUUa/35FI3NRR4wixEZ+60pGwFiCRRM5gUVXsENHmGHTRiQapUVExbxGBDjJRlxtFkYKZUBGFsGmRRHJGkYKTPpFnYWbRTXC6kXlK8BFw2JfRcsPr0b1IfhGJfejRm3kYkYx5KpFuX0VRoecRkZrDddFxPaLRd4WN0YS951FMS+YRYb4pEcp85dHKgK/RniPykW2Cm5FLf+URdgFj0U7lsRFZcKbRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - CJ9Uu23BckDZUpSXQtJyQEh4399R4nJAPgHjl4/ickBB0GoU+gNzQIYxEKW8EnNAa9169/kTc0CSE3mpeR9zQPoS0BQ4IXNAgqB6lc8kc0AUZw5auT9zQEAUaP13QXNA/hyXZHpEc0BoiusZm1FzQHLBy8CiU3NAOg7FH3iAc0CE/caNXYJzQATMmqFMknNAj+7UCfeUc0CJeJHDt6BzQOoLx6hZonNAKi9yfs/Cc0BGw3Rl19FzQCwe8Izi1HNAgfPtizfhc0A2oDBXeAF0QF36qo26AnRA5u0bzksTdEA4muhGIV10QC5IiQ+4YHRAFET/HghidEDJwVxWemJ0QJb/e+YhcHRAetODxkBxdEAUb39oOHN0QGxTTf9NgXRA4Yh4ZRSQdECQrFzB7p90QCF+Cq9vsnRANNDZVozzdED1xlcoXAJ1QDqrXN2kAnVA+jjFp5widUBCMQNTJUN1QLqTkT+NdHVA/MbRB62BdUDumR3ipoN1QNCwfv9Io3VA/ABjts3AdUAuVVkiRwJ2QLbHiumHInZAEEH/UZAkdkAwPEp6Sit2QAqyCMseMXZAzGeF9BxBdkBm2kHKyEJ2QGIugSt5RHZAPom6F81UdkCyPski6512QNNKs09Eo3ZATH9x+gu0dkAySAbhzs52QCxOSeoW63ZAl9QKCgESd0CylZrrDiJ3QD2/Sq4MNXdACMiBWJxBd0A7NOKlGkV3QADzl6JKUXdAhpYYGpJRd0Ds7MbjJm93QGjqgKwYMHhAjg5u/hBEeEDIcAaseUV4QGRI797JUXhAKgHdPvlgeECUAVJei3R4QGYDV1jFeHhA/vex3fd7eEC+504lpYF4QCYg/dSZhHhAlgwqCpeReEAnzeDDp5R4QDn5YJG11HhAWAnjfKHieECkD89r/ed4QN8G6t8C9HhA/G38iYz1eEDcW8QVtjN5QFKb/829O3lA3qz9t8NDeUDRuahFzFR5QM6tAiFaw3lAV+qlAEPUeUDQOvJH+wN6QFwuYO4qM3pAC/ZWXAw1ekBM/yAOLjd6QGCcSrAxO3pAjFUnvhlFekCOOv4QI1x6QFjTvf2vYHpASImV9cuDekDIUcS30ot6QMJ/pTMOs3pAfhdyaw22ekC7araQEbd6QBPy27oSu3pAWvaPuhC/ekDwCMDYPOR6QBas5kV7BHtAGLm6U0wVe0CGNTT3Aad7QFixL6oIr3tA1s+Zm4z1e0DpelMX2gF8QJxQl0+aBXxAi95uC9QRfECYbTJXxY18QL5oF8Mfk3xAWlSoIHmYfEAo73NGWeJ8QFfnSURW8nxAJj5kjlICfUA68VGqeQN9QKgCZo+YA31AIjvghssDfUDSKT0wAAR9QCfQHfgxBH1Ai8q6N0oEfUA+drfSeAR9QPuKy4XOC31AW/858QQMfUDCoQJnChR9QNy35qs0FH1AVozTvhAcfUDW5FuNFyR9QErt2bBGOH1AmGa5i589fUBrVJql5MR9QE0cunmjRH5Af99f0VJVfkAaPr0foIN+QNgW/ee2cX9AkAmPHWGRf0AwW5ecXaF/QI5kFHxIKoBA6PnjKRw3gEAYtDzryDmAQPIRaFx1PIBAgHUbuKhCgED+EF6zr0qAQIr6+9oSUYBAhEifZw5ZgEBuo4hgT2qAQFbWOxQnb4BAckCUxF6MgEA8/F0aDI+AQPHBL163kYBASNIlQGOUgEDW8G+ZHpeAQOI218VgmoBAxIuyhhKvgEAoLoF3frKAQPgZp2+FuoBAFtEzDFLBgEC1hO0dC8OAQK5F/OFSyYBANAFovEvRgEAgjOnqSdmAQJwQXmZE4YBAwN/lCj//gEAaan1BPweBQOvCl849D4FA6GFoJjQfgUBYb2UkNCeBQIyPnKQAL4FAmXep4awxgUDG6paQSzKBQOo2jfQoP4FAlKUGirJmgUBAEZGctWqBQAN9lTG5boFAko9E6cF0gUAMT1pSb3eBQJRRz/UaeoFANHx3D1WPgUAasMi43aKBQAzsRPtJr4FAeCKnNgTKgUCQYaU0sMyBQGlylM5ez4FAqwnDDWjigUBDRl371xiCQO/mP03WIIJAs4ypjNQigkA6h6Hz0SiCQDYloOZhM4JA5UQ2z9NagkDklv7YQomCQNj0uwZEkYJAcGUiDaqSgkDhwMPQPJmCQHKSJD8PoYJAHCUIMzuhgkBEi0dC86WCQIjGoqE0qYJA27zWJ5vagkDVpjEWeRGDQCivQo15GYNAtQQh/HIhg0BxyEDBiSGDQJJ5MbpxKYNAN/CcZGoxg0CaPm0O/2iEQGBX6T/Jd4RAQtmJLXl6hEAIA5CwJn2EQPrQyiYcm4RA1ONm7AaehEDW8wa1admEQLgoyKNp4YRAUNvpDGPphEBYA5UvNfGEQKCh0rZh8YRARpTqNgwZhUAEx8Eg5xqFQKbc2fmfYYVAfIxBHLZihUD89omhS2aFQFjH9C25ZoVAd6TrPqBphUDeJkJLu2qFQLsRZeKXcYVAP0EsyZh5hUAlwH9MQK6FQErbWHNEsoVAFt67eddMhkCPSibQ2U6GQKXFch/bUIZAkE9kPdSkhkB6pqQG1aaGQNpF9+DVqIZAs1xDotiqhkCMWi092qyGQDSJTNLQxIZAGKT4hAjjhkAY7CqKkCmHQDVDWriQMYdArm6i64k5h0By3evlxrGHQKeH6EHIuYdA3vfVRsHBh0C4eV+fdcaHQGqdaG54yodAVmxKBnnOh0D4dqZVd9KHQDvsnVQ5O4hASuSRZqROiECbA+VKqVKIQMIfhUeIzohAou6qiozSiEA= + 4jyZjTbDXEAoFld2zuNlQIGrr+J9g29A3OW/dP8icUCvk1dOLfJ2QNxDnMhXNHhAr/EzooUDfkDcoXgcsEV/QNcnCPtuioJA5S+8PA87g0A7VdIX+6KFQCnztOOHg4dAuBsT2bNLiUA= - + - g00ZRke+FkcsAmZFMUKeRX2u8kYQ201GPLCgRUmoV0VAgZ9G6DmQRdMxWUWhyVVFBh3tRbJ/hUVhsqpFOzTHRgUZsUUZtURHT8k/RpKP4UU9fdJFPJLQRQubjkWdg6NFLBjURS6AZ0bfQlFFtpKHRYR5s0ZfP7tFB+ncRawTP0ZsZrJFwicqRyk/b0WVqNpFqSGnRRouhUXJLoVFF9vMRcaI2UUr9FJG2u9eRjbkWkUrHS1GjrmuRcEGhEXugLZFTc1eRWKbm0V1EJdFJUHuRTRE10W+kOBGFfShRa6kl0XFZYBF7YdDRvGFpEWKqqdFjz1wRXtkpUUozX1FQMSERiOcX0VuoutHLrOlRl3NxEbCxlxF4BFwRr81jkWgEblFNDOCRQXaAkaVN5VF92lSRZSYNUnmLrhFV9TzRe0rc0UmvDdIKW54RUeViUaHNG9FIpwnRp67tEVf331FFRC7RW66GEeE6nlG63VaRarce0VdsIBFL5qwRTyAakU/mbVGfUCoR+R1qkahpbNFaFygRkC2TkVcFgBG5UOLRnJLpEXr40BHZoW9RWaLGUe3W3BGi3WrRcwx5EW/cYNFdIzsRVoklkWgDX9FBK1YRhf6GUaVhmJFcMlhRTF8EEfR4u5GXd/NRaQggkcuyDNGZMQiRgTH40VCEOxFbb9DRsHAW0oLNZ5GUVk5Rnky+0XFiNNFVtDlSV4/DkmBR4BF1C/bR+uUNUb+Q9hF3fMiRmLtg0WXvC9Ghtc7Rvq6XUVBDcpFxikuRivYVUXmgXtFfMvZRp7BukajwVpG0hrkRsc6wUXr3J1G1HnfRQolkkWSMIlFtY1rR4nnO0dt6Y1G22WoRYTwWEV2hXdF6LbZRWZn0kYTn95FECifSPzflUVBuQ1IwuGYR+aGjkY0FeRFNX5TRlOqvEUoj+tFP8wJRyOc0UVdXcFFrN6LRem6fEXabgVGzSkhRwyIuUYZIcBFFH2QRqdWOUZQvMNF3iEYRhSrpEWhykFG6SOgRhn3jEYpDpdFnnd7RRUrR0Z1mYZFH6zdRdP6cUWvOmNF0CW6RfIcbUjyOgVIlMt8RWSEkUd2UapFRQ+bRokmbUUHGL9FgtutRR1hb0hWJPFHRVWHR6EsgkWI76BGv6DERfUM40UVholGthpVRr741UVzw4hFB6yqRRK2ekfRnOBGnOWTRgA8lkUmneRFOshqRQk9gkW/TVlHFuf5RqStmEU91qtGzLzJRlED4EWvFl5GJKu2RRvxFkZ1hztGn9fDRUmk+EUdm9xFLgM9RvDMmkYp5XZGUVAERoohRkVWSGNFRkK3Rc9pW0ahBsFF75SHRfftMkaLJdJFmryARY5IrEf0roRHfJ/NRqRGDEZmSF5FRM+rRUcfZkWoCbxF96m5RQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - iLLWfG/BckC4fzOsO8NyQP6VvgND0nJAbTS5VlDickDSx7XPkOJyQMgChQjJ8XJAGms/gNECc0BcYJ9w+gNzQD1pUVG8EnNAacAa5vcTc0CK3TbHeR9zQMTAl8Q4IXNAIPuH888kc0DQoCZ8uT9zQFjLnxx5QXNAdmVzanpEc0Cei4/Do1NzQFigRsf6YnNAWflGWniAc0C3XaWNXYJzQIChzy1NknNAjKUicfeUc0CMBKybuKBzQBXXrAxaonNA6omrarazc0DiOFVC0MJzQKQnJ9fX0XNAEQPu3eLUc0A1hyNGOeFzQMY7Q9l4AXRA/PnOLrsCdEAYBbEsTRN0QGw7IlQhXXRAJssOiQhidEB0FfvneWJ0QPTWJPshcHRAoptX8EBxdEC2DYYQO3N0QEijbENPgXRASqw76RWQdEDw2uvfeqJ0QN5H4wr9snRAiY+wYMrNdEBj1CjJi/N0QM63IIJdAnVAUzDFZKUCdUDmtLignSJ1QGCcr2GNdHVAzDwFc66BdUDd4rrhpoN1QIIJqIhJo3VA3r4mY0kCdkADpcMEiSJ2QKYJ1SOQJHZARNwdD0srdkAbfmt1HzF2QF6FDM0dQXZA3bD29chCdkANJGmfeUR2QPAEK1fNVHZA36C47tlkdkCn4uNV0X92QL7VZcXqnXZAotl4N0WjdkDYZUkBDbR2QLaBtubOznZAtCRJBQESd0ALpstFDyJ3QKA10jUNNXdAhfsu/JxBd0B0FDXrGkV3QFuRrLJJUXdAWlsIdJFRd0A0jqxrJ293QDzn2PdtInhAdAXwghgweEDos8RqEUR4QL46rSh6RXhAUE+sispReECotzOvt2F4QH8RLe6LdHhAiL6EGMd4eEBpVmhW9nt4QN2+SUqahHhAVPqPhpeReEDwBFXBqJR4QHp0iDG41HhAF2hRdqLieECnTfA5++d4QIjbrd4B9HhA8RqnMo31eEBzLM6CtjN5QECbahK+O3lA/HVjRc1UeUBQuQegwLJ5QNPBwaZbw3lAamwQJELUeUCC+u7v/AN6QJfjEcIrM3pA/pcL5ww1ekCbV4ppLjd6QAChT0QyO3pAilaBdzI/ekBuPnboGkV6QMLOdP4iXHpA2tB1UbBgekApM3R3zIN6QJ/9UnnTi3pAwFxZEA+zekDsAEzJDrZ6QGrLkkQSt3pAbhZjcha7ekD+kIywFL96QCWXd4URw3pAmKt+HDvkekC9KKlYfAR7QCoA7HRMFXtA8YxkugGne0CImQTtBKt7QJUm1QWN9XtA/HsoRtoBfECTr88AmwV8QJyBBjnQEXxAwmQVFNBBfEBuJydgxY18QO0xdtIek3xAujBzci6XfEA5OyCKe5h8QLHrFVNZ4nxAUtQhgFbyfECtIksyUQJ9QFsieOaYA31AL1YNubYDfUAry5t+AAR9QJAvj8JTBn1AXPNSagUMfUBr0128ChR9QMcLiS4RHH1AkQgPQhMkfUAT2AJQRzh9QNrp4emlPX1AEj4f1OTEfUDKIRqapER+QMi9aexTVX5ACfdGHot9fkAYPInXoYN+QOLqqjEB335AzoQxZbdxf0CuWkQ943R/QBox0WRikX9ARJx8Al+hf0BgQY1tSCqAQIJFRJkcN4BAG7Mk38g5gEAwOj7CdTyAQNDHBN+oQoBAhKi45K9KgEDCaSks51CAQNYTILASUYBAVG+xOyFRgEAAJjHsDVmAQJI7QfFejIBApixIaQyPgECjf9iuuJGAQN1K2lBjlIBAXORQ4hKvgEAGwFB/frKAQH514v2EuoBAfTwLQja+gECxX1JEUsGAQEZm9MVSyYBAqpU0GkzRgEBEwhboSdmAQFzf5HhD4YBA3NXCXT//gEDUzBA3PweBQOHmTrU9D4FAk7+qHTQfgUBcUfK/NSeBQPbKWJMAL4FAkMfMjy0vgUBixlkGrTGBQKimH1wpP4FAakswqLJmgUA4ysSCtWqBQB/4TTS4boFATJiHh8F0gUC4PZGibneBQKIrZvgbeoFAR5b0nVWPgUB0v1fP6aGBQJEuLA7fooFAI585x0mvgUDeA8NsBMqBQFDQlQayzIFA7h5fvl7PgUBSJyVaZeKBQNIREp/YGIJA0BnZmNYggkDksNX+1CKCQMVUy1jSKIJAEbnlJahsgkBQOTL9QomCQALqzUFDkYJAEmTIAKuSgkBEcygcPJmCQLoZzX4OoYJAJBkxyDqhgkAkzmL976WCQBbKAv6b2oJA1uV9fJ7egkDg2+wubvSCQMi6s2F5EYNAbhfAinkZg0Bid70yciGDQBaiRB9xKYNAEwp+IGoxg0CKP+7B/2iEQDaFBSrKd4RArYXOhGF6hEBa5Ck5eXqEQHoCoXokfYRAQFXrcgeehEBYCsQPatmEQCpg3ihq4YRA1l4en2LphEBUVNZVNvGEQO6q1HJj8YRAED/xsC8BhUAOvgyLoGGFQP5RAjO2YoVAarFql0xmhUCa9GCBuWaFQLGW2RmgaYVABO4f7k9qhUDGv1+dvGqFQGIhOMCYcYVATsT+sZp5hUBSYyTMQK6FQKDgSAREsoVAx05WNEq2hUB7ZH4Y06SGQEvatFTUpoZAh/RWjdWohkAqxWn1kCmHQICp7nSRMYdAcNlmDog5h0CYFC6ixrGHQOKr2hzIuYdAdVXsUsDBh0BwPUPpdcaHQFQAL614yodAkEqEoHvOh0BPQwIHeNKHQC3VVfB41odAWpxBGonOiEBAQTjSitKIQA== + KBZXds7jZUA= - + - FdkYRskhaEXRBRFHRmuPRYLN6EUAgF1FdH5iRdFaGkdUAztGpoKmRZLackXxFdNGsr5dRYstWUWZooxFrVIsRotznUUiLD5FJc/XRjvly0UyDj9H8EZyRh160UVs8+BFYVyORZXhB0ZKfYFFPXXiRR1LtkXYj4RG8yJTRUCMj0VI5LtGUmkTRpPs00XMMuVFghpER0jZR0WN5stFl5W2RYK+SUW+GW5F4vVSRdiH+UWVh4lF5VcbRsW2hEaxdF9GA2usRYcQpUVAJupF+XSeRSW+lUXYIA9GCRHCRW6p00ZygNhF/hKARTDzkEXoVWxGd9tLRadrg0X7wyBGvtWfRc9urEUIpYJF3vGMRr2DVEU+1PdH+Cm6RqtdzkZi/IZFbF5QRhqbgkXOiYRFw7C0RbdZSkWStD9G08+0RXpSZkUdfktJXVEHRtZrhEWRBVlIqmaFRa0Ijkat0ZBFEp2+RSy6h0UAD1VFrevcRTDEDUcCe2tGdKCpRceJgkU09V9FtmfeRSx9dUXI5blGGEfRRx+6d0avRAFGluWARWAOzUaWF11FhMwDRhggjEbQRCdGbuQ2R0dP0kXK1QhHMb55Ri9KrEU1fUVFCT5dRUjzUkXkXwpGnxGhRS8fpkVqa4BGkg5DRi2bikW+uG9FSSleRQX+NkeBiMlGNDGFRdAf+kUcp6JHBY+TRh//akYtNy5GhLwGRt1hSUoqKCdFbAjcSYk7Akmoh79HT9j4RZhWBkbdL7VFpbOIRTCtEEY/8nFFzFRuRTCAPkWMP5lFZD+gRUNGkUWMsRBGGqFURcMrpUWWpPFGuzexRjXUKUZ549FGQ7SUReI9e0XbJ2dGgt2gRdzX3kW7J4RHlsI4R8i2pUZiFOBFj6ASRgSz/kZFGOVFKUZSRTtDiUg8oPFHb/h+R1MaRUaJvZZFpwBPRvvvuEX5BphFUj8TR1eTD0ZSswhGgJZsReKdk0XdSv1F4X0HRyj1xkZUx7FFuX6BRnMDLUaY+MdFHtkMRslZNUU1zbJF36tfRk9WjEb2BjNG5graRbvoW0V1Kv5F6dFcRTg01EU6wYlFMXN4RbTUGUjvinJHc11zRRrEIkcl36ZF2tRARlV6W0UBD49FxCJzRZ5kdEVdaBdI8EKIR+GTEkfuVENGeJh5RTgWs0Xii1hGRiwyRZ8VmUa4o+RFSaekRayCOEfFJ6tG0Xs7RuvykEVkuHxFk5JIRfBeH0ftZwdHZ4S/RfAGhkZWp45Gfw6SRWim5UVCex5GY/SmRfTLOEb+aCRG8PFLRb7n6kUOkeJFU+4NRnI3L0ZuZutF1RibRa/SK0ahH9pFDQtuRdB0pkfzNYlHCY7eRgR4JEYGeKZFkd4aRnvLlkU= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - SBVedG7BckCionQxO8NyQG35kjxD0nJAWJk32FDickBG5LUwkeJyQI6hUD3J8XJAGIAmkNACc0AUQ9hR+gNzQEJFTqy8EnNArA6VIgYUc0AHRlWSOCFzQILxKb7PJHNAJ6/aBbg/c0BaGG0HeEFzQFEMrFh6RHNAWElKd5pRc0CeWVkBpFNzQGKNkC94gHNAYIi8112Cc0DMKqoZTZJzQJpTdSj3lHNALBdeF7mgc0BaeokLWqJzQHU/NLe2s3NAOjJvZM/Cc0CKHFp22dFzQB15xpD50XNAhXamdOLUc0CdTGswOOFzQNTBvmp5AXRAtdiY9boCdEAK4HVaTRN0QAQO6m0hXXRAVHagRblgdED6AKshCGJ0QOMLvLh6YnRAeirFJ8ZndEAAYXL3I3B0QIRawx9BcXRATK96rTpzdECAp/fOToF0QMkxrgEVkHRAjh1AzHCydECSanQ4+7J0QP+JpbnKzXRAkjYEhYzzdEDfzV/AXAJ1QOc/SQCmAnVAemXzDSMUdUA6bkPCnSJ1QNxQjQDNNXVAcEMYjI10dUAEtasRroF1QHAArsOmg3VAdNz51UijdUDsHnyzo6h1QBLkIKxIAnZARrR3SYgidkA7VI4NkCR2QE25gGNLK3ZACHjdFB8xdkCk96jGHUF2QOIOIyTIQnZATGVDJ3lEdkDv5QbBEFF2QJLQRqfNVHZArGCHr9F/dkDWpDA66512QPMVJX9Ho3ZAzBv8IAy0dkDefySuARJ3QHhWTU4OIndAbBuW3Aw1d0D4bfyUnEF3QHJ9mB8bRXdAjlSzh0pRd0CwXoeBklF3QJIttT8nb3dAdci1imwieEBfWMouGDB4QG0Y4SMQRHhA4+GranpFeEDz9IYwy1F4QFjja6uHVXhApFOzrot0eECM60nhxnh4QGRGp6r2e3hAeHH3G6SBeEAOVFcSmoR4QNALIUqXkXhAuiTVxqeUeEBdwJWzttR4QB4KYF2i4nhAkoaHD/zneEBATqpxjPV4QNRN1m22M3lAqFBk0r07eUBGgcucy1R5QFh6RaF/0nlA8N5jfarTeUBeQf+jQtR5QBrE3//8A3pAaH1yAyszekB/kNW9DDV6QLBMBKkuN3pAvv+RsjM7ekAqngeUGkV6QMJpZnywYHpAlLx0vcuDekCQXm9+04t6QNlnBsUOs3pAfAaRBgy2ekDCQmUnErd6QOo74vIVu3pA7DGMjBa/ekDKR0ajewR7QPaR3DhNFXtAgF0l5wCne0Dirn2mB6t7QIujlbmM9XtAzt9H1dgBfEC/uEBmmAV8QDz+m+vREXxANuVpTsaNfED5MrB0IJN8QNwfSCMpl3xAp7DmPmOYfECDSJ/Zfph8QEj9QkfSnXxAqN5IkVnifEDg+C9kVvJ8QIur/KJSAn1A60nI708DfUA3++WetQN9QFDRrozNA31AxN5HkQAEfUCKpsFMQwR9QKllqB+mBH1AhcXE5boLfUCBUuv6zAt9QAgFOHsFDH1AraYZJo0TfUBiSn8MCxR9QDnq/jYRHH1AA+IcrxYkfUB5XYzjRTh9QCgOkl6hPX1AErUfPOXEfUAQbTO2okR+QAAjrO9UVX5AmK11FeSCfkBwPENloYN+QHrh1aRLq35AclFS1f/efkCrXco0tnF/QNnSRc/ldH9A4vR0F2KRf0AjcbQ3SCqAQNnxZgMdN4BAGvrZSMk5gECXoEY9djyAQLRhKD2pQoBAw/l61q9KgECuRXhCFFGAQMgi0S4OWYBAwn6v4V6MgEAYzy8jDI+AQDz1sle3kYBAS8qZsGKUgEC+2eVpHpeAQB4kjO0Tr4BA1SxquH6ygEA7k1S4hbqAQIJPCVNSwYBAmXLhl1PJgEA2JwSFTNGAQFJa8mBK2YBAI2HizEPhgECG0BK/P/+AQHdrqlxAB4FAngtlfIAKgUBaALUGPw+BQJj64Kg0H4FA2GCdbjUngUArtBDsAS+BQNLxysKtMYFAlm3m+Sg/gUA79vHgsmaBQOG8hDO1aoFAHDtx+LdugUBWhQX/wXSBQP8axYpud4FAA31JWxt6gUAEPIr8VY+BQAY7OEHeooFANMOGH0qvgUBomtMiS7eBQAGQhLYEyoFA/Miez7HMgUC4/Yz/Xc+BQGZyG6lo4oFAPsjkQdgYgkAAD3F+1iCCQHRtVyXVIoJAtsFQRWEzgkD2lymwa2iCQM1J/y1DiYJALeO1cESRgkBOBe9EPZmCQHqSqPsOoYJARp6FvzuhgkAYRf+m8qWCQIEMSpg0qYJA6nfQs5zagkDzuYz5nt6CQFItSols8oJAnAPeVm70gkCoTF1WeRGDQJ1+ln96GYNA5rp8t3Mhg0CzENjqcimDQPglInRqMYNAImSDcZTKg0AgXgf1w1qEQH9V8v3+aIRADFHxi8l3hECCFvJwYXqEQCLqcj55eoRAkoY5rSZ9hEDgGeRhB56EQAbWfiRq2YRA6ocp42nhhEDsfSUtY+mEQKz6jxo28YRAv4EPYmLxhEBdedtboGGFQLsWhFm2YoVAmoDtdktmhUCwqmV+uWaFQJZl5fGgaYVAoU4Ymk9qhUCgKrGPu2qFQIqfN9mYcYVAs665wJp5hUCk6xTOkIGFQLI0BnFAroVAzYL+20OyhUBy06RKPcmFQE/vlrrVpoZAB5pb2NSohkA4tEM2kSmHQLILLr+QMYdAuFEvJos5h0B0o48hx7GHQEZzxMbGuYdAagdx0MHBh0CUwefPdcaHQOpaMQp5yodAPJKvKHvOh0BV9A56e9KHQAY2goelTohAB9rCBYjOiECaUuZfjdKIQA== + KBZXds7jZUD60UzrnGVsQNS+X4D+xG5A/caCySZEdUDF63mLQrN1QIxGDsVa5HtA/SRfHX9VfEB2cS+99sKBQAB2Z1ql8oFAo3fUYljrhEBieTZE+AqGQAelnn/kA4hAj3/b6VkziUA0q0MlRiyLQPOspQbmS4xAlq4SD5lEj0Ags0qsR3SPQAxJZW0/hpFAqIB5g4iikUBal96Rzi6TQIxgXIKVSpNAcRqxZP/ClEAMeFOX6w6VQIYv8mUl35VAjI9KrEHTlkA= - + - AvLbRcAYR0U/lQhHf3SURVashEWO20RFaWWARdNY8UbytidG5UChRb5noEZlgjxFE9orRUO8TkW9vv5FR3yDRZKBhkVFWK1GALp9RfysOkeEqWFGyn3pRbxCwkUDP1BFmfrjRah+QEV5XHJFJSmYRfYEskWPq05GAdY2RaPMJkXlXelGAaCORXav60UaPfxFv75hRfREj0WuoCpHbp5FRdnbv0WiRptFjfV8RaqfQ0X9x41FZdSqRdFvpUXH5bpFX3c6RSysUEaPJzhFTTcTRvBMlkUi325Fn262RQ8udUUPj9RFMUlqRXQv9EWmmGJFunbvRhRoxkUIRXNFIHB0RRQrN0UDfyZGbg6JRbQHuUWQ6V1FOxqVRQz3W0ZNAmJFX+/RRxdOtkaOwLNGfMuxRaJycUbfTWZFKxc4RaaehEVM93VFhFY/RuS3gkWfUjNFNEYuSVq0GEY9mIhFfqBCRW70LEgZa4dF3xyVRsCASkXCiBVGH+F2RTFVqUXgyPdGxlVsRpyXb0X/Q5dFWp0vRUQ14EXKGC5F9IzFRtiCmUduH7RGAtmbRTqfhUYepoNFEQJ9RoZmuUVOSlpHkDiURYDKJEfHKntGWFbMRfHSc0W10ABG11/FRRm3P0XoTTxGS3PLRUT5SEVNZUBFuiIeR4B+wEY6/z9FBfKkRZJcxkVuuTJFl16BR68YQEYZAQlGAGkwRQfYHUbyPBJGDeoySpQcvUVJTJ9F5qWQRed4e0WmfsJJvuUyRUhg6UjLIbNH89QeRuPUF0aGgwdGPW+QRQx4gEVYVGNFNityRV9CcEUEP25F0Hp2RfLVvEU/sKxFjAogRiyMq0VzArRGmamBRg367UUKPLVGpJNaRSFVlkZ1HdhF/qVdR5mFK0d4koZGHXPaRaNzGkW8ZfNF727cRuMMfEWjK7JI31wmSGLmvEdEYY5GkBXjRab/WkY333FFSc4qRcZUs0VK2wdHWsXBRet54EUDa69F0SzuRXnG/EZERlVGPkG2RWHwGEbShEtGBkSCRTeN30X4LaFFXPgzRiuwWEUu8L9GvlyVRlsfHka8kDhFDMw/Rv7wZkVs58dFMO48RfVtTkX3foVIsA4NSH5emkcDZrFFxuCoRvqYhkXYq91FynIiRQxedkWe+FhF0DVrRYQmlkg51ixIvFK8R2qq30aLVwVGTF9RRV7VLUVDI8FFpbwYRs3GPUUO/F5GYs/5RdlMR0WuqodHtRLhRl4CiUaSTFhFFd3oRcTZcEdrGuJGaZG5RaoflkbfePhG0tRURYuy30Vh/o5GTra7RRiWM0VbeSFGzkrZRZ1KUkWh/k5FfM8pRRupaEaZcvBF0bhyRYkvN0b0e/1FnBJjRR7rh0equiRHJgKPRg//2EXx7oRFTxsZRnu10UU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - dJ7kdm7BckDvMdwqD9JyQLXxnIRD0nJAtAVwYlDickDIzkbRjuJyQIkWsSbJ8XJA9EEwvfoDc0DOnaQvvRJzQFwknMf4E3NANxDpujghc0ByXYBvzyRzQMbbTwV5QXNAKaGvU3lEc0AcFSDHm1FzQKD1TzWjU3NAeXRHVUt1c0CtIn7JeIBzQL5TqRBegnNAIlu3cU2Sc0BkG02p95RzQP/KFD65oHNA+L7HBFuic0BhsZ8/BaVzQKpSMR23s3NAMHEThc/Cc0DKbYXa2NFzQLxzWR350XNAYvahkuTUc0ClWcKyOeFzQEbnM914AXRAwKpogU0TdEDwHF4aIV10QKS7Rb+4YHRAeulWgQhidEAC6sO2e2J0QFyCFDfGZ3RAHqFigiJwdECCf7U8QXF0QPiJSmP6gHRALsQgWE6BdEBiS7pGF5B0QEE/jvMQo3RAoDpkkXCydEBVzCfXyc10QOanRxeN83RA1NtqVV0CdUB7GFzspAJ1QDzvfn6dInVAwAkOYI10dUA68y/FrYF1QOqNTj6mg3VAikx4qJuEdUBrt3BqSaN1QCZVTGDOwHVAq0KzuQ/hdUCkC4XtfvJ1QBqrlSdJAnZAHbwqmJACdkAGo3+fiCJ2QMW717SPJHZA9gsPD0srdkA2Vo1OHzF2QPQkTg8dQXZAPvfBZclCdkCSJcz5eUR2QJqZJnIRUXZAqv9DE81UdkDcRcAY2mR2QJGc5ITRf3ZAylPbxeuddkAiGVBcRaN2QHBPZJoMtHZA+B82Gs/OdkBhqih2ARJ3QCHRFQwNNXdAUXy0QJ1Bd0CoyFZxJ0R3QPClL60aRXdAY0sL7UlRd0BxOC87klF3QKb48Aoob3dAZBDA8G0ieEDusETwEER4QEhNDVx6RXhApQM7sNhIeEBYVHbXylF4QAB74nWHVXhAzcAxt4t0eEDuM3xbqXR4QC+tXGfGeHhA7lpglfV7eEBymItMIH54QCyezealgXhAZrh3RZqEeECwL4iRqJR4QGdA867/o3hA9LABS6PieEC6a/w5/Od4QPRwsesB9HhAUGUTt4z1eEDG4lfXtTN5QLWdrTm+O3lAgrM9fsRDeUBgasHszVR5QL1ceP5bw3lA7BIczX/SeUDQl5DyqNN5QJwXff1A1HlA+grfU/oDekBjUlA7KzN6QLpfvroMNXpAIt+eXS43ekBaJc5dMjt6QBMss14aRXpAfAp+bCJcekCKMQIBzIN6QIpWVhjUi3pAnhZvfQ6zekDgqRSZDbZ6QH81FboRt3pAtEUI6BS7ekBOgC2yFr96QPx2DAim43pAswSHf0wVe0BjM+1WAad7QLIvHSMHq3tAxk78IQmve0CYynwQjfV7QOT+HBjYAXxArCRD1fQBfECqSP5fmwV8QIYJkojMQXxAxENT08WNfEBUGjMAIZN8QG68D51jmHxAZO8JcX6YfED696oNMJt8QNJjNyJZ4nxAtP2AilXyfECUf+JwUwJ9QEBav6N5A31AtNtqDsADfUBwLJvHzQN9QNKWfWoABH1A9A3mGkoEfUC3+1ceeQR9QGYGuXHFC31Au8oejNELfUAQw5YqBQx9QH5zAChEEn1A9cG14IsTfUD8HBGtChR9QFQCEY0RHH1AOnC7+hokfUCUYLsHRTh9QMTkKdifPX1AbuKHxP5CfUBiFmOX5MR9QJyhLaDkU35A4f9dYZ+DfkCWAbUbSKt+QKyHTmc1tH5AKTIKNrhxf0BsCMnM5HR/QHoM2ZJikX9ALIL+jEgqgECwkeQGHTeAQFH/xnHIOYBAbgLgDHY8gEAcNnAyqUKAQBh12mOwSoBA+uhsThNRgED3DmQADFmAQKhCC++iZ4BAPKhE+V6MgEAQHvgFDI+AQLl6+vm3kYBACJl+c2OUgEDqzYUuIJeAQPfo6Ig1poBAYn/8/BKvgECqFLCkG7GAQECqaeLYsYBAYg+mKX+ygEB6gyGfhbqAQPJ54TpSwYBAXLYMoZzCgEBgY24gU8mAQAah3PJL0YBAwBwa3UnZgEDTIPA9Q+GAQJCtWENK74BArrs8gj//gEBuSDq+QAeBQPP7EtE9D4FAfDNZezQfgUDKE8e7NCeBQCrwunsAL4FAoo5Flq0xgUC8EWfwKD+BQA7BDFeyZoFAlms4eLZqgUCzU+eluG6BQMJjqtTBdIFApK5Xzm13gUC0lZ5jG3qBQPpHZCA+foFAxq7zpVWPgUAUow0OVJ+BQNSL/qHnoYFAikUKwN6igUBFtqUWSq+BQMqTSllMt4FAxnUPMQTKgUAqYChtsMyBQHbIHt1dz4FAMuWlRwrSgUC2P+8A2BiCQBtmbxzWIIJA2FksvtQigkDGb8OgYSqCQELqTCcRWoJAbIeNEjlpgkDGk6AEQ4mCQOiPcQdDkYJAevqzs6iSgkCYbB18PJmCQESy0s4OoYJAvBrX5DqhgkD21qGh8aWCQEBKE7jsxYJA+1fTD5zagkAsTbwwod6CQPp31sht8oJAikReBm30gkA+26tLb/aCQPpGyKa8DoNAneeUUHkRg0AAiZPreRmDQBFxlGRyIYNA7H7Ac3Epg0CWUIiRajGDQJZUdvnHLYRAAnpJsf9ohEB4ZJ31/XCEQOIoIUfKd4RAdiY38nd6hECO0VNCEn2EQPhmJXEnfYRATp66QNF/hEBaC3V2HpuEQN5B4iNq2YRATveYLWrhhEDIlKHLYumEQCAPz3k18YRAGqZP4WPxhECYBcJPM/mEQM6Mx+zi/YRAaG5CFpMUhUC+sWVTlRaFQHyjzwyXGIVAHha4iZwahUCk5SJ6oGGFQE7fTDe2YoVAr3ZhjUtmhUBcESEyumaFQLDygcKgaYVAfDY1dU5qhUDFV4XlumqFQKABKxqZcYVAmi6pnph5hUBX9mnWQK6FQIYDYHtEsoVAGCsmUdvKhUBc91KI2KiGQJhWZY6QKYdA1AEa2JExh0AUw6ASijmHQOat2XTHsYdA5m0b7sa5h0DC6zZ+wMGHQOBhjst1xodAJnTEBHnKh0C28Cnkes6HQHJzZ7Z20odAtJz0kYjOiEDF5C3fjNKIQA== + f9i++4MCU0DOIQhxcuNlQD8omKXyI2lACRqGaTxicEBG1RPKp6J0QF9uim7U0nRAX8xmwizke0BtlltBVrN8QC+VIYvCeoFANvqbSlfigUD9JUJaw+qEQC/ED7VuA4VAYVMMd08DiEAmo4/jpZuIQFgyjKWGm4tAitBZADK0i0BR/P8PnryOQFhhes8yJI9AqBX3HKUikUAsSLR8b1aRQKxfq5HFGpNA8gXJutAmk0DCdOyS6zaUQDz2mlj8KpVAC/csXwyTlUC8DZJtUu+WQL0Nkm1SH5dA - + - 0mf6RZuqMkUMgBdHXEKARbB1j0WIii1F3OARR6MneUa+83dFVKKPRo+4rUWhcHlFxKzERTBAbkW8N5tFAmMjRenvvkZJSnhF3EQ6R4ywW0Za3vhFND3GRTrFNEUr0U9Fh9DlRSOuP0XA6BVGPUqFRfnBzUWPVY1GMeCDRT0VyEaPflJF/zobRuDTD0YAyYxFXpOsRXorJUfS9RRFGd3bRcT7l0V9mxlFiuCNReposEWwUJBFyoSARY5ocEVb0BdGUzV8RiQurkVDKb9FeuhORejP40X/8RtFr5AYRaelJUVoEqNFewRnRej5FUWTrMtFHnDIRRHKp0ZanIZFvIJyRaOKXEUyWTJF5D+cRhVSbUWXEo1F1IAxRqzBikUrI4pFG/ZQRXLKcEaNu+5HZxmKRtfjokUYx7FGuLCsRV/8PkY6fD5FZa6KRUpFRkWEJSxGxyg0RUjQg0XxUjxF9rk2SUIFk0Xaj9JF4DGDRfbTNUWG30tFJl1BSHXthEagxWpFazoiRiLltEWQTXRFKFXjRcnbBkeHXRtGpZU7RZDtgkVDRE5FraTTRbOgX0XXb5BFMS9CRUlYy0bXLrJHjvmjRnkKzkVgdJxGNQWERTWAZkZFD4RF0+AkR+I5iUUvXR9HMU55Rr165kUvLERFHmcGRnTPr0X1XVRFfx40RVJDRUacor1FikpvRStuLUUlqFRFH7wqR5y50Ebln6dF5IngRWwfHUWUXJdHXg12Rs+dLEaaEtdFbTcQRtkTXUZwbiNKLU8YRthE0UVxdbFFYJK+RTR2rUnMalpF0uVtRR6vz0hHqppHrLO4RaeyQUY06AtG/wUgRc7Ik0UHEylFGseERXttSEWDBxhFH66VRdhvTUWfIBRGmCxORQGvhUYI7WJGpWf4RcS8lUbzGXJFGVNlRoTnNUUVpglFNu1dR8KiV0eEUZ9GHpGgRVBmIkWLxUdF/ZUPRtrJPkXee6RFjc1oRlPxQ0V7JolIg8EpRbdR4kc+pIFHOQ9QRpUZkkUjXidFRoNIRmauFkV4sHNFsWkER1Pe9kXbl/VF3PjSRWfFykXQnOJGrcZDRhjlxUWIDE1GNtkURptiOUU3xTNF/1XeRcMLLUUNE09FwEWHRZF/REaTeVRFzVuLRgE+lEbBOdVFoodZRZ/mEEZO4FlFLni5RV1ko0UvnwxF4es+RfSC1kc20StHMYo1RZUc30Z0xs9FLpvqRR3wP0XV5ydFTbVYRas8YEWzil9F4ImORZBwVEX1pRVFK6YCSJL5YkevFwdHyYcnRsUjT0WoJTdFZmyiRXETGkV6whFGDLsgRgucNEVeOYJFza1GReoRT0XQlC5HYWCXRmU+R0YEy45FkER7RekcJ0XP2E5FV0qPRVHWKUU8fmJFgm4NRRo3UUcvbLRGp5qyRUslb0Zi2sdGn8VZRUE73EVrQ31GACS1RZYNHEbyMuhFzuQQRYN3iEU9QmdGd2rDRVQtkEVsPExGyxfeRSvcn0UR4ktHAiwUR83jfEYPiM9FLk7eRcSCjEU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - TXxX4W7BckCKM1beOsNyQKm7U2dD0nJARgvwqs7fckD6XqMiT+JyQB44JP6P4nJANNBNRdACc0AZ0g/N+gNzQNaBZdG8EnNAVMW2xQUUc0BWq4FPeR9zQIzPeEc5IXNAwI/mnc8kc0AaaUlleEFzQIhnBn16RHNARTs2npxRc0DAuIR9o1NzQHauhFE5Y3NAaIHm10t1c0CMn1TOeIBzQCJeymFdgnNAm8j0eU2Sc0BeCfo595RzQFTIrfu4oHNAe9chSFqic0AJADu4A6VzQEoyVE23s3NA9DKgxQy0c0AOtOKmz8JzQKY3B1fX0XNAAxNMDvnRc0C0l5GW4tRzQB43Rrw44XNA2BoQxngBdEB+ys3gTBN0QNqLSGEhXXRAoGe/2LhgdEBbCMCJCGJ0QOza8IN7YnRAorsIeMZndEAZKNjyIXB0QLsmsShBcXRAWNV7+06BdEBYbGbgFJB0QPCejsh5onRA5KnItAiwdECa+C+0tsR0QAZzt7TIzXRA7KCWnrjhdEAfQjdDjfN0QJCEJf9cAnVAnkuAhKUCdUAgacs/nSJ1QKJ8pMyqMnVAMszEvMw1dUDuul6Jd3J1QM/pPXmNdHVAVTLuAnmBdUCUKBqNrYF1QE7c+C6mg3VAYsHq30ijdUAGzAxloqh1QLqOWY3NwHVAsmX0fEgCdkDeu1I+kQJ2QP1ZmPyIInZAfChkGpAkdkD+WO0eSyt2QLyxNDwfMXZAMu3VSU8+dkDbR0YAHUF2QHMBQ8jHQnZABZon2HpEdkCXQwXRE1F2QC6xCWPNVHZAbGOfjtF/dkAYxz3+6p12QGoMI4NEo3ZAuE23/cCydkC8n+zSDLR2QG3psbvOznZAKGpbAQESd0C5l1zzDSJ3QKMutSwNNXdAItk245xBd0AqVPC5GkV3QJydVfFKUXdAm90GbZJRd0AqexDGJ293QEpKHQ5tInhAgdYY6dIjeEDcTud0ekV4QAZoL3DVSHhAEmE4jjFOeEB+AM/SylF4QILcgSmIVXhAZHiXybdheEB51UPMi3R4QNIcSfGqdHhA8sYzpMZ4eEAAtYng9Xt4QEUdcpkffnhAOHwJKaSBeEBpuyIUmoR4QDjWH+eXkXhAJjERn6eUeECIrUnc/qN4QE8QzZyj4nhAj9QcBP7neEAWwxGtAvR4QO6WUeqL9XhAYACddrYzeUCxdBnJvTt5QBhc5Y3NVHlA1JrCGHvDeUB8CEulgNJ5QAn0YYyo03lABkTxy0LUeUA+V94c+wN6QImpo0krM3pATvZCyAw1ekAusaZkLTd6QO6RvLMyO3pAm05pjxpFekD0eo7Yy4N6QBC8fuHTi3pAQgdhzQ6zekBaUjsPDbZ6QO0CakwRt3pADrV6nhO7ekCAZ25iE796QE3E7KB7BHtAiyEO4EwVe0AISlj/Aad7QKDtDZYFq3tA1LacmJbxe0CkM6rijPV7QDTBGQzaAXxAZtqGtJsFfEBF+IubzxF8QAEX+BLGjXxAyPaYHB+TfEAS4HX6Kpd8QCZpyo98mHxAxoIki8CdfEDqL4WBWeJ8QGNKdMpV8nxAPfqxEXPyfEBYISi4UAJ9QHI0hCZaA31A7hIu+pcDfUA4uOCaxQN9QPbOJ6EABH1AfBFlG0oEfUCf6NDNdgR9QMDPIEzLC31AfZ9TgwUMfUBIijySXgx9QMDmS8KLE31AUAL2BwsUfUBQxH66ERx9QEJJMt4YJH1AlC/kNkc4fUD6dLMKnz19QJI7Kmb5Qn1A+YCs1+bEfUC+vviFin1+QBmi3OGhg35AFwexfwDffkDSRfWqtnF/QKqhiWvjdH9ANp+vB2KRf0A8ElJ0W6F/QNy2ChgdN4BAGBfEzsg5gEDQdOp+dTyAQLL6i/CoQoBA4bY6KPFIgEADE1TGr0qAQGJYfcLmUIBAFB+RYhNRgECotDceDlmAQEqCHq4nb4BAnPyx916MgEDu395ADI+AQIBXQ/64kYBAIGQwFGSUgEAE1h+EwaSAQOpaQbASr4BAGJQ3fCaxgEAeTdEkf7KAQMr/YlaFuoBA6i6Vc4W9gEA6cXoeNL6AQNQ5RlZSwYBAVFxF/lLJgEAkHSsyTNGAQKhkldtJ2YBAsxYLikThgED2bdsfSu+AQP7K/b4//4BAjuKOLj8HgUBqHf7zCQqBQG6+pzo/D4FAnE43XjQfgUBGRR1aNSeBQPpnHh0AL4FAAgWLXC4vgUDX8XmTrDGBQHTMLygpP4FArvVFF7NmgUCIdvFvtWqBQLI6qIm4boFAA5ggGcJ0gUClx6WLbneBQJJTvTkceoFATmvG71WPgUAMob4zU5+BQIruodnooYFA3FaWQN6igUDepryeSq+BQOCvVDIEyoFAipHdI7HMgUAWWMZhXc+BQORy8wAI0oFABoPc+dcYgkCkADLS1SCCQHTiHVPUIoJAFtcfbNEogkCWxiEjCimCQB7dI0ZfKoJAptouvGEzgkDorqr0oU+CQHIzuqjYXoJAdP1QQ6dsgkApvn6ROHWCQA1zTk5DiYJAHVkRL0ORgkDAODSzqpKCQCbUsvM7mYJA5ESfQg6hgkAtfzX1OKGCQEwDlH3xpYJAnAfG9OzFgkA6EGAabfKCQKN/UCBu9IJAIjIZeBYKg0Cw6n9leRGDQHySCNB5GYNAIhz8dHIhg0D832vOcSmDQPQDN6xrMYNAZP7AvbOFg0BYbCq7/2iEQGDvRKz9cIRAzkd5j8l3hEDKYfVXeHqEQHE1kKsnfYRA1eFcNWrZhEAszVumaeGEQAoVbs1i6YRA4hbnKDbxhECVFwG3ZPGEQMTHVHJJ/IRAqkIC3eP9hEB8f+hqlBSFQK7qzF+VFoVA7t3YFZcYhUAWjn8ClBqFQBS1PjKgYYVAKkeOSLZihUAeyC3jTGaFQCk2nt25ZoVANJqepZ9phUCZHNspUWqFQFwMOtm8aoVAhrV2CJhxhUAiMlWEmXmFQIyVElRBroVAp3zLU0SyhUC1t68ioceFQGgXSBA8yYVAXnYx59bKhUB6Jb2GcMyFQHpmOGUMzoVAWm2JwsoKhkCusij4kCmHQHog00KQMYdAVCNlX4k5h0BOpJjhxrGHQLTfQ3XIuYdApBaMHHbGh0DCZgj/eMqHQPSTkNh7zodAAIEOQnvSh0C6t/9kpU6IQOL9iJKnUohAyE8lXojOiEC/q1K7jNKIQA== + KBZXds7jZUC8CZAYN6JnQJ0RHYnYgnNAZos52gxidEC7YtlzMBN3QA== - + - z9DvRXiPLkXvJftG9zEqRVm+c0X7mGBFLVCGRUzmDkcxnyxGpsCPRep/EEWyG6RGj6eaRaDUVkXglxpG6RMoRQAFlUXqMBFFbaBLRYQvpkbGCdRF9xFNR550WUafoq9FRHMcRlDmMkXdL0ZFCPFTRXdmqEW7SUJFCbo/Rtxcj0U+0s1FNwBXRmD2bkVHkAJHeWtKRUJ1VEbI+UJGAHJ1RWFTkUUrujpHEMHORapum0X10FVFYX4CRTKdKUXjBkJFUHwbRVjlnUWX8ZpFCn6jRUnAPEbl2QdFRJcVRUOpP0VJ1EdGOpEURT5H30XisR5FWg//RfeOY0UumR5F2U61RaYNMEaK1ltFUp4BRqs+qEWKH5FGdUAPRYgMokUgS0RFXwAfRdwKMkV+jHpGmtBXReLtCUbHRZ9FdxksRXlHfUXcY3VFQjKmRkjQKUXaaPVHiiGrRkEPtUYo+HVFNhZYRtSBSkXBKR9F+AMSRSSmI0ZuziFFnqo+RWIfjEWXOQpFuo4zRRQ0TUllvc9Fz87HRYLtT0UzgihFWgV0RQWzV0jZMoBFiyGlRiUId0UB489F1J1oRYQzjEW7aexFt+LDRhS18kW7hJBF4T83RUbziUUvusRF1eiXRYFjNUXLIUxGk4HiR6EIY0bcoLdFSFbWRsK/TkbdkYFFOdYQR95dqkWrYQVHOTg/RlivnUUQZC1FKO8uRg8OfkXj+htF84yKRX3akUZHkTNGBhWxRUxamkVlQhtHDwjmRrqbQEUbuJBF2XIsRdbCokcLMHlG96RGRXbqWEZudYlFKojGRdQTEEYYxhZKBTXzRbx91EXAR5dF48ufSZS+DkUoZ0JFeG7ESO2LjUfT0qlFDylaRoaC8UU+0mxFJNxjRZ+/H0U4rxJFCFQgRdtUkUU0tyVFzGgbRvMSLEXi5llG8g8eRka4fUWsI2tGQEwiRUDHNkW5xzxFG9yCRgoOlUXIJiRFA/JFR8k0K0eXl0lG8RfBRed0GkW7S+9FsOhVRchWJ0Yt/ClFFMIyRaIjhkURunlIStHQR/uKXEfy1hxGw29yRaWNEkVjKHdGMBldReTaN0WXgotFs0/wRiJj3EUTcNFFvVYwRfJxyEXW/eRFLm6kRtUpMkaAEGxF7kxyRvpALEaxo2xFa9zPRRH7KEW5ihVF7CqtRYG7L0arjY5GpNeURlDT9UW8Y0pFLP1jRqU2iEV8pY9FfQVERRRyRUWP+xVFYbAsRcaHGUW7IUZF2PFzRfbzRUVIXuVH6SlAR2eJb0Ub+9lGGYbDRUl690Vr2GZF0NJHRcD2KEWbJoZF7rhARVjj1keIQhdHOlzNRr/q2kXRmzNFG6sfRSCzqEWZlwlFy/FCRnzqNEZbaZlFZU0VR69ZdkYGGRBGbMOSRXTVbUVcd49FXumJRbWTw0UW0RpGlZDmRcjRH0Wb/QFHpf3LRjq/w0X13IdG43s4RlHqH0Ucq7tFqzMFRsEmgUXEk89FFHfoRaECO0WjFpJFDcLDRWk1ZkVWPCJFuSArRYOGJkasm51F5TeNReVr8EWlm4hFypBMRx6sFUc4iVlG/C2fRYymbkVfPwhFxSPxRTMO9EU= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - qr/Kv27BckD+PAzrOsNyQFTdOU4O0nJAYJ4wG0PSckCaWf+MT+JyQAdsaiKQ4nJAwHbk88nxckD1+jEi0AJzQBgJkU36A3NAEjDdH7wSc0CfrCwcBhRzQF3WinJ5H3NAJmhuuTghc0AAgHRfziRzQJgqi126P3NAU/Te1HdBc0A42T8qekRzQLIcXW2bUXNA/qoF5KNTc0AQWUy9OWNzQC20hmd4gHNACZ13w1yCc0BXBGriTJJzQEb4WkX3lHNA6kTsN7igc0DFi9FWWqJzQO7B4+8DpXNAmcE5cbWzc0CxDKXGz8JzQCoTnH7X0XNAaOGil/nRc0BvSisK49RzQHgwYAk54XNA3P2h8wbic0BopvO5eeJzQMiprS039HNAHh0zhngBdECIwYHtuQJ0QBpiCvNME3RAW9bakrghdEBwvyFbIF10QDpMf2e4YHRAOJJQRAhidEBSiLOkemJ0QFSitAjFZ3RAK7QSu9NndEAYx5h3InB0QOrCbOpAcXRACPkPVzlzdEBs6+Uc+IB0QPiMzVNOgXRASP/spRWQdEB6t5irwrB0QOTOdvZwsnRAvF/2+/uydEAchg1Tys10QAOgKWci03RAKBUASc3UdEA+6jKyjPN0QNrIOhZdAnVAJa5RLaUCdUDEnDvGnCJ1QMIMbfXmInVAzjBfSY10dUCyqaixrYF1QFlV4sSlg3VAJGB10kmjdUD0UrfZo6h1QDgUvPLNwHVAvceEtXzydUBWexy6SAJ2QPwNUb6QAnZAWA5790wUdkDW+BfLhiJ2QOQ3CHCPJHZA6+nYgUordkBUFPMKHzF2QCz4eYMcQXZAxHVlfMlCdkB+w5Z5eUR2QMQCfFoSUXZAJgqFC81UdkBgFH5ak4N2QEYKUETrnXZAaIOryEOjdkCCyr90DLR2QMIhIm/OznZAemdL7wASd0BmS4W/DSJ3QFQOkRoNNXdAkkLkeJxBd0BR2g7JrkF3QCd5VMYaRXdAXHipD0xRd0D65VmfkVF3QGx0ekonb3dABL8mAm4ieEDbmNPG0SN4QF5OogYRRHhA7o6+k3pFeEAA5YNK2Uh4QGx0LPPJUXhA5MV0WoZVeECSnAV8+GB4QABZcKq4YXhAUmnSbYt0eEDkLDwIxnh4QOCcUYr3e3hAdreeHCB+eEBMNm8JpYF4QCTfMeCZhHhASkUH4ZeReEBQP7tLqJR4QAijK2b+o3hAHEgDT7fUeEAgCzglouJ4QEiaTvn853hAjyPTtAH0eEBWAUg9jfV4QKgjItyyKHlAADrAGbYzeUDA0yTOvTt5QJhjBxzEQ3lAK3sjwcxUeUAHDz3Xv7J5QJg0FHR7w3lAKpWAI7PDeUBGpVnHqtN5QOvAWwJC1HlA5TAu2/oDekCygPtlKzN6QBxxL3YMNXpA/vS47S43ekDw4OveMDt6QNQ5PuEaRXpAiiKiySVVekDI3+F3IVx6QHZJdSfMg3pAXluudtKLekAuuHJyDrN6QM2MOMgNtnpA0PadPBG3ekCRkqXxFLt6QMADzG4Wv3pAjmse66fjekDsHwSuvvh6QOy0Ghx8BHtAiOMAAU0Ve0D0ZGAjIpV7QPx+L/ABp3tAfVjcVware0DwZXdpBa97QMialGiN9XtAseuYWNoBfECIwf1hmQV8QOLk+3PSEXxA18IR/85BfEDZMFjVxY18QNBLHN8fk3xAWX6IaCqXfEBSxCrvZph8QC60FFJ+mHxAJMZeWsudfEBA3AVDWeJ8QKEDlnZV8nxAPrS3+E8CfUBw+cfLlwN9QB4HRRe2A31AtEdOw9ADfUBnzrhzAAR9QFuq5s5GBH1A2SYOSngEfUBsG+AVugt9QJriSsQFDH1ATc2yskgMfUA+qhYGCxR9QISVrocSHH1AcHGVQhkkfUDgbBmBRTh9QG1H/Q6iPX1AjPp+ivNCfUC6ZzjUVLR9QHIzPyjmxH1ASkmswj3gfUDeMxJQiH1+QFxAUtKeg35AlMjzV0irfkBVhOaPXrN+QOig/U41tH5A8SmYJQDffkCKQLBVt3F/QOiYogfkdH9AhmRIKmKRf0AltxlBX6F/QNc+MV5IKoBAMCF2LR03gEDuRQU4yTmAQJASALl2PIBAWu1By6hCgEDMXhHZr0qAQNb574TnUIBAY57xSBNRgEBeEsPzDVmAQJw/xx4pb4BAFudMHV+MgEBo5IM4DI+AQN4p2B24kYBAwnfpMGWUgEB9A/PLHJeAQMsUbOQSr4BAV8ym736ygEDQiEc7UsGAQAnRZZzuxoBAxCLw6FLJgEAJLUw+TNGAQDT/v0BK2YBA0w4f00PhgEDUYu+ESu+AQOzCs3c//4BABSXf4z8HgUCkOw8+CgqBQJTqj1gNDoFAOhpcnD4PgUAsgTtzNB+BQHRsQ6E1J4FAcBXbLQEvgUBa6YxGrTGBQCst//soP4FAqfrUhrJmgUCtmy2etWqBQIg5AhK4boFAWR4gwsF0gUBpqHBbb3eBQIpB0cIaeoFALbniNj5+gUAUoUfVlH+BQHJp+TFVj4FAum4TI9+igUAg+M1USq+BQHO3TA5Kt4FAc1XdkwTKgUAH+gJhscyBQF4q9Lldz4FACm1qER3+gUAES46G2BiCQM4Wqv7VIIJAOHe1JdQigkBQF9zbCCmCQDBwN+/fToJAtShhlAN2gkAiyd4kQ4mCQC+yxcVDkYJArbGwpaqSgkDGAxSBO5mCQH6/N4mxmoJA2vVsrQ6hgkABvXLZO6GCQMaPqaUyqYJAO26QqOvFgkBckMivm9qCQDWc9Dmg3oJA1khJgXkRg0CwHvzoeRmDQGJxeydyIYNAnL3fI3Epg0AUZ3xLajGDQPnBtU+DuoNAFAt+tpXKg0A/hYYTAWmEQOKxT43+cIRAPFjcn8l3hEBIDkxbeXqEQAxA7nInfYRALu9+bAeehEBDqp3wadmEQELMOtdp4YRAkl8sXGPphEDQFLVoNvGEQC8I+dth8YRAhPEvIa76hED2M/quR/yEQNgMkXbh/YRAdB4lMn3/hEBuXzpVHQGFQBqgqxGUFIVAnvzuOJYWhUCwDc8lmBiFQJS6+ECXGoVA6T+1Ja1HhUAvLqALoGGFQApjiIu2YoVA+FhM+0tmhUDIrLjIuWaFQMJepE6gaYVA+8lNC05qhUDYi5UbvGqFQFp0m72YcYVAe21naJl5hUAKDYsjQa6FQFlTliNDsoVAFphYOEW2hUCUhmNSO8mFQIDxuAjWyoVAktA2inLMhUB0bT5QqeqFQN7Up5xU7YVACq93wcoKhkBav1l91aiGQBTiNuOQKYdAmtxLEpIxh0Ds3CYvijmHQHZQQmzHsYdAEpT66si5h0Cs1lGYv8GHQOp0N4J1xodAsHdNdHjKh0AVLAhDe86HQEXJ1FV70odAir7sxaZOiEAZIMFLiM6IQPVvdeSM0ohAqcGD1IvWiEA= + KBZXds7jZUDEZV5bjlJwQBTpB48/A3JA - + - uFkARj0tY0VdUClFNU0HR33/qUUGI4VFijxkRT2TJUVAEA5HjzdJRuXWaUVsRxVFpRqfRg3zeEXZ/FpFu8OERaEQAkY+B4hF9vpqRcqpVkVtWMFGFaimRZKRN0e4ZXFG1QjzRWsm80X4jR9FFAx3RWn39UWk2DRFzV3GRjhpnUXSAhVGB81QRevpIkUkXwZFc5d+RjeoFkUEJk9FSFAURfdA60YVoU5FkrHLRW0hU0ZPrSZF9O0WReMSrUWCqjZHENhJRWD/QEW2FOFFR0ajRSRQC0UbhGtF8yoHRTzBR0VE6yJFVkc3RX9fuUUbYY9FAqCwRQRaG0YVBQFF/QDzRUoKs0XtzINFQiZERX4yNEVbjTFFjtUpRYevmkVaTyxGNDEMRduORUWJagpGbRCWRRv1uUaBeVdFayVFRZhKfEUMpjlFxg0HRlSVAkUNFB5Gm3adReAzU0WFzZJFriSERo/DXEV1WNpHXjRrRnqtw0Ugxa1G8oZbRcZgL0ZDbDVFVZiPRRQlHkWQvTdFzbMrRuIrN0UCOYlFxaQTRfztKUWb3TBF1jgtSfDqzUWIoKJF2DdpRW1nOUW1wjRIWUJKRci9Vka806JFoeavRbpUvUUhihtFuAFtRXuyT0WqRjZFlg3HRjQaAUY8thFFf69FRdL4N0UoZDlFtrlBRWOudUXnirJFGTQYRUDRuEZwL5JHnHeCRjYLAEaVhYhGmI0JRYMniEXAdktGR9WeRdBtLkfWJIVFaRwqR7kohEYJ7LRFf/AzRbhWFEWQ9VdFOikKRid7PEUvDb1FMI0hRWUCOkWFtz5G8mQNRiyCXkW6OixFus9zRU/UTEeQmrlGeP9wRbWesEUvqnpFzR77RIjMiUdlZotGqA05RhJ3e0X8uxJG7lQBRnMZFUqPPuRFTIWvRcEcskUB0Z1JkbRlRbWqx0i3t4ZHthHtRdeLgUbREAtGWLU0RQxdCkV2X2JF8vIVRV54Z0WbZmJF0cE2RR4HDUXwkBdFkvEbRb2whEVutCRFIGADRnQ1bUVqUh9FAqhxRiDtT0akkrlFsFVgRupYOUWRLyBFTsYiRsSXmkWlR0ZF9IF1R1wvPEfODIZGi4GGRcb+REXm8f1FStJaRuXsZUjrmwlFRunBR8RPaEeUGDVGzDxzReh+FkWsvk5GaIFvRbrWtUUrt0pFnTO5RWOuAEdOO+dF4e/ARXn/mEVrkeRFCxahRoDSOEZ15WVFre8HRtR8IEY584lFc2WvRSImEEU1q+9FD/aaRW7TMEY1YDVFBGqtRnt0PUZPWtxFXCMERSfqOUYJAWZF4/6sRUcbnEXwgSFFcTpYRZEuuEc88xdH6zPfRYYitUZmxh9F33PZRZGg+0VmTg1FkuMzRcDNYkXdASpFeOXMRwh+LEcwFdlGtOHORQkoOEUTDPpE8lkERSZ1hkWkfkNFoqxsRkSMwEW+S7ZFwnUaReUKCEeCu1tGyi4MRh/ATkXmHk9FIt85RblPs0VVwZtFll1SRWw0MkU/6ANGp5jWRQibpEX7S2ZFhRECRSBO9UaNodtG2TF6RTFgakaNAndGdCmNRWKui0VTwSRGDuqARV+lLUYYj55F99AVRSfNL0XPwCxFp0RqRZbwYkWovHBF+jpFRTCkAkUYhDRGnt2RRYCVJEWC9wVGE792RQDUF0Uv1jFH4g8PRwotY0aHSalFnEsSRQPT0kWt3JFF6lomRQ== + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - mogIY27BckCW1JllDtJyQDymjo9D0nJAjiZJQFDickAkA9udj+JyQAh3SSDI8XJA/13v0s4Cc0AAlKpt+gNzQMl6qYm8EnNAL1Q9MAcUc0AutB5bOCFzQNQZw9rNJHNAWEvChLk/c0CSNRbceEFzQKLv/oN6RHNAcbVHBJtRc0A9VPTMo1NzQJat9cE5Y3NAFNJmvXiAc0BqO7NNXYJzQNxesiaGkHNAXFI24EySc0CnVyJ995RzQMWUG1q4oHNA/Q41mluic0Ak8AmMA6VzQBqtwf+1s3NAyBKdpgy0c0AEuKRWz8JzQK59e2750XNAabTLc2TSc0D2nFaS4tRzQOYGuks44XNARiU+g3gBdEBU9ZTBuQJ0QHR7tnhLE3RA1cs23iBddECPdJ/8tmB0QHLd64MIYnRAszpteHtidEC2gaA85mN0QPrPuoTDZ3RAVbBPytZndEAKxRDnIXB0QIIXPCdBcXRALKiiJviAdEByfikZToF0QI9DumIVkHRAtES76tCgdEA06gsAeqJ0QIrKIxUPo3RAnJRYz8GwdEBaBKcRcrJ0QL5ue0i3xHRA4IzUW8nNdECP56K5jPN0QJpiLwldAnVAWs9N0aUCdUBmgrKInSJ1QO7vWfTKNXVA/Yi2cZJDdUD4ab9dOWF1QKFHLCSNdHVAHlmfC62BdUBXjAyNpoN1QBHCWGvNwHVAnoGs4HrydUACP2YtSAJ2QM/RkuuQAnZAmmkv64cidkAIMnkfkCR2QCzdiHJKK3ZA4mYJdh8xdkCRzHefG0F2QGxWlMLIQnZADk+Km3lEdkDgR+3AzFR2QLnwWgzZZHZAi8fyadF/dkCGzj9skYN2QKZpN1HrnXZArEQIy0SjdkCMrWJcwbJ2QDb5EEMNtHZAhtCZ383OdkCRDeabABJ3QNnmBJcOIndAE++9HQ01d0A+M5ubnEF3QKSCCt4aRXdA0WnQIElRd0B8BMkbklF3QJ5de8CPYXdAOcLvRW4ieECivyE90SN4QKcWlEt6RXhAX7QjAzFOeEDavaWsylF4QKm5RAuHVXhARUj9e4pbeEA543yHtWF4QCK3/IqLdHhABDFfycV4eEASfDaa93t4QObJLKIhfnhAbGdK3pmEeEDuwXa2lpF4QFIQzgSolHhAgnN33P+jeEAWIdZIouJ4QBSFtQP953hAVV7qXAL0eEDURIsjjPV4QA6ZvzaxKHlAlotXeLYzeUBwYZcyvjt5QNw4rDfMVHlAoShJ2b+yeUCOwj0xfcN5QCBw8pKq03lAIMPSe0LUeUAepsEjKzN6QGTFL7IMNXpA/ik/xi03ekCaB8RdMjt6QKBsgT4aRXpAqjXc5idVekC1dGY6y4N6QGZaCUrTi3pAuvCOag6zekAs/OCjDLZ6QEUgFjkRt3pA7KDKkxO7ekC6TlyzFr96QLGaE30Uw3pAQWZZWafjekC/ne1EfAR7QF4EPitNFXtA5iUZ8lole0CQN6INAad7QMyU/WYEq3tAnDeFNo31e0AIbCuR2QF8QPDd2U6cBXxAx32CEdIRfEDjKZHGzkF8QK0LOvvFjXxA6FqadiCTfEAAmpXFKpd8QCK5LHFpmHxAAhQ4rnyYfEA6zBvZwJ18QMO2Q4tZ4nxALFT4a1byfED6ZkmbcfJ8QPpoOtNQAn1Arq9a2YsDfUDb70HRpQN9QBPmtl3NA31AGJknZwAEfUBSPAvvTAR9QIpXOidoBH1A4Yf9hbMJfUAG8WPeqgt9QPRKWEwFDH1A/B8hho4TfUBCs7EG2xN9QJrvLe8KFH1A4mD6zRAcfUCOOmEfGiR9QDi34+xFOH1ArcWWKZ89fUDqJBBh6UJ9QFVt8hr/o31A1kagd6SkfUA2egD/VbR9QHYFdeHlxH1AqFyREpD1fUDK1BaQin1+QABROeCdg35A/KMjWP/efkAw3NH7tnF/QBbSz4nkdH9A4CYlr2GRf0BM/IPLXKF/QHIW2E1ruH9AdsHQRBw3gECa2avpyDmAQBRTeOd2PIBAkAd9T6lCgECdycTEr0qAQOBqQADnUIBAJAQQCxRRgEBumj4BDVmAQLAt7UMpb4BAnqnyvl6MgEDCZNljDI+AQMz25Re5kYBAQPDL5GSUgEC0yiRUF5eAQHw9czvbmYBAssA+KxOvgEB+Jdxcf7KAQCL+DgKFuoBA/r1GeMG8gEDG09cvUsGAQAKD1YKcwoBAKGUn+1LJgEAaX+QlTNGAQEKcLqxg0YBAEFD3Z0nZgEA/X9BbROGAQGXNTmO054BAsPz4Hj//gEApiuqkPweBQBqkpggKCoFAXFwx2w0OgUDQBahGPQ+BQCz8Izs0H4FAOAVcoDQngUALYWV1AC+BQN/sixwxL4FA8hrKUa4xgUDw49jBKD+BQCZgAmuyZoFAO16gtbVqgUDGYR50uG6BQKPUCe3BdIFAbixWTm53gUBMUchKHHqBQGKHg3XmfIFA7crmRz5+gUAU6REBkn+BQMrkue3qgIFAf46ZFEGCgUDu6jf/VI+BQFsqKuVVl4FAGJce+lGfgUAe3sRP56GBQFDhdhzeooFAJj+EF0qvgUBADyS2TLeBQKtwx+gEyoFAgkSUerHMgUBaZJUAX8+BQHgwRZvyEYJARmEM1dcYgkCcBwxv1iCCQICNih3UIoJAWlKzvopWgkAop48h0VqCQHZTtUo6XYJA9I/4zdFmgkCIuNoDanSCQN2rWgxDiYJApuz7NUORgkCShBzPqZKCQHKLl/w7mYJAAIRK4Q6hgkDyWFvxPKGCQJXmotf2oYJAXhaURPGlgkAR9lJc68WCQPq3qkGc2oJAY39ENW7ygkCgNBArbfSCQM/G4L5v9oJAUt5tFroKg0A+MWRgeRGDQG/+YFB5GYNAsktOg3Ihg0BlfgX+cSmDQA4np61qMYNAFiMTF5XKg0CKckdExFqEQJ3eEhD/aIRAiDgMWgBxhEAG29mFyneEQFBMUYn3eIRAuilomHl6hECOyRPOJn2EQAIyZQhq2YRAAKLhamnhhEDGfriYYumEQHiVrrQ08YRAYMKfVmLxhED8DtUqrvqEQG5fqdBJ/IRA/Td9rOH9hECrwORefv+EQKgPCD2UFIVAlnNMw5YWhUCDEn9BlxiFQOwrG5uVGoVAUqYBZaBhhUB7/yZmtmKFQESHWMBMZoVAtQxiC7pmhUBuC2+eoGmFQF48qhq9aoVAlNch1phxhUDoJWnCmHmFQIzupMJAroVA0pi1JkSyhUCVZI5wqOqFQFqm2rlU7YVAHpcdZQPwhUBWZwRKywqGQGw3VsRWM4ZACc4WzYq1hkBqOM7GkCmHQOe8H0KRMYdAAFtDbYg5h0BL2KUhx7GHQCup0JDHuYdA/q0FG8DBh0Bcx1pkdcaHQIuIifp4yodAQyL5L3vOh0C2w0D7d9KHQBqGv7mIzohAMz99/ovSiECexuUOjNaIQA== + NrgMGZxjZUAoFld2zuNlQG+XdYaqQnFAG7piYCbDcUB2xqyr6RN4QAOnB+ytc3tAdiSJ/0Elf0CBAvIfg0KBQDvBsilNG4NASC6YL+9KhEA78KBT+aOGQA9aPj9bU4dAAhxHY2WsiUDWheROx1uKQMlH7XLRtIxAnbGKXjNkjUCQc5OCPb2PQE5wPMRvdpBArM8cydRikUDOhzPZxTqSQCznE94qJ5NATp8q7hv/k0BlIv3ATJOVQBFreLdrs5VAKO5KipxHl0DlOfTVoleXQGVR6+r4G5lA - + - TSLvRaiudEUEawFHXj2CRSmkkkVdfipF5qyBRQmzHkfHsYFGnH2URU4IokYig5VFxg4zRRO5gEXgLjNGBJtRRRSQUEX/3SFFyYvRRuYErEX2XyxFJkVbR8UcMkYjnvRFGArGRW9wBkVZ2ERFELBCRUNM0EVDDtJGarc4RfYsmUWudMtFSk5lRqfdFUXwnIJFX8zqRop1QUVn3vZFQtcMRpSSGkVSlUNF1BsGRSlih0UM6ztHYsceRb7K60VomqlFJ5UPRfyJFkXL/0pF1icFRTjqGkWpqUFFv7FlRYw/zEX8VJBF9fxvRdZPIUZeowxFd0UPRRDyBEV2w1JG2X7tRYS+aUX6xEFF/E4QRXlrpEVXehZGCVohRVjyBEb8yaVFe5WtRiZYREUtMy9FQKGZRQCDOkaEaAdFktNDRROyMEV4phdG6YOnRa9USEVtNY1F4Ns8RXxkbUbfXGBFCqntR2dhgEYeCrlG5M9uRfHaL0ZnTydFRMmIReWGKkUeokVGyK1nRYCXtUV1oStFpoU6RSXtJkUzi0xJb2znRedobEXyO6FFctBISLKWkkWEtZhGHJ/cRUtAJUZxbIJFFpyWRcaJDUbr2llFdO7CRiGh3EVQI5lFQ61XRb7uIkVDcEdFyF+mRTfvrEbx7s1Hrqd/RpjznEXfX9dGAQpiRRaRQkbJwNJFrjtFR+HlqkXDwxRH3eKNRmaTYkWpgSxFp8sSRZJHTEW7WwJGGpwQRZ5wdUWuEJ1FEhuPRkHn2UUBU5BFnmAvRYC2fkWoGx9HlVDMRskFo0XvTY9FwTmpReLKC0UFAqZHuzSARq0dVEVG0mpGmDCORcUq3kWdEgVGonwQSsq580XSxudFinvzRGf0mkUFcJhJB1ZBRdVN/UTTW71IKnxuRyVirUWHmENGPbkBRnE2iUUUaIBFczE2RRE8KkV3dUpFBewYRerLWUWdWUZFaLA+RZxkUkXCJVdF7KwNRqbPLEXtuxFFSK0nRsJNJEYNZa9FUr5dRtSwMUUhWXlFgBFQRufcVUUQAh5FnEuHR9fiQkd2XpZGMpWaRYX6QEXZHQRFE2faRSVcd0bJRjZFEmQfRXAtfEixowNFOejgRzhueEemPpJFd81HRjaVmUXBkg1FNFgoRlEkaEVRfxZGzD+0RdOsmkUhr/NGZAt0RUKlxEUSORxFbmmURShNzEXbi7RGRSMXRp8/bUVPhCJGDpYSRoGbhUXAqyFF6fRvRQctb0XDGEdFSx0tRcXUAEbUKi9FDro0RV09REUSVJtF04ghRs2jHUULaIJGVBJnRhQDkkXeYihFx00qRmUZaUUj2oVF3SwLRZC3mUXRvg9FK6kOReYVJUVmMrdH0DoWRx5FCEbHL69Gj1+yRQkS60W26hhF/m8uRaP5C0UVnERFHIYMRdd0HEVfaGxFJecPRepz5UeyPU1HkPfoRntVB0Z2P0RFJL8ARZTMEUVgodFFuy4dRWQNPkYfWyBFDuYMRufNsEXflPVGpZBpRoEfJkZKnVZFSE9WRXn4iEXenMlF07fkRUVYNEUUIcRFlFX8Rd5pF0b/EDBFJu71RvOYs0ZQYWVFhTdVRjmlgEbBAu5FSDwURp0LfkUytAtGS6zqRX5ZgEWWI4RFHi4bRdOtXkX5OSlFcuoVRVjGHUYyKY9FUR8nRdzoDUanxsRFWLgQRf5YC0eu9PxGOKAdRvSZPUUJigJG7WXJRTusPkU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - JiR2Xm7BckAe0x/jDtJyQOw0VwpD0nJAf7mvHFDickDPR/Lmj+JyQFy9LO7I8XJAGQI4uM8Cc0DCDWNR+gNzQFS8lKC8EnNA8q9L/gQUc0AK0mF/OCFzQIz23WvKInNAuH0L+88kc0Ak0HTPuD9zQJHvCXl3QXNA9H9L43lEc0BR3NoWnVFzQAIYTNqiU3NAE2eZFzpjc0BQaAjGTHVzQJrUiq14gHNApg2iz6SAc0CSVazLXIJzQB4yBBtNknNA4zyULfeUc0BGtyQ8uKBzQCReNBNbonNA+g4CyQSlc0D+JvbitrNzQHictckNtHNAQslW08/Cc0Ao5J1j19FzQMTwKGX50XNA0GH6o2XSc0AqX5Zd49RzQPCjPFY34XNApQ+OEgbic0DcRHTVNvRzQPHvJX94AXRA0v3ohLoCdEDczV9lTBN0QOQMhs64IXRAraWV2CBddEBRUqLit2B0QHJDcjYIYnRApjYglXpidEDjasbE5mN0QJJyo1/TZ3RAtEbT3iFwdECrA4H3QHF0QKwBgc74gHRAaZQagE6BdEAjqOrNFZB0QP6hoVnun3RARIoU7A6jdEBzNv10w7B0QLzyiHxwsnRA2gFBDcrNdEBC2mfqzNR0QPTasQe34XRA8Mnp8IzzdEBgXhQ+XQJ1QOTmQwulAnVAf/r2AiQUdUBv+97gnCJ1QM7/k5V0cnVAUDP0kI10dUDI2um0rIF1QOxAY8Olg3VApGSgpZqEdUAKD0bZSKN1QCEY7fbOwHVAwGbYevjBdUDA8Muee/J1QB+sLKZHAnZAbkacupACdkCGi5+yiSJ2QKADDq2PJHZAqAqS3UkrdkDl5vpnHzF2QIYk+HwdQXZAZI+rtsdCdkDs+j9JeER2QChfcx8RUXZAii/IxcxUdkCKsmNJ2WR2QBAkl5/rnXZAiGZxjUSjdkAk4Y1mjKd2QKwI7RMMtHZAS+nXZs7OdkBtrJY1ARJ3QJQ4sRQOIndA5lIA1gw1d0BknvajnEF3QIQxhj+0QndApK7zDRtFd0DI+wbjSVF3QBHFB7ORUXdAbMsTySdVd0Ccm1XWJm93QBj+RfVsInhAJMuYdRBEeECSO45VekV4QAQ+eaXLUXhAerjXZIhVeEDqkbrcilt4QN38Ks74YHhAYJWNVrZheEAhYiGGi3R4QOyQEEbGeHhAPYISJfZ7eEB8vQp7I354QGBHtoKjgXhA4DRQn5mEeED4lLJZlpF4QPZ63BenlHhAcxzQGP+jeEAlNXJEouJ4QNkav7b753hAjlwzWwH0eEDoS+BvjPV4QBKCxQW2M3lAjV61gb07eUDpsuW5zFR5QPyf70oQa3lAckGjVcCyeUBibRjXqNN5QNqlP1FC1HlA4iTKkvsDekDvXCuRKzN6QBx8GjwMNXpAwXKCby43ekBIm8ijLjt6QJKtaigaRXpAWIKUUCZVekDy4ZmoI1x6QC7wcn3Lg3pAYM0r8tKLekDQpBR2DrN6QEocstgNtnpAdEcVJBG3ekDoSv98E7t6QCe1hJYVv3pAHsKOW//zekCqUu7aewR7QCS20FFMFXtAGkkLUVsle0Ci7gVrAqd7QPqhqIYEq3tAP24+sAOve0AsC7GnjPV7QF2JQsTZAXxAalvLrJoFfEDGMjRS0xF8QDZb+C/NQXxAe/dWRcWNfECUC5m9H5N8QAJG47wpl3xAMAi83XaYfEBSfEYrL5t8QKrslLK/nXxA004EYVnifEAZJI7rVfJ8QB4qK+RQAn1A1izaiZgDfUC+ttNdxgN9QC1HiGoABH1Anigno0QEfUC4YO9JWQR9QF5/WRUBC31AJWEbuaELfUB4iI1Uzwt9QMQSc1QFDH1AKdCMZUUSfUB4TjcjjRN9QJDsH7cKFH1AhsC3ExIcfUAUH2gzEyR9QHKKax5GOH1AMiX6sqE9fUDQ3IRtAKR9QChMh8GkpH1AXjyt7eTEfUAEx2EBi31+QGx8D0+fg35AFHt1KUurfkDAY7Hd/95+QDxrDZZc5H5ARAT6F7Zxf0AGl9gO6HR/QDUxd+1hkX9AoBvZK2Chf0DqnPSySCqAQAvh+KAcN4BARtlnIMk5gEDI+RefdjyAQKdVNEIhP4BAwgD4vahCgEDicA94r0qAQALUWCfoUIBA7PuBYxNRgED0BKPWDVmAQCki9DYqb4BAsDPesyh/gED3Rjf3XoyAQNS/ELkLj4BA2yA6QbiRgEAtkEZFY5SAQJC/VnMdl4BAsq+C+cicgEDGPfDmhKmAQFdjlT8Tr4BAlGRh2n6ygEDZqYAGobKAQB+tQGaFuoBA4qtiiRC8gECKpK2oZMCAQHAbBSxSwYBA99grP53CgEAZv7P4UsmAQLjrFC9M0YBAeuCwdEnZgECgTe2IROGAQJLbeeA684BA4hZ4qz//gEBYAqwZPgeBQEoq4XwKCoFAY9uVHQ4OgUAqKVUqPg+BQJhEZGEREoFAJx7KPTQfgUCGm+BQNieBQE4GjOUAL4FAxEjk7K0xgUBSNwN4WTSBQH+V9hMpP4FAlK29VbJmgUD+vAfyo2qBQHC9eX60aoFA/k3rBbZugUA69jROwXSBQNy9plBud4FAZQdeJhx6gUAESHpFPX6BQLNryKiUf4FAmpRvrlWPgUCnzDAr6aGBQBXsd/3eooFAwrpgJUqvgUAQKTXNS7eBQLaFqkcEyoFAfn+erG/MgUCiKJ8HscyBQJXTIzFdz4FAmN8I4QnSgUDuMFtgZ+KBQJ3mtu4a/oFAbmUs6tcYgkDU68zu1SCCQHH8hU/VIoJAoqPr9NEogkByBzIgn0OCQJLfesbVWoJAiOXr/UKJgkA6dAgSQ5GCQDB8G9SpkoJAGGKqGDyZgkDISK2FspqCQAoxCm0OoYJALt48fTmhgkBq1s2n68WCQFa5s3+c2oJAtCpIoLkKg0CtXLU9eRGDQOIi+5l5GYNAnm66NXIhg0B1y9PmcSmDQJCBWK1pMYNAWs13Q7OFg0BwLgUG/2iEQKib4InId4RApXZ/+nd6hED4SJHSJX2EQAzmQ/Jp2YRANtWdy2jhhECOFhy4YemEQPxkNps28YRAUooDX2LxhEBgrm4gSvyEQPZMG9zj/YRAZE+4+Hv/hEAcw/bQGgGFQMA2rC6TFIVAxr5HUJcWhUBqem4OlxiFQMIA69qYGoVACPqnI6BhhUBesaektWKFQN6rxABMZoVAKEds3LhmhUAiBvwtoGmFQOKsyAhQaoVA/tzyu7xqhUBc/WmqmHGFQEm2vBmWeYVAKySB7kCuhUDws3R9RLKFQBgkHlBCtoVA2qwT16fqhUDWEbtzywqGQG5+d+OQKYdAIegzxpAxh0DXIaACx7GHQL+MDx3IuYdAeoFB/r7Bh0AegMfJdcaHQBBcl6N4yodAJQHQI3zOh0BLuWwGdNKHQM6DQGKIzohATNclaYvSiEAsVpL0jNaIQA== + KBZXds7jZUA= - + - DT0ARl8cJEVd+QZH3puORSjvQEXTWUdF201iRcMeVUe/2ZVGG8DGRSV1ukb3TxZFIjjBRac4UEX0N19FdTpGRmkZX0VlXINFQsBfRc6rDUVMQuBG/S0hRZHuAUaIDFtH5R48Rq/74UX2PxBG/dQYRRizk0WxcDlFPc7eRROsJkVhK6lGZ3CZRQ7wskXrPeNFZ94RRS9PHEWu+IFGWpM2RfmAVEWM3ClFBMUBRyzkZ0U3eSFGrIg6RkhqhUUCpxxFiQ2zRRi7Qke3PiFFY5YCRn21uEW2CRRF7CB3Rd6HSEW/LEBFnX9WRZ9fEEWJCClFHDfBRY35mkWqGWxFjd4ZResjGUZ1EQ9FKx4LRvTY6EWEtBpF+EchRcMfj0XqSChFJv0XRSFIEUXvjLtFrt8uRlkITUXr4C5GsTa5RVPxnkZnNDtF0tkpRVaYXEUFgSJFE1c7RvGTW0X+4xJG3QHcRbEXBEVRzoxFRxM5RT4SkUau/5NFVtf6R2Y6kUYYmx1FUNXWRv7+gkXTIjtGqhASRUoGaEWvrJpFHPJnRTo3Nkb4uZhFPrBPRSd0TUVzJGhFdacfRV26TEl0kL1FkUmNRQoVdkXE8BtFDeVVSN+EW0XmALVGF8TfRZqYZ0UmIp5FkpDZRWBbr0VZ/cNGCALtRSaAk0X1nS1FKa84RWA7jkX+pNJFJ80VRS4xjkY0V7FHjz9SRjalvkVMILxGQYcCRfDNVEW8DkxGgXyERY+TQkdFmJ1F4SosR1v9pEYr6cRFfeCDRe2uTkVrnx1GZW9MRXyi1UVXp1FFZa4fRdxgdkZYRw5GytKMRZ8/P0VMI51FLmAqRxtt80bGtZdFkQwSRrF/I0XjbmNF+2+2R1sWhkbgKH5GWZ++RW7S5kVVGBFKA/t1RQw00kUFbSxF+uonRatzYEXZVJlJc7USRa37cEWMpLpIjZCGR+oWnUU4xXdGnLcYRk59m0Xcfh5Fi3dDRegZDUVLcmpF92cIRd/zTEVlDBZFy4J5Rc2JEEVNARNG0AdWRTpoLUXmwxZGeg7TRRmVXUWXqQdFBF1cRn9CZUX2ZyxF8P9QRhiyn0WQZixFK3EJRbYIgkfTw3RHiROpRkR17kU1zTJFsHPhRNZsKkUaibxFZOCORmgsaEVKpJdFG909Re5KLEVqbIRIcuUpRTMT6kfGo4dH2ClmRpMZf0XFtidF7lVPRiKfeUW5SftG4QWCRkFRrkXqrkBFQ2zXRpPLtEWXsdVFQUKdRQReR0Xf8PdFJzuURijetkUbKMhFFCI1RYcq3kUxdKxFhG8+RTU+nEXT4Y1FSg/JRZncFUW5ZLNFd4ouRjyvEEW0Mr9GFkxHRa9iiEZF4NxFh6oyRaQuMEWnZ0dF4h09RoWGnUVh32lFNYc0RSWoLEUN7gxFLvuuRwvTAUe5gfZF6qGzRjCaJ0UckapF34fORZ8mKUX1DElF634RRXZA6UfTU0ZH2HYCR7LjCUZPSiZFDkkqRd5AvkUbrRlGYOA1RjvwckW5IwBH6KOCRmWQBkawhINFAxA2RWvbJUXnR35FiWR7ReP89ET3pp9Fp3BgRYwimkWACYFFG78VR9sSr0b9gIJFur1nRpOJgEYq3BxFgnrARcxpHEYwG1dFRf0ORkJaxEXnywlFFdYdRTgmOEU2dCNGwme8RTOOA0ZMcZJFD3VNRUsUCEcE7NpGSPpJRuePjUUNgSdGapbQRbLrLUU= + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - buG8y27BckB0Hv3pDtJyQLb0NBFD0nJAur0jQlHickBHaWpLj+JyQMrBv23J8XJA8X8fic8Cc0DwXTxu+gNzQH6ctTq8EnNAP9k2XQYUc0CK+pJ8OCFzQPt8ygnPJHNAb3bzOHhBc0BCKzOpeURzQLpsTFmbUXNAktES6KJTc0By5acdOGNzQD6JrDh4gHNAiR/ggF2Cc0BUyxK2hZBzQCP9kCNNknNAzoJ0JPeUc0BaT3g2uaBzQMBJN2BZonNAGpUKPgWlc0CKizpNtrNzQCbpGZEOtHNA3ZZeYM/Cc0Aq6IxL2NFzQDqaJfz40XNAXIdp+WTSc0D/X0VZ4tRzQPATt5Q34XNAAA+Km3gBdEBIY+JxTBN0QM5pNcL4VHRALEXGEiFddEBEfnXMuWB0QKQL6ewIYnRAxl9qUHpidECG8KFI52N0QAjXHKLEZ3RAlREMANNndEBEkFEgInB0QCBkrPpAcXRAGE7c8TlzdEDc6K/zNnV0QANR0Nf5gHRAJZGSo06BdECko2XoFZB0QG582fjOoHRAqOzJDQ+jdED+6plRw7B0QGBwwZNusnRAFgmgDLfEdEDNGj8tyc10QCR1VGEl03RAWPgYJ4zzdEAOWirkXAJ1QP+eK1OmAnVAPG5/0CIUdUDoZ4eDnSJ1QIh0zR05YXVAksM8JnVydUAyHbETjXR1QLxpcHl4gXVANtFuKa6BdUCsXBcbp4N1QDh/gGtHo3VA2FIc/6OodUB8OzLPSAJ2QEpU5ESQAnZAYIaBMIkidkB6rWPNjyR2QKYG07lLK3ZAauyBOx8xdkDwAvCIHEF2QNQf3E96RHZARb5R2xBRdkBc053hzFR2QM206yySg3ZAZdLTk+uddkAYAgiDRKN2QNqILffAsnZA+NL+awy0dkAujlXbzs52QAXNCKKR83ZAISKrwgASd0CkLm28DiJ3QDRXDe4MNXdA1gNrh5xBd0AUralVtEJ3QLPqspUaRXdALAS940lRd0BwieoqklF3QGxFJFEmb3dA5vsd+dEjeECQtkitOyR4QGl8Iw4RRHhA/2N4mnlFeEAScoOQ10h4QCuOTazKUXhAS4J1zYlbeEA5scQjaXR4QKYliKGLdHhAiS1yrMZ4eEAoffjc93t4QGKi1UYgfnhAiKuH+6eBeEDymffSmYR4QEG1yk+WkXhA2s7zY6eUeECCWStZ/6N4QA6X+IMHrHhAcpf9mrbUeECUtgtsouJ4QCyn5Sz853hAaf2JPgL0eEBwI5/HjPV4QE/9KRe2M3lA8Cy+trw7eUCWVGQVxkN5QNwIodrMVHlAg02OHxRveUCYQCXPqtN5QJeKhrFC1HlAwmxFwfoDekAMKl1qKzN6QDQFP60MNXpAEsZbFC43ekBgjaz3Mzt6QN8Oryc4P3pAWBI9nxlFekDodox5IVx6QMmjvU/Mg3pAM2DbwdKLekConwqmH6N6QCJuLR8Os3pAWP0CBQ22ekCDzL/sELd6QPD9D1kUu3pAUlfU0Ra/ekCjUT+p//N6QAmKfgF7BHtACPv2NSoOe0CQ3rCoEhB7QKxNy3NMFXtAAhA87Vgle0BFWzzrAad7QDAaYXcEq3tA5iFsnY31e0CWKjO12gF8QNbGHxKZBXxA2VZigNARfEAQr99RzEF8QEmP39n9iHxAZkdrTsWNfEDyWgiwH5N8QJrEkXssl3xAosGXrnmYfEB8scrHguB8QN8VVUVZ4nxA78wEN1byfECI6DxOcfJ8QBZCPVtQAn1AWQouoC0DfUDMUbExSQN9QE88vDVpA31AfqkaSAAEfUCYnmGLXwR9QNgeZUUFDH1AEM5fZIsTfUD452q+ChR9QNzZ1VIRHH1ArAaKIBMkfUDuCYPpRjh9QCgdz7mfPX1A+qVgXflCfUDO+vdwAKR9QCGAkTWmpH1A4sotfwmsfUA4eD/lU7R9QKnUYXTmxH1Alq+c66DrfUDcsMw4iX1+QORFUNXmgn5ALBvUTJ+DfkA3CwLfSKt+QGzxBK3V235AeC2dYQHffkDon/26tXF/QOJPhzfndH9Atv3jx2KRf0BTOI5YXqF/QO60jJdVsX9AohB7CUkqgEAyALLtHDeAQGXNArPIOYBAMEmVt6hCgEBgv8d7r0qAQGLkLYoTUYBAHrY6DA9ZgEBGg1H3KG+AQAy+NfhejIBAZuYiQQyPgEAhsXLzt5GAQCRuJEVjlIBAgO9mSx6XgEDyH93CwaSAQMwiBBN7pYBAqj6NKROvgEB4CcFCfrKAQOYobU6GuoBARaX9QsC8gECW82AzUsGAQNbfOv9SyYBAIJ2kzEvRgEBm3trySNmAQOZQzo9D4YBAnaVcdj//gEDUBkyfPweBQPAAm6gKCoFA9pIyA4AKgUAcaRbGDQ6BQFVl2mM8D4FAMKZY6BESgUA0m0A+NB+BQL9CWFo0J4FArFlY1AAvgUAc+w0LLy+BQLZGfzGuMYFAGGGL4Sg/gUBESZSVsmaBQKjuWt21aoFAWNbAbrZugUDyKjz8wXSBQNpbSO1ud4FAmoUpVRx6gUB0kDc/lH+BQGqScmlVj4FA+OybnlSXgUAU+qdA56GBQBqf357eooFAFRsA2kmvgUD0qvgxBMqBQLB/lpZwzIFAoP6LUrHMgUCkyuhQHM+BQJQdb4Zcz4FAPr8u0TjagUBo15/aaOaBQF8mIFlz8oFASBprsBv+gUDLGmhalAKCQHdxZ9LXGIJATYD80NYggkB4CePh1CKCQNFKGBrQWoJAmYVUUApegkDGvAtpp2yCQC7q46DOdoJA9spZ7UKJgkBUzur1QpGCQKraPTKqkoJAj0Wr+DuZgkCkeQwuDqGCQIoeIRk6oYJAFjPTL/KlgkAaZEInM6mCQAxbsnLqxYJAb5mHGJzagkBKEZcqn96CQGGAO4S4CoNAdueQT3kRg0D+luS2eRmDQDMpHXhyIYNAmC6ukXIpg0B1OEH4aTGDQAi1D9+yhYNABBuyHv5ohEAzoFRi/XCEQCyDP/rJd4RAnaMW4nh6hEDsfLeYu3+EQJ1hJCZq2YRAH6Z8CmrhhEBMabOOYumEQHN0u4E18YRAoDHfLmHxhEB98W37MfmEQMYK4vKq+oRA7UIIWUn8hEAMyf9A4f2EQGNlIZiVFoVAcIXuJpgYhUBfZlFYCxmFQJRooBWgYYVApiY0/bVihUAxBZjtTGaFQGLv0Xe5ZoVAsc2jfaBphUAgIQvyvGqFQDjj5/KYcYVAJnrDhph5hUBQWINCQK6FQFvWWVZDsoVANeyFLMwKhkA+wd87ibWGQPsiLj6RKYdAzGa0NJExh0DygtP9ijmHQCzZqoDHsYdAoNnFrMa5h0Af0ZKvv8GHQJt9tMV1xodAZvsrqHjKh0CE8EcBfM6HQMyMKal30odAiPdM8IjOiEByaqqVi9KIQIxvLyGM1ohA + NrgMGZxjYkBUZ6VXTIVuQIAj0Oo3pG5A3mIk4HPickA5Cx9LflN1QGy6cP9L83hAx2JralZke0DKPVw7/YGAQMfe/1G3yoBAW0Ld0z46g0BY44Dq+IKDQL9vp/DKUoZA7MMkJlCLh0CGm00AN1uJQLPvyjW8k4pAQhgpK+hbjEBNx/MPo2OMQBTzmR8PbI9AQkcXVZTkj0A= - + - fr4ARkN2VUVxRxJH1CloRc32hEUz2mRFLqiJRZds6EbB6YdGwpSKRTaLiUad3pJFmocUReQ9AUZAJl5F8TKDRQPIGEWEpapGZraYRZ2sBkVsyy1HkQRBRnA0zEWxmcJFAQ0XRUuvLEVBtBpF21/nRZILEEXUqjdGCfiZRYEohkX1h7dF/s1QRpmSJkVYRfxE4BwRR5UAJ0USpJdFWXSJRgEpukWuq4xFJp+FReF6k0VsWixHvzQqRTAk/ETR1PFE74/aRSaqsUUKnzNFWj0aRfwxFUWLXGNFtuEVRXixhEUblhBF6y23RS0KmkV2EIJF3HkCRe/rN0ZZ7SBFczkERSteBEZmVA9FNv6IRbANLUWDunlFOMFHRclamEUvWwhGsOdLRYb8+UX7QItF5JSYRt0rh0VyWmxF+x4vRX/ZOkbmygNFkecSRtHusEWGpSJFtzhnRXugWUVzPgtF3TeERvvmSUXpzN5Hzfp7RkKTGEVZp6NGu9mSReVFLUZnsyRFEcUeRdL3/URYki9FJEQjRl89aEUG/G5Ffu59RQ3h6UXZGDVJcB/mRUxdpEV+d9hFiNMMRVN1NUh3lmxFZ+KQRllSEkbL2mlF+jc4RfyTAEZGzi5FBBGkRQ7Yu0UNFr9G6Yv4RfwDO0WRnXdFfBUJRdA/B0UEUZ9FZe9PReAuakaE+ZlH/6ZgRnwalUW05QJFi+6BRiDHcUWvwiVGqIRURfJj90Q91RhHwI+fRSwfJUfOUIRGpnKURVeElkX/j0VFIJEBRQRDB0W6iu5FmFw7RdCDcEWczWtFLLlVRg/WD0Y1JJxFuzI1RQCUiUVzdBVFQVciR1TS3kac6JlFg+wARg1+IUWht4xHGdRNRupWMUWKflBG9r4aRU+KTUUzvX5Fc4kMSjXRd0V/eZFJXyEzRWsct0i1GIZHB5/ARbSAdEau4gJGNAgqRUOw1EVdrkhFYCYSRZ6/CEV6CmhFDdIoRf7BXEUGMVlFg/eNRY/tJUVbnidF57Q0RY5fP0WIIhtF/acbRhC7D0XtjjJFOOQGRZtdIEYcg/ZFfKUyRr2qHEVtGzFGzkaYRXTcLUV9+4RHYIBCR85GjkaJBOBFiNUWRfQHpEXfdxFFc1fYRQ/xi0ZuhotFYMAfRaolYUih2MJHh91MR/LuMkZfuFVFwfNYRq93cUWGnZNH1pASRU/yIEfKYl1FxG4YRhLm+UaTs9xFe+YVRnxYPUVHVaBFFT7RRbpLcUauhPRFJo0SReOpBkYe4M9FgsZoRSj/B0XPicxFCAovRX2VU0UeIJVFkMw1RpW7okY89VVFbjuaRkMRIEW5AqxFSikKRUZmGkUdl0BFO3gbRTwLJUWHxzhGicZzRa0wfUXxWg5FE00ORc1eDEX0UCRFk5S+R3BbGUdLTqRF21TWRspYnkXUNMJFmNF+RaXyL0W30zJFDYl2RQdVIUVwyEtF4XjNRyMePkcusdBGkh3uRUQWKkXXyRBFA1GNRRPiP0XAAAVGdXLlReH8BUWYBQpHh8JURhWwH0ZRaWtFoGMyRYM280Q2rQtFx0dbRclVvUWq8ppFVGaHRVFucEWR+t5GXIK3RhPzukXRH2FGkihrRqOHe0UxeBRG/i00ReUFC0aujrhFkL8jRYDsBEXpniBG+c7IRc4GREU59vJFceOZRbIBLUVNZtZG4gSHRvKgAkZs6oJFdvbWRbRApkUCrTdF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - GuCSeW7BckDdp9hRO8NyQFcEFzkP0nJAxNJmCkPSckBO3h7wUOJyQDOL0NSP4nJAclRcscnxckCMR4kG0AJzQKGNmnP6A3NAZpx2TLwSc0BYY0NJ+RNzQJjCI5V5H3NAdpmJrzghc0BMksKRySJzQC1UPrzOJHNAJsgni7g/c0A9o9voeEFzQM4TGHZ5RHNAFAuzU5tRc0CwSIBxo1NzQO6giuBMdXNAiqS2f3iAc0Dx1lqeXYJzQIDLB7uFkHNAsTSFGU2Sc0Bacfif0JJzQBb1Sdb2lHNAmhRy/regc0AfoGkXWqJzQKuJ1YUFpXNAbJ/lbrazc0Do5k2nC7RzQCaxG7PPwnNAfGQmR9fRc0Dw86rp+NFzQE745c5k0nNA1ZiJLOLUc0AS4XD2N+FzQOqzMY14AXRA0E0ZdbkCdECAxR5XSxN0QGeZoC4hXXRAIIi4I7hgdEBmJPh+CGJ0QPyHlSJ7YnRAQCVEXudjdEB8H3hrxWd0QEbRCALVZ3RAXg7gNCJwdEAvvqcGQXF0QAAJ0Jc6c3RAwlX5xfeAdEA4R08XToF0QC6b/EYWkHRAXJbRU8+gdEDQVZDtEKN0QK03BajEsHRAMFkA7m6ydEAVZTmk/bJ0QEpQFP3iwHRAZ7dexsjNdEAht5STjPN0QE6CfKpdAnVAXHUwHKYCdUDO7zZEnSJ1QCQtzI3LNXVATJNp2TlhdUDsraJ0jXR1QNYN8At4gXVAnD7NYa2BdUAC6b6ApYN1QI2ZK9BIo3VAQKjMlaSodUDqboP+RwJ2QBt4pPOQAnZAhgXymYgidkCQC3eOkCR2QG7eX21KK3ZAuNcaiB8xdkBSJSY6njR2QPqfjNQdQXZArhCK4XlEdkC7nZF4ElF2QFS1TEzNVHZAiZzS15GDdkCEAbGC6512QJaKg4hFo3ZADvV5uAy0dkBG9JQhz852QB/nvnoAEndAAvwZhg4id0AkMs7uDDV3QLCwZh2dQXdAqQjogBpFd0BMC0dTSlF3QAKP76eRUXdADbjAkSZvd0DpIaHgbSJ4QKH0bFg9JHhAx3iH+nlFeEC+/RLf1Uh4QL4FCD/KUXhA1eMZGIdVeEC85JVyiFt4QHBDnzb5YHhAD2StzrZheEA/hRG9Z3R4QLrm0quLdHhAkOTaf7t0eEBCOS/sx3h4QHx7JAL2e3hAQM/gGyB+eEC8m4kzpYF4QILmBtiZhHhAiKbjjJeReEBmKMDqp5R4QPBGpfX/o3hA8n1prwSseEAsyRD2ouJ4QKLM/aX753hAAp7Q3QH0eEBKTpSZi/V4QPaqtOS1M3lA1Duqtr47eUCIxLeNzFR5QCb2uQcMa3lAoq/9ob6yeUBIVs/dQdR5QBIiWDv8A3pA1qbHdSozekCqCi5+DDV6QCnmf9AtN3pA+luW0TI7ekCgPH0SGkV6QBcMknAhXHpAhJ0Ox8uDekATZkcc1It6QLYIhYcOs3pADjdKEA22ekAirI4GEbd6QLQta4cUu3pAO/9NT//zekCBwUN0fQR7QNQeF+UTEHtAov9W10wVe0AUfEo/XCV7QG/cny8Cp3tA8Exx3AOre0CWaZWYjPV7QLz5dm/ZAXxAJEgpvJsFfEBGOuhU0RF8QAWK/6DOQXxAhtKzkAZzfEA6XhINxY18QODlUWIfk3xApOjKvCqXfECgmcL3ZJh8QI6tNkh/mHxAJiLOGC+bfEBsqmOww518QBset5KC4HxAXt2GIVnifEBjvl5rVfJ8QOQL76ly8nxAlIvWSFECfUAQaFlzAAR9QNJ1Eiw+BH1A2vWPh2gEfUBfe11zqgt9QFbUO9y6C31AD85lmQUMfUDK938ORAx9QOaszDttDH1AlIjrj4wTfUCa+RXgChR9QGpNF8oRHH1A/sHPyxckfUAZW3ccljN9QOTziNRFOH1AltXOvKA9fUBe2hOd+0J9QNF9gZQApH1AOER9B6WkfUCsKp/6B6x9QEPjki7mxH1AYBmsr1/IfUA0S57xPC9+QIbNcbqJfX5AyzT/J+WCfkD8gnbZnoN+QBaq98G6mH5AVk5xcLucfkCjFUDTSqt+QMKPvAHW235AmF2eq1zkfkB4b8h4tHF/QKa6RfRhkX9AX2sCspWTf0BgGY5FSCqAQBwdvhMdN4BAQ7Z+wsc5gEAleWhmqEKAQE5LumioTYBAlMgueRNRgEC9L6UhDlmAQATVh89ejIBACqx+NgyPgEBjIvE6t5GAQGEQpF1llIBAbO1GDB2XgEBKYfgiiKmAQJpRzFwTr4BACif9jiuxgEA0AMPffrKAQBhp2kiAuYBAJEyW0IS6gEA68T8SvryAQILA+DU0voBAVg8dMlLBgECOO3g9Y8iAQKqv/ctSyYBA6VPE7UvRgEDADhU4SdmAQK7FX0pE4YBAFo5yUT//gEBA/Kp7QAeBQD2cxXgKCoFA8eCCdQ0OgUDN5zevPQ+BQLR+oF0REoFAYuDfHxcWgUCipTZBNB+BQPOS7mk1J4FA9o3pRwAvgUDz2WJmrjGBQJjlR1tbNIFANrH51yg/gUCoz90ssmaBQKaEJFK1aoFAO1tPjKdugUClQH1HtG6BQPBzzXHCdIFAtPkm1G53gUAETVQFHHqBQCwcz05Vj4FAHljwWlWXgUAieEvQ5qGBQMqKxt/eooFABOA60muogUCVOkDgSa+BQNwgPp8DyoFAPlwo/LDMgUAH57GaXs+BQB5L//g52oFAr5AM5mbigUAqRr06dPKBQLDSWIkb/oFAA60zHpQCgkBB+lru1xiCQGh6wFTYIIJAyMVcpdQigkCG3jY+zyiCQBJXrA+nbIJAWKBE/EKJgkDYWuEnQ5GCQN6GEQ2rkoJAdfApQDyZgkCQlL0KDqGCQH6izPg4oYJAMtuW8jWpgkDki+Wxm9qCQCKIjm1v9oJAUf2bRnkRg0A8HDmPeRmDQEULIXNyIYNATnC9Z3Epg0CmnY55SYODQMAezTH/aIRAzT+Xb/5whEAFnnRpyXeEQO0/1hp4eoRA2z1s6iV9hECmcWfnaqKEQC+yMg5q2YRAI85THmrhhEB8w3xBYumEQPHrWE418YRAwsj4TWLxhECPS4ynNPmEQKaxMv3lDYVA3coQLZYWhUCrTpmKBhmFQIq8OjmgYYVAXETC/bVihUB3JN6RTGaFQH42nWC6ZoVAJywBMaBphUDEixk2TmqFQPgBo2G9aoVAwmkUcZhxhUBiyNJMtHOFQJYQdKuYeYVA+JlUtkCuhUC2SF+MQ7KFQBKD6F49yYVAEIs9/tSmhkD+edsWJ7mGQM+L6bKQKYdAFGO455Axh0Aeo+56iDmHQD31vRyKQYdAcglJscexh0DKCf4RyLmHQMCBjV7AwYdA+Wcyu3XGh0C8+ShAecqHQKprjd58zodAnsONBXXSh0Bg8Frnic6IQAaSApGL0ohA1v3hdpDWiEA= - - - - - - FwwbRrjwG0U/FCJFA9P1RjnUj0UDhMxFxstfRenokEVshy9H/M+7RufepEXBTxxFrs/IRjYcOEXZvd9FBFVURSUAhkWA5idGa/SDRXbTo0XBMzNFrcj1Rogv30WwhRhFsa5kR15KLkVgS1dGSknRRfeHC0Z5ORxFAJ57RTQjMUVuIgJGW1FqRbqmAkbPvvlFBYazRY2ZAUZjGFZGacMwRUn2TUVdqSdHYrejRQX5BUYIE3dGvgwCRlg0YEWYtXlFzf19RT55UEcBWDJFAHw3RXOHAUZsztxFgokdRcV+UUXCGz9FbL92RRxyEUXoWPxErkmkRU5Uq0VDlplFCgqIRTRNIUYDkRhFChIwRQJcL0aSizVF1BTPRY5bVkVcYN1F83A2RRfXpkUjrlNFjWFkRTAiD0ZZXZZFeq+pRmAGDUVis5BFV/moRfayQ0WCfjBGzk4dRbVnREbiAtlFcNiSReEcXUXZ2opGsH9YRRe68Uc4koZG7nfGRju8pkUCSEdGA8FSRZqZdEUR9WZFVD5nRvk3WUVaSoxFH918RYxWeUUC74lFYAY5Re+6pUUEY1NJ5/KgRTV+tEXiA5pFuPLqRTClJUU201RIP955RaAmskZHrEhGjSiQRVc4okX6IzFF1yyDRa2Z3EWWsqhGz+zMRWr3XUVI80tF1CBRRRh7EkbxmYxFWk1tRuh+wkf58SVG7J7pRYGtz0Ymoh5Fd6cWRjagZkUg02RH/0rFRa+JD0eqWIxGqDmjRQrXYkWSp1BFqMkgRnMHNEWvhlFFwBpvRfaLnEY/VhZG1yiMRXzPhkU8TqBFD/8+RdXMLUcpcuxGaGqrRSWPsUVTimxFSq1HRTN5e0WFm8JFCRuyRx+ql0aYOkFFObdFRjU4EkpTcztGV2SmRX/1h0UDuUxF4s2ZSTGyw0Wn8zFFzJmERT1it0jOyXJH5OqSRTx8FEXIypJGaScoRvuPb0XcatdF0PetRfKZTEVg141F9aQORbH6E0W/czFFTx2FRdFujkUlAQdFhuhWRb6zIEXO3ldFd6YWRXZ8gkUOcuBFOsIWRXABcUVRy8RF/O5TRcQEbUaYoytFb3B9RhT8m0UAX5NHa4teRxxkuUbFysJFtFMxRRkUCUW8EdZFbz8ZRcTdj0Y74iNFBzx/RR3iLEXe/klFJMCDSMPyuUUSF+FHBBhqR5oOOkbxx7NFg/51RmtmbkVLQQVITK+XR3mrw0WU9apGQ0R8RQnlCkdPfclFc0QIRusapkVFzhtFwc3SRclPTEboPeRFld0SRaRnC0Vf+y1GAYbSRZWzqEWJadZFYCsnRbGmZEVqg8JFmfAvRdj2QEao5KlGJGukRpFwAkbuJiJFYTV5RU7uOUVGUWdFToSTRdEnPkb5UjNFfBJaRXPLIUXZyghFac3CR4RiKUfGrixFdgfdRv/JoUUdtONFEK0/RS5Eg0XciytFxObeRwUMOkfnleRGv4wXRtoNF0XsaLpFqCYoRSfkDUa58gJGZzWJRb+kEEV5XRFHaZVgRgX+EkZZh49FHpllRd97O0VhODpFSys0RTP2OkWYAgtHlFCvRgpApkVh+FhGmhFzRn18QEVuytdFHrIeRuOYDkVu3V9F7DwaRmaJzEUk3AdFtjcqRUAwBkVGKBNGCpTeRa69XEUVWRhFIIwoRo8M3EVZ2xNFzmvjRv0qpkYmTLtFZPw1RfDCJ0YbbrFFq5wZRQ== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Wkd8v27BckD928spDdJyQCcAS+dC0nJAurxPPFHickDqDpmGj+JyQAGdgsTJ8XJAdI9UJ8H/ckCIOd1O0AJzQLNGnoj6A3NAEh0w4bwSc0DbAZkR+hNzQFdb9LYDFHNA7ZJWrHsfc0Dfql/HOCFzQKFzVlDLInNA3rBPv84kc0BIBoUgTDFzQGkRZeC4P3NA+sn7RXdBc0AJFdENe0RzQMASN6ubUXNA7j5jkaRTc0Aqs1lbOWNzQLCrk7pNdXNAxFU7f3iAc0C3sxvKXYJzQNOfitSGkHNAE+GNYE2Sc0C2pNSa95RzQPJH+f23oHNACFSG8Vqic0CboGSztrNzQDH6sLLQwnNAUx37uyXDc0AdKube2NFzQFbtMoRm0nNAZmh+XeLUc0CYZR15OOFzQJB7SBF4AXRAzoN9MbwCdECU0KxNTRN0QO6eDImJK3RA4C++nCFddEBMN8Uvt2B0QF/FWAsJYnRAfgOihXpidEAsC2iC52N0QGjsaIPTZ3RAxex6KSJwdEA7k/SDQXF0QDIDFbf4gHRAmpyW106BdED3uQzPFZB0QGwP488Po3RATqnoP8SwdEDK2Sy9brJ0QLZihNv6snRAZFbVvbjEdECHq8JUyc10QFSHlXEj03RAsdMDTIzzdED63Od/XAJ1QJAlP36lAnVAhnoQ450idUDzM/UyzTV1QCP4oO83YXVA9cvOKo10dUBzV3wneIF1QJAaSeatgXVAow5hjqaDdUA2XWMnmoR1QIjOWe5IAnZAa2dZZ4gidkCSTMcNkCR2QC4pnrRKK3ZAXNs+0x8xdkAmD+dsTT52QEMC93AdQXZAAGssCXhEdkASB4OfEVF2QJ4E+WPNVHZAbkV2jttkdkCeUDnI6512QCx9ZW1Fo3ZAygoDpwy0dkCDu2swzs52QHDQupuQ83ZACCNH3QASd0Dda8wdDyJ3QNYRyOcMNXdA2m4LC51Bd0Du1RsjG0V3QPUmw6BKUXdAp8+vV5JRd0Bk9KqyJ293QH6q3dmu13dAyod0A24ieEDyE1dfPSR4QFixVtMQRHhAjJjnPHpFeEAUe23p1kh4QK1WZoEvTnhAln13M8pReEDgh28WiFV4QHNW46n4YHhAeIX76bVheEAcsOKMi3R4QMd1sB2rdHhA/jdznsZ4eED4ADb89nt4QOeDAqQgfnhAR04R9JmEeED+w/40mJF4QNAhSpynlHhAaJGZJ/6jeEAbHgbkCKx4QD6RBQLLwHhA9cws5qLieEDMcloz+ud4QIQTfXkB9HhAxhNKtoz1eEC3c1SZfBN5QBotdNK2M3lAWskFpr07eUAUqRJUzFR5QEB0rZQNa3lAFGMHpL+yeUAUoxzEQdR5QIJsLhLO1XlAqCNrYPsDekAFZ+RmKzN6QEaQIpkMNXpABb2CfS83ekCwta7uLzt6QANg8kwaRXpAlmPswSdVekACFO5pIlx6QA5kMVnMg3pAivlL9dWLekACRrujDrN6QOTB4OUNtnpApQtMoxK3ekCcZwrKFLt6QMQmY7YYv3pAAHZxPAD0ekAThLPOfAR7QIkKJ6pMFXtAbhNr4lsle0D0qCB3AKd7QK6bEVgFq3tArjqlcI31e0DOGbhJ2gF8QECQHM6ZBXxAEsUgn9ERfEAGKrrbzUF8QOAgVMADc3xAegJLmcWNfECoYFAWIJN8QMYxN9Qrl3xAXomkcXqYfECeXldRKJt8QNh92mu8nXxApUM93oHgfEAo4gtHWeJ8QDW18hBW8nxAIIPHiHTyfEBs7HadUQJ9QFcWbeOYA31AFo64oLYDfUDn5/udzgN9QFhI828ABH1AW3skvD8EfUCO5SD8aAR9QOw+ic+zCX1AhGgjk9MLfUDyy+N1BQx9QPzNYxVtDH1AhsAtaIsTfUA4UXLbChR9QJZ7Pg0SHH1Agm/TWhckfUAAT0UARzh9QJpC/iehPX1ASiqqQvdCfUBHCyg2AaR9QD+iFOelpH1A4BqPdQqsfUDUymTaVbR9QOKV+wDkxH1A/pymZKLrfUBu4q0Ain1+QIw9HpXpgn5AX60gOZ6DfkAFzHNVpol+QCKGVK2ni35ArmBdctfbfkBvokLNAN9+QGK/w/W2cX9A/kdhVeZ0f0DMnID/YZF/QD5W6CfsKYBA9k1Qghw3gEB+9E8wyDmAQB7g/7GoQoBApVsyKrBKgEBKe+m+5VCAQB612ukTUYBA7Mc1hQ9ZgEA7E5VxomeAQEy15EYqb4BAiK+R816MgEDyJ9bDC4+AQBgvf2m4kYBAKtZDlGWUgECkV7nqGZ+AQFa9VEsTr4BAV6obu36ygEAIK9MIhbqAQDsdG2wDvIBAlrh1S1LBgEAYIc4LU8mAQOzC0DtM0YBA+naBoWDRgEDeagC9SdmAQNaOhzNE4YBADXaQtGXygEADdmDGPPOAQAa+/4g//4BAlbSngkAHgUB6fZB5CgqBQIsV3XoNDoFAtjDvSD0PgUBvSalZERKBQBHUV9UGFoFA4vxYWRcWgUDWQRsCNB+BQGNjnLczJ4FAWn1JGQEvgUAFYhTirDGBQPoJtyNaNIFApNkDkig/gUBuCCOtsmaBQIy3fSO0aoFAEhfVV7dugUA10+AOwnSBQLdPhNVtd4FAuJ2Zuxp6gUAGuy3ZVI+BQPqlrwBWl4FAOLFwtVKfgUDgYTPR5qGBQECt47ffooFA2OhzjGyogUA0UutrSq+BQOuHLAxLt4FAf9SQYQTKgUBl6aRescyBQFo0jzEcz4FAtOMSKF7PgUAika5/ONqBQOnGx0Cu3YFANsBXCGfigUCrF1e1dfKBQFKnJOkc/oFApl28k5MCgkD6YZvn1xiCQF4gjlrVIIJAsl8GadQigkD+96ml0iiCQJy2NVUMToJA4tBw2p5bgkD3G9IraWiCQISUaSZDiYJA515Fh0KRgkD2lziwO5mCQILSe0EOoYJAr53fmjmhgkAe8ZQ896GCQHqdHtcyqYJAMIw6e5zagkCueZSREwqDQAS2N4O3CoNATsnK5bwOg0C8wX1meRGDQGK8PhF5GYNABCxOx3Ehg0DkAWHLcSmDQM7y+4RqMYNA9w+qdfRtg0DkpL49j2+DQEchcvL+aIRA5ppDuP5whEDYjKdKy3eEQJzEKVd2eoRAxj5vPyd9hEBlvMTuadmEQKpCDklp4YRArBmMZ2LphEBp0jFBNfGEQJZ/d9Rf8YRACXPruDb5hEDUbLQn5g2FQHScGu6fYYVApJTuALZihUBOqKx9TmaFQDli9T25ZoVATcqOUaBphUAEb083T2qFQLYSi+a7aoVAhMDZzphxhUDwRN4hm3mFQIbG8K9AroVAm2gSIUOyhUDG/z+zzqiGQODLabTLqoZAmZZsVJAph0AAXT28kDGHQMqt+a6MOYdAjF1Pscaxh0A8lJuEyLmHQOIzICq/wYdANWw4K3XGh0AoU490eMqHQOxItI18zodA9LQqOXnSh0DUDHn5iM6IQIEBdfaL0ohAZ6UU2I7WiEA= + KBZXds7jZUA= - + - EK/uRa9NEEVwHQNHMCZwReI9oEWqIFhFc68fRSP6cEVFXSFH2rDaRmcdlEWVNJJFITQdRftWokYwMBBFfRSdRdSe20QNFBJF1Vs+RR4NAEav4R5F2t2oRQSiEUUgOQBF9PCsRhxW20UF3RtFDAtGR3b7MUZzBPVFkBjrRY/ZS0XmiylGWMgWReqAKUXnTJdFfCSdRVi1/0Vfkm5G5MZQRZg0hEWKhRNFHlMIR+EDPUUrigpGUQ+zRvR1i0W8VFRF/b6xRTPWREe1XRtFnSnbRdpapUWPt01F8WtXRS31vUUrYxxFBk1URTKWkEU5AiBF74S1RSfVlUW34adF4tovRuu8A0VA6iNFybIURrTdB0WJV9FFM+o7RZhFE0VurZxFeYx4RbEU0kUowaZFhLapRgW+DkUvoZhFQ9ZcRbVqF0W82CxGyGgPReklXEYyz9lFGV69RaOZe0V+PSNF+TKTRkxeTEXsyexHK1SfRjbtxEZJEZdFpzxeRvuAMkUJenNFvpGNRako3UUP+mpFZYpERgHlGkUr3FdF9/enRVcJJkU9aI1FGz86RcERTkmr9rdF8S8pRijSZkXwm21F8jZISNUmeUUT/51GENHrRUwaLkVOIxVFQl6rRUMNLEXlipVF37AGRlkvNEURn8RGpwsKRpIvikVIYDtFY5M4RZPTqkXDJxNF8zsPRRrBW0ZjR9ZHMKUXRsDGn0WC6+VGU3xJRb1SZEVpqB9G0lgVRT0HNUdDu7ZF34TWRvW9TEbVJpFFCuVrRTuIRUVuaSpGPrQlRQU1fUVInUdFMYWJRqStDUZfboBF7I9CRfSel0UBVlZF/a8oR/uaxUZp3IVFOwLbRUAG9kTHhSlFTX67RdrVrkduyYFGFdFaRWspaEZHSZFFHpPzRaYMNkZsUQVKdQnKRUCXk0UW6ghFUFGsRRxMiUl+rBVFb8N8RVuUrEgFNYdH/SjwRVnak0b530ZG0ONnRVrUD0YQZItF4Gh7Rd6DC0UiljFFrIwzRTUMdUVO7RdFfJl+RdCzK0V97kVFYLoHRRdNTEV725pFPekbReLWEEaGgBNFn7OLRU0Ii0UWMVZGVQxARSPkJEXsyU5GymGwRZNk/kRr8RxFpMuKR6s3WkeInrRG6rO+RaShBUXzhxJGjJM/RsQhFUVzXBFFotN3SIYg0UeCd3RH3WaHRaeeWEbJWodFxtL7RP6qI0WXC0hGIexYRZHDYkjZuQRIhI6lRfmI7EbxSw1F1pVyReuKAkdBa9NFYTxuRV9Zm0XTs2NFk4UURs9sX0bVD8JFK3BjRRyRDUbOtdVFpqFFRZL7+EVat0pFRLAWRc2aMkVGtaZFjscLRWTtNkb4iyBFwhe9RrJRqEaYRxhFI4bXRYDEN0X5ZUtFqsBgRfyNGUW3QfNEdtaGRc0OMkZOkGRFCyc0RbwFJkU3pxJFgrJsRYlaJUVqVbpHZ64URzsB1kbuRbBFgpO1Rfi8TkWY4zZFtzwtRYnfRUXEjV5FH1v+RKal00eUIS1HjajKRny+6UVlXUlFeiBiRS8MMUVLROFFN6sYRTF8z0U7BKRF309LRZsu60aGa1BGj0MLRhtagEV2sltFQ5cfRRaZo0VM/eVG7nm2RrwZS0VsAy9Gjrt1RuScQUU3OlVF9j4ZRq3OVkW/zfxFONxmRY7zF0Vb+B9FhssWRgQ5sUXO9E1FBIgnRoMjrUWX8x9FFpGZRj9da0YIVktFIBz3RHBe6EVwKO9FyM13RQ== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - jtvOoG/BckCSkZ9sO8NyQKhoUGcO0nJAFolqn0PSckCx7mVzUeJyQLJSLt2P4nJAIGBd6cjxckDEuB1ntvNyQCcUaqXQAnNAegR8dfoDc0CLhpIivRJzQNCUvJMGFHNAnIqCmnofc0AYalEsOSFzQC5xITnJInNAHl0yH88kc0AeysJ8uT9zQL7Ljyl4QXNAxK8BD3pEc0CW7vMgnlFzQERB6kCiU3NAF8+4cYNUc0Bqjj8UOWNzQJAhWf9MdXNAJ5YJ8HiAc0A9mORWpYBzQCg/Hj1egnNA7o2LCE2Sc0Akc2iH95RzQNiRai+4oHNAlY5QfFmic0CPxayfBKVzQGxN3uC3s3NAtyFCh9DCc0AoQc532NFzQHDZZOFk0nNAFy5xY+PUc0CHqPErOOFzQOhYwRl5AXRAlIqkWKQBdED2rgKYTBN0QJ4F1or/InRAcv50XIgrdEDmj5EiIV10QC5kRHO4YHRAPg1ncwhidEBq4y9me2J0QBKoRBfoY3RA6IHrHMRndED65syn1Wd0QG9w6jEfbXRAblOp7CJwdEDYVnw3QXF0QLSNwLE6c3RA4gEkdk6BdECQ42TTFZB0QMK+I43QoHRAXUt4dBCjdECyxH8qw7B0QJLJYFpvsnRAkmQvwvuydEBL0CW5yc10QM8sCVrN1HRAsIy0/bfhdEBe0hIsjPN0QGQhj0NdAnVAeQ2FUKUCdUCsBCSdIxR1QD4N0PKcInVAlkFpMgwzdUCECvzHyzV1QBYUF5p2VXVAQrwg7Q9gdUCGaWRzjXR1QGD31fCtgXVAKrjqUaaDdUAjt5OnmYR1QB2aPSW7kXVA62UuRT2TdUAJ/G38SKN1QKx4euykqHVALEr8z/nBdUC6mPu4RwJ2QEAbCBGIInZACZJU9Y8kdkCSSDd1Syt2QBxyHqQfMXZAIjwEklIzdkAwR6ocHUF2QHobfkvJQnZAVrddDnpEdkCyHkZZEVF2QG9pcWnNVHZAsnqslNtkdkDqkb5EkoN2QJTgtQXrnXZAQMxHwUWjdkBIlWIJDbR2QGi0APbOznZASmt1q5HzdkCBaV7VABJ3QBoQPxAOIndAWMGIAg01d0DYoHWsnEF3QIiaz0AbRXdAaTJYXEpRd0AWsz6QkVF3QGA/YQspVXdA7J0gK5Fhd0A+f2gcJ293QDN/z9/Rh3dAikvbY/6fd0DzK+oCsdd3QHJ0WYII3XdA/8yMMW0ieED0/NQLPiR4QBAMhe8RRHhAklwZ/nlFeEBgn5iX10h4QII/qpguTnhANZ8WZspReEBUWyBvhlV4QMoyKBD5YHhATEE75LVheEAE8rZ2i3R4QPbsf5/GeHhAOgU9kPd7eECugpSgIH54QDC0unGlgXhAckFXHHqDeEDswanzmYR4QMyqiiOWkXhAfXg+/aeUeEBC0Gpo/qN4QEaTT4oGrHhA+IkcqLbUeEC2cajroeJ4QD4Z/IX853hAQ57jTAL0eEAk4dBLjPV4QFWALDh/E3lAgPk81LUzeUCuHORMvTt5QFvQKgnNVHlApEyh27+yeUBMFWXqQdR5QOX6I4D8A3pAmohk3CszekCnZsZsDDV6QKLSj14uN3pAyxfMnTA7ekB+9yc2GkV6QMbgIlQnVXpAaJfP0SBcekBUZmk8zIN6QByfk0TSi3pAn7svvw6zekDRaXofDLZ6QGQ7rmQRt3pArPP+UBO7ekBdAWg6Gb96QPYmRPMVw3pAvLsxZGbhekC4pdfO//N6QCAuITp7BHtArk4OVkwVe0CynkXkWiV7QMiUg3sglXtAiMciTACne0Ab/ImKBqt7QNoPwAMBr3tAfFCC4Yz1e0B6igxB2wF8QPSvO+qZBXxAshziYtIRfEBOrbmjuiN8QE5iQYfPQXxAzqhOKwZzfEAm0CgoxY18QBYXR8shk3xAO1PvBy2XfEBSJ+mudZh8QGREZdUwm3xA9HwOlMCdfEDqNlrFgOB8QNhI9QxZ4nxAQqoVOFbyfECQAkxWUAJ9QLzk2oeXA31AGja6ZbcDfUAtubtsAAR9QFTpOls6BH1AIqnieKYEfUDis/uIBQx9QEotaZmLE31AJOayqQoUfUDUk9g1Ehx9QCIq7SoXJH1AxE2jLJYzfUA6gKo7Rjh9QPCg67ifPX1AJESns+ZCfUByzeOVRkh9QL5mCUwdf31A1mMczhyHfUC8jxlWAqR9QJbMlDmlpH1A5XHILwmsfUCgx7G15cR9QFRdlzyQ9X1AXO9rUot9fkDsCXyZoIN+QAT/SjuoiX5AWY0r6RyWfkDcSLSyAN9+QAjdegld5H5ASUf4Fbdxf0C+1Xoh5XR/QJCh2ohikX9ASELCFFyhf0DA1qgOV7F/QJ3/d6FouH9A+Z46rkcCgEBa2t7u7CmAQKaIE88bN4BA8CuDFMk5gEAG5mLOqEKAQIkrVeyvSoBAN8mt7adNgEDyLJbI5lCAQA+AYi0UUYBACgc7jg1ZgEAozBLoTmqAQBrTraYqb4BAIuIPRPd9gEAuZJkWX4yAQBmOSAUMj4BAdmYudriRgECyKVZ8ZZSAQI67uP0cl4BAdVUWMhOvgEB+9hUVHrGAQKdk1GLZsYBAy2+AAH+ygEDTfk0ofr2AQBgWb0RSwYBAfmRIyp/CgEDo9BbmUsmAQI/AP+gp0YBAcPbrRkzRgEAI7aCPStmAQAaWBrcn2oBAA90SDEThgEAqNznFP/+AQNa37Ko/B4FAamnQnAoKgUAeacFdDQ6BQEpY6A09D4FAs5HNYhESgUAc0s3qAxaBQMJHEJkVFoFAMDR1azQfgUDw2jofMyeBQH25nQ8BL4FAkP2aka4xgUBtnSYIKD+BQIFEfI+yZoFAjoCPZ6NqgUAqtjVlpG6BQGl/dzzCdIFALtOO6m13gUBEmdHIVY+BQN6YlG1Wl4FAaL82z1OfgUCVYvEO5KGBQMw9MYzeooFAGIxWRkqvgUBVDcVmBMqBQDdjs1lvzIFAqxRyl7DMgUA0ENI4Xs+BQE+2pc4I0oFA2zzU8K3dgUAG1od4tOGBQEZ3Sohm4oFA3GrU6GrmgUDD3wE2dfKBQMKu/86UAoJAKvta19cYgkAA6Nai1iCCQIxRzgTVIoJAAEYehNIogkDWkEMpC2qCQNy7e2GmbIJASWIpDdB2gkDF2h89Q4mCQJIg3QhDkYJAMAlJ8juZgkDuMlwXDqGCQCUF/4c7oYJAckdV5w2pgkCS9R8jNqmCQFZoq6K6CoNAUGdNYnkRg0AcZXkoeRmDQCwI/PxyIYNAouu+pHEpg0BYnpEAazGDQPTgAl1XbINAMMCCPPJtg0BoavGNjW+DQIq5+qIocYNAdJDoZ0mDg0A2LcuS/miEQHSxCGcAcYRAVDM6Acp3hEDuW1V29niEQHoGjMtheoRAmDvsRHt6hEC6nMYMatmEQDDEfWVp4YRA2I8IG2LphEBw/1RTNfGEQPcwishh8YRA9FlG0jb5hEA47td75Q2FQFmlwHGgYYVAY1EDcrZihUDSGDRATGaFQIz6MwC6ZoVAZ5rjeJ9phUC3NdruvGqFQOLM7y+ZcYVAv2tBqZh5hUAGzXodQa6FQCjYMGFDsoVATsSnqjTqhUAXsNjdyaaGQFN+GcTMqIZAQnABXc+qhkBo59pBzayGQGbYPzqRKYdApEm9v5Axh0DM39HIiDmHQEqb0xTHsYdAYJ6eSMe5h0DSxUAEhL6HQNkJFNG+wYdAHqESCoXCh0BarH/udMaHQCoRn9bCyYdAVqE2GHrKh0Be47sofM6HQIenAB2IzohAhBBbgIvSiEA= + NrgMGZxjYkA= - + - X3ENRhg3DkXFDSBFKAwRR25vYUW9LuRFJc9rRRGW9EQgK49FX6sMR5WZL0e4+JlFA0EGRRjGnEYsf0hFTyrBRW8zJ0XbMnpFLF4nRu9jNEWntG9FfJryRL0EIkWxpS5Fy8u5RrxOBUXTW6JFT+s7R+9LQ0ZxAgtGKenFRbwGc0VJDDVF9XCRRmzJTkXYTFJF7yGHRSJMyEUdimVGSnnrRLUEdUU4tAFFYNBLRVUWMkeBEVtFNpDbRaWpj0bakXJFOuGFRbpOHkWkLztFaw7HRaIfOEdCqBdFaL4URoNOs0VeYg1FXMavRX5CHkWDUIhFQeh9RXN8hkU+AQBFd1UzRasJtkU0IptFQwh3RYiEHUVNQ/NFhq37RDahI0UAvzFFNxjuRCtfH0Z1Q8ZFy2yORVy39EQUEf5EF1kZRaygS0WL7iFF+T4KRen+qUXWlhpFBN/5RR/DpUUkCZVGyCgKRTfRikVq7TxFsqOWRZvVDEXTREpGd9Q6RR7iKkU0Ej5GJuzuRV/9iEVL5XtFVQBVRYwjZEaIOIZFc6/zRwHtmEZvecRG0ycuRe8CKEYNRRlFaBMHRUY6AkXF70NFpDRXRUQqg0VMqFRFHWeIRUT6bkXKIT9FQeVPRmhEZ0UYhQxFBu6URb3PJkWuoJlFVRNWRTEUSUmEJRhGCSVORT8k/0WDjhxFUtEjRTdgUEhZ5XZFNDShRkAEuUWYkwpF9T0uRdVhzkXT2IRFAE5YRV6kr0W9oRtFyFfCRlMq70WJw45FrNVWRS3kpEU3FzhFbrh1RkgsyEdYUyxGaeq6RaQow0YfATVFDBdHRYQDGkYHXoNFu+JfRyjWqkWvfyxHy52uRjQxnEXpVwdFeJgXRajyakX36nFFYgUQRjqjPkW2ODNFUeQKRuh1hkUrd91E1ExpRgb09UWeqntFpdZXRVzRCUXrU6hF3pq3RdlzC0dMzr1GWKKYRfVeyUXyQhRFApEwRUPBl0ViG6RHYzmdRn6ta0beWrlFbYGURR4TA0p9+gFGOMZlRT7AjEnF0oRFCS6kSG3gYkde661F2cIbRfYls0bjyWFGsFRGRciSBEXORk5FnK4MRRDoGkawSYJF4uaHRa47iUV4MglFbvk2RYW7pkXdpF5FV9X5RKYRHEUnYhNFOHldRXvJO0V0bxZGiW4fRY9g/0SW0C9Fj7IpRVxnRUXZVqZFPNeKRYCvJkbcGjhFYV2HRSBCOkWU40BG+9J0RebmIUUNQB1FbI0aRUmcjEcP0oJHxCCwRq9NCEa2VVVFX2HhRZ+6RUUxqE5FZFLcRRyD90QDJ4BIl0FARezO1kdcuRFFap2IR2Z7WEYm8Q9FndOwRRCsWUaCXK5FO35/SI/CEkik171F2HkQR3ULMEX+YthFU0H8RsECe0WsI79FgynWRX9X3EUI6UtGrEW2RUuWEUUdi6RFIHukRRK4BUaD+gpFJU9WRSGiE0Wzi9tF2QtCRkulf0ZIvRhF5rtHRlpNrUWRTg5FOi0pRXsUL0Uk8oJFA88/Rfn9N0V8dmlFlqQ4RtmDSkUImkZF9/sqRRBUCkXS4BtFleliRRxnv0faWhRHRWW8RvDk1kVqrvxFRqM7RRIRW0UWEHBFlrPnRw7qQ0dOlgZHNvULRlmTKUVgqxFFuWTxRYfom0WrqVZF6xJNRXR0qkWV7GpFyKD2RfPhH0WHlx5FyH6ORQPmB0d334dG88McRjDNlUV8pktFNasMRTHTg0VVGxFHzxuJRrrRQEXD4i1GkBp2RuPoXUW+WRRGmuV1RQmp/kXeqKJFV+b2RJMSHUWb14ZFEJezRV2+IUW0txRGUlzcRaVtUEVlCA9G55fJRaa7g0Xjsx9F0NCCRf3wd0YpvR1F/skVRvBXg0X7kPRFSb3eRQ== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - T93fAm/BckCXt8uXO8NyQETBLWYO0nJAqpqSW0PSckDjWpW8zt9yQHzbwVRR4nJAfVjCzI/ickBKg4o2yPFyQAhxJgfQAnNA3bWT0PoDc0A83oMaDRFzQPYgLUC9EnNAbK/BR/gTc0B0IXAOeh9zQKDk+/E4IXNA9QPZBMsic0D8+KrHzSRzQNK5QTW5P3NAvzY9QnhBc0DQzKghJkJzQG7h9kN6RHNAitJd05tRc0A02M/eo1NzQICEXyJNdXNATust43iAc0D6XtqBXYJzQD9Z4DtNknNAu4sHemCUc0C6Vqcs95RzQMCpUca3oHNA0OrYSVqic0C6wz87BaVzQFUFim+2s3NA/OAfOg20c0Ai7nfFz8JzQGhEcHzY0XNArHI3UOLUc0AIu7XKOOFzQPaEa0w39HNAlG4yu3gBdEBOAxceugJ0QAASWDNME3RAsjSProkrdEDU5RA8IV10QKCA3J24YHRAhIOv1AhidEBQeK8Ae2J0QL4yf5vnY3RAPKCfhMRndED4s0591Gd0QI1BxWkfbXRAFNw2WCFwdEAUUpgdQXF0QHvIpXE5c3RA/gre0/iAdEDuYxKlToF0QOo321MWkHRAsBAEq9CgdEDA5bOXD6N0QJZ/v23DsHRAnOIlMPuydEBq+Y+3tsR0QOBw+izJzXRAv7SjxrjhdEDzlURtjfN0QK5dDxNcAnVAJ3MBtaYCdUBd68CLlhB1QBiMQNQjFHVARrd7z50idUB0oOaAzDV1QHcZso43YXVADdZVxI10dUBuERySrYF1QI1WTOCmg3VAMLgkSZqEdUByF3VD+cF1QJhzZyFJAnZAB/Bj3YcidkAUKd/YjyR2QHLh7cNLK3ZAtnYeqx8xdkDBiS3pHUF2QFD4dULLQnZADQITpXpEdkAopV7vEFF2QPJtTiXNVHZAL+Zxi9pkdkCY9ceF6512QLrYL/ZFo3ZAhMwP9ZCrdkBaMAyLDLR2QHZ2OkrOznZA5NIR2AASd0Dyf2SjmTJ3QJLS7BkNNXdAMZUg45xBd0Cqa0HUGkV3QPu9pW9KUXdASwULtJJRd0A5TEkZ71J3QHziB5iRYXdA2Lks9ydvd0BYu+uO0Yd3QCJoNcz8n3dA1vPgpv/cd0CeJ+9hbSJ4QEIgEJU+JHhAAjLVzhFEeEB0I0ufekV4QPjTeZPWSHhAGj3nDy9OeEBy2rpPy1F4QHwbKP2HVXhAvHWoX/lgeEDS86VotmF4QNNSQ9OLdHhAVBPXK8Z4eEAGzgG19nt4QOmd63gifnhAHhHB06SBeEC/ikQseIN4QColYgKahHhAMgAGmJaReEDOGGF/qJR4QH3waGn/o3hALp6FubjUeECGZWL9ouJ4QHBIN2P653hAu13vJAL0eECq5TDpi/V4QAgDDJV+E3lAjitemQ8ueUCMU+N3tjN5QD6u1Ri+O3lAK9eXU8xUeUCC5Ao8wLJ5QCuYYf1C1HlA+LLuPv0DekA+yJJ/KzN6QCi5jC0NNXpANjz/nC43ekBc1kevLzt6QGvvlNQaRXpAuL3leChVekCKXnhRIlx6QCzw+GnMg3pARsOcAdKLekCOUCm4DrN6QJh53gIOtnpAUSQXJhG3ekD6J3ypFLt6QAURxyQZv3pApjHzjKXjekA2eGZMAfR6QKCC6cN7BHtAQ8nkwEwVe0B4DewhWyV7QG8r6uwjlXtAwG/eHQGne0CUDjbeAqt7QMCdubQMr3tATqQM+oz1e0AfxzKM2QF8QJoYZGyaBXxAe6/CDtMRfEAzgxXuvCN8QCREcEfNQXxAqiIsJQZzfEAlBNmqxY18QBoC5Scgk3xAoP8yfSyXfEC6ijlPYph8QOIqGxN9mHxANvbOdS6bfEA0NpCegeB8QAKUipVZ4nxA42YN7FXyfEAKGmgiUQJ9QFUMB1WJA31Ac0/y5tADfUBejwmhAAR9QF5A5cRABH1AcEqkx2gEfUAsjMrOBQx9QITBdYhtDH1AcImqvo0TfUC2XPkkCxR9QHbbg7YRHH1AtB3YmRYkfUAgRjYmRzh9QNR0sf+gPX1AlLv5EOlCfUBAe1MgIoN9QK90ltQCpH1AWihomKSkfUCi+HjvCax9QFIAZepVtH1AAUfxeeXEfUDweFtvin1+QLiYvYWgg35AlWRbUKeJfkDb3cH3p4t+QIE7cYZLq35AKPGIXnyzfkANwtCa/95+QMD3k4la5H5ALNat+rZxf0DLLHK053R/QD5+PH1ikX9AJG9diGm4f0CUjCTt7CmAQLYnEfMcN4BAHrhVsMY5gEBaFNDhqEKAQIO2EGGwSoBAppQVU6lNgEBxgiKJE1GAQFAk+mSrUYBAZg4G5g1ZgEAW6lpDJ2+AQOT7m+b2fYBARBsFuPuBgEDOXVkqX4yAQGcL/0kMj4BAZGWAK7iRgEDGANH3Y5SAQJdlEtAel4BAaxLDK9CkgEBACJIFE6+AQIS5Tpd+soBARkQFYlLBgECKASCgncKAQPHJQAhTyYBAQgaXG0zRgEBeCQc3YNGAQA7xYU5K04BAuL9Mz0rZgEBsO3/1x9yAQJMVDhRE4YBA44aC+vbogECpxOQLTO+AQOadEFRo8oBAmggCfz//gEBuu644QAeBQGoDRKsKCoFAOv5pWQ0OgUCC1XTQPQ+BQHEigUAREoFARMcIFBYWgUDGABBVNB+BQCJjn4M1J4FASRsWBwEvgUAtBZG9MC+BQMox7SGtMYFAKqDA8L0ygUDeI+N5WzSBQEAQcdgoP4FAZF3rorJmgUCsoNkqo2qBQFPL7jnCdIFAheYijm53gUC4O7vxG3qBQIAAnj5Vj4FAdUIL0FeXgUAvXtwZ5KGBQP5PrFbfooFAuFaYUUqvgUCHtI5oSbeBQKq4qa3nuYFAJxiYOATKgUDWZy1vb8yBQAPxCTGxzIFAsA5m4BvPgUB2BWbEXs+BQAdPwNgW04FAIXPb7K/dgUBAWJvkteGBQBqx7q9n4oFA1hMsk2nmgUDOn421lAKCQMo2RHPYGIJA8rL30NUggkB8jVzU1CKCQIrPdCDTKIJAbPaTWo9WgkDIwOu9N2mCQI4+D3yobIJAxt9mt210gkB+i62pa3iCQJIhCRBDiYJAOICNeUORgkBYC7kqPJmCQIDtDecNoYJA1eBeSzuhgkDVDEm476WCQLYgtSoPqYJAYpbiFjWpgkA66xP+nNqCQLSpfYvT4oJAfDSnwroKg0CW7le/vA6DQBIvAWd5EYNAFQLExHkZg0A4APe2ciGDQGgCnA9xKYNAOsYshWoxg0DW26K3WGyDQHcpr5TybYNAfurqioxvg0BsIBW0J3GDQNeciLb+aIRAqibWxf5whEBYJS3+yXeEQMSNgQx5eoRAT/4gIWrZhEBGInDAaeGEQAZ5iB9i6YRAVMQcXjXxhECrzA8uYfGEQNvcOVyiGoVAAOtpTaBhhUDUUDpNtmKFQOuV+RBMZoVA4ITyZblmhUCvjkxhoGmFQNxvlh9PaoVALNZIirtqhUACh6I7mXGFQA+fLJmZeYVAhNkzzkCuhUAvMQWHQ7KFQLw+5FU06oVA/qcM+MqmhkDfW72e0KiGQKxdVfrPqoZAFF15Is+shkCe2EOSJ7mGQCGjXqKRKYdAmK48o5Exh0DWNbSHgDeHQAAJXviKOYdAYN8jcIU7h0A49jO2x7GHQAQMck/IuYdAhpZiZoK+h0Cco+nfwMGHQLByFrCGwodAkTPkOXXGh0C6VP/TeMqHQBi/bAp+zodAzVo30YjOiEAYKCha39GIQI5iJKON0ohAHPpwveHViEARiLm4jdaIQA== + KBZXds7jZUCAI9DqN6RuQKPid1q/AnFAFmZs+rPCc0AxOsR5lxN3QKS9uBmM03lAh47Ifi+Ee0AyFQU5ZOR/QKRKM6lq2oFA - + - lVDGRQYxQUU5XWBFxtwLR8yzC0Wf/3hFIRPURSXm6UTB33xFiqX/Rs+iOUWgXRhHOIeoRcp9dEWYj5xGNpSNRSmqkEWmDXlFvUslRecQGEVB4PpFUYUIRV9pm0WEMAFFyOvARoXRcEVX6ztHgk8gRQOqZUY34rBFS0TVRVY4/kTnH05FqD8jRZ1eiUZR3ElFV9q3RTse2UX0UiJF1FVdRtoUO0V2RB9FbEMaRYWqS0ctrIxF1W/iRfPhoUbV6ARF/9xlRdEIr0XPoSFFfvGjRSpDL0dsP1hFPrUMRdtip0UUmKNF0/2SRXlGpUVaG4NFaj51RV1CBEUXWcFFRxc3RaYZjUXaH01FI5PCRVw3H0XsqQlF44kERscYMUW5SiVFmfQqRk1nxkXt+2NF0R8RRVqDM0VGHodFVTVVRTagFUa6ralF4nXLRoZSv0XE6hxFugeMRQuiM0VI65JGRM9kRXglTEYFivxFdf0VRZzvQUXOgFRFc/OQRq+q/URYt+pHx7abRllmsEaA5H5FQtNNRh2GD0V04yBFig4eRf9qSkXOcJ9Fs+2MRcp0DUWWP4pFky5gRVUYPEYNBY9FJ6YfRZy6vEWFA/REWNK7RT8iKkVAhTJJe8hWRptShUWCsQdG6tNfRY2SAUV2tS9IK6h5RU9qTUY4vAlGsQ+LRXY+qUU4k2NFx3pVRfi4m0Uq+HxFnU4NRfynnkbN5+5FzFyFRUPhdEXukrZF/hFURbNiQ0bvz6xHMVRjRl5kyUWytapGSadRRWI8ZEWbOBVGYERWRRhlVUeD2KBFQlAiR56+aUZXdY5FhDocRUdbHEVUpWpFHonxRYYSEUU4MERFJ5SMRWygeUWNWB5Fi/JSRoQOCUYig4NF+NhLRTgKUkUPFaJFV6D9RcJVJEdQiOtGvM+yRVatGEUGIJtFcHcnRSh7a0WsbplHzYVbRiILL0a/B5tFyxyXRfumB0p1ZqtFq8KuRcq8jUkHNz9FwLaGRf6dr0jd7XRH5mn4RXLXsUZyvp5GBIzLRfrV90RLOStG2bJCRdXdvEWewQ1FwAUcRZZxfEVSe7RFHDmiRccGTEUSKRJFhTcPRbq4g0VY0z5FmTqpRU9rD0WtlxdGfGBLRUe6ZEXGQ35FewFLRS6RMkYVnfZEFpU+RVl9gUZ0lixFEZqoRWJC/USh0A1FuY4ARSg9jkc9KotH9IGZRmCm0UUW4k5FUt8LReZw90WN7ptFGM2HSJbej0UWlN1HAJ92R4BankUgARpFF/plRmL350RZyJhFg0UwReSKM0VGBx1FB4J4RjkXT0VThHFIy+UISGfEjUX5JQxHwAKTRZJxBUeObg5GY3D/RXrGJEVCavFFpbH+REINTUXkBP9FTe/5Rcffk0VKw6BFIKPERflShUXkrApG19QlRXehBkUs2+ZFqpA5Rr3vH0U5awpFqxeORnfUi0VVFVVGvYZiRfEd10WRNodF4adoRZBBXkW0tItFZt1MRdLOwUUcvB9GIAZgRZSLKEV9XCBFV3oYRdMrK0UxZghFlpQTRVTuEkXqUgZId29uR3K/FEdcUK1FLJoVRnuXBUVBhglFxrpnRVgOOEUimhRFXLGhRZIzNEV0uBlI1FuNR0ZLHkcyARZGcpmMRUHqwEVZFVpFvmSPRUsyh0XRu8hFiH9QReEWwUU3Y9BFRTgYRwBypkbjciNG7LxuRRWSRkVpUfxESlUPRxfNgUaQiHBF5DRHRi1wlkY1WzdFmTReRUIDOUb7haJF8nrxRWR0ikV5hDJFBzZvRbEuSkU2aplFhjttReFtCEUQLTpGFDDIRXGhskUxNWJFaiVlRSdsC0ZVC6BFIyv2Re4yXEWck09FZv0aRlYcEkbVuoRFG0UtRjmDiEVH+81FOHVKRRZ5MEU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - /ecC327BckD70dQNPMNyQCAx5okO0nJAGNroWkPSckDYXEWWuOByQMi1jvBQ4nJAFtgVy5DickBoz8uKyfFyQFDcctzPAnNATn2ldvoDc0DuyyDvvBJzQG+uYZ8FFHNAq8TJHU0Uc0AhA09reR9zQL7XQhekIHNAig8xzzghc0AUDjiRyiJzQDfHGjEPI3NA0dqB7c4kc0AC1c6ouj9zQKJN60d4QXNA1rhX4yVCc0DA7FZvekRzQGIyfAGdUXNAgn/XeqNTc0CVVU9WhlRzQEJJaZo5Y3NASgSI02Ryc0D+/itut3RzQD/NJBl4gHNABuzAKQ+Bc0BBsW5rXYJzQFcckHaGkHNA9Ai2DE2Sc0CyWZFm95RzQJbPEYi4oHNAazGz7Fmic0CeLEWxBaVzQGqPv/U0sXNA1YSNqrazc0CqLLL5C7RzQHWgI+DPwnNAKRNpQNjRc0A0W1yb29JzQM5+q5fj1HNA5IC7FTjhc0DwOnRhN/RzQN7ag3B4AXRADjTyhkwTdEAweK3WSiB0QEg89Yb6InRAuH56byBddEBuVu+1uGB0QMQfJVAIYnRAHr0gqXpidEBQaa/902d0QLBJ3VYicHRAQtNL8kBxdEA6zRt0FnJ0QN+B3984c3RA/UQzbfiAdECYjgEsToF0QGyXZLMUkHRA33zIp+2fdECyLf+a0KB0QL6W6SK3onRATIzzFQ+jdECAgN4Nw7B0QMobiA1usnRA/PXwd/yydEDW5QeI48B0QLKk6oi4xHRA7Tf7E8nNdED4EoQBJNN0QKKQ9Cfi03RAMgvlgc3UdEAS1C69ueF0QLOnRiqQ43RAfRYWSE3ldEB6bL5tjPN0QO43ma5dAnVA8IjXN6UCdUC66fHiIxR1QBjBWQOdInVAbGItr9xCdUAMmJAdeFV1QO9KCig4YXVAsFb+5ftjdUDeoi86dnJ1QD32//KMdHVABznW9XiBdUAewTfdrYF1QPfgnO6lg3VAZAeB2ZqEdUBV85l2SaN1QCAS9xf5wXVARFC2EUgCdkDMVl1nhyJ2QNHQqiGQJHZAvkClbEsrdkBI3oZ6HzF2QKjk43dNPnZAjnp7zhxBdkCLKRLryEJ2QMLCyV56RHZAAg7XMxFRdkAg2PAUzVR2QG3oWo/aZHZAeRNLStF/dkCkJS5n6512QHySiWdGo3ZAMmBDeI2ndkCSkFQYn6h2QAjUh//CsnZAtBqtFQ20dkBUcUylzs52QCsy0teR83ZAd3qjuAASd0B2tiEwDyJ3QA75/w4NNXdAYY1pgZxBd0D9wh6sGkV3QIvOh/1JUXdAVdgsgJFRd0B+zXBhj2F3QI7MhYMnb3dAUvM3F/yfd0DIh5bnmbR3QPXtpD55E3hATmhhVNIYeEDeG96tbSJ4QFySIhk9JHhAdNpejRFEeEA85SPoeUV4QDKge9nWSHhA0klxSctReEAIo7tTiFV4QG5+etj4YHhATH/vCLZheEDHDONwi3R4QPxvkfPGeHhAOE2vw/Z7eED6yMuoIX54QODvsLSlgXhAzK66z5mEeEAgy1J4l5F4QEbZXKenlHhAc4bNfP+jeECqkd9St9R4QHLnatKg4nhAw3cvpgH0eECe2Lt3jPV4QJ1HYhV+E3lAqM9HOLYzeUAkn5oovTt5QFq+01/FQ3lAfdPrdMtUeUDsKxvDDm95QFTSWG8TmHlADHjBicGyeUD9lJY9QtR5QJIgWgr9A3pAw/34zSozekDHV8mUDDV6QOhy4icuN3pAgvt4nDI7ekC2y3KPGkV6QIp9DVAnVXpAmojueyFcekDoeao1zIN6QFoEk/rSi3pAqh9pvR6jekB8H7O7DrN6QHEI7QwNtnpAT1WypBG3ekD2T9fFFLt6QNtdbLYav3pAwH+NORvGekCGo+Inp+N6QNc/dKY37npAnF5glBXxekAixN6JewR7QIo/wrVMFXtAyLgXdlkle0DasZINIpV7QGymGQ0Bp3tAc4+NzwWre0CYLzSrD7N7QNA8P2iN9XtAITs3kNoBfECYWP/YmQV8QNjLGpTQEXxAQnw50LojfEC+87eUzkF8QFTidYgEc3xAvWYSB8WNfEAE+t2nH5N8QHM9j5Isl3xAwBHVX3iYfEAKe7aCxp18QDa3jXjCsnxAgLRGMVnifEB4dIzVVfJ8QAzSuVdPAn1A4kpnHFoDfUBMpRErmAN9QHN02HDFA31AurakZwAEfUAOo0RyMgR9QP4MU4x4BH1AAgtPxLYEfUBogB5/nAt9QPQn0KQFDH1AMGKUAzYMfUCYfmSijhN9QEb6miYLFH1AND5/LJQbfUDkPy3aERx9QIy1hcEXJH1AfoyrS5UzfUAivu+iRjh9QFFKuAygPX1ANTETfv1CfUBsEs4iRUh9QAwr5jkBpH1AJrYzEAmsfUCm7cAEVbR9QBawM83lxH1AoFB5tYt9fkCONjiF44J+QDrbxOyeg35AeuotkjqIfkDIBktkpol+QIamWjSni35AOq08wf7efkDm0zvPWuR+QK69EPEI+n5AwM7VWmX/fkAeDXjStnF/QHCFuUXmdH9ACLjArrCBf0CQ7c8zmJB/QGh49BpjkX9AMeBOD12hf0Bw/q8AZrh/QBMoccL14H9AhpZjY+wpgEBpKVnQSCqAQOz51P8cN4BAcBI7NalCgEADVQh5r0qAQCgnaDqoTYBAdj2wBudQgEAZ+o6uE1GAQIjST2ANWYBA8BViuShvgEA/JJad9n2AQAQTYQZfjIBArrgVMgyPgECe2Y++t5GAQGoS6FVnlIBAgiquNA6XgED4T/KDX5qAQFQs5Ma8nIBA05zM7xKvgEDguzMSt6+AQEDfsnTisYBA5Qc1An+ygEDm/cVmV7OAQAaW6y6GuoBA+A7jyhG8gEDiE4haUsGAQL7FrACfwoBApAF/8FLJgECsDrIGB8+AQMjmhRxM0YBAbBfC/GDRgEDa3VARS9mAQOl3flBE4YBAiALjiD//gEB/hjoRPweBQCYqLIkKCoFAZ4eSsg0OgUCo1B7mPQ+BQDX9guwREoFARAUHiBYWgUDgYoEBQxeBQBepmzOJGoFA1rfRbzQfgUDcSOcWNSeBQAUYtrIAL4FAPsWsUzAvgUAYm1P5rTGBQKtULipZNIFAhjfY4yg/gUDqMoT+sWaBQMKCkYqlaoFA7C4V5LBqgUBecAJwpW6BQJc5mgHCdIFAlH35A253gUAGvjGsG3qBQHbdkMpVj4FARzcmfVWXgUDeuXFb6KGBQPaw+GL5oYFAJAcfzd6igUC6yABwbaiBQKIySPlJr4FAkihLgEu3gUC/C5gGBMqBQHf0LDpwzIFAzmFxhLLMgUDMI2qOG8+BQOR3pKtez4FAHwhXacrRgUBy1NzsFdOBQOxmK4Rn4oFAyryPTmvmgUBqfICUcvKBQLRSp9+UAoJAcH0Ym/MRgkDeM8to2BiCQCacaKHXIIJAFpsGRdQigkBQ0Fdf0CiCQDLPZj2hT4JAFpntZ41WgkBBJfRij1qCQNIMMpQEaoJAE/RY2NB2gkCHKWoIQ4mCQBhRKNdCkYJAxEMl9juZgkAsY5xbDqGCQJ10Kg07oYJAkNdtHTOpgkC8U4vom9qCQDSAfJ/U4oJAYlHXrRQKg0ACMuqvugqDQHoML/e9DoNAvrdiRnkRg0CNEeW4eRmDQCSGYb1yIYNActbrVXEpg0AqWdBNajGDQOBEoEtYbINAT2Cn7PFtg0D6TetRjW+DQG4fpRIncYNAt4WRjUmDg0BKKWgD06mDQK5nHF7UrYNAwqfO0cRahEDDSOCK/2iEQFBQUJ7/cIRAtMuH1Ml3hED6Yi1NeHqEQPqEXL4TfYRAwUBOJmrZhEC2PbPMauGEQO7sgExi6YRABqM73jXxhED/K6nTYPGEQDCH3QcwAYVAJyCYQaBhhUBgxOvGtWKFQApBBH5MZoVAJmsXKrpmhUCkjnxLoGmFQBDEH9NOaoVALFNJz7lqhUCiql39mHGFQJKXkXqZeYVADlJxYUCuhUBqZUxIRbKFQDowJIXEvoVA8GRnxQbChUBopmeuLeaFQCBksHAw6oVAgFcIH4H1hUCCkSbmzKaGQMXjgcDMqIZAOk7ZFs2qhkBIJJ6zJbmGQJ74eEORKYdA2g9ktpAxh0CWF2pFgTeHQHwWYEyLOYdAFPfUGYQ7h0CVujtjhj+HQMhrYM/GsYdAfmY7dci5h0Bu8mRKgr6HQGlZJO6+wYdAGAIa44fCh0CDhc5fdcaHQJJLPAl4yodAqZsdyXrOh0C+ke2ggdKHQCSGFt3n6odAsTi6iojOiEDcRt2q39GIQFHg5j+L0ohAKtIzFePViEDp31qMjtaIQA== + NrgMGZxjZUAoFld2zuNlQHZo0FeRAnFAFOkHjz8DckAUR+TilxR5QP7uwaWCk3lAapvo5y+FfUCdSJ09GVqAQN1Ne8Oq+oFALHH7MkUigkAIeP3F9jKEQFl3oNimSoVACKfr76K7h0C8pGr1MuOJQDPRbfLu84lAxrERLkb8jUAAaGOcqyuOQBQ09TXfsZBAX8hIrj7KkEBzSAwWSGaSQJAjNc36fZJA2hMHayaClEAVqohphIqUQPAoSGxMnpVAx8Dtd8rWlkBwQD+BomKXQN5DwEr7aphAhlWAgsh+mEAlWG9FEU+ZQJrVQ+rRGppAtIDNOj0Xm0Cw6oTr9zabQDACfABO+5xAVuJJjnk7nUCwGXMVpL+eQG1lHGGqz55AtHnLW8Czn0A= - + - BNkARj0UOkUeDDVFv/AIR0geCkW+7pNFbdu/ReiDXEVIy0VFFgYUR6MHK0ekGqtF4mTrROSSP0WkaQxF35qfRkzVMEUb8A1FyV+/RUryF0VEZwJF1eWxRTzvAUbYBFpFujODRQz26kQbevREYywHRTM0GkVViKpGHqAFRaso2kV5VxNFa9RYR14SS0bVBupFbIEvRq6rAkWkrwZFJZ2MRR1NMUV1g5ZGeVE+RQwWMkU3BZRFfifbRYWiFUVOs15G9jZcRaHL8ETHQAJFVTpPR2UzXkVwpTBGzLu2RlRSqEXTjb5FZTJLR/vB50SILBlF+GMNRRbjD0a9mrFFuE4aRVhZiEX3jwZF9oS+RQjhl0UOipNF7YRJRdNTJEX8nhlFOEWWRThAJ0W0eAJFIgvlRK+RL0WXa0lFs/cJRUB4sEUjU5tF1xSqRbwhJUUOyxJGWPDuRHoF9kS/XyxFUxoPRaKOBkUjoiFG6KUXReKv40UEb4lFN7gNRRalOEWLtflEV0qlRTFWjkUFQCRGWgnBRbsCtkZHqU1FT8aORZ6aVEX4JCdFb/EfRbb2OUaz7A9FNp3yREIKZEbduddFQE6BRflxHEUxrABFgpKgRQbfaEXJExJFtX1eRgRsgEVJLvlHq5WZRncu4kb+vW9FgFJbRgj4FEUXtyxFSyitReys/0TjWfVEv/MIRZ/Jn0Vx7ihFuFxFRdVzfEZNvb5FpkF+RQkrK0UTipdFHkBLRQE0SEmeEDpGJiiBRXUzuEV4vFtFHBVKSGn9RUWAlaZGSrTDRU8ZaEWPzZ5FOXuURWvh3EXkLCVFV5iXRolOBEb3nUNFZCWLRT/0A0XN6RVFoB6ZRXHq4UVtCSRFMpAVRpFPtkfoo7pFIyUgRRr2vEb5rSVFuNAlRbMhFEaBSk9FxqkJRWtdQEf627VF2hUsRyS3YUag/5BFg4QXRaVJs0V4gOFEA//nRBMFXEXRtjFGYfMzRdUPNUVTXqhFmuRART0r/0TaN5BGHGAqRkreYUUQzIFFcjBCRUELj0Wag99FIM8WRz4zt0ZUEHRF5a7nRbO1V0WE+hZFgm+3R51nt0YwqF1GbR9aRQaV5EVWyvxFMZn6SdyDE0Z7dntF0p9RRYxTeUUm0oVJq/ifRU0o5kXv2J1IUoIbRXHSRUfnnAdGebAIRfeqxEbDsZdG3HPBRS4OlkWGbHdGDdXrRQyLAUXlPFhF2nJURa5ZWUWPWf5FHYgFRcpBZUX+BxpFwS8yRYCNdkUReyFFJisJRYIQlkVoCCZFs0z/RPVI20T4ehhGkZFORRkCCUXLnwRFKvAbRQJ8HkWO0oVFNTUmRmkyIkUDubNFuL1QRek8UUb6LoNFZGEWRZbECUV444lH+SFhR4nUykYbpHFFw/AuRaCBDkU96RtFK2LcReONEUX65ghFV+lpRhi7/0QO/WJF+tPjRMtWfUhOVnZF6+zTR5g93kRT/GdHX/eQRXmPbUZkWJRFMAZyRr5AlUUIMhdIayiSR23SqkW+JpVGflNuRRtk7URf0wNFTQkaR9YI5kWR4hxGUDpERZQti0WBsnpFoT7zRWz18EVi05tFyxueRew1bEX5tXBFXzu+RRq/ZkXf6QlGI2RVRa66FUV9wfJEYbvwRQ5yDUXw5D9GrNktRRkJr0ZEkahF7QB6RrHmBUXpHQpGpos6RboAZ0VrRspFBwIrRdHBDkUV3i5FOeE1RSbXSEbpDoZFm0ZSRbsShkVNlSxFUWoSReGa6kTrIOJERLYfRRHr1kdb0SVHdnbrRgz3m0XKWAhGThMlRSYBUkUAREpFAjshRT2kNkXLhD1Ft33mR0PmUkfT3gVH45DwRWMVLEUaa4JFyPPkRQeKh0WlVRhFhEMoRXcAQEVVnQ9F+NEURdMgt0X5qCJFVnIURlGHwkUuziVFVZwCR2kcZkax3yZGYLyERchqN0Vo//tE5y8BRxUQekax3INFGbgIRsDohEa/JlBFy3XwRBhMHUbnUINFUUzgRYg5t0V9ReZEpRAoRVAdTUWFtQhFgokFRcBlWUX3eRlFDj91RZ518kQ7ciVG9V2cRU0HQkZmtWJFhqzXRYl8VkV9shBGiIevRXsio0VhDiFF2vo8RZ8YE0ad+L1FSp0zRYU2AkXovS5FaUcMRuznnUUoSQpGm7o7RaF4g0U= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - yH9Zv27BckBASQuNOsNyQExT8V8O0nJAlndxX0PSckDuQcAXz99yQGfrppC44HJARjOlV1DickAQZXuGj+JyQE1gZmHJ8XJAFO+AMM8Cc0ALaAV1+gNzQDrq2Pm8EnNAmMBqNwYUc0B+oIcXeh9zQHIpw5o4IXNARcArL8oic0BGceF8ziRzQC61v7u4P3NA2mlvkHhBc0CAqgZGJkJzQEgQG7B5RHNADJujQ5tRc0DnisoUQ1NzQICJo7ejU3NAJujqHvlfc0AgarkmOmNzQFKKCs1LdXNA2SfEX3iAc0Dh4lwuXYJzQN7fBII6g3NAV54D+oWQc0CLbaAATZJzQFYvXPv3lHNAvjlmSrigc0BaWjloWqJzQPB2EfWPonNAqiOvwQSlc0D6EMX5trNzQKyKuLUMtHNAiQI/lPnAc0BPm7G/z8JzQGSFQQNkw3NA10UKUtjRc0CEbwmC3NJzQG96vJTi1HNAUpQHwzfhc0AwOLUseuJzQCRGaw0P43NAFKmfEmXvc0BScjBneAF0QIC1kBe7AnRAth9R93kRdEC2BdP2SxN0QGI4KgfJQXRATHdEOaZCdEAkswfkIF10QFA5lDm3YHRAtD2aughidECGnJy1emJ0QFyw5HG2ZnRAVtmpsMRndECkyeh5Hm10QA7uSKYicHRA6HEKyUBxdEC+EDFwOHN0QN8fvKw3dXRAiHgkQfmAdEA0uVwvToF0QHbTQvEVkHRAADfgv++fdEB4pc6Nz6B0QBplx48Oo3RA2podFMOwdEDgTuwkcLJ0QAwMzrr8snRAwMhJguTAdEDoRH83x810QBJ68BjN1HRAag7a5rfhdEBukXVZj+N0QJhYUOuM83RAEJqj6VwCdUAguxCCpQJ1QE5TvcMiFHVAmh4HBp0idUAIuydt5CJ1QNpW8C7LNXVACH9Q89tCdUAY3BOB+k91QHMmg883YXVAcAk7OHdydUCCZTz2jHR1QMx152GtgXVAOpPNfKSDdUCAEJ0BSqN1QGDX4+ikqHVAPsbCo0cCdkCwtP3s0AN2QPHbaOuHInZAKHigApAkdkC1DxvJSit2QKiFAogfMXZAZu2FIR1BdkA/GsvBp0N2QI3giyR5RHZA9HlVWQ9RdkCYcWJozVR2QG0QFVjaZHZAnCQe3eqddkAKm58YRaN2QJgLTtueqHZARjQ+WMGydkA06iz6C7R2QBaVuHAZxHZAuBXhb8/OdkCEVQYX8eF2QJA3huaQ83ZA6tXW/gASd0DNo9pUDyJ3QLQycfoMNXdAY7fjmZxBd0BANf6sGkV3QDYPzGtKUXdAhVBiKpJRd0Clofy+7lJ3QFmQzrApVXdAWvrJ1Sdvd0C2mWXg/J93QM/vTz5R8ndAEE4enHkTeEBOINJlbSJ4QLZ6MBA9JHhAajyeyhBEeEAgv1XeeUV4QNh+3iDWSHhAro+YkTFOeEASX/6IylF4QLwoRCuMU3hAmtx1C4hVeEB1hvrb+GB4QAS31XK3YXhA7Ku6XmZ0eECNqJKOi3R4QKCxQVurdHhA5OdDJcZ4eECqoQjx9Ht4QG8wUCcifnhA1L6bnqSBeEAmpTLNmYR4QGbxSHiYkXhA7i7Xf6eUeEBl5fYp/6N4QInZK/kFrHhAIph0jLjUeEAe3EtcoeJ4QAn4tz0C9HhAslk+xIv1eEAggDIomwV5QPRajxJ+E3lAXFgPV7YzeUBQuvdvvjt5QFITqiXEQ3lAVrkjps1UeUD4269bD295QBfSH0Vkg3lADoaTUMGyeUA2dhVvQ9R5QKbXc32843lAcuer2vwDekA7J2719wV6QIuUi5crM3pAlmetYww1ekAIvGZbLTd6QIZQyYoxO3pAXFdolTI/ekCRJPltGkV6QKxlcOclVXpAfijViiFcekCyivhSy4N6QCVrmJXSi3pA+LPdZg6zekBgRaX4C7Z6QJ8+81cQt3pA4gUm4RO7ekDThwfyGr96QIoPzA0Yw3pAoAcmkhjGekCmyuaNpuN6QH520szE+HpAFtD+A3wEe0BDVV4fExB7QCM54pxMFXtA8FL9a1kle0BEzl8aIpV7QABikiwGp3tAonPDRwWre0DBLWG3wNF7QHho74CX8XtArkl5pYz1e0D4lDNl2gF8QBquniGaBXxAYc8ktNIRfECrzAJwvCN8QN3TZejOQXxAcrsA2QZzfEDqBIh2FYN8QHzbL1jFjXxA6FA7FR+TfECwjkH/LJd8QAJaszxymHxA/ksvDC6bfEBgwJq5vJ18QID0XilZ4nxAbWKFf1XyfED6kJChc/J8QIXIOoYCAn1AIXpxxU4CfUCGjow4zgN9QDY935MABH1AMXb9fNMLfUC2krrcBQx9QDLKf0kvDH1AW6xXnU0SfUCw5tFpjhN9QOzQ+nILFH1Aj+/0QZMbfUAchFB4Ehx9QH6n6TwZJH1AZ6nNDZUzfUA+FMR0Rzh9QCIi1q2gPX1ARIkpGOlCfUCGCb3L+0J9QOeuh1RDSH1AmLs0zgGkfUBcGbI2Cax9QN60o3EJtH1AHgEVvlS0fUBl1Sgv5sR9QIbuW/omcn5AhCTiPot9fkBj/IxK5IJ+QFJt3+qeg35AzvOieqSJfkDMNGi8pIt+QDE8IStLq35Ajiis/lOzfkAn8BZw/t5+QKCwxq5Z5H5ANszDRAj6fkDqG/rMY/9+QGo1/Cm5cX9AnAHLJeR0f0BelDc/YpF/QBGwTwWVk39AyDC+Z1yhf0Ay82KXVLF/QJgiF5VouH9ASx6Th8K9f0BmMUQi7SmAQJBYmQNIKoBAaCO8dh03gEAqOYXxqEKAQLFdYJewSoBATPOToqdNgED6pmeO5lCAQIcAKDoUUYBAKPYaU61RgEBYMDmwJFiAQDwG+zoOWYBAFlydthxZgEAog8fPTWqAQE7nf8Enb4BAz9QhUPZ9gECL4Ay0J3+AQNQZtelejIBA/OByRQyPgECQuanWt5GAQEaisj1glIBAFNopXhOXgEAWTJrgYJqAQCRB0O6+nIBAPH4DN3ylgEDxCC78Eq+AQBo/Dmeor4BAgbozjn6ygED4ZrkLhrqAQFLfdVxSwYBAEOvwhJ3CgECSjDcQU8mAQFZCHqCQyoBAMDYAOUzRgEAuk914StmAQBxlJvDC3IBAItL6e0ThgED2M/DQ9uiAQNk0yzVn8oBAYr8C5D//gEAOQ5N6PgeBQNQ32d0KCoFAmK2j9w0OgUAk5TOzPg+BQD8DLA4SEoFA+CTpijUdgUBer0JPNB+BQL6MXUw1J4FAXGQXD/8ugUCejxAjLy+BQHBRRA2uMYFAjpqAJyk/gUA4AVZms2aBQJL3rf6iaoFAHEk+4qVugUDqoULwwHSBQM2x4wdvd4FA1Fe4AB56gUCmoDLjVY+BQGseOKdUl4FAbmXDMlOfgUDGsV8y66GBQDQHACbeooFA7smcRG2ogUDGxNMS5qqBQLSx4QBKr4FArSLSikm3gUCnrNU9BMqBQJ5Np5JvzIFAWVGlkbHMgUBqsemXHM+BQEjlxr9ez4FAP0V3P8bRgUBx5Pj+AtKBQBys1bQW04FAfi7qDGjigUBkzZJebeaBQOYdKfKTAoJAFlx1TNgYgkDKRkwI1iCCQDqDhZzUIoJA/BiTiM8ogkAWVWz1106CQLgVSpqMVoJAI7gP6o9agkAKG3YuoVuCQBeOASS6X4JAOGAuQKZsgkCCjN3tb3SCQGegeAZDiYJAA213BEORgkCcrEgKPJmCQLgB/58OoYJAizhXDjuhgkD1qXOw9aGCQGQikhYNqYJANtfSievFgkDKIjq/oN6CQJzIRmnU4oJABpE8W2z0gkBQ/qkAFgqDQAItgIe3CoNAhoGrerwOg0Csocc7eRGDQKyu2pJ5GYNA1gfju3Ehg0BEuWQNcimDQCCMj+ZrMYNAgSOcyfNtg0CwEF8qjW+DQPjemU4pcYNA69iBpUmDg0DogxIt0qmDQKBOASvVrYNAwY7zX/9ohEA0UKBe/nCEQIh6PnXKd4RANAqT6fZ4hEB81nHbd3qEQM5TPicnfYRAyll/yWnZhECsbHcQauGEQGyvVNph6YRAbByjyTPxhEBBO2VFYfGEQB4r/jAG84RAjAAQ+Tb5hEAAX4l73xWFQMbBFjSgYYVA7GtXRLZihUBmUS8OTWaFQDJv3s+5ZoVA2ayzyKBphUDGo8WzumqFQBgqf3aZcYVAQJAMH7VzhUCUoaOhmXmFQMZ30W9AroVAy7SuTUOyhUBUtSJwMeaFQOGIMVNXM4ZAhKwaA8ymhkBJDQHHzKiGQLy6897PqoZAe86y3ZAph0BOTP5okTGHQK1IV5eBN4dA1nBhM4o5h0Di/tn1hTuHQEPCPD+IP4dA2Gxqc4tDh0BsL6tYx7GHQACjvGfGuYdAKFwC+4S+h0Bwib2awcGHQLMoRKR1xodAjrAoi3nKh0B8cYo26eqHQDYoalh8cohA2D7PgoB2iEAbFnAhic6IQLy6VVfg0YhAem1+YI3SiEAQ+IyV4dWIQHidCz2Q1ohA + KBZXds7jZUD60UzrnGVsQIzA8pSmQ3RAqZq9oOoidUCzgToMVVR8QNBbBRiZM31Ar9momziigUCkSOY4rEKDQK8Il8XkKoVA - + - OBYdRgXRLUVeF3NFtVYHRwF/C0V7UxpFNKiPRRNWxUVwRk9FguinRfTXCUeNWxpHLJWJRbT7M0UQCaNGM05YRRMHoUUXmEBFFcyCRVuU5EXzOxdGTwloRVR//kTVLp9FZ5H1RBCM+kQQdCZFOuvCRvWr6UVIcs9Eikb6RM7mTEeESkdGPsX8RQFkEEZKOeBEMG0dRQ1jG0VHbUlFdHL/RFJcdEYL4PtEZ2NlRbboG0VUk71FNg3ORSyuNkXW+wdFmpgURUwubEYftBlFHDAORUKNkUU4ohRFczbvRAEJdEf+UWBFMpITRrNBp0Z3agZFbJj6RRdvBEVVqapFd2deR0OoH0Xs7elEZFsbRWn8C0bTNaFFz5MMRTX9kUU8zpBFHwufRfe7C0WPM2NFTkIMRU9Mb0VMxQdF6iQhRUWUmEUxN7BFamaTRTublkX/BwVFZakYRmdr+UQy5UtFlgrzRB8q6ERWeR9Fk3gSRRo9JEaQG/NFM59LRSY3LEXZ4vFEM8SPRfatA0WYU4pFgoIHRmL6o0VBqrZGW95+RWtCKUVVnnBFyxRTRYjTNka46T9FTI2vRqu0BUb5ulpFVvQmRaaW10UQFvdEgPCeRfd410SBPkZFQWCcRq8UH0XBAgNIEn6XRk+L3UY0SZ1Fw8FDRuGVUkWYlDFFL/KCRXuwyEW1QupE8+FLRQnNgEXv9BNFx+FmRZDFIUZEv+JFdteFRRQPh0UiIhJFkE86RdApvEVXuDNF/OmnRcuYQUngBLFFcJ9dRr4UHUW2CfdFkS1SRYKRQkgXBlhFAvSWRp0Pk0UMFANFvLb+RJhjskVRNp1Fp6C6RWG8H0XsiCdFofLJRkYAsUWU+wNFjqZYRfyb40TPVgtF4cGFRQHc20UywTJFedIyRUEwA0WIGOJFkLbJR8TxDUYMWVhFNqQERcJTxEbp+A9FHmd5RU+UHEadPlpFNlwQR95AtkXgtARHRZ10Rl9egkULweRER+jvRPCv8UV3ou9EO7ZCRelOEUWnlC5G3s8vRcYDA0WV/RdFUjl2RewUDUVhsWlF/VaeRjTwPkan+KNFF22WRUU3KUVxB5VFBufpRZdjCEVV1wVHGoikRi3lk0UwfbRFi/1oRZO580SvXaRHY2CPRrUxRUWgAxlF3yppRszGUEbWeupJFe/uRQRFdEk4KMJFOMMVRTY3pkWQe55Ig3AmRdarO0cHI9hF8ntlRSXws0baoJJGCjVzRbS/fEVwAHtFq/FwRu/Q4UUc3wBFnLOARSh2mkViWv5EKaOuRf6KBEV9b+5FLrkNRbjdZUU/hiNFZDwlRTGCakVMnYlF2VeMRWHrQkUXHoVFlV1URYToLka5AfZEpXohRcExMEWh8S5FDcYhRT1lGUWYaKxF9RP7REGxEUahACVFvt23RZ4/B0Xr2FVG264JRW+Q5kTP65JFrH8dRYMuAkVp3ERFxd5ERWwDJ0UA04hHyA1TRydFf0Yg6LdFzS8nRQ/bEUX/5+dE2WfnRBsNB0ZczTZFiWMIR1yO9UXBe2pIACSQRdHRw0dCfxNFDDdrR6zPQ0Zw5tJEeOOiRUS7FEXbtSdF8c99RiQXgUW8/5RH480hR9CyqUXIwhtGcFcIRaAWBkezSuVFHPaDRe3UJkVClMxFK8QORppuvEU7EexFU39kRVsplkW7f7dFfMUIRZSPBUZxdyZFAFPxROk0KkUrRLVF0t0NRQ/F6UQtnk5GdjtBRRGhtUafV4ZF1vx7RjK3LUVJI5pFr9nhRLRckEXGyB1FZCx1RamJDkUm4kFFulAiRtuik0WCN3FFrtc6RY0+RkWWEkZFAPAnRa/AA0X81/BEYD4gRSz55kRRiddHKykxRyciv0YMD8BFMl0ARuLeJUV9ixdFu1wXRVSLHUXbcI5Fht/iREQngkVEICZFTtFsRdoQ2kcEs0dHxMzGRk52Ckb0qk9FS03qRCtBVUX00f1EhLpKRdoYB0b98pdFsqnPRTQTLkUyHb1FgNcTRVCErUVVRFRF2YwIR81ugUYtQTZGj4dMRZ7Kb0W8aftEYpjrRBN0JEV9MfpGsTl0RkKNlkVPWQZGuYlbRhqHmEVgsQtGGdPYRPJsR0WjzL5FCcN7Rc7ALUUTTt9EhqRcRbHfjEUt8u1EhZAqRr+m00UidJRG9G6bRXQ2aEaI6bFF5Qk0RUMtGkaxF6BFBOgTRXlybEU6LuFFMYasRQoVIkWd6H9F6Q0VRdmNCUbpiMJFEL74RQntRkVYK1JF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - OipUy27BckDy3vw5O8NyQAUq+8sO0nJAzPf5PEPSckDYV42Kzt9yQLP5lta44HJAUmbdLFDickAoLxM0kOJyQJ7SXmbJ8XJAl0W9RaP0ckCGoR0xxP9yQMrTYws5AnNAonaS1s8Cc0Bv94G0+gNzQPCqFCi9EnNACuNwjQMUc0AOIoCceB9zQKXFuZ44IXNAM3/R18sic0CmonTjESNzQDInrJXPJHNAngQ4rlkxc0Be6PSe1jNzQAy4jEi4P3NA2G49f3dBc0AIZ8hbJkJzQJAhlBh6RHNA+hlMA5tRc0CPrT8Ho1NzQHAQs+/4X3NASH5nLjpjc0AK07M23HFzQAyrDVFMdXNACHTkXXiAc0AaSbA4o4BzQHDBN2hdgnNAB6fPLE2Sc0CuULoT0ZJzQMDRFUr3lHNAwHDgKrigc0CYitUOW6JzQKbhH3IFpXNAtUEtmrWzc0Df3PX9DbRzQPA1tRTQwnNAEexJiSfDc0DbN5Oq19FzQAh3DQr60XNAcvooD93Sc0Co66hu4tRzQETK0+A34XNA0u/YNHvic0CALz9JaO9zQGpGGbJ4AXRAUOlcTKQBdEAoDuRvuQJ0QAjh2WZME3RArP196LkhdEAcUj7EIF10QLzY6Ba3YHRAycCrtAdidEDCuV2OemJ0QFhaNJFPZHRA2SVMV8VndEDeE1Yx1md0QD4kqdMebXRAJA7M2SJwdECdSA40QXF0QBXpK187c3RAVq2VvfiAdECG3QduToF0QD8axdoVkHRADGFItO+fdEB61GEEz6B0QLrGUW25onRArkH0jhCjdEAY2GDIwrB0QFIBFxdvsnRAlA+m0fuydECC9mwJ48B0QMCRD923xHRAsrFf0cjNdEDSBU8hJtN0QNv+69O54XRAuvDNcvnidEB0A9aUX+N0QIhJk5uP43RAIiA07ozzdEA4XEVFZQF1QIotV/ZdAnVAUIAXcKUCdUCbDHKfIxR1QKTNbj6dInVAqz5BSM01dUDq1PCK3kJ1QMLpZvF1VXVAKbTaOgtgdUCGEV0x+2N1QEOiWOqMdHVAhq0xV62BdUACNmigpoN1QC4zLJtIo3VACKVpRPfBdUB8GTZhDuF1QCTc2GFIAnZAqpFO34gidkCgiSB8kCR2QOCR4oRKK3ZAABS9Kx8xdkBIXiLmUjN2QCwJ2eZOPnZAPYgG/hxBdkBgk6EayUJ2QOC7wbd5RHZAnGdQaBNRdkDY+tNNzVR2QFCysffQf3ZAnJbSphKDdkBu+WB66512QDCqwFZGo3ZA+lWfXZ+odkBK4h6kkKt2QOZawGHBsnZAtBXU1gu0dkB4k/2HTsF2QD5AFojOznZArnV9FPLhdkAEaK67ABJ3QJg9jzoOIndAvGx38Qw1d0A6fLWMnEF3QPy/GsiRQ3dAAM3WAxtFd0BZaUcgS1F3QIkK1R2SUXdA9h1o0O5Sd0CiXv54KFV3QMp+5JQmb3dAi8FFPXiCd0AfKxKCE8t3QKqgWMxtInhAGk9Z8zwkeEB4VRO6EUR4QBhU6v15RXhAdJaN/tVIeEC86nDlyVF4QO1OSemJU3hA2mHToYVVeEDDqKkH+WB4QP5tCAW3YXhAF2L9o4t0eEAqRYflxnh4QIkWbPn1e3hAF9eYxh9+eEAoyMx4pYF4QJ5EpDZ4g3hAqqKn05mEeEATorOqlpF4QObBlA+olHhAXA4MZP6jeEBmzGdQy8B4QNyK9fa21HhAp4ZV8qLieEAlalaY/Od4QHzyQ6wB9HhA2ZlH3oz1eECWDa2MsCh5QFt0oRy2M3lAgTAys707eUBA2Wmyw0N5QCDZ5Hj9Q3lAkNiGYMxUeUACOjKeDmt5QH1IOshng3lAEI0Y376yeUAfW0zBp9N5QJiVJdRB1HlAOh7y4fsDekCN3jkpKzN6QDZHQWEMNXpA6uqXqC43ekCGhp7GMDt6QD3FsS4aRXpA4oTyJidVekDAhP7JIlx6QGRwHFD9anpAV4CxVMyDekATfxst04t6QHOJ5Yoeo3pAlNgrMA6zekBwiHmCDbZ6QBtub0ISt3pABmn3DBO7ekCW6B4KFL96QIBD61yn43pAdgFcVbTzekCszxWsewR7QKECw75MFXtAszFEx1gle0D27vd4wTN7QG48YdlFo3tAYrLAAQCne0Ak3MbOBKt7QDAqu6sCr3tADvwWsIz1e0BcB3jv2AF8QDDq6VyaBXxA8A3aHdERfEBj0ahtvSN8QGgB4y/OQXxAeMyC2AZzfECaNhnm+oh8QIL0t3jFjXxAIp3MAR+TfECK6HwULZd8QJze1eFemHxAwldhDHuYfECQhXVWLpt8QNnCM+TInXxA6aypHvnbfEC0OKATWeJ8QMxihvNV8nxAxuVsGXTyfED68pepBwJ9QD6n9jxQAn1AVM1R6pcDfUDY4bgktwN9QJLkLHcABH1Ag30cdzIEfUD2bkEvWgR9QAURQrcFDH1AkGaWfzYMfUB6Pu6aRhJ9QCr6i1CME31A5GEYFwsUfUBRPFGukBt9QLq+gs4RHH1ADBQTJh0kfUAKVGgqlTN9QMbY/flHOH1ASrdDeaA9fUD09W+I6EJ9QKko/VBASH1AoAqIWwGkfUCuJORzCax9QC7/oYBVtH1Art/oIuXEfUAm9SU7Xsh9QAhKXW2f631ApMa0U4t9fkBDkLfq5YJ+QCsOYgaeg35AKB7ZaqaLfkDEO2+mYMd+QFM8Rfb+3n5AfDOKkVrkfkD4gnGuCvp+QIKLn3Vh/35Aokke/bwEf0Ci+L0zt3F/QPDW6ghjkX9AD7itxpKTf0DVsiPRXKF/QA/LXphYsX9ALutHLGi4f0B0HMqmRwKAQCUX01/rKYBAjK7oR0gqgEBPYSj2TjKAQAYXeTodN4BAKqfQfsg5gEBs4VWgqEKAQLRLAPenTYBAMwNMoOZQgEBPo+vjE1GAQDqgBp6rUYBAvkLSoCVYgEAkYpw/DlmAQFjLDPomb4BAEPQ8Bl+MgEDiXLDSC4+AQHyS/763kYBA4iIxUmWUgEBvI+OfIJeAQKBfo9san4BAvOAWGe+mgEDru1SzEq+AQD4BJlMesYBA/WsfzX6ygEBaIFRvhbqAQJ5tkup4vYBA+1n1t6q/gEBAWT88UsGAQApt9ySJwoBANs+ewa7HgEA9e5g4YMiAQMQ29wFTyYBA5kYFE9nJgEAih6JhTNGAQHSafl9g0YBAnkThu0nZgED8nKYoIdqAQDYbUDNE4YBA8hoczKnngEDYH7STS++AQIpNDT5o8oBAtFMaAaD0gED8hOZIS/eAQCQg5Hs//4BAyN0kUkAHgUBT5tLDCgqBQLz+ubQODoFAHElhFj4PgUBrafoUExKBQHDFpWSJGoFAgA8rDTYdgUCSXq05NB+BQPwhk2ozJ4FANp8pNAEvgUCbO1y/Ly+BQKfN3MGtMYFAESn54Vo0gUBqNs+CKT+BQIgK0RmZUoFAGKx7LbJmgUA4pOx+o2qBQLEaQGSmboFAt+YhzsF0gUB6G5p9bneBQM5VUMsaeoFAump0alWPgUC5LpaTVZeBQBgXtj/ooYFAfiyO8d6igUAYwzN5S6OBQKD1TyFvqIFAonrrQuaqgUBo1eRESq+BQAJs9y5Mt4FAWrCNfgDCgUA1dZ6LBMqBQNoWstJvzIFADREcnbHMgUDM7Y0SHc+BQAhOYudcz4FAKRpKFsnRgUCiM42QfNOBQJD8fzdm4oFAugCNfJQCgkBYlYdd2BiCQI6rj9LXIIJAGj8nctEogkBI8fra3E6CQGNtZOzUWoJA0rsFVQ9dgkBXTqx7tl+CQMUjqrdoaIJAZJLOGUOJgkApfhFaQpGCQKCj3t47mYJAGHgwbw6hgkANTNK2OqGCQPy43qPU4oJAvBSEp7gKg0C41dBLeRGDQDhUmiR6GYNASPJVp3Ihg0Ci9u3icCmDQJjClKlpMYNA/d8/+vNtg0C81Q/XSIODQFavsr7SqYNAeD7YqtWtg0AcAuw0zrGDQHqyFQz/aIRABNhw6/5whEB2AI9zyXeEQD6fFTn3eIRAZpz4Rnh6hEAo0n+EEn2EQGRW/1hvooRAjb3f+2nZhEBgqisPauGEQFJhJAhk6YRAuRytbjXxhECgNNBjYvGEQKpA+AYG84RAnKJzIKBhhUCQ0tLItWKFQIOS4+dMZoVALJZ6c7pmhUA1amlQoGmFQGBv34BOaoVAPQ7iRb9qhUCUKa9ImXGFQPaY/HmWeYVAWtMO+j+uhUAbJvb4QrKFQDTlqRDBvoVAbgn/Yy/mhUC05MV9/3KGQL3gQrHMqIZAZkgDos6qhkAxxkpvkCmHQBhTpPSRMYdAxyBX7YE3h0AE9bkRiTmHQPJPIYaEO4dAADfIY4c/h0AIirZFmEGHQHBalCmLQ4dAOOYpDMexh0ACSyXRxrmHQM5Dwsq/wYdAx7nhbXbGh0D/9pSAvcmHQIa8f518yodAHFap4Onqh0AjSbB0enKIQM2tckZ+dohAXZ0wxX16iECaGfqgiM6IQCTGWsHg0YhAuf6Q/4rSiECKeDJW5NWIQDe+wbaL1ohArDO9vt3diEA= + KBZXds7jZUCEfuNfSGJnQNzlv3T/InFAaYA5p9LBc0DcQ5zIVzR4QGneFfsq03pAgQLyH4MigECYHFWaIYKAQKwsdCLPWoJA - + - OgUIRpaHOEUWSEhFrcYZR0xLDUUIvexEvtqVRTIvsEVXfC1FaEy9RBlSxkSBPwxFYYg8RahbBkeguUZH+GhKRVuy4kSD+4JGPItERawS0kSKD7lFCG7CRFaO+UR5bEJFFUhZRbd4hkWY0hdGP/5SRV+6YEXJzBtFHRY4RYjIBEXVogJFLkapRpQu3USCdZtFDChUR/63zkQNQoNG3nTvRTD54kW1yj9FxkM5RRDuGEWW2KBGN2T1RDJdZEVC4RlFTzkoRSuHlEVGr6tFnAQXRcnbGUXkxUxGBvDKRBs7HUVAaXRFK9pCRS/0hUcVnyhFds3XRWpP0kaOWsJEPCPWRXr2XkU6WNxEcSbQRREnPke9XdlEscbuREV4rUVZaJtFYbUDRVzBMUWD3QVF9w7PRcJubEXhLmdFiiYhRZdp8USQfAZFrsVoRSIU0kSq/fpEgj/QRA4FFEXJPoBFKdejRUuM50Ts2T5FoOd+RZ4m1ES4BBFG5nwIRbljD0VfqiBFPq3IREMR60SbAxVGKxjrRWr0dUW0MP9E+ZUwRWlnH0XReDdFfYllRUx7Jkbje5VFsrC5Row/9kTE6wtFb6qhRU7+QEWu35NFalQDRZPe9kW+typFU1hORRP0p0YUodtFgXkfRW5oEEW/1j9F5jejRTU04ERFgllFxVjaRCCUmEYOPm9FBs7YR+/pj0adYRVFiDW5RkFwaUUWwhZGo131RMOc5ERlnBlFICHiRLLT1UTS5H9Ft2DGRCKIMUUA1iNGb0+6RR7gkkW3GQNFJ9cGRZrYV0URXvVEZv47SX0KhkafeahFaSr8RcuyH0WzGF9FH+4+SBVXHEXZs4VGd158Req03UQ9cARFVoKiRYrayURsfnJFHKOfRdnP+0TTzK5G5fxxRRusFEXQzfpE/eNeRWY3HkUkFgVFABgJRSijLkXWTqhF6iLSRME08UWb+KdHZwcFRjzJeEWq7a5GI4L9RENnYUUYVwVFUW3MRS6EMEXvD+tESwk5R69StEX9wBxHmIeIRk8MyEXh2c1FCHLfRLLxX0WoCxxGN7Q/RayD2kSX3MhEG6k8RTw0mEXuqgRFYM6GRoSVCEbH6ZZFvqyFRTitIkXffctFQULdRWxx7ERZb/1G7KaURnDkxkWlSSVFFTvhRXPy60S4BCZFpLDPRKznnUcE6qNGHrMoRZXLCUUg3GZGq36ERe/tpkUhDNBJl5HgRczri0V5iWFJoX6CRUwu2kTYyKZFHfqGSAh1E0VUmC1HuuCDRalUVkWYs/1G1tGfRqVVukXQqzlFH1JWRhoIrEVG6BtFARVfRbQOCEV0Bs1EiFV5RQ1TfkVwWhdGgBRYRWNUEUWKWOtFUZ5QRcIDMUbwRAFG/SaORQ1hhkV7SjdG57TaRPzF9UTCwzxFRxEBRVeR2kTQreNEEYuLRljsUkX/vhBFTk4DRTQeLkb0GtNF+w8aRQgiUEb3CABF4geeRXrElkXYGwZFBMyAR5lCaEfLPqhGefSPRS9dCEVBFA5FePgARVSA40VDaNVEhBniR44Oz0YZLyVFNDTzRBYwh0jMwIRFp2jIRBtvAEUeR9dHfPMPRfa2ikd4s4FFC3hfRim7GkUleWxFQcYeRaoBC0XhjxpFKV4sRSX5EkVxIllGm512RfenlUZHB75FttjlRchu5kQTMnhFY/4kRc3h80aH1qRFvkijRUd9OUU6+oxFNHFMRSf+7kXCFtdEqIykRRHFAEbshEVFaLdmRRpQ2kRuRQBFhfz8RT1R8ER5MA9FPErYRciDAkU1eRVFZh/aRIQcC0Z8PDhFRJLwRE04okYNvYdFWdc2RtZ6IUXskYJF9LtoRYFxGkXEBWBFWxcjRRBGT0Y9cGxF0TVURSI04UQ8WDVFiLITRYklvUQDdwBFq9+2R48XF0fX+K1GX7y4Rboo3kUVTwJFBl+ZRYnC2EdDIElHjWfrRksHHkbWsCZF/rpDRd7mD0UdYpBGKi8IRhMiP0Vti8xFCSkyRVOA2UXMcvJEidC0RT2qFEV4S+pELOsER8crZUY8HwxGQDqBRYPJi0WmNuJEwdoRR62WSUbCmltFD5nvRQ0mfEbZECJF8MwoRd28HkbdCmFFLvfBRX8SPkWYagtFsviERVhE8kS3qkBFwwo+Rc1qF0Y21IlFTIsQR7V/SkXC8P9GfaggRpRwBkWN9BtFnYwjRvPloEUr1l9F7PusRfd+5UTklVZF/q7yRNFdrkVhS1JFXrohRePs+kUv78FFnb+mRcE9M0XLECpFSnjLRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Lp3JCm/BckDvn1kJT8JyQGjKRAE8w3JA1kJjWg/SckBudc01Q9JyQAC+VUrO33JAOCplIE/ickCpbvkAkOJyQKx67svJ8XJAi0fTI9ACc0AN/7Rj+gNzQFB60ri8EnNAku78tPcTc0CjxRuceR9zQGLGR7E4IXNA6s62Rsoic0Bln69C0CRzQHbmkTe6P3NA2khVCOJAc0Cjz1b+d0FzQEamURgmQnNA+nBJSnpEc0BCzfAAnFFzQCZyvaOjU3NADKjJ9HdUc0A5ylRgh1RzQGi72jv6X3NA6l8aDzljc0DqZZHTS3VzQN4LaIp4gHNAHJ5YwqSAc0DHxDM0XYJzQPPLu1qGkHNAb86qBE2Sc0Cof3nZ9pRzQBByeHS4oHNAA7Hp1lmic0CW7VAPBaVzQMYjvrm3s3NAfmdfhQy0c0CYpb/p+cBzQBVn9aHPwnNAiGV0gCbDc0DcWCQ+ZMNzQNhjB5zW0XNA1jpLgfnRc0BfLgkq3NJzQL0L3Xvj1HNAbI1hCznhc0BpzMqgD+NzQCDwq7Bk73NAQxyb17Xyc0CkL4dQNvRzQIxy6454AXRAXvY3PU0TdEAJBP9IUzB0QHZsHdIgXXRAFjoijbhgdEBLa3bQCGJ0QFpw6Zl6YnRA9N5+E8VndEDhMZPH02d0QEQSH6ohcHRAS7iYsUBxdEDUT8wqFnJ0QOeuDeQ6c3RAyFizSPiAdEDw8bX3ToF0QL5n2osVkHRA0M8ZddCgdEA89HhquKJ0QBT3mtQPo3RAukr1ZcOwdECeb5g4b7J0QHTORPj8snRA/ocpAsvNdECxRsA+t+F0QD0eZiRe43RAG1TTqI/jdEAXSFMJTuV0QO1y55+M83RAoVGJdM4AdUCie6cRXAJ1QKb4j5qmAnVAX089JSQUdUAQCw+PnSJ1QD89mpnLNXVAbIv8nd5CdUB6F2h7BmB1QLDxH+44YXVAvKHFhHZydUDrTbjgjHR1QBaf/mqtgXVA7O/WvKaDdUCeYSWDSaN1QP4kkCXOwHVATq5hXQ/hdUBsx3v/B+J1QDPQLHt683VARuS6EEcCdkCSBYh/kQJ2QKt07EGIInZAtrK8FpAkdkDAfedXSyt2QEUFbmIfMXZATN27oVAzdkBVhTEUTT52QHZPggodQXZAIPe/NMlCdkCSVzmBeUR2QEabQz4UUXZAKvnaNs1UdkBM1DAd3WF2QMtiZF6PY3ZAhsupu9pkdkCQWZv60X92QEy+Mt73gXZAVqP3VBGDdkAEn64fj4N2QASiukTrnXZA1MWjbUWjdkD8zOE2jad2QIyzbWCfqHZA/du/tMGydkDqzTDLDLR2QJXlAGTOznZAyspluAASd0CUnW9IDyJ3QIjtt9IMNXdA6sOSlJxBd0AmshvEGkV3QPzu731KUXdAyrJACJJRd0BI+8kqJ293QJKON+NsInhAeNHqAgxCeEDJgwHWEER4QNS5xPd5RXhAfizFKNdIeEC6kl7JMU54QOxDE+vKUXhA1Ej6XYhVeEAAzbFl+WB4QOCufQ21YXhAbL5ACUZ0eEAUYXQgXnR4QJRBN4WLdHhA/muWH8Z4eEBwOrZy9nt4QK6I+f8gfnhAGVx49KaBeEDGUTpieoN4QKDcG9GZhHhAoafcJpiReEBYFEcFqJR4QIik34D+o3hAjKEpPgeseEAmN4SnttR4QM2SZ8qi4nhAEJFrxgL0eEB7wxdajPV4QMjf0VeyKHlAXYZXwrUzeUAEHfB7vTt5QF9X1x79Q3lAjCXKHMxUeUA9NnJuDmt5QH+VhH0Sb3lAwjlzK2iDeUBiIkXnv7J5QDaheppC1HlA5mHlu83VeUDHHaNXDvR5QF7KCPH7A3pArEF1dCszekD51s6DDDV6QNpPI5UuN3pAELrIxy87ekCu9v/ZGUV6QLuFOM4oVXpA3U6joiJcekBikRQqKWR6QBa7YqrMg3pA8IkwKtCLekD1A/ApDrN6QHWdqr0MtnpAQCioMBG3ekBeY/qvE7t6QOJni9oWv3pAYo8XnRHCekChhsVVEsN6QCuOJ0No4XpAG+cnhabjekCWKj8cNu56QCJBkGJ9BHtAbo4v9EwVe0AqG+1EWiV7QGzjjqLIb3tAEn2g96l0e0AYU1w5I5V7QIAepuUCp3tAxi0QYASre0DRdEbkjPV7QEBO0yvaAXxAJxh1L/oBfEAosYY9mgV8QFjoLE7SEXxAbMBrtLsjfEDIVjm0zUF8QHCTbGkjU3xA3DpGtQRzfEAsQ8dUxY18QE7EugAfk3xAp5z2oSqXfEBR7VobY5h8QKQWpb1+mHxAJJjEo72dfEA2HvMGWeJ8QAEAilZb5HxA5qhkbBfyfEDaNRikVfJ8QHoWWRSp8nxAkEEzcAQCfUCqVJDsTQJ9QDrL71dqA31AOkpL94gDfUAei1NXqAN9QOQqD0oABH1AsvpkuUsEfUDbnrdbaQR9QIYkOcAFDH1AMu5u6zYMfUAaT++XTwx9QM/GyPdCEn1A4A47OYsTfUDA3W9SCxR9QKIj7CkSHH1ALrhgMhgkfUAC1YiclDN9QCI9J4hGOH1A4VnwdaA9fUARowgj+0J9QIoTVrZDSH1AYhniAxx/fUAOeTwmA6R9QNFCHPcJrH1AVN9dgw60fUACaSttVrR9QAKLvJvmxH1Al7mGkmLIfUB5f6MsvM19QGKoT9Sg631A/JHp54p9fkC2WUUg5IJ+QNZ8VsSfg35AI0Fy+6WLfkBq8x9CzZh+QFjjMqQern5ACnmYGgDffkB6aWc/WeR+QGzk+8AI+n5AogYVAGT/fkDuImSAuwR/QLYKeLG2cX9AAgFyJ+d0f0DkbrhgtoF/QLbsUEhjkX9AvKELaJqTf0BtA+pKW6F/QAabQkBUsX9AUKFOGmq4f0DWf4Up6ymAQGrrdq1IKoBAnqm9D08ygED9F/nTqEKAQIoaTK31SIBAkkqHkK9KgEDIt4nmqE2AQAptuZjnUIBAamzLJxRRgEBo3/2MrFGAQIZe5zYmWIBAc/87OQ5ZgECI7UuXHWiAQPm0a9sob4BAnryH8V6MgEByyeyHDI+AQBQEbFi3kYBAOODtpmCUgECaYqEBHJeAQOi416jZmYBAjRdgl5WagECkZWUf86aAQHT79PKEqYBANrmCexOvgECsXoX6ta+AQOIF6r1+soBAMJ8tk4W6gEDiQAwUxLyAQJoEgwR6vYBANfMsOFLBgEAaB7V7bsGAQEV3KAyJwoBAuoYtp2LIgEBxfHDxUsmAQFoZSPFL0YBA/KyIHWLRgEDGh3OhF9eAQNogtWxJ2YBAdtiVzyHagEDcyn37Q+GAQNxVZ19V4YBAaSQGrp70gECQnG6nTPeAQCs48tP4+YBAWSK7mz//gEByzNkhPweBQDTNDqkJCoFA87HeuQ8OgUBGtQRRPg+BQI4H37KJGoFASIybeqcagUBZIxqmNh2BQGIr5mA0H4FAJp67wzQngUBMSxMrAS+BQAYo2LYwL4FA7qbXE64xgUDLW1yeKD+BQIrchMSxZoFAhmqKeqJqgUC24y1Spm6BQHrLdd3BdIFAWrSERm93gUDbvPMYG3qBQPII72VVj4FAOJC86VaXgUCf6YQAUZ+BQHg5gcrmoYFAIxN6VN+igUBo4XlKSqOBQCmDgODmqoFAIlJgt1KrgUC4f/5lSq+BQJKMFYOwsoFAfBh7Yku3gUDqQFXUlL6BQDnlyI4CwoFA78CFNwbGgUDMRewJBcqBQKLg/G1wzIFA3gIVN7HMgUDhvHjyHM+BQGxsrIRez4FAY6etzwzSgUAm9O+eYNOBQJz83JJn24FAAh6UMmXigUA2iqBTaeaBQCA8CM4CCYJADE+9/9cYgkAe82GK1yCCQLrACgTUIoJAorAD03RAgkCVOrVRjFaCQAbrKMWRWoJAMNaXLg5dgkAKoY1EB16CQPDmhPy5X4JAvFHTMqRngkBMw38lCmqCQD4PlBMCcoJA0qYZ+QR2gkDAqefsQomCQNwab31DkYJAsImQIjyZgkCK4TgAUJmCQK+ip7MOoYJA9BFGFDuhgkC0CAhq+KGCQNnNWlMzqYJA3DVgz5vagkAa6Qs/FQODQHaLuy0VCoNAmKf86bgKg0DcTgkGvA6DQIoaPzd5EYNAQuSDD3oZg0CwHqGQciGDQPLI2f1xKYNAFjChr2kxg0AiV3GESYODQLCPmeZjp4NA39/Bs9Kpg0BuyML/1K2DQOaFpDnNsYNAbiJCYtC1g0AqhjXad2iEQCoah/X+aIRAGmNb6f5whECKFAFzyXeEQGK4eLR2eoRAfpKuLiZ9hEB3szMkb6KEQMDNTKdBpIRAVIxf7mnZhECMnBePauGEQB5oB3ti6YRACijoJTbxhEBiTw41Y/GEQCJYLS0C84RA6B9DWDX5hEAMAtRBDBmFQFxUtAagYYVAp1ZO17VihUDkVqrwS2aFQDx7n3m5ZoVAdDPcGKFphUBwdgVbUGqFQFQ+NRW8aoVAxPFIuZhxhUDchM3CmHmFQOjWe+SRgYVAOotY4ECuhUCKXzizQ7KFQL5HDnwv5oVAeWGw7jPqhUCyvE75y6aGQNjV1xbKqIZA5iQ59c6qhkDcsv7dzqyGQF2VJU6RKYdAIOmcpJAxh0CepL9XgTeHQNDjmwaGOYdAWBOkpoQ7h0Bj0DLwhz+HQMJMsoyGQYdAdp7N84xDh0DktfMax7GHQDAxDSTIuYdA2kY0hsDBh0BQVw6edMaHQEY75mm/yYdAiqYI63zKh0DAXSwN6eqHQPScZOB7cohAQkj7sn92iEA4gmnFic6IQLKw9trf0YhAlA5TxovSiED7cC+e4tWIQOKHSoaN1ohA9t4QdOHZiEA= + KBZXds7jZUA= - + - qbbVRUvnAUW0JGJF2n9nRd+WC0eLCQBFKj9pRVOaokXr6mNFC10zRSA+H0cmIMJGR5hURTGMgEWjbaBGlOY/RbtipUU95IFFuODAROGsYEWuMZBFe/4MRnMXJ0V/6YBFFNfjRFq01kTKAg5FFPQ1RVfrLUUBTL1GDNnfRO2V7kWQCwVF8w1HR5kmYEbdIclFVX3cRXlfJUV0PVVFfA8sRStm/ETX7SNGwG8DRV3mzET7KBRFzMXsRaeRAkUZ5o5F4MOMRW5T4ESyvGRFWjsBRTy/MkUZKmFGR3A8RS/S3UTVV35HO2eQRT4DQkbadu9G9hCrRXPCsUUGPNBFSAsxR8BN2ETCnOJEhllaRWNl10Wf8ctFvgFdRXU+6UQAGK1FdnVRRZI+MEU9fEVFKlaNRajgNUW+jRhFUTtLRenS6USfR8xFOnndRIS0X0XgS5xFb0w6RUazOkakJTZFxl4sRQoC+0SFMRhFHmBLRZalGEaVeK5FM/dIRb5XJ0VBDNZE2BDbRLKLAEXF/ulE82A9RZIiQkUoKItFUITDRS34fUVKzsdGVdcDRZv/NEUNnp9FUzFtRZkaakVn00JFGExBRrd+CkUUEvlE8cH9RNhMUkU8X8VEOynGRZ1+90TfV5JGNE42RqNbJkVLbmZFWVQmRUKhnEVxHk1F32qWRqpGYUWevPdHqOulRj3iy0aAr4xFsChNRkHlGEUeF01FHY0ERWywPkWx0z5G5kSzRf4VF0U2v6FF42czRQA1i0WkwxpFvTJbRey2AkVPf0JJ6jSFRpXRP0WjOQlGp5wbRYq7NkXBZUBIKzaARc6QokZ50n9F+GgfRWdeJEXwKWlFWOmFRcHd10Uh9RVFcfaPRuCl5EUSYwJF+NynRV79DEUO9Q1F1ZH+RF+2QUXTjd9FBkr8REVV2ES18gtFad8gRgafxkfQZrhF+rBRRQIKuEbw+DBFS4w8RXnQEkUuaL1FgY8SRW8yIUf/icBFMgDaRomjMkYQmz5FzIkVRdx/8UQ2vRJFsUjLRVn9E0X6/wBFqYPxRWSEPkXg+C1FDZxXRTSyJ0WIOD9FxWmORYabckZP+jJGwxEgRTuPgEXdBbxF+BjpROwMhUUlU8tEGMePRf62A0dFuYdGsqHORa/fMkVlvHJF8kAuRRveukeanvtEI+XTRBUqgkbIE/JE4XoARWXXU0YKa1JF0ARjRbLrjEUHhs1J0PvhRZcoYEUhMWFJx+mnRSqPPUVPbBZF25OhRXZ6hEgvzh1HGKqeRYWFQ0VbuN1GAeF6Roxmh0V+gylF2n0SRSFbg0a2lZRFtOoeRd148UTaKY5FkdT4REWy8ESlqwVF2iLXRZSkPEXOBRFGWQGKRRqj8ETUeA1FJJRvRSBKj0VemQ1G20gFRhwVwkW1hZhFPWMTRWPgH0WcFRhGRuQMRZw/Z0UFpB1FP89bRS9uDUU1lwxH1KrNRat4B0bB0ftEIywdRdE32EWOWyhF6pOERvpdL0UJLANGzv26RU8w+kRygAtFzm9qR1ArSkfYoo5G2FQ+RQG9C0XAu/dEehbnRKSY6kQMugFFC/ASRsDcRUXk8CNI43QaR1MODEUlWkZFRG6LSHXMCkXW+YlFDDQVReZd40c14HpHBpBCRaOODEUPmVdG6cE3RYNEnUV8kgdFHOv8RfxOZkVaVi5FIeNDRnUDhUVx+8FFBMgRRYE4s0WnK7lFc1f6RAgYPEW4XgdH1gQNRox4DUZsNhdFDC6gRbhFH0bEe59F1kwERmgngEXzeHRFYnw5RR12BUWP0O1F0dJmRXx6EUWWdYJF8rvzRTmrtUVra+5Eif3xRATkNEYFt81E1g1SRZ2wDUXosnJFT3MNRQpanEYuFpJFerx5Rrf0UkVOYuVF6cj5RMPJTkVENeJEJeMqRdd/RUVf/9lETXxQRn9zmUUrHRlFL6DgRCQaNEWo2lNFMbQhRXS8FkV3txZFBAUPRTZYBEV5Hv1EOrMJRVQuE0iMKI9Hj5EoR6VzcEVhDNZFJAAfRiUXN0Uy9olF1JASRTgs5ETFMDhFnmfJRY+aLUVhtRdI8iV+RypNE0fjJSVG5+JbRZhZ/kRQ7PRE2YjJRkTwMkb/dHNFTsMWRTmGDEUQXcRFycgQReV1lkVcWYNFPlB4RVNZ1ER6huBEWe81R9F/oUa982JGYh9hRUx91EWRJfNEEDcDRUcj2ERBpB1HfrU1RvynSUUeZxNG/VeQRqOZ20RutWJF8HAqRrErrkUX891EERKxRepOg0VPiwlFGsEPRUxaVkWC/2RFQRJTRdtDC0WGrTRGMpTLRe+uN0cv9HtFlzUaR+2EZEYR1e1Er1OYRcSiJ0aR4K9FXd82RfIlakWwHwtF6WoRRTvpWEXZZ/1FcZRWRaHkHEbvbgxGDeO2RZ1Ll0VUzWVFGEdXRQ== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - UH1Zu27BckD63EtLTsJyQOfgqZE7w3JAZPb1OA7SckAehO9kQ9JyQArWVUe44HJAGBS5pk/ickBXZqDaj+JyQIDuQhbK8XJAkcG25c8Cc0Ba3lRB+gNzQDg4UOi8EnNA6UfGAAYUc0CQv7FieR9zQJSlugmjIHNACF9B2Tghc0BAKP14ZSFzQIgfnPfJInNAIRO4Kw4jc0DoRHgqzyRzQAT1yEFWMXNAPVe/zcwyc0DKr7cVuT9zQMVin9Z4QXNADp1KjSZCc0D2kqr7eURzQDtm7kmbUXNAkWY0AaNTc0CA8YxldlRzQMBY6UaGVHNAtCqmx/dfc0AeulTpOWNzQDT9Wk7dcXNAlyyIJrV0c0AWZ4qlS3VzQI5EMr54gHNA1pFogaSAc0BcxORkXYJzQOi2m4OGkHNAeDLT5UySc0DDDZ+P95RzQG8yMW24oHNAwiJ3XFmic0DuJxTWBKVzQAw94+q1s3NAzGsbJwy0c0DEbWiuz8JzQDLIwmYlw3NAWPxhjdfRc0BYdHBx+dFzQNzavK/e0nNANqCoQ+PUc0Dk1g7POOFzQJG43P1j4XNApDShXwXic0AOj5xJD+NzQBjF6JRm73NANIQQfeQAdEBQPzbOeAF0QPJhE8KlAXRAkiz1+7kCdECSeSjJTBN0QCZmpBdNIHRAEkI9G1IwdEB8+9mCeUN0QHjThon2VHRAThp/4yBddEBewv+qt2B0QH3SKukHYnRAwEuAhnpidECleecpxWd0QIc1DmDUZ3RANtom9R9tdEDldSdOInB0QOCUowVBcXRARPMQ0zlzdEBOEQXONnV0QNYh6db3gHRAKibnT06BdEA0FikxSIJ0QDJ+Dnwlg3RAPJFLcRWQdEB2MX4/7p90QAZlt37PoHRAm17ffLqidEB4Yo/ID6N0QKHC31IJsHRA1u4Wf8OwdEDIRyWjbbJ0QN5vnVH9snRAvuKTH7jEdEBs4XJpyc10QMgbAE7N1HRAhXOrMV7jdECYHMbBkON0QNeDa7GM83RAnrC2l10CdUA0vIkkpQJ1QKYFzNMiFHVAL3UF8JwidUDlfNwDzDV1QAQN3T4OYHVA8qpY5zdhdUBUm7KUZmN1QHbwJE37Y3VA3GWN/XRydUDi16sWjXR1QK46RiOugXVAm3OHYaWDdUBERLyDbZJ1QOCoAjVIo3VA001FS9DAdUAQk0WqD+F1QG60ZORMAXZANMVGskgCdkDk9Jt9kAJ2QJiO+bTQA3ZA5Cdsy4gidkBs17XHjyR2QFDw6YNKK3ZA3LCAQx8xdkBA5OyunTR2QO7U9IkdQXZAKxOt88ZCdkCq0syAeUR2QASwxSoRUXZA81pDTc1UdkDHM7uu3WF2QK4Q1zSOY3ZAOiiAatF/dkCoNDR1EoN2QEhTgAHsnXZAOqWNxUWjdkBKA7N3jad2QAxXqridqHZAGLLO1wy0dkA0Ieiezs52QK2SuRWR83ZAXvToXKQDd0A29kPrABJ3QAB3TT0OIndAWumwGA01d0DmiGrfnEF3QDkccvUaRXdAJ77xNUpRd0A/BhmbklF3QLqZbQnvUndA/qiIcCtVd0CKmo+jj2F3QKhxdSEob3dACjTxV3qCd0AW4V+mEst3QCw7TP/l8ndArmh6CfTyd0BS73D2biJ4QGL4q5LRI3hAbIy6xBFEeEBBvqYqekV4QLb8PnLVSHhACa1r9TBOeEB8k8dry1F4QAGBRoeIVXhAOIMEA/pgeED9z8wMt2F4QF0qb21ndHhA1iiHq4t0eEDEbQhs2nR4QIKOwavFeHhAfh7AnfR7eEDe7oSHIX54QNpRAdSkgXhArIn2EXuDeEAqwJi7/4N4QB5gqeqZhHhAey6n+5eReEAe5mkqp5R4QPw6wf/+o3hAPQ8k5rfUeEAwNN0youJ4QNSSYL/753hAGYSf6QL0eECCKX9ejPV4QB9DF1+aBXlAoC0YbbIoeUAg7itotjN5QJxhV1q9O3lAEgfEvsJDeUCuO3BY/EN5QPg6qmvNVHlAOn3L3VtueUAQpyhZE295QAJw4z9ng3lA2WmsPMCyeUArr3MAQ9R5QH7dbM3L1XlAZsBHvvkDekC+vDE4KjN6QCxwrrAMNXpA9lZ3Jy83ekCUGCeHGkV6QDbsUIQnVXpAiRYoPSJcekDdWCjwyoN6QJpYs6zSi3pAZOWDHw6zekB4LrcgDbZ6QMzSs+kQt3pAMid1bxW7ekDGg9qeGL96QPYHOX0TwnpA6UjDsGnhekBnN9hapuN6QJJsjQFf8XpAnHkKzXsEe0CSPNkjTBV7QFR5HBbPI3tAyOvBsVkle0ADvrwayW97QNL5EA+qdHtAhtvnvCOVe0C28J0jAKd7QPi0PNUCq3tAMDFdDI31e0Be7aHC2QF8QKZLBOv4AXxA2GPTgpoFfEDjyFdj0hF8QPQLpKnOQXxATvA6jgVzfEBMV7nxxI18QIRDftYek3xAWOO8byuXfEAgXy85aZh8QJw3RT4rm3xAEje0jNGdfECHKXcfWeJ8QJ0jHpBd5HxAWnfRPxbyfEAlYwHgVfJ8QGDd2DFz8nxAowEF5AQCfUDIe9RTTgJ9QM6Wef+lA31Ahi3zoQAEfUCqqD/LPwR9QEaslkVnBH1AdZF4GqoLfUAgKPfsBQx9QDTSJD9sDH1AQkI34kUSfUC+s5Z+ixN9QNrw01ULFH1AoAU/upQbfUDeHZ/FERx9QPpJqRAcJH1ANDuG4JUzfUBoJ4MjRzh9QAsPTVChPX1A/EA6relCfUCHGykSQkh9QNQmhcQZf31AMuaeTgKkfUA6O4KrCax9QCB6KI8KtH1Asg8c11S0fUBkH3OKKsN9QO5GqgXnxH1A5glw+aPrfUDS5rHzin1+QAJemnLjgn5AoLoXEqCDfkC36ykQpot+QMaTLTablH5AJrFEgEmrfkCxuAOqMrR+QPx3jD4A335ATKglylnkfkCwDBuRtul+QKX8A3sJ+n5ATxP+n2P/fkD8p+hEvQR/QLaFc0a4cX9AzLy+AOR0f0DqM/zAYpF/QBrnSDBZoX9AgW6nnFaxf0AOdSxGw71/QMtfu3ZKAoBAaNT+bUgqgECcBz00TzKAQB4y+uyoQoBA9Yl2IPJIgEAD34xPr0qAQLT8inuoTYBASMpL4eZQgECS1SqYE1GAQBCHtaurUYBAvgI4OSZYgEAkDjoHDlmAQDeeBzIVWoBAFlMrRkpdgECayooEKm+AQFDRlEonf4BAPL+BHF+MgEBGtCW1C4+AQIaS8ry3kYBAEo6AtGKUgEAp5J7QG5eAQPI4WS5pn4BAYMHRFhOvgEDCM6REZLCAQLsNE9B+soBAVC4204W6gEAE4kTEvbyAQFP+En4+voBACkRMRVLBgECAHhjIicKAQBykpw1TyYBA5R7JMJLKgEBWDKrbBs+AQA4L1ydM0YBAY+uamWDRgEB40lOYbNSAQHxRnUxK2YBARF6ujSLagEBDiwe/Q+GAQCGSF/9m8oBAtGvEyzzzgEDdgyV3n/SAQAfi7wtM94BAL0y23fj5gEA4e+pSP/+AQNxUmHI/B4FARCirogoKgUDsgQYFPg+BQLWTjwCKGoFAeE4ANKYagUBaNTN5Nx2BQNQB4480H4FAeIrt8+UfgUAApDMDNieBQPjVfYwBL4FAzPg94a0xgUBdYmGpWjSBQCCutgkpP4FAUprpe7JmgUBIkygFo2qBQJSUBZ2lboFA9JWQoshvgUDgFs7fqnKBQClHzK/CdIFAdQLGSm93gUA6ezEaGXqBQOAEEgUlhIFAdqHfvlWPgUDndDyJVpeBQGTMgzJWn4FAHAMTc+qhgUB2pn+p3qKBQC4hqMBKo4FAlvEp6muogUCozS1G5aqBQAp8FT9Tq4FAsKvOx0mvgUCC6AubSLeBQLa9R9sAwoFAeqom2wTGgUAv8o6KBMqBQNWJV0dwzIFA4E6VwbHMgUCgjFPdHM+BQG7XUDVez4FA6a1s6MbRgUCk3znqC9KBQFFnRS9h04FAwg9+DWXigUDwPL922BiCQPD/8crXIIJA2iNjHdUigkDisUQO0SiCQEYntmSNVoJAPCfij4uCgkAAMm8eQ4mCQAFzOPBCkYJAqofcujuZgkBWjvydDqGCQGL3x5w6oYJAxMD/vzKpgkBEUHm+BrGCQNk08QTsxYJAZmu5B7kKg0CIuJhswwyDQLZo1Et5EYNAKZRknnkZg0AkK5RmciGDQEbHmpKJIYNAlqplzXEpg0Dase3kaTGDQGLvjOpOUoNAbPhCSvNtg0CHA1/QSYODQD4Y1irSqYNATJ02w9Wtg0CkNGrcy7GDQClAqzf/aIRA7ne4qf5whEA+7MRHyXeEQKLUhTF4eoRA/mhuNyV9hECCeAFck4+EQOaio/Vp2YRAwHQknGnhhEAexyAoYumEQJgCUHs28YRAOabmdmLxhECrBhnmBPOEQO32wBDc/YRAgI+QIKBhhUAFD5F0tWKFQDJoNmI2Y4VAbPeuk01mhUBnYcX0uWaFQHRb6JufaYVAZvT9OFBqhUBMPH4VmXGFQELlJuuzc4VAHZT6rJh5hUDRnMcKQq6FQEBvAZdFsoVAekvV9AbChUADZNXmxc2FQHEsVyEx5oVAu0aqJjTqhUC9ilISy6aGQM6ihH7NqIZAOY7UV86qhkCeKeCv0KyGQIr1QCoouYZAqgJKRpEph0CQJnUzkDGHQHyTAgeCN4dAPBVEXIg5h0AxCZTihDuHQCqLzayHP4dAYiAhZVtBh0BC0lSRikGHQIbd6waNQ4dAcJI8od6ph0CjPUz8x7GHQDqLCiHIuYdAhtg8u8DBh0DQzvd0dMaHQGjFJkLCyYdAhiaiO+nqh0BWF6U28fKHQNqLTpd8cohAQez5gH92iEAjQU7tfnqIQAz7qmKJzohAXGjkUuDRiECf51ehjNKIQON8XYri1YhAjuyYHI7WiEBD96zz4NmIQPyyNQSR2ohA + NrgMGZxjYkD0hHOUyKJqQEMdzoN8QnFAoYOBwRJidUDRdBqjVFN3QA== - + - 12QWRn3800RWiEVFcQYZRWkhCEd3qQhFyl6ERZX9oEXBHUpFf7mORXKB/kbnrf5G1aqIRSEONkWgJrlECy+QRh1m0UT5/FNFEMD0RDq+wkV8r71EGGoCRR+kX0XRJpdFzcsjRd45GUazlAtFc0uhRRnMzkRqMsdEe/QURep5KkWYrsFE7VHpRCCbHUWQ79pGxVDgRKTNrEWMcytFLOVSR4CDWkaJWu5F+ATQReo9OEVOmHZFYU8IRfZAVUZmru5EO0lPRfonPEbAWBFFZY+MRXbu6UXSacBEbA3HRK2NQkXFNElFMtG7RHVQh0YQv+tELy+zRLiXgkVBKvVERrLKRNZfNkVH2PhEMvt9R6q1hkVwzyNGE0P9RtExC0Z2itpFQU0lRSvzsUUSXkVHg5RRRYEFx0TJ+lJFMMsDRsoLzESkb9JEv8zJRRi05UQDbCxF7ffGRLKDxkVh1RtFlP2LRVS22ER/2UhFlqr1RPJi30X+SQVF6nBCRZTQFkUKeJ1FIw+JRadAmkVYlT5FuSQdRp0lcUV7NehE5M7xRD3Z2US1iOVErGUuRQyoHkY3UPdF9d5cRQvr/EQCjtFEpyPARPh1LEX+ahFFcRWDReetlEWdlQ9FpHuDRTxbPkZq2plFySK9RnhrxETRn6VFupBjRfoOhEWOqmZFIcgzRjgZBkX4YQZFZVczRb/tuEUGcGNGPFscRtVlMkXsZGJFolCHRacgTkW9SEdFBeq5RDPmekaDSnlFNW76R9eJrEbx7cdGl4q2RcQ5WEY+5gZF6CXYRDqhG0UOvShFrgXgRNGd1UQSx71ErIitRIrZikXZ7M9Ew3Z2RWdhakb43NlFAYiORTm/kUW1UBJFcZO0RQWrcEUeEaJFEb1LScY/JkX/7oFGwbFJRXtTtUXyFipFvN43ReP9/0T2L05ISANrRekNqkY57bZFeThGRd0fYkUF6ANFeXBrRZZetUUB2d1ErBsPRfKKl0a2PhlG2fHMRNKmC0WfGINFKL3PRAW3A0WipAlFk3WiRa+lskVU3dhE5PksRYlu3UU0A8VH3rgNRkhR2EY5oiFFs81VReUhzEXX8UFFB5JgR87020UUjBtHXziERtKVhUV6qe5Ek9jrRJzqj0VndM9EWxmDRXX6/kVSNuFEA/VFRRJvJEXyJ19FpYgdRS1bIEV5xm5FSTeARoi/KkaP0ENFsEKHRV07pUUobZNFXXJtRebu9kYmZalGfsGvRcL4h0U3iDJFo6z6RDqHs0d+ZZ1F/frCRC8qnkY5LBNFtLkKRSuJQ0b076dF+2TDSZlKoUVW0pRFED1DRfbuUUnd3hJF0J0QRcBzmUVhW3ZItzEJRZYvG0d+jXVFY/BjRecf8kZW37NGnmysRTHWRkXidEFFV+l+RlXnDkZak9VEX7MSReaqzUS4NYtF/YzWRNYLj0VfaVdF5/AORgFCcEUBwwVFqsnCRM2w4EScXppF00QiRes640T3ViFGO3H1RU9TkkV26GlF4vwNRYd2HEZx/SNFIsfWRARDIUVWJetEM7LtRogLyUXVZgJG6F63RFAp0ETwmAdGla1TRaiWREY9bWNFIVkkRmd0g0VwnTxFvuV2RcE9B0W/r+FE7u5kR0TcMkcX0IZGafyVRUSTWkXZSclETVDVRWwWhUXqmShI9DolR0W13USn/+pEXNuESIbToEXm4vJHWNToRMpn6USyz4ZHs0ODRaMtIkVsXDhGgTHuRDUzmEW2C31Fop79RKkuNUbcchtGH3igRUOle0bTM4ZFLv1/RTganUXB6sdFNXy8RHx/XkX5LwNHml0sRdCKyUUHMMRFYSuBRQHQQEXPWRFGddSTRb6cCEbcHGxFWsrDRCzG+kTH1IpFzv4dRflWA0USPPBEfjAHRnct00R7qQVFy+siRYfiCUbrX+JFXKoZRXw3D0XAZwJFpodRRpJ0WUWGHG5FS196RRmeaEZ6TIRFrHc/RkyCb0Ueou1FzfQhRcNh3kTdDIVFnpkMRTxKIEYQd1ZFL7IVRU46JkUTxyxFskcvRVa9wUf8ziRHqGbiRikKpEW28ftFpuscRf1jA0WCggtFpFKiRQIsHkWAvwBIRLhgR+upBUdTACFF4hAeRi4hLEWVLrRE+WLHRNhg2UQRqH1G6zFBRrBcV0UR869FOwIARUVo9kWJOYRFnhUzRV3a0URSJhlHnYhzRhdLKUY/W2VFt3KIRYl1AUUXFxRFZsMPR28CJEbsohZFRBcxRUPf2EU8nYtGNrQsRTc0NUaXertEhEmBRRT3akUkrhdFCWvaROQuBkUSIEBF7OHaRHgV/ETtl45FgnpWRexKQEXY8ABFZ4ISRhLNnUUd0UBHBVVXRYQcFkcV1TpGH6bmREJ07ESAFpVFlq3nRO8pHEaoyaZFbrQyRXPKIkVLwNFEmoh1RdjnvUROAaRFZDV/RYglDUXiuM5F1n7IRfqSk0UtbZ9F5dv1RGnIXkXjo8ZE + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - wxTwUm7BckAjD6s16MJyQH7mQN07w3JALoF3gg/SckDuNXY1Q9JyQFhFcuK54HJAokOMolDickA/m97vj+JyQHBZAeLJ8XJAXDTsnsP/ckDcjyt8TAFzQGbs7YY5AnNAv1qKsNACc0BKX6iB+gNzQHizFEomEnNAiN/MP7wSc0Dw3jwW+hNzQIewsY8GFHNAnK7Up3gfc0AkyOneOCFzQGyDlid9InNADlIQhckic0B4rAiFziRzQBADMnK7P3NAjez0mXdBc0D41bSuJUJzQMjev356RHNAkk5OeJtRc0D4TnaIo1NzQAO50TWHVHNAWkjO5vhfc0Ay77e7S3VzQBjTnfB4gHNAWxWHul2Cc0DfNhM8iZBzQKRKHEFNknNAiOtc0/eUc0AapiJPuKBzQFjKEOxaonNAuJSvigSlc0AGjkR6t7NzQJQRT18LtHNApO1zpM/Cc0BartTkJsNzQMrziMfX0XNA/6MO/vnRc0BN/eS84tRzQJR6Tb844XNAfCrBO3vic0CQdtDWD+NzQAaZMhBm73NAQhaiAXkBdECW3O6NTBN0QO5kDd1RMHRAOfpJ5IxVdEBMIV8uIV10QNohKim4YHRA5nlhkglidEAhDNWzemJ0QGJMCy7EZ3RAZFLpZNRndEDFu+ewHW10QGArEBwicHRAJX8KJ0FxdECaX7mHOXN0QFFoN0b3gHRADqrYFk+BdEBKZogDF5B0QN64nTcRkXRArk6DKs+gdEAMugaKBqF0QBbjwh+7onRAMbcBDQ+jdED2u69Bw7B0QKMhbHRzsnRArl5ptfqydEAUDb27UcB0QPopo9O2xHRAqAMt6czNdEC/qxyyzdR0QOJBIxZg43RACqVsyZDjdECqxeAZZ+t0QM45RGmN83RAY7KvXaQAdUDosL2nzgB1QF6sxSxdAnVAJLIFpaUCdUCoKMRAJBR1QATli6qdInVAoB00a8w1dUBSABPuOGF1QIQkcAs8Y3VAxuu4v3hydUAETQ5bjXR1QM48HfbjgHVAzAxE76yBdUAywMnTpYN1QCQuIKsShHVAtbvGwZqEdUAPiTcESaN1QKb+GLPNwHVAM7VC3/fBdUBqobE8+dJ1QAMzRjLN03VAM54x7A7hdUDR6Zo/CuJ1QAq63ZFNAXZATI8YeUgCdkBwtfRWkAJ2QOKHf3ENFnZA0EIyaogidkCI5bhnkCR2QPixFnVKK3ZA9B25nh8xdkDle6TwTj52QKxCajMeQXZAQ8NPnchCdkAGnd7leER2QArMCzYSUXZAgWfCB81UdkBHqwtTkWN2QJLW6XXaZHZAuOBRQ9B/dkCMpbB5OYB2QElzmUsSg3ZAOMjBdpGDdkBL3j5i6512QN+OXKVFo3ZAWWiOhIyndkDx/oHynah2QMbbVSaSq3ZATudxMsGydkCcthKvDbR2QMK17ZLOznZA4/ZPLjjhdkD2DRZcARJ3QAgdoa4PIndAvOfSWQ01d0DoHzHinEF3QE69TagaRXdABOUZBEtRd0AYeCssklF3QJL1i5knVXdAVCX++Y5hd0DLJy5hJm93QMTKhjRS8ndA7+MoD28ieEDWPi6y0iN4QApLEpIMJHhAN1wZZBBEeEAWLesWekV4QIsPHwXWSHhAvmdlgzBOeEDMY/jYylF4QGtcE/mIVXhAdYf1N/pgeEDosy2Yt2F4QFKJkeOLdHhA9SJBJ8Z4eED4wTt+9nt4QEbG1UYhfnhAGWAgLaSBeECqejpeeoN4QDWFuvuZhHhAqZX6TJaReEDsX+2dqJR4QAQPEKHjoHhAoOASHP+jeEAt2/jOBKx4QKjbe1u31HhAtEZcGaLieECgw4Yc+ed4QNhcbZsC9HhAR2iLT4z1eEDE2p6fjSF5QFUSa2e2M3lAyO/+Ur47eUD/MPaPxEN5QKRaI2XNVHlAizE/Pg9reUAuRX5KZ4N5QPyx4Jyak3lATlkmIcCyeUAJju1mqtN5QGStLqVB1HlA2EMmU0/keUC8aRRr+wN6QOHHLs4qM3pAbDYG8gw1ekAuXW1nLTd6QDBfP4k2O3pAGbocshpFekAvcEepKVV6QI6s4pIiXHpApUKLDsqDekADZpXT0ot6QJiR1k8Os3pAJDlGbw62ekBrN3pGEbd6QAaUd7kVu3pA9s3L0hK/ekCGqJezE8J6QKaQwTIKw3pAxJgNRxjGekDEXV5SpuN6QM4Oa5g37npA4AxMzBTxekDUwNtzX/F6QEIMsSHA+HpAdVl54HwEe0CUij//Kg57QHWddtZMFXtATFVOuVkle0CC5IBTyG97QPPpweSodHtAjT2i1iOVe0CmdbKGAad7QA4FECYCq3tAapb7rgyve0B8CJr8mPF7QHQ2D1qN9XtASsnQvdoBfECgsywOmwV8QG85hN7REXxAeZoSMc5BfEA/maKf6lN8QGGKLcUEc3xAd1FCwMWNfEAA/u6+IJN8QCxsgGMsl3xADv6zF3mYfEAAMHTVKJt8QFYGp8DGnXxAXfI+iFnifECSxC/RXuR8QHXF/NNU8nxAnnc8W3PyfEDINVTSTgJ9QNA7attuA31Aco6yQ4cDfUD+yPx/uAN9QPA+HPfNA31A4zzYvAAEfUCvZUl/SQR9QMRrCQi6C31AzrOAEgYMfUAuiS3HLgx9QG/NwOVNDH1ABF6VZY4TfUAg4AtlCxR9QLgVeBOSG31ASAIvDRIcfUD2UBhUFyR9QEqPKLmTM31AAn06bUc4fUBTt7E8oD19QFTf7Rr+Qn1AyEnQBT9IfUD4beWUlk19QOhhpWEcf31ACAZ0mgGkfUBfYhozCqx9QKhoB2oPtH1AWPCLvVS0fUAKZgbG5MR9QIXqdFFfyH1AauUekQI0fkDWfKtYjVV+QJGhIauLfX5AxxJ3U+WCfkAggG7InoN+QJLdpvEoiH5Aj4SyfpeKfkCKQmGipot+QCchmtuxk35ACDFGUja0fkDorMqe/t5+QIDqa9NY5H5A3DBf5Qn6fkBcPW4fY/9+QPbt65K7BH9AP+tQgM5rf0Caks7d0G9/QFJNGA+5cX9ArK6Ep+J0f0AIfqIPY5F/QIzUd9FhoX9ANqeh3Q60f0DrrsMzaLh/QPhx5GPDvX9A9r13mfj4f0Dggn/ukAOAQPmQSlXMHYBA/bu73+opgEDeCQxxSCqAQI7AT2RPMoBA2sR5F6lCgEC2smlUr0qAQJaRbAuoTYBAOMVcaRNRgEA3DSjErlGAQNL8wEwmWIBASXFD8g1ZgEB2tOIIE1qAQORsOvevW4BAAofZrEpdgECbIgnFHWiAQCSREq0nb4BAHkhIOSl3gEDCI4UbKX+AQLRpn81ejIBAfkZSPgyPgEDLdYNrt5GAQCbk3QhklIBA0Q9D2wmXgEBs1tbPH5eAQC88PjQcn4BA2QOW5jemgEBcRxJZh6mAQKhV6ggTr4BAvog+jdmxgEDygenafrKAQHQQ19OFuoBA4kYi/QO8gECE44gcy7yAQN9TQaQ0voBABBPLZFLBgEDyHK6xisKAQIIWV3E5xoBA7PZM2FLJgEAPUP9HTNGAQLBb7lFg0YBAGLmsBmrUgEClazYTStmAQNgF7IMj2oBALCvisUThgEAdeIyeaPKAQP4BxVmg9IBA70R6Hkz3gECJr97E9/mAQLqYwDul/IBAxLGbNT//gEDyOCXyQAeBQOUEbr4HCoFADanZZj0PgUDq1ZYDihqBQG7EV/82HYFAjNPpTzQfgUBdu3iiNCeBQFnta4i3J4FA7AnFQgAvgUDQBJMQrTGBQE4f+31dNIFAFqVKaSk/gUCq9ejusmaBQNsbg76iaoFAJaN6LaVugUDsVsDsp3KBQJwXuSfCdIFA3r10HnB3gUCcou3QVY+BQBCXsPVWl4FAKPBMMFSfgUD2k69y56GBQHDF+k/fooFAdheBckujgUCPzL2KbKiBQAZC0nPlqoFAcikJY1GrgUDFw1IzSq+BQI8JRUZKt4FAOq9jHgHCgUAkHu41BcaBQDoLebYEyoFAzCeJMnDMgUAeNvRZscyBQGa+J0wcz4FAgxMT813PgUDysRQcyNGBQLqsd5xh04FA7eUqYGbigUCpKH83auaBQNVQChXYGIJAzIT+CNcggkCMbCax1CKCQNk2OlbPKIJAHjawEqJPgkBMFLs8jVaCQP9oHH3WWoJAuGQQyWtcgkDddQKdBV6CQPqGI9q7X4JAYc4caDhpgkDS7zRT0WqCQBJjx/RTb4JA8LnGptJ2gkCI5GhYiYKCQMTGZExDiYJAXJA6CUORgkDMJ7k6PJmCQBjbZTMOoYJAumsmtjqhgkCuwAxw86GCQI5zZ9gMqYJA/OMpjuvFgkBCHN37n96CQA73LHvB+oJA7BdIItn6gkDBM3W8FAODQDNxomgKCoNAZ+xVZ7kKg0DBgOALvA6DQHMRIn95EYNA5CKRQnkZg0CB5hJUciGDQKqgMrWJIYNAJL9rnXEpg0Dm5hBQajGDQG3GXuaSOINAx/n/SWBSg0Cm7vKeCoODQHRBYdpJg4NAuDnDkniag0BOGg1+I52DQBZbbxXTqYNAb75QutWtg0DY64TDyrGDQAKG21fesYNAMLqqu9G1g0Cgygvi/2iEQGKhKvPJd4RAkrWkGfh4hEBCUEjveHqEQOZWfXYnfYRAspB4xNF/hEC+ELD9Kb2EQE80Y/Jp2YRAFnyMs2nhhECERMdvY+mEQFmZbPU18YRAtr3uQmTxhED9ROfQNvmEQNDW9mCgYYVAngFfQ7ZihUDyJAUPNmOFQFcHI5ZMZoVAcvjrQLpmhUDBQqoNoWmFQEBwJ8FPaoVAL03zVbxqhUAUCNslmHGFQOcoSAiaeYVA4s8Qx+yJhUCCkUJtP66FQAsyawpDsoVAdtOPiUS2hUCUYG7/IMKFQJmfl+kJxoVA+DOx3ybKhUCquLBmMeaFQBBQ66Iz6oVAMLjDmMymhkC9zjSkzKiGQBSeXh/PqoZAlPY+qc6shkDNWfSGkSmHQCSo3/6PMYdAiuGtkYE3h0C6yH4QiDmHQM5cRHSFO4dAN3cGc4c/h0B0pE4di0GHQDbPoNqKQ4dA6kYhzsexh0AY9kuhx7mHQMfeiArAwYdAuepLrHbGh0DiXb7lwsmHQJR6HEF9yodAJg5z0Onqh0CoMvygfHKIQHyyW+h/dohAxAkIXoN6iEAXM/zNW5OIQCYdiSeLzohAEKETYt/RiEA4KVnZjNKIQCmO8+bi1YhA9meF6I7WiEA8YUVX4tmIQMP1ASzk3YhA + KBZXds7jZUCmvpxNHCRnQHVo0FeRAnFAo+J3Wr8CcUDGaN72tnJ3QJGgd7ctM3hAtCbeUyWjfkAS2ISOGDKBQFpC3dM+2oJAprgoym86hUC+b6fwyvKFQDXhhr+bAodAxAnltMfKiEAinXENVwuJQCg3r9FT44tAGXzxO46jjEAfFi8Ai3uPQH2pu1gavI9ABukMJyPCkEDBoXyOC0qRQE39uyE5ppFAc7jhnFHWkkCX7Y2/ZKqTQPPP2LGnmpRAfHHymKU2lkBvvxhJw2aWQPhgMjDBAphAgz/csMwCmEDMwRx97V6ZQNx2BTj3hplA4dZdfhN7mkA= - + - F/GtRWneD0UJa0tFajpJRacEEUebxB9Fyu1pRU6huEV/uBhFNHTHRFDHz0Q3FulENso+RYaRAUdtWuBEo8B6RhwFXkVWKmhFBBY4RVGXm0Yuk/tE3ZTTRKVSn0X/lMhE424vRV7qTEWow9pF1UzmRNV/kEX/R9dEqz38ROeeDEU0LsRGPm6aReflwkT0NDVHs+YfRtAo20VBq/RFdG07RZrcQkXKW9dEQL0gRs/KHEV8N1xFkgN9RtF2nUVVhfBFd7kbRUkBHkUCAThF27s3RqoJlEUtrcZEo9DnRI63lEcbQnRFeKE3RhyEE0evDMJFXaoDRs4pGEVp+z9FFqQyR3azPkWKQwRF8C3ARRPEpUUS9BZFduoeRZSGREUMyttEdLmFRT4sJEXCQQBFZqrtRAQH/kQiWUVFQ6g5RUYR30T9WWBFViUhRRFIw0Tu4bZFhlX9RN51/ESBRLFFnpawRUCP6UQ91DRGyq8VRY9rE0WMNr9EXe/qRJzFUkYHqrxEeNiFRTjLi0UX0wlFzlozRe/S/kR64DJFFmoZRbJuA0XBbuhE4zY3RcTt70QSOB1FoneERfRgA0aDKRRFri6XRepuA0bmLo9FUnCqRn7Z/kS2BXFFiA1WRdfIWkWpI0ZFwYeLRiA2F0UwlHBF06IDRcit8kQkN+JFoKfWRGyurkao+j1GFFaKRY9Lf0XuBUJFsjJfRf7Nf0VzEkpFrT/nRNnyhkZIODFFytTpR1minUYmzsdGmsCjRcW3VEZ3EAJFQLkGRQNYCkUVp9FEMYITRVaW0UQcerxEd+xURcWtJUa6761FuzQuReR4ikU7yj9F49I3RRkfQEVmA0FJogmaRpV5lUXZKChG98aNRUS7MEVWa0hIa6BpRW8RmUZ9kdxEBxfORTPa00STendF73yYRXEuNEWNZGBFqhTDRWD/8UTKaatGD4m4Rc6qFUWqz2xFqwsbRR4Q8ESDzwBFimJ5Re2+DEXIgelFsbIjRU+rH0UY5rtFNyW6RxcO2UUQc/9EQveeRhfND0Xelo5FYWOqRc5KlEWuCSZHxJapRQg1Bke62l1GhbeZRW2qMkUhHt1Eidz/REFNXEV3++pE31rORLTQ2URuGktFu0ASRXpVzkRIPCBGPgNgRfuE/ESKcJBFQlRXRZMFg0WC+BRFxLQBRTQvSEVO84FGrh0YRl6fvkXREDJFU4ScRVeJ4URF3fpEByznRn1IjUZZL7RFFmO7RbNsLkWY9lRFrXCTR+QNBUbPNItGm6AjRa/ka0YqaD5FIReAReN7X0XMecVFvvfXSSs/pEWzw9ZEtZRdST9Dp0VQ/x5FRxeXRQIQiUhItFxF1SwdRzUPskXJ6A1FWGgKR4Grw0bCOc9F0K04RWTrzkToCWZFvfKNRgThEkY2qD9FeVBgRdMwgUWlfN9E+ScURSyAB0UCd8tFvt+ZRZhCBkbhwfxEL/PsRMoArkUxnMREmIUoRfFXjUVIJJRFmGBaRgH59EXiaBRFM3XARDBCA0W9z4JFzbUBRfGD8kVo5lRFEWkORTvzdUWbSA1FtWTFRHpgFkU4ORFFBCjSRFcl+UYRGd9FEwMYRkeC80TnWghGS55RRscHXUUqdFFGtrGnRdJUWkVFveJFdJxkRZ4iiUWiTXNFSy3SRBxKPEUWrYNHKJw8R5yvxkYeGuBFOIb5RNDw8kSNhzZFptMWRWi8BEW4UTlG4HjoRKW4HUik7BFHDn4BRZGvDEWN7ixFShNnSItbgUXJHh5Fx2fGR/bVXEeK53tFBnErRdOfT0bBRg9FHceZRbxxHkV/mJJGAMSgRiU2wEWaG1JFcxeDRvSJpEUdU/xEZb3AReXFZEU7NRdFuIchR6BVAUaFtvNEJMy6RSfCf0VptQpFYc4ORsxTxUXo7RJGjwRyRT6xAkWuC2hF6XtnRcrG/0XtWFlFN9ULRZEEBEWOox9Gh548RkaM6EQebPVEAoOGRWqHQEYOOmFFzEzhRWqKhUUN8HxGi1XhRVYdj0a065lFXb/kRTM80US0ZMtFOXAeRbsjA0VgIyVGJAh2RV4JJUXMah1FjUPOREkxoEWXxW1FtbEvRc/A4ET6BANFizQSRaodGEXJQANFWiEzRVXZHkW5PeNHqWgtRyJ060Yw6qJFjdT5RVl62USJugdFobwLRcdu20RbPr5Eq0UQRXKE50SgQNJEpW7hRSs7A0V2fdZHWFozRyBkwEYbPA5Fz8ryRbVWC0Wyve9EnAHBRMLTFkV99PREtMH1RDuc3ESXdV5G207vRZasQ0XqyLNECoHhREvqz0Vk+fxFoNoHRTE7m0Vr1kVF62cWReoy00SECRJH7wWZRtGKH0aRzmlFdUiIRSvgw0T3dN5GmAUiRuH5HEUo2E9F9l++Rckdb0YBrfhE0aItRd3fAkYW5SVFQ70CRWNwkkW9+UJFTxzyRAr0yEVWNfhEoer0RLaDYkVZ8jtF2mk6RWY24UXnB6VFcJrSRCPRJUYNVrFFiddBRwxZTUXQBRJH8pU/RsyM1URCpXZFGtj2RZm6kEXPzUZF0or5RKFwzEQ9Nw5F9um0RZVW9EW+9mVF2V0IRaTl30TZVtNFCg7VRWEyvUWyrMlFpANdRcbXE0VE9upE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - MTkMG2/BckB0TUI4UMJyQDqxntXkwnJAXut+XDvDckD+yzQ0xsRyQE9/SyEP0nJABVZUlUPSckBcmAXLzt9yQL+Fmjm54HJAYnlzcFDickD0MJQxj+JyQN2lXz3K8XJAhC8/B7nzckAxj2A/OwJzQBrcsx/RAnNAkdMDNfoDc0BOq8EgvRJzQCRkOVoGFHNAjIPRfXofc0D9vDtEoyBzQLpSMaw4IXNAWgZ8ingic0CZ6AyhySJzQPibZXPOJHNA5ZQ8Zbo/c0Dkz5HReUFzQPQmj8ImQnNAdA+W/HlEc0BCqjsPm1FzQH4ZojikU3NAbo4OdnpUc0AbORVg+V9zQK2YuRg6Y3NATgukWrV0c0BDP5GuSnVzQC5n8ux4gHNAir+Rul2Cc0DYuqFZTZJzQA5y6ZNjlHNAy+Wc+/aUc0DbJvIsuKBzQI1uEZN2oXNAmgyJeFqic0AzA47EBKVzQDvHZ9e2s3NAY9iGEgy0c0C0ZL3tz8JzQL7b1FjW0XNA8PbMdfnRc0CEk6xn49RzQBD15hU44XNAZjiHtgfic0DYNkH3euJzQDZKotp4AXRAbYu7EbsCdEBc3a7GShN0QFQ3bcywInRAhw5haYordEBqaUVlilV0QKDWqzUhXXRAsMgrOblgdEAouE1PCGJ0QM/iY4h6YnRAoDzT6LVmdED0PUPbxGd0QNYqZSDVZ3RArFkLdB5tdEBWw4pPMG10QIAzzEcicHRAfBahTUFxdEBinx6WOnN0QEoFvNA1dXRAyMy5rfmAdEDQD3GMToF0QM6tJm8WkHRAPqHs9+GQdEAHCW0AEpF0QGIxFOPwn3RAPZmz786gdEC8MBDRBKF0QBCpbtEPo3RAF+ZCm8KwdEBentHZ+bJ0QL5NU4PKt3RAQJjNfU/AdEDDTTgr48B0QCKuZljJzXRAw5YOUWDRdED0VbA4I9N0QBo9IR8903RAzsJxa+HTdEBGV6t5ueF0QKXZgUpf43RAGr6yWo/jdECELz5vjfN0QGshfPhdAnVAKipEqqUCdUDlonxgOBN1QNwcXM8lFHVA1tDsZJ0idUCivCtQqjJ1QDrFZwrMNXVAVcyDCt1CdUBEFPm5d1V1QPNoo7Q4YXVAvluyvox0dUCuheUE5oB1QFq0YIqsgXVAhPT8W6aDdUCYdf7zEYR1QMvoU2/NkHVAPKC2J0mjdUBsYYVS4611QOgK6dDNwHVApTlnlvnSdUAmSytDzNN1QGpihwAO4XVAQMDsWgfidUCUudqKe/N1QKeUzuVNAXZAGFQeGkgCdkDmNtiFkAJ2QEYkDhXQA3ZA4teOuqASdkBcTUV4iCJ2QFYUzzmQJHZAtBuH6EordkBuEP8/HzF2QHZQufFNPnZA2AaDXh1BdkAQTmh6yEJ2QG7u46amQ3ZADKsRDXlEdkBenpZ1yVB2QBiIZPQTUXZAlrewS81UdkASJfFIH2F2QNIfeESRY3ZAGlUf0dlkdkCA40/p0H92QDt8RMf3gXZAlXnGmRKDdkCMKi2SOYN2QO71XZGRg3ZA4L8BOFuQdkDLCcoGF5J2QNTr+KIek3ZA65mNI+uddkB+LDFhRaN2QDys81KMp3ZAPNcZa56odkBAYZa3jqt2QMY3Tw/DsnZAG5hqLgy0dkC292f1j8J2QDIh2+POznZACg9N+vHhdkC6XElIkfN2QBIBneYBEndADFFXXA4id0C+1SsSDTV3QF5CphOdQXdA502oa/hBd0CYnLhVJUJ3QDDFngcbRXdASBVuWEtRd0D4r2FuklF3QGDtaX0VUndA9BrejU1Sd0BARKuBkGF3QGXQm9Imb3dARpJQEniCd0D483v0Est3QChowJlR8ndASQW4Gm4ieECV4KvdEkR4QIfBtZh6RXhAjKy1/9ZIeEA0IQCeMk54QLVEaK3LUXhA2y20colTeEC/P7ZYiFV4QNIX98X5YHhA6kS0+LZheEBsgh7Yi3R4QEVL8UvHeHhAKjGsovZ7eEDUz/zzIH54QOzTIXelgXhAWty3rHqDeECtzOkmmoR4QEW2K3mXkXhA6QN5EWWSeEDS3pcVqJR4QKzoEGjkoHhAmJOjcf+jeEA2Lt0wt9R4QEPok8Og4nhA3B6iuvvneECq5GxsA/R4QDca5aWM9XhAqPrFYo4heUDSsB3+uiF5QJTk3WYLLnlASDvSh60xeUBFUxSUtjN5QE7xOvO9O3lAevPZGc1UeUCFXUY8EGt5QLAlQ7tCc3lAsv9Eu5uTeUCfM+8xwbJ5QEEKOmCr03lATBQ3oEHUeUD8R4VdUOR5QIDEuGL9A3pAeAxNMCwzekB0hHLfDDV6QNx7+XgwN3pA+HX2uRpFekAE/1LeJ1V6QBg01JMiXHpA73mfAcyDekBzZsxR1It6QCzfFWAOs3pAcryXKg22ekACTwFPEbd6QNx2wYkUu3pAnsqhDRi/ekDgVR1JZeF6QIQlVByj43pA5g0zFTfuekCOGOZlFvF6QDfLnnrC+HpANFVsOhv+ekAPkFwnfAR7QARptRwqDntAgHGu/EwVe0BUwXT9zSN7QPr4V7ZZJXtAk3a7j8hve0BbtonfqXR7QAtibFkhlXtAVzD31P+me0Bi0OhHBKt7QDbAoJOM9XtAFgCrk9kBfEBqkYWBmQV8QBefMRjTEXxA9Cs1DrkjfEAgeNjazUF8QF4i7uAgU3xA6o7cI8WNfECO/Y5AIJN8QBCQ0Wwrl3xAmkvVV3iYfEAQ1fbULZt8QGy/4km/nXxAIcjLjoHgfEAyE3j6WOJ8QMyW04ld5HxA4NX78Y3wfECuy0OIG/J8QO74xhVV8nxADiz+F6ryfEBgW4dEbvR8QCnPjeavAX1AXqx+ewQCfUAwqPqGTgJ9QFSspXhhA31AaLKUpHgDfUBLzBthiAN9QLBZYkjIA31AHtq0wgAEfUD0unDVSQR9QOjbSNxNBn1ATAoUx9MLfUDzMfohBgx9QOizSU1EEn1A4pJ61osTfUAUTFFYCxR9QPKSZm+QG31AzEYcThIcfUCjO2CrFiR9QORGb0GUM31AUtqnGEc4fUDaQ3Qtnzt9QN7JtJifPX1AAPpBO/xCfUB7GwHTQUh9QKcOtwoZf31A6r/jPQGkfUD8/ldDCqx9QNoiBGZTtH1AzQf1/ObEfUAl4ndqjvV9QIhs3VoANH5AdbK/nQ9EfkDqDzrFi31+QAEeH2fjgn5At4x5Kp+DfkD8somgmoR+QPizaZcqiH5AfMkG+aSLfkBnORA7965+QEX/2BA3tH5AVtw6T/7efkAU1A7eA+R+QEEFzb5Z5H5A7NIopAXofkBwiIs0Cfp+QG7pMc9k/35AwUK83bgEf0BHKela2VN/QKCnl63cV39A9IxcwbZxf0Agy2+q5HR/QKalnPejg39A0WNWDGKRf0CYDdZoVLF/QDjzjQlruH9AdEvNGcS9f0C994s3SCqAQCY8OZROMoBAf3tN1R03gEDqVWysqEKAQMoWbcD2SIBAu+O0lKhNgECqEDia51CAQC7Ozn0UUYBAEvC3LqxRgEDiMdMTJliAQPBw0T8OWYBAFG9RLCFZgEAMKjkAE1qAQJJkbjywW4BAuSk1ckldgEDyIIyQkWWAQIo5QbAdaIBALzSHMShvgEBOUpscKX+AQAXkGVtfjIBABQgIogyPgECC4N3ct5GAQFZQfqtllIBAgiPBKhmXgEDmCtEAVpuAQLx9jZ68nIBAeZzFbRqfgEBMYzf786aAQJ/o2hETr4BA39Udch2xgEBO/1AQf7KAQH+M318bt4BAZ8c9joW6gEB6wML4SLuAQFFZkEm9vIBA3GpqJXm9gEAcwkhYUsGAQCSFtxGKwoBArloMlZzCgEBxeXxoU8mAQFuBhDLZyYBAtnDLaCzRgEBgKc11TNGAQCJbejth0YBAnVYlBtHRgEDu2c17atSAQNy7DHsk2YBA7r93s0rZgEBSCzRAJdqAQOn8aEdE4YBAMg/jqvbogECY3AuSS++AQCjv+cxn8oBA68vmop/0gECMevgrbPaAQNStSlJM94BA/m3BY/n5gEDDnKOgo/yAQJjydhE//4BAV26BsT4HgUDq6VioPg+BQIbszZ2JGoFAORnVNqkagUCgVY6p8xyBQBlBf3Q3HYFATU6JWTQfgUBj3BMI4R+BQNqGBjQ0J4FAI+G0tAAvgUCGOFjbrDGBQKbdU+5bNIFAAv1K4Fo6gUB16ErLKD+BQFWKNqmyZoFAaAfhPKJqgUCMEpzppm6BQGck682qcoFAatpf1sF0gUCIHdykbneBQEw6ixfigIFA8X2Vh1WPgUAmQ3GBVpeBQIuhjylSn4FAM2JxUt+igUAsPWDcS6OBQFYQ4xRtqIFACPsWyvGpgUDxwvO35qqBQBY3zthRq4FAQhWOY0qvgUBmAvGjTreBQCxlAgwCwoFA6Qn8NATGgUC6Ks1lBMqBQNwr0MdvzIFAj0DCm7HMgUA5W2NXHM+BQODNEW1fz4FApKNYncTRgUDSWXO+DNKBQC7dtr9h04FAvsq082fbgUDbXrxXZuKBQPblAIoCCYJAm3BTJ/IRgkCsWKPW1xiCQNS0ra3XIIJAXkYbEtQigkBVEzzj0CiCQD0h5yKNVoJAICFYCg9dgkBPkVlppl+CQIyUnQZsaIJAcicftDtpgkDi0p5hN3WCQAhvcB9DiYJAsn2oJ0SRgkBURKztPJmCQPRrmkMPoYJAV78+aDyhgkDNDZrp96GCQPh7+fXzpYJAHn+0Jg+pgkDlybGYM6mCQG5vp5rV4oJAlRzbrtvqgkD/8eNHFgqDQB76ZMq5CoNAPmLHBMQMg0B8755Pvg6DQCQil1x5EYNApGb6c74Sg0Dl0M1AehmDQITC9XxzIYNA/U0gs3Ipg0BM7ak8ajGDQIBjxCxpOYNAOi8YjS49g0BqBt7P2j+DQOYVGYVLToNALHrqXAqDg0B6NSE1SYODQJy79dR4moNA+Qrx2tGpg0DOm1Rv1a2DQDJjLTgs84NAbDudVsRahEA2gPNOfGKEQGrdxHf/aIRAs3ez6JduhEDeEqcQ/3CEQJSZoLvId4RACC7hMvx4hECY4udReXqEQFwIiLUkfYRAEnAiQrh+hEB619tGcaKEQNpQ2ftp2YRAJly58GnhhEA8YZ8cY+mEQIjka6I18YRAXDpBQ2LxhED43OyZW/mEQPz8TjygYYVAtJ80ubZihUA/Tdy3NGOFQLoZ65FNZoVAMDqjt7lmhUCaNez7oGmFQAJu1YdMaoVAsi0v4L5qhUDsygjHmHGFQGTIOB2XeYVAYeenXpGBhUDTNeem64mFQNShcu7vjYVAEM60EEGuhUDktI4KQ7KFQBQUqcEgwoVAFBABSQnGhUAbQ43vJ8qFQEu8GEQw5oVA/ZqpSDPqhUC0pNhiKu6FQCi2De1/9YVAeGHEWsymhkDk9HPGzKiGQC4WIbDPqoZAKG66y8yshkA8jA7gJrmGQCzmH9mQKYdAVtVfaJExh0BS0CKFgTeHQEier9iJOYdA75qRtoU7h0AkMFA5iD+HQEDl4DyJQYdA7fPqzYpDh0BaWJhtx7GHQGoE4brHuYdAVhuC07/Bh0A6q+1CdsaHQP4ATqm+yYdAYKPqk3/Kh0Dmr+hq6OqHQIStdlXw8odAmsGIm3tyiECU7TzTfXaIQNap+EWDeohAhsKJo1mTiECqb98wiM6IQA6swIzf0YhAzE6674zSiEAWP+535NWIQOnJ3yyR1ohA - - - - - - GgoARpX2EkVDukFFeuhpRQLLzERkkX9FnrISR86U80SVLGNFmpSkRROapUUSeFBF2Mz5RP6Ry0TbKCpFOH8NRyHTpUZFdJpF7/s1RfOnCkWGBIZGNfXJRJ3uIkWxKp5FUwVaRW8RUEWczURFCJUZRrEnOkV8rWpF45mtRIi3CEW4Yy1FE5UERbjZD0WTS7NGff62RSgWQ0cmGv9E1t9xRipW2EU5zwJF0xi4RcCh80TvS19F4zozRS5FIEbzm/FE2pHDRuvYfUUg9ahFuKnuRGIoMkVGdHlGZ28vRSinVEU8QelE0AfxRF5W3US3u65HF1OORXbqNUbD4RVHZ1rsRIjDBEYkB+xFHsx0RR+K+kSwOZhF+Fo5R5YfUUWEJgNFbngFRYI+yEVHQcZFcVAhRa5iRUVzSPhE4ak8RRRpZUUqG2dFsJYFRQMZFEXWHB5FL4ykRXAZ8URUKDlF6KAcRRUpH0VlXAhF5+/8RDveCEUVSBNF1J01RWDFzEWh+5NF0MqRRfg/x0SsNg9FQfxARot58UTZrjBFcogcReKu90To4DlFgwsXRrSJGkUyI8xF4K+NRSXhPEWgodpEZd8ZRQxR+EReAi5FfFrnRTTh20RBldlF/tLoRFeMqUVq6odFbFVRRYGhM0Z8MCtFZaPpRCtvr0VwphRGGtnWRWZY10YQuflENnTFRSMBakUGPQlFxSA6RY2eC0XE73pFTLQnRlSJtUQBiB9FMGPvRCfMB0VD3QJFv3TnRaF2wkTbYxNFIdEMRXyF90S5VO9E3EHORty/Q0a3F4xFT22hRWBCTkXj2BFFJCCBReXz3kSefIhF/fTvRHNRD0Vrt4FGD3a1RTCk7keWCZ1GgfQdRbKLJ0VE69NGw8KWRc/GYUb7B9pERIE1RaDZSEXQXAFFCsXuRIkj5UQ2Q8pEDmqFRXIBLkV1phhG5BzbRZQ+Z0VhxYJFB4PdRKJ2GEVgIixF0Bk5RbAcQkkTT6hGZ4OmRcTkTkbXKZBFcvwzRVU3TkjBTYdFdcdIRZRinkYHltNEi3iMRRIQVkVj+nxFHOQpRe0+lUWimqZFcCDQRX0fg0VOngZFRG6TReJei0aMBdJF8BpvRflvb0VtR/pENpwqRdJqjUUFswZF7nCURU6GCUU9I0tFgycBRhtbskfbcNBFzmqvRhLA/kSDwUhFnaDXRfPzXEWPNixHkLm9RcR49EZ5trNGQYakRat/FEUkQgBFryveRMH1JUWnxRFFI23cRPvWiEXLpdtEuwIwRqiN6kSl0zNFqaAvRXnjSEXHwExFAAw/Rf04ZUXYToxGHPwhRtmTgEWyqYVFIV7ZREFEoUWbq+VED2cGR1gdoUbxQSdFwmmcRZ1cc0Ua9yhF7C3oRQjmqkfKU0JG0oH2RM2s6kTCb51GRbHHRInTA0UcVdtE66XgRBzRUkZGtv1EgvdWRSQ8MkUhKZ9FRF3SSWVRW0XafO9Ecj1YRa81ZUlfkBRFDwlVRe1NiUimGSVF+AIeR5nhl0X8KS1F/O4XR1yCFkUgJ91GGivyRThnfUUfq0BFiAt6RgFKFUZJag9F9L+TRa3mHkWwywNGkv/FRF2Q1EVr+MlFaRAwRjKgw0TodxpFGIu0RebpDEU1xiNFknFwRT0bHkUVC2JFMczrRKJ7i0WafIpFP4c6RYx/1URhSiRF6YrCRUbEJ0U8U/tE/kYoRq4dH0VM0JpFjvYhRby6f0YJiCdFqOf5RPURIkaMTxFFDVwERilyJEWBhbRGW39dRREZLUbfWsxFJuwTRR/+9UTVd7NF4dPeRVQv+kTn1BdF6rs/RdKNO0XlhllHNwNPR3gkb0axb3FFbs8GRYgxC0VSyytFOk0RRcRdIEVrWydG3S4gReAsxkcWUANFkf+BRns0AEXsHUtFL5qCRdSGuEhs1zRFNaUxRdNXJ0hlseVErjXqRONBrEc1O5hFzjXiRALXSUWSJvdE1suRRoMdAEXjx9xFOwbkRBP9D0WTpoNFjP8TR3WJDEVOjAVHFyEpRj2QtEV+copGHnZ5RYmY+UWoMUBFwScfRT5o3USW71RF+s4kR21szERYsBRGu02oRQGuNUWEmgxFmwksRSpyJEZB5ONFcbIMRmqgo0XdYzBFVYmnRYBVaEWcEfBE0+gZRmg9eUUBmSFFvqUmRtshTUY5CDxFY+vORG5u7kRXn0ZFUr5MRnsyEUW5Au5FgvZeReO7rkaJe8dF2zlvRtXWl0Xm7A5GN+ApRTJM1ETJo7pF8h/eRPfpGEXNFhxFIQ7yRAY8OkY/+pJFcLCORdZqR0W84IhF8rIWRUAu60TZhihF95gGRXslEUU6KmtIemXuR89Uh0fpWOhFXl6aRtivFEUGGQlFkqT5RGK/qkWuV5hFKQ8AReLiPEWjBqFF25wJRb9LcUWqOYNIwgUWRTKDCkgXFZFHsOOiRkQf0UVz6PdE6Jg2Ray8QkUbRedEGM+WRbiV/0RV2wxFrvvaRTl1YkUbIiVFd8ofRWgw0ETKKvxFs8sTRUfPQkXt279F/TfkRBu1ukUxUDBFuePkRGVdF0UEp39HKp7lRnxve0ZimZBFIzzORecHIEVapW9HFzsYRn2RS0VZYkhF0KexRVS070bh7vdEaNrpRPwpg0YDiMdFwWUYRctRmkUG9kpFHZdxRawrOEV97MlGLPLoRHHG4EV6Q4RF+NNiRecI30ScjfFEqextRf2tQUUbRKRFW/E7Rabq6UQIoYBGwRvkRcSWBUehZMVF7pi5RiyOGkbgzhlFabIlRbYNNkY7N8xFBalFRTW27ESdQA5FzeLfRIX1y0W22edEvaAJRrPikUWTtvtEAJdQRV9MBEaKncJF9r+2RZ67pUUuzStF - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - s0Acr2/BckBBZiqnUMJyQBT6wRHmwnJAwPLqwTzDckCkriuEDtJyQFIoHE5D0nJAdH9i1szfckBFw/yauOByQHg5IehP4nJA/DD1VpDickBSJEM8JONyQJACKmLK8XJAND7Jqb//ckDgmW4++ABzQBQJa1w7AnNAXE6hrc8Cc0ALRJSL+gNzQKo+wjADEnNA8J6HgbwSc0B060xJBhRzQHAbfIV4H3NAct+AS6Igc0AaqKD4OCFzQGfqGcTJInNABSc9q84kc0Du/wRFNjRzQAiM3p25P3NAAqbmqXhBc0A8Cp4LekRzQGFds56cUXNAZhpyKqNTc0AHDKiYO2NzQPR9O65mcnNAjUxuukt1c0COeobpeIBzQEz1T1ldgnNAmh+rEYeQc0D7vE2JlZBzQD4bVTZNknNAXjR6XGKUc0DbktEw95RzQCxEfq+4oHNA7IztenWhc0BLTRmKWqJzQECLzbsDpXNAT9TFprazc0AQWK0t0MJzQGoURunY0XNAiCguaPnRc0BAgt1I3dJzQGbAh1Pj1HNAmvKBIw7gc0Do5Tr5pOBzQLrSWkrQ4HNArNcK/Djhc0A+vLp0BuJzQK5Jnph64nNAcJ5itw/jc0AOx7i7xPBzQNyHtuA19HNAbAKmBnkBdECuXB3vugJ0QHhXrtOLEXRApH9z2c4RdECTHBmrTRN0QBQ9dYS5IXRAdpPstxtLdEA6iz8pIV10QJht0nK5YHRAFuQ9aghidECZEHpYe2J0QODbbIZOZHRAzMWEBbVmdECxdIwkxWd0QEHk8XvVZ3RA7mTvhB9tdEDogtzAInB0QPAcRAxBcXRAGyKBeRZydEDuCAXrOHN0QODPEon3gHRAecPyu02BdEDBIC4xFpB0QD5c7AvkkHRAkDcseRORdECSCZme7Z90QA52JgHPoHRAe0iG6wWhdEDWXR87EKN0QOh3FyDEsHRAPxedAnCydEC3dp4M/LJ0QCqBw3ROwHRAXr6rROTAdEBKsnOHucR0QFDXbzLJzXRAMGekzV/RdEDWuhmEDdN0QKGA2PIj03RAsKhAs+bgdEDQAUXmIuF0QMwsLxC44XRA+uwHE5DjdEDUbtDcQ/F0QEo+03SN83RAophFN10CdUCw4dOQpgJ1QPIoKfsjFHVAl66WeJ0idUDL02b4yzV1QPT6dxHqT3VABxMQxflPdUC5hnMCd1V1QOiEImEMYHVAxEEpuThhdUBFh4GrZGN1QOZHn7V2cnVAebceNI10dUDPGpWM5IB1QINk4dp4gXVAJDLrGa6BdUBqUx9MpoN1QH23XzkShHVAGItd55qEdUDuCpn1u5F1QFTan0S4oXVAYi7skkijdUBlFmeVzsB1QIIsvHP7wHVA2dp4dvnSdUAKXtkuzdN1QFBxy7YO4XVAzOJPgAfjdUAtS/c/OOV1QGCelZ1683VAsB3Zd04BdkAOj7liSAJ2QAy4Ql+QAnZAUsHx23AZdkDOee5jiCJ2QCYaOy2QJHZAxAm9TUsrdkCn8KNHHzF2QMYso5ZSM3ZAYjeuCp00dkCKvlSCTD52QGx4pWscQXZAom1CTsdCdkAes6VPqEN2QEVBisV6RHZAuuhBvBJRdkAA1xXfzFR2QFUA3rzZZHZAtEj/bNB/dkCV31WqOIB2QGhaEKb6gXZARu1woiOCdkBapt9IE4N2QJqJclaRg3ZAoLsk01eQdkCeWwMfGJJ2QH5Z3j/rnXZA5M74RkWjdkAACBGYjqd2QAL0urGgqHZAfPgevYyrdkBwK/Zqkq92QExA7KbAsnZAOAkPzgu0dkA0nQHhTMF2QKejiI2PwnZAbtlk6czOdkAi03RPOOF2QBOjZZhn4XZA5vFtlmbjdkD+0fhfV/F2QIDrkWKR83ZAxKfu4gASd0DxK4Q4DyJ3QGKJmkB8MndAiWbsBw01d0Bxam9JnUF3QGqTwr33QXdA+3SWwyRCd0AhccvIGkV3QIdottZKUXdAP5XZfZFRd0DFQdeRF1J3QBMjvNxMUndAekZtp45hd0BGC1lSKG93QAjWHI328ndAEUq8WHgTeECwFrcUiSB4QALABGxvInhAlC924NAjeED+bIfLHzJ4QOxnMS+7QHhALMS88hBEeEB8EYsoekV4QKYfSmXWSHhA61BCkTFOeEDCst9LylF4QFT+KZyIVXhATlKP5fpgeED9jQFqt2F4QAYGv1RodHhAvsb+zYt0eECeCvT2xnh4QLjV4P32e3hAtoFwFiB+eEA+l5bwpYF4QO4cCtx7g3hAk0b5QP6DeECCuXD0mYR4QM7+BOSWkXhAb1OV42SSeEChhs5yp5R4QDyA6xLkoHhAUyB0av+jeEAgydQA6rJ4QEt8ym231HhAopGuVqPieECifiMm++d4QAkaG6cC9HhAJeD5bY31eECESmERmAV5QP4cq6SNIXlAHEcM+bkheUDPqQc1sCh5QAdDrfKtMXlAglGtaLYzeUAs1bNuvDt5QEKi0dXBQ3lA8tC4QM1UeUCUQToREGt5QJShKLSZk3lArr70U8GyeUCumxlJQtR5QCgHy3rM1XlAEVmN2U7keUB15d8IEfR5QAUBs1H7A3pAQZYzlY4EekCAishA9gV6QMpFrFErM3pAPHachQw1ekDcFd1TLTd6QFcI24YzO3pApPC7rBpFekAOWQyKKVV6QOO75vcfXHpADvO018yDekCLEDjy1It6QJVMJooOs3pAqqxX+w22ekAKdsvHEbd6QDK7pCYVu3pAQIjmLBe/ekCFWvB2GcZ6QHtKxCul43pASj0nvjXuekDWzmxoxPh6QK5mMCF6BHtAnvvVGyoOe0AmH81YTBV7QOiZbkWNIntA+qZgNFsle0A6KouBxTN7QKzItVzHb3tADpH4sqd0e0B4Vv9VAad7QCypbTMHq3tA1CZOoQive0DRTzjkfcZ7QCzaL5W85HtAhc7biJbxe0C5Nh/njPV7QLKellVe/3tAglBjN9oBfEDvPOc6aQR8QOXuTD2aBXxA/p+dbtIRfEDoGSn5zUF8QDqUgYhBWXxAxn+nnsSNfEBTPEZQHpN8QPhRfzApl3xA1jccyGWYfECB+fVXdph8QEry4Q8nn3xAMoh2tmTEfECFDLvJgeB8QDDgH/RY4nxAVqa8M13kfEA6CuFKkPB8QLahbcAa8nxAiLsv8lXyfEBnP8wUc/J8QJIL40RzAH1AXtIETQQCfUDgtYvMTgJ9QPJPSKmHA31A+k56lM0DfUAypkDPAAR9QP7+DH5ABH1A+RIxiVcEfUAfctsJBgx9QJSxUC9FDH1AgHSEIW4MfUB2AlI2RRJ9QJusR46NE31AWuLNsgsUfUB+RRkWEhx9QNo58hs+In1AzpFhphwkfUArQKSImzN9QOrIGFZHOH1ApkUlwqA9fUCCgvv45EJ9QM6F2hD9Qn1AGfG62EhIfUDKVFCDoU19QL6xACthZH1AaxhX3Bx/fUAUOZzVIYd9QFkOWdABpH1A6iUMdwmsfUAoTJrIrLN9QDn/r5wOtH1AptAt3Ve0fUAyULVs5MR9QGwEUXtayH1A0qOp0bnNfUBIGeU0jfV9QICPZMkCNH5AuXtJlgg8fkAwHWzfi31+QEKa2qiygH5AwJ6/JOWCfkC4zf1qoIN+QACtP7V2hH5Ae9/qYqaLfkDs6icIio1+QCJ6WSJJq35AeEJipFCzfkAcMqcKNrR+QHeS2CKRuX5Avk8MU9DEfkDmkkdH/95+QK6Cmj0A5H5AVEHmC1jkfkCQiD3cCvp+QIFwYbde/35AU8OR39dTf0C+SWx+3ld/QH5n8tnfW39A9CfQtrRcf0CS7w4gvWR/QPzBYDy5cX9AsrLgneV0f0D+43Y+Y5F/QLZXJSVruH9Apax4IsO9f0D/ZmUf5B2AQC7G+7PrKYBA0hOAoUcqgEAwr4/UqEKAQBMenBr0SIBAvRariq5KgECarQ00qE2AQBHrZB7nUIBAnj06DRRRgEDmOqOaq1GAQCYzhwQmWIBAEGWLjg5ZgEAtT+txFVqAQHLDY3CvW4BAJLo1q0pdgECwpvIb5l6AQOJ90PiSZYBAGKennCdvgEDi4Rm9KH+AQMhRbwJfjIBAwE6PjAyPgEBwXMCgt5GAQLaU5NFklIBAEarnUB2XgEBUf7LVHZ+AQDwasJpqn4BANl+1vCCpgEA+zGpbhqmAQBIeyRazqoBAWq4aSxOvgEBS5gjl17GAQEZU5/F+soBATGMIfYS6gEBgR6kzfb2AQPhVfyU0voBA+JotZVLBgEDqBzVgnMKAQCdti/Cox4BALrkbS1PJgEBiUMprTNGAQFiqBXRp1IBAkIOJ4xXXgEB6HPv8SNmAQDicJ5VW24BAOD8+AYfdgEBaPhGiROGAQHpPGr5L74BAxoi+jGfygECIjtmpn/SAQMBgBy1q9oBAkTwiJ0z3gEAiygsN+vmAQCYRcX+k/IBA8v+cLz//gEBo/Ud79gGBQOdCmKU/B4FA4p5POj4PgUB4EsY7NB+BQL/o5/NSIoFAvRsubTMngUD0IwlnAC+BQLiBBfutMYFAurcdEb8ygUBa4md/WzqBQOZPT4RdPoFAkD8/Lik/gUCS3VDpLUeBQIBKhtCyZoFAdF5rvKJqgUBwKxZRpm6BQPoQm77AdIFAwe6xvG53gUBStyP7VY+BQL5FLTv0kYFAgid49FaXgUCqp4D9Up+BQOBh7frmoYFAskBMA9+igUA+5NFUS6OBQGjKvpBvqIFAYHe0meWqgUD+m5FIUauBQMSofl5Kr4FALGc3fEu3gUAGkmg+lL6BQEB7NzoBwoFA+D4HRQXGgUAUodZIBMqBQJ5xrytwzIFAaF8eUrHMgUBmb49kHM+BQLrkAMVez4FAPQ2gsobPgUDSpasPy9GBQKHHzodh04FAcgwOFn3TgUCdNCDfqdqBQKp0yPpn4oFAdB18CkQXgkDzqOY32BiCQNblGiraIIJAjtM26vkhgkDCFQxb1SKCQNRymMH+JYJAsrzH0dAogkBQ6triMzOCQICnnEzTToJAJkPtaY1WgkCUqvuf1FqCQK4osqt5XIJADE2bJw9dgkC6+sCDul+CQIoO1EumbIJAczghsg12gkAhWbzM0XaCQBM6prLKeoJAMJCr6JGGgkC07NYRQ4mCQHw1dSZDkYJAonC6FTyZgkDmXG7NDqGCQA3Jnl47oYJAct3u/AupgkAG4SKPNKmCQBda7rkJsYJA31fnW6DegkCrpGM51eKCQCAKFgnc6oJASg+Z5q35gkAgpWXfFAODQDhTq+m4CoNAUChu7bwOg0Du30ZneRGDQCWxPMl5GYNAPDYxPHIhg0C6tP5pcSmDQCABLIZqMYNAcIJ0/yw9g0CY+sBG2T+DQCzDl2QKg4NAOzWz00mDg0DX9tCEEYuDQBPv44l4moNApEqHa9Gpg0AEWhiaKvODQOx1QNaV+INAQAWr8DD7g0Ba6456w1qEQH9Mej7/aIRA5PEZMf1whEAKi2pCnHKEQErOnczJd4RApJ/cWvZ4hEC6/XIrd3qEQJX7V1yxqoRAnvYjcWrZhEBWLUJGauGEQJDtI+xi6YRAtB95JTbxhEBKG0nvYPGEQL4DFs80+YRACiMNNUP8hEDkvRpy3P2EQMT87YcuAYVAtsoTBEYUhUDrzu0UjSqFQD5jcV3LSYVALfbNLqBhhUCzMUV+tmKFQOLOWtY1Y4VAkj2MG0tmhUDPs1S2uWaFQGBG0HWhaYVAwFpJiU9qhUBQIFHumHGFQCegYKqZeYVA14p1h+yJhUBOav9O8I2FQCikP0RBroVAgAGfdEOyhUCmt5sCSbaFQMAyOCohwoVA9nDvdArGhUDeAlxZKMqFQIKc96sW0oVAZOHwMDDShUCymiG/LuaFQBMAiyk06oVAntql//TvhUA+Ru0v1fKFQAoqgvqC9YVA7wOcgIj8hUB3oOsRzKaGQCIaDPLNqIZAHL/zBNSqhkC0bhUrJrmGQG7wVngT2YZABjlP+5Aph0AKB29BkTGHQKoTyHWCN4dAEE7yCoo5h0AhOqf9hDuHQF5UPcyGP4dAyG6kNopBh0B2O2fqRnuHQPHuj7XHsYdAutYQc8a5h0CUzUsjvsGHQOC8B3G/yYdAJOfZdunqh0D8bFsg8vKHQOoHoc17cohAYRQE1X52iED1fc2xf3qIQEkQZ4ZYk4hA+IExA4jOiECri4H439GIQL9GcRKM0ohAvXpX2OLViEAmVIeMi9aIQNOz3hnh2YhA + KBZXds7jZUA= - + - F+KqRe1Yr0SgMwFFMDXkRDPJ40Re2gpHimcGRbBijkXMFJJFaSeZRR5/oEQl8AhFY0TARKvx5ERdHLlEJgc6RdFASkdb7olEqHSXRpPoj0U/5ThFh6znROJlg0Y8ttlE4lK0RUCH3kRLijRFBl9MRbyTA0a2tulEg3GXRVc2IEUh4LVEO+HcRM1dqEYjtK9Fj9jNRGwXr0R9YUFHuToWRaK/JUZueY9FYQXHRDuZz0XvJwJFQtMpRegR+EVipOZE4J+ARrqLvERLXaFFm1vGROOIAEUdYcFECBSkRZqJLkW5QRZF10/VRIs7r0TFLuBEg8scRiHBB0XDz6NEdMQHRSZbg0WjifxELp6kRCLUo0e4P11FcLiVRuKJH0fKu8REBXu/RLil8kWQYo9Fm5J4RXxLvUVnoitHf8D5RNz82US3jS1FgRnjReOSqkXVjJZFrXRxRWpltUR6U9RELDDHRVkKCkXjzQRF4uNKRR5C10R43pdFGZwIRYCIOUWftGRFxqNGRa1Hl0T07AVFo/CrRGlGSEXTKvVE4yx2RbFHuUQ5TNpFFf5DRRWagkX/9SJF6BFMRkkv1UQmtcJEzuuiRBPhHkW8Jf5ENtYKReNow0SW+RNFQwcRRkFQc0UBsyNFzlO1RZ1fVEURXotFXgb/RJMv30Sj+eZEHZ0HRaH4NkVqQdREMECGRv5bEEUEUPVFODIpRY5IrkShltVEKIysRa93kUV/ZCNGDT3jRAuTm0XEixdG4+GqRUKvrEaPahNFpxa0RDHZOkXceKxFnvMNRTz49ETPx45FiaHwRJwrREZsQjFF69/DRPXLJEVt0hZFnznORHk6AUX8tsRE94/CRO3ND0UrlKpGXYUXRjOEFUX4KjFFwTrdRIFZD0XJF0VFZl98RQmhvkSlnyhFAccoRYiEtkT9GKlEeSeqROQ/PEXLWWlFUM+MRmtqQUXmzylFmCXyR2BzjEZzmiBF8U/qRLOgpkariIhFSC43RumAGEVL4qVFGRDkREX9QEVcaARF4prNRBIAwESNoFZFvX3FRJ7xgUW/Q6NElqcORV8UWEYWfMJF8TkTRSCla0U7XBdFd/n1RElRAkXoTqNFaCJYSefHm0aVAT1F60I3RgJjFEX1O3hFi02uRCN3ZEgTgHxF0HX6RSN6kUZ26RJFlRFJRewLskS1OthE/sMtRXgxv0QXn3ZFeKwGRpOREkXshZlGrQYjRkwYL0W0izRGQQOFRnfml0WN5ixFDVKKRap+5kQEFrxE9QxrReu0w0W6zhhFrwkqRVhwvUThst9EPNfYRGQax0SgB9ZFG/PqRxTyWEWClgZFiQD6RlBfCkVd7kVF5yjjRUEV/EQbrSBHV86vRZyOHkeWtHdGZACrRfYv70SuLhJFbCsTRa0S8kTfiyVFUPDXRA9yLkalIM1EyTYzRTN3yUQG2QZF2+cJRc4zhUWGRilFE/gGRYsbo0SPJ4BFEZ2RRS+os0b3l7lEElP8RY1Ux0SPnKBFoaJ3RfRlmUUsas5EcEnTRgQBRkYefZ5FbGIZRdjpIEXW49tEbjO+RNPohEav+NBHkJoSRt0dFUWQ0r1Eh2u/RjEQZUVSNkJFZtTORLnmqUaW3zFFEb+3RcEjpUmu0UZFH0UURfRzNEl0ORdFJka8RFcxIEUPAHJF6ZNGSMpaCEd73slEeq1MRfQAnUTerBxH54OrRjpAgEUArqFFr8QLRRVW+UQZkc1Ey+OIRVoNtEQj/n9GjFTCRbf7IUVZsr9EaibvRMnQgEVVzOREHzHRRD9cFkUuo35F9QE5RSNEjkXxYaJEBmWTRXNSG0YqCfdEGdqJRXgzCkWfqbNEwcfQRITNNUV0JM9EjjqmRLuki0WQAatEuDM4RRi0PkWP4sFEW/7eRF5dH0UTcRVFoh8YRaCZvUT012JFuisFRaoPCkYHKI5FOLMgRepNxEQ5nO9EtrdqRfH90UXgks1ErxgERYrMu0UO3flEwoZERkTziUVagYlFwMq0RQ9rl0Wqvp5FiBFTRYsC1ER4OYFFGLrZROl5FEWgTT5HSNoZRzLQkkavoYJFMw0rRfcxDEWfdwRFo3T2RNcTGEU1V7VEoLMCRgeR20Sd+atG7i5DRdxW3URHuMJEzzyOSNDM6kQj1AlFLowDSFtAkkfjhN9ErszYRLsxXkZ1+wdFAijtRI0rqUUQKwRFitgPRfqAEEfHxRlF9zkIR7oIS0YZbKZF3VlRRv4pAkXxUH1FQ8usRcbV+Uagdt1EPjDTRWmYqEVDJY9Fzy/VREVJjkUld+lEA1nORclpnkQ+KZNFX5a8RbFshEUpGyFFVU8TRafE8UX9aLJETX4ARcfrEkXaCghFcF4sRmWnwUVx+gRFKyspRbCk8ERIeTlGG0QKRQCSCkXvtFpFuromRb68hUaUebJFqgBCRgOchUV+sXNFgyafRIflFEUr6CxFJDLbRINxFkV6FbpECejFRMJXRkY4MDpFbHRERVjlE0Xz4BBFc5kuRULd+kQ9XdREH/QqRTMnDEUpzLFE+vgGRURnFEWZt/5ExrMTRdBQGEUV7KxEzZa1RMZRy0ddBB9HaMuzRvAVx0Ucp8dFCkP1RO7BTEUpRuVEINTIRJ7wVEazbDtFdIO2REHCwkSgdHFFvbB+RV9Z80ctjldHBY7+RiNh30VInElFGOXkRBRMy0RjZP5FcpveRG0RN0WzBMJEZe7yRNiZwUV3X/tEoyymRLOo30Qjs95FkWTuRNqJJkUiwSNFhrUJRejqsUX4wbJEN8oAR8vAgUbH9QZGd6qXRRKyLUXMfwNF0OAARVgxzER0/p1EUCvMROhp6ESjR5VEbIwNR/vOoUXKR0RFfxgORePcdUWUsIVG+Ny/RPlyM0aovnRFoLOnRcbyB0V2ZplF0bvlRHbDs0S2fN1HZ8uqRD8g/UYJlj5FRAujRQdHlEVNzVBF6Lm9RNCi2UT9/w5F90vgRLew3ET7As1FD78WRQDb1EQjxMRE4GoaRqVutEX5dQ5GFSWVRV8EAkboqSFFjX6hREMy+EQLbx1GhWKLRb5eGkUy5ttEHx6WRbMQ8USArr5FVi2QRatSNkUOLFVF4OrIRXoxwkXSxHtFu2KnRT09tUT1vR9F + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - TPkeIm/BckCqcHOeT8JyQFS3JnfkwnJAdTHHezvDckAgZM37DdJyQPKinRhD0nJAZhhCbHnTckAsIn74YNRyQFaLoiTO33JAgmjylbrgckDJ2JbuT+JyQC/TvfGP4nJAWthLDFHxckB0NjexyfFyQKY7a4u183JAQDupnqL0ckAA6737A/tyQJRrjVHD/3JAZC0aafoAc0BwWhVDJgFzQHKUMy87AnNA21U5284Cc0A268lH+gNzQMyKsbAYEXNAMsypJuMRc0Dyr4KGJxJzQFEixqO8EnNAgBRdQ/YTc0Be2qFYCBRzQNAWUltPFHNAaLcHzXkfc0DE0AGCOCFzQDaipxh6InNArQzeXswic0DSWBx6zyRzQDgCJTFWMXNAT/RR28wyc0DazN/T1TNzQKfm3J25P3NABor+DeRAc0D+NHJxeEFzQDlxHBglQnNA+lHizHlEc0BJ8lAom1FzQJC302ZCU3NA7Z+POKRTc0AwH8YC4lNzQIhAYrODVHNAf8fCU/pfc0CfLtAwZmJzQBaT3gQ5Y3NAtiMWi9xxc0CttwbWUHJzQLgCKaFkcnNApOwlt0t1c0C+1Mq7eIBzQOaRFf2igHNA4qNzgV2Cc0AyZiiWOYNzQIE04WmFkHNAAKOhYU2Sc0Cios2WzpJzQMoEbYPNk3NAqLdcnmKUc0DeWUMT95RzQJvSzwG4oHNABjtDo0yhc0CKQoJmW6JzQMBZ0LkFpXNAOLVhvH+xc0BIww19trNzQGYzvjQOtHNAwVhOrvbAc0DEjZpu0MJzQAfb1Rklw3NAddg4ltjRc0DiIjiq+dFzQOES8pLj1HNAQZ40jw7gc0AoJ73douBzQC6wn+k44XNAhL4+Y2Xhc0AlA5jYBeJzQJ3ceIN64nNACuCwu6bjc0BIDu6NN/RzQFadInSO9HNAkLx5o+QAdEB8Fwu7eAF0QMZ2No+mAXRAUoWgPrsCdEDmTZrIihF0QJ6UhKjNEXRAHBhRz00TdEBcThiRuiF0QN6RGpmxInRAGJUFg7kydECWMz6lVUB0QLH/9xX8UHRAqlaXBY5TdED/1XRP91R0QEtS8kEhXXRAGt1EF7hgdEAFnYUmCWJ0QJ6SKO16YnRA1RWs605kdEACo2qftmZ0QBKKZ9PEZ3RAAhkfZ9RndEAgqX3BHm10QNLIx84tbXRAVP/pciFwdEABCf71QHF0QMJhLTMWcnRADA+VaTlzdEBqNu/t+YB0QAsFrJpOgXRA7uJdzkeCdEBK8MPJ0IJ0QBZf+LkWkHRATsmg3OWQdEDUGLRmEZF0QOKYq+7sn3RAcIGKXtCgdEBE35lwBKF0QC7EN2K6onRACkEYiw+jdEA4hHbhCrB0QN49TE/CsHRAT7kjy3CydED+1978yLd0QAVEXhNOwHRALk6iI3vAdEDANes748B0QJA2HIx4wXRAZToC38jNdECiMqT/X9F0QBBXgtQ+03RAKvTEQMzUdEAwWQPMIuF0QJhOws5e43RA+a9M/4/jdECgJ0TdTuV0QPQQaUZE8XRAt6LLsozzdEDq9aPXXAJ1QJaXeAemAnVAO0Thw5YQdUBO6VawIxR1QFgKq2udInVAcHtSa8w1dUDQ3eul3kJ1QEQylcGAUXVAcrLXTDlhdUCDjrvHZmN1QPwQ1M+MdHVA9jA6VeSAdUArYETnd4F1QBjwGHytgXVApP8G8KSDdUDYPvlFEoR1QPAK1SKMkHVASgUmA8uQdUC+d+kNuaF1QIS2nmDloXVAJnGxIpGjdUBw6BcxrrB1QPQTUirPwHVAzldK2GTBdUBnyU0V+cF1QK6CGfX50nVAWfFFgg7hdUD07E0IPOF1QPx7bu4I4nVA1qc7dgbjdUD+gCvYffN1QNxLnslOAXZAVLL7yEgCdkAHYBLvkAJ2QNmaofTQA3ZARSvTRZ0SdkDuIKkFiSJ2QE7WRj+QJHZAiT5mr0srdkDoRq15HzF2QMZU3V9SM3ZATA8HBJw0dkBFSc2MTj52QEwMqVBOQHZA2fEBZR1BdkDCkUX3yEJ2QAwPSt15RHZAH1zhnBBRdkCuHmfLEVJ2QGqZgRXNVHZA8i43STmAdkDqwjvkZ4B2QHZIv0f4gXZAGEoBpSWCdkAbNusPEoN2QMfo1KiRg3ZAe3ga6BiSdkDtTgRu6512QBC65QeioXZAJwjzWUWjdkCwv08Mjqd2QJFdWVeeqHZAwPnFGY2rdkDwWiFDwrJ2QKvXbDAMtHZAKpRrB5HCdkC8DZI7zs52QP//yN044XZAPv6HKVbxdkD+VRzRkvN2QP6KgN00AndAokjRhwESd0DqdhDADyJ3QCab0vJzIndAZv5x33oyd0DWDDI+rzJ3QJYeM0kNNXdAmh9MMp1Bd0C9ON5x90F3QHq7ZQskQndAUjYB8xpFd0CE4FsaS1F3QFTT/PKRUXdAuL+lcBZSd0BqRli7TFJ3QGauu2RIYXdA7Il0yY9hd0ClkfAxKG93QMp6yB+PcXdAxOQ2aIp5d0AwC4gPo8B3QBZkLxlR8ndAYg2ktvfyd0CcBaShbSJ4QKRpCQCJI3hAzumTndIjeECy1kx4oyR4QC+Oa1gfMnhAGbAQ0BFEeED4L9ocekV4QMOafPHWSHhAwsTT9TBOeECM8HtlylF4QL5h8ESIVXhAuNgfFPpgeEBGgx2OtmF4QJDlQqO7cXhAH2CxMEN0eECvvbzVi3R4QCY0DVOvdHhAUiT1TcZ4eECZGifa9Ht4QEtfLNkgfnhAAmT1gaWBeEAZPAJXfIN4QHGdwf6ZhHhAsz0h4NOIeED6H9zsmJF4QLrr9+llknhAitdoSaeUeEDiaKQY5qB4QAo5BWlyonhAxVKQXP6jeECaq7rizcB4QDAc8Py21HhA/6+0UaXheEBRzOUGouJ4QAeSljj/53hAoABgxgP0eECIkSXkjPV4QCo2exKhAXlAjA4AVo4heUC94UAduiF5QFPbU3SyKHlAzn3T1gsueUCpQ7IgrjF5QHqWZYK2M3lAmDY7CL47eUAKJgSNvEF5QK4oAVrMVHlAqJD8mQ1reUBWGMq3Em95QNRuE70igXlAtJmmFpqTeUDYn3qwG6F5QMzknEPBsnlAD4ASk3/SeUAq4o3qDdN5QGjrvD9C1HlAB8UwBs7VeUBNGoBQUOR5QJfvIyD/A3pATGCbeJAEekDgKqie+gV6QGwi3msrM3pA/mC+vQw1ekAKUf2tLjd6QMu9wz8xO3pAKgWxuxpFekACg5DVKVV6QAaAZyEjXHpA6gLsgMyDekBh/56R04t6QKBC8FHak3pACw6PrA6zekAsOQMyDbZ6QIyqQjoRt3pA5JFVJRW7ekAGXKjkFL96QOqdwigUw3pAeeJ2ShrGekDoSyRRUNR6QAPmi3Kn43pA8Ab6txXxekB0YbsKwPh6QBp42dIc/npAfGmU73sEe0AkAaE1vxN7QMD22axMFXtAsnDnv44ie0BKa4JQWiV7QM42wYfDM3tA7CT338lve0CGTrXBJZV7QF1jlvAAp3tAjpTPWQare0AuUDb/eMZ7QOBSPjW95HtAPvuE9Jjxe0B6H5vgjPV7QEoHa8nZAXxAGjqjSLkCfED4x9uSmgV8QD3QRPXTEXxAPaWq1MxBfECanCi1xI18QPamndMek3xAZLeDUymXfEBqahtEdJh8QMLP+k8vm3xAvHlG8sKdfED4C1hHLJ98QCpozEfDsnxAWCh1cmXEfEAIl1T1geB8QGe/p4RZ4nxABabCBF7kfED84vt0kPB8QHrbTHIY8nxAn19hEFXyfECZXz24b/R8QJ8UpktzAH1A6bdSlQMCfUCOXxtlTgJ9QDlhYu5dA31Alaed0KQDfUDWac/7AAR9QLtieSAwBH1AwkrOp2YEfUBYIGPadAR9QGcENIipC31A/IYbZgYMfUAEC/WJRBJ9QI62od6KE31ANHnh/QsUfUAQD1I3lBt9QOafR0QSHH1AXMe2hBgkfUACGHRZlTN9QBSJYKJHOH1A0iItIqE9fUDnICBO/EJ9QEmDvFZFSH1Aljx0OJpNfUCYdkzZGX99QPiafxUhg31ASIP0CAOkfUCI0IHMwKp9QHRpQC0KrH1AWPFbrKuzfUAGE2N8EbR9QJgEZ79VtH1APzZ1XyK7fUDCsU8pLL99QFZuqnLlxH1AEpXKU6LrfUCuh2GLjvV9QNNScSgj+31AtnhrzAA0fkCAAJYyQz9+QLLxBY+LfX5ARD1NsOOCfkBY4GCcn4N+QGB8FoE/iH5ApowL2KWLfkA3wiXbmZR+QMBn7s9Jq35AFmT/czi0fkDydSUNU7R+QHoyit2PuX5AoN63ef/efkAQUUf7BeR+QAZdIaBc5H5A01zA8Af6fkB0/2RRZP9+QIDH2mfhW39Ag+v877hcf0C8mkCovmR/QMSUlMa3cX9AC0Teot6Af0CMaJVWo4N/QIrCJXNjkX9A+KQ3D12hf0CJShTFVbF/QNjS8L1puH9ATKmHbsO9f0B0KhO7JBmAQO4hZ8/jHYBA4Lrw7kgqgEDazqNexjmAQIWSNBKpQoBA1CjaHO9IgEAigaVDsEqAQFZgJVCoTYBA9q5Aj+ZQgEAIVrXtE1GAQLYk5iOsUYBAFjSqH6NVgEDJdhTPZ1aAQNJ6cL0lWIBAfn8hlg5ZgEDHNMB4a1qAQLz/4aKvW4BAwlU0mUtdgEBerdce416AQEoKIYHgYIBAotKOrZJlgEA2fk/ulGmAQMDqc58nb4BAjBByZih3gEB4CClaKH+AQCx8TGJfjIBAXroFuwyPgEAKSl3wt5GAQLHXwttllIBA6BLYCiCXgECi0HZdvJyAQI2Q2D0bn4BAf2LnX2ifgEBghswGD6SAQJqIu5CHqYBAsLlKIxOvgEDoR2r21rGAQExffsx+soBAhX/GjoW6gEDaakHzWLuAQOICFZJSwYBATV1zO6DCgED+/VIM7saAQCfnJjJTyYBA4dfv0ZPKgEB/ta8+TNGAQEjV8wtg0YBAapNvBRrXgEATxohKStmAQDjBiIBE4YBAaISK/ErvgEBHgbz7Z/KAQNg+lMyf9IBAuM+5bUz3gECy7jsJ+PmAQDazEXuf/IBAmkOS+D//gEAQ1PuxQAeBQNKnwME+D4FA0MQBgagagUCYUyqHNB+BQBhxUkVpIIFAhbrIBDQngUB00/iJAC+BQOzIW3wvL4FAT2ruY64xgUCzaCJYXTSBQEof0s5aOoFAEqMxoSg/gUCsbpS3R06BQIwtz1KyZoFAa/gvaqJqgUAR9sJ3pW6BQJw7qGupcoFAaN3VIcR0gUCnux9+fniBQPgkWyJhf4FAfvQLp5+CgUCKqGceVY+BQGpnHK1Wl4FArDin3lOfgUD+N3NX6KGBQJzpecDfooFAWYjtREyjgUBG//1xbqiBQG7HDjbmqoFAQn+EXlKrgUBtM1NcSq+BQDCOXhRLt4FATLk685O+gUDagVoBAcKBQM48SJUEyoFAnHSUjnDMgUCkLGOEscyBQKZljpgcz4FAK8/ZBF/PgUBkleAOzNGBQGzHKCkF0oFAtMVC/GDTgUB71/TZe9OBQB6GFU+p2oFADa7xGWjigUAenkSZjfaBQJiViDyUAYJAYORdQo4JgkCuD43h9hGCQNn7ndbYGIJAz06di/YcgkCsKy3I1iCCQLAocF37IYJAIA41x9QigkBaYA8y/iWCQFwEP8jPKIJA2XlkMgMtgkCG01TzMzOCQD2XnHDXToJAnBc7ZoxWgkCyfz6ZoFqCQPNWJUrUWoJAnJ02u25cgkAMV6jE02aCQAv5Y29taIJA/KkqZzxpgkAwQPCkZ3SCQBQkcG9DiYJAhmGudEORgkCh/E2tPJmCQCS6Wp4OoYJAoWBJzzmhgkAv4s3gDamCQMYWLxc1qYJAnqcWo/WpgkAjeClp7smCQNYMjGSc2oJAN4Hfo57egkDs43BF1eKCQEoiiGTc6oJAK97+fRUDg0AgE/i/GAqDQC39Dki6CoNA8PDWdr8Mg0D/OcJkvQ6DQKqz6KV5EYNAhA1y4XkZg0CKA5ibZCCDQLTrYGhyIYNAyPlEmHEpg0DeRzT2ajGDQMZ40BQuPYNAJLiwBkpOg0CixbV7SlCDQKgCn4VNVoNAfDBbz79hg0DUu0q382qDQDgYT3jkgYNAyacIAguDg0D6cT3/EYuDQGA3Tg1TkYNAmkGE0Xmag0CaTIIeJ52DQHAbloLRn4NA2N839Srzg0DwBvbmk/iDQKTLt7Uy+4NAMnk1+hwMhEB/vHGJcx6EQD5lpF/jWoRAc99uCv9ohECqGMZCmXCEQHyXIlj/cIRAEhmVOZ5yhEDKuWZvyneEQMrxBy55eoRAn0FNJWrZhEDc6aIFa+GEQD5T2gNj6YRA3ku1z4DqhEAGxs6mNfGEQLgwsYBi8YRAtgUZ81v5hEC4jEbo2/2EQMcqBxp4/4RARll/ld8VhUCWhU1uoGGFQOwIBXS3YoVAZEq1dDZjhUDIJXAPTGaFQEblhv21ZoVAfsE9caBphUDqa3g8TGqFQJuuA6KYcYVAT8+HQLRzhUBr7TPqmHmFQG4oDcWQgYVA+9Mj0eyJhUD4x0/M742FQIxmWCpAroVALFYLikWyhUCZryz/SLaFQPqAJ6fDvoVAuHnJBCHChUDM8bJOKMqFQOniW8f+zYVAADEpaxnShUBg/XOtLtKFQIi+ZWI22oVAmxukaS/mhUCVLVU/M+qFQMpK3QIx7oVAC9IhUNTyhUBlqedcyqaGQJ0YlzbOqoZA05R5lSa5hkD+/EkxkSmHQFC4gqOQMYdAFNQu3II3h0DWVlKeiTmHQJni6b2FO4dAqEZ3+os/h0C4pMtbiEGHQNG8pzXHsYdAkR5ZSMi5h0D8DTbmwcGHQG6oLJjByYdALLpqArzRh0AhTlbU6eqHQKRSovHx8odAAjlkUn5yiEB2VG4gfnaIQLAXDkd+eohAbj9Kd1qTiEAKgDXGYZuIQPz+xrSIzohAKInDheDRiEC2quRFjtKIQBTjp37k1YhAkvVS0Y/WiEAW3ITw5tmIQNEnkLKz9IhA + KBZXds7jZUCAen+Qj3FxQIkw7CrX8nJACAFx3oACekARt914yIN7QMhDMRa5SYFAzJ5n41wKgkCClhEOMUqFQMN95xGUooVA - + - v+bPRQE64kQ9sh1FFuQ7RWXOikWsDQNHfIqRRLh7tURzeCVFVEeeRYrHhUU7g7lFZpSbROOUbUVwxKVEGOfSRIj1UUXDQwJFusMSRZMgtEQQEQpFQ2BKRXyBGEeK+RBFDb3iRC1O6UQiI5hGOjU8RePrckUekphEnqj0RCv6d0ZvLPREB5ycRLX3tUWeb9BEb1KwRHhSBUVJ/hBFhuGZRLKlPkVeBNlE3JIZRlNjO0WntsNEYEh6RVGclERjDbRELaK/ROTCqES/QNFETDqaRJeWuURRTJ9Eq9QDRQo3rEaOr6ZEV6KvRQ6UtUQriyBFSAtPR974p0QO/t9E9K/MRIP4RkYcSM9FSKqkRN1nzUWHiAFFxuG+RMwBekWqhitFxTgARXAR3EUDQfVEjXhzRYXyjUZkv2FFhr4XRUE+OEVA99pFiVHwRDs+B0WI5T1FD+GsRLz3v0SUYaBEZO76RM1QSkYiQ5xEu6EDRblvnkRJfRZFvYKYRe6A2kTQ//5ECYrBRIpqnkSEhc5E9wC2RJ+epkS4oKJH2AdgRTUdj0Z2NwlHUunCRHgu8URfYRhG4jiTRSGG80T9z6ZEdg3oRfVlSUfQgBZFdNMZRRG67URvMPhF/FDXRCcE1ESA1slF+1KiRZUKuEXT58pE7JT7RBD76kXnfJ1ELGYsRY9n60TkgdpExk9ERcsVA0UtkqNFTKKxRHpL3kQruMVE3FSDRapVg0ULa7VEySTLRI4SG0WmF7FEh2HtRIPepUSkeN1Era/fRQQEnUVpq5dFjsP5RPFwOUVKAEBGlIQjRVgbEUX32pVEEeS1RH/UmUQINwFGjaCMRa2eGEUZMIZFS/YoRZ6lgEWphLNEbM23RNAjt0RrQKVEGUW0RL1HoUTbs2BFBmW1RBdMuUQj28FGucMjRsTCxEQyG/hEMQd7RXxSvUQV+dlF84+bRc1eA0ZOXaVElFGuROEaYkV5iAZGDFKERX2Et0aQxqlENFrKRNKpNkXVhbdENhGeRZiDX0WUZFlFNaQZRSb2o0TVNRhGUm8iRZ5P20ScwRVFA8cFRdoBAEUhUftE/wRERZ3bi0ZmGtZEScNvRlIQZ0WaEbRFKUbERJ7r00TZMZZFV/9iRQojaUXGqAFFTzxJRavz5US2VK1EhZKARuq+QkUzS9JERwMpRWIsiEVc8+xHYYCSRjCGQUWvaalEFRa8RsSOkEU7PixGiJozRTZW00UqJqxELLosRQapTEXtwwlFdr23RNskBkXEP8dEtcLgRFppOUUOz9dEB0jGRIKbt0QCO6xF+0lLRQZhLEY645JFFmpORaitfkX+4EtFbdI6RYIEAUWXtpxEu4omRW4xR0mTGb5FAhKYRpd3LEXY/yRGVWdERU/qdkVTSVBINWmwRIooTkVfwCJG1ZmPRqB0GEWEFBJFleSIRc9EnkRwoFVFyvu9RBYqN0Xs8ZxEsViERep/5EXpEMVEAea5Rl5ZdkawAw5Fzj+7RJyXkUYJpFtGh75IRfAUykTv7YhFH6VJRcLPrkRVtsREcWDARIsvtkQCjJhFDMddRSEoyURaNc1FJW/BRMv+20S7F8hET+vtRPs5k0RhiYFFT+/OR237eEWLZv5EWjHPRkdsNEWFlltFvpKnRTk0/kSSJcdEF2whR9CgtEUeDuRG1/wxRlTiiUXfsgxF2eDbRJyTC0UpYaREc0XhRPZfYEXvt/VE9mdhRQ9FrUTrdiNG9dwXRZVqQkVT7L5EUkQFRVSBBUWElClFeEyXRQ5NzETl/BJGFB2IRWoBoEYcERlGlimzRCocmEW28WxFLI2HRYSYsEbw+VFGNSexRWBVU0XAHzlFt/0qRfLRp0RZX+1EVEe0RIq85kahOrRHtG/zRcPuKEXC+DFFSlWJRjDi5kRhTYxFg5z+RI7weUax/8RELlBdRW5nnEmwbRRGToIWResLBkXuhgBFJfkiSTIDHUX1uzdFrCtTSF/rDUWFn+5GUOxkRYeZKkVSKS1H8/CzRtxZ/kWAtEpFzCTrRFb350R/VsJEEBaFRkb9pESTy+lF1dWwRL/fHEU4LzhF5Rq/RMWVsET8a6VF/pHiREXy1EQBD71EiESGRYyOrUSH+9xFEQw4Rfn4U0ZkWLZEXYupRZ6xp0RH3LdExAKlRFpEnUR3C+NEr7S5RWaz9USMrwNFGKYJRbj/yUQJ8A5FJN3ARTlrG0XMeolFi/ytRNC4sESqhSZGGIviRIUTzEQeKppFDQZ7RS8lrUSv57NEGSXZRGeBs0TroNFFyaTCRDcJ2kQjViRGrGioREAfTEYu3SpFIV29RPm7IEX3NjhF8QWYRRmVFUWf3cRFmsAkRf9eKEXMZqFEhX9bRQbwKEWXJmpFVpu6RIfX1URgfDRH8fYWRyPeM0abYolF0UZPRWtd7kT1jyhFLkoRRWbmAkWYL+hEJC/fRURt5ERLjyxGsNAGRT9FyESpBHxIbU/ARCXRN0VTVeZHIA/6RNKWXEe+7lFFkSipRGSmZ0bvyYxFrCjWRD4fkUUrGA1HPKfURlJNS0ZRCglFFrhORhdsgkXlVMtFEqVARQEmAUcyidFEFe7CRWrx2kUm5kVFPI+LRSsHN0UZaCxF8h34RZUGjUTaq6RFFVn6RQrNU0V3w9ZEgYgHRb2Qx0SO0LNE3xTXRBXW+UVaqztFL8YLRRDBJUW+P0VGoMJ/Rdrv+0TH4hdFgqenRA01VUZnOSNFJ0KiRH7dUEWn9ZFG8kytReXVMEZz6ohFkPOOReXQCkVerzZFFZTbRKDCmETmfTVFYMvsRClD7kRm2/REDATpRIhYo0Svhy9GIsgYRZ1gnUWZTYhF6vtGRYiJA0XDWypF92KuRNz6v0Q6GfxEJI9IRXpgOUV4S+FEq8iHRZyY7US3xmVFs73tRGyKu0QwKLhHC3QYR/OBv0b1+bxF5YncRaJCFUWQuzhFm6SqREL7ukTw3K9EtwjDRNENPUYysmdFqmA/RZOp90TWTsVFQOESRa1+G0XCaNZHutY+R7zzJUXZ/PhGHTnJRf/mNEUpA75EWTMIRRD1aUWCCpdET9qxRKPEvkRKeb9EEH9ZRhbjfEWPZclEmM/rRF8SwUTcNbpEAAwLRt7Ky0RdLh5FXDWSREw6jETo77REewTqRcMbKkWtCzNF7gDRRDyAjEUMT55FoBIORwSqgEZ4NytG62OgRLuvgkWoZWJFLHHyRHkNAkXg5QpFhsvORKhD5UaFs5hFGAdxRQPJfkXaMtxEi19TRp6cx0Qffw5GkHbdRDg2UUXsj8lEYHtjRSlI2kRFaodFEQlcRVBjqUTGO+dE6B0jSJS6WEfng51E1oCnRY8zDkbOoZxEmtyXRUjR/EQ235pE4gghRT7szkSOCgtF9gKvRI5VOkbe99ZFGj/DRburHUXJEeRFkpQTRUvj+ETsFh1GKGC4RQjHUUU8b9xE11ygROoHyUWEkdtEEkyPRU2RkkWwgPZElJ0aRQ5m7EQROW9FC9GvRb/npEU3C4dFoY0qRVXuHUV6+NBE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - XjGWLW/BckDeyVSmUMJyQFFNKOTkwnJAJfr7YTvDckDyV3JswsRyQDTR8iNaxXJAxvJ7WQ/SckBw4htIQ9JyQH1qDsGh0nJANWojKc/fckCiam+CueByQNr6VnlQ4nJAgWT5GpDickAoK7oVJ+NyQFrYxS3J8XJAQw7BrgX7ckC+QoWTwf9yQOJT8bv3AHNACAkjlToCc0C5CtSE0AJzQK6rRDz6A3NArnozxbwSc0B5VJwDBxRzQFOWGZp6H3NAaN84ozghc0D4KK/EeiJzQB1gWZsQI3NA0eypaDskc0Ar7APrziRzQMgP3aRFMXNAPyu191kxc0BkFIV43zRzQP4bFbK5P3NAoTwnGnlBc0Ccs+tkekRzQETd0ACbUXNAhBmoW6RTc0B3MOGSiFRzQLSz/IX6X3NARpz9IGZic0CgXCgmOWNzQCDBU5rbcXNAhvljnVNyc0B4drpit3RzQI4jk8VLdXNA5HBPbniAc0CPZiMLpIBzQIoN5qwOgXNAdqmLPl2Cc0BSyBtXiJBzQKbvzSQaknNAHG5LIk2Sc0Bublh/aJJzQBrKIZjQknNATqDS9syTc0D2Qk2x95RzQC7qD264oHNA+K4jmnShc0AZUSrnWaJzQGRqmoaaonNAChOCkgOlc0B0ELDIxrBzQMaRP6W2s3NAZmSYMQ20c0ByX6yO9cBzQKduBKnPwnNAD98AkrnRc0Cwo9z/1tFzQChM6Cr50XNAok6KNN3Sc0DegD9q9tNzQJ172kri1HNAZLGHPA7gc0DRNdOMo+BzQJ60B3LP4HNAtLnZfzjhc0AExBSXBuJzQGx2AeB54nNAAsHnQhHjc0AqZTRYxPBzQGosiH049HNAhV1zYeQAdEBmCJbWeAF0QE/r94imAXRABvJ/tLoCdECidWvizBF0QKL6mXhPE3RAZWSdArghdEB698BmWyN0QAzB4Ln8UHRA+as2AIxVdECsbMn/IF10QAhdikS4YHRArEWcrghidEC6JHZWemJ0QLr8gtROZHRATiexxMRndED+aakb1md0QLGWBoYfbXRAAoFjZyFwdEBtHTcoQXF0QLxKYe4VcnRAViSkQzlzdED7PZszN3V0QGtkJCH6gHRAmtpsS06BdEBNf4ZZJoN0QAC5hwwWkHRAiOXAieWQdEDc4pT9D5F0QNRJjyP0kXRA9nZLG/CfdEBYZQ5lz6B0QAOl5+cEoXRAUH6RQnuidEDqXMM9uKJ0QNBnx58Po3RAwLEi0gmwdED0uEZbw7B0QJSuF6cSsXRAnil0QCSxdEAaJYCtUbF0QOOaGEZxsnRAbCz4MfyydEDxWabqTcB0QApmXa3kwHRATM6MunjBdEASr2OPeMR0QOuRr0i6xHRA1T6UiMjNdECyNbNF/M50QG7GAZNg0XRA+l2W0STTdEA+hhSRzdR0QNFguTi44HRAl3+IPCLhdEDEwuKOuOF0QOveVfj74nRAfDha1FzjdEBRprDykON0QGr2wW9Q5XRAdJ2tH0DxdEDwfIkonfF0QJsrvXuM83RAj+Dy06MAdUB6SHTRXAJ1QJMHIjWmAnVACNGpmpkDdUDKaZku+RF1QJaw2PMhFHVAZfctYOMfdUBahMcCniJ1QN33mwWpMnVAVgqmm8s1dUCcC/9Q30J1QBL6vkLmT3VA2JDVIIFRdUBoESALd1V1QPBT3VYKYHVAwkEAjzhhdUBgiuCo+GF1QFwTuQ5lY3VAwV0B73VydUDIE7TcjHR1QE4hiz3lgHVA/FnN3XiBdUD0D55wrYF1QEpUIkGlg3VAwKAUrBKEdUA2AmSrnIR1QIpZ9gSMkHVAaEJcB8uQdUBwUabVupF1QNBiVmC3oXVAirgGH7mkdUDv6stDzsB1QC1YOlr5wHVAJjAnzmTBdUA+HOtg+dJ1QHLWbtvM03VAkyEqsg7hdUAcJpu9OOF1QPa1NkgH4nVAkIBJjwbjdUB0ndsr0fJ1QGblG5x583VA8MLl7k4BdkCo4wGfSAJ2QFB8r+aPAnZAIMXUQQwWdkAu33DmpRx2QATvQ5SIInZANZgi/o8kdkAC0BsbTCt2QEyE8jkfMXZAJm1+hJw0dkDt7xyBTj52QLhA6ZgbQXZAuzqFki5BdkAgT5fhx0J2QNFgpRGoQ3ZARslX73lEdkDrRv4aEVF2QH/ul/XMVHZAKmb+OTqAdkBJsEbE+IF2QMwWOx4mgnZAksyel5ODdkArFoqRF5J2QE6uNrHqnXZAQi5RpAqhdkAOMMg3pKF2QIW0EwZFo3ZAA1zioo2ndkBmSRCDn6h2QEicc4qOq3ZA1KUkYLawdkA6PRh/wLJ2QJiTitTRsnZAoE8k13izdkDGXEg/DbR2QFxzCbd2wHZAiIGfE03BdkAgRxs3kMJ2QHp8J4rOznZALZzf1DfhdkBuIVtwZeF2QMT9zp9X8XZAFM/po5DzdkB4N3kBARJ3QJhAxIEPIndA6eZ3aHoyd0CSFCj0rjJ3QJb4lfqlM3dARv1nPw01d0AO0ijtnEF3QDiplW35QXdACKU0JiVCd0CkqPDsGkV3QAzYS4lKUXdAAquhiZFRd0AY0sWoF1J3QLTpdlJNUndAFouutihVd0Bi+MNskWF3QB6Nyx8pb3dAh35RjJJxd0BaNdYcGnd3QCyQ3NGJeXdA8sF14nWCd0D6imeRKoN3QOA6qzukwHdAFLRT6C3Dd0Bl2m3n+PJ3QMw6cdP8+ndAHP0tYnkTeEDqpjvM0hh4QLdtv8ZtInhAQFWxPNAjeEBpP9mUHzJ4QPOzMCwtQnhA05VWnRFEeEAKq2njeUV4QLgZZc3WSHhAIpGEkjBOeED9TmmCylF4QK15pNSHVXhAQFed3fpgeEB9DTtHt2F4QPxPBqc9dHhAID4ssIt0eEC32P4rxnh4QCwqd6j2e3hANHpN9SB+eEDsYFxLo4F4QLC87kp6g3hAOMWl2JmEeEBNGZgDl5F4QJZm/dZlknhA9FLoPaeUeEAkWoRJ46B4QLUP5+R0onhAlgGC//6jeEAaTj1cuqR4QCIz1XEGrHhAJiDC4svAeEBSb8a1uNR4QE6x8Sml4XhAZoXFNaPieECtp3XOAvR4QLBNvJqN9XhASRP60poFeUB+Ck8SYyB5QM5ZtzCOIXlAnhaPB7oheUBI9P/ZrTF5QOQN5Ka2M3lATEgR4r07eUBekA0XKkN5QExyU2/CQ3lAW+6l1PlDeUCCaNo6rVF5QIpfqq/MVHlAn8NQgdpkeUD9MugHAGl5QGPsQa0Sb3lAoidIYpWheUCpVq6lwbJ5QGzshL+RwXlAEl8HNoDSeUBiyhanqdN5QEosSXhC1HlAg62L28rVeUCib0+YT+R5QALNNv4R9HlAviOgIvsDekDMhTVwkgR6QKrCpGsrM3pAZGsbmAw1ekCKsLw2Lzd6QCxFhXcaRXpAKii03idVekC+rD1MIlx6QO74rFSHYHpATVePtcuDekDImCpF1It6QIIQC28Os3pAjLouXw22ekCI+HOKEbd6QIKw524Uu3pADC2IlRW/ekDJDQOyF8N6QJyIdxYqw3pATD+ixE7UekDeaq4sZeF6QCnSAR975HpA3B4RhDfuekDhvc5+FPF6QNBSls94A3tAx1Ns03sEe0DS+q9qKg57QFF4eKlMFXtAVIJcuI0ie0DGNIO+WiV7QBUrjZzHb3tAXVqh5DCTe0DghxJHIJV7QMTaHLEUnHtAI/+IpP+me0C6zMBtBat7QPlNbRN3xntAWm7DB7zke0Cw5O+wyvR7QBoE7LCM9XtAxIgSstkBfEDy7N0/mwV8QBIrlEeNEXxA3F1MM9IRfEBaNI1tzkF8QApuyl0NYnxAjtaI3sSNfEA06pClIZN8QLQeLSIsl3xAfsuTM3CYfEDycOQvMJt8QEDxbH/FnXxA0qnUHoHgfEDCOt+AWOJ8QCrmfXRc5HxAVwMVGY7wfEBYI2emEPJ8QHnAHpdU8nxAGv75bXLyfEAQbnnOcAB9QLXdPKAFAn1AszqXK00CfUCUwWWUngN9QMCepPqyA31Ai12Ds8UDfUA+V0iNAAR9QBoV9qYuBH1ADIRL9AUMfUDWNifxRBJ9QBTwDOKLE31AuN1NdwsUfUDuh5yYExx9QL4kUnYdJH1AqJgmO0c4fUAonhAhoD19QGg56A/oQn1A0hsAowRDfUAzhm01REh9QIqdd0yYTX1ABIhtcGRkfUCUSDN4r3B9QGZCve0Zf31ALyb6AQKkfUCUB4rKB6x9QHTxcFKts31Alzgxagy0fUAk+bfIV7R9QNwknBEtw31A9OSZfeXEfUDoRcH0t819QG41Jpc84H1AvJmc7Z7rfUDkhvGTj/V9QFQwJ8g2H35AOnjJCBVUfkBg8vvizXB+QGA1KAcUcn5ATty9v4l9fkAPH6xm5YJ+QPDEPymeg35ApCbDZkGIfkARCMKJpIt+QD+mBJ/RnH5Aw3MCOJGkfkCypARs8qt+QNO1S5T3rn5AyptpmCKyfkA0i6cKNbR+QDgmgnmQuX5ALoqD0LjEfkASheMk/95+QFkrYPoB5H5ATldq+FjkfkBU4fg+Beh+QNIElp9kA39ALgQImRVMf0D21ovO3Fd/QH9hZ/biW39Acw485Ldcf0D32P/0vmR/QArR9O3DbH9AyLKnHLZxf0BAHICnYpF/QGTmv2KokX9AKkhOYJuTf0ARU4mkXaF/QBrWEFSOon9AspUklWm4f0DyMDy1xb1/QIjasqcPw39AhF6r/Z7ff0CYwDst5B2AQGlwFuyoQoBAknynjO5IgECW1WeEr0qAQMLXXf+oTYBAJn0cZudQgEB+sDf4ElGAQJV0x4KsUYBAy1ovwGdWgEAR7+BpJliAQJtdI3oOWYBA2k0kSRRagEAB4q1xbFqAQE6w0qWuW4BAT8A2hZJlgEAoPGO2lGmAQCTt7Bwob4BAFK+HzbN3gEA6ENAzIX+AQDKhLchejIBA+J3+7wyPgECHwJPYt5GAQA0X/pJmlIBAIhJFQCKXgEBR+/Umap+AQIPcdBR/pYBAbPgUW2GogEAaJLMBhqmAQExXypkSr4BAuVkn1iCxgED8CKia2LGAQMy7vJh+soBAHNnQWVS7gEBfRXr5wLyAQHtuyYeHvYBAnJXgSVLBgEAQnU3+ncKAQLaehD9hyIBAWNM+bCLJgED6uWb6UsmAQGrX3hqXyoBADMZeeEzRgECFzSykatSAQHnOe7hJ2YBAAo30g0PhgEB/Jsy8VuGAQGDcAjFK74BAlEvUTWfygEDSjiw0PfOAQHazV6uf9IBAWo+WZ2v2gED+nwhuTPeAQAd8Z7xi+IBAZRH3Ifj5gEDT9j2op/yAQM4bgeo+/4BAnPdVPz8HgUAP4FZkPg+BQDSwvqOpGoFAaJBanjQfgUAAm2eSUiKBQMYKayQ1J4FA2lfj698pgUBatdWDAS+BQE9CRReuMYFAvX1jzlo6gUB4wSf3KD+BQCBrYEGyZoFAYNWwe6NqgUAVrCUfpm6BQNojlU7BdIFAXMzyrGx3gUAIHGgUx4mBQLiZpZJVj4FA1FUpHVWXgUBQqaqXU5+BQMYqMFDnoYFA0jW1gN6igUDygioAZ6iBQIhgdT7mqoFAfdQZDEqvgUA0sbFUnK+BQNgdrXhKt4FAaDTg4xDCgUCn9Q98mMKBQE6+YFIDxoFAhKpwwQTKgUC2tRlybsyBQHLSLpmxzIFAPBxJlhzPgUDEiH/8XM+BQFoTBbHL0YFAbmMyqgrSgUCbxL/efNOBQOZaJfCD2IFAciKssajagUABlPJ4tfKBQPYrKQGM9oFAjvcts38BgkCvmQd7kwGCQE53ADaPCYJAAUqpK9gYgkAaGvnR1iCCQEuLRI76IYJA6qflRNUigkDe2+V7/SWCQGrDcx/RKIJA3R2lRgIqgkC2rK0LNDOCQNwV5ubwQIJAZZleNqBPgkASTVHui1aCQDgTk4ePWoJAUU4bl6BagkDzEPaI2lqCQPAsBUbOXoJAWWQwP95egkDhHqac5GKCQCCyvXmdZ4JAZaVMZg5qgkDbAeKmF26CQCpf8iZDiYJAaIEqxEKRgkAV5VfYO5mCQAw2mySom4JAvceHvA6hgkDuynGLOKGCQIQptMT3oYJAnEeJ0gupgkDoH8ODMamCQMi5QUQGsYJAwPOTI57agkAMsLJeoN6CQJJVZ6vU4oJArrb8uNvqgkB8BEr2FAODQNVQNKy5CoNAp0nkhLwOg0BTAQNdeRGDQKogE+d5GYNAbEGhdGIgg0ASu4PzcSGDQHafL5ZxKYNAFviEj1swg0ARQ+SmaTGDQFUiv1EuPYNAPL+SnUlOg0D9RGa+S1CDQOxB071UUYNAHFpf30tSg0CenQxQ9GqDQAR3xavlgYNA5bDRhgqDg0BiEp0VSoODQFTvm2ISi4NAooE5fReTg0BzOdsedpqDQDK6VDwlnYNARl6JCM+fg0Bi91cYK/ODQO6sWeYw+4NAzJo3lAlDhEBEM2ot/2iEQHvmPxvnaoRAwe8Vp/9whECEN3QWO3KEQCeoDFvKd4RAOzav5Xh6hECLBMbGJX2EQIhC9XlVgYRA/BIB92nZhEAp071maeGEQKQNiBZi6YRAI3bPvDXxhEBsooBxYfGEQJt4Ddgz+YRALIc7q175hEA8gS1Y4P2EQMDsTmly/4RADGGxbqBhhUD49bDstWKFQOtBi982Y4VALr5lc01mhUB3iNtZuWaFQPDucmWfaYVA6fr4N5hxhUBo1OhetHOFQIKqA6mXeYVA/k2q6I+BhUDSlZoW7ImFQOa/R4ZBroVAIF623kCyhUB2BTjDwL6FQON3P7cgwoVAIbN34AnGhUCgd+gDKMqFQIHq/Ke7yoVAYY9ewC3ShUDehuZlH9qFQKD1afQv5oVAMBIEZzLqhUD+nuZL0/KFQNSjQwCA9YVAIk9tsif4hUDaN8IHJrmGQLO4iseQKYdAzHOXNZExh0BLL7RtgDeHQEQ+LO+IOYdAzupJ1YQ7h0C3t4ZGhT+HQLa8YAOKQYdA6g2vV8exh0CisOl4yLmHQB9hW5m9wYdANLv6ysLJh0BKYcNt6eqHQGB7MNnw8odAj2NCp3tyiEAsKOSYf3aIQGytKI2CeohAJDkdQViTiEDmmXtzXZuIQCq6+26JzohAfjwkZeDRiEBE/HEuitKIQEbXE3Li1YhAlYeG2tXZiEAiOxu66tmIQA== + NrgMGZxjYkDOIQhxcmNtQOzQoK8iBW9AQh3Og3wCdUDqDZFHgYN3QGneFfsqE31A5ADOEmOSgUBi9S8j97GBQKssdCLPmoRAxPj+DErKhUBV/X+li4KIQDionZ6Rm4hAx9D7k71jikDmAQE+zTqLQI78oaMpbI1A5jDvZ3nDjkCQgBGeNRKQQLwaOIDdvZBAD5gIs4vWkUCgMAuIE0KSQOdEuoIpJpNAWBpJf6wyk0ChnIlLzY6UQK0Cz8CKJpVAUh5xwPaalkCRGKLIwKqWQGmhQ5MnL5hAidUkABKTmUCzkRUxUzOaQOb+FPxNk5tAyhToA4THm0D9gefOfiedQHwrTRLKE55A - + - isH2RQ8TvETRVQNFkMJCRV9pzkRslNVEdQR8RWygIUcSAf5EXay8RHISvkVcvaNFJl+KRURHvEQupWNFj/YXRcoxJEX2btlER3PzRL2iUUUDpyJH9BuRRphIukX4sShFcXmJRpoYsURoedREBxipRITkwEWBdutEO8ulRJnD6URbiDdFJjpFRTdSDUYFVR9Fr/yURfKxsUQDrdREZJG+RPr7f0UYNPZENIyyRMHH+0SYROlE5IydRhSI20SKV8hEg+4MRsZDIEWh67xEi3diR1F440Q7trhEhQW1RC4KjUZPU+VFt6wVRW9k1kWww6tEiB4xRWfU7URMNWpFx1s6RaQJsUS4VA9GcM+uRAhdM0UkKxxG51vYRPtnukQzkpVF9PrjRPAkLUUtcBFFCsapRYFa5kQ47vtE1rT7RLFysUQX8f1EiQcfRYojW0aYUuBEqPoTRVqdgUUFn9hFF+QZRbSZtkQUOQJFRyaxRLFfxUcauXlFlvOyRnrJEEfX59xEAczdRdtl40XaM51FOduwRe+mT0f98iRFqa3lROSIyUSNoRxFdToSRram1EQMoZNFNRdDRZJ/w0XCY6hEM4LkRFYy8kRIpQ9GZD/6RLPyIkW2R1hFBlLQRBhnCEUS7rhEiHGRROaJqUS80CBFDyolReYfvUWQb/REVfa2RJ1Iu0TQsbJEuFM3RTZd8EQoQJ5FygIdRRXD2kRPfapEDugnRWl78kS6Mc5EHbTkRD66A0WTOQFF9PO7RADv+UQC+rRFdY7gRMi+oEVDnYRFvsDdRAcH0ET5LBxF7dnTROGgCkanQs1ElQ8PRSIeBUVk9w9FcUrbRJa570RGzapEYTnGRH2Ap0QEX8JETMk5RXjVHkbTlJNFbbQTRWdL9EWz311FTdhxRfZKwERhla1EsMW0RIZU4USPbSdFNES1RMyWjkUmgfJEzNXERE3bDkfPYQFF/JQQRgM930RXtb5EsaDORWYPuUR//CBFpa4KRoNRbkUwU5JFsv7rRJIe+ESBxptF42EpRvbdwUV5cLRGDGXRRLjvckV1135F5YPmRHjIFEWhMxpFc2iCRYuUbEXpCy9GNY9YRUEKNUWOLwxFDKotRbqJKkV+UrRGIsapRGNzBkWmtxxGvJsARUaWn0Wl6k1FGqUARSWdEUXKEcxEQXCWRHqDskUw5KdEhIC+RJ6TgkULLIJFE0tLRbKhU0U7kDtFR1OLRSIXm0YmKnVFS4GSRUZUmUXmIPREHXoFSBAflkY5thVFiyDFRHL35kbHAYlFJZI1RoTOUEW8n+VFZpsmReoeCEXmhHJF/OUgRSvioEQjTABF8mPRRGKGpEQL/jtFtZKhRD5BkkV29e9E5MmrRNt8tES5THdF+MAPRZNa5kWzWB5FdhE3RZcmVEZEWe5FENkBRRrzmkUkuTZFGNMXRfcrNEXw+rlEd0RcSa4rrkYxxBxFmMoyRiXGEEXuUk1FAaFhSEbckUVnV1VGXaaqRkHcXUUCSBhFKCppRST/w0SkJfxEAZL0ROIS9kT9wupE9qoxRXhdaEUYoa9FqynWRFC2p0ThjuVGqUGARtjei0YSLUpGKCKGRVWIrETJjupEV5nkRCQ6+UQz9plFwijWROAiWkW62QpFgRnMRG6kfUXjjOZEp7UuRcnSvETWbspFGOmpRMZHMEVaxJ5EuIcKRV42+UTQJK9FGBHQRxmaAkXqA7ZGCo8ORYTDqUVYeaZEn1aBRd1ytURVEuJGmi7DRVA66EarRDJGC8KJRd+cokSqjpdEwvS0ReTaKUV7EMREXwgORQoI+ESlZdtE+aZ0RQEAwUQ5T1ZGoZgbRQMDLkX8iUVFtdWVRNL5tURzYhFFWscORWEAKUVrL6pE1lLvRlmPj0XRbKFGzuE3RusNpkVUUctEUMONRZZxsEWsHbtEc2S2RklXPUY7cUhFcftSRSeVSUUsqSVFFWojR9Gi2Ec7s11FTu6BRUrttkSeo6RGQyR4RWvnAkZsTh1FKMGSRueDE0XxVWxFKk2GRVH8lEn6lItFEx0dSRLbRUUhL19FdZM5SP3B6UY8z9dE2BIgR1ktyEbzHr9FykhaRVcpO0WReNhEStzXRBM1z0TXWi9FaGOjRpkrokVp6PxEx+UcRQvX/kSMQshEDuaXRbUs30ReArNEUAsSRexZJkVdc8NEMQkFRbMqGEVYDAZFr9WfRX0NgUVHm1VGObDFRIUjnkWGidhESKCwREgUs0RgbQxFK4EBRdgqBkWAY6NEJ9jsREdbtkUJqP9Ecf6gRQ2pyESB+TNFabCXRIZq/UQbaK1EfPPiRho7SUZCjmVFgbZ4RaImMEYBitpEguWnRL98WUWdZatE1PmiReooP0VV99ZEYGH6RBT1DEVtWOVF37f1RNLy0UTfR+JF3bgHRcYfZEbiI1JFPIKGRftIcUWLu5FFCy4XRRwt/kTWsCFF1bZdRWqVuUSgBGBFfMiuRHfezUQhfyFH0wbXRouIg0ZaJapF5PU8RQqgK0UtJb5EvG28RKKyHEW5SwxGZxEpRdGVT0UKxKBFPM3hRP6AIUX0o6dEYsWOSIfy/kSbkk5F0eSeRH/T9UcYB7xEBCGaR/mB1kSCnT5GeDm8Rb9TCkW7kgdFWFocRZRZAUWnWptGapnrRPeDZUYXSZdEqsMBRg9DGEXaVoFGuAymRdJyxEWgoSNFFooGR8Cgv0TM6hBG3HirRMslaEW+YG9FpIJfRbuiHUarm4hFRUiZRfBccUUEiTNFqjWrRGWjuETKBgBGA279RMPhIkXFakBFiG9ZRvpbjET6JS1F6QFFRgdk1kTRNSZF4BLXRJuq0EQ0IbJErF43Rmyw0UXwOEJGgw6MRfh4f0WTiP9ETOgYRW7Tv0REoqNEVj9QRcLJxERwXchESCivRAjA9ERyLdtEr2BQRv4+XEW7GJtFZ/YERTMKO0WL8xZF4+rDRHJ6B0WrOpZETE3tRItvV0VOB5dE1JQTRZBkDEV19qBEGF6YRKShykQnWw5F+rebRDyNKEXB07xHk3gWR6RBrkZg8JlEWdjQRbUms0ULbfFEBdvFRBfvCEWLZNdEPF/aRFIgxkRgNIVG5Cd0RT+JBkXrs9BF0cxzRXx05kc7S3BHe9cmRVrB7kYSvRxGHbCpROWfUEWZ/dJEwHoYRVTEZEUKfLREoE7jRGaTokS/vbRESFDlRjeg9kSDLOZFDMv9RMWK60RvcB9Fs/DwRIcRQkYl3BpFkuDoRF/g1UWD0KBEi0DfRFWBvkR495ZFulNXRcx/IkX/2q9EzpIDRwsRg0Z4GzdGTwy0RRcZbUUz3tJEB37PRFRJ0UQSWP5ERMAUR4jrgUWfHiFFLiEJReDwjUVpJ2xGxI0IRqSb5EQJz6NFrtquRDCFvkS3XzRFgUzVRNAg2kSpAX9IVKnGRBWOl0cwCadEvKt3RtLLKkXYSZFFLoNQRU3QCUXI2whFIYbkRI1i6UTinQ9GKO+pRcbm60VT5mlFgDZWRU320EQCRiRF6r0wRgqcx0V3ERBFuSTtRJMs0UWCNw1FkUTbRU3Am0XJx7NEJd2GRUYG6UQkvZRFABbBRdC0jUWbYXZFf/C1RLX4lkQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 3o6SYXjAckAKvP7YbsFyQPzrDT1RwnJAY5hkIuPCckBjI34lO8NyQC63u3oP0nJAtrT/6ELSckDyJUJSo9JyQBBffkR603JAiu46ac7fckDEIC4UJOByQCo0thS54HJA97S9VU/ickAPgw3kjuJyQMC0PXjJ8XJA9gSeDrfzckBrmRDkBPtyQBrQ3MrB/3JAFhs8g/kAc0CIKTvIJgFzQJbBN2GNAXNAQrIvuzgCc0AzY5EE0AJzQA4R5lT6A3NAHjbRlhcRc0CoQ4WvCBJzQNlgyde8EnNAGiKGyvgTc0CDXpwmTBRzQM45Qth6H3NAVvOmrKEgc0BuYdE+OCFzQGaay6jIInNApr7zqhAjc0Am/zSaziRzQBfUx+tHMXNANu1wOlsxc0D7bxWJzjJzQPAbl4+4P3NA6uZ66uFAc0BWuncCekFzQIZR2PB5RHNAZMr2kJtRc0CSfRv1PlNzQOxfCNyjU3NAlhHwkB1ic0D0RMMkOWNzQC4/urDecXNAIDRYcrV0c0BIQ28VS3VzQL5jt7l4gHNAdgVkpqGAc0BPJO1AXoJzQLxFWHk5g3NAXpVvBYeQc0COpWYYTZJzQPigV4jQknNA0CajNPeUc0CgfYP/t6BzQAI/6NfkoHNA7JuYyXOhc0CCUH1pWaJzQKOeEcAEpXNA/oKKLMewc0DGphGIWbJzQMZiB562s3NAELyUqQ20c0DDcCsT9cBzQGRLupY6wnNAUMK1aM/Cc0ABCHxnKMNzQP7OUQXY0XNAUmZCPPnRc0AsYUWPvNJzQGhDYHXa0nNAHu7Nl+LUc0Bu1B8fEeBzQFj12s2i4HNAn+RoWdDgc0BEWxx+OOFzQNZs5cZk4XNAtOhnIHvic0AM8wGzEONzQLEYV6jD8HNAjJud9lfxc0Czi/1MNvRzQA4TubNRAHRAhkIMVpkAdED+hr3q4QB0QH6M/m54AXRAXhXwKr0CdECMoLZTlxF0QHwSgADMEXRANrhPOVETdEDmOoP8Vxt0QDBoWAZKIHRATJ9TBLghdEBOQQI8siJ0QOjcmlEOMnRAILI5C8lBdEAEny1sO0N0QCD1KTN6Q3RALqoeKR1LdEDK9aYm/FB0QJFwA4SMVXRAarTH5SBddEC0LQRVt2B0QBp5JZUIYnRAd48Lh3pidEBwiJvwTmR0QPdFlzW1ZnRAiAHfGcVndEDGwmu81Gd0QLn6odUfbXRADGW7LyJwdED423C9QHF0QJq+DckUcnRAg1UNGHtydEB8YIDKOHN0QFBYDCahdHRA6kaorDZ1dECi6TCy+IB0QC5iCZJNgXRAMDezkUeCdECUxGTkFZB0QIjzjdzjkHRAyGEzWBGRdEDYf8NH7p90QFVoMDPOoHRARP8jggShdEAM0hpUH6F0QJi7/AM4oXRAPivDM7uidECrKqu1DqN0QJe2MxnDsHRAXEsmYySxdEDqi6NucbJ0QAwhjAz7snRAxBV5+k7AdEDVhpIC48B0QCbtvqB4xHRA+uEaebnEdED23Pimyc10QJC9X+pe0XRA+4Kw66PSdEDSzwacI9N0QHZoyFZP03RA+9nupMzUdEAtJJWNuOB0QFxt0Igj4XRASMdVNFDhdED2xSL9tuF0QEQN/q9d43RAgjk8Z4/jdEDFItKXofF0QFCxJm+M83RAu9eJlGQBdUAR8coTXgJ1QAWYMZamAnVA2JVWTzoDdUCediCkIRR1QMyunRedInVAjF9Q5qkydUBeLDxSzDV1QBEKZRxIQnVARX3dPNxCdUAmPP2i6091QK4/SBAYUHVAyebLZX9QdUD14uQXTFR1QKjzEwB2VXVADumpOjhhdUACJGeE+mN1QGWPRdZ2cnVAeLwgAY10dUA0zRvxi4B1QORs//XjgHVArOMGjHmBdUCSVEwfrYF1QALjgSWlg3VAKh47mxGEdUABD7I+moR1QK6W35TLkHVAtqh4FDuTdUDyJUMekaB1QA3n9963oXVAajD9FSOydUCkem6BzcB1QOj9akNjwXVAxb+fsfjBdUDWLoxz+dJ1QH7+5Xu41HVAu6fU+A7hdUCY8MTSOeF1QBT6XYIH43VA+lBWpdDydUDb9dqlTgF2QB7sxkJIAnZAiHvPn5ACdkD2hyxL0AN2QEeZg7GlHHZAbrRmtocidkB+wdLHjyR2QMcY5AhMK3ZASq88hB8xdkBQXptcTjN2QAbv4FycNHZAGwyswUw+dkDG+WuoHEF2QDX/xJrIQnZAFvOzOadDdkA8Tc0SeUR2QMAJ32QTUXZAGEhuO81UdkDHqcnFI2F2QOApov7ZZHZAiifMnjmAdkAq3ve794F2QNPZ+AIkgnZAvPkIoFeQdkD0ZGHFF5J2QCGUVIrrnXZABEct9qGhdkCysth2RaN2QKQ+xX2Lp3ZAkkGp85yodkBWTLfMjqt2QAu0IGS/snZAQ54RAAy0dkDQHf0GTsF2QFCfW4+RwnZApGG+Q8/OdkAPYXCsNuF2QHODogll4XZAQFXcCljxdkD0e5FUkPN2QMsMPqvD+XZAOC8CZDQCd0B+BAQVARJ3QEqjnQgNIndAQnFRunsyd0DQ2Du5rTJ3QDijL9MMNXdAauSDdZxBd0BQHl5Vr0F3QKeontj3QXdAsB62YiNCd0BOFPIsGkV3QCQH4upJUXdAaCMcRZFRd0AY+uW0GFJ3QFh3tstMUndAmPCOyUlhd0CIj/DVjmF3QNCwKnicYXdAQO/mATpld0Cz9gwyJ293QK2tetl5cXdALoQU949xd0C6KIQCi3l3QJZMvtcIkndAmp6IrKWjd0DhyJknmrR3QFxzcrCkwHdADrJ7F73od0Ac5bcg9/J3QD44touHIHhAiLhoYtIheEBqUbYybSJ4QIRbTZ2LI3hAzCj5CtAjeEDAhylsxDF4QMZlxW4fMnhAlHpc1w5CeEA3TjAtLUJ4QOEfAyURRHhArvNHAXpFeEAoO/xm10h4QK4wAeYvTnhA7OvA9cpReEDk8PHfi1N4QNbpukaGVXhAhPqhQYhbeEBo5Imi+GB4QOrEfUa2YXhAtrRhrSJieEASCfPCw3F4QL5ekdVbdHhAmjMsbYt0eEB6h/vxrXR4QGkRiILGeHhAgYcrffl7eEAcvF8SIH54QMuqMjuigXhAfCGb2XeDeEC0T+ss/YN4QLUR4HuZhHhAuHpWeZaReEAO2lKUZZJ4QNCekZOnlHhAsq3+q+SgeECKqAOVeKJ4QAw2daD/o3hAtGGlZ7akeEDHO5t/Bax4QKDTuP7LwHhAHJBXtrjUeEBQt1GbouF4QMycxyOk4nhAyuKwMuTzeEDo22ebAvR4QCyFnAuM9XhA/I0oqJ4BeUCmkqzdmAV5QGfPpfuNIXlAvqQ+nrkheUBwOq29sih5QAYXHzeuMXlAmYHbibUzeUAj1dhfvTt5QKjkEGG7QXlAPEiSj8JDeUCqy2LZ+UN5QAX0UZCuUXlAtK0+UMxUeUC6popy2WR5QDiC38sBaXlAouQEqg5reUB+oQKGD295QFy+WxsUc3lAgQ+K20RzeUAZ/RqPG6F5QGRr80OZoXlAiiAf8L+yeUASQCuigdJ5QB20c37a0nlA6hCB9ajTeUC8S/6mQdR5QAKy+27N1XlAOoEb0E/keUCiRvRs+wN6QFSQgJSRBHpACBVaMvkFekB/ujvsKDN6QNTEQEcMNXpACe365S03ekCp5L0VGkV6QHSYBNcmVXpAaM+gMx9cekASUzRR/mp6QBxXnjHMg3pAd0SRWh6jekDIB2XhDrN6QD7PwvEMtnpAb0/guRC3ekBOg7E0FLt6QEBxpGQXv3pAJJI4KRzGekA6BD/0T9R6QN6/mW+n43pA3lu4pV3kekB943huNu56QFnTXaEY8XpAGEeoIcL4ekD9zF+rdgN7QAgGV3t6BHtAo+YzOEwVe0DNofT9jiJ7QFDZBPdXJXtAwhqV/Cgpe0DifKX4yG97QJTuBSgilXtA7JRFh/+me0CuRSMmBat7QKC5tjNSwHtAAHJf8XjGe0C90V/uEtB7QE8SAXO85HtACsAdE8n0e0CggbfPjPV7QOtDLCLM+3tA/lvvu9gBfEA2xbvauAJ8QPg5a+SYBXxATGDRLs8RfEBCeJs1zkF8QN/VilDpU3xAMCwFqT2DfECJBSn3w418QCLVoy4ik3xATYrZBCyXfECKT+iXaph8QIzIn18sm3xAKD1lAc+dfEAFFgFYJKx8QBINdHwPwHxAArP27sHWfEDuTwg2geB8QN4B84JY4nxACmyuUWDkfEAGqxMMj/B8QMpIkGYU8nxASv7y8FTyfECgtlQ0cvJ8QIoPVMHg+3xAveqO0nAAfUAOn5+FBgJ9QMpT0khNAn1A1HwxeQAEfUBc9sJ6MQR9QF6oWbBIBH1AzrxKGwYMfUDa4uvJNAx9QIEbvEBDEn1A+NUDWo4TfUBSX1ReCxR9QBwPvlOXG31AKuC+nRMcfUB8dd7sFCR9QAgmxq6ZM31Apv6q4Uc4fUCXtWV9oD19QBRdy1boQn1AKMFW50NIfUDYV4l4rXB9QIgT8A4af31AYWfbZRyDfUC+4HkxAqR9QNn/OzAJrH1AxEjc9ayzfUCctYPxD7R9QJCe8RNVtH1AEjUgq+TEfUCvZ2Z1Xsh9QM08fbk74H1A1KLlx6LrfUAmJHG4jvV9QEF9Cus/L35A+4HxWYp9fkCeVYdH54J+QFjj9UOfg35A4MnFqnGEfkDHWsB+5oR+QOgOJdYRhn5AFB3Q1T+IfkDmgXMlpYt+QAxQ5MqYlH5AeGFNsAuafkCjZxx3jqR+QBBN/K5hrH5A4Ahp7Te0fkAaeEYbkLl+QNnVghbSxH5ApmqYm/7efkCnigbSWuR+QL3u8u8E6H5AIgr3T7PpfkAmVkWigPN+QJCbcPcO+n5AQCwFZyECf0Belekt5QN/QDv3AVO4XH9AqLot+L5kf0AypEY2xmx/QJvN+VC2cX9AjHctZOZ0f0DS27W8o4N/QN4FGy1ikX9A//s4kFyhf0AWnrnGVrF/QBIBfqJpuH9AjqRRDMS9f0AmiEiSttN/QNKuB1Dx6H9AiuhSWUoGgECNKGuNewaAQLQKxlbjHYBAb6QUOe4pgEBWvZ0sqUKAQFz5wqrwSIBAaFsk/65KgEDiQB4TqE2AQFM7ktTnUIBAvKQDPhNRgEDdj0qjBFSAQBfclutoVoBACrnE9CVYgEAQM6TzDlmAQCi5wQuvW4BA34P3HpJlgECcLNfpi22AQAoiq2Inb4BAUqxR+CV/gEANtMnNCoqAQPAteMlejIBAqSEFTMmMgECO1hIADI+AQBuYAf23kYBAlnS55mSUgEC8WIxXHZeAQAJ+akGxl4BAGkIZk+SZgEBMJDGKfaWAQItVFQz0poBADFB3/IipgEAKoxtwE6+AQH72T0isr4BArmiQT2+wgEBiYpN4f7KAQO7b7nqRsoBAzGYvUQW8gEDnwdP5wryAQA9AXDGIvYBAirAbXFLBgEBmD8q1qMeAQKYs0ipeyIBAuIkALFPJgEC2lCS1S8uAQAYE5bkIz4BA6rQ6+SvRgECwPm43TNGAQMKWS/tg0YBAmhe7L2vUgECmIJfNFdeAQGvkKkJK2YBAbjy09EThgECFn6ALSe+AQDgQH79n8oBAsALgcjzzgEDGIkgPoPSAQEzUGtlM94BAyFfQgfj5gEBwidFSP/+AQA5Pvvs+B4FA0YUc2D0PgUAGfvvvqBqBQOx2tpY0H4FAMJIYNlMigUCQnkYoNSeBQCYXZ70AL4FAkhENH60xgUCtqJKJXDSBQH6u7S5cOoFAqiuRySg/gUC0o7yseEKBQKxNxGCyZoFAFSui6aJqgUDKIJe+pW6BQOARt6qocoFABOFuusF0gUDyKDUSFnqBQPo50EGbgoFAo3TgscWJgUDI99bPVI+BQJCKzNhVl4FA5l90GlefgUBO/9705qGBQCgJuNTeooFAFgRLXW6ogUB6vDyh5aqBQGA7vdlJr4FAi1Twn0q3gUDmzP9jBMqBQM6A9ctuzIFAAsjshrHMgUBY8L6HG8+BQI8rSARgz4FAVh+b98jRgUBAcpulCdKBQAf3Iwl804FA5r40f6nagUBcpU5WseKBQAaO+b+M9oFAwvjDM4IBgkDBxrNXkgGCQI/iwhjYGIJAkI04mtYggkABw/CZ+SGCQDzjXE/VIoJAAi5dfP4lgkBIU9660CiCQHYp3StYKoJAVumq3cEtgkCLr0yYMjOCQF+9AdbjQoJADMnb/MtKgkAOSfNijVaCQNUDf7afWoJAPXMJQtdagkCkYC+pn1uCQISUD7xvXIJAGx3jartfgkBS21A09mGCQMLKFIHQZoJAsDAW1TZpgkDbPtcO52qCQPw7jvKnbIJA1Ggm1BZugkBM+VTdUm+CQJjZ4Sx4cIJAev7JjRlygkB3wjGOqXOCQBha6pgCdoJAaE35ReF2gkCi1fUKwYWCQFBSlilDiYJA2u7yIx2NgkC/GKy1QpGCQObKybs7mYJAdmupV1SZgkAAO7zeDaGCQBZcRkQ6oYJA3lrznfOhgkApdtfbDamCQHTcQqw0qYJA9mBkAjO5gkCSj0Ja7cWCQMTlFIV72oJA3F/kLtXigkAAdcrH2+qCQCxLcs708oJAkq2Nmq75gkAdCy/QFgODQEFVw5m5CoNALyrA/L0Og0Bo/6lXeRGDQKy4PWJ5GYNA6hIxtmMgg0AeahKJciGDQM57XWjGJYNAkvs5tHApg0BYUuyqWzCDQJQY+cZoMYNAdbXQPE5Qg0CrGq0HS1KDQDyX+kfzaoNAPn2Dg4Vvg0B8iaWtCoODQGox26xKg4NA6r3IshGLg0Cgr9WOFpODQD9UiQYknYNAfKpxQyvzg0CewCYBMfuDQEW/EuMKQ4RA8F87rKZHhED3uzkHxVqEQFxKaPT/aIRAmPGBheZqhEBX+AVs/HCEQLK2lSTId4RAIA5u+fd4hEBw/hQqd3qEQOPlukAnfYRAB8HuJMm1hEAZSp0JatmEQMbqR0xq4YRAEGBGQGLphEAIPUyvNfGEQPw63xNk8YRAoxY4xDT5hEBSyI61dv+EQOnM3X8TAYVAjnpbsokqhUBQQA1uqzuFQOjvk2OgYYVAskNyi7VihUCLgtH7NmOFQAKkh6dNZoVAzPr9HbxmhUC4bcuOn2mFQADNBzxPaoVAlTKF9b1qhUBCOSDAmXGFQDCHjPSzc4VAcFxFVJd5hUDglVWjQ66FQFiok0HBvoVAxl8RdCDChUCsTQ0OKMqFQHhiTdzSyoVA1q6L8BbShUDK5vz0LtKFQOQB4EEv5oVABu8WoDHqhUCqow4szfKFQFSUj8J/9YVAQDDufiv4hUDu2MoAD2KGQKv4cMXMpoZAimKfSCa5hkAkwKxdCdqGQOyIdjsf2oZAv7Wv5Q7bhkDaQunZjPiGQNcRQ1GRKYdADIvNB5Exh0CAXkddgTeHQEZdlCyJOYdA8nZFAYQ7h0DoDLzbij+HQNZqIrCJQYdAUI0hj8exh0BkN56Ix7mHQFEOkOXAwYdAosRO4sLJh0DG6Mbr6OqHQHakwdnw8odARfjeBIQqiECMLFfMe3KIQHDcOQF+dohAwEAIjnl6iECQY/UaWpOIQNCJrFZgm4hA3hLPXIjOiEBT2RJk39GIQDZdMeOL0ohAmZvqBOLViEDClts2kdaIQCzPB0Pl2YhAOC74Y4zaiEA= + NrgMGZxjYkA/KJil8iNpQKPid1q/wnFAQh3Og3wCckDBMzRFF1N1QJhx0ogUc3ZAtsKOc2wDekCIjsh+L4R+QFuQtWNiioBAiApdZpCKg0Bbv6ONDhOEQIg5S5A8E4dAJcdsQJAriUBSQRRDviuMQCX2Wmo8tIxAUnACbWq0j0C03KmIWn6QQKlPeEuLnpFA8GMnRqGCkkBm8w6XoMqSQAV5aEfHnpNArQe+kbauk0BO+6gT6PqUQE9pOuXy0pVAl33p3whXlkA= - + - 18LYRFucH0b7BLtEiHMcRY7KOUV/fkBFVngBRy1N1kRXgd1EUIn4RN6NlkS/VOhFHSWHRfYMrUXA30ZF5PLTRFPPpEWaIMhEs/brROFTmkQEFLtExaqnRF9OcEXZFxRH5IvhREvEzkSPvnxGVOWURS149kRt1w9FNUbjRBUwiUbUiKNELGoERcgcuUXV5pVEM2bHROSvqUQ6yxdFhk6pRP59MkWoEvhF+jfCRE2KjERA4pZFcG2tRCf+W0WNMuxEuyWyRM33EEV8+bVG66nlRB3O4kVkFKREWIMDRVE0S0dVuK9EJ9QyRo1sv0WnOplEQSTZRPvQvUU97hFFXWzeRIkL50RBmrVEK9Q5RVj2g0TiTdVEYLccRrcz5US7CIFFROnaRfkpwkR6vKREeq2fRT24/UQQqCdF6esMRcXxpkWO18ZEYugWRVgFzkTUtQ1Fv2mtRGMZMkXqOJNEQZyJRJcR0ERtIDlGbk0PRUqFmUTiVwxFwom6RcHqwkTT3bNEN/LSRPJQ20QO5dJEY8+URLuzmESpqrNER1UARSRyukSAZ+hEWbmzRz1JLkWej3lG1/3nRjJGoUSQoBRFg/UnRndcrUX3Qh5Fl4CORfUHOEfQZd1EOSS3RBz9DUUbQaZE1aOwRIw3G0VuPtFFFiW/RH5/yUXMQrZFpyDfRe7IMEUsfOtE9knSRSqekURQasBEdECZRP9jEkUCTNZETMCWRBEwQ0UxpRNFUUGfRVxrFUX206xEO4orRYe9mEXlGo1FO5CuRLv/EkVtvxpFMuzXRD2Zo0TQmDNFnZPHRM9dB0XsmwBFyreRRJ5O9ES5m71FQ2CqRKmkMEX7KEFFFATDRLZ730TGTyFGzBahRBEn9ESFpeNEFxriRK5tzkTVUpBEIbOqRCyU3kQgLNZE5G3aRL+7w0QQhPhEaH2dRkLHk0TGE9JFy4PtRJOY1EVWiWdFp0UJRaviYEXNzctEk67aRBKouUQrYdBEm6zIRF80TUVcm7hETdO5RJqk8kbcHKlEQgkpRjuw+UT3eX1FVCTfROlG0EXKTXFFNa5dRQU/mkSU5MlEtHNmRX6CAkbAkmhF/ei4RqfKmES68v9ERUYzRXo8g0WslRhFdP4FRXDdTkXUJOREnyvVRhNIl0T0z4pFSvhBRXYB+kSm/NpEWivfRPIQtkTPlbxGRscJRfHGgEZE06tEW8paRY7URkU8uQ1FYO6FRcGdmkRNt/VEGepGRRDDMEWrOQhFXDQhReMiCEW0kqdEAaekRF9ca0bjT2BFTAtlRbTCb0WIWvZHDG2CRrMwkUXnDTNFn+0eRd1qw0YwPpBFgAQnRpOxNUV5S7pFPoqzREfFvERZX6BEFZ2hROfeHUVoaShFlRsoRbGgzkRpKcVEZouORB4zm0Rcpd1EpjR5RKzVKUVwmP9E1M+jRJoWjUXduqFECL/1RBX6oUStordFfY7SRPoUCkVR8j5FyDFZRowo1UXo0ytF7UCdRRTUq0SP9iNFcFfGRAWBJEUILThF1dudRLx+m0R0kqRFCy9ISWXmnEVyy4NGoDIwRR+FREah1udED9KTReZby0R6kE9IKsJ9RcK7NEaEnqBG44VARWuFskR9Ei5FNIvSRHD3rkR5icdEYTM9RcYotUThq71EdR6lRDhWWUWxZtpFCImlRNYSKEXNwLlGDSdmRjb0GUUiQIRGtUNgRv9RRUV840JFIvimREI87ESWpQRFzsyBRZHAoUQf+5REPNlfRXb/DkVTiJ1EnCHfRL3Wt0TnWLJEDq9lRQDODEXhV7BEa0jIRDv8y0UbKAhF4vYKRaTz80TlYJ5EgRajRAmP80TI2c1HFRtbRbmiz0b+3hdFL1lLRdvTzkQ+f41FpyQLRUggEUdB5LtFzaEDR1+Lc0a0XUxF3nT8RC/m6EV07ZBE6xXoRHAMnUTfSM5Ekb87RbDiuUSIYmtFGZoHRmA1F0VE4/JENlGtRHQYcUVIhgRFBiqwRDuzIUUjY9FEAVj3RCgU5USxoyZH3RDIRapvmkbcxKtEGREQRoCdo0Tq+MRFhec8RWJSg0XJsaFEefSRRBPThkZkOx5GAlynRQs2dEVJiCNF4oidRHuClkTHj+BEFFShRItbE0fZpbZHDDKxRPPQn0U1wcxEEimXRlbTP0UgoO9EDfwARldxAEVIZmxG94eKSZ7r6UWwuXBFXhYNSeAaXkUViDBFgs8KRTvDLEhf5MBE5hTNRk3eXEUAprhEzTU5R9rX1Ua73eJFHFJ9RX3fTUVNScpEs6AgRbz9gka/DtxFVzMMRTBoE0Wv2KRE4u5uRbbK5kSWqOZEk+05RRPZ7UTYGNJEahP3RZt/UUX4CVhGVpPPRGBNtEQudRdFVuTVRK+ArkW06RJFmx69RMqm/ES3frhEX4m9RMmiA0Uy18xE09BGRT54bkWd3QhFrQQBRZajvETr87hEwbfGRLc+kkQYoo5HWWr+Rs7Q5EWIvX9FgBAYRSW310TFeR1G/J8CRbJhEkVV42RF9CTuRADKr0Sf5pNE2BGnRPipskSwR8REqgmzRDvpA0ZTcOhEPAu+RMIr4UXHWllFTeI6Rl/zwUQownlFWUVpRZ83i0WNy9tEYAtLRSXekERDxT1F5eHRRJWq3ESmoy5HI/ekRG4dA0f7I1RGmi5BRbpyUEVd/LZEoqClRGEeFkVOkdhEuukNRaEQAka6s/ZEJZr+RDcsVUV2kRtFX5L1RMRSwkTz2d9E425+SP8JuUS1rPlEbBXRR/zB0kTPzbVE6eDQROqta0cS63NFAlv4ROE6qUTD62NGTwudRVi/EkXSKDVFofqnRKp6WEZgaTpGFEWiRXJSdkbHeYVF1MDXRYXYh0VY3w9HgR27RINvAUborJ9F63hqRbUTskTJxQtF7SQARr9LukRvTXFF8lECRgwsdEVYKPhE2vLfREFIpERo+KlEpJjKRC6NAkYz5AZF2Yy0RPgeXEU0BUFGw1b1RIYVFkUB9DBGninJRM7PNUYyiLZFlwFXRrZkoEWmICNFdc0xRYvkBUWj2sBEduSsRXTVsEQ07O5EFE+1RDICxkSr0BxGvoyORe9z40WmBFlFviFCRRnbYkViLelEXsamRPgE5ER3Gd5EPw6DRPOAi0UgJyRFHx/qRBOl/UTvvNlEkOMGRRn2nETyx8NE5/LcRI4HhkRXLLFEiblrRXKi0UTpuq5E7MA5Rc2e70SWKaJESqmtRP3ItkSd38JHhxipRP/yFUfMErlGbwQjRZjmxEWnnNdF+2OkRALsC0UZkwVFkTmTRM0k0URlHq5EGFWbRp8YoEWG1slEtnqRRMGd/0SaHMRFpuMORV9x5Edv/1BHrS9DRYP46UZFUpREFZDYReuw2USzHyNFrTcyRUUlaEV7c89EQHuzRJPFKEco8+REOuotRmbsCUWa5fFEu4wYRnD8/ERxCgdF9oyqRCnJxEQbEqRFxAHGRHSnAkWPsFJFa5H9RBKtm0V4xhhFezuKRAhRDEcXl3ZGS4MARtClfUUEU35FaUfVRP6h+URaXsdEJILWRNpik0TEFgFH2tAkRZXqTUX4Y+BELc08RS7BbUbkVvNERh3dRLNoDkZcrBxFOarxRMzYKUUeyt1Eu7l8SDgIl0cDHJlEiYfsRdlLK0Y6jYVF/7wnRQOUoETj9ghFOWAnRW70wUTjE5hE8WnfRMu1lUQjDaFEqjXIRK3UsUT1QSJG71q5RUh1mEVCnyhFzYMpRduos0QIhe1EKf8LRjhHj0Utm11FMDjNRHTq7EWy3OZEthmhRDh0i0Uu+LFFdOvCRCe7okWyRMZEhrpjRa3suEUlxA9FXqWGRQUa60Sq+bZEv97ARA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 6NSly27BckAMhOulUMJyQOz5GiHnwnJAfXxO5TnDckDAUHPbW8VyQNhVeGEO0nJAfqdfKEPSckD4WxZeo9JyQB0+RfV003JAnA0G+M7fckDhiC2LueByQE78qCRP4nJAJ682g5DickB8ZgtFJuNyQCZb0HzI8XJAhNCyCRLzckCCiOtWovRyQI/SISYG+3JAxmj7WML/ckCICCYrZABzQEhGLFv3AHNA+KRnnDsCc0DWGIGG0AJzQIS/9LL6A3NAImN5xScSc0DipbXAvBJzQBojd4X7E3NAEls8aEwUc0AZrDRjeR9zQMzj9tegIHNAuEI3BDkhc0Cs2emcySJzQHzXdIoPI3NAkXVjcs4kc0D+fQLKRjFzQEjjxmlYMXNAIOqepiEyc0AS+Dk+DTNzQLKdEGiiM3NATiu0VLk/c0C7YzODeEFzQL7l2D16RHNAttCvqpxRc0B1usc8EVJzQB4Tg0BCU3NATMQJTaNTc0BEl/8meVRzQN/XFs+FVHNApoG6mflfc0DFCPxajGBzQHJjpgqIYXNAOEETzThjc0CET2rC0GNzQPzbOC+8cXNAZpXm5dtxc0BQXFp8T3JzQCAt5Y1kcnNA6GODyUt1c0A9zra3d4BzQJufqkikgHNAHDnI7AyBc0DZ54FiXYJzQLIPilqGkHNADyIf2UySc0CKiSefz5JzQARFX4HPk3NA0IYX82CUc0BQD/689pRzQBb3grC4oHNAQ3+oKnWhc0AxeAgTWqJzQEJgjj0FpXNAl6jbjzexc0BWn57BE7NzQH1JZvm1s3NAOFxleg20c0BW0mmv98BzQO88c7HPwnNAQBHjbifDc0BCcEC5+sNzQETYiJHY0XNArIobd/nRc0D+dJcO3dJzQJTmHRz103NAKeMBCeLUc0BA0WrbD+BzQLWXWpih4HNAB1uJp8/gc0DMuLSROOFzQMLQeEYF4nNAd6tzRHnic0Dku14aEuNzQNh55A/t5HNADnHnUcTwc0BqQ+UIOPRzQFyzVUriAHRA/n+pAnkBdEBZ9HCspAF0QAh26kS6AnRArtvMGQ0FdEDkrzlvAhF0QNQE2YeKEXRAYyiea84RdEBAPAZDUBN0QCNdpAS4IXRAvG8UN7UidEBL8w0RHUt0QJw+F4r8UHRAN2b68Y5TdEAyRxDp91R0QOCRBZuLVXRAblHINiFddEBEWJDRuGB0QK7DrAvNYHRAZo1ZIAlidEA+gKWaemJ0QMCQ63NPZHRAO251yLZmdECeoLOuw2d0QEwDKjLVZ3RAw0R4Zh5tdEB+1f2oIXB0QKTePs5AcXRAbKH0/BhydECbPmHUeXJ0QMBZ96W+cnRAsF8asjhzdEA9a84ONnV0QEXTPcr3gHRAcGSlJ06BdEBohSeAFZB0QPDS4UDlkHRAFA83yRCRdECsA9Ua/JF0QFbU7AJSk3RA/4Ws3O2fdEAIaQGl0KB0QIC7NEsEoXRATjnurHmidEABX787uaJ0QBvoSm0Oo3RAjB+D2giwdEBKxfB8w7B0QPJEDnsgsXRA+ov6+G2ydEAfWd29krJ0QOBYWAH9snRAEdz8fsq3dEB6kpmpTcB0QLciXgflwHRA9jHxfgfBdED4jFZcu8J0QBzffHYixHRAkqwiO7jEdECN6A/TyM10QHb1uvH8znRAUIBClWDRdED8oSsgT9N0QDVYmuvN1HRAPI8RXNjedEAtJuO8uOB0QMcX57Qi4XRA3NwzSE/hdECqrR3bj+N0QMMQzHRE8XRArTZN657xdEDqgjbYJPJ0QOwCpqGM83RAyQYX3KYAdUC/NPRWzQB1QBy5PhZcAnVA941B3KUCdUDejqaeOgN1QIMXmvaVEHVAUHgyuSMUdUABAhG54x91QPR9fD2dInVAKjJtOKoydUAyEyOazDV1QPoE4cxJQnVAoNJhjOtPdUAMTJkbhFB1QNZsGzRxUXVAsH9vK3dVdUCJeGz1D2B1QPpg+C03YXVAemzNWo10dUCEkLZuUIB1QFpIt1njgHVAEuB0ZXiBdUAgHehkrYF1QPguo0ekg3VAe1weDpuEdUBY+dF1i5B1QLVSTr+5kXVA3CetS5CgdUBMP5x8uqB1QKxaJL5Ho3VA3KUnRj64dUBKVYPQzsB1QC8EPCP6wHVAYmQFTmHBdUBNpa1P+cF1QEyI8Vv50nVAbEsthw7hdUAfTdWRBuJ1QPw7FRwI43VAUDLHkdHydUBUI6O6evN1QBU1uqhOAXZAbMtEbUgCdkDafaODkQJ2QBwR6zDPA3ZAUBn2yRsIdkAR0ds9CRF2QEIJydtLFHZApB5B/AoWdkCZuIxUbxl2QBoZp62HInZAj/qvQJAkdkAEhigpSit2QOZ7Qa0fMXZAG0cuvU0+dkAAor7LHEF2QCJtQvnIQnZALjeaqkxDdkA01n+6pkN2QMZbCiB5RHZAfJ9RGBJRdkC0qyIgh1J2QMMXTXzNVHZAdGS7XUxjdkCqMQTS2mR2QPQs+Zk6gHZAcJ9SqWWAdkDsfUuo94F2QO43Tp8mgnZAa/94oZCDdkDOyKeBV5B2QHik1YMbknZAqOe5r+uddkBsME9tpKF2QGTh9HRFo3ZAs5ZHSY6ndkBr9wzMn6h2QOz/pOGSq3ZAJEcVhZOvdkBY5ewYwLJ2QCbCE3UNtHZA2o26tU7BdkBSEgRhkMJ2QAzuaqnOznZABIxPiTjhdkBsdRX6ZOF2QJJlFMPw4XZAHO3a/FbxdkDmFWL/kPN2QE2L50/D+XZA9FwDOgESd0DKBJJsDiJ3QEaYWCx2IndANzDnDnoyd0Bemuw9rjJ3QOx1Y+ylM3dAqD5gEQ01d0A8Ei7MnEF3QHn/1U34QXdAhqsFHSJCd0AIeNChkkN3QOacQrsaRXdAtvGkaEtRd0BQI10sklF3QK7J0E0XUndAtgUEwktSd0CCevpxKFV3QIryNKeRYXdA0PBp8zhld0Bd0bLyJm93QLBY4Op5cXdADhOX6Bt7d0AvbjRfeIJ3QF5hrzoJkndAQGqihvqjd0D2gxtspMB3QFgeet6lw3dAWr9yGPjyd0DoHFuMeRN4QC2NG95uInhAvrd6ldEjeEAncJ3aHzJ4QLk+3JkqQnhAwTJcMBJEeEAGSeX6eUV4QHCGY5bWSHhAaDQY/DJOeEBZcEWtylF4QA0D9sIzUnhA4M8CS4dVeEDsPOze+mB4QNojk4S2YXhAKkZ7ZTB0eEA4XF9uR3R4QCAstXNcdHhAkgI7u4t0eECXMkg5sHR4QKCwCWnGdHhA9gIU0dp0eEAcqYB3xnh4QKClkzv2e3hAcI2sdCF+eEAYuQDqXX94QFU00VQ5gXhAH5Eb2aOBeEDEBk3+eoN4QLT+fDb/g3hAQaHvu5mEeEBbY+GQlpF4QIoHRZhlknhAeIgbqKeUeEBi5igi5aB4QBDjXA90onhAuBJ2gv6jeEDQLL7Ut6R4QCze8qcFrHhAUnAFz83AeED2EGMkt9R4QJLHs1Wh4XhAnr3pKKHieEAFKB3FAvR4QFgj1Z+M9XhA5ZFAl5oFeUCcqTcyjiF5QCxcRtq5IXlAFq4T17AoeUDUCXtArjF5QCeheS22M3lAnPhQzLw7eUDn3azlukF5QDCcBdOUUnlAEB7WzMxUeUAxyKj7pGJ5QEQdRN1Cc3lATVufWfuBeUAKEDxlv7J5QLq00VkrzXlAgoLDSX/SeUAOlIv1QdR5QDr0mprM1XlA2uTWd1HkeUCgFKYO/QN6QD69sLySBHpAI+xrOfkFekBeRXGbKjN6QOLZJVQMNXpAXB+Syy83ekD0MTnPMDt6QApwqQQaRXpA7hH3zidVekD+/ezEH1x6QM5hLeYJcXpATmSkVM2DekAiiJ04DrN6QLC7gosMtnpAcAAXXxG3ekBsUsoQFbt6QIrH9KIIv3pAahhGUBu/ekBCJF1n+8J6QGIRUvNO1HpAR2IfN2nhekCu6J3WNeR6QGHMWTRe5HpAViTJFXbkekBcfEMeN+56QJTO91Ub8XpAiAGu/7/4ekCu1/taGP56QCRi1/92A3tAxHGNQnsEe0AcdlPoKQ57QLhS4kxNFXtAmCZYcZEie0CtiEn8zCN7QELgtwVbJXtA0f1aM8gze0DLn6S4yG97QIQaa523j3tAjmR2cSSVe0BCSrvK/6Z7QMszO/YAq3tAe4KFJQave0DYoB6FvOR7QOARmfjJ9HtA4ob2C431e0BMOE1R2QF8QOwvNmr2AXxARrYhV2QEfEAv/Mc90wR8QDSPQzSaBXxAXzDHcNARfEBB/NOdzUF8QPBuP/UiU3xAufv1F+pTfEDKaTQjQll8QLkxZMnEjXxABPuBhx+TfECQJC3dWJR8QAKfjc4rl3xA/sSjWF+YfEDWkRVQe5h8QNh/FzAjrHxAdllwdBLAfEBU1eWbgOB8QIeKzvRY4nxAAEZipZHwfEAabzq8FfJ8QOfWV6NU8nxAUHE81HPyfECcWXbP3vt8QCe9nGpwAH1AuRBBngICfUDqr1g/TAJ9QLZi9FWIA31Ad2DgX6cDfUCtW6S5xAN9QKSww84ABH1AJgkcfjEEfUA/XBf5SgR9QLjpNSpoBH1AwjWoY5QLfUBjGB2iyQt9QEjAaiUGDH1AgTvUtEUSfUCQKtJojRN9QJpkEbcLFH1ASiPjLC8YfUDanFVfEhx9QPb69YUSJH1ABCgT15kxfUDgegziRzh9QC7H3EugPX1AIpx1OelCfUADC6WxRkh9QIKDfLGhTX1AJyHi2GJkfUDPoHWpsHB9QGPNe3kdc31AilsMsBl/fUBJ7zbcGoN9QA//oyodh31ARtK0PAKkfUDSKbC7C6x9QODWdsSts31AIIxMV1W0fUD00sclKsN9QHoiPRnmxH1A9vzmMrTNfUBaJe2QPOB9QG52qcOd631A9iiPpJH1fUCyZvftMgB+QLJbSCs3H35AR3p+UkMvfkAqKqoFdW9+QDaVEE6MfX5Api1EfeGCfkCg31Gun4N+QOqXAnx2hH5A6j/dPpqEfkB6TtkeQIh+QE8CiJ2mi35AWTfj85KTfkC2VQo9J6V+QNrk25O3sH5A8nl/4DC0fkCwpjESkLl+QAbG0f9Iy35Au7IgYJvMfkCJD8ZBAd9+QCKu5hlZ5H5AkukOvQnofkAaNvhYr+l+QE1lgUUg9n5A1IagvAn6fkBuIXT0u/x+QML0eMzmA39A8nCoILhcf0BPJ3/76mN/QC9mznS9ZH9ArDLrqcNsf0BeZGYsuHF/QNwPcOfKdH9Azp6CVM58f0AUHPeN0oR/QOJR24JikX9ALDY52pOTf0CAiYangJ9/QPWHMXNaoX9ARQVmtFKxf0Ap/Ap5a7h/QGZPPRbBvX9AZawSAk/Bf0DWucme7eR/QLLh9A737H9Ahj6yJvT0f0DneQgASgaAQCBXFkodCYBAGSr9dUsKgEC2m14BMg6AQBj/J8XjHYBAs4FPu+0pgEBUxN/6qEKAQInPfqAjRoBAGEMZqO9IgEDSjxQIsEqAQNT8GNmnTYBAQv6Q4OdQgEC+6fu/E1GAQBf4K32sUYBABSGMaGhWgEA/3CJ3JViAQNwzRrjlWIBAS17pCA5ZgECasEoxIVmAQF51unkSWoBAC1Ekb2lagEBy/GJCN16AQM7c7wAMYYBAyRneCwRrgECITb58KG+AQLIpFCIlf4BAxiMds/+BgEDYp+QQEoKAQNyKrn4EhoBA+kKfOQuKgEB2TnAMX4yAQGDr1P8Mj4BAqZf8xriRgEC6V6AIYpSAQGyJXTIdl4BAeP5aimCagEA1MImaupyAQBBXih8cn4BAnWyL+2qfgECxBVPywaSAQAzh4Jizp4BAW0RAdhupgECgEWRfhqmAQD7Y9cMTr4BAlqrspqevgECb12VOta+AQJXBgxxksIBA8BbzuBmxgEAKyk6x1rGAQKqtEsGAsoBAX7bOnhW0gEC+pHv3/buAQH5Kh0q7vIBAq7EikIa9gEA2RJIo776AQI1whUZSwYBAJfmnZ9fBgEBOpEgw/MaAQKcQRge0x4BA1M1pK1PJgEBN6f9HCs+AQNORczpM0YBAMI1kSmrUgEC/UJkCStmAQPKY+B1a24BAehOPpEThgEDMymZr9eiAQOf7zGNE6YBAOIw10kvvgEA2odtvaPKAQIiK7vif9IBAyECp7Gr2gEAEzU3WTPeAQO7/YZh2+IBAceXWMyD5gEBkmtZw+fmAQHpni7tr/oBAPKAzzD//gEA2yf90QAeBQIzLrC+FDoFAVy26tj0PgUBTLerqpxqBQD6G0ms0H4FAZ86TIDYngUAen/q3AC+BQDL+GMsvL4FA+5nnb64xgUCaVgk3WTSBQHUv9nNbOoFAXDsYyV8+gUAM02gDKT+BQODq652zZoFAP4g7yaFqgUBy+LdhnW2BQO4bW9SlboFAAqPH/qZygUAcB5FTbHeBQGYgWF7ngYFAKBH/ip6CgUDypgXAhYiBQFb8eQJWj4FAcocZdlaXgUCAE1nsVJ+BQIRvhhnnoYFArEJrvd6igUBoM7obbqiBQJBScM7lqoFAfmaTXUqvgUAwvhLwS7eBQHbcUs2UvoFABk/00wTKgUBanGrYcMyBQPgP9jyxzIFA0u6CdhzPgUB8lirmS8+BQLzgDX5fz4FA3EjzyMnRgUDSWaNgCNKBQKGClQ1+04FA2ppVe6jagUA6dcVdr+KBQM4sce6K9oFAi7YukY/6gUBdE+QQ2BiCQKct8SnWIIJAuQjyHvohgkAGZNhy1CKCQLYvCVn+JYJAIjrQ6NEogkDEAFPMWCqCQJkGp5MELYJADqA4y3MwgkAQJr1xpDCCQAQJl5DfPoJApNMGLjpNgkBKYIFBpE+CQGzmLmzUUoJAti9pS45WgkBsuVbbSlmCQGUwevugWoJAIayLBtVagkAEQUygaVyCQFxY8fMOXYJAotVKp0FdgkCqQG6eCV6CQJPPNbvUXoJAmF6k97tfgkB0WAWs0WaCQKTTxryfZ4JAGVtSFDppgkCOao3oB2qCQJdPxpEWboJAYEkpHFFvgkCIyQyEGnKCQM6bEYk3dYJAVEnziWx4gkBG/m8zQ4mCQCIuUhVDkYJAHD9ZvzuZgkAwuhgkDqGCQMSXSQE7oYJA3hJz+POhgkAXvbeYD6mCQBj3vEkzqYJAJN9Mn1KwgkCwuBXaDLmCQIelFpKd2oJAxgVaU6PigkBM6Nvy1OKCQAoxCSrc6oJAAKyOUvTygkBbdCoqFQODQFTVq8gUCoNApmgHKroKg0AL84dwwgyDQKd1U9m9DoNAVhrXiXkRg0AFmR8ivRKDQMqAeJt5GYNA5IFfAGQgg0DlaN5xciGDQD2rNBiKIYNAmG7hKnIpg0DImTyMWzCDQNU7KxZrMYNA2G3EXN0yg0CyxP43yjyDQM7utEFKToNAgH9vd0xQg0D64hjfJFKDQE7hI7lLUoNAMJkojpWAg0AiMMsS5oGDQJYmZbAKg4NArsFcckmDg0Ce2uvGEYuDQL6R4MEVk4NAmnfPwHiag0DBa54gI52DQGMaa45VqYNAI5xhb0ysg0AQKb9Xj8iDQIZ8n3gq84NA8I7fnTL7g0DX6KugIymEQCUcU0GCNoRAxTijCwtDhEDZD0aFEEuEQApOPcCRT4RAQNygEv9ohECeWnkPhnCEQCoRMS/+cIRAqmwPUcl3hECpvlxyeHqEQNLN6wpq2YRATpvywmnhhEAcf2GcYumEQHy9ak9v6oRAP/tZZxzthECLNOs+NfGEQBTuaaBh8YRAOQfUuzP5hEBeASY8WfmEQNzkYtRI/IRAJr1qnd39hECScURUdf+EQIwybygpAYVAvtcJgX0QhUCpcV4NmhqFQCeQ4J5AHoVAvu3D/EYihUBi/FqNiiqFQJ+cN104LYVATI45q5QyhUAm810toGGFQIq6vtq2YoVAJKA8sTZjhUAJbM6jSmaFQFg98wu6ZoVAR017dKBphUC2v/feT2qFQEFLzamWaoVAMtjb8phxhUDEVM6btHOFQIqnDzSZeYVAAkotC5CBhUB6IZ98Qa6FQJGaAthEsoVA7sHBxyDChUBr1EVrCsaFQHB3rRIoyoVAiu7nk9LKhUBeyP7TBc6FQC0VYeMX0oVAb0mqyy7ShUDjEhS4N9qFQFAvBbQw5oVAhBNXZDPqhUDgBHou1vKFQDz0g8Ms+IVAhIP1edr6hUAVUkccpl+GQMAYGGQto4ZAKsUjthHbhkD+zSd3HwOHQD/tp7yQKYdAokPfG5Axh0Dk5yqCgTeHQA6u+HKKOYdABKSKTIY7h0DqFq4PXEGHQKox23uHQYdALJTnQOlKh0B61Vnax7GHQM5OQ8HHuYdAbpQkdb/Bh0D+L8UB6OqHQPI2aX3v8odANwF63H8qiED0ZN9ggy6IQIvFEnl8cohANkGGwn92iEBsshIGgnqIQP0tFPxYk4hARAgZmGKbiEB2cQglic6IQCNRab/f0YhAakAjUI/SiEDBTQCd4tWIQD4/gvnb2YhA + NrgMGZxjYkD60UzrnGVsQAoahmk8YnBAU72qemajckCeKRjPP5N6QMdia2pWpHpAzkN6EUzSgEBj4CNf19qAQPtJH7et+oNAYw8SiYNjhECKcn2s2cKFQPI3cH6vK4ZA7p9HyWXbiEAfPhUkEVSJQLBClrxSDIxAUKMWs7jzjEDhp5dL+quPQKIRHfxUCpBAbMMLvRiikUDsAe+ZgA6SQLaz3VpEppNAaPEuMZzak0Cxc2/9vDaVQACkr/hvqpVASSbwxJAGl0Bi9VZy5kKXQGCpwpfBmphAFAy8gCzPmECnvXGS136ZQFsga3tCs5lAJ9Vopy1Dm0Byoz1Oc0ebQKfsX7yDB51A8ro0Y8kLnUAEFlC4vwefQNc+mTwKmJ9AjZXI3PIRoEApl+zpErKgQE0hROcd9KBA - + - XAkGRu32rET4y+pELJAPRbj4rETCdXBFcvgPRwFJAkXn+sdE87bPRKD4i0XaYJxF2/CBRTVx1UTlLWFF/kaSRIcjyETgibVF58y5RNOY4UReFwVFMcTZRPmmDkWk9BVHUVMlRfYRjkYprlRFJdmbRJGJNUUuwMtEcdyaRt9IKEVC2QlFG/nNRV0d60TgJJ5EHk20RN4eoUQ2fppEwaUcRYbmMEWHuCFGZZ9MRU25wUSdEgxF6AuwRQpCDUUU8QhFChYeRd4Km0S3XMBEy/kdRYTNjESd7bNEtdMhRY7gmkRvDsZEvkjXRKXPoEZ9LrFEl5XhRLl3B0YxTzlFtBdGR0d4rURojrZE3jbsRMjfa0bCNsJFCOYTRWPQ6kXXFFFFBgSzRBobs0SJ+ClFfMkuRek9GEVnogtG5nK7RPeDkUQfSl9FelUwRu+llkQah5tEwPCRRQJmD0Ux5hJFyu6yRBGXrUXfeLJECqS8ROfurkR3a5hEZ1ynRKp9CUX5YSVFQwWBRjw9AUXveQlFKnyeRH5JuEQc7qJE/T0mRTmHPUayYelE6pisRN1FIEXqO/JEduzgRBTW+0TRrAZF1E/RR4pxS0V+DINEJAmZRuUHMEd53K5EZDH/RHT9vkViablFIzaZRXsMt0XOSzNHnPapRBDEp0SNgqhEjqgkRWZ7tUT4StpE2EoCRmgxpkWZ/WlFluKMRerVgkQ/RJhEV4/0RCZQAkWCLc1F2qmTREg2xERPXC5FxdK3RJjuKUXnF5tEC/SCRTVf1ESSsCJFnk+oRJryn0W7bvhEDBWqRDhInES32bpEubDnRHxrQUUYPcNE5oRPRS2HqUSLqxZFtJPuRLBVu0QKSyJFBFzKROyi1kT8Ps5EKcoTRaYE6UQq/rZFeLzyRIOao0QgcIBFgnaHRZHDE0UhUZxEFH0BRWfE10SmXztGFcsERVLjBkWhxI1E3GQURV5djkSEyIhEGK4FRfRUn0ROaedE9u9bRqqRpEQs/4NFxLeVRMuG10UENYZFYd44RXK0mkSSu+1Elf+mRMPZvkS6rAVFGb1GRVOWakU8n7FEkKTCRBrYukSjs4ZGrCwWRlKr+UQ5sxBFwJf0RMfj3kQXntJFEkF0RbI+BUYODgpFJjQaRbPUrkTyKNxE9dWdRE4jzUSkYVVFx8ERRoNbjkXFnbNGJzkjRbz4oUWyITBFVxClREUdHUUjiJNFm5dXRfFnjES5C35G89J0RIaLLEVUMD5FRcHIRFDS4kSR2axEs88KRTKIwESios9EecfSRtDatkQvwA1GRFxvRWA0REVjGU9FCI7WRAcuEEUKTbtF8nC6RDsXEUXmOR1FAii0RAsRA0X2eLJEb5H9RNDvX0XCeudEepuiRkJ7fkVa75hE71ByRW9QtETnobpEg8P3R1VtmUajeBRFWxb4REg05kQ/xcJGUlKVRUQaGkYlJ/ZEfw6aRdzT+UTFNf1EhZeaRFNQMUUQXCBF5Oq3RC+730SzPbBEs/oCRc3XD0VdWpREczxgRZ/uukTFajFFuKPVRJbGeEX4qktG6DuCRSpARkY9zd5FFEtERXmVmEVMA9JEnGkZRcZ8BkWi4hdFHGsHRYZ+GkU6GJ9FX6lMSVEPwUVrJXpFuNA3RWQpzEa4jjFFvG51RuHGwkS2q6NEHpUERThkhEWENApFASFMSFiwnEW/dvRFCpuTRjw8KkUIZr9EQZdTRa2CvER/DfxEZHnfRD+qHkXizcJEdILjRDp+TUUvteZF9cS+RBSpXUZI8ydGu0IERXNAMEZC7YlGqmytRU5P4ESsSpVF8YFNRXeDz0Q0JQNFNXOXRBIyRUVOcJ1EZh3GRHbX60UHu+hEA5gCRXTZsUSklLFEqkvRRI50qkXyd7lHs/nPRNoxwURRIKNGOfEXRewkJEWmiJNE1aVeRV2YCUer4aBF6tjXRt0fV0axZgJFGzsDRSJ4q0Re7TtGfwQFRTZtuUT1BuhEItGkRFKPj0Qx66NEDckCRSMME0XULKxEdP6NRS8s1UQsjxtGwDelRJc3qkThktBE32HMRIP0vEUaCrtECnQYRSfIZ0XSG7dESEgIReGZZkeIhiZGnuxaRqpDHkYO7RdFv66bRJLrxkQkPL9FxXyJRYS8zkVnga1EXMGdRBJiqUTHaX5GA1RWRlL3wUSF6aFFyy72RLSvgkUs5DxFi2zWRPJi9kayirRHfa0xRa3fwETfLI1GKhI1RYVRe0XUgfRF8+oLRfobWUZbIBdF1P9/RSvNq0Wv/HhJNh0ARjorj0VYYC9Fun+uRBWWS0XsbQdJp3hURTYedkWPECVIl/SeRJqowkY6WRJFDBmYRIojTEfY0s1GTKTERbZHlEXd9vdEuxbFRDZ37kTEWzFFerPWRA6xu0SQ5sFEPmaPRg3NxEXqoAVFEBHaRNeIt0QqopBFDVesREo70kSTNsREagzxRDrgmkQPj5pERUbTRDI1m0S/wMFF3E4gRf9zfkZFkJpEz7+uRG3pqERz6uZFOkIURUTO0ETUixFFqXQRRedqJ0VwFKtEaie+RF8320V2QSVFv21LRQvzHUXSG6BEfDsMRemplET1QJ5EbwXOSF/JmUS/a2lIkwF+R4uKaEUFqiFGFhUsRady3kSebf5F06K8RMbqoEQknO9E8Gj7RJWefEUmow1FcvWxRP5QGEbJomRFr1OyRK0P2kX0zI9EFzYhRQ/ErkSxK69ErNGbRCwp8UWK0dxEauQDRe16tETLyoVFWHMuRWWYaUbuLD5FNsKaRUYEpkX/gc9E/Pl0RT0g0ES0BsdE4vATRdcT5ETwm7FEcu+sRNbdNEVP69dELYKiRd57CUUxQ4xFldtWRWt+CEemkMNGl/UERng5kEVALgRFuqaPRFZ40kToVBhFKl3yRC2QJkWWfetEMjaVRLKK/kShceJFd5oARV9vBUXaEAxFChniROZbQUWRaUxFuSSSRA/VmUTBrr1E7wnGRE5IVEVviYVI7ra6RA9UpkSbIG5FP/XsR0PbsEQ50IlHYHmrRAFuR0Zv78ZE4+2URUW6z0Q6V4lEtOAtRZDOL0WLzrtFe6QaRao4tkVWlbVE3WS1RNE9ZEVqA5tEhktkRnFuhEU1b6BEAqTBRVwBpEWbIg9HitH2RaJOe0XsbztF1v9lRblY/URIlBRFY0DRRGBQ+kVe8UhFtGMDRpxAlURkBoBF2tkJRRKQt0SUzhdFg3o7RUPNn0S0dQNGXyALRUqaC0XdfBRFtqKCRol/HUV07pRFJelLRhd9LUUJKfVEiFgqRrhE5UWldy5G3aGaRbILvkREpHtFSbn0RMifL0Ud98xEQ2YZRrtqAUW7079EcVCqRA1IOUZwS2pF7um5RQ2cG0W5Qz9F8p0sRQPpyESDAqdECTCuRHw0iURgs5lElWr3RGzs4kTEXaVEebiMRZ89zEQAOYZFMDIrRRvBuER3pBtFgUG8RBju/USDqD9F+UAcRTuxn0TVUhhFfyrwRGPl50SOn6BFrbaVRAqc/UTq/UNFOFf2RDIR4kctJjBHrwHjRrJ/pUUtOf9FJsGSRDh9DEXSJBpF0iP4RB6dpER5wLxET/G4RJyzAEeUTRZGdLntRFMlAkWqFOdEx1vAReQ2HkVd4WdFFjAESOsGAEUuInFHGtL1RfUJB0eCVTBFkhAGRrpzz0RyjaZFVw+RRBO2qkTIGGJFo+4jRXK1rkRC9f5Ejj6cRMyak0Q9CYpHsLi5RF3fgkYdaSdFDUXPROFgC0XfYaVE/hKXRFyAj0RqVvpFvdkjRdgRLEVgYJZETjjmRYTV90RHM8pEadDrRY3Wi0S13yVF6raMRUtjY0UeWhRHMIR1RlNMGka0m61EayTLRGkyoUXB8R5FUrEARbono0Qa6eZE50ekRAMq+EQBMLpEirauRP+3gES9lvREF3WTREwrRUW5g5xFVDqWREdDFkeo6HJF5Zw7RXVS8ETUHAdFmT2DRrkKlUR446JEHTxARklYz0T8mqdFZ/K1RD+9c0VH7TdFKo43SOpglEQpfV1H+xooRTWLy0RN2LJF5LIPRoeOnUTOA7ZF7ck/RRP0CEVByLxEv8XsRKZ/oUSQ4pFEQXpIRadW70RHAzBGgrrCRUpDC0WCmSJFnBQbRSjlzkQxLuNEqIWeRJrQBEYun5ZF/QETRTaR5EWWa/9EinsdRbBPwkS85J1FmS2LRWOCMEU6C6RFW1sFRe+DlUVIEdRFf60hRTGqikU+OkBF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - sKAPWG7BckCS1zAUPcNyQCDdRvYN0nJA0rW0TUPSckDoasGxuOByQFcteSRQ4nJAvDVznI/ickBOkkBfJeNyQNT0SXjH8XJARlZdSaL0ckAp+ftTBftyQGSD6ob3AHNACiEb588Cc0CfCUwJDANzQCoWKFT6A3NAzWx7ZLwSc0DOQqCbBhRzQJY6dFx5H3NAAAzGzDghc0DeAPgaECNzQKLx58jOJHNA7I0IKrg/c0CAeq4seEFzQOr18iN6RHNAcwjsx5pRc0Dph4fvoVNzQJQk/s45Y3NAlapM9E9yc0BGfnu3THVzQDDUWp14gHNAxrzOSF2Cc0CePMx4O4NzQMZJXbyGkHNAyGU6GU2Sc0DraWIe95RzQDySB9O3oHNAmAJFFluic0BE68EuA6VzQNbGr0O2s3NAwkt6f8/Cc0De+ok82tFzQPhLam/50XNAeiWqXeLUc0DQYDOZpOBzQDx7uu044XNAcfr0zgXic0DG4LeTNvRzQI2hyrR4AXRAdKm1F1ATdEA86ctOVxt0QA5UiTe4IXRA8i7B+BtLdEA7fcLyIF10QI/68va2YHRA56GEfAhidEDIxI/FemJ0QFsidU3EZ3RAYQsbs9RndEA4YNNQIG10QB3DdxMicHRA736XpEBxdEDVl6TLOnN0QF0tu05OgXRAACmLoRWQdECaVsr54pB0QORJEeEPkXRANrXfNQWhdEAOr97ND6N0QKCi2pxvsnRAUmtkZPuydEBkjRnVTcB0QGj7g7e3xHRAnk7VP8nNdEDyGGLyTtN0QJkLuQpg43RAYxEIUiTydEDWROzsjPN0QGou8yRcAnVAJJ/eNKYCdUAKLnPRIxR1QKJRwV/jH3VAXT0UN50idUDC8+5erTJ1QOcjnz0GY3VAf1kAMvtjdUAMDt2XYGh1QFa6GmL9cnVAzSBC7ox0dUC9bpqJ5IB1QBy9CmCsgXVABNeuE6WDdUDKxEVePbh1QFoyPvSXvXVAIuogCc3AdUCKKQ7x+NJ1QEq1BSIP4XVAojGU804BdkDa52X3SAJ2QOBdbtGQAnZAJEUAM9EDdkCx4Q+hGwh2QOiL07ptDXZAxNkQFsYSdkCMcQYzGBh2QEmKCpiJInZA3stZ+I8kdkAaQ9VxSyt2QOhhfRAfMXZAbtX6zUw+dkC28zqUHEF2QOAKtuemQ3ZAXqhqmnhEdkA+vZuNEVF2QDSqBgXNVHZAbnwq3+qddkAAImVVRaN2QN4wEaOfqHZAkgLVAQy0dkCECxWLzc52QKoKDjOR83ZAunTa6AASd0DagMbQDiJ3QA3MRNEMNXdAVlg3fZxBd0CQuLjTGkV3QPBYS1dLUXdAmHgBYJJRd0DLeoLqS1J3QKA2Ksi7U3dAWjUX3Sdvd0DG4LP09/J3QHA/M19sInhAVp7xh7lAeEA2lyrYKUJ4QEBmqFcQRHhAoIKYo3lFeEARfcah10h4QMrGNk7KUXhADluL7TZSeEAobQDc+GB4QGa/qRS2YXhAwR52v4t0eEDmC8sqxnh4QDed5i34e3hAxdaCHSB+eEA2JHamo4F4QBk4mtx4g3hAzr9g15mEeEDs1bzMlpF4QNQ1bASolHhA7V2pMgKkeEBqgvHIt9R4QKzI0Oih4nhAeoyjcQP0eEDYPf8PjPV4QKduGa2NIXlAfr6K9boheUBio4dSrzF5QHD345S1M3lAE5vqsLw7eUAmgQUbllJ5QI/0q1rLVHlAxRHIy72yeUD9hXaEQtR5QIHb40FS5HlA1Uv/TZEEekAvohgdKzN6QPIw9oYMNXpAhBc6ORpFekCqOSAFIlx6QP6dchfMg3pAMLZ9KQ6zekCZt1K/DbZ6QBLHw1YRt3pAYykRHhS7ekBLfHGwFr96QGyCD2ZQ1HpAxaFMljTuekBYF+6/egR7QNaBnrVMFXtASr0JP1sle0Cq2BWOyW97QDSyr7chlXtAk8YRaQare0ByxyxbBa97QC5h2HK75HtAJm3A98n0e0Dy50HpjPV7QK3qvWSUAXxAKQ6C6doBfED0S5RcHwR8QCaDWEmaBXxAeMAC2M4RfEAW7DmyzEF8QPmrUu/DjXxAWDcFqSGTfEDoj2rfNJR8QCYT0a9YlHxA9yypCyuXfEBqaVHOLpt8QK6YWNpfnHxAtBso/16kfECSsL1WgeB8QIwL7s1Y4nxAvpwYMFTyfEDE81qccvJ8QMfo+h/f+3xAxgRlhHIAfUCUKOLLTAJ9QEMWxfUABH1ATukTtQYMfUCfAOL3RBJ9QLZBJ/eKE31AIl7YigwUfUCwW10FFBx9QDrUtBEaJH1A1LGfh5UzfUAyvBc3SDh9QIvw9lehPX1A0jUn8uRCfUAO0T4g/kJ9QOWJ34VUSH1AnFMr1QGkfUDoSNlLCqx9QICYDhvoxH1A5phiqI59fkDB0F/B5YJ+QKJImdagg35ANEpIEROGfkDo0kMWsol+QNyslBSoi35AAPovdg2PfkDBafjUGp5+QGq2Cs3MsH5Aac1I5ja0fkBKQmoHo8x+QIDj7ZX/3n5A8CQAIyFcf0D8aj0mcVx/QMRT0BK4XH9AIGfuVwtdf0B4O0gLdmR/QO6ojyu9ZH9APx4oucJsf0AGmiq/tHF/QOECbRbJdH9ADPsLfs98f0CamoZoy4R/QEsQYtVhkX9A5NdmbFWxf0CIMHGoZ7h/QIw5K9u9vX9ADqN80u7kf0BiUVLA9Ox/QLq64Nb49H9ApV+khkkGgED6eipgTQqAQHHHzOIxDoBAemEnSE4OgECrWv1ZNBKAQOVBbsKoQoBAPKJ2DyRGgED4yPPfJ0qAQErPywCvSoBA2njFBahNgEDoHjXXElGAQLK7L2FmVoBAtoNAQyZYgEBuMibmDVmAQPpRFlpqWoBAgtEUGzhegEBi50zHOWKAQIMb2fwob4BAWH1SoSh/gEAEMPRzAIKAQBv0sFQSgoBAWCswzQaGgEAq4fIACoqAQCc3+41ejIBACAdzSguOgEABXmGCDY+AQLSncIy4kYBAZADD/x2XgEC8ZKy6OaaAQOHGmLmIqYBAxo3p0BKvgEABtqn/HbGAQIN+MUpCsoBAhubJ036ygEBHR4aW9L6AQCq9Bu6uv4BArzhrOlLBgEBGEjHlqceAQIUjJCNTyYBAhAhRKNXJgED8VyorTNGAQAqUFuRJ2YBAkH9NSEThgECaevAMn/SAQG6yFjRM94BAvQPlgD//gEC+Td/MPweBQCA9Nj0+D4FAHOtKCKgagUDv0wpoNB+BQNwO9UY0J4FAJkyv1gAvgUBisofKrjGBQIL5eH+4MYFA9Lxc9Sg/gUAXuZhosWaBQGq+C3GjaoFAHCaOjqdugUAQbEC2noKBQPR0tE1Vj4FA6ubkXYKQgUAMTTE3VJeBQI7LMYTpoYFARsZN3N6igUB9Km6t5qqBQLAmcTpKr4FAzvr2+kq3gUAMhr9FBcqBQIpL9b5vzIFAQb/zYbLMgUC95FmeHc+BQOxFPxdfz4FAPL3EksnRgUCkT0AXqdqBQLqyc0Gu4oFA6js7i9gYgkDMywFC2CCCQObDilr7IYJAwIdLE9MigkAbby7G0CiCQFlD+eZyMIJAbPi48I5WgkCESOaAnlqCQDKNk2IOXYJADb5kWjtdgkDiHGSwuV+CQBk+KlGlYoJA8lsbYZ9ngkDI/SB7Fm6CQELfzEFDiYJAVtehPkORgkBaTXX3O5mCQMm1g+sOoYJACHJUfDmhgkAf/LsTNKmCQMIDHl9RsIJAnFp0HdXigkDMHWhM3OqCQJ7mJFD08oJAwDNFKxUDg0DwSIkouQqDQK2dIvXBDINAHPlzcLwOg0BuIq+MeRGDQPanNqV5GYNAs80MOmQgg0AOPnJnciGDQOYMb7ZwKYNAPtFy6lkwg0BVvLHEazGDQDSO3sNMUINAcCPABguDg0B/G9GJ1IeDQIarUZURi4NAhIrSSRaTg0B5mucDK/ODQHjMcfwKQ4RA8k7E/xNLhEAQYGGc/2iEQLyerYb/cIRAFcc1d8l3hEDORksRenqEQKDsdQxq2YRAjNJf8mnhhEAVFCmKYumEQMo+mGc28YRADu3TEGPxhECWW/7biiqFQMYMO9Y3LYVA2nBtV+QvhUCKSgLekDKFQBBCZmmgYYVA0KWE1jVjhUCwX0f3oGmFQMNVkzWZcYVAEGBdz9VyhUAdKkb9l3mFQMBWrPBBroVAN8fr4yDChUBnROdOKMqFQBi5CmQEzoVA1nlwhy3ShUB+GzteL+aFQEHiFBPR8oVAoj4lZYL1hUB7iraXKviFQMyr8G0T24ZAHHta/5Aph0CFWOfzkTGHQP+31K+MOYdAKAT18IY7h0DFWijvxrGHQONdFYDGuYdApNF72L7Bh0CZSjJk6eqHQJzIurDx8odAhgnOtX8qiEBg7fu1enKIQLLS/EWBdohAEl2lwViTiECQHQLuiM6IQGgBYKrg0YhA/DCUx4zSiEB8f5bg4dWIQA== + KBZXds7jZUCj4ndavwJxQFTDHQfHcXJAyqO/0W0TeUB7hGV+dYJ6QOf0e7zFo3xAWxPvqZLRgEAG2+EZOlqCQDEFZByGkoRAvkC5xh5qhUAiboPjqoKIQCF/aYsoY4pAtk4nHwKLjEDb0UmDoGOOQKWXZa2sSZBANmvlDfGNkEBXrsq78tWRQLaC3CJHUpJA/ZaLHV02k0DTnQpTDqKTQOiyS1Q0vpRAjL/pEon+lECaybBiekqWQAivKaqkypZAFrnw+ZUWmEC6xY646laYQM/az7kQc5lApeFO78HemUDs9f3p18KaQEvKD1EsP5tAbA31/i2HnED94HRfcsucQLWPNctO451AR9FG/Z3PnkASuSXHiuOfQMlgjM3kaaBAIuy+1AcwoUAFO1T/7WWhQJDF9P8A9KFAe3fx2ypWokC1vd3OFvaiQMKLoNZAOqNA2Uc1zCFoo0Dng4mlVjykQP4/Hps3aqRA8MoHn1IspUDZxTsSd4KlQA== - + - 6cHURbGlO0U/PiZF+oYKR5IRO0VVyolFl96OReqRIUXWyitFwmf/RKU7IEZh7QFFBR88ReKvTkWNRh1HhQ2NRkXonkUVluZEo/yBRl0WBkVhJLRF+fBkRQKdYUV02ARGglhrRapZikWQchlFDxEBRQ+YCEWaeMZGe1W8RUleNkWygARFqegyR3iMUUYpHuFFtkLrRfXNHUVAqY9Fe/vkRTIJGUXaqQVH5tiiRT7pAkUsz+BF305oRWqh/kTMFmpGeKJmRiuPk0WMfRNFhwwaRcmYzUeL5BtFGvteRr2VQEdTofhFaC31RRvJ00WZqL1FR2U6R0Rl8URQz9pFvJqoRXa93ERGrURF3R1GRb8PakVk9hVFzHwQRVQdQEUqIxtFNfOaRUIKFkUq1QdFLbqwRV/e30XL7l5FOboxRY5zDkX05gpFb50jRmrL/0QuUJdFi8rxRFLSKEU6YUJFS7sHRnCLPUUvM8pFwndqRTrgYEYGOxFGxjkGRTMbikUur5tF7746RX5khEX195dGXpT8RBHuaUa0paBGLEsRRjnEREULjFxFPu8JRmTcakWFyL1Gv8t3RT9XXUVIYgJF4kSNRQJxLEWqUgNGnK66RpoaT0YElUZF5J+mRZWQJkV54jhFOrmDRgKBlUXDIutHOBSERjypx0Y2yIhFV6A9RqKg6UStziVFlYAFRVbIZkUyoYxFynkSRWA/x0Z9cPpEIGVzRq01lEVOQoVFfzB0RYxwB0XBKT9F1pdCSXuLk0YlNEJFvLBYRgMQAkVOVX5FkldISMTZbUWqKolGgKUURbZLB0Wt5ylFfRctRV2S20VmwkJFCDVGRScXI0W0UjBG8GfCRWjWKEaovAxFJyQRRRfwvUXuhhVFI5sIRW+lK0Umd6pHEeWoRl8HRUUWuEdF1UUHR2hcq0Ump9NGbLhRRl96VkX2ZbpFnQUQRcMrTUUxdxtGoZ05RQcSmEVF/Q9FJooBRUxTIkV3/gtHP3OgRWZhlEbietxE3/0bRi76BEVpZJJFGdouRb1JYEUMdlhG1HNDRh+UQEX+hepF+gSKRWZXd0WoX4xFUInJRKFcJUZ0RbtHfgGPRv7AVEUPKaxFQYkPRd7YfkbnCEJJozLRSJksGEUezz9FAa7sR7clhEYnyAZFGAoLRT/kL0cpQKxG1HCBRQzBsEVDEopFinJWRvZ5lkXqR5FFosBxRQP7dEVV/h9GOhjuRKr3DUWk1YlFRv4xRbiAGEXsuDJFSFkPRU1OLUX1qYpFAEIXRQCnDEZMuuRJ+xP8RfhqmUWAgX1J4OukSITcLEUc4H5HgfP7RSfvAkUBUuhFW6IKRZbIk0WOOghF1WUVR5x+mkbL7YJFqSSVRlpsKEZDjKVFuovnRNNAQUXJIbpFvBXPRf9kR0WbcgVFoTavRdhXJkaZ9QdFOFPDRV7Lc0W7gg9FKOgORqDZXUVcxW9FHGsTRTe0sUbpeYtFGJeSRjBd3kXdL8NGRJkARRLcikZhLelFRocERcbyA0UKj/lEsizbRSU4DkWwoO9ENZ8MRTsAIEXZ4OdEPECASLikSkVYu9RHwiQqRVXXg0cgOXZGiH6mRdzna0XfQitFERdYRpzKSEVEK7dFpnFxRcG0AEfdgN1FR5iJRfF1FkUidBRFickFRosoLkXfDcdFCshPRR8DmkWoB9FFZYwJRa1qUkWMAxlFl2OhRodzi0U93SFGeHFNRSTZJUaA6L1FrqHzRXHinEXsoChFfgh0RePpL0Z70E5F8kkeRpI4SEUCQKFFPzAIRQKnV0X2dpxFjK4hRaFW8UX0xllFbaIuRXcz9EQ5ADNFPAguRfkK+0QzKtFHRMEVRzULzkawXchFr+HCRSOpTEVZmERFs01OR13cXUbi1YhFFp3rRFcZ8kXZcvlE6WF8RewUAkgewXpHfrY1RgZlBEdyBxBGDGQoRUElLEX5EWxFIRC0R5/2DkVzNZdGjwN4RZ1ZgEX/aOFFhs45RR/SvkVlMDdFIRmwRVv9hUUgtwhHLxpiRlXVyUUhVX9FWLYjRUjimEbp8YRG1MFDRoeZu0U2CgxH9wQhRZA6i0aQKDVGc/+SRcP3WEX3CypFWV2BR5dakkavZwhF//9qRZd9ckUkIw5FxkonRXPlREX14gxF13oYRm2neEUaHi1FcD8TRfGuFEYfcpVF/Uk2RbPD4UWmIAtFDzVbRZfEYUWIqB9FmgeWRaPpgEXwZ29Fdcf4RO72rEU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 5c/A0W7BckCQfTI2Q9JyQG7FUf5Q4nJALZ/+oY/ickBYzukjBftyQKUQCVT6A3NAZoMiC70Sc0AkVn1iBhRzQGQ9EMo4IXNAfI1eeM4kc0De8tWVekRzQMreGsV4gHNApp6tyl2Cc0COQFYxTZJzQIvNhk33lHNAQsvCe7igc0A4O1/gWaJzQEIhJEbQwnNAmlUkXdnRc0C+dYTn+dFzQEw4rjvi1HNA/CuUmjjhc0B2Z/PaBuJzQBh1lNR4AXRAp99J8VATdEDW/uMdVht0QBRgyEshXXRATiny0rdgdECaSwSoCGJ0QHueC/V6YnRAFKOMXMVndEBWiGLz0md0QIIr1OYhcHRALs1iIkFxdEB+V1XeTYF0QLDLJ9kWkHRA2hJRgCTydEAm3FiOjfN0QPLjzNGcInVA6Fks5QZjdUBCnzwdYWh1QAZWeZmhbXVAHFzKaI10dUA2v5XMrIF1QACQ7iY+uHVAiemeP5i9dUAEP3em8sJ1QNjrKPFIAnZASqQfZ5ECdkCMtgCsHAh2QHq2d5puDXZAMFQpkcYSdkA8ON9eFhh2QOD9Q22QJHZATiCwoh8xdkAFTRLkTj52QHJ4xowdQXZA3rVEsXpEdkARZ5z4zFR2QI1+itTqnXZAcbClDEajdkByDa5DjKd2QODzsZ2Nq3ZAXMp0hg20dkA0PK01ARJ3QBIilWANNXdAAhaZkpxBd0B+S/8YG0V3QNiqjTBLUXdA1twj+ZFRd0CAUFsivFN3QJ6hw+X38ndAtVfJJG0ieEAxCyhLKkJ4QGWbqTh6RXhAeEl9GtdIeEDUmLu9y1F4QHJMrvM3UnhAxLZY8It0eEA8j775xnh4QP5CqEMhfnhACKaPFnqDeEByl3mwmoR4QBtQYumolHhAKpx0PI31eEBynlL4tjN5QM4TT+SWUnlAoO7uB9+heUBzfxmiQdR5QDNAVPIMNXpAGLGHhxpFekB+EbOpIlx6QJb67t8Os3pA4YherQ62ekCe2uosErd6QBOc0JcYu3pA1q7kPX0Ee0BGIKAgTRV7QBHRKaG85HtAxmPBhYz1e0AEhbtA2gF8QDpmjWfPQXxA4VoLgsSNfEAo9D0tIJN8QJINQURYlHxAfi6OnWCcfECUAKsAWeJ8QOgpQA9V8nxAhKztjksCfUBUgE6dAQR9QEjvt3wHDH1AAKjoDw4UfUA6NvFzFBx9QKbNcQxJOH1AdEUHyqI9fUAu5Cqp7EJ9QHxi94ADpH1AXIYgTgusfUDIFHKjjX1+QOJ1/XOgg35Aqu6QBLWJfkBfRzTVp4t+QH4F0hunzH5A6QMmMhFcf0CatZnOMlx/QO9NfcliXH9AXIVqR7hcf0As3zF9+1x/QDrsVVhRXX9ABM5zDr1kf0AEmp1uwmx/QHbsCpvIdH9A6gkwNc98f0C8QVOd14R/QC6HGDJgkX9AOrS3KO7kf0CeF2oF9Ox/QG3YYG769H9AIDPyL0kGgEB8Bd5gTAqAQGZWOmAvDoBAPXsH9E8OgECA48LHMhKAQKzPkKOoQoBA03zCayNGgEC/dfP0J0qAQDaEFYwSUYBAXfJp4iVYgEDULkCUN16AQGbRTmU7YoBA71WMUwCCgEDiDKCdE4KAQIj4zPMGhoBAt4QXOg2KgECiFCDoXoyAQFm2nAoMjoBAJLaJyg6PgEAOh80muJGAQCgNKBUEooBA6qJpEBOvgECGNWBAUsGAQFjBnkNSyYBApmGz4kvRgEBAzvTiSNmAQFA+J6VC4YBAtgraSD//gEBW7cj4PweBQA2xDQs+D4FAXzFyJ6cagUCYhgthNB+BQBEzxF41J4FAwLFyyQAvgUAeA6coKT+BQJtEKq2iaoFAotJ591WPgUB05OHg3qKBQDiTVFLmqoFAY1MOekqvgUDARIC0A8qBQHj7oF5wzIFAbuUR+LDMgUCcablrHM+BQMBq12ip2oFAoq8xd6/igUAJGkLR2BiCQKFgc8H5IYJAqxeM1nIwgkAxK3QNn1qCQNJPOrwOXYJAWlVOX7tfgkCKtm593WaCQIg3cjlDiYJAR8ppsUKRgkA/1ieBPJmCQO5p+XU7oYJAwKIsKdXigkBa5mVv2+qCQEabfhj08oJAnAcPLLkKg0Bv912PeRGDQJZjV/t4GYNAadwWimQgg0DL6X7ncSGDQDTmLiB0KYNAEMjj3wqDg0C09735EYuDQADPOHcXk4NAIr+VdglDhED2Bab1AGmEQHAtptf+cIRAT26Ts8l3hEDt+J0od3qEQPa8tOJp2YRAt2l0g2rhhECf/xRIYumEQGrGIEeLKoVAdHN8TDgthUC+SIsI5C+FQGjnYHSRMoVATETBl6BhhUAlfawSoGmFQE3r4h2ZcYVA5uVQatZyhUD2EkOY3nqFQIohxyEhwoVAP8VgKijKhUBYyPi8kSmHQHw9Z1yQMYdA40xMioo5h0ClIUNsx7GHQHT+G4BWtodAElf358e5h0AWvfxeWbqHQPC0WO7p6odAc4i/slmTiEA= + KBZXds7jZUDPIQhxcmNtQNS+X4D+xG5AjegxcQLTdEDnbmCMEcN1QI1GDsVa5HtAQnuq19QTfEBzKSwIjxqBQM5DehFMMoFAoC/RrfBChED7SR+3rVqEQM01dlNSa4dA+3gN4Vnjh0CMfY55m5uKQM1kZH3+84pAt6cQfOfTjED4juZ/SiyNQA== - + - G3ENRuHkBkfb5ZxFFk+VRc8fU0bObxlHLGu2RgpPokVdjptGnq75RY8lFkaLX6BG3ivuRZ6YTEcXqWtGXWfvRdrK60WywS9GsDt3RcvDkEcPJI5FXvnxRbsQG0bsrHdGlhC5Rtv3hEVtat1HZriGRVJtYEaFOzxHbVRGRtRyK0YaNZpFG+5UR9gaCEbsb9FFrPI5Rngw00XhByFG9j0aRnMSOkZPXshF0jX7RfqyAkbeIUJHnZyPRvBRskXVs7lFxHgBRx6ANEd9VnpHYinsRvxW30VkfhVGCZWxRk7PikW1qqlFwcaLRbrNFUZTzsdGZiqDRjR0gUVv3W9F6c2vRZqXkEY0zfpHaRWMRuaMuEYbCbRFHqJFRgGWIkagy8hF71qfRSzqO0dwylpG3e/QRf8mpEUfdOJFxXw/SY0G1kbWPm5Gcxy7RRDaPEj0K4xGmFa+RR8NIUblE5tG16CmRb1qi0UwjptHB/ygRv6agUX5/PRGaFqrRebhxkbXlNtFF5OwRTdZD0aTfE5G22ZFRpNKNkZmMKtF5VyDRi6QJkbJSaFGzNsKRpIts0fFO6VGA5w7RoZuMEnMBLtIMurDRzf4SkadhDBH7RG+RnTD1kWHEU1GFICzRWGdpkVak0pG1P67RcrDjUW/qc5FtDYFRq2EF0ag3UlGlrOCSoTjRkYl/wdGGVALSrktO0nxlRdIa9CaRku9fEX1nNVFjkPsR7SyQkc75EVGg8dYR21OukaAyypGCy0FRkXesEXdJZlFmn4vRq98/kVp1hxGka7ARevXtEYmIgBGs6l4R9QLI0bhJWVHWa+YRsmTpUZwethFYc51RobwxUUp28lFmZsIRrERcUjlK7BHZr1mR6LXJUYKUp9FbwVvRvHajEUTqNtF8TylRd9t5Uavef9FyXaRRVB9BUb+/sBFVLMIRiiZ5EYSV8NFxa1KRta7BkaIipFF22DiRbbw/kVzo0FG99mKRdMtKka6vLRFn1gSRhe6Bka5Ib1F0YjLRVL+gEVOfL1HSOL4Ro4Xy0YCtdlFV2d0R/xOikYXP+tFOvHqRTWe40dpdTFHGOkGRuRp5kbKtilGgV3aR6rv6EYBT5lFTt6aRZuGoEUg04VFiMyqRXLw2EXMdQNHv6NGRpkrBEbk4WdHZbdhR3AbCEdIWFJG25XxRuKtVUZCNRhGLA51Rp6UvkXEF4lGt3qxRXtd9kVCY49FVoqfRRBO+EWm/sJFl1e3RYX+j0XkKwBGCxHsRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 4oukSG/BckAeA8ptQ9JyQLt98hcG+3JAjIaT0voDc0CaiBtKvRJzQM70/pEGFHNA9B9ZhDkhc0AKdinMziRzQCiESQd7RHNAeh5Sf3iAc0Ac+8BTXoJzQFxQHVI7g3NAwC5CM02Sc0D/qNVr95RzQEGYjuO3oHNANrT8Xlqic0Cmxl630MJzQD2B00T60XNAj1by3zjhc0C2ASZAB+JzQEb+3954AXRApySnFlETdEBWDr/7WRt0QGICLi0hXXRAegHnAAlidEBrPX4le2J0QEpZWbvGZ3RAPiBSptJndEAuYQOAQXF0QOrNZcxOgXRAEKerQMnNdEDy89r0JPJ0QGb60K+N83RAJk2Uk50idUB6xDFpB2N1QJTRC79iaHVABfEjMKJtdUCoANN3+3J1QMQ7M9WNdHVAnsvB8a2BdUDoRP1lPrh1QOvD8z+YvXVABytbaJECdkDgSY8THQh2QARB7MNuDXZAGtaX6KASdkDPS2uFxxJ2QK69roMhGHZAQmeYSHIddkCtZhCAkCR2QEkCwc9KK3ZAdFcwpR8xdkAQJwZUTD52QJwF5aEdQXZAEvJjNc1UdkAawMrR6512QIqRhEtGo3ZAFNlmvp2odkD9BHgkARJ3QJR4zqwNNXdAp5g+TZ1Bd0ADgh1IG0V3QJty1rORUXdAN30M6LxTd0CI7I4xbiJ4QOZR6X0qQnhA+lkbSnpFeECqPktG1kh4QCw0LAE3UnhApxZoRYx0eEBsGPqzx3h4QMW1yuAhfnhAi7F3rpqEeEDKcNy2qJR4QAFRB8mN9XhATgFEsLYzeUApqEtJvjt5QCfqPJCWUnlArlOUdcxUeUBA0S2mQdR5QAzKs1gNNXpANiDe+BpFekBoi2+XDrN6QLC/9ngNtnpAoOPQhRK3ekC+91/QFLt6QEzsNNtMFXtA0w+yBI31e0B4t4492gF8QCzCPj3GjXxAqDnRT1iUfEA2+LjsOJx8QCDyssBgnHxALsex42WkfEA8XYQdWeJ8QDI58AZU8nxAjL3CcEwCfUBpqdT1AQR9QLwai60HDH1A5uRFkA4UfUCggF+8Exx9QMaTW1tJOH1AuVNzpqI9fUDngLnn/kJ9QC5TrsgEpH1ANBVcWKGDfkDts7wVqot+QJwATIKlzH5Axjj2EqnUfkAxO8HeNFx/QNJQKW9jXH9AnFJTebhcf0DuiE3wvGR/QBjDO8jCbH9AgjIvy8h0f0DHusqD0Hx/QMIFG25lkX9AflBWgO7kf0BS1CC09Ox/QD6UZxn99H9AciUbmkkGgECIeyTtTAqAQMrkOqgvDoBAaqsoIFAOgEDOXQjAMxKAQMJZpnupQoBAVKReriRGgEBsWMw1J0qAQLLJfFSoTYBAlF5riBJRgEC6WOdkN16AQFohYeE6YoBAdcK6HQZ6gECc4GZlAIKAQOg0HLcTgoBAmTXMOgaGgEA0pWx4C4qAQMADMEFfjIBA3C2rLAmOgECj3FQADY+AQBsz3rsDooBAcybnLxOvgEAqjuRSUsGAQLhYysNRyYBAO51Q6UvRgEA5hB3jSNmAQIhPoz4//4BA1O34qD0PgUCqrzQ1qBqBQOIz2Ek0H4FAlVfWXDUngUCWtC6SKT+BQIBo/KGjaoFAhCfit5+CgUDtWtISVY+BQHTAWC/fooFAnt08w+WqgUAC29qySq+BQPffz1YEyoFAje2WlHDMgUCR9Zo1ssyBQEowhGQcz4FA7Xb/JqnagUDY0Tt22BiCQPiN9DhyMIJAIPVNvp5agkAvM662Dl2CQIOTK5q7X4JA77lr/2ZigkDwYi9CQ4mCQJWeSIBCkYJA4nymMjyZgkAAheHJDaGCQLZkvnnV4oJASEnVH9zqgkDCY5hs8vKCQJYDf/65CoNAmJiRp3kRg0Bgeu0QeRmDQObHcNFxIYNACC2gj3Epg0Ajc/QFC4ODQDHQhQ8Si4NAQFQw0e6ig0B39kcJAGmEQI3y98rJd4RAVCK2TmrZhEBF213XauGEQKC6GwVj6YRAscg2IDfxhEAS9BMjiyqFQJEEU9o3LYVAJ9aoSOQvhUDiddt7kDKFQE5W4xw9NYVA9rM9s6BhhUDifEWdn2mFQH2fgkuZcYVAKlqDR9ZyhUCMuUK03XqFQMheqhORKYdA5/RAW5Mxh0Cz5yr8xrGHQPMQRTpWtodAVBHzElm6h0ApDE/R6eqHQDDJXrBZk4hA + NrgMGZxjZUAoFld2zuNlQNS+X4D+xG5A - + - kq/xRT4wEEe8lzhGKK8uR8THXUaE5NZFCWefRgjiyUX6SzBGNp+nRm+/70WY9qVFiIVaR/TYe0aUPh1GZAgPRiuwIUZEy5dHkGzJReXnAEaYh4JG2823Rgy6p0VvqPRHGMiARmZoJEfSJFNGXZEsRoQIX0cJMhFG3mTDRVuqL0Y7Y+JFVKs8Rrr2kkaMEDdGYGFKRokrq0WOkSFGo1UcRmM2eUdk9stGKT45R/07aEemPcBHaue8RXi1HUcTFN5Fu0OdRVG/9UU7h7RFvSypRn4PuEXpqqBFM9ZLRoNz30YJZwNGCCieRd+RvEZ+OvxHyxmbRtb69UZ5rkFG1/CgRpaWp0UpelNHNcCARqs7DUa1bAJGHL1MSV7RzkbyMIZGm1NKSCqxY0a/tetFB/4URpwgzEVOJ8ZGCYbBRYO1AEZYm61HDJuzRtjl6UalkNdFRF2fRjHaAkaCE0xGaUuFRkKYNUZtDiBGBIACR3NcokUI4BpGsBG+Rf4z1Ecmv4tGOjOaRveIGUka+JtIqTeiR9UvgUYbXh5HNUDIRgOtxEU/63hGc0Y9RpM5u0VRO0RGJrHGRbSvHEZuG1dG+3ueSsF9LErFa1xJRjE2SHsjuEblr9hFLeoISCMZg0floXVGADWdR197BkfnG2lGFZEQRgScwEXVvbdFJVKcRmDGGkaRDr1FGDMnRh653EbidYRGngjaRdOBqkc2yWlGZkaaRweYokbXDW5Goy0BRgxoaUbqRNdFjHYcRq0saEjhx5hHujFaRzq/NEYs61JGleioRVXL20WXmAZHIwz1RTDZ/EWY7/xF1rK+RcbmDUZN9e5GKU0JRsebMEZWrTpGLv3nRZkMLEb3x8RFBYqHRlitJ0Y6JklGlyt+RjTD2kZM+JRGCEImRhBDwUcQnwhHTArHRtZIwkXzA7VHEmrBRoDR10UdlsxFlAXiR92hG0dCEb1G3VfqReX92kcxc99GqLnCRZun6EUcTvBFddgIR+f2W0a7XSNGSy+5RWJGo0dEqqVHxRZLR4e2gkaC/z9GrWgDRwueZkasXjJGzpn/RggfJUZ6YC9GT1a2RXT1EUapIxZGWA/CRSbn2UXpHNRF + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - NWIg727BckCqasYTQ9JyQFkDJoCP4nJAvn4NI+XqckDHV+yZBftyQLDR5nnQAnNA0yaJiPoDc0ByqWmSvBJzQC6K9Xg4IXNAynztPc4kc0DwHOfAekRzQNKkJ6sac3NAKrFqPXiAc0AufB+BTZJzQM4x4gz4lHNADbinN7igc0DiB1o0W6JzQNpoBkLQwnNAMuAg3fnRc0Aki0yn4tRzQIMnMlU44XNAOvp+6ngBdECQDRfvUBN0QGoVYB8hXXRAxskwJQlidEBlWGFCe2J0QJDH32zFZ3RAAAuo0dNndECIonAhQXF0QCKZLk1OgXRAN8D6iBWQdEDQ8wN8JPJ0QLQIRJeM83RA7GDwuF0CdUBgIL+onSJ1QMpI2HQHY3VAjo1R/mBodUBNXdgroW11QAYVnJSNdHVAurZVca2BdUApRlJPPrh1QHKDKLCXvXVAP/cSpPLCdUBVi3GekQJ2QCVqtM7JAnZAzv4c0BwIdkAYReyMbw12QKmUp//GEnZAtYpJkRgYdkBP7BzskCR2QHQR/5UfMXZAqrTt7B1BdkAi0orbzFR2QB7jaIXrnXZAxvxeHEWjdkAOAPBXDLR2QMJtcF7PznZACgMlDQESd0DU516ZDTV3QN8UsQ6dQXdAAhnBURtFd0D45jJQS1F3QHXX0PqRUXdArn1AfbxTd0AVG8SnyWN3QCN7+i37o3dACvtZXipCeECwEHotekV4QBPwR5PVSHhAJsifLMpReED/mUBvN1J4QBg3sAmMdHhAGDxjtcZ4eEAwORI5IH54QI+Rk5+ahHhAYtA9NaiUeEBKWI7hsCh5QNv7DWy3M3lAkAlgh5ZSeUCSVRUVQtR5QCzkOBMNNXpA+mDH8BpFekCdjmVKI1x6QOGzlqgOs3pAmBLNRw62ekDIsimZEbd6QGQiMfETu3pA9Nrfs0wVe0DAr3H3jPV7QC4HXFDaAXxApaqvXcWNfEAiGm7tH5N8QErCiTFXlHxAlFf2Ol6cfEBwVUPdWOJ8QJHL46pU8nxANrFY4d37fEA2Bnd7TAJ9QDpsU5ABBH1AOpEmfQcMfUCy6qDhDRR9QEwS3EAWHH1ADMwiDUk4fUDyAXUAoz19QDCfPXECpH1AzMoVFA2sfUDYpG+voYN+QKYjumepi35AEP9WD6LMfkDYDPOwr9R+QNbo9yFUXH9A0U97Fbhcf0A0jcH+DV1/QLJT7HIuXX9A8qo/z7xkf0CuKdyLwmx/QCBK/ZfIdH9AHQrVJ818f0BsRCdiYJF/QH63di/u5H9AoLW6bfTsf0C+3Tl9+fR/QLiuLlJJBoBAChmNkkwKgEAQpZxKMA6AQHYdF1pQDoBAUKHVlDQSgED4cSJhqEKAQJrzi7YjRoBAmvDYNChKgEBBbXv7EVGAQFmSRkY3XoBAdPvWpjpigEArZkohBnqAQFh82IQAgoBAeo65MhSCgEBR4qj2BoaAQDo5cLILioBAIFJ9Fl+MgECYTViaCY6AQBCtBNgbj4BAPnsBpASigEAfpK5zEq+AQIZIUkJSwYBAE4l59FHJgECwXf/0S9GAQEpYeC1J2YBATFf12T//gEA23sLLqBqBQH5vVV80H4FAg6AhTDUngUAuH0AeKT+BQH7SVxuiaoFAVtkD4J6CgUDcsnOWVY+BQATdvjTfooFA6CVdkuWqgUBQSgS8Sa+BQLNJ9yoEyoFAhz+4CnDMgUAtuzOKscyBQH+B0QGp2oFAKpRVXdgYgkCwrFpa+iGCQLxYg7yeWoJAAj+TYg5dgkAZHDkGu1+CQLem0DVoYoJAQEGzDaVigkDA/PAWFWWCQFQvGjxDiYJAJ5s1WEKRgkBWmmQ1O5mCQDgdRwo6oYJAJsgNDtXigkComP/42+qCQPA9Ntjy8oJAbobaNrgKg0BNiB6kvQ6DQAD01395EYNArowBsnkZg0ASkrTucSGDQO5WpWVvKYNAFhT3modKg0AfWW/3CoODQN6iE6URi4NA5jhmpy4ChEAkvX2Z/miEQGg1tzN2eoRAongbV2rZhEADWr9raOGEQKT6Xdhi6YRAPIKHX4sqhUCQ9mrWNy2FQHDZ2ebjL4VAFnr7b48yhUAd01ahPjWFQCQN/ImgYYVAgmbg0p9phUBdD/tDmHGFQLYzI6zVcoVAsHu/At16hUAhG3Ll0KqGQEigUfuQKYdANYZ098axh0C4YM1gVbaHQDQvlzTHuYdAWi9DkFi6h0Blwm2EXb6HQOsfHlPp6odAaoZ0eFiTiEA= + NrgMGZxjYkBxWoXuS4RsQOO2GkbmYnJAxwSPFv5SdEABCNcwPvN1QFdc2zXWY3pAIhHZYcGjekC+jpFWQjqBQIEC8h+DIoNA65Q2/KNihECfU64K27KGQOJztirb+odA4xansVP7ikCcxpYiU/uLQKpCTcG/A45Ak6UWUYqTj0DRkOZ3+82QQK1oXjD7TZFALrrWczfOkkBPytqDN3KTQKqpFgtTmpRA3vI4eWM6lUDBLOndgy6WQNavu7C0IphACx27e68ymEAgMvx81U6ZQO0yjoPltplAZ0ard+symkDRSGGLGzubQBldEIYxf5xAYHG/gEcDnUA= - + - 2h8hRu1WEEeg66BF/EDARfmKhUbgw49F0QooR5ybiEZCVJFGYGGzRUaAHUY0N71FyNSqRrBDSUdXQWVGivUaRhiu1UW6Ws5F2uJoR1I5mkXsdcxFTqRlRkyKjkYL9uxHFIQhRtIza0f0ATVGq/wnRm1CSke7JdRFrOqgRafMIkYW+sBFqSipRZlCYUYBcqtGP7YDRmNdvkWAyydG2QnFRa1fUEfh+o9GfscORnkf30bwVrxFkQ1bR3dDy0eRQ+9GI5dIRhdaCUY296xG67y2RXvS8EX6N+BGaYGORqTstUUA6qFFgKONRvn14EeJxaRGA/HARqxMuEWcxS5GSAoVR+pvpEXCarxFPLk1R/PRVkYCZJJFGjb4RcDJyEUe/zlJSi2ORg3Om0Za9zZIPheXRiW3oUXJlzhGgJ2sRh4G0kXhFo5HcASRRrv1l0VsqQVHzPyfRZaJ/0b6wbxF1+wPRiPZhkZhTS5GUBgnRh6Z9UU94/ZGVp4sRlDSxEcQNKRGuCONRe6IdEZn5AlJVSGVSAjgiUfG5WJGOV0KRxk32kYxsC9G8IKcRXQYVUaN2d5FLiouRtNmuEV3nFZGyVyWSs99g0Y9yx9Gh5gcSorVS0ntwiFIDB25RpMH1kX4lwdIsVtpR86eRUbcVXZH/SEUR3F7h0Y0U7VFDnrLRdLj80Uuz4lG6BMsRgv7IEZO9+lGFGE4RvZL1UViCqBH5rlARoc1o0cqcKRGM1teRp59DUZQn01Gz1vHRQbFFUaZbXlIdi6lR3toaEc8eRtGbMhvRhl8BEZPuRFHV9jQRWViBUbd8LlFJrUHRj282kVPwHpHk5M9RujENEaTiDtGUfz3RYJn9UXEvlRGnSFCRsr70EXDIsBGUqZRR9R+REdtD8NGzbLlRfVKDUYB785H0PUPR98+skaQQs5FfzgMSAuIIEc5wN5F0hyhRWadlkUnreNHGzAvR+F550bydMlFwp/ARbOJ40c3QfNG2iEWRn+VsUUfy6RFFUwCR1suTkaL/PZF4CurR5troUfudjJHsTuFRq3F0kW7sQdH+OVeRmLSOUYTrwtHLwRIRrOumEW60yhGIv0tRlHfP0Zm5J5FWVTcRVSCr0U+3+FFplffRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - M5fieW7BckCAQCOsPMNyQEZEM99D0nJAqyutZdDfckAm3HVSUeJyQE88Ai6Q4nJAjhXgueXqckDcty4uy/FyQJVFH00F+3JAcLGv28H/ckDGN5jaDANzQBmjTYP6A3NAZsliX70Sc0AixGITCBRzQOi1DiR6H3NARKPFRzkhc0AGzjWFzyRzQAEw2nK5P3NAxAYi7npBc0C6OgCjekRzQOA4csajU3NAtmZCTztjc0A8c9+bGnNzQJ4OMlIie3NA4JwmwniAc0AB/zW4XYJzQOwdP6k7g3NAGW8lg02Sc0BKebC695RzQA4h/ye5oHNAOoaSM1uic0BNM9u0trNzQJa+uFzQwnNAh4rBm9jRc0DhXEXr+dFzQBoTVuXj1HNA/Dgd9Djhc0DDOqUteQF0QFZMMOZQE3RAuw1Ju8dBdEAd4whrIV10QJDELtC4YHRAKDFFMglidEDgnMlBe2J0QIIhElu3ZnRACRB54MRndEDbgG/f1Gd0QL74TAsgbXRAa5DUryNwdEAQtmqJQXF0QDK9sw05c3RAXaJkN0+BdEBcSzCAFpB0QEMY5NIOo3RAbONmYf2ydEBkrtK8t8R0QGCqWuDIzXRAijG9xbjhdEDwKodnkeN0QHYUjdYj8nRAJLwM1o3zdEAhODw3XgJ1QJtyjn+dInVAMuylBAdjdUAuDt1J/GN1QEPbWL5gaHVAlOKV7aFtdUBseXQtjnR1QBU5VXKugXVAkIM1BKeDdUBEMrvRmoR1QDZBiF0+uHVAsvSY/5e9dUBoprVj8sJ1QBomHD9IAnZAhqwR+ZECdkA4uKq+HAh2QB18Pn5uDXZAjtJttsgSdkBcwFQyGRh2QJF7PEZzHXZA2qWIoYgidkCWGUm9jyR2QJZSDONKK3ZAYsiTtB8xdkBA4nJBHkF2QPjkh0rJQnZAXl6e/npEdkAJmYGZzVR2QCBvU8HaZHZAjSx4TOyddkCtyP/uRaN2QEWThH6Op3ZAo8eG1J+odkBOadWbDbR2QCnhDbyS83ZA+V6AlwESd0BooRJZECJ3QBH9crkNNXdAl/mx8ZxBd0A6hHWZsEF3QEaJ43MmRHdAv6Sk4BpFd0CO5I3zSlF3QP7351+SUXdA5OgQrqpRd0Bto1rpvFN3QH7Wu9DIY3dA3nhgc/ryd0A40r08KkJ4QA5BYAgSRHhAXlTrO3pFeECoy75o2Eh4QEA8+UAwTnhAWvAGmspReEAOVnaBOFJ4QOjMgji4YXhABe5mK4x0eEAxeTZjx3h4QJiBMC31e3hA1lkqHyJ+eEB4V4pEpYF4QNnrCsB7g3hAgma4lZqEeEA+pXzRmJF4QHbx2GyolHhARq6kE7bUeECssBPPAvR4QNadacON9XhAAKPoDLIoeUBWO93gtzN5QPmJxOO+O3lAWzrQtZZSeUA6WqGVzFR5QHoUji3AsnlAwqArMUPUeUA+TkwqDTV6QFL7e9caRXpA6BJrmShVekA0DSJyI1x6QDC83hkPs3pA7J8mWw62ekC0K26GErd6QBiq7dwUu3pAGJFvE3wEe0CAB2bKTBV7QO88c30n5HtAlXgj+oz1e0Doz62N2gF8QCtWDnibBXxArq+LfNIRfEASg1x/zkF8QH+2M5fDjXxAyFKbnx+TfEDcy+4kV5R8QKUdyh8rl3xAA3OdYEWcfEDAI602Ypx8QFzl+/1Y4nxAuplXglTyfEB4Mwfk3vt8QNwPmARNAn1ATh7KtwEEfUBkNpalBwx9QAS6ofcNFH1ACJETLxMcfUCC3yRESDh9QP+r3HSiPX1A5JIr3+hCfUAajSDnBEN9QEHMfXgDpH1AYhp2bwusfUADgi8W58R9QJKLCPqPfX5Ao+9eeeeCfkCtDDY8ooN+QBjyaXmmi35A0lkFAPWufkBoLLiSOLR+QA9O7fahzH5AAmrnyK3UfkD3wPQjBOR+QLCE8CVd5H5AbD3LvLhcf0CzNKrz/Fx/QP7tY88OXX9AkDE+HHlkf0ASbPGdvWR/QMWUjyfDbH9AnJAL0ch0f0BcDeb5znx/QBhg7fhhkX9Aws1VFmm4f0Byzegc7+R/QMGiAYf17H9ApAZoEvv0f0CjtA2JSQaAQC66P9dMCoBAKRj5YTEOgEB3yMmxTw6AQJ7oEdBcQoBAfvxwVqlCgECyz/M+JUaAQAaStRAnSoBAYJrh/ahNgEAs7/JaE1GAQM4uJEEMWYBAbGdbHThegEC0KwmGO2KAQLdrFFAAgoBAMdPmhROCgECuxGp8BoaAQDW4zDwMioBA0D6RmV6MgEC2QAMnDo6AQOR6kTkdj4BAUku2PLeRgECUGaZpBKKAQIeOBewHpoBA7oRMcxOvgED21NucUsGAQMPmmrFvyIBA7mGYAlPJgEC8YW1hTNGAQCgNPS1K2YBA/LL80pHagEDojuYqReGAQB7XVqA//4BAWibeV0EHgUDEdS4/Pg+BQHm9wD6pGoFAHoAlvDQfgUCSoFq9ryKBQJe8DJY2J4FApquVZSk/gUAEha+Cs2aBQG3pBpyiaoFA6YKMxKZugUDY2vv5noKBQPDltPRVj4FA7gqShlOfgUDAg21936KBQMaYOlvmqoFA78BVb0qvgUAAPkC86rKBQNrcD7AEyoFAWm2M12/MgUDcq/qIscyBQNILphgdz4FAo48EkWDPgUB6xCR5ydGBQLYfuU+p2oFAdvgHz6/igUBJSue4tg+CQLK4nc5hEoJAg5imKtgYgkBEc4Kx1iCCQKTZ68T6IYJAZqqb+P4lgkDcM6jt0iiCQKRvI1CNVoJAu/YhBJ9agkAfeZ98n1uCQBAyeBkPXYJASCCBprtfgkC4G1QAaGKCQJSsX92lYoJATBngTxVlgkDmEF6CwGeCQPiVzpNDiYJAehAXRL2PgkDuKklGQ5GCQFwtiaU8mYJAeiEr6A+hgkB03GTPO6GCQJ62/bRRwoJAN3pqitXigkCmZs9z3OqCQMfjlfLx8oJA0Djr/3kKg0AwhqQuuQqDQNwy/06+DoNAYIZA6XkRg0ACKkoQehmDQKaWdGpyIYNAUvLd5nEpg0BpeIfIazGDQBC1OlmISoNAAkMeWQuDg0CK2WtREouDQHaopKwYk4NArK9RTiWdg0BbboQJLwKEQPT+bz02CoRA5jLFbP9ohECI9w1Z/3CEQGyvmXPLd4RAVrIP52rZhEDiR1f3aeGEQJINFvRi6YRA1sL9WzbxhEDoywx/r/qEQEinGtNJ/IRA35fX6OL9hECj4mRFf/+EQCLhLaUYAYVAIvHcm0wEhUDmv4Z/iyqFQJyzwpk4LYVADAWLyOMvhUDss0dakTKFQFR8byE8NYVAb/Mac6BhhUAzvSQ1oWmFQJShgG6YcYVAT/XHOdZyhUB9AEhe3nqFQHf7ourtiYVAVismhjTqhUBU86/01fKFQKHgynfHqIZA3vNAzXrShkCRJCuwkSmHQP6zEHqRMYdA4nVcmIw5h0Aob5q4x7GHQAAQt4hWtodAcNM9kcm5h0AUIzskWbqHQCRjXNxbvodAaos0aMDBh0A+Kuf36OqHQJ5UsepZk4hA - - - - - - 6MU7Rq2ZbUUO2QlHozEwRSEYrEWx7bdFuo4RRomHdkVm/0VGxBtMRdlPbUU5XxdH/zOFRi5ImEU59VhFDvOhRj05nkXu1HZFsRFhRe+sC0bx1JNF0BYuRfOQEUaDG4tFSqq5RlvR9UVeEaZFmXFPRzuKfEYV3QlGhZSyRRcWaUWgpg1GInh2RV2Z/kb93GpFq/ECRgqJjUZiVY1Gft5jRUWhCki3umZFxhkfRgXTckcGHJFFVgtIRqXIx0U8WflFhhOqRaHeK0fPSURFH3q4RXxNskU6EGFFhV0vRd8SPUWh0q9Fbww2RSjUUkX/oo9FaKPARQfnY0USXV5G+5YURnvhRkUPmfVFlszHRfShr0aaWqVFOfFBRaU7a0Ui4vlGi7+WRnaAUkUmBXNFZF9KRn/+zUa+hitHtL59RrgyzEWHDotFl0KGRWWkAkYykqZFMCO2Rlw8kEVY9HdF4UeLRSdk9UaiAJZFT8HnRgGLkEZthVlFZaxfRey3qUX9EktFAslcRsqWTUU7PPNH2fOFRr1Ni0Wt+jVFbyjXRkeqjkX7Z0dGfhIqRajfBUcS+ItFSxNERXMcv0YhCGtFrhZKRvGKA0aejoxFu/iQRfuAXUWjYkBF1SBOSWGBxUa9y15F6X54RgDRfUWWSEZFgxhQSHJTh0Uds5FGbmZYRZXDY0XO1upFo3KSRVBjCkZHXIFFWpMZRsSClkVlD1BF32LeRWi3zUeprstGl61MRUj/rEVanbFG48TDRQiufEYXCbFFFRCCRbNQIUb+fphFZuKSRuhbMUZfNJ1FBn6LRVOwd0WKpxRGYBS4RbFAeUb+uItF8NhCRQFPoUVkCMBHOmmnRkSkV0VafINGp2rvSOY8dUgzMG9HjBcSRjP/J0cWsvJGI4YDRh5EnUVyhl1GY5MARvPxe0UKvatFGTVrRcx/XEY5icFF4K+IRbNEZ0XdhqVFqphYRY1EikVSco9FQjtBSilmJUaSjBFG7cKORUWzzknOHgFJpy+1R7FOY0YpxrlFFpiARdSGikd+fhRHyHrtRdFFJkfMmIVG8msURsqjkUXd3zxFGsG6RaBAQEbKGIFFA81IRb4YLUY+SkZFP61LRlTN40XZBCVHvAkbRuiPAkcHQlVGaEVqRklHdEWA+k5GhX81Ra7Rp0X4/jtFpVsFRlDwg0juA01FI1zOR+yAeUdLf15GZ6NkRUBqv0V2X0BGZ3RZRRcV00UV1YZGo4wOR51Ij0V/O89F1GcERgvaTUU9Yw9GrtmRRU1AsEXQa/BFBddERWqbtUc/OahGj15VRnVej0UtkvRF88/URUs9BEZPOu1Fi7JjRdSGNkWCdDdGhVhjRbtJh0XWQatFHOsHRg2cOEX/oeBFj0RRRQt3VEX82JFF+J/sRtdbxEV9mM9HY97GR7E7IkcE29NFmlCMRmP6SUV0hspHTyRoRXQbK0d6uLZGJ6CiRdzAq0VZw71F4wc1SBlPPkcjluxF3qOCRWFD0EW8c11F6jnzRwe3Q0c4Kg5HUsQLRnlkbkW37x5G5Eq4R/evtEYpSZRFOvNqRYHTUkZsPmpFNS7qRabTZUVsaIdFvMoCR9swhEZq/g5GQW9+RaHA5kXQy2tG9p6FRhHkHEbgWbdFW6dLRZW5WkfKTTVHUn7LRhH4JEYqiVpFC20GR0lAjEammw9G9I8NRwcXAEZIWSpF6sRTRW67YUWfwB1FhzZBReM9C0ZJ9bVF3cZhRW3xFEb0jk5GBxykRVyoEEZ3/LFFk99nRTdtw0WMu55F - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - TtTZzm/BckBuVFp148JyQCItR6s8w3JAxOKRJsTEckDSIXEkENJyQD5XUG1D0nJAvvIKdc3fckB8NKRnt+ByQOyjb21P4nJATJ9zqY/ickCEpoTCI+NyQA+bunzk6nJAuugG3MnxckCE141P7/JyQCxQCicF+3JAnBAebsL/ckDEV8bg+QBzQCTDzpHPAnNA3gBM0wwDc0CINPHG+gNzQIOS9Ki8EnNAbh1X6AYUc0CGpFQIeh9zQKmTLG+jIHNApi2g5Tghc0DW8lXRDyNzQLiFRJvPJHNA+nVZk1kxc0Biv8+MzzJzQEbZAVK5P3NABEIFxuJAc0BwMXcgeUFzQOAizqZ6RHNAEztZh5tRc0BMHG7AQFNzQE+3h5ekU3NAFlI13nxUc0Dw0ocn+l9zQKwYl6uNYHNAQoG4yzhjc0CQiQCkGnNzQMHbk6+4dHNAdKlgK0x1c0Dn5m4xI3tzQBS2HPV4gHNARLKWaA6Bc0AUTClaXYJzQOSW7G47g3NAwFWzFYmQc0BgsNFnTZJzQAOeTJ73lHNAptwXJ7mgc0Cy1Ng4WqJzQLaFdfAGpXNAyM8htdWwc0C0TSc3t7NzQHDu6gMOtHNAGjDsufbAc0Cmfc/Bz8JzQO4Qe5fX0XNAq+zrsPjRc0C6qpUE3NJzQBTVA7H203NArtGIHePUc0BkcZNAOOFzQGWiWANm4XNARI6i43vic0C++IoCE+NzQCqb3uM39HNALv61SOUAdEARvn72eAF0QC9LWl9QE3RADdFAKVkbdEA2FXtcuiF0QBJxPchVMHRAjJ+qrMhBdEBG1N2ceEN0QMgWAMj3VHRASNopPSFddEBJgyOpuGB0QODfQAMJYnRAXn9Ae3pidEB+vqldt2Z0QI5y/xXGZ3RAXF3TCdRndECk3EPcH210QAx4CIgicHRA/LCSCEFxdEAboHMQOXN0QDohcn84dXRAzWde4veAdEBMhUq5TYF0QGr/8E8WkHRAwM07SM6gdEDWkb13u6J0QPyPcF0Po3RA1hlTMwqwdECUgku7w7B0QKXNb1BxsnRACUBY/fuydEA/E2cKybd0QF7ruXziwHRAOALSQnnBdEAS1fu/6sF0QFgrA0W3xHRA8ke1hcjNdEBuHW5DItN0QMZChOHN1HRAGhetjSPhdEB0OHN1uOF0QBb6x66P43RAgKSsFMLwdEBgNkmNjfN0QNyLfzekAHVAwRvGkF0CdUAAIzc3pQJ1QGCkERmYEHVAsIHx0J0idUD6g3aAqjJ1QFDaXt/LNXVAxXXKltxCdUCp3b9LdlV1QOhv/QE4YXVAkHyUcwRjdUAA6J9J/GN1QMw5v9aibXVAmts0YY10dUA6o2rPeIF1QBroQiOtgXVAyKAMsOyCdUCoanU5p4N1QAwnS3mbhHVA/IcSyz24dUDL80ZdmL11QEFwx1z7wXVAWzPe58vTdUBIp4goDOF1QMZ9YSlJAnZA8nqKopECdkDMsvfJ0QN2QJaizmYdCHZAprtDYG0NdkDQlOWUxxJ2QLBafTgXGHZAlKuGSokidkDK/y+AkCR2QJgH865KK3ZASHHgqR8xdkB3tBTnUzN2QMQD9n24M3ZAqVj3Yk0+dkBKweS2HkF2QLLjx6vIQnZAJheLa6lDdkD3eRb8eER2QKUBDNkRUXZAezTnic1UdkDYiijw31t2QIwt8k3bZHZA0YZLVpCDdkDhaFOm6512QGFIr3xFo3ZAnPJUj42ndkBVEyJun6h2QIilzhyRq3ZAwYjjisGydkA67jwtDbR2QFKmzSPQznZAjnxlRpHzdkD5hDfeMQJ3QIPn3uYAEndA4DoXow8id0AKFD88DTV3QJy0U+ycQXdAeBHN6o9Dd0B0+tDYJkR3QKRzzs4aRXdAXBK0O0tRd0AslqYMklF3QDWIHNu8U3dAiuGJECpVd0CiKAZQj2F3QB4Ou+7IY3dAKBhC8idvd0CyXHLGIn93QPQQ5ap6gndA+tEaXfyjd0A0Lr7J+PJ3QExMB1JuInhAHpaICtsweEAakDgSKkJ4QE46ZFwRRHhAhmSvIXpFeECKQbCN1kh4QHoNCHMxTnhAeKJ/kstReEA+/UiEhVN4QPgZ5YmHVXhASNBLP/lgeEBAa3c0t2F4QGcEx4JddHhA0s5buIt0eEBxFMrwsHR4QHLBmY7DdHhARYUqscZ4eEB+3mez9nt4QEArmvwffnhAXtv0Y19/eED+p3dPpoF4QCOjYDZ8g3hAFNvkEZqEeEDN7BPF1oh4QP4t1QuYkXhA2uUASqiUeEChxLMcAKR4QCHtVI/MwHhA/PEj27fUeEDtueudAvR4QPKfzDCM9XhAfGzu+ZoFeUAeOz1jtCh5QFiB7OS2M3lA8Ar6e707eUBoOOyD+kJ5QGKPu/aVUnlAyFBWf8xUeUCkfY3S3GR5QEyK3BINa3lAAMTa7BSTeUBPyyc6wbJ5QF5K8mRC1HlA3vKOO8zVeUDOXkcAUOR5QOb09Xz+A3pAeGghD5EEekB/XokBKzN6QHjbtbwMNXpACOnb0RpFekAIqB+oJ1V6QMbJc9UjXHpAy/pcvRqjekCUvrhYDrN6QMwXvfAMtnpAgV+qyhK3ekAKOWU9Ert6QKwTI7EZv3pAtqzyKBvGekAYix4EZeF6QAdswEg27npAepSccl7xekCko8Bwwfh6QF9PB+d7BHtA2gT2JSkOe0B7CmogTBV7QOooTlFaJXtAliciM8hve0DxtbdVCa97QLoV2TN5xntAJARh/LLRe0CqwKy7LdJ7QHL5tr8m5HtA1nGYNIz1e0AgWGwk2gF8QLBL33uaBXxA9Pba2tIRfEB6yoNJzkF8QMxRgRwEc3xAvNeZFcaNfECe9QftHpN8QOfAEKNYlHxAckoizCuXfEBmVKyKOpx8QEtVvWRdnHxA6H7cWsCyfEAVt7JbWOJ8QOPn26wV8nxAQqaVc1XyfEDbRGbATAJ9QEp15mXHA31AHO7RbAEEfUAq752hMgR9QO5Idj8HDH1AoDYho0QSfUBDOFpZDhR9QEdUDHsSHH1A+ayOY0g4fUA0Qnm9oj19QFKPlyb9Qn1ARjheJkRIfUCW0EqHsHB9QJ7Px58fc31AdN6ayX54fUDuGJgSIYN9QCbbRVkCpH1AzqbbCQqsfUABqcduJbd9QGStGP8mu31ALmu0HOnEfUCse2WskfV9QBqR1IlVVX5AciseKWBlfkCh8UJzi31+QGReM8ifg35A4vqffKiLfkDCg2N4lJN+QCh3pU2zk35AjsfwrGqbfkB8mt/hJqV+QPZSaZr3rn5A2m0ji7mwfkDuth+qULR+QLyccHGTuX5AudFvfErLfkAIGmZnoMx+QIZbvKal3H5AyHA4sgPffkB8e6DvBeR+QJ4ty5tb5H5Aqs1LpQjofkDUzhqeCOx+QF9PEvQO8H5ARvAuWUIJf0DovisCWFx/QAKSM+RzXH9Anh4vnbhcf0Dqslkj7Vx/QM10bygNXX9AAgKrVnhkf0Bua83lvWR/QFA8G9zDbH9ANlNaJbZxf0Afxa/tyXR/QHyDfuDOfH9A9uRtI6aDf0CNyeJoYpF/QEht/FdcoX9AvoitdGy4f0BSjcjGv71/QBXIB5/+vn9A2IcC9gvDf0BeeEkO7+R/QBxxIaj27H9Aum+T16T0f0DSCYjR+PR/QC7N1p5JBoBAsuEu1k0KgED+VHKmMA6AQG1dnSdSDoBADszrxzMSgEBRIWYKXTqAQBmZ6vgIPYBADp9vgl9CgEC+CkJFqUKAQL5zPxgjRoBA1u+59idKgEAfvDGoqE2AQLYHONvnUIBAaaIb3hNRgED8qA5caFaAQHTFniYlWIBAdLx7oQ1ZgECwZkSWa1qAQDpeoOQ3XoBAbwuNRj1igEAu0x29SmqAQLMr53f3bIBAOyZ3cihvgED/ZJz8KXeAQJKcgtcnf4BA9g5XFwCCgEBGGog5EoKAQJ1CJQ4GhoBA4F9e8AmKgECMaE26XoyAQHwgrCcHjoBApmT7TR2PgEC4nuhiupGAQIJb3eOGkoBAyOsNcB+XgEByJI/s0JyAQDsz81aHqYBA0A0rPROvgEB6B0nv2LGAQFg216mQsoBA1pTqy1KzgEAyr6SqBbyAQPxbXcZ6vYBAA07zZze+gEB8JQSNUsGAQDTb2Dy2x4BAp4uJvCLJgEDxWsN+U8mAQPlAl1JM0YBA/2oN2knZgECmoNQdROGAQLmrXunJ5IBAsmflb4blgEDuqhBhNuaAQOBVSin36IBATKSvO0vvgECOYfzXZvKAQFA+cww984BAJPRVoWr2gEAe9WdRaPqAQH7JF7E//4BAOQ1M1T8HgUBSz6RsPQ+BQCSYitOoGoFATQ4z5zQfgUD0D7u0UiKBQKLTXxewIoFA+FdLfDYngUCsnIblMS+BQAC4Z/+7MYFAJX8V074ygUALqVQLKT+BQJq9aScwR4FAVYXIQLNmgUAgXHvQo2qBQACLTduoboFAbS9X/MJ0gUAcPKr2+XmBQHyTntY8foFAZDOi85R/gUDNPRDU6ICBQFJlSCedgoFAcmCwz1WPgUCF+feSVpeBQDQU3CxUn4FAxSm9TemhgUBp6jRf36KBQAhgFdZtqIFAVVKyl+aqgUAQ6G6lSq+BQJx+mU6Pr4FAPuWjyD2ygUAW1tvD6rKBQEjcnVFMt4FA8Opn7QPKgUDM2HUGgsqBQLFve4VvzIFAmDh24rHMgUDMWnXEHc+BQGCirsBez4FAur57RsjRgUCMx8C9ftOBQAAElxCp2oFA2Puhq6/igUAtk++ZAgmCQL+4/Xi1D4JAWX0P5WESgkBx9gsLDhWCQKKeuO3YGIJAJno4SdYggkC2sx2C+iGCQMR+Cf79JYJArvQRatEogkAu2WxEczCCQKHVUVIEToJAFmz0q59PgkDkVuZmjlaCQKTrayqfWoJA0lUA9qBbgkAeWItqblyCQCZR9rIOXYJAIhcLQ7tfgkAZ6iIJaGKCQNRpHlCkYoJAFibeaxRlgkAfZQLTmWeCQJCIDHzAZ4JA3ou0y3dogkApeMlh036CQCHwpTlDiYJAFnyGuUORgkDcCf3MPJmCQDjwDgR+n4JA1xq8PQ+hgkDflRmjOqGCQD4GccgLqYJABN2wcTWpgkBdt22LU7CCQDBNihEGsYJAvrMQwlHCgkDfCk757MWCQLqknV/V4oJAOoMklRnmgkDUEG0U3OqCQHU5nSL08oJAMAB+IxUDg0BqXRDBeQqDQCUnVIq4CoNAAlDtprwOg0C4Y9qYeRGDQAWlilF6GYNAxLMykXMhg0BydyXdcCmDQJSNInxrMYNAhh6i2IdKg0De9YQckFKDQLMdYe/ggYNA4L3Q+gqDg0BOeQ/8EYuDQOlo7dEWk4NATtLVrXeag0AUefJoIp2DQCReUEUr84NAPLJCCi8ChEBQfEFfNgqEQHTjuPSZKoRAL+PKzP9ohEDMtxnS5WqEQKV7WALpboRAIN/Qm/1whECeT7KABnSEQNpo46XKd4RA5udQmvd4hEDyuDmid3qEQNQu1ssmfYRAyHD5Ej2qhEC7xlCWatmEQHBYY5Vp4YRAoqIzj2PphEAcbEUSNfGEQJRHXTBj8YRAWhQdqjf5hEC4XPVMrvqEQDIe8idJ/IRA5gTKXuP9hEBmH7z2ff+EQBpOq/MYAYVAWKeKkbQChUByfa7xSwSFQCL6lS13F4VA5n7ISkEehUBGjITziiqFQLRyk+g3LYVA67SC7eMvhUDUatqLkDKFQFWSsQmBTYVAXKDMnqBhhUB6EajRn2mFQPLHO0aZcYVAb0wdEdZyhUA6ze1itnOFQFghYXGXeYVAfKXOJt56hUD6ZJX664mFQEQ9lvjtjYVAUDaLHC/mhUAEE5GYMuqFQKIjBVPU8oVAQPbVVYH1hUC+QWie2vqFQHRFwWbMpoZAfjaWg8+ohkBm+11yzqqGQIDcsD3QrYZAEKqoHnywhkDWbZgvKLOGQGrmqvWQKYdAWiC8H5Ixh0B71oOfgjeHQL3eWPmJOYdAlTtqTTdnh0CBzJdcOmuHQJhFNNCMk4dAZJLncMexh0Dj3qnyVbaHQFfjVgjIuYdAKZlOplm6h0D5DPEgWr6HQIK9FC3AwYdAbji28MLJh0CWtwms4OaHQJBITy7p6odA3hTnZXtyiECmoKS/f3aIQDY7QzZZk4hADizn7eDRiEA= + KBZXds7jZUAtECBNt2JpQIkw7CrX8nJABcaPA8rhc0CJjsh+LwR6QAUkbFci83pAZj+ASB2SgECodC7co5qBQCCSYECVkoRAPFXSF/uihUC0cgR87JqIQNA1dlNSq4lASFOot0OjjECKiFZLyquNQPdaEDQrYpBAVkA56uedkEB3cgdJgSaSQNZXMP89YpJA82FH4Jzyk0AzgSD7eWKUQKTjLlXG/pVA - + - ShIPRu+H9UQu5BFFOSgHRUZ4y0TPkxtHr7UERQB+AEU5oYNFPfiyRZsvJEU1FNlFyip2RR/n20TK5u9FLFsWRRRIz0TLwVVFvg0mRc4AL0dcykhGYkmrReCyFUXFTv1EtEp1Rqk8AUWDipZFza/dRNa+ukTOxEBFSQy/RB+rTEUsK/NFrzZ6RU8f3kRRIJ1FBjasRHViAEWI6MtElCANRTXnGEa/dttEi/IBRVCYC0WRGLNG4osORdl8m0VOv+tEVs39RKvOREcQ4nBGC9HmRRre6UXKBB1FSzOcRHOUT0XX1RdFbzTtRMoCBEbFD29FUVirRVEozUT5R7hEVUmDRdvC6UVPyedEmx3tRAny3kT4Bb1EPjvRRDoJU0a0mUlGtzz7RC0wSkVlZvREQlVZRVrqyUSD8QFFvv77RysBPUWL8MpFJ9lsR/xYMUWauzdG9T0PRlhqfUU2jb1FJkU3R1S030Q8E8dEOwIQRVElDkb1Q4NFDzjVRKCF4kSdhz1FLfzURFIWwERxJTNFkgDMRAzYAUX61ipFWMfFRD8VwESy+DVFbmAuRW+45EQzq8VE9QYjRSSax0Ss61VFbzOyRA2htUVjiftEAH47RfDYEEUqdr9Euwc1Rs0vJEVbMCZFzRbOROrH6kTeJeFEAucFRZNfA0VQAi9FK8MhRm4SJkVPQvBFJbm5RCvve0VkfPpE2JAeRnjMVUVywdBE+cXcRA7lwUQifolFXK+DRY+g40RzU6ZFfP0rRmyynkULDcdE/SBARVxcBkb31LxFSEnRRsY29EQA49REfMRZRWYjmEX2KJRFcvKKRcyRmEVBxRxFUjdERoACA0UMLN9EUkwCRUEm2UYV/3VGngvBRM9wH0V68P1EqVoQRYtjekWVpllFq68lRRVjvUSyvHdGVCxZRcOw6kcua4hGISfHRA6JTEV5Is1GtTKhRaauMkZYE0hGL6RDRSa0IkX8ZCBFcOM7RS3sz0QzhPlEGv62RFaJMUXLJIhFs0aaRWsf5UX4zAtFDjE1RougvEUenQZFi1WHRWpfu0QQczJFN8UdRZ8cbEV1cbFFR2FXSWmqF0YAOV1FnpOtRpR6X0W+4kVGxJIwRTAJ/kQTCmtFHHZjSEwd+ETndlpFtMGqRnsls0TBmehE7uLmRKZlfUWCs/9FBywjRYaQGEV/dSNG05IARfK7tURbIGBFf8OLRSVKDEUGvNFEyG/FRJdSS0V1h+5FZfw2RXig2kSC7zJFDHlERTq4HkW02uRH67LtRkdbQ0XjKcNEEZ0BRcwWiEbu/bdF+nthRjVehUW2MFVFnHkFRUE27USzCOlEYFT/RHUpJ0UowotFGLTkRJ6IM0aTCglFuXubRd3rzUSJ69dEuVYbRTIpqETPw9NFHFS0RmppO0YhN8RFfZiGRdi+o0W3NOhEHwzCRb+PrkXuXkBFdtIeRRtR1kSMNoBFxVbyRKAyz0crLt1E6wbBRowDjkZ7LRVFb1e6SHvyW0VDFDlIuUwhRWCmR0dYDvxFTx8tRy9dvkbbMQ5GBQxHRVo1FkV1bjJFISoBRWzxbkXeADRGbpikRX/4KUUttCJFU4tQRcex9ERmnKhF+oykRE6/w0Vlm3VG4cfQRb1BEEVk7ctEfqJgRRRG7URh4XBFtUYLRTAbJ0X4py5Fc7faRJ+lXUVTEKpEDwhLRcpYHkVEIohFnuWLRV4KD0W1xQBF47jRRC0EOUWn2ghGgDWjSXGTR0aT9pRFEPNjRcxNIkkRd1dI692ARTTSG0fk8FpFSNGvRExQzUU8mg5FK1gvRbTtBUU5ma9Ema/TRMGS5UZ4ajlG0VCkRGvNTUUy1pRGOM/wRa1AaUUUJ+xEOkXXRJjjCEU7KuZEh0qYRWxH70U8fR5F23wZRYNIqUV27x9FQPRlRsJ0RUWMmxBFAy2gRXpvB0UwCGtFdxBURRUT90R/W+xEdX4sRc2MzkR7ZxJFJoJRRoZupkVwXDJGsOiTRbUbGUbMUttErhwkRungRUUHRshEluQxRWdY4USxyQFFupcbRgW1+ES1IQRFrvjeRNn730SIZSFFc0QHRQKMnkixmQtFknC3REJgBUjDbolHHpWNRnzNqkX/jctEJSa1RFJ4rkSaisFEYY8DRYL7LUVb9sBEsRXURAvz80Qz8VxG+wqVRSnKzEVoWSpHZ0kGR/RjyEQ42CZGEpTmRS70HUVo7wRFIvITRSzC9UWZhQdFxb0sRd+ut0UezwhFDfkERa7dJ0WeFGtFTeo3RZrpMkXyJBRF7SHrRcxgUEW5+FdFw8kmRXUqT0gkfwdFzFNLR4BbbUZoPOlEYlqzRM6+4EW5RFlF6HznRT1PHkXYQ55FV7i2Rcnhi0VxPURFj0BKRaxP1ES5UC1GwvEIRcSIuERwhilGa94ZRhXhU0Uu/C1GUsg2RW/fsUVQkOVEGkwXRWrVFUXiHFVFAwcLRWcnM0Xt+5NG7z2QRSA1HUUwf/1HQSjnRzeyakdaYJpFsTOTRgSg4UQwWaVFk7DjRJpp40QCPBlIEyqQR+n/GEclPvpEbTnIRai7FUZyzwlFGFyIRQMeuURbxQJFKgoHRoZR8EQU2etHMTXqRDspAEe8U61FxnbfRMb98kQ+M3NF++4dRSL0NUhXZLBHEZxkRx1cW0YSwIxF60ZWRmMDRkXvtr1EwfOLR0DIkkbbcVJFFejuRDuSWkW9ANdE+h8mRvDHbkUZOrdEAIq4RSoQaUX6ch5FuowdRcmd/0QDMbNF8iXxREirJ0WbYRdFFX/GRMp4NUfs84JGfE94RgF+UUWuQVNFUL6lRKZb+EZK/DNHP/Q7RwUv2kZq6WlGFaXgRbrVPEUbK/NE491PRcXxXUYGFltG2rj8RUs5c0VVJsZEcjlBR3TesUaUUkpGYvR7Rhl/v0Q/vI9FFxpfRU+4QEUhZt5E5v+VRf5gKkWDNylFPJLPRPLiv0SXr+tEeKpDRS6wCkWIEItFk3DTRR0HOUXL3UBG82TYRX1PC0VtgnlFLg4cRVDyS0V9LstES9ApRjq+j0Ygx5pFY7pIRr0JrkUfHmBFx7XgRJ8pvEQWK8pFrDgWRZmTBUV5akhFrhQ1RQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - QMnuv27BckDYGXu8TsJyQHCGacflwnJAnJ5drzvDckDIZCiFw8RyQGyoCq3xz3JAJeh5pxHSckCxAD1qQ9JyQMyWjRrP33JAtjQQebjgckABFQFjTeFyQBQQSY9Q4nJAGNx104/ickAiIXI+5upyQNUz/1zI8XJAU9zAbrbzckAlNya3o/RyQNTiqJYE+3JAjBi4UMP/ckCu2EuM0AJzQBb7DpwOA3NAuHlxhvoDc0Br4j0zBxJzQKZD4KEkEnNAGOM4PbwSc0CGn3IVBhRzQEDaDpl6H3NAHLzGXqYgc0DT4qjNOCFzQDynhLzGInNATASTvxAjc0AWztfnziRzQDRjXjVHMXNAFcuLcNYzc0AsVQrKODRzQN2KS/nbNHNA2yd5lLk/c0DQQQzmdkFzQMVHUAZ6RHNAUMG4e5xRc0B8QlZ2QFNzQFZCORakU3NAjANjSnhUc0AqTOYakGBzQOzZaCMeYnNAhGDOJzpjc0BmRKzSjWNzQJfCSWTecXNA4tl2hFFyc0CWittXGnNzQMrqstR4gHNAefiRoqSAc0CaZGlVCoFzQEiEpDddgnNArX45aTuDc0C4pO8VDYRzQELsfwuKkHNAvCJJ/RuSc0DeOqEwTZJzQLGb9UzQknNALDLi12CUc0AUsSFn95RzQCQTKBW5oHNABrYrd1qic0DvFmk5l6JzQPxG31YEpXNArR1bxtmwc0BMAwLoD7NzQLy2QE+2s3NA7EgJrQy0c0COadvA+cBzQOYD2YjPwnNAhLpdrtfRc0Borigm+NFzQCBo4Knh1HNA8IJd/qLgc0C394uROOFzQFkmquTn4XNAH05OGnric0And2GBEuNzQKb+HFcw9HNAn2PotuIAdEAKbk+IeAF0QKsqEe+jAXRApYHiv7sCdECEWOoaehF0QNtQOgxPE3RAbKmzelgbdEAQcMUKSyB0QHpWI5QlIXRApNhJ7LchdEBTaIvEujJ0QOSMZFfIQXRAktT1CV9CdEAkeBbGO0N0QLun0IqPU3RA6MVsCvZUdECyHNVOIV10QAinavS4YHRAyJ3e+ghidEAb9WhSemJ0QCf2Pxm6Y3RAoB+VIU1kdECUDS7osmZ0QLihSMnFZ3RAoppGCtVndEBMwrAgIG10QIDFuoQjcHRAlnhI+l5wdEDc3Q1cQXF0QOeImAN7cnRAdEEeSjpzdECysg5u+YB0QDytV88QgXRAOLsS602BdEB0EcRcR4J0QED/Xpgmg3RA+vnKaxaQdEDckkPt7J90QLDYjimioHRA03oYetCgdEDUjWxNt6J0QOa1PCYQo3RAcSmei8KwdEBpkfABb7J0QFqwRN36snRA2bKI8uLAdEDSTQsVeMF0QIspcRC7wnRAJ07eWFHDdEAFbHKIeMR0QJ304263xHRAyhUnYMrNdEDEl66TueB0QBQn4ri34XRAgJzfVZDjdECEEFY0jvN0QD7wWZKmAHVAjVLy+2IBdUCdEC2WXQJ1QJQd9gmlAnVAGlXaipUQdUDOyefjzxJ1QJbC570jFHVAyn5LPuEfdUCcH1xwnSJ1QHpEDGmrMnVAcGsGKMw1dUDie62h30J1QL9pnda6Q3VAEGqAdXZVdUDtpCinDmB1QGEioJY4YXVAHSDVrwJjdUDCaLAF/GN1QMiI6Mp3cnVAGsvLZ410dUAOSafAT4B1QP6qLLV5gXVAeLnQjq2BdUB7bcSEuoJ1QAoe8AHpgnVAho1/zqWDdUCal6p2moR1QPY4mui5kXVAAD/IIJGgdUC9JwxUuKF1QJKEfDw9uHVAWnPCG5m9dUC6dxp9zMB1QN+TAcL1wXVADAdLYTvDdUCLcTNyCOJ1QJ6v2TIlAHZAv4VrmkgCdkBZU10NlAJ2QLuPm5fPA3ZASrj2ahwIdkBKIi8JbA12QFf9htjKEnZAFhpzxEwUdkC+HiswDBZ2QNIZqxKKInZAcubE8I8kdkCLXY+ySyt2QMqkhigfMXZAoPLiOrozdkDo1i6bTT52QKrJqAQeQXZABgFszchCdkDS+pYQfEN2QHKPu8anQ3ZAHmh3vHlEdkCejaRQElF2QH+zPBfNVHZAUbecHN9bdkDktL8e22R2QCBCa5aRg3ZAaMvRheuddkC6gkHeRaN2QEb1uwSPp3ZAhtTWbJ6odkBkRtApkqt2QCyVnvvAsnZAJuzCDQ20dkC4c1o6zs52QHxl3LLx4XZAYh4j7pDzdkBcNrYLqQN3QILLeC4BEndAhEOM/wwid0DpNzAMozN3QFxgfhINNXdA7EIYY51Bd0BRtgAEk0N3QP+PGdMlRHdAoiAqHhtFd0DyZpdXSlF3QDynI5CSUXdA7h1aCLxTd0BwwkOKj2F3QFEN08Unb3dADsyM83eCd0A6YzEQS5R3QPL5K0IApHdALAnonRbDd0BXaIp79/J3QKwCvNp5E3hALbA4DG4ieEBwBKNliiN4QNgM//fSI3hA2KOGw6QkeEDrxQp32zB4QK0y4c4pQnhAo86bchBEeEAjJxpiekV4QHDZHerVSHhAVFss6DNOeECRqnmtylF4QHe9q9WIVXhAsK10S/pgeEDauD/WtWF4QOC2TiECY3hACquIxYt0eEDi2TXExXh4QEq1pAv1e3hAzqNPSCB+eECwuzHQXX94QOOH1wikgXhAxCea+XuDeEBwYOmr/oN4QBIvqeWZhHhA33VvzZaReEDI0BYCqJR4QMy1Dzb+o3hACif7CrOkeED46pPozMB4QIiOCfi31HhAewDNagL0eEBOaAqbI/R4QEwYJSiM9XhAusGQQOkDeUBoCofiEQR5QLk4X5eZBXlAekspfrwjeUDiCT5Rsih5QI6Yo1sMLnlA63Hpm7YzeUDKiqyLvTt5QC+2xhz6Q3lA1+NZYJlSeUBc9TJSzFR5QGRiMmZCc3lAukcpJBCYeUDJ398zwLJ5QA42G7pB1HlAaws0cM3VeUB4s8bATeR5QLj+BIQS9HlAvDHplvwDekAiYlaUkQR6QItO1YQlM3pAxgGCQQw1ekDaC8dpGkV6QKaCIX4lVXpALfBvpSBcekCoW31MLGR6QKAGa0vXi3pANN5SlierekB2x+nYDbN6QKpuuqwMtnpAcGkfjRG3ekCGtyEBErt6QJjashYbv3pA5NE7GxnGekCmmOLKZOF6QEji4KE37npAQfU2jRXxekCQfyk+W/F6QPqdSeq++HpAqv1NWh3+ekB0capHewR7QAbRhElMFXtAFMd21lsle0CC5EvfKCl7QCjeGj6QPntAOl65FGBSe0D5r6NsyG97QIKPMwW2j3tAxorsDiSVe0DqhAoUe8Z7QCaHK5j/43tAB55VrSbke0CcssPqi/V7QFa8jZrYAXxA9Dq43fQBfED3BuazFQR8QIy739CZBXxAd7qR1tARfEA2X35lzEF8QFRTxmgjU3xA/ksrv+ZTfEA4oz8Ew418QA0/Yogok3xAG1qyAVCUfEAghhJGL5d8QGQEiFX5pHxAoSrh6MGyfEBaZgeuZ8R8QODOaPVX4nxA79+eOxnyfED0/f7GVPJ8QD5diD/d+3xAhkCJMQECfUAZODDJSwJ9QIrkkHUABH1A2dTKbQYMfUDO8JXxRRJ9QD9MNrMNFH1AMOG89xQcfUCtDJGBEyR9QHK2VjVIOH1AYMwuVqE9fUDgTkSK7kJ9QF4uQaY9SH1AUiBN1lhIfUB0jCI9n019QMQQKvCvcH1AZPgwviJzfUBgGcDsenh9QGcTOcsef31AJqjT5AGkfUCYEiZLpaR9QNqnRlbjq31AxG1lPwmsfUBah43nD7R9QGh52aEit31A7qXOria7fUDKB0rk58R9QAae3D1cyH1AMM9GAPrLfUDgw9b4nut9QIv37oOO9X1Auu6luRD/fUBm0F4XVFV+QIHEH7dfZX5A+mWjKo19fkBybayF54J+QBd/JJufg35AMqMzLKaLfkAcLYJ4kZN+QNhCEgGyk35AUuei4JmUfkCQLYbe+pl+QEjXZ2a7nH5AYUc9efiufkB2Qopzdq9+QOaZBT0ztH5A8O8hW6y5fkDi1U9w0MR+QLrv0VFGy35ALq6Us5/MfkBULQNIT9N+QA46b+sA335AoMgSTwPkfkDhR+07WOR+QKSemkcH6H5Aqp8r67bpfkBMzBoXCux+QMaZbOoH8H5ATOLt/uMDf0DwV0DhQQl/QM+57f+3XH9A8H4bxPpcf0DULitpvWR/QCY/C+XDbH9AHWrOZ7Vxf0AkeQGIyXR/QB1BZp7OfH9AngNy+bCBf0C+R8O0oYN/QBPql6PPhH9APPdtR2KRf0AcTjZ6ppF/QLyJGcJcoX9AGONJn1Sxf0BcvqtKaLh/QKoGu0nEvX9A/OudYfS+f0AqEdgwGsN/QKe23qdnyH9A3pLsFvDkf0B87Hf48+x/QBPoi2r89H9AHd8ao5r3f0DkTPZPzgWAQELJiwZJBoBABpUd2UwKgEABzIPaMQ6AQCLm4UUjG4BAJTDMflw6gEAfIN/QBj2AQBBQnkazP4BAgt+OGl5CgEDiMJe6qEKAQKb1f0IjRoBA8A/GnVJGgEC/FAibp02AQKJ3UqzoUIBAA4CwdRNRgEAMz8KUpFWAQGYHllloVoBAVtIJegNYgEDYP2xbJViAQLbOjx3lWIBAbizlvg1ZgEAG7nqX1lmAQP74NQVrWoBAL7LEuTdegEBk00nFOmKAQGQC2/lJaoBABvhADvdsgEAxApHEJm+AQNZFXOgod4BAmMJfMil/gEDCsGv8/oGAQIo+xoYSgoBAD12v7QaGgECmcIhnDYqAQM9xdtJejIBAXJQRuIaNgEDLwJycLI6AQDaWlBYej4BAoCT8QbqRgEBR0cTmYJSAQLxEFfYdl4BAHvHR55OagEBa3lnhHJ+AQBay9lo4poBAqR0iX4apgEBTa1bf+q6AQF8t9icTr4BAZbi/oKqvgEDU3mhkaLCAQDat6NgasYBAF/Fy+IGygEAOENBoFLeAQD56JnxLu4BAVJ0HSni9gEDm0WlgUsGAQMZuq6GewoBANlpb2ffGgEA9zfwlU8mAQA+lzuXVyYBA9hD6kTDKgEC+QP03kcqAQHhhorkEz4BA5Im45SPRgEAiRwF0TNGAQEgR4/Ff0YBA3qGw7BnZgEDpJXWsSdmAQH4xB1AI3IBAENM6DEThgEA1v2p5aeWAQHKAPw326IBAmvHnj0vvgEAasFvMZ/KAQPgjNlM884BAkjHT72r2gED4sBqQP/+AQAMfhyA3AYFAdOAYT0AHgUBUIpUpPg+BQA7+eV2oGoFADHdpvQYfgUBCiSpMNB+BQMbnVmSvIoFA9A037jQngUAF9wTWsyqBQA5/c27wLIFAeIh5sQEvgUDYfDvZLy+BQKphPpS9MYFAk+//9bwygUBrSju2KD+BQPbK5TTRRIFAVgTOwytHgUAB9nbkNFmBQGSsjQJJY4FAQyU3cbJmgUAi4a4Jq2eBQMaKPwM7aoFArNpxUKFqgUDQnat6pm6BQFY9x9tkc4FAr3AWND5+gUDMbeLQlH+BQGy7T8/Cf4FAks1fOuyAgUBcRkH7D4eBQKQvb5hQjoFANvWRhFWPgUDM7dGQVpeBQDLXZlhWn4FALXNEGumhgUDi3u7MraKBQFfAjsjeooFA/nx1jDqjgUA8zmfWbKiBQJ3EZBLmqoFAEtp2HEqvgUAC5ETMh6+BQEhVYKs8soFAkvBUQeqygUAmFjgA5bSBQOyceddJt4FAyxXBDO23gUDe0YjQ7rqBQCjIiGCUvoFAmNJKVMO+gUAh7VS8zcSBQHFkw90kxoFAakXH60fHgUAUV2CxA8qBQEJPqWGDyoFAOJbCY27MgUAkvy+hscyBQIQbIfMcz4FA2KRzw1DPgUARTY/qx9GBQMnzypv50YFA0OH7K4rSgUAC8CVofdOBQI8jQuen2oFARvocua3igUAg+y/WtA+CQPAXDM5hEoJAOmTuRQ8VgkAfzsznuheCQBKm2N7XGIJAOTD3ndgggkC80ngQ+iGCQEjGtW7VIoJAZw32iP0lgkA0FJme0CiCQGLKg2wCLYJAFPBJZXIwgkAK9lRuaECCQP+OgghOSoJAuirgTT1RgkCZn8SrjVaCQGwdyjZFWYJAEBkOLoxagkDA/y0koFqCQFSkq0vRWoJA6F6YIqBbgkAufIZ6bVyCQGvy8BYOXYJACHbE0TddgkCAXR+pk16CQJDREJa6X4JA3uHRNmdigkCsVMjzo2KCQHY6/JUTZYJAwPibn8FngkB+eXDdamiCQJ6lyUgDaoJAaBt5hd9ugkCSm9H8dHSCQCSCmyUEdoJAZZfyYKB3gkDqpW5DBYeCQOk5p9JCiYJArIFZJkORgkDya3AoPJmCQLbVkMsPmoJAyU6h9w6hgkBcy26kOqGCQDFH80b7oYJAehkYKw2pgkB7SQpIMamCQDe9xRdRsIJAxrvBAwexgkC8waT1UMKCQATUv2vsxYJAnAkzQVfKgkCdkXDH1OKCQO13UJHb6oJATxUfUvPygkAP9PfP+vqCQCK+fMwTA4NAoPhgsRQKg0DurXEXuQqDQObK/sW8DoNAWDt3NHkRg0BJXU9meRmDQAQiLl5yIYNAOIx1/Ikhg0BPYKNZcSmDQGy8z+kqLYNAVkU8htcvg0ASerdqazGDQHhxkRaEMoNAECKvZ1w5g0BuBLthh0qDQIyOXnCPUoNAFgj7vAqDg0D688sTRoODQM4ZoFARi4NAUtBZIRaTg0Al/TJNd5qDQCrukyoknYNAHpGd3dGfg0DSQEMdrqqDQE5Hf0Le8oNAbZgUUS4ChEAy7irHNwqEQKIWhxkQE4RAiLEkhjZEhEC2VQZa/2iEQKYB1CjkaoRAWj8zQUJuhEA0Y/Y+6W6EQGqY2d//cIRA1KcJ4u5yhEDofEDwyneEQDr4VSH3eIRAOeLeoHd6hEC2zlYrJX2EQKiJgqlagYRACpuNdTuChEARYXlfAJiEQGrr5PZp2YRApLtkhXrfhEBzR9pfDOGEQNhJ4gFq4YRAuubQb2LphEBGY/kANfGEQGl73hRh8YRAjwjqPr33hEDy77RAM/mEQGhudSOu+oRAPMbcHkn8hEDjdIwh4/2EQAeQjF59/4RApMOQZRgBhUBITqlMsgKFQFMeOkdMBIVA8p5pD98VhUDK+o9MERmFQFzYib8/HoVANtOG4kMihUD0TVpniiqFQA6GGLI3LYVAuD0wqzk1hUD+NfIaoGGFQAgqadSgaYVAMELW25hxhUCbwn+N1XKFQCbLHbaYeYVACrkl3ZOBhUDdXR8WL+aFQOP/Dv8w6oVAbf2KGjfuhUDvf+KP0/KFQMqhXPZ/9YVA9oLgrCv4hUB9U///yaaGQBZiJnLPrYZAL4ZlpHuwhkA0ZvHlJbOGQOpB0+7UtYZAMM6j9CW5hkBXph/VzsaGQLzgdWkn2oZAugm1yQv4hkCEFi+GMv+GQIAbKs5mD4dAgvjdq5Aph0BGGO1qkTGHQKiEQzqKOYdAKfgcqltBh0D0cd7Di0GHQCxCaXo3Z4dAVlxQtDtrh0CsNldypJKHQF16E57HsYdAwm2zFlW2h0AKTluLx7mHQMjgSqBXuodAiISbSRG7h0CWspBuXb6HQOc/EbjAwYdAjOnS6Ojqh0DJdNaB6/KHQApdaNJ6cohASi9gR392iEBCBnmOgHqIQKSnENpSk4hAKyhTkN2biEA+ScGY39GIQG7T8grj1YhA + KBZXds7jZUDXkZP9yKNsQNS+X4D+xG5A+TZ8X1dzdUCyI164/IJ3QPmUWLOvhHxAoxn4DgDagEBsxLFI+hKEQF1s2AZ42oRA/cgy4TvLhkChL9Gt8CKJQEGMK4i0E4tAMjRSRjLbi0D73guALBSPQBHXq1rq1ZBAY3NqGVcWkkCR7qJvQJqSQHUEdnd2HpRAFYrPJ51ilECKGbd4nDqVQJF5D7+4LpZA - + - CKr+RYfOoERDp7REjjT5RFGQq0SAK7JE+ujrRFj+D0c/ZuVE7tzwRGHCkUSHZIFFwmWvRd4iCUXU+EVFaHijRI7Q2kRi8JFFmdGjRJqnEkUfgItE7GIcRzJVvET5kpNE/XI5Rv2bgkWzNkVF8pK1RHKajUYziZFEh5WhREB0r0U0ZpREUx2jRN6CpEQWbIdEofU5RXXoHkWtcwZGAI9cRcA0tkRvsYFFd/CWRF5xrkSKXYlE+xoERXXBmkQxo31EKLWdRH8lEUXAgLNGeTWYRKwvrUTB6r1F0EYLRR2woES3vb5EgDqgRJvlOUdabYRESqeKRNLBVUbQHKlFeWPsRfIAjERzNiNFPvGURImnn0ROFCVFM7weRVL2lUTD8cdFwcA6RfKK+UQ2jbRF5Z2URMo9tEVp6IlENx/VRBYskUSdNaZEe2LERP5WW0ZtRMJEXjikRJ4UkEQG5QhGK4EsRc2QvEQbKZNE0hLdRAI610RuqpZFRISLREM8jkQVrSpFZRufREIbA0gYOXdFVfCCRTtel0cmHp1EALuzRMPFkUS7eCdGFYYtRuIUgkVagIZFJJmNRHHpOkcE4qFEqJIhRTbjuUTL0oJEGmrVRUP6oEQyAItEmlWpRRSj20QcTaJE2MypRMS0mUScSxpF3ccCRToshkVZ3q1ElKowRRB6jUQH8pNEzxSXRPnBkkQynu5Eg8gbRVdsxET6WLBElBRRRZGMikXeE4tEDB63RIyMZ0X9vkNF3LqDROJ/t0Qy/xFFJKefRInETkYpuJhEx4fXRBbBwUQQnI1Emi3HRHlMq0T2ju9EbEGiRJ0KaEXszNxEj44wRoLnqER1AvhETa+yRUwfiER1PRJFpv9QRXfF0UTXkMhE98acROVDrUROFjhFj26LRM4zA0V9CalE2UGoRFDDBkV537dEzfeGRZnojETCN+REu2ckRcWIf0VctvJE0n/LRC8srURgU1JFh5YBRhSleUVHhLRGOcHdRCVZikU7LI1F8hmmRd2R5ETRHABFr46RReE4DEU2gFBGANvyRHyqHEWZWsREsor6RoM0KEaa5R1FkjdkRfxDC0WHfvVE/D6cRWDChUWhsI1EzBowRa0Km0RZbpRGr2EbRTJto0QyoOxHUe+PRtjBxkQYbjVFMbrdRqR8ekXC6jJGUMaGRdEW9UQWljpFOie+RPQLp0QpRYxEx7yLRGiGxESjV5VEU1ONRdlMy0QcVIdEh+arRF/8LUWPCypF0BxqRbJmHEbWA85Ftwv0RIWcj0WgocJEhVcQRaSwGEUMmLJEfA1GSUOVrEaKN4xFaryHRsJpgURQpTpFsBXgRcCW50R8VD1Icv5zRQplkUZWuZxEYT+6RDri8EQ3j25FrPpZRaYHi0QpJ+RFJSW1RAe8tUTknvpEqi+hRCYaKEWQAK5EzZH/RXIrMUWpsqNEocylRGrGXUXIHqNE1suLRBfgPUXfisVFcBLMRO0gAUXk7ZpEgCOkRCKbnUVgIZREFYe9R1qZz0a89t1Ei89rRVn4lkQWIMRE6C+oRGSfkEbvO7lFOzcxRo5E9kRWDcZElvOmREsrHUWPhcBEKuefRFfpDUUEIfVEAtWiRPbai0XM9ARGq0oPRf0O7UR6RQtFkq25RE3NikUZ1M9EnNf9RLIJnUSdd5hE2sDtRbf6cUY5aQpGlGBKRca920T77pJFnCmPRWBlkkVioLVEVp21RP20/EUUTEVFkX8hRSEOoUSjVqlE3GWrRFmw50RJzslHzxMXRWDgtUa78Q1FLgMHRUhOhEaLfZlI74QcSNocS0VeYi5Hx56qRcjr3ESjqClHR7bkRlbnx0X3xUtFHxPEROI8uEQlCFdFf/NbRXMhqkRuhcVERj5JRn2RE0U6X8ZEkMp5RRIMm0Sa68VEu1L7RGTdj0VgIOREbXH/RAW/1US01bREOuSTRAGB4UV98h1FNuGIRQGVF0W0DJpGApoNRi9cmERQS55ELD7cRCuJkUToLJFEv4NERdGvGUWlun1FU4jnREg2y0T3jOVEjtTMRBw9rUSDtwJFnNlVRaitYUWHXNtF2pCnRE2cmkU3QKFE2mrsRONtgkQcEOlIAnm3RIUwc0jywZlHBBhtRe8yN0aHZbVEqUaXRPzDrERziblEBabuRXDXokR01Q5FMRLZRNvynEXv9KJFYAeQRDwr8US9hedEsoUfRrf2hkWIFNBERSKSRGWukERHCslF4pcXRUCK8ET9JRBFCzKiRX6HjEXGBrVEzDbaRaH60EUSIt5EylXoRExcTEWGkApFHU01RkrM60Q+RgZFirmJRFt0d0UMb39E76WZRXVisUThgK5EeHYARTECh0TcttVEWxGsRGY7FEWP6K1EMn3nRLIXo0UXU9VEUQuYRRH9NUW4NB1G6wyeRHCpmkSX7mRG3p8ARQLen0RWrV1FmSTtRMont0QwCJlEk1HGRJh5NkXmCg5GsZzSRAbv+USaSrpETtzlRA0AHEU+D4RFi+EbRXpBcEiW+clEDCQbRSWX10fruSFFk1OpRCPjnUSClb5E/LCPRBSPfUfsLH9Fq1ibRJpqM0ZNvA5FGuWFRaKxnkTNP9BEM6AURXbUGEUZJY9EdsDwRFOWiUZwK7hEab6JRTYMzEXpYUFIEZp1RC5uEkcrn0BHqebNRRW980WlraNEMVcFRYuyL0X3IJ9EWVXURLnPF0bOsWlE4/O2RCJgi0SYXJBELv9ZRSmGkUQEQqJETg52RSpeFUWh9IpELVh1RRfBfEVM14VE27njRFoOFUVCYqBE8ST6RVD0OkUDYh5FPJxkRTEpxUQIGk5JutW0RFFC4kQrwGNIffdARo9vcEQ6fRpFqFIcR5c1rERjc2BFupeTRPpYnkXtyjxFzcqLRKPiFEVdpsREQmGeROleukWDECdG9ReORRsIx0WX4I9F0sadRGgI60QCB8pENORJRW8MiESbtyhGORO4RBCD30XR7LlFlV/uRBf/h0R9NCNGVpMxRdlwjEW50YVFEW/7RC8xLUUulftE5/WjRSF+qESKI25FPm7ERD3FbUUlZf9EDcQZRZzirkXtwMdEjSMSRfvUfEWY9LFH0kQ5RbbuvETXwZVH1PckR9cXoEQ6eUtGzBAaRQT/k0QHkPlEb8WuRP+kzUQuKdhEb83IRHCmmERCWM9HfnckR04Q2Ea9Q3tEuO2iRQC58kXRd6xEdoe8RFr1zERnPYxFPG7qRBID5EXHi6VE44baRDNaHkd/kTNGxwPERbConUQ6qCNFOrHKRPhxxUWuIzJFZ2vpR3x+U0dJyO1GtOEYRc1s+UVIZTZF14wLRefLGkVZiP1E/HGhREkCPUYm4z1FTutxR0Eg3EQZUE9GO6ImRXtbiEUTSx1F6NO/RJ6HhkSqJelElbTERavc7kRCjr1E00OfRMF7k0UfdJNFYkGXRLkVdkUHowJFWoCTRAg/gUXDucdEKZJRRVBi0UQoWJZE137CRKYmmURG6ghHFh+wRMNNDkUoiWtGfjcYRhfBiUXml3BF4ot7RKEoGUWUlRdH9TqBR8KDlkdcEzlHhWKmRtcEE0YYvpxFKtM/Rez8h0RFEhdFeBC7RKAqn0UppVVFgCWJROaC/kbbW3xGNLEiRgdjpUVluHZFN6qUROTZfEXU2zNFA3W3RJ+DOkXpfmRF48CZRGLjvURK+KhFxefsRc50b0UralJFFIaiRHbEkkRZLZREwDOYRLV0jUSJEblEzuYZRoRcuUV22nlFt42+RLnVAEUE259FoKk3RaUBoURTmx9GdbwtRr4710VM1+tFbrfNRFbsUUWoaU9FsqhgRQoWtEQz4JhF9EBkRaXGt0TVDJlE8ROWRC8EikVweRdF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - lBiEPW7BckBKNVQ25MJyQOS9vMo5w3JAq2xM+w7SckA1lypgQ9JyQPapXyFQ4nJArsiUKJDickDvQ+1OJeNyQD0d9vvJ8XJA0GIbRQX7ckDcajNCwf9yQIWXn733AHNA/EG0VM8Cc0B4IwS4+gNzQHRAGpq8EnNAmnBELgYUc0Ba0+/AeB9zQMQ30Sc4IXNAILOHHM8kc0DAo0oluz9zQMb3zyd5QXNA3zaEZnlEc0AGFdl6nFFzQA5lCLFDU3NA7M499aNTc0Dyq+ph+V9zQIks5Zo6Y3NAL6IX60t1c0AuVEGteIBzQEiTZ9ikgHNAPocOSwyBc0BwjfIsXYJzQI8uYVw7g3NAkpP/w4eQc0CQU0NUTZJzQPSkLCL3lHNAMogRXLigc0BDSAlOW6JzQEDiDs8DpXNAjs7dP7ezc0BOQqdhD7RzQHx3+ubPwnNAHqD4CuLUc0CRWOeTOOFzQEEHgIt64nNAIhKQ6ngBdEBXUJKMuwJ0QGHHcbKMEXRAMv6WY08TdEAo5qgzyEF0QAzTw/v1VHRALlpqCSFddEAKGR+qt2B0QCLzqHAJYnRADsn35npidEDc+5w4xGd0QJiQyLrUZ3RAmYDAih5tdEC0AvsCInB0QMjnLPBAcXRAkRa2hXtydED8NS/NTYF0QCUy7rYVkHRAmYbWixCjdEC2myJyw7B0QOLNDyhwsnRAZluJ5PuydEChUCr54sB0QIJdFzK4xHRACBZuTsjNdEDwCTIRI+F0QCh3APa34XRA4AnFH43zdEBP0atcYgF1QKz+hjdcAnVAHyVnIKUCdUDI6K4fnSJ1QJLbobzLNXVApl3Bw/pjdUDFm5DFdnJ1QOL7goGNdHVADtdce62BdUAa0Rh/pYN1QHkyWl2bhHVAog/u7EqjdUBMSqAgPrh1QD6B8UU8w3VAVHvvcgjidUCwKbbPSAJ2QCgEZyqJInZAp87i+I8kdkAQTirnSyt2QEZEpqMfMXZAQZCkaU4+dkDC7rbzHUF2QKhmAXfJQnZAiHR6pRRDdkAyRlGaeER2QB5c7roRUXZAQmZ+2cxUdkDo7p9S22R2QMsDVu/Qf3ZArDOBGOuddkCWeQ3eRKN2QNLYXTCMp3ZA4Ilk/p2odkDyF0gXw7J2QMJbi60MtHZAJoGq/87OdkAvHutiABJ3QMyYR6wNIndA/Rlv2ww1d0DRF6hYnEF3QCs37PUaRXdAxMXXnUpRd0CDs2D3kVF3QEab29iOYXdA7mNB1iVvd0DMkpVVIXt3QN7XrnxtInhAysPt59EjeEAqUUYuEkR4QM7+Jcp5RXhAFgytRtdIeEA8vcYlMU54QGalUHvKUXhAYpObjohVeEAMqeXI+GB4QBZYoxi2YXhAsgYFZIt0eEB+a5sKx3h4QKy0MgP3e3hAbPmCFSF+eEA6IIZ6o4F4QFr7Exd2g3hAWhqftpmEeEDuKSXil5F4QLvRaYCnlHhAWU42j/6jeEB4UNyehqt4QFj8AUW51HhAOCJAsAH0eEDxehTWJfR4QGQ/CXCM9XhAoGFL4LIoeUDRXCmrDS55QONDHjnWMnlA1lHOFrczeUA2Aw7LvTt5QOe2bXDMVHlAexIJX8CyeUAZlV9YQ9R5QEaZclJP5HlA3K0wDf0DekBi16xEkQR6QL4KCFgMNXpAENGEaC43ekD59/hEGkV6QJ7jevEhXHpAlJjvIw6zekDKb7ulDLZ6QLUX87sRt3pAOFCFbBa7ekCYnps3ZeF6QMoZ1GA27npAOT8wXlzxekCyjAXkfAR7QB8BXntMFXtAxL+aeFkle0CS4m2ryG97QOhyqXIm5HtAI/l6fpjxe0BOmVfoi/V7QI2ekk3ZAXxAt0RplPUBfEBmMdPDlwV8QNQtscbREXxANhKroc1BfECYu18xxI18QBacNvYlk3xA/tXUHyqXfEAc3mCTZsR8QDCTagJY4nxAtHaFIFTyfEAOk7oe/wF9QHekutdLAn1A1GWzygAEfUABZ0LYBgx9QHaxCfVDEn1A657DL4wTfUBupqs5DRR9QIIo1jkUHH1Agjkcbkc4fUB8b289oD19QEZ9BkP9Qn1AITAIcENIfUBuwQmDHHN9QE4cFdECpH1AMIVvLaakfUAcNM34CKx9QMTWpl/nxH1ApsuUuFRVfkCBQ4RWYGV+QCLEv16MfX5AL20Cc+WCfkAhbUcRoIN+QOyngeuoi35AwYVY0vWufkD1suovtrB+QHzMUao1tH5AHMwSX060fkBNzkR3j7l+QITGh7QB335AsrgPfQLkfkAfLslaBuh+QNUiDE8E7H5A6oX/Hbhcf0DqIPoLvmR/QDieP+jDbH9AJVrVVLhxf0Di+dgzy3R/QBg4t0elg39AeuK4emORf0BsnGVOabh/QBKIh4TDvX9ABGYIQ+7kf0BO2n6SSQaAQC8JooxaOoBAfjXJ1gc9gEASmEixXkKAQP6l0BypQoBAdpBHM69KgEB6dmh/qE2AQBbXMOTmUIBAusfa3xJRgEBQKM9AaFaAQCr6Fh4mWIBAuRojzw5ZgEA4mmzFKG+AQK48a6tejIBA+WJttx2PgED2P2YkIJeAQAzijgobn4BAyoBS44SpgEB0M0qsE6+AQMJ/gVdtsIBAxP7BLR6xgED0iY5b2bGAQEg0RUKAsoBApilMDL+8gEDNXTd/NL6AQH1QrqJSwYBAnLqUXFPJgEDS9sVvTNGAQDga8dpJ2YBAPG1yuUXhgEAQDYOKZ/KAQOrIWG5s9oBAsxkOPED/gEAKRP/7PgeBQOcVhDE/D4FAwMRag6gagUB+rV7GNB+BQNJp++KvIoFAIBIGijQngUAaM9XDsyqBQARkjHQxL4FAoRQNQ7kygUCIWo3jKD+BQGzE+X7/ZIFA6IB2YrhmgUAiRCxmrGeBQPWzxmujaoFAZqlsjqVugUA4XtV3Pn6BQDyU1bqchYFAZrq7tlWPgUDOl14vcaKBQAzcaOaVooFAQcdss6KigUCy6nzntKKBQGwPlX/eooFAmgwgaP2igUC04b/oEaOBQG8trD8to4FAngVnfOWqgUDYm6TPBauBQB0IX6BKr4FAfJpna+qygUBs3t4gSreBQGPvlqjuuoFAGDh37gPKgUBxp0Ekg8qBQIzLH45vzIFAjGBMxrHMgUClI8QyG8+BQMH90RSK0oFAjFI20o7agUB539dup9qBQNE7LmJgEoJAwdkrsNcYgkCH7rt61SCCQOyCvFP6IYJAeIIF09MigkCoKh7M/CWCQFeNZtrOKIJAzh9Xu3EwgkBA/cCyaUCCQKibBWdNSoJApGYZVo1WgkDUCscyj1qCQKZUPN0NXYJAujyBvrpfgkCIv3W9ZmKCQGvTp/UTZYJAlpTktkKJgkB4IRyqQpGCQHZuzPs7mYJA8MSsSg6hgkC0r1OyOqGCQMuSu6gNqYJARhY7z1CwgkC1J/4V1eKCQOjiDhr18oJALiyYDBUDg0DKd6OFuQqDQKun1GB5EYNApDgOcXkZg0CLP4L5cSGDQKRBOJdxKYNA0XtkwSstg0AsEk4l2S+DQDxAd/1pMYNAcD2dhoQyg0B2V0QDMDWDQDUmc+uHSoNAjm57tQqDg0AWpZyzEYuDQBpRxOl3moNAHvzWFiSdg0DVXjra0p+DQG4GuCsOE4RAYolAU/9ohEAaRYXY5GqEQHiV9GvoboRAaiWsWvxwhEAQEsc7yneEQJ55d8p3eoRAGKRt0WnZhED1pXjoCeGEQFylfOdp4YRAtxYe5arihEBDhzZiYumEQBrEX1Q28YRA7kSQ3mLxhEAYjQhpMvmEQJRCY4et+oRAdum4Ykj8hEA3OhQe4/2EQMZTh2B9/4RAFkpOnRcBhUBY6dy9sgKFQBJHqdpLBIVAdNwU8XoXhUB0TT2SFRmFQASfAqg/HoVAqRZo/IwqhUBYsVwPoGGFQE9/5LSfaYVArOTaQZhxhUD5rqr8lnmFQFPs/NEw5oVAvTnF0jHqhUAFrL9g0/KFQO1lncl+9YVAT3L4ZMmqhkDgM3lCz62GQEe4d/R6sIZAFCWlzZAph0AYZnO6kDGHQAhmcc5+N4dAcF/Zrog5h0BWJEjANmeHQPhNrts6a4dAlE9h5caxh0BQJ/2SVbaHQGbLbsTHuYdAqnxeqr7Bh0CKQ6uw6eqHQLp+MsV7cohAhI0sqH52iEBKJR3U4NGIQA== + KBZXds7jZUCmvpxNHCRnQBq6YmAmw3FAiTDsKtfyckDfhPAvb2N3QEF7qtfU03lA3+LMg8d0fkA0HnmnQfKAQJqbaMSvcoFAX0j7qY0qg0AufAwAB3uFQF936dM5s4ZAiqFr1oXriEDCXLA7XoOJQCaKeljqm4xARPRLzv3rjECTXDRBSxKQQA== - + - ViMWRuZ+5USRajJF3xnjRBReG0fIDWZFa0qfRR0e7kRev4RFbw+6RT6vFkU33g9FQBkxRdVmMUfFJ1tGEpm3RdNuaEUV8I9GfdvGRXgiQkWHyYhFSy8HRsIJOUURDPlEKnZZRfYxGkWcoxVFu6f3RCmz00ZOawxFCsL4ROeJv0W6wCBFKzcZRcL9LkdQ31tGkpvJRTB/CEYhzSVFCyphRQu8AUX7Ig1GykqURRWHsUUhZC9FE9ZlRpfO90SwcetEdz7sRZPw10XT/PpEIQ8RSDr/eEWTn4tFSMBtR3a3DEYqUTZGDoexRfddn0WiyRtH2WMwRQMC0kUyzaVFpzYGRRkL7ES1XR1FQ/reRPO2PEX1G1NFEpw9RXGJHUWJhhNFuAHjRQheMEWXrIJFXL+KRZYYVUZ7SylF/L9rRWbD/0Q6jclGAurdRTjbU0UPRjVFv0v5RIwiKkWMFs9ERwsLRZ5rkUXITyZF8afvRdBeWUWnpbFG6cecRcPLiEW3IaFFbsjmRKJGSUVuC1dFs+ruRmN5vEVDrAdFnifHRsr4QUZ+551FtcJ9RRWADUX0uoRFPs1pRcXLZUaGmD9FaVH7R97wb0ZsZtxGfcGkRccaE0aAGCVF7e4zRVSv+ER+cihFeLALRWRfLEVE6TlGt2x7RbN3gEUE2WJFSPgCRahgCUWvmiZFYyZISQ8O3kYew0VFvgFURixpVUV4rUlFB+VGSAIYVEXru6ZG+UAJRXLU8ES2qg9FJ4xORT3V/kTQoRBGahloRRzcDkURthZFACfDRZkoEEVnF2dFFCohRXKAmkVs41BF1hAARQy7AkavR8pHGJQFRa096UbSLYFFCNF+Rq+XlkVpJCRGlhcqRcTfBUUskhpFObwERehFaEXc8hZGlFkwRUH6BkV6CFNFXe6KRdJajUYyGyVG/11YRRYxg0X1OmpFTmeERc2FsUV4DHVFVxWBRfUBjUWpF9FHMWe5Roxr9UQQLJNGSOZiSBDW6UfWBy1F3kkJRTCi6EYsD4dFg4xTR9m42UaZpMBFZBhkRZ7f+kTOpRdGAZ7XRYTqaEU+L5BF7lLpRaB3D0Ws+rZFmnCNRQ++jUZJ67ZFcY+/RVxuHUXkGFBFVQRcRfP6IUXHVxBFVOx8RSst0kUKeQ1FOiN1SAEX+EcdUtdGpfs2RQF+ikUh+uFE5qILRiT3kkWK+WVF6svDRT5KWkWT5LdFfLM3Rbvi60Wqg7ZFNjEQRRiVUUVzAydFNOQ7Ru5eJkV9RntFVsyDRQAui0W6+fVF6kFQRg+bA0VWsxlFwoj7RIksCkZIAQJFaw4ARXHIHUUxUtNE/pUtRfIbDEUOS3NI0q/PR8xrXkej3ChGxrO3RQdmJ0WKDAJF78JXRvKmWkX55rNFm1r3SM52BkdcMwVID13PRVTKikayoEVFr25ZRQVCBUZIIg5FuxLRRL53MEWrN59Fk/JZRcnyL0UoYQFFRRH3Rcy0F0WagRBFnFVPRd1LDkZy+wNKVy9hRjeE0UWt61NFzHcTSYOOokXJyRpGymj4R66GMEVKYE5GHDJrRXHXBUdBSsFFP1w1RchoEEUD5L5FJvLzRAkUpkUJMQ5FqwgrRsIrRkWmHYhFHZiVRRdNVUV25ixF0lIPRgeyDUUdc+5FKc2oRXfFdUUzl8ZGrsqkRr7eNEaJsY1FxTaxR5L18kYM/bhG3V+RRc4d60VU0TJFOs9QRTvJykV7JjhFgcwmRQpeukXAF9RHgxUvRyp700aOXQtG7vOQRtZqgEYuDiJFFR+0Rbin+USRdZlFRi8mR1PlMkYMOz5FiK42RTQ1AkWjPS1FxgyzRayTpkWJGZJF5lsoRe8+7kVzgY5FjVH+RktFAkVdlWBGxJ7qRFToB0adRK5FUYRtRRDP7kQwwb5G5UYBRyp8GkesLJ5GTRBjRjCagUXsKWhFD+U6RYbvPkXx0QdFWJEHRepA9kbIyINGFZ0cRkctJ0V2sitF8SMbRXQKL0WqRWpF88ANRRQLOkWq1bdFtDEeRjyRuUVg3QJFmA1RRabvskUok5BFbr0FRnAyTUW6HHFFADI/RUbmDEX6jrtF8IyVRVP6GEU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 8r9xT27BckBg1X1bT8JyQApxQTQ8w3JA7jWJHA/SckCublp8Q9JyQMGocitR4nJA7aPKOZDickBgj1esyfFyQJSFUqQF+3JAP+AYsc8Cc0BqGGKd+gNzQHjjM/S7EnNAuLHmePoTc0AwUySReR9zQIiTowY5IXNA6oRC9M4kc0Ag3F4PuT9zQFsogK53QXNAOEqy6nlEc0Ay/5lZm1FzQCwYufijU3NAJy9Yiflfc0DHYOP5OGNzQGqV5UVNdXNAruSBcXiAc0BgbeasXYJzQHpDnixNknNAndB1UveUc0BzlU2Zt6BzQDQJkXRaonNAhSsddrezc0B6ss3iz8JzQMSjmBnZ0XNAJj2wxuLUc0CBLdkZOOFzQLLLuGN64nNASWfKkXgBdEA9ShX+TRN0QLE1YeDIQXRA+pQYeY5TdEBTJ/kMIV10QEGHgZO3YHRAsnE0/QhidEBa/0uGemJ0QC1+QIDFZ3RA2jc5AR9tdEAoY+a7InB0QKbFliVBcXRAIhVnmzlzdEDcKBv1TYF0QNg6JdgVkHRABHs/H9GgdEBEYpqCDqN0QCcFVE/CsHRAsuctHOPAdEB8ST8bI+F0QHZE3WO44XRARnxXKIzzdEBnbmnwXAJ1QKxSJR6lAnVAlIGquJ0idUA4Dxxy+2N1QILApIqNdHVAp+faK66BdUCGRjnupYN1QEeSx7+ahHVAQJHZb2jCdUD7WaJRCOJ1QO7P3q5IAnZAZnX+jIgidkB0GHtZkCR2QHJpfUJKK3ZAHJzY0B8xdkBUXvK1HUF2QFLBQtzIQnZAtMEg5Q9DdkAW2X9OqEN2QAQiZnd5RHZARI2zdBBRdkDFTyaczVR2QAAoKfraZHZAMgsOr9F/dkDtiHgH6512QEN4VXxFo3ZAyy++HZ2odkBcX6dIkat2QG7qRWjCsnZApv4iIA60dkBiaDspz852QMrTaHsBEndAXkvZkg0id0AMAbhEDTV3QBLJw7ycQXdArgKj4hpFd0CmhhBCSlF3QJqxL1KSUXdAOs1/phBEeEAZcb3ueUV4QOD6kMjUSHhAyL/PkTBOeED+WYW7ylF4QAmDfz+IVXhAHvmHY/lgeEBdlpfItWF4QMgyF7mLdHhAqM4k7cZ4eEDq8IYF9nt4QBTLUH4hfnhAlIPEM6SBeEAOgtpzeoN4QAAvHiSahHhAnnJ3eJeReECrNTVUqJR4QDviKnG31HhAYlw1dwD0eEDksIw2jfV4QJ/sDQKyKHlA2qvxQrUzeUB6/dhLzFR5QIotRvi+snlAVpfZQULUeUDcuKLTkAR6QM/bDKkMNXpAVi9WmxpFekDushU3I1x6QLIqjnIOs3pAGo2ppgy2ekAesavkELd6QPszM6oWu3pAJJ8DFBi/ekBxoYvovvh6QG6hsVZ8BHtAGO6d/kwVe0B0xnwIyG97QGbbDnEm5HtA2k2CgIz1e0DuHQwf2gF8QNaBARaZBXxApv1cqdMRfEDY72+szUF8QPzA7XvDjXxAhGl34SGTfEBpWq16ZcR8QOSqs0hY4nxAAO+321TyfED8yD6ATAJ9QA/BZfkABH1AdBdOugcMfUDiN30wDhR9QLBtK/UTHH1AoMVkT0g4fUCv8gMCoj19QHznbQfoQn1AarXqRgVDfUBvyb9OeXh9QLY76sgCpH1AmOoat6akfUBDhMVdCqx9QMiROlzmxH1AK0er/VVVfkC6szQai31+QCw70Qbogn5AqBb245+DfkAVyUTvp4t+QEpD/QuclH5AiNedYfaufkD7LBfdNbR+QEx8fLJOtH5A5nn1JQTkfkDoVRl1XuR+QELqW2oH6H5ASB0kgQrsfkDiUEa0uFx/QOwa1Vy+ZH9APsgIFsVsf0Dw0zSntnF/QN5UYmLRdH9A/yaIJKWDf0BVl1itYpF/QNxq1JZWsX9ApjywRmm4f0AKY25VwL1/QG6Xchjt5H9AOkP79k8KgEDiwNGFWjqAQBJI70EHPYBA2+6MIV9CgEAoM3GbqUKAQBjDySmpTYBAa/BIaedQgECWK3LjElGAQIIYeLloVoBA5oaMHg5ZgEC6fj9wHVmAQHIqZ0Aqb4BAfs/X2F+MgEBqSLVoHo+AQDS0+6gSr4BAKgyNBlPBgEBoIs6wU8mAQGwLDrNM0YBA18ylhUrZgEC6sr5XReGAQBxrk3po8oBA1mp06UD/gECo2DQ5QAeBQAUGDro+D4FAA4Bsz6gagUDyRj7dNB+BQOtXbCSwIoFA65QRVDUngUCaeYRLtCqBQBb6NRG3MoFAfozJBio/gUCfSrquLkeBQK6qEKL/ZIFAB0k2raxngUCkJFEupGqBQCuQnYelboFAxE71k1aPgUCw+utWV5+BQICX2b/qoYFA1beJ96migUCqEyuQ3qKBQFqBssZ/o4FA1Ls1h+WqgUC4zmomSq+BQCJqkT3qsoFA9Vhhi0q3gUBQHAfT77qBQA4e2TkEyoFAHF7XTIPKgUCK2YUMbsyBQOBN7ZCxzIFAUQ6v+4nSgUBGoXdyqdqBQPv+j+jXGIJA9RPPq/ghgkB9lsH80yKCQOzbQ9j9JYJApt352tAogkCeejCEcjCCQHjLxy4LQoJAYHJU801KgkB3FKxe0k6CQGpZ1S9VUoJAyiwauo1WgkCTVNQ+j1qCQPKG1pNvXIJAAkYs5Q1dgkABMFDJu1+CQIRb9MtnYoJAVYO3q3BogkDyWCEfoXeCQJA5et1CiYJA+ueOM0ORgkDN8xnCO5mCQJ3p+6nVmYJAjBKvmw2hgkCW5DH0OaGCQEY3SBgzqYJAhqbt51CwgkAMAxUR1eKCQMinPLb08oJAMU714xUDg0D2ZROcuQqDQD1jppC9DoNAXVKIUnkRg0DM6wVPeRmDQAh93R5kIINABgAjS3Ihg0B+lfIjcSmDQOSeLZsrLYNAAgd/fNgvg0AMyeIPajGDQISUgCeFMoNA2FJ/mzE1g0Dd4PJmCoODQF6CfRIRi4NAPnXzlg0ThEAWgltp/2iEQBvMB5nlaoRAKCUYtOZuhEDR4SK8/nCEQJJX4bbNdYRAVCKBBMl3hECEnQRjd3qEQIhmYFBq2YRA+8sHjmnhhECpwkHIYumEQHYHqYY28YRATAe/V2DxhEDTL37RrvqEQNQLbjxI/IRAaDHPLOP9hEBSjbUXfv+EQB1cMLUZAYVASmL1yd4VhUDB2xXtQiKFQJT4MlOgYYVAMQg3/KBphUAZYNuumXGFQNT3hn6YeYVAFjNVuDDmhUDcMs1PgfWFQLprWG3NpoZA7hzA1M6ohkClPHa1fLCGQIbeocGRKYdAhaBS7pMxh0DkZnX3iDmHQJ0Ps3k2Z4dA3uUNGDprh0CVGznbx7GHQNCRC4HJuYdAnFM+x7/Bh0ATnQRJ6OqHQL6pXvdhN4hApHUTdmc7iEDnpHlVe3KIQLHsyCR/dohAWOOOw+DRiECWxpWZ4dWIQA== + NrgMGZxjYkDiYBUjzERrQDitQvclQnFAcQ5nZb6zdED/B9cwPnN3QJjPrtxsxHxA7cXWjayjfkAvlSGLwnqBQL6OkVZCWoJAL8QPtW4DhUBPkxLvgxKFQN67cOSv2oZAwqSz8MULiUBRzRHm8dOKQHKcFCAH44pA4tGSfjOMjUByywJKs2uOQNV+HMdPSpBAa3xmsx/CkEBRblxeaxaSQLVsOFFLxpJAA4XBbLGik0A1hC9moYqUQGCusWjtopVASplwZ8emlUA= - + - R/EORv+9IUVkVSVFp+mYRR3YF0e8mJZFpGuVRYs4OEVLdcxFgAlMRcdoBkeTEDVGry+4RScHXUVVrZZGe0KuRePcOkV6gGhFND8KRlzdL0WH8o9FQz02RYSMb0XT/ihFq2zFRofT6EXIXjRHX4xXRoVQ7kUbZQFGXx9sRSytA0aS/y5F/uKnRdUA5EVV1XtF9u14Rt4CAUYtyZFFQodORQ1THUg70H5FedJzRZjeoEcDL4lGwmMbRlJLzUXEIkJHlkdcRdVyCUZiO4lFMSg2RUmwbkWyRVhF1OOoRVsPSkV3WSlFgLK1RbB9xkUW/9lFo6xJRn2ayEX8NolGiyeORdDBh0XUbjZFVwS7RQDKL0X3yZVFcndNRTiCBUbacqdFoYihRhv0eEVancNFuYVCRfxXmEWZGZpFnslcRT9Wm0akqXNFLWmARRhb40ZXZXBGAc3CRUdBcUXd5ThFgNBXRdGxa0WcJpdGP4A5Rck39EfUG6pGmaW/RoNHsUVkeHVGaVZwReE0P0bTOJlFC2y3RWajoEUCMx1FIrkwRXb0V0UEJkNJ3KXaRg8Ee0UUT2xG15yMRVlk+kVW7zxIaT2ARU32kUalOI5FHW4tRRWx9kUFhVZFQdv4Rc/efkVAyihFzn/rRU7SGUYs+7pHJLS+Rm+6bkXgumlGuFrfRfVGVEYqgFpFhjw7RX1jFkVOC5VF7oslRlmbPkUVFxxFdsSPRi1oW0YtbpVFn42NRXNLs0VyDqpFJWpxRdbgX0UsrcBHHPahRvBZm0aomVlI6ergRwLdtUaNZV1FO6sxR9YmxkaDcMFFefx4RffwPEX8jyxGubIlRp5hn0XpymFF2MynRRoxpEV4GqhF1om3RtzvAEZBpoVFCq8iRppdI0VuyXVFubPkRTmtIUUnCxZGQtmNRSqPPkhuZMVHbnjARu2MhUVAhzVF6uIXRckvHkaRKjhF75SXRWlfLkW0k4RFORA9RfmcwUVLbltFsBnnRdvqnUXpVl5FdbMZRY+vO0bN4W9FcHqvRfmgFUUM0U9FEDCORWFDZUZpdBVGDDpxSMiwwUfZcWtHsXxFRn7oa0WbaU9FsC5TRsEMpEVDyK1FoCUvSWxSCEeEPTdIiWfJRa3MxkYmXVBFI/oNRm3FH0Wy+n1FCiNCRU4SskUgJaZFedoERtEGT0V1DJJFLqqFRVvnNUrM1CtFMs1MSfbGXEYXvSJIupgjRb9VnEboyspFA1FBR6SOX0WeV5BFB8obRr/ok0UlZSxGspO4Rdq7EEa2v0dFdoNSRWeLKkb9eDdFDzdkRkt6HUXFWDRFvqZ3RXHQK0UtWIJFeIEnRoYvCkYu8sdFQw8nRRTPIEUsLNVHlFEyRzmY1EYCP09FoO3wRSvkykXLqDBFJb+ERUayiEU38VtF2VRXRVl2okVb2jlF5ODzR9a3NkfkKaBFfwjiRn2q5UXB4SpHo2gjRypSTUUR5p1GcdbFRQKQAEczPgVG0OpfRe2F6kXnhghGNs6DRXkONkX7ASdF9xJTRdGqhEUJXxZHFd2KRuN8KkaHfE9F8rdfRXqBe0bZnY9GVTy4RuAub0YQu81F+oNpRXzIK0X4O/RG9zaHRoC+MUZEMYpFn5WDRYyWgEXWcD1F9JhdRTayIkW54SdGWIC7ReubnkVTWxdGebv8RXGKKEZSEJZFrvBURZAFIEW+KW9Fj1ZxRYFxrEWq++hFOmhcRe3IQkU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - zsAfGG7BckBdWZUhO8NyQD5Mp1EQ0nJAnAhfLUPSckCafvgeUuJyQC9oSWqQ4nJAZEa60cnxckDRW7yi0AJzQPbdeI36A3NABKPOJb0Sc0CMhUgQ+RNzQNYiZvx4H3NAbrTe5zghc0DeXsM1ziRzQCwcXABJMXNAgspZabk/c0CJ8BSeeEFzQESTEbt6RHNAbN97YptRc0CcnWDgolNzQILYHco6Y3NAbeEgUXiAc0A7aUpJXYJzQBD2G3dNknNAOKdXuPeUc0BI6XtiuKBzQDVf1o5aonNAzUYYhrWzc0CiZ1L2DbRzQBflxlzQwnNAxBhCt9fRc0A+aIJU4tRzQCCkXto44XNAfCpvLDj0c0CcQw9qeQF0QOYBNSVOE3RA014DrrghdEBEPOHLyEF0QDpFx3iOU3RABsUoKiFddECmQ1AnuWB0QGAIAJIJYnRAxBwSoHpidEBi5zcmxWd0QOg2jvnWZ3RAAOTZPR9tdED8ggZtInB0QETfTANBcXRAiF7bRzlzdEAW0Mw2+IB0QF50zmZOgXRAMrtbHhaQdEDiFOGlEaN0QHRXVZXjwHRALfn9DsrNdECsge+vzdR0QEDiJoch4XRACeVmhI3zdEAQQaTFXAJ1QM6q4JelAnVAMLFAhJ0idUDJ/hvzyzV1QMv0GPk2YXVADMXkRPpjdUCdbCFAjXR1QBqF1OKtgXVA6fLxV6eDdUBa3vgSm4R1QKkWXc5nwnVAVPeJfUcCdkCHpDkYiCJ2QMqhEZ2QJHZAoM6CEkordkBL73SUHzF2QCaNutZMPnZATwcI/xxBdkCxCvKhx0J2QOrIqMcQQ3ZADYwjiadDdkCjHHdvekR2QNDa4ADNVHZAYA9eJtpkdkC8/Xtx0X92QNRFpV3rnXZAhi5CqUWjdkA4e6fEjad2QKJSkeudqHZAXLuZgQ20dkBokEeczs52QGCnx7iO83ZASG8RCwESd0AKcBXODSJ3QNyL7g0NNXdACoDCDZ1Bd0AmT3rkGkV3QDzJICxKUXdARqK6VpJRd0CX1xaZj2F3QIpE1Cknb3dAlMf3em0ieED2offL0iN4QL62rXURRHhAYJ/TIXpFeECxh83g1kh4QNQXHQTKUXhATMTfFflgeEDQs417t2F4QOjpl5KLdHhAwLfQAL10eECIfqGQxnh4QFnJzJr3e3hAvjzz6SF+eEAAH2y3ooF4QIAa6hF7g3hAb5cqH5qEeEDvcG2slpF4QET0P+uolHhAjnOZGLjUeECWPdL0A/R4QBVKXZmM9XhAdY3UMLczeUDxQm8f/EN5QO6P6cTMVHlA6xgRjcGyeUDqDKLkQdR5QMYZ7H1O5HlA/uNzJpEEekAoEk1GKCN6QCUh2ZcxK3pAkKzRugw1ekD2oeJdGkV6QLGOU5QhXHpAbAXkgw6zekCYb6OqDbZ6QCyodMkSt3pAuoOlERi7ekCKvdoEFb96QG7ApV57BHtAJKsur0sVe0A7rBaCyG97QLocja0hlXtAoTlcc4z1e0DWgImw2QF8QL//KM2ZBXxAuizaz9ARfECMfYDYzEF8QJIL3m8Fc3xAGtPG3cGNfEDCWnzPH5N8QC29MXgvl3xAh3zDPVmZfEAzxxYvZ8R8QMRmxN9X4nxA3khJyRbyfEBystapU/J8QFztrHtLAn1AIWWLBAEEfUCiCg5zBwx9QGKxD/AOFH1AIhi+4xEcfUCwe238Rzh9QPM+nwWhPX1AFs1XbOVCfUCNvQ4+/0J9QOJUK7JFSH1AugBKKSFzfUAEgBFweXh9QB7PW24CpH1AiECl+KWkfUAYKizYC6x9QDC+++8ou31AWA0uguXEfUD4XnLjiX1+QJ41Wnufg35AEqk89qeLfkBYwg4ZjY1+QEktARqZlH5A2NUC7PKZfkDGonbou5x+QMTtJqb0rn5AgPKuTU+0fkA2rDMY/95+QF+sZCwE5H5Abqet91fkfkDuON8NB+h+QDHDEDcM7H5AWGuoMgrwfkCAZYQFuFx/QC/aWMm+ZH9Apva/d8Vsf0Dd/6/btnF/QDyKAONikX9AM6Fl4V2hf0DYCom6V7F/QDq7zRxpuH9AxIMr23gGgEBwYiPhRyqAQGc1i7taOoBADgez2V5CgEDxIL0UqUKAQLhL3VQTUYBAJ8thpw9ZgEBUIT/xJW+AQMpQDXcof4BA8BNUJV6MgEA9LM0AHo+AQDBVt4obl4BA59UPKxufgEAs3g5PE6+AQES+1U0ItIBAHhhyzFLBgEDg/1RoU8mAQAK1I7IyyoBAIg/kt0zRgEC50i3OSdmAQEp/AWNE4YBAnfMk+z//gEDeK00LQAeBQJDkzPA+D4FADhPbo6gagUCT4ZokNR+BQB4ob/evIoFA2EVveDUngUCEXXFVtCqBQHNPlvG8MoFA7D2Fok8+gUDAnggjKT+BQBNlh04BZYFAiBYuF61ngUCsXRSIo2qBQAaiUGKnboFAiTRG+FWPgUB4H3SH3qKBQLNePOoGo4FAqsHpauWqgUAWP8KtSq+BQJ5WIWrqsoFAjp04ie66gUBkdQsGBMqBQB56w0CDyoFAXL03aLDMgUDLUlXhG8+BQCbJGOqK0oFAep2dm6fagUASK/qh1xiCQFXhCnvWIIJAJNrGEvohgkASUw3D0yKCQNKF+6n9JYJAwd4SfnIwgkCCi/pFTkqCQK9oHIGNVoJA0Ii7749agkBEbgiRDl2CQMQ4qUNnYoJA9mt/TwV2gkDG7CPv0XaCQIDJ8fxCiYJAVgZ+TUKRgkBknTJ2O5mCQI7DvufUmYJAp/Npnw2hgkBwo3ncOaGCQFqzlrdQsIJALLUXQxUDg0CzMFINuQqDQLSyegu+DoNAupkbWHkRg0C6yiZMeRmDQGQwGxpkIINAgGMZyXIhg0ArU0licSmDQMKh6bUrLYNAxuwGVdgvg0A2LCAdazGDQAjLPv+EMoNAS8jt/DA1g0DSUFmH3DeDQAyT6EYKg4NA3QLLbBKLg0CWoHcGd5qDQB5+/PwinYNA+g9I8A4ThEAngeZXZRaEQOIu4Pn+aIRARATwGORqhEBgitJg6G6EQGKyxoP/cIRAyH6Ecsl3hEDEhtwAeXqEQAY7sPFp2YRAAOkFjWnhhEConzvRYumEQChw67U18YRAKzFDm2HxhEBox/WJrfqEQKhaw+BH/IRAiYGWVeT9hEBFaI0bf/+EQCgFxpwcAYVAWLmq1+AVhUBkjPK+eReFQLlBIhFDHoVABiIHEqBhhUAUSQdPn2mFQODtG16YcYVAxUkryZp5hUCL7NEFL+aFQBLzQ0M06oVAZuHHtNLyhUAWD59VgfWFQG5nWHLIqoZAClzZoDTVhkAGDhoxM/+GQEcV7/ORKYdATCMRb5Ixh0DQsjLKijmHQMQkZ9s2Z4dAwtCI2zprh0Ac2512P2+HQJyyHpbHsYdAhp/S/8W5h0ChzVwBwcGHQBbl4J5iN4hACpQSJGU7iEC9b/G2aD+IQEbF5wd7cohA7EPTB392iED81/+3fHqIQLPxNLTf0YhA88as1+TViEA= + 4qRcexsiYEA2uAwZnGNiQISleLlmAm1AUKoIfAuSdED7T5HqEtN0QImn3Qnr43pAGM8JLagZgEDt03VUCKqAQBj+91ZU4oJA - + - j57pReLaV0UiJERFDrcNR3Svq0Vw9VtFRl+LRYAEpkXOOwtHjYKTRp6CoUWcUG1FIe6cRtszrkVu1fxEqF2ARRSrM0WHqjhGNM9ZRRhphUUaqghFF4G9Rn2dtkWO+jVHNdlkRpUs80XdSa9FLQQhRU3kI0UlXQ1GG88tRX6pbUXsDgBGCPIZRWwyVUb1s8JFZ5cNReNMgEVSEGlFhyEgSCZyRkVLvmFFLSeKRye1bkZRpAVGhtgORlOtsEVLPy9Hw3wpRaxVNEWFitlFqR+6RechDEU/Hx5F5Y53ReF+H0VwcR1F6jKuRbYWdUWAl79FYKtBRh74QUWt0SJF11XtRQy/OUYL8a1Fc1MtRZkcQUWQfn1GyoaGRaNIbUWByAxGOPhvRRW9okb6+yhFH7FoRfuSZEXIP4FF5R0URaHVjkXpV11G2+0wRfW+xEVjb+xG63dqRvteIkW0OplFKmTcRafCXUUDbkpFLVdvRoqnRkU38ONHrxi+RpX4wUZoBslFal8yRolgIUU4oDZFTuZ7RQR3PkUCvn5FSNw6Rmz4o0WhAKdFZGoHRZMaN0VRxjxJYqNMRRbXvUYkeD5FebpJRg7iLUXncWNFPwo+SIE8nEVES3BGXHZQRcc2U0U9NbFFQ6XTRbI1+kTmPm5F2klARcL4tkWCvwlF57+/RXdFPEZ7fmlFa02kR7JRlkYq0odFbNstRuGti0VHOOJFb3yRRUsmL0WSCkZFpfoWRrpseEWH3zhFGHaERg/COkbp3YdF5Tp4RfIRkEUcnRVFpN4nRfiGL0XOxVdF0zAWRSfpnkXWCb9Hq4UeRcK0mUZHBoVGChwhSCwmokdKtIlG/AlTRZ+hGEd458hGim62Ra10k0Vku5JFgNk8RYbHKUUEbjpGId5NRoqwIkW/uClFxMdxRUte2UW8bI1GgGcPRvihJUXZgFVFrrsjRVfkM0VzX4FFIXiLRdX9HEWsQhJGh9NURT6N2EXxtUZFPDEgRamsG0hSEZNHEKGyRvD8nkUvryhG7mFFRTL4RkUvOqNFVtcURcrfL0VzBCBFBoXiRefWrkVDbFFGvB+dRRmMOEVS0WxFkt2NRXe5ZkZt6/xEzQMjRWJm2UWUtxBFIH1oSIkHz0fZBDVF08djR1vLVEbCdnZFcn9wRhFgg0VIqZ9F9awPSairBUet6B5IlkznRUYEtUbFGjJFvjgPRY5THkYCuSpFLh2HRccPrEVwKxlFk7PsRTr3H0qoChhGjOIsSWpqLkbHoA1IwzeTRo/qLUXUUQxHX58qRcbWCkXgjwJG7PAtRe2/GUabVJtFWeXPRVA1rUV/HVFFWrzdRdH0F0aE/5NF6e0fRYuCF0UB3/1EMj4gRYfRQEXVVrtHC04CR6e1pEYyf9ZFH4uaReGRvEVtHLdF1uckRZgDlkWZ5yxF4UThRz0+PUeJxOlFJyXsRqNRD0aebLdH85GsRxrvM0XGQSBHQ9k0RpeIdkVjJq9GofKxRQ1IQEVG4yVFzt9MRc+GH0U0IcxF+nnpRZs1dUVa+AxFGUuORRfrhUVk+AVHzftYRvEqIEa9jU1FRuAzRamppEXdS/5FT0XMRduDm0V2KwxFzZ5FRRSJOUV/tSVFyz8QRz1Qdka4oCVGEj8/RXs9hEWaayNFJ7WiRdwNhEVkviJFN9xMRYpAJ0VOUARG4pGkRVl9LkUvJDJGoq4DRv8PcUXyFOxFwuGaRcOVPEWQqI5GKlVFRsVl4EWdCbhFhkSiRTEXGkUtmG9FKnA9RQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - OG/zxG7BckD2PFlbT8JyQMtEjz7nwnJAfTnkaTvDckAeettgD9JyQCIyQfdD0nJAOcMLZ87fckD8RxB7ueByQBw3IUBQ4nJAnrKOlZDickCwjkStyPFyQIanvmG183JAOLVtQaH0ckB/WQlmA/tyQK56U0vB/3JAxBu/MfkAc0CaTnzbOAJzQG9EtDLPAnNA2V1DFfsDc0AbAgaYKBJzQCqXpPm8EnNA3Lq+//kTc0DXeAa1BhRzQL4faI55H3NASEzT8KMgc0AGdlS/OSFzQJQUQ0B7InNAm4xD7coic0CI9O1TzyRzQIaPIC46NHNAL+9I5bc/c0Dk2x8FeEFzQETjxFW7QnNA9pyhR3pEc0B0A49unVFzQEJvi8IUUnNA5tdY0kBTc0BW3rBIpFNzQKZ5QwuJVHNAUZwv1flfc0AVQmGqOmNzQAzmc91WcnNAnaqMH7Z0c0AfbzLLTHVzQJaQ+3V5gHNAGJ7Dgw2Bc0A0r7LsXYJzQE4/vXqIkHNA99fXtReSc0C67QuiTZJzQMqdYctilHNA9sD+nviUc0D7hCq/uaBzQHgphk9bonNAUvcTHgWlc0C8OJji1rBzQNyzaH4Qs3NAlroLqbazc0C/tidaDLRzQI+DVZ73wHNA0mZRs8/Cc0A9oehRI8NzQGUZ8ZDW0XNAIoPTxrvSc0DN1YB0+NNzQDIklyjj1HNAY45Fqznhc0A8hD39fOJzQEOnijYU43NAQg8xo2Xvc0Dsu2h+NvRzQMycFifkAHRAHowMwHkBdEBBYqSPugJ0QFWeXAyTEXRAsA4CKU0TdEDy73qhykF0QNnSYs6OU3RA2gbm2/lUdEDcy+AV/Vx0QHALf7ohXXRAZOlT0rhgdEAkO335CWJ0QBn5ocZ6YnRAqqtDPONidEC++L41UGR0QE5qRoHFZ3RAIMr6dNZndEDAIY4ZIG10QOIJGKEwbXRAWqgiUCJwdEBSVxhjQXF0QJZqxy13cnRA0ApiSzpzdEDEa6xwOXV0QMLRhvL5gHRAtg4LSU6BdEA/AV94FpB0QF7kXOfun3RARNVayM6gdEBrt7DLfKJ0QGUTT2gQo3RALOC+T8SwdECeSXfebrJ0QO1IQpniwHRAECmnsrzCdEBbOD90u8R0QPRHbiLLzXRAMMC5LCPTdEDOfDmezdR0QKcjcDK14HRAKRqbAiXhdECcQyleuOF0QCCjU6tf43RA/L2jBY3zdECuxHBHZAF1QB+3Yp5eAnVAZ8j1UaYCdUC449ZcmQN1QAcV7PuXEHVABLaI5bMSdUD08S4XJRR1QB5c3COdInVAjFsEFKwydUDWGkJPzDV1QKh9d8N8QnVAvsa5rN5CdUBc9Vl3OGF1QCZ5HSz8Y3VAZCA7RXZydUD+nKF5jXR1QDohzn57gXVATvap0K6BdUAM/dj6poN1QIY5+HWbhHVALhdz+zmTdUDPWtxkl7B1QMSgy9I9uHVAXg/LFPnBdUD+89IWaMJ1QEYsO9500nVAslZptw/hdUDm5F98COJ1QNiR8ow65XVAFGExVkcCdkAfbGRZ0QN2QNxn2z9uDXZAwnpcALERdkB6/NumDBZ2QPTsdnuIInZAWnE2YdEidkDj/RN+kCR2QNUF1XxLK3ZAPKM9+R8xdkCOUIjsTD52QNuZgUcdQXZAHwoMlshCdkBXCEfCEUN2QOqdOaCnQ3ZAkFu5kHlEdkCANKYJElF2QFJIomXNVHZA2LDrA45gdkDdAfQL22R2QKiTV4fSf3ZA5FrLo5CDdkA8Irej6512QJqOCg5Go3ZAUOfaNI6ndkBCc03lnqh2QBPdU5GPq3ZAkllnaMKydkD27fTwDLR2QKqSWrRNwXZA88c8g8/OdkB7QuC7kfN2QP5qtjAzAndA0CH1YQESd0Bn4BE8DyJ3QOAcEf6jM3dAS9LDMg01d0C/MnoFnUF3QPYXwmCPQ3dANPEMLBtFd0Bho8S/SlF3QG8OGUCTUXdAETqlRStVd0DHSs4IDmF3QJCRmzknb3dAANqtKx57d0By2jrPd4J3QL5wYf8rw3dAFlk7NVHyd0CcLkv0biJ4QEkcBUPTI3hApOc8GxJEeEBuWAfOeUV4QLMaT7zWSHhAprZXLzJOeEBK+8awylF4QCoWSleHVXhAbqkMxPpgeECMc+YftmF4QNgtvfPuZ3hAvIiKiF50eED6cIvyi3R4QPTQZC+6dHhAFmtwucd4eEAbTaY+93t4QK20gNYhfnhAHrPR46SBeEDdaMJIe4N4QAphRluahHhAdjJMxVGPeEAwtrf8mJF4QGiqyNSnlHhAcq7w0rfUeECw0V7SAfR4QF8tsa+N9XhARijrRbIoeUDCrmyACi55QC4Qh2PWMnlAsVBvBrYzeUDsyrTkvjt5QP6hRaP8Q3lADobACMxUeUDJXmvxAWl5QHsc5QEQb3lAPOZU3kZzeUDcDG4J3YB5QEK16a7AsnlACAXRr0LUeUDOtPVyztV5QB6Ko1tP5HlAZOQ6Y/0DekDs9PhmkQR6QCADSYqVEnpA7P1bwygjekDzcgL9Lyt6QFtKQJMgM3pAMlCs5ww1ekCVAmvoLjd6QKTzYkUmO3pAtCEW3hpFekCYmON9KFV6QBm/MjshXHpAFJVogChkekB/xCH7SWR6QMSgxCh/eXpA2oEyncqDekAU2KyPIqN6QDBZhXIOs3pA0KDk9gy2ekCWihBOErd6QKDLWS79unpAup7gSBi7ekBi9KzMGb96QNdWrNoZxnpA30YLRmfhekCMUwvgNO56QBiPem3A+HpAuK4g0X0Ee0BS1u0DTRV7QKQKdDlaJXtA6GxBG8cze0BackfUkj57QPWVdarrQ3tAwKpfPslve0BSdkYJIpV7QCyTFvay0XtAQ4aN7MHRe0CwaD4YJdJ7QPLT8ZL643tArFg3D431e0A0hpU32gF8QGLlhRJoBHxAtkDdsJkFfEAeQLmjhRF8QDakFE3REXxAbRssysxBfEDLoIOExY18QFgfNy4ik3xAso9sP06UfEDZ42t8v7J8QLVnjMBnxHxAWpYig1jifEDw2itZGPJ8QFw6C2dV8nxA1nIO2nPyfEA4IXMKBQJ9QDSon0JMAn1AplheWgEEfUBAHm42CAx9QMfA5HBHEn1ARlVw9g4UfUD8LFJ1FBx9QGA1DsVIOH1AFadf0KE9fUAgbdTO6kJ9QJ19874EQ31AJBnwLUNIfUDsBPZ0IHN9QAedw1l9eH1ALEq61Rt/fUAMuSSKI4N9QKs8574eh31A0ohZqHaffUBg93DtAqR9QNgaD9SopH1AMspX4QusfUDpITfMtbR9QPIKLZolt31AzgX9uOu7fUBMNOMaKr99QC7NUifnxH1A6CmzI5D1fUAxEXOeQz9+QEbz0mEpVH5A9ssIW1VVfkDunqw3jFV+QGquUAqKfX5AcVbnUeiCfkBomStKoIN+QBOulNVThH5AFn8VNKeLfkCIFDsIkpN+QHR5Bpayk35AGnFs75uUfkCP52XH8pl+QDgpUUpMn35Acgg3HielfkCvAclh9a5+QH64yFpOtH5AY4yYnY+5fkDMyJ8QRst+QMLHxzUD335AKEE1tQLkfkDrsT43V+R+QDLQVzUG6H5AwHOqWgrsfkBwm9hCDfB+QJaEUU1DCX9AGvsvrag5f0A2byD0AT9/QGpDsKKZTH9AKR5pm7hcf0C0rqtcv2R/QGC7LrDFbH9AeH6ehrhxf0DB/o6+V3R/QE7E9G7MdH9AFmowcdmEf0DqLwULY5F/QFwhdQmYk39A6GhBoQ6gf0AaItkTXqF/QIhFmuT3rn9AUGkWX1Sxf0ARu6Dgarh/QE7KrrfDvX9AV11UKh7Df0B8/Hfh7+R/QIyA7t/SBYBANnZVzUkGgEABqrT/IRGAQET1slLOG4BADwr0Z5sngED/vDw5SCqAQK+nfH30LIBAp3SKX6w3gECCuq5A/ziAQPlPti8/OYBASlFsvF5CgEDC5TFgqUKAQCKXYUL3SIBA/79RKKlNgEDGktlF6FCAQDNx0NcUUYBAGEvJ/61RgEAgTZjkZ1aAQEq2HkcOWYBAzk+rCThagECTW62gN16AQPz0PTEqb4BAkeptECl/gECcUW+RAYKAQEm7SdEEhoBAupsa092JgEDYtPp/X4yAQA612YYej4BAJNd5kbSRgECEEfDjH5eAQI5sbGG+nIBAhGEwlRyfgEB3Cm8XeqWAQBFTyLC1p4BAWSebzYepgEBlGy2+E6+AQOS/XNyzr4BAbDNR7GWwgED81SHETrOAQKJFvncUt4BAkB1qPS25gEBgB/Q/v7yAQJaynxX1voBAPPxd5VLBgEAe8Py6n8KAQG7m5vvDxIBARylWx67HgEAAoti8U8mAQPJ18bnayYBAxuNVZjTKgEC0cC5dS8uAQPKRAAAJz4BApFqSmUzRgEAwrf+WS9mAQPeGWxRY24BAZXp3LUXhgEC3Ccue9uiAQBhKfoNM74BAhgm7wGjygEA+y9hla/aAQOKy/EBq+oBAFvk8zp36gECyz1QYQP+AQGnJJuE/B4FADK+yMj8PgUCGSTzDqBqBQPwe2wTOGoFAXq15HjUfgUApX9mVsB+BQLxCFaJVIoFABNdOELAigUBRbuCbNSeBQGV+Ihy0KoFARNR9QzAvgUDmgne1uC+BQMQxF7C5MoFAokZXQ04+gUDQntV7KT+BQPBWjGZPQIFAXzel1k9CgUC0Y5uMAGWBQAaHhbStZ4FAPvCt8VZqgUBOeAcoo2qBQBmXViwobIFA0kX8FKhugUBx3UHL4ISBQJxgLcoOh4FAYiV4Yg+KgUC2btUXVo+BQJKti2KWj4FAy53FllWXgUDQG9GwU5+BQDAOTpTqoYFAPXg6erWigUDyzvQH36KBQCYdBAMHo4FAgKHud72qgUBLrIL/5aqBQAq6XOAOq4FAds/n+0qvgUCCjN2v6rKBQFZK60tKt4FADrqHju+6gUBmFKoMlb6BQJHdTz4EyoFAoucsnIPKgUAF66LIcMyBQA2YF0uyzIFAaMuVhV7PgUBOAS6Ji9KBQIXT15Wo2oFAD638X67igUAx+J84H/qBQPK4GnC0EoJAkELGY9gYgkCELtDk1yCCQKos81v5IYJAHJ9DDdUigkBlKMaR/CWCQM7TDMzQKIJAtBWToXIwgkBTZX+7pTCCQMAHk/lhM4JABLSKVK0/gkBsSwTF/UGCQMK45ihPSoJAzWsiwwZOgkC2/RoKcFCCQFdV/NZWUoJAmhOGco1WgkDMU91ukFqCQKllZZTTWoJA4DiFe6FbgkCuKuiba1yCQHCMNKcOXYJA1hTMFUNdgkBd5dA1omeCQEakJuVraIJAOK3Hx4JogkDTQfo5NnWCQJiSTGkIdoJA897XXtJ2gkDKalcvbXiCQKJ0FwbXeIJAOC9Xp999gkAWloR75oGCQKsxMmdDiYJAUQyDGwiKgkA3DkuEcYyCQJ5ZHn5DkYJAXEE1XzyZgkAGmIsSUpmCQICtY8/VmYJAWDPgcQ+hgkA8uLtUPqGCQIHWeyfdoYJAIuXbcA2pgkCSWYOyNKmCQIf5adBQsIJA0/B0ZQixgkC1pz447cWCQLbYuXN82oJALA7JDNjigkBUMbWf8/KCQMrTjI8UA4NAmpqopbkKg0BslIrouw6DQNBgWMl5EYNAuj5TvnkZg0CeTtxNZCCDQAZAscpyIYNAvtcG5msog0CEzbgzcSmDQEDTajEsLYNAboI+nY8vg0Djhxer2C+DQKCiohRaMINAVawVIYUyg0C6erdgMTWDQJuljjXeN4NA47Z/7wqDg0AtuMBNEIuDQJ6bQA55moNACciFdyOdg0A0zqPW0J+DQBSWje0oqoNAS0esAN/yg0DpPS53gA6EQB5NObOIEoRAmj8ysA8ThEAymSl8ZRSEQLT/EwplFoRAekanMmkYhEDAdNphMyWEQO/TZiwAaYRA0HvPieRqhEBynM756G6EQCVuhL78cIRAIlG3jDxyhECOW/Vz6nKEQEwdqyYEdIRA/2w1aMp3hED6SxldeHqEQPa4HoYkfYRAXJG+OSObhEATSv6GdKKEQOMsKMAJwIRAwh3ipGrZhEDXehBIauGEQGaDm0Zi6YRA+V0stTbxhEDUWBMYZfGEQEXTGAs0+YRAIQblz0r8hEAC5L/M5f2EQFGhcCIjAYVAXMVTP+IVhUDrp4qZeReFQMrptYRBHoVAi3S210UihUDKrT4HiyqFQJzdxsGgYYVApvdBMqBphUA5SrS5mXGFQFKFMs62c4VAcuobX5l5hUCqOwQQkoGFQFSAsIZG3YVAGcYLpfTfhUC7M7gmoOKFQBJGTjQw5oVAt2zrCdPyhUCV2Ie6f/WFQBrFwgPxRoZAfkKRJM2mhkAAw8wr1ayGQDOrKL8muYZAIumfSzP/hkAVM9YNNwOHQBCSNQ+RKYdACW9tdZIxh0BQOob+gDeHQCc5+DqMOYdA9VTLqYI7h0AjhWcoi0GHQD2jiRY4Z4dAhoZUODprh0A3txiwPG+HQDB0pdA/c4dAwMsfEHmah0BkQZEBRayHQJmkT/HHsYdA/1EJs8e5h0AMb6K8wMGHQI5Bt2IeGohAuEFehHIqiECpBDngYjeIQKJ4zRNmO4hATi0VT2k/iEAk7/gEbEOIQCW4nDJwR4hAijPZ43tyiEDQlsENf3aIQHxQVgyFeohAgJVjNd/RiEC2uDbV4dWIQHjrQDo/2YhAatsAIN7ZiECOHwh2SOKIQA== + KBZXds7jZUCs9CaTvbFwQPV+Nhksk3ZArFID5xXDd0BpJPcIHJR+QCCxSqYM+oBAw7rZ+TkSgUDu5Fv8hUqDQGR0Q02FQoVAqDc89P1Kh0BkozF3McuIQJ8WvCI144pA+IPVsojTjEDMHGHIlguOQImIVkvKi49AjFhaIPupkEBLEpU9DJKRQAxwUTVRbpJAyymMUmJWk0BV8pEBcsqTQH1A8WCo4pRAOQhlCahOlUAdHjgR3tKWQC9XVm/uLpdAzzSdHyRfmEDhbbt9NHuZQORJ3iBKe5lAYYWykoo/m0BkYdU1oD+bQHea85OwW5xAFng6ROaLnUApsVii9uedQA3HK6osbJ9AyI6fUizYn0B5bv9YMXigQL1SgjA5sqBAna8fv0EmoUB93v06ZJShQF07m8lsCKJAgcXyxnd6okBwILCnhNqiQKUGEy2IKKNA+2EZEZ2ko0DK/vv7nSqkQLlZudyqiqRAiop3BskMpUBobrHayIqlQPP4UdvbGKZAW7s1MOcepkAXg6nY5oqmQE3955wHZadAxpeh1gSLp0ANiWOnMkeoQEL2YnIt/6hA3rkh0VBZqUA= - + - oYUaRrmcp0SHUaVEVCkrRZfDVUWgowRHLO+eRJjzxUSTyIJFOL9sReV9ZEWPHrpEC6XcRCe/6UShFLNE94mwRMfMtURDtYFFFAERR/iLk0QzNB5GTxRgRZ2SW0XOXDFFohyDRDrCgUYxDKBEumCaRPb3kUWIUrRE2qL4RPMihkV7Y7VEt8QBRrkFD0UrBJxE4M6sRCLoiEV9XodE5kcpRfO57UQ3t5JE9QCvRHwGEEVmBqZGwGTwRGltqkW99CRFJK+PRMK4KUfoortEeAIaRufFwUVkxMtFbiYjRZMXf0QP0JhEjG04Rdq3F0X8Fg9FVtPORaKM2kQeKflE4qmeRJUIoERncXRF5d2xRVu1yUTkhKpE/ucRRSBeykTelQRFwitCRo5x70SCZotEfFiMRSF5MUX+1IBFwCyTRE0QoUTrtBhITtFLRUujB0X+oZJHxd+cRJvRf0ToWFZGljs+RgMyy0V/TgRFDI6TRZpBJUesvq9ETBgMRWyxt0QxvwJFnfW9RcWpoUUzrNFEGt6iRJrAyUTPSzlF+zKPRB2yWUV0UUhFIjXkRMNql0RNqeREJ26aRN/XoERf8JZEOgsHRRivrkTeXpdEYWyWRdB7yERSeaxFnG/aRacO0ETsDb9EEoiSRIL/z0QOtCVGqJrpRLAe+0R1tsZESp63RI1TnETPfwJGE3YCRRRIC0agH99EOZe2Re9UaUVdyfhEtl+iRGmafkQtsO1ES0a0RACDRUcgRZFFrf0MRQdV1US0dqxExphgRVDqqUSwagJF80E/RWi1sERQL0BFr8qZRHgs6UWrmLFFQGG1Rjd96kSJQ0ZFcAeVRT/REEY1A2JFX758RcefI0WNEk9GGYeXRHJ8LkVS8M9FubgURdIH80aWkTtGtSYWRa6qp0W1JwNFTXf/RAFCkUUTaZ9E2gdyRQSg2US2nKREh4lZRp4aIUWW1ApFPqrZR23olEafVLZEQaPDRmU6c0XsRjJGTwDyRIzQnkQ4U0xFWfA3RSZEiURJu51EsmTpRKZz1EQsO8ZEXoM9RbJQKEbNJc1FxwxYRR25o0X7MgNF7JAFRZGxBEV8bq1EyvuARftGMUmrdGRFWiTeRmY0OkUxo0NG6fBORUpZrkXZeCdItJevRL18iEWhRnZGMRQ3RRhfeUUmQY5FWftYRYFruUQMF8ZE6pTTReox5ETMqNpE0XxURZEcpkRDOJNEJc6gRNswp0QgenJFm4+tRRUDnkQVoMBERRkrRYfqNkUIEcpEAWWBR3+Mo0atmvZFeO+eRxo+wUQAtiRFbsaORtJ180SWjDJFcyIBRURmm0RzUJpEjFHiRGubhkSgPFtG6pZ7RSHBIEYp8MtEt8M+RYDbsETuZplErWgRRZZU/EQO3hZFcGMxRYq240WqwMREiTiZRBKQ0kRvjsZE9s15RXSqFEW8FqNElOfZRKnm0kQP3oVEyrlFRg/PH0YEFa9EGVOCRUuTmkRayWtFk2qhRUnOPUUkvyZFYPO2RKa1vEQNktpFFzu5RwuvmERYfbZGQWdnRWbC8kSSv4lGbtH4R5pRf0eDUidFOKR/Rj4MIUWEbgtHaoO9RmnY/UVF+VxFGj+9RBu4i0XUngpF37O0RCk3zUSJrAVF6yzFRGA2AUYgKMtF+Z47RfnOoEQXN7dEknGkRBY2t0SMy2NF3IbsREJ73ETKbL1E4zXPRCXe+kR1qIhFM7rTRLPurkaQ1JJEQIonRmx59ETcPQhFgMV2RQCYGUUyNNdEdVdwRdN/MkZpSwJGL004RYD/DUU2XNtE5hUERj3b2USzvg1G6FKaRWDC80TMRYtE1HjRRF8lvUSBZelEZhUcSAcJjEcOYYpG5ZcsRU6wbUW5KmVFCb59RMvEEEYC1qlEVs/ARB8xSUXbX7NEyZhFRcnVvEWNaglFT1CPRGQNNkW/Us1ENnwPRaNNr0QVG6JEfWrWRRHjuEXQgPREAw2FRHedpETGTY9EaHziRQU8t0ViO5hEsOkmRac0QkU8UV9G5/vARAeYS0XmwqVFFTyJRLhCikRgazpF5xsiRSkZy0QOtvBEseypREobD0WUpDxG1CO7RIT3ckWEBbREOzvYRPQ/yUTAYxVF4Z23RMcmG0ZcVbNEzfOhRIj+EEXw8uxE7TnJROZxzEQMMxVFRjJfSDLQt0SEDddEncLBRJ7rvUeR6epEKjqrRJUu4kQxuNFEUh9TR3u7PUaXHqBEZR6BRQV/l0SeJBZF6OxnRf0TPUWXyshE/rGaRDx2bEajh3FFMYbiRVWgiUj6Z8lEviYMR5pSrEQxuAJFqKmDR/4O6UWIGCJGQSAORTvqkERx4JJETlkbRaSaCEYi/ARFOXKvRCXTF0U7dBhFHrKMRFAtp0VPau1E4jEgRRaGrUSfBQRF6te1RAsk1kWmAalExEoBRZnxwUQ7PUhFlTOuRaTekUkqecRFaRzYRC+0oUibab9EJiA3Rn0cWkcI6hhF1xSzRdzQIkWVDiBFQxCKRry2ekUqZDtF75j0RFHsZUW/lhJF3liPRKGuuUTsNIlFDvIZRnkTaUV1rrxFQvplRZCugEUfIm1Fa6YYRcIllkRaaAdF0KvJRNX2u0Qg/JRF3J5PRXG9/EQaIadE4vKORY4KC0WsrBJFbu3jRJO4BkW4z5dEzRvJRDeJ8EQqmtNEky+bRJo56kT1NQFFi07bRGXH1kS/t5VEwAbbRE1PwURIaaxHaHzZREyE/kR0xhJHnqfJRur8FUVU7lRG+muVRUNfwEUeMHZFJzkMRWi470RK8YdFxDrbROMS0UR5Pq1ErP70ROjc5UTBIClFzaGJRcqgFEXsa8dHiAo0R8bRIkbGksNGiunoRNbGmkU1iv1HIqOZRM8W40dGA1RFadl5R8k8pUb9S8hFRYuTRlWih0XRwQpFGUMJRU4B2kQemrFExCzVRF5EpUQNi7FEUNfgRKMSOEWKIp9FgwbeRJYb2UTZVJhFzBAyRtOcx0WVNAhFF1i3RJscU0VwI+VEvrS4RefQREWuPixF6bakRCGJoERZZKNESCEAR093XEYHGixG4d5RRRI5YkUVZCJF0eT6RLH9U0Wa5YZEbssNRUSaRUWcyQ5FHqEWRbqn00QPDvVGURVURvLwGkb6YLdEJWteRX8irERfhwlFtzLIRNcM3UTU0pFFjZ4MRa+jxkTBIgtFBnPJROy6r0QbXapEEZXdRBKLy0Q0xRdGNU6gRc/q9kRYVpBFRjOqRPhC1kShBXJGhz4XRrkhNUUDYQtFNBvTRHXzmER9pRJGSChbRf1SK0Utbo5EWTbGRIoOSUes6CJHpBGQRuM8ukUWHcFEjGbTRVcw2kUQTAxFFK8ORS5bskQTRstEOyjDRJQnv0Q= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 1JYnVm7BckCCU2UxUMJyQBFRbJXkwnJAMCUSTzrDckAULt8OeMNyQPlMcNNYxXJA/Pfq4w7SckB+Bak8Q9JyQIKpQwu54HJAiuBjVlHickCqXqvfjuJyQA0GozzJ8XJA2p7R7xDzckDocgl9BvtyQHGPIyj4AHNAq2xC2UkBc0AWw3d2iwFzQPLH1yk8AnNAbgcNF88Cc0A00sqx+gNzQGpZvbzhEXNAWC4nUbwSc0Ck8ZD59xNzQLjQhaoFFHNA1KXnPUsUc0DmzsXneB9zQMRr7QIOIHNAOAZdk6Agc0AJVnWeOCFzQBUBOVxlIXNAqFp+y3gic0A4r5vYyyJzQGJM7WzOJHNAAPbBe9czc0CkyDY3NjRzQLsslVq5P3NA8zVd1uRAc0DSI9zZeUFzQGUav055RHNAClyQK5xRc0B+vjuFeFJzQESloLa1UnNA7stNbkJTc0BkJCMRo1NzQOj7XXb4X3NAqFP9+4xgc0ALSGSoG2JzQIAmN0k5Y3NALmRZOo9jc0AIf1km3XFzQIak/EVlcnNAbbu8Urhyc0D2lyc1SnVzQMAzDup4gHNA7lEOSaSAc0A4yB+XDoFzQKYsfAxegnNAomQDTjqDc0AJxx7XhpBzQDL/YzGbkHNA8biaJk2Sc0D+V1b00JJzQDAj8AVilHNAQpfRk/eUc0DcoQ+it6BzQFaVDSVaonNAAj+qXSOjc0DKjgyUBKVzQJVwyAt+sXNAfhaDGbazc0DeMlTtDbRzQA+gMzyetHNAFWKksfjAc0DYgu+vz8JzQNPL8iknw3NAo2W1XdjRc0D4/Wq5utJzQHhnyG/303NAUuhTDOLUc0BONDwhOOFzQPgLk6bm4XNA/zpSl3vic0BOnlIZpONzQEKRHoBk73NA2uSlgTf0c0B5IEfEt/9zQNpegt/gAHRAgGNPcHgBdEDgahOLuwJ0QDAbPiZOE3RA5lVITk0gdECONtU3uSF0QE2rEnWyInRAQOFmlVwjdEDsB1LbxkF0QEt4pc95Q3RAKS0BnFdPdEBETB9tj1N0QC7CVb34VHRAlnT+lo1VdED+yx0UIV10QPB3m3u4YHRA5P+gKgtidEBKDS8gemJ0QBBWBLLmYnRATKBE3LRmdECWrPivxGd0QJntPPrUZ3RAYPPyEiBtdEDY512oIXB0QBTExNZAcXRAT3UdastxdECDFveTOnN0QC26m2ihdHRAMkudJvqAdEA/nuVQToF0QBieg5vugXRA8d1VThWQdECCWkXu7590QBC67uzPoHRAcmK8+A+jdEBemd9SDLB0QOxaoYzCsHRA0g/GwHCydED4UW0J+7J0QKxRSnziwHRA+e4JU3jBdECC+ZVo6cF0QBpwD5xNw3RARO4zp8nNdEDWQFI3/s50QGPXmIAf03RAlEfyqeHTdEC66EjHy9R0QNjZv4rY3nRA0FfV4LXgdEBOfcMOIeF0QDxNGWa44XRAUTXhjU/ldECzUk4JjvN0QOb29TKjAHVAFns1wVwCdUDAtHcJpgJ1QIBcxqSYEHVAWdbs9yMUdUDuMPJhnSJ1QOoPEBNnM3VAsrUZ+8o1dUDKud71fEJ1QNSu3jDbQnVAeAkzh9xPdUB0t//VhVF1QCThAp1OVHVA8RvFEHdVdUDZ3qSVC2B1QBI6aiCjYHVA88NO+zZhdUCSU3r/+mN1QGZeaOd2cnVAE54h5Ix0dUD/hQxkd4F1QMgJ/YStgXVAx7crTaSDdUCYk3oMmoR1QJZ5DJfSjnVA6BUVOrmhdUBpLRkizcB1QE7k/Ur5wXVAYVJxvmfCdUDEzbpwddJ1QEIPWBW80nVAzBG1B8zTdUBOYk0T5N91QEg04HsP4XVA+nMLfQjidUDOIOzYd+J1QJ6V/0ZIAnZAdR8RVc4DdkBbV/C7HAh2QHwW2bqwEXZAFl9MQFQSdkDqNgfvbRl2QEx/cT6kHHZAyUzliYkidkBY4A8CkCR2QOIp0ipLK3ZA4kB9SR8xdkAMqyLlUTN2QFzoMl+eNHZAlua0iU0+dkA9JsaPHEF2QNiPzZrIQnZA2Qe1tBBDdkDx9O4+p0N2QF2ikF95RHZAg4AoIcpQdkD8Vt9JEVF2QHRJaa8fU3ZA6vt2Js1UdkC+hNm9IGF2QJ6w9HD7YnZA34CDv9lkdkDGU7gh0X92QHaIxxqQg3ZAdhO99OqddkBjg6gewp92QBh0sjFEo3ZAUrDdmIyndkAk0YovoKh2QBAnJgiQq3ZAZ9ekSruwdkBqzYwSv7J2QI6i6AMNtHZA3jMNZ07BdkC6Sgc4zs52QHotMsu+0HZAaIpMOPredkA8QrTO9OF2QOKuMi0b8XZA8FgzXJLzdkA0ZdtA7f52QIy4MeAxAndAgAUGCAISd0C5cQJADiJ3QGjR6g66JHdAjd5/n1cud0C0j5OpozN3QLpkug4NNXdASCLr/pxBd0C7IcSMGkV3QJWczFxLUXdA+7h2u5FRd0CRaMhPKlV3QCTRpLkKYXdANqp/E5Fhd0Cg5lOuOWV3QIp7l1wnb3dAT5EAjIVxd0AI22DLGHd3QFDQt4h5gndAK4A1waSjd0CokAkA/KN3QHtsLeEsw3dABO/S7BfLd0A5XXa76uB3QGNHCoXB6HdA6eCTVFDyd0DCIFsu8gJ4QJqSSYpuInhADqc+3dEjeEBFfLDiejJ4QGZGTjkSQ3hA+JamqxBEeECcfLgCekV4QGgBZSrVSHhAveJESDJOeED+PMo/ylF4QEgHXlKIVXhA6MdWyPhgeED+7pJyt2F4QDJWdAyVYnhAKmIvyIt0eEBW8w3S2XR4QIhMJ7XGeHhAHsZ77fZ7eEA6L96AIX54QAZsGTSjgXhAVFpxTHqDeEBK5/wHmoR4QMllrs4qjnhAJpJKAZeReEDKmIVlqJR4QIPABaUhrnhAwhBSwIuveECruMHyzcB4QBkpVU631HhAX0Fk3gP0eEC//+syjfV4QD0rhYmME3lAqDaItCEbeUABqSJKsSh5QPGMmo4MLnlAX2oq7tEyeUAyQDXgtjN5QB831qouOHlARhXbw7w7eUCkBJTbikJ5QC53PeD1QnlA0tOjbsJDeUDARARu+kN5QNG0IOTLVHlAx/cSN5mCeUCGfzxJFJh5QPAccf79onlAQA6lXb+yeUDdgq6FQtR5QD6WKOjO1XlAXzCuJU/keUD+4ovuQwN6QGHlcSH8A3pA27BlBZEEekAHh6o8lRJ6QIpTzZMoI3pATKPpZi8rekCqBTfHHzN6QNCRxksMNXpATI2oqCU7ekB4lYO4LEN6QMQ2hlQaRXpA/xBh2ihVekB4ykOcIVx6QKCAETGQcnpAOCLyWMFzekDkcBs6H6N6QA0TgG4Ns3pAN8AULg22ekBaDw/3ELd6QJwiVF78unpAlJ5egxa7ekBS195dBr96QL+3BWsav3pAfDSUFB3GekDCCNpoZ+F6QDKCtAH243pAcnI+azfuekD67EFWGPF6QOcAVmVh8XpAUcUuWb/4ekBNPLMrewN7QD44oQt9BHtAPFxyX0wVe0BHYgXmXSN7QDGAk+xbJXtAysACFMUze0A82xjhjj57QMnBuQDpQ3tABjAyYMlve0ATKs15t497QCycktfnkHtA5KtL3SKVe0AK4Iws+rN7QOqyNQT/43tA2fL3Boz1e0DnUwnbkQF8QBzCvxDaAXxA5leg2WoEfEDXG/8xmQV8QEoSfCGKEXxAepS5XNMRfEBuYINyzUF8QCpCj5IMYnxAQxiDACtxfEBOiPaAA3N8QGqf+gXEjXxAugVefSWTfECqEJIwK5d8QB3LG2Evm3xAwO3SICOsfEDhzfMmwbJ8QOy1KMZ3tHxA9nH+QzO3fEAbpMJ6Z8R8QHprIApz1HxAsMoP78vVfECOXuthiN18QMAY7g1Y4nxA2qtauRbyfEBA/uIqVfJ8QBBXeC3+8nxAsqu1vN77fEB2fArGSwJ9QLbTBPUABH1AquZ5yAcMfUAC45gfNxB9QMxFC95FEn1AuzhQ0w4UfUDo5hADExx9QCTlJp09In1AmXGeq0c4fUDIPZruoD19QPy2IqP6Qn1AqHGDX0ZIfUDFte58ok19QHR9SXkhc31A1pWDDnp4fUCAlDUrGX99QBa6//shg31ADo10lwKkfUAK7qeApqR9QOYanM4MrH1A+p/1Sba0fUCj9IvVJrd9QGaBIGgpu31AR2Ocl+u7fUBw2srFKMN9QBBH0/7lxH1A1jtgteHifUDWIRtBj/V9QKGH/UM4H35AKnaE9EQvfkBWu6hjQj9+QKe/JAmMVX5A4tH1+Il9fkA0rSjB44J+QPTB2ASgg35AaGsLOE+EfkCMGTrvMYh+QKwsrHSni35AEy7p6YqNfkDIOgiv6JB+QBwlHnaPk35AjKjI6q+TfkDCpYqamJR+QOJSXz31mX5A8KEyGJmbfkAtfFuST59+QMcW9T+7oH5ALoRaOZGkfkDhEjZkJ6V+QKRILCD2rn5AzN6PzE+0fkA66dVPkrl+QCQd8znSxH5A1WsNoGHHfkCjcEYvRct+QMxL6OVzy35AffYtwEnTfkDWjVbeZ9t+QMUDEZMB335AHpTeDwTkfkBeuaaOV+R+QGYt9J0G6H5AkLfaLAvsfkAZGqZ6D/B+QNyl6Pk7CX9APMwvq6Y5f0AsHa4a/z5/QCbxaapWRH9A6mS97OdEf0DEZeqf0kh/QCgSpVe4XH9ADsyfw75kf0Aar4LAxGx/QJJIF764cX9AtKFqZlJ0f0Asu42qz3R/QApUduqvgX9AfzA73I6Jf0BODx6+K41/QDxvrP1ikX9Ab0ewcaqRf0CxoEeoDaB/QLH4sqxfoX9AeC/5rSymf0DU5Kjj9a5/QHHf+MNXsX9A8ULF6q6zf0D+A9yyabh/QKyhzMO/vX9APUnK+BHDf0BE+2rArtx/QKCaMT7T439AJt6kzu7kf0D+amAYTPJ/QNFoQsBJBoBA7Axm+t4JgEBLeFiiSwqAQEJ6Mp54GoBAiDwbwMkjgECyxCaUmyeAQHYfTMRHKoBALGgSYfQsgECgiQKJXkKAQMkV5AKpQoBAEAgYXPBIgECKj/L+mkmAQG76OgKoTYBAjOi95+VQgEDYm76RFVGAQKB2Rw5oVoBAzoaK++dYgEAz8h9GDlmAQA624GkhWYBAe4YlFWpagECBkk2xC2GAQI86Gfw4YoBA+Ocq+XBogECrS14CzWmAQNoossVCboBAV3UnDSlvgEC+Pw+aJneAQMoKK48mf4BAyfNtfmCMgECh7rzUHY+AQKoHGLhIloBAri3sWSCXgEB8heeVUJuAQOGtbKYbn4BAZDWUXBGkgEBR3qCNeqWAQODjC1uHqYBAkrNsrbCqgED8BcvAE6+AQIDPWDk9sIBAQjWx4R6xgEBsB6v+lbKAQCD7DnBPvIBAYqc9r7+8gEDKhN9hfL2AQDyltKVSwYBAYzgm4XbBgEA5p5qsncKAQIBhAdA8xoBA2marE6nHgEDgnoTGYMiAQMR8owQYyYBATS1TRSTJgEAktUy+U8mAQPDFHuvgzIBALHbInQfPgECR4t2tLtGAQOvHQFhN0YBAN9ls5+PRgEBYCq5LktKAQCh+ieVK2YBAQrqy4EPhgED03HBeV+GAQB6Aw8yz54BA/Gg+mPbogEDijCUcROmAQJSbp6xK74BAro6fiLHwgEDa33SCZ/KAQDmnPLpr9oBAk+xLyD//gED+b7LAQAeBQBPmI1M9D4FA+kszt6gagUAqQjOkNB+BQLAJwgJSIYFAT0zKQlUigUAkJeq2ryKBQOZuSRc1J4FAZrrSRbQqgUAet4Z1/y6BQCaXvv0wL4FAaoZy7bQvgUDmsD9ivDGBQMgIvihOPoFAxC9nDCo/gUCRpV9uUECBQHjy8xRQQoFAbGFmhy1HgUCeoB3rA1eBQMuYgDoAZYFAQssL/rFmgUDYaEOjrWeBQNyC1RGkaoFAyDzzG6ZugUCaPUqRfG+BQKp9vDmqcoFAqw/j9X2KgUCY6riMVY+BQKTjmo+SlYFATsiARFeXgUBsUwFkU5+BQFRrQVHpoYFAtmxXE9+igUALp3OLBqOBQEEKunxsqIFA9MUhG+aqgUBWrkpoSq+BQGPREVzqsoFAep8jy0u3gUDaWAs37rqBQKyciqiWvoFA3f0v55jCgUAmz6aOBcqBQKWe85yDyoFARN7ixG/MgUB2epdOs8yBQFNezvkaz4FAfDwB9FvPgUAOMln8yNGBQJDS4LOK0oFA2idDSqjagUDmdpHUIfqBQGY/xDsj/oFAapYJOv0BgkAA8QH3AgmCQNpHmOwAEYJAFraYhLQSgkDqb56B2BiCQNh/Ev27GoJAP/ZModUggkAAYiwk+iGCQLa+pYnUIoJAfpGqNv4lgkCDWXQ30CiCQH3wrvFzMIJA1oonuqQwgkAd+LXjYDOCQPwitKZANIJAugH6405KgkAuEAuF21KCQKoNieGOVoJAujzFBApagkBwXtMpkVqCQAA6UTHRWoJA6uimzuJagkCCG5ainluCQAVjGDRrXIJABwiLQTtdgkBsdrbFuV+CQMVLxWd6Y4JAPAvGdXFogkC71yFmSWmCQCjg614CaoJAnGlM/jh1gkAK79u6z3aCQLdMo/jhfYJAeF8VCeeBgkB5l+iMbYSCQJixHUhDiYJAjoXTsUSRgkCyPeU3PpmCQCTLM3jVmYJAnB+LmA6hgkCkHob/PKGCQJgsv2zcoYJANqN2AfWhgkAOIFEBD6mCQHHR9AE1qYJAE6TzXU2pgkC6L5w3UrCCQAYRYDIFsYJAsjRqwDGxgkBwFEGs1eKCQJDul1gT5oJA8Cw32vXygkAS7MmWFAODQIL6POLYBoNANGHxhhgKg0CKKReguQqDQKsOdo29DoNAz251b3kRg0BuHLubehmDQOGPE4lkIINAbVcy1XQhg0A+nAjk8SODQLx42XZzKYNAp7+58Cstg0DmCqxe2C+DQG5d5stZMINAHzOOfGsxg0B67GzchDKDQMICJvYwNYNA7+v2m8M3g0B4BcCe3TeDQLqnYXwdOYNAMuVf7Gg5g0BIGLtkijqDQFdGXIFaUYNAPbo/MutWg0D2f6Vh44GDQLv3PCZmgoNAgJSD2wqDg0CQVAoIEouDQKYrD0t3moNAdh5VtSWdg0At1IMf0J+DQC8jrnsoqoNALc7cv/S0g0DGJpYn8bqDQCo0S1Df8oNAAw/X05H4g0BoMGzfgg6EQPF1PH+CEIRAiKI2vIIShEBUymlaZBSEQEBkZyVlFoRAGgAHEmcYhEBeszr7ZxqEQOhHQCBwJIRArsL+EDMlhEDKzzopLFmEQKiQbKTLZYRALHVnAP9ohEBWhLxj5WqEQNxWu0LoboRAkZYuFf1whEDkbaag6nKEQJWYRh7Jd4RACouNO/Z4hEDijhwMd3qEQOotDmskfYRAI0DKwoCQhEBugUkjApiEQHhw9CJq2YRAZCcxp2rhhEBTl7xmY+mEQKmFH3828YRA+gys/2LxhEBstz45N/mEQKXLjX9Y+YRAmv7O+275hECbhQ6irfqEQA1wPmlI/IRAgJimaOX9hEBdbm6jXwGFQChUgztGFIVAUFVTgHsXhUC5DALcRiKFQI6fu+A2LYVAdOmJviw/hUDGIEhCoGGFQBD6PyehaYVAnhNbKJpxhUCIKALGmXmFQMClCm6RgYVAWkuiIJSJhUB+Nrvaw76FQLrcq1NH3YVAaO/V3t/dhUC769Xr89+FQLa3nAox5oVAtjitlDXqhUCMDaiRK+6FQEpN/gjU8oVA/pSRuoH1hUBTpiY5K/iFQHIKb8wbBYZAokbcPfFGhkDSHa4rClmGQOZ6aGfVpoZA3PwqFs6ohkC1ic3Jy6qGQIkdzyTKrIZAyua5zSi5hkC8xue2zMaGQLDrWfqG8YZAz0GeqTH/hkCiOLE/NwOHQPpMm12QKYdAdeuRn5Exh0BrispQgjeHQI3epkOLOYdA+kYhjFtBh0DDWRYlikGHQPap6JE3Z4dADzL2gTtrh0DcBqgsPW+HQN5cg1crcIdAuBd5lUFzh0BUBHNBjpOHQESpsyrHsYdAaExs7sW5h0AmB072v8GHQMW/Q9W/yYdA+SmsTyLbh0AW9HgbYzeIQL/TdfVlO4hAr/B3qGg/iEC5wNeVbUOIQE4IidFsR4hABPstiXxyiEAUw7UOf3aIQFr5//yEeohAsopBNV22iEDYJTw2vc2IQOQ9fgji0YhAl2XiReLViEA= + NrgMGZxjYkDiYBUjzERuQFRnpVdMhW5AcQ5nZb5zdUDCsJiwi5J1QIkLLeqjw3tAwg51BOTje0CMsbwEPuqAQBraGvpp8oFA - + - kOgSRivn+USyf8tEI8wpRakcg0QXnLpEPxJsRbU1DUc11gVFZVBERcuqjEVp6BBFtJmVRGBLkkQKD5lEhM99RPsJfUQXZ5RESN6VRRD4A0egO2xENT1MRqWWpUULMaZFSI6JRD6IVkVktXtEm42ZRKNNkEauD4pE6vTXRHE600SwP45F9t2YRDWI0ERbuktFLmqiREpmNEX7pMlFfo0aRUCvnUTzPolER9OfRJoQZUWzPcxE9/SYRPu7r0QO1vhEtumLROn+h0TnPgJFMECoRMEgukRP+7lGBpaJRNvjm0TyZ6JF4dF1RFHEzEQ/9X1EbgQkR5jqhERi8eVEOmQyRj94y0W2RcZFciGcRIGUr0S2Uq9Ew2RMRdh+8EQ65n9ERDy/RPgR3EVOPM1E9ysJRQGNiUSXSL9EneeNReift0UfcJtEURk2Rd0LmET/wkBFYeHiRCUga0SXLbBEgvBJRiI1CkVRLKVFS4uNRCclxUQC68VEJHZxRKDY2UTRE51ENQh1REA5UEXLicBE4A/wRKzPEUhciXZFc17JRAWelkdFGfxEL9/YRNYKZUbYZmJGeFUiRplufkVLVxZH+LGHRI9tBEV+HnpEdjnyRK+xw0XxdZ5EvPirRS+n4ERlfWVEhwY9RQ+RqkTw471E0TH2RHBA6ERuoVBFxxK+RM64k0SqT4dEeKwgRUxbkkTmi2hE3sjPRN5Nl0TqLdREZADlRMl54kSRlQNFCNGlRM48k0UPBr5ECIxrRSwjyUWrLM5Eyh3CROBnLUbkG41EaJL0RCT3BEV8KetEUsqmRHMnckQBEaJECLSVRLm/X0SvmZJE1HcbRb8A0kX4HtFEYSHCRX++FUU6BZNFEcvtRIxhxkROjqNEMGzDRPtNmERb8bFEx4aER1peqEXg/oBETJgJRb5rqUSSpd1E3jbhRFFfgERX1pRF3H2tRJ22tkR9FYdFLYCHRMy7xUSg3bVEbmpSReGoCEaaUIxFaxYJRzjd7UQ7ZqtEJoJaRRhVxUXwBppF728SRj20CkUE7W9FPqjHRJtHX0X5k8BExVboRQhwj0QO05ZEPUiVRCPD2kUEXcxEQ4zyRg6/skRBKk5GPg/DRW9oFEUIPttEg8l8RNxp/UTQzIRFUruTROOImkVlM3VEt+r7REfvoESiw5VEES4WRa9c7ESHwqpEPBSFRtpChkWYgX5EUe6SRCP28UTvedpHwtyLRlWopUa3qaJFd3NXRhrH5UR/FHNEmU6/RMuslESr7TtFo+F9RJP95UShCpVEg/G3RF0nvETCcXNEBTqNROiil0QFFc9EhieYRB6MhkRUpC9FCE7kRJy9gES90GBE3sotRaqxJUa2BM5FKagQRUfAukUwm+REVHL6RHHZCUURWtdE9CkgSbg3f0QHoNBGJjw8RXKeiUaDjQxF9kWlRSa6KUh/oa1E6KyWRd38eEYGD35EAUuTRNUviEQaoUlF53BaRY/CQkWwqpREUOWIRDgDmUVOsPNECY+FRF8EmEUWA29En8S+RBD35ERbIL5EFnVyRKm1gET7OvBENTuIRIePoEQmxF1E+6QeRVlZq0UCHZZEC3fLRDDhmURX3QtFVdlKRUgNGEVXSvZHOwkvR8kWX0b9pqtH4FiaRV0ihkRTXZ5Gaq7QRKWGj0V0JY1E6iXRRCUt7kSGFA1GAwXLRR8CI0b9afVE9daTRR1XiETQD6BELeSqRHAcTEVcrpxEcwvHRA42pkSE7bBEtN4HRZJdg0QUVxRFhD8hRs01i0QThkdFkzCLRHxZIUWHA0ZFUurERcTywkRQp65EMpr3RCnroEQScLdEVD94RlQUn0SVXjZGud+oRBt/rEURO5hEEkliRREBh0UDqpFE5RfcRNtViURTmpxFBNgGRXuzokSK93xEtayrRL4cykQ0rZFE0LlgRJSJFUYOe/dE8rKtRJFQikQ6rbtHq18uRclsukajW4ZEWgP2RMOniUa4idpHmw1GR/sz7ET5D0hFuLszRmEXG0Xb1cRE0WcWR3lhvUardsFFuxJgRdSoSUWLQ4xFrSMBRXsckkQTkCVFrT/kRf+5okXlXUZFh6qSREtZJ0UXCZFE0Q7/RLAJrkS7E4dF5n+BRIwS0kTHAOpEJMOLRAjTnUQZva1EBU6HRaoGxkTKkKNGDIy/RCfBi0RSRApGO8ncRAz7g0RuVJ5EJHwmRcBtg0V2lT1FKzfURCYMmUTZuG5EJzGLRJMPS0VI8QFGitXrRbLsxkR4BYxEBYWiRJcJ/ETajm1EtEqYRHsYTUTjGd1E5igORkbdrkQ+wrVFM5C6RUfWukTC06NEylHyRJZIykSOnadERAyNRNz/okSO1gtIuhOHRxQZfkb/Ef9F1zkSRaWtxkRJgudEZaqFRKusi0T6CBNGCbofRVUf20SysE9Fb1J+RMqCfUQWaQZFH5KbRC51ekU3cTVF8DDcRBemgUSJ/YBEd54cRSGweERHv/JEcVvuREKGlUSWzYtE7YuARJvyvUVV4alFM8JmRUblqEWw05BFDx0KReeBekQN+v1ES/QmRVxl2UZeX9pEVhmnRL/a+0WZPRVFM0SyRJpWvkR2XnJENz+HRBhCmURBC5FE+uxzRaYwoER/LfdElFq+RLnwQEZ+QBJFC5VCRd1OrkT2ykRFX46FRNSZ1kTndgxF2+peRHdACUaU0mZEIJd3RUciZ0UmCoNElTA9RVRtt0SdUtVI7hSuRPiY7ETaIwpF8EwlReExr0R4CcREIXPmRLtXWkjwCJ9EZZifRFjKxkQksv1H7ZWARHZ9hUQ/ga9GzTbwRVycJUU4fKpEYYNHRQdo50RnciRFUTe8RKBGRUU/qb5EW4hwRky+h0Upvp9FqzMJSJvlBUfY3/xEi8KuRBJGD0fu7ONFXHqDRZ2gckSIxz5Fcd+dRPC/vkRfTmdFOuznRY55NkUsCTtFtSm6RA4IcEQ1D45FylXYRPaBj0SNe2VFvlUzRf72b0RW6stE/nhgRANP0kXR2YNEw+QkRcsSEkX3uR5FRa4XSTkFFEV+1vlEbtoeSF6XGkaUNtRGP4pBRboMOEXqKJxEWB7RRNBkXkXDeBRGinEeRWP07kTHD/pEdxhvRDdXzUTFRQxFSYUURSPc9ER6RZJEkyXoRE3+PUW+MMFEmgz9RQ/qOUZNm+9EnR9YRWEZHka3KiZFWDtNRfloLEUUqItE+FSORIL1KkW/DoREgqcGRfykhETeUF9FvS63RAMCOEX36XtEfZWCRCQ2E0W0ispETygyRdoIrUTzdY1EEAdnRFMqAEVMPQVFPVCxRMt4XkQYsYhFdPUURbv0pESbqKRIJlM2SGgZz0dCVmZGX7TJRXTg70bcoz5FZ8RWRKwfPkWR/AhGMEDJRPopJUVKAuJEnMu1RNOfF0UZVpZEMcXURPFaSkWL62hEJ2hkRDAmt0VPUcRE1EiwSGKlR0j0JP5F75TlR0JkcUR15v1GMD/JR4MawEcAyMFEb4ASRl8JQEfHqzpGCrb5RCOu90RItO5E6wszRaZVh0Sa+XJEHlLBRPWOtUSt535E6fBdRlBDhUVGw09Fs9SVRcf1SUXlvX9EAzV8RFQqmERdQtVExgimREUCoER9T8JEgyoVRWhmYkXXsKNF66SmRc0RH0VjLntEeQV1RGz6hkSjuMJE3gDZRX2OEkY/KMpFV3khReSvl0SOb4dF16CKRM7pFEXsgKBE6KVvRFeJqUR1m55H1zAlRw8owkZxrGhFaPX4RVA8HUWA7+VEDRWnRAeLCkVyCDxFjGS+RHlqh0R7tIpEuksvRUaGfEQmVJ1Ex+yIRDBrl0fwJh1HBfHSRmgZ+UUM2zpFIk27RGzng0TiIuZEolp4RHoIEUXrQDxFF9znREawh0SLW6tEDTc5RS6Ox0RTHnNE/jUKRYz2g0TfGL9EfgW/RA48CEVdQItETy24RKTooESm9XBEf0dDRWccxURvslVG1f/3RWffwEQdp5lF7/WyRGzDEkVyOYNGOIkwRvKUvEUZGaZE/fPZRAsDmETL8FRGIm/6RaHOakXXNRJFF0VvRLnqi0ctFFJHQrbZRlBp4UUoBAFFG3D1RQfDyEUYrCxFTrWlRAn+l0SKtQpFRP4NRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - f0b4+W7BckCoKdKLUMJyQJ7Dd1jjwnJApLAduDvDckAn5MHdwsRyQGZud6HNz3JAzr4D7YHRckCThXufD9JyQHQ1UqJD0nJAf1tAWEbTckB66sagddNyQOXqWVdk1HJA1d49sY3fckAnMoXauuByQFeigilM4XJA8mlHjxrickAKZhwxT+JyQOiS1VqQ4nJADBmfGCfjckDT1UZEEPByQD/F6WzL8XJA/3tlh3zyckDnQlWHnfJyQIoYLjYR83JA335N+LjzckCEren3DvRyQOBF4OKg9HJAy03xo43+ckBWHZ3Xwv9yQCSOlZ5hAHNAyOIO7/kAc0CyVpXijQFzQCHrkvE6AnNAEeQVpm0Cc0D2uSd6zwJzQIuwc7X6A3NAri1Il4QOc0A2cc3W4RFzQFw8R6YKEnNA/MmQSisSc0DEbqqbvBJzQLND6Kb5E3NA4CZQ7EwUc0A64RwEex9zQDyqZR2kIHNAkfgDlPogc0C/kxvsOCFzQKqUFXB6InNAwIIfqsgic0AYVVzLECNzQI1oaJE7JHNA/kjui84kc0B0kJkDRzFzQBiIZPFXMXNATqqMGGgyc0Bg4kEFDTNzQPyMYoo3NHNAuK953Lg/c0DnHTMv40BzQEIgaaV3QXNA3XMm7iRCc0Co+rgyu0JzQKYZQ2x7RHNAwORhEJpRc0B8DnXXDlJzQJjdzIZ6UnNAdcN4hKhSc0CW6HFLDVNzQFS6daiiU3NASHa2zoZUc0ByFAb6+V9zQJobdISOYHNACGCXd4Nhc0ATWIRCOWNzQLuxsjrecXNAbLYn/lJyc0BsZTDeuHJzQDa/u+O4dHNApmGGrEt1c0DAHRQsa3ZzQIR1zAR5gHNAVtuo8KOAc0Dqlk4GDYFzQC7+EzVdgnNAZ2GDgzyDc0B4zjWuDoRzQMNVLBZZhXNAAH6AWIiQc0A8HGoCkJFzQMBcKVhNknNAqwTZJ9CSc0De8YTLAJNzQATz+wlklHNAVAjFcveUc0BfRRbguKBzQPYW7zbjoHNAvObLZEyhc0CifNbcsKFzQHq3MwhbonNAlbKqsiOjc0A0UjeKBKVzQHgUd2fVsHNAsuBtFTexc0BsHCSBf7FzQIhk/wzfsnNAyiDw77Wzc0CHq+u/DLRzQKwBrNOwv3NACtgtRPnAc0B2kwXfz8JzQMv5utYow3NASEbVSXTRc0C2rcbU2NFzQCrPVo0n0nNAJZDOL/XTc0BeIGKU4tRzQHDhnfEP4HNAqkpt+aPgc0ApSeBFOeFzQCw+ZzFl4XNADUxOyejhc0AEnWWTeOJzQN4w1voO43NAyOr+5vHkc0BOwONoqu5zQH5av6tl73NA1y0eiDf0c0B22mXmeAF0QFP63dOjAXRAGVMd8bsCdEAYv/YlUQN0QJRFSOyHEXRAt8Ki1EwTdEC6HcJr5BN0QEC3RXxLIHRAnRpsibghdEBM2t1x+iJ0QFd/iIbaMnRA/CGJjcdBdEBuX2YWQEN0QHqTXqiRU3RACuuyUfdUdECvNeHljlV0QOzDHzohXXRAZrQSBLlgdEDBZCLT4mB0QICAgIkHYnRA3wDccHpidEAkjoyN5WJ0QPqIxTSdY3RAoLMZjk1kdEDe5PW6tWZ0QIhvxb/FZ3RAogIuZNZndEAsbqrfH210QFYs6qIicHRA/t2XDEFxdEAb2RAnxXF0QMtyq6ZrcnRA69bPg3tydEDSAR0T9XJ0QISaK6w5c3RAHuEidaJ0dED8mLtdNnV0QGoQ7ib4gHRAXp990k6BdEBw3MNl7oF0QBakBtrPgnRAe96Jz7qDdEB+rml6FpB0QMdwKXG+knRADJk5P6egdEDM27w9zqB0QLQr1uY4oXRAPTtBZH2idEAZ1ovouaJ0QLMFC8APo3RAq3NmNPivdEASjT2jCrB0QMr9+AhOsHRAT1CcoMOwdEA3P/QZcLJ0QDG5lASWsnRA6CaoivuydEBQ13BjHbN0QIFESaHiwHRA7AtnN3nBdEDeAx1f6sF0QKkxXjIPwnRA1mX1e7nCdEDahde2T8N0QOr+90rLzXRAZLs41frOdEC9nC3UPdN0QIB4v4F01HRAhEWsEc7UdEBPYXOmuuB0QIU0AbUi4XRAJDR7lLfhdEDsZziL/eJ0QKA1l5tc43RAVjHlBU7ldEDQ1T0WwPB0QMbVK+OM83RAcFVza3r0dEBEOKOmpP90QOpmtD86AHVAwgTxhqMAdUDfz3urYwF1QC/SzkJcAnVAfGaRl6UCdUAUzMukmAN1QDoXnef3BHVApGsVa5kQdUBWqh7bjhJ1QB44DDMjFHVAHX0suOQfdUAMXGxinSJ1QNZj+kisL3VASoIJdF4xdUByYgkUqjJ1QAwsCNbLNXVA0FLmC/RAdUBItmskfkJ1QBtlXhreQnVAQDJv1O5PdUAA0EGFB1B1QFrejBk4UHVAIPz2c4FRdUBUm6F8TFR1QK7GBdx4VXVA+XIw9w9gdUBMf+PJN2F1QHm6VKhkY3VAtt/uzPtjdUB57ktedHJ1QOz9k/D6cnVAKA98E410dUAqudJBd4F1QL5xDV+tgXVA3OV8zryCdUDUpunzpYN1QBvdA4yahHVAyuyY/7eRdUBSCjiwt6F1QJxKOcpMo3VAmmTs0umydUD8z+zwPLh1QNR1tQ2kv3VAEAR2ULTAdUCOOkE/zcB1QPbrhj5iwXVAT3krC/nBdUD42ZCPZ8J1QMHwC3jYwnVAhk3+waHQdUDWyeYHddJ1QMdi0xHK03VAtl2Ot+TfdUBkA5CEDeF1QPYtc4UJ4nVA6QHcnnXidUBeZd2tOOV1QM61qxVm83VATYCPUuUAdkBQ6NSMSAJ2QH+Uj6TQA3ZA6nZO1BsIdkCgEGNGbA12QIvpECCwEXZApAQhj04UdkAELvbQDBZ2QL5Qyie/IXZA8Bk844cidkBhj40KkCR2QJz5ySpLK3ZATpxFmB8xdkBMi0VTUTN2QCArHdCfNHZAv/spaE0+dkDN1xw4TUB2QGDSmxrjQHZAqCdyfB1BdkABzBB8bUJ2QNZr6DmdQnZAFmwi4chCdkBqxBOrEEN2QHPxGoF7Q3ZATi/d3KZDdkAa7AoKekR2QPCa2BDMUHZA/gwU4RFRdkAak7HqHlN2QGkPJbnMVHZAeFP1lY1gdkBalHRI22R2QKZn7joAc3ZA9KxyvNF/dkBoGUsZzoB2QCC8gqeMgnZAv37vspCDdkCeIut43o92QMYSRfrqnXZA0lK6Or2fdkAQOB6PRKN2QO9tdM2Op3ZADF6abp2odkCLryXqjqt2QBzUDFb3rXZAuKebP7ewdkBWJOGewbJ2QKVf4EwMtHZASnCHR7m+dkDWOLOpTsF2QL5JYWTOznZAwrSFtvnedkCktxFjfeB2QMD4pDK28nZACM2xX9TydkDJ9CxgkfN2QLiCJ9w1AndANBDC7RMDd0BEM4bMpgN3QLk8GDoBEndABqikvjgTd0DB3ZQHZBN3QIXzOAaOIHdAENimsg8id0BcHIIuuiJ3QFyKQhrmIndAXqPHjLskd0CckOmuozN3QHPXyDoNNXdABo1ofyM+d0BKc2F2nEF3QOQxWQ2vQXdAEgE3opBDd0Dh+DsZG0V3QBTVmcZLUXdAhAfGlJJRd0DGaefWK1V3QIir3qFLYXdAptx3yY9hd0DL2lCkOmV3QNC1+GQnb3dAgP0KbiJwd0BAouWHuXN3QFicz9WPdHdAinDFIRp3d0AMnEFQIHt3QNJ0lvB4gndAYuSQORWDd0CzQS4sCZJ3QCB5yXBLlHdApSw44fugd0Cs1m1TY6N3QKP9Sbqjo3dAQlv20fqjd0CgIG9Mm7R3QGDgfKQOw3dA7pU9KkjTd0BLQiGt7vB3QEfHr2lQ8ndAt37Wgfryd0ALI/nEX/N3QOEFwmfuAnhA9tKgHA4heEAdbhHy5yF4QJcZSoNsInhA0/4f5ogjeECqw6Kp0SN4QHurFyOkJHhAEbllC30yeEDAKh4mtUB4QDB6sXlMQXhA2BwV2whCeEDmeM64EER4QKxRpvl5RXhA/Pe9TNdIeEDcSfLBL054QAqXDUPKUXhAyqS3PItTeEA4g1JAiVV4QO6aEoH5YHhA7vuw6LZheEC0xVSNlWJ4QLrlqCO7YnhAo0a1D8JxeEBk48W+i3R4QOyUU+7GeHhAqGhzEPZ7eEBytL2NIX54QFQ8ti+lgXhAlRk4FnmDeEBqINqD/oN4QIw+TDGahHhAgtGpUpiReEDxaMXxp5R4QBba+TBUoHhA/ytmRPmjeECO3m8Diqt4QOPZw4DcuHhAZgMVhMnAeEBv/ZK1sdJ4QHQv6pa31HhAzHRjyJLzeEDN+oxjAvR4QNza96GN9XhA27ZPmygCeUCHMueNWwN5QFVnqKkeE3lAxs0v6NkYeUBsEl6WIxt5QECFmEK4InlAcYPRwrEoeUB48X2YDi55QMxjMyVRM3lAIi7IPLczeUCiaMFgKjh5QJgajXK+O3lADrasbo1CeUBYHdXU+EJ5QKTDGSP9Q3lA/ckTUopIeUAO+Nif4FB5QMvnHjbNVHlAimgXkzJheUAM+l4+/2h5QPpGLLZbbnlAfIlUeEVzeUB0hskEtXN5QEFduijTc3lA2IXnmtiAeUBTrKotl4J5QKz8LRvyh3lA2uJWah2heUCDuUL1R6F5QIclJAI4onlAvZUtK76yeUCiCJTxJ815QHf+BJpC1HlAHqn5Kc7VeUDzaHpygeJ5QNIc9W1843lAumFf6r3jeUB8J+LpT+R5QNx53kWY8HlABHZhqwz0eUC0wo+9/QN6QGZlwCqQBHpAmMv6ZpgSekCfMAyLpyJ6QKDrsPYnI3pAVAX9Pi4rekDYV5UWIDN6QEpFkYAMNXpAVDfyWi83ekBalpdEJzt6QEQX+WEoQHpA3P8HOxRDekDKb6uzGkV6QEXrbcu8U3pA1NIOQSlVekAUW4fKIFx6QP05cFk5ZXpAP07LmcFzekC6mSgjaId6QCNFIxEfo3pAax6HWSKrekD28FS5DrN6QKK4od4LtnpAfKyhrhK3ekCbFkFtE7t6QJmwzOoXv3pAhH93PhjGekCn9vxhP8x6QCL/mUBn4XpA+AwoITfjekCZlPFsNe56QDYqeWEY8XpA5H7WwGDxekCyb1K5wvh6QDAaDhV3A3tAz5bZe3oEe0D8ZbOWxgt7QC8mxjArDntAYhx2S0wVe0AOLQ+dWiV7QNwh2afFM3tAA/tlMZA+e0CIM56Z6EN7QNv/G5deUntA/PLyH8hve0DeWIqaI5V7QAcihpgvpXtANorUVwCne0DQrisq+rN7QKSr9lv/43tAhF3faizke0BW1VBCjPV7QFCRJTsg/3tAnLhR05EBfEAx7I/i2AF8QA6NrUBoBHxAdo61f5oFfEDcK3gaLgd8QP5jkReKEXxAqvM6F9ERfEAYOGRi4iF8QEwXeIK/P3xAxWQe0c5BfEBwCDtxYkN8QMDyjDblU3xAPFomnmhffEAESaZjDWJ8QA4WX7m5Y3xAVIPf3AVzfEAZIetQxY18QCBPJR8lk3xACrB+sx6UfEDgWBeLLJd8QPBMNe0nm3xAFmztq06cfEAggrXq+qR8QGAU5+e+snxA/ADflnzDfEAMG9tnz8N8QOD+8X1mxHxACbzD3AbUfEBMtTHPdNR8QAARUBNY4nxAAngYp+XjfEBIExbiFvJ8QHf8OaNU8nxAliORrXPyfEB7sf1jCvN8QFVgLBhD9HxApDVQBt37fEAAm0kD/wF9QHOfO4NLAn1AhBmr+wAEfUCNXmMfCAx9QHEeTdw0EH1AvA5ZA0USfUBMo2kvDBR9QBZwnooQHH1A6ukq5UMifUAubdS4mjF9QGwIXANIOH1A9hCGD6E9fUAJgZk660J9QE6AlllSSH1AuOvrJQxbfUAeQcM1p2N9QHSbPgYic31AFMuzvnl4fUAWCm7YHYN9QJiBl//zg31AalxQziKifUCTl8ImA6R9QEWJv9GnpH1A0gGFGQisfUAJWuVWDrR9QKI2XVMjt31AzE31qiW7fUAIMjAh67t9QNZv9D0tv31AhyNFd6C/fUBoILnXMMN9QFvBknPnxH1AOCXG1tbifUDBACTZJel9QLectPOk631A1n5y7o/1fUDQXUd/OB9+QPbG4PE7L35ARpTOK4A0fkAk1k2MjFV+QDcmM8y3V35Atsg/RbxzfkDIg3WVtXt+QN64ssiLfX5AGz9RAeWCfkBLYwVin4N+QPUnG+ZShH5ABvW/G3qHfkBmhg4sKoh+QJZz992mi35AZcNZ0JWNfkDho6WPKI5+QCE8ViONk35ALk1GZ7GTfkArzQKlYpR+QKwoi+ualH5A551bT/OZfkC8+y/JZJt+QPJgLXMnpX5AsxUWE/aufkAANmreT7R+QDhGGB8ytX5AOpMZR425fkCKQZ3qqbl+QDV45QDtw35ARGYJDdHEfkAgMTguRct+QOYOr0dT235ALK9Ffv/efkCmRD8QAuR+QFVP7fpb5H5AcmOH/AbofkAYgTy9rel+QDSNNYYJ7H5AJgrTpRHwfkDDETVTwvN+QIlJnJ2i/35A5/W+msz/fkCGGwW+JgJ/QFwJynXpA39ACN4KXE0Gf0ANR/4Blw5/QG8Y+EZtM39A92bJa6c5f0CgQaVF/z5/QHRDpmKaTH9AfsYHhs1Of0BuGGkJrFR/QAMgd0C4XH9ALmU3jb5kf0AcOo1ZxWx/QJ7BG5y3cX9AXy//hlZ0f0DCwjgdzHR/QBpgWduxgX9A1P28X6aDf0D5Y8gX04R/QPCrGlhikX9AUsuS3ayRf0Dm52Qdl5N/QGRZfykOoH9A0uI61F2hf0B3dVb/2qx/QCZmK4tUsX9AcDu88Gi4f0B0UdWnwb1/QJyQzvAXw39A9Kv0Tu/kf0Aa72BznO9/QBhukRqi839Aa8MRZEj2f0CFMYtjpvd/QOgjsPNC/H9ArAlfYqX/f0CHImA0RQKAQMriJTd3BIBAutesoyQFgEAGVEyRSQaAQMVTKCV8BoBAy0IeCcoHgEBE8FCb3wmAQIRGOuzPEYBA2SYcGUETgEDKGXTiMhuAQA4yott7IIBA8LoEm5ongEDDFp+/zieAQPqTORhIKoBALKuJI/QsgEBM7myBoi+AQBp9siiMMoBAqNRhql5CgECOnavdqEKAQLCVdYyrRIBALnQcrwRFgECelwiR7kiAQKIjEbpkSoBAWHocSbFKgEB0I1/jqE2AQLws+83mUIBA0ENMHhRRgECodiC1JlGAQMVzYdwFVIBA0XawHGhWgEArnLC6BViAQIJt+oPoWIBAwZEeNg5ZgEB8bhenMlqAQKBnYewMYYBAgH2lSzhigECPGHLfMGqAQOJfEkgqb4BArEs3fyhzgEBkPTbAKHeAQHfKuw+CeYBAoAz08Sh/gEC8RL0tAIKAQMBNIGp9hYBA63KRe/WJgEDip5Jm/oqAQEi/ud5djIBAbcFNzsmMgECKQLgKiY2AQLKaGqsdj4BAWKSW4LeRgEDfZMbfR5aAQFx6MBwgl4BAMqQqFm+YgEAfB3z3GpmAQHsoSy9NmoBAVRROhk+bgECqJwZuEJyAQFqFDEMan4BA3oYIs0qjgECso7k1FKSAQA5UxgbApIBAMOpwwnylgEBKW5TU/KaAQBiT/y6GqYBA3BQcEBOvgEDcXdrUYrCAQA5YPawgsYBAhJHcX9exgEAGYVPhf7KAQIzMpVmYsoBA42tqikyzgECBsXh2FbeAQFgREWBmt4BAHnWKcOy7gEDxIhJMwbyAQJ1uLeKHvYBAijo56PG9gEAWciZSNr6AQDY5Zkn5voBATtf9h6m/gEBXSVuwZcCAQMIMd2ZSwYBAdKUw3m3BgEC2bGPqKcKAQFygakmewoBAwnjPP/nGgEC+hvtgo8eAQF7YxrpmyIBA6H9qnVPJgEA8NpjH2MmAQFmBRzMxyoBAEpML2IzKgECYYjzw38yAQHyokjIIz4BARuzi6YnPgECQvOb4LNGAQH6q1+lM0YBAnBAY2ZPSgEAv7fqHyNSAQNjmZR7b1YBAZNG2LQXYgECfK2M7S9mAQKfj3zYB3IBARHdC2DvegEAYBVvVROGAQGEyN5lY4YBAUfeuudvkgEB+ti1+9+iAQLQt3h4b6YBASodk/UDpgECM48K2Su+AQCxVAZtm8oBAnEzggjvzgEBa0Gdvw/SAQDaT9ftq9oBA6xzaGWj6gEBsUQuOP/+AQDBLVhBAB4FAl6ALjT4PgUDEzv+CPhGBQIPvpnZ/EoFAtYwtaqgagUCaHieONB+BQIwwhvHjH4FATBGvSlEhgUD8PCBJriKBQNVRv0A1J4FAPhMW068ngUAkaFvD5ymBQHYaBpCxKoFAmieffDAvgUDZedThwDGBQCwcuy3lPYFACMWMJU4+gUAC/n03KT+BQH3zERFOQIFA7hwJ4U9CgUBeHMVoeEKBQNSfbVRPRIFAfs6MclVGgUBwFUMfKEeBQLKpB0s4R4FANXSXgPRJgUAsEkFyIkyBQBbESK3ATIFAVErdTt5RgUC8Byz51mSBQD08kH39ZIFAavEoYrJmgUDWFwXbqWeBQMyCtZDGZ4FACth3RjpqgUBjo2gmo2qBQAQ3e9SlboFAXTVMfQ1vgUD7XWNVWW+BQKI4osUOcYFAbJs4VP9xgUDgFxwx9HWBQFK0EhuVfYFACsamb2J/gUAE//GsbIOBQECzSF/ehIFAenkaDPqFgUAWMoyWDYqBQF4hYGuvjoFAkMFs71WPgUC3L0fWtI+BQKHsBFG9koFABupQgTeUgUCa0FzJ35SBQGBBJ71Vl4FAFg5uRxaZgUBcXox2tJqBQPypPxVUn4FAnqlpaOahgUCkj/zIuaKBQEzRYCzfooFA5c5JXp+lgUD0xP1bbqiBQB4fnjjmqoFA5X5Fb0qvgUBGKD8wPLGBQA4+xxUwsoFAcUboVj6ygUC/5DPc6rKBQIBdG/tNt4FAioVAXg+6gUCQhlGO8bqBQF4CoWGTvoFAluah5djAgUAfLvrGmcKBQFhH5Y4FyoFAtMeRg4PKgUCSMjLUb8yBQDSg7XGyzIFAgD369M7MgUDvWLN/H8+BQJ0tEMZfz4FA4mZ1C8jRgUCZCQjn/dGBQI+TXTx804FAHOF13UzUgUCSf4hLIdqBQFzPKOKn2oFAEqIPUATcgUBob+LlTt+BQH7tU0il54FAdcNySubsgUA6BoRBIPqBQKQ7zWXI+oFAJh766CX+gUAOec3eAgmCQLm1nGxND4JAbD702QERgkBw02dntBKCQBzYbDNsFoJAYPgHjE0YgkCruYxC2BiCQDrueFq7GoJAKH2ug9oagkATnZv11yCCQCCbHUv6IYJAAMyKemIigkCaD2xK0iKCQPilzin+JYJAxODOkeImgkCkV2Qe0iiCQPaNhEvOKoJAWMLYN/8xgkBSadPwmTKCQHgohqhhM4JA8aqGUp83gkACA9EW7jmCQJKt/aoLQoJACfu6bJFDgkAe96qsrUOCQCdR4kywRYJAL8Iwd2VGgkDwPZaYTkqCQP7o6HOhT4JABB8Zg21QgkDbYDenOFGCQLqQml1LVYJAfsklno1WgkDQL57lkFqCQO3pSh/nWoJACNYMSq5bgkCqepySJFyCQF4wyf5rXIJA8pUd1QhdgkCwA7/IjV2CQCtjthxOXoJAeuJZU5VegkDGRotWuV+CQKT713BtZ4JAYio04p1ngkBpRfWMemiCQJy0JGqScoJAIF+vEzF0gkDqDTBxXXSCQFINY25wdIJA9AhfokZ1gkAWZmpN0HaCQHY46O7idoJAtksrk8V6gkBum+sO432CQCb52VwHfoJAOgNLIS9+gkC2fsoBaICCQLjkxRLlgYJA8Hf5GVyIgkACBFAvQ4mCQEjeuXE/jYJANI8DUhmPgkDAxVBXRJGCQKIW4H3DkYJAZ8+/a5+TgkBaPmrlPZmCQBWPxlVWmYJA/UbjQ9WZgkDcMHt6DqGCQJCgKz48oYJAiKAz9NuhgkDLKLlIEKmCQMCFVn00qYJAYz4MKGiugkCchtfr76+CQBCglaFQsIJAooeHXQixgkBK8iviMLGCQMqjr+VWuIJAibp4iTvFgkB2vnkZ7MWCQL51j43vyYJAhp/fVxDSgkDMqGN7UeCCQIsUIubT4oJAZAc+gO/ygkA0xJnarvmCQLcrXbqWAINAsfPYnhUDg0DNPw+6uQqDQHRgFKocC4NAumOGosAOg0CZFGlTeRGDQM5PopR6GYNAkWPOPbAbg0BG2/Gdph6DQDg76PbGH4NA0Nj8smMgg0BZO0UjdCGDQAA9Lv2OIYNAVf0wTyUig0B4nD1VRiKDQE5YAjnAJ4NA6oYUMnMpg0DbJfwKLC2DQHCU1pvYL4NAXN6Jwlwwg0DvHyJcajGDQBpXlxOCMYNAiB0TyoQyg0DgdwdyTTSDQFBACjsxNYNAo5hsgJI3g0AaK9w93zeDQOSRbt4cOYNAsBbNCWo5g0AzYOGGlUmDQPMngvFrSoNAEFQQ4I5Qg0CpNkadZVeDQCBRYNvIXoNA4p09DSNjg0C5TygfkHaDQLkARsXTd4NAUh/UyOKBg0BQBEcdCoODQCQIwqNJg4NAVPquKeqEg0DOg+WdYoaDQIQNpPD4iYNA8JbFkRGLg0CWghhZ8JGDQKzJq9gZk4NAyk2HW3eag0AWPBQnJp2DQCTa6STRn4NAOMcS/6fAg0BO4Kt/y8eDQIjtA/1W0YNAoAhMEyPrg0B43Ova4fKDQKsE85SU+INAajB+sw4FhECLbtrAYRSEQB53Uoo5FYRAjinOXmUWhEDOHRCJZhiEQH7RyRY/I4RACJV8oN4jhECcBfooeySEQLbFN/XAN4RAannJb51EhEBUYUDZmFeEQMYZKOsqWYRAJKcW2rBmhEBeiTVL/2iEQFBFiILlaoRAUGX3iOluhECJJ2um/3CEQEYs2F/qcoRAKjw8k8l3hEA/KJtb+XiEQBDK2Ct4eoRAQoKxHiZ9hEDl/6E303+EQFyFjS1ygIRAEOFhOcmAhEB0N7+v6oSEQAxrqngEjIRADUDDpT6RhEAdbQMiAZiEQNawwauwmoRAA7mem9GdhEBMUNnjbqKEQGiG72gopoRAfL2DFKamhEA0xLGgyqeEQJIohUUOu4RABEkAFRXMhEDYcyUwatmEQKztQ9Vp4YRADLXJp3/lhEAdDEK6YumEQNJP7HF96YRAMM5QgDXxhEC0sceNYvGEQEaG8RCx9oRAPrWx/zP5hEDRb8z/WPmEQPTWhehN/IRAeJTL7TMBhUCUIZPCSBSFQKeX+9/gFYVAKkojYkMehUAQPWWbiCqFQEpSn3TiL4VA6UuJNOQ8hUBXAU7VdEiFQBpPEFyISYVACDqMt+pVhUCGr69PoGGFQMt2EIegaYVA6BlikJhxhUDCaE0NtHOFQD/s5f6YeYVAGVZl7I+BhUAr97rjFZuFQI3aDtJAroVAFPu+NpfPhUBgfTfPR92FQJbt4mrz34VAGduwNzDmhUDdp1TJMeqFQHsDaajV8oVAFV6EtoH1hUAQcHR1LPiFQAGhrf7Z+oVAMsf3CcEahkD+0C88dT6GQIBCQuTwRoZAFABwvVNKhkBImU3n8EqGQDum0hH7dYZAcBn5WGh4hkCphVHWm5mGQNOY/mK9o4ZAHwlbRCe5hkDvaT/dKcGGQCg3JIky/4ZArRc9FjkDh0AlJ58RhAOHQHZ0WndhD4dAj9zsfxYgh0CqNRIakSmHQCqtJgKRMYdA5rbIjoE3h0DWFsfjiTmHQMN0LdKDO4dACOLZs6M+h0DYbXjcXEGHQCCQ+8CGQYdAvnvKzElYh0CicG5IN2eHQCiYaDc6a4dAyf4Mgjxvh0Bcri0oQnOHQHjGz4NqfIdApUREhot+h0A+NUZ6MIOHQAD7ka2Lk4dAvoBrwnSch0BWaCpcFKiHQAGZFp7HsYdAWMHv8se5h0Du4ZN9wMGHQOxn58hcw4dACFgfl7/Jh0DEjCzeYOiHQHcSDA9jN4hAvHsXEGY7iEA+hAbxaD+IQDyg+M9sQ4hAGCI0xGxHiECvjniab0uIQDqlqQ59cohAGISH6n52iECZ0PERf3qIQFSzehxKqohA6MpeaaO0iEC7ch234dGIQHsolpfj1YhAKiSD2OXZiEA= + KBZXds7jZUBmiwPJSGNsQDeULWxqYnBAO0xzspXCdkCrOe5bWmN4QF1VdeMYM3xAOErBSjnKgEAS2ISOGLKCQMlOQuN6goNAzCplhpCyhkANEjuK88qHQF0v5h7SaolA1D3hmV/TikA= - + - 6cRFRnVrrkS/MBFFWe5eRWIMZETOI5NEgwdPRCz+OkU/OCFHIoxBRCqWl0Qdn4lEJoyWRE615URalbxEh8GRRAvmk0Wc/NdFUK/LROzrkESUcRhFy/BJRENvZER3VKJEL3OKRK01ikS/0YREYmp2REaRpEShjqBEBUy2RLset0S7GJhEj65XRGEuwEUGcwhHfS5lRL3+tUSTTAtFv69hRNudaEb9IpZF5G6hRDFYQ0VtNQlFsg6MRFGSlUaZRx5F02azRH8+FEUPjxBFUoK3RUTm9EQlc7lEARqORFEBgkRiXZpEYsxbRfl+xESPAFlF4cSDRDJ42URan/9F/+EPRefpnUReZzlFe68zRDf5SkR1oH9FWC3NRHxyG0V1qGhEunZkRE85RkVCssZEhxu6RAJPEkUfxFZEkRUJRfwNdUSNNbxGyfyqRP+0skS2GNpFk+yRRGRZsUQAUGhELoUGRWq5xER0xkZHm+aTRBxoaETaIwdF0J85RnfLB0bcyHpEZW+1RJzGckRSJMVFioCtRFrOPEUQaoBEPTyERLmBjUTSc3VEJelnRUgyIkUIhmZE34PLRA/SAkawX7RE0/FORNnzHEUAel5EEaVwREH2pEU+MXhE5NKcRLW350VLaK9EH85YRFSpqUQsMJ5EyARiRJZJrkT9Q59FJFPPRESncEbEFLNEl0P+RO0G3kQcSdtE2+B2RVayt0SaXvREzhPGRBidikQiMVBEZDMVRWkveERw6xJF5crHRIskhkRILjJI8yhIRb41YEStDa5EcxaxR53kiUUTimBEd+aGRLlDx0TX+55Gpr5ORh7WLkZFTslF+oZBR4RKgkTLjphEaIL0REAem0S8BHNFbzq3RHrywER1Jy5F/O6VRWD3kkSc0WlEDj2ARHFBaUW3aVlEymhZRIdNz0QyJMlEJ1SJREfMwESjz0FF2sOQRFbKnkS3LYNEqfUVRRBiV0WLh5pEjokNRf62XkSN92lFXHGWRNbQj0TGWKxEbKvIRE2cu0TMBtNEJYSsRM77hURJW1REJdq5RCS5q0R43kVFWrJSRV5gmUREibZE83jpRLsqjkRA5rVFjF9iRFvaiERN9oBE/+iURFKZAUXtfIxFNp23RaCu0EQ5cZxETKbcRCjhmkQnpQxFYC+jRAluT0ZrIa9EzMO/RAp7mURlby1FSoWPRAhctERyOnxF2czGRFqRa0SxzX5EXKCPRNukkkRgyNtECdWLRK5RCkWHLIxEyiLSRdXNlUQRl6lEs3kCRqG2KEXRg6hF7wHjRK75oUX+NMdEJvJqRNI41kThbHpE4QJwRDNLG0V9GGZEpROARMVCm0T6BNpE3AEbRXt18UdUZXFEixhyRPYLFUboVpREMf6fRG2Zk0RZ3rVEIhKzRIhEiEQLVodEk6NtRMiUg0Ui8adEO5nDRM2D6USBlf1FTfGWRB8PcESALIRE/HnCRaB8JUbFnZZFHn31RiinMEWXUW5EQROlRUoNi0S/zoBEVr/PReFUkUTwdoREHbZyRUDSQkZMwcJEmKRDRVqTakW22ttEJmp1RXyYp0RxZyVGBECBRHtlyERqEk1Edz3TRZAkb0Sku7VE4Ww+RRQXSkTXXqhGmMeMRAKLjUYckI1FtfUfRQ83xUQbY6BEzSeLRJcctURzuaBFhfRpRKch10RlqYBFZ9jxRHM+mkSQtXNE0o9BRHdvIkUfdJ1EJ32qRAy2gkRM1ppGtb1WRIDKwkQvcm5ExkccRXZ9SUTUBFNEIe6lRONsuUQR6fZHBqx9ROHbh0ZIvbZFIBydRMw6sEZEdqpFzEo0RvHxhET89KREYjYoRYFiaEQ+3EpFMlF1ROeWbUS6SaxEXsWERF/DIkUCdutE0ThsRFXwAkWj+rhEQQGDRD17l0TixbFEr9gLRVcWVUSdg3FEzxuMRHAwmERxTt9ECr2hRLJ8RETe8LxEM4ptRKGxgUQMHU1FwcjqRE3YB0X4ZZZEgvJgRDOgf0R1/aRERVeKREv1SUVBkg9GbVmnRexurkXNtKNF0zZ+RPrIBkUVt9ZEd1JTRXmPB0UWj61EAk2EROu6Lkm9bPpG9aBCRWf7hEZj/3NFmL+vRYy9j0QKJzNI3VB5RXjglEZFw21EcjloRBsd0EQ8JoFECWC2RLp4PUTukSZFizKuRMXwhUUE3WRFGKt4RNebhkRZG71EFYWpRCwnhUQ9cYNEyhaSRcXZo0SHj4xE4VmpRc+DiERFPA5FPi/IRI4zBkUJvP5EyGiORNbEnESr2x9Fk9x9RF+BhkRANX1EucXaRNJUjUS2tJBET79cREsbnEQdovZEEfKFREvwfUQuPGBEixk6RRo1ckS2nKZF0biJRCUehkQBh75EZC93RAKk70SmY6dEm319ROQaIEXPsQ5FaukFRfKLZEQxsWdIAtvRR48c4UaivYlHW6eTRIkhQ0aln5JEAzFnRIn9bUZifWpEFoesRP9wjUWsBpJEIFUDRQpcs0SGcLxEV3xuRKN910VXaJVFMun8RW27ZEWxBRJFjZp8RK0zj0STLLxEjverRMRJ/0SfpfRE5ofPRAhQ80TgsctEfn99RQScZkS/25RERZERRtwZE0Vt3IVEnIBxRRqIRUW/rpNEioTIRaBDSkUezZhEwg37RDfGykUwcZlEbNOcROFJVUawkpREg7roRAKXF0a/JHhEguajRXXJhkTnYKREnK6BRXddk0QZ05ZEhpOZRb8BhERrZ69EvpTRRIsgvkStwE1EbUKBRBykyURVsCdFgXBpRBZ6FkXM81REURhKRE5RvETI8nFEE7ZgRAxMXkRIRgdH4ldYRHhLmkX/5rlHT7CGRL9+PkV0nb5GhNg3RUbqRkRtVlRElVOsRJldC0UNh2VGTujQR4BqRUfZyCBFGDoURUdQOEbUFttESACFRJKmc0R1vS1H82i5Ro7Dp0UVNMVERl9lRO2JTUS7p5pF0ZwKRVZhHUX6qXdEDLORRAmjEkZt4R9F41pIRSMDS0Tw3IFFo8WKRDpBoET+HnxESXWHRKx74EQnw7xFUF2kRG1XgkThpItE6Z0JRfs7D0Vje2JEvbRfRAC/4kSU+X1ETrqcRPeBjkSVH5FFCA2LRXC9wUYxQGhFs1uSROCDtUSI6+RFVtrwRAgol0RBkwdFiYkVRbXmZ0T2/V9FTb9URapvikQ5t25FyCFBRkghGkb1QmNEm4oORU0H+ERyOkZE6IgKRbES+0REKXNEYGJNRWEIMkZ0XeFELlcSRgMetkQ2ZuRF2ufqRJCXcEQTYT5Ew2tfRDJNh0QlAGpErlGJRHyIf0SefphElI8PRUmWAEXWzdVEQ6WZRHASbkR8PwJIwqFoR4n/IkYcQAJGD8oTRakwbkXVF6pE8ihxRLtMjUTJXChGiP6WRCLHvEQdh1hEMz9HRTpIi0TDjTNFSc+PRb7Wj0Xgv9JEvd83RR8CYkRDV3xEk4GYRMt7q0QFy2lES6yxRJJ1b0Q1LpFEeItzRHgyTkVPuHVEXEeWRGy6A0XHEW9EJpmLRMpDqESKv6hEnx/uRXdNiESITopFL0FSRc58okQMRZNESpXORf2dpkWEp2REjb+rRNkS+0RLZqxECJOvRElSskTslWFFqbCuRnpsJkXfsJNEOmuXRaiZi0SYB5dElyfwRYW40kQ73BxFlZnARIGCgUSunxNFnvSfRHVjqUR1fMZE9YkDRUTT50TgYGRErYN8REWcikStSuZE/ZRxRNpqn0RPMXNGtk8DRZAmUEWWTixFEzbgRJ/KoUSj1QdF1kC+RKlreETPKEJFBIBuRHdu/ERUvphExXfbRHqSgETH1u9E1VI/Ri5Ni0Q0oH9FCpEJRWZarUSXVKJEa3DRRGHN2ETc551EpCRqRAaFI0UAcbtEcR5xRHvCJ0Uor61EQ1HMRNwEh0R3rtFICCQeRVoboEQzfL5ErUqXRGBfxESV68FE3bRISFYYuER/lcJEsYmPRArDk0QORu5ECB+dRA1W/0RnEt1Htia4RMaEjET/qYJEobyuROyoukbVEnlEMdemRC9fzkXrb9VEcwytRMlC/ERq0IhE8gimRF2rG0Wj21xFDJOzRAmLhEQ1kBtFvip+RQvlk0aXALpF2I7DRRLlg0RZaVdEgsRDRywVHEc3jsZE1ojIRPtO+UVfRP5F9fLgRPPv4ESui91ERBNwRaBDtEQX7blEswVURcs+G0YD6eJFgpWYReyLh0RAb6BEAm5fRLbR/kTcIb1EqsmVRF95WESKBntEQZeHRAv1pEQlZHpF6HK6REs49ERBTaREtY18REp9lkVSZutEAC9ZRKtTbURGtmhEeFGUREgMc0SkkYBETKzRRLUni0SfA/1E/RGbRIaT4URiP81Eqcf3RS/SQkStTXFEYShmRPcel0R9+zNFwxJVRHj9ykRNkBNFmSjuRJXNZUS/C1hIG8xORGV6IUWJZ2dHme1rRoLNc0TZeDREHTdPRDeT60Vq0iJFvz1xROUdp0R3hVxFBxmrRIRIqEQdgk9F6lY4RemDIUWA91pFnvBeRG0qyUTR/B1F39trRBunaUSPV7xET5JqREz4OESBqK9EGUCXRHkToES9xQdFFrpsRA+LoEVoz2BEK6PaRBLmXkVP/WtERyqiRADrmkZrbJBEQkxaRILQPkZeZ6BFOsmORMG1ikWb8g9Gins+RNeQDUX2GXpF9CaHRJjYKkVPmINEvgOPRMRTiETyKIdEL21aRJCEg0QW/ZpEQz5KRO9fgERi+JhEDZ2bRJE/eETXkZxEMFN6RLNZpETv/HJEWLyvRX92hUVDhaRERdSyRGf+h0Qez7hETGpcRNsye0QChHdErCuDRL+F+UTtgYREij7gRJ/UBEWDg39EeqAFRfFmjUS3aGZEfTjlRAi8o0TKNI9EFkVqRPrNhkWMertEbKtKRLWKgUQU56VEUpKARJ5dlEiXt2hE2/vHRNdiIkiApKpEypCCRPTatUfuVmVFP4yHRg0U1UVUZtlGdTFyRRMJD0V3k8RFB+6vRNXIaETk9CFFEcPwRAK/xkSk2G1Eal6oRIO1hkRXNZVEP3NnRJpUhUQy6RVF79NYRBORi0SPT5BEwMIuRX/1wEVtQX5EfsEaRZOYoUhopjVIdSBPREm8nUTnWV1E+ZYmRZSM0UdY2lNF9irPRMzAlkTjqZZEpjTuRv4FcUep7HxHTiuvRHnaAEagAzNF99/6RjAxikQ+JTtGlKmuRCTKMUXDJ71EmMnvRPF7a0SJ0V5EmvSBRP1ztURuxW9ETU2PRH8nWkSvy3dEps6sRCByFkbncWhE8LKCROJ4n0QuDHtEwMR6RdCHjkSNa05EJkdSReG000QxTL9Elil8RNkWfkRf64FEvRlcRFVb/EQUQ15EcLdYRNACAEUKM7pEwQ9lRaMlaEUXIoREtolxRBBqzER7VVdE51GBRK7gfER+LmtEsltIRDmC3EVKCIJGpHQIRnJxH0WyhZRFDhOiRbJf50S9+ZVFyt87RalfxkQ//4dEyGV8RPloXUQMZ4JEbTxBRIiOh0R+Y+pEmgmKRA4Gr0RXVGdES5FURMU0b0Q6QXFEYO5oRD9Hm0fIOx5HY/BYREOKsUapmfVETGR/RZJWx0XkIohEHkEERdfmEEU9hqpEAgSMRCtntEQirwJFJukuRSvm8kQCj49EtjagRP/5Y0QFxZhEJdKKRL/dkEeOkBVH6hi/RnrdkkRtXBNGQfMTRerFQERl6WtEW9l7ROsSuUQWAeFEWjZJRX2ZGEWCZTBFPPExRSwBjUTxKq5EyuY7RKbzXUQQdttEorJmRIirpERqzlZE63uqRJMriUSWSFREQ9QTRUNsUETlFlZFLLPjRIRraEQ5XaJEEr9mRJqbc0Yb5w5GPS0IRVe5sEUrwf1Em91gRD9+V0RxTQVFBsqkRCzTukbefYlG+aa0ReZz7US4UFpEDOacREDDhETD4rhEB8NdRBLmcUQ7kW9GnX/+RSqizUXnsfFEf18ORRvLWUSL9ZhHojqFR02V30au+CBG44b0RDd8rESDguJF5qr6RcqjdkW/S2REkEfXRKO1BUVY1SpFCrLMRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - QgAKnwvBckCM66WCb8FyQIo6sW1OwnJAN338qTvDckBBpNWADdJyQAC9c6dD0nJA8FEjJnfTckBl7no4z99yQN2yWwW74HJA5u5kuFDickBJYFnuj+JyQERp2J8k43JAKqlKb8vxckCowwERo/RyQMg+khXD/3JArkD0zPcAc0CwYg25DwFzQFLt20s6AnNAVK3I9s8Cc0ApcBK7+gNzQKT7YgUJEnNAWV4nQCcSc0C0j1IBvRJzQJVrbAb6E3NA0vqpokwUc0DVn+wcgx5zQPTGEpZ6H3NAiJ08r58gc0Bwe8QHOSFzQIYjNediIXNAk9EXkHgic0AauXJNziRzQMgfFntGMXNAnqf8TVwxc0BiCDX4zjJzQLI1vfo3NHNAeoCKZ9g0c0BCZR1LuD9zQIwE99BGQXNA9A8dmnhBc0DyXxa0ukJzQJwKj7R5RHNAWoU9fptRc0D0dbNgEFJzQDyW0Ud5UnNAD8hRREJTc0DOagdpo1NzQEa/ysv4X3NAEITl3jhjc0BnM7B1unJzQDrOB7b3cnNAsEqjwrZ0c0AaQ7DkS3VzQD1SqzF4gHNA9xAEBA6Bc0D7Ogr1XIJzQKqVwrkRhHNAvb5umoaQc0CB85rIHpJzQEHI9DVNknNA9gLifdGSc0Bo9PyEypNzQIo7QL9ilHNAdgy55veUc0Bqu859uKBzQCCGpS3koHNAq2SF0Uuhc0ANlJXyWaJzQHJwyvslo3NAcDb36wWlc0D8OY2+fLFzQJgevFG3s3NAbhg4Yw20c0CYG7eOYsBzQPXbR/r3wHNAHcXBsM/Cc0Bk63piJMNzQAorva930XNAR6hXd9fRc0BcLErku9JzQHQ4ZeD103NA1GTbb+LUc0B8/+QWOeFzQEIm2arm4XNAdqmDNXvic0DivlXsEONzQGqqQxFl73NAtqM/6zb0c0A6YAGWeAF0QKI8Jjm6AnRAhDXTqUwTdEBrjc45dxR0QMtSKeS4IXRAf3oVM1QwdEA4EF7rfj50QJCaLPxSQHRADu0RJMhBdEAkgf5OO0N0QBQJ3NpyT3RAfhV2WI5TdEDqsHOv9lR0QM7v5bqMVXRA6LzlBSFddEAOR7Tgt2B0QFxtXp1NYXRAQCls9gdidECujtxvemJ0QLfFbrTlYnRAuN2GE7ljdEAKBLHqTGR0QKo5z7/EZ3RA2AQ2a9ZndEAck1vDHm10QOYOlTAwbXRAVI+QtyFwdEC4g2wJQXF0QEapX/J5cnRAlKU9nvNydEDJH7z8OHN0QNLqwdkzdXRAbYjwyfiAdECkkFMKToF0QJcgDYrygXRAbYByfs+CdEA+ONrGJIN0QPtg1jwXkHRA2IAFFbySdEBaW4KA0KB0QGSMRWU3oXRAuOvFRrmidEBmvDhkEaN0QJQAosvEsHRAVpBHqHSydECGoPX+48B0QLyCay72wHRAAyRmmXfBdECWqrqRT8N0QITPr5C3xHRA6oTfjvzOdEBQQW2tQNN0QJYqCCrg03RA1rLvCHbUdECI8RrjzdR0QO6xPEEk4XRAYVJ0KrThdEB/w+dH/eJ0QJhHH9Zc43RAwk1/5XjwdEDn4gVJjPN0QOzKeIGl/3RAdsZFD2QBdUDsri9CXQJ1QKr5IWCmAnVAqi4WAJoDdUCdYD1clhB1QMlfC0wjFHVAiDat25widUAkviujqTJ1QKxLXL3LNXVAoD+GvLFBdUByWJ1afUJ1QECYeuzdQnVAjROAektUdUDy3q/7dVV1QHw2NEs5YXVA02rdG/tjdUDgZFcrdnJ1QJ0tGdeNdHVA0bA7nnmBdUCiB1r1roF1QMsJnmo0gnVA/1kycKaDdUDYVPpxm4R1QJKzVV7OjnVAQv1zY4qQdUAc/YzIlaB1QHb2tNm3oXVAEBjp+vmidUD/m2bO0MB1QObmVov5wXVAixm+YWfCdUA1vY9eo9B1QMBbfwB10nVAljEBos3TdUCSpC7oDuF1QOL7Z/oH4nVAmt5hDXjidUCMln1NSAJ2QAbwkT3QA3ZAgCCdk7ARdkDoBDmVTBR2QDQhG7ULFnZAz/fWaIgidkCSyv/ljyR2QPzN2qNLK3ZAfM8cWx8xdkBQFeyxIjN2QN3Hi/BQM3ZA8pQvcE4+dkAzf/NTHUF2QL8c75/IQnZAugNL9hBDdkAjioZlKUN2QIfN5/SnQ3ZAg3XHkXpEdkB/EsX1zFB2QFBNixQSUXZAWLTkFR1TdkCUjYLWzVR2QCjfGt0eYXZAcoJ8pdthdkCiMVVvUGN2QDzhItmOY3ZAfoD5fttkdkCQY2AO0X92QChI/TSQg3ZAFoNBnmWSdkDWa8Eo6512QFIfw/cLoXZAbM+zQUWjdkA+Ei2ejKd2QPqpsMKfqHZAlUo6s4+rdkB5mEoCka92QAYfl5vBsnZAVP92sg20dkDCT5mFTsF2QAr7WzsZxHZAOb/fwc/OdkASTgYq+t52QLs05P1+4HZA7HBEqh/xdkBAA5T5jvN2QDrbel+nA3dAvg89jQESd0B5hfJJDSJ3QFFy37i4JHdAnDFVFqUzd0CA42z3DDV3QCbKIA3NQHdAXL1bo5xBd0CAVHrhrkF3QBxxP9ySQ3dA0LaQjxpFd0D1FY49SlF3QMP9ePSRUXdAC6+PIStVd0BVYfQekGF3QPB88pQnb3dARL5JCx17d0DmScEGeIJ3QAELZ8FLlHdAfhiWFPmjd0BPhye/D8N3QFlzB7Th0HdAviWfyOjgd0AC6+9AT/J3QAjTahfl8ndAVjTcg28ieEAtbXFOpiR4QO7aHhUQRHhAclwagHlFeECgwvZC10h4QMeqmGUxTnhANGa1dMpReEBqgF0ph1V4QLTTC2f5YHhAuPjX/7ZheEAMk1TOQ3R4QDwA62BfdHhAB2wBs4t0eEBuNC4kyHR4QLNA1+DFeHhANOOsyvZ7eECvjzSFIH54QPA7zIGjgXhAehqQZ5CCeEBRYAo1fIN4QPjPlhaahHhAoEZxyZiReECu0H8fqJR4QLa538EjrnhARh6n/4SveEDXWZ9IE7B4QHhJ60K31HhAQrdMxQ7heEDI2v+9xOR4QLJvB/wC9HhAa/hLyI31eEBosK3qJwJ5QHV7qK8PBHlAtPd2hpsFeUBiJYovsih5QJ4EHeYOLnlASYjdfdMyeUASKcp6tTN5QFTU59wvOHlAfMb7hVk7eUCiKBq790J5QHb8iwn9Q3lA1O1GasxUeUBCE3Z91nN5QLJUh2jBsnlAY0AuckLUeUCvoDIZKOV5QPanyd0O9HlAazqNBKz0eUBgvpxG/AN6QKhUkreQBHpA+jiwGJYSekBbAZX/JyN6QFIHIw0uK3pA7iKjHyAzekBc/UgzDDV6QORcsRInO3pATtLL8CdAekCV/yzfFEN6QDVXHHsvQ3pAeZJoMxpFekCjW6xvpU56QM7itL4pVXpAIHcUpyFcekD0g7hTpJR6QDjBtdwho3pAYk4dVw2zekBqHO1kDLZ6QIMhciQQt3pAJGR88hi7ekC3Q3P6K8N6QITbUTUYxnpAOjOZBEXOekDG4fP82NN6QOS44ddm4XpAORPMMjfuekAeqyb4FfF6QNTher5e8XpAtlUf5cP4ekB052BMewR7QDAr9UrGC3tAvV+zjkwVe0DqhKaIWSV7QJciNXqSPntA4jACduZDe0Dg2KXCyG97QJgMOb4ilXtA3y9AJi6le0AnRJbI+rN7QOqaN2QJxHtAkInoAMPRe0BI2jqji/V7QAYg9uWQAXxAzZpXpNkBfEDQZ0tj9wF8QPhRr8hnBHxA4O8Y65gFfEDDO1yZ0RF8QCxuIvPhIXxAR56D281BfED2s6cm90F8QNxAk+nDjXxAZOlbNt6QfEBCFYIdGpN8QGCVdmkulHxAAscyt/WkfECeiypzkKV8QNqoJgXAsnxAwDyUA2fEfEDI70mKdNR8QBBK9L5X4nxA2ijRbBbyfEAjgJocVPJ8QBQqcCly8nxAbpc4rAACfUAk1wLSSwJ9QKaTxMsABH1AspaZ6wcMfUBJ10KwNBB9QJCEV/pFEn1Ait+9JQ4UfUCYyGn7Ghx9QGBQg0Q+In1AxBrJuJ4xfUBi/k0CSDh9QL7piSigPX1ATq94PeVCfUAKqwVYAUN9QONIqzpHSH1AdkhAjqNNfUA8bRopDVV9QB1jn50gc31AtmCNT354fUBYyEgU2H19QMJq9kIdf31AYdreNwKkfUDoZYvPCax9QGghPLkkt31A1q3iSSq/fUCPJ7qB58R9QNITs/Gp831AbFVwqpH1fUB6h1H4NAB+QPzn8IJSR35AqEy6Zo1VfkDN8JigmGV+QECfONC7c35A2vY7TIt9fkCrylcB5IJ+QKwUoG5ug35AVG+8ZJ+DfkDnfTIZUoR+QFokDDi3hH5AZpyuRyuIfkA0MRH/pYt+QJBk/bcJjn5AjsY/ypKTfkB0ATPUspN+QM5TKyiZlH5AjUwq+PKZfkC5f6NfnZt+QDh0ORlRn35ADCysfCilfkAQ+77a9a5+QKLmNVWZsn5ADEiu6060fkBNgFH1qrl+QJB7aYUcwn5AEgqlydTEfkAyOPszY8d+QI1mDFZFy35AJKw+dwPkfkDcWQ6CWuR+QNDmTtUF6H5AnkkuEwnsfkDwRtY8DfB+QHwF9bM6+n5A0rvgnOgDf0AYJRVBQAl/QGIs7VSqOX9A/nZZGOQ6f0DLHR1EAj9/QB6vGPtYRH9A0gKOxXFJf0Dpkyv3kFN/QGbSCnC4XH9A+f84375kf0Csvxq2xWx/QEIVQy23cX9A4M6bHVd0f0B4HqjOzXR/QDBW1KW2gX9A0VMt2HCIf0AsK1VKY5F/QOvzkfSokX9AbUUkc1uhf0Dpvrn8pqt/QARls2VVsX9Am+Rdcs20f0DWxxsVa7h/QPt4yc3AvX9AkUcGciq+f0Bulxc0/75/QFjEQeSG1n9AAvvOSu/kf0BOktzfnPN/QEQrL6j39H9AAGQH00kGgEC4t5btuwqAQMyasIIkG4BAPHfDmpongED2aUQaSCqAQKK06MTqN4BAQJxyzv04gECJp6+VXkKAQKLEiUupQoBADqa1sPZIgEAdWlJOsUqAQMR0d0yoTYBAhkrxLBVRgEAAWcc3BFSAQHZEsTdoVoBAtm0ZkQ5ZgEDobKO6IVmAQDYtDaSnWYBAotyLKw1hgEBZ0t4L6mSAQJwdkHMob4BA2yzY1il/gED4Q1NyAIKAQOACzgUOioBAwtBpw/2KgEDUt1XIXoyAQKQpFPgdj4BA0kCWPUmWgEDlqbqvH5eAQNJtsMkbmYBAhHw3TUmagEBOqlVvv5yAQI7yBvjcnoBA3K/D9BufgECwfWvty6SAQPiNtuP6pIBA7NkINe+mgEDf4VtdhqmAQDN8+bHWqYBAXLAGXROvgECv/HN/t6+AQOq54eQbsYBA5/OwlH6ygECDNEN+k7KAQMx2ImIQt4BAWrKK9Fa7gECOb9EDCLyAQMJRiiq+vIBAP5osbnm9gEDM5vpZUsGAQPJ09NBxwYBAgkhyR57CgECVWNtKqMeAQDbQPH0AyIBAXShKXmHIgECHSfWvH8mAQHQgg2NTyYBApr2z4jHKgEBeahJYkMqAQEMQVPX+y4BANNedNAjPgEBc+RHKLNGAQESPTetM0YBAVvFSCKTSgECZ+CCAEtSAQFXvSFkF2IBAynEyhUrZgEB0c8Mph9qAQOlrhoZE4YBAfFJK/VfhgEDt0HU69+iAQGhxdPNB6YBA2j6u3kzvgEDWF5sJaPKAQLKYcdhq9oBAk6ize2n4gEAK14LpZvqAQJxTjOQ//4BA1ua+sW0CgUDz5nJdPweBQL7y71ojDIFAZhRcDD0PgUB6+bhNMBKBQGCTileoGoFAmn5ifTQfgUBrvV0AsR+BQMg3oJdRIYFAtDufKVYigUCqmg01ryKBQM3zyN80J4FA+Qc4NbYngUC8unNhVSmBQFrdNs2ZKoFAbwlJajEvgUDxdackfzWBQFn9Fa7dPIFAXEHXnE0+gUCeaLXeKD+BQL5hBmBOQIFAQKCNPVBCgUCCA8QMU0SBQNAGqQIsR4FAqikZUsZjgUCQYu1ysmaBQOBr7aWjaoFAUmbGkadugUD8Fl0xZXuBQErAtbzEhIFAelMW+VaGgUBYaXy8VY+BQKETWOlUl4FAqBWddbSagUD0ZdbWU5+BQOZbrL3poYFArD4PGN+igUAgp9FGbaiBQApB1o3lqoFAmu/XNkqvgUBWhWyL67KBQFxr71tKt4FAbmPQr5O+gUAM63FamMKBQLhy/i4EyoFAOK2sQIPKgUA6jP1gtMyBQCRusph904FAT9ZSFKragUB2US10UuqBQH/Kph4g+oFA/SNpciT+gUDnu12ZAgmCQMZkVjoBEYJARWQSsbQSgkC8TDUb2BiCQERCPIz6GIJAaDKYLF0ZgkBOAnB3vBqCQDgSt3TXIIJAmDZ++fkhgkCC8mrn0iKCQFkcPe7+JYJACOoOlNAogkBsa08wICqCQCKZ0uusK4JAxXv0ov8tgkAE1ok96TaCQDQZLs+LO4JAwm6Aq88+gkBGuawoOEOCQIIQXYJvUIJAFsXrtj1RgkAeEzhhjVaCQJeIUMmPWoJAsXRqKtRagkCwr8UyoFuCQEHf1BMOXYJAAKycLwhegkAGkDj0lF6CQJYo1UTfZoJAdCotd55ngkCgqm1+a2iCQPD/7nv/aYJACubRHXxwgkDk0Y7h3XKCQOjecUYwdIJAuJGruG50gkAAiyIPyHWCQNTCfbued4JAKHMSv2x4gkAsMLoq4X2CQIdavgTlgYJAgGUSHEOJgkB9SMIiaImCQGAI5XOii4JAQzsEgUSRgkDb8vty/5WCQOWipPA+mYJAWrifftWZgkBAKmkQBpqCQNKRh1IOoYJAJszI0TyhgkDxzZjO3KGCQML/KTgdpYJADKGH9g2pgkA6QSpqNKmCQPa5LExKqYJAU+maZQixgkCcjbwLNbGCQPCZpRB92oJA5nZi9IHegkCghXEf1uKCQEHBTLFv5oJA1OJktdrugkA6wOmP4PWCQEAyMMWv+YJAzAxgwPv6gkAG6bY6rgGDQGPYq5IXAoNAVoIaAxUDg0D4CHiLuQqDQBJ0dUAZC4NAcHbV0L4Og0C0jDNBeRGDQDJp0ga/EoNAJOodinoZg0AGJMAKZiCDQF69Nol0IYNAqIi7EI8hg0DQsLHG1CaDQEBWvu5yKYNApCzwfystg0Doa5ulJi6DQEMMnmHYL4NAUA9Vm2oxg0Bbhfi4gTGDQBeSGoGEMoNAaNV0fzA1g0AKM27bHTmDQLbmiXlpOYNAX89pWvpyg0CuNO8G5oGDQM6QjAJhgoNANy74cQqDg0CAPlwFEouDQOudhUtzmoNA2zoOliSdg0ACfu0ozp2DQCqmoyXPn4NA7G8jwcqmg0B70cz+HKqDQGbSIKXxuoNAOfzkpODyg0DwrzVnkviDQJ0po1NfCYRADtbaa2UUhEBqDnwoYxaEQBomtstlGIRAGJcDbPxLhEDb/z+0KVmEQNt7ay8FZIRAVPp8GvRkhECrNjuC/2iEQNbN7prkaoRAXMTYq71shECXsrtn6G6EQFyDvoH8cIRAwgRiPOxyhEAKd0tRA3SEQJy1lyjPdYRAvqHvhsl3hEClu08w/HiEQAxgAgZ4eoRAqIqk/yR9hEA1DqrHq3+EQMjC5WEeg4RAx7bg2FGVhECaV552KZiEQBmh2cbbwYRA3J9ZyLvHhEBB6o8RatmEQFqAwdiV2YRAPFaXw2rhhEAhMd4L0eeEQNLRJgpj6YRAX2MphzfxhEC+OdLbYvGEQEXQg/44+YRAxuTji1v5hEDOEIV04P2EQBTi8LV+/4RA8OOnAqMChUA13+SrRBSFQByCKbh+F4VAO9ARyj4ehUCK0IH6wDiFQGeClrOQSIVAuo79R6BhhUDBPVTBoGmFQHouTj+ZcYVAuMx1erJzhUAAgTOGmXmFQGa2g3eUgYVAy58QEUSJhUDeC+UrjYmFQCm+XUHGyoVAPmYmmvPfhUA0NGCiMeaFQAyljl406oVAVPExKtLyhUBOrKXtgPWFQByjkJkq+IVALgOjMFo4hkCcPPfK9EqGQCo5wwAnuYZAXmOaaSnBhkBMJF0m0sqGQHDJYt24/YZA0zE5nTL/hkByx+5BNwOHQFD8GGM3B4dA78OgfZAph0Au8lCIkTGHQOcVZwmBN4dA9umVc4o5h0DYyjTaikGHQAz3Y47BWodAKmY3PDdnh0C+bUkiOmuHQOyMCjI9b4dAyT8HgUBzh0Cv0WQ4jpOHQOr+9nLHsYdAxCnid8e5h0Ce9zmuv8GHQHzj6F1gw4dABGp4qb7Jh0A+rM/0YjeIQNd7Qv9lO4hAEONDBGk/iEBq0V7Va0OIQLwWlQ9uR4hAcmyidnxyiEB1CF+VfnaIQGjx1mF+eohAucxc6Xl+iEAMTDPmV7KIQApf2ubf0YhARlbhI+XViEA= + KBZXds7jZUAYxSyCnGRqQIzA8pSmQ3RA9X42GSyTdkAaGD+0flR6QIPWgjgEpHxAoGzDlZYygUDUS+VXWVqCQGeYaaUCO4RAm3eLZ8VihUCbpnmRceuIQFcSbxSlC4pAYtIfod3zi0A= - + - IQ+vRIcN7kXWhrFEOa4ARRSa+kRn0udGbdJNRGUodET8oKVElM6hRRItkkXMW7ZECqI2RWa7iUSXJhJFU3UdRSa6kUS8P8xEbH9FRTRDJkdxWoFEutSrRNouAEYlTZpF+5TqRN1QmUQVCTJFAr13RAPbW0bN/YlEDAnnRF6/lEX+QsdErtuZRC75rkQ0jJVEO/RnRAs6UEXfcHpEmbwBRdiDyUQN1PRFqSIeRVa5gETLJZFFUO6eRHmUbEVgIsVE2J4ORW5ZIEVaiY9ENJ2iRJPh1UQwHp1Goau7RPTYpkUtPalEq3THROggd0SKjRBHf8a7RPEsdUQOqhxFKSkyRizVo0WZy4lEFh+kRBAQsEWI+rBE5ea0RLBzrkROPh5Fh28IRWGIdkRrAwFFbZeeRaTPl0S+totER9cCRb9pi0Rg3oREBQeNRfff0EV+appE8RMPRVLB0kSzmYZFJBL0ROxANkb3FadETalJRWElxUTRWnFENaxwRAdKiUQVn15Ebi68RInyi0SUSHtEiVb9RC6qrkSoO61E6CsTSFSVdkWDMWVE2uEgRYmWk0fOhbFFIKSORFidsESH1UZGQCQLRpb8tUXmooxEDHdmRXcdEke2LRtFXbmwRHLoqkVU2YZEowkMRXaSp0X8eFtEnx9bRF16nkTP2WlFeYK6RH/K+USj9r9EeYOHRElpAEWI5dRETyiXRHABskTy/XtEBBubRCH5z0TUKIVEWPfDRD/wk0SCLvVEeDLgRMFgo0TpRo5EW46IRPt940QEwXdEkO5dRKxiYEViKG1EvHnpRNhxrkVrGqxF3uOhRC/hpES2SCNF41onRthQxkSwkkxFh/28RNXTyUS1xO5Ei1iBRKh0n0RMz7lEDtCARVuRgURdid5F6D0GRaHzK0XyinJEYQFWRS8zlkSSxVZEbTGiRE9cq0R2Xd5EpNeGRBy3ZES4lZJEd6PcR92OkERSTiBGZCn4RAiJi0Sc6iNFGvLWRKWoP0Vo1sNE01nJReO43UQvSJ1EckafRcYXz0WB0bZF0qcORwQtyEQqFrNENWk6RUth/UVgKYRFgQkuRu+0X0Qb51JF0iVBRYf43ERrnLFFY7rOREpQwEUEqI1ECq6GRA58k0RJp29EWLu0RHaitUXce+VEUilhRLoF10b7tYxEqL5JRjgih0XexjZFUX2JRVhLmER/zhBFTmOaRdkQkkRzSoREuJlYRTbYlkRIxqxEMYKtRGoJi0S4E8dEzSxdRicLTkWTHrBE0ZhSRQpCz0cJ01tEIzu9RhFr4kVu391EEEGhRqaUkUVyxVRGgHytRHeqSEWiAjRFL2zdRMxRsUSh8r1EIUCzRGOLq0QQU6tEXWORRPImykSNfYVEO+rXROfEe0R+cxtFyhwkRodquEUSjp1ERsamRdIN0ET/p9pEmIcaRRqkj0QCLTlF7OUdSVkS10RA1sZGrOVNRetti0aHkg9FopFzREgrUkUKzR5IF/5/Rb8gckarhJNEDz2KRKpdZkRq/dVFxMh6RAaQoUQHZThFztRbRZsPwURLE31E6Mx/RHHdJ0VsFapEbiI2Re3ljUVI32NE+ZZdRJDVmURHTLlENhAuRUInn0TZ5k9FquiERbPxpkR7grBETdOjRBwY20SEFLlE6LN8RcBgiEhkAttHHRYSR35/mkebryJGn+Y2RRo/iURIZb1EHS+GRpnfg0Q5IuZE9vdaRaybu0Qbf5RE3M21ReDNf0UanZRFOXmqRPnwiEQ46JZEWBaKRNUCmEQ+c9tEzy+sRKYGMEULkgJFb2VrRA7RQ0XdULpEDMz6RQ3G9ERyuepEaYPWRCOsgkVsV+RFYdQWRYNAMEZodehExn6xRNhNUEYpab1Evb0qRrK9AkWSD6pEUGuARS41hEXfCJFE0H+aRbxEh0TKkWZF5SSZRHgqD0VbuGFE0xiLRJuCrUS7pZ1E9NpaR3DuG0YIn65Hg7IURb3vokZkeU5FzhAURcfXa0amwZJHR27bRhssxkSMrUhFpEMIRgXbp0SnAnREuQvERHZh5UaSbYBGUk0yRQz9WkVgxfhEb/CTRPCQnUSb5HBF/b+kRKd8u0TboINEzFvRRWtXSkWsrk5FiZSzRBL5TUVOSY5EqEeORLg8pkSdgIJEolzHRevG5kTKUNBEEO+jROYxwkTQvJhEtUaTRqrtTkUAb4dEcv+gRHrKJUYVM4ZE4ngWRZvG20Twr6FF2ktERTGReERTOaVEbIkjRaDrBkb7VtFEJXjfRbL6KkUFTnNENkquRLmmcEQd5qpEpA4ARmvfyUTKEP9FqwSgRSBeKEVfelhElht1RPXK40S/DkdFslCeRMbB/0RjNqJEywBwRCHvlERDIetHWEZqR+RIVkbGTDxGCADrREZfNEWjGj9F0+W1RF6dIkadyuxE+ljxRMOzsUTOc/hEgBmLRHPMiUXTw0ZF8pttRPeFhkR9Fn5E7cwQRXZhq0S3gq5ENT8oRQVOckQO0sBE3i83RetrX0VJj5lE36o3Rf4vgUWrbZxFLRQlRXKUakSvAZ9E4YYRR0ohqERkHgFFwqktRhLkJEUxzGZET2XqRPTee0R241hFLPgcRTV7rESghp1EzXUIRfBF20SDyVNGQzZvRadFVEWl4plE6IihRO8ZQURdb3dETcb4RJnIX0R9BIREDwqcRBwNFUXLjpZEasUjRk0jukRQ7pNE16yKRFZC00RlW5NEUTwKRR1FikRu8alEcRYlRdSR0kjixJxEq3O0RM9A70QNxJtEpju3RLN5DEUkIVdI6rIQRdSUy0RqRnlEfKTBRA34M0VSU9dH81yHRKqOoURqhMpEaGK3RsPbYURjsd1FaIgJReXoKUUsRMBE2RcDRQe1BkWSRu5EIDx3RBFUTEVm4jdGPXJsRI8sh0Wu4oZE2WioRT3VfkQmxpBGxKAIR2Vlr0RDZhdFPoF+RNLkrkXGN9ZFLl28RPFpjUR0U51E2DYiRUZXX0QwsG5ERgGCRVPCD0bAfI5FzRleRVYDEUVCwKlEHIB9RFY0TkVEXEBFT4vkRNJGe0TToY9EgE6mROmsBUbChGhFdTcGRfZHKUWaAopEqhepR7GLDkUJkqBG17ZFRjLsPEUNmsNEQl0LRbgGE0UGgCJFFEy7REoRB0UrVoVE62a7RArOjES4mxhFEO0SRXYTqEWOifVEoN6mRkOMKEaNbfFEoxOERPEytkXVjppFkK7oRePwK0VP4TVFu1sBRYvlfEQi/Y9EOxtsRGP8aUQtiYFEBPRrRE+L2URa3dxEsTGdRGLUckVTkX9FI5QtRdUgzESDbopEOkDhRGxxmkTNAX9EBy8GRZ1Ki0QbZZlEe5GSRFJKeUREfiVF1DDtRN5CuEQGP3ZEPGmTRIBjhUWVWUpFhWLlSK85/ES7bZhERaOASORZi0SZsxVIT9QeRjaDjETu5pZFTKUqR3sJDUXbIIdEcNcCRUxkX0YasU1FGCiHRD+hWUUIh5JEdH3zRG5xHUWoQ4xEewS+RAkuhURvKJNENv6gRMZilkQw54tEgfBSRX5hRkV1r5NEizQGRWnrukgZt7hENq9aSLRIwURLxfFH9B9hRWsDi0S7HQlHqUoGRzP3ckSMRbJG0/4aRnTnAEUzR0tGmmyCRXL1J0XdsupEDcsORVjtcUTnCqNEUebdRZfpzESkE/1E4spRRQrbZERVKNBEhh6dRLlxgETJX1hEl1DoRFOErkQHqn5ELM0oRSv1pUQ4LnhEtax3RDiXpURSt2tEvkZtRN17uEX9FHtG32mSRBpmNkajGktFWi2iRVX1sUT/OqNECDKRRUeogUQ3FGFFHakPRb/WqkTLVMZEnhkGRTDxzUT5YoBEoAzNRHR80kcoqaNE+JRORyfobESOGutGWjANRT1bWEbPeIxEtwGbRcjwbkRrwphEYhdvRCvs3ERAW9FE0yrPREy/W0QLoINEtiOVR6w7DkezebRGC1ChRBntAEZrXzRFaJ5mRMY1qUSz8JhEGDRyROVwFEWUBaxER4MkRXXeKUVlRMtEztGbRLWIn0SKk5JEdCRpRI0ApkSxEm9EeWY4ReLirETxKMdEAf2PRtapNkb2XhpFySTgRXV1R0W+l21EfYKVRt0GgkbgMYdFCATzRFCVmUQduE1GEy7XRYAphEVRurJEVoC+RAAEQ0dD1CJHc36HRtCNv0WZKqdECbz2RdbR3UX+9SJFnNKSRL85skT9b6tEUZThRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 72F7jA7BckBMPPaqbsFyQDa05y9MwnJAhtKv4uXCckCUacjrOcNyQOJAzFct0XJA5NsJK3/RckAEyGEWD9JyQAKc+QJD0nJAzjVt6s7fckAiTLt/uOByQANIHWNR4nJA/Po0YZDickDqPcEXJONyQCi/scPK8XJA+BOqD7XzckASIL/Jo/RyQFqJFcwD+3JAyEz4bPkAc0BKdKcLSwFzQN6K+ySNAXNAjOJz1TsCc0BFSrFizwJzQL4yf2T6A3NAmoXJPyMFc0AgiFSlBxJzQOAWbOslEnNAmaa9IL0Sc0D1I0qr+BNzQFekxdhMFHNAXTglLXkfc0C0/SwQoyBzQH6cifg4IXNAGILp/3wic0AYlUqUySJzQJSGX8kOI3NAhLwDx84kc0ASHw43WDFzQAATASkiMnNAIyP+Cc8yc0C01D+zDjNzQKr31343NHNASMNnDrg/c0DTjuFud0FzQCbzQ2C6QnNAOHvf1HlEc0BcPN3FnFFzQCzxICF5UnNAzKycUEJTc0By21tZolNzQF2sJkt9VHNADgJ/Efpfc0Bo1Vpai2BzQEL3yBk6Y3NASo8PPI5jc0Au4ILazmNzQGrja4N0cXNA3ktB8Nxxc0A00xp5UnJzQKBVHEq5cnNAQHesgrV0c0D1sCQjTHVzQFOLj6Z4gHNAcmSRLwyBc0DorgpDXYJzQO4ffBgPhHNA/r2EdoeQc0Cq8QLyi5FzQOhMaglNknNA3JJQ0WCUc0A4761T95RzQGQUv0C4oHNA/amzBVqic0BgoehjjqJzQDqnuk0ko3NA5NW4RQSlc0DsGygmWrJzQA3JY5u2s3NACOV5WA60c0DwfKzU98BzQEsvG4vPwnNA6KEn9CXDc0BWQpNq2NFzQJCTeeBM1HNA667cG+LUc0CcxVaWL99zQO7nMMqh4HNAknpyhDjhc0CmJaWzZeFzQGRCwPfk4XNAYs862Hric0AaGT0ZD+NzQLA1sidl73NAfkEB2zf0c0Af9xBk5AB0QERO+xl5AXRA4rZHqqQBdEBeisSpugJ0QPyvd2J5EXRA5PYJYk0TdEAUQcQg4RN0QKcM4tJ3FHRAIHjSlYsedEBpzrNOuSF0QAWG8imxInRAYNliSYordECyVq8XUTB0QBnQZapTQHRAy519eztDdEAY6uNze0N0QHp8GGbRUXRA1v5hMY9TdECHcfPZ+VR0QJUSI+CKVXRAtgnAJCFddEAip4RctmB0QMfiwVgJYnRAwt8fjnpidEBLyGku5mJ0QBgC4BG5Y3RAP4Mg0k1kdEDL7ylJtmZ0QCpoyX3FZ3RARFfTIyBtdEBG55RTInB0QBCzqUdBcXRAG07Pk8xxdECB//KU83J0QM5sFG44c3RA2AJUkaJ0dEAruUAKNnV0QICZjO33gHRA+p7UaE6BdEB+KBSE74F0QOUMcOYmg3RAyjhJphaQdEDkjhL47p90QAhjf8TPoHRAFBtG97eidEB6owj7EKN0QBTAE8/DsHRAfsCD+m6ydEA4kwFFyrd0QHb37W/iwHRAMetuDxPBdEDowr0cyM10QLSIoY8l03RA7CljKz/TdEAbdMc749N0QATqnRnO1HRA4thP1iLhdEDT07c3uOF0QN/hDXdN5XRA5OK4lsHwdEDbqwqhi/N0QK7RDIml/3RAu0GY9qQAdUDik+XRYQF1QKb0EQZeAnVA/KvryqUCdUB4XJsumQN1QG8gF+OWEHVAa+ISLSMUdUBc3wt85B91QP7kTp2dInVAWq5z6/oidUBXmne+eTJ1QC6DZcuuMnVA+kumlgczdUCSsqA2zDV1QFAVBDd9QnVAyrc4eN5CdUBmNV0O/091QJIeeq9/UHVABbKuIoFRdUD+Aau1TFR1QKfMqOd2VXVAypUhKA9gdUBP6qSXNmF1QFSk/pr7Y3VAr6H4N410dUAxooNeeIF1QDYpWqytgXVAcsow8qWDdUBIqIgqmoR1QB4mm27QjnVAbLqBjT2TdUAgxkuf6p51QIAIRiKXoHVARHcU7bmhdUB841OqSKN1QGS27OK6pHVA3pbBKmTBdUD0+ZVO+MF1QG+hLHhnwnVAfC+W/XTSdUDUQYVLzNN1QFBsRcrk33VAmCy0PA3hdUC6NOl+B+J1QAbeo8l24nVAVg8gNkgCdkB8q/FC0AN2QDpAyE9rDXZAEA0AP7ARdkDyrsKuSxR2QPuehEGHInZATDg7M5AkdkC8pO8BTCt2QMBA6c8fMXZAVG9DhJoydkC+P/09UD52QIybek9MQHZAxUri2x1BdkBrFc4eyUJ2QA1bypgQQ3ZAtjUwBHtDdkCjEC/0pkN2QNAZFBZ5RHZAC/vQQMpQdkCwpM0uEVF2QF2GAN4kUXZAOLiE/8xUdkCSD/6Gj2B2QL6q90MdYXZAhYH4IdxkdkAe2XNx0X92QDrFt8eQg3ZAqFwyveqddkA+BHovwJ92QFMVlYQMoXZAQkDqeUWjdkA2uQvFjKd2QLbljeefqHZADND9TJCrdkBM162tkq92QHbgnp7AsnZAbMjNFQ20dkBMwi0QrLR2QMKNwVtywHZAB6VOTk/BdkAvBc1+z852QJ5w4Ct+0HZA/D3dfPnedkAecboI8uF2QHxxgXSQ83ZAVRt9bO3+dkCEVTgjpQN3QM53DKQBEndAwv0FWA8id0BGcE9CtiR3QIh+8V2mM3dAVtmZHg01d0COQmICzkB3QCb0ZDWdQXdAwHuZUZJDd0AiFDGqGkV3QK6N+YBLUXdAHTwVL5JRd0DosoX6KVV3QGWoEYAOYXdAI1MyX5Bhd0B8VVTpJm93QDaL25b7c3dAUEfFWo50d0BAT1niGXd3QI0dOdkjf3dARJbSO3iCd0AmpRr6C5J3QDBYwNZOlHdARzdiN/ujd0AcDuP/mbR3QLjLN8Di0HdA2H4fzxvTd0DuWAMB7OB3QHYbG7YH43dAYvBm9k3yd0C2d7TCvAR4QJ9/+qhOFXhAkjaFCW4ieEAfvHz50SN4QMKbcobxKHhA1HIaEg1DeEAmbKIbEUR4QCjcC2x6RXhAXeM4MtZIeEDq0ascMU54QPDJGDPKUXhAuKfrA49TeEDWxZb0h1V4QBtZT0X6YHhA4qYNurZheEB2HGrXk2J4QAzke+O5YnhA3MlSJDJ0eEBKOtzWUXR4QIiHe1tndHhALiaHrot0eEAHDDYwvHR4QMOrxPnGeHhA7ONk//V7eEDg8FASIH54QEORq1elgXhAgFcLJHqDeEC0g18eAYR4QF9x/UeahHhAmoF0bdKIeEAgkSg9mZF4QKiSqFSolHhA437oroireEDq6kOYgbN4QFzK2obPwHhAKB85WbjUeEDqqjZdQPN4QJ4jBjeS83hADkjQW+XzeEBihtxWAvR4QGWSgXeL9XhA94+/giX+eECOndxksyh5QEAyx0QMLnlAFFpr8tQyeUBL7Kd3tzN5QBi1KpHlOHlAJ0tgmcA7eUDAPT1l/EJ5QLDcne/6Q3lAXlKFOcpUeUDiAfFT7GB5QH3Si/RCc3lA2ksxktRzeUCy72qnNHR5QKbJRhjcgHlA2ErDU5aCeUCT39NtE5h5QBcGLvscoXlA9Gfs3MCyeUBExrXZQdR5QDZklyAU9HlAtFQPVfwDekAs2SHnkQR6QKBAawhOC3pA4q1NrZYSekA4qfmsJyN6QBpHB3MtK3pAh7ykhx8zekCEeQ6SNzN6QCIeVV4MNXpARklSnCU7ekAwc8OEJkB6QAj1MvIrQ3pA7jWT5RlFekALUUPr91N6QMpZoIMpVXpAGGh2DyNcekB6mH0owXN6QPg65J0Zo3pA9G+VQg2zekCmzANeDLZ6QJo2jQIRt3pAtnXiaBe7ekAKqMtjPs56QKyjTzFp4XpAW78JmWHxekDgNRY2HP56QKBw9rN6A3tAWFXOzHsEe0C8AI2bxwt7QFPOWhsoDntA2iVYzosUe0CWY7UrTBV7QBbJc9DOI3tAFWZzx1gle0DO1gwCwDN7QFx8WUKPPntA9/Y+kOhDe0Cs8Fi9x297QNiju/esk3tAwLeaQyGVe0CCdkizMaV7QK4Ub6f6s3tAnCjMlQjEe0A1a4iQjPV7QNi3H1vZAXxAXHJqo2oEfEC0ahdzmQV8QC5uDEDREXxALi4qJQIkfEDwD8CK9DJ8QB1g97bMQXxAFyZq+NxRfECiyazknVp8QOrhRAEPYnxA+VxU2QKCfEDCW5BXwo18QDz4a44gk3xAMdcQR1WUfEDp/BGsKpd8QDRgpKkkrHxAwE88dMGyfEADZRvPEcB8QBZz3c8gxHxA6WTI4GbEfEAAbRKudNR8QKyhtlwc2HxAxS7hxFfifEBg6IrUgOR8QEBYgMlq73xAcuzm/hXyfEB4bcZ2U/J8QChWllj/AX1ABFqG7koCfUD0BprIAAR9QGrNbAQIDH1AQqXibjcQfUBKgfeyRBJ9QMzjdDKME31AmHPOUa4TfUDtoWTtDxR9QGSnfH44In1AzOx4j6AxfUDRtdsXSDh9QEJ4gGmhPX1AHt1c8elCfUAdBaBIA0N9QBb3eLBASH1AYtnp9WBIfUBtGgPWnE19QJnF1ugnZH1ASMlQjd1tfUAObAPfH3N9QGDXZ8GEeH1AtkywiyODfUD0e2enAqR9QMLaW1+npH1AuYA14QqsfUCQXgZHJbd9QDhk7UAsu31A8UxRCy3DfUAGCiUh5sR9QHX+awFxyH1AUFJTHv7LfUBGefWEm9x9QKjOHp084H1AZD19QdvifUA5QwUhifV9QOYzBgsxAH5AxgPh3Ow7fkD91YSPekR+QCQO1baNVX5AbPUrNLxzfkBA4yV0jH1+QGLvazbRgH5AFp9S/+WCfkCM9pkMoIN+QFaLouRPhH5AsWlAfKaLfkAmp7Ali41+QJ3IUveTk35AMKWx15mUfkAt2VZ+xZh+QFbeM6L0mX5A/PWjNEuffkC+bG42aaN+QNf998SQpH5AgJJWiyWlfkBStnJL9ql+QCNNSA0grn5A4vhORvWufkDkOeIRmLJ+QCXLqb3Ys35AGVdV3k60fkCmMEQgjLl+QJt5qDunuX5A30xgztPEfkB+YplwRMt+QAOL8cNby35AxNd3CGTTfkDmEW7S/t5+QAU5QMkC5H5AFfQOsAbofkC9Z9PBCux+QDToggQN8H5A1pYbsafwfkCQumz86AN/QNEBiMsuBn9A0cXRBo0jf0DgojJnpzl/QCwuWxC9O39AKzy4NQI/f0ASJdLwUkF/QDwKaZW9Q39AlrzBIGNEf0B6xqwXfkt/QIjRhP6XTH9AFG9ayZ9Uf0BMdFJWuFx/QE2MH+G+ZH9AgG68o8Vsf0AT+IgH5HB/QKj90CC3cX9AVHwxysp0f0A/nDi6r4F/QKFIwAnWhH9ARLLTjvKEf0D+EIWQYpF/QO6BCK2qkX9A8lgBupWTf0Bq4wAeNJp/QKsz0pBgoX9AfAV15VSxf0BuIWkoZbh/QKGz6z/DvX9AmorBtGrIf0BxF9Ui8OR/QFwObpl4BIBAeqxusEoGgEB7dKU5TAqAQD6fMLnDE4BAosxi1HYcgEArejKAdCKAQFAErkqaJ4BA+eFs/EYqgED44AJu+CyAQO/hUup1NIBAHCEEJVo5gEDW9SMCX0KAQJ61uZCoQoBAkp1IEvJIgEA8RlRiqU2AQFI/8+TmUIBABDqqqhRRgEAy9oVbjlSAQJHy70oGVoBAjb4Z42hWgEAKxTXb5liAQLbHEz4OWYBA185vY2tagECO7RPTN16AQLefo1QNYYBAN469dChvgEBuUdNMKn+AQKgL60f+gYBAzhO5TwSGgEBtaiIGHo+AQN4U+EpIloBAkpm9bx2XgEBMYLf3tJeAQFbmBoRMmoBAJH6E2gucgECM12L83Z6AQFgQ0ewan4BAfstKgIyhgEDvGeIWT6KAQPNjR5o1poBAhUubA2qogECCZX60KqmAQLQOXDKGqYBAEDypVROvgEBMbYPEZbCAQNPSn9cpsYBA4IOdb52ygECq/p2rwbSAQErgHgY+toBAiqa+pRS3gEDWTCa7gbmAQOilui4FvIBAemt0tbu8gEBIvYQfy7yAQIgsJlbwvoBAqO0TqKm/gEAkXmWOJcGAQOuVcWBSwYBATKwpKp7CgEBCGDW7PMaAQEbY8dilx4BA3qlydyvJgEAwksKcU8mAQHCy11vSyYBABCltfenJgEAFUnnXL8qAQNxlAFoIz4BA+EI0BUXQgEBGxzo+LdGAQA5D/41M0YBA0kl0eGLRgED1D0M2mNKAQBAe7DAF2IBABqXzKUrZgEBTiwg51tmAQNCAhh593YBAftsK0iDhgEC+jLtwROGAQNmu6K7944BAajCLgWnogECqENPQ9uiAQOjwJg9B6YBAWrBV50rvgECs701XPvGAQDjNxfNn8oBA8L6w7n7ygEBbfxLpbfaAQObzAqRn+oBAmbFc0z//gEDex2bAbASBQKWizMPjBYFAxJAUiD8HgUACBxGH0wqBQCxy57c9D4FAiM78CkIXgUBaXzAWqRqBQKNmFUjdHYFAEk0ldjQfgUCNdKp7sx+BQNjVHHGVIIFA9MFe7lEhgUC3YbTYriKBQJD/JbkzJ4FAKcOnYS8vgUBEiXlSQS+BQOZTipKtMYFAyBTFsboxgUAAKGwVVjeBQJxQI+hLPoFAO8ldcig/gUDN3EqQT0CBQKBEajVPQoFAuUsJF1FEgUDi6v8gK0eBQK4FiTteZoFAmpS2sLBmgUA42bcSjWeBQBapNeerZ4FA1zlZ051pgUD2C/40zGmBQBid+2+iaoFAfvSeD/BsgUB8G0YjmW2BQPKSDcNVboFA8gVkd6ZugUD1LRfpGW+BQBBsoAU+eYFAVbvl+19/gUA+rBThaYOBQJRPjeIzhYFAPW37lg+KgUBz9xjffIqBQHzn7khVj4FAtVbJhziRgUBgeM8n7pGBQBR+a7VWl4FAQj8aav+ZgUAnntYhtpqBQAy7TEZTn4FAmHr/FuahgUCYDCU936KBQEQP0IxsqIFAJMHkG+aqgUBp4zUsHq2BQHz4ChJKr4FAVvHIlS2ygUAumMwg67KBQPaNm4xLt4FAXhcQAe63gUBqniPPVruBQPZnIji5vIFAy/Trixe9gUCPAxfAlL6BQO671vZHv4FAxxuKrpfCgUACbduxA8qBQAk4duiByoFA7nL7LG/MgUCcdrywscyBQPTW1y0fz4FAWvYUKAnSgUB4huPwfNOBQFzyTHqR4oFAjgg6CoTsgUBib0/1H/qBQC79ONoi/oFADCu2yEoDgkDmVnp/AwmCQKK0EQcCEYJAmigvkrQSgkDGR3MV2BiCQG8kTty7GoJA6oam3tcggkA2CipO+iGCQFUr6aDVIoJACEK5fv4lgkA8+hrO0SiCQPfjJZirL4JA8suhQMUxgkBUH9GeNUOCQCTaigw+S4JAKvzz32xMgkBCLqwf/1GCQHZTiNONVoJAmCMCJA9agkACEdq0kFqCQEXa1UWjW4JAvH4cvWtcgkCcqJrpDV2CQFbNftI7XYJAviMfnHtegkC6Bn7alF6CQMZb3zfZXoJA4rGVbKJfgkB+ko8We2iCQPznahcIaoJAJF2lf9dqgkCt8xpXcWyCQKKaH+6XcoJAzOqlTjF0gkDjnfJWc3SCQGZV3wg6dYJAILvATcx1gkAwBxG6Z3eCQJK0J0mad4JAN85HqQR6gkDb6sGV4n2CQNr6VXvmgYJAel+KSAOCgkAQR5s06oWCQJbjTzUPiYJA5GHREEOJgkBYVkVZRJGCQFLhcOkwlYJACplIXT6ZgkDLSCMe1ZmCQLYfx3o1nYJAdI9sbQ2hgkDwjSuUPKGCQJY0+KPcoYJAvvSLWQupgkCQpnfANKmCQNDOeahKqYJAxlRb/zKxgkB8qpYom7iCQFxdSt6nz4JAPHDt6ajTgkBGl8eRfNqCQEYtIoSC3oJAk9aeldTigkCX7sfZ1eaCQHLzoFEw6YJA1/Xeb9rugkBZuNqQGfaCQLBRJ1P1+oJAsstoeRQDg0D+rnBCuAqDQPo23JS8DoNAC9rhMXkRg0Aoop3vgheDQOXzLXV6GYNAmATCjXQhg0Ddp3YPcymDQAGLLkkrLYNAGtVZuZkvg0AK5Euw2C+DQE5AnLFpMYNANoOhcoExg0Ck3fNhhTKDQHbVmkwyNYNA2KPurRw5g0CwfN61ZjmDQKbxazN6OYNAIOzayRNrg0CYaum3eHGDQBJbfrv5coNAp9MLqP12g0Dlnzi75oGDQA6nHsYKg4NAbqqu8EeDg0Cnr2EgY4aDQMhWajsQi4NARG5erXmag0AutXaUJZ2DQKKtnxLOn4NA1S1IBjfCg0CsJu49WNiDQObKbAvg8oNAMi4jTGQUhEAeQ1GOgCKEQNutc5IrY4RAxEpzhAFkhEB0KVBhyWWEQOijUUD/aIRAyFEQO+VqhEBu9Bhe6W6EQCQ6Eh53cIRAJIkggf1whEDLfxmw63KEQBbbpn3vdoRAPM8P58l3hECI/BHe93iEQBojsW54eoRAgPu+wCR9hECdMPihz3+EQAe6AACHgIRAV32UNjmJhEAQpyeIU5WEQNO4B3YAmIRAAKocssCihEACAhZ7bKWEQBg4vwnGqoRAq3DUBF/QhEAAmAhk3dWEQBZc5Rxq2YRAbQfAFQvchECsoUzeauGEQLk+pwBY5IRAypu/J2PphEAuSHBie+mEQMDRi2U28YRAWbJFbmHxhEBg0Vphd/SEQBo4sDU2+YRA2rOocFr5hEBMmVcgP/yEQPVRNpHb/YRAoAgejy0BhUBPOaWZswqFQMCj84rwFIVAcC+pnuIVhUBCDrqOdBeFQOZ+7RpAHoVAV6+i92MohUB8EvvWiyqFQNlJ93HmPIVAkpKLvjtChUAnhrvt5EOFQFpCm//xU4VAAnuiV6BhhUDxCAo9oGmFQMqUn9GZcYVAT+JrSLdzhUD7hVOE6XeFQJgfT7aZeYVAoPnbd5GBhUAu826LsbGFQAkcLHAAzoVAJ7wlqMnihUCPuqbxLuaFQNS4u+My6oVArMQuJTDyhUC8kc6w0/KFQFai3AZ884VAiR3L5H31hUBa1BetFROGQDoXIE/FGoZAejR3khYwhkB2gchsZIOGQMmUsfjchIZAgiVtqCS5hkAqrtouM/+GQMqAhI42A4dAZ8u8bjUNh0DOD2fWOg+HQMjCtq43EYdAIg+KBpEph0B6n2V4kTGHQH60mteAN4dA3nxLz4o5h0D6rjABiTuHQLUzlCmGP4dAPdQ+11tBh0AUlNNIk0GHQBm35CqGSYdAsHNYMTdnh0BKAIFCOmuHQJA2AuY8b4dATAwJtEFzh0BbWyHPiZOHQDpqkXJTm4dAWnPpY8exh0AK5aDexrmHQJ3KT0y/wYdA5YO8yl3Dh0B6xmUvvsmHQD9JTxe90YdAUlnzIRzmh0DqiWIcxPqHQP4s++FiN4hAho+IN2Y7iEBfDfcXaT+IQBZEUBZtQ4hAQGhqk3tyiEAmmAxWf3aIQMzRRSB8eohA90CN3X2CiEDmnT+LSqqIQE92lslZsohAP4+2XN/RiEDP4TE44tWIQH6wpCLm2YhA + NrgMGZxjZUAoFld2zuNlQBTpB48/A3JA - + - Y4TsRLfvJkbl0Z9E+PnbRF+MV0WDYXhEgBS1RKt0IEV3chJHaNk/RSK8GUVtT11FNE2qRfRxCUVt+19FlcG5ROI46ESTfo1EIMYpRa/xpkTkyR1FKg6yRMdak0WI+RJHtI6oRAkZbUQh099EWr1KRjql0UWiJMtEJASNReWaBEXG7blGq9GORJcfAEVUaplEKM+bRRiBoURhGZZEy/GMRJn2hkSSvNlEtE5VRQORZEVRgRhFYsYMRtzoKUXScI1FNCDzRAKuXEV8hHxEx7dGRa8asURvLYdFgYuFRL0JhUSJ5MFEYwPgRMKGvkQHyhFFuNWKRNnfOUUHT9BGPLfTRGxCw0WLBJ5EWmUARawnnkS31zRH/TsmRdfCW0YakcFFFxjNRdSctERnPhFFShayRAcah0SFvGBF3qNCRQE3AUVah/hFCUWxRD5bWUUZZZhE7z2WRSLJgERq2LhEhLHLRZEhs0SWwJZERWtgRW8rjURh8llFerM4RVVXt0QDamxG/tm3RL1BDkVcFrdE0AgqRSnZqkSWqLJErWLvRIwQpUSINvJExT+QRH9JvUT9JYVEmcabRP2aw0QzQIZE+d8WRbwkk0SVjwpFUOQ4SLSPLkWBZgtF/pqaR4QU7EUQ2oREAojLRCaEzURf9ahGxj/3RaV1ukVl40ZHYF6XRCke1EROBJNFVUz0RAQ510Rmbx9FCXzfRTJLDEUIiIJEYGa3RS7vDkWyluREbqCgREkZL0WGMgZFpN8yRVTRnERJ/BBFUAd1RCDwGEUsRqdEf5vVRJhBi0SeE71EMvn6RPtBAkWohqdELIF/RGdUpEVWtbVEvWjHRNAPn0RxD6NFSEeCRctGl0T9eAxFGrkDRcWKs0S4fVdGauNQRJMQ20TmcJBELmiARHrzC0WRyq9EDs4HRRa1DkVo0YxE9Ue8RO6X50QU/OJE3y+7RC0KnERZ0YBFvo7qRZ2+FkW8HOpFBNZJRSEyzkSi0/JESK6fRARi00T7hOxEojw3RZaHp0QOpJBEV3u0RDahL0UPdRZIQ2pFRnv+4UQZD4ZEonPIRD7cDUXO29pET6uPRU7/7UQdL6tEbdEwRv/LKEXN85dFW+W2RUZYk0XHtxFHCJCbRLa5MEXvybdEHsTsRe+Po0VwgGVGpuPLRAWPjkXYqGFFpgu7RGefmEUVA4RE3zgqRoaH9EQsYQ9FOmXnROAWvUXthBZFaUnXRmEYr0RfUrREw3CJRp5Od0UvbLRFuycKRdWapESra3tFx+CHRXBpkETtCr5E/PKRRJcLWUUZ9vdEIHoaRQdtj0Sl2M9EouKLRKuZp0R79X1GNRuBRXahm0TJOk1FxF3lR9KGgkSH4ZBGLQ3FRFFV3EYc6sFFyOBgRuuNAEXniqtENgMmReOGOEU4vrdE9NeERH92+UQrxwhF7CIMRS0KsESA0NpEwpWTRNBch0Sgt6pE+Di3REum0kSbjIVEFiO8RGqml0SxJo1ELxGaRbo/iURBknxEIn2NRG8DSkXM33lGEmSkReCVHUXOCL5Fxre7RK/WFkWmLRhFQrEcRbSFxUSZSZ9E3Dr6RPTtRUUUqoxFqHgqSf77WEXo0AlHg75YRUXqe0bsCEVFeFRORSrM3kTYAChI1U7aRI1gfUVpi4JGkAvqRCn4CUWvJhtFp+KcRSf1gUQYmJFEipm2RGDlE0X48HVFoNa+REbjqUU2EatEbeBFRVY5YEUkVahEWCXDRK3stETF8NlEjZrQRCppiETeHOlEFU7lRO2vnURro4tET/msRCEKxkQ+TZ1EcZNiRUndqEWvboVErLNiRVO0+0S9kZdEEfgyRWVq0Eh6WTxIg6QmR7C5r0byvppHecSORl01lUU30Z9F1XqRRrX0l0T6Tb5EVPJARfnUtERrCJREUwu3RZsKyEV5x7RFjvAFRbAq2UQ7SVNFhmURRWyanETE3+5EU9GHRb80h0QviclEkniRRDx9EEbQiARFZdczRTgCikTnSpJFqrVoRWDgcEW95pxEHveVRc4fuUROFM9Go5V4Rfy1b0Z2wBtGayfTRPWUKkUStGZFTWXARHk5gERcA8xFusq0ROrTqETNxPJEAKCIRE7UOkUuZWVFmcqwRIa9v0ThnIdE2X7mRPztzkQlCnBEwFYFSPWZnkZyLpNETtC+R1wNCUVSiIdEnowJRZUqmEYjygFFK+2FRuEflkd2e8ZGJP++RIgKLkVa14lE2bqXRPRtH0Z73aFEEhWpRFpeA0eb8MBGCYG1Rf3nkUWnM2FFYDHgRKO/30T+O4hEnarFRFJBfUWolJNEHs6bRIvTzUVlDZZE7vwNReLbJkXYksFE9HCUROmEyUUe8I1ELZ6kRF5/gkQBvx9FWuK4RLaWjkTuF6pErW5sRDx0kUTHvn5Fjw9ORXD2uUXKHZ1ElDHMRJ2I0UZMmolFVOk+RqiJ70Tc2kxFAy+hRRgikUSZkIxFcn+oRMSqrETMIbtEwqGNRc7AlERI/JtEAVuDRuYajUTUQ2FESIYvRhOjrUQ17RNF2XnPRHddvUTbDqVEqZ2JRHJG4kRWSyZGDlctRv2r3EUcgwRFkdC6RCAZ60QV+phEe86CRPkwhEV+Ha5EvJ4tRQbRt0QjBJdEr5SeRL+YlUReDRBFYQqaRFff5kfxK29H/o9kRj2Un0SVeRhGQ0tgRSLkU0VquG1ENb6DREMzE0azxipFmqz3RCB3lETeaXRFyQiuRHb3jEUBvWdFyAwsRZnBhUUrZ8VEMqkTRZI8nUQvbY9EquKURH5Pi0QonU5F+QKDRVDRlEQv7gRF/R0BRbquvkVhMPNFmsevRZqFMUVe4RpF5Rf0RjkPokTwZdZEXjE1RR3890SNrhtGeyqwRE1uxUQyxzpFWTpXRbm5JEVci8FEarz/RJyrgEYCn/tFPypVRewZAUWmi11FkIWXROxo6kRSBDVF15KDREzYgURhWvJExJSyRKRDwUQYdrpEOwtIRkM3UUUYfNZEb2eGRB8JwESxJ9JE6wH8RI/LjkSX8GJFmcWqRFfiA0Wt66xEn/VXRWdemUTq5vpIK6r6RJQjhURCOQ1FrOI9ReDWfkj/Sh9F3sPhRDi3hkRzUDpFXjiVRGWTDUUYgQNIk968Rcq+50Ty9ctENdLbRugUyUSNOZ1EviqXRAOCLkYCGJZEdn2cRKtTaEVMnwVFNF0YRcg4oERS62RFTfJ8ROkXy0TijylFfHl6RrhPkUSLvc5EDsm9RRCqskSae6JFM+19RGtoN0Y4L4lEkDYyRyQ0oES1qJdE+UabRJYJQ0VHbhJGNtqMRcUex0RiErJEMUytRISBmUTNLqBFj2UhRr7IYkX3rkNFdQ/MRKXvyER5wY1E6StPRetymUR3ryNF3EePRFLMeUSeKWlF8biHRG21ikTcoYhEC3YlRWZIp0Qjhg1F3aTzRHkTkUTe+otEBU4LRQnzyUSyCx9GMSulREuvyETADxtFxUG+RNuKXEWQwHNFwIrmRGWZbkdsjiBFDN5rRhwrkERaR19GuD2hRG5v+0Ss2l5FzsWDREtLm0QU87VEsxG2RAkAO0U/tZVEVSEWRfyiC0UCMJFE7lAARSRDWkXZNbdEPjp7RJC9jEQcaIBEFueuRP5brUX2u6RErUCXRHYewUWOlBFFd9zXRk+3TkZ5Q+FFqLaERdtRCEY0A/hEGbk8Rf32c0U6Tf1E7Y2eRMgTW0XxSqdElO2dRFIvdkSBprVFvLOkRDuDVEVVpN9El6vtRN1VCUWXW45ExX2IRLCRuETKD5dE0AbQRNt+yERzuChF17WNRG4qhET3IQpFWvYMRfehrETGO95FLk6PRCcFo0SopKNEvAt2RCWFukWNpKNF96acRLrDzUT7VslEVy3eSI0agUivaJNEBH8LSAA9D0Z3JoVE8A/DRS8HJUfRZlFFcq/yROsZPEZr+6FEfxg+Rc4EnkSOH6BEI5iBRN9JlkQsC4ZEOzm1RGS9pUTnnpdEghbRRKl0hkTR8YtEDe0gRaWUpEUSFQBFBhnnSFhyhETpu4dIbnURSLNmNEc6n6JGCSWLRMa6dEYfMRxG4jyARZoxmkUW9xxF+LgoRWrYD0UD3sdEc6KeRBw4h0T3d5BFkc7VRKtkskRNmetFkDDbRFqUp0S9W1hF82I7RYnGjEXur75E/SCDRGd1F0VlQRVFqYvZRButikQ4cKlEAAuaROIfgUQyuvZFVfi1RsRxWUbH6qZEaLE6RWUCikWnJP1EJPyTRaEwLEUtt5RFPRCjRPMhj0T6BsZEkGiLRDQMKkV8Kx9FiX0jRRZBt0Q4HZZEqRqHRMo0JkX2kcdHWCWoRODFT0eylHJEwHv3RmkzJkWwWr1FtX0NRn9ahURs8udEa4xHRRX6o0SDW6REDO+/RCwafETv/HxEUW0ORfQzr0Rr3QZF0baERCXtvURpwaNED7mtRFmzjESnE4BEG6TIRzlcOEciC/dG9USORFQloUTwHS1GJN5HReehiEQgWMNEIAy4RB2dZ0VOjSlF3L6HRP/jH0W4fYpEsWcRRR/VpUTJwBxFM3eRRA0bpUQq/5hEF3jKRFoeQ0UkmylFhjLiRJKUvkT0mKREcKyYRmJoS0bShZ9EUArsRY3Bl0TRrYhEUBSdRAjuGkU5o4dEF6QLRyvk1UZUQgtGU7sxRcgv3kQfqmBEFIGNRs6ZBkYhjJFFQQZHRVioRUV06o9EKQiERA/mtUTnRAtH8pfFRrabEEZeHwpFh07JRWK07UXsgPlEqB+PRMT4u0QYeNREy+1QRbZNxkTEKZlE + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - bop79nrAckBimojfbsFyQKqsoL2GwXJAzg9ZvU/CckD+2Fwl4sJyQILeSro6w3JAU6mrAsPEckC5mt/0WcVyQGjAuT8Q0nJAKQLySkPSckDMBSxseNNyQHZYP03O33JA0re+5yTgckBgiNwyt+ByQARuZuxQ4nJAAsXlhI/ickCdSTamJuNyQDKk/opS8XJAZ2HimMrxckDqmY1sEfNyQMKVTQy383JAs3CDLqP0ckCWfE1XBPtyQNtDiUnD/3JA6FumlPsAc0ACT+JREQFzQJoDPJA6AnNA4rIKD9ACc0CUKJS2+gNzQKJyaZPiEXNA4KbDaQwSc0CyuL69jxJzQM6xOY68EnNA4QaW490Sc0Drgh2FYRNzQJxHN6AGFHNA98INfksUc0BqD5zJeB9zQA2ycSOkIHNAT6LTIjkhc0DbOvMHZiFzQD1gM9F7InNAuK4EWsoic0CRdJHwDiNzQN3I1YQGJHNAPbLP/s4kc0A/GklqRjFzQPr8FgtYMXNAsfjTRwIzc0D3TbL71TNzQEYYq87cNHNAjwbYdro/c0Dk3A/RQUBzQEa5Fv54QXNAvFJbHrtCc0DvmZJbekRzQK02c7iaUXNALD0sExJSc0AIzDwhelJzQBvKlGKkU3NAnvq9eYVUc0CCxn6V+l9zQOr9goyKYHNAT+GDzhxic0D6+kapOWNzQIrzPUDbcXNAm1n9Q09yc0DM/anhZ3JzQANFvZa7cnNAIF3CUbZ0c0A+IrSkTHVzQNbZFmB4gHNASkxk1qSAc0CZd5McDoFzQDiUQDAzgXNAoqaD7F2Cc0Du6DUneoNzQM5IdaWHkHNAfZSdV/SQc0CuIijnHJJzQNN9qDxNknNAQh3J7c+Sc0D+m2LOz5NzQCuFuIdilHNAXvPDofeUc0D4oMg9uKBzQKn85n7hoHNATAUuIk6hc0BPfkUtsaFzQJJofvRaonNALINDVpCic0Az6gEiJqNzQCC9+K0EpXNAguaYsXqlc0BScXDI0rBzQMekPdh8sXNAggyrJRGzc0BwqpJTtbNzQNyjtYcNtHNAsrBRts6/c0DeGGgI+MBzQBFsIy48wnNA2CLhgM/Cc0AzRIM0J8NzQPEIESPY0XNArCLae97Sc0Cq3cRjUNNzQGjsvYb403NAxA2DRuLUc0CcXanSN+FzQHKzF45k4XNALkf5S3vic0DBowMnEeNzQJqK/4jt5HNA450A+a3uc0AoygO5Ze9zQHBRz7VX8XNAuYqaVzb0c0CyGjUdjfRzQLQ8gyfkAHRAAW1JKXkBdEDenyT1pgF0QFDuKAu5AnRA9JAslOYDdECKrb2+lxF0QMCEDL1NE3RA9beCGUsgdED+tReYuCF0QJ6A+Ym6JHRA3tAlpIkrdEBgV1XwuzJ0QNenbyU6Q3RA6r4bkHlDdECacCWXP1J0QAgp5ZKPU3RASh2H7vdUdEC8HFcmjVV0QMN0+R4hXXRAgSDqwrlgdEDdIV1UCGJ0QLyGUC56YnRAAEzSguVidEC11uVSDmR0QMpIy1ZOZHRAoTOeOMVndEDahfak1Gd0QGQDkmIebXRAYGyY3jFtdEDJhwlrI3B0QKI48q1icHRAqGszUUFxdEDsc76kfHJ0QGQpDDI6c3RAQw5e1aB0dEBCjpWEOHV0QBS0H6H6gHRApx5UJU6BdEAmayXYSYJ0QNpTA4PPgnRAMgIbwimDdEA80MZxFZB0QF9a17W8knRA6KtWje2fdECBwL75pqB0QDxqBMDPoHRA0a1wgzehdEDpJ+xHj6J0QEhYHaq4onRAZJAh3Q+jdEBDoLLUCrB0QLojaq/EsHRACuP1HzyxdECEYMU+b7J0QJOMXmL7snRAhNrFjHC4dEBkh1K35MB0QMoB2zR5wXRAcKCS5OnBdEDCMrHavMJ0QOsxTvu1xHRAMMoOn8jNdECa1Jd7+s50QCj8UUbk0nRAr1w+xTzTdEBgH4Lqy9R0QDb/4bW14HRAzqhgZSLhdECKJcAruOF0QOx9p3hN5XRAQhbKEI3zdEByoIGkwQB1QAqYihNkAXVAKxIYg/kBdUCSx4B4XQJ1QHCqYWSmAnVA9N2LVyQUdUAxn4Tt7xp1QIHEPJ+dInVArHesIXsydUDGEXv6qDJ1QKX5XtvLNXVAxxBv7yVAdUA4SzmTfkJ1QKFmvoTaQnVAnooYVehPdUAcyCrbgVF1QHi2AmaYUnVAnqnwhUtUdUDM5eM+eFV1QJSahuD4X3VAomiemw1gdUCSgonwN2F1QOIg+pr0YXVAWocz9jxjdUCMNXbq+mN1QCD5FXx1cnVApqtkW/5ydUDsJ0vFjHR1QLbrvM7lgHVAEtwgTniBdUC4pwN6rYF1QNItTcamg3VA6ofhLpuEdUARQ83HjZB1QOqQ41u9kXVAVb+gtZWgdUCbCSLAJaF1QLjwDVOXvXVArpPly2PBdUDf2qsV+cF1QO6I7GVnwnVAuzsP+XTSdUBEfIGFuNR1QEkwXSfk33VATHN0Nw3hdUAPS6uWCuJ1QGSaj6F04nVANJuYcUcCdkBiyJWQ0AN2QObPj0ewEXZA/vcwOyMTdkBONVvETBR2QAClFwsNFnZACkukJDchdkA8Cg+diCJ2QNADolyQJHZA8s5AVEsrdkD28pGxHzF2QFpJlphRM3ZAGL/GEp00dkCcMEwWTT52QMYPJNFRQHZA3aEeKuNAdkBI8285HUF2QNqJyMPIQnZAOHiLPhFDdkDg+3BVd0N2QMwN/qumQ3ZAxsP+Z3lEdkDKycaSyFB2QNVaV/MQUXZAbDxN4R5TdkBjtA/AzFR2QPCUcmTaZHZAUiVGhtF/dkCrz0DCZ4J2QHp8pOCPg3ZAJHbEJs+DdkATdHhw6512QEQaez8MoXZAAw7CdkWjdkB+F2M2jKd2QGtcQY2gqHZAwPONvJGrdkDUMP3rkq92QMoe323CsnZAa+7DRA20dkBq5QiewcB2QFZ9tU1OwXZA8jx7PRvEdkAubgfEzs52QJdWzU6A0HZAWv3qMB/xdkAU3c2dkPN2QFp1+RjfAHdA5PRyawESd0AeRWO2ZRN3QGjfOqUOIndANo9rIlQjd0BO1CMgDTV3QIidBPecQXdAAHBOGpBDd0DGo8voGkV3QDCqrE1KUXdArKXrE5JRd0AKeMh57lJ3QNTedGIqVXdA4hMQHpBhd0DY07VPJ293QA6gYUCDcXdA03svWxp3d0DuMA9ZInt3QMh3RvQff3dAyjduMniCd0CK1EU9LpB3QGcdN9QJkndAClFYyUyUd0CGD9FCmpt3QCSKQbe3ondAuEUnb6ajd0BqMwES+6N3QBKU2OyZtHdAAL572SrDd0D87gKbUPJ3QNr+DW+REnhA33AD0h4TeEDc3ONTTRV4QOP1LiJuInhAhHd0KdEjeEDaIYHIfDJ4QMQjQxsKQnhANApl0xFEeEArv5BaekV4QOQqqZvWSHhAQsDRITNOeEA21HZ9yVF4QHb/b3yHVXhAIo76iPlgeEBp7ront2F4QKY3lS3XYXhALpAPw5pieEC7X8aS72d4QP3HRa3FcXhArdVseWl0eEDOaZC3i3R4QNQDywLHeHhAsm/icvZ7eEBWgGc1IX54QChrUKk7gXhADu1yeaWBeEBwT2AFe4N4QE5S1ej/g3hA4mGvNpqEeEACqrz7lpF4QK0e3NinlHhAzi5T7ISreEBodjKriK94QAbQQLbMwHhAMPFcA/PBeEAFFBVdttR4QHosFOwD9HhAxt7cKI71eEBOebxzEQR5QByL5ct6D3lAYxDsZoITeUBKnKPr3hh5QAOsUbk1HnlAxtwZFrQoeUBJgs21DS55QG2URv3UMnlAKGdAQrYzeUBUXZAvMDR5QGE0fstZN3lAALWkosA7eUC4UJBTi0J5QIJJ/DD5Q3lAKSZrUYlIeUC0T2e0mVJ5QENsRQQ2VHlA+euZS85UeUACjUNRU1l5QL835RnqYHlAlLBv7AFpeUCqOwb5QXN5QAJEPuCnc3lAuYMXQ9RzeUAxEhHZNHR5QETfNTrbe3lAS/NfyJuCeUDA+//DwLJ5QO7H3IBwznlA2Sh8RkLUeUCuO61BztV5QMr19INP5HlAJ7hy8k3weUCuh3ExpfN5QKoPGx0O9HlA+oCvWUQDekAF51EW/AN6QBNsfg6TBHpAAdPdlS0QekBwegd+PBB6QLyiku6VEnpAmKQ1vCcjekBkK71nLSt6QFgI79UfM3pADMotjjczekB4npE3DDV6QJrCcvYmO3pAwkyzDihAekAkyX/4LUN6QE9ZQmUaRXpAwq2c56VOekCShPZOxFN6QCpjor4lVXpA/h/7HyJcekBIaB31FmB6QIb459vbfnpADGFdDh6jekACOopnI6t6QHxOoLoNs3pAGNnJiwy2ekC6vFa9Ebd6QDGC2DgWu3pAJvthcf69ekAXIJKQAMR6QCB6CqUdxnpAHhnUWjXuekC0VDkVfQN7QA6o5lF8BHtAFH0SPMQLe0BsItBPKg57QOJV5cnPE3tALtxBo4gUe0BPPi6uTRV7QNoJc2xaJXtAoALr15A+e0DvesMDMEN7QO5XTdznQ3tA1u325Mdve0A4lrP7IZV7QAzI0cwIq3tAIQy2+fqze0DxFnpdB8R7QE3g4qN6xntAgpvuprTTe0CUw5XGXdt7QKoQsd3+43tAbLaUeIz1e0B8luADlQF8QGSrXzTZAXxA8BzsJPYBfEBiXzVcZgR8QECtFQ2aBXxAb/71ItMRfEAkkAXJzEF8QH7p0Z3nU3xAyCyYFGdffEBFcvqbaG98QJCKZe8scXxA+nf3hQZzfEDgKxnVw418QCoB0lYck3xABuFhySqXfEBMTPMwwZ18QD5KhcT7pHxASA7t4iOsfEC6RwFiwbJ8QANTz+J5tHxAeDhFjxDAfEBO6Xw2Z8R8QNShPtB01HxA0e4DSM3VfECIZNMFWOJ8QFEbG8545HxAL4upzRbyfECTwKStVPJ8QOqlYv1z8nxAJ3ZS9PryfEBq2tpY4Pt8QLJGn+AAAn1AA1Xf00oCfUAmbQTJAAR9QHcWXzEIDH1AxhJzKDYQfUBExcvbABJ9QOTVmytFEn1AKOVz+LATfUAYMqNFDhR9QEKacsdAIn1AY1/nzqExfUBA/u4bSDh9QHC/Ng+gPX1Am6JCC+lCfUCObtqw/0J9QBZqKerGRX1Am55GUURIfUDEcZGhH3N9QGzqy+p5eH1AVP03hbR7fUC8/Va7AaR9QF2D0bPmq31AKvPoCAysfUBsh++BELR9QIb+yoUit31A5wSDCSu/fUBuDi6L5sR9QC47Fok/031ACCPTNPPUfUBueooCPeB9QKY4ae7X4n1Aa6KyOpH1fUCfv+OIMwB+QNOh83k5H35ALUIyBDwvfkCm3LEB5k5+QJs4e+KOVX5AqqseDmhvfkAEp8a/uHN+QGiBI/sHdn5AFDhgqLV7fkCLcG/PjH1+QO4mOJjmgn5AEPI4xZ+DfkCaZC5EUIR+QJpxC0DOhH5A3TcAl3qHfkCUMe9Qpot+QMd7erBjj35AfIm6G5KTfkAgDTJ9sZN+QMR8cuaYlH5AKrlsIPWZfkDkA9htn5t+QAhYIAklnn5A8Pedx0mffkBXXbHPJqV+QKnQvHz2qX5AV63PtlysfkAw+rxl9a5+QP5tONBer35A5hL+fb+wfkCiJm0ZmbJ+QJrWwElos35ALLJV1060fkASlq6qp7l+QMy2oJADv35ACDLlOR3CfkAeqLwOxMR+QHPWx0Ygyn5Alu8h7EPLfkAhFwpitcx+QAZKLN4C335A7rnCxQPkfkDojaHhBuh+QE7S86yt6X5ALGIYKAvsfkA22tMJ1O9+QCcZavkM8H5AvO7bmKjwfkBe+8oM2yB/QAbWPuZBKX9AZmPVYpc1f0D0aDevqDl/QOA/ZrG4O39Ajsw+0wI/f0BEy0fPhD9/QEWeE3m8Q39AEVuCEplMf0DajCSkuFx/QPCoxCW/ZH9A5eFwUcVsf0A4nOYcuHF/QJjxfbxWdH9AmUg/GMt0f0B6ZwmatYF/QHG6zgWmg39AMWPeVtSEf0DSXENqY5F/QNyh5o6pkX9AXIMar5OTf0BtswExI5x/QJghuVVeoX9AwkItjVaxf0CagZmCabh/QELIRqHCvX9AABfNAbu+f0D1lZHjFMN/QE5dz0hC2n9ALKqG+9vbf0BIngXQ8eR/QE+foIz17H9AzNhRRvjwf0AvHC+kSAKAQF0edBHNA4BANlOXFUgGgEC2NuJ1Lw6AQLw343fjHYBAqE2nE20igEC0GeX8myeAQAjuH2yIMoBAbC6Gyus3gEBeqdH4/TiAQIuqYSKEQIBA1rS3yl1CgECj7iOPqUKAQOybjp7wSIBAEjd9d5tJgEAcxdr6XkqAQOyx4s+vSoBAtotOyjdLgED7XJAZqU2AQNTeMDT+T4BAEhYcCedQgEAWJJYPFFGAQDh259qpUYBAptQ44qVVgEB+WsgkaVaAQAS+BsjdV4BAbGteYuZYgECIdImMDlmAQCwBnQr9WYBAUpy12GtagEAOYwP7OF6AQMCn+muwX4BAUmU9ENdngECYLfUcL2qAQLTeQzyHa4BAzSWnaypvgEDgWKkC2H6AQFgnmzwnf4BAyKu4jbeEgECwxvMdFoqAQAU9wA/+ioBA6XF5Rl+MgECmSwhAHo+AQFKgRmNIloBA1lxShCGXgEC+pDE6LJqAQGb552pMmoBAU4kk63mdgEC4X3okTp6AQEu1lnIbn4BAmFRlw4ClgECwFf67saeAQIiyoguGqYBARYA5DMmtgEAvs3I9E6+AQOhAUGyzr4BA7k0NISuxgECWdFlWgLKAQEaCjyKQsoBAHEAnzRe3gEDmUvSUgrmAQKoxUMKcuoBASDAxhQW8gECLEUq+v7yAQG6L+/58vYBA71nAbxy+gEDQn60q7L6AQNiUhC61v4BApjgHt2HAgEDCcNB/UsGAQKCzIeMuxoBAss6COfrGgEDUjSatpceAQFwd2fthyIBASyGzuyDJgEB/Pz50U8mAQCiSXUnUyYBAlZmxNAjPgECWmS95I9GAQN1G0T8t0YBApRoGdUzRgEBKEY0iYdGAQHa1k+nm0YBA7ME2PZfSgEACZYQxBtiAQAXTbxhK2YBAjs6ztkregECkMz4+IOGAQNTkRzhE4YBAoE/YH4zigEBUHlQ99OiAQPYsCtpT6YBACODzawLsgEBMsfQoSu+AQOcbuYPn8YBAfFW5gmfygEDo6cryPfOAQHTvdDlq9oBASMnpFGf6gECsh38JQP+AQJcMIN9qBIFAVIvs3j8HgUBGe6hSsQuBQIVDN1bSDYFAJtSBGD4PgUCRe7/WQBeBQHhicDqpGoFA4HRD+JMdgUD1Uw66NB+BQBTXeaaxH4FAzHYyVfUhgUAtTG8SryKBQAaSg9k1J4FAus8HQrYngUAsrE9PWiiBQM1gYNTiK4FA/p0NXuotgUDkSEQ1MC+BQNLFkeGzL4FAuhhlNb0xgUBmGGC6RzaBQCb99dVoOIFAGPq74zA5gUC/m4w68zmBQGvSA1tNPoFAf69TjCk/gUDS+8qqT0CBQOmuiLCRQYFATedJl/dFgUDM3GJnLkeBQH4jTRUwT4FAEwPIcp5QgUAATYUVsFeBQO7PApf5YYFAZ478EbNmgUAGxRd8o2qBQFdibG3xbIFACKlJaFZugUCwkKo2pm6BQMTNhrudb4FAsNdyNYVwgUDwJcTvanuBQBT2TCRif4FAPXDrXt+EgUCSQ/EiEIqBQG8KFVFVj4FAnuUu5lWXgUBepvD/tZqBQPmirfZSn4FApYRyceShgUALVwRl36KBQKCvus6gpYFAbHgxTCWngUBuyhCbb6iBQAqJzRAsqYFAPVeIkOaqgUDQlBSYSq+BQD4igWTrsoFAV8azc5C0gUCK8u5YSbeBQJ3QmYyUvoFA1QwBYVq/gUA46V6Fv7+BQLwn2I5jwIFAvr+ru5bCgUBLSBoDBMqBQOBOfm6yzIFAd1wipRvPgUD+gLaBYM+BQPF/P60H0oFA5pIhOH3TgUDmxqONqtqBQPlyjdel74FAfKbFJSH6gUC48005I/6BQHl+QYWK/4FAbmFouLH/gUAD0cFICAKCQHYPTHwDCYJAzJzoWjIJgkCd9tcctRKCQOQ+O95qGIJAzLjZcNgYgkAgEEDCVhqCQCzhRhptGoJAi1QA9bsagkBU+HuF1iCCQAAb+Lb6IYJAos/cSbMigkBO453u0yKCQGoM1Cn+JYJAot1Z4t0mgkDHyyWQ0SiCQMBCkc/+KYJABQi2S6orgkAyp4MUbiyCQDpE8RzDLYJAmAMataMwgkDzVDIRoziCQMhjy4xHPoJAvI5ASm9AgkBg15V2QEGCQHy68IlmQoJAXneylzZDgkDQQdDfp0OCQLYslLs9S4JAcshCFAlOgkC/UBBJ4k6CQMAj9jRvUIJAOJ/8IQpSgkBP+RU6jlaCQOXdIxV2WIJAIPGn9P9ZgkA8RCfneFqCQMItPaiQWoJAwpDNsthagkASqF6tnluCQBBKEchsXIJArgucXTpdgkB0tQ5KB16CQHyEeLh8XoJAlinrddZegkCKeKQigGOCQHSb9X8NZoJAPDKYO5pngkDklS7MsGeCQHY9vc81aYJAjZkC1phrgkCoqRCBGnGCQLjfuvaUcoJAKHFMBp9zgkBl50L5L3SCQDSY/FfLdYJANJ1ivNF2gkDCVDX+eniCQEx7rP7hfYJANrpfUgp+gkABnXLt5YGCQC9PLThDiYJAa/x+Kw+KgkDPxvqAGY+CQGZTaC5EkYJARW3WpcWRgkAM2iZOwJKCQJB9dxuck4JA8O9YG0uUgkCYlsvQPJmCQPIXNVZVmYJANhFBgNWZgkDXV9AAD6GCQORKjOs6oYJAhTRpR92hgkAOQtKfDqmCQCOrB0I1qYJAB+R0XVGwgkBMVBA4BrGCQFKjYdYysYJA2s+/HQS7gkDeaJ5O08KCQD1Sw/DsxYJAQVkqER/OgkBqIBI76NaCQHrEN5uA2oJAaRoHN9/dgkB5j2jw1eKCQKK5DcPZ6oJAPXsW5q/5gkA+ywpVFgODQEJ5nEC6CoNAPKRqmL0Og0Dl5ILX2A6DQERvDZ55EYNAk3U4a3oZg0C2j51h8x6DQLS2xDVzIYNAsINd6oshg0DCE1nfOCWDQFjUcDdyKYNAKoRSVystg0C+y4nf2C+DQD4ITFRpMYNAKJPOSYUyg0CVd0fDaTmDQEkJ93UoQ4NA3JHCTsBFg0AymX7xclCDQNblLIkSa4NAfm4gUNNug0BACXlF+3KDQG4T3zMYdoNA9CXJLv52g0DmYP3VAXuDQAaSuuwKg4NAVp4gsQ+Lg0DTB3L9ZJKDQEUab1rcl4NAgFiP3XWag0B5bODUJJ2DQIqYGcTSn4NAA5qqSeCgg0BuB8nNLcODQEBentltz4NAEuJeBd/yg0DuaWpzlPiDQE2LuuiSAIRAXAqAkSYIhECrnS/EBiuEQHDmwZ+1RoRAsFyJZJRKhEAifYYp+lSEQKTIrTu3aIRAhOPVH/9ohEDeJR+Y5WqEQAvjFu3oboRAHhnJq/5whEB2zR/t7HKEQDo+hcvudoRAVwmadJd3hEAc3zW6yXeEQIJ9GVlveIRAPH1oSPh4hEAA7lxzd3qEQIiXIf6be4RAAup9HCh9hEDK+n8jkX+EQEAr1cD0jIRAGyMMzVSVhEDMRgI6BJiEQPxgZogcpYRAkr/ZiWilhEB0bEpAF7OEQN/+4nHc1YRAte22SGrZhEA6N3wv39mEQM3lzGd03IRARNxSaHnehEAS/CSKduCEQHcip2cO4YRAfKZnPmrhhEDwNS/OYumEQExEiDN+6YRAKFB1EjbxhEAQdxnkXvGEQFqFcbo0+YRAcO6Zolr5hEBSk3TM2/2EQJijHZZ4/4RAjtAImRgBhUBo7Je/LgGFQHVCE1sSGYVAAUFjaEAehUBMuZZYPyaFQPeQmE/jL4VAP+VJhmk6hUBS9o98ElWFQHYvAlCpWIVAa7wcNmBZhUDjptB7oGGFQMlKrxihaYVAvufoZplxhUD6ODVutXOFQBjbR4CXeYVAnMaiKZCBhUDGQQJLnoSFQM2BHMykpoVA4gpsq5anhUDcqNT/ucqFQCgcwO1lzIVA0FJUNzDmhUDwV692MuqFQIyTbLDU8oVAZgSppID1hUAA0bQoLviFQLMB2AzW+oVAM2n8uskahkDt8d/LzB6GQAj1W56URIZAxBOVNie5hkD4woWvlcWGQJ3iAKMy/4ZA/HMEszkDh0CDHGHfNg2HQJ9Vf+g5D4dA5buH1TkRh0CZ5Ks5kSmHQGwmsU+RMYdAoK5Ej4k5h0A00PnOX0GHQH5h7J2JQYdAEXWnE+Jah0CqeypQN2eHQIcE75I6a4dArstakT1vh0CWYxYYQHOHQHZkyk2Ok4dAzHInmcexh0Ac6nD3yLmHQKRuhiq/wYdAfGt3PV7Dh0AvymR0wMmHQBBxkbCXLohAeE95lmI3iEDwQZXiyTmIQMoZ0SFoO4hAD78g32k/iECXSJ0BakOIQMxsCSJ7cohAZKgFt392iEBCOQRmgXqIQFqhf8N8fohAQnQE6+WeiECnqQrwWbKIQBC6DZFatohA2oDjlN/RiEAISZH04tWIQGc+1QNK4YhA + KBZXds7jZUAmWGpEdaJuQG+XdYaqQnFAaYA5p9LBc0D3HWfUm9N5QGneFfsq03pALM4KrMwBgUA/UiyRRjKBQM56ioZy+oJAXaPoe57ChEDmIOujRAKFQIqpjSEA64dASk61wNAaiEDbUjZZEtOKQO7WVz6Mg4xAanuUTj6bjEB9/7UzuEuOQDVVQTz1EZBAB4Ib5vyBkEAZaxREK5aRQB2XXOcinpFAYH/DPkF6kkC/+Ng6X8KTQHT/hqZKFpRAcQ8+SaVOlUD0Fn67oNqVQCMmo1frmpdApi3jyeYmmECjPZpsQV+ZQFhESNgss5lAt71d1Er7mkD6pcQradebQP7RDM9g35tAELsFLY/znEDi59/WlmOdQFk9RvmvT55AYv/W6+wnn0CgUfXzxTOfQNUJQ3MBBqBA+Upj2RG0oEApNC0BBsCgQFLWleA0eqFAtHWWah6KoUDY/+1nKfyhQPyJRWU0bqJAAeuN3lJ6okC/4i2qYGCjQM26A49SgKNAf26ptItCpECe68G4cJKkQAr5SbWe0KRAKS0rIolcpUAv8TKEtNKlQA== - + - oaOTRGAsAEai9ZJEte+WRE2vp0TClX1Fh2+rRPAL00QX01JFKmAGR2PYdUSmDdNE/fiMRGxh2ETjgZNFhaWeRVtwuUT1bn9Ez0xFRdd01kQNB51EPfbZRHYIokTeKL9Eir6PRC0HmkTgVpZEkABRRVVsPUcB0JBEdyxgRDZaU0SHaG9G/lp4RCrNeURrIaxFUwCvROt2LkXQGOdEhwKfRkX91ET5EP9Eh+eeRGHif0Ttv0NExwrVRel230SW9oBEi1VHRF8egkSET2ZEC4EZRVuVgkRPSmVFQN0bRZ97L0bvQDBFd9mWRJQDrkXto1JFJhWiRMVrKkXtWtJEZyalRMRZH0X2fZ5EedrVRGGDk0TISpVENezxRKK4U0XKftdG76LqRO2e/kQogmxEpwQIRkJ2YUSGwvhEZUiMRNuibURkHV9HRSWzRByXokT5/udEAVJGRoP+C0bpuohEfOutRFndmkTTxPNFmaLLRMoE70Tylh9FNBNtRN0XXkTPY7JEFVxPRH+lRkWJM/hEN+OBRH1k9ESfn2tE3abSRV2c3kSFwopF8mt3RJW6eERhSr1E3a2zRTtL7EWjI61EYHrhRNu9wkR/sJJEDgg5RPxEWEULf5JEbg3rRDP8qkT/atREtzeJRp4ClkQt7qlENcCZRKIX4USjPWZF41NVRBE2/kSlppFEzPu3RLNX1UTDebFEU2uzRGFHVEQs2wlFGWDmRN8t8ERpOSZIM6p+RdIadkXCGLFHGu7yRSqwwUTfIQBFZnY9RjB+bEYQyLpFw6mlROtwhUXqkJFEbj5ZR6gU8kROZiFFEhBvRFf6WUTzvCBFF/ADRhvmnEQboHdEtNLBRF+qoUWUCZREurf9RAR4VkStigNF3cuZRNslZEStbZtEWTw7RUkiuER4kTRFmEpBRLdVVkWA8qBEZZoERb9WFEXdiZ9ELniPRHPteURmBrVEsgT3RMD+ukSKRVNEaHGJRO/DsESuzZ1EprMARVlI60Si3qZE8EPDRbFrmUS3wOREd1VxRJ19dEXR9C9FL5YURXboOkU4fFNGsCJhResGgURRXwdFZuCERPR8lkRXZLtE2RF3RMCgEkW0OTpEr2sYRZIZiUQEB39EJYoVRTGj9UTxfY5EnLAWRZjVTUVlkRVFl0t0RDtV7EU+d0lEweQaRXke10V9/xJFk7tzREn8j0R1VJxE4FiMRBlSbkQpkHBE4/9vRM3XC0UfivdHsd4xRo7EcUTRDbREjoXFRAq3mkQVYaVErBiBRdK+skQ70/dF3wBDROJLxkSzLZhE2z+oRCsBkUXrABFGfSqdRUab3UYAsNxEsqjJRJxMMkXsDYhEjrqyRBoc20V443pFZLYaRuXUlkQKG8lEheRoRcfSmER1PUFFBMfFRPP58kV5mv9EqD3sRZ5ZZUQH6YhEdLpNRGwv0kbJzZBE7oFwRqw+EEUIyh1FrbkcRQ8fokS7RB5FzcGDRZhPxkQixKBEwxleRA4iYUVwgnxEzgulRCT8MEV56U1ESe6xRqp6zkRWNYJFQ6RDRADy9kftRadGC92cRPOG10acoqxFJxldRgNdiUR6PzBFPPP/RIr8Q0XD45xE0unDRNp+xES7+ZBEYBXCRErHWURVgbZEg6iHRNcMvUTb+XZEwexhRP0I2US4MphEOjOvRMZVskS+0HNEEA9hRHm8jUTXgJ1F3zs2RTDac0TRnG9EEzRlRbYTSEYx3E9FaF8gRevJo0U82QZF4CEgRVfZMUVjCXtEFBqCRKVYiUTzyItEQpuBRSa+N0k8YdFGRPtoRXH5ZUbHak1EIv52Rc0HgEXivaJEy1c9SABGiEVTxXNGsHTKRKFeDEUtd2VEYlyjRJQuIUWQnotFDeGBRd3csUQUW1JEVMDTREk7e0TTbGNEA7YGRUG0PkTVLWREC6GcRQFehURmO4VEcJ+wRNCbF0W8nrZEL0NQRCWdf0RCa4VEeQZVRf4+lUQcEFhEfzhrROPbU0QWgU9ESrGzREpn6kQ1PclEZZbYRGLRnUXp0HNEVxXeRUpAjkSLtNVE4LqIRIKCkERjMmtEnKnCRFl7skQV08ZECuJ8RGQ2gUQ7v0RFXfnPSKemNkg5/TNH4imyRgLtk0e1vG1GwYO6Rd8UUkXAMpNG+lyPRBqKcERXTpJE23JlRYl0wUTZmMVEig3aRIVsrUR+TgBGQ4KWRalEq0WJuRtFCKKMRL7/QURfIgpFoHK3RHgfUERyPYRFLTupRGLY5UR/w6lEhjeJRJvRDEa6ouREc52fRUslPkRE+hNFQjQkRZXbS0X65otE9N4MRzjitUXcKqlE1f1qRBOuaETopZhEfuJ7RgV+qUQDczNGFi9ERWKJ9kRjTH9F7DNwRTicskU2AKBE4m56RO57bUS1/XRE1RaeRAI+BUX2bdhEpGbqRO15kETM079EX5fORPjiAEXXA8FEH3gERWwFI0j9ZOdGtm+kRM/a3UeKAhNFCPQwRQuy4UaVOW1FU1CeRLyFrkTDJB1FNwOkRqJnb0d8kulGZGN7RA29gURHCQpFAFWeRK6Uz0XQqpNE6ckkRdVK8EbTuZtGLfg8RTR1PkVynIdE57F/RafackVY1ttEsP1WRGl+hUWkW5NElezMRAFukkTTuItEmK8iRfBUfUVUlIBExWCaRHNth0VDjolESmAjRVv+8kQBMIpE/O+lRDRgWkSmkwpFCZhgRGpyukSlIIlEhASRRFkfFkVe5gRFH+OrRjZPF0UoFQFFLkGARIVoIEaYB4xEei0DRaXS90TwEZdFBoizRYWXjESeXV9EANqzRLXnCkX+/YVEpPd8RK7tYEYyn1lEI5bQRHd10ER3ehxFAEcZRkoxb0XxNodE1a1dRGtXW0T9P79EkxgWRfxBn0T/691EKZIvRkofLkYz8aVEB7uVRYUsmURHOANF7JKpRE0DdEQ+tX1E8h2QRA4JiUXWeG5EOfYFRY7fmETEuY9E66k2Rc/zxUejzj1HWuteRqq1x0U7kbFES1EPRVlv/kQfNaZE+mmcRNTzJkZLibVEOEa6RLLrdkQD6BpFGTgxRRsFY0XBv8lE5cdvRGTGyEQAV3JEbZVgRMPCsUQhByVF3Rp7RJMMjESe03REHWGJRPcNSkRNu3FEuPllRB3otUQQgIZEKkWsRMTuc0TU6otEPdCARawDmUXCAUNFcqXrRH4QbkR5TwFFIGqiRAgQ4kSBpKdEVBxuRS7chUYYuIFE9dOERH3VVEXBe21EOQqURAQ14EW7BllEZg7HRMwugkS6QWREEJd0RMp1yUR4CDtEUcoORWvJtUSSWA9FutKdRJNoW0TDa1JE5ECrRAUKVUawFhBGnQ06RTUAQkTf0CxF36mFRNs9XUQ4vS5FLxvPRKp3i0R4HBRFUuy2RLH9J0Zb+ZREJyT6RGzx3kSdPsBE83aHRLKjZ0RhZnFE/CftRIdEr0RbLfZEPAFyROVUdEQIyYxEkeXDRDQztkhCvJFEp7EaRT3GtkSlZJpECWxGRV0IJ0jFaS5FFeEnRXDqnkSNV69EGzWrR/ZSlkXRLotEu1xwRHBRq0TWqX1Gt0BORN4RZET7Mc9FZz+LRAyhiER5cZREtH5YRCVDB0V5F1pElPhNRQWeiESOSepE3hMsReqJbkaQTnpE16WkRS7VjUTXE99ELMLMRbrAaETjfgRGcURRRDE2GEf3HAFF6CeeRHmOLkWPHAZG6PD1RNyuqkTeScBEMOhlRN+cOkXuOYxEKN6dRL9LmUQxpZdE+uqARJ1to0SR78tE+/0aRid2j0SM6I1EE4hWRKeA7kS77YJESTGWRG6KlkQTwPhEGabdRKBAsEW4FF5EtzmPRDfkEkUqQpNEpHd+RJeiokQN6npERhnrRPyk5ETMwhdGvAs6RQG3qUTBaP9EHY7PRKJZI0dkd3JEAWhwRPtIK0XyaXNEUgYhRobNX0ac7N1E2rdZREFEkkXKSiJFI2CJRCUxlkTXBmhEBPj1REoGI0WhXhdF287MRJ9ZeETADolEAxGYRILogUQC7UREVbdmRe/j4ER5gK9EhCWERKf6nkS1HgRFP8d/RPm/qUbf3jFFc4k7Rm2bl0Sh2KhEWBS2RcCtk0XewgJGFwOsRHZ2RkUCrG5FpkeGRFXD9kS9m51E9MxsRAN2gkQaZo1E4oKFRKzHW0QKwqxEFxF1RJCXi0Qrz2xEZx7mRdt1bESzeBRFsCqDRAIYzUTo0qtENfugRGyRpkV4N5VEV+6xRCeHUUUtqWtFEcLvRPcO00SWcABFuxYuRbRuZkRDbbZE/qPURJKOcUQDGYNEs+qfRO5lfUTikTtFSi1TRORZcEQ/l7dEsfgLRaHBl0VV/kBFv158RPHQ00Si2BNGTZeFRKhDmkVXB0hIooOmRJuGpUQVm8NHKwu9RHmBskQKeX1Ejpl9RDQhb0fpNl1FoGCfRX1C70VWYXlGRHJ8RASTNkXow8dFj6CmRHvY1USfd8pExQmBRKD+fkTyrGREgtCKRDQsjESLrM9Ez2iMRH2nnUS3bq9EY32jRH7LS0X69R9FtZ21RBMEhESFWFxI5wHyR8GDi0TOgG1HN6G3RQ58rkRtM4VGF/KyRQ+EAUZ+qbNF+gIyRSJRxkTBWXhEnGp6RC+igUQ8P4FEIEdwRFXbZUV8KYZEaegYRbsjZkRNicJFSc6pRGK0SkTsH4BECVwfRdGiSkVry85EZxCNRMaxekRhRolEwH+2RPPGyESZOoBE/+OdRG73ikS7ioRE2ItXRB+1iUSRy+pEjiLjRQ/ipUb5LWlGrbn6RG/bt0Vztt9EkuqvRMiHo0WtDlFE8A8XRXRkvEUtpIBE1zzJRMNOlERKj3hE1QCrRNLz0kTrNehEEeeJRANVaUT1IUNF4+1hR6lqkUQS1r5ETS2dRHAQxUQjNItEG4LBRmMDcEYyLsNED+2KRWxIhEVyj9VELxTWRMTtrESNeM9EGNuURLeV80QJiX9EgqvlREkEeERcXmZEHSKgRPa5l0TUzllEUFuKRE5dVUdvsbtG/EhZRsHfsES5jdVFoqXNREeNbESI+HFE9i14RJftsUTES4RECXY6RXwJLEWZcEJFjFg0RTJ18kTLzYpE29/CRBqC4kSKMmdEZMLrRJthW0T+tB9FsvqjRMqotESjKrtEjQOLRP9PVUaT4eJFfWaPRTTaj0SkKwFFKv2XRFSG6kZNNrxG6vYRRmvHD0UPd2tEMAonRtHD00VyoopFUP1YRZShEUXEIVdESydwRl1RzkQQTf9FxSAyReJNjkQmbgtGxsHFReaO+kTGcIFEOhzARPekxkSxJaZEptS/RJ8nrkQ3lplE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - cPCWLgzBckAkmyKRbsFyQBJBXblPwnJAnisI5ePCckCUxW/JOsNyQDikD5taxXJA+VTaB33RckDw3vpFDdJyQCWgpXFD0nJAkotmZaTSckCg2dJodtNyQLUoafFg1HJAAlBCcJHfckAo9Oxnz99yQIDMJby54HJATePODE7hckD1Ct3f++FyQD4BfQ9R4nJALsIxdZDickCozPS5I+NyQHqzX7dQ8XJAkWMVIsnxckC+8zE0EfNyQMtiHay283JAg/J3NKP0ckBy5g5UxP9yQC9LaPYoAXNAd024/ksBc0Ce5gTGjQFzQClZliU6AnNAWL6K5c4Cc0CIoVur+gNzQIYuQ3nhEXNAuLcnYSkSc0BIDCgEkBJzQI4u95y8EnNAMpw0sAUUc0C2zkAoThRzQKwOWxV6H3NA10EZvrgfc0Akh6UvOCBzQE9f9u+kIHNA762FmPogc0ATFFQiOSFzQBBi2aNmIXNAhB50Anwic0B2a1RsyCJzQA/9INU6JHNA8IOgBc8kc0AnkVc/RTFzQFoxDcFaMXNAGY1tnv4yc0AFKT6voDNzQC15hmDWM3NALh6X5zc0c0CCIw4T2TRzQC1YuRq5P3NAJOATkEBAc0BRgV105kBzQI5loDd5QXNAmJzthLtCc0A3JWLmeURzQJXo9/OcUXNAJeqja3pSc0COXecJDVNzQP9NeFtBU3NAT6mg46NTc0AMUVh0eFRzQJz4WML4X3NAxgcHIx1ic0AC31LYOWNzQKi2qCXRY3NATiP0h2Fkc0BG4IpS23FzQEGVilpScnNAu7BED7pyc0B2vMFuuHRzQCaBeCVLdXNA9KH3dniAc0CwuFzGpIBzQARZmvMMgXNAgMfErjGBc0C6+ud6XYJzQHljnTuGkHNA8KLUThWSc0Ajn6BlTZJzQOZDThfQknNAtvMacc6Tc0DnXIFqYpRzQIAWxef3lHNAgEgBALmgc0C8nuLd3aBzQExljbpMoXNAloJNs1qic0Ag4CZVkKJzQHyMkc8io3NAhCW5VwWlc0Dy6NlQWbJzQE6pm8C2s3NA7MoJVQy0c0BKP4iIkcBzQJM6sO33wHNAVJZYlTzCc0DCuYDgz8JzQLMpSi0mw3NA8nqGGBfRc0BfjaDaktFzQB14V0PX0XNAPRI9jibSc0DXlpQGvNJzQFRaEzn303NA0Gv7P+PUc0AGvFT8oOBzQBSiwik44XNAhpOdy2Xhc0CS9bTIeuJzQLF3ws8N43NA5tZB2KPjc0AGj4JdZO9zQLxleYBX8XNARp2kyJ7zc0DaFWaJN/RzQBTC8BFNAHRAYlnPuuMAdED8ceQHeQF0QDB3G3i6AnRAxPcC0EwTdEA/ZCh3SyB0QMJ8voy5IXRAN8MYMLEidEDlmWJJ/SJ0QJPr7bNTMHRAT7R2BVNAdEBf50TOO0N0QJvw2BB5Q3RAiHi3NGFPdECOFzKAj1N0QB06ORn3VHRAWjRDyY1VdEBGApA/IV10QHBL22sgYHRAvFsP4rdgdEAnJBfn0GB0QAHz3AgIYnRAWjOlnXpidEBnqdWl5WJ0QNe5Ip9RZHRAkGuElsVndEDICnBV1Gd0QLqP2ZG4anRA8HoZrB9tdEBgQ75iInB0QB7JaVdBcXRAkFflQXtydEDLS008OnN0QErVV9k2dXRAOBn+APiAdEDhYS+GHoF0QHYURi9OgXRA8EvHVYmBdEDKxj4nT4J0QNRbOhYmg3RAXr4MIRaQdEDMVww0vpJ0QIJr2ATun3RAuEeUoKKgdEAdFOD0zaB0QPEuPeE4oXRAQCkJ+7eidEDwryQEEKN0QCMhqJwIsHRAEvI938OwdEDeHPWxb7J0QIXSH5dyuHRAPkHfibi/dEAogd3x4sB0QFSWYkp8wXRAU+4fcU7DdEDm7bKrt8R0QEyBN8rJzXRA225KKfzOdEAI3a6IHtN0QIjYP7A903RA/kF5SOLTdEBWVPebeNR0QJxr5sPP1HRAhXqY537YdEDIH13wI+F0QAFhfiC44XRABquXTvnidEA9s1s8XeN0QCu9B8xN5XRACp71RaTydEAGMxAgjPN0QBj1nEClAHVA+GLp+c4AdUB0YdbVYgF1QDx51PtcAnVAiNcUCaYCdUAqnlavmgN1QORMPdqaEHVAbypcLfsSdUCzS6QRJBR1QFBhieriH3VAlk8zNZ0idUAc5TlJ/iJ1QDhmUqFfMXVAz5id43sydUAgKG+NqjJ1QAKjw7HLNXVADC9cGyZAdUCUDkmEekJ1QC6aHjqOQnVA5mq1Ht5CdUDaZgPm+UN1QHP7lsrZR3VA8H031PxPdUDM260wClB1QKbk2p1/UXVAMrW+T6BRdUBwfJdyd1V1QKrd3/cMYHVA+EN2saFgdUAgyU4EOGF1QDVTYJk8Y3VAsD/r/GZjdUDn4YpG+2N1QAC331uNdHVA932tGHmBdUBG6n1zroF1QKK3D0a6gnVAALjLnuiCdUAOX0DVpoN1QJRMas2ahHVAYOr0JLuRdUDOA+fgbZJ1QEHF1s63oXVAsMp1oEejdUAa5/z3zMB1QBgHV8JjwXVA+okncvrBdUBXw3GyZ8J1QMOmnYal0HVAaqczV3XSdUAA7d0SvtJ1QG7mwkTK03VAUmdUGgjidUDOq+HVduJ1QF7w0zdKAnZAtlRBM9EDdkDeCrQNsRF2QEJOX6dMFHZAlfeGOIkidkDG3EQ7kCR2QIyM0p5LK3ZA3AEfah8xdkDGtK0ofzJ2QLa7bd1UM3ZADA/4OrgzdkAWaH3MTj52QDxjvp5LQHZA8wFFMh5BdkBQ3onnyEJ2QDJukbMRQ3ZAD3OvsqdDdkBadzpteUR2QIj+rfj7TnZA/h39Ts5QdkAc5cHBEVF2QKp6/NQgU3ZA5nNEdc1UdkCwXgLy2mR2QK5Cd3bQf3ZAlH7K7JCDdkDuSJcp+oR2QJDNmnTrnXZACEGneuWidkCcPU4QRqN2QEBh+E6Np3ZAvtlCp52odkD2pnIekqt2QJFtJO36rXZAGuU5UcGydkBUS/zrA7N2QNuQi8KUs3ZAtSxI5w20dkCVrS16e7R2QG8RGRpMwXZACzHFaM/OdkCxk1Xh+t52QIrLnXny4XZAcFXMY9HidkDnGC2PHvF2QFaM20yR83ZALJ/t90z0dkDg+424MQJ3QGENcB2mA3dAzS4lc0QRd0Cc8MKnARJ3QPx2v1AOIndAhqPrVKYzd0CKMDImDTV3QNJdTjsnPndAuKvk2ZxBd0C4VTcjkkN3QHAGk+kaRXdAaF1QNUtRd0AfPL83klF3QGJ6m3wpVXdA1Luv0Tpfd0CjdCx9SmF3QECMxXGPYXdAwHq7Tzlld0AS0WxjJ293QN12Ttk8cXdAD5A8nH9xd0CgjWYok3R3QE6qBQcbd3dANrZf1Rx7d0C6Yo0XSXt3QOHmhnQjf3dAPvv6sueId0DgYbxvmaJ3QNQdErCmo3dANIyKvpexd0Dvowpvm7R3QNoBqCUTw3dAKNTAce3wd0DOicB2UPJ3QOyU5EhoA3hABEHf4o8DeEBajY2EbiJ4QOztyD+MI3hAw27Y/dIjeEAssyFrpiR4QPbEY3gJQnhA4KtfrwlDeEDqwthLEUR4QBbMJEp6RXhAFVmq9dVIeECNde64L054QFLq0zfKUXhAPdhtrohTeEDAuefah1V4QH6xwwH8YHhAyqgZkbdheECcbOUjO3R4QFpkiXhpdHhAUzLg0It0eEC+txyKqnR4QKybPNbTdHhAvkaWkcZ4eEDyCojP93t4QPfpLEshfnhATsoaBaSBeECSWYL9fIN4QKhIbiL+g3hAh22IK5qEeEAj9Ufst4R4QDjHI97TiHhADUpla0eOeEBWaVAsUo94QFR/NOaWkXhAIkOYyqiUeECedB2Gp6F4QMMgrUy7pHhA2OIHoSaueEC2DmhRgLN4QIQYzZXMwHhAsmqjlLfUeEAscvupAvR4QOIarmMl9HhA313kWI31eEAYv4RCJP54QAzXWeNYA3lAfh5ug5oFeUBO+nJFgBN5QKey1fneGHlAIgEENvojeUC6wDkusSh5QJp15ogQLnlAdHEAZtUyeUDIYvlitjN5QOxTHzNeN3lAHaYUU7s7eUCfVIFK+EJ5QIko3U78Q3lAfOsincxUeUAqzxTf2WR5QLj+6In/aHlA8rRTWNdzeUCmFEd7NXR5QLpVYzDee3lA+iImm8CyeUCq0WmVL9N5QLKwFHND1HlA0jJNNszVeUAig2gDUOR5QKp6a1r8A3pAHvezwJAEekAqJhgWTgt6QBpFDQ6WEnpAijKKLAQWekAZiyb9JyN6QBbp4iNVI3pA4LY2dy0rekBSDx3ZHzN6QNLsiU8MNXpA5y7WQiY7ekCqrYgveDx6QIgd+IQoQHpAlxjm/BJDekA0CBNVLkN6QFkFPXAaRXpAmBjSnTNLekAecFJBKFV6QB77JjohXHpAZMA6QBpgekA6ruyrKWR6QPjjrTo4ZXpAvoUDW41yekAevi6zgXl6QIj18ofNg3pAYEcYlHOTekAZ9EiHJ6N6QGYRkEYMs3pAjqhqcgy2ekD8uzIJE7d6QNSMMXoWu3pAyJm9NAG+ekC45QezGsZ6QLoXHHRDznpAzlObFM/TekBwJriyZ+F6QKyhNh485HpAjFI3uzjuekAuVnCAFfF6QD47UQdh8XpAtuBQ6b/4ekBtBw4XewR7QMl/1v7GC3tASmYbHioOe0AxU/xnTBV7QA629z1bJXtAKglqXZA+e0Akvpd06kN7QLOgUJDLR3tAxhX6bUJJe0BmVkOpyG97QKyFRZfpkHtA96omqqaTe0AxJA9bIpV7QL0/gfH6s3tA8WcoNQjEe0D6WIBkjPV7QHjMk/iPAXxAvAkW7NkBfED6VeD+ZQR8QPDGYfWYBXxAhJxDRIoRfEBU1zrL0RF8QA4zQifNQXxAJnrazttRfECIT8Oj5VN8QElm+o+tVXxAI/uyuzxZfECYbThnKHF8QEq3BBj/gXxA5CM0rcKNfEA29A3lK5d8QGDyCla+snxAqDRHxRK2fEBccNyoD8B8QKi2+Q1nxHxAsB0di3TUfEAiHPQcWOJ8QC+uqwR65HxAGews/hbyfEA2sfDzU/J8QBCCptly8nxA3Y9Tv/fyfEC85zHX3Pt8QNp/F93/AX1AZWsapEoCfUCoPeNVAQR9QL/RxIEHDH1AGNoTlkQSfUDyFiavGBN9QFBnXfGvE31ACCZcKg4UfUDKLJwhFBx9QFzwbIU/In1A+6hPl54xfUA3EGN0SDh9QMR5IeSgPX1AqDrvaPxCfUC8jkE7SUh9QDezJd/ibX1AYPhMlyBzfUCgW4udenh9QGZ1GpHTfX1APYg2yBl/fUBY2rRlBKR9QNaiIZUKrH1ASTK/b1e0fUBnUW9BJLd9QM2L5tUpv31AujtQ4SjDfUDLQnv25sR9QJySq5884H1Az6fEVdjifUBPWHkbjvV9QASJ1uUyAH5AmtssLkITfkCgRZU2OR9+QDoxIB1BL35AqkkNyWQyfkB6yWJx5lN+QMcZvXCOVX5AYHwATrdzfkCSkfbLwHt+QKRLULWNfX5AyGhJoeaCfkCN5l0woIN+QOiO3lRShH5AtoMELQyGfkCWRW1by4h+QI6Fkb8ein5A/gSDHKaLfkBLXBurlZN+QHAQDLS1k35ASBOEb5mUfkAcyRenxJh+QB3NAV/zmX5AIggiSXObfkBoBf50sa1+QMB5vawPrn5AHoNvnPaufkCG9dCKjbB+QIzpOieYsn5ADO2W0060fkAW+9b9prl+QAjpNuTRxH5AKKaK+UXLfkB3/klYAN9+QGUzxfQE5H5ASNf5eFnkfkCASDCCCOh+QMgyB+AK7H5Aic/7SAzwfkAa9l5VrfB+QEgEdlUZ9H5AxL6U0Qb+fkCsfI9iff9+QBtQfzbCCH9ApSxQRhAvf0AqadwNdjd/QHI/v6+nOX9AtNxy57o7f0D97QJhID5/QLjxsjQBP39Ajt1CZ8FDf0Czfiurlkx/QMqELFs6Wn9AMAr0fLhcf0DED0mBv2R/QMi6ZbvFbH9AQA2Ao7dxf0A6qMKkVXR/QNDfJirNdH9AsOOwnvJ/f0CuUYq/s4F/QGLtKuCjg39ATC+J9tGEf0CYdf+Iho9/QBJraN9jkX9AMUAHz6iRf0BdnSv/lpN/QIqSaOBdoX9AWnOMhkitf0B/lR95VLF/QN62GuNpuH9ACX/UBsW9f0BjCfHnDcN/QIjyGWStxH9Aqc7NBvjsf0AqKc2/Mv9/QLzrTVpFAoBAOq0/pEoGgEAIImH+TAqAQMlIDZLOD4BAIoFcyC0SgEDeBJB5IhmAQH6P3szPGYBArqedAEUbgEB4e2lkJimAQOct3AHrKYBAYF5oQkYqgEC1ySd7nSyAQFpQY3GIMoBAi0K97c80gEC78Oq66ziAQASAwJQAOYBAvWqSKF9CgEBQT5v8qEKAQEDgGdscR4BAnuNGufdIgEAFED9IsUqAQKRFqeGoTYBAopjgZdZNgEC/PVHr5VCAQKtR7PIUUYBAW/3iyQJUgEBUg7eaZ1aAQC+AEjHmWIBAYH4JBQ5ZgEBXUO9fNFqAQKA2ZmJqWoBAmMgh/zdegECCuf4BDWGAQCOvAhCNZoBAtGB3ASlvgEDOxw4BgXmAQBYH894of4BAxNUJ0j2AgECInhXDKIGAQKEP6j0BgoBABA3R7y6IgEB4BIu90YmAQIJ8lEtejIBASmcN4B2PgEB+ILQ9SJaAQLEm2yUdl4BAv4zkoCOZgED6MaA/S5qAQPwKGqiTmoBAW639Kt+egEBUdZaqGZ+AQAHKchUaooBAC37k8AakgEDuiAJTvaSAQNHU+TE/poBAh8tUJ/6mgEDa2YVtt6eAQEEslQOGqYBABAqqSrGqgECgNZ9Q8K6AQGymXEcTr4BAlmdhaxmxgEAkpKKk4rGAQI01Ckp/soBA0WpSxpO0gEDItyCeGreAQKLtmv5Xu4BATJiwdwW8gEA+pZd4wbyAQHRhu/TzvoBAaFz/TaS/gECQTgwhsL+AQIp3eoBSwYBABHtNMZ7CgECvQfxiqceAQNLSOwhqyIBADt7JtY3IgEBFt8OZK8mAQLTXTmxTyYBA+1SFRNbJgEDEzc+o5smAQJV5Uq6VyoBAxClXSgfPgECcW2zaLNGAQFoZ2nZM0YBAXoxt0GHRgEDYa7/KetWAQMJCtqzz1YBAwmljO0rZgEAgvw2PROGAQDQ3sXNY4YBAOwXBO5jigEDIQvEOV+OAQIgBQiOy54BAe4TimPbogEAMNqG1keqAQIfiIZdL74BA1sWkQWnygEDhGlHkPvOAQEqdVoVn+oBA4nPM2T//gEBuH9kQPweBQBL4WrhZCoFAgfNbRiQOgUBwpkkYPg+BQJB7wBX0D4FAlKBsLJ8UgUDeBY7uqBqBQII87oY0H4FA/hKDWLQfgUArQbcWUyKBQIID/2SuIoFAxnzFbkgmgUDbcE1fNCeBQO8Pg98vL4FARlWJVbcvgUCwc2PqvTGBQAoeRUNaM4FAOd+N0kE2gUD1V/ImyT6BQKbkgOooP4FALjS5sg1EgUB1DkwGKkeBQBoYRqoeUYFAZsh1YPFcgUCcQ//OkF2BQEiZEZSdX4FAeLwsQkpigUAKYo8Es2aBQJaKLZuiaoFACLm1H/JsgUCds7z8pW6BQF7aZWVMcoFAcEoCJCx2gUAuhspp5XyBQB58bJ9gf4FALE8srEmEgUBtGdEBqoSBQDgYYBdWj4FAQ1ZyKVeXgUBO1ysgiZiBQGQMRCFTn4FAKCzxdsSggUDueaFZ56GBQN6zJS7fooFANsBkKmyogUCE1xFJ5qqBQF5Ewx9Kr4FAMtMCIueygUDtwGe0TLeBQEb17EZMuIFA9P2WFNK8gUBQSwZmlL6BQF67n+W/v4FA0Ms1l/7BgUDkl6pgmMKBQHjkyG8FyoFANq37/2rLgUA885zsb8yBQGpLNdmxzIFAAODIFWDPgUBoLMhBfNOBQFBVEzbm2YFAQecfLKTngUCKuSOtXPKBQOIFSAGz8oFA2NExBO30gUDytfoTlvWBQNW7zWwh+oFAa8+MQST+gUCM+XfiPgGCQPZy6R5cCIJAg5/kOAQJgkACUdgYtRKCQMjm+otpFoJAsimRMWsYgkAxVn4j2BiCQJ4cCMMVGoJAnhL8KW8agkDqHQVUuxqCQM/D2dBrHIJA0tGuZ9YggkD6NblG+iGCQNKbI7fTIoJAen4QcFElgkBA8KMB/CWCQOp0qwTRKIJAba/p+ZorgkBUs7U27y+CQBx9JaBYMYJAINUb3SU8gkCsRQIcN0OCQCu2lu7hRoJAHhH36XBIgkBCWj5zPUuCQGjTDLzVToJA9N3Wv61PgkAYtjKIjlaCQOgs9wV7WoJA+Z3uOo5agkBSfjKXb1yCQA+CYB97XoJAyj5EtRBmgkCfYT/Ip2eCQM6fSoJ/aIJAbD89VDppgkBwd5Qw/GmCQMTMIKMUaoJAurC7FdJqgkD9ui+rOW2CQD97eH1vcoJAkN8yypRygkCTgv6203OCQEISPwUvdIJAtZYQbct1gkAyGi3UcniCQBY/GxDifYJAmrvVc3KAgkDhOK9U5oGCQNRhdWXlhYJAAknFVtCGgkAoxZVSQ4mCQIhNEW/MioJA8ezUfESRgkBRFzF1PZmCQDCkwaJWmYJAhrMXU9WZgkBdIkX6XpqCQOpSYrsOoYJAhxgRuzuhgkC6Kyn/3KGCQJr894EPqYJAxLhC5zOpgkAGwhbMSamCQAanHz5RsIJAal972TSxgkC1iubfobeCQPa/3+/rxYJA+cJrYsnMgkAUpQqiGM6CQF9yy9V82oJAqwvaG9PmgkATQDYf2eqCQCLtrzQ78oJAYAQkhPDygkB4+kjTrfmCQCCsZtNQAYNAwnHBBBUDg0A4CWa4iQeDQBrrY1AXCoNAtr81VroKg0Dqyps+1AyDQEKjm8y/DoNATOM12K4Pg0DgDZFueRGDQNI4In16GYNAgEau/tQcg0CSgZWWcyGDQHbQZxdyKYNAyhu0LRgqg0BirqZB9iqDQLosMGgrLYNAYQuG7dcvg0C+6ypgujCDQLbbr25rMYNAM4A1tRw5g0AV+xd+azmDQJThn+clOoNAVW4zryVSg0BSzdju+mGDQAQ2S/h5aINAs6yQVfpyg0D6hltH/HaDQGprkz/qeoNA/VgUswF7g0Cno8roCoODQDgo29FIg4NAG5ZxZRCLg0DMnTbDd5qDQEqyrtQinYNA/sbIc9Ofg0DcEODmxquDQKgIZVpMtYNAkOHPWKW4g0CIgbPPccCDQG6GL+y9zINA+l2o4KXtg0AJBtsT4fKDQKiBqKqU+INAPLRUOiAShEDvlDsa4CmEQGXM0d93P4RALB74qZpAhEAjFxsLjUeEQAKKjzfsVIRAF7mhxVZihEDZiohNfGiEQKoMyxgAaYRALNadduVqhEBQ9fft6G6EQJZY4Lz+cIRAbtQwWutyhEAsGIXb7naEQPjNQ4bKd4RAasf/6vl4hECCg7p7d3qEQOBM4HCXeoRAabNboRN9hEBseEzsKX2EQH1R5xK6foRAYIvKUs9/hEA7nk0sVJWEQOIbS3//l4RAcjwHQFuahEAUgC9LrJqEQH56uUrCooRA6Kx9/WulhEAKlB7c29WEQLP11ypq2YRAWKHgoXLchEDqcL59c+CEQN2rnSpq4YRAQYe9X03ihEDCD/Esr+OEQLgGN9x35IRAchaKOmPphEC/qKd0femEQGbTMaLf8IRAF0JrTTXxhEBceSbsYfGEQOPUkQ82+YRA6hX9tln5hED8K2Scc/mEQCFcD2BD/IRAZjO34939hEBYnipqdv+EQAoojEUPAYVAvOJuf2UKhUDZctAlLwuFQPTPMibeFYVAFEqw57YWhUDaQgxsfheFQHWxBLqtGoVAwfb1fkEehUD5phWtRCKFQNlfw7U7JoVAplGLvYoqhUCoMY2vgDmFQFB0ln6gYYVAl0N1iaBphUDaNjKGmXGFQLy4KlqYeYVAzcXpWE2ChUAiJOFWsYSFQAwCK2nthIVABDy583urhUAeNKiY+s2FQBV8LrLW0YVAZlcHwdHYhUCKVb2SbuCFQCTD+5ow5oVAqNSS4zHqhUBKqUqDNe6FQBYwtavT8oVAcl2OPoH1hUAti08VLPiFQLZLF6LZ+oVA9O1/HCYIhkB9LqDJyhqGQMTdEn3NHoZAxrai+b9fhkCkyfRTzq+GQKRJrtQmuYZAlsavUXDGhkDO8pYhxsqGQGwc4gUs8IZAhLGdu0LwhkC5IF7YpvWGQH1ydbcz/4ZAfIM/YjgDh0CH/o3NOA2HQIALy+s7D4dALaMu1mkPh0BN8WvvOhGHQKy3QU6RKYdAChGFH5Exh0BsnvyIgTeHQPs4cpGLOYdACtc0j4A7h0CKaFerW0GHQA7kVemNQYdADuRwPDdnh0DJyDHEOmuHQKpVyaA8b4dAI1XVej9zh0AYIkG2QXeHQHuqqXaMk4dA+t6ZQMexh0DN5pbRxrmHQMZJqIPAwYdAtOc8u13Dh0B2C4hbtciHQFp+spi/yYdANkDIZ7gCiECCSERQNBuIQPLSzYliN4hAEQtvymU7iEDRXe1QaD+IQICPH3SNQ4hA3JcDx7JmiECBhB3De3KIQCftD6V+dohArM2jloF6iEAegMCvdYWIQIr+LK5VsohAMKmAhl62iEASN5Se3tGIQCSQfQ/h1YhAw3sRUefZiEA= + KBZXds7jZUCEfuNfSGJnQNS+X4D+xG5AmBP2NLwhcECYcdKIFDN3QC3mzRMlk3dAunrUuZejfEBP789EqAN9QKcmVkyACoJAvkC5xh5qgkDSUNhOzEKEQOlqO8lqooRAYXk2RPgKhkA= - + - 8Y6qRFa/I0a9wNJEsqQbRcwjREVFywBFDn22REMj/ERQ0xNHzGSwROP/jUS4X4ZEEFCXRERZBEXzZQ9FH4yIRFqDWURaR5tFkES0RRf9vEQ1qYpEG10+RUJbmkS6X49E9xh5RJMHvURVtFlEYjbERMm63kR+YOtEvxZFRbqHC0c9LGREGP6KRCTaSkRsniFGk0aiRaJ5eUStooVF08mQRAfJcER2rghF0nSjRBnxvka+LYpE0V29RF1/yEQiQHlEau2uRRvI70Q0z8dEFzx4REH0j0Q8k41EX5SVRKNGV0T5iltFiLWoRFxEf0QwTWtFeaDGRPQn0kUNvTZFlz92RT+/cERyvQZFgp+lRaEorESR/g1Fp7y9RDgrGkUeTmlEblp9RCNxwUSfTrVEFdGfRCms10SJwhpFv2rJRgNj8UQVTv1E+SR7RFDb5EWfNkNFUXVhRMI7Lke00y5FoLLRRA31KEVWXW9GlAHeRbMwUETPyrhET+gERo1JlkR9dsxEnpUvRdoag0RChJxFbDVfRfHbU0SEgcZEl3l+RGQi5kXPlgVFC8FfRJLMV0TagR9FG06YREmEmkTc361Epqa/RSk0yUQApN9FWK+wRC2Zr0StcONE7hWSRPYXu0RyaW9EPh6IRPdCOkVaIplEa6INRWSmSkZ/XN5Eqq+kRecY30RIkKZE8WSxRJf7jkT/oMBEIE6pRHgVfUQC1Q1F29NSREk8gERnEM5EiwixREFlNUgiCHhE3JefRXhRZETk5klF7cKhR3rx40WoB4tESpiYRlZtf0Z6OrFEgP8YRiJslUXsGiZH0cOqRP/FT0Uyia9EjU8dRceLeESqh8BFb7F6RBNcR0TtZnNEHHyTRQVJlkSaes9EDYiYRNAQdUQLjMZETi0FRQfxPkXGgphEbm3URFfnA0X4yoFEAIV3RK2DsUTOQLhEOZugRJr6YUW56fhE+iECRa1diURn44lE1KmqRBhchkT5U+lErm2jRC70hUSd+qBEHZ6aRFngnUQthZJEAyl6RABUk0XfaulEoy3TRPsHoESiDYZFMVdSRa2KnERtNq5ECeCARI31skQqzsJE25dPRj3QO0TsQ6tEupglRjbemkSNfSZF6LV/RCSRuUTzZ65EkmzSRDl+gUQBlPREgae0RBRkf0TnwolExTWGRMTJIkUdd8VEMweYRDe/M0UamhFF0aLLRH10P0XP/MdGMLgLRfZRu0WCl5hEgla+RCXOhkXjbYVFDNavRJUVhUTfgqVEmjWTRNjAg0TmB8VEysZyRH5K30eaQXpEQDouRknFBEViSpVEOJu8RCPg2kT5SY5FBt0fRYHH/0VvTYJEr0A/RZD0DEafxrlF8Iv5RoBEkkQ2J8lElSOpRDQ+PkWbooNEhyqwRcM5QUUwtcZFsd4FRRE/T0XjbLNEb6a1RMICdEWBqJxEcWcWR7JZwEXtNMxFdIDMROfCjETfwchGkY6VRLKZhEaH1aBFboUpRd/b60Sn6JBEyu0oRaHFY0SIC4FEaYhHRb+ceUSetIdEHeuQRQrEkUSiwZxEqVWlRHGchURlRCVFE01uRH9Go0TxadZEE8OXRMMlgEZkQUFFnmrcRBI6+0d23oZEi76tRqNCkETbFNRGGnmgRZ6zaEZl2y1Fe+6CRBu5hET/CttEO3XqRDF1QUVnSY1EZ5iARBg9sUTkTMlEfZrFRLF1bUSFAp9EKwqWRAsmZERmFolEo+6YRCN38kQrpndE3qmGRID+4kQFOoFEjYORRE2odUWGP8lEQMm2RNOMZETUT51E6N5qRJBPf0UlLjBGI9mcRXSv6URqt4NFECj0RMeQPkUjvBFFg0vbRFMoLkUFR5BFh1NLScFz7kWfmyBFDMLQRubg8ERffX9GLfxhRZdeYEV9l2hEUo9RSNxkDEW39dNE0UCNRLYQp0TNwoNFD9GVRotMhUQps85Ezka/RBrQX0SoHrdELNI2RbloGkWeknNEBFQmRgJMpUT4O81E5S4pRZV6xkS9K5JE1A1eREDFQkWY4rtENIu2RHuMeUVy+o9E31XeREZ2hUSItRBFc9y7RatGjUTiqrtEpZdARRgDrkR7YOJEU083Rb1iWURV0MxFvxBCRRtQD0UqZx1F94MQRaL3gUQFPghFWB5pRDhb30h9lt5E/PpESBWYU0e5qN9HD4uQRtmzj0Q2NMBF8cbmRPY1N0ULt8pGAA2URN/FKkUPFFBFMze3RFJxtUSeYZVE2LqLRAqjv0QLjMFEnbBwROX7bkTefcNFC93hRQObQkVVXxxFOMy1RPYRBUXXsYlEaZ5pRLcXC0V/O6tEfiHFRHebo0SP9qtEKou4RFf1U0XTFpZEN20IRXtDDUYXTC1FJ9OQRXRvEUXwC8pE6NN+RFJbdUSQ7hBFqIOIRCPhXUU89z1H4D61RWHun0ZJSeJENjNURpsu8kTvg5lFRRShRDslikXELK1FrL2zRCmS0US+eIREWgiDRKI3yUTONZ5E/PzxRNHguEQXPIZE46qeRNRYF0VWllRI6agxRzb7wkcVSh9F+4EHRSVRrkYGJ3RF7ISMRG5fykRjmCFFyFiERoSvZEeQE7xGORtKRcAXdkR7qfxE3dbDRaRYg0RaKKdErJyzREcmBUfQKYZG/ceCRZlLTEW2s71ExSijRZzIGEUtUq5E4jrsRE4byEWAdS9FB9ZhRJ2/4ETIsK1EB+/DRBhVjUUwsCRFbuaeRDHfrkQAKqJEr3yYRAQN5USLI69EzouZRGisjESsjRxF4HLZRJtFV0QZOVlF5cdsRTlAx0btcBdFtxmjRKinhEQxpZJECrNBRlrkakXvGgBFB5lRRRUViESyy59FjT94RBL3VERxy4REN5J/Rq1DmURKL9ZE2/ccRvrDvkUcsYpENuIORXjcsUSy4CFGDxK3RIw5SEZpEh5GU7OERbGPq0R/FIpEZ4RmRD6vnESytZpEnxefRP9KgETg6F9FmRK/RK4fd0RZsgJFqTeTRNisuESkbIlEspi4RwFdK0e8NiJGwibTRcKHkEQKXyVFvMR7RKfiAkVFTqhE37q/RJn4V0QwHQtGpki7RAM+lkQnJzJFRv+dRLRaAUU/tnRF+GczRUc7KEUw4otExuWcRP+UikSJGIpEUPcTRRDchUQSvmVEf7NRROPWikQA9JpEroCQRLCSb0SAss9EzOh3RAcbqEQIFF5Eh4eORM2/U0TyZutEW1s9RTtt30U2oJdEjVYbRZ61lkTx951EXQqiRFJKPEVl1sRGAqi4ROysj0X69JREfpoIRgzFlkREJMFE/wSBRN1+CUXtLItEMT5fRVbLaETpkBhFmDFIRKsXhEQ5nAVFA52ZRLlOsEQ91GNEP3KURkFcB0YtMTZF2nK5RCZ9dUW69cZEXMG8RFMEDEWjtWtEdF7kRB+VmkRZApNELKaoRCkFdURPfepEEOJuRD9zqkTRxC1GzmmPRKuCmUQSWgtFY8F1RKOS60QfO9lEJfIuRU5fCkU1SoNEa8ZdRBU9YkRLBbZIzIPDREpd9kQMyf5E9/CLRJD/1kQORidI5910RVgfkETxf3hEZCcWRYD+IEWT8KdHucN9RWsAmkT9fYBEpS+ORpBAvUU7IMtEB0mVRA2akEQcfYFELp3QRLrcgES6FElF7n1ERXoM90Txvj1FCNlsRjuOsUWYQ4REzHB8RHCF30XwrYdEBANgRIIT+0WqyjBHD/GPRB3HIUVc0eJEGshVRDM4C0bHpzxFFZGGRJryAEW9n4ZEK2ZkRAFdf0R9hilGIsCGRMHGhkSan4NEMfIBRYMClkQg2RpFiOrQRIzXAEWuM6tFXWCqRFdhA0V/Y35EuWZnRBdL4USK/c1EnEOKRPMKiUTZFw1GUKE2RWF3fEQj0yhFEgCQRJVmBUVYaxBHvUHhRHRD+kVXgYVG2BieRHDiPEWaCnhEdJZ+RCncM0XpUaNEklOtRMKyCkVO6CtFuUp9RF/aq0RvGk5F6tDQRPQHxkRpa3lECUy6RGb3ckRM6o5E/Lm+RHXHlETKWQRFN4TTRLv+b0Tg4Z1E0kEWRSg1b0Z299FFtyy1RX2LU0Zd8WFE1AOLRVkVXEWO+eVEK79PRYH+AkalUARFB7d6RNSzKkVGKQVFaO6GRM/9BUWPq51Em/hzREMQMEYDdgZFVZyoRK/5dEXUro1EMpoGRQK9oEUGvmtFC4B0RThq80RNUSJFHycARecTtkQhWoFE0QESRROfkkTen5JE8i56RHUQgUS9L4xEefO5RO0sYESgpNxEbwcNRUyJb0Q4re9FNfeXRM85YUVSMohEk6xWREp+jkjLj5hE4tQhSGWPq0eOnY1FOpn9RPZjY0QC7/1FQTW9RjxNC0Uxhb5EA2MCRs10LkUcmxVFAcAWRfzVgkRBGIxEiTtjRNVacUQFZsFEPwaURIIypkRi1p5EK/heRHLB3kSjy5ZEe96ARXzt3USDuZJEj6dgRQdUhEQyTA5FSfB8RDAXhUhBJwtI8HWIRDqtokfbfL9GMxmSRFmknkSYVWtFHAiLRQ97cUTRIs5F5X3QRIDEB0Ub77NEmeehRIFjakR1A1ZE/FeBRVB3QUUS631EAllKRDultUXmIZpElZvgRFIwSkVsttRET4JwRF+sb0T5mWxEHCxpRL+dgUR57vFE0TBxRNWhBUWJ4qREyQiKROI4d0ShjlxEGyCxRFjPbURgBoNEULuGREsadkTRZuRFIGTcRjr2jEbTXQBFvEpERbOTtkRnHG9Fs3DyRNZElUVrELVESFH3RAZesUQwRmVE3ECJRP5+IUUEdxpFc8GWRGJjq0R6IMpEEoqpRI+NAkU7bY1H0238RHPSxkTXIxVHoFOLRNuWgkQQKmtE5LmmRnEKCkXpLIdEKFOARUCCAUYyiulE+usNRdFeqkQpaZREqh4cRf5wZ0WVVoNEhvWPRJYzYkRqj5BE0rKHREewmETiSYtEPm09RRyVvEQO96VEc8aaRH8OjkRRWU9HA7TfRnCLfUZ8cJxFSW9+RH8rgETQRZVEeZZ/RKl1xEQqsHFEgG58RNEtgkQq1ENF8Df2RA9wm0TPZVNFCq5iRZQvCkXdD+BE+aORRFuN9UTK0NNEjQKSRHNDe0QSeOBEIwycRFZixET2kVxEIC1ARAnzYkQYVENFNDzDRNcHE0WpNzFF1lGmRPld4ES6XYxGUA4ORm9lEUWrXMBF4bF5RGTPh0TLPJ9Exg8eR1EswUbnOBNG4s5sRcJPzERHk7tEEAFORi6FxkXAu45F8F+SRej2wUT9tLREoxOcRJaMq0SJkrVFoHh5RSDEBEWf9WFEh3eLRG2k5kWinNpFcFXvRI1cd0TT7r9EsartROXt0kQZZtZESZuTRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - DjM0FHnAckB8mAm9BcFyQKWakGMkwXJAslask2/BckCqcq0bTcJyQIhzDIPmwnJA2pL7vjvDckDePQ5kxMRyQFIHNxlaxXJAUAYA0mLRckA8RmrP+NFyQOC2ZcwP0nJAkn6ynEPSckCcMHAoYtRyQN7SAKuO33JA6Lm9hc7fckCoHRJ2uuByQFAbyApP4XJACVYweFHickBo/ZgKkOJyQPYGk1cm43JAvDis9rvjckCKE/soyvFyQEAxPmJ88nJAopN3xLfzckAkx73lDfRyQHs4oXqh9HJA33h8V8H/ckDLj3P9JgBzQOiqP7JkAHNAJKxcKPkAc0DMH86SIgFzQB7L1UuPAXNAcM385zsCc0CuQnK50AJzQACOst/6A3NAEEHhb7sPc0BYsa1q4xFzQIcMVqMnEnNAdESzKL0Sc0DKH4MtBhRzQJl0kB1NFHNAZvVxT3ofc0AnQr9OoyBzQM7TLTk5IXNAjytH/+Ihc0C+mDTBeyJzQJS6L4jKInNAMohYwBAjc0Cs0skePSRzQKJqkwXPJHNA2ZEcqEkxc0DQYpkoWTFzQGY28jLQMXNAPMhP+gkzc0Boexfu2DNzQDhankA4NHNAjv71Yrk/c0DMBM+c5EBzQNpr6RR4QXNAVAqR7b5Cc0D6mWHneURzQMHYtaWcUXNAWx5pM3pSc0DPgNRAp1JzQDSG7LJEU3NAW5FGa6RTc0BkeEqvhlRzQKLsS335X3NAdGzbCo5gc0BKXX2LiGFzQF9xaeIeYnNA4LHwwjhjc0DJG0KEk2NzQNd8t93OY3NAo0eV2WVkc0C+A3KAXXBzQBpLjAfccXNAkRjIT1Byc0BYC0PAj3JzQH0YVP32cnNAdG1jaEx1c0AY9VSf739zQGiUM+J4gHNAfvPUc6SAc0CgL5fLDYFzQIIfecNdgnNAQLG1ROSCc0Dc70nihpBzQCA6N3VNknNAwWiitGeSc0BYJg1C0pJzQB1v6kHQk3NAFDb1sGGUc0Bd7CCr95RzQEphzOi3oHNAGUA5fK6hc0AueQ0RW6JzQPr4Ao2MonNAYTztjZ6ic0Da9/NmJqNzQEqz4ykFpXNAxHcAW9ewc0DmQ3SrNbFzQLRuuZp9sXNAkkIHwFeyc0AmB8eutrNzQMcVmL0OtHNAMnqx+Ja/c0A8g7Hm+MBzQArvrzCOwXNAGGdJOtDCc0DCNYKMJsNzQPAc3ZZkw3NAPDpF7MXDc0AMAmMv2NFzQL7rJ6bb0nNAMvXk8SbTc0CYbCdmUtNzQOaHObGM1HNAoGSqvuHUc0B+KwK0o+BzQG5RHbk44XNAKorW22Phc0CKynp7fOJzQEJ4JyYQ43NAqFjaQqTjc0DlzpqyZO9zQABwVMP773NAWeix0Db0c0AmXtuGjfRzQF4lGMTlAHRAyOnhCnkBdEDpPG4apgF0QMQNQeElAnRAkSu3pboCdED8MqUf4gN0QEVKzVBNE3RAWnwusHYUdEBaGCg3TCB0QMgLra4kIXRAJIrztrkhdEBq86UZsyJ0QN5665K8JHRAUngts1QwdEAAsMmZvzJ0QC+a4iePM3RAVYHBieI3dEBI6yFOVEB0QPyPOTilQnRAfgALtDtDdEBYb9daekN0QKf3XdKRU3RAQUzFbWBUdEBc5bzD91R0QPxqqi6MVXRAFssxOCFddEDyat5wuGB0QOR/MdUIYnRAw8d+cHpidEBha5NQ5mJ0QHQjdnZRZHRAIvAPSbZmdECA8PtnxWd0QHiSSJvUZ3RAEF9vXiBtdEApPAiNInB0QMJni4hBcXRAYuJs0M1xdEAaOLM3enJ0QOq629I5c3RAUDO66aF0dEAWk/qB+YB0QAAiCIZOgXRAKO8LL9CCdECY6Pb2JoN0QK163k8WkHRAmMysK7ySdEDO37srJZN0QAS6VuDvn3RAaOFtWM+gdEDOQXkCuaJ0QH4t8lQPo3RAweLmkwywdEAqBQgXw7B0QLuuVnS2sXRA3sA2a3GydEAYI5RTUMB0QN+oGYvkwHRAqHlCNHrBdEAvykxFJcJ0QBZkuE66wnRAXDrsbk7DdEDnWUsiI8R0QFaIhTK4xHRAmrBtF8jNdECoScfL/M50QPygBxYM03RAQCgLEEDTdEDEJoTh49N0QKGX6z3O1HRABfYU6SHhdEA0iQNTuOF0QERDtMYc4nRAxGpyG2XidEA8toXH2uJ0QBh0Mcj74nRAhDg1a5PjdEDW4DsAT+V0QCtZdCUG83RAAiVrMIzzdEDRbvCspv90QFmRCT+nAHVARJDxOskAdUCC+NqNZgF1QAzF8iH6AXVAkKuPg10CdUBocyWqpQJ1QFwEBUWaA3VAxLcGaJsQdUB0SDzEIxR1QNiln0adInVAnJ7CSXwydUB8LwoGrjJ1QMyH5uPLNXVAc16TYYlCdUB4v6GJ3kJ1QGyphnTlT3VASN2g44NRdUBN4DA1TlR1QKCww1N4VXVAgils5w1gdUAC/7VlpGB1QEhgG404YXVA3I/I8PBhdUDEUg0XPmN1QLKorub6Y3VAvtLWnndydUD+4uR3jXR1QO7Mq/PkgHVALM3Qe3iBdUB40k1/r4F1QECycxu9gnVAEDKyauqCdUBSVe7CUIN1QMAY+Vylg3VAgg2t3JqEdUAE6rbSjZB1QCUFer27kXVAbRQmJhmSdUCadXpsuKF1QA+DD31Jo3VAwpFtoOaydUD8skNEPLh1QKRi+cWhv3VAkN+NQrDAdUByO7/f0sB1QGCmQLUlwXVAtq3Kl2XBdUCwQ7f8+MF1QKJUGYFnwnVA5zx5eTPDdUDYTLtLo9B1QOD2siB10nVANLGaL8/TdUD0UseIxNZ1QOS9kBQQ4XVA/oDGmgnidUCagu9Rd+J1QFbxyz3o4nVAOtPiOXvzdUDW4P9ASAJ2QKOtBAzSA3ZAC0MTTrARdkDkJ0jnTRR2QOzHW4kKFnZAnpMhNHEZdkB+58SIiSJ2QEBqwSqQJHZAHiJ1TUsrdkAUW7pmHzF2QLsDFbi5M3ZAriMzRE4+dkCssmQxT0B2QNFl2oAdQXZA/hhz2shCdkBH9ICqEkN2QHZ8GBJUQ3ZA6MsZdqdDdkCCCIkLeUR2QLiu6DkSUXZAIK6ZLSxRdkBA1wR6hlR2QOrqajzNVHZA/oQO7BxhdkBjbxV62mR2QNJveT7Rf3ZAVv/62PeBdkCBDoTXlIN2QFqq307rnXZAywCMqQ2hdkAJsCxk4qJ2QGRTsgVFo3ZA1JjshI2ndkAadk0vnqh2QP5zmTeSq3ZALgV9C8KydkAjl6aPeLN2QCpaU5MMtHZA3OunvLG0dkDupMl5csB2QHb6hsq8wHZA/LbLz07BdkBSlq9t5sF2QJhFFRHPznZAvrMgKpLzdkDOFYfKowN3QFpsPiUBEndAPWCP8/gVd0CUmIonDyJ3QJhwMzW5JHdAQXXGMG4yd0B48a5KpTN3QKqBvD0NNXdAHvddO51Bd0Aq3ECGsUF3QAxm7wYbRXdAhV4elEpRd0AOr4KqklF3QDfnglfvUndAGvuK8ylVd0DK4DKSS2F3QJEU/LuQYXdA+IQdX6Bhd0BY3H8zNmJ3QDMeObjjYndAilWCpzZld0BiL9xuJ293QBaVA7iNcXdAVEkRnhl3d0CWi6mmHnt3QHvdaThMlHdAXuNcapq0d0BmeYP8EMN3QAS3CXAvw3dAiEczUU7yd0CjJ/Vi+QF4QKcCuGhOFXhAJunpPm4ieED+vOjBjSN4QNEqduXRI3hAtmdddHwyeEB+V2Vf4DN4QEU8VhALQnhAPY4kZAxDeEDeRitBEkR4QAyCS+15RXhAjS+KPtZIeEDkHvmiM054QCCAuCnKUXhAiIlo7oVTeECCzBgIiFV4QCDwmzX6YHhAljhjvbVheEBktGEcRnR4QCaO/ciLdHhA9Jh8M7t0eEAPlSO9zHR4QKJUGlPHeHhAKvRv/vZ7eEBlD7/NIX54QCSCHPOmgXhAxOZYTnyDeEBjRRssmoR4QNb3ETXUiHhAnTN7ZJiReECSfx0UqJR4QPxvhsa2pHhAso5DuIereEAoQf2Hj7N4QFq+VujNwHhAcJEgPTnDeECbGgBvCMV4QEzb1la31HhAx2WDi8PkeEDOlqznAvR4QHgFMUol9HhAaAIcl4z1eEA04rnvfgN5QJRmCR4UBHlAmtE7lJkFeUDgtTNIhwt5QM5edo+BE3lAlDiq0dwYeUB2Jj/DYSN5QOE28nhNJHlAmNxHx7IoeUAz3k2ZDC55QDL5QxPVMnlAhJzXdlUzeUApGFCutTN5QLAAIzgtOHlAcgWrwb47eUBqiuTN9kJ5QP71DDqkQ3lAUCzALPxDeUDMngYPzFR5QEGjWe8Ma3lA9gdQhUNzeUCua+Hk1XN5QCLb+i7ge3lAYHDcNEN8eUAjhcXF3YB5QKpV0RqcgnlAcFo0DxiYeUDIgv7ov7J5QProwaBAs3lA4AyjTEPUeUAEKCA+zdV5QGZWvG+V8HlA7H1dr+XzeUDEc6gV+vN5QCpLWy1OA3pAiq3rQuUDekAdrHWX/gN6QKnYETI+BHpAN4ymTJMEekAqbH1A+gV6QGVXJjeVEnpA5+457kcTekAqP3+BZh56QOzwB0fZInpAqDTu+ycjekAOALK0LSt6QCr3AN4fM3pAbgpxlzYzekAJv1lZDDV6QDampMwuN3pAPE9u7yY7ekCvlTFAKEB6QNpGt4EtQ3pACni5MhpFekDG0uuFO1J6QIGgVt0oVXpAtpGOfCFcekAq+MN0o2R6QNnU4eKNcnpAgr+Y2cJzekCQyxsFHnl6QBGV0pF/eXpA3bneCtd+ekBeCULWT496QPESRq6jlHpABM/OPw2zekAfHvhMDbZ6QGiEigARt3pAt2yrBBa7ekCEuRJ1ZOF6QKr94yA35HpAoAHUPHrkekAOc/0YMe56QPSJ7jQW8XpAbj0qEmHxekCasLl1wfh6QBYb+jZ9BHtAVvEVMU8He0CG/H/+xQt7QNyFjjcnDntA/mmmjUwVe0A+NvE2yyN7QMbKCvFbJXtAN7RLoOkne0B1LlxVwzN7QHYrMDNiNntAaoo0MJA+e0Dsshgf6UN7QOTS6U3NR3tA+AP58UVJe0CEQq2FyW97QPR6l4kjlXtALKLJVjKle0AQzbDN+rN7QJy048QIxHtA1X7kwHjGe0B0V8IEXNN7QArfs8WZ03tAdlNv5wDke0Dwmqoezeh7QNgKHD2M9XtAZggne5IBfECtuZEC2gF8QNYGGA5oBHxAOjlRMpkFfEDYezB9JAt8QCCgnsfQEXxAxCSbGM1BfEB3DOJ+Z0N8QDh+cRbeUXxAGn3EDeZTfEBAGpwzBXN8QGr/tAHEjXxAqC0gzRyTfEAQZMlKPpR8QGRNfHMol3xAWJHOLv2kfEBKby6XJKx8QJhYbVS+snxAvogMiCu0fEA4JeomerR8QNBQRrkRwHxAxJ0w4M7CfECGQ1IVZ8R8QPZ47XmWzHxAExzrgdPSfECU3s3wdNR8QJ1v+l7N1XxAPPo4P1jifEBiDfJNfuR8QESX5TMW8nxA+hhnEFXyfED0jDtKVPR8QJRcjsP/AX1ANyi/WUwCfUAe5xckAQR9QJDCPZMIDH1AUnE4G2ENfUCAQONNCBJ9QLgdm+dEEn1A9J1A2rATfUCCG5hqDxR9QLKurYtBIn1A0VzrAvQifUAa+lv9oDF9QCjg2axIOH1AJAF0lKA9fUA4TVuG+kJ9QNfQ9dc7SH1AWZM7/MVLfUDwe4sAkk19QHrHhNLOT31AChgz92tRfUBubqIAA2l9QC3mAYfkbX1AYlZhjiFzfUDGSLEDenh9QHC6O2gff31ATlutbCCDfUA620ot7YN9QCQgMnIDpH1AqqoT2gqsfUCOSbFVJbd9QHm3n+You31A9hi9ryrDfUCUNKvE58R9QBkYTIoBzH1Ay1IF/6TPfUC8+W+f9NR9QI3WfpY94H1AiXjcnNfifUBA0iZ6j/V9QIyK4O0xAH5Ap+Ez/hMUfkCAE6XovRh+QJwpWAA6H35AjsyKz0MvfkAgz+mkjlV+QKrfVS5/X35ATTGAULZwfkDBiYsiuXN+QEBdVh8Mdn5AtNI/fY19fkBHdThStIB+QNownc7lgn5AJyUMyJ+DfkAUxHaYTYR+QLKY5Vk0iH5A6pJR9LqIfkAErlbYpYt+QAnl8lDfkH5AEUb0rZCTfkB3Y+WCsZN+QNjoxmqZlH5ALILygvOZfkBraBfeJZp+QNiSzloNnn5AkiYlBUuffkAslkZBk6R+QLvEH6ZhrH5ALuFMj/WufkB+reaAda9+QFCSetq6sH5ACLlsUpiyfkAWIUBiT7R+QMglW/4ctn5AyKO5Yqq5fkBuka6Kdrt+QAw85FXTxH5Ado7rDkfLfkCqR8uBTNN+QFydAS0E5H5A7G5wIFvkfkC0kjpGB+h+QFwl6GSy6X5A9A7GtQ7qfkByTjowCex+QI4r+LjY735Abi1ZEQ3wfkCYJTF+qPB+QBIrxyQK9H5AjGFC+030fkAcGC2b+/R+QIhRfnRg+35ADCxokX0Df0Dq54546AN/QFqX+gaFDn9AzgLlmJcOf0BHW+2d/BR/QJTR55CmOX9A8s/oLQE/f0Cwm8X0c0l/QFo4CjGWTH9A3n5TDZFQf0Dk07DuqVR/QCoGHLO4XH9AWJcLx79kf0AOY6h1xmx/QGBbgoW5cX9AVtj02lZ0f0C9+Qw5znR/QMA/Cq2ygX9A35GiUqaDf0BOT/wZ0YR/QDY6tjdAiX9Aa73v5WKRf0AEXyl4l5N/QGo8q9VeoX9AYRl88LGrf0D4TbqQza9/QMYSSyhasX9AVKP8GWi4f0Aypp9Bwb1/QBfby6BiyH9ACvFLEv/Of0B10+5wHOJ/QECsC87t5H9ALrJPnPrnf0DKK64t8ux/QAzM7ouqAoBA1jOzE0kGgEC2F71c0QeAQCyfMT5xCIBAThqAkE0KgECnx2kDMA6AQBdtffEPEoBATwt3QHscgEDeYI/A7yOAQCBcxeTJK4BAOi7OUSYvgEDqwO6g5S+AQDRUqEmJMoBAsDqNbwc6gEAGrYZAXkKAQAyvsiOpQoBAIpmLpUNIgEAEIL6o90iAQBQZ6WSoTYBAA92evuZQgECs+XtnFFGAQAnuvoMEVIBAbZIN3QVWgEDDxfrGaFaAQDt2v70mWIBAr3AozelYgEDTJiuuDlmAQNngFVYfWYBAYYF4DNhZgEAM2I1ObFqAQCBXrXs5XoBAlcx2xd9ggEDCpMJoIWqAQHKCPl4ob4BAMLPe8Xp0gEDwQ+qvKneAQMIU6AmCeYBALvKSyy18gEAs3zMw3n6AQOK5akApf4BAD6zOBGWAgEDWMvTPBYaAQETu67L8ioBAZtigJ1+MgEBqrBTKhI2AQGCrU7Yej4BAxOGJg0mTgEDzdYBOSJaAQN0MfE4cl4BAyXGLGUuagECKzc1IlZqAQG5ETw1AnoBANa77Y0yegECwJFCQG5+AQLksaPrmo4BAdMs4FMCkgEDqub4dQaaAQApJBcrmpoBAyr1iI2eogEDTNspBdqiAQEB9eOqGqYBAFhM4XdypgEDN+WEOsaqAQEDTxzaFrIBARroi1xOvgEBrBBLfY7CAQMZlGAfWsYBA3DarGoCygEB0yss4krKAQL0ELWEat4BAzXl9Py65gEA5a+Ntg7mAQPToTUjPvIBACG4cju++gEBSoJaRNsGAQJA0IbdSwYBAFJbQa+LBgED8CqZHn8KAQNgN9a76xIBAQCGAP5bFgEBUFtZ1LcaAQHGGdB23xoBAV23+MqbHgEDSWUHuAciAQD+QFmGSyIBARElWJVPJgEBGd/YB1MmAQKzIz5c1yoBAIhhfKJvKgECBS512ScuAQI4waKXdzIBAKhTOnQjPgEAZno/5ANCAQPNoZAds0IBAiL/eR0zRgECmU0+UjtKAQCnLEMNM04BATFY39xXUgEDh7UubydSAQAqvtpAI2IBAwl8AISLZgEAEgLMsStmAQMXdJs7G3IBAmX9tQxvhgECeMvktReGAQFz90CBV4YBABpwsM/bogECOVVupQ+mAQEwdAOJK74BALRU/OyXxgECqT8WJaPKAQLK32v4W84BAL2ZjrTzzgEBwXrMmafaAQKLWU7VK94BA59MQMWj6gECkD0uAqvqAQPfURhDS/IBA/l0G/z//gEC2n/l5PAaBQNhzZ51AB4FAy9773D0PgUC+HLfVLxKBQMamWUoEF4FAm3JuyjwXgUDI4Om74heBQOnPnkapGoFAbIfowDQfgUDcdNJYsB+BQFIdEs2+H4FABL7Ft1QigUC7ER7uNieBQG2pC7y3J4FAaL5ghTIqgUC2GUy6WyqBQI66lkovL4FAVjKe37wxgUBnE1YaCzeBQPxUvDMpP4FAOP3mxipHgUA2kRw4v0+BQJqylLDwXIFAyPPzAyZdgUA8oMqMnF+BQB52B2OyZoFAOJksPa1ngUBKbCqbWWiBQIp3PAXAaIFA18ooZqNqgUD2C6eg8WyBQBunVSRVboFAk0XfWa9ugUChMtc4D3eBQCIdQidAeYFAeH9j+mB/gUAqW6KOLoGBQDkfHaSchYFAHhcctQ2HgUBaHvC0fYiBQGu/kAwQioFAjAv/iYSNgUDYsIzODY+BQCiQFXhVj4FA9hm/EcSPgUBkVPfnPJGBQJbABp/3kYFALpSBoXWSgUCUPzk0VpeBQN58rvAamoFACEGQv1iegUCKB+tUb56BQCgw1f9Sn4FAHjx4WOihgUCcKcdi36KBQIIayirNo4FA7X5Iz2+ogUAWXljo/KmBQIJ/bQ7mqoFANXPs20qvgUCvgo766bKBQLYC55lLt4FAZa4oQ7S8gUB8a3Jnkb6BQATG5b/+wYFA+ZERc5jCgUAUZE2DBcqBQCIXMPdwzIFA2m9COLPMgUBw9bkETc+BQBoa/mBhz4FAu7Z3lX7TgUC+CYhKXd6BQKRJhz9H4YFAeAZOp3XogUCU9EsTIfqBQEJhQZje/4FACrBsGR4FgkCGMSkgBAmCQPyRgg6UEIJAPBW/3LQSgkBMEXjiaRaCQF8XBedqGIJAeO8zUdgYgkDTe7ZBbRqCQEwLPxa9GoJAqtipCW4cgkBsrUa9bx6CQM3R+zHXIIJA3CKh2PohgkCCvyEG1CKCQM7Mojf/JYJAnpixDCIogkByzsJD0yiCQBZzt7EaKYJAQLFhl+0vgkBGe8+pmjKCQA7mRzRKNYJAzAmGTIM2gkBwMVeIDEKCQCCcdUI3Q4JAWCj0vxdGgkCKEbfmPkuCQBBBYZxtTIJAd14XQuNOgkAxzoeY9U+CQC7oawo5UYJA53i9T45WgkCxvXD1aliCQNg9/816WoJAXvr0gY9agkCQbkex3lqCQEhQuUCgW4JA9NpD6XxegkAU4iyla2CCQP5UG4N9YoJAHA3uA59ngkCmYkr+bWiCQCSK6ChBaYJAfE7bAJpqgkD0uwCroGuCQEBbL3NHbYJAtiTjxNNygkBOzVufYXSCQGolJUfLdYJAmHGbDAV2gkDKOQlm1XaCQPlWnn8feoJA5dnH6OF9gkCmRQJL1n6CQKihJy5tgIJAONKmBOWBgkAhx/Bu3IWCQHfhxQGYh4JAUu4USEOJgkBqb8PpCY6CQPxp/oRDkYJAMVJCTcmRgkBq3RUppJeCQMJqIcU8mYJAd1ceA9aZgkBiv58zD6GCQDTZSCM7oYJACjXK1t2hgkBhxoS4DqmCQN7r03A0qYJAIrDXsVGwgkAGOc/GBrGCQPR0lVwysYJAq1r0yGy6gkDkqIiR7cWCQMykrSLvyYJAnHD4ozDRgkDQiunNdNKCQB81pbQ01IJA22160IDagkAivkCEg96CQBSK6H9c4IJAarL4oB7hgkChsl9s0uKCQEwlV06p44JAvB7NfznlgkBp2wNRF/OCQMT6/TWv+YJAinvVtBQDg0DA8djVuQqDQApMhyYbC4NA1rGBx7wOg0CCn5q7eRGDQEQrJEWsF4NAPpcdLnoZg0B0HBUpcyGDQOme8SRzKYNAgzkDuSstg0B+i4mZ2S+DQOp4idBpMYNAjpPYwWFDg0Dx5ISTwVWDQGasq5X7coNAqV9FEf52g0BPXhomYIKDQMgWFBgLg4NADJ4FbkiDg0BgHc8dT4qDQID4D30Ti4NADJIwdDOag0BCLu9leZqDQOpfwAsmnYNAHu0u5FXCg0AYQqWbiM+DQNY7/47h8oNAaOeyMJP4g0BqFrmV7/uDQLNqqDR//INAyO7mmYUChECw9ZJYHwyEQMx8ImPvJIRAlpHjRnZIhEBWIr9SYUmEQO3f7lmbV4RA/HhMavBkhEASa+JT/2iEQO5a1n3laoRAHucx9eduhEB2wh+Od3CEQHDdoV0AcYRA5gPg+2ZxhEAAI3Nr7HKEQNo1QBzudoRAdJG5rsp3hEBSyAnY9niEQDZ1xgZ3eoRAJMXC+yR9hEAcWf3leYCEQL8gD7ppgYRA8OblGRCEhED0LB2EU5WEQFS+/AD+l4RAYmaX58OihEB4kXZ466OEQOb81eIepYRALM2/LcynhEAdZl1sjLKEQBTDuk9rx4RAb9Cj4dzVhEChi7HtptaEQM6mRz9q2YRAe/5bEHXchEATulhbdt6EQDDzyJh24IRADDy8XWrhhEAuqLEkPOSEQKzgb/PS54RAIEI+Q2PphEAI3G0ONvGEQC3jVZhh8YRAynbuATf5hEDAHaV9W/mEQGxFngGy+oRAej2ifUH8hEAMTxKb3P2EQNiWygF3/4RANoznwxIBhUBqHawfYQGFQApooMetAoVACz1gc7kGhUBSJ22mpgiFQD4iicsOE4VARoiHVXsXhUA1x7TqQR6FQJqj/QtHIoVAPPdcqTQthUBIwB0ObDqFQJRmPmKQP4VAPiFwOE5KhUD5z3OUoGGFQPT5nAehaYVAqloanJhxhUCMcAjps3GFQLTVB6i0c4VAlLzteZl5hUAuPLE1lIGFQDCFo7sdjIVAIvH7AxGghUCsXqyrzbKFQCC+bE2F04VAorEtogPWhUBwCdrQk9qFQPjilHkT44VA7hbD3DDmhUCEZbITM+qFQFTBZNrT8oVA+vKr3oH1hUD4Y+GDLPiFQC5hXL3U+oVAK/qXoxkLhkAXT1AnzBqGQA5TeeXOHoZAd3ZNd2iNhkCjYBsFkZGGQJLBNj8luYZAwEw96vjyhkBxD8LyM/+GQBzNeEofA4dAtNI7UDkDh0AB6a0UewmHQIIdU2oGDIdAsn5a+zYPh0BlapzzOBGHQFIwmUCRKYdApurx+JIxh0DnbmBJgTeHQLZva22oOIdAJPoQUYo5h0AIfA1UhDuHQKA1MdNdQYdAsLwewYVBh0BCEfczN2eHQBNyLa86a4dA4q7oNT1vh0DZuDTgQHOHQBjKLrPHsYdAQFk9Tce5h0AwM89LwcGHQETI6l9dw4dA5wKqCsDJh0DNWqpcZMuHQNILL8Tz1odASNzeoa0EiEAyk6P73h2IQAPrS71kN4hASGXcEWc7iEAokl0LZz+IQDhiPKNRSYhA9Begt3tyiEBkmp67gHaIQPc4pjeBeohAsoqzU39+iEC0gGzm/X6IQMYT7iNXsohAYmcAzqe5iED6dHW3XrqIQL1bh/Hg0YhAWF25NrL0iEA= + XBt4PPKiZUAoFld2zuNlQK5rGHLR4nFAiTDsKtfyckAEwBx3aVN2QN+E8C9vY3dAeGXdZllUfkDf4syDx3R+QJx3i2fFYoJA - + - ig6bRE8CL0QDRYtEiS0eRjL9a0Q+jtREIps2RaqZx0R3RLREIthpRLqaRkRp8f1ElTwQR942XkSXJohE1xzYREMwPkV9HV1EXkV3RbQhiEUg22FE+EyRRGl9g0W+5HNENzdnRD8Ch0Rat+VEKX6qROPObUSqQIBEsPTQRA6SiUQIJKBEZDTmRGlmREWS+y5HJQBLRLuUUUQxp6lEjoQ3RhgpwUUGJJVEzxVTRc3/tEQqWqlGpn52RL2do0QLH/5ELR2LRHluhEQYC6JFtv+RRFZSkESrL4NEKvKgRGJzvUSIwJBE7JSJRfjOuUQ8ZIZF+7t/RNm9EkY0NydFqRRlRd6qdkRJ+5dEDjOFRUjan0SrmSJFECzSRGEAh0SrmVpEf9TaRBwXe0TTsUhETrKARLt/g0Q7qLpECma9REyvskRyDpdE8VERRd5VhURPEtFGrwDQRCu7wES+aLNFpRuyRK2ACkVb8z1HcHN4RFpkukQ0861Eo8kqRYDaiUbx2s9FAnyDROonAkZXuXxE+210REkgs0S9XTRFTyivRKgywUQNhZNEL8xdRI/AQEUI4d9EFOBLRJlf3kQ+W39ETTAARil6S0WaSoREDoGTRPIfWUVhXW5E0RJxRHPsXkQgkk1ETEK8RbcvoURmdNtF9kXBRI9XmkSZ3+5EkLe6RD3S20TyQlpE/I4VRUYrUETt0LFEKMJfRjb7nES+ep1EUJ7HRPIHbkQLFkNF4N2dRJap0kSSJ2dEvDTlRFE2eET3QI1EvGfIREp9aUTL3WhENPSFRCoLq0RoYn5EjqzHRGC6jkRw8q5EIJpuRKxdtUTP2QtFDhEqSCdoVUXvBkxFMkieRwyH0UW2ocxEDqmbRAgckUZB6IZGA9PTRfYNkUVPZztHKmFuRHvsdkU5roZF9MzNREJrIEVDhQdGQqJ7RAQj4kQjjrJF1b6VRGFaZERia+1EEvEeRW4IzESV+xhF7KSNRPSIJkWMy4NEOSXWRLRFaUR1svtEdM6kRDdji0QB5a9EQr/kRMxrgURG2iVFlpKvRMu25kTZdXZErK2HRJdV0ETgX9tEAC8JRYxsr0SedVVEo/mMROVUh0SFXI9ExsyIRKImb0TzzFREn2KxRZKiZESecn5ESpYsRCrnUkSSS5VEF9R7RfyofkUouLREONRIRKNABkWEmz9GY/aiRhXmrkTf9T1FVkJDRQXx3kTNU91EhjupRDMQAEVP6AhFaZ0QRXNqpUTXcglFdAF5RH+HIEVxmdFEDFjMRNIcD0ZkaFlEoaihRCXuh0VEoq1E+oksRR2jekTw41tF+NnYRPmLoESqgJlEGJphRAdHukSfmIVEcj5LRGEYvUT2iptE+DxURG01YERkG49EahxfROf4gUQGbKRHRxBWRMcrAkXynQ9G8HnnRBdXi0S8AoZEYR/NRMfOCEU9EWBEb8FWRMsppEVCTt9E2566Rf7X60QSVLxERV/eRNFIZUWpdeFFV8GURWtds0Y2UvdEBYuIRdMktkTQqp1F8od7RTUCoEXfb3ZEUCHqRB7CikX8XTVFpfc3RDbwr0Ts6C9GH195RG3MH0XPXbFFYSOPRCO/kEQ7u8JGaCuERCOWY0SkdDdGdFzRRLseekWetiJFNqseRTevpkQsEsBF2GhpRNkgmUQlhMtELFHHRJgmRURSEINFI+CjRCphsUTfVX1Gb7Z9RN56bEWXn55EiAl1RFgmk0Tjr+JHd7uVRmMtq0UdJ85GZ4aiRexaW0Z2UH9E5PDfRKr0jERAz65E+1+pRK5ae0Rcdk5EzEemRPK4JEUtkolEtIDPRMOwlUTOU6FEBMpzRKvAikQVCnZETqeXRHLSlUS5xqZERjI8RS67m0SFDPlE0vGWRAQLYkTjO9JEoLrzRHowYEUxLzNGrhJ2RQtmIUXukLJFUxp1RBikNEWXvAxFhrG2RJLvJkUGK0hJbHI+Rc8vn0SPHL1GSyo2RX4yaEbe7FFFWseYRX5lSkj6TqlE2V6ERfhZqUau34BE6IL/RCti30S0o8ZEraSMRNEyg0Sh2HhF08zDRPjLiEWJ95ZEZV3gRa9LqkTgwX9E35jwRGHp8UQB1cpEbJN0RKvrZ0RlkWdEBqRzRfjN60RgtpFE1xnwRNiveEXjt4REUgKZRN4wx0TlmohEj5wfRdHKh0VdAppEC3HURMIrjEXUPsxETdWpROLJaETn8lxEycpeRKEDbEWG+D5E6Zu3RQiRz0QFyXZEB5GhRDBdnUQsEntEnQVgRDapNEXcGmtEkbt4REFbu0Q4spVEAeSCREgHWkTsx/ZE/n3YSE4DP0iq3jNH+emtRkGxxUdtb3REcjuDRrqjfEWOQTtF5Bu6Rl+xYUS5hzVFMAVwRelyeUSwhnREHDSwRLP7jERRvHFEXFl7RBwLhkTad6VEyCYuRaELvEWSLENFVpcCRaePoUReDWBEB3RZRLt4mURr9LNE5YWbRH6Fi0SFtipFLdKDRBH6EEWg8KlEfY4kRny0hEQXL7dEcSeIRLArm0Q24npEIM+1RYKnhUUMNFpEmvuSRPug2ET5sYBFBDGWRLi5M0e3QQFG//WGRIVdskRrAa5EL4GzRGUjbETX9JFGBGnKRAjvQ0bn7KBEgfJvRT+WW0TlU6xFCo7IRQ7KqES40plEbFaTRPgivUQnjARFqw+YRCzZXETlGcFEZxOUROM6lERQ3YtEg2GRRLmFo0RDeudEebOeRJmmWEj9zGNE+TY7RK6BMUdMKJ1EdQPNR7n+bkVZihRFUQfeRmyhe0QTzdNEyriGRoCDUUdlb6BGALZwRKohi0Qv0DBFEnQFRaeDrkWsIs1EXIpGRDHApES/u75GVC+IRi2RBUbuVLFEZ9SERLQWXUQ2A4JEOWSKRK3YVURYQIhEWWykRYAZb0UkK9JEy4HURK/ea0TCbKBFCtvtRE85D0X/vxVF+jsLRW5cXUU0AYBEfeqfRCcWjERjBWRFgRWbREiGu0SENKBEoo9aRNTbhERCIYpEu2ywRLmJIUVo1JJE4lCIRBcGw0RsCphEMxlvRYVibESFzwhFBfa+RtvFtETwcJdE9X7wRO0M9UU6BIBE8c0LRT1CAkV4QJJFAGm7RWxO5kSV44BEmjO2RBOJl0Qh/6xEcjw3RiaGtUQfZw1Fhe7RRAKMWEaP4npEVD51RUuVZETpL8BEZJABRZG0iUQAwxdGowLNRKrtmUbGA+FE2tZHRLMBDUYVjKFEIYgaRQeIsEQ/cbZE4rtjRPVKikQrAmVEHA1yRDSKz0RzjY9EoAiQRC9MgETMJglF0+4CRXGhZ0TQ49REDpqGRKBse0SUccdHfRA7R4gEHkabNJVFm8bbRICJO0X7wZFEx6LbRGaljURFpo5EsE8URgzZgkTsQQ1FZaw6RI+/d0ROCNpEDc1dRTUFVkU1B8xEB868ROXKpERxxE5FPTZtRCYuo0Sj11VEKGWARPmPp0RGSopECtiLRIhXTUQUklREklphRAfFhkSigVhETRpARL+EV0TMTJlEsCHBRABLjEUWiqtFyj5URBOOyETgp85EUccYRY+5f0YSFNJE5Q65RKDAVEW14r5Epn+XRPzcsEVVTsdE9S5QRLj0r0QZAWFE2bd/RFuIlES+EoRFrBJYRKCdgUQKVsJEkL+aRKmpYUSlQBtF4lMzRNOh3ETqhXNEEth9RJCGi0TvMmlGV6VdRNPsMUZ6oFJFHB0DRfBnoERpRXBEEFd5RNIxFkVG1LVEiBGdRKTr/ETNuaREgG9lRHrGd0RP+81EnyybRNVx10SGRYZE57JPRuFxvkTVtwRFIcjbRGOcCEXnmLxEp0OlRPrYY0SWUatERSO0RLU8okTppJBIK16RRNl11kSN/0NEcpKDRMUOaET/xjNE5PHLRGoEo0R6/8FEMHkASLdddUTV/5xEQC9iRDb5c0SDXa9EAv/RRMuHnETkS99E1W6FR1AceUS0aoFEXFpaRLMafkTllotEx4KVREmhdEbTaZlEs0xeRMtD1kVf5rBEiO2qRPZg1UQHKgBFCgSPRDsoeUWCOnlE/6q9RO3p+0RYOFdE+h/NRHkHl0SgnWtEAd99Rv+cmESryptFscTGRcbnokThbGREr9NfRAjOakTrUNFFgVMUR7HblUQybGBEPTtuRcDu8kVYmeVEHdSKRM13hES4I1VF50nYRNmEa0Q2qyhGfbp9RCsIbETZ0ARFznxCRIqFzEQGLFRF/9KNROzFhkQ7T5lERMptRWeXs0RtEcZEZ8ieRPRo2ERTc3VEmozCROd4qERa/gRF5/qxRDJeiEQjg6FE4HCLRMYOy0Tmf/5FA3ZlRKwgkUTKashEPhWHRGm+TUX34FxE6dKpRHexXETXp05Fti0bRcgiAUdWc1pEkfjrRISCa0TtuvJF07eIRkaIfkSnokBF5Wi3RF5tvEQgds5EsOq+RC/jBUW8ichEu4IcRStugkQGRJpEl3uURPkmVUT4Q21EQweFRNqTC0XM+lBE7aSxRC6mtUR77X5EE2AbRs+iIEaDUR9GNdI5RqKeGkaRX8dE56+lRb5vqUQyNYVFrdTzRUzzAUUFVBtF0tJhRDtyHUVBHW9Ef8dQRbv8NUUF6MREGMKLRNAR1kS9SWNGwGJyRLB8HUV0N6tE3q7lRGYGmEQ68G9Ed8/OReZ1UkR7IZdFJVd8Rb3bskQx8ARFYngCRWzokUQtNaREyVGbRB7+AkX5wxVFssWlREwjwkQpG+ZEEcF2RM5/c0RWOY1E2vo7RRWa+UTGmHlEPYAPRjnaN0Qn2otEcSqYRTQM1kRJgIBEQt4GSEyzn0TfhnFH3R87RCd0qkQ4vRlH0jbaRBRaiUXWox1GZawpRYOEEEWGkidFaKXARXCbFUWx3XNEjjhJROL1nUTCSo5EySGERKwTg0SWeF5Ek7F6RCwYh0QS1WVE4kmDRHbRYEQ2F2RE0EXuRBABaESHHABFeFI8Rf4KkEUSX4RECsRFRRjDD0jnwIlE3huER/ZRHEd1HyRGEvqoRT+I3EQVL4NFbMlpRPjSbkSNOoJFWhUMRcDmg0QgS5tF4UPIRGliYUTgvstEZzecRBOdPUUwqjtFPt5IRG62ZURpJfhEyN2DRL5KcEQ+JmVEoTqaRIxYbEQ6roJEEqx2RArEv0Sptr1E31eFRNXYzUU9htxG5UBXRiWaWUStRC1FvxOCRDXSpUVr/8ZEtmJrRa9cA0XCr0xFmyc3RRvhckSjC0BE0DR3RAeatURKagBFRVZ9RO1oXUQeWYZESy2vRA+CYUQdPXxE34MFRZapa0Qy3y1HxKZQRfZwa0Wr5zlFh1ybRn4ckkTcaIVEfiJURkIMQUUk9HFFchLKRHOz9kQum2BE0ME8RX6w/EXALYVFg4EfRdhSd0QA9klFzMtdRCJomUQhpo5EAO1pRIYM3UTMPq1EyS7IRODstkR4CqFExVuMRNd3G0d42apGHLQ8RjHD4kQOws5EFP2GRSWRCUWaBXhEnWyBRKA3iEQH/0pEidm6ROFZqEQ0bZ9EK39DRTxEKEVs0Q5F3TA5RVvFn0SUPFZELWZmRHGQy0R/wghFbMhpROO6V0TOV/REWv95RP9oXkWE11xEUyG2RGK+ZUSlE5REsfAARXinx0SP8DpGdUW7RWm9vkTX+7VE8b50Rav6j0QCpNNE0WGWRPB0EEcGyMpGdpkwRi53h0WAWxJG7RaORbF7U0VUu1VFXe5cRDCHBUVBDaZEj514RK40K0WuQVFF6+JWRRpzu0SKCmBEyRETRtL/uUXgKEhF//yRROR8X0RiU5REk6O3RLj7ekSbceREJZF8RA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - wi2Mu27BckB8003fTsJyQKCoRUbnwnJAnFO+kDnDckBRhC0IecNyQP4GrYLGxHJAgJlrsvLRckCB+4TIENJyQIiXAo5D0nJAK6fa7M/fckAhka5Jt+ByQH1Ln8hO4XJAPCnw7U/ickCovIDMkOJyQJChd5kl43JA/NbEg9/wckA6u/uHyfFyQMEEcMt78nJABnIDhxLzckDUt9AFtPNyQBOJ5gWi9HJAwPqUicL/ckCNAl+++ABzQBfFBac7AnNAlMY1vM4Cc0A9NQnR+gNzQBzLUvcjBXNArzHgnAcSc0BmSFV9vRJzQMJrOCAGFHNABLFcVE0Uc0Bq7i3aeB9zQIUhvpmjIHNAZwJzDfkgc0Cp3asdOSFzQLpCTpd6InNAlhgaIsoic0CqD5JGECNzQPgl7Rc6JHNArvv0Vc8kc0BENfyQRzFzQJHm0N/LMnNAC2CC2dUzc0DYqpiO+TNzQPN2d5Y2NHNAOT2Nn940c0D3fU7cuD9zQHDbkLh5QXNAOy2PrXpEc0B6FsTXnFFzQOihJF55UnNAqo52DkNTc0BulKlIo1NzQEx/FGB8VHNAQGxrIfpfc0BoW6D+i2BzQKgDl4UiYnNANOA47Tpjc0BY2j5Cj2NzQOZt0J6wY3NAm9D2n9txc0C0gxwmVHJzQNyIVmKVcnNA1IRNVL1yc0DM4dlS9nJzQDRnwqu4dHNA9hh4eXiAc0AnTdfwpIBzQC7QR4gMgXNA8vwwEl6Cc0CsB1rwhZBzQKitgqXUkXNAklhFgk2Sc0C5R0pe0JJzQAGdGdLPk3NAFEYVc2OUc0Dk3LD595RzQGjDz5i4oHNAa8enMK2hc0Bg2KjZWqJzQNFLb6uQonNA9vIuzSSjc0CYbfvHA6VzQBi5ddDWsHNAbL+SfTSxc0BU6yLWfbFzQC4ELSlbsnNAbC/oWnOyc0DY+m0Gt7NzQBAXJ8UOtHNAsHNdKfjAc0CssSfQ0MJzQOKTeEcow3NAa9Z+o/nDc0CpBGTDGcRzQLJG8kbX0XNAjwpcFyXSc0AkH5o83NJzQKs+BYIj03NAHg+iBPTTc0BgisCV4tRzQLkGDxY64XNA8A0Ta2Thc0DoKhEG5eFzQERTDwB64nNAgKPqrhDjc0CiQSWJZO9zQCGiYihX8XNAedQw1jb0c0DKqfjij/RzQM63JkblAHRAzKQ2V3gBdEDZYRBvpQF0QDVOjs65AnRAWpZSIuQDdEBx67/cixF0QKKKHepNE3RAolBzfOITdED8G3HuTCB0QPxp3u2LIHRAMsgxuCIhdEDwrOtluSF0QAgQ/FaxInRAEc55FFkjdEAoLseLuiR0QJIIhleJK3RA5mCD11QwdECwp4XK5zJ0QJLEdE5VQHRAHCJ3ODxDdEAiQCa5eUN0QEdXAueOU3RAWnUWkfVUdEA9BQuNjVV0QEX96+DeV3RAsumPRCFddECgc7xfuGB0QKgX6nwKYnRAzwgvdnpidEBIu0MT5WJ0QGoGKv4RZHRAzAlpEk9kdEB0NF53xGd0QDQH4tfUZ3RA97oShR1tdEAeffIvMW10QLxcE7whcHRAlskN/0BxdECv9v0Ye3J0QARWBIo5c3RAEvFh6zV1dEDeyBjx94B0QAItNWdOgXRA979LvRWQdEAIXcoGvJJ0QLIZNObwn3RAe7/b+6OgdED2AJ3Q0KB0QDZoFYY2oXRAYPy633uidECRQPgfuaJ0QGt+j7MOo3RAQlk7SQiwdEAe2fp+w7B0QKSTkUVusnRACC9mHvuydEBdftou+LN0QEg4uMtzuHRAmebWZM29dEAybh+7t790QJJBuGrjwHRAu90NoXbBdECA6Mbz6MF0QKDvzD+5wnRA+PVC1E/DdEAdE/kpJcR0QK6XNGd5xHRAeKHFnLbEdEBGQ820DNN0QKYRIRoj03RAhilU7+DTdECEjFKU0tR0QNJJmynY3nRAZuPVTyPhdEDmFnFnuOF0QHJTEwmO43RAYB1J44zzdEB4SItHp/R0QEFlbj+mAHVAyQSGtmQBdUA/IWuYXQJ1QGKSi0GmAnVAbGPlYZkDdUDNevN2lxB1QJjxWe5qEnVAOetxEycTdUDmS8UHJBR1QCppqf2dInVAmtW7I3wydUA+wSUMqTJ1QARAmB/NNXVAvkdtTiVAdUB4Nz4+ikJ1QJ6AJ93dQnVAfTtepCFNdUDehN8F5U91QLYDA9CBUXVA0AwB4EtUdUD27j8ZdlV1QMrBgR4MYHVA7Ke/ozhhdUCULUWRO2N1QL4ky6X7Y3VAHoMSC3VydUDCpZBWjXR1QEjRvAjkgHVAXyhfvHWBdUAqdLkDrYF1QJqulErpgnVAMI0rXqaDdUC5ySj95YN1QJT+XZCahHVALt/ktoqQdUB53ne3bpJ1QM72ZHE8k3VAVnfrUiGhdUDRx+zKPaF1QIw5qpFUsnVA83v00MW0dUC+jxb0zcB1QJiUjxpkwXVAAPCX6ffBdUCA7xeXZ8J1QMJ51S+n0HVASE5LQXXSdUDoD+gzwtJ1QIVNw3fO03VAcu0hCOTfdUB9ipbkD+F1QFASLvgH4nVAHIImoTjldUBsp3gBSAJ2QKkcuZfQA3ZA6Yht4rARdkDDFeJt3BN2QKKoxRxOFHZAlhklCA0WdkDqleU0iSJ2QFjQ90qQJHZAaAro+kordkCyqamIHzF2QFLiCza6M3ZAAqtCqJ00dkDNt9rTTT52QNm/c1pNQHZAHuLmAB1BdkB8pCOpyEJ2QDrNsEsSQ3ZAgj6gNqRDdkC4nY3oeER2QAA0O0YCSXZAniaIGsxQdkBGJwwHEVF2QNA358DNVHZAdf4qxoxgdkDJ+v3j2mR2QDwQGvfRf3ZAsKUtfWWCdkCl3iUC44J2QCV9VBORg3ZA2gn5XeuddkD8wNUqEaF2QIQS8bhFo3ZAjCMO442ndkAkrs+Gnqh2QFVNgEGPq3ZAlzTOg5avdkCmhqHYt7B2QCTUpuTAsnZAcnF4/wy0dkD0uz7xc8B2QHgGSFq9wHZAtPPwfUzBdkDefPL9GcR2QBIOubHOznZAK26xAPThdkCryX5vkvN2QEbvprgyAndAPV9l4QASd0AMqa62CxN3QMunnyYPIndAwX6ODQ01d0BQLJHmnEF3QOrl5leRQ3dABXKXMBtFd0CYQ/4FS1F3QG1DJF6SUXdAqKsZNCpVd0CAOX5BSGF3QMIzT56NYXdAKLc08ydvd0Do3ZomeYJ3QOQ5ArAmg3dACV7T4QeSd0AY+veXTJR3QJk1PDoorndAFC+mUJq0d0DlI3627OB3QHkD7ipQ8ndAGk04OG4ieEBKPsBO1CN4QEBQu3QMQnhA7CyUFRFEeEDQ0WWSekV4QF77pZHWSHhAtBwEii5OeEA2u+AnylF4QGL+IYaIVXhAsqBR1PpgeECIIHvntmF4QOAJV/OUYnhA7tv1HblieEAwbZNTDnR4QM6VErCLdHhAmC9BAat0eEAfVvK5x3R4QKzyJrTGeHhAdlNnE/d7eECaYjxIIX54QNLNYaM4gXhA+AUHYKWBeED5Ocofe4N4QCxQ0Gb+g3hAYG03/5mEeEDC4C6JmJF4QJLdnFCnlHhAdq2DHbukeEAwP2Exhqt4QJ0BQsbNwHhAUouVIPXBeEAQ0LVHttR4QO/oBroB9HhA1E+1zoz1eECs7kQuJf54QBTif6APBHlAMYx+AZkFeUC8UsT8hwt5QPBdgyxSJHlAPt3RlrMoeUBGeSByDC55QC1QaCHSMnlAPOmGD7czeUC/kbq4iEJ5QFZVnfr9Q3lAPlXjSctUeUB0Uw7d22R5QJZEORIBaXlAUoNxAkJzeUB7vlv71HN5QCsvfKM3dHlAUCyT4Nt7eUACa4/QaIN5QNABCS1unXlA5svnnxuheUC8RCAdwbJ5QFmCFadC1HlA/stiwM3VeUDzkHf5UOR5QJIdVH7k83lABkbmfkgDekALywKiAgR6QERRxaCSBHpA8k6UfEETekAUnWCaBhR6QJ5WLBEoI3pAXnWlXS0rekC6COKkHzN6QCxWUgQ3M3pA1DFcXww1ekCotqiSJjt6QB5l+KImQHpAavpFDCxDekDmnNUDGkV6QBgkiAE5UHpAPNEDqSZVekC0GIr8AVx6QMgBmaQiXHpAZGinWcVzekBwSNvHhHl6QKJ7D6/Lg3pAeTOtAx6OekDnn7CI0JN6QAsl0k8do3pARqNvZg6zekB5VGftDLZ6QC8fw9kRt3pAGj6krhi7ekCG+0qqGsZ6QJyXGuLW03pAhNAb9WThekCsXaajeeR6QIPpHhg37npA6mdGUhbxekBGRBTJegR7QOJGMkLFC3tAlsMoSCsOe0CuZrHrzhN7QBPiwOhLFXtA9Nz00Fkle0DlmWrKxDN7QCTUOgWQPntAwvlZ4OlDe0C6m9aBQ0l7QOa2zdIjlXtAMw9SS/qze0Cow+8rMMN7QCi494AIxHtA8oneyBrUe0DTs8RcAOR7QI48oD2W8XtAwjyAUoz1e0A5SKxB2QF8QK4JmIf1AXxABir+C2cEfECWeWD5mQV8QEwOiuCMEXxAVquIRtMRfEDN39n6uCN8QALJns/MQXxAqgM2rWZDfEDQXNJp3VF8QJaBtAUNYnxAUBnZPAVzfECesX0s/YF8QAHU1JDEjXxAgJFLLSKTfEC2/a7iv7J8QBSs6EoWwHxAsjHGNmfEfEBe6gXk6NN8QF4+KfN01HxAhO+0FljifEB/3GO8e+R8QKGHoMwU8nxAUNIFPFXyfECIOulIAQJ9QF24zkZLAn1AmF9O2gAEfUCC4IyHCAx9QMbjQfnhD31AUP1ZPj8SfUAVTMiEXhJ9QBqnvgurE31A6FkK6xAUfUB1oz4joRl9QA4RiDk/In1AcMmsoYkkfUDh3BmAoTF9QEwsOXVIOH1AbLUSw6E9fUBsTL+H50J9QLJVvF0DQ31A1VXoqkZIfUCqOUrPIXN9QAIL/pZ6eH1A1n2QThuCfUBeBL3rI4N9QFLcfafWhH1ASDn2rQCkfUDGS6/8paR9QJiYVMsMrH1AlJwL5qiwfUDkVxVfJbd9QKCfjuglu31A4vVgjie/fUDUQPi6LMN9QArj193lxH1AHoekyG3JfUDJ9jNLz9N9QHQ+MLE94H1A1Hn5AtXifUAN5Ycd2+59QBnyYBWQ9X1ATDGqhzIAfkCOTEO/RhN+QPK5lgI5H35AQi+GNR8gfkC+LES9x0B+QJKDlYEOSn5Ad19wIBRUfkBkFwWE42p+QKo4Kea5c35A6a8ncG53fkBiCGBgxXt+QNhwIxeMfX5A1rxqWueCfkADwXVvoIN+QJScMHwSin5ANqwQlKaLfkBs3WrNlI1+QDV4GhPgkn5A9CzjpZSTfkAoDNgpsZN+QIi1DfGalH5A+SDjl/aZfkCYELLTnJt+QPYQ2M9Pn35AksNzXxOifkAfKsi8Fa5+QJmHviL3rn5AWtlzmIywfkDkFSHyCrJ+QMFyR1mWsn5APONmxU+0fkAftNwED7Z+QNJxvViouX5AOsyzDwa/fkBkUUnAQMR+QO84qjzQxH5AHHSRw8fIfkB63CMdD8p+QFD1Cp5Fy35AmKTtfXDTfkBcAUhCGdZ+QEqXcb4t135AxgQUkALffkCZp1SrzN9+QPQRfeMD5H5ArXbB+AXofkACz/bC1ep+QGB6FjYJ7H5ADRs43tfvfkDKQ90JDPB+QI94MW0O9H5AzdebDkEJf0C+il+bUQ9/QE3vnB2oOX9A8quAYAA/f0AjJDWCmj9/QG+Rlqs3SX9ABg7tEJhMf0D1uoWQuFx/QDrLI1W/ZH9Atj/IMsRsf0Ap1eORt3F/QBCDqO3HdH9A0luxIq6Bf0C21RJGnoN/QBCS2O7UhH9AOmdSUGORf0AaFoABRpJ/QBSczIeZk39A3Nj3pF+hf0CYB5n3zKZ/QGZ0+X72rn9AXvGnolWxf0C/Gko0abh/QKL7YIy/vX9AMJndpsPEf0AAeDeruNN/QOSo7GJR4n9AjJakXu/kf0CQkDptgu9/QEBTSbVO9n9Ap7jsTpz3f0BO5YlbIv9/QGB+SB5LBoBANFxXtM8PgECSiT1XeBCAQPUbEjwUGYBA7KKElLkpgED1IUiv6ymAQH5cUcXoL4BAqLjhZl9CgEBisOb8qUKAQKlVu/n2SIBAjkbqu+dQgEDidgZtFFGAQECY39zbVYBABQNWQAVWgEB+AbS2aFaAQFbixD9LV4BAfz8INwlYgEB9rsi4JliAQGcxNNHmWIBAnfQJ1A5ZgEA23G2xHV6AQEZffKY4XoBAQM1JKx1hgEACV/wjEmeAQND/kML7Z4BAED5vtCBqgECwMbYkM22AQLyGZJIob4BAToKfiSt3gEA24qfe9neAQIwJjdmBeYBARK68VjB8gEAc3BATtXyAQLzZDZQqf4BAPj/aZ/+BgEBudimbu4yAQHbPwgF8jYBAC/KUjw6OgEDe7PRRHo+AQFOOEfdHloBA6vmurx2XgEDin/CuZZiAQKb+fT+AmIBAS/8y8ByagEA3fuxkS5qAQFSK7cBNnoBAqhrwWhufgEBIEtXjjKGAQGbeNqo1pIBARknse4elgEAgbU/VsKeAQKKOSm6IqYBAaLeOHBOvgEAr542MXrCAQLZMhyxpsIBABFrvRhuxgEDEAZWn47GAQIwbS+x/soBAMAwvUpGygED99i3VE7eAQHbGsTFWu4BAnIf7xga8gECUdST7e72AQNha5NxCvoBAFsrki1LBgEA8Q+2znsKAQL+B6Hq3xIBAeulUhIHFgEDD1DZwpceAQCtzMXhhyIBAWACgBCPJgEAK+x+AU8mAQHCGdkJKy4BAkonSGODMgEAy/rVCB8+AQCztj44s0YBA/HG8pkzRgEDmRQiAYdGAQMCP8mq10YBAStwTuQXYgEDtgkFsStmAQEy539dw3IBA8swi3UThgEB0dxwuHumAQPqYUtuU6oBA6lWRk0rvgEA2BAc7aPKAQMIifjY+84BATgVCXG32gECvrzkCTPeAQE+Y0KZp+oBAR6haqz//gEBdOvf2PQeBQH/h3Ow9D4FAMHhv/jIUgUAD+tDhpxqBQM7EdZ4CH4FAwEeetjQfgUCGmYM4sh+BQCI/dzlUIoFAZl9Q0LEigUAJmlRnNieBQGvYWJa2J4FA6L0vuFwqgUCW33h0BCyBQDanhbAwL4FAPbkQEbgvgUBmwZU5vTGBQGgSsXJ1M4FAvGFvCyk/gUCyycJYKUeBQDioM64hUIFAJqI9untYgUCpCL4LMlmBQDQz0CzwXIFAxDIyjZ1fgUAUJkeo0GGBQPUs7dhKYoFAetz+9bJmgUDnBf+WoWqBQA4GIHOlboFAKnOqlINvgUBy5EsAzG+BQJEAvlMrdoFAzI6kTbN6gUBkj4T6YX+BQKIUdm9sg4FAdt00jgmHgUAG1blGqYeBQOLKWr8OioFANJ7BiVWPgUD19zijh5CBQIqOEL3ClIFAuIqNTFWXgUCwlLpuDZ6BQHYh+zxSn4FAlLu3peehgUAcN1Jg36KBQPKISJdtqIFAkgvYmuaqgUBxgQxgSq+BQESSj/lrsIFADicwIEu3gUBk14LktL2BQMplfCOVvoFAyisbgpjCgUCuzUcRtsaBQPgKsqIVzoFAg9z6eVzOgUAuFr/jW8+BQGSWN1Fa0IFAcuEsSsnRgUAPkgZzfdOBQLqvwwOk54FAymplcFPqgUDo8yEKLPSBQGeg89sGEoJAjFBnsrQSgkB31trbaRaCQBxHiIZrGIJA280yX9gYgkDFhgMebBqCQIBQfo9tHIJAycy2ytcggkD/Op30+SGCQB7rzI/UIoJAAgI+b/wlgkBugboz0iiCQC5ZjEXvL4JAuO2iC5wygkAucqjzgjSCQEaqFt9HNYJA3vmWbRY2gkAmyICKjzuCQLKGQAbHPoJAFkVaazdDgkCxkteCN0WCQNN0FTYKSIJAFkRuvDxLgkDoqbR7B06CQLaQCrjhToJA81hnhqFPgkBRptCs9E+CQDyRQsd8UIJAucxzgpJRgkAf5qsQXlSCQKR2nSmNVoJA6hjRWHpagkAqCw1qkFqCQA6ZW83XWoJA/AkcbANegkD87Ct4fF6CQJxwieHVXoJA9BcS2XtigkCmXLEKxmKCQHWyzbDZY4JAaidBV51ngkA0nEyJcGiCQNyGwDV0aoJAuc0qSXtsgkAwldM4lnKCQJgNc88Zc4JANUZhEqJzgkDUz9wyMXSCQNKrn9hydIJALvW5I0F1gkBAaoEyCnaCQHrSKK3UdoJALH7CVaF3gkCi9YCh3nqCQCT7M5vhfYJAJAaJ3RN+gkCCp5O45YGCQHXYrElQgoJA1GluqpuDgkCmAHdYQ4mCQG9W9Uwbj4JABqlIsUORgkBs7ceIPJmCQOVKE5nWmYJAAduXbhGagkCwFnKUDqGCQDChpt05oYJAtk9d9NyhgkDwbhZs4qWCQIXGiWILqYJAxfNgDjapgkDomI2TGqyCQCL7km5RsIJAxDJWrgaxgkCeVQ/xMrGCQBsI/q+9t4JA3qL3CFi4gkCbt8euBrmCQGVbQoW0vIJApi3sLPK+gkAkI66rRsCCQLByj6rtxYJAxoTgaCPSgkDW6vDdddKCQFr0QuV82oJALpV1mdbigkDkvb4a0+aCQK6BQuLW6oJAYqhBFHTwgkCeuBZfbvKCQO/rCdQVA4NAlr6N+bkKg0BAADtBHQuDQIn/DBe9DoNADwhfh3kRg0DgBeLQwBKDQOedzfQsGYNAEm8XA3oZg0B8gVJjLR6DQH1niUFzIYNAuXKxpoohg0Cyb0tvdCiDQFrNr71xKYNAHv5Orystg0DufckzIi6DQFY5kBrZL4NA0jHCjWsxg0BUaj9qNjWDQBXQ3LpGQoNAU4HlQYtEg0Ctlsdoq1KDQOTPeEL4coNAxJa32/52g0AuBeaw5IGDQHh7mqRggoNAWJntCQuDg0CiffoaSYODQMJht1oRi4NABnn7+3iag0BkkdLZJJ2DQFG90PzSn4NAS/f/iCLDg0B2fWCCbtiDQHaI4bHg8oNABBdsY8QFhEAwbK2hHBWEQEZosYEwO4RAktAQ9S1ThEDC6fVD/2iEQEFeL8flaoRATCOczOhuhEBwhxAt/nCEQGr43KjrcoRAFiB+XO92hEAb6Cz6yXeEQM/gkTr4eIRAS8r1/3h6hEDwOHFEJn2EQA8RQDLUf4RAY29Q//OAhEB1lNAZQIKEQCA8BylWlYRA+TRz9QGYhEBsV8hNr5qEQM4EF3wfpYRAdhUd4W6lhEBy6caYr6aEQF4Ht6lsuYRAjDTRh/C8hED9KQRAlNOEQFQA3ozc1YRAOP4WP2rZhEDO5A8J4tmEQOJlR2B03IRAmpLNpnbehEC2vZU0duCEQNjqNgBq4YRAYof/33XihEAyGjQep+KEQCDfuOQ944RAIiXnuN7jhEDmbY9bOeWEQNlGKOti6YRArBGaWzbxhECy/XnGYfGEQBbsNPTA94RAyIiEeTf5hEA8IICFQ/yEQHHoiDXc/YRAOLHXK3f/hEDmcQcGFgGFQDgAoQesAoVA0IuRCEcEhUCOAO7cqQyFQAAYU5y9EoVAHJr1WEYUhUArnetUdBeFQAK6qJw/HoVAkUjifkQihUA0w337OC2FQHgcROFJMoVAzDTOeBVEhUDAQiibLU+FQDpVL6KgYYVA1h6A7eZmhUDSgi7yn2mFQB77oRyYcYVAUHnLlbVzhUAKH+9VmnmFQN0g642TgYVAukTfGPKZhUC/PofGMOaFQK4VEUI16oVA1bxpnNTyhUCbkziigPWFQAZ+Z5Ms+IVAebl4nQlLhkC5nIX6yKqGQO5m+hUouYZA9B4vthjahkAUqO/HMv+GQJoa69U2A4dAgF6NHjsPh0CO/VARkSmHQFyLkuGRMYdAqpykC4I3h0AfryQDijmHQGt61v5cQYdALF4gOZBBh0DpPVE2t1uHQM+4/FFVYYdAaJU4Xjdnh0Ai0eiwOmuHQBvAxHo9b4dADNwQnUBzh0Co34OoipOHQEt+6lzHsYdA5m0rxMm5h0BNLPzevsGHQHLkPOZcw4dAc2G8WMPJh0D861G5ZcuHQGGaoOHT6YdAPqYyNzQbiEDNc/JC4B2IQOfrAD+NIIhAjBC+GGI3iEDWEq6jZjuIQNQIUB58cohAIgdWlIB2iEDVNwSognqIQGM0JtSBfohA9KWltVayiEDrdm99XbaIQFp9SEjf0YhA + krjVFDGDWkBImCMySWRrQGiLA8lIY29AmXHSiBSzdUC0I164/MJ2QCfJHqjsw3tAQnuq19TTfECTk/19omqBQFuQtWNiaoJAW7+jjQ7zhUBdm8YwJIOGQA== - + - vsAgRp2agkSjhXxE3coDRd0QZESzvINEc3o+RB+BTkSWjQVHlEf6RMajgEQgRatESKRRRSvrlEXsKPZE4GtTRMWYOEUNQylEZPNURMg4rES0IJpE25GYRPodvkTNNYJEFlJIReB8TUfjz6JEgdqNRHC1dEY6FclFMj6GRBzaE0VghvpEq7KFRLVzlkYontJEX+22RGiif0Q+NJRExnGhRQvisEQzYV1EEHtCROZBb0SPccFEQ1Z3RIDAIUULWHhFy6YwRpc3/ES/YDBF6aLsRAiHlEVTMpVE97WTRKfLxkQoG1VEhDxuRaqrZkTBDlNEftJcRHXKuET6CVJEBcqQRNBGaETTyF9EieuyRtLEckQkdEhEnivWRSMmB0UedIJE4cVaR7o8skR2RVtEU54DRWKjXEa30+JFB+ZMRJgu4UWuosxE4KYARRdCBEVairVEz4tNRBFnSUQL63dEPPyKRArfIEUovT1F8CzhRHTX7UXx2p1EYaR4RAS9TUSi0l1FtYczRL8nkUTSilNEEhplRHhIf0XjlqVFaaCmRJAHUURQINVExkTqRPGIaUR3iXpES2LCRASGVkT8n3pE3IBrRgldo0QeUKtEvW9nRPXCo0QhRCJFDCWERG8Iu0Qu64FEmu1rRKVI9USpp2pECgqORFGGZEQ6K5hEizR/RLMTPURo6qFESmxKRLXGykSW/MpEKZdhRLEEzUT3nIxEmcIcSP43WkWP9SRFHm61RzChM0UnopNE9ylmROzpgUb5f1xGM6KURYMm4ETIXdhFin9KR9ZOKEX0gexEKfqJRKGHA0Vhg/tFsWqsRSLNcEQTxMtExtyGROjLmkQbPXZEGek1RMReFkU+K0NFbfyhRFaQEEUjTrREjiGJRNaAZURMH21EmLpdRGcTgERm6eZE2d6gRFO1mUQeZZ1EOETzRHPMN0Ruf1tEWXveROoUjEQ01ZNELDN9RDuzXUQwHdxEy6myRDgfFEUO8YBEbjzNRXynq0R02upE9dKJRLasP0X66uhEoCiRRH+7mESWqm5E/JyJRPAO4ER6lAlGs9LrRob92kTyhfpEWZqbRLQVikVpxYRENaBSRNaxOESW6JpE5bBZRDs6s0SGodtEBlvjRG6RCkWA9PFEX4qMRAUnG0aJIUpEcJ8BRcyx3kVKZtFEs1uCRR+TTERgMqVE1pWTRFVTckTjRoREB2VrREsPOkSWLk1EVsgyRFfKvETN/V5EEcy1RCGsPEfnjktEu82LRZMNaEQ2Qc1ErnyHRB6fyERatdtEYM5PRDkrkEVfStJEccwQReyqRURTKXBEGUn0ROa5hkVjlQNGzy6ERX2rqkbZXw1FI4PfRFaJQEXPA6RE18ZrRZ6NN0UlX4dFjh4NRfdBjkUoopNE6ZmpREGjGkXW9hBG2VueRLabDkWDKYdFu2dkRHSHkkRu7PREelDORvjiUkRwzVxGNuU/RU8dgUWbevtEFPa4RD4Tc0RJJxZFnr2ZRSa8qETCr1FEVQueRDq/gUTT9VNFl6G8RD/OH0VJib9E5aOPRhofOkQSXR5FBpTzRxxEgkZWdupETGTZRu8Vj0V3LU9GSFkJRfHJqEQqOONEbDIdRYoNoETTpEBEinykRGE9kUTjBmJESaWJRJLBV0QeXchEx4JSRdBhq0SElI1EDHIWReCYREZ5qzpF/rZgRUl2r0W0FD1FNhsFRTg1PkVieNtE9s3pRP2YoUTdE0JJA4J8RWezFEWAKcVGRGhoReOQL0aek4NEBZVKRWUVxUWmbLVEQERBSO0TXEW9Vp5GfgJbRESVCUXH1pBEKP9nRJ8qzEQga2BFjs2mRZYx8kTQ05dE2NnFRGI6z0TREFxELeF0RcY7JUW/n4VEWQwzRS03cUQ/juNEPeSARX53dETElo1E7sjPRILBkkVWS45EqeoTReE6l0QuxlVEalduRFzEXEUGdrVFkaxmRON0u0RGSz1EDyCkRLB5mUS/e6REpNuFRF4hVkSmcLFInPUdSPphFkc6c4xGb8StR2JNXUYMME9FPxmbRRFGqka5UIVEqE7ZRLxrV0QrxDZFL6qARFEvokR/eM1ERPNSREw/WUSgjoxEUimXRZQcpUXscm5FW6iFRHTSGEXV6FFEncsKRfleZkRDdLhEZIaORFIJV0U0ye1EjyB1RK3PeUQ/nRFGi2QvRerSikQIXeZFaiVoRSZEzUR0f+JEmtbtRmR8YkQF3JtFxuuCRCXXeERMaodFV7STRuORFEZoLztF9P3LRJ5mrkUDX2hEEn9qRXuZi0Sh7ppFX2GGROkXakTqgXBESuGERH1wtkTspCJFeU7wRKRKgUQPqqZESKMkSKsOXkRk9f9GomvaR1mJU0WTHg5FqTbORoYYE0V5iJBG9xcRR8RFh0auC4FEHcGjROuB1kTASGhE0KltRV8cqEQs66lEeFGHRAjukEQOgtNGgUdWRlgmHUX67GBFMMrjRCr79UXMokVFNed7RAjBmESxqIpE+NZbRagTcURrueVE2+h4RJ0PtUSkqBdFRI5eRNq5wESDP5JF9t2WRCMeX0Sy/QxF/8uARBwXQkQCKHBFSs61RC5MoERTeJBEtI0/RKH0bUSbMT5EPReKRDHfjkTsStBEOImBRCxYp0Qqy4xF2qTSRBc5wUbwhoFEwv4mRvWgOUQRJV1EK3g1RXN6zkQSddBFoPFDRbCIjkRyXyJFHA+MRI4SXkRRQ4NGadE8RPDrlkTRCBtFwOA1Rpr7jER816pFBxXdRGb1XURl26ZEwuZtRMPSU0RZ/aBEJISBRG6wY0RH7YtEwE2fRMEcZkR/tyJGO7F6Rh6rg0RVgxpGpZSHRLAtTEXToIZEgJV+RBcIZUQuFq9Em9EQRWoelkReVV5Ef8++RA4gkUcIphtHASHxRdGHdkVyRDRF9cazRFE5gETxKo5EYko1Rg9AcET4vaNEeUcaRYXtR0RhiVVEQPTGRFg0mkWtgFNFG0mMRNxRSEScI0xECQqCRBKtcUQJQaREZX5mRA1TJURArOFEnEh4RAnllET2/j1EbLBnRELkpUR9wmNE6Fm+RLvzgEUdgrFEJ0tCRWzlVEaTYm1E8ICjRIJHNEW0fX1EsabTRHV1AUW+MqhExJqqRTfiQEQjGnlEB+OLRPKzNkTDFlFEnVKaRHm1ckRah1VFvuWoROJfgUSsB4NECNuIRFtidUTXYuBEH39rRKfOZETFIJhE3u5TRLaZSkZKtuRFkcMSRVtifUStBYpEKlCsRNonPUU4Q8tERKUDRZ6fmESRlXhEkh2URGmdg0Q+3eVE800mRiwRKUQl3CVEhY14RGv+GUWDHRdFaS62RGZf7USCGMZE35SPRBJ5FkUjbXtEAl6RSEStmUR+LsxE/XSfRBTOLUUcbYFFFxl5RPwsBkhXlH9ELob1RL7r2ERevexEQouJR4b7PEUaXG9E2izYRAtVWEZPcDhE7jKQRV3gf0Qxo2tE/Hc0RW3RWUXPFqdEweOSRP7Sm0R/Xr5Ej3d8Rj2kiUUpmtBFGVVNRDPsq0VqHDtEa1kQRwvSmkRX9dlFzqSKRJh8A0YymMFEk8OcREXPSkQ5nCxF2bGLRENI0ER/rIlEuKcxRpPlykThx1JEMKdfRFb/g0QNH0pF9Q0SRdP7XETREg5F5WIhRfTjGkWmcJZEoZNhRBG1QUTWn05EeE17RCuhpESWOn9E8EdKRCmDXET4zpRE1lESRkcPbEQ00GNEnekpRTeWfUQT1KtE94BERTZM0Eam7wRFeZ+WRV4wIUbIw41EJ7MNRdryXERNIjRFW7axROoeTUTI2WhE08u/RIyldkToPHZEByR9RNI40USODfdEjiiDRLORU0TBUm1EzWXARbWELkbqIa9Gsl8uRkBDbUY5pZFF/dtdRW4t+kX+u45E6sMqRZDyBEUjqZBFSGGrRcWKSEQKZ/hEPE1PRD8cq0TUw4hEJNXwRVC2g0TAG0ZEu8LmRPE6fEQBj6VET2mtRFikhUQeW4ZEx1TyRBcUYURWCltF7x1lRaGTN0Xm8FxEh7qiRL7i/kSce7NELw98RJqycEQWcYNEiJXzRCddykT6FDVE5dNQRFH63UQtdKBEWSxuRMnylkToADpEfHuqRKewrkTgRM9EcR+jROYGhURZagpGrB6pRCt0jEV3CmdEfSSMREt9xEenoXpEegc4R6mm0ka3YotEp4TsRK0d2EUE8O9FIG5LRalQnUS8JN9Ead4ERS35h0Q748dF0y/2RHMnhUQIQUhE4nZARDCcUESiWHdE+1A3RPl7mUQ/ycxEhYBjRNVaq0TcPchEojeIRAS5oESFUs9E5NcmRNSCMUTIdUpF9SSARcs4eETOzQlFtcAFSOU1iEQWyi1EXQlvRxP9QES6PgtHeGwRRQwKjUQSGRBGKG+bRVovKkRDBCVF/1yHRZp+lESRlVtE3v5PRE2QekRg4apEddHSRIwOk0ROy4ZEJKhMRfeurUSP9plEYnS0RLHyCkWTcsBE1AZvRLxtfERpYaJEp81jRDV2RkSF5kREEAl4ROyWekVizehGagygRgLgOEXECf9FUVqYRCaMlUVlNBNFkCiCRcZL10RjSMVEFFJJRAmCS0TRIN9EZQkJRXtmuETqWjBE9oVURG1vVET4lE1E3tyCRLaygERLqsJE7S0XR9+4SkTZsehE4SpVRQ8MWkUt8oNGCLlbROsFl0QuolVET7ViRFWPckSgJgxGHw2oRTeDMUVtloJEEybwRF1PAEWYmMJFfnJZRVozAUX9h5ZEcZeHRJpedUQkZCpESY2ZRG2vV0SDDfJEgRItRR4ce0TT1qhEJol9RByFSUSqsg9HP1tLRJ5KgEahXQJGlZWSRAVxckVHNcVEEK1sRIkqQUUm1o5EVqzCRHhUMkV9ZdBEX9N+RLbwY0Q35ZJErG17RLfNgEU4X+BED557RO8LIUbU2pVF6nKaRBW4h0Vr4wJF2AazRHVvUkSXTl5E7ScQR26cr0a3ijRGEiqMRf+Zv0QDmgZGxdLBRaI5QUVHJvxE/Mh7RJmJdkSvElREadxiRWKMikUPgSZF4dyxRJGJwEQTVN1FNKuGRb2KukRxTYBErJDVRFGek0ShMYdE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - HgoJwibBckBF29rLbsFyQCDAmkpQwnJAxJMUpeXCckC2sBlAPMNyQNqnVenExHJA2hf7sVnFckAhSup8DtJyQFmg30hD0nJAfKhfCz/TckD6yEHmdNNyQGhrac8A1HJAwYabYI7fckA649F40N9yQH1wH4C54HJAiW2PwvbhckBsAcNnUeJyQHx26aiP4nJA3NJmlCbjckCuHVr+TPFyQEXgci3J8XJAdK6iNpzyckDHIQFft/NyQIWMwO2h9HJA1MpNHsH/ckC6uNCvYgBzQG+lQhn5AHNALS+O9gwBc0DCn/2ljgFzQFOlnQU7AnNAnOyiY84Cc0CoIaWm+gNzQBBRbB4JEnNAtAWjRicSc0COWfALvRJzQAVXX5oEFHNAHOgPTk4Uc0CWaq/qiRRzQNJArUF6H3NAt27tpQ0gc0DO2BBCoyBzQNGxvds4IXNA6I4643sic0AaYrwOyyJzQOTz0esOI3NAPCD7FM4kc0DwwTEdSTFzQGw5DttXMXNA3Ot8AwUzc0ArZyP11DNzQPB/7dM3NHNAURd5o800c0ARI622uD9zQEoKb0xAQHNA4MWWkk5Ac0C189ag4kBzQKiQGx96QXNAPkU2i7pCc0BYdM8qekRzQArRFoScUXNAMMVbORJSc0AOVo4/elJzQEEm/4FCU3NA8MFfi6NTc0A2+sl/hFRzQAAlXl/8X3NAjtxDPDljc0D8LKo7j2NzQJZTM+HMY3NAIkahXWNkc0CiQ8FgpHBzQLZmyKzbcXNAkxvzelJyc0AEqrxakHJzQL7d7bS3dHNAknEeWE11c0DCEaM3eYBzQAoCGjOjgHNAup5XmQuBc0BAWWYQNIFzQDaN6W5egnNANgXddA6Ec0AD+bKXhpBzQD4iQZyZkHNAOTkqermRc0BiirQjTZJzQMjD68CrknNAKkoXuNCSc0Bke6tmzZNzQLAbmtgNlHNAHPnCjmOUc0CAkCej95RzQLBnhHe4oHNASnhBY02hc0BKQH8Fd6FzQC86tGGvoXNAJLHU4P2hc0AcTChMWqJzQMDTwy2PonNAkdbG/puic0AyORZKJqNzQPl3BBkDpXNATk1PTdywc0DQ13N3gLFzQJ57j6QPs3NAOMc+r7Wzc0CvULORDrRzQAA5r2GitHNAS5983fjAc0AePet0PMJzQC+N6mbPwnNAv4Il8CbDc0CY1AKPwsNzQMXCPwz6w3NARIMB0bnPc0Cv5mksk9FzQInYNYTX0XNA+XqsuSXSc0CpmxQzu9JzQLycagPf0nNAhnAMowXTc0ACVdvoI9NzQMK7qrz103NAx1pmoeLUc0AIHpn3OOFzQOCZE7tk4XNAsCtHFefhc0AjziOAe+JzQOSvFCYO43NAam1eJ6vuc0BIWvINWPFzQAwNOJM29HNAxCGxLI/0c0AJB2hWTgB0QMe4eQ7kAHRAYEAk8HgBdEAWnemkqQF0QL2BE2tzAnRA+KX4pLwCdEDaUIpSjhB0QHIyakCUEXRAbpRuX/YSdEBmBA0XTRN0QBvHVIJ3FHRANCRhEEogdEAkDZZEuCF0QEs6fSWxInRAiRcUz/kidEC37palVjB0QF6SVC25MnRA2O2TC1NAdEDs+9Fax0F0QMFaako8Q3RAu1qH+nlDdECaE9yjoER0QKkOu1b3VHRAdgGCkoxVdEDKfucX21d0QAxB9Dr/XHRAFaWdJCFddEBAMizoPl10QIkWppG6YHRAAEK3v3dhdEBjsLFkB2J0QMyJ2l56YnRAR74w2eRidECynOBWIWN0QIRZyldRZHRA8s2Qr8VndECIq1sT1Wd0QBLC160fbXRAOinABiJwdEB61I3RyXB0QK6sAxxBcXRAjdnMrstxdEDMRZJDeXJ0QNRIN5DjcnRAtZAbyjhzdECeYmlqoHR0QNlHBEQ3dXRAlI7f4veAdEAclfgiToF0QDYA/J9IgnRAO0umj8+CdEBesrL4JYN0QEPUWNm7j3RANKGtahWQdEDqHL1UapB0QFZkd+y9knRAULBxYO2fdEC6rBwipaB0QKBgqhnQoHRAsCZSzLeidEA2MrwYEKN0QGJI13EMsHRAw8Ffn8SwdEAKvY+wcLJ0QEhJWlH6snRAcMwI0cq3dEAoyRFm0rp0QPbIC55RwHRAvBfWY+LAdEDAMxGku8J0QG5in8lPw3RAshgfHSPEdEAW+TLpeMR0QD25UmC5xHRAQU6f9snNdEBBTZdV+850QMS559Yx0nRA/FdFL3vSdEDiJ08uFNN0QFeiQPfg03RAgFBlPnbUdEC+jj9mztR0QII2OsGz4HRAx/J86CLhdEB25esqueF0QBygiy7T4nRAG1E71I/jdEAIzqwIjPN0QPH+GX+hAHVAmVDdQMwAdUBkFUFeYwF1QKhuZxtdAnVA9lSBbaUCdUCaMC3kmwN1QK/ip42YEHVAX8qALCMUdUBBszPy4R91QIAvgkCdInVALneaZXwydUApofKfpzJ1QIjrD+7KNXVA4ARMJXRAdUCuChdleUJ1QG5A7DGLQnVA/infe91CdUC/kJZQ2k91QGpLoipNVHVA6hpWdHZVdUAmolrfC2B1QEyeWyk6YXVAYs9q+D1jdUAbz8p6ZmN1QKQvji/7Y3VA3KitTnZydUAW/bCQjXR1QA4Rp4RQgHVAcSc9RXmBdUBAdvwprYF1QOoFXM/pgnVAv1NE/k2DdUCBOWoYpoN1QIbcZQLjg3VANyAsZpuEdUDoInEqjZB1QIcHVRpuknVAWoT9dqmSdUBYGdJEPpN1QHKnDkgkoXVAmpSMtrehdUBkKmlTTaN1QCKbgFy6pHVAFLXvo5OwdUDQkQafY8F1QFIHL+j4wXVAPrVDd2fCdUCQrXULpMJ1QOu2Vks8w3VAqz9kq6nQdUBI6rifdNJ1QA7j20CP0nVAMDVrr8zTdUDkcjpA4N91QDjzqsQO4XVAYhzIawjidUCVyE0Gx/F1QOCq1yhIAnZADHAGVM8DdkAuwUerrRF2QGwD4qELFnZAFNA1NIgidkDwgTrQZyN2QDDJqLKPJHZArKzhIEwrdkDQ0cVTHzF2QKFCwnJQM3ZAnkDorbgzdkDesgJInTR2QDtAGUBOPnZAKthJgU1AdkDY5nZX40B2QF9HZOkdQXZAm/eru25CdkBqL5u6yEJ2QNrNQP4RQ3ZAX99HEXxDdkA59ibLpkN2QPiaHfh4RHZAgj7aytRIdkCcA+QT+052QCI21fzIUHZAfuv17BFRdkCEfVIzoFN2QLY8TX3NVHZADrcYtMVgdkCGD9VHI2F2QKnO8TnbZHZAc+9dkdF/dkDrLuELY4F2QG5PwD0+g3ZAspKllZGDdkCfizMS+pJ2QDwjuiLrnXZAuMpBCw+hdkC86d0COKJ2QL87V9HmonZALLJoFEWjdkCRnWzvi6d2QITmH8CbqHZA0Vitoo+rdkBKIFBc+a12QHrEdImQr3ZALYurUbmwdkDUJjyrwbJ2QNq0D2MNtHZAnEJc+cDAdkBOZWszTsF2QJbm+EbOznZAFLM+AvThdkCOIQ67zeJ2QEmjLuGR83ZAwPUETkz2dkCtS4ohTwB3QLi+3q8xAndA2ll6agESd0DbEjS4ZRN3QONBLEkOIndA8WEemHIid0De5r/tDDV3QCQwu3NlQXdA+rNIe5xBd0Afg//eGkV3QCIH7lOST3dAfvVyE0pRd0DPhxDLkVF3QAYhPAEoVXdA6pyqtkhhd0D8XKWFj2F3QN++1aejYXdAZtBPFzdid0Ai6Y/COmV3QODvLBMnb3dA3jnNUBt3d0C4jux6GXt3QPYCG2wdf3dA9BsqsXiCd0Cib9baS5R3QCxE4aSho3dA9P5HKCaud0Dya5bQnbF3QA6G358/w3dARKuq0Nrhd0C3mjk6UfJ3QGSKVLzsAnhAlqHkQE0VeEAKQRF0biJ4QA/C7KuLI3hAvIapoNAjeEBxzfs1oyR4QJhhNWF7MnhAZLZZ54ozeEDkHGjnEER4QLtbVQB6RXhArEU74NdIeEAPzAuzMU54QPJ3OQfKUXhAMK8J/IdVeEAycbgP+WB4QJfKet63YXhAeuy9er9xeEASau5WUnR4QAARaJ2LdHhAitTSH810eECUWNp5xnh4QCyZZor2e3hATD6yiiB+eECE0ruGp4F4QIAGvi59g3hA+vkv7/6DeEDJhnFiaoR4QBTWgsCZhHhABjLCC1KPeEAlndPkl5F4QOvXKK6nlHhA7t1GTaWheEASxlZ4t6R4QESU7EfSpHhAqHqxyYSreECos+sQi694QPtZ+WfYuHhAyiJtU83AeEBwGz031c54QCJC5Wm31HhAi1XHmGTdeEBAPRIExuR4QMR/g3vi83hAMVLBEgP0eEBMVErdjPV4QKA1UUYm/nhAXHtKMyb/eED6HqbqfQN5QL5dqvsQBHlALdYEmpoFeUBYYEMVhQt5QAUEDt4zHnlAnBGQ9mEjeUByJwbFsih5QMfKbrgLLnlASMmfndYyeUAYPlcWtzN5QKhRGEQrOHlAgILXu1w7eUBYXhKCvDt5QFCnq7LIQHlAeD1sd4xCeUBSwco/+EJ5QCBVFc7DQ3lA8tNyCf1DeUCcMyUKzFR5QHBG046/X3lALlAofOlgeUBCiJmd3GR5QHrMDoQQb3lADliqIEVzeUD+GGQ31XN5QCK78wk0dHlAuUHkytt7eUD2knUxKHx5QJj1D/05j3lAEH+r2xOYeUCUvh8sG6F5QKrM0aC/snlAUhgUxc/CeUCCBA66QdR5QCXcc1DL1XlATPZNcFLkeUBALLt4I+V5QPAEST0w8HlA6Q0WjqTzeUCi3SzO+wJ6QLv/rjL+A3pAqLPli5IEekD8L7fIRRN6QO+OSoVKG3pApyjcTAQjekAS0+L3JyN6QNbhHy1UI3pA+tZ3LC0rekDqYSh/WCt6QEr2k1cfM3pAO8K8IzczekBmENwcDDV6QG7L67wpN3pAxMi1AyY7ekBkygrYJUB6QLzr24UqQ3pAQBeg6BlFekBAILzAok56QCNRQZYoVXpAbqgn1SJcekCUNi4OJ2R6QMzDXJuKcnpAuu3t4b5zekCi+mlVfnt6QCibAc0fo3pA1a50Mw6zekBqnlfeDLZ6QLTajaIRt3pA5nsdd/u6ekAqvavXE7t6QDrYzY4YxnpAag7ILNbTekARLOtTZ+F6QA4o7Yfw43pAvntKLzXuekBRXV61FPF6QCxAK5xb8XpA8JtGRML4ekBYpZeeHP56QIj57AB7A3tAPEn9bnwEe0Dua/17yAt7QKpqIg8pDntAdrZej9ETe0B859iljBR7QADV7c5MFXtA+jy3Ap0je0ARhN5f0iN7QODJtNtZJXtA6CFMNpcye0C4YXx9vzN7QBhNpoFjPHtAcsBkwpA+e0BaANE17EN7QPwCUh3MR3tALeHXnz9Je0A018JD0E97QAae4pjIb3tA+7xto+uQe0BAEpwfI5V7QD4zGYzDm3tA2hrLmS2le0B20HrK+rN7QOZDZ1kIxHtApj/T2bLRe0BXsxC0JOR7QJH8q0uM9XtAII4QtSn7e0AyP6fx2QF8QK5eyrNmBHxAe3nqYJkFfECg11ZWiBF8QAqopVbREXxAxxeMrKZAfECPwwYxzEF8QBSM9rxAWXxAInp9+yFofEA10vbTK3F8QN6GyscBc3xA/Aeuqv2BfEDJQnBbS5R8QKbaCDoom3xAuvAIqfekfEB01Q4hj6V8QCh/OE0irHxAaFsgF8CyfEBM7yiAerR8QJKZPJwRtnxALDVr9cq+fEDqMxzSEsB8QCR9MLpmxHxA8vjtKHTUfEA3t13wy9V8QPIURsVX4nxA/D8VmpPifECWM6DIbuR8QKCK6DiN5HxA4Q24XxXyfEDW+kbAVPJ8QJ++CsRx8nxA9UKKtvnyfEAQcyiD3vt8QAxVM+gAAn1ATjd220oCfUDWN9hUAAR9QPDQeFIIDH1AKgGLk0MSfUATF79HZBJ9QBqo5gm0E31AgMASTA8UfUDqGg0TExx9QBZa73A6In1AyjrdCKIxfUAELxnXRzh9QDSxEEuhPX1ArqhArdVCfUCciTdo/EJ9QDSKhhJGSH1AvG7UqOpMfUAD++tTpU19QIr/NjZrUX1AHL8wSCBzfUBSX/VPeXh9QEDaCE3LfX1A0vE0Jx6DfUBXw8BG0YR9QKYmUqMson1AzklbqAGkfUAn8mCSqaR9QDDOAEgKrH1Au6p+ySW3fUBd4qpiKr99QIp6FUstw31AcsZsNejEfUA3kkeJOtN9QLjOLhGr331AiBYN/T3gfUDXcbBm2OJ9QAbUanZU431Adj73pETlfUA8270hAu99QAu0bCeP9X1AdDonMzYAfkAawounRBN+QOmkyxf+G35AgxiIijcffkCeKBMJQi9+QNTHR7xAP35Ay6FkmrlPfkBQbou1aFN+QHOX9sSOVX5ABhXbb5ptfkCRALT0t3B+QAL/MLhPdH5ATn5mBbl7fkAo4KMNin1+QECjz7jlgn5Ag+DdCKCDfkAosNKauYR+QAbFtCc8iH5Ah2miWCeKfkAOkvJ9pot+QDZkqQgHjn5AcKqbr5KTfkDYH40EspN+QL7rUryZlH5A4vqpW/KZfkAIxHWDm5t+QHmKN8hKn35AlAZPgI+kfkDKlIBb9q5+QEgJehOMsH5AfI2eJr6wfkAoGXU7lrJ+QDShkthPtH5ANXWpqKi5fkB8xGOxYbt+QOoRCdIEv35A1+pHawnCfkCOUCL1tcR+QM54ftcQxn5ANuOH5dDIfkDcsOonQ8t+QPhmbfYVzn5Ahq+ilIfZfkDZCjjKAd9+QMC47IzK335AbI4y9APkfkAKgu/5V+R+QFBEVa0G6H5Amwa6lLHpfkCsgNn5COx+QEqm74vV735AKYTxUA7wfkDEhDihEvR+QMBfl0FK9H5A5COwliD+fkDgtst/shp/QKndhm4RM39AlPDFPqU5f0DjVTDFAD9/QB6a2FxNRH9AFDg7u5dMf0BkMwcRQVJ/QMLn+nm4XH9AWlM+rb9kf0DBQt/+x2x/QEwR9QqWbX9AMutioLZxf0CS8L3HU3R/QFRWnljMdH9Acyh0xO2Af0CODF9ctIF/QDQJeOGqg39Alab7gdKEf0D0CaekyZB/QKZU7f5ikX9AQf2856iRf0AgCOzKl5N/QH2//msMoH9AInvjwN2gf0AdUTU4XaF/QGdpIKtTsX9ApqaEpqi2f0DMx1hyarh/QAbWvpTDvX9AtBmSLPfDf0DGa6dXLc5/QBajywGw3H9Af7JoP/Tcf0B2sHiApt9/QFiPlq+j439AgoLK6PDkf0BWOEXHHPJ/QGiV/Nr09H9ATHzo1E36f0Be7lOTMPx/QOy31ZZ3DoBADDE3+qgPgEDu/qJt2xGAQEFs6tAyEoBA8wKEFioTgEDOmag7KBWAQM/mvDIiGYBAbZfM4L8ZgECguYJSIhuAQE9aOuhoIoBAHIwX/dIpgECX0ZXbKC2AQHjZnXX3MYBA+jYdXvk4gEACmVotX0KAQFnqKu6oQoBAF7fwSFBGgECAO+9B7kiAQC4raoLnUIBA8ipPhhRRgED2OpBZoFGAQAKScvAJUoBAkadP4mdWgECE0e0YJliAQC2hhwEOWYBA/LXDHWxagEAEwHmdRV2AQERHlik3XoBABmHsaiJqgEDV0ZeKS2qAQDot6/B5bYBASNbEV+ptgEAG5qtWJW6AQFOTDGQ4boBArIVYiSpvgEAyDUlumHKAQFBP1qdSc4BAan5pP81zgEAWykcaf3SAQDpwPsRxdYBAvNRmGSZ3gEDNMsO5f3mAQGrgSpuBfYBAWJ/imih/gECGd3aDCYyAQIAlaV1djIBA+fHrwx6PgED65cjhR5aAQMBiKQYfl4BAQMf00XCYgECCFUffFpmAQF9wamQemoBAvIcnREuagED+Dd8QWZuAQOQPmNHenoBAy8vTwxufgEB48uaWiqGAQFWWHOo3poBALFO1AQGngEACaj6XhqmAQIzmRMnmqYBAnoBk1dutgEDwtFev+a6AQMw8LGkTr4BA1LDw3qavgEBAXzjoa7CAQOyAyIkfsYBAAxsXK+exgECSTPdQgLKAQLya2LgStIBAqDXpZBe3gEDUyFgyBryAQJFrK2K9vIBA8lnFXXu9gECGB8e28b6AQJD9M6erv4BAsFIBr82/gED0i6KuLsGAQDInKGZSwYBApNqs4XLBgEACDqqHicKAQLDJI7aewoBA+iWxzjnGgEBruHZvsseAQAWrpukoyYBA1jILNlPJgEAwaBBaNMqAQIRP2M5Ly4BA0hfpsOHMgEB+trRfBs+AQFq+Wz4t0YBAK+HlRkzRgEDmAEWpYNGAQGEZHlpK2YBA1jR8bUPhgEAQryyRZOiAQPCaf9L26IBA4sB6y0vvgECimPyBZ/KAQLjo1jo984BA8HHU8mn2gECc137rAveAQH7+XM5J94BAQC1VUVv4gEAk523bZ/qAQNcVDXE//4BAI24/zt0BgUAwnF9yIgaBQCBN61xAB4FAM/4Vbj4PgUDajjPiKBGBQMzvgfQ/F4FAVOrPLvAZgUB9ykJ8qBqBQHcUA140H4FAzGUuR7AfgUDoBVZhVCKBQGpGZc6vIoFAbOfn2UYmgUCqBDZONSeBQLL3xI+2J4FAEmiUDDAqgUDAop06WyqBQC/RXxJWK4FAB/pJcsgsgUBgBV/i8SyBQAw1N3gwL4FAoBAcYLsxgUDE7n9a+jaBQJ1w8iS8OYFAZOQu0yg/gUDO9IWh5UGBQN3ZSu/RRIFABCPkKJNFgUA4Pph3G0eBQGjuPoAqR4FA01lJUpBbgUAYp1Zm8FyBQL7En3ieX4FA6L1lXoJggUBZA8bVSmKBQH7Bj/qyZoFApxro8KFqgUBOmGb7mm2BQNBdy0aoboFA1bD7uYJwgUCQZX1zjXOBQHjEyVBhf4FAZoGZEpyFgUA3meZaB42BQPa0bW9Vj4FATKzFvVSXgUA4FUv+mpeBQGCg/tVTn4FAyAK5ZnefgUD++9RL5qGBQIyBIuywooFAcPlD6N6igUC4iBbGraaBQLF0OkFtqIFAB8tOheupgUDx04rxI6qBQIa3H3jmqoFAe7tsO0qvgUDuNQmO7bKBQCQyxwt+tIFA3mqjC0u3gUC41COFkryBQBevJEmUvoFAaujhXJfCgUDsMwVxz8qBQK6bO1azzIFAFyqpYk3PgUCkm7wlYM+BQE1sk61+04FA/lLv7+bUgUA49IqTPtmBQFTC1oik54FAN2+gI9LngUDtpb8++eiBQIa3LX5T6oFAcIpoqGLygUBoCyHBtfKBQAmE76od+oFAyM8oB/gBgkBSXMsAAgmCQFbwOuG0EoJA0teX82kWgkDAlaT9ahiCQM7j3YjYGIJAsKGrI2wagkBGldDWuxqCQI5uuN1tHIJAEsGalW4egkAtL/OO1iCCQOacMjH6IYJA3OCKHdUigkAI4aY//iWCQFCCFA7TKIJA0sOcjAIqgkAraJicLi2CQNaZX8+tLYJAtI6EvtYugkCKhFnH7i+CQLwhQFmlMIJAYt392JoygkAw68j4RzWCQIiH66JUQoJA/0308jZDgkDtA8tokUOCQJwKW+Y9S4JAHFPEm0ZNgkDOuM8Vs0+CQAoUBvLzT4JA3k9LaTdRgkDB0uNdklGCQB48L7SHU4JA+FvSZpVVgkCgdA5cjVaCQNqosy0XWoJAMBZJEnpagkDoZAMokVqCQAVYZw+dW4JAZt2GJLFbgkDbfUntOF2CQNP1HcIIXoJA9sNVo35egkDgIL/LzV6CQMDWrEnTZoJAaMNrya1ngkBf5RiUa2iCQOkk9183aYJAdDSMw5lqgkDGFTyl0W6CQL7w81BgcoJAisalRjR0gkD6hTM6cHSCQGLpeiwPdYJAjJRTLEF1gkD0dpQW1naCQErUbDW7d4JAZ+5ENWx4gkA2+saNOXmCQBo9ZM/xeoJASFInp+F9gkByDKVo5YGCQMotoCDphYJAomogoGqIgkARqjY5hoiCQLalxTJDiYJApo6G5uGJgkAGJEYZnIuCQCpeKPoXj4JAgvF7nEORgkCWDpbByJGCQJBkWF48mYJAWWOxZlWZgkAk5ROxeZyCQBjP+I1RnoJAi6izwQ6hgkCQvsvSOqGCQIIESJTeoYJA4V0JTuClgkC40rkSDamCQOq7oakzqYJAoLgATEipgkBwiMVCaKqCQLgRLJ5QsIJAiFKkygmxgkD+xsngNLGCQIA+VUn2tIJAxhB2nFi4gkCmAKrTCLmCQE0a9J5HwIJAGDDbAOvFgkBj9s1Qd9KCQOzhCP5+2oJAqzeMYYLegkBwR+bw396CQNSGS/SO34JAiUk21dHigkAufxDjg+OCQPDtOQTV5oJA34cS4XTygkAkPXraXvmCQLIAGSit+YJAf7LoKhUDg0DH+ym8DwqDQLL+7pc7CoNArFYcu7kKg0ANtqxj4wqDQEI/D/YcC4NAa6G6vr0Og0AcWKw5QBGDQIhNgnp5EYNA56Is/J8Rg0DCOkDaeRmDQIgrE4jsHINA+cqmq3Ihg0CpwoWaiSGDQHj3ASFxKYNAD0R5sCgtg0DCk6FV2C+DQFEhBj9pMYNATN8HKIAxg0AQSoTkhTKDQAzuoj/xNINAzPEfJzU6g0CBvLgfkFSDQByqe+MjYoNAWlyMuMNlg0Asym+W+nKDQE324kuvf4NAiDi2UeSBg0C0m91SXoKDQPCgp7IKg4NAWnB2hkeDg0BQhJ1CYYaDQMzIxIY0kYNAyOVqszCSg0CqGuYbeZqDQOxnF6gknYNA3NOXws+fg0AMi0fMgaKDQOFYlPY4qoNANInMRIusg0DeneDaSbSDQCT3t7Lxu4NA+0Qk6GK/g0AZCz9ndeeDQLYHieHg8oNAaHvZU5X4g0AKdT1Tqf+DQHigLM9OCoRAybjkhecMhEBhLRjNhhyEQDRRQVIzIoRAhopyM0M+hEA4uo2UUlKEQNZofcsrY4RADvjiDZJnhEBSjkQgAGmEQPVU7ZPlaoRA/BR3x+huhEDK2oa9fHCEQENAaub8cIRARIJwXUtyhEACr+AO63KEQMf10S4ec4RA4IC8MP9zhEB4K26z7naEQLmEvKHJd4RAO6BBZPh4hECksqZjdXqEQOuxTPomfYRAJBAaOfWAhEBSNQXeQoKEQJqbZboGhIRAoM5kx9uLhEDIm/5zAJiEQEiP1kOvmoRAJhrZ9xrBhEBaEryJGcSEQGBBb0fazoRAHs+Mzt7VhEB8gyU1atmEQGoF+XNz3IRA9lAMsHPehEA2Lnx0bt+EQFiAicJ44IRA46SPDGrhhEDepaGtc+KEQOeX7spi6YRAy4uB/zXxhEA8doVJYvGEQNhqJhQ2+YRA/tj80135hECNrXEzP/yEQByzrjfc/YRAPpxyJnf/hEDENvBLEgGFQOfUNbGsAoVAnqCDYEYEhUBciz3v4RWFQLLftfRBHoVAlm/olUMmhUBZESu5l0CFQIjB09+oToVAjkXMPKtQhUBJl6ikm1iFQKCIkn2gYYVAzoEFtyZmhUAathM6oGmFQLfg3meZcYVAmlWzm7ZzhUAkBVEymHmFQDqLqMOPgYVA2BjRy6WBhUAmnGk8GaSFQBLJZ/dQvYVA0oFh4QvAhUBmzu84zcqFQBKwFJlmzIVAbrIiMszNhUBCs4kpsdSFQBw7bU0v5oVAbKVFMjjqhUAlyL6xi+2FQDqAYAfU8oVAkJI0Z4D1hUDkMd5zLfiFQHIZvRZcFoZA8sIWxyW5hkC8fLsptbyGQOysbjy3wIZAWJBRGSLBhkCWwx0X0MqGQP48qx1K8IZAwRnOs/PyhkBK5f13ofWGQDMHWDE0/4ZAaNLdMDkDh0DG+sXUXwqHQPC7pa+QKYdAVlhuEJExh0BCAm6VgjeHQNLY6SOLOYdAEK0ybIU7h0AUjQjCWkGHQPW2EuCHQYdAMCwNzNZCh0BCZHlIhUmHQCDhNqJySodAZ71MQTdnh0BxKM2yOmuHQHRVv2M8b4dAEyHyJD9zh0A0A5ssQXeHQPBgQhfHsYdA2874v8e5h0A4mzoowMGHQKDP87Ndw4dA6q9fDMDJh0BYa34kMxuIQHS1QsDgHYhAhLajxIogiEBOqFoaOSOIQPrt2eFgN4hAEJRZZXpyiEB2/sALf3aIQEwXo3t/eohAt1cYWluyiECEgVBj39GIQA== + NrgMGZxjYkCeFrCBN6NsQFf+/uF9UnBAFmZs+rOCd0DfhPAvb+N4QDS3KOULE3tAOpE6ezI0f0C4rFDd3RmBQLqZWShxKoNA5bL1gj9ChEBJwrcdnfKEQCl27im4iohArO+BOimLiUBHx6oUEBuMQHMbKEqVk4xA - + - McRCRLjOJEbK/XlEAcp9RN5iJUXTV5NEicW2RHrveEQKuBBHfZxURP8ziEQm7UBEEvF9RLQDsUR/nsZEq5mORIAPeEVRzINF+KRzRMoJR0RO1jhF8J06RM4oVERPHndELhTFRDYUPEQQSuNESWg+REkbjkTE021E/swSRWniC0eTdJNEr/uZRLrAUUZ1nWNFWHp/RNLIekQ42j5FzXpARMSCbUQ0TZFGatAwRHu3x0RVG41EzChmRWmqmUQHFcREIcA5RAudgET08KFEJB9vRIhUOEXLHkBERI8pRFVxjERd00hFyQXCRPKKtEW+GBtFg7GQRIgWzERBeY5ERxBSRfq1sEQMBtxEyMndRBFYjETD2CNEnLhgRGecRkRTcLxE0hWQRMaqOURYZbVEpAAnRRoXxEYJ/I5EvptpRGJ15kS3wqhF+uNCRKpiBEWSa6REtWopRHG/P0eJNRBEIoWYRBttbUTw4xtE2EYURYrESUaCINVFahZHRIeuKET5EF9ElYIjRPQi8EUDi15EQV0rRAvln0SSTQdFqJJTREo/UUSkyCxEE083RZCvJUUq2iJEF36eROlM0UQ/UAJGHna/ROkkNUQtqUpEW8VNRMKXPETtP0xF0dVVRFwpPUTUrYBEdNBFRN8yNET8TodEYWtxRRlSs0VADKNE8QdORMxYukQlYttE6+E3RKsEZERvY5pExF/LRH6zU0Q1nWNEWetYRr8LdUS3eSZEcPyORB2qJ0TyW09EYwEaRC6/kUWHM4FERxVMRELXv0Q7l8pEEDRORL3SeETUeD1EnlJsRBJzXUTCiZlE5oilRG9GKESLrYZEz4q+RGi6s0SCMXdExWsqSM061ETjajhFqI1eRJiEA0WAWqpHO/KlRHYuWESJsZlEi1BqRreSeUYZ2LhFKHemRT6BS0TEWUJHIct9RII2YUXIoiBEZ/UhRSjwbER+TJFErXYgRXT26kVtl1NEkxiORJgD60SWh01EU7etRVcddESPhSREgD9LRIZ0RUSYDrJEEN+jRDDsEkXHpqBEtbHcRDGu30RXW9pEH+BhREySHUQnBlhEc8KiRKPUj0QiQLdELfWWREWeOkRjV99EirOTRAT1A0XgoVFEgUhIRAork0Q7NEpEEdKRRPNSk0SWRnJEZyiYROPI1kRRqyBEVs9zROCPo0VX9GtE0iauRL7MzESZ7mFFIhTJRLvnYUQPsM1EmGypROOFa0QjejRGkTY3R27TtEQ3XxdFsjkvRMuzi0SIRqFFX9zFREvvUkT5qYNEdx28RLX2hkQdw8lEpfamRF/FqkSCm/ZE5WMHRcB5L0bglEJEkWanRE7f0kWD+9REOKJ+ROwwTUVxEmZE0BbyRKtPn0Sq7W1EB3MjRAftKUS+hlREJgWgRMXhR0RoKUVEos56RMWxp0ReKrhEGTTcRtiJTETg7UpEi5kxRFH6GEVx0G1EJR/fRKcgMURb6qdEPzCjRJR/TUR2pIxFCMLbRPHcr0T5RlFE1gaKRfMCTkQP5gZGZNuDRTI1uEajYgRFTtyGRc7Dy0RyOClFv9lURMeE3US33VZFUnKmRPqDI0Xo/QVFyNWmRMSsK0WFMVtFsqY7RKTtiERrf5ZEcEPfRCjBJkQ/pnxGXOolRLNBd0SbcERFoEsoRb6ZS0TQ1VZEdDMpRfwKJkTI27pGpMTGRIuJVETHL0RECoMHRhRIj0TRewJFqLcARVFNikRFyIxEdliQRPa/JEUCfqBF7YJARAl/zkQCAmhFLK+ERIuYOUSnfydF5fE/RM6iI0RI3qZENht5Riy0aESbB0FFO2xfRNjT5EdhllpE9wR6RtpSuUbADTREVVCbRaqPPkaM4tdEgZaERCzgAEVmaKVEUNtaRD9yfES7M1lFaHKcRJt+vkQ5ITpEjxizRBtpjETCu4NE2HmiRAeLYUQZx1BEmmNNRAbheETeqE1Eu+eAROCQPUWLbj9EkeQQRUKWekRYYIhETX0mROvpPEXD7jpG3W1TRaFi4kT/I4ZF+KneRDw7HEX+B9NERzFfROMPPkUBrzZJimTfRO3ookYDk2xFqR83RqYe2UTt/WZFTlS+RGqNmkS20DNIQth7REtuTkUItoNGts1QRJiyaETzGjdEuj3iRDYoWURRl5lE84yrRBIlXkSaDENF5JU9RCISa0SDH2xEvu48RewAykWwuLpErgIrRBe2XkTfgcBEbi3jRNmrJUWa64ZER9RaRBlqLkXNBhlFs4zSRBYwiEW0G4BExkdORJ77R0RzxzxE8EzaRI65ekRXw3dE8p71RKmVZEWdlEpEiBRYRMEBcEQymYREB6DIRHJvrEXlQLlEr2KzRGW/XUSurEtEmVzcRGt1WkTls1VF7PuVRITLvUWGprBEUf7oRHLdVUQTujpEh1sqRDdFRETOv9hEfv/qRF+AC0XgBZNEH6EcRXmPmEgeextFvoYCSCR1bUSm0gFHE1+VRh3gqkcKLk9EPoUxRqJ6B0VsSexEp4e6RoGtnkQAEQlFdFm9RGK3lEQmYz1EI+YWRYnrMET0405ELTONRRdekkWDh3dFg5rHRKHPIkXo/bpEV83CRNJLw0STFDZEvdSxREZHh0SO05BEXNiLRBbBs0TRG8REJclLRf6VAkW0H6xEFrKgRDwdeUTRYR5Ge5Q3RIaLhkRiyRJF7cwoRBUIV0StzlREWmMGRqA2cUV3T9BEbqZMRICPlER5hklEL9SVRGycREWi9khEHWR/RCvZkEYGFxhFFnqhRI5PHETObYBG2Ww5RMToM0bi/IRE9FKCRQHkp0S/5C9FGcEzRBuSrkWpMYJEA1RDRP+p3kQkfXdEw/LtRMFbIEQsonFE2GlXRCYEQkQ+g5pEzN+8RPR6oESsICxEaNs3RJxFg0Rigc1HdOeLRm0ohEQgkLxHN45IRDeUTER59XpELcXZRL7Wp0aMBzBFRh6aRKSZ2UQdyftEDzyLRgBw9Ub+ZlBG1Lk2RdExXkRey6ZEfHUkRaiAckSvGoxEpIpKRDvstUajAnhGx9eGRLrkm0Xuf1dFkeg7ROu2cERnHH9ExQK+RY/mF0UpV6REaB60REUeZ0VXMUtEwr6NRS/IMkQpuexECYFHRBQAokSMOgBFQ4tBRVzebkRBjkFEspb2RC0ro0Tcni1E4O5UREQ7KURvZydFoI2QRBRaMER3im9E0xOuRI4FbkQkKYdE2wt7RAbPGkTqq8tEWMRkRDPPKETT/VtETImZRM+f/kQs9shEAi3dRot5aEREXbxEzBSbRLdLLkZ8OI1EYmz5RKoymUTGAANG1lDXRU5wskRafO5E+fyXRNwsrkbBGUtEcsJ2RDlTr0RU9DNG/fqFRcXuekTvUZBEymGLRIR1ZkVBjV9EGwnfRPCbIUUbBkVEG/uRRN4DwkRuZ55EQiBvRu63zESqizdG4GNQRMHHF0YDVLFElmRMRTN/YEQHPjlESWtzRLyyVUQMYVxEsSGkRIARcUQCHB5ERq+xRL6HMEQlBYVHf/P1RrlYxkVTOzlEEgeBRX0hikSfHu1EDIZRRGPhVUR3PX5EE5CgRHAcOEQcdg9G2y4/RMn4DUWBq5ZEr1aWRHH0GEUviu9EDRttRMWiMEX2mmxFvtOGREwxUESz9HJEJHN9RJmtM0Svq1pET5ppRFIohESrPWREhJBeRETbS0QbdYBE9y91RECpZkTZe4FEtdRBRISCSkQ3d9ZElnNgROHd/kT5Ez1EZKpQRGcWh0Se315EqAHdRBN2D0U1rLpFCt2dRDyvpkTf9SdFXelxRs4sNETl4k9EAZ9cRf1Pz0Qq5IdFII3NRN54UkQKd4xE83XdRGePgESJcF1E+dZFRIt6W0QBPSNEyNw1RRsvM0QvzjZEq+tsRA/nQUTWQYBE3NmKREN0ikRv/2VE2JULRWXmWUTWA11EXuFeRvRewkVo5TFFMMWiRN3MckRHxYVEh7tnRenKB0VH2hhFKoHYREc5g0R8KP1EvqBRRJQojkS2I4BE25e3RC7VsEQp1jtGIZtvRH5CWURzQAFFCIvARLCFNkXBoJlEZSp4RLddb0TPY7dE9c+pRBM5xUTSo6dEShNqRGk+pkTdw39IoSDIRMYNTUR2v7FEMlquRL92mERnQuJEm7vrR5SU7URJKUBEajGKRDutuUR1QaREZRhsR/M3hUXku0xG+/F/RW6HfERVsoZEnlidRNZdKEV2cOBEtMDxRIgQQ0QWr1hEVA1ORL7ahUQQP4BGcT8jRA1/O0RNn5BFaHPZRUBcX0Rz3q1ESMSWRDPqcEV2mSFHmMObRP9aAUbHDbxEyUZkRF8uAEZBQLJE/BdZRK0dCkX9Z15EU3BYRI4yZEScukxFsaPqRBIBqkT3ElpEhHgZRt9K/ERgrlRE2VAqRELNKETOXnhEKV5CRGHkG0UZTplE4Z5KRK8gjURe7e5E7+okRbv/fkSdSJpEIxzZRBz0UkTrAHpEbXRmRFenRURcbfpFu40XRZHgVUT/wz9FN5Q0RJH8BEVnQ2VErmTCRme4a0SbcepEwGOkROpVj0SwD5JFXX84RsWiuERzrm1EbLMNRdfQfkRQwE5FI17GRIraRUSqRn1EpYlWRNcVQ0Rl9KNE5jMlRGCcTkTrwNBEUKRHRDHuS0T+fI9Er0yERCikRES4yXZEyDZ/RBoIYkSbPeVFpROeRohPt0aE2DpGjeppRiY0xkQ/AQZGqOobRTqRg0WCUtFFCoa1RM2riUVGsx1FQ3FVRNvfSUQb9KdEReluRPTEnkXzfI5EKCzDRevsC0Ve4S1EmT5GRRoRKUReJ+dEXSUIRfgcgEQrW1lEOeX3RK8jDUVBeF1EoWi1RNvtu0VyOJZEt5fCRAObDEXRvolEyo2IRLaSIUVq3TlFMJANRV4fQUTjJOBEez5LRC90iUTQq7VE0KpvRGBZTUTsg61E9YGBRDCbpkR6MeRE2D7fRACy6ESAsU1EXtZ6RD9t7kSnLWVEBTwFRiFd30UFZMZEa7tGRJTtMES+ANVH+gxyRAWmaUTG571Eju9CR4Fea0StMNpGNyPLRIRRVURAsmdEt225RXolBEaY1zxFOz6qRLs4CkWj6i5FirOfRHLoZkTAg/BFY1d5RBtDSURh6JdEURKqRLWLc0TXZuVEfgmLROD7/UQb+spERCZrRL7WO0R2YIhEoopfRKxtT0SGD6hEZyhoRN0Sh0RcoWlEp7A6RXAnhEQeCzhE4wggRXe1jETzcENEx1LJRGnQgESbhPxHRAlTRDtOY0dfO01EG1T9RmENEUUSYiNG/HRcRIJ2XESEXCFFFsu8RJHfP0QuTGJEX6eQRBWvS0RaWUlECMNXRJYj4USVVV1EjgiDRB99NUR/PkdFDDuJRCapWkQdlbNEz7dXRPMqAEWHeslETT6ARO5AhkQsRkRENSxVRA1LSkSlXj9EUalQRKCBgUR98sdEbLFqRFOuT0Tf9oFEpssdRP3JVUQPEIFEHy+xRKfAT0SdGzZE2YGHREGdzUXRY91GNZenRkM6pEQJSRRFixSkRCnpxEVaM/1E7iGIRGrCskReE6dF2LseRSmRhkW4zb5EcF2VRIzYrERzjGpEcaFZRKZ+wkTifO1E0hFJRK1qNkTM9WZEqD1vROlGCUcHtShF8/ksRfFjLERRSuZEugljRjU/QERrxhJG4U1GRRsteUWW3/RE+CiCREnbC0VjVKxFrBfARQ+tYUWYjOREd9cGRZq40kQX10FF2noiRDsFMURe9LBE2dKiRPXhTUTdHgRHwk5LRBPjjUb02SJGYKLSRA1FTEWOfVhEfbw7RCJVPERb8jBEwOYWRL/ORkTO94VEPXY6RFm8TUQoIt9E26BERDfaOETVUhdF2UFQRKAmS0SkqEVEYClZRB9xCEW8eVVEN45DRP4p4EQv2z1EJ0KhROQMnkQVlk1Fj4a6RLQzUUScujpGlBSYRRqIfETxmFlFCsyPRDlxjURFX/lEPlo+RMavl0QItFdENZIiRza07Eb940RGFOmLRW7plkT15QxGEoqnRTG+L0VbQahEzWuvRHcMoEXsfYxFfS0CRZHZqkTgCNVEIGrPRXVlk0XNuvlE9uavRKFmakQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - IqdDE2/BckB2U9QOT8JyQN4DnlPjwnJAzCmFNTvDckAQ+dmHosRyQEh26T9axXJAUa9fJ37RckCZJPZbQ9JyQN5siPHM0nJAkO04WdHTckAB2uoLZNRyQFLX0Y6633JA2kGaW87fckC84rEwueByQHfDq5BM4XJA+pR4JFHickDIEKWnj+JyQFWxC5Mk43JAJmWnpk/xckCFVXKryPFyQOLPW4t48nJADukYhg/zckD/YCWYtfNyQI+bfqig9HJAWlj4N8P/ckAerntYYwBzQLxJy6/3AHNAJkazDE4Bc0D6Y+r4zgJzQOGlmjRiA3NAHFQrz/oDc0DCxzbFIwVzQJyee/R6EXNAaODbuuIRc0DwIEskCxJzQBjEEQYnEnNATRYC7nYSc0CYRO8gvRJzQJzqyisHFHNA+sX7GU0Uc0AU6tVSeR9zQOqZpfM7IHNA2/wJKqUgc0BB3VkgOSFzQNxH05nLInNAirz/sTokc0BMJ4jjziRzQIZXIMtJMXNAinCYl1kxc0BaHvl7zTJzQFTwB2oBM3NAVu2pQKMzc0BkkGzq9jNzQL3Mr+o2NHNA3+AaA7o/c0D0O2StdkFzQCANhJK6QnNAtX8yunpEc0BOQX9am1FzQD45KdsQUnNAwFgd6U5Tc0COhOGMpFNzQMDMaA7hU3NAYJqF6HhUc0D0b5bZ+F9zQFJnYCmNYHNAQLpLeD5hc0BgB85DHWJzQPwwL2o6Y3NAUPSXI49jc0Cbj1vx23FzQGKqkhZTcnNAZLrLe71yc0BMaDvBtnRzQDF9SmxLdXNAi+V83HiAc0DAExa2pIBzQG5iz9cPgXNAEvmgIl6Cc0BtQbSw5IJzQFQCe8gNhHNARFHAajmFc0AaSyZVhpBzQDeJye3OkHNAMDo/U02Sc0DB9B0Pc5JzQK33JaLRknNAB0k04M2Tc0CSt53995RzQJMgdZmLlXNApyOYJ7igc0Bis/FkW6JzQCVJdRuaonNATyAh/SOjc0BWT/oOBKVzQIXP2lXYsHNAKAp03nyxc0BQSMszTbJzQM6AJYW2s3NAitoJrw60c0CcMq/Z+MBzQHNA9IMPwXNAm/ufRjnCc0CKc+860MJzQHJp4SMow3NAMrkXCcXDc0B8qWdq19FzQOD2/j4A0nNAcvBPclTTc0B4aGWv9dNzQGLcNp3j1HNA4CiCRXnfc0A/4z4JOOFzQOPaBWVj4XNAUcFE7Izhc0AGFGlTe+JzQIevNxUR43NAMsV65vDkc0AA6nBqufJzQE19Jkw39HNACkavgI30c0Ca4N/q5AB0QGhyoS15AXRAj7YNSqUBdEA3ainUugJ0QAgbP7yLEXRA5ifxecURdEAIReZQThN0QAzougZ4FHRA/q3AJEsgdEDIR/TcuCF0QEHoCjMaInRA9o9v/7IidECC756c+iJ0QGCWapG6JHRA0A0RH1kwdEALLl6cvTJ0QE4xewFTQHRA4KCHm1ZCdEBocRNdPEN0QFBGFtF6Q3RAzqCNc/dUdEC2RAcVi1V0QMaBoBkhXXRAvCtvZLdgdEDEKANICWJ0QAyyUgp6YnRA/DhGu5pidEDAGraKomJ0QBYmb0wPZHRAFv/a8U1kdEDEM5QDxWd0QBCmpBvVZ3RAyAzz3B9tdEDcc8SiMG10QJzy9OYhcHRAk3B1qsxwdEBsHO4JQXF0QNDkmgbOcXRArkZEa3lydEB+fEYSOnN0QPTzL743dXRAismOzviAdEAS9/0WToF0QG6KBwvtgXRAeO4gcUeCdEBW7NQaJYN0QL2E8D8VkHRAChOheLuSdEDmLHPc8J90QCIISXKgoHRAY1KIzc+gdECUQSsKOKF0QPWu/ui4onRAz7sYNQ+jdEAJamfPCrB0QLCiPPPDsHRAjo5+BXCydEA2LPlb+7J0QB6DivcRvXRA27UayMy9dEDbiRyO4sB0QGYbbLrowXRA+Iai8brCdEAkguWCT8N0QH6IN7ckxHRAtuV6yHnEdEB/ojxRt8R0QDZHUDfLzXRAEvCTGKjSdEA6/ZCzDtN0QOiHmXY803RAauer3OHTdEARkjmvzdR0QHy8WMQi4XRAvO6ht7jhdED8okNxkON0QLQkzcpO5XRALuQ1ZI3zdED2WhXhpfR0QJ+TDVmkAHVAMpFuZ+YAdUBtk3brYgF1QMf18wRdAnVAiu+ZqaYCdUByVbdOmwN1QOTWdIaXEHVA6hIvGyMUdUBOiZF5nSJ1QLmM7TLzInVAkgt4iyQjdUAkrslkdyN1QKqHERV8MnVApMFDYaoydUDS6i36CjN1QGLiWCDMNXVA7qAxI3dCdUD/TTo1i0J1QO464GrYR3VAcPPTMA9QdUCqESwPgVF1QPxD+LB3VXVA1315lg9gdUC/JrkZOWF1QFPlGEL0YXVASKW0dNBidUC0RSU7PmN1QHrU9IJkY3VAdM+FyvpjdUDU5Lubd3J1QMT3/Uv6cnVAAL2244x0dUBm5WDgeIF1QGrYZjqtgXVAcgIBWeaCdUDeqTSWT4N1QH6aGUulg3VAF5gD0ZqEdUBu7zEMvJF1QH9Cx4Y6k3VAMqdmM6WTdUBRHPZalKB1QC7L8pS4oXVAYpDMU/midUA8o0fYj6N1QACz8mFjwXVAfopTvPnBdUB2gP6TZ8J1QIiz57qnwnVAGLWGrOLQdUA/wQxldtJ1QD5UPL3N03VAOGooZOLfdUAI1+buDOF1QGfufu4I4nVA6jFpIXnzdUB+XcJPSAJ2QCRQhJTPA3ZA0uQggUwUdkDqQJq9ChZ2QLOGw0ZuGXZAKJdHRYgidkCgcOTn0SJ2QLr8wkKQJHZA6oA5TUsrdkAYwn5CHzF2QBQeoI6VMnZA6OvKKlEzdkBKqlcklDN2QF5Xp7O5M3ZA4KDUl500dkCVxbJ+TT52QHsRXCpMQHZAiL9fLB1BdkDvNGz8yUJ2QBK8gVsPQ3ZAu30N+ahDdkA+S9RdekR2QIEVu4vGUHZAY/5pTxJRdkBAoYu21lN2QCzLi4aHVHZA6TomH81UdkD5mmqE4Vt2QHKXC3KMYHZAWIDQ4B9hdkBSIznW22F2QBbOvToyY3ZApBuW/1NkdkDGlC4x22R2QMqpqhxFcXZA8GEqwtB/dkCyWzdO5IJ2QJGHXMSPg3ZAQ5bsUGSSdkD5LplY6512QEZAolcQoXZA1fuir0WjdkA4tSLbjad2QLCKCtukqHZAVGsaSvqtdkAAy9evtrB2QNIXfM3CsnZAIPn8KnuzdkBgDU83DbR2QJQgccyvtHZAkzRbo7zAdkDY8ryJTsF2QCJz6UYZxHZAwKRzi8/OdkCwUUsbf+B2QOasAF3z4XZAwLB3ZKHjdkBsyLAUk/N2QGWCt8cyAndAlqmARskPd0CJgfngABJ3QHiUaGGzEndA8p205mMTd0DQ4e/f0BN3QMST82AlHndAkDpG3Q0id0DGK94KDTV3QEDCGLucQXdAej86IBtFd0DInbO+SlF3QBbBYS2RUXdABB1xIChTd0D8hvvwJ1V3QHjL/mgzW3dA7iR0swxhd0AUVHVRjmF3QCwlTARRYndA1g+tJihvd0CHVouiGnd3QMo+AXUee3dAcqFw0niCd0AMS2gtJ4N3QJbscZAJkndATF33UE2Ud0DoGTJFj6F3QBzpSxCko3dAI63iI5u0d0D9MamN5NB3QMpUDoxP8ndAazcGGU4VeEChQL0+biJ4QFTy2WGKI3hAEoxkjgtCeEAzH38AEkR4QPEr6VN6RXhAAojUgtdIeECYMkV7LE54QLF+jlDKUXhA5NX5PYhVeED8YOZf+WB4QDdRvrC3YXhAoUeLMrhieECudGAZSnR4QBL7stpbdHhACix2not0eEBM0HnMqXR4QDAWkzbEdHhA9CNpd+11eEA0mROqxnh4QATsGyX3e3hA+g5z5iB+eECSZihWYH94QGf7wSmlgXhASvAw93uDeEBLp5WNqYN4QHD0RpTsg3hAZuMGj/2DeECgM/N1aYR4QC25a7iZhHhAIizgRpiReECyEzqGp5R4QPJplHeloXhAWEzy0P+jeECeFQLvp6R4QKolZxCGq3hASpeQQyeueEBNtHdNi694QK6kUg0nxHhAyG3U0wHFeEDYTPqnuNR4QIAY38AB9HhAMDxOP431eEDI7AZzKP54QOYx1O55A3lAMlPZ8A4EeUBvvytUmgV5QB5uAdeGC3lAQEC+MIwTeUDkRQrDsih5QLjFsOIMLnlASL3M4tIyeUCsDvgqtzN5QLIP11YvOHlAKMQ2rIxCeUD4UKnc+kJ5QNj6ZkX6Q3lAKEXegsxUeUC+B30t02B5QN976Ya3YnlAB+2Sp91keUCyx2hwR3N5QBIRxxHVc3lAxScDcdp7eUDICbTcL3x5QCrainT5gXlAgLA1cJ2CeUB7J6h6Fph5QAGoXJjAsnlASbx9FTy7eUCMi6WQzsJ5QFgA1sFC1HlAMdHwJc7VeUADYwSbT+R5QNXXoWQM9HlAIr48skcDekBGFM5A/gN6QD4iIZuQBHpAvsjTsvkFekAAXOjzSgd6QMhGD8dCE3pAAECdP04bekCQeNavJyN6QOuHNnUtK3pAmZli8x8zekAeQkhKDDV6QEAtLdglO3pAuisiqz07ekBS4fGCIUB6QBT5l04YQ3pAghmTTCtDekB662igGkV6QGSfvoqkTnpA03RQ0n5TekCLUfjrJ1V6QAVo7JQiXHpAeMLkYyhkekCSj89ZN2V6QMJ7KE0ZeXpAICOX9dh+ekBerSK8gIN6QEqaPGjRi3pA9ivUSm2UekB+ucgJoZR6QCn8OoNZonpAcoZP8B6jekB0dvf8mqN6QPoBNf0Ns3pAJBrsRAy2ekDGhupzEbd6QPR1j/crw3pAOnHHzBjGekBaA0QqQc56QP4m/HJn4XpAmr4G1zzkekCRWzNAd+R6QMDIIsk07npAwC3dShnxekCoJ88kXPF6QFSbRcXC+HpALA1MIh3+ekD3xzxrfAR7QBLoFt7HC3tAYmOePyoOe0DeTYMOzhN7QKjb6sRMFXtAD8fKPi4he0BTML04WCV7QKD1FGAdLntAdHSn18Aze0BuIpE3kT57QE3oPL3pQ3tAVQaNCUFJe0BKWGyp3kl7QLS3DZjXT3tADZD/tslve0D0/mVvc4x7QOQJB9m3j3tAuRtInyGVe0CizTs8B697QBYIvaz6s3tA+wYixwnEe0DM9JlceMZ7QBquUvX+43tAwco4/4v1e0CEg7T/K/t7QH8ZewWUAXxAOsdswNkBfECEEsNF9AF8QJl1OTtqBHxAGW3vAJoFfEBG35YWixF8QIBkjG/SEXxAK8A3qKwVfEC65ARVuiN8QAekm/nMQXxAfJia5X1OfECLQfxuYE98QGtPxTQKYnxAVlJ4fACCfEAYPmKcxY18QBD4+Hv1pHxAMq8x9iKsfECO3+A7w7J8QAqYfMgPtnxAbhQXHmfEfEAoUBRedNR8QPHdZXDL1XxAxTjy8lPgfEAAnMALWOJ8QAPj09cW8nxA6Gw8x1TyfEA3R/JRcvJ8QOal3SpD9HxASrpxpNr7fECO1woxAgJ9QOb4K5ZLAn1AmA/NCQEEfUBHSSp7CAx9QGj8KepGEn1A2VijPAsUfUCeJS0CDxd9QCr3RD2iMX1ARiZ0ZUg4fUC8GYZQoT19QPHBqfzmQn1AXkLCbwVDfUDMGErszkV9QJ6P529NSH1A+XdSwM9tfUAuXPgMIHN9QDcS+Q0md31A7u59tXp4fUAbX8Mj1X19QNKmfIMfg31AW1/LStKEfUBQNu5rKJN9QGzHtzzhlH1AOBD+NaugfUAA8pBoK6J9QP5JInsBpH1AxQtH+EOkfUCeFc77C6x9QNMSUqYkt31AiP4GSCq7fUCfEhk6LL99QJhtVB4tw31ADM+XgObEfUCfRZ4EAMx9QCIfGXry1H1AntOPWj3gfUDoa/B52eJ9QAnfYXnn7n1AFfGCfpD1fUC+ShCEMQB+QAgJNuf+A35Aus+7udYefkAdSRLkOB9+QMjgtpDaIH5A4jMPfUEvfkAG+z+ufzR+QJKRcbcOTn5AKUifaI9VfkCcGY3uzHB+QCuIEsy8c35AW0bnvlR0fkBQ6x1VqXx+QOgf4fOKfX5ARMZX/e9+fkAKm/3F6IJ+QGTlFeCfg35AinX3vFCEfkBXSec0t4h+QKJLbrumi35AimRf5JGTfkBG49bzr5N+QEKXHmyYlH5AcFRM3fKZfkAsuoS2m5t+QL7De+VNn35AGs6ldY2kfkDGmkWS9q5+QBuH3RqWsn5A9pqRKWSzfkAa6zuxTrR+QPv0/iSluX5A/RQwcba7fkBM3+9wYsN+QI0U9gbOxH5ALkto7QvKfkDMbR7lAN9+QKg0u9gD5H5A3TKgzljkfkB0fTLCBuh+QN83EOMI7H5Awo32DAvwfkA6k2CUTPR+QLbXGXhk/35AT/0q1JL/fkAgl/c24AN/QNVRmRPtFH9A2WY67sAXf0C8ri8x9x5/QDryc99zKH9AXO8s96k5f0CYqYEz/D5/QLI3XA+ZTH9ANb8dsbhcf0DOEMVbv2R/QMb242vhZn9AtvxHu8Rsf0B+VNoSuXF/QPyO/D/KdH9ADt6oxrGBf0BSXx7tpoN/QBxPKYeziX9AQuPS0mKRf0CcSR4elJN/QFThAIjLmH9A/ih1rA6gf0D+r+QXYKF/QLvGLcW8q39ATtXX1laxf0Cqi26wK7h/QOr+rcNpuH9AUoXoEsS9f0DMAMTp/r5/QPgAeMft5H9AjrxcefTsf0DYns+4n/N/QL5OGKL19H9AGWlZOk/2f0DbsR0HdfZ/QK45qTxaB4BAoG4+Mc0ZgEDw89ER6ymAQIYyAheyLoBAp8pWKOUvgECywOrx6jeAQNRlB81dQoBAZvcpLKlCgEDW8+5EykOAQHMTxJruSIBAo0tWhqhNgEBEgEvK5lCAQNmUL3UUUYBA6Gw0d6VVgEBe4m19A1aAQFIa7LNnVoBABBpyaSZYgEDEJs6g5liAQJYkEiQOWYBApowQqdtfgECVOvnNZ2CAQHB3DWe6ZIBA+l7ZZH1pgECZMlWKImqAQDoJr8cob4BAXOp2yYN1gECsZLxognmAQE4iG4ovfIBAMFglGCJ+gEDTSnSGKH+AQOC+QckMgoBARd9bYHyFgEBkBdWrC4qAQDy8PSzDjIBAWLWaLB6PgECFXakIHJGAQCZLwUlIloBAaFA4OR+XgEBivZjfs5eAQBTovLhgmIBAwowi0kuagEAuJafATZ6AQMKz8IDcnoBANChB0hqfgEB4bF33waSAQAok6fl+pYBA46UJKE2mgEBFmUrth6mAQKvBjWsTr4BA1pAEz7evgEDyLb1rZLCAQEy5U3UdsYBAUHcendixgEBqS4Y+f7KAQAI3GmpMs4BAsg6hM4G1gEAW4aDJF7eAQCYeK60DuIBAlprpAmi4gEDCTY1bJbmAQItPqcGFuoBAz9PR83u9gEBUYx+SUsGAQLJtXOSfwoBAaId0+UDDgEDHoI+/P8aAQK6qHslbyIBAHJ+KqG7IgEDhFWdQLsmAQNMyk6FTyYBAFE25zdzJgEBeCxTbM8qAQMbu0tuOyoBAQxBAvwrMgECTA0vb4MyAQMaqK6kJz4BAh0c3xyvRgEB6VweMTNGAQBBrpQ9g0YBAdLUlj63XgEAqNSUUBdiAQAEypDUr2YBADn8PQ0rZgECJmjZBxNyAQKiZULNC4YBAtSo6nQbngEDq3prrqOeAQLBcxVny6IBAUkdDwEvvgEA+mjfAUfCAQIJgbJ5n8oBAHr1MP5z0gEDckwWmbfaAQJpWavJL94BApllPDkD/gECDSP6mLwGBQNerd3RAB4FAxKlR548NgUC6pqL5PQ+BQIS6NkMEF4FAnNsJ0kMXgUDaiXDvqBqBQCB1qlbcHYFArNuKQfgegUAMVSKjNB+BQKrCfB9UIoFAAbfSEasigUC9Qnc0kiaBQLxshQA0J4FAbnQ3a7cngUDcV/QXWyqBQHCfOS4vL4FALAFEVrcvgUCGsvEUvjGBQM6tS5gJN4FADowFwDs3gUAXgW1YKT+BQGLDjywkQYFAyVYm9Y5BgUBuaxU4LUeBQPRI86rGT4FAJsnF+vFcgUAbIki+nF+BQGouhbSDYIFAiKpFNkpigUABM1R5s2aBQK4O1yobaYFA1Dp7vglqgUBj2mJVtGqBQDCYwClVboFAJLTREKdugUCMFuhYTHKBQNiydkALd4FAnE9IaYV4gUBrroPKl4WBQDhIEszMhoFATY+59+2JgUB8DTIYDoqBQJYv5Zd/ioFAANrMilWPgUBUtictVpeBQE/uHv/4mYFAkQnesFKfgUAjktcW56GBQGYlESTfooFA+nLbN8umgUBXmx5YEaeBQGydCORtqIFAeTCl5eWqgUCE5vBRSq+BQGX+mmICsoFA4KBrM220gUBGk6WtSreBQFS+jrVAuYFAsY25P5W+gUCgI1FRl8KBQBJ265KbxoFACt6kLWDIgUC09VtwBcqBQLDolki0zIFARkg3bVbOgUAQc4rpf9OBQIJwdIY72oFAmyjuvAjcgUBltgFDU+qBQDZc6Qiy8oFA0Bx0KkQJgkBQ+ZT45RGCQIm+RRi1EoJAWCzeHGoWgkBro88baxiCQBTfTWLYGIJAjMZndGwagkCFjF8XvBqCQFaQL1BsHIJALGMTKHAegkAqN4S01SCCQCbv2jL5IYJAVotH+tMigkC3CEUc/CWCQFG1AYnRKIJAwpzZjRgqgkBMIf9p7i+CQCgfr/GkMIJAXTuq8/4xgkBQHkRTmzKCQIo5aLFJNYJAKWN+us49gkB8DKAVN0OCQDQKwp6lQ4JA5Xz7+T1LgkCWaOQjR02CQIHhPXIGToJA/H2qsZ5PgkCAkC2R8E+CQK4LBpJAUYJAjB2mmJFRgkBcE3UUP1WCQEsVSKKVVYJAs35Xpo5WgkBurq+JEFqCQK5/cpePWoJAsI3UwWtcgkDc7oDO/12CQL1ujG16XoJADsDy35VegkBGM48X3l6CQA2D6bGjX4JArEVXU55ngkCg7+D9dWiCQBCwBS05aYJApGxS+glqgkA0YSPJ12qCQBQQJLyAbIJAt7LAcgxtgkC0pkF8BG6CQKAID89fcoJAOl39YA91gkBqmFaWNnWCQLMTHPAXdoJA6pzHGQh6gkAexBR94X2CQNuahq94gIJAENJyPj6BgkBFmbT25IGCQExfdvbphYJAR8o0GEaGgkCV/exbQ4mCQDLVUbdDkYJAW7MwmceRgkBCTsfNPJmCQF7IsoZWmYJArdbF+d2fgkBSzi/JDqGCQAB/cbo7oYJAdbLP9N6hgkC8IyfXJKKCQIIlqTPgpYJA4Bhngw6pgkBB9WXXMqmCQL30xFdRsIJANPH1iwixgkDr2ZZ0WbiCQNDI+h5LwIJAeIlzOqzEgkBJ3pMa7MWCQCCR8AJ30oJAiRwdln7agkAvQe8N1+aCQAAdeAV38oJAUIoN4K75gkDw7c8kOfuCQMKB7LTB/YJAHntXNBUDg0BQUrPquwqDQHSACea7DoNAwmatrHkRg0A+XieGQxmDQO1syQB6GYNA2qhinHIhg0DK+CG+iiGDQOXf7X1xKYNAXJPijGsxg0ASGF74hTKDQIYJJTvwNINAYg0YF503g0BzngxxvUODQChLxGNWR4NA8nesHH9Rg0CuuXsfOlKDQJ8MhE64XoNACoWrSfpyg0DDNrTp44GDQBDFCpQJg4NAIOoHckmDg0De6HtFZZKDQKrPJ713moNAux5O9iadg0Ak5HW9z5+DQMDCkjeBooNAGBrXeTrIg0C5NV7uFteDQB0MxrAe4INASCDHmZ3qg0AqBvSl4fKDQPjFeLbT+INAAvxT8o4IhECW4uorvyyEQGE87silSIRAnsCTxf9ohECKNfIg5WqEQNe4bSXoboRAwARCgbVvhEAe3H8M/nCEQF4wCT3rcoRA+idupO52hECM3VkloneEQHI4qyjKd4RAkpejGfh4hEBu/JoQeHqEQChZOtclfYRAlHNZK9R/hECsbg4U9ICEQFLNtutSlYRAqcTDif+XhEDFMTAeTJqEQGyzf7OwmoRACvvW7u+zhEBAcmBrmcWEQN6ojv4z1YRAts05RmrZhEBEDtESdNyEQCNxp9103oRALE3l33bghEDoNg0oauGEQNTsPzx64oRADMtn/2HphEASd7x1NfGEQF3UAdth8YRA0MHBYzP5hEDswRLcQPyEQE5y5Unc/YRAmN5484r+hEBVX8yqeP+EQHiUO2oLAYVAAMxC/ygBhUBujfz2WAGFQOKE/cdEBIVA7vqnshIZhUD6MRs6QR6FQMxzbwBEIoVAwn4neAw4hUCo90jDpkyFQGW9TcaoToVA7vThs6lQhUCGkw5rrFKFQLOYaDWiWoVAooo1g79ahUCQimkFCV2FQJgyHWugYYVA0r4ze6BphUD4ySnrmHGFQI1iVTi0c4VAZ489bZp5hUD6Vm5NlIGFQO5/PuaYiYVAxdknyLyLhUCedsqMzsqFQE83wsot5oVAGPEz5ID1hUDCmKNzbxuGQFhAx9YkuYZAuh4ZoLa8hkAw9MmNtL6GQEyWzQ63wIZAizigLErwhkAUIg0h9PKGQGyiUbKl9YZAarEbjzP/hkDdfNHwNQOHQKbAszc3B4dAhqMekzAXh0CUNe2DkSmHQK7dGkKTMYdA4pvejH43h0AYeFDUiTmHQAN2p6SEO4dAiAysZ2JBh0BIjQQjjEGHQG/y9lJWSYdAWI5nUIRJh0Ce5nnFNmeHQDAaL4U6a4dAV+/U4Txvh0AWyXO1QHOHQPhKi05Cd4dACupzhouTh0Aa1amzx7GHQAYjAG/GuYdAkrIHL8HBh0C+2PVev8mHQA6TUTI1G4hA1O52xOAdiEB8WtwwiiCIQHFpd4A6I4hAoJeVnHxyiEBkke5qgHaIQN5pbwiDeohAo2tJcHt+iEBSa2IRWLKIQNixvD1dtohA + NrgMGZxjYkA= - + - g7AMRnq/o0QRvj5EZXJuRR/oXEQ2sE9ERcacRDP2Gkcz2llEsApZRBPpdkRpFz9Ep2rNREPw/UR4j2JEuiqkRbS9lUW1k85EsC2rRAx4QEWL6odEjUOhRNrtn0QQr6BEPF/cRHxjbURAW6FEr26mRGAbOEUFJ0VERE4nR+ftWkSxLjtE0xtIRLTGbkSjo51ET2I2RE0IkUZP15lFJ1J9RKZ8M0VZ8TpEEDOmRIEAhEaQ4sdECY1aRLE7tkVRJ6JE/LmgRDhFk0R8EZBEl2ZDROU3akQQkdVEShdRRUsbTkXn4nJE3d0YRuhqRkWFrlREa5V+RLt+kEWtC59EdBiYROqi+ERmM3hEmxqARL26skRpqMxEvc1iRBwYqEQY0HZEmSxqREQz0ETlqdZEk3WcRuxzxkTwt6lEqUXQRS7Nb0Sv4KxE3xRgRMJLs0SX4zhE+eZtRzhhPETcso5EV6VhREc/YUbpeYlEQ+rERVYoEEao6oREKtWLRC2qBEXZlaREWDVZRMjlIkRSYkpF/HoQRWiDpkSwJzVEWTKJRM8HBEYtHN9Ekj+MRMwiBEU+TDBE9VyKREvwyURBI4FF3FRRRN0SukU4wK5E0dB8RMf8v0QOTLtEeBlERLtbmkQ/rf9El2WSRL/nc0R8aWZGXsfNRPWHgUSmrJxE2JpLRAEsM0UKV2pEVvmJRJWF4kQcODNEKYIBRdz5fES4M3NEaEuCRLMNe0Q7TEdE8e8qRC6UVkS/MQFFKRidRMrdtERBSSNIIFAiRRTiGkUwQaBHApFnRFvHfkQ17FVEFE6iRAAghkZU70lG3k/QRcV8uETaEthFiR1gRJ4SYkcPNGFE0r9XRSGI00Qgn4VE1GI3RX/LAEak6XNExRKPRAWiuUQEXLRFobyrRImLxEQ0aUpEWtOPRCGh1EQacQZFw642RbfH4UT+GsFEsJbORG9GwEQpuZZEugGKRGhZMUXe73dEtcVvRLU8H0Vh+3FEWvywRJbw50TLwptEI+WERNY5YkTBrqREYbNORA71sUSPGwhFVYz4ROc8UETy4q1ET673RfJfM0QiQpZEAx4/RElZsESMDntFBWjiRLzm3UTNQOBEZozVRHckJkZyb2FEOuCURLGCNkSqm0BHzXFWRDJrg0RMdztF0QfLROdnt0Wzw3BEMoA7RA0WCEXvKeFEmRSGREbV90SDZn1E//15RGYUikSpslVE6SURRX0xFEWcfWJES18GRpluAkVUEwhG9nZlRNRrgER8AjtFnTv1RGrMpUR+A5RE2kFaRGgf7kR6Q6NERGZ0RDP9ekRyn6ZECyvtRFOFREYpRpBEG/BdREbmwURHsoxE2y6JRDLxdUSiX2pEx7dHRM98kEUMiOJEYBvSRBwi3ERw1NVE6iiRRVtxckRL1SVGj+WTRVbYoEZ/FodEA1OYRDmfUURMl49FnlTMRB7USEWt0W1EHv+SRTWlP0XigFVEMkojRTBamEXUPDJEIl4XRZdVTESbs1pE2lkpRlqtOkQ1hZ5EN+FMRMbIeESV+CREIAF+RCXm50RpylFEwSNVRV0XiEQ/EdVEhR5tREb6tUZBOnNEf9E6RgPjmkQSM4BE/IZ0RKZiZETr2ytFjLrCRAncnkUfxVZE/X+FRIc09ERyYkdEy3uBRfYhQkQB6qhEmMVKRIsrEkWL+a1EyqwnRJ4ewkbGRFZESRZEREuk0kT0m0pEvL6ERdjEAUjc8XhG9XzgRlCFqEWEPCZGes5dRC0HFkV9v7BEMyeIRAYlEkXMRjlEc//vRIh3jUTUthJFInimRGZra0SbyJlEs8SVRBgdeUTDGZJE/pqoRGnoUUTCkpZEDWzBRA9ImEUV2vlE1MngRLmUGEXyE09GVgdQRZgZvkTh0YJF84FWRc9h4UTVBnlFaAlJRApADkWX051FSyVHSQwUsUUKxopF8FdoRA9VskZ8dPRE7K4vRufClUQ7VQ1F35K0Rfg8U0Tuh1ZENV5yRNk8sUQ7RU1I4YZ/ReAtqUY7v41ECVmARIoFT0RheAZFbc6DRDdMdkTlvWxEbic8RAuaP0VpkgpFory5RYytjEQ7OV1EIFRkRPslq0Ts5WpFC01aRNvdUkXFoDpF5+s8RbioMUUM52tEGxLaRJK3dkQffGdESjZvRVKDQETBkENEFdtSRKvojUTSxJ9F3JXcRHcfhUR9JF1E709+RCp2RESH6qBFRPlLRGkDoETDhK9FIzeqRFtb1ETRNJ1ERmgRRb3f6kTpQwpF2KWWRP3QOETqhRVFtomcRG2RhUjXiuBHLwnVRuNer0ftHgJGqv/TRLYgWEQDg89EbpnVRGvHlkaCq2NE1VpsRNNIxkQRHA1FhTPDRIrAkUQOum1Eu6FGROU4jETe0lNE3Es+RILpQET8XElEXzpzRGQcKkTb4rxFOizgRRO8j0V+47ZEhPGRRLaUcEThhKlEX4uPRNxgfESMM+pEyevKRKp910Q2no9ELLl1RJssIUUXHv5E15j+RM7vVUSzHR9GW5UyRFyPHUW8A2BEcCmVRCmXF0awkbVFIdnSRMpyfkTmOnBErAniRIyfX0Td8EJEsesGRfX2LESVyQtG0LT0RKW6uEQpkAVFT0iORgucjESRtddEfPEgRmmo5UTi/7tE8kmPRcJFfEQ6T55FLM6oRNKuoET85JdF5dxRRFh3aUQvIJZEcrP/REKLZkSEIVNE4KJlRAriVESjDJREXS51R1tcBUbxf2hEYC6LRBQkzkfp6lVEVR2qRnlbXEWQbz1EMOXhRLK5OkVNJp1Gv4YERwpdJUbPD3hFjTMzRS3dc0SbZVtEiZqURlHLakYb5EdFNrrhRLgMZ0QgMgFFC/RZRMqOoEUhZEBEU5o0Rc6Hk0SmzZxEniSeRRpWa0SyeYxE+hNCRBaoYkT2MHpFMwcmRKAttkRhbQpFwRPDRHxAnkQmULhEahpuRVGaXkTDYFZEE+GuROpBWkTrJZBE08IcRfqbW0Sali9EwnE8RP4JZUQU8EVEZGqRRPvOUER6yVFE6iubREk5cURaloxEyRVBRI6eUkSrjMlEjkhQRLUxmURBdahGk7YzRGENb0R67BhG6+ITRRHbQEUq1tRFeWuDRYgdzEQyx8hEldigRE0Es0YqsMNEjwtmRKsIiEZc8YVFguabRByqdkQ8r05F0giDRAnVpER5jj9GXmIBRfRVYUYrDhBG/BGWRUFwV0TylXdEW886RNZzR0T6h3BEz/NSRP7MdURs7U9E7IwYRZUeuUSajp5EQOiFR+oK+EYkvXlEQfT7RUbSekVMGeFE+ZbWRAE2nkSoqKRE940pRn4Gp0TSgy5EthU6RS7jIUXFCoBEslkNRSYlXkQ/CcxEJWC4RCRklURzdWtEpwljRLd3CUWCAG1ENTxHRKH9OUR8hYFEhypHRHriwkTBwHtEpo5kRMSPh0TvpsJEr7yqRYuNZkQ3VZ1EuOJnRCzCTkWj9UBGnS1WRIBJsERyU1NFZZtNRUtDhURp561FqWZGRMD1ZERvYolE9Vo1RMbk+kSog1lFRVhMRICEwURVRchE79uMRGj2+0R1anlEHGjBRA8yoERc/H1EaVN2Rt59U0Q+c9pFnn0bRQ8RgUTrz5FEdPKURfN/WUQxAZZExhcGRbenN0QerL5Ea3wpRFiXc0QoJxZGY1J8RLme50TjleZECECdRdOEQ0UVoqdEZENDRJ3r0EQliaREjodgRIYZVkT6IW1EPXXDRJTShUjVgLZErlN8RLeqjEQ9Up9EiQ79RLyjokSMcf1Heo45RIuRlESs9eBEDwaKRMjIcEQn8aZEnNmtRMvtg0d7/4NF+qRkRInTk0RkWElEj+lYRoDlh0TcPU9Fis1uRPZykkRbATVEBk48RaINgETxfyNFyUpbRBuEt0Q4YapErZJ3Ru8TZEQnH5JFUsxuRJHtpUUYBkJETburRNUDT0VRX7dEu91QRL5PD0eHOA5G339mRDk/UkT0ewVGBPOPRBKSAUXVXdlEOACSRAVlxkTsh2NELZpRRH51PEYZvm9E6/+oRJZ170T1yVJESUcJRZYEAEWj/y1EQWrIRCWg0ESpbldEFlg1RKzDFkVtM3VEmfnSRDssQEQIwrFEkNhuRL7chUQbq2dEuVWURJHXiERUoAlFDtgNRosKE0UooolELHX/RElbE0UTPppGFERlREqDYER7ek1FzdivRW8zXkZxsE5ECe1pRMQaUUU3+U1E6n4aRRV0gUSx+HpEpOWYRKTOGkUUgi9E65x4RACYjkSULKVEwBdyRFOO1kSf+15E5QlwRO6HaURFDk5GBX6RRg1mpEbMgCBGcA0KRlvL9URc0JpFbzGnRGUKQ0XXc6pFi4iyRD6g20Qe/N5EPSBBRP9YwkUHgJNEssSiRO7M0kVwTSRFsuiaRPyJIUXqdFdEv++SRN4gI0UUUINEvseWRN0CjkRpiM1ERdWNRbOHUUSpFHdFNHFrRWeESkRKkvhEUO71RLgDTkRe86ZE2PGeRISAYUQ7WTBEDZJjREoug0SzGYlEjp9VROw2ikSmw21EIF0xRBDjgkQAnKVEER6wRIqJA0UPQ6NEwuNtRKfoFEaZz4BEMlhRRD3TmkU8viZFlvpMRFGgwEfuNyFHgRZ6RLUQxUY89+NETqBWRHf62EWWqgZGGg0DRU4XakRVpABFgJb9RNqyqERzVuVFcM6URDeFp0Q1YadE+gZwROqsg0RblzlFdRXcRKYAcUQ89GdEiRiDRPrtV0Tzz5BElidRRbXFtUT8GIFENPj1R6DvYEQXullH3ukFR7BgR0Wg6RNGc0IGRU8O0kQ3/7ZE+78JRaXwgUSqxkJEbctCRPIYekQ/xI1EjO+jROdoiUTMAktFZlDDRNj2QUS1WQJFvOeoRKSXwkSsRjxEHAtYRE+SSUSozGNE7vaoRDks2kQIK1tEoU1aRHT8eERmL1REX+qnRYINE0dXe8JG2luHRGXVh0Xa5vtFPHEZRUWehEQpMJtFSAaURE2ogkVvSTBFaV+KRDbCYUREmRNFQVsIReN3VkQ+wXVEkJ5LRAFFeESTSGdEAh0GRxWs+EQ5IalEvVYxRUXBXEbT1LxEMAv+RYL3nkUzNVhFNeQsRclkf0Vp18VF2fpyREjim0XxZ0NFExHiRBTaRESoOY9EHrd4RLbf3EStDa5EmDVQRDBMQkXgS31Fg7BHRdn9UkUekOJE13tmREIqT0Rzkg5HqFx/Rt7wDkbp/8hEb/BlRS9prES6kENEjNtZROSUlETNuBBF1GoQRT27TEQc/sBEqf+zRCsrt0S0OY5EmDx8RcSWT0VOW4VEGuY6Ree+FEUduMlEAQVHRNKKHEa9tZJFNms7RJFTQkUZ195EdDlzRDyV10Rfs2dE1IlpRDMHC0dCsNxGcqRIRg3WN0UYumxEBIGHRBQdHEYYr4pFCOkwRRJ51EQSXzJFVNmVRVI3DkU6haREXHOGRZvmX0UDx/BEJsZ7RFTE+kT4K8VE + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - l3Yldm7BckBMZV9S0cFyQNG39rVQwnJAsnRwYuPCckBFHbXQPMNyQC737xp8w3JA8BNmt8XEckAWDRhUWcVyQBCLycR+0XJALhjJX0PSckBRb+wAP9NyQP5XS0pl1HJAlEZ8hovfckAqlAfIzt9yQMyxmvO44HJAQtu4f1HickDBw/PFj+JyQBL9b7si43JAib0L+U7xckDSQ8FUyfFyQBCpvu568nJAsP/R5hLzckAewm9LtfNyQDCbIdWi9HJALlp4T8P/ckBoYZuxYwBzQLTcjID3AHNA+ErscYsBc0CKkWHZOwJzQHdB5r/PAnNASsNCrvoDc0D+AiPRJxJzQGjBcmu8EnNAXO2pz2ETc0Bv9PrJBRRzQFelEZVLFHNAVSofPXkfc0DWl2KsOCFzQFx63fJlIXNAKpz6J3sic0D+mFeHySJzQNmdDdIRI3NA6cnEsM4kc0DS8K/jWjFzQDQ1ZbYiMnNA9Vh83vkyc0DMsbYmozNzQIV9kMH5M3NAAjFe8zc0c0CUCrKauT9zQNTir5HkQHNA5mb3yHdBc0AM3SA7J0JzQOJyYAy5QnNAsO++zXlEc0BQ894XnFFzQK5ZfaGjU3NA+l5ynHhUc0BgwuO2g1RzQLmqvhH8X3NAbKrCW41gc0CXXbUQGWJzQCHho8Y5Y3NAI3f3HI9jc0AAoCov0GNzQLerki5RcnNAQzl8jmFyc0Bn7gdIkHJzQNvkAdq2cnNAtzirobd0c0CfjTvDTHVzQGydlqh4gHNAnvnWoqOAc0B+arpoD4FzQDSEJqIlgXNAFJ/XgF2Cc0BU4VFspYJzQA+5fEIOhHNApJAsDIeQc0A6iDFH1JFzQCpfIS5NknNAJwSKcNOSc0D4Y/ESaJNzQCaxl9HNk3NADEJ/qWKUc0CMl97W95RzQOV03zq4oHNAmgrylE2hc0CmXD42WqJzQBPH2wyQonNAUW2TUyWjc0DK22G8BaVzQAkz8+THsHNAcJfPcdawc0COH7XdfbFzQEju6/xZsnNAFLikHLWzc0B8dZR7DrRzQJKMO7VowHNAHH2hMPnAc0D+Viq+DsFzQH2ZrkA6wnNAlm2cp8/Cc0DQXB4vJsNzQNLQ5MWk0XNAfN/1ptbRc0CuV1ylj9JzQPAGE9m+0nNALii/u1DTc0Deerup9tNzQPpynWhN1HNAaA/FTuLUc0AIYmq1o+BzQBh3DUQ44XNAgnLE5Wfhc0DYNvdb5eFzQPgHx8l64nNAzoqJMg7jc0Cqnq987+RzQLpSv/lT8XNALFGu5Tf0c0AOm7ch4wB0QBR1spQGAXRAJxbfdHgBdECW497TuQJ0QLZ2VjPlA3RAIpkmBQsRdEDkByg8kxF0QJftjMZNE3RAnIR5KncUdEDMuIH+SiB0QPJTtMm4IXRAgLRpZLMidEBgNQwB+yJ0QG7ahg5TMHRAFj6RXQUzdEDrrKqDFzN0QLyPJ9NTQHRA6GA/iTtDdEBk68od91R0QEKUhmqNVXRAj6ONwiBddEACvIBDP110QOvK5jW4YHRAumjSAORgdEAeWG3pCGJ0QPZDDvh5YnRADCGhEU9kdED8IBCSt2Z0QBvQOcjEZ3RA+9SuTNVndEB6cmUUH210QPrPztkhcHRAHnGFVWJwdEA9SJvfQHF0QNTmu/PNcXRAnlX3InpydEBc4csyEHN0QG7du8s6c3RA1nSGOqB0dEAeu5O5wnd0QLG3ooP3gHRA00wsRk6BdEA+wpzUJYN0QMYA8eMVkHRAKoAA/rySdECkyRIV7Z90QAS1fA0goHRAVCvDZs6gdEDMOj1SOKF0QIcqbgo/onRAzJKWBbmidEDy1zfBDqN0QM70OI0KsHRAGSWjE0ywdECjKYt4w7B0QFM1UfBusnRAPW/5M/uydEByC/GiyLd0QLK2FzPkwHRASrqb5w7BdEA8Rtar6cF0QMVW3AVPw3RAArIRY7jEdEAcsXv3+850QIK9jRoG0XRAPinhv6XSdEDOSaikPdN0QDxnVYnM1HRABPoQALngdECmtrz6uOF0QMA0aJ/X4nRAZtqpH/nidEDqgZn/j+N0QOaVlYZP5XRAovsWFsLwdEAUj4CCjPN0QKQ8P2SkAHVAVoEqn74AdUDSdronZAF1QINDRsNcAnVAnA581qUCdUDU3VxaPAN1QEpk2W2XEHVAmOVbQCUUdUC96GQ0nSJ1QP1QyV7nInVAL/BzOCQjdUAoxekWfDJ1QJQXti6mMnVA0vz9fkszdUC2ODBMyzV1QNJZ+0+KQnVADSU9ed5CdUAM021C4091QBFB5nP7T3VACGRs5g9QdUCoXEPUHlB1QG47zIOAUXVA4FR6BIlSdUCMtfXOTlR1QJi3Mnx4VXVAOOHTnw9gdUBuYa9eOGF1QIhtpfZmY3VALkO81fpjdUAts05f/nF1QNzGo/p3cnVAc+ieH410dUA219HidoF1QEXfC/qtgXVAyRPZiumCdUAMPJS+poN1QL78b9uZhHVAuU7hEoyQdUA2zhQfu5F1QH7lsQapknVA0M0uyTyTdUA0NzoUlaB1QLj3h3e3oXVAEA7Ul5GwdUDka3mbDbF1QM6etXeesnVAbphRVtDAdUCdshQXY8F1QMzkq+T6wXVA8dF+0GbCdUBoqqNfocJ1QIrS73Iqz3VAUuvGO83TdUDCGlH7DuF1QL4aeFQJ4nVAuUwrX0gCdkCsOxQkzwN2QCZLcrwMFnZACOuPdocidkDcFO8RkCR2QCJQQm1KK3ZA8x8wVB8xdkCfUG39UTN2QBXJofS5M3ZAambvmE0+dkBKjLG3HEF2QEZMDnaeQXZA7jj6XchCdkBr+r8CFEN2QCNw0Xh3Q3ZAyvY4dKlDdkAuUipxeER2QHpJDQj8TnZAZDmJxBJRdkDSSZMy0FN2QEoAsRXNVHZAvFsd4o5gdkAKq98wImF2QMbsc7FVZHZAnNPk2dlkdkBMaWHZ0X92QAQGxxZlgnZALGvgaZKDdkBAKuBD6512QBDZDFwNoXZAHqSXV0SjdkAo0Dfbi6d2QEzybTOiqHZAhD3oLLewdkBHV8khwbJ2QO6ZpwQMtHZAqcAVVnW0dkAWQdHawMB2QFB3PnxQwXZA/t7OgLTBdkAx9hqH4MJ2QE2EnG4ZxHZAB36Gm87OdkD2sRaef9B2QCp4AXX14XZAc+qeXwDzdkB8POo7kfN2QHYkJvNOAHdAmCqiyDICd0C6W9/6qAN3QI5oYi0BEndAatOVydATd0D4gbsQDyJ3QJI6wOEMNXdAZMQHjZxBd0BG2w7gkUN3QBaQJIcaRXdANmrd1wZOd0Aw8SOISlF3QGpZrfiRUXdAFseO3CpVd0A0r6iRRmF3QGUx8OmPYXdAzpSwGjpld0B1K9rUJm93QITGeJSEcXdAhIbWuPlzd0AB+I+3Gnd3QB/cLsoce3dAPTovUyWDd0AwlybmS5R3QK6n72T5oHdAVKRgDiSud0BFHTj0frN3QLITRw+btHdAdnWFWkvTd0BAhDQGUPJ3QAeLQj1HA3hASH+OkG0ieEDeiBqaiiN4QDF5jSLRI3hAKJeoWaUkeEDmlS7SejJ4QHDD64wRRHhAtmaaAXpFeEAFsOvQ1kh4QJZZ17cyTnhAJAPR+8lReEB8KqlGilV4QAUeEcn3YHhACGgYP7ZheECoekrn5HN4QI3asyUadHhA5qxrqSx0eEAFhuU7X3R4QDh1+42LdHhAvi+6Dcd4eED1JsAU+Xt4QFEp8YogfnhAXLODTIuAeEBCeD+aPoF4QMKhAjKkgXhA1E0J3HqDeEAE5FNwmYR4QF5yyE3YiHhAVOAQZ1KPeEB5vErBlpF4QB7V+x6nlHhAglRhjaaheEAlutxAuqR4QBGnDsWGq3hAcseZiSSueECmR3d9i694QIx/kWF9s3hARLPkN83AeECWheQXJ8Z4QG4xVnm51HhA4lNnLpDzeEAsBiEWAvR4QEFeMgGN9XhAFMDOVyP+eEAHgbb0DwR5QIhu/rGbBXlAqG4DLIkLeUBGwpE3kht5QNoTNd2xKHlACN9dwQ0ueUD63VSU0zJ5QOAxMqC2M3lA/DT7djI0eUAKHnamLDh5QMOQcN2DPXlAAXD/BYpCeUCBY+aGpEN5QIMkldX8Q3lAyrVjAcxUeUDU1hPxUll5QOLhUX7ZZHlAVp+Fwj9zeUC+VJfI1XN5QPouexnae3lAxPnGIdyAeUAgppNvmYJ5QCby0isVmHlAS1RluxuheUBc0K6kwLJ5QASMGETLwnlAO72JKEPUeUB26W8Ly9V5QCxj1INR5HlAKJygZEDweUBgxs6CkvB5QEvUMLtEA3pAGHZ4rf0DekDGgIedkQR6QOOaxqj3BXpAFHPolUQTekC4TFUbZR56QO/ym9onI3pAuFZ8sS0rekBe3JXuHjN6QISXXFo0M3pA8PMo3gs1ekAZEYr4Jjt6QCQLe0sOQ3pACYuK4StDekBrlEgtGkV6QGbk6OSBU3pAiJN7XyZVekBsN11zIlx6QE7aXPwrZHpAEK9mJzllekCoLnm6vXN6QJZIwB6AeXpAE5fqmMWDekDzp6GOHqN6QIQAp54Ns3pAUPQGHw22ekBpIvgxELd6QH7Ra9oYu3pAGzhh0ijDekButGMSG8Z6QOkWycFAznpALHfgZE/RekAh09oNNO56QCoE+8Qb/npAoGzuynsEe0CEMpjsxgt7QLYCjl4pDntAYCFDsNATe0C91NeZTBV7QF63xNBYJXtA1InmQ8Aze0Db6u9skD57QByTioXpQ3tAlEOgMXpFe0Dcp3wTzEd7QFRIfF8+SXtAzrvcT19Se0C+A9Wcx297QPcIq9wklXtAqDOXhPuze0D9BYo0BcR7QEmHc8p4xntA71E+I17Te0AmBVEi/+N7QIRzgUEm5HtA6HyjoJfxe0DwKcJOwvJ7QHL9c/aL9XtA2M1Mr4wBfEDpCOkY2gF8QNLwJXr6AXxA0sTGGGoEfEAsf+NpmQV8QBFXCwmGEXxAFG/KVM8RfECZo6h4uiN8QMT2rAHNQXxATOPHAtpRfEDuFYBQ5VN8QPhM+C0rcXxAL2I8MwVzfEDgPVH/AIJ8QF5RtFYpk3xAQC0KXrWefECsDfXHkqR8QMa1IGW9snxAi+xlAHm0fECWzfX4ZsR8QALnXuR01HxAjDLjvs3VfECqF8Tl9Nt8QJaDMtVX4nxA2pb5onbkfECWopZqF/J8QNEWiWZV8nxADgzEbl/zfECaKidx3/t8QMpr8bn/AX1AIsMYv0sCfUAiVIykAAR9QKryKawHDH1A3D9b7EUSfUD8H3LHExN9QFJ8Si4PFH1ACaH8vjsifUBmgZ0XRzh9QG30DdmhPX1A4lXhbgBDfUCwwnJP8Ud9QKIReJpRSH1A6OhVDTtSfUCiapiuP1h9QFzU2kvVbX1AACRH1a5vfUA1da12IXN9QB/2tYF6eH1AHMoxrhp/fUDws6ZVK4N9QMM+42fzg31ATOgSidKEfUC03ZEF45R9QIPM0rr7o31A5tFiEaGkfUDsWC0fJrd9QJDgaAB6uX1Abqsu4rG6fUA0ujA3KLt9QBKCuif5u31A37owfuXEfUDo1NdA3OJ9QGzU2cLb8H1ALPQWn5D1fUBaLM6GMwB+QJlspcT7I35A3MVYqj8vfkBfFoftQz9+QEAlnNvTRH5Ax/xjReJOfkCGpvpVKFd+QJy7E5EOcn5AMo4ourpzfkD34ktr63N+QCZ8Iu69dH5AxtcDmIt9fkAxKEt75oJ+QNL9o/ifg35AghX5S7qIfkAUs7AuIop+QJfAyp+ni35A3l+BsBOOfkAOsK0hkpN+QDjjPqqyk35Akrl8qpiUfkD0Xp7e85l+QJM/G+uKm35AoNKDb7ucfkDuQvYoUZ9+QLZ1WbqPpH5A1BsRb/WufkCSZXNRYq9+QPia9Yq6sH5Apr9uSJiyfkAovKvRdLN+QJLuKupPtH5A5uGG4aq5fkDy4apknr5+QO5YmAcAv35AfqJzgRrCfkC3sFPSbsN+QKSraY/RxH5AMyhFahDGfkBxi9kCesd+QNzRhjxFy35ABn9k3JzcfkDaHHntt9x+QCgPoiXR335AiL6fcgTkfkAkvZEqW+R+QJyaUKUG6H5AhqVfH7nofkCaaWahCex+QDZ6RKnW735AtkefkA3wfkC0k4BgEPR+QMKYjGvW/35AlETsyhocf0BdSbbFpzl/QGAC5xkAP39AWHEt39VIf0C9htlaoFR/QOM3pLY+Wn9AKqQNlbhcf0DRrBKOv2R/QFHpNKlGaH9AHx8K/sRsf0CEo7JtIHF/QNTlmEa3cX9APqFnbsV0f0CA5kYox3x/QEZIG5nQf39Acy4n8rWBf0BdGAuCo4N/QLD1kSHThH9AmYe2aGKRf0Db/oxrrJF/QJc0ji2bk39AWCUQ7gugf0C28gWHXaF/QEwQlfM9r39A6J1MdFWxf0B2TXw6arh/QFxhRnLFvX9An0i1Df++f0BZ2oa/+L9/QAjXTpoJw39A1z8TnWnIf0B4j5dwot9/QLQdm4vv5H9AxJoBszkCgED8O0lT5wSAQP6G5u0mCYBAMvPpz80JgEANeJfO0QuAQBIFzup2DoBA+vs5+CQRgECgx+/TzRGAQHT2p0NcGoBA3OiCutMdgEBgYDbMxyGAQJitugqZLIBALtBdeu8xgECh5JpiizKAQJbMxVDHOYBA7u4UealCgEDN/EJFKUOAQNRsMrztSIBA7r8TjJlJgEBfw79bqE2AQC55gZn2TYBABLq2o4lPgEB4+TIX6FCAQAeCRsMTUYBAfBTAezZSgECkpFlh4FOAQPhlaOcEVIBA6HeGym9UgEBaMyPAZ1aAQH6latcmWIBA9EnLp+tYgEA6CvpDDlmAQCnr0uXgYIBARgb6Ny1hgEB8UlHuGWiAQC/5mxMhaoBAVADOmSVugEB3QLyCKW+AQC6/9G7Tb4BAHkmm83lwgEB6K1Ba93GAQF1l9wzxdoBAjKv98CB3gEB4BfAQLneAQHpILlsheIBAciEMI4N5gECWse4FMXyAQC41f+Qof4BAcB75vAKCgEAKc1IeXoyAQHTAV1wej4BAJnBjPLOPgEBl19cGLJKAQKCZwDlHloBAQMapEh6XgED7GcNeLJmAQGAhUT4dmoBAEqLDZU6agEBOuM36mZqAQOyrjLXHnIBAnDS/Yt+egEAUCW7eGp+AQKBsPkCwn4BAvDfJYBGggECKD9NfiqGAQJHF6Px3pYBAbNHA4jmmgEBx4iV6h6mAQAZ/h2CxqoBAlMWwhT6sgEC/B5GnE6+AQM7RsEazr4BA6A8kDSSxgED1S8LvgbKAQOb/g6CUsoBAqtdD30yzgEB5oABvfrWAQMq0eXEVt4BASCHHyi+4gEBgs1pSk7qAQJpEs/S9vIBA5N86qnm9gED2DblIOMGAQBca7m1SwYBAqtBumZ3CgEA0nX+dpceAQAaABDdgyIBAVGJp5B7JgECQ0mM7U8mAQOq/IIDayYBAjFi9lZbKgED9FUWMT8uAQM2qdNvgzIBApRd/qgjPgEAAwvnXAdCAQPIRXlRM0YBAQP7FWWDRgECtDuSll9eAQEnYRH0G2IBA1AqwXErZgEC89d5DROGAQAkniIvt5oBAwIgcvvfogECmubWBS++AQEpg/wtm8oBA7hLi7jvzgEB6QPzHXfOAQIjLtOdm+oBAEEjBvD//gEAsyopAQAeBQEaEDrboCYFA5nW8Kj4PgUD8MAJudRKBQDZ8wNA+F4FASgvLaacagUANjkGjNB+BQD7lO/yvH4FAgJ716eAhgUB+ENwXVCKBQIBmxhWvIoFA4o2UgDgngUDtLgBeWCqBQPHzn6BXK4FAbtahavAugUAaJMLRLy+BQO6sRfC7MYFASLDCSbIzgUDkgOHxQD6BQNe6WR4pP4FA8toiXyhHgUBeTKDQDEqBQOjq5vTzToFAjxXXJfJcgUDgeFI4016BQK6voD2cX4FALn4SSIdggUAm1VNqnGOBQJ5SdjT0ZIFAIHLRbodlgUDXeiKYsmaBQOKqqjr5aYFA5nkf26NqgUCJSKIW42yBQCgmrgekboFAPMB3uqB1gUB5NgGsYX+BQI7RQpELhIFAn57YcSCEgUBLaTq/3ISBQKL9IN6ch4FAC/uuQM2HgUCWYbhQ7YmBQPLm4XIPioFASPx5hX6KgUDo0Cog04yBQPQWjDTyjYFAGBpU2haOgUAq6CSIF4+BQCu7urdVj4FAZstVQ+aRgUAO0tnVg5KBQA9c4kuvkoFACGsGp1WXgUAcHK+clJuBQDsiamJSn4FAH+9HJuihgUDfpM4p36KBQFg6HZ9tqIFAzDbmz+aqgUD+ThqASq+BQJypr1xKt4FA3ac5a5W+gUCDubscE8KBQOctBu+YwoFA6miPSu7FgUCJa370s8yBQFla4LNaz4FA9v0eXfzRgUBWT7vOfdOBQAi3huP91YFAZlFC9tTigUDKVWKipeeBQEcwpfBR6oFAYJ6bG6DsgUBwveD15fqBQKgkSqx6A4JAmrlY4wMJgkD0er+Y/AmCQOwvGea0EoJANZE64mkWgkC2YRd7axiCQMrRp0nYGIJAIJAOpmsagkAsiLpruxqCQCYw3LDWG4JAmnj2H28cgkCooGUFbR6CQJIUe0vWIIJAwN3mLfohgkCsR6RuwSKCQGU0l0vVIoJAPtV+Pv8lgkAkA96/0SiCQDaVE+/uL4JARrRZ9JkygkB07GfERzWCQPjzu4fzN4JAquZj/cU8gkAs3C7efT6CQILrUaaeP4JA7oaR2DZDgkCYl72fRk2CQMV62d/iToJAkNt0X6BPgkAfcIvZ9U+CQBvE8Fl4UIJAgERjgZNRgkB9K7P4lFWCQGlY+M2NVoJAsIH6IZxZgkCmGB8fE1qCQM1lTa56WoJAkkgWu5FagkAWvEHm3lqCQLs/ZRagW4JAithIbDtdgkD0awBLCV6CQITu9SOCXoJA5GLt6XdogkAIaz65OWmCQL3GM2IDb4JAIzJ8GxJwgkC8Jh10YnKCQByses8OdYJAyB8NITd1gkDOjL70AnaCQH4fORvRdoJAc9W3j7t3gkAtnsxs4HqCQNK6UZThfYJA4NnkBOJ+gkBwxXJO5YGCQOoqwNTnhYJAdg5HR0OJgkCJ9AhOPY2CQBJN1rmpjYJAkPRJlEORgkBE3hhqPJmCQNq9ylAEmoJAvanBAg6hgkDmiwwkPKGCQPZHd/zcoYJAnXdb7M2igkDgngwK46WCQLJRaWgPqYJARXzakTSpgkCmGenm266CQPpIYRtSsIJAjqKpxjSxgkDIe6Y5V7iCQBq/H/U9uYJAnN3vgiq+gkCiSBglScCCQHa9tSXtxYJAvFbPneXNgkBT48SDDNKCQAeNXy530oJAb925KGjWgkBXGrM5f9qCQGzCRMEZ4oJACIqLg9PmgkAY+aJh/umCQMBhNbF38oJAnsJOwHb0gkCDxDtAr/mCQMW2DQjA/YJAfkW0EMUBg0AujlybFQODQHwKsMK4CoNAAi/0mRsLg0AibWFmeRGDQCckMf15GYNAaq5wzHIhg0Dfei2DcSmDQFAZDMAoLYNAqrjDJ9svg0BMqgPWaTGDQGiY1JvxNINAosUSCp83g0CJi8PxSjqDQCooxu03R4NANPZcAAFUg0C3K8dF5oGDQCMSzCJggoNABJrljgqDg0D7SgcbYYaDQJaVfGYSi4NAUllcd3eag0BgA6/zJJ2DQGDpCfalnYNAI24jVtCfg0DE1sL3G7aDQATnCGXg8oNA7mSRs5T4g0D0WRBYhPyDQDTOoFWL/oNA8hPdvqP/g0BQjgXPUwKEQD2k46ijAoRAnqjrHGkYhEBc/aCbVzGEQJDVQn8ESYRAy5VGMvJUhEA4JprTJ1mEQKoPuQ4AY4RAhlU2n/9ohECaQCzS5WqEQKxOhd3LboRAIjiJo+huhEBOp2ZM/nCEQOunyBXrcoRAaDXBvO52hECkEiaTyXeEQII+fYX2eIRANrXdPnh6hEDmIt9aJ32EQCU2LsjUf4RA1+2EkD+ChEDqP9nZTIKEQISJjVkMhIRAZ+W3gdWFhECAXwu2UZWEQPcL5SQAmIRAVER/oXaYhEA+Hw5aepqEQB7mcqermoRA2MZbR1qdhECeySETc6KEQB705krErYRA+KOY8DWzhEDq/8gOuraEQMpIjp1jzoRA4GhZ+vrShEBIsA8hatmEQNa4YrR33oRAILgiHWrhhEALMZ4kYumEQMwqqWs18YRAbJYwLmHxhEAoqQCw6fKEQJ7LEI81+YRAf/bVoFn5hEA2uiLZPPyEQDU1Byrb/YRAcCRz7HX/hECiJSKjEQGFQF6qsgSrAoVASvtAFEcEhUB1g7DTeReFQHp9khFCHoVA9Gqt60UihUCIsnzkRiaFQK0LdSmpTIVAEKZ3kKlOhUDkT7+AqlCFQOjXvVOqUoVANOLIcK1UhUB2DdMYoGGFQNAS9o+gaYVARBCgc5hxhUAyWkeHsHGFQCTT3y20c4VAzMEmo5l5hUBmejxZlIGFQFw/BGexqYVAUPEImoK4hUBe4XlRMMmFQGuz0lhhzIVARdNVY/rNhUAjWm9oLeaFQPDkIZIz6oVA2heOBiruhUBxNgr/0/KFQJ3hh0aA9YVAvJVQoy/4hUCOcdR1j0qGQBygerE6a4ZALwVb2YyHhkAhfcftl5aGQH+3iWUnuYZA5/lxELa8hkDGgEDQuMCGQMC91JUhwYZAMsmqNb7ChkAWqa+oSfCGQIRZT3r18oZAju+UdKL1hkCmJQ6AT/iGQC5hS5ky/4ZAt2FEfTYDh0B4H+zxOQeHQI6lnsaQKYdAi9qlXpExh0CKNcL3gTeHQK4bLXyJOYdANl5kOlxBh0AZLRQIjEGHQF7IhwLxZIdADGiPBjdnh0BLh5inOmuHQLNk/3M9b4dA8OORc0Bzh0CDflfeRneHQEB7Ij6Mk4dAGZvVZMexh0BNgWVOyLmHQOb+8Ty+wYdAMBPs+r7Jh0A0WKj689aHQLBrB54zG4hAgaSiieAdiEC447lziyCIQF5XbuBmO4hAuilrZW8/iEAuhSN1IXCIQKxsJ+J8cohAJOku8n12iEB01Ir8fXqIQN+Ek51XsohA0gvaal22iECTBCIUgb2IQA== + NrgMGZxjYkBxWoXuS4RsQHzKEHuiRG1APsNkkamzdUDMvNRcKXN4QCyBZO4X5HxA8tmTKlc6gEBdbNgGeHqBQLkFOjrDQoNAJ3ShufmShkBM5t11GkuHQLpURfVQm4pA4MaBsXFTi0BONekwqKOOQHSnJe3IW49A8YpGtv9VkUCfV/dPJTqSQNWgGb412pJAg23KV1u+k0CbXi78ltqUQP9cCu92ipVAf3QBBM1Ol0CA4pLV12aXQMj2QdDtqphADwvxygMvmUA= - + - H7gdRuEaKkTzVsVEsrK2RBxO8kQuUZdErV2gROyibUQHv45EXRIGRzOfLUQixEZEh8xhRMFr/ERg/AVFLL9ORbwKcEXid51E1Y2kRKZhSEVZyExE8LE5RKSLnUTS30VEV+nZRMPyS0QNmZlEXExgRLMRwUTOkkFF/hYpR+AFpURYhDdG+iw8RJmXpUVidqpE8+sQRXUUkkbunJJEoNxtRFVe40TzneFEWPmsRbwtvkSdSY1EL4DIRBTIhERDo41EwxqDRHz7XkWDdJJEFsJKRTneW0S3toxEW/4PRgrYPUXk4nRFAcyaREqmlURbGLtE6FxeRJT8WUQlERRFySGMREJFakR5tYhEWctiRA/1NkSOsTRERkF1RBrkDkUFYK1GXBewRFDQPURhSWVEq4n8RTTsTET2gGBEMAoARS4dRUQSAENHAISORG1rRUTQ661E2K2jRFbkgUYkOLlFud1NRJ8R/kV0OqxE/1zKRPXP0URaq2hEeQJ7RBa51kT7sF1EezUnRQ7HGUW4v3VE8s9jRLOXKUTYsppECNPLRatkbUQ+YEZEijYtRUBaJ0Tsw3NEYHZGRNTbi0RD5DZEa9+pRbtrtEQM9s1FiZqBRHNGn0RD6MhEbdULRb8ljUSApopEIUQBRemEg0RLFzREMKFcRqz7iER+Z3xEYmxNRGPdHkQBZVBFCc+OREYqlETx9RZFSSIIRVOAVUQ+gJ5EjY0mRNxxLURUjFdERsudRM9UoEQZTLZEDQUUSGcaZkQisldFpSdPRLSSmkX8+p5H/VCkRLGIZ0QaO19Glk1BRs5NykXGf5NFG8+IRDjTQUezLX1Ec5MaRTh9UETzD/pEwrpvRAvhZkQrYw5Fl/wGRpTbn0RHN6dFzOyURN/ohETaKSpEsSwERQSqlEQxMitE0UarRB+uP0VzHPZEFxxbRP82FUXig9FEp31NRKlhqERNZg1Fc+aARBf6MkSjiYxF3FnJRBrIlESibVBEeqNoRDFJVUTe4KtE2oRVRGB54ES+sTNEH/JuRMePcUS4SKdEyMNTRMoHt0XbF7REKXiFRB+GvUR7MnNFyAMQRV7wWkQJ8sdEFkkPRYtGUEYj1zlE+P8yRUCIQkd8ILdEVkpsRB1qDkVJmZxFea7jRHIRl0TNtNFESu15RH5kRUSMrppEim5XREAQtERJZdFE38x5RNQVAEVMt1VEjzSERHYgMETID+RESI86Rlvk7kS69cNFeaelRKh4CUWWQ89E4gxARM+InkQiMmJEeNGIRNSzQER4B3tE245VRGQTLESQBzBEEguSRAdelUQIhMJEcR+gRdXTJkQ9h01EBSmeRHOvjURKibxE/VKoRe8mcUTipJ9Eq6hkRb7960XSkD9FQcyqRnCuEkWyYQ1FPjgpRdJKhkWD4z5Ew7hGRXRaikTD711EWoyCRFA3eEWZcrNEy0gaRRA6UkQvezVGsPZ+RE+XmkSbAlxE0r4HRcXKGEX101JEna/HRKIkrUYHrUxEmNcSRtU6RkXVeu5Eqh5URIjTIkUf+pRF8BA7RK0JcERYb4dEGVNQRArxRURoH4lE9H1XRbG9mURdl4xEAQxEREHAPEWQ3UhEa46YRJnUNkT6y5xGMpWDREiZX0UdXO1HA4uNRlojd0TpJtFGyXZGRPFnn0XNOkhGP8IFRdwbjkTO2yZF3dV+RANVT0Uwh5JEhjZXRDTBCkVT1fVEtRahRIsua0TkVnBELZaPRNU/ikSfJW1Ejb2HRKPsmUSBHVVENv5KRbLmmUTPyNdEoY9XREA9gESzHFNFEio/RqTbR0V7K+xEUzSJRfAEn0RrvxJFhdpERY/UO0SkU4lEtgSjRONWGEXu3UVJi6erRglpN0UGxSlGgNovRJ3RZERCVChFlNhnRcrDSkjhJrxEen9ERMqLhEUc+JlGZ+dHRI2iZERKPtJE+JoGRQlesUQlgGZE1JyuRL30OkTD8j5EZepPRA0EbkWeGPZFQy5bRNTJuEQ5mbxEiN0YRaioQkTnYYpFWMc7RVzkCEXpHilF9VhMRKEEgUQ/qFxEiTG4RJUzcUR417lEqtKrRUuOe0TX9ZhEM+dmRLUGfUWOKfRE4eFSRDmiNUSoNFFEtzpHRNl2NkV+RIBE9VOhRZavlUT137JEWE5hRNJZMESasJlE8GHxRMQVIUXit9hEAbJORQBZOETzN25IbDO/R6hfs0aUYIBGAGfKRyiq30WBwkZEer/lRH3j4EbGb1ZEp0wSRY0/PEXtIF1EyDF3RBjEq0Rd969EJN2MRPuXukSAgJVFg0SyRVh3jUQHXu1ESuKeRMSgjUTUmI1EM+ezRCqy6URKk6pEfsFQRRpPM0W5KsZEZRKARBaSOEYpv05FCz5wRMUZ0UUPJJBFTkxwRBhuXESOkL5EVoeVRNyKQEVBMnJEAaihReyr10SZPGZEh3pzRD5ay0TGvFBE7gCWRQc4iUS/gZlGAFhuRIK3L0aEfcBEptGsRGuro0U1kHZEtqqJRc8Le0RS2Y9FPAmqRD/BbkSUeI9EsxlRREpyXURR8npE5idgRMNFoETpVKxEVZiVROXMxEbxr6RFtuF8RBmDmkRLfuJHm4hDRFwH8UQFvuVG4FR0RPE8rkSpIgRF6PiWRp7f0UaNmURGBrJVRbPqkUR6vhNF/Jq3RL2Pnkbi5TpGFXZxRQHzb0QogNBEwtMyRPiNYESJ2YBEkehnRJKTvUV6czVFMiZIRKwlTURXMENEKC7fRUChxERbDxpF0EJyRM+430RYrvhEmkU7RLE7aUWvQFdE/qM2RWxQfkRuo5FEWq7aRMlXZUSJVztE6D63RIcZfUQqzqFEOeOYRKtmRkTps49E20WFRHEpLkTl/X5ElwxlRT4NnkQZN8JGg651RIjgnkTZYBZGChJkRA1Yv0RradREzRivRZW2u0XXvj5EQqtxRAPvikSwBYdEimawRgSQP0WswllE1LQGRYl0xESvgCpGFCmiRSIEQ0S50vVEwdSERIWbQ0QsKQJFKxFfRMfVWUQ4nNREW98dRKE8SEQxCmtEnDs7RnkhW0SCpJhGmj5oRL2aE0bWFz9E+0/bRCsFSkT6UUFEEP9FRP5YukSiTIpEor0sRAsFnUTiTGtEMedwR8ziy0bsgE9E/u/GRQxfLES9k5pFS4CIRBLOV0Qe7z9E8CvgRA4NnUTGaZdEg+cTRpRgsET13cdEc3mEReAAL0UmcHREFrMdRc3EGEU8XtBE5/1lRIXdUkQYTI9E+oKdRNtGlURD77lEJgtLREplw0RQx3NExHSERE8caERzh0REO85JRFIMy0QSgZtEg21aRM4JekStHIBEO4R7RM+vQ0RtqFJEvJ+IRemRWUQGCK1EsvWMROBViUTN4UFEF8iURCpOHUW2CUBG1j2KRH6+T0QtUe5EG7pvRM8qT0V76D5FDD16RFeiiEWYNnREonNyROD8gERuIjNFDrhhRMBGF0U+kjZESt52RG+2hERYZZhE4vRMRHxrhkSlr2JE1ifJRB8Ig0Sl6L9ExQF1RL/mtUQmnWpGT51MRNDGKERizcxFClFGRaUzUkQqrmVEfEHNRKcFUkSL1W1EMMw8Ran3oURxtytEjnFwROynikTN8J1E4xKVRChwHEXBh3RE4y88RF1XM0a1GolEjuhtRDYi5UQHIBpFDi49RAEAfUR+TOBEEbaERO1HYUTgS3hE5P+oRNTXZEQyQHhIrsJqRA/Q+0S3gcFEn3LIRHbL2EcwhZ1EIBVjRCV8hUSQOB5F9eiwRCMKv0Tx1nVH+rpwRffRUER5SLZEg/9IRkunlUWlVJpElNm8RH3dNUVs4bxEufyWROHyikTJuZVEHJCDRrlrgkU810BEZSyXRVgBTEQMj5hEI2eIRdxaCEd0fa9EKNhrRCwSz0XeAJ1EbzLoRUnun0SN4UpEdFgfRP4cMUXJxmxEH3+ERC7QM0Q5Sj1GOdjSRC5MPUTTW1dElRC3RKp2MUQPYAFFZUFMRNMEBUWPhYpEwI5wRK7B/kQRGnxEZcHmRIJBFkXQ46NErBtqRARnX0SUGhlE1fJeRHsCV0Q1dVhE4658RMYafkUw96FEOShcRRGBM0TdiRFFzHJiRJksT0Rk0ddF1QOARL/KdkRl6lBECcUaReOtRkSCdtpE3/0ORY/wiUYASgtFZRgvRct+P0bHs25FNyVnRXW3ikT5pbhE5hFRRFO2n0TEOGNEuXW0ROce4ESvcGlE6h1iRJWP6UQN0l5EzZOCRISCfkQIxTpEKN2iREzuR0QW1X5Gg3s6RlIBQUbunTdGrd2JRcnNmEWVKE1Exa6GRfxN5kSGxG9F8/S8RbTpR0R4O3JEstfORGu8LUUaL3RFAIA0RWJ//0RtmHlEtqmJRO9wUkQ4J0FEai6qRAnbc0TKK4NEdczGRNyBlUS7LEBEmAOFRW5zAUUGvKBFsDqPRN751ES9/YhEyuvXRBbwS0SUgbZERPseRfsVQEVZX1tE/k60RNf2rkQCfFBEp+A8REaFDUVMOS5FGZYERZ3Z1UQO7ThESTr7RCa5X0RxNuhFqZpkRKpumkUc7IlETmTaR72an0Rc8TxEvTIwR1Aq2EaN1k5ECQ60ReP7CUb0g2ZFYeeQRHCxl0SAqypFFm0dRdNcgkQDTsVFRB1nRO1mikQDS1tECZdVRMtBrER857lEE6RKRGGGT0QMhjhFG5BhRPhj2kT9csRE8yZ8RFNra0SCoMBEpe+kRN1HnEQ96q5E0j5PRKqMPUWHFp1EZ9FVRPTl0kcdhjFHPoXkRkxd00UOG8BEbljXRNHfFEXzKBJFPs0YRe6V+0SkwD5Exed7RJeiTEThWIVEl85SRWuGr0SWTqVEtMZJRBpWoEShc2VEivaUROAOUkRLStdEOWY8RBA2SURrzzdENvtlRA4MmkQfo5FE3EBrRM4OLkS87nZEAe80RPEYTURMCYJEusneRaoDJkeVXUlEZGXvRvuTM0UfSPBFoZIHRU8jiEUdwpNE8O+NRVRojUSNUHxEHmUiRLFKKESYtTlEE1FLRB7quEQU8AVF4zFSRGkJYUR+xsxEdLqSREQEckQzdGBEx4V3RMd0bESnUzZE4D1mREVg/0achpJEi+BTRqhdJkamfzZFxPZhRYFNR0S2y7FEY0mtRN/xx0S2FNBF5lqrRbppKkUIbLZEho+hRAQu50Su4TBFfwvKRCoKfERZS8pF0NPzRaMBxUVTY4pFgxXAROamBEdpfExGzVARRj4uzkQfJGVEX8RuRVQctER/kGVEuhtuRLKyT0RPEN1EqVtkRKAUq0SAZF9ELW1oRK53j0TVhXFErnK+RF0VT0Q1VcpEkGItRK+eeUSczMJEjZReRK24aURi+0ZE+Pk8REAQaUWHgwVFAPgkRRAShERvY3VF1dZERegHdUQ4KhpGQDHFRRbnsUSOpGJFyQcBRWvXnkT8k5REMrMQR/oCDEeEPGJG/ultRUu8WkSY6Y1EU9fzRXgSgEWToxJFBzJ+RGKxRkSHJyZFBZ1nRUA1l0RCpo1EBCArRLAoTkRZBDVFzjJrRROxH0WWYixF9ZCLRC/Cy0Q= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 9HoJ4HbAckCecs8rDcFyQLNQs2slwXJAbCt96G7BckCwdxZOUMJyQH/oynvkwnJA/t7HFzvDckDm4nPowsRyQAno2SVbxXJAzG0LaXzRckBgeww2D9JyQEybjnhD0nJAEobIx6bSckBV+onq0dJyQF5N4pI203JArEWQcXfTckA8vcHQYdRyQOxUL1iP33JA6KbV587fckAatAJ+ueByQA68h9/j4HJAMIk08mHhckBgdi6A++FyQFGCuCtR4nJA3POPGY/ickA8Ie5bz+JyQKIdD8sk43JAf2L7Z7njckBMQbicDvByQAyygCOh8HJAmVhIxk/xckAIqdbnyfFyQKQcFTdg8nJAe5zxtxLzckC2cA01tfNyQAIV6DMM9HJAFpNfA6H0ckCb+jOZw/9yQGAaU8VkAHNAGnQx4PgAc0Dk1r/WjAFzQBYB5XY5AnNAaPLG5s8Cc0C8UbhLZwNzQNpQWLb6A3NAlszrWiQFc0CkgGAoGRFzQJPmVVAsEnNAc1K9wbwSc0DUxO+oYhNzQMYxpUYFFHNAP3QC6k0Uc0CAJibfeR9zQEGHcOISIHNADgD/YTggc0BEu+JzpiBzQHrx1sc4IXNAK7yZnWQhc0DaDOFh5iFzQO8GMR3IInNA/pap7w8jc0BcuTySzyRzQA7gMKxFMXNARBF61loxc0AJOmyBIDJzQFwwCQjPMnNAotJ/lf0yc0AkhV98OTRzQP780Q26P3NA/t7JTORAc0CYVwAdeUFzQLUJV1y6QnNAV1uHnQFDc0BQooWmekRzQIw7afGbUXNA3Fti6BBSc0BGuJ5wU1JzQOhJKbtBU3NAL458zKNTc0BS7otciFRzQEN1TyH6X3NA3p0otI1gc0CkPhyI5mBzQKKukv+IYXNAJ5DVBhxic0AYituAOGNzQMerkAXOY3NAzplcj0Fxc0CQnfnq2nFzQMSr5chncnNAECPiiLlyc0DrvsyU+XJzQJimZXu2dHNARJGSHk11c0CwNEA28X9zQBAybvl4gHNA8KCdZaWAc0BtbE1RDYFzQP7J984zgXNAIO60uV2Cc0CKKXmq5YJzQGgbXpU6g3NA5q7awIqQc0C3YIsrG5JzQHCZ7RJNknNACDTiSdKSc0AMyXLgzJNzQAc2YiVhlHNAB//n5PeUc0Du3zwbuaBzQPqAZL6voXNAArtRz1mic0BJdus1j6JzQEyOHkUko3NApExbQASlc0Ct0m3Nx7BzQNBwJnjYsHNADlsXdDexc0BPWcPAfbFzQNziMuZWsnNA5Aio3Guyc0D7nWOGerJzQB6AuusQs3NANFY9nXmzc0BiEyXltrNzQKz3zkAOtHNAipYf6vfAc0DUUAwOjcFzQM8aPhU6wnNArCCoMNDCc0DmbugLJ8NzQFdBCu5kw3NA3LdFNsXDc0Ab1dIPd9FzQNSoi9eS0XNATtLaHdfRc0Czpg7DvtJzQLaPofna0nNA+K3PWCXTc0BS92i899NzQGR+ZdPi1HNApGdPL8/gc0DILKDXN+FzQEoEsnzo4XNAEH3OV3ric0DVwU34DuNzQJzL/+vz5HNAFbDx0RDpc0B8a6KH0PFzQKZ8a8eh83NAIM1NNzf0c0A4MiPG4gB0QCy1VxH8AHRA1YYcHnkBdEBmPq4jJQJ0QJSOEK+5AnRAPluvlU8DdEBcxvUxQQR0QP1eD1OIEXRA/ygZVqwSdEBguai9TBN0QMioHFp1FHRAq0dpTkogdECUBhfLsiJ0QAM7ePz6InRAQAEOM7okdEAQ5yxJjit0QOz9QI5TMHRAp64yDEYxdEAq+9d+aDF0QPYontLhMnRA0K1WhFRAdEBMRMJkxkF0QMQfmktfQnRAjKN/EapCdEC6ENFSPEN0QLO8EBRST3RAHuFnFWtPdEAwi6/HnU90QEYPWMNhUXRAvc0Bfc5RdEDM8AcX9FJ0QMDHy5WOU3RA+0rm3mNUdEAaWnkh+FR0QFJgTVmNVXRA8YgR6iBddEDWadzauWB0QOYrx7sHYnRAmiVcBXpidEC69EPZuWN0QJdnUw0PZHRAbteMB09kdEAxopBPxWd0QJ4UBtTVZ3RAVAPgkx9tdEDJCKOQIXB0QIDDrC5JcHRAgCI1IFlwdEAcFfMJQXF0QEIYcgPNcXRA1oVpxxNydEB+w9rWeXJ0QPYwo+k5c3RAIJiRqTV1dEAV5+YH94B0QDmccpsPgXRAvScIaU6BdEDYmqK4SIJ0QPInT/HPgnRABfBOaySDdEDHulvWRoN0QPyKRgC8j3RA277uUhaQdECSS24oU5N0QGIwWCpNlHRAsuI9rO+fdECEn2a3oqB0QKYHL97OoHRARBiBrzahdEA8tshEzaF0QLjLvZF3onRA3JQdBrmidEB07iy3D6N0QK+Me/8JsHRAHjv1EsWwdEAStKK5/LJ0QI5w5sgXs3RAztrUv/ezdEAa6PE6ybd0QDRduPRwuHRArBpGhOPAdEBTXXbuDcF0QJzqFkx4wXRAvr1l8erBdEB0F4C6EMJ0QEC+jMy6wnRAYaQK9k/DdEBqXrU9JcR0QOyyIEJ5xHRAYlo5srnEdEBeKtnhys10QEX1+S/9znRAqiIOr1HQdECsmhdoBNF0QKogMTg+03RAJpq65N/TdEDE25AuzdR0QAIkthr333RAvlmXe43gdEA8cquftuB0QBxiHFAi4XRATbLC+rnhdECRGpbGYuJ0QDaT6u744nRAxkIvI5HjdEA4ZhRrTuV0QF77tQzC8HRAJOouXYzzdEDqzPeyefR0QNoaVeM3AHVAnChDHaQAdUBAJ1DbzQB1QM4XmC3nAHVADvVGP2YBdUDqeKeiXQJ1QKId9XyjAnVABHBD/jcDdUDxOkFamQN1QHox/YKWEHVAH+tCZmsSdUBaRIEJJRR1QJsQfpydInVAa/+dqOMidUDjNPf1JCN1QJrPPpC5LXVAmrC1218xdUDsUJ8efDJ1QBKDra+qMnVAaExFLj4zdUAWLl4MTTN1QBdHpcTMNXVAaJhLzrNBdUDygf3YekJ1QMsHdZiLQnVAOzdlr9xCdUDABBLCZEN1QPLyW5zbR3VAzF7ItuhPdUCubdm8glF1QCBTvlt3VXVAHGLLAw1gdUAA7P5JN2F1QJollYzyYXVAhFZMp2hjdUAwTrjW+2N1QKgv8+l2cnVADmikeY10dUDeBvmc8X91QI6r8YfkgHVAgG03bHmBdUABMc01rYF1QGiZTeDlgnVAXD/H7qaDdUDo9TiPmoR1QJIpJni6kXVAuK7Y+TuTdUCJ4Y/Pk6B1QAAQStC2oXVAa+UZuGWidUB3adOGuaR1QIRmE9Q7s3VACqJa+rTAdUCh7jbNYcF1QLj2+vtnwnVA6hOthfTCdUBqjI2+N8N1QOIn2gyj0HVA8ks79InSdUAo7P3FzNN1QDQrYxvi33VA3tBqUvHgdUACuJ88D+F1QOnYOugH4nVAPRRzNEzidUCiFbYsJe91QGBN+KWh9HVA7BeHL7QBdkC7YkKKSAJ2QESSD4nQA3ZAAK6HVJcSdkDJDzo6TRR2QBjsc6ILFnZA1OpUFMkadkB2DnZaiSJ2QBDwZU29InZAbGkwmZAkdkDLeFwiTCt2QGrV6iUfMXZAh5Te1lEzdkAU1EwSuTN2QHKkk/OaNHZAiAzW7E0+dkCd3Ut840B2QFoGgTYdQXZAViTEdshCdkAA5bO7EUN2QC5JtKZLQ3ZAfmpLEahDdkAcmrgkeUR2QDCdvlPRSHZAGZxAzgBJdkBT9UgJ/E52QDBvlyLKUHZAmFHyKBBRdkBCdksYJlF2QLQumC/VUnZA2SZYOolUdkD8HNFYzVR2QGTXlUITYXZAzvUoF2RidkBEPfnQT2N2QEIJmSlUZHZA4qKRttpkdkALth1/5nJ2QPZwwV7Sf3ZAXqoM/M2AdkBc1xOmkYN2QDguxHW8kHZANqLmmp+TdkAjkSka6512QGDrKcsLoXZAaoneH6GhdkBAK1qN5qJ2QPDmwBdEo3ZACkbEqXijdkBs1Nkgj6d2QCJtj12cqHZAnm8ghY+rdkBqqzVPuLB2QAy3xNS+snZAZXJGVgy0dkCf18u6dsB2QMtxI12+wHZAQyUxXU7BdkDtvPhsJ8N2QHOC/5obxHZA5goZ5c3OdkBBax5CgtB2QEzEQ5u+0HZAckjsOfPhdkAWTAGGkPN2QMeVl7ZKAHdANiQGLDgCd0BkNh4hARJ3QKPmZ/I/E3dAwD/3oWETd0Ddes6E0xN3QEKfUe0NIndA8se44XMid0DgZYu+uCR3QPcimQakM3dA6px9JA01d0Bgy/66nEF3QJs4yByQQ3dAlmam4xpFd0BudKyLQE93QBwcOQZLUXdA9OamCJJRd0DMEjR/UVJ3QJZlgJ/oUndAloNXvbxTd0BuPVZwK1V3QLCGxFRJYXdAJ0JwUI9hd0AuIf7DQGJ3QLIo/nDiYndAY1HaPXtjd0DD1KuDJm93QDL0bqAZd3dAUun7YSB7d0BNLJL/HX93QJiwADcbg3dAsm1MIAeSd0DCR0AddJJ3QIyyrP6bm3dAbwAHfqKjd0C22iMulrF3QPyqku+WtHdASozQFsnCd0CTjCgW5NB3QA6GTbjB4HdAMeZRsurgd0AekyCw9fB3QJ57Nf5O8ndAbqC8ZzwBeEBKuAtwTxV4QNlbrKZtInhAzhy2C+wieECGo9pNiiN4QMbr663QI3hAHNAJqlszeEAU+DItXjd4QImlDQ4SRHhAD7/Y1HlFeEA413q+1Uh4QPCJrKwvTnhAgUN/2MpReED+FJmAh1V4QCTApjD4YHhAMLnszrZheEBoXizwIWJ4QJP4VwyUYnhAD6LadEpteEBUbotliG54QOdXDtKxcXhARBziAlx0eECATLali3R4QFMJYFjHeHhA6BV+F/R7eEAOqk8NIH54QFPGvHylgXhAHlr4vHuDeECfh5vjmYR4QGeXK1xQiHhAHfwK4zSOeEBwvWEal5F4QGDV3KanlHhAlhCiViujeEA0SIZBuqR4QIJCq1eGq3hAJnKF7CWueECRy84giq94QJa0yj5WsHhAKARwN3yzeED+H2wzy8B4QPjj2UElxHhAZEyShdfOeEA1BsbZttR4QFYJ2l/H5HhAOOWlIOXyeECOEdtOAvR4QK6rt0gm9HhAi4hsz4z1eEBY2IVnEAR5QGDSdyWWBXlAplwDioYLeUA251uVjxN5QFTrC3whInlAZiV7hlEkeUCEEJM8tCh5QNF9n/gKLnlArl5so/AveUCq39X80TJ5QK/b+GG3M3lAEBs0WVg3eUAzQ/u1LTh5QOzzKFW+O3lAWlPmGoxCeUAO4poE+kJ5QHuNtIioQ3lAuy7GpPtDeUAiaWL9y1R5QCbBCyvrYHlAMsl/h1BjeUB46tprQnN5QPD98bXUc3lALeDI1tt7eUBwLU1wKnx5QHBiss3ZgHlA8ltJUd+DeUA+BYWRu5N5QI6ITjYZoXlASyqMP6SheUCwoYq1v7J5QEwL8/ZB1HlAbUSyZMrVeUDMjD4WUeR5QCqTtb0j5XlAzuOCfxL0eUCapkBRpgN6QNL+HnX+A3pAsA5BcZEEekBAH02r9wV6QKLIIzhFE3pAWhH+0roYekC/KwrUSht6QGrlCjPxInpA0uho9icjekBjL/gWLit6QCcIS1EgM3pAyq6WPww1ekBII6paJTt6QEiZFm1IO3pA6IClSC1DekCo6i9qGkV6QHXJJS2iTnpApjZJSJxPekBP49PNJVV6QLGDwggiXHpAoODIizhlekCwZtoZjXJ6QOLTVAcSc3pAG0tAHilzekC7axNCT3d6QNfzObJCeXpAUvb97IF5ekBE7gjD3H56QMzlLDLMg3pAdAGNHzWEekAsrK+nopR6QOlgXPILs3pAkpCclYizekBCRjyVDbZ6QKaO62b9tnpA8HR79RG3ekC+J5SuAb56QDzZNdRBw3pAjoBEvKfDekCdt9GyG8Z6QN2wnf1l4XpAiz2f2zrkekDm3cKReOR6QNy1VI417npA5dVSABTxekCuKejpW/F6QIXHcbt5A3tA3G0d73wEe0DeytdGUgt7QFIbPVPJC3tAvtPiDtATe0ByZ/sBihR7QIYcSZZMFXtA6NfzTc0je0BoyA51WSV7QObYl+bEM3tAAEIQqx46e0Aipx8zkD57QJgy5z3qQ3tA8CzsNEBJe0AeuzSGY1J7QNjsn+PHb3tACSZPfdN/e0AvZYKKuI97QChNTUXokHtAdn66ZfeTe0DyF1KDwZR7QGXSMHEilXtA2k1ULTCle0C8f0hJ+rN7QKg/u5RQvHtA4vIDOQfEe0BSrFr5ecZ7QIYCkn0A5HtA2JYuVCnke0BJ084ev/J7QP3B7EOM9XtAFubQYtkBfEB3ccT5ZgR8QPVd4EOaBXxAKtSXWIURfEAaDXgR0hF8QGTMhhS+I3xAwGsUwDxAfEAhJ/J8zUF8QIbZ5Q5nT3xAG1VjrNlRfEArKTlOLFl8QMHVw/iAXnxAc1RBiGZffEBCXFuADmJ8QLK9ARwucXxA6S1wbv6BfECChtakwI18QFH/94X/knxAYGnmbyWTfEDY3c4mK5d8QMqCGxSZpHxAjH/I1YylfEAJj8MawbJ8QPoAyUx+tHxAKroS59PCfEADRC3s/cN8QBvoLwVnxHxAIbKpuHXUfEDI+/lWzdV8QFkNTO7x23xAEkSZHljifEBcIJ+BteV8QHoKUWwW8nxAfCd2wlPyfECYXoozcvJ8QO/Oxw7e+3xAodQEo5b8fEA8UbeTAQJ9QDAiaXpLAn1AFmuTGAEEfUBMr00IVwR9QIrxGl0JDH1ANLtpCmYNfUDLDq1//BF9QFgJaIFFEn1AjIPPBY0TfUC9/pHaDhR9QBpcHo6iMX1AgB4noe0zfUDIDHEvSDh9QNe6XMBBPH1AG82/3KA9fUA+u3r71kJ9QPqyzeT8Qn1AuD1nT0ZIfUCE0lcDblF9QMb6iF3qW31AKqlNiGtffUCrTWSRmWJ9QC+ar9rXa31AEP/14iFzfUATSkYyd3R9QFDhDr55eH1Ajo6dmMN9fUCWDpr1H4N9QDTx2dPThH1AsvmAyx2SfUCcDtUO4JR9QNzBORb9o31Ar/QpuRykfUCM3nwRp6R9QAEDZdYLrH1A+qjTNia3fUDXMedrKLt9QEAQiZ8kv31Awc5dpS3DfUC0CFKG58R9QDoZw9Smz31AsZSf6PPbfUBSmzthlfJ9QPr5Q1KS9X1A1rVDphD/fUBuqXAXNgB+QGZlHIfmA35AmlhzmDUffkC4djt3ZR9+QN7BV8Q8L35A8KnWKAY0fkCYQ8QB1kR+QOyjHJDfTn5AmMllar5QfkCCiExK9lN+QM5NRqgvVH5AFM4z8d1UfkC2/iEMjlV+QAkPEVcpV35AzI7/cFljfkCy8ncQtGN+QCxBkaKYZX5ASqznOxdufkBYeG4ki31+QM5nX47jgn5Aulnm/p+DfkBgU86uFIZ+QHp9OrJAiH5AAhmm+6aLfkDBdwJCjY1+QF4BbaDOj35Aw9WzgVGSfkAr1mwgkpN+QA+leFOwk35ApzzHE5uUfkBicrPHyph+QCK+qeXzmX5AbuzG9pubfkAm0hjg7Jx+QFbuD5cgnn5AB73PMU6ffkDTyL1JZqJ+QACeudyQpH5AesEfzPWufkB09ZL0fK9+QML3w6O2sH5ArKqoQJeyfkBMQXK8WLN+QM9/90z0s35A4DVnNlC0fkAwASmjqrl+QKBMF4EBv35AKHtw0n/AfkDU2Dywy8B+QM7TeYLOxH5AtgVMKcnIfkApGTirV8t+QLLOUcts1H5AIjByx+XVfkAc4FbV/d5+QGKjxabV4n5AVBuPXAPkfkCMZgQJV+R+QOjiFzQH6H5AtxqRHyHqfkA8dbSZCOx+QBwOifff7n5AmtnZaN3vfkBqrWiGC/B+QERNduEO9H5AUBoLrlT0fkAVsYJGJ/h+QDRRzsCl+X5Ag6/Enwr6fkDEk0HK/P5+QI0BZw3pA39AtqV0QkIJf0BP5qIdnRl/QMTlGXUhHn9ASABy/9Yef0AcmA619Cl/QF0o9l+nOX9AKsTWU19Ef0Aq+qKsl0x/QCx9s024XH9AZNVrRb9kf0DDnN8hxmx/QICrFmS4cX9A96eax1N0f0C0cdRl5HR/QMRcY4qzgX9AkPmpQ9SEf0De604KQId/QH0Xhggqin9AgR/I3GKRf0DJTAqCmZN/QNregNgNoH9Ahm8E2Fyhf0A6qfVZjKh/QKbjuisQrH9A3dwxt/euf0AMacdsVLF/QP9Q2WkutH9ArvGLbGq4f0C6YgG7xb1/QJcZ9wP/vn9Aoc63vfy/f0BeFGSTHMN/QLqSzJ1Cw39ALN9M8afbf0CO1Prln99/QLSklMIs4n9AEKKaBrHjf0BUJ8KtLul/QBZMm1Dz9H9AVlSjEZr5f0CObJBWmP9/QM0n+HafA4BAMuKfsMsDgEB1B5kn6ASAQAYu9XTPBYBA6//AuBcNgEDOVmD2FBKAQFLdPn95EoBAQWhXXtITgEAuWOjGxhmAQNosI3DSG4BAXq3gRyMigEAUvXy/BSSAQJBLK4XsKYBA3uWVRhcqgEBWLtT4zCqAQPqeTCKIMoBA0ojNZiM0gEDeXdPZqDSAQJb9+ab4OIBASmiHnV9CgEBgLpxYqUKAQGZmLrX2QoBA3p+od01GgEBOAyEU9UiAQCqeCOVKTIBA+UtQ3ohPgEBl9Q6n51CAQCjTZiUUUYBAghAj/CtRgEBQvgoTNlKAQPTsikKEUoBA+uiHdeJUgEBqqqXhZ1aAQHTugBsJWIBAUHNcgiZYgEDlBvpZ5liAQIwA2CUOWYBArn5ffzJagEBI4PS9QlqAQE6FBqxqWoBAHFuPnbVngEDlQysnHWiAQPy+6geCaYBAAEm2ACFqgED1HC+ABmyAQIDLqAAjboBA6AGP2DBugEAO2wDLKG+AQMyGH/jHcYBAe01KSMV0gEAWwOAlJneAQI3i2xJid4BANkIcLYN5gEDmgWGc0HmAQE5RFywxfIBAK7lreHx9gEAgaJZj2X6AQIeYBhkpf4BA7KIXnoKBgEDeR9ly64mAQDua0lAPioBACpXvD/2KgEAiKYZwHo+AQHceRdBHloBAJqlQ/B6XgEBEHxdv2JmAQFeAFH0hmoBAzEydNEuagEA0OsDzyJyAQLGOqOPlnIBAXxYKqU6egEAqADTUG5+AQGdRn1GLoYBAHdCUB9GhgEBm0cJ9jaKAQA5b3vgRpIBA8Gk8B3elgEBKNwqhMKaAQHkIXrXop4BAlLPfmIipgEBgqNCjEq+AQGwRd4Ksr4BAJsxuOh+xgEAr8wIh1rGAQDohPFt/soBACTARopCygEAKG370SrOAQN1FGRoat4BAHcoBtRq5gEDOD1PDRLqAQIYlsHoGvIBA/BZU2sa8gEAOSXyWNb6AQMz4oLjmvoBATbxEEKy/gEBwVNqyKcCAQExEhY1SwYBA2rhr4SnCgEDqQATxnsKAQMCPMcB6xYBA7nVp8/nGgECPPlT4pseAQEIulApsyIBAcTSC7xnJgECQxVBqU8mAQJflUtTgyYBAo92hhxLKgEAoM8JGM8qAQOt2h3mTyoBA7KRU4g7MgEAI8R6SPc6AQG59mTkIz4BADj9ZIi3RgEDcJzxUTNGAQPBndYXV0YBAk03MNAXYgECSOETEStmAQCzNGajk2YBAPiD+w1jbgEDCAewjFNyAQF6nKYB73YBAagb31a3fgEA27onfAeCAQJRByE5l4IBAXXvJ8g/hgEAuEomAROGAQDXhej9y6IBAqyqgyPfogEAK9Xi3XOmAQMFEcXFK74BAQJS1OWnygEA1PKUyPfOAQNq8Hddr9oBA38ukPbj4gEBGk8AOL/mAQByuHmDc+YBAWTmMUmb6gEDicfnNWP2AQGoyD4I//4BAyrVPwT8HgUAMhYkleAyBQGbBGsM9D4FAPn+hldsRgUCGLsbMWhWBQEjn5N09F4FAlBbdhmgYgUAc3uvWqBqBQOxOHZfyG4FAYkdepzQfgUC7jcFnsR+BQHcgjy5UIoFAcJjUV64igUBPJiWHNSeBQFCeg3S1J4FAmrRXEmsogUCKdrZ6WyqBQBB3S1kvL4FAKk/03YAwgUANpOlKvDGBQBwoG5voM4FANlw81ig/gUCQhqRiLUWBQEkDeZkoR4FAEzgtvQtKgUBOJf9KqUuBQLV3yK7lTYFAaB8AK/xNgUBSMhmwFlKBQB4DJ5byXIFAHuYNPJ5fgUA2kbEy/2GBQIVUOGlJYoFAxMMUb05jgUDue2YYmmOBQP/2zim8Y4FASDxbS7JmgUCzCD6FzWaBQNhLrNltaIFAzA8OH/lpgUD0WgdXoWqBQNp2WDq3aoFA0euEAdFqgUDzHu50pG6BQBywHSrTb4FAggdue2t7gUCi31kSYX+BQCRhVa80goFA5nWHxu6JgUBaJkkNDIqBQJ7HNmB9ioFAQonDEvGNgUDMLyHiVY+BQJYbhmqDkIFAeKEhUfSRgUA8NS59JJKBQB4U+kuFkoFAjyfjWiWUgUDFLR14wJaBQI25RMxVl4FAGqzw2eqZgUAW72Bp7p6BQEBzr+ZUn4FAxLkM34WfgUD2yTZaQaGBQNA4kGDpoYFARAN5KN+igUCS2lEFbaOBQF+OipRJpoFAucqYm5yngUBs89FebKiBQJrQyUrvqYFAoN1y8RmqgUB2Q0nn5KqBQNTMKp+UrYFACudwd0qvgUAKYR2MPbGBQBjjz1r0sYFAMl5PEeiygUDbPxtqTLeBQN6iYHPeuIFAV7GeNZm6gUA+H42DlL6BQK0q3mh1yoFAnnsbQLHMgUA0llrOLdKBQNauiBV+04FAEtEv0/zVgUC2cObFkNeBQLirVZil2oFAjzKrOKXngUA2VJSDXOyBQNW6SnkC8oFAFeNjLF7ygUC/L4gn9vSBQD0Xjff++YFAWlA8unz7gUA6+EENSQWCQEYnzzhiCIJAdDclJG4IgkBYHDJIBAmCQOJLhIP5DYJA0kB8wLYPgkB7ayKEzw+CQLatVe60EoJAttC/pWkWgkAoGi2qKReCQAj6AStrGIJAmpIcTdgYgkDcQbSabRqCQDgtlHa7GoJAemjfpmwcgkDkKsOOPx6CQJqkvsXWIIJA+6Aii/ohgkD/tsYi1CKCQKyxxoz+JYJArOeNytAogkDbLd2kNimCQJEacEkCKoJAkgt8IO4vgkC0IN79zjCCQKqZnP6bMoJAaEDCjUg1gkDI6mwk2jaCQFti6vDzN4JAdkU6CEE5gkCgdu+a/zmCQNjur94xPIJAqkZtXtdCgkC7eLI9OkOCQIacJ6XWRoJAY1/u4SRJgkCwhAWj/0mCQNbKWiIXToJA/I2yV6dPgkAEIvoF80+CQHx5oweSUYJASUhIHgxSgkBCJ9ialVWCQPYHSxKNVoJA6v6+bBZagkDK0/ivkFqCQAlNP/PeWoJAfmu/VQJbgkDyma+hNVuCQMDf0/eqW4JALFXK0nlcgkA0Aul8OV2CQL9F0rbSXoJAGz7CvqtngkCouLEaY2iCQJcaXis2aYJAvCRGEb9pgkBM2HGOpmqCQFZVU9N7cIJAOpggyWFygkD3tGEGinOCQGYE1X9pdIJALq1Wig51gkBQm2lWN3WCQABLxBcUdoJAEsETt9R2gkBwBF7VvXeCQGZTGbvhfYJApl9rlhN+gkB07XI9boCCQKhv2sXjgYJAUFVlWEOJgkDoHzR/3omCQPEVPbGMi4JA4q8braKLgkCOUrIbeYyCQKoX/u6Mj4JAugY6WrGQgkDCFaF6Q5GCQNC98nPHkYJAv0Oh/biXgkA/7ENLHZmCQPMyjX08mYJAWEY1FxChgkDixCofPKGCQMiY7c3doYJASoXMVhiigkBQk4PJnaOCQNPLEtoNqYJANMNfmDOpgkAS38nqUbCCQD72RggHsYJAdEzwXMuygkC3D8iBVriCQLDPoEBruoJAf21UiPC6gkAQ7IThRsCCQGj1+83ewoJAPqVrMOvFgkBKyO4T0caCQOx+qdLpyYJAFIzTGwjSgkBEfPshd9KCQOtDM8wK14JAxsKlsn7agkCM/8Dp+dqCQM7lrOuU3IJA8OkBGdTmgkAwy7zJdPCCQP3loQd38oJAqhq5ybvygkDMk/k7sPmCQIIqj5jB/YJAx7hcMhUDg0AsUlQuYAeDQJF6LwFSCoNAR9csZ7oKg0CYyB4uHQuDQF1mh1G8DoNAdK1PkHkRg0BMJH//lRKDQFCuYUP3F4NAxAt/AXoZg0AAy42BciGDQOzuLe05JYNAoNIkCHIpg0BseT6TtymDQNSS3zYsLYNAjuLX2eAtg0AKSmLO2i+DQAg2QrprMYNA1nfLKYYyg0ClBCpo8DSDQBBLn4acN4NAoslUz4g4g0B5YBHmGTmDQNxhlOBJOoNA9iHl0fM8g0D0ecvD60KDQLxvup/tS4NACqMPlMVTg0DGqTg9xFaDQH3y9rEFXYNAgI8Al7hig0CG04aIbGWDQF3yNfLeaoNAivLWkOWBg0CRgOh0CoODQHS8RU9Lg4NAvFSLeBOLg0CkNVvMY5KDQDMf/0p1moNAGQVsHNebg0D8l0WcH56DQEy3jAs1noNA0qtJyF+eg0Ds9FP5g5+DQBTnCtsFroNAhMWjvRbXg0CHEVxjT+mDQFxvoivh8oNA6B6hsGT1g0Cq1JxwSfaDQOONkKbm+oNAAOLd+aX/g0BQL9CV/wSEQPL4J5QZCIRAlOzR1tYLhEAdpeBrEgyEQIvZgoTrFoRAkk0GZHovhEA+zXs11EaEQM7h3SdhSYRAraGIxhJUhEDSIcpY1GWEQF5CEHn/aIRAsCTPmeVqhEDgZXZF6G6EQNFBxLD9cIRAUMJtSOtyhEAYvxWiJnOEQGJUpPbtdoRANr5/Qsl3hEA7YmlT+XiEQH4V+Hx3eoRAaUMS5CR9hEAUA52ByoCEQP7vSvP8gIRArsP0C1mBhECsC4fbdYGEQBP6q2skg4RAkgEUMVKVhED8fv/StpWEQCxy3xBmloRAFAq5QAGYhEA9pQNCWJiEQCBidawOmYRAKrpyGI+ihEC5YD6sy6eEQFarR5aet4RAgtswnGS/hEBR8gxrHcGEQH9ugRY71YRAiOjFM2rZhECPytrbaeGEQLQPZa1H4oRAJjagZaDnhEDA8xJ4YumEQI6bJNd96YRAu9IprTXxhEDkkR+kYfGEQJm+wpU1+YRAQjthZlr5hEBPGEBSQfyEQCAfL8ba/YRALgqKgcL+hEDCnAujdP+EQP0ctMQRAYVApZyRHKsChUDo0ERODgWFQPrYJcdJCYVAbJbk2OAVhUAk7Lr4EhmFQNj+L4ZfHIVAopxClT8ehUCopm4GQyKFQMZRDFaSIoVAho2ktfUihUBy688kmzCFQL6YDzsEMYVA+JXrErAyhUCSlhod4zyFQBpoDMumTIVACm0EiKtNhUAQ4R5iqU6FQKpGGsM/UIVA6NN4E6pQhUBpv6fkqVKFQJ3AvFGoVIVArKefBq9WhUAsxDFIJV2FQFB5yz6gYYVAnZ8nn6JjhUB0octuoGmFQLAyJqpuaoVAte2tEzRvhUBuC1wzsG+FQLCg2VGYcYVACs01brNzhUDYPddjl3mFQNJew9eQgYVAwrSTAn+GhUAlvPrXlYmFQJEgTs4bjIVA/GT+QfGMhUAztMnih5qFQAPMWri0ooVAOqpyR364hUAS0TflfrqFQP4Tnekzy4VApq1IgWLMhUDnoDDY7dCFQO71W5gy5oVAUvsU6zHqhUBUyUCO0vKFQLBE0b1/9YVAQy/fryf4hUAGubB9VP6FQM0HMJTSB4ZAECzMCwULhkAgFRNQVRKGQGzPvPiMRoZA1n78RG1VhkDKmaL88FmGQEYpQ2x+YYZA9Dnu9MGChkDU+xuWbZaGQJbeAQEYnoZAb6Tp+SW5hkCXONwUtbqGQCDsPX23vIZA36rtvra+hkBG3AI91cSGQJaJnO5J8IZAWg/yk/byhkA1Hb0gpPWGQNw5+Na59oZAiGR/5zL/hkCuyubqNgOHQCU72j88B4dAvjPhWpEph0CSYhqLgiuHQNk8V4qQMYdAY+T52343h0AEKOVtijmHQL2hhk/oQIdAlPHw815Bh0BxEG5ViEGHQGJqycAhQodArJ9LkH9Jh0B4ZIlaHmCHQFbKUjPtYIdADOSEsK9ih0ACpOEm92aHQOfjyzI3Z4dAq2mdNDprh0BUMTdaPW+HQOyhaeY/c4dAKtx7PkN3h0DE0PK5jZOHQFop9snHsYdAaBNguAK5h0Dox2A3xrmHQBibDW/EwYdAYHdAKF7Dh0CWeAxlw8mHQIPOBBnUzYdADDMmk/Pth0CeJGijkv2HQLv0fJ72CohAh9nxWDkZiECGY7zOwxuIQIUSNWneHYhAIDWmGYggiEBPXw7dqiGIQHjFG+ZmO4hA4qE/MX1yiEC1c2IrgXaIQH8HIU+BeohAJHKjwluyiEBbqwGHXbaIQApPrhtbuohArbIw0ZnPiEAd1Djx3dmIQF5In3Zb+4hA + NrgMGZxjYkDiYBUjzERrQIKrr+J9g29ANbco5QvTdUD8d9DGbuJ2QL09GjP9Y35AhP7BFGBzf0D8b0mEVsKCQKQCMPQC0oNAzyyy9k4KhkAawQVvrlKGQA== - + - M6qJROx+mkTKiE9ESNA0RkjYB0Une9xE502ARVwVgkTAM+RE1wGVRChyf0Q8xC1H+QKTRKS4W0QN9TVEyoW/RCBThUSg6pREX8/6RDk4CUUiaWNET81LRHMgpkSKE7VFoZmhRR6QaERa071Ek/SWRHQil0RSjltEZv+oRJHiHEW2JmhEGCtLRH3FiESe935Ei629RPuptUQoLItEtbLyREPoakRnQb1EH7NjRSQmeURZxRhHr0ZdRMsycETpc4REQMAgRvMUWERO3JtF1yJHRAi6nkWVuJpEMImDRHzTkERyD7hGowS5RArGjETak7JEQxj+RPKwmUXaqQ1FbuHaRA+BZkRXWGtEqKImRbsNwUSks5JFMvubROyQL0VkO4tEn50hRKkRBUYFdYxFi1vGRK15K0Rc6tlEGI+nRR4e2kT40CBFQfyqRBfeNUS/O5JEMH2zRGotwkQD0TVEZN/ORHA25UQgfJdE4xaMRCDKdERBztNExeg6Rb9KkEQ7B9lGgFi5RM8+K0UkOqREwHbaRcfslESR40tEgMHpRP2oWUQ4yFdHPlb2RCrmnUTjSyNFTH5dRpCe40WXCphE96nxRWKzo0SHe/tEbUNLRT9SLkQyzZhEvySkRF1TMkRAKFpEuPeBRO1sLESIQ5JE8fGCRGd4V0WaB05FFJkJRemDeURdqMhE9DwGRnjDEkW/ZptEDmB9RIMDg0QlrVpENC4jRTQfr0SpgaxEsCGmRBaX4URv2IBFX5hjRORI6EU3mE1EzEzaRP+VCkVNiFdEJG1HRCXVZkTn5GxE1ZmQRC3TvESaC1VExNtIRg8XR0TFt2hEjDaHRGwjNERvNetE0xlHRMSYi0VYAZhEtMOCRF7DFkUZHT5E7356RNKpYUQjI6lEwrlNRGflWkT1wz5EKqa+RBkHvEROPElEMJZURFBydER+z5NEVx12RAXNOESRhlZE3iWJRA22JkR74BxFMx9zRLhSk0Q+EJ9EU/1ASI4dikXPzRVF8K6/R/H2VkTCY41ELHPHRC4zmUaKhWdGNo8+RpIBskWDYDVEZqw6RG8VPUedXE5Eo+tPRFVcQEVaDjdFzIqERFT2MEXbR2lEVETsRfhjq0TTszlEU4CxRAVRiES0mUdE4bSWRUM8mERpijNERJsbRZC5nkQCSABFfUiJREawj0TfPUhEzvq2RHJDSkX0T7BE8m4GRZZ7BkWsk4tEIZBqROSrnkQVz8dEDeOFRTviakRRqiFF3qKWRKEqgkQCGo5EPjSZRQvLU0QNgNREYTffROpFCkX1qfBEWtJHRCFjD0XfqlxEGvG1RK0ZyUTs0Y5EyFxoRDf+wkQhyKJE29SzRL2zV0QwKH5EwDm4ROaLoETF65JEoBLJRb6baUS1rEZEqeXnRCKBm0Rim2hEkdmKRGImhUXqAyxFF5NrROg9Z0SlN+ZE3iWGRDPl+ETzyFVGX3FcRCRm3EXdzDxE5g+/RJtQQkc9DhpFAM9yRLRZUkSVCjZFT7KBRGdtP0WJFp9F+cQfRUj5SkS7kwNFLcDgRJm1WUSrXeNERaHXRBlW6kQQRm1EjKusRJz11kQ6hEBFmXw4Ro/PYERgRoJETnjdRFnVsUXhSnFERAmNRVdQK0VZ1E1EygrzRLoZoUS/OcBEQ5llRPCnckQfpDJEq+dERB0KhURWGBBFc1SFRGZQdESDlWtEmZ1SRPIJy0QQD1NEpitPRB/6bEQTJp5EcJ5TRHXPbESZllJEr0Y6RAeBr0Wlf7NEvxcmRHY6xkSIA5NEI8h4RBZ7jUWV3opEhHfPRQGBp0X4xMVGrbd6RcYuJEWWv15EgvI6RbPriUSxHshFV8+fRUJWkER3W9BEJbb6RHsKaEXUqHxEI26ERLEjRETo1bFEu5osRX5NfkSrKaREj/+qRPC3ZEZa6WVEiGNfRLzojkT7Oe9EG1Q6RSnBdUTD4+tELGVcRL1pRUVBPzNEoP1DRCTn1kZSaplELrU/RIXZkkQjOzpGvQNqRPpDA0XuwRhFFgIKRSv3yURXYqJEayqhRctLC0VFoWFEdrBeRNcoK0SRVoNEEHBvRSMGT0SKFIhErS7TRDrg8ERM9UJEKBiBRMoWnkZEVDpEmSWLRBQgjUQ/ZUdFpAbSRFM2skTizfxEPYkBSEBMq0aIqYBEcHDURug1dERL7KhFvNteRj8ybkRLPUtE7bqbRFNJ8kSIWoRE1BQuRb3YO0TEX4NE+8VHRGmsJEXrdEJFiWNZRGpifETIHEBEMBOsRJ1SXEQrjMxE7amkRMWcakSG3mdEbJ5KRDg2VUSJwmxEi2l8RK02PES4A71E/4dfRAwajkQDGX5Fec8qRC7fpUTMXtxEWTKoRBl/iUQ+yWNFMN9WRn/Qo0W8BSJF563hRRqbMUXIDjZFY2pFRSRwN0RjIu1EGBWlRNTdeURY1DBE6CRiReVNSElcG8FGt7aJRV/SaEbGN3VFwzKqRexsUEhIAEhEtgVqROGvhkX6L5VG6OFjRBuTz0QWjGNFGgXTRJYXCEWr1m1EPRqERE93mEQnTFpEI4Y9RPgnvEXZX4hEU/99RPfVgkUQOoxEdk2pRVCKlURm5ahE3CWIRBSCqUQD+JFEW11HRCzcgEX+rv9E6pNcRAUei0SgR41FYJKURMFmuUS+TYtEnlOORGf/hEQCoaBEJoYdRfXCmEXy7HREcn5ZROZ1ikSpnbJF+hGCROdiwETYfO9EHdNVRBD1OUTtEoNElt40RCkTrEU/Lf5F41rSRJkF+UTxsIpECIXBRB1nhUQGVDdFAYZuRQirqkQQghpFJ/NNRHHRkETxuc1EeCWCSDwezkdqQ/dG4ujHRx7VD0YCd4lEnIrHRKsdx0bj6otE49U2REflPkWr6x9FmW1ZRJOkkkRsIx9EJuIhRLP0T0SkuGhEnaYvRRLEBEUSLJJEtYx3RFe/NUQ1O6FEzXlGRHEOt0V4zDtEPmYkRe2NhUTetlFEoP1KRAtmAEUyHr1E1KkGRc6apES6obZEMWqZRIVAwUSiqqhEneSBRajv20SQc+REQHBZRBRspUQ/fzVGXfhYRObqP0Xwar5ENso6RGfNK0bjG8RFy+eSRGA1MUTGQ4dFIHdBRGoqnkRtA2VE+vmyRC2fXkQUWZtFQU5rRGvAVUUoBkNEsSSbRIChzES2D1NEWOaxRNuoa0UHdrlGolZURrsBrET8EYZFHXuURKMcikVxw4VEd4JYRGCqv0UFTUhEw+RdROvRYURKZKBE6AV3RBUujkSxP0dE9gx+RGEYaUTHJIFExomdRJ6piET+BHpEGZOaRBDn10Qix4pEZax9RICZN0SHebdGNESORdNLZkT8enlEDaLQR48ViERtqSRFg9SrRu3WZkV7LGJE/RtKRKLjakV3aIRGpQ7dRlCeTEQD5yJGPrJjRGaiW0ThUQ1F0YxIRH/tV0UteYZENyVVRNBvnEZtrjREj55FRu6lZERewHJFKiI3RYPxckSRHktEfdwyRDiIrUSjN4BEppS6RQUOO0T8BopFGdewRNOhLkVGxQNGseOHRKC9AkX2WyZFNzqcRGtD0kT1HJhExBm4RKBvAkWiAolEUyz0RJUSoUX4UVRElRNmRHYSnUSh8KtE209dRDtoFUVSXW1E3qvlREvyQUQ+9EJEVqhrRCH8FkUG1YNEZXWnRA1YIUWslDxE8dFWRIvtbUWJ2sdEaCCPRIN8kEStMUFEk/BIRHiIYUX8S3dEBY3TRv1ac0ROQaFEibRYRpidXESd8kBEO4CLRAdMLUWJokpFmBEqRqeaukRIg8JFBnUERf6fXETG2Z1EheXqRNZdOkRkJ3FECXeiRk21fUShOIBEcvoYRR8zb0SeZGtEF++8RoeusUVjxb1E6EE5RG3ylERfVb1EH2/lRGZkn0QN6DpEwGOZRDFU5kQhTVJEm2qARtL3SUQDfIhGNpjeRJBjMEam9XBEPeWVRHrvckUg/aFETjOkRGH7P0SJpIBEgGZdROmWhEQZU3lElwqgRCT2ZkQZW1FE5dU8RArgWES4yp5Edo9PRLF2v0QKM4NHaJzmRqxtyEXCW29FXD1ZRBxbBUWDe8dEFTm1RGFD/ERSqntECjQSRsVO1ERT1KpFJ4kYRQWZY0T1UVhEp0d0RJ+S7EQpOThE+C5YReaQBUUgTjVE7T7sRJZRZETCs3NEal9iRDCeYkS+sI5EkRJWRGf5lUTeYXVEy6E9RGY8OER5bJVEF/KDRI0on0TrF81EkVM2RPoDrET/JyJFFVlURNcSnUTTbFZEYO9BRAg5a0QQWJZEDpI4RDEcakTgjmdEUZuARNGeoESUrkRE8SKuRDsWpUXrgVFEq5JMRINuAkWhyFhEbbcyReCI8EQQJYhGqONgRPzUf0W7ep5E3E6rRPnnC0XxEcVEDUUzRSxxWUQeIr1FtlZcRCexJUTsms5EFFMqRISWSkSo6GRE/mxoRSCJqkTPbJ5ETnfKRKdmXkVwDFlEOw2PRAFbmkRDBWBEEiDYRBZ2QkTYOYdEhXaBRHSaUERTWU1FOLtdROp0V0Q62uhEYfuRRNLkj0arpdBFKxZ4RbKQxERV1ZhEHdAKRWuhjEROZ0NEHH1jRDnmQUW6CRpFFD5fRKCVkUR+Y3FE3k2ARB/oT0Sss5VEmZ3ARCTTR0ZXEO9Ev6hSRVZXzkSq0yFFF/P+RAAhskRWN+FE4HBxREodXUT3RlhFhFg5RW1gAUWkb6REg5rrREQzMkSTjXRIS+5ORPKdGUVgmnBE3JGFRM6d3ERuMSpF3lLHRLfD0EeR5wNFMhc4RIg+vERKr7BEZNXTRHVgXEQwvOpEPwyqRLeVdke/mUBEOhs2RYZwY0YafW9E5eluRCgqZ0TbzM5EsT1LRLdvYES21IBERFhRRMnyk0W39dhEhc3lRJW1y0SRlPBEBUEcRVMKkkTNkBBFeb5sRKeBcUQ/l4lEa9qMRI4ehER0QpRGfSHIRU2VMkTGZuNFBZBYRP5EZkTm/qNEYDlFRIRdkUWVAYNENg8/RxMXBEUIvMNF/G6QRGhNOUY9NgpFfuZQRE/fpURH60FF0sNIRNfRoEQheptEoABdRuhSW0ROqtZE28M9RFbTx0T6s6tEEtx8RLWzaESuaWFE1by6RBsPrUQIQqlENY1QRCE0HEUP56NEdNibRNlJV0TJyWlE8xaARD6tiER915pEayFsRCV2aURo1JZEQs38RMpC10SqnGdEkCs+RjwOnETUGIFFawPPRcXMWEbooHxE5O04RdztTUSThodEcHxnRNEnskTNcmlFeTuDRGy1Z0RhKR1FmsI2RFRFeUTQhx1FO8icRpwDeUSg1jJEsXdiRPjZBkXOAdREmFqIRKdmkUXT6kxEMx+XRj2VkkQJypNEEqSWRB1vhUXaBTxEtZJ0RBwGHkXvSyVEldN8RNNKzkReppNE/CpbRFI5mUTAO1RED7BlRH5VcEQJuUpEFsOBRF1sSUTuqHJE00FfRMF9dESDJytEOMY0RArTuERKK4pECNtjRO68U0SDVNNGrvuwRRUWZ0REm81FM9olRkTSrkVeIbBFlwzNRGkvb0TsQndFTIX7RfKwIUVXLdlEtOIORXRUVUT9FgdFSZl9ReG7oUREUh1FT8bCRH3LSkSX1U9E9rxfRBFd+UTRpndET2FmREi1VkRUAJ1E4KxVRLCvhUSDUqJE/PhTRK6ehERLUAJGCGwJRSD5bEXjjs1FWEL3RG9DM0WBCKJEA1KGRLWeS0Rl271E9FwoRb++s0QX4IpELlkSRXgzzkRNDr9EWMKFRFchNEReqFFEtAqFRUoEXkQLknVEfhWoRXfuXUUYSqBEyOwDRUYg3ETHFPJF7sJ5RN+IrkRE23xFEJoASOBlC0VyNotECrZwRF0px0SFrG5E+GuNRBBlV0eJQa1EvHB4RJNfRUReOw9HPKG8RfmTP0b8r4BF+VtfRCliYEQEy2RF9DlNRUHtc0V1kc9ExZ9hRFV5SETLoFJEg+mRRAaElUTWUHdEbCadROpUVkQvNmxEDXJHRAMKTUUAoXREm6pFRSpQPURAcYJEpj3fRNVQDUWiRUBFJ+dhRI4ZrUT/fGpEp+p2RbArV0Sm2UdEySYZRfc1dEQhlKdEVwHeRyZDL0QR/k5EKvc7R7JA8EZGvoxEyU4bRpePG0Th0eBEvzA4RPTA10RmYitF8kFRRHcw80X3EO9FcCxkRLF4T0RH30FFA69yRM+LbERawolENTt8RPuSgUT/1MJEFDlJRAK0dkR7uVpES+09RHmsWUWB7XtE00usRK4lXESXihBF9YV1RDobXERXHWREeilPRPy6nUQZRYlEDF1dRARcOUR9ZoZFUGJaRIZhPERu+mhEjCvURIWxrUQobFlEW6txRIkBj0Q5fmVEICV2RKTAhUQVAFRE7BtXRKhLrUQgIM1FEbddR8nFB0djsVlFUotFRox+gUSjyBBFV+hsRQYF2UTpFclFZSDxROxuWkRbfFZEgNiURPq6fUT/cGBEsLljRMV5SESIVUdEEW5PRfmbI0RkJ1dEgWBKRO/ZbkTFcDFEZXVERGsTa0TTwzxEgpYlR85cmUbUEVZEkqM3RMMCNEa2a7pEPcSwRV1XZEWhKg1FfG9lRHFdqUUrH+pFLXB7RIzniEWIRjlFsgMPRZG7ekTex05EkAIQRdG/KkR2pZREjmA7ReCP8kTEJVREXjCWRMbdSEQiGD1EivtBRKMwuERHA+NFGsxQREg2UUYW5TBEv8lFRv9PxEUMW6hEi3QORTL+WUT3d/ZGg+k3RFF7dkYlxZZEzHczRESnRUS7Xx5G1duKRFUeVkVxzM5E/Ic+RK35dUSyIl5Ex/9+RD4fNUSRukFEJCzIRFCv2ESV1wBF5J6NRG+0RkQOWLZE1ja/RCPIukQfuR9F+bD7RPgJa0Rrl2VE2tJ+RIhxlERX0WVEslo0RMdVUUQVWoJEHAY4RBGPnERG51dEd2OnRBSK40TgIphEnlcLRbAfZUTp/FBFhaGDRZNwcUXKWJhEoyKtRbYHVkUR75VE/xg5RrZqjkTFdbFFYiBzRPhiZkXryG9EJL6pRGwMn0TUw7xEf5ZtRK73pkRhJ2NEsUdeRM8ziESWhVFHmPgfR6xKn0Y9IpFF+mIORftSgUTZ8PxF9HleRAS4kkXsmBJFY5pRRBuxkESb1FdEhXRQRNZaTkQG215Es0aEROrMZUSS1tREBheWRNswQ0S6Zo5E5LT5Ra9RRUWfpKRE9r4uRZStAkWLXmZE14YGRRsXZkR/1rxE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - D77VVnfAckDxHoO9K8FyQEZJhH5vwXJA4RjoA1DCckChRLkYfcJyQByMM5bmwnJAbomPxjrDckB0c//fxMRyQJoyAB0Q0XJAa47CcHzRckDDPQlWD9JyQBinvEtD0nJAFAVeKdDSckCmjv/cdNNyQEKzlynQ33JArVJFaLzgckB3D67MYeFyQJhjs2RQ4nJAFPqW1o/ickCOl+r4JeNyQLZcfTXC8HJALzmCXcnxckAqynoaE/NyQPcj8La383JAnV2wc6L0ckBasXG/wf9yQIJLjRZjAHNArk6lSPkAc0ByhPZ+EgFzQKCpOClJAXNAB5NOoToCc0CqOhXPzwJzQGWK1mtkA3NAi4jhf/oDc0CI+pO1ehFzQAqSOxXhEXNA4i+hAwoSc0AsBIshKBJzQLrptFK8EnNAKUC32GITc0D5WSbh+BNzQHyTiCtNFHNA0MWxengfc0DdAzprNyBzQAIp22ijIHNA0Bnw0zghc0CtHI4dYCFzQF40V2N6InNAAFVwfQ4jc0AY6MRxziRzQDoZmTJIMXNAaInr3F0xc0Cx182d/DJzQKCepjiiM3NAo3hb+dYzc0C4O4P4NTRzQLlrn8bbNHNAjgA6+Lg/c0Dtxh+A4kBzQK64GDB4QXNA4i85qL1Cc0A2t9LteURzQCLF62ScUXNAUT+HdLhSc0CyuApmQ1NzQOrBuDmjU3NAwhDOqXdUc0APUmYL/F9zQIqhu0eOYHNAgZ43nThjc0CeXtoJQXFzQADh7uvZcXNAKskcp09yc0DFeCTpZnJzQEjCpG6PcnNADBoat75yc0A6Gss8+nJzQNm5sxW1dHNAb6L9O0t1c0CgAD7leIBzQLLtdCGlgHNAglQQkwyBc0ADmI7QNIFzQGAXXCJdgnNAZmviH+SCc0D7GK+9DoRzQENTLaMfkHNApIh94oWQc0CiNVQvTZJzQATqPaPUknNAPCeXAWOUc0A7JvZ195RzQL4fYJm4oHNAeRbG2fmhc0CfPTImW6JzQDCrpBSOonNAeVrFGZ6ic0DDuIMtJqNzQJDlnWcFpXNAPMIldNGuc0Di0YxeOLFzQBzSmCl9sXNA0qgUAbazc0AOa/3IDbRzQG/OMDzPv3NA4MSYkWPAc0D+/gv7+MBzQC57k8s8wnNAfNGy8M/Cc0Aezg44JsNzQFD46nxiw3NA9n+KkXTRc0B+zwzp19FzQDiE4Osm0nNAJB/EEbzSc0BC0RuL4dJzQC419LX303NAeOJIYeLUc0C67AVaOuBzQBxemvQ34XNAREVySF/hc0A2aFvoe+JzQOojCgoO43NAsy0XR+7kc0C+xbHes/FzQJjWDbn98nNAEuyNZTX0c0A2KZ7U+wB0QCU32tt4AXRApmaGGKQBdECc7ky8cQJ0QMYCHEi8AnRA6tweSEUEdED98VWziRF0QGc4WZJME3RAuHMF1eATdEB0XfYkdhR0QG6YtnBlH3RAvzfj4ksgdEBUC4w3kSB0QCzpUR23IXRAqECYuLIidEAeaO8g+CJ0QJ7//DZTMHRAvwzlZt0ydECsXk7FU0B0QIwtac4mQXRAlmEsGzpDdEB63vnVd0N0QBaGdgXOUXRAhPydSIxTdECsIUk2jVV0QCo35zwhXXRAQRzpLLhgdEDioflvCWJ0QC44BQN6YnRARgDOaBFkdEBE+w/WTWR0QMK/5E24ZnRAFGANW8VndECnv6oq1Wd0QGYY0ikfbXRAZqLgaHhvdECyosY6InB0QLR8qyPJcHRAgNBrC0FxdEAsheuby3F0QFBy5l15cnRAVhLm+DlzdEAKDpkGpHR0QAT0XlY3dXRAMGY4vPaAdED+FnuZToF0QNgI0vRHgnRAnMwf8M2CdEAktH9NJYN0QBqBHuQVkHRAsEUrtLmSdEBm2RAPXpN0QNKxbj/un3RAKm3jp6GgdEDX65ss0KB0QJ6YjQA3oXRAguBmRHuidECiMFb1t6J0QF7rw4UPo3RAor91SGaldEBGTXGzCbB0QM3fB5jDsHRAO9etUkiydEBGrexkb7J0QGQVDLuXsnRAxcafS+PAdECaDnIMEMF0QHbvDs95wXRA/Praj+fBdECu3CY3uMJ0QFI7VelPw3RAvJRbaSPEdEA4T/F0uMR0QFuhyBf9znRA+iD0lwPRdEDuuNSID9J0QJ+GDfMj03RA60PVoz7TdEB6P64a4tN0QHTH+zN31HRAAh6s38/UdEANEzvUkeB0QKQdHCW44HRAOJzOQCPhdEAYwYY9bOF0QDkUWwO24XRAuPXH7PnidEB2t0CJjeN0QBDMzcFR5XRASpAwF0/ydED66q8jjfN0QOQKNEmjAHVAMh3IZM0AdUB+J6wIZAF1QDrlic5cAnVAmArMj6YCdUCEEIz5FQN1QHXa7xeaA3VAwvIRTJkQdUBkrxy0aRJ1QHJkS7OOE3VA/rZruSMUdUBrfEvGnSJ1QDAJpXD2InVAYf6EsCQjdUAiRnE5uyN1QMZeuTleKHVA5h47XmAxdUDYPCsEfDJ1QDx2pRysMnVAevlZAzEzdUAIugH9YDN1QPYYj/7LNXVAxTdz2+w3dUBjVLCCJkB1QHgSTJuyQXVAIr4yYHpCdUBfVFHFjEJ1QA3OcmjeQnVAyAY3MiRDdUDGhwOv2UV1QPziaMjXR3VAxuhKJ+FPdUCm5KwogVF1QMIeuGR3VXVApImLrd5fdUBSLs9qEmB1QID8yKQ5YXVAcBfNCvNhdUBSpeg5aGN1QPG+NZz6Y3VACO3PKnhydUAe5ljFB3R1QJtqc2iNdHVAxfJU9U+AdUCmsCLx3oB1QLrwY155gXVAUekd16yBdUBShSLGpYN1QI4eSaechHVA4p3iyvWKdUAF+/7cipB1QKTLday7kXVAom9bFTyTdUCAkj4QuaF1QH/L1kejv3VAHooxfbLAdUDweCJZZsF1QG7lJ0z4wXVAxiQUnGfCdUBf4yzfe8J1QN474E07w3VAzmbFcOLQdUAh0Tx9JtN1QN6CIxHN03VAWhAEyLjUdUDT+Qim5N91QOigHocP4XVAbAC88O/hdUA09QutCOJ1QNDbouM54nVA0tMEPeXidUDoXQd3J+91QDlXCBhSAXZAlYLlJEkCdkBGueyU4wR2QGpmmqoPE3ZAROQMg0wUdkBeUWDeDhZ2QKnNC66HInZA4Pp1jo8kdkBWKVoMSyt2QJ1urEEfMXZAL0wXWU8ydkBoOJr5lDJ2QBS/iLojM3ZAstApA1EzdkACbLgBuDN2QARFlSGbNHZA1EWue0w+dkBGx6DlSkB2QK5hT+YAQXZAS2votBxBdkA2TBLjyEJ2QBBlwtMOQ3ZAbUIKC6dDdkA1TCm7eER2QBIrFMn8TnZAn+EPnMpQdkB+Qn3SEVF2QLZpq7HVUnZAMU2vo4ZUdkA4LjwPzVR2QNhhIYQhYXZAUr6oNN9hdkC2+ViCU2R2QEopM6vbZHZAzKYvz9B/dkD/17ZrPIN2QNwRvzaPg3ZAnJyiLeuddkBoKVUy5qJ2QMSCBgxGo3ZA5gr+z4yndkCSV829nah2QNje93yPq3ZAI9nTLZKvdkA/mR4ltbB2QE77m0nAsnZA7q9FIHuzdkBgDLoQDLR2QFHHpmO0tHZAgk6hdLvAdkBQCFKNTsF2QJ39kaMbxHZAg04C083OdkByYotDfdB2QDLXqnl04HZANh8nN/PhdkDsdVEVkfN2QMSnq6JK9nZAP7P1ZjQCd0BTETc2ARJ3QIo9h45iE3dA/Hd5hNYTd0DgxQDmDSJ3QIIef7O5JHdAyMhU/KIzd0DTxo0tDTV3QOslrq55PXdAwaYW95xBd0AaXtRmsEJ3QA6LRCCRQ3dAnxVyoRpFd0BD/jgVSlF3QK80viaSUXdA5CRZT7xTd0BbqKMxOV93QFbEKISQYXdAmdKubs5hd0CyxgWggW13QFKe7OInb3dA7UK8b4Rxd0ASQTJt+3N3QKCmt1Ubd3dAMSyhDB57d0C6dV2CIH93QDAHvgZMgXdA4xhPYHqCd0BrbzB3KoN3QPjc6NgJkndA2FEni06Ud0AM2BwQlpt3QCRNl1P5oHdAPge55Saud0A+b43lm7R3QETm9J3j0HdA1iYC80zTd0CZK6gCUPJ3QDhFD6jp8ndApHMgJ0wVeEDcWVllbiJ4QMIFtd6MI3hAy1Syr9YjeEDTxsY9pSR4QO692PVaM3hA4rsJL183eEDIx0DNYzt4QMYM5LcMQnhAkOoWfpFCeEBeIQEoEUR4QEQ+/YR5RXhAbt3bwNVIeEDRpqMS8kt4QPij6PQvTnhADmv+5spReEACZebjh1V4QIJfxWz3YHhATk2KVbZheEBvpv3blWJ4QNzSdle3YnhAmCNRrQ9jeECMdf73GnB4QDlIfRNRdHhAxLTZg2h0eEDDsUCyi3R4QHpeEYS7dHhAypQtHs90eEASDt3tCXV4QEoesc3GeHhAP97XpvZ7eECnSzIEIX54QHYKb72kgXhAxl+oQZGCeED8nOOFfYN4QN5X3B51hHhAiMrEuZmEeEB7Xsav1Ih4QFJRoAmXkXhAxEts7qeUeEDIIl7ZuaR4QBHDPFAnrnhAWHuAAo2veEDeqzRLfbN4QHwWIKfOwHhAznqIZeDOeEAwfUMpuNR4QDIWO+wB9HhADd7dBiP0eEBvDNa9jPV4QFFUDqB7A3lAliK4xZoFeUCoW5r2hAt5QE6qVFqSE3lAerIh3dsYeUAuXyudjht5QLIHe+WxKHlAaPX+Bw8ueUCJtqVY1DJ5QOjGjP5mM3lAfHVVWrYzeUBXP6aYNDR5QNGRAupZN3lAYG+VfL87eUA3QT5Pi0J5QHp0VO/7Q3lAm1J088tUeUC+0F5vDW95QPEyC8HlcHlALSSsbf9xeUB+K2enRXN5QA/lTx7Wc3lAIGYlTd57eUDo/TzP34B5QHFbSNKhknlAPB57RhqheUDCM3Cnv7J5QGjsIV/QwnlA9g1JJ0PUeUAUX9+ny9V5QE6tRVRQ5HlA0ND8YEgDekB+cehd5wN6QKGPByj+A3pAHrfYLpEEekDc4upe+QV6QOHINaZCE3pAxknCG0sbekC5DWsb/SJ6QDrJgvYnI3pAYrpVZC4rekCUSzV0HzN6QNh1BtY0M3pAt025Lgw1ekCoC2UcJzt6QAk7pEwxQ3pAimGvRRpFekCWbZcOhVN6QPoSLh8qVXpAtLnLWCFcekAIXYwlOWV6QA18rRSLcnpATjbWYsBzekAirq4sGnl6QFTlhvCCeXpA4i75a+B+ekBOv3RyyoN6QH1aJCkPs3pA7UuL5wy2ekC8T9dTD7d6QOQK7PP+unpALJPo3BK7ekCSTQcRD796QD011+tHw3pAIJi4GxrGekAFQrXd1dN6QPwfXOU95HpA4LR5gXjkekAWOYvJNu56QIe26aB6A3tAnkzk3XoEe0AuQ3rXTQd7QFYKRJPGC3tAsvs+DCoOe0DTmk5szxN7QDp0E/FLFXtAb5ANo1gle0AkkGLyxjN7QFzl5ySQPntAQXoUvutDe0BpRXZaQ0l7QDWIKSV2U3tAiMsF+8dve0D7HxF/6ZB7QL5B578llXtA1rZo+8+Xe0D6XbRd+7N7QISdCV/7wXtApCcPKHfGe0C4h6Ewv9F7QN1h/zOx4HtAiPd9pfvje0AKD+aTKuR7QENnjxjA8ntAvszOMYz1e0CWun4DJvt7QIoQjtvYAXxAbtFGmWkEfEBDYdVjmwV8QNTkqMiNEXxAPF7J7NARfEB/VaC95SF8QBw/bnvNQXxAgNfHt2NPfEBDkAaw21F8QKhDEDkNYnxApZuo9CtxfEAiTfkMBHN8QMBYNHfjg3xAuE54NsSNfEAc9Eb8l558QOWtrOmTpHxAAJPx1b2yfECke+UFfbR8QM3VYBT9w3xAVoNvlGfEfEBwLKMjddR8QBqm5Qv423xA21nAtFfifED0suMPAOR8QF07MVL66HxAiIQlXRbyfED8WJb2VfJ8QHoy0wTc+3xArjssAQACfUB3EVsbSwJ9QBxYcyJJA31A5CqHEgEEfUArSEBeCAx9QHZN7wkBEn1ALCuVX0USfUBdpAoFZBJ9QI1n3lCOE31AlgbjFw8UfUBAZ/GbPiJ9QDpYSpFGI31ALZgH1p8xfUBB/S+TRzh9QIawunShPX1A6eSb4uVCfUAIlwdVA0N9QOAkzlxESH1ACK+JWfVSfUCpnJQ5gmV9QEQDF64gc31AcLz5gnp4fUA2NyevsHt9QKYag7HZfX1ADvSgQFCDfUB+tnn3lYR9QJb2NTjThH1AyUrW89yUfUAgQUPtKKJ9QAYDYuwYpH1AvQNJbaSkfUD7mgxm4Kt9QAzxqDcMrH1ACOcBryW3fUDcofS9J7t9QLgfhhSkv31Allg/SCvDfUCo1I8L58R9QKyINObX4n1AflLMSTzofUAx6IX0j/V9QHPb7HEV/31AtoGVFzUAfkCAu6D3Nh9+QJ82BvUkIH5ABn94QEEvfkAiNRhAQj9+QCOrBnnSRH5A4CsJbcFIfkBrJhSU2U5+QN9SmVXAUH5All0K6fZTfkDO3H/hi1V+QBq74xAoV35AtN7PPmFjfkBUoX8Ra29+QK85o/Fsc35A7IpGIbdzfkBigyYGjH1+QKQo8i/mgn5AKqi7SKCDfkBXi0z5Loh+QPIUzijEiH5AluvzAqaLfkBSMAZU7o9+QIVaSttWkn5ABG/nh5STfkB4ac6JspN+QGqsJ5qZlH5ApbBWGPGZfkBLMKsve5t+QMqaOg6cm35AMq0S4EyffkA7fZ47iaR+QFuwhkb2rn5AykcuCL6wfkDHmDzplrJ+QDRaLpNPtH5AkjK1BKC0fkCeWNR8t7d+QHjQ6uenuX5AUgM6QrW7fkDW9gVGA79+QBT7qk25w35AbLRQmr7EfkCUDJB82MR+QBZ4LYUlxn5ARLPaK0TLfkAwJhD1ttx+QPEadGXL335A6EC89CzgfkCIqHV4BOR+QINZcQlU5H5AQ+NK24bkfkCI9t8BB+h+QMhTDNQJ7H5AVCqVhwzwfkCgIH50DfR+QNQDXhdO9H5Ajmy+E+gDf0CAvLMiVwR/QJ6YxWHtE39AUC6lYUwef0C284BKoTl/QOLDUDEDP39ADvZtvBlEf0AUtfwjuFx/QGjYryytXn9AbIJxNG5ff0DfgJdDv2R/QDIbTG/GbH9A+krjlLdxf0BkBNTrQHR/QOj5lyLLdH9AGK0I/6+Bf0Ca8jHHpIN/QEYeKTTThH9AV5+PspeQf0DT79uVYpF/QE1EpfmtkX9Aq8f4G5iTf0CAZ++jDaB/QCqFpexeoX9AMvWz3iKmf0AURp2mtqt/QG49TJETsX9ArPxQ/FOxf0DjFxbwZbh/QEIDoWLGvX9ABxRh4fu/f0CRcJpCI8N/QIBBHEZmyX9AAPwZm+3gf0CsWDo2T+J/QAD3twiw5H9AWuLxrO3kf0DlKrZrUu9/QPK+t3+f839AFRQG1ewAgECsKTrGRwKAQJtPgVPoBIBAzii08hwGgEAlzRiBJgeAQOnLXWnCDIBATgx7oXUNgECAEgccYhCAQGaKA+FhGYBAYJeUM1wagEBrtExO6ymAQMK0csqGMoBAYXMgaHo6gEC0vWApy0GAQBW8zLNdQoBAPiSF06hCgECIXwTQd0eAQPShZIf1SIBA8HdxLARKgECvb439iU+AQGim42noUIBAHs2fSxRRgED61s2DNVKAQK4WdJt9UoBAeCW80Y1SgEBrrOZOBFSAQG4GwufgVIBAVPwQYgVWgEBccUuIZlaAQD4dlHIlWIBABPWnoM1YgED5nDRF51iAQE6lHXwOWYBAJvkFCiFZgEAiN0xkSVqAQHKyjDppWoBAxIBsCzdegEDYqwIPsl+AQC8YhGYrYIBAoIEA6Q1hgEBEAiLLF2KAQLQZbY0daIBAOgVt4x9qgEBiFmEqI26AQIaIc7Mpb4BA9qrP3S9wgEB0RjWEFnKAQHoIJh2QcoBA+q7Ctyh3gEASvZftgXmAQCgE2VIvfIBAiAlaZih/gEDKMKUVIYKAQDD/Cn0IhoBABJZdEx6PgECGxFgArJGAQODEHRKikoBA3mbrGEiWgEDqod/YH5eAQCXs6c0bmYBAJOZj2eOZgED2hvXuTJqAQIMUaMVRm4BANoj55VCegEDwQYO+jp6AQPZRXtXenoBAtKCr8hqfgECkFh5GVaOAQCGqXfbHpIBAjNmtE4qlgEBjcJ2i/KaAQGy0mtyGqYBAyqje8dmpgEDAlxZ0Q6uAQEi3B5PYrYBAf9bCe+uugECO2wgTE6+AQKLxkme3r4BAtGxVAiexgEDqv6Zu2LGAQAACzCw3soBAQhvgoH+ygEAeZcqu9baAQIjhzqMUt4BA5nq8F1a7gEC5ZDQSEryAQK5Ip7q+vIBArqErds+8gEBjc5F8eL2AQLFR1glKvoBAxwhooxG/gEDEWQfUrr+AQJ79eYlSwYBAqHwVRdbBgEDiebOcm8KAQN0sPXiix4BAmLwkDgDIgEAV6EMcYMiAQOTEAQgYyYBA0l18yR/JgEBGkspsU8mAQB4loUjWyYBAT8sRGjLKgEAXhuAYlcqAQEwm9UzazIBAg3gQmnrNgEDmf/1sBs+AQDCa14b+z4BAFO5aryLRgEBcPDVzLdGAQG5gDmxM0YBABYSkyV/RgEASEt58HNSAQD968iEE2IBAYrsH30nZgEAeFkacI+GAQJIJt5BE4YBAWgqoWFfhgECGbywioeSAQPQ1Dsn16IBAKW31RsPsgECXWSL0Su+AQBp2+Elo8oBAD8vzfj3zgEB7IiOe3fOAQMn2x80p9YBARC0KjGr2gEDOc1KwP/6AQHabzJZm/oBAxPQQ0j//gEAs9WdRQAeBQE5RLUndDYFAVjnEHj4PgUCCjIDVKhaBQO0NJcxEF4FAvmIeh3kXgUDoH4yBqBqBQM6wL1RGHIFAnHwJqjQfgUCx0m7psB+BQD7B3oZEIYFANAwXt1QigUCjWk9AryKBQCwvTNA1J4FAR295k7gngUAKuePxJCmBQIrhyzPhLoFAVreeiDAvgUDcy/CLty+BQPeoJHK9MYFAL9Z6TSozgUCsO3JKrDqBQKhImhspP4FAJSgH/gNBgUDcbmOxkEGBQOD7l0J4QoFA9YZfQC1HgUB/LJCCc0iBQIA5QPwzSYFAt/FnldFUgUCo1/fK8FyBQBYszg6fX4FAMswA1WNggUAMgbzIAGKBQPhRkhqwYoFAuvkKAp5jgUCkXHP3s2aBQM+cXbLYZ4FADXJCwgJqgUCUCeP6omqBQCrm+EQubYFAlpMh/TJugUDy3QjqJXSBQHfGc2E+eYFA2HuPkfd5gUBIfY5s6H2BQAgqvwUHfoFAcr1bx+OAgUBwr3EKO4KBQMRIK3wXg4FAPv3M9N+EgUAm0NjO7YmBQGo89GIMioFADsvWUX6KgUCsdcu48Y2BQChYSdgLj4FAYJzeiVWPgUDAdI4yjpGBQJufVKfkkYFAIiCp9PeRgUCk5u73g5KBQLcfoR8olIFAbA2L8o2UgUCtB8fkV5eBQPx1bVl4mIFAHlUjtVOfgUAq1mGE56GBQIaVfgrfooFA6SoluICngUBOL/BIbaiBQEg8DkzrqYFApoB8JuaqgUCyV0xNSq+BQBDuZngusYFAHNnK1uaygUCxBwFhSreBQObsxiKVvoFAEpAv/5XCgUA2vaXY+cWBQNOurxIEyoFA9KmndW/MgUB4UF/jdc6BQGQcIE9804FABDFikR/agUDM6aqFYuaBQP55L9hR6oFAe/WPRgIJgkB+FvGKtBKCQEy/slNqFoJALDt8YWkYgkAAL2ct2BiCQB446nhpGoJAijL9mbsagkD60B061yCCQMKTLb/7IYJAIML8CdQigkAkcTNJkieCQHrnrOTQKIJAuo21zAAqgkDyDqDR7S+CQMbT6XlcMIJAV2xYbqIwgkDYERPKnDKCQDiEuARHNYJAPr3SROQ2gkC4qjEBaziCQJ4YIuxbQIJAaJ43CyhCgkD44hMuNE2CQLIFt85HTYJArJ31dPJPgkD4rzJeklGCQEfUnVCJUoJAkE17W5VVgkBwJXwRjVaCQMvgbXScWYJAIWtoKZBagkBeRpTH31qCQHhatrOkW4JAdrGp05RegkBGXxepo1+CQDALIh8sZYJAvW5Kj6lngkBuY2CGPGmCQKbfsDsGaoJAKBYXGOBqgkDSlyEsn2uCQFiJxaVpbIJAkp0AK+JugkDREo6lX3KCQKC4AilodIJAQUkCfwx1gkCzfWWABHaCQFWOR3DUdoJAvAks+qV3gkDGY+wD4X2CQF0VySULfoJAq9cWuuSBgkBwxCj1BYKCQAyXaQ06goJAuuO4/8qHgkB2u0hoQ4mCQFTkh6c5jYJA1vPkTkORgkC5NYuSvJGCQDzjhLlkkoJAuBU6UdOWgkDGaX1rKZeCQAAUDpawl4JAXPE9bDyZgkBoirXyVJmCQNAOC0gPoYJAV0ev8TqhgkBFy9Ah3qGCQM9XW9rdooJATyoSYJGjgkBJz7bOWKSCQB52eiTipYJAQIRrfgumgkCopXeXDqmCQBxdfMszqYJAwIJAPSuqgkB2bsxNaqqCQHxbBFVRsIJAqXHnWwexgkA611V8M7GCQPpLjGn0tYJAsRa+W6bDgkC4KKdRGcSCQEq0tkmkxYJAyn2iqO3FgkA7gNeY78mCQKhBl6B20oJAvglxkH7agkCww3NMgt6CQCbOwKKW34JARNQcfEzigkDoGhJK1OaCQDDoiW1k6IJAKiJSS9fqgkCS1tBgdPCCQILOgSZ28oJA0JmjaD30gkDLI+qmd/SCQAQs7dd59oJAfAempoP6gkDoLa9AFQODQNPn0QK6CoNAMuIPE7sOg0DkJh6IeRGDQHgOloy+EoNAR1tONHoZg0A8bOjfkRyDQPrPkWSTIINAEmm2QS0hg0DaykZ4ciGDQNqtKJIiIoNAeGE+n3Epg0DWX9CVMyqDQEDjKU/JK4NA9vzcHtQvg0CQ9LWyajGDQHDvVZKIMoNAkOO4C/A0g0AiFAjPUDWDQKrd+bAzNoNA8GXwEZ43g0AVC0hlbjmDQBj/wuVHOoNAaoYXUPY7g0C4wpY99DyDQARs6gv2RoNABTr6PbFLg0DzFptN1FiDQArGywEZXoNAQqePIGZig0Du8kmZom+DQAOiy7e1b4NAHbaa+0xxg0CFCpr1BXqDQMhJVUX3e4NAbpLG8WyBg0CU4SxN5oGDQJj5a8tdgoNAvYVWhQqDg0BBk0njEIuDQBgsaDp4moNAwzMvBCOdg0CM480aIb6DQDxsj+XpzINAWurBPWrTg0DhoMnj3/KDQJa3n8ws84NAFhbNp5b4g0B6LyW95/qDQILEaueo/4NA6JHsV1UChEBscWLsCw2EQKQv3d+6JoRAiswvMGk2hECV7ENSKDiEQFzwXDT5O4RAbX390nxYhEBeEru1S2KEQKjkK8j/aIRAGl6WkOVqhEANbHSn6G6EQA5bYkH+cIRAqhNj6+tyhECouUDl7naEQLAvHvTKd4RARnFS0vd4hECgcz9vd3qEQGh6iVslfYRAiS3FrX+AhECiKczkWYGEQEVfyMpUlYRAEqjAgQCYhECTOb+DrpqEQAYL1UH9o4RAZJamhuunhECw48PNjbaEQDaL5mF1yYRAM1EKEGrZhEBM+3OJauGEQFa8C6di6YRAHktQk33qhEC03hAVNvGEQIv+z5Jk8YRARKGivjP5hEBKNk2kXfmEQOxC0y1B/IRAHGTLFtv9hEBgdkVudf+EQM7SCgUSAYVAcpUFwKsChUCl7uTzSASFQHhkPofYFYVAEElnWncXhUA97lwREBmFQP9W6DpCHoVAonZyHEMihUCinNjZmjKFQBgD3Q3jPIVAFuL3UKhMhUCjewo/cU2FQE0LyYepToVAOw9NwapQhUBIsXEvrFKFQGKKOxOtVIVAb2cgY65WhUDX9mdDoGGFQFY/17agaYVAoCbo1DpwhUCHCbBemXGFQG7yY+3UdoVAeyH+bZh5hUDC7Pngj4GFQBZra0CsgYVATQ0vVO6FhUBqly8drYeFQKOEiyfmlYVAp6JvvDejhUASSFmjlKiFQDcQDwtKsIVAzPn2TUC2hUD0sxjiebaFQDlUHW56uIVAoJwP7Ya6hUAUlRNuu7qFQLblqd9/vIVALMvVwIG+hUCiFPUhms+FQM4e54Iw5oVA+KvnLDPqhUDiQUr70vKFQAOCDPKA9YVAV/kzxAMLhkA4OID7UBKGQFNGbeGUGoZAdpVZCzwdhkDM/vGZ6B+GQLT5zD4YSIZA0SmNxJdKhkAGBBCX2XeGQPcU2XOlfIZAKi3SpOx+hkB2Kpmy4oqGQK2UIXTGqoZAop4tTCe5hkBUq2cYtLqGQNpz5IC5vIZAvKbAL7S+hkDpmKKEvMCGQDUvYSIkwYZAqFP+bdXGhkBXcTeOz8iGQCBbfqFJ8IZADZMezfXyhkCgucOTDfiGQHee7JhO+IZAfAtvOjL/hkCbc4moNgOHQIyv6rY7B4dAhe5LAUALh0CWXIaY5BqHQIKdlRCRKYdAkhOgnZExh0A2RBRLhDeHQAi6QsqKOYdA/9GUHFxBh0DeDrHTi0GHQKfN3pDaVodAvqApSOpgh0BQZftu7mKHQGp4LpfwZIdAWiquFLhmh0DSY1YuN2eHQNIqdJM6a4dAfWDALD1vh0CwGqueP3OHQCBh/fkad4dAKaqKX0d3h0A4N941j5OHQMT3Tz2HmIdA4scNbsexh0A0EL3/x7mHQBDqOZ9Bu4dAcIwftcHBh0AyX/sPScaHQFsTUFDDyYdAK9ftPEEjiEBQfOKOVzSIQE63CZC3UIhAfnTnJ3BWiEAglNuuEGOIQG9INQZ8cohAtMRms4B2iECZBoaOgHqIQCKP8AtbsohAkb5+Tl62iEA+xxBZY7qIQPXzXFY+wohA+E7I8rvOiEDZcbt1WvuIQA== + NrgMGZxjYkCJy7y2HKVqQK9rGHLRYnNAH3KoplGjc0CvyfTFKXR6QB/QhPqptHpAakWeHmxCgUCjSOY4rGKBQGp0jEgYy4RAo3fUYljrhECXejHuefOHQG1/nRXaA4pAl6kfGCZ8i0A= - + - M5lCRDb1FETzTydGTCCmRHjIX0Qw7I1EOyYrRZwul0SkhC9EfCKKRP7Vv0QRtRRH0gaQRNfjN0QSratEPgqQRI3mSUSnZolFPHdyRUOlxUSwiB9E4HVVRTgvj0QIWTVEJw7WRPMdzkTGdTlE7eqaRPgGX0RuTklElB+5RPHm1kQVWJxE1qAeR+fHQkS6hSBE/y9DROY0T0QTbDNGjNJQRNcWoEXG6JxEmC0dRSUUIUQcedZEIxKSRo6ORkSZh25EBumcRO+YhkVPQKREo5GSRBlXmkW0yTlEn4uERDPAj0TC41JEOixMRWmRlEQ6tjNFeBU2RPCd6UXgL0lF7vMzRDASAEU74FtF2y+RRHdU6kSHi4FEqmAtRXo/PUWn4zdEYNLIRInd0ETD/S9EMMIqRIccR0QG83ZEdvyxRCsyrEaNyclER3bDRG/zMES75sRFSeNWRMXUQESSJStET1wnReFuOEeB3FBEQHrWRI8+Q0aH/8xFoa5URLng4UUnzXREZwVzRI5SXkTKZQ5FN4pwRHvIKURtfSFEafA3RQg8LEUQNmNElitVRIR9gkQRm6xEFB3aRcsWtkTsyYxE9H6fRICSP0UMJTdEJmiLRGZcQkSifZRE7+YZRdA3R0Q86sJFG4tLREfOyUTW4ZhEQbNIRG24PkTmXxJEZzPSRI0XI0TLCy5GElVIRJptP0R0fjhEKJc4RBo1o0SZBjNFTXFaRGSUUERGQCZEfFDMRIBHMUQvHbBEMl0cRdj5gESbUJZEj+gJRDCBVEQl+iJEAiDdROJvw0SALGtEx0ZxRLsU1ESqYxxIrhdIRf0rbkVnv6dHeVOEREQ1y0T+N3xEtkFLRjSaaUY9brFFI8tGRP2ugUXEVCREKp8mR9BngUS8RQdFIbPORGGMLESi/pBE6BsxRWk5s0VoyUFE3stKRB5OekRUA45FvdyURHpCKUQSlMREGg+MRLcRAUXbOqtE3maARHrxy0RHSkdF7lJpRN+Ls0ScGMhEWVw2RGEhikSkoW5E3rxRRROFwESCgXZE2uypRKpSf0RnBAFFOG+IRHPA/ESukpRERV8ARQJ7RUQFBThE9HtZROj2k0QL0j9EHrOcRGe6METvCLBEJxxNRJtuKUSNQI1Esd+ARGjQg0QFxH1EhL4yRMpAvUUtWElE5hEhRPgkp0SFBmFFqyLLRKpsWETuV6lEDlSaRDbGh0Q3NiVE0xuxRKLkCEbknyBEJI7dRSAWM0RNgzFE5apJRAdfyUagmXVEmImlRPdYIESR2xFFr5BORB0dh0Q+DjBEy+vjRDVB60QoCwRFkVdCRHf4MUS2t9lEgoCNRKhbg0S+GMhEAQcURJxIWUSdZ8ZEddUoRGNVdETivg9FRnTvRJZ7FUSpxx9GoBpKROlyW0Qnno5EyFunRdiLLEXOta1EkOc1RINoOERfsLtE7OGbRB9VmkTbTTFEBTdHRB2RN0RDJrtE9JnQRBeOj0S0uIRE9ARpROdsNET/89NE2BM7RKcErURR/m9Emw5gRNhnyUTJ8jBE58xWRFnZOEQTyxRECA57RR1kRkSJNS5EfPg8RIhTl0R2k5FF14X9RffA4EWFVZlGR7tLRB/yOUTIdzJEneXIRCmfqUQpslZEXTZTRXZ2jUQnGB1EMm5cRU62oUVRvINEq//XRDK8hEVtR1ZENy84RPUn6kTKNIVEQlMbRCmdDEakhGBEi9pCRKO+iUSqIipFjMiJRIrVVkRGccxEa7qJRvkjYUSpEg9G0eu9ROax0EQLOsxEOFGfRCHWPkSs79ZEYGVlRM86SkXFJ0VEiSFNRAKXnEQDLopEm1FzRYEGOURvgBlEz9CdREUtEkV7BkREmVVGRIcil0ZozDxErNkpRE+HbUWnKDBE6diDRDKm4UdTqGBEioOSRs+ONkQ/GZREbEzFRvzLmUUSFE1Gz1lSRK3Ae0QlK/VElvQfRFICKESoNGFFPzQvREu0UUSVSd9EA8LCROBNbURM11VEgvO6RMRQUEQZ/XBEcCucRDTqN0SaD4lE19tpRDsDq0RB6UVEaJ3SRDY6skQRlSNEvgSaRNYqV0Vfr55EsbubRGf5R0RH09hE8V2xRKXcrETgclpEbUpdRLiQ8kSlGSpGm0lBRbNuP0TAR7xE9nWTRUbq9kROrABFEsUzRcgr8ET/nXFEfLtSRJpfJURY21xFf72ERYW3MklGYYVFIjP7RO9CyETtP5BGpdfcRLTBFEbSxxtF0lddROmzpkS925VEghA9SDv1RETZ6mlFtpGRRp6CR0Scp2VEldRSRMoO0kSGKaREKQcWRL1x9ERcM35FohWRRNWZwkVvFU9ElASIRFR1R0WnDl9EHQiVROxrSUQrPgtF5xRcRO96EkUp+4REaQFMRQb/SURa1CJEkHuCRAdWdkSTPPFEqCA3Rd30K0T4DjlEQJxXRHswWUTvnohFMiqRRI1EWERifYlEFLZqRCgZQ0X80aFE1qe0RQYxo0TMXxRFNWplRCVDEESv7PBEdriERRiqbEScDVNFCXB4RBFXtUR6tE1Io4+mR0NbjkZU+XBGRnysR+QEsEXI/s1Eh8u4Rq55RESVBw9Fv8X+ROYhR0QRMUZEQ7HURCetkUR4Oz9FOV2SRACjhERI7BBFEbDDRV8UgkRGcntEEDiIRKyutERLh8lEwl6DRDjfPUTxOJtEfweqRHGM4URafkFE7eBwRXLek0QagdBEuQWTRLJFrUQcWh5G0kExRRPARESOEQxG+jDZRb5KMkU1Y0REbuGwRcYBlURZE+REPMkhRANt5UR/ilxEhTd5RK7h6EShhTREREmIREjZN0S6UttEqPeFRn3fSkS3qhFGeBB6RCYRhEW5SHxE25s6RTmiSkTQM5NFDKaLROgZ40RtW3hEiaq8REPEZURPRypE5N2qRFNjYEQhZMhER5K0RKMtUkToyjZEXB4sRrWTB0XTqCZENGzER1CsU0TR/TNE2jkYRUHpx0a/TJ5E/vf8RL16jEb0+lxEkL65RjSaIkYmCYtEN5GERYSjn0QuZEBEdZNHRT8egkRkWCtEFsuHREe+lEYRQkFGQHyORNh7p0S6KKZEM99CRDpgckQkFLxFhAn9RHmvWERGNJVEdcZzRMMaV0RA94xFgDCKREKgjETN7tREZBJ1RB00zkQGj4lE0zY2RY8mvESfkYVErGzWROc0aEVNmplEBxx4RNj6tUSOfTlE2iLSRJAvi0R2FDFEBex3RLgYOkTcI9pE0t+gRAufXEQJvrVEddAIRWPBWERq7jVEegtARDlgTUQYknxEXhFiRKflakUt4MNEAj66Rq0GVUTOwINEQdk3RqTdVUQTIrVEwgIBRZIlfUQguMhFVNl9RX+MUUQItEZELFAJRdIDTER8EYdGq+KKRM7/3URydkBGpswvRFIYWESxDFFFBZAURGJP30TH7VFE1lN9RA8WPET/XVtEOKPGRE6Xp0RczUZEej42RBrnSEYWICZEdCE4RK0eeEZHIARGxa8rRbjO0kT9o4xE6tWCRHGqS0TOjjVEqWFmRBmmKkRzxHpEEREzRFRJYkexpSJEFwBSRFoEtEY+EdlF1BR+RbIwZUTs9tdEnPVbRM5an0Q7pnZEskpKRE4MBUamEllEJRvARGhUxkXczoJFNaNHRBD1VkRw00xEiG0ARWFMDkXjyrREV9nFRAvPUkQ+2kJEmfAYRPXMSkRJjjREFgS9RCikT0SaUu1EoZo2RCS+LEQOzlBE+gtKRGLvaUQ0BGdE2yEuRFHmcEQ/XUNEerxARIZhrESgwPhEkIGaRH7PSUTYRIZEjKRvRTzfKkRG+dJEjho7RA7V3kSlMAxFTy9YRqploURJUedEwiUkRNw5/URRLW9EZd/WROaixEQULmxFdV4bREP0gkSyZYZFlKJJRIxlLkR6wphE1uGORMWeUkRnxilE3pvgRC0sIEQ+KJZESRMLRde9o0Srh0BFp48jRPYNRES2y1BELyWQRDQBvUSecbRE/nkcRZIGI0Q+j61ErE1XRqZvPkTagilEYuWwRSL8LUXtlYRE/7DQREwnrkS1sk5EUQNMRNJQUURewRJF2sWxRE1QXURfFo9Ep1yHRMsJXkQk6OZEKwqGRFJNUkSQ+mtEDyFTRF5+KUZjpuNEuB9TREQxaURFXiZEQusZRdZDJkRV49lEmAlOREI/VUQD+wdFUabPRDnAl0TLhRpElJI+RLw1jURKcmdI+TSYRNgJP0TZyZ1E4m84RCvyU0RVT4REa6qBRGeGyUdqOfVE1OGTRKKsekQhdjpEfjkiRJ71MEQ2GoNE4wEKRCvTWEQjMmNHE142Re9eS0RgT9ZEiq4mRqLsiEQyrJ5FFbWMRDTei0RcKsVEiwlTREo2EkUvXwNF/ySxRBbsP0QXIE1EYH+aRMGCRkTsvh1E8Yt3RlTRokUCUMpEnQbeRSSCPkSC9YpEHfs8RNlZGkW68RZERL0jR2eWQUQn+YVE4kUJRePUrEQVSgBGvD1RREuTakTPFitEdpgWRcMVRkQyCLxEooNWRMGrNEQR1A5Gu11dRJwBdERcyC9Eh8aGRG4QZUQI3mpEVSYfRCjV20RvaI1E8F65RPy4j0TaS0lEwjdsRDRDF0W6qjxEWEMeRPgqWUQFKkJEyb9SRLY/M0Qsf7VEAUhgRM0FU0RtHVdEDXGCRP23c0QtoGhEllRrRARIpUbTcodEduFgRbdjYEZtuDVEhCfsRe1BL0QDV85E6PEPRdetdESfV4BEtklxRLAF+kQBEjREhS8yRYeMekTs+I1GHHAhRD6c2URzKFBEusuPRTwxT0b7x3tEUkFqRPgVUEVinmhFRD7zRGlwXESoQMdEppWxRM2MQESYSbpEtVycRDK6N0RLkWVEdtGJRFqmokZ8FjFFdgaMRV2DH0Y44L9E6fGiRdgThkXHW3BF1va9RLtpTETIqjlFDEG3RKg8mUR4qTFERG+SRNv860Rt9fBEEEd3RJyygURio0RE15l5RMelgkTgtctE2H1eRMTuykUFiEVEBplmRTjBO0UCpWNENcY8RRpUnEQdodlE2aZJRAItq0RmnGlEJ7SEROvGhkSDJKlEefo+RFgmYUR5TdBEJ6ZxRMLG60R2kmBEMG/ARB1APURUF8xE59FJRO5gj0U/nIZEoiNCRY9U3kT3eiFEAh8aRP++vUdBf45EvtQcRx8vRURSEB5EdRpHRFdGQEQKAEJEeuHFRmyWDUXYJsZFI2fURZcv90TfMz9EQBJmRECGT0RsusZE16dBRMD760TgLyNFz9S1RIRlmESGKuxEdkK/RLXuaERwyTVEuwZBRMhBXUTTwExEJRNrREQrW0T+mPxEsFIpRadrcUQT1j1EmJc3RF8/kkRg/C1ECKZYRKHDREUzQdZF5DBERD/AaUXXzDJEdyckRDbJbUVEjapE+aCBRH2oz0ed8ltE8tZARz7FS0TSmFFE1s9tRJSfzUYZJihEn7EGRnxgCkRiNElEKJ57RM4qLEWmKaxEiOqDRfn9bUT/MHVEJraFRfbNMkRqewRFJwsrRJhANEQ9dUJEeJ5PRC8sNETYhX9EkE9QRP7eDUR+eBhEBvIIROKleUSoACdEPoYjRGRTi0S6bjNELXxCRTRQTUSk3uVEqOrCRKafTUQTsTlEr5YyRL1ZnUXM/X9EQG5rREWkgEQeEtBEr+SQRAHiIUSr+45EHZRBRMktgESdqTZEfJqpRHawwESI1J9FDO1SR8TZ7EYwQ/xE7WY7RrA6V0VWg7JFU4MMRY/Xm0UP799EJ7gyRHWZVURuiAJFCwxiRZuwz0SeIWpEgUsoREf2J0QpOShE7Hj+RoyEYEaHIxBGGipRRKx3c0V2sXVFm2P1RL7Qx0SxCndFpEVxRfyUuUUDkG5Fc67ZRMoGYkRQtIpENma6RPP1QER3qsFElJFWREiCJEQ0V59EdWoPRoB2c0RKLExG+GYcRpOGiEV8Yg9FxJDCRIE08Ubiv0RG6rBnRJTfB0YcErFE/RBRRW5tikSMnFhEMhE2ROgVS0T/R4NEQxMnRNQsT0QrFy1EWDCVRJ/hxETsDWNEnIB0RDVvaER3yJ5EVtuMRDnHlkTFY5pEGYWLRDE1uEQQHZBExdCDRLz2gERrO+5EcY+ERMwRjERwGydEIHqoRC3BMES3RFRENydSRFN3LkRvqTRE3LaiRPh6f0Tdnm5EbbOVROreSEQ/U5tEvzSmROwFgESEuuBEEgBoRWbJGUTlMI5Eg4qQReFyLkVXeYVEBOYTRDzeFkQ2XRxG4zS3RWZURUSleYhFlnB3RAWqrkSibxBEf3RCRP6RiETCc55EvueLRMWWREfM8gtHhnNQRmFuakWfS55EwHeXRPnUwESP2ixEAXAGRkj2cUV6HoNEhtRCRbBMUESHl1REJheJRDL9IUTQ5UlE348TRSKaUkSg22BFzjOKRUwhhETwHutE+1b+RKFZVUQMV0JEgwQ9RFctdkQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + - - - - - - EmaW1CXBckAWZVtLb8FyQDbfttzkwnJAq5O1JzrDckCEYrWueMNyQIhyH0JcxXJAGreei33RckDu3ZAUDtJyQLpStK5D0nJA5PR963fTckDAb0IWYdRyQLJjCX7O33JAAteqKbjgckBSFY9r4+ByQOX184dR4nJAQFzrvI7ickAMTJy6JONyQJJEpZdR8XJAXAFGaMnxckCkDjqrtPNyQOKekc8N9HJADOgTIqH0ckAmWbKkw/9yQPx8oVzR/3JAzLI8wfQAc0BPcqYZIgFzQJrvwh2NAXNAvCd8DTkCc0Cc9mnOzwJzQD0DxW1lA3NAlFnd5voDc0DomDXDCBJzQIZaDN8mEnNAEaDjtrwSc0Dv5VfQBRRzQOoZbiNNFHNAbdbX/Xkfc0AmhZ/moSBzQFo9SIw5IXNAullgvWQhc0CaMnejeyJzQFtUyvvGInNAztZJXQ4jc0Ca1h8gBCRzQEyb2cnOJHNAy+pKr0gxc0CE1sAYVDFzQAY4zYn8MnNAIKuasJ8zc0BWpSnvNjRzQOK5BZ25P3NApgYj3E5Ac0DSibZs4UBzQO0KdJZ5QXNAzI7JeCZCc0BQUILGu0JzQFlmqqoFQ3NAjP3IZXpEc0BtaQXlnVFzQFC9PBtCU3NAM4F2SqNTc0AUVqB5eVRzQE+GxEX6X3NADq4yvoxgc0CO5NGFHWJzQJGJ54xmYnNABv7Uuzljc0AQv8pVj2NzQNTC+jVBcXNAMM+D79pxc0AXcvMTj3JzQHUjdxr1cnNA6l84JrZ0c0C8AV1JTHVzQLY1LSZ5gHNACpPtSQyBc0ACD/+lMoFzQAjUbxVegnNAFKNWx6aCc0AArvt8DoRzQDpripuIkHNAGLP0doyRc0A1PCTv05FzQNbCPUFNknNAUKj1+s+Sc0BCOurjzJNzQBjdXvhhlHNAeUh1xPeUc0ADjDmbuaBzQKt1LnmsoXNAlll3pFqic0DsM+4xnKJzQIKfcnsko3NA4soz1wSlc0D0vHMaxbBzQEo4tHTXsHNAwh1SCTaxc0B9sof3fbFzQBVIg5kTs3NAiGF92razc0DgyVclDbRzQMB3FVSitHNAEl5jkvjAc0BspDluOsJzQIJNfU/QwnNAW+U8VybDc0B9fVsVY8NzQBgFnRp10XNAAM5NAtnRc0BIwm/Y/NFzQHbMF0X203NADlIj1eLUc0AgNM/LeN9zQISLhpWj4HNAmhisHjjhc0BuuCW6ZuFzQKjw+3zo4XNAEjxennzic0CBqZ63D+NzQJxKyUWl43NAHsL26O3kc0DGoP4YNvRzQGSOMdbjAHRAslztnngBdEAyEOL3pwF0QBBDBJxzAnRA+GP+1LgCdEDceiO/eBF0QAQDYXGXEXRANnc18qcSdECpJ9x7TBN0QFifkSZ3FHRAZdkJUEwgdEDmhxmahyF0QBqyMPm3IXRAGA+mvmUidEBCPC6DsyJ0QMYR1VZZI3RAMISlbmUkdEA4p2CoUjB0QDTQ8RK/MnRAegw/i+IydEBHYZIANkB0QGAeZSxVQHRAhqb3XnpDdEDoJ1+fbU90QEjpiY2OU3RAehaUi4xVdECFYzEiIV10QMR1KJU7XXRAjuE9zbdgdEB7fobpCGJ0QAaUlVF6YnRA8SRkywxkdECUWkB2TWR0QJmNf7zFZ3RAwewdM9VndEBkED9eHm10QLBZUEYwbXRACDSn6yFwdECq0zgfQXF0QCyNN7FMcnRAmtGg3nhydEC6ok3XOnN0QAaTl202dXRAzH7S/G+AdEA+dmGj94B0QNnax7QOgXRAK8yyC06BdEDcfTM0SIJ0QNLzuW8og3RAxC0t97mPdEC93OU0FpB0QNnLHkdqkHRA6A8UHLqSdEDGkWMA7Z90QE7TxBXOoHRAVCXouTehdEB0XaGTt6J0QKRYDxoQo3RAFCepFaSjdEDG7b+JZaV0QOSZifUHsHRAFhjBeMWwdEDeCJvrc7J0QCQmmgj6snRAGl2nkOPAdEB8E9b4EMF0QDHEVD7twXRAHx6i17vCdEAcVPnTUcN0QNyvTR17xHRAKjgEurfEdECIVNyTx810QMYHKo/7znRAosI+MwHRdEBN6+taJNN0QOY/oG0903RAIIzTH+HTdEA4oQjgztR0QCB4R7X633RAwZd9hbjhdEDSpD6Z+OJ0QOwEzY9g43RARDEcyo/jdED1m9fnTuV0QLqtVYmM83RA7XvBNHn0dEDenCb4owB1QKwMb1nOAHVAWCN2m+YAdUC8+QLyYQF1QCpmz1ZdAnVAcMWh8aUCdUCseR8vEQN1QAKkIgqcA3VAfC51DZkQdUA9V3iOIxR1QIJFJyCMFXVAIrWBiU4fdUB6bcobdiF1QAemI4GdInVAxaIB3iMjdUDmfVpafDJ1QGCN45SuMnVAerBXQzIzdUARW6PXyzV1QJ0qjLojQHVAdAitLnpCdUB2N/tk3UJ1QIKRZPrXR3VAU/MVH/tPdUC4PhRxglF1QEMIyc6QUnVAYnZ6f01UdUA3G4eaeFV1QCCrxhQRYHVAsPT/wzZhdUCSQ+JAZGN1QFWIPwr7Y3VAc4rabHhydUDK49FnknN1QBuWgBeNdHVAYlEbF+GAdUA6yxbDeYF1QJZYMwOugXVA7PLFkKaDdUC8XgW3m4R1QBp0Ky+8kXVAsFJwYD2TdUAwm55wt6F1QFK/IBuWsHVADnHe77HAdUAYWEMNz8B1QKDFsrhkwXVAeFmEjPfBdUA+M+7LfsJ1QNiRKSGownVAhM11rabQdUDQ8To35NB1QKCFJEfN03VAa00KfXXgdUAkDi5ED+F1QPy6OsIG4nVAJ54fVz3ldUA77lP3SAJ2QGAUiivQA3ZAHLxB9eMEdkD7IZrCThR2QJ0IxzoMFnZAUpf/fIgidkD+aHPyjyR2QBikW6JKK3ZAV/ubuB8xdkCwNEYHUjN2QFY1iYi8M3ZAJvj0NZw0dkAQOy2iTT52QOb4/7hNQHZAYPuZNB1BdkDgN37fyEJ2QBDRFQgPQ3ZAbvwXLHpDdkDhB6J2p0N2QKXJtNV5RHZA7oVTgMxQdkA6ZK0dElF2QIig+MPWUnZAJZ3ARYZUdkDgbn04zVR2QIADNYqMYHZAKEx9ZNpkdkDq3heNZYF2QH59ozyRg3ZAYFaHLeuddkDsm2rrDqF2QNA5LBc2onZAtEiMoESjdkDuhS7Yi6d2QDT2dWmfqHZARDD+WsGydkBYDnLCDLR2QL41dPtzwHZAiCXdwb3AdkDu6EnDTMF2QJetUeHOznZAkH1jkH3QdkBqW3rS8OF2QJ4gHFkc8XZAmD8zMJDzdkD1XsGLS/Z2QGjC+umnA3dAULqSTXkEd0DCX/MZARJ3QAyKVDQPIndAaEfeg3Yid0CnKxDnUzN3QJyD+XenM3dAxIkTFA01d0BbuLgHnUF3QMihM3WSQ3dAODDPSBtFd0Dcp5wqSlF3QBrQISWSUXdAuyALS+1Sd0Bga4Sxu1N3QM4Zdl0rVXdAy8DkITZbd0Awq4JhOV93QDWfHO0KYXdAcTNbdJBhd0BIkYOxOWV3QHRYO/Imb3dArEAgEYtxd0BimCRz+XN3QPjTTVWTdHdA4mrQ/Rp3d0BrUrJ+Hnt3QCUarfV5gndAqCOJiAeSd0AGoHQZTpR3QMhm0bijo3dAy2UNFX+zd0DmgxnXmbR3QLLid8wtw3dAyvvsyo3Wd0DQvF1rbiJ4QKo1pKGGI3hAhfrWd9EjeEDUf3uipSR4QEJQTOCAMnhA3VJbg10zeEBkwmlJYDd4QHUsoa+rN3hA1q+P9utDeED2MM2QEUR4QLZTaAt6RXhAEe6LEddIeECcNlYlMU54QJC7mlPKUXhAqiS6LYhVeECuYCR3+WB4QHIt0CS3YXhAeyIHEZhieEA39+JpvGJ4QPa3jdHncnhAnNFRj0R0eECT7pPai3R4QCBE99nddHhAvEb1LcZ4eEAYZKT09nt4QKYKvx8hfnhACI7gMjuBeECSaZVDpYF4QOThRw18g3hAfuqmmAeEeEDc/0LJmYR4QFDsbhSBh3hAnjMRipeReECEeoL6t5F4QD+oLEOolHhAKJc85YareEB+6l1ZJK54QGQdwpSKr3hAFMJcXs3AeEDNofWy/sJ4QDxrstcIxXhAXrghYLfUeEB4tsi1J+N4QFL1cAAE9HhAseOsyCX0eEBehOR8jPV4QPaRl+qaBXlAHDrokoYLeUB6FLZRfxN5QDCLFI2fE3lAArnHszUeeUAqgo7ssSh5QM5e2JwOLnlA38dBJ9IyeUDcEXj7ajN5QP6jFa63M3lAykhXbis0eUDgwZJzjkJ5QKXlFFL2QnlACgit9vpDeUDUBL27y1R5QNCKeJfZZHlAFoHuHQFpeUBSfdqH13N5QB/4U943dHlAWkG/ONt7eUAoK+suHKF5QNRN+InCsnlAreJmV87CeUAC9jFrQtR5QKTyopnN1XlA6dnmB1LkeUBMWPlT/QN6QCzSIRqRBHpAaIlQWfoFekBoI12VUxN6QMoP6OGdFHpAxD0mpkkbekAarMhkKCN6QD7eAGcuK3pAElCQUyAzekBu9GBEDDV6QDhKg3knO3pAFvjDd3Q8ekDj2S0ULUN6QEE75IQaRXpAm5zSBqROekDaNsMUOlJ6QPnWHTHeU3pAGs+tzyZVekBe7YlZIlx6QJSgRzFcXnpAthAp7ypkekDOBKf+C3F6QFl4oBTCc3pAXMukeNt4ekDmBOdfHHl6QDgA5zSDeXpA1Wtxhdx+ekDel+PcyoN6QGwbGZcPiXpAVQ0nr0iPekCm90THp5R6QDqbG0UMs3pAEMMpoQ22ekCvkDDxEbd6QPf/2PT7unpAFGtv1RnGekA3PStNQ856QEzzCpVN0XpAWPO45tfTekBgqtQBZ+F6QPA9NTc85HpAzVEgOH7kekAn1RccNu56QOp2GywX8XpA+IKh3WPxekD2Ue4NwPh6QGZzXQ18BHtAlhY+r8ULe0DtuRxzKw57QN6zab6JFHtA0H+V90wVe0AedCh2WCV7QKC0znEdLntAUnrsccIze0CRz7QLkD57QBybNknpQ3tArlptTUNJe0BWnW2uyG97QIbz4X96c3tA0gBp8LqPe0BKi3FY7JB7QKnjUhUklXtADm+wmfqze0DmOFCF/uN7QODKJtmW8XtAKPBresHye0B2F+QPjPV7QNJGNPUm+3tAH9PKydoBfECoS9uCZwR8QERah0KbBXxAkdF7V4oRfED6ewB60hF8QGqj/DB/P3xAzFdiBM1BfEBayYHi2FF8QGh2Tn4OYnxAYrKLcStxfECq/qOYAIJ8QOwRlEPFjXxAtSz0BiiXfEBaXSztk6R8QKK0p2v+pHxAYo1d6MCyfECHFz34D7Z8QCR9FmRmxHxAiUZ4KXXUfECuLlU3WOJ8QIC3Pu0Y8nxALZJqA1XyfEBomB53+PJ8QHGyuSQBAn1AMhcZMksCfUBWsN8rrwN9QPEj1TUBBH1AjHZTaAgMfUAlbFL0RRJ9QJ58SVYPFH1AVA84vD0ifUBCxEq/oDF9QGwKOzlIOH1Ao+prAqI9fUAlJTNb/kJ9QL8aDTBsUX1AOHD7iiJzfUAcnjgMr3N9QFDMRi19eH1AyDlnqNZ9fUDW7fY20YR9QGSxMuQdnH1ATXtQfPujfUB0AvQKHKR9QGZUqAalpH1AWTxY2w6sfUBicVbOubR9QK53yzUgt31ASqyAKSK7fUCA8+epK8N9QPJA01/mxH1AUsTaWD3TfUDmBxFk2uJ9QDwCPFYQ731ApqFoEZbyfUD+Q6KgkPV9QMROz2Td/n1AiEs1XTUAfkCm7wgQsAB+QOoywhd+HX5A8u5E/jkffkDybp4cCy5+QOCXK1lDL35A1ozo22tDfkDCwvvX1kR+QPyHLTjAUH5AkFRhu/dTfkCswHkPjFV+QINcy0snV35AIotums5cfkCGJ76KFnJ+QCDNk7q8c35A4MvvVJF9fkAeI5915IJ+QFrOxAKgg35AXCnJ9EeEfkA4OZuEeIR+QF+cQqdlh35A0w/0C3uKfkCOux0LqIt+QAkFmPTmkH5AbHU42FeSfkBt53SLk5N+QJ133lWxk35A4F5dK5qUfkAA66I89Jl+QGiDXB6dm35AfHR9dBOefkDF4Y//TZ9+QHpPIgyRpH5AzC7tHBWnfkDs/3xv9q5+QErgQ7Jar35AUJ2b8bmwfkCSdvk/l7J+QDYu8XxPtH5AeiCjJ6m5fkA68dfKAr9+QARcwl7SxH5AEWsLd3XHfkAqN4R8t8h+QEhGS4FO0X5AZzpZCG/XfkDmn7gy0d9+QGSHSVYE5H5AqoUAoVfkfkCuONdDBuh+QK72hucI7H5AFk47CdXvfkA7buR4DPB+QKYxFLUQ9H5AkwiMpOcDf0AoqaTJjw5/QMZmrhpVNH9Adtfnyag5f0DXmdHJQVZ/QKoPhKe4XH9Aa3OUIcBkf0DFiaOuJ2p/QE106qHEbH9AMheGXrhxf0A0SuIgz3R/QCfknASff39Ap0zb+aWDf0CSkKKlnJB/QMSRtixjkX9A7pR0zLCRf0DoRlWVl5N/QL7amVbml39AkC4PyTWff0C0/LaTDaB/QFhQunO/oH9AR9oo9V+hf0Bpvy/tZqJ/QDq5pr1XsX9AbthFdsezf0Biv3kG8bR/QBC5TCJpuH9A4KZjHcG9f0CKtwRyAb9/QOCGA6slw39ABMBG6Q3Ef0AIcFAmoct/QCYx0E705H9ACIxxdTkCgEA8Ak/aWQeAQNwsZ7bOB4BAbW1ATfILgEBkq4zByw+AQHhe+PpjEIBAh4FCN9ARgECp4TvLYBmAQPnfIWlgGoBAgIrndiQngECclwsnvCmAQLKz2iztKYBA1dDnyPcxgEAHamlciTKAQFkQiz/rN4BA6qLJ+F5CgEBVzG32qEKAQErqs+b1SIBAqvnrUolPgEBmBp1X51CAQEK5vDcUUYBA6g6oajZSgECMd1pqf1KAQFh+FokDVIBALMVg52dWgEA4tMPJJliAQB5hOCjlWIBA/dgBNA5ZgEC23/qZN1qAQJufD61pWoBAXStjSkRbgEBBdM1kC2GAQNsYbeEDZoBAWt5mXCBogEAW5dWbH2qAQCZLbawlboBAaUwVAClvgEBctTFHgXmAQKYp6EYufIBAHuzsUyh/gECIuFS/on+AQHrE99Qej4BAFuyHzK6PgEA+o5/hwZSAQLCT7+dIloBAejl9GR6XgED0PQvcSZqAQDKZZ7/JnIBAGIXF/N6egECxhwysGp+AQBVN9HxUo4BASrUeqoepgEAWDDhCta6AQMz/n3QTr4BA0KAE1GewgEDeTDPeIbGAQHJohGTnsYBAMqv4KH6ygEBG5+3/k7KAQLx4zQYHtIBAkjjGKRa3gEAOBpy3TLuAQE75eicFvIBAcNIgzMO8gECICwG4Rr6AQL3eTKyuv4BAz9MIm1LBgEDF65kfncKAQLIvNlYyxoBARlSEKgHIgEDscw6vH8mAQI6ifHlTyYBAAPvq4zHKgEBfutVUL8uAQLLpdUnNzIBAeqXjydvMgEB032tGB8+AQC3LE2Qt0YBAIDS+kUzRgECYUwzIYNGAQNTizOkE2IBAegy2XUrZgEB6ZbIzTduAQMz++h3/3oBAdF7c00ThgECuIwA19+iAQAZ76N9K74BAzRUNRGrygED2tlBZPPOAQBrcGclp9oBA8Y9dXhD5gEDKDZOnZvqAQG1C6T0O/IBAyszGI/r9gECLWgveP/+AQCZHl5pNAIFAZt7cHW0EgUB0SFpPygWBQBg9qRM/B4FAT/PnUo8KgUCYRje4PQ+BQLgwMpBEF4FAAiVxSqgagUDZFe+3NB+BQIDPtnm0H4FAr08HBa0igUAWqg9zNieBQLY3pGi1J4FA0ocSwNkpgUDWNRx7Vi6BQDgt5ZgwL4FAqFhv27oxgUA6YrSSxjSBQL6ZoxymNoFACVn/DSk/gUCxPa+y1USBQKrapNQoR4FAXE788BNIgUDQHV1iJU+BQDjAcvrxXIFAhGlGa5xjgUB96Tv7MGWBQDrTYHGyZoFAkOwfF9lngUD43iQghWqBQE/JOgSlaoFAJENm/bRqgUBQnMFBpW6BQLk0s9zNb4FAHv37OD55gUBl8awUJ3yBQFOg5sRef4FAcHkRMl6AgUBKTXHhfYCBQFss/kexgoFAMS4jVSaEgUCK/Bt67omBQAAmWoN9ioFA5QXz+/GNgUDJ04eiVY+BQL4iVB7mkYFAk4X/8faRgUD4r65y6JWBQF5Z+htWl4FAQWbqS1OfgUDNkYZy56GBQNVYCHffooFAaJwO312ngUB5ThlLbaiBQD47XwzzqYFAvhwYFuaqgUDdRYhySq+BQLisyFuMtYFAkLnEVku3gUCdxqzzkr6BQOXr3LOYwoFA5EAYqQPKgUBeZ+7d1M+BQNaF51d+04FADfBvk1LqgUBF8cBzZvCBQN7d/uGn8IFAJO2Kbpn/gUCK9VvCtBKCQKqt+tt2FIJAcN8H8TgVgkAa+9Vi2BiCQLD29JNsGoJAQR5NTbsagkDKIyrq1iCCQEZZwh77IYJA2sTcoswigkCac1fa/CWCQDgB0jVvJoJAZVuJb9EogkDa2B/iaCqCQN+1gVzEKoJABM9AnOAqgkBYki8ueCyCQM/mBLygMIJAvJ6oKfwxgkBUeyPUnjKCQJ5ygBxKNYJAhqZTo3I1gkBmNx1b2DaCQKBNKGKCOIJAULNmCqM/gkATlgGoB0KCQP4KRTUFRoJA4MZ9+IZKgkC7HDvpFE2CQNajfoFITYJApoS+d81OgkBhMhT0oU+CQBkIOeSSUYJA5ZJubJZVgkBvQhp7jFaCQC+G8pZJWYJA1FKveZBagkBoGQSE4lqCQP2XKbShW4JAjy4Kw3NcgkC1XF72OF2CQJr2UZH4XYJAqZmUEhBegkDaxYJ1mGKCQLrgP3c7aYJAIp8nDgRqgkD+Zjlc0mqCQMnNqGN+dIJAcAL8RQ11gkAIZeYJ0XaCQJa98TnidoJAIAK9AJ93gkCHV6+Fu3eCQCj8xFM5eYJAU412VOJ9gkC0AxOTqH+CQHqJFEDngYJAGlMgfUOJgkA+h4GCQ5GCQJzoUepzlIJAIlm+dSCXgkCWTPcwPJmCQBrvrrdVmYJAIrDG/96agkDG6G/BmJuCQBq5oREOoYJA7PwLFjqhgkDuOvtP3aGCQF4ygEXipYJA9Eq6yAupgkAOBLmJM6mCQG92T4PXqYJAIjVeMFGwgkCcmDN8B7GCQNqvfrVavoJAjlLBzn7agkCMedup7tyCQGaGvZzW5oJAzEwyu0DsgkACMkhddPCCQDRCqyN28oJAzpE8CXn0gkC840+vevaCQDrC3EN7+IJAVIxpSK/5gkAf/bDUo/6CQFAe8cF6/4JAvJoqlRMDg0Da8wZAuQqDQDmsADQbC4NA6Jwmr3kRg0BWpHjVdRSDQPak9AZ6GYNAnZKpRfoeg0CNk82KciGDQN5usCSKIYNA8LOCSzong0BPjaFHcSmDQFDhlk3ZL4NAAentc2sxg0CiwHjp8DSDQM95pwqdN4NAJI8WtF45g0CTnUNySDqDQOxSuO9bP4NAJ/+69J0/g0BuI/FqDFSDQHfuePX0YYNAhlXH2rlig0AINXME0WyDQDqBRgMleoNAXmenY4eAg0CgJZJRC4ODQEbD0D9Lg4NAapxAMXCKg0DWU3Y9i5aDQMrGBS15moNAuEa+wLqdg0DqWTDtbcSDQFS5XIXQxYNAKk3f9/jKg0Bk4GI0X+WDQGa3/IXg8oNAWXkS4633g0BNSTkol/iDQMBK74Xo+oNAWouSXS0OhEDkn8LxnyKEQHJX/d8RQIRAcN4+pM5lhEBACFwVsWaEQBQ7ZRj/aIRAwPowl+VqhECOruLt6G6EQH7bzu0AcYRAZroLN1ZxhEBTAmCy63KEQD64PNvwdoRAJbVDncl3hEDcnhk89niEQGgTEY95eoRAMBiT9VWVhECBE3Icu5WEQMXuXzAAmIRAv88aPqyahEDDrHR65ZyEQF4OYfljooRA/uG6zI+ihEBS8D+kH6WEQJix7FZq2YRAWjcQgWrhhEAuhbjJQOOEQJDA/d5i6YRABFmMOzjthEDMZbupNvGEQGiDke9f8YRAnp3dd773hEDYzcaBNfmEQNOdVfZZ+YRAnlxSMkT8hECICnXI2/2EQKiu6RV3/4RAsMjcWRMBhUDqG9j3ZQKFQDQr5Y9EFIVAPqrDC9cVhUCusO6uQh6FQJBjGsBFIoVAxOlazD0mhUA2gVGAiyqFQCq0iwk5LYVA22XiC35ChUDYzMAOwUaFQDiQSwcjR4VAfMq76jdHhUDOs2s+qEyFQKppLpGpToVA8JY4KqlQhUDKou4uq1KFQLif+tKpVIVAqAfzRK1WhUCGHf1joGGFQIJ00FugaYVAknJ7lD5whUDNNabZmHGFQO2KsbXpcoVAvj/sF7NzhUBAyEuPnHmFQOWBO7KQgYVAakGL6TmlhUDsluI4xaqFQKad937IsoVAEMMPA4C6hUCOo6OChryFQBq+fLUov4VAKPrpmS7mhUBERl5ghOeFQOqPHKXT8oVA0v+von/1hUBnWlo7LfiFQH/KbIeSGoZA8KNLDUAdhkAA5TwB7R+GQKRgXcCaIoZAKJQtf4QwhkBdbUVPJVOGQBYMGb4hwYZATkXAc0nwhkBK1mqp9fKGQEqGwBYz/4ZAAHPfwjcDh0DsrkYTOgeHQHyPI8yRKYdAyZaV/JExh0CDOVGfiDmHQJCL8tVZQYdADHN9k4dBh0Bc3l0Q31iHQOTgJcq3YodAObAMgjdnh0AEb7enOmuHQHqZTaE9b4dAWAGkK0Bzh0DmdUBbP3eHQHlUp2/HsYdAOToj8Ma5h0Aw5fE+wcGHQCgzY8TDyYdAALZfqMwxiEB0GnX0YjuIQGkLIdl8cohA/B90AH52iECoSbJgfXqIQGufhwPxqIhAMYPoXFeyiEDEpcWTXbaIQAI6BR1RuohA - - - - - - 5FmBRK/6H0YDfAJFuuJgRTK1d0S/bYlENn45RF+ynERj6QdHdvmoRE1GlURlwgZFUX6KRJeKVETbaVpFgOGQReVUwETXMGFE8ctaRQjLXUTaWoREbGAXRYBRw0SBtZREU1tkRIChSUTziYJEi3TNRPF+I0XnZRhFwQs2R9rBiUTAdMBEqfBqRsgEnEU+7YNEl+U/RQJ0xURaNJRGXiCNRPCVlETvIJ1EEenKREaknkR7IbZFUOuYRNlzmERwcuZF35yBRL19gkTnqmtFiGFkRN9HmkTgNHFF1PcyRMIls0RYLShEkykYRiKVE0U26QVFSNl7RU7fh0QhY/VEeJ2FRAlReEQYbFFEE/UnRfXhhETvUCxF5I6tRDIBjERddotEF5SERKpjRUWZRMlGQX28RHRwZ0Q2oxFGNC2IRFASc0TQvptEddtVREAnPESr8UZHhj1+RLugzEQ8pRFFU7FnRpArvUWPfYhE9ZDqRV2uw0SMZGtEWmw8RZztsUSomZNEak+eRDA2Y0QRzYJE9n1oRUq2IUX1jEBER2L5RM9Tu0QvmAxGDw9dRIFBhEQfKt9EFoQsRcsAXUTvcdhEcZefRUE1QkRbJ21EmJKeRYinjUS0AzNEgiu1RMHbtETh8YJEWvhdRLkmskSaCp9EmGZaRtgaikR/tU9EssSGRH6NoERTrjlE4A4iRI7ZZkUdZ1ZEW8v8RBz+TkThjPJEIDaFRMi4NkUZEpNEUY4wRBk1m0RBQ2lE5UA7RJClVUSSi5BEphatRIAOTUSEdfBEUFEQRc+UEkjdgYdEp8ZaRf2whUXqLoBHIvJURNTYj0QEiD1G5UGORhTm40XLbvJEVb+xRXOLMEfh+TpEXrDjRAUiq0SSBuJERdosRLZSE0V1PjhEgYz5RX3FkUQuDIZEeW1fRK14r0VtE1hEqX1PRJak6UQf/KlETrSSRNoA1UTebjZFrPUxRN29aESdcOtEXYMGRVtdKET8fo1End2JRdnZskSUgI5EAsqLRHe1EUWD5KtEUJwNRYbArEQdELpEP2gIRfhgUURbK1ZEmCV+RMnw4kRNSEFEp+0lRdBFhUSo/odEJ2xbRBDMcUTbeaRFJx5YRDHZs0RtZMJEJtJnRMLJ2URjN1FFHv6YRAwNk0RsX11EPKehRPKZJUX3gm1EGug+RPVQbUTexUVGoTv7RbUEB0bQlJ1EGeebRP3FIUWcg4NEWZTJRDE480Tx0AJFPzq5RLlLTUQDA4tEGY2rRHrHwkR59rVEMZmVRFG8nkRsxFZFSGMHRQGCdETVuitGDOdmRKWXsUSwi6ZFzZI9RZ4xRUUEJrtEJJB8RBmGgERA/2hEEU9CRNDt2UTZ64pEr9ukRChbmkRCP2tEMG5GRH4inkQQdZBEQkdURFTBxkQNf9dEzjc5RG0IlEVldtZELa9/RLoxmkQZlqtEQNaURWsZ60UHInlFeXS0RnygBUVVvV9EqiKIRP3zEkXwWYxE1xiORXN3tkVUHDtE5/a5RBDasUQwPDpFT4ViRIDHOEUu5nxEy7unRGpHZUbc+FZEOTo8RTeDMkRoXtBEm+uIRsl+ekTCe0lETxwzRhyOCEV35RdFP6YtReaPxkUXy5VE+tBiRAr4ZURbHCJFk+Q/RLRRYETikjhEBQUIRUbET0SacVhEi884REs7iUa8zWxFksdbRCgJQEQfuXBEbd/oR313pEY/ybZE0IXWRozwi0WZwDpGQhM7RNc150RlP+xEiq1oRJSIhESHAkREaXUVRXhlgkRsZElF4DhXRBpXikSuZ3RE/1MdRW3csUQXp/5EQylQRCzil0QQgUVEpriaRIYnUUQ0KGtEHMZpROrvV0W9UU9E5/qxRG0kUkQTZj9ERm/1RD4LEUUImzpEL5JfRPwLP0UW0zpGgwb4RIBEjkQlV2RFrMnuRA3kEUW30EFFOINcRAp2QkSR2CNEqpAFRcdlR0nv8AJF9JmCRiuUSUWipCxGJkY/RFOuRUXvkx5FJdiTRHwuTEgPEp9ELc9nRWm8bERIrZ1GgIuoRF8vu0TOwiRFPVrSRADRkETdGqREVogVRcm/PERfFllFhdTIRP9u+EW0mapEodxuRexK+0SrcTlE4ryTREH9WEUJR4lE7mVtRPY8ckQcgwhFXU42RBlZgUTlEYZEfci9RG3mmEW7nOhE/W9oRN8iEEVfU5VEyfP8RGbO2kSz8zdF+IaNRBgyw0WoJaVEvFLjRPQYpkTngrhFp1KxREEqPkTTpIFEHIqjROMxQ0gZpJtH11K3RmiSyUch8QBGwpJmRMs0H0VKf9lGTnGmRHEIXkSq1idESk5BRf2hSkVkP1ZEfHR/ROe6NkRVcM1ElB1BRL4dbERzYiFFLLKuRPb/fkSC3U5EQFVCRAhmQ0QtEAtFkPSXRYRnH0Uhg2NE55S/RAB+ckRN+nhEjgCRRBoX8UTorudE/bGARJVdukSn5fFEgeSiRDYfcEQSoj1F53TrRDwSqERM5ztEWhU4RhnoDUWUi2dEpBhvRAATKkbe3x1G4UASRXp2skVHH0REw6yYREhXq0Qte8hEiAm8RMAW9EQEo5NFS5W2RDXzl0b5yoZEvSBORvHkmURemppFE9A8RLzvgEWcmZVEA4+7RbFmeUSDUZNEZKb0RLzHYEQq+19E7UFIREGcuEQSumhE9pUHRW6RY0SAixRG4dvNRFCz2Ed+ct5EgaTFRrOyekTz4xFFjpScRh6VGERCMoBGx0ANRqGPX0VSYy5F8q+4RC9hQ0ScaH1Gw9MVRrzQgkVrXMNEBpWRRVU1P0QoJ/pE0SHsRJ8kPEWoXpREmnPJRJKYnESq5I5EU1CQRAQjfkQvIJJEi6J7ROFRyES4tGRF6GB0RFb3bESi/1JE+MNVRAeoEkXAKi9E5zV2RfyUO0QNKUZEyn9qRM7SZUQuVVdEr41cRKGGzUSkNLFFVYTBRdUESETRqwBF9Q1jRE5RjET8S3FEi0OtRG554UR3psVG2UQ7RGsRZETd6JhEOJGsRDavG0Z8yFJE4ReZRE2670QVAPpEUgkVRmwszEU5njFEOiFxRBYjpkRDcNNEsGFeRKA/tkbeUJZEJ1tIROkPhUQrMYlGxZypRReq3kRc3Z9EHtuURHBYx0RLQz9Efa2VRME6SEQVcHNGdqmURLZ5lUbQuSVG055MRMyPfkWlHZBEf+cJRfKyg0Tl03xE4QUCRf8lhUS7vkFHhnugRo7ji0SSW5ZFXHd/Re6mtkQKpIlEwk2/RFVEUEQ9Jx5GYb11RGi330TJLHVEPexDRFsL1EUX8m9EUM9RRf4zhUS7yspEmraSRKRreETOfsBEzGb7RNozf0RR4k5ELK6ZRJqynETcBnVELBOJRMHcuEQ7E3FENNlCRBJAdUTMMttEmVJ0REq88kRi5GZEFINVRCD7MkRnsNFEnM9URPKO3EQEolZE8daRRBJakEWwNuhE2ZUtRWUGZkVg1nJGlj/hRBpGE0XKIsNENtAoRTlekEUXybtELsetRRigQERtnHhEYDlTRK2udERliEdEmlSZRNim5URxWItEy5tDRUZoHkUXS6FEe4DbRM4iSUSA2oBGQqlgRPTjdUTCX8xFenZ5RTO9C0Vqh55EIDXDRDva5EQf/llEXG6iRNUxq0TSKwtG3IiaRFavm0TyMXtE32nzRNeywET381tEKrmlRIJ2T0Qyu2BF6gjLRAdmYkQD9jxE/YR+SHDbcUTlxmNEKohURPK6v0RTY+hHVYynRMfNP0R57lZE1adARIYogUQVHp1E9z6HR8SFekWCqLBEqiptRlvPvkQzdV9E2iyBRfHMi0TDjvlE5nekRBY8iET6/IxE78tNRANgs0QdZYFE5qtxRFb2ekaKDIRErvpERNkizkRqYpZFzhwrRK+yqEXE419Eb5pfRZGqCkdAHCRE7stTRIJnx0WXIgNFzbhkRJEePUT8HVhFN5u/RNA0dUSw2zFENwwmRsO2WkTqV45EGAS7RHS/W0S5JW9EkOWRRJbvrUTcBTVFaT9fRJpnwkTXSIhECjSERKNznUT9H0pEZKM8RBAgqERlDnlEXtKIRJ4MX0SKFDVEXvBlRPpPb0cSBkVFnYwMR0TT70XPVRFFAL/8RXqyl0TU2RdFFiQLRerd70SY1HlGPGw9ROLSskTp8apEraRGRRtlS0ZmgIJEFv5wRZ1m9EQrWmpEoA5gRF4nVUQyQwZFPseKRL5XWER43UNEUapWRMWQhUaocUtE79g4REc/H0YKUXNEtIZwRdxeekXoT2ZFOD5JRC6tqURh2TdEv1U5RTgLV0Rq2b9EO15DRDiYPERbN09EViFKRPbcxUS741dEvJuZRKFmbkT9d1hEXg2HRPpBB0XcF1ZEibE7RDVCZERwW6FEVMuCRHWul0SZePFFCr0dRSyMZkWcAGhE6+ggRcNdlESknKlEl4mIRPPHFUVAPHRE/I9ARLP4Z0ShMWdEWQO0RPDSSkQKKmFEuze+RA1TZUSykUVEqAS+RJOZbERn21FE2W1wRRiBIkSzULZEuD3HR4PDMEfZnZpExX46RPZI2UYDFPBEolJdROsyL0RDs7NFzAfIRbAuL0Xr5l9E+D4mRecoF0V5T2hEU+adRLOQwUQq55pEaA7iRCX5+kQKsZ5E2n5wRH11q0XTKB1Gi4qaRXsK30SqQ8hEjtqWRE7wZUSrrzxE5fNoRTdv1URj3ftEQXziR3OvU0QNskZHM8V1RA4Q20Z7pRFF1VNWRPvVxUX2XJxEvZVKRdrdR0X5DYdFNmx1RDKGOkXLBYtEN0Q9RBpXmETJyUBEJqn9RMP9YkRpXFxE28YyRLbqE0UIqppEv7ZlRGlkk0SGM9tENiIxRMNfYkS9LmlEKZ5CRDooSURWlrRFGItBRLXbnUTutMJExkxaRHDvMkSpX3FED06ORJQlckRokctFlU53Rx3ZGkfjLypF5MySRPUNRkYPYT9F70eMRTD0eURqlA1F8q4VRZaDR0SdAe1ESiZuRDvYw0SaPpBERSFbRN0PXETOpQJHN6iNRt9Xp0SqtytG1PV3RH0DpUX2Y55FV4Q3RB749ETF73xEa9q9RGFnbEVRcndFC9o7RZrIJ0RlvHRE/0j7RElz6kSEDmlEfpFtRK+pdETYTYpEEJY3RG6NVES/QjdEXr0sRD2y2EWJIjlGzOTQRct01kVNq15Fr6CyRD4QBUd974BGwCLbRJ/jMUaS3XxEKrORRHFIdUVnveNE3fxgRA0vXkRcNVJElBm2RGygkkQuVzBExqLARBdAUER2hKhEjR7HRARSFEUvIEhFfb5yRUnuOEWyh3tE1FRdRPHJfkS/YHBEuxX2RJZHAkUuw7RFVchBRUOnKUUkIRpGGt23RUeJGEVtSaFEDYbaRMAuUETgyaNEKxUuRyI8D0fU8ntGEZlORRINPUQTgwdGULbCRXMiY0VPw5pEMky+RGxkg0TNIkhFfOlHRW7P3UQmO1FE9Z3JRDiELkUdVTlE - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - JstDVwzBckCaL7xkb8FyQF4tv11QwnJAnuj/k+XCckBqxpSXOsNyQCQk5kTFxHJAUVtG5FnFckD25Ql5e9FyQLIxJhIP0nJA8CNMkUPSckB0Jv7aoNJyQAeudDZn03JAJkaHnnfTckBAnF0VkN9yQIIkQ2LO33JAXLDKjbjgckDuzx2tUeJyQG7ktMqQ4nJAF5cLsiTjckBzmz28ofFyQBi09UHK8XJAha12m7jzckAnIXyQDfRyQIHZRmOg9HJA/U6W08L/ckDWWac6kAFzQLZQoKE6AnNApv+43M8Cc0AoAGbsZANzQIzN6uv6A3NA5kKBlSkSc0DodIJ9vRJzQFypcxd0E3NAyLFOwQYUc0BiL/h9TBRzQPT0Zap5H3NAYB9+OA8gc0B7fdoTpSBzQAI3HUM5IXNAMhRheWQhc0BFKdJqeyJzQFhlSOQPI3NAQiJKxTwkc0B8NQs4zyRzQAQmZRhHMXNAwJVBkGgyc0BieAEm/TJzQBm6kXigM3NAoeUnNDg0c0Ak2fm6uD9zQFP+zfMkQHNAnJvi2kFAc0D6yr75RkFzQOBe1Th4QXNAUoVU9rtCc0A8lvSzekRzQKhBXhScUXNA6MIJa0JTc0C6iaLUo1NzQKNjqF55VHNADruLp/1fc0A+uhOMiWBzQKRQ5wE7Y3NAlKYVhc5jc0A0GxSWQHFzQD3OCxbbcXNAkoOlm1Byc0BGaMfvtXRzQG8kk31KdXNATaSdFHmAc0BUX7kkpIBzQJg6tdgSgXNA7GL21jOBc0DWJ3CtXIJzQEBqBlFaiHNA1mzX0YWQc0BKQW6ETZJzQFqMp//TknNAzIaQQM6Tc0C6+U/3ZJRzQK4Iwkv4lHNAezGOxrigc0AHEGgTT6FzQEi5zihbonNAjtZEAZCic0CrkKcSJaNzQHczs38FpXNAcM0fetWwc0AwgaqFW7JzQNTRBMATs3NAMnzznbezc0AEixKkDbRzQGJKjNpiwHNAhnbCjPjAc0BC5dFfOMJzQMSwy8bPwnNA4AXd1ybDc0A4ameYd9FzQLkfsayk0XNAeOPLGdnRc0DymPOgbNJzQMbdnKu70nNAd5qaxN/Sc0BQgfyk+dNzQJNjQ4Hj1HNAgELn8RDgc0AIX2jEo+BzQGOm5ek44XNA4Ykxfnric0CIIMBsDONzQJxYlHcC5HNA+9JeZ+/kc0CsV/yOuPJzQHWo5S439HNAdJwTbuEAdEBM3mNWeQF0QK9HCNSnAXRAUBuogocRdEACdnKDTBN0QC2flV53FHRAoDDQY0ogdEAR88ihQCF0QAVtMOu1IXRATMibNbQidECGwxPa/yJ0QCE4B7JZI3RA2qWhFVQwdECYFZxrujJ0QHZIPG6MM3RAPXCRoF5CdEDutxLSO0N0QPTyqG4NRHRAcyTU/YJPdEDT3Lk3zlF0QEpXJ9yQU3RAZKDia2FUdEDIRkcp+FR0QG/rSOiLVXRAlFqd1yFddEDIZmwwuWB0QMyGmA0KYnRAekasEXpidECrc6rFuWN0QMSXKRxMZHRAyho3jsZndEDyXhQtt2p0QOeqRp0gbXRAPt8ebCNwdEAstiDEQXF0QH1O2BF7cnRA3EBqHDlzdEBUTZXIL4B0QLounzb3gHRA9r8owieBdEDWTyNdToF0QIlfBDRIgnRAIKArEUeDdEAyu6gfFpB0QM9LHD5hk3RA9RwGn+2fdEC2fWKT0KB0QKj1uhUQo3RAquF4mQmwdEDsoqT4wrB0QDiIrY39snRAEeezW+PAdEACbKHMDsF0QO4V9uF3wXRAphrqe+vBdECuEaK7vMJ0QDaQ0F9Qw3RAqAgnLCHEdEDeggpnuMR0QHRR1YwE0XRARsrLjj/TdED4fapa4NN0QExuipN31HRAo8+6mM7UdECSLpzzIeF0QOg9P9e64XRACrsipWfidEBfqCxr+eJ0QGDssUxc43RA9K6Nmk7ldECghRXkv/B0QAAi4aeN83RAuiPVn3b0dEDrxDM+pQB1QLO511fOAHVAtw/fymEBdUC6KNlXXgJ1QMl57jamAnVA1NcVBBIDdUAiUWk9mgN1QFoSQymXEHVAiFxdrGkSdUD5F3F6kRJ1QIChKV0jFHVA032DnuMfdUB4F7n3nSJ1QNyrDWwkI3VAmMYIlHsydUDUdAQSpzJ1QDC8q8rLNXVANB+m6e83dUCQxQZTJ0B1QNSWeqF9QnVAokYnON1CdUCgOauy10d1QDJVuzzgT3VAC6OB0BBQdUCmUVYEKFB1QI7rVNNNVHVA9C/yY3hVdUD7w0+LDmB1QPpp9USjYHVAiCPQ1TZhdUCsk4ch+2N1QA77I5yFZXVAeIm1N3hydUDjHANbCnR1QEQbWKCNdHVAtIjlxXeBdUAYDXEuroF1QDTLGlO6gnVAOPuRxaWDdUCaddXDmYR1QOaCJROMkHVAJrMKh4CSdUCEFKW6qJJ1QH6u/Nk7k3VAWjCG82SVdUBxg7xYS6N1QAIUQ1e6pHVAn4nJboOzdUCwVNOWnrN1QEhnUub3wXVASs5+JHvCdUAxHCGVpNB1QM8aoCnj0HVAaQmLPc7TdUD+GCeZ4991QDaCtAPy4HVAmcXT8Q7hdUB2j87TCeJ1QKgQNYCR/3VAfHyhAk4BdkCC4VGYSQJ2QFEeinfQA3ZAeDzu604UdkBioGiZDBZ2QEYfQoeIInZAYuVzgjkkdkCk2RSskCR2QBJpyeVLK3ZAZI5QJCAxdkDEPbrtnjR2QPhT6tdOPnZA1e2eZeBAdkBw/6Z+HUF2QNxqiIDIQnZAz4Psi3xDdkCi4cWkq0N2QLov/gh6RHZAlNQ45v5OdkDquBn6EVF2QGSM/TvNVHZA5CSHOCBhdkDnhHjct2F2QEjUCjpRY3ZAVMdZgo1jdkBDn+8V3GR2QDA50UOSc3ZAPim1AtB/dkAd9SJmroJ2QGGaSNmRg3ZAxvX3smuSdkAakbTS6512QCAbs1cNoXZA+0G6ROiidkDkeiehRqN2QFHnmiJwo3ZA6UjXOoyndkA8QQFsoah2QMs6pR2Pq3ZAzB8ZIMKydkB/T1vbdbN2QJiwAZsNtHZA6C6YmU7BdkDswZOZG8R2QCjqeIvOznZAwqDaknbQdkBafi2J9uF2QHBiRlFh83ZA4UQHeZPzdkA7vIvMTPR2QBSghpA3AndAPyMoNQESd0DRKV4sECJ3QMwROBq7JHdA48ObwVkud0BWQGO/ojN3QJGNA2sNNXdAFHeFx3c9d0DRQZwInUF3QKb9AgKvQXdAYM8ya5NDd0BSNFDvGkV3QJ3gkgFMUXdAhhVRSJNRd0BJMcpavFN3QE3fk5EqVXdATsPEs0thd0CAo6YWjmF3QKTJEtAnb3dAe2NU54Zxd0CPg8ADjnJ3QIDM5TKRdHdATrhLgxt3d0C8PBp+HXt3QArq0mIhf3dAXaroI02Bd0BeheTXCZJ3QMYUsUVMlHdAur5GJaSjd0DOWhpUmrR3QDAjmMCk0ndAFn1QIUnTd0CaHL32i9Z3QN0pJtBU8ndAuMGTrMvyd0AENwvcehN4QMpmsolOFXhAaJ7BA20ieEANihoBjCN4QOhrNhdaMnhAbGZvoe1DeEB6CKgZE0R4QACuVMp6RXhA1GdTzdZIeECEif0cMU54QNZpBQrMUXhAMEP4N+JSeEBaOq+YiVV4QFrVMED5YHhAClrgDbdheEDe+1OptmJ4QJjlwky/cXhAwPTd+jB0eEDL3n+xXXR4QD0EABGMdHhAlpp0Q7B0eECECLfl23R4QOEi7qzydHhACQgGOf90eEBC7FJ3x3h4QEKP9BT4e3hAnNnWLCF+eECIZ7aIOIF4QML+prCjgXhArnGU4TSCeEA63dI7k4J4QCukHO58g3hAvRknXv6DeECsHNcKmoR4QOoDbgGCh3hAhIPbBdyMeEDEI/Dfl5F4QEmqUw+nlHhAHLz++aeheECoMoMBraR4QDiexyWJq3hACRL1gCSueECSuVtzzMB4QDb2Zn/1wXhAqrUVQLfUeEAWdncXAfR4QM+7qcgj9HhACiELToz1eEC0LMLt3AN5QKzbv1CbBXlA+II9Z4cLeUCuzv8ZeBN5QB40UQiOE3lAFEAJtrIoeUCSRDMnDC55QCrvMjHVMnlAslMaB7gzeUCqbJ+8MTh5QP9JAIqKQnlA9rnaaPtDeUAE+WOVzFR5QMhkZtKEXHlAmwOk4uxgeUDMi5jJU2N5QIwqZdPYZHlA2JQV8dRzeUC/OaRHM3R5QPrrKBfbgHlAii7h7vuBeUCa6ZCTeKN5QOa2YcDAsnlAel53e8/TeUBfBiFYQ9R5QAIZHdvK1XlATrXaiFDkeUA6UgmvRvJ5QMCZVWjlA3pAfChakf4DekAkURhvkQR6QPpKl4BEE3pAVFoQzZoUekBCyVsVTBt6QN8OMZEoI3pANGTrEi8rekBMBgUiIDN6QHSMPKgMNXpA6OCyRiU7ekCkV/PsPjt6QDR94qsMQ3pAJZvzbxpFekCvksTbNkt6QER4Qfj6U3pAXuIhbSlVekBShhxwIVx6QI7fXkcrZHpAdmdDOTllekDXpUfxk3J6QB19ikPDc3pAVGKphB95ekCM5GJwgHl6QObjQf5zfnpAeV8yrN5+ekChGHO6x4N6QKH8gJkdo3pAJQoqO7KoekBcoVnRDLN6QFoKe7sMtnpAepCUrTTDekAwR9N2G8Z6QEy4Y40/znpAiLnFKNnTekB0J/+dPOR6QLIs+Kcx7npAaKo+S3HzekCKB515UgJ7QIvJGgR8BHtAiWoFh8oLe0BaSnktKg57QMhW7w/NE3tAgZ6JbowUe0BtDQ+iTBV7QA41tklbJXtAiP/NMcgze0AGVx5TkT57QMzACIHqQ3tA+OD0tEVJe0B9xLYyXFJ7QLUJ3pHIb3tAsJvhMLeKe0DiEZuPuI97QFYXqyTFlHtAcG38WSOVe0DajkRUqqN7QKQLDC0upXtAUddmMP2ze0CSqSGLecZ7QACHktNL0ntAZlnow07Ze0D+P3qZI+R7QF8ftrKY8XtAUjD/PsLye0BMsnYTjPV7QKCcvAGUAXxA/lPObNoBfEC9hvy69gF8QPgrM6VlBHxA8KuQnpkFfEDmj92lfwx8QJgmk/uKEXxAlA5yX9MRfEAlRk4hiR58QOJ8WyLNQXxAfPRTANtRfEBMv8RQZ198QOlE+j0JYnxASm5bcQJtfECUkYOg/oF8QDCjTwAnl3xAlq5PRpOkfECypjs2AaV8QCrBGIjAsnxAjJVLtX20fEAIT3H6ZsR8QF6RMiB01HxAeQVldfjbfEDQ4hDwV+J8QP0FW20V8nxAXiUOGlXyfEDsUhSUAQJ9QO02dr5LAn1Afs/G/wAEfUBMra3RCQx9QAhKD52jEX1A2jyLGAoSfUAOYFysRRJ9QGj3ZKcOFH1AND1GJPQhfUBU2eooOSJ9QNU3WhezKn1AyDl32Uc4fUCITXJ2sDl9QEAA2QahPX1A0UeWbeVCfUA2Zu0QAEN9QNjP07wKR31AXh78UKlYfUAnqU2L4W19QEhrV6Uhc31AkKDD/qxzfUBU21smfHR9QHpojjx4eH1AYHZdVNB9fUD5ITFk0oR9QFUzhVv0k31AlRUOCAKkfUCenrSRH6R9QJrYiN2kpH1AZG7ArgusfUDZODuiO7R9QPskUYAmt31AifnwVyrAfUA0EnfvL8N9QE5X6QznxH1AYyqcQD7TfUDSsnrLBdR9QAsMLw3d4n1AVZwF/qbjfUDMLO9dDO99QEN4ZqWO9X1ATcLNVTQAfkC6cat2Uhp+QA7mKLCjHX5A4t8iUQIjfkDehlONqix+QIiESB1EL35AinqYHz8/fkBiXpeB0kR+QDLYIYr3U35AV75VYY5VfkCA12MoMFd+QA5pd7JbWn5AkJLpfmlbfkBEhXNJk11+QIejSbmKfX5AeKXjE+KCfkD+cukToIN+QHxXA6Wni35A1ixEROeQfkCWENysVZJ+QGSw0ZiSk35ASEYjF66TfkCWQUIZmZR+QPTNoTX2mX5AMmpbsh+afkAgBmbcfpt+QPlVuaaVm35A8mBLT72cfkDey6XHSp9+QEp/V3Z8n35A/JyEBh+jfkCYi8vsj6R+QGk8/mBuq35A49ccevaufkDuzFdJj7B+QCnchO6Tsn5AwicHzGWzfkAtoMHIT7R+QLzyFkHUtH5AFAfTfa+3fkBCv9EKq7l+QA7xrZEGvX5AU2A5hfy+fkBsgvedZ8N+QLDMLwxWz35A1b2NFt3SfkBSn/UyAd9+QHzijFvK335AwoERLwTkfkD+B2v5Beh+QInFAsgJ7H5AXc6iUdbvfkDA0Y/wDPB+QDY9zA56835AaRe0jK34fkBYgaTQnP9+QPzYJklhB39Ab2v54EEJf0Bgdn8xLhp/QIhjlbXpI39AngszkEg0f0BF7lgRpjl/QKZpvT4WRH9ARRtpsbBJf0DiLk3Flkx/QNXp0h24XH9AnwycQrhef0C2IllBwGR/QO4ipk7HbH9ADrS+FFlwf0A5hrH3uXF/QN+kd3DPdH9AVMo+x6SBf0D+m0dbCIZ/QLQL3kBjkX9A2s2WqKuRf0AWP9VqQJJ/QGBEYmpjk39AmNlMEZOTf0CSFKZ/TJR/QEwwtSAOoH9A35+g7l+hf0BmHCiraat/QMweAkK5q39AqGSvzz6vf0Cy4YG+V7F/QGYtyQpmuH9ASm21LsS9f0BWONVk/b9/QOuf5T6q239APsAKvPXcf0CAfqls+eB/QJ4MukAO739AmCvJC0z+f0DoMYMvPQKAQJA0byklBYBA8g6HBEgGgEA8JzmgHg+AQIrYtZNjEIBAvh9erncYgEBGs8zfYhmAQEe8+jMhG4BAHX4LiYgygEDxtcpdtTeAQGy0zH7+OIBAaMP5dqlCgECUJDdH7UiAQEjWOtivSoBAjOyiMIlPgEDxSr+C5lCAQOjT+vcTUYBAlu1feS9SgEDowxBuf1KAQJgDaWoDVIBAf4IwQWlWgEBV0t1PJliAQPWXLi0OWYBAnToXUGpagEB8oY+4KFuAQKQDojQcaIBAgGa0ByFqgEAkqphwKG+AQB9vgvgVcoBAwI3gPYF5gEDgnSvGpnmAQCJNnlwxfIBA3CCcByl/gEBTiRDjhYSAQNZaGAj9ioBAbFlaDTWLgEBo8wt6Ho+AQKRo3rvMlIBAqcCKp0iWgEBIPU4pH5eAQLz4sE+ql4BAdrpCYnGYgEBZkKNox5mAQEuQjjpLmoBAOPWI3wacgEAvMGBzPZ6AQC3AaHbdnoBAKeCk9RyfgECMUtOWq5+AQDaVFi9VoIBA7tg6DBOkgEBKWbYWNKSAQGRwyMnRpIBAn+QzFO2mgEBooO3MhqmAQLxKU+PVqYBA/oSCgNytgECaror2966AQGAy750Tr4BASo/uLKmvgEDO2E8iZ7CAQDS9gCofsYBANv7GONaxgECsNBUggbKAQOdGMMREs4BAsQdimxK3gEBEaspSS7uAQIa1Xwo9vIBAprUfH7+8gEBKTVwWe72AQIRHHCM6voBADgegQPK+gED8FC+/OsGAQD/x7KVSwYBA9RYOg53CgEBIwkKgsMKAQCC/ANelx4BA2n4uXLjHgEAaniozKsmAQEKTCmRTyYBAllEA2NXJgEAuSafVNcqAQBFjKoiQyoBAxQNd4wjMgEDvp9MatsyAQG6vfs/fzIBAvjl65CzRgEC4dCWYTNGAQBbCmpxh0YBAvFzDSAPUgEBcJsz5zdSAQJyepSwE2IBAiu0b6ijZgEC0O3QXS9mAQLlGgBFD4YBAqPJ8ZVXhgEBcn6yZAeSAQBxi/2qo5IBAEqp+nPXogECO09aa5umAQLz4TXoK74BAJMSkOUvvgEDohW0O/u+AQJ8d3RhS8IBAaBCVpWfygEBE5ZAiPfOAQCeHrMg+/YBAJauQ3D//gEB4Bd6fzAOBQECni+7CBIFAcBUbhD8HgUBSucObGAmBQDdoFxQ/D4FAhDEn9isWgUAu6XXNPxeBQC8aX1zyF4FATCzSbBwYgUBvK0hnjBqBQCbieJGpGoFAXI1DwTQfgUAPVkgOsx+BQHpeGHwUJYFAzjSVBJQlgUBwUZvJNCeBQBQ8Sue2J4FAm2fJfOspgUDq5anMMC+BQJrd0iO9MYFA5uKHECwzgUAOiohLNTWBQFKoFLMzO4FAkIRnpSk/gUCtgxEXJEGBQCIZDdGEQYFAXFwEYTFHgUDsOV2JsmaBQCKgMC3ZZ4FAxt0WbPxpgUDrx7x1o2qBQG4gWvYsbYFAZS2bMaZugUDc7vjC0XSBQGJ91bPmgYFAijDXnjuCgUBYTIT+2oSBQPHuhuRHhoFASKLsLqSHgUDOOU+J7omBQDvrwrd+ioFASVyiLfGNgUBXVFgiVY+BQP3vONqBkIFAevsRIfaRgUBg47/t6ZWBQOwe2BL+lYFAdEVg6VSXgUA80DumdJiBQO7iBNJUn4FAZLwa/+ahgUDeg4Zi36KBQO25NlhtqIFARgXy3eWqgUD6AQvZSq+BQJgRbFZKt4FAspdBLkG4gUDrQjSmZriBQGY7mo/AuoFABPo8sJS+gUCzwNdHmcKBQM6oBKcEyoFAE2vP56bagUDMGgPm1NyBQGyBQ32l54FAmBgpSeTpgUBU8z3IB/KBQHCUCaJ194FAurv1OHz4gUBKvk4BAQmCQGKlcPW0EoJATMyuYtgYgkAPUR189xmCQA4RxqW7GoJAKbIH0cYegkA1QL9j1iCCQOizeaf6IYJAVuAaL9UigkDSvo6+HCSCQNKNcYj/JYJAKrk3dqQngkAqHlbV0SiCQISqKV/NMIJAhE3LUQlCgkDs1ENqBkaCQI6CG0FQSoJA2t09lkdNgkCiEDWc506CQKSXbFutT4JAzTv1Y5JRgkA+ApHgrVGCQI0jHkZpUoJA6KJKFNNSgkB+BfcOllWCQBjoG+qNVoJAaPpT1RVagkDyf9pWklqCQIZs8TADW4JAIjyn1XRcgkAqghHTOF2CQIRKtM6QXYJAHr7b55degkBwGple1F6CQAR0xTWuX4JAIal5Zs9mgkDQIdt/bGiCQJxyo9g3aYJAcmgFFdhqgkA/T2gQbWyCQKCVmWLbcoJAnqsAqGt0gkB+Ux4HeXSCQPhqD/9BdYJA9OjPcgN2gkAmK6lo4HaCQKq9Equad4JA8hPNKbR3gkAWj3uU7YGCQHx/tEpAiIJAgK60T0OJgkAXC54ihYmCQG5PM3kXj4JAQM03a0ORgkB+M6ZdPpKCQA0dJn08mYJAEXxpV1aZgkACfuoNgJyCQEDhghsPoYJA2NXdFz2hgkDEfqjK3aGCQEIMu0ZrpIJADnbOMeClgkCvWk+sDKmCQI6oh+NRsIJAvRPlSwWxgkBMbGxlF7qCQOqgL9Gix4JA3vMfBO/JgkAhhihqb86CQFRwnEGM04JAQk3ahjXZgkA0RXYCf9qCQEbggFWD3oJAwk67NkTfgkC4edLImt+CQG8wPfxH4IJA1KXmBEnigkCqGQRn2eqCQJArASx18IJAZK7kTXbygkAuzEwlePSCQDm6iNB39oJAoyVTaXr4gkCWUAChsPmCQExTeGzTAoNA7XWs0RUDg0Due0AkuAqDQHyZ6GscC4NAoN0ImccMg0CZu+q+eRGDQGvrgmjDEoNAGB/4utwSg0CQaaciehmDQPPNKhNzIYNAxSKLOFApg0BsiktbcimDQFxpi2wrLYNAps9l4tovg0AnOuTOajGDQBxDhX2CMYNABpAoOfE0g0DxT1EpnTeDQG2KzvZ+OINAm3yMskk6g0DqwV/5j0SDQM9uF5jsToNANbzEuRVTg0BetLM1GmKDQAgCY++4YoNAYLihBMBqg0Du/NEQ0WqDQNZJoAINg4NATtqwN0+Jg0DU5OMXJI2DQKxzKmD+jYNAWMazsHWag0AMQVu9Jp2DQOx7fhhZoINAYxBbqgnEg0DK6IleyceDQLxv/ghsz4NAqlVxS1LSg0C8uTwEkOiDQAJzRaXg8oNAratgkZT4g0DmktZ16PqDQLRkT1+J/oNAIoAme1UChEDqhv7fjAKEQIYM9Ij+BIRAgHzS//EOhEAxVkuJXzmEQJRHVXe8OYRAvQqrSZc6hEAcx9roBz+EQHTiJuVCQYRABzcrBrBGhEDYM1a5kliEQLmfE5YHYYRAtgHfFPxkhEBuo5+KrmaEQPKT643/aIRAoN6gquVqhEAmPtOd6G6EQHJI9r/9cIRAwOIgMOxyhEACV2LK73aEQF72RPrJd4RAbrLwi/d4hEC/41tKeHqEQCQtJ0YmfYRA/aRIWqN/hEBsaK6jvX+EQOypyHizgoRApmVbCdOKhEBKnYVWyo2EQCz7tSLAkYRA+oIDIFSVhEBf0mVxAZiEQDJIVdtlmIRAGnuY26yahEC8pkRZjKKEQKuYFUq0uIRAoJUNhWrZhEBKkD+RFuCEQLbJTrR64IRAfq6OF2rhhEA+K9fLnuKEQJLaHV3N4oRA7mbmbz/jhEC4coGLa+WEQDeE4Nxi6YRAJpF0pzbxhEDOfD7bYvGEQGfwYMvA94RAOkhZNTb5hEDYErLSW/mEQMIxNvy0+oRATp1SBUT8hEBZy+X92/2EQELix7h1/4RARv0BCxABhUC4YSkDrQKFQEPB0fJyDIVApC7B79wWhUB+RFDHGBmFQNwmLE5BHoVA/tZqA0UihUDeg2MoPCqFQD9e8/7ILoVA01uyHuY8hUDgfq1NjT+FQOC2b/imTIVAMDefhalOhUBAxJqZqlCFQHyzsxatUoVA2lRP4qxUhUBO4iorsleFQFqsiPxqWIVAhgh3qKBhhUC+W3AooWmFQKbw57WQbYVAsjzu97RthUBL94oQP3CFQH6yP/+YcYVAo7CABrVzhUCAAbYvmXmFQJlij1eRgYVASI0HfU2YhUBAKs+rnpqFQH6ZSUZzsoVAECOT2y/mhUABh7FN/fGFQFOVHhHX8oVALm0wLoj1hUCGMI2BVBKGQAItXoySGoZAjCghLEAdhkC82p8F7R+GQIg+43KVIoZA+lttxSUqhkDJ2jTXjnGGQDBZ/wHDqoZAWWrYeSS5hkChmYLgK8GGQAyWiqTNyIZA3iVtmQvThkBodSm9rtuGQDnDeaNt64ZAfnGhw5jwhkClgK2sTviGQMjFuFUy/4ZAVOYd1TYDh0D2arQ4OAeHQB4LgNKQKYdAaLU4iJExh0BGGjdRgTeHQGj6dciJOYdA3Yk8U19Bh0DaPzgrikGHQGyvZP/vYodA9lr7Krlmh0Amop5tN2eHQHQH8HM6a4dAon49yT1vh0AI6zszQHOHQAqavSCMk4dAlPRirxWsh0BXB5ARyLGHQDSxrAvHuYdASXOHVEO7h0BDGeB/wcGHQErvbnS/yYdA0LzKs/Lsh0C+sIx/PheIQGPbxFljN4hAYSgLv3tyiEDyDxLdf3aIQOPLhheBeohAU/drzFmyiEDHUU8YXLaIQFxVPmZfuohA + KBZXds7jZUA= - + - Pe4+RJlC9UVecrtEVjSQRBjLD0WoRNpEs3GNRLd4lURfippEjS/rRmdNUkSZbUZEgsVPRGqHjkQ7KdhE4oQPRd/taUWx2FVF97BpROtosUTGj0tFssy4REPqikSvSJxEyPqlRLlMRUQWUaZE41xURUmplUXHbeZGRQ6qRA/KEkbO34tE9zaLRZUjlUR4FQNFcho0RC4bf0TI6HFGT4+iROhx4ERD8aNE3WFMRB3hZ0Ux+pFEqXojRM7q3EVR0VFEWIisRImZUEWfflpEyEh0RLVOP0SaccNEv35QRKcnBkZalGNFT/quRAWIV0XGf8ZE4zJdROUwl0S9XpVEwv40RKAj6UQuKXhEfISGRJ1EeUQUgvFEEGCRRkvzlESu/YNE3pyJRFZ+v0V0qkdEYe6URFcLNEf9WI9EVYeWRHPEjkQx4lRG5fuvRb0pT0THXJlFPF+gRMcrsETemeBEO1x9RFpedkR+F4VE84k2RerF8ETgEJpEpi23RIdZs0SFTLFFvH0zRD0E3UTduWVEs0AARbNNNUSDt51EfbSlROU1jUQtQKRF2ShmRP5IhUSvkYVFZRN/RIm3gkRuOEJEwchsREXuP0Rdl9dETZNGRNWHFEbBEKxEaD7EREswc0WIw59EgB+ZRMKaNUQyEFdE0NMgRfgfSEStaHZECbSVRHc0O0R43VhESHN6RAEMuURbTE1EjG1fRBKiOUQV3UlFMpY2RD1KR0TX+99EXd0ZSP8qQEX2x4VFGDyNR0iadESVZ2ZELSejRnEmWkTu0LxFyv+DRdtcPUfzfE5FWFg1Rc3lbkTqdM5E6qNfRMR/jkVdi4VEzzZARBDxlkXJyzFE9Ij2RPNN5ERnqvNEduzHREAb40T9yi9F+u6eRZ6VR0WVLHRECqckREPIgETqEfhEfnlQRA4T6kRPLQ5FqWrGRC0mbkQ4KZNEcmXdRMYYnkSXTU9EK7Z9RPyYLEQ2gVxEUcCVRB84fkSRRbBFgOs/REfIt0TgPYdEpWtzRB/mZ0VznXtExNRsRF1cqEQEnNhEiSSGRGnWLUTnAudEGW17RNU5LkaDS7lFKgxCRZknR0ReBBdFOpddRAdrkETyQkpFP8HRRODirkSrqUJEd+SLRMU5VkQt2YJE+ACvRIzxkET0201EzJPpRFi2okVzvXBE0/TCRL7pa0SZkAlGXOOHRLq8jEWjeTZE0JpVRQEOqUSNBUdEIwJZRN7LP0Rp65lEX9U0RF3mbEQjriREI/UyRCQ+METN0KpEaeRWRFTilESiaS9EFVpuRId1tkSD6X5EpLVIRB5dBEXiFylEucKJRNvRhUW0MclEC3mMRJslU0QGa4NFlRBCRDEE40XXUpdFveDBRh1KjEQVfw9FpfxvRKC7iUWdfbVFWEtfREwFfUQNEWRFaaVqRDRILUWELU5GUQq/RIx3hUQjV0VEq6xvRL2wIkX2SDlEIufCRBRwMEQZt5xEEZkiRCEskkZtW1NEQb10RFfc80XEyzVEtv80RR625UQ8DIJE9HBQRVpSeEQF56NFocKLRILNcEQCflRF2KlNRDHskERHx3ZEPS+qRH5sQURNImhELECPRt+PR0XehUREKQ6bRLy/vkRn/uBH3sCdRIDloEar8shFk1QcRPT9w0YXJaxFCZhhRsRLDkUHod9EnF9MRMbswUQy5DZFJeY6RMxeQESkn5BEyZjDRPoIpURkZr5E6FeIRNO6pUSTz45E9BZWRCAIjkRkcIpER/dwRFMRVETcKJVE0IQeREqtWERs8YREFLkURQoYcER6oBlEGN+qRIlOHkV6fQtGzM1LRa0lkESkuYNFw3U4REppm0SlhQpFy2g7RYDLOUQGNYlEA4XaRPK7LkW4rj1J7e19RWhVwkQrvbNETXB+RL4pf0biUhZFNEn7RfgUQUTToUNFSWOpRKC9TEQUXy1FbY0+RKHbQUjOdLxE4yuBRFYmgUWE85FGlZxlRDNRf0SVTdlEuLQTRa4d30RadVRED8oiRR7qW0WP4vJEvfC+RYbkXkS018JE1+l9RVT+VESPZ4pEx4+DReSF8kSrJEFFD0QARdrJQUQwe2lETGC1ROiOXUW1IX1En0BtREqcXUQfKpJEQwGARbo3RURzfJZESY9QRACKIETzulhFCKWYRFlaykU3cZBEVbjqRCqif0SxPUFEtSfcRNLPykXMzVZFgmxkRKtKlkTYqzNI8J+cR6GZm0bKU8JHx5K8RYUyoUQwxkhEivbERvjCfESldmpEnMNbRbjOKEX7RIJE+59mRJ7+gETCV51EE5R9RJjWGUUiYT5El6VDRH1/NESvYPZEgjZSRBog6ER/a6hFI5kYRFuulUQwq3hEpBOIRB1kBkV0iytEs0JQRMeiRET1NF5FtfzFRPZBy0SVi5FEHFWTRL73G0Z1YzFF8klYRKxkAEYP0MxFm6fXRAE4WESXBJNFvP1BRE1nlURrKHdEQP8VRRmsSEQesFJE9KcBRUD9jURG4KBEPo5yRC6HgES9jIxFMPkoRDHzgEY9ddNEJXgrRuP8K0X++apEezSIRSt6cERgBiNEY+53RWLtXERgSJxFNuI9RGoHhETDp4BEIzR7RHvajURijnlEg27GRHTIS0Q8z7REp56lRAxV7kWl145EVSadRD7ZvUcGxw1FLtmnRuZdNkXO/4tGlvWQRkr+2EUncDFEcSNbRCBuOUXEVxlFlps2REbXYUSh8mREnNAzRlMJQUSnuRVG9yeWRH9YsES8gZREM7WGROqtWESx40xF0tBpRAEhzkQ0ajJF8tOrRE9flUQy3XNEys8HRXKRiETaqfVEBU5BRNEChESCFZJESzapRGXAmER2CXZFK7lRRLTxVkSNAF5EV4NVRL/Ob0SLEs9EteJqRYTag0R6fcBEGYeZRJmghESScodExhOERCkEdUSLGnJFbymbRHMr50Q6mPJE0ZeJRP2CpkQUc2xEotGMRLyuqkZRwfFFf+PQRPJB4ESBww9FHyXfRHYM30WQqo5F7xDiRMiVFUTDSi1E7+ScRN4oaER2U3FEI/NPRN5ZiUScjJFEb1a1RityRUTcLcVENBhiRJjSgUZOS2NEP1ahRCLjMUXiHXFEsUdKRM42b0SJUGRE6vmCRBVklUTK51NE6GCrRmC6lUbcqBlGAmdLRMJHbUXJ5EREuAZsRGxITERrlndE4kppREt4okRteKpEcv+GRIpm5URhk49EZjwrRA3/m0QNPCZHEi9kRI6Yr0aH9eVFLn5VRCvKVkUku6dE9zaARDe3XESG9hVG2dGGRGG+lkQdSmNEUp7MRNnjLERjqr1F1rEWRUr3bEQXn7tEQiQzRKgb70SFMm1EQuhxRGc/wkSEsV9EjgJxRKyBhET1blJENVdqRNLve0Suu6BEaPtfRGCRNEQUYARFj7h6RLROg0WimGFEjAfQRMvIWUTxDGpE5hqDRUlBTUSZgIhE0oX1RA42JUUBC29GzaxLRDDszURa+2FEO1ITRU5y0EUqGpFFtxJtRICdd0QBqaBEk1rgRDgiRUXnTZtEzxeyRNPPK0Qdzl9EjRkURQZnV0TFa09Eqh1ZRPirdkYetVhE+ofKRagb5UQvRIxEywKpRNmVZUScC+VEDuhLRM7AT0Q5QQNFoijVRH1PKURRQUdETJFBRG7TSkSLVLBEdXXyRAUR2kSn/ZREELudRNRiiUTE4hVG/zYlRMozGUUq1d9EqrDURKRCtUQOhUxEFuXWRAdiv0Qvo0BEJAZZRNeOqkQSd5BE9DGGRMp0TUS+nlJIK55jRIhkWURId3pFgsddRIEbzkRJELlHtPinRJgZ50TNFPNEPq/DRCk2PkTPVHtEraVxRKNZW0eCWDRFGuajROYOPUS8II1EYNJeROB3MUZdvgVF7WGsRJ1DT0TopmtELdr8RDRCnUTIbGZEcfYPRTx2lUQoVkBEpyXSRHWYaER7GItE3WV5RryUhETrN0JExr+jRc2RWUSVIqBFu7gpRCnk7ETOgypEfqGBRGJ3U0Sh6TBFK30eRw6npUTr615EZN8tRLlL7UX027lE49EoRDPxe0UeyrlEVMwhRRsXj0RF+01EwV4nRtwmh0T3TFZEgVSVRIZWykTsr/1Ea11NRIaR6UQcJ2pExamKRENxM0SBdYZERr11RG+CfER/JRxEIdRGRP927UdpVBpFiC+CR3LUA0YYhlRELMteRmr4WkUBZgxFvPMbRaQiQURZ9k1Fce06RQf+UUaLnLJEt/c2RcQxKkaLqDBFUzs9RGIiaUSDyoBEd35FRRWe+ERXX1VEJXl8RFA/FETeerpECCAsROdjl0QnlmdESfVlRCnVN0SS5klGH00nRr0tPUSrditFkARARO65cEU76W5FFqvsRDOaNEQbnh9FUFZlRBR+MUWnO3FE5bc6RBU9fkTWp0NEL6Z0RNThMkRoPFtE2GikRfVMY0TbM/JE7R5QRJqlM0U7+ixF4yaVRM8tBEXhT/pElq3ORA6vrkTFMbREBb9GRPnZSUTahoJEAAeLRHeMGEW8rbxEBe+wRBgo1EQkm9dE+uk4RBWkhUStBEtEezJxRDHIzURDUV5EokU9RC9BRUQunSpEh/nYR7fgeUTQdXZEJ/RFR+83R0Rx1NZGSsnnREhjOkR/k8pFCND/RXdIU0XhrkdEHUCERJ2KgUQ0SedESRWeRIaockSZ+DZEDOlTROMVN0Q+rVZEnV5LRDVi+0RCo4BEMyKFRH+/p0QxCY9EuPIxRElYRkQzPehFefkZRiWGAkYLpotF5ty8RBQrgURcuH1EgyaDRdvGDUVBu7FEBDo+RL44xUfJ82BErqBtRLfWJEckieZGDlEuRIKY3UW0yhFFAJpDRK51EEUMRlhEXPEURaXnNEUuh4lEGtAIRYYmN0SlolFEYtGZRELqNURcAIZF8TWWRNSzekT8TsJE9dBXRPKSaUTJeFdEvn7SRD4xWUTo8z9EPqNcRGw5fURV8IxEWp4WRPdOTESEcrdFasKORNpRykSWZq9Ee3FaRMb4pkTTJ2hEzbJQRNi6OUSjbWFEANQnRMtAn0QmkzpED7jDROo2SkT/OyJEuZKPRGwhdkRxveNFkhqZR6J6UkeYQ0BFzvaARjCFhUVAHKlFzz0MRdYChUUFTRxFPd9RRN6nPETdyyxEp589RIhkUUQg3rNEq6PRRHAKH0VWsixE0n0ORS5JPkSBiyVEKm8LR30aMUTLtjVE+ziBRleaikQeIHlEhLyWRKvFSkR1VxVGk+8/RSEJXEW0YkxEZ17URNX7cURXdptEM1mERfgTj0VOxpBFtC9bRaegvUQ6T7hEM6ldROZKOkQe3OZE5wbmRHtVSES5On9EezB2REs0ZkRiXH5FRiuvRXPLhkXy9DhFe0FiRHW7TUQ732dEjT/pRqLyY0bq0nVElx0uROSJ1URkg/BFPu2vRBSjXEU5rn1ElzpARAIOgUSSnh5EvUjORNwYJ0T+Jw5FGcdRRCsDtkQUidZF5FyxRXjngEV+HrREciGORKFJVUQ3VmpEjcmYRCbjSERTpDRErXNcROvoWkSzc2lEUP88RHMGYEQ5e1tFqiEPRVPcw0SH+zhGV+6hRVglm0Q+i2NFyi5lROooHEWtEkZErXtmRCxwNkfsUhRHXPVWRr0BgEWSl2BE5xtMRGG5A0b216BFHGHWRFkhMkVbUwRFy387RIKgU0RxlWdEUaWgRY7iWUXaHQJFuCoDRX2gAkXzrZFE + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - iroIuNPAckBcz7CDDcFyQJpJgFdvwXJANg/Xm1LCckCvKS/Q5cJyQKLZBf46w3JAmpcR38TEckCeaK2kWcVyQE5bWnMR0nJA7BVlr0PSckDFJjcgPtNyQF0qsMF303JAxIMsL2HUckCeDbVBjN9yQBivA/rP33JARpf6X7fgckCA5wBL5uByQOq/mpf84XJAzAajnlDickAkc+aokOJyQDx0eyEk43JADiLh46LxckAYdyTHyfFyQH53cU3o8XJAMNA7yBLzckBqGwZGtPNyQIRWyO8M9HJAUN+eSqP0ckAjh9ZJwv9yQMKqT0VlAHNA6D+inPYAc0D4Y4egSgFzQGpbDQKOAXNACeEFgtECc0BwnHjXZANzQOZt0qn6A3NAye9dlQoSc0CMYJAqvRJzQFJIIJByE3NAWG/S5vcTc0B56mpQBhRzQA9m8ilMFHNAPTL6U3kfc0CzhK3enyBzQL+jp/jVIHNAiPNrWjkhc0AqH7muZCFzQPg7lJHLInNASfT+XREjc0ASRvqYzyRzQKi24cNSMXNAgNBqRcwyc0BaQeGu/TJzQMLpbdOfM3NAEnwSJzg0c0AM5tQq3DRzQFRm5a+4P3NAKi2LFUBAc0B2tBQS4kBzQH1I89F4QXNA4lgTViVCc0BG9y/MvEJzQH1ri6QIQ3NAiLzrfXpEc0C6QobIm1FzQO0TVdpCU3NAHmE9zqRTc0Bqy5hu5FNzQNOKGlKIVHNAhjUg+Pdfc0ATzeiKjGBzQHNe/e2HYXNAzudUhR5ic0BSQUhJOmNzQPIszKKRY3NArhdUedJjc0BA4dv6PXFzQPbN/BfdcXNASMjeNlFyc0D4Jz12ZXJzQIG9L/C5cnNACEBf7fhyc0DSN931tnRzQG6UcMJMdXNA3JKsi3mAc0DmXQVfpIBzQGEwC6YPgXNAWUqx3lyCc0Cgum0X5YJzQC7lBcMOhHNA9lAVgFqFc0CSW2HmiZBzQFyWQQeRkXNA0IbcJ9WRc0CPYg2DHJJzQN8OV2NNknNACpQBbtOSc0Be70HHzpNzQP3fCmhllHNAxHtJ1PeUc0AyO9IkuaBzQMv1wOSwoXNA0ygevFqic0A4zAkLkKJzQAU3DfIjo3NArSVF7gSlc0AADYMuyLBzQFZo2eh7sXNA5FzPJXqyc0Ci5JgCFLNzQOuxtmy3s3NACH4Agwu0c0BK+0lDobRzQPQ24vL4wHNAmLTQVdHCc0C0ATTRJcNzQDDgMcNkw3NA6mher8PDc0DHA7FRddFzQEJG00vY0XNA3OvkmPfRc0DMuQU7K9JzQGhCt15l0nNApnvgJbzSc0Ba1sQxJNNzQJ8BPXTi1HNAtCfqwXXfc0DKlwYhEuBzQDBC0OQ44XNAQsiZpWfhc0AOh/H1eeJzQBomdbcQ43NArklTZfLkc0AUhi3TtfBzQGNiqnVc8XNALSMpmmTyc0AefKpmt/JzQDw7mfD98nNAvlzNC6Xzc0DCvHvsNvRzQBp7ajWN9HNAL2LOvSL/c0AqUhlQ4wB0QDiSEGp5AXRA1H5IaKMBdEAWax/w5QN0QGmnR4mZEXRAvgY8NE4TdEDkrGLT4hN0QCxbT9r6H3RAwAgGJ0sgdECgnT0iuCF0QJ/8CfixInRAbgnayWIkdEAnlgnGUzB0QA7lZNukMnRAvItoRzpAdEB1pbbjVEB0QPLHt67GQXRAjZ3+NltCdEDuK9IDPkN0QNlw30N6Q3RA1m6b+3BPdEAMfu2Qj1N0QLcjTdX3VHRA7049h4tVdEDySFbM2ld0QN7t7awhXXRA5m6nv7hgdECOOIcjzmB0QNiCm9AJYnRAGuq8GnpidED8Nci/5GJ0QPCvsZ8SZHRAxUaGHlBkdECjqo+RsmZ0QIB+B9PFZ3RAfeSIkdVndEB4h8nBH210QKDr248icHRA1qN53GFwdEDqyu5rQXF0QNIlF6vScXRAzH1FLHpydEAD/LAIOnN0QASlPGehdHRAoPjsETZ1dECCcG2rZYB0QHA3V+73gHRA5IJG4E2BdECkLlXWSYJ0QMa6Q9clg3RA2EhsyxaQdEAyt8pbapB0QO6rnYi9knRA+Ms8dhiTdEC/ylTP7590QBIOt5GjoHRAUM2KutCgdEDAWiS7N6F0QKC1YrC5onRAuJ4yWw+jdEDmWq0EDrB0QNRjOt3DsHRArmxE8XKydEDov947/LJ0QM4ufkTjwHRA0hyGxQ/BdECzn5uGeMF0QKAIPD/rwXRAsLKUXQfDdEAMMaJWUMN0QObz9ER7xHRAxO6q+bjEdEAKWY8L/s50QHS6K8wD0XRASnnq7wvSdEDgWTxKOtN0QDg4D63h03RA/JEwDM/UdEBWksoAZd90QMo3TQu54HRAkra9bCLhdECc68xzueF0QNRGkQUc4nRAvviMmPridEDO+k9gjeN0QBWmEb5P5XRAiOtLEmDwdECH0BaAwPB0QCXyNLCN83RAEDJUiKMAdUCuhh7cYQF1QE6/OJhcAnVA4nWeYKYCdUCsS7NNmQN1QHblO12XEHVA1X//2SQUdUAIIW/O5B91QFpS/PydInVAIoP3MyQjdUAOHfo0fCN1QJNGnzh7MnVAjAF9vKoydUC6J+3WMjN1QJQrLCs4NXVAq8fiA8w1dUAFDHwIJUB1QBKTIId9QnVAGBa2s95CdUB5sDFlZEN1QKy6YULYR3VAXATfyelPdUA+JBhPEFB1QC0+KH+CUXVAUAZ00k5UdUCf6nuud1V1QI5rcyf2X3VACpTb8hBgdUBQQvSNn2B1QAV+Nh84YXVAUU32Yw9jdUAe4TDLYWN1QCyyqGL7Y3VAxgvDtfhxdUDY86xNd3J1QNzZ/+n6cnVA5GW5AQh0dUA1ilBfjXR1QDiq36PggHVAO9eQ+XmBdUB8psbJrIF1QDxnkZs1gnVAiJKpzlGDdUAd+rEyp4N1QFCw026bhHVARt5TgIuQdUD6ipWomJF1QHzg1qA+k3VAelafP5agdUBEWLWKuKF1QBtx4pn5onVAQNs+3bqkdUD40JdpmLB1QAQvX6F9s3VAqPsIDbTAdUD7OTtK08B1QGS6h+T6wXVAYpAP/nzCdUAj135GJst1QMT8QmGk0HVAECZSgI/SdUCaPcsNzdN1QLTWNvC21HVABOvWYOXfdUC2JlakDuF1QLZnu0AG4nVAH14WRxzxdUBRci+trPJ1QHQD1dryAHZA5RM44UgCdkA8M0LVlAJ2QNBv/3TRA3ZAGEwriuATdkDKO2HjTxR2QF8MNEQMFnZAIMawfEkWdkDYEAjFaxl2QBDNRFrHGnZA67pC5IgidkD60pfnkCR2QC6umwBLK3ZAfTYLBiAxdkBAodmwJjN2QDo7ROtTM3ZAcu6KjJwzdkBb8vctnzR2QPger4dNPnZAUNCPN+FAdkDjAWCZHUF2QLgbkjjJQnZA79RfI1NDdkDcEE6nfEN2QGGtAW+oQ3ZArJAKP3pEdkDQYJBG/E52QOhSDsARUXZA4geRjMZSdkAFEvfdPFN2QMxse86DVHZAfvKApM1UdkCClqinjGB2QFTo3agbYXZAsh73gEZjdkDBNmiy2mR2QGCb2SezbXZAELHPpPhudkAMb19Z0X92QDIViYCRg3ZA4MIIN0uLdkDi9Y3e4pB2QDFZ5zGLk3ZA1uAJDeyddkBMtTJIeaB2QPlmnVsUoXZArMctHeeidkCQ1DiIRqN2QOrk1kqNp3ZAfPxYUaCodkDYB0aaj6t2QKAD8ihTsHZAnXcHDoywdkCyaUf3wLJ2QH4RLR56s3ZALq67Cg20dkA8macgdcB2QBrvU6++wHZAs7rekU3BdkCIO1M/JcN2QNEO643PznZAfpEjHn3gdkBcPaAW8+F2QNs5qoMf8XZAQuP48CbzdkB+J2ZIkfN2QNNSgm81AndAiiLyfakDd0BWs5H2ARJ3QBafD52IIHdA3IKH8w0id0CHmntMuSR3QHDU8MFYLndAl99zdGsyd0D+sA4JpjN3QL6/wlQNNXdAEGuJWM1Ad0CaZJI1nUF3QGajfJ3RQndAaXK6BDtDd0ACD1g+G0V3QJTdFz1KUXdAJMzoTZJRd0COntflvlN3QF6z7EMpVXdAKFNPKDZbd0AJQ0GCPF93QNHAmvJlYHdAn690R49hd0AiqKgXOmV3QPpwmuAnb3dApcNZbZR0d0CSDVilGnd3QEt65mEee3dAfpKkVyl/d0AdzRZpeIJ3QKuAQv9Ng3dAGB+mlweSd0C6wbjAS5R3QAAvvSGcm3dAHpMkYI6hd0A3DxYyuqJ3QHgwSpeko3dAhAW0Tpy0d0BI99R+LcN3QBY1N/lg0ndA3NvfnB7dd0AAMuVLeOJ3QFK5U12253dAtgvSNFHyd0AON/3Z5fJ3QOdf+pObAnhAHqOwD+wCeED93TglShV4QED1yORtInhAolVtgdMjeEBS3aZbpSR4QKa3IUq2MHhAqUbGTFQyeED2WgwrRjN4QCYD1ZNaM3hA00GxRfYzeECmk8I6sDd4QMdM1RPrQ3hAmeQUUBFEeEDmSYPTeUV4QCu/DTfVSHhA4tTnEPVLeEAmK7bOME54QFdRmQnMUXhAqlPhnYhVeED9sk4Q+mB4QCYi8iu3YXhA9KuRXpVieEAcmO0yPW14QFjU6Cx0c3hAQqpxO110eECO8yEyjHR4QCqIJ/fDdHhArxlm68Z4eEArppia+Ht4QDKJQCMhfnhA+d6X0qOBeEBfw1EoNYJ4QJZpdGx9g3hA3iJ5hgCEeEB4AGtwmoR4QNNd9XSBh3hAbHC2Vd6MeECmDC4US5B4QKcgw9yWkXhAYJq3kDmSeECAUPz5p5R4QO7ZryVznXhAZIbcHbWheEDw4fhVuqR4QBIYQzGHq3hA/F3eJiaueEB9o0cwjK94QBiWBR7NwHhAo8JDdQfFeEBjk+MPcc54QFaVqua41HhAYUqwFMfkeEAMB0geAvR4QFdUgTwh9HhA3mx1d4z1eEAmV5B0EAR5QMixr0ibBXlA91fquYYLeUA82Lz6jRN5QIlh+FjZGHlAiidYoS0eeUB8HHrasyh5QJvvR9ILLnlAUBCxX9QyeUDlnSJUVjN5QAUtc2G4M3lACktO1jI0eUCKE8rwLzh5QAAeCwziOHlAorF+vI9CeUCBtkalqUN5QEKhLYb7Q3lAzNVmFc1UeUCaq6fvul95QOrlJFfrYHlAVZaa9ttkeUB4mJpgQHN5QEYboyHVc3lAItMscDR0eUCwWVBZ23t5QH3FbffZgHlAuaovfSGCeUC4+Xc+OY95QHKhTaQZoXlAWom/rgiqeUCC2JvwwLJ5QBIT5dZmw3lAJlg2Lc/TeUBqtzIAQtR5QA1opoDN1XlAWushnFHkeUCGaYqGQPB5QPKIQFJsAHpAbgYgak4DekB4Ya/P/AN6QAwEWTqSBHpALPYVPvoFekAcJPWWRQd6QEWoKj5EE3pA8UBIap4UekA4/druSxt6QAXFC1JlHnpA4OzDaSgjekDF51X1Lit6QGELwUYgM3pAxNRBrgw1ekB40p8wJzt6QFbDBj8vQ3pADBKKII5DekCAJhoLG0V6QDRM366lTnpACjRxdydVekBzoIxxIFx6QPIjrN4oZHpA9hOwijtlekB0RkmdVnF6QKCasQLDc3pAyOeqjtN4ekBctakcHnl6QD5+ND+CeXpAMllrJtx+ekCSgnQnyoN6QI+b98RBk3pAAld3b5+UekCOYYkyg6t6QFFdWcEPs3pAkEI6Ywy2ekCEMSGME7d6QM4Cqzo1w3pAYsFTvYfDekAVW8gyG8Z6QKChq6lMx3pACa3Ef2jSekDxCbcH3NN6QL3SGl+r43pAR4E/bTzkekCMO7zae+R6QCa0pJo17npAZkoaE030ekAgIxsMdwN7QIKxw+p8BHtAmJ4Z28cLe0BqloSAKg57QCa3H21MFXtAplqHylkle0A+GcJgwjN7QPxAujmRPntAvAd19epDe0CDo3tfRUl7QI5J7Mv9YXtAvK5Adshve0AI892dMnt7QGpg5bG0j3tAFHYnXWaUe0AgVuH5IpV7QE31DqQKpXtAlB3t+S6le0BO5blS+7N7QB7GUNx5xntAZsp1+MHhe0AYRbfrAeR7QCpGd+An8ntApZB3uYz1e0CjeqbZlAF8QBLh2kTZAXxASgilSfUBfECiwnqwZAR8QNbAsO+ZBXxA+3NEn44RfECI1DXy0hF8QIZIUo7NQXxAKoDB/WpffEBNEP/W1mN8QDB71tsGc3xA2bqy2P2BfEDJSyqIB4x8QNeamR0sl3xAfmzl85qkfEBPAKwm+6R8QHtyDyDBsnxA/qys+MqzfEDQpMm1ebR8QM7sWxURtnxA750eJGfEfED7LRVZddR8QNh1Lz3O1XxAMLjDn/bbfEAcbpNSWOJ8QM4oboFw7XxAqowPVxbyfEBkbZ0nVPJ8QOJVUDa6+3xAD7+r0AICfUDo+0V4SwJ9QG5VQOAABH1AFJXTuRwIfUAcu2MyCAx9QB2gly5FEn1Aiu8GpQ8UfUBqEjNBQiJ9QAIh3QGiMX1AVGmLiM0zfUCq0z/GSDh9QGsPFk6gPX1AO5vby/5CfUAScaxJRUh9QJBISDfuYn1AmjTOeyFzfUBz1iwreXh9QGb9LZEjgn1AdPqdx7qDfUDIf2Q++4N9QJ4MnONohH1AjQApEf6jfUB+Vud3pqR9QFEwVFi3tH1AHrds/yi7fUDYWteTLr19QOvyjTifv31A0AGiCC3AfUC0BsD8LcN9QO4mJq0qxH1A8AOJuufEfUCyotA9ltN9QO/0seX31H1AOpQredbifUAeu0i6kvV9QGCuoa8Y/31AtIq4EDYAfkCeKxoAOh9+QIW32E0fIH5ARAeU0f8ifkA8gdgQPi9+QEc0EaVAP35A0tZpUL9QfkCii6Xl9VN+QKSioQiOVX5AZPImoitXfkAkV8dMYlp+QFbYTVyYXX5AZGL0Yc5rfkBMVzTemm1+QLDwMBYgbn5AeyW70lR7fkAwwZM6i31+QLURFermgn5AiglXvJ+DfkBkZxRmUIR+QHiS6WAch35AhxRMk6aLfkAm4txlIox+QB6Pd1+OjX5AAjqnAlaSfkAdwo1NlZN+QL4iiLyZlH5AmiXhUnyXfkBLhw+5tph+QES7bPbzmX5Auuzyl5mbfkCy0vr1TZ9+QEZNT8AXon5AWD0AcKekfkDgY+wc9q5+QOw5v+APsn5A0je5GVC0fkDHboqrqLl+QC6x260Dv35Aqmq4/RvGfkBU9njhy99+QGugqoEE5H5ABJSMPVjkfkBOcW9rBuh+QD5YfHoK7H5ASupaaNPvfkAQMHOVDvB+QALt/O0b8n5Asu5hb7YAf0BMi2ApmQN/QA4V+BzpA39AdE/OVloEf0CSFCpMuAR/QFqLyLJACX9AuszMphkcf0AdMfPr6CN/QCyJPL24NH9A56GzY9U0f0A0/unFAzZ/QCKRL6+rOX9AzhaboBtEf0CADsVEuVx/QAAzJNzmYn9A8AbInvtjf0D5Mg5jv2R/QKjEMRTFbH9AAIjk6Ldxf0A6pikK0HR/QIILC+KrgX9Axm39p6KDf0BQGOWgyY5/QNM73TGRj39Akk9bw2KRf0BMMSIdrJF/QJWjYRdBkn9Ag90/A5eTf0C/ndauOp9/QLNigYoOoH9AVWPpG1+hf0ASrGblp6N/QNvGMPOmr39AcKMx41Wxf0CeHOAzCrZ/QHQLhUxpuH9A4kyTcP+/f0DEAzzCAs9/QLvX4BBu139Apb6NH+Dcf0ARUiMb8eR/QEC+qBkS739ARgsG+PX4f0Ba+k14SQKAQLVAQrJhAoBAZfMTh9AFgED02BCfOgqAQKYuxhYZDoBAWtOy/dkOgED27T7xYhCAQPhl7eAkEYBAznqtEmkSgEA5GKmqNxaAQFkG2uRhGYBA7fqbN8EZgECp1cS6IiOAQAZobAzzKYBAmFhnfc8tgEDM2uN/Ti6AQNwhmsPlL4BApGbafB03gEDATSuaiUKAQPVEnHKpQoBAkPacy/BIgEDwN4Iuik+AQE6kP9XnUIBATiR8zxNRgED81BGyNlKAQJhx8r99UoBAFIIA3gNWgEBwF402Z1aAQEygniQHWIBABEUqdCZYgEA7hPCYDlmAQPO4/z9sWoBAiNlptyVmgEDiPrfspWeAQPryyIwdaIBAOnFS9yFqgEBYsEneKm+AQNSC4sCpb4BAVctqDBZygEBcJ6dVJ3eAQJfabz+CeYBAZywz0QV7gED4qOjXLXyAQEQ+ucInf4BAyrgM+/yBgEAmuu9VBoaAQDLqgO4whoBAuAUmqF2IgED8yyWQ+oqAQEHVHRoOjIBAFbordh6PgECUXLIQSJaAQECsML0dl4BAOuTs8MWZgEC7UjJs6pmAQH5/ieQMmoBAbk66n0uagEDKZ8vmaZqAQKy7qxvInYBA+bycAxufgEBMzVzEi6GAQBIvOa00pIBAT+hCMHylgEDjhH0G76aAQLTkhWWFqYBAnvbcyPuugEAyWrWHE6+AQOw2vWSmr4BAMCp10mCwgEAwLB2TG7GAQBT75DIusYBA7s+hf9ixgEDAuTzcf7KAQHS65R+WsoBAcnP5AE2zgEB6C7hNxLSAQH60J7MWt4BAbEQhWPS5gECWVQSCkbqAQIoBD2ZLu4BAwbhMSEi8gECZcs/av7yAQEYDFwszvYBAY/TtPIi9gEB2FzWFqb+AQILIIr38v4BA4LljLSPAgEA/mPcSYcCAQG6VEHF6wIBANZ2zolLBgEArc1v/1MGAQGlYb+SbwoBAPuPFRPXGgEDcXYhpqceAQACTGj3+x4BA6JnwLBfJgECUlwpVU8mAQCqqBonZyYBAW8Ry/jDKgEBMIBpuS8uAQPJqMhEJzIBAi1maf8PMgEC8ZxQv4syAQH9SfWk8zoBAxkgOwQjPgEDaVUBZsM+AQBImPHYk0YBAjiXucEzRgEBAO8kNBNiAQITB5y9K2YBA6NAIZZHagECwMFwDiN2AQOoa6cVE4YBAfmzsI1fhgEADafTWtuSAQPA/rAst5oBAtk2zB2TogEDEwZZX9uiAQFDy/fZA6YBAOUK+otLpgEAwHmv6FeyAQCqM0k9L74BAfVX+kObxgECgVdC+ZfKAQGAkUNA884BAflvpW0r3gEBQMIA35PmAQCCjE/8//4BACB7ZLcgBgUAIPpu5QAeBQObPmfTnCYFAewJFPT4PgUDhqEVpXBCBQC/Yo6Q8F4FAumFoGagagUBgsJ3wWhuBQCxF9P2DHYFA5tvi9zQfgUA0tdGPsB+BQP55/QItIIFAjq5t/TUngUAIGylytSeBQILeM4YwL4FAFBNctkEvgUBqrzM5vjGBQC6VvW8rM4FAKg+bets3gUBuz38vMjuBQKxOjtlhO4FAZjKDDyk/gUDFme2QVUCBQAb4LkkuR4FAO2Xv9/NRgUDmqGZnolqBQAaiRPZGZYFA2ByBsrNmgUBkyTzk1meBQMgeMVb2aYFA9HLqnYRqgUD4N3SLtWqBQDAqLOiCeIFAfw3YLWF/gUAyK2GV44SBQKWvwu+ZhYFA/J3Dhe6JgUABQoiSfYqBQDuTnzbxjYFAzI+AclWPgUC3ncxgeZCBQIC5ZErHkYFARSwVcPWRgUDbKNQwq5KBQPXFLmUtk4FAe11FAKuTgUAKcxRDKJSBQGweZrPslYFAav6AGleXgUD6GDw/75mBQOix+OXQnIFAE4TCqlSfgUAAbtKQ56GBQDgiTov/oYFA/E2NRt+igUD2T8mFLqaBQIoh45FwqIFAEkI3Wq6qgUDBb96n5aqBQLZZTkrcq4FA4NKm40atgUBs+GJWSq+BQJGyDJZ6r4FAEpgNfG6wgUAQB9vI4LKBQN55vBJOt4FAhmzFz5S+gUAcNfaWQr+BQHQHKL+bwoFAUkIJOmLJgUDq1OA16MqBQJBh0gh+04FAoIirtqzXgUBblxKIrtqBQLShaZXL2oFAArBA1M/cgUCWdc5x3OGBQCvHf8uX64FAKAbVu9H8gUBINzXoyf+BQEz8oMVWB4JAqocoGwMJgkC6Bba0tBKCQIy32IPYGIJAfRAr7boagkCa+IwZ1iCCQIjidGL7IYJAhL3NvycigkCq0al21CKCQE5gD/BDI4JAHEiHP/0lgkDHY9qb0SiCQJI6j4QYKoJAqsGGCAIugkB0BvLN0DCCQHiag1U+MYJAUvjJMco5gkAUArC410KCQO6HKASuQ4JAfXAyXT9FgkCmjN5QblCCQP4kj/g9UYJAOtzxKpJRgkD6r57wrlGCQDtNZZQUUoJArkaDa2pSgkAYI03OO1WCQF2Z90uYVYJApkUv7OZVgkDNysFwjlaCQOiXwRgSWoJAkkHCBnFagkDMt5tnkVqCQExzroHRWoJAXBH2agJbgkBuAQXPoFuCQJMMoYlxXIJA0SeepZBdgkBmbB6u1V6CQKSdSMJsX4JA+4Xs+wljgkBgr6aeKGWCQKlaiDJFZYJArg+LcWlogkBqNW0yPGmCQGDNofaWaYJAaju8ERZqgkBAygDy1WqCQHR4wjM5bYJAnRWPpd1ygkDXJyxManSCQEKU+DIPdYJAgK9r+jZ1gkBKHWd7C3aCQFQQDefTdoJAENDe1Vx8gkADqLSO432CQHpa9/D+fYJA1hq+reeBgkCGLxlnt4KCQJz4wXSmg4JAChcoE9eGgkDeRqhMQ4mCQFZFpAiyi4JAqHX/AtiOgkDGdwB4GI+CQIZe9rBDkYJADr/K3+ySgkC0FW8YBpWCQGS3nVsFloJAXLpuvxSZgkAsgyUZPJmCQF0bkzSwnoJA+BrQ4Q6hgkA+89ZAOqGCQKg8xo3doYJA5FCyMMuigkAiQ/GG4aWCQLiMuaiQpoJArB0eqQypgkDBGNJmM6mCQM69DsALqoJATAISf1GwgkC6b+sdBrGCQEbMl1w7sYJAdXySjKO9gkAcKN4xnb6CQAxBJYfsxYJAEg2Zq+7JgkCCSxBYG86CQJZm0BNxzoJA0i6gxofPgkCy3BL4D9KCQOoQj5XR2oJAllzdK/DcgkBKu9L3m9+CQOCsSDxI4oJA2FKMGNPigkCotjw0hOSCQJPD6BHW5oJAgo1vA3HogkDE68yz2OqCQKg7rXlr7oJAyvICYXTwgkAWALPUdfKCQESm46B49IJAytvZ2Hr2gkDYgZv78/aCQJ8gSUp6+IJAq5N7KK/5gkA0ncwTevyCQMjN4HSsAYNAogZoYxUDg0AaokQbDQqDQLTQosS7CoNA1g3jZr4Og0CgecFzeBCDQAIZ7qd5EYNARpPQsnkZg0CzgrgAdhuDQM3ey559IINAdicuxnIhg0DJm7/HcCmDQLA1fZ3YL4NA6FKtsWoxg0DURKB+8TSDQNM2hQNcNYNAMppVJVw3g0CtADARnTeDQJ46KZKMOINA1JH8FGg5g0BvTcJVSTqDQCQKK9PBO4NAOCPT9b9Hg0Dm5iR6IFKDQKQgvQKrUoNAviKXJQ1Ug0AFsj1iuGKDQDQuHhrBaoNAppLRPQqDg0BGn5ZMSIODQNip0eYThoNAxgH3tbuGg0Cg2BaJ6IaDQBG4w4z4jINA7O8LEEuZg0DYhfVbe5qDQAuC9UnNn4NABseAm5ang0Biq2uddbiDQLOPb6bJvINAPPBuoRG9g0AtKIEHncODQLw+8Af/yoNAm8TPtwnbg0A4Gph/GNuDQAZkEh7h8oNA7FaDLZX4g0BaI1lj5vqDQL76cKup/4NAoM0xsKcChECdQZRbrgeEQBKDoTVCEoRAASyakGIXhED9KBE6cBiEQGIktU4NI4RA1E2dmmM5hED4XO7pTzqEQE6nB52cQoRAHub7LJpHhEDh5IrD8VSEQNAIwBnfVYRAnMIoXINohEAqkAt//miEQO28g2FGaoRA7sglbeVqhEDGgTOCTWuEQNNrKsroboRAaq6DjP9whEBpFW5163KEQFBqptnRdYRAbu6ZKu92hEBljSFqyHeEQF56PFP6eIRA932+Y3h6hEBcsVC383qEQPKz5mInfYRAFicmONF/hEDioU+CaYGEQNdQpqRKgoRASmTQ2ySDhEARH4Gs2I6EQBm39q3kk4RAuDTc1VWVhEDk4gfAAJiEQHveynYmnoRA5LsAW+efhEDZLdut+KOEQANYTWAfpYRA2Dm/CV+thEAeWTm64q6EQPmKxKgMsIRA4IvwnKrMhECgRpuKX9aEQCxXdl9q2YRA3CiIRGrhhECcVUxfY+mEQOo5GE4l64RATEnk11bthEBwOUnoNvGEQIk37n5h8YRA/gSHyTb5hEBkLhetXfmEQNTXWsFB/IRAx2Ukdtv9hEAtR0CNeP+EQBA5/HkTAYVArqcvXKsChUCcuNn+SASFQM9x+QlmC4VAmkDFiXEXhUCSu/nPvBeFQIKVT4ipGoVAGxScL6UdhUA2y5WMQB6FQLa+icSxHoVAB5ICdUMqhUC+c4z54zyFQGLQW1iNP4VAwgbiSWpFhUBW+tR/qEyFQH6i0Y2mToVA+37+OK9QhUDLldKu/FeFQAEICvlEW4VAvUSxsqBhhUCSZFfmoGmFQKiYbvKYcYVAPhNXHRxyhUAH8C6ctHOFQJyAre5FeYVAhHUq/pd5hUCA2pM3OHuFQAr/SJgqgIVAJsNKPZSBhUDyfMM1eZ2FQOpbdIQ0qIVACgl9SHWshUCO9JRUgvWFQJ4fwbYt+IVASUM3s4r8hUA9x2aqiP2FQNRCDxyRGoZAeVWF68sahkCwXvW5Px2GQAm17xTNHoZAIhPZouwfhkDmVD0ZmSKGQHS4A1FDJYZAhvosiH0mhkDaT4z77lqGQLE0euEUjoZAFkru09qihkDklFBN2qSGQPiIpsEDpYZA5H2JKNymhkB2SQ0C3KiGQJxOtsDJqoZAwB+URie5hkCNjYz0rr+GQL8MoHklwYZAHqr1TNjehkBa2Q6bbuuGQAy2Pfa19YZAGJM/vDL/hkCi9aOyOAOHQFxddzE5B4dAKNHmWkULh0ByELiqbiGHQKH7oveQKYdA0qMXu5Exh0C8NZHbiTmHQCFn4iReQYdA1NqSzYxBh0A9Tsnct2KHQOEcCUq5ZodArHjLSDdnh0DOah2GOmuHQIx+VaE9b4dACJHGZj9zh0ApB4XeQneHQFPUq5WPk4dAwlhVJsixh0DUCuq0orSHQLTEbSXIuYdAJQub1kS7h0CMIRwxvsGHQDzuR0q/yYdAZjlpNmEDiED/8Oj2cDaIQPwP4hsKOYhAYr+7sH1OiECJnyLIgHKIQEA7i6h/dohAcBzza316iEA8qs4TWrKIQPo7SShdtohA6Ba/HmC6iEAqt34H47qIQMA0EChXvohABATW3x/oiEA= + NrgMGZxjYkA= - + - KcQhRCLWRURebiVGJ7WKRCkM7ESk/XxFTq6sRAIHq0SkirFEU78MR7JGM0SDr1NEjGY1RA9ZUUQYkQlFdsD6RHRbQUQ1qENEZiV/RZhEiEVPz6dEFDWIRKr1J0ULkFZEXWw1RAfCfETzd4pEjV9yRIdV5kRDO1hE+1urRO9HiETYHLdEGmgURS+uJkbFGvpGEaxMRKnQP0aAjLxEoo6dRV2Qb0XVs79EsppaRWNogkRGv1BE83pxRrT8TUR8q5xEVl8CRTMnlEUtplZEVDxcRCiDT0Znv4NENQyMRCllikQt8GBFlQNvRGJyW0QSwm1FZt1wRCTJn0RFDYBEZ8AGRmBRIUVCMLBE42NlReNMS0RUaFBEU3/iRHYaOERQ+J1EzwmJRMTm+0RvXl1EWSExRMWqlUTmgYJE9AaQRPmXw0T4pJpE2zdzRBwTpUQL2xhFqyC7RlVy3USxetlE4De4RX/Ub0R5nIxE/veNRNv59ERXhYJEcnRHROLDf0R4mDhH+BqNRAidvEQcI91E6hBzRjX3skVGvoBElWvkRbwDpkTD8ZpECRLgRFUbjESZ/ktEeMp2RGC0uETr3jZFvuM5RVULU0QojfxEEJvwRQhW40QUg4xESf1FRPC0vERN90FFDLIfRIISTURsHKtEwL22RPyon0Tw2oRFAF4vREZYM0Tb0tRFa8CaRMxAxkT3Wd9E+d06RK9nFkShWGJEnmQwRMFQkETg3lNE0cw2RCHq4kRKoMBEm948RNrGtkQYNFpGq8xWRFNTckRNbX1E7BheRaMzuESRvSxEJDi5ROoO1URNK55EVQSTRArJzkTNTCdENMw8RFxWSkScLkpEkgs8REJcpUQr64hE12VBRDDdrEX0Wp5EaO4DRTRZf0RAmx1I/EJ5RQCTXkR9NzhFPGuyR6cwV0TpK3xEqURMRFCqk0T/f49Gt48zRjcp3kU2f5xFAdJcRAP9V0dNcThE3xJORZCYVUUXF4NEL0qxRO9UQkRJMk1F51ORRZGiRERXyb1EiA62RVlYrERKKnFEx5cnRDMJDUVAbotE/FzZRMU81UQX2ABFTrY/RWpkmUS8VRBFMJriRP1lgEUX4MxFmWZ0RarWsESHTppEdKWMRJ9Q4kSTGlJE6O4QRbkXokSJ6SBFBX9FRNDGo0Q8wZpEgCLBRFO3ikTnq4JEzh2ZRKD1FkUraGpEgeZgRD/rY0RGBYhECCmORMdWd0QRT6JFAjU4RAb6X0T3TGRF+gkCRaKfY0RTa2hEFbkLRVc5d0QABFJGR0SDRVkogUSyaOhEI0GVRMPnhkR+ZkhEy1QYRQUmw0Tr/T1FrHEuRTP5IkTEav5EfNzeRIGsH0QkE6FEondJRBKbDEW5TpNEfwuRRNlXZURe5RBF5hJ/RPDXU0S+TRRGf9RoRDsfvETgfTFEqHLURPTNG0bjvS1EaZWJRDrvo0XfYEtEWoCeRPbYfEUcWIVEGTqFRAAYZES29jBE5lFMRBrSdETQEy5EGgtpRNXoOERai5xE+dc1RHWcTESMxEZEEPaRRLBwyUR1D5tEoLiYRIFr10ToGjtEw8eRRNDBAkW8vMJECFVbRCKSPETQ8S5EdBqLRcDVRETGZApFzP2XRPPI50Q+oIREU6tlRJlDLkSYtIdE4xWaRchzFUbYRLRFg/jDRpsAfkR6YOlEBpteRHH6pkQAsSNFpOmURMGWgUWM9bJFogU5RDCZvUSQvMNEm2aFRUz+TURXqSlFjDxoRDbwiUT90zJENahnRl4brkTHnF5EeLk/RPOgJkVEPktEJZ0oRJmKd0QW7ApFb581RJ+WgESZwkhETf9xRl++nESdFYFETS88RLOdC0YlmAlFJNxERaEuCkXjz0xEMjdKRD+cNEX4SEREhWmWRaQji0RaGWBEjSTLRFI8bERpxEtF6lUqROU4mUREwpREzyA7RH8h/ESr+IVEkhqVRNYMf0bMtFdEUBNrRSnFYETgIWNEWiR6RFYyAEUgDedH+SQwRPVtn0ZQ+FJEogVcRKmVzEYPmpdF3e8xRoO8r0RRC5lEn+dWRD1cRUR8cDZE1GV5RC0mbEQCmJNFljJYRCmy4UT5LBxFkqFNREOls0S0l29ELeiBRMYae0SSRVZEwLJsRAzFZ0SgP3xEYluSRJY9mkTHJkpE8MU8RJejmUSnAXpEesbDRApCXESm40xEFnuXRNnBV0RueIRFdTTyRBH9YUSf4DpEBW0eRdntRkRqs69EAx9ORJK9ZkSiQFhFso5RRZJSS0ZAbpZEZLh/ROhKsUTRSbBF1GoORQhc7USC8ExFzOvERIE1cUTGBVBEF3J7RaHJQUm0NhBF6Zp0RkXZNkWRIcRFb2ZURZRT10QjeChFlK+ORKM4SUjVAiNF+77EREd9SERo7jlFYvJ2REhKr0bEakRE0AQvRINCs0R8XsNExLdwRMzl0UReKfhEYqc5RHLsL0TybnFF+0uhRGWEOUUNPPlEd+vcRaTnuUTzntJEuekQRmEkXkWKXoFE34dMREiUckVEgnRFyrMxRU/1q0TQ02lFktulRASyoES/3mJEqfu4RAfrTURvPitFKkmvReKeU0RHnUNE0+GxRM0f10QrJ4pFj3OcRKHKCUVKcLdEotoxRMB6bkR7LJ1E3WMiRNzINUVmPlRETTV1RIlR30XDE/5EcJPhRJdAI0R/GTBE0UpRRO8I7kRUKNJFgUy2RFwrdkT8smFFntuwRNljeESAK1BEqZ03SNQHj0eVba9GtLG3RwzsCkZtg5VEf+19RAGawkbM+5ZE1E4wRVj3TEUTr8pERnN0RBGMPUQx97tEruZyRNNCzESysflE4P0HRZbiPETdfU9Ea2V/RO9+UkT1voxEQvPQRS4rxES3zHBEO7I7RJ3DDkXS2UxEhPJXRAFgTUSCsIZE4N26Rda4hERl2upEIlY+RM6ct0TWkGtFH1wvRWMRykTYACNGiJYURZ34fERC7oVG3CdHRvPIWkW6yTZEw/qtRadRHkR2D6ZE/FlsRPlzSEVRAUZEISV8RLeNlETPu3JEuvWPRGj5SUSV2EZETFGcRpt/l0ShLB1GzxodRVJ6XkSQALZFB96PRMMtd0UZXY5FDPlqRJs0K0RhK8tEkfZTRFkMRESjWcJElZpXRJB/fUSxje1EywJQRFRIQUTK8W5Eg8niRTs9mES0/TtE2x16RN2Ot0feYEJEOd0lRVuElEYh6mZEIBoXRRsMj0ZPx6hGl0FRRJDENkYxEjRFnSoCRdO0MUT7AKZEqSUxRNrWgkbykNRFD/kARc+jm0SR/j5EnKLVRbk0UkWbwIRE7LYyRFNDhEQEXTZE/ca8RN+im0Vmhk5EI4ubRMtpf0TBR5BEOv/4RNVXZUSD14JE3HqQRa48hEQXAJBEwnLRRDTurEQuIGxE7mdtRS0aZ0SJOSpEDoovRHtdNESMJMJEK0OWRUDLH0bIZjZFUmuGReJ7F0X/R/RE2hNDRC73GUQJFjpEA7g3RGQ0DUVtRY1EtLGvRlS0JETAPZ9EnHf1RSa6nEQcMyREkoySROg0RkUZ0R9GPpM5RDkOhERlkftF39CXRBFx+UScuXNESX5zRBeUukbw4m9EDE+2RmtIuEW3GkhE4OWmRMeXyUSNC5xGZ4mbRAtFo0aYfiBGkd+4RHdxFEX6DoxEhb6FRLnhhkTmR6NEjeW5REaKZURmWqREDbpxRFnNYUSA1yVExCAyRHhzhESGc5BENqSMRDIfH0de3EBEDGFlRIJPckYao7BFzAZkRfxxbES64lJEGCx9RGpiM0TeyxdEX6w6Rh4DhETNJ41ENpfcRB3Kh0QVnLFFxeRYRVX7aUQE1lJEdAc1RfXbNETsKFpFTHteRLIztkSrbplEhyhlRGi5fERsvIBEfo1nRIBej0QR5n1EMNmSRA1pSESsMlNEG+ozRLtg3UStXFhE8fA4RJHzOUTdfZdFOUWPRDmhoUS5xFRE8leqRNO1W0Q2/k1EGSZPRLLHYERMQ5pFD6caRdVskERdnWdF3ataRmYHRkRLUPREymtORNST60Si3utEQxnaRSN0kUVuz9BEbKYqRPifY0Q07vxEwP7SRH+WF0UVTlpEaZZzRAlTeUSU17lEM1BwRJkzpkRhSeZEzExGRHVMNURFNG5EWIuIRI66jkQUc31EMTCCRgGl6kV1t09F37hKRe1DY0Q+31JE7JUmRWD0REQpfpVEDswJRT3ug0Qw05ZEU7FVRItlnkQYxg5FwLZmREsuLka7C4xETzWeRPbUukT7sIVEE5r4RPaOpUQssPREf5aVRF3cZ0RoQhhF3DQiRPKUc0Q49IREpn+BRHjFFEX6W39EbnpXRGUzjkSgkH5EAPM9RGu2zERvsKJEu6F8SD3jjESqOGtEY/QUReMiPkVr0k9Ei8TGRFNn4UcrT4lEM07URE0qmERk8XpEMTFJRGrFVUR/Jj1EzNa9RDi2U0SSu01EFb1kR04DjERijk5GrMhIRGYkyEQ1caVF9JDiRFHNe0SYVnZEFMeGRNkr0kR2akZELFhVRN55gETI1hlF/W46ROH60EQ4+EtEpE1HROUwZEQ2Xo1GXnbERJIBmUXVsnlEE8PRRby+l0TOrH5Erlw4RSAlfUSx1mhElWw2R7PRQUS2gY9EItAaRqkzqERwAStF7yqhRLsD6ETeAa5FXB1RRPvUCEV5wU9E6HQ6RnMphETaHL5EnpWBRKCnjUS1UYpEo9KERFx2WEVQuJxE7p2rRLMl50TdVlFE12rURCZqiERt5/xElxs0SMsa50TcU91Hg0EdRuKbokTB8kRE3kHrRg5DdUQ3hVVECCRFRJSNjESXWsBFjlZZRS9zs0SiD3pEL1csRRpwJEV5inpEibZmRtwKZkQT895EAId/RE9gWUXyWSlE4eNkRBBdfkb/0pJEbCkzRIqydERZFhBFS+1YRVCzZURKb6NE8OVFRAq4QUTYHP5EShhTRCYDLESRRjFEL6OoROrZ1EQha0lEICFCRAZ+VUSuKYRE1q3JREUVjEaK0zpGOKVLRcgrSkXhYSlFOaNmRGNL2ETTp25ETVzJRDdCgUX8Un9E0OqoRFysWURgg2VETzrxRNqSYERUg89EsL3XROhts0QKVVZEKwOURRGMz0SnByJEca4vRTdIQkTuOLVE2RBJRMU4QUU9R0tE/X5yRHo9q0R+RplE37VcRZRNN0VAYJBEf2tlRMeJwkQOwDBEdFOrROeIbUR+pmdELSWDRB3tW0Q1t0tE1DmaRLX9TkSFoFNEcg+KRMx8SEVxupREh04ERWWifESq6dpEmAxjRLYbhUTz2mhEOgOYRG5xgkTxdY1EMA/LRBmlx0d6NoBEU++JRIuj/URYpUFHi6RZRAbiPETb/IFEmWBNRDWGx0Zx9H9EmOiwRbiX7kV8tVNF6/PgREKbFkUMEatEJIw8Rf1DJkWCQLhEtsbhRAmm7ER7vypEYgM2RIgyIUQQ78pELr13RCEElUS6KkZEzEY5RFyBWkRey0BEmRcMReIx50TSt9NEu4KERAVXSUR07GpEkzt8RLnGjURcqjBEOk3YRcPcT0bPzABGMLmJRcNUZ0RGHbFE6M5+RCdDTURm0ZBEo1qWRWdRi0QXN4BEBimrRN8WWUQMaOZH8Ok/R88pY0SgOU1E/bDvRvcIx0Un1YRE96xFRYZ7rETiT3JEB6J1RC3cVkR2JaJEtt1sRN6pf0RMkWVEmduIRLyZZkQHl4FE7klRRBoOlEUr3G5EULwHRU+szkToADlExDFIRCOSV0RbejREo+9NROm6lETh5SxENh5qRAIbMEQMfyJEPt12RNw2MkRtEGpEVjFnRK5qZUQX4nlFdcBIRIRtTEQgu3FE7oQjRIohn0Qq91pEF+hHRBtojUSazjpE4TY/RB6rZURCQyxEEmoxRPOkNkQPAEZEaZxBRC5nu0V7P2NEIuevRzkFa0TiiVpHwq02RXspmkZeaUpE9cmVRV2QhUUJkQJFZrBaRYqgmkQWqAlFdZTfRK5tX0R1Yn1E9ptKRIA+hUSzn0ZEQju2RI8mFUVLKKBEgtudRNjjIUQ3xmFEnEJ1RHrlVkTg/0BEUY1BRNx1K0QmSQ9H+oVoRkHiI0bJU0pEKplXRNICX0UhVk5F8JviRIR9yUTR6I9FWMT0RT3zCkZpEolFAp0GRUaN0EQ3BzlEV26jRDt6hERszEhE40+BRFHMQkV/RF1EZGpORFVg00S/6FBEG5mDRPzkskSq1k9F3eZdRGZNbkRjjdJE3M4IR6ErhUYrfDVG/ZU/RPiDu0RYSExEoEJ4RSo1RESEH0RE57SbREb8Y0RK/jRE3FU1RO2pcURhGK9EzLRsRG10PUQvyR1GqDRRRCEL/EV3KqlE1Oy3Re4JgkUW8FRE5DE1ROoSgESXPzJED4IFRd6keEQuek9EHeLeRNdYY0SdtT9ERsYDRSlbc0SOPK1EqjqPRC/3MUQH+DxEunmTRbpoJEXiSDtF5SU/RDxwf0R/1SRG4EqcRSlVV0XTlK5EvN+mRE9gwkTewXNEVzhKR69mCkc0VIBGKVWTRUJJkUQTZI1EpjgbRqJMrERY97xFb9voRK/pYkXmAhBFZ0ZlRI0KdUTrHSNE3tBWRKPO7kQkV/RE25GfRMQCN0XOegVFDE+xRJ+ViUS/62FEckhrRA== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - kH1AuXnAckCcQCzODcFyQDbVbn9uwXJAtKcJOE/CckDimeIv5sJyQAJOeOA5w3JA6zOjwQ7SckCB0uFJQ9JyQFUSjh/c0nJAgAGZh3LTckAscx7RCdRyQMwzzMet1nJAEm9gtc3fckCV0WV+t+ByQNgVsmFQ4nJA2sokt47ickDN8e78I+NyQM4X0tXX8HJAetMtrKLxckAnG5NSy/FyQDEUXE+283JAiepw3qH0ckCkKNFQwv9yQMr2zy75AHNAWP6OIjcCc0D+djzdzwJzQPCGRr5lA3NAxaTRhfoDc0DSVTciIhJzQCJNMdG8EnNAwj8Sg3ITc0DfXnu1+BNzQOhI6eBMFHNAOIzcsnkfc0CxRy4KoyBzQJiiBzU4IXNADjNK/noic0DeE76uxSJzQIYfyQcQI3NAtYh0/zgkc0DmE3auziRzQBJiNx5HMXNApEkA1dEyc0CLN7Fd/DJzQIhmcm+eM3NAAOxtQzg0c0AVgcxCuT9zQAyItL1CQHNAlHNRjndBc0CEqquyuUJzQOh5wU8JQ3NAUljfV3pEc0Aub3yem1FzQMKJ6lXCUnNAYC8DwKNTc0AWibWwh1RzQCHeYSANVXNArLs68/pfc0AiECXUi2BzQAM7NnGLYXNA7jpD5zhjc0B3kjRwPXFzQFL0nwTbcXNARAHGSFFyc0DMjIGKt3RzQKJfymtMdXNAcNiw3fB/c0DGsx29eIBzQEZ00N6jgHNAqeZbNg+Bc0BOUWK9XoJzQBDIM3iIkHNAovJlLZCRc0Bb8rBCHpJzQEmDbi1NknNALhWz4tGSc0BI95GqX5RzQADrIP/2lHNAUGwciLegc0BSDFlVTaFzQJS6WjusoXNAzlwDllqic0BO2H6zkaJzQJMkvQKeonNABiaqaiWjc0AsPhGdBaVzQFsIIkczsXNAKjn/yFmyc0DSrGmaa7JzQPygRvt3snNANG1vdbazc0BwyO3ODbRzQJ6gfOSetHNAyAn6APjAc0CskJSZz8JzQGseoQcnw3NAIinw63TRc0DieErS1tFzQCAZiJNl0nNAsi6vneLUc0DhZiUzo+BzQD5D02s44XNABpWoGGbhc0AEJkp4euJzQMa0szwO43NAaumNuzj0c0Da1tO15AB0QBK+wih5AXRABnraQucDdEDUArX5ixF0QLPJjaKlEnRAdKneD0wTdEBUJQf6+R90QLThMpdKIHRA1GIE0IwgdEB0pgB7uSF0QEAJm6iyInRASCs251kjdEAssRZqiSt0QNt0Jm5VMHRAxCtAMeM3dEBMwDqWx0F0QLhUSQOrQnRA3JnOCDtDdEB7M4aqeUN0QICZIg+PU3RARzV2bPdUdEDkRHzoilV0QOR/ABYhXXRAdOnBrV5gdEDgeqWyuWB0QJsGbEIIYnRA3BgormNidEAISNo8emJ0QITekZjmYnRAxZm74ptjdEChzVbnTmR0QEztJem2ZnRAktQYMcVndEC+c4TN1Wd0QPDDgA0ebXRAJMNqUDBtdECAVYt8IXB0QCna/dgUcXRAIyqtS0FxdEByceUqanJ0QCz/UC59cnRAnRct4jlzdEAU5liTw3d0QEdBQp/3gHRAJqz+Ok2BdEBsodLt7IF0QD6JnojRgnRAItt2+SWDdEAg8/k6FZB0QBzje0FRk3RAZjzOCfCfdED2Cf8E0KB0QDSIenGConRAugtHcLuidEAwPQ0zEKN0QDJ7DRQLsHRAyLwbO8OwdECWVe8UbrJ0QE5zvzT8snRApuMDs7q/dECaUAx84sB0QJaSTrEPwXRAdDd2OHjBdEA+j0hmt8J0QPavl80Iw3RAFsgpHlDDdEA0NGDkt8R0QNguH7zJzXRA9KiwyfzOdEBeeEsoA9F0QFM7+EZe0nRACu/gHT3TdECaJdsBztR0QJDS/K244HRAshC/QiThdEA8pw+ytuF0QEgFi/td43RAb4OG9I7jdEBoqVjpTuV0QIEucIbA8HRAQVwAg43zdEBamEO0pf90QK44w99RAHVAantUc6gAdUBOH2mlYwF1QKRNMSVdAnVA9nQ6RaMCdUDydRaHOAN1QDD3heSYA3VAfxeS55cQdUD2PXBtaxJ1QPT7IiEkFHVAtyj40eUfdUBS+7gonSJ1QCDDQk0kI3VAfTo+QnwydUAQbKzsqjJ1QCw/DkkKM3VAUMT4dss1dUBe9VTrJkB1QFwC2eF+QnVAogn40t5CdUCc+HcU1kd1QLhYwJ5/UXVARguSiHlVdUBg6d6FB2B1QCIKcy44YXVAfOSPl2NjdUCuxRQx+2N1QCLdEo12cnVAF6evqAl0dUAKm124jXR1QBfRM+p4gXVAkDZN8q2BdUDVgYUi6IJ1QA42X2xUg3VA2bNH26aDdUAuh1wxm4R1QDJGgYYgoXVAjhZDJrmhdUAGsLRefrN1QOIBOeWxwHVA2HDyqszAdUDwVLip+MF1QBhT0EjWwnVAGPULGKTQdUAGP0HojtJ1QBLDgyAn03VAGHzwjc3TdUBqprJCwtZ1QEIXDkwO4XVANmz8ewjidUA0bsa7O+V1QGWKk6kT83VAJt0E+EcCdkAj8Eie0AN2QH7Ll6IMFnZA2PNGPogidkCJ0EsskCR2QB4P3pFLK3ZALtWmOR8xdkBDKSdFJTN2QIj3p+pRM3ZAvGq+WLszdkDolXeznDR2QOrUu8tQPnZAVsWfDlxAdkBygKZh4UB2QJ5TuTkdQXZAJheqOchCdkBoqZ+sEEN2QEj55NKnQ3ZAJFgZ3nlEdkAMoiSfA0l2QMbS1cvKUHZARGdMgRBRdkDNwDE32lJ2QOwNKyjNVHZAggA+RgFhdkBIPTAAI2F2QBb4W10AY3ZAfkQs2tlkdkD2UzeLx312QCxR72xmgnZAiRKpwo+DdkD88RD8+IR2QARbnsfrnXZAviMxDEajdkDwAR0Hjqd2QCjXkqWiqHZApaQ/dJCrdkD4xXo8u7B2QOAUxLrAsnZAgCqmkgy0dkCskOSxwcB2QKxVTeVNwXZAAFpvcc/OdkCCDV4FwtB2QINEA9uQ83ZA9LmFVjMCd0BzGTVWpgN3QDJCPqMBEndANcOVD4wgd0BWTIPGDyJ3QF0KueNyIndAXkyZJFwud0AE/JURDTV3QHxcLuGcQXdAg1tNGxtFd0AYa1VoSlF3QOKLdOuSUXdAh0E3I8BTd0Bq6kIMLVV3QFKfo345X3dAkvcV2I9hd0DFXLzCPWV3QM61KDYnb3dAOuwD9/pzd0A6Et5KkHR3QJ6bqRkZd3dAYsfLUB57d0B2Js6bHn93QByj5up4gndATNiCNkqUd0DkyNfG86B3QFqQQCi3ondAZBbEmPqyd0AgMIANmrR3QG+pkCTt4HdAuNoTV7rnd0DUC9s4Fu13QCcMoA5Q8ndAqBLMsejyd0CoWD2FcxJ4QBi+U4ZNFXhAhetM8WwieEACxmqPjCN4QD9nkaOkJHhAWgnOsFQyeEBEfKZNejJ4QHaqO/RaM3hAvIlnSq03eECanwiRDUJ4QKAt/YDpQ3hAyAQ3phJEeEBEHM5cekV4QMTlnhHaSHhA1mUFVyxOeEDqRtd4y1F4QP+p/7SIVXhAeFLvfPhgeEAgTwU8t2F4QETERl6TYnhAvFX7yLdieEBQXhQxtXF4QLICgQP/c3hAslmwMjB0eEDybXqxPHR4QCJA2LOLdHhAhbxIktJ0eEB67m9SFnV4QLJt9QHGeHhALkcc+vZ7eEBOKzPFIH54QGh0cs+kgXhAPqffDTWCeECIA7b8eYN4QDCeP0QAhHhAHtkDyJmEeEDwoc30g4d4QHyk3lvejHhA4SdivpeReEAdmykqp5R4QK8rYqStoXhA5F53tuyieEDUZVsHI654QKnligWLr3hAJ1/fZ9OzeEBeft/hzMB4QDVt81f2wXhAyCsk1CXCeEC1EVrquNR4QH49AgQC9HhAWP5huov1eEAiGX8ADwR5QFJfyN+aBXlAaNQDhYULeUBOLg97kxN5QKMi36PYGHlAtMswzDMeeUCS+D/fyCJ5QIhaV4BRJHlARaWZRbEoeUDclS0LCi55QMqLf13TMnlADvmX37YzeUDdxugNWTd5QAxSEZoqOHlAJKwhmYtCeUDaYnBi+EJ5QAq3m976Q3lAn7+u9Y5TeUAUmUehy1R5QJiC/1PWc3lAGKTc3/mBeUAil4xilIJ5QOhrFCBbg3lA05vljnmDeUDUgyFFG6F5QIA8ApC/snlANtk+4dDCeUAYWKNM0NN5QESugMFB1HlAC/c8Us7VeUCsDv7FUOR5QMcoYvQL9HlASj+ErPsDekDT00LwkgR6QAZkwdL7BXpAXgeXb0QTekCv/qc5SBt6QPI07PMnI3pAZoMwmS4rekDw6PbyHzN6QJwIA1MMNXpAGFI4USY7ekCiu5LCK0N6QOzEz2AaRXpABEpzfSdVekDDV+ZbIlx6QGH9F6ArZHpAZJLdeDhlekDbjUVQxXN6QKIbaOGCeXpAbv6glNx+ekB43w7Td4N6QDYibkwco3pA1MCjRxCzekCuBf4QDbZ6QDwrSgwTt3pA3CXtkBC/ekDLnqBgGsZ6QPJnZLRAzHpAbEwt+kLOekCI10mJ3dN6QPbxzqtl4XpAPlU4qTvkekDeo7lhNe56QJpbrHMT8XpA8fnoa1/xekCqXAt5SfR6QFj4D2iBA3tA8xWGkuUDe0B40UmNewR7QP5+jRbGC3tA4rS1myoOe0CKmLZTzRN7QN4Y6jBNFXtAxovvf8wje0AzyeUUWiV7QALSPjbtKXtAag5oZZA+e0CfShC96EN7QMjm8lAQRntAb9XfOkNJe0BMvt4LvGN7QEz/jUTHb3tA08KTyCGVe0AUn77//7N7QJSsR8rww3tAQBw/yAjEe0DVGFYifcZ7QCTPBdEA5HtA1RXfjpbxe0AgWC/fi/V7QETSwTGSAXxANgqrqNkBfEAmySzz9QF8QCcnAqxnBHxAaXJ+ipgFfEBuTnZ90xF8QPhrsAs1O3xAtnUt7sxBfED+v0U1o0N8QJdRL+rCWHxA7GI2JQ1ifED7RrAHb298QJaEy7YCc3xACgmF42B+fEDKs/T4K5d8QGb5PZqQo3xAKndUgb6yfEBYQJwOfrR8QNA+nuZmxHxABxyKb3jUfEAh5LwYz9V8QHAfAS/323xAGKSxr1fifEDrAzK3E/J8QMDLNUtU8nxA1d54B3PyfEA8qr3d2/t8QACz7kECAn1A4UWbXEsCfUC8odG+AAR9QE/jlZ4IDH1A9uJkuUcSfUByBLb4axJ9QIFuw8kKFH1ArioyNjgifUA3tEbZnjF9QLoHjatGOH1AhGsT9589fUBxsIwC5EJ9QLqdYGMEQ31AcIc20aFNfUB26CyAIHN9QD584fB7eH1AmosKl9Z9fUBxr/+XAaR9QAv0MG2lpH1APAVQn8qlfUDE5cdaC6d9QL2OoATmq31AR9oMrCW3fUDknaZcJ7t9QG44Y6cyvX1AsdLDpirAfUDS/1fLKcN9QJxz4EMoxH1AsvJ6R+bEfUAqZsUR2Nd9QJ/zOYrb4n1APjtV4JfrfUAlTEZojvV9QJD2Sq00AH5AHurSzqEDfkALRB7Pshx+QPSi0YykHX5APwIVUv4ifkCyo854iTl+QEKdFrY+P35AeVXQfHNDfkDhmrU9wFB+QMQ2C2j6UX5AHstfAvZTfkDjyJgqL1R+QMIC1UaKVX5ALOsreSpXfkBmEJ33XFp+QMwX4yGabH5A7H8rAo59fkBQq4KOn4N+QNJsYoYfhn5AoIxGRqaLfkBCc6DSXox+QBx2jMhVkn5AdBfOm5OTfkDA7TLzs5N+QObUPzqZlH5APOnDfLSYfkCM+8K78pl+QN9pvCAQnn5A2h3PrUmffkBEKdf8i6R+QGQSgOj9qX5ABlGe3/WufkAptkI0cbN+QFD8X1fys35ALHcFKk+0fkBdLuujqrl+QNLi2yICv35AQpWfSGjDfkBKDQXB0MR+QGnT+6AIyn5A/4eSzETLfkBMIIaFJdl+QAJdj/4D5H5A7Mu6rwbofkBQlzjTCex+QPTmKLdX735A2sDRcQvwfkCQuB02DvR+QJe0O5lN9H5AOn4YKtT/fkDcaeYhuAR/QOFaiHZDE39Ay69bXZEUf0AGppjx7Bh/QNxXFBCBH39Aa68iAmIgf0DFGOLmWC1/QLZq5MBoM39A1kTlRKc5f0Cg0iiJV0R/QJBUhVe4XH9AE6XTg75kf0AT3O4kxmx/QIiYYNi2cX9AylP9oN90f0CgkKaJsIF/QC7mnniig39AbetY59eEf0BAmOOTmZB/QOy+ZtFhkX9AXIOp06aRf0D1RmC6lpN/QC1a3a4NoH9A5AxjyVuhf0DABtynuat/QIUEWUxVsX9AME9iEWu4f0AEMQEx/b5/QPrayRmy239AIInEmUnef0ABZGtl+eB/QExU52ZY+X9A7Ydu1bIBgEAIhZQXSQKAQB72DfB9DIBAUv3upmQQgEDeYdvbIhGAQMoJtWXKEYBA0vFObmIZgEDUnx6w0RuAQPTymo3WH4BA8p+e6WkhgEDxEnh2+y+AQPkfNGGJMoBAB7ovNck5gEA9juNeqUKAQHpzRFn0SIBAIn47rSFKgECO6zePrkqAQFZTThHnUIBAorUhWhRRgEBNOTyrOVKAQIQXhFZ/UoBAdeTnCQZUgED8x9I/tVSAQPpAMlQCVoBAnjvggGdWgEBhE4vMJViAQKumUgsOWYBAlj46mSBZgEBOjhg5NFqAQP7y+sBqWoBAE+5oyjRfgEC78kKMDGGAQG6zdpwZZ4BA/zibFh5ogEBWUF7eH2qAQDAk8JIpb4BAnYx0EBZygEDh4ygwf3iAQE9nQYKBeYBAhP+DSS98gEAAoRpXKn+AQMI5lZUOhoBAOkZED/WGgED9QI0eU4qAQEsgD00ej4BA49c/U6mPgEDRA8yAR5aAQEgFxp4ll4BAAsVebSyZgEATQGAjxZmAQLK5i2rkmYBAem5iQEyagEDmbFbalJqAQMtm/AHJnYBA/jKZrN2egEDvWIu4G5+AQMpM/4USpIBAToQigS6kgEC0L1IIi6WAQNrAGhHRpYBAigr3yfKmgECWhbP3ZqiAQGqhEoEiqYBAPr9sFYipgECgEwS7766AQE5K51ETr4BAnEol1jOwgEDeqi8Oh7GAQLJPjU/WsYBAntMSweqxgED+YTTJfrKAQKyUVzxPs4BAMlXOxAq0gEDksPsAE7eAQArnMd9Ku4BAymXx7OW7gECWTDk/BLyAQEQBmcd6vYBAKsNccGbAgEDueGjvKsGAQEUrw29SwYBAqXX5X5zCgEAOTJelKsmAQGqiC69TyYBAzoEGkdXJgEB6bkB8MsqAQGjBpgyTyoBAULQxvN7MgEAO9w8BB8+AQK9jnHSzz4BA7MW9uyvRgEAfrkDjTNGAQI/5pWnU0YBAYtYzcebRgED4LIaPB9iAQJZgxh8o2YBAqYPo30rZgEBEg4YN2dmAQOa9k7lx3YBAXoiwg/7egED+97SXReGAQDeM0wHp5YBASKeAPfnogECZKgZll+mAQM7S8FhK74BAcM8zX2fygEAczU2uPfOAQPHl4q5J94BA0/bxgT//gEAtde8wzAGBQKS8fF5AB4FAfMwN+NsMgUCnmIUvPg+BQE/PhpN6FoFAyABZ+z8XgUBb+OJnqRqBQDH71kRZG4FADrCk6jgdgUCKkoOaNB+BQKp44BqwH4FAkGXohTUngUA062IstSeBQPiayJx8LoFAHGPSYwIvgUCsC+a8Ly+BQGOcETa9MYFA9APiayszgUAic+gDNDuBQM4EE2fmPYFAGmbS7ig/gUCqODWKK0eBQMM3Cf4KToFABejHWPtZgUDwFEsYflqBQLRxrYGbX4FAz2ocNu9hgUAIKuxFs2aBQDJGiaHaZ4FAluGiVDRpgUAHZj18oWqBQLii7ZOxaoFAfu4WS51tgUBKQV6rU26BQPmblmywboFAlqCAsIF4gUDpWKHfX3uBQDQIR6/nfIFA2liKpGB/gUC0sU+xb4OBQBj/sZrihIFAvot9Yu6JgUDDPifGfIqBQBshrQLxjYFAPlXxbFWPgUAEWPlwXJCBQCLLDOGFkYFAMEE2ePSRgUAWrh416pWBQMoG1J77lYFAWp71WFeXgUDcQ1eu7pmBQIaq7ppUn4FA0hriHeihgUD4qise36KBQJ0NQZI4poFAJBP/pW2ogUCGJVQP9qmBQDiOWqPlqoFAk4oS4EmvgUBkX5cDJbCBQND0j6dKt4FAYmnbZjG5gUBMyXEmk76BQCz9meaVwoFAfLykn5nGgUAvuLdIfNOBQMAll8aA14FAKOgABS7YgUD77QpdztyBQLD6zgXe4YFA8pIl1fkBgkBmxNodAwmCQPQXWlG1EoJA4JazqdgYgkDszNYkCxqCQMh7FhK7GoJA8eDjwnobgkA8QwLQ1yCCQE4wIJH7IYJA1WPN69MigkBiJAPd/SWCQDBYqOnmJoJA3GfSH9IogkArXzbkXymCQLorh8DaKoJAOpaxaKUwgkDzsxYgQDWCQLQgssANNoJA82G/5cw5gkAOGRdIj0aCQC4GoKwHToJAWOZw70dRgkARzYx6klGCQE4liqmxUYJABL33/AtSgkD9vrO2alKCQO4oHUmVVYJAws21+o5WgkCsST72EVqCQGjOjt6QWoJAYAR1t91agkAwkVJuAluCQPLc5T9rXIJA3HgXOj5dgkB6SMxQkV2CQMIjXE/UXoJACmPd3JlhgkCczUz9lWOCQK5MfRvaZoJAe6YyTjlpgkBmygw30GqCQDUhHcgEboJA111c7nBwgkCJ73SgRnGCQEpI6UkTdYJA5DTZMt56gkAZWUOY4H2CQPwVkk5DiYJA/CLi+kORgkCgFVzvd5KCQK5eagwPloJA4LR94TyZgkCw9nUhDqGCQOIVuoQ7oYJAkt7FG96hgkBK/7Qf/qGCQELSjUjepYJAKlUMOQ2pgkAirCx9NKmCQNLMfndRsIJAWtOwuAaxgkDqCTXjn7eCQHDcMaMPuYJAn1mc0r3CgkC01iAn7MWCQCRqcXHtyYJAZTnX72DKgkDqFrk14suCQCbM749+2oJAYuHxj+zcgkCgs9SPg96CQPA5yFWd34JA+n7rInXwgkAyAfJodvKCQKLrvrxa9IJABCBVMnj0gkC+CowNefaCQJO2Ey5H+YJABk55aa35gkCAll+IdPyCQNZJJNRyAINA1tcMCh0Cg0CIAjNeFAODQC5Cnm3IBYNADjECwg0Gg0DtBQXmRwqDQEwWdii4CoNAOjheixsLg0A1VWt6eRGDQAimo/J5GYNAmQ5fj3Ihg0DR+yhciiGDQAgNfIxxKYNA8tiEsMIrg0CACR7HKi2DQNN5SrZqMYNAWq5cksk1g0CG57TdZzmDQKmdjzWqUoNArthLa7hig0BqbV9FwGqDQDxO5+GuboNAbwMXFOxyg0DAlk3444GDQCCYt6RfgoNAZfSXLgqDg0BO9y/ISIODQAqrk3ofioNAXE8HzxWMg0BwJ7p/d5qDQKqN16wlnYNAuJUgy8ufg0CWfSPlHNeDQBQ2RJff8oNAlRlTQJX4g0CRDd1s5/qDQJpaJjem/4NA2MvAW1gChECz9LRYDgaEQNSsMDE4O4RA/AzvsTNMhEB4gdh1SmOEQArzFzQAaYRAa0bfcuVqhEDyxM1v6G6EQEzQlv91cIRAn6mn0P1whECAET+A63KEQLkAEFPudoRADXTQJ8l3hED9+lBV+HiEQOu7Qk55eoRAJt8Q0/J6hEAb12YEJn2EQJQSViFAgoRA0wLj/12GhEDFwK0iBIyEQHpCKGJTlYRAiBu9YwGYhEDPHEx+UpqEQH/klCWtmoRADMtcjCWbhEAcLzQzHcuEQGSvKiRq2YRApZbM/GnhhEC4wHYYY+mEQNpgg/F56YRAnhicljbxhED0DhpvZPGEQC3hIaY1+YRAGIpWPFz5hEDxtalFQfyEQKbIkXPc/YRAjujg/Hb/hEDXDrDdDgGFQOVOGcotAYVAFQee/awChUA+iC6kRhSFQDCpWypCHoVAUChXI+U8hUAufvm3OUKFQB+YkPKnUIVAp6wPzKhShUAEWBaKR1uFQOz4d1KgYYVAWzj0OqFphUBD9NkwmXGFQKLKazK0c4VAuQOd4Jd5hUAWaW0Acn2FQAyVYb505IVAEMtgwC7mhUBiq16s1fKFQGrlIOCA9YVAIM2HAIX2hUDYMbmPkhqGQIyaXk/HGoZAnhxnkUAdhkA1+/aQ6h+GQGCWKT6aIoZAgL7xkEIlhkBqtmCgvEiGQBMZe9+KhoZA4zAZv7OKhkDo3fPo3qSGQBgdtzniqIZALlA57ya5hkC7c148a8CGQFTUloTPxoZArpFdVrDNhkBysCS5x+yGQL5ea4LB/YZAKaAB3DL/hkBYmNxGNwOHQP1Eckk7B4dAFIPFz4MPh0Bzk0VbkSmHQFjUesGPMYdAHHA54Io5h0BwDUFPgjuHQDxGORJfQYdAQf+xNoxBh0A4HXoPXkmHQMHNKRE3Z4dAQ4cRSzprh0BsIGDUPG+HQPfvRitAc4dAHqaUD0N3h0A9xG/vjZOHQMCB7czHsYdAPEzwd8m5h0Awr84tQruHQNgN6F3AwYdA8kOUHsbJh0BdwpdHcyqIQB0EgohlN4hAhL1XfQ1viEAbZWsAfHKIQFRaLjJ/dohADunGrxufiEDebGfJWrKIQCLF3VxdtohA9ghlmFS6iEAi4C/c4rqIQA== + NrgMGZxjYkD+9P4gH+NsQOO2GkbmYnJADtLLr2eCdECqEa9//pN4QDDbzeDq8nlATiyKy0KDfUBoaXt7VlKAQIpDj4ItWoNAMnFELthqhUC3STQoj4KGQMN1xcYZI4hAG3f+RBubiUBWVmkCcSuMQBJWfnNSM41AdZsGH+QZkECFGv/QxGWQQPGKRrb/5ZFANzFk3wrykUA4n/WwFcqSQLdIW/RgtpNATbQ2sjvmk0D/ypvAgXKVQBRyS/CctpVAE0tfKIsOl0Ar9R3DzUqXQFpfDiOh8pdAcgnNveMumEAMdnMx536ZQCQgMswpu5lAI/lFBBgTm0CgD3JjRYebQNR6LXlBH51ALzjQWHFPnUATTqNgp9OeQFSSJI6X455AWmJSW723n0CD1ETO7pegQP5hZ9f87aBAdV8u0glaoUDw7FDbF7ChQEaQ7PsnbKJASXiD4jrWokBqGkT5Mt6iQFylLf1NoKNACQT/7GW4o0Cjudz3Y4SkQOHEcqd6vqRAYbF8w3FqpUBsBtwQk4ilQLo8r8qUMKZAxZEOGLZOpkDexgbIn6KmQOkbZhXBwKZAaQhwMbhsp0Dz20fJxY6nQExnetDoVKhAFx1oL9ZsqEDX8RrR++KoQNeo4zkBT6lA+3tyzgZVqUAwNBZBJBWqQLlzEpoUO6pA7iu2DDL7qkDea/toKj2rQKwjVtg/4atAA2TkN0A/rEAFr4jfYqesQCelBJ5Q7axAkPDxSHtxrUAa57YKcTOuQOl7JFCel65ADQZ8TakJr0A/35/ZhjWvQDFHnLO5t69AmGrS4Kn7r0AR6cJb6jywQPh6AnTmkLBA14l3kPahsEA= - + - AgrURIqmb0RXeAxGJWurRN2+kEQnahJFBYu+RMcREUccTBpEo6xvRMNiQETAK6FEIPOyRHz9AEWzFX1F/h+ZRVzzh0SiyohEvy9TRFIMTEWNVX9EAtLTRLgkzkQbJZRE4lZdRGGnKUXtuFVGua8JR+MUVEQTdm9G0fzKRGqtkEWxMYJEVAkURYfTlERxMI1GOQmPRBDXrkRwkKtEgmm+RCn0jkXMVsxEukFuRIFgJEYUI3JETz6PRNrkUUUFRHxEPeA4Rbh3s0TGJW5EHKIeRhc2S0W7xVxEv7iARZqhwkTow0dEhqPzREUvjUSFp0lErUTLREWAg0R9wG5EVpaYROych0Qr0OJES+pBRHg2lUZ5gpNEsr2ZRPxMj0UpzatEyQs6RId+XURmjzlH4UmwRE6N0kTOPjxG11CxRdaLU0Q0GDhEcjDERV9llkRPBZhEZvXRRFpw8ETiDHFE04s6ROxfOURGsUZEHz1ERXEa/0RUm0tEdSnHRFZWx0XlBa1E2zxfREsjOUUYbd1E7dyrRcMEZUQJ2bJFM3KiRPplrUS+ZJpESzWGROXLhkSUnkJGTJl3RORd0USaO45Ei7xRRYi4l0Q6hdJEcqBURAlluEQOVgRFvbN4RH4PZURQh7VEjiJSRH17Z0QEGElEpIjsRLGa1UTX3MVFz7+VRJkmhURbpiRImQ9JRKhzXkXHOj9FxMRLRM49i0cyHnVELdZlRM3MrUT9MaBE2bo8Rj26UUYDT8ZFR5aNRLcDs0Xb7VdENpI+R74znUQQ+6NEDoxDRcg3h0TVMx9F+y2tRX2WlUQh3Y9Ekv3FRHxSoUV6iYtEeB4dRZFS/ERj2ClElxmCROJkPUUWt89E8MHWRDF9lUQUp8RF10twRJ2rpkWjqTdFE1ZeRNf+c0Q5rahEWbWYRFoHIEUCr5FEOXVbRLZ0TkU4Co9Ef/uaRHii7UTt91NE4dxsRH6vjEQjqKtEroKARB9d40QCDmVE6wvMRQ0rV0S8/kFExRBDRCIRnUQXfRBFWvOSREDUUUSkuF9E6vq7RHtiaEQW+xdFjjOURAGNOEYKwSxFc/zBRJN+kUQnb3NEaEENRc9bnESkAFhF0lYORTnF70Q0PHNEk0PFRORnw0QHAqlEg49PRJs/IEYWMgBFz6p4RNAlEkY98ONE3VquRe0Ub0SHQ0dE0OxjRfxBEEUjoUlEU59fRK+6g0S8v2hEeUloREiQGEV+sm5EwNyfRJjCO0QgizdE5EWfRLx1nkQk45hEcNy7RGMaT0QmGT9EcihmRTUx8UT0xqxEL2VuRYgNAEZjJpJFNdeuRkXMckQTKtFE+9RPREqo50TwiLdEmCCYRPNxcUS6q6VFAsCrRd8sa0ROu6RETYtlRRVbfUSREH5ET4wvRYj3Q0R5Ml9GCD1eRDBsNEQQ63dE7RYYRZktkESHIoJEpqHNRJQhW0Tee2hG3zDYRYgwvkR4pclEtKwdRViPPkS2feZEcNObRV4MNkRplJlERxdGRaHeVEQfeDlFU4eTREPCg0S05YlGB85jRCKwIUWALJdE74GCRIEU7kfdkYRGLNa1Rh4jpEUTBFRGkC3JRKNkmERab8VEg9T5RLAqbER7sCxFi+F8RDjqiERPMa1EQr8WRfxRqESJf+JEy6O8RFD/a0Ssb1FEokptRAXERUR//DxEURKPRIYEkUShXINEnoheRDV/ZUSTyI1EcGEnRS1xVUSYS59Ea348RcsMZUSQ0FJEFf24RCQeOkSfsYFER1kdRZ9wEEb7sYFEQE1/RLoaZUUg5AVFhbD/RB1LDkWy4IJE2GhgRN76mUTZs3ZEZGCiRBP7f0RbAUNJUdviRCKYjURxT4ZGuacrRQ1SBkZS+SlF9KkQRUF5PkV8PrpEpc5HSGZ/L0Wwn55EO4x6RfiEm0YHEDBEh/1KREoxeUT3vPFEtDhoRGQohkSH62xES1ZQRJ7rV0WamXRFm37PRWe+gETpiX9EgYmyRWPlmUTCfzxEzM5JREqtP0QjMWRECGm3Ra6IckWUvs1E3XskRfnSmkQBx2xEcn6HROkrhUR0WOhEzr+BRI7noEXs64FFY1ZYRLTQX0Q3dlVEyYlPRBWuiETlPopF90CIRDFbdUR2tOZFtHgWRYXNDkVqJoNE3R/oROyeakWBOatErz+FRZ7+kUQx2i9I90GlR3SdikYtn81H0iulRScRk0TsleRGM8BMReQPYkUzzJFE7R2VRGhLiUR5f2xFPNLSRDmKZ0TAfK9ElRbLRNBVwEUqhJJEJ76lRLVx8UQBlUdEh05dRHv5O0RfCvFE62nlRV66z0S4qalEGDFMRNGpkUT1HoRESp05RDjgh0XBGSJFHwd/RKyvZ0QtHi9GrY0tRD0uGkV+skNECBWrRhR6XUbMXzNEozu4RSCfcUQPelxFCfgSRd+vnURcNiZESlctRG3WhUQlcD5E/6KYRcYvmkZuqJBECdwERs/NqkRaPolEUtiPRRSzZUV73sBE2FW/RX5kcUSqplBEXqpzRPbLQEQgZXNEaNdDRI2br0R24DRE9U2vRCxsekTxuKVFduyNRK7Y5EQVzoJEqwrIR3hE20Ri7bdGbsteRb1vP0SQkghFNSShRstInUYU4bpFfVRxRfmPX0RnTw1F51xTRPwDl0TIygdGVkoTRjpd8UQbqaZEjLyURJBs0kXftDtFPIF7REUImEQa+45Fb/42RHgbmkS4o2JE0v95RP2FkEQz/21EpKCRRGujdUQ6Q4pET9FmRcRWhERmMUtEMe04RI2D0ETQDUNFamCZRAg/PkS2pINEH2RhRLZxZUSjX4ZEEktkRHz8EUV+9mxEqAacRQ7GGUQn/YdErOaKRYJvaUVLFj5EkQEgRbTFpEaSVIhEaDMERuWROESYV4pE8q6xRNEErETdViFGhuuKRIbBqEUebkBEhaVNRSjqd0TlIUBEuyr5RoTHn0Q8iVJEjSVjRj+380VLJ9tEIRqeRGHOZkTaqVtEM8B2RH3FaERmLn9Gs4qNRsgdHkbpFDhEjuNPRaeIpkSFxY1ESd5vRGXhekRNNkpEC6Q4RIGCZkTvjEZE+XCSRPtTjERK1YJEyZ/2RGWkQEQEiiNHDuN9RmtpHEXrA4FFJUd4RCnL40RujJBE5Xo7RCeS2UTv1DhGutRkRAaiz0TVoGJFcAUiRe0csURi0/NEqNP9RHm/g0QEpk1EX4VVRD3iuEQ5gGFEp5NRREuLoETxT1FE2vGbRPW0b0S9A11E+cqXRSBPUkTPfL1EUqeoRNKdP0SZp3hEZ3WhRHj+h0VSbNpEGQSERI51jEQC6cxEbJV8RubHgET9MaVESCCJREDaTUR2neVEB85OReGOuUW21mRFsIDJRGOWb0Se35BEQzubRA+YiUTFqnJEjPC+RDDqvkSAfiFFPG5ORJSHaURO9wNFyBb4RC7WnESMVT5EFeM+RFbqQ0Qpa2RGvqGLRKjp9UXE/RxFyFtPRMsFCkW/Y3RElR55RZnle0Ttz8hEgYrVRC81HEX51k1EZhVbRAipl0QnW19Ebz+yRB8fyUSbZbhEA1aNRJA7iETk+BNGGUcsRHB6RESbEQZF2cqPRMj6v0Q0YrtEhxS7RNhroERcCvdEepmLRFaEHUVebqhEr8nPRDNf20Q7d4lIfIlZROMGP0X+a/1HZlI0RWB2m0Q/MeVEElSiRDZvvUQkZ29Eu37tRGDnkEcDgUZEAOlRRB8fOkSAv29EBSt+RggrakQHfG9E2WZMRHTYuEWjU7dERCicRHVIXETEhuZEZrcaRZHYh0SaEHZEGGVxRstng0To87RFXaqDRLDD3UWp3oNE/VehRESIAEUG+IZEP3WxRCpSE0dgvG9EsewORpSNgkSJRFJE8uSXRPOFD0XZa7FEczvURSMjz0TZq4REcycRRjsEEUUy3G1EMsQ7RM07TESwJqFECGCWRFsWE0Uo0PdE62hhRG/3R0TgTTREXsElRWmjrkS+HS5EZcSzRCg6jESyozpErltdRLGdO0RoATxEfIVlSOBeAEUZ2gRIVvMQRnP8TkRg6WVELL0PR9kpr0UVnp5FSPodRcFL6EQwTABFHwwlRWDaSUZ8/3NEe57YRBeXpUT82kNFGWI/RtyUOkSOFRtFjVm1RIUESEVezllEylWJRBiulkS2bGpE9xDoRJVeXESfPnZE5E0/ROqUykRAfDBGMbgsRtRSX0TDMClFc/1IRDqDgkUwPPtEUA39RHBmwUTR6z5ErfYKRe8kLkQwFolE2jtQRGzWhEQRJktEJuJ9RK1nPUTPPm1EYRdgRIRIQ0Uxl69EkKyxRM0k4kRlhM5Epp8vRRJz5kTRup5EqP2jRCgoEEW9jx1Fo+h/RC9CzkSUAJ1E1yUKRd4zQkTieO1EqV41RQxKrERuNYJE609LRBgRc0THElhEqqBxRKFhk0QFzPBHInZeRwffaUQcKlFE4dH6RhVEw0UfuwNG+/o6Re3NY0RrG9VEiDr4RCLSWkX95SJFjiSRRMgBN0T+VmFE9rYzRIOyuUR0WIJESt9ORJ7Ge0RlJ45EVwnhRG0cPURaK6hEuSs1Ri51OUa3/IBEahMbRnsOR0V0/ItE7eeVROZsh0SawXtEQ9dyRKmYgkVq4UVEgsdLRMOsRUTl6sNExr2cRNYtFEjFl5FHfpsXR5W4X0UnXhtGRMV5RM6AWURAapdFEGlMRM6Xe0Sg+KpEzuveRU3i+UQ4GIBE4HRMRAI1iUTEg5tE5YTFRM0AqUTOWChEDQtuRG1GIUWHy8tEckRZRDuScESRsUZFWVqcRNpXt0T3ZbxE/5WFRNZZe0QGxltErbdCRJVtQURuFKNFZPO7R+f2bUc9EzdEfeQwRTS3l0ZRt6JFYrKRResbCUWAD3xFSeBzRJviyERoJrNEY3aURA4IPEQAusNE3AM8RXSUWkRaUqVEU6ZOROTWOkSy+QhHUf2VRpJ/LUah9rVE8C1MRZf8a0V+LJFEQlrXRPwbJkXJTpdFW4bBRZXqikXeHr1Ee/7YRFMMt0REcElFYYZiRLbUN0RbT+NEk6GgRDy8tUR+hR9H8OiaRvtPKEbjpYxEHm5lRRJvWESczUtE+jGwRDK76kTs+2xEjc05RMJaAkYwsDVEghkkRhvyj0UJL+FE2uusRC7LSUSDf21EfMk3RBX4mkQTMXdECfaIRHaDQkS5jWBErEAORcj+MUR2MExEXb2gRWubCUWAaYREyKFFRD3cNkbUt8RFeKVoRWzuSEQc9aNEOqGmREneQ0QvOjRH5VrfRu4iZUZZu6NFyMaTRMMagkTujxVGDHqJRfuTAkUHXSpF4ZmXRIWSUUSOlHxELQwgRAIwD0UfzghFQYUqRK/lUEUEqu1EvIqeROBjBkU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - HwoJrCzBckAuQX9Nb8FyQBgEzBlPwnJAxvgSXuTCckAKvqS0OsNyQB4qMDSixHJAuuvzwsTEckAS+TAWW8VyQPqND2wU0XJALDS9R33RckBVsGt3DtJyQBsip11D0nJAGtbZuTrTckAoXToOddNyQKiK3cNi1HJA3pjgTc7fckBmZuuRt+ByQNMHYW/44XJA0IL6p1DickDUqtYXj+JyQEb+0Swj43JA7Hgvm6XxckAMqVuKyvFyQMy69g588nJAuXMbPZryckDt5Z+dEvNyQIdKfc+183JABAeM96P0ckASB+WFw/9yQP8Gg1/5AHNAdkarWBMBc0Bx9VfYjQFzQEmP26w6AnNAiGt7S9ACc0A/XtZNZQNzQPTciWr6A3NAHsbDqCUFc0AWumnV4hFzQOkquKkJEnNApcKMSigSc0CiEc4DvRJzQEgO8VNxE3NAj+zk4fgTc0BubR05BhRzQEDwsj9OFHNA+B2xKXofc0DxnXrDDiBzQHvQijijIHNAJUTFHDkhc0Aeg26ayiJzQL6VE1API3NANpHqLQUkc0A+J/4azyRzQMhc0+9HMXNAVqUwnFwxc0A5ORWq/DJzQHfEDbegM3NArM47PNkzc0CtfHkQNzRzQB+21vy4P3NAUtVCpT9Ac0ARLCL1T0BzQOqHWPPhQHNAfBzb9HdBc0C+HhI0vEJzQNCkhw0LQ3NAFSZjN3pEc0CGCOkegUhzQJYPhUqcUXNAQhW/XEBTc0Au/2D5olNzQIOK+ZLjU3NAZsMxBYZUc0DBI6Y2+l9zQFbzpAeKYHNA6hq+RIdhc0BuvafwHWJzQMUhmw05Y3NAyF9YdY5jc0BsHoYPzWNzQJhRsUk0cXNARD0ih9txc0C0li1ZUXJzQFibw4C7cnNAGrJvxPdyc0BMiw6vuHRzQIF1zeVLdXNApiYoKniAc0C8ApJXo4BzQF4pi1IMgXNAblEZ512Cc0BuSON8DYRzQMBkv2WGkHNAi9Wwb5uQc0AKvPfBGpJzQLCAFg5NknNAu2sWrtKSc0CozH9MYZRzQMhuloD3lHNAOUdvGrigc0CaFa8GWqJzQP7Ei62donNAdImdTyWjc0AkTVpkBKVzQCodT3rIsHNA7VBxd9iwc0CmpIHlNLFzQKCtCJ6AsXNAvhLf8Lazc0CadQjJDrRzQJLRzQL5wHNAMLFHBTzCc0AMHi7pz8JzQIidGmInw3NAgAl3c8XDc0AKXD/SddFzQGbArBzZ0XNAPO6seyfSc0AcJdB6ZdJzQFCnzAS80nNAMaDI+tzSc0C+jC0z9tNzQO5UQ+Hi1HNABW7A0KDgc0DZ+NllOOFzQIqyIXRl4XNA+ITcsA/jc0CaXBQV8ORzQJLm/LVc8XNAkJOc0wzzc0BrI2UCN/RzQDW6NLnjAHRA4C07ingBdECUPoBjpQF0QLuAqzu8AnRAAMiGj+MDdECeYn9joBB0QJLx37+XEXRAL1gGByQSdEAKcHSLTBN0QBZnDB76H3RA8CCop0ogdECU7jjyjyB0QCTTKg6KIXRARmzfFLghdEA8cc0hsCJ0QCGf639ZI3RAGlr5SFUwdEAG0NKCpDB0QJybGK2mQnRAdCDnIztDdEDqg473eEN0QIfi99zOUXRAj6wBAI9TdECaOgjh9lR0QBHr/WCKVXRAacV4+NtXdECOmbjuIF10QAzUNBG4YHRA+hDM0wlidEA7zy5VemJ0QKbpEcyZY3RAuHR0v0xkdEAe+sqOxGd0QHQCJaXUZ3RAmQ8sBiBtdEAOrG1vMG10QDbuFmMicHRAZncP50BxdEAyJ56tGHJ0QC/1dIh5cnRA+8iJxRJzdEDi5qpPOXN0QAqgq92gdHRApsrtmDd1dEBrHQoifYB0QF6ZaL33gHRA7C2R102BdEDgIOFsR4J0QOxjXg0lg3RAYLzasBaQdEBKniwJbJB0QGbSmOUYkXRAztr4MLySdEDol8CXU5N0QECoZUrun3RAiu5u+qKgdEDs9mVyz6B0QKz8sqw3oXRAYedFrriidECho6d+D6N0QMs/AAZlpXRAFlPCOQmwdEBMB5etw7B0QGS6/YT7snRAbqhoR/ezdEBausozbrh0QOTfpBJSwHRALF1AB+PAdECPBGNJEMF0QMO2DNF2wXRA/VJTlFDDdEDQkTyeesR0QLRTIjK4xHRAgvkAJsnNdEAQspy6/M50QLa8NqEG0XRA9mnIJjnTdECsKKdS4tN0QMWqibbP1HRA4av42iDhdEDIt1oIuOF0QIZIYBKP43RA/Cdvik7ldECURWoiwfB0QMIZgruM83RAFlnZ8qT0dEB0AsnFUQB1QMXCBeKiAHVAYi/0IGQBdUBnVqQJXgJ1QJZ7rZSlAnVAFj9wxBADdUCIRQ6AmgN1QFtl8t2YEHVApJ1yzyMUdUBKrcD84x91QGxUXCydInVA8Dr2YCYjdUDsr+zsgzB1QKASaFF6MnVAyvEh3KsydUC0ExbGzDV1QCboGAYmQHVAejua6X1CdUCMkCOF3UJ1QKLSoyfcR3VAGpXpKIJRdUDsoPqqTFR1QKZpng12VXVAJq7LowxgdUChJGSIaGB1QJBcS2U4YXVADN/TOWdjdUAI9INo+2N1QPy/2yUAcHVA7Rua1XZydUC3ZK6MB3R1QIqJsRyNdHVAiEG73niBdUDibHRurYF1QImtSmu9gnVAFHzyhaeDdUBAts5vmYR1QNyZzC2MkHVAcFDpXRGSdUAZ4CoEPJN1QGgSwX+SoHVAxuruGbmhdUCP8k0BlaJ1QMA0UY/6onVAvjnoAbqkdUAKN1uBf7N1QMZgpVPPwHVAnNAOj2PBdUCsQ6pT+MF1QB0c/vam0HVAWs7AYDjTdUCrmzNGzdN1QN4zkJ/j33VA4+Nk0w/hdUAkXp6LCuJ1QEb/X8U55XVAKB6lAkgCdkC0gNt4zgN2QEbRaXzjBHZAmuDHGksUdkDUWM61DBZ2QIwbikVsGXZA1e7mhDohdkAA1Ah7iSJ2QOPbJS/MInZAVV8TTpAkdkCyuEyXSit2QAQfi2cfMXZAnuM5t1QzdkC6+KaWnTR2QMYDWClLPnZAbmnmSB5BdkAE510DyUJ2QMxIYH0VQ3ZAnPFMoqdDdkAabLFveUR2QDSb4P4vTnZAyOpV0ftOdkCSeeELylB2QFTfi+4RUXZAjFhrm9VSdkBErl240VN2QDoPXV6IVHZA7KxFeM1UdkCoW5gpkWB2QMQ/RmIeYXZAaEGpstpkdkCBWwyl0X92QBTOPKHpgHZAeLl6F2eCdkDo/zWfkoN2QKQtZwxLi3ZARibV13WTdkCI9KjF6512QKzw/qCgoXZAqvEjLESjdkAp4Nj7jqd2QJ7z+1SNq3ZAJhlMgbawdkCA3K9twbJ2QMz0VwkNtHZAkt6hZsDAdkDg+2T7TMF2QDTeVRkaxHZA7ipZcs/OdkBExQSt8eF2QIRYXBSQ83ZAED3WT0v2dkAIeuXvUgN3QPdjYV8BEndAwzsElw0id0CksxHFciJ3QFrxVAJzMndAYu4Z06Mzd0DJcrI7DTV3QE0B9o54PXdA6eQtHZ1Bd0A0FRL+sEJ3QGZpPomSQ3dAD3Fr5xpFd0A/i1mOS1F3QI5T4wiSUXdADnPc4ClVd0AGz9oaSWF3QGZbMVSQYXdA3gtQCDpld0AxowNvK2h3QECp/vEmb3dAMKsuwhh3d0Be+J7QHnt3QJCJJ8B5gndAPlsJqweSd0AV+dMdTJR3QPxBaFyam3dAHkhJn7yid0B6fC+VJq53QBu6Xjv5sndANid7jqbSd0D3TtPNHt13QDB8u0Pr4HdAQj//8BXtd0BKgeYZTPJ3QFC0yOzk8ndAJk8f1OkheEDI+rm8biJ4QDtatamLI3hAdaxJaqckeEB8cmy6VTJ4QDL9QddcM3hAvACtYLA3eEBBdoVMUEF4QP39kcAMQnhA3Fy1auxDeEB4jBOhEUR4QMzLC1x6RXhA0vL8g9ZIeED9FWpiM054QGqFmCrLUXhALvKLmYdVeEBApjfS+WB4QIYtTiW4YXhAyIvFtJNieECElvrkuGJ4QMz4zDLvZ3hA0DM23mV0eEBB65rri3R4QNq4m067dHhARtAHy8Z4eEBaOKHZ9Xt4QDyy3x0hfnhA/mjLnTqBeEBm3OtbpYF4QFgrMBY1gnhAWT2Wf3uDeED+VLT/7YN4QDVZNmf+g3hAADnoFpqEeEBseaGShId4QKMP7HzajHhASgCzOFKPeEAyz7ULmJF4QOyiZDMyknhAhIS7VqiUeED8xiSopaF4QA9P4F7+o3hACRlNVq6keEBmCHyCh6t4QLvEuOQjrnhAhIhsfKGzeECaIxWF0rN4QK5uqEXcu3hAcnDRos3AeECUA0IaCMV4QDBFxMa41HhA/78f0AL0eEAX5bO7I/R4QH4hMHqM9XhAjRXF0FoDeUAYzUGtDwR5QITq0mCcBXlAeHHJ24YLeUDYkQvKkxN5QKzpa9HdGHlAeYivhPsjeUDlk+3ksSh5QDJr2Z4KLnlAx0uI/tIyeUBQpmqoaTN5QFIVS3e4M3lAFAJ10is4eUDOX8vthj15QE9W4HGKQnlAWaiYqfVCeUCdyzl4DEN5QKTiHov8Q3lAnx1CFs1UeUAW8xnDvl95QHgnqIjbZHlAhNamW0NzeUA7xDbq1HN5QGWQ8NI0dHlAYjjZUNuAeUBqUVCr/IR5QDhpxZLAsnlAeHVCDdDTeUC6V9XQQtR5QDxlPJfL1XlAOeyoROLjeUBURUQ1UOR5QEakWYYO9HlA9NlSGUwDekCCWbml/wN6QAqnW/2QBHpAQsVJNPoFekBJHa+m3wt6QHbpP/tCE3pANDCnqGYTekCfcWFeKCN6QABMK8cuK3pAwJWNmR8zekCuB92ADDV6QFdaEy8lO3pAryZJRBpFekAI7magoU56QBK+nu4nVXpAJnqGGSFcekBtAkYtKGR6QPAVKkI7ZXpA6SqTTxp5ekDWHKyLgnl6QKJoOALGgHpAm95LEiCjekAaZhXfDrN6QAqLd0oMtnpABZR6XhK3ekBgQ2ZoHMZ6QFswhnFEznpAyN1K+dXTekBJYn9dT+N6QGyW32X143pASv0w8TvkekBQK9qFd+R6QEzyUYs07npA4ibKVRXxekCcTH5US/R6QA6qKAl8BHtAGpe0F8YLe0AOYJT1KQ57QMcc6nhMFXtAEbawfs4je0A2pxN0XCV7QLSMBFbAM3tARFgZRP81e0BUsbJbkD57QNCuYOnpQ3tAOiWZMURJe0AVv1Odn057QH7vY27Jb3tA2gVX4SOVe0DFkACveMZ7QLmSfiLC0XtAMBa6ZFvze0BknhAujPV7QIbeAk4p+3tAfvXnnCT8e0AMURtDdgB8QG5iVyiUAXxAzxH28dkBfED6YHKs9QF8QBxEsTNoBHxAEOOqGZoFfEBWLvPLiRF8QOXOAJTTEXxAfhlli8AjfEAy58aQzkF8QLRAVq/aUXxAAMHZCWdffEB8QXSND2J8QPLaqTgGc3xApL62Zz2UfECAkqVy/qR8QL8c1ibbrnxA6DjJG8KyfECoNyy7e7R8QCh2jsoPtnxAJiIq8WbEfECSOZ8CWOJ8QHD5yTok43xA/w+YmhTyfEAYeszOU/J8QMI2MVJy8nxAyqnRMAECfUAX5fZhSwJ9QBLRCCABBH1AUW9pxVEEfUC+WCyuCQx9QKReKV1FEn1Amo8/sQ0UfUAQf41iPSJ9QJBJmYBrJX1ANx4OHJ8xfUCq0h6oSDh9QHI3yxuhPX1AdAa8FrVBfUBxEP0k8EJ9QKtjwB9FSH1AjnaOqiBzfUAlRX1cfXR9QAKMaAR8eH1AVk/jttR9fUAxEFt8YYN9QFZVBOAmkH1Ahirw3GCUfUA2N/DWAKR9QMfSdtumpH1AhtYfoLO0fUB6M7O/Kb99QId/kVcrwH1Aeg8nqS3DfUAMqeGvLcR9QBLCKNbmxH1AZsCm3PjUfUD3AbY22uJ9QHsBJ9KQ9X1ACluQ1zQAfkCWozRXRBB+QIcTqRdRGn5AJnSeT6MdfkDuJhKx/iJ+QDCt0Yk/L35Aptkk7BEyfkAMO3i7RD9+QGuNxAfPRH5A9lIO8OdOfkCmbk1Gf09+QBauD/lmUH5AjS9b3b9QfkBC8dBX9lN+QCJHFLKPVX5ARu5R8ydXfkCJElvY0Fh+QCQ5qwddWn5ARiz8+mtvfkDgW1fkt3N+QB4FR50Odn5AaIQN67l7fkAYfVJHkH1+QGMOLWCfg35ASkocYG2EfkD2ItlKqIt+QN2IBiLlkH5AzvIM8gSSfkAyvIk6VZJ+QDpAMhiTk35A9gR70a+TfkDeuOq9mJR+QCzRp77QmH5AQuEzifOZfkAs9wntZJt+QI6tmjBSn35Ax6Fp9/WufkA3MhzLX69+QMhnVVwisn5AEtcjSk+0fkCym/hsErZ+QFqvk3omt35AEBHevai5fkAJBpmBuLt+QM6LNscCv35Anzj+6M7EfkCdhAEFI8Z+QGq5HCgLyn5A7ibKYL3MfkB0pyoydd9+QEqo8icE5H5AUr8A/iLmfkAkVFCaBuh+QMYbivwI7H5AFqjeBA/wfkDG2qMeDPR+QL2IwG+v+H5AAIV2DnD/fkC37F6j1v9+QMjQNzzqA39Ad2WE40MJf0CWurKSYCB/QJqyOTiyM39ATpV9XVA0f0BiJpIjpjl/QBiatowAP39AsAlDHJpMf0BUn5lom1R/QC0aRrS4XH9AVOgm6L5kf0Bo4d4Px2x/QIcjqXK3cX9A0NeKWNx0f0BAGn0nt4F/QDiWBgqig39Ab7RHwJaQf0AMCS8HY5F/QNxYDh6Wk39AKhLwDA2gf0DwBCYlXaF/QP64395WsX9Awu/H4MG9f0Bh5hnJDMR/QHGMrLVIzH9AAmzK/crcf0C+Tu8OPN9/QD9WJhik439AShnYaJrnf0C1ikdnTfZ/QELyDGRIAoBAog/cr3gEgECjKwacjgeAQIQWdCRjEIBAHC2iDhgSgEBw+niOJRKAQPqEsk1iGYBASupQ7NoZgECrD8wbaiGAQFLqGfxpIoBAfaKDH+wpgEA59DJOniyAQOt1lfLnL4BAb9FO7DMygEBnbuANiDKAQPFH6ZygOoBAtJkeYqlCgEAkVjvBWEiAQGMSdMb1SIBAdByC6EhMgEDW/Pr851CAQJbP+ZETUYBA7kVCpCZRgECk657OfFKAQNH9sHEFVIBAMPJEF75UgEB1iYvdZ1aAQOandsUlWIBA+RO+e+dYgEBxCoc0DlmAQAcZ/7kcWYBA9PO4eWtagEDU8Zw04mCAQLCaG7UMYYBAVSDM3B1ogEAEOcxTIWqAQLA+D/oob4BAuoyvdShygEBShuJNWXKAQNSHv0Ind4BAhbjOQm53gEBMq3mNKX+AQPbNNHSWgYBAmMONERmCgEDOdbweD4SAQGgcyZcph4BATxxjkCSLgEBNVUwqHo+AQBpSU+qrj4BA9wZOE0iWgEASeVC/HpeAQE293pHFmYBAzRcoQUqagEBSsHGQyJ2AQPjGPRhOnoBA0nwZK9+egEDacqWJG5+AQEJt8paLoYBAJ+igdTimgECMrExGt6eAQPQJXQ9mqIBARdlzbSKpgED6zN2UhqmAQPRlE6LZqYBAUPdjCPqugED6Go9FE6+AQJwa8HlnsIBAvkh02NKxgECi/U9EgrKAQGR6BwBRs4BACi5QQHq1gEBqm+Db17mAQLboHCdQu4BAJujxaQS8gEAsNB05OL6AQDqnAueMvoBA/vmilVLBgEAXnRmsn8KAQF9fLiXLxIBA7u6qwKXHgEDd9gY0YciAQJaUbiIiyYBA/Jtbf1PJgEDSlElzM8qAQFiloBXezIBA0iCrE/DOgEBit0oACc+AQCL/+jgs0YBAdM2FbUzRgEAawCFqYdGAQOPDY+lK2YBA7y5O2BzhgEB8HqupROGAQPYLJCYV5IBAHqfDo+blgED6bzKoM+aAQJ7jMlW254BAUCoW8hvpgECwRYk6QumAQIlSZtvq6YBA2Da6bEzvgECLcPTfe/CAQL8FmO9o8oBAFNfnVz7zgEB9PhrtP/+AQE+Rq2PKAYFAZmmcLEAHgUCZNChrPQ+BQEOSCnCpGoFAgj7bZPEdgUCiUjnPNB+BQCIfb0WOIIFAzFCkwDIhgUDeXxOnhiKBQEfsWi41J4FAPC5UObQngUBktuDsmyqBQPDtTAsyL4FASGS8/OQwgUCJ21fMvTGBQOzNYsQrM4FAjA4gkjE7gUCYzQbvuDuBQEhRswMpP4FAlHe6Py1HgUCs0ZI8kF2BQOanmFyaX4FAJKBCbLNmgUB+HbBchGqBQLrL29OmaoFAqN8o9YtrgUBMv1zWKWyBQLKDiOwtbYFAaFOBnXtwgUCYuuVK+nmBQEWMDKNse4FAxBi9qz58gUCiw8c8Pn6BQGzMERhif4FAWGtiLCyBgUBeTLRm7omBQDEfjYV8ioFANX5I+fCNgUASQFjEWY6BQBTDso1Vj4FALipgOmiQgUAoycDY9JGBQJY3e2nqlYFAzvy4+/iVgUCymSYx2JaBQLD5mRtWl4FAug/TZ++ZgUBU6uFvUp+BQKeQ0eXzn4FABvmDjOehgUCgL83/3qKBQEvhUThsqIFARy2uHESpgUApN4HA7amBQF7vHdnkqoFANHx9aEiugUBxiS15Sq+BQBYWOqH6sYFAQM19HEq3gUD1OwD9mMKBQIq1f79904FAAiNXxLPygUBX1n+1i/eBQLsWNqt1+IFAhJBVaSz8gUCO7DFD7fyBQEphj6Ga/4FAnBhH8oUAgkACRTY9AQmCQMCkz/QAEYJAxo3zxrQSgkCuSDV82BiCQBZHUPq7GoJAZS7FG9cggkBCMUpV+iGCQDTSCp/UIoJAdLXflu4kgkBy2DufQSWCQKXFdyv7JYJAhFKAOtEogkAICbQQ0DCCQGag0zZ8NIJAVLWgjMo5gkB+s1LB2z6CQFiY+B8KQoJAk9492hFOgkBtYg6XklGCQGxQWjeuUYJAaSsHCmlSgkAysjtImFWCQGK9nfCNVoJAKY6QB2hYgkC8I8F531qCQKhWBvEEW4JAqYmBJW9cgkAyoKcikl2CQBNeSDgHXoJAuGpmapFegkAREMqmImCCQKhIUbOXYYJAodNbUZ1lgkBuZhihEGaCQAAxX/agZ4JAtFY9gW9ogkAaQQ+XB2qCQP5pw7mfa4JAhuYQmQZygkCqDsK9aXSCQBjfbq86dYJA9lwNHtF2gkBnsRVgKnqCQDH6zuPgfYJAz5E46J9/gkCpmXG9RoCCQAoJkgTjgYJAtgRRP0OJgkDsnoH+2I+CQGqPFLRDkYJApKt3HzyZgkAzFiXBL5qCQFh2jc8OoYJA5OVzvTqhgkB2oOZD3aGCQAhn5kPipYJA67Kluw2pgkBA667HNKmCQP5sb7ovr4JATKQv7J6vgkDiSBvVULCCQLLlBtgJzoJAEpcrdYHagkAsmdZ37tyCQFZ9YHGa34JAGhiTJUfigkBbW8K01eaCQOBIGxJG6YJA/L3kinTwgkB0sqeud/KCQAw5+ib08oJAcIFQLXf0gkBohNjAefaCQP4qUjR7+IJAqAttNU35gkAdL8DZnvmCQH8nZSgVA4NA8kNLMHgFg0C+IVZPuwqDQKahUzccC4NAjIaPdnkRg0C8tQCCwRKDQDBcMzp6GYNAINybYbsbg0AzzG4Y4x6DQIwfKdJyIYNARU22P4shg0CsL10QcSmDQPZ1cfe+L4NA4YcrLWoxg0AUrvGYgjGDQP7GYyppOYNA2iODe7FLg0AxPHutc1CDQIjCitMSWoNAiD+jDjdig0D67V6RuWKDQKcTFX6/aoNAfopmBRJyg0BqYwQkRXmDQMD98LM6eoNAIpP2yAqDg0DCvp9WSoODQEMGHJRnhoNAAnuA3uGJg0DuhPCP5oyDQL5GTqB2moNAHn0f4CKdg0DQ3GDzoKiDQHbqpi2jqoNAjiJPQAzjg0BJNEUid+iDQHIKz57j8oNAkXKSopT4g0DM/Mqlpv+DQPzy28tVAoRAZM7nLNMVhEDum/k6ajqEQFhPPj6ZOoRA4sA4DlBChEAwdYbHoFaEQGxDTifpZIRA4ttkJqRmhEA/ctmmp2eEQPKHDWL/aIRAoEWaheVqhEDL8ZigAWyEQIChKMXoboRAztGsCf1whEAQUke563KEQLKY4yskc4RAwHPev+12hEBFMPAejHeEQAzqHSLKd4RAeJ1qWvh4hEDTSDYSd3qEQFw0A5slfYRA6gTcctJ/hECcVLjoyYCEQCiomLlTlYRApfmfcQOYhECEPu/An66EQBBXw7cKyYRApiT+dCLQhEBi4qAGatmEQOR6735q4YRARqZrD6jihEDUGCNlY+mEQEC6+ns08YRAWusaFWLxhED4BOSNNPmEQIoAvjVB/IRAskWTHtz9hEBOpEQFdv+EQFg4fosOAYVAOLljoKwChUBQKeTQQgSFQJxOIIvaDIVALHXjftwVhUBOrSuM2RqFQEi0e2FAHoVABi5NWVAghUCCIr8gQiKFQE6wpK6IKoVAaNnF2TYthUDt6xVNaEWFQHj5VImnTIVAtVblIBRNhUCsa1xjRVuFQGpOW2KCYIVAyFEvc6BhhUCrVL0goGmFQP06TC49cIVAhiNeuJhxhUCeiVj8s3OFQOI/o7OZeYVAyRzEMZKBhUCC0pUWLaKFQAJUGveKtYVAjxPy5TXhhUBEtYkcVeWFQHtLke4w5oVAGdN/hzPqhUBRFQ63gPWFQLCpY4OSGoZAdC7dQT8dhkASDA677B+GQIy1A+uWIoZAwFyzR75IhkAk7IU0yHeGQJxX0ZeHjoZAHYiiDt+khkCA/M6q5KqGQFu0kHomuYZAePiKzCPBhkDqt2S+NP+GQAZBCgs2A4dAWqjJzzkHh0DgecN4kSmHQKSk2+uRMYdAfmfFNos5h0DsnzpFXkGHQMj9a7iMQYdA2WmoT2ZJh0Acq3dDN2eHQHp+bTM6a4dAndl36z1vh0Cgw/f+QHOHQBRE84qLk4dA1kmKC8ixh0B2TEJnx7mHQM44CvxDu4dAsHpb9r3Bh0ABapZixsmHQHQ5Bx5kN4hA7Bkc+WQ7iEBUnt04enKIQI7n5GV/dohAbsaWfnx6iEBZqVHwnJCIQNZr6T5ZsohA64GM0Vy2iEDI46kl5LqIQGCr/njnwohA + KBZXds7jZUBImCMySWRuQANJK5hVInJAJVItydiSd0DrJqbSPGN4QCWwCR0xpH5A2eSlL6uTf0A0HnmnQdKCQBIHc7jE2oJA2TIZyDDjhUA0TWfR7VqGQNARmfZne4lANHxV+5njiUDFgNaT25uMQDQ/YxP0E45A3i8rYQkakEAat6geUM6QQA== - + - 912HRGJZQUaEuLdEuXflRNe1JUWkdnZEpHjaRF2uoUQStndEyS+pRJLyFEXe/QhHBBeZRG3GaEQZQmtEXiw4RVDgtUTcWkBED+KiRXhFzEWdPxdFp2miRJsMcEVPjaZE6zKvRB4UrUTLg+VEZ2xtRGmc2UTOVgtFZhuPRMw7pkTUSvBEQ49ERTKSdkYDPjFHHd+zRP5BykQUNalE48S2ROY9nUbehhRFoui1RaYhxEXsHY1EH9RwRSMuwETXEhVFF5+kRk5jHUX9mMdEbwR/RIha8UXF2KBEvTuZRE3VZUYpr/NECkGYRAhcu0RvlGFF0oqVRHbClkSwY45EZTuwRRQ7qETNRapEIJhaRgaVXkR871RFP5ChRC+F3EW6tndEULUfRWdFVkW0Wn5EkB92RHqY3UQ6/FZFHup1RGItiESqBllE/uPzRC7sAEUJMHlEVt12RGkVhkRY1ExFOMraRhwF4UT++/pE4IUGRiSJ2kRs1CBFXdasROFHcEQXEGtHRBu+RJ2C4kSpaItGAB4MRoMY9UU8LaZEyzLWRJMmT0VXo05EjBqGRFAGhUTehoJEHnWcRbJFOUWQP89EcJOqRAOTCUZovRRFjurFRCFzDEXRKjpFpBlPRNl3AUWz76xEPGH9RD6d4ESLJehFwZOdRG+HyUUzQVtEqqQsRV60tEQsNm1ELqxvRMkI6kRQ5qhE3vB5RvAv0EReuI1EK4iHRKu1aESIJgBFzjV/ROW8jEXHwmFEFNDZRFcIk0Qp7Y1Ed+02RapBAEUr/YtE5xGIRN9veUT40YpEjrkGRY6S9ERQtaZEApUNRvOl8ESArMlEw+zURD8WJUiFtoZFT1arRYdRk0frQJ9EI7+pRDRbX0YCrVdGbF6rRXCrN0Uz7NBFto9pRwC+hET5c0lFvRJlRF9kIkVkuqxElIsGRcIMbkSR2ExF0NEPRtnbtUQAorZEDjL5RaWdkUTXUI1EF8veRMwjUUTkh91Esw+CRD0nvUQSnbdEB50HRZvEgkXnSH5EAsblRC+tJUX1rShGwCNcRN85sEQrx1VEcQaXRZFZ50RL5PREBdL5RDC3qkRVFPxEr/flRDVsJEVpww1F5K2DROPzwETbheBECsLzRIg2BEVTZ65Edy7LRJcXl0QvN/ZFOq+IRLYAbURBXYxEtQDWREVdhUV1S/1E9D90RBELpkTLOZ9E1tYFRQp7qUR00DlGM6zSRK1+g0R9wYFEGU+BREIrVkWeeNlE30RiRVC3ZkXgPqdEcMGKRMNw80R6aBxFg83eRA/MhESaZvxEzPl3REsIS0ahhDhEUilMRTqSA0VFxRlGQ+w/Rd57B0bEnpBEL65iRRwx20SftpBExleARIE8/ES1yqFETCXNRBW/iUSqb3FEQ7CEROq+bESKE7lE/4iFRDS0xkRnWtBEpLRoRA7N8ETlD8tEuhndRPUkn0QqcvZEnK+SRZuLmkTp6r5EOOrGRBj3pUStR6hEL65qROwyoEVliINE/F42Rqytx0WWjs9GtZO5RNNw6kQKR7pEVQ3BRa7s1EWQUphEy1nfRIyh2UVB/nhEJS2WRKMc1ETtOHxFkwnDRGy4jkTlM5dEZgI0RribckQZvaNEXiIMRSyknUQ+vGtEVFTQREzZ5ESdtbtEExh9RByKiEaN9oNEgvOxRbpIZkWlOpBESNa4RPEgK0XmCL9F+6CJRPOVr0SHbXtE2ZeBReI+o0T7X5pFwEOPROYkSURa5bFGnhaXRZa5wUT3oGZEumSARMaFCkhBboxE6ja9Ru68i0Q42ZdEuXAGR8yfnEWmE2pGlDcpRcU6kkT9OE5FHi2BRDqztkT1HRhFb4fuREcOj0T/UvtEbEPGRJPpp0Q04tVEc38/RG+WnkSJrVhEMDd3RGDQx0TnTq1EB1WJRJaOtEQRmpFEiZuTRLEbjEXkz+JEztBvRPFm3kQWS8VERJPWRPuHg0S0aKBET51KRZcAXUXsYIJGhQFcRaa4kEQyStdFODpoRYwxaEWjxYVFKNQYRQzTbURY5KlERA6NRU1nYUkCk4lFROqnRhp0PUWOFBFGMx+VRJ3hZkXFXDpF4e/vRGByYUQPhp5E9/xqSJgDK0X66vBEoeWtRDBRgkUdZ7BEm3S4Rg/AlUTuemtEh/RfRG9ibkXRpxNFXEfFRLCRo0Tx93ZEZfHxRP9LpUQ+4kZFIcSURYRogUSQvshFFMyYRM9bgERbXfdEqR4PRqcvD0WWZatEEeaQREEDi0XnN+VEixoIRVyjYkTMHjFFEYSIROfTyEQWSvhECHGRRBipTkTvcohEDGSfRR2KhkT+uttExp/URANvYkWNXrREWzpuRJN8kERVupZFdFwHRfjhuEVz0aFEaHZfRPTpFkUyT3NEaA3XRPQ32ETEymRFWYciRTnockQRt1tFpWyBRIqsO0hUbJhHq1K1RjC01kfLJABGpfHhRsFqnERfkHtFEPo8RYDpBUXcLoJEyi+eRO5YiEWn811EhEmBRDyCgUSXdcxFm0M0RUWe4kQjqqREzsFbRJe9kkRynMxEGR5lRp7UEUVC4FpFb6ANRfZU/0SS9ZFF38gXRZkQ00Q9kWZGG0adRAipKEUXzYxEeRKARFnCvkYC5n5Gq1aFRUA9AkXDcOFESfYcRQGvekTcktFESKhyRGXwr0ZEwn9E5cuIRAJsnETD3RxFFZpZRjUK3UTdLhtF65OZRTANoUSDrHtFRazPRDjmpEXU1l1EHgSWRPdgn0Tgfo5EpPSHRDMclkTLtaZEMS4ERVOus0QFqbdEQ0jNRfFl5Ufll1BEizL8RANY1UbnOJRFYRhBRe7nzkZFVIVGx6aURO9A8EXUwWBFKtocRWfKBkXBOn1EMVvtRFrQFUZPYwpGDhFzRAj0v0RELfxEm8q4Raf2bUQz6mNFnp3yRHPunUTfEm1EcBtMRNqLnUTisx9GLzoCRbNDwkTb9Y9EtKPPROQj1kR8VYdF3n2GREzjqETK/BZFd6FLRcrGkETyF6JEgkFiRLPWkESsbrtEsHCZRPYbhkRG0odEpyeVRGP+aUQdIp5E5+hrRYvVw0X9zLhE75WZRa6MgkS2xPREYKeMRA19l0Tt/YNEjYxuRE8HqESudLZGS5VBRJSOGEby02dE9qCsRLgeaESVGTlFezMLRbXPIUb2Q7BEFrzwRR7FsET7/ctEDzrsRl65YEQtYYdEq6iJRtDgCUWkDrxEY+AFRvCl0ERTpsZEhxOxRPFLiUQbJIhE6NiqRHcpqEQbn3BG1uB5ROLknkbdPg1GubKNRQa4/ETiDXZE+vuPRDJVXETNx4dE9vt9RBaXTkU2zXxE3ed5RIH/X0VsIl1FmlPERI9kXERC1Q1HwrKYRmQgmUX+wIhFni1mRN/WvERejOhE+K/PRArmV0ZdIqJEOkctRQ6oMkWBj0lF6bV0RG/8ikRplpNEvm06RPHtjEQWw61Esv3IRJe2+0TBRqFEBIqaRMYfZUSUb31Ee7wxRMzHakQiuNRF69yCRN81uERhmYJE3Ke5RFDKf0QnuoJEbJiRRAYHBUUEV4dEJvihRcBxkEQ2RNhEZBa6RC4UiEWeQ3NGBKWJRD6Fm0Tu5oFEMLRdRD6qxkTW07VFXzunRJrazUVALUJFneivREtRh0SeI8lEvMG0REr8uEQlVn9FyDmIRE6gmER7p79Ewn2yRLQMzURoTZ1EzZ6NRBpsaUT3t5JE1iGzRGZYiEZ0I65EM631RTixUkWil8FFjt8GRfGCT0WQr3dEBOz2RCnK+kSHs21E0zQ+RcdIzERVJg1FwrD2RBBwe0WxdVxE7qmURIwrMEZROsBEbQGCREFxC0VBsUBEhGW4RBDcjUSPMIxE+rx0ROvAAEWUj3ZEVgehSLZJCEXbj7pEd0SPRJdGiUUxKAxFwfEPSMTLpERtot1EXmmSREzP1UQRcTZF/FCkR6RXiUWI/p1GE5pcRCps5UXfla9EfeC1RFzLk0TRHnlEX32KRPjQo0Q1iGtE5YsORQm4iUQi/TRFomg+RaoFf0YOUYhEACytRSOSyUUXthZF68KmRHcXIEdrR5xEgWehRMolnETJyQRGhrGiRO9ZrUTq+OdEZmqERGe0DEVPKrpFphcRRXfzhESTUBlGU5jGRCXMb0R9dqxE4VjCRBhxkEQSVWBEP+SSRCsvbUQ0orpErfSHRJM82UQR5m5EIrRSRCAvokRek7pEVsy8RLdrkEjM4SFFZZAqSAFphkRrEDdGNI+DRG1jOUfCacZFecf7RaePWUTR/F1FNMGKRSMEEEUWipNEBP7jRBz0PEYIXQJFW5mVRAXEy0RY7yxFdU+ERElAh0Y/Fm9ECO4zRUR8eUQ1mAtFS2bORFG/akQMJpRE3e2gRMYHhERsPohEpHFoRNnybkTvSHZEx3VIRuvhT0bZ+WpFmLwpRfz2DUUMqB5FuzSCRGIGhkSHPrBEfW0bRcJtn0R+wINEuU38RKXRjUSaJaREFoVdROpcD0X7FLREwJsFRfB5eUQa6zpFBhGhRKWqnkT0IPBEye1jROq3Q0VZTZpE8JuQRGewhET7fxtFDBSyRENliER019JETS+kRFZaP0XgNIJEqhe9REiLjkRJAIxEKJgwRWhWU0TirAxFDhm0RERygUT2geJECsYKSMYflkS50XpHctQURwITYkSK7O1Foz5FRj/ToUV+FThFjBFkRVjqYkXW06tEjZZkRGWFYEVnYoZEhoQWRfUjAkW4SdBED+CuRO7DlUQAUItEn4zpRUq0/kUqZltEYneURRBBVEU9wbNEg1x8RGLXS0RbsqJF9Tx1RM9L7kSDXq1EKuo4SELsq0TZy6NHujqPRHi3AUX9AExHH4akRZokZ0Yf5HFEY2rMReDtw0RkKsBE2kORRIhQX0SGlmhELLqmRE8rsEUdfQ1Fg6qWRA6AckSWiEhE9BMrRWi4lESpPm5EvQGFRG1yd0SJPchElCmaRKLxiEQT+LZEuD5URCE5gUSqGv1EzzfSRLzHNkWynZREaVyARNA6SkT8HZxEH6d+RBfzdUTsX5VEaA+NRH2Ug0Qwb8ZFCBu6R0EKs0Q0jGZHhIUgRVJyokaCMFRELEa7Raw6l0TOnZRF2qHQRNQw6EXHdhlF/vW6RJMYmkT81cVEjJ2LRPpKf0SqpYBECG5+RLHzJkcBFa9GpCOTRNIxPEZ0kJpFN+WYRZ5EBUXEgJdFMxYJRg1JsEVf6mJFTGUARSvcqEQ+L3hEHOGbRDV+bkSW3g9FuF2GRIUYmkTBrGBEf+izRK7vrEQUJotE1hhpRJSY9kS814tENktHR+aNuUalLKZEZNRVRppbwETiUa1FIIQKRR0pc0Q/U4RExDCJRJLDckSIaJ9EpjpyRPoAAkXhsidGs7kiRtjCxUVZMnlETKppRLlce0SdHYBENcPgRA4q6ETGdwtF+FGgROytcUXe9+5E4Q7bRBFZJUbXaahFB4hfRQefw0RmmJ9EnPJfRLUqJEcu8/tGDzxaRunvfEUICIpEjzE8RtYUuEUyn+ZEPXyBRUwNtUSQBbxEJv9bRH740UQV8ApFzJRpRFL2CkUtjWVFvQ08RbYPiEURdN5E + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 1tbDgXrAckBU8f6LbsFyQKoDli9NwnJA3tKviHzCckB8z1zV4sJyQAr4wVo8w3JAKajdkXvDckAdrJddxcRyQLf+P7taxXJAZdXgMXzRckBKJgRqD9JyQCn36RND0nJAfpXHAHfTckCMRGkBzd9yQEa5YRa44HJAhjSJi0zhckDkIPlFUOJyQAAgruyQ4nJA6aMbXCPjckBhuMHCyfByQLwTZrtQ8XJATaFKWKLxckAkZEZWyvFyQGl2kR558nJAXSnlkbfzckBAyi+YovRyQIY4KhzB/3JATKrkwmEAc0AVx5Hm9wBzQBE7pPM5AnNAAjdQqM4Cc0BAFU9NZQNzQBYsPXL6A3NAoKmJeBcRc0C0ur5qCRJzQLLceXa8EnNAEstq4XATc0CSaBpz+hNzQAY6p8IEFHNAIloICk4Uc0Cgq9KueR9zQD/S7RyjIHNAKSOkYDghc0CqtkI0yiJzQNzUmIwPI3NA8k0uhM8kc0CueA8HWTFzQE3sGjD8MnNAa8BXwaAzc0D7DUdfNjRzQFVZ88XaNHNAY/Jap7g/c0BeklJUeEFzQFC70R+9QnNATTzgWnlEc0AYKY8wm1FzQOYoxONCU3NAXA3fQqRTc0AKuKKvhFRzQNaxFSn5X3NAuFpS+R1ic0CKoNnaOWNzQEAeeHjPY3NAf9DeINtxc0AsibkDT3JzQKJ8axiRcnNAmlvra7Zyc0CGXtm/93JzQDpoGT23dHNAebjWckx1c0B7z6RxeIBzQND/UkCigHNAJGzm1wyBc0D5+L8fXoJzQI10p1PjgnNAkVGoGw+Ec0AeisBFOYVzQFhCP4uGkHNA7+lZUY2Rc0DK3QFGEJJzQMRkiO5MknNAeXb+5NCSc0DsJzEzYpRzQLiDzPz2lHNApa48GLigc0D0J0Dw4qBzQOrfTKJaonNAJgTTVY6ic0AuwA4joKJzQE44Zf8ko3NAL6elrASlc0DvcFIe17BzQHy7xfszsXNAOEsSBxKzc0Ci2h0iuLNzQBSOSFANtHNAYIKmWfjAc0AAI01zpsFzQF4L0vQ6wnNAAHi/Z9DCc0AYzRp8J8NzQOz7SGrGw3NA5mG7YnbRc0BSen8y1tFzQGoRQq1k0nNACl+Vq7vSc0B+8gTc3NJzQLtLMML003NAJgRqLuLUc0A+ji6DOOFzQMizQt9f4XNA9J50lX3ic0DN/ssGEONzQE+nhGqj43NALjNFjsjwc0Df7Zu8NvRzQCrGWK54AXRAwWbLLKUBdEA2PlBncwJ0QDQS56VQA3RA9az7g3kEdEDz7+NDihF0QCCh9YCZEXRAcNQK3KcSdECmmw5zTBN0QHi9xMngE3RAMKFOt3YUdEAYQnt0TiB0QPDYx4psIHRAhPI0obkhdEBYEk74riJ0QP6MCj1WMHRAfLBPgaU/dEBc8fPHU0B0QJB5XapcQnRAdJBOVD1DdEA8Dz6rekN0QJ5V6hrOUnRANEDhKo9TdECox0kDY1R0QHJYgNr3VHRAWo9TWYxVdEA25hh23ld0QMw/hgUhXXRAZrYrL7lgdEDkNlvjB2J0QDE1hgB6YnRAYE/p5JxjdEBYS4XwTmR0QA6S0GLFZ3RAcA83YdVndEBsvSPWH210QIYLUIgicHRAKH6zsdlwdEAetPfFQHF0QDBmxsx+cnRAFoWPBThzdEC6rKL3NnV0QJpiyIT4gHRAaOYrRE6BdEAG/4reRYJ0QLoiTt3OgnRAtq3/bCSDdEBos+6MFpB0QFq3SZi8knRARxGfjSiTdEDogmnKX5N0QD5yUqbun3RAMnLCUaOgdEDNtgpfz6B0QPROycA3oXRAdN/csLmidEAGCzYCEKN0QFrnuq5ipXRAsc20EQuwdEBXf9MOwbB0QDFZ2b37snRAaJPr6G+4dEAl3LIH5MB0QCCfKR8TwXRAijc8O3nBdEA435Qf7cF0QKrWgOK3wnRAVNqT3wrDdECDtltYT8N0QMI3CywkxHRAVPt0F7jEdECTGeSQ/M50QDhipNlU0HRAV4DlHQXRdEByRXTOW9J0QCCthgrh03RA2fe+UnjUdEDYNceVztR0QCA6gZUh4XRAvMlg2bjhdEB8Niu5aeJ0QHZbPdH84nRAcCblyo7jdEDIoZqhTOV0QMLqwfxg8HRAjkaTer7wdEDWx0tFjPN0QBqRgmF59HRASn212qf0dECYq20kOAB1QDs1GRRSAHVASryREWMBdUAQYd7xXAJ1QDL/272kAnVAUvmMc5kDdUBkN+90IhR1QHztRr7kH3VApdjKYJ0idUCVOH7SIiN1QGQi4V58MnVAYITpVaoydUDgFQwOyzV1QJ70yr3tN3VAApi8cCVAdUDG+/MFfUJ1QBRlyQ7fQnVADjWzGdlHdUC7obF77E91QLwt7sqAUXVARIE8FyNTdUCwaNoRTlR1QMAwtkN2VXVANm37f2ZgdUDIMQp5OGF1QBBDKQb1YXVAuXTxGhBjdUDRFKMm+2N1QHb97XN2cnVA41Ulf/lydUB2xdilCHR1QHxjkMCMdHVAUMacVvuAdUA+98QMeIF1QJB17vqsgXVAgMNvMb6CdUBtNEhQ6oJ1QMSlUDWmg3VAJ/tnvJmEdUCZrFmjipB1QDAOje27kXVABovZu2uSdUDEuhKGO5N1QJ4F1Rawk3VAZQKPT5WgdUCVsNqtIqF1QIxOupC2oXVA3IF8/46jdUBKljrcuaR1QAyWen44s3VAI0vwSu+/dUAR4DH4+MF1QJo2suvRw3VAlGlNBTnTdUDU5vuJzNN1QKxb6HPk33VA7g4pbTTgdUCeM0d1D+F1QNx9pPkH4nVAvXLktjvldUBJsuMwSQJ2QNbyMKH4AnZAvHhirM8DdkD3T8OoTBR2QLBvPbEMFnZAHsbnJokidkA+SkMskCR2QPb+MRVLK3ZAIlVa4h4xdkAFsJijUzN2QOPaJSCeNHZAYBPDoUw+dkAy9gNzS0B2QJ80ESTiQHZAlDF31hxBdkDeLMVfbEJ2QNCML6HIQnZAMlz09qRDdkBWi4JdeUR2QAiT6PX6TnZAZj+qfHpQdkCM/CqYEVF2QMojPvLMVHZAVNY7AVRjdkCOkNW12WR2QLSg/ZjRf3ZAnJ5/2WiCdkAIhJVQ44J2QHYzmomQg3ZAfPQnzySTdkBijgny6p12QM5/dlwLoXZA6IixpUSjdkBaLy9kjKd2QO7ac8mdqHZAJD1A+ZGrdkBtx41EwrJ2QGVpNioNtHZAWk85C6+0dkAfST74v8B2QO+L4jBOwXZAScaD3RrEdkB5TLspz852QE7uVfDz4XZAdkCFHqLjdkA8nsXfkPN2QDERsnZLAHdA9qAY3t8Ad0DtOjrfMwJ3QGRsMpKlA3dAbtUJ4gASd0CQSPCQDiJ3QJqVxU5zIndAelWp0rkkd0BDwV2najJ3QJfNzi0RM3dAGsoHN6Yzd0CNyjHgDDV3QIJy39Z1PXdAs8iMcJxBd0Be3B67RUN3QMDyk7CQQ3dAMKzA1xpFd0AeOsc4B053QDw+KzhKUXdAlKrh2pFRd0DpUkA57VJ3QAgxeU4qVXdAy55iwDlfd0CjpmVnDGF3QP1+eDmRYXdAltElW6Bhd0CG0cSNJm93QP3lDioEdHdAwAvaSxp3d0DqrT0DG3t3QCcisfm8gHdAJLf5bniCd0B0mZFhCJJ3QL5d2yhNlHdAhPsk7fmgd0DYcRjsJa53QDfcdeg6sHdAdOE1iZm0d0Amml6VDsN3QJQGnNFL03dAQp4jQOvgd0Ao7GcrdeJ3QNmhpQm353dAURoathDtd0DU9kC7eRN4QJ4033p5IHhAkK5qvG0ieECBVeEu0SN4QLLBlFBXMnhA9FM9b1w3eEApMZvkrDd4QNP+pegLQnhA7jNCRO1DeEA6piBrEUR4QBhyXpF5RXhAMcN85fNGeEDqi54A10h4QByYCX4vTnhA1tipwcpReECCJrhiiFV4QBSoBt33YHhAHC6Az7ZheEChOoo4mWJ4QEpYj9W4YnhANERc2YlzeEAuX8CCUXR4QFh/s1lndHhAZeXSiIt0eECyN2qczHR4QDM6iDhpdXhA0lyIYcZ4eEDAknVt9Ht4QA1KvOshfnhAjJCcdqWBeEDKoVOHNoJ4QOS7KSj/gnhA+jFd6XyDeECAjoDCmYR4QMjOr2uBh3hAjWOumN2MeEC6w4M1UI94QJjDB82WkXhAqu0faqeUeEABx1/XsqR4QLP5xcKGq3hAS/h4qiaueECi0s9SjK94QEL3e459s3hAn5l84KOzeEBSNPvZ1LN4QAiwwDvLwHhAQFCOKAfFeEB0IcUattR4QFLzuIoC9HhAmBC7IY31eEBED7BcmgV5QPgPitWGC3lAMAHSPXkTeUA+JeVNkxN5QPpIQfreGHlAAF6kP7UieUDYKfzsTyR5QLFxgfixKHlAGJEl2AoueUAogEDA1zJ5QJqAlJC1M3lAotWeMjE4eUAD98Tb9EJ5QG5vIK/7Q3lAvyigaDdUeUDN1Q7ny1R5QArFffeIa3lASkUpokRzeUAHMhd61HN5QIiZfgzcgHlAapVUvR6heUBreEsfv7J5QDb2c8rHvXlA3nlT28/CeUBSG9615cp5QAJXUiXP03lAw81y2UHUeUCef5KPzNV5QG1kRTDb43lAC5pWMVLkeUD4e5D3DPR5QLZQ2LBJA3pAYohV1/wDekBjTVDSkQR6QIRiHCb7BXpAkyD6skwLekAAzb5YQhN6QPSYzPpJG3pAdjIC9CcjekCCuLqNLit6QHQe9/gfM3pAHqDZLQw1ekC8w3ZRJjt6QEb0xKY8O3pAorfSpi1DekDww3TYGUV6QNYNzQ0nVXpARmVPLCFcekBy2IfFK2R6QERlQeW/c3pAkqG/0YF5ekBQhoTN2n56QIQHpbl6g3pAFt9mZ8yDekDEVmxWNIR6QBTiQakLs3pAWxNpVg22ekCKPzFvKcN6QCKrS6UXxnpAbt/Pu0POekCErMDKUdF6QOJOEGXh4HpAVp5l1mThekDZfkExOON6QIVS6W875HpA7DI9mnjkekAdWnhUNe56QEpk0kIX8XpAFeJvCV3xekAq9OwjSfR6QP7YP2h6BHtAPtAgcMYLe0D9PsTrKg57QCFas5TME3tAaNrJC0wVe0DzeVZgXCV7QKASJDnHM3tA5D/1A5A+e0C6MXe46UN7QCRiJ9pCSXtArr/vpe9Te0BS1ZzYxm97QMjxo9wilXtA7LeHwvyze0C8Lvd/v9F7QFYrWH7/43tAo9RoDoz1e0B9FnrQjgF8QNDqDvnaAXxA6jlHu2YEfEAiE4APmgV8QLwjSseBDHxA6H8e7NARfECY6SnCyiF8QBLWjscyO3xALME6Wc1BfEBt1MJN2lF8QId/zf1/U3xAQtagn2hffEAy/OMr5ZF8QA2ZGTJAlHxARUaoubOefECXMr7O+aR8QNZ4DfJ+tHxAGVsOn2bEfEDmH+/8dtR8QNKeIR3M1XxA6aKEiVfifEB+CLBYF/J8QAh5ODpU8nxA/l+2kd37fEDMsiU1bP98QHZncpEBAn1ATE7zfUsCfUC0ZYGbAAR9QHr8CokHDH1A9EYf8qIRfUC8sJMgRhJ9QAmHkP8OFH1AOk0aJj4ifUAIenXeZiV9QGr35RaiMX1Aeef/m0g4fUAwJD4qoT19QDVMUl8BQ31AOLDw60JIfUA91qNZy2B9QEJnY4Igc31A5H1NTnZ0fUBUMj7weXh9QDBznMXMfX1AUntitaakfUCmW6yIy6V9QDTT7C9+qX1A9OXQQrS0fUB9zJPiI7d9QCK2fbEou31ALvPU1KG/fUB43jSPKMB9QCPwGzIsw31AyNo53C7EfUA+BBMl5sR9QLKaGVMyzH1AcsShTffUfUCljLdA2eJ9QIoelvXt431AzR5CxpD1fUBS7A5aNAB+QMk77z2iA35AGq6HV6IdfkCZRVq2OB9+QALKOL4lIH5A6LAQvPcifkCETJ8OPy9+QNQNghpEPX5AvBtbFD8/fkCo66H1oER+QJBtQTbfTn5AO3MVnr5QfkCVZQ/u9FN+QAfZvVuQVX5A2F+hnilXfkBkFtePXFp+QASje9QmbH5A+j8XxdFwfkAbNYQ0vnN+QKLF2kyKfX5AwBaKQHaDfkA3LWbUn4N+QC5TTypsi35A4lexN6aLfkCW3sof4ZB+QIL7FmaPk35AGB8JYLGTfkBskHNpmZR+QPa8PCzSmH5AuCpFKvKZfkDOtcLASp9+QGqbmt+/oH5AypWWwJGkfkBlBIeR9a5+QPGtoF6/sH5AJJ3qNU+0fkAcsSKgYrd+QAoFb7aouX5A4gMPwAG/fkCK0yQ+WcR+QFOUp1fPxH5A8FwMESnOfkAUDue2VNh+QPSeqdUC5H5Aw73WngbofkBG/c9NCex+QO4wNzII8H5A0xaNuA30fkDrQy0Zqvl+QJZ4uTHP/H5AWOr3m+sDf0CNlLw6ohR/QGD7W6C3GH9A2HJk2l4gf0B85+9/pjl/QPZd8hnCSX9ABHj3aXlPf0AgkwrEt1x/QDFQcNi/ZH9AmJPxWcdsf0B5NUhht3F/QKbbKlHndH9AhvYAD6eDf0ANPmnklpB/QO1UwGVikX9AALxp3iGSf0CCR7PNm5N/QOyuDMUOoH9AlnP5NF2hf0BanRt78KR/QD+lV+K2q39AFFOdgFWxf0AVCLJtZ7h/QF7fb/9VwX9AI3i0dGfIf0B2WEPC2sx/QHI23Jer239AJhQnM/bcf0Ai/ME5bel/QAZggeb18H9ArlPKqMABgECEVOK1JQWAQERHeejMEYBAPzppjNETgEBoPJwGYhmAQHYjJ4l4GoBA2pbnjhkegECRpH2GaSGAQKwfh2wgIoBApTcIAcotgEAzNl0fQjKAQIDwhRmMMoBAUDT+GgE0gEDgZBvLqUKAQIK1SEVPR4BAGWlPbvVIgEAc2a0UsEqAQGerpRjnUIBAzAatwRNRgEDC6YntBFaAQCnsk+poVoBA/nfJDSZYgECjMiRd5liAQA4k9VIOWYBADqBzSTFagEB4+O1ga1qAQCqYh0E3XoBANokU/t9ggEAaZngjIWqAQDaguvlNaoBAgLTQ/yRugEBoq7SeNG6AQAxwp5Anb4BAeCsHlahvgEBU58xoJ3KAQLapf+8md4BATFHRKYN5gEA4qnEYMHyAQLZlHzYpf4BAXEwGYjqBgEC3EasrZ4iAQKgrfw4ej4BAtE9EuUeWgEBweL3qHJeAQCA0+jPFmYBAHf231kuagEAgkOqQoJqAQMZFeZvInYBAxTNXSN6egECk/R/FGp+AQO3MRzSLoYBAzSHDfM2hgECiyVjSe6WAQEIsFCDupoBAYKD31vqmgEA03hdUhqmAQNBxz9oBrIBA/C2hF0WsgEBKxc5o3K2AQGh7r/oSr4BAZmxet7GvgEDjpSrQYrCAQGxa5kcqsYBAVPhT5texgEB+uhP2f7KAQPNZ6l5Os4BAkmSpfRS0gECs44avDreAQFpIJc5Vu4BA/P7jRL+8gEAiHNDWfL2AQAi61GwyvoBAJMDBI+6+gEBqDwrBqL+AQG4EvmNSwYBA/dAq157CgED035RcNcSAQLz+jUfFxIBAu9mAcDzGgECmTEK2pceAQEJA0JsfyYBAIE7iU1PJgECU5geU48mAQGMjeE6JzIBAgtZqON/MgEA+eok5f82AQE7dNKyQz4BAZavu9anPgEDokPPZLNGAQGpMzHhM0YBAkSHwk2DRgEAGKLk68tGAQEhmWnGX0oBAwutXHkrZgEBKXGnsXdmAQIm/OX904IBAdEIAaUThgEDGsWvZ5eWAQLiqfkr16IBAxwK45OfpgEAu1dzuS++AQDiy5RL38IBAotmtc2nygEAnLdE3PfOAQNg5UfxI94BARvKqAGz6gECo/TuiP/+AQKpfp5sZBIFASF/7lUAHgUBIeGyGPQ+BQGQUrbVIF4FAGSzTwqcagUDTb03V9h6BQMi0uI40H4FAdM2LuLMfgUAokA7mqSKBQOAdCpAWJIFAXEhU2jQngUASqffNXCiBQHTNjLGTLYFAvHiG6TAvgUBx3zw84i+BQP8o7s26MYFAPfPRpCszgUBARDe8MDuBQGWi+29ZPIFAlsVaMyk/gUDB4yZ8KEeBQGU9aWHNV4FAGB3LgPVhgUD+HgeYs2aBQP5wXMnTZ4FAWE5neIRqgUBQqd7ktWqBQLgjQDK0boFAvAM/GctvgUBO1NIZhHCBQPhwzl0Kd4FAMK7+jx96gUD6jWCNanuBQK5UyY1gf4FAtLimobyGgUDorN0s7omBQFbuhqJ8ioFA7FpD6/CNgUBaWA4zyY6BQJKFyL9Uj4FA3ux+kPSRgUDo87S0wZKBQIzqsJfqlYFA3ib45fuVgUCSqPAvVJeBQMla3bntmYFAnBKbnlOfgUBCbSY056GBQGg142rfooFAYKdlg26ogUCB/uHF96mBQLSA7SbmqoFAWo4hS0qvgUCnRCeGS7eBQFbU2OCSvoFAGitxVADCgUBMKWLRl8KBQODMMM7gx4FAuNtycXzTgUCFydF6StaBQFcQ6DvQ1oFA3MxMCz7ZgUDok3ePS9qBQHFAgzBh4IFA+p4cJtvhgUC45+xjsfKBQHJN/ifL+oFA/FAHPZv7gUCY7opWCgKCQClvCQGJEIJAZCKQLdYQgkCCMDhftBKCQDN1twEbFoJA7QjYu9cYgkAEzLRy/hmCQBwhHrq6GoJA/E8KwQUdgkButNL21SCCQBU9JiW4IYJAQstCSPkhgkCXF7am0iKCQPr4DEX8JYJAOG0qBtEogkD44hubpDCCQKVp/y/QMIJA9pxDkAM2gkCgbZFs2DaCQF/IACTJOYJAh+GSQg86gkBg4Akmzj2CQNPkh2ysQ4JAngACSeJOgkDkUBM03U+CQGtEfIytUYJAMBhrOmhSgkBiDT091FKCQNpRKd6YVYJAgqNKtI1WgkAQRgoXOlmCQDv0MMWQWoJAdawQgQNbgkCml2OMoVuCQGYNDPhsXIJA9ntTYpNdgkBs+NlqmWGCQMG0YqGLZYJATpCcw6NlgkDmCmG/3maCQMgq3dmdZ4JAedj7xGxogkD0w9gGO2mCQHJmoM5ubIJA4BGtY2t0gkAUWpcbEXaCQPMoCADQdoJAvrI3s916gkBUxloZ4X2CQL5kgYnkgYJAwPG5S2iEgkB+2iUuQ4mCQGkM9a92kIJAmxiw80KRgkC0jpg3xpGCQMxZkBbOkoJAqzrEpXWUgkDgsa5QPJmCQMCqF25VmYJAYKyB3w6agkDErDwya5yCQO7LDSwPoYJAM4bNTDqhgkCkcEoZ3aGCQJqxzufgpYJABPEEsQ6pgkA2UqenM6mCQNoW7ZZRsIJAe7OmkgqxgkBY9/oqPbSCQHu4xbqgv4JAkGH9KUfAgkCkCX4YNcGCQO5o3eCj0IJAxUnMNc7SgkBa7oNzftqCQPqV+ljt3IJAdsGsrILegkCZbLr7md+CQCJv3FbW5oJApgpsDT/pgkA8sHZllu+CQFJ5RqJ18IJAknYxBlzygkBIDn3PdvKCQKqL6lT38oJAziS7ynf0gkAal3dQefaCQNRpy+x6+IJAyJQvwq35gkD4JEOdGvqCQIydhAt5+oJAVrbt+xUDg0CcfcLXhQiDQO47INa5CoNAZHBO1BsLg0BEp2xgeRGDQP6jfoh8GINAZqSD5nkZg0Ckj5CGciGDQKpC6S5xKYNANJ6W7Gsxg0Bf8p4TK1KDQF4A1w2rUoNAKic8wWpig0BcWIo2uWKDQLFPR2n0ZoNAUMF9N79qg0C8Kxxx4IGDQOQ4zWcKg4NALtoGLUiDg0BqzqHKIZKDQEADgqwlnYNAhBtPCpi4g0A3C7Y4UMmDQHh1gpUc14NAqyQxdODyg0C6DrMAlPiDQN3Uv2dTAoRAdH1UjvsEhEC+zJumnBaEQAuPMg8BM4RAxka9Jo5ChEA57RpxCUOEQJ4OYg2aUIRAgkutHSpbhEC6vRbX/2iEQD5xFkflaoRABysmBuhuhECWTlvm/XCEQDCTh+XqcoRAzx3Z6Ax0hEC8llu17XaEQJjyVz/Kd4RAFuRAKvZ4hEAKI7PjdnqEQE0tjevueoRAVpd+DyR9hED2yeES0n+EQI9glmj5gIRAWXy4Ef6HhECm+0kSdI+EQCGYDDFUlYRA+k0KkgCYhEAOQlsySpqEQLBSXImsmoRAQ2sMFAmghECs49EpcaKEQCEfZMtVsoRAuaBMLmrZhEBaiGfXaeGEQKs6rlGX4oRATDAer2HphEAhdGo6fOmEQChFV0428YRA3cEn92LxhEDma0KqNfmEQIB3/s5e+YRA+hZ3zET8hEB4eKUT2/2EQPxwvhd1/4RAFKl9rRABhUCcsSOELQGFQJ5GTOqpAoVAjBQSIucNhUBrO0QJRhSFQFBWIctyF4VAU3kTIUEehUCwRy/R4jyFQKuApLiQP4VA3J1/Hj9ChUBXYXAPeUWFQMDF74+nTIVARY2EudRRhUCqypRGRVuFQO8JiUagYYVA8IKquKBphUCk8EQwmXGFQDyV4VO1c4VAaPvnkJh5hUCahCQXkoGFQPbIwj58noVAMvXlbqfChUBOSL//CdKFQMDoOWjV8oVA4gB6I3/1hUAwNCeaZPqFQKkp3nWSGoZAoKSoycUahkCTNmX/Px2GQMb4IcjrH4ZAkHhJ7JYihkB95fBtziKGQMgwhMSMhoZAci2ynJmHhkAo7scvbpCGQMRyvSPcooZAFTJOKtukhkDU9B8n36aGQKxZL4zKrIZAlMoAkie5hkDQBBgHa8OGQNjiAo19yoZAKvJrsTH/hkAsJLL5NQOHQFwGXWs5B4dA2EJnIighh0AUp7hGJCOHQHD+NHCRKYdAojE0WJExh0AA+6uYfzeHQIv5TGuoN4dApjN7l4s5h0CTpck/XkGHQLykjJKHQYdAiNvELTdnh0BWiz4oOmuHQOoYmu88b4dAMuLyvT5zh0BWJHWqx7GHQPppr4bHuYdAePFR4EK7h0A0PDK7v8GHQEz0f+m9yYdA/ZNUCWM3iED9ICIZazuIQFL/YWrGbYhA0O2b73xyiEDut43Yf3aIQIgLsx9ZsohAj+VOx122iEBsAmvNVLqIQP6qxPbjuohA+G4CrunCiEAgyy7R7eSIQA== + NrgMGZxjYkBGCTcNzmJoQIGrr+J9g29AChqGaTxicEBlJtC0/7J2QFTl6VbC8nlA830c1NfDfEA2bp6nI/qAQIa6N2auYoJA/ZlEt48ChEAqoOlc8SqHQFDCABkwe4dA3+peDlxDiUAhf2mLKMOKQG4TvQOIC4tA - + - 3BRURDVn8kVZhKREx59RRAIyRkS+hEpFnjA3RC//jkTCLpZEar5/RHfyFkWAhglHGN+QRKTfsUR3oAlFB/tfRN7jd0UHtHFF4hKURMVTWUQktlhELYxDRALrXUURQE5EkgKBRC10YkS0289Ewc+ORDj43UTYMV9EEXIfRcMvh0bmkxZHlWoxRBvLoETcoopGblnpRKoDkUWHvJFFfFRgRDanQ0ULXgdF60yJRvP3AUUq6I1Ec0GfRaIWh0TZagtG7MiGROzmp0Th30tEu1OBRWWQMEUEgnBEnssTRkIGQEUuT3ZEh61VRXFcmETgpRJFvG7ORAXMw0QK5YBE7cqwREfFwkSA0HpEbm1SRA/ykERDrG9EakjJROsY4kZ2XFdEKByqRDTgsUXPr5ZEzEl3RCLfYkSB5+9EO61lRHV9mUTKbGJHwfGxRMy13ETiS11GyPwGRhKciETTH+VF2dR9RNM1eETJ58xEmAXgRIg3h0Q04lNEQvx4RL8KSUXOPB1FBdDsRGOHQURg7KREpLUERjTBg0RDK0BEPAfURMR4YEXJCxdF6o1VRJn3tEQ4gJlEtpmwRcWeyUVoQkdEzwB0RPy26UT74XZE6AclRF0s3ER9wDpGTMPfRItwXESjRXREPvpPRC2OaUT6HVxEuKVZRK9ec0Uh91xEXzysRGtyoUSnFi1EB5kTRSgZkkRLSYFEopiDRO/5ekRiX4hE2ymURBrQhUQdn4FEG8LdRaT9WkTWtklE8H/ORIiYmES62BJI3nklRZVAZkXAg5ZHollPRGNEk0QfuJpGEvg3Rk5qw0UN3KpFHylbRJk6UUeFrvVEcJTiRBBp2URe1zxFvU/1RUqSP0T/JVxE9JPsRIPRuEUByJ1EjBRJRFRcLkQZEPJE/DNtRJuC7kSNcIREOXO1RJttLkX5ZHlEz77DRMSpBkUDYDFGdKCGRJSDekX0hbhE34m4RHekWkT7pFdEzMu3RB0zwEQgNZJEp1QhRUbeqES4EEJEzuryRJrSlESMxoBEF+OaRFWy2kQm/d1E+dkTRYWmR0QINm1EwPaqRBMYhkRcIUBEelajRDmt7UUEAltEf10uRPX1TkSF+4xETWjhRFrmW0W3w9lEhh6mRIQ0GkVPHbZEhm0tRljNh0QpF5JEVSCyRKwNFEVK3VhEvxoQRS28ZkUHwPlEsbxSRIAHv0SdbG1EyX9MRHJeikRC5Z9E93NNRDHOE0X2KktEhA5AREglTEYm9TNFp0A+RBjo30SvCAVGEM17RPw93kQKENBFWU88RAUJgESwh3ZFz54rRTniY0Qp23FEYrKURMF0pESZqzdEhdZtRMkVgkRSyZpEqERJRICbM0RCl3tERDZxRLzso0QZxUNE4qVDRCuC6ERZDpZEBgI9RJqytUQ9PotE5eKGRGdDY0XUpFVEXsDpROUIl0RP48FEyJiNRQMrDkbwz49FPZGcRmZlk0R/3JVE2pD8ROjQwkQmfEREYdR5RQOfckRGbKpFXChoRJQogkX0pIlE9z+ARIO8MkVggSxGnc1qRB9uHUV749VEWbiPRGiIhEQ3rqlEaKM8RJ/jTkZQBKJEF/fsRR+cD0VdatJEaYJkRHtb3UQ8a5lF+bJTRCwfcET7Z7hEGV/ARKvRGkUY1KpEU+pqRLIgD0UajoBEYVRMRO4jUUQ8B4FE+im6Rh32PkU9EGtENydCRNLBRUQg1y1EiEqURFyy90fGx19EhJuURvExIESwJMFEWavIRsvRhERqXWlFxAI2RmKgkkSoN+BEgnFjRAwbXkTPyINEvNWMRMDlDUWzAyhEROcIRXLvVkQpczxEneIBRe4djERujpVEJnOTRHirVURe3VZEWaxSRIM/rESTuWFEtCWKRI4GeEQ6i6NEPs7ORKGzmUT0sktEAFWMRaAEtUTi+NZEo6FYRBaah0TSzIdE8ikARS3FaEVzbkRGc+A3RLm24kRYE9pEi8avRR2sH0XgOgVFbRYVRVC1vkR/0oZEukOIRK5uHUUDbq1FjdhDSUnDf0T/GWVEWLtqRhBwGUU9mBZGLMZWReQWDEUG1TZEwcpHRZAdSEiSujhFgrnjRCfIg0ToAYdFfDalRo1viEQN27BE7aKxRCBZJEWp0p5E4zytRKSqpESK45NEErHaRDgWQUUX/5pF30O1RThY20Rpod9F8yPCRNUYCUV8noBEN0A1RPj9T0TqSKZFM8FXRb2d2URJVwdFObGORM94bkR2tu9EzKaMRHhBc0Ub2bNE0L+QROkqhUXcFq1E7oWDRIdmakWNy0lErMuQRMB5nEQA4oBFDMjoRbXz9kTiAGpE4PzXRP7zTkSskF5E/7YLRb/+3kR8iKdEy45XRE2qLUWP9ORESwUrSMKIiUd11pBGYHS6R9E0pEVTtYZETpGLRC3fzUa0Xg1FmegARbxLgkQQPsxEzDvLRB3imkQCwKREfVWVROkUHERQvhlF5V+uRTRpjkSXvp9EYCd0RB0USETGCThEkjXhRFhOY0SotXFGB1FlRFJ1y0TbwphEuISYRDXpQUXqmjhFSUAQRWMFl0SstYREOWIPRj5HGEXaA6REXPXXRowZp0Y/wrZFlIRdRPHHqESm/BFFRgqKRD5t4USrSLdE9oORRnkMdEQOLUJGijPQRNEbmUXsKFZE626ORdlFk0ROKJpEGf+vRc+AaETv74xEYtGkRNJLV0RxFU1EFLNkRIQ9mUSQNhhEuc67ReZEzETsgGdEZujAR/CvFUWDY7dGuFqZRHYzOETkkhRFbDOXRn7ZhEYH1txFw0+HRMMDakXpWTREXAqURHj3h0TnWJREFJsORm3n00WZleFEEu/kREUxn0T5b4xFKVViRAZSmEXdlNdEGRBZRhY5iUQxQ3pEIUhHRUwYtUS+iZxEf+tsRA1zekTEb7ZEJWFMRHwrmEX8D4hEWcNKROAbpkQMqSZEviMVRcHDKUUlsgJF/RfNRHW2bERZlFlE/EAsROQcz0QNRE1EKwLCRMh6hERGMZ5EGCZSRdrfNUWsHKBEIwSaRWJtpUSkKIBE+LpORKakaUTU0LtEMvGkRBUdnEYaG0hEgpjMRc28QEQLCIpEniPbRH5OGEYSgKJEqM4FRilTR0Vtk2NEcTO+RHDxwkYbGWtEfwGlRvmjYkRNIsZFJzjnRJ/CL0QNoqJE8qBBRGCeWETUa4hGcTmRRsAUAkYHNkhFmrngRBTMkkRWkXpE2zWJRG/uJUQqFDFEbjhoRVWgFkWzQJxEzONnRLTW4UbfnUpGsTtPRYrfqkVPMGBEQV+iRF0OcEQ74y1Gq35FRIuS2ERDMbdEYZIeRe6NaUSCuF9Et6neRK3PskQ55z1ENWxkRMr8eUSGYzBEXRiNREMxJ0TlbIFE30tTRMQpUURen6pES6OERGWAzEUIOzhEQUgtRG6rjkQYDnNEmT3LRCGAOURXK2RET4hxRJXQh0WZcnxE4c/sRGfITERehBlFoZFQRsU/nUQzodtE+T1PRTm/iETji55F2wh2RGyAT0RMKmFEbNxjRFYFB0XHlU9EQEg/RJ07R0ROAldFN4FWRPZPMkSLQ8xE+oJ+RGhU50Q8XwxFXMxwRMLBSkS30mVGq2ZERbI+bkV5dtpFQRTtRL7kAUXbo1VF0r00RToeFUXL6s5E07SPRAxNW0Sq0o5EsPprRKj/9kQzqU5EDBqPRHIBkUTdPh9Gs5d2RO6NokThcltEciYRRcTv2UR4+pxE9De+RJQwmkT3pX9EUpeLRFksgURvip5Ee3pyRJxkr0SO7odIDKCARKjAakR4Jl9ECc3pRLn5SUTeVMhEPz/4R+Th0URpXkREppepRIN3ZEQo321Ev3ChRHfNm0SPgn1H4ziSRYS6TkRt+EhEchWARm1m5UTrTTBEVUOqRXrmEUXJO6tEpkO+ROPZLEURvDdE80tjRLMt8ER7WYpE3TdOREL4hEZdlzdEyQyoRWwErUXvZS1EVysKRfEvM0RcoQ9HeCGURJ2eQ0QLxnJEOQniRQSYk0Rp02dEHi1yRaLAhkR2h75ER66PRVjLmkSxS0dEZd8wRmxhKER1t2VEdFNrRF8K5URfi3BElfyRRP++fETOHFpEkbk7RKlfiUThAjpE3MRhRIkEYkS3S4BEkYVnRF+7jUgVueNEI44pSCzbUUQGivZFvPUaR6oijkQ3jsxFQ1GiRRecFkXjTPhEkRxLReP9JUUCQyJGuBkDRW2nYERpKzVF1n5CRm0ZYEXpSyxF49hFRHS1V0R00ttEzBa6RL9X1URiRUZEwlRjRBINl0RBbXFEAYUTRT6UgUTBUmBEwqt9RKtTMkTte3pEVnRKROGkY0YFOE1EslEPRqOyWESpkYtF6btIRG54aUUUu4VErnARRa1h50TQxrlEDtf1RKl0LkQ+7ExEgM+WRPorsEShBAFFCmRTRNGrnUTORlVEnemORLJQRERcxLdExxnARMhY5ES57YZEnrsvRd3VS0QDLLJEq6+vRDtapkSIn7dEW7Y5RYkhMkVmCUREfR+URP+qp0R51PJEUJhKRcQxxEQzjp1EASioRP/j30Rqc7xEpAWoRCKtR0Xu4dpE2WpLRD7FzUcLqFRERLwXRz0QUUQgGW9EUqm6RHEs5EYf9txE21w9RIJ1hkRegMFFA/PWRXbiLkVpiedEK948RZK6HUWwDYZF4pmlRBsUU0RdPDxEU2ySRNieMUTb5ihEIs1bRBavyUTGT/9EYsVaRPoNbERNt/BE38lTREAsokSPhIxFbe6WRCUMzkVrAqpEL0/cRTaVFEVLq4hEAyh0RPv/ZER+dktENqqoRc9uY0T8NbBEkuiIRLx1+EctoE9ER9lqR2ykEkfxTv1F2fYlRczob0SVPIlEAgQ3RCpcxEV6WUZEP+qsRF7JXUSNzhxFBxiwROKDXUQx9atEgjZTRA5EaERxg69ESI6RRMnokUT0HQNF3AegRKyNgURmT0xEpghKRJDGXkRBUYNERuM8RAr5ukWhq8VHfQyER+CNDUXXNcFGAnFMRDTtm0X/h3BFqcLMRP5nUEUsnnJE6Zn0RMtWlUQE6WFEYN+ARNOUZkSX6dxEsF3yREWEhERZ0r1EchJgRHaonEQRNTZEZlUMRzQSdkZudV1EWQPzRUU9+ERmroJFGz5hRYSYPEWTDJREreoEReu5akXTUSlFh/eyRIHIEkXkZh1FVcBjRN0SZkRJvEhEOXwcRdHNk0RMF1VEq1dmRD/sPURpH39E/x55RLaCqkQBexlHFSOKRhXBLEYN5cZE5RVeRVf9fUSSx1hEmIsxRA3SSkReIYNE5QCbRGPshUT1+3hFuUKPREMKsEXxnpVFUnHYREiATUShNu5EKi6QRIBARETweL5EDLexRGICk0R9zJBEQHnRRIz+a0QOA0JEIE/DRcPXfUU3qsdEHNMsRJuDUUQ3JhRGqRCdRdgDj0QU+k1ExzU3RbSZuUQBA91EVfYZR3bs/UYYDXhGCVcDRargFUbUo8hFo0vLRHPRSkVMM4JEraCMRKKvMETXvKNEQC4vRQEP2kR1EJJFJSlnRTcTpETL9KdFMxvURLITZEQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 4K6IEW/BckA8GaZpT8JyQIxTixDlwnJALi24zznDckDLU+NpxMRyQMErW0daxXJApLxsLA/SckDYocdfQ9JyQFSCkr7R0nJAjueCTXjTckCI/E0dYdRyQDi5UYSN33JAZENIwc7fckDSZ67fuOByQELrbYZP4XJAJ/Df7VDickBcz98lkOJyQFFmNggm43JAUKiGg8nxckBlUc52EPNyQPiHGSG083JADjq/9Az0ckAW2VMJofRyQFjiCtz3AHNApm19cxMBc0BSH87jjQFzQM1KEUQ3AnNAupg36c8Cc0A8tp2wZQNzQB57BMD6A3NACruS/t8Rc0CDVAD6DBJzQEZT29InEnNAiMzp6LwSc0A2hFGccBNzQGLB+qP4E3NAEAr6Gnkfc0Cmrah3DSBzQNHaSzk5IXNAEnnbX2Uhc0BggICFeSJzQMRmTC3JInNAAgb95Q4jc0BX0gquAyRzQBitaobOJHNAomkGcEYxc0Bykx4I/TJzQJiKRvWiM3NAgG3vxNQzc0BbpTVSOjRzQNa5VLzbNHNAveOYtbg/c0DY0BYL4UBzQMi5dV94QXNAovWNTr1Cc0DROBUZekRzQOgWYNGZUXNA3Yr2FBFSc0Daxp5XuFJzQHb4D8sHU3NAZGgiFkNTc0B4d7Iuo1NzQAvW59p4VHNATNAOzIhUc0A2u73e+F9zQKwaOIiLYHNAavhFuodhc0BGNIb1H2JzQKwZ/AhnYnNAT0NW9Dljc0ApJ9725nBzQLgQKhFQcnNAEuA2Mvlyc0AuV1TluHRzQKfsQ0lMdXNA4MWBofF/c0CpHZKoeIBzQOY+ZtSjgHNAyNj8+AyBc0D+R6zFXYJzQNIaJaMOhHNALPhxbIaQc0DLTX5STZJzQPCnxv9nknNA3oZykNKSc0AYj6tEYpRzQNDkGYn3lHNA9s3o97egc0AF83H8WaJzQBP1XZGPonNA3bTnFiOjc0D4ZxIhBaVzQOT/tCjasHNAQuBHmDSxc0C0edZ2f7FzQFaP4bgQs3NAelKzo7azc0A+00z4DLRzQEB2mstjwHNA7wkZmJDAc0AnQP7d+sBzQBAmnpnPwnNAUpRtwiTDc0AOtx1vxsNzQDy76+ly0XNAAjHgLNjRc0CHtNPQJ9JzQDwg0yVE0nNA6YvOW2bSc0Dc2uq599NzQJwXbwni1HNAWkv4+aTgc0AQYUrGN+FzQDidC39n4XNAZumpEnvic0DLe4crEuNzQHw0m63u5HNAn2blQzb0c0AFUVM2eQF0QMRLiSIkAnRAPE09ylEDdED2DMO65AN0QCScLmt4EXRAaVH6a4kRdEA6fcHPphJ0QIVgF/xNE3RA1iW3bksgdEC+pDjTuiF0QD4t/iBmInRA+nT+cLEidECEaWFYUjB0QH2L0M1PM3RA5+Ih/OQ3dEDouTScVUB0QFgLKVVeQnRAmiK8XztDdEAGghfxeUN0QBgu0uzQUXRAFSI0T45TdEDsTJ+1jVV0QBZNby4hXXRAsp+KQrlgdEC8qIkPCWJ0QHG+9zR6YnRAYsnFMFFkdECxiwV+w2d0QOYSDgLVZ3RA4pSkIB9tdEBUhsMwL210QOrRkqQicHRAuNoUTEFxdECMTrTNoHF0QO7zof/6cXRA7HbIT3tydEC8R3nOD3N0QHJreuE5c3RA4Iae2Qt0dEBiDfuipHR0QIYmOy1ugHRAKJpoA/iAdEDSo9BFToF0QFTnenPvgXRAWzjZK9CCdEAoKlMdJoN0QHI3Lv4WkHRAsgS1Dr6SdEB5t8MF7590QNf/DEOloHRA9s8SoM6gdED6jHJoN6F0QFwHuIQPo3RAWG09wPmvdED+OHRgCbB0QLlAyEbDsHRA/WpHeUmydEC+aOGz/LJ0QDSlSLZvuHRA2VmV5ra/dEBy0yKb48B0QPZ4SMoRwXRAXlx743nBdEA3+IiRusJ0QDjHOC1Qw3RAtrbSLiLEdEB8c0mPuMR0QNL2WgvIzXRA4rvZnf3OdEBsXMVjBdF0QP0olNk20XRAgOBNjV3SdEAiFntfPNN0QPImEC/g03RAbFv+kNDUdEDoAAQat+B0QDzPeWMh4XRARO3XdzrhdECF/3doueF0QPxmblz54nRAsEq1gpDjdECaU56WS+V0QJQ70Lq98HRA3kbFpFLydECyIMr3jPN0QH2nw4VRAHVAJPO7IdEAdUC2SoWSZAF1QJCvNqNeAnVAFsWi2aUCdUDIST2nlxB1QFAJyfIjFHVANb/d5I0VdUCF0nVEnSJ1QKyqbPxdKHVAWMW8P30ydUB8inIVqjJ1QPtVNdvLNXVAXyjboCZAdUA3un1tfUJ1QKQjO0PcQnVAahq+RthHdUCKr5+n8091QBwsi2WCUXVADOkB5nZVdUDkwMTqDWB1QIBPexVlYHVAuqyFVaRgdUD2Zb6YN2F1QCLL8330YXVATXHEGBBjdUDVHsvG+mN1QGr9WS52cnVAfmBtYAd0dUDEm6K+jHR1QDsiJP15gXVAtczqNq2BdUBp52lZ6YJ1QHuGPxtQg3VAVOFmvKeDdUDOmScb5YN1QEbqQUybhHVAgNuK0YqQdUCI5zrqvJF1QN1DawFBk3VA+Kw0oZSgdUDmbmBIt6F1QL7uovOOo3VAOipLP0+rdUBSRbKPlbB1QLdGlIW8sXVAYvtbaOiydUB0tU91OLN1QKapFIt5s3VAeMK0NLLAdUBPTn4B0cB1QAr1tdb4wXVAQq+H/6PQdUBK7Z4T9dB1QGQiQYG+0nVAyguxfszTdUBwrBCWDeF1QPYcPtoH4nVAB7TyplLidUAUdxJ4RwJ2QKfKderNA3ZALGGgTwoRdkBqaankSxR2QLpUZ9sMFnZA3uVgIUgWdkCyT2TOzR52QN2o8YiIInZAVnRJDZAkdkAOALhKTCt2QKHHj7EfMXZAEQFMVCUzdkAuPC1aUDN2QNxg+WK6M3ZAEOdNZp40dkB6BolSTj52QBh4ZoFeQHZASG0zI99AdkB2xXKNHkF2QDaQEPjIQnZAZc58SaZDdkD3mFsiekR2QERbfp/5TnZAsaPY8hFRdkBzr19uzVR2QAYpOxQiYXZAMsUdGwBjdkAAyKSI2mR2QEYYJZXPf3ZAiBEBumSCdkDCci60PIN2QGpamAqRg3ZA3tU3h0mLdkAbJh+PJ5N2QIn1NkFRk3ZAwOcq7eqddkCMPjaIRaN2QIazzz2Lp3ZANEiwrI+rdkBF7BjctbB2QP48oJPCsnZAff0/DJmzdkAQY2LUDbR2QPGN8U6Sv3ZAAstudk3BdkBC/VhH38J2QGbKLf0YxHZAnkrvpM/OdkBMkYp48+F2QMH3aH/T4nZAImE+wA7jdkDh0oj9j/N2QF6orXI0AndA09lpAgESd0BDmOs3ZxN3QPPY7CEPIndApO+8ugAzd0CIV9M1ozN3QBvgkzQNNXdASVzXink9d0DaZACgykB3QO7mcfmcQXdAPK+Uk7dCd0AobixwkEN3QMGiIvUaRXdAvQpg5UpRd0BGF4r4kVF3QHL6avgqVXdAaBhdfjZbd0B+hHWYkGF3QE78m/A+Y3dAQGsAN3xjd0CBsBMcPWV3QMR0OYInb3dAFqlJfxNxd0AompJiPHF3QHabQ3D7c3dAqhKTx5F0d0CMEmzZGXd3QKR4QLQde3dANvwpT96Bd0AUOQmPd4J3QMh+3Y5NlHdASCkrcJmbd0ATcvn1o6N3QCof5FyfsXdA5MKpVpq0d0AryN4cpNJ3QMAlbNpL03dA1n/ssXbid0BgCAhIFO13QG21aFRP8ndAwoqJVufyd0DSMC8VvAR4QD6KaMVMFXhAzvsc0G0ieECwGVEt0SN4QConMc1XMnhAoDKqW4QyeEBCi2MgsDd4QDZ5SmsLQnhAr5bIO/lCeEBCNON/60N4QEK/+g4TRHhAhFuBX3pFeEB0/sC410h4QMA4Nx8yTnhAwicHZ8tReECiANQkEVN4QAZfoMOHVXhAhzDDFPpgeEDRV29ytmF4QHo1QNaSYnhA/joTqrtieEDFO7YKinJ4QCMpVZc6dHhARiZg/1B0eEAYv8fpZnR4QAbh9PSLdHhAcrkIA8d4eEA+kQIB93t4QL9ZAVAifnhADmsGAqWBeEAobmdDNIJ4QIy5QdZ7g3hA3F4GlP+DeEC0o/cImoR4QAQwcWSCh3hAH2wSpuGMeEDRwYRamZF4QOhkgfmnlHhAlDj2F1SgeEB4conSuaR4QHjAf36Hq3hAFvORISaueEAS394DibN4QH6UdTils3hAonLHPM7AeEBiYlIa9sF4QNv5Hoo/w3hAp8I/hbfUeEBaQkxyLON4QFJturkC9HhAqE6X6Iz1eED1C9LRmAV5QPLb1K+FC3lAOgn62pMTeUDm1lXrlBt5QA6+ScS3I3lA2OYRc7IoeUD8SFXSDi55QAyrTZekMHlA5Mkbi9cyeUBWuXeWXDN5QEZnM+W0M3lAJCMsFyk4eUAsDWA2+UJ5QJd5gE/HQ3lA3nXYmM1UeUB3KXhu3WR5QFI42WeHa3lAOLFAI1lseUC4VP6b/HF5QFYv4+zTc3lAEGSLWTR0eUDaA+L+3Xt5QPq5rfAxg3lAeJMFwDuPeUD2NLpLfZJ5QFdXK5QcoXlAQ2k5zL+yeUC0kbGp0NN5QJPEz/FC1HlAgl7lz8/VeUDe22Cb2+N5QJ6nmIVR5HlAUtqddA70eUBMRx/bOgN6QPxqBTv7A3pAdrfgf5AEekBQ1QwlRRN6QEZRj6RSIHpAfEQAmSgjekCqQ9I4WSN6QHm/oN4uK3pAloAxYiAzekB2i8EpNzN6QEXEv9gMNXpAsIhTCCc7ekBK2nGYK0N6QLjDtAkaRXpA2P1vXEFJekA6OMrJpE56QAlaC4gpVXpANGH7BSNcekDqxQ3RKmR6QAnTy7M9ZXpAly0h0DhtekCqH3UQiXJ6QKZFZp7Bc3pAeqmRER15ekDtNE2Qgnl6QHBcLGtyfnpAZ98L7tx+ekCZxkYeOYR6QH8/co4ao3pAkBy9wwuzekAgAb17DLZ6QPCd1YRGw3pA3H69SBvGekCgsrzz1tN6QHZ1GCFk4XpAOnzO2jvkekAqxtBgfOR6QFwMfUE27npAzO1AxhbxekDA14VmX/F6QKVMPIpJ9HpAiGHxnRn+ekDqwXUnxAF7QEvMGF58BHtAjRTrYcQLe0AWYEFyKQ57QF9JcT9NFXtAigEs8Fkle0ASPxp1xTN7QPMSR9mQPntAnHgMZulDe0CuQf7dQ0l7QPCl9uXFb3tAyulk9OiQe0DbV/RQJZV7QNCjUpn5s3tAy2wRGb7Re0BPdLtZVtN7QMMAIC3+43tAfmbeYpfxe0B9mIH2HfJ7QAyDOEqM9XtA5pmBfC77e0Dyfs4SkgF8QC1THNPZAXxAGl7ZffgBfEByTzBVaAR8QOxXPraaBXxAjxKR9IkRfEAZ6H/Y0RF8QD7Dwo7NQXxAHpOvur5OfEBmsI4y2lF8QB2ucwMOYnxAXEBl7W9vfECQ5lPiK3F8QLGSVjEDgnxA+qVqZDaUfEC7+LBUL5d8QKHnfOYmpXxAcHJ5C8GyfEAYg1PwerR8QEw2YJQQtnxAcLSJymfEfEAOb/wuetR8QAwyXKXK1XxAKXQwe/3bfECGR7Kaa998QPRxO1ZY4nxAtBKUO+zjfED6U6MiFvJ8QFz3aUhV8nxApjnmfv4BfUB8hQVvSwJ9QFMTR9EABH1A7kNYEggMfUByTkw8RBJ9QKXD2eIMFH1AOBcGCTwifUCA7uHEayV9QLjrb2hHOH1A3cc0waM9fUCS2K9x+kJ9QEgEtR4oSH1A/36BlD1IfUBw0+9Z0k99QK1mlaVrUX1ArM41WNpgfUAma52+HnN9QHAfy3V5eH1AKGyIMiCUfUDkNE4N1Z59QPoB0Jv9o31ALsc6M6ekfUBlPzchu619QIDJMI20tH1APKZsVya3fUBRaAHtKLt9QNiqTmEov31AIsPVgCvAfUDiYouYLsN9QFNcz+MrxH1AnCxL9+XEfUDMW1KRQ8h9QC7I77M51H1AsHjJ7ZbefUAARjd32eJ9QCLUMDSq6H1AkCy3DZD1fUCgtYB9hvl9QM7Z+B8X/31AnRKxUjIAfkBULxtsogN+QACBi9CAHX5AbBOKT6QdfkBBpzVZNx9+QGpGKOMjIH5AoYDNFwUjfkBgBC5UDix+QCp6K/0+L35AamzfHsAzfkBiMGqfpUR+QPkJ+oW/UH5A0PyG6/dTfkBNFHdUkVV+QGgGxoYfVn5AdKTXGy1XfkCOMZ9t+HJ+QI9G6JaNfX5AfF2FWuiCfkCwvAb3n4N+QCrYUiini35AsE2t/VaSfkC6WUOkj5N+QATWCeawk35AInjM15mUfkC6mqAY85l+QKBZCECam35A0rgeGk+ffkDODlkEqKR+QJlK0uRLqH5A9hhUzvWufkCOpst7DLJ+QMy2Lt18s35AAD+950+0fkD2BgOcJLZ+QAyyENCnuX5Aa95sJR+6fkAuSMXAGr5+QNiWw28Cv35AO4ley9LEfkBobFVluch+QCKuuMUayX5Aqg8bQ/7efkDtKAY9xt9+QKjKj5YD5H5Axnsi9gbofkDUKK9Aeet+QCIR0jsK7H5AXkjiyg3wfkA+bRU8APR+QL/1O3Z99H5AWDaSd0L/fkDuN/Gn4gN/QBz4qE+rHH9A0uRuvvocf0CyBLs0XiB/QCreK5KjOX9ApK4ciJM7f0CSZ331T0B/QKU90G5oRH9Aui65Tb5Jf0B4FP0UHE9/QCoDILC4XH9ACZDzKsBkf0C0KdOryGx/QFZaTfy2cX9Ahmb7Ocd8f0B438mUtIF/QAP0FCKjg39AbiISN2SRf0BIqif6lpN/QERvzAI2n39AqD5Bwgmgf0AYaA+tX6F/QAm9qe/5rn9A9BpnJ6Cvf0Co412xVLF/QDKHs5lruH9A1MQx8MC9f0Bc5tnI/r5/QOg3HmcYw39AlQ1jvK3bf0AcsWZ4lfN/QCzUfHp7BIBAuKHbxM8FgECk95eHSgaAQH5MoDHQD4BAQAtudw0QgECYeZgugBCAQFYJuyR2EoBAf7HWHbQTgEDIlC1qZxiAQI7hYEViGYBAlaKT8hoigECoUvBMbyKAQEmZNm2JMoBA4EyhRQE5gEB+0QAt+zyAQMVIVE6pQoBAuIK//CFGgEAqI6OY70iAQHYvhsPDSYBAeaisludJgEA0WXayhEqAQC5foH/lUIBAFOwz3hNRgEAg1EKtBFSAQBKAGrwtVYBAtuj0mgVWgECK9NMRZ1aAQFr1ad0BWIBA4KSPsyZYgEBYcy1m6FiAQDbczygOWYBAVVmlzQVagECCrw7DCWGAQL4M7h3HZoBAHLkwWSJqgEB9uMIsKW+AQIYsC3X9cYBALtJilhVygEB6xUUvwHSAQF5F0m8ld4BAWyOB/IN5gEAskDETMHyAQKgCmnXhfoBA/rnK+Sd/gECjU4Wiq3+AQK5Yr9koh4BAKB+pAVmIgECSwJ/7/Y6AQEJXA40ej4BAypmyCc2RgEBkZ//XVZKAQCTegHxIloBAQjdLGR2XgEB2jLuwK5mAQCwQCMnFmYBA0nV4FEyagEBPXiptk5qAQAyCWf8TnIBAdZMELsidgEDKLR7o3p6AQAMKO1gan4BAYmcFUIyhgEDKUEdmB6SAQIJB3Bx6pYBAJAaH1vamgEBlqD9AhqmAQKxpXv68qYBApCFtMIasgECDpxyx3K2AQE5Stgk+roBADX7GTROvgECILmhMqK+AQKgpQ8BksIBAc2cPB9qxgEAXMMR8grKAQOI3bIKRsoBAmkkpXBi3gECT7l/PmrqAQCrvgxgTvIBADPiid3m9gECOx8Cai72AQNFub3NCvoBAsE8gqlLBgECetbrcoMKAQGYtIf7ExIBArvhND3PIgEBMP4fZHcmAQAO2taJTyYBAsdZ5sOfJgEAG+q7jk8qAQAVdUdtPy4BAvwa9DN/MgEDK+g8ZCM+AQBQswFypz4BAHNrQXxnRgECewyVyLdGAQG6xIcNM0YBA6BvcrALYgECQUk+XStmAQCDsaI6i2oBAIrAWghPcgEBgFUjKQ+GAQC30ZEX844BAqSLxJM3kgEApuN025eWAQKT6qUH36IBALt9k5iTpgECSpleuR+mAQJT/w3Xo6YBAkjgLS+7tgEDzmHnuS++AQFAqWz5o8oBArnrxg5DygEDk83VlP/OAQBNz/czx+IBAHFJKexr5gEC863JfavqAQCDRdytA/4BAWZam6eX/gEBEFp0kPweBQLLfklc+D4FAuK91AfcRgUB3cKDKPxeBQBvXikypGoFARYKI7jQfgUAXJi6lsh+BQCZY0h1ZIoFAFwuETqsigUBWi9yWNSeBQDaczLC0J4FA/6Nbs1wogUCEf5w+MiqBQOIfTj3iLYFACjL+p38ugUDcbACV+i6BQGYZqkIwL4FAKKfoVr0xgUACNb6lKzOBQMl/slEyO4FAvAu7eSk/gUAuuMrAJ0eBQGaMIcWkSYFAnOLJR3tLgUD+/fqZ0lSBQIj7IxXsVIFAHPfoJxhXgUBSqBmWsGaBQE40QrmGaoFAEgEcH7RqgUDT0tsMbnuBQE9AXvZgf4FAtBK4NPt/gUB4yFGKtYKBQHSRSRpdhIFA/qvDZc6JgUAGK+9y7omBQFc2tCV9ioFAIyv5W/GNgUDfwuuhVY+BQFO3aKzzkYFAatz6vumVgUCOkSKf+5WBQMrzFXwil4FAXHmEG1WXgUDwR5R+7pmBQES4Wp/VnoFAJ9jAY1SfgUAIjdm96aGBQLCbCizfooFAOsfqgG6ogUCi7oG75aqBQNzWrgRJroFAjbgaLEqvgUBuQAbHa7OBQMEx1zZgtoFAqMAGfUu3gUD/Su+ECryBQLtn2FeUvoFAsu5a4JS/gUDt/Z9amcKBQPLGt5RzyIFA3qBFE33TgUAaeMDYR9aBQAQMZYcu2IFAccOxW07agUAEBlh1ztyBQBFcMaej3YFAHXhCqfPegUA88YCHTuGBQAl7GMGw8oFAnZlB5AUJgkCdQXe4VA6CQN5Y+CW1EoJAAFstLtgYgkAI4RK0uxqCQPhZEbm8G4JAhMAr/NYggkBx/2lZtSGCQGXE8zv7IYJAKfXdUNQigkB0fnXzQCOCQGjeeE26JYJAzEiMcQAmgkDk9+ad0SiCQP5f9ntsNIJAtC2Vsck5gkCcr4I+zT2CQE6F5J8YQoJAumPdF0dNgkCh/TtyE06CQH5VFPGiT4JAjiF5+kxRgkAQS9AbsFGCQFjPU1EIUoJArrgqxo1WgkD4GEd+E1qCQP7oOE2TWoJAuBblrdNagkDitD27AluCQAWKQD+gW4JATlOlt39cgkAqICV+kV2CQO4S/TinXYJANiSf5pJegkAmUxdfoF+CQByGkkqtX4JAmPMA4plhgkCqCWyCm2WCQNnn32feZoJACOAHG51ngkCAM97DbGiCQG1w/iw8aYJAqBF48QlqgkCk3OtoVmqCQAY1zqbUaoJAGIyQLqRrgkAcY39ibXSCQM6D+QpKdYJAnjL3rqB3gkDPHCafa3iCQACEBRPbeoJAQ8T7H+J9gkBAPKVORYGCQPiNfjPlgYJAnUlQ9VGCgkAH2aken4OCQAiJ+fVqiIJA6TRG3yKJgkAuvTZwQ4mCQGS6OzbdiYJAuxJrIWKMgkAAXo/nQ5GCQLxQygy7kYJAR+zlJnSUgkB86WjxEpaCQCwX0jSgl4JAsl1VuzyZgkABWoh+VZmCQFN2jSEPoYJAoqwBqzuhgkDGkY593qGCQBiflnHipYJAUM+/qZCmgkBej8g4DamCQAQ6ASAzqYJAnIcnOVGwgkBWWNcmBbGCQBQd612qsoJAED/TF1i4gkAgSN6/S8CCQMbHmIK3woJAWgfUeuvFgkDe9cwmANqCQAoCuUZ/2oJATOvdsrjdgkCwYcc1A96CQBzRyEqb34JA3m8q9UbigkDGT3QE1eaCQPvvWP3X6oJArn936nTwgkAEfbikdvKCQDRgkC6/8oJAkPFShnf0gkBWBku/efaCQETInU17+IJA+n7/n6z5gkCunbD0LfqCQIv9r0cVA4NA5MoihBYKg0DWmBkXPAqDQGgECT+6CoNA3pGliR0Lg0BeQNbLeRGDQIOG6NLCEoNAxBarC3wXg0Ao9ZiJ9ReDQEqrw8Z5GYNA92Bstqkgg0BfBWfCciGDQK6UN8CMIYNAhr2bTnIpg0Cxp0373SmDQJ1PgKppMYNA5MBnzlE1g0CPLKh48kqDQJw3jWrBT4NASTa48qlSg0AxjTp/YV6DQNseW8r+XoNAQv1rbWZig0Cq0cAfuWKDQFbuAny+aoNAAGRmfQqDg0Cmz12pSYODQKost87xhYNAWMXfATKSg0C0h7iIJp2DQFyQQ6BFqoNAkmndC3O/g0AWeggjCNeDQH2qi/Hy4YNAREn7t/bjg0C5q0iH4/KDQOZSv+GT+INA1xc9Rjb6g0As5ZqJqP+DQNzqhTFUAoRAYMhhwysLhECQ34/FlxSEQOp2EQmdFoRAvPKjv2YkhEC9LukpzSmEQOjkyQMAM4RAjBI7XIJChEA/N9pICkOEQEjGd2uYSIRAWHAGSilWhECwxtW8J1mEQBoXIm7/aIRAlh9aj+VqhEBqXsfW6G6EQGqGA6WhcIRApi6W3/5whED1jRkoSHKEQHyXZI7rcoRAdeL8CO52hEB+ybFVyXeEQGFwNSf2eIRA9JTv3Hd6hEBGTLLA93qEQD95QdgkfYRAvBfFh85/hECCDshv/oeEQPt2jMyqioRARKAFHe+MhEAjFNGdVo2EQH20qb9ikIRA5V4L2lSVhEBSHzaZ/5eEQE9L7RxHmIRA7Z5WL06ahECVpiPEqpqEQF2/PQpZnYRAMMsmzBqlhEDAn/9brKqEQM7JkZLkzYRAZTTALcbPhEDrfK44ediEQFJ1GJhq2YRAIvTjzWnhhEDUVa1eYumEQCulvLQ18YRA4ShrKGHxhEBIVKv8NvmEQP68NLtY+YRAgYCCCUH8hED6rjL43P2EQDIr7ed3/4RAL1Hffg0BhUDnpNzUrxqFQJjDAHTIG4VAvVI/SUIehUBgfv4dRiKFQL5adLUKNIVAyLs4p6hOhUBQovDzUFaFQCQbjYhGW4VAJssWr6BhhUCnGyJdoGmFQOz0ZECacYVAHhJhR41yhUD4vxOHs3OFQM4qbX+aeYVAJXXTtnh9hUAJ/aVFJICFQLwkdtmTgYVAc+Y05taChUBEW69uMOaFQKwC8I5sAYZAWnkl65MahkCMH+1yQB2GQHhi62ftH4ZACDrFh3chhkAY10FA0lqGQPOrOV3mZoZA6pp8EYuGhkDNupV8jYqGQOXzjOTcooZAQrgeRwathkB8+EcdJ7mGQCAatexrw4ZAltnOitfMhkAgjU678tCGQJZTIE/m+oZAsByyMzL/hkCMX99MNwOHQFowTQM6B4dAHJh+LC0Th0D9qoKkiBqHQJaqFCmRKYdACgih6JExh0BaTJnpBzSHQCqRAomDN4dA/GJ89ok5h0D20/QccTuHQGaTgIOIQYdAVjtLZDdnh0A8uImJOmuHQONXTC49b4dAsDh+bLJvh0C1669IQXOHQB6VAzdFd4dApqyLgIyTh0DWJucFJ6uHQHrxf6LHsYdApYJ1Qcm5h0AroXeBQ7uHQHPOkeK/wYdAzvKlTErDh0DkkLQQE/6HQFXsf0VPHohAyNg+SGkniEDTXzbNxi6IQILhrOxiN4hAXNUquWo7iEBBEAfCilmIQGoTnAB8cohAlJXWXX12iEDKK+5sgXqIQIYKOpX9mohAj41iG1myiEDA2d+vXraIQE//XNxduohAbif32+O6iEDI3APzXL6IQEY/bILqwohAsS7XtRf7iEA= + NrgMGZxjYkA= - + - brEBRiDZokQKw6FEPc1LRcyjgkQrL6REV4HlRMozC0dY4HZEm6phRKEqb0R56SxEhE5qRMxJwkQ6Vp1ExUWhRQxLZEUjaYVEjEc5RQ4mvUTIR3NEBSRpRB/qjkRXOqlE0ToiRAPuX0TgQndEoMsZRfipjEbrBAdHPkA/RBd8SkSTJEREzCgSRtPJ0URMn2lFhjMXRbljNETNn59GCVg0RJ2GZkRbwFpEN4SXRHwudURJu5ZFE5ioRAfGo0UrAFNEnaiARKcTekQqB2FEv31CRZvCkETJChxFhsSSREDRBEZ8kOlEpdBeRE5PQkSp7x1EALqURCAViUV56yNE6nJDRLEEB0W6N6NExxXYRBsBlURn0X5Ex0z0RMn8dkQMxnREV3yDRJbwikSrxeBE2TBFROBlrUbqIYZEnlCbRF1AwEUgMoFEAryxRNcJKEdimZREUu2IRD1C3ETbXR5GqButRV710EU1xa1EFJCiRN/LDEW/L45EMlSTRK8SgUSgy49EFz5JRdRIFUU8GW1EG8Q/ROsFv0T/WNlFP8OJRMgJPUQq6gxFspcjRV2tjESQF1hE5ngiReNQgERuYKFF1KGQRN06r0UFak1ENkXhRG3H7ETivlRERkefRKYB7UWWQzhEeQ6ORC3NWUS8S7REwT6ORKmIT0RshVNFbiOTRL9tQ0QspEBELlLIRD5SnURd6kFEQg90RJ2sZUSiwXhEDie3ROVyX0QrYj1EEDi4RVOcwkTkshZIQsp5RWrFj0WV4ItHASRHRGB2KUYOSjtG90h/RYhGNUXY6qZFcbU0R2CxPkSoFm1ERKMDRQ78KkREDvZEOaMuRO6IXURbfjtEkDwxRUExx0X6r5JE/sSMRF9kg0TwvZtFO8qFRE1/EkXN2DhEFirLREFXu0RJNftE4YVeRJ4kk0R32QFFm044RNZgEkaPLa9EUfVFRJsxlEW6oLBErZ3TRMMrckRVtmNEJSqERKfY4kR7aTFE6t2cRM+OpETEzSpEubeWRCtGvUTz41lErUmWRGpwYkQXl6hEoEgwRDMkoEQUAphEvGdxRJ2jOUSpnZFEQk+CRKgTiUWgx59EMqhPRNpUt0SJMFBFfNuSRH6AtUR69i5FcYFLRBj4P0bERzBE0A9rRDpf4kS0BAlFCV6JROd1kkWCyaZE8KOaRIrmkkSiHHtEUBZyRAX4a0S7HJ9EOyNjROdyMUVz3oREhy9TRBl5L0ayHehEbOeZRDuOKkbY54FEYPdHRWoE2UQTEGdEmqCzROL0QkSy8hBFgC5jRMGJkUQ/JDpE6+5ARN5dnERjQHhEyl1LRG3kUESzKzhEKX04RCXdQEQ0pn1E/6E1RJnxrkQzD55EzqzIRKxpIUQjJlREgjVSRONdWkRQRblEUpoqRDqimUUCN+ZEp6NURFEylET87HRE4kpCRPeHgkRi/X5FRWm+RaKwTkVRE7JGGhBaRFFx10QxuatEhcsjROopBUVLaKNERpZWRLoXYkXH559F6juARDJXUEUjfI9Eny5MRRFKeUYGZWtE3rwrRFpJL0UJ0+ZECUmKRN6PUUSz3QhFOSKORMUrTEStT1FE7BY8RoCQ3kVAUnBETNkIRY5ORURPIrxEgpM/RIIcpkU09FJEiHJuRFgeR0RwMG9EPDxQRTp6oUQrSTJEJw06RPbVAUU5QrJEeVaIRryPL0RYsDxFaxiUREi7iES8sdxHfYlWRNH5iUQawZVGBwm8RK6olkTDnrhGG623Rf8ZMUZFovdEdjtZRHa5BEXk+FtEwQBDRAK5VkSN2SJFiTgvRMDbRkRZl4hElzhtRJHys0SGqPtEeI41RPrXqkSjCltEAPZTRN3pX0SqPzNEdT6JRLRjbERNxXZEdySHRAo5RkSZ8ahEil8MRWDob0SAN19E3XICRcJ8d0RH2NtEcp84RM5CR0R47d9Eoh5ARO5xS0VAFwlFyrMrRibw/URCE3NE+XqrRbg3MUSq8pdEKFo0RdmJlkRvEwdFBIYgROniJkR9ut9E+YiLRK1m4kWIpjNJ2g5BRpSuOkXNSBFGfKglRUJ+MkVPQYdFKmyFRHIVNUjZClpFIW7CRNTPh0XniHlGgpiDRE5abERYSoFFkPy9RGDaQkQGeu1EkWq4RNfpi0TPdU5E5Lv+RO9uKkSwqE5FuE7URZ7dWkStmZ5F1Vu1RCAMNUT2eWpE2FFhRY4JJ0XO0RBEHXVbRIQeOUSJMAtFiMFORMgMUURLVy5EJiqFRV6BTkT92ixEY91NRH1ITkQbOx9FwA+gRPQEdUQpDIVEMyZxRPMrSESdXMpEqDSHRcqRlUW4NcxFybWURONxV0RyF+hEOavRRMGfZkS+sd9ExglURDnJL0W5/zxE5GgvSOOTXkQyY4dHa7aERh/gNUZlX7NHX8G6RU4hP0ToR61GiTi0RCsdiUTRtt1EfvFbRXU5TERF21FEfAlCRNY9UUTAMApFwnCFRAFARUUpgzxEmtv0RPaxW0Sc9JhExuKERCZDo0XZbZJEjLmjRLyrZ0TRGctEAVyaRiIfdkQ1RwtFed3eRPjttkQeRmdF7WB2RMo/JUQ0i1lF6Z+FRIm20kSJCB1G/3ESRZ4hLURnzrZG/ptFRuopsEW5GZNE2K5PRBlttkRUMLlEUZw3RW3EPkSeBbdEIAucRdk9T0SwsGtGsPoVRFGR5ETYdkFGyJURRWShrkQoFGdFSrBbREzsjkUKbbBFcihzRJfXgETJkalEsYWfROU1l0SjRl1EuBanRF35XEQ7a21EREXRRNp1nEQlWG9EAA+YRRvlYkSXPm1EqXw+RPeQKEScqrZHxjNARBp0B0UnV7tGeaTrRBU8gUbug3hGtKL6RUaD1kSCCu1ECgOiRFbQokRyptlFZIK/RR2u8USlaGJEk1xRRERYYkQtOzFEAOp8RFNXr0W+35dFA4poRDEQdEQtNoJExsCvRg0vI0ThSoFF9Y7nRIpci0TEA7JELIfWRIQ+sUSitNpEpQJtRcXjdkSbwkpEHlyDRHD0METt24NEfq+bRB+IP0TqyUJEOiy2RCecP0WCWltEA2aiRP6Uj0Sdm4hEcVhLRLyPtUSb/o5ErB94RFjc5kQ+yBlFYWLBRPaeskTghyVEjf7YRHwwF0SRg8tEW7GZRA3htUZi9jNGg+KRRFoYwESJ8MJENVBARoys3kV5Q0tEAEFBRRaahERbJVxEMTnsRh7n20QVuXVEMUOWRjxWPEQYE7lFlVdxRGL8ckQ2LgBFb17xRDZGakT9XYpESdu8RDSoLETLTrJGfQigRq6qPETukQZG/ReLRYT+cEQzD0pE+g5xRMhAbUS/qoREEghSRINGkkUiVo9E7EWHRIe2hkRVBDNFaUoeRTkxtETuPPJGLsVXRhVaQEVT929FyDdWRE+EcUSS+YpETwkBRicZGEWPEGlEIB6VRDVpREUu8m1EdwpFRCLCn0TrvRdFjuePRA/ka0QBynZE2tTPRBJWSUQe8FhExTuSRIgPSkR7VTtE47I2RJJ3WkQ61V1EEte+RJkNRETzOrxFMkCBRFs6eEQJWnJE8KftRMY0o0QtA6dF9yaFROKkx0Td8HpEtd9XRFp7XEQV6fdEsCBuRr+2pES6y1tEfUKcRPy6VESCT0dER2EhRZ+GVURL8LxFijiURAXsaERDv2VE+sPeRN13QEUBdDVEBOV2RGVAjkQdf5dE486FRPfhukTM31xEhQvMRLoNUETx2ZBEDuNhRAQHlkSLt2tGYEtYRKqgPUQ7R4pF8PxmReHL1ESMtRxGOUfrRPNsc0TshYFEFhJSRWF8y0QRrRxF8uueRPeZrUSOfbVEznk8RONM0kSo0VNEPClkRJbZEkWPxjtEsn1CRkzbk0QudYVEhu0bRbd3pUTsCL5ENoaSRCYQY0RonZdER7qbRL3qjUSx9nhEUiFlSD3kZkSrQnFESLqIRKD9F0WEisZHbQWCRAQaHEURJ1dEen85RJU8tETjJodEfgZbRIbAkUQO01tHfhBgRIVVQ0Y2NWZE2BaKRM9fREUvy35EgbkuRATlVUVB/5pEsDdhROwVh0TWXoJEqmg1RMqrA0WKj/ZEvUdTRG3gsESdOk9EKOeDRHgmi0SmZ2xGpziERPLhmUVdD+hFYCc4RLp9O0TpGdFEE0AvRyb9SkTiY09E6wxdROFCG0aXM7dEgm2fREaatkRZ1DpEy62UREXHhESA7flEGdtYRBH8sEUbtxVFwhE6RiWsukTEnU9EIjk/RIuKqESAzS5EmpxZRNEx/ES/U3ZEFIltROVSOkQcAaZEnLI0REdVfER20k5EX+YGReyhhUjJrTdFWaUnSBIvB0bV8jNHrGDcRQCw20VHPl1EVMrRROM1VkVMIsBErZUbRd6TtUTa/T1G0ShlRFstTkUZ40lEklxGRi5LSkSnvkFE1DYcRcsqNEQSGRxFwX1kRMEJk0R39U1EgLs9RBlVskQGGC5ErNAuRCGxdUTExVBEoLeVRKp+i0QQk15EUcxNRAQaVERcqlZG6vIpRmmERUXYBXNEnNReRRG4wUSQ2BZFim2dRImjb0R59VtEIrp+RAV9BUXk/31EoaUKRSBd0UQYSmBEh1MSRZ+jDEXOYQRFvc09RACujERuHptEFVZ5RcoHiEQ9bddEfJoZRRrzlESixeBEAqXlRIKzDUUvX2dEDJyBRPs/REQpzyxEU/D1RDage0Sr4IxE+t50RNuAm0Sbu3pFEYtBRL0vI0RiyeRENu+FRHVJmEQVm1FEcvUlRfZdMkRp5x5Evct0RalJQ0QP4zNFgw1jRFVAP0RefmREmxuzRNiF5EcN70JEtDdmRLTONkcYuiZEPwCaRKHJk0RKMD1EULPgRu2K+kRzB7BFM4YRRjR7mkUiEx1F/VyoRLsq60RikC5FM4N5RWxZgETMyWNEmMSMRA4mmUSSL5BE2iuIRD9ZRkTRFgZF6/Y4RLtyTURH6rNEus9SRGjrrESsapNE8ROjRWkCiEUFui9Esm+IRfZ8n0SIHUJEBxyDRLs5hkSilYVFv0ojRK3dKERHEGpELs/kRK4630cCiphEsfwsREBVXkTM3UJHbhRmROev0EYxzfZE+Rf1RTcCOERJbwlFYkdxRGzFWERHkllEOtgARVy6iUQ923xEa+m4RGULrEVy1ZtEmZ3fRATtVUQ2eG9EotxjRFSRVURtiy9EkbYyRMYqO0S1zjZEZN5HRJMudEQ/PoNEdUYyRCEpDkU8KJpEci9bRLqDcESlnYJE3sltRKyeG0SCzjhEtzBFRLSdukRyYzRE2qtLROYJL0RYEMJF0h0ASCh5oEcihSNEqqAyRQGQBkUVQ/pGrgIMRpVMiUWjN9FELLYPRXPXkEQQ0AtFPqUtRNxhskQjfIJEfqJHROfVO0QCOUJE4vv0RP/eDUU+L19EUr2DRKcDjkT/cFtEWiuBRLTZi0TZYnVE3CLMRMSSt0TTNw9H/AyVRpFrIUYcKXBFF1AFRXU1yUSZz3xEZxwMRUHdgkWOGzBFEYWvRAbeg0QRP4dE6p5HRYDqnkTtwR1EGxw3RN1KZUTyC8VEXV2+Rlw9RkbUyw1G1XM9RM54h0Rb8YFFFs+aRLjWaUQn5W9EUoZpRJ3EukQp2zFEg4tHRdJxakWrEyZFyVg2RCQ6XkTZSTREf5+yRAxcZkQiMkZE30RBRBx5hkTWhIdE9stEROpATERnj2pEg4zdRSomQUUv6PNEm4ZIRK66V0SxJSNGDnOtRV5eYkSXvENESslLRSfmrEQtMdJEekcgR9HY/UYlHVNG7CCCRGuuMEU0qltEJYlURNPzo0S10wVGwYdXRRVtskQ1pzBFsIRQRGNZR0TswUlEcShuRLMjJUQFsZtEiF9yRODme0SKeytFaMwQRYmWI0RFgztECY1zRRypQ0UTbwxFLLvARal8a0THMBhFq6dFRA== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - kmo3sm7BckDeScp0UcJyQBohhp3lwnJAppBHvTrDckCQ5V8Tx8RyQFua5bpbxXJA+x/5mBDSckD1X49nQ9JyQE7XzKrS0nJAsMi8ynfTckBk2ZXQz99yQGr2kku54HJAdzFFsmThckDMZUl5UOJyQA6L4NeO4nJAkyxwkCPjckD0/ZZZ5ORyQFR4zqvL8HJA7zJ3tMrxckBpN7BkT/JyQFIewjig8nJAIMPyYRPzckA2TZ9ouPNyQHOZ5sqj9HJAQFEs+7//ckCxUvI+ZQBzQPqOHThLAXNAJ+gKKYwBc0B8K40+sQFzQATwjGU6AnNA7Kva484Cc0BYqMc3ZQNzQOzaTpv6A3NA4EFovbwSc0B8+99zcBNzQPThXoUFFHNAhDFKW04Uc0Cq/JsMeh9zQPxSIZw7IHNAmeap4Tghc0B0FnTqeCJzQJva8qbIInNATDfBZA8jc0AAIvc0OCRzQIusY0XOJHNARq7tU0kxc0A0N5WJWzFzQCai3Qj8MnNAuEiXtaIzc0A0pC5M1TNzQMJ+fY/3M3NAVonInDk0c0AcIezgyzRzQPTjRhO6P3NAIurizeBAc0DYbvq7eEFzQASfQL4nQnNAAGXQu7pCc0AjMVGt+EJzQMebyLB5RHNAyuazBp5Rc0AiJRz4QlNzQDZZ59ajU3NAh1RR44ZUc0A4V9YX+V9zQIySSGKLYHNA4nP/PDljc0AWEWN9j2NzQCusjwHdcXNAKrCrd1Byc0BcM8UGtnRzQG5Zh0VMdXNAN2hrFHmAc0DiNp5ipoBzQLrXDiMKgXNAEITN3VyCc0BxOAKmD4RzQDinBduHkHNAs+vEoI+Rc0DAO00ZG5JzQBL05xJNknNAk52W+NKSc0CWTmxSYZRzQE50LlX3lHNAGIl8j42Vc0DDJcXhuKBzQJm7NKnboHNAePMgQrGhc0Bky0t1WqJzQESxbh6gonNAslBpMiSjc0Dxma8ZBaVzQEro0NXHsHNAS7f7Btqwc0D64x4dNbFzQB6F2NZQsnNAJ+l/3Q6zc0C6ejjVt7NzQJ2zaUUNtHNAxiTA7fjAc0B/jgJHjcFzQDKP0qrPwnNAZu5r+ibDc0A+xSij19FzQHZZ70Zm0nNApFbe3bvSc0DkUfI72dJzQD4++gL403NA3OSFDOLUc0BKvsC6o+BzQOH8+sA44XNAjnEnAGnhc0BLP6n8euJzQM+IPBAR43NAK9gJObvyc0Ad6KhMN/RzQNK8sr5NAHRAKS/I+eEAdEDGdPRyeAF0QAUVji+kAXRAQxG27roCdEBnMBDzDwV0QEKlbC+XEXRAYM+tS0wTdECCRQ+ldhR0QMp1hcVNIHRANGNmMrghdED8ubGQ+SJ0QAEFk0tlJHRAkjrID1EwdECdNoYG7DJ0QNJG++dRQHRA5LehnMlBdEB88tNBXkJ0QOyltXY7Q3RAHj5wgXpDdEBL7qcw0UN0QLOmspCPU3RAXTIdt45VdEA424tX3Vd0QFL18yQhXXRA/D5+tTtddEBUvWRKuGB0QHHCtNIIYXRAcmN8JkxhdEA+JvIkCmJ0QPdUgEl6YnRAcngTElBkdECE1dtBxmd0QE+4RI7VZ3RAvM81Dx9tdECSsG9uInB0QBRhhdMVcXRAAOt1EkFxdEAj6tGwenJ0QETktYw6c3RAhvMYbzh1dEDG352T94B0QGhoswVOgXRA3o0214qBdECAZRaoJoN0QHZILtthg3RA9WyDYhWQdED9uYbZZpB0QGZnjkC7knRAYjUCq+2fdEAlidRDoqB0QJNXoHXOoHRATpRwq3yidEDZSbC7uKJ0QBuUNeAPo3RALSbUbAywdEDK8eMySrB0QIUbhQzDsHRA0PGxoPuydEDdp1gU4sB0QG/AwdwOwXRAckDSg3jBdEDm5IW37cF0QGDJtTILwnRAbdVEIb3CdEBTFaJMCMN0QMTgVmNOw3RAPKuBkCTEdEAs7dePuMR0QJIJur/+znRAp2cA/gHRdEBeAKdRX9J0QGQISt4P03RAVfO+yD3TdEADNCnuzNR0QLJIsh644HRAdI3+4iLhdECcSpODtuF0QLodzSOQ43RAmgVnyE3ldEDatdQljfN0QIAVL7U9AHVAZDaTGVMAdUB9fMSjpgB1QBr1tH7OAHVAGUumWGQBdUAD1uPJXAJ1QJqUK2mkAnVAZIsByzoDdUAQBJLjmQN1QBzFgBWZEHVAMH3W02cSdUA21hC9kxN1QBDJRHEhFHVADn9co+IfdUAMGMeYnSJ1QF5CzkJ7I3VAujrxXV8odUCVllF/XTF1QIiI1BirMnVAWyo8qgkzdUA2ZNGgQDN1QI68aq3LNXVAjmSoQSVAdUAOBSJNfkJ1QJFF15zdQnVAUlpVFdpHdUA7F6yY6E91QK9ZwEQSUHVAvVPU+ixQdUA2Rt/n61B1QNhGl+iBUXVAvdr7PE1UdUB+ZwrndlV1QB/RU9kHYHVAH10/sWZgdUDwYyBWN2F1QCKNYRb7Y3VAjYHt0nVydUBq/hi3CHR1QAi0vlGNdHVAQLTN6niBdUD6niImroF1QIZMZ5+6gnVAGuuRMemCdUAWI/0+poN1QPRgRi7mg3VAO7q4mZuEdUDbN84UvJF1QKb1j8EIk3VAWsZLz5SgdUAiMaYet6F1QNY40juYsHVAUdQWPzezdUCgKdZQs8B1QHS5a+rMwHVARpZ4lmXBdUC/x1yQ98F1QJIaDSKk0HVAIPDzXjfTdUAvlaPTzNN1QPCFuvHj33VAfhOApA7hdUBbhPV+B+J1QPQqO3U45XVA0GZv/I7vdUA2RutNJwB2QGay/m5IAnZAuBaQstEDdkAmig94TBR2QJwg/FgLFnZA3izFsogidkAQVSPwjyR2QJo4QuFKK3ZAdKtpYx8xdkAnyftvUTN2QIFCfMq4M3ZAaCR5eJ40dkDKNpPlSz52QIjF81ZcQHZAD5793IVAdkBYiX8W4UB2QDrJshwdQXZA1qYgJ8lCdkBuauHAp0N2QAbjsIt5RHZAow0JNchQdkBx3b/QEVF2QJKN/PnSUnZAHdfz98JTdkC68qhchlR2QBRba17NVHZA+NXTxI5gdkCbmTq9JWF2QPxpo6HgYXZAumXc9dtkdkDkre2CO3F2QHqMhWPSf3ZAZ8n9FWaCdkCku3cm5IJ2QJ7/samQg3ZAgXprluuddkC8f7gxW6B2QGRs+wLronZA2SfaQEejdkCl/AH4jqd2QBVHrROfqHZATLw/aY2rdkB6g50IwLJ2QB8blqIMtHZAapFgvXq0dkDVJ22ndsB2QL/Wv+O8wHZAzrn9u0/BdkAgdQawysJ2QKI+H28nw3ZAlNsE7RrEdkBEuCamzs52QAHN/+180HZAlte2cb7QdkAwBO4zB+F2QAVK4wL04XZAOKqHs5DzdkCM4lkEUfR2QEqQfPMzAndAiMVxHjwEd0BIMATCABJ3QFJD6uQOIndADc0x73Mid0CqHMH/Vy53QODGLVZqMndAEbIs86Izd0AIhusODTV3QIa9P5B2PXdA7NSSBJ1Bd0D9IK+ctEJ3QNgkyB/WQndABV/LCY9Dd0DIVmntGkV3QATnlVJKUXdAchxFt5FRd0B+sBVauVN3QHjIH6sqVXdArlcM7Edhd0DW6xu7j2F3QJvRRuUnb3dAzAP2yJB0d0CCHC+XGnd3QP6SOcR4gndAtLtTuAiSd0A6IwpwTZR3QFq/PfSKoXdAGLmGiS3Dd0AUgOwJRMN3QPcHJJ1L03dAJiMa6YzWd0DCs8Gk7OB3QJRgnPG353dA6l4hbRPtd0CWgPVb5vJ3QGpBHms4AHhAI6yQHE4VeEBIYLNRbiJ4QAhkSuJ5I3hAsB/bmYwjeEBsECD40CN4QBLC6pmmJHhAPttt01YyeEDixKuaeTJ4QAjIfujBQHhAfNDErQ1CeEDXZCxj7EN4QKfv5SYQRHhAqwZRnHpFeECY8aDE10h4QLi//DHyS3hA3uTxxTJOeECBZvBXy1F4QO0HG+iGVXhAIL3NNvlgeEDDuHDntmF4QGdn6uKUYnhAm4aHsjl0eECKEm/NUHR4QBi2k6OLdHhABpKqWbx0eEAMYaZH3nR4QKCrRlnHeHhABjaOoCB+eEAtq2kaOYF4QKgJOZqkgXhAIOw7XjSCeEBMECREeoN4QIa8DvLsg3hArj77ff+DeEAI8tHFmYR4QJ9/ngGEh3hAJMbjTNuMeEDyA8tzU494QDtVXpOXkXhA6kOi7bOReEBgIrMSp5R4QKeSCuafoXhATgnxtISreEBIXe6pJK54QP//JrGJr3hAol3siICzeECi6H1DorN4QEdOxgfTs3hA+GwIds3AeEDRusNF9cF4QDMxgvoFxXhAZw4HB7jUeEAAAdfjw+R4QJDBP4IB9HhARt2pdR30eEBypFW4jfV4QOUn6gVhA3lA4iiSQw8EeUA7WKt3mgV5QBgXiK6GC3lA7voPYpITeUBcH6NzYiN5QKzyFg+xKHlABpvkmgsueUAK/qji0jJ5QApMaDJmM3lA2e6107IzeUDxzdObLTh5QHoBQ/GHQnlAW338KftDeUCDOwS341B5QHbfMSfMVHlAoLLumetgeUA5V4dI2GR5QJgm+tVHc3lAhs69ENZzeUAk6UfzPnR5QE4wGWssfHlA8UdZ49WAeUB8cD50GqF5QANUtHDAsnlAZgkrfs3CeUCV+mMxz9N5QDj1/rtC1HlAqfM/nc3VeUC/4MaETeR5QG8N7r5H8nlAoQ4Lkgr0eUCUZw9C/QN6QKRzp0CNBHpAtGxbnPsFekCg3bbXRhN6QPNtg2XJInpAHFHN9icjekCTrVlgLit6QLLIkhggM3pAViEPLQw1ekCawvYYJzt6QJ7gXaYuQ3pAvMSUbBpFekBQci3iP0l6QF+JCv8nVXpACjZBcyJcekBkK5ezJmR6QES9OfM4ZXpAGp9M+otyekDNOhvvxXN6QJPXtY4feXpA/G0NtoJ5ekD8z1eD3H56QNRJRL/DgHpANuw/OsuDekBo5oaxVJ56QGsW1TlYonpAomujIB+jekDoEAxxf6N6QO6LBqEMtnpAjJR6lPu2ekC6SpkeK8N6QAF9Z5kbxnpA1pAJqz7OekDd/IPoUc96QH9E/Hxm4XpA/qPLW1jjekBSJ7MaPOR6QI66RXx55HpA9uMBnDXuekAjRNoeFvF6QBK7eDpd8XpAt+iK9kj0ekCCOatWewR7QHi3TzjKC3tA3F4GPS0Oe0AIulEFqBN7QFA59n/RE3tAqsDivEwVe0Am69HKWiV7QFp3C87FM3tAXsNwlZA+e0C/TGk46kN7QNdXjbVFSXtA2Bj8m5xOe0Ds1dRlXFJ7QOe6jYY1bHtAMNASCMxve0Dn3nZh7JB7QLqWDv4jlXtA0k/g7XfGe0CE5JYZ/+N7QHbTvgyM9XtAyOhaBZMBfECIgWnf2QF8QI2rp2P3AXxAct+qUWYEfED9LFkDmQV8QGSZ0TWKEXxA9qlKBtMRfEBMlb9dMjt8QA+3EZTMQXxAEwsMoYBLfED8eDYEf1V8QHUkrPOpVXxARL/iFsNYfEACf0a9KVl8QFwU0yAMYnxAbYpKxylxfEDYQWYKBHN8QLbImjDEjXxA8RJmBDiTfECyia23+6R8QHQRj1cnpXxA5sqEzL6yfECust6lfLR8QCw60Ei0vnxAdO3dh2fEfEA43GXxdNR8QHLCY53523xAgX+0H1jifECCJhZfae98QGZCQXYW8nxAcFXMbFXyfEAkh3eoQvR8QOSB7mcCAn1ANhL3z0sCfUBy3NhPAAR9QGw1t3pRBH1A6K0QvAcMfUCJTkDPABJ9QDjw/udGEn1AVmJ5rRITfUDMfTRgFBR9QEhx34M9In1AyGoTlWklfUBNtPvfnjF9QChrr0tHOH1A/oUOW6E9fUAw8Hbh1UJ9QLg/rGUCQ31AdpNiJC9IfUDqVkgf9GJ9QJ7DvcEgc31AXXOHmG50fUDC4hjFenh9QCrx968rg31AYiOQRvyjfUD6eWNBHKR9QOxLtZampH1AFIYf/y6tfUBMRxi2tLR9QFlO5Fwkt31ATE9p1ym7fUBc/7o7L8N9QKSP0toqxH1A/BeO6OXEfUA05WpIM8x9QIfp/Q5F031AoeQFXD7ZfUBpvMXq2uJ9QOrHiPUQ731AZcF5wI/1fUDizs63NQB+QMwft8yjA35A4JaZUqMdfkDZSI1cOR9+QIJ110/7In5AlsYtFAosfkCueMNwPi9+QIL+7kq8M35APrwuIRA0fkCw96IRQz9+QOISvJalRH5AzFyFnNhOfkAlc0hpv1B+QDZtJIr2U35Aeq/LLd1VfkCc9Hx5Lld+QJFkT2VbWn5AUE8UP6VdfkBsDfIAgHN+QNJklZCNfX5A7ly3fN6BfkBpeqEW44J+QOXMhOIKg35AXYmyxJ+DfkBaczGNpot+QCp29bjkkH5AhD7eOJKTfkDyJbKDspN+QFM4K62ZlH5AGFvnn/OZfkCsR4mRZJt+QDA4zxRKn35ALQg39PWufkByKzBwdq9+QDXHAqC8sH5Amss/h0+0fkAqvTHYp7l+QCa01D7PxH5AbI/sVQDGfkByuEtg0NR+QHypt+YC5H5ArabeOlXkfkCGlOBoB+h+QIYCWWgJ7H5AkBvprw3wfkB1uol7EPR+QLnTD4EO+H5AS0bckKn5fkAs3UqdfgN/QJpwXToNEn9AErOtWGAgf0C5xsVZbjB/QPSF8X2pOX9AtF/iewA/f0D4SFMLT0B/QMu//x5pRH9A7NVzfzVGf0B4hu/fwEl/QG5n5cyWTH9AhJDS0BpPf0Dp/hMRDlx/QD9oWYW4XH9ARA3pEL9kf0D5kwKCRmh/QIConzzHbH9AwVE3MLdxf0DmMLyS6HR/QByxocG3gX9AuppGUZ6Df0BlXuH0z4R/QGD/alJjkX9AADua76qRf0B2NeQImZN/QAAGDapfoX9AmhS0J1Sxf0D5W5XPwrN/QKV3ljhquH9AlHIXnde4f0B4DdQUv71/QHX1Cu8Iv39Azr/lNmHZf0A4dP5u9eR/QPlAsBXA5n9AfMFyjifvf0Am8ysfFQGAQATVfW0jA4BAj1G10ngEgEBmxnPBzgWAQGbszEEoB4BA1FJvUn0QgEDluiM2HxKAQLD7NsFOFYBAMYW/a2IZgEB0Cz4qIRuAQHivw3vMIoBAqlkq5+0pgECgLw53Bi2AQCLkrKDfLoBAKIOAseYvgEBUtpJJiTKAQBYllmymP4BALCdZkV9CgECzTdKFqUKAQETS3KvuSIBAhO9RQbBKgED/syTXw02AQGonBIPnUIBAcQFNChRRgEAoZcZhBFSAQM7e4JUGVoBA6GHPNWhWgEBoDdvbBliAQBhTUGUlWIBAlvLs/OVYgEBwXAatDlmAQKwxPFYAWoBADmfCozNagEDBdiWDSFqAQP1GZz55XYBAzwiLjjhegED29eW7C2GAQJZRK6hBYoBAFDwhGAlqgEA6xFc8IWqAQA8e9DVPaoBAesDyHyVugED0j6Y/KG+AQCx2JVOBeYBAK8Hzgyd/gEAYiUCIHYOAQBaSrEPshoBAsnyCfliIgEB7BytRAY+AQMRHD+Adj4BAIC7pCkiWgEB25ZZtHpeAQMrl1UzFmYBAMl3KOUuagEDaIOZhyJ2AQPQjuavgnoBAaE4eSBufgEAIVoxmzqGAQMnWmAlxo4BAwI+I5D+mgEDybycc/aaAQL/hNTKGqYBAePV6K7msgEC3ihbE3a2AQBiOx14wroBAQSmcmROvgEDwPF5cIbGAQIiIDaKRsoBAjm0jrxe3gEBgXAjlt7mAQIZsdOnXuYBA+OZtahC8gECHCoAAkryAQF6saHXAvIBA1KBG+TS+gEBw+ZlCbsCAQPCipYtSwYBABLNMHp/CgECqAgQLOsWAQJZq9Ao9xoBAfvw+4PzGgEAMaBNssceAQJBuRSliyIBA+Hz+LnHIgEDDhvyOIcmAQNtc1o1TyYBAeslzsDPKgEBImJZP4MyAQMcrrXUIz4BAWr0wkyrRgEDsnvBXTNGAQObNfmVg0YBAlIqDdQ/UgEDE+Xib49eAQNrNkU8F2IBAYnunBkrZgEDiD7Z0Rd6AQFYzF+9D4YBAJ7TFbFPhgEDsNDowAOSAQD/J9iPl5YBARCbeL/fogEB3URZN5+mAQILhKVQR6oBA0u/eHFDugEDYitswSu+AQO6P7r3Q8YBAJKHdimjygEDMVTjrPfOAQICvoyxo9oBAdlKA17r2gEDBUCmmafqAQMqSn+0//4BA2xF9lz8HgUCmCZH3tQeBQFSY0T89D4FAjJAnGzYWgUAn4Mi7PxeBQBDA1EanGoFAhXvVsTQfgUAjpgZBrSKBQBLPasNeI4FA+rOkezUngUDkZZNruCeBQLIlYphdKIFA752Nb6UqgUAm7zc9MS+BQAgfwfCzL4FA/NzUu70xgUBQCuOzKzOBQIt7IlwxO4FA68XAmSk/gUDwPrzJLUeBQN4zOUXuSYFARbJWbbJmgUBsG3Nl4WyBQBfTah8+eYFAhoP/tUx+gUB+TgMIYX+BQAn8vROehYFAP6iAdu6JgUCC0Z3bfoqBQHjJgd9li4FA6Mg6B/GNgUCmZWJ0VY+BQEcf6fjzkYFAUn8vCrmSgUC3imvB65WBQP1WkxX8lYFAFFf8TLeWgUBGL3ihVZeBQD2hGsbIl4FA8CYxCV+YgUCrdta675mBQKFhWM7ynYFA3rj351WfgUAQ41pENqCBQDnTG0znoYFA3riGut6igUCAUGqwbqiBQGWWi2PmqoFADEWzI2OrgUCzW+hpL62BQCSAZFJKr4FAtCcQ10u3gUB0cARk/b2BQERBeauVvoFA/JQLq5bCgUCKcj9J5MaBQEg40MQx0oFAvqHJPn7TgUDYpVYeSNaBQI0W4aEg2oFA2xsxtkvagUB4P/yl3OGBQPwFhjiF84FAWRnheI4AgkA19ZzRggWCQKBBT7rUB4JAYtD+bQAJgkDTSMvStBKCQBD65jDYGIJAgfPL47wagkB4sTMO1yCCQOw4Rka4IYJAOkogTPohgkCAgS971CKCQC5HlvS9JYJAuapJJ9IogkDAnZ2MXSyCQK7BaSWmMIJACEf4s805gkCOgukWMT2CQCIOKXC+PoJAJABdZAhOgkC6IUZ/ZlKCQFkiPYjXUoJAlRBR+41WgkCcZTaAkVqCQKi/jZfhWoJAp7NzAAJbgkBSjwOJnVuCQKhKvFduXIJAv/o1iQ1dgkBgrcb2N12CQHMQtx2RXYJASkwgkBRegkD8FmIxlV6CQFHvS8OYYYJAFD5dnZxlgkDiPccl0WaCQKYF7kx3aIJAwK2weUVpgkBwmuXVvGmCQMQ4jH4KaoJAvnTs3dpqgkAOPKJyYW+CQDANlDAVdoJAu7xA49N2gkByK3ja4X2CQHTM6apcgYJA+cei4OWBgkCDrJE7Q4mCQC66JZCIiYJA3R040RKOgkBmvZnIQ5GCQMwkYqB/koJAs5lYzmuYgkD+OzJCPJmCQLg50HJWmYJANM9k2f6ZgkBQd6sVD6GCQFYUxTk7oYJAFVhS592hgkB4Uozq4aWCQBeeHxuLp4JAdAYV6AupgkBXEV01M6mCQERiX+qUqoJAuUxpclGwgkDARsGXCLGCQEp9xqukt4JAYn/E6Xy4gkBU9lq1CL6CQJ6nF1FHwIJABGMNzmzEgkAyreO978mCQFvfcISB2oJAWEl+O/DcgkCYPFeo7d2CQDS/wUrz5IJAHOiCQ9XqgkAZDrjPdfCCQOR2WBt28oJAjM7433f0gkCKAtavdvaCQEZg9h94+IJAHa2l/675gkBYITP91AKDQMavgoQUA4NAxv2eSLkKg0B0m+RGHguDQHr9iwQIDINAwudBrnkRg0D0i+tIwReDQCnQEtV5GYNAZkC00nIhg0B4GQqPiSGDQLJnHdJxKYNAEt5q2mkxg0DoG8E+0T2DQM5U6/xDQ4NAZNP5tv5Fg0BGDBBhq1KDQOAcds/GUoNAlIFUtSBag0CiPKkn9lyDQFzUPSRjXoNAZI6IYmdig0AjZDDGuGKDQMYhDpPBaoNArBuOvb94g0D539/y44GDQCziIvsJg4NA2OtvoUqDg0BsZH154YWDQBUR1GsTi4NAEvFHRd2Lg0DUiPAk9o6DQDKG/Dd5moNAE+OQquzhg0BaeY//kfiDQDaQLBKp/4NA6FBa81IChEB8IfW4+wSEQErQzESVEoRAJHsIsZ0UhEDknDl6nRaEQAo0S8FiL4RAmm3aFA1DhEAqroadyGWEQENoAG+wZoRAwNqt3/5ohEAA61R+5WqEQALWUc1VboRAPyo5U+huhEAs+C9yAHGEQK+TqYvrcoRAALRewe92hEAUn3ZsyneEQMQ4Js72eIRAEPE85Xh6hEDeXBcY8nqEQJ5MpBemfoRAHO0VO2SFhEAqarpP/IeEQDx9vIVgiIRAiHDjRaqKhECQ38ZgVo2EQN0HkPYFkIRAWO9c7lSVhEBX4nSQRpaEQESH0ZcAmIRA0hjSga2ahEBSRYMGGqWEQL6ZrSFq2YRA+t41PGrhhECK5xkrQeOEQIbUZmli6YRA0iJaszbxhECuuM2NYvGEQLADgEM1+YRAwglHOFv5hEAWFU6BPvyEQM/q7l93/4RApHLgKRQBhUCAnqGGRRSFQK7ZZGh4F4VAE22sYkIehUBkXhuARCKFQD/Ry6uKKoVAsTmkLZAshUDJZRfJ4jyFQLBj8CVBQoVAmQMlGIdYhUC4YKYqRluFQDhcZECgYYVAlr06Rk1jhUBAlUdHoGmFQNJlTryZcYVApXYB/LNzhUAZ+EW8m3mFQMy7yKiSgYVAUJJB5+aahUCwW9wEJOqFQFh2f/R+9YVApWCcNWP3hUBEbcjDkRqGQHCIRrs9HYZAVrws1OkfhkDqTy7P8SWGQF7GC4LEUIZA6O4JWgpuhkDm0ZsDjYaGQBEMfeWMioZATow8mt2mhkD2HgMBKbmGQNoX7WPPxoZAFwvw6x/JhkBW/w6xiOKGQCwVO0Ey/4ZAP95sKDUDh0BpSrpcNgeHQMr70zuRKYdAniuEz5Axh0Dsem18ijmHQOvKBHZdQYdA6sPVTTdnh0BeAghnOmuHQPnB1e88b4dA6G6mkkJzh0CAj1sSTneHQAg3hGTHsYdAuPAgece5h0Am3slVRbuHQJ6+kI2/wYdAYByvJb/Jh0CadQovaQuIQBoyaWlGLYhAMzWd93QuiEBqTQL8YjeIQOwmXeZkaohAZoXtyH5yiEC6ApEEgHaIQGIdc3kjqIhAyZQmMrSuiEA8gab6V7KIQILlj9lctohASCuTcFy6iEABKn9i5LqIQJxEI8PowohAOEyVVWTkiECq6KmMtfSIQPywS3N5/4hA + NrgMGZxjYkCN7m7sniJrQBu6YmAmQ3BARtUTyqeidEBWXNs11mN3QIF3jJ9Xw3tAfR0jrYR0f0AE/752JCqCQAJSiv26AoRAmN9isnsyhkAgo0boEpOHQLYwH53TwolAINI0Er8bi0C2Xw3Hf0uNQBextED2s45A - + - qfIERs7rlkQMmNBE9ysCRUy9gERYZIhE0tZDRUofAkcMI4RERCNURH+0yUQc559E3spCRI1+g0X6ao9FspMDRY5fVUS89VBEZ0xTRS24dETlgkJEF0I+RI2LkETFN61EKKC2RNwLQ0RMH3lE+qc8RPfWSkRDEwdFAiQLRWylk0bONR9HHuhGRi+U2ET0SbJFltKeRCzn4UQ+IY1E/RKSRqTwokRX5o5ErXOYRHl3kUTTbZ5FFOiYRIdIkERR1pdFM+xVRHs1bERe4G5EmAWeRML9P0RMcktFPYGLRGQyMUWOW0VEJK2wRE3vNEQGqhZG0gLZREvEj0Rd9oNFm2hSROf8v0SLlpNE5ecDRS7UjkQU3WpEB2KZRH+25kRg1gFFcwjbRg61m0RHtIhEWureRdk6gESziSRFYn6ARLBlPES4z0RHV7NWREik/0Qx7UtG3qB9RKON/UXXLk9EMcSCRNJ7DEYTxYBECcnKRA56HUUhBY5EYPF7RG+9l0TT9VZEsc+FRBBfYEWrbxlFX3lDRKJ6fERHGr5F+M3PRL7k+USJq4hEgZaCRL76hETz6rlE16qiRY6hj0TrkmBFXpB8RIewy0Tiv81EPsU4RLRJ6USdJHpE+s6FRILeWEZD5cREIUmERDZ2cUTSAqNEFTVtRRM8g0Ty7mtEW0OeRD0uTERzYixETN9YRAByRkRIQYdEHjdORKw3h0TrgdhEdU+WRHl4OkSt2K5FZCukRHsRSkQvdQ9IyX1pRMHYZ0XAp09EHH+eRA8dl0V9p5FHNoRbRJm4ZUbp0yRGeaa3Rf2XuUV0uqZEKLJAR7hxOkWbUOBEOWWiRDFvGEU1GN5FuFlhRKhXcUQW5EVE43a+ReW9O0ScdI1E6LmzROZxi0TnvfREaFhwRN65xUSnlhBFvBPsRO+6WUQqvtZEIqfqRchHB0XPlaREmrnFRGjefkRRPWhE8NSwRFUoqkR5VmNEHI97RKq/FEUbI0xEK96VRPdulUTwXIBEJrJzRBs5BkUppFVElyPQROhN2ES5cYdEZazGREhGxEUiNZJEfRXyREDidUTNdmJEuVBvRMKxQUXi5bpE8S5QRMTRmEQVYqNEG1GVROYRNUR5/u5EFuJ5RNFsPkbfHjFEf5FrRC9QUET7uHNEssxcREojQ0Tu6+lEEOfpROp+nEUJhPJEBWSNRHXteESH8oxEzwotRFEYWkTM/MpEuy9+RMV/vkQ5bEJEs/S1RJefHEW71AxG1EQQRcs01USSpkZG9BUBRZfw2EWrm2JEoXz9RJsASUWdYXdEJHoHRdyBhkR7wFxEvGp0RCEghUQsjFtEjdddRG0STURp43RESCh3RHbscUTHP09EaKAmRA8HZkQqCVlEIoZ3RDIjl0QBxW5EvPU3RIIPckSip5dFLWwRReonckTzX6pE5FptRXkWA0YFrYNFJZ+YRrUGt0QTwmlESzaVRG/b/EQOcpZE3FBtRD6yiEQjXo9FWkO1RYRa/ESS4nBFC5xJRIEdC0V7xatEKYE5RKiTXUTQoy5G3iKwROV7VkQe/zVEAzUbRVyNKUQTnRpFOh9jRAzwSUR377VEN200RvX4bET/U01EryqwRWSdYEQYrRBFII53RH7X8kT1+aVFw7pBROQacUSXOIREHleYRAgUd0T/DkpEPTiJRLFabEWe21FEkFVZRKNIH0RwIbRErucYRf2gaEQDgYFEOrdBRJ24jEakRzFFDM/FRNmylEQ494lEd2CURCoP60d9XL5El7mVRuiJ1ETwxE1E7YWCROVf1kbXfpNFp0o4RnrXiESaZ6lEPzaZRKqHO0W8julEBEpnRATOI0XFA55EfnxLRKbZfkTBLlJEgWVVRAVNVUTlNHdEvjuzRAQ1fER3ErxEgQqbRJMBwURse3tE2KBaRKVxk0XaTRJE/5Z3RCJpm0RW6KJE0TTBRP0WjkTxvDNE1KCcRHcoHUWcpTRFWi0lRpKOjETL2F1E3CFORN5WZUWoYy9F5TcRRcCAM0UencBEHtLrRLnqYUWIm0RJs7JRRUhB2ETahVFGSbURRunYWkQKWm1Frrb6RFU0IUXzPlNEF2WARKzAQEht8ohEhyNZRJgtREQfcFVFJwUwRNvdjkbge0FEs84IRYUrz0SudJNERp7VRAouHUWEMmtE19T3RH87W0QUHZlELuooRXWuckQx/ENFJ4lZRC7Mw0UGETpE1WyiRGcvCEUFi8dFdpiYRCYXN0QgAsNF/1AWRcqwkERNOK9EA98JRbh1iESyMpFE72HFRB1yTkQ1x3hFKm6FRMl3lER4DLVEgmQ+RREJgUQphVxELr9iRF08fUROJThFkHl/RFXPeEWQjrNFUVMfRd3dpUQWdIZEpK5ERAyiMEXS7E9Epd6XRAb1t0TlWx1EDfQjSLfEYEdjlpNGcA3FR/j9skU2U3JEJzWtRnH7l0RAg+FEg2sTResYa0QYUm5E7NZgRLORnUTuXW1EpUAHRbDdI0UcRIpEQAHORJEzWUSw/1dEQiuYRL+BI0Rpo59F9Gs7RIC8uUQbmtJER5pGRE38RUTn+wFFswxCRLHqlUZvemlEgv7tREIRk0TGfuFEpHtgRQvaRkVNdYVEkX31RAncaUSlYJNEpVQIRu8QQEWCK5NEjGLlRkH0gkYDc5lFLvyDRA4/WkQADVREJzx6RAgTg0RVbxFFyFB/RHyJcUQMxKRGucHqRGzqH0azLbdEw/joREsDj0UGQZlE55SRRWm8zUREArxFsMMnRJT8NkTlqXRExxRFRB32YERaK5pE3UanRA9tiUTDplFEZLJxREg1SER03d1ExHW8RIkDV0S1yT5EIy23RcZNikREZO9EOZrWRz08PkSoJdFEmgDSRpufPkR3EwhFcqidRp6Oc0a0j2FEKcf4RTdRnkRnxXBFt2ljRDVkhkR7GKtE9JvpRLi5mER27hNGKh6vRfmgV0RmWwdFm0S5RJURTETEl+RFGQ6eRD2eM0VlXElExdiPRCjtZkR0rc1G9vGMRMQ+jEVymf9EVmmfROjItEQfCxBFM6w/ReIRsUSa7z9EvYKCRH0xtER6qFpElOL7RE2THEW6aRtFYmGARGcnXEQFqapEfCTrRAzLsESfqnJE2YuPRK5+SER/IhRFrO9bRFqzLUUV/gZFIUxQRMO3DEXrTm5EdjiGRF6MbUTGVtBEoXSBRCAPoEScuDdE6gaQRp16I0a95a5ET/3rRCDFukTZTSZG4aP8RQlLc0RxNtFEgu7XRiYWmES8DxpFqW+lRhTxDEZJ6CBFpgtERIQxakRpKYVGJFSFRMfOqkYi0wxGSR9sRcr7yEQxNklElJB5RC69XkQIqW5EROqJRdYXSUQyqvdEQUWBRBXVnUTb975FGa0+RC1UoUVqDXBEHSYxRXcbUURFcQpHlS9hRgDYP0QXs2pFW2NVRYV6i0RJUllE84aKRF8xZEQw9CVGeHa/RF1Au0SM1mtFgf/yRPbBUET/9btE3qlSRJ19YUR5Q4pE8806RHGTj0RrdThE6/s6RGcLZUQYTFlEAM0+RFkdWUQ2jd9EGFspRSqxW0Q//VlEKJBTRco+OUS0wzhEMFTFRBZOP0QaQGJE7z2JRLlxkURk3V5Ex/VORE5ChUWQgfJE6nuQRPPYaESh3mtFbYBRRuaBs0TFig1FDqnsRP7/ikQ+Re5EdoZFRApCp0VxkjdEUqGoRDy9h0QUukZEOeqlRGvnc0RAUFREUIqMRFWr7EQzh0BEG26VRJevOkXTAWpEPj4wRRZHW0SMTVRENEmFRJDVoEQLtXhGSLp7RRIrT0Vh6dVFdkHvRJFWwUQYRkREd1sFRbUiy0SbBDxEDq6FRNoxu0SL7wVFaVSARA8Lu0SReDpEdJgeRutctUQWksdE0nyzRNAtSUQ5rmFErZdxRZ0peETELihFnXeWRICqZ0Su7n5I2Te6RJhiSkTnxapEzad0RLhioET35vREfizYRCKP6EQE8eRH8SRuRBpIMET+b6hEN2HERPNqXUe3hXBFNVxfRDw9TkS8b4pEpJY0RsmajUQ7bJFF3zH2RLRva0Q07yhF6MVuRItNCUX3YkREpCONRIT8H0UGXalELdRlRNxiwkSGX25E9CNrRNsLeERb8X9GddSORRzmXETcuZhF3QKRRJ6jT0StsNZEln8bR1VoZ0SKLXxEyDHqRccnbERhcA1F4/t/RJxWRUWfbXpEBru+RJJgNkWGlXREcfMfRurEm0RE/0REGemXRNw0rESBmsxEWBCGRLv+mURqSVhENlhmSEKMA0XZWFJEAKwDSGwEBEaHKwJHQ3NIRGF6BUbCDThF6tc7RHv97ESYGl1Ej8cmRHc5w0Rk26xEFFMKRQnIY0Tgah5FEh77RbqSxURDpg9FJPZCRO6ngUTh+0xG9OEiRWhackTjwwNFOk0AReaeVkQAoWpEVQ+LRE3KLUW9gV9E2wTlRFvA1UTtdWFEFI1mRN6aTkSe5UtERMyURJIwikZXmAhGDM9URSxBeUVeh4xEvwUORUlaukQ6nlZEu0sjRT25OERaEZBEZcRXRFWBKkTTrkVEuZ2NRC+sL0Qs8mFERIMnRaR/rERkKJZE8uajRKmWdkQ08BtFPYiMRA3Ip0QeavNEGiR8RMPeX0ThmRhFXMd4RCTyy0TIVoRExwC1RG2ZMESm+09EsKVPRI6JYkQnZ41EcAMXRQfenEXe40ZEzR9pRZ4mwUdKsE1E+gW9RJlqJ0f93mNEYhRSRBLQxEaxjKVEhIcgRL9wnEUQL8xFJ/yNRc1m3kSzS0lEt+87RQWMCkUhWF1EMJFTRYV6okSLtJBEB2uBRPjqgUS1LmBEKmBPRJlSa0SmU9BE332iRNl0dEQD5EZEKFyJRGtYP0VMtYZFIJ9gRdROrkQ6+khE/SiPROs4QUS2no9FyQKfRF26hUTKU2lEM+LZR6LTVEQgOj9HI0PnRpog7EQkBAxGeV4GRfJoKUSMrkREyyhXRA1d80TSqTdEL5J7RKNBZUTBpQNFi2YURQRgnUUM+dtEUzdsROoRm0TJ6+hE446ZRDbUYETyFXtEgNtYREvJO0REmnREtKdwRJzPi0R6iaVENp3QRP2hW0T+91JEbPSRRIKJxkT1MWxEmOTcRCM4hEQkPodE2D7HRaTb8keXXjdEsc2aRzJmAEWEe9hGyvHfRZZYmUWXuIhEV7UuRQNyk0TACjZESGZQRJ8cNEWR4T9E5+p+RRp82kQC/IdEXc3XRCt/jETTDR1FbaODRF6NU0QkBAJH73BORgFggERvNCBGb/2MRSZkT0U5JtdEj/eERCSptETRIp5E3BOgRLwtjETNcI1EK0rXRA3h8kQsbLRE54nIRLClk0TcUi5EI+lBRJVLiEQAfgFH1kE8RDuoWEZ+dRRGnF/gRELINEW0jb1EDqF+RHgkMEQFBGJEh+ZFRPC62EQdAstEDfKERAUAOERETDFEFfRBRPWdQUV03iNFoaXzRNEitUT4aFNEjQlpRO/9VUQqEr9FrAyYRRWM1ER0FiJGO1fFRd+CYkWTdKxEdakGR7IE9kbHyTBGNbcmRSzigkSpdRpGDD6oRfUvDUVuEkdFdgaURMzXMUSSMoZEeLFXRNStlkTc04pEhFbeRNzpw0SIN3NExZJFRNcPYkU8D4ZFaxsJRRlIvEU8Z6JEJPdyRBzNkET6pGRE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 9cedOG/BckCqtodtT8JyQLKJ0wTmwnJADAy7mzjDckCsoVDHxMRyQMvLFdFaxXJAn1Id0g7SckDDJbUcQ9JyQKB9N/7Y0nJAgqjyP9LfckDW/LqKIeByQJ7jXua34HJATG7pZ0rhckCL0gbnF+JyQOpTffpQ4nJAiC4zYJDickCPUK4OJeNyQGjXiJQQ8HJAZemAAMjwckBRKFtRx/FyQApwPOJ98nJAfjm0BxDzckC10phwtvNyQBBZbRoP9HJAH2jWNaL0ckCyiXP0wv9yQLSsbx5nAHNANyGwmfUAc0Ct/tIsjAFzQMc4WpE6AnNAulfyy9ACc0BSWpBhZQNzQIM0hof6A3NA2klYN48Rc0C8XZ2xCRJzQHyOvlsrEnNAQMiE3ZISc0CoMMBmvBJzQI4hx+NyE3NAeipMxQUUc0BEWO+GTBRzQOOMQ2+MFHNAcKpKpnkfc0DrDcXHoiBzQMUlbX44IXNAojTV92Qhc0DJqbNgyCJzQKjLwZsSI3NA9GZ2djckc0A+d5ooziRzQJLA095KMXNA62aoyfoyc0A67x7MCTNzQC54eRCiM3NAoONP9tI0c0D0R7Q+uT9zQMypJfp3QXNAjIAe0bxCc0DZhDZzekRzQPL/oCGbUXNArp7+GT9Tc0CgbhIOpFNzQJYoxYp7VHNAIi+rvPlfc0BY+ZQQimBzQBuUzLiuYXNAkZ1MZDljc0AgQ/Vx53BzQEGXrkt1cXNAg+F0P9txc0Ds4BA1UXJzQHSWZlglc3NAnksOtY5zc0CWfG0juXRzQDwKALVLdXNAsW0GXPF/c0BuLREqHoBzQCq1y994gHNAiFyYvKSAc0ASREP6DYFzQJr6Vl05gXNAtJ1vDV6Cc0C05bL854JzQAQvWlURhHNAGgGKOzeFc0Bo0MzKhZBzQHKeQtWZkHNAvuQ9N02Sc0BRbMRT0ZJzQAqp9e43k3NA4sCt8mGUc0BarAu095RzQOaa2qG4oHNA6nAJYuWgc0A4V2kksKFzQBTck40KonNA17TBzVqic0DN5e6nkaJzQNro/QqconNA6hYqcCajc0Dy4zabBaVzQKr5aunasHNAQM3eCTOxc0A+TbEd5LJzQJQMbN8Rs3NAY/0F1Lazc0Alx5OEC7RzQIgRhqZkwHNAloAvaPjAc0AVGP4EO8JzQCoZ1CXQwnNA8FOwfifDc0BkXnnu2NFzQJ4zXqxm0nNAiRWSMr3Sc0DPBXmz3NJzQOJjnkNP03NAJbWWfvXTc0BIUDUM49RzQI0Lmf844XNAyIXrUnvic0C6JFr0EONzQBBu9+5r8nNAGJLeYs7yc0AJR03KNvRzQJDNXzHkAHRAIH7/lngBdEBDeiqkogF0QDPrG3XlA3RAl9mWwA4FdEAQ8M0UChF0QDpuFZKaEXRAh6qZ/UwTdECWFJRSSiB0QBwXWVO3IXRAVHHQwbskdEAobkMkVDB0QCcHkjFpMXRAT1flxtgydEBWj8cLx0F0QKhVVlZfQnRAbuZ8WDpDdECespawe0N0QIQ5c02PU3RA5MikwvdUdEAWfeENi1V0QHC2kf3cV3RAEORgPiFddED2ykxNT2B0QHKdZGK5YHRAIkBXOQhidEANNxpTemJ0QPSx6HJQZHRA5jGwUcVndEAp1WiW1md0QK5P7FsdbXRAdGAy9CFwdEBPLX2ZGnF0QO7KqkJBcXRA1s4XgBVydEA+Fy0xe3J0QGYsEu4Qc3RAeg33BjpzdECKDEjVNXV0QLqq8wj5gHRAkE9Nc06BdEDaU3VbIoN0QEYGEpkWkHRAoFKcoFGTdEB85VYj7p90QFgnhaqhoHRAhmjzuM+gdEC+BfbROKF0QArQqD55onRA6s5B5biidECaJGoYD6N0QOc8nvEMsHRAVHswVMWwdEB2UpuVTLF0QHE5VvZvsnRAs96ji/yydEBmOnsNb7h0QAThEu7JvXRAE2GYJLi/dEBgvCFbUcB0QLblO1/jwHRADmoH63bBdECwFL+r7MF0QCMpq4i5wnRA2CbaOVDDdEBG8IjxI8R0QOJT0123xHRAnFFY4/3OdEAMQwPEOdN0QO6yRVLi03RAGngfAs/UdEAu3VQ1s+B0QE4cEHgh4XRA2rKsvbbhdEAYBHQV/OJ0QFQZLTZc43RAlr8nQY/jdEDy345JTuV0QCiBqyNO6HRAHP8icy/wdEAsQdnjv/B0QM8DIvtj8XRAROt2PenydEAiAV42jfN0QHHM+Q5TAHVAWg9mt6UAdUCkA8ms5wB1QABuy6lhAXVAZlZ478wBdUC++uPsXQJ1QIaWdyelAnVAUDGvq+ECdUBvRiCjmgN1QJovse+ZEHVAWlImeyQUdUCoTaPR5B91QDAw3JudInVAmtFglssxdUCGOQ2ffDJ1QJ5xoNmpMnVAMnu9CeQydUBqdw61yzV1QHWYVeglQHVAYA+skX5CdUCy0P/h3UJ1QMx3GMojQ3VA2mfat9ZHdUDmXtU26E91QOEtn3EMUHVACF1Psk1UdUB6+u/3d1V1QKzEA38PYHVA8B5xuGZgdUCsin3hN2F1QMRTab9lYXVAvLZdB/NhdUD+J9HM+mN1QLw1/dd1cnVAmLFG9ox0dUDyCiuxeIF1QLMQ+CCugXVA20AftumCdUDw30v1pYN1QOrDGzrlg3VA8sn+vJqEdUDyrI8gu5F1QAFL+8SUoHVAbmH7ubehdUBOKk12+qJ1QIiKeePFtHVAqiSKu6O/dUBuJ0LJz8B1QJk3qWlmwXVA3jrj0PjBdUCxdVVtfsJ1QOyPWF/M03VAwLOCXw7hdUD6CiwqBuJ1QAhZ0pfl4nVAeiaUGTnldUBRRBpUSAJ2QIDjbTjRA3ZAvmFEq+QEdkB/4XmWTBR2QHtawbULFnZARr6hTUgWdkDyJ01HyBp2QG1xPFiJInZAmujoGZAkdkA5tnW6Sit2QP3KpH4fMXZAcMgtciMzdkBW02LiUjN2QPwxBrO5M3ZAFRnOZZ40dkCU1HeOTT52QDTRp6RaQHZA2sjh7h1BdkDUfww3NEJ2QGoo9rjIQnZARAVKPE1DdkDIBSmSe0N2QGqihTimQ3ZAzE0YcHlEdkBk1bhL+052QBKkyQV8UHZA3pcmeMhQdkAguH3JEVF2QPKDWGnVUnZA1OydI81UdkDStmcCkmB2QOml/nXcZHZAIKH4deFwdkDanHgo0X92QLKCEcPMgHZAuuC8+qSCdkDkWM1U5IJ2QLHRbtA3g3ZArOrsXpGDdkAYuOEY+YR2QGGxGWlLi3ZAYjIVQGWSdkBeojeu6512QFIPFx/Cn3ZAGOcGuw6hdkBPC4UgpKF2QDjmIOpFo3ZABBEBv42ndkBuzpzboKh2QMJcCnGPq3ZAsKuna1CwdkAkaOAJvLB2QNT6LGzBsnZAENCODA20dkDItBmHeLR2QFxePad1wHZAYHSu65rAdkBYIMWQvcB2QGdB6/BMwXZAXSCPIBvEdkCHQ4aQzs52QHgOI1N90HZATHPlxPThdkCcbE9TkfN2QFdW3FAyAndAdt62haIDd0Dtw1gVARJ3QAwRTnwQE3dAbN4/1Ysgd0DFL5ODDSJ3QKpw02hzIndA/d6D4FYud0DoYlTUDDV3QP+huBZ6PXdAFVRFFJ1Bd0COaBehs0J3QDiUehiTQ3dADmAV4hpFd0Bli7yySlF3QI2oS1SRUXdAbRFxLfFSd0BK+sfusFN3QITSF08pVXdAWRD9Hjxbd0B/2kxit1t3QO+bnVtJYXdATajzwI9hd0BGZjxdOWV3QKApZ5Ynb3dAgbaKnYZxd0Cuc+ZqHHd3QEFdC3gde3dAEdp/a3mCd0CGByx6IYN3QARWFFQIkndA97E5Yk2Ud0BCwzE0iaF3QN+3heuJqHdAHqENAJm0d0ASLoKmD8N3QAtJNqwvw3dA3LMoaIzWd0BENhR4T/J3QN5UjV4TIXhAWveodOoheECOqv1PbiJ4QOhrcc+JI3hAHxKnSNEjeECuo6jLoyR4QEXOrmVWMnhAP61oWAxCeEC8+A2E60N4QNjTyIsRRHhAMsU/N3pFeEDYxxmS1Uh4QNx/8xozTnhAPs+/fMpReEBsla/HhVV4QDv1lxL6YHhAXPoqk7hheEDoKqrWlWJ4QGBea9a2YnhAeB83+0ZteECr9g2sUXR4QAlE6KaLdHhABtnJSLt0eEAiLX+9z3R4QABub1zGeHhAbOTHsPV7eEAz4IESIH54QEy8gW6lgXhAISLIDnuDeEAabsTh+4N4QLgl3amZhHhA4rp5yYKHeEB69fiM14h4QCxrBKeXkXhA4/9ZfqiUeEAcPAZIt6R4QIK9QhuIq3hA17CuACaueEAY97bdia94QIClLp2ls3hAUBlhCNOzeEC9Om0OzcB4QPaSgTfYznhAms61bLfUeECEYoaaA/R4QOQrQCqM9XhAFkM2xcn7eEASse+ymgV5QC4sJKuGC3lA4oQwNI8TeUAD36lR3Rh5QLRs4RuUI3lAwjbQB7MoeUAY1qzTDS55QIknzyvUMnlAjsMMBFUzeUBWh5AQtzN5QAzq+hYxNHlA/vPggrs7eUB4XcrR+kN5QOymsLDfUHlA+ZLOec1UeUBcp6xf2WR5QGJfALJBc3lAmx+mENVzeUBwJgOX2oB5QFpva0AZoXlAoKVQ1sCyeUDClWMez8J5QP5o8QLkynlAlCTc2yfTeUBIpzWg0dN5QF5jL31C1HlAHGg/Rc3VeUD62am2UeR5QGA1KHST83lAMBBIyw70eUD6Vucg/QN6QIwnCuT6BXpARWYmoEUTekBER7EeKCN6QKgXgidbI3pASmlrNi4rekAKyAvBHzN6QH+ELGUMNXpAonQm6iY7ekA6Ml6SE0N6QGpVqCAaRXpAYy0cjqtOekDKefkohVN6QO5MGHvWU3pAOoRKWydVekCsBYJuIlx6QPbW/RApZHpAstr0FkxkekA/K2yoNG16QH6StxDCc3pAfr8TwB55ekAkU1Mognl6QAC1XBEao3pASdiY+XejekBBTa4TEbN6QAy5WEcMtnpABJgmUS7DekBqayDgGcZ6QLDqKhXW03pA3ajf5GThekDglp4fUON6QAGgBdk75HpAylDatXvkekCWyGLANO56QPJgLOUW8XpA9utKmWPxekDodXE2SPR6QMuqP8a7+HpAwPobt3wEe0CIu8mgxQt7QNBZGDIqDntAYL7NG00Ve0AZUtwmcSN7QOPpWjtaJXtAcvEf0MUze0AMHI/+jz57QDjtWbjpQ3tAMtI5y0FJe0CYMf6pYlJ7QDKXLGIjlXtA+gIvIvqze0DC76m3fMZ7QJQ399oj0ntAFrb73v/je0CcoXAkl/F7QGX7UhqM9XtASiOWPZABfED+rWcB2gF8QGK5ZBj5AXxA2Z/xFmUEfEB/7ofXmQV8QOrIk1zQEXxANuI/Y7U5fEA4lOu2Mjt8QKKUtHvNQXxADvkEAQRzfEAAVs+j5oN8QBsMToI7lHxAZlukeCelfEAe4nnbNLV8QIKC83pmxHxAPNLAZ8nTfEC2UwcbdtR8QHx1tuzJ1XxAiDR9B9DbfEDGIaAX89t8QANJzbhX4nxAoirWChfyfEDGK80wVPJ8QMO1zQNG9HxAAIhwewECfUB4JppUSwJ9QIJvu2AABH1A87u/DwkMfUCorh3TAxJ9QOQDPNZGEn1AWDCSKA8UfUC9MudVZhh9QOi+DFY+In1Amtbp5WklfUBjfEYPbSl9QJtIG3hIOH1A0govXp49fUAe5E9F90J9QEocp94nSH1AIvy5hFBIfUD8UCNcIHN9QHa6Pa15eH1AoGKCus59fUC8cabCW359QDzDLZxYg31ApEz576WkfUB4jWOhtLR9QENxAAsnt31AoGNWm0K4fUBkJox4urp9QEReBQsqu31AMAKx3yW/fUBwLmBeLMR9QOwrXJK9xH1AsMNIAubEfUCWg6nu+dR9QOmxcAU82X1AomPGFZfefUBAV9GM1OJ9QIvQq7SP9X1Apmw7gI3+fUDeikmaMwB+QEbrq/uiA35AocnqPQ8PfkAaCucrph1+QLObc9s5H35A9ynBpAQjfkCMGt0EDCx+QAQBV8o+L35AFEPGihM0fkC4nq9Fxjx+QB+x9MylRH5AjiI+8OVOfkDv2mUPwFB+QHxM6VT1U35AdH70wSpUfkBrHQG1sVR+QBn0CP+RVX5Azs5CZilXfkCY75W1lll+QBqkW78Ban5A1EyQtIp9fkCdunTe44J+QLuF3EGfg35AhDd8g6aLfkBObAa5kZN+QDaWy2auk35ApltQAJmUfkA15Btk85l+QNr/0aYjmn5AsUn7VpObfkC6942NTp9+QIwk52NfrH5AxsahVbOsfkB0qLT8DK5+QN4/yWL1rn5A2ArkriayfkDgirLgTrR+QDI9tjuouX5A1IL9mCW+fkCs46MwAb9+QGzKa7a6v35AfOfbaM3EfkCpbipJGsZ+QFDi50lzx35Alqh4E23XfkB/5v06wdh+QDCI5SIE5H5AKYxCVlLkfkCsUQtRBeh+QCwfWcIL7H5AFeo1K9LvfkBoXIXtCvB+QCxwSVIQ9H5AbpuUgFj0fkCcJLqQXyB/QAFJBfqoOX9AaX9dTwU/f0AAwJrhUEB/QLVBxntmRH9A8LKCAsBJf0AGp5xDGU9/QOb2eqtvVH9A+32qGrhcf0AOzhNjv2R/QPatUSgvan9AVI/CY8Zsf0BIES7Pt3F/QAA/fNTodH9AWvtIH7WBf0Dt2jDBooN/QOogA8/bhH9A7UacGGKRf0DigmpLq5F/QFIsKxeWk39APoHkg1SYf0BwnTq9XKF/QHk3QxOjo39AFqxEZ/Guf0DQNEfGV7F/QH449+aNtn9AYiWGeWm4f0CGKbwJxb1/QAb2wYpPwX9A/dmWzavbf0ASQm/38eR/QDJhB0IA9H9AGKdN4EX2f0ChAuX43gGAQIqV21sjBYBAnCw+a80FgECHkgnyfRCAQMSaPQDSEYBAct0rxRgSgEBSMJ/JtBOAQKSvOGViGYBADqS/MSUdgECfVeZ5YR6AQEYSoXntKYBA8jSc8cwrgEBYoXoJiTKAQMQTGefmNoBAj8Clx/48gEDQBdEpqEKAQE4dLKrySIBAVglNI7BKgEDFO+EG5lCAQHxsg4gTUYBAQAAhtARUgEDg933tBFaAQOyRLr9oVoBAmlIfaSZYgECMDCtnD1mAQMkDliohWYBA2ldO0DRagEDKoFfnPF6AQCtn1YYtX4BAV1QUrtVfgEBsSyJ4DmSAQLhlzAYgaoBA0k2PvylvgECQmluge3CAQFrFdsMUcoBA8tkJCCd3gEDysjr2gXmAQF5kzkwsfIBAzw/vBS5+gEBscNSUKH+AQJhdC/L9i4BAgpv6M8CMgEDgzvXK/Y6AQPiIsEIej4BA9v9kpDWSgECU0DvJR5aAQPax73wel4BAIOLpcMSZgECDVLkaS5qAQBDnOaHJnYBA6CaUjTyegEBhMHW+3Z6AQNpy4awZn4BAbyObzYyhgEBWNdHyiaWAQB+vAb3ypoBAKyY8x7CqgEBC0xiBhayAQJwsVZfcrYBAOEPhQhOvgEDQWF2Ib7CAQLauY64fsYBAODDOe9WxgEB25zNHlrKAQF0fWjZNs4BAi0rM6hK3gEDsZFbDCLyAQPq+j1H9vIBALlD1PX29gEAs1A1PR76AQNqI8qj7voBA9piX26e/gEDGWJcL/L+AQA6AedhhwIBAIsb6Z1LBgEBkvPXTq8GAQE2FaXeewoBAizOC3VXDgEDyCeyI98SAQD6LGYtqyIBAOg6rFCHJgEDOb39LU8mAQGTBO73hyYBAk0tzaTHKgEB9ivwIlsqAQFV03V2ZzIBAeuoC697MgEDcZJ2oCM+AQEro4tcs0YBAMvw9eEzRgEC7U9gsY9iAQEg/URVK2YBAIeEde4vagEDE27VKROGAQIigxFGE5YBAgkekJOTlgED/q+Fz9uiAQNEf+z3o6YBADpopv0DugEDnZjTmSu+AQJLpLujl8YBAfemmQWXygEAd9c3wO/OAQKAbx/Nn+oBA6D/h9z//gEDiij/3QAeBQI8AY80+D4FAdgT0cz8XgUDtXm4NZheBQMi2kEGpGoFA6o1SYDQfgUAXTMQxsR+BQBmlXbk1J4FAjtbnVbUngUB2zMXSWyiBQDx3x/R9LoFAQJyzSi8vgUAyWiWkRC+BQCCV+AS7MYFAVUOBayszgUCGAj+oijSBQGahVKwUNYFAP3cRYVg4gUDUfeCCZziBQOh5HOAoP4FAqvqtTURAgUDKay12+EWBQCvE55AvR4FA4kP6rrFmgUDETEsMwmeBQJadbGSmaoFARpCF5GtrgUACKfD8MW2BQBm3ciWQd4FALbRUeEF5gUDkOIwa9nmBQCu176SyeoFA0ADoEmF/gUDg0zyIqoSBQCEzIgMUh4FA+vbhgcKHgUDQ2Rga7omBQG6HZrJ9ioFASH9ZTPGNgUDeMd2KVY+BQHLLFWP2kYFABahpBumVgUA8Eyi8/JWBQMAZ60RWl4FAbiNqDT6ZgUBhboA68pmBQFh7FBM3nYFAMGUAzlKfgUDiOtsBjqCBQIankJbmoYFAmtesg96igUDQm4WPlqSBQNbpkP9sqIFAGP0TteWqgUDhkLep4K2BQOZu5AtKr4FAJiu/3JO1gUDSoAwiTLeBQJTWYrkquYFArg1IAZS+gUBYzo2Tp7+BQMlsqBFuw4FAaVvoW1TOgUA+LWRWzM+BQOAHl3r10YFAYBAvs33TgUAPhu21R9aBQNpwc3de2IFAoNQW4kragUBK+VIvUN6BQFVPOS3h4YFA/lqXF73igUAuIgf5KuqBQKiifUsFCYJA6o2yjGEOgkB+tsYutBKCQPRIWQzYGIJAPFCFzLsagkC+dfJM1iCCQDx8nCf6IYJA9uDCNdUigkAys/98JyWCQE/Ixs4qJ4JAeNMYbNEogkCz6B1v/SmCQDWvqgraKoJABXbstcwvgkCugBPFcjCCQPTuOs48NYJAUL6Bxso5gkCA3HrxzD2CQKRAhkqfQ4JAX5x7BQpOgkCwtzkm1U6CQExocuU2UYJAvXXF04tSgkBGFVV9jVaCQKoSngBHWYJAxfC2n5BagkAp5B9dzlqCQLJ2eGLiWoJALkHtjZ9bgkAw6WXya1yCQGDEE/hEXYJAvOzTaZBdgkASI8Ell2GCQBjl4nkJZoJAgMw9Gd9mgkBZTnnVq2eCQEPJeMtoaIJAAmKl5OF9gkBacZha/H2CQByxUwTmgYJAFhjbJQaCgkA8dOUEU4KCQCwIvCXohYJApnPFK0OJgkBYvcNz9omCQO4X/zkZj4JAmbW6mUORgkBmZqWc9pKCQNS7KOg7mYJAShm+naiggkA+asK/DqGCQBIsCTM7oYJA5EyA2N2hgkB0HuxqWKSCQErMeXfgpYJA0PYVbg6pgkC81ugjMamCQGffie/mqYJAZljFL1KwgkCSRBaQBrGCQPbEOC9FsoJAfKqKr42zgkCtPbPS97SCQOZi4KKHuIJAGIF21EbAgkCVGiJu7cWCQFoe2YcFyoJA6VZ6L3DKgkCNlCzEAs6CQArZ+gts0oJAhBTbiXbYgkBuBH6TgNqCQOrJj1lf3oJAsgEOEILegkBSlw5hFuKCQNA1CsLQ4oJAUtiZS9rqgkDelY7IdPCCQJyLzwF38oJASAutT1b0gkCtspbkePSCQIBg29F69oJA5Hfb2a35gkD6oU3fFAODQKKUtiLACoNAUUvxERwLg0COzmBruw6DQPod81h5EYNAILaB5HkZg0B14eAC0B6DQJL5mUlyIYNA5GgnUochg0As/bWXZiSDQHq5aY5yKYNAjsPo0/Uug0CSm9TkaTGDQAxkt6aHRINAANMGlKlSg0DgAIFxwlODQBTnkn9NXYNAFlRWU2Neg0BKS9JBZ2KDQPBJ0s24YoNA9uzyzclig0Cea1rnx2SDQDyB/8g1ZoNAZffVhEZxg0DMZbtf44GDQNhznNFjgoNAj/+A8gqDg0AFp1EuSoODQEkx8wsPi4NAKr3sBHSag0AW3cvwKaeDQKykncWmp4NA8U49tsSog0AmFFbunNSDQPLZxfMa14NAWqLbkR/bg0DHFcDI7OGDQPJzcgqU+INApnIhe6f/g0CmPqvwGgGEQNfM0QxVAoRAZGNpUJoShEA7NouGmhSEQL6Epr6cFoRAv2TBWLgphEBJj/KUty2EQFSY1gAKQ4RAqoHcABNLhED8651zwU6EQIBzxUkLXIRA/i5oLutkhECKpRaCtmaEQD9Ws7n/aIRA7j/SeOVqhEDSVFJv6G6EQK5JIIL9cIRAQgOrHutyhED6vlFJ7naEQC7vJTPJd4RAiAUfC/Z4hEBm3IGLeXqEQHQ3GfzxeoRADA5I3yN9hECil7bwS4KEQOkf8Lb8h4RAgIg/TKqKhECfrCHMxouEQEQMwlBWjYRAChwp4rCPhECjrkApApCEQNzzQH2tkoRAqaN/n1SVhEAAuoQ0AZiEQBw/26WpmoRAnH5Hag+dhEAzkzzTA6SEQApdcUm9qIRA3juRq02qhEBzGb86P8CEQEiJAEtVwoRAIuuOlVrKhEBatEo0atmEQLhvbzNq4YRAim4Y9D3jhEDIy7FhY+mEQNhikMk18YRAhNJACGLxhEDKToT+NfmEQKaSLNxa+YRAPurzZy/7hEAo+TQ9bP+EQBpshtQuAYVAV+/JvBYZhUA94G7ZqBqFQGY3TqaoHYVA+CPjIkAehUDGVzYIpB+FQDB8txpDIoVA7ISMQaEqhUBjOsq7kT+FQAQpdr0/QoVAl3Y9R6BhhUByA9vUn2mFQMAPQa79boVA3YfzgJlxhUCx3Z0htHOFQImVOZ+ZeYVAyjZemfbhhUC82xdNc+SFQCzbTTMv5oVAxDOjMd/1hUC6U1udLfiFQEaKbPfRCYZAKpSuhcgRhkBcbpMxkRqGQOin/KnIGoZA3AzEmEoihkAU8DYci4aGQJ8DEsGOioZAenJuuZKOhkAmsRP6l5KGQM4Hz9hrw4ZAtMS1GnvEhkB3MvoGmc+GQBSOuggz/4ZAWAeMSDUDh0CaKzuqOgeHQEADnCuRKYdAYM+ZT5Exh0DYGD5ygDeHQLLOpZCKOYdAYd6nvVlBh0CSlxNTikGHQJyoryh+SYdAmjKTXTdnh0CU6qEWOmuHQFM2p949b4dAU+4ty/Ryh0DOMy6kQXOHQGPAXLZKd4dAHFYb5IGDh0CmmHJ/kZuHQHWzp5/HsYdAYPc7RMe5h0DQ5Kq4Q7uHQHcTZ0nAwYdAt/r+XM3Eh0Dzct74v8mHQEDS0AlkN4hANjXVH087iECJliLHVj+IQPXnNX9+cohANPxXHlmyiED3CguBW7aIQMyETgRcuohAwHEPuOO6iEAIOihy7cKIQJ4GnU1M14hAlehdbKziiEA= + 4jyZjTbDXEAoFld2zuNlQE4azAB4wmxAN5QtbGpicEAVy2VdqpF1QFmdL53t0nVAFSlCsQKjfEBZ+wvxReR8QBArUBWvioFAgvMgh7jpgUBJH8eWJPKEQNoyGcgwo4ZAZ3CDgXyCiED4g9WyiDOKQL+ve8L0O41AMXhMNP6ajUDKUosoxVmQQFvHffgVapBASmqCPRsekkDb3nQNbC6SQJPswgk8epNAV860pIf6k0DcbgPWXNaUQNO99DujxpVAGtKjNrmqlkA= - + - tur5RS+ZvEQPT9VEYzbtRBtocERw5bFENHOkRQ6nC0c8DkdEm3RrRIxwXUTvPLNEoGePROAjL0SgWYBFGY6JRYyisESFr1pEcDplRCVk2ES3DndEa5VwREY1qESi0rNEwrnJRFlLeES12C5EmVi1RCCbYUQ9WthEM1/uRPJ9gkbdIA9HrH4oRHECfkSXAENEg2tjRB09KkZp0AdFTLq2RaVGhkS39FdEeywERVC3I0S63mpGV2hTRAPTuUSiaHdE82RCRBdYj0VL4XREuReaRHe7c0T5dkREuoYuRJkUJUVB1E9F9m20RMQnxUX2Wf5E5C5KRJWae0VvkEtEPoADRfPYikTcV0lELEgcReEve0QlfidE6WKYRGckm0QnxjxECX1FRNgxikS7je1E5s9XRB8Lg0Q626tGyEjqRO8JhETmtSxE8CmpRUhCYUQjPG5ERUNKRNoXsERtoIJEbd07R+0KTURr4TdE2BDMRGnmakYZ49RFHe0nRHE7a0R50UREEuq6RdyFtETp47pEJot4RODGC0VJf4FEfGhARH4HW0RiwrZEG2FVRTLbpESpl0REoReTRKzFWESkuNRFdJHPRHutP0WWIYNE6WtORJ6lZUQydVFE4XdyRFirgUVkkrZFOHbFRELpwUTAARlECyBiRDhyAEVIQ01EpbxBRnBklERZZ31E75mBROQgQUQjZfhEUUd8RcXBeUSVpNZE7w2KRMPmj0TVdodEkwwoRKlQgESOe29ExNOHRPrTcER139xEDISXRIQOwURgaUdEoX0ASC6BqETcGXBFI1eTRTcViUfWgaREBhFURqrh0EXJOKpFTDSXRVHnS0QgOkVHjGc/REn5K0Vovy5EZNO8RM3hxETRSOJEjKjTRdO2d0S/dY9FaVFTRCgx0US931FEkqwBRQ4KhkTQtbBEG2OyRLETO0Wb5YNEPiHORJH8O0T4SIVEJutPRXoekETkhDtERxpxRLTLTkRYSMlEQD2ORNHqpETRc6JEDUODRCNSOURBhTRFwKyMRM6Kh0Q4JJZEzye2RBARV0TWX4lEoysCRfMdTkQNqD9EAlAyRGC+kUS0kThEdYlNRHggZ0TobRtEKr47RPQjwkVRHQJF0d6MRHIwKkQXZJ1E6MJXRLTsSUVlzcZEidAtRNER3ETlkFZEBkghRd0+hUThdlJGgtcsRHb7g0TD/4VEDQOCROkPVUXjixhFTsOSRXquwUT73XFEE3r0RICqrER325BELNk7RAopBUVwz81EleLVRMyroETSoUxER9E7RDABjUXrQL5E2koURjXs5kRXpshFs7vTRLeBTEUZSqJEk8PSRF4UX0TMw99EoICMRIaRkUTMsFREbis5RDZm0kQfKGtEIWXORL1vpEQdAr9EvDCyRO4GsUTbpIJEayhURKHxh0W0LcRE97pzRIo2b0RkloBETQ+ZRMwjO0RvrYFFEzbORaYIoUXAF75Gin4uRJp3sERfwVdEsc+pRPHa20SI76lEwd5pRdEOA0UQIqBFdJhJRLgD10RqywxFLAxpRR7yYUTyEXtEjSBvRFFCa0UNjT5Eo3gjRiFbVUQZmtxEAmkrRH0PvEUStUxEK2lHRM92YEQB+mpEvC8XRf/zT0QlVHtExbZORGIEJkYWvppEneGHROKHdERPgnpFQzIKRa8P50T+RUpEdsGFRBXfYkTlnSdF7OmIRQtTWkST9EhEFBdfRGzGSkR/THNELTOFRB09R0X360BER/meRA5wEEU+ZqhEErA0RPgYh0b7az5E9dNIRKhdT0V0U6REEe/WRPUd70c7yDdECfOlRj+04EQIy5REJaysRkySjkVCfE5GVrVNRAYtxES16NpEaKeBRAeh1UTVt4BE8407RdzZcERC0hNF5B6HRHzbi0Q9YKBEId15ROjOgkTo7nxEJWCpRHIwLUQ8PBxEbAx6RHZ3T0TWvndEdQtoRPQw0UQtGUhEtn5wRJjTcUX4EIZEQyVERL4hkUQKUFJEfHGBRKtX9US5fTFFydsrRgcX7EQgNVBEtd+nRSQOAEWM3htFXirmRI1II0WWCEhEMm+PRJj4T0XXYElJ8LWMRfscAUUuCitGdt0oRQ8IsUWkqC9FiE4WRULaZ0Rqj09IZfOkRABZgkSQjYVFoy6eRiAFrkRDuBNFZabfRLm1wERNDN9E6fyNRMwZrkTsWqREtybDRN1GYkULwd1FVU82RB96nET1rIBFD4H2RM8rgUQJaztE0sS+RZ0XlkRwKctEtsqQRPC1B0WicmdEzSxJRIMhp0Rw/ZBE5qqIRe2Im0Tqk3xEbZZpRdpPckT5UtZErYBNRRNsb0Rcx2hE+MM/RLF6BkXHG9dFjY3ARKZ+3US5RVpEhHecRJZSPkXiJD5E4SSHRKGwJUi1NL1EDrt9R9qBhEb+NblH1sO4RU7ObUQs77xGal5PRFwgXkTvpYJEsnM/RVrVW0WUwg1FmLdRRJO/PkRUbpVEZwCJRKe7Y0VC/65Enc4rRNapn0T3qs5F7COFRChvtUT/KGpEv/MURbIJVkRKvoFGzvSORM3pBUUX/sREc+l2ROkwN0V9KFVECKgWRV1G10RRREhE6xw4Rq84UkTW2BRFD/d4RJfcz0Yym5JGe2jZRYtdiUQDt8RETom6RNytZkRiRAdFGnOcRGo+p0V2zJxGx6zDRJO8SEZYisVENANsROkookW5YZVFXXxDRPPjR0SuAqNFef1tRHNFmERPF7BEhz1+RRH6aUQBkJxF2ClxRF3Cp0Rik4xE5nYxRP3rg0RE9cdHPMIfRSEXuEb0K3NEDysSRQyekEZycz9G3e2LReORS0SW911FAykpRWT3ikSRlvdEsQCDROuVPkRld/1FdsNDRQaZ8ESfG25EMLsuRLBRCEZgEYFFBaYyRFffV0SA+ZdEj02tRqaBc0VJQKxE4wl6RBZBT0RKiHdEafDRRHAcIUWYMnREaBpyRRu9TkTC959EeFZhRLC8Z0S7MbREVvhzRJD9CEX0rfhEYuBCRCzp3ERqgYpEKkeCRFJAwEQsiJZE/ItzRN5yakTSUCVF3VykRPtmRUTivNpE5UB9ROfwW0TwATxE2rTLRAkwMURj9zhE9SZWRFpxkER8pJpG+OAhRpTwCEUPLyRFs3ITRiVO6UV6Lz5Ep85yRGiNMEUUBTBEK8N1REDGOER7UcVGIBh6RFtksUYdmCNGNdNNRBOMF0UrH55EDPKoRP7vbkSFnWBEsAFeRB2TbkTfp2NGkl9YRI5ZnkbGdshFvIpdRCgsIkV3ABBFFgdkRDXwfUVb+lNELmyGRCEQikSNeG9GA+NARuVpFEXPMNBEyi/SRl+YeEbkqVdEDrESRd+5jkWTfqdEYbDbRAN4OUTRzGNEIcEuRnO6YESTrB9FnKtzRJ94XEV3QY5ET3ZWRHf36ESeL1FEmurDRPO3TUQDhGFE0pWeRGikQkTAVR5EF+hnRB/hT0QvlElEuvRoRMS+o0RsvodEk6IVRYNSpERlt+xEBOk/RD2NSUT5HHBEY3BORECNwEQ0nXJEtTdKRGxFaUVSUcpE9n5YRJ0JuEQjbWJGFv4ARfOabUSrRg1FPYzwRN3ahUW+ObxErw+6RI+eSkToTztER4VIRBjKMkTevGlELz9mRQzJSUT/XMxEP5tCRIeyhEQF/0pEX61VRCD3w0QR/DVEKQJTRNe31kScPn9GCUA5RON7NEXEKF5F1R69RaeZQUUpTohFgKNwRLFGs0QEwUdFQXZuRJJAsETcGgNFExNARDc5YUSQcLJEiNhJRgWmxURqbp1E98IERfUIRESnGppE/Hv/RC+//ETe8zRE9Y7URLEfZkQ6SuNEteaARCvNdUTx1U5EetpwSAKXHEQApoFE21tKRLJ9ckRy8K1EZw2MREdQ2EfzIkNEnYfFRIMaxERcOE9EXPiRRFAnEEWvJM9EjqR4R3F4UUTgJ1lGabJlRBcHnkVSopREJwooRZdJU0RlOu5EvT2ERBJxBEWOVDFEXwqKRCx+lERy/HJEqf+GRjoQl0WLI8FFvK6kRKVoW0QSxANFPPAkR+Z7g0QNz+xF0TOURE86lkRxc4NEaZtNRYcvYkSamf5E56TTRMRhgESwDz9E6IspRK36akQOBz9GuUpNRL5rpEQfHLlEKl+oRO3ASEQQgTxEmbteRC1pNEQJPk5ESYWCRFwaT0R2YbREz+89RIPCNURfPidEXwx6REH5/Edtog5FpBOPR0UD2UUXh2hGFI1pRQwfJUWSbP5ENMNhRE+/xURkoztEvo4JRckfZkS+1yZFH1AVRtJ8fESQBq5EFdsZRUufVkTv0UJGiYJyRMCjOEVLKUdEfCgmRccNiUTZ9khEE85SRBoac0SwDFBEuT+1RI/SWUXMQUdEHUjGRPWuQUSeV09EVwpfRDfDbER+kWZEbYgxRBYnTUZKUTpGpvdsRfZSlkU1BBFFusg1RSqui0Q8S1hEuo0IRUIQLURO02JEARRERA2lZkVvDF5EQxClRNvRaURAlJ5EiMz6RAAcCEUhMKpELMagRC8sw0STu6VEl6i/RBNRxkRn5oNE+bjURJT51EQNw4pEQM+PRPodqEQPlUhEr07DROB/wkS+/IREfXnFRY7V3USNtkNFnqr4RCEVqUQfJW1EtKbBRzWzWEQYdUJEdjcpRx+ruET1F+RGfiJfRKmUv0WK259FqkWZRXFkNUTgRA9F0N8gRRCS6kSgCcFE0H5ERc81zkQ2TSlEJE44RDQwO0T28UVEaOJJRDr4jUT0c2NELjtMROk3e0R+nEJEo2EuRKhz00RMcjVEr7ajROgikESG6UJEjQ7ERETBAEUzFDpFvtKmRBy41kRRwYNEbcy5RHYok0VjrCtEp3CURNVDUESOfdNH4ldHR0ImUERXAb9Gl1ABRZZESESH2PtFO+s5RId9BUWRvltEMVw2RcRspkRtnZdESuuLRUnKLkXYnxZFz5ESRQGNUESLPylES8pfRN333kTPGk1EiCLvRJeIgkTVkYNE5dltRCUoikRSAjBEdBx2RPZ7Q0RUZYVEVZ89RAMrWkTvmXhEdBzERKZ4R0RkkbNErfS9RAlPnESk3s5EQ2uhRIskjkT+QbRERJqPRKWZN0SKm3xES1mWRDdOeUTfHMZFS1UcSP6Oz0fHqDNFH04VRyMYFUYXqXZFfXCzRMsZPUURHOZETy84RedVREQtXx9GZmoVRjioY0RY8bdFSORNRBlJUESg1oRESEGQROBBN0XCAJFEBbRzRMMeO0T4NjZE2yw1RC0SVURmwmdEuFpLRBiUE0eVLnBG1glFRAIxSkbs7YNF0LhJRbMkxUSdrqJEki40RMmuZkTfGr9E9ZZ3RB3WLkQOT+pEg6DSRBYPVER2z5NEZRglRFdtsESo1ERE6ePuRpyQd0ZvZnpEZsMcRoXFs0Q6MU5FuG5cRLfRRET39WNEfa1uRI9iVESkTyNEbA00RB0WpETt74dExpRCRBDw30WOn4tFS6vYRJhkPUQIUaBEUdxtRNjTYESM8bVFCASgRWAnkEQO4ShGLu3XRRFQYER/JGBF02htRCG4D0XYTFtEucgDRzMZrkYr2hFG10tVROLHi0WOiJhEupF1RCBjNkTYjARGfHJjRQzHFEWBbDNFnEZjRLwBu0RGp6ZElhGLRHzZbUT7FpNEkt69RYWIN0V8fa1EW5EZRasyiURRqnZE7sRYRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Ci6vQm/BckBqz1hOT8JyQHWbITzkwnJAmrjTTzvDckDUNFUCW8VyQGun/Z190XJAvUcx/Q7SckB/1NKpQ9JyQMhEZiXQ0nJA4iP953XTckBS7xz1ytNyQOzGamLP33JAEFwiGrrgckCLwtfS5eByQIes7qZM4XJAMLkhFFHickBoX6nukOJyQOMDp4ch43JA4s9wzdHwckBAlGrTyvFyQEJPKFJ98nJARJgXkA/zckBBLgx+t/NyQEHwwbWj9HJAZJ9pOML/ckC9d3iv9wBzQHL+JOYRAXNAQsHhB00Bc0B9ZwyHOwJzQJixj5XPAnNAVW9YRmUDc0CSebIX+wNzQOSDuOaPEXNAe8fJP98Rc0DkGudyKhJzQApOmgO9EnNABCOY0nETc0AUTbGR+xNzQIbYNL8FFHNAYPJhy3kfc0CYONvktyBzQK0VKys5IXNAOR/4cGQhc0DJo1cpfCJzQHkJv8DJInNAPddc6A4jc0AeHkTQziRzQP75b8tIMXNAsmtV1Foxc0AkrzYbNDJzQBzCWjL8MnNAFhipJNYzc0B/pj8pNjRzQA8zee+5P3NA6kpAxkJAc0DOoGn5eEFzQG1cNuclQnNA6lAHg7pCc0AlWNC3eURzQDlUeEyaUXNAFhZnnqVTc0DE2fh3e1RzQL7jKmc5YHNAnBt/vIlgc0Dlj/V0imFzQJSUSj46Y3NAhO44HZFjc0C6VlCW5nBzQDqJ5ljbcXNAdCyDUU9yc0AxOcweuXJzQLHHQxT2cnNAy+1febl0c0A6E3vpS3VzQFVN9hRqdnNAJJqjcPB/c0CuG29rHYBzQPbnYhd5gHNAHFIv9KSAc0D94sreDIFzQG6iSNFdgnNA7v12dYmQc0AU2BM6j5FzQNso3zxNknNAqPSzDs2Tc0C31jpJYpRzQMLBup33lHNA+IbkY7igc0CoZeX05aBzQCwZ/SmvoXNAEB10WAuic0DG0vX4WaJzQARu4TWQonNA4K7zxZuic0BCHOIwBaVzQLA2MNbKsHNAKQkZ50+yc0CADhJRt7NzQH4p4MkLtHNAxFW50aK0c0AN08z2+MBzQODESZU8wnNAzpirf8/Cc0AUbBfjI8NzQPRmBl1ow3NAqn0zSvjDc0DxTBVv2NFzQGP8PGdG0nNAtovy5fbTc0BM7FcC4tRzQJV4Lfx533NA+G7lXjjhc0CQokm2Y+FzQB7MJ1t74nNAsJYmRBDjc0C+mDrzN/RzQIfrOQx5AXRAUiyPXacBdECVXYpIJgJ0QMOYpj5yAnRAa4wK44gRdEBUiBK5mRF0QAiwaEtME3RArVG3r+ITdEAtWsNxTyB0QGLWHXC5IXRA7WPpVbUidECzR5ne+SJ0QKYEX2RbI3RAaRD72VMwdEDQTL9bUjJ0QCbQkv1gQnRAufaeSDpDdEAx/xLC0FF0QEKuHqyTUnRA6C3GTY5TdEBTToua9lR0QEwSe16MVXRANj4ldyFddEAybrz3uGB0QL8RMH0JYnRATjQFfXpidEDRuW9DT2R0QJtK1M/EZ3RAJJwnpNVndEDEwqeBH210QF6SFMYicHRA1GL+UcpwdEBtS/NMQXF0QHBZo6N4cnRA49WM3DlzdECRZSE/NXV0QLil9R77gHRAjlJm/02BdEBLsSaGN4J0QMQRwEfTgnRAST2OHhaQdEAI4lisaJB0QEWxX0e7knRA8JX7Ee6fdEBY2R8YoqB0QLR2iojOoHRAJgSDVjqhdEBMEksEe6J0QOAE/QS6onRArkdX+A+jdEDFazvnCbB0QGA5wUjDsHRAyKXYXECxdEA6Jn6f/bJ0QOScLMfGt3RAzgu60264dEBaGg4J5cB0QHvCgYz6wHRAxNuHrevBdEDX9egducJ0QPnuoGBNw3RA+l/roLjEdEBwDApN/c50QLQzzq4W0XRAwFOfpxLSdEAWTDfpPNN0QLCaRgXh03RAFgKsxs3UdEDkruaps+B0QPcVcVq54XRAtii/VWbidEC45kEgj+N0QM/uS9xP5XRAvOr1Ul/wdEAarreBxPB0QLo8O1aN83RAN0pWgXr0dEAgOPB0UwB1QKIhpb6lAHVAwv62YM8AdUCE66It5QB1QMZz/ZtjAXVAAsPoXV0CdUDcyKiZpgJ1QJ/9xbWcA3VA5mZD3ZcQdUDbohLHaxJ1QI9KeUgkFHVAzIWMofAadUA2Vu5gzCB1QH4giD5zIXVAc2y0hp0idUDQti5TYTF1QCXISBbHMXVALo5+KKwydUDfHSFhzTV1QMQ+Zw7zN3VAff4MVCZAdUAuP5PibkB1QDWAhGR+QnVA2mE/kt1CdUAIXBa62Ed1QIjsAmP4T3VAnkdIMwhQdUB37iNkgFF1QKLWc7hPVHVAp/TIBHlVdUDtzp6H6l91QFTPy5lnYHVAfPFeYDhhdUCmytAd9WF1QA2HJcv6Y3VAVAEJb3ZydUAr91/N+3J1QPCHPUeNdHVAAd/aHeSAdUDCo1pSeYF1QKsKoZitgXVAFIWrm7iCdUAm7+WD6IJ1QCg7JMGmg3VA7O4WNpuEdUChDZUwjJB1QJBrsT68kXVAwJc21zuTdUB865Htk6B1QO3cZbUjoXVABEgdlruhdUA8iItOSaN1QOkfoiS/sHVAlvcSbvjBdUAcwFhZe8J1QBjfp86i0HVASFLYSMbSdUBgkOpM5t91QPYpi/sP4XVA7NvECAnidUC1AC8RKwB2QHxN8JlIAnZAvHeaZtEDdkA6e1B/TRR2QGtOe6MLFnZAuihAxsoadkDwqZYBzR52QEFXLEyIInZAdA7Hz5AkdkBEQ+seTCt2QCxwZJGTMHZAz2ABih8xdkAV/OtCTzJ2QLqYJ5OWMnZAolhFhiQzdkC1SgzCUzN2QFDhPudYO3ZAam7vPk8+dkCWlFcaTEB2QJ7hWHRfQHZABJ3Gw4pAdkBw+TPT4kB2QN8tkmAdQXZAuUJISTVCdkCWCALPyEJ2QKTQWAEPQ3ZAnEobDntDdkA6jpx0qEN2QAyUP9B5RHZA4ERM5vpOdkDEHa6lx1B2QGZ3xZoRUXZA+iGXiS5SdkA6YFoV1VJ2QG/8mzI/U3ZAGOjwdodUdkBWC3SkzVR2QJoXKLaMYHZAfjbdmxFhdkA8e/7wKGF2QGSPSfzeYXZAwnINDdtkdkCeKNEM0n92QKZqvXtigXZARnwEV2eCdkBpenQhkYJ2QFBXX6eRg3ZA96q8fUmLdkCmtMSNZZJ2QA9Za8pak3ZAQjD7qeuddkB64g10wp92QG42rPIKoXZAJ34bJ6KhdkDE8MUvRaN2QIo3CdyLp3ZARIIEkp+odkDoszzhkKt2QDSTGABNsHZAdq+GLr+ydkDuEPBbdrN2QGJnUuwMtHZA+GFhQnnAdkD0fSD1vcB2QDX6m4tPwXZA3tUxFd3CdkDPJrCkzs52QGJ2L9h+0HZAgt71n/bhdkDyZ6pgkfN2QH9bX/00AndAwgCFVQESd0BMW609DyJ3QDSUFZBzIndAqN9PuLkkd0C+B39ZoTN3QESMnScNNXdADHj3FHg9d0AKclUfnUF3QHIsl12wQXdAoNT9dLVCd0AwG2w8kEN3QM4QTocbRXdASK/U3EpRd0BGVcKTklF3QDAvDMrBUndAhIhPuSlVd0DtoctOj2F3QO6f0IVkYndARKQddiZvd0BHJSLiAHR3QHrNaMMZd3dAPiKaF1CBd0DbAEv+dIJ3QIpy3y8mg3dAFMHxZQiSd0CG00mGTpR3QMJ8NPYuo3dAbT2fo6Kjd0AaTy1lnbR3QIL8Hyri0HdAILoSpE3Td0A6G6RgjdZ3QISSLNfq4HdA/nekOdzhd0A1YGPOB+N3QJwq/yNQ8ndAHRmfe+byd0B2fDVg9gF4QEYwJg5OFXhAYhYzswwheEBOLfu2bSJ4QBAQiuqlJHhAIWDIZlUyeEB2tgi3vUB4QA8qVoMmQ3hAguHnNexDeEAegf0lEUR4QAqu1456RXhAyPs0zdxIeECwyCK1ylF4QFbg6MuHVXhA26irzflgeECIritKt2F4QEj8odOWYnhANiJDKr1ieEBFJTsmKHB4QHNQDCwmdHhAupB0YGh0eEC+wnTXi3R4QGY9dDq8dHhAQgHwuOd0eEDeTohe/XR4QFbb56fGeHhAmu42SvZ7eEDI1rNtIH54QML6uPI0gXhAwvRpzaSBeECobkjWfIN4QFQccPT9g3hABf7REZqEeEBoPgoxgod4QNAaLp2XkXhAgsV3eqiUeEB+fLl4VaB4QIZgorKzpHhAO5bBvYareECcIA3bJK54QPzCGbmKr3hASGV70HmzeEBMoIpsmrN4QIrMtWLTs3hAjuP9w8vAeED4e0qV9MF4QG+XsJwExXhAsntHStbOeECyjSSft9R4QDdUaa9+43hANsvIiwP0eEB1nNl4jPV4QDIxWosRBHlAAqRsUpwFeUAfx/fHhwt5QMT3y/WME3lACNjhZy8eeUAQoEVlvCN5QEIfA69RJHlADnm+VrIoeUBy8J96DS55QK/+PWDXMnlAHNqqLLYzeUA2bJiKWzd5QNqh7IwxOHlAchtmNvdCeUBGrKZu+EN5QEwqjs7iUHlAWCDU2s1UeUB2yC1RvmB5QM63Cu3pYHlA8OHYxdtkeUAO1okPW2x5QAXnRCgQb3lA4992xEZzeUCmUoiCpHN5QHQvQRg3dHlA324Twid8eUCMrmSE2oB5QMZLjRqZgnlAu0FaVhyheUCcAMiYv7J5QCw5lnnNs3lA4y7jW9HCeUCkwsUX5cp5QGx4U+vP03lAjoq4OkLUeUAez2PUy9V5QFjVEN9N5HlAVjHyykfweUBog0W7+gN6QNAEzHr4BXpAm1RfKSgjekAIH4v1Lit6QMATLvYgM3pAMOaKuAw1ekAzxORnJzt6QEqnhnY9O3pA00wcpRpFekAKe3Q5Pkl6QLzC3JmjTnpAGD0bKyhVekAGFooDIlx6QKp3L/WDYHpA/t63JitkekAY3oKwOmV6QCYUGJuYcHpAucKziYRyekBujcaeG3l6QGbtcsmBeXpAPk9S3dt+ekA23ahazYN6QFQfFhsbo3pAlgJlrwy2ekCIs8WzD7d6QBxvPlAsw3pAiJavtBnGekCL47gw9st6QKLOzy420XpAIb1Xn0/RekC6jRBj29N6QMnPAJTf43pAzDUIgDzkekDK/JJaNu56QL6DcYJM9HpASNML+3sEe0DbiP1rxgt7QGdzXwIoDntAbusTRIcUe0AoH5ecTBV7QK2d6GJZJXtAIrvET4Uze0BxPAXlxjN7QMyuRceQPntAe89U4OpDe0ABJK2FREl7QJK3dqsjlXtAMA10ncebe0DMhCzsL6V7QHYreJf3s3tA2Fu6XXjGe0CDRC2qX+R7QNvqVX6X8XtArjWlZIz1e0CcBTPL2QF8QF5L/c/1AXxAena2W2YEfEAHgvfmmQV8QApeaWKGEXxAr6vMGNERfECX56mluhJ8QMojE8KmFXxAM/r+6+QjfEDxJFwnzUF8QEf4sK3YQ3xAcDl/9rtOfEBm+DYr2lF8QASlIwl/VXxAbQNqIyhZfECfeA5t/l18QOQZaQ96XnxAXjedOWlffEA8l83SDGJ8QCw42j+UanxANgci0BuGfEC4cDilOpR8QAY804dupHxAWP7CqSelfEAGxx4swLJ8QM1tQ7h4tHxAGD7NxjO1fEBIFbn+ZsR8QJ7/LQDM03xAG+Evb3DUfEALVpFmzdV8QDA46KNX4nxA3KnU3zLvfEBDd2cYFfJ8QGT2HKpU8nxAKiLsp3PyfEDo4uHMAAJ9QA7R/FZLAn1AcK5i0AAEfUDrowB6Bwx9QLK43wRHEn1AVuPK+WokfUCmfAn4aSV9QPvmRjKgMX1AH+15j0Y4fUDgQno2nz19QK83hGfhQn1AbDEjRvxYfUC46SWeIHN9QKj8H4l7eH1A4scC5dR9fUDfINRkE6R9QL6iS8KmpH1AOlpveoWpfUDIFynbs7R9QDHaHPAjt31AEVcTBiy/fUC2pngaLcN9QNJOgjsnxH1A5OS9/+fEfUDk3iPsMsx9QExD/q/11H1AZg+a2tXifUDfyktLkfV9QKohzss0AH5A1i8T5qMDfkBOR3bXph1+QLItxwgAI35ApoD5wAwsfkB0gy89QC9+QPOoXfYLNH5ApjF4M3g0fkDM3HGaGzx+QB6TOAlEP35AejVLFKVEfkArUbr2wlB+QGaBuuP3U35AR2NSg61UfkAGcUJ8VVV+QEKxjMyOVX5AXEQKPQBjfkBssHqQ92V+QMN5ghe9cH5AqOAnpWh7fkCKMmmgtXt+QIoyJAiKfX5AI7SuT+aCfkA1Fmm+n4N+QAL/hWNUhH5A2FR8PLyEfkCN6Db8eId+QKqtlAwUin5AjM7i5KWLfkAeUfa+kJN+QMCiE1auk35AIcFK6ZiUfkDeDpNRu5h+QAAxSNjzmX5AICQq6pybfkBwLsGtJJ5+QAQ9PmxJn35A1oVyaCOifkBOzlBQr6N+QNC7r3WHq35AgUvKz7qsfkDG8eQf9a5+QNru268Rsn5ALHxF8E60fkD8t1TMFrZ+QHKhHe+9t35AGeL0Hiy5fkAG8UVWrLl+QOx5xRjivn5AiNoGvQG/fkCHYWJFHNV+QNwh8rD+3n5AriyB9gPkfkDqGxd1Buh+QMza8gIJ7H5AEGU1TM7vfkCnE73rCfB+QDHF5aDqA39AX/QYKmEgf0A8SgawxzR/QLjt18mnOX9AzRDAp0tAf0CUeLgqZkR/QJ/O12q/SX9AECwJ1xhPf0BcaQWvc1R/QObrmHa3XH9AIkjd4L5kf0CVoh1YxGx/QMKDUXeWb39AWrDX0Lhxf0B+7CTd5nR/QLSfIuWsgX9AkLKBu6WDf0DdP8G3MI5/QHj5h2ljkX9Ag6kdLaaRf0DnzBK0lpN/QJpRdX5UlH9AXMvkolyhf0CgFX8ax6R/QHUjwwT4rn9AMmiuf1axf0CAcy0rZ7h/QAaH8nvJu39AMM/0q53Af0AG5AFedtZ/QKqMEgCr239A+NHa1/fgf0AAbUP7VuJ/QHSUKIfC6X9A8EiM8wn0f0A0rEPwLvR/QCIyOONO9n9AalUWl34QgEA5PdAhGBKAQGAsOmB5EoBALmOFWaUXgEABmp05ixmAQI7MXlMPGoBAaKZbbl8agEAoLoZv7imAQJA/IxuJMoBA5EYYKOs3gECIfpuXtjyAQJ5+LOdiPoBABJC5c6hCgECSB1Vn9kiAQL+lXmywSoBAirjYhUpMgECnplio51CAQHIxd7QTUYBAkGcBOARUgEBjlE2cBVaAQLraj4+DVoBA+KDckyZYgECWK1mIDlmAQJLB9ikkWYBArhrK1QVagEDQbB5UMlqAQKxSUTVPWoBAELi8xmVagEDG8mIlRVuAQEYYg8A3XoBATMw3LRppgEBTlTxhIWqAQOJpClRMaoBA9Fk92yhvgEDoAyLTFHKAQGRqTrSEeYBAffPd83R6gEDmYC/OKX+AQMJoTFkphoBA3vuTgSaJgEBYLzPa/YqAQEaMud8/joBABthVWv+OgEDYOwI8Ho+AQI7h8XmukYBApqMyPEmWgEDVxJIJ7JaAQE8F90Mdl4BAjPSrP8WZgEAwW1tlTZqAQPgBo2XNnIBAXpXaLcidgECYnq3o3J6AQKh536Mbn4BA7sd3wMqhgEAGI3nsVKOAQPC7SBU0pIBA5rScFIKlgEAwNtW64KaAQC8Kdrr4poBAWCSxUoapgEA2Kf9XsaqAQMxkgiHMrIBAkskfMd2tgEBwGlhPE6+AQB5b48BksIBArPu8DiWxgEDqVZs/hbGAQGOCU4yTsoBAdnJ7hRW3gEBAOLPmjrqAQHQGtnMBvIBApPLrPoa9gEAkVaQPNb6AQESGpTNHvoBAtXPeD6u/gEBS7ShEcMCAQHrUM4tSwYBA0kCjUlPJgECN5Wwv48mAQJ7WEZYvyoBAENMyTOHMgEApW2aYe82AQCYt8+EHz4BApKPV1TrPgED84TdfTNGAQNuUCvHa0YBA0NrTI47SgEAK+n0RgNWAQHotrPEF2YBAEjy6Z0nZgECjxOYyBtyAQJPwbDX23oBAkZ4viUThgEC4o01o4uSAQM7I5zfl5YBAP7P2/vfogEDj6NgSTO+AQE3Yt8Vn8oBA6AkqLq/ygEBN9HyTO/OAQJy7eufr84BAYrYUIGz2gEAKC7MpSfeAQDg6W1M//4BA5NJE1oEGgUAGKxoKPgeBQJgBiFk+D4FAeOPw0UIXgUDGWgTipxqBQBZ9+zmAHYFAIpPmaN8egUCKf1S5NB+BQNvjF+2vH4FAavmgwE4igUDKFIutlSKBQCRf76I0J4FAwuDmULcngUA8NP1JXSiBQPUp4ygxL4FAFMPm9rgvgUAtDNoivTGBQHDMx5NvM4FA4Zy77hE6gUB8//E0KT+BQNjaqoRHQoFAp9ClHipHgUDsBgSssWaBQKab+ESgaoFANpFiObVqgUCzpVVbk26BQEqjN0rAd4FATIqOEZx9gUAq/VS9YH+BQNYSxNAigYFAlOJZPbqCgUB8xruH7omBQC5zxtV9ioFAHqK3bvGNgUBe/g+oVY+BQNuPPv/Aj4FAewLhTuSRgUAazKi/95GBQKc/ZvzplYFANkgVf/mVgUARa0WUVJeBQKZ4gWtTn4FAwkSXXuehgUAWI5kt36KBQKZzQN9tqIFAtgk4xvCpgUBEx11x5aqBQCgHlkZKr4FATsZDtmmwgUDG1hz+BLKBQNGTVBlNt4FAIE1dTpW+gUBytE5el8KBQDntEVQGyoFAqFzMfT7OgUDqw+Y9fNOBQByBZ3xJ1oFARnEGNUvagUCTMYanqd+BQMyvUX8x4YFApMIORwH2gUAuMRWMm/eBQJHwVmHt+YFAIHlbGaD+gUCynnl7ZQOCQBjXrZIDCYJACJcDyt4MgkCdxsxfvw2CQDlQazvCEYJAYH+84bQSgkAdv/Tt1xiCQJIFqym9GoJA8OQPcGsfgkAEiGL81yCCQPtqMTb6IYJAKs4zC9UigkC7bBkRNCaCQE6znerQKIJAuKsN3N4qgkBv9jG17i2CQPpdPfByMIJAJ1Uc9KIwgkBS6E+61DKCQJbvp2OTNoJAqyr9sn04gkAApg7oaUCCQFNGJahwRIJAO5Wy/INGgkBOC/Jjd0yCQOSPWLQ8UYJA8zHEGY1SgkAISpMqe1SCQGqniPmMVoJAu6nk5OFXgkB/IoWPi1qCQHFWNv3WWoJAvjH6u6FbgkDgb4nbblyCQBafE+2VXoJAmvl+nTtlgkAyZX1AFWaCQLLylRLUZoJAKoNTdaFngkBy8cKTe2iCQJ3ShG84aYJASHqUaHVsgkBasKjcRHGCQJn40/+nc4JARIrTVid0gkCaVZVBeHSCQFQfQgg2dYJAoVwMnb91gkB7HvYx5XWCQFdjH1MDdoJAgZMoNtJ2gkCkFwJwHnqCQBTVxJ7geoJAZBoE5+F9gkD/RSrK/n2CQBtofYewf4JAlD9DRuWBgkC6hvfrAIKCQKhZfMZTgoJAToyh5eeFgkBU1fptV4aCQAA5EjJDiYJAhBGVHReKgkBZ5ILfyYqCQHSk/X8zjYJAZx1H2UORgkBSnn0huZKCQEJqcIzgloJA1LpNyauXgkDcHAuRfJiCQNilMj88mYJAUqYAoFWZgkBmnlt1+ZmCQHVMr1TZnoJAPM1Ugg6hgkC2HrRGOqGCQNZ4yHjeoYJA8oMaxuClgkBc8NDqDamCQM5rrfk0qYJAUJlEBxCrgkDL/uhjULCCQBeGOWEHsYJAqCy1V0fAgkBiVoTbBsKCQAI3VAPtxYJA0LEbbvTJgkBPT6bTRc2CQPTvd/KC2YJACM05jH7agkBGIwYkg96CQOKvz0j95YJATZG/xdHmgkAy4QuWne2CQEJ5d3l28IJAMKQh/nf0gkBGdW7faf+CQJ52foeY/4JAGi9pf7EBg0D8F7PHFAODQCTLjTscC4NAsNEFf70Og0CUDuU8tw+DQCbex4l5EYNAugZn2bUWg0BUYUpmeRmDQLhzShZzIYNANif+nokhg0DaZ9tecimDQHLdbVpsMYNAWAxRevBDg0CK8M0GW0WDQE5b2fhYUYNAPHqn76hSg0C0J+cyGVODQHzCPspIWYNAMibNdmNeg0BKAlXJZ2KDQCxQKMO5YoNA6J/bMctig0DwPX/vamaDQAkaEivRaoNAOfP1wJ1vg0D57FhaKHqDQIrOI7/mgYNAEProjl+Cg0C/IIscCoODQAUPiBFHg4NAdj1w5nCYg0ArHikqHNeDQPpDMebs4YNA+jpzfV3pg0DSchItlviDQKLsfn+m/4NAJoVOi1UChEDI1VqqAAWEQBq+1L0vEoRA4v9/NpsUhEDtLVztRRyEQP3GMmK1KYRAqVZAxrothEDKS6rvsjGEQAiI0I4gQoRAbvY00wpDhEDydgdv61SEQF46jrasVoRAZHuVFbZmhECyhKuXnWeEQJOs4sD/aIRAA+FaaeVqhEDqeCwW6G6EQBOdvxj/cIRAHkhZQOtyhEBECn1iqXaEQHWe/m7udoRAVlJ8Xsl3hEBe0xIa+HiEQP5DU5t4eoRAojUl2/F6hEDHEG76JH2EQOjsnk6Nf4RAH6WHJceAhEAxihae+ICEQObV2Rotg4RA/eAIAf2HhECYMmoQqYqEQLGNOHpWjYRAkixQCgOQhEBoLWuKVpWEQNYP8asAmIRAO9BxGl2ZhEA6rd4Hq5qEQLsm1xhzooRAxBEjTpqshEAQM1d33LSEQPRD7R1q2YRAIkwgMmrhhECDCGBZYumEQFmkCblY64RA/282LjbxhECyCRrnYfGEQNH/op0z+YRAzgasfl35hEAmMiXZ4v2EQDNAqUUQAYVAozLC2S8BhUAynElHMAyFQJykCIR7F4VAJEY4dLEahUDQorI0Qh6FQC7jWDFDIoVA/MnS30IqhUBIZcgRmTKFQMOKq+eeM4VAsF4NSNNJhUBMSDD2TVKFQABfjohgU4VAwN7DiuZdhUC4tuY+oGGFQJIMxzGgaYVAqY9tAplxhUDmsapQmnmFQKI5sUtWeoVABmzVRN16hUCHb6Keq7eFQAdFH9DAuoVAhxi2KbLKhUB+oPF8P/CFQLa/VETqDoZAFqdYnswahkCicZ52zB6GQCA5q1k0S4ZAE3L4IIyGhkDOB9UTjoqGQJQoR1mSjoZAhAZOIrCnhkAeJ5sZJrmGQAas3GQlwYZA6qzuv2zDhkCU8XtH1cqGQJG08jfp5IZANg/HTWfrhkBVXMJ9h/GGQMsW5sIy/4ZA1sDzXDYDh0B9BX+XOQeHQK6wnqOQKYdA5TPgyqUvh0Bx4xchkTGHQBIPYhiKOYdAGDKCoXA/h0APcgZNiUGHQK4cP8eGSYdAo7DHHzdnh0A/oXcwOmuHQPDVPHI/b4dA/jzNSEZzh0AGVcVJQ3eHQJCLw4yNk4dAonjEIsixh0AKFDIwx7mHQIytMVlCu4dAZL2bWMDBh0CySWVGFuaHQL7jq4tjA4hA6ioHeGI3iECMBXKpUTuIQAopQY1WP4hA0J+TUmdqiEClmE6qb26IQPVGivH3johAJKNXQLeRiEAgSz1w0qSIQLni+VkPq4hAWNBZbVmyiEB2Y/+yW7aIQOa2/6LiuohA7HclQeTCiEA= + KBZXds7jZUA= - + - nkMRRkh0yUR8xbJEb6cCRTXlqEQHMpxEDhVxReSUA0dF4JpEDtS2ROCVbkSnxuNEO07hRPFMVUSgx0JE/JoiRRkYkEVy3kVEDf59RBQ7A0VBWWFErW+JREHusEQi2llEGpGHRFZHpEQ9j3hE471jRNuzn0QtVAJFmtZ8RqjB60YO/ktEp99nRFUrekQB7wVGzlPNRHp+R0VGwFFFCOMjRXDaLUT3KI1GBK2MRH2bh0QrZVVEzS6dRMjMikX38JtEuCKwRIKDJkTRiL9EuJJlRHqqkkTWZkxFMo6ARMSeL0UKeI9E48YGRQPY2EW2HRVFAV1HRUEDu0SxFy1E+weFRIatU0QCXdVE9OZZRPtxTkQmyotEStKrRNVE7kQGMYRErGKMRKnhqET/OUxEvpuSRK7YMEQgY6dGYs/KRF0ovUQ6cNlFj4f+ROQFcEQD6TZHBD2NRLk2+EQOE31GZVOPRR2TUkQYjY5EycKSRFwF1UU7T5tEZbOTRFwfD0VsvWpEtI5ORCphPUW4EOZE9hNARHGJh0S+7HNEcW+oRf1ZlUSDhoVEi4E9RO3gJEWpaBREuqWHRHGmbkUDZlhEs7uxRSQTKkTcHWdESiPcRPiR9kRS2ydGtsVCROXqYkSxwWdEISy2RCdvmUT7G0BFKEJfRPQzbURqS3lEvtmURMWdc0SAb4lE5mKjRHikJkSezZdE5zCTRPmYaUTjqhpE2wy8RJFhtkSLPpxERKfqR71SFUVGJKlFjRWKR4S8hUQ/pQ1Gfn3uRZ463EVf9qhF/fNERF8yLUcd1ARFefkcRR9PkUQ8fwpFxLTZRSbtTES6IyBEOkOjReIlfUQdu1tE9qUARf+bVEQoFthETgqaRFpmgkR0j7FEEbIERdlgl0Qt7YBESRouRLeTp0QA+D9EhfZzRDUX10RJbklEEM2FRGKEh0QKZDhEnGAaRQhjrkSIMzJE36lRRFnahEQTYEhE+O3kRH3JLUSda6JEtHksRNV9p0SlhVdEZrSWRO/eKESB6bBFcpeERN681kTKY01EGzCeREZmMETvaMBEtcxzRT2Q40TJ3odEPYe6RPX6bUQrBSNF6hyARPTXS0TrxUVEW6I/RuASY0ShmDdEdoXmRHd7E0XznW9Ei4AmRZRHGUSwOLNF4g46RR0D70QSDoNEB71tRLj32ERBQlxEKujcRF1lbkQ8bspEbJQARVExL0RzhSNF7I+ZRMjBpURuPktGjBqKRPwOq0QSl7VFpsdeRPAMukRrP3lFIOEBRb3DgEQk/HNEmEqJRAbtr0R6KIhERcJtRMQYRkQLJD1E8wC1RJNTTESB95NEKPRJRLzstEQFyOREh3fzRLP8QUTGjKpFDHubRAVeu0RNXW1EqBF4RF4NeESWt4JFGXfYRcQbpkXpWydEWEuuRkSxRUTVJntELR4xRBZ8q0Ra9iRE4EXIRPO2l0T6YHpEgyUuRFRHbET/eIhFc1mIRN87wEUaSi9Eh8hRRJIIz0SioF9FWOCLRJcbnEQkz2BF6Gs2RK/TjkRRsTxEX4lCRPD8Y0b3/55EiyKEROxibkRZlmBEEeBIRT9JC0YTU0FEHlqYRCTtZUQoJddEVn6zRK/PO0Suz0dEzF0HRoRzgEQmhZtEQfY0RIXVqUUTcINENJl7RElkc0QdNT9E7I/eRIi8ZUQJVHVFIBeTRNrEbkRu3MZEd56NRLNPHkU0NTNEw6eWRPR04UTBz1dEPx6FRtDXT0UBu1xEeYWHRF07nUT5fudH78elRNTun0YMoZRFqeY+RaFyiETqYtdGHDyxRV4yWUZrGVdEdKMNRTbBvkS3iDJEjxsbRbiNO0QbTq1EJ4NcRLNHmEQnYmFEKHqQRHSIikR6+BxEpdmbRGHBW0SNN25EnLRyRBLIYEQYuGFE5TQpRCZjJkQYoYZE+NtlREq7KEQWqJJEFb06RE3FVEUUYFpEnRxuRHbPSkQX+ltE/LQ9REm3C0XbojBGEhiHRFxss0U3ahtFKuITRfI7CUXJoCBFEK9oRMRULUR/yY5EpgWCRUBOP0mv4R9F9s21RFFCpER/LzpGPegERSD/hkVu3DRE3z0ERfoLkkThanlEnShFSAqY/UTPQ2pFh4pjRsa+R0THNExEybkQRbSSqkRgRCFFuNSkRIMY4UQNwUVEK92pROedtETvtZ5Ett+PRBXQR0XCHSNE2aZnRYnMxkVZoEpE9KiARHKCLkWA78ZEtbE7RDVEXkTNcmNEMEyGRbLh9ER/2M5EdSj1RC09SETrDThEL8RbRMl/sERtqExE07txRRdgJkQPooxE5PeGRPLOMES98BJEjp57RFYRVERnAo5EqRs1RICXZEQBQmxE5rtWRBo+MkUEIBRE4sVLRHxDOUT91/hEYCW8RbD0x0R+dnFETIKARIklvESSRF9EEugfSHFJfEdHdoJG2Tq6R1GBgUUN/wFFM3jdRpwb+0QuQp5E3H8URcZ6ZEV2ul9E3w0DRV2QPkSFOSREscwmRJGEAEUt1YhFGbKaRFF0i0Sp7lREUADpRYW8akRAfLREkLfCRAxjL0RjMEFEgE9MRGJ/PkQFc0BEwmjvRSenKEXt45lEcx86RcEV1UTbXKtESul+RF8RL0YKTEpF7hNmRD7ph0RDiNtGFciNRqmjhEUud1RFdTopRLTojkRT3qFEEy6GRGthM0TydItFRUmSRkRhPUaIPgRF77HyRBPth0WfSGFE1chqRWHyO0TURU1E0biMRMxCl0XfnFxEsFJZRH/thUQT1T9EBrVdRCHmOkSbZEREfaJiRDkPdUQi5n1E2NNIRAs2QkSfo0ZE9hnRRWnbB0VY8IdEDs2cRMzopEUnyQVFGZiMRK0bO0RTnrNHJ99SRKtmKEXy/6NGaS8yRXDSBkW2TYlGqW5IRnB9mEXazUZFxZ+2RJfdS0R5wahEEsvBRU6TXkXYCNZEl3eARDIxekVIsDlFbo+qRH0XrkTHQElGWgWGRG+GSkUnC6pEiga5ROBMD0U19MZEf7cqRQsjgURgQF9Ed19GRJRuP0S8UwZFFLJBRDobvUSkP4pEAFLcRP7MhkSqdXNEKuZ/RLfHTkRYhW1EhNM7Ra+UlkS+4qRE1i6KRAgUzUTBeixFaHZbRGNsbUR+81VEmgyORAk9ikTGOoZEdnONRFsikEaEqjBET11GRHMjj0TpSYBE0f3XRcLNikRWgjNF24gJRqkQaUQVUAVGv1qJRDTdH0VN7PtELrCIRPbULURvoSlEwfhjRNad4kYtFYlE/KCmRpUacETfX2lEwWomRMpReUUY3RZEA823RIRMT0S9zT1EuJCGRo5nnUbEHkdGU6ZVRBNRYEUdKUJE1dOXRSJBkERxAa1EJAxmRFbwcUaGHiNGyU+IRXw2tEQiScFGWCA5RrumLkU6uFpE2CmQRQbfr0SQFm5EBauVRJabXkSonRtG1uw7RPa1jkRnwVJEi1soRY0tm0RnnydEdLUDRQnbyETlY4BEzzKERFtOXURnqJNEPIeKRFdGgkSKPB1EJK0xRBVRN0TSpVdE93opRc66EEWlWwRFm983RFwoTkTivYdEu5ZmRMc4UESXQAdFtUpJRLOSS0QnbmxEtByWRUXn3UTyLp1EFuVJRCtU80Rb+V5Gt9HbRF1RaEQLYWRE5ef4RCTvekUQJHtEeIpMRLw8zURl0SBEg5ZhRDQIZ0T7DGRENTQwRLEB6UQRGERE4SIyRRpChkSjVWlEOnM2RH6WjESv1J1EynNrRCN7hkSbRU9EBp9xRMGrfUbOVFxEubt8RYi3gURqm19FVtTxRes42USL3VhEkxQVRVLPp0RNRyhFSrNhRG3tTkRjrH5EsT+GRHAqPkTJ+2xEg/zcRIDOOkR+TEVEN3nNRPa0OkY57VZEMd+dREJwgkRHDlxEbcy7RBBTQkQvUYFE/vkaRbKD2kSzUk1EEnwnRBBIrESlLlZIbp+gR08ue0SbzUJEdWIERbP7MkRFTNFEq5KYRI60P0eVajlEpShGROMgSUSSI1BEAyY1Rgr/bkTBHUhEkUlaRRQ/h0QEAc5EdweJRGpN/0Sg/YFET+YaREaDSkSwMm9EWYg4RAODOETZr4lGRXZURB3tiUXMq6tFwq9iRM+qFkV1zo5ExUwgRNenFkdg+llEuH9NRF73YETc7gNGeWKUREyfzETOXGdFMCtnRBbdiUTOrUZE4t8pRPeuMUa7X6pE+HOrRI6NjkTQkENEsNOURO1SQkT522JEHc5kRFoUtESnJLpElK5TRFKeh0eindJEE7YXRzjJAUbydmVERbVkRdWH3kWUvY1EbnnNRHr5QEVmOyFFJf4MRVy8CEb4pENFdAo0RM0DCkVfBVJGpjRnRKxeUERE6UhFCg4kRfVukkQ1h3pE1E9IROOzdkTzciRFHgGYRFJ7hUTP2SxEbootRLaZ50RLl05EMV4/RNUqe0RhyqVEIBdiRNhJNUTwG7BESscmRn0pHUafCChFaYpnRCSubUUUDVBEWbQeRc4pKkTshipFK1hVRB/VaESXF5VFhlthRJUWKEQccjVEVrRIRLQlrkTXq+pEaZFXRLMLrEQdLqNEADJAREJdKURId3pFAo1WREPePkTVpHNEJM8uRXttnER0z35EESNfRI/INETxkRRF5AG4RFPmTUQgI7lEUeQXRL2QP0RmD11EjUVHRLTyIUXIIWFEhNeERNz7P0SijtdEIF/DRHSsL0QZ4I5E3lfCRcpI1UQqWjNErK1QRTycbUSN37lETM+RRBrGwkSIb9FH/RqaRJ81NESFMFJECgUjR8A6R0SKHkZEITl2RK+AXET3UedG4foVRd/CMkT2rCREX8CqRYK13EWAGJ9FBUA+RRfV/0ScNi5FF8iLRKBtJUX34KpEK4QoRJ6lPkSPYoBE/OxIRC+VQkSM90tExUc/RTqImEQjFkVEtCxKRCXGO0Tic7lErYBwREM/M0RHcSxEWSOIREYCgUUREm5E2fAzRKfjRERl3LVHxVQkRPl7HEcgocNGcd/IRKIZ90UWAWVFERM4REW3hUQha3dEaE8NRfSLTUR8pU1EW7ajRTkoVUXgmARFw14JReo+c0SOPGVEqNtgRNghXkSIMWdEpe4lRK9j1UQbPKNEaU1sRCoNZkRSd7NE4hNEROKhzERChsFEyVj7RObtikTrlD5E9wLARNlGkETXIX5FdR1yRFRYS0ST84NE3Nj7RLj4PURb+0REyEM0RJ5JOkQ3Q+RFwTQnSK3q2kfptipF1sMVR9n7KUT8QlJG+GRURd8v+ESERSBF3PYORc7VE0W1AZFEXFsuRJa/jUQu2kJE8NMuRtWKBEab/tFFU7wwRe4Wu0QgqwRFLrZERA8bUkRfs29EDoZgRGFITETs/wpHkCZWRtErI0YcCiZE9JxFRS8nbUVhXf9E5k2WROVCeER9qOpEpBavRDzUNESO5mREvHtIRH7jEEWmqXZEQjNCRO/pY0TL5k5EmXQ6RMq1NERhzm1Edm87RNoaykblNlRGzNH0RZzChEUNETFE+uAdRBwPNUQ0QXFEvlhyRAcSe0Q5vS5E/rZ2RFZjvUTTULVEZMnYRYpRiUX2trlEjFhjRJ5irUTnZpREI2WmRO4Jt0RCMV9EGIQ3RPPFJER7OwNGlghWRUMYpEQu9SRGEiBCRNMrtUUBd4BFkua1RMsp80QUhYFEb5PnRhmdwEalZtlFhhRkRZVCjkR3fE5ElAoBRtLrc0V/kbFELMOyRIlJQUT3OmlEroWeRF3TM0Wiva9Ef8GWRLUnWESCY7xEmOZ7RFgIjESiwZhEZOigRcu3VUUwMuhEDec9RA== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - eU2eH3jAckBFsL0sqMByQLNy4jxvwXJAenqMxsfBckDkRXmeUMJyQCgQCrPkwnJACwZfiDvDckDwpOoRxcRyQILiSuFaxXJAaCObFGbRckDW7Q/wDtJyQMV5rj1D0nJA5JuMptHSckCygDINd9NyQJZ/5UvM03JAZ4W1+WPUckDuzE9Yzt9yQONGhlu24HJAaaiekUrhckAUJzgW+eFyQJi5l5Qc4nJAJghk81HickBmhPoPj+JyQITNkgcl43JA4124ILXvckDCSoOtD/ByQPoHHPvJ8HJAZP4cdsrxckB0lDKjTPJyQOYDsqeb8nJAgdcBsbXzckBI1P4rovRyQGqcAuTC/3JA9ghBsfgAc0B9APOFjAFzQDqBu2KkAXNAiLG4VToCc0BWezM+0AJzQHWlBixlA3NAHmTxkMUDc0CPONp0+gNzQCq2BqomEnNAXrBkl5MSc0BOAL3AvBJzQP4mlGpxE3NAnKPGFPcTc0Aq+YOdThRzQK5oju+LFHNAVoZuHHkfc0AkFAVFOSFzQBqHHLpmIXNAbDsxneMhc0DkJDdeeyJzQFrm26MPI3NARP2tZgIkc0DE0xKxziRzQHrbxlpIMXNAGZkAt1wxc0AQDmk4IjJzQHoeoOzOMnNAVt+vYg0zc0A6a+59ojNzQHo7zULXM3NAFT5F4Lg/c0BFRJXp4UBzQGS2ZDZ4QXNAAST5eiVCc0BibcieukJzQIEZu+15RHNAQurQi5tRc0ADUmeFQlNzQHJO9PmiU3NAzgmJmnhUc0AP3mMNDFVzQCQdXWH7X3NArHaLwY1gc0CLMRKtimFzQPge63UcYnNAvMeNODxjc0DKMikYsmNzQErpkRnmcHNALPKSBGxxc0CIJOLg2nFzQIatBL1lcnNAk9YRcbxyc0DaQRsG+HJzQOQ0rQC4dHNAGpfx6kt1c0AElx+l8H9zQORrdgwfgHNAOgP/e3iAc0DUZ2PLpIBzQKy+sPkMgXNAIgpBFTOBc0D9hLY0XYJzQEDfpwBahXNAmxWLuoWQc0BBnLzEqpFzQEXHeRFNknNAr1WU82mSc0AYUT33o5JzQIyYvJjOk3NAmPD18mOUc0AA8S6s95RzQOE1nOgRn3NANF0u4rigc0BGBbb00aBzQC8DX+nioHNATJDhRE6hc0CnH20osKFzQJQEhVdaonNAuDDzi42ic0AoqHBUnKJzQI7GmsAmo3NAwDQT1gWlc0Dw+Ave065zQGmjZKTVsHNAv677dDSxc0BwTIVWV7JzQCr34d22s3NA6PHIiw20c0B8tgxgOL9zQGhHE1diwHNAMwQH8I3Ac0AXOwi8+MBzQBj6Mjy0wXNAnpSaSTvCc0ANqM8R0MJzQMn5/4klw3NATy7tJNfRc0CO1DdwJdJzQFQgR/mP0nNA3dxbgLvSc0C+R14m+NNzQNJCw8bi1HNAlC6iuzjhc0D1nyjeYuFzQC+TnGvk4XNANCTElhLic0CuYiTAe+JzQDFcTRMQ43NAagC8RTrkc0BnEOoy8ORzQCzmjtfe8XNAFbL5/2jyc0AmJSfO+vJzQKS1BSM39HNA1h3jBY70c0C6CtlTJv9zQHgZHXDmAHRACsro7XgBdECldPK/JAJ0QIo8DZa6AnRASQ05AuQDdEB8080EOxB0QHhwZtAIEXRAbgjtEnwRdEBT4pD6mxF0QNrsAjRNE3RAN3QOTeITdEBGaTfOeBR0QKmO/1xMIHRAMmQfmI0gdEDIY5gy9C90QOAovI1XMHRABtbQV9cydEAmrJWfpD90QIYK0SBTQHRA+a/raspBdEB4B8mcXUJ0QKygCKvnQnRAZweTDjtDdEAUkWhtekN0QNjeYYq1UHRAtHa1p85RdEC2j65in1J0QHDh7GE3U3RAtjlLdI9TdEB7zOw79lR0QHDoejOMVXRANfbLaTlbdEDjCmMNIV10QMQnMidNYHRAGqh6GbdgdEDfNPF8TWF0QF1KG90IYnRAfuPIi3pidECQgwmyTmR0QDqPISnEZ3RAWcSsI9VndEDQK3ThH210QMRm208hcHRAHf88KUFxdEBIduA0e3J0QBhEd1bmcnRAwPjMERFzdECp9qGvOXN0QAnG6sIOdHRA052nmKJ0dECiad+tPHV0QLRxWeX3gHRAYQD6OE6BdEAKsVJA7oF0QBjOqsZFgnRA9QvFB9GCdEAK0itJJ4N0QMLsZ1sVkHRAuVQP4SqSdEDm0Y/3UJN0QJyHGFHvn3RAdl2Yg9CgdEAUyA24zaF0QEI3t8V7onRABm9NFBGjdEAmxDkmZq90QEnK2ZwHsHRAtkfxIsWwdEAmtJPaPLF0QPJLM25osnRAmJUbNfuydECr+59jjLR0QJ2jb/BzuHRAfO38SMm9dECSNE4L3790QB6ZkvXiwHRA9t4IPn3BdECs6sDl6sF0QJsh7dMmwnRAx6wn3bnCdEB48msHUsN0QHxJnOx5xHRApP/LpLjEdEAsG6ql/850QJ0+nJr80HRAwmvHow7TdEDQrrepPdN0QIDjGfPh03RAXrZ5s3fUdECUUJDmztR0QL73koS14HRAWH9iPfvidEDYSxNzjuN0QFyO87Zf8HRAxsFP0L7wdEDdb66mjfN0QO1LeSh79HRAm6CrpVEAdUAuvEHtpQB1QBL75lrPAHVAL03NtuUAdUBUY9DIYwF1QEoRjP9dAnVAEF52yaYCdUBCEo59mBB1QFYsBDZoEnVAM4+GdSMUdUBSAStu5B91QPZM1pqdInVAUhk/lHsjdUBWzpT/MiR1QEIDKwqqMHVAdvICiWExdUCAAX7UxTF1QLTcWqKqMnVARXlETMw1dUBX7BgWJkB1QJwQaw6zQXVAKtsliH1CdUBeME1u3UJ1QMZS34nYR3VAT4YVIudPdUD1PR9z/U91QEZZNsIhUHVARsVg+X1QdUCFGgL8nFF1QDuS2HO6UnVAGq5IzPBSdUAaIE1VT1R1QOSbaQJ4VXVABvgC/d5fdUBeOYBlCmB1QDWuOgVlYHVAoLzfljhhdUDzwlw2eWJ1QFjxDRIMY3VAGrlZ+WhjdUD/u/r9+mN1QMCyNBtOcXVAvKFhTXdydUBuweNtZnN1QIK/pjeNdHVArJknnPqAdUBszzK1fIF1QJiZ9PCsgXVATz682rqCdUBwd2Q56IJ1QPRmBk1Og3VAtqTW9aaDdUAqSe2zmoR1QCnHIw+MkHVADDjxlfeSdUBCI2LgDZN1QLajs9FilXVAIcFkirehdUBom1x6ZaJ1QEHgJwf/onVAJgIUzkujdUAAE//tj6N1QJ7CnnxPq3VA+FotgbPAdUAgOc7Cz8B1QAspwxBgwXVAtoOQ7X/CdUB2y73Qo8J1QD4HlDw8w3VACoGOgaTQdUDWvdufy9N1QLUWjAhw2HVA3Mofh+TfdUAIcA6JBuJ1QGAqBTbj4nVAKZvPZkkCdkBabN8D0QN2QLa04sv7A3ZAl3X1AE0UdkB129faCxZ2QKUvDISAGXZA/nPuKbMcdkA/XklNiSJ2QETcf0JmI3ZAbqQyXpAkdkDAwlVBSit2QN3q/JcfMXZAyPmRciQzdkAgjD1YUzN2QJ7/FIK4M3ZARLp5Vic1dkBy3B95Tj52QLjfWkNOQHZACipU6olAdkB+huhNHUF2QEi8prCeQXZAR42TDTRCdkCSDh7ryEJ2QKASJvSkQ3ZAoKxPCHpEdkDtrL10/E52QJa3NDTMUHZA1SeCzhBRdkD+7d0fVFF2QGQ72mefUnZAgMY+3tZSdkA8SRmBzVR2QIhr4raOYHZAr4IdVB5hdkD9+v5XUWN2QAA70/PaZHZA4mSlSRRzdkDiicrG0X92QHQEbFDbgHZAgXp9M2aCdkCJ4oZAPIN2QOoUTSCSg3ZAmWYdE9+PdkDqPHGN45B2QO4fmqjqnXZA5JUDhb+fdkDWEwUWDKF2QJ5EQxFGo3ZAgHJ0Ao2ndkAe5FM0nqh2QHqmXEZRsHZAvlaFi7+ydkBCLMLCDLR2QC/aQ6N1wHZAvEp+lZ3AdkCTg3rzvsB2QG9pqggZxHZA3oVFaM7OdkCZA75jftB2QFqtMIy80HZA7OTmLfPhdkBMO2XPPPF2QBGy+dxP9HZAUeJeOUz2dkDKV7emMwJ3QPq/+CgBEndAyBDfyowgd0BMDjbBDCJ3QP2nv7mjM3dAiiazNQ01d0DAT64unUF3QPT2lwG0QndAxp7bELNDd0D2jckWG0V3QBDMfoNKUXdAyDr1RpJRd0BCqodVr1N3QDCBCCgpVXdABLG4gI5hd0B2U7w+oWF3QIb86rU6ZXdAQjixZSdvd0AwX4ovPnF3QKQ0NtiBcXdAHP0iGI91d0AtyG2zG3d3QI5ENrm/gHdAuDLWr0+Bd0DEz/qzeoJ3QH9a4+EpkHdAinHKlQiSd0AE49yuT5R3QK3JP5H3o3dA5IcrCUKwd0AfiX8snrF3QKs7E4qbtHdARFL2UAvAd0ByIOxK5NB3QFg1XDhK03dAFfq8RYzWd0AEdeCfjOB3QFYipfru4HdAcEFaeY3jd0AyWyu28PB3QBzFrPxR8ndA/jdJY+Lyd0DI4KhKkQJ4QEAYVUMAE3hAV9SLzksVeEB3EGOyDSF4QJW5tvhrInhA/oLrldEjeEBuhxKPwUF4QCOSquTsQ3hAX3lK0BJEeEC3tyBbeUV4QLT66t72S3hAVTOYn8pReECppokgiFV4QLbiSHr6YHhA+/itjLZheEC0yye8ZGN4QNT25Kqic3hAL1jiQw10eECA1vfWi3R4QPREHuC/dHhAOOU/CdZ0eEAKE4daanV4QCq7U9DFeHhAFuKV7vZ7eEA2+6usIX54QEdYGQhMgXhAAm3cMqWBeEB0AevEe4N4QGJLJSOahHhAiIOp7beEeEA1q1+gvJB4QPbwHN2XkXhAyq6hBKiUeECY8NpLtaR4QF4yYguHq3hAKq9U4CWueEAZeRS+9rJ4QKt+55Z5s3hAWmbbDqCzeEBX6Du20LN4QMyi/UTOwHhAM0rB+rfUeEBkRMtPOuR4QCDheM/E5HhADdkpqpDzeECKYWYCAvR4QJ4Er6+M9XhATkIAbxAEeUC+q6C0nAV5QLbMmFKFC3lAvsEzTiMPeUA26hHsfRN5QJapmwOUE3lAGcBs3LIoeUCEMs+5Cy55QPNxtcppM3lAsgbc2LUzeUAhMRfdLTh5QHCZZCCqQ3lAhrdmSvxDeUB4hxIjOVR5QJQexw7NVHlAEp+xOuxgeUAnv7gD3GR5QCZSWW7Vc3lAaaOc6Nx7eUBqLYcHKXx5QGLHEIPcgHlAwDsb5fiBeUAZxVajnIJ5QG4vbETyh3lAjUEieBeheUD9l90mxbB5QKTpJ3fAsnlA9N+OlFrBeUBGzHlK1MJ5QNVN74DiynlAIqw9b8/TeUBgGNj5QtR5QAK44I3N1XlAZaXCzCLjeUCNn4q1fON5QMdwXqBQ5HlASDiYutbleUA49u7RN/B5QPhIaeWT8HlAbb3ZqQ/0eUBq8sr3CAN6QOUHpNL6A3pApJxalPwFekA+aO5yKCN6QJRpv5wvK3pAyh6uOCAzekC3N1F4DDV6QFLfl9IlO3pANhArVkQ+ekAiyk7cEkN6QKSGhVosQ3pAuNbvORpFekB8opelQkl6QCVhxoMpVXpAbNMXzyJcekASkzCKwnN6QN5BwJoaeXpAHDXNjYN5ekCGKV3I3H56QKYnIRfGg3pAGTkTyKOUekCQcBj0rKN6QEKsRL/UsnpAPgDY6gy2ekC6SUFyE7d6QBzQSyv7w3pAVjLPThvGekDqwxS7Qc56QMZ3g/pn4XpAnCl+xE/jekBDXLQPPOR6QEa4LXs27npAGriPGBXxekA+t5hSYfF6QOrej/VI9HpABS/hmxMBe0D3x8T0LQF7QG4ipDR+BHtAglN6M8gLe0CvkUrCKg57QALc1FpNFXtANCWhfFole0AucEQXYjx7QE88pkOQPntAsHMvi+pDe0AsxktQQ0l7QOebR1qvU3tABnWZKq1ze0DiGOB6M4d7QETB9ZIilXtA1n42xcaje0AyL6MSMqV7QNNpkgZGsHtADqrrI/uze0DZVJoiKNJ7QDY6JPTr0ntANmL5ltLTe0CUwNTrlvF7QGnkBK4Z8ntAvl1yY4z1e0BwpcoSkQF8QMTa35HZAXxAjk76WvYBfECqaVFyEQJ8QFzstEpmBHxAXLM9nJoFfECFS9zMihF8QFSkK7vQEXxA4sLGmuEhfECGyevHuyN8QBw9uOr/I3xApjLgZstBfECIJ7zBZ198QDj7BmQrg3xAWE0Cc+aDfEBcEgTgPZR8QHV9ZiIopXxAhTOPQI6lfEDWocVswLJ8QFzvdKIEtHxATqFWZXe0fEDdG6pXN7V8QLD+epNmxHxAgtCdg8nTfEAiNe/wddR8QJTnMP/H1XxAHKkCCljifECNw5CKFvJ8QAa/FgFT8nxAjP7CNnLyfEBKna63AQJ9QBnqh3xLAn1A2Kew/AAEfUBkJeQnCQx9QGUlk4APEn1AvLTeh0ISfUAMuB7mBBR9QKZo3TpAGn1ATB1urIkefUBeFKLnaiR9QFYulzhzLH1AJqtYe50xfUAwgIaQRjh9QP9YsXWePX1ArDnTA9tTfUB6DSJNDFV9QLruAx0hc31ALUKvyHt4fUDwgsM7BHl9QBxuP/kag31Abl2hPRykfUDseeitpqR9QK5NbqmztH1ASkhsyye7fUBqpSK9LcR9QDzHeTDmxH1Azt6W+jHMfUBK+k7M9tR9QESp10E72X1AZOtPPJTefUChQZV/beB9QGaBx7kK731AX7LdC5H1fUBXdnZ+nv59QFPguhQX/31A7IqZ9jMAfkAaueUipQN+QF6qEDeHBn5AG/9bbqUdfkBxE5oDNx9+QKmfF3AAI35AYMf2yT8vfkD6rCzYgDR+QIxFxshAPH5AIJ39qkA/fkAlTObIo0R+QKqC9P//S35AKiD6juROfkBXCYWMtFR+QGLedIdUVX5AGjfJj45VfkC9B10rnWV+QNR6n4m5c35AhCPNi4x9fkD7Z9qM5oJ+QOgJNaqfg35ATlLle6aLfkCkqIFw3ZB+QIaU8byPk35AaBz1obGTfkCPB3ZqmZR+QFNIRT70mX5APHH/zZmbfkCi1Z7GxZx+QNZwDb0inn5AHebaxEyffkBu+DGTqqR+QKws0Xd3q35AggbBx/WufkCdCk5rk7B+QOxrbP9PtH5APjAAMwm2fkCaH1qxqLl+QNLmEZ//vn5AiNpRy83EfkDqinZJccd+QF1N34IFz35AvMFuGkTYfkDIBn5qy99+QAvNgXAD5H5AcC672gXofkACP8bdz+h+QKqeGmQJ7H5A1sPPT4zufkAWulvt1+9+QK43f4UL8H5AJsK6aBD0fkBNv+CdTfR+QJTAxz7//n5Ag4XSmz0Jf0Do94dv6B5/QJeSoVVfIH9AGZNG4+80f0BuDgWjozl/QHM9NuECP39A7NzhClBAf0Aetpo6ZkR/QNlQlnm/SX9Akc6VWJhMf0AiSpbzGk9/QAyHil64XH9AQ52tT3xgf0CgDePjvmR/QKZ1fJrFbH9ALnSogo9vf0A4IxYSt3F/QImzfIyfc39AbuxjaOZ0f0BWdcrMp4N/QOHCJmjXhH9AbprSCmORf0BfSFXwqJF/QGFRSE6Vk39A3bTprg6gf0BqQi1vXKF/QJxyen2oo39AE2TfrVaxf0Cg9wFEwL1/QNBB4x8Av39AJI9rxajBf0CepDS4rtF/QOT2eo/u9H9Aopkm80b2f0A8mbFoLgCAQArijH8jBYBAm0w1yUsGgEA2ROcRvQqAQHLwATbODYBAc1m+xyMPgEDs0Ykcng+AQKz02R2AE4BAOQmJTLETgEAjUd0uXxqAQBrEh53sHYBAZJH818wngEDZM5AyGimAQKCBlcDsKYBAatrevecsgEDI505hIy2AQFASvR3nL4BAxQzR9vwxgEB+ferPiDKAQLJUVzTLN4BAJ2YszKk8gEAVxmHFqEKAQEaJZ2VCR4BA0gOVuo5IgEDECRny9EiAQNxxiL8mSoBAirPrdbBKgEAG/C065VCAQLYDSaUUUYBAArf7tgRUgEDyuXI/BVaAQHZdZkJmVoBA0CTYDSZYgED6IAgu5ViAQK6cueAOWYBAri/yYC9agEDEzUzROF6AQIykke5KXoBAk1v5jgthgEAOV7UQIGqAQAYY5GhOaoBAOk/dr9xugECJoxoqKW+AQELc7vrDdIBA0oUYnCl3gECfjE+chHmAQKrBvJUxfIBAjhWEWt1+gEAWW93DJ3+AQHFonKf9ioBA20RGLjeOgECYCnHx6Y6AQJ7g2B0Aj4BAYXG2qR6PgECGizRNA5CAQFR0dsHZkYBAuITI90eWgEASS5q2HZeAQJR9d44amYBAJhxXkMWZgEDcJ2H+S5qAQH232VlkmoBAdMWussqdgECYuh804J6AQEua/JIcn4BAZFNMR4uhgEDcOhZ8v6GAQJIbxEgXooBA95DC2lijgECXwGosfqWAQPaQNeSrp4BA2JrlVQyogEDot27+g6mAQLTgxH3brYBA9j6iGBOvgEC1I4izqK+AQLIZ8cEpsYBAtDqU6ISxgEBkgu5XaLKAQNAO4liSsoBAFBymCfO2gECmf1x+FbeAQAzG6eGyt4BA+TEgW8G8gEAjbvMXhL2AQK9XaAA3voBADTJrH/a+gEB0btGiIcGAQMbNaXxSwYBAVIb3eqLCgEBiDYJ1hcWAQDIlVhA9xoBABMBtyKbHgEBj9caBIsmAQJ+gtRZSyYBASHs+SDLKgEDIMfGN38yAQAIrwfWlzoBAC0NtLAfPgEB66t0dtc+AQDKprBzcz4BAmpCey/jPgEAC5HjjS9GAQD5twMVJ2YBAvjcuwFvZgEDF+9QUj9qAQExRx/M63oBAZBRSsULhgECSC6iCVeGAQN8Z1ZXm5YBAEESh5+vmgEBpzL92b+iAQNTPhnf36IBA4j6RVOrpgEDNep2zS+6AQKbqOlPk7oBAzNX1VUvvgECqJ5KoZ/KAQCyQkvA+84BAAVytkkr3gEBSpE1z4/mAQIrtWK8//4BApGCAT0AHgUDrWMp9pAmBQHxfB7g9D4FA5GQ7FvsWgUBsgdN/qBqBQBilZ1cRHIFAVc4dwzQfgUAwjItqsB+BQHqLvOkmIoFAjU2YUK8igUAOpj+LNSeBQPC4xU1dKIFARFFwjTAqgUDOr/yi9C2BQBOGFBF+LoFAZAoYPjAvgUD8BS+wji+BQJSl0su4L4FA7pHpjfQzgUCzT/1uKT+BQGcEejTxP4FAae5skCdBgUCEOS1fJ0eBQGy5uV7OTIFAsmPRU8hXgUDappyDgVuBQLnY7QzJYYFA+uh0yRRlgUCD1+4isWaBQKxSgg3NZ4FAVMMlyftpgUBGYr99EGqBQC429j6faoFAcqIXbKVtgUCaVm0Uom6BQBhPYteycoFAdHXPWGxzgUCKvaUJtXqBQKxkNT5te4FAy6oURht8gUC1lE+vYX+BQJBAjTeSf4FAvo9WS2qDgUDWPwv0K4WBQCSudUJShoFAfn0xdIKIgUCO4idh7omBQAwkqVl9ioFAImoXpPGNgUAFVjCiVY+BQJz2t/d9kIFAMSmIm/aRgUCYTKKc6pWBQM+Qy8H9lYFArPkNP16XgUBavg+7dZuBQPXVBzxUn4FAQOeHG+ahgUDlL93o3qKBQCQV5UlsqIFAT5YDbeWqgUA4FybvXa2BQOLIquV5rYFA6kbj4kmugUC7Tek8dK6BQPBsAw39roFAnjVJPUqvgUBKJc4fyq+BQARU8OMysIFApvXM42uwgUBkbHoDS7eBQIatNh2ft4FAUpT/Mme4gUBCUreYVb6BQPgLzJGRvoFAhLurkFa/gUC5Ms9l+L+BQEjrZS9UwoFACccVsePCgUDKkfwq7sSBQOZNQuGu0IFAY/PJqlHRgUCi7bk7S9aBQHSIAOMm2oFATnu19EvagUBEBoQsM+uBQOjsCBn17YFAjh/cG3LzgUB1wMYJAvaBQCTh9RxjAIJAehLF/QIJgkA02cne1gqCQJJ0/ri9DYJAeJPI2b8RgkDeamLPDRKCQHFMoO20EoJA8t1fUNgYgkDXZ0k3vBqCQBirsdDWIIJApi63KbAigkBoW6ca1SKCQEZQ5quoKIJAWt0qQ9EogkAEELHzcjCCQPJpVPTPMIJAoLYo1CA2gkAMgRIKdTiCQLJgnJwzPYJAlRpDz2pAgkASPTloSUGCQK/gzbqUSoJAIGmsGNNOgkCAQtw/ak+CQLPpw8rYT4JASp2/MnBQgkAIInlz8lGCQHl2fRnVUoJAl+PqmI5WgkCZ+L2fRFmCQHh+U+GPWoJAbk0lgsRagkCcAhO8rVuCQA8x7Z51XIJA39ENT5VdgkAewyZ7FF6CQMS8Fq2QXoJACJ/luGRjgkAA5CikbmiCQMj9HQpBaYJARiuenL9pgkCGyUWHHWqCQNr1GTLQaoJAsSK+3qdsgkD8CeaiQXGCQKCoGUURcoJANliDPZxzgkClt8PreHSCQFxEVps3dYJAgqPEttJ2gkCrf8JOsHeCQC2PRm5seIJAftjmbN96gkBkFtSXXHyCQIABRCbhfYJAzGCZOP19gkC6Xl9B5YGCQA8G9RQAgoJAJq02l1SCgkDGrD3gVoaCQNUh3S9DiYJAEKfwBwqKgkCwxnht/o2CQIbxG1fRjoJA9KJTWqyPgkCEatexQ5GCQFzsKd0bkoJA0q2oCfWSgkATwBOMDZaCQOoWbt/PloJAkgkcXjyZgkAVWH7LUpmCQClujgYPoYJAgv/TdjqhgkA0iwz13aGCQPxz5QL6oYJAVoXG3eGlgkCY/PIIEamCQEMZvUI0qYJAMPdEYXirgkCJRkpUua6CQIIZTiDqroJAymobMlGwgkCoHFiOabKCQJLCbTBnuoJAXjbC5kfAgkDEF7GU7cWCQJjd9ChxyoJA6yIikgfOgkA6q9UHENSCQPfuXjFn1IJAmPV79h/agkCRE9/mf9qCQGPiiJPs3IJAcDEb6YbegkC/Un8IFuKCQMTevczT5oJAJJpCYabngkB37ru0EOmCQFb6YRNL6YJAemJT1dTugkCzzj9adfCCQKDYXGJ08oJAxRcUeXf0gkD0jf0lX/eCQNcirRuu+YJAno3HXvn7gkCeBFKqFgKDQNqVM8wVA4NAHjMaEAgNg0CgHggD+A6DQMYLOVZ5EYNABFVCLDMZg0AxFFtPeRmDQL3xgmJnIINAGp8xY3Ihg0B0qh9IiyGDQCwGo/t9KINAotttTyEpg0Bdj3rHcSmDQBheudEWKoNARinR4S0tg0DIteQNazGDQF0pHyF5MoNAkJZvt/U2g0B0UfnFJjqDQCQQP9fsRoNAlO5wK15Ng0Bibp2vUlGDQIhtSUiqUoNAjqQz02Neg0BmHCJA9V6DQPlVSu5mYoNACadg3rhig0AnSvEOy2KDQDODf49lZoNAmiRGM9Nqg0AzabjeWW2DQKxre86Ab4NA56DmDnp0g0Cv9opx44GDQFpeheVygoNAfsTUoQqDg0C6p0Vrpo+DQHXg+IZDkINAzODkttaZg0ClSAk0KJ2DQOa5JxmcoINA9p4W+Qahg0B56c2q86ODQHYO5s2SpYNANoc2Eo6og0B0MC1oSKmDQNSmFrHLuYNAkt6WagO7g0AWu4/pfNCDQPgoklFt2YNA9jjTIz3bg0CLlsR37uGDQEwf9A0e94NALP8yNpj4g0BbZGcOpf+DQFd8HPRSAoRANnyq5D0KhEBAiKY4phSEQPF8g6t4FoRAFhmaHZoWhEAGlLEBtimEQLWewGW5LYRARaYfqLExhEACVzqZDzOEQEPNRc7GNYRAVr8xVwtDhEC1WtBxGESEQP1cdbn0VIRAyVzjmdhVhECqtZPInVeEQD6zxexoWYRAXfYLk9VlhEDJ68vOmGeEQBGaMUQAaYRAjrN7fuVqhED6FuQZ6G6EQGbWrP39cIRAorMjLOtyhECKHzol7naEQCDla5rJd4RAIsM8svd4hEBqO4WgeHqEQGa2+0TxeoRADCkCjQ99hEDiaSxXKH2EQMzSwfWrfoRAKe8xP89/hECSFZIm84CEQC6U3jE+goRAPYVbRP2HhEAK7aD/h4iEQI7fR72pioRA/q0zbliNhECLry50ApCEQJ5zkqKtkoRAKLKGtlGVhEBm4spyqZaEQDjH59oAmIRATPctvGuZhEACeSxvrpqEQOA5YZwUnYRAwKNOg7CihEC5h4DgbcmEQFw1yyxq2YRAmNUU5GzghEAyHFtxauGEQJyKjhR14oRAA/oWzL7ihEAodZxKQuOEQH7KyW5i6YRAhDfotjbxhEDHLSkDZfGEQLYTK8Qy+YRAHLjSdFn5hED4VYnjQ/yEQIKrHBF4/4RAJMyNzakChUBFiO0VRgqFQJHMnp+vGoVAmz/t4kEehUDiWEcERyKFQMxPq1EeJIVAju50XZYqhUATBhvL4jyFQMD67yAsTIVAVLy9japOhUD0OR3JYFOFQELBfZVmW4VAr2QjJl1chUAXg9iDoGGFQIpUNV6faYVA3Nc8MN5thUAo/XtbmHGFQHgDmdKycYVASG2q7Jh5hUBFwZSFnYCFQNsrThTPlYVArr7MtaSfhUDtqCoCfLWFQGDzv4DgzYVAvKz/udXyhUAU8JGXQfmFQAQ7u6HPCYZA4Wwz69ENhkCIHfy73xGGQIsz8VwZRYZAK96l9ZlhhkAB6OmNs2KGQGCY/JKLhoZAZkKHso+KhkBCjj7ckI6GQPK/Av2VloZADq1LacqnhkDyv3inzayGQL7CW2B8r4ZAEratRia5hkBwUnWQJMGGQCg8G5Zqw4ZA3PGn88/EhkA0nLdg0ciGQCmi/fgbyYZAGKblyG3MhkBQz1FXMv+GQMxGnsiXAodArow5jjYDh0A8v6xAggOHQLVlRL57BodAFQsc3DkHh0AG3bGnOguHQIryw8SCDYdATpO0iIAOh0CuA0G6LxOHQNMNHFeRKYdAwjeMBpExh0AC7VyUiTmHQFTAcArfOodAmM0Wrv46h0BijjvRcDuHQD41jO6LQYdABpl1ZlhJh0BVYy4daE6HQGPnt8ouVodAInyXQDdnh0DScddGOmuHQPxTjOY9b4dAX4Ax9kZzh0DKKCpKTXeHQAntOch7iodAZIoZZ8exh0DWrVGTx7mHQMQjMIREu4dAGrv94L7Bh0BQQJH4VcqHQCof6LNjN4hAOKfmI1I7iEAex//SVj+IQHKWJbpXQ4hAqwlFd2hqiEAeTLefbG6IQJDfMNuCcohAmfvPVlmyiEB8imcqW7aIQCPcVGZeuohA4LJzPeK6iEA= + 7BToB3LiY0AoFld2zuNlQGS4z0t+BG1A - + - JunARBPUMES4Vs1FmaGSRHnqxkRZRaBE068gRT23AUWFK6pEYUFWRJInt0VpQsBG3kVbRMKetURjaFVEUqyVRD502EQxk8REE0JhRJUuUUS8XXdE5ec6ReqzVUUxTQBFvEodREg4LEQKa+lEcPj4RHv2UUQuiV5Evv3ORNMH4kQL+IJEkxpkRLHPbUTwIlxE7CARRUs8BkVqK1FG32gpREPrt0ZYiodEFLwlRF1AbUU+kBJFy1G0RaNKy0RmuYNE6N2QRe6PUEZmc0JEaataRNWxwUQ9sI9Enuw7RLWUEEX3E5BEzYU5RJwkgEQwxrdErOR0RIhTpESuLjJEKsgJRTXLq0Th4utE5iazRLiIvEQ7uXZFWM2GRdCgskRSxq1FOFSZRCs5U0RliYlE5vNkRGGnL0Q/htBEGp6RRKUVUkSuwvBEWdIURIKIa0T7l1xEIyOxRFfWlETjaKBEq6Y8RRAv/ERYfZtEtQOIRnEYjkRM7hZFvpJMRG6e40XeIFhEdBcQRZVoHkTxyx1HRBOJRIDQx0SxjQdFxVLFRInodUaKFFtEfgRERanaL0TlM4dE8IVURMjkk0TWDt9FMyamRD5ZiEQ/hadE4Q1iRbnEW0RaiylEqlRTRJQ4OkSkmnZFDQzsROC1sURwtFFEoo0yRA1VnkS/KlZEHu2HRBMTpEWmrNdEGR0sRUBSgUSXKl9EaftZRJhsy0SQOcBFZkecRXa+ckTtcZ9EeYVfREpfCUXi1eFEeHQoRLUIlUQbY0ZEIsSPRKDSQkSxeBxFoObORMSnQkQomHlE1zqfRWLykkQyT+lEqacvRBbAS0R4cE9EDeufROa8zERuBm9FyhtARNe6x0Qe/KBE53VgREg8HkSSuIRElgO0RLCTMkQRGIdEaNhmRKi4KkX/019Endj7RD6AgkTCRTRE3v4yRBq4RUSpd2pELMPtREvt5ERzih5FQlAoRH0i8EdIG71EuQA9Ra6NNERV8r5Fpz9XR1itlER21CNGIMYKRoA6vEWfxU9Ft1okRzywAkUCz4ZEJdKVRMSXukXcIkNE8Gx/RHu8LkTcZvVEw+jKRUJcPESDeCZEAo6JRIipakTEhZZFyaZ3REfma0Q7ahRFdD1nRPtMbUTbVFBERRXHRE8oIERUWapEvGCORHdGM0TTD4lEIeWhRLYjrkQHFTVEPSRRRG/aaERi669ESjCIRKQYQkSU6DJEMLQDRfvaTER0QDlEx/gZRdBwlUSkYhdEQNtFRCIBMkSqCi1FbI2SRMurC0XWCWtEfEapRNfHqES539JEOHiaRHGhkEUxcGtEkwQXRWIuZkQ3t1hEiG1qRNi1dkRXIKpFspgGRZgPH0VexzREUg4ERRW8vUQwWYpG0PtmRJGPUUTS9n1EzZOLRL7T1UQtVxRFpblORdEsXkUZBpZEKNGcRcRmX0WIPJdEjNTkRK2y30RolG1E8upyRPHhe0SJukREt4QiRN8ZQUST1IREqmhBRLFwnURhSqJER1XuRK/gdURWn4BEVTV0ROs21UT1ihZEPsnxRGLHJUS72IVGl19hROkdTETBnmJFaU10RHsjI0WF6npEgfEjRV3SUUXzk3REgv12RI/hSUQTWKFE899TRNRNQUQNjDRE5Y5yRG0HXkQlnaFE3BpmRBIQWEQ9VDxEjpJvRBL5WkRsJUFEx8toRIDQ70RiluJEo/SsRE6+DkUJVOhETvqMRaHYDUXB1CZEt5wPRWXsjESw0EJE9r8ZRLJNjEXFUltE7ulARSV7cEURH7xGVaXkRIzsi0SLBqtE7tskRP0SuETXeJ9ETq+gRHtSokW242dE77rxRKCClkXKe5NEXYfyRFWKiUQvTIdE0JaFRWHAIERkEjpEAoHBRKoFvkaB+lZEOKpvRNZzmUTn5opF4gaWRKQmnEagNBpEn3k4RBuhlkQBJeJErjfVRHJkSUSHextGJ6cyRUW1TESKx7lFcK4FRWX8pkTj1D1EScQbRSris0X1zjtESC1URBfVeERGq2dE/gaYRQZ8hUTwUI5EAUmvRI9iaER37a1ElG2qRGJEoERSWIVGHDZORLtmXUWEbulEKZ7lR5TwDkdQHzlFAfJTRLxKzUb1XpJFx+GiRhBhg0Rn5gVFRQcmRVg+ykSgNEBEVB4sRSzWU0S8v5dEjCqDRJJJuUSgmBtE4DuwRE0MmESjBDdEUJi+RCQ4BUWLnUhEXgI7RO/9RkQoKFlEfoMqRMi8ZERwzq9Ei8LZRIL7SkSdb4xEtvdpRNkAQUR+c3NExOhgRFONW0R8qClERmJyRMiMaEQ5jbtEZCeTRIFdJkSrzd5EW1i2ROQCoEUXsYpEWtcHRkbplkSC7exEuqjgRBo9XkT6z7hEBGWsRIcoP0mZOjdFUta3RNxwuESCXgpGCnx4RW3fi0UmQThEbreCRRHZ3ERx/ENIgxvTRByrPURQSYFFbXKMRmP8gEQ2vrRE0S7JRBy/gETBW6VEJ2/NRFmPWURvcoNEk1j6RRMhg0TsQZ1ECiFjRILokEW2AS1GqhpKRAHP40QzzCRF80klRCWUm0Rw26ZEjQ6lRejfKEVwqKxEhLatRIw6ikTCp0hEGE+7RP0tjESrQKJFiSaYRA1eVURrBDxFhox8RCA/PETuSABFXPKmRADKdUSFoDBErUyoRJezQUSCTGFFplJJRHBOtERfibVEWm/ERNMh9UXz/ghFIDIiRDcTN0T3FOtEKoI9RDSJQ0Q/n4NEhc73RNnHO0R1NrpELsWiRCJoGUhWHoRHiEKURmXTzkevOJJFv3y8RB+TdEQlVplEnTm2RnVH2UTTvUhFKYG9RIgs5EQU5hpF/ajTRLc8ukSqmYVEuAaVRJ32R0Ry0UtERZwLRtIew0SgGVNE1TnLRAW5ZEQp29dEq6B7RHLKjkVC/INFtlMeRc1o3UQqfMNE/AtNRJ3AKEQoGyVFF6UGRSLjF0Wz3zFGGt1QRQlss0R5oHlGWs4dRh7ONEX3B09ENuxQRHJ2bkRUmQJGssKHRNgBnUS8kD1E5OjzRHCkxETMazxEsEWIROmf3kWP/pxEH/OURnKS6ETEzINGac6SRXQ4VET115VESxPNRU3ElUQM581F0TekRJ/ZQURHAzhEQ0a2RZ3zYkTV9mxEHbqKRIJoWkRrDOdFEJ5PRKvV60RsTitEd0hMRPAv0UQ9lbNFmEsiRelKSUTqfWFEZpyWR19EOUUv7IFGq0UzRekOPkReBUVGmGCARgFFdkWesaJERxsFRc/KhkTpUlVECE1qRLuDjEXZg0lFFHCKRBpArUWIOjtFHVh0RIctt0TZjnZFgL6CRXyzh0Tv31BEmuxuRMoIAUZP7KZEgHHQRNEQ9ESonzVFV/5MRBCvbETriFhE319xRKzIHUQ5DTBEMDqHRCq0PUSJVV9Ej80JRTmsNUQGR4tESPXhRJU9rERK/rNEPyMFRfrSVURC90JEtZ+NRAtgaUXQ9XdEkQNMRPXqgUSWHRVFK/2xRZ+OCkVGfW9EhpJoRJZ2nEQBIqpG3AcURlTeOURiBcdETI4TRYgxQ0YW+pJFVW2qRL4EgkRh+T5EifQmRQHGXURAEzxEDpzoRtqbXUTr+YRGSnKFRO7JE0bzaWNEuKyCRHPBgkRjW0FEY85FRBXjd0TYCnlGColYRp0Gi0RcX+xFYo2ORAPwakR02uNE1EkdRRd5PkQ4kpZE6+RDRNUBh0Q36cNF1XJSRPFXpETlAj1Efk+9RI3UJ0ZHkhBGcvf2RJNMOkUbmxdH5BBERFT3VkbKTFBFd6hSRCWg4EVqgDtEu1neRPx+sESUtp5EwjNuRoL+okTbR6VEC+j6RK+7SUViWWBE1McMRZl8jERe+ZdE93JURFu0KkQuql1EU5m8REOqYESzKcZEprhuRCPAkUSKRpFEWFBbREHRN0TTgI5ExprORBqPc0RQmEtE53hVRAz8sURsSbFEO14wRAu6Z0ScaJxEZLGiRLYZFUU1e3ZEhCFtRLPZRkW1ezdERsODRErcF0WdosxEroVmRGM3xUQxkapGPuWeRM4+FEXC5ttEht5kRZeRSkSapf1F8iZYRIp1bETKyhxE6rZ7RI4k70SQxUhELkh4RHAfQ0UQZ8REjyO+RBGDVkRzDkZEhd1SRAeYGUU/+NtEqZRURKakGURyhmNECkNnRklwJkSikWxEzp6YRZ2fZUVjSohEu4rbRQeDUkVmUkZEYvvvRMkGaUTPg1lFfkG1RDsPkUQTtChEHfejRMoctkTUGIFEmCE1RBwm1ES16U9EtnFBRl0PlkSeJldEV6xKRCkPRUT2WI5E3aVyRHK20kR+5WhEEQ/NREx3CUUgP2NFGv3GRCQddERJ5f1HTaNTREY5cUTXC4xE2r6HRJ2SAEXB9ClHUyTYRDc4vETFskNEGo+WRBAfZUQ4IypED2QpRDC/9kZzYMpFT8WKRJ1HXkQVDz5EEpOaRDM/hUQ47NFEi1ekRJTmgETgIuNEZMC7RL0qa0RW1FtE3x0GReT+1kQR/phE1F93RAbSikSF+WJGQzSBRX9+fURKF8RFk8EoRJecAUXL5nlEdLgbR2pyikTn9h9E0kaXRKjWB0aeO9BEsv9kRLErfUTxfF1E8oJmRV6EOkQ6mkNEMnU0RNgHQEaE9ydEq9aJRAftzUQaQDRE/AyORG3VQES2ZS1Ec3akRFotz0StnDlE6p97RIj0MkSRGYdEUZOCRAw+UUTI101EmEx8RPqYXkQEH45EzERgRPdrukT0SU5Em245RDWSakQQa2BEniRlRCEYDEcEAJlENHqHRhXzF0bO7JBEPrydRZ4kjERt/H9EXn/6RBawbUQBxnlF6f4ERbIZ/UVtngxFayHxRJlpUUTzXX9EWCihRBosUkRO/7FEhPF4RhKYlkTV8XJEUw91RCvJdkXcRY1EdZOzREH/UEQdDJlEQs99RMxxdERRWipEZERWRK7eHkQEx41E9050RMC7OEQ5ZI1EAAGMRGWcRkRWx2hEwQI3RGwCeUTSBlJEsWeLRBWWUES09FhF+ga3RKlPNUQ1YfdF3LlTRjVrLUUzhqlF2TZ8RAeZ9USuHUhEBXNQRTOPEEa+lLdEBZNERMrwpUTTjZlEb00vRfotiUScjipEbHloRN/9b0QGYTREcyuTRLz2UkTY/lpEmRn0RDlRU0TFvVVF4VPGRLs+qETJWvZEZEh9RHROkkTYgkBEP006RBsFFkVPGqRE5rm6RPOJP0RL449E8J1RRCOpakRnc3tELMrxRH4dFUXp6ChF/UTeRCJJOkT6XJNEkRQGRXLxnUQAvuVFV7ZJRcCDg0VuhRhFxV7PRCoowER+Iv5HZy9zRCWUgURSToREnlNuRNiSSUc4a1VEteWcRLB6PEQ1V6hECygFR/+rXUXKsiFF6WkKRuOZ20V5XWhECJzvRPN9s0TIek1F4IVvRBYJRURRkSlEh6tFRcbFnESyfSpEBMQ7RPdVVESqeKREfCSNRFeFXUS1pztEe9k1RHPOOEVb9E1EIrnwRBLTUESb9ZZEjTA4RFhvC0TyfnxEKxSiRMHjFUWyMa9EKep6RPROZETJssREpFJuRNdppkRbtY1F8AQxRFvYRETeAWBHgmVnRGUGlUaSxV5EetlMRtxnskSaWU9EalM5RBb5YEXIoiZEfx+YRFHL70Q7L0JEi3MqRHAcTkQDiRdEjW2ARCv2eUTZ5HRFbsXwRfz1VUTPJJtFNejSRGEFiUTE1SdEYFuQRI+enkT4WUdEtdk7RKuknETzWFhEuFHLRLACTkTUEEBEro1hRDw2lUTunihEyd6RRLKfqUQGlqREpCWbRNY8U0TxJsxEGP0yRHWGrUTIU4NEepeERHGxSkTXQF1EPh+dRBnJFEVIHBJFk7RzRF+AMkQ+mZFE6l2jRK6ndkWtkkVFZi1rRMHAgEQEgalEyU36RAd9hkTv8XREJ3JNRF4BbkTsCH9EgZH7RIpqCUX1leZFGI46SIKBAkjkjRVFWpsuR121MUaD/qtFndWPRBU+gUVjaUxFMJf5RKlouETJfjxE5naWRKEsZURrfEdEsiWPRj60JUQJcEJGXBNbRXuHm0S5V4BEF9wlRe7QVkSK01xFvpYtRM4LaUQvTaJEKH49RG9UYETp6SVH8+g8RJ3mnkZBW1xEWmNqRKtVk0R1KDBG4ZkPRbu7jUW1tlBE9pLTRPIw6EQytMFE9a82RNxNj0SafHhEtRYcRQhsGUW2I3FEcnqVRLEtmkRmRnNE6xs8RCGrI0ViuohE3pxIRB7BgEb5nupFIfRCROtYUEUVjolETtTnROmAekS0jCxE9FB0RM8sS0Rv40lEC/UjRLvac0SD+75EKU0vRDZ4I0QJi2NEymdFRLZwIkTqkd1F/2HCRUlpREVesYFES7JdRMZXUkSc9oBEzvmLRDq7vkSFkgBF5rBpRALeXURVc49EpTM8RKQrDEZVA25EbAejRefFPEQOo1pEwOrsRAXsoURrfFJE+8NFRA1gaUQ4lHFGdZHSReGyo0VP3kxE/Q92RHW990St1uJEQMo/RK13TkTWpTBE8mfhRkT7okaQTAJGdkVFRWrGgET76hpEadaHReIgCEVKDd1EEBfMRD6xPUSxZJREanMzRduXJEVdzb1E9HyDRGcUh0SLuKhEnZeRRXPHTUWGqcJEhiuFRA== + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - xN/80nvAckByNGlBDcFyQD6Zbz1vwXJAAA+Lhk3CckDSO1sy5cJyQGUyHaQ7w3JAw932HHjDckAj4hb9wsRyQGS2ihNaxXJAfuOILg/SckBymCZ7Q9JyQNxtUKR503JARNuLPGLUckBkntmej99yQAlSiOzO33JAEmhFZbngckCQIoM5UuFyQF6qp/D54XJApBzWSFDickDoTegGkOJyQEKM/B4k43JAiPRFTLrjckBev807y/ByQLwfkYZO8XJAFOdQ3MnxckB+R2UaT/JyQDzO4LQT83JA2gfh5njzckBUEZjstfNyQPRVZ/kL9HJAtm0Z55/0ckBGFQbkwP9yQOcrNVT6AHNA5dGgMo8Bc0AA8oIoPQJzQL5Zj+bPAnNAWqFm/GQDc0C8816/+gNzQCfHj45BEHNALLdFHCcSc0A8Kz74vBJzQE124DX7E3NACCKxslAUc0BMekAWeR9zQDRoU72mIHNA7CfnBTkhc0Bne8oK5iFzQK7nxvt7InNAxnpIV8Yic0BWdCbkECNzQFhmkJ/OJHNAfuQuEkYxc0A4Tm0+VzFzQPx7WjDNMnNA/9LFbfwyc0DGkEWGDDNzQGb0ayKhM3NAnir8hDY0c0D4VR481TRzQKZDQqO5P3NAJnspfUJAc0BA9BFk5UBzQO62Q/l3QXNA1pYsbCZCc0BoCD4cvEJzQCwYAFZ6RHNAsHs1CZxRc0AffE6SQVNzQP53XfGiU3NAfApa84ZUc0AgJb9e+19zQDe/fIiLYHNAjDvR3iFic0BoK+AfOGNzQOAa9/2PY3NAIvLfVuZwc0DcBWOF2nFzQObeENBecnNAsI/cKLd0c0DM0UsuTXVzQMhFSJ3yf3NADc/byRuAc0DelKYXeYBzQCLy27qogHNAFxWmZMuAc0DERA4hDoFzQBQxW15dgnNAgJleE+WCc0BKxIpqOoNzQHpjL+APhHNAto116YmQc0AmXmGDD5JzQHsbnlJNknNAVJpvsGaSc0Ahk9Wn+pJzQB9Y8sVilHNAivwEpfeUc0DMKXxLuKBzQGqL5eBQoXNArIJ8c7Ohc0D8gXWfW6JzQEgXnFSPonNA/uPESyajc0A04kvYBaVzQGoYnbDDsHNAnN0d3Xyxc0DiKGT/yrFzQP/Uy1BSsnNA+ZUhgO2yc0BmxkeEFLNzQM4IROy3s3NA1Zrr0Q20c0B0kV3wobRzQHBzWjf5wHNAvDXsJzzCc0Dnwiqmz8JzQKpkBI0ow3NAQUXnqNjRc0BIVPvujtJzQCwr6ci80nNAMus46NzSc0C4ttzc9dNzQEJtt/3i1HNAJ9V0IKXgc0AkMgLXOOFzQDo5EXtm4XNAsDJTA3vic0AiBdYSEuNzQFbqJLvO8XNAUmM5YjX0c0APRJoljPRzQHptx7R4AXRA297bnacBdEDwkvfDugJ0QDJGJb7ZEHRAlCaGUp8RdEDveQt9MRJ0QIWGrAmoEnRAdTU2hgITdECQ24c7ThN0QDVg0bd2FHRA5poVE0wgdEDsXj1qaSB0QPTlnSKNIHRAzp0fdLghdEBQUonH9yJ0QLCSZKVbI3RASnaZOosrdEDXYPGlUzB0QJC0SKm8MnRAVn8SQKQ/dEBss9JN5D90QLqEq8TIQXRAgEP7s15CdEAEpVlPPUN0QOZoA/N4Q3RASDVMtdBRdECiT3NyplJ0QF5USBKPU3RACWpan/ZUdEBCpv5HjVV0QAC3tFwhXXRAOLzn8k5gdED8U7MFuWB0QFadBrEIYnRAguQiMnpidEDvPBWPTmR0QMxXvmvEZ3RA6HSCN9VndEAcu2BlWmt0QArJKzsebXRA6rjJtzBtdEDO4wLfInB0QPxBcE5BcXRAKKJFJdVxdEAKukbTE3J0QIzgizB6cnRAQHkAChBzdEB90ZPGOXN0QPDVuHyhdHRA6iiF1TZ1dEBePV6sZ4B0QM1uEen3gHRAtoxLdhaBdED4lljIToF0QE40/VWJgXRAUptZ2O6BdEBQxYvfJ4N0QPpO7eQWkHRA+NOqVbuSdEBi7Q4WUpN0QDEjLUHtn3RAiCiw+KOgdEDIslnbzqB0QMZ93sM2oXRAR7RjO36idEAS0+PVuaJ0QMpJTxkQo3RA7OxxlGKldEDcLSNTC7B0QIRUWyjCsHRACrsW7GSydEBuh815+7J0QKAkIf0fs3RAKnju5UezdEALTN4qcrh0QCAEPVvkwHRACNUc4/7AdECwq9jxdsF0QBFfw9bnwXRAzFC0iLvCdECi0VG4TsN0QKZwkKInxHRAdnw0WXnEdEAmki9N/s50QHq7hvg803RAMcfyB+TTdECUfX3PztR0QG67LJn533RA7nKpGbfgdEA4arUQIuF0QG/GR1S44XRA6HmxAWfidEBsQNL0+uJ0QM5PtZJf43RA+WgLGI/jdEC17iiATuV0QON77G5f8HRALSTKosDwdECRJ7AzI/F0QD1IAIaM83RAWlpMP6b/dED2nZAoUQB1QJ4nyIalAHVA93XEjM4AdUCZwv436QB1QJAI/nVjAXVADMNPl/UBdUBIHMDFXQJ1QOT0zi6nAnVARgd5Ij0DdUB2LkkimwN1QCabAdj5BHVAd2g1w5gQdUCg+f8SIxR1QB9xUofiH3VAhKbzOZ0idUDsN0Wb5SJ1QDLJnOtiKHVAVo+p0aoydUBAD7iuyzV1QJg5yyzvN3VADOKNQSZAdUBO4gQbskF1QLAEHKV9QnVAoJZQb9xCdUB651r01Ed1QAakHQAMUHVABGYUTDFQdUBg7LHq7FB1QLKVmfCAUXVAzfZk9J9RdUCpJX3yiVJ1QB4NFJ9NVHVADdTyAXhVdUD4QUD2cFt1QGhdZIALYHVAZk89KmdgdUC/2lwtOGF1QK5WmstkY3VAJhMoCPtjdUCo92Yj0291QBijR0Z2cnVAPoeKLYZzdUAAVSgijXR1QNPz6KJ4gXVALhlZIa2BdUDkxD6yuoJ1QCt3ZozognVAGPpao6aDdUCKQVDd4oN1QGoIFVWahHVAVib52oqQdUDYEAdwuZF1QM5fZQ87k3VApgIhGDuhdUAqk7npuKF1QIi+bEz7onVAHf+cJZCjdUAkqJgivqR1QLxVL1SQsHVAzBwMR7SwdUBczLcDaLF1QA7tGYm1wHVApmSptmPBdUAoDERa+cF1QBIiVG+DwnVAfUq616fCdUCJZRpwJct1QIUn1Rmm0HVATh4aK4zSdUACBBFHv9J1QEGtmZ4303VAPK0xo83TdUDC1Lv4wNZ1QECIAcLn13VATP32y+HfdUAGrn+FEuF1QIY5LD4H4nVALismo6vidUBM6ToH7vF1QNJicedIAnZAfA/i6uQEdkBui/mITBR2QF8MZZEOFnZARQoTA0oWdkDoIjGcfhl2QH6ALQ/LGnZA4pJRAqQcdkAGnjJKtxx2QCV7wrXOHnZA/CjgGIgidkBkpIxekCR2QFTyvEJMK3ZA9pNspx8xdkAkLdjZRzF2QFjZw6RQM3ZAlnlerZw0dkCSKyz6TD52QBzM1W1MQHZAH8IBpYhAdkDTugocHUF2QC4hi2GeQXZAZNfZZDRCdkAsmYObVUJ2QHSoNcpqQnZAMvKRpMlCdkAfEVPUD0N2QNDmlHJ7Q3ZA16kl46ZDdkAxN6yDe0R2QHAimBV5UHZA2sz2psZQdkAIyFdpElF2QEaotUWIVHZABGCKg81UdkC8aFs+jmB2QHBQifEiYXZAI4UW+NxkdkAmfG7e0X92QK4pTpxqgnZA8M5z6uSCdkDSCrJMPoN2QKYX6yyRg3ZA4jAB9tyPdkBsnx2+ZZJ2QGgJA2LrnXZA7qboG8CfdkDF//uvDqF2QMI+blekoXZA5rBLVeeidkCYXrVlRaN2QO6lo1SOp3ZAUidx9KKodkDk1IqLwbJ2QBaTx/gNtHZAPDbI8K60dkAkz2ynJcB2QPBQkB94wHZAngn5Y77AdkA2jZTXTsF2QJ7S4hXdwnZALrtnLRrEdkAlt/7Zzs52QN1imZ6L0HZAKjJ+HnvgdkDw6ZVH8eF2QJT1VhvQ4nZADMLeLmTzdkCnbehEkfN2QJC1hItM9nZAcSNvgzUCd0B2nj7spAN3QCoUh5I4BHdAZjVCaAESd0DbTGxxDiJ3QBWu89ZSI3dA6XOphFYud0CU7D0eDTV3QIAJRsvMQHdA6I8OOp1Bd0CeCNIa+UF3QIb2Swy0QndAalSeZRtFd0BMQAVMS1F3QM8N4I2SUXdAQmY9mLBTd0AnqxWkKlV3QAdTFCo3W3dAlSO/L7dbd0AfqFqPCWF3QOA5t6RJYXdAcqzYJY5hd0D8y/foomF3QLaW+1g+Y3dALCwKwzlld0CaO734J293QKyzxKL/c3dAzBgYmxl3d0BxXytlJn93QP6mNSnigXdAwKLJMnqCd0Bh14CyKIN3QH4sebwFkndAL6rMGkyUd0CAa04VC6F3QFJLlkTLondA2qWUgKGjd0Bauk8b+6N3QGdehpQmrndAYvIEa5e0d0DQqtLULsN3QFZxSgnl0HdAGDOqEabSd0BsM73zitZ3QG6N0bfr4HdABJriyk/yd0AsTOjC6PJ3QAD2ttDq/ndAZJ3V2jcDeEBOHV2xSBV4QAbbUTz1GHhApEl1EW4ieEC3oximjSN4QIn3wxrQI3hAOwTO9KQkeECoRm6SfDJ4QAuPUb5JM3hAwsEyPOpDeEDWmg5aEkR4QNys6sV6RXhABfpZIdhIeED+nHyky1F4QGjtZE6GVXhAmDWZW/pgeEDyw7oJt2F4QCjN1cDZYXhAd3dzLZdieEC6lbNBt2J4QDWArH7sZ3hAR/w/wqJzeECGuuBAtnN4QDYobnVcdHhAn3CY7Yt0eEDfz9hVu3R4QDgdUsjgdHhAYsqBmPJ0eED8yVW3xnh4QBVUEtj3e3hA5js4QyF+eECCtrnxOIF4QIp/aAWkgXhAYF6waXuDeED9LrkZ/oN4QAS9NuWZhHhA2sIPblGPeEAqyuprlZB4QM7xrTWXkXhAGkfTiqiUeEC9M13XtaR4QKC1vOKGq3hAPU6cFiOueED8krsOfLN4QDnpqWSYs3hA8GYq1ZjAeEDFcDUe0MB4QDLpkwYHxXhAUKP0cdbOeEDooS/Jt9R4QFy4EyZK4XhAyjgBMMbkeEC46DGaAfR4QIz7IOSM9XhAtyPkgLv/eEB0XZoQWwN5QKyhYq+aBXlA9Nj9XIYLeUDar66qkxN5QELV6oYzHnlAHlo/5LIoeUDY+0OMDC55QFgxPGjWMnlAKNL0QVIzeUBivB2eezN5QFYawkK2M3lA7GUjfug0eUDalnEDLTh5QKqJWQLAOHlA+K4N5fdCeUAaoDXv+UN5QBXdA9g2VHlAVrcIPMxUeUCl9FLr6mB5QLA0E95Bc3lA1ijKT9VzeUAYKBu2NXR5QMA8Jpvce3lAHl9gxWB8eUCe97ij24B5QKc4ydY6j3lADl5VeRyheUBHnQp5NaJ5QOy/1lw9o3lADAQd4D6reUByu8YNwbJ5QHEX65JHs3lA4kyqC7XDeUCyioHK5Mp5QBPD7whC1HlAXpwvFczVeUCUAJJ8/ON5QETpLHhO5HlAOz5xYZjweUC0nAocCPF5QJSQQend83lABGTwVqgDekASlIQL/gN6QD4ii4b5BXpAC9dlbEwHekBR736zOwt6QH04IB1+IXpAtjOZSSgjekDKhep6Lit6QIzHt8gEMXpAiDJZrh8zekB+8XqgDDV6QIBoS8MmO3pAF6rcIStDekDvtFxv6UN6QDTzgBcaRXpAQG/dQT5JekCH/BOKo056QKQwUa2CU3pA8FAzuSpVekBGsC9mIVx6QAb06QUuZHpAFtiEpY5yekCSm7OKwXN6QCn7iZ+EeXpAai9N4Xl+ekA1h+uR3X56QP23ynSjgHpANtJK3XyDekBmQIODz4N6QPIAYQ/dk3pA+EnwkCSjekDGMQhWDLZ6QFAVLSUpw3pA4uzp9P/DekDi9zcYpON6QEmPqCfn43pAgs5MoTzkekDINzCOe+R6QKMoRaY07npAzCYEzS0Be0DezcoUegN7QNBbvEB7BHtA2W/jaccLe0AESPaYKw57QBLeNRFNFXtAriXiLFole0DvE2RRxDN7QOKSyvyQPntA6NC44H5Ae0BWT6vR6UN7QM7+fUtDSXtAIMwHga1Le0Bo3nWknk57QFuO34V7UHtAO3MNUPlTe0Do+Hu4SXN7QB4GaXgjlXtA7YkBdTCle0BykVm7/LN7QG7c0o/nw3tATXmGQHfGe0CaIyqK/+N7QKj8bj8l5HtA/QY0Ahjre0BKjymjjPV7QFMqLijaAXxAHC1nOGgEfEBSPUrcmQV8QETeQq2NEXxA+KO/QNERfEB9bSkTvCN8QCaXstrMQXxAkgieZBBEfEBJ4B4c4FF8QOIT0laDU3xA1EgcyH9VfEB+cb8JC2J8QDqjGzEqcXxAkBVNZeeDfEBaztjWrZ58QG51PUQopXxA02KztY2lfEC+HihiwbJ8QAa+7ed9tHxAF+pBcje1fECaviv928N8QJrL9vhlxHxAPAOr35PPfED4jMkjy9N8QBUCd0911HxATpk/l87VfEASO/+H09t8QE3xP37223xAIqTp01fifEA2R79ZF/J8QMGU+V1U8nxAxEO64nPyfEBL3wQMAgJ9QPpN+QBLAn1AYkIXKQAEfUDw9+I6CAx9QN7UfEZDEn1AhCGh/GMSfUAglOH6DRR9QAaUJJJAIn1ALLHDJ2wkfUAKAX50cix9QDhf62ehMX1AVk9Q4ns0fUBmQv8pRjh9QJj69md/PH1A3LvEMYY9fUCef+6ZpT19QN7xxDXhQn1Ag+0LBWdRfUD4PKck5lJ9QE1vjKkhc31A+D19UapzfUBMTlA1e3h9QGTngAHBfX1ACq6Bddt9fUC64uRSHYN9QLj5nrHIhX1AkNr9xxOHfUD8QXWST559QPU+ibL8o31AFnrs5hqkfUCWOfYSpqR9QIJ3LwR/qX1AJyz6cLS0fUAO6g7Gp799QHYPnfcpxH1A7WNDe+bEfUD7S4J0MMx9QMqaREulz31APtxZvQLUfUBhs7lq89R9QLTGkUI72X1AiNDRGR/zfUCe7tlTkvV9QA7idZqk/n1AztgotzQAfkCQsc6lng5+QOYYhGwVE35AzRK+qVITfkDaWwk6QRV+QN+6k/+oHX5A0DnvgzkffkC/jKEI/CJ+QFrAhSpAL35APOi/kJA0fkCnijQqpER+QFj2imcWSn5AHoSZx7pQfkCKbUqN4VN+QHWmYkBTVX5AOpkHCY5VfkCwM+VRK1d+QMJVQ9vOWH5ALjopn+1efkCh/XxhmWV+QOr682y3c35AANt8lvFzfkByJTfQin1+QF7HvADqgn5AIvDdyJ+DfkAQobyPTYh+QIJ9HaS/iH5AIG82nyeKfkBcyOtBpot+QOloWFKWk35ATMnM3JiUfkAZDUTA85l+QMqu4Hh0m35A/PMjf5mbfkBgrbaRj5x+QISqXq27nH5AzRqhzQ6efkDPrMbLSZ9+QD84NkF1q35APluunPWufkCa1lI4+LN+QLq5vQBPtH5AaYsHOam5fkCCCbH4Ar9+QCarokxvv35APsAiOmHEfkA6Fbv70MR+QDwbjxASxn5AFcZK9ArKfkC2zNJ4uct+QNJ5mRps135AkWZ4RgTkfkCOuxmnB+h+QGM97awK7H5ATG6i2tbvfkDWLwT8CfB+QELUjyIN9H5ABgviUn70fkBGby5cEPh+QKGdQnJ5/35AqIOn/OoDf0Ai8wRWWQ1/QJT7oXF3E39A7T95AF8gf0AGzuPZOyl/QLAkF1/nM39AY2RMfKM5f0ADvsEwTUB/QCJCv5RmRH9AVQOrmsBJf0A9+AdRQ0p/QMDZNR0XT39AQBF0xG1Uf0C8poBouFx/QEpUElHnYn9AdjdXpL9kf0AU7w6xxGx/QBrSJyW3cX9AjETRyOJ0f0CF4YOAsIF/QHDwaL2jg39A9fc9lNWEf0A0zjJKZ4h/QDyGbvbHjH9AfJ9OSB6Of0Bk2XF83o9/QDZQFxxkkX9A25P04ZWTf0AqtG1Xx5V/QIwUt0uVmn9AEQD2egygf0Cd9drGXqF/QCuJL2/Aq39AH5sa3e2uf0Dill+rVbF/QD5NGkNruH9AxXQ454bJf0CcDuPOq9t/QKrjddRL3H9Ax9acPHHgf0B3nIKR5eB/QPS+0ru3439AEgOnED/zf0A+BwZlT/p/QIbYuCbF+39AZD7nJSYFgECYyYr9TAqAQLid4Fz8DIBABtF1s94OgECgaVZHfhCAQHiLdugkEYBAohFYGcwRgEBBQf/eGBKAQMoJOiDQE4BAqBOz2sQZgECLM3JXDhqAQLZdTSl2GoBABuaHuxAegEA+Bt4wyiGAQIQNN/4iIoBAErg/KpssgEC8/xY9ADKAQDD0ONeJMoBAQzasenc2gECO+fC85zeAQOLbFqeOOoBAtM/hISc/gEB+neMBqUKAQFwX6LbyRoBAfETcQY5IgEBVYQro7UiAQHSem4wlSoBATR11AbBKgEBYzuPPwkuAQN5/5C9eTYBAehv5FuhQgEDVQanlE1GAQL5cchAFVIBAOLERxgRWgEBwgXJ9aFaAQLpGvQIFWIBA6ivMfyZYgEAaFTGY6FiAQNo821EOWYBAvpX5YyJZgECYycu0A1qAQH+XpacyWoBAtA/H1mlagEBy6DgVtVuAQMljKww0XoBAMo/l6TJfgEBes/kj4mCAQL1EdI4XYYBA6mDK1KNngEC0n7woHWiAQOqSf4UWaYBA1WthiiBqgEC+55kaQm2AQJq7HyYob4BAfItDAixwgEAaavNhd3CAQNQSeMsVcoBAF4Lkgid3gEC07+BIhHmAQOdmaC9yeoBA1zwLszF8gEDRvffAKn+AQNblm6/WgYBAK/j4kR2DgEBoYMeR/YqAQBJaAXUSjIBAqqhyE32NgEAhqrSu+I6AQHyfsWwej4BAEOrqia6RgEB18sdQIJWAQJTXsKhHloBAYx4Ydh6XgED+TeAlG5iAQJASotBTmIBAKR1X6h6ZgECQSnHwxZmAQHBnQKw3moBAhDEyK0uagEAX0cXgBpyAQKui+TbEnIBAFnvBY8edgECsm2mvBp6AQBGKhLLfnoBA8Cq2chufgEBnHVs8jaGAQKL3aehVo4BAs7seN8+kgEBAUE+qM6aAQASfcnbypoBAfqOaMa6ngEAFnNNzhqmAQMUZE+fZrYBA3CgRcemtgECk6omVE6+AQAhVhRYxr4BAEvBzIqmvgEB8Q5A6h7GAQGYVxVvbsYBAN9pI84CygEAA1nxvlrKAQEQzSBtcs4BAEkXUwxa3gEC29rqAjrqAQO45aXkIvIBA7L+xAje+gED2pwRg/b6AQKYMpeoKv4BATGVCjFLBgEB8q1uDnsKAQKj4Ytv4xoBARqzcg6nHgEB64NUWYciAQDFVrvJzyIBA/gHA7wfJgEA98XoQHsmAQPKbY2lTyYBA0EoeTdjJgEAjsR01NcqAQITp5zOUyoBAkjlgwUfLgEDWx9/64cyAQPYephIHz4BAlq+cF47PgEDyy9O+AdCAQMRWlfor0YBAsB/TgUzRgEB6eicuSdOAQAa9pKIl2YBAKM4tIUrZgEBmyOwhQd6AQMwzZ6Gk34BA32DyeUThgEC6AOn7VeGAQNFP7O8z4oBAi6uuGDHjgEC3JLj24OSAQCFkzezj5YBAAv0qEDLmgEBEb+0WreeAQFGTGTlr6IBA8b/JK/bogECQskmlROmAQMPvP/xL74BAYLahp2jygEB6vPmPrvKAQFDiDI8984BAjrqfUTz+gEC2T4vXP/+AQMB9YZ7GBIFAel/ZbXwFgUAciE7A6AWBQK1yGts/B4FAglMY7+4HgUDMgr9uXQmBQANnuybpCYFA1tnKCD4PgUD2c2pAYxOBQOiAn6NxGIFAF8BHs4oagUBGRbfVpxqBQGo4M6Y0H4FAy4wFT7EfgUD07s0cMCKBQLV9ZLU0J4FA7a7dM7YngUA8d9MoXSiBQKS28t3QLIFAHMRF130ugUBdXfmFMC+BQDiFatG9MYFAsKtyYEc5gUCgUNOdVjuBQDARKhopP4FA8LxY1N5BgUAA3OOtHUSBQDjhvisuR4FA8tL/qHdIgUBaMu4C/kmBQE48L6lKTYFA+G3/zVZOgUByhpfBAk+BQB6kvdtzUIFAjFebeU5WgUDg0TskPFmBQCDKEg5zW4FAMtb0Pk9egUAO8BNmcWOBQNX2pHMWZYFASPY33LBmgUCyzu9gxGeBQNPnmxXFaIFA2dR058ZpgUDi9DSU+mmBQEpJkeZvaoFAtlV/KLVqgUC0+p3LZWuBQC0iDSOebYFAl5h+HzdugUBiDgxoyW+BQKYSFnwAcoFAoDl9I8l3gUANNimYM3iBQMxBUzT3eYFAAtGTS2F/gUCKX77FVISBQI4Fp/KbhYFA6xxWbKmHgUCpdCotjoiBQGZbiGruiYFA3J23dFCKgUBgqvYBgYqBQDx8aaKXjYFAmq6qhPGNgUBm/NZtVY+BQNjBY9PEj4FAssCqVYSQgUCVmIJe45GBQPSXmbL2kYFAQ+um0ZySgUBW+3Z3bJOBQALwWSozlIFAnuGKs+mVgUASINhtQpaBQNOxz8VVl4FAgPmnJAaagUCYSNJVsZqBQM6UbFtTn4FAUN9d9uahgUC26kMa36KBQPz2OapvqIFA6BaTjOaqgUB67W0YDa6BQLRC/3JKr4FAYSVrKwuwgUCK2h3wbLCBQKy/7VuWsoFAPW3uvku3gUCsW5WAZriBQHJG1H6UvoFA6I5h35jCgUCj6NmLNsWBQJDx4BYeyYFAOMJEmQzPgUDabGGkStaBQBdMhZVM2oFAaLcOymfjgUAErXuxAPaBQEbl7ldP9oFAEsa0noP2gUA6sdBVUfiBQA/++YwC+oFAaD36Igf+gUAm2B5jKwGCQEzev3fbBYJAdDUPpt8GgkAnHpCKugyCQNdljKC8DYJAHuE6jsARgkDSNCi9tBKCQE6sYGvYGIJAlijgjL0agkCOAUVt1yCCQKh3aIHUIoJAMpbPFe8jgkDGpuAOKCSCQGaj4EfRKIJAwbx9orUqgkDb5KFvqSuCQAAq4PhyMIJApq9bqcwwgkCts5EyeziCQFzLYH95O4JASAfodGlAgkCGYyJXOUGCQO5xi6boQoJALGI4pyFFgkDMPS0jQE2CQEpCFYMTToJAwmqW1M1OgkDs/05Gok+CQMQnDUdsUIJAyo2b/wtSgkCzGEoD11KCQC7Ttg2NVoJAdzEWm9FWgkBpse6uC1qCQH/9NRCQWoJAfDao5N1agkB8PbXMNl2CQJBIMbhFXYJAfJGk29NegkAK01EMnl+CQFkkxjitX4JAwoAy/FligkBfgBVAA2WCQFntNJajZ4JAWg+v/uFngkDGEzsnbWiCQAa81sYEaoJAUlEXs9FqgkBsM0LibWyCQEIk0IYmboJAA/BLd8hygkBezPaboHOCQLQX1wlodIJAqaLDF/l0gkDjSgjPA3aCQFL30uDQdoJATr0aJqB3gkCOrmf4NnmCQBMtLXDgeoJAjBkaLWx8gkBAIJHE4X2CQIiSrhj+fYJARttdiqF/gkDP64TB5IGCQDKj51oCgoJAzpt+bVKCgkBuoMbTVoaCQC4Y/jZDiYJA6nIzF12KgkC4nu2dj4qCQHDAW5Kbi4JAIujRCBSOgkChRSeXQ5GCQB4FbyE8mYJAqh6xLlWZgkAs2KBYDp6CQB6XXMK+noJArtCm+w2hgkCFU6s9PKGCQIEigWndoYJAV5tM8XOigkBa2h2N4KWCQGYffh8OqYJAHqN1uTOpgkDszhwa5qmCQGl1frF2q4JAzAn5AKatgkDhyIFmUbCCQHxIsyEHsYJAmZPxJDCxgkCyfSb4W7iCQPdpfXYguYJArmtn+3G6gkAwI1XtSMCCQMJFaBrrxYJAVBNdOnXKgkCSpANRvMuCQP6oWvm004JA7iO9PqLXgkCYr87DudeCQASHSSV+2oJAZiNG4kDdgkDmhdMz0eKCQAYu1uTV5oJAWGCjTtzqgkA37h86/O2CQMJALZBz8IJAtpjHVXf0gkDAGyRwrvmCQPX2/9UTAoNANrFMMBYDg0Dqk8s+DgaDQP/LVsReCINAIN3gUjIOg0DG+pMSvA6DQEaLS8N8EINAXLG3jHkRg0AxFitR0RSDQKr0DS16GYNAW4VPxQAag0BKYM5VtxqDQEZocC9hHYNA10k4/Awgg0BOaXaUYyCDQBkagZ1UIYNAQiL9k3Ihg0ACr+NwiiGDQEzY1XrWJINAaB/3kXIpg0Cmx+cJ4SqDQF4DRrTCK4NAMNb+Diwtg0BMwhWPEC6DQNLGGxxqMYNAquPjIBw2g0DgT7Wd8zaDQH33yWiSOINAO57JAW85g0A+QASTrFKDQAQwMB0cVoNAUG9WeIhYg0CHxT9wy1iDQDTVN2ljXoNAPoUbeWhig0BbEvxMtmKDQDj46zzLYoNA9h3dcsJlg0BWk8Ik8WuDQBzxdgIycoNArmutEexyg0CmFjGNa3qDQPyR5WfjgYNAGDdFqAyDg0B/sbhmR4ODQHOPj1TQlYNAvqrVU7aXg0Cz+yckJJ2DQPjaOvNSqINAWgwgra22g0CT75Fb/r6DQCE1NW5GyINArgIiYt/Kg0AiOmAllcyDQLVtlmEb14NAptjPNyHbg0CaUze67eGDQKALcz004oNAqR7J9z3qg0CQOBb9UPaDQPtDcwKo/4NAmXqjIVQChECSUXD5/wSEQEkDLc6WEoRAUouef5AUhEBhAHlotimEQDoVCZYILIRAIxDSELgthECNFHvu1y2EQAYseD3jLoRAEuuO7LAxhECN6ZpCC0OEQBT+FxblVYRATL/UuyZWhECuinfXr1aEQEAQ4esxV4RAtHcxL3xYhECuOJCUSFqEQNwoo8itWoRAFsXznkpjhECofF1LsWaEQNUtak7/aIRABG89eeVqhECEPaTGeG2EQJlugk7oboRApE7bFatvhEAKyZfY/nCEQPbYRlw/coRA7l9ETutyhEC9TaNpJHOEQHp1kHPtdoRAhu6slMp3hEAMQtjs93iEQK53GB55eoRAhREQxZd6hED49y8H8XqEQKSQZSMjfYRANLi8Ccl9hECv3V/Y8n6EQI7tXDLJf4RAuK8pjcyAhEBvEN/m/YeEQKjsAcWqioRA7LxrseGMhECLpOxzVo2EQGjWinYEkIRAcreGLq+ShECLMoliVJWEQGB0Xk/Ll4RAWQII4+KXhEBq9LtUApiEQBwXIyVcmIRAambiEmOahEBC6706rpqEQJBhE13snIRA0K6UeVadhEBnPTdIkKeEQJbBc9OSwoRATBE90zHUhEA5L9o0atmEQIZBpwlq4YRAAViT/W3ihED4KdHCQuOEQMBLr6tX6IRAShzxqGLphEBKxSGYNfGEQNJ5vwdj8YRAcJxIyjT5hEAYn+d5bfmEQDK4gBpC/IRADAcLudv9hECa0+wxev+EQMoT1t4RAYVAKvw1oyoBhUCMWRD9rAKFQDP/LahCBoVAChpACloThUAU7XFU3xWFQG73WDHQGIVAiDf6GkIehUC3Q6BM8R6FQHImEB1FIoVAgrFhKIwqhUBHyI0J4jyFQOgVzHlgU4VArD68N6lXhUDWO1LfaFuFQCPsz0ugYYVAHq1vDKBphUAu1z3vmXGFQIAqlQizc4VAFf0kJJl5hUAmapcPkoGFQJyJ7WAEj4VA5CYMZk2bhUAzcp1RuceFQMpSpMTVzYVAlEytvRrThUAz2E3RKNqFQHKQoT4l44VAYmlOR3UJhkBPlUMGyhqGQOY2LJVzQoZAqhalVfJahkDGmW9gi4aGQAQfjpmOioZAfsuzGpKOhkAUrJ5BYq2GQJLSXxsnuYZAppqQ5ijBhkAYoNHPa8OGQILeENHRxIZAaARpyMnGhkD2NjcVMv+GQDLCRNU1A4dAElZEQzoHh0BGZjDfOwuHQPjvbDyGDYdAWkNyBS4Qh0BFKfCOkSmHQNZtkL2QMYdAriAt3os5h0CsGAkDXEGHQPg1BLqIQYdA4ALTPX9Rh0AmJ2vKeFOHQHJzj5M3Z4dACooYiTprh0AuxaRRPm+HQHhbmivPb4dAn6lBfT9zh0By/EG/P3eHQGQv87hIe4dAmXwG8kigh0DQzk4kyLGHQFQ2tIfJt4dABsqe+ca5h0Cys4YbQ7uHQMiU0vnAwYdAJlzirvnIh0DocxPgvcmHQMy6SWxyDIhAVP/XfmYQiECGYW+XixCIQFRcWQS+EIhAlkNl4a4UiEB0FB5BYjeIQMD6MtZRO4hAILG9NVM/iEBgyrRUWkOIQOJxkDpiR4hAQaI4Di5kiEAKkGa2aW6IQArzbhp/cohAsvQIxPd7iEA4/cyyWbKIQCpIkcNbtohA+jv9IV66iECOFNOHL+qIQMOKDzrD84hA + NrgMGZxjYkA/KJil8iNpQBu6YmAmQ3BA - + - Ju+IRE6FMUTw2/BFQUbURHjNrkTotTRFVrusRJLEv0THB7tE6n63RcCEFEeVh2tEz/06RAEUNURBbbNEDWuMRIFcM0ThjqhElBh4RUx/nkVgJPFEaGQ+RNygu0S9IlRE5r+URVvOFEQwIGxETb8sRI01nUTZWyhEoO+gRI4yAEV/8eREtCgbRDQSoEQprDlFs24fRvt7CEfCpkdE1sLSROuxSUYdKoRFl4IqRPkFUEVGvoZEorSDRq5NiETYSXJEaY2FRMu5pETzBbNFYU2fRCR2RkRdMGhE1U+9RCa+vERiP4FElAzdRM5Nb0Qau1lFtraHRO7vFESsB1VFhYzoRGxLO0UABgxGSK1KRUgCpUSfGJZFYQTKRGv46kTrnYtEViyYRAm9CEWvfoZEQ0MPRWWeSEQ0BVhEIcKvRMmBCkVKEElEDGhmRDoV+EaMF0hEApsoRGOLpUScsMRFegyTRKAfdkQ95itErfIDRdapWUQz0kdHqsWkRP05EEWzDdNEtbxcRpQ91UVgS1BEWgCOROVCtkUkts9Ew/JLRA7kxkSXgSJEgKJTRHnCN0SYtUdEg1wgRJ7rf0TRtWFF8FYJRcEQfkR8E5dEqgyeRPBXzEXs5cREcJAnRYgETUR7QGNE1HiZRDD4jkQ0Oo9FXs1rRLetv0U4vY9EpoUqRToMl0QWUYdE9DjzRNMaokQW/kRG9J6DRN3WWEQa4SBEPeehRBBPdETLunpEsRVDRA54TEXVkIlE9JOWROu8G0R5jTdE63OGRJrjT0Qqg2xEeBmBRF3YjEQaKohEmuJrRByFbEScpHFElse4RHXf3kRNQa9EX2lARCb9fkTzoGhEjfmgREDgtkRyWhNIanzHRI8wX0XvTm9FrlGNR332b0QPPkFGHHRGRqz1HESePKpFgTPRRFGznEWE2UdHEfd0RDhDU0RlkZ1EDMaqREnWhEVHf1FE2rZDRHyOSUR9CRdForU3RBWm2UUq3TpEtZBqRI5KlETr/I5FAjGGRMw1V0SeraxEhel9RCqL+EQuv4hEgcUtRM7c5ETGuj9FzWk8RKJskkQg/rVEfoB2RGs9bETcwzJEtzpSRCpvIkV+Lf5EU1BaRN7T2kSkK3tETVyhREmnoUSdd3pE7e6DRFQatUQGa9RE6E6PRBDqF0WN64BEWWuuRPkrjESShsBEmSFwRMfJnETUVEtElVBeRMuUl0Rsg0FESY+7ROL+QUTDN7FFaD1wRHtmH0WtkbdEg4WHROV6X0RouIpEbIFgRGHkikV4j4pECtWERCe1oERlo0lEMG/4RHyhNEUsj8xEM7ByRlF8QET5dSZEcwnTRN60IEW0WkpE206FRbOdXES+owFGefMBRZS510Tai6ZEEfYZRL91o0Se/KBEGxdTRBYzp0R2p7tE6jIfRR4UkETrAuVEbAQVRQqiJkVbtVlEIEoSRdZeSERX3wlFGFaQRLTPFka5IQdFvgKXRfD4sETIBoFEI0GBRf07W0RGV/BEJ8JMRJGdrURKaFFEJZk5RKPdq0TVgXdEKz9mRPnYPUR6UktEPa0ZRBGYvURXc5lESklGRLmox0TVCy5ERKJSRBSEe0QLAKxEd9BORIzHCUVzYj5Ey0gCRZXOpERTrFxEEJ2tRK/mkkTNk/tEsgJQRFwtKEQC85ZFevllRLBM2UQC4bpEuJfIRJCTiUSd58ZEcmZnRE96n0RgtzZEBy6iRVwV1UWWwIVFHtKuRj8XVET2sqxECO2qRBfRVEWFPmlEQvCcRI7/lkXn7CtEXX7ZRM87J0QsQFBEFZm8RQFmbUSWs7FE0ff2RDlhU0V+X6hEzp1CRCebJUXne41EEasiRsCppEQvO4FEFAyzRNO9kkZTh0NERLxZRBy6PkTwPSdF7bNQRCthSUQC+hFGu9xSRWFCp0QzU4NEMbRnRJ8O00XxdH5ETM11RHp98ESxb5VFJEOIRG/2M0TeglVEjwzUREcamUQYxqxEZKSARDEngkUZHY5EW0dKRHQwnkSvgj9EZcJLRN9bG0XroEVEDwaGRBEfYEThEi1EnsuSRiRHLEVM5I5E3V2FRNW13kdNOC1E9oybRiUdIEQ3vilFV7S3Ru11kEUz41dGkqYDRZLQnETNrFhEE6arRJl9ekTy7nhE5bb3RKodjEREa4JE6C14RJz8TUXU92FEbQ+8ROqSaUS7n5FEOyTGRKoLMUTbclFEpUTaRHitIESS7jtEHGVFRNkFc0RJdm9EwuBeRAWlSET14HNEi7lARPpEQ0TPKIhEIFWtRB4+QERLKyBEVBhpRHEmQkRmNVZETcqMRRAPoERyk6pEjg2jRFw8O0QrNVlEK+MYRVoFLUURmyxGzfzAREvAh0V+lQpFgsTFRI/iGkWALVhEHe0kRaeQNkRoomxEeeOFRKCwckRJLyxFY+Q3SYq7IUVakY5Ek2OeRA56DEY6zzpFay/BRRIteURkGWZF8EgTRckB0ER3JT9IJxilRAPGg0RlzI5FseaGRuAoiERNQHpFDSc+RAox40QZeclEx4MRRFctnUSzeIlEqF9jROpVrkX9jg9E2jF3RD0IjUX8xpNFztIORBzdpkQYB4pEEyIdRWlUhETmkThEaxSoRZ1yekX6EANFUlBsRH1+JEQAAQhF53clRK8jAEVBCEBElnGHRDYalkR85GtE4zdARZNtqURIt2JEzML+RL5emERXBoFEfA6BRI5djETmO0VEQuqQRKAsUUQJ4T9En+1wRXqGbkUmIpZEQaujRIg4akRoH9tF2feEROhqa0Qo1a9Ey9lzRLmjKkRIqjFEMKhnRFAp70Sg74BEFUeGRLb4NkSSSEJEoHEySOsHjEfEjBdEMCSaRp/AmUfJKuZFs468RDvQNkTqFopGOuW1ROGJgER/oUdEHyjkROgkgkWR57lEZFNhRHbog0QgjzlFYnRgROFvB0VtqxVEcXhfRNHBbkTlCCtEQbdFRJkUC0bYlINEagKFROezVkQHtUxEBF15RQyNjURVPOBEcsdJRLmIaEQAmDpFBFnbRPyinESb3jFGYHcoRXM0fURRCClHSjp2RJwM7kZwRdVFuSIlRE9hK0VN6iVEZXZ1RPF5N0S4W6BF7k6fRNimqkS2En5EP6J3REA6h0TnSWhEF15/RA7xZUaO9ClGNrTuRD+LhUWdnHdEZTqWRcOVmkTXGKFFAPNTRCYLhkS5TYhEwPRvRCclokSRG75EicbDRBMUKEQIcq1FymmRRFYBwUTpNY1EEWekRNYQJ0Se6Z9FE4ckRK2PEEWQH4lEOvZeREM3kERxXZ5EnbXARzt/4kStN7hGQjNYRa+U8URbiZxGV0pZRtUmq0WO9wNFKSqSRBw/UUV1kGREWk2ARqtd60WVgtNEgLXNRGznX0X+ijVEjLqeRDIbI0Ulm0VF6zRkRLc8TUSmvcBFD5RKRNi5y0QPXq1EuZlsRCDdekSXOYVEOP2ZRHb2TEQxYUlEiJl8RCJqxEUFBoRE3UeQREz6MERS2+5EG2q8RVsRkUQWVTFE3lk+RCr0OkSy8yVEudBJRCLMWUTHz4hEFDICRcide0Q2qUpEOgJZRPy9Z0QShOhEpVeSROI39URW/WlELUoRRHcHPUU5e3NEO4hvRKf6o0SyIZRFVoU1RSTFg0TKNllE9ko7RMxIRkTzka5E5ZYuRC6yxERrr5NEVIu0RgJwiUQyY3BEp0GDRMNTFEbWGP1EcFskRg709kVS3i5E+8ueROCPbkQEAHhEGrNAROMGFkWJPGhEx6MLR+5sUkQEgORG87kKRvWdA0Ul30dE0EScRAK8jkQAoEFEYq1qRK+VN0TdNzJE+12URj7yjUaOaBFGvP9SRDaIaEVeHJdE2F9DRIl3SUTcBXVEL7PHRMQAe0T4UUlEhK60Rfh5QUQntx1EamNHRAlObETS7EtGhcIBRghalURbgZpFhHlRRLdk4kb93GdEp6A/RvF8PkWMOJFFl2vAROKP60R7ScpEMmRiRDWahUSKhFBEnItlROHEMUTY0glGXGpORDk2iUS3wTlEEUjoRLJjOEU6Km9EY/o+RJAK1kTjCrdEfXU1RFVCe0T8kFdEgq1IRJkTcUTJZWtEvOw2RI1G4UQlKW5E5xVyREqtfESaU0JEh6NFRM3Il0TP4XFELEw6RIxHDEX3N59ESJofRDdirUSrYGVEA0JMROQd00Q2aSdEOfNHROhbM0TcrCBFBceBREinUUT8apJEi5NKRPNclUXtIzJEEpXHRHPtxURpQK9ETQA9REHNikRt41xEtepcRXFtcUajFrhE0AgpRTsZmkRundREqImiRXludkQt5sRFjjyHRMY/f0Spmb9EUMlbRE0/RET1gllE/fdfRD3RWERcJ4REHjUVRN7Iq0TLcj5EgO6GRJgIHkTweU9FCH8pRLMLiUQf9pBEebfERDr5B0UKFIFEAliORDOLlkTJpmJE3Gw7RHyKQEQ8KYxEXzdsRMuMfUTA8YRGhvyoRCzFHUSvLp5Fe0NoRT+hSUQBWkhE7OZPRCsy3kVL36pE8ko4RUxu50SQyr9EjwsORfQ4b0Q2y8REpUftRM5dAEXJukxEvBH+RHXjsUSNsTJF4JG3RKXZCUVTsIFEQd8lRPeAYkb++TpEQSqpRBScMESx4ZxEHYVXRIxkB0VX6X9EO2E5RZWylESXTilFB8y3ROVqOERiBCdE/htoSJnfEEU974JE8hJfRP/fV0SeQW9ES3afRJMzK0Uh2tNHux5NRDERDEWus3dEMAFARKZtgUQGcMhEF2eVRJpOQkQS/KdEURxtR51mS0SkAlJEel0jRuxPVUQqEUREWsyKRTEeAEVa4MJEQ0MvRP1ygET3jYtEd9sgRETDWUSk63hEih73RL7uT0RQYh1FhESmRO9yEESoM+lEBHQ8RJzvf0ZVHmlEIrZyRAVV20SjqplF16qKRFbLOUQ5okNEVtX2RXBQZEQ790hErBl7RLLuNEX63ixHDmS/RBLdW0QXsxBGu53KRKwGXUSpPT1E7tVFRNZLaUWy59tEEpGjRO31a0QOrmFGtu6ZREDpeER7vOBEjnVtRJgpJURUzIxEulMwRKjBJ0TXNVxEHSlxRJBDcUT7p01EiW1lRI7dZkQ/uUREpGH2RCQgnkRp/FREvydRRGC0N0Sc7jdE6UutRMlIg0RGvz5EbD4vRDonX0TBfzdECH/tRKkWWES5Zt5EAMXPRBFVOkQIblNEPfBbRMnXZUTE+ZFG/8Y4RBk7jESg0opEI9gFRg8gIUbqpLNEEErARMzFwESgkxNFfFxpRA1wUETjlDxEs2I2RMgpkkQLUDtFD9xRRAWGVUTQ+wVFY38tRZ66KEamgyBFd1kMRc2rH0TRbGFGauI8RIudakRCZjZEtmEkRRTkOkTq2dpEF2XJRDfXc0QiCUlExxcVRCeSN0R8/IFE80JjRBKfKkV/jVpEV/JhRJdIeETgQOhEDT0tRGmvZETd+2hENTp9RA2TS0TVj7JFJVguRTfN2UUmaRZGUqngRKylX0UUHyxFXUuRRLoGn0Q9MYdFeH9sRA8CLUR3hERGZxlWRJbzwUSzrIZEE7U7RXW3fUTCR4hEWNBERCgzW0QS5J1E57mSRGC2l0Rt4KhEWIlwRFdNR0SQthtFJJdBROAYCkVGb49Ed3/vRCJGuUT0d5VEjA1PRDpSpkSPcpdE5NGqRDLIZUTG7oBEaVE7RC4kS0XoQYlE3OE3RFZt5ERxBj1EmZ5URFqoh0RWludEwetSRDTnM0XfjtBEdX/mRP8ykUQduGJERXR4RApacEXNNlBFfeyVRKq0OUXAOj1FpmMhReOdE0UBXtVHJqFSRFL7HUTtpJREw4NeRM5sLUe1RdBGDGTvRMrpSUTQt2JEcmipRf+CBkbPlPNFumInREJPn0XcXBBFTCkQRZH+vUSaPZ9Eje5ZRIDJskU9KnJE/thPRDT4a0QC8YFE42h5RMIGpURpcMhEpKCaROvVMUR3Tk5EwaNJRNjDlERJp0FFknpkRGAbTUSXcIVExMthROEcn0Qy9ztEwNblRKwXz0RWF2xEmR6sRQGafEQ8shVEeRBURIwTWkQJUVFEnejYRy+HOkQCx0pHTdQsRGRn2kSp/bVEoq9+RF2RzESawJZE7UnPRo4BN0WZRW1E4MHrRZJ0NkQCjzhEQbd0RJruQERNgSlFkzxtRDmyuEQpjGZEc+myRMF8E0VgqI1Eg2lPRKpnN0R4Ve1FIOGCRWIpiEQFBJZEt6YbRC6jVETEEVJEaTpuRJfqI0SWvJREH8OTRNSMikQatotEMjdqRGJdSETIMylExq1FRCBxi0RRFENE/nFARD/OSUSkJ4hEV6qtRMeRrkSZj05EacrVRHTfWET7k8pEw0EyRUsmu0Q9Ra9EynU3RLLrpUW0o0VEp9AlRXlXXkTUE2BEWsQvRMMG8ESqSylEVig1RFfjuUQU9VFE/I9fRJAAPkQZE6BEjnlAREyAkERYUL9FZ/FUSFRqukShMB1I4yOQREA6WUUNWH5E58RfRyP/jUS+GEVGDvKLRTgXyUQr/G5FAAxDRGMyUkXOWnRF2QU3RKcDokTNw4ZEzBsnRKm5MkYDD3BG5eAsRCQ5w0WUgkVFa+6IRE8U5ERhUDREaIBARAPYLkW+hFZEEoc+ROsvA0WhPStEQO9nRLT6Z0RQ7yhEjOVURA2tDkeKWm9GouFFRENxZkTI80xEc34QRi3UmkVCsX1FIoHLRKAFTUSE/aBEFngLRfYvuUQVyJNE0cqpREZhn0RLxWdEbq01RM+UoUSlVHRE0K8gRWYIRkSVacdEV0ldREjsl0RS2SlF0SKFRLyvZUTrKgNHGuxgRifcDUaAlZpEVQFDRSaykEQ/TGBE2z8sRKOTjETqyB1E9cU/RAxDGERWdmFEF2dCRIYiuESeZkxE79ouRAGLAEbZk+pFNLcGRSzzJkQ4OQdFZjMpRH1OqkSVMENEzrvgROl0/0UVHK9FdugQRZKpiUT5rEJEOOdrRPOrLUbPQaZFdFNIRbgTAEWwwetEpVk8ROU9QUR/tNlGpNisRjO6BkbTY+NEOUyARf5nbURKJB9EXm45RCppEEb/RzRE2oSqRSXd1UTzgYJFeDRARElOoUT2to5E0w2DRD5hK0RgQCpEiCgqRKZ/gkRRVMlFNsJJRYzmlkTNQSdEX8M8RJ/spURF+GNEkkcxRKLzkEWJQY9F1OSmRA+mckTfqJBE + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - +AgGJHfAckDyWRfCBMFyQJxS9cVuwXJAAItrHeXCckB+oPodOsNyQFzhIBh4w3JAAo7q5DDEckC4LczNocRyQOIbDKjExHJAYktQtl/FckD5/PJEe9FyQJZGywYO0nJA+yxda0PSckAeTqeQpNJyQMDFmLlg1HJA12K5pI7fckD6BOiNzd9yQKyE6tu34HJARkMFnk7hckCO/Co6UeJyQIq3F22P4nJAMzeWWSbjckC79PFTyvByQMaL31lR8XJAhFTLYcrxckCkahFxd/JyQEL2jwvl8nJAiOQC0xLzckA/fzMjtfNyQJ5G4xSl9HJADdSA7V8Ac0BRBAU0+QBzQFw4wUiOAXNAn923sjgCc0CuqHsyzgJzQLRTmitlA3NAjBir8foDc0C0lM77JRJzQMJopmw3EnNA4lYJyrwSc0ACYAZ4cRNzQJQTh0AFFHNAMCXWlUsUc0DsGD6feR9zQM9xyNo4IXNApJiY4mghc0DCvMGYySJzQD9tIvAMI3NAjo7Bdjokc0D0jlb+ziRzQNZ20iBXMXNAZjAbUg4zc0AH74vkoDNzQJe5VnDWM3NASDZItTE0c0BnNEVo2zRzQO1Uvlq4P3NAXjBME0JAc0AShsEv4UBzQFBd0AV5QXNARIqP6yZCc0Bm4LQcu0JzQGCpnX56RHNAUVrfp5xRc0AoW1dLEFJzQES2LtC3UnNAEmZWnKRTc0Di/w9jhVRzQGBkl5v6X3NA6zmBaopgc0AxIvw+hmFzQBnIZzofYnNATDJRHqZic0BM5Ng4OmNzQEgwb1TNY3NAtsgsQOVwc0CYwqo73nFzQMZEIG9QcnNAj93FwLlyc0CELsdTunRzQEgq2CBMdXNA8IeQxxyAc0DO3vnbeIBzQHAk7aCjgHNALWkPwA2Bc0CmGCNKXYJzQCab5D+IkHNAGxXd5bmRc0AEY4E+TZJzQKalBoAAk3NAjn856cyTc0CaEzekY5RzQA/g2hT4lHNAUr2NKrigc0C9J9Por6FzQNqhOppaonNAWFASf4+ic0AEzU4UnKJzQOyPG10lo3NAIKKXsgOlc0CA55Tux7BzQNBSIUQ3sXNABuJzvH6xc0CZ9ccXW7JzQNQJuSAXs3NAEIjP8bazc0ATb09fDbRzQF/EEoZEv3NAO+GvQ/jAc0D0W7E9kcFzQFz/kGo8wnNAkIOaSdDCc0A8lQ3tKMNzQAKMZEZjw3NA9SbAHdnRc0ANQUhZu9JzQC9h+pbi1HNAvhR6AaLgc0CKRhNUOOFzQHrHm+xl4XNAO4OVIOThc0AIUZCFeeJzQLzE8WMR43NAfgU1+KPjc0DGkG9ta/JzQLJa2co39HNAFAs/Ek4AdECXhIFBwwB0QPS+ypvmAHRAwiz3EnkBdEAKzrNOpwF0QGIvBYa5AnRAhk0RvxAFdEB4SQW3PBB0QP5rNB2pEHRAvbrXPZoRdEA+Bx67TBN0QGhmFTD5H3RAcBgP1UkgdEBgXMsluSF0QEZuBWagInRAdueo4FgjdEDtSGBSuiR0QBF5zZFSMHRAxNZT6uYydEDJczfzUkB0QJRsDt5eQnRATZYt4DtDdED9CJ0NekN0QKWztPF6T3RAPWTUfrtQdEDE2Y/sz1F0QPHkNTPUUnRACLuMdYxTdEDxkf3H+FR0QPbcci6NVXRAUAsqvsFXdEBjoxSZIV10QNwRwUdLYHRAo4MaMblgdEDrAxZ5CWJ0QNZg6dZ6YnRAJkyDcbljdEAUaSdUxWd0QEy2Ud7VZ3RA8lbhnh5tdEAqVIxDL210QDmCjr4hcHRAHl9BdkFxdEBITGrUeHJ0QM5YMH7ncnRAFl13CRJzdECfp0B6OXN0QA9gZRygdHRAGxbUNzl1dEDTWwzt+YB0QPZF7BtOgXRAeKn+Re2BdEAdHmxpR4J0QDBpbvrPgnRA/ozaVyeDdEAn8itqFpB0QHqbXrXvn3RAfGTzq6OgdEB3o7rt0qB0QPqPV2s5oXRAapGsRLmidEBaLHJcEKN0QNF3f4QIsHRAXKYptMawdEAc1lLedLJ0QOwcOXH6snRA8Gg2NXG4dEC0JxDDzL10QIK3lm3kwHRA9ASkPHbBdEAsNkAq6sF0QLGAa6G4wnRA7EPRDVHDdEDAWmqsI8R0QHMgjU65xHRAb2GUz/vOdECs6HLDPNN0QOVgE33i03RA7IvGGnjUdEAA5W7gztR0QC7sfEG44HRAHmrWi7jhdEAyZgD8W+N0QLtKqwqO43RAi7XVP03ldEC+LxfpMfB0QG4YlLJe8HRAIZ1zocHwdEA9c+KpjPN0QON71JJ29HRAxkMxi6T/dEBoTjtSUgB1QPjOuvmiAHVAeXr1iL8AdUBi8Is9zwB1QHBowApeAnVA3v4o9aUCdUDYzU8FOgN1QFqIKemZA3VAurLnZ5oQdUAcxTlyaBJ1QOQN798jFHVAs2WOFuUfdUCc2jMunSJ1QEwPVAKAI3VAmNX7KMQxdUCalVWlqTJ1QLAbKCjMNXVA/E2XGSZAdUAmKvzEWEB1QDYhOyW3QXVA+pZSVn1CdUCMKN7G3kJ1QBT7ddLXR3VAhO5cFNtPdUDU7Yko+E91QHR33xUYUHVAJ99AI+9QdUCx6yOdglF1QKBVqWacUnVAQnvYq+5SdUDmhto6TlR1QL/YgY11VXVAbLGhCw5gdUAGwbVpZ2B1QMaJdL84YXVADQi+qmdjdUD6uEM9/GN1QAaZHth4cnVA3nKtmoVzdUBc7j+vjHR1QF0GNFx4gXVAsPBEXK2BdUB3ZimEpoN1QAzdAPLig3VA+OrLM5uEdUAs1nGGjZB1QJKSGVSZoHVAINNC+iWhdUAao6FYuaF1QFOylFWOo3VAtIUul2exdUDCBfNm6LJ1QPrEmRvFtHVAyhxLOaO/dUBIESC+tMB1QHLRXSnVwHVAWuZP9WPBdUD07oqa+MF1QJ0Zhg6m0HVA4Jt7/I/SdUAkuJvDwNJ1QHrg6G/M03VAOFgypePfdUCOv+5TEOF1QOpGZ9YJ4nVAtcXJdKbjdUAS9l0kOeV1QIOkrycq73VA8suBOZL/dUBe4G1t5gB2QCLrRZ9IAnZAFERJstEDdkCigus8bA12QMZPDCbQEHZAyrHEfAwRdkDak8ImThR2QDx0gwAMFnZA6I0/rX4ZdkDK4LiLpyB2QItq4ZqIInZAU8v9JJAkdkBmcwkySyt2QHQjL68fMXZAvDUZh1IzdkDS/IUxnTR2QBTyJ6hOPnZAdLi140pAdkCw8ZMcXkB2QD7ADNuKQHZAyvzzMeNAdkDMvxS8HUF2QNLZyC/JQnZAvGcHtVFDdkDwIop9eUN2QJasHrikQ3ZAHvPQ+XlEdkACWpj41Eh2QKmVXmf/TnZAcsEJSnxQdkD0TZbSyFB2QGlKlCkTUXZABXy1vzhTdkB+VFoyzVR2QHSoTiuOYHZAZkUrdw9hdkA7pcDc22R2QFgrpyFycHZAYXHVbdF/dkD0qdD8YoF2QK5+psuKgnZAbMvxkZCDdkDKaBHSTIt2QD6ZQbTdj3ZAx/adiymTdkBQhn0U7J12QLOC9UnAn3ZADzRRXw+hdkBWF4fARKN2QGCZabyMp3ZAhDj/AKKodkCaTanjtrB2QCArJnvBsnZAXOi02nuzdkDSDt5rDbR2QIL8p3p5wHZAlJG01E/BdkDOJzcC3MJ2QNRI4K7OznZA+Ek5Zr7QdkAMuUWVeuB2QBIKtNvz4XZACJnsV2HzdkCxAKOckPN2QLeneJgBEndAoeSZf6MSd0DJqrQrZBN3QEBxgMoNIndAlG5fNFMjd0BOVTOeWTB3QGS/DluiM3dAAe2iVw01d0DZjID5eD13QIj/qSSdQXdAcNMQp7NCd0A5ULwqG0V3QJmpI+MFTndAx1dWWUxRd0ACxYMxklF3QHeJ7evtUndAz3oldLJTd0C9kBW6KVV3QHC09w05W3dAtv6a2Y9hd0A2ZmZ6OmJ3QKgIbtEnb3dAxiHlKT1xd0DC1nkSaXN3QNoDrb0Zd3dA8Y0TnCZ7d0DuGHjPI393QOwU9OV3gndArAuv8AeSd0DOB3+uTZR3QNQ1qCgAoXdAP+d5NaWjd0AQH516+6N3QGQf1JOatHdAOqNhkDrBd0BFEAMGLsN3QHjBP5dL03dAIlOsOozWd0Bqj3b46OB3QPLprvKO43dAzk+RqlPyd0A+jbUcbyJ4QEUxd3GJI3hAjEbPvtEjeEBGpUmJpSR4QIjZKobeMHhAzA0ghgtCeEAiKlE5E0R4QCg28oB6RXhAipA59tRIeEDEJ8KDylF4QOQOgTyIVXhAYh4IovhgeEDGT6x/t2F4QECPQyCVYnhAvve62rlieEDwp8EI82d4QMaY9K1GdHhAZ/Pox2d0eEDmegr0i3R4QIxtgUnZdHhAerAvWMd4eEAQ/5wI+Ht4QNZ9iy8hfnhACtlgGqaBeEDrJsvF0IF4QJActzd5g3hAFrLwgOuDeEBysVrg/IN4QLaBNRKahHhA1P9wzUOOeECQKpf5Uo94QIoTSW6XkXhAk0nNZ6eUeEDwNhqjuaR4QAT112OEq3hABuSOsCWueEBZRVlEk694QGiM1zVVsHhAtUuOcH2zeEDUhAhN07N4QHlmcS/WuHhAsXIKcyDAeEAqc3hVzcB4QCbRvEM9wXhAQllcFfbBeECs6R7d1s54QCLXBsK51HhAxmA3O8PkeEBdNeVJAvR4QBC/zYWM9XhA4FMhkVsDeUD/YHmhmgV5QN4H6qKGC3lAPr1coW4TeUCB42H/fRN5QDWGBLS/InlAmb1QPWcjeUBGQStCuiN5QNK8U2myKHlA6R9rlQwueUCG4Swj1DJ5QOiSyflSM3lAgCQ+J7czeUCA3oZEMzR5QHtKBTAtOHlAMqDbz187eUAQktW8uzt5QPTM0ICOQnlAphBPGKNDeUBM24D3/kN5QLut4sORU3lAMSuaIstUeUCvd9Ib7nB5QMzxj1FFc3lA4ZSfN9dzeUBC9uWJOnR5QNxRtTzfe3lAPF/2ftyAeUCBtFALJI15QFjfVGV5knlACPpichuheUCJiCBjPqt5QNz1o4zAsnlAjDXQykazeUBhbb81y8J5QAAeDONB1HlAkHIgMcvVeUCYZmQmUOR5QFqf0as78HlAEx+aXJIEekDMuWD6+wV6QC6rASkoI3pAsHcyWy4rekAO8jVUIDN6QHvr4J0MNXpAqKxcliY7ekBjZjntdjx6QAJbLAoSQ3pAWqRayS5DekD02kMPGkV6QFCA8c9ASXpA1jD9SKdOekBwHvZQKlV6QHCNzDojXHpAdk+obylkekBiaK/IOGV6QHRwXWGMcnpAUllee8JzekC7elpGHnl6QBy8+v6CeXpA8o/wwN5+ekBs2MKayIB6QL1+EdQNs3pAMvQScgy2ekAsa/thLcN6QH3+OJgcxnpAcpSrJ03HekC/R4UFPOR6QEJ4KsB35HpAYok1cTTuekBUE0dhfAR7QKp39MHGC3tA7EoQVCgOe0CuwiFDTRV7QJvIgd5ZJXtAltmAch4ue0AUSKyCxTN7QJ5aH+KPPntAGNk61OlDe0AGKXpLQ0l7QNBbKB+eTntAMvF4YIZSe0CqCHQ27lN7QEsRgs8hlXtASG0EqzSle0CetpVNAeR7QMALlZiW8XtAp82cV4z1e0BHZoySkwF8QHZuPC7aAXxAddkdzvUBfECVCMMPaQR8QHMH60qZBXxA9iq6nH8MfECuunYs0BF8QLyE+w4xO3xAd2zyqMxBfEDh35tn+EF8QMjgP28vQ3xAiSmCVmFPfEDZ0T7H2lF8QPAocaFKU3xAmPcYEn5VfEBkRgSfimV8QG4psGXRb3xAcpZBeQJzfEA6Kfin6IN8QLTdwY/ok3xAo4K5lvukfEAoQ2LAKKV8QAYWNTvAsnxA0F+Ullq0fECgabR0e7R8QNTrsqtnxHxAAGdES8zTfEAKr2Xqb9R8QGZ66M/V23xAxj3H1O/bfECLVnUHWOJ8QJZ09boX8nxAzFkPWFTyfEBsiWeccfJ8QHrIcH5D9HxAxBuvmwACfUAqjRz/SgJ9QJxW2FAABH1Anr7HFwoMfUAo5ArgQxJ9QAyh2VoMFH1Axu/MFGwkfUCuRPPJcix9QEad3cueMX1Af8/1TPUxfUA0H7OpdzR9QG8ncUNIOH1AXBiUc4I8fUCHdYCbiT19QASwgXnXQn1AXI5wiiRIfUCDitDDhE19QJQTw8chc31Acn2QkHp4fUAZcFo11X19QIoJ7y4fg31ADAmaJLiNfUCa4YsWvZB9QFgcyip7lH1AIY5b6BakfUBssB8kpqR9QNEGnl0mt31AphR80inDfUCOA8cuK8R9QFiEnEzmxH1A4IdSVavPfUAnGfWI1+J9QGgpHM+R9X1ATkPbDUf5fUDaCAyui/59QK4/i3wZ/31ADndYNjQAfkDeEyQIhwJ+QBY1ZkCjHX5AI3V/GzgffkA4G7Fs/yJ+QJhkN3U+L35AWC0N5v8zfkCwILkzQj9+QJqwQIUfQn5AMGu3jKNEfkD2S0B+2kt+QCMaH+6/UH5A0X6DOhFUfkCK8wrCU1V+QLVr4nmLVX5AtuRpFcBgfkB9MA7gZGV+QDQT31h8b35AdoZlRbhwfkC2e1NmuHN+QGMzYl8edn5ApmW56rd7fkBwrPssoIN+QKVs+5Fph35AvB6QrKaLfkCkZrZ7OpB+QHRC3TMGkn5AlrTltpOTfkAmKtGMmZR+QAcA/rTzmX5AtBulVl6bfkA0CWEnDZ5+QLpsVqhKn35ACdSi2BWifkB8CYPoqqR+QFQKLYUBqn5AbD0AeGOsfkD8zMZA9q5+QJe/iDHps35AUnd5cU+0fkBO8DHYsbd+QHg1JJK4uH5A6nCiOKm5fkBCUZkLLr5+QJQQtdb9vn5AOQmQ3wzCfkC4SX3uzsR+QAWDNLJcx35AAO+m5LbLfkAMaX0c2dJ+QA4vVnES1n5AYsUm5M3bfkDYU5JJyt9+QAqncIAD5H5ALPIgKwbofkAGO1HoFOp+QNLFsjgJ7H5AXm9HU37sfkC7i39EEPB+QOgpTigS9H5A1FZDTTMCf0AJzo7W5QN/QO4wIspJCX9AixxhXUITf0Clgrt9XiB/QPm+WrjoI39Ab13LM1Q0f0Bcwa5jEzZ/QMYSXW6kOX9Aap15SmVEf0C9Yi1VwEl/QNqcxsMVT39ASkCFk7dcf0B65MWlvmR/QF0V2e3EbH9A9hHt9uFvf0BEanbGt3F/QF2bLbvldH9AFASa42x4f0Bv4D+waX1/QOyqihGxgX9AUoAEY8+Ef0BOR1l9YpF/QGkX7NqWk39AUSUOHA2gf0DywCUoX6F/QLzefr25q39A3cSgC6Suf0BR+8iK865/QBMlZL5WsX9AOFc0GWy4f0A8/Jjq4Lh/QFCoCgXGvH9A2atcjsK9f0B4OqP9/r5/QJXRnttKyX9A6GHgR6bbf0DY26CpNPJ/QIFOogj5+H9A+g9acScFgEDKygLVzg+AQBCaou19EIBA6I/j8g4SgEDR3wAPKROAQLCSqvtnGIBANMJU3SQbgEAxG9ohdCKAQHj2xrDrKYBA0FDBOZksgEBAP+Sj6C+AQD8LnFiJMoBAp1zb6uo3gECS/hY3bTyAQLgsoaqoQoBALnGhOfJGgEAwzMbIjkiAQBvRs2z2SIBAj3/QcStKgEByS9+TwUuAQOhq5ArnUIBAotVC9hNRgEDW9jRsJlGAQG5AzPgFVIBAxCHbFilVgEBunD4zBlaAQMZZGZAFWIBAVs7QYCZYgEDUTobv51iAQIWo/7AOWYBAEnpU7SBZgEA+gTgINVqAQL5WbixHWoBAE0mw5wthgEAPCWmdT2OAQIKxycQdaIBAbj3R3B9qgEDABxPCKG+AQLWSvzAWcoBADLQiksF0gED/T3nMgXmAQKDdVDkyfIBA5GLkS9p+gEBapMCfJX+AQAAWsfM0gYBAOuWcDfuBgEDEejz4TIOAQBjVILoVhoBA1riCKwCPgEDfuV2yHo+AQJQOJGhIloBAVSiYUgeXgEDcLPAlH5eAQFH+XcPFmYBASQQ+wEqagEC4neM4A5yAQC7AsIHInIBAadazJsqdgEBz9AEr7p2AQCJGIHwEnoBA6PirDlKegEAjiJJjG5+AQDpCVu4FoIBAmFYJGYuhgEDUGoNWB6KAQAtEbyFqqIBAbk6a64apgEAim7uwhayAQCon4HjcrYBA2vzVYROvgECIL5f4qK+AQIBRRSjtr4BAfKqy6HKwgEBqcvHfHLGAQBCNXD3TsYBAFoHkq+WxgEAQRkYXGLeAQIBWyIHbuYBAtFiGoM28gEBxme00iL2AQM9RKc81voBAxk5TBau/gEC77HdtUsGAQLSzeZedwoBACiHciTPGgEC2OMKp7saAQEgUu0alx4BA2ME92LfHgEC8wqUCYsiAQGDf7jFTyYBAkHtqxjLKgEAJ1r13kcqAQIa4omrgzIBANGAEkgnPgED7sqe/I9GAQBv2MIhM0YBAo8PZ69TRgEBS8UdwGNmAQFHt3UlK2YBAyCNtIgXggEAMpJWUROGAQNzZ6Zg14oBAnbbGVuPkgEB86hyJOeaAQKjDgVX26IBAEkwcvUzvgEBq3K4xPvOAQH+w3rNH94BAeyu7Dmb6gEDXgVGnh/yAQKmx61A//4BAjI0h8kAHgUBotD8a9w6BQIfurEY+D4FALlC/Gz0XgUCq9sCoPBmBQCWnkXCpGoFAGF9amDQfgUBiKiEZzCGBQBKm8Sv5IYFA9FQdOTUngUDpLBnItieBQE/Qf1CuKYFAPGmmcVwtgUAgYw+wMC+BQAixSiFEL4FAZKSanIQvgUAMv22HtC+BQBpvxu25MYFAfEhQvD42gUCSsabXtjaBQHxMA2g3N4FAyuMJFSk/gUDqFJLeLEeBQGcsymDSTIFAhmxlOE5WgUBj85jLkFqBQMir/5CSXoFAUCp0L7dqgUC2qNkxgm2BQCUoUPINb4FAGj6mTYJ4gUDSESLVVn6BQOwgt40phIFABLE/ye6JgUDVdvhWfoqBQA0d6HjvjYFAiBeYTVWPgUDSU5Hjfo+BQBZZfqfwkYFANL8pMoWSgUDm84zsNpSBQL6Ooo1Ul4FAPLUTI3SYgUBs3R66U5+BQCChW3LmoYFAcrbUDd+igUAvc8V2baiBQKp+tiflqoFA933SioetgUAxvj1BSq+BQII/sCVbtIFAlMQbJ5+0gUBLa82nkrWBQAycrOD3tYFAcl/3hUu3gUDhwpFklL6BQBVBI1WMz4FAwri0gJ3SgUCGhwPBfdOBQDESm86G14FAtD4x48bYgUCGmzXdhtuBQBCsVcNZ34FAcgpgfsfmgUDeCZ/4we+BQF9xSV6x8oFALvq94AD2gUCUHcjKUPiBQEW87QkG+oFAzUXQi1H6gUBQgahlBv6BQBgipsBAAIJATkbc4gEJgkBUJn+PvQ2CQIozLsaxD4JA9ltdocARgkAkm/6rtBKCQDTZaLlCF4JAhYU2ddgYgkAyH85LuxqCQL+BF3NxHIJAFKBLxNgggkAQLxgXKCKCQPQjhZegIoJATBz3pNUigkB9sNthOiWCQL6jVFr8JYJAaKd5hdIogkCs8lsIQSmCQIjhH0srLIJA51qIG3MwgkAeHijIoTCCQCydUdx4OIJAEuCAH9A8gkBTYLqcMD2CQEgueGlqQIJAVJw7hbtCgkBQ29Ph6kKCQBidlx93RYJACrsEn+5GgkBOzNAJBk6CQDYmLRPiToJADnxqmG9QgkAyQTD2PFWCQLh/DkyMVoJA6OwSxA5agkAC9Bmg3lqCQAsycFSoXoJAtFCqUq5fgkByWvMUXGKCQEoekCUHZYJAOhCdSqpngkAKeVSiamiCQG94S3o8aYJAH6lTTgNqgkBYcUX742qCQCIHAp4NcoJAlCVmvahzgkDa8IlxPnWCQPgVFkb9dYJA5vRvVBR2gkAHoWOYX3iCQMBI+P3deoJAiHWOvKl8gkDjAzGs4X2CQA77TZ7+fYJArhotQ+WBgkBhv+g4A4KCQJuEoYNTgoJADPdguIWCgkDMRAo1CYaCQEe0nSxYhoJArAqinXOIgkCCpQdLQ4mCQN0o+G9YioJAArVcwW2MgkCw/PwfQ5GCQHEFG1+YlYJA0DqrdNSWgkBopzdmPJmCQFlFm3xVmYJA4p+gphqegkCPGtEGD6GCQNyl9406oYJA9j+Pzd2hgkB6JBVnDKKCQEH0+OTWo4JACbLgGeGlgkA1Z/9nDqmCQPIyApgyqYJA7iQOZXergkCTUCcDUq2CQFb5Pv7arYJAmEUXyVCwgkCECOFCB7GCQOaQUpsQuIJAxmj+Zlm4gkBupFJfSMCCQKjQK3rnwYJAcEjepO/FgkCqQAsmcciCQFimjeoxyYJAfN8WyHzagkDQxrok1duCQACjgCwY4oJAG+WwGNTigkD0UEv/1OaCQAbTOFj67YJAOptxPqvugkDUQykqjO+CQJpbN9X+8YJA6FLFp6z5gkCmctyWz/qCQP6ogxHv/IJAmHiBIxQCg0CQBTn4KwKDQHATIcoUA4NA6KVX0bQKg0CQDevnGwuDQEY5Xm2OEINAp6tshHkRg0A4ASzNeRmDQBRNKam2GoNA4e54OGIdg0CymPQdnB6DQJyYekERIINAMOv3NGUgg0DZy2sQcyGDQOtjMcC8IoNAdl8ejCojg0CMSQY3SSmDQHaCT2ZyKYNAdItTiDMqg0BQkNb7vyuDQBxZgk9cMINAUgJOgmgxg0DykQ3bezGDQEw5H9J4MoNAI+SrruY1g0DWNLx2GzmDQCDzXfB1OYNAPYoAAw0+g0Av23qx00KDQJAVJrbHT4NAcx/yGt9Sg0CV9UeTgFeDQLLM3o1jXINAYshfM2Reg0CQmpT1ZWKDQHr80pe7YoNALJRMX8hig0D0QROba2aDQPgk1ColcoNA3I1xg5p2g0DIAR5peoCDQCisvrbjgYNA4PwxpQuDg0Dyf8BabYSDQBfZ2RkIk4NAbC+RHRKig0AJc/lBYqKDQNaFJfFVpoNALon0qyvCg0B28/7D4s+DQPRvQBQc14NA1LXcB+3hg0CGIwKQOuqDQDaoYp/f8oNANv8Z65T4g0DSMHU3pv+DQH4sIENSAoRAtbH3N/8EhEBOjymqdxKEQH9UQqnuIIRAgt7XbbcphEAuynolvS2EQAzdfkHtLYRARi7XNMkuhED0YiGjCkOEQIbHS/zOVYRAyB+2h6xWhECk8l7NlVeEQOV9M9WiX4RAsMHnQEhihECOLtbIOmiEQNw8h2r/aIRApRZtWOVqhECs424m6G6EQGmZlTf+cIRAvGEjZmRxhEBPgM1TWnKEQOJkADjrcoRArS+NChlzhECZULFG7naEQMMDPHHId4RA2j53Yfl4hECWwx2ed3qEQPYVm6TyeoRASX83rSR9hEDQDDoo0n+EQDAIXoE/goRAOC3/DP6HhEDLwZnKqoqEQNjAehpVjYRA4Dg/rlaVhEDBjomsx5aEQFLmjyP9l4RAJZOZ0KyahEBovQxSKpuEQHgkWlVuooRASDQuJa2shEAU47Fc2qyEQFJ8TDKnroRAJYA8NH+whEB8ba3tadmEQJY5qL9t4IRAi3XmLGrhhEAdhnZvo+KEQBqvX5xA44RADBehsLnkhECD5Y3QYumEQGGje9Q18YRATr37zGLxhEBAQiv3pvKEQIyxlBU4+YRAcrTvqlr5hEAcHULjPvyEQPLjk7Le/YRApgWj23X/hEDz95emKQGFQP0F4OOvAoVAmFHUqHUXhUBazz+PQB6FQG8nbD5EIoVA80iE1tQlhUCfbyRNrkKFQKxGUg8SSIVA8PetomFThUBiEIpkZ1uFQDDaU0mgYYVARNMn16BphUBtlkzamHGFQHz6dUa1c4VAlJ+E8Zd5hUBe3hlWeZ+FQBRV5oexsoVAhApOcTXDhUBSKx5wyeyFQGPI3iaU7YVAu0rpKRfvhUBQk/tezh6GQPXqIX9xLoZAXGwecyVFhkDfamRtlEaGQEjyUYhZSYZASC641nhahkDiBtGLioaGQAqqKB+OioZARq2t1ZGOhkAIxLpVmKuGQLA1zXYpuYZA7AWQCSPBhkBqPM8ka8OGQEIiWK3UyIZA460hUiTohkBkhVkez+qGQEz10uRu64ZA/QeU9DL/hkBsSD1yNgOHQMCkNAo6B4dATOVJTdUKh0CK59QDhA2HQNZJvvzZEodAqHF6cpAph0D86ES3kDGHQG6JVy5aOIdAel5DT4g5h0DWnjYstT2HQOSLV5ZbQYdAxw4bb4pBh0DUqO0WV1GHQFDI0pI3Z4dAt/51/Tprh0CJ27LcP2+HQAI6wi89c4dAkG01PoOKh0DkVre2soqHQMOqJsmMk4dAPBBqEMexh0DgIlx3x7mHQMKhWPBCu4dAonjaIcDBh0BKGvo9xMmHQIxD4ctQO4hAhJXyLVU/iEC+cHAtWEOIQOcXvG5qaohAH8/CK1qyiEDqFsJdXLaIQOJgwz6M34hAQ/QW77b0iECu6+RUkPaIQA== + KBZXds7jZUBeG3g88qJrQDeULWxqYnBAChqGaTwidECIlDsLkNJ2QAp4Yr2UM3tAEBstWYFjf0DMZ1duNqKAQE+5PLwsuoJAk5P9faKqg0AW5eLLmMKFQNdW9iQb84dAFhTR9URLiUAAV330LSuLQEMadpumc4xAkVv+jG/jjUAHkR8nFMaQQA== - + - spswRAbkH0SoVApGUryLRPe92kSuFUVEPG4tRC4eNESVHodEc+qpREainER3qiVFre7mRpKdWkT8rUJEroFLRPku9kRkPchEQHedRHVCZUUSPJ9Fwi4bRcU5q0QmRk1E/JEQRYiqPkSeLEJEoPoiRGK7gkTyN5BEhygoRGv6TUTlk3BE1oW4RJfTAkWAF51Fq/AORx2uhUTcbCJEECJfRj0gXkSGwphFi/O3RMHSOEWbYoRG+Z4UREn58URMX59En1ZjRGX0xkVC+EtENsUfRC62hERoaIdEIYlJRMj+KETqOhdFXIxLREsUK0Qo/XdFkLNKRGhUN0XdPRNGMycuRZT2fURO2j9EHfNPRSKWr0TL+NFEaHV3RHgOXkQzpMtEyGkdRFZE2kSSgUtEg2GKREb1TkRWvdNEiVN4ROkeiUSrfN5EAb9JRLPQE0fLuuFE+z/KRGrBkEU3IBhFOrM8RKI4NEcvklVEY+k/RL2CtETv4UVGxWo2Rs4fQURKf9FFlo1QRIOjUESe1ptEmQ33RGxOaUS0GYREKdpIRGeKUUSGz31E8iokRUs5vURENk5Eu9vYRLfbX0R2k15Eh5jlRRfdt0REyEpEfzXhRHH9UUQS/odFImuWRIzYq0VXs0xE9t4/RC3UqUQxZq9Edz8xRKQPZkToZexEfPIrRPIqWUR0x1xEFN5pRnFHp0RsbMZEOp95RE4YVkQlwTVEEvenRCUrL0XvoWhEl62LRKFMw0THRj1Em5aLRFHKR0RuiGREM1aERBxIREQrjYxEDvuqRCZ42ERu4E9E15eFRMz2l0TqY0hERw9sRL1VyERaYKpE2EAuRJoq/EfippdEF3paRXdOXkXsvGpHEkVYRK0EEEbunRRG+4ZPRQmnBEW0urlFhfc3R0CIk0QSJDxElZw7RCOMFkXApmZEzE5vRDJeAEURD+FFlEvNRGDpY0TmQHhEnhq1RKEUhkWBxtlE0pmxRBMKiETQ8qdEE8WfRLh5MkU1s89E0WCDRFaeskRZ2CtECrS5RBM1N0QK0M1EClS2RMDQV0ThJdpEQmJTRIyHX0RDAFdEXZbeRHhg80QasYBEHvg1RGhDwUSds2BEtVcBRWk3PkRD221EeyZ0RCIYOETrdpFE2FrZRLmVmEWu6ipEUuGDRHrMGkV+oztE4rQ8RM1Ma0QjwWxFYI9iRHpWkUSy1IVE+S1eRJlahkQnaiFFhfmCRIBULEbYB0dEii1RREypk0SsvARFCSOFRYqsfkSLd3tEZn3IRceX1ERwbSpFVe12RPqtQUTGmE1EbMpkRBQXxkTp4jBEkK0YRBmCQEQF8gtFeWfkRGEUMkXbH5hETpOZRHRNv0Qu89VE6MLlRInJyEWWrd5EdMmkRcSCTEUO6DtEi4itRJcpikQ6ymNEP/1oRHk1uURUkExEZPOURB9wd0QEP0RESVA7RKDGSUQv1iREQuueRPa9EEWLSoxE+ORNRAJMRUQ+PsNEzwe+RKZr1USVSgVFH3SmRNZGbURHU0tEej41RKOEK0TVkF9FBpSiRDTpVURD7ixEvysoRJlQpESNNY9EvmCZREd0KEQY92dFSvLeRee4jEXChrRGpY+IRKjUgERADnxEpv+JRNjv20SQpfhEOd96RHbNgEWbpmJFrT18RE7GDkVqZ/JETrl0RUPGLkQplzVE1urKREw9r0SXSlJFuu0+RMTlCUYBc7BEz4glRNfx00S+lyBENWKbRm3TO0Sotx9E4lzpROyEf0SmVrlExxkvRI3t1UXA/IpFbl96RNSMWUV1dvhERTqcRDAAVkTvIedEy1yYRKkFmUX/G5REimNvRM8sKkSrp0dFC918RMM0JkTHcMJEc2EPRNd+FUVxYnNGcSRdRJcdS0Q9vjJFh1mjRPD3MESQDbJE1zXmRwVfkUTl34JGm9dzRKh4wEZmYn5ETcxkRdZdN0aCtl9EqXICRTOA1kTBA7JEQX6XRI9ATUReXDhFoldrRNsOK0TJfY9EGhMsRLjVVUSr4qpEVvyXRBJy0UTgQ31E2/82RNyz8USRmZpErcEdRDq7ZUTMmXFEnFVSRJLPi0TTUUxEAw6FRA/NLkWng8VEx0xmRLdGnUQU83VEhTNTRPzLJ0VOHDNGFvfHRP4nZkWiDR9FtQjZRIltLEUdFK1Ee1hoRFVmYkS2PKxEIRK4Rd3hO0ku1FdEAIv2RWJM/kRMKMdFsW5eRcSDc0Rk3f1EWHI+REpCaES1sTRIwJlZRMQuU0Rm54dFIDeXRr+9o0Td+QdFqH51RW2iXkRQ8zpEfjKDRM+6YkT44ldElUVDRJI6d0SpIjBE2LdvRKngX0QRkNxEVIUrRDC6SkWDGqRFvtFCRMHzdkTlqjlFR99ERNRxYUQiBkhEtcRGRINBSkQDNJJFb344RTSboETb5JREo//wRD82qkTHK4BE98hvRB/jUESest1EKCpCRGSqd0Q/wZ1EWfNNRce5RERnvchEdWu9RG1l40SW41RE4Fx1ROCqZ0S5dkRErGY7RHKxFUY0MWtF1qo7RU1Vh0QagdlFk8dvRAJGuEQYGVFE/Z8tRN9kgkTFPyJIMEyFRy9zl0YlwpFHaoPaRdusIUTCXVJEl5KQRHRYjUY5irBE2yqERDWQh0Rxp0tFjR+2ROK2a0Q4FphE3VffRLXPeURYhThF/oseRbJLPkR4F4hE63/CRTl9rkT6alBET+yQRA+nFUXN0kJEEznURJlbbUXvofhEgqO6RMs3E0aYBEpFWWxyRGz9rUTq6lBHmL4ZR048M0YpWFNF322ORAA2XESObhtFGRo8RK3IuUTEiYpFI9RzRqHanUSCbQxGXOXXRCm0XETq5n1FBkV7RJvzSUXx7zlE9SCORUeUOkRtbV1EU+WCRA3LcUQmh3tEBf8XRdzDVUR+xWhEpHdMRERzlETw9yJEUNdWRGJmD0UYdJ1EoJsuRFMDk0SXSYBFe7z7RMU0pUSfLHpEzPFqREjtw0dy78dErw21Rpw1OUU1lz9EupIIRSpGjUbQ3ERGoGjLRTfd2kRAd+JENLtSR1EPt0Zp1UdEJYlnRC9ZlEUnrINF+9GXRNUoPUW7Yq9EgmtfRFHKekTT9ttFiPBxRWXy50TcUcxElwERRDpba0SLCElENR7lRE6Jx0T881BEHy5KRFn98EQZi01FQQ+LROo2k0QhK99E0J5jRH6yQ0SNrEJEqgekRMa2S0SK3NFEPiHbRC/g1ETj/KxEdTHORMdna0Sw0jdEDsSQREwiM0RM/ItEjekiREfZT0VoiaBE/wWERLzlJ0R9rjBE/hw4RC+Zg0QCQChESCdHRFQYe0arki5EaO7nRQYDHkQCqH5E1OzGROnWLEaQhBhG6u+PROinuUQHYhNFnOCwRLUpGUSd6FlEBdOQRAbwDkdn0jJE9sbLRsMtU0T8oE1EyPYORrmHNUTtYmpEzSpxRNeq9UTsEWdEkyWnRAD4v0Rrc0ZEkuk5RIRUiER6t5RGCEy8Rt4+VkT6SwVGY7szRI9qP0XJCpRE21pdRDw6vUTEGDVEyM9NRLSDbEWSKkBEIUJvRBouaEQtsZZEp/y3Rf9JckVxnb5EIxWVRgGTDUY2wVVFdvxfREWFTUVdOrdEoKFcRJ8dXETBIKFEiBuBRGm3BEYIK8ZEpsdwRYPnD0XZQoVEAJpcRMILOUSyuuVEJGBfRD9MWUS28WpEmaBNRBV3pEQf4ztEmUNBRGRWTkRK0zREjdJlRHirxERyvWFED/kmRCT+QERJW0VE/ThARJk9JURo0Y9ETBNeRPU+JkQwi1lF8NBaRB5SNUQcOoFFRnRQRQOTYUU1xa5Ed8GURLpp3UTPzgFF9MheRqIz6UTEjNVEFlhFRE27PUV3vatEnFqkRed4y0SZaZhFFBuGRBWHpERpnIpEi0KCREhrbkTTm9NE94JYRF35Z0WTR/9EmrycRJunl0Sq33pE0ndKRD6CLEVzz2VEH55lRDoGP0RZIm9ElQooRCXRjkYhPVVFjFg4RDpeNEW0GppFgXcJRZzYX0WIkTpEVvkBRR1TZURU/qRFXO9LRGKNFkVMLhhFRVHnRKt5T0Q0njhElWanRHGTXkSwlrdEwkQjRqbvh0Q2viNEw62xROjjc0Tz6odEfr6vRNBAw0SdLyNEQtPoROPB50SlBhBF4ErSRFqsckgLUmNEuI5aRGYGN0QPDPJE3wBdRGu21UTVrOVHMYaeRFSXpESI6ylE/U6tRCvQakQq2oJHQYeCRHUTckSlrE9GsRguRPZamkWp+cxEPQfmRCChWkSTfj1E093ORHiQxkSW8FBEi2opRNghSETI+oRGn6ezRUtNjUQ88/FFztw6RJC6IkT0r4REn+kbR6qTgkSTejtEvQYjRtCkh0RJRElEFoV+RDkrgkWaTzZEdaFpRDL3nUTguZFEgeq/RNloYES2gF1Ej2olRmiBGEX5+UhEcuplRFh6SkRGbUtE5Le5REg4h0QQyGhE1UJURCv2MkSE13tEhAOrRS02wURlTBRF+LEORjPvQES3gYFEVkZCRNcZh0Sx0wJFjQhARNOTHkUmqtBEO5UZRsReoUQIseRER0JARO8DU0amyEVEs5c4RPwVa0T3iW1EniFBReQ+f0TwQ3FEha1BRJgKqkQnKlpEmKV4RO5lh0Qa2y9EoVmTRC1+H0RkoDtE9NjBRWYe/ERvWBFFoNOIRC3O4ETCnahE65k4RPE81UXUJjhEKWC1RXLEHUYd/EBE63sZRmaQP0WhUmhEFQxpRY80T0QmMydEtCgmRdCEKUSkgjJE3rXqRJKWSUQYTlBEA6soRkwp1ERX3JRE75VaRAtrLUToNVdF6glTRBbTNkTEf0hEn7GWROZkmURxA49E7xpcRFzglUQlpZNE1xLTRCVk70QArjZErXm6RB/nBkVcWpRELwbTRIfRP0TcHdhE6wpIRIo0gUQegT9EzCKGRG0OsUQQaTVEPyazRD7uTEQX9XJEKOaNRLnm5URp5HhFozSyRAKG+kTHhT9FgyBgRBtmqUS0IOBE9QgeRGQSsUc0Tl1E0gO1RAmeFkc0fWVERvZLRBLvp0YuxPdEWTZlRC09p0UQEtdFT0LDRezWTEQQ4jxEHAlKRb/eQEVEdBFFpdmARPlMKUSSDW5Eh/C3RTk/rkQ+TUlE1pKpRK1PjESS+4FE31JiRHqPMUQkKClEGPGqRBD3SkQiWo1EbaNpRFSYbETUSDVFxfU0RGwZe0T84O9EIpC1RM+3aUQcbztEnaJQRFW4VUS8tp1Fj8IvRF3RqUStVjdEkZjRRwbQN0e3CxhFOYlQRbbfGkS2e99Eu6YdRWdM1kbmyl9EgmFCRL6yW0SGigdGWMQtRDYmZUSqmmJE07XfRNooTkR8upREGHc+RJBoRERLBGhEWwlnROZbVUScWU9E8wxHRC0ngkQ1R11Eff2pRf+fIkV/jKREqpKgRCOEqkT1cy9E3wV/RMEsHESdfchEJv3xRBoMLETbNjdECCU9RG6AQkRlVWhEpm9RRKRJMUSZ48xEXR6VRNiZhUQD2i1ErJO4RNSRIUUyYBtF15CeRFoIY0R5RkxEKXV4RQDUk0SxIY9Ew4cuRCUs8UTp/4dEA2OCRF3gV0QurFBEkfUlRAw1PkQvn7BFgwZSSJGMFkjd1BZFIMQvRMxcUURYHWlH6Z32RI8ZYEZ8O3pFpR/WRJXNdUVnYzJF1sb9RDcXdkSb41VEcN8IRtYk3kVuqI5FA9WIRJdkOkSBTrREqtkJRe+EXkQBOEREauUiRObhKEQetEVE6Q7HRDIsA0fdf6BEPuVsRqRrG0TSz9VEDvJARIlAFEaYk4hFWxs3RRVnH0QRHw5FYNupRIztqEQpOSFFnDaERQfGukR7G0NEYrOYRH4N9kS6ORFF8HtIRAkwU0TcKThEhIG4RSBHykQrIhBHUg+GRqPiHEZyHONEdR11RZGwWUQekjZEurRNRKrCM0RoR1VEmrUtRJ+NX0Q1t1lEFPk7RJ2JdkR4YDdEgaI1RKhn2UU91u9FFhgRRedRRET6H7RE1HYyRPz2jUSMmGlElbIFRRgVkkR6rVZET2C4RcFvakXJlMNEtRZoRHE/ZUQUzpFE/jQSRlssokUvumFEU8cvRWCCLURgR2dEE3tWRFwKS0Qf+ZBG5wpvRmfUpEWvSxFF16A6RCQBUUTEeVFECbsJRrkyuEXIcG1EtuCHRVMlwER0n1tFrNrrROxGrkTEJYNEaE6ERUANIkWSn0REGacwRPDjUkQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - oLUyGgzBckD1VO4QcMFyQJThvspOwnJAeMoJZ+PCckCGY1/xOMNyQAVlRUnFxHJAcTVLdlvFckB+yI2ygNFyQKAmYacP0nJAr/gEl0PSckAg1n0QoNJyQOpB+vR403JAjPhPbAnUckBCh7sXYtRyQLR8FbnQ33JAmtIK17fgckDA537dS+FyQBmPZnpl4XJAJjT2HE/ickA+dmo1keJyQCGmXIgi43JAHiuH1cjwckAA+3OyyfFyQC6YoMF68nJAWVwB8LbzckA/zBQIDfRyQF3Y0LVM9HJAU9CG3aP0ckAuYm1owf9yQDfXfiT4AHNAVhmynZIBc0DBJtAoOwJzQBw8BATPAnNAPbp/gmQDc0BTx7md+gNzQETO4YsiBXNAllf8RycSc0A023LxvBJzQCo/a5f1E3NAtI1GmQYUc0ApfIm1ThRzQFjcvJ14H3NAOk907Aogc0BExn10OCFzQJoVtep8InNAFB1FFcsic0Centj9DCNzQOS+Ew/OJHNAwDJIJ1Yxc0AWLnbLzjJzQB+f3GPVM3NAlppPNfozc0C4xgv7ODRzQP9nvKndNHNAYo8C47k/c0B1RI3K5UBzQKBnhfl4QXNATIsAy7xCc0ByPUxFekRzQBos1UObUXNAitsNBrdSc0BbkzkGQlNzQBSKT1ujU3NAnH8ILflfc0DwQRDrimBzQJDhAB4eYnNAamML/Dxjc0Dkq1SkjmNzQHLa+SDPY3NA6Geud+Nwc0AWmwZe23FzQPd4WcpPcnNAynOgFvdyc0CAXOUVtnRzQEJQogdMdXNAp5kvx296c0Cse6zR8H9zQBjDNdN4gHNApoyfGKSAc0A9pmn+C4FzQHjw1nBcgnNASkunzjqDc0BaLMTmiJBzQN3d7wRNknNAo18wEvySc0BnVFnfX5RzQITlNyL3lHNAtlPdMbigc0CFyW4ssKFzQAJrK9MBonNA6hBjaluic0DYM2E4m6JzQHwRx5UEpXNADsT9usewc0C2Fg7n1bBzQFrxAM1+sXNA9pE1Ak2yc0BsLKDKtrNzQO0YDQ8PtHNAzNpUK2XAc0Cc/Nyj9cBzQLz0oc9CwnNA9vwhRtDCc0CrT6IMJsNzQMiEdbO1z3NAF/eGvtjRc0C0Ir9bVtNzQIZxEuT403NAPFQ5Z+LUc0DSIYNzo+BzQAbMYHs44XNAHBtm3WThc0DrPyycfOJzQAJzb1kO43NAOnVkEvLkc0DofjgZVvFzQMBl1PTw8XNAbKxSnDf0c0Ahm0J6i/RzQFAy83R4AXRASP2nwqQBdEBMcSticAJ0QBqYTcS8AnRA/uSDuDwQdEA6PzMveBF0QM4JdaqIEXRAgN0Gd0wTdEDSAqG05BN0QDqmHLNNIHRAMvOU+rghdEBrDEBqsyJ0QGmEe0JSMHRArt+XtOUydEAUj37pJUF0QKoiWAvlQnRAW/NUajxDdEBQQXY0fEN0QCoSdVPNUXRA7sWsDWNUdEANusHO91R0QE5HZ8GLVXRAMuGjQNxXdEBzBGQcPVt0QO9KwWUhXXRAusb2b7hgdEDd9wNlCWJ0QNwZvS56YnRA+DHtZiVjdECXIRGhEWR0QN8iWRNPZHRAwKBMBMZndECcdqod12d0QJ50teofbXRAhqfy+zBtdEDySwJNI3B0QE/gtwNBcXRAxSKOXvpxdEC6BPtZenJ0QIzWEQg6c3RA84s6PKJ0dECbJF3T+IB0QHxpF30ogXRA3rYRTk2BdEBk84n20YJ0QPC3xbsVkHRAugyc0ouSdEBYq+KG7590QH674qSjoHRA0hZ+Dc+gdEAm7cLcNaF0QFTQTU+3onRAZk/nlQ+jdEC1K8ZqCLB0QFoEiRjCsHRAhafFeCOydEBKZdplb7J0QHgf4KSAsnRA96TgFfiydEATbTpccbh0QNAHEE64v3RAfiZLwOHAdEA9ljMEecF0QEpKAkK7wnRAdojXp1DDdEAYe1B4IcR0QNb+ylq3xHRA5LLzcv3OdED+jysrO9N0QAwmf9rN1HRA/Gg/6CDhdEA6vXQzt+F0QAg7OYhe43RAhwyEy5DjdEBCXab2YfB0QJ+XfHO98HRAyX0ABozzdED4QyeIpP90QBYmHn5RAHVADsLhraUAdUBjMgSbzwB1QBx9b1NkAXVAQiO5I14CdUA4FjjjpwJ1QHnveM04A3VAEvKsqZoDdUD/FGCqlRB1QLSYgusiFHVA+uLdfeUfdUCCInmwnCJ1QLpGfgetMnVAxFbmAOQydUBkDpETzDV1QLBcU9wlQHVAQoiZdnFAdUDyaiDaskF1QLCky4N9QnVAyNWqc91CdUDongjgI0N1QMFQBrLYR3VAluaHmvBPdUAmT94rSlB1QHV8pHftUHVA4sgJcIJRdUDNz2wAeFV1QFpS9JAOYHVAWifzZmZgdUBgVowFOmF1QPrq6DT0YXVABejI8oZidUA1le+baGN1QH42Bzz8Y3VAPa3CnHdydUC6cDLqhHN1QO+CbBiNdHVA/WGzGXmBdUCi6IR6rYF1QBHB2eylg3VA5ldxh5qEdUDYLbUMuZF1QO65THMkoXVAHjPaLrqhdUAe9A8puqR1QFd69RdQq3VAnihoQmaxdUCsVrjpo791QC+ef0zLwHVAqCyjnGXBdUAWBpAe98F1QN/AEgs5w3VAWyYl7aXQdUDIHdTxvdJ1QD6LGefj33VALtGVWxDhdUBkxn4BC+J1QL6SWi2o43VAjJiyYSkAdkCiITSeuQB2QE7Oef1PAXZAyo3GbkgCdkDqv6d80QN2QFDHKsUMFnZAbMXmCUwWdkAo277nxxp2QCVfYOaIInZAryiYbpAkdkDyXfXjSit2QOxpsLcfMXZAri7fCM0ydkA8mqNWUjN2QKT4dA6eNHZA7mE9BExAdkDD0eouXUB2QDq661IcQXZA0NgepzhCdkAIaiW1yUJ2QKiVJOlRQ3ZAFrONqHlDdkDklUZupUN2QLJN0cx4RHZA+jLqF3xQdkCcwBF5yVB2QISXqGkQUXZA/FmQqKFSdkAs/b0A1VJ2QFCYpRnNVHZAvRaptY5gdkBcNXYkEWF2QKfW+n3aZHZARnoidEVxdkAOunaA0X92QK1O+AHNgHZAcij3b5ODdkAqK3Xz3492QEBxaQXqnXZARahrY8CfdkA0iB7+5Z92QJah668QoXZADUuYI+eidkAotAB4RaN2QMBNJ/6iqHZAv3LM/Y+rdkAqzlYZt7B2QP5mBzPBsnZAD4mIunezdkDOiaCpDbR2QNTn3CKvtHZAyRP1inLAdkA0em0jv8B2QM59EeNNwXZASP7uoxvEdkCIoU8gz852QHKoBFMb8XZAHjfj2o/zdkBkpr0nTvR2QJ7yu1IBEndAqlvcn4wgd0DGuz36DSJ3QDRcGOCiM3dAEhxJIw01d0C4Ow9heT13QFr0/LCcQXdAYD3RkbpCd0D4lfhA0EJ3QG4V4+KPQ3dAp++0NBtFd0CgSCgeSlF3QK/4Hq2SUXdAsUViw7BTd0DjxZBdKFV3QFAu1E9AW3dAHA2Lprdbd0CqJtFOkWF3QGNr4+pnYndAb7Kjazlld0AWANpdJ293QOWKaoyIcXdAuLp5PJB0d0AEc/JEGXd3QOZbTd0ee3dAXreGwkyBd0B1CMpqCJJ3QHuQrSVLlHdAk/fcCPmgd0AgC5uT+aN3QHa5taaatHdAOrwg/RbDd0AibWMA6uB3QAUlUMlP8ndAdsE/2+Tyd0Asdcp4YB94QHs30Ak+InhAlHlUY20ieEBbLfsLiiN4QFrX8aMMQnhAPJQ5EutDeEAUxadTEUR4QJIt1SR6RXhA6J70QNZIeEAQJRmKylF4QP6lqIuIVXhA/MKl7/dgeECQ7WwVuWF4QDIftsAgYnhAVDjQz5VieEDByDtjFXR4QA30STstdHhAfvgXtIt0eEAepKr0unR4QEibWYfndHhAM2IYJwp1eEDuK/b0xnh4QMogOR/5e3hALG5dpR9+eEAyADkNpIF4QCR1HIB4g3hAohfOq/6DeEBKXYXQmYR4QJYzghBSj3hAonx7cZaReEAdHPAxp5R4QNgU5+2loXhAogK2CoareEA6yoyAjK94QGZQy8nNwHhAzgEQYfnBeECOwrLVFtJ4QG4WGda31HhAhJJ/GzfieEDWbrUqx+R4QMICn/gB9HhANKqh6oz1eEBSiWhZDgR5QFwlT/+ZBXlALDdUxRsQeUCQQEhnbxN5QALmMNCDE3lAAYGAw7EoeUADsF1dDS55QJyMee7cMnlA/5PqTlQzeUDtnloiuDN5QL/cQDgvOHlASMmmYr07eUB8VX2ji0J5QHKCaGL3QnlARNACBxlDeUCM3HZs/EN5QMYg5as4VHlAuJfvOs1UeUDoDWBj7GB5QGDnh9JQY3lAMhueeUdzeUACFzeP03N5QNwj2Ws1dHlA3DfsjJSCeUDSlp4vepJ5QNm5vqU+q3lAwNUUwr+yeUBfJigsRbN5QNMtrpnjynlARsfpUkPUeUCYJ6TOzdV5QA4CUqFP5HlAGQFe+w70eUA+61B1RgN6QLJiqu38A3pAvr9Ld5EEekBIjmPN/AV6QFQlxGIoI3pA0GpnzS4rekCSiKEnHzN6QJaSt8I0M3pAv9OTcgw1ekA0vmYuJzt6QOL1p8AjQ3pAYC+mKhpFekCECseipE56QODBy1YpVXpAsYr3RCFcekDpHwpLL2R6QPUb59NGZHpAFthvFulqekCKezk5kXJ6QOJEN7bCc3pAfrV2MR95ekDuw/p5g3l6QCMiLDPafnpAqvHoTsqDekA/eJ+YT556QFZucg8fo3pALOSGeAu2ekC45QC1McN6QBP7w6UXxnpA7rVGZNfTekAa3vHtfN56QJuyBBU85HpAFtRJvjnuekCsHCXdewR7QIIB4XjFC3tAciS6LioOe0AEd1HMzhN7QKCztkxNFXtAFqhHJlole0BmDiiokD57QLp4UiLCQ3tA4YWqyelDe0CFtg6hQ0l7QLzK9HOeTntAztg9oFtSe0ASV3UDiFJ7QJJSuSyRWntAtxSOQ+qQe0Bpv3SGIpV7QChou7e/0XtA65IHNIz1e0DsOGkzkQF8QJiIORrZAXxA5R1zO/UBfEDH+mdhZwR8QC/nTwaaBXxAPDeyPocRfEDSUQgN0hF8QGzVK4dWE3xAln0JC7wjfEBm5kA4zUF8QAhBZbp0RHxA8ExjOn5VfEB72YC+Gl58QII9AOkMYnxApHcKTlBjfEC2jiLujGV8QNUXLL9PaXxAhbrIJilxfEAv3ne064N8QEyvMRf9pHxAwtFlYyelfECbQ+j0wbJ8QIqB0RdoxHxA7F/OScvTfEAzarr7zdV8QIlVsFXX23xArqhQ+FfifECsi4FtGPJ8QG5y1LRU8nxACkcFOgMCfUAKTwubSwJ9QATRkE0BBH1AZtA9PggMfUAShRytBBJ9QIDQTapGEn1AiMvq9woUfUAAJ7lGbCR9QKo+FqhyLH1A8jjRVXk0fUA19Mi4Rjh9QD2sgOyAPH1A327f14U9fUAuRYxM6mV9QCSTbYYfc31ApnPjxKlzfUAZLsIOfHR9QBorJRF6eH1ANiHUQdR9fUC+JqtSa359QE7ivK+Yf31AsiVCSRikfUBYaqCQpaR9QJByNUsmu31AUugNlinEfUBWo2Se5sR9QL+JSeA+031AhkRAAEvUfUBLfYIh2+J9QK9qGhyQ9X1AUFUIBBX/fUCtT7KiMQB+QCroYXOlHX5Ac6eRiDcffkBqBZ/W/CJ+QEIrwiVJKH5AqBxeIzwvfkD3buKaAjR+QMZUEjcHPH5ADpLdmQ5EfkA2pBU5p0R+QKb1itzvTX5ApIU77/5TfkBGtGiuQ1R+QKJ4wAq0VH5ADMTVlVVVfkCaXmN0jlV+QAdHRrllZX5Aiy77oChufkDN7e3+G3J+QPt4OK+fg35AZjVhXx6GfkDWM9/Ap4t+QEpu4sKTk35AVI/BcLOTfkB8gIx8mZR+QEHpWwt2l35ANg+qufOZfkB6QU6anJt+QNq5j3aOnn5AZ19OC0yffkCxRqBHnJ9+QAXYjIqZrn5AgIv9WfaufkD7WP9CTq9+QJx6MQdcr35Asywgs9CwfkDwYzFLELJ+QLr6BP5PtH5AGFqYfKm5fkBoonMeAr9+QIZASZJ5w35Aljw1S9HEfkDu9/ywsct+QAjYS/PV0n5AQMeZibvTfkB/1lCk09R+QNi1Sh8E5H5ALhLjygXofkDk7+BECux+QOSiW8cP8H5AjroUTA/0fkDoOWN4pfl+QKRskcjQA39Ahu1Zi2AWf0CvDjafYCB/QBOp387rI39A2BVd3d80f0BoTKWWqDl/QFIpgbD/Pn9AgCU96WlEf0CXAanjwEl/QFaigJkaT39AOHU2qxtQf0BAtIo1uFx/QFaWnKLBZH9A9O8NMsVsf0D8vGqJt3F/QIelkHpLdH9ATCU1buR0f0D0SCQ5soF/QF1fLyLWhH9A8EdjAWKRf0COsb5qmJN/QDuSbBAPoH9A5cM+y1yhf0BEt1bNsqN/QEDcDof7rn9A55ZkelWxf0AQHsmQarh/QKjBbbz+vn9AnlPN3/+/f0AsTnSt78N/QG61BRSt239AlubJ5O3gf0CQMcSQueN/QCazn5Mr5n9AXFwLR9Tqf0A9SMyYMOx/QG7aguBHAoBAGgvR7WgNgEDcByp1YhCAQPvQdunNFYBAsiIaHw0agEBGuD5Qzx2AQLAh1IYdIYBAj9//wO0pgEDcf1LbdTCAQFFJFRP2MYBAAPgvNokygEC1ZYArATmAQFJfivuPOoBA3uubcwJBgEALehfcqEKAQJRAXU/zRoBAAOyMBI1IgEBY7o+i90iAQNLgNjknSoBAfFuSgrBKgEDyjdME5lCAQKTp5sQUUYBAHlA/PwVUgEAGM/mSBFaAQLdqrfwIWIBAY7gWryVYgEDsnzst61iAQOKF/+ENWYBAvBgLhyBZgEAqN6jxM1qAQHsAQgXjXoBAnBEqthJhgEA9OdTm02WAQIaLoUccaIBAUoTWCCJqgEDzKRCJJ2+AQIBcpUMecYBAM5zY1RRygECIhV/RwXSAQHZ4oJQpd4BA6/EH5oV5gEASeJdcMHyAQMw7UCk3foBAuAcZGCh/gEAt6AAw/IqAQDCtIav+joBAC+VTVR6PgECAwxGh5JGAQBYND30+koBAn/sG5UeWgECa9mNPHpeAQKxMzTAimYBA8beJg8SZgECsHow0TJqAQLTX9uN9m4BAmEFrIwOcgEC17rsHyp2AQAy9+m/bnYBAfk7RKAWegEAm9ugD4J6AQC5XlEIan4BAnB2mIAeggEBOA5BBi6GAQFCcGoMIooBAn2HsRFOjgEDU2HAKg6WAQFDI4x+FqYBAUlfEAt2tgEDzKAVOE6+AQHYeAedzr4BAuLXqs1GwgEA0OjzZYrCAQN6h9R0esYBAybHE++WxgEAitxIigLKAQLI89GRPs4BANgDEgM+0gEB6zyL0FbeAQK8fS+uduoBA7KsJ60y7gEDOkopSB7yAQHnGrETCvIBAoidTyNC8gECYjS8nfL2AQGCgr/zdvYBARX0wNLa/gEBAx/WD+7+AQAhCNUUiwIBAZuc/d1LBgEAuDzFMLsaAQNpUcPr4xoBAonXvVafHgECCwY0LYsiAQKnc9tMoyYBAEtEtoVPJgEBw7ti33cmAQA4Ppj40yoBAt9d/mJ3KgED68gs44cyAQG6hJAiIzYBAiszDnjjOgEAAb8UHCc+AQFCUWRysz4BAdfv5VC3RgEATBLfxTNGAQDiJpphg0YBACT61FkjTgEDqFbw/BdiAQEl15Z1K2YBADld9UEThgECdx9k8V+GAQE7Eois44oBA9pP0LrvkgEB6tzxp8OaAQEmM4G7Y54BAjlUPp2TogED4EIIy+eiAQCgEEps/6YBAiDhiZ0nrgEB4ZqBhS++AQEDD0YFo8oBAhY6txh75gEBLayFFZvqAQErJ7l4//4BAgJXrM6v/gEAiYygQPweBQK41I5s9D4FAtnUW1UQXgUASu744qBqBQH1Zn5M0H4FAjBeJbrAfgUDswxiSJiCBQOTHoyh7JYFAbIYqIDUngUDWZpQotSeBQDi9yjAwL4FAejT3RUUvgUAC/xfwvDGBQFaZXoIpP4FAjM3O9ytHgUAw47lbs0+BQKpbfQ6yZoFALAN5M7ZqgUAuDJCAPnmBQJhhT+qDfoFAKKevgYmAgUBuzh+K4oCBQJ8SKGmRg4FA8gTDgZWEgUCeOAwC7YmBQKW94nV9ioFAXryB77SKgUBQUJOz8Y2BQByMZHbBjoFAY1nk21SPgUDfXGFHhpKBQLLzzshWl4FA4hVDyFKfgUA8CCeQ5qGBQFjogZfeooFA/MZcvnKkgUDk2kHEbqiBQBxochLnqoFAC42CiEqvgUBsYSgMXrCBQBA/SaZNt4FAuf7lHHW3gUBPCM6qVLuBQBA7/mmTvoFAa+5rJgHCgUDuYpXClMKBQBOcHoFdyoFA52ssW37TgUDg49GOAPaBQCHmSDiU94FASu67hk74gUB+VNZ1A/qBQFycEMoH/oFAcNk02gYCgkA6xlvqAgmCQIBZhPP/CYJAMts+2bwNgkDcXvIurRCCQFrh3BDAEYJAYOPn6bQSgkDI0rKLzRKCQKDcCfPFFYJAekDEhdgYgkBmYc2CuxqCQL7LfEw5IIJAgSiEjNYggkDiUX6m1CKCQO5t+9gjJoJAsPlxlYAogkA8G5JK0SiCQOv9IPhMKoJAlA4LpdsqgkCwlWhtczCCQBhsq2GkMIJAuhPyJBY2gkBM+CUVeziCQOgitB2GOoJAhoOsmmpAgkBWPdLO+0CCQNsAyznnQoJASn13uqNDgkAQMpzU6kaCQKkKOpWfTYJAvM85XgdOgkAnIP8fbVCCQLbok8yLUoJADOnO3ddSgkDOgh40E1aCQOoL3vqQVoJArPvTkxZagkD8tyAni1qCQCkNe9rhWoJARdIAKJxbgkAiVxCLH12CQHWUS1wUXoJAruil0K9fgkDYnwT5ImKCQGBDXwpbYoJAzn2BsQllgkBCopXmBGaCQIjqSvTQZoJA3Bud3ypngkBqron2n2eCQMLIYxrCaYJABHYJFRFqgkBuJs4GqGuCQK414xsRcoJAS47AjHd0gkBY5BsqOHWCQNJ3eXQ+eYJAYo2cMQh6gkAKDcXQdnyCQJMRdaDhfYJAKHQ/VQB+gkDoSrNw4H6CQBSqXi+bf4JAAgKf7+eBgkArdvo/A4KCQBOXnmtVgoJAQzaMwyWEgkDKUAmG9YWCQPqMZwpXhoJAhHYeUkOJgkDbgv2iV4qCQAp8QKFEkYJAAtBabqmTgkC6QdnTp5eCQPuiecZ0mIJAHHKRqD2ZgkDZN+zjVZmCQCqQpz0OoYJACDxDRTyhgkCemFiZ3KGCQPAW0RffpYJAYMldTg6pgkDutXycM6mCQBQlFk9IqYJAit3AquapgkCmANrCULCCQKamiu8GsYJA5qTnDDWxgkBaRfK0ScCCQF8v56L7w4JAQrSy3OzFgkA8eCCNxcuCQAoJlmnQ04JAgBEcf37agkBjc5SKgd6CQJ0hN+6B4oJAKi5Qm7jngkDu+WDN1uqCQOiZBhr67YJAdq+4hkTugkAaiGUI/vGCQJ4EtqwA9oJA2KaJoa35gkA75+msFAODQLg5aRcdC4NA+vAZlcUPg0BlmQSdeRGDQJtfR70mEoNADPA+pXoZg0CAiVHrtRqDQEP6AbViHYNAQC1Cfg0gg0AIPYf8YyCDQNYekIZLIYNA0YGX0XMhg0BKXn66jyGDQOKwJ/oZJoNAd5I/BmUog0DsVVOXcimDQMkxkfY5KoNAQkcgl8cvg0BImam9WzCDQL3ypXNqMYNARvuY8IExg0AUy599FDKDQLiquEl2MoNAcLZg39A3g0CQBg4bHTmDQDLqpGBtOYNASGtpNvREg0CJVOuBfk+DQMCy9GpHWYNAUzpYq2Reg0CAWLJjjV6DQAjnp5BnYoNAos93zWlmg0CcFQ19pmeDQC4alVVeeYNAkpSjWAN8g0DsGf+z5IGDQEhCur8Kg4NA4jKMv+KWg0DbHpt8kKiDQHQaEQ8a14NAbHP8Czfog0A+BDJpOuyDQOxUCSav8INAQW5jspT4g0CKxZ2/pf+DQHAlJJxTAoRAhmpbHr0ChEBC6QpT+gSEQJnhlqADGoRAkrg9bLYphEDYLHkRuC2EQKht+detLoRA+F/92o0whEDyzTiD/jiEQC9tsWdeOYRAyp3z4gpDhEAY4YejKlmEQPgmfL4cW4RAUrQ5RS1hhECsugH/SmOEQFfFYVXMZYRACnkvlrFmhED8CE3F/2iEQAOoqnTlaoRARmzd2TduhEDsr5866G6EQL8Nl/P8cIRAUo5yCFhxhECLric6RXKEQIQYEAvrcoRAgx19GO52hECF07g4yneEQDkQTxv1eIRAsNqZeXd6hEDQsixb8nqEQM1YxNolfYRAAmUMlPF+hEDiSJJzI4aEQCDqMRL9h4RAHT7M+qmKhEA+KJ1LWI2EQG57iEyoj4RAfs2151KVhECeNRiU/5eEQL1gOAatmoRAOh2iZnuihEA7obQMdrqEQFBcvLIry4RATHSJPmrZhEDFPYnOauGEQAy+E8E/44RAvevxcGvkhECdvNeWYumEQM7ks6x66YRAuFcnTEjrhECbJsjjNPGEQKDSYnRj8YRAzLWVgwXzhEBeg9fXNPmEQAbfRqRc+YRAwjCm0UD8hEAEILoF3f2EQKTONuF3/4RAOWRGPREBhUAeP+BxLgGFQCenF/qrAoVAWvjIqEcEhUDOIqEOPwaFQJ4wGzZ1C4VApnZdAtgVhUDDqQZgdheFQLxEI7mvGoVAWnVqaT8ehUDaPI8fbx+FQDsM8HZHIoVA9IGfPGBThUAkhw2+Z1uFQCQqGi+1X4VASH6fe6BhhUBapNrcu2eFQEZXluXcZ4VAUFBa4F1phUB9YEGZoGmFQHBZVl9ecYVAENjzaJlxhUCqa2pmsnOFQDj5AUuZeYVAlR5obIqBhUDo+WoAkYmFQPrBp+yN7YVAXl2X984ahkA0okYgrCKGQMxQkrRSJYZAGnMjHutEhkCbBV8vi4aGQLT9nfeNioZAKLspvJGOhkAFe0XfkJKGQNywK4M6moZAeGKJDMuqhkB4VSlDfa+GQFrwFW8muYZAyVyPmWvDhkBoE1C01MiGQLDQcmYh6IZAmCXaIdHqhkBxx6/DMv+GQKIXcZE1A4dAA1oOSjwHh0BtejbzfQ2HQCeqXha5HYdAXSqXMZEph0DLhBAvkjGHQBltMyCEN4dAL24Vo4k5h0AKj2W7hzuHQND9ykJbQYdAZ3cCbopBh0AhsYB0N2eHQERSkyo6a4dABJOijINuh0Dw8ovEO2+HQDAO4W1Ec4dAOgXODxqGh0CmQ3KHjJOHQLL/ttXHsYdAJO21dsi5h0AKKcgVlb6HQDQ4SdzAwYdAduL4zMDJh0Bu/iQQDfuHQLutM34pK4hAPgz16VE7iEDoea7sVT+IQJe7H2VoaohAWMec4n92iEDof983nIiIQOfGM4dZsohA3iFQs1y2iEBqC5oizvGIQA== + KBZXds7jZUCEfuNfSGJnQDtMc7KVAnNA - + - yeVnRJXS/0WEvNVE0fjERG70P0X+3bZErqJcRJOqT0SKrktFmLQHR7vvYETHZG9Ej7RDRAJsWETTGrtEMaLIRHoVi0T+/0FEXRNbRZzMREUDgQBFSkqLRDwYFkWlVohEpMK1RCTVjUS5dTdEAeS5RPZFlUTnbKRE7OtdRM6m0EQ3nBFFPowkRePeCUeXwDdEv2Q6ROTQPUauIjtFRDmJRejBZkS+rzlFYV1NRKkjnkZ96nJEWC22RGtAb0SB5VVF0xdPRGuViURFo4dEu71qRLFxikSunnJEq/xBRVg1oES3/kRFoosZRYbJwkW9niVFlAo5RNCtoUS9oYhFPEn6ROq060Rhi4pEk3fFRAqOdUR2LolEUF1BRAb0gET34adEO66QRCrEnERc1w9FopxQRP+y+UQhizVHUIMvRUQ4tkSyM6dFB2uVRF8ST0ULXyhHryhIRGBEqkScL2RGF2g9RliMqESnRTlEZVa7Re/CrUQ5iPREwqOnRAhArETwQotE+CB0RNl3JkXs2QlFIKxVRMN0Q0TW1T9EyIfCRbglQ0S2sDtEz68zRV38akTvUTxE4S2MRfbEVETGvG1F0LBNRK6VPERuJvxECQuIRD/0RkSyuxFEHy8CRVYMY0TgqkVGR+OQRBvhf0TJ3mVE4ytFRHrHgUTKqClEYW32RGFrfET6yTlEMuO9RLz+h0SL8jJEV+syRGs9PkSv2jBEEjlpRISSW0SBmlNEuqA6RHe5aUTdZLtEWe+DRG8sN0S8muRHkYASRenjbEWnb3ZH0h04RLVmYUTR6ZJEf2VLRjh25kUmXm9FZGKvREfKnEUAzChHvyZ9RAjjXUX6hCNF7rOzRMSgD0Wm4D1EZOy7RfC2OkT/tbJFeaBFRGsZzkSHOYtEqV/gRFosc0TrlI9EoisQReiEs0RJ6wBF8/1HRPWutkQ2xmZEp2ttRHADY0RDaYZEcPdPRMGZgETFIOJEqnJKRE26hETyHdpElkO/RM+vF0VP5oNEGfNYRLMY0kTuK59EQZWZRJ8OY0TJd3pEJiGuRe+HSkR79ylFoYaWRFujqEQOXqRElUtURTaHpkTSg4ZE8IxfRMG1RkSG27NEkVF9RFYtJUZzyZJEaBl6RGp5D0UDHJlFXAZfRD4YSUT8IhlGTRY3Rbg5zETT8CxF9xfFRLCHaUSbJ5dE8OGQRNmem0SjUK9EzsImRcrG0UTm72xEh/whRL7ZokR6h59EDDvrRDgnI0XOlPdFWOcERSmqy0XoUjlFUIX8RDdeU0QWgFREj8d4RA7aUERAd0hEiFO5RHjBRkTjX5BEO8F2REg7/0S0/WZEH96fRE2XvUS+n41EkQlhRFJBXkS+gshEU5s6RAaQQESW92xEYeJJRS75zEQNL4VEXZjNRDKnsERHtGhFQUP+RQ5PpEX6wupGaatHRAVZd0SbqGREkuu1RBIs5URxzL1Fjb86RDNbTEVu101E6hStRA9cikTxOUVFzL22RLOf6EToWRZFV09JRNQzakTEvhlGs1W/RH5+pURy5bNEmYwwRNaqtkazA0tEKF2oRFii1kSnYbhFGyteRb+lc0QMcphE7JqMRICMk0Wx3LVEBqXuRORJnESxthpFa92FRFIiU0U+joNEmzE8RBIjsESjLYpEgIekRAL4ckXKxmVENaYRRXZFfEQM74tGpYM+RGoWbEXLg51EtDHfR7LtqERJJ4tGgz1ARArvHET0isFEU5GsRgsmkUWn81pGoYsgReGQ10SI0G5EmjCERC/bF0UgS19EnuGHRMaCJUW6IrZEnpx2RNP+LEWGv0dF0wZBRLdBn0S/Lm1EpJpYRFKeqET4R6tEs1QjRPZ+XkTL6KNEeBJSREYnbkS/Ch5E/okvRf0MxUTyh3JE6wa9RLkqLkXkmRxG22LDRELQg0Wx+LBEWwSqRLH1AEUN3oBEowFfROw7nEQmZaNEsJk0SeNVLEWFfcxExZ2+RD9eJ0ayb7REf1ayRa+jZ0WGDdtEjdSrRAOaM0jMrWhE0W1/RdDrg0byCkxERn24RBbR0kQSooZE5DRrRCYtOkTghE9FtOpxRCK4O0Rd7YVFUTmgRRWelkTYa2REPrZVRLlLMkTis4xERivsRXpQ/URgsItENDyFRGcmzUSH4IxESGFVRC+lkUSVH4pEPxhVRBeb3USgSlVEbXg7RcJhW0RyuytEdDSaRMMDLUXQ9rdEkepcRM5xOkStGBdG6fQWRYpqf0UkaTREt7O+RW24ekRgf8BEQvx8RP1ehkTzBKZEmY6/RItnjUQGmRRIaZuER1CiQ0YZOyxGmfKmRxCikEWC4YxEuJiFRovQP0TjcgtF4Ev7RIpQcESZiVFEkiiwRO/JUETwNXNExTyYRPfMJUX2v6BE+S+CRJNwdER301JECFy5RSQALUSVao1EySppRHEpfEQiUYhEhw65RNBkSEXXoN5EdCTWRAcaU0T9OvJFi2jsRC7LbEfiDzRELrYQRxYSG0ZEaYtFLUhmRGKBG0VwCItEDgSFRCWoMkU/EtpEm2OHRk2+F0V+RCJG0k8zRU7okUSxjnJFXkSQROu/aUWK2F5EX49FRL3jo0Vv3z5ED8rDRYs7bES1vNNEFTl7ROhX5UR/XEJEoVlqRMOZgkTNOIhEk0+FRD08b0QKHHZF8UtpRbceaUR2CbtE5cC5R1py1ETtk6BGbfFiRCN/fEYPxl9GeifgRVXvx0TuYEpFADcHRYnubEceO+5G9liORdDKgkXvv4pElmRXRZC2XUQ1ip5FJolsRKL8T0RSCllFannfRG6BO0Q2DEREOXiPRPUrWkSK8o1EfAiQRPOhcEXfckhEF2Z/RFqjb0Rm5q5EpaJcREort0RJ8itFOm7fROGtNkX/7KZEEDFYRNBvmEU4L+BEQL1oREuTNkWfuWJEWXBhRFXGUkSsrz9EFNT2ROGFsUQwEl9EzzVURBpwXERQEoJGdd6FRP5tyEWuwcxEagmzROMfBUbIglxE/zjWRVyyZkRomoZE1+NtRfliNERAyZ9EnHICR7xSdkRIW3pEgkiJRN+wYUTveL9GYGgmRsW9K0VL6aBEU/CgRDSjfUQeN7FEY6ikRBOHZERbkoRG3W2iRrQvSUamxzhFjn1hRLQ0Z0Rp8VFEZlVtRM6PUkVJD5FEuWNIRP0vpURFkVREyPnZRBOADUXbK2dEoclzRF5ifEb75whGqq8ERTKBxUXyBD1E3W2LRA8UgURtBrNE6FHuRS/wnUS1g/tET8MDRVP/TkSiM49Eb9a5RIUVXERqvVpElF1RRBxYikSLQWdEXppVROZte0RRirZEfzlARDIjOETa3zVEHK1QRJZRiURl4a9EGeFwRGfkmUQKHnJE2qZ5RFdTbESVLjxEWj+CRXUl1kSHRYVEsOyPROhAT0X71p9F7XyCRYwnF0UryJhFXR2bRAOIBEVEV6tGprDeRBmleUVH8qVE6IabRdyiPERkI6RFhovCRM7b1URXdzRE4zJpRJWtQkTSiYdEfwj4RFDwRUW5fnhEp/QpRYTop0QEzFhEq+mZRE9OQkTy82xESXogRcPEaEQQlqtE9txFRqt9RUTwc69EZB55RcEUPkXi9FtECn6GRWmIIEWLd3xEEftaRRPg0EQBQ05EGU7gRTp/VUQTRe5E5ZWrRW91nERD9tJEbGBwRKyQhUQ4GfhEJCqgRM55LEa+PXtE/UIaRPiNrkQN9k9FCrqaRHlDL0TK0KpETeNdRLPwrER/bpBEPCKBROdMLEWC/XtE+e5wRPURCUW0qFREKJ2GRFpWb0SOKjFEFACfSJ+UMUROMLJE+raqRGlhnURUppdEBzgXSNFCdESiZPZE2WtURFWpzkRvRXJEVyW3RKwIj0TSnJZEMw7DRGcTnEesXldFGLQwRJ53vkTlp5RGU1bBRdtruUTiAUlEseo/RKfHcER03Y1E5YJwRG/hqkSr5mVEvOo9RDqSRkVRwIhETL9ARJBnYUQb5Y1G8mM6RDpinEVnn79FsGJERJ3trES1qSBHTz6hRJjaJESSbVhEqELzRUjoh0RheG1Fk251RL6EJ0Wi4CZGmEkLRUwmO0SBou5EVdVZRFIeUETNHGVEcl5lROrZTET6NUhE4OFhRLCvAEXuyYtFR+JhRBD0XUT4PU5EFprRRT1P3ET1WBBFte20RMin3ES8HtRFALGARK45AEUd3yxFY2NlRsyFQkTxgBlFW9c4RMeJQUQgIeJED6eARFh/s0Q3dUpEn+2ZRHgt2kV5YkZEjKTORG0UJ0XbwGBE6DE7RFBeKkXzL4JErnLTRZs1S0SMojhFLZLTRiYlQURFMaNE9rkWRjGRu0XDQYlECUaIRUjyIUXq/0ZEy7dORAwoT0XO+jtESWxzRG4CxkVieFtECWuKRGeMf0QCsqFEgTacRP5PS0Tz5mhEesx3RP5FQEQ23qdE1pZvRAdSzUR64kNEb95NRFkCQUSCOJ9EW+xSRD41f0SIktpEMSe7RDNCZERC6VNE1mQ7ReLTKEQzkI5E/Xh2RC28eURj87ZEoW9HRIMQjEQMn2NEhrCMRDsWdkQUJzdERulFRNKo6kQYA5NEKLqyREJSSkS7bwNFC8APRUlvTkSXd5hEvkRYRFR+p0QvvDpFgmt5RJJ/gkQOVh9FzcZjSNsA0EQIsAFImZ5oROSKnUTtbGFENOF8R3fkh0VnLIBF5yKPRtKookXiB05Ff73XRNWoikU8lPtElJzBRN5an0WBiuZEKgj4RAhzzUTJQVFElKWiROiPYER/oz5E+GCcRP6vmESrXVJEksOWRAF/nES16p9FlU41REnTNkUyW11EYljGRJ4XgkXVKQJFy3hSRGzlVUimdM9EA6XeR3cGVkUOgVlFi6DRRKnGhUXVL1pE/8WJR+EpC0WdqkFEjV9bRFSNnka9O0lEHiBvRJq+ikRrHMdFH+ACRYYcf0Rftr9Em8s8RPm2vUShF5REll5ERF0xQURH5kNElsv9RLNDQ0TJPgVF/iVMRNmsaETxMzlEFkd0RIMxkURL6dZEQ6JjRIqXZ0R+gZVEqpGIRLcuj0SWwUlEYwCWRAdK+kRobB1Fm4WNREY8UEQA3UJEvg0ZRcFF1kRCZ01Emb1sRLPwNkRBE1lEmE0KRfH9WkTcMD9EkRBIRIHCcES127hEmEZdRApE4UVEy3RIN2dQRLLmJEiXFDRFVhOGRLdQfEQ1T3xHaFlMRqtDa0WBls1EIyxURZZxDkW4pcREUzqFRGFQOkRjJ6JF+w6ORZ32E0VKPT1E+rIFRXlGH0Va+6lELvIfRPeOhUSEqTRERo5iR6C6ukZS6C1FaPU/RM3MhEbBrAZFn6XcREBdkkXOHLxFcyg6RPOTBUWQy+9EIcMXRVXiXEW7qi5FvPbURAfypERelKJE3BdwRFsoXUR9mWZENpdSRMmgikS9V3REdTOFRPOOPUT1/5hEpKLeRffCGEUBqlJE8T5QR4JfO0RAe39Ei6wyRDd6xUZfvDFEa7d1Rp5NhETV3qJFS/diRJNYaUSZl5BEktpmRCqTWUSHIFFENnCHRMA6J0bcBphFEfy+RAVyiESiZiVE1HJEROWShkTwu8REdoy9RIbXm0TlbmpEImGYRP+OsEUl7aZFFiHKRGjZdkQMy5dEUL9fRmoT70UjY0ZERn51RfWXo0RDMbFEFhoLRZWqj0a6AXJG8ew9RBQWjEWMJ8ZEPg1rRDgoREQxmDpGt72yRUaOZEQNDI9FMsQIRVt/h0SBHnlEQeMuRUGsGUU12DxENM9PRCM4NURlJzNFhRhURdwvW0Q= + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - 7ZHLQG/BckD0BQkQUcJyQCghcALlwnJA+FdaNjzDckCsiWhle8NyQOBbsYvFxHJAlsf5r1rFckAK81jZfNFyQIr2Gc4O0nJAQwF3YUPSckDkVakgeNNyQOA0UUfM33JA9cmaPLjgckAho0z9UuFyQDqux1BQ4nJA8If31Y/ickCgpHtGJeNyQE4Ug23I8HJAkJitdFHxckAT1mbeyfFyQNAeU4FO8nJACxkM77bzckCQOl9hpPRyQKq7MpjD/3JAkc0RRPoAc0Dp7OLmSwFzQO78kV81AnNAMuNp1c8Cc0Ctp1QqZANzQMNBBqb6A3NAo+817IMQc0BgZSiijxFzQNuZCFEoEnNAlZQvU3oSc0C0v3RpvBJzQFeva+75E3NA3Mf6MkwUc0CSgYrYeR9zQLgzDoaiIHNAnHqMrDghc0CO1guYeyJzQPoOfxLIInNAl12N9Q8jc0CSuL9rAyRzQIyARrY4JHNA9V3uIM8kc0CiGNjvRzFzQIgTPrhaMXNARN4rhPkyc0Ao8CFmDTNzQAQ15UygM3NAyjN3BdYzc0Bosn8bOTRzQEbRat7bNHNA/kA9n7k/c0DC3mb15EBzQJTwRWd4QXNAnrtjZrtCc0BQmW8BekRzQBT5+iObUXNADlTJQ7hSc0D3/aUAQlNzQHYzf4WiU3NA3GAXlIZUc0BuO1TZ+V9zQLECTRGLYHNAucP1xYlhc0DWVYAQHmJzQHjrOTs5Y3NALOA2345jc0CEUlJ/0WNzQBpORaXkcHNAFvwUIN5xc0Aohc+oUXJzQJZ0zNy2dHNAYHk4nU11c0ByrXG/8n9zQD97vaYbgHNAzjhAEHmAc0D+juBOo4BzQMzjEx0MgXNAU8fHO12Cc0Dt+A+chpBzQNXatV6XkHNAomXYRdORc0B9lDzvGpJzQFwdQCNNknNAVKmST2OUc0B0DwNW95RzQJplzCiNlXNANm4Z6Ligc0C9aHofCqJzQBoFzK5aonNAMjxCv4+ic0DlweO0nKJzQGQjLPYlo3NAklofnbqjc0AiWI5WA6VzQN56SfLIsHNAZr5J+Newc0AYExrnfLFzQDSeRodcsnNADxwx9bWzc0CfNd0pDbRzQCvqhiXFwHNA+NSNM/jAc0CGgye9D8FzQJjn0fs6wnNAl8gg3s/Cc0CeUeJUJ8NzQNLiXoXCw3NAntk4TdfRc0DITddFvtJzQB79lRnd0nNAiidYPvbTc0DBafkw4tRzQGp41R854XNARMyyHHjic0ACpSulEONzQC+lPyD68nNACioPTzX0c0DgCG4ijvRzQDvEQQVOAHRA3qYrj+EAdEAGOUho9wB0QAwsDsl4AXRAAbzR+qYBdEDq+YjncQJ0QBYkgsG7AnRAKrtYfJERdEBxqk/EMBJ0QEZa8HBNE3RAhMWb2+ATdEAZEWOHeRR0QP6+8HxMIHRAUNqPVLkhdECpXljBsiJ0QFv3l2xTMHRAyka2h7oydEAm0uU9YT10QIhgmY6kP3RAFi6CX15CdEB4eOY3tEJ0QNEjEbA7Q3RA9Z+XtHpDdED2g3S1b090QD69cSBjVHRAPcIndfdUdEDGoQgfjVV0QNdqmWk7W3RAamLcHyFddEAivdV3TWB0QEgEUry4YHRAebMSFQpidEBswHBIemJ0QHsK4p0kY3RAAMojsEJjdECDxzpoUGR0QPIlrPvEZ3RAvQNc+NRndEDML/N7H210QGLbSMcicHRArAjBnx5xdEAvaqsGQXF0QD4MT0GDcnRAHCpHRzlzdEDjw1ymNXV0QBgEmOfFd3RAs5vlt/iAdEBi76y+DoF0QIRok99NgXRARxTLEkmCdECOrXCePo10QGRI93gVkHRATqn75xmRdEAgE6qIjJJ0QBhjdPWgknRAM3AyveufdEC4VZIbz6B0QDREWiu4onRAwItCFQ+jdEBoDeVfCLB0QLYtzUtNsHRAaXfF3sawdECkYu8M+7J0QOZPYgpyuHRAGzqv38q9dED6FcVL5MB0QAjU0YF2wXRAELi8pLrCdECVlXPcuMR0QKAHas76znRANjz6gafSdECuXMxAEtN0QJppyFs603RAS1rheuLTdEBmCIciztR0QHSvwBP733RAFJWE2yDhdEAUz0auuOF0QCUDuTL94nRA8pw1Ho/jdEClbe+jTeV0QEDVMkDA8HRAyb3DpIzzdEBKYHdZdvR0QLZ2PkVRAHVA0cchzKYAdUBm1JvzYgF1QLJxFf9dAnVAgmPnI6YCdUCybzsVPgN1QE5oyQOcA3VA8yQpTZkQdUAggRjGZxJ1QCbyPu4iFHVAk6cQDOQfdUBG9altnSJ1QMiugLx7I3VAcOruXnsydUAyHldDqjJ1QGRxqxnLNXVA+B1VFiZAdUAOwfS/U0B1QLhbGrF9QnVAsEMJ5ptCdUCAyxGF3UJ1QA06lezWR3VAoo3AzP1PdUDPe+k0H1B1QCqBG/VIUHVATj5RG+5QdUDXdbE8glF1QPp6ufJNVHVAKggNEXZVdUBT/miNcFt1QCDeaQwNYHVAdKWbE2ZgdUAIQaVaoGB1QOa0YlI4YXVA+o1iWmdjdUC6yX0b+2N1QMwFcP0hcHVAXo8lZHlydUAMwc8QhXN1QHiX6xCNdHVA/uGA6Y17dUA8JmmQd4F1QOCNHhqtgXVADCEnh6aDdUBVFfJem4R1QJrhfVCUoHVAaBLUXCShdUBeXaojuaF1QNjsP9T5onVAIjfoWY6jdUCv88+3Tqt1QKDvssZnsXVAXJuuFVezdUBRbSbnzMB1QGIEhwZlwXVAVDIaVvjBdUBq696VfMJ1QOzdNJ/Qw3VAii0thsLSdUA0ChsfMNN1QGNl9O3L03VAnsT3OubfdUBV2ruBD+F1QJwhf4MJ4nVA0FzVDqbjdUBgE9fwfPN1QExJFFGP/3VAwJtSRUgCdkCaCRg90AN2QJmkTJPlBHZAaNH+oEsUdkCchi6/CxZ2QPAosqdJFnZAFo/bCYEZdkAZncfXyRp2QLQt+9WiIHZAiDW/XYkidkCD7xTkjyR2QJNAGglKK3ZAoia6pR8xdkBKy2t5ejJ2QMC4LuhTM3ZAZj1SX4YzdkDMFpksnTR2QKjuLGBPPnZAJfsW3ktAdkDqQbkGX0B2QC70dISFQHZA4hocRh5BdkDSKp9byUJ2QAoql0hQQ3ZA+37vcnpDdkAKPKSWqEN2QJaExBR6RHZA4dTr1HtQdkC1J4lPEVF2QJ6GNUjUUnZACszvFc1UdkAndC2cjWB2QCikRNUgYXZACs/z69lkdkCD0OJw0X92QPABEFFngnZAvMvtfY6CdkBxkf7N5YJ2QHIQGQKRg3ZAuBwnJN+PdkBukJpC6512QOzfpMnAn3ZAhjaj9UajdkDVVQIhjad2QASttrOcqHZAXrnMSMGydkB63NyNDbR2QDYFhn92wHZA4r73vr/AdkB+bjkzUsF2QI6HujO8w3ZACuqVoRbEdkBoM0j6zs52QPlkxNa+0HZAYLwoec7QdkDdFXKl8+F2QBQ6XWWR83ZAQOCRuDQCd0CqHgEzARJ3QPC31miyEndAiI2dwQ0id0DOpizEdSJ3QKQ6xjRXLndAvNYPGqMzd0Bii+8KDTV3QGi8UlR6PXdAztfxy5xBd0Bu/044tEJ3QEr5y/GOQ3dACF6eJBtFd0BUhZCNSlF3QHZYu2iSUXdAsCdb5+xSd0BC/Yfsr1N3QCjVs48oVXdA/lMjZUpbd0C0WauwuFt3QDoGv7gqXndAVti5REdhd0AUWhvEj2F3QExb7mg9Y3dAus4Iqydvd0D4fuMPhnF3QDRBxhYdd3dALE4pdx57d0CYZITkIH93QM7I9G17gndAFLMFgE2Ud0CmanTZ+qN3QKiUNz2ctHdAnMfH+yvDd0D+60joX9J3QNS2/5Dw4HdAJ7cq2pjjd0DUCLjYUfJ3QKJDzcJNFXhA17QBjG4ieECYXCe2iCN4QGB1VwfSI3hAw2prZrMweEDg6p1vv0B4QFLeMNoMQnhAjt0S4IBDeECo4wYL7UN4QCNKEHAQRHhAz5EQKHpFeEBCO30D1Uh4QOPgHrzKUXhAavBbTB5UeEBVul3dh1V4QLJu2rX3YHhApkCAlzpheEBDt5LztmF4QHSSZVeVYnhA+bsrp+5neECEau9Z9XN4QNRY8ulDdHhA2Z43O2d0eEDAVu+1i3R4QBxWIc65dHhASHVDU9t0eEAEPeF+LXV4QIJxHr3GeHhASIxTH/V7eEAc2dEBIX54QPTqUd6kgXhAiBk7p3uDeEAuEN4f/4N4QID9ZdWZhHhAQtPrb9OIeEAwRe3ilpF4QKh/fy2olHhAnwJt4KaheEA03bo5h6t4QEbJKoUmrnhAxXkTjouveED0yMKFzsB4QH+8pu71wXhAUvDig7fUeEAKvda1NuJ4QFudYU0D9HhAmpxibYz1eEDDVp2UmgV5QLRhmaVTE3lAbA/jGYYWeUDHdgXeJxt5QNp3okyxKHlAVvLn2w0ueUBGyBmk7i95QCCjSUzUMnlAInExeFEzeUCEv1BibDN5QIfPKLa3M3lACj4hL103eUCW/Ra+i0J5QCb7a4v0QnlA2M2NSvxDeUCYDyGzzFR5QPY/1ClQY3lAB0HDJt1keUA0etONRHN5QOSX67XVc3lAVi/UhjV0eUD+mdRvJ5N5QBpEIC4coXlAkG1PCDaieUBuOqPwPqt5QF+5V5HAsnlAwLoqo0azeUCwhZfSL7t5QOAKzmzhynlA+ty08ELUeUB04nc8z9V5QAoozjFR5HlAzuJ2ivwDekAgZ0IqkQR6QMC1h7P4BXpAMqKk1U0LekBUyyrq+RJ6QKZdkX/jIHpAgFfSICgjekAwQ7/WLit6QLSnm2j2MHpAxZ0WPSAzekAKxPtFDDV6QFgdE+gnO3pAmunpnSxDekBwb0ALGkV6QGzqAv0+SXpA5All2LtTekDjtc0GKVV6QFWOWx8jXHpAOpgMmTllekAluCpw5G56QAbfeue/c3pAHNDUc4F5ekD2G/3Md356QI6ntQ/ffnpArtGon8WAekBGDIWl84B6QJFbojR8g3pAuAucnzWEekD2h8zKnKt6QPK+bf0Ns3pAvtTXMQ22ekCsg3XVKsN6QA7yxJ1Dw3pAKPASwPvDekBJgiypGMZ6QP5zVypn4XpA4ihFZT3kekBCt4vfeeR6QLIbXuc17npAj7hzjhXxekA6qXWvXfF6QCW5B8F7BHtADazNP8gLe0CWV7Mw0BN7QPmx/wOJFHtA1f9kCE0Ve0AGuGNDWyV7QPKr4ByQPntA7OyKNOlDe0AchheQQ0l7QE6eCZybTntAn37K7GBSe0Bpka9CilJ7QIlcAmGPWntAXOdx5i5ke0AlUR6nIZV7QPwUYnnZm3tA2r/G+3nGe0BaqLuw/+N7QFU5QxOV8XtAtkzCV4z1e0DcBY6F2gF8QNILjeSaBXxAdk9iS4kRfEBy2hnV0BF8QLqB+w6iGnxAYNw4vJsqfEDTWIo/xDB8QKbGdqsyO3xAFKJ3Ks1BfECs6z93flV8QNK1e7ENYnxAQ8Va84tlfECcJ9DTAnN8QIrhQskek3xAyoTqDPekfEBcnpO3vbJ8QHD43Wh7tHxAsmwWXWbEfED85U6eicR8QOhIyMrK03xAPP/fUdXbfEBwaDDtV+J8QF/rqS8Z8nxAWkiAGVXyfEA/kBeWAgJ9QLXsoT9LAn1A6DQP9AAEfUC385DGBwx9QDC8auxDEn1AY4UCFmUSfUAE4cFjDhR9QAj0JMI/In1A/mV3PmwkfUAeerFCcyx9QIR0O/6fMX1AahmwyXg0fUAKU7iySDh9QLDwa5iEPX1AiBL1vNdCfUBSkq4U/0J9QJAQZ5R/TX1A+sXuXbttfUCf/YrGIHN9QBasazZ6eH1ACuNxXsh9fUAwukT53qt9QKAVXdclt31AEQ9XDWXCfUAkxQ/MK8N9QFY98IYtxH1Av/VwlefEfUD/sw3jB9R9QKzM0ZNH1H1A2NSz7f3dfUCaCA772eJ9QNzMtAyQ9X1AvOHPCDQAfkDCllDbph1+QJThkcI4H35AE48YcgAjfkCyf0WlATR+QJB5m/cIPH5AmTAXbg9EfkDLeahVpUR+QNPmB/pVS35AnntH4VVVfkAgTB2VklV+QEZ+BzMXcn5AwLbPjX9zfkBywb6qiX1+QF7h6x+gg35AhnchCUyEfkDDWyOXpot+QABDQv+Sk35A+OC557KTfkDwLxmemZR+QBd58h31mX5AyHjk62KbfkB2GZ4Snpt+QGzFon+9nH5ANmtIeBaefkBWs80NTp9+QCaWUB2WpH5AhFgQ4PWufkDiwK1JYK9+QKgvsF2xsH5Ad0QWDWKzfkCaNFoAT7R+QNRgZwSouX5AnQ/7zQC/fkBW2v1lGMJ+QIT9NP6qwn5AJESPnrTEfkDL9Pla08R+QBrN7B22y35APjIoztbSfkDLpVXswNx+QMPgxv0C335Ax54/twLkfkDs77wlB+h+QJCf9/cI7H5AlIQ6T9PvfkBk7dIyCvB+QN4CL/xACX9A90XwNF4gf0DM9+hf8SR/QMTUoS+rOX9AEROaGgI/f0AlRpaoTEB/QDjC2+9lRH9ARWNKfb5Jf0APRZJtIFR/QOBtVyK3XH9A+rYDEMFkf0CO9Ivsxmx/QJGROSS4cX9Ajlmc8uJ0f0Cu6kSHsoF/QJbNdfWfg39A7OTD4WKRf0CkO9e2mZN/QDtk0VsOoH9Av0cI+12hf0CX326c16N/QKU5ippWsX9AnoRmRQS/f0Au7g9Ya9Z/QH5cgAty/X9A4iQkaUsCgEC7JXezJQeAQDIdNwcKCoBAR9yENyEPgEDFSG+lxQ+AQJK8mN5iEIBAXIEmZBAagEBqHz/UdSqAQGPN/d6IMoBAmJ+x4/44gEAvtEOAjjqAQA96YYapQoBAHOK4xNdEgEAIQKup8kaAQM6AGw+MSIBAnKRJaO9IgECIP6YmJ0qAQLJgv9PBS4BAl8pvgVpNgEBAvP0V5lCAQCLWdJUUUYBAQoLO/ldRgEAgdUvvA1SAQLAThGABVoBAdRLaySVYgEDTZPtHDlmAQHkscConWYBArOSrqDFagEBYmCs9N16AQHO5er8aaIBALUZ6Kg9pgEA2uKRZImqAQL2mKisxboBAGpMgfClvgEBwNNB5FHKAQGSRYw3DdIBAurKE+nB1gEAU/1KRKXeAQNp37gpwd4BAL0Z57oF5gECJiJ9onXqAQFguML1Ke4BAlJAfi/57gEBawPZAL3yAQDD4YcAMfYBAMO/AXfd9gEBMoUCB1H6AQAAmge0nf4BAkO+zetuJgEAu/qeiAo+AQAZJrE8ej4BArNYul9aRgEBO/ahtPpKAQKFoAjNHloBAdIMx1x+XgEDI47f5ZpiAQBAKB78rmYBARi6Cq8WZgEAmZgHFSZqAQJwQCUsEnIBADpSSj3edgEDZomdZyZ2AQH7IutQFnoBAdtQVlN+egEA5NNkuHJ+AQMhvofoFoIBAbufwAQiigEDQGc55BKSAQKUWV+7FpIBAJ4yubjimgEDJyFqK86aAQKHegxmkp4BAzt/euIWpgEDsbiN246mAQBRC12z0roBAxkOm8xKvgEDPDIe0YbCAQKOfNd4nsYBAevbybOKxgECYSLBhfbKAQNKhWTgYt4BAyyOh1sK8gEAwd4eker2AQMvjvuIzvoBAPF59Wvy+gEAM6wSvM8GAQCr0EG1SwYBAac4cvp3CgEDaIlHvV8OAQOz6oufyxoBACInJeaTHgEDbqsYDtceAQDofdO0nyYBAHt4KT1PJgEBa5L8g1cmAQNxZBEg0yoBAsK6lxZHKgEAyBpyi4MyAQAydgm8Iz4BAwMB2lCzRgEAlY06WTNGAQJD+B5Vh0YBASjlLr8vUgEB4NCzqBNiAQIdqlb5J2YBAfHvRIUThgEDI5Bsr0+GAQG4Cbubh5IBASxYh9vLogEAMnjG7Su+AQEDYAfrW8YBAkF05vzzzgEBXN0aOP/+AQN448rw+B4FAdezooz0PgUDFxtMSuQ+BQATJ2o9AF4FAG9dR/6cagUBvbY3T9B2BQHa1KHQ0H4FAdvX8ibAfgUB6b1u83yGBQL6H5xM1J4FA8DePpi8vgUCzS9+yuC+BQPWi5vW8MYFAz142Wjw3gUA4sgz9KD+BQBCQyR8rR4FA6IZpx2JTgUDksRIUIVmBQMDdoPDwWYFAKOiNOVhjgUDQJSj7s2aBQKRExPx6aIFAhgsbxrJqgUAaDM0lZnOBQLHEnfr1eYFAYv39MIB+gUA4LRliYH+BQPi7jyFtg4FAPki0tT6EgUBUfZ1/7omBQHf6rhV+ioFAGljJWlWPgUA+u7pCOpGBQDnM9OCDkoFA+FnRD1aXgUDa7LfaGpuBQK50jF1Tn4FAPiaoluehgUAOJoDr3qKBQHw/SB/lp4FAJU2ue22ogUA29WVcLKmBQPzNzTbmqoFAl9PC9fqugUBV5SZHSq+BQJaSBztusIFA73AInuiygUCBkTyrS7eBQHaVfWlLu4FA8Fk/sZjCgUCAsiOIK8SBQH52OfmQ0IFAVmMTeM/SgUBR1VGQftOBQC7IQyY82oFAvKqnT7bygUAU3axtAPaBQAHcRhMD+oFAEsoETwn+gUDQdXIyAQmCQCCBMKC9DYJAOjftjcERgkCA2oPxtBKCQGwlXaXEFYJAXBo9ftgYgkBy05TFVhqCQAzrshe8GoJA4qfW29cggkAv/PPVwCKCQOzFvC7SKIJAMt5PONoqgkBVigatlS+CQFZkErpyMIJAyEGt+KMwgkBOe5zXFzqCQGmyCNhYOoJA1mDyiC89gkACMyShzz6CQDFrC5kDQoJAaO4b2jRJgkBi9IC94U6CQK2qWC5wUIJA3rwnFY1WgkAnfdh4lFqCQBpqnHXRWoJAesqpZWxcgkBYj7T2rV+CQIrUe41aYoJASDWLOghlgkBGkCuAomeCQKFY2V07aYJAKcNNoghqgkAwDSpElmuCQJ4yyTRqbIJA0ZLiZ7txgkDi31+5aHSCQHYfusJ6dIJAkrRGpDV1gkCIgRy40XaCQPjXmf/feoJAyi4I3P59gkDAB/tLAYKCQAnMCKdRgoJA6b7CxlmGgkCe5cssQ4mCQPgEOdkOioJAHa6H4FeKgkB+pBoXAo6CQABU7OhcjoJAzC1iY0ORgkBZIBE4PJmCQJR/gw1VmYJAQ0arLA+hgkAUo55EOqGCQLweIB7doYJAW62xQnSjgkAX36ba4KWCQBXDabQOqYJAEHdYOTWpgkC2K4tm1amCQPLg5KRRsIJA8qAoYAixgkCwcP5gabKCQFAs1blZuIJAzMluWs6+gkAlAz3rSMCCQELhrWybxIJAHFILNH7agkDomQXEDt6CQDvgDdWM4oJAe/mQWNfqgkD64FJs5OyCQCzqNhH67YJAsEJ613XwgkASa2ex/PGCQChQ8p+t+YJATvj/BBf6gkAPMmn+FAODQCXOqS8vCYNAvFWO3hwLg0CfZHNweRGDQJLrOwBMGYNAgNgS9XkZg0DFe5sEtxqDQJCJKs5jHYNAXU+KuO8eg0D1KS0uESCDQFqukr5jIINArmvGAHMhg0AOdvqtjiGDQKBBmgW+IoNAUMAnwGwog0DsO+XbcimDQKp9L4f2KoNAij/VdMkvg0AeungcWzCDQFhqAP9+MINAQcCRU2oxg0Be9Zl/dzKDQDhvq58WNoNAQjM55OI3g0C4ESWNLjiDQN3UUWo2QoNAXoS9aohEg0BcFnVd8UeDQKELiw03WoNAyU3bWmNeg0A2QDHcZGKDQOgEx369YoNAxl9RaWdmg0Alro7q322DQKSh9FxxeINAfq4QmAmDg0C8quVaSYODQGoLRfcZ14NAVbpOlB3bg0D02fDKOeqDQLaumh9c6oNA9FN0jz7sg0AmsbIqlPiDQPJv4myl/4NA2mkCflQChECa8c2r4haEQAVaTKRuGoRA9m/d2pwfhEB20GkfeyCEQLxFRAy2KYRAlFaMscM8hECSCTy/dUKEQGLZpfsKQ4RAuIVdhplHhECqyPqAE0uEQCKHurXJVoRAIYafMa9YhEAWzkBtY1mEQJo7TPmwWoRA0GUxryRjhEAic5oX7mSEQGy4DlPUZYRAwXDCR75mhEC2DrrH/2iEQJNOooi8aoRAQ3cRSeVqhEDQG7kv6G6EQKNqSQYAcYRA0HIj3OpyhEDpBDuv7naEQGS+byPId4RAnagsh/d4hEC0xjl5d3qEQCu8CebweoRAFR7GfiZ9hEDsYw7Fy4CEQK70qHA+goRA8u0YAP+HhEAhFR45SomEQBEYjWmrioRAvNSnvxGLhEByxhYz7oyEQMxNFUdVlYRArA7D0AGYhECWt/PZr5qEQFDDSd3IoIRARguV4LCmhEBmh7UGLMuEQODmtS9q2YRA9SMcTmrhhEA5r/KCzOKEQBNKOWdB44RAxhbwuGLphEAoFW0GSOuEQLlYpN818YRANAoEo2HxhEA9kkK/NfmEQHg64E1Z+YRAP2oZTEL8hEB4VMdN2v2EQPptqKdz/4RABRiw4A8BhUBXHVzvLAGFQFS++sUuCYVAiJjnQqERhUB8jMxFQR6FQHhOyDBDIoVABh5aCjwmhUBO+KifvUKFQPAqw8dgU4VAVvXC+2dbhUDUcVpGoGGFQI5k4WOgaYVA61a1s5hxhUBa6hNjOHOFQFr+u6K1c4VApjWG6Zl5hUCa4G7Nk4GFQLZdsUV5hYVABq1tiZ/VhUCTtOlXBOKFQDRcY3uV7YVA1HH238kehkB26kdkqyKGQJKJMboNK4ZATiVX/F01hkBeoQ7H2GqGQLuOmqaLhoZAdv+FOo6KhkBIAv1qkY6GQA9iFRAds4ZAspPIISi5hkA0nCunasOGQF66pg/UyIZAvAxrxnLLhkCKHrzEkOGGQAf8idFw74ZA2EQcFDL/hkAm+KjHNQOHQHOywgw5B4dA8uVIQK0Jh0Bgbf9ZPwuHQGobuw0vEIdAMyp9PJEph0BQKuMokjGHQGYiwz2EN4dAClAc/Io5h0AmWk5vcTuHQGKSM5eQQYdAVMsL6DZnh0CEHv/ZOWuHQJDbUcs+b4dAk93VdkBzh0CJnG8lhJeHQMih/pbHsYdAvAhRisi5h0COSmAvwMGHQKJ+J9m/yYdAkFtvKTrLh0CTJ2LTAAaIQOoXdyyzBohAyeZpvi4riEDR8oyzKy+IQEbWLdFQO4hA4HvRbFc/iEBW7eXwvJiIQD353lpZsohApYFKXFu2iECIUnDLwPOIQA== - - - - - - YJkbRh8CdUTYzK1ESFAZRfvThkSfVYlEHDCjRI5Cg0TvjiNFLpP5Rqs4X0SlIX5EIITVRLitLERN1JRF+0mQRaPk5kSabI5E7ESdREtmR0VCRnBEDTyXRGLUfEScsrtEWdFuREmbc0T0KHdEcvu6RIWWFUVyph1HJHRRRAd5MkRJb0xE7etDRHGkZEZD6phFLN95REQ8PUVs/6hEy/6KRmiFv0Q1HgVFiRW+RO7XV0Ry9K5ECPSkRVhAiUTw/5NEO/1aRJ0DM0Tbb7FEuBldRE0+YERpjVxEIKFkRfE6wETgsntFCw4ORWGuHEam6k1FMbWARGCXqUT3+2hFJfqhRJQd+ES5JRJFrEKIRFrRd0QClz9Fu5N7RCnsRkSWg9REgji2RBoe40SFioxE/soTRYWdBkUvX0hEzdZ0R0cTOUVW0bREFMS7RexnYkXoqiJFawKPRCRwWURZjzlHPO/ERDVhL0Z+TEhEMXljRk+kWkS9quJFr+xtRLKHSUS9SapEKgZvRIkEHEUv1Y5ENEG8RAgrmES1+JhEI5tLRfurG0WnETJEKPIQRWzhO0Sd/DlE5IwFRu07hER/D0tEmFYsRVCnk0SBFJlEOEWLRPcmnkUUQLVFsgPYRIgAwUSeTk1ENm4NRQ9ngUTVh1REKzSYRPQYX0Qp9zhGN2u7RMr6qUQSmoJEH0A9RPHtSkQhyVlFCbGDRG3bZURthbREQAW3RINKw0R3oKBEkwSFRJ7QrkRbL4RES6BrRNZsK0SD38NEWF+YRCu2t0Tq7GZE2rqzRNTP4kQIfQBFt3PnR3rIM0R6mYRF7EWDRTK2aEfMD4hELWurRN2IakTH3jFGTWblRfn0qEWlBIZFevBaRJ6+P0d3Ao1EWKgRRQT0fER2SUFEgKYfRUWsbUR/4+lFecguRCmYoERpY6FF6sQwRLKtskS0JkpEoZCiRKcNlESS4OJEkeMARfirgUSCbHxEDCmVRGGmQER+cKRE8kSgRHNL00TRMZJERC2gROqWC0W5RtdEuQ9nRMBZZ0Ti1c9EiOVZRJ75a0RrlVhE8HZoRJlt/UTqVGdE/Z1iRPUKjESQcI1E3XzZRUZkVESjvwFFnGVJRIOCtkROL4JF8cOLRPvVaUT+y45EzpedRJ+PjkSYVg5FkU5wRHhhREY+s3VEeWVgRK0Al0QHJxVFeomaRbFueUQP7SRGyjdJRBUhGUUffT5FxJVDROlBq0RQ5GpEeRtqRKxXuUQhiqNEsxviRMN9tUT+rdhE9BZMRdY3j0TnjfNE4B/eRIgSFUWoCSlE0IDURNCnnkU9m+9FmVCdRHM54URN095FKIVKRVTgm0SWx5hEDBA7RCWqwUQHC4hE3x5uRJc5j0QLFIxEwABGRAxrX0QwP5FEt3rmRMQdSkT061JEJI5yRDzeMkSNB9JEZ+LHRFHVfkQ406hEZHx1RJNrTkRuV6VE6jWNRQh8/EQq4kxE+KzBRNONnETOnGhEZzi9RBd+rESbGkVE9JdxRbkbAUZP8mtFH4S1RsGSPES3Wq5EsuRjRCerd0Ty05NEhPTmROSnBkUk8oVEsw93RTX7iEULl4xE0fXWRB3npkS2XqBF3HOwRCKO8URL411EhUAVRlDO1ESt2mxEiZ/1RNhq40bMAppEqpJnRNXToURQaSlF4RBSRej25EWtBZBFRFIIRbJo7UQUf4RErgXkRHuko0WJlnZE83jaRB/6l0Q9UlFEMTyPRKyPY0URvW5Eki99RAkPr0QGvkNFps+IRGKVjkZ6RCpEh/5hRZBNjUSvz1RE4A+eRAh36keIB5JEYQqFRpiLiES9jdBEAx29RjHLikX9D09GkRVbRBac+UTQfhxFsa5aRLmbm0QVqodE2e3pRA9qCEW7pFlEq2caRTnNlURVm8ZEffDNRFSDk0QmBoJEG2lyRDsKYEThYpFE4x5fRNzwOkSRdYtEPUEpRHgWfUTVbVxEchhQRSO1hUQRnkFE2fp7RBsMR0RyopFEtzo9RIFal0R5kz5FWAU4Rt5HsUT7069F0JVIRNJ09USKgqlETWZ1RNmwOUWgNphE0U99RHOdokSmMaREgiC+RcMbSUlZm2hFVqPfRK7frEQBv9ZFN5AwRbBWYkXLrQtFJlzTRCFqmUSEo05Its9PRPKTRkUD4pFGy1JtRDg0F0WLTP5EbREaRbWqUkTo0BVFf6kHRZPGa0RAw4JFgHbERfrlzERRl8BESvmSRFS+LkTlysZFDEcZRRWGY0SQ7+NEbunbRG1HakQCOANFH+9/RMewqETYKVpEAFa5RHL2kkWAiTZEzbJtRFIFg0SGxctEMrGhRERJYkSeqJlEgaiXRP6lO0a8PlhFYt1yRfnyRUSmqYJEC7fzRchY2ETUhgFFZWbGRC2JC0XXZHlE0X9BRJykLkTztoxE1Z0WSDp+YkdqtChEsICQRtYGu0fejsVFJ1iaRD4nuUYL4W1EoflTRKGzFUUAzNxEqkedRF5Td0QRXl5Ese+oRQjAekSejA1F9U1rRJ70T0Q7fYlEW6eQRNs2PUTLTkBEglezRcTBkER1fohEkR9jRLTOt0T8nRVFB1LlRDMmbkQBkK9E19tgRPDkskS9zidFsijYROMVZkSL6ptEsrkaRlNMIkXozIZHKxI1R/koR0biwl9FAXNhRPpovkS43mJE5t4/RHCAKEW+U3FERsKXRAeTj0Qmwo1FZxR+RuOdXEbkYZlFg6uaRACuiUX+c19EZTV+RP37g0Rd/0tEA7KnRXD1a0aaaIBEhNuIRbIQoERq3V1EE7B4RDBgtEQ4qIdEKUd8RXBrUUR/kvJEZg2cRG9kzUePQu5EsNjCRvBDW0UOVJVGT8wiRtDWl0X2V0FFKJWJRBhZCkVy/GxEPXuRR3gB/0Y+S4dEtbrQRQqyNEUfdeNEPvODRBLzi0T6pElEgxJIRMe7rEXAKjZFywOtRLQOQUQ+lYFEYSeIRBoFqET+b8REdXc4RVq2NUQHUZ5EyplRRBfSeEQJhwdFepq6RLedzER/joJEtUQKRakeQUaYo5NFh2qhRM2LKUXDo2hEWNDnRLOOoUR8xllEAXe5RHn6dEQU2YNG1DV5RKXmskUcFZ1EUW+JRFsTQUY+I7dF9d59RFB0n0QuUJ9EIjV1RDHwv0TDxbREkFHuRgHGg0TWV+5EdaOwRITTuEYPcDNG4cQbRfc4jEQUXSlEOvpoRJnpNESggr9EH3SXRI3UY0S3e4REZymTRr5liEYJttdFjbqyRK7dskWM8XhEdsARRYahUkQt9kVERiu5RBWJX0R/VnZE4oCORIyhzURomYdGG1m0RU7zuUS4LJ5FGu9YRBxAfkSizoVEk9sSRoN1tER2y+5EbvgpRQ4NJUSbozJFq3BFRMfHeERDmD9EaaNwRCO4b0RuDHtEV2xPRG8tr0Q+v81EyolRRASHYEQiOKVF9qbMRDS6n0QEbnxFOVxSRGOOn0W07pVF0rjuREhS+kVFt/5EanNiRBjjOEW382hGHUyHRNayhkX5GENEeNagRQ8UkkVN91hEy+6xRDCagUTMhaFES7GGRJGoKkU61mhEFE86RTz6s0QMZndERo9URBzAcUQrPt5E30e4RBSFNUSFS0VEXiKORA+s5EQLJDZEWnNcREEeaEQlKQBFQ6yERA0Nu0RD6HFGqYpcRJUq/UQk6KVF8ScgRZw1a0QnjxtFWhiMRSqyAUXNneVFO3FvRD5PxESQxPlFlgPdRBFk+ESa7ppFCF0JRbxMqEQjfE9Efh/VRKvPH0XqtDxEvC8NRbafSEST5lZE6RE1RilCzESIqe9EQw6/RJiuVUQbQfNETQPoRBmlo0Sdac1EMK6PRG48+ERKj4BIjZ/PROdtSkSb1YtEemqeREugg0TYl2dE4HPpRyxtBkXPDG9Eu4pgRHikjERLCIFEpurQRHSthEfX+DtFKyxYRMXENkWi5VtGNLOcRR7uU0TKk5JEQS6ARP8pRUUAKKJETPz1RP1/WEYvtUlFDb7ARZAwXUSK+2VE6dDhROKCeESeaxFH5OqVRBGhPET4SgNGFvE8RTCwoERkUyJFsUJtRJk9LEZ6ZL1Eg6BJRKNzO0Qi0VxEacRsRA5X9UTMoktEpdmjRHZBaUQ0d3hE8h5pRHw7vUSV63ZEoHlTROqG0UTZZQhGLNQZRmzWQkQhtO5EuiD+RPI0q0QXX/FErFZHRQiyCkZWDGVEB2RBRel0WkRF0QpFiSlORFUmXkbgW1pEVx58ROZtQkVMnkNEhsdaRJJUOER52k5E9o+YRA9hAUX51shEkfSCRJJr20VBMaNFftCRRNJ0YkS7DqRFF9t6RJeQZUfHoEZEYmsgRgaKO0RiSU9GB+9GRZKMQ0UPfghF+IJnRPkBbUReVJdFcFaGREn2L0SJdZREqDlkRPOMS0TX1ElEM4JORLivkkStv6NElAsSRdh8iER0FkhE218ARURzsEVErFRFo5L8RJYbqkRqzRZFo90+RNATO0TZ/75EuU9iRMsKUURiFXREe/nNRHkAy0S/oppEyr0tReoR1URd9RxFzKnmRCk9zkfp7p9E0e9lROVwlkTFTkpE5SwrRz185EatGhBFeGTKRY4ww0XZ1dhFQy6URDh9aUW+QAhFCAhPRU4EYER6ubxF/oTbRAB4h0QuYLZEBFFXRNoc2ET9sp5EtrzPRIo3R0QifUFEDRBkRDdubkQgkulFH8GdRDyILEXyZLBEAUc4RJ/d4EXEeEFErfuuRLJy70fCByZEFtpmR9SFkUXYOCJFekyNRN+ocUQ/46JFtwP5RrNhj0QchYZEcgmVRC8XG0YeLWxEH2iFRF8XAEVrj2dE+YVxRSklgkQIXWpE3+JuRKraWEQl2odEyWpLRH1FSkRarShEP0pWReGNjUQhZZhEksloRIRjOkQNGYdEtkxwREtPrkSvCcZETmKGRE62FUVdu5RElu5FRKG3TURB6VJFWsMQRYTCM0THk2ZEzPA5RCg5QUQM47tEjEiWRFCSi0TKcnFF27uhRGwnRESP64lEmvSYRD2GfUSIisFEVSGMRNUZUETWn49En1aDRBJuvkXOdp9EmcmBSHXHMkhuIglF6oZ8R3F4lkYm+3dFuO8QRc5XbkX00EdFmBOaRHtQcURof19Enq9HRfQwWkTSyfBEEv55RG0eOETnDQNFwe24RP7ZukQheklEs7lIRAAHZETffwhHU3FuRmK5g0Q4KwFGIPccRlme4UScP0pFXlVKRYN680SRisBEyMkgRWv5IEXBXFFFMBsRRXgt8EThlF5E4A7PRDavpUQ0BZlEgadRROqDhUQ1zOpFxLAORc1bA0cim4hGNugQRmNbTkTdEGxEL6VVRZ2l2EQ1GGhEbViBRF4zOUSyvqFEtpiwRFLS60S5cYREi/U9RPS4NEQYF/dFZoKvRZVZzUSDoUNEPSGhRJHZgkTiI3BEeldxRL5RO0SIAXlEZ7//Rae9pEWPKttERdNuRCueSkQFYoJE5AEhRkiqtEW/SFtE1WZCRbm4XEQqnXFEN/WERjSJZUbG8ZNF8I2iROuBOETwDBhGcObDRUfMJ0U/XsdEerjwRMTNeERvtEhEkMyARC4UT0TqdgtFIHiGRAAtnkShjU1FUefERANOnEQ= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - so/fyG7BckAiD1y6TsJyQCFc2yXkwnJAlNbKYTvDckDNygaLxsRyQKzRe5VaxXJAxGNI/dDPckCoZ9bPedFyQCL8yjoP0nJArsWBkEPSckBm7/H4dtNyQNKi2vJh1HJACOxCWo7fckB4Bx2Pz99yQNKLXMa24HJAhGDKJE7hckAUZNr+UOJyQAjjg6GP4nJAlPod2STjckDRXy2DUfFyQBZL3bDK8XJA3oNIIxDzckDUKHa/JfNyQHRYIBq383JAAhWhBqT0ckDqkWSzwf9yQGQipVn6AHNAIJPO5jkCc0CMnbGk0AJzQMz47U9nA3NA9jPN6voDc0BWQfGUKxJzQEdxEB+8EnNACjXlHfkTc0BexBm2BhRzQHo9H2NNFHNAPh/Xc3kfc0DZ4IYmOyBzQPpco7OlIHNAqtgoATkhc0ASCK3seyJzQKI0uyERI3NARqA4h88kc0DzMaBDRzFzQP34FkMMM3NAmuXALNczc0A18exx+DNzQFxxabU2NHNAJDaXcLk/c0B6lSJRekFzQMv1FxomQnNAsxQ/vbpCc0CuZAyg9UJzQEbKVlF6RHNAYiW//ZtRc0BUMKMJuVJzQLh3MAhCU3NAQGTmnKNTc0Cg4mMzeFRzQIy+nw36X3NAhAjtCIxgc0AIL936HWJzQC26Bms6Y3NAyV477eZwc0Dt8cIXSnFzQGoJygjdcXNApqIhELd0c0DCq0o8THVzQL2C5jnyf3NASoh3EHmAc0A4M4p8ooBzQAzbVecMgXNAEpe1P12Cc0AQhPFsOIVzQBzFWaeGkHNAPNSEfiiRc0BR3QmEjpFzQPqoUUlNknNA1LcB1syTc0AtTZ+eYpRzQPj25+D3lHNAuNyqzrigc0CDpeAbD6JzQNCdQdpaonNAwf7Ebo2ic0AsHb+pnaJzQH762DQno3NAH9ruxgWlc0DgWtrVyLBzQGDW9iFasnNA3thEVrazc0AQWtogDbRzQPDOsEuJwXNAFJ/x58/Cc0CUKWSkKMNzQCayEDvX0XNAnXNZWZHSc0CmIlgKv9JzQHzc290E03NAld9/VCTTc0DbE6/x9dNzQGaWf1Lj1HNASpTmQTjhc0AmUEdRZeFzQNbr7iR94nNAgJ+J2RDjc0AnHLS1NfRzQAWi1CPjAHRA1OZlMf0AdECgcBANeQF0QJXbQuijAXRAsPb5C3ICdEA3m8DjNxB0QCbUNPuXEXRA8gz5PU0TdEC+xvh04RN0QAsCdM13FHRAeJq6rUsgdEAswuVEiCF0QPvkVYG4IXRAKEXrtrMidEBmjUazVDB0QJ5vK2JoMXRAGC2hEKU/dEACnuYcqkJ0QGLEBGM7Q3RASUzkVo9TdEDkKnP09lR0QLSxhHaNVXRADASlwzpbdEBQk/nqIF10QBpJPVW4YHRA/C1EnghidEAxegi4emJ0QBZuHshOZHRAYLp33sRndEAe9vSk1Gd0QASKXDAfbXRAKKWSGiNwdEDKlikAQXF0QIz9HbDLcXRAqzgYnnxydECQTLd/N3V0QLKLZIr5gHRAvlXdV06BdEAX9qtQSIJ0QP7XYIkWkHRAoCtNl7qSdECeu4+J7p90QNcutBvQoHRAqCycnzahdEBnFlyBeqJ0QIpEbMq6onRAZcOMdg+jdEBU/oUHCrB0QGQyQcbDsHRAjOU7VDyxdEB/U8t6ZLJ0QEwbCdT6snRANutF9fmzdEAn5MSyyr10QLrWOYq5v3RA16FBP+PAdEDYyWIK+sB0QMRJM7B4wXRAwLlGViLCdEDKMK/nucJ0QJoOm1u4xHRAvlRWQv3OdEDm3Zf/N9N0QNf8TJnM1HRAr+v17LfgdEBuVOa9tuF0QLNY13v54nRA6H6Kf03ldEAEanG0AfJ0QKD0j+WM83RAkgrZeXn0dEDS27tmxfd0QMxMJTJRAHVA0DwVwagAdUDE/OmJ5wB1QOjHrKbNAXVADRzUwl0CdUDbaEr+pQJ1QALsxGM8A3VArN0qmJwDdUCsv4wmmBB1QCRhZwVrEnVADEXU1yIUdUAUVLg0nSJ1QBSlsXaqMnVAXrZXA801dUDgINMFJkB1QOWEz1JSQHVAc1IJGrRBdUCw3Xy8fkJ1QPUnjk/eQnVAeaOPXdlHdUComBku4k91QK51B+8AUHVAkD0M/0tUdUAMfJOid1V1QPFoMvxvW3VAiCIs4QpgdUDDQJNfZmB1QPz82iWhYHVAeNwVcThhdUCk6ZdMZWN1QBKurXD7Y3VACbNibnVydUCMU4TWhnN1QKLeyUiNdHVAQBqL8457dUAKEBbcd4F1QA72VrKtgXVAIEG9SaaDdUCsMUFBmoR1QBj1DV2NkHVAsSq4rzmTdUDeh3n3uKF1QCqKWuSRo3VA1KliJbukdUAh0Xi7Tqt1QFguv5JksXVAED1c+MS0dUB8uTgn8r91QFaBB9rOwHVA9ALgEGXBdUDs2DFl98F1QL4UUHPOw3VAg5UW4cfTdUCEXnvJwdp1QI9SmaUL4XVAQXLXUAfidUDMP3HPpuN1QAADEOA55XVAFPLja0gCdkBynv4N0AN2QAh9cdhMFHZAmsfIPAsWdkDAEnpvSBZ2QMKWjEKJInZA9oPCag8jdkCwZxVCkCR2QDIC3TdLK3ZAQC02Hh8xdkAG3e0KTzN2QIxsZ4KdNHZAhRee9UxAdkA46gV3HUF2QM4oUQHIQnZABAMsfXxDdkAmkTEjpUN2QMAkvq16RHZAxLHj6dVIdkAjtQEwfVB2QMVV2qfIUHZA5tmJ5BBRdkCSI3Nr1FJ2QKjr0Dc9U3ZAQhifI81UdkDHvU3OjGB2QJCenVPgYXZA/jt2pttkdkDPck540X92QO0H7JyRg3ZA9LhEkOCPdkC/d8ca7J12QMpf05zAn3ZAN4kXxEWjdkBXQZ62jKd2QBp1I9OhqHZATkyS0lGwdkC6QQiVwrJ2QOj1zUUNtHZAOuVPiK20dkBPOz5nvcB2QF60XHlOwXZAijE72xnEdkDGUsQLz852QKX7LVa/0HZAQL6V8vXhdkAsTcS9tPJ2QJaTgoyQ83ZA+dVT4TICd0DuiZUppAN3QKT+m/gAEndAov2Yrw4id0BWqbD1DDV3QO6avmF5PXdArZ6eMtFAd0AgMEjbnEF3QFDSNPr2QXdAXGWnP9RCd0BtPenmjEN3QEal4xEbRXdAKiuQM0pRd0CMe66IklF3QF8yVYGzU3dAwP83RClVd0BYWz9ykmF3QErN/4g6ZXdA+Id6VSlvd0ASoXVJG3d3QAb+6mkee3dAfgkcn3iCd0A8g+9/f4N3QPxdwZYOkndADF2jAkyUd0D82Y+u+6N3QJ4ebbGbtHdAkBzvES7Dd0D6dahZS9N3QHTgHemK1ndAoJEEnjcAeECCCb3j9gF4QHQSQGdNFXhAOPE3/m4ieEBMH33c0SN4QHVvJjSqJHhAzOLCXAtCeEBIqKQu7UN4QH8nOVYSRHhAYsd1bnpFeEAGGiNuylF4QOJlbjaIVXhAdJYDp/hgeEBtkdGxOWF4QOVWHX+2YXhAk4hqzbZieEB+4rHruHF4QL7Jtq5QdHhAeu9Ip4t0eEACMpZW3nR4QC63GOvGeHhAfvC9TfZ7eEBqYmjAIn54QCi5s3M5gXhA9hz7r6WBeEDYOS9mfIN4QA7uBSP/g3hAXtOGzJmEeEBLPKgxQ454QFrAqayWkXhA5uqKDqiUeECQ3mxDpKF4QBKxgdStpHhATLeRAIereECikn/5JK54QHqUmySJr3hAwPsmVKOzeECzQcqr9cF4QHJpggsHxXhAyn7n1gH0eEC8o0RRjPV4QBBwV6wOBHlA6UmGmZoFeUCH+FzogBN5QAB9yfSzKHlAQhApUwwueUBo08i81zJ5QBaCi65kM3lAoiob7vlCeUCW9Ezt/kN5QIpTr3fLVHlAVjIGYepgeUDyOvLq2mR5QNxsaztBc3lAWGs/AtRzeUDoFUMYNHR5QCiV578sfHlAzV6IMteAeUD63iBwOI95QMjc+rUcoXlAFjplmz2reUCa+MtSwbJ5QEQHzEhGs3lADqrKqELUeUCHcjh8zdV5QL5D2XRQ5HlAv4Pm/fsDekDsZNOwkQR6QAgqf335BXpAmD1AFygjekDCXBc8Lyt6QJhRkkwfM3pA/m6LBAw1ekBA1BSZJjt6QOCwENQaRXpAUwKT4ydVekBXmNpDIFx6QBDSQxg5ZXpA7mmaq+hqekDaYMIIg3l6QLI4WgPWe3pALiMhkt5+ekCOtMaAlad6QAKbLVVPs3pAgovo8wy2ekAU7FdpRcN6QPnchxIYxnpAUFDwn9bTekCKMsquOuN6QMXqXhw85HpAKvVuE3jkekAmC4+ENO56QNinCOJ8BHtAmkuyslAHe0AUYiV3xgt7QJA7daoqDntAI4OXDs8Te0BQvv/BTBV7QJTXYzVZJXtAsNXw+8Yze0AkC/t5kD57QErxxSzqQ3tAT3INp3lFe0B7/J1rQ0l7QOQ24neXTntA9JRmh3rGe0DCEFZzstF7QIznp4cA5HtAScuYKYz1e0BdpeHkkQF8QM6emrbZAXxAOjs1fGQEfEDP9eiLVQV8QHfyN0SaBXxAgqHfaokRfEByzn4v0RF8QGMLzwbNQXxAny9KeNtRfEC2DBhHflV8QJAyMKqMZXxAwPv317F1fEDYbn9awLJ8QILqJK8TwHxATTJm7WbEfEDnwx5+ztN8QKj3NeTM1XxAD7x3+VfifEDcZeW5FvJ8QEwSCIZV8nxA6p6foQACfUDgYRxbSwJ9QK49M4UABH1A6IgqWQgMfUAIK9omRBJ9QNe9z5APFH1A3A/0Oj4ifUAr//DBbCR9QBD0qEFzLH1AxDsjuKIxfUB0tbhteDR9QPujr1RIOH1Ae2HuuoE5fUBa0T2wiD19QEjGJqvjQn1AZ63x+jJffUCof30B6mV9QHbbh3ogc31ATs0MZXp4fUDA45CaK619QP5kwSwpu31AoOXwqTK9fUD9N5QxK8N9QDcx/yMuxH1AlkfLKebEfUC2zRugkvV9QO4y/5E1AH5AylVD7KUdfkDoIi6lOB9+QN68I1olIH5A89ODQ0AvfkBEpo+IATR+QFgA8OAIPH5ACNdzZwtEfkDwELkYpUR+QHC7V5nkTn5A9Gd7uSdUfkCIDC0ptlR+QIR49ahPX35AQiGmmRFmfkAgEEyat3N+QP6knSugg35A5M8jqFGEfkD+CBplp4t+QMBexMSuk35A0TSN3ZiUfkBai6U085l+QKnk55Efmn5AtCvGCEuffkDiVEFQ/ql+QEig0n6Zrn5AM1QSLPaufkBbKByrjbB+QNFxsDS3sH5AnIfxoxCyfkDbIfv0TrR+QBW0V5youX5AA+ZpYQS/fkDpeQUOtr9+QNqBdsxaw35ABJ/FEcHDfkDVkLhuysR+QLndTlK0y35AEBZq89fSfkAixg4jw9N+QIY1hHsD5H5AG4HUVgfofkAZT7SeCOx+QErVJ50M8H5AGJT2jF8gf0CADoTa3j9/QJxZnjBxRH9AuVodw99Mf0BYTMYHHVB/QA4SLlYfVH9AStZ2NSVYf0CBTWaDI1x/QM5n4bK4XH9APHhN/MBkf0D672soxWx/QPYbm36Zbn9AwwvvvLZxf0Dw3w0UrIN/QJDI11ZikX9A4pNMbqiRf0B2KgrclZN/QIowlv4NoH9Azwi8fF2hf0BQe5dPVrF/QJoe6P5nuH9As8srbOm8f0A2AlVXU8t/QHxJdAj70H9A7U0dxcfaf0CfB78nag2AQOxzQhx+EoBA6BHzz3gYgEAS2zhajRmAQMn8WGkOGoBAuGwD6z8agEATbYfu6CGAQBDacVyJMoBAVgjDp+o3gECiBqg+jzqAQLKh3mqpQoBAsiSpF/JGgEDTrmL7jUiAQFPNGDXuSIBAbtk2NyZKgEDKFdZQjEqAQOiJ0tKvSoBAZsvCAMRLgEBHSgUyXE2AQCj13FXST4BAllGyYOdQgEB3nqU9FFGAQIaoIdMDVIBAFB5qOwVWgECsWaUcJliAQKyoGZflWIBAdoBJ5g1ZgEBjh0eHMlqAQCPy8o2/bIBAuL6yLilvgEAqaQQUFXKAQGABnjjEdIBAPH1X9IF5gEB1p5HFKH+AQG0UtL7OhIBAJOjtaUOOgECc6/ZfHo+AQIyswxw/koBAkIebs0eWgEBaNu6aGpeAQJVx/tMsmYBAQLGpd8WZgEAkAKj0OZqAQOyfhhFMmoBA70DcKwScgEBsnMuyxp2AQB36QTQFnoBAvBN7WeCegEDwPJdbG5+AQJb4beAGoIBAaPmkUwmigEDSJl2ww6SAQL/uckG2p4BAw9vhft6tgEDG1HwLPq6AQJktxVgTr4BARGEXPmSwgEAIQ4D8JbGAQKZPzVzXsYBAiadHCJyygEBes+aXm7qAQAfGbbJ9vYBASiEZ3DW+gEBCVzKFUsGAQOptb8QxxoBAvHlesEDGgEDPMgIp7saAQOOZM6BmyIBAiHfFcirJgEBbeUErU8mAQBrkIAg1yoBAGlWp047KgEDOHP5U38yAQCrvKE8Hz4BAOkI+fyPRgEBsA2GFK9GAQGA3EIhM0YBA2JIb0JnXgEDREyr/BdiAQISnsJtK2YBAsRqmHAbcgECQa8+cROGAQKbrGFa65IBAXL+c7P7ngECqk0+A9+iAQCMuh2mf6oBAHLSCO0vvgEAx64Ofj/KAQOgJtvI884BAtC/3cmz2gEDcr3uFSfeAQMyaUqU//4BApTW3l0AHgUCa5S2GPQ+BQITOcOVFF4FAIjiyTjIZgUCMY1OCqBqBQNAV1fIHH4FAxPWtwTQfgUDijE6erx+BQDyt89U0J4FAtZ0jl7QngUBX+ohXfC6BQBq3YKsvL4FAWm3jpLwxgUCQU6ENKT+BQOrnoEEvR4FAFJ+leoNNgUCmJhiRN2CBQN82GL+xZIFAZyCrBrJmgUAPEToxm22BQMl+3HOCfoFAFLsZl2F/gUCSzfyOfoqBQNQ1WsdVj4FAKIpWtoWSgUAwLiAThJWBQFb7CbVVl4FA+BK1B1SfgUCxyie65qGBQAkWmj/fooFAsspR2G2ogUCmQTCn7KmBQBzZ0nrjqoFAmNDTcEqvgUAHiDKzxbKBQPyH3CCPs4FAEHEXSUq3gUCMC5Sjlr6BQFJeJ+LWwoFAdv/f4q/HgUDAjhMVftOBQIjtSNsr2IFAFZiWVAD2gUDGorJoBPqBQNW9r4PAB4JA5NGsCwIJgkCOUUM3hAqCQBJ4tgK9DYJATgmF8EsPgkDLuHn2tBKCQIQo+HLYGIJADp60X78ZgkBlZMu4uxqCQGxJ6zAHHoJAJM9j6NYggkB2LIVQwCKCQLLMzc3OKIJAmGj5YKQvgkCku8utcTCCQGjp1Sk2NYJAPO1dDYg6gkCyEIA5rkOCQHbmw+pfSIJA0bzF7D5NgkCyTlo7pE+CQMSx6w1uUIJABJ2g8SRSgkCl8eBVlFaCQD5yA+OfW4JAPprlfW5cgkCIJJtbNV2CQI0kEQmuX4JACMpLGltigkBiT17KB2WCQAEmyaO+aYJAMuGZIhBqgkBgkUbvamyCQHQ80RBMboJAVP5lT6xzgkBokK80bnSCQEiAuxIDdoJA4f5P6NB2gkCApwBEbXiCQC38i9LceoJAkrvFqP99gkB5Kxu24H6CQNSQaiEDgoJACMR1xlGCgkBsurfx14KCQNYnYN1uhIJApIn2K1eGgkDLt482Q4mCQNIIVA8ajoJA4B7sTUORgkCNkmC49ZKCQDbJaPVnlIJAMESsnTyZgkBopkJvVZmCQEZusOeWnoJAyImavg6hgkCy8T8/O6GCQFVFMsjdoYJAUgFy1uClgkDuvCqoD6mCQNCyTsoyqYJAnf1e83CugkCxqeDOUbCCQOTScO4FsYJAxI60z3m0gkAmOhERA7aCQEOku+dZuIJAQo+FiknAgkC5C2h9+cGCQBgc5Xezw4JAUK0V4CPYgkDSTb1yfdqCQBSBcWWD3oJA2N9hz1ftgkBtlcVG++2CQEx4Jn7+8YJAzEnvPgD2gkCv9sTjrfmCQFzR7/8UA4NALiIzm2IHg0AeKAM7JxGDQP4Oxq95EYNAkDAefUgZg0BXKxj3eRmDQOAYVAG2GoNA9CUJMWIdg0CHNnXCDyCDQA7GJSxkIINAtOer1XIhg0BKdBi8iiGDQFAd/InuIoNADcaiknEpg0DX15HHsCuDQKxOJq7KL4NAigtFyGsxg0BiMsJJFTKDQLOTAXN3MoNAYk878vk1g0CfTG034DqDQPABXoXPQoNAdCm6EDtWg0DwFoceYFiDQFxmoCxzWINA2uQdkGZeg0DsFVvgZ2KDQFyPgGwmZoNA+3Y23OWBg0A722KjC4ODQBYryyRohoNARlrfBUqJg0Ay3KIdsY6DQKnXXIOPkoNA2jGeNJKUg0DlU7WSXqmDQK71ytfWuoNAuPwuohnXg0CCK631+d2DQGwfNAM56oNA7DObUJT4g0CxZ6Ngp/+DQGa33yFUAoRAim2rjaAHhEDuhGV9PCmEQC0pVIclNIRANri5MgtDhECUfYx2JkWEQH4cIQo9SYRAy8vDgj1KhEBuDF8eEUuEQN41bLysVoRAikgE77RYhEC64Jv6SF+EQNZ14H//aIRAUJLsaOVqhEAzQFcm6G6EQFJ7E27+cIRARVjBtOpyhEDIRAlP7naEQHpRkevJd4RAdqLTEfl4hEAUiTrodnqEQN7bUtTxeoRA8L5SDyZ9hEB70btbKIOEQKgnTqWpioRAPPOanlSVhECTMhUdAZiEQJD4kSusmoRA8A2bzVmdhEAgU0J54LKEQCa3cBBq2YRAAPtqKGrhhEDMtuX9veKEQCA1vKJA44RADD/qP2PphECRa/mUe+mEQJn5hwRI64RAltImZTbxhEBgv/eDYvGEQAZJCoQz+YRANHy/MVj5hEDeQ4Lp2v2EQDo6o/J1/4RAHiTGFiwBhUBcdcZgrgKFQOPl911AHoVAJm96FkIihUC6Tj+lsSaFQNZAW/VgU4VAMEVHQmdbhUDCsyuJoGGFQG2v04afaYVARuLE/5hxhUDFHaeltHOFQEVY3sdpeYVAsk61bJd5hUCGLEz9kYGFQKKxDedBo4VAqIVeO3K8hUAl4Yfr1M2FQGCr3RGu+YVA9pJHRT4IhkDUzRtvyxqGQNOpzeTOIoZAFt3GNFolhkBw3x2wXC2GQP4k4G5paoZAvEzzjoqGhkClwISQj4qGQFaMeBGWjYZARCH5a5GOhkDGfMOSpLKGQPj4kAwkuYZA8OCgi23DhkCdON9lIMmGQHoHnxrr34ZAAgGHCyTohkCKrxkLc++GQFpACbYy/4ZA3ASOCzcDh0A2p/FaOAeHQDInTZqQKYdAWkjBNpIxh0DMTPN3ijmHQJXq8apdQYdA+l3vq4dBh0CAfE0Bj0mHQJj7aaQ3Z4dAwCg7ezprh0BCjvVwPm+HQIz2hlk/c4dA8IjF+Maxh0AOcvRSx7mHQNheWZ3BwYdAvlSFZ77Jh0C64rwm3smHQDtLFTM+y4dA1L+EUSwriEBw0ggUYjeIQAfmymZMO4hA3d9u9lU/iEDa6Dn9W0OIQOYJPrgqjohAmGv90lmyiEBKuq6nXbaIQKxXMq5ZuohA4CepwV2+iEBC8Td6uvSIQA== + NrgMGZxjYkA2uAwZnGNlQEMdzoN8QnFAQh3Og3zCckAKeGK9lHN3QA== - + - gpcARijF40RmF6REg1gJRZUcBUXuYLhE70VVRLN/ZURrCC1F+W0ERxcAhkRpRWREjRttRN7QxkSCoIhEaNZgRE6LgEUtV3ZFgunfRPEI10Q3PTBF6tGaRCWGQEQBl7hECPagRCA34ESY2cdEMmaxROJBOUX+Tq9EHyItRzDEZEQNJDdGJz+aRbrAoUWnlqxE44XrRFaOa0QqRIdExjpwRtBJ6kQLepdEvq2uRbiWCUW0jMdEp/F3RJzyhEQjl4REBTosRU/1IEX5UNFEd0AdRRXhTUSRMBVG5aAtReVGbkQAXaVE7YOIRexArURj/txEC/GGRWoLFUUXxEVFHmOxRK/dYkRewqFEoaaCRDVKPEVgaNdEG0N0RxnAOkUdueREHUoPRv7uuURtUpZFu/qBRLfTfkS3k1xHYeG/RKqZAEWc60RGOsB4RhbUcETc4s5FRv3MRE3ynET0TnlEK2wNRTfhx0Qu491Ewm5dRcjO8USWdFBEXyfXRZnLk0RTCjBFtAdvREaBZkTFlfxEvtaARFpNtUQSqCpFapecRc0ExkSLUJREOv38RPMf6kRzf4REcG2ZRFSXPEaNV6JElxyqRE9bcUQZZ4xEblWGRfOjpURonoFEu0mRRNg7ikQGE8VEyY+9RH6/j0QZDl1EftzNROz1bkSdZC1FH1f2RN7YlURA8gBFGXpsRbte2keX5GhFX4bgRUlQNUdIz2tEEfEkRqaBrkVpYVtFVc2ERXHzSUcKSlVEg0/IRK2y1USQwDtFrpCzRaUGkkSiCp5FMt+MRLVFpES5YrdExulsRHVNe0TZXLlELExTRbUMDUVM+xJFCYh0ROvpiERb4YFEWjCVRDk+X0TLR5pE7tiORD3TgESbk4ZEE0BZRIxVhkRpmmlFYbmORF8aokRtq49EMTSGRL3pmETpq5BEE9i4RFNKbEQCNNtFyxW0RMK3kUTOUPlEyrCDRL7qf0RgTYNE9GpwRe1p6kTtyNFEg86bREQACEWR1GlE2jwARSjiMEbprGlE13QbRd9M2EVju1pEXk9URF4Z30WjVgFFzoVkRaCfdkQ7r5RE+4G2RIY1+0QCp3RE0MhARXQ1k0WHG7BEFesbRSVv2EQz+E1FXn3MRFeqrkWiV2NGGEm2RO9U0UQOecFFM4P7REsX/0RiHIlEd+JVRDeQpURrfHNELs6ERKbCv0T9JLJEoh+BRAA2jETZCZ1E5dKQRJCX50S71XhEPjhQRAbMWUQS779EqcEVRfM7tkSaR7hEi1WNRYonUUUvqHZEv8TERA9R10QJo1FFiUCNRGE+DEaC8XdFMtbARh6q3EQr9qpENHcbRdxTtkXAS5hFzXXIRByvc0QOOmBFDFFyRDpU3ERnb7VEU64IRY6seURfiX5EhJqNRtGaa0RrgnVEFz94RfpJA0fYBKJEdwALRStgSUU4GqlFIkgIRUQc5kReBGVEdzZWREKm4ES0RKRFIlF1REKviERXhoNEqlqcRPNkM0U6CGtEOmiZRKijXERKuShFqCmmRKrXQUQjM6RGZ/l8Rdj2/0dvqp9EYkBzRNDUtkaA7G9EI+KURKgNfkT9EtpGieSTRYrBZkZi7ABF/k/BRF9F6URXGq5EMQ0yRbeX9UR01JhEFlXIRDOybkR9m3lEZFdvRPjUzURASmREM85YRGRqa0Q2tJdEkzNKRPamlUT/gqtEJ49RRWyPekRKHYJE4KaoRDugY0T1zxBF2U8+RsVovUXMjNtEOYseRQnbckT9n/dEQ5lTRFF+aESLEGZFmqtnSVL/rURWccdFV5wVRXwffEWdH21ERB46RfDXrUSTJmJE249jSKgFekSAqI1FBOa5RlhQokTatmtEdB+ORMcHNUXYEAtFHbmbREWQpESqymtEgquJRY+cG0YLiYVEO28MRWnuH0V2JclFnylyRcOVqES1/5FEbjpkRAofiEThptpF+vyBRPdg7kTgt1JEumnZRMSqs0Td455EFUNSRNQtaEQ8jrNE/jm9Rc3UREX0ZApF9pDuRZo5AkUjfc5EtGDXRKMpVUWzj9hEAZIFSLgjQEcrB2tGUbEESOHssEWpc/9GIvFNRagSeUV8YdFE3v7fRElqLkWTaXVEkeEnRSBhg0T68qJEGLTFRccUj0T+oNlERAaOROnSZkQf0gpFuoejRBb/wERr5e9EaiZQRLzqikQQIqpEdM6bRPp5GkbruUVF+1GYRBwLUUcesw5HV/iDRHn8VkaB9RdFZtafRLp1sEQZL2VExDS/RmAOrkT290FGd3qbRM6LgUSSvsNFJqGORCi/m0WXPKhF3ZnORKAVjUZsF5pFh4h2RI8e1UTKUJZEomk3ReEqq0RJLbxEAnDqR2MfNUX45QFHlPv0RFMIqkZ9FVBGlPG0RQEiTUUslIJEZr2nRLK5bkc8I8FG04SXRDz32UWt49JE7ZpZRBCXBUVA+NREOdNIRL4qekRfQptFcT6fRIGOlkRScPtEf9egRCReskQc4ZFENcZ+RbeyAkVvqs1Epn8tRWAclUSf6nFEaLSsRDPPa0at2f5FD2jHRODkNUVil2NEWlRHRAAqb0QPomZEk2eLRPeYT0RyC2RG+wdTRHFB50VCMyBFw1YWRuZxF0b6IT5Fdi4vRZcJgkRVjZNE+poBRwW9TURoO7BEzQiNRI2Cr0ZuuRJGkDnoRNWoh0RMTlVE5QRhRIl8AUWL77RELpvGRITXB0UF+IhGKHepRi9o+kWVj5ZFgzKeRH1VnESX+FxEKVCNRI7x9UTM6ytFnRZoRNwPdkSU/VBGLtDQRa4YAEU+S3dEtHG9RT+8a0RH3h1G24LgRJtK1ETC2gJFv0R1RXi5DEVuP6hEJJRZRJF0i0QKELNEw3N5ROAqhkTdhF5EyLOYRJWSokQu+1lEHSiFRMNfVUQ6vcJF4maRRCeIzkT1105FKo9dRQ9rCUUCtqVE2h4AReyVWUR7k4REw3gfRYNIokTE4pFEP2tCRQouZkahRwpFBswFRTNLh0V8xYhEJXS3RYVasUQO2IFE1mRARVPuDkVk9L9E7OWsRDnPbEWtX2tEoKtsRK3OYkadzNREUCxxRYX+60RRn3dEHZdpRaiSsURG55BEkyHzRR8m2EQ1XCJG0NO1RPGvHUV4RdJFDOQ3RSaogUTNlXxEkr2PRL+jc0QurxpGJ9jeRDRia0QSjRJFjzSHRF5qc0TVhoVEAk05RbPEgUgTZFxEg62sRJbYyURAp5VEnwwqRenO7UezH5tEYxiMRNbfxkTtcq5EJSOURCWtkkSv4odHyJSARMu5LkUrfkJG80VfRACwskUB9l9E2I1cRE8EUkQSrX1Ex5IGRRC+XUSei7RE/ZViRBQEXER4AXNG6L5GRWiHykVxgblE5NqORM2yqkRzsnVEbxMSR3mEaETzYeNFW9StRO5rbkTldSdF6JEBRcShQkZ1lOxELqJlRJvigESwjaRE9cyhRMV+wUSl6N5EVJthRORFaUbi6O5FK9lHRfuUcUQFlRJFbdJIRSilHEVsSf1F6SEaRYVDYUSIapBEA3ExRmHAZESxWrVEtqUWRcgyw0QnqqNEpn99RF0hf0TwTp5EGy61RUiDYkW6cIJE/zGURKQieURNGE1FGNluRPGtnEd3ujVGzZFhRKjah0bGrE1EYNpcRXELI0UwncxEhVijRFAY10RCq41Ew3V5RGKieUSOX8REO/17RC2CuESjU+1EOZtpREOniUSzPHBFz5ekRE3+jURMSk9FmU1GRStULEU55sJEGMKrRNAZhEQxhFRE3zHkRPYApURIvftE1gNhRMV1YURWS31ECzAHRT6EXURROX5Es1GzRC7llkTDbVFE9d/tREC13UfNwWRExrpJR+X7WkRI8ntEm+TrRqRaGUXp4V1Ehn+yRQK570VR4+tF+raFRZAGA0U+XhdF9gaYRG0Hs0WAUgVFhdCNRCi/cEQDC4RE+9C2RJVmhUTWE3ZEmG17RDAPo0RNQa1EG2aNRBqHs0XGdGRFYXgDRXKAukS/za5FSfKKRDE2W0SBVONHh8HcRJAqQ0ea7ClFxJB3RajFp0SSxZNFOUjdRnEaDUUcJmxEhu4ARqZuaUQA9N5EED58Rccs9URqp+tEq9xKROxue0Sj+2FELUpqRIlEdEQ5TjlEgFfHRNjdBkWd65lEBWtzRBnN5ESmrndEL++DRDjJfURZYwdFnBCbRGNeUEQDga5Ey/vrRCUWhUQwhsJEsT+OREGjQUXXhDhFwWieREJ+gEQCTmxEojuZRal3cUTpwY5ECOqVRHTE0USC1hNFQsVLRPMxXkR758hFNh6NSE3eSkgYAgJF6SKmR2IOmEZxj51FA6gLRa9iSkXyqF9FOvgnRWKdhETHywhFiDUTRS+b+EQ2R6REVjqDRDJ8hkSitxJH8cdyRqKsWESvLz5G+XEZRhcWvERHTzZFRyJ3RYiOikU8E7pE0m28RIKsWkU34WlFibWpRGdReUTxHLBEQQSaRK3SlkSpDKdFh+aoRBdRB0dgb2dG6uAfRsUD9USXIYBErINbRXUVf0RGo45ElUpyRDxIZUQXZXpEqhFsRJDomkTWK2lEmx3mRBVQXETmQ0xEd8X2RdV4p0Vmy35EtvLGRLNxX0TImuJEj7CfRJe0V0Rwg3JErYJ4RH7Ma0QSt8ZFB/C4RaP4e0S0jEpGZ2iTRftgakUG/YZECHb/RA9Hj0SM6VJG2vMuRqcdZUXnI6ZEefocRjYml0U2vHRF/cujRDU8TUTVSONEBhCWRMtrs0R3z55ELcmDRJ9mqESXPrBEkKA+RfVFGkVWRJFEwP1xRDvOm0Q= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 2DMnnibBckBaMN1Mb8FyQFOiqdDnwnJAEY4J/jvDckD2QdvNw8RyQBzQRqlZxXJAIqDr0S/RckAI/VQIfNFyQLQju1kP0nJAZpgvOEPSckDPeP/7dNNyQKVjskXQ33JA7J/sgLjgckAuyqPzT+JyQAXvwbSP4nJANjU7JSTjckACskRLyPByQPoKsi1R8XJAHHuZc87xckAYxt6FTvJyQCzVzxac8nJA8Mw68hXzckDG/zATLPNyQKJbx5u283JAzBMWNKL0ckCU6bOqwf9yQFSCNHxhAHNA9CSOkPoAc0CcXUhEOQJzQFfPIHfOAnNABYQ6HWcDc0AWPzy9+gNzQOi+RkwLEnNAjuq3m7wSc0D21Ul9BhRzQCcDCx15H3NAxHVGPjggc0Am17MoOSFzQJyW+UZlIXNAPJ0/Q3gic0C6GaVxySJzQIiMQmYTI3NADgTNNzokc0AeLLdVzyRzQBo42SNGMXNAkfA9U1gxc0BCEsQ++zJzQP0GFQgRM3NA1BUiKjk0c0CGQnejuD9zQPIyWVniQHNAl9eZJnhBc0D0njqpJkJzQAyca8y5QnNAWG6XQ3pEc0DlOFg4mlFzQAJfp0JBU3NAbwsfnqNTc0A0b4R24VNzQEpfRQOGVHNAoCqU+/hfc0BMj32kimBzQBYfRPKJYXNA6YEiWzpjc0CwXekb5nBzQOgPuq7acXNAvrDI6FByc0AULwkPZnJzQC9Uizy5dHNAbGqpE0t1c0CwnJuw8H9zQFrfwQx5gHNArofk9KOAc0AIHGxQyYBzQDi11VBdgnNAjBgxA+WCc0A8IjnVhpBzQERGsSMmkXNA+omGTk2Sc0DUF01FZZJzQOq37Bxmk3NA2pX+N82Tc0DOUpKQYpRzQLf2xmL3lHNAPhIZhYyVc0BJAF+euKBzQPyxrfbkoHNAFsyCF1qic0BTCbwkj6JzQAr7t4mfonNADvCN9OWic0C0yotkBaVzQK1DOGzGsHNAcoylk9iwc0AzTjRifLFzQKomcX1OsnNA6xGA3Y2yc0DEIgy2tbNzQFZyS/IMtHNAun3fxPnAc0BIMil5O8JzQDhzzBrQwnNArCQsziTDc0BaxRFD1dFzQDEd/suK0nNAte0B8L3Sc0BgVsrT3dJzQD1btqoC03NALAAg3vfTc0DQQu0H4tRzQJ4esTkK23NAIr8tw3zfc0D+tZ5XpOBzQDAgj0U44XNApSJk3GLhc0BALGBQeuJzQEyWO0sQ43NAZM67MFXxc0DVI2UwbfJzQOQo9JY39HNAO29s1Y/0c0AmzFk04wB0QFkJ63F4AXRA+HeZTKcBdEC8zWNecwJ0QK7YHIe8AnRA9PjnJOgDdECY6L37OBB0QKq+MFqJEXRAfr+6gk0TdED2wgpyeBR0QKJ/L9psIHRAjJ45+7ghdEDr7iqc+iJ0QG6bQ15VMHRAUAk/4rkydEDsLosy8zJ0QKwc+AxfPXRANlXrYaY/dEB4ZWPl4T90QCrpX0JSQHRAUBNVYDtDdEB8Y4L0eUN0QGQ3gY5oT3RAxELqSYxPdEBz4DvjtVB0QFrEabmhUnRAcmc4Jo5TdECw8BdL+FR0QDDHyk6MVXRA8JDuYTpbdEADZqshIV10QPBP37+4YHRAINb42whidEAQPLt2emJ0QFK7jkVAY3RAG4YD+g5kdECvk2y9T2R0QHUZQBvFZ3RAIKqhIdVndEC27l3FHm10QK9CnEQicHRA8rXkTUFxdEAEus2PeXJ0QF6qAqDlcnRA9Jx7FTtzdEDMXFT/onR0QApEVIg2dXRAVoI1u/iAdEBYgsYwT4F0QE3WlczsgXRAglHBmUmCdEDArNQm0oJ0QOoDozAng3RAYTRnlhWQdEAodZMQk5J0QFgfDsnun3RAePd2F6CgdEAkaBJuz6B0QDVlgsE0oXRA+HtDELiidEDe5WKEDqN0QJoNgGELsHRACKwdUsKwdED6FAPb+7J0QGA2sdPhwHRAI23H5XbBdEC2pfBG6sF0QOKgbyl6xHRAMre0xrfEdEBW1XMxp9F0QHUyefCu0nRAFlkufDrTdEAKHgSZdtR0QDyVDsLO1HRAJsIKZ7jgdEDOVZP4IuF0QF/sz3K44XRAnEVDkP3idEAdAbtTTuV0QC3whu6N83RAKqxvD6T/dECA9mczOwB1QJYvvsFSAHVA2oiUyMwAdUBEUxguZAF1QM6/aaxeAnVADAOga6UCdUAN69XQPAN1QIAbO+mcA3VArA/wVP0EdUDIGa4tlRB1QFC84nDCEXVA7NUw8GUSdUDiSjUN9hJ1QFdotrMkFHVAGNnjJ+MfdUDP0ZZOnSJ1QB6CEVMYI3VARjLm+KoydUCiQvExNjV1QGNg2o3MNXVABaOBbSZAdUCz5gwPf0J1QJphQefdQnVAWhqnZ9hHdUDm1aV0MU11QPxaZzLoT3VAE4EsLTZQdUCfFTdzgFF1QGzcdB1OVHVAsZ04qHVVdUA0nkPeblt1QLjYe+cPYHVA7s5AqmZgdUBAT2Tao2B1QGr2+CE5YXVAZskFJo1hdUAMNl9f82F1QNRVimJnY3VAenXF7fpjdUBhkSeDd3J1QDIK6quGc3VA8cOYYox0dUB6iV01jXt1QB/jdTR4gXVActRwzayBdUA2V7U7UYN1QH9RL1umg3VA2USXBeWDdUDqIOOkmoR1QIxq9+G6kXVAJhnWp7mhdUAqzn0M+6J1QGudF8JNq3VAZrkajmexdUBRVqUO4rJ1QHTNP1Duv3VA3BWgP9TAdUAaR17NYsF1QILIOCX5wXVAknHZbcDSdUCsu7Y6y9N1QHtMjuTB1nVAXgyop8TadUDaZfwH5d91QAqDkokO4XVA/H7bjQfidUAx/3bCUuJ1QDRcLCSq43VAFBVv4UcCdkDkiGpI0AN2QKLP6IRMFHZAEwqadQ4WdkCt0ytLSRZ2QEZDvSCIInZAm4qLLGQjdkCwEt5GkCR2QHxVRSjSJnZAMurTJksrdkC4qSU9HzF2QKwrUiFSM3ZAEmpqpoUzdkAe8My7njR2QNRRKPGMO3ZA6CVVH00+dkCw34taTEB2QDD+ruReQHZAGEeXTx1BdkDidQdRokF2QOzyEMvIQnZARPrTK3pDdkDHBjNoeUR2QDada/k4RnZAxoj8cHtQdkCpIkLjylB2QLhE0icTUXZAe8w9xM1UdkCEict6jWB2QMgsnX4fYXZAncavFNpkdkD/NnjA0X92QNjisZ2Sg3ZAas9+wN+PdkCWpk0CZJJ2QJBzJojqnXZAWXuGvlGfdkDF+9giwZ92QCgzreULoXZAXLD5OkajdkAoXNi6z692QJbWG3TCsnZAXNwUAg20dkCymuqAsLR2QGrL6Ol2wHZAcsdulcHAdkAKaSafTsF2QL4uM0PhwnZAbfOIcxvEdkAeVYPNzs52QGfasT160HZAGAXS5/ThdkDHAx01kfN2QH5wQrE0AndAGsO9SqIDd0ApUvL0ABJ3QM6ewXKMIHdAOA131w0id0Ba+G1PVyN3QKAkfiSiM3dAPnxyKw01d0AkYl7FzEB3QH5s1AmdQXdAAin4DrVCd0BVUdI01UJ3QOmHEOIaRXdAbTM4YUpRd0Cqbg1EklF3QDTUngFiUndAT/hZr7BTd0BLW0B/KlV3QGnhPfq2W3dATPhKPklhd0D6ZadbkGF3QKBP4HhBY3dAICr4HHhjd0AC+YISJ293QOA5UwaRcXdAbMTJKhl3d0DgsFDMHnt3QKNwggVNgXdAxCF46XSCd0BeOQTEdIN3QIuIsBULkndAf8Dmjk6Ud0Bwlth5+6N3QAQlGAqatHdAHhAa1SnDd0AikaHepcN3QLAF4yhL03dAyPIKMebgd0DC1lDvOAB4QCYxKxn8AXhA9q7vnpoDeEBat9XvOyB4QHAgO7JuInhAQIm83IojeEAkJzdw1SN4QP4jGkcOQnhApQuYrehDeECCKNWIEUR4QKWu+iZ6RXhAyEr7+spReEDL2DsliFV4QL0mjt/6YHhAygdPETpheEB7qMtttWF4QCikWSuVYnhAHKWinrhieECxSM5V7md4QO6n/P+2cXhA+sh8yYt0eEDsWdBGrnR4QH0Y8KTSdHhAp8M6hP90eEBWiH+/xnh4QHTUfRr5e3hAyJUGXCF+eECKsukxpoF4QAybwqd9g3hAjGfYvJmEeEDXW/Z6vIR4QIo93/OWkXhAbs1oXaiUeEBacsWS56J4QOos0Vm2pHhAJGyH/oSreECQE3nTJa54QOiuVPaJr3hAeB3I2nmzeEBcodkln7N4QMR54QbKwHhAQOih3/bBeEAK/3S8BcV4QK3w4wu31HhAhwgvfjrieEBnXk2WAvR4QHhyAMUj9HhA6hCPK4z1eEB/v3UVEgR5QJWxckyYBXlALFO7DIULeUBAMexlUxN5QKJv0xSyKHlAX9H1lwsueUDIVktu1DJ5QAWZU3O6M3lA7swRQ1c3eUB4rb9dj0J5QLj1UQ/2QnlAzKttpPtDeUBcGL1SzFR5QIkg1dCMXHlAIPB0pdlkeUCEcbspRXN5QFijtMDSc3lAk5awsNqAeUAsONeEBoR5QOJwz48ijXlAsSVNUD+reUDhGHjAv7J5QHqHysdFs3lAiiAcBTW7eUCVohl7ycJ5QLZhVzBD1HlADntpXMvVeUDM2sxSUOR5QJGeXrxG8nlA+huOB/oCekDG2tCj/AN6QGYzPbKQBHpA4iyZ7vgFekDOsjhGKCN6QNqosbYuK3pA92RNCCAzekB6AGgyDDV6QBBSvXUnO3pAGKnrLRpFekAy8Hx8ok56QHqiUMYnVXpAA98ivyBcekBA9pLpKGR6QPDyD+I3ZXpAtFkJKC1sekCSZwZ8dmx6QOVQRkPDc3pAruRlEYR5ekDO5mds3X56QCoQv2MzhHpAHGoyZ8+TekDy0UuIDbN6QOzttn1Qs3pA0ve8pAy2ekBCzuuRL8N6QA++9P0axnpAuL8X8kLOekDjYtZ79eN6QOBo8Vs65HpAoA4EQDfuekClUiDq//N6QK2x/vd6BHtAlrz3vcYLe0CAc0OZKA57QEYg+beKFHtAY94u2UwVe0Di+gTkWiV7QHqqaT3BM3tA7uDPjZA+e0AMlSXs6UN7QDaUzuFCSXtAGMD5xZtOe0AlOCGWh1J7QNrPMHWiU3tAIGJAbyKVe0CejsitMaV7QOkiH1L9s3tA0dPW2cbRe0Dc2JrrAuR7QMSYwsZi6HtAdJRYsov1e0D0lBmIkgF8QLCiWfvZAXxAOBciX2gEfEBSoTlMmAV8QJwGOvGLEXxAe5t2stERfEBYp+JAcRR8QHXv+8bMQXxApmNjrN9RfEAkU0qHflV8QCuJGsGLZXxAaETw0gFzfEA41uTrWJR8QKzCufz7pHxA0qRx5LyyfECBqqJzD7Z8QPjrVG0QwHxApLv6I2fEfED5xKDp6M58QAbhtPjM03xAiHuz28/VfEB4HO/T0Nt8QLD2XA9Y4nxArIHY3hTyfEAOHhNIVPJ8QJGa2/8AAn1AZ3Al1UoCfUA+RG9vAAR9QP7dk74IDH1A1le+ZEQSfUC9vYWZPSJ9QGZvnWVsJH1A4JHrRHMsfUB4tOPwnzF9QNDFmjB5NH1AhujekUg4fUC0Q9hGgjx9QKJzEiGIPX1Aunf42OBCfUA7PHe86mV9QJ0g9Pcgc31Am9QMLnl4fUDYASdP1X19QMzV3tk0tX1A3Gc+Sia3fUDGdeg2Krt9QBsricNown1AZs8HaSrDfUCIzQ2wJ8R9QMhSQ8dSxH1A+F/BCeXEfUAkhmxslNN9QNAD4sE74H1A8mUIF9bifUA2Fd31PPR9QKJmyI6Q9X1AEEQcgaUdfkA8ZXoHOh9+QFjMQLYBI35AxFaWh0MvfkDy+q1NATR+QPZdq04IPH5AX5Y+7z8/fkAws3r5KUF+QGx1GUsRRH5AXES0F6VEfkBmZh+DBVR+QHIBS2mRVX5ASXb7kRdXfkC8Ua3gQ11+QLSijaRqYH5AG01AEBFufkDZ8A8s0XB+QA41/fSeg35AbMgD6hKGfkABW8Xevoh+QL82H7mmi35ANOOJZZmTfkDIWF35mJR+QG7gnpRzl35AnGOLI/OZfkDAHGP7iZx+QES2huxHn35AApaVV5qufkASUpgW9q5+QLaEngW6sH5A9qqZqySyfkDnRwOu9rN+QOw7EN9OtH5AcqwgIb60fkBepJINqrl+QEr/Kay1u35ACvOZx5y+fkAgXdxdAr9+QBKKDmNYxH5AvBjgOsbEfkBXKslWBsZ+QBjFcK1hx35AnE+NItDffkBmxsHjA+R+QPhi8NVY5H5ArOVaKgfofkA0V7P0B+x+QALmPRgL8H5ACNJLFKrwfkCEOOXwD/R+QMLtT9xN9H5AUYSi9qf5fkBcGqr/0vx+QAvkgjFNNH9AEOZzejA2f0CSEos2pTl/QHCC5kxoRH9AumiQsB1Qf0DYXl2XIlR/QFroMM8fWH9AWATZF7hcf0AHbVnmvmR/QNM8kIGfbH9A55MbScRsf0BG26y4uHF/QKDusTSxgX9A+YEcC6ODf0D9tD9oYpF/QLZ9NtWWk39ACgdDUA2gf0CkxeZYe6B/QB4Euh5foX9Altp3aKCjf0CYmTCcyKR/QIcAnevsrH9AOvxwUaCvf0C0jeebVLF/QF2YASzEvX9Ah1AdUl/zf0COFK0JBwqAQADILm8OGoBA1QmwdvMggECUrCjfJyWAQAToXZrtKYBANBO2sokygEBCpbxPjjqAQEZOqPWoQoBAlsMRBPJGgECmjASBj0iAQNUn/hXvSIBAZ+DYHyVKgECuvw4pr0qAQO6F+eXES4BAZegN/eZQgEAwLBxeFFGAQF7sh5cFVIBAAPJGCgZWgEAAMmGgBViAQEq8eQEmWIBA/VsNqeZYgEDwX1F9DlmAQAc6BxgzWoBAvHfEejdegEDw4oLQCmGAQKi1hANBYoBAOp5q2R1ogEDFPdWYIGqAQA7Z7rcnb4BAOA40IBZygEB1PwcAw3SAQKJbHhQsd4BAL0esf253gEAGZzoihHmAQESxhQTYeYBA0IlZnPd9gEDmkFjhKX+AQFy3Oe/lgYBAnTaUcACCgEDpx0CvHYOAQLTUYpQXhIBAaEU8XCiHgEDcm3TNoIeAQGgUzDL+joBAWEMJSB6PgEAbpBCfPZKAQG6cWfH7k4BANkL2S8aUgEDlTdfMR5aAQIBGSSsgl4BAEibMesWZgECOmxgrSJqAQLMYDWt/moBAHAwN1AScgECIgDynyZ2AQGg5DI4FnoBA4FdB59yegEB+MRAsHJ+AQAzfEbYJoIBALIVPigaigEDHBOSrB6SAQK6nFNZ+pYBAFBwkBIepgEAK3yny3a2AQES3fzbwroBAKlkichOvgEAVkkOyb6+AQC5eJKtysIBALkR/tB+xgEC4JwVMh7GAQHaifSvhsYBAbfFSX5KygEAytsGuwrSAQKz+sXYbt4BAycbm+gi5gEAMLZjKEbyAQMB6btm/vIBArEPVdIi9gEAN0cibEL+AQKhYRvA2v4BA5sy0Tom/gEAw60eFUsGAQGCYzZaExYBAmgx71abHgEBMfM8eIcmAQL6UVFJTyYBA0oeOotfJgEC6kPl7LsqAQAhLfS1Py4BAeE8UYwfMgEAesnr13syAQOs9xmLyzoBAzmgddAnPgECctZB+ic+AQKQOOmdh0IBAnBcjRSzRgEC4ygy2TNGAQF4iK0kx0oBArwytR77UgEC6rex9BdiAQGg1w5BK2YBAyCwr0QjggEC/gbVDROGAQAYvs6VY4YBAWZmifTLigEBfVamj9uiAQDimyXxE6YBAM8YCJkjvgEBak+MwZfKAQEXZwi4984BAFGIvmT//gEC+OOg5QAeBQA5iVKIXCYFAkjF5ED4PgUCY7OZEAReBQKZRFSgXF4FAjBPGNTkXgUD4iZoGqhqBQFxXDHg0H4FAxZU0X7EfgUCMzmKENSeBQCh4wFYtLIFAtefMzcosgUAubYwHzy2BQAPxhHEwL4FAJHUn37wxgUAyWIuzKD+BQKChGj2CQIFAKnF3JixHgUBbzS0AtWaBQIzOrGukaoFAkso6+3ZvgUAU61lbhXiBQMutHg08eYFAUIFx9YJ+gUA818kLgoOBQHimjNLahIFAzKuMDJeFgUC0fFpJfoqBQCBBUOJVj4FAOjvWE4WSgUCs2t5qi5WBQEg4R2vBloFAneM48VaXgUBl3uAN95mBQMA96IyImoFAFrMYKsCegUASY8MvVJ+BQAS5N57ooYFAjOb/Ad+igUCOmGPZbaiBQNgWCsHlqoFA7GChy4+sgUCMtc02Sq+BQP6dY2qqtIFA5Lj4E0q3gUBR0mFBRbiBQHJ5rBaVvoFA6nES5jLBgUClQOcQTsGBQIC8lNSXwoFAXkNriH3TgUA659Af4tSBQBhtkiYu2IFA9Qzq/NTcgUAwA8VEtPKBQGi7800A9oFAEiKBIU74gUDLs4ftAPqBQNKx108I/oFAFQpL5QIJgkDU4LE/uw2CQPRgAODiEYJAukfYKQYSgkCQ2nASVBKCQCrRXvG0EoJAbOvKe9gYgkCZ8+IQvBqCQF6SDgrXIIJAboe8EsQigkA4g+JpJCOCQBaF6OLQKIJAkjpC9HIwgkDwqscmujKCQJbYmWVZOoJAKNwiaYY6gkA8NMijBkKCQPsVdDxGTYJAVYm4rQVOgkBGPvNV4E6CQCCJICySUYJAKvYQtwZSgkC4odtSjlaCQGkQg1V0WIJA9SzOX49agkB4sbUVsFuCQKgvbXdsXIJA5laS6NFegkAXUT9erV+CQEB/v5xvYIJAjDcL0VligkBrMAOze2SCQLPHX+8GZYJANDlzfw9mgkByRpy23GaCQD7E+po0Z4JAUPi07alngkAiO5+YPWmCQDJboVgIaoJArldfUdFqgkAcPaIfmG6CQP7IlmrZcoJAfPdBT6tzgkB9IhHWEHaCQCdml6vhdoJA1k4RA693gkCCpZOOa3iCQLJbh+32eoJAzHh6VP59gkDCyUOdAIKCQB7hHj9UgoJAhtZIIYaCgkDIUAf9K4WCQL84B/hBhYJAbjFaYViGgkC+NWpgQ4mCQDwIDtxpjIJAlXTP+7WNgkCtrph8Q5GCQF1hrzagl4JAPHgeUjyZgkCkATPVDqGCQPfXQgI6oYJALnNf6d2hgkAsZ5bD4KWCQH6WnJ0KqYJAB3VNWTKpgkClOTg+5amCQMn8iB9RsIJAzwmVegexgkCS/QgyNLGCQG9KobpYuIJAICHrM7jFgkCdbxcH68WCQH6mjWKA2oJAQi+6xibggkBNhqfx+e2CQKjKjAX+8YJAfPug5AP2gkD6C+EcFQODQPm7koIbC4NAxEhZsHkRg0B3qmMlTRmDQNvImQB6GYNAVlmjO7cag0BMJ+KiYx2DQLr34uXXHoNAWtxJJeweg0CQyCdVDyCDQAgV44RkIINAwkQ8JFQhg0DAo9fVciGDQFa1bkNqKINAy77kUHEpg0Bu4fJjyi+DQFUweiNaMINAYlrY7Ggxg0BsVRt4FDKDQO/vABDtMoNADhEZjSQ1g0BG8LhRxTeDQKPDV67eOoNAjiA9mV1Rg0CA+jlBY16DQAQyuV1kYoNAPekhTbhig0CuoWZKmHCDQGd5qGpWdYNAVOETv+WBg0BY38PCCYODQG/ZTFNIg4NAH3Q8Oi2Kg0D/ryH3lY+DQIzBk72MkINA67mUCoySg0DZ92cYjJSDQLm65uWNloNAGwpQVbm2g0A2KcKw07qDQNE1HDDKzINAto5D4EvOg0DiwmXhv+KDQD+tNKY95oNAqnWT8zbog0DbGK2FOOqDQK4bpHg87INAoAIlWD7ug0C0rcJyqP+DQDGVz0qRAIRAJyvYlVMChECsSufPyD+EQLVdx2J2QoRAsnuY8QpDhECAGTAkH0WEQJBYDugQS4RA/PCo3qtYhEATP+dZrlqEQELLXXlGY4RAXrJweNdlhEDMO5W5lmeEQAmEZif/aIRAOPtQhOVqhEDXw/2/DGuEQD3e/jzoboRA9BR4L/9whECTCvhI63KEQMxSE4Qcc4RAuN3GW+52hEDiWgmkyXeEQKh9F533eIRAvoqJNXd6hEA8u+9r8XqEQMZFjrclfYRAilSbZct9hEAm+6ZbVo2EQBtwil1tkIRAyk6TElOVhEAW27UlAZiEQGP/zemtmoRANr2SuW2ihECiTbCzK8uEQJj8exhq2YRAMJYBGGrhhEAkIWRDQOOEQAxx/PFh6YRAxA5oAXzphEDM38RYSOuEQJDzDbw08YRAivJc0GPxhEBTnnggTvOEQBSSalc0+YRAWrpDtVj5hECY1GNhR/yEQK1X2lra/YRAdQxyDnT/hEAOPRKUDwGFQAQYiH4vAYVAyefxd4AJhUBqcl2t0BmFQGYxVN1BHoVA6C/VBZM/hUCl2gBoZ0WFQDAz/sJgU4VAT+Ej3WdbhUCwGreOoGGFQA4MP7GgaYVAI+EyQZlxhUBCuxEwcHOFQE7iB4m2c4VAiIFVH5l5hUBHaEnStXuFQDzQQh5FooVA3J8e7kCjhUB88e82RauFQEOEOurI14VAetjASZPthUB74noSQvCFQIZk6ZDQHoZAHswifioghkBSs/wErSKGQFSDnIwGKIZARF2+nxs9hkDqrTY8Y2qGQDBjbDgUbYZAnH5J2oqGhkDOAmEHj4qGQPF5FqmSjoZAXOH1lvGlhkBREKgUKLmGQIJactnM6oZA7CrXhG7rhkDME9X88PqGQAoCdroy/4ZAj9hV+DUDh0A8f6VIOQeHQGyflEKRKYdAVh/XTpIxh0Awp6ZMijmHQHKIK11cQYdAIicWGIlBh0CSat4E01aHQKTbEuQ3Z4dArs9XlTprh0BwhhxOPm+HQIZODPg/c4dAf7mR0cexh0BwCxZmx7mHQDi4f+fAwYdAmDj6csPJh0DwBdcSPMuHQI6EK4hRO4hAJEDZxVQ/iEAITOPpenGIQJyOnOlYsohAN14nslu2iEAoum1wXr6IQJiDuuA0zYhA43rccMHziEDD6zKqxfuIQA== + NrgMGZxjYkA/KJil8iNpQOO2GkbmYnJA525gjBHDckAKeGK9lHN6QA4wqAPA03pAJ8keqOwDfkBkhKwIWER/QMBqtPlXKoJAMnFELtgqg0DAmaIjBLOFQFDCABkwu4ZAUZ4jvEVriEDhxoGxcXOJQG/v36ad+4tA4fVv2x38jEBvHs7QSYSPQAd+isA/EpBATSSo6UrekEBOkjm7VfaQQJcUeod24pJAmIILWYH6kkBJK9+VvG6UQEqZcGfHRpVAkq0fYt3KlUA= - + - NRGyRK1MAUarpohEvCALRSCPy0STs8ZEhcdmRBmxQkSW1zFFvAAKR0VJaUThouFEQcrbRPfgTEXQ6qFF3QXrRMLxv0ReUhhFA37TRG/GeURC6TFEJFRLRFwjT0RyQ11Eez90RG7n7kSYZplEqcqSRNhAykRtjT5FkrmFRHiUH0ctTqJEdh1sRs/wdkUMwAZFFTpBRGIEhkaqMV5E5cLnRFPpuUR19k9E18GDRM5fi0V1GKpEsZqKRNU7h0QbcIFE0RtbRJSsCEUOM6ZES8lDRRsrUEQPb7tEtE0xRrGaG0UATglFUE+DReqvgkRh2sxEr+fuRHkRE0XjkoJE327nRIUPL0VR+M9Ev1GcRGbiO0ThOZFElAeoRNJuqkTZsKJHgkmoRed0YkS8KrJFgWFoRGIjukXJQt9E6xhLRwlvcUThyIdEOa9kROw4okTTmlJG+haGROtpqkaimYdEDby9RcJ5g0QkIWpEXJuDRLFyNUUAnCNFQvsXRWyawkSLCYlEJXxLRIXabUU+/NREI+rzRByfg0Rzle5F2LapRD6nEUVa701E5pukRDHiv0SlvqVEAEfbRPpNm0VIvINEp2Q7RIIzWUQBEopFxKhcRLsEx0QyjOREeGqNRNxrX0TH7cVE4BxsRCfWfUQi7XFGg09nRD7nhEROneFEOLhjRJOsS0Q6GGhE42JZRW+idUQ2OkxEuwHMROWMfkQhbG9EAluIRCFPQkTM8oZE/OLaRBKNX0SmFK1EQr4DRakVgkTJs4REQOpNRLrGc0Su7CZEE8wuRTOegURtq+xEicCoRS9g3UctuoZFoVWSRUIqWEdEny1FxsG8RL/kxkSP9upF22IIRsPSn0Xt+8tFv3VDR/MhUEV3qYFELf8IRUNvR0TwUd9ERConRQpj3UVEnYlEWwaBRGSaZ0QA6HhEAVSxRX8of0Tvkq9EfnZrROd3xEQY81NE9xL2RFXmc0VUTeZEvOW/RGa52kQqWp1ERJCiRBEn3ESTSYhEGecqRRYDh0TAcyBEzBamRDqXXUQ15/pE5FaYRCF/iUSRAyJF7u6aRAZBdkTsseBFqJt+RDQ6lERPQ5hEmux1RHc3ZES0H2VF6NmIRF6MWkRq4VlEFpRFRKKgqkQMN6VEQqFjRJYAW0QUpSNF6F6pRFHgLUanDYhE8fEDRRJPV0RyUDhFU/4WRtWXpUWjvOVEKszzRB73gUQUbYhEnoOWRAOExEThrNZEMoOkRImWxkQYRTNF1f3HRb/vbEQEELtEXhg1RD0BOURbONRECGqARSglfERPaE5GWBkeRh04V0UmVtlEROnCRQB6U0RYETxFsjR8RE2/DEU5lUpEi+5HRBOJgUQfFihFrI1ZRIA+TESGKmJEhsdpRF47n0S7VXREwBqGRGrK1UQq4ndEXDiMRKBdiEQdQpZEkffjRC+7QESkGOhERNw5RfX46kQXF6REqpxgRLHm70TnvoBFmyKIRNAmHEaBKGREGVitRQWitUbno11Ei2/iRKdZ/ETfPZZEEUqsRHpZK0X7dc5E01WlRf58N0T9PK5F1ezgRGqTiEUtfUZEhsnMRO/sVESV+T9FgJVRRv6ZOkWrl7dEtmgvReI91kb9AJVEHGJ3RXPwaUR6eJlF8v9CRPHRskUIi1hEqTTuRKDOpkQrQjtFzTyGRSn/qkTO1klEVNtsRINywEQ5gFBEwaGDRDMtIkXf7WxEg+eARMOvJEXeYqNEjYNCRBFukUYbIGZE3jFRRVn+RURGMlpELfryR6E9S0Si3pJGw7dkRMUKUkT528FGNKGlRVUrQ0ZT505En/RSRRoD9EQxdU5EGUw9RDyMHUWxd1NEF1ZgRDwuGUXIuDNE3DSURPFxzkQnIWdEs5J+RDj5VkT/D89E8l+ORMrbB0W5x51EmBJ6RNWtQ0QBPJxEelhRRAmTjURWuWREiQwwRPUjrES0VEZFaOCaRNNRfkRz+4hEiJCwRBK3OUXXSUZGl/6gRflLDUUPFQlFXKfwROjtBEXNUcBEZVOfRCmtmERi8LVE/T9PSbSSxUVHeMlE2UuhRKpGwkXv1AZFplmSRRcFJ0WWALVEzvZPSJ9pvEQ3+oFFRguORvTsRkTjfNlEQ+sXRfFuz0RFjsxE9he3RKuwaESJOYBEeXhPRUJyeUSq5yhFO9x4ROC1kEV7qjxEkqvZRUFRfUSeh7hEiP1YRHSZcURs5L9F2hUaRbmmF0UmBJpEJgjPRP+eqUTWe7BEhCDNRAwhk0XymYBEES17RFGGnUQWqZxElMGpRB8L3EQ2ZfJEivQqRv7+K0VM1NNE9oyGRBs4YETALcNFNHjORADOj0SjXVVEEVxhRKF3t0RIujpFrb+cRBo+EUhpS31HyDaYRp3syUcPR6BFRt/QRmMUnkRTATFFtimCRQC2v0RJVnpE2rpNRLe1TUQt6tZEIjk6Rao/LEXrN25EJy1JRA2hWEQY5o5EDkKyRZDEkkRTerJEtFByRMrro0SYpQBFdHObRKzTQkRIsmdFmUHBRIHctkQcGkxEFJIsRkjJQEXqaoxE4+GaR5SwTUe0WZBGKiaKRdMQz0Rp/UBEDbwoRVcxUESRrohEsf4aRRl2W0SoJVVEoiaVRnJXjERaSEdGfKSVRP4pm0XSsYpEF9aBRZTWRkTO4oRFicFzRKGf/0YkRsZF4rBtRMu7gEQnKVtE602BRBgwjkSTKMVE/tV4Rfl7JEQNojlFjhN2RAwrYURiCdFHH8EbRfQltUZhWftEWa6bRjxiKEYwUpZFTJFSRQ+fyUQugXNHxT+hRithokTGG81Fpk4yRVccpkQlJitF3TySRJMO5kSp/Z5FrgZeRfFXo0RUH29ErSnjRP04oUQ3CYBE+qjKRIA3h0T+u3pEI/YZRXANQETa8OxE1853RAZlVkQ4jyFFddGZRFeah0Sd/exE633JRPZftkY4bzxGPzK9RGkGQEQzaC5FHQ+YRc3FKUTTlUFEzYmnRG9LXUSldnFEiSFXRBNTY0T1tHZGrKJZRB9LYkSObZhFWCHpRBCICEZwdkJEz1nxRXVIfkQUizFF0J+jRM1iAEfgwoFEM0WDRNiGcUS2eNNG/CNaRFLIs0XNfXRERw6IROCMdUX/j2tEiUPtRPIfTETraG9EgrRMRLlxjUYbm6RELduKRpNMJEa4NBZFsvdERB0ZuURhN5tE+RuBRFfjVkQjkpNEtnxdRGLU+0S0f2FEV2kSRf+3z0RgfZBEV6yBRihbxkWELZFE/5UBRbKvmkVRr35Ee+/MRMyMG0bGB9xEh1upRK3qVUQHYBBFqQosRCVXj0Sk7nJETQfQRMMFIUUY+sdEBUFCRN0GZUTb4LREqFplRNDFUUROEplEHN67RV32gET47E5FAFoPRRMbp0VPJr1ETFAqReJ1wESjCYFE2rpzRaGtZUakAgZFVImvRGXJpUQmiQ5FhVSvRNvJh0Uw0jJF6WS/RCPZV0QpDEdEa8iSRC5I+0RE9ExFFSwVRU8IOUUD+L5E4xvURCLpkkQYsnxEU5KURJ9X9kSYgqRE2atdRAEoSkSOgmxEJ5IxRB+aqESCn9JEcQ+HRloktERZK1lE4VtCROhFjEUwfiBFz4l9RQM6ekQnrGNELYiLRYKg6EQxn8tFIqC3RDtzJ0VDd3JFngILRVQ/VEW0HVNFhJjnRNBsfkQf+lBEGztARvE4QETMW9REovO0ROEthkS708ZEmzxkRd8AxkRO3AFFJ69YRG3hSUT8qwJFxOYPRaa6ikRMmy5ELYtORLFmgkgSYCdFQA36RM3cUESPmO5HrwgQRZPqUERcprhET+5bRLu4zEQIG2JEb1uaREzqREReTY9EC9KFRN2IgEcmSU9EBf7LRF1BIUVvHlxG9shbRAj0h0X/kHZEj8NoRN4hkkSPjXBEFazHROvrQkTsnOlEKiiERqPFqUXn3FFEr+n8RfHKeUTWUk9EnEzARLZ9vETO1B5HFHS4RP2lCEaLI2lEb6p5RE7ifkR1o2hFXwDcRIrkJkZg9VBEdQW7RIUbiERSA0VEm0F5RC1BQEQ0e4pEYE6TRJqdY0SawnpEfmhaRPGBtkaPrABGeHCPRUDSVUQinktEsDsNRSdcg0R7ipJE9hdNRE89JEX3ffNEpRHaRV+BEEUDscVEoy0zRNztUUbY0k9EDC1GRTlnVEQNnvdEEGdpRAYyWEREImtEhP3HRLCGT0TDw/ZE9zF3RAtNtURvmOJFH1qfRJcGDkX4mgFF6W+3RC1WmETS0mpER5UsRIkchERLuORHvOA9RvjF20bBHqBFDtqHRduOeUQGBj9FwsFZRLN5W0QjdipF9366RI0BS0Qnc7tELRoXRWyLZEQ7iLFEtExURBVbg0Q+aVRELDDCRA9Mv0QF5ANFcka0RDnMoUVr6kVE8zcsRUJKaUSiuJ5EtECPRB1CmUT8xVNEhWLARITdA0Xhg7FEVZhwRIqhY0Q1clJEgddDRFgE1UTX4FVEqA2MRKsPgUTHt29EilWgRGnbAkXOy7pEQw5rRPJFZETunypEvqtqRIpcu0eL0mlERU1URBZBKEcU0z5EKCOcRpBUt0W3i+lFUXvtRUZchkXEXOVEWQAQRabzekQys5JFT56RRPOPjUTerYdEaTNXRHnjc0Rgf55Ea7pdRF4Tm0W2LFJFNTubRJiuzEWy4alErbTmR7j0YkS9A1NHNkA9RafkLkVME2FEHCV9RPXZhER0Z79FzXp2RAZEA0fDco9EQ8UJRjPhRkV5+bREZ3AZRV5xuUSC2IBE0baQRCm0eESIxtVEkiXQRJRMJUXyEbFEBnhQRHENU0SJrFBERwGJRKRhvERTma1Ef5lyRBd0Z0QySzFF/Lo0Rd6sgUQaaKhEfppYRPtXyUQIHXpEfeBXRJICTUSfwkdEnnX5RE1qt0TFJNRElAFZRJvVG0V+iTpEeeOERTqcZUWSlg1FtHUJRkkXN0SX2dREBPeuRMCApET+rlVE4l9LRDb+ekQbyt1FC62TSHvTA0VRaVVI2cwrRfBMqEd5zkNELAajRv32bEXlELlEOCSeRUzptEVZLa5E5apIROnOe0Q0VJ5E9j4ORez27UTTGrtEzc2LRGI8aETBAehGQGJcRmRkZ0Z1EhxGkBqwRBcIpkWcIVVFyaIzRc9/ZEQAnBRFDDyKRKzkh0SkPm5FkjoPRdJMfUSFdvFESQlgRH87wEQk9dVEqo1RRDNly0R6AstFQGHaRJWcFEeH94FGJuQZRkTgVkQc7M5E1PhlRZYigUTR5q5EiVFARVxAdkTC12hEUnmdRAnMckSnpjRE/yVTROkorkQX5opE871XRMHiY0SgCU1Erz7fRa2MuEW+yOtE/Pg4ROG1z0TEGlFEkORiROaHQEQzMMZFApeMRV6C9kQY2hpGTPq6RZf6Y0VAf3tEuATzRHx4SEQFTVJGI8ICRtSbh0UAkMBESgQkRvq5w0Vkx29FFk9zRCaZM0UYhY5EIhdbRDFhlEQOyBpFPhMfRaVeWESZjEVEInaCRExEREQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - wo6pfHnAckDbZlwCJcFyQKp4z/puwXJAVqLI/OTCckA4JwUPPcNyQKuG9EXExHJAvQ0KZn3RckDOoN1fD9JyQFU4vGVD0nJATAHvynfTckBCqtELYtRyQOKkbZvN33JAGqSp07rgckCSBvyNT+FyQH6jKp774XJAKE2KfVDickAMfY53j+JyQJ1QsFci43JALvxF7MvwckAqTcMgUPFyQD0QQw3K8XJAiSk6RU/yckALHRbcEfNyQKx7TDC383JAR6L8G6L0ckCQeHKNwv9yQBJdo5VjAHNAHr3ni/gAc0A829FhEQFzQMqAW9tLAXNALPuIiTwCc0B4zwNG0AJzQNhRZYVkA3NATJ/nhPoDc0BksnfmIwtzQKhHsR7qD3NACDHvAgsSc0DeyM6CvBJzQEK2tYL5E3NAHOtz3Hgfc0BkTNyRDiBzQPezXNmiIHNAZ4BL0jghc0A+JNdd5iFzQKSfBk96InNABJQlOcoic0DCpOS5DyNzQKJx12TQJHNA2ITH5kcxc0A4qwx4WzFzQEJBwqfQMnNA6rxW5vkyc0BL7T9mDDNzQOQnsQSiM3NAJ3n5ijg0c0Dqx2xYuj9zQBDkAxp4QXNAqaW8LSZCc0BE2KB/u0JzQI+uM4p5RHNAp9um+hBRc0CO7UWwm1FzQMA88BERUnNAlE2saaNTc0DkfFGed1RzQKYfUGULVXNANpjECvtfc0D8M2u3i2BzQFxmSHOIYXNAoi3vKx9ic0DxZzOSOWNzQNQwDQbPY3NAs2CLAuZwc0D/EvFr2nFzQHx9s9IncnNAzr/Wg05yc0B6wVOmtnJzQGi7Y/W3dHNAwve5E0x1c0C1KLEL839zQMY2NG0kgHNAbYCB63iAc0Bczkj2o4BzQCrmYfkQgXNAAP24+l2Cc0AOdhqQNoVzQMRhM+uGkHNALsdhxbCQc0BK0urMJZFzQE4+kBNNknNAXkQJCWeSc0CNDsxpz5NzQJJLRgBilHNAeHZaIveUc0Becm3buKBzQKJ2gdnloHNAvKWuSE2hc0DajLTir6FzQAACBhFbonNAhDXIzo6ic0AeH5PQnKJzQKR9LCsmo3NAo3boewSlc0BKRDAJxrBzQDOtVnPXsHNAtj99UH6xc0BMzNP/TbJzQNjCVCQTs3NAenly/rWzc0C2TLtBDbRzQBjzTDH4wHNA7JCEcDjCc0AeFWZzzsJzQD4sBkAmw3NAWMIyDdjRc0CY3HNvvdJzQO490Mra0nNALIyxVwPTc0BNCQK29dNzQMaVMx/i1HNA7xs0iwvbc0CH+gvON+FzQHzpvOhj4XNA+qTVpuThc0CuRg0DeuJzQEk2oiQR43NAFn1sDaTjc0DEWXS/8eRzQHjkp+vR8XNA01WBHzf0c0AcM0DrwgB0QJHpR1nkAHRAGJRibHgBdEAUUnkoqAF0QFOFzpe6AnRAR07nGToQdEDotCOOpBB0QBrGSXOZEXRAPo/5kU0TdEDQOKZNeRR0QAWseea4IXRANnNSD7AidECcBBRbUjB0QCkpZlK4MnRAHUiGG+oydEDpUDMDYD10QBBPXEOlP3RAR4333eE/dEDC59C6D0B0QBhlgOg6Q3RAjhPWEHlDdECQRgGCDUR0QGzIi8x9T3RAGJVXnwJQdECONOPLt1B0QGWkfz6PU3RAqjgDG2JUdEDOcVIU9lR0QEdds5mNVXRAkg3fjDtbdEBkS5TGIF10QHKf8b63YHRAhAZvxAhidEC5ZHKSemJ0QPCNR/s/Y3RA9BOgbxBkdEC2jg4ZT2R0QBZ7PsPFZ3RAAT7bnx1tdEDisbMsInB0QEjMslTRcHRAMM244EBxdEB8rO3ty3F0QHMGzIx6cnRAyhC3dzlzdECMQQk/NnV0QIpgLqv5gHRABLAtPh6BdEDSa5nWTYF0QLgUY0VKgnRAX1SkmeCCdEDvaeTiJYN0QCqaTW4WkHRAgs5yeZGSdED4MHsr7Z90QA5XN5qkoHRA4ZnTC9GgdEB+dcpDN6F0QKIv6594onRA1z1JJY+idEAZ5Kq5tqJ0QENxaQkQo3RA/k27DmOldEDSJvMG+690QMpxMZ4JsHRAevxs+MOwdEDmWs/ZcrJ0QKm58ZX9snRA5qnlJHK4dEDQKpQnyL10QMulWvDiwHRAOA6OzXjBdEAEVG+GusJ0QFygpXa4xHRAxi2pePrOdECc89XIqNF0QGJTFSt70nRAbj5nbTrTdEAnb8zxyNR0QBtlFF604HRAMukEBLjhdEBkIphH++J0QMZxZfWN43RAsGu010/ldEAC67BUjfN0QKZC0fM+AHVA1lg8ulIAdUCtcgAGowB1QPimQBbNAHVAxeXmEmQBdUDDUZ/OXAJ1QA7kVXubA3VAXuHgoZcQdUD2Qnn4wRF1QOSvO89oEnVAoEiloCMUdUDwjmkG5x91QB8+CUY2IHVAZj1QOp0idUD7xNGVGiN1QAKUteB6I3VAZBb6YB8rdUCzBC6nYDF1QOD6jYCqMnVAGpJiNcw1dUCUKQaa8Dd1QN5cfx8mQHVA8/JdoVFAdUB26TEgf0J1QBueUGHdQnVAjlVU6ddHdUCG2FWNAlB1QM8CUYEgUHVAWwqHmz1QdUDcYYawf1B1QE6c5ClLVHVAYq5L0XhVdUASh2/GDGB1QK/k6qA5YHVABlhjc2ZgdUDtLQT+n2B1QM0mvYY4YXVALtdeV/RhdUAu2/WNe2J1QBKfQMkOY3VASGWj7WdjdUAKB00W+2N1QK9Yg3R2cnVA8EB99IVzdUCDSMbhBnR1QIZ5902NdHVAxNy6mYx7dUCaXsxut391QEil/l1QgHVAPvyyzXiBdUBqIU1nrYF1QCxb+dSmg3VAzaTy/ZqEdUCRqE6ru5F1QBiUo7ZglXVAPF08E4+jdUAsfh8EUat1QLRJXTtXs3VA9NBxftDAdUAe5GDgYsF1QKymA5r2wXVAKGOepTnDdUDInWdgptB1QGu7zu/J03VAZAvo1OTfdUA67DOQDeF1QO7HIDqn4XVAWxJ6RgbidUD+3FK6p+N1QHoi+0M65XVAYI/gT5D/dUD1WznxTgF2QK5W+3pIAnZAzvvoo84DdkCkT2l1ChZ2QPCSJBFJFnZA+O6iMHwZdkDyTnhMzh52QFp3nSaJInZAtEF+apAkdkDsTFCbSit2QKgQxFEfMXZADuWMu1EzdkD0qXAehzN2QKK8PnaMO3ZAWruQIE8+dkBeViCbTEB2QCjkV1uKQHZASz3g26FAdkBIC1/R5kB2QCo0AD0dQXZA0Caj5MhCdkBQI4vNE0N2QHLar+FOQ3ZAvBGVYHlEdkDEKFgcK052QJCCrZddUHZAbFxXKn5QdkCsKX7OzFB2QF6j05oSUXZAB5aJWdVSdkAkAMwsh1R2QGNXmvvMVHZAYH+iLI5gdkCODnQvCmF2QIf7QI0iYXZAuMOX8PxidkA4bnKx22R2QJppSK+vcHZAMFwrCH1zdkAOhfyu0X92QAlYrZDkgnZARRxpkZKDdkAcDtziSot2QOB7xVXgj3ZAGjAfbbKRdkDDeqRD6512QOow77i/n3ZA6rITwA+hdkAc2WtNoaF2QOhC+RNGo3ZAW2UN/IqndkBlRN1Plat2QKS+eczAsnZAmLZW2g20dkCiMPg1UcF2QAjbEz7OznZAF7HWaX3QdkDUHqzObdF2QM08ktD04XZAFP3OxbzydkCuIHb0kfN2QFLZJBpPAHdAVup3UTQCd0Cwq4qSowN3QEETbSIBEndAxoSI1w4id0D4rFPBaSN3QO78V/pWLndAx8KOqwEzd0BenvnQojN3QNJ6JB0NNXdAHNoZonU9d0B0srflnEF3QKjfxWbVQndAJVHiMJFDd0DTCZfgGkV3QNLg/GJKUXdA5njytpFRd0DG+OqlsFN3QFLSoi4pVXdACkp+m0phd0A88Dswj2F3QP+3NGk5ZXdAO3XWPSdvd0AOrYLjiXF3QK0bhWyQdHdANLjB7h17d0B4PvLYd4J3QHpk0zlNlHdAOFMsWaWjd0DLtcY60KN3QBa+M1n6o3dAmZrMWZyxd0AOwydRTtN3QP5PDiON1ndA6qPfOFLrd0BuvRjMUPJ3QKpDj2E6AHhAlk1rbfwBeEAA1PXolAN4QEvaNxBJEXhA6hr/4kcVeECQSRVPPSB4QHei9EgIIXhAi9Swdm4ieEDE/4eEiiN4QPZ5AbjNI3hABr1zT+1DeEDkLuvdEER4QD2Cuut5RXhAZF46a9RIeEBMytVx8Et4QMXDinnKUXhAPa8Y2YdVeEDa9G1N+WB4QFZqzkI4YXhA/oVEUrdheEDpLsF2lWJ4QOgj8lZkY3hAF/TZQPBneEAoZZ8QNm14QGwSak/scHhArhII18BxeEC+rCpIeHN4QMRiZUH+c3hAkICB20Z0eEC/ijZ3XnR4QJBKir+LdHhA13bZP690eEDKfL+jFnV4QGQXFjbGeHhAioXmvPR7eEDmapXOIH54QHyLkd+RgHhAJ0hHTqCAeECXJdrhpYF4QHTKdGt/g3hAlvVb1JmEeEC1Hv5DmJF4QGA3mVqlk3hAjIJoj6eUeEA29qYswKR4QF6V426Hq3hAhPZb9SGueEBNTHVIiq94QFT5FzN8s3hAFPW+Xs7AeEChNYMi98F4QF+yF5K31HhACjv7QwH0eEDMQO9rjPV4QH6tBqEQBHlAC9KSxJoFeUAA4CJUIBB5QMZctCRSE3lASAPfIYUTeUCrsXMb2xh5QFnV+X6xKHlAdB6aEA4ueUC+Wwys1jJ5QHCyRO24M3lAqTNpTjE0eUDySS0nikJ5QIPEGyD/Q3lA1njkBc1UeUBGX1H46WB5QIDMCae5YXlA/lpYbNhkeUCY+lavRnN5QOLyuODSc3lA1eHdeNqAeUB+2w1CC4R5QByx6iQrm3lAmA5Ttz6reUAFtMJLwLJ5QKpwTMjjynlAwsqwJsrTeUC4L5GXQtR5QNoV/dLJ1XlAkF5vB1DkeUCfpZ/KCvR5QO6oLH/+A3pAMFGsqjwEekDSZ7F8kAR6QHxkqMOgFnpAHvgSReYgekCe2joNKCN6QLwmPUS6I3pA9P4e7i4rekCPb0b9HzN6QHhLCHwMNXpAYmQgGCY7ekD3upFsD0N6QOjaw+8oQ3pAIubUfxpFekA8BMnRhVN6QH7va80rVXpAkwo8QCJcekDEKi2sinJ6QCAACvDEc3pAUh2V3oJ5ekCUuWUn3H56QAJY7hHQg3pAHDtfLouOekCQGsUZUbN6QMJRIhANtnpAu5wpCBrGekBqC8kTQc56QDkAguRm4XpAAKb33TrkekBc9maheeR6QEw2mOs17npAqtghHRbxekAhPycEXvF6QN+CythFAHtANjpWv3UDe0DXrYQ5fAR7QGASNsjGC3tAeF7TmysOe0DCug82zRN7QKz2DK5MFXtAcFniitMbe0BK2gqmWiV7QM7YisCQPntAgT8lvOlDe0DLsXmTQ0l7QFqyDtKeTntAwpFqe2BSe0BTPAkViVJ7QEh6aSnGU3tA1tXmBvZTe0ANN5EOiWN7QO6W91PskHtAmODRIiKVe0CYfBr0xJt7QBL2EJN5xntA1d5Z78fhe0BEMcOc/+N7QAVMREeY8XtAAwcIdIz1e0DzhBkokwF8QIA9n9DZAXxAUsaQ+PABfEB3rf0fZgR8QDH73riYBXxA1FD5FoIMfECsmWMYiRF8QBY9kvfREXxAG8TpAk4cfED3X1dPiEB8QMcvHQDMQXxA0MJiuX5VfECYGF3pjGV8QHcH+HYrcXxAdweSxMGyfEC4d5R5EsB8QLJOorJnxHxAIKCFEpDMfEBQLR0eydN8QNNw1UHM1XxArEw43s/bfEBBZ1kKWOJ8QIDSe9QW8nxAzqOWRlTyfEBkBjJ0cvJ8QCaVXAsAAn1AVs9qRksCfUAY8nyOAAR9QAg8DjgHDH1AbOkoAD8ifUAqrpvAbCR9QBRVzxl0LH1AzjPHE6IxfUD6zGW9eTR9QIqA2o9HOH1AZID3EoI8fUBYx4kuhT19QGh5O6KhPX1AIBREntZCfUCcrSVN7GV9QG8WnbEbbX1ARlV5ZCBzfUA0iDMdqXN9QJ7+Ab74dX1AxIpgJnp4fUA8UjN3G399QHb462Fyk31AvECAWQyXfUCg9KGBPrN9QL1addA0tX1A86J0Rye3fUAZum/A87t9QHlVO0wuw31Aolzfcy3EfUD4s3ES5sR9QAhV1l2Qyn1AnjPfcDjMfUC7plcCPOB9QLn5i3zY4n1AnB5bFJD1fUCFzPm8MwB+QG8mJuB8An5AKm1y4qMdfkBz/yrpOh9+QN6aSvb/In5AbFiyoz4vfkCdEYP8ATR+QHYCLhp8NH5AvLCT2Ag8fkAqRIQLEER+QCAvXNqlRH5AGo6TeMtHfkDw2Nqgu0t+QFL5PNnDUH5AZHb7C/dTfkCsdtJ1tFR+QIl7Q3GPVX5ARq4BWNRsfkDkSEpPfG9+QJB5bBCgg35A/jJXgFSEfkCcRxwJpot+QGov0euWk35AgxxFBZmUfkBQrTSKXpd+QNQEEXy5mH5Azk/l1POZfkCutKExS59+QFZLi0Wlo35Api54lMajfkCCvGJKqqR+QDkfoCP2rn5AZpxwhriwfkCyUvPrYrN+QF+ltz9PtH5AnE6ACSO2fkAI4NMOqrl+QPZS108Bv35ARktI/zvEfkCmA41k0MR+QEMj8561y35AJmSrStvSfkDkDMnl0d9+QNoTItID5H5AcEGl1QbofkAO8XzMCOx+QCW/nOiC735A5qQwwAvwfkDqWl7JrPB+QFAAzREM9H5ApKnGsw34fkATSj2eqfl+QDrDiwMN+n5AyEoIlrP7fkD0ibFo6AN/QOoZLRtWNH9AuIzhys5Ef0AyXgglH1B/QBwjR8TPU39A/MGgbR9Uf0DLmNh0H1h/QJgHMMnnWn9AFvdbwilcf0DvmnlIuFx/QDp3znDtYn9A4WQahr5kf0CKvUS9x2x/QOH8uvu3cX9Atz9MreV0f0BiV2yAsoF/QDJ3F7RjkX9AoGZJrq+Rf0BWb41Qm5N/QDBKqAcNoH9AjkvvQFyhf0BnZglmy6R/QA7rcaRUsX9A9r/xxwG/f0Ckr7JOq8N/QNE00onEw39A9FZtdq3bf0Aj7KpET95/QPkYFDG05X9Au5PIDwkKgEAKY2EJjhmAQOsO854OGoBAjY0KeBgpgECuS1XBiTKAQC054oz5OIBA0rjyg5E6gECW641XqUKAQFIhihHyRoBAR7unSI5IgEDuZP7S9EiAQGSBuO8oSoBA9AUQCi9LgEAK5Q0FcE2AQO667HHnUIBAjaPNChRRgEAweQ+EBFSAQARsV+UlWIBAKlyGkeZYgEDiWL0QDlmAQNTR/kszWoBAttO2LuJggEA2fu/yC2GAQOG+7esgaoBAEi+TtYFqgEDIvQ+NJm6AQPynZL4ob4BAWua3AhZygED24Dc1wnSAQF42EVQod4BAhlc/Ye93gEA0Y+aqd3iAQL5gH0ssfIBAA7iDtCl/gEDI7rhuH4OAQLQ4/H40hoBAHA2B9vyKgEDEyH+keY2AQPkFrw//joBAfMJ0hx6PgED2/8JgbJCAQGgY+taqkYBASrchYUiWgEDAPTYDHZeAQLR5N4YkmYBAzmLXusWZgEAm/6VLSpqAQO/LFCUDnIBA/2ArYZGdgEAQXre6yJ2AQAEQGe0EnoBAFWzbojeegED8dTs5356AQJInkzYan4BAZlSKfgeggEBUgHWmiqGAQIosYQMHooBAoEO8+4WlgEBQXoD38aaAQF3U/fKFqYBACwFGmwSsgEDYa6Rp3a2AQNhP0eLuroBAo8bttBOvgEAK9pR7cK+AQGis3Oigr4BAuPLNCSCxgEA+yE9r4bGAQLh++YKNsoBAfFDOKhW3gEAa+R7az7mAQAL+hXNXu4BA7uns8AW8gEDa3jidv7yAQBZhKTM4voBAE4Agm1LBgEAu4+uNbsGAQEj7AnaewoBAPIPtC8/EgEDyNMQp+caAQML2sMq1x4BAOI0QHmPIgEBZHK9oU8mAQNJ+HZ4xyoBAnCh7geDMgECU6zxhBs+AQGyRlh0r0YBABCk7fUzRgED6EWpZBdiAQLaLwdBL2YBATmy8J77ZgEA4pbgsReGAQC7zBRH854BADh0gCPPogECwwHpT3OmAQFFyIjye6oBA7LDPgnrrgEARI8HQS+yAQNjvHAdL74BAVmAR6z3zgEAu+PLCTfeAQGIks0UZ/4BA7sXIuz//gEA9WHipPweBQN4d3VA+D4FAKOWN+jcVgUBrsl1UQBeBQNiKRfGpGoFAcVtERi0bgUDDgcWDNB+BQPT6YeGxH4FAOHcTiOshgUD8KpRlNieBQDL05y23J4FAFJR+lzAvgUB+iLF9vDGBQPE+h1ApP4FAnKgJHpJCgUChJ7FjKUeBQFic/evMTIFADjh4qDFXgUAk5rBANlmBQLZ1nW1/W4FAzG7eDuVhgUDyIBnisGKBQM51VH2yZoFAbxoXOrZqgUBbteCRmm2BQEpcDSMkcYFAD2YqvoF+gUCdwbWOYH+BQF7h5w3chYFAQyxg6cuHgUBMWWes7YmBQAIJJFp+ioFAuGD8O82OgUBjbQAQVY+BQLhcBseEkoFANGrplFSXgUDzMsaEKpiBQKwaKztVn4FAREVdLuihgUC4SNkb36KBQMTo2IFtqIFAHGpA7+6pgUAcT2sHBqqBQMcw2RDnqoFATs9jtkqvgUBGSttH1LOBQHjOeKhLt4FAJtGs2Vm6gUBtD75g9LuBQMKe8N+TvoFAegU4yrHMgUBaF/kxf8+BQKreWarMz4FA60HEefbRgUASn0+pfdOBQB81cnE314FAFNfTISzYgUChfXRUC96BQE7tU3T36oFAmmw9NrPygUBD7cn8APaBQDpPutEC+oFAYlDMisEEgkDmnNkAAQmCQPpILq9bEoJAB/Xg/rQSgkBlHfEQNRWCQAhzd6HYGIJATnfmpgEagkDduZVXvBqCQI50mNrXIIJAevWLkL8igkDYxv770iiCQIbuLVHvKYJAaKPDfMUqgkCpfM4jXSuCQIb4I9Y8LYJAon7eVxo2gkB6QiewWTqCQFyth5CIOoJAT8AiPmxAgkCO3onjfkCCQF/pLbEPQoJA9UFIL6JDgkDmUQg9ckyCQKYy3m0RToJAsCuo8c9OgkDS9LMa30+CQO6HhYNsUIJAYuSkNwtSgkA8x9cGzVqCQPCW4jfhWoJA0AAD3KpbgkCvJGmfrl+CQMW2toVZYoJA+IjXHgdlgkCmCygkD2eCQAK2/lE8aYJAOJCqV79pgkDAqh2S+mmCQBLQFnIVaoJAWl+h/9VqgkCShoKRbWyCQH66eh9BboJA/FK3GhdygkBPn8a933qCQPy817K/fIJAyhuoOwJ+gkAfePY2aYCCQChTZM8DgoJAAc/eNNOCgkATbAgDcIiCQLehQ5RDiYJATNW0y/uPgkB6c9yWQ5GCQDvhBaj1koJAWP0BZBWZgkBAy9h9PJmCQMKYHI0OoYJAfShegTyhgkCqqoNB3aGCQMmt5kjgpYJA1ulNpA6pgkChr6d9M6mCQG5/fh7WqYJAewn/glGwgkAOuSAVBrGCQNtnMDbXt4JA3mqPziq5gkB6K3+Na7qCQLwJ3FdJwIJANKRKSanDgkCz6Vi0WMaCQIxJFsh114JAfKiik4DagkB8Fn36g96CQD6dkKYa4oJAexi6x2TqgkDugvDt+u2CQCy+PYz68YJAzgnYLLrygkB2nTQan/2CQP67tZYVA4NAY5VeChwLg0DVLDjwqQuDQDpIyqF5EYNAPgKwnUUZg0ClP3zxeRmDQEBJdwS4GoNA6G5MYmMdg0C+KO2fDyCDQEz9rElkIINANp237XIhg0A6PIm+iiGDQOoUkk9yKYNAGm6tSPsug0Bkz/h3yi+DQCEWwF1aMINA2JjI3Ggxg0D1VfJ2dzKDQDLJbPUNM4NAVBf/0l05g0Bdwno93zqDQIcK4b6DPoNA77+t7l9Bg0D80ZmzElKDQHDgVetjXoNAxmUtWBhig0AQZhQ6Z2KDQIHiYda5YoNAYsLPxAdqg0DbEqXg44GDQCDEeXc1goNA/ti2YQuDg0AKjfLQSIODQKIqWC/Wi4NAQp3YlI2Qg0DQIZdPkJKDQLogrjeRlINA7owCxNOVg0DlHJVVj5aDQAinz1XRmYNAn6QjYNilg0BS0ntq1LqDQORLRyA7y4NAdvo7jBvXg0Ba0K4Wi+aDQCIunBoy54NAZOaBjzvqg0CmCd8WPOyDQLO6f3Ws9YNArJN6/pT4g0Ddtw1ap/+DQBFn+A5TAoRA4p+jJLoChEDfL+7qlw6EQO06RAw6KoRAGyOhYvs4hEAdh/e8uT6EQKTPELfKP4RA8oC5PhBChEDLqURAdkKEQJam1zgLQ4RASv1/VyNFhEBOG45Gk0eEQH6FmQITS4RAnZaB+ShThEBG+CfXmVeEQKxkLbetWIRAqL56o1FahECR6TlXsFqEQFpsVAmuXIRAvufvms9lhEAHQjir/2iEQMJks3/laoRAY31hZw1rhEBlP+876G6EQIrhbVr+cIRAefnOu+pyhEBacuCH+3SEQF7x46PudoRAQq88bsp3hEA4hToU9niEQKv2UFZ3eoRAYHDlOLB6hECEj0/88HqEQI4+SyQjfYRAvFQBszh9hEAKbVWFjX+EQPRtmYxsgoRAqHkPnQmEhEC4bi0ApYqEQCCnpOtUlYRAhpSNDAKYhED6q2Be+5qEQFQrN52hn4RAMs6pA92qhEAMhNUPxM+EQLRLyjBq2YRAHPzYSGrhhEBcmXhUQOOEQIqsY9Ni6YRAbq6cYkjrhEBcU3GNNfGEQKe/vepk8YRApWJUKVHzhEBwHxPFM/mEQLZUoDrb/YRAfzmGmaL+hEALzLmmdf+EQMhCF+EWAYVAwqYXvS8BhUDooOPppQKFQCofbNqEDIVAruZ+UEIehUDW7SptQSKFQLZ+tvDjPIVAJtDe14lPhUC+e1RGYFOFQIqXKHygYYVAEjYPAKFphUD2AibzmHGFQLOn/L20c4VAsrShEph5hUCIHt3bloGFQCF0dwqDi4VAelZ5f0+VhUDkEh+nKaKFQP7RvfxAo4VATiY6/EarhUAwsnWd/7+FQE0dLwmwwoVA6KKtpt7MhUDGtzpwJeSFQE1ZWPGY6IVAbBuapQHuhUAmNomUyxqGQO90NSPjHIZAfFwqboMhhkAZ4vL6jkaGQDI07wW9SIZAEGDDAJVKhkAUcs1ZaGqGQGzAbkCMhoZAlMOmT4+KhkB2G/fCj46GQDCxlx+UkoZAcHF5Wyi5hkC8aAI5z8aGQN6u62m/0oZANo45OG3rhkDhZ5qTiu+GQBri6ncz/4ZAWl/Z8DYDh0BWqedrNweHQCSHUuroJ4dAtKoCz5Eph0BiDUX/kDGHQIJXywKKOYdAPK2oDYQ7h0DjuByoXkGHQBYJYJKMQYdAQrADlDdnh0AYtx1GOmuHQJYNNAI+b4dAwvgDe8exh0CcN4T+xrmHQFVOhSO+wYdAw6B1tMHJh0Crl0edPcuHQBbLuXejKohAivijnywriECsNo0+ZDeIQC877nlQO4hAWQZ4XFY/iEDekqUWWrKIQJAEaRZbtohAclfz5sPziEA= + NrgMGZxjYkA= - + - MR6DRDrNSkTsABBGe46rRCL6EkVpltJESmWLRDF8eUUXowtHOQmqRPKUekTjSxZFJCyuROBVhUT9gkhEGeuQRaj6jkVZVMJEtNuMRBXauEQ9jYJFA6iYRDHhfkQNL5hEr6XcRKjYykTQT6NEVKyfRMuBfkQqfa5EvaLaREHyOkV11ZlEj/kWR9VvdUS9TjxEmy5kRB82MEZ1/69FhXM5RXBFhUSdyYNEtjCBRmr3i0T7gXlFpPPcRHLC30QwuJZFEdK6RNiWlkRfO69EuFeDRIZTkkQwY6lEWfsERZQpREXwwhVFz7nbRHeC5ER7mQRG4SVjRPv5REUn8YhEGUyORSyjtkTdwnBE+KgVRfr4YkXNP45EAvSKRF4EEUWXxqJEjt6mRftfkkRtan1EPEmJRGaNfURXkUhEAwUHRVGopkRryYlExk7KR7h7nkVNJZBEDaDzRbVEREQIkRpGNhVVRLhMzkTuD1FH2M6nRJ5Uz0TVS8ZEdEVyRumqy0ZwWbREa59NRNJacERq/NdFeWFjRLpldESJGE5ELeQ0RX5OH0V7NR1F9ZAGRaHQcESLBY1EYW17RTkm9UQ3DhBFaKekRKN4q0UiWMFEHGJlRduGj0Qm559EFUBURbQ7rESPFmNFFfq1RMfEr0V+SKlEHFSDRJg290SttRpFZAqWRPmKdUR3g1JECCwQRXbYb0Q5Zo9E9bUeRvKLREQ2OrVEDiX0RHuOSERC605ETu5hRQN8mkQpGN5Ev5mHRFMLr0SAGYJEst1+RFszf0T5PvNEAwcURYexiEQQvUlFzNecROyWiETcyohEnzJwRAIoIUUVC15FRONcRNULq0Sfv89E69cSRv2r30f525JFgnWFRRd6NkePPDlFx0ygRNmrpUQWHD9G4B4rRWRTtEWwym5EH+U5R0CfwkTnFd1E4n/4RPqip0RhpC5FActRROwZ7EX1OL9E96FXRJZrdkRTkcFFsNmfRH0lhUTqDYBE6fXYRKpZf0RBWpFEmAhbRMBejkTeIiNFK8pbRKA0X0Q5DoNEAj3FROZvbURyXHtEsLm8RJCMnkQDr2pE2p7KRBxoAUWkj+ZExnucRChNxkSaPVREP8sURarcZET33nlEZFgMRUJGjESod8NE9M6ERHhQ10U6BaZE06Q4RfQxq0SFm2hEUvxmRFjObUXcXKxEFimbRDarhkQr3IFEcMrLRBvd1ESCl01EpJZFRpliHkUYD3tEbvOORD2WXUQu5OFE0RIARYvQ7ES06SdGApLXRJNwukWWATBFzdk7RZh0f0Q7KZ5EJDR/RBykaURONbVEo26wRPetCkWDhNJEyHkIRkm1zEQ81BFFmQRLROkyg0QrBIhEykGgRDSenkVMgBZF7EtbRsyPr0RKU0BGirmkRdAMVUT7XH1EokvgRFnNuEUiuTxFAxs7RYc4wkQgVW9EI7BMRMWWZUVWakdEwj2HRHkOcUSEVd9E8u+mRA4rcUSCCMlE5lOCRDAThURwjTlEH8vYRMLPU0Sfg4hERSrSRG8RbEQdvShFyjECResjgUS2IBxFsEXSRGLcdUToTrZFnJrkRbxfoUVru61GXbC/RAd1JUUTN4ZEydVMRDfyW0WJfoZERCFgRDHAW0SdHKhFmpOoRX2gYkRS2n1EJCCjRaIkRUSyLzZEYIaYRKc0yEQKyjhFkZamRCjNWUTYdm1GcHwxRcG5OUQOPZNE9yGERP9URkXv5YVElVBfRONZ/UZqTIlEq/wMRVfjdkRPDgFFLF5ERLCyt0WZUp9F8/0/RKXVSkRKBExFSUkPRd7lgUROPj1FsmKdRRc6hESs6ztFV9xIRD4AdkRSyddEaht7RDMBH0W1LHREXvBsRH69X0T3VJJGCyiVRTCCLURuAq9ErmKLRGBfbERb2/FHePnSRK4Lr0bQ3UVE/YOwRB4V1EaCyKtFozpYRgN10kQ2XJFEp/5URHAtGEWE/ZVEJrFQRUx5UkSGa4JEFO60RDfQ6ERl48VEGbtvRNCEpETKBRNFWyOLROClgkTCnoFEAjNXRA+C4kTzvJFEWkFfRNjMWURHW09EiKFTRGNqOkWEp15EwImLRTAEs0RNqDVEQVK7RNOx2USEB1VGWFVrRCelhESbdbJFrtwnRf8uBEUK3D1F9LQARSgE2kRwRIBEnuiIRJZIjkQoa0JEd7KARHDpTUT1vIVEMojcRCSpkEXq30dJ6bDeRZKwqUS90blFkZnpRP2fYkUL1XNEXW1YRCU+gUWwKo1EDxpFSEg7lkWy0IhEMKurRkPtakRkxthEh3ZRRMZpoUT96+1Ew8TdRJ4T80SLmVBFXgOXRVI/tkXEGGBEVtr2RGgNWURE7INEhDCtRBHXrUTdpOdFDOmmRNoEwUTufSdFXQdrRJYZh0TcOqlEaL+WRU9WY0SfqGtE20CKRKDvhUR+Xw1Fm69uRP4HiUQ69kREoqyMRc/JckUld1FE5ArcRHwM3UWloJ5EExPRROOyYkQrrJhErY40RP155URpv11EqVE7RZSeI0jBu0ZE1pRsR24ShkZX+LRHmby8Rct+qUSb395EgO+8Roi8fUT7TK1Ex4p4RaOgckSfNshEWS6RRdUs+USvUpFEGGQ/RA82qEQaXPhFMX3lRCaslERLjxNFL+X1RJqZWUToIzRF7mwPRXb2wESrr2lE9aVURJiWgEW5x0pFt4AIRUyrj0Q+pSRG6HVCRNVaTUXRuYdHKuU3R3TjaUbIVvREYniFRGLP9ESr2X1EYvuwRDaThkSjJ7VEr6N7RYWjaURGnrxEQSGDRCQViUTxx41FGcmERvZn6UTl6SdGcmL5RF/l7USA+ppFWG5URJV9u0S1HI1F2KaTRJ40PESnxYdF44lGR3kRGUasjG5E5jDvRFDPhEXxCCZFow9bRGTa3URVUo1EzYJbROkSyEfUwOhEwFy4RqdmVEWDXAZFWMiERkVEX0ZjTqlFkcC8RHWVIEfZ9Y5GCmCURO8KeEWgteZE5NnRRMAKrkTcyZREi3abRLL9G0VgJolEixrHRTPs7kQc0IJEEx1FRTRZTURVNEVE9KOFRFAGVUQ8G85ENDJrRAWbaESFR5BE6UqBRC77SEVnumlEYzyNRAP5SkW9Z5dEu/bgRJud90Tqz1ZEDq7DRLKJlUQN465Ejc+5REqZ9UbVFXJEO4JVRuwUW0X5wNFF8XRuRKQcU0SW2LxElCuhRF8i3EQ+g+5E5P56RJ4srUSFUZ5GVQR+RFQx5EVh/bJEErUiRnR8YET6951EScDTRcfPO0XQFC1E54I2RIrOT0QcuwFHPiZxRAfOqkTrLb5GPqihRFly9UURChxFJw12RM6RfUTZSKBEgFW9REOvTkTQ7aFGG1eLRtdUFEYGm6dEy+OhRUB5l0RAmbdE1wRLREw8ZEQSwWZEAvqaRFLBYURGgzRE0ucvRLAsPEXQsGBEXalMRGZsqEReNWxEvAFPRAENb0aK41lEneTlRXcnDEVWKINFUGifRPCjpETa5yZGhWOHRF+bDEVsz9BETwonRTlQjESMTuVE4k1ZRP0GQkR14zNEXheyRLuSn0RP/z9E0PxOROh4a0R1g3hEtjQ+ROG2nEX7W5pEa0iXRCy0bkVJiztFerEHRfnOdkRbWMhELO+LRC3CW0SpLTFF6odzRtBWFUVqKvdEBgeJRBSjskUR/BRFIsp7RMoCiESBhMxEW+5sRBQLbERA2GxFIIB5RdPIKUWaenREcpV9RNYHlUR6EGFEQ4T1RO2CWUSgK0tEmpyGRLdIckTToPNEyBV/RuG3b0TWeotEQDqvRRYrLEWDF6VEJmpvRRxUkURmeZVFdStqRESgmkSwTx5GRyjNRA3vg0RMClNF8HWSRQ6muEQslXhEsl6ZRJXtjkRGY9xEbhlHRCl58EQNuYxEjUJYRl7OPkTZ7XdE0P0LRQ9BBEUP9o1EZTfERK/LrkQGCXRE37eFRCC56ERzvqJEk+luSMIM3USL6jtFVuxORMFNgkQ1HQVF/3cHRcFrz0eQJH9E4I2CRGkEU0QH0t1EchZsR48aiEW3519GUc6qROMSnUWA0alETieSRDZ8gkSVd7JELk5tRBqnLETyWylFbKmuRDr0b0QR6j9EldVxRuPJjEW2vepFlQtYRL8LXUQ2NhdFzx5rRM9fHkc6wNVEVsxqRCrEQ0bdDJ9EgiWDRUHzuET5CzpGAWqKRPgN1ESG1DZE53BjRMcuVET0RVlElTBZRCS/UkQqr9xE1QwyRPKIAEVD2U1EyKalRAtPlUSpYodEtWpkRE4heUTDUddGEuhnRDomEEZJEetFMMAzRUfhO0RDXB1F6V7fRKlACUbGDR5FxY57RCJwo0Rah7tEG0R5RnGyVkQTa3ZFyRBnREbyh0RGG+RE9Du3RC8/WERNd35EBgFWRGlmpURKnodENQKNREEFc0SzrldEBQOORBQGhUUPWR9Fyrk8RNGtfUTp8plEpA0JSIhZMkSxo1ZGVBdvRIvE+EZd9odFsNylRbVHR0UcpkZEjapLRBWeWkTdwotEdYJcRHykBUXw4MBEz3ezRAnrW0QcQaFEn29hRLshRkQkHC5FNRmgRBrOUUQibcdEHKFwRFqwg0RvQfREE99cRFNigUSlfQNFH4t/RNjuZUSCAJxENCrORKoKNEQaQ4ZE4iI0RVo81EQnd4xE7ICNRJ23r0ROCGNEF+ZoRPsTDkXW+HJE7jemREhrekQvPNFHu5KSRNmtMkfgOXlEw86KRIeg2EYzcZxF4V0JRmcdHUYj4pNFJ+QxRVgATUUvIo1Ew37LRUBTw0SPt5hE2zRvRPreTEQ2rr5El8BTRBX1c0TF8J5EuRHYRFiHk0RKBrFEwwJGRMaisEXQWsdE66yKRLNWTkQAn/1FC6n0RKxRPEQActFHtMWbRN6UIEfmtzdFn4gLRR2s40R8SLhFcTjoRl0YD0WXYO1Fx8lyRD0aL0UdvZREB7IaRcbg7ET72m5EQF9aRBUAQ0XOoXFEJKRvRHKaPkRzmUBFwdNRRFeAIUX4tFFEDlSqRGldrESCpWtEjcamROmOzUQ8gVREtIOqRBIhXkUhj1tF8G1rRBWDi0SHTYlEZUB8RJnoUkTBFzREjUd2RE5wR0QskUZEFN6yRJVPm0R1mlNEBCZHRL8xb0UtVStF3sB/RBRHXkSms1JE46yGRKfgR0Rv5V5FC3FrRH3HbUWpWShGgh9ERdysW0TiL4RFMv07RDMhYUTs2XtEYG9SRLKZgkT4wF1EMpBYROTzykUXz69ILPImRUptfUglvYdF8WDER20tVkReLrRGElabRf4uiERHCYhF6bylRC/FnUVD4b5ELDZfRF6XfkSmrllEPJbHRIE7jkSPegpFVp0/RWQDnESKMGFEORiORMZDO0QxKQZHf3RdRiT9qEbRcklG4TflRVN4lUVvBKNFsnO9RE24CEXlc6lEh0RgRB2GEEVevVJEo1WGRGPriEQObU9EUFM0RVzUdUS1zmJEx7mPRD5GXUVArf5G21FnRpjnDEaSq79EDQZURUDUhkQSaVdE13K9RGpwgkTE1pVFV461RK3oCUWGbqZE4z2CRCAwQETwenpEIQ2TRAPQXkSA+ItEahRYRNIlREQl/INE39p/RKXLhUQuBeJFYiW1RRdiDUWLvYdE3TfVRJDee0RHd0lEG+CHRBu5eER9jwFG2C64RVoJAEXOEqtE9zAlRjYhyUWujmhFlXqaRFqavkROYrVEK+gNRgeXA0ZIQUdFD1YNRhEdnEUO6wNFO8e9REKgZkWcFINEi1FXRI6FhUR1POtEjYenROIHOkVI3dlESCt/RA== + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Uuw3YvjAckDqHpnvC8FyQAq+XDRvwXJAq/I8tE7CckCEPZBX5cJyQHQSh5I8w3JAbp5dlMXEckC+yfqhfdFyQFYw8MwN0nJAXvfp+ULSckAMCyEredNyQJx9Lf3K03JAAu12ks7fckD8pSQSuuByQGaiI7lO4XJAqNa5b1DickDibNpwj+JyQO7OnvIk43JAQ5CsUrrjckDsq9qbUfFyQEy6ps7K8XJAjBLR3U/yckCqx5oHtvNyQJr+rSWi9HJAQvUdcPkAc0B6BR6PjgFzQFyY6FY6AnNAURFKnc8Cc0Ckjo5h+gNzQNH+JLIKEnNAoyyDALwSc0D6MgKGBhRzQI+OxshMFHNAeY4o5nkfc0CgJoysOyBzQMx3smCjIHNArKWXxjghc0BisCweYyFzQL6I77vlIXNApJIY6Xoic0DeuIXbyiJzQMQB2t4QI3NAzTfyy6Mjc0CSvQt1zyRzQFOc2yBJMXNA1r+vj1kxc0CSmG+9uD9zQEMKhlZ4QXNA5uj3kCZCc0CQd0xsukJzQF/yNJjsQnNA6tGLfnlEc0AB13wRm1FzQIa7gh5CU3NAW8JO36JTc0A+4JF+h1RzQG4pVjv5X3NAzjVJAYtgc0Bc4RPKhWFzQLJ7loE4Y3NAmuJcD5hwc0DwEEe3uHBzQBSPjFPlcHNAmCa4Gt1xc0BSLSPauHJzQPVhawW4dHNAagleFUt1c0Ag8uha8n9zQCSeeNh4gHNAGutrFqSAc0A/lXc5zYBzQByzp3/kgHNALOXm+AyBc0AoNaAOXYJzQObWrSUhg3NAgPqlUnaQc0BgM4LdhpBzQBvNxd4kkXNAmIz7Dk2Sc0DUcfuBYZRzQEOV6HD3lHNAsB82lImgc0B0uQ7LuKBzQORsElXmoHNA3kS+Z6+hc0C85jK4WaJzQPtxXTKdonNAf7JtRiajc0BSt/PKA6VzQCeofrPIsHNAdMkeln6xc0BO73TdVLJzQKYW8Tq3s3NAPF1PEAy0c0BmFZ8YOL9zQEQffgPPv3NAVNZLAvvAc0DNPPquiMFzQPrk/4fOwnNA+dxmmCTDc0BuGHfXJMtzQOO3UQNU0HNA9NFa69fRc0CpC+2f9dFzQDjH0Fe/0nNADlWcNNrSc0DyQpW0A9NzQOxrZbH203NArigdauLUc0BS29jCCttzQGqvWRI54XNARO5QF2bhc0CGkrwXe+JzQPrabrQP43NAsghhos/xc0A2fMeQN/RzQDD1ieeL9HNAtB9tQOUAdEDP4yq6eAF0QAiHLhtxAnRA7CDA3DsQdEDL/1lMiBF0QO5mWwWbEXRApl8dwKQSdEA8Yo9aTBN0QMNqBLhNIHRAkA+P+1EwdEDG7W9luzJ0QKllhq6mP3RAphpsWOQ/dEAqd995OkN0QEJRZGZQT3RAy9h3w7dQdEBm24ulyVF0QDKC+bSNU3RAaLD30ItVdECABqLfOlt0QC2fawYhXXRA7ocuD7dgdECStHkVCWJ0QHDJg1h6YnRAbAtcDEFjdEBAaNMRT2R0QGFbaiXFZ3RAWpvk89RndEDk8N8OWmt0QKSRu4kfbXRAEWYNBiJwdED0OD3XQHF0QC4Mo2x5cnRAvvO7RzpzdEAG7srlo3R0QHrqQDM4dXRAMNDYf/eAdEBZ3b01ToF0QJn2Qa/vgXRAuK4JxCaDdEBZean2FZB0QMcRM0/vn3RAtj3QDaKgdEBXHmKGN6F0QCbEluC5onRAqtDOrg+jdEDSic8iB7B0QOKXujbEsHRAu9CuMf2ydEA8BHUXy710QGZOHyfkwHRATjhk++jBdEAc6eqKuMJ0QNmf/SJOw3RAvr3VKiHEdEDiu7H9+850QE5W3maq0XRAZ0itbDzTdECUJv0C4tN0QJxYe1PO1HRAjjCGPLbgdECmRbWJuOF0QMwfJrOP43RAZEfemU/ldEBWHHUlZet0QGTlpgaN83RAF4R/rj4AdUCzlz6RUAB1QC7E0iTLAXVA8CKwpFwCdUAsgjlKpQJ1QLW0+HiaA3VA1P2uRiEQdUCEjFBflxB1QAS0f8YiFHVA4uEh8OQfdUDQH/QqOSB1QC2yIFqdInVAHIltr60ydUDlGIHWyzV1QE4mU5LvN3VAQsy/QiZAdUDiSjcKU0B1QGQ9pk1KQnVAaC7tlXxCdUBIWXWx3EJ1QI/nfIvWR3VAF0agguRPdUB6xOOwI1B1QAxmJ+Q1UHVAerqKnIFRdUCCwzKTnlF1QOiVswh3VXVAvHcobAxgdUB0Z9hAOGB1QALRSt9mYHVAvknzf6BgdUACbOdtOGF1QBrj/j1pY3VAf89jhftjdUCS3KTXYnB1QK8vAh14cnVAmHBzUIZzdUAVPsW9jHR1QNC/2FyNe3VA8izyQkyAdUAtrB8t5IB1QJhWwiV5gXVAavm8Pa2BdUCiQAVYpoN1QNR4wp2bhHVA2SOyHoqQdUDU1n/fKpt1QK5EZLaToHVAMpAL5bihdUB934k3+KJ1QALrHtlOq3VAh+Kn9maxdUAOwNVz7791QFjli2PQwHVAXqeJnffBdUD7h4ttOsN1QM5OTDuj0HVA0t1NmGfRdUAAkJgizdN1QGuwTF3l33VAGm90jg7hdUCbcPs9oeF1QPTVVYUJ4nVApsqzj6rjdUCWWfRXkP91QJm+HjtJAnZA/jZbvM8DdkCpLlerTRR2QMYljJEOFnZAlgAJlNEedkDYvjluiCJ2QCVcmbmjI3ZALsdq148kdkDk9sDLSit2QLtd9WEfMXZAtA+jwCoydkB4mKrpkzJ2QARTY+IdM3ZAsv4E61UzdkBrQplmhjN2QOO3yx+dNHZADrJen487dkDIZQMzTj52QKzhmQtNQHZAvhvqkB1BdkD6omuaZ0J2QBIa19PIQnZA6IAURHlEdkAwuTtffFB2QMjeF87JUHZAApaWpBBRdkALYz5hK1F2QPrKSuvVUnZAgmeUVs1UdkCL4u+Rj2B2QLzlCPXZZHZA4pDHrJ5/dkBW2w5o0X92QDhpzXTngnZAVowaAo+DdkD+plc43Y92QOiVzHLrnXZA1maQzMCfdkAkvJGCRaN2QLpeHDtQsHZAjbesVMKydkCcpXVlebN2QFgSeasNtHZAyQ3fFU/BdkATUWcmfMF2QPx/MW+QwnZAycwvThrEdkBrU7yLzs52QKxfkAHA0HZAGh1Qos7QdkCc0LtTcNF2QC3P2nz53nZADhnwivPhdkB1s5XdH/F2QKThV0K38nZAmEsj5QbzdkAkx4eAkPN2QAVHLeABEndAPiIp8bsfd0DyxO5BkCB3QOZGqjMPIndA2jzaVWQjd0BYB8fRVy53QCg2dCamM3dAu859Aw01d0BAn/AuzkB3QDKRuqqcQXdAslmnWpRDd0DmA/rYGkV3QJoN5K1JUXdAkhOU8ZFRd0Cc+EbKsFN3QIchcL4rVXdAB6zU4o9hd0Dk0tliKG93QCir4t4gcHdAGzt9loRxd0CGhzt7HHt3QKShLzNQgXdAkWVpD3aCd0Ce8qgMCZJ3QAzxb0tMlHdA/CY0RPmgd0BFqkOi+qN3QNcJePba0XdA5ZzToUjTd0CcF9IdveF3QOdJrmn4AXhA5MWVtpEDeEBMkGSMPCB4QBgT5wJ5IHhAKqPkA24ieECxZj9f0yN4QFL1dQykJHhAhvkMPQtCeEAwUXYH70N4QL5sZHUSRHhAKMu733lFeEAw1Z/AyVF4QHp1h6OHVXhAZskeLvlgeEAPTO0tOGF4QKo+Dy64YXhAQikl/JVieEC9zXA49Wd4QCMHVRtYcXhAvDNbODN0eEBR1dTQi3R4QNL6Mh/HeHhAmfIf9vZ7eEBQV6FFI354QFKecaw3gXhA+LDkqKSBeEDzA5rCeYN4QBBcZlb+g3hAIrzuMJqEeECWIuYCmZF4QPmCNiGolHhAjQHwFoareEClZjb4I654QDYebhiJr3hAtDTPk/fBeEDKUkUHt9R4QIw2oFLE5HhATkztygH0eEDsZ47Ai/V4QPTKWP9bA3lAklz2+ZYFeUCjKFzrHBB5QJWn8hiEE3lAPUOoKLIoeUCkhs4zDC55QPuhhr3TMnlA8jUDbGYzeUBKgZ2ouDN5QJoI+uxZN3lAwMnqJ/pDeUAVc8tWzVR5QBsDLJzrYHlA2rmPnEJzeUAZxwWw0nN5QA7l/coJhHlA1FifsyGNeUDUBF4vNaJ5QGJz7/I+q3lAdJ3BwMCyeUAykI6cRrN5QOhex23Q03lA70KicULUeUD0xE8uz9V5QPS7xuRR5HlAxGnKlgv0eUBKP+Hf+wN6QIL1LRuPBHpAup2sGvwFekDdVLzUNhB6QA9zQyDlIHpACOqaBSgjekAuYcDbLit6QPrJ8UcGMXpAwgW2HCAzekDk7c+eDDV6QKr6tmgmO3pAuErODRdDekAylHtZGkV6QIzwuLIrVXpAvHaHrSNcekCFwMc/KWR6QNh3mc7Dc3pAhUmoAxt5ekBExMisgXl6QAPhKp/afnpAq0970w22ekAkVQQcG8Z6QP7d3Qfa03pA0FDbs6jjekDM9Rm5O+R6QFaepV145HpADvaSPfLrekD1eABpN+56QMK46t7aAHtAkDZkxnwEe0BG4RFyxwt7QNNHbawqDntAPPRbsEsVe0Cu63dqESF7QKyDepszI3tAlPzbP1ole0CoclbKxjN7QMLLHQ+QPntA8i7fb+lDe0CGmJEAQ0l7QDec+FSdTntAj8M3gltSe0BhUcnKI5V7QCB7AgYvpXtAShoYDIz1e0B543E82QF8QJi0G2dmBHxApjUcL5sFfEDKxjIo0BF8QEwJ/8NUKXxAucwx2M1BfEDbJyufflV8QOU7hGsMYnxAfF3cQUdkfEAc/dfJi2V8QOWaP7ibdXxA2JAorsCyfEB8MP1+e7R8QFY1RbMSwHxA7KbJT2fEfED5LIHpytN8QEr3x4D423xAvhq4+APgfECwcMrFV+J8QMoAL7Pm63xASvuuFxfyfED3ua48VPJ8QADmXF1x8nxA1AN1RAECfUD8Lu5OSwJ9QA9dCLQABH1A5L3QGwcMfUAHqVbmQxJ9QFACA+ILFH1AkL3mj2wkfUDoo/FjdCx9QMKNgtukMX1AvLbMJnw0fUAgb2cpSDh9QNAC4HWHPX1AvE7pbORCfUAdXllU6mV9QLy7PHoec31ABk0Qzn50fUCTVvNKeXh9QHZnbcchfX1AtvZgOtl9fUBuP31fE6R9QKJwb1Q1tX1AxCpgtivEfUAgFWOy58R9QNtrQAQ3zH1AVH4VafHUfUBA+N7eO+B9QHYhs9aO9X1ArtDTgI/+fUBGQ8JuLAB+QJdaxtuiHX5Awq/i9jkffkCSNE0QwSF+QPBRWuz7In5AXnMoa0cofkAfab2kmyp+QAJJZhICNH5A2xoHnnY0fkDuBm5VCTx+QFiksJkRRH5Apuwb+6REfkBSF2H9ZUd+QC7WomMUTH5AKn4TjeJOfkBC7v6uvFB+QEyse5q0VH5AKicO64tVfkBEV4qqQll+QHKFe7aAX35AHNqrtWhvfkC0nPd2gHB+QEFoD1W5dH5APPN7WJ+DfkCJ9dFQY4d+QA/ooGGmi35AGU5T5q+TfkD+OxaEmpR+QECQN4HymX5AeRco6Z6bfkD7Er9LCp5+QDAEIvAmnn5ATgmwGEyffkASI/wxnq5+QIwenNT1rn5AzALgeLmwfkCExEh5zbB+QFtVpnP3s35ASFpYsU+0fkBQmv+qsLd+QODs3+KouX5A/rBk6AC/fkAy/gis2MR+QIYUY4y3y35AzA02eMHTfkCAhTsVI9Z+QJ7Cv6aB435AOH9cqQPkfkAEuqKgBOZ+QNadDBkG6H5Auit7ygnsfkBS0OlZ1e9+QAZT7b4M8H5ADGFxT6vwfkDWC/dCozl/QAroTv0aUH9A/CoDwB1Uf0B6//8cJFh/QDIag9y3XH9ADEPhFJZkf0C+JARNv2R/QDlu/CShbH9ALApPZ8Rsf0BOK9XItnF/QMCft41EeH9AUB4cQrSBf0Am5m0sY5F/QEZqM3SpkX9AIKihYomTf0ACFiSCVp1/QFy4K6Y5n39AQMWyKFyhf0Ay2V8Ix6R/QBzDZ/Ser39ADrelt1Oxf0AfacrH/r5/QJQaoICezn9AuWhY2+PYf0BE7Eeartt/QDh+rN9E6n9AsKSa1Pn0f0AS1kduBACAQKFiBxb9AIBAEzUIWMsDgEASff3OeASAQKohOip3BoBAf/4euVwHgED+pByp+y+AQAY349GIMoBAGHTEoP44gEB50I/XqEKAQFQINy70SIBAZp1WHSdKgEDIat8wsEqAQGqjGEnCS4BAEX8fxftLgEB2RuQK5lCAQM43ApMUUYBAnhS9uwZWgEAWoeLIJFiAQOjNsCcOWYBAqxbuPQlagEA84W6yMlqAQCa4ZP0caoBAkcfPrClvgEDAKB0je3CAQFdnZEYVcoBAzPlQ3sJ0gEAGKA1hJXeAQFKM1Qhwd4BA8EsxEqJ3gEC9JV1Wg3mAQDI6cfQof4BAtP4xj6SAgEDlL/n6/IqAQO63lkKHjYBAe2JtPUaOgEB0s2JJ/I6AQG0j2Xoej4BAvrI4e62PgEDNqp8iq5GAQP7E+CZHloBA5PjTTx+XgEC2zR7XJZmAQAiIjHnFmYBAYrG47UqagEASGy5ihZqAQPBvTP8CnIBAK6O8lcqdgEAs/RVnBZ6AQCxHXqAZn4BAqv7YJgWggEDO7bcgx6SAQFzb9PXypoBA+CRzuYWpgEA6I+7V262AQNnIAIwTr4BALZCHZR6xgEC6fmdflrKAQNq3yXNwtYBADJpQrxq3gEByNYJSnrqAQFjbRM5Gu4BAhBR9yAm8gEBXpV11zryAQE6qJ256vYBAZypPpjK+gEAq/lPpDcGAQIuinmBSwYBAtopfqjPGgEC+y8aQU8mAQIYdeeqYyoBARInXPgrPgEBnPuGaLNGAQIJHut9M0YBA1OOZweLTgEAQbQKKBNiAQKQSFIZK2YBASIUsjPHegEAeqLAaReGAQB5dwJvK44BAsOjpOfjogECE2NFtNu2AQPwI2gxL74BAMKMjbGn6gEDQawXRUf6AQAudMek//4BA0IdXYD8HgUBie8mVPQ+BQDjQKIZoEIFAvj1NWqYagUBjaF9WNB+BQMowjySwH4FAgOdhxFEhgUD4cBqo8CGBQDepxansJYFAErPjqDQngUDAqesotieBQGx3CrlQKYFAeomdNDAvgUB9FWurDDSBQBrM/CXqOYFAQRqvFCk/gUC8fiJ5K0eBQBy4jIF5SIFAqnEDI7JmgUAXruRAcWqBQPKK/DMkbIFAoKM3Km57gUCCiSRlnn2BQAZqVxCDfoFA5cFiSGN/gUD2hVJ/54CBQLvgjyN+ioFAS3pF3FWPgUAe4578hZKBQJwXLfs3lIFABDkp/FaXgUB74RcvjJqBQOIlaQFzm4FAflz5F1SfgUAjApJR56GBQD3dsxDfooFATiH3A26ogUDSSylC56qBQAvVHHpKr4FAKJoD7YKwgUCc6wacSbeBQEg7vQdYuIFAbrgEyVa6gUCsxmtWVsKBQJJk50VTzoFAhDESpX7TgUCSc1UCSNeBQKdaJvgV6oFA8DaKjbfqgUBaJ4VFAPaBQJj8TmYE+oFAZio44AIJgkCgtRdBAxGCQJQpcg+1EoJAI2XVzmUYgkBMZkmF2BiCQBxjKye8GoJAmNiSa/IagkDr87x7WB+CQG7JXafWIIJAdtSh9MAigkDmCp5krCeCQBVUqofRKIJAcmr0s1c6gkCS50yrdkyCQLZsK6UHToJAqCZUO6FPgkCa+PeWZlSCQM0CwZiuW4JAD/RXDjtdgkC+9st+rl+CQFTvLJlZYoJAfPIha7FngkBGKj4AwGmCQILzWYoPaoJAyqLvKONqgkDJeHpoaWyCQE7ntq3XboJAlAZX/X5ygkBNwvtP0HKCQBsiVA14dIJAnDGtxAh2gkB+59JP1HaCQOQVJi/feoJAdV7jMm57gkDguCs1o3uCQGe3p5sFgoJADO+yN0OJgkBoGEKFZomCQAm3QF7eioJAigcLm0SRgkDyC5328pKCQDpQN7Q9mYJACzpgJVWZgkBUrTSEmpuCQDPTYi4NoYJAohlAfTyhgkBaDVdo3aGCQHwlWRbipYJAFGm/WHymgkAcukHNDamCQPVJZXo0qYJAnwPTEtOpgkDShenPULCCQCwHbIU0sYJAcuug+QXJgkAGFP4o7cmCQCsAi7lx0IJAFv2OPNrSgkCwf4EAfNqCQEeTekOC3oJAeDWmitLigkC0eglCg+SCQJVtbKIa5oJAWGPB0/rtgkB8GtkjAvaCQPCktawVA4NAP3U44BwGg0AgbC3JGwuDQBCWgmR5EYNAxoQRXg8Sg0DO3/NwehmDQGBgwU21GoNAjlUHFGMdg0Bg7wWeDSCDQF+QezhkIINAzhHLckkhg0A7nWT1cyGDQOMecCaQIYNAKCQF2nIpg0B2uHmP2y+DQPgegulpMYNAROYgi4Axg0B2xkZNUDKDQFIM9SuiN4NAmNx/qB45g0A2JM1/aTmDQOrwhubeOoNACmW1VkhAg0BKYaqEXEWDQLpMl7wkRoNA7qdFD2Jeg0A78qs5Z2KDQHYWtOmkZoNAUO6QngZqg0A2yQKsCm6DQNze6fx7cYNA+E0e6sdyg0CqYUQF4YGDQCgle2YMg4NA/T8ivYqQg0BkYuN2LZGDQDKSwwWNkoNA6inqaI+Ug0DMyQZtFquDQMgfNJLVuoNARuKajyjDg0DB/h04TciDQFAmF3ca14NA9oxrdaf/g0CE0FCeUwKEQOHVhnv/BIRAXm5RUqwHhEB8JEuiWRaEQN58RGX6LIRArLmjmso/hEBucOUMd0KEQKRXevoKQ4RAKAJKjR5FhECcbcAkyUeEQI4V5PYRS4RAC/5rOZhPhEBeArpGKlOEQIZCOwCzVoRANqv5FZRXhEBubkNOKlmEQD29strrZIRAooK38P9ohECED/sgwGqEQCoJcVnlaoRAJE7+/OduhEC4vB3q/XCEQKhihhDrcoRAFax+rAV0hEDUvvcf7naEQAwEBtbJd4RAcp5h9Xh6hEBmqMEw8nqEQGDrUaInfYRAdA0/X/J+hEDAAfA5RYqEQCZAUapTlYRANT3UxP+XhEAKBSSqqpqEQC/Bag36moRAjOIptXqohECeUxwLatmEQHIdazhq4YRArrfevkDjhEAJ7gzXYumEQD6gHQBI64RA+rtPkDXxhEBQmmquY/GEQGqwLZpN84RA+k/TcTD5hEDzjmZaW/mEQCR9P2F1/4RAXoFUwxcBhUDePMTrrgKFQB4nOh8/EoVA4tiDZ60VhUAnoALk1RWFQNiTPidAHoVATJ5rNo0qhUA09ARC8ESFQAGjY9JgU4VA4+tZKoRZhUDaQa0taFuFQJzY40qgYYVALuEOoqBphUAaNZX+mHGFQHQcx3O0c4VAEI0S+Jp5hUAXIpVPkIGFQHVOFKKXiYVAnE2ELFGVhUBgkRFb/ZeFQIzLaAJBo4VALjJND0qrhUDw5GCLkbCFQHKoDYuS7YVAACgG3j7whUDK6xBa7PKFQMaOI/+W9YVAfH0frqkShkCsJcQq7CKGQDJuBE6YUYZAwgBAZmFghkC7oEChaWqGQHjgIsWKhoZA/AIYBo6KhkCDOOZkkY6GQMTxrWkVoIZAs10k8yW5hkBugLuWJMGGQLwon6ky/4ZACRiu4TYDh0DMNV4sOgeHQLblVV2RKYdAL7bFxZExh0DHSxPwiDmHQDioqSKKQYdA5DW9XYZJh0CoVPaDN2eHQAlcQZo6a4dA17KyXz1vh0BelYpNPXOHQBSUkuIWm4dA2l7kQXeeh0BiZKLIcaCHQIPE+5rHsYdA05+u1se5h0B4vjakwcGHQFow8wdAx4dAfCTod8DJh0Bu+tuPPcuHQCL5lhBJ04dAZnNjJ8nUh0BbfQSaLS+IQHou3TViN4hAqECBfVI7iEDFP9HDXbKIQJht6thbtohAaC5+cMPziEA= + NrgMGZxjYkAbumJgJkNwQCbMEZkkcnRAqRGvf/5TdkC0I164/IJ6QJ6QoPKAQoBA2kAdhirKgEA= - + - ywGWRK3ngURJ0BhGCTiMRAzwQUWA3i1Fasy8RAGceUT5HKdFl2oVR3FnjUSfS5VEmziRRONprUR8Za1EC9m2Rb5cu0WLhxRFgzByRFGiXkX0DjVF5HWgRCBMXESUKgVFUGrLRM1ezUQqnu9ExstiRd8GDUcVHaJE2LoqRjKHr0UPZqZEaWU9Rd1eYETOHp9Ee0+KRnuNoUSQeHdE35UDRuX6zURpZOBEwiSeRMyRukXVm89ELUvRRHiKmUWz80pFZTCERKTL70SY8IRE7NXyRdjjZ0WoDjdFEhyPRTfDkETE4w9FcrKbRVxSrERGNQJFiqyDRIB6g0Tq6B5G+a3HRDxw5URuJZxEfAnSRLQoy0RCogpIK63mRbM4t0Spi2NEoezLRBpfzUVb2ohEb2KQRMvuSEa3e9dE5chAR13iIUVvkT1GU0acRMmMBkdbmYxETtp6RNVUCkafPW1Eq0XmRJTw7kRbfV1F0b+ARQ37YkQvHUhFSXYzRUF5lkS1r4lERYfCRMTckUThO/pFSLEDRRFkX0SB/G1EdWE1RV9Aj0Q6A41EpJGBRK2wkEV0Q5hEoGeGRSIvD0VsgI5FQlyoRHsvDUUZW9BEww2zRPYv0URUFYVExU53RJzwLEYnMDJFivIoRXqSjUReQIVEIZh2RPAjjkXmuMFEj4rMRNBCxkQBpXpFnVGrRNqoVUVT62pEFddORRncbkTQQDRFEbWpRBVqF0azAONHvYijRdGBO0URGG1HBvMsRYLAmUQyS1BGs3PgRRxcnkTDw+lFR1aTRXlwNUeX3HlFhLaXRd/kekTK2NhE9nk8RcW5y0UY96lEqqeLROplo0Vm+pREd3eHRPdKgUTSCCBFM6dhRdenrkQxHU5Fko/ARM15ikQxOLtEBgDHRB3kmkRBcbVEQMSGRN+cGEU7clRFYQf+RLlelkQUxfFEQVivRAOODEWWkoZFOnp5RIsLhESbKrFFjyupRP8tpURMPIFEKZWXRaBtrkSnJMBEDIjFRIe8xERvKwtFyFeJRDoemERai3BG9E6URGjTGUXV4hRFBjPMRsNWhEXw/mtEJiUnRt6jFEX+/F9FfgC0RI8MDkU9yOpEtGivRK6Up0SibcxEjmNURWDaQ0U6KH9GHLjhRAX4FUXYmMpEYUT0RQnbtEQp7ehEesvBRqwWH0bfPMxFxca7RFkSuETrGe5EeHXuRanTo0WgaM1Eu7SjREJQFUWapMBESjXIRK3pjER7cDZFxpyMRBsQCEXOy4tEMZ3lROX0s0SgbJhED/+dRPmSwkQyYttEUDDTRHS/g0TqYRNFfZyzRJ1iJUXHbWVFV4IYRSwSLkVAU5tET/21RNV/ekXjEIdE1tDiRTXDkEUOeQ1HCnaHRIKal0SviYdE9ICrRAJkl0XtobZEglIVRZQMmkTIqLVFfpy2Rc0ynETc8ARGGiJTRdJcpkQ/8BFFXUx2RdjlpEQnPm9EBZgXRmvb1UWUfvFEotiZRDbTxEZHOotE8YvwRPqaFEVAldRF9DmQRfPtBEXPKHdEfz0hRSfPgURMB5BFkP+qRAjDvUQkOltESMCIRMhSUUVsnplEv16bRPMRkUQaHv1E+5jRRNEsnETBz29EHfKGRBOVJEVxUadGNFGpRA8enkQennNFv2BuRKF3sETqRvREFfPtRzeMvkRqiZVG2y1/RA634kZimbFFkfZQRvgwVkXvF6xEohoJRZKsSEV5a6VEt6Z2RPOqpkQMr11EF2aGRPIHg0QZEqhEcEWLRAUDNkVwyI1En9SlRFf0XESYgbBE3VimRFKSqEUcW3JEp0WGRakLm0Tl3cdEoACfRBZbw0RN/StFO9FDRu2zfkUX0PNEWmQLRdvxsEXFrP5ElnERRS/mvkTeLYVEAD+nRPB9MUntMhpGEWRBRbPVHEWPBpBECGsnRXXrmUTOIqpEIZM3SDhPHkUf/3xGfd7bREnVgEUTuKJEH8KNRYefrUVI7MpEaelKRf6KsEVyF4BEN56PRJWCvUSCV4VFAH26RfMsfEWvtwlFfSrBRFkZO0Xgyq5EzovHRGDHakWq6KJEaTU+RU3s2kTxjc9EJOuIRB+Is0RlPFRFfKZZRX9L6USGZ4tEIkO2RUkQnkS2nMlEMWG5RCBL0ETPg0hFHzmnRI5uc0QhH6tFJvclSLqXh0e0sYlEg/mQRiQjq0fG+QZGhwC4RJn4oEYCbKVEHFnxRF67mET/L9ZEa0DJRKQFTUWBYT5FWDKyRctbrES5t6BEcGykRLWpQ0X483NElS92RLUT0ESOUs9Edg1ERRJHC0WpmrZEgLMHRiiwhERLqnFEebYFRaETrUTNvrVHzXdvR6vQvkazSJBFqJBiRGp66UU00b9EZ29sRmT/IUboOe9E0m1dRcYqo0UVSqZEyN2zReFRY0fg4MZEP6yDRPczLkZ71QBFI2KhRK8L0USVfYtFCzuTRTv0rETCgXlEt0C1RDANqkfhB6VEb9DrRAFSjUazPRJF2F5ERTESZkaxdGRGvRfNRR+pDkW0A6lE8wfQRr38FEbSGZZEvYKkRMRbP0UudzJFjHYLRT5hn0XW+4VFyfKVRNnJ3kRlDYlEKL/DRHl5ikQASQtFTVmdRH92f0W1h4BE9+a5RGOTokWb19RE5UK1REK0z0T4awhFqPHGRLkujUQBdjtF8w2dRKo1gES5xRVHglKGRF4hLEZ372NFEO3uRfJ/fkQ+rv5EyP0RRQFegkTGnsZEmvs2Rcoqt0RIoGpEGwWWRIKuDEXAVp5EraqLRoAJl0RHUsNF82+zRB/6LEY336lFQgycRBxYe0Q4659E1u+LRWOxeUTzLR5HsmG0RAjTskQ/WLtEoE/HRuu/mERTOyZGuGAgReIep0Sha2hEIoWKRDEsm0T8XrBESRinRkcoZUQLVKZG+K0zRvFlfkRLtCtFjWrSRKt+3kTKqUxFupbMRM55wUTctE9GiGR8RSHLzEXyUgNFpy8DRX+aBkZcyo5E9gc1RQtr9UXqQtxEdRFYRNRvekQ3jYFEpYe1RJp6wUW+2IxEsdv4RPLGpkRzyZ9EJox0REgJgESN5JpE7KupRDQbfkTyM4pEyD6FRPjkk0TbAaZEKKV8RJ09jkTOjllFlRyoRDaajkU90FJFy6jiRLRGeEQ+l9lEsTBuRGtD4UQBucVGYoUKRYHQzEQ79vdFcDKHRHRiVUVfbZlE0W5+Rdd0gESuh+xE05A/RVg6i0RasgFF6meRRFPQMEWOQypFXUuJRG7VDkWLJKtEviqRRNF/gUT6pHZGQYSDRLktFkVIiz1F/2CSReYiBEWXE3tFz5UwRWuzz0QcxINFQEnnRB3heEUnwF9FD99MRZ6180TmrQNFKbUgRQN/vkTXyElG45sFRbMj2kQUvIZEg5a6RNZpwUT0QQNFZLgURV9f40RJ+YhFTgjYRPDeUkRqotNIBK4aRRpyRUgJL4tEbVjdRHSRREUZvspHBi6kRHtxc0V4obJG2saVRGwDEkZjo6JEl34ARRd/iUQlsipFzPuERGnAjUS5UXFGmczBRb5ixEV+PpBEeZwdRSiLO0cE3tBEh/gtRUhzcES3OKpEGusGRibuw0ST8WZElTh5RVL1/0RoRJBEQrVJRmpwu0TUoKdEngEPRXUgk0S9QJtEtuyjRKfEiETvybVEtN/ARL5xq0ScX71Gaz4eRu7TxEWMqIlE99d6RYNd2UTYeJtEZ5RwRTUuZkUYAQpGfjryRBCBqESssYNG/wlzRD9JNEVcl8xESbu6RKfHtUSrvcVElmSoRJmicET5ALZEUb+VRHQ/i0XW2uNEx2hkRYcyn0QnvRBIWGxwRFwmSUaDIARHP/yARPH8h0RMq5FFz0e0ReMcmUTn/zBFgGQkRXPqikT1OI5EvICFRLdTqUTwY5FET6XhRK6vwURllvpEDmG3RLqnx0Ri3p5EyC5uRPhh80Qc9XxEePOJRPYrgUQkssFECD+GRLSTp0SzngVFowidRAH2b0TEu8xEV92xSNHLiURap7ZEksZDSMobnkRwZ8xHJGGURU8Ol0SBPY5FBsv1RvoiDUbFeYVFYxpeRO5cFEXoihdGXrmnRMqyxUVexAdFaqqNRGzziERJ5W9EEsN5RLO4D0Xug8BELQKYRAPXkkTl859ErTeRRdx0xkR/HglGNyq3RD0+/0SEg8RIXaGYRC48Xkgw0gtFGhe6RF4ChESHUalFVxLaRCOY+UdhnE9FWrwDRz6rmUQbhBFGT8VUReeWhERIT6BEiIApRdq/FUVk4k5F5UpsRAAomkT0lqJE3VKCRV4O6kT7T3NEAZGmRP4eTkWpJKFE6D+VRCcoY0SiYaREpeRIRduIlETEwY5FvD1iRVDoaUR4JcdE7S3VRNZnb0QKTtFEveGGRRasjUVM7stESynXRP31eEQpttREFkWyRetd40XWfCFGwQK5RA0umUS7XnxFd0qNRHc8+0QNyAlFLJ2URIUa2kQ3lKBEOqfURexK5ERbYsNIUq2WSOhtOEU5xutH94T/RM2jsUaPOrpFIxBYRaFBp0ULmixFADy1RE6fiESRuDdF+q8iRdJ25UQElJxEc8aCRAQppUdpOy9Hs/UGR8TPxkbV8iVGYCR0RcNSFUYE6dVENnyIRHlPbEUZhJhFNJOuRMy0f0Tpw45E+gm2RKsXZURqIthEFMJ/RGgLeETEH1RFlDaRRKnkuEShoqxH4dIoR8HwukYY8KBEMnDcRSChJkWvtF1E264cRQx2B0VmRcFFt+4MRQZZdkRNcqJELVFYRZeVEEUnb3pEQRXpRFJUTkRjRINE6oSRRJJvsUT76AdGA68CRvMXEUWpRJdEgtPYRF3u2kSdpApGV0SQRcOtukTUk59Gr/wURrmAvkWpWidF16QCRYUbFkYtJctF6/BVRSq13ESL7qpEZf6rRMLTvUReJGVGjkreRQSAuEXg5pRE3DYuRVSUDUVkm7REUvSIRLFI1kTTn71E1/f7ROkw1EQN6SNFJ+KgRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - mgxdInDBckCw7YYZT8JyQKfQgn/lwnJAMvOTezvDckACKkfHDtJyQGyEMo9D0nJAvRD94qTSckBhAv6DeNNyQEDd2gFh1HJA1NGseNPfckAUCwbWT+JyQLHheOyO4nJAjlceaCTjckBMWuXhyPByQIJZh8ZS8XJAogaagsnxckAqiRs4T/JyQE5cyuC583JAxt97W6L0ckC6ffFlw/9yQEKqlJD5AHNACDXQCBEBc0DOf8g4XgFzQJHL+M89AnNA/SsKZtACc0B3F3sH+wNzQLVgr48jBXNAA1ZTlL0Sc0AUk2xyBBRzQNlgEeV4H3NAqFySHaUgc0DSk8e1+SBzQLB25Eg4IXNASJLPZOMhc0AqfAbVeiJzQOr/CZ/KInNAqkVMuQ0jc0BllfR4OiRzQDe7U8LOJHNAMn5ZKCEwc0AA/EbBWjFzQLLa/2SIMnNAmO3/qs4yc0CRm5FT+zNzQGhM4ee4P3NARtk5PY5Ac0ClR194d0FzQJAdLMJ5RHNADsGz5G9Qc0B3mGixElFzQP4ISqufUXNALjivvD9Tc0AHT4uNpFNzQLRz1mN9VHNANJlJBWVfc0CVZXBr+l9zQEZLd92KYHNAEUXOpB5ic0AH09HwO2NzQNm+q8XOY3NA2SaSFFhwc0DcOQEr5nBzQG1gpvZUcXNAsMUMLFNyc0BB80GTanJzQEPpfB+RcnNA9gCyXbpyc0Drv7Yrt3RzQORGjRdLdXNAoil+W/J/c0AuPQCieYBzQA458Q2kgHNAtO7GcxCBc0A0hhBNXoJzQAyJDrmjgnNAIFT8NDqDc0A4+Mtoh5BzQFXp32EikXNAyA0QaCCSc0DcEidyTZJzQPFPtVZlknNArETV42CUc0ARGjya95RzQIQBmj+IlXNAKC67QYigc0A8NzaLuaBzQCimsXfkoHNAYmH87Fmic0COOKaIn6JzQEUI7xkoo3NAgkfndgOlc0C+bReD1rBzQDoGkfh+sXNAAjUhOlmyc0CiTO/fFLNzQEuD7bC2s3NAWMum5Q60c0A8Fe499cBzQMAwpuV8wXNAepjFatDCc0CyJ0GsJ8NzQK4GAcsoy3NAB/z4cG/Rc0Cqt7QO19FzQPB7NeDg0nNAPX8jfgTTc0DSMPT49tNzQLqoV7ni1HNAtm74Aw3bc0AQdcr3N+FzQJB1z4pM4XNAABmM8Xnic0DaAxH9DuNzQHDWi+1a8XNAUh/qEjj0c0B3YcEDeQF0QKQUzW9yAnRAE0hJhLUCdECw9mXRPBB0QEjgdnm6EXRA9zd8X0wTdEC28M4OeBR0QH44tbb1H3RAEsPi3bkhdEDqVdwKtyJ0QNDHpI9QMHRAv9o9w6U/dEDVbuXD4T90QDC5iD0QQHRAjO073jxDdEDWgW7v/090QIWVzxC3UHRAljU20I9TdEC0iTpV+VR0QCIh5fA7W3RAzM4n8SFddEBlDMg4uGB0QAok/qEJYnRAoEW4THtidEC6WusrQmN0QNTD2yZOZHRAkixLt8VndEAolaGH1md0QIZ0ZwggbXRALiIkZiNwdEBkBQh39nB0QByNspZBcXRAqOyoVnxydEDkjMspOnN0QPp2N+02dXRAbAl0d2OAdEBtkS5SgIB0QOb2Q1T4gHRAYsSgDU+BdEAA+b0NTYJ0QPrEokjSgnRArc8qY+CCdECix0m2F5B0QI7RjSoWkXRA0EMPB1CRdEC33rd9uZJ0QKxtRXPun3RAltDYG9+gdECobDnAOaF0QHTU/zoQo3RAnBW1vGWldEBkqgVcC7B0QPirmgfFsHRAWAp7LQGxdED4+hupPLF0QDech3L6snRAQnZmHMq9dEAKktBH6cF0QMmH9jQqwnRAreQi1rzCdEDgX6RdUMN0QDUM2tup0XRAwSZ2iHjSdEA4pcaWQNN0QN5D/e/g03RAHkxPdc/UdED4+GX36990QKyLRdUk4XRAZBQJZKrhdEBq+0oLteF0QNRDqZj64nRAXmS5NXPjdEA0I6ONj+N0QKKNy31P5XRAcsRkL53xdEC+Qzx56vJ0QO6nAqWM83RAlb0tznr0dECV4WnPPQB1QBoWc4XPAHVAmyuKKCkBdUAIF+IcYwF1QGAoHK/PAXVAoj8Gxl0CdUA+7r+OpgJ1QLnuqDLCEXVAka+ApfkSdUAu9CmPJBR1QLSCIeY7IHVAijh3Kw8hdUDdC50ZniJ1QAIACPYZI3VAwLfA0V8odUC+acE2CTB1QAZF0rWuMnVA+fHX0sw1dUDcaaGj8zd1QHMCUDcnQHVAGkNFTVJAdUCAEq6idEB1QHh/X3GyQXVAGnjZiTZCdUC24nfnfUJ1QLRmEQbeQnVAcNdKW9hHdUCLLEgG/k91QBqpWkAmUHVAW9zq80FQdUDcuebIeFB1QFuimg5xUXVA8pQ6yHtRdUDs7HYPwFJ1QOSbJ+91VXVAYkaBmg1gdUBc9GedOGB1QOyWzDhnYHVACOOla59gdUByHXjoOGF1QNqtpe8TY3VA7rRs0WZjdUBd6/N5+2N1QGhlauCFZXVAOlWiNNtvdUADyABWYXB1QNoTGOuCcHVAFFxWuilydUBuS8mDdnJ1QLrwUCKHc3VAbKlPI450dUCkohdpjnt1QLpBWJZLgHVAaJF9sZqAdUAWTvB55YB1QPP7MeB8gXVA19gEp66BdUAgahvso4N1QNYGuNmZhHVA3PT0M4mQdUBiP6pCvZF1QEiIY1kqm3VAPJg/LFCrdUBjQgp2VLN1QF/7DHDuv3VAoQn7uNbAdUDpsuSxIcF1QL/tRm1jwXVAslMyBvnBdUDs9zSuPcN1QI7buqum0HVAEmXkQGnRdUAWqsury9N1QOaClgLj33VAgS6YVAridUA6d0v0puN1QEEwYNg45XVAby9/BJL/dUD2b/L/TwF2QCMv+iBJAnZAnvXmsdADdkBvtAQ+rw92QM6gE59uEXZAJL2kLE8UdkBISk7XCRZ2QNxXfNh7GXZAKlxbI8kadkAQ3Mo9iSJ2QCeKFWJmI3ZAitPSwpAkdkAke37ESyt2QKvpnmIfMXZAMxzxdycydkC8niYzkzJ2QLpMNpglM3ZAnm4t/lYzdkAYXmjQhTN2QG+0wqScNHZAgwWjsY07dkDM+PBuTkB2QPDc8KCeQHZARnqZNh1BdkDOpvokyEJ2QHahcehPQ3ZAfj9lpXxDdkCk1q6Dp0N2QABQp9l5RHZAZyFUNv5IdkB+Bi+CfVB2QAY84vHMUHZA0NLUrP1QdkAoawns1FJ2QMDQIBvNVHZAWKw3uY9gdkAXFeUS+WB2QFQW0yklYXZAGiltoNthdkAc/hphUGN2QMQLOAONcHZA3sA9pLFwdkBIcnvNnX92QKbmJ3vRf3ZAOmbA3JCDdkA6lwIz3492QJqOBXL2kXZA5ltB5OqddkAHOiDplJ92QA42fMTAn3ZA/GPX1OSidkBObX64RKN2QIBiXgeOp3ZAmsrxlJKrdkDI2Qz7IrF2QCJCwjHAsnZAnipu1XizdkBUjFz4DbR2QAjpAV51wHZAO5ylosDAdkDrFucjTsF2QKY6SfN5wXZAOWNYMSDEdkBTSqaPzs52QCa4oal80HZAFI9Jr2rRdkCW/Jnc8eF2QA2wG3e08nZAql55rJHzdkDepArjTgB3QKLzfKoBEndAHBoAs7ofd0B0eAJijyB3QDKEgUQOIndAFvmQb2Mjd0Bi9bPAuyR3QMwES9ZlMndATju8SaMzd0CsPIRlDTV3QJrHCRjRQHdA0fPUe/hAd0CPveBcnUF3QGK32/waRXdACl1F3UhRd0CqtIHHkVF3QGYK83SwU3dAFlV6TClVd0BUrIxbuVt3QLHa43BjYHdA0Vk8G5Bhd0C2vJJ7J293QJBTHU6IcXdAlGYwHpN0d0Dcxf1TGnd3QPajG0cWkHdADyfEKheRd0B895psB5J3QP5znTdOlHdAfSsMhPqjd0A+yhEhP8N3QCEx9WGK0ndA9i8xWU3Td0DOCWgZ7uB3QEhHUHE78HdAQnpGxDUAeECCBYEG+QF4QIDyyDeQA3hAbqPc1xUSeECN02g+ThV4QP7GQG8+IHhArj7Sh34geEDKGUccbSJ4QMksBKrRI3hApWYzzDsweED6fywR1DJ4QNt+jJANQnhA0IIkmRJEeEDcm7+qekV4QMyljPOlUXhAnkVLhspReECmxj/LhVV4QHPGxuz4YHhACoTOOjhheECuCw+7YWF4QP58C6O1YXhAAFIuopdieEC83w/y7Wd4QDeSCxdYcXhAaoGIxc9xeEAodoKfF3R4QAOIcvmLdHhA/oLmBLx0eEBag1scCnV4QPjkDIrFeHhAxZnOG/d7eEBVvBThH354QJphb0ejgXhAP61vR32DeECSraI7moR4QCPEwPaXkXhA4mb/V6eUeEC0Eo4hJq54QMBc/F6Kr3hAeeUCqWKyeEAWtO1CfrN4QLYoN9j1wXhAvWpo8ibCeEBW/MReHdJ4QPo3VQO41HhAhhcl6jfieEA05JEnyeR4QDhLjA8B9HhAhyaIo4z1eEBkBoQCXAN5QL48jpaZBXlAxHUbWIETeUCTPOwBuSJ5QJw+30dgI3lAr82s3rIoeUBMSDcwCy55QCa0ErjUMnlAHKghGrgzeUC4GhhJ/kN5QIY8IQHMVHlA1mmuy+lgeUDy9V8R2mR5QMA1yME1dHlA5oJ+l9d7eUDizTqZLHx5QDL5Xa4jjXlApOvL2jyreUASrqfXv7J5QIkCdb7ov3lAG9jhykLUeUAKiYCdy9V5QCBCICQj4HlAYL0fF1DkeUDm8Cw/EvR5QNK2+uj8A3pAGEmkIpMEekDeEZ+d+wV6QJlqb0/mIHpAwDKY2REhekB3UpmFKCN6QDghOkwvK3pApDI/rt4wekBAdAzICjF6QPyrKcsfM3pAaRkQ5DYzekA6njd+DDV6QB3gP0ImO3pAF+OsdkA+ekD0kkx0GUN6QJns65saRXpA4Xq5WKVOekAMmeIhKlV6QCiNOgUkXHpAzgvFLjllekAvxqMug3l6QPU7zTPdfnpAUA2CSaWBekBDm1hEM4R6QJ5HpTvmoXpAuvqppxujekB8uQTvDLZ6QNXJZDIqw3pA+J9FzRnGekC2d22OO+R6QFCZcnX663pAlH8RXzbuekDT8yo2ewR7QO4MZxzGC3tARPGE0SsOe0C1MeAuTRV7QET7EctbJXtAaOM8jQ48e0Bejy2AkD57QADqZO3pQ3tAMvAbl0JJe0DQliuFnk57QPmuzPzyU3tAlsoQ0sGUe0AW/QOuIpV7QMU85kN3xntAajMicnnUe0A9zIeiA+R7QA5basKW8XtAEoiqE4z1e0A/rs7h2QF8QEB50Bj6AXxAggcfgWcEfEBKnn7FmAV8QKrA+yHQEXxANNxvVMohfECrHcxJzkF8QOKr4yv3QXxAdM0lZAJUfECS+auoflV8QJqVvNMUXnxAErY1d3tjfECotFini2V8QKfG6peadXxAJMuf4r+yfECJCM0xd7R8QEh7SQ4SwHxA8LRKHGfEfEB6esXkytN8QA45lH911HxAnsxl8/XbfEBgnmV4/998QB/wgA284HxAIlHp9FfifED4GfdLFfJ8QPHiK5tU8nxAfhHUpwACfUBKI8U2SwJ9QAzCeDsBBH1AVjgPawgMfUCUuhEKARJ9QKB2HE9EEn1AOCHALxcTfUCgp2ZmDhR9QHs4L2lAIn1AHIjV/WskfUC2y0EvdCx9QJp7e66gMX1AyDY+Q3o0fUAwd7EwTDh9QCjeyR/jQn1AlpuPYjlIfUDVKxSH62V9QG1MfDIhc31A7y217Hp4fUBarw2hCXl9QKiyhbXUfX1AMX6zgJSUfUDRc8DhuJp9QH4Ucj0WpH1AlEPcYDa1fUBGwPSZJcN9QFTsPDhbw31AsipUkizEfUAZ/HYh58R9QPA6rPM3zH1A69pF/PLUfUAgqZGOR9t9QFwcEiA94H1Aqp2jTwLvfUCQpLsET/B9QCqomeyT9X1AZE1LJjMAfkDImush5AN+QMp57N2bBX5AWSiPiKYdfkAucz50/iJ+QCI9bVshJ35A6upPyz8vfkBqTFQ/AjR+QKNnV56vNH5AgknXuwg8fkDEC/uHDER+QPv63tqkRH5Aykea0Y9VfkCH7b4uqF1+QIas0imgg35AZiwsVQ2GfkBfv739wIh+QKFbSqeli35AaJl9PZaTfkAm+zOBmZR+QEBXziRll35AGDtYqfOZfkC8dFNFD55+QIUUBD9Nn35A307aTamkfkCeOaZg9q5+QIc2R/q2sH5Awq1TN0+0fkAq9u/1FrZ+QJD3e56ouX5ArpJfp7+8fkD0bxROA79+QMB+tYxjwH5Azp453dHEfkAMMh9RJMp+QJS4Kq0D5H5ADlA2LwfofkBOBvUZCOx+QBpu297T735AvsTGgw/wfkB+rHGXqPB+QEz1mBwI/35AdlhGOGb/fkBkr3QGIwJ/QFC5DKP0E39ABG3YmSEZf0CaRe8E/Bt/QGRQIT+kOX9A0pCGSL8/f0DW5vNYuFx/QLauk4ZjYn9A7A+e4Jhkf0CTtuDYv2R/QHXBq5agbH9AulnbWsJsf0AiN8i3t3F/QHTjT5C0gX9A/aYqMKODf0BI2CH90IR/QDTXdxlkkX9A9KFsHKuRf0B9jcrrm5N/QO7dMe1Emn9AUbdwziqff0C74+JTfp9/QKZ3xXENoH9AshZqYlyhf0DcchZxyKR/QAWPxrD8rn9AWPPovlSxf0BQcPOU2bR/QMxi8yawuX9A3x7QlvHDf0AEd/qrrdt/QCca1BrW739AXFqzPozzf0DE6ykb0Pl/QPRoItJFE4BAYSz9T20igED/kF6DiiiAQEMx/ILuKYBANwD/b8krgECYQFzRzyyAQAXCkiaLMoBAoHozIYZAgEAYSzXvD0KAQFn+yu2oQoBAIhU2n4xIgEBO4b+x9UiAQDBO4BPNSYBApCupnwJNgEDwgiEI5lCAQJbqbDkUUYBAkgfDUgRSgEBsPYkJBFSAQGhMmjIGVoBA4hVRvghYgEAo8lZqDlmAQCtqb/XoWYBAiqm3eTFagEAx2hTET1qAQG+ZDr1qWoBAnbwNTDVegEDCFvocHmGAQAyvoXJmboBApRHcVChvgEDh4d6OFXKAQAbiLDjCdIBAOJb8T5p3gEAQxGo5gnmAQKoUqQQxfIBAngXB1SZ/gEDesoAuEYSAQHJ/eLPNh4BAkxRhVPyKgEDAnQfbNY6AQDoiTrL/joBA9aI5gB6PgECexiz0GZGAQJWtQYCrkYBAlEmKI0mWgECON3Y8HZeAQCQ+E3BhmIBAgNLMAhyZgEDRUurqMZmAQE5MEa3EmYBA6mPRp92ZgEDI32naA5qAQDIvnAlLmoBAekwBVkubgECY/YF9BJyAQETzh+vInYBA+h45vAWegEBiKKLs3p6AQDVJcisbn4BA6LoKigiggEAm75HpAqKAQHOhx9AUpIBA1ctbp4aogEAC4IilhqmAQER7y7LbrYBAgHypwI+ugEBPPZJUE6+AQAukEkuur4BAfeRdF3CwgEBuYg4yLLGAQHbB83fksYBA+ho2ZJOygEDmYFBfTbOAQEr8ajcJtIBAZP/PcBe3gEBo6+cfRbiAQKUiUvNPu4BAhMWGJQW8gEDQcGlVvryAQD2m2iHRvIBAefiNCoG9gECc3a9AOL6AQPjM3Y5SwYBAnBu3jXfBgEB88Jfr68aAQGr0/eSox4BAFBv2y7jHgEAh8E8zIMmAQM3gK4pTyYBAes4Y/TTKgEAcuisFlcqAQGM6M7fezIBAQB3EE6XOgEBr2G61Bc+AQGIkuYGNz4BAzJAbPwDQgEApjhcO4dCAQGErwpUs0YBAaPWQ5EzRgECBvAqgBdiAQD6yixVL2YBAtKGamkThgEAVRjBEwOSAQHTwL0Bv6IBA/n1VefbogEByPx/vQ+2AQI/yXBZN74BAurDweFXwgECW/1MIPvOAQMa8jVg99YBAz+vMyj//gEBQj34sQAeBQNWO5uDzDYFAvkUbPj4PgUC6Fp0bQheBQM0QMU+rGoFAmK4TpO4dgUA5qFu3NB+BQNSrGfSzH4FAnLWNDTUngUDCBgBKMS+BQAINMrW0L4FAFYVnxA4xgUBSUCoYvDGBQIJQQSboNYFAC3yofCk/gUAqV7JHLUeBQIyU965US4FA2ZlYaftOgUDEYEIkTk+BQBhbwAOyZoFA+mjUSLZqgUDW3AcKmW2BQJjzBAFVboFAILKfEj95gUBokX1+KXyBQCZVShKEfoFA5d3KUAx/gUBmf02u54KBQPKcFxcRhIFAJkf0IxCHgUDotWCa8oeBQLRCnV/siYFAKJ4vun6KgUDTmwQq342BQCVMqftVj4FAyOtRMIOQgUARqp8ZOJGBQIiO58iEkoFAoArQr+CUgUDE3xMRWZeBQEflWfB/mYFAKaB9klSfgUAuQvwN56GBQGo5QGDfooFASGFrrG2ogUCaXOUD96mBQPy7pPuhqoFAf6XxvOWqgUBcXEQfYKyBQKQ/EFhKr4FAN/s3Ky6wgUDCe1EzWLaBQFAveXBPt4FAxrxjYFe4gUC/iO/UAcKBQMRpn/LwyYFAYhjU8n/TgUAZETcfg9qBQBtyzUpo4IFALizMhQfmgUBSFtLI/vWBQNrSpckECYJARGf0vQgSgkCK+3MytRKCQABtGnHYGIJAyOIVZ/kYgkAawFoXvBqCQNaZTErZIIJAMJW8aUchgkA65HqawiKCQDQsxjW5J4JAkw+FktEogkAQ8Aa7FjaCQMApZnSmN4JA3T4wgFo5gkBGG+T0VjqCQJZZM+eHOoJAMop6QNQ6gkBZ0RiGOD2CQISbN6oRToJAUy3fLeFOgkDjxPkOQ1GCQLjs85nZUoJAgwpyjY5WgkCwgWCvjlqCQN4lwwSiW4JAhO0qK/VcgkBBUvJPQ12CQPMjtCGfX4JAXJ5YgqBngkCcjE88amiCQCjeWtI4aYJAhkN2B8BpgkC65BMOG2qCQPj/Jw+Za4JAodw5H0BxgkCbJy34bHSCQAUaJUxpeIJA6BnAXN56gkDahlp6fHyCQIhy+igzgYJAfdlldEOJgkBqlJ6oRJGCQFhOx78WlYJAcpB/82uYgkCOd6FNPZmCQNGHqewNoYJAtErl6TyhgkA4pexd3qGCQMibZKmhooJA57rULQSkgkAacOuDJaWCQLhfzxHhpYJA0Sqs8AypgkAJEzz0M6mCQCzZ51rmqYJAOMztl1GwgkAqzrzjBrGCQIWcaB85sYJAjCAmeOzHgkAbGIAbgNqCQH7ueLaC3oJAFh/cFnHggkDese4Q1OKCQFBVpGf47YJAIHCb9knxgkDJS0fAefKCQHRMJmIVA4NAZ/0g1xoLg0BYmK0XVguDQIg0sMJ5EYNAzPySX3oZg0DkN8MPYR2DQK5FvDnvHoNAJyYUHGQgg0Aq9e+rcyGDQHyFXUGOIYNAOiu2PvQig0DyBO/ZcSmDQNgn9H4mKoNAi4G6Pewrg0ClL+hnKi2DQGriMA5rMYNAxmLnpIIxg0DymEEmVjmDQMozn7BpOYNAmniaZx86g0COT57J3zqDQD3hZk3oQoNA/Mk5BiZDg0AaehH8J0aDQBDvL+dySYNAKYsuzdRVg0DGAuECZF6DQAK65CppYoNAYF5yzwhqg0A11f/0w2qDQPl8KhYKboNA/UsfJpdvg0CiGrRFDnKDQDWFtyfkgYNAzqp+1AeDg0BUaTp1SYODQAaqFi/Gg4NAobs7TJ+Pg0Dsy4JNjZCDQCDks1KPkoNArxZZuY+Ug0CjEwaG0pWDQHyQAiOPloNA+i6/ON+Wg0Dwa34wlJiDQBo4sdWHpYNAw7YhRgmog0DiBMfnu6iDQA0bVRMHrYNA9j62A8m0g0CIgruK1LqDQAwR8otkvYNAMp/t6B/Sg0BAANh+G9eDQGaN4soZ24NAHL0l2b/ig0B6dHFCkviDQCK3TYmo/4NATDEGCVMChEBdVZd1/wSEQBFds6amB4RAhZQy2os4hEAsnOIiyT+EQJRI1Ph2QoRAAIhIIAtDhEBwhiQ0IkWEQEpv8nTDR4RA8DQ3iIVIhEByAhIMFEuEQGWoKQMtU4RAjq4JJN9VhEB4kyOaslaEQAL52Cp3WYRAJz24rkljhEAEtJIwAWmEQLiN2pXlaoRAsIODPehuhEBolZy6/HCEQLKrvgNacYRAN2VCTOtyhECmmAqB7naEQGY210/Kd4RAXn5+GPl4hEAIuLUKeXqEQDQMR+DxeoRAEMU8xR+DhEBY4GOuBoSEQOmxLN3Jj4RAHLZHnWKRhEDw7ruGUpWEQNzf/lIBmIRAsPjkaLWahEBwG8TE+ZqEQJBKOvJwooRAlgTL1KGwhEAom7otHM2EQDy1QmVq2YRAHJHfnmrhhEAo2CzaQOOEQE8N5H5i6YRA8Juvz0frhECshjwXNfGEQCjQhk1h8YRAMmsTwE/zhED2wEw7M/mEQBb94oJb+YRAOnGB7kL8hECXestH2/2EQHcx03Z0/4RAoHxmvhEBhUAkix+pqgKFQH9KU3oWB4VAzU5BMZMKhUCObx0i5AqFQCDWvUJFFIVAHjqb1XcXhUB2fSp4sBqFQOpGYzlCHoVAg/s4nsoehUBntEW3RSKFQOvlC+rkPYVAqRV0MMNChUC88QsnBU2FQMgkFMVgU4VAyLU5TKBhhUDMaju9cGKFQIo/Ru+gaYVA8IPSVRNthUAKvDzPmHGFQErYHL2YeYVAy2a+RZOBhUCADZireIqFQInhYdJRlYVAjfmT3IKVhUDHW+dC/ZeFQLitfuCqmoVA9gVIWEGjhUA2HRuqR6uFQLR2p6pWxYVAfnSWUZPthUDmd5g9QPCFQMk3nRGp8IVAOJNrY+zyhUDuIS5JmvWFQPSl5iQJB4ZASFYALM0ahkA0TYhhRXqGQD4bEsG8foZAGuUI/IuGhkAG2gONjYqGQMegrnqSjoZA/pmCQf+XhkCuQ1/7JrmGQCmKixwpwYZAmp5VT2vDhkCZw9wI1MiGQGQftEky/4ZA+ci6ZDcDh0B8NqOFOQeHQMbSKW+RJ4dAKM1kIpEph0CTpGOukTGHQKkwP6OIOYdAFuvaVYhBh0DwWiOrN2eHQCyfY9Q5a4dAwJUVjT5vh0D08ZN6w52HQEAuicWUqYdAjX9b+8exh0AVX5PYyLmHQC1mGcVLu4dAlO/M8sDBh0A6ikCFRMeHQORhYaO8yYdANADdkzzLh0Ci1kwaYtaHQEvtGJG7a4hAFv/VgueMiEAgEU/M6o6IQCH95evmkIhAkzTJ2+WUiEC7dYzJV7KIQMiyeA9ctohASbj/cvXfiEA= + NrgMGZxjYkDGeRuljWJrQEMdzoN8QnFAPsnXHQoCdECeKRjPP5N3QGWKH5W4EnxAYTC2ouXDf0A= - + - xo6XRfF2tkQZboRERUc9RR27d0VLvOxGmIC1RFPxr0SiyYZE31+pRNYobUUBqE9FWUcYRea+l0TdR81EETsYRcLTz0TF0p1E9r+3ROY2ikT/05xESTh4RBkWIkTGt9ZE7IhbRSQq9UZ/FU5EcP4TRi4Ub0WtMvdEPHLKRAA3KUT5GCdGEBFnRBmruUW3AaVE6WqwRCUOm0SMoo5FP+d/RFT9UUR6rUVE7jaIRCzJSURRhfVEGpBuRLieEkWLAstFKr2CREU/l0TyAu1EB5F9RCsVKkUUkalEFU+SRFD4/ETVQKxFhOtIRKJWxkRKMmtEyvRPRKZOG0Zwlp1EYKlSRON0T0TYxztEZCqyRFnUhUS9fKhEQEZdRBhgCUgwOQJG8htpRLeQuUVV5nVEp4ddRCJTQUYXuCtFeqF6RKDtJkfdpWdEqZ+qRF32H0agV4JELEaHRHQiQkfUNnFFZGOCRW3oa0TND6lEgmX0RAAp9EUT3dtFdN1WRNBMRETTSDhFG6UcRTFXgEQUSAtFyW6/RRIaqEQWBYNEYGWaRDwZC0UOSoFElQFvRcUspERL1hdFf82DRIY6QUXTl4JE/r6mRGhew0QPWEJEMBDARGreB0YGS6hEW8duRC7F0ERJ78BEOfEhRVr1ikTER01EW0OnRDJjmESsooZElgOGRWJ7oESYlpNEq1sNRSJovETEs4lFEPc5RS8CgkQf5YBGJjnER+2VRUU06iVFRjojRzy1wUV/wmtETpAFRo5BzEV1p01FdG9bRYzHmURy6yFHeiE5RddwD0XKYl1EAEWsRO5xXURWHgJFkkGzRc57PkSVjWJE/Q4/RON9pEXtsoBEQYqvRLQ6dkSTUIRE14CzREqpgURHkyhFmEJMRFdXa0QwHMxEKV5+RNGnkUSYospEYdGaRI8xmETuqz9EL7OKRM0miEQYd5FGiDt1RO+vPkQUd7ZEPUCHRO6Uc0RWdWdE/LgERYj7CkXN9sVEwThtRB/8tkWNGbVElp76RC9nYUTzZ3xFtzeWRGYkFEVcT3JECgtqREK3skSxxQlFIx8YRQmX00Srbg9FdQSSRM4WeURm4lNE3vKHRKN6akYQPq5EZ1hdRAsUZ0SLE4pEBrIbRdGDTERZT/hGLNs9RfMhmESdLHZER2c7RHVw7UWQmSdFuiWtRWN6okToNB1FKo6PRNkw4EQ1LIxEMHCJRKpEV0RNEaVEvBKLRVpMBUWraqBGEkYFRcMJ2kSiTE9EFKLBRP3krkUmwoJEYh1zRDD2hkT8LYtExeKDRLAQB0XgOPFGAffeRa6oCkawudVEq2hhRI/md0QCOXFELHSTRc7kQkW+zrdEM6ujRLXc3UQmtNJEeOx+RU1zp0Q+f2BEDzMsRCr4O0RneWFE487CRHwnq0QkTD9Ek/H3RCLBkERR05ZEgpSjRCyE+UQWCHVExMMkRVJq4kSaF3dFeWa/RA4xT0S0ClhEvlKARH7lSkT0YZ5ESENWRAYaZkXuh3RERDbdRTnzgkUOC8lGzZBGRKmaWER5t01E2TQRRaJRTkVYlKlECPTLRL3Ji0XlqlVEoM+uRcYavkXNfYFEA6WiRDX5q0TI/E5FjTNwRPK0aEQUR+REnG6cRUX6gUSwNSJGibcCRlD4c0SrnYFEU+JcRONXZESC+UBE9PpCRdd540SnXZRGYQaUROvxsET02VhE1OGaRTEZiUR0qlJFki9oRA7bKEXVwolEZauMRN8LkURDxo9EnQCnROmTZ0VgtKJE3EFMRKrq1ER5O25EsVJeRFsdl0Ubga5EXXNcRJgvvkQpIZhEuKQTRYmDXkTCgodG/AO7RGTQ3UREnj9FAfSCRHGtp0QbL41EW9XIRHTt4EeUzZJEkyg/RBXOokaUJ61GuuM0RbwIQka4FdJEO1IMRYOdaUQg+kREoZwVRaZ1D0Wsk4tEIqxDRPmn1EQh3T9ENXgMRURPeERcb9ZEKeW0RHXwQER64otERZfJRHdjZEQtLVVESJ6wRHH0/ERK+iJFuvE4RBA0bUQquvlFZtN1RNXYUUVo749EfVr/RJ+tUURUqn1EcocqRderJEZ45epE3xRjRRxQ+kQYCZlE+hkeRjr9rkRbKcpE5P/YRAx2n0TLFWlFnT8/RDba7kQzICJJEUtbReZyq0SawbBFJ7s3RYDH0kSZlkNFA93hRMvLMkjKsX5FAsRwRipb1kQJVOZEHEKsRNCpdEQ0sk9FhfOgROQ1V0QHIVNFvmWhREDjOEQZIQxFrIm6RVHyZUS3EbVEFjWiRDK+gUTetINEutfqReVKM0Xq+/lEidQARUmbq0RfrEpFZ/tjRBsAY0QL4YtEr5ZsRGUMeES4QYVEbZugRId3GUUIG0pERNmGRaGY30TeAo1EqZvaRIyGpETmaqVEU+BBRITPWkREdCJGO1smRS6PFUhBNmhHxv+4ROLPBEWFe2BGYv7pRRyc3EeBlqVFdx+sRGRjk0SgO+FGTkiKRN+XGkW2YUpFY0twRCX8skX6iFZFtR61RD4gUUT6rMdEJ06cREoKxEU9kIpEgPDvRHTWKkUMjmxEn3eYRENiP0UQsaVEQkRqRDLwMkYJSERF5uGQRJ0XwEeLDoZHOEiuRqbLmEUCvhdFAIY9RILBZEXU2nNEe1BUROwlfUQAK4xFipl6RvhSLUaiUehEYVCFRG/uLEWIglFFAaB5RL5TVEVGEVxEZy3DRK5qGkf6hoZEZtZaRLFgB0Zb/axET57ORP9IdETPedpFXOFQRTXyukS7A3hEOWZ0ROkUkkTTybpEBpS5RyOWC0UwZ5tGPlEDRScNdEYB1DJGNresRVsijkQXdyFF+INNRKL4h0Q6icpEaEQCRrauUkXeNINEcrV0RIbo80Q+hRNF872SRO3lCkUcDZxFe+w5RVQuUUQ76XNELoihREMmi0S2a9dEXkiERIf9qkRhejVEtnKNRPMCLUVBc6VE54BSRKPvS0T9kqNFZfcxREd/aUT5dpxEhl+xRP2MlkRajGtEqrcYRbuTlURVt4NEbbCERL2HzEa0/VhEJ69uRvR9Q0ViZZVFuX7aRDOsbkTIjGtGpR2vRN/FjETNYbpFW5GdRPddIEatk35E3tTkRRFvi0R6ig5FQPejROIaFEel3fNE1ZzjRreOlUQ57fhF4nZ7RHC4GkUlPp5EujGJROhSfETWF5ZGmPCJRogIFEZzYpBEqigERSnc1UQaNJFEiVqDRKetY0Rb1JRFZp5ERJGp20QCJ05EkwRNRA93X0ZOYEpEtdG5RWsbxUXGICVFDvmCRDtupkXft4pEw7poRAc/kER0yhdG4OmvRJNFSkREV4FEppg7RNLygEQU7hFFG8waRYTTHkYL8opE9hzgRG+DFkUr3nFEkyRWRFainERJuIFEyuyFRMhJUUQzclVEtn5mRIImk0S550pE9j2JRBiUWURhJ+5EN4dORPjQYkQYv0ZF4YOBRGHGwkTPWFREpoJWRDZINEUzTqNGvPd7RO+wGkV7/StFJfHTRD4o00UenUNENbv4RJtyKUQvxTdErtmYRHS7XkTHP4BENOkzReUDuEVTUkNFVvZ8RJjx3kQcX7ZE8JPyRExCoUR/xVtE4NdLRK4PaETFuH1ErOlPRu0DUUSE7cJEvUlURXcH90RuJplEc7CaRKhfPkRaEy1FtMiTRCItb0TC0QlF3aJsRBWfj0QqGyNFOIM0RTymqURDCz9Fvt2mRFJTPURrot9EoH1fRIcwtUQ7mpdE9JNRRAg6KEaNnLREwlXORMrP3kThXLtEZKQJRYEJmkSy7X9E3c3fRPaXUURCa2REYZKJRFj8IUW+6qlEnAuORNPOzkR+optIpWCFRIkwsUSOB7lE1sJeRNaIPEW7iAxIgeWzRIkLvkRdKSdFfRFLRPAOnUQAHIpETNxiROPZiUSPOr1EEL2iR7k4DEXrmZBGuZOwRYY3cUT+IGRE8T21RDGOZ0QOCxZF0TAqRMYoqEQ9E2BEcWN8RkONk0UrDNBEtbW9RXrhiUQbEmdEusK3RKyyIkeAJYNEVtAERr+tHEVnRZhEHBByRChSeET3a4BEllosRqheEEWvFJNE2S+QRP8DLUSFaqpEY/iuROpJj0Tl9exEYKedRILnakQhQF9EpP1qRJ9kkUTO9mBENGPEREJSY0QJZ5VE3+hDRmZRh0QVhQhGajuLRHtRi0TZXhRFqyNWRFzHGkUrEWpE5k4LRcek1kTCy+FFdFQDRWW7bkTFlpdEbmHDRALwhEQEd1ZGm8ZsRAGXfURGsTJFnPaTRG+6YURDt4JEhGSoRIbzmETUpYVEXplNRCc/c0QzTwNFrJ1pRMd8kkcEeCJG8L+CRJcBhEbXwE1FCvFpRH9PGEVCNEtEfI0WReDDhUS25VhEPgVxRB5FgETKLGtEHMFXREuqlESXfIhEV1+xRJr4ukTUP3tEdMi/RIbRP0QShCNFydmHRO5wxUQeeeFEu+m4RO7a2kSs+8dEL/+cRErhbkRWDoNEecZ4RF93RUUDPZlEcQHBRN3/WEQYundEfwxDSLOiykej91hEj2zCRITxWEeCI6hFGDhiRibyDUbAM4BEyd9GRA9EakTjsLNFoMQHRRsOlkUbq3BEGw6YRd2Um0RXoRVFVK1XRH+FtkQ7ppNEd1xCRHCvk0T8eH9EsBpdRN0ht0SMDOZF+Y/ARNHejESBuD9IIKPHRzwLgUSKUppEBU9hRYh4SUcR3iRFmEt7RLDbZ0ZbNJ5EzxBzRAc+iUQm9YpFzOK1RGAqQ0RajVxEbbixRIvRkUX5T5NEoMNeREDAjkTf1o9EVRxGRCOLHUWmIapEZiOTRahpf0S9eChFIEZ9RAcqhUTxJ7JEC1+HROpeb0TMtnFE7GyLRHfgCEVvCI5FvPQiRV5ad0RBsa5Eb+taRDq/pETSyrJEXwxHRMzhCkXQJWlE1klURNnaSEXYvFBErhGRRE+s1kSaMWZEC51nRGYGqkSboHFFS56uRQV8BkW1YFlEB5SFRLmtpkU288pFaOpkRuPpmUUqRrNEVMpPRCMuYEVDEpBEvyKzRB1dgEQcwqFEe098RKb7n0VfK9ZI2AaaSL6DDEWl0b9EvqLtR9PQzkY59bBFb+mwRLNZiEVQyMdFJE7QREh/kERdZEREf0CbRGAIBEWWISBFAvmLRL97fUStR5lEQvS0RIkkikTM+DVHSvnQRjdmF0ejVVZGO5cLRmF2SkUHDYFFAfOlRNCLj0RLZAdFfqkBRVAcW0UfhWNFbweCRRnQHUXYbFREOMNHRCvaakQyGpVE98+ZRC/kSUQUkshEx21gRFuEVkQGXIhEiAVkRK4MiEQg6w9FvqsqR8KDYURdCJpGb9hfRHbvQ0YMxbBFuKgGRcVubES3lshFKnjJRKUQl0WZH2NFvtpkRfXYokRs7adEGX39RX90qkUysGFEWL8/Reo+ykQs/5hEDPiMRJoYbUT7VbNE/f7xRYL8rkXXyOtEaP9aRN14CEW7hWlEuZFVROcpQEQNmcpFbB/CRZOnD0VPumhEtTkcRp/QxUWw3JtFOnOyRGMm30WL54RFhfUbReMJjUSMu0pEVTMiRgqnt0X3/F1Ey/0xRQhJqkQvZ5hEWy+KRENoWkT4hGVEmhTvRCVKE0WHCXlEDAhERBwjbkVhqdpEJc97RA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Mkq3OyjBckBs9hB3bsFyQJjUJCVOwnJARnJhVKjCckBI5XjO5MJyQFqcJTQ7w3JAEv5SUMPEckC+0RpOX8VyQNoeG9h90XJAKiDZqw7SckBcIJJhQ9JyQGzvhGtz03JAHvVAus/fckBoYV4+ueByQDJIBWFk4XJA9hDEWFDickAA/rZOj+JyQHDIeRoh43JAe/aIDMvwckA0up7uUPFyQMG18NDK8XJAEhn7IE7yckCsvHxeEvNyQPqHCsK383JAYolIxqL0ckDrN30JOwJzQDpJ13TOAnNAt8ATwfoDc0Cg4pncMBBzQGZfZVh3EnNAftgGmbwSc0AktkuzBhRzQLA3lIlNFHNAOmb03Hgfc0B6jQAYPCBzQAYoAZ84IXNANnhEwmUhc0CMmmPBeyJzQP1i6nzLInNAChMQlhAjc0C09+NRCSRzQCFCr8bPJHNAcN9JzUsxc0CiBFEp0TFzQHWyL/4JM3NAOnysP7o/c0Dz4Ix9R0BzQMpHClXlQHNA2iq/DHhBc0CC1NbXvkJzQGCt0y16RHNAQXM88BhQc0CynEjWclBzQJi8VGkVUXNADgqtxZlRc0B0CUVxo1NzQEAf33R9VHNAT/YyWmhfc0BQnh5a+l9zQH0ojqUiYHNAjC+3Iotgc0AmrA8GOmNzQDwXptHPY3NAqk38ZBpwc0C0IBvFl3BzQEq5airmcHNAADXG7t5xc0Cz8Fq/WnJzQGZmVi1NdXNAWnPuLPJ/c0DC7SQeeYBzQN5HHL2kgHNAAbJLssmAc0C7rTDI3oBzQM4u6lXtgHNApDdFiAeBc0ACGrfqXYJzQFOfypqHkHNAnjkJjLKQc0DmCGk/JZFzQPa2UaUgknNA7wqWK02Sc0Ako5XVapNzQAr/niXNk3NAsMiMgmSUc0ASfWPk95RzQPV/KTKIoHNAcMXWIrmgc0CL1G1l5KBzQPW4xMmvoXNA6NQUbFqic0BZY1hhA6VzQIaQCwXJsHNAuDgoLn6xc0B432kbt7NzQArO14EMtHNAXRdqKc6/c0Do4w4S98BzQF6mqKp9wXNAjsI64DvCc0D3f4Aaz8JzQJEK+4glw3NAWATOWCXLc0BATnMVVNBzQKrRGGtv0XNAPXO/rdfRc0AOohW6+NFzQObtYqKN0nNAeGapmgTTc0AolaCoJNNzQGBEZB3203NASDNUg+LUc0AWDSrjCttzQL5fGkii4HNA/LPjyzfhc0AsZVQVauFzQIamcMkO43NALDBNGDb0c0CAkHkZ5AB0QMwHOi54AXRAWhVnV7oCdEDhI5vnPRB0QMC4y7l2EXRAJJL9sYwRdECncHp4uRF0QNxGS0lME3RAlmNumeETdEBodFQTeBR0QEh7xu1JIHRAVMOD7rchdEDrAcyFsiJ0QJW0ie76InRAYSkQsFUwdEAqT96Rpj90QJ7XwPXhP3RAwnqi32BAdEDcN/sEyUF0QKWQNtg6Q3RAVS2EZHtDdEAkj0GLyE90QKDB0p8BUHRAvGipkrdQdEB6j/5YjVN0QDF4Fmj4VHRA8t9fU4xVdEAHVnrbOlt0QJ4YqAUhXXRAnntwDbhgdEDi7KVNTmF0QPBySAUJYnRAxhduJHpidEDKQkfyQWN0QOBj9Dt7Y3RAKxAasE5kdEB2tsOixmd0QMZdXiLVZ3RAxJ9A3B5tdED2KoCrInB0QBDq0seAcHRAlK+2FvZwdEAwbEbeQHF0QPpRU7R5cnRA7cBbJQ1zdED81e+wOHN0QPtQNKA3dXRAyVAXEvmAdEC232DaTYF0QDpfOs0mg3RALrDWFhaQdEDG8TmQA5F0QF2cLQ8VkXRAZNSlA1CRdEB6XQ5o8J90QFCZHgvQoHRAcWGPtOCgdECPptbzuqJ0QNoUvLQQo3RAmZj+tAmwdEBPFZBkxbB0QDKNyMvhwHRAQB7tgOvBdEAujcg0uMJ0QKoISdFPw3RAMiVIoyPEdEAGvjSxuMR0QL5luTX/znRAMJ18Z6nRdECz/8VJd9J0QIdMq6c103RAwhIcw+LTdEDyHNQrzdR0QMrBtpok4XRAet0fx6jhdEAsR0D4+uJ0QH99Rl9x43RAm6jeRZDjdEAoH0luT+V0QAEOiyO/8HRA4lFZBZzxdEAxfmZFjvN0QPh+K3M8AHVA3g1PyKIAdUBqmrywMAF1QJA5A0ZlAXVApf5/nswBdUAMQvr6XAJ1QJDRQLmmAnVAWuT1P5sDdUAsmXkcxQ91QAGw2toiEHVAgdHos5YQdUCY+M22wRF1QOtBDoQjFHVAgnBI2+MfdUDS3X8kOCB1QFqSZJCdInVAHCE9BXojdUBaJBD4aDB1QP2HvMnHMXVAUKapnasydUA6M7MRzDV1QEIWg/smQHVAlnwrDlRAdUAAIqbXeUB1QEKqZha4QHVAMkEPjH1CdUBcOilN3EJ1QK9v9nTYR3VA3C34VyNNdUA6d7lqMU11QPoP3ukEUHVAIgOOnzBQdUDOdEMWRFB1QHy9jYR5UHVAsbzqrHJRdUA92ubIdlV1QFwAGxvmX3VAS1XSDQtgdUAE7L+UHmB1QJ/6BnQ5YHVAetPHiWZgdUCOYjKvomB1QIOoN2s3YXVAQcT51vpjdUDSaaLHYnB1QFmRMHd4cHVA1BFDvCpydUByGWXTdHJ1QACUHsJOc3VA5qdmm4ZzdUCNkZMKjXR1QNbaSYKNe3VANmvNMZiAdUBu2J4ieoF1QLASZ0etgXVAVupl+riCdUDbDNdgToN1QIJTPyyng3VALr26lZqEdUBWvkqWupF1QNT7HP/RkXVAV7ew4SybdUBe+Iq8mKB1QJJKKwtMq3VAhswXWJewdUA0Haws7791QFKfBmz2wXVA0U9EUKDQdUBa5IYTaNF1QAAYhF+O0nVAtlMiPsDSdUASUaEDzNN1QGXAmmrC1nVArjZjnODfdUBuUnpaD+F1QATnWtUG4nVA8hPa7zzldUA4b0EHkP91QADH9Bu//3VAbuqEP1ABdkBqKaLVRwJ2QEEP8GDOA3ZAs0dMirEPdkDk/ElJcRF2QINLcsxVEnZAQFNFKkwUdkANAeNfSBZ2QPB7qIb6IHZAaeBV9IgidkAQWuLxjyR2QJu3fVVKK3ZAn2FFVB8xdkDX/g+8KDJ2QNaAiXVRM3ZAdjRNB4YzdkA3gW7jnDR2QKhUlChNQHZAVRohb6RAdkDJOPMRHUF2QF+JpibIQnZA/pZONw9DdkCXjlRDpUN2QK83X/N5RHZAkl6BqP1QdkCcO9V91VJ2QM6YdoTMVHZAY1+ppY9gdkCe7MHh+2B2QEH0wyocYXZAvsrDJ91hdkD1aO94/GJ2QGTNdgdBY3ZA5fmu1tpkdkAok+9jrnB2QEL2T1fscHZAIOEuWZt/dkATrqua0X92QIrYDOiDgHZAQDsPvGiCdkA+9uhLpYJ2QMxB0fGPg3ZAdmpCu92PdkAkwXTF6512QFBfHP++n3ZAQMac4eWidkBk0kFrR6N2QJiCDqmSq3ZAX7BFsSSxdkAw+eVUv7J2QFgv1eZ4s3ZAzrhcDw20dkAUxaeKvMB2QJgOR8JPwXZAHi/VpXvBdkDArWhsF8R2QF2D/B/NznZAXPYJ2YDQdkAyqIbHvtB2QLY51g1w0XZASp0x47fTdkB2W0O59eF2QLIdHnCY8nZAA/D2OrbydkAc2L+wJPN2QK51Q8+R83ZAhWMeZXgBd0B+zXSAMgJ3QIGLmORqEHdAuDr8JwESd0CCpma+vB93QDyZAKWNIHdAIROVrw4id0A/N1pFuCR3QI20fqtbLndA9ny1hKMzd0DjiTbrDDV3QNEkCXB6PXdAuWQqf/s/d0Dw3eMB0UB3QIPxQXmcQXdAPKzTljpDd0ASidVXmkN3QIhUahIbRXdAZTkee0pRd0Cxur+RkVF3QFggFTSvU3dAu8350ipVd0Cg7VLNj2F3QNj34kc7ZXdAJIt6tSdvd0BIxXKpG3d3QKYT4qt2gndAQjMC61iDd0AkcM0kFpF3QKB6sL9KlHdA4DqlEyGhd0CkD+Vhj6F3QHhZawLeondA1kYbRvujd0Cdwm1QUvJ3QKL9oFv5/3dAmJM9NUIAeEBdavs1+AF4QOYD8kiQA3hACmwctT0geEDokKBqfiB4QGy2SQRuInhASu3DhIsjeEAqVimG0SN4QBWyUWk6MHhAxFcUh1wweECojc6KL0B4QBxAK/NZQHhAFgYJUrpAeEBK6VqNRkF4QMWR88oMQnhAEMXM7elDeEBo9sr/EkR4QMbY8795RXhAVRpZcaVReEA6CqJHylF4QMo6b6eIVXhA/9KiBPhgeEBF1pFeN2F4QBTpc3W2YXhA6Fq+dZVieEDHCPCCumJ4QKKLW6pEcXhAJ+bik1lxeEBEZi7VDnR4QDh+RXdQdHhAu/54qYt0eEDAQyyBz3R4QF+1EM7EeHhAZuo/vfR7eECbO8uLIn54QCixG6mlgXhAfqNnHnqDeEA3vqJFAIR4QJSkTSGahHhAL/Olf06QeEA0daaclpF4QBdKyg6plHhAqX7tgLOheEDzLxmts6R4QBr9CtWGq3hASMXJGCaueEDsjdPIiq94QMzo83SwsXhAhM/nTmOyeEAcH+GPysB4QIq4QiP3wXhAbDY8WyTCeEBIOte3sMh4QFKECPkUyXhALFO3IrjUeEB3reBNOOJ4QMYfyD0D9HhAQKmEioz1eEBQbtz10Pt4QMFwlKpbA3lA1mKOCZwFeUB+mmRLhRN5QKzBUAayKHlAbmXWUwwueUByS/H41DJ5QKSheJxmM3lAHlUAD7czeUDUyav1Kzh5QM6YRAsJQ3lAqhaiY/tDeUDDgXqzzVR5QGcX/d82dHlABBXDVid8eUA+C3Ea24B5QAyF6bD5gXlAJjVYdi2DeUBWVFAtJI15QKQe7PcTlHlAKuCHMBqheUAU1V9YN6J5QFVSo2LAsnlAx4ep7qXBeUCYAfbr4sp5QEaNxBlC1HlAnqRCwc3VeUBQEVbSJ+B5QG6QSNMABHpAared8PoFekBbDSva5SB6QPRVecEQIXpAA+lMYSgjekAOESkhLyt6QHrEv6TdMHpAaO14dwUxekAuaPOmHjN6QLoOmYoMNXpANjFWVSc7ekDZG0xqMEN6QJVBCF4aRXpAhKpOWylVekANr4hQHVx6QL8oGOHBc3pAnt7EnR55ekD8pk/Cg3l6QKogewHcfnpAFsWbqqaBekCoEWsBdoJ6QGK24sXOg3pAUVyKpDCEekBLjGsZ56F6QJBUpup/o3pA+DnJKwy2ekDNPHPzLsN6QE6BuSwaxnpA9yMvWEDOekBuGc2NZuF6QE4Jgos65HpA2zB5tTbuekD0m97WWvF6QCOWbPZ6BHtAOKCdrcMLe0CCcm1dLQ57QDsUKYWKFHtAGcRR1kwVe0DsLJ1UWCV7QFKK9LcKNHtAhPrZQJA+e0DMciXz6EN7QEDPdapCSXtAOVxkYZtOe0AdYUuJ8VN7QCaI6M4hlXtA5t7xP9OXe0Ay4bBO4qB7QKX25wQwpXtAwspUgVPAe0B4Mv7m48N7QKtBVJt5xntADIlsb5Xge0CyLxapweB7QDesE+MA5HtAOlGMxbXwe0CO1eRzjPV7QI52SBXZAXxA8kr7PmYEfEAC3FYkmwV8QI+nknHTEXxA8BUUTKgVfEASNc5GzUF8QNLjbtY8Q3xAumjBrg9PfEB4n/kdH1B8QO4CVfACVHxAGkZNfH1VfEA2eChk2Fh8QJmg8PeLZXxA4stx/AFzfEANdIbO/HN8QPJBhoXCsnxApi4fBxHAfECiXUHgZsR8QPZ2peHL03xAL7Disf/ffEBQlmScvuB8QF6tx9tX4nxAbLZL5RbyfEDczmmMVPJ8QMRy67d08nxAaoBoiQACfUBLuHuJSwJ9QJytIg8ABH1A8G9/PgoMfUCS6OgkRRJ9QFr5j4wJFH1AbBLP7T8ifUASGEf1ayR9QGqImiVJOH1AQ3bSWYg9fUDsrh0t5EJ9QFQCLYfsZX1A/05XSR9zfUB7GjxIA3R9QMan3nL2dX1A2rH7zMR9fUDIIPzSHYN9QKKff2Zdg31ASAeEOfmbfUCGmm5XFqR9QHqdPp8rv31AKuuC2yvDfUB6qhzZK8R9QBUD/LrnxH1ArlpiV8jFfUAwte4mLcx9QOzOMEn41H1AHIPxiDzgfUCKzGkl2uJ9QOaGGSVI5n1AovYZetDufUAhv8xOkvV9QDNtWdAsAH5AjTrZD1AEfkDM6va9fQl+QFAy+Yb5Dn5AiqU5MmMYfkBwjxhLph1+QMIQV+U4H35Aw5QHxfwifkCflynsFyt+QBwiCiQ8L35AWATFngE0fkBf1gMdCDx+QCKnx9xDP35ARsaBtg1EfkC0Gekmp0R+QCT6N/0dSn5A0vv58e5TfkCWqfUSKF5+QOgg9HPEcH5AbNc7Kp+DfkCdtLYvz4h+QBgbjfSki35AwJ6GUZSTfkDinDabmZR+QCNSsIHymX5ApqpiObmcfkAr0eiVTJ9+QNfYDaFmoH5AF++LopyufkDe+dhD9q5+QGkPCuqOsH5AaPljD0+0fkCls1VDqLl+QK5kQSXmv35AXgF96mXAfkCyDnDxz8R+QOYkNfYIxn5AsyZJRQTkfkDoP4qCBuh+QE6oogwK7H5ADu2JWWjvfkDasktm1e9+QBSvdQ0K8H5A+FdWkqnwfkBslrexEPR+QNB75lbcA39APOdQJkQJf0Cez0S3Iw5/QLsg4xFsEX9A0NV5zvUTf0AH7dfw/Bt/QDfKvH5hIH9An3mrqVIpf0DcyU/iazN/QBg9OPyhOX9ALbllnP4+f0AGI5/Dt1x/QHrTZtPEX39A7VNtg5lkf0ASKrTkvWR/QHhpUgyebH9AKqQZacpsf0AsBI/ktnF/QD7xUlzhgH9AnAUZl7OBf0A8SwsZpoN/QD7gFVJXi39AyI3f8/GOf0DiwyGYY5F/QGsJa1yUk39AO1gBSA2gf0CZ82PvXKF/QJiTo3Zqo39Avp/xqsikf0D8aQPP9K5/QHBIpsBSsX9A2rClhNe0f0Bo3XCsa7h/QJk00vPAvX9AMeN7WxjOf0BIKPSw1tR/QCYM5oKs239AfFdxm67jf0DmW/+mtwiAQF5gyJOOD4BAfAerZxEagEADo0FE7CmAQDLmm+MTMoBA6Ka08+84gECs6SADqUKAQO1h/OvySIBAW24C9bBKgEDo3qJh51CAQOT3jncTUYBAFBJyWSZSgEAKlDTSAlSAQLaj+aQJWIBAkjUlSSdYgECqHgGGDlmAQJEbkpsyWoBA1l94iDVegEBcXrAYCmGAQExJHhWabIBA2iwuuyhvgEDefkzPFnKAQB3Z+GXCdIBAdl6yLCd3gEBimxcOcHeAQLQXjevad4BARg7kw4B5gED7kUPFMXyAQG88zI8mf4BAIlYKUfV/gEBuBwIrcoWAQDhcLJDUiYBA8Z/k0vuOgEDgggy/HY+AQAIH/KunkYBADNkyUUaWgECi4+ZQA5eAQLv0kNQcl4BAkjFoEMWZgECKSHg+5ZmAQIifAktMmoBA2vUTWJKagEAkSkBzyp2AQE/RxihOnoBAx0DH0d6egED65K5bGp+AQIWoM/6LoYBALOO08QikgEABnigd0KSAQIbuJX58pYBAePUJAy+mgEBxEeCXhqmAQG9vJ3XcrYBAdrt7PhOvgEBjGUmrpq+AQC8s8rBpsIBAFbKIAdixgECal3XBWbOAQEC1b34St4BAEluoN1K7gEDkCNwQv7yAQDt4xzR6vYBAtESSqTS+gECqbUFfUsGAQFgumrjgwYBAYAcrqJ3CgEAfx7+sP8aAQENSXlJgyIBA5kc8ByHJgEBgTZmGU8mAQKDGDxXWyYBAeVUg0DLKgEC/DX7wec2AQKa8NUAk0YBAounasSvRgEAsRoukTNGAQPdZqHlg0YBA4jU0lUfTgEAsZQa0A9iAQDzQwupK2YBA/gNJUdnZgEBw6YcAOd6AQAoJ3H4b4YBA1ThcE0ThgEA8Z8LDVeGAQOk0ES316IBA0Bu/k0rvgEAlsGnTZfKAQKr9zCg884BAbop3hUb2gEAClBWMP/+AQNPauKs/B4FArftGAKcJgUBy86GA6guBQHBqsTc9D4FALm4N4hgUgUAQrZ39pxqBQAO1XfkDH4FAhBe3fzQfgUBrwtIvsB+BQHWlbfszJ4FAek7ES7YngUCa28geLy+BQGi6tgFFL4FAptd8OeQwgUC4suz+FTGBQG4iW6+9MYFA7Bj5vr0ygUBt3uMY0TKBQKan3jIpP4FAIwm8ripHgUAepZhviE2BQNiYI4oXVoFA3Kd1wChkgUAwyiCMsWaBQAw45OjCaIFAoQe1GydsgUCXXj9OmW2BQDR1JxiFeIFApW2+CIN+gUBE+OKWX3+BQDJeA42Jf4FA3IAmfIGAgUCgGjuPAYOBQCKe3L1mg4FAOhhL6H6KgUC+BLs+Vo+BQH6HLM46kYFAItfcmoSSgUA7qAd7hpWBQJILfhcGl4FAQVG1VVaXgUA0DMnoU5+BQPiguKvmoYFA+u5bHt+igUAswIT/bKiBQBiVXxHnqoFAnvbQzg2ugUAGp/BvSq+BQNA0u2EQsIFA5MklaEq3gUAwTUYlK7qBQG1sQCWTvoFAOkT03UbBgUAKsBliBMaBQJ/mf9lCzYFAHFL0Vn3TgUBtMGV9ad6BQClPtWth4IFAiKMunebhgUAqZ6Im8eyBQGR7VLbH74FA3xIigHbygUBGC3ykNfmBQLLaBUMjAYJAUP5UXQQJgkAMF50M+xCCQMT9vcm0EoJAuHT1u6UVgkCMDVXX2BiCQAyXwAH9GIJA8FCJHLwagkAnNEWGbRyCQF7c0GDVIIJANrLlMcYigkBCALLTmCeCQCQElBXSKIJAJlpuo3MwgkBmVPfPYjSCQOwCv0AFNoJAS2RCLvQ5gkCC1C5eUzqCQOHIIo6HOoJAogVQqjI9gkBvBvdVDUKCQOV1PkngSoJAAkky4eVOgkC1fSpWCVKCQBKv+O7iWoJApr01UqBbgkAO7iJRZmKCQC4asxPRZ4JAwf1iFPRpgkBKsybgD2qCQH3L8u6ga4JAri4TS2lsgkAcrFex0HaCQLLIJ7JbeIJATGBEn9OCgkACjIRPQ4mCQNZwmoXaioJAscOpYNmOgkBjNdGAQ5GCQCRIg7XzkoJA8Dn5hwqWgkA+4ixdPJmCQFmcDnAFmoJA5PBxEaGfgkCa6fCaD6GCQI/49GE6oYJALA9fHN6hgkAs8IMO4aWCQH1r4kkOqYJAuOr0AzSpgkBPFkor56mCQCmgfHEkqoJAcecdtlGwgkAGYY9mZ7KCQOwKpD5BxYJAxSmNxOzFgkC4jUSdNtSCQDyf5Tl/2oJAlVVa57vdgkCJRYJH1+KCQJgtdK0q6IJAYPrKpjjxgkBg0EXKTPGCQEDBShvf8oJAKBTar/n0gkCiAZYR0fqCQLqw5wcVA4NAfRa5ohwGg0DO2qqkHAuDQOIWRI95EYNAuibHLXoZg0CUZhMW7x6DQNZ97n9gIINAmdQO/I8gg0CWzKb0ciGDQAKRMB+LIYNAmukPDXIpg0CslJAlOSyDQGr0FbpoMYNAt7ASdoExg0AYnbZGajmDQKwnK6TeOoNAtBtOJeZCg0B4JQKT2FmDQHzDFzBjXoNATOHWZLZig0CgukTdxmeDQFQq/kYHaoNA6CZrzGxqg0BO0U21C26DQFR6dCiWb4NASYcZfBFyg0B43TxTBnaDQNS84GYXeINAdWWK9guDg0DaQoyRsoWDQKLZB0aViINAZLiyTUWKg0CKCeKbE4uDQDTh+PDyjINAfn6SBoyQg0C0J+x3R5KDQE04OvWLkoNAYrVB/9KVg0B0aHkgiKWDQLjQxkAkp4NAseAxibyog0AcAvuMWKqDQBwsKRD3q4NATJlggx2sg0DWvZIrIK+DQLUZp8HTuoNALvCciybKg0C8NtAhk8qDQBUH93MZ14NA0PBRPiDbg0DoVUlLweKDQBjmPmwi6oNADTUHxJjqg0DgJOkLlPiDQNqKuian/4NANdY7/lMChEAo1HU0AQWEQLrqd9OtB4RAH8pAbP8qhEDdpQqAyj+EQDyv7sV0QoRApTRzMAtDhED+xy6WI0WEQJ1mbo2WR4RAB1r5YM5HhEA3G+x+EkuEQFqzf5crU4RA+DnOU7FWhEAVSs7XMVuEQJEk5/wgY4RAAiS9hkljhEDuWnaCnGeEQC/udpr/aIRA7nhmNuVqhEB/CjoACWuEQIQr1COqboRA5JPe7OduhEAyDUbiDG+EQMMh9xsBcYRA5La7y+pyhECETOTd7XaEQGJlD7fId4RAzmxRfHV6hEC96ffi7nqEQG53A+4mfYRA08SQRPN+hECC426d0H+EQAyBec7IgIRAGhn4fBCNhEBkQSN7UpWEQEcROg3/l4RANEppQquahEAWuBpi2q2EQIvC9sAtuIRAYfbl7GnZhECCc8IqauGEQKtkFapA44RA4O4tLWLphECm+rjvfOmEQPLgRJNH64RAlKFfrDXxhEALGPizYvGEQEyVVglM84RAGf7TPjX5hEDyDuKo3v2EQNZRa3iO/oRATMYgu/3+hEC6pD4VdP+EQKxA/T4SAYVAombPd6gChUBPWI6Z4wWFQNI03q48EYVA4DxBDa8ahUBuXO1sQR6FQJb5XkeHKoVArL6Fh71KhUBq00ivX1OFQAKhbEugYYVAWDRR5p9phUC2GqdamXGFQNQP3le0c4VAaC0R/5d5hUBiFRgfUJWFQNb0VUf/l4VAlBuV4amahUBb+rU1VJ2FQMbAHoAnnoVACWyR4kCjhUBU4tZ9y8qFQN+NaAIg6oVALMosN5PthUBmMXvFQPCFQHQt5pbu8oVAG6MTnpn1hUBOocPcSfiFQH/QSStFA4ZA0JTyDAkNhkD+HatFKCCGQIxKSBalIIZAwV5KjGhRhkBDWzpit2OGQAexJT5UhYZALz/GEYqGhkA+5k9IkIqGQKJxromSjoZAGtitkyO5hkC0ilXhacOGQNnpFfEy/4ZA6PAAgogAh0DwyDmlNQOHQNaqrhM0B4dAKbYIRZEph0BqwwfKkDGHQERlUCmJOYdAnFSU0l1Bh0DWBblriEGHQFLQ85Q3TIdAPL9zfMNQh0CABAnTNmeHQJSHrGhCaIdA+tO0qDhrh0BaWpxaPW+HQGo6dZjQmodAyrDksMexh0BSW6mlyLmHQATbucDAwYdAqjxSCkHDh0B6cXNuQseHQGKQJqY3y4dAk/ezH/DMh0DH0TfqLi+IQFS50J/qjIhAfhsZuly2iEDyvht1VbqIQAUyyJ/D84hA + KBZXds7jZUDUvl+A/sRuQJgT9jS8IXBALebNEyWTd0AMubYkrCJ4QEs3iv58I3tAQK87Cs4RgEA2IMYXAEqAQGFKSBpMgoJAQN4pNHqag0BheTZE+AqGQEANGF4mI4dAYagkbqSTiUA37JeMXbuKQGHXEphQHI1ALssXu5RTjkCUgdxTXhKQQDlHCLEGTpFA3QMdIH9ukUCPGoIuxfqSQOtdbb9MmpNAczBVNvt+lEBrdWTUol6VQDnuaXRcf5ZAHYzJ4uiql0C13akLeEuYQJl7CXoEd5lAZ/QOGr6XmkBfOR64ZXebQOcLBi8UXJxAQ0/xv5v7nED1ZVbO4YeeQJkiaz1aqJ5APuiWmgLkn0AewnNIS2agQBH/NFEctKBA3LkTFFlMoUDRirBbR5ahQJqxs99mMqJAkRYsZnJ4okBaPS/qkRSjQFGip3CdWqNA3CxIcbDoo0Aayar0vPajQABuaNfAlqRAyd2i8tr2pEAk+L/UywilQHfymvD49qVA/Lgzj+AOpkCHQ9SP85ymQCUHk+4W96ZA - + - bYhdRAbZ7kWHdd9E4ix/RFi10ESFUVdFi+ODRC66hkTCcpZEhZWVRSM2yUZH11xENdjdRA114ERwJlVE+mhURXmNjUWLfWdEJnCTRGQ1B0UdCRxFuAX/RCsUc0TpFs1ETa/yRGS1DEU8oSpFNjopR0ykWUQNtm1EnngqRnfsnkVEArJE0vUARfOWckTYB0pGd7iDRKwe90V2FXtEDKV8RBXYbUR769dFf7U/RPDFhUQmTE1E+a8dRe9LNkRCmYNEwwQgRaz6dkSWKsBFkpaNRIuBUkRNK+1EHNUfRXrWXkUwsoxESzZzRBo1LEXEDHNETJ3rRSf5/ERoD4RE/imLRKciUETYeaxGAHlURCDHVkQu14xEX0KCRJAOOkinDvdFHr7jRB5fqURL4L5EuRirRPwGokVKFl9GU1B8RJGa2EUHioxESLI+RwxSekSHR8FEJV+xRJoUQkbF4nVEn1xPR9FTxkQrHaVEE5SaRTV+6ESVl4ZFB+yRRiJUI0XqgQ9FupVuRETGZERs8SdF2GKAREppuUVMtLpEJhGnREADqkSr8MFEeAYVRcUBkkSZqsdEm1CmRQlUUkRDgm5EyaOXRTmTF0UWGHREwxqcRbVxQkQ84a5EBD3cRN68UEQ/qwBGCoGqRBLaPkXeCVBEO+p7RMHj6EQI+jBFIy5KRD4rgkRlMKBEbMfMRH5FqkTKnHVEdtOaRLxQ3UU8tsVENCpzRKEmkUQGSfdEYSeiRASIR0Q1wYxER6m7ReL8TEX/PXNEmhXLRLkDcUbgXMdHX0ppRX0sd0Rq+fJEfcE/R1jI1EX3Q75EiC9qRJVAWEYD2sJFBxR7RTrCqkW6BkhECVZKRCYoJEedwxFF6z89RDwZ8EReEN1EN3lQRWcApkUYyXZEb5ioRWxtgEQaN0NEa1vWRIUNyEQz6wFFjmv/RPg71EQuWCRFoa6kRP4bvUQQk4dEGK1bRCl6rkRBMJBEMdVqRIJJAEWOYJ9EWtkfR+12gkRQqJNEK5WTRBAgXkSCK4NE9yLLRXWkfUUnEqBEE1ALRgi1nkS7gLtEr2pQRb3CiUWLckxF06luRDlQd0RVapNEbEOqRCz7Z0Vey3pEudnDRAkyqERulPFE/OeURD8fz0Tcw79E+ce+RNX9+0TLJpdGzNmBRIVG0ERR16FE3f8aRShMPkWk2UBHEh+3RYqWjkSC0YdEXSwdRnIeN0X8rpJFHD2VRN1AzUTRxnZEIlZFRcudFUVrUstEVt5KRMyZn0S6xWlElaprRYRQw0TKAS1F3lkJR33yBkVqcQlFe8dDRc84LkX+UNdEqaXlRFRwh0SqBzZEKH0HR0WZUUZLLg1GQjKsRCoTtESLh5dFKv2HRB71c0SPjRhF3mZERaNgdUShcl5EbOeORKDqh0ThaM1E3ipgRJ6BFkUHJK1ED+1lRKzvNUXfLV5EFsTfRJjp2kTazb5ESb/CRHrap0Qzk+FEWbFURMeFLEVnnm1EnCacRGP4QkUW5WpEOm0NRWDmw0Q17YNEeHKyRPvZ70QuHrtEIJFKRTCX9UWmVJNFLm2oRof9EEVQWRpFbS8DRQW4nUTwN7VF7T3kRCWcfEVWAMBFvBBgRBm7kURosH5FsiIURpaOu0S8KDpGIMtWRkPp0UR7X5REwP1NRL2ggUTCQZdE4pALRcQ6gUXoKIdEgOjQROv0Q0aPC3NEHfGPRMv7R0TlWwpFvr6tRFzTGkXIE6REGMR6RBomxUS/foZEyHwPReHn7USbbZJEOu54RTb8t0TRmNBEJ3DVRHoXnEQl1xxFceOTRMGTckQnFQBFzJV2RDHdcEQ5hThEjD2FRKQyUERkBd5E7IeOROgcs0QStnpESMpyRs1gG0VNdvpEUpMgRWJOhkTzTZVEWcjCRIy94kfx4N1ERE3+REDyt0QGy4RGZXpqRA8MWERXk8dGx618RZSXKUZEbAFFZqMIRT4LtESFgnJE6OwxRSYfZ0ReGVhEXoZeRD5QYUXEQq9EtdB+ROShW0R7G1lEUePxRBPAg0Sxm61EgKPMRBgFH0WZn7ZFE4SoRjbMkEQcSIZFhBrHRJT5lkQy6jBF6chJRdum1USyCIpEUK2ERGsui0QvO4BEf7y3RGhuBkVJ4CpGvFwPRfMMi0UYC/9ENgPoRDCSXUYPDRhFccyxRArLcUSlaeFEBi/MRMNxnETp3D5FAy4uSVWvKkUWEa9FXOmnRBXSLUUGIf9EQDqGRNkHwUQVSjNIawBRRLGqS0WFblhGx/Z1RKsoj0QfJHhF+vJeRbbi3kQvzltEqJ2ERONLc0STlrFFFAeqROSyh0RsFl1EqUPORMw+xkSA6VRF3dHbRTRFW0RPB4VEXAUvRShf9ESknt1Fpd8bRc+B10R1JLVEl1wBRf3PbUR1TDNEb8LYRLPYSEUpTuJEGXqVRC8yk0TNxn1ElmZZRIOxvUTiIn5EolGJREezhER9riRFLU0VReSpoUS04YNFGlDRREzHgUTmG7hEdT3kROn5i0aqAj9Fn1oRSJ4keEdanJREjxL1RKXhdka6f8RHY9mZRbcNwkTPwr1G5QceRYrd5ER28+RE636SRAHOnkV2ypZFAcv3RLu/iUReyldESN+FRNUhnkR4iD1EljCyRQZlxEScmMxEA8GDRA5L00SBCipFO9vGRJeq3kRoJDlFaDgdRR2akUS9MoxEF/8qRtDC7ER2sB1FCJjfRyTrn0eUR7pG8SCtRYWVAEW0qg5FJF6kRH9MakSYf39EKjtNRLylcUSZHflEw56TREWiBUWrGmdEl4zcRFEWjEYYhTNGGITRRD4dm0V2dklFES5jRJd6cEUjxX9EHRSWRFMzgUTo68ZElnLQRpz5gERgsdhFhslbRPjRTkQake9E8jfxRTaFSUV5D7tEgRqkRCZcwkRoZrhH8Na3RHSTsEYP+hNFvnIDRVXilEbbviBGQ5paRUwFAEVu9IJEoDaWRG+nBUXb8+dEH74HRbOXAEUrWr5EByC1RTjR2kSzsWdEWydrRE94pESE84pEYbN7RAycmUTNkq1Eq8sgRR1H5EQkb05FnjdyRBGViETXzE5EnOvKRciSpkSV/nNEHpeBRCcEu0TuWK5E1ROdRJfplUQo5GBE4H5hRNl4W0WuR4lEFfncRFK8pUTd9EdE/XFJRhDL00UVsY9EMEBqRHzZX0WaM3tEJeRBRMymrkQpYoBEZhN7RqBvlESHv9NFdg/QRP3bOUayYtpF0cg5RaTABkWYl25EE6lzRM2YGkf1D2ZE0Zq6Rl8SHEYbhpVEJ+bDRPZEmERY939E9t11Rp+oXkb3OC1GS2+FRIP9hkQg1TRFKenTRGpfoUQ9S2hE27qzRIMNWEQO04dE76TjRZx6i0VDCHxEBFldRKeqjkT8jW9E82GoRIp5QkbfBVlEPhEsRSPSq0XfJNVEYuvERHeKqUVYPmpE+zTLROhJlUQeKHpEW5tuRAyaHUZ/AHBErlk5RX6nCkWdj69EZC1mRh0Xe0SlDatEupQ1RctdcETCX3lEFFuhRIzvfUQ1xPhExilYRKytgkTT5oVEdC5YRA3EhkRS8pFErHTSRLXZkEUrgkJFu0maREA9IEVQyF5Gk5BURAGf4kTBtaFEnhKCRE+wwkUaWDVF0ffYREVrrkQMLT5EDPVEReo0p0XkjV1FG9KLRNG90EQtOT5EU9m1RNWfXERlHAZFAemORNC7pUR03m1EyNzARKUFcEanboVEOtZrRe24ZEQ7hmNFPYtIRRKAekSKubxENUWHRKknvkR9bUhEjnDMRB/JlkS0LW5EBrg8RKWyZkR8bz1FtdyORMLmDkV1HhlF22U3RtVHJ0UXJ99EwVDBRGYVt0Tz5OtEEbMCRcwZSkXTRd9EmsSQRAyDlUik1HpE/WyCROSKm0S8q5BEMwD0RKpZCkiVjWdF1PnSRAgWTUTM2KhECFi4RNkDnEdoK1hFCJztRBOQaERxTY5GZNCiRJWxi0Sz7aNEeTOwRZoBBUUyb7BEn7o5RZ96V0S/aZVEPItiRAy3eEYgMa9FLpx+RD3VbUR71LJFj/yERO0+GEWqylpEoTEqR3SIgUQt4wdG1jALRQOeDUX3OoVELzNTRH0CdUS2avNEy4c/RAKtT0QyKUJG8ff2RJX5gETP+YFEyztjRANA10TrAGRE1mCURGXwR0R7kIZEdo6kRH4SmkQHeKREPhhqRKUrVkS3aIpENMinRV9e2UWNcZNEuq+nRBW9TETU44hEcOMtRQD+Y0XTX+hE5/3WRebmCUVAw/lEApOPRFXVTEbrMaxEXuBNRWQCWERk5qtEi561RNT1YETcnIREBpS+RNYTfkQfWmhEqMN2RFwobESonJ9EP3pJRJy+Y0SjwE1EwobGRL1zTkQNwvRGiAovRJBcJkZO6zxE/U7mRQYJikRxQS5FrHoERUfqekT5pSRFWI2wRBKDXkTL05FE0rxMRLo1c0QtB8ZE7e97RLCDQUT9S0JE6K0SRZKaWUSHQ75EhtPLRLKPPkSk2IFEV71dROQ+eETKmZFEZmEARWoFgERy+2BE2uh1RBl7FEhSBrBEoSpeRNYqgEfLyo1ETcBpRK0xEUf9Q4hE7pFxRLEHmkVW/h1Gyj4FRk9mi0WzzcZEEsBTRVl7hESNr1REOBhwRRfYY0QgrY1E6UKaRE1FZUTH6ZtEgt/TRMDBvEQkdT1ERkp4RHYBc0TsLmBE+8qpRAFiakSpsyNGYwxBRNklE0VdsShI/NydR+vZjkStudpEbmlmRDC3M0cgA3BFAABWRnQyY0TlFx5F2/ipRBhQ0UTBdcNFpHOkRF6YXUQl5EhF7zX6RDGlaETEqxZGv/WZRGE5vUWxT6ZEU93lRCTZnERlfEdES1/lRNiGSETdfGxE3Xe3ROokV0QMp+dEreb3RFEibUS748pE7rx1RNL2KUXscT5FrwtrRfKT3URuQLpEpGxKRP9JZURp+lhFBJdLRD7TiUQe7wFF7U2fRHO6XkRzCV1EqltLRMI3yEQ2P/NEKMo6RUcPlER26+pEy21YRAvxoUXsYcNFs/q+RiJUWUXgBK9Ecf8FRWYA4EV7KT5FQzaBREWSqEQgcNxE9fNjRCtNwET6XqRFqKnnSAsxMUX3k9BEJa+jSE4ZvERGb9pE+NDqR3+K8kasV5lF97HgRBEKh0USkclEMK6nRBrpAkX+3pJEA1xlRDK3AUU17QVFhPeaRBbMgUQdHVlESgIPRysldkaJKEJHZgkeRhd5pERPX1JG99MtRWN+fEX9axlFJHHhRN5LOkWXmZdETKW7RB9ro0T4lhtFdCnKRGtWi0SGCF9E0EXfREwAGUUhxmdEcgN1RP/Qx0Qb0h5H7IyYRobSRkZU/XZETImORXBqAkZCDsZFFl/JRezYukRFVZFEzhQPRYYFjUQ1kIxEvc1pRn6aY0ZBzu9FpNT6RJeppkRcUDJEBNytRKlTqETLf6JE88N0RBIMdER0B5tE/SCORfGdSkWbxPVEHh+TRMU/qEQBhd9Fbgx5RIu5okWh/J1E0rgdRuVk3kXu2IFFrDRxRGXN2ESNuaFERyBmRObWq0XUboFEH8aSRX0nxURBx6xEMlMnRgM9gkVibBpFx1mfRI2ZuUQcRGZE7WhoRJUchERGRbxEz829RO8YWkQ2Y4lE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - +nHzxynBckD4B8kLTMFyQLJoWUxvwXJAO4AYBE7CckDpFqZ+5cJyQHED1OU6w3JAeCbuy8TEckDq9z34DdJyQAJgQcpC0nJA/G4Gu9LfckDMupa1ueByQOKEQoNN4XJAoi45mlDickBJg1FZkOJyQOxd6Mcn43JAsA1im0/xckDIn/YgyvFyQJJiXPtL8nJAlCJV96P0ckD2ImR8wv9yQJQIpVj3AHNAZEW/fEwBc0A8/pfaOQJzQNtNE2HQAnNANKGquvoDc0ASJQGa+RFzQGwrVN8oEnNAN6kpobwSc0BMZUuH+RNzQBueLM0FFHNA9Z4tlHkfc0AK0f/Ath9zQCTPx4ykIHNAOtFFNzkhc0BeZtKQeiJzQLGO3R7IInNAxbPE/88kc0DBfCe8VzFzQIDoPMLPMnNA4N5Qg6Izc0BcIwgE1TNzQCLrSdz3M3NA0uUbbTc0c0BISzWzvD9zQJOKpWJAQHNAu577ZXhBc0Bj4S7nvEJzQJJvpE56RHNAIlZYYnRQc0Dttu3lFFFzQNsWzI2bUXNAei8Uv6NTc0DcNb/ThVRzQNAkPQtmX3NAcRniLfpfc0AscDCJKGBzQK2bv4FmYHNAtGTW84pgc0DQnAbnHmJzQN/o0Uk6Y3NAQegZIZJjc0CY5E41s2NzQL+UQE4ZcHNAWmkp3OVwc0CWvMpuV3FzQGiNLTxTcnNAQeOBLbZ0c0BKoj24THVzQDQOryh5gHNAxC8xxqOAc0ANmdsJyIBzQL4HadnpgHNAbiSeIl2Cc0BOV2WUh5BzQN/59ZGykHNA87PyNyWRc0D2gMHiTJJzQMhbADfRknNAYA6yFGSUc0B9LCo295RzQEDj5DmMlXNAtlyPKrmgc0B0rFi95KBzQJBnWwdbonNA+poMzCSjc0DCa7qNBKVzQB0tfLTHsHNAcMX2g36xc0DEvL2XebJzQL7wYAEQs3NAPf5ef7ezc0ArQJXIDLRzQOaYzCb1wHNA/JqTOX3Bc0Cq//SV0MJzQLZlt9Umw3NA/QEwvfPKc0C/N3sZcdFzQGReLgnZ0XNA/qska4/Sc0BcDCFrvNJzQBAtcHTe0nNAnEwOXQTTc0Co5cO28dNzQHzRbJLh1HNALhzD6gnbc0CiFcqFouBzQG7neoY34XNAfOsLElDhc0DudCffe+JzQIjbf1sQ43NAMKw7eKTjc0BaFs+C8eRzQJb8n6c29HNAp7ykD3kBdEA2ttAdugJ0QLiD+R49EHRA1NfGQG4QdEBM3KS0vBF0QFsVfoRME3RAMPcwkfkfdECj/wTlSyB0QGQXheOyInRAIXD6Mf8idED+DFvKVTB0QEnvl5BEMXRAatzoBxAydEAbWfnYpj90QKfkLDbkP3RApLj10DpDdEB2nrNaekN0QL5rfeJ3T3RAWBJhQaZPdEASP3mbw090QHJ1cxEDUHRAnRcYerhQdEC+P0s4kFN0QPwUCUn5VHRAos0T/4tVdEDIOraNO1t0QNUDZUchXXRAa5qxCaFfdED6sciYeWB0QK9w0223YHRAjug1NQhidEAK61QWe2J0QH7Ra1VBY3RAtghA5ndjdEBmaj/bTmR0QL0kNPLEZ3RAhRojWtVndEDGxYDvIW10QL4LjHQicHRALiigK/xwdEDNp9HuQHF0QLi5l4h6cnRAdKpSVjlzdEB8N/LQZoB0QLR0lj34gHRAbzIq1E2BdEDgKhD8JYN0QCKhtSoWkHRAfEijFk+RdEBeEih57Z90QBPTUFKkoHRAKLHX1N6gdEBUF7dduKJ0QOajdZwOo3RAfvA7SqKjdEDULwu0CrB0QFj+5eL9sHRA9iCFYzeydEAWWM6jZ7J0QHpUzTn+snRAUeXICse3dEA2w7KR5MB0QMFMhllOw3RALpLDPLvEdEAV9Um+/850QA2th4ep0XRAz0KmrXnSdEDMmQFnO9N0QNaX26jj03RAoO2jBNDUdEC4LAOgt+B0QNhVK0gl4XRA6v0tdafhdEByXh5e+eJ0QFJHWkpu43RAyAEnk5DjdECCNUrQuvB0QDBtIyqc8XRAZOFlAwfzdEAkejpqjvN0QMMUSzal/3RAmRxqrj0AdUBeUTXTpgB1QNAD9ufMAXVA2nKEC14CdUDsw9JCmRB1QHU1/5DCEXVAUJJNvycUdUD61lJf5R91QMssmKs6IHVA7WyYbp0idUANVrabaDB1QAmzSFnEMXVAYmIUBqsydUC/YrXezDV1QF+f7tomQHVA8E56FlJAdUBw4/N9dUB1QO3STch9QnVAapkODOFCdUDAPrEM2Ed1QFblFBoxTXVAxKSdhyVQdUC/jOZ5QVB1QOyFB6t6UHVAzhI5IoBRdUCpq+Qtd1V1QJRY2h0MYHVA0jiPxThgdUAUqZXFZmB1QJKhn3qRYHVAiMoxTzZhdUABr/LJ+2N1QGy+XOAkcHVAvYyfYGNwdUALPoavd3B1QKzLCfIncnVAbCPKu3VydUBse099hnN1QJANVPaMdHVA6FZBYI57dUBs2RRpmoB1QOd+sV/kgHVABk9eF3iBdUAG2/jHrYF1QKTWU3M1gnVAco51dE+DdUAM22OJpIN1QJwn3OaahHVA1vKSTIiQdUB6dYvALJt1QJ3xsvEgoXVAetnT97ahdUAgJnV+UKt1QHi+0m+VsHVAZVPJXe+/dUCn6VSR9MF1QJAmRUs7w3VAClcxhGnRdUDQUs1yZdJ1QNKC5v3M03VAeHw6mercdUBEzB9S4N91QEbHAIQQ4XVATiNGcKbjdUAKPDZ1kP91QIHSi9q5/3VA+IBGak8BdkDXSkfKRwJ2QNQM8wnRA3ZAwTyYEa8PdkAEl557bxF2QKmeB75OFHZAqFhjkkwWdkBKda4ngBl2QFg4l4L6IHZAlS0VrIcidkBmoBxwkCR2QEwSNH9LK3ZA9QjQKh8xdkB0X3DPKDJ2QPKHwVNPM3ZAdJf83Uw+dkCywejqTUB2QLDqE9EcQXZA6qaFV8hCdkAPsb4VeUR2QCoIBq5WS3ZApmesfclQdkAC5hmZ/VB2QCQ5rFnNVHZASq2EU49gdkBIp5Ey+2B2QKyRpF9QY3ZALrzDxNpkdkBoZ4fAr3B2QFjW6h3tcHZAjrtS5Jp/dkDm4ggx0X92QFfFhON9gHZArrFZN6yAdkAI3Om/koN2QO4KUVr4kXZAcPIrwOqddkAAxiNSvJ92QAzcrXNFo3ZABJdeRo2ndkDddHKRI7F2QEPfGVPCsnZAZLxkSAy0dkB2RsfDd8B2QHmD0lpPwXZAIKOSsnzBdkBq1uYz4sF2QF04LWoaxHZA3/KUss7OdkDjUgDmgNB2QJ4uJ6pv0XZAV60ASebRdkD/ETsND+B2QPiGBA7z4XZA6rC9hLfydkBGCcCBI/N2QNpcrEST83ZAzlrlQ3sBd0CTcsRAARJ3QBAxsay5H3dAiiV6b4wgd0B2B3T4tiF3QAVme5oOIndAbFr8Klcud0DQAH/kGDJ3QHIQkuilM3dAONMPNw01d0DWVf2Vej13QLRSjFL5P3dAcrf8TstAd0Ccl4ngnEF3QOJ708yRQ3dAXLSDOBtFd0C+wwaYBk53QIjlY9BJUXdAtBR7uZFRd0BOGdw4KlV3QC0TdgWQYXdAop1RCShvd0AM/FG7PHF3QEyCxmP7c3dAWbEKYyV/d0DirV3xKoB3QMC5o/l6gndA5ZwbVyaDd0B8evDNFpF3QAoTK+JLlHdAfN3Kc/2gd0D61Nm0EqF3QN9OuiUnoXdAVyGkbvqjd0B0jVD6nLR3QFIwG0M6wXdADLCDnSzDd0D5ykUlidJ3QDDC4+D9/3dAfsQZW04AeED+UQ4s+AF4QDqGV9NhA3hAmEaXiJADeEBQlQNznhN4QH6N9Xo+IHhArWSKRWkgeEDwZ4AFbSJ4QBgGFMeJI3hA9H233KUkeEDnQ355OjB4QEwbErxcMHhAxHY7RnkyeECaRw2QMkB4QCIKFKpLQXhAC1lmxwxCeEAGqpk+6kN4QCa3p4YRRHhAEDBHEnpFeEBOKAjmo1F4QJAu3k3KUXhAJF+AOYdVeEDwPhafN2F4QKjmrHNkYXhAiOPj9LdheEBQCvtdlGJ4QBI5Z3tGcXhA4PBsN1dxeEBYilAeSXR4QOZhZkJcdHhAHSCjmYt0eEDGykiQxnh4QMmqEtP2e3hAMyRuTiF+eEBFEqPEZ4F4QA6NFW2mgXhAEpR20uSDeECXjs0NmoR4QJrO9yKXkXhAAKEl1KiUeEAaX3zkUqB4QPhlxnqHq3hAMQeGhyWueEDIEo0ZjK94QDGydPBgsnhApiTwVX6zeEAxWOx/zMB4QB6oIx/2wXhAYYcJSCTCeEDEi1s1t9R4QMYjoxw14nhA3Mgp8wH0eEB5I7hzjPV4QLSkDBPQ+3hAres3+3oAeUBkGeQxmQV5QLin5aCCE3lAlZxcJ7MoeUBMu0tnCi55QIrbxlhzMXlAmvnkC9UyeUAMZSdltDN5QJIIL01ZN3lAvQVJq4hCeUDuglS9+kN5QJq24cTMVHlA/ragYk9jeUDUXG2x2mR5QPHVdr1Gc3lAn8rGHjd0eUC22ECS2oB5QLqEayExm3lALrVJZDiieUAYUxc4wbJ5QDMbvzqowXlAVYqRedDCeUDTn4sJQ9R5QJapCyvP1XlAlNsBvyfgeUCk67MzTuR5QCIC+weF8XlAWNvfRQz0eUCt6KAY+AB6QEGWOVX4BXpAe7YtVuYgekD+7+RUEiF6QGcGl1YoI3pAbu3KHi8rekBewM693TB6QGhA/OcGMXpA5JKKPB8zekBi8lFnNzN6QPIZbWoMNXpAXEyhlSc7ekCCMNzs4UB6QDSTGFclQXpAbjnm2RlFekAkeShFKlV6QIA3f48hXHpAHr6i6ixkekAn+juQwXN6QOShveyBeXpAnl5RO95+ekDw0ccypoF6QCNqXPLSgXpAam0KJ8uDekCU31kWKoR6QIv+7oTloXpABKgL0Q2zekDYcpbWP7V6QMAJK8wMtnpA9X6NOyzDekAIGRSpGMZ6QJ9Lw6JEznpABo12xDjjekBCPcXbPOR6QCWepXY37npA0JSmVScBe0CCIGJ/ewR7QDKSMdzFC3tAc14dcCoOe0DYvmjvTBV7QFbNPR9aJXtARgZv4Ao0e0Au7DghEDx7QPA0UUaQPntA+EPxMelDe0C2r1pbQkl7QLsuJqqbTntA7+3B7vZTe0COogPGlWt7QJJYjP3rkHtAjavKrSOVe0DwNVb79rN7QIjES07Sy3tABH5B85rRe0B2hFKksNF7QOoun5WV4HtAFJiwWsDge0AH7wbJ/eN7QIrrviW08HtAqrMJypXxe0Ai6UD7i/V7QExkFzN3AHxAyKUopbQAfECtnOpT2QF8QCwwnAJlBHxARO/h3JkFfECDnhwVhxF8QKD++q7REXxAmgM0GocTfECAIZsF0iF8QIIhccgxO3xAVvOPaMxBfECA9x7LAlR8QN0/Pwt+VXxA4N1el3tjfECmV3HXi2V8QKu+NBcHc3xA3YBvkC2MfECa/UGNwbJ8QBpeD+Z3tHxA3AWwZxHAfEBMp1ygaMR8QHMIs4mLxHxAKFHr9czTfEAGb+XhzNV8QJzU0IPY23xAh0rMrrvgfECSRKCjV+J8QDYtfnIZ8nxABctfUFTyfEA0ePO4cPJ8QBaVHU5KAn1AgFYYtP8DfUB4Oq2DCAx9QA2AuK1FEn1AVIN/LQkUfUDuX7LCaSR9QKhTGwBLOH1AnhGIu4k9fUDQ8VJY30J9QB23FzjqZX1ACo/Hbv1rfUDqABG6H3N9QAtN0cgDdH1AO55pbXp4fUAibmp6o399QPDUvpATpH1AHKI4BZW9fUDM+o/qKMN9QCicfhwtxH1A3YVqv+bEfUCTbuMN89R9QKJ6GfY84H1AOUGrIznvfUAwTCz1j/V9QHARsICN/n1AzjYFXi0AfkB02QQBph1+QGhDHLg3H35AjoAKVfwifkAseCsvHyt+QDuy6lcsL35AZYw2OjovfkB4Rv+QAjR+QO498DQKPH5AtUygtKNEfkAuHVLOi1V+QLOjAPS8YH5AmPWHbxRifkCa4s/4J25+QOBQ1bp2bn5A9nEk82tvfkAu/CvFn4N+QCwcCXW3hH5AtOZPbKOLfkCLpgZukJN+QGQruCaxk35A0oxPWJqUfkAajk8tdZd+QK5wEJDymX5Auke9XZubfkACIv5aIp5+QOrG5WZNn35AWhQ3um2gfkDJ3Bo2oqB+QED34YX1rn5AxtbbixuyfkCWK4TiX7N+QKG4wJf2s35A8Kv9L0+0fkCe/voKd7d+QNICKTumuX5AWnbXxwC/fkB6LyrnYMB+QOAYWLEKwn5AD4I2RWTDfkCYH0Sj1cR+QK2dSNVyy35Afen6XCDSfkBKeMI1BOR+QELDCOJV5H5AXGtaTgbofkDW/O7PCex+QCGzUOQI8H5AaADjEqjwfkAp00HA2RF/QCiUunD2E39AHNsnxPwbf0AqzSAVYiB/QE26Ii2oOX9ALrK4r/8+f0C0ueHst1x/QOY3tka+ZH9AUaY6SaJsf0BIjbsuuXF/QOKbwWA0cn9AdjW+w86Ef0D8inIF+I5/QFbRehlikX9AJPk2bKiRf0BB3DlrmJN/QKhZmkgNoH9AgjjmBF6hf0BwRVMhyKR/QFTHpT1WsX9AZtj2n9e0f0DKTetG1st/QEqx8e6r239AzGaCghX0f0AlNmDS3vR/QDJCiTp4AoBAXvfj6s8FgECSQZBgLAyAQBLI5R24DIBAlgxq4VIPgEBctfPOyA+AQPaE4O1pIoBA4NVjnKhCgEC6xDT180iAQGqjl86cSYBA/FTM9NZJgEBSNCpu51CAQLf4CWEUUYBATtQyJARUgEA+CYJ9BFaAQMQMeN8HWIBAd8XGHyZYgEBA+QPfDlmAQBKvaFjWWYBAYH0luDJagEDeOUDJNl6AQNiNf9UfaoBAYgIk/6prgEBVrDKZJ2+AQAYjRAjYcYBAXQTHmRVygEAmpdrgwnSAQF5U6Mkpd4BA0LrVDHB3gEBKcsxs4nmAQAoeGuApf4BAgOMnyNmBgEADRQYTMo6AQKrRE3j+joBA9q6XLB6PgECBW+Bnq5GAQCzVo0B4koBAdP4XSkmWgEDuix1IHZeAQPQmt4ZwmIBA2jBBrMOZgEBFgxcXRZqAQFCBdABcm4BAaP/sYMidgECAEYoA4J6AQFnnx5obn4BAauSaVC+lgEB2zpmeh6WAQGoPxBw6poBAuEmXjqyngEBaqo3oZ6iAQMkPWAmJqYBAIHahLROvgED+/zMDta+AQD3wHxJwsIBA8rWpMSmxgECNirZInrKAQEQzXNULtIBAigsnEoK1gEDmkOfzE7eAQKyZTkdJu4BA6nGvLg+8gEDUMXRNvryAQDyKjECIvYBADsX+yzO+gEDb4MYep76AQPStJtyqv4BAu8licFLBgECt1redBMSAQMyDSWVTyYBAML7rpTTKgEBwaZ3/msqAQP8wcnMezoBA6YdWkivRgEBm4y19TNGAQMwftL1h0YBATCIwdgTYgED8YiKeStmAQAP3ROrP2YBAYmL8CAbegECrbZGCKd6AQK3eW4qk34BAUDXQXwvggEByTX5eQ+GAQEqi+kRZ4YBAXhxV5AvigEDkbsNLCeSAQESKbg++5IBAxnFgRffogECIKE9xB+qAQEiRScTg7YBAOppygkjvgEAiDgyxm/KAQFaDvdFN94BAY6k/81X8gECCO5WwP/+AQG6XLTZoBYFAZm8ymz8HgUCaV3zxPQ+BQIMLR1pTE4FAR6JHEEAXgUDihPMMiBqBQAbOJvsXHYFAUNkb9uYdgUCDoFGSNB+BQGyBv2AIIIFAeNePU+AhgUBCgSFpNSeBQLbwZ2AvL4FAYtaImkAvgUCWOyfcvTGBQLbMaAuSMoFACrNxtck8gUC3tWTWKD+BQPT9RqKRP4FAR3TpGYNAgUDwjsj7j0GBQNQj7h4JQoFAzlp4kClHgUAKZsE39VmBQH2h6G+xZoFAZ5KifTFpgUCogIrouGqBQLoEvaoibYFALMPYrfpxgUACudzUlH2BQACj16Dqf4FAFaMXepiFgUBN3Lb8aYqBQA8Xjgd/ioFA5fyu0VWPgUBCgjVPX5KBQEaM9VVXl4FAorTgnUOdgUDNlzhRU5+BQM80+PDqoYFAq5jxFN+igUCIN4k2b6iBQBqlwDPwqYFA3wfdU+WqgUBBiDhjDa6BQIRvhzJKr4FADBHPuA+ygUAGytVFErSBQB71SrBLt4FAPF+s0Yq3gUAdcG2gZLiBQDXN95h6wIFA3HutQH3TgUCg/o3NAtWBQJbG4hQ12oFA6pt/nrHbgUBwoxaL3tyBQMQrSmnF74FAUAfMD3DwgUAwGLOGcvKBQPDXekUg9YFAQpkR2wEJgkBstD8bhg+CQNo05mTCD4JA2+S4wLQSgkDItgjv2BiCQHQTqP27GoJA/NaJExwfgkCU2FCHvx+CQPJpOIrVIIJABr18kWYogkBFFG1T0CiCQCqi6xdyMIJAYgWOvnU4gkCMOW0Tsk+CQHZNQOHSWoJAIbtlqHRbgkBvqjhUoluCQK5B6GttXIJA5O1lTBFmgkCC0G3MnWeCQH6iULFsaIJAKhmLLgVqgkAWgEUX1WqCQEPZOYtvbIJAuqbAsb5sgkBSvTe6C3KCQFA+NsU3dYJAdmF0zdB2gkAsNlyt3nqCQIiScwlugIJAAFCKYkOJgkAynD9KrY+CQIqfs+9DkYJA4fAIKdyWgkBMQagloJeCQH4q+688mYJAmnnBwFWZgkCUSa+bD6GCQKjfAAA7oYJAwi5V+92hgkBX6M4nTqSCQEjp/5XjpYJARPXHHw+pgkACv4ckNKmCQORnYaBRsIJASA1gQQaxgkC/XX/j/LSCQPodOYp+2oJAHMO52YDegkAeY/kc1uKCQLIjNRyy54JAxpJKKQXygkDOoC9Fy/KCQD2m2wGw+YJAHqQQTrr/gkC8Kn4YFQODQNFWNkMdC4NA+vq7hHkRg0A2PH5iehmDQO4pcvByIYNA97ZDGIMmg0AB9vW6cimDQPYV639oMYNA0HcSwe00g0BuQAQ6HDmDQPjK4T1QOYNAYou46G05g0C89RElIzqDQADoE2jeOoNAZM8kLSI8g0A5HgEohECDQPwOoE/nQoNAhhvT1CdGg0DQ+LHhQEaDQOtQm/2yVYNA7mrF4Edag0AawoyTZV6DQLo3ED1qYoNAJmSOvgdqg0CUEuVtC26DQJzxJeIPcoNAE00C6Ah2g0AOHzRQC4ODQKjWXUlIg4NAJiYkoUeKg0BqUzKN8oyDQK1lZOmfj4NAytKcipCSg0AGiZ/cIqeDQAMf3qa+qINA35VqD1iqg0B6UeK21LqDQCaFfFvW54NAq6bMOJT4g0D8YplAp/+DQLzqkK9TAoRASVucJeEEhEBXcpi8AAWEQI4YLaOqB4RAdydoSGEXhED22FVwyT+EQLpZaC14QoRA1P96SwtDhEDEZF5jI0WEQAz49RrOR4RA0PWlrxFLhEAcQP5cK1OEQMlPOKdLY4RAELMf4P9ohEDA4gEBwWqEQJj5qGDlaoRABOsn6+duhEBWV71//3CEQLbPXNwycoRA1qFSrepyhECiF5oH7naEQGfwnhrId4RAME/s5fZ4hEAv3T1ndXqEQOb+YT3weoRASrL9QyZ9hEAU3uOaa4KEQD6of2Mdg4RAziHptlOVhEBulenWadmEQA3OqOts3oRAfHhKhGrhhEA8A+zCQOOEQGrv/mJi6YRAyAszHEfrhED6FB/8NPGEQILa1WZk8YRAaXO1QLfyhECjnn3BTfOEQEQgwf80+YRAk2cZiF35hEAu+cnUQ/yEQDNEdYsb/YRA8EO2i9v9hECY77iLDwGFQCYCMyApAYVAmrillqgChUBbaVv/eBeFQCSqG5JAHoVA2IQjTUUihUAEzQMTfjiFQNqTelu1QoVAyQBnlV5ThUDeqLpAoGGFQErIVIOhaYVARgeuPplxhUBy4gFfs3OFQJjraPmYeYVAt0SpUJCBhUA+uNy4UJWFQAS6VsP9l4VASTo2i6uahUAysTQWVp2FQIjpfaJBo4VA+EWgVPmthUDo/+VYNcCFQEyhuw7cwoVA7l7b/0nFhUDSOkcqk+2FQMjc7jxA8IVANGBbS+zyhUAw/i43AfSFQPxnVM2Y9YVA14XVg0b4hUA4mlXQkxqGQHuN2PDIRIZApgXnS1t9hkA85lApi4aGQArLCI2OioZAp5r2XJOOhkClXN/KJbmGQMtyFmRrw4ZA/Hdck9XKhkAeqt+9Mv+GQHnCZsw2A4dAZCfeFzsHh0Bq2R+MkSmHQBCBsQiSMYdAVVnG44g5h0B8Sub2WkGHQOcxTHyHQYdAsBIGfFdJh0BjDFMDx0mHQM5KhvM4Z4dAkig9QTxrh0A94E5dPm+HQJwFVJjHsYdAj8oaAMe5h0DQPvJIwMGHQNR17f1q+4dACvOz4348iECO+pgftYiIQLq5YqLrjohA6TZ7X+2QiEDcQpEmXLaIQN7gyT9k2ohAn0MeVIDsiEA= + KBZXds7jZUDUvl+A/sRuQMxe+AjR4XJAWZ0vne2SdkBatkQoqfJ4QOf0e7zFo3xAJDqiwosRgEBPZCTF10mCQGN0Q02FIoRA - + - 7b1jRCv/b0S3ZMpFsXqJRBDu6kT07BhFW2mxRCBPgkXqp8xGFePSRHlGjUQUeJVEdsw9Rf48vEWDyIhE3wGdRdvbEkX7SLZEhhnzREtq60SgqFZEqK+eRGHKAkWimT1Fwc0JR2sJf0SyY39Ez/dFRhR6XEWjLmVFXXE0Re72jkTxNahEAqI9RkDMbUWVq4dEooyJRdDYbkTKRIhEoMWNRMsUhURtFJBEHrikROPY9kRR64xESPL1RCKMhETMpNVF5+moRCWCIEXG1UZFLpy7RdReo0QcweJEqkNPRRORikRyaotEgbXLRWW9r0QpmAxFyh/aRD1SgES1drlEafDTRv9LXEQDxcFEYyGfRNH/rUQecjtIw4wYRtqI2EQjVMhE+yi7Rba4d0bXrJVE8/TXRWntGEer0GlEtvxhRHlcTUadM3FEXehnR54KtkSmjuRFPjW+RNCDykSN9oRFZPUQR77Dg0SWEntELoQNRc9xOkXcIp9ER8bERQr04kX4naFEMAJWRAKyVEW13QxF3M+MRM9QdkRMN7VECyqwRYImjkQQg3dFgc8KRfZeYUSQuldFiESHRGUX1UReAkhFmfCRREtHgUSl2nxEH9L7Re0dmkRQWKZFXXWDRD75+ETOETZF3ZxlREDf5kTcTXFEjp9/RCSwAEXs76JEL+uHRFy53kUo1QBFzHvoRE6IpURMto9EGQKJRCgFj0RjUwVFJIMSRn4hu0RyKKVE6+ueRGQao0a+4atH9wZRRIf2nkS3e4RFzIQMRci5C0dGWoxFCSiWRPfuhkQWqANGknbTRf6Dd0W1IxdFZRKcRGbVLEdePVVFbm8IRTeUb0SNM25F4zXBRYSckUTgZ4VFmxuARerrxUSyumpEjc0kRT5E80RJafdE+LWBRBWhHUX3O5VEac+gRAR0h0SO8gFFcm2ARNqWkEQWUYlEPt+PRA5v1UT4EJFHYdWPRCeGikRIl6JELS23RA/5g0SwcXxEkQ02Rtw4SUUj5xxFLEDfRZhthUSwMpRFLT6JRHM1u0VFELFEL4+VRbn6Z0QB2dVEBwRWRStkeUTBFD5Ftk+WRPfmDUV8++1EH1GPRrFNoEQWFo9EWO1BRTXz2kRGpnpHygIHRtlfBEXdhuxFMpGwRG5FmEUmIKNEzEmVRZx4MkW7sMVEjqn4RAvZF0WG3ptFK2JtRQbqFUfUVwZFr0bKRBL9yURzYGpE3MUeRZ30H0U3AfFET9npRARlEkf1pqNGPV8LRriPsUSIsINE0DuFRDEhu0UUcatEfyV1RPpkZ0WnOUVFhGOBRHvcY0SveqdEP7B9RHW4jkS9F6NEqgmuRKVzVERK8mRE3cVDRdG4BUVB26ZEI/y7RItBaESAUvhE7+8MRQLlX0XRJZdE8yPGRHoQbkXHKYtEUyrIREEQIUVPU51EN6e0RM1esETLA5pEN+6cRULb2UXJaLtF2t6tRqH7G0WGMtdEFN/CRAqrt0Xs9olFf2qqRXCli0VdGldEUbyjRDCAmUZRiN9G6wC0RvfO/0SIZXdELg+iRb13BkYN1y5FbaxoRbZB/EVRgoFEr8jIRKTc0kSCrAdFVjNcRSYXnEToe8FEpUqdRMh4GEXvZwBF2jIrRWWhkkQHgdZE2gEURQa5nkSlAflEB03nREfXm0T+ykhFHQpiRPiWhURWN6NEDpbWRMb2ykSQXwpFj1qyRJvyiEabZD1FXCaQRFjnl0SWWnVFb8qeRNxEgERWF9FEsarmR/nCy0Q3XvBEoKqaRPgLlkbCgwdFdyi/Rm5cXkTy0nVFUmIsRuxQ8kQnVxZF6vUaRa5gZETzcHZECw2xRIhqcUTOA7NEd+CWRHkprUUR6q1EuWiNRPp1mUQ4CKVEvbcxRTXZcUR4I49EdI6oRDXIiESuzQ9FcLmbRMuisUR3gFpE1N3dRaoCqESVLdxGYNkVRa29jUWI1MFEg0SsRFoeikUm+Y5FhnmgRJ2kYkXBF4FEpXruRHoknETxGktFLY41RrceZkXdn3pFTcEmRbXAi0a697xE8UcoRZLOOEU93iVFm6sTRWJZHUVtR3FF5d1ESaQym0Vh2wxFdQEYRZrnfkQpHBBF0IuCRMY5R0i2nD1F1BppRmlHfEQldsNEr5PZRFyMI0U0VYREYvotRXimtkTXpJ1FUq6LRL/NY0UgW/JEfxcGRRvRB0YQK4REJY6wRLAnrUTDA7JEXBbhRTwDMkXJPohEeoXbRI41AkWzZwJFtplwRHOXdEQtRolFQVxqRKMFpkTVeINEWliXREbNg0SSf35EkHx+RPNcJEXBhs9EWsNcRCEUvkVIIZpEeKPeRK4inUTwTKtE1Z6FRDrxo0RgCwZFmUDORkSkrEWnNAhIvl1AR6UixkRVrQlFwPBNRtmQGEaPH8dHz0mKRcwoe0TjbGZE4w/IRugIKkV+QCpFHHlMRHz3/kSIs5lFIzMURYggTEXgXZZE1fmcRIt3h0QlZ/NEYB4QRZ5Zp0T0Bb5FsvONRHRtgkTK4VJEMX+LRGIuk0QWYQhF/RyaRJa4TEW9e39ERK0PRcKfNEYOR0tFTTsFRcebiEQGAAZIARi7R04s2kbW5NFF3oWWRGdfT0Qn1olERPIuRfGlcURt54RE9y+jRJ9K8USGFgZFbfaLRXywhETyjw9Fnkl5RUv5jEZePo1EFLitRPS7JkbRQMREjimERfQGqUQcSGBFQl6MRNyVekTOQ25E5rJzRWgJI0W41zJGhwqIRKyfmkWXBolEBHikRJJi+0RgbeNETaiaReurKkWbrLBEfFSZRDzG3USClblEORgjRRm+xEdO0aFEcTypRp2POUXPNYtGqJUmRgITlUVXn1JFJGenRFIKxkSPPcNEGuGeRIpcFkUqnXtEs56GRPYZU0UGUwZFT+kmRRrssETsXw1FKEdtREn3wUQbdw5FuVCWRV8ihUSag4FFL552REXO10SF5FtEgB6eRJoPhUXT93NEj30FRTAwn0QK/3REKl1oRFOoaEXfEv5E9RizRASujUQ/g71Ew/2bRHxvhkQoLapEPCN5RPU9SEbTVo9ELjCMRXuCwUTfDCZFZWstRgVhf0QoTNJF1vJzRFcUlkQpjwhFpwcBRfD71kRmchNHJbuPRK8ZsERdyIhEEqrJRgkudUSVnrpFGxoiRZZ6PkUB+mlEWxKpRG0f8ETTo49Eoh2IRO5uhUZTC4pEvet+Ro7u0kUQZXBFPQ8KRew2dETtuhZGVeGJRUte4URsnjVFaa7ARFLVJkYfpZ9FnkrORGgNlEVChZpElgW/RLlMpkSdwhxGC8KXRG8crkSjymZFUr4wRXOei0Zq8iRFJZVJRZf2gERLwRRFkDx1RCD4sUSOR25Et2PMRCYDj0T1uYBEFTCgRMwhlkQfcvtE7hZXRZobFkUTgHdE3pR3RHeaHUV2Bo5G5nl7RZ56/0RuxcZEhV/iRDntxkV0JnJE9O0ZRfcBGUU/NXhEbf6iRO/vZkVOzIREJY7BRZr9xEXt26ZENQUXRY77XkTUyEZFGhaBRFGVY0SjE69EWYpdRnkQUEVa045E02YpRc2bZ0WsuZlE8d0gRYyclURUemRE7xK1ROvPe0RIdBZF6GN6RMHt9ESDrHlE2T2URFeff0RAxxlFluQdRoHXB0VjV9lEW1zYRFA1iUR5jJpEroCFRAZU2kRKIRZF7cUXRaPatETMIQ1FC2ewRCm2a0TmzmtE/v+VSDqESEQ1rAtI//S9RKjrvETGmWJEwb0SRZmAoEepTZZFY0veRMkLXEahJ3JE43a5RPlhhUQbV8hEzzPURKozmkWvjKlEXYegRCyxqUSliIFEiJKnRGzwTkQxiZFEiZkQRa/XhkS7wapEt0RaRNdniEYH6IpESYN3RVW22UUzBYNEFQTARCIcmkTCCZBEanCLRLH2DUf69HxEc2GfREX+D0bhqSlFseWERLUVukTqp3xEP/CBRFcJQkZD94tEDdOcRHBcrkRAaF5ELMmxRHIshkTe2fdEqX+URJT5tUQwO4JElkB0RClmUEQqYoFEd3uJRBZWlUR1YtBEVncjRpnUekTBU7FEl7asRBS2IkVZcphEoQXmRb6DuUR63tlEnZ/WRIMrlkWtunxGyhWXRGt1h0RyCh1FEgeERL2xXkTBooBEzLKkRBK2hESjc2VEdlBgRG9SY0R3lTJF0UV5RAMl3kRaBaFEL+G2RLiPjUTr33tEhHY8RpyIIEaRLCxF2Rm6RAhBi0RiY4RFrgeDRHNCLUWORaJFxUywRA7yf0SI285Ed8Z3RFqUk0TIuqlEYux6RLjbKkXVQIdELUmkRbRKRkV6xopEmDFuRD89n0QZFg9FWt4ERYk8AUVkN4hEsQMeSPaxhkRdJ4xHm+JyRK6BwERxWzdHtvE2RZl1tkVlbEdG51byRboFikQvsC9Fih3cRJPvSUUVqgdFl5GVRJkSgERltu5EXOjxRNKW5ESK+XxEgEaKRO5TekSZirJEiIaCRDSfKEb0GRFFk0I1SNwKr0eBZEdH1S6XRJ0RWUZU+GxFzJlmRELPjERf2mxE0FqKRP57jERbQLJFJ757RMfchEQaLN1Ew1ubRPvLgUTgXXJEaLtaRFor2USqpbNEGD5vRsfK9EWJbnZF+iGJRAxuvUSwGJNEgG27RFK2OEVK/GpEQSaBRP51NkVUbGVF3XOfRCqCqUUZo59EVGfHRKJXQEXlfUpFkc5LRLq/kkQ3r59EyWqwRIvJKUa3vpBF5FgHR1vr5UTG3x5F9p0zRuOWJEUlr/9EikPDRewb/0TtJ/ZIbn+vSPC6K0UTuV5E3mUQSDuNEEetjJVFw8CqRANgX0UVXPJF14bERJFTiUT+B6hERPrlROsQIkdOQZxEEJiqRjsLTkdj/EdGLv5MRieHV0UtvXNF7h0RRQDCKEU0NfVEE2f9RCBzn0SwEIZEYM/lRGU5uEQDHqVE2fWBRM1KkES8IY1EaRnFRF5vjUSMSq1EKGX+RGDnKUfup5hGSkFXRrJ85ERZCYlF6F27RLrmx0WBWyNG9CbVRcGXCEW1+51ERy+LRL7c80SlAJpEPoPGRBq+u0avXwBH6Ct2RiedoESWd6FFtfbNRHvKh0RPBJtElICFREqI2UU45r1FeaeQRF8tqkSQC6BE1jvVRLK83EU8RrRFgtW7RN1XL0Ygq7pF1aqkRYh2r0RH+6JEQSBrRNcpg0RjqBJFoT8wRYUV0USToyxGCArDReW8WEWJsI5EwhtLRAWbskSZ/+lEBTkERfau4EQ6v51EdlhqRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - yPWYs03BckCEtmA0bsFyQOrz4U9SwnJA2vVi9OTCckD8GBVcO8NyQPylxO7BxHJAwBE2OFrFckAZ9cfwDdJyQJ1jGj5D0nJAeEK+1M/fckAgT4yCUOJyQLAKqgKP4nJALHlRsVHkckDssUL2UfFyQG2kTrvH8XJAgMYm0U/yckCGTAzD4/JyQE+hTJy283JATtz+r5/0ckC+Khcwwf9yQJTJYCz3AHNAX4StvDkCc0CiGChD0AJzQGWnlG/6A3NAhkkx0PoRc0CmQ5SHRxJzQGBpg468EnNAlKlkYWUTc0Don1W0BRRzQABKHR5NFHNAav0D8nofc0AorC7eOCFzQFaMkVB6InNAS3SJMsgic0Dinqv/ziRzQMjCTyNaMXNA04aI4wozc0Cgk8Nj+DNzQLuhVg03NHNA+JUFbMs0c0AlnHoDuj9zQGJt1LYnQHNAa+aBhY1Ac0CE5yLE5EBzQIigLLx1QXNAMM81sL1Cc0A43wYH7UJzQJ3UZNZ5RHNAI+ggqRdQc0CCvcFgclBzQDp2SgYUUXNAHFec4ptRc0B4SNUYE1NzQK/WDF1CU3NAzOwAj6RTc0CiUPghh1RzQNCiP0hlX3NAGIBJ2/lfc0BXUriXKWBzQGVSq7GMYHNAsPrmdDpjc0AW0vpUHHBzQI5EzUnmcHNAzu3xFFdxc0DH+Llnt3JzQBLn1W9MdXNADgz+DnmAc0ByF6InpIBzQDgmdDnGgHNAx8SImt+Ac0D+1+wQ7YBzQFPa+gFegnNAmc6HLYeQc0A+NKkzspBzQKhBJbnZkHNAPgArQyWRc0DkW67+vJFzQNF37zdNknNAecA96mGUc0C+2HaJ9pRzQFxE5DCMoHNAAUzc9bigc0Bs2osP5KBzQCzCuQMioXNA5FMuMlqic0COmD90m6JzQFTjEIElo3NAmrZeXgSlc0Dc7jDkx7BzQJxoInFRsXNA1yOIb36xc0C6DPWMFLNzQAYCtpW5s3NAd183gA20c0AqijO09sBzQHj89NIlwXNADuaQ/nvBc0CyN7QvOsJzQDYW4lnRwnNAvJoS9SLDc0A8aYVGZcNzQOhfuc3rynNAP1VtEynLc0AiQF+NVtBzQEJR0Kdy0XNAPxhbAtnRc0AKFVS3+dFzQP5SgEKJ0nNAgArfzQTTc0BKghCT4tRzQCQbgSkK23NA0j2UCTnhc0DXTo3UfeJzQPQrEeYO43NAOPDmQDb0c0B0ymJ9eAF0QNFNBPpxAnRA6mXgU74CdEDk4H9hVAN0QL2VvAM9EHRAgT5+qLoRdEAUlICwTBN0QIBAjmb8H3RAIoEIiUkgdEDn6/1PsiJ0QDtxDcJQMHRAQDa9B0QxdECgFar3pj90QKC4RpPfP3RARuDMOxBAdEDkDNnyPEB0QKjqvWtgQHRAi3d8uztDdEDjjpzsekN0QEIBe0YcS3RAgIzIs3dPdEDIRzY4qE90QOSNYgPDT3RAP2Yb5QNQdEAukv6It1B0QGhipEmQU3RA2BFVGI1VdECLjaXsOlt0QNFmP1whXXRAxKC5MSVgdEBS5yyqtWB0QFeXNDgLYnRABlIKinpidEBC2E/UQWN0QDP9kBpNZHRAspV/7cRndEDEnwaf1Wd0QOQaWKIebXRA0nx/vCJwdEBa4SvD+nB0QApggCxBcXRAVoVKvnpydEBnQRf+OHN0QEFIMfCidHRAlpszAzd1dEC0suM+aIB0QOVhELP5gHRA1px0Pk6BdEDEvKdCOIh0QC6F6bcVkHRAbBAF2E2RdEByuM8g7p90QPI0gJXhoHRA2CDrdw+jdEDEtA3Y/690QGSc6l7DsHRAcDRDHG+4dECO8jfBUMN0QEo6JVK7xHRAJrHRdv7OdEBODLSQqdF0QERNeFJ40nRAWHZLUU7TdED6i5jc4dN0QOBNiYu24HRABRoQ/z/hdECOHNw6qOF0QCWU6S774nRAfYzPjG/jdEDvrSNwkON0QO7yqdGb8XRAS3kQsrnxdEDK00EoCfN0QIlRkkKN83RAaMms0dP/dEDW1R4wPQB1QNwq9JRnAHVAQI9PCb0AdUBF2tuAzgB1QGF/wc/NAXVAFiYTXl0CdUARQJTOpQJ1QKjrq90jEHVAiDR5WlIQdUDeMLEpwxF1QD0cK78jFHVAZ7bpbeIfdUCAuQuBOSB1QFoJ5bOdInVAgNNOkmcwdUA+7bwgljB1QFU6rf4SMXVAMIqLC1wxdUD+Im/TwzF1QAG0tgirMnVADLak2so1dUCitCzEJkB1QOQpmtpSQHVA+gus2XZAdUBAQrNwt0B1QMbHG4JJQnVAGDixB35CdUA4Omtr3UJ1QIsRMrvWR3VAioqu6yJNdUDa0Mi37E91QLh7KRX7T3VAlHv7eCRQdUA0iCxyN1B1QAsdN1x6UHVAGedM1oBRdUDmtvTAtFJ1QFfcg6gMYHVAlmFJwjpgdUBGa76NZmB1QDRfavWTYHVASLFgJ6FgdUCqEsMIOGF1QJbHwUb7Y3VAROzUMmVwdUCdyoYaeXB1QE5uuPQocnVAELQFgXZydUD0oToShnN1QC6Ob6yMdHVAglMWaY17dUCJvdfBSoB1QIp2HTp4gHVAWvGnT5mAdUBE8nrFrYF1QJ2L7kkmgnVAdsAId8KCdUCnE+bfT4N1QHH2lhmmg3VA/O0TvpqEdUDKv2eWh5B1QDnYbfI+k3VA+YrMkyubdUD2wWCo+6J1QMrIwjfvv3VATdX+4mfRdUD6qZyuZtJ1QAT7HEbK03VA/dhYbercdUAMv0i34991QNSEIfVP4XVACxJzTnThdUCkn6acBeJ1QKHSKgqo43VA9toNyjjldUAxrHLt0u91QEiFjRiQ/3VA3O4S3L3/dUB0CAgvKgB2QAwpcqVOAXZANKvDdkgCdkD8vUG/ywJ2QHOl1iHQA3ZAHIOQD7APdkAWa4RtbhF2QIZmxFdNFHZAmtFJGUkWdkDO4W95yRp2QJI+RsG2HHZAprwcwPkgdkC0z04wiCJ2QBzF9bwPI3ZAXpogVDkkdkCgQTS1jyR2QHJ1i25LK3ZAMhsK/R4xdkBsDDtCJzJ2QBvFuHJXM3ZAttOsp0w+dkB5xunNTUB2QBSbQmGhQHZASgmaeRxBdkAEwwf3yEJ2QFZRcJp4RHZAfkeoy/1QdkCiQoMxzVR2QNL+3dqPYHZAKq9n8/pgdkDWRpaD/mJ2QDgVnt/ZZHZAfsQ51otwdkDtwPbhrnB2QJ8F+rrtcHZAw3rQTSNydkDdZUSrnH92QHVn8QnRf3ZAkvjeGISAdkBgLWMnroB2QO+9oJWRg3ZAPJwn5fWRdkAeo1Ni6p12QKlvFZvAn3ZAxrwM5CGxdkB+smPVwbJ2QN/70yx6s3ZA1NoqMA20dkD67G6+T8F2QFQr1A58wXZA2LqcNs3OdkAuXv05f9B2QJhHgOtu0XZAmtqExBTrdkCTZbJdt/J2QPe9ngsk83ZAOaH7SZLzdkCD1k0KTgB3QC3euk4wAndA60N9zwASd0AUd7ACvB93QNL71JlMIHdAdLpD540gd0CcNxwdDiJ3QARajD93IndABZ0aN1Mjd0BC6bDkojN3QIEXecoMNXdAdcLutng9d0B4nLNJ/D93QNjAzPXNQHdAkCzs1pxBd0DpZo/LGkV3QHn6vcpKUXdA2QXCSJFRd0AgxjBLKlV3QNKTzd82W3dASEoCE5Bhd0CCv45IJ293QILwEYIbd3dAwHAQlRaRd0AUEuRQ/KB3QAheuP4RoXdAvbFOUyShd0CCjoFJ+qN3QCiXG+YasXdA2cxw7CvDd0CDCyDCEuN3QDWD8Nv8/3dA2/aqYk4AeECMckvq9QF4QLm4OTKQA3hA6joytBoSeEA3cCaKnRN4QBORhj4+IHhAZkHEO2cgeEAlmxTMbSJ4QP7wEEA7MHhAcqRPol0weEAq8joCljN4QJs53p58NnhAoUB7FjBAeEB0HTiXXUB4QIzz3uxJQXhAvkUC2QxCeEC6Inld7EN4QG489dcPRHhAi6Bf73lFeEDOeqr4pVF4QMQvrsnJUXhAB4Vw34hVeECYFBQr+GB4QCQKEsg3YXhA+A+6IWRheECbzo17tWF4QFQ5Q0eVYnhAiBSQfupneEDIb8euRHF4QPwJK/JVcXhA/lVdWYt0eEAQT2oJ0HR4QERl0erFeHhAEg9Hp/V7eECy12GZHn54QOztjD+pgXhAf2kwp86BeEC+D+CVfoN4QAqG2ciZhHhAlDKrtpaReEA8J+rNp5R4QBSe4iCHq3hAPh3SZYiveECCRGvCZ7J4QDKcm66QwHhAnHPSIvfBeEAuF0dKCNJ4QGsvSha41HhATm2cEDfieECAg2qXAvR4QMqfV7iM9XhAVC2aG3oAeUDHAe3fghN5QDIVCTSzKHlAoW9xVAsueUCeWOGxdzF5QNiqrGDSMnlASLrbH1UzeUCau+3ItjN5QK5salX4Q3lAEGcabMxUeUD8E2W0U1l5QOJ1xgxAc3lAkq7DttRzeUDKQLY1NXR5QAJnCpEDhHlAkB3v7TaieUAuUl0LwrJ5QKK7Ht3lv3lATDj3x6fBeUDw2ky5QtR5QDsdnDcp4HlAHLXAsVTkeUCOYxvoV/B5QB3aHEiE8XlAOtpBFBL0eUAmqIBb+AB6QOJHIbT8A3pABmArD00LekCgf9f25SB6QNbW00MRIXpA5kUe7icjekD+KdFILyt6QLZqs/DcMHpARg5HUvcwekCnnY6EHzN6QFFd+VcMNXpA7sHtlSM7ekBsgpgD3UB6QN7PC0UtQ3pA9rPJURpFekDFzS56f1N6QH5u6UPvU3pAOxocsidVekCtvncoIVx6QJqZhnAnZHpA2mWUacJzekCAtU+zGXl6QJx3CZaBeXpAsJhb6d5+ekD+6w4opYF6QNDCACF1gnpAYMZ0OzSEekACnvrlopR6QP7J8kLmoXpAWBoTZoGjekClnm+rP7V6QIwsq04LtnpApybzbArDekBc+7HgG8Z6QNXYBOxLx3pAwzcjrj3kekBIBZ27Ne56QEAZUScmAXtAJMW1xXsEe0AMFeI1xQt7QGDPKftLFXtASiRSrlcle0COVx39Hi57QM5vcTnEM3tAUdV1+gs0e0BAwhoAkD57QNtjvuPoQ3tAP9jaDkJJe0DAddJamk57QJwmtrj1U3tAv7Uj6+qQe0CEVA6KJJV7QJSGmcv9s3tAKILmIpXge0DaOBPxv+B7QJULaIuz8HtAq8WrI4z1e0D3NG/UeQB8QIpsX7awAHxAQFYnAjoBfEBgaj15kQF8QHrM4cXZAXxAmdKi/GcEfEDeCa07mgV8QNjatQqLEXxAXCh4UNERfEAkJ2Ihz0F8QHeJkO4fUHxAlv6ZXVJTfECsLx5NBFR8QHBtV5F+VXxA1sOH7HRjfEDVls1hjGV8QOtaitQscXxATrYivgJzfEAWV+yxKox8QFYZkDgwlHxAgCkW1IaUfEDCbAuvWZl8QILJ/+S/snxA9BLFfg+2fEBwS6XvEMB8QLaYWydnxHxAxpH0fcrTfEDsZWu30Nt8QFEloF3223xAwoFfa7zgfEDDEoffV+J8QOV9oIUV8nxALBnk/VPyfEB84CHlcfJ8QJ1uwjb38nxAQvz/cwICfUAc9H1ZSwJ9QA7a1l4ABH1ABWRvUAoMfUAW8iuuRBJ9QG8UEpUNE31AjOeA3w0UfUB0tKSDPSJ9QMrmOJfkQn1AYzkaZPxrfUDYmaGrIXN9QLoQ5wCsc31AIIA7SgN0fUAA9Ectdnh9QIhxsNEBhX1AfjJRnBKkfUBA9kDZW7N9QFKNhVgmu31AevGcx8a/fUCaUbFnK8R9QAKmg4HmxH1AIR81fPrHfUDM2cy5Ncx9QJTtVTc94H1AVo8MrzvvfUDWTK5iRvN9QMHD7aWS9X1AOlOUIzAAfkBeA6nmggJ+QJzSlRWlHX5AYknaqPwifkB3PJ4sHit+QGIFgOoBNH5Asmd7574/fkDwMhAopER+QOCAODozVH5AcP0PJI5VfkDkbH1/GFp+QBJl9LOoXX5ASEDqVBpefkADv6FDUmd+QFPeX5Phgn5A9/BcI6CDfkDCVBMyzYR+QCW5B3Nrh35A9pY7HnSLfkCqJC3vqIt+QJqTYvixk35A9OSn55mUfkBqpc/v8pl+QKVRjQxnm35A6oHW6Y+cfkCocbvEupx+QN2MsHNKn35AQePeumigfkBeRW5nr6B+QLiRCzerpH5ApSIzEpuufkCuEpC89a5+QDoYSURkr35A7iSCBBCyfkBVv1uIY7N+QAxWo7D1s35AEK1z/U60fkB5d6nhtbd+QCPp7aWouX5AytMxNAS/fkA8RTEWYcB+QLActpkTxn5AlFtx/BDafkAgct/btON+QO2OYHkD5H5ANHgV8gXofkBoiMAyCOx+QMtkcn0N8H5AcEQ5UKrwfkCqk7VrEPR+QEo0um8I/n5AT1TNqGz/fkBEWxBB1f9+QJZXHZleE39A2MS7zvUTf0ABwIJi/Rt/QLApgeBeIH9AIoSMdic0f0BwYuCiqTl/QJAYC1RPQH9A5l87ytZNf0CcLC36uFx/QLlDyo6VZH9AiMCny79kf0AyCACpxmx/QEzMecPocH9AZcrNDrpxf0Ac//mK43R/QB45kzO7gX9AkuDRIdGEf0ByvYykGIp/QFYXmKdikX9AVaqrO5aTf0C3JO9rDKB/QHazO8zUoH9AB/K1GGChf0CA97/9oKN/QCjFL+3IpH9ACUpF8FSxf0Ce/8br17R/QFMtoB+Bu39AMM09G6vbf0CICmH4n/N/QCJkY/ED9X9Adjnj+If8f0AGX/GfzQOAQIxbunwTDoBAQi7eKdARgEDZPIloyxmAQI1GxyciG4BAfKVpJGUfgEByS4FfbSKAQFb421NzKIBAQAapexYpgEBkhk3BgSyAQC/a11EqMIBAgOGfJjowgEAZ9Zf3BzGAQO69p6bHMoBAxNP3vgI5gEAXSaIaqUKAQLxyK+b2SIBAZtveZrRKgED2UV+55lCAQKiKUIcTUYBAVEs26ylSgED+MYaOBFSAQOw612kEWIBA7XLEzw1ZgECNylwVIVmAQLyF7ZwxWoBALLemz5JggEBSZAFypWGAQNJ6BEXXaYBA5lo77ihvgECp/fP1FHKAQFzLdrvBdIBA6v3tB293gEBCOUyaKH+AQBpXQcfdf4BAVqFB0/uKgECAd+l2TIuAQM5vhA7/joBALUKbSx6PgEBsiXgAIpGAQJ4fM3Umk4BA0CPQQ1uUgEAs/RW7SJaAQJr25bYbl4BAXvjUPiyXgEB2HnBvbJiAQMJLfITFmYBAuCAXyUuagEBVrE1jx52AQP67apQHnoBAkyRI9TiegEBgsaap3Z6AQDb5aWYbn4BAQUCjjTimgECyYFiErKeAQPJL4waGqYBAN+vXFnOsgEAkUp5zE6+AQIQiGUqmr4BAMryjQbevgEBIjUnZD7GAQLJAEtJ/soBAiEDZupCygEAIL/BgSLuAQO4V3ZFau4BArioWtr28gEDpVh8sib2AQBdhPPo1voBAH2C6mPO+gEA64T1Cr7+AQIc5lH1SwYBAwkDWTD7DgEA0y3W4HcaAQIamUkmox4BA8MLrp2XIgEDiwaRiGMmAQM4ORPxSyYBAFYQKgdjJgEAI51JnNMqAQHRHu42cyoBA/t14J93MgECS/scuMs6AQBhC+RQHz4BAEEXkWW/QgECOlY8dTNGAQDaR2cJR04BAnCDUFQPYgEA8D+ixStmAQBSke1ea3oBAE347uQfggED2oqpcROGAQKlQbnRX4YBAoREmUQjigEDkatGTC+SAQJxVCAz36IBAImEM4ErvgEAeoEsduPeAQIlK5b9n+oBAG8+Gij//gEDgbuA3PweBQCrFdQ4/D4FA5NFxUkkWgUBgJ8uFEBeBQHrmvYeoGoFASm9+ETcdgUAC2IptNB+BQHG3F4mzH4FA6Eme+OMfgUC771k8VCGBQF7H/E+9IoFA01zjnjQngUBcOU3OtieBQBZKfWjaKYFAGBef0C0vgUCDRRxhvTGBQGxC1GxLNoFABsysMDE6gUBQ7I6Y2jyBQDhPrZMpP4FAEGTnC3NAgUAeaiZ6gECBQKamY+cuR4FAdadohSlkgUC2Txv96GSBQLolBBSzZoFAlhm3irZqgUD9n9lCdW2BQFhRLElSboFApfpyBUJxgUCUI9sWYX+BQMq4hYachYFA9mtKWFWPgUCm1b5cwY+BQKlqpG2CkIFAQMHID1SXgUBIwGx6U5+BQHK/FkTnoYFA4O5p/N6igUDBKZI+bqiBQDj04VTkqoFAELY3aAyugUClgAVqSq+BQKzwTJgLsIFAQvLrsRK0gUCmullKS7eBQBEHUpXkvYFAWGgcXqDNgUCY7VNg8tGBQDisYPDw6YFATANBGMnvgUBYMlxTdPKBQA0vPFS3/YFAt1VAyR4CgkDW3p0fAQmCQFpN8gS1EoJAtqeyUtgYgkBukZUUvBqCQP+xX/DuHIJAezwfV+AfgkAmuPk0PSCCQIULJmBzIIJAJ0C7QtcggkCgC5LO0SKCQBzs2FLRKIJA1Mg4NnMwgkDIDN92pDCCQNxdYtVnQIJAF32QcjlCgkBcK8+uQ02CQHhDgomNVoJAoQNOf6ZbgkAa8sspeVyCQCH8MLo6XYJAubDB5hBegkDoCwViE2aCQOaFvSTYZoJAWga9MN1ngkAx/fA1aWiCQJNkfwcFaoJADABRJ9JqgkASi584BnKCQPQUHjRrdIJAzNfB7QV2gkAw78FK1naCQOJB25vgeoJAmgUCM3CAgkDjqs62bYSCQPrgQuF/hoJA72YQtc6GgkCWpRlrQ4mCQI4RgtlDkYJA+glV9DyZgkBnK1D1VZmCQMTmc+RDnYJA9ljFYqOfgkAoEVQ6DqGCQKwTlBs8oYJAXNsywd2hgkDlWuy44KWCQEqU2rwQqYJAsiPdgzKpgkBe7nuhSKmCQETjQQ/erYJA3g/Lm1GwgkCuuDPxB7GCQP4GKExNsoJAVoeUjCrIgkBy2JbngMiCQCo97lx+2oJArp/RFrzdgkDaP73P1uKCQMwgOZl98IJAaPm5Qmv2gkD0uik3rvmCQPo0iV4i+oJAx9IeLBUDg0C4E999kQWDQAEhT5pjCoNAwBLdshsLg0ADtIyoeRGDQDyT2kJ6GYNAcSGDTZIcg0CUxy/O7R6DQD3XRf9yIYNA+c6+rvEig0CmzvwycimDQEFJL15qMYNAfsVA/IExg0D0Pe4R/DODQPYDOEcgOINASM2Svmo5g0B0QHHQITqDQGQHwm/eOoNACbin+CE8g0ArtZL3dT6DQJxTrBYgQoNA/ohs0eNCg0Dkz0VpSEmDQHSHT+6LToNAoTUpm09Rg0AlRP77Yl6DQDhaULRZYoNAvQNZtQdqg0ByVF7+C26DQCxGHE1lcINAki0gGRByg0BP44bnAnaDQIJ7R1oLg4NAUtMgsEqDg0DBNVttNYqDQEaP2ocTi4NA47JaSOmMg0BXkzoMn4+DQEEjYSuLkINAzIEuK/Gfg0Ac8IwKhqWDQIuOg2Ijp4NASNJu2r6og0A1rHGoV6qDQCL/zqnVuoNAtJTwwNrCg0DkLHggmMqDQGa08rySzoNAPTQdYhnXg0DkU9zHeNqDQIyPv6CU+INADsZUZKb/g0B8YNFvUwKEQK6+UtL9BIRA8GvM2qsHhEDHmg88cxGEQOi5bZdhF4RAx3OnQw0ahED8JTJ2vRyEQKP8rFVnH4RAHs4BGco/hECay2rPdkKEQEA4sUgLQ4RAgulBLiJFhEBlSyBHyUeEQABMhDQSS4RAZGwJ7StThEDUD+tIMFuEQKoxeCX/aIRA2wepYeVqhEBGTJgNC2uEQCZv8A7oboRA4/GsfY1whEDSE7ScAHGEQCpl1rTqcoRA4aZoQ+52hEDFvQl7yXeEQLM1qZH3eIRAmkU1enl6hEBou+aG83qEQOPhlZglfYRAhHrYkPN+hEBjwmQiZYGEQJaEdQJniIRAcPkdNFOVhEC47jIfApiEQEqWp/ermoRAdNAiwCC7hEDU5Ynfbs2EQACYuEfT04RAHkwLHmrZhEBWYEuBEtyEQCBZeF9q4YRAHEMfyUDjhEBbvIY5YumEQMKt4fBH64RANXTCqTXxhEBueEESYPGEQC3XdYZ48YRAQkQoS0zzhEAkkxplMvmEQIZOc5Xb/YRApDoSSdMFhUDCUNTbEBmFQMnw7X9GIoVAogKgK6BhhUCtDRoyoGmFQC3CW6mYcYVA4FtP+rJzhUDr2OXRl3mFQALyBHuRgYVAVAqIa1CVhUD2j/18/ZeFQGI4LT2omoVAKmlcIlidhUCcrdE6Jp6FQPp66R8kooVAmZfnut/ChUDWNuVO7tKFQLmYiJ6T7YVAKhIuiz/whUD6iAxo7PKFQJYdcs+W9YVAtutyHUb4hUBJCKKh8fqFQNtyrGPnBoZA/raoSM8ahkA2JUrxDUiGQHfX3rWxeoZAddpRy4uGhkCa/0z6joqGQFYJG/SRjoZANrUhzCi5hkA0Ggl41MiGQJFQj9oy/4ZACi5KDDUDh0A6kIl6iASHQKql4ME4B4dANp3Pw3kih0B8kziokCmHQG77K+uQMYdATlSaz4cyh0DmX9LCijmHQOx57Y+OQYdAuswtezRnh0AIQtokOmuHQLQXpPE8b4dANLrz/8axh0CKLFwyxrmHQDrMuNW9wYdAMDGB1kLHh0BtLjhDv8mHQOjH8FI+y4dAugF60mzbh0DScWA5xCOIQFbhkXsrK4hA9PpCAOuOiEDQHVee65CIQE7fqmjC84hA + NrgMGZxjYkA2uAwZnGNlQFf+/uF9UnBA+0+R6hJTdkBFvP4+7IJ3QIBedxSco35Ag9aCOATkfkBfvP0GWgKDQIRyNLFGmoNAVpt9NZGahkB07Dkg6WqJQHTsOSDpKopAdBsoSpXzjEA= - + - d8lTRD2F50VwHG9EQFr+RLXpYkXl8ldEnFKuRGtZiUXh5fNGVI3JRHI/kUXbolNFMyBlRDcdSUXYXutEoME3RbzMiERay5VEXvigROVH0USLk35EIG/lROzrUEXFKe5G/oZhRPRqgUTR4ylGZyBXRPDVaEWlP35E/REKRe4lMUaqhIhFzSqQRLdue0VPmm9EFAF1RDO/pUQSW9BE2K+KRGkbXEUztcdE4gByRGcVnERVBplEozBhRC76h0RcgL9FwlyDRMB8pERqqEJFvl0/RcCWi0SBEo9ENN48RRQIWkRF/99EqqBERWJks0QA7e5FVRiqRJwQAUWw6xpHJZCFRH36aUT5uZ9ER3dVSKoF9kV2e55EmnfYRHNX8ESjtoVF/T6IRiSR0UStaJtEjJ4XRsXnbEQ5QCNHL2+7RKgOMkaLv7ZEAAllR55LukSGdGhEoWXERVGBY0Qz+7dEvIwCRY8Oa0U1/ndEsvw+Ryawa0TjhAZFZi7wRA2S0kRGFV1EyzbQRSJm2kQAWdlF39mnRM6/hkTYxa5Eu2SyRLE2gkSgujNFjoMzRfCAaEQVVHlEd1W3RX/UlEX/L/NEpnspRUjxkERkrExFrdWjRFuk1EUg/pdEW8jTRJcNY0QmKdBFUgkvRf8oGEVpFIxEAcH3RK70dEQy67lEwHaPRPCNHEba5edE6YnFRM3IQETsXKxElh2uRCtlhUTYZIlEhIOXRCf6yES3+sFESpKvRHqvPkZaAtJE5vvTRAT7mkau5LFHp6d+RGAvOkUWz6FEjjghR9j20UVRrPdEdz3+RSDlzkWwSENFKINwRTQlY0Sc4BtHGgQvRZBeDUWcmMlEiQ16RAD1XURvACdFo6jJRfvGqUQArydFnUeARRjZhERRGiRFhUEjRQbFmkTi8r1EYfGkRJirNUUDt7VEJ5iSRGimtUd86JpEv8J/RDYWwkQKiWhE9TJcRLL2ckZAz5BF+NkNReXv10UQrvNFW2GIRCx4gERtJL9FpbxwRIFFlUVfkptEzbZuRAFDdET27w9FXitNRX40m0R6chZFmEBrRDG/BkVIUClFl06yRKtdhUUGzKNG09TLRJp0XUSSrGlELTBiRIgjsESRw/xEHlABRXODjEfSqwtGr7fiRJCRq0TDc1dEhY4uRnVixETb46xFYCaQRKkkwESe4GdEb/uwRbhWbEV58vpE6mOPRNymW0QwII5FjKifRCQDPkfgIBNFoisQRVx2vUS6rnFEnBaMRd4yN0VHd99Ez0CWRB4NFEezBhZGxf6ERdhIpURApFVEcMcARZjHlUVwpoNEY2eGRAcBjkTEgohFaftCRXQNgEQWvIlEvogLRRdzc0R3xuNEENCqRaGpskQdmcxE9b/PRK/dmURIL5BEU0pkRJLxEkWPuGdE6N9qRLTThkTWLplFNCggRXDhT0Q5SRdF+MB+RW1CZERitaREYroZRepxwkQ1obxEqQC2REZijERdm3pExAwMRbQ1R0UCDZxERn5NRNPM30WrTaNFzgGyRnng60TV7XJEjjKqRGHIy0XPJLlEWLOTRbl1hEWViTNF41jWRoCiP0bfibVGQ6emRWNYjkQQOfJEjSWyRBEt/kW4RaNFy0+fRDb2JUXrdGNFIUuSRIeNlkROkiRFyVSFRBCy3UQJ1IlEhbDcRBHpwkQO0o5ERmlkRTT0AUXBZTFFVwz4RF07o0R/fVBFw2Z4RGfq9URPrthE2Zn1ROK/u0T15IFEqgdxRj62gEVSV4BEmlkARYZMGEUf/4NEnFeTREZ/nUSq39VHGGD1RIDv+EQVC81EtFGvRgXuvkagmJFFw8AWRslOGkU9CYlEuSodRdJlDUXRNSNFGcAPRoaPwETpEZpEW6eYRNEtUEViNZxEfmyjRLtRhESiH+pE0hnCROIJ0kQemg5G5EpdRKD7iEQCmytH0BMHRWaUv0QE091F9GPrRVy7dUR15YtETxBJRRsMqkSBZohERCKdRLwawkQMSk1FZZ4pRlfvXUW1WYxFZr0SRZn450SNosRGtiZ6RCg+TkW2FTZFpUKPRIhQJ0XagNFEzJw1SbUUlES2n6NFxpcfRUhjHEVQZrhEgg50RFLykER9LDtIOAYxRfP7g0bwCBhFrzYSRUW3lERd4mlErQ3SRdRD0UQfGG1F5+2wRFTAQUXTI7dFbcqRRDNcAEWQ+YJFEEZXRf2A+0TI2BBFFB6+RMrIBkXaFZZElZFQRZpokkRClZ5EfBuURGn3pkSIspFEA7l1RL2nTkUOKZNEB9D1RNolykWS+9dE9BnERM6ye0SxmYhEdZugRJZeAEW84JRER0R1RKfzHUe1is1FN2ARSDMSS0d2rfFEtD9pRZCPf0bzf6tHLo6ARcn1zUQFxZ5EFxOJRiIsgEQj5HpEOBKsRFkgkEWcu+RE0dyZRM29E0UUtI5F+G21RBpRXUXyunREXceARIXyrUSw8vZExdhVROe930SjcK5F83uKRLK4lEQZkWxEkbQdRe/W00TjbJBEOvBGRd4kIkViuhBGCDTJRBvZcEQiastEGBSgRFC7/0dDV7ZHffWuRmOv20VAlpJEssiCRHPtWkXmg15E0doVRdgAp0UyLDJFv1tiRllC+ERJDY5E0ThSRGJ/tUSwpkBGPlfORAJEkkUY7odEHZ9qRcXBZkWGTC5FMgSmRFw2wUR5ROdFsJyaRE31oES8Fb9ED6yERAiOv0TBNZpEvjqpRHh5wUSxAfhEPgKaRKeBjkW66B5FA4uNRE/3iUS91KZEATJmReGtl0cl4LlEJ+OFRlh1IkVuY1JEd3O3ROstTUaiPDpGlDOQRaL8B0XuB6VECUSXRNvogESM/NlElbhSRSzUvkXJkJJEgOasRM5ICEUdY5JElgytRJc3j0Q8s5dE5jRORAwruETX14BF/whxRKjMrEQCt/1EeWxRRbwfe0SMTwFFNYTORHQTsUQaiDZF7pFmRf0PFEVLnglFxV+FRLuaukQkUIdE9evoRB2NjESlVZdE1pZrRIRYYkRxWWxE7ZMtRqb1oUSFq4lEA4hrRII7mkXsAZZEU7jVRSMV8EXgYPdEtvuTRM0I+EQJGOpEUhEPRci+4URRUY1EFntvRLQG8EabVZlEJMqTRGgOo0SfjqBEIC+cRsMthkQgCARGCnn4RGIVRUUmc3lEU2GSRDob2ETY2khGI71bRvTICkYjtF9FXXakRE8ji0SpYmtEPZ6ZRItHg0SlrnVE2ND1RVi7H0XEv0ZFtAyKRDga/ET8Vn9E2dCJRPGB1EUY9PFEMRZkRXzgGUVnlo9EkH+vRTznjEToUlhEh9CbRAQTmETuVxZG3PK2RCHVTkU2uYdEguFWRaxzeUSpLzFGEovqRKSOCkXUOJxEfgMORcJ3mURIYX1EGZ+sROXXcUQsXI9Es3v9RJkIA0Xauo9EE09uRMgAKEXASoxEvuC7RN1Ka0Qj96NEzpZKRGOqk0TRrHFE5fWURN+KcEW2w+VEeL6SREP31ETGPG5GmJlPRBEfVUWWWeNEfSioRYAnuEQnantFTlBSRATwjkSIWJ1EWkCDRTO9vkX8aJNF+uYuRVMS90SpzI5E6BLRRL2YZkQG4QZFxL6HRg/JiUQ/1nNE9hCQRMrrJUUFehRFsLSeRNOCt0SDly9FjsPZRLVztESVfZ1EPUaVRIlpwkTnECNFzpVTRfR5h0TuvQdFz9qgRImfEUYtnfNE+BftRLCxWUR/K1REp7qvROr+HkUJH4NE7OuhRAzbEEWiLGxF2AiYRLKAfkSy04JIrI9tREcrb0SpoL9EgCwTRdq0v0QinOJHDx+JRALxy0SQH5JEV9qKRH5MskTLDoxEt/aERLqlcUehdYJEd7StRD1VdUZDT4ZEHQokRY/jgkWxo9ZEHmLlROD2tURa8OZEBR3QRPA7hEQWdY5ENy9tRgOJj0WhV99FmGCXRDbVm0Qvd69EsAPRRBsaLUfhpaZEPfKfRAZJhkQ3odtE+vj9RSIiyURQe3lE1lsNRUqWhUSFC39ErhhoRNW0nURb6gFGVJD1RLpo7ER7u35EmBRERGiZlEQb12xEyHmJRKRsf0T0HJlEm+f0RGtXYEQAnIhEbI4dRnWvgkRYQXVEh1wNRZTGCEUQZwNFxHnERdb08kS3I+JEk4TCRAN+Z0bm+NtEZgaUROHiZEVB4XpEnRZxRLG1UkQT8sdE9L3hRGDnKkXY+aZEBjhfRGqpqESkjelFgKAfRmzlDkXo+XpEfMKXRDayhUQNFIVEkfKQRUD3VkSBPydFpU/gRbrjdkSppLBEPPZgROnuqkShPahEekDVRJWJhURVbCRFXh/dRMv42kTFlEFEtLSpRGD6uUSQ2s9EYw3EREwzSUTHbIpEF8bERHIQk0THQ9NEw8pqREDUfURAoYRElrBjRGAQLEiW/5dHXlAwR6b4IUW9A0xEWDKaRGUpg0XDokNGZsDURWGmfkVcRO5EV5E8RU3dB0VIQ5FEq/L5RKEtdURlauxE6BuNRLheUEQvH81EiQCoRByyu0TSdahE93y4RBD2oESDV5FESZwpRj1loUTkSYFEw98TRUrQHkirpZ1HxjR0RLmc6kSnkjZH9IK2RGr7XkZWh2hFze7BRJv7hET+7alE5H2bRI/BhUSHzOhFSntCRSnKiUQlJ5JEg7mxRFUdcUTL8oFEaoyTRIJez0SGPHRECumwRhpSKkbjeIRExpMyRdW9Z0TgCgFFH767RH29jkQnHV5ENMKgRNGrskSu43REvPl9RHcoR0XB1h9FnoLLRDH5dkVT1oNFUN66RFFfj0RBaJdEySe9RGkPZETQpJZE4eiiRXJ4hkWIrhhF0pd6RHrTpUSbnuJE73LiRBPn9ESGr6dET2mxRd0360XX+h1HU4ljRfuQmUQOXkBGSiSFRdWsjkRvAYhFOusISWyqIkXF8slIm5GYRPcfGkWNMBpIkXUBR3ldi0VFh/9EDEl2RehUyEUn4qVEkcuvRMj6skSWeGdEalShRMNbtESNuIlEpxSHRL9KakQCJ1JEp0czR8I0d0SxPbFGzH1xRwWnREZvb3RGiWhRRYhUiUVUF5pEKWw4RQwjEUXEhKtEHjK0RM3J3URUuYJE330XRyFEgEZaQEtGrJyuRIc7T0Ux04VEy83YRXMqw0Ui0VhFfBycRLazh0R+cYBEC02eRP9MjES/nRhHM+4CR+F/x0Y4XZJFvZPbRGMKzUS5/7hETAh2RLOrfUQvK29Eca60ReNhkEUoeJ9EI8LrRKA3i0TKXhZGK/ZARd3scUQDGPdEone4RKD3KkbVFtFFCb55RMZMtUUaTShFfjcDRbkT/kTQoLREOHkSRiGJRkXG80JFHv9oREomjUS8YapEbQiSRACrgERC7nxE6CEuRfN2REVTuoFE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - ePhD02/BckAM80PL48JyQL7eOGU6w3JAkD2s+8bEckCk2tTWWsVyQCR6xNAN0nJAEIED1EPSckDnKB2wddNyQHQVI1XO33JArqp+3LXgckBwB0ovT+JyQCR2UGyQ4nJAAt/yJyTjckCVykvbUPFyQKTErNLI8XJA9oREIU/yckACamoafPJyQCrU3Ma283JACez/QsH/ckAF9JOPEQFzQAmfk/XPAnNAXL6esPoDc0BAPXqKvBJzQM+P7XLYEnNA4kWsz/gTc0A2I3p1BRRzQCdnIwdPFHNAWFCrT3kfc0CkA6u3OCFzQKw1o1h6InNAgNUJMMsic0AGe0iLziRzQJzmSi0hMHNAaEOhiFUxc0BcnQMSDDNzQE6X/Kq6P3NAyuOW4yRAc0D/UUpJeUFzQFD2tBJ7RHNAgOYX6BdQc0Bk1SWddVBzQAZvTekTUXNA4f5bjpxRc0C6HQoYQlNzQFHURUmiU3NAFG+AG4dUc0DGuuhSZl9zQIGmmYn8X3NAwFL0AIxgc0B2vRztimFzQHwtrtkeYnNAhwae8Dpjc0CaWC7GU3BzQJbu6JzmcHNAPbkcEPdyc0A2/QjOuHRzQMzdRNhNdXNA/M9TVHmAc0CKPqqwpIBzQBNiyA/HgHNAvAxAVOOAc0CMkHWRCYFzQMBADqtdgnNA0lzPHoiQc0DUCXt9uZBzQDnKzQQmkXNAoLT3osiRc0AaGO5oTZJzQAE0bF7Ok3NACG/memGUc0Duc7Kl+JRzQEyRVM2IoHNAAfHGNLmgc0ChsCav46BzQA7nojlaonNACgdPiY6ic0AAWtaKJKNzQJhroTMFpXNATjh1ldawc0AHs1W6frFzQNSePqBasnNAKYukjXqyc0BWRcRSEbNzQIqWxVO2s3NAIiZRwQ60c0A0VHn5+MBzQBZsHxR9wXNAZUGcPDvCc0Ba+bdhz8JzQE02VsLjwnNA1LDkbCfDc0D8IMdy6spzQIF9HCRU0HNAxWA31nHRc0AiaWBypNFzQChigy/X0XNAlC3kjY/Sc0Dq9RF9BNNzQLaHkCXj1HNAorqirQvbc0D+C17cOOFzQGRNhVtS4XNAPfPBImThc0Awzo13feJzQM+siygQ43NA4G+2683yc0BKpFBfofNzQLTWD0439HNAv8kt83cBdEBxAh3FpQF0QDyakFpzAnRApG+z/LoCdECU8RnlPBB0QJ8osKVsEHRAdhfQRX0RdEBu7uPnuRF0QAt1W9JME3RAR/rKbFEgdECiDeLSsSJ0QEIRQPJTMHRAX31Nm0QxdEA+CRL6pj90QB3CuBniP3RANJDrjl1CdEACUpJdOkN0QIRpRHF3Q3RA9JmnORtLdEAsIAcxpU90QDassoa4UHRAPJx0lrpRdEDOtWZ2+lR0QKpTdGKMVXRAJFsGrDpbdEAXA7wxIV10QNDV84t7YHRAHRpnd7dgdEC8SjeQCGJ0QIf6MO16YnRAXLAbUUJjdECO7Wa2UGR0QAI35djEZ3RAJetC8dZndEB4i+D7Hm10QN7ZjoEjcHRAfllGRQZxdEDKXl4VQXF0QDQShVh7cnRATnp4OjlzdED6pIlqNnV0QGjRs4f4gHRAnQsvck6BdEDWrQInFpB0QAKmPexOkXRA0PZm47mSdEAzC9P28Z90QIKWnI3eoHRAFM+Wk7midEAmK5LCEKN0QMyI6FAKsHRA4psh8zuydEAOjbFIusJ0QCRGuh1Qw3RA9RWFJbjEdEDIRvjw/M50QM47Inup0XRAnyS69k7TdEA2L4/b4dN0QMrbR7bP1HRALP5cubjgdEBEFGO0qOF0QEqSCw/64nRAVtSBLnTjdEBuBGMHkON0QNGoBOOb8XRAGHH0YI3zdEA+PMN/0f90QGqPiTY9AHVAPo7ut6QAdUBGumM0oAF1QGry3ATPAXVA0oOhDl0CdUAuwsMtpAJ1QL6JUBsiEHVACjmEkDsQdUA6hS0/whF1QCa0iFMlFHVAXpNw6TggdUA8tttPnSJ1QFPhO29rMHVAhjeWYasydUBGZ2bkzDV1QOa0nrMmQHVA03hSS1JAdUDU8g9ldkB1QJHoe0KzQXVAyhvt1n1CdUCvw+kq3kJ1QCKgNZwlQ3VAUJm3cNlHdUDbuNXR7U91QF2Nj4oGUHVA/jn7ZSVQdUAB/yz2flB1QJ+NrlN+UXVAVxF3BChSdUCdpIn4gFJ1QCjP7R95VXVAWICuigtgdUBUQwKaH2B1QN69R8Q3YHVABp7EDGdgdUBse2WskWB1QKNYqEagYHVARhY39TZhdUBoawUIGXB1QNTQV5FkcHVAkkRSfoZwdUAAAq5AKHJ1QOfQfTl3cnVAYD+zj4ZzdUAKw9gmjXR1QANJUBuNe3VAyu7ta1uAdUBk67OAmIB1QIjxmDx3gXVAMgjRdKyBdUCGPwf3poN1QOCqYJWbhHVAOieCXSqbdUA+nSPd7r91QIBac8Bo0XVAp1EuHmbSdUBMYUetwNJ1QCCmh33M03VARmkdww7hdUDTnxk5JeF1QDwYDxsH4nVAJ6NDb5H/dUAO/JE/v/91QMuYapJQAXZAYzx9jEkCdkCw1+n60AN2QCCnAzXmBHZAurG4WrAPdkCIMngkcBF2QOD3eRUMFnZA8i5jiH0ZdkA6csFbyRp2QNZkc6L7IHZAFOWAGYgidkCAMCfpjyR2QOyOB4ZLK3ZAgGy7pB8xdkAAO81zKDJ2QDAnmVxTM3ZAUv94ME5AdkDeCwYEpkB2QFyPJJ0dQXZA8Pb9echCdkDb4nDLd0N2QDONmMSrQ3ZAdBOBJHtEdkD5alQ9/lB2QB2VHVjNVHZAQh7Yv49gdkBudunttGB2QFV+CYT7YHZAjtcJS9phdkCC9Z3D2mR2QKrUpkywcHZAgF0T2u1wdkDAv7Z2m392QIiSVs3Rf3ZAaYcP94GAdkDHCe98v4B2QJqcefrrgHZAWQ7PGGeCdkCBWE6lkYN2QOy5+6L1kXZAy5LJCumddkDrX62llJ92QDy/lzqMp3ZAXL6buCOxdkBMc1U8v7J2QMspkBENtHZAoD/uJHzBdkBi1JPXzs52QBixK4qA0HZAD/IDxW/RdkDU7DbCtvJ2QKq4cg0j83ZA3AkB4JLzdkCkdkmRARJ3QHUSsUm7H3dAVb1BhI0gd0AS1KynuSF3QCI+2YoPIndA4DJLhlgud0BeiMjsDDV3QHg8ZqP8P3dA78f0i89Ad0DiOOjrnEF3QI79NRMbRXdAgL1takpRd0DCVVrckVF3QMwLSX8pVXdArhM6iklhd0AKuZmYjWF3QPosLDM6ZXdA+zoCLChvd0BQ4hv6Gnd3QKTR0EAWkXdARY/BuRahd0DiXi5mL6N3QGzZDBH7o3dAyKmnx5m0d0CTx2U0jNZ3QIpTBJNR8ndA3tnh2Pv/d0CdIdBSTwB4QCqnh0T2AXhANLJmKyICeEBoVCm0kQN4QIzzqVhNFXhAjtNKTT4geEDWeB91ZSB4QG2hAThuInhAXGggMTsweECygvnPXjB4QJD/mRsxQHhAqF7Gf11AeEBwiaOuEER4QBkRQ+15RXhA2tU4b6VReEA3QUfTylF4QElAXUeHVXhA9w7qQv9geEDGdJEcOGF4QJnJ9/ZhYXhAFZbKf7hheECmfGmrl2J4QCoToO9FcXhAcgZjNBp0eEDseFqyOXR4QJ/VzalCdHhABJUezF10eECgZpu3i3R4QOhdS2+wdHhAJ8ZfA8N0eEA0twUi2nR4QM74GxDJeHhApFMXPvV7eEBQoDGWJn54QKVYUG6jgXhA8rq5F+eDeECkmBsVmoR4QN5yhAe/hHhAOMxMhZeReEDIUArap5R4QGY2Mcq0pHhACJaZe4WreECgP7SKJ654QE1mZh6Or3hA8HH3lnuzeEAOWmF398F4QJYI2yMWyXhASV7UgbjUeEBUklijM+J4QIQEeVIC9HhAKsKdl4z1eEBOsOk/XAN5QGIWwiqcBXlA+kaymYATeUA0BTQutCh5QPb4OPsILnlAraSkbncxeUB0TG/OtjN5QEoKrn6JQnlAgNI2evxDeUCyfVxMzVR5QDgldToijXlAqOmj/DaieUAq8Lr0v7J5QAT/Tzzkv3lA2r7WWqjBeUBq0mJrQtR5QE6JwwrN1XlAlm7RbCfgeUBYDs4HUeR5QBggrKX9AHpAuRKhW/0DekCkhaj99wV6QHgqJz7mIHpA3uNfcBMhekA83sVeKCN6QIpbhLkvK3pA69FMyN0wekC16hs+BTF6QF4l4D0fM3pAaTSZYgw1ekBMlTRBJzt6QFQ97gvcQHpAok3NcRpFekCP1RKeJ1V6QNEqy5whXHpAFou+r8JzekDAxsQyhHl6QBAmrZrffnpAvfaGdqaBekAvIs94L4R6QB7KKvnloXpAWVAM0w2zekCOexU9P7V6QCmCuUsNtnpA0mBE/UXDekDz1GBwGsZ6QGmNvqc65HpApJNDDjfuekCQBLfNKAF7QD4mUU18BHtAHMEdd4sUe0CG0+RnTBV7QHiz20NZJXtAnHIoc5A+e0DUtmKV6UN7QL731a9CSXtAbA1Xc51Oe0Caal4f+lN7QIgQGInOgXtABC7kmyKVe0AyvakAALR7QJ7mcfF2xntAd+0SqJXge0AIetB6v+B7QIINlv2y8HtA35Eqh4z1e0ABrZjk1wB8QIZFEjjaAXxAhP3R4/YBfECyI7L8mQV8QCpzhvbPEXxAS70teKgVfEB0kzbJtS18QChz/GvMQXxAv0fdBE9TfEDMipMrCVR8QFb13oV+VXxAYN0B24llfECTS0IkB3N8QEBQArQsjHxA8oauLyekfEDXiMT6vbJ8QFryDEf9s3xAiHyRZBTAfEDuBaZSaMR8QKksh7kV4HxA4lnLObvgfEBOX/cxWOJ8QDZ3DScW8nxAMsKMflTyfED0AGugdPJ8QF9VAskBAn1Ajvti1ksCfUABAIfEAAR9QEj02m4IDH1AT1FuRkYSfUAqjpovSTh9QArfpL2FPX1AJkm4TaI9fUAqfYBP3kJ9QKxdBLD9a31AN3W6KYRvfUB3Yxr0I3N9QHji8Rmuc31AtW0YI3h4fUBwwpWLB3l9QAhR8cMWpH1AtAsowkKofUD//ECYK8R9QFgDUuLmxH1AzJY3knXOfUAEhOtLO+B9QK77+H+R9X1ARCLgVo3+fUDkZsNINQB+QBC2qnikHX5A/AS9O/8ifkAX6aE7Ii9+QMQZqIACNH5APEVxP5A0fkDcev7fQT9+QMhfFDWiRH5Awqa52YxVfkAmnYOuJXV+QOVHIIvUen5A3iB2JJ+DfkDbOpxKqYt+QEeMBSjckH5ALDlj8JmUfkCKUaju85l+QNwj8YO6nH5AcKzSwmmgfkCxGXAfrqR+QPCxM1D2rn5A9sMjRo6wfkBGojKmT7R+QHL94Re4uH5AgkB6gaq5fkA0LqELBL9+QHY/tmthwH5ATClync7EfkCa04DNn8Z+QD5g0OgD5H5AxCvsCwbofkCYAeMRCux+QBb9Lz8Q8H5AQlUm7L7xfkDK+KtdDPR+QP1JIxOp+X5AcFUxaQP/fkB1etUDcgN/QBKay9r2E39ABNHUNP4bf0AKysW6YCB/QMToPrLkIX9Apw7c7P0kf0BWSzEuIjR/QBfW3EunOX9A3omXswY/f0DSVcU2UEB/QF5g6WS3XH9A4HaNHmVif0BaCxlSvWR/QIbAy5vGbH9A4i7yfpdvf0D6vWkU5nB/QMA+cGS4cX9ACPGyK+N0f0AFqkwUZJF/QNxjR4gPoH9AcoWwX1+hf0BiFmViyaR/QAzEHbZVsX9A+k1YZtm0f0Doa8nKJ8R/QF1YaQmp239AovDo7c0PgEB04RldnxCAQBoDOB16EoBALAnQpnkcgEDGefejayKAQAVKWJopMIBAXoj1k+BBgEBMlKSiqUKAQPxR283uSIBAVp5768VPgED2S3XE51CAQCTbnB8UUYBA/T+mDAVUgECAj1O3B1aAQKrPVuImWIBA0CyeWw5ZgEBYqQcmM1qAQIyxUvl/XIBAeq6pq6NdgEDC/anU32CAQBbwjpDyYYBAXjjHQDpigECKrS5kJG6AQAZ8elcpb4BAyoPF8RVygEDbH/siw3SAQBp0xMptd4BAQClVFYN5gECA4Z3vJn+AQFBNya28hIBACH79dgOPgEDqbZsaHo+AQP4RN6aqkYBAoTJdN0mWgEDFZRMTIJeAQKKgYBzGmYBATQw0jkuagEBOCNR616GAQAlW3wkFpYBABWJ504elgEBAPiXX8qaAQEr3TOOsp4BA5rduiNutgEBaA4y6P66AQDwVaqoTr4BALWyAJpSygECa2geFfbWAQNlZOisTt4BAa76GTIG5gEAGNuH0SLuAQEZYXzkJvIBAypV9gEK+gEBghEkn/b+AQBqUqq5SwYBAfDxilk/DgEBuSG6fHsaAQJ5AYZn4xoBAZUbECyzJgEBUgTaCU8mAQN5Dwf7gzIBArgG2xzjOgEAgQ+6xkM6AQHT9AgoHz4BAfDwlwyvRgEDmU1qHTNGAQLISqoFI2YBAfBuVVVnZgECSn4HLndqAQDSCei/934BAlkBRUwrggED2RNXxROGAQO3/pHUN4oBAoKoac5rigEDR2AStCuSAQEo8hjH26IBAmiSgI0vvgEBlcAgSPfOAQFI6r9M//4BAImS0+D8HgUDePsZkPQ+BQC5TmvtBFYFAQqoRKDwXgUB2i108iRqBQL2d97umGoFAuQvHcjEdgUDOCtqKNB+BQHanWVuzH4FArdeCDjUngUBQ9TOAMC+BQEG6qP6+MYFAmTF4vMQ0gUDGhJv0KD+BQOSAdv+BQIFAWYKMoipHgUBbBUAqhGCBQMdDvEcUaoFAzoXcspuDgUDASe1GjoWBQGBLr3hVj4FA2DEiW/aRgUAu6ZGKVZeBQBAnV3L4mYFA26mFfQqagUDv06uWFZ2BQJSmBEznoYFABAYfxd6igUABsyQIcKiBQKgaNSTlqoFAGaaKqg2ugUDlvY3LSq+BQJLsZv0OsIFAZm3iJG2wgUAFLPulELKBQCMD8pZMt4FArDIyx5W+gUBX50HhfdOBQPC5bqrD14FAmSdzJs7cgUAsSR6+x++BQDwu1T518oFAW+x8rSH1gUC0NGRheviBQL2Q8SjT/4FAhPrucOwDgkCmU9JLAwmCQOCHRXFwC4JAqMyGQYsLgkB2a8lttRKCQOlTYCHZGIJAcsGEsq4agkBao+y3thqCQFPnDavWIIJAtN5hkv0lgkDIW8kw0CiCQMyBk7VyMIJAzc94Yno4gkAALDePa0CCQLQJf2vyQYJAPHDQEkhFgkCxYjC9Ck6CQPYEtwrWVoJAMP01qXhcgkBP37qd2F6CQONwS1m1Z4JAlUxHH3xogkAzH5p2Q2mCQCX6SJIPboJAzCPVstB2gkBY3Rtw33qCQNwkNhc1gIJA/kle0oiCgkCqE1J+Q4mCQARFQaPkioJAWG0bzUORgkDR+dunPJmCQOTPg3UPoYJAnnum8juhgkDI9qqA3aGCQCUyp9jhpYJAY3f7/Q6pgkAaDWIANamCQF5pWMlSsIJANWOcHTLEgkDMwoiOStKCQPujOPd82oJAEX4HPpvcgkDe2tneh96CQPZxPg/W4oJANBbdjlDxgkAOdDG2r/mCQN7rdxoVA4NA9ND35xwLg0Ar2jYAehGDQAjVHYW/FoNA8ikvzHkZg0AFm7B14RqDQM7FPyrwHoNA39HxqnIhg0Au16yqcCmDQGMYFE38KYNA53Bcc2kxg0DuSdqWHjqDQLZj3t3eOoNAT9Z3nCE8g0DWXoit5kKDQME8JR9WUINAjwwq59hZg0BvUBCoZF6DQHfHVO8HaoNA6uv8EAtug0BSsPQ4DnKDQFTlOksKeoNApf5iLwqDg0CaupTESYODQOD8FHNCioNAvKFz9vOMg0BkBhTgJKeDQGCmMnq9qINAcrja80eyg0C7ENFmeLeDQDS0IFXUuoNAwIiLPN3Cg0DjatwZkcaDQHCVXI+TyoNALHQ+eBnPg0C8FKZYHNeDQMjTWMK59YNAxN/ddKb/g0Bq9yaxUAKEQKYg5h0CBYRAyH1hNSkLhEBdhOITDhqEQGO4VDvKP4RA/P7QHHdChEBG2apEC0OEQEQkMSgiRYRAdMbyrRJLhEAqVFlmK1OEQCD+CQj/aIRAaaO3U5lqhEDrzTeJ5WqEQKAXbmoOa4RA9NK/ErluhEBotlss6G6EQNbM+XQRb4RA6/+Fev1whEA4MWMm63KEQPM+5toyc4RAZFASqu52hECX0jMXyneEQMFSz2b3eIRARDolq3d6hEAd0GDZ8nqEQDRA+jvzfoRAiJf8cZKAhEAwhUluUpWEQIta5seumoRAfk+rSWrZhEB1ZWQhauGEQOj/IaZA44RAWEi0JS/khEAFpf9TY+mEQMa7Y6hH64RALIWKPDXxhEDOh1DFZfGEQECgLoNM84RAgjn65Df5hEANMrsBS/yEQFO/A9QxAYVA8Cu3aUIUhUBykaTgjRqFQBg+OhpDHoVABd3jmk0hhUCNGB3mRiKFQE7I2ZigYYVATu3OOqBphUC3STq9mHGFQJrFW3i0c4VA2gMCNZl5hUCYQo2zUJWFQDT/4mD9l4VAql2wpaqahUDS/PeVV52FQExehX7utYVA6dJiBIq9hUCYE/C8Q8WFQNmUNWb4x4VAca+PWnzmhUA8V33Dk+2FQErRRDlA8IVAKlkOwuzyhUC+u5eXmPWFQIaI3GpG+IVAyIfUJxj7hUAWQioiZzWGQGKwdbkZOIZA8prd64yGhkCM5ceijYqGQI0bai+MjoZAUZqIOc7GhkD0GrV/Mv+GQLTcAC02A4dAjhR4VDcHh0AazU9akSmHQM1tB36QMYdAKUDSBYY3h0Dly43BijmHQJJP9qxdQYdA6Pn09ItBh0BgVPqD1luHQOE77bY3Z4dA+uOykDprh0DZKbwCyLGHQK2DyXrHuYdAkvZXcr7Bh0C4Umbxw8mHQFHRiR8P2YdAE2ja14Tuh0BQ4ja5hPKHQBJ/dI/rjohAqtwA+u6QiEAQ/y7mWLKIQA== + KBZXds7jZUDOIQhxcmNtQBTpB48/A3JA525gjBHDdUCcb/ncMJR6QK7J9MUp9HtAxZb8nE/igEDH3v9Rt8qDQFh3oNim6oRAKwzKbkPjhkDsV0QU/vKIQEldhlmbc4pACqkA/1WDjEDcPSqV8nuOQG7Wyhvim49AOA9n6CRCkUAvKGhFQraSQLT+pn9ADpNA4T7NU4hClEBWYCPTfDKVQGFWxGjeBpZA1nca6NL2lkATbSl3JFOYQA== - + - GT3PRWXftUSdzh5FEw6yRGS8kUT7p1lFMtvZRm+TrkRj0rZEm9GmRKQDSEUwB4hFZtwNReOLR0WZkR1FWvRGRZqtqkT8opdEwNulRDuKpETblWFF638HR1S9EUYNu29E4OGERRDFhUXS78lEOUEWRUJwO0ZcD0dFgtLzRA75n0V7s9REP8GXROusB0X2kb9EdR6yRKXvFkVm9BVGOT7nRL0zrUQ3nztFlUogRQ5r5kSO005F4Qu6RFooBkUJ9wJF9UXiRZkPgkQ4pYJEOAAyRYTaf0SWM/1GfuiHRK5El0Q8gdREKlNGSDOUKkbXuQxFQ4gdRZcvyUQOzrtFVZ6KRg+ZgkQ7igFGrAyeRCwkT0eKKoNEF6YDRWJ6MkZuWbJErORGR7rtM0WhePZF/gqpRO+pxETMqtpEdjNuRfKbeEdDTp5EIuTNRJrn9kQ5M1dFILaaRFO2rUTkd/1FoG6ERLY9i0W0N49FUReqRKR8wESqCYZE2h+vRQidgUSIVPpECcWfRGcz3kUONYJF6WAfRR6rVEVxIIREOgKERGS5gkTnryRFQ9WsRAgYjUQFrBlFJ9KlRckBqURM4ppEeId6RHRmzUVMrK5EJbGWRPOkPUXtdERFx/G3RJR3GEULOcNEeRf2RD21E0bsLAJFhDLMRLo/zEQjEJFEZaMjRZuRiETpr1VGwi2oRMqynkQN5gJFtx6hRqITiEfHQZREIYRgRdo1k0W0INBGP0dGRXNwg0RWzpBF2HS6RRE4/URWz6JFX7uKRMOcPEd57SNFxX0xRYp2f0S1zE5FRQrvRTweiUXdY2BFZ8GaRNCtp0Sf+utEjhOzRBvBJkXkANxEXIOkRBEF1UStVTVF+iSKRW6n3kQHG9xHcg2tRNpvj0RLdq9Ei7CKRO4KiEZXLrpFOfJ6RJDlykUydlBGEoC+RaHjl0T1ebtFmZyvRB2pvESY971Eng4DRQ8TykTWx6pEM6CeRADs2kQ+8wtFv0szRbTAqEbPGptEEzElRVRYFUWpdYVH3SnqRaHl4EQINJZEliRLRregQ0XgDYFErKO5RTQXtkT6rpVEuya2Rea/xkQ2o2xE0W9rRJeurURi1eBEw+FARfZm/kTKdsFEVfsrR/go00R2L+BE700BRaDWqEQzbIdFWOvBRD9Zr0QUlPlEEibQRuWxmkY60L5FUjadRJ2W0ESk6cVEQafARV4WCkXrElhFQIukRAd/CEVrIp5FN0nhRPo0GUUpm+JEayGRRGX9iUR/gQBFfCudRXCC+0S4MsdE4cRkRSZd70RsmLtE40IVRSPsHEVhcMREVYnvRETaxkRykAhFKew5RVKiD0ZmWLpFPb7BRsxLLUUCdatE5OTIRSkB/UQsu4tFnUuNRRj3xURz6nhEF6FmRakbvkYSTdpGruOzRnvbn0SywlJFIjW+RFLgt0V33C1GGCFwRcr3JkU9Da1F06i0RKVYskTEl35EpeS4RHm51kTFfAdF+96jRA5RzkSodLhEtzcWRVFToUR5NKBFHagXRfbrNEX93LJE00XsRGZf1ESieQ1FlUjrROFikkYbH1RFcuqWRB1ayUQmDnZFKfilRCYDCEhOXtZEfrjPRCRZm0bfyflGWtA0RaDKQEZpwglF22iNREFxq0RLU55EBhZLRcArhETdBehFxcOzRPRBdkSEiVtFEezIRMjtiEROlZtEMGYQRVVsFEV0SW9F0uKVRDsW30Vl7sVE4ZQkRyCE7kRdZjxFNQy+RSV72UVyoTNF+Xq8RLi2lEQxgIRGx8iNRWmcjUUr/Q5Ffj6TRAZ2hkZ1BdtEiHUwRVjOmEQ/YpFFXsOaRPSBEUWQWv1E9YKQRX0zXUmPgORFxL8ORVzp/USXSjJFOd9nRdgYlUR4q/hEKeCPRLFxWUjN/wBFT6MnRX/4ukY/63FEwu8fRXoGq0R3eYpESXHYRNTCpUVNSIdELOPhRARAm0RWP5dFlfnlRZIii0S3TOtEDxb2RMA2q0XSn75E3JkWReGv60TmpYRE71r8ROW6m0VYRNdECJCgRMt9lUX+GItEUumnREiZskXdZaJE7DPcRElwCkUFCqJEUYyoREcx10TwRApHq7rlRbLXAUjdXDZH+3jIRBTwi0USaXVG44fyR5engkUxmQFFmhDwRujiMkW95w1FtFsGRZw3iEW3sRFFvLMlRWt+3kTqrAZFev6LRMV6AUWTn+dFM3+9RLCPtkRKmMNEHfbIRPWTo0QU+PREwUNpRPLcHEYdNy9FWX/WR+2PtUcvM+VGY2BhRfXmy0SRmZVEp7yxRHVPrEQ/pKJE88wyRSj4uEWOhilFlyWxRhiIikTR3m5G4AYERVyA1kVIQm9F+nKKRJoerkTiYj5FGlG/RDbM9ERKTYhFyzKIRK4+oUTpCERFcy2gREsh3UTuBYpEBGj9RL6NV0VVvZlEHT5GRRsO0EdxAflEXT3MRkyjNEVZWvlERS2PRoHnFUYcgqtF84P7RPQFFkUrHZxE+/OWRPTWDkW/NGhFvt2sRHAfJUX/le5ESE2vRKtQxERmN8pE6J2wRHGJI0VlzXFFICmoRFKM1ES8cx9F8G+CRPGuDEWu5S9F09amRC0ACEUHHvlEahmIRJrpnEQ5EM5EDba0RAxalERi9YFEdtIqRsv1XUV9R4VErLGERXZw20W6Ca1EhcEtReWU5EQ2q+tG0Rn6RFpzn0ZuoYBEYFGtRS1290TGphxFXrWKRPA2i0QIF3dGF7hLRjQWvUXlfZBEN0B/RIa+LkWUZMVENn+2RHDHmURqCLtFVcd0RVjCf0Veh8lEiN2RRJNjrkQdR65EGQIdRQhwk0Q9O+pF+xKSRMp+TEWSsdFELaGXREVChkTB+61FlY2SRAMaFEYBSVZFWvMKRaIV8UU6xwNFFWHyRCVqhkRfQiFFgA6LRFLHbkQgKWhFsyGeRNicdUUp/pxEH/GwRNSzQUUB9KlEp1S7RC2jD0UHi0ZGVWevRJ2wpEQxowlF73PaRdyuP0XTNKtEwR2DRO97qUR3koNEZlObRHriw0SfHDpFxyQERqtqcEU/sPJE99y6RGoBJ0W7bH5EeNXmRG2VYUbXjARFxaMYRZdkKEUVuQNF7DYLRSh1bESAD5FExhkIRV5NCUVB1JJEdHZqRNo3gUSpfCFGd8nVRImDk0RtHvJEP0aXRI9FrkQEeQBFi84JRW9mkUSnlXpI2FaXRJIgmkTJO4hEYA/DRPsY0UeQ8rRElZmQRAEfmESNmZFErcPlRJUVeEfu7TRGYNA3RXYEB0U+9ZVErmeGRBOoyUXa09BEqwWCRDzRk0Qbz8ZE9BgaRQgOq0TeilxGtHCXRQ8/zUUFpphEEXmqRLPzzESyks9E6qa0RD51F0eGhJ1Eb6uoRUJqLkVdNM1EpAqfRGD1NEZynb9E8GqeRETwgkR6EIRExcyxRECEd0Q7JwJGq7u1RLyMA0XusalE/C6wRAMGj0TBFr5Ega6TRXSYrkRkmpZE7G6KRBg0V0Y8DsBEItawROiF+kTgkn5FHta5RKtKlkRRka1ENNOSRB3DPkX+iKNFUmzhRLajjUSuZZhEzch/RMzAnURpKY1E3DqHRMD6lUWVQiNGinRnRJO4YETgxmZFwqGKRKeKIkWvJQZGHvflRDi1IUXprbtELFSyRPlWoEQqDpxEpMiiRNDF2UTt0INEl2GRRDRAqkR4X45E+y72RMUCDkVQBo5EQeq8REcy/UfD+aVE4+5qR02kAUeQnJJFP9QLRvzKHEaKFm1FSznkRFclLEVeo8ZEosrERNDCeERuj9lEyberRD0bgUQTxMREAqSiRDXynkQ3dldGpEI0RWvn8Uc45aZEXldGR09KuUQmwKZEI93+RjtiAUY34KFEmfcKRfmE+0Thv+dFsCOTRK/ZvUSp83FEIFl9ROmmDkX/75lGFJYmRs2dfUXH/IhE2dO6RKn6B0XyLrBEx2b/RK/EEkUvOq9EhqydRLzsjESiFpdFboGJRBJ8hkRnysNEacSpRBzYPUVG14ZEtDKRRVW470TVUfNEjsOJRLLl8kQ5aahFzyRdRZ7ADEf36gxFfGA1RmUaX0X2eLJFlCqpRNzQCUn4ETxF0VKoRCsGv0g7YhlFuXdQRQJjGEjHS4JEk+AOR94YrkU5PrZElXdHRePFFkaif4ZE5cSMRMA88ERu2O9EW4AeR8fjkUbauUBHeoeqREUgHkaNpzBGNUaPRVZbeEVEYTlFLpTbRNm3sESwdp9EETeuRMfUc0TONgpFYgueRHcmk0Sx7QBHhqxnRsv9EUZBvPJE0U4iReKEukUxwdxFLRaSRcQmqkQirYZE2rfsRCJNwkQnXdpEGDuORP/RF0dqUglHXYOfRhgnSUYyPUdFaw3GRF036kS9645ECGulRemomkWnHYREyB2hRBT40EXhJ3tFpEbERDimJUZvvMdF6oS9ROs1mUVPBotEMhIMRVC15ERsaVBFCswbRTChAEa6eJZFDZIDRakem0QtDsBEYz3oRClqo0QIGeVELVa5RKZS4EQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - z3HEQ0XBckAEKlxhbsFyQNgXES48w3JA9G1kTMTEckASfxrPDdJyQMpaFltD0nJA5DVBoMzfckA8c+DsuOByQNmRdZVQ4nJAJTa2npDickAOMvV/JONyQBfVifZP8XJAVrYsh8nxckDwOP9WTvJyQN5KlpcS83JAB/DJp8L/ckB00kdjPAJzQGe6OTLQAnNARmTAsPoDc0Aq67JDvBJzQDQztZ0HFHNAPlYvsEwUc0BgFVfdeB9zQFSasac4IXNAwnzx33oic0Cuicq7ECNzQHjnFm/QJHNAQJ4zhlAxc0DOgBThDDNzQFKYS+s2NHNAwAFoF7g/c0ABgW6Dd0FzQP7cvEMmQnNAQXjei71Cc0COonJNe0RzQNoGobIYUHNAKjuGzHNQc0AUQIh6FVFzQH8TgQKaUXNAt3EcfKJTc0B8StsBeFRzQII4fo2HVHNA6FzSBGZfc0A8thmS+F9zQGxFoNOMYHNAwK1rTDhjc0BywWlgHXBzQPpvjZ7lcHNA48QQw1Vxc0CMzpAp3nFzQEiUlLZmcnNAvsGYaLlyc0BL9jQHt3RzQGZP21xNdXNAlE80UnmAc0BMiyauo4BzQNn9sdfHgHNArDYsAuOAc0A/64k7CoFzQOjcwp1dgnNAQDVR4XWQc0B8u2jgh5BzQJRUcgrXkHNAfaSB7SWRc0Aw1D01TZJzQB+EdG9hknNAZnst6NCSc0CXUcDB9pRzQHI7YYuDoHNAkSov5rigc0CQRabd56BzQMwF+5YuoXNA3Nl5OAqic0CApN5iW6JzQHFG4DOconNAUKBQdSSjc0D8AkIRA6VzQMQuIDvIsHNA4EXbLtmwc0A7J3CrfrFzQD7ULrt8snNAXMPaKbizc0Dw5kzsDLRzQM3lNer4wHNAeFsK1XzBc0Bgf/nVzsJzQELeyKLjwnNABDB+/yXDc0CqAfLS68pzQEeZUcRw0XNAfpcOg4rRc0Bg2+9c1tFzQP7ASQaQ0nNAxldmfgTTc0D8ReY7+dNzQGAstsDi1HNAtN7e8zjhc0Bs+2gXUuFzQGUXWNx3AXRAXHXzPLkCdECS7PEiPRB0QFC++V9qEHRATTfntboRdEAkK9KsThN0QL2rFD9MIHRAYO+NDbMidED41hjyuSR0QNhTgn1RMHRAGWhYZkExdECg/+E/vTJ0QCcsacGmP3RAJv1pY+Q/dEDibfxLD0B0QNLKo7ZgQHRAxqyIlTtDdECIAlnKe0N0QObKsrkaS3RAnL5yJqBPdECefOz4uk90QKQOh1LDT3RA3ofk7QJQdECFCjtpuFB0QMKwadu+UXRAe7jMRSJTdEDEeiIgjFV0QBRsqQQ8W3RAwB6C9CBddEALBzndfGB0QIEb83W3YHRAqQJtpAhidEB81MMYe2J0QJaW4IBBY3RA0tcefE9kdEA2oExvxWd0QAkHrnnVZ3RADi/qPSNtdEDfzTH5IXB0QFTcOS/8cHRACF9AYEFxdECMxJeke3J0QEmIJ5Q6c3RA2R4zgA10dEDwQ3NiYoB0QFbuujf5gHRAcDh/hk6BdEA5kz6HFpB0QA9dAN1qkHRACEd1406RdEDeqA7T4aB0QGhWf/61onRA2EwAeA+jdEBl5PJAZKV0QE9caf0JsHRASF0wgsSwdEBI2gadArF0QGShBuv7snRACASxaOPAdECosNqL68F0QDnOCa1Nw3RAKkFv47fEdEAbTK9P/M50QIXC5Z+p0XRAzqHJMlHTdEDMhisDz9R0QF3Z9YdW23RA9Az8/LfgdEAwo2KUPOF0QHKG4qWn4XRANjk1XvridEDeTAm3cON0QCTs0/GN43RA/IiFv0zldEAgJe0gxfB0QO8kN32b8XRA3oY0AbPxdECiRh5qjfN0QFZeIbPU/3RAmYMkZDwAdUDsayBdpwB1QGaB6XPNAHVA0FaoypkBdUDiq8CtzgF1QGlfun2ZA3VAdzyr48QPdUB/uoSIJRB1QI0NvVQ6EHVAnraRK8IRdUC1eO8MIxR1QLLxv4/kH3VA2PQkQxQgdUB8W0wfOSB1QBjvzdRwIXVA0E4Tq50idUB3mJD8ajB1QPgnV1GrMnVAdTmlccw1dUCXClLp7jd1QO/hH90mQHVAfpYHyFFAdUCk/j6RdEB1QHxS0Pi7QHVAEdnWsn1CdUCG47nH3UJ1QK6zJyPXR3VAjIdKzyNNdUDaYpi36E91QGQkozYkUHVAK8Cnr0JQdUBqZxr0eVB1QP1M25d+UXVA6lu6MHdVdUA2vZhkDGB1QMReMixGYHVAwB47nmZgdUDYsWWykmB1QH5/YFZlcHVAWGXf6HlwdUBQAdGbKXJ1QFK1usZ3cnVAoINIc4ZzdUBToZ5rjXR1QOzV3s+Ne3VAYE3RmlqAdUCjs/QMmoB1QJA31VatgXVAcr4eBKWDdUAElVD7mYR1QIJceKKLkHVAdBaY5r2RdUBc8lxa0ZF1QJn5IL+To3VA3lLWEfC/dUBUgBWXOcN1QN7575LRw3VAYEWaxWjRdUD20fWZZtJ1QF24PHfA1nVA4ogPRuPfdUAW5tojDuF1QAVqiuOm43VAvPq2ypD/dUBektnmvP91QGEhevJQAXZAeRdq00gCdkCrjq/GzgN2QAgEHuywD3ZAbPcNzW8RdkBnJRiEDhN2QG6NPeRLFnZAguzV0H8ZdkAEc7KByRp2QLbTQW39IHZA7i8IgogidkBUf38okCR2QKLqN2RKK3ZABw3aEh8xdkBccxIQKzJ2QHk+x1eeNHZAPkYZ8E1AdkChqQtopUB2QOPh5YocQXZAkcT13cdCdkBGAgdleUN2QEO4C4F5RHZAPp5iuv1QdkD27ONvzVR2QI93OCOQYHZAAmKqdrlgdkD6EkBs+2B2QOCpeJHcYXZA3VvOctpkdkBmKwChjXB2QJLVxsmvcHZAUmVaS+1wdkCExpnom392QEQ7A1fSf3ZA8Nr5s4GAdkDami6GlIN2QLZDpkX3kXZALrlnVuqddkAPsDwEk592QISsCKyLp3ZAf1D9NCKxdkAqpo1awLJ2QISwb3QNtHZAuk12V6+0dkDLg0kmwcB2QC1mzaBPwXZAzTpy5nvBdkASCiPxGMR2QCXxraDPznZA+PWNjn7QdkCOdt7AbtF2QC4JetHS33ZA4OsYH/PhdkBqTz8jufJ2QAtTHZUi83ZABKk4JZDzdkC6AQ4fnwN3QLhLUfoAEndAaHVWT7wfd0D/YTKvVSB3QL6LWMaLIHdAtSBpsQ4id0BXSU5KCjF3QH7BkjGkM3dAj9znLA01d0DHgJbL/D93QN5scyvPQHdAVjNZtJxBd0CWwSEhG0V3QKjXc/pJUXdA38/2OZJRd0C4I7I+KFV3QNZtZrdIYXdAn2MeHJBhd0ASs2l5OWV3QExoXxcnb3dAMBGY2Jpxd0BeQ+tMyHF3QG4drQj7c3dAeAzAt5J0d0Bc8CwwG3t3QEyuzOuef3dAUT3/jXqCd0A6pw8xFpF3QCxc23wUoXdAIbUvx/qjd0Di38RfKMN3QG1iR1mI0ndAAN1Zh0zTd0DuXiDX/f93QDhXG94+AHhAvanmsvcBeEByLhTwkQN4QPhthK8YEnhAKPvUbEkVeEArS1cxPiB4QLq5t6J7IHhAsvQjTW0ieEAgFkyrOjB4QLAeqsJdMHhA8SyTddQxeEDGvz2VMUB4QGQuo6ZdQHhANCxlpUtBeEBkEynfEkR4QFKFyyN6RXhAaiA6jlRQeECokgxkpVF4QMTlZyPLUXhA0C+kTYhVeEAM2l3p+mB4QCFQ7io4YXhArMoe02VheEDyBHWHuGF4QHQ9Z/iVYnhABCk7LEhxeEBUnRsbWXF4QPjQGw9KdHhAbzFZw4t0eEBBiXfPx3R4QIst1KTmdHhAVuB5AsZ4eECCvSSH9nt4QN46jDQifnhAHEcJRGaBeEC2j8kPpoF4QB2zV6N7g3hArtkQeOiDeEDAsb3KmYR4QCac0SiXkXhAVIuOgKeUeEDguEZVtaR4QFrBgoeHq3hAVPaUrSSueEAQ0cyIja94QOzcnvhjsnhASs431oyzeEA01Bw19sF4QACHHwshwnhA9tAGGQXSeEBiRr34ttR4QKAnF4k74HhAn21z4GbheEAuWAnXNuJ4QItj+54B9HhAGhRe+Iz1eECjL6RwegB5QOZiT/maBXlA6JTgYNwYeUCr9RIysih5QGpEAI0MLnlADAtFyXUxeUA0rib6uTN5QNcvV9CJQnlA3n0QjMxUeUA4qX+B2GR5QC5T/1PAsnlAFkOv0s7BeUCTkr0JQtR5QOwtEdnN1XlAKL+quyjgeUAvNYnUUOR5QL77+aF/8XlAYP2yp/oAekAyzYTE+wV6QD97ZD7mIHpAFG+dJxIhekD+MjczKCN6QLqfHJcuK3pA8NlI8d8wekC6tMPWBjF6QNp1Kc0fM3pANInRZAw1ekCye+z7JTt6QOWNCxrkQHpAz53zUhpFekDEDjBmKFV6QCxOL6I3ZXpA8B7joIN5ekB132PX3H56QOS8F/elgXpAL6d0rdGBekC4JIwd56F6QFxoe1w+tXpA07qiuA62ekCM1atm19N6QCoPtGb343pAxmwXGTzkekAF/W0NNO56QK4rWYcmAXtAxB/dU3wEe0B8JBdYyAt7QE3gPP3NE3tA9jB/aUwVe0CQw4iOESF7QDzYWYtaJXtAhjAxKMQze0BujHUkkD57QE/zDusKQXtAohz58uhDe0DIYwQjREl7QFYZiYieTntADIfMDSWVe0C8dvgo2NB7QJtCcamS4HtA+Oovw7/ge0CnKncL/+N7QJ6K/aGx8HtAqLWSKoz1e0CyLtWUeAB8QCV0zz6vAHxAXhsY5tIAfECT980O2gF8QHXBxaTyAXxAfk0DGWEEfEAauySqmQV8QOBfoJDPEXxAnkVWB81BfECBhz6+50x8QJ6OPr4fUHxAFgRYalZTfED6N1CCf1V8QPQPza8aXnxAkuaijHNjfEAkkIfrCnN8QM3xSMMtjHxAbSY/JFWgfEA0Hj66KaR8QEihosH7pHxAbUElBcCyfEAKaJW0EsB8QGDOXmJmxHxARvN0Rs3VfEDhrxxovOB8QCA4KfdX4nxAqEQtEBTyfECA3DSJVPJ8QCQWmgFy8nxAOxEIrQACfUCyNiBySwJ9QNJvzoD/A31AFhfaVwkMfUDIavZ+AhJ9QKV8OoBGEn1AMqb65ToefUBhW8QePSJ9QDqbqNJuJH1Axpf1aYM9fUAyDuK8/Wt9QHajMQ7gbX1AZfQV4SFzfUDAH7/Fp3N9QEjj8dkEdH1Aqr8cOHh4fUC42LoEFKR9QJieVye6qn1AzCuyRyO7fUAeh3bpJ8N9QN7tSMEpxH1AdKQn7ufEfUDF1qulNMx9QDSC16dx031AOL/IPVLafUCXO4EnPuB9QF6184Op431AIDQCdZH1fUBmgbcD7/99QD4qCWUzAH5AlCXAvq8QfkAMNU8XpB1+QLBQ4Zr+In5Aeat4+FU7fkDMTLG6NlR+QF4yqeRUWn5A6zjiUNBwfkB+vfg6CIJ+QDhS5iWfg35Aoq2e4aeLfkCRJ2jI25B+QCDn4d+YlH5AeqrBVfKZfkDF+l61mpt+QOJskvdMn35ACAvwHmqgfkCUL761bqt+QIY9aO71rn5AxlRu3Q+yfkDGxgnkTrR+QO7zHjWpuX5ANiUftQG/fkA6NaR1X8B+QN+IyFwiwn5AATvkhGPDfkD0CJTatsR+QCbpppvRxH5A+Gaw6arUfkCy0jpQBOR+QMDwDCyr5H5AgOp64AbofkB06jq+Cux+QIyz7VEJ8H5AWy7S+6j5fkDQEAMY//5+QCy9Y7azAH9Atmolc2AEf0CgacIy9xN/QA4V0Zn9G39AZMVo8F8gf0DSTh0WGCJ/QDAa+AEiNH9AIF4R6KY5f0CKIO18uFx/QDEozZdmYn9AIqGN7r1kf0DwNr5c63B/QBwJa1O4cX9A1P3vqbKBf0D2rSt75Y9/QJlQKrhikX9ABDgzNeqUf0DyvaUznJ5/QBxGL6MKoH9AmiYbfl2hf0DdFphVx6R/QOeoLdpXsX9ALHBrvKHOf0BOh2Qfr9t/QPw7ogL74H9AThL1Jj/2f0DGnTVXbQ6AQOySq+sjEYBATHDK9MgRgEC2lRYbRxSAQHjX9fQPGoBAUIRZyWsigEAPpeG/cCaAQNAgaKXzKYBAiLS97H0ygEBZfLzKqEKAQO6JAsX0SIBAqG28l+ZQgEAPWQt+FFGAQDioHvIDVIBAcI57XgVWgEAUMZA2BliAQITEhSAmWIBAxH1+bQ1ZgEALawbUBFqAQKAf/7IxWoBABprXjzhegEBBZEZbKW+AQPjGlpNccIBAF8zLFxVygEDYKXlsK3OAQO6pw2LDdIBAEHJ3E3B3gECJrJIqg3mAQDKT9NQCfIBA2tPj1Cd/gEDa1GVz54aAQJhwQUr/joBAYFfMSB+PgEAhPCPGZZCAQGBxWx1IloBAREBz9R6XgEBY00AWxpmAQGAXyo/bmYBA/6FMmcmdgEC1I8fDGZ+AQBz64esGpIBArDIWZsukgECyWe4whqmAQIGEwGdArIBACDxp+NytgECmF29JXK6AQEovvC/yroBA2jozKxOvgEDanz+vk7KAQMsxFaMOt4BABChRyoC5gECh/KXavbyAQHz8uLI4voBAUW6riFLBgEAVIw7AnMKAQFSxVi0ZxIBAgMFriK7HgEARSSfOa8iAQLi5tTVTyYBAXZ6C3AbPgECqIaRoTNGAQLh1NWDa0YBAym+cqQTYgEC2z8XLSdmAQJym1eIH3oBAjkFv0kPhgEDIaS06DeKAQCDKW0w/5oBAoMmzjUvvgEAW8LXVOvOAQFoQko4//4BAwgEGJrcAgUBUpzXVQAeBQBZKBUY+D4FAOOr/RQoXgUCpTYnlqhqBQBYOnFPAGoFAtsi+1jgdgUDuIFdvNB+BQAxTqz01J4FAKSV9oC0vgUBnSmlouC+BQFB7xkG9MYFAKGyESzs3gUD4V7QuJjiBQPA9hr4mOYFAHyECHSk/gUDyypimf0CBQHIhMrr2RoFA7jG9YStHgUAmyv0Q+EmBQFTrZ06yZoFAsGjRFKBngUC8u6gKtGqBQDIHvZFIboFAllzLAQNvgUAUDxs6g3iBQFskrWVff4FAMNvK/g6HgUDR8fuUVY+BQCiKfyhVl4FA9YRauFOfgUAOiUPX6KGBQEE+qhnfooFAg2HnEm2ogUAw59on5aqBQN1B1gpLr4FA6mXAkw6wgUAkX89FEbSBQBMLdMMCtoFACvGst0u3gUAiZ1y3lr6BQALQeNR904FA/K/bV0fagUDWU68pz9yBQCogfqKK6IFAh5LaacfvgUDWeVqWdPKBQNj7T9Ud9YFA0mkQjgL2gUAGnW3+zveBQEDEvm0BCYJARZoRBVwPgkAQWYKGtBKCQOihfuTXGIJANqu5+24ggkDFQ+Qg1yCCQDKKr5UJIoJAKrlPJNUigkBAzG1m0iiCQOa1ftTvKoJAN2CGunIwgkDAQH6fpDCCQKS8WI7PMIJAWXIqCtQ2gkC0YuopeziCQArvXLlqQIJAI5tQ2QlCgkCuWyCUPE2CQGm8T7auTYJA3/oBiBVOgkCrJ/KLpk+CQG/8VI2MVoJACKZj1tVagkDn8e2FblyCQIcUjljaZoJAOhSgGaBngkC8KEDEbmiCQHZw/RbgeoJAfAQ0bmuAgkC78bzUiYKCQFfDg3ZDiYJAWobs8UKRgkApLu94T5OCQNjBePdclIJACqbAETyZgkBfKlTiDqGCQPS5fzY+oYJAwBhmg92hgkDQE7QI4aWCQFNNox5wpoJAjDqHIQ6pgkAXta28NKmCQJ49VfXjqYJADDqg9FKwgkAcF5OwB7GCQFD/6oN+2oJABIuni7zdgkCmDxJr1uKCQClqyRau+YJAMstHmxUDg0ByKVrvGwuDQPlv2LJ5EYNAkGqPzHkZg0CsnZJ/lxqDQBmmQ9JyIYNAQoskfXIpg0Av9R96ajGDQMaVkY8jOoNA3Ri1tN46g0D8tXPS5UKDQOogsRGQRINAtF2Jpe9Eg0A9qzd71lWDQA69U1xkXoNALyw1LWhig0BSpzxFCGqDQNdTFToLboNAFsPZ/gByg0AeohCaFHKDQPTyckh/f4NAXvk29AuDg0DaQQIVRYqDQPLlIGLzjINAfdE5x7+og0BX7QYwVqqDQDCyjtCFuINAFCv4/tS6g0B/ESv2Rb2DQBvZKNjvv4NAji7UUtvCg0BAczB9J+qDQLHoseSU+INAUYDa2Dz6g0CW5nJaqP+DQJQFcVpSAoRAgKKGncs/hEBsAYPGc0KEQM4b3IcLQ4RAoFwxSBJLhEAyLZi5LFOEQLTpvhYAaYRANJNYWuVqhEDQHcgFJmuEQLJUf+rnboRAto/uSgBxhEAL9LvD6nKEQGpQWBbudoRAUeCcQsl3hED0Tu+e9XiEQPrkS2l7eoRArKFYlPB6hEDakJs6JH2EQEakFPurlIRA2maukFOVhEDIwqOtEsSEQKoHlARq2YRAxEanP2rhhEB4CCW0QOOEQKueidpi6YRA1DHl2EfrhECwK8wdNvGEQGQU5Rti8YRAIo1CbkzzhEA6yEgJN/mEQHaCdNU7/IRAfpDsSSoBhUDxyQmdexeFQMKcUYOgYYVA6olWC6BphUCUmSLomXGFQAy7dSG1c4VAiBi6Ppp5hUCw5BNdkYGFQA/Rly1RlYVAlAzHBP6XhUCre+ocq5qFQNi0FWYxwIVAmpVpN0nFhUC1JKh59MeFQH4QGIGT7YVAGqXNwT/whUAJh6T9h/KFQIBRv0js8oVAapSs1pn1hUDOM9iAQ/iFQAShCObv+oVA04XR1dEehkCiHWjBZjWGQABxi9HAOoZAbDKzmoyGhkB+ueGkj4qGQChhLRMouYZAxFjKRr/khkDc7uojmPKGQDwMMTwz/4ZArNnhjzYDh0C2I6zlkCmHQH+TVhSSMYdAFySpUI05h0B1m/q1i0GHQDORxy44Z4dA89i5jjprh0DWNmCvP2+HQJ+fNijIsYdA1SPOisa5h0Cw8tGswMGHQJyxt1zCyYdAtNmIFIPuh0CigSe7h/KHQJpXEIQ09IdAUg0EAly2iEAKpZQixPOIQA== + NrgMGZxjYkCJy7y2HKVqQEMdzoN8QnFA525gjBHDckAGJGxXInN5QKp1/l+383pAKC1uiKXjfkBoG6PrMoKBQJNFJe5++oJA - + - LK+1RI0rvEWsHtRE3EuzREHmhkV2ItdGIzrkRHPivUQT9UZFkzvARetc0UQTtlxFSDLhRJVIEEWWGJlEA84xRVhp30TFES5FJRb2Rp4CakZ4DFNFQaGhRP2TFEUW3idGW54dRahOrESg46RFvwrfRBsulERY+b1EBdQKRZTIAUU2AZhEjTODRBtXGkamFqBE4anFRN0VUUWWkClFfwSIRd1txUSODo1EhALaRNk670R5fgRGWeoARerq3kRuPwFHEouTRIdbtURIvX9EyhGlRBSOxUT4DA5FcolOSGANVUYBJBdFENYURWMLmERqRwlGZFf8RH+LikbR1Z5EHL0SRgw3Ukeoy4BEJXJ/RJdhL0bC5oREy8+BR2y/4US8VJZEox2CRMFF1EUzFrhEpeHZRN+h5kQ1R59FY32eRa6tlkfsrnZEtepYRRkRBEXaO85Ek6k0Rto7y0XI3LFFYgG4RATC1USIfJlFG6iDRE9EGUXdhn5Eo+D6RYCWikQ7PHxFpUdBRVVwl0QQT95FBorQROrV10XbPXpEojlXRQgpW0UmhuFEFua8RMuRuEQHYbJEStawRPUkj0TIcPVFFnslRcbVqER4eoFE/Yu1REQekUT/p9lFF7x9RLgvfETufn9Eg1FvREO2MEb5FHtE4W4KRTagtURo9WFGldKiR+bSrUR6fXJF3zkkRctWAUfOHpJFlSMDRSiN/EVLEqxFV/DZRDrniEUNAbtEKKtBRwOPykRZI7VExYJ5REaQikTjrkhFi9zsRUKmpkXa2JhE+busRSN4dEVfFs5E8MdLRRjGukSsnwBFroPpRAo+lkRJaOBEwCuZRB97qkRhARNFD1EfRUF1n0T4cwVI/mTSRZ1zxkQlQRJFsFqARAKpcURDCalGs+6TRczANkW7h3lFy3CeRHKsnUQ9QDNGuvwHRTv3l0UITX5EqzWxRUsomkQ4Od5EQ08BRek3ukQJictE+/CkRHcyFUXVIn1E+jkZRT63mkSpeLlE2mSIRD3uOEWdZZ1E8AiJRmImiETz2AlF9T5WRcQFyEQIL45H6gXwRVPF9ETn5pVE30goRtX3DkVoTIBF5+zARIBeVEQQnKFFkr88RUQtvUS/b5dEYBcRRRlnrUXL8oxEto05Rz9wcEXbaoRF0fU2RSNoLEXxbNJEUW3eRpqqk0ZBxwtGwyuiREhp6UTpUKFFsUo6RcEAa0XN0adEFw2/ROH8n0QinHNEwMMlRWrdzESDAIdELCAORiF9BkX4s6xE36+1RHKbrEQ1RW1EQdWDRQ2p7kR7dyBFmmdYRYUqxUQas0JF0IgxRe+shESYR9JENY+TRJMNJEVdv81EqfBiRXq2CUbjlIBFTrC1RqQtG0U9eQdFaWzmRROQQkUn6GZFIxZvRQXRs0T122pF+/HdRh7GzUZBQd5Gb6+ZRIsWl0WKk7FEFLyoRZPKFkX6sFNGuI6VRQnmKkXoK1FFqYKtRJTw60SLZDZFWJi/RKoKCEUI7/JEXJjPRNsYJEXuda1FQVuWRKk+lEQFABlF9I0RRdd6eUS/G+pE2NXBRFrsNUWClo9EQd+xRAh730ScwdREA0NdRZ1kh0Q5TJFGjSd4RRbCnkR5fJxEpx96RSQVgkQMdZ5Eq3EISLY7FkV3VYdECe+BRqFkzEY+Q5tFQZxBRnryEEUS1r1Ej9wgRSpunEQVnDxFnM+IRB0dw0TQy8FEMtyeRBeayEQNg41EdlekRMNgNEbtEy1FNSMZRd0TckRoyJlEkZSgRP6fwUQj2yZFXeVARQ3p2UXdfsdEwheXRIITREd5pOVEavmKRQM7r0WkyDlGDVSIRJxCoEXT3JVEr2bPRKIkX0UMYyhGE4agREbhmkWa85xFOqiKRaj4x0T1Dc1GSywHRXjr6ERi6uNEzKNaRUqwh0VTcDRFsWleSchtV0UnzONEz3M4RfOR+UQtxgxFKSzMRBjZF0Wc37FEEbOpRC2GbEhE0PhE3p/BRgsnmEQ3y89EDjpBRQU2BEUY6bdEqtyrRIvJ+EUGDQNFZ3m0RCReBkUx7fFEUM2HRBdAnESq3oJFhsQXRuIkJkWJnAxFC1XrRC6YAEbYLWhFlDPuRBjWuETyl4dE3eGmRUQ4kETzb19FpDzgRE7wxkVbxRFFUZs7RYom00SnPphEB9ynREYIBEXfOCFHOc8ZRi7nA0gykEZHNnBCRT2DzUVcGVRGp13gR2f9WkVI73xE+BX7RkmVLUXWUZFEI3BtRUQcp0V6PjNFe3apRLlhNUWZVylFcvyPReTj1kSsabZE44npROT/8kT2XX5EdS8hRTYQDUXd84REll0bRpewekRGn0FF7jqXRJrKMkgGS4FEgrjdR8LxEkdhEBBGuVCqRL2dnEQv5F1FwO/ARQcvw0TYPnFFShCmRhI/8kQb5AZFjhTlRHJtDkbLFAVFBuOlROPGpkW1v4hFnlBoRWO+FUW0sS9FRYKKRLqamUQ5pplEY8iQRNZPoETDPTZFW++LREGH50ScXINEt8MQRZF8sEQ/+xNFuZaNRKSVgUXKBsJH8xAbRTp0wUZ440lFQ8vPRBCjgUayrClGMCKLRdP0mUTrYTZFIbbRRLnjx0ThxIxEegbsRKmEOEXD3LVE6209RbGKE0Ul3/xEV8LKRAkDHUWJjjZFFRuSROGkp0T9GM1E115iRRD1qkSPGK9E++IYRa9evkScXINEZqUmRZk4mUQcZq5EsiJ+RCOJikXLOmRF5zSHRL9Wf0QVVZxEI2eFRInIe0ThSRtGi4B9RXd0lkQw9gdGliN8RXIhoEQPcRpFQsqFRcGgs0QHMOdGLgCjRMgBgkbfXBRGIm9SRe57WkXMNIlE5B/XRJgFaERIwn5Ele2vRCm6WEblIohESuhqRr+MmEVw1VhFXMqrRARLkETPS65EEZaaRFvIRUUoSkFFdqShRW8uhERFyghFy6upROyBDkbHtilFwu+FRRctjESuP0RFvvuoRI4RxkR3QxhGZzaERMGSnkS8JtZEqjghRbdjnUVLuc5ElyemRL3zvkR8lqtEWIqERC0wh0T2CMJEsO32RNXjgUQWBehEs9EiRRnSrkS+9G9EBrCRRH4vg0WinsdEKrkcRSvdT0YXyVxFVJTpREtCs0QVqDBFb8SkReS1kEQ7kp5Fr/7fROM6IEXNDaVEEbbrRQvZCkVaGgFGgpAHRb07qETcuI9EsMgpRTXEhES65WZFiRlORoWC0kQp3dtEYMMERQuqrEQ19ZZENRDQREQMyURkQthEw7SXRFrI/0SNgIFE8nC2RLTcqUQgsIxEISUsRpadOUW7aZZEH/aiREE3nETJXpZEAaGISJeIrkQdCrNEOf2URLDc1UQUy95H5LGJRPG2hUehc5VEfcoPRe2RWUYD0pREDOSXRYFT70SAd8tEqZgARbgHxUTR6oRGRVSZROGBo0Xfbq1Fi2/SRJ6ai0SKPtZEBjKCRNXYFkfjPBFGwykRRbySkESw3/ZEKiWORAmcX0SbMt1EqV0dRv+r/UT1SIdE3ly+RJyNj0QM+qxEoKiERLcJ10TS8KZEHI4ZRREQ60QCAatEqxiTRL6wDkY/8QxFiDD7RDDpqkT4M+BFcGoNRf24p0T0UUJGwGkyRcumxUT2IpNEEAZMRcxyoUTYrAtFO7qSROncjUT+QIJEUZqnRfgfhEUylgpFMLLGRCR/qkS9dYhEjyp5RA3VL0XkYSpGZZ6NRBLUiUWSpX1E5CfORDQuZUV28M1EAilBRnmkwESWbpdEj73XRHUmlETc0iZFb3QQRYw7yERtdYdEvXelRGgQ2kSVuZdEbj+SRIdCGUVn5+5EZTHRRMwL3UQb7slEIixBRfXaykQIWr5HgVMQR29tkUQlAItEmOnCRgTMsUWw/81FpHwcRvoLc0UoOZNExHcZRW8eIEUarc1EuczWRPVLzETCGulEiH4DRSC9BEXlHptEs6lzRqMse0XEi+pHAZ1gR21yoERVxAJHvzblRQq2AEXENJdEvx/BRRHWpEQAiJ5E/rKRRDitj0SafjxFs/goRfi0u0Zj+UxGTopnRIrhOEVp3YZEmMHORAApkER9BfFE8A2yRBTK+0R24I5Ev9jMRdx8rUSyhJ1EVhwQRbYZgUSBFK5EPMeaRGuuREXaQlNFtcwMRThLGEUxYXNHA9ZhRsGoY0WsfapFTd4VSbhUFUVB29lIoH0vRTJUK0jcwhNHo4BoRTwGf0RopcBEATwORiutLkUPX5xEe7MbRVLy8ERmbQ9H+SxtRqa8SEd0GypGpGpPRhOkMkVl9WdFNhEyRRoMCEV/nZBEL4HARMgbi0Qp0QRHeSFgRmiDR0Z7oH9EDiVgRTuNnUQzaw9F6tJyRUyU2UQ6fAVFUojjRLIUAUWfrkRHLCVRR03co0SkEAhHKL43RrskvEXA1O1ELGGsRJkt1UTR0blESMPYRX9jkkWV56VE1u2YRM5kp0QR7pJFX+uuRbEUKUZnSLlFpNNHRZtqy0TqRXdF24gcRRWdoUSb9QpGlUmmRarNakVAjctEu7pPRbLltEQtZ6FEFZaSRAS210Q= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - i+wYlijBckDIknV9QsFyQDIarrNvwXJAAbFHEebCckB5bpznOsNyQKqLlO/FxHJATNbzWVnFckDI1j2vDdJyQFpsKzZD0nJA8GgmlWfSckBfN7ZzpNJyQFLt/41k1HJAHzPCKs3fckBSCdsTUuJyQPKP8xCR4nJAEt3EFyTjckD+RH06UfFyQNAW4rzK8XJA6HT2lk/yckBkILZNofRyQEIbg1fD/3JA0VT9xv8Ac0BE1ETFOgJzQPIH3nXPAnNAumh3bvoDc0Bs7mUU/RFzQJCXeTonEnNA8piZXb0Sc0CcVXKWBBRzQHlZzn13H3NA7LKw2zkhc0Co8+1FZCFzQI41Rad7InNA+Bm5Cssic0AD8AXYziRzQBK4eZQhMHNAVgLY1Qszc0DQ+R6fNDRzQJKxpBS4P3NA6j2XG+VAc0DBAwMoeEFzQCJPv7W5QnNArZxAX+9Cc0DeGplpekRzQHSaIrkWUHNAiqvB83NQc0D0tGj/FFFzQDnm0ZScUXNACshr+0NTc0B3WEHyolNzQIx1QrJ3VHNAiNDeX4lUc0CI3WiuaV9zQPn+FsX7X3NAsAz/kotgc0AKFiYFOWNzQA9/ruaNY3NA54Lgrs5jc0BXYMwyrXBzQACs8tzlcHNAPSX/T1Zxc0CZMIA2T3VzQKD4ACp5gHNApBz3ZaOAc0Bzc+mFx4BzQDSNgSfhgHNA0HM0IF2Cc0B0dzl/h5BzQOa8hKawkHNAoZ67dCWRc0DES35Bw5FzQKSl7+FMknNANuD+UWKUc0DJJLwz95RzQMJbbr+HoHNABmax4rigc0AY75cb5KBzQIxU//RZonNAgK5LUyOjc0CqcTloBaVzQMraXQvKsHNApsqKS9Wwc0A5dZWjfrFzQL8BCVRZsnNA4s5EVXuyc0CAcqH8tbNzQMQ8xV4NtHNAmpNcO/LAc0A6WriPfMFzQEwFVaE5wnNAE+0SIOTCc0BS6Uv6JcNzQD1DId3synNA5DQiLyXLc0CnWH+w2tBzQBfDK2Zx0XNAtBO01oPRc0DWTIjJ2NFzQHaVE9KP0nNAmEKwtd7Sc0B8trNMA9NzQPKnTeD203NAggOeq+LUc0CMGGQ5OuFzQNrKjfJV4XNAjLZowA/jc0C+B71qi/RzQNxfmcN3AXRAGtO56nICdEBK5NgHuwJ0QM7/Pps9EHRAhlBQPboRdEB8Ias+TRN0QCInv7X5H3RAvO2HjEkgdECSEkvnuCF0QPD/BbmwInRAXPUHYVQwdEBxiVn1RDF0QMc/6gKmP3RA7iOEHeI/dEBIO49GEUB0QIilvD9gQHRAoscsATtDdEAkCgzaGkt0QGg9heECUHRA/SMWQbhQdEDu6OQL0VF0QMVRfZkhU3RAcpvcaIxVdED087HIOlt0QGiCQf4gXXRAbBRuxH1gdEDDXYbutmB0QGToIz8KYnRAik4UzXpidEC+20P+JmN0QP4M8URCY3RANjvNKk5kdEA4XLSjxGd0QIjZANrUZ3RACRVXoCBtdEDlrKQFJHB0QLPrQlx/cHRAQModsPhwdEBy+r35EHF0QF5kfPpAcXRAZKzzgXpydED+QgHGOnN0QI730o82dXRA7JnBZfeAdECah1hLToF0QC4NctMWkHRAz5N8Yk+RdEC5TP9LVJN0QGC/cnjun3RAxHFIz+CgdED4ByOuN6F0QE7IK35LoXRAyU9V6HqidEB0turXt6J0QHxT0PgPo3RAPp9llQqwdEAwrV1XxbB0QHSTGkIAsXRAHBnktzuxdEBYtIneO7J0QJl0oVv7snRAvgBFn3C4dECm68Uau790QOL9lKDrv3RAjqRjKPvAdEA1ff7ITsN0QKd1H1B5xHRAUu3xebjEdEDLt7mm/c50QFXuZXup0XRAWb77pFDTdEDwQznJ39N0QHUDELdW23RA/GK6QajhdEBC7Oof++J0QNYaQU9y43RAJBdeUpDjdEDMljflT+V0QPuUhD6c8XRA/GtOU7LxdED6XAmzjfN0QMCWR8fU/3RAASiblT0AdUDqyY7vzAB1QJbHzP2ZAXVA8r2VccwBdUBc4LKYXQJ1QMGateiaA3VA7E/42CIQdUCAgqMFOhB1QNai2SrCEXVAKARKxSMUdUBD818gOiB1QHtVgWHPIXVAC3+hfJ0idUCTxi5RxzF1QDSJ2/GrMnVANNIy/Ms1dUA0BLqb7jd1QHX4or4mQHVADEPKR1JAdUDC/79qdUB1QCToQ4i3QHVAB4lfF35CdUCPjtSY3UJ1QIZ8jZHXR3VAgiezpfJPdUDZtaIcJVB1QPbX80s7UHVAShem4npQdUD6R5Cxc1F1QLWOrvBzVXVA/rXWqQtgdUCaMSOkZmB1QNKYmgaTYHVAmpYsJTZhdUCK3fdxSXB1QKKasmRkcHVAI4zGGYBwdUD9I2yZKHJ1QKDoT6h1cnVA3nlcb4ZzdUDSpl6LjXR1QK4c0kaNe3VAMXooMpiAdUBoa8cSeYF1QMt8+tatgXVAVBhtHqWDdUBq2HCbm4R1QNDDCIKJkHVAkBc6FyebdUB6xIjy+KJ1QLFsoS3vv3VA+H//HlrCdUD4ggEgaNF1QGLlYbhl0nVA8t0irXXhdUCITUJCCeJ1QJQql1Ww4nVA7kD6DqjjdUBQRhZ8afF1QHnytG+R/3VAcTHThL3/dUBHWqm2UAF2QA3GZ/tGAnZAvLb9FNEDdkDH4DBmsQ92QN6TILh0EXZAfodNfjsSdkCdiuHzDBZ2QFJggUtHFnZA9GLQan8ZdkAIdoTo/SB2QK5S3tCIInZA/Enhj5AkdkDsq6vESit2QFFCGRwfMXZA+8iqwycydkC203XOUzN2QOAGBE+aNHZATyDBtU5AdkDwXmwJo0B2QEKYkrnbQHZAQrKOqxxBdkA0Zj0fNEJ2QOKky+LIQnZAcgoNynlEdkDSqe1LxVB2QO1WZJP9UHZACMU1qM1UdkAWsPvZj2B2QM0FFEK7YHZARCSMkfpgdkDA2jq/2WR2QJkpDjyKcHZA4qOO/K9wdkAM7aq67XB2QKZdbGqdf3ZAYJS4ENN/dkDUhrBLg4B2QFEqlnitgHZAhsGCJMKAdkDD/22X6oB2QHqM1ouSg3ZAHoegPPqEdkB7tBe9oJB2QGL3BJv1kXZAolNRxOqddkD1tw47lZ92QCtJN7G1sHZAp60GTiOxdkA50LokwbJ2QBT+n+MNtHZAGJODhlLBdkByOVyvfMF2QIYFJULOznZAksQxhW/RdkDgUEor8+F2QBL/b3+38nZAjxRyKgvzdkAo4/pUI/N2QGabATKR83ZAsx36GkwAd0Be8WXDABJ3QHI+t9K8H3dAiN9c1U8gd0A+WEdQkSB3QPZ/WV62IXdAsC2AJBAid0DIO0cFwC93QEy5PJejM3dAGoK8Kg01d0Bg8brDdj13QPrvhzP8P3dA8JQYBc5Ad0AW1HmYnEF3QJrwg9IaRXdANoEcFEpRd0AvZKrCkVF3QGe51mY6X3dAF3ZTqEVhd0DRfK8Jj2F3QOAQ2YYnb3dA3GU1/8hxd0BmYplNkHR3QA7JJFYad3dArIVKghaRd0BcSpew+qB3QNa08WcVoXdAJ6JE5vqjd0B2Ogs7CrF3QNhMEXDo4HdAVIEZ9ljyd0AKqC1Q/f93QN4wFd9PAHhA+FX6J/YBeEC6iGBpkgN4QNL5EglOFXhAoMMcTD4geEDuCsj9ZyB4QKwmDXSAIHhAeqhGhW0ieEBXZ7aV0iN4QP/RVDU7MHhApDtzP14weEDYQxOmezJ4QN7UdQnRMnhAXoqWUy9AeEA+oGRHW0B4QMOmz+FKQXhAHDLcvexDeEC8eSnpEER4QFoKZZJ6RXhAXAcVD6ZReECEnVJyylF4QARw30+HVXhAEaWzmvpgeEDqpJiKOGF4QPLmYH9jYXhAmol437VheEA2sdCElGJ4QLVbfui9YnhAXL+cFvBneEDJebVQWHF4QGYOaAeec3hAvOxnVw50eEAyB/iQIHR4QKDTRtlQdHhA4qq9nGd0eEBy73yOi3R4QGhd37q7dHhALoo61850eEBiMcMs/nR4QEjv8EjFeHhAt02cdvd7eECE0c+IHn54QAKust9lgXhAdtOtX3WBeECMQXDGpIF4QCgGQoV+g3hAGjkTMKiDeEDzKnp+/oN4QCXsE/KZhHhAQmvdl5eReEAlMO6gqJR4QI1cDby6pHhAyecKB4qreEDFFGLiJq54QNYh3W2Ir3hAvijECGayeECaEYmdgLN4QNKESEGOt3hAfmy9MPbBeEDn14FcI8J4QDMoRqhyznhAoG9jIhvSeECkC8FRt9R4QM/fcpo64HhA3HKEwTfieEBCOtTFAvR4QIq3atqM9XhAJRA1yHoAeUAoNzEwFQR5QEytRcibBXlALatiMbIoeUCx2drv7i95QICoqEJ2MXlAwRRm29gyeUCkFNtQLDh5QH2z1suKQnlARg7no/xDeUD+XTC+mFJ5QCruGZvMVHlAQl6y+NZkeUC5UTS5BIR5QBJpQ0rAsnlAZA6bR6bBeUCg3OJ0QtR5QMZdNtzM1XlAZiqqAyPgeUD9ALfOUOR5QBIa3f+B8XlAQ48XhPcAekBOPSit/AN6QJQKYtn6BXpAz1DLXOYgekDwBzmxESF6QPePemUoI3pAYtSWXi8rekBK2aAu3jB6QGBIQz4HMXpAvP7MTh8zekAcoqW3DDV6QLdvu6clO3pAPpuwMN9AekCgJh71BEF6QIHP8XAnQXpArsH/WSdDekAmDLqdGkV6QKaVnSwJUXpAqaVclilVekAy/fmyIlx6QEzCW6QpZHpA7OGmBjdlekCqZ1mVHnl6QNBKMUCCeXpAKqCE491+ekBM9CkrpoF6QEp5tjLHg3pA2bsh8OahekDiqlFLP7V6QPyQXFsMtnpACmBwZR3GekD9Mre/gt56QHyCzmdl4XpATv4jVXnkekC+t9bhNu56QFzjr8cq8XpA+pINLmHxekDG1PlcfAR7QPpuM/bGC3tAukESLCkOe0BsabRWzBN7QAdyihNMFXtA/g4WlA0he0B2HajAWSV7QCoXHYKQPntANViwKRFBe0AkrwPY6EN7QJDftzhDSXtAYUJDoZtOe0DvCfLw9VN7QARcuFsilXtAf6TVLXjGe0D8z6FhlOB7QICpoY2/4HtARvAbgrLwe0DWd5RNl/F7QBwiJQaM9XtAaFzpyXoAfECu0j9d1QB8QCfPkUvZAXxApHCUOmYEfEDG3VyemQV8QF7/cTCcEXxAkG6z06cRfEASiAjd0BF8QBIIL4nDQHxAfi7Yv8xBfEBgi15J5Ux8QKUYnAgdUHxAOWr3+35VfEA+w0492GN8QL4We84ncXxAgDXbhQJzfEBTypPBLIx8QCqBdRQ7lHxAkaE1ijmcfEDsDEueJqR8QOJehsf3pHxAztOuNr6yfEAoQQX2EMB8QLio0+tmxHxAlv36UczTfEBWCwFMztV8QG/Nrt674HxAeoQ7wlfifEAADBf0GPJ8QPnLtihU8nxApCYXgnPyfECU5cuL/wF9QHDq2uNKAn1AkHQu1QAEfUC2v1SBUQR9QHITyMAHDH1AXxP94EUSfUAE4ZnjSjh9QNIBo4qMPX1AfLSvLGtRfUBIpxTx31J9QNB0Opz8a31AZTqzJiBzfUDSLpqnAIV9QOzMmrUjk31AIlk0nLuifUBmFs/LEqR9QOgkQassrX1A9YV7V2u+fUBQy2ZTM8N9QEx+wusrxH1Ak+Z/sufEfUCaIJxy1+J9QIz+lMeS9X1AVRxKK47+fUAidnb0MQB+QFH6exKlHX5AFkeV9/8ifkDQnMZSPC9+QFKMy9x2Tn5AXPcs2eFvfkBzfHfgJXJ+QGZ06I9rc35A4Mn2/mp3fkDcO+21oIN+QJx6ox2oi35A+aM8WZGTfkBCFVh2+5N+QE6EoHaYlH5AShUW6MyYfkC8RTtQqpl+QJYeHin1mX5A4UcaAXObfkDRe9EiT59+QMjcJEVqoH5AnlDeuqmgfkAA/RPAHq5+QE5ZaaOZrn5AnHCkhfWufkBw7TN7uLB+QOOjTXLxs35A1s3RYk+0fkAAhkwsp7l+QCoBO9jOvn5AWMoQcGLAfkBF2tcZZsN+QP5jhxDNxH5ArkJDrAHkfkDCu0pVB+h+QDb9JYq36H5AbpQ6PArsfkBmZsezEfB+QCQBL+wN9H5AVoI3vqf5fkD0zDRVB/9+QBSb64FfA39APJJaj2cTf0BmDa+y9xN/QLCFF4NfIH9ANCqzTuUhf0DGzIUP2TB/QPitdhObN39ACDVemv8+f0Dyl1pmt1x/QD3ctSGLXn9APJOht2Jif0BejgYnvWR/QPcfxOXFbH9AZh8oEOZwf0DMxfCRt3F/QIgRO6jhdH9AP7WJqWKRf0DHVdNxmpN/QJpEf6fxlX9AfOg6ug2gf0DGlJbpX6F/QOr+FWjIpH9A3mWKp1exf0AkjH0kseN/QOrHnzXND4BAFDA+uHkVgECmFt6bdRiAQMzUblEQGoBAKjAAq2sigECXuro5cSaAQPxRFAbpLoBAmrsRxiowgEAcLS5EDTGAQKMpTHapQoBAZJjKhu1IgEAehORbs0qAQEAAlgTmUIBADr8zORNRgEBIijpMB1SAQIxxsIgNVYBAClln2gZWgEBeuoBfJliAQD7zTJwOWYBALF7y4DFagEAoWzJwNV6AQIQoJlCpYIBA7joYcTVigEAo1Rxi62aAQBjLC3kgaIBAd6cNdhdpgEAhLjoHJ2+AQGRsLmsVcoBAfDPSgCtzgEDoMKaLwnSAQKZDqcy4doBApq3HhiV3gEDaSN3Oa3eAQEZSHe0of4BAZP4+sP2OgEBc0oLHHo+AQA6bVj5IloBAsNh06x2XgEA+PY1IwpmAQF4cAjPdnoBAWFM1mBufgEA1yCG+iKmAQDYoAtDcrYBAQ5wJkROvgECCViBHs6+AQBhucEgpsYBAeq/O1NyxgEB8AuwJm7qAQP5mOS9Ku4BABdi7xQW8gEDsnDWNwLyAQG7PIcd6vYBAISsa6fK+gECiOzZ0sb+AQFlMe3lSwYBAIjeUL53CgEDmQB2dfsaAQAoeR9ipx4BAkBFDgm3IgEDmmfI9U8mAQLXXWVHXyYBAarLXcrPPgECccvPiY9CAQO4AQBdM0YBALW+JSAXYgEBAnJIQStmAQH5VhUkH3oBAqQaE6AfggEC4uqNEROGAQBMBVaAI4oBAzv7Qr0TpgEAeTwsfPeqAQNhX0HdL74BA4rqfjz3zgECNHV7OkveAQAiqK4w//4BA9vEQAUAHgUCgek15PQ+BQPk7rMM/F4FAnGtSU4sagUDOTjFwqBqBQP6rVjmUG4FAYPSoLDgdgUBZeLKbNB+BQHBNpNOwH4FAllTmn+UfgUC2t6HohiCBQADNVWqHJYFA3MqMSjQngUAuITYPaCiBQExrrvcvL4FA8tmFOb4xgUD0o7rTlDKBQBN+SJEpP4FANi//F4FAgUA2k24UM0eBQCT7oh+vR4FARMTQVWhRgUAWuT6NsmaBQJCQ1DVVboFALsqG1TVxgUAl/kXWUn+BQIfUP4Vbf4FAq8jVdWyDgUDbMs/1VY+BQI6xYPhWl4FA0z7NSlOfgUDfZZON36KBQDz9lzJUpoFAYJPnvg6ngUCRjyl1baiBQG7C1rXmqoFAmssieEysgUBn3fwC8q2BQNZg8qsQroFA7L38nUqvgUDJTW8hELCBQNKosmISsoFALnpx+Uu3gUCj0QVVRr+BQMagsFrG74FANiNjB3TygUCGC8Z7I/WBQP98KYkA9oFA2hxo4AT6gUAOO+BqRv2BQCDaWX8CCYJAVhKHv7MSgkBMxp5H2BiCQN7n3bHXIIJAEm7z46EigkB1ENf31iKCQIXYFF4mI4JARGbUbM8ogkB3vqascjCCQO4Zbi6vP4JA30CGLGlAgkCSpE2e9EGCQLR7aO9zUIJAfiGDaDtdgkBMNahdo1+CQOG/QHPRZoJAerTp2XNogkDRq3OAFG+CQI4EOZzTdoJASKb71t96gkDie67dZX6CQDrfwl9DiYJAHFJ7mQeKgkAQ9Dl1446CQPhwgFJDkYJAGTKJHhqSgkAM49t6e5iCQLK9rP07mYJAtuEBpLudgkAFLCkAD6GCQKi7w0A7oYJAVk06ut2hgkAEDJvZ4aWCQLQtl2INqYJA3TKz0DSpgkCkmRHa4amCQAj1mpIIqoJAAse7WlGwgkAiLGWoSrKCQIvxl3xd1oJAuDEWGn7agkAyhFhe1uKCQPD/ADPe6oJAAlbPVXXygkBF9A6WUPiCQKe/62mv+YJAOLpALhUDg0CarYl/HAuDQChpB5R5EYNAHTEazUgZg0BNbeREehmDQIuEmh2TIINAno6EyHIhg0C8V0Y/iSGDQE0WXXNyKYNAGbuSG5Esg0DDoJdAazGDQD6ylkEfOoNAcKeql946g0Ax5PHj5UKDQLQYvHweUoNADsvCmWJeg0BYtHzTaGKDQARqCboHaoNAwz2GKwtug0AeQWdrEXKDQEckjzTlgYNAVhbkyQqDg0CwMWbRSoODQB7ixGlAioNAKtvWxr+og0C8FY931LqDQAmQRQFFvYNAIxbcpPC/g0ATG4ZT2sKDQGlfskbkyoNAeMre6Kb/g0BieQJxVAKEQFXbw0EEBYRAcHxEp4gYhECkUS9idUKEQCIvrIsLQ4RArDLTshJLhEAqCNynF1OEQHjF/zUAaYRAgE+iiqdqhECotM9j5WqEQLYvu+EIa4RAYFke7+duhEBuHi/a/HCEQL1oyZFDcoRAEDhJwupyhEAi+dwcIHOEQLxn4NTtdoRACgKasMl3hEAcwFocd3qEQKpLGpTweoRABFv1bfN+hEDJNMyhPoKEQC0D/DlUmoRAyJZO/GnZhEDA08UCaeGEQEaykqVA44RA6ibUQWLphEAqLdBqR+uEQMLlVcU18YRAFCFWN2HxhECfMSRASvOEQPoQkHE1+YRAB2HFmFn5hEC7bsBl4wqFQIUbClhGDYVAntltKz4ehUAXzaOMjSqFQDXOr3oUU4VAjGVppaBhhUAwBY3doGmFQOOlLVWYcYVA9pm+yLFzhUAk4HLilnmFQBdigkJRlYVAKFktlYa9hUByDFkbN8CFQACtsT3gwoVAIyq3kUbFhUBvk33m9seFQNoV3uSayoVAtheLypPthUCgw0L+P/CFQFz1WLrs8oVAbj+3EJn1hUAYPezcRfiFQOqhAgfy+oVACH1W4Ws1hkA6lYHUiYaGQCal5WaOioZAhB9vrr76hkA6xjfzMv+GQBIW/0rPAodAq+4TEzUDh0B+CxfokSmHQCjRSoWQMYdA1VsJJYs5h0CkJu7diEGHQBDPEpw1Z4dACKHkiTxrh0CveV5YyLGHQAcBEr3GuYdAmpj1zsDBh0AiKHReg+6HQLLKNSaF8odANKBz2on2h0AaXrVSe3WIQA== + 4jyZjTbDXEA2uAwZnGNiQOjivfH6omxA32Ik4HNicUA3+HxMI4J2QBoFnbUjg3hAN1ZZoHsTfEA= - + - D563RKI980QqcMdFRMk7RaYrMUUSHshEA8PbRIhuS0UOZ/xGm5eXRAyU30SzjINE2i7DREsEUUXLroxFpBneRINjjEVx195EiZ0xRWY+xERMW8dEPFSERD5jmUTm/DpFWdYUR+mKB0WGt4dElhWYRioMqkV0/MNEIyYRRsGamESO3BRF1DDBRLQ/vUXWMM9EyPy7RLfroEQOTQtFcWjGRFGiEkW/OJhEqpmmRGDGM0ZpRA9F9Wb3RC67iUWhjEBF7+2vRClLd0XHCL1EUgXZRDcGAUWLn1dFGwQTRhiaMEUZ7odE2S+wRLrunERNFQlHBNzIRHoOBkUoZHlI96uMRpS+9kSbFx1Fea/jRXlvxEaivwxFpg8tRsBfpEQPaE1HMvUYRRmfT0ZMg+FEiLqlR3kDl0UXHA1G/+m7RPHCLEWOPfNF9L7tRSXyu0cSRqRE3zivRCCxOEUVDj1FT/qBRPzgiEYjDLdEhGOJRmvs1USD4IdFBh2KRFwRe0S4bvNFPFmGRFYpRUXnnsxEsampRCV7vkUbxLREHhFMRQrnB0VLEcBEVEodRX16i0R7Ac9FisCURHYQq0T5L5FF07nIRd1EcEU0pKxE8P/WRIBrqkSxN+FEYNUBRVoO70SMUVlG3EhpRZvP00S/F6VE4AALRSM1XUbIz9xEAHkkRrdW0kSNGmVFbpMkRdpMj0bRHI9HuOr1RP7FlkXIADdFQvoFRzwJj0TuvbJFel7GRFeQu0UBJaBFd0afRabGzkV+v7NEytjvRMSchkRa3zpHZG0sRV/9vkQOI9ZEmbdWRcxG+kU636BFzb65Rc/7okRAP/BEu6iJRdhIyERR9bJENXiKRGFBEkUDE15FQ/gGRXmh60SNQUFFkMaURKge9UT8IA1Ft4PaRP3askTobZZE3B+JRBFLRUUCKLdEk9lFRVUDoUQXUCFIL1qKRq6M6kQsrpVF02n/Rg3kEkUibxFFZYaURWm/5EQwEpZG1I4jRWHP2kVLiJpE+L+KRfmJp0TdHMZEYAwERaaEdkUdUb9ELzkzRVlr4kTFrVlF4OnvRM62LkX4eZhEFLmIRnajjkRXWi5FQcc6RRTx/UR2W55HP/wNRgWuBUULi6dEZKouRpnkREWTgeNF1jtqRIbE4EVoYYRFxFn/RFmNq0QMtqpES9PfRZMBXkfuaUtF+JrpRNScqUS5+JBFgBItReA+hUUpEt5EQdr4RqSXTkZzog5GITh9RZLol0SYR/JF630PRfGFDUVl5wNFpdDURAkAlUQzUWVFwOaXRPhJOkaZsA1FfTcLRSfwpkR6j5FESiKMRFm2okRPy5dFIs9eRS1wREVHeBpFQoEeRYiuNUWkGRpF2l6iRO7MuUT7nB1FyTuuRPEIHEVtgaZF6lYURjr2sUWxH5tG7thnRR8G2kQfVK5E2bsSRspaMEUTnYlEIu6cRVh5z0SZd4pFnGJiRZqMkERaGA1HqluGRte0CkcM0N1E/pK+RZsbK0WA9RxFnpuQRvksv0ViQTBFJEVxRV3X1kS99PREeLiwRBBb2kR+yahE5xiYRIw++0TAnQ5FjEvjREjz1EQgTrZEnnAhReVnDEW2hmhFE/m6RMglW0Vcg0xFkDaTRcpj+ER3F1lFLJmQRBhMvkRgb1pFEYvHRCEdkUZu9F1Fmvy2RENNzkQGD+dExVWCRaQFhkQdog1FBpj9R/jbnUTfsiFFKjIARdhbj0b127lGSNeTRdEPbUYzB65ERU7DRCgLM0Vumg9FE60IRTQwt0Q62KlE4EpURtE4v0Q9ESdF8vU9RaAc8EQSkJ1EzE/ARPTZSkVtyBtFd7sbRRhkp0VAVYxEqldlR6HpREURr6NEgtmURd5FkETeqPtF0CIlRkNKgUTPJsRENSuYRWyQwESgIqREs+L5RD5ZUEUDFmlGk9AGRo7EvUXk8T1FM2v+RANqE0fLjqZFZrV9RUf+tERIS4hEXRzXRJf4DkbM0OdExIDgRDRd2kRJ6JBF9bCoRdHZYUlEgIxFcH4yRVf5BkWz92tFFHA8RVd9KEXIf6REQISYRJvqHUXLiORELI2oRChImUQGD3ZIDtQzRR0bnkZ2ZsZEwR2rRNbLC0WI4QlFx3erRDSQcERa+LRE1GUFRqON20RE7blEMG/hRLr+4kQ9ZplES7gSRaF5jkU72Q9GrremRAROl0SqB0ZFUrCtRQhvq0RQZh1FR36ERKH0y0Sw6qJEVeneRH4v3ERufaRFu0jeRByfGUWDsHdFqeNDRadJ5UW+ySRFK67kROhEsUQh5slEJUoVRY44A0Ugr+FErudSR4VHZUarQRpIHNhbR37sJUWSiP1Fo2xmRq/640eNsYlFGLg1RRp5uUS+abJE55CbRH/I4EasGttEvVFmRWRPTEUyKLtET+H2RH824EQScs1FNHsdRe+3PUVsPr9Ed1MEReBQZkXcYcdFfE66RIu8nER8CehEzD67RHtgAEWAnQVFHDylRIKUmEVmuFpFkbi0RAY/A0V4Vg5GMPQERYeMC0UgbURIayusRDn9FUgY7EdHF5I2Ri/CJ0WAALhEpruPRO8ShEVhh+lFq96kRezKiUVa96NGDaMFRZPuikQNyEBG1ZbtRP6c4kVU7nVEriiARGIiv0XQ7LtE/apXRbJ5kUQpTsRELLyPRJ4bt0Rmq99EWQ/GREJiVEW3gKFENm+QRCHQN0XeNqZEqiagRHJ53kS+QlZF74kGRUYnykSaaMhFc/XJRw9VDkUMD71GCCSCRXcu7ERICKBGsp8BRnvYmEQ5YrNF5F0QRd/ryERaDtREJUedRMK9lETXPoNFymO8RXVqq0S997pEeWKcRCh3JEVLp5tEsT/wRJs/oEQMQVpFBrKTRaNqykRJ/BlFblHSRIaz8ERTGupFfbLZRGPOl0QLn/REFyqORN53qUTrD7BE3pqJRMaFQUYWP4NFP+e7RK63rURpYf9FayBbRWVQy0T3DrdF0LShRG1U5kQsgmlF3ZipRDCMt0RwS7ZEQXwBR0TUuEQrup5Es++yRkBIxUXQbIRExqzpRHkCqUQveahERP+SRmHAgUbrsrVED9VARv9Bz0RPhaJE9ktRRQ+Mw0QPI5REs1uRRBx6W0VLB7xFfV3NRI9hwkQMzrlE2nUlRbyH+EV5Y5dED1X4RDun4EV+p6BEnyerRDZ1n0X4ho9EyHguRh7SqUSdcLBE2320RLNYY0W+8RdFiEBBRX770kR4G6BEbo+gRF/thETiSrVEmE6kRR8TtURxa6tE4CjuRAA8iURCwYxFOhaZROpalUSdjS9FpUpqRtiorUS1Dp9Ei91RRRV/qEV1Qp5FSdHARVI420S4fJ1EDI6MRA3OoESQr61E6s3HRPmbQkWv0QlG74SZRTIi/0U5i7JEBjCoRIofpkTj4SRF83IbRb9Gg0ZHMM5EXIQoRYanAEXCrPNEX5VQRZhSpkTvBO9EAgkyRgNRG0U0vAZFe4qqREWP3ERfFDhFf+XaRPRMXEUvMmJFsG7URJn8t0RFaYpIiBLgRCWomkR2HxpFNGsARY+d3kf5mUVFfBiVROTd/ESZ63xHrWfkRGhZWUYQEqhEOyusRMW5nkVJgz5F5FTJRDiVkERaYjtFxDg4RaIXrkSSW5JGfIaMRR/MtUXF18VElLUQRcpV8ER0xqRE13bYRBVQOUdsxqBE9uOeROn6uEQrh4xE7JDYRXC5okS3WSZFj0ShRMc+ikSwEjdGbHNORZX1kEQc0p9E5t+hRLXOj0QpJJFEZPucROd4p0Skwa5EcFKJREdeKEbOZQtF3r2uRDvu2UVUbo9EqS2qROmBJ0VpC6xECwuQRBXnuESdg6hE+P1vRvwY+ERjxDpF9v11RXikpETyw6xFMo2kRd972US1JvtEHK4CRWark0Ta6LtEWk7vROvhQEboH3RFMdaPRONXtUT9uqVEWX0XRe5IWkaJMYdELShXRYD9CEXym+BEGOSiRFUOt0SZ9ARF1s3+RIn6lkRdkQlFqNEpRTSYnETRA9JHiAXURFYTpkTKJyJHpXyWRDWU90SnlshG69+sRD5NrkU6Jc5FtI4RRjPGgUXXSytFMic2RXGtp0TYKI9EkpsaRaFbkET6+qlEIuXoRPtJi0U77KJE8m/cRP8DBUWupwdFk1KeRgdYukWxtutHU+cPRTPkQ0dH9JBEQsbnRk1xF0X1PDNG78+aRPn7dEU2V6BEz2bJRQbu7kRdmbREjkpkRT+LuUS3zoRGnP48RvMt7kQwNMBEqGT9RED4nUTuauxELXWVROZgX0bGrhJFZ25kRYDYUEV0WsREFmg7Rdkx00T5Ys5E8LOERM8OOUX2e8RHI5DJRrPXi0U0sYdFuXN5RT/+LEmmbFhFMZf1SApdAkUPp/BEcotFSA1JH0X1wEdHkp8TRVygpkV4RRlGC1oPRW9wN0Wre65EyazmRs+RX0ZnoEtHheQRRi+OaUbhF45Fh0VvRbU1HkWZ2KxEpTujRF/4hkTJP5tE/JqZROTWkURzoZREt44UR8hiikal0SxGq5y7RJjZfUWE3P5EchmQRM2lxUSb/J5E3WdzRc0IQ0XwfYxE/b2FR5XsjkfLdhRHyglIRr946kX5KqxEwYriRMtX2kXke39FSSkVRRxIxUWvsZRE5etbRbhLJkY1ZsJFp7ORRd1QD0XS5GhFvbY2RTKjEEb97sFF4xFERVHnjkXMgpdFlUThRNE1kUQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - huPVbUzBckDeszTRbsFyQGYKGN1TwnJA6GHorOTCckDBRzqAO8NyQDqdeHbFxHJAuufJ3VjFckCCA84XEdJyQHLuzlBD0nJADzgF0M7fckA+48V5t+ByQGxoFyFQ4nJA+irv0I/ickDyB7TzUPFyQHqWFwLM8XJAhu13CU7yckDgB+PSo/RyQMvVP/nB/3JAsrFM2EoBc0DSTfeaVQFzQDIdPJY8AnNA2nj6q84Cc0CMmtCa+gNzQHKnBrL6EXNAerqPG5ASc0BW0lpQvBJzQAbfnyoGFHNAgWesv3ofc0BYt/F2OCFzQFqBN+17InNANJC1/csic0C2B1RdESNzQP4K9KzOJHNAZxA+uyAwc0AovBSuSDFzQPy0zbbcNHNAICcNNrk/c0AC3sM6JkBzQPK9ub3hQHNAkuA4jHhBc0DSU2jEekRzQJL4gFATUXNAMmsKoppRc0D9QWUKQVNzQAYx5tajU3NAsNOI4mRfc0BslpPx+V9zQP+9YEyLYHNAr4rUvoxhc0CkeVNgOmNzQEpyNooccHNAWrZSjppwc0CYnOsU5nBzQDC7FZxScXNATQI57Gdxc0DS0bwbSHNzQJROMMO2dHNA7tol/kp1c0ACkKcNeYBzQAdVQ2SjgHNADGlht8eAc0BjBVsJ54BzQDg6v/IygXNAy4ExUl2Cc0Dx1Xk+h5BzQILtQQOykHNAoIVtN9yQc0CypvOrJZFzQMvbJzdNknNAFub0bMyTc0DbNYNhYpRzQES1E5L3lHNA9Pwln4mgc0C6nf3VuKBzQF8bw3HmoHNAPbRnx1mic0B+aQv0kqJzQI6EkPUjo3NApsTMBgWlc0CaCDDrx7BzQMtvRah+sXNARniVj3qyc0DU7j4ot7NzQDb9g38MtHNAwVRKnfjAc0BsSiPHfMFzQLg+1wTkwnNA+UyLverKc0Cy8UzqUtBzQFZO6z1x0XNAu1kaS9nRc0BUdCzPAtNzQI9A4F7003NAF59PeOLUc0AuZ5UGC9tzQEJaKJk34XNA+VGGqVPhc0BBSmz7fOJzQAbaFxcP43NA3ozCPDX0c0AnQTQvTwB0QLgOxdh3AXRAvpHEV7oCdEB7asgrPRB0QMawdI9oEHRA84PAw7kRdECW8YnsTBN0QN7ni6lJIHRAQ1oQ3rIidEAq7QgV+yJ0QLrxJt0bMHRA56oZc1AwdECQbKyvQjF0QMpjSFemP3RAmsz2/+E/dEC/k+JuEEB0QF2eAzV3Q3RAK6yiUhtLdEB6h+glxE90QCI1ewfgT3RAewHTfwBQdECkbYTfKlB0QIwA2ru3UHRASpCS6SBTdECIl4hei1V0QM+U1D46W3RA4G3pGiFddEA95xN1e2B0QNzahhK3YHRA3fHP6QlidEAKjpDYemJ0QDZe2ktCY3RAiGdskMVndEAjxCq5InB0QN5GYZb5cHRA2lke+g5xdEB5M+K/QHF0QLTK55V5cnRAZRsBJztzdECqPB42OHV0QCL80/z3gHRATs5yNU6BdEAmmcIT74F0QAqEIiAWkHRAWBU7oU6RdECe+tne7p90QC/qd53foHRAvgAf55KidEB0B3JHEKN0QOZuU7jCsHRAq5okaQKxdEDUqFrh/bJ0QPHR3IwRwXRAs+d4H7nCdECIKPpOUcN0QDJi80y3xHRAN245s/vOdEBq84JEqdF0QOR5fuJQ03RAIAMH3+LTdEDsjmNIy9R0QI3nvpBX23RA5Nyb2KfhdEBgThJt+eJ0QNltEyBb43RA4oOzNo/jdEApXk35TOV0QBYrMBTA8HRAbkuA6pvxdEA4vtRQs/F0QDeTn5+N83RATiaVivb6dECyNi6jPQB1QAJ8qTukAHVAAWQFwdAAdUBIZoshmAF1QJfxyxfQAXVAYBXBKF4CdUAaOONKpQJ1QDWeXUIjEHVA+KRfvcERdUC5ka3NIxR1QLIju5HlH3VALJLmJDogdUBusVY4nSJ1QA5NoFgHMHVAaAWLaGgwdUC8bX67rDJ1QOblknvMNXVAt/z2UO83dUA8sHH3Tj11QBGE0+YmQHVANMgqr1FAdUCkQDE1eEB1QGL7Ltd9QnVAwsh+Mt9CdUD0fzlY2Ed1QKySipoxTXVANEnifCRQdUBG57o3OFB1QG0vlup2UHVAgFVjZHBRdUAUjn+cgVF1QPsF1tZ4VXVAlM0qgQxgdUCl0XxhZmB1QGMXZp2QYHVAgQPhOJ9gdUCc6C4BOGF1QKjGsWFjcHVA+pMOK3lwdUBKCrnjKXJ1QHjL/jt0cnVAjHRboYZzdUAphu9qjXR1QEpJ14uNe3VAfCnHYkiAdUBtFnN6W4B1QOYX+KKYgHVA59fYXa2BdUBSCk4AmIN1QGorGlCahHVAtwLVKoeQdUDwltpax5F1QNyL/SYrm3VAueeB1e+/dUCncUrU0MB1QPSu6Wpo0XVAzoiUgmXSdUCClXrBjdJ1QDbRcNe+0nVA8ho2rMvTdUCbz0WYv9Z1QIwdsKx04XVAWv5hyQfidUCgxXlJ5+J1QG57nAmA+3VADGt+ao//dUBCtNnOvP91QBL1kgBQAXZARJWVtUgCdkCSBvlXzwN2QBA2n9OwD3ZAFhGywG8RdkA3ktGKTRR2QILNfqBLFnZAlDCFDckadkC+MJdjYSB2QD73uxL8IHZAPLZWyIgidkAiLAoZkSR2QB57+ktLK3ZAtHmh4gAtdkD5q6kOHzF2QOelBsYoMnZA0iJdrU8zdkACH3stnTR2QBiPhZJNQHZAeuAssKNAdkAjjG8nHUF2QKGjBoHIQnZAHhkAFaRDdkDc4O2neUR2QCiGzHFeUHZAu03Y5/xQdkBkwRaMzVR2QF49J6uPYHZAd1xq/7lgdkDhZvKN+mB2QCBMTBvcYXZA2NtAFtlkdkBAQXrhjnB2QCxQwCKvcHZAPBiKde1wdkAqX42rm392QBjTyFXRf3ZAR09jz6+AdkA1o8CPvoB2QHfHiE/kgHZATqgdUJCDdkA6xNsI9ZF2QDfwdWWUn3ZAM4djeiKxdkD782EQwbJ2QJ5Yp6gMtHZAoFXhnnLAdkDKYPZSvsB2QHe53nFPwXZA2RP3dHzBdkDZTCvFzc52QArXy2Ju0XZAyCbxB7fydkAZMthqkPN2QFEd119LAHdA2qB9jdkAd0D6xP2lMgJ3QAiHtscAEndA/lF1Q70fd0BsZVogUiB3QLLWPlGNIHdAMkJeK7chd0AI54SnDiJ3QPZMrqQLMXdAgtkUXqEzd0DEQ9IGDTV3QOouWu16PXdA0FA7jvw/d0DC40svz0B3QMKiDoucQXdAhgHFqq9Bd0AOlMui0kJ3QKZZXHsaRXdAOLrbd0pRd0DMHTXNkVF3QM4PmRkrVXdAtbhglmBgd0Acf5zHo2F3QC9iUSYob3dA9OJKjBt3d0CEc8gnoX93QDczqJkWkXdATJxkFBWhd0D28Y9Oiqh3QMuL/N3qsHdAegMQSujgd0AM9xSSeeF3QEzFFbn8/3dApjwJkk4AeEBE4nje9wF4QNCOFqOQA3hAVjHQLD4geEAC0IMrZyB4QJAmoepsInhAPspJlIsjeECZ7tfoOzB4QLZ5CyZdMHhAQXFCntQxeEB8iEjtMEB4QMgsvbBmQHhAgvRm8ExBeEDl2cRP7EN4QGIXXU8SRHhAjoMlKnpFeEDueSrupFF4QDQS9ZrKUXhAqYtL+YhVeEAkM+hw+WB4QOhxCBs4YXhAgo/pjmJheECkjEqZtGF4QIS9NumTYnhAWJY6nkdxeEBa1zgVWXF4QAwwebC7cXhAgjCIf0Z0eEAwzZ/SXnR4QDzv1VaLdHhAPJrJDa10eEAsd75LxXR4QIPwfJLHeHhAYsyntvd7eEBvbJ0zJn54QFB72aMzgXhA44P1uaeBeEAle/X+mYR4QE6e89KWkXhAqIlCLaiUeED+0GPKs6R4QChgus+Hq3hAAn3sbiaueEC+byVcY7J4QIqqUj3OwHhA+M+bb/fBeEC6kt3zIMJ4QPhKWz0a0nhAI1F5ErjUeEDYxIyGN+J4QJDxRGQB9HhApxU37oz1eEDq9aHxzvt4QG4lPU8nAnlAUQr2l5oFeUBehecvsih5QL7ITfsMLnlA7nHuDXgxeUASF15D1DJ5QKaE8AlhM3lAfqvix7gzeUApVJaBMjR5QJq8ozHNVHlAoGIYqulgeUCqo97bBYR5QJ6zUuwijXlAUWXA56OheUCgsAYRwLJ5QCBgCsOmwXlA5oyAvs/BeUAslhmbQtR5QBBzvDDO1XlA2IRrwSbgeUCSbgr3gPF5QB2GjNMM9HlAEKK7e/kDekCu/+8O+gV6QCgMMiSVEnpAumQqR+YgekAmc0RKEyF6QLr8IU4oI3pAxuk7ky8rekCtFOD03TB6QB4JWPv1MHpA8MaoeggxekAYpP3cHzN6QMxTF6Y0M3pA25NyRAw1ekC2s0jcJjt6QLw1Q4nYQHpAQgg8CRpFekDoZRopKVV6QIIUVTsiXHpAyNDkxTplekBfN6Cvx3N6QMrgvmKBeXpAUqj/X91+ekCsSEPUpYF6QF5pnAXSi3pA+D+aWuahekAODnqcQLV6QF0cAvQMtnpAVKnRnEbDekCXaJMSG8Z6QM3Vm0w+5HpARHoKezfuekB8LA+BfAR7QMzXI5vFC3tAqFh9wCsOe0Bgm087TRV7QKlYpzUOIXtA5bKpiVole0CmKtuYwTN7QK0548uPPntAfm3pKOlDe0B1J1bBQkl7QBKOwQSdTntATEaeVvNTe0DeIyDJJ4J7QASuaoshlXtA/px/e6aje0DOqBJtecZ7QNDHV5Gc0XtAjiQiRZPge0DaBpJNwOB7QJs9rQh+6HtABo2+srPwe0DoyVWdmPF7QB6h36mL9XtA2OjE/3sAfEDsP3jfrgB8QAoVuTbUAHxAKPihadoBfEBqBVhg/AF8QFzLhFaZBXxA/sX2ddMRfEDtLAGpqhV8QLJRWdvLQXxAAf26CehMfEDlkXhTT1N8QBbMVIgbXnxAWX5y1g1ifEBCCfCmeGN8QPBIG0EEc3xAlVYFPCuMfECMqitCJ6R8QAsfQr29snxApPY3emXEfED4Tp1FyNV8QIL94Ci84HxAPka2u1fifEANX57dEPJ8QPLeJdhS8nxAnJXh5nDyfEAleOHXAAJ9QBTRfHBLAn1AIrZrdv8DfUAUo7EOBwx9QHvvs+tFEn1AhtU3yxEUfUCu7O5XSjh9QDhHvFrmQn1AQs3WAv1rfUDEgn7VIHN9QKOmmox4eH1AhFsLr9V9fUAkVcl5EaR9QMRiCgb8q31AoGkvRba6fUBcmAIILcR9QAkHztToxH1AWLoQ35D1fUBOw5TbNQB+QEVJmCOlHX5Auwsn0DIffkBD5Dj4/iJ+QLJx85JdKH5AiCWjx9dvfkDxW400VoN+QH45dgGhg35AOO9+6xaKfkCSW/9lpot+QFjNh/GZlH5Acqk7EPSZfkD9jESMaaB+QGVe+AKVrn5A0ET+bPaufkBYL6oF8bN+QEY6hGBPtH5Ah7Hwk6i5fkBoAsCKAr9+QMKM1PHOwH5A6IWFjdPEfkBgAPtbDsZ+QI5SMnm4yH5ANpIYQwnefkAxsSKSA+R+QDSiyRcH6H5AbNnrbwrsfkBlobdKEPB+QLA0mu8O9H5AOPdS6qj5fkBKQ8B3d/t+QM/nUUEa/H5ALzngaAP/fkCdQCjrXgR/QIAsf+P4Dn9A1iFyDF4gf0C4USJrozl/QEBSz8YBP39ANMFr2ElAf0D8F02Wt1x/QPJTXoBlYn9AN9Zwm71kf0CGTnsi5XB/QBYoNrG3cX9AnpCSIGxzf0C3+BmtsYF/QD7xEnJikX9Ac89+UJiTf0AXi4C6nJl/QJm5reEYnH9A2jZoaF2hf0B7JcNFVbF/QOBlljcCv39A7ksilqjbf0BIaCCy/PR/QLimXEZ5CIBA1vMs3GsigEC2rmtKayaAQHVw+P8rMIBAtI+enyI2gEB9KSx2NTuAQIJFeq7iQYBAI/IIbalCgEDivsWp4EWAQLyHsw3vSIBA6C8frfVIgEBIv8LL5lCAQDg9Yh4UUYBATv47WQRUgECSMA2eBlaAQA5DLnUmWIBAEX+GDg5ZgECwHEmO1lmAQCqVvxAzWoBAvld/WjZegEC6ehrfLWCAQGdq6+wKYYBAojCpihxogEDvPnZgKm+AQMu6vocVcoBA8pXosipzgEBWvr+HwnSAQLjqpGtvd4BA6nDitOl3gEA7WgKAMXuAQKBGM6Uqf4BAZEixcv+OgEARPkikHo+AQOnei5Knj4BA//H5JKyRgEAK0WS1RZaAQFRd/H8fl4BAHI5e0h6ZgED3m6fUxpmAQEQ3RDaXmoBAXSxGqMidgEDpHlvlOp6AQOWxKdEcn4BAzkd98qWigEC/7QqIwaSAQICbYxKKpYBAJlDMFPSmgEBaVQCzhamAQIzblbzbrYBAHPGqvhOvgEBNeWka4LGAQObdOamRsoBAbqFZCRW3gEBynIHzgLmAQFCnKtlSu4BAjGQs7gW8gEDCbWoGzryAQAYlBSiIvYBADF99FkK+gEDFqCmQUsGAQIyqYn4YwoBAaa7w5tDDgEDx0c18ysSAQGakjCVTyYBAURtb0tjJgECQlSuENcqAQDAUn+SSyoBAhAJz2gjPgECeJEjQKNGAQDyb1DVM0YBAeJNmuWDRgECYbChSQtOAQBaj2t8D2IBAR5D/XEnZgEDkXRifWtmAQPOO2wqf2oBAIDl22AnegEDe2lxqB+CAQPoP53ZF4YBANKruIcDhgEA1nA44CuKAQFaFV3n36IBAInMLsErvgEBqYWv6PfOAQMaym5X984BAYW/GcGf6gEAdUV2YP/+AQHqCBhJAB4FAHszhqT0PgUDhjORHPxaBQNQXEEiJGoFAiqmsTqkagUCXS25+Nh2BQDfJu7s0H4FAaoKTn30fgUBjZ2QqtB+BQMXb03s5JoFArOKrXjQngUDAacz6yCmBQKgxPlUwL4FAoAeGMb0xgUAOi+SAGjKBQCFDBpeoM4FAuQJG7L03gUBHXO7oKD+BQAG3oB6DQIFAMHyULitHgUCcTRSpMVGBQCcA48rRYYFA1WGO37NmgUBlOh8bYn+BQLn/5FUlhIFAcqvIxlWPgUCCSqzGVJeBQOQygOfQmoFA8quqe8uegUBb7aDVU5+BQDT20nPfooFAHNSYwm+ogUB+0YEi5aqBQKVF/xwProFAPhpoo0qvgUDgXV4oDrCBQFqd4PVLt4FALFCUCJC4gUDy4L6I9MGBQO5dyzLH74FAgOZXSXPygUBYCqc3H/WBQG2RFyIA9oFAeniqGUv9gUBM0uirrgKCQGzL+lO1EYJASGsLpbQSgkCkDTqb2BiCQPvhDP/nGoJAWMpW49YggkDYApXfpieCQE0jt6DRKIJAY5CArXIwgkCDqWL4aUCCQEpOC4H0QYJAIMecowlOgkCcBqnXbFCCQBQdpMypW4JAdP7Fj/9dgkBasOMUcWiCQDapXDc+aYJAmiEE4ApqgkBbFgKksG+CQJb7Z/Kcc4JAqpUaDHV4gkBwyzx+3nqCQMixpnCqe4JAyLRGZlZ+gkAoMurZ5oKCQDGumh5DiYJAtobnMUORgkDwm0BCPJmCQLOGCmQPoYJA0P3vFTqhgkD0kl5A3aGCQNsm9KLgpYJAgIrYGg6pgkB/rulvNamCQJ6g1FVvqoJAel3sk+6rgkCI9fZfUrCCQObdauivz4JAinEL233agkDOAJoT1OKCQN0mUwB+54JA1Qq8lt7qgkDa+9+BY/CCQGiu5RlR9oJA1BwVyVL4gkB0c/Zq4fiCQOxIvwit+YJANs3akFP6gkAsYVmyUPyCQEkQysRWAYNAyjzAVxUDg0CU63tjHAuDQGrpZ815EYNAAUgIO0kZg0DnNhqceRmDQM/9wOkAH4NAATPTPGQgg0D0in1CTyGDQGp2TvxyIYNAF0CFn3Epg0D+VsOF+y6DQICwwOtnMYNAc65sBuA6g0CZN4FU5EKDQEQw8KETUoNANci0YulVg0B96m1rKF6DQOxHg25kXoNA4YxsBWhig0DS9/z2B2qDQAEnzaELboNAuXFr6BJyg0AEWJ2nSoODQFEIHnzzjINAQA/s4jysg0DbZnS7Eq2DQAhku9zUuoNAZkD4vUO9g0CmCw/V8L+DQCi2Uw+ewoNAvYxsi9vCg0AyqiEZ4cqDQAWaDUeVz4NAoNHYcPDng0Cr4O8opv+DQDuImABTAoRAZMI+ef8EhEAUSaobgweEQHo+W8A0GoRAlVEds8YwhEAg4GjevTWEQLWSo+MrO4RA+9QNF3lChEAMjvF9C0OEQMXa5hp1SoRASggOQBJLhEDYdrhWF1OEQFbMbh8xW4RACwRbKaNehEB8tdUt/2iEQIBZc7nYaYRAd+Jne6dqhEA4nV8p5WqEQAB6Kzwja4RACexYhhZshEDi2573526EQBQgGUD+cIRADPwSg+pyhEDyfN4g7naEQPaxKEfKd4RA1G9cHfh4hECsMegcd3qEQH6Pl2XweoRA0samOSh9hEDUuaoH836EQNxsRvXPf4RAtObeSVSVhECo1uhf/5eEQByI8fNp2YRAdL1K5WnhhEAQkYmcQOOEQCCpavRh6YRARcj9HkfrhEB4EhWVNPGEQI92FhNh8YRAETZjDkzzhECuyuZFNvmEQKiAry/T/YRA4Yhkwmz/hEBdgw6svEKFQPF07EKgYYVA7kJi3J9phUA8ucYqmXGFQCu/+ki0c4VAEqeLWtdzhUC1feaJmXmFQMjImamTgYVAOo1qjePChUAsB6qcQ8WFQOYur/z2x4VAYmEYh5PthUDTaU9EQPCFQBi5uPPr8oVA8g0DbZj1hUAcH+fMQ/iFQNidOEZ0JoZAGnDB5mc1hkA85dhNFTiGQPgNaQDEOYZAIF0Dqfx/hkDQjdGTi4aGQPw9AQSOioZAvB7YHJKOhkDXiUOdu/qGQAZ7ab8z/4ZAfE8jEzcDh0B0SlXhNweHQIukv1WRKYdA0I4UIJExh0CCbohDizmHQCqc+aOEO4dA2CoA4olBh0BKsX7MOmeHQNAvgX47a4dAvSXZkhGQh0Ccom0LyLGHQGaJHTzHuYdAf2Evb7/Bh0D6GKJ/g+6HQAkZRDeH8odAf7BtmIn2h0BmNTZ5TviHQA2f73b4+odAomz3tKEaiEDWl9fNykiIQDBgZUX9SIhA + KBZXds7jZUDYkZP9yKNsQNvlv3T/InRAsyNeuPyCd0CiQFSuF1R6QA== - + - CdbJRJ1IwEVBJspEA2TIRG/5K0UIGdxEVbH8RD2RAkU8oMhGuJEBRejRlkSsb4dFz+xNRXad2UXd4KhEzGF2Rf8qxERIQgtFm4CGRFXBb0TSP8BEXxkVRVR5HkeLqr1EokabRJiVM0b2QKRFkQ0ZRbGxO0Zat6xEzJobRbd5vETYZ6tFjxTwRFSyoUSQIKpElZoERaNwrESGMMFEpv3URF6l/0XOmZRFhhsGRdhcvEQ3p4xFjCUxRd7JMkWWvztG1jKPRGiXIkWWnKpEcjTARM/AJEcz/6VEPn2fRBrbnkRMDqdErV0FRSgchEj6IX9GSQZDRWdaTUVx+J1E4MPpRUbD4UZfJ+NEAwTgROHIRkbjTjRHB2uiRJUbykSd1zJG2rMvRSrKlUfCzRdF4lOpRQpVyES/YeBEvCj+RJQd0EUwRqdHXt3lRMToNEUzpB5FJJu0RHiKOUYkqsJGKnm+RXRqw0TmwOhFP7xHRSq8vEVV+NlEw8RXRQZoBkXflHFFta57RPRusUTcZfREhnnVREhRlUSBRe5FNcI0Ra/SF0ZOWOJEGcW9RdLiU0VgeN9EkTwYRWoMqkQG/a5EuH1jRcMn60TEFClG8+ARRSlzyUSLb55EC763Rit71UTG8n9Ex8IIRa6zukSdEnBGkI79RYyx0kSb9mhGoEeFR1ae80RN24JFSIVPRdDb/UYEaHlFC+7DRV0S0kW5jw1FwSfvRFfGKUfFrFNFDRQORQRaE0WnvqpFsabtRT+cp0Tzh7NFzQKzRWsmuUTg521FX4GLRBa/IkXsouBEmAf0RPW56ETe45dE2wL3RJWfI0WutT1FsPufRNoMDkiY+/VGMeGaRF8Y4kSW3glGnGLDRsOtD0X7o7REltV7RY7/pUSv68FEPFeURgaju0S6v5hFSev4RFVesUXdi5VE3JS1ROEr2USTVgBF7jgRRY0F4UQmhh5FLR9HRa2NJ0WGDJJEzVVkRQvVbkYfQZNEnXPTRHlf90R6fypFeBgVRY/QqEQBEKZH2UEtRolV8kQYoTdGvvcJRQbb1UUSpoxEHtkXRjDRqEVK6fNEAxvPRNQ5yERQtKpEVx/uRfNvS0c/eChFluYXRbyf80TlupdFWyY8RXAUKkU5osVEyA3iRiIFdkadUL1Fc33IROkP1UQ6Xh9FgEPeRVs3GUWsPApFLxKrRJH05URwTNtEWgKSRTMepkTbpCJG5+u7RNihxUTe2CtF9mWiRK5IuETG/dJEaCDjRJPUjkToh6JEK6mDRWZ/H0UQ/ONEz2RIRa+lDkUrWzNFLOMgRd8jrERLZ69EVk+9RIKJiURdSApFnl+IRY1R30V6AMdFRarERM0Wn0btgz5FVFuqRJwN0kQHrQxG1r5xRU9va0XeBLxFt5qyRJKzj0WmublEDO8MR1iFlUaJkB1HdbYARXcfukXqEf9Ekm1fRWoHWUUKdXxGATG5RQTie0WgRDxFGV7yRAnx00RYRNpEW8nFRHPDMUXDQsBEwNcLRYXa9kQFOI5FT0OYRIWFmURj0AFFGo7EROwMTEVxZDJFuZ4LRTg9OUU8f5JE6RWZREE+3USvAY5G9WFYRXt4rkRL/L5EKSkRRXmoLEXwgKJEO7zwRHJz9Ef7T9FECztIRXUZ0kT+dZtG4aiPRdJ85kRoK6xGrSF+ReoRS0bQ+RxFZNGpRLiiuEQRVxtFI8TNRKzrkkSb8khGvrFJRe4SqkQtvbxE7/O8RM2T80TslxRFbBE1RYXOhkV4zDVFdVJ1R8C0W0Xk82xFTvq1ROwqGEaitw1GMtboRLUEnUWC2shE/ZtFRfvb5kQfL0hF8aMzRkFH5UX3kqhFxAomRYLpvUQIqRZHe/w8RY0wZ0VxskVFuDGnRULjvUUQyKtERxs9RXspJ0Vf0VJJTvF3RXLuhUUxXRNFZQQdRZoL0ETkzo9E/53iRAaVWki2/05FwAKGRtFuvkTl2cREK22IRUgn6ETpR8ZEFXflRah460SayqxEHmkPRThQ3kRyZElFlAUbRtN77UShFqZEWb0ORTO8lEWTK4dF1BC7RBwGs0Re6/xE6uoCRenE0kSC6o5FxGCSRDhYwEQbFMJE+8anRJ5VPUVd4/VEUUWuRKJx4EW8oQtFEKkKRQSOxUSPPbZESvGsRMQBNkWDBLlEmd9eR0COIkY06wxIL/NTRx7IL0UenYVF5ZCCRe4EGEbjrNhFofLwR+BrtkWjlUNF8qPaRhTFZ0WwAtREzJakRAuX3US0qm5FpB9JRTpBHkVgvZpE3TIQRV8SBUVMIKRFUSmkROQcx0TK2qhEGWK7REMTMUUJJVxFYc7+RLExLkZW9BJFcX0+RSNu30Rk7UFImIMESKX3OEexxzVGGqJ8RfiXyUQuYBdFa4+xRNUNqkT7DI9EBfZORcL9LEawYr9EaEybRSUmYUV7M61GtHv3RAbgEkW7UbhE4pJaRnUYmkQTnLtF0DSQRRH5rkSJGi1FKfQSRQsB5ESK201FSVS0RNYNqUT4/pxEUdWVRbmiTEWjGcxECqcWRS+fnkRHUcdF0mjTR5EUjkSYCJdGtQuPRScvDEWLfoVGijDbRRlom0XUwS5FcoPdRNzolUTPjJVEa9hVRUg7IkUc3ddEepLmRGlEsERz2sREP5GpRE32uEQm5n5FbQTdRPSlBUVaNYVFouKVRL2hyURZmMVENx2sRDqZu0R27TJGHES2RIUCL0WrwelFGDTeReWfFEW5tS9FCl0FRw3EjkQ9hadGvjQSRrTAjUWl89hEsDC6RGGSGkWO6SJFzmC/REeUgEYWeVZGCfUURqOfA0W65vtElUOaRaQB2UTPHJREEYz1RAVHr0QaWqZEWaFoRb4nSUWAmJxETrmZRMojF0ZmNEZF3Mk5RcxmiERnlJ9Fl2KZRBqnkETBWwBGMTzzRLUp6USm7w1FfLJqRbejT0XsZaREhQ/YRMYCkEQ8JKZEt8tNRUtX3kSUMgFFgQeaRLx4w0SfKsVErmGRRaB8oEScxJpEn+abROnKEUUzrm1GI8prRYyGCEVoU8RF2jPaRcmZpEQjMLhFpVlSRYZ3oURYM8NEYzPCRDtfhUUWYy5GGwz2RQ9R4kWszZBFlkuZRMTxCkVrFRhF/zBgRUoESkY3yMFEwRTiRP3QrURFkVRFHF8IRdPDF0VZHQRFSu/tRMI2wkTxQ/NE67iTRMtHAEXF+ptEExifRNEJr0QpHtdEFG8eRni+7UTASAdFici1RHXQzURvgcxEZlmHRUfavESLM7tEsVjVRCs0fkhdPgVFCjimRE0WkURgbsdH2mZDRWu6tETq7SFFRovwRNx+q0TP/GBHIY9vRafZoUTn5bdEGdk8Rqj2NEUjzJxEtuLZRHFXCEXqRplFZM2FRFeVQkXMfLJEFC3PRPc/4ERjhK9EAMuuRN63dkbx05pFs1ayRfERoUTdu/lECBLPRGaEP0Vy6yxHKfSXRKIEpUT9/tZEtNMERvfOq0RZKmZF0AoARSeQr0TmIjlF2dKfRJ9XMUawdSBFiVgeRc7ZmUT9YG1EQ02URLaKu0SbJQRF8BgwRlgLGEUt2oVEdPG4RMVENUXNcvlFdl4DRULUr0SMniNFyhuBRkDbuUSgYGNFDXCVRG55p0T+kEdFpg1NRY+AE0WybXhFzp2TRDf0qkSKTstE/3IERYotGUbxRLZEWH1oRSq/3UR0uz1FbsMjRsIb7kRxXrVE5DHHRNCTzESanXZESxv8RHDDB0ViBPBEM2efRASbuESQL7FEnbFyRB61nEXhRJNE8hyqRPiVA0V9+NNH0D4rRxxc5EZDE6xFCsfiRaP+rkVwG4FFIZyjRJRCIUVR35ZEWUCjRHwiDEXBa5ZEih3sRPxcx0VUqJhEDqzLRNyC4UQiu4VFV6KkRRe+okTKrKpExH67RFSZ7kQPNKFEPfC5RiLIw0UunuxH1RCERTvMTEfYGppEt7UrRTmeukTGBAJHilgSRkRcv0QB8wJFARybRSRP9kR9r61EL56dRBqqpEQJpl5FFqDfRFjXa0Z61K1F21LSRGZtzUQI0uREDmejROV0k0TrkplG9wymRVgcfEVZqSZF9pujRVyWpUS1WKREtADPRNAVh0VPepdFiUwpRW9DlUTk8/lEzq6QRGF5lEQMceJER0TGREBWFEiQUItEwUoWRyfe+0XMxJFEUJG8RCmC0UXC+9dE1sluRSXwSEkpNl1FW9++RPF8CEnHtgBFAQtOSPcxXkcMnjFF7KfPRDafd0VGdB1G3imnRItJJEWXdp1EvyqvRPy50kRVkANHuf2FRg+yKUfQeCBGh4clRsGwR0XnvGlFvcwWRUpC4ER72uBEYj6hRIjvAUVkrOVGBs1oRiCbDkYrkKREXLHRRE21d0XKkqpE6nb0RKFOykT51OFERaiDRzzWikdIpRNHHp+XRlFZuUUU2PFEZFIcRTchukSwh5hE2yTLROH0kEUwlfxEfCLtRHGa5URVm8VFdBOcRQag4kRAEQ9G7X/CRZ0HR0V+9M5ECMWXRNkyDkUURihF2nvwRBdX6kVlb5pF0uBcRbdeJEZ17LNF8Kh1RXw8pEQx75NEQoeWRG8+90TP771E + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + - - - - - - D9/fSW/BckD+W9hC5cJyQDJpN8I8w3JAGPk5ZQrSckBxOduDQ9JyQD6rSut203JAIt+P+87fckBGhfcdUuJyQLyrVauN4nJAiGQzbSfjckBYjh/mUvFyQNzT9zJP8nJA4uJzEbbzckDo4Y4do/RyQIjfaXfD/3JANE8vl14Bc0AmD8dF0QJzQG+vyOn6A3NAKFAGIigLc0DSJbr2vBJzQMyPO3kHFHNApsqm73gfc0DAyMx+OSFzQHQ3NtAQI3NAKq0vYM8kc0BYVSVrIzBzQPafl3NbMXNA7MRcOQ0zc0ASz4EBuj9zQKneOY99QXNAxGPQTHpEc0A6xZjaFVFzQNxo212aUXNAuorVDqRTc0DZDff0ZV9zQD6MbI/6X3NAQpls9jFgc0DqfDoijGBzQNCKpzo7Y3NAKocdI5Bjc0AkNY8WHHBzQEqB24TmcHNA0nOJkkx1c0D8Gul7eYBzQBvDm7ujgHNADswyjceAc0Asu0z924BzQAaZHUXvgHNAn4Fvbl2Cc0AQ8cwuh5BzQIyIUKWukHNA4ExwFdmQc0Ds/NONJZFzQJCl7rrCkXNAhcCOIE2Sc0A94mX+WZNzQB06SCNilHNA3mwmHfeUc0BoNzkah6BzQOybtjedoHNAWKkWdbmgc0AhSFOB5KBzQK41xxdbonNAFgPI1I+ic0DGPLHvJaNzQJjwGNQDpXNA1EtYLMiwc0AsYL3zfrFzQNYMGU5asnNABlgl4Hiyc0DKfJSetrNzQFjURBIUtHNAWE8PafTAc0DSferafMFzQJwrT6PkwnNAhjVUaSXDc0DuQ5vb68pzQKASNs9w0XNAa+mTqtfRc0DIB0PB3dJzQMyZDBcB03NAmCPjOeHUc0Dbur5RDNtzQNbR/F854XNAmDl31Hzhc0BOkBwVEeNzQIiped55AXRANi6la7oCdEDZyaT5OxB0QPRLiE27EXRALtDFXEwTdEDGBrvYSSB0QGoWPvO4IXRAgbtf3LQidEAmcDclUDB0QPgONhJEMXRABs4Zk6Y/dEBc2qsf5D90QPnv4Lt6Q3RAfeLowRtLdECHWRCxwk90QGwF3uUBUHRAEtsH17dQdEBy77l3zVF0QGbB5qsiU3RAMsM4EI1VdEAhisLuOlt0QFbVrLMhXXRAEN3m9rhgdECtVEJMCmJ0QJ53lPd7YnRAAo9xQ0FjdECW0BY0xWd0QErpxozWZ3RAypC1FiNwdECKWMeg+HB0QB2X3XNBcXRAqlk6+3hydEDaD6uVvnJ0QGBLujE7c3RAdV7JyTd1dEBZ/c2x94B0QDfMbExPgXRANWoM5tuCdECC4WA7FpB0QAb8WtNPkXRAftNcq1GTdEDKIuuy7J90QLbhAD/hoHRAnEN7QxCjdECZ1W/+xbB0QBCfES0CsXRA4MFBEzqydEBw/VYV/bJ0QAYVcHvvv3RAABHUsw3BdEA8vwCVTcN0QM99Ak65xHRAaC9mG6rRdECiQ0WnONN0QALc8yxR03RA/dCdb+LTdEBSNiZLd9R0QFtu3vnM1HRAyr3VoVfbdEDYNlkNqOF0QGtZV3b44nRAPjz2yF3jdEDSlF1VkeN0QFLSaDNS5XRAGEU3K5zxdEDwAJVIs/F0QNoqEwCN83RAaGrbafX6dEDGOtUwPgB1QAx3LxdbAnVAlhh3apsDdUBYOAvqIBB1QOaM0vbCEXVApFPQqiMUdUDAJBDs5x91QNaoqnI7IHVAgqzOKp0idUBGRHVbZjB1QKWTmVQxMXVA37w9r6kydUBiaqyJyjV1QNE7DwL0N3VAKiZk5yZAdUDy4qihUkB1QA7IiAh2QHVArBbNCn9CdUBUOFdt3kJ1QCHHMVfYR3VA1pASbyVQdUAMg4XiNlB1QJAbuYh9UHVAVixSvnNVdUAq4FzbDGB1QIGVojIrYHVAW1OI8WZgdUDcbDsmoWB1QIhyQ684YXVA2A1PZWVwdUCInwX5fHB1QOzqpM8pcnVATIV7jXhydUBlixGchnN1QCA0PDuNdHVAfN1cFo57dUBbf7nklYB1QP70lNSugXVAyAXf3KSDdUDMr5Rdm4R1QHCcMQmIkHVAr4caVj2TdUA/HpieLJt1QIL17wyAsnVAdOE5ee+/dUCZQHjgzcN1QHGHfWRo0XVAfrmJ3N7fdUDCm2peZuF1QJ4S53924XVA7MOlUgfidUCG8peKkv91QOzhjmy9/3VAvnqPmlABdkBcepbbSQJ2QPmWAbDQA3ZAzvT8ELEPdkBhiAGTchF2QFCmzAJ/GXZAOaRx0MsedkAgtC+s+iB2QG5+2vuGInZA55+lzpAkdkD3/vmjSit2QHaRFxsfMXZAgPlXUigydkAQ2utxTkB2QDYAeh6nQHZAUERxJR1BdkAq2XPdyUJ2QOJceQSmQ3ZAlrJLIHpEdkCPt298xlB2QDCCJ4v+UHZAHB99481UdkCCE3o9kGB2QDhsgma6YHZAqHi2LvtgdkBWgw8e22R2QM4jvlivcHZAzndPeutwdkDR2EtGJHJ2QOuHsImbf3ZAbxLTzdF/dkD80T0m+JF2QEZalXPtnXZA5HHqRAqidkCpxzdujad2QBwVPe3BsnZAUiiRPwy0dkCUWZr9ScF2QLpb55B9wXZA8HIzQs/OdkC/kdn9fNB2QHJ4owhw0XZAF4uq7/LhdkDzm1k8tvJ2QLE66daQ83ZAtIV4CU8Ad0C4iYeVARJ3QDKyG8q7H3dA+6yWO1Agd0CXIeMpjiB3QKg49ai6IXdA6jZUPQ4id0BZ8QRBcSJ3QKpXi48NNXdAxExsOno9d0C8C0QW/T93QFSXBCidQXdAgkGdUxtFd0By8OqiSlF3QDbNBnWSUXdAsC/cxShVd0CQ/xueSGF3QKDdy9Inb3dAKL5NNMhxd0CKK1kaeoJ3QBYilycXkXdAV3bh+hShd0Bidluliah3QJMCkV/8/3dA4jjAijwAeECTjufJTQB4QHhASQf4AXhAisxe5D4geECk0nDJZiB4QBt4TO59IHhAWmJwl24ieEAqPZy70iN4QPxYt8ilJHhAoIL8ITsweECstFNJXTB4QLLieGMwQHhAjLW5SlxAeECYSXDASkF4QOgedgMqQnhAUFnY8+pDeEBAi2N5D0R4QL1m/oR6RXhAMPCnd6VReEDlCRGKylF4QOnp5L6IVXhALrgsiftgeEDgJKOQOGF4QCgXyQpkYXhA78XAWbZheEAGpFUtlWJ4QBtQKTbuZ3hABrTbPkdxeEDaqBqfVnF4QM70L8FbdHhAVmTD4Yt0eECAgZpjyXh4QMQ2PiX5e3hAxu1MYR5+eEAeqLFap4F4QCo5vTaahHhAZ/lCZ5qReEDyFXJgqJR4QOzUN46Jq3hAlmlgbiKueEAnaWEdi694QIR0M9dksnhALU2CLvfBeEAWBzADI8J4QCaLAYG41HhAUOagVjjieEA8agsqAfR4QM75WeyM9XhAWkLBYXwAeUDQbgEEJgJ5QPtqzQiaBXlAmgSehbMoeUDcUaPRDC55QLymX393MXlAT3t6klMzeUCWVlURtzN5QMirnJPNVHlARqT5KepgeUDI9I72/GB5QNqaTAM3onlAScUKvMGyeUAguyXlpsF5QJuPIprUwXlAXPj2c0LUeUDrasy6zdV5QLAFAab5AHpAekC8WfsFekBCXQBJlxJ6QLCrT63mIHpAjQftCBEhekBKMn69KCN6QDs/lYcvK3pAnhDVYmkwekAEMQtY3zB6QHlbS+EHMXpADbjAnx8zekAebqSRNjN6QEqZ8OQMNXpA8DsgsyY7ekDAav+h2kB6QEB7TlMsQ3pAnDvxwhpFekBKOFz3J1V6QA8EshEhXHpAos1kyRd5ekCeIrUJg3l6QIrlqf/cfnpAymBTRaeBekCgD7R25aF6QPy/AhANtnpAdgEaNUnDekDztNNFe956QDQpyWk65HpANL9VPTbuekBoxTtlewR7QPqzInzJC3tA7loZtS0Oe0DuY/s5zBN7QBwP1eVMFXtADtZPyw0he0A+F+SEWiV7QGQsno+QPntA2IZVNhFBe0AnE4GQ6UN7QFRtHqNCSXtAfsIeXJ1Oe0CyKgVPJJV7QLydYJuU4HtATK4eq8Hge0CXPoZ3s/B7QOwUcpSM9XtAieZCAnwAfEB077nxkAF8QDJPO1XaAXxAEHs/ufkBfEAqDjnKmgV8QAhSPOWKEXxA/H+1ItERfEBoLX+/zUF8QDGAc5HqTHxA8gDH2VhTfEAe9LgjiFZ8QNqh7vUsjHxAiKaR4TWUfEBVAhFrMK58QPaupMrCsnxALGxlGWjEfEC4KHI/zdN8QHhUcRS84HxAbs13NljifEB/PQZYGPJ8QEo3lwNV8nxAnSrOAfbyfECsjs+IAgJ9QONlO/tKAn1AxqYPNwEEfUBhQKXkCAx9QL6AZtxFEn1AsNtfFg4UfUDnkWeAgj19QD9/RoDrXn1Apy7q5v1rfUAu6kmpIXN9QNyZQ156eH1A5F8WCKl/fUBTRkofIoN9QHJ5ojFTg31AxggfXxWkfUB43Q84LsR9QFwNUhXlxH1AFLPooffUfUDyBD+rkPV9QHwa5ZI2AH5Aj+1gMOsDfkCCizgCpB1+QO6hyrOMVX5A/L7y3n9/fkAZj3TpoIN+QHPgm2+ni35ALhHvh5eTfkC8hJeFmpR+QJLhPbr1mX5A8ELCEU2ffkDG7LK8bKB+QHjhaO+ooH5Ark1yP/aufkDS3OCg+LN+QGg7N49PtH5AXFZnB7u0fkCD3F5OqLl+QFoFzjkFv35ACFk2YdjEfkA1k2h6A+R+QISXBRMG6H5APsX7WAnsfkD28uOZB/B+QPw4hImo+X5AvUuffAD/fkA1R9yHXiB/QAoeA5WnOX9AmcEFYQI/f0DsIY+muFx/QLlLDllkYn9A700uluxif0DW313Tv2R/QAxpozvEbH9A9IR/cLVxf0D0DmV5Y5F/QCTkyaKYk39A+4EFw12hf0B6Y8xBXLF/QErwxqyo239AxEgGL0kCgEA2PiTdHxGAQGym37psIoBAgq+/k3AmgEAQ1n8zqUKAQDtV7PIpSIBASBTNSvVIgED1/h4ri0qAQNi9qLXnUIBApml5zhNRgECRwuk+A1SAQFpOd18FVoBAcrDxzSVYgEDQ3/afDlmAQISnBTQzWoBA5Tuc9hddgEAgT3EAOV6AQLkCuhIfaIBAQvVTiylvgEBrtad4FXKAQGT9SKErc4BAwPaIt8J0gEBahE0FKXeAQEEg3oNvd4BAQuL12Bt6gEAGCBucMnuAQCrppWsmf4BAvN5Paf+OgECxhAgDHo+AQOSRKkMgl4BAy2rTFMSZgEBKw5nEN5qAQMjBWgsbn4BAtLiqYxCkgECmTD9ye6WAQCLGQ1GIqYBAmgei+BOvgEDAso0U6LGAQP77S3jJsoBA3nHR04G5gECg5sfHE7yAQAtsI8LAvIBAnJ1VroG9gEDQE3SgZcCAQB+MB/5xwIBAXOoHwlLBgECpZzDsGMSAQNtCchfrxoBAJDzJV6jHgEDEfLd9U8mAQIYIg7xLy4BAwJQdhMLMgEBJV/q/TNGAQAI9NqTJ1IBAGRyJKErZgECaaxsACN6AQLC15dkK4IBA7jNdkUPhgEAPCxIkC+SAQLKN7ij46IBA+FRsBkzvgEDOaqvsPfOAQLTovKc//4BABldGtz8HgUDa1rdqvweBQA3DmCs+D4FAiziUtYsagUDoo3WEqRqBQF/1428/G4FAJGwhSTYdgUDWxbUMNR+BQKbVmiIwIYFAJMagb50igUDDezcUNSeBQMjDCBQvL4FA2y4Gt7YzgUDWYWKVKT+BQFb6BXuCQIFAcxbDJS1HgUBQ2iqJOVaBQPjRoh/4WIFAfpcuO/lhgUBa6QSfs2aBQJAOEJEpcYFAcqcdZmJ2gUCQM2CQwHqBQGBidPYUiYFAsuVSxlWPgUA2D1nsqpKBQAoogkpVl4FApjdle1SfgUBYo48X6qGBQCi5gOreooFA/J42+W6ogUASSPzT8KmBQMXPJsJKr4FAuLhWCxCwgUCiTDMaULeBQAaFvjCVvoFAN8gUcZTugUC2mgr7xO+BQJmljiRz8oFAliJcCgD2gUB+46NlBfqBQKN6K4u1EYJANrNIw7USgkC5ixBtuhWCQLl8+2rYGIJAKob0u64ZgkCFq6jV1iCCQKwrND/XIoJA/N8HWtIogkBOw3wdczCCQI4cK1eiT4JAaqtVtEJRgkD2SEb3rVuCQEjc3tDSXoJAcSwurjplgkCdmTyVE2aCQBI69TygZ4JACDTz22logkDuaavUN2mCQGWKOi8KaoJAhYqAQm1sgkBMMoKAanSCQDI6CXNHdYJA9Jp0ydR2gkAwVaHZ33qCQB89yCNxfIJAWsz9rkOJgkCaNF6HQ5GCQBJbjw/1koJAAn83xaWXgkBKJfw3PJmCQMA6PD8PoYJA3jy1XTuhgkA2eGNM3qGCQO+oJKrhpYJAimmYyDOpgkDMvLeX6KmCQKRWZWlSsIJAis/h4d/EgkBWu5K068WCQPw75tGA2oJA6rtQ89TigkCKHsPh3OqCQAsAjbpH8YJAI4IiAtnxgkCW5IbDUfaCQBS3VNJS+IJAiopo+lP6gkDE4pajVvyCQJGJsGkVA4NAAmWfuBwLg0AA7xvbeRGDQKZIAAsgE4NAMBHBd0kZg0BOesIYehmDQIDhRRNlIINA8IBfd1Mhg0A2CycgcyGDQPY/5iprKINAVK3A+nEpg0B2b3doWjCDQFmzDmhqMYNA4moM3t46g0BaIJMsZl6DQB9/3cBmYoNAWfMrqghqg0AMkwLRCW6DQFa8kPYMg4NApvT7wEmDg0DQNW9li6WDQEanhEwlp4NAFaPhyhStg0D83QyT1LqDQLzF8dZEvYNAg5qRAPG/g0BK2sygncKDQNR9IwPbwoNAGDjKlEzFg0Do3GdZ4sqDQLz98qoa14NALh9ntu3hg0DiMCMqlPiDQD7E8jqn/4NA7Hsu+1QChEAyCC5UAAWEQNC4gsatB4RAbBTcmTAKhEAWy+4EPgyEQFr8BccLQ4RAVO5YqhJLhEC0ryoEoFKEQNOhWysYU4RAVu1mJh5bhEAqY8rO/2iEQDZqG55GaoRAjEYCg+VqhEBuDPvzDGuEQB4Rg4oia4RAWkxwFOhuhEA9WBWH/3CEQD4wXd7qcoRAJIqtVO52hEDs1fn/x3eEQGasFEVxeIRAlSkmDfZ4hEBdyzykeXqEQG3yhgXweoRAoBXEgfB8hEBiES+a936EQDcvqbr7gIRAxFsYCv6XhEATesZ2TZqEQEvp+ixq2YRAMT/hAWrhhEB2lzOdQOOEQGDLMK9B5IRA1JLVlGPphEDs48sKSOuEQHWTqelP7YRA51MzmjXxhECiYinMYvGEQPCtcxJP84RA193LazL5hEDUaVtmQh6FQIP/W6KGLIVAhnwBeqBhhUA8dN3Bn2mFQEEoXeyYcYVASlfjXLVzhUDqOfJLnXmFQJJX0LAknoVAxHgMf/XHhUBvpLVpk+2FQEzWT49A8IVA4ZAnM+zyhUDwYbITmfWFQIKQMB1H+IVA4XXrLikuhkBkRSBeVnOGQInXg4yLhoZA+pY+vo6KhkCWleOTkY6GQOQm4RgouYZANeFKe7z6hkAzw4qjMv+GQIEzxzjEAodAzBqZPjYDh0DbFo/EkCmHQODPHLWRMYdAfDYBnIk5h0CIOByNN2eHQC+2gpA7a4dAOkBMJDdvh0DLjwd0aqOHQFm4FMRsp4dAVXTXyISoh0BUel/ux7GHQOLPONXIuYdAHvncN8LBh0DaUnU7g+6HQLTv4ziH8odAQCESSqT1h0BcAnw5i/aHQHKCFUxR+IdADpkt5GA3iEA= - - - - - - M3OmRfB36UQEPSlF7OqoRFWWC0eqhO5E4+ctRQxyg0VTdTxF5LbARA1xjkX9uENFd/qcRP+IvETmY9REzf2pROVYmkRWoABHQ/H7RGviW0YgZpNFj2flRM6nI0Y71YREMeZXRdmkn0QBPZhEaJXARFd47ETTLcpESavORb71I0VuqApFgloeRZrKoUQ7ecpESCuQRCJNDEYgHrlEKJvPRE7MxEQUGONGC2bqRMAUeUhLAFFGPYkSRRqnDEWI4gpFNrarRWAkx0YbR7JEEMzmRGBS9UUunbdE1EEbR+VZykSkohpFcsoYRsXOyUQqbtZE9h6eR0EvEkUO5MRFPweKRD4R9kRP8CBFKNGWRV5APkc9lKpETmWJRNrNPkU/valEaR/ARASC1kVQiQFH3uiKRMPIFEb8XU1FkvE2RaQNnUTZQCxFC3x6RZqD10TYIkZFSWacRLwZFkXdbLdFtx/8RFwVd0V47cZFQOxpRTIY9USg2qFELa5ZRTuS4URex5VEEIQIRlLKA0UB+ctEB88DR4tU0EQyKM9ECrgsRq7xukQjdj5GfkrVRH9RIEZ7ZVFHA294Re4NE0UNa6NGooY+RRvNuUUhUFtFTbqIRQodn0SpoClHOU4QRQQFxERROeZEi6SHRNqmHUXM+6VFuh+CRBCTu0UHYsxFEMGKRO4tlkQEzKNFjLcdRfgjnUQENBVFPqC0RJLa7UQ7Bd1EuyKPRAAbEkUDoAxF4/K5RyYih0TOexhHoFWmRJIKmUTvFeBEvugmRsaHf0adf5BEDPzTRJBYRUWvG7REMrUnRiSaAkVzINRF/tpHRcTViUXWChdF9s2tRHI+GUU6WkRF4jcbRRfE80Qg2QNF1UN0RkcKlUTUE5VE1gm+RNTZFUV8c55E+vh+RxKK5EXDV+1EQUZdRqA6PkVmLLhFsEt8RVhUXUVv2xhFZn3ARJpR6UVHNoNEnXAmRyclKkW8RupEbS98RUEDLEXMDCpFgeDnRAuknUZwjDFGEbyPRRbuvETnbZFFsf0SRbuCAEXXs6JEP3mZRL0jsEThvoJEHFJ0RX5xsERgwQdG5V+NRJqtjUSW1MlEFJu9RHr2VUUfWCFFK4wdRWhvKUU8ErxEyrojRU9CCkU0qphEE7YRRdhetUS4zwtFktEmRnRXxUWjm4lGOmQ2RbTgDEb/JBFFzARURV8SmEUErfJEmICCRfKxo0SoB6VG/0I1RgzK/EYaBM5ExalJRYgaSkW8vixGeX1GRXSYokQ99VVFth8zRXPbS0Vhuj5FsVDdRMzJlkTk2w1Fngl0RZQxpESbxsZEAX5JRcqWt0R9+WNFT8vURJwkCUUoowpF/V3NRBsqi0ZDHWlFUJ2dRCgC8kQ2wKxEHX44RQD1zUTDlOxHockERX4iMEU+P5pGkI+5RmZufUVCLFNGjaDpRPNO00Rtrj1FIA7vREyGkUQLnCFGUwPwRBFqoERbYh5FDekKRbBxDUUtJ2tFoSEoR+Mkz0Rw7vtEhpwlRbB6kER+vqJEvtOvRX2730XhzU9FusqsRFqfIEVtEp9Ec9suRYbxKkWw7ChGgAG1RfQjr0UM5xBF4hrbRI1bH0fXwR1FD9mDRcEnA0XxixFF34W/RbLApkU1aJFFiGZMSXhxPEUY4eNE1DyhRKSMIkWEY1NIK6AWRYEvoEYLfxZFAMS6RMJC70SRDsFExwf/Re9IzkTLgNFE+DxLRc02NUXzAf1Fna72RLGRmkT/IbRE5DbHRZUdOUXjkgRFRp8PRQyiNUXnAaNFWoqJRDf3gkQITJtEeaA4RRvHoEQjmq5EDDHIRVm6uURvayVF3jjcROxnwkTUV0ZH5KTfRQgG9UfrdzJHDGfORA/cU0Wbc4pF1Z1LRpf2tUWxZMBHMpCmRXT71URArLdEi//NRqGfL0UioR9FvVL9RPaBlUVsB/ZET2skRTmC9UTm0rVFmjHLRBYVp0Q/CpBEMY+8REojZUUz99hEJlLMRK3WqESt3TxGhWn4ROXdDEWqvFJI+1OmRIG6CkjXsTxH81MGRtJKIEWMNR5F1p2YRT5nckXelndGYikWRe0nskQc6yVGfATuRAYJxEUfjpZEqSyVRUydjUXU6AdFc7G8RO51ukQLWU1F7Eu2RCg0v0RP/55EMjQcRftK60RQC5JF9qO3R1K7A0VkGZ9GeiuSREOzQkUEgWpG19z1RQR/OEVoyURF+bavRLIzqET+N51EkeFNRZDZCkUfw4hEsNOmRM2Xs0TXvpBE3DwVRS5nQ0W4mT5F1nCTRPfTtUTCsPxEorbcRFL3VUXhEKZERaWnRPfo8kVLVjZFXXCoRJbBCUbRW51FbA/YRLZ880Rq6bVE2N6/RuDBikRoDYVGPQKiRG7s60UAaXNFSLPBRFstOkbasRRGxaLvRe7s1USrzXZFMNhXRWtPE0VTwRdFFMStRHsBxUW3ObtESH+URH34kkWj8ZhEsiN6RbWFIUZ2ksNEsYMyReLx6kQP6g5Fcx+dRCT9kkSXtIpF3d4oRa/gl0XI6tNESvqPRHW7jkThERBFb2FJRkymkUUZhgtFfrTgRei8ukUrReZFhgCQRMZuZEWL/q5E60gyRWJ1Qka6Pz1Gh2EfRu7qsUTwGIBFvIXERBISO0XYvSdFvQUcRT8+YkZ71oVFb/nSRCpC00SHswhF7eXIRDYVpERvFtpE09EsRnqBs0R6CABFSnu1RIvouUTjMvFE/cS2RH6Cw0TqzoNEKnN8SJysjkQhCFdFB7boRF1Mz0emAtNEdentRPhFgEf4PAtFDI9ERsq5wkTKakJFqamHRUZktETxzZtEHCQqRSFFqERadIhGFL6nRXKpxUSaoMpFEbUZRfrT00ToDKlECI4JRbmnI0fCz5lEptHdREFq8UV+yRVFdNPHREbmLkbgFqNERJ8FRUF9vER4AJVEAIK5RAw59kS7QZREBdubRKpUxUQT9pFEM/MFRgDinUQXmSJFC7hbRfQeqUSWe85FmrUzRR7GpkTJUWFG7/AdRbbqRUUPKaxEvUC1RKHZDUXKNMxE6vq8RXUtNkUuhhVGA5K+RHBvUEXxDR5GigHDRC20aUVFaMJEajImRT09nkVMRzBFGiiQRODxtEQnL/tE6HCwREBkI0Vf6rVESts/Ra0oyEQA49dEvfjERN7FFUWinx1FQiztRKgRlEUwMqlEyuG5R0rDDEfAKLhEDSvJRBX6sUZBb4pFsX7nRYnRvEWaYINFgg88RUKl00TlBw1FeeeIRCGlpkSQ5rREFBmFRdfdl0RTQaxE5aidRBDs50WV+rtFF1sfRS/tEUUDgBRHIl4ERkYT7UdxeMREiN2qRd1AN0ciMKBFfWTzRCvA40b9q8VEl9ISRuOB8URKajJFciZkReCsyUSR/edEQ8WURWBaFEVB3c5EVrieRIwSwUQtdMZEtAgoRXuin0bgir1FDO24RcEC6EQEKcpFbm3ORPEwrURDvONETQKLRFIFrkTjbXNFvmSGRfxE6kRBdL1EC37ORNGC0ETO+h5I4ChMR5YltkTos/xF9fPFRIGAtEWqDKpEhEFRSaDcj0V8mjNFExMKSTw2tETcB2tIeNF3RwF/r0WWIs1EMRKaRAALX0XA+SBGDaCbRAeIwUSxF7BE9eGvRLLo5EQR0QBHNzlyRkFjB0d6gwxFzxfpRdn5/UXwvKpEKxNbRRmaiEUBSYtEztiuRKRm6kQO4cVEVH35Rqeyf0Z0bhJGE78JRbPJQEUDb65EQyKxRNaLP0eGHFdHGhruRpTARkaI9wdFK9qNRKaA1kRkpEpFrUMHRQjRAUV7vOREbw6NRcACz0U9J+lEGViJRQpbKUa9Sc9FzO5yRYI6f0XpqhJFRt22RNrtpESu38JELzOQRJUBB0YZV4VF7jFNRYkhJEYIGYhFPIohRQneEkVdMzNFVUmeRA== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - +UT8G27BckAqpIXh4cJyQNRQ4g08w3JAJSrAa6bRckAkXHzFD9JyQLo33JtD0nJAg9Ni8LbgckB0wbvcUOJyQGnA7GCO4nJAOk6eXyTjckAmkcyTkeZyQH46bghS8XJALXXYYcrxckC0TGkYUPJyQIVbT3s6AnNAanExX9ECc0Cf+DFn+gNzQC5pcrgkC3NAX4TGcCgSc0Ci7hkBvBJzQNB4KeksE3NA9h+bAwYUc0DSHAJZeR9zQDSWFBk5IXNAOBcOgsoic0C9aUO7ECNzQP8ZvlnPJHNAl/eaKiAwc0Dqeij/PDRzQIbnwny7P3NAp4WMq3pBc0DSawgVJUJzQMgPZkW6QnNAln5m2HlEc0D0oOV8c1BzQMS0rrASUXNA/nTXyZtRc0DWRP2xolNzQK2KeXRmX3NAvNme9fpfc0DwqWvBi2BzQDQk9x05Y3NAyMRSfhxwc0D63lp/mHBzQP53HI+9cHNAKrJLDeZwc0Be0/wOeYBzQIn6vNijgHNA4IxzsMWAc0BA8lMb2YBzQIqsVf/sgHNA74mmLF2Cc0DiyT9lh5BzQGILru+ykHNAkgjmayWRc0CvLa/wTJJzQA7NV51ck3NAChXnQPeUc0D0CWS9uKBzQOACMPPeoHNA4ceNV+agc0DUONV1W6JzQNZ53GEio3NAKvGQWQSlc0DG/HYZx7BzQJoZO4V+sXNA98XWCHyyc0Cs2SZMt7NzQMJwmRQOtHNAkPg3ln7Bc0C5CCaDz8JzQJQYXwrkwnNAZA/H5SbDc0B+mRac6spzQL2Koety0XNAix/7eQLTc0ASUf159dNzQDFJMnDi1HNAw/bueg3bc0AgN7vPNuFzQCDEbgpk4XNAJCGi8Hnic0C4GbIhE+NzQIJb1A439HNA+maq83cBdEAUjlcOvAJ0QGnxaL48EHRAJELnwpwRdEBCqq+juhF0QMD2jcW0EnRAbP9vZEwTdEAmrr38TCB0QBrxlWayInRADlaxg/kidEAxUxVOUDB0QKYLf/imP3RAptyV7+I/dECVfNtZDkB0QGZwMi87Q3RAnXjF3npDdEClSE0AG0t0QJLHcbGkT3RAzj281MNPdECdktd8AFB0QIyrB/63UHRAzOz2fCFTdEAtW//filV0QPV3mWY7W3RAfCtUFCFddEA8qPt4uGB0QKI2ssRMYXRAhFzCaQhidEAwGYawemJ0QCSs9/4iY3RA1irjAENjdEDMYzisxGd0QEJdJCPWZ3RAlpy0yh1tdEDqBM6QInB0QMNpIAyWcHRA5ZXwAUFxdEDYU8f1eXJ0QP7LSfK+cnRAU0sjXTtzdEChK8aH94B0QH9VDjNPgXRAJYtpss+CdEAw562tFJB0QE7n9KtNkXRAMr/AUcSfdEC6fFIm8J90QFJaqb6qoHRAWn2zc+GgdEB4LXh5FKJ0QJOOlSoPo3RA5p3ejgKxdEA2MxRH+7J0QPz2VXC7wnRAspz/PE7DdEAGBDPRt8R0QMg20wv6znRACvSLianRdEAQjq22UNN0QCz3l0dX23RAezfxfrjgdEA1n//vIuF0QCB3sJ2n4XRAjxz5//vidEDGX7oAYON0QLecZruO43RAjCnykJvxdEAQyN/FjPN0QIA7wS31+nRAIKTeRTsAdUAV0Is3zgB1QEbs2CvNAXVAqgOG7FsCdUCuPx2bIRB1QKJPsd/AEXVAqjwtByEUdUCcDz7wOiB1QGQevsSdInVA/rTp+GgwdUA52J3kqzJ1QLbBB3PLNXVA+A3FcSZAdUD+R0DHUkB1QOJ7w254QHVA4B0I2X1CdUAS1v3z3UJ1QERp/QXXR3VA0iNNLSJNdUDe2HauLk11QKqvSAwjUHVAcuRjnzRQdUBfMJtke1B1QMqQ80puUXVAAr81QoFRdUDa3/r8TVR1QMT9hosNYHVAAZgzq2ZgdUBU8DkBoGB1QBqwd0BlcHVAXsrHn4ZzdUBiAbsljXR1QMxHOJ6Ne3VAkWDaWUyAdUD6/W+kmoB1QO6ON1qtgXVAZ3K0O6aDdUDW2OwMmoR1QAuCeMTMkXVANmMwI7ahdUA92G5kdLF1QLxNPQ6AsnVALOIFBPC/dUAQA6oJs8B1QHAjzSTPw3VAlfOuBGjRdUBCOdETZ9J1QD/VEI8O4XVAdNrmewfidUD+eu8vkf91QM7xkf5IAnZAt37YAtADdkBU15iIrw92QP6htr5uEXZA+qiMskkWdkBA+MpZfhl2QCe2l3/JGnZA0drHSs4edkBKLIIuiiJ2QDmAlFOQJHZAufUb3UkrdkAgXqwWHzF2QFV4GL5NQHZAEC1iQqVAdkCcMEGxHEF2QOrdJqjIQnZAKMyoT3lEdkA9mCXEXVB2QNY7dG/9UHZACqgypsxUdkCImAhoj2B2QE6fKFO7YHZA7lmE/flgdkC8jYs8IGF2QGQNWIfaZHZAc33GPItwdkAd77/+rnB2QAZ02RzucHZAi0kETJx/dkB8f9Jy0X92QDoCBmaEgHZAfZHDnJGDdkCM5tx395F2QIaNAofBsnZAmSB7f3uzdkCs4H5UDLR2QMQ8Fjd8wXZAgCNWtRjEdkCeHdZqz852QFbemGdv0XZA+zM2ybfydkCamoM8kfN2QE0RikxNAHdAakyO/wASd0Avghujux93QF1gSBqOIHdAefcVxQkid0AVlp2FciJ3QLRX+kINNXdATFc7fXo9d0A67n6WnEF3QLpwIoQaRXdAGM25i0lRd0B0eDyGkVF3QGw/wYEoVXdAZo65po9hd0Byi663J293QMIpcXUWkXdAMf/Q2fqgd0C8z0QWFKF3QLIA539Aw3dAhkS8IlLyd0B/4+op+/93QAraPus4AHhA/aofrlMAeEAQPt2L9wF4QGL9pEI+IHhAV/FIF20ieEDmcGN+OzB4QGx70yddMHhAO27YQDFAeEAqWFd9S0F4QNghsPIqQnhAQ4WtCetDeECk0Ho+E0R4QCNuKiV6RXhAXtS4j6RReECfEYmyylF4QMFV+diHVXhAOMAB9/hgeEBYeq2gOGF4QKYkSNZjYXhAVQyDpbRheEDkjFOolmJ4QKYUKSVYcXhAICScJHB0eEBkatqGi3R4QOrSW0rKdHhAtqR00MJ4eECU3dNP9nt4QB6i4dEgfnhAISRVpaSBeECWhIPqmYR4QJpEiOmVkXhAqplq5KeUeEAVd+VE9sF4QErVyQ4VyXhA2JO+5hnSeEBXBQgzttR4QJhr8LU24nhAvsBOpQL0eEACdUDhjPV4QAoEC23O+3hAwBHnkXkAeUChcrLSmgV5QJpHMJqEE3lA5IGCyLMoeUCEGR2sCy55QNDfgKR5MXlAk+8IDP1DeUDq6vSklFJ5QFKUnl/MVHlALih2CCKNeUDOJcSFNqJ5QMVJOO7AsnlAFIh7i6XBeUDS14THQdR5QP0Cuh3M1XlA3fDyCibgeUDZfFhx+gB6QJ+QNwb6BXpAEPly9JgSekCMnk9u5iB6QAXTLQgSIXpAIimseCgjekAoto1uLyt6QLSWNTRpMHpAFZRt3+AwekBAGc+0BjF6QHMgq1ggM3pACjITkAw1ekBMNMqzJjt6QFjkcPPeQHpAnJnJ/C1DekD8Hp0oGkV6QCxGY7chXHpAMBJFpMFzekDySvrEgXl6QDq77CfafnpARo7y+qWBekALYnNmzoN6QJYKcsgNtnpAS48gNE3LekCeKgknPOR6QAIPD3g27npAPScPcF/xekBXbGP/fAR7QJbPBUjGC3tAfmkUOisOe0BYKf5vTBV7QK4WTW4MIXtAXRNWqGUhe0BC6UlpWyV7QJilt3+QPntAORKWAulDe0CBkFyZQkl7QNZ0LEucTntA2ZFah/FTe0Bs5Yy/I5V7QOINZNV8xntA8M71V5Xge0CGLeD/v+B7QJYIFp2y8HtATvMnAYz1e0CWUQIA2QF8QMqNJDiZBXxAEA3JQdMRfECSFqVUzUF8QDQOmB/pTHxAaaXDXL1YfEDgSpvQKox8QKS/EaJoxHxA/DYu3MvTfECSpWTou+B8QHATwgFY4nxAXyhkrRTyfEDCnX7kU/J8QBLnImxz8nxAphm8NwICfUDVGoD/SwJ9QJwEmPAABH1AdTWzMwcMfUAGLH/SoDF9QM+LaR/+a31AAhcSZCBzfUAyVgfriJR9QHFtddO2lH1AinfZoy7EfUD3Gu7a5sR9QKI2T9CQ/n1A3ZQYo6QdfkALonWV/SJ+QCjLxKnScH5AbtyH0J6DfkAPHwDOpot+QLLNIrKXk35Afa9Qq6mTfkD8gT4PmZR+QP3wwk/ymX5AnVPNQ0mffkCsgM9VaqB+QDrMXA2ioH5AdOOSLyalfkDO0XkG9q5+QM7/ZDDus35AEt755k+0fkBzLnhaqbl+QA6iWezNxH5AD4HAVgTkfkCiLjtoB+h+QBDPFPEI7H5Ar6u4kE30fkA8nD2Ap/l+QJlweT0A/35AXhHLq1oEf0DywcNXqTl/QE4lDf+5XH9AMljGtxJif0CI3TXnaWJ/QMNgQjnpYn9AAfww9b5kf0DuME5Nt3F/QJILBEuxgX9AMIqqAUOPf0B+EBe6Y5F/QCBfOVKpkX9A569v+V6hf0BS0IV0VrF/QI4t4Vyx239AuG3Y36AXgEDO70HJzBmAQFgMqttrIoBArgYWi99BgEC80zU3qkKAQOYyNm3wSIBA1L0YkeVQgEB2mAqPE1GAQAQ9R74DVIBA2OKyGAVWgEAh1nkiBliAQFmE6zQmWIBArVpGQg9ZgEBg2A3PMlqAQLw7OQI2XoBADsuj6QphgEBDNlUfHmiAQA5pnpAob4BAXZ7aqBVygEDIXlhmK3OAQJa5SnDCdIBAcG5zY293gECU9765HnqAQNxN1WIxe4BAarR3Kyd/gEB5BDJxZoeAQIS/kxUAj4BAwD62gB6PgEAos3r/qpGAQJLClZhKloBA7EJk6x+XgECh6P/8xZmAQFe4+bdImoBAQPQv4gucgEAr9GraG5+AQIT8qLTOpIBAmn2H3YelgEC+wmZj/aaAQPz8vsWGqYBANqdxB/CugEA21TG2E6+AQFDT7WkfsYBA/+8BZoSxgEAM36tK2bGAQIQJWRd7soBApmS/oZSygEBKLxUNyrKAQHC+JQ8Vt4BAm4Iwrgq8gEAztQdu+b6AQNx3Ik2qv4BAVXfhilLBgECW4X2DccGAQJH1Bv2mx4BAzgm0kCHJgEAouBNZU8mAQO7V5TjYyYBAziYdQTXKgECVtc2lTNGAQFA5HPZf0YBAys//ZwLYgEAwO5fDStmAQEBHA99E4YBAWpwYQ/XogEBSDyQKE+mAQMw2eWtM74BAOsAtzj//gEC+IXHsQAeBQH8KaXU+D4FAIBb2PIoagUAlQlswqBqBQFMndOE1HYFAbpHOuDQfgUAi3EqR5R+BQPUeItw2J4FAtAdKaDAvgUBno1ckRC+BQC7EeNS7MYFAOE6VqSk/gUC6NCVLLEeBQMLW4+CyZoFAXmToGVaPgUDXABiKhZCBQOjJdw5Yl4FA5vhoqFKfgUAkFQu73qKBQHRwuq5rqIFAf9D2VUqvgUCudcHoS7eBQPRrQDwnwYFAQxbnQnzTgUAwApqX3PGBQE9yy6px8oFA1FUROgH2gUAmmpflAfqBQDtyxJIECYJATr8IDrURgkCWxU+dtBKCQI3jBY64FYJABkR+wtgYgkCW1bP7vBmCQEkZ/HLXIIJAIleAIdYigkCoGLUJ+DmCQJoWN1JxPIJAdn4MI/dBgkBK/2HJCEKCQEfgfPoyRYJAQcHMJw1SgkDhDLbZ01qCQAvToG1pXIJALW8YJBVmgkDMlX8vrmeCQMlAg613aIJAkYDEIjppgkAb5ENdCWqCQOBSklOga4JAEHrnOjp1gkBapRcWBnaCQM769lWfd4JAgI+Ktd56gkAhBETF5oKCQGKlVm5DiYJAsEnW2qCLgkAgofCURJGCQIKYv0k9mYJARs2IWw6hgkDS7UDKPKGCQLAs2cTdoYJAPSKU5+ClgkAhV14UEKmCQPI2uQs1qYJA0NQ5lVGwgkCMvsM/ftqCQDxN0rzV4oJAggS3uNzqgkBYp7WnUfaCQDx1dpxS+IJAer7B2K75gkAmK0wSVPqCQGHIAORX/IJAIp2ZDFP+gkD5Wgd6FQODQFzW5m8cC4NA2wzroXkRg0AtAzULIxODQLqD1mlIGYNA1uwkfHoZg0BOlSy8ZCCDQAFYqfhTIYNA3wwYfHMhg0BQf6uccimDQGKdSTtbMINATzeo7mkxg0CYrLoeNzKDQL6GtEUdOYNAemDQet46g0BbruHuY16DQMGLT58HaoNAEAoaLQuDg0CZuztvI6eDQJ4CPEJnqoNAmNtZuNS6g0CpoU7HRb2DQCgYCmzyv4NAKJlFU57Cg0AGvgT33MKDQA3yeQyo/4NAzMjowlQChEDZZlh9C0OEQIhFxipsSYRAXJLqrBJLhECXaa+E8U+EQE9JUfahUoRAgZg68xhThEDOID8lS1WEQEhUjsWgV4RAGjXxwEpjhEC2irb6/miEQNnd4EvlaoRAzEV+Q6puhEDqt2ra526EQOkdD7MQb4RAGq/cK/9whEBsCV+s6nKEQBgI2WgQc4RAcY9A9e12hECfb3OwyHeEQBtFGzj1eIRApgWQinh6hECcZHYi8XqEQN2lZuMifYRA6Ij7jfF+hEBm+U9AcICEQJTwwklagYRAkuIeOh6DhEB0i37xxYWEQLTd9PdYlYRAutBD6QCYhECWTw/oadmEQNEku79p4YRAgu36qUDjhEBW/CzZYumEQACc5lRH64RATe4/LTbxhECuy58/YfGEQIBcan9L84RAxG8smpf0hEB9wFysNPmEQAoX131c+YRARNxSqT4ehUB/MS2DhiiFQASQBR+gYYVA7Z0nX6BphUDBlOeKmHGFQFgbSpCZeYVA2mNVUZCBhUCeJTHR7I6FQFGtjDvwkoVAIC/gMTfAhUBTl7st48KFQE9J0uiT7YVADiddMEDwhUCunHyN6/KFQKCM3gGa9YVAbGuh/UT4hUA0Qdo+i4aGQGaxw1qNioZAPVVP0xmghkDAGjLhhPKGQLBB4hu9+oZAs7Bq0jL/hkB+By74NgOHQJnvX6s6B4dATQXZXJEph0BKkS6DkDGHQEoGHvuJOYdAvBQTb4tBh0DiYoI2N2eHQDzAhBg8a4dADFMsJGijh0Cl3gjTaaeHQAh3wIZsq4dAEJsKHcexh0CopWURxbmHQGyUjye/wYdAWPayQsPJh0CSbHJdg+6HQAVvSYuF8odATmBfKKT1h0C86FAcVPiHQNNzoxv9+odAsjGS9Q06iEAPxEm7GqeIQPKE7u4eq4hA + NrgMGZxjYkAsECBNt2JvQI8BR/y9MnFA3WIk4HPidUCPXyNQFkR4QPqz4MrLcnlArbDfOm7Ue0D9iF4PEkKAQLoFOjrDAoFA4wXBCdY6hEC32z4HikKEQA== - + - F9fFRZMs0ES8tg1Fhw+tRD66w0Sa3ApHArKlRDjkO0X7pz5FwMTHRHSt/kSCxrlFKnEWRQJI20TKDBZF34ILRUob90YLoV1F7Ie5RBvcEkZ+dw5F5s+BRSF7NUX7XDFG3o3iRHpclERc34xFzdXGRBmym0RhR9JEbu8yRVx0vkTCIclErBfMRdkIwkQeJgNFDFQgRfRjbUVVbstEPbYZRRSYKEZG+ylFb/rTRD6a5UScHM5EbFgAR/UekEhZElRGAqM1RaghjUU9HRFFQZnARXUS8EZO+yZFp+/9Ra5+I0fZ4FxFvkAqRhFukEeddb1E0WrMRPtou0XoBKtEDwYLRVIk0UVBoQlHynmZRN8ugkUXtNBE9D2IRQ+I0UWzgARHIbCKRDIf5UVxZiVFYstiRdf3qETlfbdFgVqeRG0KBUXSrKpEJ4u9REHupEQrvcBEx9u4RePeCkXU+7lF7uOpRFT0vUVw65xEHwdNRTBylESzsaFF9PjMRD8HEUXZPO5FK3eNRSCmsURrq65ENRvQRBwF8kZ1YeRES4a+RAlZtUQNrwhGeggQRusrCkU57QxGlHVcRyT0Q0XcTLREC0UPRVmNpUbZdrpEQp0ZRaNdb0Vw9dREX24DRbXNmEWZZZZENcQVR15wBUVJNcVEE5liRYK0O0X4l4VF0EG0RBPqqUWp5XlF50y9RHoXH0X7waFE2E2wRVbgREUtokBFEqnxRAtHzURBcahE+H0IRYdBVUV3CcNEQT2ER0y7CEdtQmBGeKmmREXEvUQvWBBGLgWqRCLrI0UxpcdEwLrURWHvj0UybM9E08ZKRa+iuEQ8v/VE36pZRajjFUUuMHdFE5DZRO7YFEXwPGdGljruRFDo6UQ2Jc5EtM9bR03FpUVqM9FEQgpbRiNGI0UMuaVFK0f8RAuPvESnhnpFJr5HRc9LUEUey+lEtZK9RF0bo0Rum+VF/dQHR5oyJ0VKV/xE9ziSRi54okam4ZhFEeUIRYtpyUSwiXVFFpUsRfBtEUWAMrJE/vyrREgSFkWP9FtFT1Y6RXkfpET/5vhE0+y8Rcn8EkVMmbRETtojRTk/ZUVmH3tFMo4GRQNxrESP1wxFWmD4RJp8yEQeT8BEOMnERJFVRUVvMOdFZdypRYND+UZH8ipG6WwDRbRyokXHlYtFGfc1RcznwkSOo4BGUsrORu287UaqM69EMGZERSjxrUQbbJJF/q8HRVm3M0ZxJB9FojEfRWyt1kUvtANFHOspRQ0ocUU6iyZFwfq0RJ+2s0VZpQRFZjydRMF2DEXwsSdF+FYIRfg2zkSQE7ZEFGtZRocMGEUj5uxEcIQCRRMgx0QUpPRH2P0HRTgprUa7561GXZ6oRfUaS0ben/1E3+HqRGUJVUWo3MlF+6iaRGGBt0S1nJdExh7GRHses0QLMwNFInbYRKuxRUVduwxH9AY5Rarhs0XV2q9FiA1mRcuUE0VKG+lEQ2U8RYME8kQ0lj1GnztPRbUc7EXH2RZFPGbHRPqiG0e2FgNFz0MTRbMDGkUscN5FUoBLRirQS0l4BtVEDAjlRJRxLEVC/75EK4oPRfXmTEhMI1lFZqSXRgN7H0Zg1rdEepIHRc9oLkXB2DZFuYNHRarYCEY48cREBSmmRC9u4UTogA9FFcAcRr14KUX4T75EYQcCRY59R0XaYJ9F2M4nRVPB+kTuuH9FCZLtRBCO1kWPdFZFapvaRNx7DEUR0tpEWG8rRcjHMEfiuN9FYeIASNAeQ0flEk5FmVJ8RWJ2y0W4Ei9GwVTcRwkib0VeIAtFclO/RPva40a38nFFNG8URXd1Y0WM4QtFCl8jRc/HB0VNfr9F2P3fRFbdBEW6lMRE4fO3RKKrNUXxFfNEBhSrRISFNka1cQJFJeqrRG2HQUWUckRIBO0MSHEeTkcsqVVGUdDXRHGVRkXmAaZEinfBRMbCd0VI4+lECaepRt1iTUZPHrdFmPiYRdHEk0U7XMxE45gTRVEHDEWwyzlFJvcURWUBMEUBkLJHFQgfRXIHrUa7f1pFWAcSRVYeVUZYURFG8MKPRcCFokQGB0xFX8NzRRhes0QwK6REf1n2RCVhIkU63ABFdY6JRTiBP0UkTNdE9bDwRU0UZkU4WJtE5jGRRJu9pUW2W1hFSZGyRIwp60S5XbJEU0dZRUylvUYeQKtEI8GoRhmoyUVFZeJEI9ENRo/bm0Y1v6RFog++RN1w30Xv4qxFptQ5RYyV+kSRUxJGnEWqRKNNsUQn2s5E2LRJRSJpp0USzK1Esyi5RGAcLEZlRhhFMyqRRdsLFUWDMAVFC++sRK7b1UTeAJlFwjsERX4zmkWHBBdF4K/GRC9Eq0bWQh1F0xkqRSZF0UQJJBxGHQ/2RcZVJ0as8HtFkGi2RBIh8ETqLxNFLV9qRjwRa0boukNG/UjGRUh1DkVBMV1FNmY6RaWemkRCphpFpV6DRsyr20Rn6zpFqyglRX6MAUWC7qNEvnrARFe0JEW53hJFCrkXReu3CEU9B+ZEmO/PRMG+TUbhn4NFVI68RBAXMUVrFr1Er4AURRaUS0VD+gBFNsjkRPo2F0UpnyNFA9WsSOz8yUT4hl9FUOUARae2IkjhchtFO3PSRG6fq0cGt6pFsn63RP+Hl0bcL+VFoqTmRHYNskRisghFAV+VRnHRi0Whc/NFnpZcRXlE+kRZzG5FpqcsR0eU+0TwAgZGsscpRRAT60S0R+xEOj4kRmrkykRgl+BEzcsRRikO2URh/CRFTGAoRW9IqUUXhMpE146CRux1NkWu+eRE3UgaRSGTrERraNJEQ4LeRTh6CkUdTBpF7R6KRnCrKEXgdQtG+0kmRkqXQkXa0oJFR3nWRPQntETX885EM9uOROBfjkSz6uZEgiaaRIvS5URdiyBFJSr4RC65CUUeds9E4SPPRKi+UEVZUW9FAgQCRVZYAUVZB9tEXmAxRrERJEXde4lIV9fFRJY2FUj5WJFHNkVuRb4fsEYOEJRFEb2CRTpH5kRDIP9FfF8gRdjL+UR2R6RFDPC8RHxrVUbXDFFGu+6TRLnqB0b/SppFA1anROnEfke+FplGY+x+SCspV0WYqYFF7/b2RynHCEa3UilFaN6LR7Wap0ZyNwNF6Ey+RbDSwETaldlE6rCERX/CJUVhAA5FB0H0RJRgAEWjlQpFJ1CfRn/yS0XVDwpGb+zRRK5zp0UXN5VFyxg0RZvTBUhPDZdEyZkrR2aUD0WT3FFFf1nqRSw490SQ4L9EfdDiRJ48yEVDZmtJNcwPRe6rK0klL4ZFq3k+RTK3hEiTxs5EdXSNR2EYN0V08qJEFh6LRYC5b0Yq0ydFldaiROSLnkRA8gdFoL7RRGuwuUTNCbBEPfu4RByag0euNvdGKgXXRuQRi0aFf/ZFZDBuRUaX2kUCij9FqBefRM1f4ERA0EVF2krFRLT0z0QBXE9HvEG7RubWhEZWjsxFuFTZRD62xETMhghF5RgWRQXi0URFVw5He20GR1ErsUZb7e5FaAlxRRUKRUX5nDJFdczsREV2mkSH6KhFHgakRRuDbEUzD8REveFwRtq5vkVOD6NFT/QBRWf7ZkUUwB5F1zI3RSsmJ0VRorhEHc4kRt/SiUW8yU5FX3ufREc0i0VM0n1FHipjRTpF40QqjDRF0I7TROQ9x0Q1sNFE + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 8mRXq27BckCQCU6z5MJyQPYpspE7w3JAEk7e3FnFckC3ILccENJyQP9+8ihD0nJATLvkeXfTckDaSyNzUOJyQL6fPvOP4nJAlK84gSXjckB4CrImUfFyQMsf89zJ8XJA7ApBfVDyckDRyi7rtfNyQJPIyeCi9HJAtorw8MD/ckDNuKjCWQFzQAEbcOI6AnNAcOZrU88Cc0D4K0ul+gNzQFw4LpwlC3NAYnXazP4Rc0BYskCjvBJzQIBORGgtE3NAzo2aB/gTc0BolFjSBRRzQCJ4ywF6H3NA4TuLCDkhc0DqQTXdpiNzQPLj9AvPJHNAsp26OVYxc0AdTT6ctz9zQBbR+ZXhQHNA7M6ZUHhBc0B7eaWyekRzQBONvdoXUHNATnPIIBRRc0AofFcVm1FzQO9H0GdDU3NAPp1fBqNTc0BAP9nFd1RzQIZlvAqCVHNAFjYlam1fc0C07ibi+F9zQFKIWZJlYHNASav6rotgc0Cksj1XH2JzQKisVKv5YnNAfPU+dzljc0DKgDaaHHBzQJKzYklYcHNAOo6bd5pwc0CU+GUuu3BzQGpp/c7lcHNAe0x/wfpyc0DaGGsiuHRzQEhNlT5LdXNAhlHDCnmAc0DCmjxno4BzQCRQnPTbgHNAEaZ1IV2Cc0CPG75Rh5BzQKYZriCxkHNAVCAUceWQc0BI/Xq7JZFzQArQNn3AkXNAvvVS9kySc0BATh9wWpNzQMSZW0T3lHNAdHqeYGGbc0BB0yBoh6BzQFprDrG4oHNAiytpmeSgc0DehSrBWaJzQCZ5K6cDpXNA5PPY7sewc0CwL6gWfrFzQLlWX661s3NAxqDJkA20c0DaAticfMFzQLwoTpnjwnNAb3bWoCfDc0Buut3t68pzQC5F6Lxx0XNAADTUJqTRc0D1Bg6z2NFzQM7pmBLw0nNAchGidwXTc0DE5wNGJNNzQCxzBrX203NAo2BqAOLUc0AUaWJFOOFzQGK+034P43NA5baxjGXvc0AuUXd9N/RzQAR8uxN5AXRApA0mdrkCdEBqVnSsPBB0QGFfRD65EXRAzW+kRksTdEBA6TqRdxR0QL1DJx9KIHRA58etHMchdEDzTjVisiJ0QEscFG9QMHRAUL4POe0wdEBDnJTzpT90QFabRTLiP3RAkroskA5AdECxr+J+xUF0QKqul2o7Q3RAWN32kRpLdED+Ic37p090QDLc/H0BUHRAnvChIbhQdEDKSEPZIVN0QHKwDib2VHRAYpsHxYxVdECTnyklOlt0QIKqHOMgXXRAbO/NTCBgdECpPAwGe2B0QDadKda2YHRAd3UopwdidEByw6+0emJ0QMJuFoBAY3RASf5M+U1kdEBeHvEyxWd0QK/K3+nTZ3RASawRtyJwdEBFHqzMQHF0QCT+7qF6cnRAo3pm3TpzdEA8autD+IB0QIHSED1PgXRAl7scdc+CdEDViVY/FpB0QLQu+Q5PkXRAQKum6fGfdEBKUJMNpKB0QGalgkjhoHRAvqCZYDuhdEB67ZSSTaF0QMswQl8TonRAwnDs3juidEAaeqq8t6J0QGZrekkQo3RALjc9mw2wdEBYclW3/7B0QAoe8xv7snRAJlxJCO6/dEB8TfAwA8F0QPIhgUdRw3RAXqSDhrfEdEB82h1oqdF0QDTqMuVQ03RArtkS08rUdEBADuQbV9t0QMDihmSo4XRAslaTfvridECCqasTceN0QDlt25+P43RAZKvNmJvxdEBbpiUTjfN0QO5QSrb2+nRAuP+rmzwAdUABRlb7zgF1QCDGFaNbAnVAREBodKUCdUDOXYPAIhB1QEAnGYHCEXVACqqd3NASdUBjgew1JBR1QK7V5IvmH3VAkuLzRDsgdUCJn9cEnSJ1QGyhymVrMHVAhN6rIaoydUCEz+wbzDV1QFtClKjvN3VAA50IcyZAdUCYy7sKUkB1QDTPd4B9QnVALkIeK9xCdUCNKjYO2Ed1QLZWUekjTXVAtFb/SeBPdUB0fLmW+091QMOJGOslUHVATL6fOj9QdUDWm+AZfFB1QB8J2OZ3VXVAgX2nQQ1gdUB6chLtHWB1QMzfmGVmYHVA+lbb4aBgdUCG7SjpN2F1QJRz3KNlcHVAIOxcnXxwdUDqgxZuKnJ1QGA6pZmFc3VACWsoBo10dUC0y9IwjXt1QPSa3mNLgHVA4c0tOZmAdUDutqTwdoF1QEwNhmWtgXVAEfVx8aSDdUB47R1UmoR1QMZJVm28kXVAAC7sFnSxdUDCPb1kf7J1QJLMWJrvv3VA7km4//fBdUAyznhoaNF1QPIzBJYN4XVAqD6PCkzhdUBVIIzx5PB1QGr+bIeR/3VAmiBbhL7/dUDo7zHRTgF2QDiYiSZIAnZAquttHNIDdkAxkGA1sQ92QFVR2ipuEXZA1+cZ4EgWdkBk2ZL8yRp2QHhuNif8IHZASMOhbogidkBIG3f1jyR2QH90kZJKK3ZA58/2th8xdkBRKepSKDJ2QKYBBt5PM3ZAzgI0NU5AdkCL71aDHUF2QCkaMJTIQnZAxcdv1nlEdkCEH3tw/lB2QGhPZwfNVHZAjMITG49gdkBmy1/2+2B2QIs4MpzcZHZA2G1+GK9wdkCT1Li363B2QMza9qqcf3ZAxqz3mNF/dkBAHBq4g4B2QJ4EzAhqgnZATiNht5ODdkAa65/X95F2QEYNd+i/n3ZASITh5I+ndkD06UMhwLJ2QEwtiRYMtHZAikAmor/AdkBt1zsdT8F2QByJ+nB7wXZAs/K5uM7OdkBwZVRuv9B2QKC9zU1x0XZATnaZvdLfdkCy8a/CDeB2QKwPT9m48nZAuXRe0I/zdkByEzeeTgB3QEAnA/QAEndAGnR9nbsfd0C0Fya0UCB3QBYlau2NIHdAyH7kDQ4id0DScKgdcyJ3QB6ooVykM3dA7gL+IQ01d0CArho9eD13QJ8x6X38P3dAJq0+bc1Ad0Dso/yZnEF3QOaRa5WOQ3dAWrQQ/xpFd0BMK1AhSlF3QCA5rvmRUXdATG/dmStVd0DjDryBjmF3QH72DhQnb3dARtWjG8lxd0C6dEL6GXd3QNTiwpoVkXdA+eT9gEyUd0Ces/bE+6B3QJDzeZBM03dAXu1qOO7gd0Cr47jEZPJ3QAoOnF76/3dA4Png/TgAeECHGXxU+AF4QDBciqoaEnhACgBpzz0geEBMPdg9eyB4QIY557xsInhAhCf6wYkjeECIHQLcpSR4QNOi/WY6MHhA/PJLJFwweEDAunmb0DJ4QNiXZ84wQHhArodSJCtCeEDwfEt4EUR4QOx3lCl5RXhAmhxuwaZReECyLjYJy1F4QIZkwCaIVXhA74hTHflgeEDYWJkhOGF4QMhytAJiYXhAVPp427RheECEi3EXSG14QLYk2TRHcXhA3PhdbJ1zeEDFhpSTi3R4QHkgFECrdHhAkd9rj8Z4eEBBDT3Q9Xt4QKTb0BgifnhAbqS1tzmBeEDYpEtqZYF4QJTVfE+jgXhANqmJsM2BeEAtX5YZmoR4QPC9BEdZkXhAlu7UgpmReEB2av/Kp5R4QLAf9/L2wXhAAPHBeyTCeED+8YIOGNJ4QDh0xKK21HhA1EXHxTbieEBw/Y9kAfR4QOpRFcSM9XhATtERFJwFeUDNzd8qhhN5QKouSIVkIHlACgPRG7IoeUBGqlh7DC55QPKHx6R1MXlAJFWz0lUyeUCLsN7s+EN5QPBuBE+WUnlAgtiGAc1UeUBnz15hQnN5QMJMVCM5onlA1oSmPsCyeUAYQZq8QdR5QLDw1aHO1XlAZFL/8wz0eUA1yofJ9wB6QGuk0kv4BXpA+GRD2JMSekCH/c3h5SB6QEjZ8NQRIXpAD9D1eygjekDxkxjaLit6QADONwhnMHpAJKCES+AwekCY0nPrBDF6QLyPlSYgM3pActWWkAw1ekCrcj05Jzt6QBnSpmbfQHpAIqwvby5DekCBK10cGkV6QEpnx2omVXpANM54XiFcekDk1ij8wXN6QITit2MeeXpAM4Uz8IF5ekAggmv/3X56QCtV/EnnoXpAKBX4lg22ekD9UBPeegR7QBXN1YjGC3tAfFfl1M0Te0AOt181TRV7QBJQ768MIXtA+STi81gle0BMZJzijz57QFan6zbpQ3tAOMDCPkJJe0A1N670mk57QH+e77f1U3tADGZGgCKVe0CkxJHIkOB7QCr3VaS+4HtA4c4W/7Lwe0B+bg/ui/V7QLhKBmh8AHxAMNFmwtkBfEAezaL8ZQR8QNxlDQGaBXxAeOL5xdMRfEDwTV9izUF8QEhTofzAWHxAEu4GnSRefEBsFwNVr4B8QH5pxCMtjHxAOcdTouzDfECG0X1VZMR8QE19MN34xHxACi57C7vgfEBmq5rD++B8QOTEVAtY4nxAG7TvGxXyfEDsfi6vU/J8QOx3Klhy8nxA6ucT2wACfUDDli3wSgJ9QLSNCz0ABH1AXySPlggMfUCizS5vRhJ9QH4Qe+Y+In1AbDxYoHo5fUCMAz4M01N9QHh5N6orZH1AcQgVOvxrfUAuqhk1IHN9QEaMiuZ6eH1AFDMY2rmUfUB0Q880uqJ9QJlIC727qn1ALurfuSzDfUAgUG8wLsR9QI2YQDjpxH1A+AuX5zDMfUCOyx4EMwB+QEaPeCamHX5A0+DsGTgffkDVX2Ah/SJ+QAorYJqhLX5AxeaTQY1VfkB+gc8EWF9+QNoLmGewZ35Aj6DVlp+DfkDBbHwcEoZ+QATx/BZ7h35AvdHReo+JfkBUfuRXpot+QCKMZdOYlH5A4o5oVfOZfkAdfhtuJqV+QLJqeuwXrn5AjvR11fWufkBGONv7dq9+QFo/b3VXs35AonYO9k+0fkDIQFFaNbV+QCRy2wyquX5AGoHiwwK/fkAmBNiz0MR+QN9uv0UD5H5AMtSVzgbofkBELvxzCOx+QK5SQ+Oo+X5AVm3zkwH/fkC+FpG2WgR/QF7Bi7axCX9A9oN2zaU5f0CN5VyDhkd/QJLP9Cy5XH9A1J1qjL1kf0BaEBxGt3F/QGXobbW2gX9AV0oZ8OiJf0BCRC/HY5F/QKS71TFdoX9AfRjUvKetf0APYbeIWLF/QHHF0Zf0zH9A2CPU/qrbf0BkFKbBtuN/QJ62G4b09H9AX8Bs1AsEgEB/67s+zgWAQAxh3PAMGoBAkF6UaXQagEC1HJ8dbCKAQBTOd2hvJoBAX5NgJMUxgEBydoIq4EGAQHQ7sE6pQoBAY6YDk+9IgEA6zig2E1GAQOYu5KEDVIBAsC2NsARWgEAS7ycVC1iAQKJuhdMmWIBAbHRVsg5ZgEBmjrN+MlqAQCuLGjE3XoBA2jOwhDligEDePZuoHGiAQOzKF8oqb4BAOCf+wxVygEDl/4USK3OAQLMoitjCdIBAjZnpWi13gEC8R8xccHeAQHY6DiAze4BACRhZeCl/gEC+Z7wO2IGAQCKzb9DBhIBARsBFgBKMgEBr7DBf/o6AQJruwPkdj4BA5aS6fYuQgEBSjXAYrZGAQOuysyYfl4BAXifGIcmZgEBUCUJwO5qAQC6n8TNJmoBAwht5JDqegEDWRnQ5HJ+AQP95L3NHo4BAGMCM/RKkgECUxmLkhamAQK/lNUkTr4BANoCQdKivgEDmKG/Cf7KAQOgg57PJsoBANmzkIgW0gEDYJI4nJrmAQJ6Xu4xPu4BAVqtgZsG8gEBULY2MUsGAQMxq+bTUwYBAbnj4ZFnCgEAlpPEF7saAQMJrxem0x4BACTfZVmDIgED5TSqjK8mAQCwt30tTyYBAejjy59fJgECcqJSGkMqAQPp/wgYl0YBAxjY/F0zRgEBxenPPBNiAQApi3PFI2YBAQ2ldR0XhgECbb5pg9+iAQAGOGlJK74BAmPFZT+r6gECcT7RwP/+AQIbybRcuBIFAQsoL6D4HgUDYh7soPg+BQPk6ovqJGoFAa4pQbDgdgUBW/q+zNB+BQMMem0PWIYFAgE32EaIigUA87oTdNSeBQOPEiVe1J4FAYaRMgzAvgUDS6+8AvDGBQGa35kQpP4FA5hNG8y9HgUA32X7XOE6BQKY/2sXSVIFAaPFSlPxVgUBL/jZRgFqBQPxSW4j6YYFAkPA80bJmgUCObe8TtmqBQIip2OXId4FAWaU6NMN6gUCNusSR8IGBQNL7ByLJh4FA+qRDDFaPgUClkN/0VJeBQDYUi2xTn4FAHBI+x96igUDWs9q+baiBQIKBIU9Kr4FAcR7TJEu3gUBCOw4P78GBQN4uaRgA5YFA2Pl/gXPygUC6JUbmAPaBQKVIWTn19oFA/Ey8HgT6gUChapYmAwmCQLyZFzm1EYJABAvVSrUSgkB0o3iduBWCQPl1npfYGIJAJMde5rwZgkBeTQhx1iCCQFCrTnPRKIJA7Dl9Ib8vgkCWbkOuoE+CQNHVxmQDUoJAOYdPhTlXgkBCXDUIoVuCQHDXY+3+XIJAEJg8/mdkgkDodyB83WaCQAzh7IJuaIJA0aNsnNZqgkBGyAX1bmyCQJhzvAJsdIJA6KGi+wZ2gkD6JP+SpHeCQCTj6Z5xeIJA6sCR5t56gkAaPYTZ5YKCQNpjnWfvhYJA2MHGfEOJgkAp52PAQ5GCQBYyrYbykoJAiOvuQDyZgkC2bQYpUZmCQIp7WB9PnIJAqIoCOg2hgkCjurQdO6GCQJjBzFfdoYJAGHQS7vehgkBK+VT/36WCQIXrOqAVqYJAIsq9bTWpgkDxDiquULCCQBl1DRZTuYJAFWp8PevFgkBOhDK0f9qCQNZkonjV4oJACNhXtN3qgkDF6eN9UfaCQPHUkeVS+IJAbmF141T6gkBG9BJ/VfyCQG7MfY5V/oJAhHVlbxUDg0DYZcCIHAuDQDTLE5B5EYNADl31pSATg0ByCT/lSRmDQCAyLPx5GYNANJweTmQgg0DqftHbciGDQELeXSuKIYNAemC3/m8pg0D+YYvGuSqDQEAHfSVcMINAcHdVr2oxg0AaapSYJjWDQHgMAj9pOYNAcvndLd86g0DkIl+7MVWDQL5bRPJhXoNAmL4Js2Vig0CY0COsSoGDQHZ43q4Bk4NASnIOQEGag0Cl9pZf1LqDQODXrNpEvYNAetKZD/K/g0CiHzBNncKDQDRx2CzbwoNAjs4uXZP4g0By1+7pd/2DQJWZ3gSp/4NA7XxSD1QChEBsL6b6AgWEQCci1JILQ4RAHysZYxJLhEDQyfTg8k+EQKoWfc6gUoRANI70uxhThEAGoHsmTlWEQFbaSEkxW4RA/HROZEtjhEDE4xauE2SEQAlQGLr/aIRAwpb+OuVqhEDecgy2DWuEQGWemmq2boRAq/y+v+duhEDcK8YnEm+EQBLyEHf/cIRANK9wg+pyhEBAUKfV8HSEQFA3E7vLdYRAuWBbie12hEBZqRRnyXeEQIxwG35weIRAGmZC1vh4hECTRte4enqEQJbsA9LveoRAG5Nf8CR9hEDd4g4R8X6EQBr4LtqwqoRALDeliPWshEBmHbTIadmEQMYyluxp4YRAqX5LbEDjhEAuZoVoYemEQHI8q3dH64RA0rl6VDTxhECmcz50YvGEQK5jE2FM84RAz0CTCzL5hEASyz3k3hWFQA6dPrCCKIVApKL59p9hhUCxoUIzoWmFQApxLpyZcYVAdL9LQJh5hUByL+XZW3qFQCjDoFiRgYVA1AtIHeiOhUARDeV/7ZKFQCikvPU1wIVASfWq6ZLthUAuRZRkQPCFQOSSF3/r8oVAQD+cq5r1hUDkNMpaR/iFQDuvgxe/JoZA/mPaXFg9hkBElwztWEKGQHjU6uMKg4ZAi5mu4YmGhkBk3+S4joqGQCRBwYKQjoZAnub3trz6hkANabcGMf+GQH72k+U3A4dA4AUtIToHh0AHhwFYkSmHQDBW+c93LYdAeLyqjo8xh0AuKsHKizmHQA7h2ZE1Z4dAoW76kDxrh0BoxNA6aKOHQDu9r4Jqp4dAGInOl2+rh0AI9wc0x7GHQDqfFnXGuYdArHUzx7/Bh0BSwtZHwcmHQNaVrG+D7odALwpyF4fyh0BeFxoxp/WHQKaptNhV+IdAZzeBffv6h0D3wTeTQFiIQOtYVD7pjohA + NrgMGZxjYkBImCMySWRuQOO2GkbmYnJAS41ZENNCd0DjFPeZPnR5QEvrNWQrVH5ABGufiHbCgEAJI+XOocKDQJhLQ8TNyoRA - + - S7r5RUfKDEUbtnlFJJHnRHtyz0QFzOZG9iCqRM3mZEXKnlhF1gbdRP61zEXBpCdFFgEiRWoCk0Rmb7VEVScPRV1FqkT1fT5FozsxRQLvSEcNK2xGzR+fRJg9BkaP0iJFzHO2RU5Cs0UyKXFFxr9TRkXG7URpM81F3dzZRNr8REVLOLdEjAU6RRzRCUbBSKBEjlgnRSj2R0X9tPFEI6luRaQ+q0QyDZlE7qypRKrcx0QtputEfOd5Ruic7UR7r/RE0WkZRTFc1URV5btExEQQReK73kRCAcxGDMWvRDd9pUQ3bSxF2fScSLDCqEbFfiBGB+TVRVCOAUdl8CJF8gXZRCrH1kXmxdhEOdIlR8WQ90UD2WlGX6FSRRlQDUV146xHANUIRUOGvUUPOQJF6tTORT+BuUYghwZFfM3qRGEPWUWi2ndGY03+RHoRqUVDgvREycrCRPChWEU70NVEW45YRdmTv0R+lKxEKuGwRbY+REVYVzxFknveRFeXA0Wzy/hFJ+/qRKzvykVIcMZFNOBGRbZy8kSQ1AtFHzfPRG4sk0XxdfNEwNarRGFP0kWFwGdFS9BQReqrs0RDHCVFerelRjTz0UQu4QhFZDv4RdGswEXx5+dEybLURGnsGEZk3FdHcs6pRHs+3ERg/IJFNj4lRQz3s0bIpjRF123DRKDnYUUyq3ZFc2adRTM7DkepS3hFQ+aFRU10hkWIk5ZFz5ipRMb6hUWMhqNFMHzJRMB11UQT4K5Ffk2ORBD6oUQPNz9F0QuLRPgDwkQVVEdFgOGrRLy2K0XZ2RRFRFbpRE36l0TGWqxE9Dj2RMyDJ0chK9NGmszqRBAS/kXcZtFF4PXpRHExGEWJ1T9FIKdkRc2OCkb5qq9EFsubRQR2LkXbyXVFC+TgRFeP6ERH0E9FvoqwRFSRCEVOLOlEdvTdRAaagUbb7blEVe08RR1xN0VSLcJEB5c+R9nmyUUrQ3ZGIjNXRZee/UUwzk9FwmYDRVYIz0TUOHpFGn4hRehVGEUr1tdEdMAkRkcPjEQqXO5GdZGARS2bN0Ul8htFhN+yRPYW0kTjQE9GYp0uRjvohEVSOS1FCXCQRZwd6ETFbZ9FHvp6RdJ6NkWCCgZFBhO0RcyRnkVMU5ZFIzItRenTskWBkOFEy/usRBR8skSYM3RFiOkJRW2uvUQ1s1BFPS+pRC1JGEXdu+hEqbkaRT7+KEVcqbxEwjZ1RTRy5kUXe55F9hCwRoVLJkXHBx5FeuUmRk0dn0Xx6HVFeJCSRUzeE0bMd1pGtvfURuQQG0VdeQhFdqEaRmYuLUUZVmFFg1cURlUFwUReSf9EmSLmRLYk+kT+MBFFhPu+RL5MMkW4bH1FwW24RLVE9kS/t+tE+kRWRT3G0URSyq9ER9uaRLon1kTubuRExZ0oRWpWGUUawGVG608XRW07vES+di9Fu8pGRWkvGkV4CQhFJ4DSR7IVDEVx3/FEWVQJRZJ3pUZixdVEROe8RoRoVEWo8UpGxR29RE8nLkV1Sh5F4NrlRNog+UQ7gJFFzFi2RM0e4kSfnsxEnfaYRGw4pkSUjN5EhXKERdPfi0WltrJEQDS8RgWO3kTNn1xF/csXRXAjr0RYomxFZxCPReYgqUSfIgJFswYcRYD4kUVjdSVGXDhgRTXH1UUJuONEJ4AERSDpKEckFzZFUFwzRVconkQy8/lFnyDjRLlLLknSkF9F75MRRT/vFUUsjK5E/WC+RP/a60RU4hlFFXKrRKoTKkjj8uhEgD9CRROahkZGGglGmfavRJK33EQKYH9FP2QIRUx6OEWR3atF09q4RCR0TUVa6LhE2JrTRRCtb0WdlbxECUugRBTA3kSHa3lFcaB+RY8to0T7x7lE7J0URarMtUUX9sREwhahRL99CUUFzdFEsE4fRZgRD0cBk9FFgKDwR+kEQUcj3MNF5zRLRfEfp0UxAUBGagSlR2RnmUVX175EFBXZROnUhUbEQRNF9dhRRX5RtEQBVrVEsz2eRSExDkVqMcpEYqqSRZz1gkW6GZRFvyatRO+JGUaEpkdFaFohRQKPaEiS0jJIYByKR6sUEkYppHJF3O1lReOr00RX2QhFR7v5RJXfX0ZCAcZEkztZRnna0UQziDZFy3GPRb18nEWPneJENBvaRGSFwkQaEGpF0bapRPdoH0WxVaxEDVrWRNn/pkQ1Z75HB2I5RTZNlEbsdIBFQNAJRU+RfEaUaiZG1yCURd70VUWLg/5EosfRROJ6zUSPkaVE5mACRReJDEVPX8tEf+wkRSKd30QO9qdEodfcRHwiLEV8EilFnYbTRMvaJkXIgLJFinWkRCa3F0VNh7hEgRTERHJDyETTbv5EpjmmRZZZ9kR7T65EXyWvRHqTN0XOJU9FQ2tfRWeh0EXE+b5Ex/j7Rm5oNEUCl7lEpB+wRgGO/kQszthFEGrfRN4PukSXDDZG+S1fRuCN70WWxyBGfb/SReuQLUUiqphEoPT5ROher0TwReVFZMOfRQdlw0UA+jVFdlkERZTZDUbC8jVFDsfBRFTU0kRXk6dEPqUwRQh6l0TePr5Ev0iXRA//uERkVqNEBAebRJPGsEWBlRtFsfGNRG8WOUVx0KVFBiwhRcQ0kkbSD8tEA0c0RQrYsUQ30AlGxMfhRbvL9kWd0apFTSniRIyMHUWUgOVECqqTRkrzSkYdK0JGiUjdRFWR30U4gF1Ffvf8RMPRt0TZy6pEzGG5RNSMWUX0939GPtyiRCnVGUVdfItFsv/9RJZokURYMpFEd/DHRGvLbUVXwrJExuOvRDFZDEVWtGdG9GBTRaNGj0QBfzpFF0DORAU2r0Qmc+lEDTdPRSIzjUjxbOREjOSdRByeEkUOjShFIPorRTFduURXigVIYfUIRbn2P0WVFJxEiqSHRxAl0kTaqypGp1HRRYgK3UR2/rxEQb++RCqpeUZY9N5Er228RcFAuEXs4lxFL3//RPMDOUcPLKNE2CqZRHQRCkZ62LFEwgd1Rcoq7URPOCxGTXohRbWkpkS0Cq5EKNSqRBobyER5qKBEjYS/RDGR8UQ6XCZFFaGWRIUoBUURNsZEHoUoRu89Q0Xa8w5F8SbpRQcOJ0V6xIFGd5Z8RcJQs0SAP8xEE3cBRSyms0W4C8FEW0MlRfPxB0WgNOlGA8ThRJLJV0bzszRGY29oRdefWkWm+SRFya7gRN1oJUXUdMdE6pKrRNg9+UQZB6ZEN1qdRGcgykSeJTZF+MRYRUT/FkXF7QZFdrVmRX3JykTgPr1En5awRqx8tUVBVKtE4tEfSNfTk0co8edEJxENRyN+bEW2T+NEjhlrRb3BL0YWI7VFutwZRd59D0U0erFE/fd1RcQ8tkVvX7lEifKlRC3hb0U3j9lFrT/4RMe1MEY5IVBGYrUERszBk0WiwClFoSQLSCdXGke4WB5I1tXqRfPUY0W+to1Hm+sYRqbpQUcPHU1FUvAqRnHGwETu+T9FlROQRTATmUTldbxEI6VcRajNxkRWvghFksyzRJPzoEQ/TZpEwFilRHW8VkaIDlBFBUOfRYth6kTjXZ9Ft3usRBBKlET/tnBFqgRbRbo+AkVD7KtH0ubgRvBho0VJbYJFhvWoRTSvLUUNtahEDMDnRPRd60RX4K9Fh6l2SQdflEWgQvBEekAsSfIDBUUy5z1Fd4KMSJBJyUT4jqVEu7J/RzlyxkWQHvhEzIIKRdFIOUXNzGVGy/MoRa45zESRKbVEZLK0RLW/IUfTJ4ZGlgvERtrpIEbbTABGgHx+RbQFlkXyOwBFSiTYRF/ezUQmhBZFq1QWR0WQlUbvzy9GJv58RaYG7ERWfLNECfoRRfX7uEQx8wBF7QbWRtsN8kZ+9IhGQm+5RXXoR0UGurJEDcQYRbPW/ET+Cb9E0cInRWFIM0UCly1FTarRRXqOt0WbzglF5g7xRF6MQkYNLdpEIZ+dRczDjEXUGghFHb33RKbPnEXh2IBF0nrWRDsVD0ZNvoRFvv5GRbtKwERRrVpFLf30RDkGEUWOEvZEn3xQRbQF/0TV9hlF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - eUdTQ2/BckCYnQtnUcJyQN4S4vXiwnJAtEns7zrDckBJ6lNUDtJyQLfvPHpD0nJAPo78s87fckDlGNebtuByQGTgU9RQ4nJALtf4tY/ickBinnUiJuNyQLpMqjBQ8XJAmE18mMnxckAE4IaITPJyQJ6Mcqq383JAph73eKP0ckAuCZIYw/9yQJbT4Ow6AnNAxhw2a88Cc0AzH+yO+gNzQNyyLCAmC3NAFIz/77wSc0DwRnJ4LBNzQBL2iM/2E3NA2Fg8pQYUc0A8ttXwLxtzQLAurOt5H3NA3rsJEKQgc0Doy9TgOCFzQBT/h1kQI3NAwBydfc4kc0CUnZ94RjFzQEjvQpPZM3NAFTLi4DU0c0BaA5mFuT9zQBpApzd4QXNAjk/dwLtCc0C+dmXJeURzQI8GhokYUHNAGO0403NQc0CWUOD3FlFzQCzggNWcUXNABU94WUJTc0DaGVOVo1NzQF4BxBGHVHNAvyqAymlfc0DKJl0m+F9zQDTSkQOMYHNA9myBazpjc0Ds3zZzmnBzQE/pJk65cHNAkh0aheVwc0C0ZEm7tnRzQFQf5QdNdXNAhozXMnmAc0DchyF8o4BzQJptYzTFgHNAXKHvRtuAc0CqP/+BCoFzQPA66wZegnNAnnZUouSCc0C7wCath5BzQPKI6y2ykHNAcbjnE+qQc0C6ZbWMJZFzQFt9+z1NknNAh52efVuTc0DQdMY3zpNzQGxufi5ilHNA4iNIwveUc0BItdbRZJtzQPwUcQmKoHNA/n9V87igc0CETQRm5aBzQIhjkmlbonNAYFFDV4+ic0AqLxWQBaVzQNq72kyCsHNAPBcCDsiwc0CcuXwBOLFzQCX9gdt9sXNAjzGzKrazc0B6uUNDDrRzQHRhmfUBu3NA6sasBPnAc0BmhwjdfMFzQKAXFtLPwnNAMs0H1OLCc0CPRcodJsNzQEgyrRnsynNAt6VKndbRc0CIaKcvBNNzQKb1CUjh1HNAaAhJYDjhc0BUAQk1eeJzQFrkezEP43NAyogVuzX0c0DitY2WeAF0QNCEN4a5AnRADrpmJDwQdECIVnhSuxF0QMgwNYhNE3RAdBRcsEogdEBLBuG2uiF0QN/KqsCyInRAYkyL2/kidEALXvxeUjB0QIZTTaelP3RAcmB+d+I/dECqPxB5EUB0QNTq16BeQnRAPtMgwztDdEBLrLVMG0t0QOfNYQQCUHRAalCWE7hQdEBwMPgUIlN0QEq3F7yNVXRAw6rXYjpbdEC0FYsmIV10QDzrxfO3YHRAeCxRdAlidEAsQ+q/emJ0QEbcCxxBY3RA0aVleU5kdECyyBw31md0QN7i/BAebXRAuMTtsiFwdEA1xGkpQXF0QIh1RyB8cnRABmqTpDhzdEAj4efiNnV0QF/SsPr3gHRAejV4NE6BdEDqf3XtJYN0QGaikW8VkHRAQgMomBmRdEB8kr82TZF0QISOHRzhoHRAWq0iqxWidECAltHzeaJ0QN5GFWsOo3RAsW/Se/2ydEDYNXDbt790QLLTo7vfwHRACuBfGqnRdEBOjmAmUdN0QPejZdPQ1HRATtGr81fbdEC8IPf2JOF0QHq2C6014XRAyihln6fhdECPrKTQ++J0QBZviRRl43RAMYOoMY7jdEAIjqADnfF0QPDlUiiN83RAlLfKgj0AdUD9nGddpAB1QK6HmTHPAXVAItVoc10CdUAMA0UnpAJ1QCU72tuYEHVAruoqN8IRdUAqTOkvIxR1QG7285+dInVAcdC42qoydUBKWRInzDV1QAJax/rtN3VAmHt0rCZAdUCSiQ7NU0B1QKZZzpF4QHVADmvk6X1CdUCYHMfn3kJ1QPMvGyrYR3VAZoBxlCFNdUBE4lBEJVB1QCTWGhs8UHVA6vWmww1gdUDlniLEZmB1QDQmNAujYHVAUFzd+zdhdUBiLId+dnJ1QL6Hsj+Gc3VAAs69no10dUB2ykFjjnt1QFZAgzmagHVAcI9VmnmBdUAkQY6zrYF1QNjzfvCkg3VA+k4HVpuEdUBE5LvclaB1QGKG+lh0sXVAy7nYUoCydUBGo4bC7791QNQNiqWBwXVAjAmt//nBdUAkcB3jaNF1QNYdwva+0nVA3vgHaAfidUDweudukf91QNjtOvK9AHZA8ItDlUcCdkDpZDVh0AN2QI4zppFNFHZAYlJP+EkWdkBwXtUngBl2QMBtES2JInZAEjgy+88idkCfZmMpkCR2QApybbRLK3ZAEvVDiB8xdkA2vfnnTkB2QOh5XqEdQXZALN7NgshCdkDSlycEekR2QOpbLB9eUHZASsffoMtQdkBa3m1X/lB2QIBEtinVUnZAO93bB81UdkBkhfVsj2B2QJQUz17bZHZASQ9mS69wdkBEJ/DQ0X92QCWhN82Sg3ZA8EIR2feRdkDefuEh7J12QDcWfNe/n3ZAYEJgwI+vdkDUWixkwrJ2QIYJOwoNtHZAoNNDWs/OdkCOxbhJ9eF2QIgH4fW28nZA3NDdp4/zdkB3foRrTQB3QFAgBxp4AXdAzPjcGQESd0A7oCIbvx93QJlHPweOIHdAdo/Z6w0id0DTGxJycyJ3QJbM904NNXdAAJsAa3g9d0A5dhYb0EB3QKj+BQydQXdA+iWQLhtFd0C+e3NnSlF3QED2DLORUXdAWj82rSlVd0B8YqZvj2F3QBDVD3sob3dAJG3mT8lxd0CMCDG/Hnt3QLxH1rRMlHdAWtmqzC+jd0CYYd6/KcN3QFhtFTA7AHhA2GjCxfgBeEBSfmKLPSB4QMOWmYl6IHhA5G8CfG4ieEB57vyiiyN4QLh7diNmJHhAtHwLAjsweECmu8JlXTB4QNAGKTxMQXhA2LsTvg1CeEAoNuoDKkJ4QDbrvdbpQ3hA+hMmmBBEeECg0lscekV4QFqUuEejUXhArL0AZMtReECpChtciVV4QDDDodU4YXhAFgfy62NheEDpCXt8tmF4QF5AaSZIcXhAQPaLolZxeEA4q9ZSXHR4QK68g8mLdHhAamp1g690eEBktugYxXh4QDYvXHX2e3hAk7XZsqOBeECWWYTg/IN4QMhuXxKahHhAaC+ZVZeReEDmNQMdqJR4QIzzXxeGq3hAsMd01CWueEDMLPIe98F4QJ5yhWMiwnhAVCWb8gTSeEDHwYQ9t9R4QJqELsg34nhA0N02JQL0eEDedfhkjPV4QIYVP0CaBXlAbdwzmYITeUArEV5j2xh5QKhA5X2xKHlALgpRCQ4ueUACTxM00jJ5QNTO+Jm2M3lAanImw5VSeUDGj21YzFR5QPEFyNHbgHlAbUb1EcCyeUDIjYDMpsF5QIrjaNhB1HlAVvc2Rs/VeUD4QavrUOR5QIQlO9cM9HlA8hu2JfkFekB8G1VvlxJ6QJTcTKbmIHpA9FCksxEhekBeZXq2KCN6QLMxwXovK3pAEoEVrWkwekBcVhD/9zB6QOkCnm4KMXpArQgfXB8zekCKeo6CDDV6QEK0xDInO3pA3q0vnNtAekCGa+yWLUN6QMpLXuEaRXpA1Xk3kVdQekDSnPp1KVV6QP7gKWEiXHpAsG4JQDhlekAwYk7SwXN6QDw20UiEeXpAFFZc7tx+ekD2ajgkpIF6QIgXqHAMtnpA4hOmbUHOekAUydaZZOF6QNac5/w27npAjStqhxXxekDyWeNFfAR7QMKp9Y3JC3tAxii7ZykOe0B64bVrTRV7QHJnjAgQIXtAsPoUzVole0CU7quokD57QJlJgGfpQ3tAg+o1B0NJe0B6ZNFQm057QJjRPUL2U3tAJqkVsSaVe0CaXnscwuB7QLBEVw6M9XtAEEXGx5IBfEBSEWoV2gF8QFGFDxZoBHxAvT9lW5kFfECEIUY40RF8QOjHGQTNQXxAKPbTiyJefECGhZf+vrJ8QGBO4fvsw3xAojrP3mTEfECUIPGoytN8QO4PYhS74HxAgq/YZ1jifECN6XjhFvJ8QJK09M5U8nxAYLHKqgECfUCBjUEjSwJ9QOAmMI0ABH1AxGb2KwgMfUCeUmmrRhJ9QFYdiV8+In1AejtkHnw5fUBmR5/h1j59QDzyIcjhQn1AceHzvDFEfUB3jx3X/2t9QErq0Zohc31ATsuK3QR5fUDWV/k5uZR9QFRKkxYVpH1AeAs6iCzEfUCmf4g358R9QMn0PfqO9X1AEFrFF6UdfkCswfKFNx9+QOWWhmv+In5As4FyzW1bfkDC0tTbGYJ+QCjevLOdg35ABb89vKaLfkD6YXhXsZN+QObBw3SZlH5A//9n//OZfkBPnmKKS59+QJiBUlsnpX5ABePJQxSqfkDpMIW1l65+QFBQWF/2rn5A4txLZ2GvfkBC3ou0ILJ+QOxiAUlPtH5ABrWeRzS1fkBT+BhRqrl+QA7uuZsBv35A7iI7SmPDfkAORkvez99+QHZ7tBwD5H5AJvoRoQfofkA1JDhGCOx+QLBwieQN8H5AmioWdw70fkAWzy6HqPl+QJbJzUQD/35AOLCvT6c5f0BAPxANuVx/QF3Mf1zpYn9AS1gU37xkf0BU5Zw7uHF/QDeqBg2xgX9A3vPeFqODf0An2jHt54l/QOdnR2NBj39AJlj+ImORf0A55E29XKF/QIKnM51WsX9As5j9oMq1f0CksRlbrtt/QOq+6U58EIBAZnsvIWsigEDJRCVqcCaAQFiXj3bfQYBAsBNpw6lCgEA1xZIf5EWAQIIAqs/xSIBAcqm4UedQgEAWlSZhFFGAQLsCuLoGVIBAq9NWjAdYgEC+kgdwJliAQLe7e74OWYBA6CNJqzJagEBsupLqNV6AQMid2i4uYIBAHbuaIB5ogEAetfFUKm+AQB77FnkVcoBA+OUmFitzgEDKfxZPwnSAQHiAHDkgd4BAnv4SfG13gECIqHxMGnqAQCrRCh4ye4BA8FUG6yl/gEBMkT96FIGAQAw39CGpi4BAlohwe/+OgEAjKBnGHo+AQIR0GaQel4BANfnbPcWZgECEX2it1pmAQJgW83g3moBAO/IlRhyfgED/auMZxKSAQINdKK45poBAaHl6JqyngEDMnNeXE6+AQArDeHCqr4BA+GHBqtaxgECqB9L7frKAQI6PPLTIsoBA4JXrFBi3gECaotEe876AQKjm2Uesv4BAv5L2vVLBgEA3J9+mOcaAQKMOnAH4xoBAzli3MajHgEB4j6xmU8mAQPhGsvszyoBAepeHngrMgEANP8BjTNGAQHCdTXdJ2YBAPhoVlVrZgEDQHOG+ROGAQK6pDoL26IBA5FKr1kvvgEAcn9w1PfOAQBdxA+8//4BAsCyF9T8HgUBtDoCZPg+BQAgjd3eJGoFA4BN8oKsagUAWghI6Nh2BQOSeww01H4FAyAjA9eMfgUC8o8hbISCBQBezCFA1J4FA9FRnzC8vgUCKxEhAvTGBQED632opP4FAF65EbyxHgUB0kcUQsmaBQFhUveNVj4FAmjuO0lWXgUDafXjLVJ+BQLQ5/wvfooFATDP/M22ogUAYfy5j56qBQI+MiX9Kr4FA3rGsq2uzgUCUN3Yu4bWBQCrdcE9Kt4FAa1b8lX7TgUDgAtXJ//WBQN6fk3oE+oFAmYBB+af/gUBCUySH3wKCQE0rTkC1EYJA8Mc3ZLgSgkCEgVgBmBSCQL4oj1+5FYJACijgONgYgkBMYvrlvBmCQOA+7yvYIIJAei6BcNMogkDArT5WzzCCQLiwFu3TQoJAT2CDiddOgkBSYbW+306CQMyE5yGyT4JA1qjlNgdagkBBN+pHn1qCQKVSClxsXIJAxACmRjpdgkCOEktzoGeCQFsbWbY5aYJALF4r8UdtgkAijbIC23KCQFDN2U5udIJAyk1zet96gkALq/wE5oKCQKZbKI/xhYJA9lmKvwuGgkCWOf/RQ4mCQHqKJTv2iYJA30gEleiKgkCQScqgKo2CQBB74V9DkYJASKkDCPKSgkAvl7+8PJmCQPpJR60OoYJAhv749TqhgkCkZsnB3aGCQOP5N0MDooJAcwFtNeKlgkAMP6k8GamCQFgfszE2qYJAvNVry1GwgkB+tJsiV7iCQN63tt4uzYJANpOhD3/agkAWjnNj1eKCQAg5uvRY6oJAurSTZdvqgkAYp/ZvUvaCQDxdZdJS+IJA9Nvf2bH5gkDaCgrzVPqCQLSMrXr++oJA9p41eFb8gkBq6FfDV/6CQMtPNGsVA4NA8HOlmjcDg0Cs8jzrHAuDQCrtr/h5EYNAXRMZmCETg0AIbHx4SBmDQOCi67Z5GYNACUR1mCUbg0CkRAkaZCCDQKGkXllyIYNAmL4wWHEpg0BGixxguiqDQMIpCUJeMINAnncj8Wgxg0DgDS0n3zqDQLMG7F/vRoNAHO2lrj99g0BDRlswCoODQO6agYS7lINAr24E41iqg0BKqBoV1bqDQPvw35tFvYNAzE6ogdvCg0BV6gJER8aDQHmH4/Sn/4NAet7qMFMChED3R2e3/wSEQCZMKUxPOoRATvs7ygtDhEBuYiqzEkuEQK7w8IDzT4RAOPfwRKFShECscfQyKlOEQDVsBU5OVYRAHGhc5kdjhED0ndcc/2iEQAceKHzlaoRA4vmSsg1rhEBD/EVJtm6EQE71kw3oboRA9X9TKRFvhEC7mpKA/XCEQEwgmazqcoRARaaYYe12hEBUR24Mx3eEQNR4doJyeIRApDrD63N6hEDnjxGR8HqEQMs7/ywmfYRA2nZpAvR+hEDC+3tjVZWEQKYDZt1p2YRA1bK13GnhhEARgj+xQOOEQGUkXN5i6YRAGsg7zkbrhEAbDewiNvGEQDjm861i8YRAWsdgi5f2hEACT72DNfmEQEe0xlUvAYVArXlqAkgihUBOWqRzNy2FQIBujB+gYYVAaa9pw6BphUBH0Zx8mXGFQByWxiueeYVAfsKrvOyOhUCVF2Xp7ZKFQMsqMZqT7YVAKIUYW0DwhUBEqvMU7PKFQIn0eWiW9YVAUgzFPT/4hUC6sLiFqm2GQG4ETVBdcIZAG7qQwo2GhkCGzpslJ7mGQIVBy+O9+oZATf6BOjP/hkDpXG7OxAKHQER4Gdk2A4dAhdUgcpEph0CWu6CvkTGHQO4bE0uJOYdAWERXFYpBh0ADIU27aKOHQL0xsJ1sp4dAcAcOjm2rh0BYEmDHx7GHQB7s6GXHuYdAuq9/ccLBh0Dg9mwygu6HQFed5pH/+odAEFqKLRyniEBgkRThHquIQA== - - - - - - 8x2zRd7QrERpQqFE4IjMRDVptkSNZ99Ge57TRAcCvkSUR4ZFd1+JRWve9ESkxGpFxYsjRQb0A0W2kMVErR24RKAbqUSzlPNERJ1FRRqBH0dMJAdHXCdURlVm/EURJIBFKXVoRRF5qERKgC5FWPiqRLsmUUYfvZRErvK7RasOuERQ7rZEoyelRE1IR0WOjTZFi17CRLY8C0Zpm+xEDisKRSskvkTtMSVFgcSZRLAEfUUIEqtEohu9RDMBmkTkoS5G1KsTRZfVykQDKpdE/wx2RlcN0kT6J7xEEqeKSKWQXEYJcS9FlKaARjUTzERH8d5Ft2OYRMv/5UbDsQJFrNQJRVhGjUWMkD1H7HzeRk44uES7gcxE3xM6RuaAq0VbPwdFzPaiRxp0mES92+VFv68ARaoxA0WDg6lE6R7RRbmCoEQRpSBGKOFURXeRsERXDtJEsGKeRNAu+kRNGaJFg+a/Rdbz40QZcf5EqkDSRF3V+UTTWo1FDvozRQGXtkQ4Ka1EnL3BRKHmBEYGQsdECSMsRaP/s0Wa/EFFGcu8ROX7BkWhFXdFmw8BRdYm50SoHVJFsW/vRA9E1ESlordENXSuROI7A0aQ7gdFOnuBRXjyGUWoU7lEK5naRX/YKkcRt35FtIxKRdP+ekbsXAhFJ0UARRosJUUu9cNEap2rRbdFPUe+wAxFld0ERX/u7ES/mGtFSrn6RTcBokTd6p5F5kqpRMoNBkVR3MlFr5KgRYF/skQnuBpFFWEyRbIezkRB3/BEM+Z2RgDQH0bkyQ9FvbqORZGt10TqSJFEmK9GRasvHkXrBKJEpL8NRccl2kSWdQhGikTvROTNuETRRDlF4eCERXKxz0TVLtFEwJxvRURySEXsNmJG95X0RBQ61UStahZFStC3RhBtdEV+rKZEyV2YRm4N6UQWXLBFPT9aRZa620TqvLFEdj3rRRrtk0YDholFQbHgRHhVEkWYOTZGIksgRk4QHkXx8SNFdPICRYoMp0WyY9BEFAPkRLoAq0SBwxpG9t7cRZFVUkUULLREM+ClRGn1RUWUL/xE0MMZRbcXMUWeI75Ex/8vRaL0CEVHMahEcre/RNWEs0RqH2dFEariRLU6C0YsLKRFGwG2Rgdz4kXWBY5F/fybRT6CV0W7CsNEday7RNM8cUXzo6JEJZ5tRo36oEb8Fj9Fg9i/RTU3bUbBBwNFg3NHRWXoC0V4ZhhF2rOFRKs+E0XXEqVFBgE6RcFam0ST9iRFxcH1RJqe4EToxeNEp/OBRpR9vkT3GQ9FdKRwRZ8mF0WbXfBHHgL0RIJnoURehpJGFeq6RiXbqUX3VT1GjPbWRPrZGkVbOB9FZ7+3RGY+xETvvLxEa3HNROk5wUSWqy5Fel6MRUA4D0btCvZE3+QXRXAZxERovZ9E2BIIRWFFo0T9gURFeJOZRJnkhEWnAcpEX6xFRXe/UkYn9B9FAsmaRfvuJEUB5zpHBnU1RWB9T0Xpv9FFVzPHRaSQkUXcR05JGjylRbmhg0UP7DFFLGw3Rbp8p0QFGFhI1juCRZJLl0a9F+VE2Pn2RNElE0bo7/ZEhhKkREXpN0VBDydFsnW+RSpF3UXBKD1FODsERSHM+ETAu61Fl0eaRZ0So0TF8A5FhPxgRVKbsEWgfr5EXxJsRaxgpUSG5/tFkTvwRGLBB0WpHKxEjozsRPUICUWWbrVGnfyHRRhu1kdXHx1H39L/Rb4A0kQTM/9ENxooRg7n2EeaYU1FtO3BRMm0vUSwFcpG1mPuRO8g50SEVUpFKEOoRE+PFUVu47NFsOYmRXxOykSd/KhF0uT8RM+ntkRRLzpFlc31RHzjZUWsnQFFif5/RYlwHkacGCJFrD12RXO6a0jxHx5Iky9DR+kLb0ZYjClFaeb1RFyor0R3NaNGZdHsRF9RTkaKAARFhD93RQX6g0UnvYlF25akRExr9kRGHrFEQYnWREp1Q0Wbqt1EnHLER9g4vkRj6c5GWNsNRR64iUZH9hJGl/ChRewlVkVT4I9EiAeRRbMpDEUhBQFFeZjXRHmoAkXWqBZF5EgCRYN/akVueA1FCBcKRWN8SkUwlR1FLCJiRa2wmkTMsYhFhImrRGBYxUTbTpZFyHkoRZa3k0QPewRGPeXARHv52USKg4RG8JikRBddzUR9ca1GIEEaRWHgD0VEDWpGrGBmRRHAsEXGNSBF9wnHRIdTwERYNxxG0CwoRsgz1UVROhBFV1XxRPEkgkWWIFFFvAMwRYY9nUVT5OJEs6QXRScrlEWGoOFEd6PBRKxPXEXWFjFF9Y8cRtJ7I0XCn+RE4/e+RLcO8USjw5hEGj1zReM8+ESvzTpF3YBfRVbKq0Q6t5JEZggZRZv0W0ZrZSxFaTgxRWXQIEZnmJBFxGwORl+Yq0VgKOdEd6AHRV05KUXLpHdGQDn4RfsdX0ZXUaREyQ9jRcssvETvSxtFnVTFRN3J2ESeRbtEWRweRYvvaUb1gVBF7Bz/RNuEBkWBqeNETvocRTKV6kRO2gdFk4nhRKPOQUZHUfhEwjk+RRTBqES+l3BFpFz1RNS2jUViyhNFKUp9SNluukR11clEvYgxRa5Dy0cwrcxEiFutRNsXgEcmmTdGOpEURU+5rUXG1rJEKak9RUDDsUQeB5BGWUihRWWDvEUFfadFDofJRE4rr0WicRFHdeTzRKZdqUQ0rQdGVjRdRdz46ERuRT1Gqy4hRSspIEULKCNGmffuRNemLEVpxM1FRfHbRFVP50QW5mpG+LiqRAbpvURrLQ5F/tW2RIh8YkXL+DdFnpOORETFuUQRk+hGV5DBRNvqCkWjHFlGffAqRshdn0WennZFUGNARR9gn0T8ZBBFZN6pRKFyo0SogK1EiEHURJ+CwkRFVmNFQ3exRNOv/kSHNV5FJJeNRLqXG0WAMSVFRGOKR/MHnUYXXJ1FOff5RPzOwUdlrg5FW141RZaHp0ST+SdHfG32RLiw10bHU7dFJ63nRQR9pUX5VaFEUgXRRMl1tUT0gyZFKOfzRZYGs0Snz5BE8X9JRcqP7EV6Oa9EnhlJRXCQL0al/pFG/dS4RNtiRUY+LYxEm/DLRcGB3kQI7blI9tIMRflhx0cecdpHBOCFRl1uA0VutyJH14QhRUHn/UVbl71GmfkMRu9hdUWF/P5EwFAWRW2AyUT2hfVEzsqgRC1l10QZ555E19nORPppfUWcOQtFyiIPRbTYsUTn2i5FDbxZRVfdwET/GKhEVnPzRvxgGUbyvgdGqKbcRWMHDEU0Ls5EilGZRECuqUVep3RJiT/eRSRKbkXNjS1Jr3ugRZ2DvURRBodIBbaYRx9ZO0Wxhe5Eq9F4Ra1LO0a8ZgNF/z4YRflp4UTaSvRGbt9gRuUImkZAVShG3CmpRenZbkWMqWtF90awRIWi+kTX/tVEqC3ERLVH+ER2PABH1J1yRtKG+kWlQT9FGfh2RV45s0RZ031GU/eKRjOX1UWQMkZF0hudROdlzET27M1E0TjVRGoMpkTTy4RFs+aSRWqVAEU9PRpFaiYhRoderkWXBExFUVgCRU8eBEYcCAhGp1Z4RbQKFEZAjolFV7I7RcVHwUThJjBFFpr6RJyHr0Q= - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Bhbj/2/BckBWPWWGTsJyQOiTcKbjwnJAS7YswzrDckC6+b8bD9JyQBKOkXtD0nJAHtkQflHickCVZCc7j+JyQH6O19pP8XJAnoNjcMjxckBqwohdzwJzQEysKBr7A3NA2rvx3yULc0BISZ8WvRJzQAJP8dwsE3NAotxu3vYTc0AR+GeiBxRzQIMyuFozG3NARg0vInwfc0BCy8n0OCFzQBbGsZemI3NA65ZSNM8kc0CqkbqgyTJzQABNm0O5P3NAm8kBG3dBc0AoiOqLekRzQMbFO0ecUXNA4uyOUKNTc0DHSjlQeFRzQPh/mlv7X3NA2fCd34tgc0D8iZKgN2NzQL5F4yqYcHNAAHVLhOVwc0AePRNnS3VzQIDc6mt5gHNAw7TZ36OAc0Ae2co13IBzQHcFNutcgnNAJbqLtYeQc0CYVz0As5BzQNxuUx3pkHNAqmYGm02Sc0APtKfwW5NzQKUTHtJjlHNA6gQfY/eUc0BwY04QY5tzQLL8aN24oHNA95faA+agc0A52ifPWqJzQHRM/vJmo3NAMs129siwc0D+2vnvfbFzQP8mFSS1s3NAbicbcA+0c0CgIFvv/rpzQFVH2tLPwnNA/sBNZdjRc0B8Q6Ya4dRzQOrrz8044XNAsi4fV2Xvc0CyWX8ceQF0QLa1Jf66EXRArm1HOE0TdEBXD/mCuyF0QHE5uhqzInRAaGoA9f8idEAsu4ZGpj90QKCRkP/hP3RAa3itdQJQdEDwHKM7t1B0QJyJzS06W3RAtJrNWyFddEDG9eQCuGB0QIACAdIHYnRAoEyXG3pidEAh4Oq8TmR0QEqnVUnFZ3RAXklXhdVndECEioWMH210QMzpN+QhcHRAVPnML0FxdEC3hphqenJ0QGlY3N86c3RA+5wGZviAdED6Kef+TYF0QBoepzgWkHRANPWuaOGgdEDGPsYYE6J0QCguExG4onRA7KtMnw6jdEAOe7z3wbB0QOSSRMP9sHRAeAnMyPuydECqQ/7VtcR0QB7SEK+p0XRA4Pdyrk/TdEB4szUpt+F0QPZI2+/64nRAmSJuJpDjdEDz0y3hjPN0QD+zHdDNAXVAcmbwxF0CdUDO0eEywBF1QC1p8MEiFHVARAJuWJ0idUAvjyFhqjJ1QDIsXj/NNXVAFlqM/iZAdUDmVL6eUkB1QIxJ72t+QnVAzjLhZN1CdUAXUMnF2Ed1QCRYWPwNYHVAZAZ6xWVgdUAWZwdGomB1QL4aKl44YXVAnno59IVzdUDWIFFGjXR1QMBzE2KOe3VAnE7E0k6AdUCWAKSynIB1QDZCnIStgXVAmzz/4KSDdUDe097mdLF1QDNGDAqBsnVAqkREofG/dUCNEyizZtF1QLYQjOq8AHZA8OLzdkgCdkD93mvoShZ2QFFdqebIGnZAh6No7IcidkBcx2A8kCR2QIrZQMBLK3ZAHDdFSh8xdkDcDCTznTR2QAMUjxxOQHZA4EAVgh1BdkCddUm5yEJ2QFtB+yx6RHZATXyXrBJRdkCkjPwvzVR2QGTTiHmPYHZAAvrXTR9hdkClcbsW22R2QFgh1BCucHZA7fKEAdJ/dkCqtCC2j4N2QBo4CtT4kXZAfaZp27+fdkBSLXpYxLJ2QFBlNwkNtHZAvotJyc7OdkDoCrRRuPJ2QOhhDNWO83ZAOo7e2wASd0Aw+3c8jiB3QOQGyWYPIndAmKpn6nEid0DEVT12ozN3QP7901UNNXdAYMfSS8xAd0Cx+8THnEF3QGOW9T4bRXdAyZM+i0pRd0CaimrzkVF3QPWyXSwqVXdACPVQD5Fhd0Dc8YNxJ293QBjz6gQ0o3dABuAtyTgAeEB0XaWw+AF4QGPvgH49IHhAYn2JenkgeEBsYu09biJ4QL56xxVmJHhA1m3HqylCeEBYM6fiEkR4QNiOFFt6RXhAKtDGN8pReEDmiB/ThlV4QNifZMT6YHhADTf/lDhheECEox5eZGF4QGA5Fx+3YXhAYl9kvEZxeEA4UAQQWXF4QM44erSLdHhAvkjxFcN0eECMqF5t93t4QKi+paOlgXhALARC7ZmEeEACtWnElpF4QHwHAR6olHhAevRrT4areEAO80cc98F4QLopGcUkwnhASEqtwrjUeEC09gbLOOJ4QDk/S1YC9HhAQNI1gYz1eEBsiEKusih5QAwQ3jUNLnlAUEP/erUzeUCIm5Y2l1J5QG2VLHnNVHlAtElu3dlkeUDpR8LqN6J5QF9O96K/snlAOYAZEULUeUDA4ZjgTuR5QPG2rnpw83lAbJm3tRH0eUBneev+5SB6QHzu/f0oI3pA/AXN3C8rekATvOlvaTB6QOKGtHIfM3pA8c2Pqgw1ekDjX/9eKDt6QD419/EaRXpAUIwXrFZQekA+ssmTH1x6QHBqFjuDeXpAaAcG1dx+ekCMY1L0DLZ6QHpumQp+BHtAFMm+FccLe0Ae0OsHTRV7QAzzLx0NIXtA/jY+j1ole0DBbLVIkD57QPImhOjoQ3tAlCGqXUJJe0BEZVfbnE57QLYerDXyU3tAmhX0NIz1e0D5yrrl2QF8QP5tRrSYBXxAXKHC6tARfECGXxyOzEF8QHpSeiXBWHxA5sGwLBxefECIlcMIb2N8QE7H1q7rw3xAEnYq7WbEfEAurXqnV+J8QFa7D9YV8nxAZPPm7lPyfEAEJmLWAAJ9QOp10a5LAn1AXNFp+/8DfUAmfMmUCAx9QMbwtoBFEn1AVnPeIXw5fUCCFF2n1j59QJrKdcQwRH1AkJRYJ/5rfUA54aK4upR9QAqjMHATpH1AmOmcUizEfUAqJBlo5sR9QIaDczyO9X1AxjMNw4v+fUDiueWiox1+QJLdkjMAI35A6jG/6p6DfkApoRpEpot+QIzJ59OZlH5ADJeh4/SZfkBkCdkYJ6V+QBreQbr1rn5AamqS3L+wfkCg/Wnn2bN+QNin2thOtH5AKtgQnTK1fkD3C4QWqrl+QGlsxVID5H5AYtq1FwfofkCKAeoeDOx+QJKK3jmn+X5AJY9KJf7+fkDGp2lEWAR/QLSEe6deIH9A9r6fYLdcf0DB0FDSuHF/QMXeHZPmiX9A/ZJKU0KPf0Byq1IIY5F/QKRpXDZgoX9A8Bn7G1exf0DW2JvDqtt/QMBxCwCvC4BAClKKGWsigEAWRwl5biaAQPxPKHHgQYBAnFf62ahCgEBkzfHr8EiAQHiwa9vmUIBARgEJtBNRgECquIpMA1SAQIyi8NEGVoBARkpTKSZYgEAaAnL2DlmAQJON6E4zWoBAZuaEZgVbgEAIJseqNl6AQKa70zoqb4BAYEQEhhVygEDVvxy+K3OAQGYXgK3CdIBABrD7JG93gECTVpasG3qAQA+CyOQof4BArqyMuB2PgECwBWrtq5GAQNUTQlkfl4BAio7wIxqfgEA88g6ZwqSAQJjeFy+IqYBAYEbiVBOvgED38mg22LGAQNF9fpXJsoBAsLPJMAi0gEDn6r+9TbuAQOwfeVA4voBA1pmHflLBgEBIgnNEU8mAQHSwlcmPyoBAAgLdaEzRgEA4kJmkYNGAQOmMFEsE2IBAYKq/rEnZgEBtB8oHReGAQOg6ziFK74BA5BjiOz//gEA3V1ycQAeBQI5tOCI+D4FAAct+cYoagUB0xCzsqBqBQFfOTa83HYFANrELpjQfgUDgog+J5R+BQOJ6whM1J4FArMZhYyk/gUCIoRR5KUeBQBBpZRBWj4FATUZaT1eXgUAgkNJyaJ2BQALXePJSn4FAYGjppd+igUBYphAgbaiBQAZZyIdKr4FAUg+cEUu3gUDCq+qyftOBQCD1GREB9oFApDnX/LQRgkAiA4pLtBKCQAKln2+4FYJAIKYzV9gYgkCmIQst1SCCQPoaaHvRKIJAWU42sRZagkC2IJY2PV2CQBREeGZsaIJAGEiwKBFqgkA7Ps+1nmuCQMj+0WMMdoJADD1fBt96gkDWzRsg5oKCQB1YIwHyhYJAdJYku0OJgkA+2nNG9YmCQCoyVL0WioJAyPvgMeqKgkB4VH9j+Y2CQLh+KlZDkYJA+gmQ+zyZgkBg1XHoD6GCQNE8MDU7oYJALI9vEd+hgkBUwudqD6mCQDXDd1dRsIJAmi7/SVq4gkDS0vW+SMCCQCJP6BiA2oJA0fr+xtXigkBLaEV9UfaCQIxqVfJS+IJAco4SOFT6gkBQ+ns6U/yCQNaNSBYVA4NAgbduExwLg0AeQJ6UeRGDQDoqVzwhE4NAUoVmUXkZg0AwOUiBJhuDQBhhfcNyIYNAnEklKHIpg0CW3qvFuSqDQLibwqVrMYNApnwSzMAyg0ByzKK1Y16DQM4/XKVkYoNAjfIrRgyDg0BrOjwUS4ODQFI8isqEqoNA7ChrrlOyg0AGOQKKRsyDQJ2LL/ml/4NALbJB4lMChEAv2jsTC0OEQG1MpDkSS4RAjrJlj/NPhEBz/72doFKEQEwYRRUqU4RAjL86X0pVhECSG9DGlleEQPrh4/BKY4RAZlWTYABphEC6c2A25WqEQBwgXqvnboRAJv6bAf9whECumeaE6nKEQPglxWbtdoRA4FbcUcl3hED2hqbg9niEQHTwRgN3eoRALVETGvB6hEBIgLxXJX2EQDdrSNBp2YRALrqylmjhhEBG6tlaQOOEQBgVzYRi6YRAWgO/KkfrhEAqkTLPNvGEQLfSQtxj8YRAleN4RDT5hECe8Xk9oGGFQLypa96faYVAeDr0XphxhUBel5M6l3mFQIDrd2XpjoVAJrN9MPCShUBMIV5556CFQAxrbOqS7YVAGvoOAUDwhUCFkBJx7PKFQPqaOVya9YVAtjepHwFrhkAVKgVRrG2GQJbT8LOJioZADDhK4Sa5hkBYrgyfMv+GQB4wgMo2A4dAc2x6lZAph0AUAQ4GkzGHQKqz+22JOYdA+MH32TVnh0DEzrOhO2uHQBJLv+hno4dA9tSId2qnh0AWszQWbquHQHRrbzjIsYdADhbLSMm5h0C66lAVv8GHQKI/8XTCyYdAqnO7tBqniEA= + 4qRcexsiYEAoFld2zuNlQPnYnwv/oXBAFOkHjz8DckAxOsR5l5N1QIgw7CrXsnZAjEYOxVrke0Cpl8qvsnR/QE+LgGTv439A1HrTgQVDg0AJSQ+cSgqEQPLLj2xd04ZAg9AQBZ+LiUD5whQL7dqJQEr8thQLlIxAFxTR9URrjUBz/D3kHcyPQGiz2HbetZBAUIHxxD96kUAKFVXKGtqSQNCY6NmVPpNAiixM33CelECCr03o28qUQNFA+9mGgpVAZzOywRxXl0C2xF+zxw6YQK5HYbwyO5hAaNvEwQ2bmUAuX1jRiP+ZQOjyu9ZjX5tA0MDUJMUjnED/dY6plPOcQC3qxCABJJ5AE/ZREZ6PnkC8EiMWLeyfQPuFkgzqCaBAH8eycvq3oEDb59ImP2qhQGbbYW0QnKFAs6hG4VNwokAmZ913O36iQErxNHVG8KJADDR56HaWo0DVMp7eXrqjQPm89dtpLKRA/r5i7JFYpEC5SHHmlA6lQM/vIBawaqVA83l4E7vcpUA= - + - Jxa0RXwUzERecuBEFJo8RcAYw0QE6dFG1oE6RV5wrEVs1aFF2HXSRNsVC0UniAdHN8UFSDP/dkaKqAhHIJ1uRWEIuEUclaBFxtojRTLtTEa/pOFE6H93RdVUvkWoAh5FqIEJRWUnGkb9myZFjWViRTpX+USJquVEYNslRtVIBkUuZcdEKCu0RQvx80QisIFI3lCERgLGDkdhK8tFlWPWRsc04UT2Jx9FZkMzR2voCkjEQd9E1/QURuOSIEem9a9Hz23oRCsPrUVIkbhFI3jKRf34AkUMVWJF/6APRfDkokX/ngdGqd07RZw1hkVNqH5F5nyGRaH6GkbV3MRFnqEvRUbX6kQGwRBFBUPZRBC2akVTNyNF5e0BRVQZ50S7DLFF5AEVRyV6mEWLNBBFNpeERvbB10QBrytF0SIbRSBPGkUC+a5FL508R39w2UTNzSlF2kN/ReIIuEXOzqhFVU2gRRtvsEXZ9NREtRo9Rcku9ET8ScxEKZsTRT2P2ES9XTZFdiEzRfrh3kR0CI9FR/IGRVLVp0V5aTNFQcsiRR4/GUUAlAtFO4tGRsQR6USGxd1E7IAkRi4kCEXfQqVGX1kMRZ51xkUoUhlGPdoPRoKOG0VgtwJFgsnvRcbS3UW/3fpEuW/tRMDF7kSHNu1FZllcRaMrlEY03aRFk6dFRQ/OKEV46v1Ef/SPRSnf/UQZQuJEUUr3RBg/I0YB1XBFL0C0RqHH5ER35S5GGb5fRaoltkXCtaZFCcNCRYi8EEb4lT9GYXS1ROKL1kTrpxhFT3mHRhlh+kRDwkNF0BJEResvEkUTyqdFHUPpRL0bCUXk6QxFxwB1RhLjC0Wry2JFN7z8RKXO3ETiQf5HMajqRPNbhkbKGcNGsGypRXE3QUZyMidFCWMCRbbGDkW+evNE9+/oRDt5d0Wff3NF0RLSRI+gr0UoPhtF0FsnRqCF/UTLpkVGdWuVRZhEGUWZQQdFYVkQR3FRFUUvcXZF+z2ERYACqUWTTElJ6YfGRLUJH0Uxe4FFMbtJSBvld0Ui13RGptQcRemhD0YQnPBEl2AGRc2QTkV75H1Fa52jRbAS0UVhtoFF/GUBRXVLlUXAX4dFACjKRENK10RODyhFLWZHRf9sCkWHm+ZEDMoCRW62C0Y3ALNHbPMKR+TE90U9x/5F3uW7Rz4P/ER3YbZGrJLdRLuEU0VFgl5FsFxFRZQqi0VPwixFiNLfROHvLEa+jEdF1iQ8RQXykkiGckFIFIqYR9cKbEaJUlZFAIFhRg0yUUbKmZNFlDOrRTRQX0X2jRtF8Cn4RDJH1UR0ni9F8BgkRTaryUfWxe9EsxqbRl8IAkWSYItGWgEWRmBXUUVNVhFFuxXeReac7EXQilhFIVIHRRPgxkVXS3pFq8s6RSIdYUXPswxFPE0GRSVWVkUOwEhF/D3dRYAGJUXjFRBFphR7RUfD4EZmCapGkDcRRd1rBUXItY9GPp2JRR87qEWKPjFGsetFRkMcTEUeH0JFnepTRQgy20SLGfdEKxWKRer9Z0V4RMRFgmGKRQSaI0Z0zBJFGCkBRfKzJ0W949JE3NkURYczvURI8RxFb/9bRUZbukSoBgpF6aUbRiKxgkVFPG5FZvgdRoApkkU9ghNGyu3vROsqb0WD9CxFNhenRud1J0VitGtGsGXERf3t7kQ/GxFF87dcRrvFM0UanmJFyrAKRdebGEV29htFkK0vRlRpLkWhUYBFCnHQRLhUUkW+VhBFTRN/SERV0kfAhAhF6oFtRwV+gUXMLxRFBhhDRtXgl0WZVQtFM+CFRhUzY0VhX8dFh1y/RQjMEkUeSA5FvkUoR9RsGkWXyg1GDsYtRmno8kTbWAdG6RsNRbak4ER8IvtEmsiHRSTSCEWf+klG5WdFRdTf2kTjYRNFVbizRjzoEkWXPi9GSWc/Rn1VNkXwdjVFgmzURC6SI0Xbv9tEUTrtRDz6A0Ww/epEymJZSB+6ekcap3BGt+C3R97+FUbpMuhETRv4RZSgTEW6HvhGHg/KRtpuo0UPJMZFHMc2RV9lxkRsd91FBi4ARaTcDkUSxPxE5gqoRaz9BUZlvklGJoSARbcNWEWQzJVJHHuxSAEA1kfN9pBHLW4wR1TWBUZO7NlG30LfRUtzfUYfzkpF54dSRTTF2kRi3hVFDd0URTR31ERfbbFFOmDaRGHb/EToaZVFFNuZRT1gzkUg8vtE9NQXRuGX3UUqh+5EpIhgRRZ9BEXqzNNEeOOQRcG6eUk2PilJ0ZMdRQ/FjUjYoaVHVXuFRbEk7kTMEJlFtJxFRkyfLkXBMgJHDSpKRjqtUkZYDQFGtTOURbJXhkUinUlFDT4QRYWrBkfUKWlGICAsRlqmMUWd6VlFcHskRQBSzUTRLw1GXyv7RXqXhUVnQC1FN8hFRTLBkUW+0tJEVifjRKS0XkVNyAZFlWodRoXEjkVca2lFhM0aRQg700RLFn9G5CcxRvtzbEXIhhRG3pDKRTckTUWUIPZELTvXRA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - SLvlZm7BckCvtzQjQ9JyQOwy7rlQ4nJAgNgMuo/ickAauVnTUvFyQEIcd83OAnNARyPUp/oDc0DiKKhyJQtzQHx8X8W7EnNAQAmWkSwTc0DmJoj+BRRzQKCeVm0wG3NAmsLAh3kfc0CGzN3wOCFzQNZq+EDOJHNAWm3Z/cgyc0CKU0EouT9zQNbVTK13QXNACngsynlEc0B+QeiDpFNzQLS9NIyLYHNAfFDLE7twc0AXfGqJ5XBzQOFTmXBMdXNA+ZaEEnmAc0CMpJSWooBzQFan1BPcgHNA0LQwAF6Cc0CIe5Enh5BzQH5RBKHokHNASFSUBk2Sc0AGQVOSW5NzQHliIBb2lHNAtzLYjGKbc0CX/Hs4uKBzQE1UzH9aonNAn8+EL2ijc0AaLNKbxbBzQLpeLjfXsHNAGuqB6gy0c0C4SOGxALtzQNJViSfPwnNAhl1lh+DUc0CsTCCeOOFzQHgObFxl73NAnb+qkXgBdEDsU6BfrAJ0QKwVs+W4EXRAM+OTa04TdEAswOWLsiJ0QIYTtRhSMHRApf5+UKY/dEBMSkcd4j90QGQg7uACUHRAKGDvYTpbdEA8V94zIV10QLy8MCm5YHRAioJoqAdidEDjTdJWemJ0QNL2WifGZ3RA2nZIlNVndEBaR9bpInB0QD5BnvhAcXRAdNvGm3lydEASz2Dl94B0QOdRYxVOgXRAYWkrYxaQdEBpYik64KB0QLjz1D8TonRANNJElw+jdEAXQTGMwrB0QPYrCJC2xHRA2Gva8PridEDqEC+zjuN0QIKXQiCN83RASrEi5FwCdUAJIzXuwhF1QCysO2adInVA+pVpoMs1dUD9tSApJkB1QH+Gg7B9QnVAtK4wWN1CdUDA7mIJ2Ud1QITY+AQOYHVA/ggdW2VgdUAtQOqKoWB1QLbPyRCHc3VASN3lpox0dUCG0RhdrIF1QGSXm3GahHVAytbknnSxdUD4B3GHf7J1QJoJoxbwv3VAdqxDiILBdUDbwDTUvgB2QPFzODNJAnZAAZ6JpIgidkAYE7eFjyR2QKwj2T9KK3ZAYwidAB8xdkBgLuj7TEB2QBd5uvocQXZAfJFsL8lCdkAbvbwreER2QFqvZzESUXZA9puj2sxUdkCKaFhAj2B2QDtxdhnaZHZAmrWiUdF/dkCo56Fz3o92QGTcKx/An3ZAIxvx7MGydkBOnTw1DLR2QCtoxmDNznZAPKfhipDzdkBfnrnyABJ3QKVQ+xwPIndAYnPrm6Izd0C9e2AUDTV3QLNyEsKcQXdABiUfCxpFd0B4EYgnS1F3QGdjdf+RUXdAshnx7CZvd0AbBf3MLqN3QC8t3Aj4AXhAogTeb3ggeECgggwQbiJ4QKSBnd0pQnhAMFhF4hFEeECajPydeUV4QG76qO/JUXhAgBpAjYZVeEAjY+IvOGF4QACVFn25YXhAk5DPk0ZxeEAELjZ7V3F4QBzJrWNidHhAf6zlnYt0eECcFmQ1pIF4QFiiESKahHhATrCHdZiReECyPVUiqJR4QGQCJoiIr3hAwPIaDPbBeEDFt+SHFcl4QMx5aby31HhAGHhLRwP0eEBmtLLDi/V4QP6hag2zKHlAFdyRcQwueUDwSAoWtDN5QDZhRCX7Q3lAsNiSlJVSeUA5IJBMzFR5QNi02AYGhHlAUMo32r+yeUBoOICgQdR5QL7/4MHL1XlAq1PnTA/0eUAayYC25SB6QFgwAqooI3pAbCxO4i4rekCVCUPbaDB6QJrf4a0eM3pARUF/HAw1ekDUZiCoJzt6QEypuzsaRXpAnSrvAypkekBIE2imgnl6QJjbKhDcfnpAYCQUxA22ekASOT2dewR7QCTbSi/GC3tAnDzOQk0Ve0C8azAmXCV7QMIfjmOQPntAn8EbJOlDe0Bplte7Qkl7QEZTC4KcTntALtKLJSKVe0CgErmpi/V7QKgaxh7ZAXxALZUsrpkFfEByS/aF0BF8QL8KDzrMQXxABkr6MXy0fECtISz9V+J8QKicQtlT8nxAXXicb0oCfUBE4RYDAAR9QFtUrZsIDH1ADCuRr3s5fUACs+Tf1T59QHUYbfstRH1AvVrULfxrfUCEKINEH3N9QJfPPiO7lH1A2q0N9BGkfUCO9b6ZK8R9QLLOAEXmxH1A3Lcg9aUdfkB5RuU7/CJ+QGbifLehg35AYmMFVaeLfkA8Amr6mpR+QMJ7j8QmpX5AsmS/dPWufkD4+ka7T7R+QNH7dxw0tX5AdInBDKe5fkAE3Yk/wst+QG5Fl/IC5H5ASs2QHAfofkDicO34COx+QAWJBaup+X5AqkLLzwD/fkAyiP5vXSB/QIvNqYumOX9A9oD5U7hcf0DBKAnSwWR/QHaZK9i3cX9A4nvAA+eJf0DmTfHLQI9/QNnMCpZikX9A/m4qWGChf0Ck00yMayKAQCZp8x4COYBApF0dld9BgED+mkUUqEKAQOC0a+kTUYBAJ9K1KwNUgEBNnKStBVaAQHI4ySsHWIBA4kiVJCZYgEAUcrcUDlmAQLbTEvEyWoBAOAHkEzhegED0DIxuO2KAQGA75AApb4BAEK1hlxVygECZuphUwnSAQC7qRoNwd4BA+vyjvhp6gECSXqKsHY+AQK9TV3gZl4BAyDbnoRqfgEA0zvhhE6+AQBaqWBgfsYBAfu2Yr8iygECu2/UmwLyAQC633oO6wIBAwl57fFLBgEC3xc1upceAQMRe+wlTyYBA79n8o9TJgECAVcHkS9GAQPMO73Jf0YBAUMMl00nZgEDAsgnNROGAQC5Jmr8//4BAXClzmT8HgUBWl3KdPg+BQDa7IomJGoFANO/0yDYdgUDSTkadNB+BQKR+agU2J4FA8Fe5vyg/gUBvLqq2KkeBQMqsW5hVj4FAxIlmcVWXgUCey8SaVZ+BQA444onfooFAUDN4eGyogUDoO6FbSq+BQNHRI8hKt4FAvE5b+LQRgkBnzfzxuRWCQBbM/tzYGIJAsrROJ9gggkAYpLK30CiCQCQvhvFtXIJATILmXaBzgkAIHrX03nqCQKQOCyHmgoJAS5J5t/GFgkAeuMyrQ4mCQJRqgp/0iYJAkOA9TuqKgkCu4p2i+o2CQMnR4xxEkYJAnuONWvWSgkC7Y2nDPJmCQFwEUuwOoYJA8fO12TuhgkBtjXhJ3aGCQPrI1AgPqYJAgvOxsDWpgkCDXlP7UbCCQKxY1VV+2oJAo2qMV9bigkC2sVrHUPaCQDrosC9S+IJAvteVmlX6gkB8cLK/FAODQK6Dmlo1A4NAlSxBqhsLg0C+RyzsPwuDQJjeFih5EYNANpDqliATg0BOVoCYeRmDQOsfbQElG4NAPCE0q5cbg0D4zcQiciGDQETxd2QpI4NAhNdGcnEpg0AuYpU1uSqDQLx044VpMYNA8ujhj78yg0DcDtdl/EKDQBm3FckKg4NAwg6C7YOqg0CQtnlbR8SDQLifJepFxoNAMsyAYkbIg0C0kBYwRsyDQOfn5JhTAoRA7ReYRwtDhEA+agzb8U+EQGpaSC6gUoRAgsdNok1VhEC4j5Mek1eEQOKlJFQAaYRAgGla/ORqhEBZjT76C2uEQPaPj364boRA3y1dXuduhEASK8oiEG+EQObf64j+cIRAYRlHJepyhEAeCiNH7XaEQBq5DcHHd4RA0mozB3B4hED4lJY19niEQA47uPR2eoRA4sYV+u96hEBEDWe68X6EQIE6IJVp2YRAgL5pkWnhhECQyfYPQeOEQDLbk/Bh6YRAokha9DXxhEBZpq5xYfGEQGebzTqgYYVAsMSF659phUBgJPIXmHGFQKVZu2CaeYVAgzJ1j+yOhUDmvpCCk+2FQElb5s8/8IVAMK7c6/9qhkBtz/1hrG2GQGmsAF9XcIZAiJ+7aDH/hkDuWuwDNAOHQOCK4DKQKYdAKnSw95Axh0A0IwMLijmHQMgkEmiJQYdA2LnbXjhnh0CM24W5Z6OHQEI6RBZrp4dAoMdp1myrh0AUTuzfca+HQLspctXGsYdA2DhbYca5h0AIjrV8wcGHQA== + 4jyZjTbDXEA2uAwZnGNiQABU9bnLw2pAxm01jMzFbkCIMOwq1/J1QGs9DJTX83dAT4uAZO8jfEAymKDN7yR+QKd0Ltyj2oBA - + - 9MDXRRoWxEa9pjlFityKRfPUhEV7avxEm7MAR3vqREjnUtdFnBwuR6LClkWlt51FDwocRSP4NEb4clhFEd/jRSXqL0WgqRRFinbZRb+PSUWpOx5GQbE0Re0Zi0WZ1ipF8MyCSK5PH0ZS3DpH1KDhRVvWv0YiV3hFVsckR9i2JEjcayRGjb8pR0HkgEdCj5tFPIF8RSJEVkUFuR1Fa3k9RYcqVUatXNJFRS6GRTPvUkU6KpxFHSIWRv3i5ERhUzVF9icqRRk0FkVbXARFDToxRUL7OkU2wxBFscC4RTc8D0ds+lFFqogjRes1iUaBZ0hFqkoXRQ8CekWiYh9HxxErRR0vcEUyo6VFZvysRbDLZUVQQLpF8QIjRWCfHUVWtipFAcZPRtuLMkVbwKVFrIWkRYwdFEVB70pGSlohRQvWGkaqd69GmNyCRYkqz0X8eQdGvXYCRjbmOEWcC8RFTf/CRqjDsUXqrZ5FyeIHR9liBkada0pF8k0yReoMIEX0bWtFY5FBRbLN0EU00JxF+jbVRtj3FEYIh7tFjylRRZTidEWxxIxFxJkVR0/1CkaxPJxFgh/CRsYjMkWK9ZhFLR40RQAvWkXogDVFP4I5Rd8GjkalLVpFZw8gRaCQ7Ecz5KxGMZ7MRoybgEULrGZGT5glRZozK0UE3B9FbqZIRbtXLEVbaJJG9ntMRRPAHUb2M5tFbvkaRaWd7EZMuRVF7HBMRYQjGUVH3ZVFcFNOSTpCgEVAblBIwaNzRQmlqkaYHSBFHcPoRZKZJUUchYpFKlIhRSFRGEb/oNxF2xSlRYiYBkUXEy1F3pWERvzIrEVtSy5FiuJ4RUnCsUV88gRF9WNKRbxNz0WvXbRHUrcfR3ZH9UWp0f9F0wTWRz9GgkUjweVGpEQhRaZtqUX9V2JFY3y8RcUeOUX6IDJF5qVIRlwCWkVQdlNIwqQSSKTMT0c30mRG3UMxRSDfqEbt5klGvcGtRYZXh0UnhH5FdX6ARZkjuEe0sK5GmImRRpp78UU8gFtFKCsrRiOR7UX5qipF7BwNRYDYH0VuwxdGGKicRdhNFUUGy1NFd8EeRbe1SUWgvW9FWAQcRX5AsEUKkgVHySeiRv8wXEZasMxFfVglRX8uGUXEBRhG3PQERjdO2UXCKWtF8VOFRb1bYUUgohhFC5JcRTZaKUXakpFFzHcARkdGnEWEfRFGTzhURZegSUUMIRtFIemrRZ2xiEUjUYBGVOlERSyeMUVjszRFmw6dRRGLyEUN5DFGTl5NReqmG0UX0odFkE+jRuiqiEaX0ZxFVaw5RbYBnUYqWg5FZT1VRbwtTkYnMlVFAU5vRWA4hkUBKRdFrt+HSEMHF0XRYeNH4sAxRTbpa0dhDN5Fd7ZRRm1iq0UhfI9GdVHURZQE7UVmFs9FNJj5RQuXP0ezdTFGrzpGRix2IUVp+/hFPzIWRZpWIEVvBr9FOFIYRR++dEYSLJJFOnI9Rqhp2kXRSQtGAHlaRY/cTEX05DtFfKIQRT6QvUiQVNZHd+IJR7MAGEhUeqJG1PpuRlbDdkXMspBHgRQhReloKkfrBWhFeNc+Rix0SUXJBARFX1pqRWe+rUV+GlZFkW5LRQpyR0VjNL1FjT6xRViP4kkahmVGDKoHSWpqjUX9KQRI0N7dR0YhVkcUrF9G2/wERfDlB0dl0ghFrdv3RTiO2UZhVD1FEaLfRXEw+kROA2BFwvAFRo/LFUWH2ohFogEhRQGiD0UskmRF291ORQGreUWPPWBFJHIlRXYlE0UoQ7dFmKKOScGPEEaU55dF1rBNSVF4ykUTdTZFaDqkSK/rpEeL9E5FjcRLRXWvBEUyVo5FvVFpRq8vGEUzaD1HMzyyRjwlI0ZgDDtGmL4VReG9mUVR4x5HdlCDRqc7FUZJLYFFP6wORSJF/kX8OJlFjxAIRncwa0Uu2IJFHRnGRZWlCkUScU9GxtfhRSuvwkUJGCJF22lBRTwcwUbHnapG5PK0RSHjHUWXBRRGUCVzRXIxS0U= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 6NZ1Z27BckCX847eN8NyQHZfM71D0nJAo81jzFDickAQW/VpkuJyQC9iXRRR8XJACtdyyPoDc0Aj1TSRJQtzQP2wcSC9EnNAUSX+aSwTc0BigftVBRRzQN5jGYY0G3NAXMpwGHkfc0AQbPcgOSFzQNxvkLmnI3NARie+LM8kc0BTLBAsyjJzQHN2I5PQOnNABtXNYLk/c0CwOOMRe0RzQEO/+QCbUXNANb8/MKVTc0C6SaqQi2BzQObIphs5Y3NALhUdaudwc0CkJYQEeYBzQMTS3GSigHNAz1c1JNyAc0BokfP+XoJzQMydsiaHkHNA5jyKceiQc0CG8rsrTZJzQEZyvY5bk3NA9uF82faUc0CfzMzoYptzQBKgv564oHNAGYO6yuOgc0AIqFSSWaJzQMBICzZko3NAlBkEz8qwc0AikZbptrNzQFpywBAOtHNACiVf4v+6c0AWkP4w0MJzQJIG+28Gw3NAyDI2pNfRc0DyjaHVBdNzQOLxik3i1HNAjJD5Ojfhc0BJcZL1ZO9zQAQhOdE29HNA7Wdl13gBdEC0zBbnuRF0QLBn4SxNE3RAJKlhcbghdEBgRsibsyJ0QPSUeMVJMnRAQNUq9uI/dECY5VHyOlt0QD8ZZ4IgXXRASG93vrdgdEDQ+F7KemJ0QIfeCtvDZ3RA3/bs6iBwdEB4EB+fQHF0QNgXhad5cnRA26z7lTdzdEAKKGGb94B0QD35yWJNgXRA5XA8bxaQdEDgv/oM4aB0QOLgi1ETonRAvglGoA+jdECqy+0q+7J0QB5eL3O5xHRAkqSI2vridEAMCmL/j+N0QOC0wH6M83RAzBTAKFwCdUDiuKguwRF1QPbLD9cjFHVAtIFXmpwidUCZxm1jzDV1QGMHFpwlQHVAw9Yh6X1CdUB2ompb3UJ1QNQJGEfYR3VAeDlwEA5gdUDSjkSAZWB1QFbmmKaiYHVA9yNX1IVzdUAjgUG9jHR1QAowuR5NgHVAAYRH6ayBdUCuVifJpoN1QBgMPoJ0sXVA8J8kAoCydUDo7ml88b91QEL5cVSBwXVAMtGrt0gCdkCK493+yBp2QB9VhliIInZAjteuh5AkdkAc/P1SSyt2QMRse/UeMXZAC5JTaU5AdkB8eSh3HUF2QA/qDrbHQnZAlotNP6VDdkD9Y8FWekR2QLJ8jNPMVHZAYTZwJY9gdkBIHwWK0X92QIwHC3Pfj3ZAs7CLBPiRdkBc5RNEwZ92QJjHN+0LtHZAqWYlOc7OdkDcBa49TgB3QBL5bxEBEndAaki6AI0gd0BWVuIJDiJ3QHl0LicNNXdAFVS9wpxBd0AS9D0HG0V3QIpuBuNKUXdAb85hlJJRd0AcvukmKG93QOEys3L3AXhAXr5qtnogeECwpjOfbSJ4QLgxrktlJHhACHed3ylCeECesPofekV4QD40Q27LUXhAtIVS5TVSeECgsYvIh1V4QAqeOO83YXhAqrmCU7lheEBeK872lWJ4QCJzOFlHcXhAM9MEuIt0eEDCDNMJ9nt4QOzjIiCkgXhAmhWdQ5qEeECo7Z14l5F4QIQphrenlHhAoMrc4vbBeEBe5Tvit9R4QK9azFg34nhA+ilfAAT0eECQPKmRjPV4QCTWH/+BE3lAwlaNhrMoeUCSttwJCy55QK5daDW2M3lARjA6e5ZSeUALELUvzFR5QM9j1Yq+snlATz8Kx0LUeUAGoTJLDvR5QJLuWzvnIHpAhoaBqSgjekDyU/LWLyt6QNVfr8NpMHpAfkK3ZCEzekCAwa3CDDV6QPXFAIcoO3pA6/Z8ZBpFekAM36OnJlV6QOQ96f+CeXpAzAeYHg22ekDMrQbffAR7QEQc22dMFXtAByAweJA+e0DYBrS26UN7QJjy3cxCSXtAGGvxOJxOe0C2N0ZM9VN7QGQq1rgilXtAfhQEfoz1e0BLZzoB2gF8QNpjIgaaBXxAip6R7tARfEDscmdQzEF8QH5ZyXp6tHxANKHQHljifECWsz5fUvJ8QJI1DbFv8nxA0M68uEoCfUA13NWSAAR9QJ7j5iAJDH1ALSPOzns5fUCatfXs1j59QADbnQ0vRH1AGs4Muv5rfUCsMWfEu5R9QCycYQQTpH1AeljVNyzEfUAKam8i58R9QMY/kMak+31AePJmUKYdfkCakD0kjVV+QHzPTuydg35AusxauqaLfkCUAOf49Jl+QHPnHhYnpX5A0n0bO/aufkBEACb0T7R+QAVTxnE0tX5A5j83oaq5fkAbCxU1Y8t+QEAWQlMD5H5AQGUSMwbofkBKJ//ZB+x+QC/hPN0I8H5APgZXzaj5fkB88J9AXyB/QLQ2yTCpOX9A8E2JPP8+f0DC4q2ft1x/QBDDzkO/ZH9ACsjrJ7Zxf0DS0yR45ol/QHoQWkBBj39A6uCCfmKRf0ArfJwyYKF/QEw9KCGs239AMC90pc0PgEBy7keHayKAQPoOpqfgQYBA99LzOKlCgEAAy3M28kiAQLIwwsUTUYBA5B79YwRWgEBBBlJsJliAQMAGpvYOWYBALPYVYDJagEBGtIbsNl6AQHUTSy8ob4BAa2oxcxVygEDUjrxVwnSAQPikDWRvd4BAelSr7ht6gED0GVXqKH+AQKTRhoj/joBAQaI7oh6PgEB0w7b7HpeAQEMnN50an4BALdOyVxOvgECh/o60UsGAQKSDQJgdyYBAU4wNTFPJgEAuGydOTNGAQLFW505K2YBAyA/h+kPhgEAzEIDsP/+AQGqAVZlAB4FAcnwl6z0PgUCqC09UiRqBQIqdLlg3HYFACuh2wzQfgUDojzSgNieBQK62PT4wL4FAOmAmPCk/gUC2ke36LUeBQOKwdRBWj4FAcudOkVaXgUBR4oI956GBQLe0wj7fooFAzObboUqvgUCQz2MKTLeBQHTv6SC2EYJAIsqCVbkVgkCi4KF82BiCQJjXxTjYIIJA5xTDA9MogkB0lk8/33qCQOT30XzmgoJAho66OvKFgkAzVvT+Q4mCQIU/cxn1iYJAWKQX8eqKgkBAgItZ542CQO7Zbuz7jYJARN8HKESRgkA02Uai7pGCQEy/EPs8mYJA24HIDxChgkB8nLW7OqGCQBQsZsbeoYJAvkkaUFKwgkDeijah1uKCQLB2ncZT+IJAVuDFO1L6gkC6r+CCVfyCQAc/TDCuAoNA8Q0i8hQDg0CGetw+QwODQL3Zt5V4A4NAfIw4d4MDg0C+EaHfGwuDQPo1DY95EYNAoIY25iATg0AGZftyeRmDQPpj6hYmG4NAMI752nIhg0DcoMjKKiODQK6M48BwKYNAbq/YiLkqg0CqbamBaTGDQDWtlVfAMoNAlDz9qguDg0CkFYB6V6qDQPY8RkuEqoNAZMNX2Yuyg0AE/p9EQcSDQP5ByqpHxoNAir1cA0fIg0DkVizQR8qDQETK5Mil/4NA2vc+KFQChEDyWVp28k+EQFaYpor9aIRA5mQgK+VqhECUHh7E526EQD59u0jqcoRAiAViqe12hEA03gupyHeEQLgf1tLweoRAJqSLNCR9hEAejWL0admEQDSiOV5p4YRAfE7ta0DjhEBAUfIfYumEQPrsp99H64RAEHU96ubuhEDcEvLRNfGEQMwS/vle8YRA7h5XsjP5hEDKqoiPoGGFQGjtM/igaYVAAvtH3phxhUDO8cIrm3mFQNq9W9rrjoVA4h9SJpLthUAilOe9P/CFQHoqfaH+aoZAdFcsiqtthkBOVfllWXCGQApg0LrSyoZANiBB4DL/hkAN8IAPNAOHQFwlRbCQKYdA2tVe5Y8xh0DLLrLYiDmHQMowRS9oo4dAKFXebGunh0A306B5a6uHQPPZn3Fyr4dAKbzSCcexh0Aln7F0yLmHQKqikKfAwYdA + NrgMGZxjYkCmvpxNHCRnQHzKEHuiRG1A2+W/dP8idEA+w2SRqbN1QNtDnMhXNHtAxklW35pEfkB/Js98bVKAQA5PLXKZWoFA - + - upjiRbsODEWeKulGTF5/RU7xNUU7L6ZFjcLURnkkeEgiME9Go22GR+3xakW6wLVF/zcERbIvaEaGhTxF1u+oRe/zKEbRtj9FcQlGRRyY3EXozWVFJdSLRefQCUYkRzpFfVJGRbgxiEgjHTVG1NY9R2NDmUUSPcBGSRWZRQmVM0fEXWhI0asqRi52fUdCvI1HSvErRUhulUX2B55Fn6zARbRVTEUmshZFDT86RlvfA0YmfjdFwJs7RYBKCkW4eI9FW4xYRc2+AkZnmSJFeioRRsZ6qEVzeHNFR6IXRY6hDUUwRCdFnpBRRe+FiEXKxNtGR6mCRZk5fEYG2zpFJIqqRSbbQEeiXGRF3HU+RfsDjUXYyeRFrR2mRbDUZkVqq41F8/wpRXo4CkXj6jJF6KqURngujkXhEa1F3qhHRZIwZUWzUSRF6mhPRtktNkVkmuBFOUOwRiB0c0XfmhZGvkQbRuVjhkWs+IRFMMbRRZumCEb4e3FF0omNRZXQNkU+NPxGmHKyRUbJNUXtoidF5E9kRfXxCEUmrDZF+NfxRfzqsUVwEaRG3lQ6RndZbEVWIZJFnYokRbQpMUV0kyRGZVIkRuIeq0aJOEhFbRkzRcBPgkXlR0RFGvo1RQpwDkWYe5xGX9IzRdEQhUW0ZOZHlJGZRrVPwkZYQo5FWXpkRkURQ0X52lJFbiEnRep2mEWyjztFehKvRrZMSEZ8f5xFRIMtRa67QkUYvfNGSrA2RbHEWkWgFZRFrt8/SQUpMEVsaBpFJf9FSLrOSkWqXppG+RcURmYIp0UC9SNFpcpjRTzxsEW2akJF5hWwRZlLr0XaSy5FGDk0Rs/7iUVfB0NFCw7bRS5nSkVpO4RFJqe5R4Vh6kbcRLpFg702RhSVvkcHMYRFM9KcRm1YEEXCrrxFc4O9RYzrTEXY6htGzLiUSCchV0iAEZlHK8WJRjXuDEWFVJFFuJeLRtPdG0YrvJFFy/tSRWbylkVZKWVFdwGwRy7Kc0bbTJ5FBKxARmMhBkYEBUJFfutnRmzY+kVQniRF9cMfRaUtrkVqo9xFXdAXRfqQh0UIXTlFocKfRZd9LUWgultFltk7RWS3hUWXNAFHt1+2RiwrU0YU+edFFRSURRM1OUWazwpGiHH0RZskuEXNTRFFRpAhRSKCREVxrVxFQ8tERWHBR0XcEzFFdY2NRVcPM0aIheVF6MMURgQnN0U3h01F9yUkRenik0U4VltFont0RVi6CkXwxHtGU0MiRbQlpUWSOKFFLroJRmeYnkV3hXNFcbneRumDkUZQ0hlGBNcSRclZIkUqcilFm12URtzfOEVQHV5Fl4dhRqo9dkgh7S1F0Em5R4XUc0dacUNGblqSRURuikYjj95FYiXyRcy+tEV3gIlFnhosR5trDEbfEHhFf8dHRqA8F0XkxgVGsbQuRY4nKEXUZI5FHS5lRhlJVEWFoh5GePLnRURDIEaYMXBFkUYiRZVgwEjKpedHlAVIR9m2z0cSJc5GOFSURqTGREWwDwtGKeEmR0noKUUQ0dNGFE13RbQdAkYw/VVFvKafRRDjMEWnsdBFIwsSRWI1QEW1hYtFJGcAShx+OEaJyChFVYFXRRtiGEklYdhHH6MJSAejLkf4HYBGNWDZRuKeO0VKqtNFEVjdRn3TKUVX7RFGQKVGRfdxb0VNvxZGC2YlRZvGpUVoJJpFjPCmRSPPW0XBbBNF30uqRQ9NWkUQQsZFKTeNSX3xQElS8JpIS5mdR+Qaf0Xd4odG0aAxRVWTC0dvtUZGzU4JRqbbJ0Y+ZklFnwFnRWjJhkUYKA1F0JklRf61BkfXMm5GbWweRvabXEX1/x5FT4GcRTx17EWAkulFp3YGRkHjWkV7ECVF2PyRRX7pSUUHTxxGcKaiRSWhZEXICLhGcyqgRvWv8UU4xRNFh4UHRqHQi0XqZ2FF + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - ltrKcW/BckAcyX4748JyQGa/dCc7w3JAcVg1EUPSckAm53XfUOJyQOZi4PKQ4nJAHjhnK1DxckCLhlP7yfFyQIwzMX76A3NABAe9jSULc0DCDfL7vBJzQFrA/FUsE3NAurrth/YTc0CWO69rCBRzQH4TzG0xG3NAKFLyFnkfc0C2xvAnOCFzQJDausjOJHNACgbsAsoyc0Cmtlw1uT9zQB6Lvqt3QXNAvpQ5JntEc0De4Tp7nFFzQPiYW2ujU3NA+Igy/Ypgc0CwCWPGeIBzQCQuNnmjgHNA/IDDOdyAc0DcpO2aXIJzQHTcgU6HkHNAQD3+1umQc0B6uoTMTJJzQIik9j1bk3NAY0s8p/aUc0ChpmWgYptzQKdAtgi4oHNAqkIPQFmic0A8HD58Z6NzQKy0Z+fFsHNA5Z0+yrazc0AbtLtLDLRzQFbSYoL/unNA+iv3Pc/Cc0BQLHa4CMNzQLwlMzTX0XNAyOifFOLUc0Da5TssOOFzQNR1+XEO43NApujPOmXvc0CWwnAVN/RzQLiqYwF4AXRAw0MWRFMPdEB879VduxF0QEEacRNME3RABGroXbMidEBRKrUq4z90QCRO3AV6Q3RApoS0uwJQdEA+FYUoOlt0QOhzbR8gXXRAbkgvj7dgdEDpFFOhemJ0QKodl83FZ3RA0GlY0CJwdECUbhTLQHF0QBjyso86c3RADLh4rPeAdEAWL8eqToF0QFAqHYAVkHRAuxOxxeGgdECuoA4MFKJ0QKWj6wMPo3RAYKCxGfuydED9cKkVuMR0QPqSjFH64nRAyt9gDo/jdECMZZ5YCPN0QMjrlmqM83RAy6COKsIRdUAu6Ps6JBR1QPdl6SmdInVAllUbccw1dUCyMDqqJkB1QOpbcAt+QnVARcVIEtxCdUCi4QgJ10d1QOU+OsIwTXVAYIw/8A1gdUASKNmsZGB1QA8y2iCiYHVAilyQpYZzdUDuENEnjXR1QJ9aFhmugXVA8Ot6M6WDdUAEt6p1dLF1QAqvCt9/snVAbVa3qe6/dUDyK1cngsF1QNYHnGm+AHZA2AuuDEgCdkBoKqlJyRp2QEQE1dqxHHZAgrKQ7YgidkA2DMDOjyR2QNJpKBNLK3ZAFsKjHx8xdkCSAevITUB2QMRZsJcdQXZATBbnMshCdkDk2IOhpUN2QGApQY54RHZAjbBpiRBRdkDTVDzhzFR2QIAhl9aNYHZAMF3WQdF/dkCAJMAGwJ92QOkky+ILtHZAzkOLls/OdkD2QPAaufJ2QAy0qBaR83ZA0Hui3gASd0DOt0/7DSJ3QMrivPtxIndATHNAAA01d0Ca8W37nEF3QJDvtJwaRXdAqspYAkpRd0C2pthLkVF3QHEP/hMnb3dAa3fJrjcAeEC1CD2NbSJ4QOoQdcRlJHhAr7bztylCeEA/7xzdEUR4QHnayvZ5RXhAJFp3N8pReECn2DNONlJ4QPSLaRmHVXhApPDT9jdheECmJR7ItWF4QIhXnGiXYnhAdhnZ9UZxeED43uOmi3R4QHHurAHJeHhAaHzE6fd7eEBUFcUAmoR4QIUOFHaWkXhA0LLM7aeUeECRE5g2hqt4QOJKPRD2wXhAs9Xp0yTCeEDi32l9Fcl4QEbE8tS31HhAPB/h+wH0eEB0LSSwjPV4QJDxyoWyKHlAfOmdRA4ueUAnVPwtllJ5QOQaW/XLVHlA8UjgwKRieUA4FiTCwLJ5QMjS3IhC1HlALQR4bw70eUDkdloB5iB6QHo7wsAoI3pAnML3Mi8rekCMmmFXajB6QG5F+A0gM3pAdPd8dQw1ekDfbOeiJDt6QG7nINoZRXpADqwq9iZVekC6qxKdIVx6QAkYEoKCeXpATI9r4tt+ekBcxihHDbZ6QAtiaoB8BHtAvNN9HE0Ve0Bgk9FckD57QIybb1fpQ3tAFkywv0FJe0CkgROonE57QN6nyjaM9XtA/hJIUNkBfEAUP0ZymAV8QHIBrSfREXxAFqv3vcxBfEDGlnxJwlh8QJWuuap5tHxAVISh31fifECO4z85U/J8QLoAPOxy8nxAnLNROwACfUDLOdGGSwJ9QESF1EcBBH1AE9UVewkMfUBof2LlfDl9QHq8VR3WPn1ACZXAki9EfUCzoJom/mt9QGlFa1ggc31ArNkdubqUfUCowNwdE6R9QO4ulEEtxH1ArnGAJObEfUCccufOkfV9QDOQJmr/In5A75/ERp6DfkCw5VWSpYt+QELehD2alH5A0rYS6SalfkAU/b1d9a5+QAoKJyvys35AC3xUHE+0fkBq5XAwNbV+QEL7aeupuX5AGsBCFAC/fkDE+TBUA+R+QIrDFFMF6H5AWsKqwQvsfkBrTtRhp/l+QATNvMoB/35AxPsjUGv/fkC2VRMvXyB/QFYWTrKjOX9AzhaLSrhxf0C0+A+F54l/QAjWGb5Aj39AUeT0fGORf0DIoYasm5R/QPFeTuFrIoBA+ByX6FwmgECjhfLV30GAQM4HtyUjQoBAcg+jlalCgEBMRq6l51CAQKQCPtETUYBA2gBrpCVYgEB0TSGZDlmAQBgCMkUzWoBAeOXpRzVegEC5LE9xKW+AQOgWAqIVcoBAht5bRsJ0gEDM5h7Zb3eAQADdh+r0hoBACJl9/v+OgEC8HzlBHo+AQKgeW8Afl4BA+bUzrDeagEC/KhTZhqmAQONzc14Tr4BA3SN5KRyxgED+9nYZ2rGAQJzUKDwHtIBAbvauKE27gEBkAyA4zLyAQJqxN2C7wIBASC31flLBgEAcpTxIU8mAQKTntjxM0YBARI7pQGDRgEAAKPX1SdmAQA+Vk85D4YBAk/Typ1XhgED22IvXP/+AQCotM/Y9B4FA4lN5aT0PgUCY0n1tiRqBQNURwxg3HYFAMyobxTQfgUAdRU3z4h+BQPxanIE1J4FAeuXXbzAvgUDpQ4yJKT+BQFFuXIvfhIFAg9dsEVaPgUB0SyXyVpeBQFNd0YxUn4FAS0MAyt6igUDgyfsRbaiBQKZeR5lKr4FAjp6AWkq3gUAupfchtRGCQOCH8Fu4FYJAiJZH6dgYgkAQ/oah1iCCQPON+SHSKIJAUpFvM6NbgkBXVVQn02aCQE0pkBnfeoJASDh5ROaCgkBkkjs88oWCQCyKeMZDiYJASka4dPWJgkBMlLzu6oqCQF/RGzjpjYJAAqTU+P2NgkCUH+hFQ5GCQOHdjxXvkYJAOeBq1++SgkDq3CEUPJmCQDJh2/oOoYJAyOkzUzqhgkCkIo0n36GCQLwxrcNSsIJAhkscAlH2gkCwpk0GVPiCQEgvdOEUA4NAKvY8rxsLg0BAiRFVeRGDQNxrzMIgE4NAK9ULaXkZg0CMBwqvJRuDQEoCn05yIYNA1XNqhHEpg0BJ6ERuuSqDQBSA9wxqMYNAUWLs678yg0ACtliMC4ODQCs2i/WDqoNAqz0Amoqyg0AePXOLRcaDQDonIh1GyINAN7OVTqb/g0A+Q7d4VgKEQCzbBcbzT4RA2Wp/3P9ohEA2su0R5WqEQPUWchMNa4RA7l2fkuduhED3GpgZ6nKEQPbgd4HtdoRADKPauch3hEBA9p2r8XqEQCSakQO+qoRADpMj6GnZhEBqEdrLaeGEQGjiSgFB44RAht1nGmPphEAGKpk5NPGEQAq3orxg8YRA0opvyjX5hEC6tOo6oGGFQA7nvUigaYVANvMv7ZhxhUCagdSDlnmFQDIkQzuT7YVAjCFGaz/whUCKy6eh7PKFQLPov+3/aoZATv9C1axthkAw7T9UWnCGQIp4CHEx/4ZA+lcHk5Eph0Cy4JV2kTGHQN+2TlyJOYdAk6l9smejh0DUSJkFa6eHQHbr1Nhtq4dACDWQ5XKvh0BTVFNJx7GHQO71gDvHuYdAwtCdE77Bh0Cu/LrmODaIQA== + NrgMGZxjYkAoFld2zmNtQFRnpVdMhW5A - + - qbfgRT1PJkWI2VRF6WQDR6kxREUo+JNFWHScRXEQSkXB0wtHlD2ESGwmdUYYy5pHsKiiRW90sEVWB/JFu68vRSqciUYFRKxFSggTRnGaKUUCaz1FSbfHRauzcUXjF4FFwggnRlctcEhSXTZGirw4R4j+h0X+Es1G44mFRQrBOEeqg3FI+BZZRjqIh0eZm45HBUDIRbhcJkZlN99FEZmBRUSSR0UlTIVGNarlRUxAOEUDqz1FOwx5ReGNqEU6CyZFAx8cRh37E0VNcRtGBvxLRfuoSkWMInlFxtAmRfSadEWZQSBFrO8qRcaEZEVStM9G0m6dRc6FOEaKmSNFqwVsRQ1jLUfiJz9FXhmpRaqC6EXhxdFF8bMlRThgaUUshlZFe0sgRQECS0UxzcNGzZaIRZtkmEWgVdFFCO57RTgiN0X7XUNGveURRaC8pUXHOJxGSNMTRX9on0Vq/DZF7vYFRtaDbUVO0G1FY82sRcDuTkZ4WMFFoVzFRV9z5kZYUYRF10uDRWW1LUX/8xhFPCeNRRMMP0XxIAxFw8diRfvnGkaXmYJFyHK+Rt7fB0b+2IVFB8DjRUkWQkVs2WZFEPpBRYxkcEbeBxhGxsm0Rpn4d0X636FF3uN7RWRWDUXtlFxF7uWaRm0ad0U3xS5FQVHuR/L4jEYkKtxGh4iBRT1HJkbCKSNF7vQ/RWE5jEWofiNFy4oGR2AYX0WjEVBGX0+8RREAnkVfEGVFLO3WRrESa0V76lVFiAmBRSyNUklnoxtFTT48RTH1R0ix0o5FuSenRghyIUUHIQpGi6MHRXwQGUXo8oNFaGRjRbD8C0Zda9tFqHgiRT03a0bqRJRFh3YmRdQXeEUeXrNFWEgvRaVbFUWxgaZHMFr/RisLmkUuUC5GqNq/R8sTU0W1a8dGohA/RTf/i0X/r5RFxb9ARRVD70XuDklFOmAmRrX5mUiueGpIZaq+R9qmb0a2KI1Go24bRnIAt0XPL45F/UaBRURmlkXavUxFmqjDR2R7lkZqN4pFcTFVRRK3cUb1HZhFBxd3ReAADkYlItBFuyR1RZj5XEWoVSxF6M3CRfGo/kWhXhBFnL2WRV8qOEWN3I5FsEtcRXYLQUW4ZI9FW1/vRvUmmkZW8QBFpWVbRgjRpUWgxJZFA+UXRTET9UVAXbxFztK7Ra0hW0UJRkNFMEIcRZWGlkWIiSVF/nyJRaEaeEZtAONFsIZORpbmYUVOnK5FGBwORXtKG0UiiiFFOexgRXgMY0Uu+nBGAP1IRXwNekUoMSVGG4GLRfQkT0XoENtGhjumRhvoDEb4QBFFO5FDRZLDh0bmnWtFiwozRWPKJkXuJGBGCn0uRVU3OUVs9gxF6aUYRegoNkUfqCxFwpaASI9Jy0fF3IpHXCWnRcLBYEYBftJFR+klRSXBlEad4K9FDGrYRakV50UqkAJGcUo3R7usYkVC4hhG2WtKRZtIRUYNrAxFmAYdRkyhhUW6kiNFV8SURdahKUWCeWtGGEQwRU0VnUXiCbxFblc3Rg7mKUVcCxpFDPI7RcQTsEVKdsBI5TXdR64bl0dvVc1HoZEYR4DAaUaTw+RFbvmeRX2GHEdZRZhF3wAwRYxQxUZbNJFFISvwRVMGUkVdfYBFRMMXRezMqkXm/wBKK70aSUmk80ezlANIGVVDRwWQiEb7xfdGdhEDRiFP00ZvRy1Fs0vYRfepgUX1tilGtYQaRQdb1EXwCG9F5PpNRZ7uNUWnaRhFsI3PRX/gjEn3U85FgkhFSUekpUhxgKFHqEA8RYe0iEYdfUpF/JoMR5QvTEaUhuxFsZMmRqe3J0X6oIBF/3YkRWT2HUddu3NGH2FJRrYxXUVTUjlFKYCvRaf6L0USG+BFoywcRtlMu0XivShFhcovRmCZmkV1xX5FbAYQRwls80bvUDlG+JohRfplF0YH2K1FSwFAReInTEU= + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 5Ixf1W3BckA1z0mL4sJyQBa+DVk6w3JAIG8rsELSckD0/9dsUOJyQM/+5CiP4nJAUq791E/xckDa0ppbyvFyQFPaME7QAnNAVhIgjvoDc0BluxiFJQtzQK/EO2q8EnNA+VzJWSwTc0AYyIaX+RNzQFo+yi4vG3NAVX1Fanofc0Dwhcx/OCFzQNAFLLrPJHNARkO5Fsoyc0A0oCvpDTNzQLaKMaG5P3NA18PuwndBc0CezdtmekRzQOotu1KaUXNAqj+qGqJTc0BE5h4OjGBzQOopi7PmcHNAz/xe8XiAc0As4nsVooBzQAyO9lfcgHNADehrHV2Cc0Cobb6shpBzQJqbnv7pkHNANFki3UySc0AEQ9GUW5NzQLTB3uP2lHNAEo4JoWKbc0DEDHBsuKBzQI26FO1ZonNAGAr3Xmajc0Cm8uzUx7BzQHg0J5C1s3NAYpj2Ngu0c0AMMzqO/7pzQLeTgD7PwnNAdneFUgXDc0BcczTBJsNzQJYbS5jX0XNAYknNtuHUc0DpusI/OOFzQOwq0q5k73NAuyV4wDb0c0AALZZ4eAF0QN5Xf91SD3RAciL7DbwRdEAk6TVXTRN0QACLzJuyInRAioWrmE0qdEDeAC9Q4z90QM4j8PE5W3RAviXA7CBddEDAnj7Zt2B0QOMrYR56YnRAxIxgmcZndED2uBOFInB0QFArRqtAcXRAhdKcf3lydEAesTs3OnN0QKqGfx34gHRARNyUqE2BdEC2r7h7FpB0QN46nLXfoHRAzEvQWBSidEDO9fbjuaJ0QN/NROgOo3RAOo+wT/uydECIkZhZuMR0QGiooyD74nRAftOxg4/jdEAdWiCJdPF0QBwxWXwH83RAwlr/YIzzdEA7epgIXAJ1QBzLr8wiFHVAev3L7pwidUC8JEMuqjJ1QF4mjEInQHVAyGeOvn1CdUBQFzPP3UJ1QGa5jhHYR3VAAKXlKjNNdUBPVMaaDmB1QCzx69pjYHVAvIdcLKJgdUDa/otON2F1QMY5hAuFc3VAcu5zmox0dUAaBPdurYF1QGQ2btukg3VAAtz0kXSxdUA8/U1cgLJ1QEYLWZzvv3VAFtcGioHBdUCIMGC/SAJ2QHhtVyO1HHZAcug8QogidkAo84jPjyR2QF5hXGJKK3ZAWgLbTR8xdkA1WXghUTN2QE5yDORMQHZAbsfioRxBdkCCT+GUyEJ2QKCmwjZ6RHZAv0j+2BBRdkCWxGSbzVR2QGys8cqNYHZAolxY5NlkdkCC47g70X92QHZ3Zx+Sg3ZAHr5SG8GfdkBT7BUYDLR2QBx801PPznZA4vARJ08Ad0DmDK/pABJ3QMREqhMOIndAWWWm46Ezd0Ca4qbjDDV3QCBUE5icQXdAeAlbdBpFd0DQDvVTSlF3QIaowT2SUXdAqN81k41hd0D7jv9tJm93QKaP8dyJqHdAF/5nijgAeEB4P1/t9wF4QLpKdWt6IHhAeKse7G0ieEBSDtfWKUJ4QN9dNo7rQ3hAVcMbLxFEeEAcBGb3eUV4QAizZP7KUXhADSOEIjdSeEBKEEV8+GB4QLwlCFw3YXhAei52PUZxeEAs4A+Ti3R4QCwni92ndHhAFfnj68Z4eEBtSbzT93t4QJjwAXSjgXhAdI13xJmEeEDDGBMalpF4QIhhE52nlHhAvPxQyX2zeECQajxIy8B4QII9T7/2wXhAyrmZELjUeEDInUy+APR4QJtznV6M9XhAD6tQpLIoeUAu0YS+DC55QA48Stq4M3lAT7emdftDeUB2QUkGllJ5QOjgrgXMVHlAw9RkpaNieUDY/e6C3KF5QJT+fCTBsnlAppRrakHUeUDqU1HuD/R5QBtPuuz6BXpA3OnBq+UgekACqLdLKCN6QMpobDgvK3pAkDKpmWgwekAUoIiUHzN6QM4aPkkMNXpAcBdmGRpFekDQNZIDKFV6QBryQwnAc3pAXXF054F5ekDFFhwM3X56QNRwZd4MtnpAJL7Ub3sEe0DHdj35TBV7QMoSTIRxOntAvzg3+48+e0DkKxbs6EN7QIAwhg1CSXtAMa2vHZxOe0CnwSfg81N7QHg7VkEilXtAzsnu14v1e0BeW31hkwF8QFX1Ts/ZAXxAlIdxKZkFfED7N90S0xF8QBzVCQzLQXxA5tvWvsBYfEDsGjubHF58QH9HTkl7tHxA1GP2uPfEfEBuRganV+J8QKiNRyUX8nxA/IGODVTyfEC4IzGacfJ8QGW9NqoBAn1AJlyKsUoCfUC731+xAAR9QEiDx7sIDH1AvkCYLkUSfUDONPv0EBN9QB8TZjd8OX1ALJe1ytY+fUCQ75WJuJR9QFotPLISpH1AeMLtbC7DfUBI/9R1K8R9QMoihHTmxH1A7nq87pD1fUCM2aV0pPt9QDCuxjilHX5AXEptWv0ifkAEdThOjFV+QIjcBdifg35AuGxBUaWLfkAIsjVWl5R+QEZg3P0lpX5Afr1AK5qufkAL1eG89K5+QImhgYBPtH5AuqeFP6e5fkAUTQNPA+R+QClY1MkF6H5AvT+xswjsfkDExHe8vex+QM8u8n9fIH9Ab5QeBbhcf0AYxVyIt3F/QAuyBTHmiX9AZL9LxUGPf0A+NddpYpF/QG6SYL6WlH9A8zAuBF2hf0AgB+puVLF/QBAQ/rhqIoBA2I5ar99BgECqUJ2QqUKAQH7yc6jmUIBAthknPxRRgEADrnncA1SAQESptPAEVoBA5maswghYgEDJHv15DlmAQITeEKAyWoBA1KhqpzVegECzdodaOmKAQHz2Uugob4BALM3zjRVygEDchVS+wXSAQA00lkVvd4BAQF6qoyh/gECiqSgAHo+AQI5TTeYel4BAJpTfmByfgED491kUE6+AQGtJ6SdlsIBATE5uJNixgEDCcM9EFreAQCe/K73BvIBApHgZV1LBgEDsMH5KU8mAQFjH0UySyoBAJTD1HEzRgEAaSoR3BNiAQON0v4VK2YBA5Wao/ELhgEAW9eiyS++AQB71fxSf9IBA0NE4HT//gEAIkqeaQAeBQNdSKmA+D4FAvrML7T4XgUAkWVlOiRqBQEB9gzo1HYFA+pTKXDQfgUD7AGiO5B+BQKvTFcY0J4FAxBSDnC8vgUACciPmKD+BQAHvlGyGYIFAOGcefLJmgUBCMxy7nG2BQKlzNahShoFAAo6ICFWPgUC08CYAVZeBQPhHxHpVn4FAtJjvht6igUBixWQKbKiBQG3pMYhKr4FALPejgDi1gUAt4qaeTLeBQHNg/VLnt4FAuSlJjNgYgkCw7D0d1yCCQFImfVlxUIJASQwjFDppgkBHzC0hB2qCQMx0xMzeeoJAg9FZIOaCgkAvd2gI8oWCQDwcb3hDiYJAdHrKtPSJgkBy4wdg6oqCQFtYMOn5jYJAMErxxEORgkDGh48r7pGCQIhebx3wkoJAUYlFtTyZgkDWboBHDqGCQHxqhpY6oYJAMM8+AuChgkBIwOKCNKmCQER79oNRsIJAhfSEzBQDg0BzMm5AQwODQCS6cNsbC4NAWAuvdzsLg0Awi8gneRGDQEtNdz8gE4NAej5YrXkZg0BPh7HHJBuDQDgn6HlyIYNAFCFDB3Ipg0AEW4mTuSqDQJLtzTtSMYNACEFSv2oxg0BWeeEkwDKDQITVvaALg4NAOFz2kISqg0DqoqV5irKDQPPTPh5ExINAahKqcUXGg0Abs4H4RMiDQIPh3Z9GyoNAwh+gqab/g0Av2iPmUwKEQIpoK5yHIoRAp9YYyQtDhEDMoE4t80+EQMLzf4H/aIRAZS8k5uRqhEC61AYMCWuEQFQpgTMaa4RA9PvFEb5uhEBOUZNO526EQEoxdJQHcYRA+pEz3elyhEAXcPht7XaEQNIFkCTHd4RAgn+8z3Z6hED80dBj8XqEQA36jKsjfYRACWB+L/N+hEBE3pEkvqqEQIQUGbBp2YRA0VfhxWnhhED/+9roP+OEQMJluTti6YRAuDmVSTTxhECW/O3/YvGEQIj9WXVZ+YRA2Gog2Z9hhUDGNKEqn2mFQBrYJtSYcYVAzJfhVJl5hUDqxmf/kO2FQMpjI9E/8IVAb9kHhJpghkBCKpDs/2qGQCDJ536rbYZAkqG09lhwhkCyjEV+CHOGQD5410Qy/4ZAMK5GPBUDh0CL1BIpkSmHQDqGHkmRMYdATnzIqYk5h0DgqX93OmuHQOLYm0dno4dA1aYQRWqnh0CaZDgfbquHQBTdyGZwr4dAeu48Ssexh0AyGV3nyLmHQPnnrGrAwYdARkHkmTg2iEA+4EttPDqIQBoFvSNAPohAmty2bRqniECa5tClHauIQA== + KBZXds7jZUBvl3WGqkJxQOzIyX7kUXFAb/VR2gJUeEATihH2kmJ5QG9TLi5bZX9ACfT2pPU5gEBKCrvSBLuDQAkj5c6hwoNANimKdAPrhkDe6l4OXMOHQA== - + - jVwDRk01A0Xw6VpFbcT1Rs0LwEU7qoxFTZ9GRZWu/ERt6w5FN07pRjD6HkgerRNGlBYTR8J3cEV9Xj1FGVslRX2NikZSqohFVRvMRZxr5EQlySNFw5I9RbmWEkbQrwVFEFZ9RTiM9UXM7vtE4b5ZSLLUFEYLmhBHXrSyRfiunkbdNnNFSa8bR6TiA0gOZgtGomwSR5DcT0d8Yo1FC/+LRbEsmEWS3lNFzuQRRQx1I0a/v7pFsEIaRWBaEEWixXNFC5eKRSescEVa9TxGdmEKRanKHEb++w9F2eoPRQ4o50Tz/fxET/UCRdneSUXOak5Fgj7HRrEqeEWxJDlGCvt4RSG2nEVwiRpHcyshRRkGQ0UbKiBFp9rTRfLto0WduCNFMOYBRWo5+US63AVFI/Y8RZHjEEV6SRlH0u2IRRPpnEUM36BFWgncRaSLDkXcOBxFnCpxRlc7DEUrzThFnIfARqbyRUXkY/9FZkcYRRphzEU2BStFSfn1RAXlREXHyoNFLe74ReBkjUU2Q2dFk7SoRihOA0WpwCVFhk02ReDdU0Ux4ytFRYVIRQPOz0WFe5FF6DmrRvSuOkUvt+NF1tFzRT10w0V0dRJFp8s8RULDFUYCRLZFWzkSRYi9qUY+GQxFNlGBRRPseEWAzSpFv4bkRDP6cUZQuHRFFPXtRI6i10cNgKVGDlHWRif+c0U/60tGlIoIRSIOhkUtuANFb7dPRYauCUWfePVEp8RRRcVsPUfe6PJE4YZzRTAyL0ZSn3NF9068RVDP7UR3mnRGXwQ0RXZ9OknhfepFjLMERUdBUEXPAVtF41pCSPZrdkXfdYVG97MLRdEqA0W5d7RFoX+TRWSsIEUwVMxFlzgZRt8YtUVxdQlFv5ECRSkZtEZ7r6FFSOIvRQlo6ESrZCRFBSLWRa8TMEWUSPBEsdXoRLJ8k0cti9JGb/1fRSpUBkZiqbtHlRWzRpDgNkXGZQFF+VKRRQhsDUWp6LZFMyBuRc67/EWmNw5F71mPSKyXUUjlHadHlRq6RhwT/ET6Yr5FE0CJRplK/kTU6k9GlgV4RRhTk0WKm6NF6RsoRRWGaUV26DRFUoUARRYysEe/yv5ECSO5RrMIakXB3xBFZ05tRsEa0EVabJ1FEjd1RRe25kRoHhRGYW6aRVunNkV8HKFF3bMERXlGRUW2zo9FkFoVRcdMLkVi7qtFUvlrRQ5YCEXtYbBFHm8WRSs2NkW8R0JGGsgtRYZabkbfpzJGIlx4RSdBCEahKiVGcGqfRfns7kSSg2tF0FhlRUX4h0W/WH9GmKU4RnwYE0YNKTFF0IARRW/DBUWWpFlFecF6RWHpgUW6w/hERvKSRsG8xEXPIH5F+Ug9RQHW4EVkLmlGs6tzRYtqA0Wl5ZFF+isGR1+tj0b0zllGOl4MRXPihkbqoGVFvoF4Rf9kPUYaNI9F28UtRdu/BEW5KkZFKVyBSOyJ40deWiVFHxh8R+GjM0U7SXBGgCOERfQ9Q0XBbV9FngeARs2YsUWLR+NFebLeRGchMkaCDA1Gk6xCR+AgkEXqCBNGpf6ZRSFNTEbfkwVFAanhRN5sJkWbPRRF58/tRXkEMUXJATpFZbaeRaY6/EQ3M4NGzPA/RYAmekWO2z1F2wU7RoEhU0XEbwRFhJtORYSkKkVCq4VIeoaLRwIa7UcP7xRIPTWARxw5IUY4ZYRGw3WHR2peqUUgcQpF+LMhR3FtiEXEpSFGYcMDRTEWbUXc3AdFVr6pSVJdyEWTjLxIlCAbRQ+EEEhlk6VH+9xwRxZCC0aT+RdHLSY7RjgzlkZPzOpEqaJ9RWgKnkW6p3tFcivtRUvf/kRcxItFAO1lRRECl0WOlFxFM5WBRbRCLkVPvSJF+QhDRexNGEUE3PVFN/CZSREx/EX+WopF5RUyRe4dW0kzWAVFJ3K6SN4yxEclgV5FS0UURSR4bUYvjwBF11JYRZEh1EVZNy1HxliXRkQQrkUMmh1GwwCGRVF/e0XIfxRFm0MgR63Ae0b1BVZGlBVNRWqPZUVMcUZF1bkHRWHSuEWtTk5FY2tKReW7KUXDbpBFNSo8RUedW0Y77tBF5yScRRkfA0XFXi5HuGQKR6X3ikYA66pFY40LRtuxN0VHux9FfzG6RWiPhUVJie1E1JcFRePIAEU= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - YuheYG7BckDq6Rw1T8JyQNRCs6zkwnJAtPjBAzrDckBlgyMSQ9JyQK4hp43M33JAPomot0/ickAYXEkakOJyQHrvHlhR8XJAkFTrKMrxckC9Hx/covRyQEQV92aPAXNAJZFGkTsCc0DcjCNL0AJzQDQvqKL6A3NAQKz4zCULc0B8RwuOvBJzQODamBosE3NAe2ImofsTc0CEtM1PMBtzQAb64Qt5H3NAcqI1fjghc0CoBZnxECNzQDLl9f/OJHNAEIwuAw0zc0A/7ZRpuD9zQI5+t/94QXNAv17M+XlEc0AsH9lJdVBzQIrwb3WbUXNAai+vCqVTc0Aro+ACjWBzQKR4D6g4Y3NAvm/xFnmAc0BquRZgpIBzQOD00FncgHNA97fFCwyBc0Aw0+bJXoJzQMscqNGGkHNA+ApRReuQc0DlVBMZTZJzQD6uMaNbk3NAwGzIxvaUc0AqpO4SYptzQJovy+a4oHNAxhk/puSgc0DwwCgrWqJzQBxYOFUjo3NABq7YiAWlc0BP6foI1rBzQLrUrDa1s3NAPSQLCQC7c0CPyiKQz8JzQNUEtYfX0XNASnRYZ/bTc0DsiOAA4tRzQHIETaU44XNAUsPNDGXvc0B4zAT/N/RzQFjVTIp4AXRATL0JelADdEAcYqlGVA90QINtIRy8EXRAuLWFHU0TdECydvsasSJ0QKfruv5SMHRACsCI3OM/dEBZtJDwOlt0QHsQ51UhXXRAriyf+LhgdEDt0V6jCGJ0QBozNqV6YnRABJyON8ZndEDSnNDiIXB0QJWl7g5BcXRA/NWNo3pydEBEQyO5N3N0QNxY0HX4gHRAZcxNS02BdEA7s9zMF5B0QAo87mUPo3RA/AfOGPyydEBAJ9Nt5MB0QHosrxe4xHRAksrk+s3UdEAJKe3gt+F0QIpHsXD74nRAsgZtnozjdECgGYDkdPF0QHbrAk0J83RA5T2X4IzzdEBPwcRyzgF1QD7wL8tcAnVAsM/PHcMRdUCKR01PnSJ1QAyAmJqsMnVAaAfW4Mo1dUD8LaVJZUB1QBzDAyl+QnVAdJoHq9xCdUBBvJIj10d1QM5rqjIjTXVA1aHLnHZVdUDkUgXuDWB1QEiCrsiiYHVAEPL1moRzdUB23dhXjXR1QAD2Uv9MgHVABjHzf62BdUBEOtG4pYN1QPrrjc+ahHVACgN7e3SxdUCwkk1z7791QEyBpJK+0nVA1LuZ483TdUCWgKEqRwJ2QDPyu3NJFnZAXARfdckadkCgafUBpxx2QIZl5Y+JInZAKjkfI5AkdkBJNPpCSit2QCBee6EfMXZAPneKbk8zdkDQSSUMTkB2QPio/SQcQXZAYJBOpMhCdkBoo9W0pkN2QI+iZCJ6RHZA8mQJTBFRdkBouBJRzVR2QCy5+T6PYHZAwn8c6NlkdkDo4dYI0X92QOYnQn/Bn3ZAxINoFb+ydkCkZFuqDLR2QKGptOHOznZAwl6PhJDzdkD42Z5WARJ3QO6Nd1uPIHdA1IbiZQ4id0AIQeaeuiR3QMIVryYNNXdAGf4175xBd0CKCf8AG0V3QFycaJBLUXdAngoBWZJRd0Asv3oUKVV3QEH46wWQYXdAio5rMCZvd0DyMbG+MKN3QES8dh7W6HdAZgR1sTkAeECBwCOs9wF4QObXdYdvInhAmkaAFSpCeEDCtqXAEER4QK4ewF56RXhAzk6qVMpReEBSWbRwN1J4QOprfS+IVXhA3cLAMvlgeEDUV4USOGF4QBrLAA5jYXhAcHI3oLhheEBsYdNslmJ4QHLPXdhEcXhAONia0lx0eECFMEnMi3R4QMotmsCwdHhAnUaCnfZ7eEAS89lWpIF4QHxarSSahHhArmqtoiiHeECAdn6XmJF4QDyMtZWolHhAVLaxSffBeEDClkS2t9R4QBy13NgB9HhASBrcR431eEDPdeQXsyh5QKhUy00MLnlAfJiwO7QzeUDjGFQrllJ5QLbn7/zLVHlApifg1KJieUAT+IFpBoR5QJ6PuJbBsnlA+BhfwELUeUAMY8Y4zdV5QANxDBgpI3pAlIYyFzArekB0SOTEIDN6QLgkU24MNXpALzG8jSY7ekDV3s5ZGkV6QNp+Q6goVXpAqJWJ7h9cekDB/uKGgnl6QNlpx4jefnpAjHK7HQ62ekB8DvKwG8Z6QEopANbT43pAso32OTzkekCsIgkKOO56QA2m73V7BHtA53lCasQLe0CnntDQTBV7QMM0uh9WJXtAir5HhHA6e0C4f0sskD57QFgB2ePoQ3tAFlQFpUFJe0APiBqNmk57QJg65G30U3tAllab6yKVe0BSg8dBi/V7QE5dGYSSAXxA1DitFdkBfEDAvsDqmQV8QHRLi1/TEXxAiuTT6c1BfECZj11ivlh8QODMQBIbXnxAate57GjEfEDmU3yM/MR8QGeWmfJ/4HxAuBqnslfifECGulGuVPJ8QAlsEVhKAn1ApnrVRAEEfUALXDb8Bwx9QE61Qt1EEn1AGABLGXs5fUCC0y/C1j59QH6h1p3HeH1AAjTlhSN+fUCnSFoK5cR9QN6D46U94H1Au3bM1dbufUB5Rmc5kvV9QKZzLnGi+31AqEOZ9qsDfkByqGIQpx1+QEgrgIr+In5AWbyjKqCDfkCYr1CMmZR+QILsGinLmH5AY20m/u+ZfkCmufQ2ZJt+QJfgTbElpX5AEIhINvWufkBnwHoP8LN+QFxvpBlPtH5A4AJMMqW5fkCoN8+qccN+QAgPPgcD5H5AXkYhcAbofkAYrkeICux+QIINmI1gIH9AgsgBmKg5f0Dy+M3XuVx/QIzhRQS3cX9AyFKrfOeJf0B4fPWLQI9/QKTbsAlikX9APzjThKmRf0CBQphmmpR/QHRvl5b1mX9AxAQRAVuhf0AcPhIFrdt/QIius7ZtIoBAI0V7xFwmgEAk0cv43kGAQC5oPZipQoBAzDdxsuZQgEBUcuQQFFGAQJIntBcOUoBAkm++IARUgEAYoWmnBVaAQDLWi9oKWIBABM+3YQ5ZgECGzXedMlqAQOcV6k83XoBArluxxihvgECKNc3RFXKAQBny9PDBdIBA2mnEnW53gEDwLH/7G3qAQDLv2xUej4BACSYLux2XgEBqWA0mC5yAQD4ie3gbn4BAujidzIipgEAJ6pkFE6+AQAiUXwobsYBAIEsFXRO3gECXy+dTSLuAQPrBA9UDvIBAADX4gO++gEDHJQYtqr+AQEApBWJSwYBAdmEiL/jGgEAFs4q9YMiAQHqVgz1TyYBAmDpKpEzRgEBrbxQtBNiAQHYCSWxK2YBA2HSIzEThgED36moe9uiAQG4wqiVK74BAzqhaqZ/0gEBYV95ES/eAQGd/3v/5+YBAWg4ucD//gEBzZo5AQAeBQMRL/zI+D4FAqv3c64kagUAaePMsNx2BQDptJpQ0H4FAGTcivrAfgUDOGkTr4h+BQMznmRs1J4FAqIgyShIogUA6rswFLy+BQFrTuu8oP4FA/gZ74ClHgUDEOiYuVY+BQAGF5x9Vl4FASBxDV1OfgUC4KFO/5qGBQLpEOuKTooFAvO/pBN+igUA0GMhMDqiBQPB6yDdKr4FA0FoWGzi1gUAcsQSUSreBQLS3tqnjt4FA/CBtBZG6gUBeC/3MfdOBQLVLhJICCYJA7tcz37USgkBqRD62mBSCQKTi6u/XGIJAWl4hDdYggkC0eFtv0iiCQD7grhNvUIJALO3qgAtagkAOuDkLbFyCQDZCVIfXZoJAWoBVVzhpgkA+H4FLOHWCQGpvRTied4JALn1GJt96gkAUiUyd5YKCQJKgxhHyhYJAikqzgEOJgkBC3W519ImCQNyZLSXqioJAkuns9fmNgkCFvAdQRJGCQBpd2fjtkYJAortWRvOVgkBDuRZLPZmCQOoTvJRWmYJAxF+0zQ6hgkATR6OMO6GCQMR7tyjdoYJAlcWX5w+pgkBgMV6yM6mCQKRKVzQVA4NA/EtLwDcDg0BQyBl0HAuDQC4Ay2R5EYNALirCUSETg0CQ+3pWehmDQBCx8uQmG4NAbNyj73Mhg0AMXSn9jyGDQL5UZOxyKYNAZMEvlrgqg0D+t5SmajGDQHHT0z+GMoNAcqhza8Ayg0DwprKwaDmDQPTyj89iXoNA9KoHgISqg0D2z1cwRcaDQEnxMb9EyINA2hJ8p6X/g0A2nGzVUwKEQBkA3LAMBYRAaAX3pYcihEAWFiQnS2OEQJ9bX3b/aIRAFmd6t7NqhECy4zoM5WqEQP8BvXC2boRArqRlhOduhEAzkRWmEW+EQKKgf4z8cIRAgmJbQupyhEBofdxc7XaEQLJ9fqnId4RAiQBNp/Z4hECcXeGxd3qEQIP98gHweoRAf+MMLfR+hEDSyB8yvaqEQBH32spp2YRAPd7i42nhhEAjGU/6P+OEQK4Ttdli6YRAp788RzbxhEBiTtucY/GEQECB3ns2+YRAFPVtPisBhUBwob0ioGGFQPUPD6KgaYVA5HXSKplxhUCmSYl0tHOFQBC/hNCYeYVAfx/935PthUDi7aZSQPCFQLGKFkDq8oVATDa7307zhUBkpDY8kxqGQEDVM02sbYZAfA4nFSe5hkC6eFW2z8aGQLuTRzIz/4ZAgHxjdRkDh0AbgnM2GAeHQI4RsSYdC4dAP7QBRpEph0Aq7mDJjzGHQIJNbDKIOYdAE8prq4pBh0DUbIpaZ6OHQLli3N1qp4dApuqCMG2rh0BMXaJlca+HQPLTjTHHsYdAYAQMSce5h0A+fzh6v8GHQMgJ2irCyYdARrVkHgUbiEA4+6SdODaIQJYz6pg7OohAKnR39jc+iEC2iBcxOkKIQM5HbFUeq4hA + KBZXds7jZUA= - + - EwAGRmhE9UTEl/xE0yFrRbUB4EZ+bt1EYKtPRZMEwEXRxFJF10cuRbv2z0SNtMhE9o/XRK7ZQUXuKf5GPZJNR6Czfkb1rURGC8t5RUXE20QzmndFqSs2RvaizkRQgpRFjk8ORfeREUUnZVVFnH/pRcqWxUTJxEtFG0RpRdI2t0U+CgFFKx0YSCox+kVMA6NG5NXhROUalUWMvVNGtqsdRRGIIEeHZyhHp4ZgRmG9LkYKzz9HeIcgRWGd/UXyKvVErgc3RZC4sUU85iNFNUhKRdRG80X7vTNF5c0BRYH1jEXeua1FImlKRqsXxUTMnzRGmJ7LRIna00R1DdBE3EiRRdkFB0XD1uFE8UIFRdGIE0UFzqBG9Xh+RZKiCEWiuR5GNiUDRfWcsUWT0TNHR1PcROPgDkX8kFdFTEa5ReFlhUWhwpBFQudeRQqP7USWyQBFbAjuRFTfBEWDn+5GvUQXRfCRa0WcMWxF1vG2RcMKz0TFxnZFiyULRSNXVEbcJB5FIkX0RCf2u0Tu2KdGrygeRbw3CkaVlChFj4P1RAW3tkXA3vtEPMbxRM7fWEY+PdVEYeeWRUDlGEWzIARFs6olRlF+/kSR9C5FKa7pROEKI0WoI0JFiX/3ROab/UQOWzBFRcXxRReWmUUPGO5GfWn3RN6RvUU85sZF27fwRZQHz0QWVIBFvo8/RcvekUaKfGNF2qdJRYGXQUag/SxFPjz6RBWshkWtLDlF0AMVRSlpkEahM+5EkM5URV931URfJvJHGoqmRkz5v0a3ipVFLPl4RuBCEUVtKT9FWFlARdn7Q0VhysRE+HkQRZBG7EQ6+URFHdwLR9LlMkULKxJGIGCmRUtynUXtsGNFE3PjROa7F0a7vMtEy0QXReHr/EQi+8xEryKBRZZfPkkmtKdFTWcgRXPPIkXAaUNIuX3FREp4YkWpMJRGv2CfRSvUUEWiRUhFjUX2RTShvUUFa3RFIwruRI1VlEart3ZFma04RVQZwERKwJdFkd2xRQKqzkTQlmRHfe+6RuC6sEWCwLNHZ0xBRU3su0bCOw9F8lxRRVrvn0W/ZtRE4uGnRaTk90Tx389E+xcWRQSot0T4TTVFNufsRIusEkbCVc9ESLRKRawLrEiGEYFIUVe/R4ZqyEaDB5lFKTNrRaf4j0Y1lupEcKg6RomIfEWlikdFiXKERTLHREWinh9FT3rRRNzkH0UfdNFFsh23R1aMnUZFIU9G3sfzRYIxFUX/LDNF9BfeRPYsPkWCOABFIT3iRFwIYEXCDMJELXYHRfwKxEQvM0BFd+rHRLTlbUVfz4ZFRNcwReCTXkUfWThFopUSRbojEEX/WSNFYdGARmnp0kTbpZlFF7oJRZWUTkWWbRNGrADFRey3mUVf4NRESg7oRNlVI0WwXLZFGbOkRvGqnkZbueZF1JPWRG4/HEb+c85E4OoNRR/YSkVzjVFF7OLRREsKTkVzBCtFkhcLRdali0b0VNpEC7qlRU7S60X/4BJFXmq+RWzsEkbbZU1FdNATRbe63kYVT69GaBE4RqWySkUrQ2tGXW1BRdCvz0SMNRxFhcS2RDzETUaoMCdFoeLHRApXw0RRFOdE6zc0RegfGEW+QsNIG4fTRAcQ0USSJDVIvbPNR79990QlbKtG/iUTRvMI8UQNMS1FKFrQRbphy0USxRhFSCJcRiTZhkXq0ehFOiQXRpwWGEbTSyhH1SogRf2qOEVBv/JF+P3GRB6hQUV/dTRGalS9RNF8GkZd1WRFsGwNRU2VCkXrkx5FnmujRe5+xkRor0BGhAGaRbDJSUV6Qj1F8c4NRYtv+URr2CFFUFwARezmF0UOP15G/etnRdu/WkVNYe1EZ9HARBmcN0Ww3MpEF+HXRBpNKEUwtvRETGCXRwHHo0ZpYw5IMTR+SKysr0dHJpJF2LaIRpzICUjaehJGuxl/ReKLlkeDBIdFpkiGRXlst0ZTqwxFtxvVRDrhx0XnOclIdJQTRZ6u1kdCCqNI2HmgRpEDLUhHJnBFNtbNR2TbCEVDb91GGa2wRRWM4kXUDLtE0Ki+RBaaR0UuuspEg1b/RFodMUXaS0lFxgfgRK8mW0VCyKhEnLdkReCG2UQzSctF/Cy9RZa1mEnw6IlF3KRTSaVqrUXRSBxFa0+oSMmtwUfinj1FJoMNRX+FbUWZuJ5G0jI9RX50KUYoWINHKvXTRnQ4HkUqdI1G8A1mRTdJAkaHadRExE7JREdvmEej2A5HQ+2QRvyEyERUZglGtXUBRW9VaEXEld9E5frIROoSBkU/AgxFahzHRGDR20T4/jFF65WkRcvsA0XQAtVECLyARho24EWf4MlFJ9UNRdFSdEfyTzFHmPSeRipvw0VXqWVGo6cGRgmKaUXBZEJF+9XdRPChBUbtrOJFS8cxRSZcDEXzmu1E + AACAPw== - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 1IEoyW7BckBqcSEk5sJyQF5s4Tc9w3JAGZumiMXEckDvVVVjQ9JyQCgausjN33JAzBISd1DickDS4O0mj+JyQHJshVhQ8XJAyLjpDcrxckDhhrKUtvNyQGbQ7Iii9HJAHTEw3PcAc0AlKxVsOQJzQMavRUrPAnNAkOBMVPoDc0DGQuJEJQtzQJBaYMK8EnNAplbZ6CsTc0DG23NMBRRzQGJRxaB5H3NAwQRfwTghc0BusGrwECNzQDCdgNrOJHNA4C1xp1cxc0DYI8eBNjRzQAt4eEe7P3NAEJ1/xnlBc0CNUwxXekRzQFYpv0OaUXNAkLCWO6NTc0DO0aaRg1RzQIEPggv5X3NA/u5Qzotgc0AqOwZe/GJzQLePR0E6Y3NAi/yAt9pxc0D63UtwuXRzQLo+2LRLdXNAiE14z3iAc0DAZWJNpIBzQLz5kNXbgHNAUKmi4wyBc0CWQHgjXoJzQEYORgeHkHNAGJl/oumQc0DcxX4ATZJzQL6moahbk3NAWWbRms2Tc0DabCuqYZRzQMLXeq33lHNA8s0QW2Kbc0CLRHSnuKBzQOiauDdaonNAjxTU2ASlc0BzRuoJ2LBzQAQvKU21s3NAcLV/KAy0c0CwVSyrz8JzQNaOYI4kw3NAVo0HjNfRc0A0pdb64dRzQJuRNy044XNAIouiKHric0BHMCcZEuNzQJKBBtZl73NAL5d2XDf0c0CsGsnddwF0QHSLfZBPA3RAkvOnn1MPdECYBYmoTRN0QMLg7chJIHRA1md+crghdEBgbwYIsiJ0QDX9gDzjP3RACiXyeDpbdEDI9d0MIV10QApa+Xa3YHRAqCMMxwhidEDE+INAe2J0QMpvH5UicHRAYE29ukBxdEC/y+h8e3J0QABDb/c3c3RAsEvPvDV1dEDOGjG494B0QAJIisBNgXRAzicwkyaDdEBKsyGBFpB0QDZII3Dvn3RABaSq59CgdECFLKK7t6J0QHvU+jIQo3RAgnQrAAmwdEDiz4bTw7B0QJKBuk37snRAtdoBzLbEdECAGVNrzNR0QHQ7LtW34XRA5LT57/ridEDAxQEWkON0QJtnMut08XRAJ0CUvQjzdEBKnTq3jPN0QKm/f2piAXVAr9DG2VwCdUC68NomlRB1QCfh34blH3VAzI57cZ0idUBExPHuqjJ1QPQ1RUvLNXVAUABpRH1CdUCBWKII3kJ1QCjDI6XXR3VAF93XKSBNdUBZJjgsMk11QEnKEgAOYHVApR7T5KFgdUD4GS54N2F1QMDtQTd3cnVAKldLzYx0dUCqs5pvd4F1QNqJP2isgXVAltLA96WDdUD5iouLmoR1QBo11BaUoHVADLWn9HOxdUB9GEnN7r91QGf8jHL5wXVAXk77Qr7SdUC8XPJ7RwJ2QH4I2fNHFnZAddbZ6H8ZdkCgG+FTzR52QHjM9eCIInZACsLys48kdkCUx8g3Sit2QGCQA8EfMXZAOzGiwlEzdkBYsNEFnTR2QIamYQBOQHZAAKMLeh1BdkDcdw2syEJ2QKS+TjF6RHZAM8OAI0xLdkCjGK4/EVF2QD3QKs/MVHZAhgf8DY9gdkA6us6u22R2QI5fFF3Rf3ZAMKtsd8CfdkAiY8YCDbR2QGC4osfOznZAIrcni5DzdkDgUQXKABJ3QKRDboMNIndAcICxDg01d0DSbRAOnUF3QN6ZLJIaRXdAeqMimkpRd0B0rd1tkVF3QDbNVw8rVXdAlDsxp45hd0BmFw2CJ293QIIcsQYvo3dAQBpAEvgBeECZK731bSJ4QLXVYr0pQnhADedWm3pFeECqKV9Hy1F4QKCEiDc3UnhAGZoGlohVeEB6aitM+WB4QNgZLS44YXhArylWYLZheEAouPoNXHR4QFhMKn2LdHhAN1Uqy8h4eEBAnVTE9Xt4QA1NY0SkgXhAYGJIq5mEeEDqKavMmJF4QMIdr+unlHhAEuj2RoereECbsOQNiK94QMklhab2wXhAGvegwrfUeEDnxOaCAvR4QLRFyW2M9XhAOjbRC4cTeUAMNn1Vsyh5QGQ05RoMLnlAuKQARlUzeUByo7k/tzN5QLyqQemVUnlAOoZUcMxUeUBoc2DXpWJ5QBvGLM3AsnlAviwElEHUeUAqlvzRTeR5QGAUgi/8A3pAHF0BfygjekC8cmK/Lyt6QEGEABwfM3pAEHYIpgw1ekCEV8UcJjt6QBKCKEUaRXpAxuZn3ChVekDHrTM5Ilx6QLzcbuzBc3pAqrJfPoN5ekBE4fLK3356QKD8HeUMtnpAGnHqkRrGekDMt8kVO+R6QHurFS18BHtAJCzxickLe0DkcWzITRV7QJiRIpJbJXtAq6nzwXA6e0BoGEB3kD57QDppbwC8PntAaxvof3dCe0A5/p046UN7QPegFEtCSXtAvKGA75tOe0DArVzp+VN7QIxDaEzrkHtATlAUpYv1e0Dk4KxJ2AF8QJfUTw2aBXxAzA1BStIRfEAe9SF9zUF8QHuAavAYXnxAO+nINnpjfEApOuUKK3F8QDZN4X4QwHxAEjg7DmjEfEAM/3VN/MR8QMt3fHOA4HxA21C9tVfifEA+gGpqjvB8QATHVNFU8nxAegfacHHyfECQeNiobwB9QCiaZr8BAn1A/EB/mksCfUBgZpVsAAR9QHOcO+UIDH1A9JltKkUSfUANSWX4CxR9QE71X4AzRH1AkIx3vKlzfUCPMuytx3h9QCoF3xvnxH1AnnGpGzzgfUBZVZcwkfV9QO6bZW6rA35A0j+o9KQdfkDeifbj/iJ+QN9zY/OMVX5AUxo3hp6DfkCe1qq1mpR+QN6mW7+brn5AcomL9vWufkA5LqgxT7R+QHbkcuynuX5AptUjigTkfkBkRFXeBuh+QAZD7QoJ7H5ADNu3umAgf0DJEZFo0Ud/QMnYhui1XH9AdWBJWLdxf0AotPTk54l/QLIoz/5Aj39A7+58amKRf0BObkVym5R/QGaiTcLvmX9AXkQfXF+hf0CSCqcPVLF/QPPavGes239A5gBwXbrjf0Ch8juZbCKAQIYsEqhvJoBAjb5px99BgEDQPjqlqUKAQEjlyNLjRYBA4K+GefJIgEB+DMA651CAQFFV1ssTUYBAvyQ9uQ1SgEDMz599BFSAQLwnlI+5VIBAAlvxnAZWgEAyMmtbCFiAQAzpdxkkWIBA7hKi8uZYgECystQpD1mAQFlmNyAzWoBAdLQPkjZegEAyBVnqKG+AQCyix5UVcoBA4jX7TcJ0gEDCbN3NbneAQLuVAeQeeoBAVlxgRyh/gEC8VdYLHo+AQPb52iwdl4BAkMx+7MGcgEB4wMgOGp+AQAfIT3iFqYBArpV2yROvgED49bzEULOAQAQaN+QSvIBAtP/F6TO+gEDAHDZcvMCAQB7+lZBSwYBAzK372qXHgECsKuCzY8iAQA0Tk29TyYBADDqvdCPRgEBaAqyITNGAQDKm85UE2IBA2kEbY0rZgECc6DgRROGAQFy8SDaD7YBALlJL6ErvgEDxSUzpn/SAQBByvKdM94BAOrbQgT//gECpDPMKQAeBQE6XSh4+D4FArvtGBYoagUCjxHoDNx2BQMTj2ck0H4FAR1EZpeMfgUBUPCURNSeBQLk/z/kuL4FAeMiZSbwxgUD2APheKT+BQIxAn7ItR4FAQ5z5s1WPgUD9WqwnV5eBQKhlcIhTn4FAdRk95eWhgUBzgQWalaKBQCJ6a1zfooFAxiF4ZG+ogUBbNwxj5qqBQJY+G45Kr4FAGATApzm1gUCKdRZpTLeBQHK47Wfmt4FAKLF5BpO6gUCiiLpWfdOBQJwKCWm0EoJAgIGGutgYgkCQukqH1yCCQMOl5dvQKIJAwv/I0NhagkCa87S8nFuCQESut2MOXYJAAoQU+9JmgkCQYqsNOGmCQGRwnlgHaoJAXAMzrTl1gkArxGTu3nqCQJy5BkvmgoJAyoiXAvKFgkBfoJOeQ4mCQEy9Nsv0iYJAiGsM+umKgkBEL55x+o2CQPijqTtDkYJA1RMZTO6RgkBkYZ9v9JWCQPZntg08mYJAXk7NDg+hgkAKju1lO6GCQIQ6w5YLqYJAxo5isTapgkBDO2vvf9qCQAnWcibs6YJACjT1SBUDg0DBbkeWHAuDQAD3W7V5EYNAnDxXzx8Tg0AT2bcTehmDQKgrj+VyIYNA8o9oTXEpg0Dcf3sAuiqDQE5kQXZqMYNAEh3UJWReg0Cq8aAR63KDQCpjMOdHyINA+CSj3UTKg0CCiFpWlfiDQFkiqJGm/4NA+uDUtFQChED0zxJDhyKEQPXho6m9NYRAxmqfBv9ohECoY86nsmqEQA5hnDDlaoRA7GY32SJrhEBKJ31z526EQOyAy3ARb4RAa2yyI+pyhEBhmrPpDnOEQEazt1ftdoRAKtaHDsl3hED4aRza9niEQFaibDrxeoRA1PsV6CR9hEC2Vw0b8X6EQNr3EVVTlYRAOmWqfr2qhEAac4/sxLKEQDQgkOdp2YRA/ki/w2nhhEBKJV+kQOOEQBAehf1g6YRAgJj7dH3phECOetLPNfGEQP+rrgZh8YRAMg5sNTb5hECulZA9XvmEQMYrAnKNKoVAF3VnSKBhhUCCPschoGmFQFARKd2YcYVA8reFMLVzhUCqSNhzl3mFQKSTwxGTgYVAClaQ6x3vhUA5A2kPP/CFQBZOvAmQFoZAzJRviDL/hkBHyQaaFgOHQPigBagZB4dAPho1ER8Lh0BKRdgxkSmHQL559LiRMYdAXmzT/Yk5h0CEuKe2OmuHQPb+UW9no4dA5OJjx2qnh0DykibmbauHQLLC7IVyr4dA8Prf18exh0CKv3MtyLmHQN0QO0HAwYdA4ZdBkwYbiEB4Xlq4OTaIQItqZZs8OohAevzY7TQ+iEDgTpalGqeIQA== + NrgMGZxjYkDiYBUjzERuQI8BR/y9MnFA - + - lwsCRp+O2kSjQQBFdMLTRKi8+EZBwP5EWrh7RbRMrkU/yTJF6KjlRNwkxUSJPfxEYQDsRNWi30QZiDJFGAxGR7qRu0YW7ItG2VeiRZB3m0WePzRFrAlzRuJw+ET4E9BFbjjQRNGW30RH0VBFQYEvRV4AKkbMzBVFV5qVRYfun0TAJyZFw4ybRbkRCEX20BVFO6/LRJ84sESR9j5FIGUESHOb60WNZXxGrggSRa968kWM831GCzwBRT5zVkcmzJBGa5u+RJfNRkXcxTdGJUG5RUtpIUdOPf5Fjb8pRdryhEUgVRlFeKsyRf35BUZXhAVFM955RRLIckUuBMdFZCTRRKar90T37ktGSDroRKvQFkbhYRdFNcchRXbLLkVho9tEU8PmRBftb0VhOB5FzR8BRZI1lUai0oZFj6pHRdfSy0U9ncRFog1dR3ANJUWquwpFuEYBRbeIOEUo2d1FBafCRCdWn0XrWeREYIzwRF8r1kRk3wlFojDXRAlgNUVcaVBF7gTtRBwF2kTt8vVExwWsRgtg70S9Fz9FDaQlRW7L90Uh8OREq8J4RUSN1USNL95EhJFuRoE38ETatkFFjTSURpEFWEWPJQxGtL4dRREULkUftYtF077cRPuAKEWiVgpFULISRmz/CkW4zsdFIZdkRUXnNkXFGARFodwORncd40T8COdEZSfzRE/8fkU4wixFPWLgRDwID0VCnW5FbfYvRlX04EUbZaRGURbxRBIA50RO9H9FU8rNRe5tG0YlUXpF5lHGRP09NkVwKihG5Sh0RUnJTEVSdkFGrA4sRbD3i0WpH4NFWaUyRZLejUakqkhFpez3R3UckkYYn8FGO+1bRdKoPkaFa+hE05j3RFE+cEXWWEZFABIDRXZdn0WrkvtG52xLRoTGj0X8Xk5FtwsoRV/2uETqxL9FXXYxRREujkWwlUZJdmvCRFG4H0UOYzlFdppDSG5xK0XDg6FGbJNERZJf8kS12J1F0qQLRR9srEXXrpJF5Dn2RDWEzEWMJ4hFYcATRZxW2ESua4FGPm2lRSpwE0U7BHdF/d/uRV+a1kTOzu5EnKd5R5Lkf0aejK9FFEWoR2MvIUXDXKxGEvMTRabqC0VK49BEZQ2BRR/VMUU/TahFr/IBRRaFAUULH0NFbXLfRK6GDEZIoSZF22WMRYYlrUisQ2pFnJgGReR/ekjIX8dH4mOPRtSTHEWaxGtFQ1tvRnliDUYqcpVF5EOVRfPKk0Uf9wtFSGU4RSb+iUUJ6QJFObH6RH5FD0XIE3dGBx/YRzzZD0VSRcRGcqd4RZtRF0U2OSxFhJiaRtcmEEbP0JZFuHhiRSOP+ERTqQdF0gEBRZ/leEUFkFFFqVItRdsxx0RglchEckSERbdi1kRiXMFEtUohRbI7LkUl/hdFRiNSRmKDKEZ6ExBFaccvRWOa20XQ939FZs3ZRII10ETfZn5F3XGsRYI/2kYD6blGIuQNRn0dxkWHrDFFTOzsRGPaI0UVczdFhonGRGmISUV9ivhEeq6GRV8DWEV6ydBEhsrHRMbaJUXU1VhGciu7RKm7TkUsE91EN2oiRYbKPUVAqcREDb/vREFDj0WO8edF9phRRYPJSEW+fN1Gt4TCRkR7VEYFkFFF5rwiRY7OkUZ7FlVF6FsKRYo2AEXeMtBE+mssRqQ7zUSkChpFC2TlRP4NtkSogYxIFFffRDYu7URZ9fhHHf7iRCc8iEe03w9F9V6FRhg+a0WzrMZE7/RXRSHaJUZSuJBFW0RlRpo7k0VB1vFFfdFYRrMw/0UIgSdHOfiSRUgA30UyQi1FboL2RMXqMUbORyVFI40URoNV3ETNU09FU13mRJYBI0X9sZNFkKfhRHWu50Sl1ktGdUX3RcunSUVd/4JF0MIwRe0A7URsnNxEWX4rRtq6bUXU7zZFj5MIRf1B/kThHutE2ZO4RNJIyUSNgClFOp3fRCWzGUfuE+9FcZMPSODo30cZJapHr9zzRH/jjkaeujRHepnnRbljJEWiBupG856tRZ7B5UVbPiJF4AkQRW7/3ERlmANFZKVTSLEcXkd8fQNIuRj+RUQTUEeuwBlHXFcaRsTYRUXNr1BFEbLRRM8gOEV50vZESNYGRbe5wkS9pDZF1aoERWYQSkVpm+xElc3fRWYB2kV4iptJPcphRWRrWknC46VFxta5SNHg3EQm4K5H/EVZRbaj+USqFmlG9dQHRX9gUkXO49hEAXNDRuMcMkVpPQZH/fB0RugBOEX0rwZGurMERf5ghUUV6nRFYg7iRBvx30QMbMVEXQQaRwH3gkbD9QpGNTbmRFElbUVNxAVFUEgjRTsZ20Rmq0VFtcBURWALA0Yx66tFDYcZRSenE0aK/pJF0ER5RVTXH0XO+YFH7PRbR9yOokayLp9F20kPRrKEqkVqCktFWOTpRGkZ90WP1ZBFFbjKROecCUU= + AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + - - - - - - mPNqOm/BckC8wGqQ5MJyQNI1s/s9w3JAViEO9FrFckAeyyFve9FyQAgc87pD0nJA76JjTM7fckD4qvH/T+JyQKDWXFSP4nJAkEvuySTjckAo4QXhUPFyQOIheTXK8XJA7vJPk6P0ckDiR9ROwP9yQJwXQz7QAnNA+WG+CPsDc0Bmldm1JQtzQN53KCS9EnNA9AweA/oTc0BnNpv6BRRzQF04AbV6H3NAvGMy3Tghc0Ao08uOyCJzQAA31qcOI3NAYZCsxs4kc0C6Loe/DTNzQM4Z1jy6P3NAQAWLhHlBc0DsDY4gekRzQKIeDoKdUXNABrQKGaVTc0BSNsmch1RzQG2hjE75X3NA8Njoz4tgc0AbAKDT+2JzQI0xfWk4Y3NAd2tIOU51c0B6WLMqeYBzQGiOg3akgHNAHP4CtdyAc0DelNPrC4FzQLCRoOxdgnNASK7OuoaQc0Be15cWTZJzQOa/WCdak3NApjEhwWKUc0BFD/vy9pRzQL0+Rhpkm3NA0qoucLigc0DE9uIwWqJzQMp8R90FpXNAKI9loMmwc0DMcPT207BzQP4JaEF9sXNAd67cMrezc0Dxv2krDLRzQDTWR874wHNAODVg78/Cc0CKm0Bc19FzQCVqll/c0nNAHKEFpOLUc0BWzvWNB+FzQIDOjmI34XNAlqNy7g3jc0DI8i8BZe9zQDfov3s29HNAnRxSqHgBdEBcwp3QTgN0QFPdOElNE3RAnAAl4bkhdECWkgV6siJ0QHlxxpfhP3RAFCzrE/hUdECMBS+Fi1V0QM5Ju2EgXXRAvctT0rhgdEDELqBaCWJ0QE5hKj17YnRAldF4NMVndEC+M49ZIXB0QI6QblJBcXRAxJ87HnpydEBOTM2/94B0QICrtENOgXRAqsgExBWQdEACw6Q1D6N0QIf5WYMLsHRAVFuENsewdEC4xk0h/rJ0QL0Mkvq3xHRA6P/r3LbhdEB0OEPp+uJ0QDyraUlz8XRAnbKtfQnzdEBwpwHgjPN0QMTr5e1cAnVAFrihlKUCdUA/ziwEwhF1QMJEqVckFHVAyYbYJp0idUDIMfEDqjJ1QPflKpDLNXVAvgXHLH5CdUC7W5uZ3UJ1QAB2ZSjYR3VAHiB2oSJNdUDI6HNw5U91QCROVMPxT3VA7Jyz5U1UdUAMQ1x0DmB1QNjxxs43YHVARrSY4TlhdUAsjX+8eHJ1QEi1WVWNdHVAOmZn3niBdUAG2TpcrYF1QMqJLQGmg3VAANj14JqEdUB+SYK8PZN1QIicAIZ0sXVAmnheZtHAdUCtpprf98F1QLze+efM03VAwBzPKMLWdUDvME8RSAJ2QLKL+UnRA3ZAgDDjG0kWdkCupQ6vhBl2QFbjoM/JGnZAa5xI+rQcdkAoxMuHiSJ2QMKBy+9mI3ZADsCbdpAkdkBEy+1kSit2QIc2uvceMXZAMaDk71EzdkDrbgVjnTR2QPrJU4BOQHZAfhqBmhxBdkA57sj2yEJ2QIJLe795RHZALZbuSGNLdkCeNnFGEFF2QNv3eTfWUnZACmf1es1UdkCISOgLjmB2QMoowGnRf3ZAcq+WO5KDdkDyM467wJ92QE0/VmbAsnZATflsxQy0dkBgfqIzzs52QMyZxDOQ83ZAjvPdywASd0Duuv6KDiJ3QFx9Hp6mM3dAEKW69ww1d0AW2NEmnEF3QBwQB9saRXdAZtZrH0pRd0AsYcvJkVF3QC9HKAgob3dA5tRloC6jd0AYx3mDiah3QLJxNcdtInhAEE+mOCpCeEBPRL4s60N4QFFKQMMRRHhAvKUddnpFeECeRd/8yVF4QA9Na7M4UnhALu2WqYdVeEC7qZYb+WB4QOwOn2k4YXhA0LxiCrhheECCWniJnXN4QFgwacOLdHhAxtFMw/h7eECwa0nzpYF4QJPvZ6Ykg3hAnRGjDZqEeECXuSnWl5F4QPYfwXmnlHhApfRE04SveEA+AUyA9cF4QD9/fUUkwnhAdkFRQBbJeEDyT7rYuNR4QExNQX824nhAIk+IPQH0eEBPTTeIjPV4QEYY7z+zKHlAZtkPeQwueUA2pEp4tDN5QIUFtzf8Q3lAjRuUQ5ZSeUAeGFD1zFR5QI5bnf6/snlAjEqbnULUeUDGYQYQUeR5QADJLxj+A3pAeNMNcSgjekCpwbQQMCt6QJpcgzUgM3pA3JnV2Aw1ekCzWUGuJDt6QDxgA3kaRXpAWuPY/ydVekAOGQB7IFx6QMfeo42CeXpAAuZjeQ22ekBQbcrJQsN6QIpr4Lo65HpAhOw90DXuekDA8xUGfwR7QDE9ka3HC3tAbexxvEwVe0BCrcoDXCV7QC5Elu9wOntA3r1xUJA+e0BOjbUZ6UN7QAK3wdxBSXtAXUho95tOe0A1cNne9VN7QJXS+i94xntA8OzSuJfxe0B4a2mwi/V7QMS80a/ZAXxABsZE75gFfEAUETXrzxF8QC5rjBrMQXxAxrfGURtefEAIWebFs558QIopB+kSwHxAPhyZc2XEfEASPGG3/MR8QAQPzvF/4HxAav0lq1fifECAnTe/jvB8QLs6URdU8nxAhniaknHyfEBK2ilKbwB9QDfbrBACAn1ASFRND0sCfUBMQQEJAAR9QAoxDjkHDH1ARvyfH0MSfUDKGZNr1z59QK6U6DbIeH1Ankp4qCJ+fUBW3keSLMR9QDUl7gTmxH1A5gy/Zz3gfUAWd5eJZON9QFDNyM6Q9X1Ar8SKFaP7fUBo9WAwLAB+QEzlpi2lHX5AZsnFD/wifkCfdmbAoYN+QNeN1LHxi35AHJeVnZqUfkAIMK1X8pl+QC66oiOWrn5ASKvmBvaufkBGhvH67rN+QLiA18ZOtH5AlIsMLKq5fkCOOES1A+R+QHxdR3oF6H5AeqBUEAvsfkDovB+xqPB+QAZJJt7/Pn9AnsD5trdcf0CmW1OfvmR/QHTucnK3cX9ASvfXUNWEf0Dic7ZH5ol/QPyrjB9Aj39A1W6E62KRf0A2gPv3lZN/QE6miLCZlH9AHv7em/KZf0A4al5IYKF/QLKRsydVsX9A80OlVq7bf0DVWBHUayKAQJAccqBuJoBAIzKVgN9BgEAyOtaVp0KAQD4bT3DiRYBADsoZk/RIgEA4fAVR51CAQFkwtBEUUYBAHODMhwRUgECUv8WqaVeAQHqqtKoFWIBASh4Bpg5ZgEDywyyxMlqAQDINrAA2XoBAE+BtCylvgED6k/TGFXKAQP6kljXCdIBA7tqjTG93gEAC1CqOHHqAQJJ+LTQqf4BA/WQHXh6PgEC8tCBAIZeAQH3BqvSYmoBATiZYhByfgECOdCIFraeAQC+wNhYTr4BAaPqWaX6ygECUaUU+G7eAQLC7Bq9Mu4BAOne0iDS+gEBCI35bUsGAQOysea74xoBAjCohUlPJgEC6eHJoTNGAQOTHhwAF2IBAGt48c0rZgEDIWmXaQ+GAQO7+OQ1F6YBATJnr/0rvgECKPNH0O/OAQP4JLbmf9IBAtAehLE33gEBox3PhnvyAQGJjbLo//4BA8GwkF0AHgUC+0Ak9Pg+BQGN7eliJGoFAesV3vDYdgUBd4nWdNB+BQBFF+kPjH4FAlDB7ypUigUB0DLZ3NSeBQLa7nla3J4FAC3l8Vi0vgUA5BhRcKD+BQF8HdBAyRYFAFiSESSpHgUCsSeOHPXmBQM2NxE9hf4FANz6yy1WPgUBa+V4/VZeBQJNC5QVTn4FA3rvvpJSigUAdP0q63qKBQFBlU1tvqIFADtkgK0qvgUDANxJcObWBQJov3eZLt4FA8P7LWOe3gUDL2lb8krqBQCCPnO9904FAFkJng6L6gUAYbaIwLg2CQI+dp6a1EoJAxx6UJpkUgkAy4zwO2BiCQGBbvwDXIIJA4z08NtEogkAUZCALD12CQBDkFTmeZ4JALBzXiRVqgkAUOw940WqCQMHE7Zs2dYJAoKvUtd56gkB689A75oKCQPZcw8fxhYJAg2eyeUOJgkCM06WB9ImCQMLhskX6jYJA5JO830KRgkCtW7y975GCQKFZB4L0lYJAcwu+4hGWgkAUrXYmPJmCQEjqq30OoYJAJkEnITuhgkCKHC63D6mCQLUXfH8zqYJAXwaF1n7agkDm0P5YFQODQIQsu3IcC4NAnjHGbnkRg0DaI3i9IRODQP8qG+l5GYNASvOJZXIhg0C3vhTkcSmDQChuLn1rMYNA+nk1Bepyg0Ae3CFJ8nqDQPTky85FxoNALG5PXKf/g0Aw8q0yiCKEQIKrJuC9NYRAvoRxNAlDhEBTy0wOS2OEQL2X2IwBaYRAZp33L+VqhECumwty526EQEA6hS78cIRAU28lAkFyhEB5Qv8t6nKEQCQZm47tdoRApd1yd8d3hEDWOyOg93iEQCKX06F5eoRACFZbb/F6hECCrCyo8X6EQAZKjnjOpIRAWo3cgb2qhEDDHVGwxLKEQD7O/7Vp2YRAMoVFM2rhhEDuPyMfQOOEQKUVfZVh6YRAhj1NtzTxhEA0tSPhYvGEQEGYMy7S/YRApItNOKBhhUCSbXDyn2mFQOQ4CGaYcYVAV6IRQJh5hUCA7pBcHeuFQDAI60CU7YVA3MSkMCDvhUAsGww6PvCFQI37N+GVGoZAZCqglTH/hkByToSnFgOHQOnQmZ8aB4dAkPZ0FR4Lh0AoSf9BkSmHQETuxhSRMYdAglmd64g5h0CwUV5e9ESHQGY81Vw4Z4dAw4P0oGejh0C2U4mpaqeHQCx3Lrxtq4dACK8eBXCvh0BIlKIAyLGHQJwYXBx0s4dAlvaHlci5h0Aq4eo2wcGHQMVrb9IHG4hAHKJI7zk2iEA4B6EfPTqIQJMDYp0dp4hA6jRG+R6riEA= - - - - - - 8o3oRWJUJUWc2vNExU7hRN6I6kTDO/BGxFkFRQTaSUWXv9FFJMACRbS+DkU+pXFFSfzGRJ6p70Sksx1FNg0hR6FB/kWxjIJG/3aeRRZRrEW4KypFNr6IRrr+8UT1FCtFY0fHRYRDwUQ3aGZFTkEDRSasF0ZSxUpFqkwaRU5/00SejQ5F8uCFRY/q8ESbQRRFRXHrRO635Uc17OpF/HzwRbq++ETTZNNFBEElRlQgVEd3HtdF2RENRe6Ld0bYUDRF8fIMR4vg8UXSmQ9FqQkqRVJbIkXIFb1E6slvRdu5BEU3M/5E1gAPRowWREUXWf9E8pFqRcXoD0X5X5dFz0wgRWhxCkZCrCNFH/VzRgPSTUWBy11FjeLfRN0fW0UqJe9EKqnLRNEOBkU2p3hGXLllRf7kQ0WbDQFGn1oORXLQpUU3ez5Hq0FTRZ1ZnkXs3eVFOozbRSXqV0XiCeNExxjeRMWuMkVzcARFmPLuRERsR0baMQpFBMrlRLTKokU8LGhFEEnRRMDP7kSBxBJFzj5eRmzU0URI10tFf3SsRp5TJUXQdQFGxo42RdK6u0RELtFEMQHkRK2leEXzlYVFmULURPQk8kRYEQNGn+T/RNOpAEY02zNFtE74RHDR70SpQpFFWVerRPT1CUXpprVEV6/oRE5lhkUBuepE4nAmRS9sDkXhnuNEySj/RA4iNEV7NgFFU+NARoNcr0XdEbVGKn8iRcTy3ERzcYhFwq2oRZ4yAkYxu5ZF0ErzRHNc00SKVMpEt5wYRjBfgEXSgGBGO1UFRU5I7kS8ahNFB9+6RQJsT0UxJSNFO0uSRpIhL0VbKtFEbq32R5nuhEbv3cdGX8SURaH7SEbxHCFFuCwCRYrR4kSHqpJFS+ayRuS050S9VmVFdsxdRgrrkEXd6wBFErtqRZsx1EQ3yJJFDG0xRc6R6kSngk1JzjDuRCjqbUWu9epE3UxMSDjbiEVsEJRGQFr0RCjEDkUZ0epE/bzxRC68AkVJBtFEr0x3RZ+rx0XXP8dF8cOaRTGAu0T4PApFZWUURlKjYkVnUEVFz1S3RR1o4EQwWdRESI5HR3tsZEacokJFCVO7R2u8ukSfA65GvmkERYnEGEUEC55FoiyDRU/T50SW0BJF1B/wRH89R0XVgMdEdNIHRsdrGEXtiLdF2oSvSN8KfUg448dHjjm7RtHwjUUmTwFFopptRQk5ZkZcNi1GtBmkRSi3M0XEeZBFrzM1RRXW6EQrG3dFhYcBRcJl+0R4EwVHim/ORz9ahUWqxMhG4zNPRVs+x0WIvRhFaNejRn7g6EUoJZVFGIwyRXIrU0W/+YVFcTAsRbQD6UT/5SJFWLexRSQk3ET4AsNEHBIRRR7k40QsVYFFtXIIRSBuy0QDO8hEhqscRSlG3kSbL9NEpJMVRh+fB0WryBdGeqARRTuovkU5bIFFWy03Rd9Wz0SOScVEjKlmRVTE10TmkLNFzCTjRLbh4kblprBGqdA1Rr7J30SOBSlGPm2mRfm5T0USNfVEyJPxRBXYh0V46OtEH9iaRbX+YkVhmwdFlZ7ZRInrPEUedTRG1/+ARdl3xURd7AFF/1uLRROIpEXACzVFH+pvRSLG70a1zNRGw48XRlcza0Uj/BZF3p5zRuPrK0WPjf1EkwU/RQHnB0XFay9GVFfAROo0t0QO9ClF313DRFw9h0ie0dhEBuzkR6j6f0efWvREIAtXRpRJckWbRrhEnZIRRQaJv0TGCotFQ0OhRduZxUSyllNGqmKJRdncCEZPaoNGsC9lRifcK0djd6NFb5zcRCQiD0ZatAxFXfXvRNXlQkYusNxEtq4CRfG+JkXiP8hEzgklRrT9NUWukNZEoWpbRdoSdkWZKN5EvouCRrDC3UXwdelEEfKaRZJ+TkVwAhlFRnwORdYb6ETfrwNFcBTbRAZ/IEb52plF2sEYRRVE8ETGey9FT7IERfVV+0RowPBEYdNfRqijQUUHzxFI9LzDRycXr0cKKoRGRAYSRyN+9UV6MAxFjNnbRLz0wUbrc7JF58HeRQF2JEUGsRlFtDtQRXZTsUcmlbRGqyjrR0lagkWEJ2xH3Q0GRzLqBkaSS0lFVDnxRbxkK0X3KSNFkp5TRfCiP0Vb0+lE5rGyRM7m/0SP5a1FPk6cSYBOXUnOsy5F/gXIRFzfsEgupL9H4IAHRfiy1UTGtChF1DKFRoTJR0UwyrtEjecWRoCgOEUUqAJHAv9VRp+kM0VaqglGxkyNRcGDoUUwG9xEHskNR9ujmUYE9CtGkyiFRf2oNUVtyg1F34MbRWduR0VG3exE1xmBRRISPEY1iBZGmBAkRdzEE0aUm4hFv5wpRR1EDEWcpkdFKy+iRzh/iEfo3shGeSUBRh/sFEbkmwBFj46QRRYjZ0UZ3Q5FTBOeRfrNZ0Vmi0BF7cr3RA== - - + + + + + + + + + + + + + + + + - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - 1iEzSm7BckB7LQlF5MJyQDJerK84w3JAyuvtZ0PSckCKnkLqT+JyQAoqkviQ4nJA0jb4Y1DxckBy0Fq2yfFyQDKbrJCj9HJAo3P3msD/ckBaeHNUTQFzQIHtoLnQAnNA0vLvufoDc0AEhtNeJwtzQH5oagq9EnNAdP3PAAYUc0C8sQNOeB9zQAboZec4IXNAjF7jQs8kc0C6gSeXNjRzQIQiYcu5P3NAixZx73hBc0AuFI8oJkJzQKT60jN6RHNAGROih5xRc0BtOfwxpVNzQLAlBaV3VHNAqGgRo/lfc0D0WsuJjGBzQEFIj1j7YnNAjs8C1Tljc0Dk8mFaS3VzQBYjfwR5gHNAqEzEZaOAc0DNED+23IBzQMAY9HAKgXNA8Ib5H16Cc0CI7VilhpBzQAwmwJhNknNACANIWFuTc0A/Hvr0YJRzQDlkRlH3lHNA+Dqqubigc0B0z+z1WaJzQNQmVfYEpXNA+BPVhNawc0AKmtmhtrNzQPqW98gMtHNAaFGcd8/Cc0Dk6CjS1dFzQAARH9zh1HNAJ5IfrAfhc0Bop7NNN+FzQAK1LSYP43NAhN9nh2Xvc0AGY4z8N/RzQBdEq8l4AXRAEjEyalADdED64klTUw90QGc+O2lLE3RA0uIoN7IidEC/XH/9vjJ0QPHtwBshXXRAcU5WHLlgdECKQroHCGJ0QHSPv6p6YnRAJBJW9MNndEAK0clFH210QGnGIa8hcHRAHLYVYUFxdEAu9VTLOnN0QLz7Qhg4dXRAhuSSMPiAdED5v0MoToF0QMKn7b8VkHRA7jxKtM+gdEAYRLEbEKN0QJwwpe8IsHRAzrBwQ/yydEDc9XF2zdR0QH4kRIi54XRAbqaVlvridEAgpfNNkON0QOhRcgl08XRABmJfUo3zdEAop51zXQJ1QC4HAxKoAnVASsXQniIUdUC0tpjT4R91QJMIz3GdInVAlPQbW6oydUCLZYvSzDV1QDJt7QV+QnVAGqBhAd9CdUDkZwFQ10d1QKqyhQcjTXVAoIrXynhVdUAID+2VDWB1QJz8wAw4YHVAcLDwFTdhdUAgbsqSjXR1QDhLFnd4gXVApKCb+KyBdUCEVR76pYN1QJLaLWGbhHVADjoK23OxdUC78C/v7791QFT3g2elwnVAVMywx8PWdUAZQoPlB+J1QBKJvj1HAnZA/gn+k88DdkCEe04gTRR2QNYgXSJMFnZAgRn/EYIZdkB+JmdUyxp2QMZ0FMWKInZAKAFrCpAkdkAjwXG5Syt2QHvy758fMXZAgBHZz1IzdkA+HFaYMzx2QKgAxCdOQHZAWi0n3xxBdkA4N/0LyUJ2QC5mQA16RHZAUUl/cRFRdkCfopTUzFR2QFxEC0ePYHZAhgcWYttkdkC89XWl0X92QIoV7oSPg3ZAUtNum8CfdkAgK2JsDbR2QChtecTOznZA3kKl85HzdkAETu+XARJ3QMo03mwOIndAPNhucXIid0D0h3wODTV3QCi20xidQXdADW21P5NDd0BaPRmRGkV3QKLFP9ZKUXdAuq0htZFRd0B0gnI0jmF3QEvaB7Qob3dAbOb/73eCd0B8O/kETZR3QBRsq7Uvo3dAo7JHhYWod0BcNQgBTfJ3QLx3F/VtInhASTr2ZxgweEDLpj2SKUJ4QIy4+BrqQ3hAw9zVghFEeEBTyk6oeUV4QFsEiX7KUXhAoVnhETZSeEBvVXYciFV4QF5Xj075YHhA0tXQEDlheEAPVTOhuGF4QHydPzyTYnhACcciPZ5zeEBrowuFLXR4QEWVs1RodHhA5uKOlot0eEBAbj0N9Xt4QM+ukpqlgXhAZj8rF/6DeEBk30UjmoR4QM5eCTGYkXhANPClWKiUeECJMSOX9sF4QFGLl0u31HhAFMHhkAL0eEAY+1EljPV4QIrdobixKHlA6z2JMQ0ueUAqbmE+6i95QCzzsiqKQnlAbiOF9pVSeUCKo0lKzFR5QIjN2yscoXlABpk9OcCyeUCmkrLWQdR5QNxgx8woI3pA4BZzHzErekAKMkbfHjN6QI++b5QMNXpAUnAoYRpFekAWzIF/IVx6QC78ddHCc3pASuz4sIN5ekBU/yZjyYN6QH6T7+E0hHpAjrS45A22ekCeNRK/FvF6QBomS+N9BHtAmApO2cgLe0DQMlnISxV7QFJ6cGNwOntAgmpJDJA+e0BQFm1E6UN7QJ6kdtpBSXtA7PSxOptOe0D45Hx09lN7QOh3k6gilXtAWJzxvxPQe0C5eIzji/V7QPxeC5/ZAXxAzjXgJ5kFfEDa69KEzRF8QMAUEsrMQXxA+mqxAL1YfEDQn+6qH158QKxK3aB1Y3xAQGq/d/mzfEB1ErS/EMB8QD8LPPplxHxA5mrLhPvEfEAGSMthgOB8QIR77I1X4nxAnPjmVY/wfEBAgeBXF/J8QMQF4RxV8nxAoxOJ0G4AfUDqXzGYAgJ9QDx6hF1KAn1A/tEIRwAEfUBi18eYCAx9QEpRwNJ8EH1A3arxU0MSfUDGebdDoDF9QIx3QefHeH1A4iK7+yB+fUDQp+HY0YR9QFfs2ZEsxH1A3gYbPOTEfUCXsR38O+B9QMO3lBNj431Ankexh9nufUAwKp7+7PB9QGSFPeNX831A2rMH7jIAfkDovZzYph1+QPZ8KBL9In5AnnZYQY9VfkB0ghlfooN+QJV6xZ+7hH5AMrkGngyMfkAksxMtmZR+QPoyHvj0rn5AEUPUy/CzfkC0qk0/ULR+QLgDg0IE5H5ASGlSSgfofkDuLoDYBux+QFCE5Lun8H5Abg6zv7cAf0D7hjYrqjl/QFJgKe7/Pn9ApmkORK5Ef0AS5sEYuFx/QDA+3qS3cX9ANJ07mLKBf0CwKzu754l/QObLa31Bj39Ar6W272KRf0B2LxeSmZR/QDyiThLzmX9AfpCGpFyhf0DEjWHsVrF/QFOjdSis239AAGOCuGwigEAfBsiLbiaAQCCbDKbgQYBAvMJxLqlCgEB2l99O5EWAQDQq2rD2SIBAXVVTK+dQgECsvCSCE1GAQB6AgqkDVIBAQke5F7pUgEDoN51PB1aAQDJ966poV4BAJj+AfbVXgECfZHG0DVmAQHX1tycfWYBA8H8IzTNagECr4DU3xVyAQM7lXvg2XoBA6iaRmipvgEDoFdDCFXKAQAVEtJnCdIBA8Z1YnG93gEAoqpKgE3qAQFaoCnsfeoBA5S2PlPh9gECeLCgfJ3+AQJTBTZ7wjIBAvn913h6PgEAoLv8hHpeAQDzezGsan4BAOFiOeROvgEDdDKIiFreAQH5a5nxSwYBAxmqEj1PJgEDwtPheTNGAQCoAIwli0YBANYz/y0rZgED8/7U9TtuAQCdCFRAG3IBA8LLs2UThgEB7XAumSu+AQLKjwcGf9IBAuQfKeEz3gEAWeBqG+/mAQLbcIsA//4BAwsYSHUAHgUA2amiwPQ+BQNwOT/CJGoFAQntssTYdgUDwKZGqNB+BQPaPbRDkH4FA5ie3Vo4igUCox6PKMyeBQPa06N4tL4FAhvdOKik/gUCgLaufK0eBQCgo8QqzZoFApEXu3VWPgUAYozCcVpeBQKKYPIRUn4FAnOdDo5SigUDeM1Wf3qKBQJwFKJxsqIFAQL1yZ0qvgUCjcktiOrWBQDHHJBhMt4FA9NJhxOW3gUBCn26TkrqBQLlE23ml+oFAcrF2sAIJgkAgooeulxSCQFfo7YjYGIJATdCO2dcggkAwEsU10iiCQJaYXtJFTYJAJCCDg25cgkBiG8OjPl2CQF5ItXB8dIJAan2ind56gkAzC7Lr8YWCQMYu23ZDiYJADt+YZPSJgkCyX6vz942CQF7raSJEkYJAfvv1xeyRgkDNAf2E/5GCQKgMb7D1lYJAqVKxmTyZgkDRP33V+ZmCQMDSipEPoYJAdEpwEDyhgkA5mG2lD6mCQCbleZkzqYJA/BPeWn7agkBzFbZLFQODQPaVH08cC4NA7/0wdHkRg0B4mCJhehmDQKPnTW1zIYNAuEje1nEpg0Dad/ylKy2DQDyZmE5qMYNATVbrvOpyg0CG7ZQG8nqDQHSq4eiQt4NApmpPRKb/g0CemIOcAQWEQGiFpgGJIoRApDsib9QqhEAs4CIOvTWEQEwRsuwAaYRAvTWsIuVqhECeLODIF2uEQI/tAF3nboRAJx6Inv1whEB+anIn6nKEQIVin/zsdoRAvIN+EMh3hECc1v6C9niEQDwGDdd2eoRA/oDVffB6hECGrkYt9n6EQNQbNAu+qoRAlDAkyGnZhEAKbESraeGEQNOn/cFi6YRAWy7n7DTxhEDU2lnGYfGEQFFAFQ8x+YRAThf9kYgqhUAIYOI4oGGFQJCyA1GgaYVA22LbVZlxhUBpydSUmHmFQICZ9ksmnoVAn8k3DRzrhUA8ZuQ7Hu+FQIKOq2E+8IVAwCoL5Y4WhkCQJEKZlBqGQKTdeyUz/4ZAYscx4RYDh0BJGvciGgeHQFQlk9cdC4dAmONEZpEph0Dj7MfrkDGHQHP558WLOYdAxb37wIpBh0ClX2QQNWeHQC7d+ENno4dAVKkmJ2qnh0DgGwHsbKuHQEOnzrNvr4dASUdyu8axh0DMy870crOHQFcSvtjGuYdAKmtLsMDBh0Be2t4ixcmHQFuhX1wHG4hAKaVSULM1iECosnvvNzaIQG4jMxlgOIhArOy8Qj06iEDQ1VPRHKeIQKkIacMfq4hAhsgGg2TPiEDsNO+0ZtOIQA== + 7BToB3LiY0AoFld2zuNlQCe3YN0hA2tAsaxs2egRcUADSSuYVSJyQFmdL53tknZAeAcBEwFDd0CUP6hynbN9QGbFAHBvc35AWyTVURCSgUDgaKVdGWKCQAuTJ2BlmoRAv1GfbpyqhEA2valisdKGQLYwH53TQohAmupzfz3riUApE9J0abOLQBpe6blf24xAuhdTDatrjkB+i7PW6/OPQI+iDpUbwpBACEiatxZWkUBPXEmyLDqSQEG5c6NhDpNAAXOuwHLGk0C9qLM6fdqUQBeI78GY4pRALZ0ww77+lUBvvxhJw2aWQEQgA5bvkpdAuEFZFeTCl0DAD0MtC1+ZQEdqtwoQi5lAXH/4CzanmkByJqg7UeuaQLk6VzZnz5tA2G44o1FznEAATwYxfbOcQBfS2AOuR55A - + - ZWsJRioU7kQrNw1FZEAYR1VOd0WAVFdFn2kGRZstTkWtcrhEvorDRO/jzkSZC/xEnHoDRxIrPkW2BzVG4ZR/RdWgLkWgYYFG5n+BRbix1kQ6YGxF878xRcli70TK+flFX7kvRabkPUWwBrJE+uEWRSEKNkUoagNF64ENRYg9aEXGqcNH2Wt/RRDPOUUz1tRE1yOHRVpPBkZBv0BHSsJwRepAy0SoukRGdZPCRh5pt0U+9iVF7i7uRPm+TUWt1StF+FvYRSHVBEV8O4hFEow7RQ6UjEX/V9tELkbbRVni6ETcUhpG5MG0RRCu7UQrLy9F49D6RVdS4kQBGJBG7R9dRTggAkWGka9FBh7rRKET3USdj5VFaWkyR9T/SEVGSeJEao9xRUvMyUVfXIxFlGgjRRu2NkXS9vVEm0uMRWuV40Sity1F4ma6RUJ320RZYCxFOifMRabee0VSwddEpacLRcIn4kR2eHVGimvkRKvSIkVnoKtGtjAGRY2hQkYj4SlF4uG5RIA5XUUZ62RFVSfyRGodIEbrcfJE486uRSwxYkW9zipF6nkuRYys70RFVOZEhd3aRHg+BEV2lGRF7UEPRST1x0TEyhRF6KMQRSFYFUVqjjRF0am8RcmhxUUq98BGm/UMRXxwAUWatUpFGIQuRdpmFka/SiVFZ1QkRaaCNUZtuS5FvioaRe55n0aw9cREDog+RfrxdUXkpT9FB5DZRMoCjUY2fXVFMS3CRP/z1Ed3dohG4NfJRJfOuUY9vYdFjbVWRshx9UR0Ey1F6T7mRIRhAEUGamFFj1nxRLCF0UTWhiVFbfXfRCxbEUZuBh1FwMI3RYz9NUYdIqBFN1vwRD/KDUWvwBpFK0ZCRez4EUX+aC5Fjv30RF+TyERJ+ZFFe5U3SddjP0XiKVRFfALQRBv/OEg+d1dFqGBGRigkXUXtOmRFmY8rRS1Y0UXDAgNGDKeiRcpA5ET0LAlFVf2kRRrGhUWCtNxE2IeBRcee40XIPBNHKDtdRohPXUXavbRH0OqNRrSDckXEkuBEWN3BRZZf1kTgE95E7v3rRYHQ3US9RSlF0PjwRDvfA0anqARFhVOqSLqWfkhaiNJHJ22rRqCopkW5iEVFVOA3RaQNgEZ+UiNGo31nRV2JgkU0uZhFU5AbRWmsDEV8WhlFhzn3RAHewkW+2/REhXkXRSq9jkdzcLJHD9rcRfWrKkW/d6tGzPs2RpFh+kRyL3tG+AUJRkX/EUUnT8VEwgsfRUiX4URftjNFYmkBRYBrUkWoc/pEbrcdRZOlHUYLZA9FfsEARfwvdEXAWP9EVm/YRPMNpkVaaUdFKRwhRUE78ETgEwtF+MMURRrgQ0Wz01dGcSj5RFlN1EW/xeBFuYPjRb4xXkUQjCBFfxX7RI98KUVyszZF/Xr9RGRbZkXG6NxFPRPrRJQUMEf+owdHBT8ZRrVBNUaZBIBFA+clReao/0Rf1uJE0bdrRf7BI0VMIKNFHyyFRQ6pSUW2cfFEj9MdRXERVUYrFWJFtTDpROMFlEWmCAVFL9zsRNlhfUWHugtF5bmPRXMkwUTU0yVFaaQpRbS1Hkdv7vNGWI9kRhya6kSr7kxFlA3WRNBKH0X7uwZF335ZRu9RXEXa3BVFL6ZJRtMK5ESLnY5I4RgKSLW9j0cf1H5FUO+FRif29kTrqNJEJI+/RQcbKEUxm4pF6Ip5RR1y+ESa125GZm59RemXw0V06pBGr2h8RkJZQ0e16cdFmwctRe4r60VcWixF8r18RrPK5UR1P8pE5Lw5Rg2uN0VOtSpFt/uiRX7CyUXnAhdFIRpHRrxw1kVmtFdFuiWRRQETj0WU9ONErnPNRII710TRDyZGw4d7RRV7LUW1U+tE5a3hRO2q3kRqyAdF/W3YRRPYGkic0SlIV6qsRzjAu0Z9/59HlDXlRfUwekW/LVJFm38kRwiXwUSV5JZFj2UnRnJm/ERqKZ9FTtALRS7ZFUdhDR9G3bJESJF2yEfxu2xHoe+CRixCE0VbSKdFQKpuRgdSbEWCzb9EAkUGReVu1USlk8NEVGTyRHyuLkUrj5ZFM/OySXe4kkUxG4JJjjfvREfx0Eg5e+1H7SBXRRep2kSoYE5F+9uTRhNuVEWfA5lFM9w3R4SWkEZUcjxGz3FnRe/Kh0USyM5E30gLRa1KQUfCsqdG3yhTRvn0cEURUOlEw2CURW77YUVZHTtF5AYqRcz0HEXZeEpFWs9LRmnj1EXchEVFKrQ0Rnrt7kXss4FFVkDrRGhYJEXdgexHkxnKR7a/OEen9TNGCmw1RoPeRkWbc8RF5DtvRXlw5USAx+VEf9VPReoOGEUDS3ZFeLj1RGu8PEXWNBhFoxpZRWrk6kQ= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - + - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + - + - Itete27BckDeL6p6OsNyQAaucf9C0nJA4hmuUtDfckCMr1uvT+JyQPjcSyWP4nJAUaMmb1TxckAuTcjyyPFyQO41osHA/3JA4k82J88Cc0DuZD4x+gNzQJODwdYkC3NAS7pROrwSc0Bw1rCR+hNzQHTvGsIFFHNAjNmNsXkfc0CEGHssOCFzQK78KKcPI3NA4oDBTM4kc0A2KFwmRzFzQMBkM8S4P3NAJl8RDnlBc0AQdX0kekRzQGwuQ+uaUXNA4KPRkaRTc0CSzJ22d1RzQBy7s6X5X3NAkg/2G4tgc0Cs/uQW+mJzQL/Zubs5Y3NAmPYEOkx1c0DX/ureeIBzQMRuEp+jgHNAQmw7Z1yCc0B28qlzhpBzQG4TMOJMknNA1yiWo9CSc0DoqGOOWpNzQEYr+Cv3lHNAwyPJSrigc0BbavNJWqJzQCbo06gEpXNAXNmOGcewc0Bb6VrJ1rBzQI5zfSG2s3NATRUB5Qu0c0A8eFxk+cBzQBasmdjOwnNACC5dB9fRc0CwIHuA4dRzQL523GkI4XNAH1UabTjhc0A92TfHeeJzQJpVZkAS43NARnhRF2Xvc0A94ES6NfRzQPa/qHp4AXRA8KmnPk8DdECKMi1xTBN0QC4LeCG4IXRAcjwiiLIidEAodjzn+SJ0QKwBz4G/MnRAGmSSMfhUdEBViYrbjFV0QHRksrogXXRAANzFl7dgdEA93AOSemJ0QK6CMYJOZHRAVNm8dsdndEAIuS6o1Wd0QAKgpywjcHRATm3s20BxdECKjYPKOXN0QFaW9qk2dXRAMpgHWfeAdECczl7DToF0QChmHBkWkHRAsgsa6OyfdECjOsuvz6B0QG/SmVy3onRAWrGpbA+jdEA7VW+3/LJ0QKQaX4q4xHRAuWssKs7UdEBaKQLFc/F0QLL2nJmM83RAgiYII14CdUDAWmuUIxR1QBI9eeKcInVAWKhS9aoydUAiQTX/yzV1QBbxmLclQHVA0LTeJ35CdUBPF2ZD3UJ1QIbVv4PXR3VAMH0LRdpPdUAmupO9dlV1QKUGXGwPYHVAzr3vPzdgdUBEbHmqOGF1QJJQiPR1cnVAmr+ieoVzdUBukEctjXR1QNrWKS94gXVAopXYmayBdUCEw0xMpYN1QEXCPE/8onVA4hVmrszAdUCER9w6+MF1QHE1xPnA0nVAhA2NxUcCdkB45fql0AN2QMh/CH9KFnZAU76mA4AZdkAg3/Zysxx2QDAa7h3OHnZACoiya4cidkDK3bXqjyR2QEbmfydLK3ZAYDEm2h4xdkDUgJQ/NDx2QJhvwL1OQHZARAJzXh1BdkAYHkBtx0J2QBHZSf5QQ3ZAkMKbHnlEdkBdbUJKEFF2QPf5nSLVUnZAQpqOqsxUdkCumAa+jWB2QG41Ks3bZHZA6jaWY9F/dkC9UgYB4Y92QCixzv6+n3ZAC2m2Z8GydkCzphIEDbR2QIA4Z9HOznZAxJDYmpHzdkCgYedRABJ3QHz1NPEOIndA+B2l3gw1d0BoZyRznEF3QJCX20EbRXdAUtiL+ElRd0DYYIXmkVF3QOH61wUob3dAVINJOC+jd0B6M7DBpaN3QEMMvBabtHdAfCEQxmwieEBoSkTcKUJ4QOA3Qu4QRHhAQvoqrHlFeEA+TpZGylF4QKoh1ZKHVXhA76X+jvpgeEA+Lt7EtWF4QPJC4ydedHhABm1vfot0eEBc2LRau3R4QJXkE9f3e3hAeKZcVqSBeEDdgASmmYR4QIyuXQQni3hAgGdgopeReEBS9Orup5R4QIlGkOmEq3hA/NkUpfbBeEC683CoFcl4QHC6R9O21HhAYgp9xAL0eEC/Zkn5i/V4QLV+j96xKHlAQE5kjQsueUBgmBH06C95QHoEFSr7Q3lAcEJAm5ZSeUD2NJYUzFR5QIbF7DvBsnlAP7/FoUHUeUDUfoOny9V5QCuak1VS5HlAceKgiygjekA0LVGRLyt6QJ7mIQYhM3pAtpemqgw1ekB9H18xJzt6QNg12WMaRXpAtGS0vChVekCCuuyDIlx6QDkZ+YHCc3pAWlNFsX95ekDa+0d/3X56QH68xMR6g3pA4lUJaTKEekBPO1OGDbZ6QBxXyYU27npADAgDs2HxekBSJ/DdewR7QKpN3adMFXtAkuweYVwle0AepPwdcjp7QBkrmDGQPntAinlYrehDe0Bm+g4IQkl7QHj+0SKcTntAsGGs6vFTe0BTziKe0pd7QKHpGM3Xm3tAHgzqzRLQe0CVt1CftNF7QD67VUGU8XtAgHTO4or1e0DqI86p2QF8QBygbXmZBXxA6DN6g/EIfEAMi7pKzxF8QFbsgiHOQXxAjPvGiRhefEDK6jeTKnF8QGWduzrIiHxAsHg86r2yfEAO5BD/EcB8QDT+CidlxHxAk3/b//vEfEB91SBry9N8QN/wJzcD4HxAuBaDLYDgfEDg7RiAV+J8QC7uQ7WP8HxAGMADXxjyfECwMTlpU/J8QNw/u/JuAH1AhvMLlUoCfUBVlG+/AAR9QMANmlwHDH1AWNWzrHsQfUCP4XYLRxJ9QHTGEnI/In1AItjil/xrfUD/9V5wrXN9QHp1xQvJeH1AbZXZKiF+fUC2Yte10YR9QO3tYlMtw31AEFPdV+XEfUD1t58xPOB9QGe+Wkpi431A67aGdk3wfUAT93S36/B9QOzQpK8u9H1AmHjzro/1fUB52xKRpft9QLgpSnMtAH5AGllzod4QfkCew5vlpR1+QOaYwxX/In5AJBVOv14ofkBmNuR6oIN+QOF3bWALjH5A6W0RHpqUfkBijFd/mK5+QJ0bwRH1rn5AMW5CZlC0fkCYt558qbl+QIYPwygG5H5AD3htZQrofkAj2lLeDOx+QA9yLqeo8H5AQLRhYv8+f0AltsJxtlx/QBWwpjO4cX9ALoiGk7KBf0A4Tq4F54l/QKyhtOJAj39AAK90HGKRf0CUPcR2mZR/QAJsRtTxmX9ASWy/Ik6ff0ACZBT4XaF/QENfXUxSsX9Ar4e5Banbf0DFTzwGqxWAQFwnNRBrIoBAu02o+m4mgEAtm1ocMDqAQMDRbdnfQYBAqF8LAalCgEAESBcg40WAQOkyg13nUIBAeJA3IBRRgEBYlBCCDFKAQBlceEEEVIBAEtuugrpUgECR9W0dBVaAQFIytH5pV4BA6JzJHQhYgEBZu1RJDlmAQIjWzdAxWoBAwoBX1SlvgED4OWadFXKAQN3f9BXCdIBATVH2um53gECMPPYiHnqAQLBfXTMnf4BAWr9E//CMgECMkhcLHo+AQCSxPhYfl4BAgLrRzByfgED6iy/od6WAQGK4OFTupoBA3lgAKROvgECwQqB3X7CAQAwl2eJwsIBAsli2jRyxgECMVgb+1bGAQCblXVvIsoBA4KxZFRe3gEAm9rBGUsGAQCsqHAcXyYBA1qbJJlPJgEBMbGuWBs+AQIw49fdL0YBAeG7KBBzZgEBbNZB+SdmAQLyURG1E4YBAn8nkGkvvgEAgzhgxn/SAQIssp0FN94BAQNt8ZT//gECqO5u7PweBQM5WCno9D4FAjBX0fYkagUBYG2SfNh2BQDK2sag0H4FA//zEPrAfgUDQtT1l4x+BQJ/Aluw0J4FAQk2yJS8vgUDCAx0LKT+BQPFahtEsR4FAqlX9XLFmgUB4h/uDVY+BQADDF8hUl4FAWK3y4FKfgUAgurLp5aGBQNQrXDiUooFAos+Lpd6igUA2N2n2a6iBQFfWRh1Kr4FAx4dNPTm1gUDfBkMtTLeBQL0OVnTlt4FAe8idr33TgUAkbUWxsxKCQOUlvDnYGIJA9mdNvNYggkARRGji0iKCQBaO1k7RKIJApOPUDBJagkDKjz6BRV2CQLTFCka7X4JAskw4R59ngkD+HKwSN2mCQLg3eCDeeoJA+xpGivGFgkDELrFOQ4mCQFYK52r0iYJAXAZL0/iNgkDULs0QQ5GCQIBYFWPvkYJAZCFdoPCVgkAtG0UtPJmCQAoqc08OoYJA2APRVTuhgkCCw2DBD6mCQNB2ubQzqYJAYGvyaX/agkAuuI8+7PqCQJiPBvtDAoNAOvfYKhUDg0C6UnYLHAuDQLrX33J5EYNACqa0uHkZg0CYh8lhciGDQPy5efpxKYNA+oAAnCotg0Aev3euajGDQMohyuvqcoNA/kc3ufF6g0Ae6Kc7pv+DQCzrACZUAoRAfSnCG701hEBwBY1XAGmEQFwNzGG3aoRAxrIUDeVqhECj8XHaGmuEQNWlr1S4boRAvGY1QOduhEAWXV82Hm+EQFBj9jz7cIRAWm4FrOlyhEBVk7iuIHOEQGLGoeXsdoRAmG8m3cd3hEBArqbmdnqEQGChaXzweoRAX82ayiN9hEBuGOwT9H6EQPAGjSi+qoRAN3C1emnZhEDsATtwaeGEQAgB28lh6YRANhIazTXxhEA3YFIUYfGEQAI3RcSX9oRAfAdxjMz2hEAetGG2NPmEQPR+hKefYYVAbsqhl59phUBMOQvxl3GFQK72/SqWeYVAFjtzsCaehUBGXFm7G+uFQOp1hLyR7YVAm8NC2D/whUD4kLjIIvOFQP/rEUaQFoZAfAhgOZMahkDM81pqMv+GQFGHxkkXA4dAgP9bcBkHh0BSyHqlGwuHQIwpYX6RKYdADC/0N5Exh0AAezmzijmHQHSOh4o1Z4dAPDUhN2ejh0CSqjoCaqeHQCC+s01tq4dA8Lhv2XCvh0Ak1mN3xrGHQAHai8tzs4dAJKZYyca5h0ArifvlwMGHQOY9+6KyNYhAkZWmKGA4iEB/b1VLDDuIQLjPr88Zp4hADm4VKB2riEBKE+EvZc+IQNWW4gRm04hA7mEsTGfXiEA= + NrgMGZxjYkA2uAwZnGNlQMZtNYzMxW5APWWIPVEicEABCNcwPvNyQF9uim7UknVA78XWjawjekCGL9LlgqN9QFuQtWNiKoBAJ0Wzj03qgUC+vX+A7kKDQLolV8uk8oVAvuxtqprLhkB0eDfDHPOJQHg/TqISzIpA2KUB4KgLjUDcbBi/nuSNQEn88GsQhpBAy198W4vykEDJE+iAZkqSQBVQTvm29pJAeypNj6zWk0DHZrMH/YKUQC1Bsp3yYpVAEVeFpSiHlkCpMPI0Di+XQFrZxXFJ45dA8EShLyQTmECjWwY+aj+ZQKJbBj5qn5lA6m+1OIAjmkA= - + - HU0ARrUwTUVfLQxHu5z3RLNKk0UsdndFuoTWRKtaIkUc7+VEVc+WRflnM0dSFBdFYNNNRpOZqkXRdblFQ/Y+RaYmikZ7of5ELQm0RcL/vkQB+UhFa9I2RakZIUbD+0VFtMGnRVPb10Q/6OdER7AtRXiKHUUWfiVF9iHFRP6ynUfkfI1F7mTPRWII9EUpeTdHyAH9RBYhUUVxy3VGhDWURrHJzUWJNkNF6srwRBdHy0QUgGRFY0wjRZ7XzESS1whGdCRjRS9mnEUYcEtFnxrdRVpL5kQxBOBEz75lRZ4GA0XSQ0NGrCyuRYopTUUJd9ZEaACHRhyz4UQbu0pFhh65RD8I5kTKPIhGbrVgRVxjjUXNIQVFv6bURKml2kQGdaJFXS9IR+PxMEV4h8BEKnJoRd5XtUUD7K1FkqHaRGBKCkXI5dhEj1dnRVgaFUVzowtFffgBRSRgDkUjf+lFDp9zRYbO4kRtg3JGwgjrRCSyIEWI0wNF1XScRl0hRUUHmwdGykvFRJzeL0VrVBpF0HjeRWgV5USsjENFcIkJRd9iDUZyrexE0uqyRZHMN0W3RepEyTvgRCRK7ES5VN5EFHxrRWnnBkVfMj5FXfd6RWZd/kSFBwhFGG5URTSY+0URk7xF5VWzRmCJ+0TISVNFZLOTRarkbEaiPuBElf5/RS5OOkVaZz1F8jM5RtOCHEWL9gZFeTbRRlBpF0X2Bs5FpYbSRFAWkEX3+i5FvansREHFiUYF+2FFILjhRxOWn0Yh7bVG6qqbRdmWP0auNxhF5igwRc88yUS5ufJE9KJeRTdwm0VCfBJFc1gpRk02jEWOcA9FOjwBRQMqFEX0AZhFIo5ISW01iUXRjlBF6RAPRRoAR0j32dtElyt1RSi7lUbjrBpFytgNRUwN20Tu3w9Fb3ZtRbqu+0XHtepF8Ot9RdfBQEUXzQhFzj4MRZ7SYkXQsFVFrp7HRT7PE0UX3udEtW0JR5A5Okbg0XFFICvDR+MdB0U1t79G7wM/RTMuKEUmjQFFpVkkRdLL2kSe9SlF3Y7VRO7rn0Uf1hdFm0QTRXa3QUVokBRGtO0sRdBLEkVp7KRI5r9sSCzAvUdz4LVGCgqxRa2jOkUnD9xE7P5ORa/27ESvo4BFEZF5RmjLU0abzYVFxxfnRG7jg0XJa61FldlwRTuLMEWFNu1Eq6rsRCzlJ0Z+qPVEiMv8RNhZ30T5Ax9FvVTCR++60Ue7LiRGALIsRT08uUb29pBGZnCDRvNv7UV6B4BFEPUORYD3jkX5x9dEIZgQRecm1ETiP/REGdoSRXtJiUWmBxxFWEGBRcgQREaloYtFngTTRMkZ90XVzBRFfZghRYXyDEXy9TRFlMrdRKg/u0VQ9F1Ffi3SRN668kQeG2xF9Es8RTCNQUXrcjVGNRbmRfqQ8kTyZ0dFAr8oRR+DPUUy4ZpFZgYORbcKBUUvZnhFJeX1RO+UaEeS0CxHMdwORqrUi0Zv3rhFj/EfRVl+WkXVcjRFCxodRb9x8ERsvItFfDb3RBSMyURR8b9FjIx0RVVLUkWk7RZFvmpnRrEF3kQYspdFqBYQRWyjkEVSydJEie8+RQbjw0WXT/REaGWDRebmJ0fF2RZH2R9fRsHsJUWpkSlFreR3RZSQc0awtoFFrFNHRepqMUWRwddEaOh5Rjzl+kTAM0NFwoSMRafAMUWxIe1EmyLSRIIheUjlZQlFAB3WR5gX3kRZmm9HCBLORDowWUZ1c21FquFZRRrYN0V9rhNFlRGJRs9NhkWj9NdFi9q6RkcRUkZM4TFHSNXRRAwiB0Z1ifFF1lVmRb2+WkZL3cNEW98pRbpyLUYtmhFFBIJzRZ9rAEVWlaVFhofURRoM0UQM/G1GC9mbRfkKgUUcQSZFYbHtRH8OAEUrzjVG5vxnRXu62URcNlBFtNpuRX1TF0Wg3UdF1DruRPjeKEW2FYtFNTobSEBSw0f3abdHnoC4Rv0zNUfjnThGPjwcRdVtxEaEMLJFVnzGRR7u2kQvtxRFlvwQRRv8BUW1kAlFTCvQRnAIqkVHydVH7JQ0Rx/LzkatUd5FXnzrRHLDK0V+MnxGTzOdRRLbQEV45TBF2ZzsRJz8u0XTd+BFN5OySUsB1kUO8YFFAQqDSZfDiUWWXg9FbNDUSJar4EQ/8+VHJB1KRRP8ZUVtgZ1GYmIiRVtvtEWccABFoh4JRwxWbkaRmQFG0xV7RSPCdEVRWQBFIk7mRD8fDUWFCe1Gn85sRgJrAkY4HgpFggIJRSvOeEU3XYFF6uDeRK194ER5S4xF/nVLRYmZUUXBktlFASjKRQyo30QTnw1GeEXaRc10YkXrvA5FauwhSMKtBUgWtjxHVJeJRutuDUbV4gJFWtSURWL8MkW+X6RF0dmmRXvyUkWgtodFcDuGRRf/1EU3F9BFEVJTRQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoExpYkAAAACA3MpkQAAAAACph2VAAAAAAE4wZkAAAACAlMdmQAAAAECZAmdAAAAAwP9jaEAAAADgj4ZoQAAAAGC7HWlAAAAAAOXFaUAAAADg+4dqQAAAAMC1pmpAAAAA4IGFa0AAAACAaUZsQAAAACBzYW1AAAAAANCjbUAAAACAQ6duQAAAAIDsxG5AAAAAQKIlb0AAAACA5z9vQAAAAIDuw29AAAAAAJQicEAAAAAg9UZwQAAAAKCeVHBAAAAAIInEcEAAAACAcs5wQAAAAOA6BHFAAAAAADoOcUAAAAAgfcRxQAAAAOA68nFAAAAAoPExckAAAADATKVyQAAAAMC10nJAAAAAwBJHc0AAAAAA7FNzQAAAAIAYkXNAAAAAgJzRc0AAAABgE2R0QAAAAMCrc3RAAAAAgE+zdEAAAAAAhMR0QAAAAIC64XRAAAAA4Cf/dEAAAADgy3B1QAAAAMCVgnVAAAAAoDugdUAAAACAX/Z1QAAAAAAAB3ZAAAAAgO4XdkAAAABAqEJ2QAAAAIDp8nZAAAAAIAgRd0AAAACggzR3QAAAAODwT3dAAAAAIHJsd0AAAAAA4YJ3QAAAAGC91ndAAAAAAL3id0AAAADg0xZ4QAAAAOA5NXhAAAAAYDaPeEAAAACgK7p4QAAAACCm0XhAAAAA4GHkeEAAAADgyPJ4QAAAAOB5/3hAAAAAoFtNeUAAAADA8H15QAAAAGAHtXlAAAAAoD7HeUAAAAAAEtR5QAAAAGCx5XlAAAAA4NEJekAAAAAgtVN6QAAAACDCX3pAAAAAIAqmekAAAACg4OR6QAAAAGDymnxAAAAAICV/fUAAAAAgd6Z9QAAAAKDYA4BAAAAAoCoVgEAAAACA/kOAQAAAAKCpYoBAAAAA4MycgEAAAADA3DyBQAAAAKCbrIFAAAAAoPC6gUAAAADgV22CQAAAACABY4NAAAAAQE+qg0AAAADA0vKDQAAAAEDz+oNAAAAAoIxrhEAAAADg6euEQAAAAIAuDIVAAAAAoOwjhUAAAACgZUuFQAAAAADdm4VAAAAAoCzrh0AAAABgYvWHQAAAAOALCohA + NrgMGZxjYkCAI9DqN6RuQEMdzoN8QnFAh2z8LjSDdUAGJGxXInN5QK4tRKbik31AlvJZZ+jBgEA4GvE8ROKCQPofJIR02oNAzPqUeJvqhkBcI/Ntx/KHQA== - + - 3FlbQDg/ZUB8w3FAV2fMQMiOnkCXfP4/T2I2QC6qskAnhOZA/NU2QCc2QEAI1UhAQcAbQRrziUBmHq5AXutSQWZDbkAZGWdAzt6lQYNptUDSFDNBoY4IQAYaQEDeT7Q/16HGP9GtXUCITrQ/Rxu0Pzhc6j9mpjZAX1X8P7tPQ0AqxS5BZTzZPye+m0B7Sa5AfPsPQRr/W0CYwBRBwDh3QMAmtD/nq6E/bJHGPxJ9UUDsy/dAoCYMQRM2a0BkAR9Boo5pQMV0VEArYu5A4kaMQAyTI0BQPRJAML3TQCKVCED85+tArObGP1BVP0EtJuVAdyKAQFjctkFQa2NBixMTQXyyjUFX8eo/IHelQTdFcEFo1zZAhagsQAO53EBIugRB0M+gQfhBgkH0MsJAbGlIQZXg+EHe6CZBsbA2QHMHOECtW6BAjE2oQUpZckBasZ1AtKl3QEZYIUHkip1AQX7TQPqF60GNuaE/USk2QGLF40Im65ZAmXqlQBGuSUC70KBAAneMQeK3aEB87MVA5NigQE/Wb0BO475A + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAQG5jZ0AAAAAA50ppQAAAAMABaGlAAAAAgD6HakAAAABArN5qQAAAAACMRWtAAAAAQBLbbEAAAABAHyhtQAAAAABYl21AAAAAQMOhbkAAAABAIQRvQAAAAKBUM3BAAAAA4F5GcEAAAABAYJJxQAAAAEBt73FAAAAAgEEOckAAAACAtodyQAAAAKDOEnNAAAAAYPAjc0AAAABALpBzQAAAAIAsOXRAAAAAgFdldEAAAABA14F0QAAAACAxA3VAAAAAAN6UdUAAAADAXrJ1QAAAAACrVnZAAAAAgDXudkAAAAAATwJ3QAAAAECQlHdAAAAAII+jd0AAAAAABrR3QAAAAMD98HdAAAAAAIsReEAAAACADjR4QAAAAMAeSHhAAAAAIKlTeEAAAADAYrJ4QAAAAODvDnlAAAAA4BQweUAAAACglZ55QAAAACDyrHlAAAAAYDgWekAAAADgtTB6QAAAAKDnQ3pAAAAAQKFPekAAAAAgfm96QAAAAKBqg3pAAAAA4PXTekAAAACAQTR7QAAAAOCVdntAAAAAoPCBe0AAAABg7bB7QAAAAADAz3tAAAAAwN3de0AAAABgBvJ7QAAAAMD1+3tAAAAAYFUUfEAAAAAgGR58QAAAAIAqPHxAAAAAoM9HfEAAAAAAyHN8QAAAAOB3f3xAAAAAoCySfEAAAAAADah8QAAAAAA5tXxAAAAA4AdRfkAAAADgwoN+QAAAAMCfCYBAAAAAQI8bgEAAAABARWuAQAAAAGC1r4BAAAAAIBvMgEAAAAAA/wKBQAAAAABYEYFAAAAAIA1AgUAAAADAg1mBQAAAAACncIFAAAAA4AfLgUAAAADgj96BQAAAAMA984FAAAAAYBIBgkAAAACAjzOCQAAAACAIb4JAAAAAQFd2gkAAAABgcwODQAAAAKBIC4NAAAAAoNwXg0AAAACAhjuDQAAAAODnToNAAAAAYJ56g0AAAADgcryDQAAAAKA10YNAAAAAIDT0g0AAAADgXR2EQAAAAEAtQYRAAAAAoMFMhEAAAABgcLuEQAAAAMACJYVAAAAAYH8IhkAAAADgixOGQAAAAKBpkoZAAAAAoPQih0AAAACgHk2HQAAAAICysIdAAAAAwBa6iEA= - - - - - - 5yq1QbkAHUCFqYZAEYypQKKHvEGynWNBdn/7QEtj/j+nJW5AM/ojQA67jUD8YjVACAwkQNsq9EDdYRlAcW92QKFRLUDB3jZAvN+OQDIHtD+3cIBADBrRQG/NEEFOYFtAyKjAQAC2QkHV3qZAAGsXQX9XUkDcdLdAzx+8P0pVyD9tVqE/6DX+PxdBokCGGdk/zWZ3QG9rpUA2gBFBnmusQTvfTkAeehFAYfagQY5STkKAAKNBXZk9QRIphkE5blNBZIocQNXNBkE7Mdk/clpbQJT6TUHQY1BBheTJQCgDM0I1ordA9uySQD7+30FaWONAgHFSQOuvHkHubNtByomaQKAeD0FZAWVAUxVJQC1sUkAa3EhAWdaSQOAYz0CJLjhB9PG5QL58P0BzRhBBWgkCQUcLekGuCEBA+fH7P1JOEUEKrEhBeSLVQbXWl0FHOWtBvbJ0QmgZhEHirLpBIdZeQJBZQEG2oWFCchWFQDKtqkB9Ka9AjLAvQevUHEHDpFtAI1/FQIzGekHDaW1BPggkQPfivEAMboRAM/5IQCJqCEAz1Mc/fpMSQQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYF1FbEAAAABAahBxQAAAAMDiEHJAAAAAwBSydEAAAADAnkN2QAAAAAAfj3lAAAAAgFineUAAAABAQXh6QAAAAIDC3nxAAAAAgFURfkAAAACAb0Z+QAAAAACii35AAAAAwFtmf0AAAAAAOwKAQAAAAMC2JIBAAAAAAD4rgEAAAAAg7DaAQAAAAGA0coBAAAAA4CCygEAAAADgzueAQAAAAKDuAYFAAAAAwGJDgUAAAACg6HCBQAAAAKDnhoFAAAAAYKaTgUAAAACgCqeBQAAAAKB+F4JAAAAAQHkwgkAAAABAfLmDQAAAACDSS4RAAAAAALlQhEAAAABAjgiIQAAAAIBfMohAAAAAAEZbiEA= + NrgMGZxjYkBImCMySWRuQEMdzoN8QnFA - + - f73DQNuaP0CSW3dAw3AHQTLot0CtGKVAW89/QBKt/0Duf2VADxbeP87shUHfa8JAzY4RQKIZpUC85NdBmT7UQJuFNkCR2dxAtMquQMabw0DL/WtB5riQQSSzckH97ExBIRDrPyg+/T9p19NAJZQMQa+BCkG/L8FAdVBAQXnwLkEKVdNAK/30QA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYLoSXEAAAACA+rddQAAAAED+Rl5AAAAAoMzIXkAAAACA0AVgQAAAAEDSJmBAAAAAgHYnYUAAAABAhaFhQAAAAKBv6WFAAAAAwKRgYkAAAACA1yhjQAAAAEBeg2NAAAAAoO+8Y0AAAACgfmhlQAAAAMCSimVAAAAAQH/DZUAAAABAv9llQAAAAEBkSmZAAAAAYIimZkAAAADAatpmQAAAAKATC2dAAAAAgFhKZ0AAAADgnGZnQAAAAAAw5GdAAAAAYOcJaEAAAABAK9ZoQAAAAMCWCmlAAAAAgLdFaUAAAABgjGVpQAAAAEBNhmlAAAAAQMAHakAAAADgtmpqQAAAAOC3ompAAAAAQEwlbEAAAACAdUBsQAAAAEA3ZmxAAAAAQGOZbEAAAAAAU+BsQAAAAMDm/2xAAAAAwNmhbUAAAABAI8xtQAAAAED85G1AAAAAwAglbkAAAADALEhuQAAAAMAhZG5AAAAAwFqvbkAAAAAAf+RuQAAAAMBZ+25AAAAAQJBgb0AAAADAiqpvQAAAAADo329AAAAAIFUzcEAAAABgpz9wQAAAAIBVTXBAAAAAAGVgcEAAAAAgV3FwQAAAACA1kHBAAAAAgK2kcEAAAACgG7BwQAAAAODf1HBAAAAAwNYCcUAAAABAjA9xQAAAACD0MHFAAAAAgIBFcUAAAABAmE9xQAAAAIDUY3FAAAAAQORxcUAAAABg349xQAAAAOAFrXFAAAAAwOHScUAAAAAAgRJyQAAAAMBrJnJAAAAAQMYyckAAAABgdWNyQAAAACBBlXJAAAAAgOiyckAAAADALNJyQAAAAICz4XJAAAAAwBj+ckAAAAAA3CNzQAAAAOCjMHNAAAAA4IBRc0AAAABA+2RzQAAAAKA8cnNAAAAAwJ+Cc0AAAADgv5pzQAAAAIBKwnNAAAAAAFLfc0AAAAAAe/FzQAAAAICoBnRAAAAAoAgSdEAAAAAAOyR0QAAAAADaOnRAAAAAgF9FdEAAAADA3090QAAAACB9X3RAAAAAAGlwdEAAAADgDaR0QAAAAMDqtnRAAAAAIDHMdEAAAACAtdZ0QAAAAMDK43RAAAAAQJTzdEAAAAAgqAx1QAAAAGB/HnVAAAAAwHkxdUAAAABAWEF1QAAAAAAOUHVAAAAAQIZvdUAAAACAjod1QAAAAIAykXVAAAAAQN6ddUAAAABgzrV1QAAAAMC4yXVAAAAA4IbsdUAAAACAPCV2QAAAAGDmtHZAAAAAgNdceUAAAADgDXJ5QAAAAGAwh3lAAAAA4PmgekAAAADApa56QAAAAKBwU3tAAAAA4LSsfEAAAABgpu18QAAAAGBGbX1AAAAAwPXEfUAAAAAgvtV9QAAAAGDuFH5AAAAA4IOkfkAAAABgELJ+QAAAAOBn535AAAAAwE83f0AAAAAgO5F/QAAAAEAnon9AAAAAoEm7gEAAAAAgjSyBQAAAAGDROoFAAAAAYFmDgUAAAABgjsGCQAAAAIBs/oJAAAAAgLkjg0AAAABA8rODQAAAACAwTIRAAAAAYKHBhEA= + NrgMGZxjYkAeR9VQy0JnQLGsbNnoEXFAjwFH/L0ycUDlVUsBVqN1QLEKSS1BI3hAc62XIC60e0CfyEiKr1N/QLkFOjrDYoFAR0Ok8w5Cg0AaCQkkFnuFQKhGc91hWodAEeiIUk0TiUCodWEHDuOKQAjHCIGEq4xAb6EHF3rrjUDN5cQM4xGQQAR7e1UYGpBATf27ITl2kUAqD7UIHxKSQKomrB11dpNA - + - w1frP0dk00A4Lv4/1fezP/MJQEBa7OBAXJnGPyKwxj976CxAPWgIQEzCqUADhi1AdAbzQNQ3qkBw22dATIKgQFRQoEB2cyVAC2OEQFMKnUBQ6hpAmCscQFIabUAT5QdAxYfGP67KT0FUukJAAO4/QFM7v0CmvclAimlOQeyICEDbPh9BcpJeQB0AmUBYivFAxhhRQDdDtD9JDOA/lQHYQRFUoED9tQZB4yY3QFNQDkHql/0/qFIIQACeqECQyN5CwOgEQe8PzUC46glA+PHgQNkwN0Etn29ALzFJQEvQSkB9OQ5B22w3QSGn4ECPVYBAjFF5QYCnj0D+9ThBKRVyQQpRCEDid9BA9+IQQArwCUA23xVC0n6AQH94/j/KvJxBCWydQK73LEDHmoRAJHaAQMZECEEOJGtAFYNKQfO3nUDDIjhCmZlSQNuEoT+4qDxANAa+QKnZSkClzCxBs6eSQDgt0UH8mRZBdpxZQiEqAELS8rVCog3mQR9fokGf2mRA43FSQamNt0BLeCFBUpmDQ0e19UGf9ndAGkzFQCzuBELjDZNBL4+TQW5q10HjzIVBiieJQIa3XEFNYCNC0FFCQT8UJED7WMFBluOzP8yETEF/44RAQ99kQA6u/T8aa8Y/sAdZQRD+aEER3ulAswK8QLj5xUA1YeNAPI7GP7rTzkDgJklA2RzUQENm2D/UO8VA9+IJQZjfxEDhV2ZBmJttQCyvlkDchSpBYeNTQRV/xj/eqxBACF8qQQyMyD/tT45AoXpbQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAIB8bUAAAADAFMJxQAAAAMBnwXJAAAAAgGBjc0AAAABAGRV0QAAAAMAItnRAAAAAgJw0dkAAAAAAcBN3QAAAAIAYcnhAAAAAwGm8eUAAAABAPKh8QAAAAECBr31AAAAAALhRfkAAAADAU2N+QAAAAMB/mH5AAAAAwFu+fkAAAACA9UKAQAAAAEBHTYBAAAAAYBCjgEAAAABgEWqBQAAAAOAEeYFAAAAA4JTmgUAAAADgYQqCQAAAAODhfIJAAAAAIGPAg0AAAAAg6AuFQAAAACCh64dAAAAAgGQ1iEA= + NrgMGZxjYkD4qwju5sJuQFf+/uF9UnBAUqoIfAvSc0Bw+8RmY2J3QDfyCcDC83tA/lIRhjtzfUCs/YX4IrKAQBCuiVvfcYFAcyksCI+6g0ACUor9uoKFQAAoj8qBQodALXwMAAe7h0AeeUu12dKKQEvNyOpeS4tA - + - bS0IQCWvyUA8C3BAmG6EQCpwjkBEfSNAY6f9P4dLT0FXU0JBPh5CQQ3M00CQdcBATBpbQP3/B0AyBaE/Q2WDQYX5jUCvl81A9bzJQDVcikB3KSRC+3BPQRkHGkKohLM/fSXcQA7Vf0CkFSFBXFzKPw== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIL8FZEAAAADAkaxlQAAAAADV4GVAAAAAwOjhaEAAAAAgxahpQAAAACBaQ2pAAAAAwCK7a0AAAADA6ChsQAAAAID9oWxAAAAAgLUlbUAAAACAejJwQAAAAICFY3BAAAAAwNiDcEAAAACgQKBwQAAAAOBVtHBAAAAAAIdicUAAAACATZVxQAAAAICGYHJAAAAAgCpxckAAAAAA1aNyQAAAAMCzwnJAAAAAwJDkckAAAABA4VNzQAAAAMAJA3RAAAAAACoidEAAAADA9XR0QAAAAAAvlnRAAAAAANRQdUAAAACAGSN2QAAAAIB5M3ZAAAAAgOIPd0AAAACAU3d3QAAAAIBdJHhAAAAAAIFYeEAAAADATGh4QAAAAMAgk3hAAAAAgNfaeEAAAABAevF4QAAAAICaE3lAAAAAgPk0eUAAAADAjaV5QAAAAIB8sXlAAAAAwMrCeUAAAACAGdd5QAAAAICw8HlAAAAAgC8GekAAAADAC7V6QAAAAEC4IXtAAAAAQGRFe0AAAAAAPGR7QAAAAIDOiHtAAAAAgIWwfEAAAABAT8N8QAAAAMAF1nxAAAAAQIbgfEAAAACAVSt9QAAAAEBGRX1AAAAAwOBofUAAAACA+cF9QAAAAAB/5H1AAAAAwH1nfkAAAACAM3F+QAAAAMBNkn5AAAAAQJDPfkAAAABAe/R+QAAAAMBrGH9AAAAAwMeSf0AAAABAAsd/QAAAAABn1H9AAAAAIEoQgEAAAACgsSuAQAAAACCXOIBAAAAAIBlUgEAAAABAJnKBQAAAAKBvwoFAAAAAIN7RgUAAAADgRuOBQAAAAIBx6IFAAAAAYGX6gUAAAADgSxqCQAAAAAAYJYJAAAAA4IhegkAAAABAg3iCQAAAAOCTh4JAAAAAoEyRgkAAAADgnpyCQAAAAOBZCoNAAAAA4OoZg0AAAABAwU+DQAAAAOAjYINAAAAA4K1sg0AAAABgYaSDQAAAACDL8oNAAAAAIJr6g0AAAADAFgCEQAAAAGAlKYRAAAAAoLYzhEAAAABgIUOEQAAAAGC6b4RAAAAAIJ5+hEAAAAAgd6KEQAAAAMCQuYRAAAAA4KXjhEAAAABgvOqEQAAAAAB2/YRAAAAAQP4uhUAAAADglDeFQAAAAMBb0oVAAAAAIK3ghUAAAADg2+uFQAAAAGChC4ZAAAAA4J4xhkAAAACggjqGQAAAAIBEYoZAAAAAIEJohkAAAABgR3GGQAAAAGBGfIZAAAAAIK2ohkAAAACgO+qGQAAAAMDYDIdAAAAAIGynh0AAAACgi7mHQAAAAGD+MIhAAAAAoHibiEAAAACA6tKIQAAAAOBK4IhA + NrgMGZxjYkByWoXuS4RsQHzKEHuiRG1AwTM0RRfTdkDG63mLQjN3QOM8NnaaQ3xAOpE6ezI0f0A= - + - jSQIQJs5xUCWGZJBit6OQYW+P0Bup0pA6ETGP0XCl0FqoNNAPaHYP2iHW0AsGv1APnYkQaw/z0HO6ClAjslBQCYzkEAxIS5C6gqjP+xSxj9c0jRBkoE/QOyoW0AS6spAbwgUQKgqUkB3Z98/udCWQAATCEAlOsY/hGSlQMBdt0CF1eVA5w0oQT+izUDcH9JBY3X2QH2G2j+FfG1AUCrWQFK2JUAjURVB+T0IQFlm5UDOifxAwb0kQJCCD0IcCglBnFwcQFKj50CUhhlAjekeQeChoEA+F8tASdkeQVStBEGsPfdA1rHjQVirX0FRhBpAM2N/QPIPJECjLFJAy29aQK7kiECEdKFBcePHP5fEkUFs2G1APhGoQMyWzUGk2ZJARCrJPwfkXUCq0OJAq6EaQByYJUGneZlB0H8ZQEN8t0AZDE1BINCeQHlfj0DKqadCAw8kQCicvEDvkc5AGsHzQLVExUGIc4dBeKFTQDz9SUN7EIJB0BpuQHg2cEBMqdtB7CZkQYg/jUEerwdBcKrBQM072j8it/0/xZ8MQraa5kFJMjdAResXRATXMEL9G6lAkPdcQB78gUEQ7bJAcFpAQLSyWkHvuwtCMOfqQBzaEUFybgBBPYYdQY4L5kDpfndA1uiPQfTBP0DeYAxBWI7+QKyhjj9QBAhA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoGgwcEAAAADAvudwQAAAAGCuwnJAAAAAQDgVd0AAAABAP0V3QAAAAMDwYndAAAAAQHmSeEAAAAAAShJ8QAAAAEBBaoBAAAAA4HYSgUAAAACAe7KBQAAAAOCJK4RAAAAAYMEwhEAAAACA0YGEQAAAAOCkZoVAAAAAIG7bhUAAAACgW3WGQAAAAGCNSYdAAAAA4MsriEAAAACg01KIQAAAAKCTX4hA + NrgMGZxjYkC2sNCooUJpQHJahe5LhGlAfWFqBdQRckBbtkQoqTJyQJqyJvAronVAfb9GWSyjd0A= - + - Lk42QPmUsz+3FRxAgnSwQKd/gUAx58RAZGG/QDkW7kDusqNBRy6SQJmE40CFQBFAX0m5QGJS3EBlnZxAurbLQMJKNkGBpsVAogQpQUCQ+kB90q9B + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYNNkYkAAAACAAMZjQAAAAMCyQWVAAAAAwGDmZUAAAAAgtGZnQAAAAGDFpWpAAAAA4MYibEAAAACgTeRtQAAAACB/f25AAAAAgCoBcEAAAADATDJwQAAAAEAeRHBAAAAAwB6FcEAAAAAAh55wQAAAAMAs9HBAAAAAgGBAcUAAAACAhWFxQAAAAKDgkXFAAAAAgFrMcUAAAADA3kRyQAAAAIBEVnJAAAAAQMhhckAAAACAtnByQAAAAEA6gXJAAAAAwHCRckAAAAAAvNJzQAAAAACG43NAAAAAgF9BdEAAAADADo90QAAAAIDGsnRAAAAAQF3CdEAAAABAsp91QAAAAMD9EXZAAAAAQBpkdkAAAACAN6p2QAAAAMA41HZAAAAAgEMnd0AAAABAXDJ3QAAAAAAKcHdAAAAAgC6Rd0AAAADAmZ93QAAAAADJwndAAAAAgIbPd0AAAABAYwF4QAAAAMCsFHhAAAAAQJ5PeEAAAABARWR4QAAAAAB1c3hAAAAAQM2TeEAAAADAy6J4QAAAAMC4sHhAAAAAQEfDeEAAAADAnR95QAAAAAC8MHlAAAAAABNMeUAAAAAAEnN5QAAAAECBh3lAAAAAwIiUeUAAAABAeqx5QAAAAAApxHlAAAAAAOzQeUAAAABAzPF5QAAAAEBtNHpAAAAAAFphekAAAACAgoJ6QAAAAMDzxHpAAAAAwGbmekAAAADAPfV6QAAAAEApHntAAAAAwFJBe0AAAAAAU3l7QAAAAABwn3tAAAAAAL7ce0AAAADA+w18QAAAAACLGXxAAAAAQAUmfEAAAAAAOTR8QAAAAEB8c3xAAAAAAA+jfEAAAADA29J8QAAAAEB69XxAAAAAAP4KfUAAAAAApCR9QAAAAIBuNX1AAAAAAJdNfUAAAACAE1p9QAAAAEA1lX1AAAAAAFylfUAAAADAyLJ9QAAAAEByv31AAAAAwPnKfUAAAABAHUt+QAAAAEASq35AAAAAgLxqgEAAAADAw3GAQAAAAMAtp4BAAAAAgAfYgEAAAAAgTeKAQAAAAOBXR4FAAAAAALlpgUAAAAAgsH6BQAAAAGDaiYFAAAAAYFGPgUAAAAAAxsOBQAAAAGB3y4FAAAAAAGHagUAAAADgcBqCQAAAAOBUoYJAAAAAgEapgkAAAACg3LOCQAAAAIDMx4JAAAAAQOjagkAAAABgjQuDQAAAAKDgH4NAAAAAoPw/g0AAAADgjkaDQAAAAMBlT4NAAAAAoPJWg0AAAADA+WqDQAAAAKCro4NAAAAAYD7Pg0AAAACgSPyDQAAAAOAhQYVAAAAAYDhahUAAAABg94uFQAAAAIDu0YVAAAAA4C8whkAAAACg1EOGQAAAAGBXUoZAAAAAYBBhhkAAAABApsuGQAAAAKAB3IZAAAAAwO7ohkAAAADAgfCGQAAAAOByYIhAAAAAANVoiEA= + NrgMGZxjYkAot2DdIQNrQHzKEHuiRG1A - + - G3w/QDqf1EA46C1BcO9+Qfw8EUCDMFJAtwnrP8aBHUAhAghA+B93QMcITEFmve4/2J2gQJ301EG0MfFAOCn9P1rrd0AHBVtAn04BQYJr00A24hhBk6f2QVaGpEDxsLNAbVRnQBsGEkDqhZtAS9BJQMtlGkDcJYFAASHFQHCYJkFsWSNBYG3GQAaQIkAuWRtAWczJQDVTl0Cd3whAtKUaQf1TLkHEXRtBoGFPQfEdvkBombtBA10aQE6ohUDy6RhAXXuiQeap00HUDI9BFqayQIwu5EBru+JBqmNCQpQ2WkAIae5BptpKQWDKukGTEEFADD05Qa9nZED0yyNBohBFQZL5EkFkhNdAZcqwQBupm0DsVZtArR+4QKDfXUHHgyxBivcVQa2/HEIogaA/zuVFQYoJSkF+ZPxAdFz0QOwI1kE+F+4/mTF3QPJ/nkFpm5NAYIOZQIokB0D8mwJBomfEQbKYnkFFHQhB00cdQYQypUBsdD1BwsatQdKr/ECGRFtArOg2QG5U9UCS+nZAfBySQCTYJUHUriNAI+L5QNQYsUKrMcdBoOInQdCE1z9dKZ1BWgumQeQ0NkCaRmxBdl/nQXSaZEG2bBpAFqQEQe9/4UDMY4VDfbiHQgN4PkDUntJApBfEQCJW6j9fQ6BAT82pQB6rQ0H/D5ZByShaQfZWNUFwLnRBXdiIQC8tkkDU8MpA8HCjQakokkA4zXhA1dyXQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - AAAAYFnoZkAAAABgUOhpQAAAAAAa5GpAAAAAgMNKa0AAAAAAa+5rQAAAAACdQ21AAAAAwI9ibUAAAABAcwhuQAAAAEARg25AAAAAoP1lcEAAAADA/c5wQAAAAEAgfnFAAAAA4J3WcUAAAAAA1zNyQAAAAEA41HJAAAAAwG8Fc0AAAAAAPkFzQAAAAECvkHNAAAAAwHN+dEAAAAAAmbx0QAAAAIAZ7HRAAAAAwMVSdUAAAACA6bR1QAAAAIDwFHZAAAAAQPsjd0AAAAAAw0V4QAAAAMA3dHhAAAAAgEA1eUAAAAAAQFR5QAAAAACb5HlAAAAAAKh9e0AAAAAABJ57QAAAAAAQsntAAAAAgCbge0AAAADAwmV8QAAAAACSv3xAAAAAwBH0fEAAAABAmH59QAAAAID6v31AAAAAgKzffUAAAADAvAR+QAAAAMAxEH5AAAAAQHMzfkAAAABAlD1+QAAAAIDdr35AAAAAQKbCfkAAAAAAfs1+QAAAAICJA39AAAAAgPEzf0AAAACAiml/QAAAAMBqgH9AAAAAwF6zf0AAAABgWDOAQAAAAOC7QoBAAAAAYC9KgEAAAACg2VSAQAAAAICMeIBAAAAA4D2qgEAAAADgUsqAQAAAACDL24BAAAAAwNxbgUAAAAAgmXCBQAAAAOAVe4FAAAAAIH4egkAAAAAgZ1CCQAAAAMBBgoJAAAAAgLtrg0AAAACgZymEQAAAAOBuSIRAAAAAYL+8hEAAAAAgT/SEQAAAAMDKSYVAAAAAYP1ahUAAAACgC2GFQAAAAAC924VAAAAAICMSh0AAAAAgAiOHQAAAAEAjK4dAAAAAYMSbh0A= - - - - - - /nD9P4DoxkCUmiJAcDEbQAZNGkDIIHZAAMl4QE18LkDDo2hAntvXP7Vi2D9op4pA06ZJQNhoH0F/6xtASW5TQJSnP0BVpIxB8Z5kQAcGvEDhKABAFGdJQJlu0UCnq6RAwq/mQAjnLEAMhjRBiZIQQWBFpkDzlxdBTf/LQIKF9kAfxglB1fIUQWdAN0DyBRxACRrDQeD5iECMVrxAk1rOQKBl/EBWTolABW2TQtsj2T/ifRpAHzu0QAIROkH9BFRBduuEQDYwIEHPBP8/QdU9QHi6iUCbAFdCFIo/QDq4GkDvI7M/WO0AQTdGUUCrEBBAaGigQLpkRkFlDDVADIxvQVo99kEsO31B3H3XP6t3E0FrsLdAGOEQQUO7UUD/Vz5AjhmIQdOQYkE0jEdAT7LSQBddc0Jo1JJBM2GbQA== - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - AAAAAGWkZEAAAAAAtsRkQAAAAECjOGVAAAAAoEzeZUAAAACAAl9mQAAAAMC2DGhAAAAAgJuHaEAAAADAj6RoQAAAAEC3X2lAAAAAwPOlaUAAAABAmUZqQAAAAMBshWpAAAAAQE3lakAAAAAg6ChrQAAAAADyPmxAAAAAIIv/bEAAAADAcWVtQAAAAGB7oW5AAAAAgLNFb0AAAAAAXYRvQAAAAOChJHBAAAAAwGMvcEAAAABAT4ZwQAAAAECcoHBAAAAAAI8icUAAAADASUJxQAAAAIAfTHFAAAAAAC7lcUAAAAAA8vVxQAAAAEC1RHJAAAAAAAZhckAAAACAP4ByQAAAAECC33JAAAAAALv0ckAAAAAA+ERzQAAAAICvUHNAAAAAQKhjc0AAAADAWYJzQAAAAEA7tXNAAAAAwMnzc0AAAABADZN0QAAAAIBmsXRAAAAAAIm/dEAAAABA3dJ0QAAAAEAWB3VAAAAAAFsSdUAAAACApj51QAAAAIDzgnVAAAAAgJXkdUAAAACAcSJ2QAAAAMDJq3ZAAAAAQCrAdkAAAACA5dR2QAAAAADE4XZAAAAAgIvydkAAAADA2kV3QAAAAAACdHdAAAAAQJuXd0AAAACA6KJ3QAAAAMAUtndAAAAAAMrId0AAAABAUwZ4QAAAAMDTEXhAAAAAgLp0eEAAAACA9oN4QAAAAEBnlnhAAAAAwG2oeEAAAADALLR4QAAAAMDO5nhAAAAAQH5QeUAAAABACWJ5QAAAAAB+rXlAAAAAABo1ekAAAADABkF6QAAAAEDehnpAAAAAQLTGekAAAAAA1lx7QAAAAIB9uHtAAAAAwCgSfEAAAAAAXCF8QAAAAIA/e3xAAAAAAGqUfEAAAAAApaZ8QAAAAIAb1HxAAAAAAFDxfEAAAAAAJAF9QAAAAMCtEH1AAAAAgOsofUAAAACARUJ9QAAAAACGUH1AAAAAgP5kfUAAAABA4Hp9QAAAAACTnH1AAAAAQJOvfUAAAACA7r19QAAAAEAny31AAAAAgAQNfkAAAADAGzV+QAAAAICSun5AAAAAoCIzgEAAAACATFOAQAAAAECuaYBAAAAAIDlwgEAAAADgA3mAQAAAAGC3jYBAAAAAIGipgEAAAACgxxOBQAAAAKBuZIFAAAAAYGR/gUAAAABgSsWBQAAAAAAXzoFAAAAAoPPggUAAAABgFBiCQAAAAOCoIYJAAAAAYDkogkAAAABAuDKCQAAAAEBJQ4JAAAAA4NBhgkAAAAAAkGeCQAAAAKCzcIJAAAAAoEiOgkAAAAAAFaSCQAAAAKARq4JAAAAAoPCxgkAAAACgvsqCQAAAAGBO+oJAAAAAYAkIg0AAAADANA+DQAAAAACFG4NAAAAAIMFPg0AAAACAaleDQAAAACDHYINAAAAAYLltg0AAAACgZnqDQAAAAEBPnoNAAAAAIAv6g0AAAABgsgGEQAAAAMBNQ4RAAAAA4PtihEAAAADgSpOEQAAAAKDFyYRAAAAAAB7hhEAAAABgd0SFQAAAAKAgX4VAAAAAwBYzhkAAAAAA0kCGQAAAAIDoUoZAAAAA4JVYhkAAAAAgRKuGQAAAAODE6YZAAAAAwEnyhkAAAACgzQKHQAAAACDlRohAAAAAIJGViEA= + KBZXds7jZUAot2DdIQNrQKPid1q/AnFAW7ZEKKmyc0AXiDhKrwN5QOoNkUeBw3lAOZE6ezJ0fkA5SsFKOSqBQC1NHtZa8oFAZHRDTYVig0BYd6DYpiqEQPV4xOXGGoZAnDqZfx9ziECGfUV+CNOIQGNmP4+Le4tAQNAldoDTjEDHkwmsF5SOQAf8y4Xs249AQfP00UdKkUA= - + - EomhQI3vsECZZsU/PacUQpMODEH6LItA3q9tQA9moEBlvW1AlZniQMzmxD+5t5tABJfHQHBwA0HdfVBAxbKfPzXvsj8vh7tA5VqzP3+IF0HpKilApXDuQG+D/EC0oTVB/0+nQD4fEEHd16lAPYQbQcdkCUEtclFA7n/gQW6O6j8nfghAIVSyPwzxEEAuNc5ATXijQKjWhkAmIzNBjLCYQGwp2T/Ne8U/bRw4QLyK0ECoERhBBk6tQF/U6kAWGo5AdjbgQL8SNkDkJZNAQZNnQWyrD0DqpQdAeMUrQZTQvUBHghlBAfnuPxeh/T8IwaNAwFDJQAcT2z9lCcU/KWTXP95rxEFETEFC3E7OQVAsNj+h+MU/mnWkQHnQg0AaGE5Cex1ZQVaqMUF5UohBmwGzQLYuLEDCEZdARrK1QOBuSUAvraRA38J2QKL6nz8z61hBORs/QE+lH0FEgQdA50gbQtHz0UGpqcY/ea/gQJ/Z6kDwVahBlZAuQTxG70G6kFVBY3u4QYIaNkDCBndABoPHP0GgoEDQAQ5B+W68QJlx6UAyIntBna2TQkXsXUCL/7tBQLAzQfYsQkNt0ZlCQ/eZQLZArkDoIMVAZVS3QP/nkUBX9BpBfjZ5QfRIUkEyDhFBZwFIQam6nUAkcJVB7H+iQRI0UEGrYJtAnkGWQYsn3UFfrcVBxM/BQ8KkIUNX2uo/QR0MQVv2iEHPnptBgq/XQFwtbUBVMZdANlLqQBntrECayo5AIHLbQJq0e0FQQitBDykFQVdA80Cg0pJBqg7FQOv9QUA0TXZBkjgvQXom00A6xWNA0FjoPw== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgLRGY0AAAACA++JkQAAAAMACQ2ZAAAAAQK7DZkAAAAAAowRnQAAAAACmIGdAAAAAACOLZ0AAAADAXwJoQAAAAEDw52hAAAAAwCckaUAAAABgM8VpQAAAAABK/GlAAAAAgLnkakAAAAAAg2RrQAAAAECrZWxAAAAAAPCgbEAAAAAA60ltQAAAAIAqfG1AAAAAwN/DbkAAAABAvYFvQAAAAABqum9AAAAAoJgicEAAAADgglVwQAAAAADRrHBAAAAAwD67cEAAAAAgJTJxQAAAACD6cHFAAAAAoNmxcUAAAACg2QFyQAAAAAArDXJAAAAAAFYickAAAADAT4FyQAAAACDR43JAAAAAgLtAc0AAAAAAceJzQAAAAADTVXRAAAAA4K1wdEAAAADgrH90QAAAAKCNonRAAAAAwNDFdEAAAABAeuV0QAAAAKC2LnVAAAAAQK9TdUAAAACAS2J1QAAAAMCPoXVAAAAAgKa/dUAAAACAOdN1QAAAAOARLXZAAAAAgOSbdkAAAAAguKZ2QAAAAADjunZAAAAAIDPwdkAAAACAqvt2QAAAAEAZPXdAAAAAgGpSd0AAAAAABYN3QAAAAOBBkHdAAAAAYBKfd0AAAACgbMN3QAAAAGADXHpAAAAAYMR7e0AAAAAgrqJ7QAAAAEDup31AAAAAoDhlfkAAAADgCN2AQAAAAKCAaoJAAAAAYAlwgkAAAADABDGEQAAAAGBS6oVAAAAAwJZChkA= + NrgMGZxjYkCEfuNfSOJlQEMdzoN8QnFAQh3Og3wCckCdKRjPP1N4QGreFfsqU3lA830c1NfDfEDF6l9G7qN/QF1s2AZ4eoFAKSHWMmPagkCKcn2s2aKEQONztirb2oZARMVdpFGjiEAQelvQPAOKQAvxA7S9q4tAdKcl7cgbjUA496hZH9SOQJ/Rp+8UVI9A5mumSjs+kUDma6ZKO26RQGaDnV+RApNAMFx46GZyk0CvBd4rsl6UQA== - + - kiJRQM6ot0ByeaBAh3yfQFLOjUBPStc/5PGNQMkwCUB3MpFBkxMaQJDftUC15ahAECMTQTZNoEBJR5tBuJJHQPU1rkAod4tAe3dQQFi1lECs2tdAHnKJQHn76T8eLG1A3LHuQC2JrUBohLtA2oYrQKXVtEDArgZB9fePQOX64UDcdEdB6xx1QEijhkGXkVlAo+AUQdN8lkB+HTRByyHFQFHEZUAu6jVAuTBjQDINsUBRPHpB9ZSuQd8Ga0E1tIhAFVJcQI5e3UD4+49By/BaQJdi5UBKv8NBGSgnQezzGUEXafw/o4A6Qbg750BwCS9B9BnzQDR5tUAY7IFBAut1QUF/u0AULRlDQDUgQRKmAkEBqp8/UIpuQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - - - - - - - - - - AAAAAHLEdEAAAABAnyJ1QAAAAMA3wnVAAAAAwJMydkAAAADAHuh2QAAAAACpfndAAAAAQCQFeEAAAADAUrF4QAAAAEBA9XlAAAAAwK4kekAAAAAAzyZ7QAAAAMCTpXtAAAAAQK4BfUAAAACAchR+QAAAAEAdhX5AAAAAQIulfkAAAACAl8R+QAAAAEAe1n5AAAAAwGPnfkAAAACANyJ/QAAAAECHNH9AAAAAgE6bgEAAAACgFbyAQAAAAGBI0oBAAAAAwMwbgUAAAAAApYmBQAAAAGD164FAAAAAYFIBgkAAAADg5QiCQAAAAOBpQ4JAAAAAYN5KgkAAAADA6JCCQAAAAGCDKoNAAAAA4MbRg0AAAACg/NuDQAAAAODByoRAAAAAQF1KhUAAAAAggpuFQAAAAIBCN4ZAAAAAwH2AhkAAAABg66KGQAAAAMDZ2oZAAAAAIC+ih0AAAAAg/hqIQA== - - - - - - vWz3QIXPUkACbNY/rj7EP19oZUC5osk/g04PQGLShUAEjDVAeSFZQKmUNUBtlrE/MqNSQbqvrUCVYo5AbkLzQMDgRkDgX8M/bwMcQRa9l0BOpjZBmiJlQE9OUEEFUNdA2JWNQGNuPUApgJRBjBOtQWHGIkAdP1FAUgfEP7TBZ0Azy6RA0BXzQcDqCEGQUFFAjGk8QY+0kkIAsOhAYGx1QRPh20CLbBdBds5sQAn37UA= - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - AAAA4CF8ZUAAAADAxf9nQAAAAAD9PWpAAAAAwN6GakAAAADAtYdrQAAAAEAWJ21AAAAAQMS/b0AAAACARBFwQAAAAIATUnFAAAAAQGBmcUAAAABAEoBxQAAAAMDsk3FAAAAAwNRCdEAAAABAQ0J1QAAAAIB1tXVAAAAAQATjdUAAAABATvF1QAAAAEBVBnZAAAAAQNErd0AAAABA/EV3QAAAAAD5lXdAAAAAANXSd0AAAAAA8yF4QAAAAIAo5HhAAAAAQMqEeUAAAAAAyaV5QAAAAIAvtXlAAAAAwO7TeUAAAACA0EB6QAAAAMAtcHpAAAAAAOCGekAAAABA9TR7QAAAAEBLgntAAAAAgN90fEAAAACAHl19QAAAAMAFbH1AAAAAwICDfUAAAADAtJl9QAAAAIDJx31AAAAAwJrbfUAAAACArgZ+QAAAAMBNKH5AAAAAQNlDfkAAAABALGB+QAAAAIDKwn5AAAAAwBLvfkAAAAAAPiB/QAAAAIDNL39AAAAAwM4KgEAAAABgXCKAQAAAAGByLYBAAAAAYBVQgEAAAABgaViAQAAAACAIa4BAAAAAIBcngkAAAAAAoi+CQAAAAODxSYNAAAAAALZag0AAAABg93qDQAAAAOB7sINAAAAAYCq6g0AAAABg9wGFQAAAAIDgPYVAAAAAoMlWhUAAAACAbeyFQAAAAOBEqYZAAAAAAGajh0AAAAAAb8SHQAAAAGBrnYhAAAAA4G/riEA= - - - - - - HftqQCthC0CCQBpBYho1QAD+okCW6StA5/+eQGeU1j9zgKBAM1a9QCFCrEBIdYpAqZ5/QKHFbEDt2apA4VUcQZNOQUBtvbJAV+4iQJY1NEAA/GtAX+YQQraM6D9EmX9A2xl1QO4/yUBOROk/UFUAQCC24UCnELhAxQTMQS3AyUDlIWhBpQigQDWQ0EA+NJhAFpPKQG1irUCIQoBBgTKxPyFUTUGG355BpOYqQCXTFEEPqIlA83aSQYuVEUH0x1FB/x3MQC8EIUCPldVANb0bQTr+AEEfmo5B5DAoQV6CQkJoc+JANALwQDaT4kHOuJVBxofcQr3CIkCjyllBXzZDQfZ1Y0Ah8qpA7C7DQJ+7BkHgzARBUHKKQA== - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - AAAAQKvkY0AAAACgKeZkQAAAAADzZWVAAAAAgBQFZ0AAAADgjF5nQAAAAEBH5WhAAAAAQB8lakAAAABADaNtQAAAAEAqBW5AAAAAoJIfbkAAAACATKhuQAAAAIBh8G5AAAAAoHU2b0AAAADAMYFvQAAAAGBdwW9AAAAAYLQRcEAAAAAAmYJwQAAAAED1knBAAAAAQKKmcEAAAAAAF81wQAAAACBUSXFAAAAAAEupcUAAAADAzjJyQAAAAID/RXJAAAAAIL9ickAAAACA/7NyQAAAAKCvznJAAAAAgDTeckAAAABAtqBzQAAAAABKsHNAAAAAAE7dc0AAAAAAJBp0QAAAAMCxdXRAAAAAQCgCdUAAAADA9BN1QAAAAIAuLnVAAAAAwI9WdUAAAADAfH11QAAAAMCO5nVAAAAAwD0SdkAAAABAWz92QAAAAAB2YnZAAAAAwF9+dkAAAABAGo52QAAAAICs1HZAAAAAgDrhdkAAAADAqvN2QAAAAABflndAAAAAwLsbeEAAAAAAmZR4QAAAAAAz0nhAAAAAwJvceEAAAACAdDV5QAAAAMCFqnlAAAAAQCXDeUAAAABA7fJ5QAAAAIDRf3pAAAAAAIq/ekAAAACA/s96QAAAAMAR53pAAAAAwNvxekAAAACADCd7QAAAAIBDYXtAAAAAQGV/e0AAAACAEZd7QAAAAAAy3HtAAAAAQBjse0AAAABAy0Z8QAAAAAD3onxAAAAAAJMtfUAAAACA+EJ9QAAAAACZZX1AAAAAQJ5wfUAAAACAtH99QAAAAADcmH1AAAAAgBOqfUAAAABAmFR+QAAAAMAWln5AAAAAgOzifkAAAABAoBB/QAAAAMA7Qn9AAAAAwLtof0AAAABAH3h/QAAAAEDkoH9AAAAAYDrqgEAAAABgcyCBQAAAAKBVTYFAAAAAAGxmgUAAAABgjJqBQAAAAKBZpIFAAAAAQADCgUAAAACARFKCQAAAAAA1XIJAAAAA4DOigkAAAAAA86mCQAAAACAMt4JAAAAAoLgQg0AAAABgRlGDQAAAAMAvVoNAAAAAoLZxg0AAAAAAa7qDQAAAAABI+4NAAAAAYMYBhEAAAABA9AqEQAAAAMAgKYRAAAAAYCtChEAAAADg70eEQAAAAGA/iIRAAAAAQFinhEAAAACgO/qEQAAAAADxUYVAAAAAYLkHhkAAAADgFTuGQAAAAOANp4ZAAAAA4GvrhkAAAADAzyOHQAAAAAA1Q4dAAAAAoP4QiEAAAAAAPGGIQAAAAABLr4hAAAAAgNfSiEAAAAAgaNiIQA== - - - - - - 4cBPQJc6nz8qcARBUnkAQL6MBUCGSHBAdlQQQEVvf0ApboJAVKhnQKwQ70BcU1pAydIhQIPODkCvj/JAR54iQPl8UkDaQzVAx+Y/QEuVl0CpKe5AQqw2QEyTAUGfCRhA1/I7Qc0UyT8GYrBBDcqIQEdmJUGjKlpAvij4QP2tBkALZsM/jFWRQFPD6D9Fh81ABm93QLGcZ0AkFdZANrSWQPCmK0CzUoRAzlw+QPcTKkB3rn1AIqICQUyCMUHdZd9AYmi5QVrvi0FskWxA+Q1DQTVLNUBSVHVB58ONQfKx6D9VTdBAGqMwQgdXEkJyPpZAczmWQIEObUEecz5AP1S2QMdjFkHCCTVAC9IKQeOGokA0UD9BY0cHQR2LCEGFrEFBY1aoQhrilUHRWENBXADKQY2YP0HWahxCWbOFQHSpC0L8cI1ABAVGQLyFgEFIAyZBhGoAQb3ClUFrfExBgCrSQIHfPkE0pYxAigT7QUbwMUGIB61ADalsQDJ10UDw2JhBdxSvQBylaUJZAAdBl0hDQQmqfUBu3QdBEmObQcdi2kB7FVpAQ5CdQk5vl0GpNm5B5imAQrmmsUAZvBlBUtFhQCoj0kD0pOc/DJboP8M2hECs+nVAwDmIQKZ6kUAIOGJA0KrXQOY0AEE= - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - + - AAAAQKqDW0AAAADAOPddQAAAAECVI2BAAAAAoDJJYEAAAACgeQVhQAAAAMBvqmFAAAAAAEQjYkAAAADgLlxiQAAAAEAy4WJAAAAAgL4lY0AAAACAqT5jQAAAAGC/YmNAAAAAgFWkY0AAAABAmyNkQAAAAIAYaGRAAAAAYPqCZUAAAABgqaplQAAAACC55mVAAAAAoIAFZkAAAACgK0RmQAAAAOBQaWZAAAAAQLCqZkAAAADgZ0pnQAAAAAD6Y2dAAAAAYBuoZ0AAAAAAY8JnQAAAAADr/2dAAAAAQPAnaEAAAACAEVFoQAAAAMDxZ2hAAAAA4KmGaEAAAABAF5toQAAAAECEvGhAAAAAABsdaUAAAAAg9EJpQAAAAMB8fGlAAAAAADK1aUAAAAAAFxFqQAAAAABbJGpAAAAAQApJakAAAAAA/35qQAAAAMAUumpAAAAAgILnakAAAABAEClrQAAAAADhgGtAAAAAAAKha0AAAAAA8QJsQAAAAMAWHGxAAAAAgH5DbEAAAABAbmRsQAAAAADxhmxAAAAAwPKubEAAAAAA3OdsQAAAAEDsaW1AAAAAgEupbUAAAADAP+BtQAAAAMCEBW5AAAAAQE0kbkAAAADAGkBuQAAAAIBIfm5AAAAAQGqgbkAAAAAAucNuQAAAAMBH8G5AAAAAgExJb0AAAACA2IFvQAAAAIAlpG9AAAAAgJrGb0AAAABA6dxvQAAAAMDtAHBAAAAAoO0fcEAAAABAETpwQAAAAIAuVnBAAAAAgP5qcEAAAABg1pJwQAAAAKBLqnBAAAAAoEK0cEAAAAAgD75wQAAAAAA8znBAAAAAAFTkcEAAAABAvfBwQAAAAGAkAXFAAAAAgOkPcUAAAACgCxtxQAAAAICuM3FAAAAAgDhEcUAAAABA5VhxQAAAAIApenFAAAAAYL2LcUAAAADgq69xQAAAAMDJvnFAAAAAwDXRcUAAAABgbeFxQAAAAOBm8HFAAAAAAE/+cUAAAABAPw1yQAAAAGAsPXJAAAAAYJBLckAAAADghJNyQAAAAGCtnnJAAAAAwP2rckAAAAAAabZyQAAAAOATyHJAAAAAgD3YckAAAADAqOhyQAAAAACL8nJAAAAAYGAAc0AAAACgORFzQAAAAODRKHNAAAAAwIlSc0AAAADg3GJzQAAAAADMb3NAAAAAoBmVc0AAAACA4LJzQAAAAECHvXNAAAAAIIHfc0AAAADAiOxzQAAAAKAvA3RAAAAAICbOdUAAAABgbAZ2QAAAAOBZFXZAAAAAoMBLdkAAAAAgdl12QAAAAIBqaXZAAAAAIBJzdkAAAACgcZJ2QAAAAODa7XZAAAAAoPM9d0AAAABgWoJ3QAAAAMBc03dAAAAAIIYmeEAAAADgzUR4QAAAACAmVHhAAAAAQIFkeEAAAAAgCup4QAAAAGDTBXlAAAAAIF2HeUAAAAAgoqZ5QAAAAIB45XlAAAAA4E4lekAAAADAlvh6QAAAAMBTPntAAAAA4ABle0AAAABgW4V7QAAAAGBguHtAAAAAQF/Ve0AAAADgE058QAAAACDvdXxAAAAA4BqVfEAAAACgw9h8QAAAAEAn/3xAAAAAwPgsfUAAAAAgsnh9QAAAACA9lH1AAAAAoEy1fUAAAABAOcJ9QAAAAED8lX5AAAAAYL60fkAAAABgNvB+QAAAAGABU39AAAAAQDl2f0AAAACgULN/QAAAAECG1H9AAAAAAH8PgEAAAAAgpSGAQAAAAGACKIBAAAAA4ID6gEAAAADADmmBQAAAAKBDgYFAAAAAQHOKgUAAAADAtKODQAAAAGBdO4RAAAAAABtNhEAAAAAggfuEQAAAAGAxxYdAAAAAoKD1h0A= + NrgMGZxjYkA= - + - YKelQAoeEECIKwxChQAhQdQZNUC54KA/o1TVQGbgs0DAZohACU9/QA4wfkCnURhAUmMZQENEhECDsFVAjDqIQPmXCEJhjZVA68T8P5AkJUGukFhAeiiAQEVy9EAbTiFANbVuQH1pAEGxkflAMfU1QEonAEHACxBAyCaWQPC9pEALu2xAgPlnQN73QkC8eSJAQmOuQCiBiUE/pRRBs2DoPw5VxECIGqlBmck2QYwIfkBoNrE/sRU9Qay1EUF6WJ9AIaIlQVaVHkGqVftAj3jlQGvO9EA/6NdAFy4YQBZ8zEGoeglBf7BoQRSXAkFDECNBtKUFQfJSnUEbtYVAGJWDQNvy6UCL5ZVBoNUyQV+/o0DadelAaGN+QtFUjEHUxTNAkHj0QJJEpUDzM5NCbcsNQQOK6D+sE89A7821QcZkUkCe1Y1BoB1SQJUbHUFqhg5Cy6ZeQV+hbkEFd7ZAJFYVQXkOKEKcHZFAk27RQjl8j0Fgj8pAoPCWQTy6PkBcz0JBalKbQYaZJ0HMg+xAhAs9QeHUlkC5wLhBus+ZQbbLi0FkMGdBVXsXQmM0NEGA7m9BpjoEQdX7fkFQ9bNBpW83Qad/C0LnXyVBL450QI4sfkCxZulA5UIAQZQ4kkARZCJA74zAQISIwUKVcNlAD277P6ECjEE3EWJBBacSQQUOqUCADMNAYuIiQFwEfUKNc8dAhCx/QDGc6D9LuZZAjGqoQEt/P0AC6YhBadu9QASsRUEKOg5B3J+yQNTajUBWKztBnVYGQYR6CUENsStAvNBXQajuMUI1MzpBjrINQUYMBUEEpYlAoxODQg9psEA08hpB8FeRQJxutD8vlIRAQhsQQAdkRkAeIhBADKgiQF2S6UAVxZ1Ay62JQAgv0kDTqDhBg+aoQP0na0A9Lq5AKA8qQfxshEBj0dpAqIhsQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - - - - - - - - - - - - - - - AAAA4KhjaEAAAADAh5loQAAAAECSHWpAAAAAgDqCcUAAAADAztBzQAAAAAAzdnRAAAAAAAK6dUAAAACA7PZ1QAAAAICiKnZAAAAAgJjBeEAAAAAAkW95QAAAAAB4tHpAAAAAwA7uekAAAADAiE17QAAAAMABrXtAAAAAAGnke0AAAACAmh18QAAAAMC6lX1AAAAAgPfCfUAAAAAABph+QAAAAMByk39AAAAAQI67f0AAAAAA+0aAQAAAAMB+ToBAAAAAAClygEAAAABAVbGAQAAAAKCt9oBAAAAAILhZgkAAAAAgqGGCQAAAAEDRpoJAAAAAQMS0gkAAAAAgXxGDQAAAAIBhsYNAAAAAwGonhEAAAADgGD2EQAAAAMAPQ4RAAAAA4CoshUAAAADAKjSFQAAAAACcU4VAAAAAYFtzhUAAAAAAOuKFQAAAAEC4X4ZAAAAAYAznhkAAAABgjiKHQAAAAOBFNYdAAAAAIHUIiEAAAACg2xKIQA== - - - - - - evqMQKFCn0D3YwFB8ewqQF5IIkBavtU/+Pg+Qe+eh0E3l/5AYsvpPx4FyUDeEHFBnlI9QC9usT8lNyBBj48ZQDWIhUAQg5tAyi1RQHR0eUFFQp9Az2ERQF7SMkF02GxAneFyQTi+K0Bx6cpA/aFYQD1V4EDBICBBIK3/QDHD4kC1zwxBTXYUQRtqT0BDQtJASnJpQRRB+EAw4lBA3kelQACcl0CgPLdBu+C/QE5wqUCJ60dAoJA+QXPMC0E= - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + - - + - + - AAAAwN6IWUAAAAAAuI9bQAAAAAARzVxAAAAAAGcIXkAAAACAEU5fQAAAAMCuI2BAAAAAYIU+YEAAAAAgF6VgQAAAAODZDWFAAAAAwHYcYkAAAADAfkdiQAAAAAB0ZGJAAAAAIGCEYkAAAABAt4BjQAAAAMBbyGNAAAAAAKznY0AAAADAmSBkQAAAAICm32RAAAAAwO0mZUAAAAAAND5lQAAAAIDlY2VAAAAAYFykZUAAAAAAyOJlQAAAAOCO/GVAAAAAgHAnZkAAAAAAfkNmQAAAAMDjYmZAAAAAYECBZkAAAAAgUsVmQAAAAACW5mZAAAAAwLUEZ0AAAADALyFnQAAAAIDFSmdAAAAAoAmBZ0AAAAAgFKJnQAAAAMBfxWdAAAAAABMnaEAAAAAAvoloQAAAAMBMnWhAAAAAAIbDaEAAAAAAEgRpQAAAAEDfImlAAAAAoJRFaUAAAADAKWJpQAAAAIAaimlAAAAAoIP+aUAAAABAITtqQAAAAIBOZ2pAAAAAwCQga0AAAADA8KFrQAAAAEBE7WtAAAAAAFUvbEAAAABA1EhsQAAAAABFZGxAAAAAgH6IbEAAAADANxdtQAAAAIC5NW1AAAAAQDN3bUAAAACA4KttQAAAAECHw21AAAAAgKQGbkAAAADAuyVuQAAAAAAggG5AAAAAwEmsbkAAAACA58VuQAAAAEBN6G5AAAAAQCkUb0AAAADAxT9vQAAAAICdYm9AAAAAgKaab0AAAAAATcVvQAAAAECI5m9AAAAAAPH6b0AAAAAAAxdwQAAAACAcJHBAAAAAYL8xcEAAAADAYWVwQAAAAMAFcXBAAAAAgH/CcEAAAABA7NJwQAAAAOCm43BAAAAAQLjzcEAAAACAkRxxQAAAAABFQnFAAAAAgDBUcUAAAADgZWJxQAAAAIAfbHFAAAAAwAWDcUAAAACAjJBxQAAAACC0pHFAAAAAIIzBcUAAAABgqNNxQAAAACBo4XFAAAAAgNICckAAAAAA7UhyQAAAAMDAZXJAAAAAQNZ1ckAAAAAA2IFyQAAAAEAgjXJAAAAAQGWickAAAADAMa5yQAAAAICqvXJAAAAAADDMckAAAADAeN5yQAAAAMCp7nJAAAAAgFL+ckAAAACgbBRzQAAAAACZH3NAAAAAQAFHc0AAAACAjF5zQAAAAIC3c3NAAAAAYGiDc0AAAACAG5BzQAAAAMBfpHNAAAAAYAa1c0AAAABAU8BzQAAAAACU+nNAAAAAADASdEAAAACAciF0QAAAAAC8MXRAAAAAIGlCdEAAAAAAMFV0QAAAAGAJaXRAAAAAwL9ydEAAAAAg2IJ0QAAAACDFlXRAAAAAYMHAdEAAAACgDkB2QAAAACAXw3ZAAAAAwHX5dkAAAACgITR3QAAAAEAedXdAAAAAICKGd0AAAAAg2gB4QAAAACA2EnhAAAAAINoceEAAAAAAxGh4QAAAAOAM83hAAAAAoIP/eEAAAACg7CJ5QAAAAEAINHlAAAAA4ClxeUAAAABgqqd5QAAAAKAgAnpAAAAAoB4nekAAAACgTkZ6QAAAAGAYi3pAAAAAQDaWekAAAADgVMV6QAAAAGD6jntAAAAA4CGZe0AAAABAZah7QAAAAMDq9ntAAAAAQK4TfEAAAAAgSR18QAAAAOBeanxAAAAAQO8DfUAAAABg8UV9QAAAAGAPY31AAAAAIA24fUAAAADg+gN+QAAAAGAhI35AAAAAID9nfkAAAACg53R+QAAAAGA90n5AAAAA4CQif0AAAAAguDN/QAAAAEAmVH9AAAAAIFqEf0AAAABA3pR/QAAAAGDh3X9AAAAA4N1hgEAAAACgw2mAQAAAAKDau4BAAAAAwJzKgEAAAADgKNqAQAAAAABi5IBAAAAAoOL5gEAAAAAACz+BQAAAAECOaoFAAAAAYLqxgUAAAABgQsqBQAAAAOA00oFAAAAAQIragUAAAADAQfuBQAAAAACDA4JAAAAAoKe1gkAAAACgTgqDQAAAAACooYNAAAAAIGJqhUAAAACALNKFQAAAAMDXK4ZAAAAA4PthiEAAAAAgIeyIQA== + KBZXds7jZUCO7m7sniJrQNS+X4D+xG5AR9UTyqeidECRoHe3LXN3QGneFfsqE3pAH/jD1gWEfUD8GjGNARKAQKAA44NEeoFAkPvUyFgahECgL9Gt8AKFQLslV8ukUoZAMTRSRjK7h0A= - + - JoKoQPzLbEAOYlhBkaaMQEPWjEAwZbJAwfVmQSFxcUHoiHZAdxwIQFMtWkCPDDtCWDwAQYlpf0CDdY5AAuArQOSRX0EvQZdAIQ4iQLekm0DZBtRAH4M8QFJ4BELVlQZAH42XQNGVeUFuk6lB/6oqQS0EGkDTAj5Ba4bgQMG3iz9b2jhBSPSRQcvviUBq5zdCg+yVQPqZYkAlKLE/Kjl6QO2tWUCurzNCJrM9QGF2tkAnIphADCpjQLd64kCgwR1BXwBdQW1m6D+afStAcCwZQZLAZEE7QrFAWqNnQT6/EUFk7MdBjjCCQySCE0EPM+VAB5GyQUxQ8EBWtohBk3cHQdYmAELK4qlANFQAQ1RUaEAbwOc/re4HQiFHAkH33RZBdXs6QYLlOUEQ5G1BXekzQS6PikLMFMxC2+/VQf43kUFj0BBCDZ1KROjFnUCRj9pCd54cQrhP80CaKeU/T9dZQPRp8kEOzTFBtR3ZQI/KwUMCmn0/NpdfQrguwEAcZ5BAUSaCQMJJhkEp4u5AWlWNQiUgg0BSjN9ByaT9QAXaS0GtxB5BdKb6QBzNuELO5u9AJmtIQNNH1T+YknxBDLWEQQftvEBkgH5BV9ArQX0X4UEb5itAzeQXQKQUqkFIjQFCt8v0QKf+oUDqEdxClv+7QCIPSUFisP1ADKQ5QbA11j+UgD5ALSorQFjUzkBeppRDN4kdQmSPdEBkmVRC1YYUQTBWF0HJ8iNBsr+xQJujf0GlqGNAhgMJQkM4bkAklzhBBmLyQK6SuECdloVBHsIZQALTv0BxHAlCLs4rQDQUC0GpRN9ASIhgQbTPkEHV5F9BiiMkQadQIkCBPQZAN45iQTsE5UCM29U/T/eAQ8KyzEE9IBlAuO+AQ8CIfEIGkAxB+gpORKX6+EJswdpAS6NgQOM4AEFd9ZRAPKkiQDaV/ECzZ81AWI6SQFoaE0F5qUdAW2b6P/o/g0IeQdRBknPDP/zRlkJNFyxA2U3bQDT3MEJFyR1BIBv6P5yY+T/hxhRBvCIeQVa36D8= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - - - - - - - - - - - - - - - AAAAQAjkYkAAAABAvOVlQAAAAMAUy2hAAAAAgC7gaEAAAAAAnQVpQAAAAACoZ2lAAAAAwDBEbEAAAADAZYdsQAAAAMAfpWxAAAAA4LgibUAAAABACFxuQAAAAADoum5AAAAAIJG3b0AAAABAYi1wQAAAAEBVo3BAAAAAQJYBckAAAACA+RJyQAAAAMA+ZHJAAAAAgFTRckAAAACApN1yQAAAAECkDnNAAAAAgORVc0AAAAAAEaBzQAAAAICBsHNAAAAAwJ7Ec0AAAADADtJzQAAAAECk43NAAAAAQKkfdUAAAAAAIkV1QAAAAMCME3ZAAAAAgBE0dkAAAADAIUB2QAAAAIAzUXZAAAAAQBaVdkAAAACAKeF2QAAAAMCuMHdAAAAAwDx1d0AAAACAIrV3QAAAAMCdZHhAAAAAQEB2eEAAAACAA5F4QAAAAADAp3hAAAAAQK0SeUAAAADARjF5QAAAAMA3sXlAAAAAwArCeUAAAADATNB5QAAAAAA97HlAAAAAgMlVekAAAACAt2B6QAAAAIA3dHpAAAAAwMaTekAAAACAVqV6QAAAAACqwHpAAAAAwK/OekAAAAAAvRN7QAAAAAAnfHtAAAAAgAaKe0AAAABAvpt7QAAAAIDx3XtAAAAAQO7se0AAAACA4/Z7QAAAAACGInxAAAAAgMc/fEAAAADAYWZ8QAAAAICEsHxAAAAAgPsnfUAAAABAVDp9QAAAAEBMSn1AAAAAwPJwfUAAAABA2n59QAAAAICkvH1AAAAAQHpjfkAAAADAF4R+QAAAAEC2ln5AAAAAAHbgfkAAAADAxUN/QAAAAECXZn9AAAAAAJOgf0AAAADgCSaBQAAAAICfNYFAAAAAQP5VgUAAAADgp3mBQAAAAMBNmoFAAAAAoPSigUAAAAAg5cOBQAAAAABwWoJAAAAA4LeggkAAAABADquCQAAAACAuuIJAAAAAoE6+gkAAAACAowmDQAAAACDrU4NAAAAAIAVwg0AAAACAJ5ODQAAAAGBNu4NAAAAAwIH9g0AAAADAFRuEQAAAAABkOoRAAAAAQJBDhEAAAAAA9kqEQAAAAMB9iIRAAAAA4AOphEAAAACgP66EQAAAAGBCwYRAAAAAYAHvhEAAAAAgeBuFQAAAAKBxToVAAAAAQLJXhUAAAAAAI2+FQAAAAGA0kYVAAAAA4BAhhkAAAACgcyqGQAAAAOBCc4ZAAAAAoBTxhkAAAABgjRWHQAAAAICseIdAAAAAIGiih0AAAABgNo+IQAAAAKA7x4hAAAAAIGfkiEA= - - - - - - uwv9P9wv+j/diJ0/OyLVP1vfPUCNuuo/KHROQPd1UEAUKyJAH3FkQNDFh0CptytBkugsQCrkn0BKhbFA8pS+QFKOnT8wRKhBSFOZQXwFxEANqw9AITXEQFCOmUHbMINAWtjWQF0ojEBjlQ1BAIAEQcJVIkBBTtlAyiSLQGCfCkIohOo/50PhQI/0UUGM9tFAT0HfQMzsrkC7pvk/pNhiQGT13kCep51BFt60QEINGkCKG9tARgmsQS6JFUGQXZNAGJfNQLQsakAGRoNAaKejQLGL4kCnAjNCVpmnQefoNEH/1llAHUyNQc0QK0HPZv5AX2CdP1nYwED50I1ASGRtQA4WIkCzK5FANlMJQv3mR0HT9NtAQT8oQryd40HSl9Q/QzVhQF9ZpkFl3CNByp0VQSyD+kFYjBdAH1w6QVombEBk0xNB01AHQBG4QEFqgINBZ165QXmYEUIB6RRBJPcYQAUENEHN9oNCGxXwQfN75EAwWMRBbEkPQFrCn0BWrpxBWpbZQIXhUEDPc0BA157pQuy9AkJSvMNBBrCxQU6WnUDJouFAFc+eQOUKt0Dfi19BMAFDQbcZQUFnQos/VvPoQDKQukDKYVhAWnUPQPo/u0BRLo5AmLyeQKEZIkD+VH1BsEsJQQ== - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - + - - - - - - AAAAQMzhcEAAAACggs9xQAAAAMBecHJAAAAAoMXCc0AAAADARw91QAAAAEAnU3VAAAAAgPHBdUAAAABA0CJ2QAAAAMA1aHZAAAAAgHLBdkAAAAAAdTV4QAAAAIC/n3hAAAAAQPEyekAAAACAEhR7QAAAAIAgBHxAAAAAQEMkfEAAAAAAphF9QAAAAAAdRH1AAAAAwHtifUAAAACAQ3F/QAAAACDcKIBAAAAAwP1RgEAAAADA/miAQAAAAKBLcIBAAAAAIK2ngEAAAABAs+CAQAAAAGDQIIFAAAAAQIiTgUAAAAAggbGBQAAAAOBLwYFAAAAA4C/ygUAAAAAgwVuCQAAAAOBLooJAAAAAYNGsgkAAAABgQrOCQAAAACDwQoNAAAAAQEhOg0AAAACgG1WDQAAAAAA/CIRAAAAAQNBOhEAAAABgnGSEQAAAAIAbdYRAAAAAYICGhEAAAABArauEQAAAACA04oRAAAAA4D/3hEAAAABAaBCFQAAAACCYK4VAAAAAoJ1GhUAAAABAY6SFQAAAAOAD84VAAAAAQCP7hUAAAABATQ+GQAAAAID7GoZAAAAAwAJihkAAAABAxX6GQAAAACBQj4ZAAAAAIDK6hkAAAACg5NSGQAAAAOAG6oZAAAAAwF/0hkAAAADArfuHQAAAAGAPIohAAAAAQFJRiEAAAABg4vCIQA== - - - - - - Rr+MQEn1p0CGZm9BE8gJQU1zYkBsAGJARFw5QfBneEDWhBFBRLRhQKUnn0B+JF9BlZZZQJdJB0F0CQVAeOUEQHw5nT/TwDdBBIiDQF4LqUD8g1hAPCsAQV+NaUGQcwlBmJLmP17qBEGCtXRAspKRQLa8n0ABprNBlcFYQCgTmkBvh3hBUcHCPxw6/kCekhBBp1TqQeO9eEGx+otBK/aWQTg/GEBjLA9AYTIaQT5F7EDowXxAN1Q2QIYcjECMOq1AnqQXQTxzEkGd7oxAV7ETQmadZEEmUulAtLvSQLSrAkKz08E/ia1FQEROAEFGzx9CtkwwQcrUT0DDyrtAiSKbQOzLbkE= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAQA5IaUAAAACA3gB0QAAAAACRt3RAAAAAAH8AdUAAAABAxjJ2QAAAAECIQXZAAAAAwDVkdkAAAADAOqV2QAAAAMBxg3dAAAAAQBA0eEAAAADAED54QAAAAACusnhAAAAAQFGleUAAAABAhdF5QAAAAADJF3tAAAAAQJv8e0AAAAAAFgd8QAAAAEBuknxAAAAAgPgDfUAAAACAs+N9QAAAAEAnpX9AAAAAAACDgEAAAABg8tWAQAAAAOBw6IBAAAAAIKPzgEAAAAAgLCCBQAAAACCjLYFAAAAAYMdPgUAAAADgrneBQAAAAMBCloFAAAAAgCObgUAAAAAABaKBQAAAAOAvT4JAAAAAgOvBgkAAAADAD8uCQAAAAOBtEYNAAAAAYOEdg0AAAACgEDuDQAAAAGDdQINAAAAAgEVLg0AAAACgeMeDQAAAAMAS04NAAAAAQFj4g0AAAABgev+DQAAAAGBGJYRAAAAAoBo3hEAAAACgrjSFQAAAAEAWuoVAAAAAYKRyhkAAAAAgZaOHQAAAACBc8YdAAAAAAGZsiEA= - - - - - - TUexQGBBnEBp509ARk5MQYAa80Bo9tQ/rNcFQPn7v0BqnFJAB0+oQLe5BkGA1ZBAj1j9QFzJYUCZ9VdBOM1HQYOZvEAdFgtBeDZiQRBVjUAwnWtAzi1AQYfpIEFMwQ1B+ugXQNjbL0EE66NAcgMtQU6JTkJa55FAkOkbQS9g90BUzgRB/u0KQYmT2kD910VA3XS4QFwTCUG8huBAE1/XQH8UPEFRpudB8gApQY3/EUEOX7tALG71P/bjT0BTi0pBC4AhQETv30ASQ0hBy6zSQQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAABcAZkAAAABA6CNmQAAAACCM6mlAAAAAoFP/aUAAAACAYh5rQAAAAGD+R2xAAAAAQFFjbEAAAACAqwNtQAAAAMDgLG1AAAAAILp8bUAAAABA6lxuQAAAAOB3YG9AAAAAwJ0icEAAAAAgLoNwQAAAAGCBonBAAAAAQOLAcEAAAAAAW+VwQAAAAEBq9XBAAAAAwNF/cUAAAAAA+LNxQAAAAIA9cXJAAAAAgJuIckAAAAAgoKNyQAAAAEBr1HJAAAAAgND+ckAAAACADuFzQAAAAMAgHnRAAAAAwJGFdEAAAACAv6J0QAAAAMA/PXVAAAAAgJFjdUAAAACAKYd1QAAAAACUwHVAAAAAAHV0dkAAAADAjrN2QAAAAMDHxHZAAAAAAK1Gd0AAAACA0VF3QAAAAIBVgndAAAAAgOoCeEAAAABAlTR4QAAAAAD6YXhAAAAAAM6DeEAAAADANqx4QAAAAABTu3hAAAAAwFzneEAAAADAmvR4QAAAAADQG3lAAAAAgNWleUAAAACA3vN5QAAAAMAEInpAAAAAgKJCekAAAADAAOJ6QAAAAEDeZXtAAAAAABGme0AAAABAmrF7QAAAAICvwHtAAAAAgM8jfEAAAABAGz98QAAAAEBgoXxAAAAAwHKxfEAAAAAALLx8QAAAAABiFX1AAAAAgOYlfUAAAADAPTh9QAAAAADbXn1AAAAAAAyvfUAAAAAAitF9QAAAAEAX5X1AAAAAgHsQfkAAAABA+IB+QAAAAMDm1H5AAAAAgC3nfkAAAADAYg5/QAAAAEB+Gn9AAAAAQM4sf0AAAACA5TZ/QAAAAMBMYX9AAAAAQBt8f0AAAABA5Yl/QAAAAECEJ4BAAAAAoJ9SgEAAAADAQFqAQAAAAADmeYBAAAAAgBHCgEAAAACA2F+BQAAAAGAro4FAAAAAoAPLgUAAAAAgcvqBQAAAAMDy0IJAAAAAoDjYgkAAAAAggPSCQAAAAGC8O4NAAAAAoEJng0AAAADgp3uDQAAAACAH+oNAAAAA4AYShEAAAADgvlWEQAAAAKCflIRAAAAAYKa+hEAAAABg6emEQAAAAMC/LoVAAAAAII9NhUAAAACALnaFQAAAAACTe4VAAAAA4POzhUAAAADg7biFQAAAAGCx6oVAAAAAgC/yhUAAAABgav6FQAAAAGDGA4ZAAAAAAMMShkAAAAAAejaGQAAAAECJO4ZAAAAAINpUhkAAAABA33+GQAAAAEAMiYZAAAAAYE+jhkAAAACggGmHQAAAAMAZeodAAAAAQB+Zh0AAAAAA5DeIQAAAAKCmo4hA - - - - - - J15GQHPKDEA73+U/Mh3tQO1XGUHCyOU/2ajGQHTFTUD5eBRBI6IkQVDFD0CgSq1A6WtxQYhP9T+QuHdASQMhQGJlwkAxFwJBBk7XQN6twD8lhwVAT+wMQD/m1UDKg8A/dMJZQFYcGEC0NExBZDrTPzFeRkB2JWNBdUFWQX76mUCaqTpB3aDHQL5vHUHtgwJBW8OhQOSqM0BujgVAWh2uP8ectUBSDVdAmzWnQcB7o0FCAWlA1C8qQDFTA0DRoq1BdVXmP/FEH0GLKoo/XX9lQLSTwD8y6QFBMgASQaO4KUCwaLNBDPhiQMjD10Hgb6hAtYJ3QVlAiUBwk7NAeIkEQTAAKkFG86RApAG4QCSsfkD/oehAdjy/QI41ikEmsKtBJT7vQJhEt0HqEo9BG+yaQJ4aXEGqexBAXO7lQHskjECPdQtCiNi3QSlnQEFCMERCDJcBQeipFEHTKrlAS57SP9AViECUF6dCvEswQYXoPEBbxTxAeIC4QA5rh0AKhpdAUwK+QN+pTEGNHopAXNrFQLIFGkFxs6xB9IbtQCtTLEFBmtFAvVKaQURFCEGBggVA5WtcQUXtA0OMzppC0J4UQZl6Z0GVSGtAIhfyQZeaU0KNDs1BhgBfQdTpCkEb5SpBk0QFQJmew0Cn0GpB - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQOolcEAAAADAqnBwQAAAAOBUgnBAAAAA4FrhcUAAAABAKkNzQAAAAAClonNAAAAAgJ4VdEAAAAAAq091QAAAAAAcGHZAAAAAgLpQdkAAAADAqV92QAAAAACGUXdAAAAAQHqGd0AAAADAJ8V4QAAAAMD9BXlAAAAAgIfyeUAAAACAMEp6QAAAAECffnpAAAAAwFERe0AAAACAmUN7QAAAAICog3tAAAAAwARCfUAAAABAU5d9QAAAAEACo31AAAAAAJI1fkAAAABAZIN+QAAAAMA7oX9AAAAAwML0f0AAAABgG3aAQAAAAKBpmYBAAAAAoPDAgEAAAABgP+mAQAAAAEDsF4FAAAAAwPIggUAAAADgkSqBQAAAACC5uYFAAAAAYBbAgUAAAABA65uCQAAAAGCp04JAAAAA4JTqgkAAAACgzw+DQAAAACD7GYNAAAAAgExJg0AAAADgtGuDQAAAAEDvoINAAAAA4KWog0AAAAAgqr+DQAAAACAL/4NAAAAAwAgKhEAAAABgtEeEQAAAACBymIRAAAAA4ETlhEAAAADA3+qEQAAAACA9C4VAAAAAoFcqhUAAAACAbzKFQAAAAGDKR4VAAAAAQN5XhUAAAADgHWKFQAAAAOBxo4VAAAAAIOC6hUAAAADgccKFQAAAAKC684VAAAAA4CcbhkAAAABgoE6GQAAAAGApW4ZAAAAAAP97hkAAAAAAn4OGQAAAAABWmIZAAAAAgB2phkAAAAAAJ7KGQAAAAODMuYZAAAAA4BXchkAAAADgRASHQAAAAOC3CYdAAAAAQD7yh0AAAADgYPuHQAAAAMB/hIhAAAAAgPaKiEAAAAAgqOmIQA== + KBZXds7jZUCOTWWFS4NqQDeULWxqYnBAVeXpVsLyc0DHBI8W/lJ0QORVSwFW43dAVUPGqhoEe0AGX00y2VN9QHFNCWV5ioBA - + - oVkCQXVAw0A3EE1Ac2I+QOBXrj/cG/ZAhnHIQO7c0z+WiUdAJHSbP5l5h0Hhr95AMYrRQLpKl0C+vrVAx/LTP+t3I0GML9RAljQiQJy5wUE+rX1AUXLoQEhCRUB0kKxAmoQwQXS5m0H9VHFBwzflP8S7J0EGFSNB7xwJQYqJM0EmQ/pAKnazQcP2K0B4Sn9BmjDmP4iFUUCHuYJAXGKUQJleDEF4ioBA9hTbQfcGNUFBp4dCckazQSJAH0AzcHNBqJkFQAaqfkNNIpVABJH7QIWYr0FDmyJA8TTUQdlM+D9i61tBseP4P9badEATdIlBbLAIQrOogEBlm9I/s8vAP4Ah2kEk25FBqqA9QRShu0A7Jo5CL5+CQEmPAkGEGQJBRor4P1MvhEFZ4rlAMN59QR7DjUCMeZFALZPTP+ncx0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQBXUYUAAAACAwehhQAAAAMAFZWJAAAAAABOrYkAAAABAWF5kQAAAAMB3H2VAAAAAQKVjZUAAAAAA0YNlQAAAAIAW+2VAAAAAwDbfZkAAAACAC0dnQAAAAEDJoGdAAAAAAOECaUAAAABg2x9qQAAAAKD1UWpAAAAAgMHEakAAAACAbvxqQAAAAOB1F2tAAAAAwDo/bEAAAABAfAFtQAAAAECGKW1AAAAAwD7qbUAAAACA9wRuQAAAAECcJ25AAAAAAPJrbkAAAADA1EhvQAAAAIAqqG9AAAAAgIbHb0AAAAAA2uBvQAAAAMCZenBAAAAAwOHucEAAAACAz/1wQAAAAGBWJXFAAAAAwFdMcUAAAACAZoJxQAAAAACFkXFAAAAAAC2hcUAAAAAgK8BxQAAAAECA4HFAAAAAgCbycUAAAAAAHiNyQAAAAMAhQXJAAAAAgOFzckAAAADg0YJyQAAAAKC4kHJAAAAAQKq3ckAAAAAgF0ZzQAAAAODcVXNAAAAAgK52c0AAAABATIhzQAAAAMCxmHNAAAAAYNuic0AAAACAB7BzQAAAAMD3znNAAAAAAPnbc0AAAAAgOgR0QAAAAAD4JXRAAAAAQLIydEAAAADATnZ0QAAAAMDXhnRAAAAAQIWQdEAAAABAoKR0QAAAAGAzxHRAAAAAwJcjdUAAAADg40B1QAAAAECxTHVAAAAAgBBfdUAAAADAa511QAAAACCM4XVAAAAAAAckdkAAAADg8jx2QAAAAOBLUXZAAAAA4B9kdkAAAAAgRm52QAAAAGBD13ZAAAAAIFzldkAAAABgNvh2QAAAAOCfLXdAAAAA4HhBd0AAAADgaHt3QAAAAGD5hndAAAAAIIYfeUAAAACgQ3d5QAAAAKC3PnpAAAAAQCCzekAAAAAgMcR6QAAAAGC0QntAAAAAIBRWe0AAAADg1dd7QAAAAGCoZXxAAAAAwKVffUAAAAAgP8F9QAAAAEB/V35AAAAAwF5lfkAAAAAgLol+QAAAAGD7nH5AAAAAwOEmf0AAAABAqBGAQAAAAOAEG4BAAAAA4AujgEAAAADgLK2AQAAAAGC98oBAAAAAoOF+gUAAAADgGOqBQAAAAKDK+4FAAAAAYEEqgkAAAADggfyCQAAAAEDWO4NAAAAAwGFfg0AAAADgUWyDQAAAAKBpi4NAAAAA4Kijg0AAAAAA08uDQAAAAGCg04NAAAAA4Mv5g0AAAACgt32EQAAAAGCIiIRAAAAAoL7ThEAAAACg6QCFQAAAAOBxG4VAAAAAYHhAh0A= + NrgMGZxjYkCGpXi5ZgJtQFf+/uF9UnBA4KN4R4sRckB1T7vM1eJzQDb4fEwjgnZAl1i9/VhTeUBYAX99pvJ7QO2swQLxw31AdlI7aP6Cf0AF/752JKqAQFn62R7XUYNAv1GfbpyqhEA= - + - hUOsQEX5cUEJA4lAi/t0QLV8c0Bl45JAEq2uPx6bBUBUfGJAyLraQOPQ0kB+mUBASGBaQKg/+z+fgNhA5GhrQBxlRkCtt6pAXG49QMRoH0D5oTtAKUYsQO8ewUARK5JA/9MNQdpRCUG1CKJA1y6OQB1sjEDD2gRB/qy5QQFUXEHlnVpBhaSeQP15dUHA+fg/8KJOQerONUGzN5NAJmqPQQAwjEBs9ANBGwoLQX0DD0AMNNM/RKHpQFDzNkBhb81ANMbGP30Sg0H1izNAgGrmP9FFR0EcxdM/ZyQcQV1ex0BaSBZARqJPQJbf4UBDv64/e84oQA2hTEFX1SdByZsOQXjU4kHb0rw/fFx2Qn3ogEBXxUFBxnQ9QFpvRkDs29M/McbFQNPmjEDj4GRBtgbUP+4y5kAjPFNB1PxJQFRsdEAj3vg/n3qeQKi2REDWy5ZALkJiQGxMk0Bm5PVAwY84QTnoBUAosvg/nvAzQMbLgkA12nJAFH29QO6sNEFeMTVBZSuIQHNNRECJaTtA9eslQr4/OUHShiFAzhAXQbVJm0B8M2JA4ZbjQKn5sUB9zHRA48PsQFBHTkC6UxhA1LkfQKGrZkKTj4xAdoH0QOoNrj9piJw/2HF6QYmi30BNK0lA0KQqQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQE9OYEAAAAAA5LFhQAAAAOARyGFAAAAAwJZsYkAAAAAA05xiQAAAAABWw2RAAAAAQOvjZEAAAAAAMghlQAAAAABEJGVAAAAAQGbFZUAAAADADO1mQAAAAEAHK2dAAAAAYCUdaEAAAAAAEZ1oQAAAAKCtK2lAAAAAQJFlakAAAACARcZqQAAAAGBA2mpAAAAAgF+ka0AAAADAugRsQAAAAOABJGxAAAAAIOJdbEAAAABgNoVtQAAAAEC0wW1AAAAAAIs5bkAAAABAUWpuQAAAAEDP5W5AAAAA4IdDcEAAAAAACV9wQAAAAMAw1XBAAAAA4MrncEAAAABADSFxQAAAACB4QnFAAAAAAL9ScUAAAADgT4BxQAAAAODFj3FAAAAAgKy5cUAAAACAh9txQAAAAACU73FAAAAAQAIickAAAABgO3ZyQAAAAIAw83JAAAAAQOkPc0AAAABgrSFzQAAAAIDqM3NAAAAAgO5Uc0AAAACgKohzQAAAAADplHNAAAAAAIoOdEAAAABA0TJ0QAAAAEDDQXRAAAAAwBuFdEAAAACAbZB0QAAAAEBh0XRAAAAAgCnhdEAAAAAAi+90QAAAAAC+CnVAAAAAgAMWdUAAAAAACoF1QAAAAECjlnVAAAAAgPaidUAAAACAHLV1QAAAAMAaVHZAAAAA4H17dkAAAAAgI6J2QAAAAOAnr3ZAAAAAYNC8dkAAAAAgvfd2QAAAAADNH3dAAAAAoKV1d0AAAABgbJF3QAAAAGCTpHdAAAAAQES9d0AAAABAAtV3QAAAAACOBnhAAAAA4AcUeEAAAADgryB4QAAAAED+XXhAAAAAIGEFeUAAAACApEt5QAAAACCWcHlAAAAAoHt+eUAAAABgqJF5QAAAAGBMpnlAAAAAYBLDeUAAAACgmNh5QAAAAAB25HlAAAAAwLAEekAAAADgBXl8QAAAACAQR31AAAAA4LGTfUAAAABAtRF+QAAAACCM5X5AAAAAQCg0f0AAAABAXHN/QAAAAMDjgH9AAAAAICEjgEAAAAAAaT6AQAAAAKBD74BAAAAAQHE7gUAAAAAguJuBQAAAAAChsYFAAAAAoLjCgUAAAACgs9OBQAAAAGAvIoJAAAAAYG9bgkAAAADg72OCQAAAAEBwq4JAAAAAIPe8gkAAAACgEVuDQAAAAACIuYNAAAAA4OXpg0AAAADAbHOEQAAAAGB2k4RAAAAA4JmbhEAAAAAg4HGGQAAAAMDue4ZAAAAAQEn7hkAAAADAlQKHQAAAAGDUSodAAAAA4HSMh0AAAABgo5yHQAAAAKCwpIdAAAAAADi3h0A= + NrgMGZxjYkDEZV5bjlJwQN9iJOBzYnFAAWwmEffSdkDEwzqv5mN3QLKBOgxVlH5AdRHnAOfTfkA8bueituKDQB62PZ1/AoRAFZW9y7aah0D2wMeaLuOHQIfFSDNwm4pAFcSr9WIji0DoyBcdw7OOQHjxdRLvu49A - + - JN3AP7o36kD6PkZAZa+1QPu7kkEHiwVBtuCIQYnTrUDpYwFBOpn4P0DxjEDJ8BVBbY5ZQFJCYkBC4jNAuMsYQLbpqkDUEjlBa56CQKnXf0DYsjtAQxYXQBZ7D0EPcOU/dlPTP7t8H0HNXOBA4bpyQM6+KkASq4NAVIfFQFqGBUBr4bdAlsTUP6MNGECQ6D1AwShCQUSA0j9Ji5ZAqqSlQNDEckC1ChBB529hQMw8lkD7WLRAZxqcQBCDF0Ayz6BBu24BQhiEW0GqKZZAKmAnQZKdKkA8wdM/k16gQQTLrT9mBCVBYt2nQEa+UEKEZhBCiSaKQpYvpUBzbuBAz6/SP5hkw0CLmypBvJqcQI5CIkBaDAhBDRMkQS729z/0CixFL6beQUu4ykAsZR1BFsXfQHb3uUDmWw5Bi9OZQF75CUHiBD1AiFqFQJZ3pEBw4OI/nEbkQJjZLUEaR5VA5EMFQMGJnECsC7RBVxUQQXy6k0H+xgBBU8cGQdHhgUHT/tI/1gGzQdo9RUHtt8hAMwRtQTez2UDJow5AqKQOQJ4Fo0BExdZAJFcJQ7/Sg0HF4CdBjoRuQcDFJkGLuCpAxW1BQaWtBUD4l4BC6W+VQLZf5EAL+DNAg223QAkMa0A9W8E/j6BRQNqKBEOu8rBAJ8LoQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIEwCZEAAAAAATX9kQAAAACCCnGRAAAAAAFq5ZEAAAACA90RlQAAAAAAoZGVAAAAAwCLhZUAAAADgSwlmQAAAAICCHWZAAAAAQPBmZkAAAACAZ6hmQAAAAMBCiGdAAAAAoIOiaEAAAAAAWwZpQAAAACAwCWpAAAAAwAhCakAAAACAWGVqQAAAAMClRWtAAAAAAHOla0AAAACAZClsQAAAACAYQ2xAAAAAQMjCbEAAAABAPgZuQAAAAIBZJW5AAAAAoOdDbkAAAADAo19uQAAAAKCmqW5AAAAAIAUFb0AAAABA4IVvQAAAAOBxI3BAAAAAIGM1cEAAAADgD1VwQAAAAAB5lnBAAAAAwLyhcEAAAABgIiFxQAAAACD0QnFAAAAAgE+ScUAAAADAHNVxQAAAAADNY3JAAAAAoPJxckAAAADAmsNyQAAAAIAL5HJAAAAAADwec0AAAADAxD9zQAAAAMC1wXNAAAAAgN0AdEAAAAAAm2x0QAAAAECKf3RAAAAAwCnfdEAAAABAFw91QAAAAEDQUHVAAAAAQKWQdUAAAADA2rF1QAAAAMDO1HVAAAAAQCX7dUAAAADAdiJ2QAAAAAD4MnZAAAAAAG5BdkAAAACA1q92QAAAAEDOzHZAAAAAwKz2dkAAAACAUhJ3QAAAAIAVQndAAAAAwFWud0AAAADAdgJ4QAAAAEALIXhAAAAAQPczeEAAAABAJ154QAAAAEA8g3hAAAAAQJSWeEAAAADACaR4QAAAAMC74nhAAAAAgGnxeEAAAABAGRB5QAAAAIBHVXlAAAAAgM5jeUAAAABAv3J5QAAAAMCtk3lAAAAAwAepeUAAAAAAxbl5QAAAAIAUEHpAAAAAQEIhekAAAACAhit6QAAAAAASUHpAAAAAADV2ekAAAAAAk4J6QAAAAIAHpnpAAAAAAALdekAAAAAA1+p6QAAAAEB+RHtAAAAAAMZje0AAAACAtax7QAAAAMCiMHxAAAAAwMNEfEAAAACAE3B8QAAAAIAVenxAAAAAABS0fEAAAABASMB8QAAAAIBA0nxAAAAAwJHhfEAAAAAAA/F8QAAAAABzBH1AAAAAgEInfUAAAACAcTV9QAAAAIBXU31AAAAAABFlfUAAAAAAt3Z9QAAAAAAh731AAAAAgGkCfkAAAACAK4B+QAAAAIC9sn5AAAAAgFXnfkAAAAAA0PJ+QAAAAECJBn9AAAAAwGobf0AAAADAi1t/QAAAAIBrf39AAAAAQDGQf0AAAAAAA7R/QAAAAEDdx39AAAAAgGLzf0AAAADA8wKAQAAAAKDMCYBAAAAAQGwRgEAAAACA8hqAQAAAAMD8IoBAAAAA4OApgEAAAACghkGAQAAAAMCHSIBAAAAAAM9ggEAAAADgLGiAQAAAAADxcIBAAAAA4M9hgUAAAABA8aKBQAAAAGCZqoFAAAAAQJvCgUAAAABA5sqBQAAAAGCR6YFAAAAAIFEEgkAAAACACEGCQAAAACDSToJAAAAAIGxagkAAAADg2W2CQAAAACB0hIJAAAAAoKuJgkAAAABAvKKCQAAAAGDIq4JAAAAAQCCxgkAAAACgi82CQAAAACB84oJAAAAAYN4Hg0AAAAAgUU+DQAAAAEAyVYNAAAAAoFlxg0AAAABgE3mDQAAAAIAKmoNAAAAAYNijg0AAAADgNq+DQAAAAKAOu4NAAAAAICP1g0AAAADAKgSEQAAAAIBaE4RAAAAA4JgZhEAAAAAgSDqEQAAAACAxQ4RAAAAA4DZLhEAAAADg81KEQAAAAOCBioRAAAAAIOWhhEAAAACgb6iEQAAAAMDWroRAAAAAgOHShEAAAAAgyNmEQAAAACD264RAAAAA4FPzhEAAAABgZQyFQAAAAEB3EoVAAAAAIFoihUAAAABgSjKFQAAAAECzPIVAAAAAQJtChUAAAACAT1uFQAAAAGDwiYVAAAAAIOnZhUAAAAAgFvKFQAAAAODuDoZAAAAA4JM2hkAAAAAgDWOGQAAAAODqc4ZAAAAAYP6BhkAAAACghoqGQAAAAGBLzIZAAAAA4FnahkAAAAAg6uGGQAAAAKDu7YZAAAAAgNX7hkAAAAAg3gGHQAAAAAD2S4dAAAAAQCtSh0AAAACgqoiHQAAAAGCwqYdAAAAA4COxh0AAAACAscOHQAAAAADw54dAAAAAwIANiEAAAADAsSqIQAAAAKA+NIhAAAAAIKZaiEAAAABgSGGIQAAAAGDPi4hAAAAAQASziEAAAADA+riIQAAAAGD2wohAAAAAgJjIiEAAAABg2uKIQA== + NrgMGZxjYkD60UzrnGVsQBu6YmAmQ3BA - + - pvrTP5L6F0DZgk9AI6bSP6wMwT/Kz7BAw8m1QKYwsUADjCNBHGb3P3qakUAxoSpA8a91QbQ6V0CLkHxATvH4P5soZUFyFuY/zfgqQcLeDkKwGhFB5uFZQUltBUG2T0hByS7TPxgTy0DsKK1AKQr5P/8F5j+h7VVCQWIuQfGEREBadYlA91AuQZGFEkAzN8VBKosIQRdgNUA+K85AIznoQDDPjEBUNjpBTtU2QU0GB0CcksFABL+ZQD0dCEEoQmtAl4HMQJ4rAkFeKuVApDuVQAeNQEEaggJBRFJ8QB8MRkAAwhNBChTAQENiG0GLmehAVd25QZCpskC8NPZA80+gQSullUEM1sA/v6tNQdCNkUEfusA/YYIMQSmouUAUn4pAemMAQbf2mz90I99Bwp2SQIlZtkA+3xtBN0a8QXc3EEHoS9RBPreyQlQbmkBKNiJCoe+wQvANjkBULg5A6UnrQcBXD0HThTtBuWOVQLOcJ0H7vONAEFmbP8ZplUEMbqJB+qMNQZ/MC0IFhxBBf5mqQUt6NUHiQmBAhMj+QUg8JkHPcOlAI6O1QDliPUIixsA/7i1+Qdkf6UF2ZLJAH6lQQfQQFEHocqBAGoxZQZDaLEGv/ylAcKC3QMZRMkEBX8E/WFMZQaK7mUCBOMRBz5bdQRltgUIL4ItC1Wo1QaiZ20FZXnNAMhcNQlEgyUFaulBBvfAKQVM6rEBmHxBAkYZdQhcSc0BJLNpA/bMkQUObTUC6DQNBhHhPQES4FEFQCXVBiAOjQF1uA0EVR25BfVQSQccEGEAGINVAdv2hQPoxKEIxanNBBkq2QCRs6ECcaiFAINJ6Queww0BvjKdB3TzfQHPkjEDxu55BN9j2QLXU40CmXjRB3z8TQZaRH0BNhzBBtLlSQv7ep0Gf1htBIuq3QjhThUEshmFBocK9QHiE2kA20uU/DxztQEbUEkOn0eVA3IuIQIZ5fUBMNMRByfjlP/pMD0D+iqVBTH7DQYzVgEE6/g5ADuxSQktYa0AsC6NACPsxQM9TPUBZLo1AvQ09QLOfZ0EQQTtAbdibP8E8dUBBwM1B6ji6QE0rCUHCW/1AIqH/QCNgq0Ew4o1CMcJDQfivxEAEi09ANG2QQCtOj0G6STVB2xGAQJlEiEA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgO8EaEAAAACgrhdqQAAAACCiZWtAAAAAwImha0AAAAAgWMlrQAAAAGA/JGxAAAAAwFlDbEAAAADA6uVsQAAAAEDdB25AAAAAAEBdbkAAAADAviNwQAAAAIAkQnBAAAAAoBkAcUAAAAAAf0RxQAAAAGDM73FAAAAAgC1gckAAAAAgN71zQAAAAIARUHRAAAAAgLxtdEAAAAAAThZ1QAAAAMBAU3VAAAAAgFhjdUAAAABAFHF1QAAAAIDSsXVAAAAAwMLRdUAAAAAAaS92QAAAAEB7IXdAAAAAQAOud0AAAACA/DV4QAAAAECxG3lAAAAAAMk4eUAAAABARGh5QAAAAMAIk3lAAAAAgErAeUAAAADAs3V6QAAAAAChg3pAAAAAwJaiekAAAAAAIFB7QAAAAMDf0XtAAAAAAPHje0AAAACAtgl8QAAAAIAXJnxAAAAAAKXEfEAAAADAsZ99QAAAAICZrH1AAAAAQC/TfUAAAADARuJ9QAAAAABL8X1AAAAAAKUCfkAAAADAIlR+QAAAAMCAYH5AAAAAgN+wfkAAAADAm+V+QAAAAEArA39AAAAAQLsXf0AAAABAWGF/QAAAAIDacX9AAAAAwJmaf0AAAADgEAuAQAAAAOD6I4BAAAAAoKcqgEAAAABgETeAQAAAAKBJeoBAAAAA4MapgEAAAADAf7KAQAAAAKCtuoBAAAAAoHYOgUAAAACg2BOBQAAAACAAO4FAAAAAINpDgUAAAAAgW1GBQAAAAEBUVoFAAAAAINpbgkAAAABAB4qCQAAAAEBXkoJAAAAA4GGYgkAAAAAA+uiCQAAAAEC0EINAAAAAIAcYg0AAAACAGiGDQAAAAGCdoYNAAAAAIEm7g0AAAACgZdODQAAAAMD/LoRAAAAAQA7IhEAAAACAWNKEQAAAAADL24RAAAAAwEMMhUAAAAAgfWqFQAAAACCFeYVAAAAAAFz5hUAAAADA5wKGQAAAAODICoZAAAAA4OmJhkAAAAAgapCGQAAAAGCdl4ZAAAAAoOnyhkAAAADAyKOHQAAAAOAQC4hAAAAA4GtliEA= + KBZXds7jZUDAIFw1+IJuQDtMc7KVAnNAtmSyHxSyc0BdVXXjGHN4QKQisnyC4npASxN1QIejf0Dm8fx5mHmBQDaOuzgFioJA3dB8qM8RhUA2valisRKGQG7V/UARyodALZwpkeiqiUCZ/39DXQKKQL6gqikqY4xAKgQB3J66jEDpyiwsdpuOQJFxQAVrKZBAvedW4tupkEARiTcawe2RQDnXlnn3dZJAWgt45uFJk0CDx2gXI3qUQNb6t339FZVA/7aorj5GlkAfffhJHnKWQBXM6a9kYpdAaW3K50l2mECk9EelkCqZQA== - + - +rv7PxLNZEDiiNM/y250QCPD+0BoKx9B1kMFQQSciEDh+RpBmQDBP7hCDEJRfYNAVwvNQNlSqkHbV8xA0vO/QORXW0At6G1A5dxYQDiPg0B0j+1AsHIOQCdJNEGlP0VAFEOxQCPCX0CsuyhBLw2MQDcYaUCRt6ZAFaK7QR/VCUEJViFAOWBZQTZtA0LV/RdA3wyjQGkOhEBiIehA8FsJQGAXM0GBOuU/hD7fQNx4BUAgRRdBby3nQboeRUEfaoBBfaSNQUQeUEEGLjJAX77AP5v6wD94J11B2V5KQbPRREHZq7xABOliQVIUU0Gzm/0/pwmlQIKzHkCgM/g/b0C/QcM7g0IwMypANBt6QVb5g0HxUSNCPJ2MQRk8lEAACRxCTh/HQM+olEJPkjZCR5+qQEtYYEBqaiFAcV3nPx8EbEClJb9A12FQQCfmBkFtLCdB3nJmQQfmUULsTd1B5PiLQEeLEkE86GBAJhC5QE1rZUFyrt1AstugQV/pMEEONxlBduwXQJlGrEBSFqJAT4I8QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoDADakAAAABAkURqQAAAAOAzXmxAAAAAINwhcEAAAABA81RwQAAAAEARsXBAAAAAgPjjcEAAAAAA/5Z3QAAAAEDzBnhAAAAAABNYeEAAAACABUZ7QAAAAIBrxX1AAAAAgMZWfkAAAABAkgt/QAAAAOAwAYBAAAAAoI1OgEAAAAAAo+GAQAAAAKCX6YBAAAAA4KKQgUAAAACAeZ6BQAAAAOASsoFAAAAAoI7CgUAAAACgPx+CQAAAACBISoJAAAAAAFFZgkAAAADA72KCQAAAAMBuq4JAAAAAYNS7gkAAAABgovmCQAAAACAHAINAAAAAQIwcg0AAAADgC0mDQAAAAKBEfoNAAAAAoPTbg0AAAADgDPGDQAAAAODcCYRAAAAAoIlYhEAAAADA+2GEQAAAACAAloRAAAAAYIqjhEAAAACgR8yEQAAAACC5A4hA + KBZXds7jZUAYxSyCnGRqQBTpB48/A3JAjMDylKZDdEBPi4Bk7yN5QBoYP7R+VHpAp3Qu3KMagEDUt8VpqzKAQGW8RgLt6oJAnlOuCtuyg0As6OwRWfOFQGV/VBpHu4ZALBfbOwV8iUAsq/ops8OJQFkdgOFmpIxAWbGfzxTsjEAgSSbx0qyPQC3wxnxgOpBAdDpmgJ9akUAQBpqElr6RQFmI2lC3GpNA8CmmF7smk0A9nq1Y7Z6UQHBBnSwR65RAIbSAYCMjlkD/afshPbOWQKHLd3V555dAf4HyNpN3mECF4Up9r2uZQA== - + - GwvBP8m3aUCxFGpAqr2uP3+jdEBzE58/PExDQcKOBUDfJNdAfoIlQZYAMkDQ2E9AIbQ6QbXV5UBEkCFA2K+TQSRmREBYiodBSNn4P3JLIUAjVpBBHPorQGy7qUDbWKtBHg4EQYfK7EBjD2BBlBUwQaYxfEDYNEFBlXwEQeRYwD87N3tBiJKeP/npvkGjIEJBWGpeQXAhhUCSSs9AmDvRQEws6kESCWVB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAKZFX0AAAADAWShgQAAAAEB+RWBAAAAAwGrlYEAAAAAAHQRhQAAAAMCFYmJAAAAAwAaJY0AAAAAg9sNjQAAAAODV6WNAAAAAQMnHZEAAAACAH0JlQAAAAEAsaWVAAAAAIN/hZUAAAACACkZmQAAAAMBNIWdAAAAAoLJmaEAAAAAgJwtpQAAAACBQKWlAAAAAQKKFakAAAADAzKVqQAAAAABMQWtAAAAAgPRba0AAAABAc75rQAAAAGAF52tAAAAAwNj7a0AAAACgKEJsQAAAAMBFfmxAAAAAwN+gbEAAAACAWctsQAAAAMBXJG1AAAAAwOVNbUAAAADAsGptQAAAAMAEZm5AAAAAQE3kb0AAAAAgYhVwQAAAAOD1sHBAAAAAYLbEcEAAAABgGtdwQAAAAMCP83BAAAAAgEOfcUAAAABgi69xQAAAAKBUxXFAAAAAQIUBckAAAABAXWJyQAAAAOApb3JAAAAAgO3BckAAAABAt9dyQAAAAAD1F3NAAAAAoNpCc0AAAABA7VFzQAAAAEDCbHNAAAAAwJyQc0AAAADAF8FzQAAAAEBT0XNAAAAAABLzc0AAAABguhJ0QAAAAODfNHRAAAAAgKlwdEAAAADAi4d0QAAAAAB/sXRAAAAAQKbedEAAAACgSvt0QAAAAKDHE3VAAAAAIF0wdUAAAAAAJVR1QAAAAOAopHVAAAAAgMezdUAAAADAuMB1QAAAAGAB5nVAAAAAgBgUdkAAAADADyJ2QAAAAEAXNHZAAAAAgEZFdkAAAAAAH4h2QAAAAIBIoXZAAAAA4MHIdkAAAADgBeF2QAAAACB173ZAAAAAII8Dd0AAAABgCTB3QAAAAID5U3dAAAAAgBiUd0AAAADAW8N3QAAAAEBL03dAAAAAYMTod0AAAACgVPd3QAAAAEAZCnhAAAAAIIpUeEAAAADgGmJ4QAAAAMBMdXhAAAAAgACTeEAAAADgAKd4QAAAAGBv/3hAAAAAwBPAekAAAABADY97QAAAAIAF0HtAAAAAYBUzfEAAAADgbWZ8QAAAAKBIf3xAAAAAYPrjfEAAAABAyu58QAAAACDiRH5AAAAA4H54fkAAAACgHIh+QAAAAKAAo35AAAAA4Ju1fkAAAAAgy3N/QAAAAMDDfn9AAAAAIMTlf0AAAAAg5wuAQAAAAODNJIBAAAAAADlSgEAAAABAPleAQAAAAIDhdoBAAAAA4M6egEAAAAAADMSAQAAAAIDP7oBAAAAAwBb6gEAAAACA+EaBQAAAAMD9c4FAAAAAQI2DgUAAAADAGIyBQAAAAIAemoFAAAAAYA6fgUAAAAAA96OBQAAAAACj34FAAAAAwJbmgUAAAAAgTPaBQAAAAMAqG4JAAAAAYHAigkAAAAAgHmCCQAAAAADSaYJAAAAAQJangkAAAADgnqyCQAAAAIDmyoJAAAAAYINLg0AAAADgllGDQAAAAKAvXINAAAAA4Mlkg0AAAAAAzWqDQAAAAOAvt4NAAAAAoCsshEAAAABgcLOEQAAAAKDY1IRAAAAAIBSThUAAAACgoKOFQAAAAGDQG4ZAAAAAQGGLhkAAAACgOPiGQAAAAGCTIYdAAAAAwMyAh0AAAAAAjryHQAAAAKDQS4hAAAAAgNhfiEAAAAAAU6KIQA== + KBZXds7jZUD1hHOUyCJpQBTpB48/A3JAooOBwRKidEACpwfsrTN5QKLhXRVrs3tAyM8uuexxgUBwTQlleWqCQI/71MhYeoRAAVKK/boihUDzKJ/l5JKHQJJWC5b82odA9oPVsohzjEC9MGiYZquMQL2ve8L0e49AEC+ZWvmhkEAnWn4tGxqRQIwe2fEUbpJAC3BRNVGekkAMNtAGazKUQIuHSEqnYpRArpdMWqdWlkA9nq1Y7a6WQJKtH2Ld2pdAzMYLThl3mEDZwc5c876YQLDc3lVP+5lANuu+WC+/mkB9/21TRaObQJVgQy+Qh5xAH2HqpoHHnUB65KcI0ROfQDbkvHmyW59A/tDo2wmuoEAwNAbxCNCgQPBb0t8kcKFAVSzvvx7SoUAVVLuuOnKiQEe32MM5lKJAKhbjYmqUo0AIlm0bW7ijQLVXTMyCXqRA+tcfiHv+pECGiAr2oHClQKoSYvOr4qVA7BnS9JtEpkBZJ1rxyeKmQN6ku/i2BqdAfbGx7tRUp0AluWrzzOqnQG88m/LvFqhAfkSd+u8QqUBAbVkcDimpQD7QGAUb86lAAPnUJjkLqkAwWwIJNrWqQL7wdPJG8apAVJwib0Zjq0AXfKf5aResQEYnDHNhJaxAn7I+eoRLrUAJvllmil2tQMPzXuCU+a1AYkmMba0jrkDnNH9GpaeuQFTUdXHI5a5AEswVPdbLr0CySSDx5g2wQOiryKMAV7BAkUXw1u2AsED6Jz2LC9iwQHELLlwD8rBADKSxchZZsUA= - + - vN9PQMvDg0Cl309AvtMKQSCfrj9brglAMJ7ZQCKiDkDjifg/fDucPy5BWkA/Pg1AnCUJQUEefkCW4VZAqe1iQBPyN0HEiFFBumK9QAf7v0BeALpBEgMFQMx/TUA+p4JAVU1OQcL8dUDjw4JAFBf3QCtsI0HojoNA0eKaQCqzrj/MiaxALocqQJRvCUD3LrtAnmpPQPD/M0BsvZpA+InoQIG5mkAHeo1ADr3TQACrtUDYYKNAo6zfQI92WEGOgnNBNErmP10nHEEnpLBBeDQyQRcf6T/WHbQ/NlyaQE3nhUAJBXZBmpM7QGR7YEH7rJFAxkQyQZ2lBkGRfGRB08OuQR2xa0BSXYhAYveEQYwfLkEwXEhBEkA+QBODYEHZXD1AnF2PQIPFkkCpRMlAlJSCQbsIyEFp6nZBIGFrQJhomEBJis5AtzQ3QTeQfEClHvlBrgBgQEYhoUGP/jtAXzKGQajeAUKRE01BCnIeQczadEDhVJNBJrjIP8E6AkHwPrVBfY6VQDq/iEDou/U/d/U8QGDMUUCk98A/BGvUP2MnhkCHP1FBNQRHQVdJ60EacqtB9djsQEAge0FXkMRA7m4uQsTOmUGC5jNAvAWtQYOUK0AEEzlB/zRNQR6Y+EJW3Og/sBeAQQ66JkHMHnVC7g3mQLH/K0FOlQ5Dnr9RQkT+p0BJhflBi1ibP3Ew4kDt0OVAKiiaQHKr5j+ij6FB0X8aQtG8E0HXDs1A1u0KQTQsfkAySz9BdCC2QC94XEGoRbtAd+O+QLFSbUGrgN5AGrcXQFqwdECsLjVB6UCWQL7qEUH/71hAxx4QQWXLQkE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgJZ/X0AAAACAxyBgQAAAAIA1d2FAAAAAoGklYkAAAAAg34ZiQAAAAIBxwWNAAAAAQG3jZkAAAABg3URnQAAAAMAXZWdAAAAAwF2AZ0AAAACAE6RnQAAAAEAF+2hAAAAAoDMCakAAAADgqoNqQAAAAMA35WtAAAAAAPTZbEAAAAAAXcRuQAAAAKBRgXFAAAAAYBewcUAAAACAyeNxQAAAAMBh9nFAAAAAYF4TckAAAADgF2NyQAAAAIBChnJAAAAAALfAckAAAAAAxtxyQAAAACCXA3NAAAAAwNUOc0AAAAAAU1ZzQAAAAKBntHNAAAAAAJjMc0AAAABAM/NzQAAAAOBoAnRAAAAAYG6EdEAAAADgA5B0QAAAAAD8rXRAAAAAAFHxdEAAAABAAyZ1QAAAACB3SHVAAAAAgERSdUAAAACgCGJ1QAAAAAD4hXVAAAAAgLisdUAAAAAAU9t1QAAAACBhGXZAAAAAAKNGdkAAAABAZFl2QAAAAMBnbnZAAAAAAGt8dkAAAACA25V2QAAAAAD5oXZAAAAAoFHTdkAAAADgdPR2QAAAAAB0FHdAAAAAgIk1d0AAAABAh2B3QAAAACCNhHdAAAAAYPSgd0AAAACAJcR3QAAAACAI9XdAAAAA4Nl9eEAAAABghaV4QAAAAEDo1HhAAAAAoKn/eEAAAABgQkB5QAAAAKCpcXlAAAAAwFDLeUAAAADANdd9QAAAAOB8iX5AAAAAIECWfkAAAADglrV+QAAAAGAmAn9AAAAAoCFrf0AAAADgI6Z/QAAAAOBttH9AAAAAIETif0AAAACgJjyAQAAAAKAfZoBAAAAAYBx1gEAAAACglPCAQAAAAEBwToFAAAAAYHSWgUAAAAAAWReCQAAAAMDtXYJAAAAAQPNigkAAAABg+3OCQAAAAADmk4JAAAAA4I5Kg0AAAACA+1KDQAAAAIB4v4NAAAAAII8QhEAAAACgBrqEQAAAACAx2YRAAAAAgMcMhUAAAACA6EeFQAAAAICxg4VAAAAA4MD7hUAAAADA8bKGQAAAAEBaeYhA + NrgMGZxjYkBe4xb9Y+JuQFf+/uF9UnBABcaPA8rhc0B+v0ZZLGN4QAUkbFci83pA1BNLXsTTfEACQaRVPQKBQAfb4Rk6+oFAAnCSf+mKhEAHCtBD5oKFQCDBTmpBG4hABzm+bZILiUBL69BsjVOKQAdorJc+lIxA3st0qORbjkAyki6aisyOQH6OmEke9pBAysr+wW5ykUA= - + - aeJsQFL4FUG9ulFAQ5ueP1KNyEDJ7/hAST9aQOIXxkAUkpVAiaEwQay/+T/RZD9Akz2vP1hniED+1w5BkJx0QH9awT9GzxJBfDz+QMZArz9zLstApWHBP6F/+0AlNgBBTt3xQEKYKkDdDatAEaUWQddjmUADmGJAgZj/QJeXIUA02rdAeJo9QFh1w0HEj8E/ZTx1QLsEDkAhFI1BZFX5P2yAUUHnr6NAJlqdQdgeDEFDKmpBjg2bQEZKo0B4TFFBiSfyQNdy1kBXDA9A5Z4OQAFKyUB7GbNAKj8qQUCO9kA0pGpADF5mQfW0gUFYeI9Bj+I5QeP6IkDtbRlBExt1QGZXiEErWv5AFs89QTdriEA7cx5B8t7BQN6WA0Gkf45AKvEjQRsAgUE+82tAhRYbQWGmWUDFgEdB5rnEQMzDkUCuGZlBK8nmQN3H4EAPDgpChoSrQe9bhkA+f7tAEhWnQRhO5kBStqVBGiBQQIDddUBSj5NACGvwQUwOoUAeGTNA0hoPQOzwsUAi4oNA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoCMjaUAAAAAgdURrQAAAAIC3w2tAAAAAwCiEckAAAABA+pV1QAAAAMArSHZAAAAAgL2fdkAAAADAXWF4QAAAAMBfqXhAAAAAgCwSeUAAAACA6R55QAAAAEDCT3lAAAAAALvveUAAAABALtJ6QAAAAACzAntAAAAAQN6+fEAAAAAAeNB8QAAAAEDVC35AAAAAAEIufkAAAABARyV/QAAAAIALQ39AAAAAAPagf0AAAADggbiAQAAAAODEvoBAAAAAwMcpgUAAAADgH0uBQAAAAKBzbIFAAAAAIPzhgUAAAABgOQqCQAAAAKALHIJAAAAAIHScgkAAAADghqKCQAAAAKDN3IJAAAAAoP7tgkAAAACgThCDQA== + KBZXds7jZUD+9P4gH+NsQKPid1q/AnFA1c6DlSfickBqPQyU1zN3QJwpGM8/E3lAwJEQmW+ke0AqgWTuFyR/QHMpLAiP2oFA - + - nB5/QL+GuUCT+nNA2JDcQJ0eij+mRitAQ5j3QL2A6T8DVUdAaieCQOZV6T81IFBAmSJ1QMCTBEEZdXZAloO0QC4fRkF0l4o/p4kMQUZWskCuG7hBHcpGQMkWlkK8g8lBTkK1QdhDZ0G38XtAJHkZQEbvykHZ1Q9BFL/DQLsoIEHWIXFBLdPUQGBMqkE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYPfSW0AAAAAAG75cQAAAAECEzF1AAAAA4EKNXkAAAAAg5GBgQAAAAEBvqWBAAAAAIDn7YEAAAACgdqRhQAAAAIDSx2FAAAAAgLGgYkAAAAAgCcNiQAAAAOB942JAAAAAQJUAY0AAAACA5hljQAAAAMC852NAAAAAIIr8Y0AAAAAAEyRkQAAAAACwXWRAAAAAABDhZEAAAADAiP5kQAAAAADSImVAAAAAwItHZUAAAABAkcdlQAAAAAA1ZGZAAAAAgMKFZkAAAAAgwMFmQAAAAABaA2dAAAAAgCJBZ0AAAADAMGJnQAAAACDQvGdAAAAAwFoGaEAAAADgYV1oQAAAACAT4GhAAAAAwFcqaUAAAACADGNpQAAAAIC9HmpAAAAAYCJKakAAAAAg/2FqQAAAAACfxWpAAAAAgNznakAAAABgxGNrQAAAAEAbhWtAAAAAALPia0AAAADAtgZsQAAAAICNAm1AAAAAQBM6bkAAAACA5LluQAAAAIBh4W5AAAAAwI//b0AAAADARxBwQAAAAEAmInBAAAAAYO5DcEAAAADgPlVwQAAAAOCebXBAAAAAIIuDcEAAAACA/Y5wQAAAAEBYpXBAAAAAQDe1cEAAAACAE9NwQAAAAGC6B3FAAAAAAF0hcUAAAACAETlxQAAAACDIUXFAAAAAoOBecUAAAAAAVoxxQAAAAECRoXFAAAAAQHDecUAAAABgDfVxQAAAAIAeI3JAAAAAgFA9ckAAAAAAdGFyQAAAAEDbcXJAAAAAwGKFckAAAAAA1dByQAAAAGA053JAAAAAgBTxckAAAADA6/9yQAAAAODeEHNAAAAAQNwjc0AAAABAMTNzQAAAAKDRXXNAAAAAwNiDc0AAAACAs5JzQAAAAAAyonNAAAAAwIfic0AAAABA3fFzQAAAAODUAnRAAAAAQCkRdEAAAACg3Bx0QAAAAAAbVXRAAAAAwNufdEAAAAAAnq50QAAAAEAxxXRAAAAA4ATidEAAAACAR/J0QAAAAKBYA3VAAAAAYNoedUAAAACA9i51QAAAAMCaU3VAAAAAoMphdUAAAADAAZN1QAAAAOCJwXVAAAAAoBPTdUAAAAAgauV1QAAAAOBB83VAAAAAAIICdkAAAAAAtw92QAAAAAB0GXZAAAAAQJk+dkAAAABgWl52QAAAACDXcXZAAAAA4PGBdkAAAAAAZaJ2QAAAAKA4snZAAAAAICDDdkAAAACgeoF3QAAAAKB4tntAAAAAIDiXfEAAAABAWXJ9QAAAAMBpxn1AAAAAwINSfkAAAABgqZJ+QAAAAEDaOH9AAAAAwMHDf0AAAADgnGaAQAAAAKCV4oBAAAAAoI/xgEAAAACgQo+BQAAAAMC754FAAAAAYDv7gUAAAADAIQSCQAAAAGCZxINAAAAAYPvNg0AAAABg7XOEQAAAAOD+0YVA + NrgMGZxjYkDEsXzkG6NjQHJahe5LhGlA/1P1ucvDakA5Cx9LftNzQP8H1zA+c3RAOWn7ntbkekD/ZbOEloR7QFe6t4kudX5AHLdvb+4Uf0C6BTo6wwKBQA== - + - euMqQAa+CUHDldU/EwMFQJhW+j8i3NxAcIIDQWgqLkEPQ0JAPHz9QR+CREJiwCpCEb2jQMzjGEAIukhATv+5QMWeGEDgZUdAJ741QabDGUHsldFBqG8JQX34/0CHfT1AGhcZQBme5z/HdSRBDnmHQoO5PEDlMd5AFcAGQXZZU0DH2gdAa95oQKymdUAT0hJApM43QSxejUBI1D1CQJKnQJo2JkEWa3hAirNKQUhRwj953xRBjhAUQWGbX0EkMg5AKRqvQNevdUAvU0BA62XtP5qMBkC68AlBP2nuQZWQyz/OzwdAAvgsQGuE5kDONAZBujINQTEBWkCTrw9A7CMhQa4/PkGhPPlAMnQOQGUUSkF8ZShBP0MfQceXSED5nqxA3PwzQXVWK0B9kw9A0eNcQSa7+EAGWxhCD6biQLYtIUEpCKhAABxmQTbsEkLenYhA37XVPwtbl0EwxIBAznO4QO6Lh0Gqzh1B70XkQPWpjkHME2RCJDoyQlAPQEI6reVABSc+QDPOfkDEzO1ASBkjQYGSqEClZ0hB1G4iQXDUI0Fqt5pAkauGQVOUv0GoevY/A5baP1QaKkJYsytCLcUPQWn+WUDEaApBC/OiQYmlHECP9dNAUU/uQBxzTkHSXAVC2ZGAQer71z8sJJFAd+FfQRc8PEFI9jRAv+L7QGFewUAW9DNAPW2ZQ6KeB0JhZDdBDW6wQGAGiEBNFvdA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYI4gYEAAAADgFOJgQAAAAMA352FAAAAAgPFnYkAAAADAkMdiQAAAAECAaWVAAAAAQCDpZUAAAACAtgJmQAAAAMDDKGdAAAAA4PNEZ0AAAADAMaZnQAAAAMBcx2hAAAAAwLfraUAAAACAbmhqQAAAAIBcqGpAAAAAYC4Ea0AAAACAISxrQAAAAAD/p2tAAAAAQIiHbEAAAACAMMVsQAAAAID4AG1AAAAAAGRkbUAAAACAGgRuQAAAAEAgZm5AAAAAQD/dbkAAAABAXAJvQAAAAACRKG9AAAAAAP5ob0AAAABA3oVvQAAAAIAzyW9AAAAAwEjlb0AAAAAAsAVwQAAAAICyNHBAAAAA4GiicEAAAAAAlMRwQAAAAICm83BAAAAA4JQicUAAAACA/VBxQAAAAODcX3FAAAAAoO99cUAAAACA/Z9xQAAAAMBU5XFAAAAA4PQAckAAAABASRNyQAAAAAC0UnJAAAAAgCiBckAAAABApKhyQAAAAGAOtHJAAAAAQK2+ckAAAABgGOVyQAAAAEArJHNAAAAAAH0/c0AAAAAAzV9zQAAAAMA8bnNAAAAAYDd5c0AAAACgLQd0QAAAAICHFXRAAAAAwHWWdEAAAACgxq10QAAAAECb2XRAAAAAgIsDdUAAAABAiD51QAAAACAXVXVAAAAAoGOIdUAAAABgkJV1QAAAAMC7yXVAAAAAQGj+dUAAAACADCV2QAAAAKD0R3ZAAAAAoMhpdkAAAADgNaR2QAAAAKD6xHZAAAAAYILhdkAAAADgfvJ2QAAAAKAlEXdAAAAAIAY0d0AAAADAQVt3QAAAAOBGZ3dAAAAA4J6id0AAAADAMdV3QAAAAGCW93dAAAAAwEoOeEAAAACghT14QAAAACDcX3hAAAAAYDpteEAAAACgarp4QAAAAOCf13hAAAAAoG3jeEAAAACgRJR6QAAAAGAfpXpAAAAAoEUke0AAAACgKzF7QAAAAMCQ9XtAAAAAwFhXfEAAAACgXKd8QAAAAEA6x3xAAAAAIAP3fEAAAADAdyd9QAAAAKBLx31AAAAA4ItLfkAAAADgVcV+QAAAAOC3135AAAAAYLb2fkAAAABAhlV/QAAAAEBF339AAAAAoLM7gEAAAACgClqAQAAAAGDTb4BAAAAAoNWCgEAAAACgXruAQAAAAKAOw4BAAAAAoLLLgEAAAAAgu/SAQAAAAGAQC4FAAAAAIMIcgUAAAACAi0uBQAAAAEDRUIFAAAAAoCuagUAAAABgd6OBQAAAAGCcuYFAAAAAQJPfgUAAAAAAqeaBQAAAAOBiSIJAAAAAIE9Kg0AAAABg8r2DQAAAAAAQVYRAAAAAYLDjhEAAAACgHiaFQAAAAODEK4VAAAAA4NabhUAAAADgQrKFQAAAAOCHLoZAAAAAwLJMhkAAAAAgplyGQAAAAGDinIZA + KBZXds7jZUCRGlyHeVJxQANJK5hVInJAf9hb5OeCeEADpwfsrTN5QA== - + - CKf8QOsF+ECx4J9Acp0GQEYoCEBydUxBd1efQW4Lq0A3l9U/wL/9PzwEjUBga55A7onlPz4p6D89tZpAeQwHQZK+c0DwaXdA/torQFrl+j+tEOg/8QuEQNYcn0DGkdU/X4i+QDM1UkAEt89Ar5WoQGiXLEEQqplAr3AaQYwl7kCKbzNAp9OEQExLT0AofZxBRxEtQChiR0AGhD1BAZW2QEwLyz+Pdv0/jZnnQSldBkBpOxlA240HQSTs6UA5qJhAt3YcQXjI4kC8yllApD1pQOz5j0F9ZTBBSoVwQHEZWED3ArVBwcb7QDSTh0Eph+VA4bejQJccoUFhNTZBF/pZQLaKI0GR3yJB9JMFQSmwQkGGfp1APo+xQPPvfkJz8aRBC3itQbnStEA2TWpBw6o4QEwBekGmyxdA3ERGQAY4FkH9ihNCTTVlQf+zo0F4HxxCu/W4QomzUEBZ1QRBrwRjQOKbBkBBlCJArrPVP1yTmkDQ8A9AG5LCPww/OUD4M59A2tGIQFQhP0H0wahASrKIQPrP0UA4FDVARhhTQFw9xkCIvSBBno4PQDeqs0BqVh5BldiCQe6So0HVt+1ACcPtQEybPUHitshABjyEQI6XYUJ4pkNBwW9PQcOtpEAdog9A3XlMQi9trEFkHyJAHzkQQUJpVkEuEXRAvgCtQBOOb0A1S9tAWRzrQJQDwz/X7p9Anap3QGq0d0AvTV9B + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAF0gakAAAADACONwQAAAAMA2VnFAAAAAIK+CcUAAAAAAOpVxQAAAAABcv3FAAAAAAC8CckAAAACA8hB0QAAAAIDbTnRAAAAAgHaRdEAAAACAnMZ0QAAAAIB3AnVAAAAAgC9Bd0AAAACAInR3QAAAAMC2fndAAAAAAAmed0AAAADA3MR3QAAAAECEwHhAAAAAgJrSeEAAAADA0l55QAAAAAD77nlAAAAAANaiekAAAAAAZ7F6QAAAAICG4npAAAAAADM0e0AAAABAi7J7QAAAAEBUlnxAAAAAAPy0fEAAAAAAf1N9QAAAAECheH1AAAAAAF70fUAAAACA55J+QAAAAECp8X5AAAAAgJsCf0AAAABA6g5/QAAAAIBciH9AAAAAwHa3f0AAAAAAKQqAQAAAAKBcKoBAAAAAgOlZgEAAAABAgneAQAAAACCmiYBAAAAAYAG8gEAAAACA60yBQAAAACCXeIFAAAAA4JaYgUAAAABgthqDQAAAAKBcWoNAAAAA4GKGg0AAAADgiqODQAAAAOCeKoRAAAAA4FsyhEAAAABgxuaEQAAAAOD09YRAAAAAwJwVhUAAAADgMCWFQAAAACAuL4VAAAAAoIQ1hUAAAADgoFKFQAAAACDu2IVAAAAAoDwyhkAAAACg5WGGQAAAAMA5a4ZAAAAAoNTChkAAAAAACM2GQAAAACAC+YdAAAAAIBpjiEA= + NrgMGZxjYkD60UzrnGVsQEMdzoN8QnFAcQ5nZb4zdkCUHdwiorJ3QHFsQ7kWRX1ACMOcEpKzf0DMlkWY4qqCQOeOGCZV8oJAFJW9y7YahkC8EEsHhXuIQM7nncMuG4pAvD85MTEEjEAyFWjgujONQDvJjJRUApBA9jMkbBmakEDt3/Gimo6RQHZLG4FvXpJASgnintaOk0BhjLRxByOVQG4InrjARpVAE6MZgE2vlkC4+G9W7EqXQHDMCXyJr5hAOBBna0IPmUCETM3jkkuaQJU5V2d+D5tAzjyfgb5PnEAVUU581NOcQA== - + - u4vTQLGnK0D4ZQVABBCAQIothECVnjxApqdqQMc/n0COjiJAc609QE+wbEAdFSZBRuQEQVYYSUCr1CFAN8GFQWQpJUETxjBByK0eQS2+BkAOYmNAmJzpP83jiECAkAZAwIbiQPhEHEFL0K9A0/K3QHHcUEGqOtlAYjssQIyE+j+l4ixApRibQCJaY0AJeK5AYjTiQG6df0D9ImpCVPe4QJR+JkFvNA1BYrHdQU1fsD/YnExBvh4ZQOSilkDxDLNB8DQyQR77REJwOKRBzkjfQAQOG0HcOwdBlFGJQQy7nUHQxsxCSOdGQZu7IkHD+1xBjZUcQdJStUEq1Z9BChcWQTby2ECq1dFAbCUAQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgDFKW0AAAABgFINbQAAAAABD0ltAAAAAIHH7XUAAAABAYVNeQAAAAKDpE19AAAAA4Bh/X0AAAAAAMyRgQAAAAEDCp2BAAAAAgLumYUAAAABguGNiQAAAAABIf2JAAAAAgFylYkAAAACAOsFiQAAAACBEKGNAAAAAQEJmY0AAAABAh6VjQAAAACC142NAAAAAQHFbZEAAAADA6YFkQAAAAABSo2RAAAAAwPzHZEAAAACAy0FlQAAAAADWbGVAAAAAwLSCZUAAAAAAgqFlQAAAAMBA6mVAAAAAAKIBZkAAAADAV0dmQAAAAKCC5mZAAAAAgPcEZ0AAAABAtodnQAAAAIASy2dAAAAA4BnhZ0AAAACAdB1oQAAAAIB7p2hAAAAAQBolaUAAAABAqEFpQAAAAIBHhmlAAAAAgE/maUAAAABgi0RqQAAAAABp5GpAAAAAIH4Ma0AAAAAg1jNrQAAAAEADmmtAAAAAwIDDa0AAAAAABOtrQAAAAICBAmxAAAAAAMsubEAAAAAANkhsQAAAAEBbpWxAAAAAwC/fbEAAAABAyjttQAAAAEBKfG1AAAAAAPQDbkAAAACA54duQAAAAID7A29AAAAAgAwrb0AAAACAykBvQAAAAAADX29AAAAAgC9zb0AAAAAAwIxvQAAAAICwuW9AAAAAYMglcEAAAACgxE9wQAAAAICnaHBAAAAAAMaIcEAAAAAABp9wQAAAAEAzwnBAAAAAQBHScEAAAABgMORwQAAAAGBxK3FAAAAAgDNDcUAAAACAT2BxQAAAACA0b3FAAAAAAFh+cUAAAABg1I9xQAAAAEAJnXFAAAAAwE7DcUAAAADAH/NxQAAAAMDeAnJAAAAAwLwRckAAAACg5CpyQAAAAMBSQ3JAAAAAwB90ckAAAABAKYVyQAAAAEAkrHJAAAAAALPSckAAAABg/NxyQAAAAMAm/3JAAAAAwHYTc0AAAADg4yFzQAAAAACmMnNAAAAAQLFBc0AAAACAyFJzQAAAAMC0YnNAAAAAIGhwc0AAAACg935zQAAAAOC/tHNAAAAAgIgOdEAAAACgKCB0QAAAAODjLnRAAAAAYBg6dEAAAADgklp0QAAAAICRcnRAAAAAwEWCdEAAAACAzJR0QAAAAEC+n3RAAAAAwEXCdEAAAADAPdR0QAAAAADh4XRAAAAA4LD3dEAAAABg6wx1QAAAAEDSKHVAAAAAQBw9dUAAAABASWp1QAAAAKC34HVAAAAAoIRyd0AAAABgy5Z3QAAAAKDMoHdAAAAAIL7Nd0AAAADg12F4QAAAAKCqi3hAAAAAQATxeEAAAACgMPt4QAAAAOAnE3lAAAAAANEoeUAAAABAAmZ5QAAAAKDicnlAAAAAILGWeUAAAAAgP/B5QAAAAODkFHpAAAAAYLmOekAAAAAgxdV6QAAAAMB793pAAAAAQDgke0AAAADgr6l7QAAAAGAk8ntAAAAAQCmkfEAAAADAUhx9QAAAACC0Zn1AAAAAQFWzfUAAAABAaMp9QAAAAECC+31AAAAA4DhkfkAAAADgnXJ+QAAAAEBDhn5AAAAAQPbSfkAAAABgzeJ+QAAAAKClZX9AAAAAYDeFf0AAAABAw5Z/QAAAAMDrIoBAAAAAoGiRgEAAAADAXdmAQAAAAGBM3oBAAAAAgKBcgUAAAABATvuBQAAAACAry4JAAAAAIPnsgkAAAABg9zKDQAAAAGBQC4RAAAAA4CxFhEAAAACgBtOGQAAAAAAj24ZA + NrgMGZxjYkA= - + - SZ9+QPrHukBLeiVBFBVSQKZrF0Dga5tAR5vUQNR1TEH0Q8M/Me98QGd6ZkFWatU/5QZ3Qcm8fUCDwT1A1pAPQHJACEAt8j1AB62dQWLbx0AaCxNCRLKEQNS5tEBWmfxALDw/QIzo50Bj9llAvriDQFVdR0CoBsxAQb11QBKMdUFvSZ1B6uMeQEdHwz86qfFAPjMtQS6X1D8AQVJBudvnP6XQg0E4UrM/XDuYQDqPqUGBHptAnkWWQAKxNkCaz3tAapzlQeRTDEHnUr1ANACPQV7IOkEydiZB4aNWQA8YMEFxj1lBYTD7P41MY0CdIelASd8qQ5zHbUFRL5FAfY8rQJbO3kA4cItBrNtCQqbkQ0G5gytAmPyeQIH3M0H6uOhAmiFTQXAWDkJMqYFBTtOfQbVQt0H25EpBadQxQVuPo0PoQtlC/NgGQYUUbEH5+BVC7jiqQe7Gu0DznsFAYtnYQhf3NkDyOEpBz2nVQbTMIEF6uuBBWaeGQlJcM0JstKBAk4prQBqfvkA89zlBUHSNQHoHmkJ8uslB9mjIQOB1gEEfi6ZEwrVpQRAafUEkmtU/LWS9QfKguUGEfg5ChNpBQe7M/UCe2YJBxXJBQrF3j0Fx5/1AQNGxQm/dD0Dr+w1BsqQrQI/jA0Gp0ONA0lIBQWGLlkDoTOVBZuKHQHOR+0DCxopBfUwHQV3O3UAKERtBui/gQI05+ED2NxFBr745QR9GoED96CpBZSePQFi1aEHMZ8BAFUEGQTiZ+j8pz/hBAzMOQxbmN0G93rpACtvpQTPedUEyHAtBS+mIQ/vafkBGP9dA0vXPQheZCkJsHoZA59o+QQKZ8EIccvBBEPgYQHOinkBZy7BAd1FKQMLWhEEWheNA + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAEl8ZkAAAABAxWtoQAAAAMDR3mlAAAAAAOgFakAAAABAfp9rQAAAAMDRJWxAAAAAQJyBbEAAAADAi8puQAAAAIBkQnFAAAAAQJKUcUAAAABALWJyQAAAAIC/K3ZAAAAAgBBxdkAAAADAXf52QAAAAIAYMHdAAAAAwA9Ed0AAAAAAhnB3QAAAAIBohHdAAAAAQL6Sd0AAAACAxj94QAAAAIB0SXhAAAAAgDL1eEAAAAAAJyJ5QAAAAICYO3lAAAAAQFpveUAAAABALI15QAAAAEDRsnlAAAAAwMDQeUAAAABAl+B5QAAAAAC+E3pAAAAAwHZiekAAAADAppl6QAAAAEAz1HpAAAAAAKOye0AAAACASs97QAAAAACRFXxAAAAAgM3hfEAAAABAPxV9QAAAAECicH1AAAAAwBoZfkAAAACAaj9+QAAAAIBjtH5AAAAAAFHCfkAAAABA/s1+QAAAAAA9MH9AAAAAgCqAf0AAAADAsKF/QAAAAMAa039AAAAAwOXhf0AAAADAOfh/QAAAAABbNYBAAAAA4B9DgEAAAACga3GAQAAAACCGdoBAAAAAgAdggUAAAACgTvuBQAAAAKA0O4JAAAAAIMxrgkAAAADgRO6CQAAAAMDSCoRAAAAAYEz8hEAAAACApSyFQAAAAMC1RoVAAAAAoLGEhUAAAADgPo2FQAAAAGCpTIZAAAAAgH6yhkAAAACglNCGQAAAAED5+4ZAAAAA4Nq6iEA= + 4jyZjTbDXEA2uAwZnGNiQHJahe5LhGlA - + - 3z1LQM4csD9C2jRBmLa4QaFMg0AQvadC9pajQBUy8D9cxD5B7mE8QGvdrECzErM/zDxbQC7sGECB6SZAuwTDP6apMEEdzr9A7NlRQOQDu0BvAZJBiSIRQHQY+j8wjRRBhdWQQAqvgECEd7BABhTnPwFOM0A9CdJBG9QHQC0AlkDn8MI/9XT6P0oQu0CXFy5ByuwYQIU/tEBtzfk/Ax/GQEG14UBzt7dBzbhjQQKHsUD6xlpBPU0iQL9U2kCXtec/gnkxQTF9g0HdT+xACpRKQdR2GkLU4NRBAKoEQRIiJ0JGnNU/peobQTZsUED3oFBAvIkLQTEPDkFzdIpBhSweQm0hN0Gg/RRB43AOQQLF3EGxvK5AzdMMQQ== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - - - - - - - - - - - - - - - AAAAwCXjZEAAAAAAR55pQAAAAGD3eWpAAAAAIGCla0AAAAAgKmdsQAAAAOD8yG1AAAAAQGFrbkAAAABADqpuQAAAACD5425AAAAAABL8bkAAAADAHwZwQAAAAGDjMXBAAAAAwGyicEAAAADAVOJwQAAAAEDiMXFAAAAA4HWucUAAAAAAVmFyQAAAAIC/j3JAAAAAgCOmckAAAADg/4BzQAAAAIC/4HNAAAAAwB9BdEAAAABA42F2QAAAAAAz0ndAAAAAAAx9eEAAAACACJJ4QAAAAMATQ3lAAAAAgFcvekAAAAAAoJN6QAAAAIDUtHpAAAAAQO6AfEAAAADA1qR8QAAAAIBd4XxAAAAAwN79fEAAAADAWHF9QAAAAMBUhn1AAAAAAPCRfUAAAACAdq59QAAAAMAauX1AAAAAQMAhfkAAAADAz3d+QAAAAEBzo35AAAAAgCnTfkAAAABANS5/QAAAAEBEO39AAAAAwHGUf0AAAADAJbR/QAAAAGA4CoBAAAAAYMgPgEAAAAAAzUKAQAAAAMAhjIBAAAAAQMyugEAAAAAAhduAQAAAAGDS5YBAAAAAoGQAgUAAAABAF0WCQAAAAKApS4JAAAAAoCKKgkAAAACg2KyDQAAAAIBZ2INAAAAAgOdxhEAAAADgrH6EQAAAAGB0xoRAAAAAoHXNhEAAAAAANOuFQAAAAACVDIZAAAAAQF8zhkAAAAAALVSGQAAAAIBrWoZAAAAAwIBxhkAAAADA4nmGQAAAAEDLA4dAAAAAIDcSh0AAAACgJWqHQAAAAGDehYdAAAAAYGa0h0AAAACAV3GIQAAAAGArqYhA - - - - - - 4KLXQCjqYUAUfiJAvRjDP0yTlkB7BRhA15WwP/KrZEBBjIs/v9GHQGoMxEDXECFA8mnCQHoPUkAvwc1AaJDfQISXoEGMgatAyLlZQE+U5ECmSBBBqt0PQIvNfUDlcaFADcjkQIETBUCRu79A7PE8QGmD8kDtvh9BBNTCPxhD7kAG0vw/esvLQUxQVEDzVkdA8eijQFC22ED0IjZAE4XNQGnO7EAM4J5BK9yjQEDfB0EiHulAquY3QWxcpkGO4hlBy7GIQNr3qkDrVMBAdIwdQTQniECOoV9Cv2YQQaMTpEEs3Z5Afp7nQGQsBkI+Pfo/3lE+QGo0tUBUDu9CAzTSQKFdkUDpWyRCzpktQFA9CUNzEoRB/oZmQQaZK0AVNZFAdyuRQAvqP0FEYo1ANaQ8QW568kBGgTdB - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - + - + - AAAAwGRDakAAAABAgyFtQAAAAEC7lnBAAAAAABsDcUAAAADg01VxQAAAACDGg3JAAAAA4MaCc0AAAACATaNzQAAAAIAV4XNAAAAAADo2dEAAAAAATIR0QAAAAIBosnRAAAAAgNsMdUAAAADAuCV1QAAAAADnsnVAAAAAQEiBd0AAAABAJqN3QAAAAECmxHdAAAAAAFjid0AAAACAH3V4QAAAAAByEHlAAAAAAIvEeUAAAAAAv+B5QAAAAICwF3pAAAAAACiGekAAAABAh2N7QAAAAEB2cntAAAAAwJSje0AAAADAJu97QAAAAMAwKnxAAAAAwMgUfUAAAACAW5F9QAAAAEBnAn9AAAAA4FVEgEAAAACAZVCAQAAAACCsh4BAAAAAIM6XgEAAAAAgB6CAQAAAACAo4oBAAAAAYGHrgEAAAAAAxhKBQAAAACBPaoFAAAAAgHzagUAAAADAYeWBQAAAACBn+oFAAAAAIK4pgkAAAADgzzOCQAAAAICeaIJAAAAAYB5wgkAAAAAg63uCQAAAAKAIrYJAAAAAoCjugkAAAAAgsAKDQAAAAABIKYNAAAAAgNE4g0AAAABgZz6DQAAAAABVS4NAAAAA4MZSg0AAAAAAcFuDQAAAAMAa24RAAAAAoPY4hUAAAABAdTSGQAAAAGD3y4ZAAAAAwMJMh0AAAACgZlWHQAAAAEBkkYdAAAAAoNnLh0AAAACA5PiHQAAAAACqJIhA + NrgMGZxjYkDLTtTzp4RsQBu6YmAmQ3BA9H42GSxTdEBxDmdlvrN0QI9fI1AWRHhAgtaCOARkekCxaCWBmbR9QG5x5sFjWoBAhbo3Zq4CgkCZm2jEr5KCQBTjlVvayoNAYMcO1BubhUDbDjxrRtOGQO/vbMlHY4dABjm+bZILiUAc9hFvqYuKQDM/YxP0M4xArfqSB+tDjUA8I/H8FgyPQPpqCSNgPI9AtKa5fzGikEBhy1cZZiKRQDS+sJSHZpJA5dQVo82Sk0A= - + - QEM+QMLnTkBaSlpAahI9QDo1KkCSZEpBWvZQQA/NkUEDYhFADhXoP3/3NED3VvlA+r7xQDqfbEB85FBAGKCeQKkDu0Al0g9ARkrpQLR/QELN15pAvmfzQBay7UAEh1hAKiV0QBNYb0Dpsc1A1bReQcOHBkD694RAriLpQBjSr0Ax1lhACWlTQdKlPkC1aNU/jl0iQHVwPkDMUmxBrlHDPzC52kF+8cFANcWZQHtnxEFuHAZAgdzVQHFfIkBrb35Bbr7VP3i+I0AgT7dBd8YjQYEAEEDW0VFAnMoDQSkvUEBeOkpD6mgJQgtL+EDZxZJA2+SaQNo3FUEuaJxAztFrQaSbcj/7FKVA3y/+QN4khEDQJ/0/ + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIJzJZUAAAABAotxoQAAAAOATXWlAAAAAgC4oa0AAAACAoOhrQAAAAGCOe2xAAAAAgCuDbUAAAAAgZetuQAAAAMD9ZHBAAAAAoCrUcEAAAACAxe9wQAAAAADgMHFAAAAAwPhUdUAAAACANnR1QAAAAEDIMnZAAAAAgPVgdkAAAAAAT/J2QAAAAIA2UHdAAAAAQIsQeEAAAACAaHJ4QAAAAABIMnlAAAAAQEPFeUAAAADAwWZ6QAAAAIAGc3tAAAAAQCkFfEAAAADAkDN8QAAAAAD5QH1AAAAAwOLofUAAAABAuGN+QAAAAMCTbX5AAAAAYF4YgUAAAADg1FCBQAAAACDM24FAAAAAwCnpgUAAAACAJbuCQAAAAIDK7IJAAAAAgFlKg0AAAAAgDFSDQAAAAMDy4INAAAAAoHhfhEAAAADgSmuEQAAAAOAu44RAAAAAYGPThUAAAAAAj5aGQAAAAGDQLYhAAAAAIHU6iEAAAAAgcZWIQA== + KBZXds7jZUBcG3g88iJnQGS4z0t+BG1Al73wEaJDbkDBMzRFF5N0QA== - + - yGO3P2AvNUC6RqlA91vDP+QmWUFvu09AF8+LP3iYlkDk8O1AOmX6P3Z520DQ76BAmPSqQFYIGUDpYLdALD0CQq5lL0G5tLE/4OxZQFb++UFS5o9AEFBBQVmklEBLt/k/XANwQIspzUCsHoBAvEw6QDt1BEHnDX5B0W6/QH7VD0CqxWxBPyfoP+ed2kGy9GxBOIvQQPFGlkC1/RhAPiQzQa4pWkAdJatAbkPEQSCNLUDWISpBy7STQPnjYkA= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYJ0nZUAAAAAAFeNpQAAAAADhPmpAAAAAwGjkakAAAABABWNsQAAAAICkvW5AAAAAAEQFb0AAAABA1zJwQAAAAIAdonBAAAAAwB3hcEAAAABAR+NxQAAAAIDtYXJAAAAAANlxckAAAAAAsuFzQAAAAIDvp3RAAAAAgEwFdUAAAADADJJ1QAAAAIA3L3ZAAAAAAC4Wd0AAAAAAIoN4QAAAAACEVnlAAAAAgCBxeUAAAACA65d5QAAAAMD64nlAAAAAQActekAAAACALo16QAAAAIAiBXtAAAAAgCgle0AAAAAAQ8Z7QAAAAEDk4XtAAAAAQLUUfEAAAACACmJ8QAAAAMDyxHxAAAAAQHYSfUAAAAAA1DJ9QAAAAAAchn1AAAAAQHGefUAAAAAAq+V9QAAAAIBkBX5AAAAAwA0nfkAAAABAi4F+QAAAAIA7on5AAAAAQOzBfkAAAACAMtV+QAAAAEA+IX9AAAAAwCNKf0AAAABAqVV/QAAAAECPtX9AAAAAAFvjf0AAAACgSD6AQAAAAOB7boBAAAAAoNiwgEAAAABA3sGAQAAAACAxzoBAAAAAYI3pgEAAAAAg6/qAQAAAACBmioJAAAAA4GQag0AAAABAiVGDQAAAACA2coNAAAAAYMn+g0AAAACgL0uEQAAAACAZj4RAAAAA4OGVhEAAAADgxqSEQAAAAGCOB4VAAAAAoGyPhUAAAACgiaGFQAAAAKAR1oVAAAAAgOABhkAAAADAqg+GQAAAAICiG4ZAAAAAYGQjhkAAAACgViuGQAAAAGBIMYZAAAAAgFU2hkAAAAAgy2OGQAAAAMBLcoZAAAAAwI5lh0AAAAAg0rWHQAAAAMDqI4hAAAAAgFI7iEAAAADAaUKIQAAAAKDHVIhAAAAA4PVdiEAAAABggbGIQAAAACBE2YhA + NrgMGZxjYkA= - + - 7Nc3QPTY+j9lIDNA+EQiQEgBNUAlXalAidErQGXgiEBHGXhBBRzSQCBZWEB9MDJCmECWQCIk10Cv6DhAKFEAQSIUbECSd59Aoz3nP+Jd1j/+1FZBkRNaQHK3M0DNmdU/GiuIQEcMikCKnTBBtcSIQE4WhECZlfg/hKkEQRyJsUDmjxVBZ7egP2Dxl0DwDQdBXMx4QQAh5UBO9Q9ApIvyQXmAAEFQCBlAr2ZhQUc950CFnCNAWSPAQfz4DUFalaBAkmgrQEUnHEGKmAJBXJOkQFcJIUEn3/1BwicjQa5Bh0FrZZ0/c8iVQIjcBEEc7KJBpSeWQWxn0UDnWQ9DLCsyQSkXtEBV0A9AURamQOT/J0FwaJ1BxJNGQmRE2EBG/uZD2/86QRr91EDE/ENBG9hYQKSApEBoSz1A4vSnQHAa6EC/d+g/WV8FQkROkUEHfwZBC/8BQeIxGkHz4GpB + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoF2nY0AAAADAHoBnQAAAAIC2YWlAAAAA4FPkaUAAAADAsgNqQAAAAIChSmpAAAAAoFFiakAAAACgj6JrQAAAAEDhQ25AAAAAQC+jcEAAAACAK/pwQAAAAACIV3FAAAAAgL2CcUAAAABgtIpyQAAAAAA88XJAAAAAgDODc0AAAACAZKNzQAAAAIB543NAAAAAwFEUdEAAAADAcQJ1QAAAAICtknVAAAAAwCqidUAAAABAzbx1QAAAAEBxgnZAAAAAgO/fdkAAAAAA8fV2QAAAAIDoEHdAAAAAwNW6d0AAAADAMpV4QAAAAAC6wnhAAAAAQCjXeEAAAABADeJ4QAAAAICHH3lAAAAAwM5EeUAAAAAAclx5QAAAAIBStHlAAAAAgGPueUAAAABAGyR6QAAAAMC3znpAAAAAgA8ue0AAAABAh0F7QAAAAMDQjXtAAAAAwHyXe0AAAABA6qF7QAAAAEDiv3tAAAAAgNr/e0AAAABAeC18QAAAAICzanxAAAAAgL2dfEAAAADAwMx8QAAAAMAV9XxAAAAAwDwsfUAAAACAojh9QAAAAIADcn1AAAAAQMC6fUAAAADAZcV9QAAAAEAj031AAAAAgNv9fUAAAABAOu1+QAAAAMA8CH9AAAAAAJIAgEAAAABAXhOAQAAAAGDcN4BAAAAAYApcgEAAAAAgoHqAQAAAAGAeNYFAAAAAAMqagUAAAADg7aqBQAAAAACSvYFAAAAAIFvEgUAAAAAgt82BQAAAAIBA24FAAAAAAJhAgkAAAACARWmCQAAAAGDGhYJAAAAAoIOkgkAAAACgjKuCQAAAAGDUy4JAAAAAIMsKg0AAAACgTU+DQAAAAMCea4NAAAAAICGig0AAAADAlKiDQAAAAKCN8INAAAAAgKMjhEAAAACgsimEQAAAAABpd4RAAAAAICW6hEAAAABgdzCFQAAAAKB2N4VAAAAAoFixhUAAAACAFLuFQAAAAGAO94VAAAAAoJkFhkAAAACg4jOGQAAAAABoY4ZAAAAAYKSGhkAAAAAgE+KGQAAAAEBv8oZAAAAA4MYph0AAAACgC32HQAAAACCpyYdAAAAA4NP9h0AAAAAgFjOIQAAAAODX04hA + NrgMGZxjYkD60UzrnGVsQHzKEHuiRG1AU72qemajckCUuYxC6RJzQLEKSS1Bo3ZAdcasq+kTeEDLGrGwgYR8QNjLkKTvs35AZbxGAu3KgUCmuCjKb1qDQPbAx5oug4RA6nshceiih0CCPPEW8YOIQLGnx4BUq4pASWiXJl2Mi0Cx1rWqADSOQEmXhVAJFY9APAEuXTaekECI4RWwug6RQAK/QpuXnpJAKkOSA/cyk0BLQYNnuPqTQIdsgv8yM5VAy1h6fA6/lUDhbbt9NNuWQNFcVJ1eN5dAGHEDmHQbmEAq8PtJVTeYQC6GRJmaN5lAPwU9S3tTmUB3CIVlu5OaQL8cNGDRF5tA - + - atsEQauEUECwtW5B7yi2QEWlRUA2ZLlBJHYRQXhBM0ER2RhAc+S6QClEqEApxJVAG0g+QFkDOEFxwP5AmUDVP9lzNEBsHgBAiBGqQM7QyEDYtndAyCnGQIZLMEGHjNpAHeCNQI9kk0FDi3VAqIFRQdoYZUDdgUpBpO1zQPXec0C0dGtBrl0GQJ2AHkHECxpCKWqRQAUJF0GFUo5AkrYAQns+SEAfSPo/8BOvQSPwc0C2rhFBNzPAQEfPp0BgAaVBc2ceQXujPUBGRiJAo8WUQdlyGUEICRFBvTX2QAfRrkBH5YdAahe7QAk5bUBFMU9A7ilyQGj6RkAgEJhBMSuuQP8dm0AE0jxAo/WAQZBpg0DISsRAiD08QmhIYUDH1ohADNsNQlkiEEHwXC1BEUHzQFJkVUE/3JRA5EReQZqJc0IThlhAeyD1Qbk/FEJEKmNA4M1IQbmp1UBw805BeaSAQMuGrkLIBfBAS/bBQIXUqUCQt11B0fb7QD2a8kDtios/WI3WQWWLiz9NvY9ApOj/Qb28rEAw0chA9v5ZQAsnyEEiDHRA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoF4qa0AAAADg8GFwQAAAAMB/g3FAAAAAACWTcUAAAABAXfJxQAAAAMDABXNAAAAAQKJ3dEAAAAAACM51QAAAAED+T3ZAAAAAQCR1dkAAAAAAQLB2QAAAAMDUYXdAAAAAgIC/d0AAAACAOyB4QAAAAABYcXhAAAAAgCrSeEAAAACAxTB5QAAAAAAV03lAAAAAQFSBe0AAAAAAAqZ7QAAAAEAGJHxAAAAAADSkfEAAAACAGiJ9QAAAAADoVX1AAAAAQPvWfkAAAABA3yZ/QAAAAMAHZ39AAAAAwGJ8f0AAAACAuriAQAAAAMAo2oBAAAAAgFQBgUAAAADACQ2BQAAAACAJW4FAAAAAYC1ogUAAAACgjnyBQAAAAOChiYFAAAAA4KOigUAAAADAgbOBQAAAAGDP74FAAAAAIHAcgkAAAACghiiCQAAAAKDXLoJAAAAAYOdfgkAAAABgVWeCQAAAAIDlpoJAAAAAoHOxgkAAAADANsKCQAAAAODY0YJAAAAA4JbwgkAAAABg3/eCQAAAAEAnBYNAAAAAQBkQg0AAAADgxSGDQAAAAAAJKYNAAAAAgLk7g0AAAADgGkuDQAAAAAAXU4NAAAAAYBhKh0AAAAAgLWuHQAAAAOCSzYdA + eg5Y0/EhYkAoFld2zuNlQJe98BGiQ25AN5QtbGpicEDuZ/o5VJJ0QMXreYtCc3ZA4zw2dpoDekA= - + - 9AHoP4CFUEA1tgtBDO0qQOFI2D/+1jRAsnD6P3QktUBIL/o/OHqJQPetwz/qwd1A/awFQGTbYkDjIsVAz0ISQSXH30BxOiZBixxHQBdVN0E4M9U/FuIpQfPR+T9h+TxBDQrWP470tkA7JFlAYwQRQaWNsD+yiYFAptxAQRYmdUBfRy5BbPvEQeTxjkDHcdJA9ib6P0TCQUEn6adBCpOxQLjmvUG/ag5AGMaZQeCnD0CpKsBAHpy6QM1MoUEhVCpBRnz6QHlyokDihXVBHB/wQDllgEGcWL9AYK7jQN/AnkJKqJJBgTsgQWWL10By9o5B + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAYIgqZkAAAAAAOsJmQAAAAAAeo2hAAAAAACDEa0AAAACAhC5sQAAAAIAER2xAAAAAALZobEAAAAAAnAluQAAAACDhZG5AAAAAAH8jcEAAAAAgLjRwQAAAAACNYHBAAAAAYM5ucEAAAABAisNwQAAAAMA0RHFAAAAAgDyycUAAAABAPOFxQAAAAIDDZHJAAAAAwFN1ckAAAAAAdsFyQAAAAAC84XJAAAAAgOXAc0AAAADA99BzQAAAAEC4InRAAAAAAJK9dEAAAABA7u90QAAAAMBQI3VAAAAAALQxdUAAAADAjEB1QAAAAABwsXVAAAAAwGm+dUAAAACAkiN2QAAAAIBxr3dAAAAAgIvzd0AAAADANjh4QAAAAEAscnhAAAAAAOCBeEAAAADA3cJ4QAAAAMAJ9XhAAAAAgI9VeUAAAADAm195QAAAAAAek3lAAAAAAISieUAAAACAm695QAAAAICv5XlAAAAAQPACekAAAACAcRZ6QAAAAMBGK3pAAAAAANZ0ekAAAACAyoZ6QAAAAIDirXpAAAAAADrCekAAAADAqeB6QAAAAABqJHtAAAAAgNMye0AAAADA1F17QAAAAAArx3tAAAAAwHbTe0AAAACAHDN8QAAAAEBTQnxAAAAAQLlwfEAAAAAAnJh8QAAAAIAN1nxAAAAAgLUbfUAAAADAWmB9QAAAAIBAe31AAAAAgJ2/fUAAAABAqAR+QAAAAABWTX5AAAAAwOZofkAAAABAwrx+QAAAAIABF39AAAAAwKd0f0AAAADAaJt/QAAAAIA+5X9AAAAAgNEbgEAAAACgLiOAQAAAAIBAQYBAAAAA4KJHgEAAAACgP2qAQAAAACB1b4BAAAAAQHd1gEAAAAAgpYWAQAAAAAD6jIBAAAAA4L+ggEAAAADgxaiAQAAAAKDGrYBAAAAAAHezgEAAAABgzrqAQAAAAECHuYFAAAAAoHTegUAAAAAAJluCQAAAAMBRmYJAAAAAoIPOgkAAAABgohSDQAAAAOD/aoNAAAAAIN3Dg0AAAABgFtyDQAAAAOCA9oNAAAAAYDYbhEAAAACAnkKEQAAAAMDaSoRAAAAAQERohEAAAACgRKyEQAAAAOBzyIRAAAAAoCjShEAAAACAmtqEQAAAAKDn4oRAAAAAoAjxhEAAAAAgi/mEQAAAAKC8BYVAAAAAgP53hUAAAADg4ICFQAAAACA5ioVAAAAAQJDZhUAAAACAgf6FQAAAAKBsCIZAAAAAYD81hkAAAACgIGyGQAAAAMBDioZAAAAA4GKRhkAAAADgRe+GQAAAAGC8+IZAAAAAICuih0AAAADgiOiHQAAAACD/M4hAAAAAYFF7iEAAAABgGa+IQAAAAGD5uYhA - - - - - - YSjnP3a9q0A/UJFAbNynQJ5sIEG4+xhBbox+QBOtRkEJiIRAL+WDQY0LO0HEZJ5AIlFmQOwCGUGQjIRB9YPSQMMRxT8V4B1BB5FZQDGNNEBQetQ/+XoYQLdbrz+UXthA/tuRQK8wtEBq0TtAN+LaQIYKPUGSHg9Bq36VQT/IRkBQjVdAR0I0QGq+lkEbm2pAKueCQdAm5z+WCcRAR8EwQZCHlEDG6ulBmfpOQXZZlkDGoj1A4bhbQaifaUHGk6NAOTRgQs3bQUEwUflBJf17QYtQOUEd1MxA4dhQQRgbRUCKWT1BB+nIQTieyEAIqMdA85sEQeXx+kBrZ7pAOQepQJgnfUGMmiBBDXqBQe/3X0K2zpxAp1QHQblHi0DavdpBCuL1P595h0CbbwdAm8tDQZiKR0EH8RlARYhtQZ1s7EBrSTRAwVpsQdhGk0Hl4htB0PZ4QWbrdUE/dPJBDF3iQbz7s0E+dfk/rtroQMrXnD+goD9AGmwnQTHSa0Eln3xAp2dZQMG4oEAHCXFBdoOIQJS+9UBDXcBB1qqQQPlxrkCOF6hBAasHQgahyEG8cp5AYgM8QEyqckFKl4RBQ3bLQeBCvkFtkQpByS8UQXVi9kHPb+VAZ+UHQTHsIUDiKWpAvOAOQLEKX0H4oDhBBt3BP3P3DUGH+lFA22hkQKzv90CRxINA - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAQJkrZUAAAACARmdlQAAAAIDEpWhAAAAAgBfgaEAAAABgVMZpQAAAAOCSyGxAAAAAQMsKb0AAAACAsCFxQAAAAMCjgnFAAAAAwOD5cUAAAAAA7rVyQAAAAECjgnVAAAAAgH60dUAAAABANNV2QAAAAMAQ+XZAAAAAQFGWd0AAAADAkQJ4QAAAAIB6E3hAAAAAgAomekAAAADAQ6V6QAAAAMDUsXpAAAAAgHk6e0AAAACAZ7Z7QAAAAMDFfHxAAAAAgDKJfEAAAADAJR59QAAAAED1jX1AAAAAwI+bfUAAAADAWbZ9QAAAAACEzn1AAAAAQO1bfkAAAACgNhyCQAAAAGAKRIJAAAAAQCzkgkAAAADgJbODQAAAAMB86oNAAAAAoNgRhEAAAADAxxqEQAAAAKAHW4RAAAAAwJxihEAAAABAS02FQAAAAIAHkYVAAAAAYOKchUAAAADgCaOFQAAAAACjTYZAAAAAYABrhkAAAACgVfSGQAAAAOCQIYdAAAAAYLNoh0AAAACgNiaIQAAAAMBzs4hA - - - - - - CJghQGiIrUBfy8tAfqtiQK6byEA5JK8/15SMQUSjo0AutLQ/R3R6QWbIV0CmgUtBzVpXQbo/AkGZ6Jw/DRk0QFOAPkDPdTJAxn5XQFVUd0CcDoBBOQdAQQp1lUB1TLpAGgq9QMZVHEKcTHpCvPXHP1eWIUDYiQ5CX9aRQiGDwT/fm1pBx2iaQFhR1UDuON1AOjtNQSsFf0BZUwRA3UTdQPNR1D/af9M/PT8iQheMnkB0EJFAeP+QQCO020F0eME/STcLQcxsYkAsqGJB - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwFNkZkAAAABAfmBoQAAAAMAIBmpAAAAAQF/oa0AAAABg0h9sQAAAAEAOYW9AAAAAIEEfcEAAAACAQDNwQAAAAGDCQXFAAAAAwA/icUAAAADAo/RxQAAAAIAFEnJAAAAAgMBjckAAAAAAdXBzQAAAAIBis3NAAAAAQKtedEAAAABAdWF1QAAAAEAFfHdAAAAAgAidd0AAAADAgyF5QAAAAICfVHtAAAAAAPBje0AAAADAm917QAAAAECOAHxAAAAAABvjfEAAAAAA8OJ9QAAAAAAp8X1AAAAAQPYbfkAAAACAlyN/QAAAAEBGTn9AAAAAAKd0f0AAAACAzIR/QAAAAEB0l39AAAAAQOYSgEAAAACAVJCAQAAAAMD/3IBAAAAAoOIdgUAAAAAAYzGBQAAAACDuZ4FAAAAA4P0ZhEAAAACgSCCEQAAAAMDkgYRAAAAAYEDHhEAAAADAuNyEQAAAAOCJ9IRAAAAA4Cg5hUAAAABAwIOFQAAAAGAvioVAAAAAwFEDhkAAAABgFJmGQAAAAIBxooZAAAAAgC9Eh0AAAADgOnmHQAAAAOBX24dAAAAAgKW4iEA= + KBZXds7jZUA1uAwZnGNrQG+XdYaqQnFAjegxcQLTdECi4ndav0J2QKs57ltaY3hAKmlpqLDTfkCrl8qvsnR/QDl5r3Tl0oJAKJXYjy9yg0AwWC+jHGuGQLx1fMuGeodAMIcdzcjziUC8pGr1MgOLQPeyw9w0/IxAAGhjnKtLj0AA4x/4ge6QQOTJBNYLKpFA5Pjy/7dykkAtTEWiLIaSQC17M8zYzpNAz63B9WiqlEBE/gWfCWOVQLQxJs+pNpdAju7XPDVnl0DKRmfQz1KYQEAFPUt7s5lAfF3M3hWfmkBVGn5Moc+aQMZNnnxBo5xAOp7iJeJbnUDd0HBPcjeeQNz/XnkegJ9AJlOxG5OTn0ATwc+iH26gQIU0wpHki6BABUy5pjowoUBHOaFWGMShQNZ8d9BYQqJAOcSKWjOGokCWCPPagySjQPlPBmVeaKNAuwDcqZkmpEC3R6YwbE6kQBDT2DePFKVA4PjEeK8opUDQXlRCuvalQLEpg6LNOqZA9OirP8VopkAYcwM90NqmQIJaQczrTKdAo7Rspuikp0Db5XPTDnOoQA== - + - BVtGQE1ec0BuuspA4reyQAXA40H54ldAWnTRQIslD0C/6xxBygwhQLb6DED6jG4/oIeHQGbZaUB8pClAl+LTP44onEDaG2ZAooK2QOS7rj+1qkRAkj/vQKvBekFf7NVA/vIOQGMo80CGhpBBN42yQRmbIkGnndtAPgikQKRiE0H5RcNAnrJeQbjM4j9iXXtBGOsFQRQJAUGaTbZCgOmNQFEvo0ALx1lAyr4VQdocR0C4pwVA1Z+uPy5PcEErLQZBwfr3PwPRKEDpaCdBX888QS/kp0BHlD5BcrPUQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoNc/aEAAAABg3mxoQAAAAACJJmtAAAAAQKsEbUAAAADgyAFwQAAAAMD783BAAAAAgGhBc0AAAAAALJF0QAAAAAAzEXZAAAAAAEJOd0AAAACAN2J4QAAAAID17nlAAAAAgPQPekAAAABAdCN6QAAAAADLMnpAAAAAQNPVekAAAAAAh3R8QAAAAADys31AAAAAQFiBfkAAAABAntJ+QAAAAADA435AAAAAAOb9fkAAAABATZh/QAAAAMDBtn9AAAAA4OQDgEAAAACgvySAQAAAAOAKaYBAAAAAIHp4gEAAAACAw5uAQAAAAMAAooBAAAAAIN6ngEAAAACgWLSAQAAAAMAv74BAAAAAQDcrgUAAAADARzyBQAAAAGCvUIFAAAAAwASTgkAAAABgZ+KCQAAAAGA1a4NAAAAAIHOJg0AAAABgcJuDQAAAAGB9oYRAAAAA4LixhEAAAAAgUfuFQAAAAGBKBYdAAAAAYNZPh0AAAACA3LiIQA== + KBZXds7jZUAsECBNt2JvQIkw7CrX8nJAOBGS194hdUCrOe5bWmN4QKy2UsfOIn1A/Dn8+n/TfkA= - + - y79+QEozIUBrdc9B9ddbQSTnIEAk87xAmMgXQP4ZxkAifoRAr7o9QRgBrUCgOAJBOjdOQV5axEDZKN1AnZ48QBzoDEAMoD5Ai1XlPydpKkE9UmpBZM86QAi3GEFjNMJA2UeoQOgUFEGBhL8/n3h9QDlK2kDPG7BBj4XEQRqY9j8MIUBB7qU8QVHkNEFuBjxBvPtEQTq2okDXmx9BCnmtQBH5dUAQ1otB/i2CQOd1wUCx+gdBNgFrQBbWQkE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQPj+dEAAAAAAcGR1QAAAAAD9gHdAAAAAQHZCe0AAAADA8oJ9QAAAAEDspX5AAAAAwCrifkAAAAAAMC5/QAAAAICDp39AAAAAQBkggUAAAAAgnleBQAAAACCzkoFAAAAAYE5pgkAAAABg/G6CQAAAAEDOT4NAAAAAQLE4hEAAAACAfmCEQAAAAKB94YRAAAAAAGr0hEAAAADgcyaFQAAAAIBbuoVAAAAAgFbYhUAAAAAAKN6FQAAAACBCJoZAAAAAwKQ8h0AAAAAgZ2OHQAAAAGBvmodAAAAAILqjh0AAAABgDy6IQAAAAACrNYhAAAAAgBt3iEAAAACggZyIQA== + KBZXds7jZUCYvfARosNsQNeRyQ6NInNAzLzUXClzdUD+UhGGOzN7QPN9HNTXg31Aftj27EkigUBbQt3TPtqCQKvem5KrSoRA - + - 7CthQDgT0T+7seFAZUwyQRzlvj93eatA+NdnQJ2OgkD1yeI/u67EQDfd/kBetlFBwI8GQVgiXkGdyEFBfaYvQW82xUDiRaJALh0CQLWdxEBWzENBm+kfQBegrEG8ByNCai03QTXzgUGc+69BV3yWQTM5Q0HR6ApBujX0QOD5FkA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4DqJZ0AAAAAAr0JoQAAAAACEQWlAAAAAYMZqakAAAAAg9IRqQAAAAABdJWxAAAAA4G9JbEAAAAAAJiZuQAAAAMDQxW5AAAAAwLxlb0AAAACAHYpvQAAAAECOw29AAAAAwIhHcEAAAACAONRwQAAAAOCVBXFAAAAA4IBRcUAAAADAqn9xQAAAAKCylXFAAAAAQGPCcUAAAADgpgNyQAAAAABMlHJAAAAAQNelckAAAADAdvFzQAAAAKCk/nNAAAAA4Im6dEAAAAAgRed0QAAAAMBtFHVAAAAAwKJhdUAAAACgBd91QAAAAIAt9HVAAAAAACMJdkAAAABAnBR2QAAAAIA/P3ZAAAAA4Gp+dkAAAADgVqF2QAAAAEDVvXZAAAAAYFjxdkAAAABAchR3QAAAAOBvZHdAAAAAgM1/d0AAAADgwaJ3QAAAAGCa33dAAAAAIEkIeEAAAADgCy14QAAAAKAbQ3hAAAAAwB+weEAAAADgXLp4QAAAAMBkDXlAAAAA4C9UeUAAAACgol95QAAAAOBDjnlAAAAAoL5hekAAAAAAxL96QAAAAKDJznpAAAAA4CHtekAAAADgcv96QAAAACDdI3tAAAAAYB9Qe0AAAAAgAoJ7QAAAAGCb2ntAAAAAYN0AfEAAAADAaxN8QAAAAIDrHnxAAAAAQMorfEAAAABAmU98QAAAACCcnnxAAAAAYBuzfEAAAADARc58QAAAACAHSX1AAAAA4JI/f0AAAABAJ2KAQAAAAAA4W4JAAAAAoAllgkAAAAAg8YqCQAAAAMDMIoNAAAAAIPdMg0AAAACgCiOEQAAAAOD9oYRAAAAAoGWzhEAAAACgg7qEQAAAAEA8GoZAAAAAwMDBhkAAAABgVciGQAAAAADkN4dAAAAAoNw8h0AAAABgN0SHQAAAAGCtw4dAAAAAAIXVh0AAAACAfySIQAAAAEBLsohA + NrgMGZxjYkD+9P4gH+NsQEMdzoN8QnFApjvHBz6CdkBq3hX7KlN5QA== - + - bMX0QNMfzEA1MXpAZrmkQFOBMkAmhgZBdGyrP9+KF0HsTPQ/J6MbQWjUO0ArailABrfBQItyVkFrMR9AWMRxQJlWXkC5cLxBIDqHQOnhAkBxGhlBtyftQM7e+kAEYylA6VWWQcKV9T81aylA4yQCQGV8vj8E1NBAqE30QFE6vj8XmspAL8ROQM/K10DzDAlBwoQcQe/A6EBJ37lAFsALQb+P8UDsL3RAsNPRQALiBEFEcKdAvjVJQYStl0FSQg5BsCExQHukJ0B2X9A/VLBPQTezzUEiQF9AezaNQV95d0ALV1BBGKZrQdFsWkE4y0pCuhYtQXq1p0A4nRtBvzacQPGbo0CbsHBC/0FAQWzI9T9wVCtB4J2CQLW7FEHyg6FBDPQcQnID4EFyn2hAjNCcQeAcfEAUVaRAg3AiQbURIEG1XNpA/hGDQCsxsUCYPCpBVqiWQLI0aEBxy55BnZlxQHO8kUBblNNB + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAoAUAZEAAAADAXCFnQAAAAACjRmdAAAAAoMGnZ0AAAAAAyslnQAAAAGBOqWhAAAAAwF4OaUAAAACgLUFqQAAAAMD0n2pAAAAAoHT+a0AAAACAaUNsQAAAAMAziWxAAAAAQIM8bkAAAABghMduQAAAAGBCmW9AAAAAgNMfcEAAAADAoC5wQAAAACDmUXBAAAAAgPHicEAAAABgFU5xQAAAAICRZnFAAAAAgKZzckAAAACAPJNyQAAAAMABxnJAAAAAgE7lc0AAAAAAfoR0QAAAAADVp3RAAAAAQO9/dUAAAACA7pJ1QAAAAECzsHVAAAAAwMJgdkAAAACAsIJ2QAAAAEAW4XZAAAAAQDTvd0AAAAAAziJ4QAAAAICVQXhAAAAAAIbOeEAAAACAAd14QAAAAEARc3lAAAAAgO2meUAAAAAAlhl6QAAAAIBno3pAAAAAgJh+e0AAAAAAI5V7QAAAAADU8ntAAAAAQKoWfUAAAADAX7l9QAAAAEBsxH1AAAAAgNPsfUAAAABAxc5+QAAAAMDt7X5AAAAAAJtCf0AAAAAAc1R/QAAAAEAB839AAAAAQL/8f0AAAAAgBhGAQAAAAKCkGIBAAAAAoGU3gEAAAADgbFOAQAAAAODxgIBAAAAAIO+JgEAAAABgVRmBQAAAAOC0c4FAAAAAAOWZgUAAAABAnQKCQAAAAOBDioJAAAAAwHaVgkAAAADAHKeDQAAAACAm2YRAAAAA4CQLhUAAAACgw4SFQAAAAGBwk4VAAAAAIEGahUAAAAAgKMKFQAAAACDn7YVAAAAAIK8jhkAAAABgIi2GQAAAACD6WoZAAAAAYA4rh0AAAADgjLiHQAAAAEAowIdAAAAAoGPrh0AAAABAdUKIQAAAAOB2yohA - - - - - - AQkEQAbvikD68RFBZJyVQbhxYECJ1eI/+nvjQF1uqz8p1R9Ay0T1P9SzmD+XmsJAwR4NQB7c4D+PSMdAkK4pQMBsaUCRVJRArN/iP+oqJkHcOvs/ZQ1FQLn14j+wuFRATUgNQMWX0D8hEBhAksoLQnkqc0AZIxJBYTL1QEyklUCCmDFAOn05QAqbkEEQrZ5AbM04QR8s9EDf+yhAFzUwQZSwg0DEO19BtTEgQOqYtkASBsRAyFcNQpLol0E5aoZAumb0P4JIqEGzaRdBWiWnQYx+MkFYYldA3jswQO9NdEHP8IxA68GWQDtHc0AQu2BBtCD6QJ39wEBlMSZAcfDWQHzBZUF9ncdBpwmaQNB0YEDmD55ADPELQQYaTkFftiZBWmqBQZyTQEGOul1BiDKcQU3N6EC7vZhAaP8BQE963ECEqWBAsWvKQC3DgkBIPOpA - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAA4F0mbEAAAAAASWFxQAAAAICgNnRAAAAAgPcudUAAAADgj7h1QAAAAEANA3hAAAAAgNJ3eEAAAAAAMqx6QAAAAIBbJntAAAAAwI62e0AAAADAnSh8QAAAAAACdHxAAAAAwEC2fEAAAACAMnV9QAAAAACctn5AAAAAAIHJfkAAAABAGO1+QAAAAACDIX9AAAAAoApCgEAAAAAgLFuAQAAAACB7+YBAAAAA4OY8gUAAAABgoEOBQAAAAKDHgoFAAAAAIOG+gUAAAABgiQyCQAAAAACQE4JAAAAA4HosgkAAAADAeXOCQAAAAIC1FoNAAAAAYL0qg0AAAADglvuDQAAAAAB9AYRAAAAAQCArhEAAAADgp+OEQAAAAMCW8IRAAAAAYO2LhUAAAADgdu2FQAAAAGDUEoZAAAAA4GMmhkAAAAAgi2OHQAAAAGBi5ohA - - - - - - owLfP/LevT/gdiBAIhyZQLP4CkCvuYdBaFTDP6zjtUBZ/ANBWm13QAVTG0EFsLA/57UwQbGgmz+wa0ZAshFOQLbmdUDeRQZB+p9PQK08bkAtdIdAuv8vQBZWLkGH/Z9AZZVPQezUuUG7xCFCGKdJQalw7UBocxZAFiokQUYWqz+SRXVBBf6LQLu4vT/wpZpAl4N8QDoATUFD2ylBV3C9P9LxGEFHJ4BB - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAgKvwcUAAAAAAjVF1QAAAAIAI5nVAAAAAgJwydkAAAACAAs93QAAAAIASsXlAAAAAwIUQekAAAADA8PR7QAAAAMACl3xAAAAAAAt6fUAAAAAAzt99QAAAAIA39H5AAAAAgBcFf0AAAAAAEj6AQAAAACBSWoBAAAAAYOfRgEAAAAAgwwmBQAAAAKB4GoFAAAAAgGNCgUAAAADATVuBQAAAAICSc4FAAAAAIO6KgUAAAAAg8vKBQAAAAIDlEIJAAAAAADg/gkAAAABg2EWCQAAAAOCKoYJAAAAAAPG0gkAAAAAgj8GCQAAAAODt44JAAAAAYBD1gkAAAABAKkyDQAAAAGD0iYNAAAAAYKOTg0AAAABgBZuDQAAAAGArr4NAAAAAgMvEhEAAAACAsH+GQAAAACA1dIdAAAAAAAcbiEAAAACgHquIQA== - - - - - - xxqrP/+6w0CkrCZA2PQVQZQ49T/AMOM/h8f1Pz/WyEDKjRRB6qf1P99ywEDuRQVCzx0mQR1njUFaNWtBEqNfQJT4DEC+iAFBODzKQFU7tEAmZb0/oyyiQDVl4j/psiZAHXC9P7JJOUFlwo9ArlQfQk6hKkFeRzxBzDqPQP79MUAVc4BBX2FgQXBg2kFfyyZBho5gQPNXJEEJ6TBBqaqKQETbmUA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoKHEZEAAAABgvwZlQAAAAICvP2dAAAAAIKEobEAAAACAfI5sQAAAAEAQXG1AAAAAwD4kcEAAAABAIjNwQAAAAMBJb3BAAAAAIDeycEAAAABgWkJxQAAAAADXVHFAAAAAQHTOckAAAABAE2N0QAAAAEBCZHVAAAAAQOV9dUAAAADAizF2QAAAAMDdqnZAAAAAgJjhdkAAAADA6SN3QAAAAAADdXdAAAAAgNyDd0AAAAAAVMR3QAAAAMBDDnhAAAAAQKxkeUAAAADA83F5QAAAAMASAnpAAAAAAH62ekAAAAAAsS57QAAAAIA3Q3tAAAAAAO2ue0AAAACAycN7QAAAAMAlRHxAAAAAgO2hfEAAAABA3LN8QAAAAMB5UX1AAAAAAEaLfUAAAADAgJt9QAAAAMCa531AAAAAwD8+fkAAAADA+5B+QAAAAEDIo35AAAAAAGi0fkAAAADAxIZ/QAAAAMC3kH9AAAAAoD/jgEAAAACg+PCAQAAAAEBDa4FAAAAAYDODgUAAAABgFPqBQAAAAOByBIJAAAAAYHgxgkAAAABgNWuCQAAAAOB0cIJAAAAA4FfBgkAAAACgmfeCQAAAACB0AYNAAAAAwENRg0AAAADgh3qDQAAAAGCnAIRAAAAAADJHhEAAAACgy2OEQAAAAGC8aoRAAAAA4AFxhEAAAAAgG5GEQAAAAMBVrYRAAAAA4AUChUAAAADARGaFQAAAAABmg4VAAAAAIKCKhUAAAADgoJKFQAAAAGAW04VAAAAAIGNbhkAAAAAg1YuGQAAAAODSyoZAAAAAAEhUh0AAAACgi8SHQAAAAAB9FIhAAAAAoBajiEAAAAAgtKiIQA== + NrgMGZxjYkCEfuNfSOJlQHzKEHuiRG1A - + - btvPP0wl50ADChdAQrYIQZIxQkDe7l1AY6cxQdWDyEATJb0/cGaWQDUljEAXaWFAIddLQHxLZ0AzfaxA6TvCQADOMkE9TydB8fPMQGOdCkAWzqxC5zzhQGJvpkCHzRRBpyFwQLbqdEErjJ5A9V1WQBLDHkBPqOtArntnQbgGvj/Big9Bs9yqQHZDTkD9uJ5AWopWQfh5rUGcTL0/ksGvQbxrWEFqGSZBpWq9P+P55EEfJUFA5TEFQNszIkGS17lAcOsIQjwibkLGV4tALLvDQECNH0BTcBBBVfUQQY6Yj0Cw6KdAkAJLQY0URkFIZeZAwCejQCf/VUC9l6JAw9gcQNGYV0BsprxAbcr4QJMx4j9+qYxAysOHQk7dukGoyjhA5n8CQQxOmD/1N1pB8ZAdQOhOFkA8prVArZT1QW/ME0A= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgMooY0AAAAAgP9xlQAAAAOBL/mVAAAAAYHUeZkAAAADgnYJmQAAAAMCp4WZAAAAAgC3+ZkAAAABgkwNoQAAAAMBcQmlAAAAAgP0NakAAAADAGbhqQAAAAAAVxmtAAAAAgNEibkAAAADA5pRuQAAAAAAHy25AAAAAgLgpb0AAAABg6jFwQAAAAIB+o3BAAAAAQBczcUAAAADA8P9xQAAAAEDMYXJAAAAAgPdxckAAAAAAJ39yQAAAAEDzvHJAAAAAQEMTc0AAAADAseRzQAAAAABtk3RAAAAAAD5AdUAAAADAneJ1QAAAAMAOBHZAAAAAwHCDdkAAAADAzMR2QAAAAEB2z3ZAAAAAAJXddkAAAACAejJ3QAAAAIDa7XdAAAAAALQVeEAAAACArCF4QAAAAEDLf3hAAAAAQGqgeEAAAABAq654QAAAAMASNHlAAAAAwHpDeUAAAABALYh5QAAAAADAtHlAAAAAwMYHekAAAACA6UB6QAAAAIAZVnpAAAAAQJjnekAAAADANfh6QAAAAIBpI3tAAAAAAFt1e0AAAABAjrF7QAAAAMDFu3tAAAAAQI3Ie0AAAABA5uB7QAAAAID97XtAAAAAQLQCfEAAAADADw98QAAAAAAmHHxAAAAAAGE8fEAAAACAX298QAAAAABYhHxAAAAAwH3wfEAAAAAA4h99QAAAAIA/Ln1AAAAAwD9VfUAAAADA0KN9QAAAAMDMs31AAAAAwG3OfUAAAADAxWGAQAAAACDiaYBAAAAAoAh7gEAAAADgG6uAQAAAAACj44BAAAAAYM9hgUAAAACga8SBQAAAAAC9yoFAAAAAIHBggkAAAADgoKmCQAAAAGBZ4oJAAAAAYNxPg0AAAABgDlaDQAAAACA0z4NAAAAAgMiXhEAAAADgV9yFQAAAAODwMoZAAAAAYAZThkAAAABg8nqGQAAAACBM/IZAAAAAgIuhh0AAAABAaqmHQAAAAIA6sIdAAAAAAC+4h0AAAACAtvyHQA== + NrgMGZxjYkD1hHOUyKJnQOzQoK8iBW9A - + - awZxQKAbJ0E9sANAegkNQIMsvEDu9gBBMQQNQGMBZ0B3xoNADW/CQAQBdUBd4y9AigL5QLJtKkCikh9AInrLQFEjtEA8j2BB6M+mQCiMRkBnpkpB125SQAbiRUG2luxAT6l2QV/WxEAzIXBAukuVQJew+kBb6A5Bv+oBQAX1jUAi5lZAz9koQJQ070CvzY5Bwr7nQLsvx0D7B65AkzDiP0Ts9D9akk9A5k4WQfpTlUCWuzpA7MvDQDvnF0FpIdBA9LpNQKor7kCynV5BaMwCQF/0zECJ9fdAiMImQGhNnUFkd8NAfZ8fQIJUnUDf/UNBZmlgQAedwkHx4Ko/tlSGQWo1mz9rgnZBiHAQQcJ/I0KyMYVBDJ1WQaelqj+SQL0/zjyCQfFhDEG4Rd4/V9r5QKwgMkLqYjZCcGj+QBeDpkC9ta9A7Ju0QuMGUUKn6kxAeTawQGO8r0BCSflAV/H2QWwaO0BZQjlA01jBQNvPTEDiDFdA9h58QJNBg0A= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoIzPXUAAAAAAckNeQAAAAADhAmBAAAAA4NAsYEAAAAAA72FgQAAAAMBFqWBAAAAAgAtnYUAAAABAP4FjQAAAACBxhmRAAAAAQKysZEAAAACgf2BlQAAAAIAw32VAAAAAgNGKZkAAAAAgjehmQAAAAADuI2dAAAAAgAhCZ0AAAACgCl9nQAAAAICH5WdAAAAAQPIDaEAAAAAghSZoQAAAAECWPWhAAAAAoIewaEAAAACAneNoQAAAAMCp6GlAAAAAAAkmakAAAACAi0xqQAAAAADlfWpAAAAAgJOdakAAAAAAZR5rQAAAAMDZPmtAAAAAwO5ka0AAAABAzIJrQAAAAMC/5mtAAAAAgFjHbEAAAACAe4JtQAAAAICepm1AAAAAAEu6bUAAAAAAxehtQAAAAMDpI25AAAAAAJ1BbkAAAACAJmtuQAAAAABIhW5AAAAAwGHFbkAAAABApw5vQAAAAEBuPG9AAAAAIJsjcEAAAAAgTIRwQAAAAMCJonBAAAAAwAXAcEAAAAAA3fBwQAAAAKBXHHFAAAAAwP1LcUAAAACgKnZxQAAAAICWg3FAAAAAgGi7cUAAAABASMZxQAAAACDE1XFAAAAA4AXicUAAAABAPClyQAAAACCdX3JAAAAAIDSickAAAAAAE8RyQAAAAACo03JAAAAAoIrkckAAAACg9xRzQAAAAMDJO3NAAAAAgE9gc0AAAAAA43JzQAAAAEDlsXNAAAAAIDPjc0AAAACglfJzQAAAAGD0/XNAAAAAYCIidEAAAADAdTF0QAAAAIA5P3RAAAAAIFlQdEAAAAAAtGB0QAAAAIANfXRAAAAAgNuRdEAAAADg19V0QAAAAGB88HRAAAAAQOwDdUAAAACgQRR1QAAAAMDaJ3VAAAAA4GE0dUAAAACA9kN1QAAAAKAIVHVAAAAAwBtgdUAAAAAAJ6B1QAAAAKANsnVAAAAAACHOdUAAAADggel1QAAAAOBWA3ZAAAAAIFsidkAAAACAZZd3QAAAAECBlHhAAAAA4LWQeUAAAACg+AV7QAAAAOD35ntAAAAAIO7lfEAAAAAg4YZ9QAAAAKAtgn5AAAAA4C6WfkAAAABAUKF+QAAAAGCYBH9AAAAAYHwjf0AAAACgyUV/QAAAAMDrUn9AAAAAoBFmf0AAAACgSYd/QAAAAEBap39AAAAAIJO0f0AAAADg6DuAQAAAACCqdIBAAAAA4A+TgEAAAACAhJmAQAAAAMAQQoFAAAAAILBJgUAAAAAAmFGBQAAAAGCLyoFAAAAAoOrZgUAAAABg1eCBQAAAAGCR84FAAAAAINYqgkAAAADA/pGCQAAAAMB1wYJAAAAAoAPcgkAAAAAg3kuDQAAAACCgi4NAAAAAoATqhEA= + KBZXds7jZUDiYBUjzERuQIkw7CrX8nJA - + - mbMBQUaDAUHsMkNAT0TOQO2uzz+6llRAdtepPw5AhkB5C70/4LtNQNlfJ0D6JAFATa0EQER2mEBFNI9AAR30QDzGS0BZv2pAvhKwQGv8X0CRLE1AiztXQIGlNkFbqpBACuQAQdwkFkDJzEJB9OUAQZySCUGSjsJAduZyQEpSQT81m95AW2N2QHy0q0CphnJARbS1QFP6/kD+Ys1BCvr3QHoycUDMkmdBeHyeQVBBD0FCsBxBrTdMQACG4UBh+zhAsqhOQEuDb0GmrShAMhvaQK1OrkAT0zJAf4GVQeWjIkCM96xBpjBmQHAgKEGJ+rZAGfdmQL6jZEG5fTpAwUphQT2EVEC+VJpAutNzQWZsnkCGW+dAYXihQT8QTkB4z2JBJ4xKQrboCkFE2OFAZ6kSQSyukkFaeXRBNgI0QYr7i0E0mSBBaqPIQN8oMUCcPKhA0QxXQAprFEHk/cVCGsCPQLCy40LaT81BC39BQPZd6UE08RVAbnZGQVzCzz8Qx+hBMo3iQHNo9D8y/R5BxIhyQLUsREAFcwxAsTJwQO+VFkHFMH5ANB/TQPKRekBtJhdB2cwKQZTRb0H6DVxCJrkxQYXneEGJ+ShA8yq9P2ObVkCtsa9Aj+kTQe+eqj9Cr/BAEwWTQG4HrT8hZ2ZBcoB6QFUwEkHfN0hBzxiyQLvvL0Fbur5ANDGCQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgBapa0AAAABAxjNwQAAAAKBJQ3FAAAAAoGYGdEAAAADAhKF0QAAAAODI5HRAAAAAgB4QdkAAAABApVx2QAAAAMAUs3dAAAAAQK4ye0AAAAAA9hF8QAAAAEBXRn1AAAAAgLEgfkAAAADA5RF/QAAAAABMP39AAAAAQFRif0AAAAAAKw6AQAAAAOC3coBAAAAAwFSOgEAAAAAA55SAQAAAAKBMgoFAAAAAID+qgUAAAAAgBjqCQAAAAACVyoJAAAAAQOwtg0AAAABgsDiDQAAAAGAVpoNAAAAAgAu3g0AAAADAAkWEQAAAACBFZIRAAAAAgBaChEAAAAAg8aGEQAAAAOBuyIRAAAAA4IfphEAAAACAMiqFQAAAAIDTMYVAAAAAIJ9zhUAAAAAAD7mFQAAAAOAn1YVAAAAAoI3ohUAAAABgFO6FQAAAAOCr84VAAAAAYOUChkAAAADAGoWGQAAAACCHmYZAAAAAAH7chkAAAADgPxaHQAAAAOAzG4dAAAAAYMthh0AAAADAIW2HQAAAAKAe74hA + NrgMGZxjYkB8yhB7okRtQMxe+AjR4XJAYG6KbtQSdECCd4yfV4N5QMy81Fwp83lAn8hIiq8TfUDuxdaNrGN/QOBopV0ZQoFAhotJPAJ6gUBvkQNTRQqDQBeQytRDMoRAAJaE64bChUCmuCjKb/qFQDe9qWKxsohAAMVyFTNLiUDIwSr78mqLQPej8kNq44xAWcarkzQjjkA= - + - pFWYPyOGa0BAE7RAkOonQI5zC0FwSF1ACcUoQPrPOED6LB1AZYqYQCTFr0AT6C9Ade2cQNoMQkDT6KZAqWK8QED3MUB+GoZBCW2BQHYvZ0BJjCZAvdS2QaEL4kH0Kqs/zPUaQSewDEH/AA1AzI2vQMV/JkCh7r1AXJNDQXXC80H1tkpCnPi4QAFW0EAFl3lAnKQDQb3pMUFIisdA+ScNQPF3H0D0sc5AwfF7QBx1sEGg1gpBUU+QQc7AgkEmbBNBP20MQTyKzz9rloJA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgNv9XkAAAACgj1JfQAAAAMBfyV9AAAAAYJvEYUAAAADAHUhiQAAAAIAbB2NAAAAAwBHHZEAAAACAKIZlQAAAAMD73mVAAAAAYA5hZ0AAAAAAiiloQAAAACBR32lAAAAAwB4BakAAAACguuRqQAAAAKCFJWtAAAAAgAOLa0AAAADAiWlsQAAAAMA0gG1AAAAAwMS/bUAAAACA7SxuQAAAAABhom5AAAAAAOTUbkAAAACABIVvQAAAAACdH3BAAAAAINovcEAAAADAAkZwQAAAAADoY3BAAAAAgHjicEAAAAAgFA5xQAAAAODkMnFAAAAAAB1icUAAAACg8XJxQAAAAEBsknFAAAAAwPKycUAAAACAetJxQAAAAOCl9HFAAAAA4D8VckAAAADAq0ByQAAAACB9UXJAAAAA4OmeckAAAACAnbtyQAAAAEBQ4HJAAAAAQC4Cc0AAAACgBxpzQAAAAGDtf3NAAAAAgPaMc0AAAACApfZzQAAAAOCjA3RAAAAAIKcUdEAAAAAAkzt0QAAAAMC2VnRAAAAAIJKBdEAAAAAgVKR0QAAAACD7z3RAAAAAwIwFdUAAAADA+SN1QAAAAMChMHVAAAAAwARQdUAAAABgXqF1QAAAAGBysXVAAAAAYOvAdUAAAABAJd91QAAAAGDcQXZAAAAAoPxRdkAAAAAABbR2QAAAAADHxXZAAAAAYEDUdkAAAABgfuB2QAAAACBRAHdAAAAAoIRid0AAAAAgsnN3QAAAAKABk3dAAAAAIO6ud0AAAABAzL53QAAAAGDX3HdAAAAAoM70d0AAAACgc/R6QAAAAEDbsHtAAAAA4CMEfEAAAABARxt8QAAAAEA29nxAAAAAIPzTfUAAAADAAkB+QAAAAGBKxH9AAAAAwDsOgEAAAACgu1uAQAAAAICAYYBAAAAA4KDhgEAAAABgKOuAQAAAAOBwcoFAAAAAoNd7gUAAAADAmQKCQAAAAABclIJAAAAAoCXqgkAAAAAg0hSEQAAAAABmrIRAAAAAYI9khUAAAAAgqROGQAAAAIC2XoZAAAAAYKVlhkA= + KBZXds7jZUDYkZP9yKNsQBTpB48/A3JAR9UTyqeidEBp3hX7KhN6QJxv+dwwlHpAhi/S5YKjfUC5wLXHiCR+QO3kW/yFyoFAB9vhGToag0Aa6wCi5/KEQAcK0EPmooZArsuk3T77iEA= - + - sbvAQPFuwkBg1Lw/M0tUQETyO0AROihBDnk4QEW4L0FHKx9AbGKzQNf6rEAPgihAs6pWQF5gzz9oJGxB0YGYQBL8PkCwtBZBrS80Qfyxp0DMzNBAnVIdQVFFlkALcQNApuwAQdCKgUDqw9hBFh2lQEM9zz+WoxZANJIKQY/nMUA97+FBu01NQG0p0EDbIkdBSVSjQODuREHOQnRAEo0pQc+hmkGeWKo/7CjDQFOToUDWtSlAlks1QXpEo0BQGJVAJvslQT7AWEFVIeE/ESy/QKJHVkHZVQVBRctNQP7dX0DohDFAekTiP8JpckBgOxZA1z3xQATEJEKdv7w/iMrPQDZ8MEAUc1JBGIlWQFcrFkGx6yVBj01SQYqVLEHeO4NBx4KqPz2X0T+Bh2lAsKK8P55hSUEgR9E/lP7gPwTlMUHNvjlBFxHgQMhUo0EQnShAVjptQsCGQUAyCBZAvlkCQhIDJkDe4EhBN+57QOvSr0CrOy9ADkGhQniVaECllTBAYZXoQFqsS0EY/dRA+CjLQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAADcHZUAAAADAJ+VlQAAAAADniGhAAAAAAFMMaUAAAAAAQX9rQAAAAMDEpmtAAAAAQNLla0AAAAAgE4JtQAAAAICeAW5AAAAAQJ1HbkAAAABAOqBuQAAAAMAQAXBAAAAAgKFVcEAAAACAOmNwQAAAAIBHwnBAAAAA4HrNcEAAAABAoY9xQAAAAADE3nFAAAAAQOuDckAAAACgyaRyQAAAAICQrnJAAAAAQE3vckAAAABA7RJzQAAAAAAbzHNAAAAAgDzTdEAAAADAyP90QAAAAEBjNnVAAAAAAOx0dUAAAADAotR1QAAAAMAF8HVAAAAAgI7AdkAAAACAy/N2QAAAAEDQAndAAAAAgIUUd0AAAAAAWzN3QAAAAMBEVXdAAAAAANWWd0AAAADAG6R3QAAAAIA5v3dAAAAAQDEUeEAAAADANCB4QAAAAACuQnhAAAAAQBNweEAAAADAL514QAAAAADQqHhAAAAAALIxeUAAAADA1z15QAAAAACqT3lAAAAAQFhjeUAAAAAArYJ5QAAAAIB/v3lAAAAAwAAVekAAAAAAfC96QAAAAEBZRHpAAAAAwLxPekAAAAAAR156QAAAAABve3pAAAAAQOvXekAAAADA0/N6QAAAAAAhIXtAAAAAAM03e0AAAACAGFR7QAAAAIAigHtAAAAAwMvNe0AAAAAAiOF7QAAAAICn9XtAAAAAgFAgfEAAAADAmIF8QAAAAMBqqHxAAAAAQMADfUAAAADA+x99QAAAAMBcZX1AAAAAQGiVfUAAAACAcKF9QAAAAIA+tH1AAAAAwJvBfUAAAACAxQF+QAAAAADYMn5AAAAAQNBBfkAAAACAHlZ+QAAAAGAqLYBAAAAA4FVKgEAAAAAAf1KAQAAAAKA7aoBAAAAAIGXEgEAAAABgnkmBQAAAAKCBVYFAAAAA4JKYgUAAAACguaOBQAAAAEBAwoFAAAAAoIndgUAAAABgFSqCQAAAAECUd4JAAAAAoAKggkAAAABgfAWDQAAAAODPT4NAAAAAQBhzg0AAAABAHL6DQAAAAOD+woNAAAAA4IbRg0AAAABArNeDQAAAAKAVLIRAAAAAIEJThEAAAABAyVqEQAAAAABvg4RAAAAAYOaNhEAAAACA8s2EQAAAAGAUyYVAAAAA4JNbhkAAAADg93yGQAAAAOBSg4ZAAAAA4D3bhkAAAACgROuGQAAAACD+KodAAAAAYG8zh0AAAADA1qCHQAAAAKDHUohAAAAAYIl9iEAAAAAgpoKIQAAAAGAsoIhA + NrgMGZxjYkCmvpxNHKRoQFRnpVdMhW5A - + - SmqCQLh09j9YzTpAaescQPDGokCsKUFAZOZoQBCt9EBB0hFBlmbhPzxJV0DIlJlAVz6sQMkgZkAi7MJBLKSRQDDZokAQIh1BRVo4QXRlikBdaURA9+x4QCVzTUCOuCVASjQAQptDHUEYU8NAMgoVQLVd8z8c/YJB6vt0QZANn0L7T4xB25OrQEWH4kAtO39BxzkgQJC6j0FNmDpASbMxQNfSmUBm99dAGXGRQKY3pkDJRdRATfoFQUKwMUG4ziNBz1CKQDbTckBWzB5BsLqsQEFq+UBWNLBC6LwlQFH0zEDmzpxA70NqQKB2pkCtufNAGrAhQYW3lECmbANAINPzPwaX4T+4LERAXnGDQZyizUC1dv1Aq0igQNihMkBvckRA+n/5QPCJ2UEYJRZBA8a/QUQslEGiA+RBFMTOP7vrG0D4sHNAV1GBQmHX20HrcjFAxu4eQNeMV0A+l6NBb5KnQM2Wk0AFBvpAFzkuQRifnELz5uVAlVrPP0DJukCToI9CGztZQWxx90DTcxVAR1lkQtqMYUGKrSRBcQt2QVmAAkD4E3JBVHThP6Eqh0BP7+ZAqDFTQbRlS0GljPI/A5kjQXtTOUKT229ASToCQFWnTUEcE59AC0FMQGMu3kCrXqdA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgFXTXEAAAAAAWkBfQAAAAGC6BmBAAAAAIG4mYEAAAADASkVgQAAAAIAYhmBAAAAAQOquYEAAAACATSZhQAAAAMAQx2FAAAAAYKczYkAAAADAy2ViQAAAAED5oWJAAAAAAEtHY0AAAABgRYZjQAAAAICp4WRAAAAAQI8qZUAAAACAMiNmQAAAAGC5/GZAAAAA4JtAZ0AAAADgx6RnQAAAAMAUZ2hAAAAA4GkfaUAAAABgRD5pQAAAAIBlYWlAAAAAIH+AaUAAAACgD6NpQAAAAOBj6mlAAAAAQLX9aUAAAACADSZqQAAAAODwaGpAAAAAgKR/akAAAACALRdrQAAAAABzwGtAAAAAQBsCbEAAAAAA/ERsQAAAAABboGxAAAAAwEVAbUAAAACAvWdtQAAAAMAZ7G1AAAAAgNoebkAAAAAAuGxuQAAAAIA0hm5AAAAAgMWnbkAAAAAAfMVuQAAAAEB75G5AAAAAwFtfb0AAAABAx5FvQAAAAMB5sW9AAAAAANnkb0AAAACg1gNwQAAAAKAQE3BAAAAAAC4hcEAAAACAZTBwQAAAAEA0QnBAAAAAwCJRcEAAAADADmNwQAAAAIApgnBAAAAAAFOTcEAAAADAbL9wQAAAAEAm0nBAAAAAoJLecEAAAAAAy/JwQAAAAKD3/3BAAAAAwNoMcUAAAABA0BtxQAAAAOBqK3FAAAAAgKlBcUAAAAAgW11xQAAAAMCOcHFAAAAAYKaDcUAAAABg9cVxQAAAAICv03FAAAAAAKPjcUAAAADAuPFxQAAAAOD9AHJAAAAAAK0QckAAAABAphpyQAAAACCAOHJAAAAAgG5EckAAAADAxXFyQAAAAIBFg3JAAAAAYGGRckAAAADgx55yQAAAAEAdtXJAAAAAwKPKckAAAAAA0dVyQAAAAODc43JAAAAAQLwOc0AAAABgeB9zQAAAAMAEfXNAAAAA4Iitc0AAAACgMbdzQAAAAAAsxHNAAAAAAJzSc0AAAADgnONzQAAAAIDw8HNAAAAAAAwSdEAAAAAAeSB0QAAAAED7Q3RAAAAAwMh7dEAAAACgLYh0QAAAAABlpXRAAAAAgKSzdEAAAACgnMF0QAAAAED60XRAAAAAgOzkdEAAAABgePF0QAAAAMCRAnVAAAAAwCwjdUAAAADARDB1QAAAAEBHSHVAAAAAgPNSdUAAAACgk2N1QAAAAABRcnVAAAAA4BSYdUAAAACg+791QAAAACBn9HVAAAAAoGAIdkAAAAAAbBV2QAAAAGD2FHhAAAAAQD5deEAAAADgNUx5QAAAAACU9nlAAAAAQAAKe0AAAAAgUE17QAAAAGCcoXtAAAAA4IDLe0AAAAAgIiN8QAAAAEABl3xAAAAAQNjQfEAAAADgS2F9QAAAAEBMi31AAAAAwEe5fUAAAACgXfZ9QAAAAGBVZn5AAAAA4LXNfkAAAABgEiR/QAAAAEBqdn9AAAAAYBqDf0AAAADAGpR/QAAAAKDTnn9AAAAAwI4agEAAAABg/4uAQAAAAMBf24BAAAAAIAEzgUAAAACgXmqBQAAAAMBIc4FAAAAA4M77gUAAAAAgRHqCQAAAAAAZk4JAAAAA4MfAgkAAAAAgPNuCQAAAAKBKEYNAAAAA4Glzg0AAAACgMoSDQAAAAKDjoYNAAAAAALaqg0AAAABAIAeEQAAAAGDQUYRAAAAAYAXjhEAAAABgRKyHQA== + NrgMGZxjYkCPTWWFSwNpQNq4KFfnQ29AHvu2xz3ycECPZZbcdhJ1QOVVSwFWI3dAfSOWOeVCfEDlsydVrjR+QOk7TZ++WYBA8giCVAOjgkB6QM43ABKDQOnnAYM6O4ZAcR9OZjeqhkB67IIbfPOIQHFOPJDjMopApRYFHsgri0BxfSq6j7uNQJz1hEz/w45AalV66w1qkEAX/YJyIL6QQH9qu+wzhpFAK31G2ilakkCVf/ztWaKSQA== - + - SOlnQManA0AeXIFAUU8QQST3I0EJigVBOPYCQKXkBkEVAQZA41fWQDb7dEBhzwVArZKfQCDWlEAYGHdAyuExQJUtnkBTvptB5LEDQK0HlkAr/S5BNGDNQLg8xkBA/s4/YnQwQBiaQkHP47ZAPPGiQAPthkAE1t5A7JGgQB8+BkH88QFAPnx7QEq1K0BkeRtBu41wQWnxVkD2jDhB/VMMQI8NAkE1satAQMUMQN/L0UDA9tFAVvoLQRULBEG44AFBsPrIQIC100CgOJk/DpGaQWvJcUDc9idB4KcwQte5gUCKvKtBDEdfQrJTq0B7H/c/0bNNQLbq+kCyknxAClQKQWofxEG6Q51AFIeNQSaMIUHOqgFCxWrnP5T8k0BBWEJBlOe+P0F6d0C2V0dBXFlcQYBCtEB5RSBBtDpyQB+Hq0A9NURAfH4KQV27REFwMg1B4cvlQqqQbEBlh09BOiCHQdjbp0CmzoBA0gsUQvo8e0Gbp1dAHWpAQrnqdkH2ollA4gVpQJ6bHUA6JWlAe7UxQZSMO0A4mZtAzHkWQfWtv0A2zTpAZmUNQbW2/0B0U+RBUOmWQE9MX0C+P9BAXn2jQUTd1UE8LZVADF20QAYalUF9kx1AL+5uQcmWVEDBHE9AVzWnQJAWnEGWrbw/xrlWQD0otkAC6ABBIR/SQUH4gUAkN7BAeHwmQSeFQUFgPsNAuScmQTOIO0D7Jq9BVyW1QFGatEDiPcpA9ui5QoIw4j+Q0oJACSoKQQ1TcEEwv3JB/mzmQfzhMkLH2l9A89OhQZSV1UAbFr1AXOlNQAyBDEDrMFxAjTPuQLepmEAXp9ZBsRkiQYRVl0DyvctAMRzRQKP4GkE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAIrpZEAAAADArCRmQAAAAEAX42ZAAAAAwMbdZ0AAAADA9GVoQAAAAMAfpGhAAAAAALHpaUAAAACAOP9pQAAAAMA3JWpAAAAAgA8KbEAAAABgZCZsQAAAAED/SGxAAAAAgOuBbEAAAADA0wttQAAAAKDcBW5AAAAAINwhcEAAAAAAsjJwQAAAAACNzXBAAAAAAA9EcUAAAACA4dJxQAAAAECCX3JAAAAAgKnFckAAAACgfeNyQAAAAADePnRAAAAAAJAzdUAAAACAKlB1QAAAAECSb3ZAAAAAAEeCdkAAAABAur92QAAAAEDW0XZAAAAAgMwTd0AAAAAAiXV3QAAAAMDdhHdAAAAAABy2d0AAAABAycV3QAAAAECZH3lAAAAAwEZ1eUAAAADAwQF6QAAAAICio3pAAAAAAA23ekAAAABASsB7QAAAAAA40ntAAAAAQBJEfEAAAABAe2B8QAAAAMCD1HxAAAAAAGTgfEAAAAAAkAV9QAAAAAChRH1AAAAAQAitfUAAAAAAccZ9QAAAAMA2FH5AAAAAgIEffkAAAABAgkV+QAAAAMDEYn5AAAAAgC+/fkAAAABAz1t/QAAAAECOg39AAAAAQOOWf0AAAADACaJ/QAAAACCfMoBAAAAAACBAgEAAAADAn1SAQAAAAGBrWoBAAAAAwEGXgEAAAACgBbSAQAAAAGAj3oBAAAAAQJvjgEAAAACAMfmBQAAAAICJAoJAAAAA4IeJgkAAAAAgY6SDQAAAAOBMw4NAAAAAoEzKg0AAAABAxIKFQAAAACBFjYVAAAAAwFYBhkAAAAAAvIuGQAAAACBq64ZAAAAAwMkbh0AAAACAAyOHQAAAAMDGVYdAAAAAgA2qh0AAAAAAprGHQAAAACDLy4dAAAAAQHrah0AAAACAvAqIQAAAAMChFIhAAAAAgPk6iEA= + NrgMGZxjYkDsFOgHcuJjQHzKEHuiRG1A - + - UR+qP1BNS0CYiUxADaGUQBBlvT9I1e5Auh83QUZmaEHV9OFABk4iQMprpUIFoE1BiCNYQGTrZkFDsqs/9OqIQXhb4j9ubl9B3D5nQea50D+ans8/+7ziPz5kcUBHLQ1BzXdgQPCRfUBMns8/xa4xQA3CT0CYI6JAaIu8QNh73UAwAxFBpxwpQZ+9C0DhhBZA7YgNQeQI9T9y6ZdB1L6hQMitYULFzKFAFPuhQHjsgEGpnnBAR7N7QXdlDUHv2bw/RXy8P4VTO0ABw85BLHRLQB8gZ0DCMxZA7cU7QQctm0CF7QRBQIeGQCVW0ECLQXxAL40BQBO3WkH7AGxBExY4QTwypkHWlrlC/rWGQrorDUEq39NBey6wQH9+KkGc/xVAahfeQK4ck0ITtpNBCPWZQCaPOUFxapVA9rLUQGZ1CEFKY5pB3ltjQZ+SmkGgnTNAGzLmQNuP3kAsSENBMLOCQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwFKbYUAAAADA1mVlQAAAAECte2VAAAAAAPqhZUAAAADAv6VmQAAAAMBZvWZAAAAAwHWEZ0AAAAAAT0FrQAAAAEAAQ2xAAAAA4DGCbEAAAAAgveZtQAAAAMBQS25AAAAAgIaEbkAAAABgvbJwQAAAAACgBHFAAAAAICATcUAAAAAgRiVyQAAAAIACU3JAAAAAQKQMc0AAAACApHZzQAAAAEDZznNAAAAAQGiLdEAAAAAA5bR0QAAAAECFEHZAAAAAALQndkAAAAAAblJ2QAAAAMDjY3ZAAAAAIJSGdkAAAACA8L92QAAAAIBgGHdAAAAAAB9Cd0AAAADg5FF3QAAAAOBdhHdAAAAAQFKQd0AAAAAgqdV3QAAAAGBk+3dAAAAAQGxCeEAAAABggGV4QAAAAAAVsnhAAAAAoKTyeEAAAADgxhF5QAAAAADJIXlAAAAAQKJ3eUAAAADgdoJ5QAAAAOAhlXlAAAAAgJ6zeUAAAABgP9h5QAAAAEAd73lAAAAAwBopekAAAADg5E96QAAAAOCHsXpAAAAAoLfRekAAAACg0CV7QAAAAGBmNntAAAAAoO9Ce0AAAABgRMd7QAAAACCL5HtAAAAAoIcAfEAAAADge0Z8QAAAAEB7YnxAAAAAQJxzfEAAAAAAK5R8QAAAAKBVrHxAAAAAQKW3fEAAAACgM8R8QAAAAKD95HxAAAAAQKjwfEAAAAAgtP58QAAAAEDTl35AAAAAIHLQfkAAAABAxVN/QAAAAOCGtH9AAAAAYPA/gEAAAAAgFWuAQAAAAODX6oBAAAAAIFVXgUAAAACgzGCBQAAAAADKoYFAAAAAYLPHgUAAAACA29KBQAAAAGDa7IFAAAAA4K4YgkAAAABALkWCQAAAAKAZW4JAAAAAYEBkgkAAAADgXGuCQAAAAOASfYJAAAAAIF0Fg0AAAACgfeSDQAAAAKDUmoRAAAAAYA20hEAAAADAzgGFQAAAAAAEKYVAAAAA4EnchUAAAABggmuGQAAAAMBS1IZAAAAAoKGlh0AAAAAgw2yIQA== + KBZXds7jZUCYvfARosNsQKPid1q/AnFAIrP8DWnSckAraWmosJN5QKo57ltaY3tAgb1trUgEfkAAjvJg8tN/QASir/2cSoNARApy13EyhEAvzDEA6YKFQAs2GOfdOodA6R4S+GCDiUA= - + - 880RQToQfED+wnBA6dlmQPmbA0DaABJB2DWDQMJAKED6n/Q/NY1wQOR+XUAj4eJAcNdBQWMkmkBepRNAAEUfQIJexECvnyhA2hABQG6tUEDW+etAEJfGQJsE8UCOygFBmMcHQcBpdEBSPjZBJl40QSboV0Fs0IpAEEnyQK0Je0EARYdAONcIQYLfpkD8dC9A58TDQdBwfECahRxAZ6mAQM3hPkIvMZxBifgVQAC8hkBiLQNBTOoaQWwsn0EvyXRBUo6hQdFzqEA7qMxAXI3ZQH/a8EAOJFBBkKUMQEOgokAv7IFAN8u8PwKU4j+m6TBAMZ1gQZEkMkHnJ5VAIbqZQNZjqj9LYeRA2OGiQehfD0HWI7FBYQsWQGc9h0Gj2BVANZkcQomFH0Gb7OVALp5EQD85O0AnZ6NAQK+ZQT0xVkL+jShA0BvBQSSjjEGf1apBjNCXQjjd0kBms6k/w+tVQaA2H0CXRJ5AUjbYQCjxFUB/hVRAtJH4QCPEIkIN97hACZzPQAcSg0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAwPHpZUAAAADgYwRnQAAAAKCUg2hAAAAAYJPhaUAAAAAAc+BqQAAAAED/I2xAAAAA4EMlbkAAAACAxtpuQAAAAMAyInBAAAAAQPAvcEAAAACgi8JwQAAAAKAk0XBAAAAAgJzvcEAAAABAVhNxQAAAAICcP3FAAAAAgOOCcUAAAAAATOtxQAAAAMCuAnJAAAAAgFNhc0AAAAAA8SF0QAAAAEBQtnVAAAAAgHgldkAAAADAIEJ2QAAAAMBpTnZAAAAAAHRjdkAAAADAgHF2QAAAAADCkHZAAAAAgA8Jd0AAAACAcnN3QAAAAIAq6XdAAAAAQIK0eEAAAABAVgZ5QAAAAID+RHlAAAAAAD7FeUAAAAAA3w56QAAAAAAUA3tAAAAAQAloe0AAAADAj7V7QAAAAEC2ZHxAAAAAwBZAfUAAAACAHFR9QAAAAMB8ln1AAAAAwIXSfUAAAABAvHV+QAAAAADem35AAAAAwGn2fkAAAADA6a9/QAAAAOC9WYBAAAAAIH96gEAAAADgVoiAQAAAAKC8noBAAAAA4JfCgEAAAAAgSMmAQAAAAIB304BAAAAAIJ0GgUAAAACgZBiBQAAAAKBkWoFAAAAAwJuhgUAAAADAmamBQAAAAGAVyYFAAAAA4IbRgUAAAAAgIeKBQAAAAIDpAoJAAAAAIA0NgkAAAACABSOCQAAAAGBLMoJAAAAAYNZCgkAAAAAgMsuDQAAAAOCx0oNAAAAAoDT6g0AAAAAgORmEQAAAAOBeiIRAAAAAYNa5hEAAAAAg7zyFQAAAAEB4SYVAAAAAYK+RhUAAAAAAwfOFQAAAAGCag4ZAAAAAAIHMhkAAAABAx0CHQAAAAGDuUodAAAAA4Etah0AAAABg8sSIQA== - - - - - - JacfQB7f4T8I0aZAtjRGQVY9v0CBVr1AKS0WQOGYKkCyPeFAR4zrQFZQ+kAueoxASAnIQF76rj/BJcpAYxq9P4SIKEBfUIRAp2ubQGkPFkAGSh9A9vWtQFjQ8z+oQjNB5Yp5QShaLkERaRVBVI6YP3c1REBkrENAgu+8P/fXA0DmSx9AqJ3nPxewtUBPMqtAit1hQEk4O0Cdv/lAOLuMQKrArEEoYNhA9rnPP4rki0D9HztBPMkmQUo5wEDBhnJA6chmQTjegUDwZoNADQgSQRaLz0C8aaxAIslQQaZ3S0HGqo5B+UkGQZLrJ0GcKIJAf+YKQd+ds0D2F1hBhM8AQZVj20FDDKBCRjf7QfI/k0Laz+hACdAxQIoIYkIdwTpA8CNgQGB7KEALngNAGqE4QFx6KEDro5NA802PQI9u80CWVyRB/koJQV+cDEA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAA4O9EZ0AAAAAAWWNoQAAAAIAZ4GpAAAAAwGqfa0AAAACgTshrQAAAAECBIGxAAAAAQM1lbEAAAACA2vtsQAAAAACeH3BAAAAAAI5DcEAAAAAAuEJxQAAAAIAPUXFAAAAAgG1hcUAAAACADZNxQAAAAMDn83FAAAAAIMIickAAAACAEHNyQAAAAIDNgHJAAAAAAIdvdEAAAACAiB51QAAAAIA6r3VAAAAAQLQTdkAAAABAGvR2QAAAAICtWHdAAAAAADpjd0AAAAAA/LR3QAAAAAA/AnhAAAAAQOwzeEAAAACAUm94QAAAAMCvfnhAAAAAgPKfeEAAAACA3u14QAAAAEC+EnlAAAAAwM9UeUAAAAAALmN5QAAAAICbIHpAAAAAwO8xekAAAABAIEN6QAAAAMAZdnpAAAAAQHWCekAAAACAUJd6QAAAAID77npAAAAAwBELe0AAAACAfFJ7QAAAAMCrZHtAAAAAAPmxe0AAAAAA6/l7QAAAAEDuLXxAAAAAgGJBfEAAAACAcVF8QAAAAMBxsXxAAAAAQH/UfEAAAAAAb+F8QAAAAEBM8HxAAAAAADUmfUAAAABA6V59QAAAAMDVeX1AAAAAgIWpfUAAAABAUO59QAAAAADDAn5AAAAAAKgUfkAAAACAfFV+QAAAAMBNcn5AAAAAQPOAfkAAAADA4qZ+QAAAAAB6wn5AAAAAwGXrfkAAAADA7hx/QAAAAEDSoH9AAAAAoH8YgEAAAAAA3CaAQAAAAKBfLYBAAAAAIORagkAAAAAA1qKCQAAAAOBas4JAAAAAIE8rg0AAAABAtGKDQAAAAOAuqoNAAAAA4Oy4g0AAAACgYSKEQAAAAOBxLIRAAAAAoApGhEAAAACgpaiEQAAAAKC7sIRAAAAA4ODShEAAAABAAtmEQAAAAGCQ6YRAAAAAQDQ8hUAAAACgalWFQAAAAACHvYVAAAAAgMA6hkAAAAAAPcKGQAAAAOBWzIZAAAAAwEz8hkAAAACAZqOHQAAAAKDw2IdAAAAAYNzIiEA= - - - - - - y6xfQJ6HREAXQNpALw31Px5mBECZTJhAXlziPy/guEB9WZlB2oxhQNva9EEULBZA362ZQCyeaUAGStBAuksLQDjLsEAO7eE/I2YfQBC5gkBpSsdATUhgQHk8WEEiQZVBK88CQMGogkDljahAiswTQQ2bBUJjg3lAXUX1QPxqIUGpCgpBaEnZQPCaVkDqPT5BLJCaQfnJi0BrK6ZB9rGQQFYCO0D9IQJBLrz2QCuygkDwbk1Al6UMQC3PoUBKpstAg7tEQA/nqj/e5qo/xh4CQRopX0A9IotBB8BIQUbgJkBCMpVAJhrCQMql9D/0LoZA9zZjQbU3e0AGbEhB5D19QWoWA0HEikRAmWp3QZzKp0By2xJB1+PjQXwrXkFRKwpBZXwDQC9zdkFIr+JA3WO6QCLeVkHWUGpBrPsqQau/FUA2e0NATp3oQet8YUGOAxpBqsiIQtcznkDNk/VAfOydQILvk0ARJRRApMXCQBPsnUAkBDJBSC1gQOqe7EBNpIU/dqsdQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4Nb+ZkAAAAAgYuVrQAAAAMAujWxAAAAAgFumbEAAAADAOoNuQAAAAIDwAHFAAAAAgLK+cUAAAADATONxQAAAACAg8nFAAAAAQLFickAAAACAQaFyQAAAAMDpUHRAAAAAQF30dEAAAADAWTV1QAAAAIBrhXZAAAAAwEjQdkAAAAAAeG13QAAAAMDfd3dAAAAAQHjkd0AAAAAAWvp3QAAAAEBP6XlAAAAAgOxQekAAAAAAGZR6QAAAAMDstHpAAAAAgG7bekAAAABAtWR8QAAAAEB8pXxAAAAAwIIRfUAAAADA+i99QAAAAADLj31AAAAAwJfVfUAAAACAr+l9QAAAAMD3Mn5AAAAAALxYfkAAAABAD5Z+QAAAAMBN9H5AAAAAwL8Ff0AAAAAAOlN/QAAAAAA/3H9AAAAA4KUIgEAAAACgCyyAQAAAAADsOIBAAAAAQPR+gEAAAACAx7OAQAAAACAAvoBAAAAAwFbIgEAAAABAqwqBQAAAAIAHO4NAAAAAwH9Fg0AAAABAZVODQAAAAKASaoNAAAAAgEzLg0AAAABAs9ODQAAAAKC7+4NAAAAAQGQChEAAAACAr6aEQAAAAECPFIVAAAAAwJ/HhUAAAADgaTKGQAAAAOCkw4ZAAAAAIKLahkAAAAAA1gmHQAAAAGAeEIdAAAAA4F1Sh0AAAAAgDF+HQAAAAGBbdIdAAAAAwJmDh0AAAABgzIuHQAAAAODoBYhAAAAA4OCRiEA= + NrgMGZxjYkA= - + - jk8DQM7znkDrbeI/fPutQd9vH0Bn9otAOJxeQGwVH0D2xilAeSKHP8yKA0D6DJ1AqkKiQB7zVkCuADtAlmXPP60OckC2691AEt6FQR5GH0AZkatA3rUMQObQHUAZtgxAFlKFQdLUHkCqlrFAxD1NQI6iREDrUtJA1p0DQGzS/kEgeh5ApgWBQKwCWEGZIF1ChZpDQRhmgUFmhs4/6gzeQF3Ozz8ozgFBW4YPQQJIo0Edfo1BUS07QRJSFUImCFxBMFyPQO1ygkDhsWRB9oY1Q5htKEI34OJAwanUQCpanUAkbgxB0zQfQODVZkAHMHJAnBWpQGRVWkG9WQlBoJ8mQGJCHEBxER1B0c+LQKXARkAGkFdAYHKDQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQEsZYUAAAABAQKdhQAAAAGDPnmJAAAAAgEYAZEAAAABAyWNkQAAAAABJpWRAAAAAwJ7ZZEAAAADAFYRlQAAAAIAMpGVAAAAAwBXAZUAAAADA8OpmQAAAAIBooWdAAAAAIL/oZ0AAAAAg06doQAAAACBVI2lAAAAAwAFJaUAAAABASeRpQAAAAIBPaWtAAAAAAMqDa0AAAACgz+JsQAAAAACDpG1AAAAAQARIb0AAAABAVuRvQAAAAACUAnBAAAAAwJGAcEAAAACATLFwQAAAAAC1zXBAAAAAADv3cEAAAACALhRxQAAAACCJI3FAAAAA4I0ycUAAAADgfZNxQAAAAGBBtnFAAAAAILZFckAAAAAA7VFyQAAAAOBranJAAAAAQFz/ckAAAACAqx5zQAAAACCeMnNAAAAAgNtyc0AAAABg2lR0QAAAAKBUb3RAAAAAgGywdEAAAAAAGNN0QAAAAMBB83RAAAAA4IUbdUAAAADAxUR1QAAAAMAJZ3VAAAAAYOyOdUAAAAAAWcl1QAAAAEDUG3ZAAAAAwOaRdkAAAACAj7B2QAAAAMCTv3ZAAAAAgAjxdkAAAAAgGC13QAAAACDokndAAAAAIHGvd0AAAADglc53QAAAAGDW33dAAAAAgJ/1d0AAAAAgujJ4QAAAAGD5hXhAAAAAAB7HeEAAAADAsfl4QAAAAAC8UHlAAAAAwFjDekAAAABAqwd7QAAAACCMFXtAAAAA4AbhfUAAAABAHGR+QAAAAMAgf35AAAAAYPf0fkAAAACgYTF/QAAAAGBiCoBAAAAA4KMkgEAAAACADSuAQAAAAGCRmoBAAAAAgKmkgEAAAADAFruAQAAAAKCM9IBAAAAAYHkDg0AAAABgl6uDQAAAAIBmK4RAAAAAIN8zhEAAAAAgr+uGQA== + NrgMGZxjYkD1hHOUyCJpQEMdzoN8QnFAncs7e+cBckBlJtC0/7J2QO7LSRoNcnhADB0GBWUCfECHL9LlgiN8QCdFs49NKoFAytF7KatJgkBUS1g1r1KEQPX7/Sv3gYRAf3XaN/uKhkAiAqPRWKqHQIYvbe7kwopAwzjT3nPTikBSYTHUn5uMQBc07oYme41Ae2G4o7LTj0BUnLcPtBmQQAazHB76RZFAnoyJrd8dkkBQo+67JUqTQA== - + - l3rLPzE4A0CmK5pBMZisQPRPE0C/JkZA6BaBQGe3CkCEfftB49rPQJsRW0E8dzpAt2bhPzhG9D8VjeNAyeSpP7gBh0AoDg1BpNSzQPannkCnOo5B4lZEQDm/X0Bwza8/cnQvQDUeKkCSsVZA9SKPQJnsFkFECWlAqjUGQEKYskBLboJAqZ5WQFKFKUJDXb1AHVymQMzRCEElOLFBxo61QANkBEEzcTFAudtBQOCooEEceopAjVLhP9TvvECwCERAFiQiQUHczEBx7AxAIUoRQQysUkGmF4RBfZPbQU2GnUGZmYJAI3C7PzA2bkIQKhVCwD+oQBmri0FsW5pBycCgQPfc40AdXxNAQ3UVQG4uIUF5klRBiplBQGiqDEB9kJ9B0pVBQedhiEAe7l1ACzLiP7EPHEDMzQZBN7QMQPKEZkG3TOQ/h6DlQOfJXECQRsRCfxEfQqD7vEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAoOoAZkAAAADgSWZmQAAAAGArpGZAAAAAADhKZ0AAAACgMAFoQAAAAEBVIWhAAAAAAIBDaEAAAABgaW1oQAAAAEDNomhAAAAAAJLGaEAAAACA2KVpQAAAAMBy5WlAAAAAwBkEakAAAAAgpiFqQAAAAEBmPWpAAAAAwOWqakAAAACAGOZqQAAAAGBLpGtAAAAAAMTDa0AAAABA9+VrQAAAAAAeJWxAAAAAgN1LbEAAAADgMWNsQAAAAGB/4WxAAAAAQGjHbUAAAACg4t9tQAAAACC2A25AAAAAYIQlbkAAAACAjGduQAAAAICDAm9AAAAAQEoib0AAAACgxF9vQAAAAADpe29AAAAAYCMicEAAAADgijJwQAAAAEDNj3BAAAAAQDKxcEAAAAAACMJwQAAAAEC00HBAAAAAYD/gcEAAAADAf/JwQAAAAGA3InFAAAAA4KlCcUAAAABAD1NxQAAAAMByZHFAAAAAAGCScUAAAABAjaNxQAAAAKBL0HFAAAAA4BricUAAAABgnARyQAAAAABzYHJAAAAAALl/ckAAAABgyq1yQAAAAMDavnJAAAAAYND/ckAAAAAAUFFzQAAAAGCUX3NAAAAAQOWSc0AAAABAIKFzQAAAACBzsnNAAAAAQFLPc0AAAAAA4zN0QAAAAIBRQnRAAAAAQDdxdEAAAACAf390QAAAAMDKsXRAAAAAgKvhdEAAAADApXV1QAAAAIB6gXVAAAAAAMGYdUAAAADAmaN1QAAAAICwtXVAAAAAQNwwdkAAAABAk0J2QAAAAMCIwnZAAAAAwNYSd0AAAABAqi53QAAAAIB7PndAAAAAQNJVd0AAAADAjGN3QAAAAIAudndAAAAAANMSeEAAAABAaTN4QAAAAEAyPnhAAAAAQJ9UeEAAAACAtnN4QAAAAICm0nhAAAAAwO8ReUAAAACAoyB5QAAAAECtU3lAAAAAQABjeUAAAACAbZN5QAAAAMAvpHlAAAAAwDuweUAAAADAaNV5QAAAAIAJ4HlAAAAAgM/xeUAAAADA5xp6QAAAAEDZcnpAAAAAACOFekAAAADAtJN6QAAAAIBKqnpAAAAAgEXWekAAAABAsO56QAAAAIBjJntAAAAAQLmBe0AAAAAA05F7QAAAAMAXo3tAAAAAAHuwe0AAAADAw9R7QAAAAADXB3xAAAAAwH01fEAAAAAACm98QAAAAABGk3xAAAAAwOyyfEAAAACALNZ8QAAAAEA37nxAAAAAgGMFfUAAAABAGRJ9QAAAAICpIX1AAAAAAHRnfUAAAACAkHp9QAAAAEA8in1AAAAAAGuifUAAAADAsrd9QAAAAECXwn1AAAAAwBflfUAAAABA5vJ9QAAAAIBDCX5AAAAAABoUfkAAAAAAkCd+QAAAAIBRNX5AAAAAwHZVfkAAAABAIH5+QAAAAMCSkX5AAAAAAAOefkAAAACAQtJ+QAAAAIA6A39AAAAAwEcPf0AAAADAASR/QAAAAEBDXH9AAAAAQJVwf0AAAABAEoJ/QAAAAIB2oX9AAAAAAFjof0AAAADAOQ6AQAAAAOCrGoBAAAAAoBIjgEAAAADghiqAQAAAAKA3OIBAAAAAYG5BgEAAAABgOUqAQAAAAKBGUIBAAAAAANlpgEAAAABgcIqAQAAAAICNqoBAAAAA4L+ygEAAAAAgtrqAQAAAAKAhzIBAAAAAYC/SgEAAAAAgU9mAQAAAAOBN3oBAAAAAgNjygEAAAACAUfuAQAAAAODFAIFAAAAAwIYWgUAAAABg/SCBQAAAAEBOOoFAAAAA4FhCgUAAAACgW0qBQAAAAADjUIFAAAAA4CxZgUAAAABghmGBQAAAAIA7a4FAAAAAwD+DgUAAAAAg4ZiBQAAAAEBNs4FAAAAAwNy7gUAAAACAIMqBQAAAAGDJ0oFAAAAAgIvcgUAAAADAHuOBQAAAACBE+oFAAAAA4OAAgkAAAABgAQmCQAAAACDrDoJAAAAAYCEjgkAAAAAgJUCCQAAAAGCPRoJAAAAA4AnhgkAAAABgWhSDQAAAACA1SYNAAAAAgPdPg0AAAAAg11mDQAAAAOCRYYNAAAAAoHNrg0AAAABgiomDQAAAAEAquYNAAAAA4C7Dg0AAAADgYdiDQAAAAOA74YNAAAAAAF3pg0AAAAAgG/qDQAAAAKBWCoRAAAAAIOZDhEAAAADAp0qEQAAAACDDUoRAAAAAAH9hhEAAAABAm2mEQAAAAOBhcIRAAAAAYNiRhEAAAAAAvtKEQAAAAGBI2YRAAAAAAH7ehEAAAAAAleSEQAAAAIAh74RAAAAAoCD5hEAAAABgcgOFQAAAAABOC4VAAAAAwEAbhUAAAAAAw1OFQAAAAKCeWIVAAAAAQBhphUAAAACAunOFQAAAAEC/iIVAAAAAgJvdhUAAAACAS+SFQAAAAOCd6oVAAAAAgEgChkAAAADgDhGGQAAAAMAVGYZAAAAAoMZmhkAAAACgxHKGQAAAAIB1vIZAAAAAYJLBhkAAAABghciGQAAAAGAY1IZAAAAAgGJEh0AAAADAs1GHQAAAAGDCWYdAAAAAwChqh0AAAADgsnGHQAAAAGCRgodAAAAAIPKKh0AAAACgHNiHQAAAAMCQ4IdAAAAA4Hjnh0AAAADA7+6HQAAAACAh+odAAAAAoGQGiEAAAACAfAyIQAAAAKCoOohAAAAA4E1hiEAAAACgrWmIQAAAAKA7cYhAAAAAgHDgiEAAAABAefuIQA== - - - - - - VG17QPDOpED7wMtAEJujQcLWsUH2AexBZERnQcrxSUCmHQ9BiA4kQsAmHkFEyBBBzdEQQue0hUEuPSVDirRqQbnGlEAS7XtDdLfIQpV6kkERmLVCSISKQtwuiEAhKtdAcm4iQXD9JEH4bWJCPsIeQnr1V0JgSDxA6ngSQgblFkPSZ9hBIvqCQ/P3LEL10lNCCJ53RIrw8ELZyYBCzwrAQCGS2kDiRntA4fCTQ9CvHEIPbtdB6D6WQ7+Pr0FeNCxDD2ilQkp7KEBwRnRBfwiXQEtsT0Igb/pAbA2rQTfT2EFrQglBtsxJQIvVOUDnMZ9BBnJqQHoecEBm5cdBcxm3QoN4+ECjhWBBR0AFQWRT70BZxipBIjRUQXOpx0Akz41BhTReRb8MH0TWSgFBV1DQQTnUpEKCjYtC6o2tQI7+P0HbzgFBm53LQBWRxUJLS0FBI9uaQcgIIUJ+9A9Bvdi0Qu+QWkEDhuJC+1YgQZ5/pEAonxRCTSh5QcOtbUGJDHdAoCHIQk+rLkEzsPFD3HrZQovYjEFcLLBB/9SGQtxXpkAfeBZB5XR7QNhrZ0GQuKRCRbPWQKCwXkCLQPtAlQrqQexpTkKlmA1CJuEqQc07e0BiryVCTVb1QUq8hUCOcK9AtxGvQvoRR0JB6Z9C142OQBevbEF6mJNByH+NQBf9KEIgG/VC7f1WQ6RmxUFzj4BB1VU8QU6VNUPGvaNCGF4zQ83FDEFs2QBD25YaQ0R6+EG+KppB35elQgdEeUGBRp1ByeGWQRlTe0BGhJhCwNJ1QoQn30DZVa9AA7yIQoRVtEI4pOZBqC3IQDMj2UFQMclDd5LfQwoh5EIS5Q5DwXjwQj5mikK9LgZCSpmMQSCXOEFY0LdBvkhaQEeGCkIsl0ZEZl75QsxaYUHeEaVBMpWiQTcRgUFMstBAmgs4QXiKoUGsE4ZAV4bGQaEIAUH8ZnNBKQOOQoyEIUGK3yRB5Od8Q5oWLkLsnBBBmKsyQQVQI0LpQ4pDKGIQQWRSEEFksQtCHfifQeikv0Hx0r9AE8BsQbT3S0JQq+tBBXvaQTTGn0OYtVtDeojgQXY14UAmMjlAdR6CQf4NrkG70lRBFLSuRJlwNkOUIU1BM7lSQf1XBkQWoyVDKhWEQdJRqEGdYxpC6+UvQRB7O0E8Y65Bc2taQGTV4kC2yb5BcUUMQdMZ90B9T+xANFgZQQjcuUEJRQNBW6gUQvcahEG9w5ZBuluEQqRksUGoJ7VB4kKYQeAqlUENvBFCcIk5Qq9PaUKXoqhB3rh4QWxL50CxS0lC09ycQUzlXULEoVJDZ3xRQF68SkHoFbVCCy2NQS7kPEJXZV5Ak/yCQ7RbT0OiUv1B1UR7QGKzJEI= - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIFCiYkAAAABAw+RjQAAAAEBQoGRAAAAAAHfXZUAAAACgkOxlQAAAAOBnYGlAAAAAwIrqakAAAABgbsxrQAAAAIDzXWxAAAAAYB6gbUAAAAAAladuQAAAACALo29AAAAAgBNicEAAAADAIwBxQAAAAICnG3JAAAAAAH+HckAAAADAx5JyQAAAAMDbYXNAAAAAQGNyc0AAAACANRF0QAAAAIAGJ3RAAAAAAIdEdEAAAABAO050QAAAAACHFXVAAAAAgFsxdUAAAADAPPJ1QAAAAABMA3ZAAAAAwL0gdkAAAAAAjJJ2QAAAAIB1jndAAAAAABOad0AAAADAvEx4QAAAAACAlHhAAAAAgKe4eEAAAAAA0DB5QAAAAABv1HlAAAAAgHD2eUAAAABAjXF6QAAAAMD1gXpAAAAAwFVle0AAAABAYiV8QAAAAICEU3xAAAAAgLqDfEAAAAAALJd8QAAAAACEs3xAAAAAQGo9fUAAAACAI1J9QAAAAEDInn1AAAAAgIXJfUAAAABA3uN9QAAAAADbBH5AAAAAgBwffkAAAABAFkF+QAAAAODv7YBAAAAAoHf/gEAAAABgj0GBQAAAAIDRRoFAAAAAIG2igUAAAADAlbSCQAAAAKCaz4JAAAAA4GPngkAAAAAgQBSDQAAAAGBB34NAAAAAoPgShEAAAADgvGOEQAAAACCY1IRAAAAAYMH3hEAAAABgZgmFQAAAAADMWoVAAAAAwPW1hUAAAADgn/+FQAAAAGCqM4ZAAAAAAN85hkAAAABgT1qHQAAAAGCja4hAAAAAgEiiiEAAAADg36qIQA== + NrgMGZxjYkA= - + - a6C1QNQuYEDJ9V9AMZGiQC6KUUCFxSRBxun0P+gvokA9PJ5ANkymQH14tUEYhF5AmLsMQNIJDkB+fPQ/yMCPQIlNV0GITkRAZAA0QWIylz94e3tA+qyZQAbmQ0FEI/E/X3XfQVnWpECSrPJAlHKBQKg0BUF/9VZApX2vQA5qnUDjcp5AOHYlQfZ64kB4o1ZA2PdWQGOrukDkBNlAnFXiPy/7HUE4RuI/dKx/QCiP0EB8C49ADMWWQdWm0UF7YzlAsQKBQaDgFUBCh84/850nQQzQAEJ3kppBPwJGQeY3rUJI209CnKSUQaguEUEbFKJDwLTnQEsstUCsO7FAQqMVQVdRMUBwvFBBGRiCQMxhwUGqOWdAYcH+QeymmkGHngxAZzsOQVijq0D4P9FAt/smQRaGSUE= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAACPLbkAAAADAMG9yQAAAACCeknJAAAAAQO+yckAAAACAibZ1QAAAAACqsHhAAAAAwKoke0AAAADAZ2Z7QAAAAID/tX5AAAAAACTHfkAAAABAD2mAQAAAAOBhsYBAAAAAQKYLgUAAAACg+x+BQAAAAKChQoFAAAAAIOalgUAAAAAgLRWCQAAAAECbLoJAAAAAYLJigkAAAACgmbyCQAAAACCSNYNAAAAAgEpZhEAAAADgjqKEQAAAAOBn+IRAAAAAYJ0ZhUAAAABgf0qFQAAAAKBOjIVAAAAAAL+XhUAAAABAnfeFQAAAAOCyFIZAAAAAwIsmhkAAAACgEVKGQAAAACBsnYZAAAAAAEjThkAAAABgFeSGQAAAAKDOGYdAAAAAgPVDh0AAAACgfmGHQAAAAACMaodAAAAAoPt0h0AAAABA+OGIQA== + NrgMGZxjYkAnt2DdIQNrQMZtNYzMxW5Asaxs2egRcUABCNcwPvNyQHgHARMBQ3dAPKpPBu4TekA= - + - mospQclBZ0CNygxA9+fhPyUaKUCu6pNAQH5eQRsvMkCd1mtBF4QmQKGHzED1bIdAYqjeQFjgkUAZOa0/r007QJa3QUGMzCxBRn/qQF2CiEDW3rBB8xmRQHCZGUFK5M9AhAA5QEuKgkCNDh9AjVgoQJecOECHmhFB5mHrQRjt0UBH+85AZ807QdD18UBe/QBB6ENKQc7LmUAu+vlAV74lQLpIjEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQJxsakAAAAAgU6hsQAAAAKC6o25AAAAAAOqkb0AAAACgXWNwQAAAAIBzSHNAAAAAQLxac0AAAAAAsJJ2QAAAAMC1LnhAAAAAQBR2eEAAAADAcoV4QAAAAEBBQHlAAAAAgC9ieUAAAADArXN6QAAAAIAlBHxAAAAAQNESfUAAAAAAozN9QAAAAIBSQ31AAAAAAJ9kfUAAAADAaSN+QAAAAACpsX5AAAAAAHL/f0AAAADAmDuAQAAAAKB7RYBAAAAAoFBtgEAAAABAoniAQAAAAGC6joBAAAAAIPeIgkAAAAAgHCODQAAAAGCpYINAAAAAIHGrg0AAAABg3kuEQAAAAMAizoRAAAAAANrThEAAAACAc/uFQAAAAGAIp4ZAAAAAoPyah0A= + NrgMGZxjYkBa6U0me2NuQK9rGHLRYnNACAFx3oCCdUAKeGK9lLN5QJwQA0SEs39AIo1tSSJqgEA= - + - ZOg6QF67ckDlERZB5sLdQO2x7EE62JhAKOsHQSCbxUB+chZB0SYfQJQE5kC0p5c/u0OeQGD6GEEhqZBAU0k7QJKnMUDy0hNBhAf0PxY3E0EzzHxBIO/YQF7QFUA+G/tA/or1QFrtY0HADBZAbs0cQLI0gUA2oBhBEqG1QKl/TUBNnIJASV5CQd7xAkGjuqpAp+HuQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwOBBb0AAAABAwsFzQAAAAADTAHRAAAAAYBKUdEAAAADATfR0QAAAAKDiAnVAAAAAgF8TeUAAAACAb0B5QAAAAMDmX3pAAAAA4C+QgEAAAABg65yBQAAAAAAn4YFAAAAAoKRAgkAAAABgH+2CQAAAAGCSL4NAAAAAQNiXg0AAAAAgDLqDQAAAAOAjKoVAAAAAIPyuhUAAAAAgubiFQAAAAGDZvYVAAAAAIDrDhUAAAACgOGOHQAAAAADR8odAAAAAoBIziEAAAAAA+1OIQA== + NrgMGZxjYkA= - + - 3h+uQItxvD/b6fM/MsjqQF56kECK76tAqzhwQNbHrUGJDihApuwVQKejA0Fd/84/HuUWQM9FHUAbPztBiFNMQezJw0CSrWdB0c5DQMVzLEKSS7FBuci8P0SUp0AkzSBB4ExhQKINvkA= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgEcEX0AAAABAPChgQAAAAADfRGBAAAAAwC5nYEAAAACAbqhgQAAAAEAx5GBAAAAAwCErYkAAAAAgnkZiQAAAAACbZGJAAAAAQJDfYkAAAAAAuyZjQAAAAOCKAWRAAAAAgPoeZEAAAABgoKRkQAAAAABLyGRAAAAAQNUIZUAAAACAd0RlQAAAAEC2tWVAAAAAIOMDZkAAAAAAJ8hmQAAAAMCW42ZAAAAAgLYMZ0AAAAAA6qtnQAAAAEAzJWhAAAAAQM1AaEAAAAAgxWJoQAAAAIDVSGlAAAAAIHTdaUAAAAAAzSxqQAAAAIBxQWpAAAAAgNZlakAAAABAZEJrQAAAAECPZ2tAAAAAYP/Ea0AAAADAryRsQAAAAEBLQGxAAAAAQCGjbEAAAAAAm0ltQAAAAACgX21AAAAAAISDbUAAAADA8sttQAAAAACWHm5AAAAAgP5AbkAAAABA435uQAAAAMDdBG9AAAAAQKxgb0AAAAAADMBvQAAAAIDjEnBAAAAAYKsjcEAAAADgcDNwQAAAAKA4SXBAAAAAQJhYcEAAAADg/2xwQAAAAEBa1XBAAAAAYCjgcEAAAACAu/FwQAAAAEDVBHFAAAAAIGEmcUAAAADglkFxQAAAAEAydXFAAAAAYJ+0cUAAAACgNwRyQAAAAEDIMnJAAAAAADtdckAAAADAGHNyQAAAACAKf3JAAAAAwP2dckAAAACgjbByQAAAAMAevHJAAAAAwD3xckAAAAAg6g9zQAAAAICWR3NAAAAAwNJhc0AAAAAg+XdzQAAAAOBD5HNAAAAAQA7zc0AAAACA0XV0QAAAAKDcgXRAAAAA4GTxdEAAAADAS0N1QAAAAGC5lnVAAAAAoGiydUAAAACA7L11QAAAAIDYznVAAAAAgOgBdkAAAAAAcA92QAAAACDyS3ZAAAAAwE6ldkAAAADgYeZ2QAAAAIAU83ZAAAAA4OUxd0AAAABA+kN3QAAAAGDqUHdAAAAAgDNzd0AAAACgPIh3QAAAAACknHdAAAAAYFmud0AAAACg5eR3QAAAAOCylHlAAAAAIErUeUAAAACgZg96QAAAAMC0IXpAAAAA4NebekAAAADAd/N6QAAAAGDPcXtAAAAAQLXUfEAAAABggOF8QAAAACBLP31AAAAAwF63fUAAAAAgO8N9QAAAAGBJZX5AAAAAQCl0fkAAAAAggZR+QAAAAEASp35AAAAAQGADf0AAAADAqiV/QAAAAGCCNX9AAAAAIDRNf0AAAABgHoV/QAAAAKDWlH9AAAAAQCK2f0AAAAAgd8J/QAAAAECFzH9AAAAAoDnlf0AAAACga/B/QAAAAOAe/n9AAAAAQBo6gEAAAABgt1qAQAAAAGAtfIBAAAAA4NCCgEAAAABAFpaAQAAAAMAGsYBAAAAAYFbbgEAAAACgz+GAQAAAAKBu74BAAAAA4A4AgUAAAACgLkmBQAAAAGCtdYFAAAAAAE59gUAAAACg/omBQAAAAEAfkYFAAAAAAM6bgUAAAADgRquBQAAAAMBL+4FAAAAA4CwCgkAAAACAYZKCQAAAAKCYyoJAAAAAYMvjgkAAAADg0QKDQAAAAKAuJINAAAAAIHErg0AAAACghTODQAAAAOBgxINAAAAAYJ0JhEAAAADguE6EQAAAAABFVoRAAAAAIJ9bhEAAAACghWuEQAAAAGCMeoRAAAAAANuShEAAAABApKKEQAAAAADj3IRAAAAAICdwhUAAAAAgxamFQAAAAMD6C4ZAAAAAwC1shkAAAABgaXuGQAAAAMDSiYZAAAAAIEmUhkAAAACAutGGQAAAAGBLIodAAAAAgF46h0AAAACg1bqIQA== + KBZXds7jZUAtECBNt2JpQDRZTJGzQXBAo+J3Wr8CcUCRoHe3LTN4QLzfPd+k0nhAWPsL8UVkfkC8PRoz/eN/QAlJD5xKKoJAmk2QNIzihECcd4tnxQKFQCug6VzxyoZAkSwQY8N6iEDyy49sXdOJQPRZ2n9PE41AhqwzqLTbjUAfhFyCm0uPQCfs7FsQcpBAbgCcViZWkUDBWJPPE/KRQLUUS1E8OpJACtvTmzROk0CZKh5Zcr6TQOA+zVOIopRA7vCmo2rSlEDSBnqroFaWQFwuDeujbpZAo0K85blSl0C2HE2z1tqXQOpWa+DPNphA/TD8rey+mEAxaxrb5RqZQERFq6gCo5lAeH/J1fv+mUCLWVqjGIeaQNJtCZ4ua5tAXJWc3TGDm0BAq2/lZwedQE5dSTVKN51AlXH4L2AbnkAkwULtnYueQHmHyzeWn59AbUODub7nn0DgTT0Z1kGgQATYlBbhs6BAEC30YwIaoUD2Yn4a/HWhQJu3lGQVqKFAG1tn6RF4okD0QsdrOM6iQA3mUO0sOqNAMXCo6jeso0CyOmc3RrSjQNZ7h51WYqRAYQYonmnwpECtzmmGYCClQCGSo6iU0qVABlqcjYPmpUDEUTxZkcymQPLCYdKy5KZAFk25z71Wp0C23CVdrI6nQKHXWdDQ5KdA - + - FJpNQIYF1UBvIQlBZHGQQF6gaUD+rM4/5OcWQEZg8D/dvWdBkBQUQYRNE0A4xYVAHcIuQINAH0A4wjBA4ca8P63/gUCBv1dAL+7nQEMf8ECngJ1BlQc7QDoGH0AgtelAutCPQXO7KEE9AqNA+fEMQKR0HEGzQiNCSNDhP66LyECAGD1BJusUQNfqnUHZ27JBbkcpQKhpw0Ak/uE/HSPPPxLDL0CLcgxA7WuQQELlVUBVpE1APTRyQJ+TfkAGz65BEL9OQIVpJkF0iCZB8QN8QXJmj0HqCs1Ai7s7QIQPFkJyVA9BYHT0P+Gsc0FerVVAX83VQBWhz0H/SeI/ZTGEQfN4A0Dmbt9AgHQBQJxt50ACsVZApKEnQqZlskAFKiZAqK/iQM/FSULwuYpAgLwMQMp5A0DS/uxAcAP4QBiRuEALFSdB6n3xQXB3CUF7XwZCHBMPQsxEFUFT3mZBK+lKQVRs7UEy0gJAGZR5QFEIPUDM15dBbpgJQ1XTikFGNA9BoCy/QK5mC0BXOShA2cAAQnVa6kBCumlASF7BQcWxZkCo6MJA1greQS5fX0Bfe1JB7bMRQfimMUB+r0lCoiHiP3nxMUEbLWBAVPK8P7gOQEJwiIVCktQQQYLpwEKpuQZBsjW8QhUM2UKeybRCBPaIQb75mEBWkJhA6joDQcrsOEH2zAxA8AiHQXQrrUAR86pAW6uaQVw9QUA8HXJBCrgpQswtu0KPm4BBaMp5QNiH0UDJUgVAo1XuQIp3D0ETJHJCNDoNQi+/uEAfhqZACLk1QmWsQkAqLYJAY8/NP9TXT0HaP49Azfn+QAU4kkFKzdJAOCEtQfGegkBkyQxA3h01QavjtEDkMGlAtxZbQWKxb0CxZgxAOf2ZQDTi6UBOnoVBKWCQQDKIvUC3E/Q/zyemQGpCPUE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQH8hcEAAAABAnv9wQAAAAACt4HFAAAAAQMVQc0AAAADg+Q10QAAAAGBIUXVAAAAA4KrjdkAAAADAn654QAAAAMDKInpAAAAAwFFTekAAAACADUJ7QAAAAEDtZXtAAAAAQEcNfUAAAAAANKx+QAAAAMDe1n5AAAAAIN92gEAAAACA6ciAQAAAAKAIoYFAAAAAgAQbgkAAAADAb5mCQAAAAGDYs4JAAAAA4ETNgkAAAACgudKCQAAAAOCgyYNAAAAAIAT5g0AAAABgaoWEQAAAACCyy4RAAAAAIDyhhUAAAADgLK+FQAAAAKBn64VAAAAAoHTzhUAAAAAAN/uFQAAAAKAPGoZAAAAAIKFlhkAAAAAAMMKGQAAAAOBN+oZAAAAAILv/hkAAAACA+iqHQAAAAKAcg4dAAAAAYJU+iEAAAAAgMqOIQAAAAGCtqYhAAAAAAILPiEA= + NrgMGZxjYkDGbTWMzMVuQDitQvclAnJAOQsfS37Tc0BXXNs11mN3QDgLH0t+E3lA5bMnVa50fUBaFCF8AYR+QB/gONC44oFAkLfa2ozag0CDDQPtRPuEQEoKu9IE24dAsBOokqYjiEDZMhnIMKOJQNkTL2K5W4tAoF6/15yrjECgP9VxJWSOQGeKZecItI9Ae9lhbhq+kEAakLxWPjaRQMLtEGkwopFA/qWPXnS6kkCmA+RwZiaTQO0Xk2t8CpRARyjQKpUWlEBdPREsuzKVQG0vioDSzpVApFHAJtEWlkC0Qzl76LKWQCBBAL7s4pdAmFkMgx43mEDfbbt9NBuZQGnDQIoNP5lAkYQgjHqnmkD4655/OQebQNiYz4aQi5tAQW7fS1pjnEC8rqKOxg+dQAPDUYnc851Ai16x6YVnnkBMRZJV/U+fQD11FvjL859Aw8Ri+fBroEDLGrJ5FKqgQBxQlQAUMqFAJKbkgDdwoUBA2uz9HqShQMtkjf4xMqJAoASmHGDkokDwXHbNRzSjQMSO/RlrVqNAFOfNylKmo0CEGnkkljikQDnftploqKRAdqViKLH6pEAraqCdg2qlQGgwTCzMvKVA2X6Ym6FqpkBy8C3g0IqmQP2/uAGyGKdAZHsX5OtMp0CIASJryuKnQFYGAegGD6hASJHq6yHRqECt+Qo64OSoQG2FhkQLx6lAOtOcWEIXqkCRD95BFjmqQLWZNT8hq6pAX8uFJ1gZq0Bjri09P6urQLhWuC57P6xAVTkXQVptrEDCFprifw2tQK7ESUh9M61A5qDx34p/rUAKK0ndlfGtQG5QxVKoFa5AktocULOHrkDi67yXqveuQOtlT1fWTa9AbXZdmL2Fr0AP8KZU4b+vQLO97C0CQ7BAMNyHAu9lsEAKyOgsEcOwQDW8eFzxzLBAR4Ek2/YFsUCDjd2uHiSxQJVSiS0kXbFAwEYZXQRnsUCaMnqHJsSxQBdRFVwT57FAw5au3yRKskCTU9O9NmeyQNVbWl4qg7JA2JgjPkCuskCBofPhO+ayQJNmn2BBH7NARHldm0oxs0BWPgkaUGqzQHMs3eVWkLNAaAO1mFWjs0AfcnZpaPOzQG3jpfJXCrRAmDdr63VUtEAZKT92aZ20QO9BZ+qE1LRAAQcTaYoNtUArpbNddB61QBPMvuePRrVA85H8bKW3tUAkxgyUhMG1QJ2LARaSIrZABQ5xVLA4tkAWUfaXn4O2QMuuJYm8nbZAjxbrGa3ktkBdzzW8xPS2QJT223OvS7dAtNkxu9N0t0ANvND1vKy3QC2fJj3h1bdAhoHFd8oNuEA/G5sk7Fa4QGZHA/3ffrhAUeBGo/GPuEB4DK975be4QGNcu4r8ELlAqKELCwZYuUC2u4/J+XG5QLpmt4kLkblAYgEpTQvVuUBmrFANHfS5QHhx/IsiLbpAdH2dNBZWukAkt5UPNJC6QAaerWcerbpAGGNZ5iPmukA2Mwr3PhG7QJEoTmgxR7tAyFMaKkdou0Cj7fnmNoC7QOzdcSdS2rtATzOTakjju0Bh+D7pTRy8QH7+gVpaMbxA2r0za1t9vEBd+lFAYaS8QOyC3+lgtrxAb7/9vmbdvEC0BE4/cCS9QMxIHW92J71A3g3J7XtgvUBGJV5yeHu9QFfTvW+Jwb1Av+pS9IXcvUBpmGnujvq9QHtdFW2UM75A0WbH25BdvkD0IgrvoZS+QEosvF2evr5Abej+cK/1vkBPDK23oCW/QH+tqu+0Lr9AFa1h7KyKv0DWt6buw66/QMHy+m++7b9Awf4fueogwEDDyVdSZSnAQAoPqNJuTMBAfyxSE+xZwEAID6jSbnbAQPrxRpX5hMBAqzHQkvOZwECB1JxUfMvAQJlJN7wD4sBA - + - XfwMQDKs3EBIglRAhGQkQfdu0D89pilAdGQfQPIGN0GxLJhAsisfQCNrDEAFtrVAVnSHQL1fX0DaXl9A3fiTQZmHkECLIhtBFNsVQPaCkEDNFIZA4t3WQevdBkFgvuJAeDmUQDVD90DSO2dAEkrZQIq7TUAXSA9Bf4NWQJUJxUAbspRAlgrDQSRfrEBqWkZBi+QuQLm4VkCiCtBA0Lr0P9MNmD82rWxB8UCHQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYJ3mZEAAAAAAyEpmQAAAAGC27WZAAAAAYOKfaEAAAADA66hsQAAAAADyI21AAAAAAEBDcEAAAAAgelNwQAAAAOB/YnBAAAAAAOZzcEAAAABArl9zQAAAAEA6Y3RAAAAAABCBdEAAAABADTJ4QAAAAEBVyXhAAAAAwEKue0AAAAAArPR7QAAAAIDhDn1AAAAAAKUkfUAAAADAhkZ9QAAAAAC9Cn5AAAAAQBeWfkAAAADAsut+QAAAAIC0MX9AAAAAALtMf0AAAADAdGF/QAAAAMDEOIBAAAAAQFFCgEAAAACAnGmAQAAAACARlIBAAAAA4GGngEAAAACA1uyAQAAAAOBB/4BAAAAAIJkDgkAAAABgw0+CQAAAAKCzgYJAAAAA4G6MgkAAAACgpOaCQAAAAKCu8IJAAAAA4Egag0AAAADgRTCDQAAAAKB1Q4NAAAAAYB5KhEAAAADgEdKEQAAAACBTMoVAAAAAAJZHhkAAAACg5GGGQAAAAKDTWYdAAAAAoFN7h0AAAACAPuWIQA== + NrgMGZxjYkBImCMySWRuQEMdzoN8QnFA - + - wVWqPwO4qj+349FAPI1OQM6M9D+rIh9A4bqmQEDaxkDWcZ9BNJfVP0Mo0kDfDhZASZJgQPkPvT9Om5xA3KBNQBtdmEAa71xBegwWQCsHRkC+fFJBYJF/QDzXAEG6JkxBcGMBQZkBcEH7ZXNBEKATQFYRqkGL4aNAbj61QAc0V0Fu9t1A0K2vQAD2hD97xaVBUEPtQPePfkAzEZtBbbzdQCc1cECnDStAXGsfQcOy9D8irKFABItNQJh2BUGk6PpA2E9hQJXY8UA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgOpMWEAAAACg+oxYQAAAAIAGDllAAAAAQArSWUAAAADADgRaQAAAACB4TVpAAAAAQFPYWkAAAADARElbQAAAACBBkVtAAAAAwO5KXEAAAAAgn5hcQAAAAIDlwVxAAAAAwCAUXUAAAADAjERdQAAAAKCDP15AAAAAwO/HXkAAAACAQhBfQAAAAACBKmBAAAAA4MtGYEAAAAAgY2BgQAAAAEDxh2BAAAAAQFanYEAAAAAAS+VgQAAAAECeomFAAAAA4JXlYUAAAABgmRliQAAAAEBLY2JAAAAAAMOpYkAAAABA+QdjQAAAAIAtXWNAAAAAgF2CY0AAAACAAqFjQAAAAMB/42NAAAAAoFhhZEAAAAAA2qRkQAAAACAuAmVAAAAAwChCZUAAAAAAzGdlQAAAAMAMgWVAAAAAQPyoZUAAAADAbsJlQAAAAMBz42VAAAAAIP8gZkAAAABAuktmQAAAAIDxYWZAAAAAgMjfZkAAAADgAAFnQAAAACDAI2dAAAAAgCA/Z0AAAAAAFmdnQAAAAID6h2dAAAAAIJa+Z0AAAADA7ehnQAAAAMCKB2hAAAAAwNAmaEAAAAAAmGZoQAAAAMCghWhAAAAAADjEaEAAAABAtudoQAAAACBQBGlAAAAA4FQkaUAAAACgWUNpQAAAAIBbWWlAAAAAgByraUAAAACATgdqQAAAAIAkSGpAAAAAwP5nakAAAAAA4X9qQAAAAIDDnmpAAAAAQNvGakAAAABALeBqQAAAAEACB2tAAAAAAOhea0AAAAAAVuJrQAAAAMDpS2xAAAAAgDdxbEAAAADAfYdsQAAAAADLyGxAAAAAwN7kbEAAAACAUQhtQAAAAEDsh21AAAAAAPSlbUAAAADAecRtQAAAAMCb521AAAAAwBv8bUAAAAAAnCRuQAAAAAC9Q25AAAAAwJZnbkAAAAAAwYBuQAAAAIAepW5AAAAAAEnFbkAAAACABttuQAAAAACzYG9AAAAAgD+Lb0AAAACAOaZvQAAAAIBPyW9AAAAAgKnwb0AAAACg8wJwQAAAAMDvE3BAAAAAIPEicEAAAACAYjZwQAAAAIA1QHBAAAAAYHdYcEAAAABgIXJwQAAAACDbpXBAAAAAAErBcEAAAAAABc9wQAAAAOA/4nBAAAAAwNr4cEAAAADAMANxQAAAAKByFnFAAAAAoFEgcUAAAACgzDFxQAAAAOAWYHFAAAAAgHyEcUAAAAAAl5FxQAAAAAC6nnFAAAAAYE+pcUAAAABApb9xQAAAAOAr0nFAAAAAICfncUAAAABAKPJxQAAAAEBOEHJAAAAAwMQhckAAAABAX1VyQAAAAECTdnJAAAAAoEeyckAAAABAK8FzQAAAAABT13NAAAAAAIxPdEAAAAAAlMR1QAAAAODhmXdAAAAAwAQJeEAAAAAAeVt4QAAAAMBWinhAAAAA4LcWeUAAAAAgOCV5QAAAACBq33lAAAAAAB/qeUAAAABgvPR5QAAAAMAuJXpAAAAAIAM1ekAAAABgtgN7QAAAAODIFXtAAAAAwNDjfEAAAACgP0N9QAAAAMDVVX5AAAAAQC92f0AAAAAgNBuAQAAAAKDhOYBAAAAAoFlMg0A= + NrgMGZxjYkA= - + - I0j1P6niCkAjVR5B8d8jQXrdrUDyonlAbpsxQKLWg0B1cIdAT5ZwQTeIk0B2XB9A/5EXQQGpGEFs0kZA1GOmQMXxA0BacRxBkzcCQWydSEDw8eY/8006Qed40T/qj0RBToB+QFYYzz8mOBtBHPfGQNWWBEB3MQJB7zAPQKayj0BiKd9BZftWQPc9nkCD2oZBh64WQBfriz9nTKs/FsZTQ9QmJ0Eo6DlCuAXIQeOmUUHfowRB2KK5QZRKFkCrTpdBPUquQQ+SBkG6UaBALHbnQKBrhkC1NihAMCtrQSfWVUGaEkRCow4pQQJEJUGibmtAgEsuQ1jOWUDm/O9AAcy1QBMaMUAsFPU/zJiHQE4lkEHGZ7hBUnz4QCPBPkEuy9RAxcRyQFt0mUCmxxhBK9JiQVipFUHcshNBU/YrQRTtYkHVF49B0odcQeHDnUHQ84pCTDQcQDiG4UCehoBB7CtmQfy7NEHKFgNAegdtQHO64j8ArB9AAUBXQKYUUUGoYX5CfRlSQnQTIkPyeuJC+7kxQZwyTUCXn2BA6OImQeTNKkNqUhZAeC2UQZ8vekB025NBoPobQQ6TpkH2S7pBXOEBQkyu+UHYM/U/DPdQQl15jULISSBAGBOyQEHqqj/t2qFA0kwWQEZQp0D+v0pBcDDfQFxmFkDiTu5AGM0oQHXQq0BOZ/VAq7edQCFcmD+3jwpAK32AQVvMSUHg7ao/N0fRQNCJnUAgr5FBLCdkQQEVZ0CycMxA8WXCQM6YJEQsL55CgLX4QGZluUAQAnpAWZEnQFhBekDZ8zdBSC2GQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4GzHWEAAAACAGQxZQAAAAEA0jllAAAAAQMrGWUAAAACAKAdaQAAAAAAjSFpAAAAAIOFcW0AAAABA2o9cQAAAAABLwFxAAAAAgA8FX0AAAAAAmEZfQAAAAGAYYmBAAAAA4LqFYEAAAACAkaNgQAAAAED1uGFAAAAAYPzqYUAAAABAZSViQAAAAEC3ZWJAAAAAABWBYkAAAABAfahiQAAAAKByFGNAAAAAQG9FY0AAAABA0mdjQAAAAECViWNAAAAA4CGlY0AAAABAnORjQAAAAMCyA2RAAAAAoKVnZEAAAACAHNpkQAAAACAaPWVAAAAAAN2lZUAAAADAJL9lQAAAAMC152VAAAAAgJL+ZUAAAADgFSZmQAAAAGC3QWZAAAAAIMhlZkAAAAAAxoNmQAAAAEDUuGZAAAAAgOYCZ0AAAACAziVnQAAAAECZRmdAAAAAQIRoZ0AAAADAQeRnQAAAAIBj+2dAAAAAgP4kaEAAAAAgVEFoQAAAAIC7Y2hAAAAAYMGCaEAAAABg08JoQAAAAEB+6mhAAAAAIIQiaUAAAADArEBpQAAAAIAPamlAAAAAAHqIaUAAAADA7P1pQAAAAIBsRWpAAAAAgM+AakAAAAAAlaVqQAAAAMDjwmpAAAAAwEXbakAAAABA6iVrQAAAAMDGWWtAAAAAwPN/a0AAAAAAhwdsQAAAAEAHQGxAAAAAAJhpbEAAAADA2X5sQAAAAIDlr2xAAAAAQDPobEAAAAAARWdtQAAAAIDJn21AAAAAwPXLbUAAAACA2OdtQAAAAIA2BG5AAAAAAF5AbkAAAACA0X5uQAAAAICjlG5AAAAAAMy/bkAAAACAXgtvQAAAAAATV29AAAAAQNJ0b0AAAACAZ41vQAAAAABsp29AAAAAAGjCb0AAAAAAK95vQAAAAACGAnBAAAAAAGwicEAAAABAS0NwQAAAACCxU3BAAAAAgLxxcEAAAACggpdwQAAAAAA0pnBAAAAAgDy8cEAAAACg1N9wQAAAAGABA3FAAAAAIHwPcUAAAACAJSFxQAAAACB3MHFAAAAAoOhfcUAAAABgjnxxQAAAAICTk3FAAAAAwAzKcUAAAAAAG+JxQAAAAECg8HFAAAAAwA4DckAAAABAJRdyQAAAAKAHUHJAAAAAwJWackAAAAAA/WFzQAAAAOCm5XRAAAAAwJRudUAAAACgI4J1QAAAAOCYw3dAAAAAILcyeEAAAACgyfZ4QAAAAEAHJXlAAAAAgJc8eUAAAAAgWal6QAAAAKDzBHtAAAAA4N/xe0AAAADglmN8QAAAACByEn1AAAAAoMIkfUAAAADge4Z+QAAAAOCJRH9AAAAAgHY7gEAAAADgrxeBQAAAACBgW4FA + NrgMGZxjYkBImCMySWRuQBu6YmAmQ3BAmHHSiBQzd0AJeGK9lHN3QNMTS17EU35AfR0jrYR0f0Cxtcs+TjKCQE+TEu+DcoJARJZveqU6hkDic7Yq23qGQNh2E7b8QopAdlRaZjKDikBpe5ROPvuMQD2AAHaei41AEmc6I9t9kECtaF4w+42QQI5Werr2SZJACpJOLDeOkkAObnHPTA6UQFSCIMpikpRA - + - 2ik5QGKWokHkzPQ/E3uLQWq0A0CMxgpA15smQIqWokAd6LFAJ3sMQVL0Y0ACzxhBYG7MQCHbWUHzZMdAAmF8QKRNm0Br7qdA5M4PQemrH0BONE9AGNw8QAgqH0GwZx9AB/zaQOJLWUGrrXlANlFoQVjAI0EqBwRA+lnIQauBnUHCYflB9P0CQKDZ+kBteURA9nm9P62Cr0Bv3zhBqMjqQF51KkFeP9lATp3uQNX02kDLjcJAevkbQS7Yy0BFdzhAiC6QQT7EWED51SlByrFiQSj760BThItAhOiBQKbHA0BwfTtAMRxPQsE8NUHQkRZAQyTHQEZPvEHZ/slApMHiPyB3jkFTB21B6wspQEJFNUATwJNBzRUpQGca+0DR2DxA3CcdQjDVP0G737NB3PyJQRLD4T9CLchAXsUBQDc/yEAA55ZBX5iTQQf8C0GOr9JBrblmQqYFLkGU08FCWrlbQaqmWEGf9vQ/yikKQ1Y9BEF126FAQoiuQP6TsEGh1KFB0RCBQGWh+kH/dCZDejKuQX5ZHEKYoDxCn/fkQZ94Y0GzMro/vBIbQRtJFkDYlQlC66gXQEqIFkFQPaRAI+QgQIGlGEGsyao/+vkKQGsVN0FaVPVAX3u1QIZ2PkFHnDdDuP95QDaiuUC1LFdAaqJmQVLLT0EUi88/DpxOQPj2ZkD4N4hA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgJP/aUAAAADAdKpsQAAAAMC7pG5AAAAAALyIb0AAAADgIE5wQAAAAKA0L3FAAAAAgBWAckAAAAAAXrZyQAAAAGDdU3NAAAAA4JWRc0AAAABA+J9zQAAAAIBtEXRAAAAAgIVmdEAAAAAAC0Z2QAAAAIDF43ZAAAAAQPrWd0AAAABArnF4QAAAAACJhXhAAAAAwDmueEAAAAAAuBh5QAAAAIDIRHlAAAAAQBuSekAAAABAOrR7QAAAAEBxUHxAAAAAgLChfEAAAAAALMN8QAAAAMA+VX1AAAAAgBlifUAAAADAwXV9QAAAAIAGBn5AAAAAANlifkAAAABA8HN+QAAAAIBOSYBAAAAAoF5ZgEAAAACgHYiAQAAAACAGKYFAAAAA4Cc4gUAAAACgM6OBQAAAAKATtoFAAAAAgFm8gUAAAACgV+WBQAAAAOA+64FAAAAAYNL6gUAAAACA+xKCQAAAAOCbKoJAAAAAIDA7gkAAAACAUXWCQAAAAKBCm4JAAAAAgH+6gkAAAABAwMGCQAAAAKCjyoJAAAAAgKhLg0AAAADgz+aDQAAAAMDR64NAAAAAYNcjiEA= + NrgMGZxjYkCmvpxNHCRnQI8BR/y9MnFAxwSPFv6Sc0CPXyNQFkR4QA== - + - K3PPP0qJxkBQfuI/c0MfQHXRFUAO9wNB4c0xQMbc80A3ZLFBkvjUQD5jlEHu5wBBZt0XQLPuU0BXDrdAlyoPQZX4RkE/snNBmqUzQQYbA0CAr4tB++v+QFXhvkD4bihAHVkyQc7b1UDGh88/H7oeQMBLq0BzOYpAIXgaQW8PDUB70gRAdwt0QIJ8o0CdCzRASGysQRJpq0CJ7jFAYpEVQOGGp0AyYBZBEr4YQSOZgkHHJ61B9W7LQN/khUFKu1JBOemFQEqKJkHuP4NAKRJLQA1RaUAyCWBAs26YQA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwNeaZ0AAAADAb5VoQAAAAAAJnGlAAAAAwKwBbkAAAACAACduQAAAAEDtaG9AAAAAwEWZb0AAAADAlh9wQAAAAADivnBAAAAAwJxBcUAAAACAiLFxQAAAAIAP0HJAAAAAwMcCc0AAAACAU+hzQAAAAIBV5XRAAAAAAHVSdUAAAACAGWB1QAAAAICmcnVAAAAAAFYGdkAAAAAA1lR2QAAAAAAulHZAAAAAgHOLeEAAAACAcbF4QAAAAAB0EXlAAAAAALkfeUAAAABAq2F5QAAAAEB7dXpAAAAAAKfDfEAAAADACs58QAAAAIDgVH1AAAAAQILNfUAAAAAA4PN9QAAAAIDBAX5AAAAAgH4xfkAAAACAkFt+QAAAAMA4kH5AAAAAAI+sfkAAAABAnCx/QAAAAADBzn9AAAAAABEGgEAAAADAZRmAQAAAAKAGTIBAAAAAwJB3gEAAAABgiYiAQAAAAGDzk4BAAAAAYBWtgEAAAABgzLSAQAAAAKB6xIBAAAAAwH7QgEAAAABgYwCBQAAAAGCoDoFAAAAAoMITgUAAAABAOCiBQAAAAEByMYFAAAAAAAQ7gUAAAACg6FGBQAAAAGBfXIFAAAAAICMMgkAAAACgJYiCQAAAAOAakoJAAAAA4MOYgkAAAAAggtmCQAAAAMCh4YJAAAAAYDLwgkAAAABgTBmDQAAAAGDzHoNAAAAAADgog0AAAAAgJ76DQAAAACC204NAAAAA4ID6g0AAAAAgf++EQAAAAIBld4VAAAAAoJgIhkAAAADAGZCGQAAAAGBUooZAAAAAoIkFh0AAAADAcEyHQAAAAAByvIdA + NrgMGZxjYkDiYBUjzERrQEiYIzJJZG5AOQsfS37TdkBLjVkQ00J3QK2w3zpu1H5AvzIaAMNDf0DquBNZjnKDQMNG15xtOoRA7nBZn7lyhkDq5wGDOvuGQA== - + - 7HX2P2LiZ0DmE7RA4w4GQQi7cUCzgg1BcjBdQBvUlj8Pyk1AQ23IQHh+FEAEduRAjUOCQPGCKEAseoZAX9bhP5p1lUA8WLVBPluwQCheX0Eyb1VANlldQBQLJ0CrNnFAoHusQCfuMUBvF25By5+vQF3MHkD74kZBIYJbQkBPRkELswRBHZQKQIkqJEELgAFBm58xQJ1WTUD2sc8/GdB0QdB1cEDPReI/G6CnQOROYEAxJeE/ZaChQLxkgkARt0BB3vshQWkRTUHOFDRBAkrOP8vNi0AYTUNALCrMQKzPj0FRIMxAp9hCQPcI0kC1Jh5A7D8UQOVvcEG/2KpADPS8Pz+ZA0JYrEVA/Gu0QKLeV0A39AdBcTphQGTXf0HYQaxAyOV8QDAAnUA3d8ZACKFhQRCrjECq5YVA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwPZJZkAAAACAj2xmQAAAAKDmY2hAAAAAgCvHaEAAAABgWKJpQAAAAEBJ4mlAAAAAQMT8aUAAAADAXSlqQAAAAOCFQmpAAAAAgD1qakAAAADg8J9rQAAAAICcxGtAAAAAYNbga0AAAAAAfQRsQAAAAICFJWxAAAAAQAFHbEAAAABAFsNsQAAAAEAxHm5AAAAA4NuqbkAAAAAg7ERvQAAAACBtY29AAAAAQNN7b0AAAACg96NvQAAAAKCKwW9AAAAA4LgkcEAAAADgQDVwQAAAAMCCkHBAAAAAILmxcEAAAACg/b9wQAAAAGDG0XBAAAAAABvjcEAAAACA7/JwQAAAAEAuRHFAAAAAINVTcUAAAADAOHBxQAAAAAB6knFAAAAAAFmfcUAAAAAAfrRxQAAAAAARwnFAAAAAAPPQcUAAAAAAo+FxQAAAAEB48XFAAAAAgPZ0ckAAAACAfKxyQAAAAIDkynJAAAAA4GsTc0AAAACAj9dzQAAAAEBO5XNAAAAAwJcDdEAAAABABXF0QAAAAMBEf3RAAAAAwF6QdEAAAADAJKJ0QAAAAIBOMnVAAAAAQCxBdUAAAACATlB1QAAAAACfjnVAAAAAQIn1dUAAAADA8DF2QAAAAIBdQHZAAAAAQIRRdkAAAABAumN2QAAAAADp4nZAAAAAABo2d0AAAAAANER3QAAAAMBdUndAAAAAwOhid0AAAABAonV3QAAAAEC1rndAAAAAgMT0d0AAAAAA6SF5QAAAAEDqLnlAAAAAwMJReUAAAAAAtoN5QAAAAIAj8nlAAAAAgGkRekAAAADAJyR6QAAAAMCvZHpAAAAAQBN2ekAAAABASIV6QAAAAMB55HpAAAAAgJHyekAAAABAtkd7QAAAAEBIg3tAAAAAAOeVe0AAAADAIvR7QAAAAECPEXxAAAAAABBLfEAAAADAV3R8QAAAAEBLlXxAAAAAQMYLfkAAAADAIGV+QAAAAIA5n35AAAAAgACyfkAAAAAAu8F+QAAAAMAKHH9AAAAAQCFrf0AAAAAA9H9/QAAAAEBykn9AAAAAgFqff0AAAADAcCaAQAAAAGCEMoBAAAAA4AE6gEAAAACAikKAQAAAAOBBYoBAAAAAQINqgEAAAADA9qKAQAAAAOBYqYBAAAAAIK+7gEAAAABgXcmAQAAAAMCZ04BAAAAAIGPhgEAAAAAg3jCBQAAAAKCiO4FAAAAAIB1DgUAAAACAMUyBQAAAAODRU4FAAAAAoPmGgUAAAABgKo2BQAAAACBJnYFAAAAA4P3IgUAAAAAAL86BQAAAAOBB8oFAAAAAQHv6gUAAAACA5wOCQAAAAIC3EIJAAAAAgI4ZgkAAAADgWyGCQAAAAGAtM4JAAAAAQFZVgkAAAADgkVqDQAAAAKCkcYNAAAAAoIHSg0AAAABgYumDQAAAAOBYA4RAAAAAIK1ThEAAAAAgKWOEQAAAAABnaIRAAAAAwDxwhEAAAACgU3mEQAAAACBNtIRAAAAA4OXphEAAAAAgOfCEQAAAACA7A4VAAAAAIPOChUAAAADAfYqFQAAAACAI+4VAAAAAIFoDhkAAAAAAoomGQAAAACDPk4ZAAAAAwHvBhkAAAABgq/mGQAAAAEBeA4dAAAAA4Ohqh0AAAAAgtKGHQAAAAEDsrIdAAAAAgJ01iEAAAADAl3GIQAAAAGDTgYhAAAAA4PeoiEAAAACAxbKIQAAAAKC76ohA + NrgMGZxjYkD60UzrnGVsQBu6YmAmQ3BA - + - 2qWyQOsCkkH3HB9BWyDLQDQ5dEAMS5hAz1QnQGnQjkBDhURA728fQOc6O0JmElBBCy5qQjKUk0ELxzdCV1SVQCMilz8nIChAXKyMQLnhlUDdEddBiNvJQWh5xUGri8FA4dotQWYjCkB9GwZBzEVWQ4jen0LMUS5DDVZdQfYTukAuAJlB7YSWQMwglz+MM1hCcJSAQUKBW0IqamZB1KW7QacZTEEiUYNC7xsoQMBULEH8S7JAthleQNT9uz83Xbw/3X7AQMHHvD+twKtBY/2qQCNQVkDS5GhByAMeQF9MLUGZhChA2CysQBRptkM0iLZDXZs+RIOlokJB4vM/Yd1bQcFn+EDXhsVBAh88QT3LFEJc4GtAtPgCQJWBqkAykQ5Cfs+4QEQe/kDuqHhB1pJhQoCkfUBdZL1ArgM4QXhp0kDDGARBcU/yQYE0TUBg3nhAs7uFQM90ckCaOyhA0iAGQZL/HkAL5xFBmoy9QcfVzEFt0+4/zJVEQcAAEUHNBI1AOiaVQTnqz0G5hzVCa1scQKJ3QEGXMYdAeEr9QCSTLEG5XJ1A0alVQSafAEA640xBQCI0QQKPb0JXjPM/6wPTQAEe+UC4ZGBAuskFQZuc8z8GT6hBkMTWQUYqOEEVW3lALsSwQp5KJ0LsXN9AYi7bQUE54EGRC+1AD5h1QS+KZkGMO61BGpAiQwBzmEDo0DNBBZ7lQEqVMUBJHRdBZJW8QSA/V0EzqctAQH0uQXelkkEP96xBUFD0P/ynYkGly6JAxt2YQg5AIkFSZ6FAZ40aQboW0kGDxFNAK/cpQWa7/EBgUuZA6YHUQDca2UCC0wxBGNCcQLNzzj8IZMNANjAMQLP6ukCTE8tB + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQDJGXUAAAACgW8peQAAAAKBGLWBAAAAAIFxDYEAAAAAAMqRgQAAAAMCA5mBAAAAAQCplYkAAAABgAoZiQAAAAICyomJAAAAAQDoLY0AAAABA6JpjQAAAAEBwxWNAAAAAQJtkZEAAAABAk39kQAAAAABAqWRAAAAAAINcZUAAAABA4eBlQAAAAMA4RWZAAAAAIF+DZkAAAAAA8udmQAAAACDkB2dAAAAAwNJDZ0AAAAAAnIhnQAAAAIAcqGdAAAAAgELEZ0AAAADAnSBoQAAAACAQYWhAAAAAYIQoaUAAAAAA9j9pQAAAAKAX52lAAAAAAOQGakAAAADgtSZqQAAAAMDoYGpAAAAA4MWkakAAAABgzMBqQAAAAECVSGtAAAAAgMBia0AAAABAdL5rQAAAAEAr5WtAAAAAALANbEAAAAAAoyZsQAAAAEBFRmxAAAAAQKrPbEAAAACAOIVtQAAAAACgpW1AAAAAQPjzbUAAAACAsSRuQAAAAICYZ25AAAAAAOaJbkAAAABAP6ZuQAAAAEC/C29AAAAAgARIb0AAAADAa3NvQAAAAIA6p29AAAAAwLzBb0AAAAAAG+NvQAAAAEBKC3BAAAAAQDgicEAAAABAfjRwQAAAAMDbUHBAAAAAQBZjcEAAAADgUHVwQAAAACAQi3BAAAAAQIGYcEAAAADA1a9wQAAAAABywXBAAAAAgP7PcEAAAABgpOBwQAAAAMCq83BAAAAAwJo6cUAAAADglURxQAAAAMBoUXFAAAAAoGRicUAAAACAU3JxQAAAAEDrf3FAAAAAYIyScUAAAABgBqRxQAAAAEA2w3FAAAAAgEPhcUAAAAAAJ/JxQAAAAEBsAnJAAAAAoOQUckAAAACAbTVyQAAAAMBaRHJAAAAAwO9RckAAAACA/nNyQAAAACB4hHJAAAAAQMCOckAAAADADbByQAAAAKD30nJAAAAAoNThckAAAADAv+5yQAAAAECcAnNAAAAAQEkRc0AAAABAtCNzQAAAAOCPNnNAAAAAQKFDc0AAAABAB1ZzQAAAAAANc3NAAAAAwDiRc0AAAABAZv9zQAAAAKCQJHRAAAAAQLsxdEAAAAAALkB0QAAAAAC/UXRAAAAAoG1wdEAAAABALXp0QAAAAOBNiXRAAAAAgI+VdEAAAABAWrJ0QAAAAMDJwXRAAAAAwCzUdEAAAABAkd90QAAAAACTDXVAAAAAwMUddUAAAADAQjZ1QAAAAABUa3VAAAAAwP2AdUAAAADAsIp1QAAAAOBXB3dAAAAAoC8Rd0AAAAAACUF3QAAAACBScXdAAAAAYKd9d0AAAACgKPd3QAAAACB3OXhAAAAAoHxneEAAAACA39V4QAAAACB+73hAAAAAAGgUeUAAAADANBR6QAAAACAsBHtAAAAA4LUje0AAAADgdeR7QAAAACB9+HtAAAAAoOQzfEAAAADAwht9QAAAAMC8Nn1AAAAAoPlFfUAAAABAElB9QAAAAOCQ/n1AAAAAYAVmfkAAAADgIIV+QAAAAOAIln5AAAAAwPmEf0AAAAAgopR/QAAAAICTAoBAAAAAoGgygEAAAABgWpKAQAAAAODYuYBAAAAAIHrCgEAAAABAAtKAQAAAAOAU2oBAAAAAoKHjgEAAAADgDPuAQAAAAECxAYFAAAAAIMyEgUAAAADAReuBQAAAAMCZ+4FAAAAA4D4qgkAAAAAgUomCQAAAAKCJoYJAAAAA4JnKgkAAAABAH0mDQAAAACACB4RAAAAAQGYMhEAAAABAj9KGQA== + NrgMGZxjYkA= - + - D8K7P/ZpjEDkN9NA0cpoQGDPk0BUrjFA8Fs/QR086EBVqNA/GgOQQGCVJ0CqUuhAe0kaQhxwpkG4qRJAqtTCQBeLlj8wY84/fku+QLL4FECBY84/G+EwQSTudEG46x5ARmaoP82Ch0A88bhAZlt0QTK94EBUeOJAecRMQWQ8ikB5ol1BHYUkQYjUBUFVtx5AtwUDQFJzhUB5O+E/08RWQJc2aUH75aVAOhyVQGy/p0BJQ79AQKmNQTEJqUFCHxFBIuFMQKaIlj9qg9pApPO9P2Zw5ULyM5hACB5WQE6pikAaxu9AjtXfQSUiZEFYOQFB5wIMQGZap0AF05NBFrofQT6lr0E8CQZBDCkDQN2s7kEvSKFANuftQEZKbUGLoVZAOrAhQuEQjEE2tuE/tagBQT1YIEEgZuA/NPK8QOwClkMtjr9CJewqQXLyNkG3MLNBO+2lQM2RVkDphpY/HSXwP7aqD0FU6qxCpX6LQFToOUDciS1BgeyvQHQNY0H8lyxCfLQ1Qp3SBEGLPpZB0b86QGbD+UAkJa1Bsq0lQSXnFEBfIipBLwrNRAtbJ0KCH4NBlOXkQA2LLEGsFihBwdw1QhYxy0AmcExAmPPjQLbQbkB/RW5Bn/XZQPTJ7kBbjG9Aa/EeQEZWOkFdrARCJmryQNA/h0E4A5pAnEU3QAMxOkA/Ip5AzwXiQVqtn0FtsMhAXCc5QVaHHkAvWzpAzZumQA62u0CYVjdB6K+oPzzQrECBTFZByITSQie0LEEX3EBAqBs2Qw7Z8kDlJQxAY3iFQN2ZZkJg2ZBAnHcCQPnzHUDKVrVAT8mAQOMaikDd3RhBPddCQCZU4kDf7DtCwdIaQScszj8OtplA4OAZQuJ94D/x3h5BFFCCQJwKLEI= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAwDADWUAAAADAj9hbQAAAAODEjV1AAAAAQHXMXUAAAACAVkxeQAAAACCLP19AAAAAwPsDYEAAAAAAgH1gQAAAAADupmBAAAAAQDXJYEAAAABAteZgQAAAAAA8AWFAAAAAAFPGYUAAAACALB5iQAAAAOCyhGJAAAAAwL6iYkAAAACA3sBiQAAAAMAL52JAAAAAwMBqY0AAAACAL6FjQAAAAEDxxGNAAAAAAPPcY0AAAABAA/5jQAAAAAC5IGRAAAAAIOE+ZEAAAADALmRkQAAAAKATn2RAAAAAwNZsZUAAAACgBaRlQAAAAODXt2VAAAAAICbiZUAAAACAOCFmQAAAAEDQZ2ZAAAAAgOCEZkAAAACAJZ5mQAAAAACj/mZAAAAAgGcoZ0AAAACg8EhnQAAAAMBAYmdAAAAAwGZ8Z0AAAADAsqBnQAAAAAAqA2hAAAAAwOciaEAAAAAAeFpoQAAAAMAvdGhAAAAA4FWJaEAAAABA0KRoQAAAAOAPxmhAAAAAwCHmaEAAAABgfWZpQAAAAMBsfWlAAAAAgEKgaUAAAAAA5gRqQAAAAACLImpAAAAAgEGjakAAAACAHiprQAAAAEDNRWtAAAAAgE9oa0AAAACAlolrQAAAAMDUqGtAAAAAwAHHa0AAAACA2OprQAAAAADoIGxAAAAAgDc8bEAAAADA8MdsQAAAAMBD/2xAAAAAQA5jbUAAAACA1aRtQAAAAIDcxW1AAAAAANllbkAAAADAKuJuQAAAAACtAW9AAAAAANpdb0AAAACACIRvQAAAAEAxuG9AAAAAQL/lb0AAAABAzgJwQAAAAID/EXBAAAAAoIQgcEAAAABgJzJwQAAAAIA+VXBAAAAAQGVhcEAAAACA/HFwQAAAAIDog3BAAAAAIG+fcEAAAAAAVrRwQAAAAIB81HBAAAAAALsBcUAAAABARRNxQAAAAAAoInFAAAAAAAQwcUAAAACAXEFxQAAAAAAiUHFAAAAAYOVlcUAAAABAS4BxQAAAAEDHkHFAAAAAwD2vcUAAAACAmsdxQAAAAEA693FAAAAAwMoSckAAAAAgWCZyQAAAAAB1UnJAAAAAwEBmckAAAACgvXNyQAAAAOCggXJAAAAAAN+wckAAAADAocByQAAAAKCh0nJAAAAAgMPdckAAAAAAKBRzQAAAAMDoJnNAAAAAoLEwc0AAAAAArUxzQAAAAEBngnNAAAAAIHqPc0AAAACAluBzQAAAACCT/nRAAAAAIMWTdUAAAADgIqN1QAAAAKB2KnZAAAAA4ArEdkAAAADg1Th3QAAAAGDfgndAAAAAIIDtd0AAAAAgQxN4QAAAAKAoJ3hAAAAAILM2eEAAAABAkkZ4QAAAAKAOzHhAAAAAAA71eEAAAACgP3J5QAAAACB2BXpAAAAAIJB6ekAAAACgN357QAAAAKCTsXtAAAAAYDHte0AAAADAigJ8QAAAAEBXxHxAAAAAYJXVfEAAAACgmph9QAAAAOD+p31AAAAAwG9yfkAAAADALpF+QAAAAMCqIn9AAAAAQLrrgUAAAACABzqCQAAAACDZQ4JAAAAAwDiEgkAAAAAganyEQA== - - - - - - 0f1JQGrzJEAltBNAbv8LQM/Ys0CRv55AMwchQQrykUA804pB6g4dQZ6fpUD9dWZALFTgP4jGAkD3EzFAW+tUQqmOHkAIb+xAvCjcQDz0JEAhn29A6BVDQdRn60AOaRFBxKEeQFQkU0CoBmFBpsrHQKyWF0Gtr8s/iDV2Qc0n3kEZZERBxo49QbvXTECPz0BATvbHQ/paQEBTdTFAYglWQGD6zT9kyhBBlOiGQKSIMUE7TQJAelyCQaQLfUDL6M9Aqt2SQSskFUBN3i9A0XzRQL4Llz96DFhBOTCGQ01Z60BPgwdBHJxDQDP7D0D/P4JA0crmQFyZwD/RfENArE3NPxUJc0DJ8fI/qyVVQYTLqkA4dAJCEVGCQBGezj8sjRNAqdwCQAeD/kA0OdRAfQfFQBqEdUPQoKVBvcASQdztl0CJcpdB6oI2QuxoT0J7/DBAR9m6P6vo5kCS4HFA/gMMQHcuLkAl0JRBjYJvQUESCUIxQSpC454DQUSHmEH8UwJAb35AQDis4ECpy45AHV4MQePdTEAPUOBBx6WLQfhn/0Hp9p1BUVvgP+FTYUE5SQ1C4yRWQKv0EEEeuSJCKlbxQOvFtUG/YA5BIdfKQOHIl0DQmlNA7kZ/QgingUGdqohA8OGsQBnB/UAk8KRBHQ/HQHkduz8/XxhBxubDQPVLLkHWIcRBcQFOQZbBs0DGKwxAQCbhPweJmUDq12FB6BsiQcY7D0E8rdFE90w8Qg+qqkBXsHFADn2TQI/lHkDCsvM/2l4cQyGw4D9MPoJApB/+QJ9Pk0A= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwFKFZEAAAACA24pmQAAAAOAj7GlAAAAAQOekakAAAABA8uRrQAAAAKAKJWxAAAAAYJZLbEAAAAAA32VtQAAAAMAcYnBAAAAAgPN/ckAAAACgHcRyQAAAAMAS43JAAAAAgKBgdEAAAABAwTB1QAAAAEDSg3VAAAAAAFHEdUAAAABAxDN2QAAAAEDYo3ZAAAAAAAASd0AAAACAO3N3QAAAAEAZmHhAAAAAgLDweEAAAAAA7HJ5QAAAAICRyXlAAAAAACsUekAAAAAAw1p6QAAAAMDB1XpAAAAAQIYze0AAAAAABv98QAAAAIAkaX1AAAAAgFyqfUAAAAAAPgF+QAAAAMDN7H5AAAAAwJxBf0AAAABA5lR/QAAAAMBPc39AAAAAwG2Ff0AAAACAQpV/QAAAAEAExH9AAAAAgEXdf0AAAACgOweAQAAAAMA+JYBAAAAAYEsqgEAAAABgtjGAQAAAAMBaOIBAAAAAQCpNgEAAAADgoHWAQAAAAGBD+oFAAAAAoBYTgkAAAADAFpOCQAAAAGB5y4JAAAAAwHhcg0AAAABgbtmEQAAAAMA874RAAAAAYBuDhUAAAADgebmFQAAAAGAWQYZAAAAA4MHRhkAAAABgEHqHQAAAAADoqodAAAAA4A9XiEAAAADgJ6GIQA== + NrgMGZxjYkByWoXuS4RpQLAuKNpy5GpAWHXwwJGDdEAACNcwPvN1QHbGrKvpE3hAAGazhJYEfUAFa5+IdiKBQGPgI1/XmoFA8giCVANjg0AycUQu2EqEQPI3cH6v64ZA7MMkJlBLiEAfPhUkERSKQBfupiicg4pAH20DTr2cjUAOzSZX0xuOQK6VYUPpZI9AOX34uS+akECJ4RWwuj6RQICRp7RFfpFABdFVR9YKk0AAqZ7Jm0KTQBvmlkj8JpRAFyxxnMzWlEB4D4dEOCeWQJdDaLEim5ZA3lcXrDh/l0CPklkXabuXQJBufLp+C5lAdBa+8KlHmkAQhnPP1M+aQLsqbeu/K5tAO0JkABbwnEDCnNjdGhydQAmxh9gwAJ5AUsU200aEnkA= - + - 8CIUQDOnq0BSxEBANeTyPz6YQ0CkjQFBCfoLQEWAq0BYRvM/3vqXQDR6SkC+wcxAjKDyPx7FOUC6uwJADBUMQPa5U0ADomhAr/w5QL7/0UB+vOA/WJsRQSi6AUEH9qk/lM8hQYPguEDfMDlAP+AjQTRAi0B7wdFAHczyP+ZxdkFvcDBA4olxQc+WnUBQQh5ADucCQLCmsEDQD4FAw1mZQI0zrUH9JFZAwED1QFhYoUC0qKVA03hJQR6Nb0LHupRA6kffQEDEL0AjFsJAvA27QCW1ZkBcEzFAo0EfQfuQJEEwnidARquGQKGQgUFCuENAMgAPQewT5EA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQPYib0AAAADAuFVwQAAAAOCfUXFAAAAAwA1icUAAAADATj9yQAAAAIDFE3RAAAAAAAoldEAAAABgvkR0QAAAAIAqlXRAAAAAoKOidUAAAABA6P51QAAAAEAjDXZAAAAAQMohe0AAAACAeUR9QAAAAACbjn1AAAAAgBOsfkAAAADg9biAQAAAAABx8YBAAAAAIMjGgUAAAABgovOBQAAAACA1+oFAAAAAIAMngkAAAACAUXqCQAAAAGCLeINAAAAAIF3Xg0AAAADgUOKDQAAAAOC9QoRAAAAAQM5ThEAAAABgJMiEQAAAAGBH34RAAAAAQG7nhEAAAABg9yaFQAAAAOBbLIVAAAAAABxThUAAAABAxqWFQAAAAMAXyoVAAAAAYC37hUAAAABgKzuHQAAAACDJq4dAAAAAIKPMh0AAAAAAj9SHQAAAAOBNUohAAAAAYJW/iEAAAAAg3NKIQA== + KBZXds7jZUAYxSyCnORuQGaLOdoMYnFArmsYctHidEBm6RUuZXN4QCIR2WHB43xAwfVfeSjEfkC+jpFWQpqBQA0BVeJ1ioJA65Q2/KPChEDHUzXa7YqGQOvDJCZQS4hAWFi2ci9DiUAUxKv1YoOLQLyFgI+7241A - + - cikZQg0xjEFjEAdB1PRbQAMkTEBHR9RBXCGTQKqS5kCbxqtA3D2gQTVve0Bnvv1ANkeUQSWMFkHJ0B1ABTPVQMii/UDNq49A/FyDP2HAykD4guhAvuLqQNhcuj8g965AqMLeQBOknUBra51AAZH9QddPhUB1kL5Bj0IJQTyXjUIsDbdCs13+P7GAs0CQ4LBAdQwuQW3iFEDtL55AiyVfQN7HXEAVWcZB3FTNPxOatEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwIwNXkAAAAAAr0FgQAAAAKCv5mFAAAAAwG0BYkAAAADgzEpiQAAAAIBXZGJAAAAAAKxjY0AAAAAAmSNkQAAAAEATIWVAAAAAgM9CZUAAAADAMaJlQAAAAIAu4mVAAAAAAJddZkAAAAAAIqJmQAAAAKCPAGdAAAAAIF5DZ0AAAAAAdYZoQAAAAGBP52hAAAAAQNMqaUAAAABgx6hpQAAAAMD35GlAAAAAIDohakAAAADA00tqQAAAAOBFpGpAAAAA4P1la0AAAABAGHxrQAAAAEBh5mtAAAAAwHIfbEAAAACA7IFsQAAAAEBwymxAAAAAAG/obEAAAACA8R1tQAAAAAAlim1AAAAAQE3IbUAAAADAfOdtQAAAAEBPIm5AAAAAwABmbkAAAAAA+4puQAAAAEAbpm5AAAAAQJDnbkAAAACA4SdvQAAAAMDOY29AAAAAAAafb0AAAAAgZBJwQAAAAOAZUXBAAAAAwN+pcEAAAABA+71wQAAAAADX8HBAAAAAYO8TcUAAAAAgSVNxQAAAAIBVYHFAAAAAwKpucUAAAADAR4JxQAAAAOARkHFAAAAAgMWjcUAAAAAAmcBxQAAAAAB103FAAAAAIAbhcUAAAAAABfJxQAAAAOAwBXJAAAAAYPokckAAAACAsC5yQAAAAICNTHJAAAAAwGhcckAAAABA429yQAAAAMC5jXJAAAAAANWeckAAAABgMrRyQAAAAMAh0XJAAAAAQBHmckAAAABA4/NyQAAAAOBfLHNAAAAAgHVDc0AAAAAAaVRzQAAAAEA0cHNAAAAAABt/c0AAAABgjuJzQAAAAKB78nNAAAAAwLQQdEAAAABACS10QAAAAODbOHRAAAAAoNRHdEAAAACABVJ0QAAAAODpb3RAAAAAILt7dEAAAADgTJF0QAAAAMAPoXRAAAAAAG7XdEAAAADAVPB0QAAAACDME3VAAAAA4LAkdUAAAACA1S51QAAAAMCxQ3VAAAAAoAhSdUAAAAAghGF1QAAAAMDckHVAAAAAoDKkdUAAAABA+a91QAAAACC1vnVAAAAAAPMndkAAAABgbTZ2QAAAAIBgf3ZAAAAAwKjHdkAAAABgOcV4QAAAAGDGI3pAAAAAQO1Qe0AAAABAGgV8QAAAAGDe8HxAAAAAQGIffUAAAABgxJ59QAAAAOBgiX5AAAAAIEWVfkAAAABgfKJ+QAAAAMDzN39AAAAA4F9Yf0AAAADgrHJ/QAAAACBSiX9AAAAAYDPAf0AAAACg/Nx/QAAAACDA9n9AAAAA4G47gEAAAADg4mGAQAAAAKCJjYBAAAAAoG9RgUAAAABAfJuBQAAAACB5pIFAAAAAQITbgUAAAACgAfyBQAAAAMDSI4JAAAAAoMxggkAAAACg7YCCQAAAAKB10YJAAAAAwL7jgkAAAABgQguDQAAAACB3TINAAAAAwOZkg0AAAAAAcp6DQAAAAGDuQ4RAAAAAIBdahEAAAAAALtSEQAAAAABCMYVA + NrgMGZxjYkDsyMl+5FFxQOO2GkbmYnJAQh3Og3zCdUAFwBx3adN3QEJ7qtfU03xABR75ysHkfkBbkLVjYmqCQLzhXN3YcoNAW7+jjQ7zhUC8EEsHhfuGQOzDJCZQq4hA5zrNCdEziUB6G3FFKDyNQFDx7kLcQ41A - + - cji4QEdZsED4f8w/bS5hQchhZ0Ax8YpBOygSQWuWG0C9ebhACUuhQE5JekAe1rlAX+C2QPN8uz+hNvlAKlaTQH44r0ANZJxAYxM5QQPPeEH1/NJAq5JuQMKWZUAA8NNAEohZQVyiFED7H4JA4O6hQMQVqD8s6DhA7Z9IQaUOSUF6Mc0/9rlxQBLdCEGtnS5Bdvd5QCxUgkEdJUtAwb5NQRHZgkBie9VAl9UPQpBfOkCLG4ZAXUBxQWFk2EA5V31Cd8bmQBDIY0FYL9BAMtInQdqfP0E0gEVBylMVQPAHr0Dn4K1BlKJcQOaRg0ByZI5ArcR6QNGdwD9ic79Bkub+QFY2MkDlkgpB9quZQUm1C0Bs0qtA7DPfP5fa7EDZRm5ANGaxQadCvUEBDRVAs3EhQVO7jEHG6jRBJmQhQeM4kEIXHZ5BGFZMQVDbK0FZ9ABCLeihQOL3aEGuzJRAomIcQCQyr0DBbshBoc+MQB6X1EHz3VZBcHG/QcoU5UHcixFBMnfPQc8z2kEd6gJBmnJaQSwvLUFMs/E/Gq8wQMRV00C9w6tAEMP1QErCjkD2bHFAuGDfPw5dyUBrQi9B55sMQSu7OEDhSqhAozpbQVZ/AkCQed8/4sCgQFdj60AsRJlASDykQjHy1EDiaSxBAR06QF8uzT9nvHpA4X8MQYIxJkCgkwNBLHsCQCQr1EDI6bo/HkkkQVBgVECLOGhAmyYDQX10jkDXSRVAh6o5QFx/1UAsIQFB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwDdGZkAAAADA3cZnQAAAAGDsAmpAAAAAQLAhakAAAACAukFqQAAAAEAEX2pAAAAAIN4CbEAAAABgoSNsQAAAAOCFR2xAAAAAAPymbkAAAACA3mNwQAAAAAAWbnBAAAAAILrDcEAAAADAm2JxQAAAAAADonFAAAAAQD7ucUAAAABAexByQAAAAAD60nJAAAAAwFndckAAAAAAnyB0QAAAAEAba3RAAAAAgLuUdEAAAADA8H51QAAAAADNL3ZAAAAAgKpzdkAAAACA0ZN3QAAAAAD3MHhAAAAAgCRueEAAAAAAb6V4QAAAAICKc3lAAAAAAEedeUAAAACAxTJ6QAAAAADVXXpAAAAAQAvHekAAAACASCV7QAAAAIC2DnxAAAAAAE4gfEAAAADAbDR8QAAAAEArg3xAAAAAQMsdfUAAAACAjzx9QAAAAECDVX1AAAAAwFzUfUAAAABAbuJ9QAAAAABi7n1AAAAAQJVEfkAAAACAtXJ+QAAAAMCVfX5AAAAAgKulfkAAAABAZcZ+QAAAAMAj/n5AAAAAwIxSf0AAAABArL5/QAAAAODcCoBAAAAAAKQ7gEAAAACgvVeAQAAAAIA9foBAAAAAoCDugUAAAAAgpbmCQAAAAEAEaYNAAAAAoHyBhEAAAACgX6KEQAAAAOCAwYRAAAAAQHlJhUAAAAAgbFmFQAAAACBSVIZAAAAA4BGLhkAAAAAg8AyHQAAAACDNmodAAAAA4JGph0AAAADAWtqIQAAAACD+8YhA + NrgMGZxjYkD4qwju5sJuQNq4KFfnQ29ATVYSFpnRdUAwYzJ/mdJ3QA== - + - 2IKRQPqjuj9A6S5AthckQKbNNEFIUxNAHSEuQLnmj0A5eMtAtJKXQDJGqkEHUsw/nFSiQGhmgz/vUm5A2gLfP/paJ0BKmM8/mslrQeEGMUEn2ndAxrNlQCdf2z8hXDVBwyoJQLLlnUALNntBKDBcQAIY4D9OaeZAEJTVQJTnSkC8DZhAoGE1Qa57dkEmofI/EvIJQCLNXUDf2J1AhYRxQFaPHkFmmo9Ad/eTQJcdDkF8ATFBSwrQQKcQvUBgcblAWKgSQCIRAkEzDSVBQhpLQRVN60BkmwJAQsqGQbwlMEBZppFBRagMQaj15kAGVDBALoWKQAwWAkAwd6ZAJpLQQIYH4kCIDplApS8RQWAiB0GbUopAUuPfP2/HGUHpcJU/ + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwLkfYEAAAACA9ElgQAAAAIDppGBAAAAAwJQCYUAAAABA9WNhQAAAAICWfWJAAAAAALakYkAAAACgDwFjQAAAAMDfoWRAAAAAAMtEZUAAAACgmWNlQAAAAIDzpGVAAAAAAM0nZkAAAAAANdVmQAAAAEAs6WZAAAAAAKAnZ0AAAAAg0khnQAAAAACmgmdAAAAAANzpZ0AAAADADT9oQAAAAKBv02hAAAAAoKnmaEAAAADA2EBqQAAAAAD9YGpAAAAAgAPbakAAAABAKGFsQAAAAACag2xAAAAAwL2mbEAAAABAOWZtQAAAAMDUBW5AAAAAgNehbkAAAADAWMFuQAAAAABi3G5AAAAAgKQDb0AAAABAiyFvQAAAAIBxZW9AAAAAwO/Xb0AAAADALhJwQAAAAEA+I3BAAAAAADcwcEAAAABA+VZwQAAAAKA+ZnBAAAAAQAiTcEAAAADAZa9wQAAAAEBS+XBAAAAAoFgTcUAAAAAA8yBxQAAAAEBANXFAAAAA4D5DcUAAAADADlVxQAAAAMAOc3FAAAAAoLuwcUAAAABAA89xQAAAAEDn73FAAAAAIPcBckAAAABAcBJyQAAAAABwH3JAAAAAQOwpckAAAACAVjdyQAAAAMAJmnJAAAAAoJavckAAAACAp89yQAAAAICb8HJAAAAAgJL/ckAAAAAg3g5zQAAAAICZMnNAAAAAgN5Tc0AAAADg22JzQAAAAMBmmHNAAAAAABGuc0AAAABgTNRzQAAAAGDr33NAAAAAgLgQdEAAAADgax50QAAAAECFYHRAAAAAINVxdEAAAAAAFYN0QAAAAMC8lnRAAAAAINmydEAAAAAA+9V0QAAAAOD4snZAAAAAYL5Ud0AAAADg9bR3QAAAAADp3XdAAAAAoJKDeEAAAAAgAjV5QAAAAKDLeHlAAAAAoLiIeUAAAAAAyGN6QAAAAMBCbnpAAAAAYJ30ekAAAAAgd/56QAAAACD6CntAAAAAoLnEe0AAAACgbc97QAAAAEDz5HtAAAAAoDH3e0AAAABgaQN8QAAAAKDRg3xAAAAAIBCyfEAAAABABmV9QAAAAODbtX1AAAAAYDd8fkAAAABgOYl+QAAAAKCS8H5AAAAAYOYWf0AAAAAgL5h/QAAAAIBjGoBAAAAAYLg7gEAAAAAAENyAQAAAAOClGoJAAAAAAB+igkAAAACgb0ODQAAAAGB3o4NAAAAAIDjSg0AAAACg7tyDQAAAAOCaxYVAAAAAQMTLhUAAAADgwVqGQAAAAMBRR4dAAAAAYBPUh0AAAACgcCSIQA== + NrgMGZxjYkAPMcJIFONwQI8BR/y9MnFAnogOaOzzdkCPXyNQFkR4QJ7m6rtEBX5Aj73/o25Vf0BPouOHTouCQI4KpmEjs4JACfXDf8aLhkCXHSJ18pOHQA== - + - KrMbQsPoj0B+hTtAooWMQNBwMkFnX/I/GUysQZmJzT8P1QFBAeauQLFfJ0DJueI/K20nQKvkFEDj8y1A77mrQFsBSkLY66BAmIBhP09QAkCnS51A5BiAQs5NEUERvmZBuvo8QbOCUUJmBl5BPodLQUbLjkCF19lASFgCQJidbkBKzZNBuJNTQX7K00CiNORBzaeOQK7R3j9pLc9AGYmdQMNEQ0A8LN1ADINGQXDhxUAOxt9AYgmpQfg9aEAWbtFBf44tQPIYN0DpDopAjbsGQjoB8EDtk2lBvitcQIQzPUER2/5AZAehQOSs/UBb0jtBvCc3QZMhBkLVw71CyIBxQEMlgkDD0OBAClPrQKeTxUGTucFBzn/KQLAggkDmOPhAyhDhQc7FBkKLza5An2MKQuFiSkFeXpBApulVQG70qEFNG7BArADGQL+JlEDJqxBCWAaxQE+zMECKabBBce4OQWm5pUDy5XdAsgP+Q9JknUHviuNA6k1JQCh+M0He9SlCoNQVQRNKjkBGVDpAiDOoP36z3z8rqbxAkaGlQ5LrJUDbJ2RBorkLQOrdJUARDiNBLAepQS7f1kD260pAlIknQAMr7kBb0J1AZg8CQxRQjkBGkbo/FDtoQKzpBEEJdSVBFexqQY7my0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwATOX0AAAAAACyFgQAAAAGCvQGBAAAAAIFiHYkAAAADARKdiQAAAAMAEoGVAAAAAADHoZUAAAAAAo0NnQAAAAAC1ZmhAAAAAoEClaEAAAADAmYZqQAAAAIBCZWtAAAAAQOQjbEAAAABALEhsQAAAAGBOrWxAAAAAoGtFbUAAAACAg4VtQAAAACCMp21AAAAAANSUbkAAAACAYd9vQAAAAMAHkXBAAAAAYMqxcEAAAACAIPFwQAAAAMBZAXFAAAAA4Hc9cUAAAACgFrBxQAAAAKCNwnFAAAAAABBDckAAAACgRH9yQAAAAMCrxXJAAAAAgEYkc0AAAACA9FJzQAAAACCTYXNAAAAAAKyHc0AAAACAVsBzQAAAAIDqIHRAAAAAQEQzdEAAAACAXU90QAAAAICiXXRAAAAAAPludEAAAADA4KJ0QAAAAABSs3RAAAAAYA/BdEAAAACg1d10QAAAAECHEnVAAAAAYNY4dUAAAADg6IF1QAAAAMARz3VAAAAAYMrpdUAAAADg3gF2QAAAAKAGUHZAAAAAwP3EdkAAAACgJNN2QAAAAIBtRXdAAAAAQF5Vd0AAAADgnGB3QAAAAKB9g3dAAAAAwJS4d0AAAADgfvV3QAAAAIC6GXhAAAAAIPkjeEAAAACgolJ4QAAAAIBDZXhAAAAAIEJyeEAAAAAABIJ4QAAAACB1n3hAAAAAIJOxeEAAAACAM7t4QAAAAMB8yXhAAAAAYJjteEAAAADgowR5QAAAAIAkEnlAAAAAgIk2eUAAAADgu1N5QAAAAOBiaXlAAAAAYN8DfEAAAACg8od8QAAAAOBjlHxAAAAAwKCnfUAAAABAzBR+QAAAAGBWl35AAAAAQHKkfkAAAADgWU5/QAAAACDnYX9AAAAA4CPdf0AAAAAgghaAQAAAACDbXIBAAAAAIKXfgEAAAAAgfwKBQAAAAOCtWYFAAAAAQD+jgUAAAACgm7OBQAAAAGAO/4FAAAAAoIk7gkAAAABgnH2CQAAAAOA+g4JAAAAAAHe7gkAAAADAWcGCQAAAACCM64JAAAAAYGHDg0AAAACgd8qDQAAAACAK64NAAAAAQH0NhEAAAACgE0eEQAAAAKCX2YVAAAAAoOqZh0AAAADgqNGHQAAAAOA48YdAAAAAoEukiEAAAACAC9WIQA== + NrgMGZxjYkDauChX50NvQKX7jOV64nFAbbpw/0uzdkDMvNRcKfN5QJR7uHb6w35A+j4O6usBgUAlaZDsNzqDQISQPDN1YoNAHEgQG2/ShkCEvypdIeuGQDqZzAXHYopAohDnR3l7ikBY6ojwHvONQDbxioPQg45AdmUWFrv9kEAqoSM3FAqRQAWOdAvnxZJAucmBLEDSkkCFpWsgPYqUQDW5wcNbnpRAS84CxYG6lUDizlsceYqWQJW+1GKtvpdALL8tuqSOmEDfrqYA2cKZQKzWJM/6UppAkcULDx9Pm0DAVug2BO+bQA== - + - WyzPQEgNikDCeJxAi8a5QIET8j82FzpAK+RMQBXd6kCQvYlAw+ILQEyDs0BeaspACOMRQNKWsEA1oShBuUzNP6Kmuj+T6l1AbG2UQJvEBUG/uQJAb7qAQLvBAkBo1aFBax6iQH9Km0CHaqs/no2OQGLJCUEiNrZBmHEOQbHRekBvJ6g/zkMDQcDttEALi5xBPefMPxek8T+HxlVA3KHYQKhqAkFMOv8/SmmwQBbCd0CJQw1AhHyCQZHrykA8r8FA2+3aP5HFFEAP8wxAWKIfQm00vEB/ah9AbwCVQZs38ECxNwhCc/b9QE1dwkCy4upAq/MjQS9yV0KAhPVA6K/QQCJ9ZUCIyDhBMDBvQrL+IUDdAVJBp8xVQILaRkKRP4hByfyqQTjVXUDLXotAwpG2QeFEWELa1ec/4IYhQZ1sIUHMj+w/fdDTQJYf7kHv++pA7KiiQaanU0FaRItAHFcYQdwZzEC/VXJBVNgtQGhUEUFY6upAyEHGQDqpI0Jk4WxBQaFZQY4dJ0AW2W1BsyGHQNrf00By6qBA7EiiQJdx3z+sNjdA3eNxQA7SUkDyBdRAnBGCQd11GkE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAHbEaUAAAAAgY+hsQAAAAGCUhm1AAAAAQBtEcUAAAAAAJpJxQAAAAEBufnRAAAAAgBYDdUAAAADADoF1QAAAAADNY3ZAAAAAAIsEeEAAAAAAa0R5QAAAAMDTLnpAAAAAgPw/ekAAAAAArvN6QAAAAMAnA3tAAAAAAJUQe0AAAABA+SR7QAAAAIBsBH5AAAAAAEUSfkAAAACAKLR+QAAAAMBJrX9AAAAA4DUTgEAAAAAgnn6AQAAAAKCbk4BAAAAAAEWZgEAAAADAma6AQAAAAOCL+YBAAAAAAMsggUAAAACgvFGBQAAAAKBLmoFAAAAAoG2zgUAAAADAxtSBQAAAAGDG94FAAAAAYPIlgkAAAACg6ZyCQAAAAOApooJAAAAAIEBRg0AAAAAg1EGEQAAAACDUR4RAAAAAANNPhEAAAAAAN3GEQAAAAGCctoRAAAAAYBrRhEAAAAAgZYOGQAAAAMBd04ZAAAAAAFL8hkAAAABAOhuIQA== + KBZXds7jZUD1hHOUyCJpQNS+X4D+xG5A1c6DlSfickDfhPAvb2N3QNUsYOl/83lApt+EaYeUfUDOQ3oRTBKAQNKesN7vUoJAiJZaCcQShED/pFWEUXuFQLPA3AsQS4ZAkoX5v6iDiUA= - + - nygTQMMFzEDQyxVBiG4uQEQ3b0DsXZU/9+KqQH5wsEF5hPlAfAZDQFgTHkCV1PE/V7ReQKF3VUB94JZAbCngQGGBtkEMDUNCz2UIQRC6qkAoRplAB+anP18d50ALPgJA24HtQK2/4EDmVqFAnD7HQFhaFEBJHa9APpzwQAjl60ALOY9COGbUQDjIDEIFcINALNgUQGgSKkHBnvpAJ1FvQeaxLEGqIohBPsGOQDpdAkCHtTBAAr79QHK/zkE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAAJrfZEAAAABA98JlQAAAAKCjhmdAAAAAYKP/Z0AAAACgwh1oQAAAAMCzf2hAAAAAgH9CakAAAAAAjmRrQAAAAIA9aWxAAAAAwIokbUAAAADALYNtQAAAAMCBn21AAAAAQM2jbkAAAAAACsVuQAAAAADnYnBAAAAAAHtxcEAAAADA455wQAAAAADqrXBAAAAAgD3ScEAAAACA1d9wQAAAAKCDI3FAAAAAgA5+cUAAAABgpcBxQAAAAIAi5HJAAAAAwF1lc0AAAAAAgW9zQAAAAABRhHNAAAAAwG4fdEAAAACAq8B0QAAAAACiPHVAAAAAgPh0dUAAAADAIcB1QAAAAMA7DHZAAAAAQHY5d0AAAADAJVN3QAAAAEBFcndAAAAAANuGd0AAAACAxxB4QAAAAIARRXhAAAAAwEpyeEAAAADAfn94QAAAAEA1snhAAAAAAGbqeEAAAAAA3sV5QAAAAEB/5HpAAAAAQMb5ekAAAABAALp7QAAAAEAx23tAAAAAgKICfEAAAABApkJ8QAAAAECNg3xAAAAAQFWZfEAAAABAA9J8QAAAAIBTQX1AAAAAgAWyfUAAAAAAyTd+QAAAAEDrjH5AAAAAQKwff0AAAAAAdGN/QAAAAMChhX9AAAAAgI/1f0AAAAAgwQqAQAAAACDbJIBAAAAAIEw1gEAAAAAgRDyAQAAAAABQVoBAAAAA4MGCgEAAAACAKq6AQAAAAEDDzIBAAAAA4AN8gkAAAAAg8tOCQAAAAGCVD4NAAAAAAFJJg0AAAAAgqaiDQAAAAKB6EoRAAAAAoE2yhEAAAADgBUCFQAAAAECvy4VAAAAAgPoIhkAAAAAglw+GQAAAAODQQ4ZAAAAAIJKbhkAAAACg9+OGQAAAACC6DIdAAAAA4HWbh0AAAAAgu8+HQA== - - - - - - Vyf1P229NUGR1pRAV/zEQBYMukA9EKpALATyP4tGMED3sxpAyfeYQAjoEEH++0pAzjwLQGlDAkAyjxZCKX2nP89qC0ByST5AscwSQRss9kBLW45AJdlsQa2OgEBYLwRBWngJQQ561ECwGqxA+aw9Qi/gW0CHexZANNu5P4b38kASEkNBXdkdQFOrW0BocJNARSwIQdluOUBEQRlBQXjnQL7k2UDv0dZAKSrnQKE3QkFjgmhBaYKAQKjlzkC12j5BNL3MP7NLs0CyR29BUmutQIss3UBKT7BAaFuAQE0BzD8tVZRA4F2UQNrqs0DboBNBJtteQF5VMUCedQpBePwaQae49kEI1C1A3jBBQSOIhkBayiBBzQIeQOGpHkEHyrk/zicTQNp9B0HHC89AkI2/QE4TSkFgBElA7rrTQN3oAUCM2HlBWF2JQONezUDxq6BBExHmQOPUc0E= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAwBLIWkAAAAAAyIpbQAAAAOD9mFxAAAAAwK+NXUAAAABABEheQAAAAMC9AGBAAAAAABEjYEAAAABA7uFgQAAAAOD8PGFAAAAAQFudYUAAAABgJmViQAAAAECVxmJAAAAAwPEpY0AAAAAAsmFjQAAAAIDohWNAAAAAQDY/ZEAAAAAgCOlkQAAAAIAHhWVAAAAAQGWjZUAAAABAYb5mQAAAAKAT5mZAAAAAQNsVZ0AAAABgBG5nQAAAAEAHn2hAAAAAABjAaEAAAADARihpQAAAACDhiGlAAAAAYO6+aUAAAACgu91pQAAAACBKPWpAAAAAwL+PakAAAACAJKNqQAAAAMDlv2pAAAAAQNrhakAAAADAeCZrQAAAAMBEn2tAAAAAQPLia0AAAABAQKdsQAAAAADk5GxAAAAAwMD/bEAAAAAAhlxtQAAAAEAfhW1AAAAAgF2qbUAAAABAKONtQAAAAADJJG5AAAAAwNZlbkAAAAAA7GFvQAAAAMB2gW9AAAAAgN6eb0AAAACA38dvQAAAAICW6W9AAAAAoO0PcEAAAACAEzVwQAAAAMB2QXBAAAAAACVOcEAAAACgIXNwQAAAAIAvgnBAAAAAAOOpcEAAAADA3dZwQAAAAGDZ8HBAAAAAQJwDcUAAAAAAPxFxQAAAAKBVNXFAAAAAIKlDcUAAAABg8FVxQAAAAOD0YnFAAAAAQEaEcUAAAAAg9KNxQAAAAKD62HFAAAAAAJrwcUAAAADARQJyQAAAAKBZEnJAAAAAwOcvckAAAADApFFyQAAAAOCNg3JAAAAAoMmjckAAAAAAp+9yQAAAAIAp+3JAAAAAgJALc0AAAABAXyRzQAAAACBNMnNAAAAAQAREc0AAAACgDlFzQAAAAAD1YHNAAAAA4PR0c0AAAAAgo6lzQAAAAKDJtXNAAAAAAGnEc0AAAAAAofBzQAAAAOBBEHRAAAAAgAkxdEAAAAAgiE90QAAAAABK+XVAAAAA4ONzdkAAAACA89d2QAAAAMBTRndAAAAAAOwNeEAAAACgPkJ4QAAAAGBgZXhAAAAAwJ6xeEAAAAAgf4N5QAAAAIBV0nlAAAAAwJ+Ae0AAAABA2DB8QAAAAGBAz3xAAAAAoFqzfUAAAADgMsZ9QAAAAGDo2H1AAAAAwIsLfkAAAABgbnV+QAAAAOAVwn5AAAAAwDNWf0AAAADAmGZ/QAAAAGC44oBAAAAAIPn4gEAAAAAgK6SBQAAAACDHuIFAAAAAwDjSgUAAAABgBLGCQAAAAOAN1IJAAAAAwIfbgkAAAACgzCODQA== - - - - - - o7gjQCun2kBnkgxBHPsaQLcCOkHsmfE/CEknQR+1W0B4OlJBFBdCQJ4gpz8gF45AGWXMP2C0I0AxIQdBjmWlQEIrC0AGsNZAEt9oQQlR2EBDTJdB/hIKQWz6QkBlmcs/4kq6Py6yw0Fmaac/9d6mP3y94kCp/xtAXOeaQU6ibEH9HihALVvMP2Q/mkFy/AFASYMLQDR68T/RTXlABGn0QCA4sEBS545BT7A5QG9tq0DkHZhAtMk5QPjkyEGVies/aOyVQU8X8j8euW5AmD64QFIni0AQtRJAhv+KQV6mS0EJyIRA2PdwQEviL0CHKr1Bs9XOQbQds0BRFChAyHJCQX4PjUC1Bm5AOukJQRgCM0FQYqc//KG6QeF9TEA4qqNCzXCmQqGhgUCXqRJCs5sJQW+0VkAY2TNBM14XQdDYhUByCf9BfljYQA4CAUERgXJBoO2SQM+KJkL+LxxB5CVAQReplD/htMxBHFPxQGITAUEOpjFBsFmVP2tW2EDOd/E/fkdeQHCRmkLgL84/wi5cQamVxkB/4ptBzwMLQM6L4UAI15Q/A1+JQAoF40CAp2pBYGUGQWfxy0AXQwhAJYPVQsqqsUDE4SdAQ9QBQPwUUUEelQlAz5fbQNXzUkAlxKpA072YQDqz00E= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAoFzna0AAAAAAKVJwQAAAAOD2kXFAAAAAYLzjcUAAAAAAFRdyQAAAAKAoYXNAAAAAQFOhc0AAAAAAj7d0QAAAAEBoY3VAAAAAAKc/dkAAAADAGnR2QAAAAMAY33dAAAAAQLtieEAAAAAARXZ4QAAAAICO83hAAAAAgPYveUAAAACAhkF5QAAAAABRtHlAAAAAwIgiekAAAABAIaR6QAAAAMCjMHtAAAAAQCIffEAAAAAAU1t9QAAAAEDrIX5AAAAAgNHFf0AAAABgH0aAQAAAAAAOS4BAAAAAgBi6gEAAAAAAQfmAQAAAACDzZIFAAAAA4P1rgUAAAADALIKBQAAAAGCqJoJAAAAAYHhvgkAAAABgza+CQAAAAKAIu4JAAAAAQL3BgkAAAADgHQKDQAAAAGDKRYNAAAAAID5Lg0AAAAAg2FKDQAAAACD2WoNAAAAA4FvSg0AAAADAhouEQAAAACAukoRAAAAA4FWehEAAAACAt6OEQAAAACDD0oRAAAAA4MtLh0A= - - - - - - tYrMP/rlyT+4L1JAweEdQGjvZ0Ac4qBA3Y0mQBv8hEBouKFARbXhQH7eeUBhVgtA1r/3QDkR4EFUihRAJwPtQO7ZUUHjZPVA7jjLQJwc4z9Ahl1BEuq5PzvNUkCbgaVAuQhCQfAGV0EO6nZAb0y/QFo7qkD42RdBdvQeQPLTgUDQ+9BAelTfP+J330H4IEJAqOBJQcBK70C/nLRA75FZQoWBp0EJ9BBBN5BrQbfstEA76U5BftUcQcdbBkDZMxpB4xesQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAwCNPWkAAAAAAyANcQAAAAIBUzFxAAAAAQMkEXUAAAABgv0NdQAAAAEBOil1AAAAA4NwJXkAAAAAAxtJeQAAAAEAFVV9AAAAAwFq8X0AAAADAQU9gQAAAAACSZ2BAAAAAgD2GYEAAAACA1p9gQAAAAABo6WBAAAAAwIgCYUAAAAAAyiZhQAAAAOCU6WFAAAAAIL1CYkAAAAAAqYViQAAAAMClo2JAAAAAQMLIYkAAAAAA/UNjQAAAAMDkfGNAAAAAgPOjY0AAAABAa8djQAAAAIAN4GNAAAAAQCMlZEAAAABA411kQAAAAMDOhWRAAAAAwEckZUAAAACggWFlQAAAAGAkoGVAAAAAgMzAZUAAAAAg7+JlQAAAACDrKmZAAAAAAOxGZ0AAAACAomFnQAAAACDxhmdAAAAAoIqiZ0AAAABgd+RnQAAAAMAiEWhAAAAAAFyDaEAAAACAm8BoQAAAAAB04GhAAAAAAEQhaUAAAACg6kVpQAAAAIAwZmlAAAAAwKCFaUAAAACAOKlpQAAAAEAmImpAAAAAIL9lakAAAADAtIVqQAAAACBIompAAAAAwHi+akAAAACAN+RqQAAAAMAaAmtAAAAAQG0pa0AAAAAAsWRrQAAAAABAh2tAAAAAAPOfa0AAAABAi8hrQAAAAIC63mtAAAAAgKr+a0AAAACAkCRsQAAAAEC0SWxAAAAAABVnbEAAAAAAbH5sQAAAAEDPo2xAAAAAwEDgbEAAAADA0iZtQAAAAEAnVW1AAAAAwOejbUAAAADA+8ttQAAAAABt521AAAAAQHgFbkAAAADA4WRuQAAAAABohG5AAAAAQIikbkAAAACAjMVuQAAAAIB38G5AAAAAAH4kb0AAAABAbGdvQAAAAIA13G9AAAAAAOLxb0AAAAAAzAVwQAAAAGDDE3BAAAAA4CQzcEAAAABAU0FwQAAAAIDjUHBAAAAAAENhcEAAAABAw4RwQAAAAKD8oHBAAAAAQI+7cEAAAADgYMVwQAAAAEBS03BAAAAA4K/mcEAAAAAgV/JwQAAAAMCOAnFAAAAAYGsScUAAAADARXRxQAAAACDKg3FAAAAAgKqQcUAAAABALrNxQAAAAGA1wXFAAAAAwDDScUAAAABgYd9xQAAAAIBc73FAAAAAgKL/cUAAAACAAyJyQAAAAOCVO3JAAAAAQJhRckAAAACgsWJyQAAAAACjbnJAAAAAgAiCckAAAADAUpFyQAAAAKDDsnJAAAAAwMDGckAAAAAAFtRyQAAAAMAz4XJAAAAAAHzsckAAAAAgIAtzQAAAAGBPFnNAAAAAgLgvc0AAAABAmUJzQAAAAMAFUnNAAAAAIEdjc0AAAADA4HJzQAAAAEAFg3NAAAAAAOiSc0AAAAAAcqJzQAAAAABAtHNAAAAAQITMc0AAAABgcuZzQAAAAAA69HNAAAAAQEEKdEAAAAAAqSF0QAAAAIDGMXRAAAAAgD9DdEAAAADg91l0QAAAAIAecHRAAAAAwDyRdEAAAACAc5t0QAAAAEBosXRAAAAAgA3idEAAAABgdex0QAAAAOAgkXVAAAAAoNMzdkAAAAAAw3F2QAAAAID4JHdAAAAAANpGd0AAAAAAxWR3QAAAAIDFkXdAAAAAoHE0eEAAAACA9Yh4QAAAAOBH1HhAAAAAYDgeeUAAAACgWcB5QAAAAGBi5XlAAAAAAD71eUAAAADgNmB6QAAAAAD0onpAAAAAoB3lekAAAABAUwV7QAAAAEDkFHtAAAAAYJwee0AAAAAgloN7QAAAACAGpHtAAAAAYOcFfEAAAADgiod8QAAAAKCwmnxAAAAAwHSkfEAAAADgMrZ8QAAAAGBDxHxAAAAAILFWfUAAAABAeGZ9QAAAACBdwX1AAAAA4F5FfkAAAADgqXd+QAAAAMASP39AAAAAYIRYf0AAAADgypZ/QAAAAKAl939AAAAAYAgMgEAAAACgbD6AQAAAAOClf4BAAAAAAOmJgEAAAAAguLSAQAAAAOAk2oBAAAAAICkbgUAAAACgxGqBQAAAAKB8coFAAAAAYJrzgUAAAAAArRCCQAAAAOCPI4JAAAAAoC5bgkAAAABAqKuCQAAAAOCD4IJAAAAAYADngkAAAADgoO2CQAAAAODf+4JAAAAA4HYxg0AAAAAgkDqDQAAAAKBKw4NAAAAAIMjKg0AAAAAgElKEQAAAAGCwooRA - - - - - - afyXQKnij0AYpCFB2KKqPyhZJ0Bpmk9AH5qTQNweXECdN3JAVGxxQCUFskCRpkFBZrEDQSuPhT+UegtAmi0qQc+SpUBUSbpAItk0Q8w+WEHAlTBAkEpoQD4yzT9dI+hAJ0QWQaMhGkIN4t8//ezSQYItsEDmFXJAKosbQ7y600DsEqJBzR8yRO4ZS0PWdgJAK4IfQZ/ZuT+eeLxAx50kQOEkEUJcazBA/dAjQXXvmUBKx5RAHOAdQE4XIEH6149AH1UUQESetECLtGRBNa+VP487MEC+QOA/guquQMYf9EAR1C9C0vjrQH+g7EEeFlxBAGzoQOy6IUHggghAp8DMP2gpcUD3+yZBCMyeQVcDikByW9xBzRATQa2SX0F8aYZA1s5AQE6WFEAZjx1BFI3iQeNAqUE4gopBuYkEQtyBzENgjgZD/66XQJqmhkCyNWBBQ2TrP+o7t0FyEiFCrH5GQQ3e4UDSpgNBJ1dTQ2GrZkDoms9B9uxyQWoeNEEzkYBATJrzQBzlH0FkAf5CktviQbidZ0CyhSRCeWOlQPUL/EFmrGdA3SubQv+0jkBEzJVAKGuiQJvXG0SBaeNDsRkFQV4Rg0NgQZJBrLE6QVQ/lEB3o5lD7NfUQMzWv0IzeBxBqIY4QQ9Z/UHHqQJBx7MQQw7mkkOwuN5BLqokQroiv0PKkUFB8BmfQQCh40ECW51BROLAQa6j8kCVcCJB740/QiC4L0KH3lBBkxaMQcajykJMVelBrMFSQxddEkK5rNlC8tiaQlKd5UBw4pVBxhfkQK4yiUH4yy9BnO3IQCA1EUE2kYpCHDsnQPD0KEF36T5Bp2HmQMqBTEKx1cRD+4HCQEEfaUA3Jp5Aw/aKQs9EOkXZQAFC3aQhQcP6mkIwEhNCqAaFQfYq60BafXhBcBBwQhxRlkDO5QlB/SS7PyD6d0FKPq5Bb7P+QK+RS0HiNkNAwmuBQfUIvj8o5rpB8DhJQn4zQkCXHgJADGEaQt4rnkAvozdBVvhXQoBK10BdinlBGPVtQX4DrECQDag/UpqhQk+Hl0AwWxpBy5oCQuwJ0z89YiVBKG6kQc11HUJoOaRCvMaWQVrim0KFdOlA - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAEfNWkAAAABgx8hbQAAAAMCxBVxAAAAAAOk0XEAAAAAgws9dQAAAAGA9kF5AAAAAgEjLX0AAAABgCIhgQAAAAIBmpGBAAAAAgLYFYUAAAAAA2uBhQAAAAMBuLmJAAAAAQNHEYkAAAAAAuaRjQAAAAMByxmNAAAAAwPTeY0AAAADAbSZkQAAAAIC9pmRAAAAAwOEdZUAAAADA97tlQAAAAGC+4mVAAAAAQFlAZkAAAAAg8udmQAAAAEC0IGdAAAAAgMxeZ0AAAABAlqZnQAAAAODn6GdAAAAAIDojaEAAAADAWEVoQAAAAOCvZmlAAAAAAP99aUAAAADgeaNpQAAAAEDY5WlAAAAAwBogakAAAABg7EBqQAAAAEAbp2pAAAAAQM/hakAAAAAAlxFrQAAAAEAIaWtAAAAAADyFa0AAAABAjw5sQAAAAMA7KGxAAAAAQFdlbEAAAADAlq9sQAAAAIAvyGxAAAAAwALkbEAAAAAAvmdtQAAAAIBUxG1AAAAAQKYAbkAAAABACyNuQAAAAECbO25AAAAAQLBlbkAAAAAAPqduQAAAAAAHx25AAAAAgDvvbkAAAADA3gNvQAAAAMA6Jm9AAAAAQJ2Jb0AAAADg/gNwQAAAAOBlEnBAAAAAADExcEAAAADg3UVwQAAAAGC0XHBAAAAAQFZxcEAAAACA6YdwQAAAAKBjs3BAAAAAoOfDcEAAAABAMNNwQAAAAIClC3FAAAAAoPkmcUAAAAAAMDJxQAAAAIDgU3FAAAAAQAKFcUAAAACA1pFxQAAAAGBRr3FAAAAAgE7ScUAAAAAAqO5xQAAAAIAw/3FAAAAAoFQQckAAAACA7TpyQAAAAMD7S3JAAAAAoCxickAAAABAgalyQAAAAIDH03JAAAAA4N7uckAAAABgeglzQAAAAADPFXNAAAAAwPI5c0AAAAAA43JzQAAAAMDfgnNAAAAA4NOTc0AAAABgdqNzQAAAAMB183NAAAAAQIEKdEAAAACA6pN1QAAAAKAGsHVAAAAA4LxQdkAAAAAAmlJ3QAAAACDG4ndAAAAA4M5GeEAAAAAADuZ4QAAAAGC/pHlAAAAA4BPGeUAAAADgY+J5QAAAACCS33pAAAAAQHHzekAAAADAiwR7QAAAAKA/gXtAAAAA4DXle0AAAACgtQd8QAAAAOCvMHxAAAAA4DWyfEAAAABAXsZ8QAAAAEBKTX1AAAAAwHqlf0AAAADA1MZ/QAAAACA12H9AAAAAQHjyf0AAAAAA8dqAQAAAACBeWYJAAAAAIMRqgkAAAAAA13KCQAAAAGBQvYJAAAAAAEHkgkA= + KBZXds7jZUD1hHOUyKJnQFAtpBCXEnJAeiAWnrzickB37uuHRSN6QKHhXRVr83pAOybk7U6agEDuQWt1DQqBQMwqZYaQUoNA - + - gCBvQOY1aEBpsidAG3ghQBvJFkDR+ztASbHyP2+JQ0C0OfI/ShnDQP5UQ0CYcRJBH4mRQGkQjUCKZcpAwETfP1wa7T8meUdAsjwIQXSw3z8X8rhAd7uUQDizQ0AAjiJBmyoCQIRkK0H+dwJAHBgYQW9/HEG7x5FA7v3fPzAGIkEKMDpAWvyCQARShUBWxGtAnLKpQdjtzEBmQKg/Y00NQFHriUA5oidAqSO7QJJNhkDjprxAFOdlQBOLLkFaQMlAKk2DP9/lC0DdvFJAjV5NQcPjrkB1gx5BkLNTQgep3UFYxcFAaVWVP3w400EZ5SJB8DuLQcj0AEGOMuBBmBQ0QUjMOUGa47FA17D6QbodukGFvdpAzHEjQVvEW0B/GnNAnterQePtuj+7j9hBGp3WQoBwh0ItlhxB6M4LQCGgnEPEldVBGBGcQny0fUF9KOVApY+AQVYXFkFyCUpA6lkfQudex0HWnB5CwLULQf6ZhkDFsTZAnFSQQX5eZEGh7jBA9JHSP9Qg4D8cy4pAvVyVQAqJ/z8Dj+9A804CQLsRnEF2oaFBQHLYQHbCeUJbAQRA5hBfQNaoWkEsY79AL06wQFlgj0AVCc5ARgI6QO+KGkHVy0xAuWpYQABPwUBCRYhAx4uDQCL270BmMg5AcMTgQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAH7lZUAAAACAPQNmQAAAAKCSQWZAAAAAICXFZkAAAADgQYFqQAAAAMDnwGxAAAAAALYEbkAAAABgmd5vQAAAAICnBXBAAAAAAISzcUAAAAAAOhVyQAAAAMAsL3JAAAAAgP3ickAAAADA9XFzQAAAAGDBe3NAAAAAQFuRc0AAAACAQfFzQAAAAIDWs3RAAAAAwGVQdUAAAADA2RV2QAAAAAC28XZAAAAAQOEmd0AAAABATzV3QAAAAIBZU3dAAAAAgNkheEAAAADAoQB5QAAAAIDWDXlAAAAAwLQveUAAAACA48F5QAAAAMDxdXpAAAAAgFWsekAAAAAACZR8QAAAAAAYw3xAAAAAgLMwfkAAAADA2vd+QAAAAIAJIH9AAAAAwBFJf0AAAACA92Z/QAAAAEDvlX9AAAAAwK2lf0AAAADAArR/QAAAAOA9AoBAAAAA4EcHgEAAAABgbxKAQAAAAIB0G4BAAAAAoAYlgEAAAADgpi+AQAAAAMAAW4BAAAAAQC1kgEAAAACgkYqAQAAAAKCTo4BAAAAAoEKzgEAAAABgmb+AQAAAAGAr2YBAAAAAYOTpgEAAAADAsPKAQAAAACDtCoFAAAAAgPxigkAAAAAAKVCDQAAAAIAW44NAAAAAYM8PhEAAAAAgu5KFQAAAAGAkbIZAAAAA4GB1hkAAAABA5jKHQAAAAKCWqodAAAAAYCqDiEA= + KBZXds7jZUA= - + - toJMQLa+D0FxTg9BaLBMQHLWlEAbZkxAZQ5lQD2IpUDgwAxB36adQAbEy0D3/olAnUECQPTk/T8oNL5AopYsQfOeykDf+iBAXCdoQBfYUkBGMmhAiLcwQII1HkClN45ArnduQJv5rkDPy9BBL6cTQWG4vEA887xA2pzbQTTo8T9TldlAOmmiQdEqFUBgWEVBF1+rQeboT0HkQYZBwAIWQa+TOEGXzAhAgWCMQCr+lEFUH2ZCmswRQFR4C0BHAYM/NCSzQukjV0ChyPE/2a0gQPzBckECjOlAjhieQc2lBUE12zhBhiWCQQZ4aUE1JotArZd6QCyLuj8hoGFCLyIDQUp3nEDEQ/pA5VUUQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQD+LXEAAAABAYw5dQAAAAIAoKF9AAAAAYJHKX0AAAABgYSdgQAAAAMBrSWBAAAAAIAwJYUAAAAAAkYZhQAAAAADNJ2JAAAAAAJVgYkAAAAAAf6ViQAAAAKCelGNAAAAAoAiqY0AAAABgh8NjQAAAAACC6GNAAAAAgHclZEAAAABAUOFlQAAAAEAbqGZAAAAAALDHZkAAAABAFQNoQAAAAMBEiWhAAAAAAF2oaEAAAABg5uFoQAAAAIDwA2lAAAAA4JLKaUAAAACAVw1qQAAAAEBaJ2pAAAAAwJxpakAAAACgb7hqQAAAAMCw6mpAAAAAQKoEa0AAAACgNyVrQAAAAODaYGtAAAAAQCZFbEAAAADAkmRsQAAAAABBj2xAAAAAAJHEbEAAAADAZmdtQAAAAICUwG1AAAAAwKkmbkAAAACASVxuQAAAAAAFe25AAAAAAFHAbkAAAACA9/5uQAAAAEB3FW9AAAAAgBYqb0AAAAAA44VvQAAAAMAd1G9AAAAAgJDnb0AAAADAyABwQAAAACAkE3BAAAAAYGAjcEAAAAAAfDZwQAAAAIB4YnBAAAAAoAfAcEAAAABAhd9wQAAAAID7HnFAAAAAAGQzcUAAAABAXkhxQAAAAEDqX3FAAAAAgA2EcUAAAABAQ7VxQAAAAMBG33FAAAAAANzzcUAAAACA6AJyQAAAAKBeVnJAAAAA4KxickAAAADg43FyQAAAAIC5snJAAAAAQJLAckAAAABgVdJyQAAAAADt4nJAAAAAYBAEc0AAAACgARRzQAAAAAAaOXNAAAAA4BJRc0AAAADgLINzQAAAAKCiknNAAAAAwLScc0AAAADAx9FzQAAAAICN4nNAAAAAwP4CdEAAAADASTJ0QAAAAKDmVHRAAAAAgAZidEAAAAAAYZR0QAAAAIBIpHRAAAAAQAW0dEAAAAAA0eN0QAAAAIDqInVAAAAAIIVAdUAAAABATFJ1QAAAAGDrc3VAAAAAgOmDdUAAAABAnZR1QAAAAIA4xXVAAAAAQFQ6dkAAAACATFt2QAAAAKDClnZAAAAAAI21dkAAAADAE8J2QAAAAMDn0HZAAAAAoC/jdkAAAADAJ/F2QAAAAMBDJ3dAAAAAYHk0d0AAAACgqUN3QAAAAACAVHdAAAAAQDpkd0AAAAAgDxF4QAAAAMBfU3lAAAAAwGJjeUAAAABg2xF6QAAAAKCSKHpAAAAAAMUVe0AAAAAgBGR7QAAAAMDHN3xAAAAAwKrRfEAAAABAUWV9QAAAAOAEdH1AAAAAQHTJfUAAAAAg5YB+QAAAACBk1n5AAAAAQN8Ff0AAAACgERd/QAAAAMAueH9AAAAAYFRggEAAAABgYZGAQAAAACD3p4BAAAAAQJVtgUAAAAAgp6yCQAAAAGAG8YJAAAAAgJADg0AAAADgCg6DQAAAAGCSi4NAAAAAADKUg0AAAABgEgOEQAAAAGBsG4RAAAAAYMoyhEAAAACgEcyEQAAAAODV4odA + NrgMGZxjYkCsQEUcS4JlQEMdzoN8QnFAVv7+4X3ScUBDe6rX1FN4QH2/Rlks43lAYcxmwizke0DcsF8X7oGAQDCVIYvCeoFA3N9NQZoKhEDq5wGDOnuFQEANGF4mo4hApDrierJ7iUDPZGR9/rOLQEA8BojSK4xAz5NSp6o8j0B9R/M/JRaQQJHHtqcuspFAiaslp5HCkUDSLWZzsh6TQHXdia9kNpNAUkVdiAjjlEA7m57txTaVQB+xcfX7upZAr25NhETjlkA2NETILE+YQAyYPYCA45hAtks73YITmkCMrzSV1qeaQBN1K9m+E5xAozIHaAc8nECHSNpvPcCdQHCeG9X6E55ATQbvrZ7An0DwtRLqUNifQBycKds4mqBAGQ7hWmqioEAjzsIOb3ChQO3M5wRXrKFA0eK6DI1wokCtWGMPgo6iQDjjAxCVHKNAkW42F7hSo0Dm9/sNsxykQOr5aB7beKRAlAz0C9EcpUCqheQoBlulQFSYbxb8/qVA8ZmTIxw/pkB4IscTB3GmQBaSfPIxQadAOK5CHjJTp0DWHfj8XCOoQF2mK+1HVahAHTKn93IHqUA= - + - rYpxQKi8IEER8ZJAtTE6QM6AsUGWInVBFIo9QTA8CED9UQhB/5HKQF65C0CSvXRB29heQfwTk0F0QwJA8UadQDhqH0OhLl9ArfYDQLVmIEGkplJAEwPaQBqCaEIwFCRAGkpPQNgbX0A4MEJCgHFCQdTRzD/IPJxARZ1lQKku1kDzdzBAMucOQUbW3UA0p6c/VYOwQAtQhUC79ZBBM2lJQGDYHUBqBPI/tayQQCHHyz9lhQZCNJfIPwFKc0F49plBvWZUQVnkt0BC18tBorquQAgWuz8O25lA5QzyP8KLDUEX2vFBpOVkQP+vREEUDiVBw4NdQR87nUHswJNCYDGQQbLTn0D4ugpBW2nAQb4cEUK5RT9C+oIXQaEmAkD6p4dAQJUjQ4xtlEG0EwRBAkrfPxs7KUPo9zJCbLD0P9SfGkFyo4ZA+OGrQaQpi0DEfHdAVnhTQYhMnkEZrK1Bnv4lQGYSsEHhogRC9jNZQhB5G0FKVkxBF5L+QOf5xUDRNzpCFHzfQIp4OEBeeV5BwkUoQZBHH0H5FJpBPDaTQIiTzT//Do5BEcFtQByrpz+wX6dB8pzaQNNsC0BYgy5BFOH+P1hRKEI+5FBBWCyVP5bz0UCfy11BWgSnQIMfh0DPEUVBUqz5QEnkykBsaKhBVq2yQhMbwEHTwe9ButfMP0Zcu0BhIItAbiBlQMmUqj/HLPE/PNlbQXn6mEBoqqxCeKPYQGpPW0AONXdBlxMeQGVwe0Cw1l9B + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQDI9WUAAAACAmEpaQAAAAMB00FtAAAAAgFr/W0AAAACAAxddQAAAAECST15AAAAAAPL+YEAAAADgKMRhQAAAAIC/HWJAAAAAIApHYkAAAAAAEGViQAAAAEDkzmJAAAAAgDboYkAAAACAjgpjQAAAAMADaGNAAAAAABGiY0AAAABg/whlQAAAAKDT5WVAAAAAICsAZkAAAADAeUJmQAAAAMC9AmdAAAAAIJ8oZ0AAAADA+EVnQAAAAAAOw2dAAAAAQBLmZ0AAAACAnQloQAAAAGDJRWhAAAAAIF6HaEAAAADA7KxoQAAAAAAbyWhAAAAAAHH9aEAAAABAcy1pQAAAAGAVfmlAAAAA4NvBaUAAAACAbuVpQAAAAMBUYWpAAAAAQC2lakAAAACAYj5rQAAAAIAlW2tAAAAAQKqma0AAAADATCZsQAAAAADCP2xAAAAAwOJjbEAAAABA+4psQAAAAIAuxGxAAAAAwCkkbUAAAABAC0FtQAAAAIDJX21AAAAAAKOAbUAAAAAAecNtQAAAAAB/7G1AAAAAQCcHbkAAAABAX0xuQAAAAACxw25AAAAAgMHmbkAAAACARjtvQAAAAACogm9AAAAAAPWgb0AAAADAwQVwQAAAAGAVEnBAAAAA4BglcEAAAADApjtwQAAAAMDqT3BAAAAAAP1icEAAAADAHH5wQAAAAMDSjnBAAAAAIKCicEAAAABgFtRwQAAAACBVJXFAAAAAQEgxcUAAAADA3kBxQAAAAEBRTXFAAAAA4MthcUAAAACAgXNxQAAAAAAvf3FAAAAAAJ6ScUAAAACg9bJxQAAAACCQwnFAAAAAQHHScUAAAADgKDxyQAAAAIA3UHJAAAAAQNZickAAAADAAnJyQAAAAAAqgXJAAAAA4A6WckAAAADAX75yQAAAAMCE4nJAAAAAoMTxckAAAABgW0JzQAAAAGBkVHNAAAAAwHZhc0AAAABAuZRzQAAAAOCLJHVAAAAAwA6YdUAAAADgvyR2QAAAACCUTXZAAAAAAPmHeEAAAABg17Z4QAAAACCwFHlAAAAAoFs2eUAAAADgvER5QAAAAIA5YXlAAAAAIH5seUAAAAAgLHZ5QAAAACCb9XlAAAAAIC4FekAAAABAZgR7QAAAAMCOfXtAAAAAIFoMfEAAAABgWZ18QAAAAKDj5HxAAAAAYMaEfUAAAABgliB/QAAAAMAIgH9AAAAAIL/ef0AAAACgDWqAQAAAACARfYBAAAAAYPi8gEAAAABgxwGBQAAAACChUYFAAAAAgLKLgUAAAABATPuBQAAAAEBnCYNA + KBZXds7jZUBmiwPJSONqQNzlv3T/InFAeiAWnryic0CjQFSuF1R3QA== - + - en6vQJ8rS0CZllVAbE8nQIpipz8LjhdA/H7wP6xEhkCanPE/Md3iQIt2C0DyXoZA5h6fQC8Puj+suPE/kM7fP83hNkDkMj9BW73CQE8vaEDqUUxASW/4QKhWwUA4YnFAH0PmQLM/ekDQhQ1B77oRQD39FEAVF6pAOBmXQGcpNEH6padBQrOPQMbKNUH/KTZAaeVyQQBlGEGBZZdAo6kRQP8IJ0Bj5uVABW1JQCvzgUDmQgpBJKG5QI356kCyZJ5ApNDPQC/SmECtIVhB5D4TQuRwFEC8K4hBQM/qP0vMkUGGnfE/hAT/QFHpA0KJXk9BTnooQy6BJEEgLB9ABR4vQdJEHkHc/2dA+pGCP5ZcJUFcEIVARKanP0sZ30FvcdI/VO5uQn88Q0HhScJAapTYQFqkL0Gy9p5AKOx1QhqZEEMLNmxBLGlHQsywjkFcPlxBWb/fQNzIBUFxBidAmzMLQmYgk0CIlrVB6GmUQPQsUkCPrAVBeZxOQKDrJUGvJVRBy71HQbXYtECZN8w/92ECQAgppUAknTNBbtM2Qb66JEGqjfE/VNbBQO6pj0CleAhBojOIQappsUCiW6pBLiwwQEjjUUCeo+pAHxUBQTZ4e0BllVpBmKeuQL+l00B4Zsc/nKUBQLyMI0HEtUpA + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIAadZEAAAABARadlQAAAACAVQWZAAAAA4CckZ0AAAADANCBpQAAAAIBfo2lAAAAAgDgjakAAAACAxMBqQAAAAID4JWtAAAAAwKaNa0AAAACAwwRuQAAAAKCbQm5AAAAAgHicb0AAAABAnhBwQAAAAIBII3BAAAAAgOCMcEAAAACgdbJwQAAAAGB40nBAAAAAoDHwcEAAAABAtyJxQAAAAAC6M3FAAAAAYNBAcUAAAAAA/YBxQAAAAGDci3FAAAAAIMhDckAAAAAAENVyQAAAAIC883JAAAAAQGtXc0AAAAAAvYJzQAAAAEBwo3NAAAAAwI6xdEAAAADAXtR0QAAAAMBIFnVAAAAAQNI2dUAAAAAACFJ1QAAAAEBdZHVAAAAAIPuBdUAAAADAOpJ1QAAAAABrwnVAAAAAQIPkdUAAAACAV/91QAAAAMA9FnZAAAAA4ANAdkAAAABgJ2J2QAAAAGCQf3ZAAAAAoOaldkAAAABAmbF2QAAAAACx5HZAAAAAAO8Md0AAAAAA3Dd3QAAAAKBNRHdAAAAA4MRfd0AAAADgyNF3QAAAAOBt83dAAAAAQDZUeEAAAACAnIF4QAAAAOAmjHhAAAAAICPleEAAAAAgFQp5QAAAACBhQXlAAAAAgNaUeUAAAADgD7V5QAAAAKBd73lAAAAAYCQ5ekAAAAAgqpF6QAAAAMAbBXtAAAAAAK0Ue0AAAABggh57QAAAAIDzL3tAAAAAYG1Be0AAAACgnVZ7QAAAACCIYXtAAAAAgD6Ue0AAAABAQbR7QAAAACDPKXxAAAAA4Ng1fEAAAAAAH158QAAAACDEd3xAAAAAwAS+fEAAAACAes58QAAAAMCHE31AAAAAQKYifUAAAACgKDp9QAAAAMBtUn1AAAAA4HBffUAAAABg5Gl9QAAAAKDi231AAAAAIAwhgEAAAACg0PGAQAAAAMCe/IBAAAAAgMaDgUAAAAAgjomBQAAAAOCZpYFAAAAA4B7WgUAAAACgfBaCQAAAAOA5ToJAAAAAQFOEgkAAAABgoqKCQAAAAKAPxIJAAAAAwNfKgkAAAABgxPOCQAAAAOBDE4NAAAAA4Io1g0AAAACgzjuDQAAAAGDASYNAAAAAAGVUg0AAAACgaHqDQAAAAEAwgYNAAAAAQBOzg0AAAABg78KDQAAAAMCyy4NAAAAA4MAThEAAAADgXWOEQAAAAKDvnIRAAAAA4BKlhEAAAABAJ0uFQAAAAGBqM4ZAAAAAAB89hkAAAABgTUqGQAAAACDuXoZAAAAAIJDTh0AAAAAg79qHQAAAAEC/64dAAAAAIEEtiEAAAACg1HKIQAAAAMDQuohAAAAAoBjDiEA= + KBZXds7jZUCl+4zleuJxQFAtpBCXEnJAoS2yr7yCeEBsViEfkxN7QF+rF1/cwYBANESjdOrZgEB9/NNJNFKEQCS+qOOMqoZA - + - GFyiQN5I70EGll5AxioAQaP/EEEllzdA4OMbQAmKlj8MzqZAzRkVQFB28T/3IwtA7nwQQQmMwkAaFlRBOznIQNTiYkHGBoRA3dZiQZLjCkFPQfFAmRw5QMni7EBovpZAyXHWQL8jZkB9vwBBDsyaQSF4C0Cb8C9AxDsbQfo6K0IWIkpBJebvQMKlzkCsqRRAFMYTQeMReEFh0h1AiKlsQdZWOUA/1xxA3DPMP2G3I0De+QdAFPkBQCT28T8kkptByCapP7anlUBvZBJAn3GSQTJD7UBIuepBTqopQfWQQ0F3SolAAx+jQPhfLkKs+ZhAZg0/QhoiekC2MgdBD3KbQcSlCEFeSlZCPpCGQau1j0A9qKtA5gxWQlFuhkFa0+tAw30QQssrH0E2iAFBPzqQQdJQQkCsB59BPG2fQobfN0F97F1BqhILQLEww0AyeAJCHnU6QYBun0GeNHtAHdhUQMphP0EpwQFA4pKQQW/skkAy7cpAl+FBQYouEUKLrZFB0PuYQJYNp0AuiCtBaliaQQB7NUG4ub1Ao2c5QZg1x0CGIN4/Z34uQV6uP0BP7QpAF48BQDGOFEGOG/lAOC5mQIiClECJ3ntBtlbCQWozm0DFqZdBiOCWQFuVpUDQDaFAUT1cQGSugj++MFVAzrREQZhIQEAMNcBCtPLmQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - AAAA4HJeaEAAAACAd8drQAAAAADmImxAAAAAQAVDb0AAAADA4SBwQAAAAABLQ3FAAAAAAGBycUAAAABABZVyQAAAAID2gnRAAAAAwDPxdEAAAADAzRN1QAAAAIAsYnVAAAAAwFBfd0AAAABAanJ3QAAAAMD7nndAAAAAQOAReEAAAACAEUR4QAAAAMAFUnhAAAAAgDt1eEAAAAAA6754QAAAAMCZ4HhAAAAAAJAveUAAAADASWJ6QAAAAMCTgnpAAAAAgHLtekAAAADAQgh7QAAAAECi0HxAAAAAwNlFfUAAAAAAIdF9QAAAAACN7H1AAAAAQLsPfkAAAABArSF+QAAAAECbSX5AAAAAQAxXfkAAAACAHtR+QAAAAEC5TH9AAAAAoB4SgEAAAACAXNqAQAAAAKC294BAAAAAAKsWgUAAAABgozCBQAAAAID1ZYFAAAAAIMBwgUAAAACgjE+DQAAAAGAKXoNAAAAAYKKFhUAAAACAT42FQAAAAOBXuoVAAAAAYAUBhkAAAAAgrQqGQAAAAGAfwYZAAAAAIE67h0AAAABg/EWIQAAAAOAPuohAAAAAYMfCiEA= + NrgMGZxjYkA= - + - yLjwP5TVeEDdFBNBl/2YQH+48D8NwaxBUA6VP2BbPUH0QJRAIB9FQFUbzUCRpEtAUe01QSZwIEHhqxNBNbKmP9MuokAptUhAtkQ5QFM9x0AcPfRAyOPAQNioHEGns2hAxesmQDNJFEArssBATUi8QENUr0Bd6KRARla/QNi+gUAWUJRAmubcQHK8QkALiC9A4Te5QGpQXUF0xyxANXSLQFwG3UForxRC2LQBQRb6Y0EY8ThB010/QSL8HED6QApBt4xaQTos4T8v3wNBNJoVQDfkQEE6bIpAY0wUQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4GEGYEAAAADgZYBgQAAAAGArpmBAAAAAQMYDYUAAAACA+O5hQAAAAKDyZGJAAAAAIEKbY0AAAADA17RjQAAAAEDHKGVAAAAAAHbkZUAAAACAbHpmQAAAAIDu7WZAAAAAQJplZ0AAAADA/ppnQAAAAECJxWdAAAAAAA7/Z0AAAADg+WpoQAAAAACuwmhAAAAAQBalakAAAAAAAOZqQAAAAABuAWtAAAAAoC5Ea0AAAACA86RrQAAAACBAwWtAAAAAILREbEAAAADAvmdsQAAAAABH7GxAAAAAYGMmbUAAAABA+EZtQAAAAMCMt21AAAAAgIRDbkAAAADAVsFuQAAAAED8BW9AAAAAwI3gb0AAAADACyVwQAAAAECZXXBAAAAAYPhzcEAAAAAgFQZxQAAAAKA8UXFAAAAAIKvlcUAAAACgJ19yQAAAAACzsHJAAAAAYH2/ckAAAADgrRZzQAAAAMAqrnNAAAAAQMfEc0AAAABg7ttzQAAAAMDcFHRAAAAAwIAedEAAAACAxj10QAAAAAAMXXRAAAAAoI1/dEAAAADAbct0QAAAACCd9HRAAAAA4AEEdUAAAABAmhJ1QAAAAGAiI3VAAAAAYEAtdUAAAAAAL0p1QAAAAIDycXVAAAAAgDCDdUAAAACAo9F1QAAAAKCrAnZAAAAAoEhFdkAAAABAn3R2QAAAAEAjgnZAAAAAQKfQdkAAAADAzuF2QAAAAADsD3dAAAAAoHc4d0AAAABgxXB3QAAAAODQg3dAAAAA4ECkd0AAAAAg6q93QAAAAEDc5HdAAAAAYJMEeEAAAACgpFN4QAAAAOC1Y3hAAAAAIL2YeEAAAABgDa54QAAAAGAGM3lAAAAAQCVFeUAAAAAAg6F5QAAAAMBntXlAAAAAgBZMekAAAADAuz1+QAAAAEBUlX5AAAAAwJYqf0AAAAAgXLZ/QAAAAMCMYYBAAAAA4JurgEAAAADgjLKAQAAAAEBz8YBAAAAA4O39gEAAAAAg2XuBQAAAAOA6pIFAAAAAIDr7gUAAAADg3TeCQAAAAKD3n4JAAAAAoKTegkAAAADAGkODQAAAACCOUoNAAAAAgFZShEAAAABgSGKEQAAAAOCUgoRAAAAAYIyzhEAAAADAgruEQAAAAOCP6YRAAAAAIMHEhUAAAACgv/yFQAAAAADqYIZAAAAAAKLJhkAAAAAgUimHQAAAAKCFYYdAAAAAYDisiEAAAACAG+WIQA== + NrgMGZxjYkA= - + - vXqlQD378D8/oaY/gwz9P/8NnUANijFAcDSzQG8Q30D6CEJAtc1pQaQx+kBiZdRAhaJDQszFgUAc0iZAWMOlP0CvwkCbSxRAtohCQLz0SEJq0vxAMJALQEBfsUDbj2I/Ix65PzknLUG2Sh1ALrw/QM8euUDsNhdBRAtVQNNgEEG84t9A77zwP7fEnEBmwCZAVi2iQD70yUAdICRBgOGYQMeIhUEXdCNAnA/1QCXPnkC1MrxAn+eyQPT3MUEhJvJA+SxeQCkeuT+NxEdBXPHOQKPstEDQ9LtBX/wvQdlu/UBqrSZAMm65P/Hvr0CWU9g/5g7XQbFK3j8qIOlAnPXcQfzBDEHOjiZAzECCQcRxQkCyUaNA7p7hQEeoLEFwNHZBgXUNQiI8LEG7xwNBocUjQCW9cECpah1AcGCYQGB+HUCy1VBCxjyCQEYfVUB9dF9A3vFLQDBMIUEPHvFAgCUIQkqxTEFdHRFBlfO8QjNp00Bt/h1BXawcQS8250C8obdBYnbXQUhE70AHOqFBRpNEQRPixUDJ13BAkNIKQPzUqUAklE5B0axqQxtuj0EkqBxBVriLQAO/2EAnzQBBvH+JQKFwzD/46DxBzoCPQO3lB0E= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - AAAAoHxnYkAAAAAApcRjQAAAAAB6R2VAAAAA4JXnZkAAAADAYw1nQAAAAIBCwGdAAAAAQD1+aEAAAABgwOFqQAAAAEAJKm1AAAAAgJDObkAAAABgO8BwQAAAAIC6f3FAAAAAIIZickAAAADAzrtyQAAAAIDdZHNAAAAAwLm0c0AAAADATNdzQAAAAEDitHRAAAAAwALEdEAAAABAKlN1QAAAAADsGXZAAAAAANN2dkAAAABAUK92QAAAAACg0nZAAAAAAJMid0AAAABAU213QAAAAIDAtHdAAAAAwPsDeEAAAAAA+jB4QAAAAIC+nnhAAAAAgEiteEAAAABANcF4QAAAAADsEXlAAAAAAEtyeUAAAAAA9ah5QAAAAAD7Z3pAAAAAQFV4ekAAAABAKJ96QAAAAMDi0HpAAAAAAHcje0AAAACANHZ7QAAAAEDWf3tAAAAAwOmZe0AAAADANsx7QAAAAEDi5ntAAAAAQMAZfEAAAAAAjjZ8QAAAAED1RHxAAAAAgP5UfEAAAACACNF8QAAAAACrZH1AAAAAAEhufUAAAAAANrN9QAAAAIAd4n1AAAAAwAnsfUAAAABAxQB+QAAAAMByHn5AAAAAwBdFfkAAAADgXFiAQAAAAGCucYBAAAAAoCiSgEAAAAAADLKAQAAAACDYcYFAAAAAgAF6gUAAAAAgk4GBQAAAACA1yoFAAAAAoLlvgkAAAABAmqGCQAAAAOD+C4NAAAAAIKMhg0AAAABgVDiDQAAAAGC6VoNAAAAAgB+eg0AAAABgs7aDQAAAAKDkzINAAAAAALRChEAAAABAAnWEQAAAAODzeoVAAAAAYJSbhUAAAAAABVSGQAAAAGBneoZAAAAAQD2DhkAAAAAAAP6GQAAAAAABtIdA + hH7jX0jiZUAoFld2zuNlQGTI82CnYXBAiTDsKtfyckDfhPAvb2N3QFKG870VkndAOUrBSjnKgEDzysKRjOGAQB71RJTYGYNAMClBeXBihEDYRyWMUBqHQMEtwhGyGodAUjJDqvPSiUA= - + - 9rl1QZq8VkBsXTBAY79TQE63AUAb7HBA5fyEQOffeUDDYKc/V+O4P1t4ZkGcx5hAeZBtQNJso0CfDTlAmAilQCq3aEF/GJRAYl9AQWDV+EBXSOZAaEmKQHCNLEBMNLFAXte+P22jS0AWOKBAu/qrQJTiVEAsJ5RAlM3wP3V+YEHZ6ZM/MMz2QKI8NUH/ViZAyUItQYuNIEGOcrpAnYvcQLpXnUCyRihAteyLQegxRUGWuRdBImSIQTdAuEGEmztBbWidQKJIwEGeAzhCTuKKQT9HoECbbJJACD8BQc3YHkExH4ZAjBAqQahcBUHZvxNAKk9eQDTs0kC/qEtAwseBQTJ670BUxzpBIhdUQBbqJUGOhxVBahKzQDOCpEEi1ChB0BaKQN1GSUEP3i9AiGvGQEPnokE/YCxBVO2TP7HUj0Ad08o/+CVjQe/k3j9kSFFC + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAACbiYUAAAAAAxPpkQAAAAACM5GVAAAAAgHG/ZkAAAADg2kFnQAAAAIDM6GdAAAAAwBeraEAAAADAV2NpQAAAAMBAmGlAAAAAgD2ZakAAAACAW+tqQAAAAMC1A2tAAAAAIHnZbEAAAABAiANtQAAAACDKjG1AAAAAYFHrbUAAAACgd2VuQAAAAOCT325AAAAAIFc2cEAAAABgyZBwQAAAAMBzAnFAAAAA4F8UcUAAAABgF0FxQAAAAADbUnFAAAAAQEyBcUAAAACgRMRxQAAAAECTjHJAAAAAoEGfckAAAAAAw7FyQAAAAMBZ4nJAAAAAwHGHc0AAAACA9rRzQAAAAECh03NAAAAAINv2c0AAAABgWgJ0QAAAAECZLnRAAAAAQNd/dEAAAACg+Zh0QAAAAMB/03RAAAAAABHwdEAAAABgRg51QAAAAECfKHVAAAAAIHczdUAAAAAA42R1QAAAAIDhdXVAAAAA4LyCdUAAAAAAPbV1QAAAAMCXAHZAAAAAwHMfdkAAAADgVlV2QAAAAABbeXZAAAAAoKBAd0AAAADAiFF3QAAAAODagXdAAAAAgOuhd0AAAAAgRvB3QAAAAACuD3hAAAAA4CcieEAAAACgYjt4QAAAAGD8YHhAAAAAQJeKeEAAAACgi+54QAAAAOACBXlAAAAA4MUQeUAAAADgIyR5QAAAAKBTZXlAAAAAoOGyeUAAAACgKud5QAAAAMDo8nlAAAAA4PGKekAAAABgYaJ6QAAAAOCusXpAAAAAoBPCekAAAABglc56QAAAAACQOntAAAAAgJp/e0AAAADgW517QAAAAAAkq3tAAAAAYB/Ee0AAAAAgGtV7QAAAACBw/ntAAAAAIPcZfEAAAADAKkh8QAAAAIBDVnxAAAAAILCHfEAAAACgVqJ8QAAAAGAvsXxAAAAAwATMfEAAAADgCtl8QAAAAGAnKn9AAAAAINhQf0AAAADge+5/QAAAAGDqeIBAAAAAoEGagEAAAABgByuBQAAAAGAAM4FAAAAAYFk/gUAAAAAg1+uBQAAAAACKQIJAAAAA4Gp5gkAAAADg7zaDQAAAAMCdk4NAAAAA4OWyg0AAAABASryDQAAAAGCi04NAAAAAgE/4g0AAAADgWgCEQAAAAKC1GIRAAAAAIA1MhEAAAABgDpGEQAAAAGAirIRAAAAAwEjhhEAAAADAfi6FQAAAAKAPZIVAAAAAQOJ7hUAAAACAc+yFQAAAAIAM84VAAAAAYNYKhkAAAACA+B+GQAAAAAA+4oZAAAAAAO3qhkAAAADg1fuGQAAAAAB8KIdA + ew5Y0/GhYEDAIFw1+IJrQCZYakR1om5A6JafaG1SdkDahsnbUoJ4QKudPTwTg35AAKSIqYBJgECc+sSt9UmCQCvOCqzMgYJAVviMrhi6hEAt/0VGNwKFQOUg66NEgoZAvCekO2PKhkB2JWw8hjqJQLxWkmUPU4pAPVESTPJCjEDpXDcLcXuNQIsxbljpUZBAUD9uNL9tkECZwa4A4MmRQD1I02Yv3pFA4NVd+/WtkkCGyhMzUDqTQCfqDPYLkpNAOOF4QZbGlEALAOD9QRaVQBz3S0nMSpZAvRZFDIiilkAADR9RAs+XQAaZhdio/pdAsiOEX0gbmkC4r+rm7kqaQMc4xWBuN5tAnMW97iTPm0ARKZf+mTudQBzdtAN7k51AWD1G+a8fnkAy8vUEoa+eQNEWjMvtEaBAC4RkhusZoEAvDryD9ougQMOhdc8I1KBAIZmlhxFOoUAcLajWK/qhQPLJY7EvYKJADriR2ka8okBnQ8ThaYKjQEtVlrhShqNAb9/ttV34o0CLhORHejCkQPogVx92wqRAr8UErorepEDsq0AjkYSlQBA2mCCc9qVAoQe3GqskpkBhkzIl1ganQAJ4So28PKdA7B3TJemUp0AmAqKKx66nQEpDwvDXXKhAd188jwFfqEA8zqv08h6pQNDqbpYkhalADf9pHhExqkChGy3AQpeqQGaKnCU0V6tAk6YWxF1Zq0C35zYqbgesQPHLBY9MIaxA23GOJ3l5rEB8VqaPX6+sQDziIZqKka1AzbNAlJm/rUDxPZiRpDGuQC4k1Aar165A48iBlb/zrkBSZfRsu4WvQG4K6/7Xva9ASEohfvEXsEA7U4rp5RmwQOeYI233fLBA9I+6AQOrsEBgXhjvBN6wQFyomRYSNLFADKSxchZxsUDVbY6YH5WxQOcyOhclzrFAhWmm9CPSsUBg+C6ZMi+yQJflGtwuU7JApT1/GTx2skCpqsZaNIyyQIUDvZ5R57JAuyY7Qj8Ns0D+yLEgX0izQABsi8JIVLNAqg5LpHDbs0CssSRGWuezQDwvW9d4MrRAJXcZyGdItEDodPRaipW0QJ48Dkp1qbRAYTrp3Jf2tEBKgqfNhgy1QHP/lFudL7VA3KK3AI9jtUCFxEDaomi1QBflUA2rv7VAiOhQhKDGtUBOiQW5rCu2QMMq6pC8UrZAFCq67biQtkA88N4SyrO2QPTv93LOAbdAzhDvRdIKt0AGtaPx0zq3QODVmsTXQ7dAJRvrROGKt0CY1bMk3JG3QGpgO8Xq0bdAEZuopunyt0B83K+s9VK4QH174gP0dbhAKCJJMAfmuEDmk8EYA/+4QHi00UsLVrlABx4ZFg5ZuUA= - + - 0sx2QE9y3j/zzd0/a44mQMhxAUAbIiFBnksSQCUlOUDB9FNAOGaBQG5d2j/nH6tA1/gAQL5nUkDNRB1AHZ4BQMWxb0Cubcs/YHE4QHKsGEH9FihBJL3sP7HbnUGvQSdBSXcHQb/9jkBIcnBAgJy4P4okOUDIXRFBGNp/QAZBHUAgm25BZF7MQS/Wc0CZcd0/yKGAQQhORUHIju8/+nfFQA23/D9x4h1BX7WbQGKmyj/pCyBBnlW5P9uyS0CuJfdA9CAjQEUagECyAxNBtYEiQc8OZkApAxpBVe4TQBsn3j+NHzBBwg2YQLIJCkH+FhFAHyObQVDgbEG71gBBpxOIQl4kQ0FiwJhA70QtQDgoPUIEcpdANF35QeC2FUG4kpNAY7EnQuIGE0HSlyZASevSQRbDJ0HFyApAN/2VQdMZWEFgT7pBfKhgQaggVUHl5KBAMHnSQWKeBkLqPVRAk+hPQdWl3kDejyBCkgs/QI4T7kEiiYBAMrwvQGFnj0HavlpBE574QFt8IEFa5PZBC+FvQo/PDEHIcvtAO80rQz/3HEGdLhNC8QreQLp0CEKd34NB1GiAQFV7s0H2poBAT43wP7ZxoUE5JUlA+7f5QFxU6kH0QiZBa+53QPjszEAdmJxAxS6OQKqtqUBX4d0/ + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgCoEdEAAAAAA9gN1QAAAAICB9XlAAAAAANVHfUAAAADgppOAQAAAAMBSJ4FAAAAA4OhSgkAAAABgOYKCQAAAACB/uoNAAAAAgL/Rg0AAAACgFrqEQAAAAOAEKoVAAAAAwDRdhUAAAAAg9YWFQAAAAGCz+YVAAAAAYOCqhkAAAADAQWOHQAAAAGALYYhAAAAA4MX1iEA= + NrgMGZxjYkBe4xb9Y+JuQOzQoK8iBW9AzMJH6YkBc0A9w2SRqbN1QCfPkTRNUnlAyxqxsIHEe0CC29t/EKN/QJC32tqMGoBA7BdwQtQJgkC9vX+A7kKDQLNDFlJAEoVA6sMkJlBrhkAXceBuzCqIQHnsght8M4hARHeFFC5Ti0BwywJKs8uLQA== - + - VcAIQfYvLkH5iItA6tz8QAKntD/w+mRByJ0cQa6AzkBdok5B1CNqQX5SSEE/A6ZADmW0QNINvEApIso/tfa4QKxSnEAcQ2lBQY+JQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAABBAYkAAAADA2ehmQAAAAADvJ2dAAAAAoChIZ0AAAAAAD0BoQAAAAMCsJ2lAAAAAwASkakAAAADA1sdqQAAAAAD5C2xAAAAAgOzkbUAAAABAr39uQAAAAEBwZG9AAAAA4IAgcEAAAADALjRxQAAAAACCcnFAAAAA4PIEckAAAAAArBRyQAAAAIAbo3JAAAAAwFEyc0AAAADAenNzQAAAAEDzpHNAAAAA4Ijhc0AAAAAANBN0QAAAAAAwcXRAAAAA4KuhdEAAAAAA39Z0QAAAAEDpLnVAAAAAwO9udUAAAADAGY91QAAAAGBWtXVAAAAAQKLxdUAAAABg+yN2QAAAAOANMXZAAAAAgK1ydkAAAAAA4Ix2QAAAAGAFsXZAAAAAADzydkAAAADATQR3QAAAAGAKFXdAAAAAQA1Od0AAAAAACmJ3QAAAAMDDgndAAAAAAA/Ud0AAAABA6/R3QAAAAKAMBnhAAAAA4IwSeEAAAACgDDF4QAAAAGBPYXhAAAAAoFOEeEAAAABgUaN4QAAAAKBUuHhAAAAAYM3zeEAAAADgcR95QAAAACBnNHlAAAAAIKGyeUAAAABAIth5QAAAAOA073lAAAAAIAI1ekAAAAAgQEN6QAAAAEDWU3pAAAAAgP1lekAAAAAgYHB6QAAAAADTf3pAAAAAoBfiekAAAAAA4/N6QAAAAMAZDHtAAAAAINYXe0AAAAAg3Vx7QAAAAMDpgXtAAAAAwEQGfEAAAACg0RR8QAAAAECrL3xAAAAA4EGMfEAAAACAS5d8QAAAAMAIonxAAAAA4MvLfEAAAACgSzZ9QAAAAGDbqH1AAAAA4Pg3f0AAAACgxqB/QAAAAMDVI4BAAAAAYA0rgEAAAABAqjOAQAAAAMBkX4BAAAAAQCvdgEAAAACApWqBQAAAAGAbnIFAAAAAwAu7gUAAAACgEMKBQAAAAABnOoJAAAAAwPJagkAAAAAgSDuDQAAAAOD+WoNAAAAAoGiYg0AAAACgf8qDQAAAACBOz4NAAAAAoHX7g0AAAADgIROEQAAAAAASI4RAAAAAoDwshEAAAACgUluEQAAAAAAARIVAAAAAADOUhUAAAAAgizuGQAAAAEDWE4dAAAAAYPIlh0AAAADg7quHQAAAACAjK4hAAAAA4M0ziEA= + eg5Y0/EhYkA2uAwZnGNiQCa3YN0hA2tA4mAVI8xEa0Dpr7TzKPJxQMcEjxb+EnJA5VVLAVajdUA= - + - EvWSPxMrrkA+BwFAQlpwQBYJgEApLzdAqGmwQeUU4EAgIaU/MEywQKdumED6MS9AqkTdP2gMhkAOJd0/H3LoQPXNtUG6KS9BQIDAQGAzVEDx8ABA59+hQOxMpT/wP3FAA5TlQL3jEkF645I/gOUEQSA5KUFdUKBArtvcP/79/kDpzVRAxW9dQN3o8kC6SC9Aoo7aQMnAr0BIaHlAuq8AQMbqxECrUV1ATjdVQZXsAEDQfD5AeVLLP/C7/kEHx80/5nGgQN8XEEBqYT1Bx4dRQMPcAEBudOtAuIQkQDSSXEHC6hRBVoNVQUhB/D/pqC1AwEc6Qb0Ol0CfPZlB0TNsQL03QUElT3FBnN4ZQDmADkHa4VlAwHQTQCQgQUDiR4RBsae4QYu1KUFzCNw/ALp5QScM+EDgaxNA6oiAQFxH+j8AANZAXjE5QV+XpEA+FAFBh2G8QXhjqD851eRBOaetQHseiUBYdCdB+RZXQWf/N0A1gQBB8DQSQbkTDUHoPSRAZF8BQXg25kBrgSZC0eEZQRQxokEW749AJOpHQQm+KkG/Xco/j6cKQPK7WEHsFRRDk2pRQg== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwJJBakAAAADgS19rQAAAAMDmX2xAAAAAQPk6bUAAAADAqwFwQAAAAOBCY3BAAAAAgDiGckAAAAAAqRRzQAAAAGAGUXRAAAAAAGpydEAAAADAPBF2QAAAAEC0sHZAAAAAwDwheEAAAAAAbXV4QAAAAMA3hXhAAAAAANXheEAAAABAmT97QAAAAAC1pntAAAAAALpUfEAAAADA8mJ8QAAAAEBypnxAAAAAgA3xfEAAAADA+9J9QAAAAAC+gX5AAAAAgMX1fkAAAACAs0J/QAAAAKDmeIBAAAAAoLbWgEAAAAAgCPqAQAAAAKCJQoFAAAAAIDBlgUAAAADgrGqBQAAAAGBUcYFAAAAAYGt4gUAAAADgKImBQAAAAEAOsIFAAAAA4JAqgkAAAAAgujuCQAAAAIBYXoJAAAAAYLtogkAAAAAga2+CQAAAAIAReIJAAAAAYLqkgkAAAABgeaqCQAAAACC6uYJAAAAAoNTIgkAAAADg3w+DQAAAAEA8S4NAAAAAQPxSg0AAAABAN1qEQAAAAABaX4RAAAAA4NpvhEAAAADA3OmEQAAAAODzZoVAAAAAwF+ShUAAAAAgnhOGQAAAAKBYKIZAAAAAQARkhkAAAABgbhCHQAAAAACY24dA + NrgMGZxjYkCJy7y2HKVqQMZtNYzMxW5A - + - CqKfQXmVjUAduGNAdmhdQKJGbUF1RRlAw4cAQCPs50AXoYlABjbtQDn6vUGS1kZAqdf9P3zN7j9iT9ZAzecYQNwaGUEX7tRAdjgcQBXPKEGNfRRBI/Q6QQeg7j/DQl1AFSP3QHFviUFOXEFAMvOhQBmzQUCK5ztBxMQWQcj/lUHrKG9AHxddQPGLMkGyu1xAnnCkQKkFh0GuFCtAhqDlQdNIY0DFk0FA+SYtQPMDJkHzayxBvNK0QHgH9EAMtvJCy6UZQqMKbEHJN81Anls8QcqQ60ErHhpB+5c2Qce3fkCdBwVBCTl5QDmmpkFlmiVA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - AAAAYMumY0AAAADA2MBkQAAAAGDaQmVAAAAAQPzmZUAAAABAS6RqQAAAAKByB2tAAAAAYOmhbUAAAACgtb5vQAAAAOBLLXBAAAAAwJZTcEAAAAAAkH5wQAAAACAKo3BAAAAAgM6+cEAAAACAagFxQAAAAMCWDXFAAAAAwASCcUAAAABg36JxQAAAAEA9sXFAAAAAAHLCcUAAAAAA39RxQAAAAIB1YXJAAAAA4JFuckAAAACA2o9yQAAAAIB7y3JAAAAAwIPbckAAAACAtexyQAAAAAAljnNAAAAAQP2gc0AAAABAfBp0QAAAAEDuvXRAAAAAADizdUAAAACAG0J2QAAAAECy3XZAAAAAwFbydkAAAABAyUR3QAAAAEDLpHdAAAAAwPHed0AAAAAAG/F3QAAAAABmJ3hAAAAAAFuCeEAAAACA3o94QAAAAADKH3lAAAAAgOZLeUAAAABAS5J5QAAAAABFxHlAAAAAQBE0ekAAAABAWn16QAAAAMCAj3pAAAAAwDi0ekAAAAAA6AN7QAAAAIBeFXtAAAAAABgke0AAAABAAlR7QAAAAMAAoHtAAAAAQGDUe0AAAACAHTl8QAAAAAAtRXxAAAAAQMJQfEAAAABAf4J8QAAAAIDvzXxAAAAAANTlfEAAAAAAAQR9QAAAAMDcL31AAAAAgKFafUAAAAAA43N9QAAAAMBpqn1AAAAAQOfWfUAAAADAp+Z9QAAAAEAEEX5AAAAAwB4nfkAAAABAKj9+QAAAAMCAS35AAAAAQLN1fkAAAABA4Yp+QAAAAABkmH5AAAAAwJWzfkAAAACA5CB/QAAAAMB5Wn9AAAAAgA/9f0AAAACg/V2AQAAAAGDnxIBAAAAAIO/KgEAAAACgxN6AQAAAAOC9/YBAAAAAgBQRgUAAAACgSxyBQAAAAIDMWoFAAAAAYC1igUAAAACAVI2BQAAAAOCqmoFAAAAAoOHQgUAAAABAwiKCQAAAACBSL4JAAAAAYCR1gkAAAABgrXyCQAAAAGCImYJAAAAAoDv7gkAAAACAEBuDQAAAAGDGuoNAAAAAAP37g0AAAADg6wGEQAAAAAD4BoRAAAAAYFIMhEAAAADgMUeEQAAAAMDekoVAAAAAoM+yhUAAAACg2f6FQAAAAGCNHoZAAAAAYPsyhkAAAADADDqGQAAAAKAiP4ZAAAAAoJ8Dh0AAAACgxWOHQAAAAMB1U4hA + NrgMGZxjYkAbumJgJkNwQACq+tzlYXBAcQ5nZb6zdEAACNcwPnN3QJjPrtxsxHxAJ8keqOyDf0DLlkWY4uqBQL6OkVZC+oFAvr1/gO6ChUAuxA+1boOGQA== - + - vkwFQKSaoz+bXG1AbfvaP16PN0CHtLZAVJkSQOhvdEEWzxBAgsZLQaljtj+VCuhALdytQFPSy0AjlzdBDC/bP/FFQUHv1xZBHgx3QIjcQEDMiJ5BZWe2P5h4pD+490lBC2McQHlg+z9a9NZAyMO4QeOIB0GJzmJA4BoAQe38UkDL7xpB78rCQGIkyj9zas8/vVKeQO0xikAN8yJBieMJQcre70GOmXhAIh38P2AJkUGIgIVAQEy2P+Y9X0JbzRZBLqVTQGND1EAuQjZB8gTbQPXYP0BOFgxBqm0uQNsSVUEO/nBBxfMzQHhkDUHzm59A5IijP7H2/ECAML9C8soTQRgNXkKlxXNBO4oIQefWmkGYhoVArM/yQMu1uEFuLWdBcOj6QEU/JEKWwwJBT0AOQVpy30GhTJhAApqqQK8/IUE3M7JArfQnQeFKU0DrcLU/2VMkQJ0HjUB8epNBz5uFQWAFq0AU9N5AaMHHQcCwGUD3HxlBlUc8QlU/K0LUMAlB+s1cQBRE/z9LXD5Bxe4ZQSIHOkMh9RJDSK7aQZSQHUHPfgdBIf3AQBMwJUCVSkpAxlh0QDMuNkA+SsJBzMwgQiU8PUDQDkpB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4BFpaEAAAABAQMVsQAAAAABdLG5AAAAAoMFxcEAAAACAfxB0QAAAAMDioXRAAAAAQIRidUAAAADAvPV1QAAAAEBsD3ZAAAAAQOFxdkAAAACAvON2QAAAAMAbIXdAAAAAwHZXd0AAAACACmR3QAAAAMD9h3dAAAAAgGTDd0AAAABAD3R4QAAAAACIMXlAAAAAwEFCeUAAAACA+iJ8QAAAAIBGY3xAAAAAAPohfkAAAADAxLR+QAAAAADn1X5AAAAAAEhnf0AAAABAapJ/QAAAAEC7939AAAAAYK8ngEAAAABgC0KAQAAAACCSwYBAAAAAIGnRgEAAAABgA6mBQAAAAGBL0oFAAAAAoLrogUAAAACgAyaCQAAAAKAJM4JAAAAAIC05gkAAAACgtFyCQAAAAKCvn4JAAAAAoC2ugkAAAACgeLSCQAAAAOCluoJAAAAAgMnDgkAAAACgNuaCQAAAAKBt64JAAAAAQE80g0AAAACA9DqDQAAAACAnSoNAAAAAYLVSg0AAAABg+5CDQAAAAEAJp4NAAAAAwCi+g0AAAABgjFuFQAAAAOCt6oZAAAAAQB4Wh0AAAACg0kuHQAAAAODSgodAAAAAYFKXiEA= + NrgMGZxjYkC2sNCooUJpQHJahe5LhGlASRZoMb/Rc0AACNcwPvN1QBBx/GrXAn1A7sXWjawjfUAXYdyql0mAQBS0pzEuIoJA - + - 0Py1P1vYq0BXy4BAlpMSQI/Xa0BiJyVBb7hJQOzKqEB7/N9Anl7/QEldrUCXbTBBoTdJQFdgF0HitRJAeLFYQOD0ikGH9LNAHpoPQeCTk0E0RS5BT7u6QEGxJECX16NA5pozQMdpDkED2WpBVGwhQIbBUkAFeUNB9rSfQfg/EkDFSBxBzF+hQZSb3ECcLxNBfofIP0JL00AEOu0/O4jAQIM3XUFiI5dBEoqZQYy920AO/cFAcbfRQO9Un0A6YYxCUQMOQgHB1kBifwlB2BDvQGB6hUANBd4/kKbBQSPbUUH2nCBB8+2lQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwICrYkAAAABA+X1jQAAAAAC7o2NAAAAAQKsBZEAAAADAoaBkQAAAAOAi1GRAAAAAYPYAZUAAAABA0+VlQAAAACD+5mZAAAAAgMEFZ0AAAABA6CdnQAAAAOAUR2dAAAAAQHlhZ0AAAABAvkVoQAAAACDwI2lAAAAAAOxiaUAAAACA0klqQAAAAIADXmpAAAAA4GzEakAAAAAgGwhrQAAAAECBI2tAAAAA4ElGa0AAAACAeh9sQAAAACBphmxAAAAAQI+lbEAAAABgD8tsQAAAAACp5mxAAAAAADsGbUAAAACAf4dtQAAAAMBZnW1AAAAA4DZkbkAAAADAZSNvQAAAAKAGQW9AAAAAoK2hb0AAAACA+wRwQAAAAOAAInBAAAAAALuccEAAAABAU7JwQAAAAEAd8XBAAAAAoIgCcUAAAABAFiRxQAAAAOB8L3FAAAAAIEShcUAAAACACORxQAAAAKDfEnJAAAAAAP5DckAAAADgBXNyQAAAAABG0nJAAAAAACMmc0AAAADg70tzQAAAAACrVXNAAAAAYJbNc0AAAAAAROVzQAAAAAAO73NAAAAAAHAidEAAAABA2D10QAAAAIDwYHRAAAAAoFxwdEAAAACAEIJ0QAAAACB5xHRAAAAAAAbWdEAAAADgdPN0QAAAAGAw/nRAAAAAQLsWdUAAAACAI0d1QAAAAMAVUnVAAAAAgGZjdUAAAADgEIF1QAAAAMBHsHVAAAAAgDrVdUAAAABADPR1QAAAAEBXGHZAAAAAoDVRdkAAAAAgvXJ2QAAAAMAipHZAAAAAADmwdkAAAABAwNJ2QAAAAEAg8nZAAAAAQGscd0AAAADAMDR3QAAAAKCdP3dAAAAAAF+Pd0AAAABg+e13QAAAAOC2+XdAAAAAgN4aeEAAAABA1zN4QAAAAKC7Q3hAAAAAgFFVeEAAAABgBnx4QAAAACBP3nhAAAAAIEkMeUAAAABA7Rp5QAAAAGAVU3lAAAAAQP+ceUAAAACg/6t5QAAAAAB003lAAAAAgD30eUAAAADAAAZ6QAAAAGA6GHpAAAAA4K9CekAAAABg1F96QAAAACDAa3pAAAAAAAuPekAAAAAgOrF6QAAAAODSKHtAAAAAYAI0e0AAAABAQ2F7QAAAAOD2cntAAAAA4GKBe0AAAAAAraR7QAAAAMAW03tAAAAA4Kbie0AAAACgsh98QAAAAKBrRXxAAAAAYC5XfEAAAAAgmHZ8QAAAACDimHxAAAAAoMqufEAAAADgar58QAAAAGA2z3xAAAAAALnvfEAAAAAAGQZ9QAAAAMBRNn1AAAAAQBVWfUAAAABAE4B9QAAAAOCI031AAAAAIDpUf0AAAABAl2F/QAAAAKBJAYBAAAAAICdTgEAAAABgm4+AQAAAAECC4oBAAAAAIN7qgEAAAAAA8wSBQAAAAKAuMYFAAAAAYOFwgUAAAAAgLIGBQAAAAEBQnIFAAAAAILHCgUAAAADg+9GBQAAAAGBI24FAAAAAYN9RgkAAAACAY2OCQAAAAICDa4JAAAAAYB6ygkAAAAAgNiWDQAAAAEA2VINAAAAAoEJfg0AAAAAAm2eDQAAAAMBDuYNAAAAAIOjwg0AAAABgUgqEQAAAACCeIYRAAAAAoB9fhEAAAAAgzImEQAAAAADpp4RAAAAAYLkShUAAAADAk02FQAAAACClUoVAAAAA4C9rhUAAAABgzPOFQAAAAOBja4ZAAAAAoF5zhkAAAAAg6LGGQAAAAIAmvoZAAAAAYGsyh0AAAACgmpKHQAAAAGDuLYhAAAAAoBtAiEAAAACAyJWIQA== + NrgMGZxjYkA= - + - 6fwtQJmyNUAzeo5Ay5pFQBQ9yD8JgoNAu3LQQLfnxUDVOHRAcxQQQH5BhUAsQf8/BjHHP/QTZED95VNBRu9QQax7NEDzhCZBY1+0QLbckUCP2R9CLwdRQTjlbkDxfedA8oGSQJLzDEG8flRCHtDHPypfoEDoeiFAo2q1PznQJEBOKRJApy6LQcl5yUDFfwJBS0mDQJWV8kCFOwdCBnaEQVO+UEAy8w1Ao0h4QMt+6UBm6XhCBSetQExa2j8LMBJAuQ/3QOLHgEDzMi9Bk0oPQP7EmkAjrD1AV5RAQN/hQUEd5plBrNwDQTkLFUGvzd1AEsMsQVb5RUAHAYhAF3//P6GDQEA1EmtA1f6sQIroREFFN1FAresRQUwnN0B7wHZAulG1Pw4BNkHIDB9BAeBzQCHe3EA3+Os/mZYTQcxWTUFCmDRAXd3RQDSYv0Fl9VpAzC5hQfOSB0EX5fVCdkq6QKTyMEHSqftAm9nQQSNsrkDKPDdAyI2SQl4QMkGfkDxAnKF1QGVOSUDwWmJBC3fgQJnMV0EdNAZB/AjIP0tUtT/55v9BNeEuQY+320DPha5A8vPyQOJ2gEBD6tdA4E05QSoOHEFjoqhA3pjgQNleyEG1eFhAPg8WQpSu6UGwmONBA4rdQGPqW0JMh31AroczQTU/AEG4g+w/CrhiQVcBykAZ/LtADCHgPwZfQEAo+PlADhh1QM+sLUFuxiRAq60rQAL62kDoQ15BSMACQSTyi0GB1F5BdQPHQSguJ0NaqwNCYRlQQNY830A1HjRAQkp6QPABqUDHEmNBHONgQfGHJEBvZBtA5YVtQZ3KI0D07E9BHNlAQDZXdUCjh1xAzjyQQb1iQUHAeQJC4mXSQLN8DEHE+P8/8riVQCFKeEDgVcJACLyfQOAhm0A= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQPvfY0AAAACAaSZnQAAAAKA/H2tAAAAAgNlnbUAAAAAALuluQAAAAECvJXBAAAAA4NI8cEAAAABAaXNwQAAAAOCXNHFAAAAAIChSckAAAABACuFyQAAAAABM4HNAAAAAwAoRdEAAAADACqF1QAAAAMApPHZAAAAAAEp0dkAAAACAN7J2QAAAAEDJ73ZAAAAAADdSeUAAAAAADKd5QAAAAICw9HlAAAAAQEABekAAAACAiZ96QAAAAMDb+3pAAAAAgLKOe0AAAADAraR7QAAAAMARdnxAAAAAAFWSfEAAAACA8bV8QAAAAMCqwnxAAAAAADLTfEAAAADADO18QAAAAMAvkn1AAAAAgGWefUAAAABAZa19QAAAAEBC0n5AAAAAQNu1f0AAAABgv8GAQAAAAAAvB4FAAAAA4PdZgUAAAADg0uCBQAAAACDN8YFAAAAAoI36gUAAAACgKPuCQAAAAAClRYNAAAAAoNIWhEAAAAAgHyqEQAAAAMDyPoRAAAAAoFMxhUAAAABA/2iFQAAAAMCfdIVAAAAAYL77hUAAAADgLgOGQAAAAIDiKYZAAAAAoMCDhkAAAAAgI1SHQAAAAODHvIhA + KBZXds7jZUCmvpxNHCRnQFO9qnpmo3JAiTDsKtfyckBTG4fOvrR5QImOyH4vBHpARHZS6cOKgEBk4CNf19qAQESlQBNwE4RA - + - d9bsP+XZPEBgwJdAg5k+QOf6PECdJclAkYhJQE/9W0D+acc/g0+RQEvhLUCV/O1AT/eHQEOHP0BdRZNAVVGtQIMVGUETTXdAVEi5QO1/xz/QmDxA7ISeQJ8WXEAE6wZAnssbQD1W7D8ccPxAaiSTQLlnwD8eMrU/ukKWQMfXG0A4/QVBN+hAQFK0/UH/fTdBP4GDQHtl6UBQ1tZA8zABQGN9DUFIAcBAoNH8QMOJtEBVNRtAGnLwQFSILUHjC31BtrWTQALEtD+wSeFBXN4oQg2jJEDm8to/9g+pQMXZd0CwEIBA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4PIja0AAAABAIyVvQAAAAADYVXFAAAAAAKvTcUAAAAAAm91xQAAAAMDFE3RAAAAAQH9Qd0AAAAAAXpZ3QAAAAMB5sHpAAAAAgPJTe0AAAADAJW17QAAAAAAoXn9AAAAAQKa6gEAAAABgS0CBQAAAACDKe4FAAAAAILPygUAAAADgg/qBQAAAAIBrR4JAAAAA4A7sgkAAAACgbTqDQAAAAEAPQYNAAAAAACyAg0AAAABAo8KDQAAAAACb24NAAAAA4CYihEAAAACgb1OEQAAAAGD34IRAAAAA4PDvhEAAAABgZ2qFQAAAAGA8cYVAAAAAQCM8h0AAAABAKWyHQAAAAECuuodAAAAAIJHBh0AAAAAAZlKIQAAAAKAn0ohA + NrgMGZxjYkDiYBUjzERuQK9rGHLRYnNAX26KbtRSdkDRdBqjVNN4QCbJHqjsg3xAJ8keqOxDfUCKQ4+CLdqBQJOT/X2iKoJAt0k0KI8ChUD3wMeaLkOFQBt3/kQbG4hAWMSWhIFbiUB+pMhhp7OMQHYVU2/Z64xAiUK2Tv9dkEAFe3tVGHqQQDtZG11F6pFAgWq77DNGkkCFSe36cO6TQMtajYpfSpRAATktkoy6lUB9cfKYpdaVQEsp/y+4vpdAx2HENtHal0DaUV0l5IaZQHl4KUUXJ5pAi9NEmg2Tm0Arj45TXbObQD3qqahTH51AQhJhJo5HnUC9AaG9qeOeQL4Bob2pE59A0hbivs//n0A4DAPm90+gQI1MkUX4raBA9gOjsQU2oUCAjkOyGPShQLaPHrwwGKJA - + - H4IkQA95vUCBQDdAIJeAQNVGyD99x8ZBRp/qQH5Em0BiS8VAeCIXQc5eTkC7y9NA7f+bQQoyPkDajUJAFIJiQFP8r0GwgfhArlE2Qdm/JECvaYNALxXVPyszkD/FlyRBHP6zQVLf0UFdFwRBmBXzQDpOd0C30iNB6n0eQexc+T/I4ZpBpTybQJD32T9Ap8E/ + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYJckYEAAAADgi0FgQAAAAIAVRmFAAAAAQI2oYUAAAACAluZhQAAAAMCRY2JAAAAA4E2hZEAAAACAMeRkQAAAACBWC2VAAAAA4PmkZkAAAABA6CJnQAAAAOBeRWdAAAAAoGdkZ0AAAABA259nQAAAAED95mdAAAAAQGAJaEAAAAAAQkVoQAAAAADnYWhAAAAAgFsmaUAAAABAtWRpQAAAAADyIGpAAAAAQBKjakAAAADA4sFqQAAAAGAfRmtAAAAAQPjAa0AAAADgg+NrQAAAAACMRGxAAAAAQORkbEAAAACAFqhsQAAAAIB94mxAAAAAAIuDbUAAAACA6BpuQAAAAID1hW5AAAAAwN6obkAAAACA32ZvQAAAAIDpgW9AAAAAgArGb0AAAABAbO5vQAAAAEAgVXBAAAAAgOR1cEAAAAAg+YFwQAAAAGBMk3BAAAAAoAThcEAAAACgxv5wQAAAAEA4DHFAAAAAQJsycUAAAABg3KBxQAAAAKDJs3FAAAAAABfDcUAAAACgqtRxQAAAAID0AHJAAAAAwJQfckAAAAAAMWNyQAAAAGCak3JAAAAAgO/AckAAAADAStFyQAAAAIBMBHNAAAAAQK8bc0AAAABgnnBzQAAAAGAmf3NAAAAAQLzhc0AAAACg1vpzQAAAAIAGBXRAAAAAAC1PdEAAAAAgF2R0QAAAAGCFj3RAAAAAwL3ZdEAAAABAVQ91QAAAAICqc3VAAAAAIDj0dUAAAADAUh92QAAAAMC3VHZAAAAAIBRjdkAAAACgPIR2QAAAAACBqXZAAAAAQEDgdkAAAADgHfN2QAAAAOBuFHdAAAAAAGyWd0AAAABgyrF3QAAAAIAL1XdAAAAAwDn4d0AAAABAkyJ4QAAAAIBudHhAAAAAoG6leEAAAABgVbd4QAAAAKD10XhAAAAAIEPleEAAAAAgkRR5QAAAACCZLHlAAAAAYApGeUAAAADA6Ht5QAAAAODNlXlAAAAAYKLSeUAAAADAawt6QAAAACDTFXpAAAAAIK4yekAAAADAe4B6QAAAAED89XtAAAAA4KwEfEAAAAAgWhN8QAAAAGDOUXxAAAAAIBN1fEAAAADAcKJ8QAAAAOD+BH1AAAAAYL8VfUAAAACgNYV9QAAAAMA2ln1AAAAAoB3DfUAAAABAlSB+QAAAACA4kX5AAAAAIGK/fkAAAADA7OF+QAAAAEAjVX9AAAAAwH3Wf0AAAADAneV/QAAAAIBtAYBAAAAA4AaRgEAAAABgj9CAQAAAAAB174BAAAAAoOtDgUAAAADgyIqBQAAAAGDJuoFAAAAAADfKgUAAAABAO9OBQAAAAOBk3IFAAAAAAEwZgkAAAABgxiOCQAAAAKA5aYJAAAAAYKd5gkAAAADANqqCQAAAACBEs4JAAAAAACX5gkAAAABAkAKDQAAAAGAXO4NAAAAAIBRlg0AAAABguGuDQAAAAOB4ioNAAAAAgCKTg0AAAADgU/ODQAAAAGBI+4NAAAAAQKoahEAAAAAgnCGEQAAAAGBcg4RAAAAAAIeKhEAAAABgI5CEQAAAAEB5AYVAAAAAgKMhhUAAAABAj3CFQAAAAGBs8YVAAAAA4FgDhkAAAACAvgyGQAAAAGD+gYZAAAAAIDeUhkAAAADg4yqHQAAAAODKjIdAAAAAgD2Sh0AAAACgqdmHQAAAAEAE7odAAAAAIGsciEAAAACgdyWIQAAAAKBza4hA + NrgMGZxjYkAeR9VQy0JnQK9rGHLRYnNAI7P8DWnSdUDRdBqjVNN4QF/MZsIs5H5AgtMD9ta5gEAvlSGLwvqCQIIC8h+DQoRASS6YL+9Kh0AfDyf6ZMuIQNoyGcgwA4pA6RbwrObjjUCkOuJ6shuPQHg/TqISrI9A - + - hDdJQnor4UFDrjNBf9RcQTle90BM0o5CbBllQbFNAEPl3/dAI5cBQZfgm0NN9JFAIhWGQK92SkEYjJBAb9mUQcfoW0E8jUBDUvROQaO4MEPP2cZBxnzFQ235vkCE6i1B99KcQKtvfUFOwhdDVdgpQtDfHUEWa7hEkq5eQBLUkkC30LlEdCUQQjKV0EB2fJFA9iPrQjouOkGppnRAvHeGQbBvp0GvsY5B1aHgQaGeAENQdzZBUCjPQZJiLUN9/B1BAOkNQi2T70JmS5NA79eoQrCJ1UDVUiRBE4NrQ9kF7EDzHG5BaNqUQngHFUIc7h1BDOq3Q+W/KUWnf1dDTR0YQeG/rEG0MZ5C/ETPQVAnhkF14F5A8OCVQm+QnEBa/wZEVx/nQZvOPkFr1rtAS2ZIQMu0X0JLHRtCWX0VQzbNvULBJRRCBPsXQo49c0JSPCtDetEAQbWgj0LP5KdCWJqdQSdvMUAKPfdAspuoQXC5kUIiNjRCDIIYQUIv+UJj4RxCOrzzQNK2lUECBZJBAGJ1QCpeGkFMj0VBmMDrQRLRb0ExJ4ZAFKazQA5KWkPflGFC8XW5QRgSHkGC4YNBdzNaQQQF2kNVY8pATsulQetUm0LKihFDZzD3QBslO0GyoNJBwtOHQZNoAEKXU+1C5o3CRIbvOkMRMQVBtd9fQpqsL0EeXphCBpm+QGgIBkMoJOFAOpjtQ8jJiEK2pnBBMSs5QaSzrUFqVnRE4OUbQ7QVuERnFbZCXc/qQ4HxxUHPOhxFktE+QyLHk0B1J19Ad6OtQWHpQ0GqWulAR+ChQsQyTUIevqtBkE/7QksNEUFetcBBP6aSQbeBgUItrjhBhF+LQYPQr0EIantB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4MecZEAAAABAv4hnQAAAAICipGdAAAAAAO5hakAAAACA3TNsQAAAAIALxWxAAAAAwPJvbkAAAAAAumNwQAAAAACF0nBAAAAAgJFCcUAAAABAFrVxQAAAAABUwHFAAAAAAA7ycUAAAACgRINyQAAAAGAfw3JAAAAAAA3QckAAAAAAa0JzQAAAAADO43NAAAAAgPqOdEAAAAAAxNB0QAAAAABKXXVAAAAAwPcTd0AAAAAAwY54QAAAAIDDn3lAAAAAwHAhekAAAACAXTd6QAAAAAA8I3tAAAAAQCE0e0AAAAAAUz97QAAAAMA2j3tAAAAAQEaZe0AAAACA4cB7QAAAAICx33tAAAAAwOcpfEAAAAAAPxV9QAAAAIDZJH1AAAAAgBZufUAAAAAAuDt+QAAAAEBbVX5AAAAAQKBofkAAAAAA2HR+QAAAAAA8o35AAAAAwHDEfkAAAAAAQtR+QAAAAEDUU39AAAAAgH/wf0AAAACgOxiAQAAAAICPIIBAAAAAIIIxgEAAAABAFDyAQAAAAKDfa4BAAAAAIEOQgEAAAADgc5eAQAAAAODhoIBAAAAAQImpgEAAAABgC7uAQAAAAIBlyoBAAAAAwKbggEAAAADAve+AQAAAAOCiDYFAAAAAoI76gUAAAADgggKCQAAAAKDshYJAAAAAALuLgkAAAAAgLJOCQAAAAEBoSoNAAAAAoG3yg0AAAABAkxqEQAAAAKD/IYRAAAAAIP0phEAAAABAIFSEQAAAAIDCg4RAAAAA4LCahUAAAACAIiOGQAAAAACxKoZAAAAAYDxxhkAAAABgCXyGQAAAAKDb04ZAAAAAYCtRh0AAAADA11CIQAAAAEBZYohAAAAAADKziEAAAABAVsGIQA== + NrgMGZxjYkA= - + - UsC3QAQaqUA72j1BG5WFQB4vOkEY5TRAp2bIQDtKvEBTKN8/QvMkQE3cZUAlEu4/gJ8vQKRelkCzLptAjZ0JQIFdGkCdLyNBu+GDQJHhRkAO+p1AC3/MP5J810DGYvE/ZOQmQRw/D0DJs+0/Z++wQJuVfkCmvEZAEV/NQJ01AEB5UMlABIEoQU538EGd/G1BK+mxQHvuskCRC4VB0DoVQcG3qEBydRxBLoJDQSbIZkHXi95AAVzAQN6zLkGMywtCKVIHQVfmEkDZAvNAXNY9QA8lMEGqLINCK8x9QUmfRkBRRlFBfLNcQYEG2UDkBHVBNqlWQY7FnEB3nrdAzWRgQpSHjEDOcoBARxjDQFq0D0Ei9YpA9TXOQJEDj0CdAkFAef95QPtVhUFwpQNBj2WOQG5QDkE4Nr1A6FbjQJgK0EAKAuVAkGMfQenpBkE= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQIMmcEAAAADAcjVwQAAAAEATQXFAAAAAIGNAckAAAABAG5d4QAAAAIDCj3lAAAAAwNYle0AAAABArJN8QAAAAICDCX1AAAAAgGRyfUAAAACgRdKBQAAAAOD/uoNAAAAAoALFg0AAAADgrwGEQAAAAOClCoRAAAAAoANyhEAAAADA54qFQAAAAIAhfIZAAAAAQIfZhkAAAADAtt+GQAAAAKBKAodAAAAA4FOkh0A= + NrgMGZxjYkCEfuNfSOJlQHJahe5LhGlAdE+7zNXic0Ais/wNaZJ2QAOnB+yt83lAeAcBEwEDe0DpiSUv4qmAQIrmfwmm2oFAeLKDJA5ygkCz5gbZuBKFQHjhcU66+oVA0TfDwxCjiEC8pGr1MkOKQNFmse28K4xAvNNYH9/LjUD+bFaTHlSPQCfs7FsQQpBAlUvsSjXGkEDZAlJqVs6RQCR0SkBhjpJAWRpJf6ySk0DG1caTnbKUQAsxro3y3pVAQsUGK7l+lkBSRV2ICMOWQMLc/T8PQ5hA9KbZ20TnmEBC9PRUZQeaQKa9PuqKc5pA9ApaY6uTm0DwrRCItnecQHQiUXgBWJ1ABC7U778TnkD0OUiNVxyfQIRFywQW2J9ABd2FejBcoECCLuEMNs6gQCrVbklGXqFA27kTFFmUoUCDYKFQaSSiQJtFjx6EdqJAVJFfeoc2o0Bb0Qopr1ijQHgbt3eSqKNAGcmq9Lw+pEDRpul+tc6kQOr5aB7bUKVAkTJlieCwpUAxDhgZ8TSmQOq9l5ADd6ZAvJi4GQTDpkAO/7f2EyWnQEfaIYMcjadAzoozAT8HqEAHZp2NR2+oQJ+78SpdGalATnpMiF1TqUBfR201iPupQFg6LjxiIapAg9HEMpNtqkAOEy6cqzerQBo/DQGWWatAmZ3OnL7Fq0AMyvYEsRusQFPepf/G/6xAFfyPOOc5rUB3aP380XGtQDk9sJ73561A - + - nc+eQBqd+0BQibRAFKwuQJPdLEDyl6BA9/YYQNy5U0DLgiVA8loVQVocGkE7AddAMidGQLaMgUF6SohBPZp3QXCPkT+GLaZAgmmvQOKihEHZGH1BFgYRQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgFrCZEAAAACg0OJkQAAAAEBbI2ZAAAAAYNqEZkAAAABgdZ5mQAAAAIDISmdAAAAAIKqhaEAAAABAusdoQAAAAGAzR2lAAAAA4GXqaUAAAAAAQARqQAAAAIDmJmpAAAAAgHRcakAAAADAQYdqQAAAAMDrCGtAAAAAgKrGa0AAAACg/yNsQAAAAMADQ2xAAAAAwA3JbEAAAACgn/5tQAAAAECTJ25AAAAAIIFlbkAAAABAFiJvQAAAAABYInBAAAAAwDkycEAAAABg0Q9xQAAAAAB2Q3FAAAAA4ABTcUAAAACAM2FyQAAAAEAtdXJAAAAAAEdRc0AAAADA23FzQAAAAABhlnNAAAAAwFTzc0AAAACAKSJ0QAAAAIAbZHRAAAAAAPRgdUAAAAAAont1QAAAAIDptnVAAAAAgBHpdUAAAADAuCR2QAAAAMC8Q3ZAAAAAwItadkAAAADAQ8N2QAAAAMDtVXdAAAAAAExjd0AAAACAtLR3QAAAAEAEM3hAAAAAACw+eEAAAABARmR4QAAAAEDjcXhAAAAAQNOCeEAAAABA4pN4QAAAAEBrEnlAAAAAgFEieUAAAAAAfjB5QAAAAEBoU3lAAAAAwGOSeUAAAAAAOiJ6QAAAAMCFMXpAAAAAAAhDekAAAADApVZ6QAAAAMBldHpAAAAAQIiEekAAAABAOpJ6QAAAAED543pAAAAAwMUze0AAAABAHkZ7QAAAAAAhXHtAAAAAQERne0AAAADAh6R7QAAAAMAlxHtAAAAAgHjQe0AAAABA/nB8QAAAAICQ1HxAAAAAgEnkfEAAAABAqiV9QAAAAIDAWn1AAAAAwNFzfUAAAAAAVYV9QAAAAICsxX1AAAAAAJPlfUAAAAAAigJ+QAAAAEAYRn5AAAAAAGRcfkAAAADAMm5+QAAAAIAngH5AAAAAgNOLfkAAAABAwAl/QAAAAACnGX9AAAAAwKUjf0AAAABAyHN/QAAAAMDzoH9AAAAAgDexf0AAAAAAWMJ/QAAAAMAw5H9AAAAAQM77f0AAAADgMQiAQAAAAECvGoBAAAAAgEUhgEAAAABAASmAQAAAAGDVMIBAAAAAoHw7gEAAAAAgUEOAQAAAAMAkYYBAAAAA4DhpgEAAAABgQKyAQAAAACDPQ4FAAAAAYL+JgUAAAADg+o+BQAAAAGCyUoJAAAAAoJJkgkAAAAAAGeqCQAAAAIAh8IJAAAAAoPcNg0AAAACgAFODQAAAAMA2nYNAAAAAIH24g0AAAABgpyCEQAAAAOAfJ4RAAAAAYBQshEAAAAAgeDOEQAAAAGC3QYRAAAAAYChJhEAAAADgKnqEQAAAACBJoYRAAAAAwNKphEAAAABAB7KEQAAAAGCxuoRAAAAAYLTThEAAAABg4tuEQAAAAIBFIoVAAAAA4IAvhUAAAABA1d+FQAAAACC3LIZAAAAA4KMEh0AAAABgQxmHQAAAAOBkUYdAAAAAICFah0AAAAAgIYyHQAAAAOCBsIdAAAAAQEbYh0AAAAAgwQqIQAAAAGClEohAAAAA4CMciEAAAACgYzKIQAAAAGAzOYhAAAAAIKdBiEAAAABgLGGIQAAAAIDqaohAAAAAgNayiEAAAADgY7uIQAAAAMC7wYhAAAAAwI3KiEAAAABAzM+IQA== + NrgMGZxjYkDOIQhxcuNoQMZtNYzMxW5A525gjBGDc0A0tyjlC9N1QG/1UdoCFHxAInUoQnoDfUAbKPOJjSKBQPRn3j1JmoFARlJ1jNlag0ASuZoooSqFQG9S/FvskoZAPeMcK+1ih0ACM6CXQ5uKQJ7m6xRAe4tAZDZvgZazjkAyx49Ql4OPQEiw+EHxdZBArWMLENVdkUDX2FY3HT6SQMN4TBH7eZJAie+7RWPKk0B1j7EfQQaUQAXf+9x+lpVAF/Etc30qlkAZX79EiDKXQJcIJYjT7pdAy3UkU86+mEB7HviPCXOZQA== - + - BqeyQbChuD+oMptACtn0QGtHh0DwgpM/bTZRQeq3SkDUaBJAbbQMQWgTR0D0zYpBGoc2QCJ+7j+8VjdAPBzxQATZMULuC7FB+oUgQUBXEEGdFCdBgJo5QaKECEEo1MVCy2bBQEQpOEBfNbhCR5WJQZiWXkGCzYhAwBInQvFrZkA9G19Aa3CIQKiOAEBwMlNB8NIuQOWQCEBJCwhBzRgAQVa4PkBa8rY/C5s7QZdfS0E1uPJAPtboQH7RN0DpGexBYRE8QVqiHkKxtqVCSt+8QAP3DUExQ3ZBpxDIQMR9kkA34xZCgF2NQgQnKUJfOYVCa61DQZQ9NkL6DU5DN0uQQaldgkA/N3lC0i/YQPLvikFcmR9B0jCbQFeShUDUWqtBrgWqQOR1EkHwB5RBmkdRQG6FUEHPXzxBuo/UQUaFikHi5cpAhSaGQUU+IkIBOINBN9S3QI8nUEHOKhlB7nUoQUE8s0F6evRBg9p/QNoq9kCz1QNB0iZAQU4Uz0EPN91Ak9qvQOrdfkGx9zxCoV7EQlorFkIRolpA10v3QJMKCUFPFwlBf20YQUufXUETEKNAawubQIF0VUEp8YFAyz+iQA51WkAbPC1BGdZvQNW5AkHusSNBGZoRQoi3g0Ku3pRBv3QZQSYwl0GoqgZCPxOsQBPrMUG82+0/xc2RQu9OuUJYoKRAQ5LLQj1f7kHlAEJB3TDEP+znEEBMwwlA0EEZQVWLZkAm7UpAZE0ZQJ7pjUAZhABA2YwsQHw6tz8ue71AMvbJPyCz90BD7FxAm0KDQLYN2kFJ9ohBlR/KP3U6eUH58oxCR3ZmQHoN8T8= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAAmOW0AAAACA1TpcQAAAAGC4GGBAAAAAgOJJYEAAAAAA2WNgQAAAAACjfWBAAAAAAIbIYEAAAADgFARhQAAAAOD7Z2FAAAAAYLEoYkAAAACAhmRiQAAAAIB0hmJAAAAAADemYkAAAAAAdeViQAAAAAAvqmNAAAAAwC6hZUAAAAAA/d1lQAAAAADNJ2ZAAAAA4IBnZkAAAACAJH5mQAAAAOCf4mZAAAAAwJMMZ0AAAACgVKRnQAAAAADRy2dAAAAAAK7tZ0AAAADA+8NoQAAAAOBHJGlAAAAAAHGIaUAAAAAg6aNpQAAAAIBCRGpAAAAAgGxaakAAAAAAhqlqQAAAAEAZAGtAAAAAALkka0AAAACA/KJrQAAAAMA7v2tAAAAAwFbra0AAAADA5mpsQAAAAMDJ4mxAAAAAgKggbUAAAAAAjWZtQAAAAADuZ25AAAAAAG+BbkAAAAAAmcVuQAAAAECe4W5AAAAAwFQBb0AAAADA7cdvQAAAAGC1AXBAAAAAgEMjcEAAAACgJlJwQAAAAABEYnBAAAAAoLFxcEAAAABgbIRwQAAAAABck3BAAAAAQEPgcEAAAADAoxFxQAAAAAB0InFAAAAAAIcscUAAAAAAjVFxQAAAAECqXHFAAAAAwG1vcUAAAABAC35xQAAAAKCbjnFAAAAA4DfhcUAAAABAj/NxQAAAAIBVBHJAAAAAAJMUckAAAABAEiFyQAAAAGDMPXJAAAAA4LJ0ckAAAACg5YZyQAAAAIBTk3JAAAAAgB+kckAAAADAe71yQAAAAEDzynJAAAAAQL/tckAAAAAgixRzQAAAAECicHNAAAAA4JKSc0AAAAAAEqxzQAAAAMBqxHNAAAAA4E3Rc0AAAABg1+JzQAAAAOBg8HNAAAAAABYEdEAAAAAAKRB0QAAAAADyJHRAAAAAgFs4dEAAAABgnVd0QAAAAADKr3RAAAAA4P/TdEAAAADA3uF0QAAAAMBD/3RAAAAAQElKdUAAAADA/mB1QAAAAID/eHVAAAAAIE2pdUAAAADAQ7Z1QAAAAMC/xXVAAAAAYMLddUAAAAAAHzV2QAAAAKDgsndAAAAAYFBFeEAAAABgoMN4QAAAAOCh1nhAAAAAgIUAeUAAAACgdGF5QAAAAOCKhHpAAAAAQJsme0AAAABg6WN7QAAAAMAriXxAAAAAYI++fEAAAAAgHtJ8QAAAAGBz1X1AAAAA4IvmfUAAAADg8WR+QAAAAECHen5AAAAAYGiGf0AAAABA3iKAQAAAAGCG14BAAAAA4L1YgUAAAAAgnWqBQAAAAAAX/YFAAAAAYIcTgkAAAAAgLXKCQAAAACC8woJAAAAAoIYXg0AAAAAgP6ODQAAAACCowIZA + KBZXds7jZUD60UzrnGVsQANJK5hVInJATmm0FPSidEBUSTk3e5J4QDwntHFi03tAVKcVi9Ojf0A= - + - H1e3P66nj0ARkqRAYJVKQbsKkkDNzm9A0fpTQM6I+T9YlspAs9cuQHOkpECUgxxA8rufQKqzrEAaOLNADv+DQGHRU0A8entA5EfeQNBeQUArWQtBdGLfP9ondED/L+4/tGTeQDxxgEDsXSVAS7aTQGsS7j95WJZAERniP6Lr2j9g/y5ASPgAQecDtz+zOMk/SjemQKA7DkGjHhNAbWLuP/NbHEH/pwVBD2A9QCjAN0GL51xAIAWkPwtXAUFQ6J5B36UiQNWHj0Lma5tAxL00QWEclEF7+iZCeD+6QNnxtj9oJkJAqw41QHcXj0C8Rts/s43FQfZQCUDE9XlAxeNoQSSKtUBgVJZBAmcAQCy9TUFNcKFB8XC2P8FQr0EKvB5Bd25YQei1fj/cSXlBt9WZQYb3EEHajNs/QcjhP7l7EkKKBctB6rHfQeFyoUACZPhAqPB1QGsNwUG/VY1BY9WqQFmtckFCwatA5m0sQfxfAEBKSNBBrRtkQSbyQkKXbTNBvCVCQL7zd0HpuoVAE/y4QXU38UCHKSJBs+F+P+wFXUCgLS5A1qCIQID6HUFryYFB7qXxPz4uT0FefJxA+nruQdB7uECuj3lAgQkCQFYqTEHfG+1A1tmrQeYCf0CxRzFBWv4tQK+ZmEFZXr5A5AUEQc5T8EBGwUpARL22P5EUyUGjQWZA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwFDIY0AAAABARgZkQAAAAEBLY2RAAAAAgGNNZUAAAAAAy8pmQAAAAIAUIWdAAAAA4GZiZ0AAAADAl8ZnQAAAAMBPiGhAAAAAANgNaUAAAABgs4BrQAAAACDDB21AAAAAgCAnbkAAAAAA+IZuQAAAAECWC29AAAAAIEGTcEAAAACgbjNxQAAAAIDvlHFAAAAAoNyycUAAAADgr8tyQAAAAIAb5HJAAAAAQHuBc0AAAABAo5RzQAAAAKAl2nNAAAAAwIMAdEAAAAAgM5V0QAAAAMC0xHRAAAAAALMxdUAAAABg7kV1QAAAACDnmXVAAAAA4P7ndUAAAACg9AV2QAAAAACiH3ZAAAAAgDkydkAAAADAtFR2QAAAAKD4b3ZAAAAAAAPPdkAAAABAbuB2QAAAAACuDndAAAAAgDJEd0AAAACAa3R3QAAAAOD3qHdAAAAAIH3Md0AAAACgaOF3QAAAAGD5E3hAAAAA4PYdeEAAAADA3C54QAAAACBqRXhAAAAAIOSVeEAAAADAZMF4QAAAAGC+z3hAAAAA4OEOeUAAAADA5kN5QAAAAACNZHlAAAAAQDZ9eUAAAACgJpJ5QAAAAIAPoXlAAAAAAE6veUAAAADg7/h5QAAAAGAbDHpAAAAAoOIuekAAAAAgNYZ6QAAAAAC+lXpAAAAAYNOkekAAAABgr756QAAAAAC733pAAAAA4HQie0AAAABAulN7QAAAAADpb3tAAAAAYCSGe0AAAAAARLh7QAAAACAOw3tAAAAAADXOe0AAAADADrB+QAAAAGD2lH9AAAAAQM73f0AAAAAg3TqAQAAAAEAs7oBAAAAAICn4gEAAAAAAPPmBQAAAAIAZKYJAAAAA4MDIgkAAAACgduiCQAAAAKAU8oJAAAAAIE5Bg0AAAACgoZKDQAAAAABwKYRAAAAAoMBBhEAAAABghEqEQAAAAADmz4RAAAAAYFcdhUAAAACAujmFQAAAAMC8g4VAAAAAIDrBhUAAAACgY2OGQAAAACDMrYZAAAAAoLqyhkAAAACg5VyIQAAAAKApyohAAAAA4EPUiEAAAACAjOOIQA== + 4qRcexsiYEA2uAwZnGNiQOJgFSPMRGtA - + - 2uk7QcnT0kAfryVAXXGmPxFTAkB/nFNAu6uTQMru7T+TG0lAU9sJQJ70U0CgTbJALEluQPY9tkGIJAxBP1EAQDLJa0ARfEFAuMA1QL+gKkFc2t0/wyjFQGMbJUBZHYlBCJBTQNEiDEFHZI9BuiA4QMudtj+W+RJBO/y8QP3oEEFUcvZA0M5AQNLCyD+SAK9BdhTLQMLN2UEoZgBB8ETYP+04XUCO//1AwY1oQf/NHEFStiVB5AtBQOu5nECzwRhBe9FcQAiWLkHuxIlA+2NrQeB/OkEOU61AXAtqQWfsvkG0+CZBszZ2QITU4EE1VIdBG/22P37SGUL9O/RAoW9wQReqBkBhVb1ALxlBQojFF0L14QJBj5ErQLjBaEGIBDdB9IbrQA4HAEFDxgJBxI4lQHvDyT9DsCxAnx2XQbU7ikCDjB5BHztAQBa7tj8a6FFAWifcQPmaoUBD7UhATzHJPw6XG0DSr05BP3tXQf7/qEC1hxNBeqW1QIyTrUChYsNAMcOSQHCjSECTMJxAiv6yQKiuJUA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgH6DZEAAAAAggSNlQAAAAIAH3GVAAAAAIDMAZ0AAAAAA0FtnQAAAACCSQWlAAAAAoMNjaUAAAABAXUBqQAAAAKCIJ2tAAAAAQHeca0AAAAAgYOJrQAAAAAAmJGxAAAAAAJRQbEAAAADAJ2ZsQAAAAMALgGxAAAAAYFoIbUAAAAAA4EVtQAAAAECVpW5AAAAAQLvlb0AAAABAWGBwQAAAAACB4XBAAAAAgEAEcUAAAABAHIBxQAAAAMCk43FAAAAAwLcTdEAAAADAqR90QAAAAADMBHVAAAAAQNEudUAAAAAAVER1QAAAAIAewXVAAAAAQLRGeEAAAABA22F4QAAAAEAJrXhAAAAAwObheEAAAACASDN5QAAAAID9dHlAAAAAQJuBeUAAAACAyK15QAAAAECzw3lAAAAAgMXUeUAAAADAEuF5QAAAAED19HlAAAAAADSGekAAAABAQpN6QAAAAACJEHtAAAAAwC8ae0AAAACAdWd7QAAAAIAN0ntAAAAAwK8SfEAAAADAIix8QAAAAMBVSnxAAAAAgMpufEAAAACAMLJ8QAAAAEC6w3xAAAAAQH3bfEAAAACAh/l8QAAAAEB/DX1AAAAAgMIifUAAAADAeEx9QAAAAMBoa31AAAAAQNyQfUAAAAAAvOd9QAAAAEACNH5AAAAAgE2KfkAAAABAl5R+QAAAACCSJ4BAAAAAYMtWgEAAAAAgBuKAQAAAAOASHIFAAAAAYBsugUAAAACg9DmBQAAAAGAcQ4FAAAAAoOhZgUAAAAAAtKKBQAAAAGCOzoFAAAAAgHXTgUAAAADAo+qBQAAAAAC4L4JAAAAAYJV3gkAAAADgGn6CQAAAAGBslIJAAAAAYOnPgkAAAABg79aCQAAAAMCJaINAAAAAwIdug0AAAAAgTfqDQAAAAKAUAoRAAAAAIJsIhEAAAADgcBKEQAAAAOAdMoRAAAAAgDCrhEAAAABgDu6FQAAAAGA79IVAAAAA4GUDhkAAAACg0TWGQAAAAECygoZAAAAA4Lz4hkAAAABAVXGHQAAAAKDKiYdAAAAAoFVJiEAAAACgVlaIQAAAAGCNoohAAAAAYDPbiEA= + NrgMGZxjYkDiYBUjzERrQHFahe5LhGxAw7CYsIsSdECKrVCWS7J0QMMOdQTkI3tAHr3i+07jfkBhtigsnhqBQCBjchbpKYJA8rqpxN/Sg0AgkmBAlbKFQIO/Kl0hi4ZAsZbh2NZqiEBK69BsjZOJQEC/P84CM4pAd/F1Eu+7jECEgjh1e3uOQKT3GrhQ5I9AWcRuje7RkEDm+9DDMY6RQG7Zr44U7pFA7vCmo2qyk0CYEjbSd9qTQJBSI/em1pVAOnSyJbT+lUC6i6k6CsOXQEJpiAXtIphAz6DqOzDfmEBW6Utt9r6ZQOYjvQ5hc5pAbWweQCdTm0CIhTlinZecQITv8BJY55xAz5noXLN7nUBoBcQajmueQBgcKSnU155AsYcE567Hn0DMGRAfFU6gQP2EotnnkaBA8FowhSX8oEC9EB7kEnShQOOc4vFFQqJAfZyZ7j1WokDtXMSlShCjQIdce6JCJKNAEucbo1Wyo0A0cXOgYPSjQA== - + - Oa0uQHMbKkHYL0JBpUCmQDRvJUBjNAlAwtDNQK41mEAsKKZAfZRmQONd40DlQAZAXLjtQIDUo0B4POg/vYhuQOA9skDSJnFA2MZRQBgLTEE6vqtAP7BKQEe0hUASSklAavkSQFZLZkD8qp9AG7YCQkCcSkAXyUlB1vKFQKynpEAYaiZBnLEXQaXNg0CbDKhAPhmdQNazCUAu3pxA+0F+QMeBJUCVKo1Ah7hLQWAqZ0EsMlZBbFxdQf4h3kEnyAlBOvyEQIiyZUCjnbRBZZykPwTEB0D2i/lAHipLQTvfZUACbpNAyNc1QP4IKUHPEZtAgepGQLAjEkExDkZBAsCfQc4Ysz9huXhBEdbCQNB6ukFLXrlAUQ4IQMxyoEBEA+5CmjylQa6NYkGlARNA218gQcTjG0DJrKBBhuhfQ9hhVkCEC1lAhitzQw0PhUCZC+FAXWiuQHrUiUHo1cBC4YeuQsCGt0DtSkJBaVeOQG6tZEFJKeVAVO4UQYenoECvLJZByMa8QKitYkCE2JFAchSOQNXoAkGOnEpAh9PfQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgEJgYEAAAADA3G1iQAAAAIBK22VAAAAAwITmZkAAAADAHAloQAAAAGBWKGlAAAAAwONeaUAAAAAgU7ppQAAAAKBZCmpAAAAAADwmakAAAADgv2BqQAAAAKDKf2pAAAAAwCWhakAAAACA4uJqQAAAAADF/2pAAAAAIFOKa0AAAADAoaxrQAAAAABmCWxAAAAAQKtmbEAAAAAg335sQAAAACDk22xAAAAAgL9YbUAAAADADOBtQAAAAIB0hm5AAAAAwCfGbkAAAAAAZuJuQAAAAABqoW9AAAAAQI8jcEAAAADg2TBwQAAAACDVU3BAAAAAACqUcEAAAACgTfBwQAAAAKCKBHFAAAAAoCs1cUAAAACAwUFxQAAAAKDAc3FAAAAAIFadcUAAAAAgOLJxQAAAAMBZyHFAAAAAAKscckAAAABAqZByQAAAAOCAAnNAAAAA4K0Rc0AAAAAA7i9zQAAAACAY4XNAAAAAwOz2c0AAAABAixF0QAAAAIAZIXRAAAAAQBYtdEAAAADALzp0QAAAAKD/T3RAAAAAIIxedEAAAABgZW50QAAAAMChgnRAAAAAQICNdEAAAADgdpx0QAAAAGARBnVAAAAA4JFFdUAAAAAAant1QAAAAABAoHVAAAAA4H+zdUAAAAAANNB1QAAAAICMIHZAAAAAoDQ9dkAAAADACFd2QAAAAMCJfXZAAAAAINKgdkAAAADAELJ2QAAAACC69HZAAAAAgMgjd0AAAACgcWJ3QAAAAIB+bndAAAAAQB7Ud0AAAABATt93QAAAAGDrYnhAAAAAwCh0eEAAAAAgfIF4QAAAAKA5k3hAAAAAoEageEAAAADAdNt4QAAAAAAf6HhAAAAAwMHyeEAAAADAmF95QAAAACBd8nxAAAAA4P2CfUAAAADAieV9QAAAAEDDDX5AAAAAoIJnfkAAAABgH+d+QAAAAMC4YX9AAAAAQByXf0AAAABAyLV/QAAAACCUv39AAAAAQDbYf0AAAAAgV+9/QAAAAKCaU4BAAAAAIMF1gEAAAACg57SAQAAAAIDhwoBAAAAAwPb+gEAAAADAykyBQAAAAOBwk4FAAAAA4OS5gUAAAACg6cmBQAAAAICrG4JAAAAAoAVrgkAAAADgYIyCQAAAACBi9IJAAAAAoM38gkAAAAAghIiDQAAAAGALlINAAAAA4Gs5hEAAAABgkZOEQAAAAGBAt4RAAAAAYFpEhUAAAADgj3yGQAAAAID43IdAAAAAoAIDiEA= + KBZXds7jZUDiYBUjzERuQDgLH0t+U3VA9X42GSyTdkC82cpSRMR8QIz/lJRheoBA3ZtTU87qgUA= - + - Q8GFQKqZk0DPFPNAN3ekQIXfUEDgHoFAl3d9PxjeAEDGV75AzGLOQK57mUGcL/JASvHIP3jf2z8R3ts/CIGIQFeYAEFzIg9AwxQ0QJsWSEAl7aNALhakP/UVOEDbEbZBSQ7TQMIRHUBX5NtAtoUJQI9SqkBRZiJADJGHQG29LkBsuTlBTaLcP3J0lkBQj9NAJNODQa8PykBWOHRBA0ZaQd5iB0EizThAk64uQAcp3z/t43dBsitkQf9aRkEKDN8/tW+uQPdCIkG1ap5AakxRQX9NC0AoW49AGAOuQeL8QkHaT1lAFPH5QOwx0UCzqNs/yKR+QNKeDUFOLdNAoCufQJ/6G0BrhA1BSY8+QdphCkLcFHtBTNccQMCpyEGa/M9AAvLHQRE3jEB+ZChBB0nuP/AaDUExYaQ/8bLiQKntzkBLso5Ajt3GQeJQJUB5duBAopUJQP0GUEGgkzpBZra2QJhfhEBbCCBBzb9+QF78vEGfLehA5Z51QbZiAkGcsfxAtMxPQQqlzkCaD01BuN5ZQbfoe0BkXIpArU/qQCKlQUDz1cRAF52zPx8PNEA+yCNCjaFeQVvcwUDixZdAdkwcQEMBykDBOUBA6ygFQUYqGkC02L9AXzgaQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYADKaUAAAADAHkFqQAAAAICl/GxAAAAAAIdqbUAAAAAAQeNtQAAAAADviG5AAAAAwIeXdEAAAAAA3N50QAAAAECPdnVAAAAAgGuUdkAAAABAr/J3QAAAAEBINHhAAAAAgD11eEAAAADAZv94QAAAAEDCRXpAAAAAAEVfekAAAABA/3Z6QAAAAIAFMHxAAAAAADRWfEAAAACAYGZ8QAAAAMCpgnxAAAAAwCsefkAAAACAoUh/QAAAAIAjiX9AAAAA4JjKgEAAAACgpfCAQAAAAKDqOIFAAAAAQMJggUAAAADgpmqBQAAAAOCLoYFAAAAAIPutgUAAAABgqwKCQAAAAGBwJ4JAAAAAoENDgkAAAADgz1qCQAAAAEAtrYJAAAAAYK1Kg0AAAABANlODQAAAAOCXdYNAAAAA4ET7g0AAAADg9heEQAAAACD6qYRAAAAAwOO2hEAAAABgt86EQAAAACD39YRAAAAA4LUDhUAAAABgjwqFQAAAACA5GohAAAAAIJaSiEA= + 4qRcexsiYEA2uAwZnGNiQFjpTSZ7Y25A32Ik4HNicUBzT7vM1WJ1QBoFnbUjg3hArvEzooWDfEDhXzHvO7R+QDj86LoVWoJADgFV4nXqgkA5K9fkwSKFQA== - + - Tw3BQPCedUC87G1AkRIIQNvgU0DubyVAzOVcQOY3pkC8EKdAvSzOQKZKpD8ESRxAK8CKQPSBN0A7fqRA9GyyQO1QZkAth9FAaDH8QDONJEF/syNAwiujP1Q7B0Fw7QFBHxkqQYgNb0C0zZ9ApBIoQWTcB0Dxk4hAOkmcQUefs0C/SxxAW5tIQMaxCUD5eUpAPzZ4QqBW2ED8hQlAgLwIQcO/EEED3RRBjAtAQXIPcUDfBlFBkhzJQHNnrUHrciVA6T5jQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwPoDakAAAABAiidsQAAAAIB6Zm1AAAAAwP3HbUAAAABgRkVuQAAAAMDnI3BAAAAAINYzcEAAAAAgymFwQAAAAICjonBAAAAAQFXmcEAAAACA+EVxQAAAAABhYHFAAAAAQCy6cUAAAAAAedFyQAAAAIBB83VAAAAAQMhSdkAAAACABrN2QAAAAEDpBXdAAAAAQDJ3d0AAAACAY4d3QAAAAECJ3ndAAAAAQHcqeUAAAACADVN5QAAAAAAKsnlAAAAAgJldekAAAAAAs296QAAAAIDRlXpAAAAAQN8le0AAAABAyC97QAAAAIBalHtAAAAAwEKvfEAAAABAst98QAAAAACnLH1AAAAAwAbEfUAAAACAAc99QAAAAIC86X1AAAAAwDwufkAAAACA4at+QAAAAAC73n5AAAAAQEYtf0AAAABAeZV/QAAAAKBmVIBAAAAAYAl4gEAAAAAgloyAQAAAACA01YBAAAAA4M/hgEAAAABAwOuAQAAAAMBbJIFAAAAAoIsugUAAAACgfDmBQAAAACBjQoFAAAAAoIdQgUAAAACgf2WBQAAAAAAKh4JAAAAAACWigkAAAACggjmDQAAAACAGjINAAAAAYHqbg0AAAACguqmDQAAAAICu3INAAAAAoHofhEAAAABAsYeEQAAAAMBps4RAAAAAIIOGhUAAAADglhmGQAAAAEAdI4ZAAAAA4DWahkAAAADglquGQAAAAGDuOYdAAAAAQKpDh0AAAAAg/9qHQAAAAOBP4YdAAAAAgFMDiEA= + KBZXds7jZUAnt2DdIQNrQBTpB48/A3JAz/0oxECidEBqPQyU13N2QEOj6bMwo3xApJgLOY4KgUCZsHSIz+mBQCyRGMQm8oVAbqDU6w8jhkCZylbuW1uIQMBxvP99+olAxPTY8KeTikDtd2Gl3yKNQMQjxxpUHI5A2tGD2qUVkED4pqQOUCqQQFrpeu/72ZFAd76bI6bukUBb1G4r3HKTQPxK90I4/pNAcldB/gwHlUATzskVaZKVQCjjChePrpZAvEcTnDgLl0A++EsYtcqXQG3J+hBiF5lA4FnIa/HumUAPK3dknjubQJJwLXo3O5xAJUC4ZcRXnEDZhNx0TR+dQLRoFlvwH55AWZzTiaPjnkBmf3tpNqyfQFEPCiviH6BA2ADemiuEoEB2B/P59yGhQJb4fWY5aqFANpNuBCMEokDvg7BtXDCiQI8eoQtGyqJArw8seIcSo0AaqUEMWVijQDqazHiaoKNAXiQkdqUSpEBzNHQTfH6kQC9V4p/DJKVAZnYmgJzEpUBUTctu2SamQL8BWYe/iqZArdj9dfzspkDk+UFW1YynQJ8asOIcM6hAtSoAgPOeqEDZtFd9/hCpQPil4uk/WalAZD/4fRGfqUCDMIPqUuepQCTLc4g8gapA3Lu18XWtqkB9VqaPX0erQJxHMfygj6tAO05GW20trEDBPxrLtpGsQF+PZsF926xA5YA6Mcc/rUC4GpnIoKGtQKUMtjvyIa5A/y5Iw7aFrkDJlg05/ZOuQIq56MPJE69AIiJAQCC6r0AuddP28xKwQHkp/zQfZrBAmlUNVP6VsEC+bk+1KK2wQAO0nzUy9LBArNGBOwkXsUDJVFRqPlmxQHJyNnAVfLFA6zcr8iLdsUAybTN/TeKxQMv9aHc4TrJAEjNxBGNTskAQQ7n3QZWyQIv4ZYZwtLJA8Aj3fFcGs0BRmRq7fBmzQDVOR/1gTbNAepOXfWqUs0BjFY+ih5qzQHWRA4qSG7RAc7Tws3o3tEBUjdNvmY60QLFj0QGP8bRAq5fPbqgOtUD2qCGCmDi1QM8hJ2yzgLVA1m5fB66ptUDzq35pvvK1QA== - + - 0rnSQD/0oz+CUSJAZ1wBQGgatz8MYZZA/NrbQGY7rUBeXIhAww2GQJevG0DJfq5AEg3LP+0ILUCCk1lAwAaYQO1iI0Agq1xA5gWFQSBUwEC9Ze0/L3TUQCAThUARpGJAZffbP/gUHEBHqYVAoYELQfMdHECtEd5Ah1pRQcZRmUDFPYhA6PAiQMXUGkAsExtBqqD/P1zuUUEKjKQ/tQcAQD8o1EC6Qv0/V25aQN6I3UCapC5AYEQKQMC12D/8BQJBJRjsQKe0I0EN6VlBRMV4QB95BEJt1o5BjW0AQLpzm0C/PIlAsp6XQLoFCUCclRNA/mcDQctQWEFRlq5AMv+wQAPbEkBJtzdA+3G2P2LOd0BIoodBhJOrQc6+qEAQYGZAAoq5QQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgOsGX0AAAACAWiFgQAAAAEAphGBAAAAAAD7fYEAAAACAtGFiQAAAAIBmnGJAAAAAoEvlYkAAAABg7CVjQAAAAGDUJWRAAAAAIAWmZUAAAABAgOplQAAAAIBKAGZAAAAAgNE6ZkAAAAAAoeZmQAAAAKDzIGdAAAAAgGm6Z0AAAABg5x5oQAAAAAChQGhAAAAAYMVZaEAAAACgMxtpQAAAAECiaWlAAAAAwIhBakAAAABA0WlqQAAAAIA8YWtAAAAAYDTHa0AAAAAgN2VsQAAAAAA2xmxAAAAAgKF9bUAAAAAAHXZuQAAAAIAhvG5AAAAAgLkob0AAAACAlU5vQAAAAEDPaW9AAAAAINsBcEAAAACAJ39wQAAAAOA6lXBAAAAAAD3VcEAAAABAHeNwQAAAAAAA83BAAAAAwLD9cEAAAACAmkhxQAAAAGCvr3FAAAAA4GgDckAAAACAgzRyQAAAAECQVHJAAAAAgAR6ckAAAAAAZIRyQAAAAGDJO3NAAAAAQLhec0AAAAAAF3FzQAAAAIDNwnNAAAAAoMj1c0AAAACgch10QAAAAMDRf3RAAAAAACeSdEAAAAAAc5x0QAAAAEBZsHRAAAAAoF3MdEAAAAAAtxx1QAAAAAA1KXVAAAAAgAxbdUAAAABgL5N1QAAAACCyo3VAAAAAoOWzdUAAAACgIMN1QAAAAGDn0HVAAAAAAFICdkAAAAAgfT52QAAAACC0cnZAAAAAgIaTdkAAAACAddZ2QAAAAGCX/XZAAAAAIP1Bd0AAAACgZU93QAAAAGCrc3dAAAAAYDaTd0AAAABAPcN3QAAAAOCg1HdAAAAAgM/TeUAAAADgnpt6QAAAAGDJdntAAAAAwMlEfEAAAABAS5N8QAAAACB70HxAAAAAYNmTfUAAAABA0CZ+QAAAACDbZH5AAAAAIPN6fkAAAADAB5d+QAAAAMCwtn5AAAAA4NvGfkAAAADAQCV/QAAAAOATQn9AAAAAQHSDf0AAAADgDrd/QAAAAEA9xH9AAAAAwKAAgEAAAABgNEOAQAAAAKB+goBAAAAAYJqSgEAAAABga92AQAAAACB+R4FAAAAAAEB7gUAAAACAwvWBQAAAAOAd+4FAAAAAgKwCgkAAAADgT9SCQAAAACAm5oJAAAAAALkxg0AAAABg/VqDQAAAAOD3b4NAAAAAIErDg0AAAABA4/qDQAAAAOCLUYRAAAAAYPvshEAAAABgWYWFQAAAAAB3nIVAAAAAwEsxhkAAAACg3nqGQAAAAMBGioZAAAAAwJI4h0AAAABgfLyIQA== + NrgMGZxjYkA= - + - cMjgQIb/lUC+0tRAEnEJQAPI/kDd6RtALpbbPztWikDBBvhA/kmKQNLUikDbY4RAXQslQKCioz+hGqlAtKrxP2MpSkDA/WxBtKm1P4zSBUEPYZNAmIQIQtlHb0AFn4NAa5F4QG/+HECCYrJAIZ8RQZ35IUFMYZ9A7eA3QD4eq0AC3QZBHRzAQPPG7T8t511AH8faQDUywEAq90xByD7JQG3QCkFn11lAAwgEQgJtYkCAiY1AZhHNQc0DMUB+W2xAWPYFQTyO1kD6wYBAwNntP2cWREE/EIBByACLQQWIWEFYKphAT3PSQJCaNEE47yJBWFUcQccvBkFvN4pAw2fVQX9y9kFdzoVA5VCSQaBKhEGno4ZAVi2PQIzkvEFuXZE/BCclQWqVskE6FWhClSybQCvgF0FymedAnxSfQcxf7kCpkiVBDccFQmynfkAt2mJAZ04gQeMGXUA7/QZCBhU3QWXyjUGlIRlBVE4AQF2ezUH8XohAQE5+Qsb8jEIOF+dCwLtpQRB4UEFY1FxAGaIkQJfYd0GfvFNCjVRdQXfWRkCg+0ZC3VLwQOZdCUAfk9tBsTKIQcc0KEHo5zZAAUnFQQpASkASF91BSzViQOH/gECffS5AHjfeP1fYYkCGEZVB1JSWQcqXiEA= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwG4Jb0AAAAAA3+BwQAAAAECbEHJAAAAAAIRmckAAAACAJCh1QAAAAMAAtXZAAAAAgNIed0AAAABA/8N3QAAAAAC9DHhAAAAAALfyeEAAAAAA6R96QAAAAIAmRHtAAAAAABBke0AAAACAnVJ8QAAAAOALR4BAAAAAAL1agEAAAADAJ2uAQAAAAAB2coBAAAAA4CjDgUAAAAAAexqCQAAAAGBPYoJAAAAAAIKggkAAAAAg/uWDQAAAAGBkCIRAAAAAQD+AhEAAAACgrgmFQAAAAMD63IVAAAAA4LsPhkAAAADAnUOGQAAAAKCca4ZAAAAAQHPqhkAAAADgsTKHQAAAACA0aYdA + KBZXds7jZUCYE/Y0vCFwQGaLOdoMYnFALebNEyWTd0C/1D2sajJ4QC1Eqmd9pH5AKvLnCLcxgUBa5c1at5qDQLv2aKH46YNA6PwNR1oSh0CeqMYBMOOHQHzdsYKxGotAMolqPYfri0Bfjw/j6BOPQMCgqikqY49A+EnIPRXmkEACslFo0dWRQN3NLBdWcpNAgslIfSeak0A04K2LbSaVQCe+/rSBdpVASGBx83bClkCE5+6wvXaXQA== - + - PPxhQFFxLkBmsohARxgCQGp5kT8vGGZAH2svQEK5OECDelBAONdVQA9ItkB74HhA8PolQewmyT/9iPJA7qTmQPII5kDWo/hA1y0jQbdpI0EemhhAK2ZUQYPUtUD635A/IyFsQC/l7D+p+ttAxI6FQcx8KkCXOUpA4a8SQDv3xj/XgZNA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAArGW0AAAABgc81eQAAAAICbR2BAAAAAgFUrYUAAAAAAOlxiQAAAAEDZpWJAAAAAAD2fY0AAAACAxMZjQAAAAECi32NAAAAAgA4hZEAAAADARaVkQAAAAMAqymRAAAAA4DzlZEAAAACAf+dlQAAAAABlSGZAAAAAwOBkZkAAAACAZchmQAAAAGCt4mZAAAAAYNeeZ0AAAAAAw/9nQAAAACD5I2hAAAAAwANEaEAAAACAUMpoQAAAAIAN6GhAAAAAQOuEaUAAAAAASaRpQAAAAOCQ12lAAAAAIBkrakAAAADA+m5qQAAAAOCwpmpAAAAAgIrBakAAAABgYSBrQAAAACAoQmtAAAAAQFBsa0AAAAAAYsBrQAAAAMDc5WtAAAAAAE/8a0AAAACAb0lsQAAAAIDks2xAAAAAQEzJbEAAAABA2+JsQAAAAMB2I21AAAAAQJl5bUAAAAAA3qhtQAAAAEB2DW5AAAAAAElhbkAAAAAAyHZuQAAAAABVom5AAAAAgEnBbkAAAABAcehuQAAAAAAdJm9AAAAAwONgb0AAAAAAsZFvQAAAAAChpW9AAAAAAPgCcEAAAABAvRBwQAAAAIAvHXBAAAAA4DwycEAAAAAAfkNwQAAAAABKUXBAAAAAgGtfcEAAAABA/XJwQAAAACATg3BAAAAAgOTScEAAAABgHd9wQAAAAAA37nBAAAAAQGv5cEAAAACA2hBxQAAAAMCeIHFAAAAA4M00cUAAAABgjkFxQAAAAMCxU3FAAAAAIORvcUAAAAAAc4JxQAAAACBhkHFAAAAA4JKhcUAAAABACMNxQAAAAKA54HFAAAAAoML/cUAAAAAg0w9yQAAAAMCsL3JAAAAAwOZZckAAAAAA+HVyQAAAAKD9jnJAAAAAQCijckAAAAAAr8hyQAAAAEBoEXNAAAAAwAUnc0AAAAAAkkRzQAAAAGC7hHNAAAAAIEKTc0AAAADAg6xzQAAAAKBKxnNAAAAAYIjTc0AAAADAt/RzQAAAAKBfAnRAAAAA4KkSdEAAAAAAYCB0QAAAAICbP3RAAAAA4Jl1dEAAAABgK6l0QAAAAADpt3RAAAAA4EHHdEAAAABAi910QAAAAACL7XRAAAAAQMoAdUAAAABAexZ1QAAAAEDnOHVAAAAAQNJUdUAAAABA3WJ1QAAAAEBacnVAAAAAwO6bdUAAAAAgPLJ1QAAAAIBu1HVAAAAAYNzldUAAAABgW5Z3QAAAAAAPpndAAAAAoJwNeUAAAAAAc115QAAAACDZknlAAAAAwOPEe0AAAADAu4J8QAAAAKCX03xAAAAAoNcDfUAAAABgR3V9QAAAAGDV2H1AAAAAIAf1fUAAAACgxIZ/QAAAAOAckn9AAAAAICqif0AAAADArOF/QAAAAEDb04BAAAAAwCLbgEAAAABgR+uAQAAAAABWaoFAAAAAwCP5gUAAAABg4guCQAAAAKA7dYJAAAAAgDeig0AAAACgYeKEQAAAAKBo6oRAAAAAoGuth0A= + NrgMGZxjYkCAI9DqN6RuQK9rGHLRYnNAwG9ESXRjdkCdKRjPP5N6QK4tRKbik31AzkN6EUzSgEChHusFc+KDQM5yaDv4WoRA - + - /EClPyT1LUDvm3hAp9qzQAdSOUFhbjlBwv2EQBN+2j+RAaZAKlE3QH0HdUBB0I5AoP0YQRhcCUBZ5FBANw62P3fe7T+SwTZBtEBaQDVgG0EZ4CRABUS8QFpxlEBtHMk/yv/zQFZja0By+EBA6QR3QDzcDkBAuJA/q/wLQSJ13kDUdJNAnG79QOLxAEGElxhADAAhQFScYkA5DIhACACbQIkcUEA2PX1B03iIQPnpeUHz6BJABd51QeBXpEFJyTlBtpFAQMoXGUCjaadAiUmSQJRQskDKZwhBc7KjP9zUfkF2dchAFyAvQVItyUFm81VCVBUPQK0S60CirfVAQA2vQN50BUE65sc/wtcrQGi1/EC+wP8/kY3DQFA0dkHJJ61BN/9XQjrJzUHomm1AOQb7QEAnkT8ynixBdkz4QYocAUKH5+NA4EhZQNXNg0BHKKlBWsatQYDW5kFycjVAOAvaQVEWvEA2r31AouDaP0zv7kFuxpxBwksiQog3rkCbvj9AncaKQJUnkT9KQ3tBwpDbP86tEkB2hlZBWr6KQdmNvkCsf9FBMgHJQBLL60DgHFBAd9RhQY19kUF/CBxBl5q4QFA/TUFrXUhA80qhQECzuEDqjrZAiV9jQUORm0Cf2F1BJ3URQf2Gn0AFlPk/NpuFQHK8U0FyRG1AU+xUQSMx6kEOOTdAft8zQGBokT9kq+NA2vccQOP7G0BrtvxBo1pBQIIHkT9EdIJAruk+QTKVmkASqLJAoxS3QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgBsqb0AAAACAr1JxQAAAAMB1AHNAAAAAwJfDc0AAAAAA6xF0QAAAACAno3RAAAAAgLBydUAAAAAAPZJ4QAAAAACtdXxAAAAAgNBTf0AAAADAc8J/QAAAACCBuoBAAAAAIIyJgUAAAABgO3+DQAAAAOAKpoNAAAAAoEQChEAAAABg1wiEQAAAAMDjMYRAAAAAwH9ChEAAAAAAnFOEQAAAAEDjjIRAAAAAYECbhEAAAADgvNeEQAAAACDWJoVAAAAA4AIshUAAAACg1F2FQAAAAMCGtYVAAAAAIBu7hUAAAADgxciFQAAAAEBFE4dAAAAAwNo4iEAAAABAD1uIQA== + KBZXds7jZUD1hHOUyCJpQNS+X4D+xG5AQh3Og3zCckCmgagVL4N2QH2/Rlks43lAbdw8T0e0fEDTE0texFN+QMpOQuN6YoJA - + - 4xp+QUXqdkHrje0/vr0FQJYqZEHrUkFB4/E3QOWOF0D+en9AGNQbQDKPOEH/KXlB7ORiQJcE6EBkPlBAoRYiQeA5BkC+ldFASBmyQCfjAEK8p/hAyzCSQDRIWkCQvutCYrhLQnr+ej85GqBAueaiQUD0yEFuz45ARNhiQMYn2j8= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAHIHYEAAAAAACCNgQAAAAEA5CGFAAAAAQIViYUAAAACgvgRiQAAAAOApaWJAAAAAADWFYkAAAACAnqFiQAAAAMCNy2JAAAAAQL/DY0AAAAAAqFtkQAAAAECR5GRAAAAAQEFnZUAAAABA8qtlQAAAAKCVDmZAAAAAwE8+ZkAAAACgz4NmQAAAAMAWnmZAAAAAYE/oZkAAAAAA4ERnQAAAAABjhWdAAAAAILDGZ0AAAABAu8NoQAAAAIAT7GhAAAAAYEooaUAAAAAgDaZpQAAAAMD4x2lAAAAAACcjakAAAACAoKNqQAAAAACA6mpAAAAAwCP0a0AAAACAQGJsQAAAAAAXiGxAAAAAANesbEAAAABAB+ZsQAAAAIAhiG1AAAAAwOcAbkAAAAAAakduQAAAAAAk4m5AAAAAQNf/bkAAAADAXCFvQAAAAICNYm9AAAAAABSHb0AAAAAAfqlvQAAAAKC5DXBAAAAAALkicEAAAAAA3C9wQAAAAIC4QHBAAAAA4FhWcEAAAACASW9wQAAAACDkjnBAAAAAIK2ccEAAAABAWRJxQAAAACDaIHFAAAAAAAU0cUAAAACAkmpxQAAAACDwkXFAAAAAQJG0cUAAAAAAXM9xQAAAACAH8nFAAAAAwOcAckAAAABAXxpyQAAAAADNs3JAAAAAQLrPckAAAADgM/FyQAAAAODQVHNAAAAAQLtfc0AAAABA38pzQAAAACAb8nNAAAAAgJQOdEAAAABANyB0QAAAAACLcXRAAAAAAF6BdEAAAADA3pl0QAAAAICpo3RAAAAA4P2xdEAAAAAAVL10QAAAAGD80XRAAAAAIOgEdUAAAAAgw4t1QAAAAOCws3ZAAAAAIHdWd0AAAABgnN93QAAAAADw93dAAAAAIPcMeEAAAACgGZh4QAAAACC1ZXpAAAAAINn0ekAAAAAgowB7QAAAAOB4U3tAAAAA4DKke0AAAABAo+R7QAAAAKC89HtAAAAA4BuKfEAAAADACZl9QAAAAEDW731AAAAAoAoDfkAAAAAgM2d+QAAAAOBCgX5AAAAAYOAnf0AAAADA9Ht/QAAAAOBCGoBAAAAAAGg6gEAAAABgB3mAQAAAAOBnwYBAAAAAYB3UgEAAAAAAhvmAQAAAACD3PIFAAAAAYKSZgUAAAADgUKWBQAAAAMBvQYNAAAAA4FnSg0AAAAAgjdeDQAAAAEAhx4RAAAAAgJHUh0A= + NrgMGZxjYkC0UdoP9eFsQOO2GkbmYnJAyObs5GihdUDRdBqjVJN5QI9BgR6B0n5AXxkNgOFhgEA= - + - 6jUTQcZwk0AMOpFA67RWQWa000CYcn5A+9O1P6HMp0GTe4hA9ggAQJxQ5j/bzaVA0WW5QBYByD/6d0ZAoTh+QM4fCUCJgmtA6VvIPwlvaEKWOwVBPOBYQJ7j+D/OCDVB08wQQdxo00BKHbJA+b6OQLm4ukCZWsg/gz2DQI5GwEGfEC9ANeAhQH1M8UA1oE9BsoEaQdvE/z9LOck/GPiUQMxmrUAc/oxCFUmfQGJng0E+PUNBx1OIQBesiEDNEmVBK6OoQAToM0CsegVBdzZuQeUu4ECKc/VAkmCfQH4HOUGPkKdAcy+tQVH+30DDgUdBEu5uQMur/kBi565BlHQqQHbxD0PzgzxBtFCkQLiVjUFeqxZBQ28kQe9IGUJMWyBCoaGmQHZk5j9JkZxAphlZQEOaO0EEUipAVt86QfYHk0Ay06dAPslqQVa8JUH98gZBoYo1QeMSXUACGPBBi4gvQ0AsnEHuTfRAocTTQKeztUGA/UNBNneDQHQq6kAEPA1B2mX5QJTPjECSf1JCEoGIQO74MUFoyiBBrdIQQRN3BUACJfRAO7/fQGJyrUAoEQdBE0zSQH3lkkAGYLhAYUKqQVWQ2j8PJi5AhLZTQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAMufakAAAADAbLprQAAAAMCTAnBAAAAAgDtHcUAAAAAA775xQAAAAMAuqHJAAAAAwJXyckAAAACACQB1QAAAAMC1EXVAAAAAgPdfdUAAAADAqnN1QAAAAABlhHVAAAAAwHyRdUAAAAAA/2J2QAAAAMDucXZAAAAAwKV/dkAAAACAo6J2QAAAAICANndAAAAAQGGFd0AAAAAAN+V3QAAAAECUYXhAAAAAQCVyeEAAAABAjVJ5QAAAAIDyXXlAAAAAwDISe0AAAABA+jF7QAAAAIAJ8n1AAAAAwLADfkAAAADAkhF+QAAAAABR5n9AAAAAABH1f0AAAADgJiKAQAAAAGD8eIBAAAAAACePgEAAAAAgjPGAQAAAAGBoIYFAAAAA4HxjgUAAAACATq6BQAAAAKD47IFAAAAAAEL3gUAAAACAl/+BQAAAAEAlaYJAAAAAwKB4gkAAAAAAvZqCQAAAAIAEo4JAAAAAgKU3g0AAAADgjU6DQAAAAODPZINAAAAA4DGog0AAAABgUbmDQAAAAKCTD4RAAAAAQG9DhEAAAACgFFKEQAAAACCKj4RAAAAAYIu6hUAAAACA/0aHQAAAAMBUs4dAAAAAwFv7h0AAAABA8j2IQAAAAGAcWIhA + NrgMGZxjYkBcG3g88iJnQKPid1q/wnFArmsYctGickCjQFSuF9R4QDbyCcDCM3tAMZigze/kfkA= - + - HyOzQE5pz0BxORpApqbsP9IZpUAL8cc/5xeTQACYhEGyP5NAenpsQE2cmkB+Cp5AqaWVQa7hdkFgRp9AylG1Pzh2bEA6p8g/6IK2QASXIUDje5RA6WOEQRsG7T9qDNo/L6c1QDBaBUA6BSxB1NIaQrSZEEBazwpBjdOxQGKcG0CeL59AzJhYQOz2xz/hhZJBkVZ4QHzH7UDkFJ9AMi/kQsvE30DH88VA4Je0P+2QNECcnAhAZ4UkQD4QlUGOsxtAxbNtQHMShEA+siRAfwN+QBtqEEBb0TpBLaeaQDWfo0D+hMg/uwaEQCj3N0F4Wg1B + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwKHrZkAAAAAAeAtpQAAAAECJo2pAAAAAoOcFbUAAAAAg+WFvQAAAAAB7qG9AAAAAoCYBcEAAAAAgfSBwQAAAAEAQK3BAAAAAQF1jcEAAAACAh9BwQAAAAEBU9XFAAAAAQEHJc0AAAADAHn90QAAAAIAnLXZAAAAAQP2zdkAAAADAiJJ3QAAAAMDR33dAAAAAAEoxeEAAAAAA2MJ4QAAAAMA25nhAAAAAgGNdeUAAAAAAwiZ6QAAAAID7/3pAAAAAQLHHfEAAAAAALLB9QAAAAAD8z31AAAAAAMqJfkAAAACAIZV+QAAAAMC4hH9AAAAA4FvygUAAAAAg0juEQAAAACCE5IRAAAAAwCJrhUAAAACgmvmFQAAAACBGBYZAAAAAQE9Sh0A= + U6vsr5viYUA2uAwZnGNiQBu6YmAmQ3BAikkBtpKSdEDiFPeZPnR2QMXreYtCs3tAO5LE/6BSgEAL9kMVtBGBQPTkpPcYU4RAAtXDQ+uphED0E5MhxduHQEaYvOpj8ohAHz4VJBEUikCqxYYH8AqMQEpolyZdTIxAc2ge9m+Ej0Cq9HQxnJOPQIFIvvVNppBABvyhjffVkUAQcRzreW6SQKhdHuEz+pNAkIgTANAylEAMeFOX6/6VQFnfBVZdBpZAvfk6DBULmEAKYe3KhhKYQD0RMiFrz5lAinjk39zWmUDMOZAWl5ebQNRotn0I25tA4U7RF72znEDqffd+LvecQDGSpnlE251AKz+jtei3nkBGp+d6aveeQEFU5LYO1J9ARbTJWBJcoEDIy1wMy32gQNA+alkl6qBAU1b9DN4LoUD1NlMoO+yhQJpqrAf076FAtcLOMmbOokBa9icSH9KiQI2DQu161KNAMrebzDPYo0DwrjuYQb6kQGVEtqeP2qRAsDq3omygpUA2dXTRreylQPdOZp2ChKZADjboi8LypkAb2b2ajfamQCWZn06SxKdAzsFjlu3Up0CwI0BPpVKoQCdNlp0Qm6hAO67gT7jgqED4fVTHLq2pQPs5XFrjwqlAtnX0kjyTqkCqTlRYAcOqQMA11kZBYatAnJAGxSEJrEAHSoVBV0WsQPUbOcxEz6xAtae01m+xrUCDqEbdf7mtQA4z592SR65A - + - UleqQBaxj0FuKXhAfPg0QIF0G0CHkto/5IG2QG8sqUAt18c/mlpJQOYbYkAKnzdAEMgIQORUXEDnKFNAoFGRQD8er0BFMpxAEmU3QOzt/z/u1WxANYrAQF5n4EC9YhtAKgl/QCuJEEGQuCVBa7MMQXxXB0G3TSRARBy3QOeBtEDXrgBBw7vcP0Zd5UA1bdBAg0WqQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4BRIZEAAAAAAbmNkQAAAAICR5WRAAAAAQGJlZkAAAABgJ6dmQAAAAIDmvWdAAAAAAAPiZ0AAAABAd2doQAAAAMAypGhAAAAAAGrAaEAAAADAiSBpQAAAAABF5GlAAAAA4DUFakAAAAAgnexqQAAAAIBDI2xAAAAAQAFGbEAAAACAvL9sQAAAAID5Cm5AAAAAoGc+b0AAAABAuaNvQAAAACAVJ3BAAAAAQLtfcEAAAAAAZaJwQAAAAEAAOHFAAAAAgCFCcUAAAACADVRxQAAAAAD6c3FAAAAAAKtickAAAAAgbXByQAAAAEBxgnJAAAAAAELwckAAAACADXFzQAAAAABpj3NAAAAAgLalc0AAAABAYOVzQAAAAIAnX3RAAAAAAEejdEAAAABAFYB1QAAAAEBisXVAAAAAAGjXdUAAAAAA4B92QAAAAICAMnZAAAAAwGJTdkAAAACAz192QAAAAADaeHZAAAAAQJzQdkAAAACAZnN3QAAAAICYhHdAAAAAgBLhd0AAAACAI1Z4QAAAAECzpHhAAAAAwCbxeEAAAAAAlgR5QAAAAACHE3lAAAAAAGoxeUAAAADAO1N5QAAAAEAGdXlAAAAAwI6ReUAAAABAhcN5QAAAAMBEGHpAAAAAwI8iekAAAACAlDF6QAAAAMBgc3pAAAAAAEPxekAAAAAAIrJ7QAAAAAA1UHxAAAAAQKVifEAAAABA23Z8QAAAAEDCp3xAAAAAAEazfEAAAACAb+18QAAAAIDI+3xAAAAAgMRVfUAAAACAbIV9QAAAAIDRlX1AAAAAAHgcfkAAAAAAynB+QAAAAIArh35AAAAAQCyTfkAAAAAAtqR+QAAAAABlsH5AAAAAQJXBfkAAAABAsdV+QAAAAMCeB39AAAAAgFIZf0AAAACAvk9/QAAAAEAcen9AAAAAQEyIf0AAAAAA+ZR/QAAAAMAB3H9AAAAAAKDlf0AAAAAgWQmAQAAAAKDwF4BAAAAA4JYogEAAAAAAby+AQAAAAKAnSYBAAAAAYP5qgEAAAABgRXWAQAAAAKCheoBAAAAAIEpsgUAAAABgnYqBQAAAAOBNtYFAAAAAANfygUAAAAAg2fqBQAAAAECuAYJAAAAAYPIKgkAAAADg0BKCQAAAACBMIYJAAAAAYOhBgkAAAACge2qCQAAAAMCbwYJAAAAAADjTgkAAAABA8tqCQAAAAEBr8YJAAAAA4HFZg0AAAACgTCSEQAAAAIDT64RAAAAAgJsihUAAAADgoC6FQAAAAGCNOYVAAAAAoEdohUAAAADAS4OFQAAAAOAbi4VAAAAAYK+ShUAAAACg6cKFQAAAAOB2+oVAAAAAIAE8hkAAAADg10qGQAAAAGCcaoZAAAAAoNLahkAAAAAgSOGGQAAAAAAz8YZAAAAAoFNBh0AAAAAgULGHQAAAAGDgyodAAAAA4Cvrh0AAAADgcTuIQAAAAMBxSohAAAAAII5/iEAAAADAEK2IQAAAAAAcvYhAAAAA4KjEiEAAAADgCvuIQA== + KBZXds7jZUA/KJil8iNpQNS+X4D+xG5AQh3Og3wCckDBMzRFF9NzQN+E8C9vY3dACXhivZQzeEBnC+J9YPR/QA5PLXKZ+oBA0VatKYiKg0DVetOBBQOEQAClVYRRO4ZA0YWbUzQTh0Arz9eGnXOIQNG0iX3gm4pA5SG4fhV0jEDR43enjCSOQKxNXo6BfI9ARRusT4ISkUAgFwFlbMKRQKAu+HnChpNAKp8QKcOek0C0rrvhyyKVQD4f1JDMOpVAvjbLpSL/lkCZMiC7DK+XQAgnnUNOA5lA9lsQt0ivmUDsPHBLhIeaQHZzB8yec5tASWZgR8CHnED2iv7g9DedQF97oUjmo51AdZDiSQzAnkB2ovX1SvyeQC3T2ighIqBAguWpdTtioEDv17ntVFqhQFMWaJ9ZdKFAd6C/nGTmoUBIY+z0dyCiQAIrYJ13dKJAbKQMW4jOokCNtQCeigKjQPfldcSgmKNA - + - H4qhQN1QdEDGpjxBu4wVQS3BiUAsSRtAqQ0vQMpS90Hw/IJAQrJJQPQ1NkHyh4lCIljYQUkYu0AKhFVDFjG/QWRx2z+JQ7NAWwORQLMtGUE1GDdCSxFKQElOyD8+nCRAUTQAQtbbMUHCKwhAdhB9QBQBRkA0QKM/YL1uQINGMUH+mbpAFpqaQOfmt0CtoCdB9SqfQLghLUANdIlAZsY/QIyFiUDuuJZAZBSaQB9dykBljH1A0+WjQJVP8UHeKzlBdFSfQKc+rkDj1jJAZ5fcQAXyGkKyuyZC2uctQNb5nkCY/M9A6Rk3QPEQMUGMFIJCiE+fQtquzkEKaHNA5RKfQEwaQEB5oklAdBIrQX5t20BhbAhBIZO0P0UFEkBTVCxBSpWVQK87mUF584dByWKaQlSpMkBsCzxA5MOsQE7j6EDcmqVBqlNlQKWeU0FEH+lA/4/6P5p2MkG3mIhBz9YBQVVOSkGFsXRCHZ/WQKhfr0AvDDJBJwevQDzMuUF8YMBBBfjRQECiu0OcjtZCR5eVQPqhXUErwQhAV87wQWY61UJugc1BxRa1Pym3CEB/fGVAQ0UWQa/+W0APsZ5APeHfQcS7RUBfAGNAOMSIQKZajEBEtNk/mOGNQJW6JkHGe79Ayn48QLF4XEPHMZFCpvZaQKQOrUDmL0BA9G0MQT04WEHI1zhBpsFCQgWgNkB93/tApRkjQVtUjkBLRqI/ai2FQIlQxz9EY6pANE4CQQxRCUG2tbRBOHumQMO9akA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwPvoZUAAAADAsz9mQAAAAICrBGdAAAAAAHRjZ0AAAAAgI+NnQAAAAIDKh2hAAAAAgI1HaUAAAABA4SFqQAAAAOAbRGpAAAAAgKGGakAAAABALqVqQAAAAABfwmpAAAAAwCgabEAAAABgM3xsQAAAAGDSrmxAAAAAgG7GbEAAAACAvuhsQAAAAMCIgm1AAAAAwECGbkAAAACAZcRuQAAAAEBkiG9AAAAAoOnKb0AAAADATeFvQAAAAMDAAHBAAAAAgO8wcEAAAADAb6JwQAAAAIDPz3BAAAAAgOThcEAAAABAvfJwQAAAAMBaAXFAAAAAQFQacUAAAACAcDJxQAAAAIC04HFAAAAAwBTwcUAAAADggBJyQAAAAEBjJXJAAAAAwBhRckAAAACAcIJyQAAAAID+xXJAAAAAgAXxckAAAADA6gBzQAAAAOB5IXNAAAAA4NSLc0AAAAAA6aFzQAAAAMDC/3NAAAAAwMERdEAAAADANSZ0QAAAAEDeR3RAAAAAQHCGdEAAAACAoqR0QAAAAECCsHRAAAAAgPD0dEAAAABAeQR1QAAAAIDsFXVAAAAAgG82dUAAAAAAm3J1QAAAAAA2AnZAAAAAAGgXdkAAAADAj1N2QAAAAEBygHZAAAAAwPf1dkAAAABAAgB3QAAAAEDLGndAAAAAwFozd0AAAACAPUB3QAAAAABsVndAAAAAAF+Dd0AAAACAoLN3QAAAAMCzG3hAAAAAQM8zeEAAAABAE0V4QAAAAACfVnhAAAAAgNV2eEAAAABAWIt4QAAAAAAXtXhAAAAAwOHieEAAAACAvO94QAAAAABODHlAAAAAAKYXeUAAAAAAaEJ5QAAAAEAoVXlAAAAAgG92eUAAAACAC5B5QAAAAABJoHlAAAAAwKISekAAAAAAXWB6QAAAAAAxk3pAAAAAQHsye0AAAADAzD17QAAAAIACY3tAAAAAQJ90e0AAAACAXqN7QAAAAMASsXtAAAAAgNAzfEAAAACAjUV8QAAAAMDoxXxAAAAAwLTVfEAAAACA+eN8QAAAAMC2An1AAAAAAJYOfUAAAADAgDZ9QAAAAIDfcn1AAAAAQG2DfUAAAACAuNp9QAAAAIB55X1AAAAAwIYLfkAAAACAlRl+QAAAAAAiRH5AAAAAgPtVfkAAAACAXoF+QAAAAECfmX5AAAAAQCinfkAAAADAiLh+QAAAAMCK4n5AAAAAgO32fkAAAAAAtyB/QAAAAICuVn9AAAAAwKlof0AAAABAAph/QAAAAMD+p39AAAAAwLi1f0AAAAAAMeJ/QAAAAAAc+X9AAAAAwLsBgEAAAADg+ByAQAAAAACHI4BAAAAAoL4qgEAAAAAA/0CAQAAAAMCMWIBAAAAAwJNrgEAAAACgJnyAQAAAAODvhoBAAAAAYI6SgEAAAADAeKiAQAAAACB3sYBAAAAAgI+6gEAAAADgYsOAQAAAAODI1oBAAAAAYH/0gEAAAABAp9uBQAAAAID2MIJAAAAAwFJDgkAAAACgZlGCQAAAAGBoY4JAAAAAoO1rgkAAAACgPnOCQAAAAICeioJAAAAAwA6WgkAAAABAxsSCQAAAAGDf0YJAAAAA4KnagkAAAABAZOKCQAAAAMCkBINAAAAAoIBcg0AAAACgPW2DQAAAAOCcioNAAAAAQAKhg0AAAABAxMODQAAAAKDP8YNAAAAA4BYUhEAAAABgtDOEQAAAAIA9dIRAAAAAoCoDhUAAAAAgM2SFQAAAAGAeaoVAAAAAILmDhUAAAAAg+tqFQAAAAAAU5IVAAAAA4AoLhkAAAABgMRKGQAAAACBeG4ZAAAAAgBpShkAAAADgQ1uGQAAAAGDOYYZAAAAA4OlrhkAAAADAzXSGQAAAAKBbhYZAAAAAQGGThkAAAADgHZyGQAAAAKDypIZAAAAA4ITqhkAAAADA6CCHQAAAACAaMIdAAAAAQE01h0AAAADgeHyHQAAAAOD7godAAAAAAG6sh0AAAACAR7KHQAAAAGDm2odAAAAAQNzhh0AAAAAgKnyIQAAAAGAtm4hAAAAAgOWliEA= + NrgMGZxjYkCRGlyHeVJxQKPid1q/wnFAIHKoplFjd0BqPQyU1/N6QK7J9MUpdH1AbnHmwWN6gUCRt9rajLqCQDWdjNHPgoRA9OSk9xhTh0D8yDLhO4uHQDionZ6Rm4tAxtD7k72jjEA= - + - WIqAQetiBEKm885AdVe5QN5EQEDFtSlBcHwKQIdptD9EJf4/NCBZQGv8EEKKU6tAm2+TQBVzLUAnH/NAklmxQXnWlEECmIVAyEA7Qcipjj+724lAMCd6P8pF2T+0u/ZARPvrP4m7W0GSGyFB53MXQGhHSkHaUw1CvhmPQOUN2EHLa4BBY+uAQA4Jl0KECHFByyLDQNC6FEJ5STVB/vS7QSp65EFizLNAfq0bQMb3r0HXOktADuEEQ3a9aUG8AsNA6m+FQBhXPEA0GBtBdUskQMYDG0CEKTNAyGK4QA5WGkAPZdhAWLXRQKbOVkFMIbtAxl0IQKt96j/Nm4BAgcQpQCzJSEH4gc9AENIeQYmVN0FRNv1Atl90QIZuAUN25vVB5/bmQDLw/UB3VDRBTQehQBhcJEAUTwpDbCnAQRlv3UDrQQJAC526QCPmEUBCyFJAprdIQPImP0JD2MRB0speQZymyEDG3LVA1jjHP/tM+0CWnbhAfKltQK97wUAERSxBfLhPQjeIakFalCRAjjQQQRyzxkHSFQdBKAI9QN6EX0AvRZxAWkgTQric/EDN1tZB5p/+P/nshUBh8f1BlqtmQb+2KUA4EWNAot8HQbh1hUEKYZVCap6OQSROmEE+NeNC2mqsQfoStECge21AFT7eQfUXHEPh3apB5qEfQRjzakBefyhB2MQgQBsNnEEinsxAg5axQMqoX0LC5tRA8EnhQEedSUBV689BjidVQV+KakASsilA5LcgQcCNgEDAN45DlceJQjKlBUC+O6pAiqBRQIqriEDqxkVBUGG2QKDBvkG2Zj1BbbG8QDiriECtCE5BU7ShP4oqy0DWW45AsyOmQP/RV0BZ1VtAxgl7Qf5GnEAee45AIC08QXZ8bUG26WdBlznbQJiUX0HZ6zxBXZfPQKLSyEHWHodAQUv1QmCS2UFpu4lAyU5tQFMS7EDcQ/dAcN+fQbI9SUAHuQhAnBUjQdidR0GE2DdBmMQqQaGDw0Cm7INBXKDKQEaYzkDcBxhBEDQlQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIMhGZkAAAADgXetoQAAAAEC2AGpAAAAAgFkuakAAAABg9SZsQAAAAIAbTWxAAAAAQO1jcEAAAAAAJJJwQAAAAIAiUXFAAAAAgGWCcUAAAABACQByQAAAAAA6cnJAAAAAgIjTc0AAAACALH90QAAAAICennVAAAAAANPSdUAAAADAFt92QAAAAECK73ZAAAAAQBwEd0AAAACAmWZ4QAAAAIC/AHlAAAAAgGdEeUAAAABALJJ5QAAAAICNMXpAAAAAAIBue0AAAADAiaF7QAAAAMD5CnxAAAAAAMwlfEAAAADADOJ8QAAAAEAyk31AAAAAQK3yfUAAAADA0cF+QAAAAEBM0n5AAAAAAD7tfkAAAADAerd/QAAAAEBy439AAAAAABEDgEAAAAAgOSOAQAAAAAB9N4BAAAAAYEpCgEAAAAAgyUmAQAAAAICyeoBAAAAAoGSDgEAAAABgCtCBQAAAAOAoC4JAAAAAgM87hEAAAACgLuqEQAAAAGBRkoVAAAAAYHxChkAAAACA2kuIQAAAAKDlvohA + NrgMGZxjYkCJy7y2HKVqQFRnpVdMhW5AOAsfS35TdUD7s+DKy7J1QI5fI1AWxHlAHb3i+04je0Dwr5j3HRqAQNIh6iQg2oFANHORnpZihED7IXH0MhKFQMV3EjfYGodAJkzz9n5Kh0Dud5kG61KKQOCe0+72SotAtaM/FldbjUDgzcEYo9OOQA== - + - NPENQLOZ/j+JDUFBkS6wQF4kzUD02CJB20+KQbBIGEBBmFxAG9/NQeHa/j8dEYVA1wZAQJxctD/hy/4/CYiOQCaAF0BADfhA7UWFQMajK0AIFWFAtnHWQFWPl0B7JZNA2ElHQPwKxUAqRCdB6WsgQKAfSUCD1us/F0h4QRTFvEFs1bRA0Ac3QDJl1kBG1JFAcWL+P2/pcUExilJA3AuWQV+630CiiFZBBLKHQSMeIEFm7xRBl/W3QCl5qECX4dxA6gwHQXs2ZUDizRRB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYCaOY0AAAADAq6RjQAAAAEATRGRAAAAA4LPmZEAAAAAAFihlQAAAAGAP42VAAAAAYOkiZkAAAADAXcRmQAAAAMBuWmdAAAAAQHq2aEAAAAAA8WBpQAAAAKAV4mlAAAAAIMwJakAAAABggIBqQAAAAAAYoGpAAAAAAPUja0AAAAAg7KJrQAAAAADjv2tAAAAAoBTca0AAAACAZyNsQAAAAKBSZWxAAAAAoJnFbEAAAACAp2RtQAAAAABLpW1AAAAAwKsBbkAAAADA1kRuQAAAAIBRpG5AAAAAQJP/bkAAAAAgFD5vQAAAAGB0hG9AAAAAwJKob0AAAACgXOJvQAAAAKCwH3BAAAAA4PIwcEAAAABAWINwQAAAAEAYoXBAAAAAAIiwcEAAAAAAycRwQAAAAACM4XBAAAAAwK/ycEAAAAAAlCRxQAAAAADVPnFAAAAAgCmOcUAAAADAv7JxQAAAAICDvnFAAAAAwDzVcUAAAABAUONxQAAAAEDe9HFAAAAAQE1CckAAAABA+WByQAAAAEBycHJAAAAAQOaNckAAAAAA2cJyQAAAAAA553JAAAAAwCRRc0AAAABA5HVzQAAAAEAlgXNAAAAAQEOSc0AAAAAAYKJzQAAAAECQBHRAAAAAwPsTdEAAAADAWsR0QAAAAEBS5HRAAAAAAIcQdUAAAAAACTJ1QAAAAAA0QnVAAAAAQJyRdUAAAAAACqR1QAAAAADoBHZAAAAAwEcQdkAAAAAAqSZ2QAAAAIBtPnZAAAAAADh0dkAAAAAAFdZ2QAAAAMCY9HZAAAAAALJAd0AAAAAAAXV3QAAAAMDglXdAAAAAQLjFd0AAAADAhd93QAAAAMDlBnhAAAAAAGUReEAAAABA7ll4QAAAAAABcnhAAAAAAHGHeEAAAADAsJF4QAAAAABunHhAAAAAgH+meEAAAAAAySN5QAAAAIDZTHlAAAAAwOJyeUAAAAAAIoh5QAAAAIBwsnlAAAAAgKPEeUAAAABAuO15QAAAAMC+AXpAAAAAAK8dekAAAAAADTB6QAAAAMDTRnpAAAAAwMRUekAAAAAAWnx6QAAAAMDS6npAAAAAQK4Ve0AAAAAAVyd7QAAAAEDENntAAAAAQPVje0AAAAAAep97QAAAAABSs3tAAAAAQGXBe0AAAAAA6N97QAAAAIBe83tAAAAAwOoLfEAAAACA05x8QAAAAEAwyHxAAAAAAKjifEAAAABAO/R8QAAAAEDoAn1AAAAAgKgPfUAAAACAviV9QAAAAMCyL31AAAAAAKc7fUAAAABAbGV9QAAAAMCDcX1AAAAAQMqbfUAAAADAFLN9QAAAAIDMvH1AAAAAQI3mfUAAAAAA6Px9QAAAAEBdOn5AAAAAQJFJfkAAAADA4lR+QAAAAMAAjX5AAAAAwI6efkAAAADA+rV+QAAAAECw135AAAAAQEPnfkAAAADABPl+QAAAAMBQHX9AAAAAwIRZgEAAAAAgVWiAQAAAAEDqboBAAAAA4NKmgEAAAAAgpLKAQAAAAADYyYBAAAAA4OzhgEAAAAAAdumAQAAAAIDbAIFAAAAAIAAHgUAAAAAg0xKBQAAAAOCOVIFAAAAAYKZbgUAAAAAArGWBQAAAACAreoFAAAAAgDh/gUAAAACAw4qBQAAAAADlwIFAAAAAIP/GgUAAAACgd9GBQAAAAOBY2oFAAAAAQOQagkAAAABgUi2CQAAAAKD4MoJAAAAAoDdNgkAAAACAc2eCQAAAAOBCdYJAAAAAYFh6gkAAAAAgMISCQAAAAAC2ooJAAAAAQIWqgkAAAABgg7mCQAAAAACyzIJAAAAAgLHrgkAAAABAFPOCQAAAACD9+oJAAAAAoDUGg0AAAADgPxuDQAAAAKAQT4NAAAAA4A9Wg0AAAACg8nGDQAAAAOB6eoNAAAAA4AqBg0AAAAAAP4uDQAAAAGB3vYNAAAAAoMvCg0AAAABARgOEQAAAAEA8C4RAAAAAYO0qhEAAAAAA8cKEQAAAAMD6zoRAAAAAQDznhEAAAABgDe2EQAAAACCyEYVAAAAA4CQbhUAAAADgWSKFQAAAACCWQoVAAAAAYHdohUAAAAAgbI2FQAAAAABLnYVAAAAAQDijhUAAAABguLaFQAAAAKBL04VAAAAA4JbyhUAAAAAgv/mFQAAAAOBKIoZAAAAAwC4uhkAAAACAVTWGQAAAAMCKPYZAAAAA4N59hkAAAACgaYSGQAAAAED8loZAAAAAoMHphkAAAACAsAOHQAAAAGCQCYdAAAAAwIo8h0AAAAAgjYiHQAAAAACnUohAAAAAYMpZiEAAAADgopKIQAAAAIBm34hAAAAA4JHsiEA= + KBZXds7jZUCmvpxNHCRnQBTpB48/A3JAeiAWnryic0BBe6rX1NN5QJxv+dwwlHpABGufiHYCgEBhmCCqb1KBQGiYaaUCG4NAK6DpXPFqhkCG6SWQWquGQFbKa189o4hAsROokqbjiEB0GyhKlTOMQHsbcUUo/I1A2EjyZiFMj0AHforAPwKRQB473sFWMpFA0FFD0Jy+kkCp3wYUfCaTQBpCFW7IwpRAKff9KNLqlECaWQyDHoeWQA== - + - RwksQB62RUB6lARAt2AaQL8MRkBA3ZpCjbiNQJxbDUDn5dBAINojQAFzhkH6dhFA4llUQUvcrEA2ZU9A3ug6QZgxTkLFHCRBHPPjQHSX7UBq27NAGcYEQHQuQkEnwRtB1A7IQB0wu0CyX95A4UqhQPD650DSnuJAsMpPQBFzEUBeoa1ATEafQdWKKUHinjNC/QQ+Qcz68UAeiTJCzTmPP4nvwEBND1NAPuMWQIoeYUCQp8VABqxeQfZceEEI5eo/GryJQAVZEEPrIW5AB66TQJ+HdUA41qNA9WzrP54qaEEJqw5BvXkRQZhav0EMO5FAUb5ZQQ0IOUHPeoRAYZwdQfDZ/kLRCIJBk4mWQF05ukBmJSlA9jhQQAd3tkAMAQxBnNREQP6QSEA1qOJBSzDIQJRl8EH0SMY/kccaQA4xMkD3YW5BkjwOQaPigEJdRRFAMqodQfPMT0IrZGtAcjkHQd+TnEAn+aE/KMkgQjbuHkEW9RxCg4pZQTxcjEBh5NpBO1HTP9l50kBVP7Q//1q6QKe/D0KIluZAjCbOQpVoz0C4lxdAeygbQj+y5EBDpKdBdr2oQDLQFkHec1BBQDmcQA/aGkBR2n1AlEAGQSiCjUE99RVBC9AUQcWXwUL1hE5CNTrGP1pxRkAQ6Q9B//D+QcXce0LzkKJB3VyUQRt4R0Jxp6lBvxgTQkSni0EZyrVC6zwDQUKAx0H1ARpAej93QEAUJ0BhGVpBc2DrPzxtNEElrF1B25Z6QnCbykCwfZtBz6VzQSIeW0FcdgFBDgazQF29sUB2W9RBSGMjQ9ZkvkEKlhNBTqQnQW+Kn0DwT41DS9X4Qp1sR0JowWVBTFCVQZfAtUFI2OhAFvJkQPNl0UHWjrVDSXaMQ6d2+UB7CLxBiRpDQDrZPEAHi6JBFxubQYKdDUCbZY9B3PhuQrexeEG58r9ENhPsQSI3TUEMCwZCJAADQUtnHUG+hz9CEjZOP2L/lkQ/FdJCkCIFQXokn0AC33NBPwA9QXI1PkFHARZB0anoQOKcjj+mCklAW7aOQZQNnkG8ChBCAMoOQIe+d0CykwpB4OuxQGCWh0D6saBAOKNYQJXr9EFalRhCIliYQgQzXELPY1JBy+2UQRwWGUOUMbFBJnecQLE4i0BCnNlA/0/kQLDRxUAPJBpBcjiwQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAANGTXkAAAABgRSdgQAAAACCzRmBAAAAA4C2cYEAAAAAAxsRhQAAAAEBGDmJAAAAA4KBmYkAAAABAcWZlQAAAAADMnGVAAAAAwHCIZkAAAACAPKNmQAAAAACxyWZAAAAAgLTrZkAAAAAAEMJnQAAAAABC5WdAAAAAAMVkaEAAAABA9qhoQAAAACB+xWhAAAAAQKHoaEAAAADA+iNpQAAAAKBaiWlAAAAAIKAnakAAAACA32FqQAAAAABMp2pAAAAAAEbjakAAAABAEyJrQAAAAEDyz2tAAAAAgGsBbEAAAADA4kRsQAAAAAAUZmxAAAAAQJKobEAAAAAgAgFtQAAAAIB/Gm1AAAAAgEkHbkAAAABAtB5uQAAAAMAbSG5AAAAAgExqbkAAAABAvoRuQAAAAAA6JG9AAAAAQBJEb0AAAACAO6pvQAAAAKCUIXBAAAAAwE8ycEAAAADArEFwQAAAAABZY3BAAAAAQOZwcEAAAACgFbVwQAAAAAC5AnFAAAAAIB4RcUAAAACAfitxQAAAAEBbRHFAAAAA4BpQcUAAAAAggaVxQAAAAEBqv3FAAAAAQN/wcUAAAACgsAVyQAAAAIDlFXJAAAAA4JYfckAAAACAyJVyQAAAAACWpXJAAAAAwA6zckAAAABAWcRyQAAAAEBG03JAAAAAQJQuc0AAAACgO3NzQAAAAADwgnNAAAAAwLuWc0AAAADAmqhzQAAAAICItXNAAAAAYKDCc0AAAABgW95zQAAAAODx8HNAAAAAgLwOdEAAAACAph90QAAAAKDAMnRAAAAAYPxEdEAAAACAi3B0QAAAAGDEk3RAAAAAQFC0dEAAAABAoMB0QAAAAODUzXRAAAAAYHv/dEAAAAAggyR1QAAAAEBGUXVAAAAAwJBgdUAAAABATHF1QAAAAIB8j3VAAAAA4DbzdUAAAACA7xJ2QAAAAACJMXZAAAAAgFA8dkAAAABgxGh2QAAAAIDWgnZAAAAA4BSNdkAAAABA8sR2QAAAAOCaznZAAAAA4OHzdkAAAADAchx3QAAAAKASNHdAAAAA4GWed0AAAAAgH+13QAAAAEBFCXhAAAAAAMckeEAAAADgiDF4QAAAAGCYUXhAAAAA4M1ieEAAAADAT6Z4QAAAACA4s3hAAAAAIBgWeUAAAABgCCt5QAAAAGCTQXlAAAAA4P2geUAAAADgD7R7QAAAAKDg1XtAAAAAIFpYfEAAAABAXGR8QAAAAGAJhXxAAAAAYHKTfEAAAABgHYN9QAAAACAJxX1AAAAAQCw8fkAAAACgn0d+QAAAAKDtp35AAAAAYFHTfkAAAACgpj1/QAAAAKDdR39AAAAAIKRcf0AAAADA9WZ/QAAAAOB+c39AAAAAIC6Hf0AAAAAgYSqAQAAAAMAwSYBAAAAAIGgZgUAAAADgpCKBQAAAAIBuKYFAAAAAoC5agUAAAADg9IOBQAAAACAfs4FAAAAAQJC+gUAAAADgF+qBQAAAAGCtKYJAAAAA4PQxgkAAAABg1DmCQAAAAAC9QoJAAAAAoFFagkAAAABgG7uCQAAAAMD2w4JAAAAAwFU1g0AAAABgsaaDQAAAAACmq4NAAAAAQI87hEAAAACg6IiEQAAAAMDJsoRAAAAA4IkahUAAAADAGCOFQAAAAOAFNYVAAAAAwPBuhUAAAAAg/6OFQAAAAAB6w4VAAAAAYKe6hkAAAADg2jeHQAAAACDVk4dAAAAAYJqjh0AAAADgcbuHQAAAAMCpy4dAAAAAIPsjiEAAAACgxCqIQA== + NrgMGZxjYkDs0KCvIgVvQBlDcYES0nJAsQpJLUGjdkB0T7vM1SJ5QA== - + - Ou1vQB/ysEEYabE/7J1XQHrot0B6S79AOSOKQVP0i0BtH1VBhex0QDQXqUDwFwhABToYQU4GSUCrEx5BK1+lQKcrUkA8gAZB+B63QKTWG0EsUpVAutqcQWL1W0FiVNRAt2CzQIZ2l0DqoOFALKRzQOmy50GZYVlBv7K1QHFgAUHS5xFADswnQWyHH0DgZW1ArszrQKGkKULWxw1BCXcEQWbBsz9gQ2VBw+yEQBKVg0Az0XxAVYOEQIOUA0G0vQZDCC2BQYackEG7T8dBgAbZP+EsPUCjMbpAPoqsQANanUBstXRBMshfQAlsAUG8jglByHcRQOT0kEPiW5tAUacaQcTuTUFyWcY/ENwOQNQNTkDEblVB2wIAQcICW0HQmMdB+vs7QmMJoEDOjOs/wApuQN3q+0G0XdNCYHERQPyPP0F1XYpBfYiCQaRkv0IXkv5C6XyRQfk/r0FqdHxAvW/NQOTHe0CHj+5ACE2HQhKhnEFcCgFBudpjQNXoE0OYpc5BmJLEQJ3BD0KhmNBBHMfEQClhiEGtOpVBRgNdQm3TLUH8LjND2HMaQsXbjT+kAy1AoCu3QF0LFkFwhuNBl/2gQMUBEkK9uUhApA2fQDbxtUH2gENBGTQIQXBpykB1fxBBtf8XQJlDS0H9Kf0/uS65Qhkp70A+wdFAM+oURK5qW0N6TxVBIvesQNXLUEE/VI1Ai7fNQt4M3UAEPGJAG7V9QVILUkBUYxFAYXClQT8IoEAauotB1tsQQoqfJkFr1aBAbX4gQWCGRkMwonhC3iQSQWGbjUF+HtFATBtZQLm8pkG/K2RBbL3jQQpwnEFXSldAbLbPQFezn0C+nptA2zRvQdtloEChq1VBMtmnQDpU20CadD9A2/35QZfIGEE= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAANRIZUAAAADgYwJmQAAAAMBhP2dAAAAAQC0IaUAAAADAwEFpQAAAAED+iGlAAAAAQP/pakAAAAAAHIpsQAAAAGDHXW1AAAAAoFgHbkAAAABAkYhuQAAAAMDyw29AAAAAQBQvcEAAAACAJF1yQAAAAIBtknJAAAAAgM/RckAAAADgXPxyQAAAAGBkIXNAAAAAwHI8c0AAAAAg3hB0QAAAAGBUqXRAAAAA4P8TdUAAAADAqI11QAAAAOD7sXVAAAAAYMbVdUAAAACgDil2QAAAAKAbNHZAAAAAgAdWdkAAAACAU2h2QAAAAKB4c3ZAAAAAYDNAd0AAAAAgdmZ3QAAAAMANcndAAAAAoKHbd0AAAABgdOV3QAAAAKB473dAAAAA4JAleEAAAAAgGEp4QAAAAEB0XnhAAAAAwPpreEAAAADA/JN4QAAAAGCStHhAAAAAoFHdeEAAAAAgQ2B5QAAAAKBjcnlAAAAAIJiCeUAAAADAgZp5QAAAAIDdtXlAAAAAwOL1eUAAAADAvQJ6QAAAAMCbD3pAAAAAwNM9ekAAAAAgP056QAAAAGC8dHpAAAAA4AaGekAAAAAgOpV6QAAAAGADo3pAAAAA4Ai6ekAAAADgqBN7QAAAAMBDJHtAAAAA4OVfe0AAAABgYJJ7QAAAAMATtntAAAAAoCqzf0AAAADAAnGAQAAAAMB2d4BAAAAAIHKLgEAAAAAgvJqAQAAAAKCFyIBAAAAAIA4vgUAAAAAA3TiBQAAAAODbNoJAAAAA4PxMgkAAAABg4pWCQAAAACDa0oJAAAAA4E+cg0AAAAAgmziEQAAAAKDIQ4RAAAAAIBrShEAAAABAKjKFQAAAAGDpgIVAAAAAQJHJhUAAAAAgj+SFQAAAAAD4Q4ZAAAAAoId4hkAAAABAzn6GQAAAACA7wodAAAAAoC7ch0AAAADgSmOIQAAAAODN04hA + KBZXds7jZUA= - + - SGMRQDMJGkD8tNFAvl/GP9kDnECpydg/DENSQBDdUkC9/dg/lJ3RQEuUhEHUlLpA3EXGP2e2NUER1LQ/Arf9PziXrEAe5xlAomgRQBSWKUEwYHVAn+hdQSnLmUEaqvFArpApQFReO0HcYhNB4bZpQAgKJECBdkhBcxuqQNdqFEAVbYxAZy1OQb6OtEAOlSFBI8gdQbh1SEASTWpBBiRqQSDksz8J16BB1H8qQUBHLUAvkVRBzqykPwRj60H7M4NA1da5Qe4eG0HNmAVBA8VNQQHLOEHqf6xAaRa4QRqDd0DaA71A8H+yQSun2kFgoJJBjHhkQRq70UCaeTxBUDy/QPTraUAFVQpBotOzP2Zu6z9tqQRBm91IQEc3dkFGNCZBQ3nYP02fRUBKQphB1ZXWQNXhykCgbrpANvPHQSQ+bkB/tGRAaykIQFPqukCX6BZBLdZkQMEdSUAxa2pAIhEYQUedkkD0xWRA + AACAPw== - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYB46b0AAAADgOoNwQAAAAMB5A3NAAAAAQDoRdEAAAADAL4N0QAAAAKCuFXVAAAAAAA6gdUAAAAAgD/J1QAAAAEAlxXdAAAAAAMQDfEAAAABAhRV8QAAAAABUlH1AAAAAwN2jfkAAAAAAPTJ/QAAAAAD2tX9AAAAAQKJxgEAAAABA0XGBQAAAAIAX04FAAAAAoBJvgkAAAACg8pOCQAAAACAQoYJAAAAA4L6ngkAAAADgPweDQAAAACAeP4NAAAAAYHpOg0AAAACgg3mDQAAAACBCgoNAAAAAYNAKhEAAAADAlCSEQAAAAOBzSIRAAAAAgHcXhUAAAACgsZ6FQAAAAADmIoZAAAAAAEmChkAAAABApOqGQAAAAEDLAIdAAAAAgCkQh0A= + NrgMGZxjYkCmvpxNHCRnQEMdzoN8QnFA4rYaRuaicUBDe6rX1FN4QNB0GqNU03hAMTmqNEOEf0BfGQ2A4QGAQI/71MhYWoNAVviMrhiag0CG2lT3j/KGQFYne9jEIodATQb7Bvz6iUDqBx8UHCuLQE016TCog41A - + - xu4sQNJpmUDfU9FA8QHqPx6RI0CXZ6hAdI5GQCeeMUBfT5VAXVduQSWtfkDcQrdANoQSQVzfdEDD/ARBVEntQC3s7EAOB/tAfrgUQen2FkGA9+BA7pzNQMsYF0GEmIdAthLLQRm86j+EaNNAuzHDQZEnzkBdhURA72NiQFHyukD/nCNA9TI/QKZfP0AwzZpAYBodQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYL6EZkAAAABArCJsQAAAAEAtRWxAAAAAgOtqb0AAAAAAVzRwQAAAACCRvnBAAAAAAElpdEAAAABAVHR0QAAAAIDik3ZAAAAAgPcjd0AAAADA1Mx4QAAAAMA6dHlAAAAAQOLKeUAAAAAA3316QAAAAIB1lHpAAAAAAMOeekAAAAAA3yR7QAAAAID5QXtAAAAAABRhfEAAAABA8r58QAAAAIDDnn1AAAAAADBufkAAAAAAE9h+QAAAAAC+iH9AAAAAAH0TgEAAAADAfjKAQAAAAKCIWYBAAAAAAEVygEAAAADgJ36AQAAAAOD2zoBAAAAA4BvigEAAAAAgS+mAQAAAAAB+GoFAAAAAwL4vgUAAAAAgey6CQAAAAMCdG4NAAAAAoLCWg0AAAACgS7WEQAAAACBXgoVAAAAA4MiKhkAAAAAg7fSGQAAAAGD+uIhAAAAAgAu+iEA= + KBZXds7jZUCj4ndavwJxQHKwihFm4nVAxet5i0JzdkBgbopu1BJ9QACO8mDyk31AKEcAAAwCgkCUZA9U9iGDQFFHh88eOoVAXmzYBng6iEC1dFHsqlKIQOJ69pEMe4tAoi/RrfCCjEAzNFJGMjuPQCNUYFfMCZBAmTEgOO9hkUCja1dsIs6RQOztlzhDKpNAS0iFRjWuk0Biy1cZZkKVQI5PFIx/TpVAFOK8J6zOlkBz03hlwNqXQChigI+1aphAPOJD974GmkAl6t1zBieaQMsKouzqzptAodkdCyLzm0AUjeK4CyudQPiitcBBr55AmZagQnPbnkA= - + - ffcEQXhwpUAExzBBuCIGQBnFhEBNlptApHYQQcDrdUD51Y4/unbGP1cIAUEcjT5A15YRQeoF+0D2JltAkSATQQcP0kBIGJFBDK7qP/GnZEAMakpBMHegPz7xBUHacJBABHdQQfPg8UC7k/xAd9/XP/zPnUHlysdABXjlQeyuUUA8dBNB3KPkQEAoTEFUkfpA1pWYQU7RmUBocrtBS+d7QTz+EECS3OhAxImXQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwJ3pZkAAAADAHV1qQAAAACDVwmtAAAAAIHYfbEAAAAAgnBpuQAAAAGA1aW5AAAAAAB6HbkAAAACA9v9uQAAAAMCyiG9AAAAAgG0jcEAAAAAgCjNwQAAAAADa3nBAAAAA4J0AcUAAAACgZRNxQAAAACBiQ3FAAAAAwIW1cUAAAAAAUtZxQAAAAMBconJAAAAAIK+0ckAAAACAw75yQAAAAOCBh3NAAAAAQJfXc0AAAABALBV0QAAAAMByNHVAAAAAgLxRdUAAAAAAQcx2QAAAAIDnFXdAAAAAQFrxd0AAAAAACxp4QAAAAEA+JnhAAAAAQJJCeEAAAAAAeVV4QAAAAMAEcnlAAAAAAJaleUAAAADABRN6QAAAAEDR/3pAAAAAwOEoe0AAAABA75J7QAAAAMBDJnxAAAAAgGRHfEAAAACAn1R8QAAAAMBxaXxAAAAAAFyDfEAAAADAhpN8QAAAAEAlAn1AAAAAALDNfkAAAADA3iZ/QAAAAIDhU39AAAAAgLlkf0AAAADAXXV/QAAAAODBAIBAAAAAwPxagEAAAACglLuAQAAAAGAYAYFAAAAAIN4TgUAAAADg/xmBQAAAACCNIYFAAAAAIPwygUAAAACg5m2BQAAAAGBMqYFAAAAAYMyvgUAAAACg+LuBQAAAAMDm6YFAAAAA4L0tgkAAAABgJTOCQAAAAKCxd4JAAAAAICuDgkAAAABgXqaCQAAAAEB5q4JAAAAAoCK7gkAAAADg4MKCQAAAAODO0YJAAAAA4LnngkAAAADAdO+CQAAAACCqFINAAAAAYL0pg0AAAAAgNTSDQAAAACCUO4NAAAAAAFxRg0AAAACg4VmDQAAAACCbiIRAAAAAICCihEAAAABgM7KEQAAAAOAi1IRAAAAAYEQrhUAAAADgt0uFQAAAAICXpIVAAAAAIAerhUAAAABgOyuGQAAAAEDTU4ZAAAAAIBxdhkAAAAAAz6uGQAAAAOBcvIZAAAAAQNnChkAAAAAA/+yGQAAAACDlkIhAAAAAgP6hiEAAAAAgxMCIQAAAAABW8YhA + KBZXds7jZUCwLijacuRqQDeULWxqYnBAGx6yQN+idUA38gnAwnN3QKOko47QM35AX7z9BloCgEBRAUBxlKKCQMC/zPCsGoRA4gXBCdZahUDA7roaWaOHQA== - + - dZjnQHOixT++DBdBcuEiQLg/JEG2HLJAvE01QT0rVkHS3wdAAv8TQqmHy0Df2rdAVVUYQeGX/D+MnStCfXubQAekR0GjZwNB/xVeQAnvkkBkz3ZAQQTGQD9RNUBSp2lAxjg3QvZ170BDlihACpq4QB+1xD9ZTz9AXpfoP0W4sUHGetpAYwGOP/a0nkAozspBD5FHQQiurEBcP45B6tSXQboJoUAxWdhA1jUrQoLThkALYqRA3EmaQeOTrkCiAaBAhhQuQjh3bEF2WJ9A0m+xQDGWSEB23ItAaBK4QKO5rUG0ompBFxYyQA4iJECKQVtAlQ+AQJUpz0FS1/5Ba1GTQmJffEKqQ55A1EoLQq5hl0GvuHBBQHkTQxljwkHJWLZBB8BRQLqUZEA8x0BBzvoPQdOtIUHEeJhASwCvQOynTkGY/7lBzpzFP3BH8EDIJ6lAPGyhPycD7UDCNrxACQGxQEBujEGBjWVBd73DQNgIEUB4DxdDtIXcQACJA0CN8uBA+tDdQOF+UkAkONg/ + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoFDFYUAAAADgoeViQAAAAMCThmNAAAAAQIGeY0AAAACAv8djQAAAAGBp3mRAAAAAAC7dZUAAAADgI/5lQAAAAIDMI2ZAAAAAgAbiZkAAAAAAQiBnQAAAAMBPZWhAAAAAgL8maUAAAAAAZ0RpQAAAAMCcAGpAAAAAgKpmakAAAACAsnxqQAAAAACAJWtAAAAAQNcrbEAAAAAAL4VsQAAAAAAKoWxAAAAAAJSFbUAAAADgGKRtQAAAACDbxm5AAAAA4NEVb0AAAAAAm6JvQAAAAECwwW9AAAAAgB7nb0AAAAAA9hBwQAAAAAD8IXBAAAAAAPc0cEAAAAAgJlZwQAAAAGBeYnBAAAAAoPyVcEAAAACAD7JwQAAAAID1AnFAAAAAoGgXcUAAAACAxyNxQAAAAMAFpHFAAAAAYCPDcUAAAACgONJxQAAAAABMBXJAAAAA4N0TckAAAAAgriRyQAAAAADjkHJAAAAAwDFBc0AAAADgtlVzQAAAAMDml3NAAAAAQL4rdEAAAABg6FR0QAAAACC3ZHRAAAAAoOZ/dEAAAACAnQJ1QAAAAMBEEnVAAAAA4Ds/dUAAAAAAB1R1QAAAAGBKY3VAAAAAALKDdUAAAAAgApV1QAAAAGAXsnVAAAAAoGDvdUAAAAAAtwB2QAAAAOD6VXZAAAAAwDWRdkAAAABgYKN2QAAAAIDcz3ZAAAAAwO8Qd0AAAADAdCZ3QAAAACAXNndAAAAA4Cxcd0AAAAAAMnR3QAAAAIBugXdAAAAAIEyLd0AAAACA9LB3QAAAACDPv3dAAAAA4KjTd0AAAADghfF3QAAAAAA4EHhAAAAAQLQjeEAAAABgJi94QAAAAKBTQ3hAAAAAoOlSeEAAAADADm94QAAAACBZh3hAAAAAwAKSeEAAAACg2s54QAAAACCh83hAAAAAgOoPeUAAAACgOzJ5QAAAACAnQHlAAAAAgNNReUAAAABg8WN5QAAAAACFkXlAAAAAwGmzeUAAAAAgR915QAAAAIBB8XlAAAAA4IEGekAAAADg7Id6QAAAAOAZsXpAAAAAAAHKekAAAACg9vF6QAAAAKABEHtAAAAAIDsve0AAAACgp0J7QAAAAIBCZHtAAAAAYJbRe0AAAACgL1J8QAAAAGBEZ3xAAAAAoGZzfEAAAAAg5I18QAAAACA+q3xAAAAAACi9fEAAAABAA898QAAAAIAM7HxAAAAAoMYEfUAAAAAgvhJ9QAAAAEB5Vn1AAAAAoIdXf0AAAADAh2uAQAAAAGDUjYBAAAAAINmTgEAAAADgObaAQAAAAGBH1IBAAAAAIIDlgEAAAAAAYW+BQAAAAKBXgYFAAAAA4JnAgUAAAAAgFN6BQAAAAKBr5IFAAAAAwBXqgUAAAABgqBaCQAAAAGCuSoJAAAAAQMxZgkAAAABgVWOCQAAAAMAVa4JAAAAAwGjZgkAAAABgHimDQAAAAGCZMINAAAAAIDFsg0AAAABAbrCDQAAAACAJKoRAAAAAIABehEAAAABgWoSEQAAAAIDSk4RAAAAAgMWlhEAAAAAgLxKFQAAAAOC2UoVAAAAAgGRyhUAAAACgsduFQAAAAOBP5IVAAAAAIL7yhUAAAADArvyFQAAAAKDBAYZAAAAAgG1rhkAAAADgc3KGQAAAACDA0YZAAAAA4E+jh0AAAACgLqyHQAAAAKB73IdA + SgMA5LbhZUAoFld2zuNlQKVf3MUzAnJAFOkHjz8DckBqPQyU13N2QA== - + - pnVOQFPPSEDXzv1ADYLqP+7RqUCNcxJBq5PRQHHeAUF54/w/AHUYQaujoD/nuSNA+pbEQIxpEUFOI0lAef9PQXX8XEF0h1FBP7eeQDEHjkA/zmBAtCYRQJ6EtUD6GSNA7Pj8P23sJUEMAaNAMXTmQH/G4UCJQLFAH9+aQDlp2kHG5I4/vJn0P5gaoD920BNBkK6ZQQMs2EBXEdM/AntSQFA/GkBIM9g/NHw7QhuMC0HPEVtAH7G7QFh0NkGhohtBxmc/QDE930AeVYlBxhMhQK16K0DncgRBXderQfBO/T/wDqBBtpK8QLQagEDIFWBAImcbQa786T8oS7BAIMLcQGwy+UDF/dlAhZO1QDEz+UGgDYVBP57zQFVOmkHfcudANCbFP9pWZ0G1OWtATQDYPypz7kEq0MNAAxIRQACutUDIOrRChPnAQcl8xT8Jqz1BpSjFP7R62EDfGRBBdIp6QsjlQkFYb55AeJ5lQaIlaUGMxyNAYhg4QViYTkEY+MFB18YHQXT82j9gXspBTJI5QiGM8UBrNZBBG7cHQPXVWkApuWdBxWnEQKySDEG7nyNBGoKIQfCmMkEQQ51Cya6RQUcc/T+lCRdBCqZmQgZbskFenoJBwVR5QVtkP0BCW5FAsMkHQJeYG0EAuCJBQr/nQdwqUUBMoBdAYnaJQQRbD0DfYZ5Af76YQQq/10HvJPNAUPrXP36ACUO5Xa9BIBz5QYz3FkEuonxA7uCbQNi2MkHklKBAiRegQEpuzEC61LxAKj3DQAeh6EAqCLNAJ/kPQQWhT0GD6HVBu+ODQOHv4EBsa0RAEIAdQmw3fEAhTRFBHACKQYpnpUD6NNlB + AACAPwAAgD8AAIA/AACAPwAAgD8= - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwAaIYUAAAADgGc1hQAAAAEAzQ2VAAAAAgKTGZkAAAACAiItnQAAAAMDTomdAAAAAwP6maEAAAACAE8NoQAAAAACk6mhAAAAAQElIaUAAAADAGONqQAAAAOBnIWtAAAAAILuma0AAAAAATQZsQAAAAKBZJmxAAAAAAFlJbEAAAACg3oJtQAAAAABMYm5AAAAA4MyhbkAAAACA8sVuQAAAAMDsInBAAAAAANticEAAAADgu3hwQAAAAIAsonBAAAAA4NzCcEAAAACgrh5xQAAAAGAWhHFAAAAA4CWTcUAAAAAggf9xQAAAAABnZHJAAAAAAJ3WckAAAAAgi+1yQAAAAIBdM3NAAAAA4PODc0AAAABASqRzQAAAAIAfwnNAAAAAAJ0SdEAAAABACzB0QAAAAIAuVHRAAAAAwPeidEAAAACA6P90QAAAAGBMJHVAAAAAQBtjdUAAAACAHnZ1QAAAAADv43VAAAAAAFZ1dkAAAADAz992QAAAAEBm9nZAAAAAINUQd0AAAACgKWN3QAAAAMAphXdAAAAAgMaVd0AAAADA6xx4QAAAAEBllXhAAAAAoI6qeEAAAACgS8t4QAAAAMBv1XhAAAAAoLLieEAAAADADlR5QAAAAGDQXXlAAAAA4B17eUAAAABgnKV5QAAAAKDdv3lAAAAAoH7JeUAAAAAASuB5QAAAAKDQ/XlAAAAAoE0KekAAAAAgARl6QAAAAID2O3pAAAAAIHthekAAAADANtp6QAAAAKA59XpAAAAAIEZce0AAAAAgZGd7QAAAAKCdcXtAAAAAYDiHe0AAAAAgi6R7QAAAAKCM0ntAAAAAwBmAfEAAAABgg6d+QAAAAEA2+4BAAAAAAJYmgUAAAABgUmCBQAAAAMCqfYFAAAAAgIRagkAAAACgmmuCQAAAAECD74JAAAAAIBhqg0AAAADgOPSDQAAAAMDDA4RAAAAAIL9khEAAAAAgmZmEQAAAAEAF4IRAAAAAgJ7rhEAAAAAANnKFQAAAAODZe4VAAAAAoJv7hUAAAAAgPxOGQAAAAECLG4ZAAAAA4Ax+hkAAAADAt+GGQAAAAGCe/odAAAAAQI4EiEA= + KBZXds7jZUCwLijacuRqQFAtpBCXEnJA4J0FuyoDdkDYs5VeiKN6QBtAfpDaI31A6wg5WXDagEA= - + - 3w4gQfL3Y0BWLt9A3fsQQKTlB0B7BW5AXiRgQWGwvECCKsQ/s0g2QBZv/T+H9Y0/Hn/XP9X9gkDX9RhBOO01QCkeuEDOxA1A+9++QCRnW0BtZ4xA66yTQplYI0DJXVBBqWs2QOSglUCXhtNADDjwQLi2wEFib5BBcAbpPzRu5kC95ItAa1C9QOzB6j/UZ1ZBLJqNQOlr1EB4KzRB0wQsQWZu2T+KF/JAkuUoQR7GmUAtUXNAARXkQHqzh0DuobpACDyyP3gBVEFKcpBBC0FOQA9eGkDZendAKBnBQDrB/UA0DdhAQgMsQMZgsz9gJM5Bqw1zQTgiHUHEri5C4A+uPxLbZEHtu29BK0HdQNoId0BWTjJBsuWjQX3rl0FZ7LVAJEaSQJiJykAYeO9ADB2qQLjKMUDSBd4/rPylQER2o0GN3+RAvqmkQZPoMUDsK/tAL8QUQXJEGkDSRCBB0WlrQBJVYUEeWhpA/3psQPCO6j+15zJBXJaLQZJdSUI97qpBXuDsQJQkw0HLHNZAhQTrQGD3+kD4lnRA0N6nQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoHyzXEAAAADAsEheQAAAAACKQ19AAAAAANUiYUAAAABgaF5hQAAAAOB7YmJAAAAAgDQ/Y0AAAAAAP4djQAAAAMB/p2NAAAAAQJQ9ZEAAAAAA/11lQAAAAOB+h2VAAAAAYFKmZUAAAAAAKU1mQAAAAICNBWdAAAAAwNwVaEAAAAAAJ2JoQAAAAADIImlAAAAAwFZmaUAAAABAOgVqQAAAAEC4QGpAAAAAwKStakAAAADAT0drQAAAAOBeaWtAAAAA4ETGa0AAAADAMgZsQAAAAMBxRmxAAAAAgNnHbEAAAABAPOJsQAAAAED5wm1AAAAAwIQEbkAAAAAAzZ5uQAAAAAC5JG9AAAAAgLk/b0AAAABAXmZvQAAAAMAXpm9AAAAAgD7Eb0AAAADAEDVwQAAAAACAQHBAAAAAIFRicEAAAAAgQ3NwQAAAAODZfnBAAAAAYBSTcEAAAABAMbNwQAAAACAZ1nBAAAAA4B/vcEAAAAAgBPlwQAAAAKAhUnFAAAAAADRkcUAAAACAu4BxQAAAAACOkHFAAAAAgLbCcUAAAAAAYtNxQAAAAABA5HFAAAAAALT1cUAAAADAqhFyQAAAAGBTI3JAAAAAAPtBckAAAADAwlFyQAAAAADlc3JAAAAAwN+DckAAAACAd5xyQAAAAKAxsnJAAAAAgJbBckAAAACg2tJyQAAAAIBV33JAAAAAIFX3ckAAAAAAHwhzQAAAAICPI3NAAAAAYI5Ec0AAAABAHlRzQAAAAEAKZ3NAAAAAYF2Cc0AAAABgBtJzQAAAAGBx5HNAAAAAwH4CdEAAAACAqhh0QAAAAIC5I3RAAAAAoJQwdEAAAAAg3kJ0QAAAAMAlZ3RAAAAAAEpydEAAAADAbYJ0QAAAAMAHkXRAAAAAgBKxdEAAAABAm710QAAAAIBC1XRAAAAAoELidEAAAACA+QJ1QAAAAEBHGHVAAAAAACAkdUAAAACghjR1QAAAAMCiUHVAAAAAwGJgdUAAAAAABZ91QAAAAMAVs3VAAAAAINjBdUAAAAAg6fB1QAAAAOC0/HVAAAAAwJ8GdkAAAAAgmUx2QAAAAAA85XdAAAAAAIAReUAAAADA2Zh5QAAAAIB7EnpAAAAAgIHnekAAAADAA+R7QAAAAGCyK3xAAAAAwOkPfUAAAABg9YZ9QAAAAEB7wn9AAAAAwL0igEAAAABg2iiAQAAAAGBOg4BAAAAAoKuJgEAAAABgWZGAQAAAAIBjuIBAAAAAYN0LgUAAAADgtBOBQAAAACAYnYFAAAAAoLPsgUAAAABgcPuBQAAAAIA7vYJAAAAAoDz1gkAAAAAAKUuDQAAAACAE0YVAAAAAIAfPhkAAAACg09WGQA== + KBZXds7jZUCuZ9p1aSJuQJ0RHYnYgnNA - + - 4esMQBuKtkBY99c/tzYIQIzYlUAVL6pARgM5QaNfbUCF4Oo/mJufQIounEDlPhJB/SYXQcICCEB+bihBwe4QQe59x0B5rS1B20vkPxZ1UUECuINAcxUbQJm2ZEAguJlABGUrQVZ7M0C2yN1A+BavQJdkW0D3xnhBEbsqQM/X/D+sT4pA7KOlQIAkqEBxCHxBXzWvQH3JKUDwXv0/LmiaQGCBoEBx6OVAS3FzQG0j80CEmsFBzxluQeiGIEGa74NBkldPQOQtHkF+bjZBnABOQcLiRkGAkqhA/A3IQJhzsz+WV0hAExjKQGgVCEB5/cxAZlKtQMyqakA2kkRAdlqoQG6Gq0EndpBAJ3XFP82GhkF9jwZAqImuQMWZGUGYsMY/sgjGQHrCFUFIwvJAKmrAQf5SrkHW/91BPY3PQexNRUBQRblBma6wQd3QxT9V40lAGol9QHp+pUDHS4ZBkjqVQJcSPkFe1HhBWB7ZQJtBAEEg45VC4YXKQFtabULv5idCLDi7QNFctEGKuaRB62dVQewbFUIg20hAUi3NQFZu1z9Cd59BXvHhQIFPMUFl4SlBvo1nQdxORkHjPMU/gqK6QIKq/T+QD5tBp3sEQVRIx0GcvAZBJtqAQH/BSUFYzjxA0MHQQJKtGkCvU+pAVvNIQHSqhED97Nc/Wq3OQLHSeEA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQLYGXUAAAABgMmRgQAAAAGCMq2BAAAAAgL1sYUAAAADAS4RhQAAAACCgJmJAAAAAQKNjYkAAAADA54liQAAAAMBxnWJAAAAAgGoFZEAAAADA+uFkQAAAAADjJGVAAAAAgOjBZUAAAABgrCJmQAAAAEBgZmZAAAAAYPgfZ0AAAABg4EZnQAAAAEATZWdAAAAAwHmoZ0AAAAAAnb9nQAAAAIDdDGhAAAAAwOFiaEAAAABAxMNoQAAAAMB7/WhAAAAAAB0eaUAAAAAgrV1pQAAAACCtgGlAAAAAACSnaUAAAAAAaBRqQAAAAIDDJ2pAAAAAoNuZakAAAADA0gVrQAAAAABVHmtAAAAAQCuja0AAAAAALWdsQAAAAIA1hWxAAAAAwL6kbEAAAAAAncNsQAAAAAD/Om1AAAAAAMtibUAAAABALqRtQAAAAIBBaG5AAAAAgMmCbkAAAAAACqRuQAAAAEDM2G5AAAAAAMMkb0AAAABAAGlvQAAAAEBTkG9AAAAAQK2lb0AAAABAFMdvQAAAAGBgJHBAAAAAIOc0cEAAAACgBVBwQAAAAIDnZXBAAAAAoFdycEAAAACgMYBwQAAAAGB7kHBAAAAAYGSzcEAAAAAANcJwQAAAAODi1HBAAAAAAOFBcUAAAABAkVBxQAAAAICIb3FAAAAAQD+EcUAAAADAYdVxQAAAAMCE8HFAAAAAQPUDckAAAADAehByQAAAAKD5KHJAAAAAwG45ckAAAABA3ZFyQAAAAIDeoHJAAAAAgGC7ckAAAAAAbsxyQAAAACC25HJAAAAAYLEEc0AAAACAmyFzQAAAAMDbMHNAAAAAQJiUc0AAAABgl6FzQAAAACDEsXNAAAAAwLvAc0AAAAAA1dFzQAAAAAD74nNAAAAA4MMQdEAAAAAAIUN0QAAAAKCLcnRAAAAAQESxdEAAAAAAF9B0QAAAAKC873RAAAAAYPMDdUAAAADAsCN1QAAAAEA/P3VAAAAAoENWdUAAAADAJGV1QAAAAICNcXVAAAAAYEysdUAAAACgesN1QAAAACA+1nVAAAAAYHdpdkAAAAAgiEZ4QAAAAGA6gXhAAAAAALlveUAAAACgGk16QAAAACBZGntAAAAAoK5ye0AAAABAKOd7QAAAAGCX7HxAAAAAoMD3fEAAAAAgjhJ9QAAAACCcH31AAAAAIHQ0fUAAAABgYmF9QAAAACDKtH1AAAAAQH5jfkAAAACg0oF/QAAAAEAs439AAAAAwEyKgEAAAAAgydqAQAAAACDtaoFAAAAAANTKgUAAAADgzfiBQAAAACBOLIJAAAAAoHsQg0AAAADg14KDQAAAAIC0ooNAAAAA4AjXg0AAAABg4QuEQAAAACANi4VAAAAAYMBThkAAAADgPK2HQA== + NrgMGZxjYkCmvpxNHCRnQBu6YmAmQ3BA4rYaRuaicUA9w2SRqbN1QOIU95k+tHhAPSFB5QHFfEDictPtlsV/QGW8RgLtaoFAAr5qDw2bgkBl6zQsmfOEQALtWDm5I4ZA9u+1xNqrh0DJGP9IJSyJQPYepO6GNItAyUftctG0jED2TZIYM72OQFpMbgsTbY9A3zwclM/ikECtPa6a33qRQF9UE6klp5JA - + - iXT2P8hCO0BrSRFA9nmsQBkNEEGaTxpAq4EhQXZV2D/UOo4/Z0bJQJxp60AJSqNAXK4NQHYtEUB3qqBAg3l8QMfFgkB6CghAPqW/QKA2D0HABUZBBccEQYeEP0ASRW5Asnz9Pw4fiEDG2vZAV57KQOIxkUBj0uk/GEnYP5Cjo0CgCA1BhhQqQEa9oj/CJOtAdXFlQKuNo0B8835BwEPRP3jd1z+D+DVBeGqVQLb4k0Hc8QJBqO2yQKuzA0EdMbtAHXQAQVMbtED0NEZBPev0P6quiUJ0fTFCYqHvQE8pZkHBzvlAOD8NQiDAk0BctDFANWDYP608NkDH90NCVvPrP9ne6ECJdihB4upsQcV5BkE0eBBBJ2DIQCuTHkFPLWpANlmOQYYD+0FZ2Y1AHwGaQKh0T0DEg+ZAtYcXQfCyMkAsKZ5AgRs/QP+q90GXFhtCipylQffKJ0HpGi1AdcpyQfr1h0GgRyhBCRcXQZMmeUGU1DJAuSrMQYQVm0FeeTxAbx5+QNkLEEHSF0pBvB2RQDVtNkBCAdpAfi4WQMY9EUA5AMtAPGu8QBvGo0C55FtA/DW5QFRO6j9AWQlAfbAaQDvDFEEt7ZBBwF2RQeuak0HyL+s/AAz3QFG02EDUwrpA+2YNQAkFOEEBb4xApFsPQa7Gjj9mp7BBswAlQSHiMkHcTsRA2qraQN9ULUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgCy6XkAAAAAglChgQAAAAODzR2BAAAAAwDljYEAAAAAAPQdhQAAAAMC5g2FAAAAAYM2fYUAAAADAReNiQAAAAIDwEWNAAAAAAIV+Y0AAAAAAKtpkQAAAAIDdpGVAAAAAgLMhZkAAAAAA1cRmQAAAAIDyyWdAAAAAACaJaEAAAADghkFrQAAAAMDXQ2xAAAAAgCalbEAAAAAAcsZuQAAAAICjJm9AAAAAAJFlb0AAAADA6nNwQAAAAOBCn3BAAAAAwAv2cEAAAABAsBJxQAAAACB8U3FAAAAAwFxkcUAAAACguIBxQAAAAABHwXFAAAAAAJshckAAAADgaUZyQAAAAABPU3JAAAAAYONyckAAAACAD4JyQAAAACB5lHJAAAAAwEyickAAAABg6uFyQAAAAECMMHNAAAAAwCVCc0AAAAAgG2VzQAAAAEDKk3NAAAAAYHizc0AAAABgt9FzQAAAAKAzA3RAAAAAAEZUdEAAAAAgNWN0QAAAAACub3RAAAAAoOyAdEAAAABgUqd0QAAAAEB+A3VAAAAAAMsZdUAAAABAckR1QAAAAEAWTnVAAAAAACaKdUAAAACALpl1QAAAAGCCsXVAAAAAwBPVdUAAAAAA7wV2QAAAAKANE3ZAAAAAICUjdkAAAAAAHjZ2QAAAAEAkRnZAAAAAwLNSdkAAAAAAThF3QAAAAKArI3dAAAAAoP42d0AAAADg3E93QAAAACBvZHdAAAAAgBJxd0AAAACgKK13QAAAAGBOt3dAAAAAYGHBd0AAAADg0hN4QAAAAEAG4XhAAAAA4MTzeUAAAACA8JJ6QAAAAKBmonpAAAAAIAZ3fUAAAABAT4l9QAAAAMBAtX1AAAAAYJXGfkAAAACgPhCAQAAAAKCpOoBAAAAAQOeDgEAAAADAl4+AQAAAAKDowYBAAAAAYL/LgEAAAADgxtGAQAAAAOANU4FAAAAAQPB3gUAAAAAA98KDQAAAAABoa4RAAAAAoPqOhEAAAADgr+KEQAAAAEBKqoVAAAAAQAwLiEA= + LOmK85jCZkCRGlyHeVJxQJbSoc2kcnJAkXg429FjeECWMH4h/YN5QLOBOgxVFH1AkdYULyp1f0BsIcHBgZKCQNxLLlPswoNAM01n0e2ahUCjd9RiWMuGQMYtCw1Fo4lANlh4nq/TikDFgNaT25uMQMZc+TbxK41A4lfi3kMSkEDjxXOwTlqQQGJv2fOZ1pFAY91qxaQekkA= - + - 5MXmP7DxU0DHM/w/fZUaQKTZEUGdP5pAt0ltQOee/T/rArZAfDKzP+BZUUCDQ/k/AKZXQIYfiUDQ9iRBxYRgQLPUU0Co0+o/YR8IQI2/h0BCv7tCXPlbQDcgCECNnPU/SzMYQfMQMEHdr0xCDCK2QNj9VkBVKJhBql42QFylIUDZAJpAihx6QPYeV0ApPy1BhNKhP34TVD/TvaA/cuaNP7YwukCPOZxA0eR2PyCK/0DvDQRAz9bMQL4zCUFD3oxCQiTJQZs4o0GbAcRALfHqP9ZiGkC2JoBASKTbQfkLjUCb2qA/PR/mQGEEQEHwjh5BbYifQNrK1EAJ1+FASPNsQIYjLUDJy5lABQMyQfMFh0B26jlBgvHrP3eIPkBuoaA/pXoKQT9evkA/5k5BnSNBQX4fnkGi4xBBBzl3QLw2zEBPMOs/SNwrQHd5J0Frd7VAgoI2QXtzP0D+YFpBMibFP9j6FkHbnUlDxo0iQPxCnkALCQhAUHfIQJfuz0CVisU/TGMYQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIOTGY0AAAABg8+RjQAAAACA2B2dAAAAAoLqca0AAAADANgFwQAAAAEBphHBAAAAAIAvhcEAAAAAgFCRxQAAAAMBY4HFAAAAAAEKmckAAAACAIDBzQAAAAECfP3NAAAAAwFGUdEAAAAAAaLV0QAAAAEAlUHVAAAAAQHeTdkAAAABAeld3QAAAAID9c3dAAAAAQNa6d0AAAACAQBB4QAAAAEAb7nlAAAAAQBz/eUAAAABAmBl6QAAAAAA6+npAAAAAABUce0AAAABAdFt7QAAAAIAhZXtAAAAAAAJTfEAAAABA+M58QAAAAMAD43xAAAAAAOhqfUAAAABA73R9QAAAAMABnX1AAAAAADOxfUAAAAAAh759QAAAAMCG+n1AAAAAgAgYfkAAAABA9Ct+QAAAAMBQfH5AAAAAwGiNfkAAAADACZh+QAAAAIAQu35AAAAAgIEYf0AAAADAWid/QAAAAEDrh39AAAAAoPcTgUAAAACg2EGBQAAAACA25oFAAAAAYK4KgkAAAADgyy+CQAAAAIAk8IJAAAAAIMQig0AAAADgN3aDQAAAACCsq4NAAAAA4PC6g0AAAACg/tCFQAAAAACvM4ZAAAAA4HiLhkAAAAAglG+HQAAAAOCTwYdAAAAAgP7EiEA= + KBZXds7jZUBe4xb9Y+JuQNzlv3T/InFAcngp0tehd0Cf7F1IpVN5QDV/x6V90n9AsPn9jSXCgECa7tH86nGDQM5Kunh9UoRAmh3AJpf6hkDFKTqntOqHQP5KikMjE4pAKVcExEADi0BUgYbGjDuNQLidajubE45Af6sIydhzj0BHxsgwx9uPQDl4pZkJCpFAtxIHnD2ikkBN+GgBE6aSQJso2qNzJpRAYXgsaRxClECq+mw1PZ6VQE0/P7K5cpZAOSPLKmlml0DJLn9J1T6YQJZMuyalZplAe0XkVxvLmUDExyQkPCebQI4JPl72TpxAIfEUIHgnnUBoBcQajgueQA4hNXNME55AfRoFHLQnn0AkNnZ0ci+fQJ2l2zrMJaBAMRjsEfVVoED2MA5C7+ugQPGjZxwgOKFAtryJTBrOoUD7Y0nQJAaiQHZIBVdFsKJAH6VpNjW0okCaiSW9VV6jQBEwUzpQdqNAWhWhx4BApEDRu85Ee1ikQGTVgnuFDqVAkUdKT6Y6pUBulWQvitylQJsHLAOrCKZALiHgObW+pkClxw23r9amQO6sW0TgoKdAZVOJwdq4p0DgN0VI+2KoQImUqSfrZqhABHllrgsRqUBJICUyFkmpQA45R2IQ36lACaygPEErqkDOxMJsO8GqQGI300Nk8apA7cFzRHd/q0DAT6xwVoOrQHhMFEWKDaxAS9pMcWkRrEBvZKRudIOsQDjYj0+176xAHnmcbJKDrUBCurzSojGuQLQ2UevdY65Am0Xv2cX3rkBjS0np+2OvQFk9j6XT3a9A1S/88QgksEBnUAwlEXuwQFnkYFb7gbBAbDD9fhPisEDSqVXYCOOwQHEQ7tgVSbFAtlU+WR+QsUAQWTYmHZ2xQMga6tckybFAVZ6GpibksUCa49YmMCuyQB8l5tYzSbJARilwqkGOskDLan9aRayyQCUlQJBIAbNAqzC931ods0BJr5eNU3OzQIv2+mRwjrNAtY/R6l32s0D31jTCehG0QCFwC0hoebRAY7duH4WUtEDNtaTLedy0QEKzPgWMB7VA - + - F266QMjBPUBbEi1AaOhIQA7XIUAH9+hAQfsuQLYFE0FVnxpAWxtSQHYg6z+yftg/+/y1QPhGrkBrFbRAD38oQbRBNkCjUW5AOYeXQIgs6z/OM6xAfYq8QW+fW0CpHrNA+Hs1QIw5XECYMew/9tEUQQi7P0CDHB5BUX82QLVVlUAECAhBPdAEQdugrEBvDjpB8Oz4P5FbY0G5yDxBASkQQRC5hUBmSIBA6XWwQRSOt0FHwAVAIET4QaKr5kAYE4NAgjIIQKQJ/EFJ25JA6VVBQXtxyEFVpshBg2SPQhPeHUElbT5BdrLYP10a6EDqs+hArpTFPw== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAABnhcEAAAACA/29yQAAAAOCeo3JAAAAAAN97dkAAAACAzHJ3QAAAAACNq3lAAAAAwJFFe0AAAAAAr2F7QAAAAMAnJH1AAAAAAE9FfUAAAACA32J9QAAAAIBBtX5AAAAA4LJxgEAAAACA8uCAQAAAAOCtSIFAAAAAAN2BgUAAAAAA2YuBQAAAAGAQ0YFAAAAAYFzhgUAAAACgLZCCQAAAAADzooJAAAAAYPv4gkAAAADgmRqDQAAAACD/0YNAAAAA4JTpg0AAAABgTweEQAAAAEAiDIRAAAAAgC40hEAAAACAGe6EQAAAAACyFYVAAAAAIFeDhUAAAAAgOZyFQAAAACC+FIZAAAAA4Dt5hkAAAAAge6GGQAAAAKB36oZAAAAAAAM8h0AAAAAg1neHQA== + EnhTK8ihZUAoFld2zuNlQGTI82CnIXFAFOkHjz8DckC6HPhlP5J1QNtDnMhXNHhAgXeMn1fDe0AxmKDN76R8QMBqtPlXaoFARVJ1jNl6gUA8MfW6EBOFQA== - + - kq9qQPSUjj+eR/0/h5SEQH32sz8YNkdBB6JYQD55r0DSUIxAHbrfQMVW4ECHepdAb5eZQGx+PECbGo5ATsLqP/T340AnmcxAyjOzP7UvoT+6u0VB79cUQVjjSEAUsadAmudgQKSbTEH3kto/koMCQpZt5EDE8zNBaFP9P+wFPEBohDZAU3XgQNpCSkHTeEpBuSV6QfDLAkA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQKwIXUAAAABgrgleQAAAAEBDJGBAAAAAgBXEYEAAAABAT9lgQAAAAOC9BGFAAAAAwI8kYUAAAABA1d5hQAAAAECHImJAAAAAAANmYkAAAACAlediQAAAAOASQGNAAAAAAAbGY0AAAABA1zxkQAAAAIAAaGRAAAAAwFhmZUAAAACAGkVmQAAAAEDzo2ZAAAAAgBWJZ0AAAADgrUFoQAAAAABpm2hAAAAAIFsHaUAAAADAxIJpQAAAACAxw2lAAAAAYPjcaUAAAACgpWZqQAAAAADtkGpAAAAAwFD/akAAAAAAoCRrQAAAAEBEQmtAAAAAQNtda0AAAABALeFrQAAAAADl+GtAAAAAAOZrbEAAAAAAKppsQAAAAEDIwmxAAAAAQJ0HbUAAAAAAH2NtQAAAAAA2hW1AAAAAwBDCbUAAAADAvuhtQAAAAED+Ym5AAAAAgPx4bkAAAAAAlqFuQAAAAMAi8m5AAAAAQJAjb0AAAACAOT9vQAAAAAApZm9AAAAAgMSGb0AAAAAAIcRvQAAAAMCC5m9AAAAAIHAicEAAAADgKDNwQAAAAODBRHBAAAAAQDxQcEAAAADAtWdwQAAAAAC1d3BAAAAAwB2DcEAAAAAA6pJwQAAAAAAx43BAAAAAgFYzcUAAAAAAtUlxQAAAAKDjVnFAAAAAgKJ3cUAAAABgRJNxQAAAACA7wXFAAAAAgJb2cUAAAAAguyNyQAAAAKC5P3JAAAAAAPNXckAAAAAAHWNyQAAAAMCUsnJAAAAA4M3DckAAAAAg/dVyQAAAAACr43JAAAAAoP3vckAAAABgzAJzQAAAAIARD3NAAAAAADoxc0AAAACgbmlzQAAAAMB+kXNAAAAAIPy/c0AAAAAgv91zQAAAAOAh73NAAAAAQJIBdEAAAABAOBR0QAAAAMADInRAAAAA4DAwdEAAAADgLnJ0QAAAACC8tXRAAAAAIInBdEAAAADg/M10QAAAACCy43RAAAAAAD7ydEAAAADg+wR1QAAAAEBCIHVAAAAAYJkwdUAAAABg7z11QAAAAAD1TnVAAAAAoJJ1dUAAAABgwYx1QAAAAMC8nnVAAAAAwG7jdUAAAADAtDJ2QAAAACCKWnZAAAAAYF8rd0AAAABAVvR3QAAAAMBRN3hAAAAAwCxWeEAAAABAEfF4QAAAAOAWNXlAAAAAIONbeUAAAACAz495QAAAAOCmvHlAAAAAoAMEekAAAABg3SN6QAAAAGDz53pAAAAAQCoOfEAAAACgCAR9QAAAAMCnGH1AAAAAoNJPfUAAAABgrWR9QAAAAODFdX1AAAAAQPSVfUAAAADAgwh/QAAAACBkIX9AAAAAQBtEf0AAAADA/GJ/QAAAAEA9fH9AAAAAINCaf0AAAADgvc1/QAAAAKBYe4BAAAAAoGKLgEAAAADAdaKAQAAAAOBKBYFAAAAAoKcLgUAAAAAAnYCBQAAAAKCi64FAAAAAYIcEgkAAAABgvSyCQAAAAOBMmoJAAAAA4AS6gkAAAAAApMOCQAAAAEDNy4JAAAAAYObvgkAAAACgYguDQAAAAOAZE4NAAAAAQP5Mg0AAAABgyGKDQAAAAID4gYNAAAAA4GqHg0AAAABgN7uDQAAAAOCFJIVAAAAAYCurhkAAAACg1AqHQA== + NrgMGZxjYkB8yhB7okRtQOO8jdJGsXBAlLmMQukSc0CxCkktQaN2QOMaaiafwndAn8hIiq/TfUAK3LGdTdN/QOJEyAAv8oJA/MxY/d2Bg0CL9bbyCUqFQOJztirbeoZAth859VWCh0BHJLqNlzqKQKx7f91ck4tA - + - +ul2QBjzLkC5VT9AGCPTP4VLFkAfjy1AlypzQLEJ9T/cMjRAJvlRQSbaBUCS48lBC0uzP+TXoT8zXtlArTQRQI0PQECRnD1CqJb9P+wnXEEHuuo/fXk/QK5clUAEKo5AlTBRQGlXEUGa5V5BwbbqPz7HhECjEAdBWf61QIp1o0CQl6E/waU3QSdVtD9vdIlB8LOWQP8XN0Lvei1ApZVSQBxk/T8aH+hAAd+NP2N/M0CKWTVA2082QfYrfEComMU/Piv8QB9M6j8WLJdBMaQoQXOqI0ClhulASrc6QZWCvUD2SKRBol8CQWTTv0Ha0P5AfgcdQXIIb0GeuNNAkvC+QMSM6j9QFiRA51wQQB5ulUCjIXZARYJOQUEKsz9PAN9AsClCQUMydUHnhD5BL/k1QQimPkBidhpA+7lqQpx5UkDn0KRAGOgjQD7AP0HHdrFAQpsSQWbATUKB66ZBrFFSQWy0E0Gw1g1BOUeAQGYig0BZx99AVygIQpFRukDn1jNBl+MYQhQ3kkEFm0lBl20wQVIC/EG9w1VCLHAWQrlkv0F29g5AHI+QQNkwd0B1/ntAREeYQq4PfkAwLY8/QCIrQf/qSED3edBByGUZQJS9v0GthXZBvIBkQQl8V0H+KVRBRhd2QQiA/0DWv1xBJV1fQ8bfvkCAoBlBf+/FP/24dEFJ6xlBki1SQOrCRUFZtXRBx4uuQo0WEUA84B5BsKN7QCzJY0EeMbpAZRZ5PyJQ2UDdDldAdfcVQXG2FkCDB45AZYulQLbGm0Bt8otARReMQNgcpUAUgoVCxJwyQC1UjEBiz4RAN2evQFsYekE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoDxIYEAAAABg/BtoQAAAACDiJWlAAAAAID+DaUAAAAAAogZqQAAAAACJIGpAAAAAwAekakAAAAAgLNpqQAAAAAADomtAAAAAYD7Da0AAAADA1UVsQAAAAEDyX2xAAAAAgCHlbEAAAAAAj3RtQAAAAIA8Am9AAAAAwNGFb0AAAADASJ1vQAAAACBbM3BAAAAAYFxCcEAAAAAgt+BwQAAAACA5RXFAAAAA4KljcUAAAADAqI9xQAAAAMB5wnFAAAAAwMnicUAAAAAAGAFyQAAAAMCuEnJAAAAA4FSAckAAAACgysZyQAAAAGCf0HJAAAAAwNzqckAAAADAaG1zQAAAACDbtHNAAAAAQEjgc0AAAABAQjN0QAAAAABoRXRAAAAAoNdPdEAAAAAAqnF0QAAAAMAHgHRAAAAA4HSidEAAAAAAVsZ0QAAAAIBJ8XRAAAAAoKpRdUAAAACANoF1QAAAAKDXkHVAAAAAgKTMdUAAAABA8vJ1QAAAAECKPnZAAAAAoGCCdkAAAACAwpN2QAAAAKB3s3ZAAAAA4BLFdkAAAAAgUuN2QAAAAADDA3dAAAAA4ApAd0AAAADgD0t3QAAAAKDlYXdAAAAAII19d0AAAADgHeh3QAAAAABLGXhAAAAAABYweEAAAADg80Z4QAAAAABif3hAAAAA4AufeEAAAAAg8K54QAAAAOCYAHlAAAAAgAsQeUAAAAAA3SB5QAAAAKAWQnlAAAAAoGRleUAAAABAVHp5QAAAAGB+HXpAAAAA4Ahte0AAAADg4DV8QAAAAMAzjnxAAAAAIBk7fUAAAABAd7J9QAAAAMAWH35AAAAAoHiefkAAAADAS2Z/QAAAAMC56X9AAAAAwGc7gEAAAAAA04CAQAAAAMBTboFAAAAAYKQqgkAAAAAAsE6CQAAAAOCnfoJAAAAAoN6DgkAAAABAjaOCQAAAAGDqu4JAAAAAwEfGgkAAAADAJ+SCQAAAACCwGoNAAAAAYF8ihEAAAABgPUOEQAAAAKAngYRAAAAA4HrChEAAAACgDgGFQAAAACB+k4ZA + 4qRcexsiYEAoFld2zuNlQFAtpBCXEnJAUUa5m1Kyc0BQi4Bk7yN5QFGkle+qw3pARiOHYi3ygECYv0UhmmKCQMPpxyPmmoRA - + - qKVPQDTqPkA3mmtAS7nlQABu/D//D/0/L0UHQN9QpUDerdc/1CFrQKvNnkBVABpAIkQCQQGUjEB8W4lAWp2MQHhxl0DDzztBq1BOQHZkkEB45FFAEocAQYguGkBhKupB/in7QKMGNkAG13RBGK+4QM76jEGbifw/OLFzQIXb6j+Bwo0/h5mxQD3DPkCwVTZA+uJRQNpSCUHQX+o/QhP0QNJiekAyQ+1AxB6GQDI2NkG9Mt9AGEguQQ750UHnFrpBh709QDM4GkBlgsxAZkSgQadmp0BA+CxBq7GeQGScSEDFCqFAIfaHQbpsrUD2pKA/bbJXQDrtB0D7mxBAXwPOQF+WGEL/V4VBqivvQY/mx0Cal5lAS4zfQMigB0B0781A3rEMQbeJkkAsMSxBk2aEQcYN/EAImUhAP7viQNdEnkDIgJpAzOejQH+TakA7kEdBJA9rQU5QQ0FZx5JCjUfAQfoJ10CwtzVAOcKYQVpCIUF0OHdAUh/dQArrbkB05HdACMa+QGlzWkAliLpA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwIKRVUAAAABAKtFVQAAAACDhSFZAAAAAwCNJV0AAAADgdsxaQAAAAMC5RltAAAAAQJ2MW0AAAAAAI8FbQAAAAGDSUFxAAAAA4D6KXEAAAACA5gNdQAAAAKDFuF5AAAAAAGGNX0AAAABAn9VfQAAAAAAwJmBAAAAAAHFEYEAAAACgBWhgQAAAAACfhmBAAAAAwNSmYEAAAAAA3eZgQAAAAAD2QWFAAAAAAN/JYUAAAADgXCNiQAAAAMCZZWJAAAAAgKWCYkAAAABALyRjQAAAAAA1a2NAAAAAQBWMY0AAAACAw8BjQAAAAAAI42NAAAAAABz+Y0AAAACgXylkQAAAAADEp2RAAAAAwJsCZUAAAABAJSZlQAAAAIAtRGVAAAAAgPu8ZUAAAAAgzSNmQAAAAIDmQWZAAAAAYA+DZkAAAADAU+ZmQAAAAIBTKmdAAAAAADZFZ0AAAACAW1tnQAAAAECae2dAAAAA4JLIZ0AAAAAgMeZnQAAAACBvX2hAAAAAQAaFaEAAAACACcloQAAAAMC84mhAAAAAwOYIaUAAAABAgT5pQAAAAAB1fmlAAAAAgDynaUAAAAAAfORpQAAAAED8/mlAAAAAAFhBakAAAACAWGFqQAAAAABahmpAAAAAgKGmakAAAABAnMRqQAAAAECH4WpAAAAAwIYGa0AAAADAeFRrQAAAAEA4aGtAAAAAAMeEa0AAAACAw59rQAAAAEBuxWtAAAAAgCHla0AAAACAOQRsQAAAAEAdLGxAAAAAQKaBbEAAAABAD5xsQAAAAMAQw2xAAAAAgKACbUAAAACA+ChtQAAAAABASW1AAAAAgDeGbUAAAADAVKZtQAAAAICtu21AAAAAQGb/bUAAAACA1yNuQAAAAIDAQG5AAAAAgJdibkAAAACAO3xuQAAAAACoxm5AAAAAQEzcbkAAAABA+CZvQAAAAICjQG9AAAAAgBxlb0AAAACAPaJvQAAAAIDixG9AAAAAgHXjb0AAAACAUgJwQAAAAEBOE3BAAAAA4CYicEAAAABAaTBwQAAAAKA4Q3BAAAAAYFJVcEAAAAAga2NwQAAAAIBOfXBAAAAAgC6LcEAAAAAgQpVwQAAAAGBzsXBAAAAAAGe/cEAAAAAgH+JwQAAAAKAB+XBAAAAAwNUJcUAAAACAtxNxQAAAAOClIHFAAAAAACpCcUAAAABgE1BxQAAAAMA8xXFAAAAAAD+Sc0AAAACAtZxzQAAAAAC+/XNAAAAAIBsmdEAAAACA02t0QAAAACCYfHRAAAAAoNGKdEAAAADgvLB0QAAAAIAi0XRAAAAAwOEkdUAAAADA4cZ1QAAAACCX5nVAAAAAIOsUdkAAAABgIkR2QAAAAMB+enZAAAAAIGmTdkAAAADgPbV2QAAAAMDD5nZAAAAA4O/1dkAAAADgaTF3QAAAAADRSXdAAAAAYKdTd0AAAADgMmJ3QAAAACBadndAAAAAoK6Md0AAAABAlJZ3QAAAAOAUpndAAAAAYEW8d0AAAADgOsd3QAAAAADzB3hAAAAAAC8VeEAAAABAWSV4QAAAAIAINnhAAAAAoElSeEAAAADgrIF4QAAAAKCKlnhAAAAAQE6ieEAAAABgELR4QAAAACBb6HhAAAAAgBAgeUAAAADg8dN5QAAAAOAn53lAAAAA4OpyekAAAADALIF6QAAAAOCNsXpAAAAAIPZte0AAAABgVWZ8QAAAAKCe13xAAAAAINsWfUAAAABgU099QAAAAOBR9H1AAAAAYL4zfkAAAAAg4GN+QAAAACC6d35AAAAAwNKmfkAAAADAm7R+QAAAAOBIxH5AAAAAYAnVfkAAAADgSyR/QAAAACCmZ39AAAAA4KDJf0AAAADAFtR/QAAAACBH5H9AAAAAoFb0f0AAAAAAPHOAQAAAAGDQeoBAAAAAoCuSgEAAAACAufuCQAAAAKDDU4NAAAAAgF1qg0AAAAAgSnGDQAAAAGAYfINAAAAA4BiHg0AAAABglOGDQAAAAGD4+YNAAAAA4C8EhEAAAABAVm6EQAAAAKAHhYRAAAAAoPmJhEA= + NrgMGZxjYkCEfuNfSOJlQAoahmk8YnBAQh3Og3wCckAna0JUlPJzQEW8/j7sgndAQnuq19QTeUCbEANEhPN7QARrn4h2IoFAsLXLPk6SgkAvlSGLwlqDQL69f4DuIoVAsOS5aPoahkBN5t11GuuGQLATqJKmo4lARMVdpFGDikBBGCkr6FuMQA== - + - LkE5QfoPuEDBxCBBMTiEQYPze0Bxq/w/MtrDQSqXC0FUXu9A4icDQeKLLED5kihAn052PxWRIkDXpw9CXYqdQapdiUKh8QFBOPyFQm4L0UCfjCxAD1BIQOX4i0Bqe95BAnkLQUqFvkA7mtc/zDS4QJEKgECgJpJAuIBKQBqwxD+kAh9BqblkQBEiNEG+vM5At+KiQEu9dUFwNIlAfIgOQY5Pt0GaOe1BgNgXQFfAEEAfQgZBpoLDQPakH0CR8JdARSSIQcS+EEBsbCNA/m7XP1EDKEAUhANA+PosQe97DUKgy+hA80gQQOGO0kBnt5lAQ2+aQTAJ7UBMf5BBgXbPP02rBkH0G1JASWERQOGnnEAlVZ9BedMBQbu3WkB3gB5AljgyQab8EEFX/vVAY7zDQk1m9kATr7I/M4aIQWr6skBQpRZCzuwIQ/emO0FlAO1A1FAFQHuH40AE/x5AEpOxPycEnkDDqPNAGWYaQZtt00C883hCQBkaQJThukETfoRCb+4fQ/veR0OHrtBCat6hQJr5hEFSkqVCh7xPQSnhAkIwEIVCUwUGQHNCMEFKxaBAWjRWQYCXIkHrvDlCADLUQeNQSUHxw9c/3hhRQ+KOekIkXVdAtGssQAVWDUHQVDtAYaeSQJ9fLEBbayxB9qyMQPhRiUAtA4BAOYlcQPxiVkA2cVpBRruoQMUnBEG7wwdB+UXXPyEsxT9ZaLlAF38hQnWzFUE5y0tCo8nQQfRWVEHWLRlBzPFkQEOvM0GZ+gtEQAJJQhAFPEJhmOM/FLmbQN0AgEBTcqNEKooeQckPLkHT+FpAMkDqP75iFUMAV+BBeibKQG1q7T91xFFAmkONP5EcGEFk8+k/nQlrQI4GC0EdBExBcDyiQWc+AULitnZANyXOQHcDFEE1rhZBTr1IQSk160GbYaBAoe88QRvNhEGr4YZCUjGuQLNCjEPY+S5Clq4aQQq1NUBAthBA27ZkQYL4n0FGjqpAL/9GQLecIkGAI3lCEiiyQa+0vkBSkJpA+9QzQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4HvEZEAAAABgp+dkQAAAAADFhGZAAAAAQGLKZkAAAADACEhnQAAAAKD/pGdAAAAAQMZpaEAAAABAAIxoQAAAAIBHw2hAAAAAAInhaEAAAAAAQAZpQAAAAAD1AWpAAAAAIBpIakAAAADA5ehqQAAAAIBvxmtAAAAAgMsnbEAAAAAg+kNsQAAAAAD8BW1AAAAAQDtmbUAAAACAO51tQAAAAIAWwm1AAAAAQPuxb0AAAACgwMdvQAAAAAD34W9AAAAAAG4kcEAAAABAclJwQAAAAEAFYnBAAAAAAKq9cEAAAAAAiABxQAAAAEDeQ3FAAAAAQPFTcUAAAAAAnG1xQAAAAIAWkXFAAAAAwJWicUAAAACAaw9yQAAAAICrInJAAAAAoI+yckAAAADASsNyQAAAAACKgHRAAAAAAPATdUAAAADAEkR1QAAAAIBUg3VAAAAAQNkhdkAAAADA8192QAAAAIB2nnZAAAAAwIjidkAAAADAcjN3QAAAAIARhXdAAAAAgO7Rd0AAAABA5+d3QAAAAIA4MXhAAAAAwC5DeEAAAABAoFV4QAAAAEAmY3hAAAAAQFejeEAAAAAAE8Z4QAAAAIBkC3lAAAAAwHxOeUAAAADAKXR5QAAAAIDWo3lAAAAAAGzWeUAAAABAjxZ6QAAAAIBtIXpAAAAAQLdyekAAAABAJcN6QAAAAABrLntAAAAAAMuDe0AAAAAABR58QAAAAIBEUnxAAAAAwEp/fEAAAAAAYPd8QAAAAMBXBX1AAAAAQD8UfUAAAADAiDt9QAAAAIDhdn1AAAAAwKKOfUAAAACAYrV9QAAAAAAC9H1AAAAAAN0dfkAAAABA0UR+QAAAAEAuZn5AAAAAAP2dfkAAAADAWa1+QAAAAMBmt35AAAAAQC7CfkAAAADAmDJ/QAAAAMCRPn9AAAAAwK1Uf0AAAACAV2p/QAAAAED3dn9AAAAAgJSyf0AAAABA975/QAAAAIAY2n9AAAAAAPnnf0AAAADgoSqAQAAAAOBlMYBAAAAA4K46gEAAAAAgqnSAQAAAAKBifIBAAAAA4AZsgUAAAABg9HOBQAAAAOAl1IFAAAAAINHbgUAAAADglOGBQAAAAEAk+oFAAAAAoDVRgkAAAADA1WGCQAAAAGAYZ4JAAAAAgEpsgkAAAABgMaGCQAAAACBmuIJAAAAAgKvwgkAAAACgYPqCQAAAAKBDJINAAAAAINtKg0AAAAAADFiEQAAAAMCYiIRAAAAAgIybhEAAAADgbYKFQAAAAOAOi4VAAAAAgEOWhUAAAACgQ5+FQAAAACAG0oVAAAAAoMDchUAAAACgCeqFQAAAAKBz84VAAAAAQFcUhkAAAAAgMzaGQAAAAMDCSoZAAAAAYNFqhkAAAABAHXWGQAAAAAADe4ZAAAAAoLKDhkAAAADAdtqGQAAAAOC3E4dAAAAAYF6hh0AAAABgT6qHQAAAAKAMLohAAAAAoFc0iEAAAAAArniIQAAAAKCMo4hAAAAAIJCriEA= + KBZXds7jZUCj4ndavwJxQACq+tzlIXFAxwSPFv5Sd0CRoHe3LTN4QFj7C/FFZH5AtcKOc2yDfkA9AgeRZOqBQCKNbUkiSoJA - + - /HGEQCdPBkHYWf0/bS3XP1m6xD9el1BAsZYjQbN2p0DrTURC2SgLQUP8cUBxX5JAk7bpPxxtuUBF+/s/kGooQtJJL0C2wURAeMoeQJsngEBgTFtATXdZQe2rGkF1C/w/EiQ7QMJxf0LxjyNBGoWiQNq5FkFwaRxBX1nXP/iddkAVUw5AduraP2ov20JQ955BIvaaQdKtZkGyMI1A0KG7QFEIr0C73UlBEUYHQE0mT0APOtg/l81WQZxQ8UCgmA5BK+uDQK/SiUAR7QxAwA+RQrfIqUCu/LdBPnOZQEgsNUBkdTJBYo7FQJDyzECTWWtBx2Y2QaS0xT/kWodBxbgQQFhfKUE/zAJBYGEgQS5TsT/CpbhBJnelQUAje0CAYBJBHqx2QFqZtEBHD9c/wJHaP6C/cEFm62NA/dkxQCuhVUDXB0hAOjcQQvTe1UHIJnVBcVSnQC8yE0OedhFCFDiXQugs1EEhZ6BAHBgaQTn510EeAk9CU+5mQXENgkFL2ZFABp0KQqDbAUKPNwNC064hQBPF4kBqq1BBJRHcQRtYgkA9AwpCQU+XQFI2HUPBSRlBjKwhQs54t0BWOYJAXiIyQalCzEB9GwdAtejCQDQCvUAyGX1AtzQKQbkK7kE1IDBBOXo3Qb2Z6j9HV39AK9x7QIgnUkJaUwdANxLzP7J+hECYGcFA1cjkQuSRBULEq2xANWw6QBqDqUC3qTpARnMhQFAGH0C8jNxAfkhPQfdjnECAnvhAj5laQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQIXmZUAAAACArSVnQAAAAKBm2WhAAAAAgGMmaUAAAACANQBrQAAAAICcHmtAAAAA4Om1bUAAAABgS8BvQAAAAKAqJ3BAAAAAwHwycEAAAABg4l1wQAAAAMDs03BAAAAAAG2vcUAAAACAz81yQAAAAAAZ4XJAAAAAIFjsckAAAADAG6BzQAAAAADTq3NAAAAAQIXic0AAAAAAbg50QAAAAEA8lHRAAAAAgC+mdEAAAAAA19N0QAAAAAC2L3VAAAAAQNpAdUAAAACA/311QAAAAMBLsXVAAAAAwEvOdUAAAAAAgN12QAAAAAB6+XZAAAAAQC8Wd0AAAAAALTl3QAAAAEBqlHdAAAAAgP7Dd0AAAADAmwF4QAAAAICFNXhAAAAAQJtheEAAAAAAvJB4QAAAAMDGnnhAAAAAAL+/eEAAAABA+fR4QAAAAICvgHlAAAAAQMWreUAAAABATbZ5QAAAAABDxHlAAAAAAAXzeUAAAACAq0R6QAAAAAClhHpAAAAAwCnfekAAAACA4O96QAAAAMCrFXtAAAAAANJ8e0AAAABAVNB7QAAAAAAL4ntAAAAAQNf9e0AAAADAADh8QAAAAEDBUnxAAAAAwPhxfEAAAAAArY98QAAAAMDYtHxAAAAAQMlIfUAAAADAJnx9QAAAAAD9jn1AAAAAwPgEfkAAAABAxjV+QAAAAECbZn5AAAAAQIZwfkAAAAAATJx+QAAAAIAUvX5AAAAAQKPHfkAAAAAADNt+QAAAAEBYAX9AAAAAwMJ3f0AAAADA5Yx/QAAAAMBV4IBAAAAA4KAqgkAAAACAA/uCQAAAACB5L4NAAAAAoBxgg0AAAABgcIuDQAAAAIAnqoNAAAAAYATCg0AAAAAgmtGDQAAAAGBMkYVAAAAA4LarhUAAAABgrs6FQAAAAOAG7IZAAAAAQKMEh0AAAADgVmCHQA== + NrgMGZxjYkDOIQhxcmNnQFf+/uF9UnBA525gjBHDckBXXNs11mN3QAl4Yr2UM3hAsmglgZm0fUBkhKwIWIR+QOq4E1mOkoFAMnFELtjKgkDq5wGDOhuFQFDCABkwW4ZAe+yCG3zTh0A= - + - mU0MQQi66T+g9TlAalfEP8/0OEE89h5AxTaJQLLKpEBS7hxB/+DXQEdQtUAONJA/ESQCQY066EAOi8NARNoZQJbIwUDDVwdA4qmCQCkmkUDliJ8/7HKeQHS36kArCzNB1mLEP1ZRMUDNTP8/nJWgQAwIfEAueglBp0A+QRAqXkGAJkhAefCEQd4f/D/V7lpAmpLpP4pvzEAIWTxAdbhaQDLKjEDIp95AapbjQOEt60CzgSxA/C8ZQVs3LkL7Duk/0tg8QcflMUCojoRAALK+QNQyIEG4G8Q/hwx7QG2LvkDREOQ/iQ8oQKYR/D+ezYVATxRYQNppy0HAhpNBLJDjQE52kEAXk+o/8ScsQB6O6T+HnkxBtfhvQXXkgEH1qytAwhesQPfhhUG3ZU1ANUTzQOGa1j8UX4xADz6EQR7Ds0DsMb9ARLFAQTukFkAezp5Bv2nMQBwjn0Hp3SFBZs36QHmwokA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAIIJLX0AAAAAAmQVgQAAAAAAKKWBAAAAAwIFDYEAAAABgLgZhQAAAAECsYGFAAAAAQG0IYkAAAAAgkmdiQAAAAMAyoWJAAAAAgNHZY0AAAACAvmRkQAAAACDv52RAAAAAAMFJZUAAAACgYWxlQAAAAAAp2WVAAAAAIGIIZkAAAAAARR9mQAAAAIAGwGZAAAAAICnnZkAAAABAZEZnQAAAAEDgwGhAAAAAwGrkaEAAAAAg7ARpQAAAAMAXJWlAAAAAwAvcaUAAAADAGmlqQAAAAMDAwWpAAAAAgHPmakAAAADArChrQAAAAECIRmtAAAAAAAlda0AAAAAAYcdrQAAAAIC4Q2xAAAAAAFRibEAAAABAb39sQAAAAIDy4WxAAAAAANL6bEAAAADANShtQAAAAMDYZm1AAAAAwN3EbUAAAAAAsKNuQAAAAEBkvW5AAAAAQErhbkAAAADApPhuQAAAAADQK29AAAAAwKFEb0AAAACAAWZvQAAAAEC+h29AAAAAQBCnb0AAAADAsN5vQAAAAODvJ3BAAAAAQEU1cEAAAABgJlFwQAAAAICJY3BAAAAAoD1vcEAAAADAU5FwQAAAAMDTs3BAAAAAQM/icEAAAACAZvZwQAAAAABhAHFAAAAAgP8KcUAAAABgDkVxQAAAAICzcXFAAAAAIOmZcUAAAAAAh69xQAAAAAAzv3FAAAAAwPzQcUAAAAAAM/JxQAAAAMA1BnJAAAAAQHEQckAAAACAOyFyQAAAAIB9MHJAAAAAQP9yckAAAADga4xyQAAAAAAftHJAAAAA4HTRckAAAACAofFyQAAAAGDnAHNAAAAA4FoRc0AAAAAADR9zQAAAAABBUHNAAAAAQL1hc0AAAAAAreNzQAAAAEAi8nNAAAAAoCMQdEAAAABgeyB0QAAAAADtUnRAAAAAgPpvdEAAAACAcIB0QAAAAEDNrXRAAAAAgLXHdEAAAACArdF0QAAAAMAi/HRAAAAAwLW2dkAAAABgIxR3QAAAAOAT2ndAAAAAYD2YeEAAAAAgBQd5QAAAAKChlXlAAAAAYNxEekAAAADAD2d6QAAAAKDi9XpAAAAAYFAFe0AAAAAgpDR7QAAAAOC0Z3tAAAAAQG3ke0AAAACgGQx8QAAAAEDx5HxAAAAAIGN+fkAAAADgnyF/QAAAAMBZOYBAAAAA4NRwgEAAAACgzuOAQAAAAODDsIJAAAAAAN3UgkAAAAAAPRKDQAAAAMArQoNAAAAAIOFqg0AAAABgynODQAAAAKDm0YNAAAAAIKLbg0AAAABg9WOEQAAAAKCYOIVA - - - - - - 0b0QQBrGPEBNuR9BlIXpP5wPsj//mfhBmor7QGPGAEHlLh9Cte6GQA52DkE9vIdAIxnNQJqoxEAd8yJA7WP8P3E0fEDZUsU/cERQQDQdFUKPEe9AnCOdQaBzkkC9dvs/etMVQasv2kCdEeA/eY29QYZSfEEyqhlAeN5/QGtMFEFW9KBAqNjcQbQMb0BsuxZBrdfrP1yEZkHcTHJAVye8QId3zEDqP4lATohCQZ8+KUCD4w9B6AuCQDSgMUL+ELpA2EFXQGJonkBZnABBKGKjQHQi1EGc3gxA9jSeQRkA7UFgjLJBo9fpP94HpEBgiJ8/wJXEP4QwN0G+da9AUvGqQMg3TEGFY3ZAqxp/QZ79A0JqHXpB5vecQJ4m1kAEtSJAgjUKQewORkGTgaRAShhlQftBnEJJ6D5ASTnCQcEOEUFA3bVAyktIQHALH0G+eWpBQeyfQXvwPEK84wxBjkxOQiy+akHIT5JAbBZ7QF+zKUFYLw9BYKUjQZC1FkDdWHlB5UiLQDq9NUB1afw/yWt7QcBHS0F8VDtD6RD3QJjLlEDPhnZA7K8sQnfkr0H+vBdBNKQCQrdijUAG92tBce71QBfUGUAOvU5AUm+0P42OxD9Nx45B2U6UQIQL/D9nVzFC0N3WPySDxUCh18BA - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYIblZUAAAACgYYVmQAAAAKBUYWtAAAAAgMSAbkAAAABA5GNwQAAAAAAqB3FAAAAAgN0ScUAAAACAtH1xQAAAAMDeI3JAAAAAALjPckAAAADApPdyQAAAAEB6UnNAAAAAgGtyc0AAAACAcYVzQAAAAAAL5XNAAAAAwE/9dEAAAAAA9291QAAAAADs8XVAAAAAAPQOdkAAAACAADR2QAAAAIBmnHZAAAAAQO7tdkAAAADAjtR3QAAAAIBB4XdAAAAAAHNUeEAAAAAAgmJ5QAAAAMAehXlAAAAAwMv2eUAAAABA1sR6QAAAAEDWi3tAAAAAQLuke0AAAAAAlyx8QAAAAADgcXxAAAAAAAOTfEAAAADAu698QAAAAIBy9X1AAAAAAApHfkAAAABAN+B+QAAAAIDBJX9AAAAAgE1Yf0AAAABAJWd/QAAAAMD9wn9AAAAAgO7ff0AAAADADP5/QAAAAACOO4BAAAAAQLZDgEAAAADg/3+AQAAAAOA3oYBAAAAA4Py+gEAAAABgmuqAQAAAAGAuLIJAAAAAAAFkgkAAAAAgLWyCQAAAACDpgYJAAAAAoJ2LgkAAAABgd7qCQAAAAKCBwYJAAAAA4PbvgkAAAACAViODQAAAAMBeMYNAAAAAIMJKg0AAAACAGoCDQAAAAKC5rINAAAAA4MGxg0AAAAAAn4KFQAAAAKDB4oVAAAAA4GYqhkAAAABAgWqGQAAAAAAgcIZAAAAA4HCChkAAAAAA4YyGQAAAAODju4ZAAAAAoNYNh0AAAABgE7OHQAAAAIDL0IdAAAAAYOBsiEA= + KBZXds7jZUCj4ndavwJxQIB6f5CPcXFAooOBwRLidkD+7sGlglN3QKLhXRVr831AhnWz83Pkf0CLQ4+CLfqCQHwNuvGx8oNAi3J9rNmChkCpE1+XExuHQEXFXaRRg4pAY2Y/j4sbi0BjFhqPqROOQMeTCawXNI5ALExFoix2kEDjIfLVGpaQQEDMCAo2EpJAXxEybTZikkBXT9vcZqaTQBEol3t87pNAKKtpTq2ClUA80z+2pzKWQKSaqeXITpdAIOkSvt22l0Bn/cG485qYQCCK6XzkGplAZ56Yd/r+mUDj7AFQD2eaQEu0a38wg5tAX9xB5yoznEB2XxS6W8edQDA40FhxD55AKHZ5yKFTn0BHu6IroqOfQNKy3K/ej6BArh2zydWfoEDSXtMv5k2hQCs+D7cBVqFAK+oFNwkUokByUr6xFzqiQNr+/TQnFKNAIWe2rzU6o0BlQGeeP96jQOHyMbpgHKRAFFVfnF3epECPByq4fhylQOWFHcZ78KVAT5Olwqn+pUBz1MUouqymQHDHhi+UuqZAYlJwM698p0BlFniV2vKnQA== - + - cck8QLl01z+C2R5AuqBhQBdBmkD19dY/z9b7QNFhLECqyZ4/qmqSQCbzsT+OTG1A6azFQIWynkDMdp8/2dZgQAms1EAH9pRAWM1fQQgZakDQF0hAIaaxP816okAAPsU/2J9BQW/3PkChL4lA49TEQDMytUAw7FhB9tKdQIN6CkFMN6BAghCbQNYWv0CySqhAL8jEP/QwGEGph0NBT+HgQJxdakAyTAtCpzQnQVp5Q0A5aMhATyqnQDyLKEHoxVhBDUZ7QFAuqUAn7DJAUaZqQLNPn0Cv3O9B+PkfQaojYEBKMmpAASPEPyh6I0DyvyxApOUDQHMAlkCEuZ5AsIiGQIxn00Cl5zpAkOUmQW+QukBUhqRA2ZmjQNCjEECb7rJAf3PMQDttvkAx0+RAdHsHQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgKVGYEAAAADghmhgQAAAAEAjamJAAAAAgI6gYkAAAAAA0adjQAAAAICaxWNAAAAAYHP/ZEAAAABAlStlQAAAAEDXoGVAAAAAgEonZ0AAAACA8phnQAAAAMB2YGhAAAAAIBTCaEAAAAAgPeZoQAAAAEDRImlAAAAAoD9FaUAAAACgbORpQAAAAMCdCGpAAAAAoKgmakAAAABgXztqQAAAAMAUnWpAAAAAwGbiakAAAAAgZkZrQAAAAGCVh2tAAAAAgObCa0AAAABAJQdtQAAAAACXNW1AAAAAoCCmbUAAAACgU8JtQAAAAADH5m1AAAAAQAsCbkAAAAAAxoZuQAAAAIDqJW9AAAAAwOhEb0AAAAAAqGJvQAAAAECFdm9AAAAA4JAIcEAAAADgQxNwQAAAAACJJHBAAAAAoBUwcEAAAADgZUJwQAAAAGBuc3BAAAAAwFqCcEAAAAAAHo9wQAAAAMDqtnBAAAAA4ArDcEAAAACA7SJxQAAAAIDiNXFAAAAA4AxDcUAAAACAWFZxQAAAAODEY3FAAAAAAO6hcUAAAADANLJxQAAAAEADxnFAAAAAgGzUcUAAAAAApeZxQAAAAOAtAnJAAAAAgBsdckAAAACgeTpyQAAAAGC8AnNAAAAAYO8Qc0AAAACgOkFzQAAAACA0f3NAAAAAYIfHc0AAAACAPP9zQAAAAKCJD3RAAAAA4PsxdEAAAABA1Et0QAAAACDbYHRAAAAAwEp1dEAAAADgloJ0QAAAAED0kXRAAAAAQBTUdEAAAAAglN90QAAAAEDjAXVAAAAAwCsQdUAAAABAxiF1QAAAAGAqT3VAAAAAQCJjdUAAAADATnF1QAAAAMDWgXVAAAAAgFORdUAAAADAX611QAAAAACjxXVAAAAAoOridUAAAACgNgJ2QAAAAKDtMXZAAAAAAJo8dkAAAAAAI012QAAAAIDKYXZAAAAAAKtxdkAAAADAE412QAAAAIDjn3ZAAAAAoDmtdkAAAADAxb52QAAAAGBl0HZAAAAAAArldkAAAAAA+Rd3QAAAAOBlJndAAAAAIGMyd0AAAABgI1N3QAAAAOAfYndAAAAAoMdzd0AAAAAgGY13QAAAAOAXpXdAAAAAwILAd0AAAACgfvV3QAAAAKBdCXhAAAAAoKgTeEAAAABgIB54QAAAAIB8RHhAAAAAYM1XeEAAAABgZWN4QAAAAEDacnhAAAAAgLWXeEAAAAAguLN4QAAAAAA+wnhAAAAAIKs/eUAAAABAUmJ5QAAAAECxbnlAAAAAQKl/eUAAAABgu415QAAAAGBE0nlAAAAAwMbleUAAAACAhAN6QAAAACDyD3pAAAAA4C6bekAAAABA3wd7QAAAAKCIN3xAAAAAQF2ifEAAAABAqbd8QAAAACBBGX1AAAAAwOkjfUAAAABgKPd9QAAAAOADaX5AAAAAoCrbfkAAAABg6ud+QAAAACDTA39AAAAA4PATf0AAAAAgPyR/QAAAACBch39AAAAA4Hqjf0AAAAAgyMV/QAAAAEBh3H9AAAAAwN3mf0AAAABAvkSAQAAAAGAwWoBAAAAAYE1jgEAAAAAg+HKAQAAAAADPeoBAAAAAABUQgUAAAADAMyeBQAAAAADbOoFAAAAAwDhEgUAAAACAFV6BQAAAAGA2aoFAAAAAABIPgkAAAABgByyCQAAAAIB+a4JAAAAAoCSZgkAAAADAFKWCQAAAAGCT+oJAAAAAIJ8Eg0AAAACgFUuDQAAAAKDFZoNAAAAAYEh6g0AAAACgkYqDQAAAAMCHk4NAAAAAAJP7g0AAAAAgEAOEQAAAACBcEYRAAAAAIGdhhEAAAADgrIeEQAAAACDnxIRAAAAAIAEphUAAAABgi2qFQAAAAKDdrIVAAAAAQOnShUAAAABgcfyGQAAAAGBGhIdAAAAAoISMh0AAAACgefqHQAAAAMBEAohAAAAAYH8RiEAAAAAAIR6IQAAAAKChiohAAAAAAHqTiEAAAACgZ9yIQAAAAAAS5IhA + NrgMGZxjYkA2gKvZDSNtQFRnpVdMhW5AOQsfS35TdUCPZZbcdpJ2QABms4SWhHtAVsAqFo/DfEC6BTo6w8KBQG8jDjJAqoJAHjMEV0/bhEBvUvxb7DKGQEs5qfywA4hAnFihAU5biUBLaJcmXYyLQACGax7ac4xAjyuQzdXUj0Bd7CULKTqQQHksLfWwdpFADwOLGW/GkUDzGF4hpUqTQNZVHfHsdpNA1y4xKdvOlECH1wRmFoOVQA== - + - UyP4QIxOqkHmlLJBwUAxQW6SwUAMB7I/dsKrQCoAlUAIlhBAvBttQAMh+0ClBqVA/cYZQIlSkUGEQUdADUAOQBNG/UCHNEhAcFEQQFX2okCwILI/PADmQApl6T8WMwlAWTemQUhXIEHMgIxBQIGcQKg12D+awoZAtPggQlilFEEQ0IFB1TzlQL0mF0Gxtx1AljtQQW2ltEJDDCxCZvzAQFZSPEFfBhFB7tzHQIjkvD+T8/NB29ilP9qFEkO+B4BB0JeLQaGvokCE6LZAUAvbQQP4okDZzedA3qnKQNEYjT+9x1FBfeiGQEADCEGp6yFANCXKQOevxkCT74tAz6mNQPi0TECSNyxAtakdQRoPR0DFBW1AVWDnPy+bZEEoew5BlU23QEMJFkE8i5BAj02yQKjKJ0GZRmtBUNYeQUin50LysLRCa5WkQ6fVnEBViIJArn08QgX+DkFK9YZA6O5DQIatp0BnFwtBoq0xQe/gBUKw9eRBVOQKQoIfkUACi7lAr7rMQFgOk0BlUSxAdOnRQA0J8EFbh6RB7sg9QZOMxT+S6/9AUVqOQe+WiEAVnt9BGF7zQd5fYEDaEgpBPEYCQsrAyT++yiNBRHrrQo2VnEHwZONAsjWOQCIMREDA7hlAitE+QOeLckDVJAZDFiR5QJiLm0CyTvRAc0HEPyDdz0ABI3JBI3+8QP8gbUAJD2VAMVS1P+PfBEJEDbxAXSCVQFVViUEbmUVAyDSWQeTZGUCfEvM/H591QNkDakGoGpBBZydtQWh5PUDI3rRBH17/P796akNq/6dCZSn4QC+t+0AcpZtAMNT7P2kPAUEtcnZAGLY+QGC1PEEGop1A98iKQUwDKkCV6H9CVEF/QMszLEBfQPlAEsOOQqmdIkRhr09DJxioQWEDW0GOO1hB8qPEP7MPB0DJ8Ps/hxDEP6kSLkHuFLxACMEtQVTKNUEzLhlCIWWPQZ7iVkDPNLtBf7XdQbyjg0CoDulCjPw3QtpkvkC/x9xA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAIJHYkAAAADAtAJlQAAAAMAKfGVAAAAAIDtIZkAAAAAAPx5nQAAAAEBjhGdAAAAAIEUFaEAAAAAAqD9pQAAAAMARXWlAAAAAYGqOaUAAAACAfKdqQAAAAADcI2tAAAAAgOWTa0AAAADAwE5sQAAAAGDsqGxAAAAAQDA9bUAAAADAfQduQAAAAIAXJ29AAAAAAFABcEAAAABgPiJwQAAAAGC9lHBAAAAA4LmwcEAAAADAgQJxQAAAAKD4HXFAAAAAIEKfcUAAAAAALbZxQAAAAOAg4XFAAAAA4MbzcUAAAADAF/9xQAAAAICkE3JAAAAAoPokckAAAACAyTNyQAAAAIDnYXJAAAAAwNlzckAAAACgicNyQAAAAMB90HJAAAAAQDLzckAAAADAqwFzQAAAAOArEnNAAAAAAE6Ac0AAAACgEaVzQAAAAKCls3NAAAAAwES/c0AAAADA3M9zQAAAAODS43NAAAAAQPABdEAAAABgBpZ0QAAAAEAOtnRAAAAA4PnRdEAAAABgTeR0QAAAAIBJ9HRAAAAAwPgMdUAAAAAACa91QAAAAIBB9XVAAAAAgDgrdkAAAABAXjZ2QAAAAMApcHZAAAAAoJ6VdkAAAACgFb12QAAAAEBaC3dAAAAAQJQgd0AAAAAAyzB3QAAAACBJj3dAAAAAgELCd0AAAACgMtF3QAAAAOCkEHhAAAAAwIk2eEAAAAAg/0h4QAAAAEBxYnhAAAAAwPu3eEAAAADgb994QAAAAEAA83hAAAAAIEUheUAAAADg3yt5QAAAAIAgbnlAAAAAYBrveUAAAABgdQF6QAAAAOAwDnpAAAAAoFEiekAAAADAYDV6QAAAAKDVpHpAAAAAoD+4ekAAAACAi+d6QAAAAOBI/3pAAAAA4EQOe0AAAACgzC97QAAAAMDLjHtAAAAA4E+de0AAAADgO657QAAAAOAWx3tAAAAAoJnRe0AAAACggjt8QAAAAEDaVHxAAAAA4NTQfEAAAAAgGuZ+QAAAACBsg39AAAAAwP2Wf0AAAADgtad/QAAAAKDbVYBAAAAAwHVygEAAAADgf5GAQAAAAKB++oBAAAAAIPccgUAAAAAgkhqCQAAAAAC8IoJAAAAA4MQrgkAAAADgVjaCQAAAAGAzSoJAAAAAYEW4gkAAAADgEPuCQAAAACB5X4NAAAAA4B6Kg0AAAADg1JGDQAAAACAgl4NAAAAAADTXg0AAAABA4PaDQAAAAIDq/YNAAAAAQCwZhEAAAACAipyEQAAAAIBFqoVAAAAA4NixhUAAAADgelSGQAAAAEBYhYZAAAAAYAq0hkAAAABgPrqGQAAAAGC1I4dAAAAAoGErh0AAAACg72qHQAAAAKDoqodAAAAAAG8giEAAAACgP0OIQAAAAGALVYhA + KBZXds7jZUCRGlyHeVJxQPV+Nhksk3ZAf9hb5OeCeEAXiDhKrwN8QH82ODhAlH9AC3MKz4OKgUDRH520YYKCQJx3i2fFQoRA73BZn7kShkBjozF3MUuHQOZP2c3wqolA9oPVsohTi0BIU6i3Q8ONQL2ve8L0W45Au6ymrtJ1kECllVKfWy6RQG3DC70YApJA7KkBmnESkkADLdRsoqaTQPzrabJEypNAGUIVbsjClEBG3DtQcM6VQJlZDIMeh5ZAjfDqSoaylkCt2c/qJyOYQKRzvR23RphAxFyivVi3mUAznBsT4w6aQER0mdKue5tA5bKAISmbm0Bb92ul3w+dQPw1U/RZL51ADQ7RsyWcnkB8TUoJsPOeQE6bl9QoMqBASWgObvBDoEDZ3AA+QfygQFMo8CH1EaFA/WZYO0xuoUATtGssIPShQCJfQQpicKJAnj4MLTOCokApgHWWS0yjQGlz8AR4VKNATQrNk1a+o0DC/iIMmxqkQDBp1zKHvqRATUCMdbPkpEAi9MA2ooClQCUBADDI6qVAR+ypBbiCpkDj+J/71dCmQDl3kwnTRKdAKg1P9uu0p0BduLNv4/KnQE5Ob1z8YqhAHUQveg7VqEAO2upmJ0WpQEGFT+Aeg6lAzNGKMjUrqkC94xB8R/eqQL8TPZ9VcatA - + - TdB/QMInv0CeuqRAyAktQA0IPEB0LgtBXU7pP6fHWkCeXAdAm0JpQLNeGUEugWhBtMHdQGG3KEAzzkFBGZqMP79/ikCzl4NAG/qyQO7ewj9OskdACh5aQBaRTkEbLAdAHpnVQEJAsz8wALI/OQRaQMqalUDwXuc/PxqSQdsX/D8un1pAqZ8QQLRvDkG2/HJA77Z/QAsj10CQLu9Ao62xQLJQSUI+5bJAIUXpP3yST0EUCVNBUr8sQalzMkF9cxlA5toiQMHB9D86mAJBfC/LPxkf70B/CjNA2q+QQn70NEEpdgRB7CYFQYycJkKcm7JBsMVNQJGxsEHfVVFAbfCDQPMiTUEyDU1BDRKqQAcG/D8iTwdAbxAMQan6V0CS72tBbMH+QJ+UUUCWOWlAWFAbQaj0CkFhpIRB8pFNQfTh1UCA9yZBTUwAQtfDgkAIqqJBDSyEQCbAAEHV4KtAuRoRQlW/iEGgEB1B4pN8QOl0kECeCEhA5unCQDPAQUG2AF9AFfKIQbmdyD9jDxJAnoVrQEMC/T/H7bA/4Oo+QPoCLkDExBBAtD9JQOYUAkF/dAdAXG0DQTBVjUF4oChAuMa4QU6NG0EHaSdBhHRlQQyVKULwBGdBvAy+QE6zQEA/yek/ENkiQUDCf0C7QxBBhsKmQYhrwUEcvQdBBLH7QNCh4j/Gwas/qSgCQUS7E0HqAuhA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAEKIaUAAAADAq8NrQAAAAKDYRG1AAAAAABonb0AAAADAQiJxQAAAACCIO3FAAAAAgOFOcUAAAAAgPQNzQAAAAADLFHRAAAAAgNgldEAAAAAA4qN0QAAAAAB0ZXhAAAAAAFYHekAAAACA8yV7QAAAAIByU3tAAAAAgF5je0AAAAAAHVZ/QAAAAABfKYBAAAAAgNcygEAAAAAgtYSAQAAAAEB+vIBAAAAA4FDFgEAAAABAAXSBQAAAAGB7goFAAAAAACuygUAAAADg27yBQAAAAOBm+oFAAAAAQO//gUAAAACAezOCQAAAAIAERYJAAAAAgAFigkAAAAAArHqCQAAAAEBxi4JAAAAA4GCUgkAAAADgvEKDQAAAAADYiYNAAAAAYIqwg0AAAABAubuDQAAAAIACxoNAAAAAIELlg0AAAACA2fGDQAAAAAB0H4RAAAAAwLtShEAAAACgF1uEQAAAAGB3g4RAAAAAoM7ShEAAAACgrvSEQAAAAECIB4VAAAAAgAlShUAAAACgT+KGQAAAAGCYi4dAAAAAIBPEh0AAAAAA58uHQAAAACCySYhAAAAAIPRZiEAAAACAu9mIQA== + KBZXds7jZUAKI3ffzmRvQG+XdYaqQnFAp5q9oOoidUBv9VHaAlR4QDbyCcDCM3tAjUYOxVrke0Cs/YX4IlKAQNcnCPtuioJAECtQFa8Kg0BkozF3MYuGQBBaPj9bk4ZAK8/Xhp2TiUAHOb5tkiuKQAdorJc+tI1AjvyhoyksjkCR7qJvQBqRQOm3OiVgZpFAIBcBZWzikkBG4SohnGaTQGcrsF+CxpNAjfXZG7JKlEDEVKBbvsaVQBweOBHeEpZAZg4KrwkXmECp2AQ1/1KYQCnw+0lVF5pAGCVvvU9jmkCl3zvhcOObQPw6QsWF55tAJfcy9sannUDC+FYD5+edQNcNmAQNBJ9Ahb3L5wMaoEAQSGzoFjCgQKlHI+UOjKBAAtNV7DHyoEBp057vOW6hQCYUdlJCoKFA9BQIWVI4okDmn/FcbYKiQA== - + - FrfqQE2OHUFc9dY/ge5bQcFkDkDyucdA+oyZQGogoEDnnEVBJaulQL2UPkDjN40/X4uxP4n91UDlrpRAmPaGQO5yVkCNNmtANNbgQNaOVkFiN1tBha8+QPBQmkCWhDNAyNFEQBlwmkCR9LBBBH6JQbN1XUHU70pCdxFbQKdA20A9UPxACVsUQVdP0D/L4dNAk4XpPzoVCkH2m/xAtrUbQTI5bUDvN9c/CyJTQeWgGEDPw+k/u6mLQa9vkUBmawVBLGLLQcXRj0DBVIlBb1pOQKJRY0FmqaJAAdfAQA62aEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIF6CZkAAAAAgkWBoQAAAAECY42lAAAAAwLEMakAAAADAlZ5rQAAAAMAIJWxAAAAAwHEIbkAAAACArDJwQAAAAOC/Q3FAAAAAwJiEc0AAAACAkjx1QAAAAICFZHVAAAAAAHledkAAAADAJMN3QAAAAMCONHlAAAAAwI5SeUAAAACAIjR6QAAAAEAAVnpAAAAAAIQke0AAAAAApmp7QAAAAIAovXtAAAAAwPjxe0AAAAAAdEZ8QAAAAEBr4XxAAAAAwFQvfUAAAADA4OR9QAAAAED98H1AAAAAAPcdfkAAAADAi0Z+QAAAAAD5V35AAAAAQKKEfkAAAAAAe85+QAAAAICNV39AAAAAQP+mf0AAAADgEzqAQAAAAKCGQYBAAAAAoOxKgEAAAAAgiFKAQAAAAOCRZoBAAAAAwHDbgEAAAABgX/GAQAAAAGCu+IBAAAAAoIsZgUAAAAAAiyKBQAAAACBfMIFAAAAAYKY+gUAAAABgdV6BQAAAAGD1CYVAAAAAoBw0hUAAAADgHIuFQAAAAKCZLIZAAAAAgJ4Jh0AAAACgU9uHQAAAAODsuYhAAAAAAHbEiEA= + KBZXds7jZUDAIFw1+IJuQNzlv3T/InFAtmSyHxSyc0DUtW4KbEJ3QMqjv9FtU3hAWfsL8UVkfkD7draBGlN/QBArUBWvyoNASEOk8w7ChEChL9Gt8IKGQNwjSC9myohABV2bynybiUAFJM/+eAKMQPw7G/mzM41AlihQl7q6jkCNxuvxBWKQQGAp6UyDeZBA17a9jzFmkkCqGbvqrn2SQO3L/pBXgpNAOUIZ4NpFlEA2Tj9deN6UQLUxWXf2EZZASs4CxYF6lkBnSL6FPJ6XQJS+1GKtfphAsMr+UV36mEB5Qjk87gqbQGLhY2CjRptARvc2aNnKnEDDMgvaGQ+dQApHutQv851AwuZ2//SWnkAfXPvVVQ+fQLr+7YadEaBAv8L16MiHoEA= - + - aKULQdwYZECuCSFBMsMjQCG8FUC2rjpBb5gMQDPvWUCiSTdBJHvpP4fuX0C/U9FA9drEP0OBKEBAUk1Ap8jaPwNQh0DtmAZBIiiVQNFdWEDj3CFBMN/WP9UGrUCIa0hAwkvpP1AJ1z83PG1AFmizQf4id0B/ykNBLGrRPwJykD/2vB9AR1dtQPcrP0BgSm1AcXEoQBHLj0EAlGNBSAXKQMpD2kBGOJhAED6GQXZHg0ATAidBGUACQUULtkEJFVFAx9SbQBR0mkAitSRAo7L7P3IvWkBqs0lAXjPmQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAoIvnZEAAAABAGuBlQAAAAECEx25AAAAAgD4lb0AAAADALQ9wQAAAAEDnQHBAAAAAQAgicUAAAACAoUJxQAAAAMD843FAAAAAwHCOckAAAADAewdzQAAAAEBacXNAAAAAAOi/c0AAAADAs1Z0QAAAAIDyoHRAAAAAQHTUdEAAAAAAoV51QAAAAMCAInZAAAAAAHVCdkAAAABAK052QAAAAICnYnZAAAAAgI5Ld0AAAABAYcB3QAAAAMCA4ndAAAAAAB0UeEAAAACAq5J4QAAAAADGeHlAAAAAQAXneUAAAAAA9YF6QAAAAACBmXpAAAAAAJCrekAAAADA4cB6QAAAAIAkJHtAAAAAAOxEe0AAAADARFJ7QAAAAABFvntAAAAAwBIGfEAAAADAvCh8QAAAAABkYXxAAAAAQAt0fEAAAAAA9JF8QAAAAMBjtXxAAAAAgKEjfUAAAABA0k99QAAAAABXX31AAAAAQEMUfkAAAADAu0R+QAAAAMDyiH5AAAAAgAS9fkAAAACAV8d+QAAAAIDZ1H5AAAAAwDblfkAAAABASjx/QAAAAKArh4BAAAAA4IPggEAAAAAA6wuBQAAAAODxQoFAAAAA4KWhgUAAAADgn6mBQAAAAKAZ7IFAAAAAQDgagkAAAABg886CQAAAAGDwF4NAAAAAQG0dg0AAAADgdHeDQAAAAICk4IRAAAAA4EMLhUAAAADgW3qFQAAAACDMq4ZAAAAAoHUbiEAAAAAASqGIQA== - - - - - - Ebs9QD3KIEAbq4tAtPwFQG12gkCAtFpAEd06QFkGK0Dg/ek/I3AHQAgsGUFTU5JAA0KzP01sFEGNd1FA4AGsQI+mIUA8OQNB6DiyP4Al/D8C14NAEdeDQELMWkB5Yn5ADMIQQFJ3tUAiIN1Av7d/QO2zi0AknchBOC81QXcynUFLb/w/JftjQLnsCEHSEdFAzg8ZQQMJlUAXt0tBAWQPQR4ZTkHeL1tAoq8kQTjQ2EExvkhBjueNQFGcHkCCIh9BqY6EQLpa/D9sgENAHNQqQA/M4EDDtptA9ySNPzX3LEBB9KNCfX9gQJraCUFPC+5AxTOXQerJFkO5TgdBOv3EQIs8rkCLe2tAG6I4QYEhREDl4qlAwvwVQbzQbUA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoG8GZ0AAAAAA/wBoQAAAAABiR2hAAAAAgCHOaEAAAADgUeZoQAAAAIC3/2lAAAAAoAVlakAAAAAg68VrQAAAAKAY5WtAAAAAwKQobEAAAADAxURsQAAAAGDTvmxAAAAAQMwkbUAAAABgBYNtQAAAAMATB25AAAAAQPQlbkAAAADAA2FuQAAAAKCthW5AAAAAgEAjcEAAAAAArZFwQAAAAAB1yXBAAAAAADUFcUAAAADA7UNxQAAAAICcUXFAAAAAANxgcUAAAAAgF7BxQAAAACCzEXJAAAAAwJmxckAAAADAJcJyQAAAAICH0XJAAAAA4LRMc0AAAACAZpVzQAAAAIDwY3RAAAAAgLBxdEAAAAAAfkZ1QAAAAADiUHVAAAAAwDKTdUAAAAAA+0N2QAAAAMDRVHZAAAAAAInIdkAAAADApOJ2QAAAAMD/5HdAAAAAQPUkeEAAAADA5zN4QAAAAEDMU3hAAAAAAM1zeUAAAADAnqB5QAAAAEDPFXpAAAAAgGRbekAAAACAmXR6QAAAAIByfnpAAAAAwK0Ce0AAAABAyyB7QAAAAECHlXtAAAAAgAvee0AAAABAekh8QAAAAIAUVnxAAAAAgIZmfEAAAADAzoF8QAAAAABckHxAAAAAAE5mfUAAAACAyXt9QAAAAIAny31AAAAAwFcLfkAAAADAcRZ+QAAAAEBkcH5AAAAAwKCFfkAAAACAp5N+QAAAAEC1vn5AAAAAwFjKfkAAAAAATfN+QAAAAMAdFn9AAAAAwO9jf0AAAABAQ25/QAAAAABwgX9AAAAAAGO2f0AAAADA4OB/QAAAAOAxBYBAAAAAYN4KgEAAAADgRDKAQAAAAKBPQIBAAAAAYHRQgEAAAAAA2lyAQAAAAGDuaIBAAAAAALtygEAAAABAHaCAQAAAAICHqoBAAAAAYGmygEAAAACgjLyAQAAAACAAyoBAAAAAYH3SgEAAAABgVe6AQAAAAABSGoFAAAAAYBchgUAAAAAARieBQAAAAED7MIFAAAAAQAI7gUAAAACAmEOBQAAAAKAZVoFAAAAAQKxcgUAAAAAgCmiBQAAAAKDKfoFAAAAAQMaYgUAAAABgdqKBQAAAAAB1woFAAAAAgGPJgUAAAADgzc+BQAAAAEBq2oFAAAAAoIbvgUAAAABAivaBQAAAACCXLYJAAAAAgMszgkAAAADAJjqCQAAAAIDTQIJAAAAAQL5MgkAAAABgqleCQAAAAOBBYoJAAAAAoMV/gkAAAADApIiCQAAAAKARkYJAAAAAwNuxgkAAAAAgSLyCQAAAACBKxIJAAAAAgLXLgkAAAACga/6CQAAAACAyBYNAAAAA4PoYg0AAAADAq0aDQAAAAKBzT4NAAAAAwPdng0AAAACg3XmEQAAAAOD3koRAAAAAwPubhEAAAADAHdOEQAAAAKAu3IRAAAAAABkahUAAAACAIGuFQAAAAGA9rIVAAAAAwJzChUAAAAAgqcuFQAAAAKCz0oVAAAAAIITahUAAAADgGBqGQAAAACDQIIZAAAAAYCcqhkAAAABg4DSGQAAAAODcqYZAAAAAwHqxhkAAAADgx7uGQAAAACCIw4ZAAAAAoKTNhkAAAAAgONqGQAAAAGDUNYdAAAAAwDxph0AAAAAgPpKHQAAAAGBtwodAAAAAAK8RiEAAAACAZSCIQAAAAMCd5IhAAAAAYOzpiEA= + NrgMGZxjYkA= - + - Q0ofQGubKEBHZxFA1hQaQAAEjEC6cpVAvFIyQIKKh0Eu8Q9AVkSHQNwE20BksdY//KOzPzRqSEAY3wZBSB6FQRY1V0B+yjVBe3JAQoyZn0Dm7KlA/fSJQSn+D0Lw5QdBt4iEQOnGd0LtbAtBRH2iQdgNrEBXTQVBPIMyQN1AP0C51hZBBwfjQIgsJ0Ho3ahB/VTFP/abx0DairE/S0rPQfuZI0D3p1ZANPHHQJP9IEDNt3RB5aHYP2JDRUG8CgJBejvRQHj8i0LUqnFAnKTIQRSZT0FxSxJBihmyPyyu6kDJpRFCV98oQUm+DEICrSpBegQaQB5NqkBP8gdBfUCgQRaFN0E7S19B4D2LQYtGL0GOPEBBUeMHQfaumUByMw1AbGcZQUmNRUH/ynZAEUCJQOoPl0AeeNc/wNWCQOEG7UCZwQNAnjIAQXvRFkGB501A3v9kQeoAukFhYRRCUh8HQnW+fkB35f5AwUQwQViPSUGD0sdBRCUjQTyBO0Cdr+k/GUl6QtEgxkFBcFNBorkeQb0QuEBMcuJANyEMQbjLhkCpqnVBVk+NQK3v7EBLIptAKlIeQfzGkkB8FM1BfZIFQexFfEF2gQRBQHOlQOAxtUBSA3hBct5bQR2o1z+VW6pBvni1QAS06ELRXLpBOHJAQRUxj0AyEm5BRkZXQKyqIEEafD9BHp5aQVzkjUDDyV9BqYm4QKf0BULXrpBADN5gQZY00UGUIBNBNpQGQdNXA0BVPdBAUnLKQKCHGEDri0JBoU3zQd92/D/ettRCM505QidjzULMc6NBYOgmQWnNtUAn4xBBOHF2QWJikEAQEqxAhoDpP4O5NEBFCAhAnJ7vQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAH1iYkAAAAAAtGZkQAAAAGAHQGVAAAAAwHKjZkAAAAAApgpnQAAAAMAlKGdAAAAAQBl6Z0AAAABgV41nQAAAAABX6GhAAAAAgHBfakAAAABgA9pqQAAAAICWAGtAAAAAwFJCbEAAAADA311sQAAAAKBgIm1AAAAA4DzHbUAAAACAqQBvQAAAAOBYI29AAAAAYF3AcEAAAABAFdVwQAAAAMAYAnFAAAAAwMhVcUAAAABArNFxQAAAAGCN43FAAAAAAC4DckAAAABgRCVyQAAAAGDCMXJAAAAAoKNrckAAAACA/X1yQAAAAMColXJAAAAAgL/xckAAAACg+hVzQAAAAGBiVHNAAAAAwNjhc0AAAABAUJB0QAAAAECKc3VAAAAAwFvkdUAAAAAglhJ2QAAAAODPQ3ZAAAAAgOZwdkAAAADARZJ2QAAAAIBNtHZAAAAA4AvldkAAAAAAQQR3QAAAAIBvV3dAAAAAQHR0d0AAAABAqsZ3QAAAAMBD4XdAAAAAIJLzd0AAAADgNwZ4QAAAAIDCMXhAAAAAoMAveUAAAAAgRHB5QAAAACBlj3lAAAAAgPfAeUAAAAAAVdZ5QAAAAGBFAnpAAAAA4F0jekAAAADg3D96QAAAACDRZXpAAAAAAGyFekAAAADgWrR6QAAAACBbxHpAAAAAoNnVekAAAADgGgF7QAAAACD2GHtAAAAAYIQke0AAAADAfzh7QAAAAGDyXHtAAAAAQKR3e0AAAADg6YJ7QAAAACBGnHtAAAAAIKOme0AAAACgw7h7QAAAAOBsw3tAAAAAYNTRe0AAAADAEPN7QAAAAACfDnxAAAAAQEsafEAAAABgDih8QAAAAOAOVXxAAAAAoKR3fEAAAAAg4YR8QAAAAEBPo3xAAAAAABq3fEAAAADgKPR8QAAAAEDbCn1AAAAAIM4ZfUAAAAAA2CN9QAAAAKDROn1AAAAAoCpRfUAAAABAeHJ9QAAAAGAEkn1AAAAA4CyvfUAAAAAg5nV/QAAAAOAK8n9AAAAAQBM+gEAAAABAaFGAQAAAAKBIioBAAAAAIKSlgEAAAACArLmAQAAAAODswYBAAAAAIKnkgEAAAACAPPmAQAAAAGCWKoFAAAAAIA5DgUAAAAAAO0yBQAAAAOAgWYFAAAAA4CF1gUAAAAAgO3uBQAAAAKBzjIFAAAAA4EeVgUAAAACgYa6BQAAAAIDWtYFAAAAAAA/fgUAAAAAgDQOCQAAAACBaJIJAAAAA4IksgkAAAAAA3TGCQAAAAOCgPoJAAAAAoIdFgkAAAAAA1WmCQAAAAGDfhYJAAAAA4GaQgkAAAACAds2CQAAAACBp1IJAAAAAQNDagkAAAABg/eWCQAAAACA6/IJAAAAAgHYeg0AAAADgfUqDQAAAAODNWYNAAAAAAKhjg0AAAACg+JKDQAAAAKCqu4NAAAAAgAbEg0AAAACgceaDQAAAACCYAoRAAAAA4PQIhEAAAADgnyKEQAAAACA/VIRAAAAAoP5ahEAAAAAAY8+EQAAAAKAS1oRAAAAAwAnchEAAAAAgXfmEQAAAAACoDoVAAAAAgHAchUAAAACA4UyFQAAAAMBjgYVAAAAA4ISLhUAAAAAgo7+FQAAAAACi84VAAAAA4BgvhkAAAACg44CGQAAAAEDTrYZAAAAAgLvihkAAAACAZTiHQAAAAOBNUodAAAAAoFHyh0AAAADA6PiHQAAAAKBIgohAAAAAQBOKiEAAAACgV9KIQA== + NrgMGZxjYkAYxSyCnORoQBu6YmAmQ3BAU72qemajckBCe6rX1FN4QI5fI1AWxHlAW5C1Y2IqgEAq3dtEl3qBQFUHXkfjsoNAWr+jjQ6zg0AcMwRXT7uGQIfFSDNw24ZASTmp/LDjiUBO8e5C3OOJQHkbcUUoHIxASWiXJl1sjUBupB0xWlqQQILdO49qtpBA/cx7JoYikkDMzQ0tlrqSQK/j4DTMrpNATOUEQux+lEBh+kVDEjuVQA== - + - +wofQfavVkCstOk/F2w3QWMPEUBEgJVA79sPQPtVSEDs+vFA1HcpQbHzGEEekANAaWI1QPrGB0AO6cQ/WPMDQPJU4UAWezhB/4cHQAXWFUGRnldBQoC/Qezph0Ctd5pAriZZQRn3jUCma9c/tkaTQSKvD0Flvr5Ac2kpQWdQCkE4NRNB+oQHQHYMZ0AuS0JB1nKHQC/GUUD+iwdAv7+aQJ9N/j9cPOo//4QkQOhvkUE1Zuk/wYYFQfifkkB+2nZAuh37QA1J1z9rUcVAyc6rQL2mc0BxH7NBH4t0QChrZEDyB21APX2fP/3nNUDIK79AbtuwQILwvUESL7ZAL72vQXbe+EGUfr9BvfloQLMIjEC4FRpCgp1HQkJ+10F+b+hAOAvsQNzcWkJ3iE5BNndHQelERkFt4x5CeuIuQnekVUGU/I9B9DbFQPxnk0GZc61BHevWQB7+k0LhOtVBneq6QDqtWkDKKuZBCjeqQYCqIkEocmBCPyLsQbRrF0FBk6dAiJWeQB0gc0BDaJBARFdFQXOT2kA6UQVB8mPiQD9QcEEBeoRAEUTEP3xW1kAG8uxAs+Q1QasPH0FOWZ9AGssUQaOMgkBsiaNBQppWQYXAkkCUxWFCcs5fQUMKRkBvS6JAPjXYQaPjkkAh/tVBqOZ+QKQ73EHTqCFCB33nPyzcAUE8NlFBIBFqQErptkDS+FBAOj+vQYuWLEAf+UNByOZrQUXSS0BCUYVCxtTvQTpc10EHGb0/2TJtQD70m0BQDfJAsVe5QKEkgUHphUdBdPNjQI6K5EA9MhpAWtOeQCiP0kGBw3ZA5o2+QFf7IUGKW+hA3uBRQIZatUCl6DpAP0YjQCmi30CGX/Q/Zhn+QPtot0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQBZmZkAAAADAtoRmQAAAAEBFZGhAAAAAoCGlaEAAAABAeshpQAAAACDoI2xAAAAAoKZnb0AAAACgAMNvQAAAACDLJHBAAAAAYOLDcEAAAABAnENxQAAAAICZU3FAAAAA4CLfcUAAAACAoidyQAAAAACjlHJAAAAAwAmlc0AAAACAe3B0QAAAAICDU3VAAAAAwPiCdkAAAABANNh2QAAAAMAiEXdAAAAAgMZAd0AAAABAp2J3QAAAAMA5eXdAAAAAQHbDd0AAAADATxN4QAAAAMD6oXhAAAAAQJVueUAAAADAPbV5QAAAAAB8YXpAAAAAwIfEekAAAADAvhV7QAAAAMAUJntAAAAAAOYkfEAAAADAOVV8QAAAAEAwFH1AAAAAQFOmfUAAAADA3MF9QAAAAMAd4H1AAAAAAAgFfkAAAABAbUh+QAAAAMDwZH5AAAAAwNPUfkAAAAAAtiJ/QAAAAMDdTH9AAAAAQGaGf0AAAABAqul/QAAAAGDgHIBAAAAAwHk6gEAAAADgHUKAQAAAAGCWYoBAAAAA4KR+gEAAAABgJvyBQAAAAAAahIJAAAAAwAWwgkAAAACAOxqDQAAAACAGTINAAAAAwLAYhEAAAADg9oKFQAAAACDt0IVAAAAAYAT0hUAAAABgNgaGQAAAAGD0EYZAAAAAYKpChkAAAACg6tWGQAAAAKAEWIdA + eg5Y0/EhYkAoFld2zuNlQGS4z0t+BG1AMCfsaXjDbkDBMzRFF5N0QF9uim7UknVAHEB+kNrjekC6etS5l+N7QHFNCWV5ioBAJGmQ7Df6gECzke7hY8KCQJ5TrgrbsoNALXwMAAd7hUA= - + - KaVRQFCzfUAlvY1AYsArQC91SEDD9NVA79gTQUIa6j+3DZ8/MKCjP+tt00DaQtNAiGNpQCiVdkDqk8xAl+yZQDDqqj8X935AOCaXQDiK00BZX0dAcuphQGAb6j+ZqjRABkkEQa2Gi0ChX01AKKDnP3WlIkEYFohADwsvQXndB0GpB5BAjDZNQBI5bEACsn5AxkYSQUdbnkCGCh1BwnQHQOYQnkA+uzVADccMQgQuqUEbS6BA32m3QYPOlkG/bUtBVjbYQAkFs0AENytA2l2mQQLIj0EzPixAO7wHQfUMC0FRqURA1zKAQR0ojUHRO/w/YFurQfXeO0FWCVBAnVLGQN/d7UAr8t1A + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4GnHbUAAAACAPCBwQAAAAEAZEXFAAAAAgGBAcUAAAABgG9VxQAAAAMC8QnNAAAAAgDL9c0AAAADAWKZ1QAAAAMAtkXhAAAAAAHJPeUAAAACA2j19QAAAAIC8LH5AAAAAwO9Rf0AAAACAVEKCQAAAAKBUUYJAAAAAID/RgkAAAADgbrCDQAAAAGDlGoRAAAAAgGuChEAAAACghqKEQAAAAGAxrIRAAAAAYJTLhEAAAABgYtGEQAAAAGCvLIVAAAAAgDS6hUAAAACgjMOFQAAAAODLgYZAAAAAQDK7hkAAAAAgC9aGQAAAAKAfG4dAAAAAYLFhh0AAAAAAiWeHQAAAAABpkodA + eg5Y0/EhYkAoFld2zuNlQD1liD1RInBAFOkHjz8DckA9w2SRqTN3QBRH5OKXFHlAMZigze+kfEA= - + - zg8/QNzk/D+NdBlABzFhQKkaoEEiKU5AaFrXP1oqYkBgl79AOCUGQLyxH0GsF1FAMnR2QKNq2kDcx89AYMfWP14fSUCseaA/ReCDQPfCiUFa9QRBOkSYQjTxO0GRKv1AYsScQZdBvEBLd8xAUD7EQM7KckEXGuBBsKVfQYUOgkEKBTxB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoFZ3XkAAAADgGMFeQAAAAIA3IWBAAAAAwK9HYEAAAADgE2hgQAAAAECloGBAAAAAQA1BYUAAAAAAhGdhQAAAAEClxmFAAAAAoMdkYkAAAADA5odiQAAAAMBHpmJAAAAAAEf/YkAAAADglZ5jQAAAAMBBiWVAAAAAgEsLZkAAAABgVUVnQAAAAKCWQGhAAAAAQKRmaEAAAADAeqRoQAAAAIC0KWlAAAAA4EyHaUAAAACgBD5qQAAAACAmrmpAAAAAAGFKa0AAAAAAhxdsQAAAAACuRmxAAAAAQGDjbUAAAABAtiRvQAAAAMAzom9AAAAAYF8PcEAAAAAgSiFwQAAAAOAPRHBAAAAAIGpjcEAAAABA3ONwQAAAAGB+8XBAAAAAIF8ycUAAAACASUVxQAAAAAD8VXFAAAAA4LRhcUAAAACA1XJxQAAAAAAL4nFAAAAAIBn/cUAAAADAnA5yQAAAAAAbOHJAAAAAIIZLckAAAABAgn5yQAAAAMCSmXJAAAAAgP7uckAAAABAiAVzQAAAAEBKJXNAAAAA4NUxc0AAAADgv2FzQAAAAECEb3NAAAAAAG6Cc0AAAACgKqVzQAAAAICT0nNAAAAAAPTfc0AAAABgGCR0QAAAAIDpLnRAAAAA4B9ZdEAAAABA2IF0QAAAAMD5sXRAAAAAgLzXdEAAAAAAe/t0QAAAAEAXInVAAAAAAMosdUAAAADAW0J1QAAAAIBIonVAAAAAwAOydUAAAACAMcB1QAAAAKDX0XVAAAAAYETxdUAAAABAfAR2QAAAAMAjKXZAAAAAIK2idkAAAAAA8cR2QAAAAKDk4XZAAAAAoJYbd0AAAABgvEZ3QAAAAGDLUndAAAAAoONgd0AAAADgPHN3QAAAAMBF33dAAAAAYGvUeUAAAAAgJAt6QAAAAGAdanpAAAAAIO2dekAAAAAgXHB7QAAAACCrBnxAAAAAoJBEfEAAAABA8qV8QAAAAKB7sXxAAAAAQKwOfUAAAABgNzF9QAAAAMB0O31AAAAAQHVlfkAAAADAsJV+QAAAAKASJ39AAAAAYH40f0AAAAAggk1/QAAAAOCbhH9AAAAAIA2Vf0AAAACg0LV/QAAAAKATxn9AAAAAwPfSf0AAAAAgg+N/QAAAAOBlAIBAAAAAIMAMgEAAAACAOhSAQAAAAODGJoBAAAAAIKM0gEAAAADAgkKAQAAAACBOkIBAAAAA4DGogEAAAAAgf/OAQAAAAKDp/YBAAAAAQBlHgUAAAADgPUyBQAAAACAZk4FAAAAAoLu0gUAAAADgyMiBQAAAAEAL04FAAAAAYE77gUAAAADglAKCQAAAACBXMIJAAAAAgNaQgkAAAADAJMuCQAAAAKAe24JAAAAAIJXjgkAAAADgau6CQAAAAKCDL4NAAAAAILE6g0AAAADgy0ODQAAAAGBxTINAAAAAoB1bg0AAAACgGMSDQAAAAGCFyYNAAAAAoCz0g0AAAACAZPqDQAAAACAdHIRAAAAAQKZRhEAAAADAIWWEQAAAAOCrr4VAAAAAoEzahUAAAABglvmFQAAAAKCnQ4ZAAAAAIHJ/hkAAAADg84mGQAAAAMBIkoZAAAAAYLCyiEA= + NrgMGZxjYkDs3IbI4yFtQJS//85JIXJAr2sYctFic0DqEwTU4ZF2QAhlwL45InpAj18jUBYEf0DoXyr8qCmAQK+L0AsVMoNAWpC1Y2KKg0B2t3YbgTqGQL69f4DuIohAPeMcK+1CiUDp5wGDOluKQGgNny05e4tAsBOokqZjjUBmnTSl4gmQQLwfJ1EJNpBAnzX6WD+6kUCwjQZDDg6SQFFMX2eFRpNAmGAOYpsqlECoSol6X/aUQK11T2PBRpVA9In+XdcqlkCNzu1ToIKXQD560PsCL5hA - + - f8uZQBP0nz9VmnJAhjd3QAQpnEASeLpAnK9pQHP37T9kQrI/avdQQQD+8UCvXLpASumjQErjGUA+J8hAe4ttQOIdWkAAeQ1BvFAkQaMSZECjpjFBYUU2QTwbB0Ki2E1AlZgIQf0Rb0EMaJ5Akg4QQbUWP0ApqpZAUIAFQc3yyEG0XVtAGlKCQMyh+EAIKB1B/mWyP7OvaEE6fG5BuZSyP2aLsj+oPLVAd2hRQRZg8EEILuZAUU9TQajeVkGBBltA1P0YQhHdEEAUehJB5mLDP5laeEEiQVFAb06kQTc8BUCpt+0/mbz8P4waAUFFBMU/bCMTQaowjUGrTB9A+WIuQJak8EHkzCtA2mepQMiJRkEGb5tBuWY8QqT/R0APKVJCRd00QLC+2UFW0nRBhUEjQWMYl0BrYxZAFr0HQUlKc0Fw1qdB81eHQLGx4ELT0ntAIq7AQc+v9kDvLc9B59SPQbvijUA0B+tAe33DQA2R6EC3NFNBWHYkQItiCkAcgAdBGxxvQYfFM0ECmENCi6QKQrvv0UGs3pdCP8QkQbM+1UG6ExJDS17KP2MmAUGkfD1BL9aNQIs4yUDM1/pACFW2QNWnKkHxQPY/zn3RQDTrWkA5C+BB9Er8QatwdkBtDZVBv26AQDBYs0HSmxBA1a4sQinSskCgf/w/FG9IQFsUh0CjyLFBe9z3QbClR0CYlAdATdfqQI5RC0FyLe1AS9JaQIi22kGqC4lBDYdtQDY/C0Hk5cdAeuuLQXt/aEAGiVJBUuDMQLjTaUD/IHJAZD4aQPKGi0DGxYhBQaGeQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoDoAYkAAAAAgC8NiQAAAACDE32NAAAAAQHWHZUAAAABgKeRmQAAAAAAZBmhAAAAAYOEdaEAAAAAAnbFpQAAAACBGx2lAAAAAQCFIakAAAACAD6VqQAAAAADrImtAAAAAwE4gbUAAAACgSEttQAAAAGBKPm5AAAAAICNibkAAAACAI45uQAAAAEAR4G5AAAAA4PQob0AAAABASERvQAAAAIBvZm9AAAAAoD5QcEAAAACgwJBwQAAAACC2InFAAAAA4CoycUAAAAAgSGRxQAAAAIDlr3FAAAAAgG0SckAAAACgEj5zQAAAAOABxHNAAAAAYNHRc0AAAACAQNxzQAAAAGAHPXRAAAAAgBBSdEAAAADAtMN0QAAAAEC0AnVAAAAAQDFhdUAAAACglW51QAAAAGDDiHVAAAAAoEmUdUAAAABA8651QAAAAMCC4XVAAAAAgDhadkAAAADgf3J2QAAAAIAHsXZAAAAAQKfNdkAAAADA2uN2QAAAAOAV8XZAAAAAIMz/dkAAAAAA3BF3QAAAAIAzKndAAAAAgOiDd0AAAAAAtJZ3QAAAAED3wHdAAAAAgJrjd0AAAADgCPF3QAAAAKALEHhAAAAAIKabeEAAAADgTA15QAAAACBVMHlAAAAAAJdAeUAAAABgL8R5QAAAACBB/nlAAAAAgKsRekAAAAAgjSR6QAAAACC0e3pAAAAAQAa1ekAAAACgUNd6QAAAAIDp6XpAAAAAgFIBe0AAAAAgmiJ7QAAAAID1NXtAAAAA4HBye0AAAABgGH57QAAAAMBbkntAAAAAYJf7e0AAAADg+jx8QAAAACAjhHxAAAAA4CSdfEAAAACgirJ8QAAAAGBkwnxAAAAAQMDffEAAAABAAhZ9QAAAAODAJX1AAAAAoHU7fUAAAADgxLV9QAAAACBa/n5AAAAAQK9Xf0AAAADgAAyAQAAAAKDlFIBAAAAAoAdKgEAAAABAbZCAQAAAAOB8n4BAAAAAwFuygEAAAACgsL6AQAAAAABGxIBAAAAAYArUgEAAAABAE96AQAAAAMBsLIFAAAAAYD1fgUAAAACgqI2BQAAAAGCAnIFAAAAAIAjIgUAAAADggNOBQAAAAECf5oFAAAAAoHoHgkAAAABA/iCCQAAAACBfKoJAAAAA4AhOgkAAAACg/lKCQAAAAKC9Y4JAAAAAICVzgkAAAACAA5SCQAAAAKCImYJAAAAAYFqzgkAAAACgrNuCQAAAAKDOEYNAAAAAYHQag0AAAACgLyuDQAAAAOBWOYNAAAAA4LRBg0AAAAAgjHCDQAAAAOCdiINAAAAA4O+Wg0AAAABgjaaDQAAAAKDVtYNAAAAAIK+/g0AAAABAuxCEQAAAAIA4K4RAAAAA4ONchEAAAABAfIOEQAAAAMA0k4RAAAAAIJKihEAAAACAIemEQAAAAKDM7oRAAAAAIJj7hEAAAABgVAOFQAAAAKBNCoVAAAAAQIkrhUAAAACgbzqGQAAAAGBlwoZAAAAAYKAEh0AAAADgosSHQAAAAEATBYhAAAAAIBkziEAAAADgpDiIQA== + NrgMGZxjYkCEfuNfSGJnQEMdzoN8QnFA - + - MSTIQIzF9z+Hb65AZ4iNP99bxD/0bjZBLYUWQLiSVkAHqMtA6H/8PwAlEUF9+l5BxbXRQA4zDUCU0RRB2rkZQLJVxT8FSWRAS8T9Qf0k0UDnL4NA6QvAQABxWkDXk2BACZSZQOl59T8I6HpAlQUlQRbasz9SNUhApywaQLsmCEBlGZZBxYHFQOA0H0Cy5XBBUgR2Qtb1m0AOkChAl1P8QFp/sz+sCidBd38FQW27PkBZss1ArYkuQS5VnUEKqdpAaLaQQBegB0CPZSxANcKEQOosI0CQRGlAJeOIQKF6VUEI6ypB6++eQWrvGUCJTDpBJabWQXbGmUCfw+k/etjWQLqgdkArEchAITrSQP99f0Bi1ctB6fabQPocIEIMc5RBlA22QW3rAUHDqQtBxRWJQJGbFEF1RqhBt0qVQsnCFUGHNWVA69wjQeVOUUHCx+5BHOjjQIiec0Dzqw1BLPdLQZSHCUEMFAlBatgXQUomkUDUnE9B6w/2QAaot0CG0S5BWMqNP/vU4EEk6JtBujK5QE06J0FsnF9AUv2eQI8x4kHCUT5BrC27QcZQ+ED7SKZBypZoQljbrkHqn75AwAiuQf7qSEIgdy5CaKSdQfI6qEJrvIhA4ewJQWPZtUAN0spAUnppQkchokDLX7tAwQr7QC5KGEFFPRBBsimCQQZxaEHLE9ZAuFvfQY3S30AvniZBBlMTQcRvBkJHFkFBQHMgQXp9QUE0jJJA68cEQbAr/T8W9ghBQrooQfTDfEDzVLFAabUiQaLXEUE= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAwOTmYkAAAACAIQpmQAAAACDXOGpAAAAAAIOpa0AAAACgOl1wQAAAAICJAnFAAAAAgOP+c0AAAABAEpZ2QAAAAIAwM3dAAAAAwLGBeEAAAADAvZZ5QAAAAACkZnpAAAAAAK2hekAAAADAWu56QAAAAMCyJ3xAAAAAQGMmfUAAAABA9I5+QAAAAGCfMIBAAAAAILbfgEAAAABAlUSBQAAAAGC2WYFAAAAA4F5BgkAAAABgMniCQAAAACBNzoJAAAAAIDsIhEAAAACgojGEQAAAAEDIXIRAAAAAIN4fhUAAAADgiziFQAAAAOBp0YVAAAAAgOoehkAAAAAgOYaGQAAAACAD14ZA - - - - - - ID9yQB54g0DHAuo/It9FQHwWrEBOF3dBve3AQIFYIkHkSLI/GxyVQArEfEEOXEdAvWzQQK72bkFJZ6BAdD3WQP6VAEGsGbhAopZfQFTwjEEHBqxA+DkzQf3WHkHV5aJBy9onQj44REBHo21AMuSfP1yuI0E4fIFB9DXXP7Cx/0AgYoJA - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoDuObEAAAACgVwZwQAAAACAuw3BAAAAAIE5VcUAAAABgoZJxQAAAAIB+13FAAAAA4LiWdEAAAADgWVF2QAAAAIBxZHhAAAAAQPLgeEAAAADA/jJ9QAAAAIA7EX5AAAAAwDMjf0AAAACgYgKAQAAAAMC/GYBAAAAAYFlAgEAAAAAA90GBQAAAAGDRSYFAAAAAwC/IgUAAAABA5AiCQAAAAOBgH4JAAAAAYI8hg0AAAACAqEeDQAAAAOCPb4NAAAAAgOCHg0AAAACAtgqEQAAAAAAPI4RAAAAA4P9xhEAAAABgGbuEQAAAAOBDw4RAAAAAYGTphEAAAAAgg/+EQAAAAODYCIVAAAAAgKY5hUAAAADAzj6FQAAAAGCxRoVAAAAAgO9WhUAAAABgonOFQAAAAKCnmYVAAAAAAP2ihUAAAAAgkqyFQAAAAOA2toVAAAAA4Di9hUAAAABAst6FQAAAAGBz54VAAAAAYBD2hUAAAADgGQOGQAAAACAKGoZAAAAAoNUmhkAAAADgh02GQAAAACCHcYZAAAAAgK0MiEAAAADgCsiIQAAAAGAc8ohA + KBZXds7jZUDEZV5bjlJwQG+XdYaqQnFAkaB3ty2zdkD/B9cwPnN3QBxZkxuWA3tAWPsL8UXkf0BI/6kFQ4KBQMlOQuN6goNAAlKK/bqChUCReujy5kqHQIOhItvygodAkanWHJPTikCD0BAFnwuLQJHYxEY/XI5Ag//+LkuUjkDIg1m4dfKQQEGXdqx7DpFAiKslp5HykUAlrUm0sfKSQOXUFaPN8pNAtNWnqd26lEBC/gWfCfOVQIkStZkf15ZAZuwMuCMHl0Cvbk2ERGOYQBg7E49Ln5hAxvEfV3X3mUDKUXidkeuaQA== - + - 9hJ8QJ08nkDjoM1AlP93QHbwSEBFEbxAG/o1QC8nikCwyVZAbVP+QKqSukEkX/o/zCU7QFevJEE3QcBAZuHsQKyUUUBU++xAb4kHQMGCRECW9HZBenTDQAmAfEE1OKxAvotGQdGPNUGkSHJAbjpQQD2R0UEW/3xB/jJJQJbknEG5DyJBEMWZQCIP0UEEhLRAfW3XP86An0HNBhFAZBX9PyJ1u0GU1U9CPZ0dQal4wEHwPZdAGHwCQY73fUEH9JxBUQv3QQiJOUHpDL9BKq/kP9M/1ECmUgZB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwFxFWkAAAAAAyApdQAAAAKC4I2BAAAAAwKdDYEAAAAAgOYRgQAAAAACkQWFAAAAAAMZkYUAAAABg9KBiQAAAAMAyZ2NAAAAAIPQmZEAAAACAy2FkQAAAAIBcw2RAAAAAwGKnZUAAAAAABAVmQAAAAKAWPGdAAAAAwMVrZ0AAAABACuNnQAAAAAAZCWhAAAAAAN5HaEAAAACAp6BoQAAAAAA652hAAAAAAK4BaUAAAAAgm8BpQAAAAKDvH2pAAAAAAFVlakAAAADA5qZqQAAAAAD8vWpAAAAAQCtfbEAAAADAwYtsQAAAAIDRxGxAAAAAAHblbEAAAABAZyVtQAAAAABnQG1AAAAAQH5ibUAAAABAQZhtQAAAAMAQ+21AAAAAAKVAbkAAAABAi4puQAAAAMAwoW5AAAAAQLbLbkAAAACAhyhvQAAAAIAiZm9AAAAAwKTjb0AAAACAZAZwQAAAACBOEHBAAAAAACcvcEAAAABAK3VwQAAAAICtknBAAAAAwLClcEAAAAAgr7RwQAAAAEB80XBAAAAA4BXecEAAAABgPAJxQAAAACC2I3FAAAAAYOsycUAAAADgWnVxQAAAAAAEkXFAAAAAAP+hcUAAAAAAk7JxQAAAAIARwnFAAAAAoK3RcUAAAADg7+txQAAAAMDu/3FAAAAAIM0SckAAAACAcCRyQAAAACAaQnJAAAAA4D60ckAAAADAm8ByQAAAAMDx0XJAAAAAQIDsckAAAACgSfdyQAAAAMD6AHNAAAAAQBgjc0AAAACAqGJzQAAAAIAu03NAAAAAwLfzc0AAAADAZgF0QAAAAKArEXRAAAAAYFEhdEAAAABAYCx0QAAAAOAVSnRAAAAAQKVcdEAAAABAlm90QAAAAGAtgnRAAAAAYBeldEAAAAAgcLR0QAAAAEB9wHRAAAAAwKvOdEAAAABA9u90QAAAAICTC3VAAAAAIJdBdUAAAACg1ox1QAAAAOAPLndAAAAAIEdTd0AAAABANBV5QAAAAABNZ3pAAAAA4C53ekAAAABASsN6QAAAAKCc9HpAAAAAIMwie0AAAADAzaV7QAAAACAH8HtAAAAAoAAFfEAAAACgQIN8QAAAACDc6HxAAAAA4AB9fUAAAABgy/F9QAAAAKDye35AAAAAwC0mf0AAAAAg4VJ/QAAAAKCOG4BAAAAAYPkhgEAAAAAg4jyAQAAAAAB9hIBAAAAAIFG6gEAAAADg/wKBQAAAAMCXooFAAAAAYHehg0AAAAAgOtODQA== + NrgMGZxjYkA/KJil8iNpQFf+/uF9UnBAH3KoplGjc0CtUgPnFcN0QAOnB+ytM3lAen7y8RT0eUDKAZwlxmR/QKFsw5WWEoBADQFV4nXqgkDOcmg7+DqDQDoH+ofXEoZA7MMkJlDLhkBQ8e5C3OOJQAQPwzpZK4tAffeT6D0MjUAiYH8lsbuOQFnEbo3uQZBAHCU68FqGkEBmFQyOhoqSQArb05s0jpJACHeI4cKulECsPFDvcLKUQPYsIo2ctpZAuo3t7wj7lkABopzqHt+XQFNWEonYtphAkMr630qnmUBq2eRbCUuaQBzwSWpP15tAdU5fuYsznECrGKhfe5+dQIzRMYy8x51Awpt6Mqwzn0CgUfXzxWOfQDrZbyD5X6BAKTQtAQZ4oEC0vs0BGQahQMUa2YkRKqFAP0luAiyUoUCFplSUPAyiQIZdHf1BeKJARTLQnmfuokA= - + - 5+tNQCbpakAC2SZB9VhIQI4ow0B2rJlAaavQQY3+XEK2ZEBAFwMHQAj/yUBC9hdAtPJ2QI8n/UAzAdhBeoSEQDFEqUDu+RlA8i9pQC6Hg0CtFX5Bpp0nQBQ900BZHAtBgjusQJyAKEAMVk5Acck6QD/FWkA9DWVA5gIBQpqh5kBk5zxAADHmQAjtsj9mMo9Ba73OQJzUjT+HlJ8/gECNPzBSm0CsCRxCT4MsQHtumkBMQ5tADveyQIFybUBCtL1BoJLcQMSnMUHWV6E/8PvWPyGDoEAkn31BxvXRQEvzHEFCgC1Aq441QNQfdEFDpVM/nFkjQAhSx0HR3cxAJ8FNQLcqfkCpN5VAYJqOQVDnpEByESpCjCmJQmshmECxrSpB9xH8QHvsKED+euhABPrpP3MtfUAsbUxB9KqHQlbu1j9fHctBOacDQcXOLUIxTHpBEAGAQEyBQEES/0pBegYMQW5cbUAwW1xBxFGsQMkYnkBQK55AAnHaQN6GbUBPhHlBzkwJQbW6J0GLyONCab9zQDvjNUB4I4dB6e70QK4CCUGDWvs/vtwdQQaSEEGhPYpCFov2QOJgEUA+9ztA2tQEQXwxGkDdn1hA7hPtQPTLpED/Un9BPBqoQLR90UE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgFICakAAAADAgm1rQAAAAAATJW5AAAAAIPXmbkAAAACArzFyQAAAAMD98XZAAAAAgPd1d0AAAADAzoB3QAAAAMCapndAAAAAQNpTekAAAACAqgB8QAAAAADLVHxAAAAAAEFlfEAAAADA3N58QAAAAABWxn1AAAAAQGevfkAAAADAESd/QAAAAICQtH9AAAAAwB/if0AAAADAPvt/QAAAACDtT4BAAAAAINKegEAAAADAsN6AQAAAAGBJX4FAAAAAYBNngUAAAADAZrGEQAAAAIBB1oRAAAAAwD/OhUAAAADg4u2GQAAAAACDUodAAAAAIAqrh0A= + NrgMGZxjYkA2uAwZnGNlQBu6YmAmQ3BAdmjQV5ECcUDRdBqjVFN3QK/J9MUpdHpADBeTeAR0fkCxtcs+TnKBQDqSxP+g0oFAQrpM148qhEA6wbIpTVuFQELpOgE8s4dAy8Uzwo4TiEAJFeEQqLuKQPjL2GfwO4tACUTPOlREjkBc+aKEfNSPQJPKxRJW6pBA9/6RDl9GkUB34JgajG6SQECB0tp/opJAW/ZrIsLyk0DAmMnv1WaUQKR4rO7iTpVA1xucwgb7lUC7+37BE+OWQFczk9dcv5dA0BDAwjn/l0AJSvjlokuZQC06sL51/5lAiWHv+vgPm0ASvhSYtoucQFnSw5LMb51AbuVT1DmcnUDZ6bqnIjSfQDNR64VFQqBAeLZGvSlkoECcQJ66NNagQD0RzTlKEKFAwIG+IEWEoUBhUu2fWr6hQEsMXyFYEqJAut0fp33kokAJBP/sZfiiQGKPMfSIvqNAemmbsajGo0DT9M24y4ykQCIbrf6zoKRAkexthNlypUB7pt8F18alQBx3DoXsAKZAn+f/a+d0pkBAuC7r/K6mQGRChugHIadAqafhH+xCp0Dvg+9RIOunQCUGo7sUt6hArw9rXEvNqEDTmcJZVj+pQBhIVSg1/alAxdt0xnaFqkDY09AyYN+qQHPwbMSUhatAMV8DOoOlq0D+eg3FpxOsQPHqfkSuh6xAibx2LsDdrEB8LOitxlGtQK39lpTQi61APLhjuPEzrkCfiICY602uQGD5gx4C4q5AkRNqnAYQr0CEOqSEEpCvQNgnGZcc9K9A7mLrxRpbsEDLWcrQI2uwQLQDoPomwLBARB+/UjHMsEBGJLAtLxexQCTl/NdGPbFAJurtskSIsUC2BQ0LT5SxQPtKXYtY27FA0i+HNlYbskAf1bSIY02yQOV1ab1vsrJAy1DgbGa+skCrFh7yexezQKsWHvJ7L7NAvdvJcIFQs0A= - + - R2nVPwCgLEG2HhFAtiyQQGO+xD9ICvQ/Qy8HQO1FLUGpQLRALXnFQHL/J0B6o3FAmBaXQAnDtUAFb4lAuTVfQKlU2kC4cYJACgMjQD/+uUD9YVNBZYzgQKuOsEGBmJlAYi50QTIf8UCfMfw/2H6LQNK16T9QLQpBQ74WQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4Ff3ZEAAAACgYf1lQAAAACDwYWdAAAAAgBEbaEAAAACg0mJoQAAAAMA35WhAAAAA4MvlakAAAAAgViFsQAAAACA/PG1AAAAAwN7DbUAAAAAAH7lvQAAAAMDcEHBAAAAAoARGcEAAAABAS0JxQAAAAMDdtnFAAAAAwFywckAAAABAl9VyQAAAAECKkXNAAAAAwOWtc0AAAADAWMBzQAAAAECXEXRAAAAAQFzbdEAAAABAMpN1QAAAAIBaJnZAAAAAAD04dkAAAADAOOV2QAAAAMBmdndAAAAAwA7id0AAAADAPP13QAAAAABuE3hAAAAAgKDXeEAAAACAGvV4QAAAAADrdXlAAAAAgF71eUAAAADAiDR6QAAAAMBJfXpAAAAAwO+QekAAAABAbJ56QAAAAACPqXpAAAAAgJYie0AAAAAA4Xd7QAAAAACsuXtAAAAAQNcGfEAAAAAA02R8QAAAAMA8t3xAAAAAgAtLfUAAAABAxFZ9QAAAAIChY31AAAAAwEZTfkAAAACA3Wl+QAAAAACVdn5AAAAAwLLAfkAAAACAyNN+QAAAAMAN3n5AAAAAwHLofkAAAACANF9/QAAAAKC5f4BAAAAA4NSkgEAAAADgYgmBQAAAAGA5FoFAAAAAABZCgUAAAACgP6GBQAAAACDLoYJAAAAAQKu+gkAAAADgws6CQAAAAECV1IJAAAAA4Kobg0AAAACgqk2DQAAAAOC8WINAAAAAwCF2g0AAAADgf/mDQAAAAGBlDIRAAAAAoCFihEAAAAAgwq6EQAAAACB3/oVAAAAAYJUxhkAAAACAHD2GQAAAAGDQ94ZAAAAAoGkrh0AAAACgi1mIQAAAAKA/rYhA + 7BToB3JiYkAeR9VQy0JnQHZo0FeRQnBAjwFH/L2yckB2xqyr6VN3QI9fI1AWxHlAzBqxsIHEe0A= - + - mMkZQPRgg0DgwxlA8jojQDNFKUCNj5VA9l4pQLZlDUFtQoJAMVgQQMXAq0DsC7pACiMDQOtY60Adp8Q/SdFqQXq9NkGnp8Q/8qXWP7yAkUAyITNApdIWQQui10AtYolAajTXP0+KGUDdT7VAsw+tQQ0CB0CzIQNBAOxgQALZGUBThmRB/0KgQNxRUkEkFVtALzkxQLaYI0FAUIhB3kgZQVV8UUCjYoNBQGfrPw3RfUE3Y05BP/AUQrOqy0Dv5FBA/swBQX6p4UGK7ItA2H+jQHfuu0HD9x5BX7F/QEzhOEGVfQRBhS62QDsoCEBhdcQ/9cG+QCIUJEKdLGpBtY5aQBP470LwywtBorvMQYmZJEHJca1A0Fn4QJZlg0BB5w9BF+BIQSUDAEHngilBj5AsQdSP1kA0pfhAl5X1QSJaRUC3+rZA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgNaoYkAAAACgeBpjQAAAAMDS5WVAAAAAQD6iZkAAAABgjLxmQAAAAOD9QGdAAAAAgDoDaEAAAAAA4CVoQAAAAGAqXGhAAAAAQJihaUAAAABAPApqQAAAAOD/IGpAAAAAADTiakAAAABgaoZrQAAAAAAkxmtAAAAAQD7ja0AAAACAWSBsQAAAAIDvxm5AAAAAQHuHb0AAAABgZjBwQAAAACCm/nBAAAAAoB8hcUAAAABACTVxQAAAAMDaRHFAAAAAAEGAcUAAAADgn45xQAAAAADWv3FAAAAAQPb+cUAAAAAArRByQAAAAED1cXJAAAAAgEF+ckAAAACAscRyQAAAAGDa63JAAAAAwN0Dc0AAAADgcOFzQAAAAAAW7nNAAAAAAOkSdEAAAACgQJt0QAAAAEA3snRAAAAAwD7hdEAAAACgpiJ1QAAAAMDFLHVAAAAAgNxRdUAAAACAhJF1QAAAAMDboXVAAAAAIA25dUAAAABgBsR1QAAAAOD27XVAAAAAoM8RdkAAAAAgejF2QAAAAMC2QHZAAAAAoC5VdkAAAADA9W92QAAAAODIjXZAAAAAwKTEdkAAAACg5tJ2QAAAAKCc3XZAAAAAYJFRd0AAAACg0V13QAAAACA1gndAAAAA4F+Td0AAAACgM8h3QAAAAKDcVHhAAAAAYJ1leEAAAADg/P94QAAAAGAtEHlAAAAA4BdeeUAAAAAgbZh5QAAAAKDnY3xAAAAAwBeBfEAAAADgayZ+QAAAACCjs4BAAAAAoMn5gEAAAAAgJkOBQAAAAMCPOYJAAAAAIFRCgkAAAABgGICCQAAAAODWooJAAAAAoHq6gkAAAADAZcOCQAAAAGATM4NAAAAAYE4FhEAAAABgD3mEQAAAAODEC4VAAAAAoD0dhUAAAACgREqFQAAAAEC2coVAAAAAYMvChUAAAADgOpKGQAAAACAaoYZAAAAAILy5hkAAAADgBYuHQA== + NrgMGZxjYkCeFrCBN6NsQBu6YmAmQ3BAbFyUq/PhcUCKrVCWS3J1QHbGrKvpk3ZAqP4MgaMCeUCdh/QimKR+QDZWWaB7E39AMEdJ+55qg0Cui9ALFZKDQBCPn/VnqodA+k4SriCDiEAHbh8kn0KLQPEtktxXG4xA/kyfUtbajkDoDBILj7OPQCWIcPrw5ZFAZCq0Aqz5kUBveEKYHOqTQBWsm3fVBZRAU44VoFJulUBfnG0VAQqWQJqixJpoUpZA4bZzlX42l0B2H0DoMZ6XQCjLIpCUGphA9jY3/YdimUAM4fWXyp6ZQA== - + - 7XRNQOVBFkDrvQBB8iH6P7Y6C0E289Y/AvSxPxh4UUC2WrBAi1k9QMLqyj+RgTFAFLp+QGFukkD5C6VAg+ayQNc/3ECeSsNA1SStQFLG+kDtxRBBDWoSQOyZ4EDugtlAjRmXQCMKsj+1K8g/1VrEP2wWfD8fs8RAd1KSQOgq+kE6NmtB9pWEQDi4NUBrIGtAp1QHQOrG1j+IY2RAiBzIP8g66UD0P8xAZ6npQMy/JUGfMGhBButqQYOjTUHGHdc/SdfWPywIZECPqxlACE8pQUJ9UUDn5F9A9MzsQMYbl0DXh3ZAOfiWQHpo/0F651JBUFDBQRF8mkA0iZ1BMOEkQea2UUEAhxdCiV8ZQETroUHLFytAx9MDQS2a2kALi4tBEl7pP7QDI0DMBSNAPg8MQEaXzUG3QjVBbhysQbxQSECqQzJAd3y9QO0KA0AqMC5BMHqNQI63iEHOo9M/8pYqQDRIGEFglw5BdqHHQA8a6T8= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoMoraUAAAAAA01JpQAAAACA7xWtAAAAAAOWJbEAAAAAAUsxuQAAAAEDAo3BAAAAAQDbQcEAAAADAxSZxQAAAAADak3FAAAAA4HZAc0AAAACAguNzQAAAAEDElHRAAAAAAKSzdEAAAACAIHF1QAAAAMAzkXVAAAAAQDqedUAAAADAvix2QAAAAIAfN3ZAAAAAgPNAdkAAAAAAHHF3QAAAAIAMhHdAAAAAwPJReEAAAADAG/F5QAAAAADkBHpAAAAAwEkQekAAAAAArkR6QAAAAMA6rXpAAAAAQJ3QekAAAAAAWN56QAAAAACPAHtAAAAAAMREe0AAAABAMuB7QAAAAAD6YXxAAAAAgOK/fUAAAAAAnKJ+QAAAAEAH/H5AAAAAgLkUf0AAAACAF3Z/QAAAAOAfJYBAAAAAAMJRgEAAAACg0IOAQAAAAODAj4BAAAAA4F6agEAAAACgjbuAQAAAAMCE1YBAAAAAoPX6gEAAAADgMiOBQAAAAOAlMYFAAAAAoExhgUAAAADgboKBQAAAAMBwi4FAAAAA4AiUgUAAAADAc5yBQAAAAKD/wYFAAAAAQFTHgUAAAADgGNuBQAAAAODG84FAAAAAgP4MgkAAAADgox+CQAAAACAlMoJAAAAAoJ5KgkAAAACgFlmCQAAAAOBZq4JAAAAAoErhgkAAAADAT+2CQAAAAOCd94JAAAAAYNwDg0AAAABgJgmDQAAAAGDBGINAAAAAgHgpg0AAAACgHDODQAAAAACvS4NAAAAA4NRTg0AAAADAkIyDQAAAAIBYsINAAAAAgEjIg0AAAABgAdSDQAAAACDR54NAAAAA4Envg0AAAABgSPmDQAAAAGBfDYRAAAAAwOYQhUAAAAAglFuFQAAAAKC9a4VAAAAAoI1yhUAAAAAA4pKFQAAAAOAym4VAAAAA4K23hUAAAADg3N6FQAAAAKDj8oVAAAAAIIoDhkAAAABAzyOGQAAAAOBKKYZAAAAAALY0hkAAAADgrnKGQAAAAEDHt4ZAAAAAAH30hkAAAACgbwiHQAAAAMCjVIdAAAAAoIpbh0AAAACgbm6HQAAAAEAhl4dAAAAAQHamh0AAAABAnfGHQAAAAABuOohAAAAAYLVViEAAAABgAYWIQA== + KBZXds7jZUAmWGpEdaJuQFAtpBCXEnJAOu18Gelhd0ChLbKvvIJ4QCirfHZXkn5AZPd8k7VJgEC/f8C9d4GBQMckR7BBYoNAv66u5yMKhUDldQObmfKGQK8otFbG2opAeFan1vD6ikBCCViSHeOOQDRo1qLJZZBAMC2Kvro5kUC0f823HyqSQOJD78wAxpJAyZQOuUVGk0AsNMFqLMqUQEWETlBhEpVAQLSE0jVmlkCPdCDujBaXQM/c4sdhLphA2WTyi7gamUA= - + - xZsMQBFvZkDNySxAtjmgQBY5vEDT1s5ASlUqQaPUWkBauek/w8sZQA3XhkD7r5RAahttQGfnNUDHnthA5AehQNI5NEE/ck1AsCjvQLerRUDm+KJAJBYoQAy/DUFXJudB21ksQMJhFUDT4yFAuexMQIOvK0FsjypBwXsCQLHgPUETEQNAClyOQYr4q0A2UpxAvnWEQNEegkKBc35B9mytQG5qG0EtcTVAAtpqQB1lvkBRIT5Bn9vZQJfPBkHJYTBBSNvcQLRzqkILdOJBRj0aQXT3K0E316BAhry9QKf/R0DQC4lAwjg2QVd2mUBxd4lADZ4DQN7yIkB6W6tBUs8FQFFmPkGsEwdA2PxgQQGS20AkqcQ/vIZ2QISfwz/1OJVBca9sQe781z94g+g/5x+5QVTnDUDC+XpBcHTbQdeg/0DMRZdBMuWiQJZC4T8FtONAGi6MQZcGCUGEfSJBhTw+QZ5YKUHsDyRB1yAyQYuKAUJqJ7pAPnaMQFnUDUAAyrlADPRDQWE//0AXDDxAqK6JQQ1iR0HOH7JAa/wiQPH5Q0CYD8NAhWh7QX8JlUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwPplZkAAAAAgjCRnQAAAAOD0PmdAAAAAAFhJakAAAACgByJsQAAAAIArpmxAAAAAoIUEbkAAAABgoW9uQAAAAKCyJHBAAAAA4K8FcUAAAACANBRxQAAAAABVQ3FAAAAAQJegckAAAADAknRzQAAAAIBz9nNAAAAAAOECdEAAAACAEzR1QAAAAAD+ZHZAAAAAACtAd0AAAACAvXV3QAAAAIC7g3dAAAAAADaUeEAAAABAYZZ6QAAAAMDz1XpAAAAAQBCqe0AAAADAaDN8QAAAAECMlXxAAAAAQPuzfEAAAACAV+58QAAAAADuQ31AAAAAAK6kfUAAAABAJdx9QAAAAEAY5n1AAAAAwGrxfUAAAAAAX0h+QAAAAMDb2n5AAAAAgI8Cf0AAAADAsSF/QAAAAICaL39AAAAAgO6Hf0AAAAAAIOd/QAAAAKCoAoBAAAAA4IIVgEAAAAAgTH+AQAAAAACeh4BAAAAAYE+XgEAAAACgT+mBQAAAAKCM+YFAAAAAAFMEgkAAAAAgI6CCQAAAAADL6oJAAAAAABcbg0AAAACAk4WFQAAAAEDmi4VAAAAAYAgnhkAAAAAgTm2GQAAAAEDvo4ZAAAAAwCEwh0AAAAAgUY2IQA== + KBZXds7jZUA3lC1samJwQEg6fe+00XBAN/IJwMJzd0BImFlDDeN3QGqhW3SQU31A+vink2ikf0A= - + - mDf8P5TNGUD556tAOEtyQf/D3kB5XqxAcCRtQGN3H0DUblZAmxfXPxZBSEC4s15BXZAdQdjIlEA+dyJBWu4pQTepAEHkgJVAy/SBQUHeLUHXdJ8/ZPiLQNxQkEAMbuE/Dk4SQcxOvEA1xMpAkxSAQKjhX0FMC55AnSYoQKnSNUBOqBZBod8PQfwxiUDcaQxCdnZFQMzRlEG0eKBBkZMkQOKZikF+LBNBVG8sQA7YM0GyZRBAM3yfQPEQrEDKecQ/qjSVQJfTP0Glsx5CWLUeQBxLX0FtnR5Bs1ysQR/VPUDuNghBWHeWQA0M7UA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwNdaYkAAAADAax9kQAAAAGA3AmdAAAAAQEQhZ0AAAAAAvSdoQAAAAACcoWlAAAAAoH1JbUAAAAAAXm1uQAAAAEA0im5AAAAAAKnHbkAAAAAAGSVvQAAAAICTRm9AAAAAAPx+b0AAAACAdSJwQAAAAOCyRXFAAAAAYBdScUAAAAAAJWJxQAAAAED38XFAAAAAgIRAckAAAADA3FFyQAAAAKDgF3NAAAAAgD2gc0AAAADgttFzQAAAAIChc3RAAAAAACmRdEAAAABARqV0QAAAAMDCDXVAAAAAoD9jdUAAAADAnLJ1QAAAAIBq8XVAAAAA4PFQdkAAAAAAS6V2QAAAAEDfwXZAAAAAgEdUd0AAAADgpcJ3QAAAAADpIXhAAAAAIO12eEAAAABAc5t4QAAAAKDTtHhAAAAAwKD0eEAAAACAzP54QAAAAKD8EHlAAAAA4JkgeUAAAACgQTJ5QAAAAICsT3lAAAAAIPazeUAAAABgMMp5QAAAACD+43lAAAAAgDf1eUAAAAAg7A96QAAAAGACV3pAAAAAwH2YekAAAABgELN6QAAAACAVyXpAAAAAoPRAe0AAAAAglFJ7QAAAACDaj3tAAAAA4O6he0AAAACADt57QAAAACBn93tAAAAAoNVZfEAAAACAtGZ8QAAAAIAgg3xAAAAAYImgfEAAAACg/bR8QAAAAKCiwnxAAAAA4DvkfEAAAAAg//h8QAAAAGA17X5AAAAAQHOHf0AAAADgbkWAQAAAACCih4BAAAAAoGvGgEAAAADAgCmBQAAAACDcL4FAAAAAwM1DgUAAAAAgumWBQAAAAECyqYFAAAAAoLLggUAAAAAg7wGCQAAAAKDSCYJAAAAAgCk6gkAAAADgOEGCQAAAAADWR4JAAAAAIKBSgkAAAABggV6CQAAAAKCleoJAAAAAANOZgkAAAADgX5+CQAAAAGBav4JAAAAAwNT+gkAAAABgXEeDQAAAAOBATINAAAAAYHnag0AAAADgPQ+EQAAAAIDKIoRAAAAAoGJLhEAAAADgKGOEQAAAAODXcYRAAAAAANaGhEAAAAAAWY6EQAAAAKBDlIRAAAAAoIAChUAAAACgPh2FQAAAAIAuJ4VAAAAAIJFYhUAAAABgIuuFQAAAACAlc4ZAAAAAgJH5hkAAAABA4gSHQAAAAAAHC4dAAAAAIBBrh0AAAAAgYqCHQA== + NrgMGZxjYkDiYBUjzERrQJEaXId5UnFAAAjXMD6zc0DMvNRcKXN4QDuqTwbu03pAWhQhfAGEfkAdBBYto/KAQFi0ksBMeoFA - + - TThbQLHsXEDlNy1AhTUOQdPY1z+ZT6JArlYQQEK4sj/nMaE/j4v9P0CcGUECsuxA6tGKQMGL0D+g+jVAyrI+QDEOl0A3XCNA1oqHQDVuKEBKLghBYQo2QF6WBkFmhtc/yswzQJZcwkAbVAJB0aUdQVU0tj9i0EpB4l5IQAQC1kDqAnNAiJFtQG+ysj9LDhFBoMfXPzs9KkBFOqRArLokQbtYDkFr9qhCxiN+QYjoJ0GYBXg/0HyMQGxeRkHwE59B48EVQYK/1z/LxK5ARjA/QFtpg0GEGzBBboNrQGEVAECyFWNBboatQYf0pEDPAkxBTCTVQbq9f0CGe4ZBWO0OQphFNUFoTLhAjw4zQh6njkEbqjhBL+pGQK8qc0EPrHJAcvEpQqbrEEAHkwdAbnuSQKDrAELMWWlAQxBaQQBY7T+O5N5AxNybQLPIGkJcfYJBTCluQYdOJkLS/PVA8IYCQlDSnEGkujxBDWmuQEk8aUE2Y5VAwto1QD0CGkEitpxA6LEFQQTjDkEALD9A7ObBQEuBZEGUDShAS6QXQph7bkFrfTRB6q6pQTL+xD84nYRAN5yLQGfl4kCVx+NACh9PQSWLXkE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4CZfaEAAAADA7iRsQAAAAMA3g2xAAAAAQDukbUAAAADAeIBwQAAAAKB4JnFAAAAAAMSCckAAAACAYaNyQAAAAMDnsHJAAAAAAEUjc0AAAACAUBV0QAAAAAAzI3RAAAAAwBtVdEAAAAAgc7h0QAAAAED1AHVAAAAAANIkdUAAAACAhzF1QAAAAIBhlnVAAAAAwKMSdkAAAACAKHJ2QAAAAIDP0nZAAAAAgDpTd0AAAADAnXJ4QAAAAIC/hXhAAAAAgPs0eUAAAAAA74F5QAAAAIB5MXpAAAAAAOXCekAAAACA9EF7QAAAAAD2oXtAAAAAgFUUfEAAAACAGWR8QAAAAABjpXxAAAAAQItxfUAAAACAnDt+QAAAAADnvn5AAAAAwKYWgEAAAABAo0KAQAAAACBqWoBAAAAAQK7IgEAAAADgrxmBQAAAACApWoFAAAAA4PtqgUAAAADgb4OBQAAAACDcLIJAAAAA4P1OgkAAAADg8KiCQAAAAGAZsIJAAAAAIDe8gkAAAACgeOSCQAAAAGBE/4JAAAAAoHESg0AAAACgnEqDQAAAAIBSU4NAAAAAwEBZhEAAAABAkL6EQAAAAGDxJodAAAAAIB/4h0A= + KBZXds7jZUCwLijacuRqQBTpB48/A3JA5m5gjBGDc0Co+Jn0QjR8QHp+8vEUtH1AGyjziY0igUA9bueitmKCQEgumC/vSoRA - + - JIfaQBmyGkCI/ptA6FgmQNL2WkA7CWpAtK8hQOPOBkGch21AftoGQfks2D+NHBpALILDQNTBqUDbgHNAsMKLQICExT99Y+ZAzQt2QAW3kEAozWxA1KtRQJeOVkHUImxBqjkaQHatp0BTM3JBcu22P6ydfUFTigdASHOgP5iw+j/E0NxAgL67QO31rEAW8LJAfEEVQQzSRUAchMQ/XWuqQLbprkFY5IZB2sOzPyRuoD/7mLtAqatHQa+vLEB+DjNB2oYkQa6iFEHMrD9Bgbt+QNncxkIf7GtBW7DCQAHOAkEPEjxBvgLkPw== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAEHuZUAAAABgZ0JmQAAAAMC+/mdAAAAAgG6pakAAAADA4cNqQAAAAGC6gmtAAAAAIMFjbEAAAABgU79sQAAAAMAhtm1AAAAAQBrLbUAAAACAbYJvQAAAAOCKoW9AAAAA4H7PcEAAAAAAx+BwQAAAAACpAnFAAAAAQEYwcUAAAADAOKFxQAAAAEBi5HFAAAAAICIUckAAAADAb/JyQAAAAACjBHNAAAAAwBxlc0AAAABArpBzQAAAAECA4nNAAAAAAKERdEAAAACAkyB0QAAAAMD4YnRAAAAAwDmJdEAAAADAPQR1QAAAAMDCMHVAAAAAwMYTdkAAAABAGUV2QAAAAACSdHZAAAAAQP42d0AAAAAAlFN3QAAAAIDYdndAAAAAwO+Ud0AAAAAAdBd4QAAAAECjQ3hAAAAAgPpQeEAAAAAAGWZ4QAAAAIBrcHhAAAAAQKmSeEAAAABADdB4QAAAAIAi83hAAAAAwJoMeUAAAADAgDR5QAAAAECwQXlAAAAAQIqCeUAAAADA9kN6QAAAAICkUHpAAAAAwAljekAAAACAj7B6QAAAAMCwZntAAAAAQNAvfEAAAAAAgnN8QAAAAADGpnxAAAAAABzFfEAAAADAa+N8QAAAAMBWEn1AAAAAQBozfUAAAACA1Ht9QAAAAACOiH1AAAAAgEbXfUAAAACAkAJ+QAAAAIDIm35AAAAAQLKpfkAAAABA4h5/QAAAAADbKX9AAAAAgHBWf0AAAABABG1/QAAAAECxon9AAAAAQFCyf0AAAAAAyB2AQAAAAGCvU4BAAAAAwLBvgEAAAABghXeAQAAAAGAOh4BAAAAA4DWRgEAAAAAgVJqAQAAAAOAtoIBAAAAA4HypgEAAAACArLGAQAAAACCY9oBAAAAAoCkOgUAAAACgGBeBQAAAAGAz4oFAAAAAoNsCgkAAAACg8GKCQAAAAIAWaYJAAAAAICl0gkAAAAAgh9GCQAAAAMDvCoNAAAAAoCYSg0AAAADgyGCDQAAAAEDAcoNAAAAA4Eiig0AAAACAgOODQAAAAID9U4RAAAAAgBCThEAAAAAgC/uEQAAAACBZJ4VAAAAAoBdchUAAAABgvquFQAAAAIBOs4VAAAAAYMjahUAAAADgKeKFQAAAAGCsWoZAAAAAwDhhhkAAAADAdmuGQAAAACBCc4ZAAAAA4NNKh0AAAAAgGlGHQAAAAACJdIdAAAAAAF4ziEAAAAAgvXiIQAAAAADo5ohA + NrgMGZxjYkCGpXi5ZgJtQNq4KFfnQ29A - + - UOCzP3i+s0BfIzRAiUerQFLN6j8YKQhAbHS6QHhvW0GAGetADFOOP4aNhEDKs4lA5O8/QMCB/D//b/xBomILQVn9x0DhTIFB2P99Qb8qF0FTwSRBzio8QQmUMEH31G9A30gTQpc0pEHcbxJBvjDEP3pFlEAyujFBVe6RP+AL3D/SpQlBbZoaQFSykkAzEnlBONGEQNd01z+rAH1CPMVIQMOJkEAY16xALX4cQYF2uT+ufKlBLzxyQZRFjECZrRRBJL8BQGba8EBI4xZBRzNFQfk+KUCcWaFAYPwlQRhoiUBMtvhAS1mMQC1ykEDoIeRAXTy/QE+mbUFQ2tVAPqG6QBXQjkBF6p5A9TqaQM76SEBHjBlBej0KQgkQLUB/eRlAhU9FQjh7jUIVh3xAsfXVQBH1YECyzXdBoxC2QL4FqEDBsbpAaOMHQpCPAkIHFxtAHO/mQOPgjT97/zxBw65eQYU+6EIUpElBtL1dQXM3s0B6tw1AljU2QFjZKEFQj1tAXhVRQTmp6ECpZrlAKc3OQUQHW0DyFARB4m3lQMC1gkDsJ4RAOf93P4xsl0C08xxBLpdcQdTYF0Kq3DdA4ibBQNJoUUFDfntBrcA+Qdy0FEEIQJxB + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAINHJWUAAAACArwFcQAAAAKBMz1xAAAAAoDHHXUAAAACgeEdeQAAAAMA7jV5AAAAAwO1LYEAAAABA7V9gQAAAAGCZAGFAAAAAQB0jYUAAAACgIGRhQAAAAODBGmJAAAAAQGtkYkAAAACgFmpjQAAAAIAAyGNAAAAAQMTkY0AAAABA5TFkQAAAAOBBY2RAAAAAAE6FZEAAAABgVrxkQAAAAEDJgmVAAAAAIOaiZUAAAACA/8ZlQAAAAGBv5WVAAAAAQNEBZkAAAADAqqlmQAAAACCWCGdAAAAAgMheZ0AAAABATsZnQAAAAOAPCWhAAAAAwBofaEAAAADAKUNoQAAAAADmhWhAAAAA4KnpaEAAAABAcilpQAAAACBTZ2lAAAAAQL2AaUAAAABgt6RpQAAAAMAT0WlAAAAAgKZHakAAAAAA9mlqQAAAAAA2iGpAAAAAQIXiakAAAADASARrQAAAAIA4JGtAAAAAgBRIa0AAAAAAZaJrQAAAAMB3+2tAAAAAQGRlbEAAAADAi6ZsQAAAAEDlz2xAAAAAALEDbUAAAAAAoWRtQAAAAEARh21AAAAAgCi/bUAAAABAaQJuQAAAAIDDIW5AAAAAAPNqbkAAAADAwYVuQAAAAMDLnG5AAAAAgDXBbkAAAACAEOVuQAAAAMDwZW9AAAAAQEaHb0AAAACAJ6VvQAAAAACMwW9AAAAAQIDib0AAAAAAPhRwQAAAAEDfI3BAAAAAAHUxcEAAAADgFFJwQAAAAABycnBAAAAAwJODcEAAAACAU45wQAAAAEDHr3BAAAAAoL/QcEAAAABAzONwQAAAAGBR9XBAAAAAINkBcUAAAADAkBNxQAAAAED3JHFAAAAAAO8wcUAAAACA00ZxQAAAAOATZnFAAAAAwOVwcUAAAAAAMoNxQAAAAKDXn3FAAAAAwGmwcUAAAACAvc5xQAAAAAD29XFAAAAAQJMTckAAAACApTFyQAAAAABLQXJAAAAAoM9SckAAAABAeWFyQAAAAAAqbXJAAAAAwEF4ckAAAABA7Z9yQAAAAAD+sXJAAAAAQO7WckAAAAAAc/NyQAAAAOD7BnNAAAAAgEkwc0AAAABAOkVzQAAAACDpUHNAAAAAAPFic0AAAADAVHFzQAAAAACUfHNAAAAAgESLc0AAAABAzZZzQAAAAMB0pXNAAAAAoNuzc0AAAACgDMRzQAAAAOAd5XNAAAAA4Lvzc0AAAABgTG50QAAAAAAThXRAAAAAoFTTdEAAAAAgkn52QAAAAGDCw3ZAAAAAoD/0dkAAAADAFIR3QAAAAGBkondAAAAAIAhOeEAAAADgw494QAAAAOAXJ3lAAAAAgLO0eUAAAADgk8J5QAAAAGD55XlAAAAAIMHEekAAAACgg9h6QAAAACDm43tAAAAAQNj0e0AAAADgGYZ8QAAAACCesnxAAAAA4GjBfEAAAACgC9Z8QAAAAOAJ1X1AAAAAYBflfUAAAADg4OZ+QAAAAOBApX9AAAAA4AUhgEAAAACAKi2AQAAAACDNRIBAAAAAYMxKgEAAAACg2HmAQAAAACAggoBAAAAAIGYKgUAAAACguRSBQAAAAKA6WoFAAAAA4MVzg0A= + NrgMGZxjYkCJy7y2HKVqQHzKEHuiRG1AsyNeuPyCdEDNvNRcKbN0QM0asbCBxHtA2uSlL6uTfEDIkCfCk/qBQCdFs49NSoJAj7zN0f8ChUAeJDO+hOKFQLrmT9RLO4dAsgTX+dvqiUDYNwy/o8uKQKnjVigTg41A2Gb66E9UjkAeSuICbraQQB5i/TG1xZBA0HhiQPtRkkBoOrSgmbqSQFCQWVVRFpRA5Cn0N7WGlEDfuLdKfd6VQC4axtXgipZA9M34S6P6lkCqCQZt/FaYQNjjy1PZfphABzP2aDhXmkCJZbPIAouaQAl9qt1YT5xAUSPIBmRbnEDtkn3ljtOdQM0SCJ5/J55ANhW+sa8vn0BNKv+y1eufQA== - + - 8BRDQh6cU0H6sehACg5IQgrYAUAckMlARt+AQPpGQUB/nCdEKNg+QbOtd0DVMV9ApSPGQEvHlkDNoQxCaaIaQYcvHEDTNplBujR+QS1vAEFNX0RAuELMQONtbEEXzo5CrpZRQOFLBkF7Cs4/DwpsQLZh6UKb3jZAQL8nQVkCuUCj1glBzpWRQFhtPkAn64dBDN2UQTEDPEGEwA5A0bNCQNfpkkGIBM1A0J4LQE7OiEG4yJFAot00QeXZA0DBCW1ChVNCQU3sMUGqqWpA2AwfQ+SNpkUzBBVDJa3XQBKvC0Cjh1FABIx5QS1QRED5yCdBpR6VQfX9e0AYVGxAjCaKQEyVoUHmyElCuKqwQQO7AUDtngZB41KjQKn8IEH3RERFaDQ9Q33NBEFtgzREbxESQjk3o0DeRdU/JifiQT285ECLvB5Cua/mQX2kMEEXaRxCFVghQNTt10AJ6sxARB6zP08UMUPTPDpBhnpiQlGFAUA3TQNCtCsYQWm1C0LqB+xBov5+QXyICUGJy9FBuvrlQIYlwkIkPxxAoUCKQKm4pEDFM8FBy/ScQWCqIUGs4upAxHZ5QP8IeECVN5RA9jwlQaGuAUCR2nJBz4tiQfXbuECAufNBG1sQQX5Rg0CA9g5BF6wPQhRC0kLt3tlA5K2CQSImF0GM/kNAdx7rQMOpT0BM6DZBDHOsQ1k0l0GbgjlGBFMlRCZZNkD3CQlC9FOWQUXVHUGKsS9CJTKKQJDj2UCfo+k/gFLDQDdODUHG9ANBb3hWQdux1UEPZ6RAgB9JQwZ6k0GyzEpB6S5EQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4P8hY0AAAADAPKFjQAAAACAYfmVAAAAAoKLjZUAAAACg0QxmQAAAAEBh5GZAAAAAIIMoZ0AAAADgqpNpQAAAAMB1KWtAAAAAgGPDa0AAAADgdCBsQAAAAACQRmxAAAAAANiEbEAAAABgYCZtQAAAAIBDwG1AAAAAALUIbkAAAABAMqhuQAAAAICTvW9AAAAAwCEycEAAAACAW39wQAAAAIAXoXBAAAAAAAmwcEAAAADg0uNwQAAAAAAJPnFAAAAAgL1IcUAAAACg2vRxQAAAAAD5YHJAAAAAwLiOckAAAADAj51yQAAAAMCRcXNAAAAAgEOhc0AAAABA+7t0QAAAAID90HRAAAAAAGs1dUAAAABAsEJ1QAAAAMDdQXZAAAAAgOe2dkAAAACANMd2QAAAAEC/03ZAAAAAgLB6d0AAAAAAVaF3QAAAAICr33dAAAAAgNVEeEAAAACAf1l4QAAAAIAsdnhAAAAAwIyReEAAAADACAB5QAAAAMCYD3lAAAAAgDCzeUAAAACAL715QAAAAMDv7HlAAAAAAEh/ekAAAADATAB7QAAAAAB3EntAAAAAwI9We0AAAADA+mN7QAAAAMD0f3tAAAAAQLmhe0AAAABAjt17QAAAAECxGnxAAAAAgFSifEAAAAAAFsN8QAAAAAB//3xAAAAAQJEOfUAAAACApS99QAAAAMCmQX1AAAAAgKOYfUAAAABAor19QAAAAMDj4H1AAAAAwNb5fUAAAADACCR+QAAAAEB5QX5AAAAAQFlMfkAAAABAPo1+QAAAAMAypn5AAAAAQIOzfkAAAAAAzOJ+QAAAAMATHX9AAAAAgEctf0AAAACgJG+AQAAAAEDHqoBAAAAAoFzygEAAAACA7VqBQAAAAOBYwoFAAAAAICvHgUAAAACAHtGBQAAAAGBk4IFAAAAAIEsygkAAAADgzDmCQAAAAACGeIJAAAAAYKZ+gkAAAADguYWCQAAAAGAtj4JAAAAAgAWbgkAAAABgEaKCQAAAAOBuvYJAAAAAIH0Cg0AAAACgKByDQAAAAIAdT4NAAAAAQJJyg0AAAABgrbqDQAAAACB4+oNAAAAA4D8DhEAAAACAugqEQAAAAKDoEIRAAAAAwCRghEAAAACgteKEQAAAAKBGQ4VAAAAAwFGPhUAAAADgedeFQAAAAOCC7oVAAAAAILMzhkAAAABgtT+GQAAAACClXYZAAAAAQPp9hkAAAACA1+mGQAAAAMBNA4dAAAAAwJIsiEA= + KBZXds7jZUBxWoXuS4RsQFAtpBCXEnJA - + - tYgsQJf0FkFg5kZAOcjOQYlVjUC4XaNAwAY9QHDKGkDxcClAT7ZGQOxTD0EA2SNA+EyOQE+5xUDGX4hAQ3sMQS6Lm0Fes4dBweWCQHMFCEBEZq9AHjItQJjnuEC2FP9AD37MQIfwiUAqQGZCq2hhQM7coT+a7AxBThjUQSQrtECsfus/7tPXQY/qCEG0LZdAbqZAQXSE4UCCx6BAdNCYQcyDV0Hk1ohAIcisQOfq40EDqp1BsIfHQQJsJEBo81lAC9UsQSwsqkCW+vRAlqHEQoePfkAUpIZBt2EIQP58mkDyvj1BpzOLQaIqkD8geXdArJ+KQJoi/j/60qxAyiHZP0L6u0JS9JlAiSmhPyNK9EDLUuhBM7QLQtOOc0CPyt5B/1l3QECDGEInXfNAhnDwQMMjoj+UrjxBzyrTQXN+/z8qF+w/ZMJFQByOFEK6SL5CntjRQDChp0ETfRpA89lWQXuf3j8IbhZDADoMQjOgY0AyHP4/uB1SQIsASEF9s61AX+fpQKvy9EAioMFD61I0QWczG0IPehZB9qWGQ8WzpkFdoLZAbK4DQQQdV0F1oApB3sYFQbkvKkBkzQRBbtYNQRyNQUG1C25AJUM7QcGBsz8zeJJCz3eOPw== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAKc+Z0AAAABA5WFpQAAAAGD15HBAAAAAAKcCcUAAAACgZKNxQAAAAADoEnJAAAAAgEYzckAAAAAg20lyQAAAACCXb3JAAAAAgIMDc0AAAACAojJ0QAAAAMDYQXVAAAAAgOJPdUAAAADA4+h1QAAAAEDmAXdAAAAAAI0zd0AAAAAASGt3QAAAAEAWIXhAAAAAAPZEeEAAAADArbR5QAAAAADk63pAAAAAgNche0AAAAAAZKV7QAAAAMAotHtAAAAAAEXFe0AAAAAAOvZ7QAAAAMDBF3xAAAAAAO0zfEAAAAAAiGF9QAAAAIBzVn5AAAAAgDapfkAAAADAFGh/QAAAAOAiA4BAAAAA4OovgEAAAADAwoKAQAAAAKCTk4BAAAAAYHiagEAAAACgEA+BQAAAACB4K4FAAAAAABZTgUAAAACgtVmBQAAAAEDDd4FAAAAAYBxShEAAAABAQ1CFQAAAAGDrA4dAAAAAYKlTh0AAAABA05uHQA== + 4qRcexsiYEAoFld2zuNlQGS4z0t+BG1A - + - xO7/QIINXUJIhZVAzBFRQW8IRUAwSUZAe102QNU5xUBPzIxAt6B0QKZZ2D+VjmVBHyZSQItjUEC2KS1AUrjOQClBoT+LobxATLFfQLrEw0DiHC1AenWpQGqKEkCXoyhBOiHHP3jjBUHxF+BAfjjNQILvIUBEmBFAiej2QBvKNEHXRQhAQa68QNtP7T/RaspAC5fvQP0nrUAHBodBOK0WQIkn1kDEziJAztLrP4jnEkLSvppAFsm1QHPitUA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYOdnY0AAAAAgKdtlQAAAAAD+AmdAAAAAQG5NZ0AAAAAg0QNpQAAAAABugWlAAAAAgHoKakAAAAAAq/9qQAAAAEDfhm5AAAAAwCz8bkAAAADAPmpvQAAAAKAhAXBAAAAAYMsScEAAAAAgqCBwQAAAAMCwYXBAAAAAAL/WcEAAAACA5+BwQAAAAABAEXFAAAAAYD8jcUAAAABAEBJyQAAAAAASVHJAAAAAgJ2Fc0AAAADA2ONzQAAAAIAPEHRAAAAAwEC1dEAAAABAUTF1QAAAAAD8VHZAAAAAAOgWd0AAAABAD3d3QAAAAEC0hHdAAAAAQLqXd0AAAACA4aN3QAAAAIDsVnhAAAAAAHpzeUAAAADAJuN5QAAAAABsSXpAAAAAAF+NekAAAAAAh8J6QAAAAIAb/HpAAAAAwHYee0AAAADAP0V7QAAAAACHc3tAAAAAAH60e0AAAAAA/uR7QAAAAEDTEXxAAAAAAF4efEAAAABAcHJ8QAAAAEDS9XxAAAAAgJWtfUAAAAAAwvJ9QAAAAADHcX5AAAAAQOyOfkAAAAAAErJ+QAAAAIANy35AAAAAQD31fkAAAADAvhN/QAAAAEBwKX9AAAAA4Bm4gEAAAADA9VSBQAAAAMBrdoJAAAAAoMSrgkAAAAAgO2+DQAAAAGDhioNAAAAAQI66g0AAAADg9QKEQAAAACAMCIRAAAAA4CLshEAAAABgvAqFQAAAAID6coVAAAAAYCXGhUAAAABAzgSGQAAAAKBzWYZAAAAAoFkIh0AAAADgnGeHQAAAAOBsbodAAAAAAHVSiEA= + NrgMGZxjYkD60UzrnGVsQOzQoK8iBW9A6yam0jxjdUD+7sGlghN4QOuEgiaVdHxA/kye+dokf0B1cS+99sKBQH5VvaYZG4NAuTQoZG8LhkB1ND3VULOGQOY6zQnRM4lAdWMr//w7ikA= - + - TxW4QPZYWUCMGK1AuYRuQGwEF0ArFQlBqpdSQAAUL0A+Kz1Aa1j9P9kQiUAW7VJAtzwPQKO7BEE0RT5B+reJQP/p2D+GPA9AFm01QREXIEABGg5AxQnrQFi0jUDrnh5Bf5TJPz7sX0GEYqE/5rwRQNn6t0EnPkVAo1gtQC5qL0G2EoVAUqUuQFBH6z92Ky5B08ugQAfDLEH2jOFBVDvQQY0kgkFKQxFBaWBzQO3gnkDOjM9A/1OMQLe2OUEGUVJAR8gRQniiIUCUhMhAlgt1QDan1kBwkWBBDpEkQH0tnEATVzlBsCxlQNDnG0GGQdtBgbVHQbBgb0H9jiJBuVb4QQNhVEIaqbFBt0ZJQAhtoECYIdNAxtAmQSxfYkCKJQJB8ToRQDDmh0AtRKNA3SEhQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4BjXZUAAAACAGf1lQAAAAOCvSWdAAAAAwGaAaEAAAABgiKFoQAAAAEDG6GhAAAAAgF1FakAAAAAAcptqQAAAAOA3QG1AAAAAwEShbUAAAACgocttQAAAAADc9W9AAAAA4DphcEAAAADgSIBwQAAAAIAp7XBAAAAAQNj2cEAAAACgxwFxQAAAAMBgdXFAAAAAQN4SckAAAABAp9ByQAAAAOD7BXNAAAAA4Inhc0AAAABAvUB0QAAAAIAQVXRAAAAAgHPtdEAAAACAZgR1QAAAAED9P3VAAAAAAJKSdUAAAACAw+F1QAAAAAAY9XVAAAAAgKwEdkAAAADApBJ2QAAAAABSJHZAAAAAQG+xdkAAAACAYAV3QAAAAIBJIndAAAAAQIAzd0AAAADAeG53QAAAAACfrndAAAAAQO5DeEAAAABAj1Z4QAAAAIA7tHhAAAAAQEAPeUAAAAAA99F5QAAAAMCH8XlAAAAAgJI0ekAAAADAAFV6QAAAAEBJQHtAAAAAgFpRe0AAAABAA7x7QAAAAIBdYnxAAAAAQIFufEAAAAAAI/58QAAAAECRY31AAAAAgJd0fUAAAABAbaJ9QAAAAICKs31AAAAAQGQhfkAAAADAhUd+QAAAAMCSt35AAAAAQObKfkAAAABA2NV+QAAAAEAI+n5AAAAAwK1Xf0AAAABAW2V/QAAAAMB3439AAAAA4CZWgEAAAABAa2+AQAAAAMCxeIBAAAAA4EecgEAAAABgI8mAQAAAAGDx14BAAAAA4A/jgEAAAAAgGeuAQAAAAEAm/YBAAAAAQKofgUAAAACgECyBQAAAAOCHMoFAAAAAwFs6gUAAAAAAAkKBQAAAAMClVoFAAAAAgNVdgUAAAACgYGiBQAAAAMC4eYFAAAAAYFZjgkAAAABgvlCDQAAAACAtgINAAAAAAJOUg0AAAADAKduDQAAAAEBd7YNAAAAAYNpxhEAAAADgdRCFQAAAACDpSoVAAAAAYMaNhUAAAAAAiaqFQAAAAEB23IVAAAAAIJUJhkAAAACASGuGQAAAAMAfc4ZAAAAAQCfPhkAAAAAgkeuHQAAAACB1NIhAAAAAgMR0iEAAAAAg83qIQAAAAKARhYhA + KBZXds7jZUAeR9VQy0JnQIkw7CrX8nJA - + - BQycQIcs2T+6lJxAAqSAQDszFkCNwNFAK1KLQdJf6z/T/MVAQ4yHQBK3P0D1EjNBCJppQcpu2ECI//0/xnCEQGl6fUAOmqpAZeCOQWKYa0EQSr9APFqOQEC+kEBbh6FAgu8SQWCwj0HxlPBAWtz7QTD5I0C9SwJBSTGMQPREf0H/cOs/LEUkQKTpKkBegA9BcHZNQcn9/T++3hZAwjiCQrCGrkDaxDlBSb+bQmcd5EDqoGNAgqEaQGDRsz/CbvxAcqeYQD6EY0AIjgFC/usrQZs4V0CVeApB07swQZ0sv0EehYdAo7v9QIvC6EAT9yNAOh4DQWGBbUBRrA1Bv3AzQYfg+D+9k/Y/66q9QZPJoEFt3lFAdtjlQYqWRkHGqAlB8aUaQMx4NkDCgzZA07PRQBnFIUHUKMJAwOYTQYGd2z9iU9JAYq0SQRXPB0CdL3NAQ7hFQXZHnEChf7JAAT2DQsjakkBcz/g/KVOpQMGCMkCZCxlCVuoGQePl2D/NrZRBQ/gGQdomEEILf41BBxKGQTRHCUFEFYtAq+mGQdz3ekHGGNdA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgDkmYEAAAABA60ZgQAAAAMArpGBAAAAAIGppYkAAAAAAY4BiQAAAAIA+4WVAAAAAwIGoZkAAAAAAgsJmQAAAAMDA5GZAAAAAwPsIZ0AAAADgemNoQAAAAABkfGhAAAAAAN3saEAAAADgpwhqQAAAAKDRH2pAAAAAwLFjakAAAACA4MFqQAAAAGB1yWtAAAAAwO5BbEAAAACA12FsQAAAACDDg2xAAAAAgDwJbUAAAAAAj/9tQAAAAED1hG5AAAAAQIembkAAAABAXL1uQAAAAEBM7G5AAAAAAKo/b0AAAACA1ONvQAAAAKDSJHBAAAAAgPBRcEAAAABAnWJwQAAAAEApg3BAAAAA4KaxcEAAAADgguRwQAAAAEBq8nBAAAAAwK8CcUAAAADAQxJxQAAAAKDEL3FAAAAAwOBDcUAAAABACZFxQAAAAEDH03FAAAAAgMvscUAAAACAHhNyQAAAAICHIHJAAAAAgHoxckAAAAAA/mVyQAAAAECBwnJAAAAAADvMckAAAABgEwRzQAAAAMBELHNAAAAA4JZAc0AAAADg/ExzQAAAAEABcXNAAAAAwJyQc0AAAABAK7FzQAAAAIBl03NAAAAAQHXjc0AAAACAZPJzQAAAACB8BHRAAAAA4E4OdEAAAAAAtyR0QAAAAIBCNXRAAAAAQFZydEAAAABA5pJ0QAAAAGDwpXRAAAAAQGHBdEAAAABg9M90QAAAAKBNAXVAAAAAABUjdUAAAACA2i91QAAAAEDvUXVAAAAAwMthdUAAAAAgF3N1QAAAAAAmfXVAAAAAwNCRdUAAAACAgrZ1QAAAAOC+xHVAAAAAQM7+dUAAAADAERR2QAAAAMDZO3ZAAAAAAH9ZdkAAAACg+Gh2QAAAAECGj3ZAAAAAgBOrdkAAAAAg5rp2QAAAAMCgxnZAAAAAoAz8dkAAAACAqxJ3QAAAAMA0H3dAAAAAoHI0d0AAAADAlEJ3QAAAAEAVUXdAAAAAYC/nd0AAAACANRF4QAAAAGCFH3hAAAAAYDoreEAAAABg/Ut4QAAAAADUVXhAAAAAoK5meEAAAAAAo4R4QAAAAKDvsXhAAAAAoITieEAAAAAghTh5QAAAACBSRHlAAAAAYENWeUAAAABgIgt6QAAAAMDQA3tAAAAAYCMle0AAAABg20R7QAAAAKCaY3tAAAAAANC4e0AAAABgf/l7QAAAAMClQ3xAAAAAoDZVfEAAAADAf2R8QAAAAOALc3xAAAAAQJeBfEAAAABAnJF8QAAAAKBc2HxAAAAAQLBxfUAAAAAgK8F9QAAAAMDgTn5AAAAAoIuUfkAAAADgHNF+QAAAAGB33X5AAAAA4KP+fkAAAABg9z1/QAAAAMBKXH9AAAAAIPlmf0AAAAAgyHZ/QAAAAGA6h39AAAAAoJKxf0AAAADAGtl/QAAAAIAeAYBAAAAAwHo7gEAAAABgkoqAQAAAAICkyoBAAAAAQC3tgEAAAABALBmBQAAAAMBhIYFAAAAAAD1DgUAAAACgImCBQAAAAGAue4FAAAAAgPSZgUAAAABgrqKBQAAAAABMsYFAAAAAYP/vgUAAAADA1C2CQAAAAIA3NIJAAAAAYAo6gkAAAAAAdVSCQAAAAOA8W4JAAAAAoDB2gkAAAADgEYGCQAAAAIBFu4JAAAAA4GDDgkAAAACg5kSDQAAAAADpTINAAAAA4KWng0AAAAAgmtCDQAAAAIDsF4RAAAAAYE9JhEAAAADAQImEQAAAAMBfj4RAAAAAwHDThEAAAACgvhqFQAAAAODSIYVAAAAAIFM1hUAAAAAg40yFQAAAAADuqYVAAAAAIKXHhUAAAADgZbqGQAAAAMAnw4ZAAAAAoNYEh0AAAACAQwyHQAAAAICikodAAAAAYKW8h0AAAAAgmiGIQAAAAACKK4hA + NrgMGZxjYkBeG3g88qJrQK9rGHLRYnNAdmjQV5ECdEA9w2SRqTN6QK/J9MUpdHpAakWeHmxCgUACj3zlYLKBQDFxRC7YSoRAAr5qDw07hUCWng5LZEOJQPt4DeFZY4lAJ6OP46X7i0DFgNaT23uOQCfSfQ1ShI9AFFdQ2DOKkUBd2ZCkVMaRQF5HInZfjpNAD/D1spoSlEDeXhmLtVKVQPRzWozbnpZAJ+FZV9aulkBx0Sv1AbOYQNn3vmUcK5lA8egiClh3mkC9DZJtUq+aQAf+Ywt+s5xAo/+HGJ7DnEBVFu0m5E+eQIcVWyDUd55ABy1SNSrcn0C2zN98CoKgQHdYW4c1NKFA - + - cr0lQvJa7UBu6e1AXC0UQjy3ZkDqZ8Y/77NDQdyhokCeaRFBQPPYQJpcN0Ls1KA/bLgkQB/qw0A2whZCOsXcQVlZsUAZAgRAZjzMQnFjYEJT1MxAWE+0P60+SUFrscRC5WUYQPxRn0Dpm7M/NC0dQbhyWkGA/4VBvvKZQGRI2T9Se7FAwtPLQCyMD0EOfvBAWpMkQ1ekA0FFBltAaPqkQgBQjEAD5gBAQA9uQAnOcEEfsUVA6MTOQYVAF0AUzM9DP4zjQbIKLkFnyVtAoiZ9QCKqBkHDs4lBLnH2QCWT7UBCnuhAQk3NQBH0D0LnD5hBcfILQh83AkE1PgZAbQOvQbwWSUOuVrpADd9KQL5lAUHYKFRA3SrBQldkKEGY2mxDkoeSQcWLAUJhr+VAwMdFQHHjWkBQpuo/7z3ZP9CnuEGS0aVCndqVQfzrtUBkc51AsFcdQnhrSUIkRo9DOOAHQdQskEFWzr5AmN4OQrab3EB6w7tAx7FZQXQ9QEAUzAZC0ivjQb5nDkMwLZNDNgG6QRD/FkCK/+tBjcXnQMJiB0EumbtCMZo2QKCVNkCFuoJBWuGoQTQ6qECRC/4/wBXfQQsCn0Evb0RBmejDQHIrR0GkRW5AI4L6Qaon2T+9loVBuod3QDXSJ0G4UHBB8QQkQF5f+EKUulNBGMaeQZnGL0JxilRE4I1qQ3ihs0GhbNk/Yqg9QcLBREHt779BeKu8QNCdMEGkD51BhLtwQTxABUO8TrQ/BmOSQCUgkUAU2BtBIr/JP7KyqkAU8wlA/wrgQZVIh0EEud9AHQrHQPMbK0HZ8kJB3/gxQdh+xkFsCdZDtNabQgr6TkE9DixB7uQeQaV1oj8Vi91Ab7+OQO8LikJKtztB/04zQeck30JvhSxCfdMiQGp7PUEm6sJALP79P6CgE0JLNcFAv1GzQPs1nj8Qd5ZBvAwTQG0DF0JIXpZB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoPtnZkAAAADAx4lpQAAAAEDQ5GlAAAAAQJrFa0AAAABgwiVsQAAAAEBiSWxAAAAAoC+jbEAAAAAAzuVsQAAAAIBr7W5AAAAAYMwlcEAAAADA/lFwQAAAAMANc3BAAAAAYDawcEAAAADA9QJxQAAAAADCP3FAAAAAANUUckAAAAAAyJ9yQAAAAGDV83JAAAAAwLEhc0AAAABAjEVzQAAAAMAFEXRAAAAAQKuEdEAAAADAEnZ2QAAAAEAbJXdAAAAAALByd0AAAAAA4BR4QAAAAEBKRnhAAAAAgJX8eEAAAADAyg55QAAAAECzHXlAAAAAQNDEeUAAAABA5xB6QAAAAIDgIHpAAAAAwN9FekAAAABAtON6QAAAAICuX3tAAAAAgAbCe0AAAACAYil8QAAAAMDipn1AAAAAAAvJfUAAAACAFfR9QAAAAMAFH35AAAAAgKqvfkAAAADARcF+QAAAAMBCz35AAAAAAN+Hf0AAAACAfpJ/QAAAAMDZnX9AAAAAQDnGf0AAAADA9Nd/QAAAAKBVBYBAAAAAoK8PgEAAAADA9iKAQAAAAOCwKIBAAAAAYCYvgEAAAADgUTmAQAAAAKC9RoBAAAAAAINcgEAAAAAgd3WAQAAAAKBUbIFAAAAA4PrbgUAAAAAgSvuBQAAAAODUCIJAAAAAIEdjgkAAAAAggMeCQAAAAIC/0oJAAAAAgFXbgkAAAACAJfmCQAAAAABXpINAAAAA4Nzng0AAAABgfhqEQAAAAKBoIoRAAAAAIIOrhEAAAADgC92EQAAAAGDaMIVAAAAAwNiDhUAAAABAS4yFQAAAAMDf3IVAAAAAQC3qhUAAAADgp2qGQAAAAMDHcoZAAAAAQNvZhkAAAADgm/iGQAAAAEBYs4dAAAAAQMhTiEAAAAAgedeIQA== + NrgMGZxjYkByWoXuS4RpQInLvLYcpWpAlLmMQukSc0AfcqimUaNzQDzDZJGpM3dAWxQhfAFEeUA= - + - LYQIQH20QEC5rK5A1E6aQDZj/UHz0SNA//42QE6sEUA/PBZBe3o2QFxQeD+cLglBUXNWQcUWoEA/7o1Bj/J8QGJWLUCANyNBe7GuQNX9KkFoJm5Afq+1QLNTGUH2f8pAcLZ0QW8+xj8M91FBTZeIQY/zCkFsiiNBHjVGQWxNwEAA0IhBN8CzPwgNJEC4WsY/uto8QMplM0HLzI1AYByaQPtWR0CUl9pBqR5BQVKKnUHsEVJAGTtFQb1gIUFSAJFAZNcmQQcjekLuJVJAwM8iQeO1YECiq2VBEELAQBVkCUCK3ApBuES7QNRubkLSN4xA/MxyQWoW/0ADEIVAMIcgQcvMMUECGilBKM6eQIrRFEFZMExBKZk2QFb5hEA8THNATyvBQA+M0UBtDv4/zVjDQdiNTkFWQYFBZvBbQV/g6j/bUkdA0nCfQfA3r0BvfnRAq8D3QLOeL0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgCJ9aEAAAAAgr6ZpQAAAAOBVoGpAAAAAgOlcbUAAAACA4ohtQAAAAADqzG9AAAAAgGbmb0AAAACAfy9wQAAAAIAk8nBAAAAAwFACcUAAAABA0stxQAAAAMBTEnJAAAAAgNsjckAAAADAWtJyQAAAACBIfnNAAAAAgNMwdEAAAAAAET90QAAAAIDbhnVAAAAAgAlTdkAAAADA02Z2QAAAAEB0c3ZAAAAAQJOFdkAAAABAhZF2QAAAAIAvT3dAAAAAQDyUd0AAAADAHKF3QAAAAICQxXdAAAAAAH9BeEAAAACAdXN4QAAAAEBmp3hAAAAAAIQPeUAAAAAAbMR5QAAAAEDm8XlAAAAAgCszekAAAADANF56QAAAAECFgXpAAAAAACPAfEAAAADA7t18QAAAAACKgH1AAAAAQHbyfUAAAAAAMxJ+QAAAAABXV35AAAAAQApjfkAAAABAkJl+QAAAAIDgpH5AAAAAAObNfkAAAADAkzN/QAAAAEBoVn9AAAAAQFRnf0AAAADA3fJ/QAAAAGCjBoBAAAAAIBcZgEAAAAAANLuAQAAAAMCfy4BAAAAAIK/8gEAAAABg1wWBQAAAAMDkb4FAAAAAoGeCgUAAAABgY5GBQAAAACD9voFAAAAAQKbUgUAAAAAAK9yBQAAAAKBL44FAAAAA4K75gUAAAACgUwGCQAAAAOBMJYJAAAAAQNA4gkAAAACgKj+CQAAAAOCFSoJAAAAAQEJkgkAAAAAgEmqCQAAAAOAIb4JAAAAAAPF4gkAAAABA/o2DQAAAAADgzYNAAAAAIDERhEAAAAAAgyGEQAAAAKBAK4RAAAAA4CJahEAAAACAmpmEQAAAAOAmBYVAAAAAgKbahUAAAACgv+WFQAAAAIDbSoZAAAAAwJ1rhkAAAADAxHOGQAAAAICR8YdAAAAAYM4hiEAAAABACpKIQA== + KBZXds7jZUBmiwPJSGNsQG+XdYaqQnFADtLLr2eCdED97sGlglN3QA== - + - xosHQJm6I0AG3hpAVzMsQQZtc0DQ9A5BPPlwQWJFyEB0Q3dA3LkNQRybmEAyTLVB1RYGQOm/P0Dcw2RAsBiMQGFmEUDgC3lBzjSnQXv32EBzyCNBab2uQNfmMUEs6KdA0g8PQbC+okHC68VAADzbQZqUGkArDoxAh0jAQrLiYEBbJus/hqBqQGZSiUH6SHlAYinpP3pzc0DYi7M/qzUsQcdjfkA8RLFA7uWHQF4rj0ERU7ZAh6rfQNM1UkCrdwJBYIZdQbHVGkCvIAdAxWSiQfJjEkFKjsY/rE+DQRvBgEH0G6FBcfmZQI7Zr0AmghlBJAsrQUY4dUFvcTZBmWazPxwVG0Ge4GtAafUnQdN6cUEtRjxB+tSdQUC1WUHJ8JlASXACQaPQwkDSxYNAS+inQM3C/T97yRFBT5SXQDFdjEC16Y5BfW6YQECVzkADar9AJJp2Qv8tR0BJ/6dA9M6kQCjZvUE= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAQKq4W0AAAADAHupgQAAAAOChBWFAAAAA4FkjYUAAAABA4WlhQAAAAADjlWFAAAAA4DWqYkAAAABAPM5jQAAAAIBkY2RAAAAAQMetZUAAAACA3AFmQAAAACADomZAAAAAYDbdZkAAAACA7ERnQAAAAMACqWdAAAAAQBUXaEAAAABgGmBoQAAAAMCqq2hAAAAAADXIaEAAAACAsadpQAAAACBz+2lAAAAAgLOIakAAAADgskNrQAAAAIAd5WtAAAAAwL4lbEAAAACAT+FsQAAAAADkJG1AAAAAAG2mbUAAAAAAg2BuQAAAAIDueW5AAAAAgM2hbkAAAACAW+luQAAAAAA6Pm9AAAAAgBlkb0AAAADAY+ZvQAAAAABQcHBAAAAAgNWEcEAAAACgsI9wQAAAAEDWs3BAAAAAwLjEcEAAAACAjttwQAAAAEA+Q3FAAAAAACdjcUAAAAAgj3FxQAAAAEAegnFAAAAAAMK+cUAAAACABNRxQAAAAEAu83FAAAAAAFAwckAAAAAAxD9yQAAAAGBOS3JAAAAAAIyzckAAAADA7cNyQAAAAIBhz3JAAAAAAJfjckAAAADg6/FyQAAAAADEJnNAAAAAwHU1c0AAAACAW0JzQAAAAOAjYXNAAAAAIFlwc0AAAABgt8xzQAAAAGD+4nNAAAAAwBb1c0AAAACAtwF0QAAAAMCdE3RAAAAAgKIidEAAAABgST50QAAAAEAaT3RAAAAAoGVudEAAAAAA44J0QAAAAICdlHRAAAAAQI+xdEAAAADAfdN0QAAAAKCj8HRAAAAAACEEdUAAAADADx51QAAAAIDKLXVAAAAAQIJBdUAAAADgQFV1QAAAAICKkXVAAAAAwG+hdUAAAADgxq91QAAAAGAVwHVAAAAAABrldUAAAADA2vV1QAAAAGBWG3ZAAAAAIMoydkAAAAAgVXN2QAAAAKBk4HdAAAAAIFgReEAAAACg31R4QAAAAICt9nhAAAAAAFmreUAAAADg1FB6QAAAAGCUAXxAAAAAwH0OfEAAAADAbaR8QAAAAGDdUX1AAAAAQKuWfUAAAADAJ1R+QAAAAOBFZX5AAAAAYOeef0AAAABAdb9/QAAAAEBM039AAAAAYP54gEAAAACAi4uAQAAAAKD584BAAAAAQIUbgUAAAABALAGCQAAAAEBPFIJAAAAAABCigkAAAADACLuCQAAAAGBXSYNAAAAAoMR9g0AAAACg9oODQAAAAICxmYRA - - - - - - nyw9QOzDGkB3k6hAqqA2QJtLgEAekyVBtQNIQAGfIEBnr8hAnn3GPzTPkUCRMwhBaIFSQNNdxz961BlBYFeJQCpRSEH4ngtBJO+aQFBQt0DlfndArl1SQI7iI0AeV7M/01nmQIqqkEFiU7hA8XbDQK1SiEB5WndAp7s/QGgRoT8q2KdAlvtCQWwAZUFrEplBt282QPID5kBhEzdAVOhgQCxtl0Dj6dpAXM7MQNuWiUDkKylAt/wAQZlDvkAfCH1AYp7vQB37EUDyFLQ/CXA9QdVUi0FBN2FB99XYPyyLZkFocMRA/U/WQdsqe0B908xAA+PFQLU6pEHjmipB9M7UQCnKZ0E8JFJC6cFCQpKUrkGTevlBzUyhP0Bn3EDFtZpBwqSZQcjEoD86bvVAWq9jQFDZN0E2Bh1B5FvZQS892kFINiVC5T9cQeRjUkB3/ypALKD3QY/vVEHLWypBklapQEKutUDdVN5ApjkJQVEY5EHJzG1AyumCQfVq8kBxjxNBWJOxQExzD0HaCQhAbEsDQu0/BkE6A6FAGRgZQIi9kEAgLItBMzOaQDCqQ0Gp6I1AH1WzQGtILUDO+U1AD/nIP9dpMkAFdjVBSAdqQLFoU0AOg3xA - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYD+LVUAAAACA3dJVQAAAAEBrTFZAAAAAAFxNV0AAAAAAis1XQAAAAAC4VVhAAAAAgCKWWEAAAAAASB1ZQAAAAMAmj1lAAAAAwAW9WkAAAAAgdFJbQAAAAGBIjltAAAAAIBnKW0AAAABg2/1bQAAAAEAcyV5AAAAAgJgbX0AAAADAbElfQAAAAOC1JWBAAAAAgG5FYEAAAAAAKmhgQAAAAAADpGBAAAAAQCJIYUAAAADgFWNhQAAAAEBFomFAAAAAwGjCYUAAAAAAFUhiQAAAACAcZWJAAAAAYJt+YkAAAAAgEahiQAAAAMCVRWNAAAAA4PaiY0AAAAAAbudjQAAAAMCQH2RAAAAAAIHCZEAAAABA/etkQAAAAABrJ2VAAAAAYDSpZUAAAABgW8ZlQAAAAEB792VAAAAAwC8iZkAAAABAJ2hmQAAAAMBA5GZAAAAAwCsGZ0AAAACgMidnQAAAAMAeSGdAAAAA4ExjZ0AAAABAeEVoQAAAAEAvZGhAAAAAYON+aEAAAADAQZpoQAAAAMB2wWhAAAAAwBHtaEAAAAAA8QJpQAAAAIA7SWlAAAAAAIOIaUAAAABAcMdpQAAAAMDM6WlAAAAAgGMNakAAAABAp35qQAAAAICGpmpAAAAAwKbUakAAAABA6elqQAAAAEAwA2tAAAAAgAhqa0AAAACA2aJrQAAAAMAkw2tAAAAAgBvka0AAAACAhCJsQAAAAIAreGxAAAAAQMK0bEAAAACArdJsQAAAAECBA21AAAAAAAIlbUAAAAAAMUVtQAAAAACjZ21AAAAAAPqobUAAAADAAsNtQAAAAECr5W1AAAAAQMgEbkAAAACAmSVuQAAAAID3Qm5AAAAAQFeNbkAAAABAhcFuQAAAAIBp425AAAAAgOUlb0AAAABA2GlvQAAAAAB5qG9AAAAAAPvCb0AAAADAo91vQAAAAIC2AXBAAAAAAJgRcEAAAAAAlyNwQAAAAIDwMHBAAAAAoBlEcEAAAACgulZwQAAAAEBmfXBAAAAAAOeQcEAAAABgVZtwQAAAAMAzsnBAAAAAAK3ccEAAAAAg/+1wQAAAAEA9C3FAAAAA4MMicUAAAABAfzVxQAAAAIC3RnFAAAAAQL5RcUAAAACgwsZyQAAAAEDdAnNAAAAAwOUqc0AAAADg5mJzQAAAAOAodXNAAAAAIEGFc0AAAAAADJNzQAAAAEC4nXNAAAAAYEmrc0AAAACgZgN0QAAAAMBtgnRAAAAAwBiXdEAAAADgGqZ0QAAAAECxtXRAAAAAIG3GdEAAAAAgDD11QAAAAID6THVAAAAAQI1tdUAAAADg4Lt1QAAAAODs53VAAAAAQHr9dUAAAADgkhN2QAAAAKAmMXZAAAAAQG5CdkAAAADA8XJ2QAAAAKBEhXZAAAAAQEqadkAAAAAgRu92QAAAAGCDBXdAAAAAYDESd0AAAAAAHCB3QAAAAADvLndAAAAAAPtId0AAAAAATlR3QAAAAOBoYXdAAAAAYAd2d0AAAABgC4l3QAAAAGDOlXdAAAAAwK6id0AAAABgf8R3QAAAAOBlCHhAAAAAIFYUeEAAAAAAEyF4QAAAAOCQLHhAAAAAYAlVeEAAAADAhpZ4QAAAAABrpHhAAAAAoMG1eEAAAACgDcd4QAAAACDz1XhAAAAAADzkeEAAAADgs7V5QAAAAODn0nlAAAAAIH3keUAAAAAgvJZ6QAAAAEDgDXtAAAAAIH0yfEAAAADATXV8QAAAAOAwp3xAAAAAoPm2fEAAAABgWfB8QAAAAEDBEX1AAAAA4CWEfUAAAAAgB8d9QAAAACCN9X1AAAAAQO0CfkAAAABgliZ+QAAAAOCYMX5AAAAAIEBmfkAAAAAgm3d+QAAAAGALtX5AAAAAYMrCfkAAAACgiNJ+QAAAAOAF5H5AAAAAIPUHf0AAAABgWhV/QAAAAOD9JH9AAAAA4BJkf0AAAAAg7cZ/QAAAAEBS5X9AAAAAwIfzf0AAAABAbXKAQAAAAODOeoBAAAAAQPzRgEAAAABgyiSBQAAAAEC3iIFAAAAA4LuagkAAAADg4PmCQAAAACBgCoNAAAAAANQYg0AAAACgKmmDQAAAAODRcYNAAAAAYAp9g0AAAABgm4uDQAAAAMCKk4NAAAAAwFzbg0AAAABgufqDQAAAAKDOAoRAAAAA4LOKhEAAAADglZKEQA== + NrgMGZxjYkDOIQhxcmNtQBu6YmAmQ3BAQh3Og3wCdUDiFPeZPnR2QEJ7qtfUE3xACdY+Ee2EfkAFa5+IdiKBQCK8W3PO0oJAaZhppQI7hECEvypdIeuGQPx4DeFZQ4hAhO4Yh81zikCQWbEcsUuMQB+CDxLdE45A6Bvjo1kMj0CyIoTcKi6RQJbvbSVpqpFA/BJWelYyk0CtckD4mT6TQEMnBXVsFpRALYo3DfAClUDDPvyJwtqVQHSe5gcG55VA2sHOXPNul0C+jrilMeuXQHwjS7Avk5lAYPA0+W0PmkCnBOTzg/OaQC46sL5135tA8fS1ka/3nECuUafTy6OdQDvlhy/b+55AX9OOSPWvn0D3ffaeEESgQPd99p4QvKBAUAkppjMKoUAcdt9tJr6hQBCVpLBe7KFAdQESdUmEokCb1g0ad7aiQL8XLoCHZKNANY2Nf3Rmo0A= - + - BxWDQcJJPkAVeUNBD3sxQL8LFkHKM3lAegu8P7K4OkDJwAZAY8e7PyVLOkD6avlBOCQhQLmhakAlZStA/e7wQPjokkCC3nZCnnTnQeaorEKI/1xCC0c1QMSUK0CBYoxBe/dYQO8qGEDLYxpCzlC+QKeQ2UB0G1xAtp00QZorXUHkdS1Ali3YQPPvGEHQW3dBonkKQN20uUAEPhlBx3SKQVJHNUCYtqc/mxwMQQOHtUJid8pAZhgCQcCaDkESc4lAS/o0QLxaEEBZRJdA+PYDQRkXPkArGqZAWvArQCtrP0D0HJxCHWg0QKuEMEBEUFRCf/OuQcDzrkBy7T5AQfqIQIYCJUEtQ5BCT2+VQfRdNEDVxgRA3MB+QRljCEHScytDg48+QqkCwkCkuadAmMO0QJFdFEIOIrw/9kFAQ/5p1kFUHwdBjjNxQM61j0HiTB5BWIPFQalXA0EI9gtB6wvPQR8zGEDS7olBDbU/Q5hNOUMaUMJCdoUJQ5w3YUEngaxCQHgdQpN9YEC+clpCJDUHQdpdHUDq1rNBcVAfQ9KwhkF0AhFCjul/QU6zskB31UFCpxQNQVcWxEDAA+9AlN7zQdwmgkPNK9hCgzS0QRvx/EA57IFBCk7gQL3n30DaQ8NAwhyiQJLOtEALMCNBBWCyQZ0oAUHO1hhCybPPQK8u6UAizsxAwncBQT8kAULBVodBH9ogQZjin0ENzXFBZ8O7PxqLrEAq5JNB3NsLQV1q5UJvb+RAQoS5QgXsa0GbDcpBh7yNQGYTxEHKyhJELCNXQ6oNwkJGo5hA5D8EQb2eEkU3XQxBMZ2OQpwpT0CKRspAOQKtQG14SEAuSLlDinw+QlNkNUC/FttA337KQIvYFkBEVqtAV2EfQcPw7UBV2xBBK0Q1QG7GBUElv5VBlUNSQI5LgUD9pQlBSx24QTN5mEBfBcNAv7riPyxXm0FbICpBXi+8P7diMEL6khhCYiRRQDJCf0ET8NJCx2zyQV7etUNH+a9CNLrjPzDAZUFP/IRAH6POQPraPkD9/uE/nllvQGlcH0FaTPVAMEiNQfRbE0K3btFAlkSQQLqUlkJifAFCCZBdQgiBk0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgPW7ZUAAAACAg+plQAAAAICwwmZAAAAAgEcnZ0AAAADgIAJoQAAAAGAeNGhAAAAAAEdHakAAAAAg5aFrQAAAAACxQWxAAAAAwBeGbUAAAACgiuZvQAAAAAAHUnFAAAAAIHUyc0AAAABAoXNzQAAAAMBBoXNAAAAAwJHkc0AAAAAAgxJ0QAAAAIC9H3RAAAAAgHk0dEAAAADAzmR0QAAAAECmD3VAAAAAQMkzdUAAAABAbUN1QAAAAABuwnVAAAAAACXXdUAAAAAAIuF1QAAAAMCrIndAAAAAwFm1d0AAAACAsCx4QAAAAMDygHhAAAAAwKmReEAAAACAaMJ4QAAAAEAFmXlAAAAAwNjwekAAAADAdhN7QAAAAEBfb3tAAAAAAE8+fEAAAAAA6kp8QAAAAMBAwnxAAAAAgE3SfEAAAADAj+N8QAAAAMBCBX1AAAAAgKc7fUAAAAAAVbF9QAAAAAAxvX1AAAAAgNzSfUAAAADAjZR+QAAAAMBABX9AAAAAAEdif0AAAAAARnR/QAAAAIBAj39AAAAAQBXhf0AAAAAA8huAQAAAAOCNO4BAAAAAIFpFgEAAAABgJE6AQAAAAKBYWIBAAAAA4NZ3gEAAAABgN4KAQAAAAGCPioBAAAAAgPadgEAAAABgGL6AQAAAAABQ0YFAAAAAwBDZgUAAAADgSN+BQAAAAMBq5IFAAAAAwIhYgkAAAADAgYWCQAAAAABFi4JAAAAAYIaygkAAAADg6rqCQAAAAEDdzoJAAAAAQLYRg0AAAADgqFqDQAAAACCJjINAAAAAYBKkg0AAAACAx7uDQAAAAODNAoRAAAAAwD8UhEAAAACAzimEQAAAAGAd8IRAAAAA4GoRhUAAAACg6xaFQAAAAOBkL4VAAAAAIMk3hUAAAACgblSFQAAAAEDa24VAAAAAoCvjhUAAAABgAIuGQAAAAGDaq4ZAAAAAoD0qh0AAAABgNTiHQAAAAEBsbodAAAAA4Jyih0AAAADgxLOHQAAAAEAK7IdAAAAAIEMkiEAAAADgM2CIQAAAACCmtIhA + NrgMGZxjYkDiYBUjzERuQN9iJOBzYnFA5VVLAVYjd0BTCOXPY2N5QFn7C/FFJH9A49bS3ymygEAOAVXidaqDQJ0ps9ehsoRA - + - Mi39QG1ZrkBt0uk/fxYtQCXma0AGPrM/9S93QIDtB0Hp+QBB+SIGQcVRBEAwkCNAshcIQEQJv0DE7qhA9kspQK+BbkCmpwVCs+S1QJkmRkCgTKNA7xeiPwPWI0HLzwJBLYDGP/jooEDjxIVAfbuXQGA2fEDDBZ1BGZYaQIPL/UBB80BBwiSjQJlqKUDCKuo/hW/DQpFCcEGnVe9AgIRQQfl2rEByDaZAf+EiQb8aSUCGL+w/I0cyQcrHG0FEhQBAJ/rFP3U5D0ERvsU/mA4gQakDlkFYmHVBS+kGQOVRgEChUaxAn2W/QZHII0AwIfJAWNO6QUdHvEHYBoxAGoE/QBMEUUDUJVJBSPcSQQSWNkFV7BBBN7eeQG8CkUADjcNAQgr1PwYf8UCYrD9ASIFUQQ0bYUH3wqBAMcMjQCaeP0DuEJ9B4DvYQI2tukChSjVDSipgQoLQSEC414VBKj/YQKFO7UA3mBpAeP8rQbqSukEt7+o/QqOsQAlhfUCWJxZBDqijQHVhJEEdo2xB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAACaCW0AAAABgvIldQAAAAEDczl1AAAAAoKxBXkAAAACgAMlfQAAAAIDUIWBAAAAAQGVBYEAAAAAgU4VgQAAAAOC2oWBAAAAAQEImYUAAAAAAbFxhQAAAAADuZmJAAAAAgAOfYkAAAAAgf2VlQAAAAAB57mVAAAAAgAACZkAAAABAgCRmQAAAAADaRmdAAAAAoFJoZ0AAAAAgUopnQAAAAMDx12dAAAAAgJ1eaEAAAADAgYJoQAAAAADU5mhAAAAAAEApaUAAAAAg/yFqQAAAAIAnoWpAAAAAwDnBakAAAAAAsydrQAAAAMAeaGxAAAAAQAjibEAAAADABhptQAAAAID8Jm5AAAAAQOXCbkAAAACAG+NuQAAAAEAZaG9AAAAAwJKhb0AAAABAqN5vQAAAACDWA3BAAAAAgH4TcEAAAAAgTDFwQAAAAOAoUnBAAAAAYMlycEAAAACAWI9wQAAAAMAVD3FAAAAAQAMwcUAAAAAgGVFxQAAAAMDvYHFAAAAAQBVrcUAAAAAAebNxQAAAAOB7v3FAAAAAgFXTcUAAAAAg2+9xQAAAAKAKEXJAAAAAoG0vckAAAAAAgkJyQAAAAEDSw3JAAAAAgKzRckAAAACAbO9yQAAAACCcB3NAAAAAgOMSc0AAAAAAijNzQAAAAABUUnNAAAAAYLFjc0AAAAAAk5tzQAAAAIDEwnNAAAAAAP3Pc0AAAABAagF0QAAAAEALEXRAAAAAwNYhdEAAAACAfEN0QAAAAMCYZnRAAAAAYBlxdEAAAABANn90QAAAAACykHRAAAAAAOrVdEAAAACAre90QAAAAOCpj3VAAAAAIMD0dUAAAACgsd53QAAAAOCSsXlAAAAAAAyPekAAAADA6qV6QAAAAKDU9HpAAAAAwM/Ge0AAAADgKed7QAAAAMCV6nxAAAAAoPUWfkAAAADAulh+QAAAAMDPfH5AAAAAoA/EfkAAAADgXzh/QAAAAKCau39AAAAAIF4agEAAAABAmCGBQAAAACDHzIFAAAAAwN2KgkAAAADA/aODQAAAAED20YNAAAAAoMNZhkA= + NrgMGZxjYkA= - + - LMRIQBuFjT861yNA+kgRQAhMNkBoNo9BI0zWQPldz0BhSJVAWoSrQOq60EFATGJAogPGQYGNIkD0EglBq/OpQPP8B0DHicFB484aQPPQ/D+r3oNANY/qPzgnLUG85dNB//LaQNcAHUEIvIRAY6sNQdZrK0D4XMtAFwOSQd79/0CJ9R5BLhhkQExauEGQXfFBLuayP8NlC0Gk+hBAEjugP8jplUGneEhAHJeVQA69aEH7bz1BJsauQEzADUH/7QVB6ZooQWK0k0HVuFxAZ6XMQLwqokHJZlxAA5Q7QA2PiUCYPhBBCpzPQZ/8jkIGguVAg0oTQT2lVkFaarM/BEgBQXDFNkEA4QNBf9ZCQbDZoj8m58FA1QgYQiNGMkB6OFdBjvAhQj7om0BhwpJAREFbQLtIEUBbPQJBD+t0QOmXqUBvycc/uYXYP6K+hEB1lQRDBlLmPxbz/EF2+4BBmLvvQEbcnkBEu1BCsaBTPxVXIUDVDgJBqWCJQa8bjkDoTQVAvRIIQAGmmkCyTHVBQv7EPw== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoNASYkAAAABAoENiQAAAAMDbSGNAAAAAgB/cZkAAAADAp4FnQAAAAEBriGhAAAAAgGxBaUAAAACA+KRqQAAAAMCiJW9AAAAAQGBeb0AAAABAtn1vQAAAAMDmQXBAAAAAwBBXcEAAAABAtkRxQAAAAKCstHFAAAAAYOXdcUAAAABg73FyQAAAAED+pHJAAAAAgOASc0AAAAAAOlRzQAAAAMCsEnRAAAAAIE4fdEAAAADAPFF0QAAAAAAyYXRAAAAAQCzddEAAAAAgjvN0QAAAAIBMKXVAAAAA4J09dUAAAABAS1V1QAAAAMAvYXVAAAAAQLdxdUAAAABgw7N1QAAAAKAr9XVAAAAAgPgSdkAAAADAP+x2QAAAAABFD3dAAAAAQJVPd0AAAADANGN3QAAAACAXcndAAAAA4FCod0AAAABAM7t3QAAAAOCGDHhAAAAA4HN1eEAAAADgyrF4QAAAAKA79nhAAAAAoM4TeUAAAADgFi55QAAAAGDfOXlAAAAA4CREeUAAAACAC1h5QAAAAODOdXlAAAAAoMq4eUAAAAAgOzh6QAAAAICbT3pAAAAAwHGDekAAAADgNrN6QAAAAEAD9HpAAAAA4DADe0AAAAAgHDh7QAAAAGBvU3tAAAAAYClie0AAAAAAw257QAAAAABqgXtAAAAAgDWOe0AAAAAgaaF7QAAAACD9FnxAAAAAwAQyfEAAAACAZEp8QAAAAOAxZHxAAAAAYPCCfEAAAACgI6R8QAAAAMAvvXxAAAAAAEj1fEAAAACgQQN9QAAAAKBUEH1AAAAAwHJRfUAAAADgRmB9QAAAAEB+Kn9AAAAAQIpMgEAAAABADauAQAAAAKBBK4FAAAAAIExDgUAAAACgF4qBQAAAAKAYpYFAAAAAwCKqgUAAAABAibSBQAAAACCN1YFAAAAA4NT5gUAAAACgRCGCQAAAAKBxjIJAAAAA4G6WgkAAAABgkNOCQAAAAMAwFINAAAAAwK4ag0AAAAAgiKaDQAAAACAVAoRAAAAAoIEHhEAAAACgAC2EQAAAAKD2MYRAAAAAoPxJhEAAAADA+nKEQAAAAGBxe4RAAAAAQMaKhEAAAACgvuKEQAAAAAA+LYVAAAAAIEGbhUAAAADgFriFQAAAAIBbwIVAAAAA4LNzhkAAAAAguzqHQAAAAOAgWodAAAAAQHGHh0AAAAAgTbaHQAAAAOB3u4hAAAAAIFLqiEA= + KBZXds7jZUDXkZP9yKNsQIkw7CrX8nJAYG6KbtRSdkCJjsh+LwR6QA== - + - H7CzQCXKh0AzK2FAqiCzP0SnkkDLwNNAgC40QACr2T+WOIVAArx3P3J3NkAZyJBAnW2KQM0PMkAj57VAxvMDQKNVEUBKDuw/HbD0QHVKLkG+LhFB3ZiVQNN6gEDkD2VAUpUZQegM4UB0kpxB7xWcQAyj2D8yhKVAOnmzPwKf/j9z3SZACIzYP4XAxkBIEEVA7tjFP+PwgkBq77VAtw6aQG4rPkHkdZVAIiumQFxitEA8Nh5BwmQEQcQiGkBUByBAkT8GQZOY+z+hRL9AYIqjQWPokkCqlfhAqo8sQFRc2D8loIpBWbKHQGAVsUFMBftAFymHQY8JBEGMIhZBUTQQQYgbHEEO/mhCxu3VQPJLt0AY6SFBUVoRQBxSU0F6AFlB/19QQbB2N0KeghRBfXjGQF37oD+Ku6RAtlfIQEl7w0GcfNk/rsCAQAOU2D+c/DBBaMZkQOnQd0Ej7cxAGRbkQFuZ5UDeri9BjdrxQH4TcEBCShBBuXVTQQC/E0Eo2RlCn9ehQRrUwEGHeNg/y36vQE9+KUAc+nFB0h63QBCdFUFDoRhBd04CQedin0BlaL9B6suCQFCSUEDOiyFB4CPdQMKV6j/GoA1BxiH9Pw== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4ABmZkAAAABAZ6JsQAAAAMCkx25AAAAAwBzlbkAAAABAtFRzQAAAAAA4lXNAAAAAQG9VdEAAAAAAXGN1QAAAAADncHVAAAAAQPwAeUAAAAAABTR5QAAAAEADonlAAAAAQMTkeUAAAAAAqZx7QAAAAMCQOXxAAAAAwAQhfUAAAABATuR9QAAAAMDRan9AAAAAgK+Cf0AAAAAAEZF/QAAAAGDbB4FAAAAAIFQ/gUAAAACghkuBQAAAAGA6SoNAAAAAgBSHhUAAAAAgha2HQAAAAAC0oohAAAAA4I64iEA= + KBZXds7jZUDs3IbI4yFtQNS+X4D+xG5AdswfOEqidUBqPQyU13N2QHYq/Iuis3xAapvo5y+FfUBmP4BIHZKAQEgumC/vyoJA - + - EmQGQSNjB0DrZfk/9w0TQQRflz9fTxJBly0IQMrbHUH+Yv0/5U42QIof6T8Mw09BR7nKQI37fUDEn4VA8kQRQO0l8kA7xWtA7mCAQBWza0CCGRdB4NYkQcM9gECS1TdBgJ4fQBcke0GSVOpAQ3m6QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAGaAakAAAACARCFrQAAAACAKw2xAAAAAIAfobEAAAADAnQZtQAAAAODvQ21AAAAAwJtfbUAAAACAfSJuQAAAAAC2J29AAAAAwMdGb0AAAABAdOVvQAAAAAB2E3BAAAAAYMk0cEAAAAAgurNwQAAAAOCvwXBAAAAAwL8QcUAAAACAcjZxQAAAAOA9QHFAAAAAAO5TcUAAAADAd2NxQAAAAAAXNnJAAAAAQFhjckAAAAAAyfFyQAAAAAAChnNAAAAAQJOic0AAAACAwBR0QAAAAID7JHRAAAAAAGVCdEAAAABA7mR0QAAAAMBElXRAAAAAQGtRdUAAAADgAmV1QAAAAEAlpnVAAAAAwMGvdUAAAACA1zB2QAAAAECRMndAAAAAQNtBd0AAAABAEFN3QAAAAMAgwHdAAAAAwJ1QeEAAAABA53N4QAAAAAB4hHhAAAAAwE2zeEAAAADAqft4QAAAAEBzBXpAAAAAAFMtekAAAADAfjp6QAAAAEAaRXpAAAAAgFdRekAAAACAmyR7QAAAAACpVHtAAAAAwOJje0AAAAAAQiN9QAAAAABDmH1AAAAAAJYyfkAAAABA5k9+QAAAAADUg35AAAAAgGWzfkAAAABApEB/QAAAAMBVUX9AAAAAgEtef0AAAABAfKN/QAAAAADHvH9AAAAAQAUygEAAAABAmEqAQAAAAKAyYoBAAAAA4DBpgEAAAACg1pKAQAAAAOAnsIBAAAAAAIO5gEAAAABgicOAQAAAAOCb0YBAAAAAYGUSgUAAAACgTRyBQAAAACBpKoFAAAAAQLNCgUAAAADg4UqBQAAAACDxboFAAAAA4F6TgUAAAABgXbOBQAAAACDfuoFAAAAA4ErHgUAAAABArPuBQAAAACDlBYJAAAAA4EtDgkAAAADgTEqCQAAAAKC4UYJAAAAA4DdagkAAAADgjWKCQAAAAABIc4JAAAAAIDeggkAAAAAA5qaCQAAAAOBEs4JAAAAAoP66gkAAAAAA3tqCQAAAAODC44JAAAAAAAsvg0AAAABg4FmDQAAAAIClaoNAAAAAgF+Rg0AAAACgLZaDQAAAAKD3wYNAAAAA4CDKg0AAAAAgwduDQAAAAODj8oNAAAAAYCv+g0AAAACgoQeEQAAAAOACIYRAAAAAgJwwhEAAAADArDeEQAAAAGDHSIRAAAAAIOxShEAAAABgpFqEQAAAAADDioRAAAAA4ManhEAAAABg+cKEQAAAACBp0YRAAAAAIJzdhEAAAADgmuKEQAAAAIDi6IRAAAAAoHbuhEAAAACgAPSEQAAAAOAMIoVAAAAAICMshUAAAADAizGFQAAAAODGUYVAAAAAYEVxhUAAAABgoXqFQAAAAGB+f4VAAAAAYMOKhUAAAAAAGJaFQAAAACD6nIVAAAAAgHqxhUAAAAAgQ7+FQAAAAKBFDIZAAAAAgHuThkAAAABAFMCGQAAAAKDKCYdAAAAAYK4ch0AAAAAgSzKHQAAAAKA3PIdAAAAAoFFrh0AAAABAZ3CHQAAAACAOsYdAAAAAIA/Bh0AAAACAV8qHQAAAACDw0YdAAAAAoLDzh0AAAAAA7AOIQAAAAOB0QYhAAAAAAKZKiEAAAACgtlKIQAAAAGCeWohAAAAAYNl4iEAAAADAeoGIQAAAAGC5oohAAAAAgInRiEAAAAAgRdqIQA== + KBZXds7jZUA= - + - Q1HBQPIICECD1dhAJLpdQC4YKUBTBJNB4McEQUINhkDJZyVDZuL4QAkoJEAKh/ZADnUJQdauGEDmXJpBVwP7QIqOGUFU0GpCKWw+QgKht0BKHtw/tXQaQHjavz+XahFA41YIQPTMiEN6T1JBKtxSQJ5pl0CQaEhA5aiAQPrshEDw3LI/Wrk7QVOWRkDGZJRA3/2CQHeCJ0GhDdk/xM4gQdaUgUHiI2FASM2/P5YlvUE1R6RAncG0QPUFk0DrVQ9BhJoYQTganEKmRPBCiwpSQVMxKUDHiZdAvDZdQFARGEGgJ7c/pzefQBwZvUB9DuxA8v8cQT2StkBAxitBsUHiQS9ge0FKawJBJtNkQM63V0GZ+4hAZUcWQ5jBB0L+INdAaNMjQEO6p0CQ5sxAQmyPQuKT3UDDgpVBnOVAQR0mdUI0SWJBbVuWQNRVS0Mex7pB55tiRFUKhED92NdAvl+eQd9XA0HZhsk/U+HWQAtO+0BBNzxBMAM5QVbjZEAk2YxAXhc1QevDC0HxDApCrcEhQEGOa0FC7bY/Dz1DQprV/0BlEMBAcg0OQW4BikJXByxBFCCdQWzdoD9CtelBGghEQ8i6F0JbhHlADSECQmeapUHq0aZBVclAQXFaNkAwcsNAY9BXQOn8bUBxvZVBPs4UQXwtAEESOi5B4oOuQF3DaUFVkMo/NRy2QPLPNUG8eNZARD1uQMZ/8EBbt9g/xqDTQAuo0UCZ5f9AsI2cQI21YUBGeQRBNj4bQRZ1m0C7TWNADOtGQOjywUEyYGJADOdVQc/F/ECVeTZBuHZBQvbaCEM0gudApUk6QaqjREGz9olAIRz+QS/2kEE= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgHGHaUAAAAAAOutrQAAAAEBRbG5AAAAAwP2GbkAAAADATyJwQAAAAGA+QXFAAAAAgHVicUAAAAAAwCJyQAAAAOAx5nJAAAAAwMKjc0AAAADAuUN0QAAAAEBUz3RAAAAAAIpGdUAAAACAklB1QAAAAMDv8XZAAAAAAFEvd0AAAAAAzlJ4QAAAAMAvZHhAAAAAwLxHeUAAAAAABDF6QAAAAEChonpAAAAAgIsBe0AAAAAAYlN8QAAAAECKZXxAAAAAwMSLfEAAAACAK3x9QAAAAMDC8n1AAAAAABQYfkAAAABABeJ+QAAAAIAeYn9AAAAAoEYBgEAAAAAgNpGAQAAAAEAhEoFAAAAA4KchgUAAAAAgiCiBQAAAAGDPo4FAAAAAIEuqgUAAAACgw7OBQAAAAGDx6oFAAAAA4BMogkAAAADgKTCCQAAAAGBdOYJAAAAA4IBRgkAAAADAaoGCQAAAAMCKkoJAAAAAwL2ngkAAAABAQ7uCQAAAAKBgw4JAAAAAwPrLgkAAAADg5feCQAAAAKCe/oJAAAAAIOEHg0AAAADgQhKDQAAAAOCJJoNAAAAAIJZAg0AAAABAiliDQAAAACDLiYRAAAAA4ASchUAAAADgc7uGQAAAACA1wYZAAAAAIDDGhkAAAACgwwyHQAAAAGBfk4dAAAAAwAYXiEAAAABggfKIQA== + NrgMGZxjYkDiYBUjzERuQEMdzoN8QnFAmHHSiBQzd0Ax283g6nJ4QIYv0uWCY35ALM4KrMxBgEBW+IyuGDqDQCv9+NV4yoNA - + - OLujQO4QJEB8PYBAHIGJQFKBCkGyoERBwuQUQb0lDUHn/tNAGD0rQOst4kBoBHRBNJqAQNXuOUFQMOs/CncpQCk1g0FurLlAjeQpQQpTgED0m/k/vJnKQHaCMkDkDNk/DDIzQBd/4EA0mFJAlglAQCJw/T/2D2lBgB0rQNrCw0CCT25A8nYgQIsIJEDFyLM/vx2jQJ35SEB6ZM1AEc4+QFD+ekG8DtlAD1x/QepIr0D+6ehAMTrtQBBYHUG4uupAvOq6QEQtmkBYMdk/blYuQZgen0AByT1BQwMSQArNw0CRpY5BnAKNQJppMEIaU8RAEIVVQVkRtEANs2tA6mcZQREanEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAA4GrJY0AAAABAumFlQAAAAEBzqWhAAAAAQEInaUAAAACA0w9wQAAAAOCuIXBAAAAAgLFgcEAAAAAA4YRxQAAAAIBdzHJAAAAAQEvjckAAAACA7INzQAAAAADBj3NAAAAAAMmfc0AAAADAGa9zQAAAAIAr0HNAAAAAQHHec0AAAACARIF0QAAAAEDVX3VAAAAAwH0kdkAAAABArpV2QAAAAAAUoHZAAAAAgGjhd0AAAACAIQF4QAAAAEAXUXlAAAAAAAazeUAAAABASFZ6QAAAAMDyn3pAAAAAgHmvekAAAAAAY8Z6QAAAAAC1Y3tAAAAAwAKSe0AAAACAKAF8QAAAAED8HXxAAAAAABVCfEAAAABAk7V8QAAAAIBcIn1AAAAAQFcufUAAAAAAoD59QAAAAABjTH1AAAAAwPBefUAAAADA4N99QAAAAECLFH5AAAAAgFU8fkAAAADAfmZ+QAAAAIDpxX5AAAAAQAzvfkAAAACABmF/QAAAAKCx4YBAAAAAgMJCgUAAAABg1kmBQAAAAEAvg4FAAAAAgC6jgUAAAAAAX86CQAAAAKBX1YJAAAAAYIIig0AAAADgN3WDQAAAAKAI7YNAAAAA4OVnhEAAAACgq5uEQAAAAKDor4RAAAAA4AZmhUAAAAAARISGQAAAAACRUohAAAAAgNbsiEA= - - - - - - YXTRQJk6UkBfgmBAhjIIQGCIb0FFMG5ALsE3Qf51NUGHrCBAH2oNQMNQ6EB+GJdAvrFFQFI8AEHROb9A31GiQBWDtz/UyQBAFVyFQPmKl0CSRTlBj9I+QZBMnED25KBABoVAQfuZA0FAEfw/njNSQMRYxj9v5oNAi0r2P5eJ6T87aUVAqkMKQJA9G0EAYs1AgJi6QP/M+z8GwZhBUbgzQQQ2E0DaJwhAT/oIQa24j0GDwUdBrluLQVsl8kCQJQRAa0O4QDLtAUKTaHdApI02QOHVPkIdhVNBxbgwQqNZDkFk6D1AaVhTQQzpnkBRRIBC5FX6QKEKSkHlZlJAAqABQQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQAFcY0AAAADgHhxpQAAAAGDNimpAAAAAgK9XbEAAAACAOXBwQAAAAECu43BAAAAAoFUDcUAAAACAUVRxQAAAAEDREHJAAAAAQF1kckAAAADALcRyQAAAAEBMZnNAAAAAQOmNc0AAAABAfr9zQAAAAACEsXRAAAAAAPRDdkAAAADAF9J4QAAAAEBG53hAAAAAQLoXeUAAAAAAD1d5QAAAAEBef3lAAAAAQIuVeUAAAADA9CR6QAAAAMAHM3pAAAAAQGJAekAAAACACs16QAAAAMCx/3pAAAAAQOwye0AAAACAi4J8QAAAAEBDxXxAAAAAgCrkfEAAAABAMTx9QAAAAICbUX1AAAAAAH9kfUAAAABAWHJ9QAAAAIDwAn5AAAAAAHMUfkAAAACAlEV+QAAAAECzcX5AAAAAYJOBgEAAAADAjreAQAAAACAtQ4FAAAAA4AasgkAAAADAWiuDQAAAAOAnNINAAAAAgCU8g0AAAABgfHKDQAAAAMClw4NAAAAAwGHMg0AAAACgJ+GFQAAAAOBkOoZAAAAAQPxfhkAAAACA95iGQAAAACDnqoZAAAAA4Ds+h0AAAADgkUuHQAAAACDPyodAAAAAwCrSh0A= + KBZXds7jZUA0WUyRs0FwQG+XdYaqQnFAj2WW3HaSdkBv9VHaAlR4QI/DcjDPo31AygGcJcakfkD1Z949SfqBQEYEnfy1aoNA - + - MP+eQEvWB0BOd1xAAJaOQEnsGkCpBbU/viL8QG4njz8y4pRBH402QFIU+0AZ0j9ARPHRQKrbukCcxHtBU3kHQAhJKEGhRcY/85VMQfdBCECiGtZAGCD+P0n5ckKrkhlBNGnGPzr1DUGZB/4/hd1/QTKHv0DBbdxBN75bQYgALEG7nxFABVgpQPNRLUCbCwZBOFgMQeter0Bc/44/qbsaQLNeXkHra35BXS2cQI3ikkCpyAJB0eE5QUxumECoYIBBKuTMQCGhlkCJVDtATAsxQewYmkH3gIJBAmrNQA58NkA+sONBABUBQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgAksYEAAAABA8+NgQAAAAECNZWJAAAAAIOnVZEAAAACA+EJlQAAAAADR+2VAAAAAgIorZkAAAACARgBoQAAAAEAiY2hAAAAAAAeraUAAAABg+ANqQAAAAMBpoGpAAAAAwJHmbEAAAADgdaptQAAAAACHP25AAAAAgAiJb0AAAACARTBwQAAAAOD0RnBAAAAAgGUBcUAAAAAgRRVxQAAAAIBTM3FAAAAAIPSTcUAAAADAtKRxQAAAAIAlwHFAAAAA4HLQcUAAAADAcd5xQAAAAGBf9XFAAAAAgOgEckAAAACgejdyQAAAAKCCw3JAAAAAAJYAc0AAAADAUypzQAAAAEB9UnNAAAAAIKuCc0AAAACguQl0QAAAAIBPo3RAAAAAQHpudUAAAACAOsR1QAAAAMDw6nVAAAAAoItAdkAAAAAA1I12QAAAAIDdpHZAAAAAIEbHdkAAAABAFeB2QAAAAODeMXdAAAAAIEhSd0AAAACg5153QAAAAGB1cHdAAAAAYGWCd0AAAAAgPZR3QAAAAGDlvXdAAAAAQObJd0AAAABgc/B3QAAAAKA0FHhAAAAA4AgueEAAAADAMFJ4QAAAAKBQY3hAAAAAwC1yeEAAAABgg4N4QAAAAOBvpHhAAAAAAEKweEAAAAAgf+R4QAAAAECzAnlAAAAAQKwNeUAAAAAgek15QAAAACBhw3tAAAAAYGIsfEAAAAAgfUZ8QAAAAKDtiXxAAAAAYGahfUAAAAAg9tZ+QAAAAKBDV39AAAAA4Kplf0AAAADg84t/QAAAAOCJMIBAAAAAALZmgEAAAABAYq6AQAAAAGDi6oBAAAAAYB9hgUAAAADAYYeBQAAAAKCImYFAAAAAwCXSgUAAAACgpyeCQAAAAGC8QYJAAAAAQDdzgkAAAAAAMoKCQAAAAED7u4JAAAAAwGwJhEAAAACgQVKFQAAAAOCQGIZAAAAAoK+bh0AAAAAAuOyHQAAAAGAXoIhA + KBZXds7jZUDYkZP9yKNsQDtMc7KVAnNA7Cam0jxjdUCv8TOihQN7QOyEgiaVdHxAo0jmOKxigUA6JuTtThqCQGcsiZOwQoVABnawVTj7hUBnW3e9XMuIQMDIkE2w+4lAZ4pl5whUjEBUqTSJBwSOQH21hBEwLpBA - + - GIcLQVamGkA2HJxAIO3rP4f4skABFpxAciZAQLWEwECsZfg/bgoiQHpAd0BJRMc/LupkQIAqhUDTVng/TauNQBRryD9oBTVAwQOYQQOK0EDVJy1A9K6MQJHhI0AgdepA8GRuQLUuvUB7EfdAyqYYQJNzo0BnvtdBTNWaQM5oPECTKtlA00xuQD1+GEBuF8dA+k5MQRfjpEB1GVlB9PLIQH9cxECz3XxALIrMQeXlWEDGHcNA4fM9QH6GukGjyhJBWKnSQepM7T/VaTRBJPLNQMyPHEFKTQpBc9LUQeJWoUHPyAxB3dvrQGAqsUDJrlJAuM5uQhuuUkDdIy1ChzITQiz7U0G06QZBfOLXQCo09UBMOjlBYiyoQFiPkUF+A+xACLXqQL9lukEFDyRA/jNcQAeaWkE/J+w/Z+5PQFH7zUDyWchAabWKQVolMkEo8QZB92YBQdKslkKceWZAw/DgQBMHzkCKEKdAGqb5QNAxxz8gtZFA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwEO5ZEAAAADAUOZkQAAAAAApZ2ZAAAAAQPwCaUAAAAAA8SBsQAAAAMBGRmxAAAAAAH5KbUAAAABgbwtuQAAAAOAOKm9AAAAAABRJb0AAAAAgs8FvQAAAAOBIZHBAAAAAgDewckAAAACAukxzQAAAAMDpIXVAAAAAQKJodUAAAACAfA93QAAAAIDqcXdAAAAAwDKWd0AAAAAASSJ4QAAAAED+jHhAAAAAgM7weEAAAACA0m15QAAAAIAKknlAAAAAAEnqeUAAAADAnCJ6QAAAAADWxXpAAAAAgMv2e0AAAACAHx98QAAAAADOc3xAAAAAAJCkfEAAAADAbYV9QAAAAECSkH1AAAAAAN2PfkAAAABAszV/QAAAAMDURn9AAAAAQLHJf0AAAADAONV/QAAAAEBB4n9AAAAAwMkEgEAAAACg2BaAQAAAAGBNNYBAAAAAYIF0gEAAAABALZSAQAAAAKDmt4BAAAAAYDWGgUAAAADAUxuEQAAAACA+MYRAAAAAQDyShEAAAAAgcZuEQAAAAKBQ74RAAAAAYAx7hUAAAACAjoOFQAAAAGBwjoVAAAAA4BVJhkAAAACArLaGQAAAAAAb0YZAAAAAwCrZhkA= + NrgMGZxjYkCvaxhy0WJzQCbMEZkkcnRA - + - MiqiP1QHTkGa7pFAKCj/PzgQ1UDqD0ZA5MV4QEIGEkBzo9VA65nIQD+uvEA8zoNAlYLPQMwbr0AwWypAz77ZP9pqoT9jnjRBan+AQOu6C0FoHS1BSrLrP1ZOAEFCbxBBVQpcQKk/DkFh7U5AUPDfQMnRqkBzGJM/DG9DQa/kAUGuOmtAnO8cQPqN0UHN0jJBYWqiP9KEAkEEAj5CB8VWQdWTOUGEJYBA/xpAQgTRtD+qBCVAA2PHPxsSsEAqVVNAhyPbQLD/EEIymAJCuZh9QOolfUGFHJZA1agLQfYxwEBjO4NABwxcQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIN/7Y0AAAAAgTUpnQAAAAKAFCGpAAAAAoN/KakAAAACAv/9tQAAAAOCBpG5AAAAAgF0lcEAAAABAI7RwQAAAAIB743BAAAAAgMwAcUAAAAAA8CRxQAAAAMBqBHJAAAAAgB5jckAAAADA9rd1QAAAAABFUnZAAAAAgN7BdkAAAACASB94QAAAAIALs3hAAAAAAHHDeEAAAAAA7lJ5QAAAAMDo8HlAAAAAAJIce0AAAAAAId57QAAAAABox3xAAAAAQJCvfUAAAABAlEV+QAAAAMBnk35AAAAAwHnEfkAAAABACdp+QAAAAICZ5X5AAAAAgCQff0AAAABAbTF/QAAAAEDxQX9AAAAAQFR0f0AAAADg/QmAQAAAAIDsJoBAAAAA4EdKgEAAAACA7VGAQAAAACCAX4BAAAAAoE3JgUAAAABAvrmDQAAAAECsw4NAAAAA4H/fg0AAAACga8OEQAAAAOBK1IRAAAAAwO94hUAAAAAgZQeGQAAAAODUJYZAAAAAYOgshkAAAACgYEuGQAAAACB5IodAAAAAYE7rh0AAAADgBnWIQAAAACC/uohAAAAAYH3riEA= + NrgMGZxjYkA= - + - 4Y5SQDxx9ECoqhFAcxAcQPKVSUCkjUVAYEaWQEm8KkBbg8Y/M3kOQbwlyD98WaFA6K7SQOX6DEE7UzxAiJ2XQJfdGkCdz3VAGVsnQQMOMkHDhGFATibbQKADrUAHqHNAT0pnQfgiy0A4afdAVQK3QEhFBEJ2k/Y/VsjeQcZ4g0FlsBFAwnFrQG+bZkF4CrJAz7wYQRoJl0FSWNNA8TgFQXLk2D8tqPtAyIcoQYDCIEGQKflABU4qQecXX0F1u5hB3Pg5QulE4EDMR/BARdNDQaY10kAW2whALSS1Pw== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwLiCZkAAAADAA8FrQAAAAMCsRGxAAAAAAGTmbEAAAADgEU1tQAAAAED/CG5AAAAAQOoEcEAAAACg3SFwQAAAAKAEMXBAAAAAYK3PcEAAAABAQ+NwQAAAAGBEQnFAAAAAgB5xckAAAABAhrJyQAAAAEDuQnNAAAAAAKBTc0AAAACA/HR0QAAAAMCShHVAAAAAAIWUdUAAAADAnB52QAAAAAAm1HdAAAAAAAA2eEAAAAAAAnR4QAAAAAAOBHlAAAAAQFIPeUAAAABACJR5QAAAAIAGdXpAAAAAABqDekAAAADAPgV7QAAAAADJEXtAAAAAwEKyfEAAAADAQMJ9QAAAAEAFDX5AAAAAwNg0fkAAAADAq4Z+QAAAAMBYDH9AAAAAgDxVf0AAAADA0MN/QAAAAGDwBIBAAAAAYAgZgEAAAAAgOySAQAAAAIBYPYBAAAAAoLp5gEAAAAAgv6qAQAAAACAas4BAAAAA4Pu+gEAAAACgL92AQAAAAKD6JoFAAAAAoDwtgUAAAAAAfTuBQAAAAIAgQ4FAAAAAQM2MgUAAAAAAoqKBQAAAAIBcFoJAAAAAoLxJgkAAAADgaXuCQAAAAAAvjoJAAAAAQDqggkAAAABg0qiCQAAAAGCtv4JAAAAAYCfjgkAAAAAgIeyCQAAAACBLOoNAAAAAoIbThEAAAABgQNyEQAAAAMCo+YRAAAAAIF8qhUAAAABgZK6FQAAAAODMuYVAAAAAYGfChUAAAABgkDmGQAAAAOB9QIZAAAAAwPlrhkAAAADgzvmHQAAAAMDmBIhAAAAA4LYKiEAAAADg6uyIQA== + KBZXds7jZUBML328ejFwQDtMc7KVAnNA - + - AGePQAPaakDoHYxABVpqQMKjWUDpn1dAxaApQbi8IEJW2JFA54tvQVxlo0AGVHJBdknGQApz/ECIGCRAu4+JQFhfzUClwNg/fVkCQcY3EEHH2ng/4acYQd30EkEEgyxAjj+4QGFe5EASrS5C6YvkQMvLTEHIhwRB8UTGP7e5E0GywTdBN7xdQWBTCEEKhRtBaqx3QLi7GkEPyylAs4+nQVVyI0GuvRdBZEJPQBa2EkI1Li5CyuU3Qvj5e0Ghf8hAx0NMQcyltkKXKr1BdLoXQYFmEED25AdAuekjQDSzXUIZRs1AlaUiQZF8jkF42x5CJA+7QI2Sl0Cbi/0/PMu/QXpz2kA5HzxAuOnfQB39DUEyq5pAwm9XQGiAs0IqGQBCfQqsQIbdMUGweZ5AEwz+Pwhx3EA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwNLFYEAAAACgLuJgQAAAAMBiCGFAAAAAwCcuYUAAAABAZGNhQAAAAOCaZmJAAAAAoOqIYkAAAABAfuZiQAAAAMBmx2NAAAAAwKjnZEAAAAAAWgFmQAAAAIDw5WZAAAAAQAkIZ0AAAABA/SRnQAAAAABNx2dAAAAAQLwMaEAAAACAtiJoQAAAAIA6Q2hAAAAAgJZlaEAAAABgKIpoQAAAAIDIwGhAAAAAgEsnaUAAAACAd5dpQAAAAAAexWlAAAAAIIHnaUAAAACgpgNqQAAAAIA3O2pAAAAAgBhlakAAAACAEvVqQAAAAICCJmxAAAAAAM/UbEAAAABA1C5tQAAAAEC6eG1AAAAAACGebUAAAAAA5cFtQAAAAEBU521AAAAAgNY+bkAAAADAL9RuQAAAAIAGAm9AAAAAAMlhb0AAAACA241vQAAAAMDd+m9AAAAAACgkcEAAAADASJNwQAAAACDprHBAAAAAgHfDcEAAAAAAX9BwQAAAAECJSXFAAAAAQLHTcUAAAABAPeNxQAAAAIDZ93FAAAAAgJMCckAAAABggBFyQAAAAEBHMXJAAAAAYKpjckAAAAAAEX5yQAAAAAA5iXJAAAAAYLOUckAAAACAbehyQAAAAOBb9nJAAAAA4HYoc0AAAADAPT5zQAAAAOD2ZHNAAAAAgNp8c0AAAACgLMFzQAAAAEDn8HNAAAAAQJ0kdEAAAABAx090QAAAAMCJcXRAAAAAAPmBdEAAAABgkpR0QAAAAGDZo3RAAAAAIHHVdEAAAABAHeJ0QAAAAEBK/HRAAAAAwBMsdUAAAADgzT11QAAAAMAgc3VAAAAAgD+zdUAAAACggcR1QAAAAAD8z3VAAAAAYPngdUAAAAAg4/91QAAAAODkWnZAAAAA4HtndkAAAABAvnF2QAAAAKAyoXZAAAAAYOGydkAAAABAq8V2QAAAACBL2XZAAAAAYI8zd0AAAACgAkZ3QAAAACAxUXdAAAAAIDBid0AAAACAs3N3QAAAAOCwgXdAAAAA4HqNd0AAAADAftx3QAAAAECo7XdAAAAAQM+7eUAAAAAghdV5QAAAAIAPB3pAAAAAYA2ZekAAAABAXLV7QAAAAEB/xXtAAAAAoCJUfEAAAABAy7p9QAAAAMC6JH5AAAAAYPwwfkAAAABgWUV+QAAAAGBOZH5AAAAAIIh2fkAAAABAR4N+QAAAAKAMkX5AAAAAIL72fkAAAADg6gx/QAAAAGBAJ39AAAAAIDU2f0AAAABAvk5/QAAAAKCPYX9AAAAAwJqDf0AAAAAgGZN/QAAAAOC0t39AAAAA4AvHf0AAAAAg+uN/QAAAACCVMYBAAAAAwGBAgEAAAADAxkmAQAAAAOB6UoBAAAAAIJljgEAAAAAgsIGAQAAAAABO4YBAAAAAANzwgEAAAACgRROBQAAAAKBEJ4FAAAAAYKdGgUAAAABAXFeBQAAAAIBqgoFAAAAAIHLKgUAAAACAhPqBQAAAAKDVCoJAAAAAIIxDgkAAAABA6mKCQAAAAACfaYJAAAAAoOWggkAAAAAApMuCQAAAAICx1IJAAAAAAOTZgkAAAACgzOOCQAAAAOAD7IJAAAAAIOj8gkAAAABAsEGDQAAAAKDiS4NAAAAA4Jtxg0AAAABgOoODQAAAAICpwoNAAAAAwCLUg0AAAACgLfiDQAAAAKByDYRAAAAAgCQUhEAAAACgH1CEQAAAAKCpWoRAAAAAICe6hEAAAAAAb2qFQAAAACBiiIVAAAAAAHaqhUAAAADA8xOGQAAAAOB+iYZAAAAAAPgih0AAAACgyKqIQAAAAOAKuohA + NrgMGZxjYkAc6N63HmJpQMZtNYzMxW5A4xT3mT50dkCig4HBEuJ2QN0l+pbCAn5ACtY+Ee2EfkDm8fx5mJmCQPxJH7et2oJAGpvboQVrhkB60qC176GGQHoBj9+bKopA5KKkVIeDi0DeLln8J0ONQHWnJe3IO45A - + - PAzLQI3Yfz+umP9AI1jrP9vpnkBCqpxBiXkRQE+OV0A7FFxAEiHCP0A/6EDmjNZA4a+AQFBjkj+DJOs/xbCPP69dp0H43cBBdU0IQIoLP0DmvchA8bgtQGWYGEB19ehBWt1GQN6nsz8a625C+UNcQKb9d0BdOQNCdpusQKqLb0Eo1QVBLqvtQNSLC0HNNLFASRIJQbvQ8UA41k5AdAfGP+efy0DFn89ASoyAQNQU4z9/ooFAe52DQNLrc0Be0o1AOrG0Px0kQkG3nm5AhdC+QeYT9UBLkT5BWUHsP0h080EdspdA3GMZQQL7oEETr8RAiF8hQpf6zUAxaPJAwbTIQG4dAEETuyBBywPRP5Kll0A3dRFAUAEGQSyV9UC4MxNA+9FSQRRaVUEdfbFARViHQSK/ukAOawFBgoaEQURTX0KHRi9BqIULQXGhk0D2pGNBDyUSQiAmr0BWzGJBTHQRQLgZwkCeYuZBzc6LQTCEXEEK+qpBN+gGQQ3M+UKfPNhA0CaDQWKE1kCecQJBRQDrQH4ouEH3IaBBwJbWQNj1BkBEnVtAsU8tQeT2mkGalJBAIZGQQfTv3UCmWIVCqiV2Qc9fNUHhsD9Ano5iQDgdLUBHKiJC0fwdQRrZ9EDulWVBpcMCQuJpjkEclgZCZLEiQ+m7M0B29DtADwT9P6N4A0FQIOs/ycRqQfWZE0Exl5FBU2oCQeSgG0FRKjlAkpxmQsbll0CSnmRAnVkRQWRnw0LCAClBbZ0mQcjlI0DzFQBBvcO7QZ4gskDiQQlBf6fRQKg9eEIHySpBRTsCQWxVQ0FGrRpAaZUEQa1FNEHYTe4/HENiQG2qY0F4poVBkcW7QC9LnEFQvaFA97HpQAMxykBoG3NAhlDrQDXfEkAibLZA0PPrP9GjLEDvIz9A + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgKpEZkAAAABADaFqQAAAAIDqxmxAAAAAAPjmb0AAAAAANl9xQAAAAACOFHJAAAAAgNWVc0AAAAAAWBZ0QAAAAAD+lHRAAAAAQAhadUAAAABAZXF1QAAAAICftHVAAAAAQCZ+dkAAAABAQ792QAAAAMA1jndAAAAAgBWzd0AAAACAvo54QAAAAMAytXhAAAAAQDTVeEAAAABAshN5QAAAAABoQ3lAAAAAAKpjeUAAAAAAy7V5QAAAAEDfkHpAAAAAgEDdekAAAAAAMRJ7QAAAAEALhHtAAAAAQOb0fEAAAACAWPd9QAAAAMDwOX5AAAAAQM5mfkAAAADAlrx+QAAAAMA+HH9AAAAAQMsvf0AAAADATlV/QAAAAEAdrn9AAAAAABe4f0AAAABgdAuAQAAAAEAHGYBAAAAAoDkigEAAAADgXjeAQAAAAODrQoBAAAAAACxZgEAAAADglGmAQAAAAGCij4BAAAAAwDOpgEAAAABgxbGAQAAAAIBmwIBAAAAAILrRgUAAAACgj0qCQAAAAKCqYoJAAAAA4GlqgkAAAADg4pGCQAAAAIAH5YNAAAAAYJyMhEAAAACgcUKFQAAAAKDdYIVAAAAAYJxuhUAAAADgutuFQAAAAGBBAYZAAAAAIAVuhkAAAABg/3iHQA== + NrgMGZxjYkA= - + - 0r8tQESoGkCtw9FAdDnIQNa4MkBmIChB9wgIQNsQakAS8qlAJJZAQU1RWEEuHbtAvqqIQLz/3kAuYbpARmURQIaoCUFicWZA6z8PQGW6QkEC+JJAi4ThQAAUOEEB9zpBKV2rQO9SNkAiSQZBLci3QJ6WYkGOrRZAoMFbQFdGjEAIpOVAk3c9QMMzskGQiOhA/pmHQT64GkCm82hBFWi/QCmcKUHo+qA/eUsCQRuWEkF+1C1BbnOzQFfWI0A8dtFA6XnYP/yWC0FC/ppAk6WNQOavVEEeE/0/MQOcQMADHUGiCqE/FWbzQNA63kGvaiRAf7QnQc96+0A= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQOPBaUAAAAAg7CpsQAAAAEDB3HBAAAAAgNVEcUAAAACAp4N1QAAAAED0EnZAAAAAwO2UdkAAAABAeh13QAAAAAA5R3hAAAAAQIWDeEAAAAAAjE95QAAAAEAntHlAAAAAwAUzekAAAADAtnl6QAAAAECdu3pAAAAAAMRYe0AAAACAmR58QAAAAECtZHxAAAAAALyafUAAAABAje99QAAAAAAuTn9AAAAAwCZgf0AAAADAz7d/QAAAAIDtOoBAAAAA4PFVgEAAAAAgl16AQAAAAECoGYFAAAAA4KcfgUAAAABg6SmBQAAAAOByKoNAAAAAIGMnhEAAAADgeuKFQAAAACCxnIZAAAAAoHjUhkAAAAAAHR+HQAAAAMBLVodAAAAAgJC5iEA= + KBZXds7jZUC0UdoP9eFsQNeRyQ6NInNAFctlXaqRdUAt5s0TJZN3QC1Eqmd9pH5Aqdr3wq3Cf0A0c5GeluKCQHI+OMyucYNAcm0m9lr6hkD+elpRGPuHQJ2XqPimMolAHMwWPHCLi0D+mnfi+UqNQBOrlmqnI49A - + - loz9PyiKNEBXTTJAL/8HQDmlnEACE8pA/ZIaQEDM0j9NeI4/93KuQD64IEBojJJB7YRaQK/ffkA51N5AsrWAQPTng0En4SVBt2TqQBLPrEEqiERB42o9QNa/ekEK2FRBDQrgQI43JkHnJLFANw6RQNE0y0Bs5iNAxoEEQPvcjUB9UJJBwPgcQRx8g0BUEO1AJkqfQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQHIlZ0AAAACAw2RpQAAAAMDDhGlAAAAAoKYfakAAAAAA3ERtQAAAAGAGvW1AAAAAABDfb0AAAAAAvgNxQAAAAGD7tnFAAAAAwH+Bc0AAAACAR7J0QAAAAIChZnVAAAAAgG22dUAAAABAxBZ2QAAAAADpOHdAAAAAgOVRd0AAAACAFSZ5QAAAAAD45XpAAAAAwHs0e0AAAABAe4N7QAAAAECX/XtAAAAAgANwfEAAAADApLV8QAAAAMAbY31AAAAAAOuRfUAAAADA2Kd9QAAAAACrNX5AAAAAwMd3fkAAAACARqB+QAAAAEDj7H5AAAAAwEBNf0AAAABAReV/QAAAAIBZGoBAAAAAYEdfgEAAAABgFX2AQAAAAACJkIBAAAAAoL/BgEAAAACgGtSAQAAAAEAK+IBAAAAA4Lw6gUAAAACgeFeBQAAAAMAIX4FAAAAAoDR3gUAAAADgUXKDQAAAAODOBoRAAAAAoCU9iEAAAABg/ciIQA== + NrgMGZxjYkDPIQhxcmNtQEMdzoN8QnFAXLZEKKmydkBq3hX7KlN5QFwUIXwBxH1AjOcXLK7DfkC/jpFWQpqBQMUi+j+D6oJAUm81kpmihUB/ddo3++qGQKqfXDpHI4lA5k/ZzfCqiUA= - + - lHn9P9BWDUL36CxAV8KgPwjaUkH4O6JALkvoQKHwoECf7KlAmeS3QIXQB0CZVsk/YLBpQCMiJUEEUARB1dHQP1I0v0DJsHc/gaFEQAGqDUFe+61AdfAqQVscjkAjV8hAn2KVQNuVCUBdpcU/Ayp8QJs1sz+piuo/bV/RQAAExkB+CzJAxc6IQED51z/qXRpAgnhrQZ4MnECU5+o/cqbBQN6I70DnR55AxWQaQKcDu0GK83lBOx5dQRlFckA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4ANHbUAAAAAALGRxQAAAAOAZ83FAAAAAYDiTckAAAAAAhARzQAAAACBSFXNAAAAAQGAVdEAAAADAGIF0QAAAAGCuc3dAAAAAAPQCe0AAAADALiR7QAAAAICINntAAAAAgKEff0AAAACAtJF/QAAAAIAVKYBAAAAAQLpxgEAAAADgdaiAQAAAAECSu4BAAAAAIHJKgUAAAADgTceBQAAAAEBMzoFAAAAA4EpXgkAAAACgePuCQAAAAEBjU4RAAAAAwGFahEAAAADgRJyEQAAAAEDq5YRAAAAA4EUbhUAAAABgalSFQAAAAKB3ZIVAAAAAwFimhUAAAACAE9iFQAAAAACHKoZAAAAAQFxwhkAAAAAAm5GGQAAAAMCH3IZAAAAAoBAah0AAAAAg8GeHQAAAAOANkYdAAAAAYBSmh0AAAADg89SHQAAAAMBiG4hAAAAAgOtTiEA= + KBZXds7jZUD4qwju5sJuQNeRyQ6NInNAUqoIfAvSc0Ce7F1IpVN5QBkFnbUjA3pA9EBiTT3EfUDuhZ3E5BmBQNsjgJBx+oJA - + - 2BmOQENrtD/d+ZFASLKsQCjlC0HrOTZAx7IpQTPk6j8nR9lAaGh+QAl04ECdrWRAassgQCznw0ClHBdAwvhjQFaTW0FilV1BDP5bQCMeXUEuWPtAatsQQdBvo0Bn2lhBu50EQTYqHUIyL5FBYDvLQBobAECQV3BBwiAQQZKAsz9AvUFBdwwRQMFwgUHMF2VB10LyQEI8jkAk9vpAEE1AQShic0FoWIBAYpKCQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAILODYkAAAAAgPsNiQAAAAIA/BmRAAAAAoPdnZUAAAADgYqhlQAAAAEDByWdAAAAAQDEBaEAAAAAAPwNpQAAAAMBVH2lAAAAAwB9IaUAAAADAkrdpQAAAAAB0PGpAAAAAAPHlakAAAAAgyKZrQAAAAMATLWxAAAAAYAlGbEAAAABAo4VtQAAAAMA2hm5AAAAAgFXAbkAAAAAAMt5uQAAAAACdJW9AAAAAAN5Fb0AAAADg/HNwQAAAAACJ5HBAAAAAIM4ucUAAAADAbLBxQAAAAOCkxXFAAAAAQLzScUAAAADA7HByQAAAAAB/wnJAAAAAgKPkckAAAACgkXBzQAAAAKBkpHNAAAAAgMvTc0AAAADga0B0QAAAAGAbg3RAAAAAgIOSdEAAAACADUZ1QAAAAOAR4XVAAAAA4GYRdkAAAADAmSB2QAAAAEDhR3ZAAAAA4JbEdkAAAADg3852QAAAAICCA3dAAAAAwMUUd0AAAADgvDB3QAAAAOCoQHdAAAAAoAakd0AAAAAgjOZ3QAAAAKDWEHhAAAAAwCtCeEAAAADAnFB4QAAAAMC0g3hAAAAAIDSveEAAAADgW794QAAAACAKEHlAAAAAoIUjeUAAAADgHlx5QAAAAGBRdHlAAAAAwGV/eUAAAADgMcd5QAAAACDF7HlAAAAAYFP3eUAAAADAv316QAAAAOBSlHpAAAAAoKyiekAAAAAARcB6QAAAAKBb03pAAAAAAO0be0AAAAAgwCt7QAAAAICYS3tAAAAAIBWze0AAAACg0MZ7QAAAAODj33tAAAAAAADue0AAAACAjhR8QAAAAMAiPXxAAAAAwIJPfEAAAACADmF8QAAAACDxiXxAAAAAIMqUfEAAAADge7d8QAAAACBf5HxAAAAA4IMMf0AAAABg3nZ/QAAAAOBjfIBAAAAA4GafgEAAAAAA76SAQAAAAEDIKoFAAAAA4O6cgUAAAABg9w6CQAAAAKCXG4JAAAAA4Hc9gkAAAABgOkOCQAAAAKC1cYJAAAAAgLyFgkAAAACgQY+CQAAAAKB9r4JAAAAAwE3ygkAAAADAVzuDQAAAAOCXsoNAAAAAgDcEhEAAAAAgUDKEQAAAAOBvRIRAAAAAoMpKhEAAAABgjlGEQAAAAOCqhIRAAAAAIOmfhEAAAABgu7KEQAAAAABdyoRAAAAAoDfVhEAAAAAgOOeEQAAAAOCFGoVAAAAAgPFbhUAAAACgjbmFQAAAACAKbIZAAAAAoNUkh0AAAABA1KGHQAAAACBIe4hAAAAA4LaSiEAAAACA66SIQAAAACCxq4hA + KBZXds7jZUA= - + - TpAaQKN+jj9zqpVA9NM1QOL0N0F/HLtAL3ZzQKsTbkDTnWJAormlQOlUMEAntSNBK4mJQMh7I0AN1rhABV02QJyGsz9J5ZBAMi6JQPr26j8oaBFAAy+OQGC0WkA6/TtAorzKQHKA/T+fE5xAVMe8QInWbUCmjLQ/etEVQdHnPEFXNyVBBJ9NQYsECECBlchAY1JRQAGWg0B6a48/+nGrQKm0V0ALJEFA/Nc6QXAZMEFdjmtAqTWlQOaI6T/mL+RAhm8QQLRL2kAILcpA+K8+QXAFl0FKUjxBt7S4QaiQ5D8DMoBC4AX+QNCNwkC9dFtAw2kjQN3vk0FSZAtB81bYP5J7fECp2IdA997XQDcKjkEtgR9AmPIkQeSyGkEk4etBchdWQVhrWkCuFBdACI2sQFcWY0E1/VdAVaM9QSkgUkBr0+NANiJXQI7xjkECTCxCMiGoQZ+/t0BYmJBAGeKlQIrMGUHplSxCiMuOQdY1xj9bkUxB2HFpQqrkoEGYUOhA8BpaQX4dH0LdDAJCPobIQNZ8EUC+q3lBHHRUQYx4nEH0eClCy9MBQ0Yt00GD3TJAM/tBQZx9OkHILD1C8LngQUeSsUBdyrVA+rDGQDoCCUEiXmRAv1y/QB69kkCL2hNBpMy8QM/U0UD8vmBA + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwLfBXEAAAAAA01FfQAAAAED2JWBAAAAAIDxkYEAAAABgTixhQAAAAKB5mmJAAAAA4FzDYkAAAAAAtONiQAAAAADxJmNAAAAAYHxCY0AAAADAXGRjQAAAAGDtqmNAAAAAoFTbY0AAAADgDAVkQAAAAECCYGRAAAAAAAWJZEAAAADADqdkQAAAAOA+bWVAAAAAwFLmZUAAAAAAYylmQAAAAEAAimZAAAAAgHylZkAAAADgxsJmQAAAAKD76GZAAAAAAPXGZ0AAAAAAc+pnQAAAAMBGaGhAAAAA4CcnaUAAAAAgM/9pQAAAAGDfoGpAAAAAYNa+akAAAAAAriVrQAAAAIAiS2tAAAAAAF6sa0AAAABA++FrQAAAAEAXIWxAAAAAQBJGbEAAAACANmxsQAAAAADvgWxAAAAAQIrGbEAAAAAApkBtQAAAAIDHa21AAAAAwBOCbUAAAACA8MdtQAAAAMBQ3W1AAAAAgOT+bUAAAAAARxxuQAAAAACrYW5AAAAAwJ2FbkAAAACAKuZuQAAAAMC9JW9AAAAAQBRMb0AAAABA3GVvQAAAAIANgW9AAAAAwGOjb0AAAABAdcFvQAAAAEDl5m9AAAAAwKAlcEAAAAAAljRwQAAAAAAqQXBAAAAAIAxUcEAAAAAgYHNwQAAAAOD4f3BAAAAAoHKXcEAAAACg7KxwQAAAAMC283BAAAAAINcecUAAAADgMi1xQAAAAEB6RXFAAAAAgH1WcUAAAACAZ2VxQAAAAID2f3FAAAAAAJ2wcUAAAACgV75xQAAAAIBd4XFAAAAAQNn7cUAAAACgvxByQAAAAOBpUXJAAAAAAJ+BckAAAAAAY45yQAAAAAAemnJAAAAAgBuyckAAAAAgysNyQAAAAMBH0nJAAAAAAHDgckAAAACAGfFyQAAAAEDFFnNAAAAAQFQkc0AAAADAfTFzQAAAAODMQHNAAAAAoKpSc0AAAADgw2NzQAAAAOCrcHNAAAAAQEJ/c0AAAADAS7ZzQAAAAEAv4XNAAAAA4I7wc0AAAABAJwB0QAAAAABTFnRAAAAAQOcpdEAAAADAWTx0QAAAAABTS3RAAAAAgAVfdEAAAAAglnB0QAAAAMDSf3RAAAAAIP21dEAAAABAZs90QAAAAMDM4XRAAAAA4JLwdEAAAACgeQN1QAAAAMCkFXVAAAAAgB0idUAAAAAAGC11QAAAAKCrPnVAAAAAwL5RdUAAAAAAnGJ1QAAAAKC8iXVAAAAAwIeedUAAAADAwb11QAAAAODA0XVAAAAAQIPndUAAAADgsvF1QAAAAOAfPnZAAAAA4PHkd0AAAABgrzF4QAAAAOD1VnhAAAAAoO71eUAAAABgsh16QAAAAIDmRXpAAAAAYAWIekAAAABgu+Z6QAAAAOAxBHtAAAAA4BMVe0AAAAAg/z57QAAAAODXcHtAAAAAoHPDe0AAAACgo5N8QAAAAODYIX1AAAAAYKqSfUAAAADAUZx9QAAAAOAqAH5AAAAAQKGXfkAAAAAgeKd+QAAAAOD8JX9AAAAAoB8zf0AAAABApUJ/QAAAAOCJVX9AAAAAAPkVgEAAAACAZiCAQAAAAKBAi4BAAAAAADmggEAAAACgoKuAQAAAAID73IBAAAAAACYLgUAAAADgwxKCQAAAAOCBmYJAAAAAACGzgkAAAACgYNWCQAAAACBFlINAAAAAYFKbhEAAAAAAwgCGQA== + NrgMGZxjYkDXkZP9yKNsQBu6YmAmQ3BAYG6KbtRSdkCPXyNQFkR4QGDMZsIsZH1AfR0jrYR0f0DERtecbbqCQL69f4DuQoNAxHXFxhlDhkBSniO8RUuHQLtURfVQ24lAUs0R5vHTikB1pyXtyNuNQAwg8t1p1I5AOuuJizqykECGJ/ADiy6RQA== - + - hsoHQEQCo0CBkz9Ay9R7QAeDREAoLdk/Zd0sQA/AgkApEZVAXTclQSosW0ACg4RAHoaJQJ+kdED+XDZA//qLQG4d7UAcZghAxHk9QR7P1z/RKIBArpaQQIGk5T8qyQdA5A8RQHQTtD8tDghAZ/NRQAw3/T/h3D5BhESeQANo/T92arM/LtWZQHKLhUCeoplA0Uz9P0tYgkGwHAxAskLRQNN0/T8fhyNA9E39P5RLAkE46mJAOhbFP5LxokDOh55AJx0sQGDFi0FDJQJBRQyrQaO5K0Gg7RZBw0gkQdocyUB71hVAXVEdQQR7VkHhvKFAypwOQYBUKEFtvJ9ArgBXQKqKH0F/LhFA2j9xQc33NECDwz5Ad3HtQKKus0AAN6hBUrqDQayS1j+sRAVArlkIQAnbsEADlDRALM5tQPizI0BjWNFAbJeUQYdRrEBUroBBDM2TQbSVyUAudvFARog8QJEcOkI/LyBAnY8yQB5os0FDZkRATs1RQD9dWUG26StBSIyoQaq+eEEr24pCaAvRQPbFzUKzo/ZAnfMqQFY/YEAYcodAye80QQHKsj+R59VA8g71QDIk/kAQWKZAF+8vQZP1IEIiT71BuYvRQatAL0E5O+VBjeD9QdvAbUDiC0VBoLjvQSKimEDu1fpAYrLaQEw800A3crdAnnbFPyaQzUAO1IdAG8YRQVsha0CiNUhBrpeGQceLskDKD5JA93LDQABrGkDlmvFA2pwrQn+0XUAOGkRBFfy2QE9UN0F8L2BAhnYaQRmRrUBQg7FAyHzzQG66zED2kQRCxOLqP8hakEAEFk5A+/CMQCv7I0CcyyNA1lPcQM8ehED+fKA/NaQ2QExeF0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIOOpY0AAAAAgMyxlQAAAAMD9m2VAAAAA4Ha+ZkAAAABghOxmQAAAAAD0HmdAAAAAoGVGaEAAAADgaiRpQAAAAKD/RmpAAAAAQFmka0AAAADgzsxrQAAAAIANI2xAAAAA4KtxbEAAAACAhqNtQAAAAKBFxG1AAAAAAKcIbkAAAADAmSNvQAAAAEDVgm9AAAAAYGoHcEAAAADgPmZwQAAAAMB4xHBAAAAAwC3jcEAAAAAgM/BwQAAAAMA/k3FAAAAAgMqgcUAAAADAfLBxQAAAAOD1v3FAAAAAYL7RcUAAAADA/wFyQAAAAIDcEnJAAAAAwMNhckAAAAAgTKpyQAAAAABohXNAAAAAQHbBdEAAAACAkTJ1QAAAAABQW3VAAAAAwAyCdUAAAADAbb51QAAAAEACInZAAAAAQDY2dkAAAADAIoB2QAAAAABZHndAAAAAgHMqd0AAAABAGYV3QAAAAIAFlHdAAAAAgEu6d0AAAABAx8V3QAAAAACGMXhAAAAAAFmIeEAAAABATq14QAAAAACkWXlAAAAAgJJweUAAAADA3+N5QAAAAMA+7nlAAAAAQKz9eUAAAABAkSN6QAAAAEAdNHpAAAAAgHReekAAAACACXV6QAAAAMC2fnpAAAAAAB+bekAAAAAA2Q97QAAAAEBpfntAAAAAgDi0e0AAAACAbxh8QAAAAEB5RHxAAAAAQEqwfEAAAADAWsV8QAAAAIDZDX1AAAAAANE1fUAAAADA3mV9QAAAAIBMhX1AAAAAAMmhfUAAAACAbtt9QAAAAMBSB35AAAAAQEQffkAAAADAzXN+QAAAAEChmX5AAAAAQHumfkAAAADAebx+QAAAAECR4n5AAAAAQOIOf0AAAADAgF6AQAAAAICJI4FAAAAAwMpSgUAAAADg4GqBQAAAAGD96oFAAAAA4HtpgkAAAACADnOCQAAAAKDTe4JAAAAA4D/ZgkAAAAAA8ESDQAAAAKCrpINAAAAAYGXYg0AAAAAA/hmEQAAAAOAKJIRAAAAAAGNkhEAAAABAtKmEQAAAAOBNtIRAAAAAADrPhEAAAAAgoTCFQAAAACCWU4VAAAAAYDclh0AAAABg3S2HQAAAAODmNIdAAAAAIBiih0AAAACg8LOHQAAAACAwuYdAAAAAAODyh0A= + KBZXds7jZUA= - + - gvXjQG9itUBmvXZAz37FP6wZIkDKeMU/R4WgQMRjoEGoxVxATyySQN4MPEBHzXJA9OX1P497oj+YnXlCReXxQLQ/gEBOiJxAXcVaQPoi60BslDNAd15wQWWnsz+S0bpAejU+QdiTxkFcwWhB4LMNQEMe9kCjb7tATHoFQGKTEkHGMAhA2eGVQIsCd0Bdqj9BQBE+QUETF0H1Ld1Akp1GQGkCKkChG+lAAImDQbQMKkJSwUFBEIofQ3yZg0H7I5FAeHE8QQDP9kBznb1CKs3qP1jI/EPj08xCf3YSQbicWkBy9ehAYquuQC7f6kLRkf4/XXCRQBElikCU8WVAwiuIQGo6rUAaoY9BWCEzQOAf5kAytIxBCJK2QF/wbUC4xy9BzqBFQFNPRUHfr9lANkiXQCIQz0DCFSZC0SziQDXZfEGxWoRAbgR0QGWInkD/SQJBEo0RQPvXNUH/6FhBF1AOQUVHH0OtIoVBeTFSQP2qZECpmDZBbfWLQLFVMEEAXq9AZQKfQERoJEEDSqNAsh/YQKPsskHXkdZAxkizP5ZBIkBsaoxAUppbQE+EPENehDRB5hGJQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQPG8WEAAAAAA1UJZQAAAAIBcyVlAAAAA4G+NW0AAAAAAY4RcQAAAAEA5zV1AAAAAgO4oYEAAAADAS6BgQAAAAECQo2FAAAAAgH/iYUAAAADAjCliQAAAACB2Y2JAAAAAAHPdYkAAAAAAFCRjQAAAAABvxGNAAAAAgKDjY0AAAADApQhkQAAAAIBJIGRAAAAA4KnJZEAAAADg0+ZkQAAAAMDbYGVAAAAA4JelZUAAAABgAuJlQAAAAOCpCmZAAAAAIBUgZkAAAAAA76NmQAAAAMAkwGZAAAAAQFcFZ0AAAABgeR9nQAAAAIB6aGdAAAAAADOFZ0AAAAAg7qJnQAAAAMA9ymdAAAAAoAPfZ0AAAAAAJgJoQAAAAMCLTmhAAAAAAGlmaEAAAADAaeRoQAAAAIAdLGlAAAAA4KReaUAAAABgNqFpQAAAAABW6mlAAAAAQI8hakAAAADAFmVqQAAAAMARiWpAAAAAwCOoakAAAADAtuJqQAAAAECpHmtAAAAAQMvCa0AAAADA2txrQAAAAECBBWxAAAAAQNcobEAAAACAgz9sQAAAAIDjYmxAAAAAALyGbEAAAACAiaRsQAAAAMCqw2xAAAAAgETdbEAAAABA5wRtQAAAAIC5IW1AAAAAAAphbUAAAADA9qVtQAAAAIAR6W1AAAAAgL8lbkAAAACAmWJuQAAAAAAD/25AAAAAQH0lb0AAAACAN2hvQAAAAABpiG9AAAAAgFihb0AAAADA8LtvQAAAAEBS429AAAAA4HUScEAAAADA+SJwQAAAACC6M3BAAAAAACBTcEAAAACAibVwQAAAAICrwXBAAAAAgHzPcEAAAAAALOJwQAAAAOCJ8HBAAAAAAPwAcUAAAAAAIhdxQAAAAIBQNXFAAAAAYGBFcUAAAAAA+VtxQAAAAEABtnFAAAAAoGfRcUAAAACAZeBxQAAAAECl7XFAAAAAIJcRckAAAACAJB9yQAAAAMDtVnJAAAAAAP1gckAAAABAPXFyQAAAAEDvfXJAAAAA4JqJckAAAACA3LJyQAAAAGAOvnJAAAAAAKvOckAAAACAqP9yQAAAAMAhiHNAAAAAQNruc0AAAAAA7bN0QAAAACCmwnRAAAAAQJYudUAAAABAGEN1QAAAAOCrTXVAAAAAYBhhdUAAAACgX5F1QAAAAED+m3VAAAAAIB68dUAAAADg4MV1QAAAAMDB43VAAAAAIOP2dUAAAACgdBB2QAAAAKDLInZAAAAA4JF1dkAAAAAgPYF2QAAAAIBDk3ZAAAAA4Am9dkAAAAAgwMx2QAAAAECc8XZAAAAAgBFOd0AAAADA6cp3QAAAAADSInhAAAAAQLk6eEAAAADgmZR4QAAAAKBZt3hAAAAAIPvzeEAAAACgVrR5QAAAAIC1ynlAAAAAQKnVeUAAAABgxOB5QAAAAEBfXnpAAAAAIGJ3ekAAAACgJI16QAAAAEDZ/HpAAAAA4PgGe0AAAABg2RB7QAAAACBLI3tAAAAAwMAwe0AAAADgP3t7QAAAAEBHiHtAAAAAoHPEfEAAAABgb9N8QAAAAGB0FX1AAAAAIHsifUAAAACg6DZ9QAAAAKBuZn1AAAAAoC9zfUAAAACgFvl9QAAAAGDxsn5AAAAAYB4Tf0AAAAAgOkV/QAAAAGCaYH9AAAAAoMWaf0AAAADASsd/QAAAAOAYc4BAAAAAILF6gEAAAACATtqAQAAAAOBsY4FAAAAAwJOTgUAAAABgkrqBQAAAAEAm2oJAAAAAIFzjgkAAAAAgiIqDQAAAACD/koNAAAAAwJLTg0AAAACAnTuFQAAAAICwO4ZAAAAAoPpKhkAAAAAgPmuGQAAAACBC4oZAAAAAIGUTh0AAAACg3nSHQA== + NrgMGZxjYkBxWoXuS4RsQFf+/uF9UnBA - + - qqLWQNFxMUDL81ZA4Sg7QMgBG0D3ZJVANqcjQDxNZUCO0jtAV1/9P3NkM0C4zbNB+GaSQccOZEDiVARBXssHQNeyI0DDNLM/W5bzQK4+xT9WggZBtd2uQB1Pq0BO92tBPkQUQfbk/D9cMlJAalJ2QMQIGEEnZAZBVXwoQSWmJkEoy8Y/RGeeQFxAxUBZ87I/ByJ8QLQvi0EfJ4JB7v8pQCH3A0BVFd1BdG/CQWRrN0HZbNA/BPOAQTGJi0EXpb5AQsHTQByj/UDdp4NAYy/9P6B1MEE06jxCGkuNQL5cRUHhQ4xAke5HQP6ea0DwgoxBSh39PwQHuUFLkwRBZUKIQEtTGkEj/ehAsc5nQXD0wUGkmEhBq/dvQeGWDkGuv9FAMtQsQfyoI0Bs16VBAQCQQeBSs0FV0cNA0RPkQVfUakCyNxlCf1aLQWrkVkB8h0pBgiHwQAzRLkGHWKA/uYLvQfm8kkBK2oRAe5hUQlIjdkF4dVZBdYB2QJZaJ0HVJAFCWgXJQJbT0EHFuA1ARQ9DQdLuckD1KWdBtyaOQMlvQEHT+AdA1SbeP3cIjj/IILtBlA+cQKkfUUBaRa1B2xqhQcUVyED1UsZAx2T7QDa40kC2fFNAieFUQd7vSEH/BxFANohcQQSenUFAfrVB+IPbQd3nEEIwuKBAHlPGQJMEc0BzhmhBOZ3PQNTyhEHD0dNABuxOQnjjhkAPoAtD21kKQlIP9EBxlc1BkNb1P+sGUUF2XcU/fn0HQF6SFUPkNtFCWMhlQROde0CgYMpATOjFQS17BUFKkLZAYRNzQFY2MUFe4cpARi5aQS3ZJkEFQeo/5AHEQHxcGkF+W6hCtz7tQIdnH0DPVCJAVJcBQsH51kB0gQ5BZ2iNQGYol0HS2Y9BIGzqP+wO2kHg9cdAwParQLHvzECq8KJAZtaNQB1yrkA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAPEmYEAAAAAAhUNgQAAAAOAepGBAAAAAgG7kYEAAAACAumlhQAAAAAAhY2JAAAAAgLF/YkAAAACAzTljQAAAAMD9gWRAAAAAgK+iZEAAAAAA6t9kQAAAAOBOIWVAAAAAAMOhZkAAAADA/r1mQAAAAABS52ZAAAAA4G8FZ0AAAACAyCJnQAAAAMCAYWdAAAAAQMKDZ0AAAACAykJpQAAAAGA7LmpAAAAAgNpnakAAAACgB2NrQAAAAGCKxGtAAAAAgOVFbEAAAADgdGFsQAAAAABfjGxAAAAAgDoDbkAAAADAIx1uQAAAAACdaW5AAAAAwFWFbkAAAABAhuxuQAAAAEBUBG9AAAAAQFk/b0AAAACA8gNwQAAAAABJJXBAAAAA4NsxcEAAAACA0lRwQAAAAOCZZnBAAAAAAPjEcEAAAABgttFwQAAAAOCl9HBAAAAAIMUkcUAAAABAwEFxQAAAAKAwUnFAAAAAwGyScUAAAACAE6NxQAAAAACdM3JAAAAAAA9VckAAAAAAfmJyQAAAAEAYdHJAAAAAQMLFckAAAABARNZyQAAAAACdAXNAAAAAwCcNc0AAAAAAqERzQAAAAMBfUnNAAAAAANhhc0AAAAAgNHRzQAAAAGARhHNAAAAAgPuSc0AAAADgp7NzQAAAAMDj73NAAAAA4EQRdEAAAACgMCJ0QAAAAKC2X3RAAAAA4D9zdEAAAABAMoB0QAAAAOA9oXRAAAAAADW1dEAAAADg/P50QAAAAIACFXVAAAAAQJgxdUAAAACA7kB1QAAAAEBEUnVAAAAA4HSBdUAAAADAp5J1QAAAAGB8znVAAAAAwEAfdkAAAABgGSl2QAAAAADCN3ZAAAAAwI5MdkAAAACAaHV2QAAAAAChgHZAAAAA4MSUdkAAAACACMl2QAAAAICF8XZAAAAAoOYBd0AAAACg1w93QAAAAEDHH3dAAAAAADI1d0AAAADgXpN3QAAAAMA2oXdAAAAAoAasd0AAAADgobt3QAAAAOA803dAAAAAgLTkd0AAAABgtht4QAAAAKA8JnhAAAAAoGVUeEAAAAAAfmV4QAAAACCzdnhAAAAA4FKFeEAAAADgVJZ4QAAAACD6snhAAAAAAPDGeEAAAABgvNN4QAAAAGDy4XhAAAAAoGH5eEAAAAAA0A95QAAAAKAnKXlAAAAA4NY0eUAAAADAX195QAAAAACTbnlAAAAAIAKfeUAAAAAgabN5QAAAAGCg0HlAAAAAoFDjeUAAAABAEaR6QAAAAKCJ1HtAAAAAYBnye0AAAACgUkt8QAAAAEAtV3xAAAAAwHZqfEAAAADg+bt8QAAAAOA4AH1AAAAAIE4TfUAAAACg93R9QAAAAEDSfX5AAAAAoMmPfkAAAADgidJ+QAAAAMDX3X5AAAAAIPtcf0AAAADg8GZ/QAAAAKBTcn9AAAAAQJKvf0AAAACgs95/QAAAACCU7n9AAAAA4K4egEAAAACggyyAQAAAACAASYBAAAAAIDKugEAAAADgKOuAQAAAAKDeKYFAAAAAoI5IgUAAAABg442BQAAAAKCYpIFAAAAAAK7LgUAAAABg6PyBQAAAAGBHGYJAAAAAAB0hgkAAAADgFy2CQAAAAKAXSYJAAAAAQLFZgkAAAACAGGeCQAAAACCDkIJAAAAA4JaWgkAAAADAxrKCQAAAAOA4u4JAAAAAALjDgkAAAAAA4duCQAAAAIAqDINAAAAAoKJSg0AAAADguWODQAAAACC/coNAAAAAYBufg0AAAADgg7KDQAAAAIC56YNAAAAAINfzg0AAAAAgr02EQAAAAGB8hIRAAAAAoIOnhEAAAADghYiFQAAAAGAikIVAAAAAYDoahkAAAAAgQyOGQAAAAOBfKoZAAAAAwNO7hkAAAADgMBCHQAAAAICrTIdAAAAAACmTiEA= + NrgMGZxjYkDauChX50NvQOh00xhyUXBAlB3cIqKyd0APNhuQIGJ4QLveI5pQw39Am3uxg2c5gEDEezhTenGDQPDPtYj/6YNA - + - 0O3iQD5BGkD7pnJA0ieYQDJdA0HcsJJA+bUGQC5USkCBv4JAtOmOQN8bzUCIl3xAuPGNQF8v/T/Kj2VAc61PQGxnTEE2IQhBUi5XQNjvB0BE+3xABHueQaaJiUCzfiFB2hHKQeVSh0BCwW5ANGRzQAvByD985WZAwY1AQanRvkC7Bj1AMv+NQNzYD0ByzGRB20k8QXK/LEBxAZ1AG+2yPxExGkDKGgBB3/t7QK44vkKN9ZRBMo4rQLRpTkCk//dAPUoIQKIZCkEJp9xAiutGQ917ikETvIxCQMvCQHPpmUAIJtVAv/GCQLXFNEAbGS1Aki/YP5LEXULeAIBA9ooOQEPUzEB5ppJAehajQAK/xT8Q6BtABeZzQegu2D8bIBZBuGETQVROzEAcNxBBAuViQGlgpkIpkRFA5rGAQnk7hEGmpi9Bf8UPQmVJEUAAHyVBDgkiQY6CCUPis+tB1dbeQYY1IUAzWYdAGGMGQA77KEA3zY1At1NGQfZCYUIevipB69+0QdiV2EG4eRVAmFKdQkp0xkFUAhhBFTcRQYqzFEGC96hAXd8LQb6jIkH0bg1Ak+khQplhCkE8iORBs697QehDSkHCW41BvXqsQNIMtkBYLhRC80YfQLs8rEB5Gc1BvH5KQWspAkFc4AZBxSfyQIjH1EC5g1NCFPg7Qa2CjEC4+5RB82o/QPg/4EJaHOpBWZ2eQ+0PLkPpxixBH6XoQMSjKUFb4wVBRAy9QOZT30Bbyk1AS/AAQY1zpEFkJDZA3r6OP0OOEEEucOs/n+D/QO/BXEEqyS5Cq07zQD20O0HCHuxAm0sWQKAbjUGDOoxCPOqGQgIdgEC/XCRDHanAQUIo60B6XIlBI9+aQSUrREH+wspAKaz3QJw2mEBrV9c/LM4HQBje6T8EoUhAgKOgQCvcEEE+zwVADg4sQqVo2EC87KJAokMtQS5/rkBBDY1ATYxpQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwMIFVkAAAACgRMpWQAAAAIDqwlhAAAAAgCX6WEAAAAAAHT9ZQAAAAMCSAltAAAAAQM07W0AAAADgWo5bQAAAAMAggFxAAAAAYKtMXUAAAAAA8H9dQAAAAOA/U15AAAAAALfMX0AAAACg9gZgQAAAAIDiKmBAAAAAwMJCYEAAAABAomRgQAAAAMAJqGBAAAAAgJIoYUAAAABA+EhhQAAAAKAcqGFAAAAAgJLCYUAAAABACT9iQAAAAACmXmJAAAAAgBKDYkAAAAAA4bxiQAAAAMCzJWNAAAAAAAFnY0AAAADAhYRjQAAAAED8wmNAAAAA4AvpY0AAAABAywVkQAAAAKC7I2RAAAAAwEltZEAAAADA4aNkQAAAACBNyWRAAAAAIK3mZEAAAABAHCNlQAAAAGBaQ2VAAAAAoJJdZUAAAACA2qRlQAAAAMDk42VAAAAAwLYfZkAAAADgGGFmQAAAAECHo2ZAAAAAwE7fZkAAAACgrAlnQAAAAMDlI2dAAAAAIMdgZ0AAAAAAp4JnQAAAAMADpWdAAAAAgP3hZ0AAAACASgloQAAAAICLSWhAAAAAwPOGaEAAAABAXr9oQAAAAAAn4WhAAAAAwAUIaUAAAACAvSVpQAAAAGCsRWlAAAAAwNRfaUAAAAAAgIRpQAAAAEBJqWlAAAAAgPTeaUAAAACAO/lpQAAAAAB7HmpAAAAAACZLakAAAADA+HZqQAAAAECbi2pAAAAAQCuiakAAAACAIcdqQAAAAIAaKGtAAAAAAOlqa0AAAABAAIRrQAAAAEA3pGtAAAAAgA7Ba0AAAACAVeRrQAAAAMBSAmxAAAAAgN9DbEAAAACASYBsQAAAAIDPwWxAAAAAgCDnbEAAAACAcAJtQAAAAIBzPG1AAAAAAHplbUAAAADA7IhtQAAAAMBQp21AAAAAgITkbUAAAAAAPwhuQAAAAACbKm5AAAAAgC5HbkAAAAAAcMNuQAAAAAC54m5AAAAAQCr+bkAAAABACCJvQAAAAIBDQm9AAAAAAO5ib0AAAACArYJvQAAAAEA9yG9AAAAAgKTmb0AAAADA2vpvQAAAAEBXFXBAAAAAYFEicEAAAABA5i9wQAAAAIBMU3BAAAAA4NNgcEAAAABAtX9wQAAAAODYknBAAAAAgHihcEAAAADA5LJwQAAAACCswXBAAAAAQKXScEAAAACgk+pwQAAAAIDjEnFAAAAAINwicUAAAABAzTJxQAAAAEBpQXFAAAAAQC1RcUAAAADA9mFxQAAAAEAadXFAAAAAgGKAcUAAAACgTYpxQAAAAEAblXFAAAAAgKewcUAAAADAl9dxQAAAAKAy6nFAAAAAgMwCckAAAABAWmJzQAAAAIBncXNAAAAAYDWfc0AAAACgqfhzQAAAAGD7RnRAAAAAYOyHdEAAAAAAaKF0QAAAAABG2HRAAAAAIBQmdUAAAAAgo0Z1QAAAAKBueXVAAAAAICybdUAAAADgX+F1QAAAAMAHLnZAAAAAwH5NdkAAAADgW3J2QAAAAOB0wXZAAAAAIBjQdkAAAADgM3R3QAAAAKBugXdAAAAAgMqPd0AAAADgFaB3QAAAAIC+sHdAAAAAQDfFd0AAAABACC14QAAAAIAadHhAAAAAQMWIeEAAAADgKJN4QAAAAKDQtnhAAAAA4HjHeEAAAADgvtZ4QAAAAKBm63hAAAAAYCYCeUAAAABgsA15QAAAAIA1HnlAAAAAoGNTeUAAAADAQmR5QAAAAGCXknlAAAAAgHCceUAAAAAgQqZ5QAAAAGC603lAAAAAAPPmeUAAAACg2hF6QAAAAGCMJHpAAAAAYJ5aekAAAADA2Xt6QAAAAGCCBXtAAAAAoE9Ae0AAAABAUUZ8QAAAACArV3xAAAAAoNORfEAAAABAX+R9QAAAAKA69n1AAAAAQNGnfkAAAAAgdLV+QAAAAMDzw35AAAAAQPkCf0AAAAAgPRZ/QAAAACDdLH9AAAAAoL7Ef0AAAADA+9V/QAAAACAmE4BAAAAAgBczgEAAAAAgSnKAQAAAAOB2eoBAAAAAwFOEgEAAAAAgG8yAQAAAAICB8YBAAAAA4M75gEAAAADgFzuCQAAAAACOdIJAAAAAYNf7gkAAAABAa4qDQAAAAECFk4NAAAAAQF/bg0AAAABgyhmEQAAAAGAORIRAAAAAYMRzhEAAAADgenyEQAAAAAB3+4RAAAAAIPUChUAAAACgsIqFQAAAAGAHqYVAAAAA4L3DhkA= + KBZXds7jZUBImCMySWRuQDtMc7KVAnNA - + - nA+3P4d66z+DRJVAIn0pQMeQZEAl6dc/+ewHQA7oRkFB+VBAb0KXQP6xwT95anVA8G2VQPSO00Dair9BGW48QUDmLECDdbM/vql8QIvyDUG+IUxB3LNuQozpnz+Bh7xBiTFiQU9j1z/V6TRAIYPgQMxFO0CxSrM/VlbOQHRWg0CV7BZAhBrUP8Lm8kHsegdA1sz8P+kunEBP10hAx9eNQCAiF0HAfgpCjw8aQBYP2D/e6jVAGrLHQVw8wz9VCp5BPKOuQmPYJUH4w8NAuMYNQXVi0UB1aKRAGVfXP8gSjEBq9bI/BU+3QU6wvkB7S7M/+XLbQIUDjEDMqlFA+Dm8Qcz8yUHTASBABE6zP6wcnkFR0s1Aa2UiQknOsEFBoJ5BlKEtQYqt1z+WNhFA8owbQczu3UCWnY9BCQwKQfJmIkCTqVdBsvKyQLBdCEEWTIlAt9I3QbQYO0EAVIFBuRqPQepKrUEMA1dAGtkXQEHbfUGsZM1BlnA6QnV6kEFKeuJCwnbQQkCA9UASNzdB6IunQHKYAUGeIrpAgFMXQtL7MkFgLURBJVtpQOXuikNT6R5CeWs4Qq6DN0IOvH1B+iF+QMh1gEHurv0/aUtiQeQBWELGMUtCWqyVQdfOikLbvzVBVs/XQAWy6j9Y6URB6NveQclv9kCCSCtAG/pjQfCkgUCGSJ5AR5qeQUojpkHQkBpABwUHQkbxkUBk+vNAkJtHQb28UUEYa8hBuNvOQClUCUFCWLpAEhwJQQpFj0DFTn1CH/sgQ0Nl2D+vne5ARFQ+QUpltEEgnaFBgPYBQVaMfUFZ09g/53ZDQsmOfUHmhWpBpcINQdFdpEAxSStCz9MkQmJmJUI2E85C5My9QiaAAUFDgI1EeZ7CQ5zZ60GFfz1DfprSQeTJUUAlHqVALOcaQdinC0GEw4xApqHEQJ+UzkCytG1A7d0uQWAkIUB472pALjwNQcEEM0ADzPw/CvTqP8ahAkKRtAZBEVUkQkN+TkBwFLJBnoS4QLBGYUOdbJdCtFopQR36EkDBjktCdJ5GQaBPNECNwppAQ26vQT2WiEG2nJJBJxZ9QDGWGkHAbABBOoiKQB63eEBNmHtCoqe+QdgfyUGcwkRArBZgQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAMfGYUAAAACAl+RhQAAAAKASC2RAAAAAoFhkZUAAAACAfMBlQAAAAKBeTGZAAAAAwChnZ0AAAABAhodnQAAAAGA1XmlAAAAAgOMqa0AAAACAp8prQAAAAOAQ6GtAAAAAwBM+bEAAAAAgtphsQAAAAACU/G1AAAAAAO4vbkAAAACAMOduQAAAAIAFbW9AAAAAQKGib0AAAABAniVwQAAAACAOfHBAAAAAILO0cEAAAAAAK8NwQAAAAOBGz3BAAAAAIPUycUAAAAAAkURxQAAAACBIWnFAAAAAIJFkcUAAAADgV3VxQAAAAEDF53FAAAAAICMUckAAAACgLiFyQAAAACCEL3JAAAAAoE1EckAAAACgO2JyQAAAAOBXv3JAAAAAQL/0ckAAAADAdRFzQAAAACAIJHNAAAAAADcvc0AAAABArm1zQAAAAGBurnNAAAAAAI8QdEAAAADgkyN0QAAAAMCyMXRAAAAAwAJSdEAAAACgQZN0QAAAAID/UHVAAAAA4A5hdUAAAABgj3B1QAAAAMD6gnVAAAAAgMmhdUAAAABAdsJ1QAAAAKAa1XVAAAAAoOYRdkAAAADAKzd2QAAAAEDjRHZAAAAAQLhTdkAAAADA+352QAAAACDkm3ZAAAAAoKumdkAAAADAwb92QAAAAGD0UHdAAAAA4BRbd0AAAAAgDpd3QAAAAIDspndAAAAAoDG9d0AAAABgyNF3QAAAAEAy4ndAAAAA4EDzd0AAAACgqQ94QAAAAOBVQ3hAAAAAoLZPeEAAAAAgfoJ4QAAAACCqMHlAAAAAAERTeUAAAACA/2B5QAAAAAAxcnlAAAAAoLiSeUAAAABAOdR5QAAAAOD66HlAAAAAoIT8eUAAAADgw0J6QAAAAOC+UHpAAAAA4LFsekAAAABAu396QAAAAODGj3pAAAAAYJm0ekAAAACgvdN6QAAAAGDd33pAAAAAoFkCe0AAAADAERB7QAAAACDsQ3tAAAAAACtwe0AAAACgJ417QAAAACCK+nxAAAAAoHtmfUAAAACgHPZ9QAAAAMBKB35AAAAAQPpbfkAAAACg2qZ+QAAAAOCxxX9AAAAAQMY3gEAAAABg6nGAQAAAAGDzeoBAAAAA4C0LgUAAAABgX2yBQAAAAGAekYFAAAAA4HWWgUAAAACgjymCQAAAACCzSYJAAAAAoJ5hgkAAAABAlmqCQAAAACDv+oJAAAAAYEcEg0AAAACgcR+DQAAAAOBERYNAAAAAoJBLg0AAAACgR3yDQAAAAOCHi4NAAAAAAPaRg0AAAADAFqSDQAAAAKCyE4RAAAAAQP16hEAAAADgClSFQAAAACBWi4VAAAAAwMakhUAAAADgg/SFQAAAAKD8YIZAAAAAQH11h0AAAAAgkCCIQAAAAOCIg4hA + NrgMGZxjYkBa6U0me2NuQBu6YmAmQ3BAz/0oxECidEA9w2SRqbN1QM9bBRiZs3tAsWglgZm0fUA= - + - 9AYEQreHT0DX0khA1Pm1QH5n9UAzjbVAK5R8Qa5CxUC8IYNAOQ8tQFR22D8A3jlBRpGVQGzsB0BxylhAYbdjQAvhm0DdCYlBNA9lQK4nEEF+cYRAImG1QGYs6EAMdaA/hWkpQeac60BUkfhAvFOPPxKNe0FwEElAnCLdQOEFB0BuBv0/ekc2QG4D2D/oDH4/ka17QA48mEDEISlCjWwVQOlE20AYlTpBDrUfQFD7o0CLGvY/hZp7QKlKfEDgBUVAVonWQBIcCEJS/SZCgfpyQKu2z0BKqiNArE3YQMmYtUDSxbdBoqOHQNjI10GyHBhAsLIqQOV4LUCvJRRBKHs/QMQTCUFkxpJAgGXYPw9diUASBx1BkoDIQPNCQ0EPlkRAuNfyQLXYxT82AVdAmuLNQQvRtEHk9LI/yggnQhxUukFK+nZA4xARQAHJ8UEIMM9Ajbk+Qm+ihkF8gHNAPXSZQZW7h0Eh8sdBol+DQ2rlk0HxdtpA7KPEQXJ/1kA4KLQ/kqoRQAHvO0GD6o0/g8JkQcaTQ0HICHdA0RSAQPbadkJW0lZBjJukQfFvOEGlFgFBOrgxQdCMMUFoZJ5A5bv2QOz5fkDDQTVBi8QsQFj0GECWP1FB3xZhQNNp1EDKvcZCR7zWQduQ1EBwModAxfaKQXXGNEDd+6BAzwLnQHv8HUEhde1Aqi6JQKF8yEBSWz9C + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwPspYkAAAACgFmZiQAAAAIB0SmRAAAAA4AlnZEAAAACAUQpmQAAAAEC5aGdAAAAAwKvhZ0AAAAAAPkNsQAAAAGDGaGxAAAAAwFQnbUAAAACAlIRtQAAAAIAjJm5AAAAAgAmHbkAAAAAg+v5uQAAAAKB2Lm9AAAAAAIZXb0AAAAAgBAJwQAAAAGD2NHBAAAAAoJKAcEAAAABAscBxQAAAACBq5HFAAAAAQGB+ckAAAACgP6RyQAAAAECminNAAAAAgOgTdEAAAABAUEN0QAAAAEAqeXRAAAAAYDzBdEAAAACgWu10QAAAAEACJHVAAAAAQGJhdUAAAADg0pN1QAAAAMBhkHZAAAAA4LfidkAAAABAMwF3QAAAAMDjQndAAAAAoA+zd0AAAADgUcF3QAAAAIBW43dAAAAAoBTvd0AAAAAAvSN4QAAAAOAeMnhAAAAAQN5EeEAAAAAgDGh4QAAAAABjc3hAAAAAIGDWeEAAAADgVOR4QAAAAKCnFXlAAAAAAIcneUAAAABgmTF5QAAAAEA3QXlAAAAAwPRPeUAAAABgtrt5QAAAAGAbFXpAAAAAAIlEekAAAAAgcFx6QAAAAEDVanpAAAAA4MmQekAAAACg06l6QAAAAICrunpAAAAAgOvcekAAAAAgx+h6QAAAAKBZOXtAAAAAwEtRe0AAAADAxGJ7QAAAAACWc3tAAAAAoGCDe0AAAADghZN7QAAAAIDRpXtAAAAAwK/ee0AAAABgrRB8QAAAAGAIPXxAAAAAYAZSfEAAAABg/mF8QAAAAGBLenxAAAAAIFegfEAAAACglrB8QAAAAOCWv3xAAAAAoLTVfEAAAABgYfp8QAAAAMC5F31AAAAAIPVFfUAAAADgU6F9QAAAAMDPon9AAAAAoPcmgEAAAAAAM3CAQAAAAEA68oBAAAAAgDf6gEAAAADgCwGBQAAAAGBPgoFAAAAAYK07gkAAAABgz9GCQAAAAAAb+4JAAAAA4MRKg0AAAACA2pKDQAAAAKBYPIRAAAAAQF5KhEAAAACAGX6EQAAAACAnh4RAAAAAoEO+hEAAAACgvc6EQAAAAOCeQoZAAAAAgIxLhkAAAAAAGWqGQAAAAOCos4ZAAAAAYG3yhkAAAABgWeqHQAAAAKCy+YdAAAAAgC1LiEAAAABgLoGIQAAAACBviohAAAAAgISSiEAAAAAA58KIQA== + NrgMGZxjYkA= - + - wizYP98JB0GaEkVBHRYRQFi1oT/orAtClAQQQZcpsz/y+5tAyobGQJuw6j+JXBlB3Y4iQWaVhEDjnTtAvQL7QOjn1UC7MKVAEh7WQNLM6T/aa4lAarm1QGo62D9n3HJBBzMBQZd2O0BpAh5BBcvrP2X1yj9y7+U/IYhbQP4cOkG1vEhAuF5lQOwrCkG/Am5AAdQGQYNtjj8eUeo/w272QB+noD8g01ZAk8cfQJe+UUAZzwdAzOzOQBd+GkCnhzJBGolsQERnxkBbMBBBZXdNQRl6C0H7l5VAvwEHQblRdz9UfE9Aw3/0PwgYzUCt95VBbqaSQLyQREDc3nxAPyyVQRpejkCx9G1BsiYWQPwYWkHvQAJBlTDyQFfM/D/K3qdAksgOQd6nnkBsnnJBLExFQosdIEER9VFAqjB9QUCrSkDfl5hBNPMNQUAh2z9lBoRAmH8cQaxOGEF8ML1A/H43QVhKaUApVjJAausxQLDBv0B6Q59AihmHQcdx70CjLORAcAy6QC6aVkFnAFJALJVcQRjthkEn4ulAAwV3QIvJxkEi4HtAKMyCQBiSkEDGQ+ZAIjo2QNz+V0EUHmRCA/0lQeckCUE= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgJF/X0AAAABgn8NfQAAAAECqR2BAAAAAwH6mYEAAAABgGOFgQAAAAACVamJAAAAAgE2HYkAAAACAY1tkQAAAAIBlrmRAAAAAQLuDZUAAAADAQyZnQAAAAIByiWdAAAAA4IajaEAAAADAHB1pQAAAAMACpmlAAAAAAPH6aUAAAADASCJqQAAAAAC5Z2pAAAAAgLAga0AAAAAg0khrQAAAAMBcJ2xAAAAAwPd7bEAAAABA9FNtQAAAAEA2/W1AAAAAQMREbkAAAACA5PxvQAAAAKClMnBAAAAAgMZEcEAAAABgjYlwQAAAAAAL0XBAAAAAYEvgcEAAAACgCyxxQAAAAKCk0XFAAAAAQCr2cUAAAABgUCByQAAAAMAgQ3JAAAAAwNBmckAAAAAA095yQAAAAIAX63JAAAAAoFEkc0AAAADA6DJzQAAAAEBjRXNAAAAAQCRVc0AAAADAaWJzQAAAAGCEcnNAAAAA4P3Cc0AAAADAluxzQAAAAMBhQ3RAAAAAwLSGdEAAAABgvp90QAAAAIACw3RAAAAAwOAVdUAAAADAMSN1QAAAAMB1QHVAAAAAoPRQdUAAAABAWqN1QAAAAADhtHVAAAAAQMTBdUAAAACArt51QAAAAMBj+3VAAAAAwH8vdkAAAABAJkF2QAAAAADyW3ZAAAAA4E5tdkAAAACg8YR2QAAAAOCbm3ZAAAAAALDRdkAAAACAh+B2QAAAAKCmAndAAAAAQBQUd0AAAAAgtzh3QAAAACABSndAAAAA4B9zd0AAAADgrIl3QAAAAMA3pHdAAAAA4M+6d0AAAACgb9x3QAAAAECR/HdAAAAAQAkxeEAAAACArkx4QAAAAGA0a3hAAAAAYMmEeEAAAAAg15R4QAAAAIBNw3hAAAAAIGnWeEAAAABAt+J4QAAAAODF9HhAAAAAIOoheUAAAAAgRDR5QAAAACAhAntAAAAA4K1ae0AAAABgP3J7QAAAACAllHtAAAAAwMvhe0AAAADgE5V8QAAAAOAByXxAAAAAoPAWfUAAAADAAmR+QAAAAMCFk35AAAAAYCHCfkAAAABgqfl+QAAAAKA8G39AAAAAYJgof0AAAABgWUd/QAAAAKDphX9AAAAAoMKVf0AAAADAObN/QAAAAEB+w39AAAAAwAvOf0AAAACgGDKAQAAAAKDXPoBAAAAAQEdbgEAAAAAgG5OAQAAAAIBk24BAAAAAwCLzgEAAAABA0kmBQAAAAIBKeYFAAAAAgHaDgUAAAACg/6GBQAAAAKCp04FAAAAAoM75gUAAAADgawOCQAAAAEB7C4JAAAAAYKMRgkAAAAAgmTSCQAAAAGD6U4JAAAAAgJhtgkAAAAAg86KCQAAAACD56IJAAAAAQAyCg0AAAACAH/WDQAAAAOBNC4RAAAAAYIkThEAAAADAiUmEQAAAAABmWoRAAAAAYPcIhUAAAABABTKFQAAAAMCJOYVAAAAAIJiZhUAAAADATqCFQAAAAODI4YVAAAAAwOgohkAAAAAAf5KGQAAAAGDMQodAAAAAgPtqh0AAAAAgW96HQAAAAKA9YYhAAAAAQIdqiEAAAAAguamIQAAAAADYuYhAAAAAgMz0iEA= + NrgMGZxjYkBOGswAeMJsQFRnpVdMhW5AJ2tCVJRydUC82cpSRAR5QE4sistCg31A+70hFHoSgEBFZ4FQ+VGCQI6exU/RGoRATnr9Y8gyh0COzbN5faOHQBWmo3M0O4pAhawzqLQ7i0A= - + - C3GAQMzCGEBTibFA7eQfQLr5U0GLFeJAbe+ZQDZum0BdhmRA9kIRQWbW5kBzbxZAQu6cQHCO7UCzhv0/LyihPwIzskFjAvdAGXQ9QH2VZEDIzXRBcibnQK/qOUGJyslA2l+XQKS7H0ExM4RASJkoQO9FbUE8Ka9Ci85VQbRFVUChgwFBseiDQGzJukBo+IlBYHMAQEDeI0H1ZQBBYlaAQK0wPkGGBFBA0ZvuQAd5/T/fbyJBOVSzP9SjD0ICgERATSn+P8DVpUBwJFRCAXboQMm6vkFqQa1BNkOSQsITBUExu6JAnB+JQT26NUG9dqxANw1rQVU5xT+ybd9AesQ8QdoEBEBq2XxB/DNqQAdnEUFwtfNBmrAjQjrKkEBHnpVACsaXQtw4A0HSi2FAoZxjQI8Se0KLtgZB1mTBQNv0fEGIU51A8UQfQOy70D+KOgJCrD9bQYvFBUFCxYZBb6QKQR3bJkGhJeo/ZQqAQer5nz8MTIBB9nBhQdn3xkG/iPo/YfygP+6u7EHrLZVA/3aeQCNYoEBc/QhBbtdYQZS0B0B+cZBCLvXGQJysCkFqsmtDLE00QuVyDEEVKo1ANEgRQIiLiECxHdlA+uqfP5oieUHwvaBAn0MLQVCFZEBNGLM/p1OIQshJZEFWy3tBCuVRQGfiJ0IN3R5BzVE/QNCCoEDpEBFACChFQNQpCUGWVwJBr0PgQG9hNkBSdp5AyWNkQAZaQEB0VoBA59y0QYC7JUHuqRtB8XafQS0hs0DivyJB82lLQdGyUUC4D1lBZOTFP+DQmkDkqPw/g4jAQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAA4LklakAAAABAH2FqQAAAAKBaimpAAAAAAC2/a0AAAACg6kNsQAAAAOADC21AAAAAwCUJbkAAAADAtSVuQAAAAMAcQ29AAAAAgEQicEAAAADgbjJwQAAAAIDRQHFAAAAAQDNUcUAAAAAAtvFxQAAAAICm/nFAAAAAwNlfckAAAAAAJNFyQAAAAMCE/3JAAAAAQA4Sc0AAAABAKmZzQAAAAACyEXRAAAAAQC0idEAAAADA6/V0QAAAAOBkRnVAAAAAQKpjdUAAAADAiLR1QAAAAMARFHZAAAAAADZgdkAAAABAEgR3QAAAAMBDTndAAAAAgHZEeUAAAAAAwIh5QAAAAADd4nlAAAAAAPwQekAAAABAp496QAAAAMBDZ3tAAAAAADice0AAAADAG1J8QAAAAECQY3xAAAAAwHmzfEAAAABAnwJ9QAAAAMA6RX1AAAAAAAGjfUAAAADA9LB9QAAAAMBugn5AAAAAQN5nf0AAAADAPYh/QAAAAMAJl39AAAAAANDlf0AAAABAxhqAQAAAAECNgoBAAAAAIGCLgEAAAADgEc+AQAAAAAC/2YBAAAAAgBIAgUAAAACg1weBQAAAAMA8GIFAAAAAAA2agUAAAADA+aWBQAAAAMCq3IFAAAAAAMkSgkAAAADARxuCQAAAAADrK4JAAAAA4GI0gkAAAADgJnGCQAAAAGBnqYJAAAAA4FWxgkAAAAAgt7qCQAAAAIDXxIJAAAAAIKnNgkAAAADgBv6CQAAAAGAeBYNAAAAAQMELg0AAAADgESSDQAAAAKDRMoNAAAAAIFhIg0AAAABA2nODQAAAAMDFiYNAAAAAYHFThUAAAABgbXSFQAAAACBdlIVAAAAAgAvChUAAAADgncuFQAAAAGBfD4ZAAAAA4CsZhkAAAABgNSuGQAAAAECtNoZAAAAAgPq7hkAAAABAysOGQAAAAKA5GYhAAAAA4N6giEA= - - - - - - Icg9QGDxmUBmuxpBcSugP1I6sz+kfhFAVjl8QC/aBkBQy+NACIGVQBur/T8lwiNBWVa3QCpM4UACcZFAXFR3QIv0SEBs4gJC2HGsQOqa9j/3KqxAdPkpQOvcLECuQghBrDgBQSnu0UAXTPk/oEfGPwMdFkG6/5NBI4BBQXDRkEAT04NAAP2gP3g6KUDpddpAXIMhQPDaqUHILwlB0o3UP/E9qEAWEINAML11QC8YCkHLD/VA74GXQESdlUDYv2FAD73EQDVwpEDEUA5BIcWyQDGPhUFvaYNBeq9zQEBlfECH6NxAxl/tQDB2REGW4ZlBFjK1P4BVlkAUgTFBMju3QT1Vp0DuRe9A/Uh2Qe2t5ULMCchBANS1QF3xLEGT9jdBiZ1SQSrqUEGe0HRATgXiQBRGoEHvRqpAI2nhQGAeh0Ba7rBAcBebQD6A00AWTA9BhKAaQDvBa0EaY4NAzuWKQqO6w0FWXUFAhuiIQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoFepY0AAAABALMVjQAAAAMCOqGRAAAAAQHUCZUAAAADAub9lQAAAAAC5YGZAAAAAAC7GZkAAAACANUFoQAAAAGDv4WhAAAAAwGgCaUAAAACAo/9pQAAAACCWMGpAAAAAQL78bUAAAAAADGVuQAAAAMCOf25AAAAAILfAbkAAAABAhgNvQAAAAACLH29AAAAAgOUTcEAAAADATlFwQAAAAMAHdHBAAAAAIO6hcEAAAABA09ZwQAAAAMAn8XBAAAAA4DoSckAAAAAAeDlyQAAAAEAs+3JAAAAAwL4Uc0AAAABAVGNzQAAAAICl63NAAAAAQOwRdEAAAADgjjh0QAAAAGCeVnRAAAAAwAeBdEAAAAAATK50QAAAAKBkFnVAAAAA4NNTdUAAAACAjbR1QAAAAIBD03VAAAAAYErfdUAAAABgqgR2QAAAAKDLF3ZAAAAAgAdSdkAAAABglWF2QAAAAKAFc3ZAAAAAgFOGdkAAAACg08p2QAAAAMBLVXdAAAAAgDOJd0AAAACgZ5Z3QAAAAKD0zXdAAAAAALcFeEAAAAAgXhR4QAAAAKAoNHhAAAAAQJ1xeEAAAADAJIJ4QAAAAGBSuHhAAAAAYLzyeEAAAADgv1R5QAAAAOBtYHlAAAAA4MF5eUAAAACAF7R5QAAAAOAe0nlAAAAAIGn+eUAAAABAjS96QAAAAMDhT3pAAAAAQENhekAAAAAggXh6QAAAAIAzhnpAAAAAYNiQekAAAABADJt6QAAAAOBfw3pAAAAAIDDRekAAAACgwwJ7QAAAAADHR3tAAAAAIMFle0AAAABgOoJ7QAAAAOCAk3tAAAAAIG3Ae0AAAACgDMx7QAAAAMAyI3xAAAAAYO5EfEAAAACAFmx8QAAAAKCKpXxAAAAAIAMCf0AAAAAgK1SAQAAAAID+vIBAAAAAoEHwgEAAAADADY2BQAAAAKAXmoFAAAAAoI2rgUAAAACguIGCQAAAAODEvIJAAAAAoIYOg0AAAADAJRyDQAAAAKAEIoNAAAAAgG6hg0AAAABAML2DQAAAAGCjQYVAAAAAoJmahUAAAABgsiKGQAAAAKD00oZAAAAAIGAIiEAAAABgc5SIQAAAAKCYmYhAAAAA4LueiEA= + KBZXds7jZUCYE/Y0vCFwQDtMc7KVAnNAX26KbtRSdkA7qk8G7hN6QF/MZsIsZH1AsLXLPk4SgUDDRtecbbqCQLDkuWj6moRAw3XFxhlDhkAUEoSFhrOHQFZWaQJxS4pAzmRkff6zi0A= - + - dMdgQIxYgUCrCKE/qeyXQCCsjj8YEus/0eQWQAdm2D+mIIxAIsCzP1ggjUCjrhpA+qLUP3da6z/KBS9A13mzP/lOc0B3U+Q/YmNzQDzDzEAtVfk/YWH9P1ZKLUDiqrQ/VBVSQBxwAUHO1DtAXbhIQABA6j++MndAlTGxQCm9hEGcF0BA6xeNQOmArEAVx05ArtMDQYdXXkHAAEVAG4VXQDefXkGTEV5BjPT/QGr4I0BiPOs/tQdQQFwcCECBWYRBlj4QQSi6lkFn6XNA5VERQMp5W0AcdVpAH52JQAcPRUCb1ZJAA/s/QC765EDdhFtAO8hzQHi7HkGzirBB44VJQcUTjkBOpZtAF+EFQXzPukBA7y1BTQpKQcuCY0Dc+JlApYn7P0yV50BdDa5Bc3iaQMvQKkI4MgJB3FpUQWuXB0A7SDFCjcIJQhw4bUE7jjZA6y4NQG1OBkE5k/ZAWonDQGzhKECeNJpBfQHyQfIMEEHCFI5AS4E2QYPV7kBN74hAHGBsQeZql0AwQbFAODPUQC0YpUDEQf0/JLARQSusNEIn3ANBdQgeQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIECpa0AAAADA5SduQAAAAGCmz3BAAAAAwFnhcEAAAACAbO9wQAAAAMBRDXFAAAAAgJGTcUAAAABgBaJxQAAAAIDh8XFAAAAAwKA+ckAAAACAQaR0QAAAAMAcR3VAAAAAwO7SdUAAAADAlkJ2QAAAAAC6VHZAAAAAwKWqdkAAAAAAVnV3QAAAAIBwkndAAAAAwEm2d0AAAAAA/0J4QAAAAICCX3hAAAAAQLd1eEAAAAAAxwF5QAAAAEAmRXlAAAAAwB6geUAAAADAq/F5QAAAAMD8AnpAAAAAgHLUekAAAACAixN7QAAAAIB9aXxAAAAAAND+fEAAAABA5yJ9QAAAAADENH1AAAAAgMivfUAAAABAy8F9QAAAAEB24n1AAAAAwJzzfUAAAADAoBV+QAAAAEAm9n5AAAAAgNkSf0AAAADApnJ/QAAAAAANhX9AAAAAQPyQf0AAAABAvrV/QAAAAMCPxX9AAAAAQMHtf0AAAABgIAqAQAAAAODZdIBAAAAAIDGhgEAAAACAKKmAQAAAAABbuIBAAAAAQLXFgEAAAAAA79aAQAAAAKBt4oBAAAAAYM3rgEAAAACAc/uAQAAAAGBFEIFAAAAAoEUZgUAAAADAQjKBQAAAACBtSIFAAAAAgGNagUAAAAAAOYOBQAAAAED3iYFAAAAA4MaYgUAAAACgcp+BQAAAAEB3toFAAAAA4GXigUAAAAAAhO+BQAAAACDZ+4FAAAAAYLsYgkAAAADg2lGCQAAAAGBZWIJAAAAA4HFigkAAAAAAn2yCQAAAAKBtgoJAAAAAoEqfgkAAAADAS6mCQAAAAKCEtIJAAAAAoCW8gkAAAADgxu6CQAAAAODsBYNAAAAAoNwgg0AAAAAAFSqDQAAAACBxRINAAAAAYAhPg0AAAAAA8l6DQAAAAACFs4NAAAAAYEbHg0AAAABgNtuDQAAAACBD4INAAAAA4Dzug0AAAADgpTmEQAAAAKC2LIVAAAAAoD9LhUAAAAAgwVOFQAAAAAAyWoVAAAAAoLpihUAAAADAJZaFQAAAAKCvu4VAAAAAoAnbhUAAAACgCwCGQAAAAOCLJYZAAAAA4Jg6hkAAAABgVmqGQAAAAOBlnYZAAAAAAKi2hkAAAACgLL2GQAAAAGByxYZAAAAA4N/nhkAAAADgtvqGQAAAACDdGYdAAAAAwO6bh0AAAADgCPqHQAAAAABkdYhAAAAAIHO8iEAAAADgy+KIQA== + NrgMGZxjYkDAIFw1+IJuQBu6YmAmQ3BAh9H1kSpSd0DewAA0zHN4QErYk2XQgn9AAkGkVT1CgEAlG7hcFEqDQCCSYECV0oNA - + - NZFqQDepdUBr0lxBsNU0QE2wWEAnT6E/50YRQAICv0C03kJBPZuEQPouG0GNb7M/Q+OlQB4+ZEF+0/BA2pSEQPetukDQxbNAwQW/QDIgxj/qPRFAw9TkQB9gQEGien1AeTXZQHoD8EDCB6E/OHUMQQtwyEAYIzxB4k08QTRft0Cv5LNB4FilQHTd6j9dS4BAL44wQbirxUCluE9B/U2YQUJ1IkI/5x1BsI7qPxnmpUH66f0/cLOAQc2AfkCUhFtADU3qQJoVKkFWDldAvf2ZQOJKsUAJlp5AQFaXQGCHT0DzYp5AQbRcQY6YXEFHC05A+lieQOkpCEMayiFC8QwhQHBEqkErhU9AgOOZQDLHYUAnXoJBrcAXQFixukHyUt9BlGqxQDgbcEHXp01A8EloQUYEiEE3D9RAwlGpQFFfT0DnMS1AyQDrP2kVKkF7D4tBvD3uQdQ1gEGcDG5Ae8MHQEFIe0FYKh1BgsOFQYvdB0AZxZZAg3g2QCTOsj/+IS1Ad8SxQOQ/bkFUPfxBkGr2QV8fbkGTK4FBfO6cQY1WAkGFIANBzjp8QbYUr0AorsVBEQCzQIURwEDJ2gJBy4nIQF5iPUCijEFB/EU+QSr6M0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQEEgYkAAAACgi+BjQAAAAIAIKGVAAAAA4HOlZUAAAADAFFdmQAAAACB8tWZAAAAAQMiuaEAAAACA2WJpQAAAAMD9pmlAAAAAINjFaUAAAACgqzBqQAAAAIDko2pAAAAAYHPfbUAAAAAADCluQAAAAMDKJ29AAAAAAPdnb0AAAADA+hNwQAAAAIA/MnBAAAAAIHD+cEAAAADgACFxQAAAAKD1YXFAAAAAQDencUAAAAAgr/RxQAAAAMAG/3FAAAAAQP0xckAAAABA6kFyQAAAAOD673JAAAAAwD7qdEAAAAAAYCh1QAAAAMCmW3VAAAAAYBOGdUAAAABgdbF1QAAAAKDZ7nVAAAAAYHUWdkAAAAAgplp2QAAAAEANtnZAAAAAgPDmdkAAAADgh/Z2QAAAAICHE3dAAAAAgC0kd0AAAABg5XN3QAAAAACaondAAAAAIOb2d0AAAACgeSB4QAAAACC3K3hAAAAAoKN0eEAAAAAA1bl4QAAAAABBAHlAAAAAYHEReUAAAADgmyZ5QAAAACC3NXlAAAAAgLtDeUAAAADg8HB5QAAAAEBWwHlAAAAA4EHYeUAAAADgOf95QAAAAOB/DXpAAAAAoGoeekAAAAAgeDl6QAAAAACVUXpAAAAAoCdiekAAAAAg3ch6QAAAAKAf9npAAAAAwPEFe0AAAAAg6CR7QAAAAKDiTXtAAAAAIJF6e0AAAACgJZV7QAAAAKDOo3tAAAAAIHOze0AAAAAg+M57QAAAAGBg3XtAAAAAoK0pfEAAAAAgWzV8QAAAAODpWXxAAAAAIBlofEAAAADgCWB9QAAAAKAtln9AAAAA4J8bgEAAAAAg3V2AQAAAACB124BAAAAAIPwlgUAAAACghEKBQAAAAGACdIFAAAAAQMM3gkAAAADALRuDQAAAAECNjoNAAAAAwGKdg0AAAADgaMWDQAAAAKCY6YNAAAAAIG8bhEAAAAAgp3GEQAAAAKBAmoRAAAAAICSqhEAAAADg0rGEQAAAAGCA0oRAAAAAQBrshEAAAADgoQSFQAAAAODxEYVAAAAAgKfbhkAAAABgBliHQAAAAGD7aodAAAAAIP2wiEAAAACgtOyIQA== + NrgMGZxjYkA= - + - R7nTQIMssz/mKKpAf1RyQZcTsz+yYbM/+tUoQC3I1T8GW9FAf+FIQOBl/T9lbf0/gPmbQB5FmkCTTRdBS7YaQH1xmED2HsFAbXotQKL0LECuYhpB2n3FPyafREALJbFAr9sCQnBHGkD/xLhAmvF1Qcbn6ED0Ndg/ZOw1QLlJmEAhgvBAKHctQN5s2D9W/aJAj8aQQNVi7EDUdgJBtsEvQdpM/j8cffhAzhmcQPNGlUAys3NB2hgZQUx4JkEUfYdAbmqgQJa7T0GtYf0/zD0DQqEryUBySrM/zZQjQMeUI0AdrMxBNyzzQQn36kHVu2pBhrrxQBmnLkHd1SxAiX/YP9x9nkCNb1FBEbzOQY0vb0HnLKhAFCrfQHVMvkF8b5JBaoyuQFz9jEFskghCjK67QJdR9UBWTI1AB38RQXULwUBQiRpAgkwrQP90A0G1jFpAGl+JQZCKeUF3LiNBTRS0QPtQSUHO+ONAKUMMQfYEBEAe1A1BWRP5QK3s4UAorxpB9LU9QJpF40DnzjxAothgQAScskBTkgtB5ujbQRUm5T8= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAMomYEAAAACAXUNgQAAAAAA75WBAAAAAYKUfYUAAAAAArGdiQAAAAOCVGmNAAAAAADhhZUAAAAAAEh9mQAAAAECrRWZAAAAAwBeDZ0AAAABA06VnQAAAAEADxGdAAAAAACWGaEAAAACgYMloQAAAAOD8H2lAAAAAgF6iaUAAAABgA+dpQAAAAAAQRGpAAAAAALEHa0AAAABAsuRrQAAAAIC2A2xAAAAAgFM9bEAAAACAAMNtQAAAAEDy321AAAAAALIEbkAAAADAWC9uQAAAAIBphm5AAAAAwFzjb0AAAACAGQJwQAAAAKA9GHBAAAAAILwjcEAAAACgSm9wQAAAAGAqgnBAAAAAQD/WcEAAAAAgO+ZwQAAAAIBeGHFAAAAA4Lc0cUAAAACAGEJxQAAAAEDQgHFAAAAAwGSxcUAAAACAtbxxQAAAAMBoz3FAAAAAYNjucUAAAAAAq/1xQAAAAIBsH3JAAAAAgOExckAAAAAAN0RyQAAAAGBnUXJAAAAA4MdjckAAAAAANHlyQAAAAID6lXJAAAAAALyickAAAAAAhrFyQAAAAACixnJAAAAAQL7SckAAAADAZuRyQAAAAMDHEnNAAAAAwLQ2c0AAAADAFlBzQAAAAMDEtHNAAAAAADTYc0AAAAAgnBB0QAAAAIBlKHRAAAAAoKEydEAAAAAA5E10QAAAAAC3ZHRAAAAAAK1/dEAAAABgyJF0QAAAAOB/sXRAAAAAoBS8dEAAAABgZdJ0QAAAAKBr5HRAAAAAgGXxdEAAAAAAjzB1QAAAACAkQnVAAAAAwINUdUAAAACA1WB1QAAAAEC0i3VAAAAAgBDQdUAAAABghN91QAAAAABD8nVAAAAAACQBdkAAAACgXBJ2QAAAAKAUInZAAAAAwIRedkAAAABA6HN2QAAAAGDSgnZAAAAAoBTNdkAAAAAghPR2QAAAAAB+A3dAAAAAoGshd0AAAACAATZ3QAAAAMAdlndAAAAAYK6gd0AAAABgwbh3QAAAAMD203dAAAAAAP/jd0AAAAAAZvN3QAAAAGC5FXhAAAAAYNRFeEAAAAAAL2x4QAAAAMDfRHpAAAAAANhde0AAAACgi+N8QAAAACAe9nxAAAAA4DtifUAAAAAgc5Z9QAAAACButX1AAAAAoELHfUAAAABAKud9QAAAAKDP135AAAAAQFuif0AAAADg67J/QAAAAOAG539AAAAA4CoCgEAAAABARwmAQAAAACBeIYBAAAAAoKUzgEAAAACgdkSAQAAAAOARjYBAAAAAIHKwgEAAAACgcb+AQAAAAMAH3YBAAAAA4CwTgUAAAAAAOByBQAAAAKDhOoFAAAAAIKhCgUAAAACgLMOBQAAAAACdyoFAAAAAICkTgkAAAABAEpyCQAAAAABxtYJAAAAAIJi9gkAAAADAW8SCQAAAAAAqU4NAAAAAYIrDg0AAAADge8uDQAAAAOAKS4RAAAAAIJ1ShEAAAADAnTqFQAAAAOCpQYVAAAAAoC9LhUAAAAAgQ7qFQAAAACDfTYZA + NrgMGZxjYkByWoXuS4RpQFrpTSZ7Y25AjwFH/L0ycUDUtW4KbEJ3QAOnB+ytM3lA1BNLXsRTfkCBAvIfgyKAQKTcBSdaKoNAgTHgSS+rg0A14Ya/m+KFQBI2YeJwY4ZANRB16UdriUDMiEHa6GOKQDU/YxP084xAzLcvBJXsjUD4yKEFNnqQQDDM6R92+pBADt7iBlyWkUBV8pEBcnqSQI312Ruy+pJA - + - MnbdQUqktUAeBElBIr6hQPMaSUFYmIRAg/J3QS51qEGqkb5Aa4vYPwe4P0DcUDtAMuwDQJiFGEAIqiVBi1X6QOjHiEDFlutA3PbNQGHmzUBK/JlAganYP1xIZUHwrndAHYG0PzxiXEEms6NAQI8XQSRUxEDWMLRAUZMIQJqY7UCzvW5Bur23QK1Psz84WrM/VEtYQKAtl0BsaFJC6kAtQONjVUFYZAtBqiBKQbm8P0BL05lANtzFPxN8hEF6sxxBhy1RQAc2yUDh9yVBapyFQBRak0GaIK1B5DuKQeaMekH+dm5AUJq5P+5u3kB5eClBW0GsQdM5TkAO1g1A/fIiQF/yMkFbvBhA45Q/QEBbNkCw4ehCqtGaQX4YFEGeR6NAJashQGzWxT+wKU5Ah/ZXQepzGkCNTJpAdxqJQBkVwECvLAFBCoZ0QJGpJkESr2FAbslJQYgIJUHFlMZA/M6KQVYRmUDkZMNBjY/YP9Av20D0rKBBQzjQQKcSP0Cqi3dA0CEsQARJp0KQBL9A2DWhQV7pwUGZLh9B0WywQb/VU0AEdaA/Q/MHQFh230DlX9hCacvQP9xKtkBALEFBYjM0QUH1I0C57CZBG1HYQM+huUBBk+xAw2xGQeQuyEDFtkhAjwFgQcHyoD+OiKA/6ZAMQl7LGkHrawxBnpyNQVp2z0DJxqFAwvHOQMuOPUEQPyZBmmRzQPn7ZkC5qr5A/luEQaCiuUCodPZBupazQLUt1kFKS6NBiSR+Qdel9kAlNLNA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAINY7bkAAAACAibVwQAAAACAb4XBAAAAA4OBEcUAAAACAfpJxQAAAAMC/dXJAAAAAYAeyckAAAABA2tNzQAAAAIDTdHRAAAAAAFRxdUAAAABAK1F2QAAAAIBPE3dAAAAAgJK1d0AAAADAaRJ4QAAAAICD8HhAAAAAgPR0ekAAAABA4bN6QAAAAEAVznpAAAAAwL6le0AAAABAob98QAAAAIA4e35AAAAAABcNf0AAAAAAzUF/QAAAAICein9AAAAAQPubf0AAAABAJB+AQAAAAKCoVoBAAAAAAHCygEAAAACAxBqBQAAAACA/IoFAAAAAQHUxgUAAAADgaTuBQAAAAEAbQoFAAAAAgJCigUAAAAAgIrGBQAAAAMBkyoFAAAAAQPrRgUAAAABgehCCQAAAAABTKIJAAAAAYCBIgkAAAACAJ1aCQAAAAOACeIJAAAAA4KbQhEAAAABAXtuEQAAAAODWM4VAAAAAYJhhhUAAAACg7oOFQAAAAOC4iYVAAAAAoCNohkAAAADg4gmIQA== + NrgMGZxjYkA/KJil8iNpQAoahmk8YnBArmsYctGickAsI4iav9J1QJwpGM8/03lAGuGH9y0DfUC+MhoAw0N/QFQcagsDioFAVviMrhg6g0BUS1g1rxKFQA== - + - bjajQMbVP0D9O3dAT3fuQKmunECSCghAgHT9P0GcUkCavLI/pZlzQEO5pkDkq55AMO98QFZll0CwuMxA9lmKQTzg1kDL7VdAAFd6Qe3II0Bm9sxApw7NQBx8/T8QBRpBaJ1xQfCOYEA1QgVADJl+QdTmiUF8sZJA7SzGP17QHEJCQRdBqOcqQQlKNkB+zadAQVxzQAMjAEHRKaNAHywhQf28lEFuFiRBVCloQYhnpkG8ihxBmscCQlDVkkBCpx9ASb8AQaRQeUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAHveYkAAAACgfINjQAAAAKDYymNAAAAAAL4lZEAAAADgqgBlQAAAAIB5rGVAAAAAYG/EZUAAAAAgz+hlQAAAAOCJBGZAAAAAAA9qZ0AAAACANWFoQAAAAGBW5GhAAAAAgBgIaUAAAACgtYhpQAAAACDsYGpAAAAAAOIebEAAAACgBkVsQAAAAEB732xAAAAAwA3hbUAAAADA7iluQAAAAID8Ym5AAAAAQDGJbkAAAADAwKZuQAAAAMAo5G9AAAAAADwBcEAAAADAEytwQAAAAGCodXBAAAAAwGiPcEAAAABg7K9wQAAAAAC5xHBAAAAAwK/jcEAAAADg3wRxQAAAAKA5NXFAAAAAIMZ2cUAAAAAAWI5xQAAAAKDO9HFAAAAA4LReckAAAAAgB89yQAAAAEA9InNAAAAAADZHc0AAAADAGnBzQAAAAEAdg3NAAAAA4PWuc0AAAAAAwdFzQAAAAGCWJXRAAAAAYEEvdEAAAABAz1B0QAAAAEAlgHRAAAAAAIOVdEAAAADAmbN0QAAAAADa1XRAAAAAAJXwdEAAAACAEiF1QAAAAABHLXVAAAAAIM45dUAAAAAg9oh1QAAAAODNtnVAAAAAAK7MdUAAAADg4d91QAAAAEAG8XVAAAAAACJHdkAAAABgTVh2QAAAAMBobXZAAAAAQNx4dkAAAABgtcF2QAAAAMB10nZAAAAAYGfhdkAAAADAn/12QAAAAABOI3dAAAAA4M8xd0AAAACgO3N3QAAAACBZhXdAAAAA4Imrd0AAAAAgebZ3QAAAAGDn0XdAAAAAQKLid0AAAAAgj/V3QAAAAABOBnhAAAAA4NI+eEAAAACgmnJ4QAAAAGD8kHhAAAAAYBaweEAAAADgcMJ4QAAAAGDt/HhAAAAAoLwceUAAAACgnzJ5QAAAACDLXXlAAAAA4OXGeUAAAABgY9J5QAAAAKB+7XlAAAAA4EcTekAAAABg5iR6QAAAAIA1MnpAAAAA4LBAekAAAAAA/kp6QAAAAKD7hnpAAAAAIP+uekAAAACg/MR6QAAAAGDl1XpAAAAA4CWFfEAAAADgLrN8QAAAACCUR31AAAAAQE2jfkAAAABARRZ/QAAAAOBuE4BAAAAAIDdbgEAAAACgDmWAQAAAAKDkgoBAAAAAwBuOgEAAAABAl7WAQAAAAIDzwIBAAAAAQDHGgEAAAACg9cuAQAAAAMBL0oBAAAAAoEQbgUAAAAAAjYmBQAAAAKBVl4FAAAAAwMjLgUAAAADg9COCQAAAACCyK4JAAAAAQEZMgkAAAAAA/dGCQAAAACCo6YJAAAAAYPD2gkAAAABgX2ODQAAAAOBC0oNAAAAAwJhGhEAAAAAgTIOEQAAAACCIs4RAAAAAAOHvhEAAAADAD5aFQAAAAIBFMoZAAAAAoPZ4hkAAAAAAyo2GQAAAAKDQkoZAAAAAIOmzhkAAAADgOmKHQAAAAGC0jYdAAAAAYCpPiEA= + KBZXds7jZUCmvpxNHCRnQANJK5hVInJAU72qemajckBBe6rX1NN5QIvPHOZGs3pAoGzDlZZygEBYSLKu+mGBQKCbsb9C+4NAWHeg2KbqhEA0fFX7mQOIQFimjgJTc4hAT4UOMYoLjEB4P06iEkyMQE+0/Fo2lI9Abx7O0Enkj0CncXVCcY6RQA== - + - vmpzQLEvqEATocdA4B6hPyTFP0ByuJxAakMxQEO+PkGeYr9AqpiPP/gAIECgfRpAYc+XQPYkLUDOp8xAXD+VQPgzvUDqzjtBa48pQNsBnEAMD8Y/Xk1XQJFIMkCutQpBstSPQDrxBkGBlCdB38GyP/H6PkBfBz9ApwDGP8BITkG4WllAo18sQJJ0YUC0LqA/kRuYQDBirUGQCL9Aj/agP4bAQkH9VE1BaNA0QI8sY0EN4wJBxocPQXUngEDXnNhAtrUMQR0nd0A9Ec1AhTYEQF8ypEDKELVAb9rRQD+N/T9Mo1tA4tYMQEBNUUD+waRBRnEpQboxq0CCRxlBo1asQNmu9j8mSeRARrijQc9o4kAz7LNAnc7VQAiNREDd2v0/GI4HQtuOrEAoeUBBcN0SQRgs8UB4j/0/u92kQA/tR0C8UjxBsWwsQcNOBkGR5o9BytBuQWDDw0A2rz5BIGrQQRS7RUIEYyRBPXhcQayxjkGV9LhBg/deQTMExj/uLFpCjxXGPw5wqkCgtG1B/yt2QM34gkChzkhAYbUEQYpZ70B6kwVA4k2aQLkW+0DbDEJBcmTvQObTTkAHmpVAhHpxQfre30B65XVB8LhOQH70kEAm9YhAUssqQUuz9UBUMR9B53YmQc+tCUF74WBA2kDyQEFnl0ALNpVAV2glQD4At0E5HVhAMqX9P/IApj+amVdAqK2eQIbXhEBU7ABB+HVGQOMHEEHCZDtABcOSQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQCYnb0AAAAAAQNdwQAAAAIBORHFAAAAAAPtRcUAAAADAehJ0QAAAAOCKInRAAAAAAGWkdEAAAAAAslN1QAAAAAD9U3dAAAAAwCqFd0AAAABA68B3QAAAAEB7dHhAAAAAADGFeEAAAABAVpN4QAAAAID9M3pAAAAAQDRTekAAAACAjKp6QAAAAECLI3tAAAAAgAdWe0AAAADAQ/V8QAAAAIBzNn5AAAAAAJiFf0AAAADAFeV/QAAAACAtEYBAAAAAAHYzgEAAAAAgYDuAQAAAAOBzu4BAAAAAYGrFgEAAAABgftGAQAAAAKCk7IBAAAAAYMQqgUAAAACg9GaBQAAAACDvyoFAAAAAoBDSgUAAAACg7PyBQAAAAKDxA4JAAAAAAGETgkAAAADAHUSCQAAAAIDGSYJAAAAAIBLbgkAAAABAjTiDQAAAAOB2eYNAAAAAAIygg0AAAABgssqDQAAAAIC20INAAAAAYL7Yg0AAAABg1BKEQAAAAMDNL4RAAAAAYD08hEAAAADg/0SEQAAAAEDeUoRAAAAAIINahEAAAABgWaKEQAAAAAD3r4RAAAAAQKDShEAAAABgzdqEQAAAAOAnIoVAAAAA4IwphUAAAADgRleFQAAAAGDTcYVAAAAAYIKKhUAAAADgeQOHQAAAACDoq4dAAAAAYMbKh0AAAABgvdOHQAAAACCG/IdAAAAAAENTiEAAAACgs1uIQAAAAABn24hA + KBZXds7jZUD1hHOUyCJpQANJK5hVInJAeiAWnryic0AqCnMPBDN6QKHhXRVrs3tAFLSnMS6igEDIzy657HGBQD/eKTR62oJA - + - l14GQsCMo0C7Rh9BWqfHQDEhSEIAMoJBGnEqQMEAJUAbAghAROHiQNYU8EAq8CtBepe5QMKZt0B4JDZA19OCQJXcBUFAbglB/KO4QFRS1EDxXXhA5JlYQLmVjkBjG9Q/CyPzQBxWsUDGnuZB5GWaQFfW2D940uJA/v/yQNciLUD7nSlAV/KeQJK7MUHPpUhBVUXpQP64m0LWvFdBX2j2QHW2IUAouSlA+ToiQXz8qUBIVyBBA/xXQDGEIUEYjOxAVTAgQX10oEBAwOhAuFmUQAQxW0BppK9AKWGAQKh0ZUHkeng/WZn9P/86CEFScN9ATobDQPpDB0Ft2AhBrmOHQEvCnkAtfLg/wN+QQeiOLUGIVhdB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgDZVV0AAAACAfX5XQAAAAAAE0FdAAAAAwPTFWUAAAAAA84pbQAAAAKBiElxAAAAAwHuBXUAAAADg9sZdQAAAAAAJQ15AAAAAgLXLX0AAAADAnkRgQAAAAEDToGBAAAAAIPkoYUAAAACAeKNhQAAAAICxwmFAAAAAoPcoYkAAAADAD4JiQAAAAIB1pmJAAAAAAG3EYkAAAACAKeNiQAAAAABPHmNAAAAAwL1iY0AAAADAX6ZjQAAAAIB2zGNAAAAAQBw1ZEAAAADg02FkQAAAAECyoWRAAAAAQG/pZEAAAADgsCllQAAAAMCtaWVAAAAAgOGLZUAAAABgWsRlQAAAAGBY4mVAAAAAADUCZkAAAACAeUJmQAAAAKA1f2ZAAAAAII/jZkAAAAAAUENnQAAAACBXYWdAAAAAQAqAZ0AAAACgOLNnQAAAACA99mdAAAAAIP0gaEAAAABAZKNoQAAAAMD932hAAAAAAGgjaUAAAAAA135pQAAAAIDBo2lAAAAAQI3baUAAAAAAWERqQAAAAIDlYWpAAAAAAFCdakAAAAAACsVqQAAAAEAv5GpAAAAAQBUIa0AAAACAhSNrQAAAAMCOPGtAAAAAAGVra0AAAAAAqaVrQAAAAADl62tAAAAAgGgDbEAAAAAAmChsQAAAAEBKSWxAAAAAACGjbEAAAAAAfMZsQAAAAAAoAm1AAAAAwEIhbUAAAACAyz1tQAAAAACUZ21AAAAAQM2+bUAAAACATvxtQAAAAIDzFG5AAAAAAHJEbkAAAAAATmVuQAAAAEA1iW5AAAAAAGiobkAAAAAA1r9uQAAAAIBS6G5AAAAAgMIDb0AAAADAoClvQAAAAAD0PW9AAAAAgClmb0AAAACA/gJwQAAAAGAmIXBAAAAAwBAycEAAAADACj9wQAAAAEC4U3BAAAAAgEdhcEAAAABAqnNwQAAAAKAUf3BAAAAAgAGQcEAAAAAAkKVwQAAAACDmsXBAAAAAYPzCcEAAAACA39RwQAAAAIDnAXFAAAAAABpFcUAAAADg3VNxQAAAAMDsX3FAAAAAwCVzcUAAAAAAkoBxQAAAAOA2jXFAAAAAoHCfcUAAAADAJ+RxQAAAAMB38nFAAAAAQOIDckAAAABABhpyQAAAAOD3JXJAAAAAAHMyckAAAAAgOVVyQAAAAOCWc3JAAAAA4G6EckAAAABAU6dyQAAAAICV+HJAAAAAALH7c0AAAACgdTV0QAAAAMBp43RAAAAAoJ9jdUAAAABgPHd2QAAAAEDny3ZAAAAAgJbgdkAAAACgNvN2QAAAAEC9+3dAAAAA4OGEeEAAAACgSLJ4QAAAACAK0nhAAAAAgGt8eUAAAACAztN5QAAAAECmBXpAAAAAwLYUekAAAABA3jF6QAAAAGDzBnxAAAAAYD02fEAAAACg60R8QAAAAGDkp3xAAAAA4HZxfUAAAAAgwsR/QAAAAMDG439AAAAAgOALgEAAAADginyAQAAAACCjg4BAAAAAYG2WgEAAAAAgmZuAQAAAAKAkaoFAAAAA4BDkgUAAAACgCguDQAAAAEB2moNA + KBZXds7jZUCYE/Y0vCFwQFAtpBCXEnJAmHHSiBQzd0AXiDhKr0N4QF/MZsIsZH1AF+YUngdVf0BNt+9LbkKCQJ5TrgrbsoNA - + - HozYP57sWEAruZVA9IO8QObq70DcNNg/76tgQL1Rsz+zwdVAaXVbQDv7LEAOxOo/pr5gQDuC30AhihBAjb0fQM9VGUJDBahAm1iaQAPWI0CDP81AA/f7P6+AC0H3ZIlAHPlcQXMBh0C3Q1NBcvawQCpRrUB9QSVB2Ti4QJHnLEDFDddBM7HGQCY/RUDSo6JBDjLZQWFVCUHDgHJAqZQaQATBXkBa9i1BWXsNQNcGLUAVy/FAJCz+QZbnEEA4Q9g/MY4VQXsIgUGrnxpBw0U0QOUOtz8R2zlBiAjGP9+RokAAU59BMdTwQG+MGUB0wilBWBwEQV5Zsz9iojRBH2mcQhPL6ECifkZCYFajQOnLxUBZh6tBsi4jQPDVUEHjNKtBLESWQYolzD/ttj1BqXaPQYKq1j/UrcNAdqEzQShqA0Fp2KA/4oREQdHjSEB+OrNBlB+FQRrWiEHXvNNBtHU2QhI84kHyhKVB+CA5QZ87oEB+9ZBAvtlAQfsAMkFCRVZBpGv9PyjJjkGkioRBcN7JQV2l1kBsWH9BzhL+QE8mq0HweQpBW08gQI9zrECGK79ApQY9QbFsLUDBayhBCZWHQM9pYEC/ohZAF1/kQLpZmkDtMhZAmOuGQZdhTkAdSbRBJtu1QD8hvkDZIvhAAh7YQQCju0EEZy5BChW/QL/6K0EiaXlD08NCQVVZaUA5bLM/KbnuQJJxeD/fTkZBFaoaQDaLdkE8qndAK/+fQbTlnkCAecU/JBBjQG34XUK/4a1AGvq8QHudckD+aolA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYNXlZEAAAABAw6RmQAAAAEAsNWpAAAAAgL7rakAAAADgzmRtQAAAAOBE4XBAAAAAwBIBckAAAADA9cFyQAAAAEDcL3VAAAAAQGCRdUAAAAAAHwR2QAAAAACbN3dAAAAAACSAd0AAAAAAYPR3QAAAAECoFHhAAAAAwIXjeEAAAAAAJiF5QAAAAEDtknlAAAAAgB3jeUAAAADAugp6QAAAAACMgntAAAAAwJknfEAAAABAUjd8QAAAAIA0RXxAAAAAQOJkfEAAAABAL6Z8QAAAAEDY5XxAAAAAgLLZfUAAAABAZuZ9QAAAAIAYBX5AAAAAQKmufkAAAADgPiaAQAAAAOCmwYBAAAAAYG1BgUAAAABg6OmBQAAAAGBxdYJAAAAAoDrOgkAAAADAZ9uDQAAAACCcA4RAAAAAoFYKhEAAAAAgiUKEQAAAACC3BIZAAAAA4JSAhkA= + KBZXds7jZUDUvl+A/sRuQJEaXId5UnFAkaB3ty1zd0DMvNRcKXN4QLhhvy7cg39AzBqxsIGEf0CWA0APZsKDQCDgONC4woNAljIuORJLh0C0wNwLEMuHQLSD6iNq24pASKGAR2fTi0BzywJKswuOQH6Ls9br849A - + - KXv9P44rOECFe/0/U6SsQJ8tz0BDZjVAKVRiQFnzB0B2x6pAkZ/2QLHSxT/MIIBAv2ciQeFhl0AS7zRBxGI/QDuEx0BMgrxAjdURQbaEP0G7QO4/OGiQQEPwsj8VCohADOC+QGl4b0AFv55AsLc5Qfe1pUBcHAFBWHeFQBdblkGNM1dAs2GnQRbd/0Cj48FBoeWuQW5V2D9KQP5BKIVgQM/M2kDBmtxAPbPIQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYHbGZUAAAACAFWhmQAAAAMDOKGdAAAAAgKaAbEAAAADgwm9wQAAAAAAjs3BAAAAAgE4HcUAAAABAe/1xQAAAAADLCnNAAAAAgDAfdEAAAABAD7V0QAAAAMCStHZAAAAAQGtBd0AAAABAm2J3QAAAAABINnhAAAAAwC6xeEAAAACANdR4QAAAAEADFHlAAAAAAI1veUAAAADAwf55QAAAAAANhXpAAAAAQOq0ekAAAADAM/d6QAAAAEDJH3tAAAAAgBqQe0AAAADAG7R7QAAAAIDr8ntAAAAAAGIPfEAAAABA4tB8QAAAAEAxC31AAAAAgO9WfUAAAADARIR9QAAAAMBhm31AAAAAgGytfUAAAADAdMx9QAAAAMAU/n1AAAAAwOSUfkAAAABA27R+QAAAAMDDzH5AAAAAgGiAf0AAAAAgwHqBQAAAAKAwjIFAAAAAQKCzgUAAAADAwsGBQAAAAEADioNAAAAAgAKlg0AAAADgBpGEQAAAAIALq4VAAAAAoDFVh0AAAACgaZKIQA== + KBZXds7jZUCPTWWFSwNpQBTpB48/A3JA7mf6OVSSdEA7qk8G7hN6QBUpQrECo3xAsLXLPk4SgUCKQ4+CLdqBQNvfTUGaSoNA - + - J1DhQFNBYUA+RAVAo9ruQA+PZECpZBpAui9kQLyqRUACWsU/JGMaQDMBAED4hiNAzcSjQAUds0D1fjZAAfssQI1b6UAi5HZAmAZXQPM9UUHCaAZBQwvsQInAtUBiMZBBp7W1QBlW+0D9gwRAGWSjQDDX+UCN6ZBAcoMRQEOBakAoY6A/jEWWQTW4B0Cge9c/CCx4QKKm1EBoOGpBARoEQFRJqEDqitpAyBsjQPDWPEBklBpBHWuoQDojnECh3jVAYhKCQMHk80A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYDauakAAAACgXo1rQAAAAMDpyG1AAAAAgJTsbkAAAADAcCVwQAAAAEBAhXBAAAAAAKmVcEAAAACAC9FwQAAAAABVRXFAAAAAwDTTckAAAACAWvdyQAAAAEBrAnNAAAAAgFklc0AAAAAAe7N0QAAAAOBBAnVAAAAAQAMVdUAAAACACUJ1QAAAAICaTHVAAAAAAKZWdUAAAADAYmV1QAAAAIA7z3VAAAAAwCYPdkAAAAAAHE52QAAAAMB3YnZAAAAAQF9fd0AAAACAjYJ3QAAAAADNkndAAAAAQLVheEAAAACAmnJ4QAAAAMBLpnhAAAAAAKskeUAAAACASQZ6QAAAAAA6I3pAAAAAAIsQe0AAAADAqkV7QAAAAIA6VntAAAAAQFNte0AAAADANYN7QAAAAABTyHtAAAAAgFshfEAAAADAyDN8QAAAAMCxMn1AAAAAgItFfUAAAACA4WJ+QAAAAACPcH5AAAAAgM6HfkAAAACA+KJ+QAAAAAAFyH5AAAAAAFHXfkAAAADAxWZ/QAAAAMDDc39AAAAAgMKZf0AAAACAmqN/QAAAAMC7AoBAAAAAYCoSgEAAAAAg9nOAQAAAAKCekYBAAAAAYAOYgEAAAADAt7WAQAAAAGAyzYBAAAAAoNXSgEAAAACgtPuAQAAAAGDeIYFAAAAA4KsrgUAAAABgBjGBQAAAAICOQ4FAAAAAoBRigUAAAABAqKmBQAAAAIACtIFAAAAAwP34gUAAAABg9ACCQAAAAAAzEoJAAAAAoDocgkAAAABAojiCQAAAACBxU4JAAAAAQHJqgkAAAACgNImCQAAAAKBPooJAAAAAoB+qgkAAAACAAMSCQAAAAKCH4oJAAAAAgH7qgkAAAABAEDiDQAAAAEBtQoNAAAAAYMhJg0AAAADgN1uDQAAAAKAQaoNAAAAAYLFxg0AAAACgvX+DQAAAAOCWhoNAAAAAYDuRg0AAAABASs+DQAAAACCu4oNAAAAAIHvvg0AAAAAgghuEQAAAAGAZVoRAAAAAYCJqhEAAAADgfJqEQAAAAKBbqoRAAAAAIDOzhEAAAACgFsWEQAAAAEBm8YRAAAAAYNsjhUAAAAAArDmFQAAAAGCEQIVAAAAAYEhwhUAAAADgYamFQAAAAKBXs4VAAAAA4FfKhUAAAACg296FQAAAAMCo+oVAAAAAoD4DhkAAAAAAIwiGQAAAAKATF4ZAAAAAgG8ehkAAAAAgLjCGQAAAAKCpOYZAAAAAoItChkAAAADg/UiGQAAAAOAKcYdAAAAA4OZ1h0AAAABAxXqHQAAAAGDX44dAAAAAoGnsh0AAAADgJAOIQAAAAMBzCohAAAAAoMJxiEAAAAAgjnmIQA== + NrgMGZxjYkA= - + - DMR2QDoT7kClTiNA3WmyPxq2g0AHJSNARLnXQKf2xD9/Q5pAJYQUQWKEA0HPJ6RALXA7QE7Ynz87dBxCl2SNP23EY0DoWDFBOabqQDuv6z/YegdAhP2kQGKU3UAzGJxBEr4NQaBwN0JMf+M/a4DEQEwGP0DUTMJAcLdyQEcDBkBViIRAK3GyP7uSCEI2eCJB3FuMQH4C/UAIb7NA0fIsQM9a5ECn48dAcLfgQO6zKUBKvQtBut4QQEPB80B8iGpBlts+QKJ9okBKk0lA8fE1QEJzD0ELw05Ai+jHQHBDl0BA/zpCvGbTQPNXFEFAtOxAoopaQUHOjkHSsF9DgCPdQPUndkCr/9tA63BEQNcUbUBWD+lAB968QJ0E70CKU9hBYFiRQC0rpUAAoWtBqLBkQI8jY0DzGDhDTaZFQsAIGkBsTQhBPAfqP7wxyEB9qtVBFSscQTx9SEAg5rI/Hk3/QNG+okCcPEVD2UkRQWsMQ0FsM8hAFhQYQZrHy0EiHwhA+ExKQYxstT/2LhRCtlYeQVNpxEAa63xAGJx3QHCE2kL0y19C/pI8QUXUbUCfTIdA8SqiQWJlpEE07JtAKQhKQZfwA0CIJxlB/dGtQU/q0D+gp4JDRkq1QqfbLkElz/NBOWFaQSbELEEAYmlB5nL3P3pFJUEiSjBB/hTAQx60dkI= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwGBnZkAAAACAtn9mQAAAAEASwWdAAAAAgIHXZ0AAAACgTGJoQAAAACATAWpAAAAAQOfoa0AAAACAxyFsQAAAACDyRmxAAAAAYBqmbEAAAACgH0ZtQAAAAIBQBm5AAAAA4KcjbkAAAACAnx9wQAAAAGA+snBAAAAAgKHFcEAAAABAhgVxQAAAAADyP3FAAAAAwGqUckAAAADg2MByQAAAAIAPUnNAAAAAAA6Ec0AAAADAact0QAAAAMBMdnVAAAAAAIMPdkAAAACAoCd2QAAAAIDoM3dAAAAAgMN2d0AAAABAQO53QAAAAICSEHhAAAAAAAvveEAAAABAjwJ5QAAAAIDaIHlAAAAAQA49eUAAAACAiRV6QAAAAICcJHpAAAAAABQzekAAAADAYTN7QAAAAEDLRntAAAAAgMNke0AAAADAz7Z7QAAAAMDM9XtAAAAAAAuFfEAAAABAPat8QAAAAEAMEn1AAAAAgAElfUAAAABAu5F9QAAAAIAipH1AAAAAgDBRf0AAAABAQF5/QAAAAIARin9AAAAAgLLTf0AAAACAR99/QAAAAIAmBIBAAAAAIPotgEAAAAAgrjOAQAAAAECyRYBAAAAAwAV4gEAAAADAq3iBQAAAAICm+4FAAAAA4GvJgkAAAABAIdOCQAAAACCy6YJAAAAAwJL0gkAAAAAgiTSDQAAAAGB1SINAAAAAoPrBg0AAAAAgMueEQAAAAGAoMYVAAAAA4NFahUAAAAAggIOFQAAAAGA4i4VAAAAAwIHVhUAAAAAA5hqGQAAAAIC5UoZAAAAA4Kz6hkAAAACgFTuHQAAAAGDteIdAAAAAgHmHh0AAAAAg5a2HQAAAAOCXBIhAAAAAwJ26iEAAAACAXv6IQA== + NrgMGZxjYkBDHc6DfEJxQJEaXId5UnFAat4V+ypTeUC426P+J2N5QDUeeadBMoBAcM71Ouu5gEA= - + - c8+EQHXNrEDr7T5AhT8jQD8eNkEOgIJADajEP1VBJkLaJzVAGVgpQCXOAEHMagdA0/OeQJp/L0EsbLxAyr4DQPvew0CkdKBAvjXjP9u16D+TlrE/gjQaQCC1IkDpefFAmt56P/RajUDAv41BUEgCQVvCrUDHjBBAHkJqQNBUH0EWKJ4/yDQXQIRwRUFwqYJBsyP1P/fQCEG17JlA5bKaQjS89kAN/1pA3evVQKY1V0ATeYVB5Yz0P8XfTUDcKxpAarp2QITVD0EUPX9AQzGRQbMLbUI6fbpAsOiCQfD2wkBwgKdAilv/QWPJK0F+jKRBvB9gQGC7TkD66B5BxBc/QIaZsT/Gi+NAVsCoQGYNgkF5V/8/8myMQUyeIkKY37xAIOPVQPR2nkDXvRtBoleJQOYr0kAFl8NAePY1QK3MEEDRJrJA7fdPQLo630A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwDetYUAAAABgDWFiQAAAAADLhGNAAAAAwN7mY0AAAACABcNlQAAAAKBO5GZAAAAAgLYHZ0AAAADA1QVpQAAAAMA6I2lAAAAAQBxnaUAAAAAgpgNrQAAAAABeX2xAAAAAQDSlbEAAAACAdt5sQAAAAEAGA21AAAAAgKMHbkAAAAAAAoluQAAAAAAKI3BAAAAAAE80cEAAAAAga0JwQAAAAGBOknBAAAAAAJzZcEAAAACAOkVxQAAAAEDscHFAAAAAICficUAAAACADwNyQAAAACCKZXJAAAAA4FTlckAAAACg4SBzQAAAAIBgLHNAAAAAQBOsc0AAAABAsAJ0QAAAAKAmgnRAAAAA4JSidEAAAACARq90QAAAAECM1HRAAAAAQEb+dEAAAADAxgt1QAAAAIDhLnVAAAAAAOOpdUAAAADAX951QAAAAADaA3ZAAAAAgBFKdkAAAACgt2B2QAAAACBDz3ZAAAAAoMJBd0AAAADAi113QAAAAAAzdXdAAAAAAECCd0AAAACAndR3QAAAAAAL8XdAAAAAgBw0eEAAAADge0N4QAAAAGCQVHhAAAAAIGtpeEAAAABg5qF4QAAAAODlrnhAAAAAgL3xeEAAAABg3nF5QAAAAICmzXlAAAAA4A7meUAAAABg3fR5QAAAAECRD3pAAAAAYH4bekAAAABgzlJ6QAAAAOAnb3pAAAAAIMaEekAAAAAgEJB6QAAAAOA5oXpAAAAAYIeyekAAAABgbL96QAAAAGAt5npAAAAAAFX1ekAAAABgUwR7QAAAACAvIHtAAAAAoHA3e0AAAABgrmR7QAAAAOBdkXtAAAAAYBDFe0AAAACARNF7QAAAAOBm33tAAAAAYE0MfEAAAADAtTZ8QAAAACCKQXxAAAAA4MJUfEAAAADAB9d8QAAAAGBDHH9AAAAAwFo3f0AAAAAgJ5R/QAAAAEChLYBAAAAAIDH7gEAAAACAkyKBQAAAAOB6PoFAAAAAIAaCgUAAAAAgHIuBQAAAAIDrsIFAAAAAgLoKgkAAAACgfoiCQAAAAEDuwIJAAAAA4FTKgkAAAADgpE+DQAAAACDOg4NAAAAAYKfSg0AAAAAg9dmDQAAAAGCHAoRAAAAAAD8RhEAAAACgtCeEQAAAACCHaoRAAAAAgIuChEAAAACAsLaEQAAAAGA7v4RAAAAA4F5EhUAAAAAg9UqFQAAAAKArUYVAAAAAwHBshUAAAABgPIqFQAAAAEDtkoVAAAAAgJv+hUAAAABA7SeGQAAAAICOSoZAAAAAoG5qhkAAAAAg4LGGQAAAAOAsxIZAAAAA4G7LhkAAAADA7COHQAAAAACBUodAAAAAwBdbh0AAAACAyoOHQAAAAOB1tIdAAAAAwO/Eh0AAAADg8syHQAAAACDODIhAAAAAYEB0iEA= + NrgMGZxjYkAmWGpEdaJuQBu6YmAmQ3BAE4oR9pJidkBCe6rX1FN4QDpLWW1Bc35AQtmGKy1lf0Cd1JrgTMKCQJhLQ8TNSoNA - + - 0eIZQK8ptUCC885AMiDpPzfO1z9AoKtBC3xtQAIRVEGeHQlDfvrnQFDXX0AOKqc/qQZdQgqYKUB5ubI/EuobQN3qWkC83L9ANpHXP4Rxn0Cu1h9A6t0DQb2vMUHe7gVAfBg+QfOSK0EJDwRCjlyeQGE5H0Hum9c/gwoAQRVCGkBVDU1A0djOQF7U6T8NZmpAZpbLQHw3hUDkgqRAIYMkQWDXa0CHEjBB2K/3QOqN6T/FeidCMKf8P3S1hkInRkRBskBTQLAwJUEFXANBnhOgP2WpY0EiggRCxntHQShJ1z/Bc81A1YQyQKjwi0CNgNpAAAI0QVZMgkCVRfJAzPpSQcysGUEDJOBA1PVfQM2mzECLWyNAgLSlQTU4HUD1zztDswOGQas/W0HDz+k/EHOZQFgQ+0C7r1FAS3bfQLl9oEAygYdBud+eQI44cUBOaoFBtMQ1QZJG90DVhaVBadkZQDWYh0Ch0QJCYUwqQTecLEC88BVCHEgrQtvlvEE6LT9CvwvyQJWg+z8nYfw/IJ6HQUNyikGBzklBuuwAQYVzLEDuyMRBApPCQM/tIEGWFBlBaZecQFo1IkH6lnBBMxYQQTT/i0HgT25BS11PQAtp6UFdaARBbZuTQc6HKUHbi55Ambo1QYacREAd67VBxTXFQbGK/D8rgLJDjczcQtw7LUCJGmRADpjfQPk9mUCTMzlBKVRgQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAPQDY0AAAAAgy3xlQAAAAMCDoWVAAAAAQJAiZ0AAAADAwQNpQAAAAIDsw2pAAAAAQPEWa0AAAADAeOFrQAAAAKCmn2xAAAAAALpHbUAAAABArB5uQAAAAIAoQW9AAAAAQIDfb0AAAABA03FwQAAAAMAJgnBAAAAAYESzcEAAAAAgchBxQAAAAKC7M3FAAAAAQBFTcUAAAADgK2FxQAAAAIBB/3FAAAAAwO8xckAAAABA20FyQAAAAGC1g3JAAAAAAJy2ckAAAAAAmNtyQAAAAEDR53JAAAAA4NoRc0AAAADgZCVzQAAAAGDuQnNAAAAAgNV8c0AAAABgyqBzQAAAAMBNy3NAAAAAII/gc0AAAAAA4DF0QAAAAIC/RHRAAAAAoONOdEAAAABgN6R0QAAAAIDx1XRAAAAA4MADdUAAAAAA0hF1QAAAAOA8M3VAAAAAgGRBdUAAAADAsq91QAAAAECXw3VAAAAAwN3tdUAAAADAohB2QAAAAMA7QXZAAAAA4P1LdkAAAABAU3J2QAAAAMCVq3ZAAAAAoF+8dkAAAADgLM12QAAAAEAx4XZAAAAA4HYUd0AAAADAYSN3QAAAAAAtPndAAAAAwIhid0AAAABgvfN3QAAAAGBALXhAAAAAQLxQeEAAAAAgNot4QAAAAEB/nHhAAAAA4KQAeUAAAAAgohV5QAAAAGDKQHlAAAAAALVTeUAAAABgnox5QAAAAGD1wHlAAAAAoBzSeUAAAABgZPV5QAAAAKDTEXpAAAAAgBkkekAAAACAODh6QAAAAOChT3pAAAAAABFsekAAAADA8sJ6QAAAAIBmznpAAAAAQD3zekAAAADg0kZ7QAAAAOCuVHtAAAAAoBxje0AAAADAQ4J7QAAAACCvpHtAAAAA4ECze0AAAAAgx8Z7QAAAAGAO0ntAAAAAADPie0AAAACgTO17QAAAAKBrC3xAAAAAABorfEAAAAAgXX18QAAAAMCnBn1AAAAAIHiEfkAAAABghRh/QAAAAKBneX9AAAAAIPa3f0AAAACAoRiAQAAAAOC9HoBAAAAAYLyhgEAAAACgbvKAQAAAAID/AoFAAAAAgCbbgUAAAABgTRSDQAAAAGBRP4NAAAAAAApKg0AAAACgDlaDQAAAACC62oNAAAAAYFbkg0AAAADgL+qDQAAAACBfGoRAAAAAoGtxhEAAAAAgyqqEQAAAAIA/soRAAAAAYLgDhUAAAAAAdwmFQAAAAEAwkoVAAAAA4GSxhUAAAADgXtqFQAAAACDn5IVAAAAAYIdkhkAAAAAgeNKGQAAAAKDnEYdAAAAAYGw5h0AAAADAoxOIQAAAAKDpsYhAAAAAgFe7iEAAAADAjviIQA== + NrgMGZxjYkDibPs7jeFnQHJahe5LhGlAzMJH6YlBckA5Cx9LftNzQMwgJD3iUnlAlBdplkEkekDqceAnOuN8QLYga8fElH9A - + - 5pfEP80BGkCtVwdA8EXIP4fK6T+wKxZATjj8P/RR6T9Z+uo/HQ38P06PZkEaN9c/1kIRQJpJ/D/cFu1AOCYWQHJ7UUCBbvw/+Yn8P+QnjUAa26JATAgNQT0qtUD7zDVAN0UeQYfFpECGzL5BI3UsQMZxBkGDgQdAd7laQKhEB0DIi9c/BPWqPzujnz/o0vNA1ShfQfTBY0ALjhBAHsi1QBlJ1z/sV9FArFSHQNZ5B0AbLIZAkDNIQO0dlUB4zQBAuMDBPyq+pkBHC+tARF0qQRGRsD9uvmJAreCBQRX3HkCp45RAGgcXQbxcl0BgbRhATuX0P1iBeEH6rPpAZo3pP5zfNUBm6YdBFgT7QCTw4EAxfGpA+x9YQCcHU0BipqRBgjnQQRYIyUGonxJBNsQUQUkqDUHHMYZBe4XvQOdx5UB2ShxB/czpP8XChEFKfppBy0NMQcdAkUCV4btA2spSQYdfYEH+JcNAzFcDQpshF0EF94tARrcGQZYESEF7lck/chD5P/sqEkCd1ZxBiv7uQKQkPUCUjDpAxd1/QBfh9UDbWT1BTO2gQPustEGns7I/V41BQZn+skDJ+dBAwpDbQHQLwUFj2IBBDcN+QNheAUGMNmRA3G7dQIN7SEF0xDVAzxF3QQ2vWEDUr45BsNuEQMznfEBSB6lCCjC/QAJTrkA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAICqhYkAAAACAg25lQAAAAEAFoGVAAAAAAIjgZUAAAADAOSJmQAAAAIDxXmhAAAAAoGUNaUAAAAAAxEpqQAAAAAAvwWpAAAAAYOxga0AAAADAhqFrQAAAAIDSxGxAAAAAwFDYbEAAAABgcmFtQAAAAICr6W1AAAAAQGRCbkAAAACAHH5uQAAAAEBV5m5AAAAAQGBRb0AAAAAA/GRvQAAAAEB8zG9AAAAAgC3mb0AAAAAAJF5wQAAAAKDqkHBAAAAAIHP2cEAAAACgTDVxQAAAAKAxz3FAAAAAQLzhcUAAAACg0iJyQAAAAIAFVXJAAAAA4EQ+c0AAAAAAMUpzQAAAAMDHoHNAAAAAAFDAc0AAAABAUM9zQAAAAMDNA3RAAAAAAHeXdEAAAADgktN0QAAAAMD1BXVAAAAAwPAgdUAAAABAhjR1QAAAAAB5Y3VAAAAAQKhxdUAAAACAL5t1QAAAACApv3VAAAAAwAjkdUAAAABAv/R1QAAAAMC4A3ZAAAAAAJo0dkAAAAAgAkN2QAAAAOByZHZAAAAAAN5udkAAAADAxoF2QAAAAECRkXZAAAAAINGydkAAAACgBcV2QAAAAIDrEXdAAAAAgBc0d0AAAADgXUd3QAAAAADYdHdAAAAAYD+Td0AAAACgYsR3QAAAAKDm9HdAAAAAgNAGeEAAAABAWRF4QAAAAGB3UnhAAAAAoByVeEAAAABgbMR4QAAAAKD+73hAAAAAoBr8eEAAAABgFxR5QAAAAGD+I3lAAAAAoIZBeUAAAACgIpl5QAAAAEBsw3lAAAAAAGbOeUAAAACgseV5QAAAAKA+8nlAAAAAgDACekAAAACAMjh6QAAAAKAqY3pAAAAAwOSdekAAAABgL7F6QAAAAKDoz3pAAAAA4GnjekAAAAAAlAR7QAAAAGDUNHtAAAAAYNt0e0AAAACgTYd7QAAAAOC6l3tAAAAA4Pyje0AAAAAAmLB7QAAAAKDy2XtAAAAAQMnke0AAAADA+AuAQAAAAEBki4BAAAAA4OAvgUAAAABA74mBQAAAAODZmIFAAAAAwJS4gUAAAACg7MKBQAAAAICA2oFAAAAAAC3igUAAAABg5+qBQAAAAOCKIoJAAAAAAE9UgkAAAAAAiXuCQAAAAODPgYJAAAAAIKWPgkAAAACghp+DQAAAAIA+p4NAAAAAQBq7hEAAAACAjNOEQAAAAOBk4oRAAAAAQINahkAAAADgqUCHQAAAAIDCmIdA + NrgMGZxjYkB61vaTY2FrQK9rGHLRYnNAZCxDQWDBdUBycrZFd5N7QCcz4RQG8n1AzBl/3hLSgUBeoTm9hBGEQPUZBq4lCoVA - + - hwXDQDx20UBlqm5AGOzzQLIcCEGuqYtAgAk/QO2fyj/1l8NAD1qNP6UkB0BhERpAZrMHQKiHxD//l/VA/7uJQJ8LP0CrUrI/lksMQE5TtkDDYrVA8P/EP+/yAEFzk3RAEQrrP3M+w0AnIdc/di+yQMkXBkALhfw/g7ubQEwrEkFz7TVAZlrhQL5IKkEaqsNAHp4xQOR8R0EjFftArXoKQU3gJEHyP1FB2BHvQFmnREAQUShBfjonQeSEnz9K2zVAsuFNQG/Tm0AbCClAUNglQahvEEHkssBAuJQhQayBd0GVWhZA0MNjQG5FkEGi75RAp6DOQKKgUUDx61ZAdw+qQGkqCUElcjdBQHOHQI2ckEDnR4BAP80IQcFaLEFRv2NBRelHQFLstEGJ0xlAH4FjQUxgqUDFsm9BmLpvQSq6r0GsS9RBFgTtQMuzIEAIHQ5BZtLaQJAz9EDaloBBT/mWQauD6EAiMGRA+gLQQSHyTUAgYfpBRG6jQOn0CEDlK8U/Vo+1QOFi2D9ElHZAYa3fQXwPbUHiKRZCsFgjQu7ZvkCoHN1AnnfDQISBhEEkYZBAMd+gQZ9mP0Mu075B2fBkQsqct0B6ZClAHPA3QTIum0BADCRB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQIIAZUAAAABAXm5lQAAAACAkhGVAAAAAoBXJZUAAAADAlullQAAAAACgBmZAAAAAAPpCZkAAAADASGJmQAAAAMA/SmdAAAAA4OuHZ0AAAAAAIKFnQAAAAECIRmhAAAAAAOvlaEAAAAAgZf9oQAAAAGDfn2lAAAAAwFnDaUAAAADA9yVqQAAAAOD+Q2pAAAAAALhdakAAAAAAqIVqQAAAAICCo2pAAAAAQM32akAAAAAAMB9rQAAAAADRY2tAAAAAgAmBa0AAAAAg9cNsQAAAAIBg3WxAAAAAYEwJbUAAAADAHEBtQAAAAOAoZW1AAAAAwFSqbUAAAAAAEsBtQAAAAEBcaW5AAAAAoIKfbkAAAACAv+RuQAAAAKC4/25AAAAAYJdcb0AAAAAApIJvQAAAAECnwW9AAAAAAHfnb0AAAABANgJwQAAAAIAiYXBAAAAAoPmEcEAAAABgpbJwQAAAAAAu03BAAAAA4DICcUAAAAAAVhBxQAAAACAwM3FAAAAAwLBAcUAAAAAAuHVxQAAAAMDeonFAAAAAQMzwcUAAAACANAJyQAAAAAAJEnJAAAAAgEMkckAAAACg+YJyQAAAAGDbr3JAAAAAgEzBckAAAADANzBzQAAAAADPQXNAAAAAAClPc0AAAADAzmFzQAAAAMA2dHNAAAAAQEGQc0AAAADAcKRzQAAAAAB2tXNAAAAAoFTYc0AAAADgieJzQAAAAEAARnRAAAAAAM9RdEAAAABAF3J0QAAAAMDGlHRAAAAAQGG1dEAAAAAAPvF0QAAAAMBlAXVAAAAAQEARdUAAAABA4DJ1QAAAAECSQXVAAAAAwOxydUAAAACA3o11QAAAAEDes3VAAAAAQN7ldUAAAADAgxF2QAAAAMD2H3ZAAAAAgBk2dkAAAAAAWmt2QAAAAADPlHZAAAAAwJKzdkAAAADALu12QAAAAAAKIXdAAAAAABMzd0AAAACAWUZ3QAAAAECjgXdAAAAAwE+jd0AAAABAJ7x3QAAAAMAA1HdAAAAAQLrzd0AAAABAfxF4QAAAAADHQ3hAAAAAQHNUeEAAAABAzF94QAAAAMChcnhAAAAAgFB/eEAAAABAWY94QAAAAIBtw3hAAAAAwCz0eEAAAAAAogt5QAAAAEB+FXlAAAAAwHtReUAAAAAA52B5QAAAAMCqeXlAAAAAQE3SeUAAAAAAcuN5QAAAAABfIHpAAAAAwNwxekAAAABA21R6QAAAAMB6c3pAAAAAQJmAekAAAACArZZ6QAAAAEAcpHpAAAAAwL8Ae0AAAADAoEF7QAAAAEDZUXtAAAAAgABte0AAAABAh4x7QAAAAEAoo3tAAAAAAH67e0AAAADAhOR7QAAAAACjIHxAAAAAgMosfEAAAADAyWR8QAAAAEAbcHxAAAAAQO6EfEAAAABAwcR8QAAAAEDe2HxAAAAAAFrsfEAAAADA1wZ9QAAAAIDAI31AAAAAAAM1fUAAAABAakN9QAAAAEB2VH1AAAAAwIRtfUAAAAAA/YJ9QAAAAMAnsH1AAAAAQGLTfUAAAACAqOB9QAAAAACP7n1AAAAAgG0PfkAAAAAAIxl+QAAAAABMI35AAAAAwOA5fkAAAABAI0V+QAAAAID1VH5AAAAAwJqHfkAAAABAyrV+QAAAAMAxxH5AAAAAwDjRfkAAAADANOB+QAAAAMBGF39AAAAAQOsjf0AAAABAhVR/QAAAAMAIZX9AAAAAwOBxf0AAAABAWpF/QAAAAMBJp39AAAAAwAi0f0AAAABAD+F/QAAAAOD4AoBAAAAAIKUOgEAAAAAA7huAQAAAAGD9IoBAAAAAwFZMgEAAAAAg3VKAQAAAAGDYXYBAAAAAYF9xgEAAAADgbnmAQAAAAACvmoBAAAAA4JC7gEAAAAAgaMOAQAAAAICgyYBAAAAAgAragEAAAACAvN+AQAAAAOAW6IBAAAAAIPv6gEAAAABgPCCBQAAAAMBHKYFAAAAAYLlJgUAAAACg+lWBQAAAAACuYoFAAAAAoIp9gUAAAACAvoKBQAAAAGDWY4JAAAAAQOJsgkAAAABgznOCQAAAAKDueIJAAAAA4GnIgkAAAAAAn/GCQAAAAGBS+YJAAAAAIOI9g0AAAABAgFCDQAAAAGCAWINAAAAAYP9yg0AAAADAroKDQAAAAECaiYNAAAAAwNqWg0AAAADgJ8yDQAAAAIAt04NAAAAAIPLag0AAAACgtACEQAAAAAAYGIRAAAAAwCIhhEAAAABgkkOEQAAAAGDuWIRAAAAAYLlihEAAAADgJ2yEQAAAAOAqjIRAAAAAIIiUhEAAAACgHKGEQAAAACChA4VAAAAAYDoNhUAAAAAgZ6yFQAAAACCSuYVAAAAAIBzbhUAAAABgn+SFQAAAAECP7IVAAAAAgLQBhkAAAAAAshqGQAAAAGCHIoZAAAAAAFBrhkAAAABgynOGQAAAAIB/iIZAAAAAIDaUhkAAAACAfqOGQAAAACAX7oZAAAAAwFUbh0AAAADgOSCHQAAAACBBKYdAAAAAoLFah0AAAABgoWGHQAAAAKBSaYdAAAAAoI+Zh0AAAACgBKOHQAAAAMArq4dAAAAAgK7ih0AAAACg6OqHQAAAAABb9IdAAAAAIKUiiEAAAADgIiyIQAAAAKAzQIhAAAAA4Mh2iEAAAADg7HuIQAAAAID9hIhAAAAAoFipiEAAAACg0bmIQA== + KBZXds7jZUA= - + - D4WgQFB31z+5MSFBzx6+P8DRoUHpoBBAIl+JQPKPR0CmwuNAR/wXQBd89EGqMJVAM2D2QBBqFkEV25hADSYXQTHwWkAkg6lB1hoCQcBj+UCL+jRCUvJqQbBe3EHmBVFBx+5NQLd3A0Gxss9AogAYQWfYWUIWwaRBe6xgQCrW/UCYSsQ/32ZDQVs85kAN5bNARhqXQHUOoD/9z3BBCuc1QQWti0CNFsFBehNuQRTj/D+pncNB8C2oQiKKLUF8OYdA0t9fQMJIZEBDKAhB84RFQLTYt0AbfRdDJZBBQdY7UUGpSgJBbqQwQclpQ0K3/o5BXm+JQCLUhkCVB4xADKIAQd746T8p4G1A8m2VQPZulUEBwStBT+cDQTq4I0BzcgNBoGbwQd/BHkL5LxFCXrKAQRvNUUA6eUhAgYPvQHPfDUFQcEtBvwz/QIHTNUN20xxBHAHEQJdpKEBZkKVBHyLKQOI9KkD6xDRBhdBAQghdIEGhfdNAF1jXP+ZHLEEHoUhATrK3QCQNjkA0bmFDQjSoQUalN0BeML1Bo6LUQYa9fkHg8HRA9JdtQHOlFEJT4hlCfqxMQellykCPGMhAWuV/QCoNQUDtWshAv3ReQaCG8UCt/mNAebkHQf3lYEAg2e9AMajHQOjjhUJUCnZB86l2QHYtyEBaYc1AzPO5QPvPK0EYj91A4WsHQIEyxUKphyFAT9zEPyEzkECArEhBsyQCQV2zhED7/kpB19yfP5A8TUAmWNFAxQrYQFcUq0HqkylBrdIPQZoJMUEy3nxBZFpFQO3CfkCXAchBX+FzQQMe6kGPsRRBiJZ2QAwkX0Bmzn5AU3B1QGdHLkGE1qVBvLLeQbS2HkN/VB5CUm9NQLiyUUCJPIVDtLSWQJ+vmUD+PQNAzqnGQEpFEUNZh9lA/5LpPxBOI0ACcz1BoZ+yP9AAUkH+x7NCqHwHQL5IMkErLdxByp+yP/wBaUA6JpZBHC1qQQw/RkKmq1FBtKNFQcp7PEGvfCFBC+eKQX1bJEHaLzNCX21kQRxCrkAPPodAIyrdQA+/D0GD3T1BkWXDQHbr2UDtXEhADt3zP26FF0ArzK5BUM4NQXMR6kBYmoRA7qsaQecPE0GCWapB69POQBZqRECk9fxAkgurQeB9B0D1OLpAgvlcQd4uiUAgfk1ANn+GQRSDnUGPcb1A/C4OQq03w0E7Y7M/a3e+QAK7oEAr2cBAIE/CQ/ZZcEIojixAdZUHQOjsz0DIyxpBLpBiQBy5gUF473JBuLU/QimMi0G8eDxB4liLQbmFUEFdMo0/HmTqP5RgnEHSpTFBx+vdQLLgyEBIm7lAanIvQb4SDkKFiYBAMiifQLkX30A= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgAlTV0AAAACgPr9XQAAAAIA4zFhAAAAAoKGMWUAAAABgfUhaQAAAAGC0i1tAAAAAYKJcXEAAAAAAxLRcQAAAAMBAB15AAAAAwMQHX0AAAAAA5SBgQAAAAACHQWBAAAAAwHzoYEAAAABgRgFhQAAAAADTRGFAAAAAQFZ4YUAAAACAkahhQAAAAAABxGFAAAAAgPdoYkAAAABAnYpiQAAAAMCJp2JAAAAAgApmY0AAAAAA8YZjQAAAAMA15WNAAAAAgE1fZEAAAACg2qRkQAAAAGD4QWVAAAAAAMZkZUAAAADAmKxlQAAAAAAbwWVAAAAAgIYgZkAAAACgsoNmQAAAAKBSnWZAAAAAoHjlZkAAAADAQgVnQAAAAEChZGdAAAAAYGSDZ0AAAACAKuNnQAAAAICJg2hAAAAAQP7maEAAAABgIiJpQAAAAAApRmlAAAAAgIGxaUAAAABASCRqQAAAAEBUYWpAAAAAwAmHakAAAABAOMVqQAAAAACqE2tAAAAAgIxLa0AAAADAIGlrQAAAAMBvhmtAAAAAwGa+a0AAAACAvOdrQAAAAEBHIWxAAAAAQPVlbEAAAACA3qFsQAAAAIB8yGxAAAAAwOcibUAAAAAArUJtQAAAAEBMZW1AAAAAgFMEbkAAAAAAVipuQAAAAEC3YW5AAAAAgCKLbkAAAABAO6VuQAAAAMAL425AAAAAgFIob0AAAAAAOmdvQAAAAEBGoW9AAAAAAFu8b0AAAABAie1vQAAAAEBiE3BAAAAAwNc3cEAAAACgKVJwQAAAAICIcXBAAAAAoDp+cEAAAAAAqY9wQAAAAMDgonBAAAAAIEe1cEAAAADARsNwQAAAAEDMznBAAAAAQA36cEAAAADA/AZxQAAAACA+L3FAAAAAAJpEcUAAAACAEWRxQAAAAOAedHFAAAAAYCyJcUAAAACA7KBxQAAAAMCtrHFAAAAAAI3HcUAAAACA8tNxQAAAAOCK5XFAAAAAADf0cUAAAADg//1xQAAAAMAsEHJAAAAAgCIgckAAAADAnityQAAAAIByW3JAAAAAQGBlckAAAABgtHdyQAAAAABrknJAAAAAQIimckAAAACAu7xyQAAAAIA/EHNAAAAAgERdc0AAAADA3E90QAAAAOB/YXRAAAAAwPd0dEAAAACgjcJ0QAAAAECN5HRAAAAAABcFdUAAAABAdJV1QAAAAMAXtXVAAAAAQGnUdUAAAADAz951QAAAAKDUQHZAAAAAoPlRdkAAAACgaat2QAAAACB/znZAAAAAQPIEd0AAAADgAzF3QAAAAKCKXHdAAAAAQE9td0AAAADAiXt3QAAAACAKoHdAAAAAoDu+d0AAAABAe9Z3QAAAACAzBnhAAAAAIFk/eEAAAACgY814QAAAAOD+I3lAAAAAAHlPeUAAAAAguWB5QAAAAOD3g3lAAAAAYMLYeUAAAABgiud5QAAAAKCk83lAAAAAINxnekAAAAAgO316QAAAACD/knpAAAAAwNWmekAAAADAXLl6QAAAAKAW5HpAAAAAwFj1ekAAAACgoQR7QAAAAMBcO3tAAAAAwAxle0AAAACg0gh8QAAAAKBKFXxAAAAAoCpRfEAAAAAgD2R8QAAAAEBhZX1AAAAAYGuDfUAAAADA+hV+QAAAAMBVK35AAAAAwLLefkAAAAAgEBV/QAAAAOAyqH9AAAAAYJEkgEAAAADgg1OAQAAAAOCCa4BAAAAAIJmwgEAAAABghuGAQAAAACBN8oBAAAAAIIX6gEAAAABgnQOBQAAAACB2G4FAAAAAIDmCgUAAAADgXYuBQAAAAKClkYFAAAAAYIqrgUAAAAAgm+iBQAAAAEDeBIJAAAAAYBIzgkAAAACgWMKCQAAAAOAkUoNAAAAAQNRag0AAAADgbeGDQAAAAOBmMoRAAAAAYFM6hUAAAAAglE6FQAAAAEA6jIVA + KBZXds7jZUD4qwju5sJuQDtMc7KVAnNAV2JOwjaydUACpwfsrTN5QB694vtO43tAFLSnMS6igEDwYcBn+gmCQKiUS22FqoRA8JCukaaShUCowzmXMTOIQKrjjokek4lAYhYaj6kzjECqEn2zyhuNQGJFCLlVvI9An3mQ9xCSkEBipGtRVOqRQOlpYpU8lpJAFLvQX5p2k0CbgMejgiKUQCs+ozLLCpVA5XCZQa4mlkC6ZgEo99KWQA== - + - 5CEHQPt4kT8ZQhBBfbhEQDA0sj/VYLpAhbj6QO69DkDnpqJAzT8nQWEUBEJQ6E5BycahQOfknz8hFUBCrAaCQD54akKm2DpATV0SQb39t0D1pH0/FAeGQULdBUFAecxBQc4eQbLItUAEYMxBiBI1QH3nMUECUwdBubGEQEXnA0AblgxBVnwyQ478m0EhWbpCK92xQE38e0Ad5TFAi9EMQblu40RGIIVC/5hEQDvzq0BeV9JB4IcsQErk1z/IpjdB5rwsQLYnFkAhOXxA6EGGQL7Nq0H/ZUFBqW72QPUFEURW6rNBCsIhQeb6FUFCD8pB+9IzQd0W4z+jykJB1yGgPyli2kDGiIlANkc3QQK7S0LgA5FAZRRkQOYAokAncgxAJTVjQOsOh0BgSaRBEOSGQElILUKhzblB+MxTQiF+mkKypc9B7CwOQwDyiUAuiGBB+kmYQf4uV0Fg4zRCBllLQ3SGDEHbTyxBQlJjQgl+gkDHJuxA4JTqQaZSgkGzk+pBOQ17QQTqD0KL54ZCuG3HQj7i7UDlSTRBzJL0Qo0NfkJCP5dApUKhQPDsE0J1GJBBUupXQc+SUEAzxgBCLLiAQ3EP9kJj97ZBp08LQRDF1z80QgNDkd6fPzZIsUCAbw5D17zfQPz1K0FEQhZGuJHZPxyMPEHvjGVAjC8xQSB8z0BL2UJBkz6HQG774kEndy1Btv44QGoy0kFCODdBRi4ZQT/+CEJZ4l9BUYEFQYgfxkC85jxC9CpzQY+SkkDwJ3dCqCeRQipdG0HKkwhCTZhYQFC3/UEMys9BvB/rQj2w8kA6hkhCWWzMQMXWi0C6EURA6rhZQH4mukD7YLZAtEMQQQ6WR0HWgZZBnoBQQYce7UA0UnJCwqapQdk650DXlP1AhWhIQ26CGULoshpBMQrqP+bYD0H1CQRBPBSUQemy50E2K95BJIuNPxmTiUDgAwJBJLGCQM9mhUAindc/ + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAIDDa0AAAAAAHEZsQAAAAICFx25AAAAAgHcFcEAAAAAABSVwQAAAAMDqX3BAAAAAAD+fcEAAAAAgZjNxQAAAAABaRHFAAAAAABhRcUAAAADARuZzQAAAAEBVY3VAAAAAgHEDdkAAAABAmwR3QAAAAEAAM3dAAAAAgAEleEAAAABAngR6QAAAAIAdGXpAAAAAgM/TekAAAABAGTB9QAAAAACMp31AAAAAwAjIfUAAAABAsw6AQAAAAKCSqIBAAAAAoDragEAAAACAVQuBQAAAAODBGoFAAAAAoMoogUAAAACgI5OBQAAAAKAj0IFAAAAAwL3ngUAAAAAAsfCBQAAAAIAHFIJAAAAAIAQrgkAAAAAggzOCQAAAAGDVOYJAAAAA4O5LgkAAAADA/LiCQAAAAOC4voJAAAAA4EvPgkAAAACAkg6DQAAAAECIGYNAAAAAICtAg0AAAACANImEQAAAAKBmxYVAAAAAwFoQhkAAAABAJSSGQAAAAEDYKoZAAAAAYJA8hkAAAABgYGuGQAAAAIDzvYZAAAAAwHTEhkAAAAAgqVKHQAAAACD4nodAAAAAAGNBiEAAAABAYXaIQAAAACDxkohAAAAAYITpiEA= + KBZXds7jZUA= - + - RofqP8RwxT8AhCNAKA9FQG8ixkDP1ixAHOyyQETYnz/9H7tBc1XqP2fXxD/X17JAInszQI5C6j8lfhpA7LAHQDCgsj//GNtAMBHgQG5CqEAo2v5AlkaVQMmWlUCZqqNBwjahQLVJ2EAwiv1Ao0uaQLDkgUHoLeM/uOUVQUyBZEAplopBHnSEQEqtUUHJkLVA018/QNQ9l0GKthBBZtbBQQDXWkBki05AwjzkQFZFMkHvRzVB3xoCQY/MI0BrU9g/mMnZQBJKpUDlom1ApdxbQAMF/T9vpZtA5g0AQQWGxD/9bj9A/aVEQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAKgDdEAAAADAJQN1QAAAAEA6hnZAAAAAwNnTekAAAABAXA97QAAAAAANw3tAAAAAADPCfEAAAACAwEN9QAAAAKAzkYBAAAAAABzJgEAAAACAgiKBQAAAACDrsYFAAAAAALQ5gkAAAAAg/KKEQAAAAOAyqIRAAAAAoP/HhEAAAABALfGEQAAAAKA0K4VAAAAAAKuQhUAAAAAAT7iFQAAAAGAdvYVAAAAAgMPRhUAAAACgAySGQAAAAGAO04ZAAAAAYPHxhkAAAAAglxaHQAAAAKAyOIhA + KBZXds7jZUDAIFw1+IJuQDeULWxqYnBAtmSyHxSyc0C/Gh+6W/N4QH2/Rlks43xAwrrZ+TkSgUACI5zTDrqCQO3kW/yFSoNAkycdbFByhUCnNzz0/UqHQA== - + - uIxtQCZVFkBQuvw/XMaWQCwDv0DEnXxARTLqPzeTNkAjMoxAtzbqP0QxoD8DuA9AhgGWQU5lJkLoBBhAzdpfQfgMgECzhhJAfqcPQEZbK0ENJmlApQsuQYgGokBNwgRBb+LMQLmQhUEZUT9A + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIBhMXEAAAABA7s5dQAAAAGBSz15AAAAAwAUJX0AAAADAMGFgQAAAACA8pGBAAAAAAIfmYEAAAACAZQVhQAAAAMABJGFAAAAAQO9rYUAAAACAQqJhQAAAAICBCGJAAAAAwMBgYkAAAAAARIVjQAAAAOBlnWNAAAAAwCToZUAAAABAf6NmQAAAAOCR4mZAAAAAgMZjZ0AAAACgiwhoQAAAAMBuaWhAAAAAQOnHaEAAAACAXSZpQAAAAMDGvGlAAAAA4IglakAAAABg+mdqQAAAAEDYZWtAAAAAgN0GbEAAAAAAdh1tQAAAAMClbG1AAAAAwPCFbUAAAAAAAqZtQAAAAEBRvW1AAAAAQBPnbUAAAACAkgxuQAAAAAD8JG5AAAAAwBdgbkAAAACAAX5uQAAAAIAQwG5AAAAAgM/nbkAAAACAvyVvQAAAAACoQW9AAAAAgAVbb0AAAACANKFvQAAAAICdInBAAAAAQBZkcEAAAABgjHJwQAAAAKAsgXBAAAAAgKGTcEAAAAAgx65wQAAAAMAtw3BAAAAA4KbRcEAAAADAJkNxQAAAAIACUnFAAAAAgFljcUAAAAAgZ3RxQAAAAIC8kXFAAAAAAAHGcUAAAABACdZxQAAAAABv9HFAAAAAgCkRckAAAAAAHiVyQAAAAMAwU3JAAAAAQFtyckAAAADgooFyQAAAAAADlnJAAAAAQBCwckAAAADgoNNyQAAAAAAZ4nJAAAAAoJLzckAAAAAAwzBzQAAAAIAFQXNAAAAAoPFPc0AAAACAQ2BzQAAAAECU0nNAAAAAQIjwc0AAAAAAzwJ0QAAAAKDCEnRAAAAAwL0hdEAAAABA6j10QAAAAECZTnRAAAAAQOhddEAAAABAqNF0QAAAAEAz83RAAAAAwGIFdUAAAABAABl1QAAAACBGLnVAAAAAoHNEdUAAAACARFB1QAAAAICzcHVAAAAAACGSdUAAAAAgXp91QAAAAOC9s3VAAAAAYO7vdUAAAACgKxV2QAAAAICZIHZAAAAAgOoudkAAAADA8t13QAAAAMA3VXhAAAAAAHDCeEAAAABARLp5QAAAAGAx93lAAAAAwNCaekAAAADA0WN8QAAAAODOk3xAAAAA4FXYfEAAAACg+pR9QAAAAEDpRn5AAAAAYMSRfkAAAABAj2F/QAAAAODVd39AAAAAwF6Df0AAAADg/8V/QAAAAGCZO4BAAAAA4HR6gEAAAADgjI6AQAAAAOCHmoBAAAAAIOYbgUAAAABgaiKBQAAAAKCKAYJAAAAAoEgNgkAAAABg1ruCQAAAAKCHO4NAAAAAwNqCg0AAAABgtfGEQAAAAIDSw4VAAAAAQIwCh0AAAADAoQuHQA== + NrgMGZxjYkAmWGpEdaJuQEMdzoN8QnFAaYA5p9LBc0BDe6rX1FN4QN0l+pbCwntAQ9mGKy1lf0AcGSLxwgmBQMpsSmWp6oJA1msC6ToKhUCEvypdIeuGQBXEq/Vio4lAoHPLm7wiikAxeEw0/tqMQN/LdKjku45AdmUWFrttkEBNjypQLl6RQIrl2X3ECZJAZBL9Il/ykkAK/dCSGs6TQME77R6b8pRAihTIp3CSlUDXUC4gwQ6WQNQEmkWclpdAIUEAvuwSmEA= - + - Pnc/QBLjFkAuMgBBudmbQPpFsz9uPbI/Q7SwQA3WAUEJPGBAYJ0fQLznoEDnQv0/M3GHQMRr/T+UAXVAH1KcQGHqmUDDl6VABxIzQXQk2D/QC5VAd1yMQd9ffECpcS1AsmE1QJ851kAIODZAbfMzQVxmsUEYsjBBpxjIQG4tW0DGWDZAdHOgQABp0UC7FElAacgOQXn7IkHXFT1AyXNKQAWFl0BoXINBYwuTQYQxCUH00ERA7jz9P8pGI0FKUjJB6Rt+QUC/4UDH7TFA755HQT2IxT9nyWdBBs8QQDncMUES8xBAxE4jQMP6X0Db34JAcDKzP/weJEGZfERAwTq7QAFTNUGqwItAX2BjQOSzT0F9ehpBzVFYQZLM1EHgl8Y/sJEjQaSAkEB4JChBucwMQp0ssEGaGJdCRBD4QUkO8kCnMYZBMVXYP/kGd0A+0ixAhEsBQWbQa0HbH29ClrrNQY5/SEEm8C9BNqZwQod0MUL3KUVA4uB0QO/2pUCx3I0/HaN8Qc45sUCij7BBW1kIQIADEUDkw2BAkYgDQaIrt0AaOYhA4knfQIfLZEKDJslA6hSDQf4Ys0DG4YlAhK0sQAuctUALQBpASFR4QBA3ykD8kBpBPJURQC8iukCfuXxAn4dtQMbX00D7myNAqTQgQWklo0D+rG1AF31kQK49ukA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwL1maEAAAACgsopoQAAAAEDkSWlAAAAA4FLlaUAAAAAADQBqQAAAAECiIWxAAAAAYLsLbkAAAACAVgZvQAAAAMDkIXBAAAAAYOnxcEAAAADA8zFxQAAAAGCVRXFAAAAA4D+ycUAAAACARmNyQAAAAOCvsXNAAAAAQM1hdEAAAACgIo90QAAAAABnFXZAAAAAQFdgdkAAAACAoXN3QAAAAIAVfndAAAAAQCY1eEAAAABATrd4QAAAAEBk9XhAAAAAgCUUeUAAAABA6GJ5QAAAAACmN3pAAAAAQMCVekAAAADAIdZ6QAAAAIB25XpAAAAAgIc3e0AAAADAAzV+QAAAAMDnY35AAAAAAK57fkAAAAAABod+QAAAAMCDI39AAAAAAPN+f0AAAACAg5V/QAAAAMCiJYBAAAAAQP4xgEAAAABg/TeAQAAAAEBYfIBAAAAAgF25gEAAAACg9uOAQAAAAKB594BAAAAAwEgCgUAAAABgFCyBQAAAAGCfgYFAAAAAYCiOgUAAAADgr6GBQAAAAAAbw4FAAAAA4AHKgUAAAAAgxvmBQAAAAOAsEIJAAAAAwM4egkAAAABgnmmCQAAAAEA7jIJAAAAAwJCfgkAAAACglKeCQAAAACBgtYJAAAAAoFDkgkAAAACgmPKCQAAAAKD9CINAAAAA4KsOg0AAAADgx0GDQAAAAGA7L4RAAAAAgCTZhEAAAABAwkmFQAAAAOD+goVAAAAAIL2MhUAAAADAoVOHQAAAAABFYYhAAAAAAJpwiEA= + NrgMGZxjYkA= - + - Ch66QPe3IEAYVGxAourYPwE2xT//wcVBrP6yQAL1LEBvV6tAVBmAQEQ1MkB1waRAcBojQcGdIkHG0T9BEn0UQR6VZEDRyZVAqPANQIeFnkBgbaxAP2VbQOmGCkHo3SxAH2jNQOMxBUAQXfhAJSZ9QKVtkUAkjuBAgrIMQIft3kDXzo0/npTFQknOMEIFWlRB2rSfQGWreT/aZ1JB4L1kQO9L+kAeljZBZogZQcfKmkGw/cRAp4vWQZzYYUAoZYlAw5QpQI149UBQM0VB5y3aQPMJIUGj3RdBbytrQG1KV0BgvMU/WuKnQeQHaEGaUnlBaRgRQNHkt0ALBfBAhuUbQadp9kCxUc1AC+ckQfTWK0EOlzVCPlggQDVhikG7pj9AgE1dQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAHpFb0AAAADAWSNxQAAAAEA4TnNAAAAAQA0UdEAAAAAgW250QAAAAIAS+HVAAAAAADlVd0AAAABAke13QAAAAEA4T3hAAAAAACAme0AAAADAitV8QAAAAADKhn5AAAAAAJrBfkAAAADAZHZ/QAAAAKD/GYBAAAAAgEdegEAAAADgR7yAQAAAAIBM9IBAAAAA4Jf5gEAAAACgS1qCQAAAAKB7yoJAAAAAYLgzg0AAAABgIqmDQAAAAEBMwoNAAAAAwFfag0AAAACAGwSEQAAAAKBgSoRAAAAAoJBShEAAAADA1VeEQAAAACBfaIRAAAAAoPCihEAAAAAAPwaFQAAAAIBBYIVAAAAAoH0CiEAAAACALwqIQAAAAOBeU4hAAAAAwGyKiEAAAADgHpGIQAAAACCJ84hA + KBZXds7jZUA= - + - hSGvQAoL0UAfxTJAusmfQV3YmUBm5uo/LrhbQIx5M0AK019AjTUYQGdMsz/rAvk/w1AyQBVFW0CUBf4/KFNkQLy4t0De2uBATR8ZQlI3CUHfIv0/Yuq+QADmqEApbi1B7AAaQOB6/T9F9zdBsqwwQpQDsEDD4hBBgKmOQT2lSEC+F4BAEFdiQVq86kAUIGxAYkDbQR1WUkGfTH1B + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAYC/XW0AAAADAiwZcQAAAAMBmilxAAAAAQE6zXUAAAAAAFBBfQAAAAIBHJWBAAAAAgDo/YEAAAAAAml1gQAAAAGDs6WBAAAAAgEqlYUAAAADAvGBiQAAAAECPhmJAAAAAAImhYkAAAAAgU71iQAAAAMDp42NAAAAAIKxeZEAAAACAUuBkQAAAAMBTCWVAAAAA4HMiZUAAAADAcqZlQAAAAMCTwmVAAAAAYHfgZUAAAABAlMBmQAAAAIB6CGdAAAAAwANhZ0AAAADAz+JnQAAAAMAdXGhAAAAAgLBLaUAAAAAA53xpQAAAAMDmoWlAAAAAgKvEakAAAADgm+hqQAAAAODqAGtAAAAAwAMra0AAAAAAYH5rQAAAAMDQvmtAAAAAQL3ka0AAAABAK/trQAAAAICao2xAAAAAAJbhbEAAAACAU2RtQAAAAICG5G1AAAAAQJD/bUAAAAAAakNuQAAAAEA2YG5AAAAAwLeKbkAAAACAIy5vQAAAAMCjRW9AAAAAwLnDb0AAAADAMedvQAAAAKAEAXBAAAAAYG8PcEAAAAAAMhlwQAAAAICzMnBAAAAAgDNBcEAAAADAOlBwQAAAAODsXnBAAAAAwD2OcEAAAADAF7BwQAAAAICgwXBAAAAAAKPQcEAAAACAXeVwQAAAAKCf8HBAAAAAYHUAcUAAAACAkg5xQAAAAOBRInFAAAAAIK5FcUAAAACAOVJxQAAAAMBUgnFAAAAAgKSNcUAAAADgzK5xQAAAAABq0XFAAAAAoAjhcUAAAABg8e9xQAAAAMCPA3JAAAAA4CQWckAAAADAkVNyQAAAAOCaZHJAAAAAQIhyckAAAAAgUYFyQAAAACDHkHJAAAAAAA6kckAAAAAAf9VyQAAAAIAD5HJAAAAAgAL8ckAAAABApFNzQAAAAEDRYHNAAAAAwL5xc0AAAABgBIJzQAAAAMDqkHNAAAAAAAuhc0AAAAAAjrJzQAAAAMC+z3NAAAAAwFYBdEAAAABAmix0QAAAAKBeQnRAAAAAQApydEAAAABAC5V0QAAAAMBCpXRAAAAAANC1dEAAAABAOcF0QAAAAADp6XRAAAAA4O4GdUAAAADAjBV1QAAAAMACInVAAAAAQOQ+dUAAAABgmlF1QAAAAKDpZXVAAAAAQN1zdUAAAACA8n91QAAAAOCuknVAAAAAoM6ldUAAAABg0TN2QAAAAKCE0HdAAAAAYLZgeEAAAADg+IJ4QAAAAEAlw3hAAAAAoMpzeUAAAABgI5d5QAAAAMCL4nlAAAAAgM0VekAAAACgSjR6QAAAAIDTZHpAAAAAYIX0ekAAAAAg0sx7QAAAAGAP3HtAAAAAwGL1e0AAAABAClR8QAAAAOAbp3xAAAAAQPG4fEAAAADgkKV9QAAAAMAgFX5AAAAAQH1UfkAAAABAMHN+QAAAAEBkAn9AAAAAIL5kf0AAAADAgeZ/QAAAAMBpUoBAAAAAoNJhgEAAAAAgup+AQAAAAKCOsoBAAAAAILnygEAAAADgyIOBQAAAAGAH5IFAAAAAoCRKgkAAAAAgME2DQAAAAKBNa4NAAAAAYG2Yg0A= - - - - - - rotIQOckSUBIxBhA0HKNP+0DCkE4ndVBeslCQQYF4kCPasBAo4W2QcwFMUE7PXNAR4+6QNyoiUD+obI/BBwaQNUhRUBC+uk/+X3lPw7y3EDD2g1Bz0GgQO5jC0HVSVBAeDRSQqgKnUAOhWBAsX2sQMq+iUDqRxpANl8/QFdOkUEZ2wdAGdc9QJuRoT/Hbtc/y6eSQBZvGkD1QI1B8hGfQDIYvUCK+qRBr3CsQHjQB0BPJthAKtH/PwZ7ZEBUxCNAvbQfQYN2w0Bjq35AVgVMQXrxY0AxYUhBLWEgQoDhoEGFDCZBxrYIQMdd60JXtBJDvC0WRF8BLkHQi2lBZYX2QcZBBEBmW1BA/qxbQFHjYUBbieo/wz63QLkVwUBf989BsmEtQgQQZ0Llx3NBZlL2QPK8i0Eo7sxBBHcoQQtxvEB7hhpBg9y1QG6RjEFe56lAVP79PxdoH0Ds/EVBTFFgQuWfdEGQuYVCb1gNQtlMikHAyeBAqXCRQYyAKUEH+nZAv7zYQdkWn0EbqdpAfgARQMx5RUESxIxBsVKRQVFqbEGm6VlByCNSQGT4JEJWThlBBCQFQEEgdUDzBgZBTYwjQCuDZECCdCNAYxDfQGr5LEA2KhBBq6+SQG3atUB5Bj1B2/CYQVIlEUDchHJANBY2QDN6/0CI5I5BUQtaQNTW2D/I7AZBaQqMQEtoGkBRhmRAkY1gQfhPiUD5zgdACZ3xQPGuNUFjaQRBxkdEQaLRt0EcuUhAJogMQdjaFkK48b9A86cqQP3LXUHA/IRAq2bIPw== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIL2gYUAAAADgxmdiQAAAAMAc5WJAAAAAYG61Y0AAAAAATONjQAAAAICY5mVAAAAAgGpoZ0AAAABAm6FnQAAAAMBqhmlAAAAAwPsqa0AAAAAAtsJrQAAAAMC1B2xAAAAAgEtebEAAAABgWeNsQAAAAAA0hW1AAAAA4AMFbkAAAACgtYRuQAAAAIAN/m5AAAAA4GoocEAAAADgUU1wQAAAAKAtk3BAAAAAQDnCcEAAAAAgsfRwQAAAAOCvAHFAAAAAwLwkcUAAAACAFUZxQAAAAIAedHFAAAAAYM/OcUAAAACgTwNyQAAAACDiUXJAAAAAILyBckAAAACgppJyQAAAAOBvqnJAAAAAAJuTc0AAAAAgT6BzQAAAAAC1AHRAAAAAwJEedEAAAAAAFkN0QAAAAACbrnRAAAAAYJgpdUAAAABAakR1QAAAAMA2UnVAAAAAYDiSdUAAAADASaN1QAAAACBmCnZAAAAAANhAdkAAAABAukp2QAAAAKBfZHZAAAAAoJR6dkAAAAAA+J52QAAAAMCx7nZAAAAAAPQwd0AAAACAKnd3QAAAAICcpndAAAAAwAfld0AAAABgUPR3QAAAACB6GHhAAAAAYOwleEAAAABgRYF4QAAAAEAJrnhAAAAAIMLTeEAAAACAb/x4QAAAAKCIBnlAAAAAAGoSeUAAAAAAMyN5QAAAACBXNHlAAAAA4KBNeUAAAACgRad5QAAAAAAQz3lAAAAAAA7weUAAAADgowV6QAAAAKDaEHpAAAAAIK+LekAAAADgtKV6QAAAAGBiwHpAAAAAwM/NekAAAADgXvN6QAAAACDUBHtAAAAA4McTe0AAAADA4yZ7QAAAAEBUNHtAAAAAoLpje0AAAAAg43F7QAAAAGCGj3tAAAAAIArTe0AAAAAAHuV7QAAAACDi8ntAAAAA4NkSfEAAAACgaB18QAAAAKCeL3xAAAAAoF5lfEAAAABgP398QAAAAKAZl3xAAAAA4FW+fEAAAABAkdJ8QAAAACBC33xAAAAAIHDpfEAAAAAgYAR9QAAAAKCWGn1AAAAAIGzmfkAAAABg3KZ/QAAAACB+BIBAAAAAYG6SgEAAAADgspqAQAAAAGDJuoBAAAAAwBPrgEAAAABgqPuAQAAAAKD/BIFAAAAA4GMggUAAAACgZS2BQAAAAODcSoFAAAAAIA1ZgUAAAABgeYOBQAAAAOCbi4FAAAAAoLyagUAAAAAAiKyBQAAAAECovIFAAAAAYLzagUAAAADgnRaCQAAAAMCnMoJAAAAA4HGagkAAAAAgSbSCQAAAAOAcx4JAAAAAYKfSgkAAAADgHtuCQAAAAGCcboNAAAAAQOfag0AAAAAgdBGEQAAAAGCsKIRAAAAAwLZYhEAAAACgC2yEQAAAAKC0nIRAAAAAQPgLhUAAAABgtnCFQAAAAOAShoVAAAAAwMwahkAAAABg7yWGQAAAAGC9QYZAAAAAgBNyhkAAAACgogqHQAAAAOCAHIdAAAAAoJEqh0AAAABg7EKHQAAAACAWcodAAAAAYCuEh0AAAABgy/GHQAAAAABDOohAAAAAoMVRiEAAAADgo+GIQA== + KBZXds7jZUDiYBUjzERuQBTpB48/A3JA - + - AzKOP/D4xT+4CjdA3tigP3jXikGp7BpBVD2OP9R9IUFqXDtAJmvYPyriqkD18yJAHK/1P30P8EBIadg/phK6QB+R9EBxR7M/hUz9P7LINkDPHuM/GMapQATd/D99KhpAGB63QAqxKkDrb5NB85ChQGSA9T+8TtVAXI5gQJMUB0AMwRFAW8CnQIoOLUB+zqxA96WJQMW8VkFjoBFBUrGQQXPvxEBoTwlBndaJQSMEjEB0ZWJADR42QCjQxT9UzsU/6W2hQIbh6j+TbL5AqlScQJr+T0EFMG5Ape3QQW0GikBsFgBBuM/cQPSyY0FbVWlAjFU7QNqiyEDRI+xAtzWWQK05YEBqfm9BBAYtQO8LV0BJNKxA3AHrP1IVzUHqArFAul4OQVb7iUHwujJAapqVQVNO4j8wNxlCJR+sQHtOiUE4GBRB/L8xQf1WHkHKpIJAN7/qPxekxkEe6ohAEqNFQcDOR0C6tLdArtM9QQrg7kGmT39BUAnUQTj1z0FUVzJALEURQLVaAUGAJDVAL09bQD3Q2EBQMjZAg6ZIQKg0qUAH4IhA7Bk2QLYdh0K9GKxACvtFQLJVEUDd3nNBEoUMQIsHQkE87AhBntOjQcPmR0F53EdBZW/LQAG2KUG6qldA0ZWEQJbwHkEBrBJB8BikQF4DjkAdGNhAHVg/QNKXVUE+jo5Afb8PQIhCCkGb8E1A8p0EQUKXGkCd+g5BuHKFQDbwmUB1qplAVjqpQJUnQ0H0yYRA8/3zQMQPjj8V9n5Asvo1QAolkkCQinJApBJyQe9emUE= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAMefZUAAAABgs9xoQAAAAEBPY2lAAAAAgKrtakAAAACgvYFsQAAAAKBswmxAAAAAwAhnbUAAAADAkkluQAAAAOBBiW5AAAAAAB2kbkAAAACAzSRvQAAAAOAEQ29AAAAAYHNcb0AAAACAX6JvQAAAAIB3wG9AAAAAYPYkcEAAAAAAc2ZwQAAAAGA1tXBAAAAA4PbEcEAAAADgdtBwQAAAAKAz83BAAAAAAAECcUAAAADgyhRxQAAAAKBJRXFAAAAAAPJhcUAAAABAf4BxQAAAAIBU0HFAAAAAgN4TckAAAAAAomRyQAAAAIACg3JAAAAAAMvxckAAAADgZSBzQAAAAEA6TXNAAAAAYJ6Ac0AAAADA6s9zQAAAAMAKIHRAAAAAwPNCdEAAAABAFmB0QAAAAOA4gnRAAAAAYMufdEAAAAAgKPV0QAAAACA8Y3VAAAAAQH2AdUAAAABAy/J1QAAAAIBnE3ZAAAAAICBvdkAAAABAiaR2QAAAAOCr8HZAAAAAAOsUd0AAAABgzF13QAAAAKBof3dAAAAAwMWTd0AAAACAybR3QAAAACAzwndAAAAAQCYEeEAAAADgTDJ4QAAAAODHPnhAAAAAoAdUeEAAAADgzJJ4QAAAACDrtHhAAAAAoHjCeEAAAABg2NR4QAAAACCeA3lAAAAAgNsleUAAAACgHzl5QAAAAMBzUHlAAAAAYJ/XeUAAAABgeCx6QAAAAOB90npAAAAAoJH5ekAAAADgVm17QAAAAAA6nHtAAAAAoDEBfEAAAAAAqyh8QAAAAGCLOHxAAAAAoBpEfEAAAADgs758QAAAAKBBGH1AAAAAIJE+fUAAAACg4SqAQAAAAMAhXYBAAAAA4JpxgEAAAABAwniAQAAAAKBG7YBAAAAAwJMMgUAAAADgUiWBQAAAAEAiOoFAAAAAYKRfgUAAAACgeGmBQAAAAKASg4FAAAAAAA6wgUAAAADg5BqCQAAAAEB+soJAAAAAgMf1gkAAAACgiCiDQAAAAIBUioNAAAAA4HyPg0AAAAAg2JaDQAAAAKCNGYRAAAAAIH+rhEAAAADgFh+FQAAAAECPg4VAAAAAwAONhUAAAABAUNOFQAAAAEDmQ4ZAAAAAYLtJhkAAAAAAdWWGQAAAAGCv0IZAAAAAACZUh0AAAABgHIyHQAAAACBclodAAAAAAMf6h0A= + NrgMGZxjYkBImCMySWRuQEMdzoN8QnFAS41ZENNCd0Bq3hX7KlN5QHJOoYeBU39ANR55p0EygEA= - + - MiKSQOALsz+Vr5tBrdaIQEt1lkDa2jhBgfQHQbgINkA4tNc/4aDXP+l6yEBEfhpA8liJQOwZqkGvNu9AswezP9iPT0HeoFBAElG8QFn6aUCWhSJBWsy+QLctT0AWCBZCmSr1P+c0GkB1PVtAGtvtP7mIKEBzPaVANNFNQAe2H0Hh3+RAUiJEQCC4EkCb+wdAzo9kQDd7GkE48LBAyhaEQK7X40Aa5/hA57nOQedLZUBruL5Anb+EQFve3kBcNqlAngyMQMigO0CY5lVBhawjQAZBRUCbByFB5y9rQFUC5kAsFT9AtEYQQbFXkUEUOe1ANTrIQIgBfEC6zwdAUCGGQQUyqEGEYktBmvuyQCeI0UDnpJZALZh1QE2bykDmYvtAnTclQfwvyEBqETZAhBTiQIc3hkLkzABBMHehP0boLEC0HIBAs36sQMaVvECwuilBzS+AQIeZm0BwTjZAjLgpQUPCY0ALvCFBtEbtQKLirUDxji5BjKD0QOLfmUDs3bJBrDzeQBGy+EANbIZBeGeeQVn91UCWLg9BIbThQHZ2N0D3MNg/zQogQLxmGEC+PIRBq9m7QI3tgkCH/8Q/NXT+QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwILSX0AAAABAv4hgQAAAAMBYZGFAAAAAQEgmYkAAAAAASmJiQAAAAABPpWJAAAAAgCOAY0AAAADAdSNmQAAAAIAH32ZAAAAAQAcDaEAAAAAAYFZoQAAAAAA1KGpAAAAAYDVBakAAAACA1LtqQAAAAAAJ8WpAAAAAAN5ja0AAAAAAn6VrQAAAAIAJTWxAAAAAgKNkbEAAAAAA7+VtQAAAAIA/Y25AAAAAQKbwbkAAAADA0WJvQAAAAACvf29AAAAAYGcUcEAAAACg/yRwQAAAAICncnBAAAAAgPDBcEAAAAAAZOdwQAAAAACcAHFAAAAAAIvmcUAAAABg6wxyQAAAAMC3MnJAAAAAALs+ckAAAADAJFByQAAAAMCkZ3JAAAAAwBN5ckAAAADAzpJyQAAAAICpMnNAAAAAYH3xc0AAAABgcwF0QAAAAICnFHRAAAAAwE0idEAAAABAN0F0QAAAAKC6UnRAAAAAgKWTdEAAAACgDqJ0QAAAAECK1nRAAAAAIODzdEAAAADgaAt1QAAAAACNFXVAAAAAYHQodUAAAABgSzN1QAAAAGAuU3VAAAAAAAdedUAAAACAF651QAAAAIBPxnVAAAAAABrjdUAAAADAyll2QAAAAIA8cnZAAAAAQCOEdkAAAADgdpF2QAAAACAhonZAAAAAYO2udkAAAADgOMF2QAAAAABG43ZAAAAAwFvxdkAAAAAAuxN3QAAAAMA+YndAAAAAYFmCd0AAAADgiM13QAAAAMBF3XdAAAAAAF0eeEAAAACAqy14QAAAAOC5PXhAAAAAYE1TeEAAAABASnJ4QAAAAMBuhnhAAAAAQCqxeEAAAABAFMd4QAAAACCpAnxAAAAAQPN8fEAAAACgs+d8QAAAAKCiBH5AAAAAwBZof0AAAABA+4F/QAAAAEB5EIBAAAAAgKAzgEAAAABgaluAQAAAACCcr4BAAAAAoOWCgUAAAAAAdouBQAAAACCDq4FAAAAAIPi+gUAAAACAQPSBQAAAAEAfLIJAAAAA4B5kgkAAAADAvHqCQAAAAEAsvYJAAAAAwAHFgkAAAACg3jKDQAAAAKB7OoNAAAAA4PZHg0AAAABgg8KDQAAAACBs2YNAAAAA4JPig0AAAAAgTfWFQAAAAADgOoZAAAAAwGBahkA= + KBZXds7jZUBOGswAeMJsQNeRyQ6NInNATs6td+pxdkD+UhGGOzN7QBHVS0uQon5AdoiI8dQxgUA= - + - 7uSiQHYHUkAqCYhAcgSzP75zLUEiM/NAdqDmQDeLc0A+33ZA6ZU/QK51xT92W4hA9XIfQIIDmkCvF3c/9hYoQUT4+ECm0sY/G7TaQN+joEDgQk5BKgLRQMXDI0D5Z/4/GO2LQDqc6j/Haf0/JozfQK4bFkDgB6JBwubFQJ3BmUBo0cU/0ee7P8wIGEK6miNACrrGPyzumkCuk59BmtOxQKFJmkC+YPw/4JuhP2YtEEDtDHVBZfUdQSeGMUC2/zNAAx4mQaUXIEFNQpJAVPo2QTZHD0D+GZpAbDS6QMsPhkHajMU/FkqZQMc9EEEhq65Ayf7yQRf2K0DiIQVCaA9MPzc+LkFGhbpAJNrBQBKcgEAV+kJBu4K1QPP8Q0L8/DxArkNqQLCPj0FgZjJBoX8FQq474EEMLOdBtOXvQCxwV0CPfdg/jiT0QFTWB0Be9QxAB3gaQMLSlEF5vbpAwkfDQKDa9ECSuTNByfdEQX/UhECtQFtAqfUBQRRjVUEBn7ZAoTuzQKhh2D8XJwlB5HPRQFgvsUCY8A1BfZyAQFJMl0BiSIBA5m3EQBg6I0AZ9MxAnNywQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwCImYEAAAADgb6tgQAAAAEA35GBAAAAAwCoGYkAAAACAckJiQAAAAOA8Y2RAAAAAwEGdZkAAAABg+SBnQAAAAAATj2dAAAAAoOfkZ0AAAACgHwhqQAAAAGAqHGpAAAAAIK8wakAAAABgll9qQAAAAKAegGpAAAAAoMXlakAAAACAMzxsQAAAAMDwoWxAAAAAIL6+bEAAAADAq+dsQAAAAID2YW5AAAAAgI2EbkAAAADA+SVvQAAAAIBLnG9AAAAAQH0RcEAAAABgkyFwQAAAAKBRgnBAAAAAQIaecEAAAAAgKwFxQAAAAABGFHFAAAAAANg0cUAAAAAA5EJxQAAAAMCHhHFAAAAAAAjDcUAAAAAAuNFxQAAAAABhFHJAAAAAQG9kckAAAAAAjHRyQAAAAACKs3JAAAAAgCDFckAAAAAgFPNyQAAAAID1BXNAAAAAYHt4c0AAAABAZJFzQAAAAGBIr3NAAAAAoFXuc0AAAADgbw50QAAAAED6IHRAAAAAYCpxdEAAAACAuZJ0QAAAAEBrzHRAAAAAgNoSdUAAAABAgiJ1QAAAAMCcVHVAAAAAABlxdUAAAADAM4N1QAAAAMAok3VAAAAAgBwHdkAAAAAA7jt2QAAAAMBAVHZAAAAAgIaQdkAAAAAA2MN2QAAAAOBc93ZAAAAAYHwPd0AAAAAgOy13QAAAAAD2ZHdAAAAAoOied0AAAACAPS94QAAAAOAxVnhAAAAA4NRneEAAAADAXZZ4QAAAAECfrnhAAAAAAOTXeEAAAADAyTN5QAAAAMAlQnlAAAAAgJpje0AAAABgPIZ8QAAAAEDhRn5AAAAAIIPQfkAAAADgxFt/QAAAAOCsZ39AAAAAwJKof0AAAABgKZuAQAAAAGBl6oBAAAAAYL4YgUAAAACgMzSBQAAAAGD5moFAAAAA4D+jgUAAAADAwDCCQAAAAGCoN4JAAAAAAP9XgkAAAAAgVXSCQAAAAEAlfoJAAAAAANK7gkAAAACgo8KCQAAAAKBG1oJAAAAAQNpMg0AAAAAg7KWDQAAAAOBgAoRAAAAAIEMShEAAAAAAVYqEQAAAAOAbo4RAAAAAICT6hEAAAABgeRmFQAAAAGCbIoVAAAAAYAuKhUAAAACgEV2HQAAAAKBXIYhA + KBZXds7jZUBImCMySWRuQNzlv3T/InFA59KvbMpid0Cf7F1IpVN5QK4tRKbik31A4tbS3ymygEA= - + - 8vP+QG6pxT8oKU9AX1YyQBW+xT+TeBpAkcfFP5yjfEBuvvxAz0XRQNgGxEDKuhZBLswrQQva6kGuy+o//zuzP/5bD0HJKltARMOwQOfNAUC2OSNBXdunQW1gCUFWpadA9aoqQN8Ju0GEeChB9om6QKbRbULabFdAn5ttQLx5qkDUSHxADRiOQMRG/EEEYJxAnOs6QWeJxT9zOBxBrihFQgb1wEAe57I/XovWQOm170AQUf0/zfGfQUHB20EsBrM/txd2QPHRG0FnNNFA3oDsQO5ntkG3pQdCIm3bQQROc0CYlCZB/lCjQOBHZ0HHK3dAUGr/QNyEK0LtGKVBjgACQXCYtUGgsEdBMh3BQLnqiUGE1YlC6dpIQPgsJECWsds/xFilQNFGhED27PZB7/F2QKPtokAQgP5AUD3qQW4GX0PjqeNBUslVQfzvUUAIoadAVCf9QYBVnEDzrQdA8l7AQGopmUGqij5BA5gAQa1XBEEqhxdB3oOFQtx98UBpqu1AySjYP/XlGkCw/+E/+e+yPwbuw0APQ2lB2uAHQAkCPkJiUmxAJkUlQdZ9RUDDiz9B + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAgDfEZ0AAAADAK4dqQAAAAAD/6GtAAAAAwHlmcUAAAACAClVyQAAAAMB8EnRAAAAAAPgPdUAAAABAeKR2QAAAAAAzKHdAAAAAgN+Pd0AAAAAAzpx3QAAAAICmHnhAAAAAgE5CeEAAAAAANaJ6QAAAAAD2MXtAAAAAAJs1fEAAAAAAcYZ8QAAAAMA+DH1AAAAAAJEXfUAAAABANSh9QAAAAIDUlH1AAAAAQP7WfUAAAAAAXTh+QAAAAIAQSH5AAAAAwAZ8fkAAAADAfYh+QAAAAEDFsn5AAAAAwPpjf0AAAABAYLp/QAAAAMD+2X9AAAAAgH2LgEAAAABAE+SAQAAAAGC67IBAAAAAQIL5gEAAAADAGBWBQAAAAKDWJIFAAAAA4NOtgUAAAABgqbaBQAAAAGBo44FAAAAA4JTygUAAAADgCfyBQAAAAEDMJoNAAAAA4LKUg0AAAABgB1OGQAAAAOD0mIZA - - - - - - NMz8PxMSoD8LDlJA0/2nQNn7mUBLu6BATyy/QPHVKkAq/ilAcV8RQC4nlUByUpFAntQ5QUGS0UDuYBpAbTE9QKB8A0HZX8BAo0GiPw3Fj0FHIQlBHFybQLsSmEAYkj9ABn6xQKoLDUE71bZABLIhQQHnEkHpaBhBbO1KQU91xj961k5AKoLYPxELRUBIH+U/eOFEQaSdukBAyXNAISmXQIlSbkCsGv4/ySlKQSQWg0DUdxpA - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgDdnYkAAAAAg18dkQAAAAMBMHWlAAAAAwL0GakAAAAAAo2NsQAAAAIDrpGxAAAAAwLewbUAAAADAB3tuQAAAAKBfRXFAAAAAgA6McUAAAABA4tZxQAAAAMBtBHJAAAAAQGNUckAAAAAgEK5yQAAAAAAGwXNAAAAAQBLUc0AAAAAABWZ0QAAAAEBxQXVAAAAAoHyQdUAAAAAgEeJ1QAAAAAAz73VAAAAAQKYCdkAAAADAJ0R2QAAAACD0cXZAAAAAQCvCdkAAAACAK/J2QAAAAIDwAndAAAAAYKAhd0AAAAAAvDp3QAAAAECgRHdAAAAAAPdcd0AAAACAQXx3QAAAAABQoHdAAAAAwO+td0AAAACAhut3QAAAACCyKnhAAAAAgLtdeEAAAABAQIJ4QAAAAKC80nhAAAAAoIjheEAAAACAoV55QAAAAODmknlAAAAAILDaeUAAAAAg3RV6QAAAAKCrInpAAAAAIIpHekAAAABA0AN7QAAAAOBSRntAAAAAoGZae0AAAADgp2t7QAAAACDHlntAAAAAYKS/e0AAAADggNV7QAAAAOCz/ntAAAAAoHoefEAAAACgalh8QAAAAMBQanxAAAAAYOvcfEAAAADgv+Z8QAAAAEDB8HxAAAAAIC0CfUAAAAAgpXx9QAAAAEBnIoBAAAAA4Ad1gEAAAAAgx9WAQAAAAMBIlIFAAAAAoN7AgUAAAADAz/OBQAAAAIBtdYJAAAAAoGKCgkAAAAAgX46CQAAAAID4sIJAAAAAwNy9gkAAAAAAUeCCQAAAAKAg/4JAAAAAYHAig0AAAADgzomDQAAAAIBxk4NAAAAA4CYBhEAAAAAgcVuEQAAAAEAtgYRAAAAA4DXRhEAAAAAg1wKFQAAAAMCHNoVAAAAAIFyKhUAAAAAg1amFQAAAACA744VAAAAAIOP8hUAAAADAjEGGQAAAAOBBpIZAAAAAYOlXh0AAAACgkXOHQAAAAKBEiIdAAAAAoKcLiEA= + NrgMGZxjYkD1hHOUyCJpQHzKEHuiRG1AzMJH6YkBc0BlJtC0/7J2QMwgJD3iEnpAZYSsCFjEfUDKPVw7/SGAQFCTEu+DcoJA6I4YJlWyg0C0wNwLEIuFQOi9BlABO4dAtO/KNbwTiUB8nqqLWEOLQN3vUQXPS4xADaMrJJr7jUAIGtQHG4SOQA== - + - l7iQQHrejUChEMZAxGgDQZ44EUBDrP0/Rp2IQGbijUDcJ81Al/FNQWywGkDdq2RAMY9/QIy+H0DW9aRAx1PrP2G0ckA5ACNAEQ19QHwOHkHwSf0/r+qxQMeXz0D8UARB+Nj2QDMGWUCPbHdA5OWSQLJHgEBGNVdACB86QlayrUA2GNlA9KtnQRtY5kCMsQ5AiG4iQbHZp0A81G9Bi7E5Qd4wlEH3BZxAC1wvQRiwV0AGHY5A8YH4Pwc8CEEh4LBB7osGQdkPCEAwwtVBEiWdQZTkdUFuhXlBp1xVQaXnhEBCuF1BFjSLQSXo/T/iyTtAjk8XQZsTEEEJkFdAR/FpQKbT7UBTVZVAfh+cQByaKUGe5cBAUl98QFiQV0AZjmlANdFLQbvh9kDK15BBi4X9Pzl3QkF7nbNAuV+BQY9SWUC7Z9JAdlSSQOMJGUAyMQxBfnDKQdBUMkB5dgNBlYuoQLfsxED5TDZA9HqXQB+NrkB6/3ZA3rHxQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAANbmZkAAAABguaZnQAAAAACy6WhAAAAAgPgJaUAAAACg/TBpQAAAAECUYGlAAAAAgJzpaUAAAACAXrJqQAAAAMDuw2tAAAAAwI/fa0AAAACAUyBsQAAAAIAtQG1AAAAAYD9IbkAAAABANGpvQAAAAMCqfm9AAAAAAIaob0AAAABAO8pvQAAAAEDd429AAAAAgNcFcEAAAACArhBwQAAAAEA4sXBAAAAAgEjRcEAAAACg4+FwQAAAAODK8HBAAAAAgKIFcUAAAADAHhBxQAAAAIDGsXFAAAAAYPsSckAAAADAE3RyQAAAAADY0HJAAAAAwNh0c0AAAAAAZoZzQAAAAECZk3NAAAAAAKfhc0AAAAAAjjF0QAAAAIATlnVAAAAAABHhdUAAAAAAkxB2QAAAAEAjKnZAAAAAwKpPdkAAAABAC2N2QAAAAEBIcHZAAAAAwJGTdkAAAACAa6B2QAAAAICSMXdAAAAAgP1Dd0AAAADAqp53QAAAAIAz5ndAAAAAQJtDeEAAAADArHx4QAAAAEBUxHhAAAAAAIzSeEAAAAAARQ15QAAAAEBrVnlAAAAAQIdkeUAAAAAA8qR5QAAAAMCwtHlAAAAAQI7heUAAAABATpF6QAAAAAA7s3pAAAAAAHtie0AAAACAf898QAAAAMBbCX1AAAAAwH0zfUAAAACAPUd9QAAAAIDWRH5AAAAAwGd8fkAAAAAAZ45+QAAAAAD7mX5AAAAAgH7tfkAAAACA2hR/QAAAAMBAH39AAAAAwOtEf0AAAADAflR/QAAAAEDBZX9AAAAAgCetf0AAAAAADPZ/QAAAACDtAoBAAAAAgJgRgEAAAAAAsxmAQAAAAKD3MoBAAAAAoAk9gEAAAAAgd2uAQAAAAKAofoBAAAAAQG+6gEAAAACgJsmAQAAAAKD274BAAAAA4KL/gEAAAAAAmSmBQAAAAKBcRoFAAAAAYGVNgUAAAACgvmSBQAAAAICjjYFAAAAAoL/JgUAAAACgS9GBQAAAAGAo2oFAAAAAQN3mgUAAAACgIfqBQAAAAABBSIJAAAAA4PZQgkAAAABg+luCQAAAACB+Y4JAAAAA4AFrgkAAAABg6FqDQAAAAAComoNAAAAAgB8UhEAAAABgACGEQAAAACBuu4RAAAAAYFAyhUAAAAAgeUCFQAAAAAAosoVAAAAA4PnchUAAAACgY+KFQAAAAGD6IoZAAAAA4DRQhkAAAACgMGyGQAAAACBgdIZAAAAAoAD7hkAAAADgumGHQAAAAMA1q4dAAAAAYF3giEAAAACg4P6IQA== + KBZXds7jZUA= - + - iVfXPyFU1z+CKaxAFGLPQHAzoD/eRjZAsV6QQC8MAkESwBBA3LClQEzG20AmtEdBqYXoQOwS5UCWv8U/O9N0QCEMjT8Id9c/mjCgP9CmEEBWxOk/iVKTQdkMRkHjCgVBwpyaQCB9REAoX6A/zcvrQS3R+ECtES5B/v6iQHFd9kCRn4JAwgpyQExPykFRzNVAaPDAQOH0k0ABNERAyl1aQLA5yUEY3/pBvpcoQPtvI0AA6AdAwB4EQGhCIUEOLZdA/K//QW1sLEBAXvhAukZ+Qag6G0LWUM1AfQ/kQHLtDkGwENFAzlDMQb1AbkHLQYlAJbttQBxy0ED783xBeu9nQSjasEBI4PFBHQmOQF/HB0AOjppB5Ca8QHs79D9x4itBr1RpQIWeAELObj5Bd4qAQTWzSEHHZJVB0F91QfxtlEGOAaxAdxwqQbz5o0CYsgdAS/UiQdebY0A+1p8/CmwOQbnCdkCakhRBmi1rQC2uGkGOd0BC8Z+ZQG5nsj8RjcVA996VQMIA5T+xIM1Aji2jQDDw3kD037hCyoxbQYNbJkEe6r5A0XFXQP7jHEF9B1JBH2maQD0KYUADw5FAhLdWQfcd9kB6TwRBvYZkQNtgh0L9hL1A+PQAQYlbaUADjRVBTPeUQNUICkE= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAgLPmZkAAAADgzH9nQAAAAGDaKWlAAAAAwGceakAAAACA+ypsQAAAAIAI1W1AAAAAgFFhbkAAAAAAf6luQAAAAODXDG9AAAAAAABob0AAAACAIEVwQAAAAEDeCnFAAAAAgPNCcUAAAABA71BxQAAAAOBoYnFAAAAAgF6CcUAAAABAopJxQAAAAEAOE3JAAAAAAE1FckAAAAAAsDF2QAAAAMBo0nZAAAAAwC1Sd0AAAADArj94QAAAAMD44XhAAAAAAOjzeEAAAABAdwB5QAAAAMBRJXlAAAAAwD4WekAAAACAanR9QAAAAIA7bn5AAAAAgK+cf0AAAABgfwaAQAAAAKD1doBAAAAAYCv4gUAAAACgt9CCQAAAAOAf6YJAAAAAQAFUhEAAAABADMSEQAAAAGBF24RAAAAAYCQzhUAAAADgGDqFQAAAAEBmgYVAAAAAIHR8hkA= - - - - - - 64HXP5l1NEAntAdAB39IQPg9sz8ljlxAmMOnQIxzA0CZi6BAx4qQPwm5fUBBLNg/lWeDQFkRcUBsiaBAbKu8QKIjdUD+UrxAtADCQDMHNkADSIxA/uoQQMAXgEBKXldAUg0PQYcWEEHHTWBAPsghQcyxhEDtHJVAS5wyQHNOS0H7Dt1ANHCQQTG8BEAx4YtAMZVFQDSJWUC1AXxAcE4/QMuMGkD1ZmxBzC7fQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4FHJY0AAAADATORkQAAAAIARqmxAAAAAoCHnbEAAAADAP0NvQAAAAAASNHBAAAAAAGpBcEAAAAAAKWdwQAAAAMApAHFAAAAAgBxDcUAAAADA4NlxQAAAAEDIDHJAAAAAQJRBckAAAACAXGhyQAAAAAAZdXJAAAAAwEBBc0AAAAAAOU9zQAAAAADblHNAAAAAQAdMdEAAAAAA84B0QAAAAIDCGHVAAAAAwMEidUAAAAAAMlV3QAAAAEAse3hAAAAAwCCdeEAAAAAA2Kt4QAAAAIB51XhAAAAAwOPjeUAAAABA0z16QAAAAIBnonpAAAAAgKTwekAAAAAA7xF7QAAAAIA5YntAAAAAgER9e0AAAAAAH/p7QAAAAMBFK3xAAAAAQGI3fEAAAADA6EN8QAAAAIBdZXxAAAAAQDeKfEAAAAAA7kJ9QAAAAIACUX1AAAAAgDphfUAAAABAFuF9QAAAAEDHCn5AAAAAQA82fkAAAABAM0t+QAAAAMDmeX5AAAAA4OezgEAAAACgDvGAQAAAAKAwRIFAAAAAAFFagUAAAABgLIiBQAAAACD4x4FAAAAA4MH4gUAAAADgy3WCQAAAAOAczoJAAAAAYJTTgkAAAACgYlODQAAAAMDV2YNAAAAA4LkEhEAAAABABwuEQAAAACBWI4RAAAAAQJYxhEAAAADgWBmFQAAAAGAwhIVAAAAAwG6QhUAAAACAVcuFQAAAAIDnIoZAAAAAYAZhhkAAAACguWqGQAAAAAA+8oZAAAAAgNsSh0AAAACgfGqHQAAAAAAvoYdAAAAAoKFjiEAAAAAAeXKIQA== + NrgMGZxjYkA/KJil8iNpQHzKEHuiRG1A - + - xNk1QOA3MkC7n7JAi/dJQNaQoT8YSVJABGoMQYYuAUGMRv4/HcojQPCCEEHgEiNBkVwgQEjh5EAIOO1A595vQJsIjkBFUs5AyJISQVM1DkESddpAm9O/QBl4BEFAkBBBMns/QBzVKUFC605AIeDZQIE9AkFlQaFBxksqQG01QUE8CR9BZCJfQdloTkE/gfhBPLXGQZxC5UAFIVtALNPKQBr7lEEPiihAJrpRQW5+yECoV4JBZOlHQeBqzUBuN6NB7CG6QAmxIkGMgbBB4RwDQtDaBEGwLI5A7CEtQEBFNEKM/SlBL1jPQVt9iUDvzT5CWo+EQkvcPkGE/MpALz+1P8SYoD/Na1dAH5YRQN1OwUDquIdAJ9scQXZCYUA4KKJBgaMWQFOn7z94SotAybRvQOF6xT8= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAB50VUAAAACAgNNVQAAAAGAUSFZAAAAAIL9JWEAAAADAVRVZQAAAAKAJiVtAAAAAIHBOXEAAAADAJZVcQAAAAOBZ2V5AAAAAQH0LX0AAAADAb5hfQAAAAEAWBmBAAAAAgIglYEAAAACATkRgQAAAAMC2Z2BAAAAAIAKEYEAAAACgOqRgQAAAAEAv4mBAAAAAQBoGYUAAAAAATSJhQAAAAKCDqGFAAAAAAMwdYkAAAABgQGliQAAAAMAjimJAAAAA4FDGYkAAAAAAbOdiQAAAAABYSGNAAAAAADiFY0AAAACAxbNjQAAAAMCi5mNAAAAAoCNmZEAAAADg7cdkQAAAAKDfJGVAAAAAwK5EZUAAAACgwHplQAAAAGClv2VAAAAAYAHgZUAAAAAgfwZmQAAAAAByImZAAAAAANSLZkAAAADg4cBmQAAAAACI42ZAAAAA4IUFZ0AAAAAAXyRnQAAAAAC6Y2dAAAAAQMhoaEAAAADAzZ5oQAAAAEADxGhAAAAAQJbiaEAAAACAVAJpQAAAAMBlQGlAAAAAQBWFaUAAAAAAduVpQAAAAMDmKWpAAAAAwH5CakAAAAAAJWRqQAAAAAAQhWpAAAAAwOGfakAAAACAJcdqQAAAAACR6WpAAAAAgFIMa0AAAAAARShrQAAAAMAqWGtAAAAAgBuLa0AAAADA8sRrQAAAAMBO6mtAAAAAQMFAbEAAAABAn15sQAAAAACvh2xAAAAAQJADbUAAAADACCRtQAAAAMDyhW1AAAAAAEnBbUAAAAAAvu9tQAAAAAC1A25AAAAAgPwlbkAAAAAA/0VuQAAAAEAMg25AAAAAQAOfbkAAAABAD8puQAAAAICPIW9AAAAAAOqob0AAAADADsJvQAAAAIAj3G9AAAAAID4JcEAAAACA7BRwQAAAACC5InBAAAAAwAQxcEAAAADgfD9wQAAAAAAAgHBAAAAAYOqScEAAAAAA8qNwQAAAAOD4s3BAAAAAIHvKcEAAAACgiuVwQAAAAEDGAHFAAAAAAKMYcUAAAABAmSNxQAAAAEBzRHFAAAAAwOROcUAAAAAAn8JyQAAAAOAfgXNAAAAAAL+Rc0AAAADgCZxzQAAAAMBa83NAAAAAQDgTdEAAAADgBid0QAAAAGDksnRAAAAA4LHRdEAAAACgs/50QAAAAODJJHVAAAAAwCXndUAAAADA2mx2QAAAAMBspHZAAAAAwFHtdkAAAAAgLQZ3QAAAAGBOUndAAAAAYD1jd0AAAADAPHV3QAAAAMDDiXdAAAAAgDSld0AAAACA6Lt3QAAAACACCHhAAAAAoMsVeEAAAACAbiN4QAAAAOAolnhAAAAA4KakeEAAAAAgc7Z4QAAAACB4w3hAAAAAoBbjeEAAAAAghCV5QAAAAMDcdHlAAAAAYNXUeUAAAABACOV5QAAAAKCf8HpAAAAAoJCkfEAAAABAEDR9QAAAAEBZlH1AAAAAYHTEfkAAAABAXc5+QAAAAKAAFH9AAAAAwE15f0AAAABANpJ/QAAAAMD6xX9AAAAA4Jfnf0AAAADgUXOAQAAAAKAqe4BAAAAAYHiSgEAAAABgg9KAQAAAACDD84BAAAAAgMZog0AAAADggHODQAAAAAAek4NAAAAAAAj8g0A= + KBZXds7jZUAc6N63HmJpQKPid1q/AnFASRZoMb/Rc0CjQFSuFxR4QIS44AZv8npAxUlW35qEfUBCi16t4wGBQJx3i2fFwoJAOWre2xqahECTVguW/FqGQPO8vtOSmohAk4X5v6jjiUCEwT9s1FKLQLHWtaoAdI1AhPAtloDbjkDnE7lKLIKQQCYO6lL28ZBAMJb5Fk3ekUA= - + - DXMaQLeK6j8W47ZBhIs/QPdLv0D9KNtAkLJHQFp3yECbkwNB8zsOQG7nTkFfMDRAFid2QWwZgEEX6BZCMrLtQL0EBEISqehAM8g/QDVkdj8GyotAPe4EQFhNCUFvFI4/ziwRQBKHCUAmz2pAHCZSQO27hECGbKBAQfn3P5aYg0DOxD5AymgaQDFtEUCKgG1A8nW6QD+exT8k/uFANAwRQPAiD0GGAytBzOZwQCRjGEJb6BpBGOyOQE1GoD+a+o0/pd3BQJ4AL0BcODNAYDV3QI48I0ERTCRAFHPIQLhOSEGsu+1AQ6+dQRccLUAoKwpCuFT8P4MEpECRKG5AZKW3QfebU0LKzdhAMohhQVigqUBBWIJB6kpzQuqWzEAdnzFBaSawQZ0BJ0G9UJZCvrC+QVBPKkBcgJFAVMoPQAnSkUCafOFAW+vNQEXTpUDk+V9AKqiXQbJphkLlcJBCOninQvoc1kFSyXJCE2t+QTVmoD9IdjtASceSQB43jEA7KMJBs2QOQsoS10HPEjJB1f94P+6yLEA4OchBIhKsQqxxmUK/7AxCQ/EwQfL7I0CG/X1ACO+2QINRyEAks40/RbDDQN2yZUH5dT9Bv8MLQeSHkEDHfnpBlwyTQP51EkJnheZBNZwtQWRfOEEyhq9DIn2WQqTZFkIUBANE8vaCQVCSj0GPPKRBrpc4Qe/8tUGMROlA3X8fQ1dlfUES45tA1q+VQGIMLUBZcQVBIYDDQc4hCkEEa8U/t+81QIt7LEHBEbhB8UGPQARMukLQraZBTKNuQM/+w0B4wUdAxhlqQJoVP0E6/ZdAodPGQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYO+dYkAAAADgeuNlQAAAAODpo2ZAAAAAYKgGZ0AAAABg72ZnQAAAAMA3yGhAAAAAgH0raUAAAACAb3tqQAAAAODym2pAAAAAQOopa0AAAACAqaJrQAAAAEBsJmxAAAAAQHGqbUAAAAAgmsFtQAAAAMAaBm5AAAAA4G2ub0AAAADglcJvQAAAAGCm2G9AAAAAAEUjcEAAAADAFi5wQAAAAMDkUnBAAAAAAIFgcEAAAADAoH9wQAAAAACJnHBAAAAAIPuwcEAAAAAAHOBwQAAAAACNEXFAAAAAgBhAcUAAAACAQ1NxQAAAAADonnFAAAAAAGmxcUAAAADA4edxQAAAAAAtBnJAAAAAwDBickAAAAAA+3ByQAAAAKDHfnJAAAAAQIiQckAAAADgIqNyQAAAAEB65nJAAAAAgN0Ac0AAAACAWnFzQAAAAEC8oXNAAAAAQEzCc0AAAAAALtRzQAAAAACeU3RAAAAAAB0FdUAAAACA0TB1QAAAAEB9P3VAAAAAQDLCdUAAAACAyNR1QAAAAIA4A3ZAAAAAALdCdkAAAACAYGN2QAAAAEC5gXZAAAAAwP3TdkAAAAAAufN2QAAAAICoNndAAAAAgDBdd0AAAAAAgKV3QAAAAAA+sXdAAAAAgCrJd0AAAACAQtp3QAAAAMAbk3hAAAAAQE/SeEAAAAAAivh4QAAAAMADUXlAAAAAQLJoeUAAAABA9nJ5QAAAAADWgXlAAAAAQHjweUAAAADACP15QAAAAMDeRHpAAAAAAIeAekAAAACASpB6QAAAAEByynpAAAAAAIIRe0AAAABAsh57QAAAAEDBYXtAAAAAAIR0e0AAAABAEp17QAAAAECosXtAAAAAAGbHe0AAAAAACeJ7QAAAAABWMHxAAAAAABB9fEAAAABA/v18QAAAAMBIHX1AAAAAQNQufUAAAABA20J9QAAAAMDpsX1AAAAAAIP5fUAAAAAAnDx+QAAAAMBeTH5AAAAAQNNnfkAAAAAAZIl+QAAAAMAfk35AAAAAALSifkAAAABA3bN+QAAAAICpwn5AAAAAQN8af0AAAADATVl/QAAAAGAscIBAAAAAwGT5gEAAAACgY1uBQAAAAEAdw4FAAAAAQMXSgUAAAABAHUSCQAAAAOCSd4JAAAAAAASCgkAAAACAYdqCQAAAAGChB4NAAAAAQIJPg0AAAADgSlaDQAAAAGDHdoNAAAAA4Nucg0AAAACgJKiDQAAAAKDIBIRAAAAAgNQRhEAAAAAgnhqEQAAAAMCAIoRAAAAA4AmthEAAAACgo8SEQAAAAIBx0oRAAAAAIKmlhUAAAACA3gKGQAAAAOBfI4ZAAAAAYG0yhkAAAADAwzmGQAAAAOAdWoZAAAAA4Ip6hkAAAACg0YqGQAAAACC67IZAAAAAYFTyhkAAAACg0wKHQAAAAKBlu4dAAAAAIDjCh0AAAADA4s6HQAAAAKBdK4hAAAAAwCI/iEAAAADA6U+IQAAAAGDGlIhA + KBZXds7jZUBxWoXuS4RsQKPid1q/AnFAxwSPFv5SdEDF63mLQnN2QI5fI1AWhHpAG0B+kNrjekD0tbbNbGqAQAT/vnYkCoFAkycdbFDSgkD05KT3GPODQPZU54jcaodA9BOTIcV7h0CFGBS6BjSKQO0zZ7cTA4tAP2v0sX40jkCnhkeviwOPQJxF5KPm3ZBAGyU68FrmkEAcXdu4PKKSQM07n/6gMpNAFFBO+bYWlECcdNLNkmaUQJA/jpDS4pVAs/ekoMP6lUCmVM+R+P6WQGUOCq8Jh5dA79YPXhlbmEBJJN22PwuZQNPs4mVP35lAyTvUy5XPmkA= - + - Tdq1QGlDaUGNdXxAL2+HQAxLxT/2kYBA/kRXQLDIO0BHhQRADHYIQLg2PEF22ihAVse4QJahc0FDRTZAeoyzP4b56j/k0eo/YpGgP2ayE0F5YLxALI0YQUoaqEAz2lZACbhIQAzUX0F45GpALaoRQGH6KEBdrNBAotmgP67coEBP6XZA+4bXQEIiEUAwcjVAc3/cQYvMgkDb6cVAQYrFQPogZUBpSSxBOXVNQeSIFEFQ8xVBWFXJPxQRgEHwcChBFKd0QNhcrEBxocU/SOOEQdud9kBEs5FAZYQQQeQQX0G2wMFBPsvoP7WUW0DWFwhBTkNQQkYOEEEH66BBmSYgQT72mUCh3HRAlDSaQc9XF0CTDJpAzEXlQvMVuEEHdFlBINacQu18ZkE7T+1AzQMIQJRtj0DAx+o/K1OjQFCOkEEJ5KdAqgftQM+TO0CdTjZA4Yr2QPDb6EDLiCVCcj8oQh0vjkBuZwFBLimBQZ2zQEJPO3pBe8ebQYddO0LKdJJBlv7JQSmmOUGmctg/QOKaQEQt5j86h7ZBdWE+QM0L3UG2vbFCwy0JQqrfiEAp0YhCQK0pQRX3GUDvRqNB/BxEQ3OJLkEg+0RBzGrRQH2SB0EePH9DCbagQTo2IUCbvO9AUe86QHJ5R0BxnABBRkk0QQWaoD+TvYlAHsyaQThNVEFgdpdAVR0JQat/BUHFbhtBId61QLNVNEEKkHNBg3bEQRAcgECwdNg/kQErQaXxo0APKSNA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwHvqZkAAAACAoWVtQAAAAKC7i29AAAAAAHaVckAAAABAknV1QAAAAIDOlXVAAAAAQII1dkAAAACA6dl2QAAAAIDVB3hAAAAAQEk9ekAAAACAgMZ6QAAAAMDBEHtAAAAAAAhke0AAAADAFsR7QAAAAMAhhX1AAAAAACE3fkAAAADA0kx/QAAAACC6B4BAAAAA4E4cgEAAAAAAWOqAQAAAAGBIEoFAAAAAoI5BgUAAAABAwUiBQAAAAKCNUoFAAAAAwPePgUAAAABgWdCBQAAAAKB614FAAAAAYO0YgkAAAAAAOwOEQAAAAGCXCYRAAAAA4EV4hEAAAACgEFSFQAAAACA0CoZAAAAAAEYUhkAAAABg2MuGQAAAAKD1IodAAAAAYOsph0AAAAAgi9GIQA== + NrgMGZxjYkAnt2DdIQNrQHzKEHuiRG1Asaxs2egRcUAsI4iav9J1QCVSLcnYEnlAU+TPEW7jfUCmiTqgw5GAQPAdjhgj+oFA0bO8og/KgkCBIg+xZLKEQMiSPNFGYoZAFAOz7Lu6iEC/cbz/ffqJQFB2PZi/soxAqONWKBPDjEDher4wAWuPQDno18BUe49Ah8Axa7FJkUAzdz4z21GRQNBCcjfSpZJAfPl+//utkkDFe7/LHAqUQBozRNX9qZRAQWv/YjjWlUBkIxZzKa6WQL1aP/pTopdAraVWP0oKmEDTb4D7eb6YQJG7KUeAjplAHWBSmaXCmkDbq/vkq5KbQHqJQpXhwpxAV5s7fMdenUDBnfGP96adQKAdfEjoup5AUMZPhSNvn0A= - + - TrA1QLbdxT8/YjJAVOf0QKNVsz8pl7pADueZQNORFkCUNyhBkC/YQGr1L0AMYPQ/1EWGQQFmd0Ba9HNBZlf4QB1LwEBBifw/vv/XP2/dEEAupyJBjIg/QLH/5EFgMopBQR00QugTxEBeij9A+/w5QRb/FUFeLppA4Bg2QFAjxkD0WExBWvYWQbj78UDizwNCSZFSQKIw1kA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAILVFakAAAAAgq6ZqQAAAAAD4BGtAAAAAYKZEa0AAAABAY69rQAAAAMCKRGxAAAAAYAcmbUAAAACAy0htQAAAAGD4Xm1AAAAAAK9+bUAAAADAN6ZtQAAAAGBInm5AAAAAoPvEb0AAAACAliBwQAAAACDDY3BAAAAA4Bz1cEAAAACgAwRxQAAAAMAaQHFAAAAAQADQcUAAAADg/t9xQAAAAIAPFXJAAAAAgHdwckAAAABA8ZZzQAAAAEB7oXRAAAAAwC82dUAAAADAqsF1QAAAAAAlB3ZAAAAAgMkddkAAAABAYSh2QAAAAABWQnZAAAAAgJaidkAAAABA58R2QAAAAAChz3ZAAAAAADgnd0AAAABA5zR3QAAAAMD3QXdAAAAAwFq0d0AAAABAfkV4QAAAAIA0VXhAAAAAwFp5eEAAAAAAQ4V4QAAAAEBHqnhAAAAAwJSGeUAAAABAnpt5QAAAAIAhVHpAAAAAgI/WekAAAACAukR8QAAAAEBkV3xAAAAAwDBxfEAAAADAooF8QAAAAECu0HxAAAAAAHL1fEAAAABAXxN9QAAAAMCPIX1AAAAAwEdhfUAAAACA9pV9QAAAAACbn31AAAAAgBfQfUAAAACA5fV9QAAAAID7MX5AAAAAABV+fkAAAABA2t5+QAAAAIDe735AAAAAAN1Xf0AAAACARWN/QAAAAGC6IYBAAAAAwKdXgEAAAAAgMqWAQAAAAOAwsYBAAAAA4CzSgEAAAACghOKAQAAAAKA+EoFAAAAAYCwbgUAAAABgnUGBQAAAACBGS4FAAAAAQG9fgUAAAABg9WeBQAAAAOAVgYFAAAAAwDSKgUAAAACgd6OBQAAAAEDuu4FAAAAA4HTagUAAAAAgJeKBQAAAAOB28YFAAAAAoFL6gUAAAACgnQGCQAAAAIA7EoJAAAAAoIAzgkAAAADgk0WCQAAAAKBhY4JAAAAA4A1rgkAAAACAZnqCQAAAAODikoJAAAAAYL67gkAAAAAgesmCQAAAAKCuGINAAAAA4Acfg0AAAACAVSuDQAAAAMAWOYNAAAAAwF1Yg0AAAAAgsV2DQAAAAID9iIRAAAAA4PmYhEAAAABgZa2EQAAAAEAw24RAAAAAQInhhEAAAABgX1SFQAAAAKDDZ4VAAAAAYONuhUAAAADAC7GFQAAAAMAt2oVAAAAAgFz6hUAAAADgXgSGQAAAACAPKoZAAAAAABw9hkAAAABggWqGQAAAAOCHcoZAAAAAgNB8hkAAAADAer2GQAAAAGBGy4ZAAAAAQJbThkAAAAAgBQmHQAAAAOA0UIdAAAAAYKH6h0AAAADg+HOIQAAAAMDZeohAAAAAAGa7iEAAAABgoMKIQAAAAODi0ohA + KBZXds7jZUCJMOwq1/JyQFgXFG05cnNAF4g4Sq8DeUBYdfDAkYN6QKXfhGmHFH9Ac2Ye8DRKgEAWM7tbvNKDQD1u56K2YoVA4DqEDj7riECBMeBJL6uJQKdmKh6q84tASF2GWZuzjECnlRhIVnyPQA+JLGkHvI9A5G2GsD/ekUCFYXEycQqSQA== - + - LLb8QQUG50D2p/4/S7kfQHRyakCvxLFARYaHQOdWnkAxs21At0DDQIaJrECZkVdAANIRQHM7eUGpBv1ABXspQb2Lc0Gp0xxB1oGAQByRPUC4SJxC0hiMQKtXukBRpYVBq/ytQXKK30AU+E1AfkcuQXMHmkAGkp5ACIL2P1xA2D/+BiJBX13yQGYfU0GI/gdAw8YjQHqRwkKWHjxBqX5/QQEHtEBINzZAlG7JP/fWqUCDeBpA/DN2QLdaRUEL+MQ/MmPPQLnOAUElt01ARB8QQaIoDUBjeM5Ae74iQJr/wECEU1pAQnugQd2JzEB5jKZBWhW9QaRisEE2JBBAOI2vQX7vQ0HmdyxAhjYQQedGQ0Fa2NpAs02sQA8QUkBh03JBVyb6QK/bH0D0WLQ/2j3YQAg5wkBOkn1AydIoQTsMnEA1Ft5AI4cOQerHkkC5hU5Cywz1P+jvw0CM3c9ADIy3QW9mKUBm16tCPpAFQuCMHkLIg4VBAc/QQQhAA0GSSh9BcWbFP94XNkCY4j9B7Rd4QfbzxT/z0GBAK5zFPyEcj0AsaMVApeZIQTRioD+kSVdAMlGVQAfM1D/d0YlB3QomQWfGmUCuf6BA0t2ZQJp/zEJg4l5AFGALQTMsCEE5uaVAc60rQa57lUAnkRpArprZQE6FpEBSBtRAWlXHQD2JKkC2LYBA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAEbTW0AAAABgVUZeQAAAAGCXKWBAAAAAYIrmYEAAAAAAXWFhQAAAAIDuoWJAAAAAgOQlY0AAAABAkyJkQAAAAOANZGRAAAAA4GbGZEAAAABA6uBkQAAAAEDwRWVAAAAAYDN6ZkAAAAAA+almQAAAAEAM42ZAAAAAgAZEZ0AAAACgwWlnQAAAACBUAmhAAAAAwBZjaEAAAABA8r5oQAAAAAAC/mhAAAAAoLg/aUAAAAAAFyJqQAAAAGBtZWpAAAAAwDkka0AAAACAYGlsQAAAAMB6f2xAAAAAgKi+bEAAAADA7eBsQAAAAAApYG1AAAAAwDsjbkAAAABAwEduQAAAAABNZG5AAAAAgDvmbkAAAAAAQGVvQAAAAEDFuG9AAAAAQBXdb0AAAACALQ5wQAAAAIAAVHBAAAAAgKaScEAAAABAoghxQAAAAABhFHFAAAAAQGo3cUAAAAAg0Y5xQAAAAEDftHFAAAAAgObRcUAAAACAxu5xQAAAAAByFHJAAAAAIJFPckAAAABAYY1yQAAAAMC1mnJAAAAAQCuxckAAAAAAr71yQAAAAODhznJAAAAAoKPgckAAAACAofByQAAAAADrAHNAAAAA4JoSc0AAAADAKiNzQAAAAEDzMHNAAAAAIGxEc0AAAADAjdNzQAAAAMDd4HNAAAAAIIDwc0AAAAAAgw10QAAAAGAhIXRAAAAAADJkdEAAAAAA43J0QAAAAAAahHRAAAAAIAC1dEAAAAAgTsR0QAAAAMBvInVAAAAAoBCXdkAAAAAAJbd2QAAAAGBc23dAAAAAIBIReEAAAADgzjh5QAAAAOB7VnlAAAAAYP8JekAAAADAOOh6QAAAAGCB83pAAAAAQGXEe0AAAAAgfel7QAAAAMA1EnxAAAAAYPNAfUAAAACghPN9QAAAAECXb35AAAAAYNR8fkAAAADgb/1+QAAAAKAwdX9AAAAAwMYSgEAAAAAgDWSAQAAAAIDk3YNAAAAAILr7g0AAAABgL7SFQA== + NrgMGZxjYkD4qwju5sJuQBu6YmAmQ3BA/LPgystydkBWXNs11mN3QA== - + - luWyPwmmjj94lrU/3renQMKry0HNPS9BchezQMo0GUHxzQdAlNtOQKLGLEDImapADQ9uQITaI0BZqKVBF0vqQEa+cUH6O7Q/SfUPQCo7/T9WgjZAyjt5P1TwSEAyOgBBVL3TP5LiLEAJt6BALLGnQImenkDBlxJBUEWAQPzyhECpM/0/25CzPwsOD0KPGWRAq1hJQJpcfEB9jTJAKb+gQegB90FwDe9A970PQCelckDrw2NBalaaQC+aAUFMbu9AqNYjQNd6BEFvkbxA4nmJQX3Y5UCNB/1AerymQDMcSELHCus/gg4hQcz4m0CH8r5A/deSQBOkr0BpOE9AMqcmQY9iiEHwL49BxmWgQC7kbUDhUQpBzRYIQKg320AOAqpAmAmIQKiNsz8Ud/9A36kaQHsnPUBlYsVATvG1QKWupEGKRjxCMYPnQHabN0H4vhFAj72AQLcqpkHYiKpBXqs6QrmeY0BTDQNB8NNiQOHjUEAHKpdAJHwEQZb+P0A= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgL3cYkAAAADA22VlQAAAAAAH5GVAAAAAAFAkZkAAAACA3YVnQAAAAMAfxWdAAAAAQEYHaEAAAADgVkJoQAAAAGB55WlAAAAAYDKoakAAAABAJsRqQAAAAMDjY2tAAAAAIKrpa0AAAADAbItsQAAAAMAwwmxAAAAAwI/jbEAAAACAaYVtQAAAAMAzmW5AAAAAgP98b0AAAADA3qJvQAAAAMChFXBAAAAAYAZ2cEAAAACAHrNwQAAAAMBJ8nBAAAAAIMAEcUAAAABAs6BxQAAAAIDj2XFAAAAAAAvkcUAAAADgxvRxQAAAAACpAXJAAAAAABeGckAAAACAG8NyQAAAAAAm1XJAAAAAgNn2ckAAAACg8A5zQAAAAIBvJXNAAAAAwBVTc0AAAADAX9NzQAAAAICx43NAAAAAAMSxdEAAAAAAAtR0QAAAAADe4nRAAAAAALT8dEAAAAAATkx1QAAAAIAqaHVAAAAAgMlxdUAAAAAAS4R1QAAAAGC+0XVAAAAA4AfrdUAAAADA/PR1QAAAAMApUnZAAAAAwHFsdkAAAADgqYt2QAAAAMCevnZAAAAAAOPwdkAAAABAOQ53QAAAAIDYM3dAAAAAwG1hd0AAAADgePd3QAAAAIC4EHhAAAAAAOxTeEAAAACgR2J4QAAAAEAtjXhAAAAAID+YeEAAAACgk6R4QAAAAMAes3hAAAAAoMPReEAAAACg8vN4QAAAAABnA3lAAAAAAHEVeUAAAABgHit5QAAAAOCVUXlAAAAA4J9ieUAAAADgs6F5QAAAAAC4tHlAAAAA4Pb9eUAAAACA7h96QAAAAOD4O3pAAAAAoK1FekAAAACg/m56QAAAAACQnHpAAAAAgKTDekAAAAAgh856QAAAACCQ8XpAAAAAIJ8Ce0AAAABgZxN7QAAAAOCsTntAAAAA4ICjfUAAAAAg1dB+QAAAAKDz5X5AAAAAQMzDf0AAAABAqwKAQAAAAKC9E4BAAAAAoO0ygUAAAADAYWKBQAAAAKBdAoJAAAAA4JgcgkAAAABgVayCQAAAAOAb+oJAAAAAIPQag0AAAACAzyKDQAAAAABNi4NAAAAAIIeQg0AAAADAmuSDQAAAACBkGoRAAAAA4NckhEAAAACA4WSEQAAAACAWdIRAAAAAgBashEAAAAAgokSFQAAAAKBUTYVAAAAAQDhWhUAAAACArdKFQAAAAMBQ3IVAAAAAIBmThkAAAACgxZuHQAAAAIAm5IdA + NrgMGZxjZUAoFld2zuNlQI8BR/y9snJAiTDsKtfyckCPXyNQFsR5QImOyH4vBHpAggLyH4PigED+mUS3jwKBQP7IMuE7i4RA - + - 8t0IQA6/DUHckjNB/e0DQVsg2T/H0oBANVWAQNJmhUAVQ8ZAp5VSQKcKakA6pJVA4yeMQAVZkUAmtBxAig2JQVpfCEDCVgRAWOo1QMqUDEEc2jJB4a2QQNzx2D/GdqI/WLkhQJI4o0BuEhVBSuuXQiOXD0H/eylBLlVkQKOL2UBgRoFAvo4vQQckqkDl1mtBqVJuQSYlBEDWKmdBEzgJQVkSwkCRaQhAPH8aQKIvC0PoaRVCdSHvQt0PhUCuyjhBLlvxQdKzWUFtl6FAMuUWQWOH20CiyWJArVpeQR2BkEDtkYdCSP4+QZnl0z9sAwVACxTvP6BU60D/n+w/QSVlQaPVMkCYOr9AQOOQQFto80G+DilA5uqqQCnDH0GnD0xBEwA/QDgNp0AzSD1BorILQVQaXEADxoZBzHfNQP4CKEIUdQlBVCm1QXuFlEAMYRNENbzrPyZWyUCcLxFBUFpuQHVb6kCCmTRBHTv8QMCnU0GVaYtARMgkQVHKn0GvHtZAIbSRQI9aC0FuYRhBWqaqQjmqrUEkwkNCB7VVQbpgk0AEQjNCeVyzQKVdAkHYLyRAuvoWQVRnFkGZSxRBUWylQGzJykHW3SJB4bCcQIXCn0CJOf4/ + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwMWjYUAAAACALsNhQAAAAID+HWJAAAAAQFGhYkAAAAAAsdhiQAAAAOAEhWNAAAAAAN8hZUAAAABAO4BlQAAAAECuqGVAAAAAgBriZUAAAADggGJmQAAAAACMl2ZAAAAA4ONjZ0AAAAAgna5nQAAAAECi3WdAAAAAAAoFaEAAAACAIP1oQAAAACBw4mpAAAAAoIU+a0AAAABgvlVrQAAAAMDonWtAAAAAIKpEbEAAAADAAqFsQAAAACDf62xAAAAAQNc3bUAAAACAOcBtQAAAAMCOJ25AAAAAQDRHbkAAAABA8oFuQAAAAADbrG5AAAAAAIgfb0AAAADAKUdvQAAAAAAwxG9AAAAAwH3BcEAAAACgoGVxQAAAAABQonFAAAAAQNHOcUAAAABgngVyQAAAAIC2Q3JAAAAAQABSckAAAAAABJByQAAAAMB26XJAAAAAwAYSc0AAAABAjCZzQAAAAOBwNnNAAAAAwAZCc0AAAADADlNzQAAAAECFX3NAAAAAACCCc0AAAAAgPqdzQAAAAIB0E3RAAAAAIGsgdEAAAABgqVV0QAAAAGDTYXRAAAAAQGTTdEAAAADgj/Z0QAAAAKDEG3VAAAAAIAEndUAAAAAAuTt1QAAAAECQUnVAAAAAwCWBdUAAAAAA7JB1QAAAAOAcpXVAAAAAAOSydUAAAAAgnuB1QAAAAEADJ3ZAAAAAAItBdkAAAACAx312QAAAAODipXZAAAAAwNKzdkAAAACAc8B2QAAAAEC713ZAAAAAwJTxdkAAAAAAeBZ3QAAAAIDPIXdAAAAAgDxVd0AAAADggmZ3QAAAAMAum3dAAAAAwKa6d0AAAADgScZ3QAAAACDQ4XdAAAAAINIceEAAAACgnGJ4QAAAACC5g3hAAAAA4KuWeEAAAAAgFaR4QAAAACDwsHhAAAAA4DLEeEAAAADgANV4QAAAAECj4HhAAAAAgCYFeUAAAAAg/Uh5QAAAAOBUanlAAAAAQASEeUAAAAAgR6x5QAAAAOCYw3lAAAAAwFbTeUAAAAAgTeh5QAAAAKDD+nlAAAAAoDsZekAAAAAAtCN6QAAAAOBwNXpAAAAAYHFHekAAAAAgKX16QAAAAGCd8HpAAAAAoA8ee0AAAABgGiJ9QAAAACBXMH1AAAAAYDFEfUAAAAAgobR9QAAAAMAiZ35AAAAAQO+tfkAAAABgDeZ+QAAAAGDeZH9AAAAAIAmIf0AAAABATs1/QAAAAGBQC4BAAAAAoGJEgEAAAAAAbleAQAAAACBViIBAAAAAoPvHgEAAAAAg/NOAQAAAAKAl8oBAAAAAQHf7gEAAAACg5S2BQAAAACDcgoFAAAAA4OKpgUAAAAAAVLSBQAAAACAq24FAAAAAgLT6gUAAAADA6UqCQAAAAIDlO4NAAAAAoJlKhEAAAAAgZx+FQAAAAICLOYVAAAAAIB2zhUAAAADAX7qFQAAAAGA9xYVAAAAAoNgChkAAAACAMrOGQAAAAACH74ZAAAAAoGZzh0AAAAAg8AGIQAAAAGCZK4hAAAAAYG9TiEA= + NrgMGZxjYkA= - + - gLKHQF1uY0CL00VApVqMQHhvpUDpytk/xLgaQKsYEUAoqbdAzJEHQVzuEkB6EgBBr1EvQiQYRUCIOg9BJ/YRQDH4EUCPQ2VCOItzQAqlR0BfhndAqqt4P9tMEEGVCzxAaShZQD31MUEGIqhAW6VrQNmaqUDCZVJAXhnwQHu3G0A6DwhA9DToP+37jj9AaLdAQhFaQKWKkkA5G0lAOpcWQOte/D+zXaFAGDxhQA/xEUDJ7tg/nPEHQO39fED2lQ9BUtGzQPXBP0DFSrM/Y1cJQa7EEkHaHbpA/CQJQbh690C/waJBqmdAQePfu0Dt99g/wSN4QkdBCEBnees/eP1ZQDtNjEC0WYBAP7mTQDt0d0AsiU5AjSO5QF5oYUH1U6E/sGvGQYoTEEHykXJA6jADQViOyEDJfNFAoWn+QAvqVUGwtBpAIdWAQQXvEUCfoLZBODeoQTxICkLP4L5BtsARQANEnkEZjgRBWpP7QAx0EkGDUaE/YvBLQXTeO0Ed4c5BNi78QN4o00F41IBB5BZaQeh9IEJMifJBqwzRP2vs6EDvb8hAeaX3PwgcQ0KKEY8/1Hh2QO8lo0DegBFAL9VYQcuYbEG8vuhAlEuIQLisZEIUzIFB0FyzP1eVREFh619B02uJQZ8iHkGdlZBAa56DQEYj20CT8EFBu+O7QuZ400A9hQhBnG11QLB9EUDpEqpAg06OQOdv/j+SJeVAVt0GQyagrEB5fus/L4iHQQcNK0HBvpFAS+a3QF5UEEEQ6CNAmP1bQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwPnFZEAAAACgWORkQAAAAOAfrGVAAAAAQN/sZkAAAABgzMRnQAAAAMBlZGhAAAAAAPqDaEAAAADgKOdpQAAAAKAYB2pAAAAAACduakAAAADg0iVsQAAAAACO8HBAAAAAgDxhckAAAACArS5zQAAAAIBUQ3RAAAAAAH0Od0AAAABAXzB3QAAAAMA+Q3dAAAAAAO5qd0AAAAAAgq54QAAAAEBTCHlAAAAAQHEgeUAAAAAApDJ5QAAAAAAOdHlAAAAAQFaBeUAAAACA5KZ5QAAAAMApvnlAAAAAQEQUekAAAAAASSZ6QAAAAMDZNHpAAAAAgLvRekAAAACAmPJ6QAAAAEDmNHtAAAAAgCJLe0AAAAAA2vp7QAAAAADCZHxAAAAAAAx2fEAAAACABJR8QAAAAED1wXxAAAAAwJ/sfEAAAACAXg19QAAAAID0kn1AAAAAQC+nfUAAAACAOw5+QAAAAED9G35AAAAAgPpofkAAAABAl5N+QAAAAEDAsn5AAAAAwBFAf0AAAACAe4h/QAAAAMAvsX9AAAAAwKLVf0AAAADAFuZ/QAAAAIBpCoBAAAAAYE0kgEAAAABApUqAQAAAAGCldIBAAAAAYIp6gEAAAAAgtUuBQAAAAECcAIJAAAAAQK5AgkAAAACgNWOCQAAAAOD6y4JAAAAAIBLIhEAAAAAgtIKFQAAAAKBx2oVAAAAAoMLRhkAAAADguOGGQAAAAOAhi4dAAAAAYBOrh0AAAABgh7yIQA== + NrgMGZxjYkBcG3g88iJnQBu6YmAmQ3BArmsYctGickA9w2SRqbN1QNB0GqNUE3hAPSFB5QHFfEDQ0vb2rCR/QGW8RgLtaoFA - + - 1zJuQPdbyECp5dc/WRISQBLNyED4odFADEMEQK/NKEH60ZJA4zluQK7np0HAuHNAZmIQQPRe1EBWLqNAo+23QLCS6z/Q6SNAVUOcQIdUCEB26mRAlTuoQKOpJEBobRhAJO/DP1mp6z9tj6xAi22/QEhW1kBqTThBLFzNQABEs0A0d6hAwC8IQJsC8EDh9khAceK1QJtnhUB5nrpAKCcEQKsoEEBLINk/V7x8QNeUW0DAGTpBb+8LQSMbokGfjolB3+EgQWVBo0AdLFhBHqzrP/uX9T99NbFA5LBbQa90JkDT1i5CONzDQVCeMkAYMddA+Q8QQNxQCED4dbBBCcvbQQi1QkLQSC1AkWsoQVTlA0BoK4NAL1oWQIMmzUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwHj/XkAAAAAAfydgQAAAAAC1ZWBAAAAAgFeiYEAAAABg0gVhQAAAAIDPgWFAAAAAgEhhYkAAAACAFZpiQAAAAOBR3GJAAAAAgN1bZEAAAADArNxkQAAAAECzBGZAAAAAAFRmZkAAAACgKy5oQAAAAADMQmhAAAAAQPAkaUAAAADgmEdpQAAAAMCjnGlAAAAAIDj0aUAAAACAPUNqQAAAAMD2oWpAAAAAgL7aakAAAABA72JrQAAAACAcpGtAAAAAgNrsa0AAAABg9yNsQAAAAIB0R21AAAAAwDRjbUAAAACAJ4JtQAAAAECg3m1AAAAAQMdFbkAAAACAwahuQAAAAAD2QG9AAAAAgFGhb0AAAADAq8VvQAAAAAB95m9AAAAAIF8gcEAAAAAgtDJwQAAAAGBOr3BAAAAAAKfjcEAAAACAW0BxQAAAAMDncHFAAAAAwAp/cUAAAAAgiKJxQAAAAGDIt3FAAAAAoP/OcUAAAABg6ANyQAAAAIDREXJAAAAAgCYkckAAAADAuUdyQAAAAADLjnJAAAAAIDLCckAAAACAw+dyQAAAAABp8nJAAAAAQEQRc0AAAACgsCRzQAAAAIDpUnNAAAAAoB1kc0AAAADgB3ZzQAAAAMBZynNAAAAAgCzWc0AAAACAOvJzQAAAACAJIHRAAAAAgCE0dEAAAACgtkR0QAAAAIDDgnRAAAAAgICUdEAAAADAbrR0QAAAAIDaJXVAAAAAgARKdUAAAADAcXF1QAAAACCDgXVAAAAAACOVdUAAAACAbqB1QAAAAEDgtnVAAAAA4KbDdUAAAABA59B1QAAAAAC143VAAAAAQFXzdUAAAAAAYwV2QAAAACBbL3ZAAAAAYJtEdkAAAADgOaJ2QAAAAMAzxXZAAAAAoD3ydkAAAABg7EF3QAAAAGDPUXdAAAAAoEt1d0AAAACgKIJ3QAAAAIBbqHdAAAAAoB7ed0AAAAAgvnN4QAAAAODE03lAAAAA4P3leUAAAACAKAx6QAAAAGCQcHpAAAAAAKeaekAAAABgLXR7QAAAAODK8XtAAAAAoLSXfEAAAABAp5Z9QAAAAMBFu31AAAAAQEcxfkAAAACg4GR+QAAAAEC2u35AAAAAILP1fkAAAABgViV/QAAAAGD6hX9AAAAAYHLDf0AAAACgJs1/QAAAAOD3439AAAAAYHHwf0AAAACg1z2AQAAAACDGYoBAAAAAoLuKgEAAAACgB5eAQAAAAOB3vIBAAAAAQDPIgEAAAABAh9iAQAAAAACgIYFAAAAAoFdGgUAAAABgK3CBQAAAAKAsfIFAAAAAYLP6gUAAAADgqiOCQAAAAIDea4JAAAAAIAl8gkAAAABABNOCQAAAAGC82oJAAAAAoBLkgkAAAAAgkyqDQAAAACBJMINAAAAAoOE5g0AAAAAAk1uDQAAAAKCVfINAAAAA4GgChEAAAADguzOEQAAAAEDUS4RAAAAAAIdShEAAAAAg1cqEQAAAACDUq4VAAAAAoCnkhUAAAACga+mFQAAAAMDRiYZAAAAAoA+siEAAAABgD7yIQA== + NrgMGZxjYkD1hHOUyKJnQOJgFSPMRGtAaYA5p9IBc0DlVUsBVqN1QDDbzeDqMnxArLDfOm7UfkBSQEdo7RmCQE2370tuAoNAfWrJajlShEDeu3Dkr7qFQA== - + - WQDeQPXHlEAPMjhA1O1jQGLmDkCPvxhADPG6QA49/j+kF79AbA1JQAMroT84ZghAuENuQA7PdEDpBv4/tfLDQJX3ikDte9VAVsKwQCWVF0IZ7VBAce7YP1uqM0DqcFtBbv8/QF7qVEGNw5hACLT5QOqjb0Dx9M5AZ+WcQOu5iEB/6eo/JKfaQLevxz/9tFRBkGbZP4Pl+0Cot/0/s7ScQPeukUBCGkpBmMOhP+U380DWV2JA2lC0P5T5a0Ikp1tBv30zQEXpLEIX2ulAZuPEQEHkVUCmI85AEnSYQC2L/0DixDFBkzDpQJqUXEEXIc1AVmRPQKYbB0BBuVBBkLUkQF8JjkDZsilBzEJnQeA3E0FDVHk/atf/QOp7CUE86aE/gZPEQMvr2kDCUwlC2v6kQSRPkUE31QtBPmbrP5tcekEJlEhBAykRQez8iEBI3YpB5etRQFxC10FYpd9BE89VQhf8ZEBIYrU/TZ2KQRDGsUGOONpBCoxbQAzENUGLMLdBkkgYQcgR90CP28Y/1RBmQMOPA0FfKWBBGRKTQIPY7EGyM7pAFiaiP7V9SEFrGU1CVn7JQv0+qUHXzYpAd/NqQEHzLEBtQDNB9it/QfkyBkGOyOM/iy+xQMqGxECs2WpAtGoDQrufg0BDjkNBqeP5QXmzlUDz70BBC6GxQLwHn0HSw75BY2azQcmfIEFUIl1BFhHGQcRStD/YHh1AytrAQA5goUDnkqJAoo81QQGCfUBRHt4/R2PZP+JxCEDJ2i9Bku3HQHhe2T8= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoGtIbEAAAADADihtQAAAAKDSI29AAAAA4EyBcEAAAACAIOJwQAAAAMCDA3FAAAAAQH0jcUAAAAAggTdxQAAAAMCNRHFAAAAAwMNUcUAAAADA92JxQAAAAEA7FnRAAAAAQLcmdEAAAADAioR1QAAAAEBS9XZAAAAAwCNyd0AAAAAApYR4QAAAAECPJXtAAAAAQI5Ce0AAAAAA11R7QAAAAEBLYHtAAAAAQOK0fEAAAACA2VJ9QAAAAAAtYX9AAAAAILK7gEAAAAAgZsaAQAAAACC9QYFAAAAAgO1KgUAAAABgvviBQAAAACCbAoJAAAAAYBZHgkAAAABg92uCQAAAAECZxIJAAAAAYOT6gkAAAADg4z6DQAAAAIAkgINAAAAAoH7Jg0AAAABgGtGDQAAAAACyU4RAAAAAoDa6hEAAAAAAfdyEQAAAAGB05IRAAAAAIOLzhEAAAABAQCeFQAAAAKDKYIVAAAAAADByhUAAAABAxnyFQAAAAGAZm4VAAAAA4HPEh0AAAACgIcuHQAAAAAAyKYhAAAAAAD1KiEAAAABA/lGIQAAAAEAdW4hAAAAAAKnaiEA= + NrgMGZxjYkBGCTcNzmJoQOzQoK8iBW9AykXjfRVCdEA9w2SRqbN4QPEGK/XDUnxAX8xmwiwkfkAMZDk2uTGCQE2370tuooJAm4yXK+X5g0B6vZTxz8qFQMiSPNFGIodAeuyCG3xTiUC/cbz/fbqKQEEYKSvoW4xA6ps+AsryjEB7oL+aC6uPQEFHF1WU5I9A6SXM9mpOkUAh5jLVu1mRQDA6e/GAMpJAamhzody1kkBEuj5Zis6TQLPqs239EZRAjTx/JasqlUDHanfVBq6VQNa+v/HLhpZADn8m0BySlkBXAWecPe6XQLrUkvkBC5hAA1fTxSJnmUDXGF6xk7KZQBlsFMdIg5pAuy4xuck2m0CVW1ReZE+cQDtGKM4f+5xArN4mMZXjnUBSyfqgUI+eQPPy1Surx55A8HgsS74roECf8dNk62WgQBS6TLHO2aBAxOm8MwFooUBtRX+48f+hQOnhpQIXaqJA+IboIQrKokC6EmQsNXyjQA== - + - Z4AIQPXuuUA3NeRBELDJP5fB9kC6c9RATvvFQAHeTUCGT4NAqc2DQBNdnEDvInBA76iOQIPtT0BvEgxBAwnLQCswtkC0IhBAxopAQISFiEEa7hBAySCOQF0Sk0AHFDJBcC2LQaaDKUBmo55A4nb+P7je2T/LOx5B1iQ/Qq1fukDkPP8/x/rqQCHiVD8yHj5AgHhrQMUQS0EcJT5BI31uQJ7XCUC+VWxBvcWJQFsXn0Db7xFA9NgRQM0NWUAcvwRCV+UvQMkn4EC5ro1AqCxJQBtZNEFkOepAEo0uQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwOvDWEAAAABADQNZQAAAAECASVlAAAAAAOS6WUAAAACg2kZaQAAAACD3gFpAAAAAQF2OW0AAAAAAsIdcQAAAAEBwz1xAAAAAwGrRXUAAAADA5kpeQAAAAGAnBmBAAAAAgE8gYEAAAAAAkklgQAAAACA6RWFAAAAAINqoYUAAAADAgb5hQAAAAMAoIGJAAAAAAEtDYkAAAABAtl5iQAAAAEC6hmJAAAAAAPChYkAAAABA39piQAAAAOCFFmNAAAAAgBUtY0AAAAAA6q1jQAAAAGCbKGRAAAAAAIGDZEAAAADg5cpkQAAAAKAH4WRAAAAAILUFZUAAAADA6mNlQAAAAICeo2VAAAAAwPm5ZUAAAADAQt9lQAAAAIABAmZAAAAAwIckZkAAAACAE59mQAAAAMAPxmZAAAAAYAXqZkAAAAAAVP5mQAAAAIBNJGdAAAAAQFREZ0AAAABA2WVnQAAAAMBTg2dAAAAAQH+mZ0AAAAAAIMRnQAAAAMBS4WdAAAAAwEYbaEAAAABAGEZoQAAAAECQXWhAAAAAgCilaEAAAADAQOZoQAAAAOAOBmlAAAAAIIkdaUAAAAAA0EBpQAAAAMDA7WlAAAAAwDoeakAAAADAcDNqQAAAAMCxY2pAAAAAwFWgakAAAAAApedqQAAAAADMA2tAAAAAgFwpa0AAAABAC21rQAAAAIA8pWtAAAAAwLrLa0AAAAAA0+drQAAAAMB/JWxAAAAAgBREbEAAAADAK2JsQAAAAEAgiWxAAAAAACXkbEAAAADAeQJtQAAAAIA8H21AAAAAAFA/bUAAAADAcmBtQAAAAEAne21AAAAAADXBbUAAAABAR+NtQAAAAAAsBm5AAAAAQB8kbkAAAACAEUZuQAAAAEAfYm5AAAAAACCDbkAAAADAKatuQAAAAEA+xm5AAAAAwJbtbkAAAABAAyNvQAAAAEBGR29AAAAAgI5ob0AAAABAnIBvQAAAAABtom9AAAAAABLEb0AAAABA9ONvQAAAACAdAXBAAAAAgN0KcEAAAAAAvxRwQAAAAIAyJHBAAAAAAL00cEAAAABAyUVwQAAAAABYVHBAAAAAAF58cEAAAABA4rFwQAAAAABr0XBAAAAAIHbfcEAAAAAAYPFwQAAAAAAiBHFAAAAAYP0RcUAAAABAhi9xQAAAAKBoQ3FAAAAAgONScUAAAACg2WJxQAAAAOAYc3FAAAAAQMTDcUAAAADANtNxQAAAACCC8nFAAAAAgIsCckAAAACA0RByQAAAAEDmIHJAAAAAwPQ8ckAAAADAyE5yQAAAAOCUb3JAAAAA4NuAckAAAABAi7ZyQAAAAEBS0XJAAAAAYKjfckAAAAAAxu9yQAAAAOClBHNAAAAAwDksc0AAAADAqjR0QAAAAMBgVHRAAAAAwHCzdEAAAADAPzl1QAAAAEAPjHVAAAAAYDG8dUAAAACgU+F1QAAAAOBaDHZAAAAAoJYjdkAAAADg10N2QAAAAGAvVnZAAAAAwJ5qdkAAAADgmXR2QAAAAIBbu3ZAAAAAQOnLdkAAAABAw+52QAAAAEBV/HZAAAAA4BVNd0AAAABg3ZF3QAAAAKCpn3dAAAAA4EfNd0AAAACgruJ3QAAAAOD9M3hAAAAAoI0/eEAAAADg4rV4QAAAAKDlyXhAAAAAoCb/eEAAAAAAUUd5QAAAAKArV3lAAAAAwJPSeUAAAACgN+d5QAAAACBTWnpAAAAAIGZkekAAAADA0HR6QAAAACAdmHpAAAAAwNjrekAAAAAg+gN7QAAAACC+DXtAAAAAoNIye0AAAABgv1h7QAAAACCJZXtAAAAA4KZ8e0AAAACgMI17QAAAACDV83tAAAAAIM8BfEAAAADg4sl8QAAAAOD+3HxAAAAAwEgkfUAAAADgjEJ9QAAAAMBL1n1AAAAAoOnhfUAAAABAX/l9QAAAAEDThn5AAAAAQBaWfkAAAACgfKl+QAAAACDUtn5AAAAAQEcVf0AAAADgLCZ/QAAAAOAKxH9AAAAA4KrVf0AAAAAg1gqAQAAAAMD1IoBAAAAAIJ5ygEAAAAAggHmAQAAAAGAag4BAAAAAIJuSgEAAAADgOJqAQAAAAEBcyIBAAAAAIKzQgEAAAACAVzuBQAAAAMC2UYFAAAAAABRzgUAAAACglKmBQAAAAOAKuYFAAAAAYAL5gUAAAACA+QeCQAAAAAA4SIJAAAAAgKeEgkAAAABgnMKCQAAAAGAv24JAAAAA4LrggkAAAADgAQKDQAAAAID6ioNAAAAAoMOqhEAAAAAgeMuEQAAAAAAMO4VAAAAAoMsDhkAAAAAgmFOGQAAAAKDssYZAAAAAAHHhhkAAAADgguyGQAAAACDZcodAAAAAYCV6h0AAAAAAaoWHQAAAACApl4dAAAAAwIHAh0AAAACgbsWHQAAAAOApzIdA + KBZXds7jZUA0WUyRs0FwQKPid1q/AnFAwrCYsItSdkAxOsR5lxN3QFAI5c9jY3xApd+EaYcUf0A= - + - JN8DQVHu2T+Cmd5AhQrCQHIk2j/ZXcQ/RpNBQXPXNkAFEjdAJ8hGQMSAkT90elpAYt2tQXCJkECbzFBAIlybQGhuiEEjojNAJOxjQNfhgUFL3r9AuoTmQFdwmkApXIdBL+0JQXJEYkG8PzdA0EfxQGosyj+HrO9AmRc2QTiwEEGm3ORB52AQQTD8hkFrl0BBiNGIQTBE7D9QXM9AYGykQfhXej8i4i9BjYCEQGfJt0AYbZlAuIABQdLcoT9RKapBxEQSQC8s+UD2y7dAP2xJQKiSi0HCryJAHgEgQaTPE0F+r9VBlo+aQGKM5kAyCTdA7kqEQcbctUAiBf8/jxFWQSp8+EG0kNBAg/TEQN6NM0EkkIdAqBNZQa1yF0JfbvlAFmiNQGYX9UBPwyVCLzuLQMeD3D/TCg9Asa2TQOSNvEAjvKNBNARsQSc/RUO/7kFB6SjrQJxitj9lY+tAtAxQQOXlbkHTx7hAZnowQnvoIEBKXSZCZLAfQYyDT0GZdLxAAL40QF9I+kDysEtCUA7cQUziTkCczOFAHoUzQZcjJ0Lw87BB/986QR2UI0O9HChBdAKRQAkUg0F5t4xCDQZKQffK5z82sOw/gdCIQCwrQEJwfBxBaKSsQfi6TULXJDpBhVBgQZosoED/EjtBEmJ+QQkOHEFTB9xAnN21QPxoBEH4ocBBS8N/QK/SIEARLkhBGqJiQA4pikH+zWNCgD4rQd3ZYkA42GdBqagNQTceUEGzStBBTuyjQRg6D0JvUb9BuzKtQLnQrEHkzbJBphfLQOEdPkDh49k/KOEpQvZLSkEUEDBBHSu7QPyTJkKflgZBNZgoQe8nM0ESY8BAaGr/QmMkRkEAeeNC48HTQc3ykUD0HwNBQTy4Qe9tGkPOZVxBJIuuQXg4B0K/qalASJv3Q2668kH4W6I/wieNQMyml0BfXMc/wZ0UQj7PhkA5fAdAIwE3QNALKEEhsWtAJ5mjQNhno0EysoVBxYW5QHkrwEAq1MBBifLsP/IC3UB0q7xAJufhQuYXSkHdOFlAPg14QCb12ECqsetAdbVuQEQ+G0AAX9k/3H2gQL3Ju0CIpnNAVeuhQd5J/j8AkIhABXduQEkltD8MsxdCNDeNQABgQEBj78lBRMIbQEzNRkBnB7ZBW31lQJjhk0HzcUBAwjgUQXz860AoUj1Bhv6DQIrB5EB+vuQ/JzlJQbEtB0FsraRA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYIGmZUAAAAAAu2FqQAAAAODkw2tAAAAAwJbFbEAAAACgoIZvQAAAAMBk6m9AAAAAwKc1cEAAAABgCcdwQAAAAEA20nBAAAAAAITucEAAAAAAjwBxQAAAAEC7EXJAAAAAwCz4ckAAAACAql5zQAAAAEDO5nNAAAAAoElTdEAAAACAIg92QAAAAMCXcHZAAAAAgL6RdkAAAACAe7Z2QAAAAAATA3dAAAAAAC8ieEAAAACAOy14QAAAAECQRnhAAAAAgJOSeEAAAAAAEb14QAAAAIC1DXlAAAAAQCEjeUAAAADAyU95QAAAAMCYcnlAAAAAABDieUAAAAAAx/d5QAAAAICZFX1AAAAAgNwlfUAAAABAmlV9QAAAAMAmaX1AAAAAANRXf0AAAABAVK1/QAAAAEB49X9AAAAAQKcHgEAAAACAIRmAQAAAAODmIIBAAAAAIG80gEAAAABgK5aAQAAAAOCewIBAAAAAwDXXgEAAAACg9uuAQAAAAGCUAYFAAAAAQBxFgUAAAADgAUqBQAAAAADkUYFAAAAAIMhYgUAAAACAu16BQAAAACADjoFAAAAAYFOXgUAAAABAUtaBQAAAAOCq3YFAAAAAoB4jgkAAAACgmDKCQAAAAIBxQIJAAAAAoHljgkAAAACA2GyCQAAAAACecINAAAAA4FCLg0AAAACglZGDQAAAAGCfzINAAAAA4L8hhEAAAACgY1aEQAAAACAIX4RAAAAAQI4ChUAAAADgbTGFQAAAAMCtQIVAAAAAoC1LhUAAAACgzGSFQAAAAMBVx4VAAAAAoC9ThkAAAAAgYWqGQAAAAGBIc4ZAAAAAgE37hkAAAAAA0TKHQAAAACCTOodAAAAAYHiViEA= + KBZXds7jZUA= - + - LtW0P/fRB0HudM1A35DGQJwqdECFs8RAAG0sQc12oj/63BRBQze7QHiLGkFxBTxBydv6QI2JzEAiexVB9yD8P8gcGEFnNb5A4CiRQAqJgEBLkrZABDvPQASj0UBxTBNCPOylP3dpm0De2CVBB+hYQLIeQkAtb1NAIi2SQbQNI0E0UYVA5Zu2QPBD/z88/S5BEMeBQauDtUCThp9ApnLNQJmFskANPohASGNZQHa35EDrr69A/eq0P7grAUCwCRNBWh/hQAQZhUGN7to/RiWzQKpFtkC4c31BvwQSQVVXiECYoYxAKPQMQVkXuD+BVrZALu8zQiqJEEFix3pB2UMSQcI4gUGxnhNAWITCQXnA30D9TH5BgTwJQMN3l0ETYEFAYTYJQDUEeUDTzQtB7fE1QWVM6UEyJ3JBDSqXQFIl7EAIZO0/hS8BQg== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoMDcYkAAAABAg6JlQAAAAGCXBWZAAAAAQARKZkAAAADgRqNmQAAAAAAKyGZAAAAAALygZ0AAAACAPABoQAAAAACEpWpAAAAAoOToakAAAACA0gRsQAAAAAClqmxAAAAAgH/nbEAAAAAAeEdtQAAAAIAYZ21AAAAAgF8HbkAAAAAAOIhuQAAAAGDD925AAAAAQO6eb0AAAACADU9wQAAAAOAQgnBAAAAAgISzcEAAAAAg1/NwQAAAAOCOR3FAAAAAIKoFckAAAABABtRyQAAAAIApLnNAAAAAwBRDc0AAAACgKKBzQAAAAKAelXRAAAAAABmidEAAAACAd3B1QAAAACBPgHVAAAAAgA/kdUAAAABAhSF2QAAAAKByPHZAAAAAYNuidkAAAACAj7t2QAAAAEBt4nZAAAAA4LTxdkAAAADAegF3QAAAAIANE3dAAAAAgFUgd0AAAACASLR3QAAAAMAMxHdAAAAAYMLUd0AAAACgdPF3QAAAAGAAA3hAAAAA4EoyeEAAAADAkFB4QAAAAOADc3hAAAAA4COQeEAAAADA67B4QAAAAGCTNXlAAAAAINZ9eUAAAAAgvZJ5QAAAAADvu3lAAAAAIGHUeUAAAAAgLwV6QAAAAOAxQ3pAAAAA4LaOekAAAAAg1MZ6QAAAACBL9HpAAAAA4Foke0AAAABA0zV7QAAAAACDQHtAAAAA4M9Ue0AAAACgq2d7QAAAAGBRtXtAAAAAQNrFe0AAAAAgrN57QAAAAKBiA3xAAAAAYMpbfEAAAACgPXR8QAAAAOBAsnxAAAAAwFq9fEAAAAAgiNF8QAAAAECpB31AAAAAoFYRfUAAAAAgbiR9QAAAAGA3M31AAAAA4FVmfUAAAABgI/Z+QAAAAOChyX9AAAAAQAIagEAAAADg44yAQAAAAKCzd4FAAAAAQLSDgUAAAAAg0ouBQAAAAADav4FAAAAA4LQLgkAAAADgOROCQAAAAACBGoJAAAAAICprgkAAAABg34eDQAAAAGDUjINAAAAA4FKUg0AAAADgI/ODQAAAAABOMYRAAAAAYGRHhEAAAADgb1+EQAAAAODtc4RAAAAAYCOjhEAAAABgY6iEQAAAAODaLIVAAAAAwKNxhUAAAACAT7qFQAAAAIDzU4ZAAAAAgHhihkAAAADgDWuGQAAAAOCGQ4dAAAAAoOZbh0AAAACgnrSHQAAAAOBP0YdAAAAAoELrh0A= + hH7jX0jiZUAoFld2zuNlQNzlv3T/InFAQh3Og3wCckDcQ5zIVzR4QAUkbFciM3pA/kye+dqkfUAnLW6IpaN/QHYFT6ukaoJAk0Ul7n5ag0CUVguW/PqFQMBLypPggoZAI39piyjDh0DrdUyWLLuIQOqqD5uUy4pAflbw0YPDjECx1rWqANSNQEWCluHvy49Aotss8yvukEAGV574LWqRQLfwbfRRCpJATWtN80NOkkDOc0DHgp6TQNyTq+hvFpRATos33NhilUBYg+t/i+KVQJcNeKj5vpZAoQUsTKw+l0BIj18dI8uYQCEdI2ECA5lA0zOIb0iPmkDIplYyeY+aQBEpl/6Z65tA - + - jBMlQJ4n2j8/QAhB79eAQCSyej+/kuBAqm9AQIfWCEBWlcc/G4UqQPNVmEBNpUVA4oFvQJtUBEELO8c/B3MaQbBcuUA3h2dA7wAaQUbsakB3RIxA9mokQMv9AkEbyf4/WSm2QOohEkCtq9VAoqCMQL9iG0DbVaM/h/fbQJa5H0E65LVBCidKQNolFEH1DzdAi9+WQXfUg0HuhgFBboyaQCf+y0A+eAtB+S9cQLT8y0G+wopBt+2hP6M4ckFxG7JAY97/P5LRY0HhMOlA5+htQAWASUBcRbhAEhFrQObVakGkTcZAEOksQkGWOUG0cTxASouKQdsLb0BDr9hAHVEpQdKZfUA5ty1ABLEJQnir8EGTSmpBX++eQDQPhkBJ3Os/RK3BQSR/QECql8RBCTBYQhhg+EBsDN5A2S5RQV6PnUGXb7ZAeE3HP170nkBdbM9A2k2TQAhFQEBaH7ZAIHAjQBPVr0AI7pJBfd6sQOztuEC88RtB7OjBQBSsGEG3vMhAyFF0QOcADEExF6JAWCiGQRq9+kApmedAdnCOQBsbUEFKjZ9AM5uaQCHGxEBoafo/NPYCQYiG+0B/OoVAoRpvQGS/iUCoRq9AtNL7QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - AAAAABUkYEAAAADAL6VgQAAAAEBQx2BAAAAAAHzbYEAAAACANoNhQAAAAADNYWJAAAAAQIh8YkAAAACA+ptiQAAAAEASQ2NAAAAAQAVgZEAAAABATqRkQAAAAKBeRmVAAAAAAIM9ZkAAAADALqtmQAAAAEDA4WZAAAAAQIEnZ0AAAABAXGFnQAAAAIDUkGdAAAAAgKvkZ0AAAAAAC2hoQAAAAACJgWhAAAAAwJnraEAAAACgZQlqQAAAAMAAJ2pAAAAAoCA/akAAAACAo2BqQAAAAIAArWpAAAAAACgha0AAAABAnsprQAAAAADz6GtAAAAAwBxHbEAAAABAp2dsQAAAACD932xAAAAAIFOFbUAAAAAAv95tQAAAAEDQBW5AAAAAAKhDbkAAAABA8IBuQAAAAABXpG5AAAAAANgHb0AAAABAVE1vQAAAAAA2hW9AAAAAgE6ab0AAAAAAFd5vQAAAAAB+InBAAAAAIBgzcEAAAABA0lNwQAAAACAvg3BAAAAAAAO1cEAAAACAosJwQAAAAEA813BAAAAA4HkBcUAAAAAgOxNxQAAAAMB9QnFAAAAAoG1ScUAAAAAg7eNxQAAAAMDfI3JAAAAAYNc1ckAAAAAAvUByQAAAAICBdHJAAAAAgDWfckAAAABAycJyQAAAACClzXJAAAAAwHABc0AAAACglBFzQAAAAODLQXNAAAAAwO1Uc0AAAAAAEGVzQAAAAABtd3NAAAAAgNeNc0AAAAAg059zQAAAAACbsnNAAAAAIEwTdEAAAAAgQiR0QAAAAECNMHRAAAAAwBRFdEAAAADAPlN0QAAAACDyY3RAAAAAQHZ8dEAAAAAA5aB0QAAAAKCV2XRAAAAAwL8vdUAAAABAsTl1QAAAAMC3U3VAAAAAgO1ddUAAAAAARXR1QAAAAOAdk3VAAAAAwOygdUAAAACA+dx1QAAAACBsDnZAAAAAAHAidkAAAAAAEzJ2QAAAAID/QXZAAAAAABxQdkAAAAAgpaJ2QAAAACBmxHZAAAAAIFjPdkAAAAAAR/F2QAAAACCWAHdAAAAA4E4ed0AAAABAkjB3QAAAAKAZUndAAAAAoDlhd0AAAABgWb13QAAAACBcy3dAAAAAIEzVd0AAAABgguF3QAAAAKA/83dAAAAAQBMieEAAAAAg1DZ4QAAAACAMVnhAAAAAAENmeEAAAABgXHF4QAAAAGCQi3hAAAAA4PqaeEAAAAAgrtd4QAAAAKA68HhAAAAA4CL+eEAAAACAegt5QAAAAKA+LXlAAAAAoNs6eUAAAACgcEZ5QAAAAOBXXXlAAAAAoIxseUAAAACgRM55QAAAAKC04HlAAAAAQGgjekAAAAAgGKV7QAAAAKAa03tAAAAAIBTie0AAAABgRUp8QAAAAEDmVXxAAAAA4JaGfEAAAADgWbV8QAAAAGD/zHxAAAAA4Pv/fEAAAACg1RF9QAAAAKAZSn1AAAAAYFqUfUAAAADgUC9+QAAAAMCOg35AAAAA4O66fkAAAABAWsp+QAAAAEAb1n5AAAAAQAdgf0AAAABAO29/QAAAAKC9eX9AAAAAIBK0f0AAAACgyM5/QAAAAOBCC4BAAAAAoPkfgEAAAAAgky6AQAAAAKAINIBAAAAAYAY5gEAAAAAgt2mAQAAAAIBbcIBAAAAAgFnrgEAAAACADCKBQAAAACA9O4FAAAAAgLBcgUAAAACgg2WBQAAAAOAUbYFAAAAA4ASRgUAAAADgDtOBQAAAAKD12oFAAAAAQNnlgUAAAADgDAuCQAAAAOAQGYJAAAAAAP0ggkAAAACgICeCQAAAAODTLIJAAAAAIO80gkAAAADg+k2CQAAAAEAhhIJAAAAA4HyPgkAAAABg+JiCQAAAAMAssIJAAAAA4LG3gkAAAACgJL2CQAAAAGArw4JAAAAAQITWgkAAAACgK/OCQAAAAOAjAINAAAAAAIMLg0AAAADAYUmDQAAAAOBkVYNAAAAA4L5gg0AAAAAgy2qDQAAAAGCRgINAAAAAIO8nhEAAAADgOC2EQAAAAECyM4RAAAAAwFaihEAAAACArwGFQAAAAMDwO4VAAAAAIM+JhUAAAACgh5GFQAAAAKAUsYVAAAAAYNjBhUAAAAAAIRSGQAAAAOBtGYZAAAAAICojhkAAAACgjSuGQAAAAAB3k4ZAAAAAoF27hkAAAADgBB2HQAAAAGBIc4dAAAAAAMw9iEAAAAAAIH2IQAAAACBtmohAAAAA4HuriEA= + NrgMGZxjYkA= - + - jJMQQpuPLUBgrjdAnTw9QBMfeEBRdN5BbbjqPxEstEDHWlxAn70RQABgDUFw2SBAuXsbQFm3YkFgNgJBbqvxQLlNQkIC8cxAkFsJQDcjh0B8Lv4/gRyIQDU/cECv7NVBbuwhQf9eiEGa4xBB4txhQPAYgUBZ2BdAfC6MQlxqokEJqaI/uaqiP3v/ekDN4/RAKKHbQGMg+0EYb/NAEbKBQKUMhEHUCSxAwmYJQCMSeEBqgFZCOUieQYxdA0HpcFhAzkuKQYqw7D+J4ehAq1zJQoxeVkBBIKZC6dRpQbV3UkAEiO1A9M29QPdpJkES1jxAGXX3PzqG1kN1zepCwm3eQt4HOEEIK99BIW9YQdNl20AvdGtA88sIQGeWiUDpZZVBMvibQVjdpEHWY75ABe42QboOtkDxVMxAWzGtQPtxQ0Gy5hxBVXPZQEB260G8J49BuJH9PxCajkDByHBDRKRJQD7BH0HcWBdB2YwCQ2SIIEGfQ1RB7sWAQFylsUHOSmlD8GWQQnXt7D8Q769BMqmxQKbVakCxOAxDhtLtQIgRUEKBu/Y//3STQGSMZUDAYxtBHklHQbdQgEHXsq5DYuZpQkTDfkArJwBBRHF4QQ5KOUHiH7ZCYxKLQs4JnUGU61hCPb8WQvkvDEJv+TpBTP52QUbbhUL69yRBLCkeQWvvkD/rdqtBAK5qQDe+9kAe+wlB0FWQQYYHDELmBdo/w3cJQ4v6vEHDpdRAPXYvQiqxyECoi9VBC28BQeR86kGmg0BCdIIyREZNuUFRuEFBhEeLQaPdO0LAooA/toISQlr0FkRt9K9Cyk6aQCoBW0HfbJpA99/nQCQ3gEC4PTdB4vFuQCdEAEHeyhNCcT7yQNd4LEBPcCdBeXboQYdVYEEC2QBDhE0/QqPuoEAsSxZBcDlVQfaBIUFmK9lAZdkVQsT2OkIyaLFCXluLQm56y0MNe8xCVQkIQjQGQEGW9k1Bs/9wQXy+8kBqBItAxeiuQMbbl0AHo7ZA8lAzQgVeMEFIv0FAOr/IQL2xQEHS9VlALk+RQqUE70ChUahACOdTQVudEkEggbVCktjVQRvULUBc3jVAsMjeQABpIEH2SQlA8MkIQLjtqECtvwpBnmvVQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQE5kaEAAAACAHGJpQAAAAID/ZGtAAAAAgEhEbEAAAAAA3mlsQAAAAKAqh25AAAAAQHhLb0AAAABAdyJwQAAAAODx/HBAAAAA4DAUcUAAAABAUUJxQAAAAMBksXFAAAAAgOwickAAAACAFGFyQAAAAIAjP3NAAAAAQG5fdEAAAACAD1N1QAAAAICttHZAAAAAwE3KdkAAAAAAGlF3QAAAAIC54ndAAAAAgF0GeEAAAABAHUt4QAAAAMCC33hAAAAAACUSeUAAAAAA8pN5QAAAAIAxBXpAAAAAgIUfekAAAACA4097QAAAAAAaSHxAAAAAwHtVfEAAAACARIR8QAAAAEDSAn1AAAAAwF8rfUAAAACAgm99QAAAAIBuj35AAAAAABRof0AAAADAh3J/QAAAAEBD+H9AAAAAIDkEgEAAAABAHBqAQAAAAKB/LoBAAAAA4MukgEAAAAAg6qmAQAAAAOCa2oBAAAAAYDdZgUAAAABg5l6BQAAAAAAMg4FAAAAAYEyKgUAAAADAj7qBQAAAAEC0+oFAAAAAYP0YgkAAAADgpCOCQAAAAAA8foJAAAAAYP+bgkAAAADgSKKCQAAAAKCYqYJAAAAAoPS5gkAAAABAq7+CQAAAAOA5x4JAAAAAwLH/gkAAAACAVAeDQAAAAGCuOoNAAAAAIHORg0AAAABgF8KDQAAAAKDqeYVAAAAA4EWRhUAAAADggCqGQAAAAKBTNIZAAAAAoJJLhkAAAACAOruGQAAAAOC6xIZAAAAAIBoih0AAAAAgxjuHQAAAACA7u4dAAAAAoNNJiEAAAABguqGIQA== + KBZXds7jZUAmWGpEdaJuQJ0RHYnYgnNAaYA5p9LBc0AraWmosJN5QPjXhcaq0nlAgb1trUgEfkBArzsKzjGBQLe9NoVbmoJA - + - WsSiQFRqz0BZqZA/S1DZP3tBtkBUoU5A+hlTQHHnTUGDiDxAACsuQP7gVEFz3wBBLYWJQOOHZUDGCbNAPW3ZP+1uDUEmzdk/vPosQHpVx0CsPrE/AZU9Qe/KP0Hyv9k/MOEbQXM1OkEPLA5B2DjKP0DtyEAsZQZBbFk1QAiyPUCAvMxBPcuHQIXU0j8CQT5Bdk4AQZQYikBqqR9B9BwfQX8VD0EdNwZBx3D/PymEoEAjKxJA2qyAQCZxDEFDBLhBl8QEQbhnuEBtrHRAKk7UQPlYkUAHFQRCgf9TQXoQK0HnfSRBb/GHQrd8qUDgcGlBjawpQZeatEFsTlhBbscYQXzu0ECXUDFCObjZPwIJI0EHbb9AAmqSQMtH6kE8yuhBho4+QOX/KUCN+GtA8hCGQIzxGkA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQAekbkAAAAAA/HFwQAAAAABa33BAAAAAgHgAcUAAAADgZA9yQAAAAAC0InJAAAAAwHovckAAAADgYEZyQAAAACAmYXJAAAAAAHidc0AAAADA3Ax0QAAAAGCWMnRAAAAAQI0CdUAAAACAXT11QAAAAIAfLXZAAAAAQGGxdkAAAACA9SR3QAAAAEC2NndAAAAAgJhQd0AAAABAmMJ3QAAAAADkE3hAAAAAAL1DeEAAAADAklN4QAAAAAAckXhAAAAAABO0eEAAAACAOfZ4QAAAAABAEHlAAAAAQEWieUAAAADAeOF5QAAAAICMc3pAAAAAwJeBekAAAADASrV6QAAAAICiNntAAAAAwFlze0AAAABAjrF7QAAAAMBN33tAAAAAwHJNfEAAAACAW9J8QAAAAMCHSX5AAAAAwDxOf0AAAABA9Vh/QAAAAMBMZX9AAAAAQPnrf0AAAADgUhaAQAAAAADRMoBAAAAA4DBagEAAAABg3muAQAAAAOA1iIBAAAAAQJSQgEAAAACgA/uAQAAAAGCbF4FAAAAAIN9IgUAAAABgO2iBQAAAAEAMeYFAAAAAIO6BgUAAAAAgrMuBQAAAAKAs4YFAAAAAoPbngUAAAADAtROCQAAAAOAeY4JAAAAAgLlqgkAAAABgEYiCQAAAAIBzkIJAAAAAAFGggkAAAAAgi6aCQAAAAEB3s4JAAAAAQM3HgkAAAABgWeqCQAAAAOBc74JAAAAAwHCQhEAAAACAYhOFQAAAAOAx2YVAAAAAAMNrhkAAAADgB3OGQAAAAGB4uoZAAAAAgLXihkAAAAAgacuHQAAAAOAjEYhAAAAAINN2iEA= + KBZXds7jZUD1hHOUyKJnQEIdzoN8AnJAO0xzspUCc0Bp3hX7KhN6QMPSZACHk3tA8m2zGAWCgEDIzy657BGBQOlMM0c8GoRAv66u5yOqhEDgK7N1c7KHQN3/atJ7OohA1wozpKpKi0DU3uoAs9KLQGXja5n0io5A1zkhzlbTjkD6BWVHkCmQQEEaFEKmDZFAZ4xQ/sY1kUDno0cTHfqSQPMweVDsWZNA/biIFEMWlEBvILnnByaVQHmoyKte4pVAhDX66C1ClkAETfH9gwaYQCu/LbqkLphActPctLoSmUCAPDGVn9KZQLnni6/Q9plAAmrMe/FSm0AAVCiq9ZabQH5ZDBMNH51AfENoQRFjnUANgmoIOeeeQPgyqNgsL59AxTjVT6pZoEA6EfQ3pH2gQF5SFJ60K6FA6jC+HsBboUAvg9LH0j2iQA8pp+3VXaJAaLTZ9Pgjo0BUe7uW6D+jQPP1Ql4R7qNA - + - V1LCQBFLT0AXVy5BkgTAQIsd/D8qrl1AvUuDQGUYuUDNvBNA9n1cQJ4CUEBqNfs/Gu0HQLy1t0AtrRNAbRcJQBj4xEBfCXZAi6YZQS2Aq0CH9cc/MssOQqk090AujFBBCuF8QTj5h0BYaQRCNZ55Qc5cG0DL6GpA5F6FQC9FGkDu3W9AxmaIQMcJikC7fJpByjgGQdKmAEHffVBAilcFQKMWFkLZ3/8/O6eMQVOhBEGJTNBAIUOuQApZxEAczvJAOhhaQJyfM0BSvFBBnsZuQMChsUENfOw/dwteQbIB6UBL/f9BInLmQPTsuT89uwJCptvHQPXtqkERzzpAhx93QYRIuEBoDy5AZH4uQUB7kUAphvBAXzGGQLDtyz+NL8FAGMxUQgDtFkHIXgVBDadbQGeKEEBAFbBA+yR4QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQGR3ZEAAAABAIWloQAAAAIBjyGhAAAAAAOglbEAAAACANAVuQAAAACBKaG9AAAAAwColcEAAAAAAADNwQAAAAEBH1HBAAAAAACRDcUAAAABgw4NyQAAAAECzbnNAAAAAQPICdkAAAABA4mN2QAAAAIB+RXdAAAAAQERzd0AAAADA+793QAAAAEAAkXhAAAAAgCRVeUAAAACA1nR5QAAAAIDxtHlAAAAAwAoSekAAAAAApSN6QAAAAMDUpnpAAAAAAPPiekAAAAAAFA57QAAAAECzYntAAAAAwJuFe0AAAADAvrB7QAAAAADgr3xAAAAAwMnsfEAAAADAGkZ9QAAAAMCAhX1AAAAAQEGtfUAAAAAAd+R9QAAAAIAD8X1AAAAAAIRmfkAAAADAOq5+QAAAAMB2xH5AAAAAwGMtf0AAAACAL4h/QAAAAMAZ0X9AAAAAwFnif0AAAACgySmAQAAAAIAROYBAAAAA4BxJgEAAAABAX1aAQAAAAGCkdYBAAAAA4M+qgUAAAADgzfuBQAAAAGAYSoJAAAAAoFligkAAAACA0J6CQAAAAEBihoNAAAAAwKF6hEAAAACg34OFQAAAAGBY3IZAAAAAAKtEiEAAAAAAisWIQA== + KBZXds7jZUBoiwPJSGNvQNvlv3T/InRAeyAWnrzieECe7F1IpVN8QJhx0ogUc3xAk2QPVPZBgUBOJR3OfrKBQCRpkOw3+oNAbHbZuNZChUC1bRGFebKGQNCjo9ViW4hAtZz/riU7ikCK9oPN2luMQPlf+FWeg45Aj+uTBBkykEBFsjz3752QQA8Dixlv9pFAjjR9wxD6kUDXtr2PMVaTQIvyyrCKwpNAIDn+W1KylEBpuz4ocw6WQHB2L4rLTpZAhYtwi/Fql0ALHbt7rzKYQAF7sCINN5lAaEard+symkCBkqc3Y/uaQLHI60MMj5tAyKZWMnnfm0D7uL3hN5OdQBKXKNCk451AQs1s3E13nkBbGWmcxT+fQGHysfjRHaBAXaEszACgoEAf6lHE3wOhQKp08sTykaFALtLq9R6yoUBSEwtcL2CiQJy2pDET2KJAdlQrwj8Oo0CalUsoULyjQFquRP0gvqNAvtZrjmBqpEAaOsAHTKCkQOIXjPRwGKVAPzKp1mGipUCzSEoejyqmQO5GodR/oqZAc9TFKLoMp0BH0tPbominQJcV5o7KuqdAjuaC1rhMqEC7Vgb12mioQK3h7/j1KqlATnL+4OMuqUDRa0f2AJ2pQCYzcpv4NKpAKvd5/SPDqkB/vqSiG1urQE44mmM0catA - + - 8ZdlQIYn/z9Yq+pAoIvJQXSFJEGhoklAFYR/P/QZLkB6su9AMTI3QGjxxkBrFfRAbOAtQa3eWUBgP0pBJI0uQd3TdECROLU/h8zYQB60oj9/cxtAD4iBQC4y3EBsmv5AAy41QGLUW0GPtX5AAx0iQGSaCECHtvJARDfHP4KT1z8+ny1BvWEdQWvLbkCXRcRANAdOQRo9UUBF8vhAzVmjP/5vlkC4kwdCZvGUQeTkqkFPg2FA57UYQRYlQ0FX+xxCeBoJQGnSD0FxjwpBOi1lQGD+CECnXMc/55mcQHMwl0FWB8ZBQ0XgQE3iY0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAFLUVkAAAAAAq0JZQAAAAAD8eFlAAAAAQNlCWkAAAABASsVaQAAAAIAcCltAAAAAILaDW0AAAADA+URcQAAAAKBojVxAAAAAIOf/XEAAAAAgftleQAAAAIAukF9AAAAAYGsEYEAAAABgjyJgQAAAAMBWQmBAAAAAYGiHYEAAAAAAF+lgQAAAAEANaGFAAAAAABKNYUAAAABABqRhQAAAAMAKw2FAAAAAADEkYkAAAABgB2BiQAAAAEC/fGJAAAAAQGKZYkAAAABACeBiQAAAAGDRSmNAAAAAwP5oY0AAAAAAkYVjQAAAAADEvGNAAAAAwCHhY0AAAABAigZkQAAAAIBOa2RAAAAA4FOnZEAAAADA8PRkQAAAAICrIWVAAAAA4JJiZUAAAADAPpxlQAAAAEDhvGVAAAAAQOriZUAAAACAxv1lQAAAAIBeZmZAAAAAoJKqZkAAAAAA3cBmQAAAAMBz42ZAAAAAACYSZ0AAAADACilnQAAAAMDbSmdAAAAAACxiZ0AAAADgE4RnQAAAACA0pGdAAAAAIIzGZ0AAAACAOe1nQAAAAECCBmhAAAAAYPwbaEAAAADApGJoQAAAAEAshmhAAAAAgIvGaEAAAAAgowBpQAAAAIBAI2lAAAAAgB1kaUAAAADAy4ZpQAAAAMArm2lAAAAAwLO8aUAAAACAQOdpQAAAAACfCGpAAAAAgGgfakAAAADAeD9qQAAAAED9XWpAAAAAACaCakAAAACAGqhqQAAAAMAY72pAAAAAwGYSa0AAAAAAfUJrQAAAAAB4YmtAAAAAABGaa0AAAABA0MVrQAAAAMAt5mtAAAAAgDkHbEAAAAAAFB5sQAAAAMC2g2xAAAAAwA2pbEAAAADARMhsQAAAAIDT5mxAAAAAALsjbUAAAADAkERtQAAAAECwZm1AAAAAgO/DbUAAAABAcfBtQAAAAECDCG5AAAAAADAjbkAAAACAqsZuQAAAAACv6G5AAAAAAED+bkAAAACAqyRvQAAAAACnP29AAAAAgMNjb0AAAABA3oJvQAAAAAACzW9AAAAAgNPmb0AAAADAACNwQAAAAKCLMnBAAAAAwFdRcEAAAABAJIBwQAAAAMCXj3BAAAAAgOSgcEAAAAAA5rBwQAAAAEDfw3BAAAAA4IvQcEAAAABAXuFwQAAAAEBmE3FAAAAAwEkvcUAAAACA8z9xQAAAAEBJV3FAAAAA4BxlcUAAAACA6nJxQAAAAOAkh3FAAAAAQJ2fcUAAAADAZ7JxQAAAAECl0XFAAAAAIAt0c0AAAABAXJNzQAAAAMBRonNAAAAAIP4QdEAAAABAOyN0QAAAAEDngnRAAAAAQCyNdEAAAAAAzaN0QAAAACBw4nRAAAAAwEAZdUAAAACAIjR1QAAAAODfRHVAAAAA4ItodUAAAAAAunN1QAAAAEBVnHVAAAAAgJC9dUAAAADA+811QAAAAMBC5nVAAAAA4LU0dkAAAACAwUJ2QAAAACDibXZAAAAAYFd/dkAAAACgZYp2QAAAAKBGpHZAAAAAIN++dkAAAADgp812QAAAACAI3nZAAAAA4LQJd0AAAACgTCB3QAAAAOAwQXdAAAAA4E5td0AAAABgc493QAAAAKDen3dAAAAAoNuqd0AAAADgvLR3QAAAAGATxHdAAAAAgFv8d0AAAABA7Qh4QAAAAOA2RnhAAAAAYOZ3eEAAAAAATIh4QAAAAAA0mnhAAAAAgGyzeEAAAACgU+B4QAAAAOCI8HhAAAAAwPwIeUAAAABAnBx5QAAAAGBBLHlAAAAAABtTeUAAAACgi4J5QAAAAGDllXlAAAAAoKykeUAAAABg/9F5QAAAAOCR43lAAAAAQJrweUAAAABgkDR6QAAAACCBXXpAAAAAIGzyekAAAADARjJ7QAAAAKCOZXtAAAAAQHs2fEAAAADA5ON8QAAAAGBvMX1AAAAAINpjfUAAAADAMZR9QAAAACDe8X1AAAAA4ManfkAAAADgtrh+QAAAAKBJFH9AAAAAYPglf0AAAADAs8d/QAAAAIB8E4BAAAAAICk0gEAAAACgqEuAQAAAAGANc4BAAAAAoB17gEAAAAAA97KAQAAAAKCt8YBAAAAAwKFygUAAAABAbTGCQAAAAOC3OYJAAAAAgPOJgkAAAAAAX7OCQAAAAMCj/IJAAAAAAD4Vg0AAAABgloqDQAAAAKBFlYNAAAAAwNCog0AAAACAQuGDQAAAAKBYLIRAAAAAQGxYhEAAAAAg5WmEQAAAAMBYeoRAAAAAgEn6hEAAAAAA2ASFQAAAAOA5PYVAAAAAoLSKhUAAAAAg55GFQAAAAGB5wYZA + KBZXds7jZUDOIQhxcmNtQNzlv3T/InFA525gjBHDdUBkbLHC8LN5QIG9ba1IRH1ADjCoA8DTfUAkDIFzsLqBQBArUBWvyoNAtRACDPJyhEDXVvYkG9OGQOIWp7FTm4dARkRxzt+zikA6hMBBp2uLQNdI8mYhbI1AokueKjsmkEBPOky7RjqQQIZhcTJxqpFA00MKRa6qkkDP47H+kQaTQIH6Fg3YkpRAhVpvU/T2lECYfenfCCeWQGlwQlsqe5ZA4f8prCmDl0DteQDlkeuYQJMWj7pvD5lA2io+tYXzmUA3atKCve+aQHyMugjCF5xAt4HJlxO0nEAuox8XCKSdQAAECmQ0EJ5A - + - MkWcQDkmxz+xKJZAAJViQDRyJEByFtJAVVMOQpB3BkH8mtk/l9+iP/Wa8D85kxtAnNQLQTy+C0JwIRlCop2hQOj2AEEADlRA/27aP+N4JECsuAhCn15lQMWH6kFo2axA+KxSQFyc/z+UCQlAL46DQHVFoUDWD59A7A5+QPBsf0AF59tAbejaQTBsNUCvWDNA0jmhQM/5oT/EhjVAUTYSQiNR1kAzKDFB9JWWPxppIEHVyBRBi38PQfTkgUEJUqFBCW6RQsByNkEJ2OFAjJoFQJBlBkFswPg/PYEBQaRKjkCZJ2JA84HaP/ngkUA00tJAN0obQMtGLUGWxepAE3urQA5wpkHS04NBQxMQQJnoEkHkgBdBAWfNQY8yP0FxoTxAlTGBQW22k0AvhnlBTmSXQaeddkF1iJ5A7nUGQVOev0DUMylB4HAdQXtaGEKMOGVBjEiIQNTpqUBNgAJBThG1P3oUUEFexEBB8i5TQHj52T9ijxhBMUvbQe1yBEIPZtpC1zxmQowxHULh1opBOuc0Qc+GvUKkKYVB/hIHQP6wkEMok2ZC1xvPQdX0gEJ/K1NBIOlFQSCtA0IUXvJAX96iQuTXfkLt0ltBHYCZQs+uJ0FAYRtCf4eqQZaGSUHSosRBbOTkQB+hLUC4lSdB4GUqQue7sUDuZQFB139WQXMyX0G4LwBAWapwQavcIEH9YQ9BJ+bRQNRhtkBUDO1ByWORQUteT0CSX4lBasiVQOZ2SEH6Rq1AVyE9QV5uIUG4aNRAIvUYQ8HGh0OoGR5BGTytQIHGJEAXhpJBpTK1QMm930BG6rRBSbh6QX//KkBtbqFAQcCMQI/6jkGe/HdAXMY/QLc8W0J8ID1BfmnZQTjQAUF9rxBCm8ebQmGVKEOG1NxBAZibQgG2oEBNYLVEGdfeQXjXDEPF9vZBObg1QXZKRkDn7l9BHpx4QKOCZUDbc1xALc7tP7XsK0B6Aw5BpGI9QLl0/kAIB61BusKxQaa9YEHG6MFBqpISQWo6AkLAwoxBn8+IQJxIRkD1LbxDOquQQo7vw0AucJZBiIIKQDGqQEDvcSdBgpPoPyISUkBtUR1BBimSQIigJkEiQMpAIqf4QHqLDEG7Ysc/79SfQGUZtj+O3CxBe9xAQkrMpUBaCdVAyDVWQTFnfEEo/zJB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIN3cZUAAAAAAHwhmQAAAAOARJmZAAAAAoJdlaEAAAAAAAcNpQAAAAMD5O2pAAAAAgDKhakAAAABAailrQAAAAIBGpWtAAAAAgIrDa0AAAABAMhlsQAAAAGA1YmxAAAAAQDuEbEAAAAAAFsNsQAAAAGBW32xAAAAAYIVAbUAAAADAo/xtQAAAAMD9aG5AAAAAQKCnb0AAAACA4+VvQAAAAMBaYnBAAAAAgE6gcEAAAAAAGsBwQAAAAGBJAnFAAAAAwCMTckAAAACAeylyQAAAAIBLQXJAAAAAAC1eckAAAAAAL4ByQAAAAMCIdHNAAAAAAKVFdEAAAAAAkcV0QAAAAEC99XRAAAAAwN0FdUAAAADABmN1QAAAAIA1k3VAAAAAgL3BdUAAAADAr9t1QAAAAMALQnZAAAAAAI1UdkAAAABAzmN2QAAAAMBGsHZAAAAAwNfAdkAAAAAAawF3QAAAAAA0MHdAAAAAwChld0AAAACAcpF3QAAAAICfEHhAAAAAwN8geEAAAADAK0R4QAAAAIDUVnhAAAAAgP6XeEAAAABAZbZ4QAAAAECsxnhAAAAAgCzReEAAAAAAnQx5QAAAAIAvGHlAAAAAQEBQeUAAAACAhF15QAAAAMBgpnpAAAAAQJvTekAAAADA41Z7QAAAAMB4n3tAAAAAAFHXe0AAAABABy58QAAAAID6enxAAAAAgLqXfEAAAABAn+B8QAAAAEAk73xAAAAAwMAdfUAAAADAakZ9QAAAAEBFbX1AAAAAwH+VfUAAAADAB699QAAAAACj631AAAAAwHwlfkAAAACApk5+QAAAAACNY35AAAAAgB1yfkAAAADAIYZ+QAAAAICGB39AAAAAwNlUf0AAAADAc2J/QAAAAADxoX9AAAAAAOL1f0AAAAAACyKAQAAAAABIR4BAAAAAoJRagEAAAADgAnSAQAAAAAB3ioBAAAAAQEebgEAAAACgAKKAQAAAAIDRr4BAAAAAQFW9gEAAAAAgAN2AQAAAAAAD5IBAAAAAQGb5gEAAAABgxAGBQAAAAOC2B4FAAAAAICsrgUAAAABgVUGBQAAAAEAdToFAAAAA4CNTgUAAAADgFGiBQAAAAKDkiIFAAAAA4LOXgUAAAADg/6mBQAAAAKD22oFAAAAA4HDigUAAAADgDTqDQAAAAKCxc4NAAAAAID3Ig0AAAABg/PuDQAAAAKDXyIRAAAAAYJzmhEAAAADgChOFQAAAACDrQoVAAAAA4AJchUAAAABAUGGFQAAAACB3o4VAAAAAYKythUAAAABg+dqFQAAAAGDI44VAAAAAYJzqhUAAAADgevGFQAAAAICsa4ZAAAAAoBt0hkAAAABgbLyGQAAAACDpzIZAAAAAwJmBh0AAAABgF4qHQAAAAGBjoIdAAAAAYIxXiEAAAACAmGWIQAAAAAAffYhAAAAAwKOZiEAAAAAg3KKIQAAAAKCF64hAAAAA4B3xiEA= + U6vsr5tiY0AoFld2zuNlQI5NZYVLg2pA1L5fgP7EbkBW/v7hfVJzQKaBqBUvg3ZAeAcBEwHDeEDD0mQAhxN6QOEjIeveo31AP2KVTBn0fkDwwH6fm1qCQNoDK56EeoNA8O9syUfjhUAexyNF/cKHQB32EW+pC4lAS83I6l7rikAdJQCZVZSMQHjTbZDAE45A6ztwyGZKkEA8AS5dNs6QQDS+sJSHppFAyymMUmKWkkBLQYNnuDqTQBI+O014epNAy1h6fA7/lECOLXvkk0aVQBTbukgvW5ZA16+7sLSilkCQyvrfSieYQFfHssUKZ5hA196p2mALmUBuSoWYO/uZQGYHCNCM05pAt8zFZFxXm0DmHv/k4pecQBT2tWCYV51A/aHRtxMsnkCUDa117hufQBQlpIpEwJ9AVcg/pA9YoEBbQxBvQPKgQBVUu646OqFACVgIbV7yoUDV3za5ZRyiQPlpjrZwjqJAYuM6dIG4okAd9OWzewCjQIYkW9qRZqNAZAiVrpHko0B4r0TerCikQO+SNa+kcqRAnDmc27eapECOxIXf0lylQA== - + - QTpjQBYgtT/NCZA/xS+0QA5iQEDyH09A9kmoQBCov0ABjdtASHgqQIuGkUAf7htAQZ1qQI26gEDTrDdAY6PsP1NEYkDG77FAnjZ2QLYEdkFX6AhBGtkmQotv0EBCeTpBQB6FQrS/kUClzNZA44VjQf44MUF9t5pAeYUJQRNlG0DPaSFAVJ3EQBILxEFA0/9AJXKDQHe0EkG8Lsc/1qmUQEP3I0Bh9S1AgPddQCR7W0H2z5xA0WdGQIAny0DAn5BC2FpTQfQoo0IvoNlApJiFQMXFbECFgSZAc+mAQMNmYELRVSlAcDfGQBQ9C0HAWNxAoEYdQY5tckGy7W5B1b7WQHJ78kAJov9A/hhtQdKLYUCQk9RBZZEQQdGuqkFZxAdBIydvQHepgEAKgN1AmHybQKEHsUCDHTFCSxR9QT2po0DOsD5BmKlhQifs1kDbN3RAk7jkQJYYhkAOAb1Bvg9SQJo+d0FwmqJBY5SdQl/KskBPVx5B7nuDQfnR9kC4x8xAXT59QbappUEr5YdAz46/QHth1UATgpxAG7qYQEVpO0FeZc5BLD6sQcjtokCuNCBC++JyQKYys0DTXL9AL0wVQb598EAFaiBBrKGAQJcLiECaDrtAhr0sQN8vUUFwP1xAr7UoQSa8qkHOdYNB75rvP69FM0EZm7lCf6YnQnt9iEF1U0BA4tcrQS/6uz+VY5pAr7EJQeZD10Bky/lAUAOtQPrYlUDD/SlBGtiJQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoDoCY0AAAAAAXMdjQAAAAMDd52NAAAAAoNWgZUAAAABAZmNoQAAAACDqKmlAAAAA4KUDakAAAABAPF5qQAAAAEArxWpAAAAAQLjjakAAAADAdCVrQAAAAIDhB2xAAAAAwMLfbEAAAAAgkeVtQAAAAMCJQ25AAAAAwL/mbkAAAAAAhCRvQAAAAMCio29AAAAAIMUxcEAAAADgcqBwQAAAAGCryXBAAAAAQHtlcUAAAACACqNxQAAAAODasXFAAAAAADZDckAAAADA02FyQAAAAICXcHJAAAAAoDOjckAAAACA7vJyQAAAAIAQRXNAAAAAAJ9Xc0AAAABAkXJzQAAAAKDluHNAAAAAgPXOc0AAAAAAo+tzQAAAAIA5MnRAAAAAIFtTdEAAAADAtH90QAAAAICz0nRAAAAA4OrydEAAAADgbRV1QAAAAAD3VnVAAAAAwMuEdUAAAACAG8J1QAAAAIAsz3VAAAAAwIPkdUAAAAAA2wV2QAAAAOARMXZAAAAAYKVRdkAAAADAhmB2QAAAAIBoinZAAAAAgH+1dkAAAAAgg9N2QAAAAMAe8XZAAAAAwP0td0AAAAAgFFZ3QAAAAECWeHdAAAAAoLeSd0AAAADArrd3QAAAAOCk73dAAAAAII8yeEAAAADA20N4QAAAAKAnUXhAAAAAoCBgeEAAAADgWnN4QAAAAKDilnhAAAAAoGmheEAAAAAAwbN4QAAAAKDgwnhAAAAAwGMNeUAAAACgqx95QAAAACD/PHlAAAAAoPdbeUAAAACg4mV5QAAAAGBbgnlAAAAA4CiweUAAAACAa715QAAAAKAp0XlAAAAAALDpeUAAAAAgIQR6QAAAAACKKnpAAAAAoKg0ekAAAAAAVkB6QAAAAOAGVXpAAAAAwFRoekAAAABg+Hx6QAAAAKC9mHpAAAAA4FepekAAAABgMt16QAAAACD+/HpAAAAAYPgdfUAAAAAgu0J9QAAAAMBGin1AAAAAQESvfUAAAABAAPN9QAAAAEDvIoBAAAAAQJuRgEAAAACgZ7OAQAAAAKCFw4BAAAAAQI/SgEAAAADg2tqAQAAAAMDn8oBAAAAAgHc2gUAAAADg8JKBQAAAAECtLoJAAAAA4HOLgkAAAACAPCSDQAAAAKD+VoNAAAAAgL7Ag0AAAACghhKEQAAAAODupYRAAAAA4FYhhUAAAABAMm+FQAAAAOABdIVAAAAAwAqxhUAAAACAkryFQAAAAACV+oVAAAAAoG5qhkA= + eg5Y0/EhYkA2uAwZnGNiQEMdzoN8QnFABGJAIxFCckCZcdKIFLN1QMu81Fwpc3hAmc+u3GzEfECqIWNVDYKAQF1s2AZ4GoFA7JQ2/KPigkA7JuTtTjqDQLPA3AsQ64VAn1OuCttShkBAPAaI0uuJQCzP14adU4pApGnQpF4EjUDz+n2WCVyNQIIj3Is1JI9ANW5RPaC8j0AKlC6SO+6QQL0YJXKMApJAiqslp5GykkBvL4qA0o6TQKDAZqi3zpNA6rA4RuPSlUAhRu+OGNuVQGrIL1s5N5dA - + - bjymP/ajKkBfMLU/EQ2WQOaY7D80n85Am42LQXQL/EBuuFtAvikWQRrE7D8oV7s/FOf+QKFTgkEZI5ZAwo4RQJV8JED+jLZAbCSIQGqtCEBVVKhAtlxcQB39/j/EtYxAC+hXQAXdYkAHYg5A/MzHP/uCz0CB1+pAm2nsP70l8D+0XINBBaDsP0HKlUD71NZA5MIRQFQmdEBAKMdA+mVeQVqWoj/62W5AVMTZPzCnCEAKM2xBJ6oIQNvHnUGjRLZALFcCQXqaYUC8L7NAY+fYQJF6d0FuYT9B4VjlQEjb9UA76pVAberrQGB3xECS3e5APQLDQIZWGUAGDhdBQjVSQMaOkUFIUHBAoFJFQZBqEEH8lKhBreHsP16skkGWsWpBLuhlQKV7F0BkmYBAmKjsP3TryEHYJoZBfGnDQa064kCeQxZB4JxuQcJBb0FrBqFAs0r3QHHrDUGnotZAmbzjQahVwkBnk4VBAs+3QZxY/T+qCzdAQCwhQK9mdEHfr4NAlA6DQA36bkAxhQJBxMavQMAhk0BwDn5AcTAMQducV0DMvYFBOGCqQO4DC0Gk7tJBqZo4Qf7fiUBm8rFAqKwrQNQp0kBcLzhBDNmfQFxveEAsGW9DPoDYQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoE5IakAAAADA/MJvQAAAAMA2FnJAAAAAAO4kckAAAADAIgx0QAAAAADfRnhAAAAAgIXBeEAAAACA21J5QAAAAEDscXpAAAAAQISfe0AAAAAAdrd8QAAAAADb3nxAAAAAQGLQfUAAAABAVg9+QAAAAIBqh35AAAAAgE8Of0AAAAAAw2p/QAAAAMAcOoBAAAAAIFGsgEAAAADgg7SAQAAAAKA2vIBAAAAAoBICgUAAAACg8kSBQAAAAOBbSoFAAAAAIBmZgUAAAADgb6KBQAAAAGB204FAAAAAQIrYgUAAAADAZf+BQAAAAOA2RYJAAAAAAOxpgkAAAADgT4CCQAAAAGDEiYJAAAAAoP2OgkAAAACgILqCQAAAACDLCYNAAAAAoJApg0AAAACgdUKDQAAAACBdS4NAAAAAICFyg0AAAAAg5H+DQAAAAKDju4NAAAAA4OvTg0AAAABgJtuDQAAAAMD3N4RAAAAAAJdqhEAAAAAgQ8GEQAAAACBy9IRAAAAAwH75hEAAAADA0rOGQAAAAOA434dAAAAA4L/6h0AAAABgFHOIQAAAAMAvfIhAAAAAIAqNiEA= + 4qRcexsiYEAoFld2zuNlQOJgFSPMRG5AFOkHjz8DckAxOsR5l5N1QA== - + - yecIQD1j5kAD3q5AeOzwQLv/iUAoZwhBtCwtQAuWZUH2ihxBOwZ/QBhDKkDPwYBAhWmDQGa2v0AGPYtBybgSQUMOQkCOWPlAJI0UQX1GFkFHsiRAiAsiQZLW2j+ATQ9Alu6hP2KNJEBM7ElADJb6P3a2ZUCQJMNBJZ0kQKeZwj9UTe5BFx0eQfgloUAlzOtAmty/QAYMEkDOgRtAH4KcQCw8b0CEqBNAwVlRQV51oj8kBMpA9i1bQAUZNkBv9iNB8tAKQV2R8kDd74lA03pnQZszPEDVVxdB9EwXQA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwKIOXEAAAADALk5dQAAAAADeAl9AAAAAwKr9X0AAAAAA+SRgQAAAACABRGBAAAAAgMdnYEAAAABAuKlgQAAAAICbfWFAAAAAoBUDYkAAAADAUSBiQAAAAKD/aWJAAAAAYE7FYkAAAADAj19jQAAAAGACoWNAAAAAYMTDY0AAAABgO+djQAAAACBEaGRAAAAAwKGmZEAAAACAljBlQAAAAEDtomVAAAAA4ErjZUAAAABAjyZmQAAAAECxP2dAAAAAgFpvZ0AAAAAAOIpnQAAAACB2nmdAAAAAAPNgaEAAAAAAt3xoQAAAACAhpWhAAAAAQIPEaEAAAADACxJpQAAAAEBJJWlAAAAAgCikaUAAAAAAkgJqQAAAAABKHmpAAAAAAE1GakAAAAAAmQJrQAAAAEAJR2tAAAAAgEdma0AAAABgLoNrQAAAAEDbn2tAAAAAQCF6bEAAAADAcuNtQAAAAICxQm5AAAAAQOypbkAAAAAAuOduQAAAAMD/Lm9AAAAAgH6jb0AAAABAwb1vQAAAAADa5G9AAAAAQF0OcEAAAADAfVxwQAAAACC2aHBAAAAAoD1zcEAAAAAANI9wQAAAAIA0onBAAAAA4JW0cEAAAADgu95wQAAAAIBJ83BAAAAAgA81cUAAAACA3kRxQAAAAGCydHFAAAAAgAqgcUAAAAAAu6txQAAAAMCz43FAAAAAQNvwcUAAAAAAfwNyQAAAAOAQDnJAAAAAAJksckAAAABAhEtyQAAAAACjg3JAAAAAwMGjckAAAACg+v5yQAAAAEAvIXNAAAAAgHEzc0AAAABAGFFzQAAAAMD2Y3NAAAAAwJ9+c0AAAACg4ZlzQAAAAOBh3HNAAAAAAG7wc0AAAACAuxh0QAAAAABMJ3RAAAAAAOxAdEAAAABgG2B0QAAAAGAtcXRAAAAAAD2QdEAAAABA5p10QAAAACARwXRAAAAAwLLOdEAAAADAYOx0QAAAAECJP3VAAAAAIIlVdUAAAABAQYh1QAAAACCpmXVAAAAAAISzdUAAAADAruB1QAAAAEB283VAAAAAwD4WdkAAAACA7TN2QAAAAOC/c3ZAAAAAYPyndkAAAADgebN3QAAAAICNIXhAAAAAIETAeEAAAACgDPd4QAAAACBTFXlAAAAAgNUjekAAAADgEyJ7QAAAAMC1tHtAAAAAYB38e0AAAADAQzd9QAAAAOD0Yn1AAAAA4CqDfUAAAADA8o19QAAAAMAtqX1AAAAAoIEAf0AAAABgQ2d/QAAAAKDL0n9AAAAAQF79f0AAAADgp3+AQAAAAADumYFAAAAAQFyigUAAAAAgvtqBQAAAAGCZMoJAAAAAoFhWgkAAAAAgzXiCQAAAACAEaoNAAAAAwPiIg0AAAADgkd2DQAAAAICMHIRAAAAA4DNphEAAAAAgZ5OEQAAAAGBM44RAAAAAYJUThkA= + KBZXds7jZUCEfuNfSGJnQBTpB48/A3JAykXjfRVCdEBl6RUuZXN4QIM60hi9A3xAPuujbQVDfECfJMDgLqqBQNT9DMg1CoJAn1OuCtsyhUDULPvx4ZKFQJ+CnDSHu4hA1FvpG44biUCfsYpeM0SMQNSK10U6pIxA6tziN3MWkEAZSRdNRSaQQGBdxkdbCpFARwbTM68WkkB03YmvZKaSQOlnT4frOpRA9PSAxLpqlEAwfP6BAR+VQA== - + - Fs9uQPGrSUChIipArg0YQZoBKEGw+SBA4d02QcxZE0LSgP8/Wd4kQI7fxz/fbRZBk72KQKfEyUDzZytBg0buQIKL8ECjAIlAduqHQMojRUHgt2pCEEKkQqj1aEHM65NAJ83sP6GGdEEUWlBBrsAXQeaIQEDp0RNAqUbaQPtulEFDFoFCf+sQQPEwE0ExsElAQywpQebyyj/LMFxA4k+QP8KA8kApNeZAaFz/P/jywUBEiB5BKJBAQfA5JUAvPLZAZ/5PQDJVpUDSFFNAkuC5QdMLOkEuaVhANTuoQU5QLEEXxi1B0JHaP1qVMkHrhuw/p/TIQJ8mXUB5W0VBdSK3QdNm6UDHatBClLpiQLyjoj8bSDRA0Po3Qa+Mv0B9hvhAoNjsP1Ip4EHJhghCgcYrQA2kIkDgF3tB0hfIP3Z8u0AxMOBAQ4hlQMfuiEF6BelAykGsQDx7Y0Ke5dpCvweKQBgDa0BhBpE/togeQT3CLkHrXtk/MgdvQMaYIkGw3DZBuLLWQCIWl0EswjBDGuAWQSCoAEE6HRRBaachQf2UakDdwdhAbvZuQItVKUF09Z5AOlJvQEigiEEBMXRAC6RaQTgd/z8IB+VAEwxIQWBr90AUqu0/kanNQAi1ukDFAZNAf4HaP32xpkHHe6M/RhL6Qcids0PeeaM/GSnsP0pti0Ge61pAZvKjQE7fYkGylSRBdRh4QPjjrkGPZOZBv0fKQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQPMKYUAAAADgL8dhQAAAAGDrR2NAAAAAgLe+Y0AAAACgWOdjQAAAAIDHh2RAAAAAAP3/ZUAAAAAAISVmQAAAAIDNu2ZAAAAAAKsCZ0AAAADgKyVnQAAAAACzYGdAAAAAgBmKZ0AAAADAyqZoQAAAAICd32lAAAAAAJ0dakAAAAAgvgBrQAAAAOAZpWtAAAAAgFnDa0AAAADApANsQAAAAECq22xAAAAAwGcubUAAAADAmQpuQAAAAAClQm5AAAAAQHvpbkAAAABAgGhvQAAAAKDHEHBAAAAAAFsicEAAAACgjTJwQAAAAIAbRHBAAAAA4JZgcEAAAACAg6NwQAAAAEAGsXBAAAAAwK3ScEAAAAAAhu9wQAAAAEAuQ3FAAAAAwN5wcUAAAADA8qdxQAAAAEAG5HFAAAAAAGb0cUAAAABgjBJyQAAAAMAsJHJAAAAAYA4xckAAAADAfkpyQAAAACCMwXJAAAAAYOHOckAAAABAFhRzQAAAAGDVIXNAAAAAwJMwc0AAAACAd39zQAAAAADgj3NAAAAAYDC0c0AAAAAA+9BzQAAAAMCY43NAAAAAoNfxc0AAAAAg4QB0QAAAAEDaM3RAAAAAAGHedEAAAACAITV1QAAAAOArTnVAAAAAoDVcdUAAAADg23J1QAAAACBtgXVAAAAAQFqYdUAAAABgPeV1QAAAAICh8HVAAAAAgM4CdkAAAABAQBB2QAAAAABBNXZAAAAAoKpvdkAAAADAKop2QAAAAMDFonZAAAAA4HW2dkAAAAAgYcN2QAAAAACl03ZAAAAAIOj3dkAAAADACgN3QAAAAAANIXdAAAAAIAhGd0AAAAAA1FJ3QAAAAGBTcndAAAAAwB6Sd0AAAACg/rB3QAAAAEBbwXdAAAAAYCrPd0AAAACgw+J3QAAAAOArEnhAAAAAgLMueEAAAADg5094QAAAAGA+cnhAAAAA4PyieEAAAAAA3rJ4QAAAACAlxXhAAAAA4NHPeEAAAACAPuN4QAAAAGC09XhAAAAAYG8OeUAAAAAABiJ5QAAAAEBfSHlAAAAA4MRSeUAAAACAV2J5QAAAAIBqnnlAAAAAwNHGeUAAAADAm9R5QAAAAABO4nlAAAAAgHYNekAAAACgwzJ6QAAAAOCTRHpAAAAAIMxWekAAAACg+2t6QAAAACByfXpAAAAAAO+WekAAAACgS6F6QAAAAEBH1HpAAAAAAInoekAAAABgufJ6QAAAACDmAXtAAAAAwEcSe0AAAAAgeix7QAAAAIDBQntAAAAAwGBhe0AAAACAB4h7QAAAACCgyntAAAAA4PshfUAAAABgUvF9QAAAAGAXon5AAAAAoCq3fkAAAAAgAOF+QAAAAMDhFX9AAAAAwBLGf0AAAABgnwCAQAAAAKDOEYBAAAAAgGEdgEAAAACATDyAQAAAAOAuc4BAAAAA4GR8gEAAAACgW4GAQAAAACAg8oBAAAAAwDhRgUAAAADAgoKBQAAAAGC5SIJAAAAAoLZUgkAAAADAd3OCQAAAAOCIuoJAAAAAYKv6gkAAAAAg+guDQAAAAACfG4NAAAAAQH0ig0AAAADggjODQAAAAGBzioNAAAAAACuTg0AAAABgvZmDQAAAACB4u4NAAAAAAP0ahEAAAADgc0CEQAAAAOAjaoRAAAAAgHx5hEAAAACgr6qEQAAAAKDYSYVAAAAAgAW1hUAAAABgltSFQAAAAOBx24VAAAAA4MrshUAAAADAfPuFQAAAAABhDIZAAAAAoNtihkAAAADgv3WGQAAAAOAcV4dAAAAAwMx8h0AAAACgwEmIQAAAAODkgohAAAAA4PiNiEA= + KBZXds7jZUCEfuNfSGJnQDtMc7KVAnNA - + - yE5MQG691UHbC1xALgiQPzY4n0BFMN4//udlQO5vNUD59mFAq5QIQMaK/z+FgDpBAuzHP9b7tUAuT45AcOIkQH8sWUDcqAdBi8EqQE2mDkAGwv5AVC60QL1vdUBp0oVADHEIQIKYiEC2z5JB7OE+QWuM8D/jzIBA7lX4P2KSeEAAgz1BNG8PQWTCFUF6LA9AFmhAQUwxA0FCVARC4DnFQdM5lEG0DMg/UtWmQDg34ECXb4VAqD7PQO7AnUGyszxCHcHWQFrsuEBdwydBWCCiQDGroj8Jv25ALjsVQWmRfD/ALxhBpy0AQJxWxEG2gRVCUYX9P3bIK0HSLh1CoawCQYwYxkGyW/hARIqSQh3LNEEbChNBaKKLQbU270CmNlNAiWmlQJKjWECdx05B/BRsQBAMs0ACx7U/sHcqQH+9DkGjvmhBEBF3QNQ+R0CrKcpAvFlrQN3Qy0Br6txBjcBCQWZAIUEhRONBUshaQjbNnECV7/tAJdf4QKwwHUGMRNo/BJkIQTJHmEGaJyxBXWRdQiHAE0K5ns1A1TlJQpL3v0H14KNA8757QT22rUEIGcRA0eV5QAwgNUKCGO0/Jr4/QeaQg0GrAgtBoearQcIfYUFjKvhCqy2qQecikEGM2ShCkZ/SQW7O4EDjJopAiYaiPzciUUBojQhA+qwGQZusyD/oQ35AcSOiQWwSxECZfh5BJhJJQCY6qEAoW/lBNwagQbJ7kEDeuJ9AN9FhQQ8gtj/HTNlADjRwQOcwBkHBNDVA5GvdP41ioEHj9qtB8HZoQeI6UUGt0CtD8Zj4QqjkfEBx7cpAt/ZYQATPY0BZluVA9nUBQcReIUAJgUBA4Nx7P9qlyD+r/s1An47GQB5Hl0CeddlAZzDGQMvflUDDJipATZ2zQAXLBEESK/pAt8wfQQ== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIL1kYkAAAABAfh1kQAAAAKAG3mRAAAAAgNrhZUAAAACgp0hnQAAAAGDjYWdAAAAAgHShaUAAAAAArslpQAAAAMBTQWpAAAAAYOxhakAAAACAUYNrQAAAAIAkuWtAAAAAoDcmbEAAAABAK0dsQAAAAGDfYWxAAAAAQMb+bEAAAACAlkVtQAAAAMCMpG1AAAAAgEMKbkAAAAAgZh9vQAAAAEBFvW9AAAAAIHMecEAAAACAoWNwQAAAACD+w3BAAAAAgFgDcUAAAAAgSxNxQAAAAICybnFAAAAAYFqPcUAAAACAutNxQAAAACC2o3JAAAAAgBmwckAAAACgF8NyQAAAAAC74nJAAAAA4Hdfc0AAAADAU3ZzQAAAAIBIgHNAAAAAgKMydEAAAACgkGV0QAAAAMBycXRAAAAAIIKRdEAAAADgjvJ0QAAAAEDFPnVAAAAAQMaOdUAAAABAk7V1QAAAAECT4nVAAAAAwPYEdkAAAADA1g52QAAAAEC5GHZAAAAAAD+UdkAAAABgzqJ2QAAAAGCpuHZAAAAAQGHhdkAAAAAAugd3QAAAAKAHLndAAAAAAIlCd0AAAABAk053QAAAAIDslHdAAAAAIF6qd0AAAACAFMN3QAAAAIBuB3hAAAAAQGQ1eEAAAABg4E94QAAAAABIYnhAAAAA4MWGeEAAAACgEj55QAAAAACPcXlAAAAAQJO1eUAAAABg6tR5QAAAAKAz/nlAAAAA4KETekAAAACAFkB6QAAAAKBolXpAAAAA4EUIe0AAAAAgKRh7QAAAAGBDKHtAAAAAYOwze0AAAABAE0Z7QAAAAOBhVHtAAAAAoL9me0AAAACgHuR7QAAAAKCdBXxAAAAAoHY2fEAAAAAggUZ8QAAAAKDjVHxAAAAAgGJwfEAAAACgWoV8QAAAACDUwHxAAAAA4MDOfEAAAADgbOB8QAAAAIAqHX1AAAAAYMQpfUAAAADAWUV9QAAAAKDTUX1AAAAAIFf1fUAAAABgAAR/QAAAACBuWH9AAAAAYFjEf0AAAABgKgmAQAAAAKBdOoBAAAAAoPBCgEAAAAAgFHGAQAAAAACpd4BAAAAAIEoSgUAAAADAIyCBQAAAAIB3aYFAAAAAIG+IgUAAAADgn5mBQAAAACAW0YFAAAAAAAepgkAAAACg5r2CQAAAAOCHyoJAAAAAQKfhgkAAAACgf0iDQAAAACCpjINAAAAAYAuUg0AAAADA9bKDQAAAAMD4u4NAAAAAYEdlhEAAAACgQYyEQAAAAKC304RAAAAAYFTyhEAAAACgWReFQAAAAAAdhIVAAAAAoIuMhUAAAADAXpqFQAAAAGC56oVAAAAAIMpNhkAAAAAgyJmGQAAAAEANuoZAAAAAIEvNhkAAAADg5tmGQAAAAOAY4YZAAAAAIEzohkAAAACg6QuHQAAAACBBIodAAAAAgDNch0AAAADA7pmHQAAAACAbpIdAAAAA4J3ah0AAAAAgzbuIQAAAAKDS+IhA + NrgMGZxjYkAot2DdIQNrQOzQoK8iBW9AW7ZEKKmyc0DHaN72tvJ1QOoNkUeBw3lAInUoQnpDfED1tbbNbGqAQIgZlE/0uYFA7JQ2/KMChECISIJ5oEKFQBmb26EFK4dAT3QoiQxLiEBCm2JxGGOKQLOh8qWYY4tAb6EHF3qLjUBEpnM+2huOQA== - + - qKRlQGO1tT+RfP8/QqMBQaNOeEArwLFATf7fQNHFjz/4bJZAcN3HP9pgN0D/D5VAKAZ+QMZ5zEBS9QhAa4nsP/2tG0CJbNtAZMS/QOjr7D9Os9JAiK5lQFYfq0FSGGdAxjPbQIbuF0A2+BBAvlLSQGLil0ABVbU//X1IQD5D0kCJ8KBAGHWMQLOZZUAMBrdAukPhQOf42EA8B0BB4mexQcILnUBA/BlAxkrpQA3qBUHfNiVAlpPqQKXof0BHCP8/rrqoQXBe7T8L2LBAccXDQSVoHUF5KohAcRflQH+nyD/8gu1B5s/AQFDREEH+D+9AjTjKQd92YkDdfBtA49icQWEY5j+Iz6BAORMkQJZuikHRtURBSZiOQIXnl0C0XHdAxlF6QZxs/kDh7IRAAwsCQV+dF0A6tDNCSWOzQE4AM0GKWY1BJWSFQOeEREGot49BLM5JQHHpAED7VZA/yZOrQeYewUFsPN5BEsqMQLoyB0FXUD5BFK8hQRYgl0DpEwlA4hiEQEKRjkCQXsJC1lbrQa5PtkCO99k/HSGkQAR/s0GPUyxAkWiDQHSuOUFzNsRAiYfbQE9jakGM7ZxA6kmDQNY8OEFlkQZCTUpLQMGbYkHedAVBhPYRQB3iUkHWxSNAvZFuQVTSqUC9d4BA1vetQFoQMEGC7/dAS37iQLKnMkErkEtBgWM3QN64ekFGN5FC5vflQGeT10CIJ6lBGjkSQLbSiUEZn7RBW5bbQDjszD+7aRlA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4KhMbUAAAAAAICdvQAAAAMC+UXFAAAAAoC0UdEAAAADAIzh3QAAAAIAZE3hAAAAAgCRTekAAAACABWF6QAAAAMBZJntAAAAAQLQ2e0AAAAAAbTR8QAAAAACC5X5AAAAAQHhzf0AAAADAroJ/QAAAAIDIjYBAAAAAwGjIgEAAAAAAvtGAQAAAAGDdMIFAAAAAoIY3gUAAAADgioKBQAAAAICxq4FAAAAAoMbBgUAAAACgh0KCQAAAACCgeIJAAAAAYGjEgkAAAABAxNyCQAAAAKDnTINAAAAA4Kdbg0AAAABAx3mDQAAAAKDDmINAAAAAwLjQg0AAAAAg7+GDQAAAAOAlU4RAAAAAwCZdhEAAAABgJQCFQAAAAMCIQIVAAAAAgEzOhUAAAAAAexaGQAAAAEC2YIdAAAAAAKHph0AAAADg/k6IQAAAACCAWYhAAAAA4G9xiEA= + KBZXds7jZUBML328ejFwQIkw7CrX8nJAooOBwRKidECJjsh+LwR6QCoKcw8EM31Ack0JZXkqgEAF/752JGqEQGLHDtQb+4VAMgVkHIaSh0Cmigd7lEOKQDI0UkYyG4tA0bSJfeB7jEDshjI+qhuPQLLKltwbQpBA - + - zF7aP2fOH0Gy7zRBdZlgQZFXEkC4FnhA1XcbQGINLkCGl65BfQpTQOUNB0GgrAFBa80EQRe0x0BD821APOIRQYmfakDLazJBUbkQQY2eoz8/Gx5B8IhlQJd+u0C90gZAdUGOQrw3gEHQCBxBHAt0QCurgEAZPS5AnhDBQQ452z+4FIJCyk4UQfOAEkEjB6JAyq5qQeIp50DIaZNA/UAOQY4QlkDauIBACsCgQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoA2gZUAAAABAieNlQAAAAAAQYGdAAAAAgNS8aEAAAACgpuNoQAAAAECCQmlAAAAAgAWiaUAAAACAB0NrQAAAAMBtw2tAAAAAABglbEAAAABAVcdsQAAAAIBOBm1AAAAAwMJnbUAAAAAAcOlvQAAAAMBIpXBAAAAAoFPRcEAAAABgKwZxQAAAAIDwFHFAAAAAwLhQcUAAAAAAQBRyQAAAAKDxUHJAAAAAIIi0ckAAAAAgGMFyQAAAAEBQ5HJAAAAAQD7yckAAAADgt09zQAAAAEA1EHRAAAAAgC8hdUAAAABAIhR2QAAAAACyMXdAAAAAAGRld0AAAACA19x3QAAAAMBzE3hAAAAAADwxeEAAAACAHUR4QAAAAEDBVXhAAAAAgBOEeEAAAACA3wx5QAAAAMBwiHlAAAAAAMWkeUAAAACAu/J5QAAAAIAAUXpAAAAAwHVfekAAAACAb8V6QAAAAEDjFntAAAAAACY/e0AAAAAAc697QAAAAABQFnxAAAAAADeCfEAAAABAJeZ8QAAAAEAK8HxAAAAAAE4NfUAAAAAATEt9QAAAAMBvZX1AAAAAgKi+fUAAAACAvdV9QAAAAMCK4n1AAAAAgNMLfkAAAABABj1+QAAAAEAzSH5AAAAAwBxWfkAAAACA+Yd+QAAAAIAjqH5AAAAAQIoSf0AAAABAQDh/QAAAAMAFVn9AAAAAgJNjf0AAAADAYYt/QAAAAEB/mn9AAAAAwCCyf0AAAAAAPsV/QAAAAIB31X9AAAAAQNn/f0AAAABApx6AQAAAAKBzLoBAAAAAQHFOgEAAAABgIVeAQAAAAKDLYIBAAAAA4K9rgEAAAAAAMHGAQAAAAGATqYBAAAAAQPqzgEAAAAAAEb+AQAAAACAQ14BAAAAAoOPmgEAAAADgm/iBQAAAACCKLIJAAAAAoHRjgkAAAAAg1muCQAAAAMA814JAAAAAIMPegkAAAABgp0uDQAAAACCGU4NAAAAAIPVZg0AAAACgaWKDQAAAAIDhkoNAAAAAwIrCg0AAAADgE8qDQAAAACBnWoRAAAAAIBophUAAAABgdlqFQAAAAOAGtIVAAAAAAFfchUAAAABAGuWFQAAAAMDHBYZAAAAAwHdlhkAAAADgAGyGQAAAACCYcoZAAAAAYKSbhkAAAAAgx6aGQAAAAGDarIZAAAAAYK/ohkAAAADArf+GQAAAAKDLXIdAAAAAAF56h0AAAADAiYWHQAAAAOCbqYdAAAAA4Ia7h0AAAABgi9aHQAAAAOD2HIhAAAAAgIUuiEAAAAAg8DOIQAAAAEBdZIhAAAAAoH5ziEAAAABg1KOIQA== + NrgMGZxjYkDibPs7jeFnQB0PdBE9Am9Ar2sYctFic0AdXwao9pF1QOS5muEOw3tAN/IJwMLze0AfY3IW6QmBQBso84mNgoFAH5JgQJWShEBILpgv76qEQKxbYkx7w4dAY1VZ5w3biEBzhwhc58uKQAKwZlETlIxALV0imo/zjUCTtOfpVEyPQA== - + - wLwsQIuKU0E4NxlASl59QWw/M0GoD2NBKOrlQCjRBUAY7P8/BujIPz4NoEFs6cc/rapiQFSn5EBtCQNBLdOjPz0Cm0B3cLdA6rgzQDsAikHvE4pC5iNTQNf/l0AYOglAAqe3QGCoskAubr9CsUHHQG4X/UDYGcRArAEiQYW/jEDTMGtA9dsIQJyToUFfej1BOlENQY9GhUHd11JBbAx2QV7w7T98Ni5A4A2rQZwBPkBqLbNA2fKIQNAZ7T/EMj1AFDEzQSLeU0FmdAhB/lYXQXCJhEBbXpdAwNo3QA5gk0D1enhAgHiFQOzWYkJX5BhAtRPIQBV+LEGKSm5BxEsvQVpWi0K7QzZCwuOTQPWFe0FzOUlBELcrQWl6lUH6GltAmDYhQWmuLELHTX1BtAJFQc+BxUFw7yxAcuKUQV1ZJECnn9NA/lbcQIoGiEDMsUJBLARKQIPas0AHYJNAjuKXQmxRD0JkyM1AOFLbP4nQmkF14P8/f/VlQOuRDUHhqFlAYAAlQPH6UEDm+e1A0kGfQJax2j8x4H5B8lsoQTcDqUBSwOw/ogajQcyyb0KpAItB1N+aQKcF+0ErDqxBpBy3QSRS+kCfvwZAeXRJQV3bmEE69mlBJIFTQJr6dEGkySRAS58PQdWIhUAJggJBn6CDQLYbr0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgNNEWUAAAAAAI0ZaQAAAAKDDhFtAAAAAYL2/W0AAAABANcNcQAAAAEBSzV1AAAAAwGpKXkAAAADAq8ZfQAAAAED/IGBAAAAAQK5GYEAAAAAAsVxgQAAAAED6fmBAAAAAYCNeYUAAAACA/WJiQAAAAEAzgGJAAAAAgFqgYkAAAACgXbpiQAAAAEBm5WJAAAAAAPJHY0AAAACAZGNjQAAAAIC8HmRAAAAAoAqDZEAAAABAkaRkQAAAACDgAWVAAAAAQIZpZUAAAACAzIplQAAAAAAtvWVAAAAAoKXkZUAAAABAwgJmQAAAAEBJQmZAAAAAABzEZkAAAADAK+FmQAAAAIBLPWdAAAAAYFBfZ0AAAADgYZpnQAAAAECQ4WdAAAAAwFogaEAAAABAbkloQAAAAKCGZGhAAAAAQEDDaEAAAACA5uJoQAAAAMDyKmlAAAAAAFxjaUAAAACA1qNpQAAAAEDcxmlAAAAAAIzraUAAAAAACCRqQAAAAAB652pAAAAAgLL/akAAAACAPz9rQAAAAMDPY2tAAAAAwGWla0AAAAAARgZsQAAAAICyZ2xAAAAAwDyjbEAAAAAAFMJsQAAAAIDQ4mxAAAAAwEcGbUAAAAAA7SZtQAAAAABvQW1AAAAAQNptbUAAAACAXMJtQAAAAADqC25AAAAAwM1CbkAAAABAvmduQAAAAMAUx25AAAAAQHnebkAAAACADmlvQAAAAECrqW9AAAAAQCATcEAAAAAAFSBwQAAAAKC6MXBAAAAAAHJCcEAAAAAA1lFwQAAAAEBxYXBAAAAAQEBvcEAAAAAAXINwQAAAAMBVpHBAAAAAYJa0cEAAAACAScRwQAAAACDJ5XBAAAAAQJ72cEAAAABAwx9xQAAAAICzQ3FAAAAAQMZNcUAAAACAZWNxQAAAAADQcHFAAAAAIBaDcUAAAACgapFxQAAAAGBcn3FAAAAAwMOzcUAAAAAAde1xQAAAAIA+AXJAAAAAwGUMckAAAACAKx1yQAAAACBrPHJAAAAAAD5TckAAAACgeGVyQAAAAACIe3JAAAAAgCa0ckAAAADgIUxzQAAAAKAt4nRAAAAA4BjxdkAAAACgfJZ3QAAAAGD8o3dAAAAAIAjLd0AAAACgCuB3QAAAAKA19XdAAAAAIE+EeEAAAADgyAV6QAAAAODmFHpAAAAA4ERkekAAAAAgSbJ6QAAAAECJpHxAAAAA4Kr2fEAAAACguEZ9QAAAACBTZX1AAAAAwHB0fUAAAABAAwZ+QAAAAKA8pn5AAAAA4C63fkAAAACgOSR/QAAAAOCExn9AAAAAoGeRgEAAAABA7JuAQAAAAOCSW4JAAAAA4Gh8g0A= + KBZXds7jZUAAVPW5y8NqQKmavaDqInVAiDDsKtfydUDH63mLQrN4QK/xM6KFA35Ad9ZggfhhgEBmIXjG7smAQLqZWShxqoRAMClBeXDihUDY6hUTyTqIQA== - + - 4bYZQPY8LkD8CW1AnkcIQJrEC0FtRto/kQCJQHKtS0IozxRB4tEfQQM3SUAWiBtACCnIPygBBEKPwvVBSazQQKCQ1UCSEVBAvz/pP/hcNEEvu/c/GX14QD93kD8SdFhBN70kQBDOPkDcMkFBRdckQO97sEAIZz5B9BraP04zWUBaHchBqHQ8QfxTAED3iwxB/JfrQPT0IEAgwStBUeckQM13PUCo/alAXmwnQYSWBUAbYiRAQzFTQCu8fkD1ps1AwHyiQOQeyEE+znhBHj8IQs5fT0Ez9aM/SE0pQbE6kUGbuzdAzmMGQTh5qECg0aRBIeuAQOpQo0H9YGtAds1dQdazdEEnaT5CPFH7QObPJEDo2KNA4wtZQHEuLUA+7ztBgTgpQlS/KkErzw1CHqngQfYsAEEOCG9Ah5moQKUiwEH4mR5Bf/KTQPm+jEF4dMxAPNxXQdIHwUG5kN9AK5HFQjXsp0HtqGFBbD9TQHOQxkGuXQFArEeTQAG2R0HZwLNAJsz6QS0rZELPGlNAkviEQPG/jkCIXY1AsNESQZtfcEKsACJBk6M5QTDY7D9FFD1A1N79QBTVjEGk7no/fe5lQG8YpEAZw0lAuQBSQOJM8UCD2w5B1K5TQT6btEDMao1Cq4EKQcdIn0AtUL5Am4DBQH+WLkCR0KJBm3v/Pw== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQHfUZUAAAAAAITloQAAAAOAJAWpAAAAAIJveakAAAADgfIJuQAAAAMCzUXBAAAAAQKhyckAAAAAA1aByQAAAAADRUHRAAAAAwIXUdEAAAABAZDF1QAAAAIBVxHVAAAAAwCv3dUAAAACA2M12QAAAAMB44XZAAAAAQOd1d0AAAADAuY93QAAAAID8unhAAAAAAH4veUAAAABAGVd5QAAAAECvwnlAAAAAAHF2ekAAAADAqaV6QAAAAIDUhHtAAAAAAK4dfEAAAADAFTp8QAAAAMDFkHxAAAAAAPzgfEAAAAAAS4R9QAAAAICVpH1AAAAAQHzTfUAAAADASvJ9QAAAAMCGB35AAAAAgNwvfkAAAAAAvXR/QAAAAACrz39AAAAAgAvjf0AAAABg9gWAQAAAACCPOIBAAAAAQNWHgEAAAADggaSAQAAAAEBYq4BAAAAA4GSzgEAAAADgxcGAQAAAACBmyoBAAAAAAE/pgEAAAADAKQmCQAAAAIDlWoJAAAAAoGCLgkAAAACgapKCQAAAAEC5wYJAAAAAACYXg0AAAAAAPmWDQAAAAOBLbYRAAAAAIO/ShEAAAABgF9yEQAAAAKD3eoVAAAAAIGWGhUAAAADgcwiGQAAAACCHUYZAAAAAIFZ8hkAAAAAgbZKGQAAAAGAjmYZAAAAA4ANJh0AAAADgyYqHQAAAAGDYj4dA + NrgMGZxjYkCJy7y2HKVqQMZtNYzMxW5A - + - it4kQJNSYkDrYppA0FYhQHzfNUA5B8BAYdIbQMchU0BGoGVASLP/P4ODikCNs/8/VljuQJez6UDf/2VAFZHaP7A+7j/2k8hAAEGiP/okCUCj/1tAwjDoQCX2Q0Gh3QRBoQYqQZdTF0GQCe0/fTHtP20mbEHOqqhA26+9QIOawkHWCqM/uVhJQNPWpEEfkrY/yRseQc2ZUUHn1FtBhrdFQdEnaUE6Q4FBa1ZNQZgNkkE+045At2CmP3yPtEAZJCRBtEXGP7L7CkEoIDNBgDS/QZZ9SkCmfYVAEr6iQUc9CUCKeSFABoYgQVOkn0C895dASDEnQQ2scEGcRdVAWT23QUDjQEDmxhdB + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgElbZUAAAACA+SdnQAAAAIB6ImhAAAAAgIbma0AAAAAgERhuQAAAAAALIW9AAAAAwKszcEAAAABAH5NwQAAAAMDV03BAAAAAoJtEcUAAAACARHRxQAAAACBbjXFAAAAAwCW1cUAAAAAAg+FxQAAAAEDC83FAAAAAQDI/ckAAAAAAvDJzQAAAAMBV8nNAAAAAQLTTdUAAAACA+hR2QAAAAIDDNXZAAAAAwHGvdkAAAAAAMvJ2QAAAAIBGBHdAAAAAgMhPd0AAAACAY4Z3QAAAAADR4XdAAAAAALRheEAAAABA9I54QAAAAMD91XhAAAAAgDz1eEAAAABAowh5QAAAAMAaE3lAAAAAgGVWeUAAAABA9yN6QAAAAEAeQ3pAAAAAAIxNekAAAACAw3Z6QAAAAADuoHpAAAAAwBHPekAAAACAveN6QAAAAEA8JXtAAAAAwJK0e0AAAAAAA2J9QAAAAABD3n1AAAAAACHrfUAAAACAXf59QAAAAMCaE35AAAAAQFQjfkAAAADAvUR+QAAAAMD9k35AAAAAQBMif0AAAAAA8i1/QAAAAIDrUH9AAAAAQN2of0AAAABAo85/QAAAAMCT7X9AAAAAYA8DgEAAAAAglhmAQAAAAIDAH4BAAAAAIH1IgUAAAAAgYlqDQAAAAOB8kYNAAAAAgGQYhEAAAACgOiCEQAAAAACPQ4RAAAAAQHtIhEAAAACgXdSEQAAAAKA33YRAAAAAQAEihkAAAAAg0mSGQAAAAKBOdYZAAAAAQNcviEAAAAAAmMKIQA== + KBZXds7jZUBe4xb9Y+JuQBTpB48/A3JA1jLTdeCBd0Co+Jn0QjR8QMTw0tJOsn5A8aDHXlMhgUC3KReXrbKCQPHPtYj/qYRASC6YL+9qhUDx/qOyqzKIQD8NGF4mA4lAzjV2U1LLikAeBUlYDVuLQF869+uTg41ArwnK8E4TjkA+MijmetuPQEYgzsj6VZBAmwhUCtm5kUDGN8XdUBqSQOSKlNb5FZNARk+88qbek0CNY2vtvMKUQJah+eQ/YpVACVOrhNiOlkB7JV6+gO6XQFNDfSIEk5hA+zxV09aymUAExWSXLZ+aQA== - + - 6JbUP/G7oj+VMwlAgfhHQE7bJEDBrslAMakzQARk+EBvNwlAM9YOQQhJnECQGwBAjsQjQVnKiEChvNo/wwrhQIMBtj9m4co/IARAQFWgPEGhg2NAUKdSQJdfm0DGm+c/RkORQSaAeUD13WVADFOoQL5SAEAuyFlBLOukQKhycEDwgrRAikZzQTo2OUFrXS5AeodjQMovG0KheE9AFrKbQIWpe0AOiLU/X1nIPw8oBkEoQBtAT3J/QL59QEBjTZc/wfHbQJJVq0EkkWVBSgc6QcSZwUC6ESJBp3qmQKaCIEHR8SpALxI9QBNyy0F+iwdB4LueQMHfWEC+P0ZBE33NQHSAV0HRQVlADFM5QNY4BEKXObpAByHoQKREjUCFJqdA1UCwQLpDgEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAALW4XEAAAACA2QteQAAAAEDRVV5AAAAAQCy/XkAAAADgnwxfQAAAAOAsxl9AAAAAwOweYEAAAADAf0RgQAAAAMBbZWBAAAAAYMuiYEAAAABAeMFgQAAAAAAa4GBAAAAAQJ5hYUAAAABALKZhQAAAAMAAxWFAAAAAIJzlYUAAAABAnQBiQAAAAAB9IGJAAAAAYIVLYkAAAACAN2ZiQAAAAICJoWJAAAAAoPADY0AAAADAX4RjQAAAAEC15WNAAAAAQAzYZEAAAAAADQFlQAAAAEAvqWVAAAAAoB6GZkAAAADA3CtnQAAAAGApRmdAAAAAYAZoZ0AAAACAlIxnQAAAAICJ4GdAAAAAwBSKaEAAAADAz99oQAAAAADB+WhAAAAAwL0laUAAAADgv0RpQAAAAIDzymlAAAAAAFEmakAAAAAg1m1qQAAAAIBqhGpAAAAAIDukakAAAADAB+JqQAAAAMBXZWtAAAAAQLyoa0AAAADAsuRrQAAAAEBDBWxAAAAAQLhCbEAAAAAAjWJsQAAAAEBVhmxAAAAAgPynbEAAAADAlMhsQAAAAEBo4WxAAAAAwFMBbUAAAABACIRtQAAAAADFxG1AAAAAQGYFbkAAAABADCFuQAAAAAA4SG5AAAAAwNtgbkAAAADAd8VuQAAAAMDOAW9AAAAAwAJdb0AAAABAcsNvQAAAAGCqFHBAAAAAgH8wcEAAAABgiUBwQAAAAEAXUnBAAAAAIEhicEAAAAAAjK5wQAAAACDfvnBAAAAAgHPPcEAAAACgyeFwQAAAAIAY/XBAAAAAQDgRcUAAAADgDyRxQAAAAEAUMnFAAAAAQCJAcUAAAACgOkxxQAAAAOAXgHFAAAAAgBGycUAAAABAScJxQAAAAOBT03FAAAAAIHHicUAAAAAAb/BxQAAAAMD4/nFAAAAAgFUQckAAAAAASzxyQAAAAADITXJAAAAAAFhjckAAAACAc3ZyQAAAAECegnJAAAAAwO6RckAAAABALbRyQAAAAOAE03JAAAAAQBAHc0AAAABAWSBzQAAAAACyQHNAAAAAQLh+c0AAAAAAYJdzQAAAAGDNonNAAAAAQBK1c0AAAADgFsNzQAAAAADT1XNAAAAAwOzwc0AAAABAAxN0QAAAAID0HnRAAAAAwHMzdEAAAABAq2V0QAAAACDqenRAAAAA4EOFdEAAAABAtJV0QAAAAGCLoHRAAAAA4M+4dEAAAAAA5MZ0QAAAAED50XRAAAAAwB4HdUAAAAAAYRt1QAAAAIAvJnVAAAAAYP0wdUAAAAAACFh1QAAAAOCec3VAAAAAoLR/dUAAAADghah1QAAAAKCZk3dAAAAAoAA2eEAAAAAAr0d4QAAAACDRcnhAAAAAYKOxeEAAAAAAS8Z4QAAAAIB/MnlAAAAA4A2WeUAAAABgZLJ5QAAAAIBYxnlAAAAAgHMyekAAAADASkZ6QAAAACCj43pAAAAAoN71ekAAAABAHzN7QAAAAOAplXtAAAAAIGime0AAAACg2/R7QAAAAMCwhHxAAAAAIIrGfEAAAAAggNR8QAAAAED/LH1AAAAA4NyVfUAAAAAgysV9QAAAAGC7RX5AAAAAIOBVfkAAAADg23V+QAAAAEDDiH5AAAAAYISlfkAAAADAmLd+QAAAACClR39AAAAAICpxf0AAAABg5uV/QAAAAODw9X9AAAAAIJUrgEAAAAAAKmyAQAAAAOCVioBAAAAAAIqTgEAAAABgvqOAQAAAAACJq4BAAAAAwBy5gEAAAACgvfKAQAAAAKAEDIFAAAAAoAVJgUAAAAAAXVKBQAAAAIAtWoFAAAAAoMlhgUAAAABgM4GBQAAAAED/ioFAAAAAoJjrgUAAAADAgwOCQAAAAKDnOYJAAAAAAMZBgkAAAADAt0yCQAAAAEB2WYJAAAAAoBFkgkAAAADgHsOCQAAAAODtyoJAAAAAIKnTgkAAAABgEyyDQAAAAIB0U4NAAAAAQOWRg0AAAACgRqCDQAAAAGCf04ZAAAAAYKyTh0A= + NrgMGZxjYkBxWoXuS4RsQBu6YmAmQ3BAOAsfS35TdUA9w2SRqbN1QHOtlyAudHxAAMoCZU/kfUC5BTo6w8KBQC1rJliJGoJASgq70gR7hEBWa60nnFKFQNsOPGtGM4dAgZUvKuiKh0B4dK9YHyOLQJVhHGO+M4tAeKOdgsurjkCVkAqNaryOQMY3xd1QKpFAGfs+vSFWkUDcTAbfdkaSQGJ9f4lCspJA8MzJRoDik0Cr/79VYw6UQAdQnBmxdpVAKxe3arnSlUC40YOO2oKXQLo/FWDlmpdAAVTEWvvemEA6Vwx1O1+ZQIFru29Ro5pAyX9qamcnm0A= - + - 4eXZPwf8mkKj0tNAewmYQFJHN0EFsKpARz57Qid+qUEN8qBApoG5QUleIUBpoKM/FZFXQXdJk0DDOW9A8bIsQCDsG0BngqE/xd5+QL4GfULxhQFBJorJQOH4GUDewzVAlMpsQMkZ90BAT1xAcAMlQNxdiEDvfwpBYuyMQMbqtkA1waZCsVPIP4ZHCUAtzIZBOgEcQMpjyUCOFMZA8XhcQKeP8UG5G2pBguyWQQ0YSkCAHsVCscOWQB7KVEAheCxB0SdIQeXZEkCFR75BIbmeQGSWd0BFlpFAdu2iPyubIEEpFUpA9UnoQRgnDEIb7fA/TiNWQRXnLUJt/iFAzfnIPzkwmUF1UKRAAEh4QN7lmkAUuy1A4nASQF+O0kCI3PtBrQH/Qaj/y0KNv6JB5uEIQGO6P0C6XVpAYG4xQXKb0EAEvcg/5BD/P/ZXwkCaeMNAtqldQc6WjUDOUG1ApIYLQew1RUF/AUBBnp5rQvqUe0H7UyNAquKtQaZJikAjRAJCqyWJQKeiNEEel4VBwnvsQEbIEkGBTH5C4iQ+Qf6fz0C6MtFAEunUQI6ggUF6V+5B5H5GQAxgCUBw50lBlHq2Py3DFUHrZYdBMVdmQc82fUH0uv4/Jco9QdRdCkIy0IJA/HdcQboYkUHCsV5BcImTQKoGjUBRACpBlc+jQMryRkF24NY/oUQJQEtMa0DWhrNAjdP4QHLEVUFFyKBBQawWQbvN3EAXwA5CxiQHQbDRG0DU9aVAD3qfQfjFCkH9Z2hBLArAQKNcyD93a1FBooNcQMb+/z82wqlCE02FQRyojkBSX5ZAlf3aQnn/yD+GJ9RAhvF1QUkloUCDzSdBGVWKQfs2ZECUEFZD9OeAQcu4CECUioVAjdudQBmu70DdxABARULEQODjG0EU+rdAH1hiQcPDaEAvY1xAh20SQN8d2z/bA4ZCZkmYQeljpUBIbH9C1HlIQB/7QELqYdxBaB7IP6xGWkC1NSNAC4sSQIpxzUCiCjJBz02GQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIMEhYEAAAACA4UZgQAAAAICx/GBAAAAAgJvHYUAAAABAH+FhQAAAAMBSPGJAAAAAQD5hYkAAAACAMARjQAAAAEBcrmNAAAAA4KsrZEAAAABAJ6pkQAAAACAJ6mRAAAAAoCqmZUAAAAAAreVlQAAAAMDlY2ZAAAAAgM0CZ0AAAABAECRnQAAAAMB6RWdAAAAAgIqKZ0AAAAAAFkRoQAAAAGCqpWhAAAAAwCrfaEAAAABADyJpQAAAAID55WlAAAAAYBAKakAAAADgSiJqQAAAAKCwB2xAAAAAgAAmbEAAAACAhj5sQAAAAEBIqmxAAAAAgLDKbEAAAACAzh9tQAAAAECuYG1AAAAAgNIzbkAAAAAAbyZvQAAAAIBrSG9AAAAAQEyqb0AAAACAzshvQAAAAIBq+m9AAAAAIF4QcEAAAADgsCZwQAAAAIC3MXBAAAAAINxfcEAAAACgtIlwQAAAACAc0HBAAAAAYHzjcEAAAABgQSVxQAAAAMDvMHFAAAAAQAFDcUAAAADAdF5xQAAAAIAKe3FAAAAAQEeScUAAAADA5aBxQAAAAIDPx3FAAAAAwJTScUAAAADAvAJyQAAAACCSYXJAAAAAQB6CckAAAAAgrdByQAAAAIAJIXNAAAAAoI5Ec0AAAADgvIBzQAAAAIC1k3NAAAAAwG+1c0AAAADAv8NzQAAAACAh8HNAAAAAQMojdEAAAACAMTN0QAAAAMBoPXRAAAAAwAh0dEAAAABg6YZ0QAAAAKB1knRAAAAAQMK1dEAAAAAAyMB0QAAAAIAbz3RAAAAAoJMedUAAAACgxkB1QAAAAAB9UnVAAAAA4F6idUAAAABga7Z1QAAAACAB1nVAAAAA4DQ6dkAAAAAA6kN2QAAAAKC6XHZAAAAAQFlrdkAAAACAHHZ2QAAAAOCExHZAAAAAQNTidkAAAACgD/x2QAAAAGAEB3dAAAAAoABMd0AAAACggHR3QAAAAGBfiXdAAAAAgOCad0AAAADgJdt3QAAAAKBY53dAAAAAoCsCeEAAAADAsRR4QAAAAEBeJHhAAAAA4N4+eEAAAABg1mB4QAAAACBZdHhAAAAA4MmDeEAAAAAgfpZ4QAAAACDGoHhAAAAAoOTCeEAAAACgFiZ5QAAAAEByUntAAAAAIDyVe0AAAADgoOp7QAAAAOB3E3xAAAAAILPWfEAAAADADSh9QAAAAEAL7X1AAAAAIL45fkAAAACgyUV+QAAAAOC7VX5AAAAAoLNlfkAAAADAnKp+QAAAAMCn735AAAAAQO36fkAAAAAgqSN/QAAAAMB7N39AAAAAwDGDf0AAAAAgnJZ/QAAAAMBnoX9AAAAAoFrEf0AAAABgmc5/QAAAACBsSYBAAAAAgNZigEAAAADAj5OAQAAAAIBh2oBAAAAAgBTigEAAAADgsOmAQAAAAGBbD4FAAAAAYH4XgUAAAADAF4SBQAAAAOBopIFAAAAAYN3JgUAAAABgNfCBQAAAAMBE+oFAAAAA4KYDgkAAAADgTBGCQAAAAKAgGoJAAAAAQLQ3gkAAAADAolqCQAAAAKCt1IJAAAAAYH0pg0AAAACga8SDQAAAAOC9BoRAAAAAoGNPhEAAAADgUImEQAAAAMA3pIRAAAAAwI3shEAAAADgbwuFQAAAAKBhMIVAAAAAQBODhUAAAADgH5mFQAAAAKDZoYVAAAAA4KlyhkAAAACA+0mHQAAAAMBmw4dAAAAA4IHSh0AAAABgF2KIQAAAAGAea4hAAAAAgOyriEA= + KBZXds7jZUB61vaTY2FrQNzlv3T/InFAKyn7JiDhdEBkbLHC8LN5QPKDj2A4EntAK8dF/Ajlf0Bd7xFNqKGAQPkQ7ZoQC4NAobIK9CDqhEDw72zJR6OGQAXg1BCtAohA587s9347ikA= - + - mWuUQZx4oj+E179ATtzbPxom7T+XFi5AbDekQAztXEAq63RA/SF+QPvCLkAJhkpAjVmMQJ5+M0EWrSpAxhzDQKi8kkGHmJNBXX9cQd7zBkC/AgBACp4bQBBA3kCOhSFBG7ObQPbkXUExX6M/ynhoQSo1GEAwHChArIckQNbu/j/SG9dA+xHIP5xOfkBGMQdBKbkBQFSpkUCLZpVBc/B6QEoz1EFAJYpA/rXEQHrVgECZNJRCQkDHP6JvZUBA6ZdAYCeWQDarNUGCRS5ASSG5QF7oSUDaC0ZBcP+GQAYpE0L1uJA/i9mkQPIGskC/FpNAce8zQOobDUEJqLU/IDu1QKyMr0BhGQJCcNk+QJ6s2EFj6ZA/pGAuQOcImEBhFxdBaS0lQeJ2zUAiHq1BmeLaP9JTNkHqUbVCVTpBQBW660DzZBtAk1gSQEbp2j9+kCBBNpLFQZU9a0AhaI1AHiK4QFDWGELkwRVB8E8nQc5BO0LTuzNBELdsQfS4PELCBdM/Rc7JQPrPY0BbtgJBGeXaP1W/b0HhkjhBiKllQUtlOkD1zyRALI2EQfJwAkHQN7JAfX0tQH5BuEHA4aNAV/AGQdWvskC3yf8/0pSlQbiC2UFuwC5BjVDUQS6MEUH6aIdBw2F4QNSsIkIMWRFBt/mZQn9Y20Gk/UhB5ScvQ8uV5EI4PYdBahhSQTMFl0F2NpJBFJKFQH9IG0B9jhJAuuO+QI3eG0D5v+dBDho2QcuqqECi8WBCQpbDP/Ffj0BMbe0/K3xTQfPRGkDyAOhAC73aP3EaLkC9x11Ap4e4QJC23T+P4yRA28HaP7JeEkHA46NAQiaQP5IoX0IAIV9BuYThQPK2jEC+2rlAHfgDQZRo2kCuYAxBwS5IQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAIPKY0AAAADAAiRlQAAAAIB7YGVAAAAA4ImcZUAAAACgC1xpQAAAAIC3GW5AAAAA4HTrbkAAAACAgiFwQAAAAOCLK3BAAAAAQDe9cEAAAAAAcjJyQAAAAMDdsXJAAAAAwJLBckAAAADA995yQAAAAADJBnNAAAAAgDK/c0AAAABAmhN0QAAAAEB1hnRAAAAAgLqSdUAAAADAn0F2QAAAAICjX3ZAAAAAgNZ3dkAAAADAr752QAAAAMBOY3dAAAAAQIsyeEAAAAAAu0V4QAAAAACucnhAAAAAQOWXeEAAAACAwKZ4QAAAAIA35nlAAAAAAM4EekAAAABAaBV6QAAAAMA3IXpAAAAAQPpSekAAAACAOtV6QAAAAEDu3npAAAAAwGnxekAAAADAiiJ7QAAAAAB1Z3tAAAAAQMyCe0AAAACAZdp7QAAAAECUH3xAAAAAAAlufEAAAABAN4V8QAAAAAA+j3xAAAAAQD6qfEAAAABAJ758QAAAAMBXz3xAAAAAABXofEAAAABANy59QAAAAADlWX1AAAAAwG9zfUAAAABALn59QAAAAMD1jX1AAAAAwEiifUAAAABADzR+QAAAAEDsan5AAAAAAAV3fkAAAABA5qh+QAAAAMANzn5AAAAAQLVVf0AAAABAzGR/QAAAAEC0pX9AAAAAgGS7gEAAAABAO+aAQAAAACAdCoFAAAAAYIoUgUAAAABg9SyBQAAAAGC7RYJAAAAAoJ5lgkAAAADg+mqCQAAAAIAZq4JAAAAA4By7gkAAAABAw9OCQAAAAMA+3IJAAAAAIFz7gkAAAAAgLYCDQAAAAMAjxYNAAAAA4IEthEAAAAAgK1KEQAAAACCpc4RAAAAAoIKbhUAAAABAAdWFQAAAACDX/4VAAAAAAMVfh0AAAABAsGyHQAAAAMBrq4dAAAAAIMLDh0AAAACgQuuHQAAAAOA+9IdAAAAAoNvZiEA= + KBZXds7jZUCN7m7sniJrQANJK5hVInJACn7VSfXBdUB37uuHRSN6QJ6NZ6/48n9ABf++diQqgkCJGZRP9PmDQGYCjmB3QoZAgPgTfiuSh0CTCDMG2WqJQA== - + - f9CbQIdBdECGPVlAjO4zQIX+tD/Wc/8/Ow8MQUFT6T+tUSpAK0ntQLe+vUD8dYRB+fvmQLLvJECFPNs/z8wLQUD1xz+TXBJAnbCBQck93UD6tZZAtl0AQY593EArd7BA9VnHP+fuJEBRLixAKIczQaAw2z+jH5hB2K/+PyoXcUFGC5ZAHWESQH1kTEH2I2VBbhsqQb7GL0EI4aNCqTaSP/sUUEFox1FAKl4vQelUB0EEOoVADmIVQdA0n0BBGcRAvAGiQTIGn0BvxVlBw8KZQGHEr0GaGQRC7dYzQawqPEF1e2NAEs0oQW4DSUBk1INAau0gQkkb10BEzVtBmycIQTbkqkB/HpBAZqP/P4wvzkD8bZpAfrULQb3D+EEhQTNAEdJQQVRvO0Kjt0hAUahIQfAz9UBZTvZAGdaRQRLVE0H19oVBiHOrQDXkh0FshhNBPh0JQRKgeED1k8VAH6tPQeg7t0JEk5pBhXScQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwEniaUAAAAAAOSNsQAAAAEBhRW1AAAAAAJvAcEAAAABAB89wQAAAAEBj7nBAAAAAwMQFcUAAAACAPDRxQAAAAKBMFnJAAAAAgHGyckAAAABAVDN0QAAAAMDLQHRAAAAAAIEUdkAAAACAPFN2QAAAAADJd3ZAAAAAQPiTdkAAAAAAktZ2QAAAAABjBHdAAAAAAMogeEAAAACA9UN4QAAAAEAVeXhAAAAAwN/zeEAAAAAAegx5QAAAAMDOW3lAAAAAwNbieUAAAABAFAV6QAAAAACBZHpAAAAAAIvWekAAAADADyF7QAAAAADnX3xAAAAAwD2KfEAAAADArCJ9QAAAAECJZX1AAAAAgN2LfUAAAAAA5Jp9QAAAAMAewX1AAAAAAMMCfkAAAADAR1p+QAAAAMConX5AAAAAwIOxfkAAAADAqh5/QAAAAACmVX9AAAAAwF+tf0AAAADAL7h/QAAAAMAuxX9AAAAAQF0JgEAAAADgKw6AQAAAAKAjUYBAAAAAQHdpgEAAAACgFcOAQAAAAMACWoFAAAAAoCN6gUAAAAAA+42BQAAAAOBymoFAAAAAAPu7gUAAAACgrNKBQAAAAADv2oFAAAAAoNAegkAAAADgjSSCQAAAAOBxY4JAAAAAYHVpgkAAAADgJ2+CQAAAAIC1KIRAAAAA4BdMhEAAAACgm1iEQAAAACDHu4RAAAAAIEfjhEAAAABg7TCFQAAAAKD2v4VAAAAAIHjZhUAAAAAA32uGQAAAAAA/r4ZAAAAAYCLAiEAAAABAHOKIQAAAAKCB74hAAAAAQFz6iEA= + KBZXds7jZUDUvl+A/sRuQKz0JpO9sXBAvN8936TSdUCM6DFxAlN8QLw9GjP943xARiOHYi2ygUDOmJIIoUKEQG8jDjJA6oRAmk2QNIwih0BieTZE+EqIQA== - + - krzaP8iotT9b8SRAQDEHQfXeEEEooi5ABcFcQVEgZUFGcA9CKr9GQHquMUHwZL9At7yMQCHFsECNd4RASaiPQJY0G0Fg5/JAbF9hQJQ9LEImFIVA/R8BQVMCJUGrnTVBrwwDQadpiEA7uiFAbzoOQdxeHkEgV+0/9NaXQC7RGkC3+L1AS843QMiEpUBIv5pAKQlqQTZtG0Hr5RlBfj5oQd87TEFjm8VBcoYWQTOjhUBCYgNBWCOUQNXPR0G+WpA/5bM/QEzDHEFVyLU/UIbrQJ1uMEFX5ClBHmgAQVF0LkAyCQlBqc/yQAiJ0kDFIEhCa+ggQYdwIkG5YpNAsduIQWiSG0FKgB1AN7aOQMumekEDlj9A4zPtP/uKPkGr1TlBTrgBQTVVM0GEMFNA3USFQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgNRpaEAAAABg0eFtQAAAAMDYcG5AAAAAwISWcEAAAACgDwVxQAAAAOAUE3FAAAAAgDZycUAAAAAAL79xQAAAAIBg73FAAAAAAFgRckAAAACARTFyQAAAAGCWfnJAAAAAQIbCckAAAADANLZzQAAAAIBQMnRAAAAAgLdPdEAAAADgU310QAAAAMDzQXVAAAAAwOSydkAAAACArJJ3QAAAAEAyA3hAAAAAgF9AeEAAAADAt1F4QAAAAEAWCnlAAAAAwJ9heUAAAACA1J55QAAAAIDaEnpAAAAAQHAhekAAAAAA3zJ6QAAAAMDnQXpAAAAAAMaAekAAAACA+tB6QAAAAADHBHtAAAAAQIQxe0AAAAAAXGp7QAAAAABSf3xAAAAAgFLOfEAAAADAL119QAAAAIBmpH1AAAAAQO/efUAAAADAXTd+QAAAAIA+Qn5AAAAAAA5PfkAAAADAzaR+QAAAAEAlzn5AAAAAgLMjf0AAAADAtlN/QAAAAIADZH9AAAAAwOilf0AAAAAACQGAQAAAAOCwDoBAAAAAAIUngEAAAACgYzeAQAAAAGBEWoBAAAAAAK6JgEAAAACgsJGAQAAAAED0m4BAAAAAQFuhgEAAAACAvauAQAAAACAkvIBAAAAA4NwagUAAAADAanmBQAAAAOATvIFAAAAAwOjRgUAAAACgHdqBQAAAAGAH4oFAAAAAYErpgUAAAADAgwaCQAAAAKBuV4JAAAAA4AhjgkAAAAAge2uCQAAAAABsmIJAAAAA4PadgkAAAAAglaeCQAAAAMAm6YJAAAAAAHDvgkAAAADA9fmDQAAAAKDcioRAAAAAoH0ShUAAAABgIiKFQAAAACDg14VAAAAA4LTdhUAAAABgruyFQAAAACDKaoZAAAAA4JwCh0AAAABgL0uHQAAAAKB5lIdAAAAAAKzah0AAAADgyvSHQAAAAOA1dYhAAAAAYA+DiEA= + KBZXds7jZUBmiwPJSONqQDeULWxqYnBAQh3Og3yCc0DLo7/RbZN6QAl4Yr2Us3xAdtZggfgBgEAyQlYELIKBQD0CB5FkCoNAKSHWMmMahUA9MfW6EJOGQG3kztnbYolAajeaYHK7iUD5X/hVnoOLQGTDTggT+4xAWmPHP/Gbj0AyeR6Z30GQQCmhIzcUmpFArmheMPsNkkCpuBpMal6TQF/qRaUkGpRApv70nzr+lEAlqFrjhSqVQL2Bx3JrkpZAxwnXNsJOl0A9mb6HwVaYQEP5Fs7dGplAIa+Rj/famUBafOmgDq+aQGox0lsYN5tADJNOr1T7nEBPtTY1WcOdQPCoIbeKf55AmDd3AXofn0A2zDAn0yWgQA== - + - kK2zQKwiLkDjkOBAkcYBQCk+7T9xVqRAcVurQOkHB0Ad7iFBj6kiQVqjRUEc5LRAPXPIP17zyEC4qzRBeEBBQMdT7D9Gg6RA2rzWQJ46OECwCzRABrGdQWGQR0EenjVB8sobQByae0Ec2aZAlW/UQHbd/z89+zNABXDKQNGMNEFYxQhAiH54QIJZlUGx6h1BsqFjQeYB8z9dk8lA7o0JQTQiGEGucRBBputJQHmbxz/tCWVAvGolQWe/j0H7VOk/fuioQCC6GUGJuMNAFsj/P76rN0DUZL1BTs/HP8w92j8tjiFBnsrDQTGRxz9EZcZAht9lQB+h+UCczpxArH81QGUySkDFRFRCdHnXQMt/kT9bqLhAVuaJQhHZ/z+br5ZAeC7JPyy/aEGxC0dBpn7ZQF0DbUDBRbJA7i8uQDj5/z+1PqFAfKLbQIWrikAbsX9CDL1kQNX7xEAN4oxAfzSvQJ0wIEFHnpxAxJBkQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoCxiZUAAAABAuoFlQAAAAICA22VAAAAAYCogZ0AAAACAlUFnQAAAAEDfY2lAAAAAAIYjakAAAACg2phqQAAAAMD4omtAAAAAANria0AAAACAvydsQAAAAKB5Ym1AAAAAwCCfb0AAAAAABMBvQAAAAEBYJXBAAAAAQBBlcEAAAACA+J9wQAAAAMAr4nBAAAAAgHV2cUAAAACAU6FxQAAAAEAhw3FAAAAAAAHScUAAAABgNt1xQAAAAMDLX3JAAAAAoBtuckAAAABApXFzQAAAAMDDg3NAAAAAwLedc0AAAABA/K1zQAAAAID1/3NAAAAAQJyedEAAAAAAH7V0QAAAAMDrMXVAAAAAQIhBdUAAAADAWrF1QAAAAIAD9nVAAAAAAO0ydkAAAACA7j92QAAAAED/oHZAAAAAQKi6dkAAAABAuct2QAAAAEC7LXdAAAAAABNEd0AAAAAAb2V3QAAAAABeg3dAAAAAgBO4d0AAAADA5Md3QAAAAED80ndAAAAAwJjfd0AAAAAAoDJ4QAAAAIAmWHhAAAAAQLKUeEAAAACADqR4QAAAAMCx3HhAAAAAAET/eEAAAAAABTV5QAAAAMDzZ3lAAAAAADnneUAAAABAH/V5QAAAAAD8AHpAAAAAwLZ8ekAAAAAAUod6QAAAAIAalnpAAAAAQBJie0AAAABAaaB7QAAAAIA5sHtAAAAAAP/me0AAAADATzN8QAAAAMDiSXxAAAAAgB9ffEAAAABACtF8QAAAAECr83xAAAAAwNAAfUAAAAAAviJ9QAAAAAD2LX1AAAAAwJQ8fUAAAAAA/W99QAAAAICntH1AAAAAQAbBfUAAAADAy919QAAAAIBy831AAAAAQE8IfkAAAACAfhR+QAAAAIBGRX5AAAAAwEFTfkAAAADAXY9+QAAAAACwoH5AAAAAQAKufkAAAABAuBx/QAAAAOA3FIBAAAAAwAZvgEAAAABgDauAQAAAAEBn4oBAAAAAwN78gEAAAAAgfzKBQAAAACCoN4FAAAAAIPhagUAAAADg1mOBQAAAAIDKd4FAAAAAIAXDgUAAAACgYtGBQAAAAMCf/IFAAAAAIPougkAAAACgUHaCQAAAAKBmgoJAAAAAIMWSgkAAAABgraGCQAAAACCdvYJAAAAAQPYag0AAAABgR0+DQAAAAMB2VYNAAAAAIO5ig0AAAACAJWuDQAAAAECq44NAAAAAYDsDhEAAAADA4QqEQAAAAEDKEYRAAAAA4PhjhEAAAABAd3GEQAAAAICAkYRAAAAA4LU6hUAAAABgymWFQAAAAKB/m4VAAAAAYJo0hkAAAAAgyDuGQAAAAIDKfYZAAAAAIEeDhkAAAAAgH6OGQAAAAKDN64ZAAAAA4PIEh0AAAAAAuW6HQAAAAOCYuodAAAAA4MHCh0AAAABgmMmHQAAAAMDC04dAAAAAIL9TiEAAAADgt8mIQA== + NrgMGZxjYkCPTWWFSwNpQMZtNYzMxW5APExzspWCdEDjFPeZPnR2QDyqTwbuk3tA43LT7ZaFfUAeBBYto1KBQHHo16B3S4JAHjMEV0/bhEArO7iY70uGQIJgznPb84dA5Y2YkGdMikA= - + - +yevQGbbR0DyEYVBLBrxP9qtoj/hfsBAO6WQPwX+lkDk+do/AH7SQNNz2z/okjdAdY10QMs1c0EuRABAGTAJQBT2KEFLFQlA7uf+QBfQ5kBgBTBBlqEIQUsoBkA9YiZBP01+QA0MAECerltA418yQp/7EkGXEHJBe/PtP0vZyD/GPHhCqzqOQHqlCkFB1whAdYrtP02IIUL6sbU/2Pb4QEshokDDUC5AN84ZQEkDtEBcKwNBVhYFQaKCWEGQsqtByrkWQYPu7T8ExuBBcqrBQVWUtz+YX7ZAeBqtQGdtjUDKiuBAIk7UQVDyV0KPMiNBiiIHQvwGWkHS1IxApik0QLpn5kDmTD9AofRAQKzKT0AcAO5A4s2fQNzX8EAqApNABH0JQWOhEkLnxaVCq4zHQDTs0kAg1hxBFBMbQMYL5kANuIxA74b7QN7590BH8U9CVQMTQEsxJUH6zeRA6cEOQbPBrEG8nbdAYHk4QYoRyUCKLtBA0q+sQA3DH0HDezVBjg4wQh7BnkGTc5RBcSzEQlr/3EFKkh5BGaMSQdVV0ULgj2FAslf6P/BikD+5nXVBGnm1P0Ysa0Pf1TZAdYgdQem/rkBhOkNBDuMlQ5rDU0JxBvE/GNARQW6hhECBB3NB8N2HQQVwW0DYAD9AmgCtQdyCi0EDd65Ap4a4QGRzUkD6QsxAxXQsQhiTqUAiZIxBHCxaQObBSEGsqOo/ITYlQcRttT8= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgImDZkAAAAAgN8lrQAAAAMC5ImxAAAAAQGNEbEAAAABgKfBvQAAAAMAFIHBAAAAAQJbRcEAAAABgafBwQAAAAMD9BnFAAAAAQK9CcUAAAADAx49xQAAAAMAAwnFAAAAAwMT4dUAAAABAPzR2QAAAAEDG83dAAAAAwH4ieEAAAADAYDV4QAAAAMCchXhAAAAAAPjyeEAAAAAA6CF5QAAAAIDeMnlAAAAAABxBeUAAAAAAOhJ8QAAAAIDtoXxAAAAAQIrgfEAAAAAAjqR9QAAAAECfHX5AAAAAAC9EfkAAAAAAlX1+QAAAAID8qX5AAAAAgLUIf0AAAADAKGR/QAAAAAAj0H9AAAAA4Jc4gEAAAACgyUaAQAAAAACvXYBAAAAAIOl6gEAAAACgacGAQAAAAGCrx4BAAAAAoOXRgEAAAAAgCTaBQAAAAEA6QIFAAAAA4N1TgUAAAACgnmCBQAAAAEB6+oFAAAAA4C8CgkAAAACgDzOCQAAAAGAyoYJAAAAAwEuqgkAAAAAgNLeCQAAAAIB+vIJAAAAAgIXDgkAAAACAcMuCQAAAAABU0IJAAAAAoBjZgkAAAADgCu2CQAAAAEAa8oJAAAAAALf3gkAAAABgaQeDQAAAAGAuMoNAAAAAwAI+g0AAAACAckGEQAAAAGBG0YRAAAAAIB7bhEAAAADg5gSFQAAAACBMIIVAAAAAINBHhUAAAAAAzIGFQAAAAODmioVAAAAAwJArhkAAAADAaLyGQAAAAODRSYdAAAAAgFVoh0AAAABAGQqIQAAAAKA4Y4hA + KBZXds7jZUDiYBUjzERuQIkw7CrX8nJA - + - DH01QC2fG0B5pIhBdqiXQII82z+8ueZAv9X3QESl+j9izGNACgATQRPNikA/6A1BN853QAqdqUBO0do/4r2BQdI3hEDF8glB/YvAQCv6l0D2BWNAicVQQOQhT0Ac2gJBVImWQJw/oUAylFRB0L/kQJjHM0EUkI5A82JjQECFdUDuLrJA9EyWQMDjJUFThw9Boi5mQKzog0E04ilB/D4jQL8IdUAGhMBAYOWKQH9QXEH3j+lAzsE3Qa8hhUD+UipBmSLSQY06XUIBvbpBVQIvQrUqN0GPsJ9AbFO9QRqHm0ECsvtAIwDtP3C9ykG6DOFAjAu9QAEE/kBku/pB/3H8P74G2UHiRUlBpT6fQUYAI0BUWds/ZJWWQKIRmED7gAtAT5FRQY6c7T/6aPtA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgA4kcEAAAABg1jlxQAAAAADfQ3FAAAAAwNhAc0AAAABAAlV1QAAAAMB+g3ZAAAAAACNSd0AAAADAxHZ3QAAAAAASxndAAAAAgHxJeEAAAAAAduV4QAAAAIBFMntAAAAAwI1FfEAAAABAEld8QAAAAICAxXxAAAAAAFZQfUAAAADAg3l9QAAAAMCvcH5AAAAAgEBUf0AAAACAonF/QAAAAOAAIIBAAAAAwImNgEAAAABgK5eAQAAAAOBJ34BAAAAAIKQCgUAAAADgYCKBQAAAAIBQ3IFAAAAAgNzjgUAAAABgSRiCQAAAACCxLIJAAAAAoCSEgkAAAACgVKGCQAAAAADWsIJAAAAAwAu8gkAAAAAAWMOCQAAAAACW0YJAAAAAYLkDg0AAAACAoAqDQAAAAOBMLINAAAAAgCOXg0AAAAAAgt2DQAAAACCo8YRAAAAAIEx4hUAAAAAA28GFQAAAAKDsyYVAAAAAoBYshkAAAADgqzSGQAAAACAMS4ZAAAAAoKB5hkAAAAAAOLuGQAAAAGCcxIZAAAAAoBC6h0AAAADgBmKIQA== + KBZXds7jZUCAI9DqN6RuQJ0RHYnYgnNASJhZQw3jd0BgGLtcfrN7QA== - + - Q46oQLjl/z+rLjtButyJQQJULkDiX25ATuMgQFc4AED8aCJAHjY3QRl/CUBHXmZA3cK3QImJEkARJABAKtvhQKN89UBpNMxA0OCOQPQPmEAPwG1A0OnYQCZ8CED9r7RAKLAiQDxxdEAWqMpBu08JQHj8jEC/N/ZA05KqQNeo2z9SkBRCz5JZQkiUSkEutfJA5bi/QN/XlkB3dqpBxABPQeWIt0Cspj5BcUcUQrlStkAxORJA/KDeQATmBEI/dCpAR5IQQRvj0kAiL8BBDB2OQCaEg0A= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgAhHYUAAAACg0aJhQAAAAGDa32FAAAAAwFJlYkAAAAAgCWNjQAAAAOBAgWNAAAAAACesY0AAAACAGN9jQAAAAKDswmRAAAAAYDxFZUAAAACgR2NlQAAAAMBWA2ZAAAAA4LvjZkAAAADgSwJnQAAAAEDUIWdAAAAAwAZlZ0AAAAAAvH9nQAAAAEDkJGlAAAAA4AhIaUAAAAAARt5pQAAAAID6T2pAAAAAAANmakAAAABAK4hqQAAAAOCiompAAAAAgJMVa0AAAAAA0OVrQAAAAIBbA2xAAAAAgCdGbEAAAAAA7qNsQAAAAECvxWxAAAAAoE/jbEAAAAAg8QVtQAAAAEAnI25AAAAAQMdrbkAAAADgxYBuQAAAAMDSJG9AAAAAgE8/b0AAAAAAaGVvQAAAAIBCxm9AAAAAgLf0b0AAAADgDhBwQAAAACB7H3BAAAAAIPUxcEAAAAAgOLFwQAAAAKAsw3BAAAAAQBrScEAAAABgYuNwQAAAAGDqAnFAAAAA4IUfcUAAAAAgL0NxQAAAAMBQVXFAAAAAoPZycUAAAADAD8ZxQAAAAGB20XFAAAAAAOPicUAAAABAv/RxQAAAAAD7BnJAAAAAwGtjckAAAABAe3RyQAAAAEAIn3JAAAAAQB6yckAAAAAg3+FyQAAAAGCm8XJAAAAAwJAHc0AAAACgsTpzQAAAAOCvV3NAAAAAAAaYc0AAAACAOMRzQAAAACAc1XNAAAAAgIEhdEAAAADAtXR0QAAAAADFgnRAAAAAQLGPdEAAAABAv7d0QAAAAOAQ5XRAAAAAwIrwdEAAAACAaAN1QAAAAOAXTnVAAAAA4J2kdUAAAADAGgF2QAAAAMCnGXZAAAAAAIE/dkAAAABgAMp2QAAAAGDiF3dAAAAAgCsld0AAAABg51x3QAAAAICliHdAAAAAgB+ld0AAAAAgC8J3QAAAAOD7+XdAAAAA4DcTeEAAAADAHiV4QAAAACChMnhAAAAAIBFSeEAAAABAcbR4QAAAAGBw0nhAAAAAwIrieEAAAADgaNJ5QAAAAMBz43lAAAAAwF7zeUAAAACAgQV6QAAAAGCbU3pAAAAA4CZeekAAAACAsnN6QAAAAGD/kXpAAAAAIPSpekAAAAAgnM96QAAAAMCC5npAAAAAwCL1ekAAAACgQwN7QAAAAKD3GXtAAAAAINote0AAAAAAQDt7QAAAAKDvZXtAAAAAoP91e0AAAAAAdJp7QAAAAIBFBnxAAAAA4J0WfEAAAACgIiR8QAAAACApQHxAAAAAQFxRfEAAAADgf4F8QAAAAABhn3xAAAAAYHTLfEAAAABgLNx8QAAAACAy53xAAAAAQDA2f0AAAACgnsV/QAAAAODm5H9AAAAAIGMhgEAAAADgqEuAQAAAAGDaY4BAAAAA4KtqgEAAAAAgKHKAQAAAAMDim4BAAAAAYPmggEAAAACA7tKAQAAAAGAz84BAAAAA4Bj8gEAAAACgeAOBQAAAACBhCoFAAAAAYAMhgUAAAAAAT4KBQAAAAGA1ioFAAAAAoIOygUAAAABgPLqBQAAAAIBf6oFAAAAAIJUxgkAAAADgZsGCQAAAAICWyYJAAAAAwEnSgkAAAABAIk+DQAAAACBzVINAAAAAIPCag0AAAACAErKDQAAAAKAc2oNAAAAAwCTjg0AAAABgqP+DQAAAAMBmDIRAAAAAAMYUhEAAAAAgOx2EQAAAAOAFKoRAAAAAYDhrhEAAAABACHOEQAAAAIA9m4RAAAAA4BOrhEAAAAAggLqEQAAAAADjwoRAAAAA4DfKhEAAAAAg5OGEQAAAAKBO+oRAAAAA4OcBhUAAAAAghgyFQAAAAOD6SYVAAAAAoPFRhUAAAAAgwFaFQAAAAIBCa4VAAAAAIAqLhUAAAADAnZOFQAAAAIBcw4VAAAAAwD3JhUAAAACAWjKGQAAAAKD+O4ZAAAAAoMBGhkAAAACgNEyGQAAAAGCvU4ZAAAAA4OTDhkAAAABg+cqGQAAAAEDo24ZAAAAA4P8xh0AAAADgelKHQAAAAOCUWodAAAAAIMVgh0AAAACgEXGHQAAAAKCchYdAAAAAABqlh0AAAABgW7iHQAAAACBQc4hAAAAAoFB8iEAAAAAg2KKIQAAAAEA0xYhAAAAA4CrNiEAAAABg3dKIQAAAACB37IhAAAAAILn6iEA= + eg5Y0/EhYkAoFld2zuNlQDeULWxqYnBA - + - ipHKQnQbsUJ4TlRBXkQVQ5fr4EHKiglDcZJIQaQ/sUIVf5dBHUC5Qv4ClULUntZBNUrFQwg1Q0JX2e5BnGoeQ/PKH0Ei+rNF5tPTQ/TTEEHopQVBnKYMQukkfUF0Z2xB/4IbQim7kUHSBq5Bvn+zQshIlkT8CMdCTOoQQarBCEJjhaNBSMU5QUafMkFwp+FC7DW5QTfPCEL5lKBBtqTeQI6XhkHVcDZCxxlnQlLRgEJfdThDe+WcQV6bK0I5jsxBomBUQa/VIkPvwWVCy/zdQFCavEL/8lBD2hC4Q3H03ECLozJBTIasRNBuJ0MUtgZCXAtJQVyYUEEUH5ZC279vQqNp5UA0F4tCsfUWQkKF1UE5wPhA9KYrQkXY6UGkj4ZBQjszQZcNQEE1MSpDhHvHQO8ikUOkAstB9qsyQXq9BEKCX8dABOWHQ2oRyEEyOxZCrLxyQdrHNkVaQhFCaASoQsgtJkKUmH1BdCVJQa7dH0K6gZ5CAtDIQWkLCEJF5DRCTI+YQQC6YkOG+blDHA4PQ+I8E0INmaFDmRNdQ3wYQUKF5XNCzPU7Q0r7FELIEMJFny79QxWnvkIj2mZB1pcJQ2VtBEOCRiVCXtUmQ+mqNEFqB2RDA328QohqJ0EiMbdCiYKLQnJNIENbtidCe9bUQWpDJENlLvNA2ymfQlAT3kDPBRxBQ5S5QQ1rfUFG1l1CEIu/QsTn0kJk3bpCaszWQQnsZkGndRhEnPsSQkrGgUIxQPNAx2SvQpdcAUUbDkVEyPMFQ/bOKUImRKBBR+EnQoItvUNXOd9CrFXkQW4JTUMrOZZC8PbYQbzRmEJfx+9C3RHhQvFRBUHHI4RB1OWKQRgdHEHOK/hApqRtQ1zZEELEIaBC6CaUQkZbo0NCkhtDRoLTQdm7vEFxsY1D5DzcQQBPDkI68ztE86TUQ1etf0KtKQ9CplOYRJPcnkNVtzJCptNkQuCCpkE+wqFB2BHNQuElSEJ2hIdCH5ufRCPoX0OSuGFCTeO0QZZZXkZLeZ1FeywQQVCCG0FgRLFBkrCbQvwzpkEE3+1Bua44Qg3/5EEO9hNCYiHKQZoMKkKyYOpBSL70QA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4DtjZUAAAACA/t9lQAAAAEBwIWlAAAAAAEFja0AAAAAAOaBtQAAAAIAqwW1AAAAAYCikb0AAAAAgB+lvQAAAAICE83BAAAAAAEAFcUAAAABAQRNyQAAAACAqUHJAAAAAQH3DckAAAABgbOFyQAAAAEDEcXNAAAAAgGfEc0AAAABAAe5zQAAAAIDegnRAAAAAgAqBdUAAAABA1hN2QAAAAEDoIHZAAAAAgIRxdkAAAADA/q52QAAAAACqw3ZAAAAAQOshd0AAAABAXDZ3QAAAAEA+QndAAAAAAES/d0AAAABAuER4QAAAAMBWY3hAAAAAACaEeEAAAABAlg55QAAAAIDhFXpAAAAAgIZ/ekAAAAAAJuF6QAAAAMCMlHtAAAAAAKG0e0AAAACAJ9B7QAAAAIAs8nxAAAAAABoXfUAAAADAOxV+QAAAAEAqMn5AAAAAwLBEfkAAAAAAVbN+QAAAAIAY4X5AAAAAQEYUf0AAAADAvFh/QAAAAMAhZn9AAAAAAN13gEAAAAAgCqGAQAAAAIBdwYBAAAAAYArZgEAAAAAAdwGBQAAAAMAWB4FAAAAAQOYpgUAAAAAAqEiBQAAAAGC2cIFAAAAAYP6agUAAAABgraGBQAAAAMDp0oFAAAAAoBDbgUAAAADg1uKBQAAAAIDY6YFAAAAAIFzzg0AAAAAgFFqEQAAAAGAnqIRAAAAAoG9ahUAAAABAvdOFQAAAAKCo3IVAAAAAoHxrhkAAAAAgNHWGQAAAACBXvYZAAAAAYPvfh0AAAADgPjGIQAAAAACoO4hAAAAAoEV0iEAAAACgMcKIQAAAAAAby4hA + KBZXds7jZUBML328ejFwQBTpB48/A3JAE4oR9pJidkBv9VHaAlR4QAFIEVMBk31A+70hFHpygECPzOaerJGAQLzSi0QOuoNAP4Eau/K6hEBsh79gVOOHQACWhOuGAohA+68dVoCriUBEWX2S/0qMQPKOnYS3Q41AcV8iOGFzj0Ar3rPQIS6QQDhHCLEGfpFAdc6Fbk0ykkA= - + - +1CRPwSB5EAloqhBAlBQQWHIkkGPmAdByAU8QQvyW0FTkaBAbJA4QfP6hUHIyoZAR1XJQNULXUD6VrY/9F/WQOZnCUCGZRdB8AHiQHd2pEAPuYpB11ybQP1KkT8zppFAKeo7QcpbKUGnropAF5m/QQUBJ0IG6rpA66qrQDO6LUIbGkdAAgecQEW/b0EoINZBpOnVP03tIkFx6JBB23jgQKITKEInKMxBUHqMQQLeLkEuE5I/kx7+QH6ULEKjT4NBXxkEQs1WkUDgoglATwwcQTQ5uEBWIJhBz/ycQCD1OkEYAThAz3PIP8IBekEWrYdBI2dRQYHbjEGxvidBsQvzQHvr7T/fnCVB1iIlQGMH2EDsS4hBUu+0Qqn1nEF4J7pAo2fgQOHxMkFA2kZBBsyUQXvzLEGEInVA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAKsjYEAAAABAQWlhQAAAAABQYWRAAAAAIDDiZEAAAACAaYllQAAAAIC0eGlAAAAAwLolakAAAADAj/NqQAAAAMCzQmtAAAAAoAwIbEAAAACA3BxsQAAAAICSRmxAAAAAYFS9bEAAAAAgKwhtQAAAAOC7KG1AAAAAwOjGbUAAAACANOZtQAAAAEDKTW5AAAAAgMqsb0AAAABAD+pvQAAAAMDQEXBAAAAAQJErcEAAAABA/jVwQAAAAEC5QHBAAAAAwDRRcEAAAABg8sFwQAAAAEDE9HBAAAAAoCEHcUAAAADgTtVxQAAAAACH9HFAAAAAILoSckAAAADAbiJyQAAAAID5YXJAAAAAwJPxckAAAABA5WVzQAAAAADScnNAAAAAwCuxc0AAAAAA4yF0QAAAAIBqhHRAAAAAwN2TdEAAAABABKJ0QAAAAOBq0XRAAAAA4NjzdEAAAAAAaP90QAAAAGD7FXVAAAAAoBUgdUAAAADg/011QAAAAMAzZXVAAAAAgN+DdUAAAAAA6aN1QAAAAECT0XVAAAAAQNzqdUAAAADADjR2QAAAAIDnaHZAAAAAAFmudkAAAADAsMJ2QAAAAMB94HZAAAAAgEjzdkAAAABAXRJ3QAAAACChJXdAAAAAoK5Rd0AAAAAgUoB3QAAAAMAU1ndAAAAAgIj5d0AAAAAguAR4QAAAAMDEGnhAAAAAYBZFeEAAAACAFHd4QAAAAGDPjnhAAAAAYFKfeEAAAAAgo7R4QAAAAKAMv3hAAAAAgH/ReEAAAABguxR5QAAAAKCYXHlAAAAAAM+MeUAAAACg/6R5QAAAAEAHx3lAAAAAIKLReUAAAAAAwt15QAAAAODjBHpAAAAAIMQWekAAAAAg+ip6QAAAAKAcNnpAAAAA4CpCekAAAABADcJ6QAAAAOAp4npAAAAA4IZLe0AAAADgRbd9QAAAAKCexX1AAAAAQObEfkAAAACgQFGBQAAAAGDDt4FAAAAAwA7SgUAAAADggQuCQAAAAMAjiYJAAAAAgOj+gkAAAAAgHT+DQAAAAOBOY4NAAAAA4P7rg0AAAABg71qEQAAAAKDDhIRAAAAAYCChhEAAAAAAGPyFQAAAAOB8AYZAAAAAYApFhkAAAABALT6IQAAAAGA2zIhA + KBZXds7jZUCmvpxNHCRnQBTpB48/A3JA - + - 4K6WQPsuJUEKJds/REwjQbNvYkDrK2ZAr+TYQIhjgkAOLpNAxXjjQJCwm0BJOFBA6DweQebYr0C+jC5AzKz/P+xVq0D3gQlASo7eQPPgm0CdWhhAWXmpQFoBBkBXx0BAnm2sQGTTsUAmuH1AWiwrQOTXUUAGcGtAIMiAQKK2/0BF+2tAzuE3QD19u0B96ZdAUjoMQTsS7j+fZeBA9puUP67GT0HmhNs/n/cjQRgZdkCZ2XxBLYFxQIxtyD+a4AhATW7LQNsLDEF9LwJBOwuvQONoGUE9Eb1AQZCGQH4yVEBXsjdA1hmkQCB3RkHw9WdBVHMJQPTj20DwnR5BGo65QfYrCEAihAlB1FgaQQe8zEHdXUpApehOQVMwrUBZCKZBHItvQGKz/z889iJBDUX7QNn9QEDtmIVAivmbQSve7T8BIopAGEZ5QKik7kEo5XBA0rE7QdyST0BOHu5AORekQN75gUAt+rNAdyB+QHteu0AOMyxBeBs4QMaZEkBCGL1AZjeWQPQmikCPBRtAHbYQQIdiLkCPyptA6Z6jPys2xULNt15AeSjXQEe49kAFxjBB + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwHVHWEAAAAAg5IpYQAAAAEAzkllAAAAAYM2LW0AAAACgvMxcQAAAAOAMEF5AAAAAYPIIX0AAAACgBSdgQAAAAKCXQmFAAAAAwF1nYUAAAABAoqJhQAAAAIDuwmFAAAAAwDpfYkAAAADAs6diQAAAAID2Y2NAAAAAAACIY0AAAAAgYuJjQAAAAMAUy2RAAAAAQFYgZUAAAADgU0ZlQAAAAOANZGVAAAAA4MDiZUAAAAAAluVmQAAAAEDtC2dAAAAAAGMlZ0AAAAAAymJnQAAAAEDHe2dAAAAAwO1DaEAAAADAlyVpQAAAAMB1QmlAAAAAQLGkaUAAAAAAsMxpQAAAAMDpLWpAAAAAAFNfakAAAAAAiwprQAAAAAAC52tAAAAAgF+ibEAAAACAO8NsQAAAAMCk5WxAAAAAwNgibUAAAACAO81tQAAAAIC38W1AAAAAQDkFbkAAAACAIpxuQAAAAEAe7G5AAAAAQL//bkAAAAAAxGVvQAAAAMCzf29AAAAAoEobcEAAAAAgaDVwQAAAAABvb3BAAAAAwP2BcEAAAAAAvo9wQAAAAMAioHBAAAAAwLDDcEAAAADA1/1wQAAAAMDECnFAAAAAIBU9cUAAAADgpVlxQAAAAABzi3FAAAAAAPuWcUAAAAAAr7JxQAAAAAA5yHFAAAAAgD3UcUAAAABgBfJxQAAAAIAS/nFAAAAAQBYUckAAAAAAOypyQAAAAEASTnJAAAAA4AJgckAAAADAHn9yQAAAAAC5mHJAAAAAYO6nckAAAADgAL9yQAAAAIB4VXRAAAAA4PkEdUAAAADg5A51QAAAAGCtknVAAAAA4OucdUAAAAAgxud1QAAAAEDPQHZAAAAAoMbJdkAAAABgetV2QAAAACB8BXdAAAAAYDhdd0AAAACgVmp3QAAAAABugXdAAAAAgDmod0AAAAAg7cB3QAAAAID50nhAAAAAAKg2eUAAAABg+GJ5QAAAACAf03lAAAAAoEXgeUAAAACg1gR6QAAAAMCLD3pAAAAA4JRUekAAAABA1WN6QAAAAKBWkXpAAAAAwDahekAAAADgPOR6QAAAAEDP7npAAAAAINoze0AAAADAGBd8QAAAAKCIM3xAAAAAQEdUfEAAAABAE2R9QAAAACB0x31AAAAAILb0fUAAAABA+WKAQAAAAABaaoBAAAAAoGJxgEAAAACg7PGAQAAAAMCt+oBAAAAAoDKDgUAAAADgYomBQAAAAMD8ooFAAAAAANQzgkAAAABgP0OCQAAAAABIxIJAAAAA4M3KgkAAAABgNlCDQAAAAKByVYNAAAAAAJxcg0AAAABgJKGDQAAAAEAdMoRAAAAA4D8sh0A= + KBZXds7jZUAnt2DdIQNrQKPid1q/AnFAk7mMQumSdECRoHe3LTN4QAdfTTLZk3xAs6l56LCjfUBL28yoWFKBQAbb4Rk6+oFAl99isnuyhEDeu3Dkr1qFQJcOUdwnO4hAcpwUIAdjiUDCONPec3OKQJ3GliJTm4tAVhl3Gst7jkCd9YRM/yOPQBf9gnIg7pBA9XwNKxFCkUAugFVFUYKSQNmS4DJHxpJAdwKWEXLek0A2vNAug8aUQPPx1aiNqpVAttPHQ9mKlkDXB6mwwy6XQM1WmhYKH5hA - + - dqVrQIrTtEGVdX9A73UeQXN4BEGS2/dBHQ2pQVJolkGIOIZC8FvHQN1n/EFRJjBAmtRWQcwnxUAlRhFCfMghQisAgkE0JvpASL+TQClDCULxlRJBWcgVQRF3IkNpgKFBH8OyQEYnAEPYlztAQI8TQTMcCkWbYohCTXiMQcP1REAzS7dBTvSpQSxtckDQO5NAkPD/Q6XrPEJTVo5Bm8+aQYG0hkFO2wFBZkUGQWZq9UDF2ipBPumcQItvgkLfW8FBJlB4QIa0gECqsp9A6/tkQCriHEC2v5VB1xRSQp1cH0M2ycZBCkU4QZ+jlkHyawhD1hMFQR2X3EHFDDNCDCtIQi5HqEKDFjpBEY7bQSD9pEIkYJJCVKqpQ0VfUEKMQDNBBRuXQl3DG0PaPKlBOg42Q8iZC0EU9fBCmM2WQVxtn0AHjtFCE2M5Q2e6j0GZo7FAUPkrRhBGWELt4ZpBuSxmQceTCkKLiQJC69tHQdHwpEKm1xdC/8ZrQAQbqUHSIuNAEKKIQWyhsUGQNPFB4J82Qlx+2EFOF4xCmDlzQkiDEUI4i71AXHk5QsNln0HwGzpBoa7oQG9R1UCVz4VA1fBfQf4LL0KWeQtCLauJQx0LLkLbRPNA5Ih0QVRtr0Bj0/5BH6PYQSreVUK5gtJBqDWfQNreI0FjOW9BimuxQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoI+RVUAAAACgTkVWQAAAACDGwlZAAAAAALJLV0AAAAAAt0xYQAAAAIDjhFhAAAAAAK/EWEAAAAAgeNtZQAAAAAAhSFpAAAAAwO6JW0AAAAAA9MRbQAAAAADUAFxAAAAAQIVNXkAAAADAcgZfQAAAAECOJmBAAAAAwGRGYEAAAAAA2mdgQAAAAIA4pmBAAAAAAIsCYUAAAAAA4zZhQAAAAKAvS2FAAAAAAKpsYUAAAACAzK5hQAAAAAB+xmFAAAAAwPZjYkAAAAAAZodiQAAAAMAhqmJAAAAAgJcZY0AAAAAgvGJjQAAAAMB4hWNAAAAAwEzgY0AAAADA0Q9kQAAAAED+JmRAAAAA4PVoZEAAAACAmadkQAAAACClv2RAAAAAQLEDZUAAAABAMUJlQAAAAECWYmVAAAAAwBmDZUAAAABAR6xlQAAAAIAsw2VAAAAAwAcjZkAAAACApQRnQAAAAIDVKmdAAAAAgDxGZ0AAAABgQpdnQAAAAIA9AmhAAAAAgJ9FaEAAAAAAjGVoQAAAAGDHiGhAAAAAwPGfaEAAAADAYspoQAAAAIDk4mhAAAAAQCAiaUAAAABANERpQAAAAMALpWlAAAAAgJfmaUAAAADAkidqQAAAAEBnRGpAAAAAAImDakAAAABAZqdqQAAAAMDmw2pAAAAAgLXlakAAAACAnWZrQAAAAMC4fWtAAAAAABWja0AAAACAbcNrQAAAAABU4WtAAAAAgMgBbEAAAACAHyxsQAAAAIDXSGxAAAAAABCCbEAAAADA/MpsQAAAAICMBm1AAAAAwLMnbUAAAADAuENtQAAAAIAhkW1AAAAAAI+pbUAAAABA+8JtQAAAAABZ7W1AAAAAwLQBbkAAAAAALCVuQAAAAICrRG5AAAAAAO+dbkAAAAAAHcZuQAAAAICJ5G5AAAAAQKEsb0AAAABAol9vQAAAAMBahG9AAAAAgGi8b0AAAACACN9vQAAAAAA1/m9AAAAAINIRcEAAAABg1CFwQAAAAAC5MHBAAAAAoCxCcEAAAACAJlRwQAAAACD+gnBAAAAAQDmRcEAAAADg8LVwQAAAAICcw3BAAAAAYMzucEAAAADAFQFxQAAAAEBmGHFAAAAAoNoicUAAAADAITVxQAAAAGBPVHFAAAAAQCjBckAAAADgbANzQAAAAKBfhHNAAAAAwLOSc0AAAACghZxzQAAAAOA1tnNAAAAAIBP7c0AAAACADQp0QAAAAGDFlnRAAAAAgMxVdUAAAADgvHB1QAAAAIC+lHVAAAAAgDbDdUAAAAAg2Ol1QAAAAKCo9XVAAAAAYCMEdkAAAACg4CR2QAAAACDwMnZAAAAAIEJGdkAAAACgn4Z2QAAAAKDDq3ZAAAAA4M7TdkAAAACgTfF2QAAAAKAyJ3dAAAAAYLRUd0AAAABAc2F3QAAAAMCVe3dAAAAAoA+Kd0AAAACgf5h3QAAAAMDJxXdAAAAAIOPXd0AAAAAg/wh4QAAAAGAXGXhAAAAAQN8leEAAAACADTd4QAAAACCdR3hAAAAA4KBleEAAAAAAKXl4QAAAAOBUhHhAAAAA4B6WeEAAAABA5qJ4QAAAAIAes3hAAAAAQIzFeEAAAADgdNp4QAAAAGAm5HhAAAAAoFZzeUAAAADgO9Z5QAAAACBK43lAAAAAYGK1ekAAAACgoQ57QAAAAKDonHtAAAAAYMYHfEAAAABgwud8QAAAAMADOH1AAAAAYFxnfUAAAADgJPV9QAAAAEAZJX5AAAAAoA+YfkAAAABgY7Z+QAAAACAcxX5AAAAAwKoVf0AAAADAC1F/QAAAAMCftX9AAAAA4GzIf0AAAADgldV/QAAAAGCh439AAAAAIKn1f0AAAAAA9HKAQAAAAIAseoBAAAAAwI56gUAAAAAgERyDQAAAAOCJc4NAAAAAIEh7g0AAAADgdouDQAAAAAA/lINAAAAAIKHig0AAAAAgUumDQAAAAODj84NAAAAAIL36g0AAAAAgvAOEQAAAACCKioRAAAAAABvYhEAAAACgrgOIQA== + KBZXds7jZUDOIQhxcmNnQKPid1q/AnFAdmjQV5HCcUDF63mLQnN2QA== - + - mJIGQQmjS0Ff7vtA1o6yQBQSIkAyCUlAfvsvQBctOEB3mRtAt90XQUrVkkB3aR5Bm/+jP2lJpD9TaGtBkLYuQtJ8R0LSRUFCyfTEQBptEkAmhO4/oy8KQKLfHEFqcytAumrsQFe/8T8fvRxAjUOIQIDXCUDoxt9AlXlBQNn3G0AZzNtAW7MJQCOrKEB818FAZ7oIQfcrh0Ge8b5AIHrJP0Fk4EBAeLdAqJ1fQRCKXUCzoLtBichPQQUwHEDbTso/Cae2QIwrKUGTKwxB7qjTQOjkTkFM601BUc6nP+8fuUA5Z7VB5A8DQuNWbkDlxpxAAAITQHbjkkGYRipBQH/lQSu7iEAQPFFA0FaYQCF+wkE7BHtB202vQHHiG0C8xw1BBzClP1T9UUAcBaVCzSwbQZyfpD99fYJBBs6DQYdwokH0BAtCc7hPQ5KsC0JO49lBqqaQQeOYE0Gm2XdBljSrQaRKPUGMiBRBnD0ZQdIaOkGwLMtBWEWlQtCPukJa1kdDuiGRQuLfCUCzWaVCpYsjQlJZ9UGbdkBAp7bBQDHDOUBGxDVBYL3hQa7UD0IK9y5Bkr8TQHLTEkFVSANCSronQ8XJsUIyaSVAvtu7QAmgEUJDVCZAh/kSQLIQ/T8gsCNADdi7QFHNNEDz+71AaCV5QIjp7EDqT99AArOqQKdYykBmzKpBLAvOQIKVhUElcalAoqqGQneQpD9QcptBXF6IQRIspT8oX19BrIa/QCDKU0NYC+JCrC7sQVa7BEGqM7ZAUL1vQHPPF0H+pZNAzC5JRPRcJUDuBfpB5Q0PQffkk0B/tgFBYg3FQLiO6UI4qPdBDunxPxzVgUHgo8lAcdFBQCMaXUAmbxxA4Z8SQBtcykALu6Q/oa8cQDwRgUDL2khAtFb9QSKpuEB4UKJAbFauQYy8CUDQe7VBODKwQHbGHkPeR8pB6o6OQGQnw0DLypE/mAuCPxZHA0EOYWxAdz35QMpHuUAoyLtA1UnsQEv35UBfXSJBY4BBQNC/dUA= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoN3iZEAAAABALWNmQAAAAEAOZGdAAAAAAFneZ0AAAAAgwSNpQAAAAIC9QWlAAAAAgIsHakAAAABgTGVqQAAAAMC+wmtAAAAA4OYdbEAAAABg4WhsQAAAAEBYJ21AAAAAIEQDbkAAAABgIAZvQAAAAMDNQW9AAAAAoNNmb0AAAAAAFiFwQAAAAOCKL3BAAAAAAAI9cEAAAABg28dwQAAAACAjHHFAAAAAgF1DcUAAAABAr1FxQAAAAMB973FAAAAAAIIxckAAAADgvmFyQAAAAMAk4HJAAAAAAPimc0AAAADA+AB0QAAAAAABpnRAAAAAAOuydEAAAACA6tF0QAAAAIAHE3VAAAAAgMNEdUAAAAAAYrJ1QAAAAMDKlHZAAAAAgMV2d0AAAAAANIJ3QAAAAMCvwnhAAAAAQLHReEAAAABAVel4QAAAAEBFVnlAAAAAAKtxeUAAAADAY/B5QAAAAECiEHpAAAAAgDInekAAAACA13V6QAAAAADShXpAAAAAgLwDe0AAAABAchN7QAAAAAAWJXtAAAAAgIqze0AAAADAs0F8QAAAAAD5k3xAAAAAwF7EfEAAAACAztJ8QAAAAEDwAH1AAAAAwLASfUAAAAAAH/F9QAAAAMBPQX5AAAAAgFplfkAAAAAA8XR+QAAAAIAGgX5AAAAAQLnAfkAAAADA3BN/QAAAAADYhn9AAAAAgEnWf0AAAABAhuF/QAAAAGCVGYBAAAAAoOMhgEAAAADggjGAQAAAAOASUYBAAAAA4PZegEAAAAAgiHSAQAAAAKCkhoBAAAAAIHmQgEAAAADgXpyAQAAAAKC8poBAAAAAQGqzgEAAAACgvryAQAAAAIBHzoBAAAAAoPj9gEAAAABgqRqBQAAAAEAqIYFAAAAAICGZgkAAAADgd6CCQAAAACCz04JAAAAAQPr7gkAAAABg0UmDQAAAAMA2U4NAAAAAIJuCg0AAAADgRYmDQAAAACDdl4NAAAAAYAWjg0AAAAAgNNyDQAAAACClIYRAAAAAgEgrhEAAAAAg+EOEQAAAAOAiy4RAAAAAYInUhEAAAADgxNqEQAAAAOCp44RAAAAAgHnrhEAAAABgJPSEQAAAAEC8EYVAAAAAAEiDhUAAAAAg5YmFQAAAAOB5/oVAAAAAIMAQhkAAAADgFTuGQAAAAAACUYZAAAAAoDBuhkAAAABgyrKGQAAAAKDv3IZAAAAAQIzrhkAAAABgowuHQAAAAKCWoYdAAAAAIDiph0AAAADAnsOHQAAAAKDPF4hAAAAAIKUmiEAAAABghSuIQAAAACDdMohAAAAA4NhAiEA= + KBZXds7jZUA/KJil8iNpQDeULWxqYnBA - + - R8QTQAkKykBu3qhAv+ScQBYTgUB35YlA7+IJQHXPLkB9zblABTD/QTf7tj8WeuZAq6p/P9Ol6D/7XfBBGIM3QSBCyECFg6Q/KckQQP0/REHNVtxAl1P8QMu0AED1/Q9ANifbQCEbxUCjRVFA6vsZQb8gBUHIMm9AK1PrQLxrr0BGFltAGYfbP9ejoUAfdR9BkoVjQYFMpj8FnpNA8A/FQMihrECCo6Y/h1qAQSaTA0H8RTpCuCmSQKiP7EB0uAlAOtbcQS/StkAc3yxAALnTQXfq/UCRkEpAF6SiQVeVhEB3ovQ/SfJ4QAyTyT/Rg8k/hzwaQdBhMEF1HpZAbpqYQV/ghUBj7NlBPhPWQnAEZ0A1PnlANpsTQN5pWkCZZoRBfZPuPzw+IEKMmsBAHZBpQDozkT9KC7xA8soHQYCvUUElV1pAuynCQE8+hEEYX2xCoiMCQOVmp0DCzllAh+W4QCUQvEAHZ3dByeW2PxIEOEAGI+JA27hTQa28aEFTKSdBmTkcQN+WcEBCWAVBMTxWQJzTyT8+aaFA+2myQPedwEATQkFBluYvQrQ5HEBj3llAWwwaQY1BnUC4MzFBdvqkQOYoL0BNCIZBkmLcP4ji7kD8vQlCJtUDQbAWTkEY5wdCCeD8QByRrEHwJUFBmV+EQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgAvDZ0AAAAAApaNoQAAAAABCvWhAAAAAgN8CakAAAAAgJitqQAAAAIBee2pAAAAAQN8/a0AAAAAAkiJsQAAAAAAK4WxAAAAA4E8KbkAAAAAgXdFwQAAAAIDDRXFAAAAAAA3jcUAAAACAllFyQAAAAADeQHNAAAAAwGETdEAAAACAYNB1QAAAAMB3MnZAAAAAQB1ydkAAAAAAnOB2QAAAAMCOdXdAAAAAQOXid0AAAACAv/J3QAAAAEDFT3hAAAAAgMT0eEAAAADAyJ55QAAAAECF/3lAAAAAQN4jekAAAABAOGZ6QAAAAECfrXpAAAAAgHNVe0AAAADAsyN8QAAAAEBcd31AAAAAgGySfUAAAABALsZ9QAAAAIDBbH5AAAAAwNGrfkAAAABA4+F+QAAAAMBlxn9AAAAAQC3ff0AAAAAA/fl/QAAAAKB6KYBAAAAAYCV6gEAAAABgwPqBQAAAAAAf0IJAAAAAQI6DhUAAAAAg3/OFQAAAAGAjUoZAAAAAwFBxh0AAAABgq5yIQA== + 7BToB3LiY0AoFld2zuNlQDeULWxqYnBAPWWIPVEic0D+7sGlgpN2QD3DZJGpM3pAxUlW35rEf0ACj3zlYLKBQJG32tqMeoNAnHeLZ8Xig0CcpnmRcWuHQEsKu9IEe4dAnNVnux30ikBLOan8sAOLQEtolyZdjI5AVihIs5X0jkByKFPUYF6QQILdO49qRpFAJD+44qaqkkA09KCdsJKTQKRWr/f8bpRA5goGrPYelUAvjUZ4F3uWQFZtFAZDu5ZAn+9U0mMXmEA= - + - 25LRQI5pSEAbmy9AEvvlQOv9HEDxBi9At/vFQLCptUCu8GtAM0snQFkdCkCoN7c/E+62QKZvvUCCQphAj4oOQLr9qUCx3xxAYbSfQJ+im0BrAupANG1VQBAOCUDN2xxA666kP+SQG0AQd1dBCtcbQZjLJkD9gLFA4QOlPzvISkB/PxxAUngcQLELUUFvRYRANQ0BQH6v7j85/4lA+02NQHDiyT+8UYlBS2A4QAUfq0ELyGtBeYOpQD5Hv0GtXLxA36ABQUKxr0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwDcpYEAAAAAg7EdgQAAAAKCUnWBAAAAAoB3rYUAAAAAA8GViQAAAAABTgmJAAAAAgEHHY0AAAAAAZR9kQAAAAEA3X2RAAAAAAI1FZkAAAADAsXxmQAAAAOAmpGZAAAAAAHbEZkAAAAAAX+JmQAAAAACxBmdAAAAAwEZIZ0AAAADAwGhnQAAAAGAEfGdAAAAAgNgmaUAAAABgAqBpQAAAAEDWuGlAAAAAQLIhakAAAAAAJGFqQAAAAAAxK2tAAAAAAIBka0AAAAAg2pRrQAAAAEAnw2tAAAAAQHlEbEAAAADAjWVsQAAAAAAe3WxAAAAAYNUBbUAAAABAZSdtQAAAAICTZ25AAAAAwNiFbkAAAAAACv1uQAAAAADcFW9AAAAAAJlBb0AAAAAASXhvQAAAAEBLqW9AAAAAgCcEcEAAAACAMSZwQAAAAEBZMXBAAAAAoJRRcEAAAACgWdVwQAAAAKAoAXFAAAAAoOsYcUAAAADADEJxQAAAAEDiUXFAAAAAAFePcUAAAABA2MBxQAAAAOCB43FAAAAAYKjxcUAAAAAANw5yQAAAAIC6T3JAAAAAQMtcckAAAAAAE2xyQAAAAOCMp3JAAAAAgEXGckAAAACg7dVyQAAAAMCi9HJAAAAAQFcUc0AAAABAG2BzQAAAAIDWf3NAAAAAoGnSc0AAAADAPPBzQAAAAMBvEHRAAAAAwM8edEAAAACAbTV0QAAAAGCwSHRAAAAAoBRTdEAAAADg2210QAAAAMAJknRAAAAAgIDFdEAAAACA5/J0QAAAAKD5EHVAAAAAYA0jdUAAAABgRzV1QAAAAID5UHVAAAAAoFphdUAAAADAnXF1QAAAAECojnVAAAAAQG65dUAAAACgtdF1QAAAAAAe7HVAAAAAwNQSdkAAAAAAKTN2QAAAAEDzPXZAAAAAQIVVdkAAAADghrx2QAAAACCtx3ZAAAAAYKr/dkAAAACgCBN3QAAAAOC5MndAAAAAgGRCd0AAAACAJ1N3QAAAAKDodndAAAAAADKgd0AAAABgzrF3QAAAAGDBv3dAAAAAIMrTd0AAAABgJ+53QAAAAOCnFHhAAAAAoHkmeEAAAABgpzF4QAAAAKDOP3hAAAAAwDRSeEAAAAAg/2F4QAAAAADUc3hAAAAAQGyOeEAAAACA1qN4QAAAACD8snhAAAAAYCbBeEAAAAAAJvF4QAAAAAAREXlAAAAAQI9FeUAAAACgQgN7QAAAAEC/JHtAAAAAIDu1e0AAAADgmFV8QAAAAOAIhnxAAAAAYMkufUAAAADgtEB9QAAAAKB8Rn5AAAAAIDGnfkAAAACgtdF+QAAAACAd3H5AAAAA4F3ufkAAAABgET1/QAAAAEBWX39AAAAAQBVsf0AAAABgjXl/QAAAAGDWg39AAAAAIOyrf0AAAAAgu6aAQAAAAGDW64BAAAAA4NoXgUAAAADgayCBQAAAAKBhK4FAAAAAoN8zgUAAAABg0lGBQAAAAOD1k4FAAAAAgCG8gUAAAABgIsSBQAAAAKAXzIFAAAAAIEbqgUAAAAAgBBCCQAAAAODhK4JAAAAAIIc7gkAAAADg1kmCQAAAAABSUoJAAAAAAK9vgkAAAABAUoGCQAAAAMAZmoJAAAAAYLu7gkAAAAAA/cOCQAAAAIDn64JAAAAAgMDzgkAAAAAAIEqDQAAAAAASpoNAAAAAIN8ihEAAAACANSqEQAAAAMBhNYRAAAAAoOaKhEAAAADAdhqFQAAAAGDWJIVAAAAAYJYqhUAAAADgtmOFQAAAAKDLcYVAAAAAoMrAhUAAAACgatSFQAAAAGBC44VAAAAAoEfrhUAAAACAqyOGQAAAAGCFUIZAAAAAYFhzhkAAAACg8HuGQAAAACAzDIdAAAAAgMk5h0AAAADA7pKHQAAAAGCT3odAAAAAgDQciEAAAACgySKIQAAAAOACLIhA + NrgMGZxjYkCO7m7sniJrQFf+/uF9UnBAghmwS/+xdEB+v0ZZLGN4QA== - + - VUQTQMbNjUDdzzZAGTMbQO7UYUEwHyZA/Na3P3TCY0GIYQtBAIKJQItiwkC4fb9ApdPsQP+Qy0BBAgFBGb6lP16J/kDF/llA9+DuP5b5dUBKTApA+pzbQVg5uEHN5wJBB9D/P6tKj0COURVBU64NQhYYV0GMB+9Aj+MNQKShwECS8J5BoJxEQhPcHEASxNlAmvzSQEZdB0Ac7VFB5IiJQA7NjEGwrFFAKY0bQNjFSECU3AVDKgZtQKLgBkJ9hF1AWFuEQC7+2z9xGzVAv7fvP39x1EASRQpAyjEMQVDplkA4qZRBY2TuQkLEi0CqUMNA3V5cQE0bMEBp/slALmNsQcZ+rUGZWiRCesAQQBk+gEC3eEFARO4FQfJc0EGbPUtC1WpyQY+hyj+7bntANeqAQkh5mUBBavNC0OIBQu4bSULtNBBB+smlP/2VVUHhosJB4W8AQfjsrkCQw0tBPeeyQfJ5GEL5ashCt5ofQUpVbUFoHMxBvSn7QMyJmEDE5DNBsGoFQhNMnEAi0/9AoAgBQHA83D8gehVBLJErQmveRUFFTXhByxQKQyt5lkB5fgRBY4ZxQKr5x0BqLvNAtHcqQV5jpT800/VAIxwnQj1u00DMyHxB20NmQSNz+0A0LCxBtuhRQDAzzkAWN0tAxrWvQEGzgEKPzhhBAURGQa7fc0B+th9ESJAFQNwO3EDsJClCMFztQC/DX0FwgZBAET40Qkm+n0Do2KlAbEhwQOFiXEANN4hAMS/qP5wOr0CxbklAIaIDQXYaA0FoRShByDkXQQ4uk0A4kBVB2rvYQRpxkEHEqlpAtUcZQzr5rUH9VEZCsIuGQAosEUBQ+ZJAhhkIQOhc1ECheGRAUpi2Qd3OikI8DUlB6VfKP8/mU0DQRIpAszKkQXKMbUCBuLxBT5GPQfT2wUDXkO8/NJs8QmDyyEEA6ltAC/EBQFZ6HkEaZ6BByxfKQNwjXkHu6slA + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - - - - - - - - - - - - - - - AAAAwKM/XkAAAADAzQBfQAAAAIDvJWBAAAAAoDVHYEAAAAAAckJhQAAAAIDj52FAAAAAYCFMYkAAAADAIGZiQAAAAGDZhWJAAAAAgPfiYkAAAACACh9jQAAAAEBov2RAAAAAwFrgZEAAAAAgYANlQAAAAIDYAmZAAAAAAH1IZkAAAABAiwZnQAAAACAgaGdAAAAAwC2HZ0AAAADA5gZoQAAAAKDPHWhAAAAA4GxmaEAAAAAA08ZoQAAAAABC8GhAAAAAQPskaUAAAABghlBpQAAAACAO5mlAAAAAgDg/akAAAAAg2GFqQAAAAGDDompAAAAAgAnsakAAAAAAO2trQAAAAICohmtAAAAAQHm/a0AAAACgoORrQAAAAIBXJmxAAAAAQK4+bEAAAABgb2VsQAAAAIDQhGxAAAAAgKknbUAAAAAAjH9tQAAAAICm6m1AAAAAQMyIbkAAAACAS5ZvQAAAAGA/BXBAAAAA4DUUcEAAAACAjCJwQAAAAEBCcXBAAAAA4BWTcEAAAACASaBwQAAAAMCx7XBAAAAAQDoQcUAAAADA/kJxQAAAAMBZdnFAAAAAQAuOcUAAAACA2aBxQAAAAOD00nFAAAAAYMr/cUAAAACAlz5yQAAAACBqWnJAAAAA4I9+ckAAAABgDuRyQAAAAADsBXNAAAAA4DVHc0AAAAAAtnFzQAAAAMC7e3NAAAAAoObAc0AAAAAA2eRzQAAAAEDZEHRAAAAAYIFIdEAAAACgwoJ0QAAAACCqo3RAAAAAAF/FdEAAAADAW/50QAAAACATKXVAAAAAgLpBdUAAAAAAspF1QAAAAEARoXVAAAAAIISvdUAAAACA2MF1QAAAAGDl0XVAAAAAwOHgdUAAAAAAYgN2QAAAAGCyJHZAAAAAYBo1dkAAAAAA5FN2QAAAAGAelnZAAAAA4Bu0dkAAAABgasV2QAAAAGAA1HZAAAAAoMXwdkAAAADgJ0V3QAAAAOApU3dAAAAAoAB1d0AAAABgi4l3QAAAAMD9lHdAAAAAoESld0AAAACgmK93QAAAAIAuvHdAAAAA4EzSeUAAAABglQ96QAAAAOCvT3pAAAAAQFWUekAAAABgYrd6QAAAAODk9npAAAAAQKN1e0AAAABABel7QAAAAGCz6HxAAAAAoB+5fUAAAABgE/d9QAAAAOCkLH5AAAAA4JdEfkAAAABAtFh+QAAAAMCjbH5AAAAAIHZ6fkAAAADAd9Z+QAAAAOCAAn9AAAAA4Pokf0AAAABAMzR/QAAAACCShX9AAAAAIJ+zf0AAAABghcd/QAAAAEBoI4BAAAAAoGJYgEAAAAAgiHaAQAAAAOAVgoBAAAAAgKiygEAAAADgs8qAQAAAAEDN2oBAAAAAwJ8ZgUAAAAAAdTOBQAAAAODkRoFAAAAAQFz7gUAAAAAAiwGCQAAAAEA0NIJAAAAAgFlqgkAAAACAGnKCQAAAACC5k4JAAAAAoNmggkAAAADgSeGCQAAAAOAjAYNAAAAA4Hwhg0AAAADgYFyDQAAAACC4wINAAAAAoODIg0AAAABgBwqEQAAAAMBPQoRAAAAAwPNShEAAAABgB1yEQAAAAKBwMYVAAAAAoEFDhUAAAABAgmKFQAAAAADQA4ZAAAAAYAqMhkAAAABgQpOGQAAAACDI0YZAAAAAwOFFh0AAAADgbquIQAAAAKCssIhAAAAAIA69iEA= - - - - - - Y7C6P8bjN0CvZApAbvkqQf6UlT+mHX9AiDipQO6Wr0Dt4VxAPLyJQPXApD8Gsq9AhHIKQLom3T+3XhBB0WoZQdOa5kAOKEtA9qvWQPEckkC5SktAyKxBQPqTHEC7yPdA3vr2QN2+OEBi+dw/4PKkQXRPRkFGGgFAb01iQS9QZEGlZKU/XB4mQEyUR0BWgn5BXSBWQUGCVUBv2hxACf6qQBAsIUH1R4VAjLNdQPs7eUGmYidAohWTP9wnk0AIJKY/IkWPQOpNW0AvcQ9BlWdTQEgBh0EDaVRA7KWSP7rtoEDYDoZA5w+mQVEF2z/4oV5Beue0Qc09AUAW5D5BabtmQOzoG0EZYQhB87gkQbyNl0FBlSVB1ldUQBTgyj/wdso/AOQyQbRZH0Ea0nBBwDdLQAenHkFmCB9BjgLvP12jqUFhXi1BHj2SP1sbFkJ6/RlBjF8TQeqOJ0GQg7tBVSZwQBCttkBgOwJAbqQGQKyVsEHPk8VBONqCQjUgakFKpodAkcgAQSceU0FxxDlBRJLRQS+1jUFWe8o/LvaTQD6ZzEDCyRhBroxUQDHztz+5Q0FBy7MSQZGZ5ECIjc5AlsHcP+kqE0G4VH5BylBdQbyOT0GDDYZAzUQoQt5x+EHjrFBC+jSeQaAd/kKQoJNAnUyEQNu5C0HiFoFAfvRGQcdslEAYiy9AWDJjQJdYG0ArpedBdB04QmQAPUHqiy5AFg5bQBJgVEArpu5AM0DsQL3GH0GS/S5BmNp4QBsadUGBeJNAQxb1QPM3gj/qk39AjgRbQcGDpkDegKg/kbQ4QPvC40DHBgFADCMNQWKq80Af3h1B/O5BQGP3OUGwyTBBQdOIQA== - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - + - + - AAAAwNToYUAAAACAdWViQAAAAACNamNAAAAAYFTJY0AAAAAA2iVlQAAAAMB6EGdAAAAAQKRkZ0AAAACAA+ZnQAAAAAABqGhAAAAAAMQDaUAAAACA4ClpQAAAAMCtZmlAAAAAQCI+bEAAAAAAy+NsQAAAACAxX21AAAAAgFVmbkAAAAAAIdRuQAAAAGCCAXBAAAAA4OAPcEAAAAAAnGRwQAAAAACkdHBAAAAAwIx/cEAAAADA/ZFwQAAAAABBzXBAAAAA4I0hcUAAAACAhBJyQAAAAECyQnJAAAAAIFOFckAAAACAWPJyQAAAAEDncHNAAAAAAH3LdEAAAAAAHuR0QAAAAEC47XRAAAAAIDUAdUAAAAAgzER1QAAAAEBDdXVAAAAAwBqFdUAAAAAg+5V1QAAAAECVtXVAAAAA4PvFdUAAAADgXtx1QAAAAKB8UHZAAAAAIBxudkAAAACA19F2QAAAAEBi7XZAAAAAAJACd0AAAABA3RB3QAAAAMAEIndAAAAAgFmUd0AAAACABuZ3QAAAAKA/9XdAAAAAIEUReEAAAABgTmB4QAAAAIAknHhAAAAAIGPCeEAAAABgb9R4QAAAAKCCB3lAAAAA4AMTeUAAAACgn055QAAAAKCyg3lAAAAAgIGweUAAAACgFMV5QAAAAGBL43lAAAAAICD1eUAAAAAgdQN6QAAAAIAmV3pAAAAAIOFsekAAAAAgtIR6QAAAAEB8jnpAAAAAoGjVekAAAACgkOJ6QAAAAMAW93pAAAAAYNAEe0AAAADAQC57QAAAAGCIT3tAAAAAIMhse0AAAABAC4N7QAAAAECHkHtAAAAAoIvVe0AAAABAlZJ/QAAAAMC6AYBAAAAAYI8lgUAAAACg+DqBQAAAAOC+aIFAAAAAoOuKgUAAAADgI5GBQAAAAKDu3YFAAAAAwAgNgkAAAADgzUqCQAAAACAZpYJAAAAAQMfhgkAAAAAA0kSDQAAAAODckINAAAAAYKuVg0AAAADgYZ+DQAAAAMBg04NAAAAAIJnnhEAAAACgYReFQAAAAEAFQ4VAAAAAID1UhUAAAAAgs3yFQAAAAOA96oVAAAAAYECKhkAAAAAAJXmHQAAAAEC6hYdAAAAAQGCaiEAAAABgVbGIQAAAAIAp1IhAAAAAQCH7iEA= + NrgMGZxjYkA= - + - /RsmQHYZoEDhHZdAElnrQC2LAEDQ9RJAl78yQRGvLkDbeihBYC6UQILKoEA2tMo/dGoyQd4eqUAbZFRAf7cgQQOvbEC6G/FAjLY4QBXwz0ACIwFBxc7tP3AQKEFoh7g/+MoIQFW5gEDoQ0FAzAwSQcyjBkFeSwhAORWAQKG6LkEVi6U/HY0uQJ9zk0AGoApA+gQ8QU2BjkFRTHBAway5QPgVAUAteepAan6NQBJ+mEDc1bk/vgxKQVq3tz+RsCVAeKuGQcqy3D84LnZAiplwQOTzhUDrtUNBnO+NQUxL/kCV54hAEvviQN4y5UEDo4ZAVeNmQCZu3EA6HepAq8UEQV47+UAWFd0/Ic6cQWGOJkG66ZNAmoS5QY3t0kA8JtlAxh7AQEnbWUHEHcVA2BbcQKDJRULgW5hAeysFQgVdFUIOH1pAwwemQEJ32UEx88o/cE9fQZ29q0DOEglB7oHkQA3PGUH9N0dBcWJBQOOZwkGpFiRAGRVUQAWvpkFmywpBaqHiQEajS0EvqKlCVweGQDJZFkH0LIBAsIiqQHbTmUDGX7JAM8glQPo7l0DnHk5BNXCHQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAgNHdZUAAAADAQSNnQAAAAABeBGhAAAAAwL4jaEAAAADA6UNqQAAAAMCdgmpAAAAAwL+kakAAAACgPGNwQAAAACDD0nBAAAAAwB2EcUAAAACAOpNxQAAAAMB3xHFAAAAAQFwXckAAAAAA+2JzQAAAAEBjb3NAAAAAAKySc0AAAABAO/NzQAAAAEC/IHVAAAAAQEwxdUAAAADA33F1QAAAAAAOhnVAAAAAgGYGdkAAAABAgBB2QAAAAEC0I3ZAAAAAgMXEdkAAAABAyiJ3QAAAAEAQRHhAAAAAgHpOeEAAAADAZaZ4QAAAAMA/8nhAAAAAgMELeUAAAABAUrR6QAAAAAAyCHtAAAAAwLFEe0AAAABA14R7QAAAAECO0XtAAAAAQMgKfEAAAADAV1V8QAAAAEDSYnxAAAAAQMEffUAAAADAgTR9QAAAAMB7cX1AAAAAwAkUfkAAAABAqDN+QAAAAMAjWn5AAAAAgOxkfkAAAACAC5V+QAAAAEBOEX9AAAAAQCxXf0AAAABAKbR/QAAAAICeCoBAAAAAQIxLgEAAAACgPleAQAAAAKDvc4BAAAAA4PTBgEAAAABgWV6BQAAAAOBOZIJAAAAAoHBug0AAAACA6JmDQAAAAOAEBoRAAAAAYDNHhEAAAACg4l+EQAAAAMD9aoRAAAAAIB6RhEAAAADA0pmEQAAAACCh8IRAAAAAgCnShUAAAABAAtqFQAAAAMBaH4ZAAAAAgA8phkAAAABAk2uGQAAAAICOdYZAAAAAoIrRhkAAAABgG6qHQAAAAECwtYdAAAAAoNCCiEAAAAAgEYuIQA== - - - - - - 0siKQFB+gUC8S9lANvwTQE9/yj8A1NM/oO4vQI8ItkFp+tZAzV3IQImexD8Qcy9Awe9jQOWCVkHHy9w/M1WLQHwVkz8sIHlAEZ1zQXM+iUC3DOVAqy05QFOUqED8m+ZA4Iw4QEPyl0AeufNAtnCYQM2LNUC93hxAEvauQO4VQkDUBKtAgkssQebWzEH/hnJA0FkTQGmXyUB8UyZABPWTP83UdkACxh1A1OeeQD1lhEBTB69AkkMYQap1L0ADzURBH7jOQFJEVUC9aJhAFqilPyP3BEFEnyRAcZAcQJ0qxUDB26hA2Z4FQTxsr0HMfHBBsoSBQW/DUUDgCGRACOBQQe1ypkAURxNBVRuGQPU5OkCTwbtC/LpaQoTjCUJHColAPFLcQKNuLkHq+SBBbTkEQREcdkA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIElnYkAAAAAg5f9lQAAAAABdg2ZAAAAAADYbaEAAAACAiEFoQAAAAMDkxWhAAAAAQP4maUAAAACg/wFqQAAAAOCzRGpAAAAAgKKpakAAAACg2O1rQAAAAAB8Z2xAAAAAAG90bUAAAAAAuSJuQAAAAADKTm5AAAAAAEeHbkAAAABAwSFwQAAAAMAeAnFAAAAAoNwmcUAAAADgZUZxQAAAAEDhznFAAAAAAMYyckAAAADgRKByQAAAAAAox3JAAAAAQOLxckAAAABA4ANzQAAAAIA7VHNAAAAAYER1c0AAAADglrJzQAAAAOB05XNAAAAAQHHvc0AAAABg+Sl0QAAAAABEgnRAAAAAID24dEAAAACAK9J0QAAAAGDuEnVAAAAAgLl/dUAAAACAP511QAAAAIC+z3VAAAAAAIDjdUAAAADAqSB2QAAAAIA/hnZAAAAAQDyTdkAAAABARLJ2QAAAAAAqxXZAAAAAwPoGd0AAAAAghSZ3QAAAAMBnMndAAAAAYDFQd0AAAABAmHN3QAAAAIDkf3dAAAAAYKeLd0AAAAAguKJ3QAAAACAR6ndAAAAAoPfzd0AAAACgO1V4QAAAAODEhHhAAAAAgBTKeEAAAAAAItZ4QAAAAECW+XhAAAAAwDYVeUAAAADAsCR5QAAAAGBGRXlAAAAAAE5SeUAAAADgg155QAAAAOCbcHlAAAAAoACUeUAAAABAIqF5QAAAAEDV6nlAAAAAABgdekAAAADAvC56QAAAACBfQ3pAAAAAAIZRekAAAACgE156QAAAAAAFdHpAAAAAYCq1ekAAAABAT/V6QAAAAID6GntAAAAA4BRLe0AAAAAgtlR7QAAAAMBBe3tAAAAA4EqTe0AAAABgWLh7QAAAACBNz3tAAAAAICTje0AAAABgkfF7QAAAAODrCHxAAAAAQKMnfEAAAADAKDR8QAAAAKBLUXxAAAAAYCtnfEAAAACgxHV8QAAAACCbf3xAAAAA4BaFfkAAAADg42h/QAAAAOCrUIBAAAAAoOjngEAAAADgFjqBQAAAACC+uYFAAAAA4NTRgUAAAADgleuBQAAAAKB/ToJAAAAAoDR4gkAAAAAgJYKCQAAAAEDOu4JAAAAAoK/jgkAAAAAgaf+CQAAAACBkCINAAAAAYIIZg0AAAAAANi+DQAAAAEDBN4NAAAAAIPFCg0AAAAAgc1SDQAAAAOD8hYNAAAAAAJ7Bg0AAAAAg9cuDQAAAAEC5JIRAAAAAYKBrhEAAAADA7nKEQAAAACBQmYRAAAAAALjqhEAAAAAA+feEQAAAAODHT4VAAAAA4JFrhUAAAABgNYqFQAAAACBNu4VAAAAAYHHBhUAAAABAieKFQAAAAKDMB4ZAAAAAYB8PhkAAAADA8yKGQAAAAGAGPIZAAAAA4IS9hkAAAADgXvOGQAAAAKA5xIhA + KBZXds7jZUD4qwju5sJuQDtMc7KVAnNAHl8GqPbRdEB27uuHRSN6QFkBf32m8ntAmPftuMiTf0BAYWN6qgGCQOlMM0c8WoNA - + - l+VAQF3EcEDski9AYLknQRfHa0HiyAdBEHxhQPXHeUD8yhtB0JqNQKFvZ0Dqad1AJDpkQFhv3j+o8LtAnqyYQBvDSUFFqFxAyF3LP4kbcEAhvJM/JsXkQEnB3T9x5uBBnzUDQayAj0Bq4q9APapRQGaJFkFY9CRB/R+4P3aK4UBjjc1AFmsmQOcqGUCDIC9BCMVUQBmoyz8eKGhBNk0aQFUrfkBhLRZBAFkLQXFbW0BsII5BSjHOQMyNS0BgBiVBZnw/QLHdpEDxe2xB59MbQX1P0EA9+RlAnokdQAv5B0IFJWtBFiWJQEnxJkF5AexBn6F5QbOyR0GzD/JAhnCtQEVv0UEspRNA0Ua5P3fF20ALs9VAPsQxQpilBEG+szpBjyD5QKvRH0LxKZ5Ax43cQOoYwUDFsnBAO1HwP8aCLECyokdChVk2QtCviUFcv1FBx3reQYkqCUD45eRBVQwfQfC+vEB4YENApeGEQLw2NEF1jB1BUFHxQIUPvUEYe45ArdmKQFICUUHo9jVBCNOGQEN6pkF9h4FAtS60QD+Sj0BSO0xCtA2AQPmajUKexaZClfsdQQ7jr0CEC4NB7+OHQUUtQkER7gNCayTYQK7wnUF8joBBpskSQ3P7d0ES3RRCY7vLP0mnOEAN4f1A9MJ5QIeSnED6gWNB5fjLQTW3pUDacc1BzGcKQZlsDEEUQiNB0XsAQbzK8D9k2HlA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYIbHZkAAAACA865qQAAAAGCqQ2tAAAAAYNdkbUAAAAAgyX9tQAAAAOCQg25AAAAAwBUBcUAAAACAXBRyQAAAAEA7g3RAAAAAgFHzdUAAAABAWUV2QAAAAABJMnhAAAAAwCCBeEAAAAAABbZ4QAAAAMA1EnpAAAAAgIDHe0AAAADAW/V7QAAAAEDKC31AAAAAQDQlfUAAAABAv4N+QAAAAMARIn9AAAAAgEo7f0AAAABAP1l/QAAAAMB+sX9AAAAAoEsMgEAAAADgrSGAQAAAAMD2b4BAAAAAIGV2gEAAAAAgn4iAQAAAAMCbsYBAAAAAAOcLgUAAAAAgoUKBQAAAAKBcSIFAAAAA4KFQgUAAAACAMFuBQAAAAEAtdIFAAAAAYNq1gUAAAADgwdKBQAAAAGDpDoJAAAAAwGYagkAAAACAc72DQAAAACA0ZIVAAAAAoM1shkAAAABgPXWGQAAAAOCog4ZAAAAAIDO+h0AAAADg0gWIQAAAAGAL7YhA + KBZXds7jZUA= - + - MI7+QKkynUCENpdAUCLBQfIfmkCyYwFA6DBvQB6n5UA3hJM/ttkTQKGfmkDN8k5Btq7OQNMlxUAlV91AmIcKQEXCG0C8TnBAaZGUQCFdAUCecHZBn3wFQUKqr0C7rXJANvWNQH+NjUBwmhNAc1cbQF6omEHZ9pZAU05WQJxKDEEhzrlBAsREQcLjR0Fm8DhA+PFeQXGrDkF4q5VBiTmqQfnz7EDUvA5B0fYAQYtVlECAwOVAWWXCQE7yUEFhPTVA + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgOMeaUAAAAAAD7prQAAAAOB9JGxAAAAAAHMlcEAAAABAbUVwQAAAAMA2VHBAAAAAwFzNcEAAAAAATOJwQAAAAMDH8HFAAAAAAA5EckAAAACgDD90QAAAAMAe0nRAAAAAQH9wdUAAAADA64V3QAAAAMAiwHhAAAAAwMLVeEAAAAAAjRJ5QAAAAICdNnlAAAAAgDXRekAAAACAAeN6QAAAAIATIH1AAAAAAGR3fUAAAAAACK59QAAAAAAvN35AAAAAgId/fkAAAADAoaR+QAAAAABLiH9AAAAAgMewf0AAAACAZHeAQAAAAIBnp4BAAAAA4HzCgEAAAACgUcmAQAAAAEDO0IBAAAAAQMACgUAAAADgGUGBQAAAAGAaWoFAAAAAQB7IgUAAAADgAwyCQAAAAGDFhoJAAAAAoLiggkAAAABgHLqCQAAAAAADxIJAAAAAIPIHg0AAAACADyuDQAAAAOA9Q4NAAAAAoK9BhEAAAAAgfZOEQAAAAKBY0oRAAAAAIICBhUAAAACgfwuHQAAAAMD2U4dAAAAAoNSDh0AAAABACJ2HQAAAAECeCohA + KBZXds7jZUD60UzrnGVsQNS+X4D+xG5AH3KoplGjc0BqPQyU13N2QDzDZJGpM3dAjEYOxVrke0BezGbCLKR8QKmXyq+ydH9A9pHZcIJagUDUetOBBUODQPbAx5ou44RAm6Z5kXFLhkCF6SWQWquGQCyr+imzA4lAFu6mKJxjiUC701gf38uKQBYdlVJI7IxATNjZtyCEjUBBRxdVlCSPQKYD5HBmhpBA - + - 6zCOQJCeN0BAAuxARwZ6QMqjS0DMTfA/d82aQI79JEEyFkhA7cXdPziO9EB8EmdAI4cKQBqN6kA+zN0/rB/LP76InkBoph5BfMgWQNT6qUA7QGhAg9DXQNKwskA384RA6V+SQA4T2EA3aY9AGAMdQOv6hUFbvEhAe6bUQdPbl0A4UuRBLkFwQFsThkBwNr5AbGdnQPrZJECGySdB4/WBQZyEOkLNJORAg8aTQDnF/EAzt3BBmQaMQFIcx0AuKN0/hYW0QF6ckz9ip7BAwETTQNDiNUEKLzdA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgO8wWUAAAACgHo1ZQAAAAIBuyllAAAAAILsPWkAAAACAnBJbQAAAAEB6UFtAAAAAILFLXEAAAACAB4RcQAAAAEANw1xAAAAAoBIPXUAAAABAs4ddQAAAAEBFz15AAAAAoJrTX0AAAAAAVQdgQAAAAEDMP2BAAAAAwKmEYEAAAADgHKdgQAAAAICLwmBAAAAAwBvnYEAAAABgFqRhQAAAAIACKGJAAAAAwGGhY0AAAACADcVjQAAAAEAm5mNAAAAAQPqdZEAAAADASCRlQAAAAGBAQ2VAAAAAYOljZUAAAACA66NlQAAAAOAlxmVAAAAAAFnmZUAAAAAAdAxmQAAAAMBmJWZAAAAAYLZGZkAAAADAuMNmQAAAAACO4WZAAAAAAB0AZ0AAAABAnSBnQAAAAEDcX2dAAAAAYJh8Z0AAAADAtJ5nQAAAAKBzNGhAAAAAQLxmaEAAAAAgoqhoQAAAAMBD52hAAAAAgIEjaUAAAAAAVKRpQAAAAGDWxmlAAAAAgMP0aUAAAACAmghqQAAAAIDkJWpAAAAAQOlFakAAAABAWWBqQAAAAEBfpmpAAAAAgO/AakAAAACAmQVrQAAAAMCIIGtAAAAAQCFga0AAAABAWYNrQAAAAABFv2tAAAAAwOUmbEAAAABAv0VsQAAAAEDJf2xAAAAAAHKlbEAAAADA8MJsQAAAAIAI12xAAAAAAPDibUAAAADAsgtuQAAAAMAGJG5AAAAAgNZFbkAAAACAv2VuQAAAAIAuim5AAAAAwPrDbkAAAAAApORuQAAAAEBCJG9AAAAAQOpJb0AAAADA+GlvQAAAAMBqhm9AAAAAwDCnb0AAAACAdbpvQAAAAIAK5W9AAAAAgOQhcEAAAADALDNwQAAAAOAnbXBAAAAA4PeCcEAAAABAjpFwQAAAAIAyvXBAAAAA4DbScEAAAACgcPJwQAAAAEBt/XBAAAAAwFQhcUAAAADA5kVxQAAAAEAkWnFAAAAAALFlcUAAAAAAzoFxQAAAAKDfknFAAAAAQNuicUAAAAAgd7JxQAAAAODewnFAAAAAAF/TcUAAAADAp+FxQAAAAMD48nFAAAAAwDYFckAAAAAAhkFyQAAAAADhU3JAAAAAwL2DckAAAADAO6RyQAAAAAAVs3JAAAAAQN7BckAAAAAAMdFyQAAAAMA/6HJAAAAAwEf+ckAAAABARDZzQAAAAEAhU3NAAAAAgIVdc0AAAAAAymlzQAAAAEBBs3NAAAAA4CzZc0AAAACAeOpzQAAAACCKY3RAAAAAYJJxdEAAAACAxAZ1QAAAAODONnVAAAAA4DCJdUAAAACgkJR1QAAAACB85HVAAAAAQCMJdkAAAACg7zN2QAAAAMCXdnZAAAAAIPm8dkAAAACgNeV2QAAAACCfAXdAAAAAoEIQd0AAAABAUlt3QAAAAICTfHdAAAAAYOMbeEAAAABAOz54QAAAACD44XhAAAAAYIcMeUAAAAAgzzx5QAAAACCbk3lAAAAA4C3DeUAAAACAveN5QAAAAKCE+XlAAAAA4JxDekAAAADgq6J6QAAAAMBPBHtAAAAA4A8Ve0AAAAAgOaN7QAAAAOB+yXtAAAAAwA4NfUAAAACgBFZ9QAAAACBadX1AAAAAYMSIfUAAAADgfDR+QAAAAGAuU35AAAAAYK95fkAAAAAgALl+QAAAAODq135AAAAAYA8Vf0AAAABAfzN/QAAAAMA4Zn9AAAAAIKh3f0AAAADAyfl/QAAAAIDUCoBAAAAAgBcUgEAAAACgdBuAQAAAAICLaoBAAAAAwDVzgEAAAAAAx/KAQAAAAKB3+4BAAAAAYFNcgUAAAAAg4IqBQAAAACD2+YFAAAAAIAE7gkAAAAAgvpSCQAAAAEAHw4JAAAAAQOXKgkAAAABg8xODQAAAAOCdUoNAAAAA4Geig0AAAACAWcKFQA== + NrgMGZxjYkCEfuNfSOJlQOzQoK8iBW9AQh3Og3wCckDMvNRcKfNzQDDbzeDqMnlAunrUuZcje0CGL9LlgqN9QFxs2AZ4GoFA8B2OGCP6gUDtcFmfudKDQA== - + - H40AQKshAEBlNbxAZI5LQDWQYEAXiQBAF8fmQT94IEBOD6RAT2cfQaCH9kCi8JVA3rt2QA8MKECXAMtDpWJFQ5tWpEG4VYNB85c7QWIH9EJ/v8pAhpkGQhEsuEHND7hCYikLQAJK5kKnG9FBAcM3Qb/DhUD6B4pA2CPlQrFFUkA2kIdBX5A1QFMO0UB8EPlAhj3VP7P1yEDo8jhEaM0WQVlRgECg0kpBndjZQB1VDEIjtAxB083oQXD5E0HGoaRAILuCRGj26UEO26ZB5/3KQJvKGEHek4dDUVn/QRhXAkKU4uVAYbOJQL+VRUEXmm5BdPbUP6DDX0BD0KdC4dXmQVIbNUR6Y0dBqzPvQfEBlkIj/MJBRawOQr+4DUE+zGRB3FuqQzkSQEBUlDJB8itoQXAP3T+jTcZADJyqP1ccwUCcbpZBMu86RdCfCULBF4RB5yO7QLdylkEVxndBWx0NQuU9o0GLNBhCWMP4QLoDCEFQMLpEGDGYQMzoPUBrY9lAIjl1QF5g90E/aRJALqRYQjwoz0C4Wus/igXEQEGOH0MACmFA3h1jQEvXM0F17Z1BodbTQISyEEPLpApBQmMiQrqnXEFGizFCqJsNQ4B1EEEu8L5Bgq27QKi8WEFgmP1AwDj7QAzAmUCzuupANCPLQVR3NEKDlBhBwueBQOD2YEAIU1ZAeZKHQAwsUkEgTl9Ar8H7P45W4EEurUtB0VGQQV50v0FXAfVBqZ7aQLwuikH/hVVB+iZ+QM73RkQpvPpAQPYKQJvXnkIlVsBFk2n9QgLmjUGrdes/C8ZAQHn+tUDi1HNB3d6pQNLfNUKIe5hB0zaPQDqBa0Db2A9BbZqyQXHhYkFWt8tA/r+FQDYdBEGzFSBD3T8MQZu96z/l7YtCV92HQRz+YUT5OyhCg5UxQQ2DSEBG2vtA2n+AQBeaIEC6EKRCCzxIQGYY6z+kYDRC66dGQg2i1EA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwCSiYEAAAAAgMUBhQAAAAEBWZWJAAAAAgH6mYkAAAADgeIFjQAAAAOBUfWVAAAAAgNGfZkAAAABADgJnQAAAAMC55GdAAAAAgGiEaEAAAADAAKNpQAAAAMAHJWpAAAAAoDVhakAAAACAKcJrQAAAAGAUPWxAAAAAoDZjbEAAAABAr8JsQAAAAIApDW5AAAAAwDcibkAAAABAiX9uQAAAAIB0oW5AAAAAANvCbkAAAADA3OtuQAAAAEDkCG9AAAAAQNlkb0AAAACgWQ9wQAAAAGBKI3BAAAAAoOricEAAAADA6ABxQAAAAKDLEHFAAAAA4J0lcUAAAABgsTVxQAAAAMA2Q3FAAAAAgOZUcUAAAABgzGdxQAAAAMDeInJAAAAAACnDckAAAABA6/JyQAAAAKAuDHNAAAAAQDZjc0AAAACAMH9zQAAAAGBkynNAAAAAgGvyc0AAAAAA1gN0QAAAAEAPQnRAAAAAgAuDdEAAAACAA5Z0QAAAAMDSn3RAAAAA4HyydEAAAADgpvN0QAAAAGDmAHVAAAAAAIcydUAAAADAM1J1QAAAAOAOfnVAAAAAILmUdUAAAADA8aB1QAAAAIC0sXVAAAAAoHnbdUAAAABA6Px1QAAAAEDgDHZAAAAA4F0bdkAAAABgAkd2QAAAAEA5anZAAAAAAFSjdkAAAAAAdK92QAAAAICjwXZAAAAAANTOdkAAAADAAvp2QAAAAADlA3dAAAAAgA0Vd0AAAADgUB93QAAAAOB7VHdAAAAAgD1ud0AAAACgf413QAAAAKAWpHdAAAAAIMgDeEAAAADgDCJ4QAAAAKD5OnhAAAAAoChGeEAAAACAaVR4QAAAAADBZXhAAAAAoM1zeEAAAAAgWYV4QAAAACDOkHhAAAAAQAqfeEAAAAAATLB4QAAAAIC103hAAAAAQMIIeUAAAACgqRR5QAAAAKB0OXlAAAAAYFVLeUAAAAAAUHN5QAAAAGCMfXlAAAAAwGqPeUAAAADAH9B5QAAAAGB+4nlAAAAAIJLveUAAAACgpwN6QAAAAMDAF3pAAAAAYHZeekAAAAAgSqF6QAAAAOCrVHxAAAAAYKeHfEAAAADAEq18QAAAAMD383xAAAAAwHA5fUAAAADgC4t9QAAAAGAq331AAAAAYIf0fUAAAABgex9+QAAAAED5RH5AAAAAwASyfkAAAACg+8F+QAAAAKB+zn5AAAAAIBNhf0AAAABAU79/QAAAACB/C4BAAAAA4LhEgEAAAACg9FeAQAAAAOBrYYBAAAAAYBh7gEAAAADAUomAQAAAAEBom4BAAAAAwE+jgEAAAAAgA7uAQAAAAGDEa4FAAAAA4OShgUAAAAAgFr2BQAAAACCj8oFAAAAAgP1FgkAAAADAWGCCQAAAAIDwaIJAAAAA4JeHgkAAAACgvLaCQAAAAADMu4JAAAAAoAvCgkAAAACgz9aCQAAAAKDT7oJAAAAAIEb/gkAAAABg7SCDQAAAAKClK4NAAAAA4JxHg0AAAACAxWiDQAAAAKAAjYNAAAAAgPiUg0AAAACgf5uDQAAAACB+O4VAAAAAIDVshUAAAADgFXSFQAAAACB1hYVAAAAAIE+bhUAAAAAgpqmFQAAAAGB8w4VAAAAAoBpihkAAAADAXnCGQAAAAOAW8YZAAAAAgEH9hkAAAACgowKIQAAAAMDnUIhAAAAAYHyOiEAAAADAfZOIQA== + NrgMGZxjYkD60UzrnGVsQEMdzoN8QnFAWHXwwJGDdECeKRjPP5N3QH82ODhAlHxAnof0IpikfkA= - + - 1s1dQO797z/kOuNAUNiNQGeBhEA85N8/qF+mP9yvikCSPd0/PDJ2QNhhuD9JLpdA8FvKP5jvF0F+9QJBHhBpQWy3uj+0W7dArjy4P3x16UC5I+8/cQxDQT+ik0B/UfNATEGWQGcdCkBbgsZBhYbvPynRZELiBF9BTAzwP3G39UAA0xdC1FC6QAkfZ0BbFSRA8g45Q2++eEEmpC9AzM0cQECaikDsJpJBMBEEQd/mrkBIPkFBh2a0QK+jQUGe3sFA1UQlQT9IGkFn2KQ/j6boQDoaskCtMT1Ct1P4QWlxckIBl1RAcelMQkX8ZkAIFwFAM9mlP3nHyj+TtY5CsTgBQXaPm0Dm3Z5CjT+VQQyWOEI2CAlCRX2HQOckP0A+xM1AIBqTQOasPUF1yhtAVj42QYS4EkER+HNBneeAQO7iw0LStFFBYzixQZ8rj0BDNDhBMWaxQSuTBkHVy41Adu23Qb//kkAocbo/Rs+NQa2yHEBaxr5ADsKNQPnsgkH8bldBtylSQSbPtkEgU6JAZb95QltkikFgTlFAzSpFQYXNEEJQwYlAABBPQSFi+0E9+YVAUdguQQFGc0FurBtBmhMIQjnJF0Hz/AtB9ukCQ32c6kBuwONBZH2aQVQvSUEE2Ng/IVkbQOBuIkEwRJxDURhLQb3TJUG+daJAudDvPyV8VEApilJAxHcBQAScPkAKz+dA5jYxQQFqyz8mXpdChIzNQErryEFktAhBFhmGQajrvEHEaUhBynOSQKI1BEGOLtZAElLLQTIULkEQGxJAscwqQaAxI0Gn6YpAnZG8QG38SkCxP4pAwFR7QV/nu0BAKj1CcJAEQa73PUEg+WZAaZbAQXsaIUE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoLdNXEAAAADA/oNdQAAAAKBQUF5AAAAAgJdGX0AAAADgWKJgQAAAAMDwZGFAAAAAwJzEYUAAAABASzFiQAAAAEC/Y2JAAAAAALqfYkAAAABASYhjQAAAAMAPnGNAAAAAgJjBY0AAAACAvuljQAAAAEAxHmRAAAAAgBX+ZEAAAACACjNlQAAAAAA8Z2VAAAAAQGyDZUAAAADAJ7dlQAAAAEBBJmZAAAAAwIRnZkAAAAAApORmQAAAAKBoBWdAAAAAQDY9Z0AAAAAgjWpnQAAAAECYpGdAAAAAwAzlZ0AAAADAoiFoQAAAAAAraWhAAAAAQIuCaEAAAABAm5hoQAAAAMAJ52hAAAAAYOElaUAAAAAAl0RpQAAAAADmg2lAAAAAwBOlaUAAAAAAc+lpQAAAACAcAmpAAAAAAGMna0AAAAAA42drQAAAAEAFnGtAAAAAgMbma0AAAABAPANsQAAAAICQoGxAAAAAADTAbEAAAABAZOVsQAAAAABpOm1AAAAAgLOmbUAAAACAtuRtQAAAAAAygG5AAAAAwDOgbkAAAABAq8NuQAAAAACJIG9AAAAAQBpGb0AAAABAt2VvQAAAAACRxG9AAAAAAJYCcEAAAACAPg1wQAAAAMBMIXBAAAAAAKswcEAAAACgojtwQAAAAEDJUXBAAAAAoE9zcEAAAAAAEJFwQAAAAIC6n3BAAAAAAKuucEAAAADg+8JwQAAAAIBC0nBAAAAAALvxcEAAAABAjQZxQAAAAAA7F3FAAAAAIPEucUAAAADA2UJxQAAAAKCQonFAAAAAgASzcUAAAACgu9RxQAAAAMC+4nFAAAAAQEnxcUAAAADAnwNyQAAAAMAhEXJAAAAAoMMfckAAAABAbzFyQAAAAECrcHJAAAAAAJyEckAAAABAbLByQAAAAIBI1XJAAAAAQF7hckAAAACAqfFyQAAAAMDPAXNAAAAAoCIVc0AAAAAADSZzQAAAAIAFM3NAAAAAYAU9c0AAAABgglNzQAAAAEBta3NAAAAAIH+Jc0AAAADAUpdzQAAAAOD4o3NAAAAAgDm6c0AAAABARtVzQAAAAAAu93NAAAAAwAkRdEAAAABgPsN2QAAAAGCTNXdAAAAAYJRFd0AAAADgaF13QAAAACD5f3dAAAAAoF+1d0AAAAAgYcd3QAAAAGD6EXhAAAAAIEloeEAAAACAmHV4QAAAAKCM+nhAAAAAoOiLeUAAAAAgN515QAAAACCOzXlAAAAA4H/feUAAAAAgy/x5QAAAACBFIXpAAAAAIOJnekAAAACgb8p6QAAAAEAd1XpAAAAAwBP2ekAAAACglkR7QAAAAMB8l3tAAAAAwB35e0AAAACgK1V8QAAAAGA2n3xAAAAAIKUcfUAAAADgezF9QAAAAMA4RX1AAAAAYMN3fUAAAAAgRfB9QAAAAOCIU35AAAAAoAUYf0AAAABgWFR/QAAAAKDQSIBAAAAAINzSgEAAAACAw/eAQAAAAKCfcYFAAAAAoHOLgUAAAAAgWJSBQAAAAMA/IIJAAAAAYPhFg0AAAACgPUiIQA== + NrgMGZxjYkByWoXuS4RpQJgT9jS8IXBAOQsfS37Tc0C/1D2sajJ4QGDMZsIs5HtAvzIaAMNDf0DBarT5V6qAQFf4jK4YOoNAVEtYNa+yhEAeJDO+hEKGQBt3/kQbu4dAsgTX+dtKikASVn5zUlOLQEMJWJIdA41AEoVsnf7bjkDr9P1muoWQQNMyiOwqcpFAawz1exBKkkCyIKR2Ji6TQB0jWopWdpNA - + - 2N0JQLHdL0BZt8o/zjGhQA4ggkD0Y9o/fOy7QI7Y30B4A5M/ECxvQdyux0AufBlAZn9sQfPcZkBw+5VAOaoOQdF1IkF8eaU/4qcTQN+jr0AOko9AWhTeP40r90E41gZBKtvFQRxRUUCTkxNAeuVRQQSY10BsFixAPZnAQABYj0B6VVRAQKdQQ87GtEENfO5AodO2QVYGdkBkHK9AhwBTQIe3QkEVP0hBEdeIQAiamECLR4hCBsqLQJt/nkA/jgNBd1abQEvyiUB9ggpA/FtdQSyBhUCz5Q1BSrbvP8gfl0EzI4BBwPMQQXfSB0FgDApC9g6SQeNSOEDO5lpBaIJ2QAaupUAKP1xAC34TQOp5u0FgD8NB3DVjQdkdS0D289w/VixbQY4gp0DLwPVAECIzQeqGeECZMrBBhSoDQjbh60KGzoJCCin2QZ46tkB8O1pAEMsdQeU/PUGZgaVADhDSQIEv80DnWRNBmGB3QQuISULgha1Bb2qOQUu3yUBqpzJBiuocQrTNR0KdjBhCneSUQiwiKEE4YrtAeW5kQb4lPkGbp/BBWY8OQfl+CEJSDh9C0PvDQPfsBEI/gixBYh8eQZ9YB0LOC+VASP+6REsrDEDisXlAcY89Qem24UCa80tA5+TyP6LqEEFVaTJB0kGEQJrPUUCDYdw/MV+YQOXSAkG5N7NB315fQclvCkDhAt4/FlyEQDSNwkDgoZ1BkRARQdopSEEXrBNAJBPhQPcGgD8x8dw/OowvQE4GvEBaAQFAQNQLQBt1d0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAKfFZEAAAACgVQVmQAAAACAO4mZAAAAAAHsZZ0AAAABAoWhnQAAAAMAmhmlAAAAAAL6NakAAAADAQIBrQAAAAMA932xAAAAAABzqbUAAAAAg4ihuQAAAAMBhTm5AAAAAAP5nbkAAAADAh2RvQAAAAMA5j29AAAAAALfkb0AAAACgrQNwQAAAAIDWwnBAAAAAwFnScUAAAACAwSpyQAAAAEBJ03JAAAAAQLvmckAAAABAHPNzQAAAAIDDfnRAAAAAwJjzdEAAAADAhzB1QAAAAIAWYHVAAAAAQLZ3dUAAAADAK9x1QAAAAAClcnZAAAAAwJsBd0AAAABAVS93QAAAAMC/RXdAAAAAAOdVd0AAAACAomR3QAAAAMDV4XdAAAAAgBfmeEAAAAAAgDF5QAAAAICSZXlAAAAAQLrIeUAAAAAAcfN5QAAAAAAbB3pAAAAAwNomekAAAADAOzp6QAAAAED/knpAAAAAAOLgekAAAADATUV8QAAAAECFcnxAAAAAgBiJfEAAAABAVs18QAAAAEAnMX1AAAAAQCdkfUAAAAAANnV9QAAAAABUAn5AAAAAIHN6gEAAAABgr4SAQAAAAKDGE4FAAAAAIEisgkAAAAAgwbKCQAAAAODYt4JAAAAAYIkcg0AAAABgkVSDQAAAAOD6aINAAAAAID13g0AAAAAgcrqDQAAAAGB2v4NAAAAAIOTLg0AAAAAgFEaEQAAAAACBcIRAAAAAoC53hEAAAABA9oKEQAAAAEB8u4RAAAAAQLfbhEAAAADgg/KEQAAAAODR/oRAAAAAYNw9hUAAAACge5+FQAAAACDw54VAAAAAwGz8hUAAAADgfwmGQAAAAOB4YoZAAAAAYJVEh0AAAADgr8uHQAAAAKCs04dAAAAAYFaLiEAAAADAzPOIQAAAAEDZ+YhA + KBZXds7jZUBxWoXuS4RsQNzlv3T/InFAW7ZEKKmyc0DcQ5zIVzR4QFsUIXwBxHpA/kye+dqkfUAtuf7nrOqAQEgumC/v6oNA9OSk9xjzg0APWj4/W/OGQL7sbaqaC4lAD4ksaQd8ikBP8e5C3MOLQA+4GpOzBI5ATyDdbIhMj0BQ3s2Vel6QQNmm00SKMpFA0PXEqtAikkA= - + - qDTqQCehyUBL/ChBulscQJLfL0F72P1B50TdQKmpVEBwXAJBWYXLP31BKkEvZTlBP6gAQJAKAUDGwqRAROW4QG+YE0CYijNBiNITQhiJL0DBe6lAhzrdP6ihn0AACopAMXvwQC4EpUB9XExAvMuXQL/CeUDfHsBALcldQNNKC0GcId0/6H8AQRpD/EAO441AQUA/QWqnq0CUY85Av8VHQPHprUAigQdBRlBdQAzZwEDyYU1BsS31QOnuqkCMlshA7CLyQBdQK0EWBoZCcI7QQGI4G0E4DuBA8orvP7m5QkCPs/pA/77lQKMXIEGY6xZBkALhQICVN0AAezVAQFUXQWdrI0Kb6QFCyO9GQXKrd0GyTtVBQrUWQXGa3ECZzJhA+k+5P152AUCmY5dCtdG2QP6SVECFUKY/lIUOQXubCEG8VJdA3Y1LQHI3GUE+IKxAl/FcQHA9ykBrlsBA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgFwEa0AAAABAaQZtQAAAAICnI29AAAAAQI/DcEAAAADgnFBxQAAAAMDEYnFAAAAAgIUUckAAAABA0rByQAAAAAD6E3NAAAAAwCQTdEAAAACgxNZ0QAAAAIAcdHZAAAAAwEx/dkAAAADA/MJ3QAAAAMDLknhAAAAAwGXTeUAAAAAAqkt6QAAAAMBgJntAAAAAwMUwe0AAAADA79V7QAAAAACU5ntAAAAAgCIkfEAAAADAdTB8QAAAAABHt3xAAAAAwKjjfUAAAACA+QV/QAAAAGAAD4BAAAAAAD+8gEAAAADg/sGAQAAAAICyeoFAAAAAYMK3gUAAAACA0fiBQAAAAKCqGIJAAAAAIIg8gkAAAACg1WKCQAAAAGCxf4JAAAAAoF2ZgkAAAABge+GCQAAAAKD/54JAAAAAoLkYg0AAAABgfy6DQAAAAKARTINAAAAAYMRThEAAAADgdVyEQAAAAEAdmYRAAAAAAFWshEAAAACADuOEQAAAAOATKoVAAAAAoAxBhUAAAAAgpZmFQAAAAEC5CoZAAAAAIKQdhkAAAACg9lOGQAAAAKDUWYZAAAAAoAhrhkAAAADAtIeGQAAAACBNpIZAAAAAoCrMh0AAAABghEOIQAAAAEDVUohAAAAAoMBbiEA= + KBZXds7jZUA1uAwZnGNrQDtMc7KVAnNArmsYctHid0CMTIFRu3J5QP9rJhH3Un5AEK6JW9/RgUCTFjfE0jGDQHTbU3hraoZA - + - zDvaQJOCyj9ZxfZBkCaGQBTxgkHTNE5BLGK3QMKy/T9++BNAkQmSQobmGkAPGQxAINlaQFcYuD8ubjVBm85QQBOrOEBXHqtAwgp2QKHrp0CsYjhA5UecQNITwkCHNi9Aan1IQRbHrUCkqDJBNITRQaQaKEEq8KpAuLjsP7za+kAjDAZBsgkDQf2KwUDaXjhBHyYwQYy+hUAgkxpBjGbNQCi1NUBTuAtAx1P8QUwUj0Gtr8lA6hOVQFZId0Bi089AcRjFQKtNgUBSmMpAY+3uQBpSTUH6sBNAsOutQJLxiEA9iDhAPvGzQFzkGkASfGdBAh5aQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAQEFjYkAAAADAEeJiQAAAAIDkS2RAAAAAQJhdZUAAAABgwJ9mQAAAAIBa6GZAAAAAAJ0jZ0AAAAAgaKFoQAAAAMD96GhAAAAAACOkaUAAAABAdUVqQAAAAMC6p2pAAAAAwPLDakAAAACA2tpqQAAAAIAUJWtAAAAAoOYobEAAAACAGEhsQAAAAEBTy2xAAAAAwENmbUAAAABAox5uQAAAAEDXQ29AAAAAQOcTcEAAAABAjiNwQAAAAODfZHBAAAAAIJ91cEAAAACgG7VwQAAAAIBtwHBAAAAA4ELzcEAAAABg0AFxQAAAAMB2NHFAAAAAoN2lcUAAAACAEsVxQAAAAEB7RXJAAAAAgG9bckAAAAAADHZyQAAAAMAxonJAAAAAYM7DckAAAABA3oRzQAAAAIBt7HNAAAAAYEcPdEAAAABAviN0QAAAAED0U3RAAAAA4AR9dEAAAADAUpV0QAAAAEAmxXRAAAAAQLkFdUAAAADABxJ1QAAAAADJInVAAAAAACk3dUAAAACAPkh1QAAAAADUVnVAAAAAYKvVdUAAAABA5eR1QAAAAMDrBXZAAAAA4B8UdkAAAAAACTd2QAAAAODvU3ZAAAAAIF+SdkAAAADgC/d2QAAAAIAqFHdAAAAAAJsjd0AAAAAAz1h3QAAAAGD75HdAAAAAwLrzd0AAAAAAnRp4QAAAAOCgR3hAAAAA4EWEeEAAAAAgmI54QAAAAKDHsnhAAAAA4NPAeEAAAADgn9N4QAAAAIBQ4HhAAAAA4NcLeUAAAADgbBZ5QAAAAGBXNnlAAAAAoNpEeUAAAACg+Wt5QAAAAGBUgnlAAAAAoDG8eUAAAACAisx5QAAAACA013lAAAAAoHPyeUAAAACg4AJ6QAAAAGAsD3pAAAAAoOogekAAAAAg0kN6QAAAAOC7UHpAAAAAoLZlekAAAACgZcR6QAAAAGDZ5npAAAAAgEQEe0AAAADgPLZ9QAAAAOAQ+H1AAAAAIIAhfkAAAAAgesZ/QAAAAKCbGYBAAAAA4BpigEAAAAAAZamAQAAAACDzuoBAAAAAYOHSgEAAAABAdBGBQAAAACDuSoFAAAAAYAJigUAAAACA43SBQAAAAMBj0oFAAAAA4LragUAAAADgKuSBQAAAAKBI8oFAAAAA4NU3gkAAAAAAuluCQAAAAKB2wYJAAAAAoP/egkAAAABAsDyDQAAAAKD4QoNAAAAAwBPNg0AAAABAkN6DQAAAACD66INAAAAAACiohEAAAABg+gOFQAAAACAzC4VAAAAAwOtLhUAAAABAJduFQAAAAKCr+4VAAAAAoLlbh0AAAAAg8oCHQAAAAKDoC4hAAAAA4B56iEA= - - - - - - +6VSQeqXdUCInRNAZVHvQPiguD/PPkJAqYQKQNPxJ0HbLbdArqGkQGyd/z8sf4FA321tQIfmOEDY+xxArfzpP/+LN0CN9l1ArX8HQAi9hEAx+3ZAGTgeQLD2HEAqqEdBbKWzQQzIFkHQYw5Bt/UZQQO750FUCx1AudmpQGH2/j9JJOBAStBxQc5AhkHW9btAeSujQPNxC0GI3wdBCQeLQemiP0GWdytB0kcmQMKt/0HUXiBBj3w6QalmqkAPzV1AYb8TQHd91UBCKPlBPIsKQE7EPUKTx4RAgOETQD/YGkGQIKNB+DeUQPJ8cEBKgJFBKvzbQYyaSkBFm5hAhJvNQOKCeUBSoP9AYU6oQdlzAUA9MqBBfirCQD4fsEA8DmZBPslBQof7WEBFn4E/RgcnQU2yEkEVE5ZBd50bQeOkF0E0O5FBfIBjQdND5EBfnqBAwlVUQGrEAkFFBe1A05sVQW1nDkHOjeRARQrwP95EgkFlwsBARF+iQIx5HUB85s5AshDiQAh9ekB8JN0/QDinQO/JjEHOVFxCCFuRQfSBhEAK+d5A06RMQjk380CzTLg/SoBUQcOYjUDiWrVBcVFBQemEI0GELG1BM97uQJxkbkGkyqRB3kgGQcgL7EK3nKBBEzefQUCZmEBiJ65AxJRHQfPidkBTjApAAK6rQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQP67ZEAAAABgMuBlQAAAAOBwxGpAAAAAYP9BbEAAAADA711sQAAAACCIs2xAAAAAwMUycEAAAAAALxVyQAAAAGDKuXJAAAAAwOAPdEAAAACAHV10QAAAAAB9dnRAAAAAQIqOdEAAAABAOyF1QAAAAEDIwnVAAAAAQH7udUAAAAAACKV2QAAAAADEs3dAAAAAQOHfd0AAAACAB2t4QAAAAEBFdXhAAAAAwC+ieEAAAAAA2vB4QAAAAABgDXlAAAAAADRzeUAAAAAAM3F6QAAAAIDTrnpAAAAAADvDekAAAAAAYwV7QAAAAAByuXtAAAAAgGXFe0AAAAAAESV8QAAAAMCdMnxAAAAAwBEVfUAAAADAD1F9QAAAAMCl3X1AAAAAQD82fkAAAABACUZ+QAAAAEA/UH5AAAAAQBpafkAAAAAAtml+QAAAAIBNnH5AAAAAAKvYfkAAAABADux+QAAAAIB+9n5AAAAAQM4Sf0AAAACA+yl/QAAAAIDjNH9AAAAAQIpYf0AAAABAw55/QAAAAID8qX9AAAAAQAK0f0AAAABAVMN/QAAAAEB9039AAAAA4BURgEAAAADg9xqAQAAAAOAWIoBAAAAA4PdDgEAAAAAgpFuAQAAAAODeYIBAAAAA4PRogEAAAADgYZWAQAAAAKDqooBAAAAAYI6qgEAAAABg9rKAQAAAAGCnuoBAAAAAIMHugEAAAAAgKk+CQAAAAOCxWoJAAAAA4HdigkAAAAAAQ7uCQAAAAOBySoNAAAAAYN9Rg0AAAABghHiDQAAAAOBvi4NAAAAAAK+7g0AAAABg+vKDQAAAAOAxA4RAAAAAAD4hhEAAAADAgiuEQAAAACA/RIRAAAAAAE/ShEAAAAAA+GKFQAAAAOBetIVAAAAAYO/5hUAAAAAgIx2GQAAAAACkLIZAAAAAAOVOhkAAAADgCG6GQAAAAGC+c4ZAAAAAoCHyhkAAAAAgrB6HQAAAAAA8WIdAAAAAIHKKh0AAAADgCyeIQAAAACBabIhAAAAAgLZ7iEA= + NrgMGZxjYkDiYBUjzERrQDxVZCgoxW9AcQ5nZb6zdEBlhcZNrBN2QDhp+57W5HpAZeOioQQlfUDJuiL1zJqAQBafm20OK4NAkObIBDmjg0BDpUATcFOGQL3sbaqay4ZACtHmItxbiUAgGjjHJmSLQDfXi8g9hIxAIEkm8dLsjkCbBFblyZyPQEI7+IavApFAzRmiB7uSkUAmUcuO5YaSQOIu4wjhrpJA - + - BFqSQIm/okB6GgRBluz3QOlFl0B8L9hA3coTQFPbDUHInSNBvsQTQSNu30BpDB9BSme3QIRyCkCtrb1A6uMkQNXU1EA0JKdA6vLgP+I+BUEKVuhAWEFtQOxEO0Fwv5NBo9sQQRAdJkARsuhAwfz7P375E0DRyv9AGxWKQJBphUAuJlJBbmtcQPU8aEFpLUlBfCOuQOvA60BqjqpAfXSbQAGgL0DOiz1CfjKKQSUkpj8E1yRAPVKyQZYPcEIEOstAeWkKQK0FJkIB6wZBenjEQReDW0Hp+LtAiVwSQSzlEEMDxv1BHQb/QM2xvEFQa4NCeFhqQjDfOkHaIV1AGVqWQcLo/UEWahNAYdEUQoksikDWGUlBHrXiQEmwsEDMoihC39i0QbTd10CUbxtB12tOQTosykCFGh1AZPkKQKqS2UCDbwxB5ECmPx6MkkDjlQBA+pK+QFlscEDzvu4/0IIMQSKUQ0BT40hA8eVwQE7sPEHv2DhA4jTyQOYy0D+8xyxBWDqJQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoIJDWUAAAAAAC9FaQAAAACB1xFtAAAAAgA6TXEAAAADAWcBcQAAAAEAqBF1AAAAAoO5CXUAAAADAkQJeQAAAAEBEB19AAAAAQC1DX0AAAAAAQQZgQAAAAGDKJ2BAAAAAgLdHYEAAAAAARnVgQAAAAGCKjGBAAAAAwOfdYEAAAAAAQYphQAAAAOA2xWFAAAAAQJQqYkAAAADADmdiQAAAAICBp2JAAAAAIFe/YkAAAADAvORiQAAAAMBiYGNAAAAAoE2kY0AAAADAxL9jQAAAAMAF8WNAAAAAwCkFZEAAAADggydkQAAAAKBMx2RAAAAAgFTmZEAAAADAPQRlQAAAAKAEZWVAAAAAAKh9ZUAAAAAghatlQAAAAID1ymVAAAAAgMUBZkAAAABgt+RmQAAAACC0LmdAAAAAoBFKZ0AAAABAwmRnQAAAAOBOgWdAAAAAQFemZ0AAAACg+OBnQAAAAOBhAWhAAAAAYKghaEAAAAAAS0FoQAAAAOB9hmhAAAAAgPfmaEAAAADgHSVpQAAAAKADRGlAAAAAICrjaUAAAAAgZyZqQAAAAMDxRGpAAAAAIK1lakAAAABgZ3xqQAAAAEBVpWpAAAAAgLXCakAAAADA6EJrQAAAAIAXZWtAAAAAgPmla0AAAABAxehrQAAAAIB0A2xAAAAAgHghbEAAAADAQl5sQAAAAIAKgWxAAAAAgNujbEAAAABAWcdsQAAAAIAw42xAAAAAgKwDbUAAAABAlxttQAAAAECXOm1AAAAAAK1hbUAAAADAq7ZtQAAAAEDmy21AAAAAQGTlbUAAAAAA/QJuQAAAAIB/I25AAAAAAAg3bkAAAACAhUtuQAAAAICNYm5AAAAAACCFbkAAAACA1aRuQAAAAIAhw25AAAAAwL7kbkAAAAAAWQZvQAAAAEBiJW9AAAAAQFBPb0AAAADARGdvQAAAAEASf29AAAAAAIGlb0AAAAAAxeBvQAAAAMChFXBAAAAAQFgkcEAAAAAAizBwQAAAAIDkRXBAAAAAgD1UcEAAAAAAsGJwQAAAACBDcXBAAAAAQIqRcEAAAABgfpxwQAAAAIAzunBAAAAA4FHScEAAAADAzuFwQAAAAEAw83BAAAAAQLMEcUAAAAAASRZxQAAAAGD0MHFAAAAAYHxDcUAAAAAAxlNxQAAAAIA2XnFAAAAAwEKLcUAAAACAg5VxQAAAAOCIpHFAAAAAgDLCcUAAAADgvdZxQAAAAODK8HFAAAAA4MgDckAAAADAyxFyQAAAAGBeIXJAAAAAoJ0yckAAAAAAnUJyQAAAAEDUUHJAAAAAIF1ickAAAACgL25yQAAAAMB4lHJAAAAAgAalckAAAACAX7hyQAAAAAAK43JAAAAAYPDuckAAAACACwJzQAAAAAAbE3NAAAAAAKkgc0AAAABA8i1zQAAAAOAHQ3NAAAAAwAROc0AAAACg1GNzQAAAAECklHNAAAAAoF2kc0AAAADAVK9zQAAAAACPv3NAAAAAIBfRc0AAAADgihJ0QAAAAIBkM3RAAAAA4KNIdEAAAADAMst0QAAAAOCa1XVAAAAAYNj3dUAAAAAAMip2QAAAAGAwRXZAAAAAYIS+dkAAAACguMx2QAAAAOBv7nZAAAAAQNdjd0AAAAAArpB3QAAAAGC0mndAAAAAwBmmd0AAAABgMLV3QAAAAMAvxXdAAAAAIF3Td0AAAABgffV3QAAAAKCWQXhAAAAAADhOeEAAAADAtbR4QAAAAOBKw3hAAAAAoCrZeEAAAABAKex4QAAAACB8+HhAAAAAILEEeUAAAACgRh55QAAAAOA2M3lAAAAAYENDeUAAAAAgIV55QAAAAACHgnlAAAAAAMSReUAAAADgkaF5QAAAACAwxHlAAAAAoIDSeUAAAABgbeZ5QAAAAOD383lAAAAAwNQBekAAAAAg6UJ6QAAAAIDEVXpAAAAAoJmFekAAAACA45t6QAAAAKCsz3pAAAAAIGLmekAAAABgi/h6QAAAAKATIntAAAAA4GpGe0AAAAAgmVR7QAAAAKDkY3tAAAAAQFyPe0AAAACg7dN7QAAAAGDTQHxAAAAA4E5NfEAAAABg8Ft8QAAAAEDCZnxAAAAAYKTQfEAAAAAg5d58QAAAAGDbGX1AAAAA4NBWfUAAAAAgiGZ9QAAAAECcc31AAAAAwIWCfUAAAADgwfV9QAAAAOB3hn5AAAAAILKUfkAAAADgxqR+QAAAAKBotX5AAAAA4P7jfkAAAADAgSR/QAAAAGA1wn9AAAAAICnWf0AAAABAu+V/QAAAAKBQKoBAAAAAIFQwgEAAAACAxDqAQAAAACCIaoBAAAAA4IFygEAAAACAJHuAQAAAAOCXo4FAAAAAYLaygUAAAACgjdqBQAAAAODzIYJAAAAAYJo0gkAAAAAgnXOCQAAAAABbmoJAAAAAYMiygkAAAAAgtsCCQAAAAODLzYJAAAAAIC3agkAAAACg0/yCQAAAAGDNAoNAAAAA4EQYg0AAAACA6kmDQAAAAEBMZ4NAAAAAIEaKg0AAAAAggZSDQAAAAIAtxINAAAAAoIvTg0AAAAAg0vODQAAAAOAt+YNAAAAAgGe5hEAAAABgBbSFQAAAAKA6u4VAAAAAYOUjhkAAAABAnTOGQAAAAGCYOoZAAAAAQMJBhkAAAADgiFOGQAAAAKCFs4ZAAAAAYAu9hkAAAABg8sOGQAAAAMC/yoZAAAAAwOIDh0AAAACgVSSHQAAAACB6gYdAAAAAIA+hh0AAAABgmquHQAAAAGDauYdAAAAA4I0ziEAAAAAAeamIQAAAAAAvvohAAAAAAAXFiEA= + KBZXds7jZUCwLijacuRqQIkw7CrX8nJAH3KoplGjc0BQi4Bk7yN5QJMXaZZBpHtAqHQu3KMagEA= - + - de1cQASHCEBlBulA5byNQIbbuT9EQ0JAdKttQNREsUBo4I1AasAQQGIWDkEJo4dBIeCKQEQbpUCxoPQ/2jL/QN29DUHdcRNBcoQKQPZKj0EsTvA/Uie2QCnTL0EXGsJAxkDvPxuyHUHXL/pAX1LzQCaP0kAc3ABARolwQOtZy0CMzC9APs8lQLV68D9vtRFBuTE7QrlzJkBzGiZA7G/7QNMfVkGBEqY/siuzQIy2sUCJWTBBqO7lQabsw0ELcN0/KNPKP4MfXkCvIgFAc30AQno1nECbMs9BF/L8QMR/EkCY2ehAEaGRQXBUGkHZfKNAJfjxP9vnsEHAki1Ab5McQNpFSEHgmIFAT1BdPwSyj0DTPDlBNLhUQCLZuD8WSblABkNkQScNM0EHbnBAwNcVQcfLbEF09DtBIV9vQU3Mpz/C+TNB3s4vQNHH7UC0RvE/D9qSQRHOm0CnYIE/NiaWQNQjq0ABy4tBUl4KQbP/JECSaMs/xD4gQmCmLEGyextCS1KHQXZLl0H/ygJB9rPeP+rirkEbTMxB9hQHQgTY3kHO02dBzvJ8QS3uqEFcX8pAiH6EQW0xHkHFUrk/p898QkbkbT+GMA9BaXKhQOG6WUGExYxB7RepQTi8HELass9BajMvQgy5CEHi/CdByHMcQSF/uUExKrRB+voTQK5lxUGfT35BeGYIQEmkB0HqNEVCAJYjQU5+EkG9MMZB+UHWQOLjfkGYOllCEOwoQmFbbkKoiXVAOACdQM5SFUE/F5hAZ7eNQAzj70Ae9W5A5pPKP8K32UBJtnBApdWoQkGqUUFsktpAnnoxQRK9PUEZYXlBfokOQYsIJ0H2KV5AOhyLQYVvbkCv4TZCOrYnQYaLK0JKFzVBTrtEQUW/ZEJKX4JA3HQcQYxa8D9jm8pBGCfPQCWrRkHyKXhBBCjXQcIO8T/7vj5Bmim/QmbecUL53OxA+oDYP/InxkKu495C5SVbQHfsVEB9IApBJ+C3QJuVGkB5XKBAy0uaQRlyTEKBkI9A/BXKQJ+43T/6A1FC28PeQRulkkGXCoBA9uiyQoZLtUKmq81BlGSUQwPGm0H0G8dB9EuXQKqnWEHSfPU/JYAKQG0ij0DwTWdAphimP3FkHkFCXSlCvlX7QKyCMUESuRdC8pOUQoFcI0DGThtB3yAiQ2O+lkE20p5ALLE+QYXnyj9hcQBB4nEjQS5+W0DER7pARnxYQZd2W0BGkqY/KfbdP4jyKEC6pOZAirb9QO6YSkBQ6M5AI1EAQut9RUE1wFNBHgsRQGhcg0Hz3hFBcgI5QeDZuD8YBBRAquJqQcMARkGS82BAinPcQMCdI0CMYCFCQzjKQNeEe0Gep4FBXTs4QLfmmECASo5AAOaqQF2TFUG3GhxB2CqwQYRPpUB3gxRAKNqqQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwF5iWUAAAADAQ01aQAAAAIAGjltAAAAAgC8RXEAAAADAAlNcQAAAAMBbi1xAAAAAQFlBXkAAAACA7nxfQAAAAECCCGBAAAAAQPpJYEAAAACgPahgQAAAAODMp2FAAAAAgOLJYUAAAACg9H9iQAAAAMC5oWJAAAAAgC7GYkAAAADgE+xiQAAAAACsI2NAAAAA4GFlY0AAAAAA1gRkQAAAAIC2ImRAAAAAQPRAZEAAAAAAfCdlQAAAAGCkRmVAAAAAwIhrZUAAAACgBylmQAAAAGAVU2ZAAAAA4IppZkAAAAAA2eRmQAAAAAB5DWdAAAAAQKQ5Z0AAAADg/XtnQAAAAIDIuGdAAAAAQD5HaEAAAADgSWBoQAAAAODXg2hAAAAAAImlaEAAAAAgp8NoQAAAAMB74mhAAAAAAMUlaUAAAAAgI4ZpQAAAACDVxmlAAAAAoKftaUAAAABAhmJqQAAAAMDPxGpAAAAAwL4Ga0AAAACANzlrQAAAAED8gGtAAAAAADuka0AAAADAfulrQAAAAEAwA2xAAAAAgGFAbEAAAACAu55sQAAAAEAlB21AAAAAgJdIbUAAAAAA32dtQAAAAEAOim1AAAAAAO6fbUAAAADA6cVtQAAAAEBP7G1AAAAAwPxlbkAAAABAdMZuQAAAAAAK5m5AAAAAAF0Cb0AAAACAQyJvQAAAAMDHYW9AAAAAAKyBb0AAAADA78ZvQAAAAIDZBHBAAAAAYG8icEAAAABghEpwQAAAAKBxXnBAAAAAoPpvcEAAAABgPoJwQAAAAKCF8nBAAAAAACMCcUAAAACAfhhxQAAAAABAJHFAAAAAAMg4cUAAAAAA40JxQAAAAAA+U3FAAAAA4NBfcUAAAAAADXxxQAAAAEAliXFAAAAAwOykcUAAAABAZ7BxQAAAAAD3AXJAAAAAADYTckAAAACAJiRyQAAAAKDdOHJAAAAAQIlEckAAAAAgZWNyQAAAAOB5cnJAAAAAICWBckAAAABA+J9yQAAAAAB6w3JAAAAAwJzhckAAAADAnDNzQAAAAABQQnNAAAAAwO0vdEAAAABgAz10QAAAAGD1hHRAAAAAIKIDdUAAAADAWxJ1QAAAACDhlnVAAAAAwIYRdkAAAACgvjh2QAAAAOChxXZAAAAAgGiHd0AAAADA0aB3QAAAAOC18ndAAAAAoOFceEAAAACAnmZ4QAAAAEBRp3hAAAAAIFGVeUAAAADAmOR5QAAAAACbJXpAAAAAoIm1ekAAAADA/kF7QAAAAMAoUntAAAAA4ENHfEAAAABAnlF8QAAAAKBluHxAAAAA4Cd5fUAAAAAgcYh/QAAAACA6xX9AAAAAoBoEgEAAAABgrfCAQAAAAMD5M4NA + NrgMGZxjYkD60UzrnGVsQNq4KFfnQ29AOAsfS35TdUBtunD/S7N2QFoUIXwBxHpAyMa6Sg8EfUB4Zd1mWVR+QEvbzKhY8oBAx5AnwpMag0B2BU+rpCqDQFpxy/3qIodA2AgelfdCh0C8dJrnPTuLQGzpwdBOS4tA554c6olzjUB2x3rftTuPQNAWjO3a449AAnhs6vCBkEB/jphJHoaRQEv6rLYR3pFA/6WPXnRKk0DaIgusPaaTQBMmU8Z95pRAWjoCwZNqlUA= - + - 3ZcjQKBnpT+jALxAuiWBP6SyMUBeMF5AlqkJQeR0ZEClQIlAfRjvQI0Tn0D5efA/QpAzQWF9qkCrHctBrSa8QGno5z+J7YRACAsEQWD0HkCiGOhBgKq4Px0FAUBEnwpAi3MmQGdowEDU1SdBd8RHQQPwHkCxRaY/FBMOQZWOf0Gb4ZpAPDr+QOyAJkCgWzZCcZopQbS650CMXF9ATScgQWGMS0Ah7m9AkBytQSm2rkH1U5tBz1LRQO+ySEBvRFtAP5ReQJJ3GUDh869ANpQmQIRr7D+djLdAlVGAQXOEtkDqDuFAXMMnQCxf4kJUU1RBwSGBP5ynrUHfPss/yGByQTyO4UAMNqtBe/sWQd74T0HgwbBDpAVqQXU9pUCwEShClkf/QAgJpkAJa4dA6kNgQYWJoEEmSMVBGK9CQUIOvEI2Gq5A1lvLP616xEAXZIdAdf8MQXt660DCVCNArGAyQc++pkDoncxBXr6LQCZTE0DsBhNC3QG/QLkzrkBB7yZBvEmTQZCXBEKcwKdAjAt7QBT7l0CiY49AHNm0QLpWl0BRgY9ACzb3QFYI70CJbHRBaaioP/4ZZ0Bx4N0/Ow6DQa40HkCLVd0/dNrXQMDXgUHxj4FANVmrQFL4Y0DQWyNB2aDBQNrqpT8WfcVAozyPQOPDWkBBPtNA+Q2KQIDqgUC7wmdA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQNxNbUAAAABA3ChvQAAAAEAmR29AAAAAQMtTcUAAAABArGJxQAAAAMDNnXNAAAAAoNUWdEAAAABAfEJ2QAAAAADKk3dAAAAAABjFeEAAAADAQuR4QAAAAACMZHpAAAAAgBsLe0AAAAAABCV7QAAAAADjL3tAAAAAQJcwfEAAAABA+qZ8QAAAAEAbVH1AAAAAwGljfUAAAACgqx6AQAAAAABdh4BAAAAAoF+8gEAAAADg1AKBQAAAAKB3WoFAAAAAoBHxgUAAAABgOjOCQAAAAKDyeIJAAAAAoMKngkAAAAAgNsSCQAAAAIC+eINAAAAAoComhEAAAABAfTiEQAAAAEDvUYRAAAAAgBtahEAAAADA1YWEQAAAAKDCyYRAAAAAQC4OhUAAAADgaN2FQAAAAGBrLIZAAAAAIDcyh0AAAABAaXOHQAAAAACby4dAAAAAQJRTiEA= + KBZXds7jZUAc6N63HmJpQG+XdYaqQnFADtLLr2fCc0A28gnAwnN3QNUsYOl/83lANlDmExuFfkCYHFWaISKAQBIHc7jE2oJA - + - US8JQchXl0Hi1RxAiKlnQYk2+EDENOJAbHFAQAg+HUBX63lAUnuPQF92xUAmqfFA0JgyQb8Ii0C6pKU/PkcBQDhA6z+LgJVAYFq6QOWWL0ARXo5AtitYQf9kyz8IG8s/G7V+QdfIwkDu1a9ABP41QZi/3kIz6XdAtl8BQTl2AEGrYk5AGbC4QKGmiEH6DfA/a2XLQKma00DUBJdAYKKcQDJyIkHD9oFB/PQ/QQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAACfgaEAAAADgfUNqQAAAAEBIhmpAAAAAgGulakAAAACAWyxsQAAAAEBlxWxAAAAAQODdbEAAAABAzDptQAAAAAAnX21AAAAAwJ4CbkAAAACgGCZwQAAAAOCiYnBAAAAAgOZxcEAAAAAA0gNxQAAAAOCHQXFAAAAAwDfFcUAAAAAAx/RxQAAAAADcFHJAAAAAQC2ickAAAADA/y5zQAAAAEDIfXNAAAAAYOwydEAAAAAAyZ10QAAAAMC983RAAAAAQHMEdUAAAACAi1J1QAAAAAB6kXVAAAAAQBrkdUAAAAAAze91QAAAAIAwFnZAAAAAwNLQdkAAAADAGTB3QAAAAMBSFHhAAAAAAPxFeEAAAABAbFZ4QAAAAIDWC3lAAAAAQOIkeUAAAAAAdYd5QAAAAACCm3lAAAAAQDOzeUAAAAAAmd95QAAAAED1QXpAAAAAAJrWekAAAADArm58QAAAAABZgHxAAAAAAGiifEAAAACATcJ8QAAAAABakH1AAAAAgFavfUAAAABAJO59QAAAAAD1QH5AAAAAQEZxfkAAAADAHqd+QAAAAMCH4H5AAAAAgHNGf0AAAAAAtFV/QAAAAICKon9AAAAAwIixf0AAAABAYsF/QAAAAKDrCYBAAAAAwAwjgEAAAADgu1OAQAAAAOA8W4BAAAAA4BBrgEAAAADAS4qAQAAAAGCikoBAAAAAYH6ogEAAAAAgItiAQAAAAEBD4oBAAAAAYHfpgEAAAACga/CAQAAAACAvBIFAAAAAIJAzgUAAAAAgl1SBQAAAAGAxYIFAAAAAoMBogUAAAACgJYiBQAAAACAjm4FAAAAAINKqgUAAAAAgSdGBQAAAAGB93IFAAAAAwHrqgUAAAABg2vGBQAAAAIAM+4FAAAAA4EEagkAAAACgLimCQAAAAGAfSYJAAAAA4HtRgkAAAAAA8WKCQAAAAMDraoJAAAAAYDKAgkAAAABgMYmCQAAAAEBTu4JAAAAA4BYRg0AAAADg8SODQAAAAICeS4NAAAAAIOtTg0AAAABgP1CEQAAAACCqeIRAAAAAoEzZhEAAAAAgPOKEQAAAAKBg54RAAAAAgH5rhUAAAAAAbdeFQAAAACB95IVAAAAAIHX6hUAAAAAACmqGQAAAAODCcIZAAAAAQEyIhkAAAABg3pyGQAAAAIALvIZAAAAAoDgrh0AAAADgtjKHQAAAAOAMdodAAAAAQDiqh0AAAADgx+6HQAAAAKBqKohAAAAAICepiEA= + KBZXds7jZUAmWGpEdaJuQBTpB48/A3JA2obJ21KCeEDbQ5zIVzR7QNrkpS+rk39AgALyH4OigUA= - + - K+DdP4Km1kDGbktAzhs4QJQWCECZxiRAvxobQXqcJEBVxo1AogPePxGNuD9Ow5hA1pkHQPcKlUF3MnpAUOBLQGtaJUDIpAlBD5AeQL06hkDZSiZAzAWTQOmmL0AfvGZA4Ow4QBVjIUG01zdBOt44QOwLIUEueu5ANqjbP41ox0COUXFAZFY2QlTN5EDx1iRBz6ESQLHI/z80YCxAxYsKQOuC30A70IBAR+vDQdMpJEHCJZVBvWmPQXKe3T+yl49BhxgmQCuR20EMla9AOFuPQBeLCkHaropAvxxIQOr/SEJx26lAeWnRQJIgZkC4t4NB2vs0QU5/WkD3eDhBoSd6QSe+kkCTC5hAy+J2QNIbSUGf7gBCNSV6QA94dkDLprg/fepjQcAipj/lPcFAWwm7QFiZJkAsNq5AaAw5QANqb0DNPv1AW31MQE5TEkK589w/BuylP96EXEHjCJ9BgpYqQXYlHENzUtRBrS1IQcuvZkAOciBBLseTQWpEoEFGSrpBlycKQU1QJkDcTTlAx1EtQevyBkEqZFNARu3YQFNxj0Cq+SVA1qhwQTBX2UE4YwhBfFdrQSuaYkHO3N9BZR2UQEDqV0EiKVFBpVaKQMjhCkDBbYhBdW/qQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAgGCGZUAAAADg5WppQAAAAODJ5mtAAAAA4FMabEAAAACg6aZvQAAAAAALNHFAAAAAAAXhcUAAAABAuoJyQAAAAGAt23JAAAAAwFzlckAAAABAwIl0QAAAAEBmoHRAAAAAgHPgdUAAAACAakN3QAAAAICcIXhAAAAAwJyjeEAAAAAACbV4QAAAAIAZo3lAAAAAgEmTekAAAACAj6V6QAAAAECLF3tAAAAAQEoRfEAAAABAgkF8QAAAAAAOvXxAAAAAAEjkfEAAAABAsfF9QAAAAMCDQX5AAAAAwH5lfkAAAABATuh+QAAAAMBYDn9AAAAAAGuQf0AAAAAAO8V/QAAAAIDL1X9AAAAAILkQgEAAAAAgLkeAQAAAAOA8UIBAAAAAwLuAgEAAAACAy5GAQAAAAGBDzYBAAAAAYI7igEAAAACgMwCBQAAAAEBb9IRAAAAA4MaBhUAAAABAvYiFQAAAAODxiIZAAAAAQBbRhkAAAAAgZ2KIQA== - - - - - - 2ntIQH7DLUAy8j5A6HjFQKh9yj/Aa5NApj6DQF+km0AjgfNAQys2QIKqpkA1vd0/pt1aQKoI/UBOZwFAdy9CQHHWEUE4rXdBu3Z5QN0330CgT8pAGpKvQBm+G0DJGpJAKQ0UQHhmK0EA7AZBPOrdPxIkYEF2G6Y/a3YWQdbYVUEN6gZC0XNcQBEs5UA9UxxBj7TeQJ0ufUHxMwtB8qWpQEZO3kBb1pI/tB8JQKYq8T+3641B9VIaQYPU2EA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAINghYEAAAAAgo0NgQAAAAGDSp2BAAAAAYFFiYUAAAABgmmRiQAAAAOC1fmJAAAAAwJWfZEAAAACAUmFmQAAAAAAVhGZAAAAAgMSlZkAAAABAbOVmQAAAAOApYWdAAAAAQC+KZ0AAAADg52hoQAAAAGAFhWhAAAAAgCqkaEAAAAAAh+lpQAAAAKCuIGpAAAAAoERsakAAAABAN65qQAAAAIAa7GpAAAAAAGcla0AAAAAAx7xrQAAAAKC4RWxAAAAAALFibEAAAACgCqFsQAAAAIAH5WxAAAAAgNwHbkAAAABAaiJuQAAAAIAOZ25AAAAAwA+HbkAAAAAAM6RuQAAAAICKAnBAAAAAABwncEAAAACgMlRwQAAAAKBdaHBAAAAAAI+TcEAAAADgTJ5wQAAAAGAUtXBAAAAAgPEBcUAAAAAgfg1xQAAAAMDZInFAAAAAgCZCcUAAAABAglJxQAAAAEARwXFAAAAAYIYEckAAAACAdCRyQAAAAAD4Q3JAAAAAIAWFckAAAAAAxsJyQAAAAICgzXJAAAAAoLkAc0AAAADgORNzQAAAAMCFQnNAAAAAICJUc0AAAADAaIRzQAAAAEDGlXNAAAAAgGmyc0AAAACARtNzQAAAAMDJAnRAAAAAgHoRdEAAAADAQjR0QAAAAICzVHRAAAAAoPNndEAAAACAd450QAAAAMCYCXVAAAAAgCE1dUAAAABgbFJ1QAAAAEDDYnVAAAAAgDGRdUAAAAAgTJx1QAAAACC0v3VAAAAA4ALzdUAAAADAtBR2QAAAAKAjJHZAAAAAQNw/dkAAAABAoVx2QAAAAMCOxHZAAAAAoCLPdkAAAAAgPAd3QAAAAECQJ3dAAAAAABZSd0AAAACgW2B3QAAAAIBBdHdAAAAAYK2Rd0AAAABAbaN3QAAAAKDeu3dAAAAAIDDHd0AAAABgKtl3QAAAAMBN43dAAAAAID3vd0AAAAAALP13QAAAAIBJI3hAAAAAwFQ2eEAAAACg10N4QAAAACDfUnhAAAAAoBdieEAAAACAo4d4QAAAAKCYoXhAAAAAQHm0eEAAAADgcdF4QAAAAICl6XhAAAAAwJ78eEAAAABAJjB5QAAAAMB1QHlAAAAAYClbeUAAAAAg4mx5QAAAAKAUeHlAAAAAIEOQeUAAAADg1rR5QAAAACBS0HlAAAAAoF70eUAAAACAMyN6QAAAAAB5fnpAAAAAoIvYe0AAAABg5UR8QAAAAKB9V3xAAAAAYLFifEAAAABAzJR8QAAAAEDhtXxAAAAAYBTWfEAAAADAYwN9QAAAACBLD31AAAAAoIJNfUAAAADgYph9QAAAAMA1uH1AAAAAwENEfkAAAADAUFt+QAAAACCbg35AAAAAIH3RfkAAAACgcN5+QAAAAOAmKH9AAAAAYMVff0AAAABg43Z/QAAAAEDJq39AAAAAoFnNf0AAAADAGNd/QAAAACA+7n9AAAAAYLsCgEAAAAAAmh+AQAAAAACDLoBAAAAA4IkzgEAAAABgW+yAQAAAAGA9CYFAAAAAQF8SgUAAAABAfkiBQAAAAEDkc4FAAAAAADCRgUAAAABgV5yBQAAAAOAB34FAAAAA4CEZgkAAAADgSiOCQAAAAAD4NIJAAAAA4BFEgkAAAABgSk6CQAAAAOA6WYJAAAAA4H1xgkAAAACgcZGCQAAAACCynoJAAAAAYLevgkAAAABgvruCQAAAAIAAxIJAAAAAII/KgkAAAABA8lGDQAAAAOC7ooNAAAAAoArkg0AAAABg2SmEQAAAAGCqOYRAAAAAYImIhUAAAADgB5KFQAAAAKBltYVAAAAAQHjDhUAAAADgYRmGQAAAAKB0IYZAAAAAIAe8hkAAAADghVWHQAAAAGDAPYhAAAAAIDZDiEAAAACgVHqIQAAAAABZkohAAAAAgJeciEA= + NrgMGZxjYkA= - + - RlKUQSXjyUCsmsVAZLLhP2JbY0HCnRNAoaKAQVY9iUC0cEhAmqk3QRvGlEEfwjdBA+hcQPbBrkC21ChBzfgiQOqR7z9HNqFBENYJQVSA70D/TrdA9HMdQF9J00CaOrNCyn1mQTbIpj9hXEJAJ2GxQK/MwUBN/ZxAlWQLQuDPkUFsNF5Ax7b8QJjIS0AQCwFBKYpLQN9fpj9BypRADiGGQp9FOkAxogFAfglUQiLVgEGGNIZA21NTQWI13UCjPKVAO62gQG91l0P0D3VCXdzNQoFFPEFN9pxBhsc9QWdZB0HJTLxALI6YQacv2D9wzCJBCR4XQYeO50A2rqlAiHpwQdFI8EB1fyFBkRHYQGM4o0HW3m9B4Y6/QiXNDULSTTBBEDHKQLoTVkESytFCbpU2QkFMwUFcVwZDBilAQpVld0ANycBAG6+RQisC60CD9opARwuDQQk4oECITLJB4T1dQeHW1UGtbSRBr02IQDmIuEClt5BBXtksQQnVOkFOHYlDHnmgQVHD3j+AdZNBvvarQfT1zUD99zhBog/8QSd4Z0EZpJVBpHORQWGWSEDQ0ztBYOEvQP8KQkGQnARDLiJtQNrNNkF88sJAF1gDQqX5E0AEv7JAXOfWQHGwL0CSOhNC6UTgQSkS50Kq+M5Av8WnQNLtB0Hg411AmreBQYK9xUBGiJ5BRndKQk1os0C/Abk/fMXiQ2MklUFIP0NBtipPQnpBVkBdLtBBzH9CQBmNoUHc185DwZnMQnIj70GR5V1AC2/cQENF4UDFHHFAizFvQNqP3T/ul9NAoqy5QmLOxUH16AlBqTg5QMkQZEDwMSFB5EDSQHYLaEEFRWZBrgcvQdK5pkNnz8VCdshOQQjNCkGew0NBS+roQIA74EFqJMpAVJg8QuXsukHOMhRA5KyHQQPFxkIezghCwn2ZQEOI4ED1zCVBtvMmQAydt0CzTK5AKOFHQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIJjEYUAAAACAJGZiQAAAAABcp2JAAAAAQHG3Y0AAAACAb8BkQAAAAEC332RAAAAAgOGGZUAAAABApuFlQAAAAIAefGZAAAAAoC1kZ0AAAADAUuRnQAAAAAAb+2dAAAAAgHRKaEAAAACAGeFoQAAAAGDuK2lAAAAAQL2GaUAAAADAmalpQAAAAABdSGpAAAAAQD5oakAAAACARglrQAAAAAA7ZGtAAAAAoDSha0AAAAAAat9rQAAAAEDTSWxAAAAAQPlrbEAAAAAgU4tsQAAAAAD7omxAAAAAQPXJbEAAAADA34puQAAAAIDpoG5AAAAAYKptb0AAAACAd41vQAAAAIBuoW9AAAAAwPjAb0AAAADA9NpvQAAAAACHI3BAAAAAAE1jcEAAAADgFnRwQAAAAGDQs3BAAAAAwEjRcEAAAABguvJwQAAAACC/AXFAAAAAAH1BcUAAAABgQmBxQAAAAGCmrHFAAAAAYG7CcUAAAABAINNxQAAAAAA9XHJAAAAAYGl1ckAAAACAr8VyQAAAAMCO0HJAAAAAAILickAAAABAkhpzQAAAAAC1MHNAAAAAQDZhc0AAAACgoXFzQAAAAECDonNAAAAAYMqzc0AAAACAn8dzQAAAAKDMH3RAAAAAQAFfdEAAAAAg9HJ0QAAAAMB2kXRAAAAAYKuwdEAAAAAA4MJ0QAAAACAx1HRAAAAAwIETdUAAAAAACCt1QAAAAACEcXVAAAAAYKqDdUAAAACgM491QAAAAKBwr3VAAAAAANDhdUAAAAAACQ52QAAAAEAuT3ZAAAAAQHJldkAAAAAA0pN2QAAAACAvw3ZAAAAAwKTSdkAAAADAUvR2QAAAAOBAI3dAAAAAoKEvd0AAAAAg+2F3QAAAAIC4dndAAAAAgLiTd0AAAACAubJ3QAAAAIC00HdAAAAA4O7ld0AAAAAAgwN4QAAAAAAuEnhAAAAAQGwueEAAAABA1EJ4QAAAAGAgTnhAAAAAAIxkeEAAAACg7m54QAAAAECgpnhAAAAA4C/ieEAAAADgBzF5QAAAACBGTXlAAAAAwGZweUAAAABgwIF5QAAAAOA4nXlAAAAAoOXQeUAAAABguOJ5QAAAACCy/XlAAAAAYI0jekAAAAAgLzJ6QAAAAADHRXpAAAAA4GWIekAAAACA7LF6QAAAAGBb0XpAAAAAID3gekAAAACg4PV6QAAAACDPCXtAAAAAYHQhe0AAAACAlTF7QAAAAKAPT3tAAAAAIMlfe0AAAADgbXh7QAAAAAAHiHtAAAAAQDv1e0AAAABAQQR8QAAAAGDlNHxAAAAAwNBCfEAAAADgpFB8QAAAAEB9YnxAAAAAYASsfEAAAAAgbsx8QAAAAKBR5HxAAAAAAOsAfUAAAAAgUCJ9QAAAAEAQO31AAAAAwD9qfUAAAADA1FR/QAAAAKBSOoBAAAAAQGxCgEAAAABgh3SAQAAAAADQhoBAAAAAQMnIgEAAAADA2/uAQAAAAMACEoFAAAAAIGcYgUAAAACAviCBQAAAACB6OoFAAAAAoM9LgUAAAADgxvOBQAAAACD9+YFAAAAA4KcAgkAAAABAixuCQAAAAMCsKIJAAAAAoFRsgkAAAAAgVXqCQAAAAEDfnoJAAAAAgMypgkAAAAAgLbmCQAAAAOBNxYJAAAAAYHJKg0AAAACgpFqDQAAAAODmX4NAAAAAoM2Lg0AAAAAAb5KDQAAAAOAtxYNAAAAAgCLlg0AAAACg7UGEQAAAACATgIVAAAAA4BeFhUAAAADgbIqFQAAAAGCwmYVAAAAAQGywhUAAAAAgrcOFQAAAAOCJUYZAAAAAYNRYhkAAAACgZ3GGQAAAACBUeIZAAAAAIIiahkAAAABAEKiGQAAAAGAxw4ZAAAAAgNrhhkAAAACg+ueGQAAAAKD/DYdAAAAAADWah0AAAAAgfqKHQAAAAKB6q4dAAAAAoL+wh0AAAACASOaHQAAAAOD5JIhA + KBZXds7jZUD+9P4gH+NsQDeULWxqYnBA2obJ21LCdEDLo7/RbZN6QNrkpS+r03tA5QDOEmPSgEBtIcHBgXKBQOUvvDwPW4RANymKdAOLhkASNmHicIOHQMgtCw1FQ4lAphYFHsiLi0A= - + - knYBQM6vjkBcdwFA5BV5QF5LokCn37VBoR2BPzIorEH84MlA7P4JQYsoGkAVuQFAIdjvPwB1tEC4eQpBIZ1aQKdK/j+2kMtAb1neP1fjpECxFgFAuUAnQTcUOUAx/fxAGdbvP8frJECYHM5AlEMdQCq4vUCnsiRBDXNBQHPoHEGTwxNAUKZJQKj6DUGDJrhAGD+WQqyvykAARjFChL2vQIZ4TkEAT7RActkkQHZcJUDmjwpAP9WeQL4olEDTnlZBjMamPxFcOEBOzbNAX5apQR4FC0D2GVtAcs0WQRDoYEEkZO5ALFoCQUhK00ClAnZAEW3oQLEK/UCb5sRBJBKlQL7wYkFCeIFAP1rVQAzCHkJwoGZAfRDKQHsbokG7YvdAfKHuPydvSEA5cQ9B1pAwQFyYmEJ48ldBrDJCQJM/q0AJtIBBnI+EQQ4480A4BX9BSSwhQj1HJ0D85FFAihbvQJD/40A4ZwZBnFrWQOLLrUDtihNAI9O4P7f2LkDlj4FAW5WUP7rM5UBeTgFAjkMQQdzAH0HAHcVAFUeRQSRg3j+dIVNACQ0/QPdcAEEd4LdAcvG6P5kDB0FTAGBC4qERQGOrwUCXOV5AK8g5QGKoAEFj9U1BFVahQUPkCkDl0sVAym1UQdS7skHYOMw/5weJQX/6XUAHeohAcvPcQMaZDEIMd71AiWoVQbjxwEGO7XhAz3hpQd9oAkCfgChD5mhWQYZiQkAWnvNAI9WUP0yUt0AezjJBMYkdQORQAEI4YL0/cISBQKzOb0BurApA0F+XQEcRxkDIK5RALVdMQWoBpj9CS69A6YoHQJUfH0DXTiJBqKnWQWBqFEGw+Lg/rLB3QZZoMUE7Tk1Afoe8QN7ogUCIxR1Auj5TQPoziUB8YIFAPgh3QA9OtEC3W0lB15XGQMVzgEDWpIlApkbXQFlDlkH1uJVAk62lQk5WlEEv3HlA4KgKQuRg6EE6+UVBs6VCQDCUgUB6r5hA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwD4rbkAAAAAAfyNwQAAAAAB5QnBAAAAAwEHBckAAAACAgBNzQAAAAEBSQnNAAAAAwLwSdEAAAADgcEJ0QAAAAMDlUHRAAAAAgLpSd0AAAADAM1R4QAAAAMCIb3lAAAAAgEk7e0AAAACAG+l7QAAAAMCLgXxAAAAAQAIBfUAAAACAIWh9QAAAAMB/cn1AAAAAQGHJfUAAAACA8FB+QAAAAIDcgX5AAAAAQJYef0AAAABAj1x/QAAAAMCEZn9AAAAAQHmDf0AAAACgigOAQAAAAMBUHoBAAAAAoP9mgEAAAAAA7JuAQAAAAID79YBAAAAAADlSgUAAAABgJIKBQAAAAOAzjYFAAAAA4HacgUAAAACAy9KBQAAAAMD6GIJAAAAAgAQkgkAAAADgLiuCQAAAAGD0P4JAAAAAYHdvgkAAAABgSICCQAAAAKC9u4JAAAAAIILOgkAAAAAAPQCDQAAAACC4G4NAAAAAwGsmg0AAAABA4DODQAAAACBSioNAAAAAALWRg0AAAADgH6CDQAAAACDTsYNAAAAA4Ae8g0AAAABgdgqFQAAAAICn+4VAAAAAAHQ0hkAAAACgMb2GQAAAAKBPxYZAAAAAoCfDh0AAAAAgKxiIQA== + NrgMGZxjYkA= - + - Yi1BQPi/AEHnqZJAnLcmQBleuT/ykzhBzMQBQPJVkEBe9xBAOeHLP4KpkkBFgN4/wYgBQDDmi0CbDhtAUBPYQfnwbUA16gpAqA6iQCFYMUCTWxlB9+JwQJaYwEFsJwpAq36dQQoeSUBQeCBBcTYmQZBHKEELNKJAzidAQAGVTUE0WdhAZII7QXnh7EDclfhADsTQQPHVrkACxQZBedkoQeJijkAdvUlCm2gdQHPRiUBejUhB3kTTQMjeIUAOKYZAGtMGQehYMEAZO5pBiCiUQUb0OkColk5BIBzKQJjaG0LIafJA5hY2QRssCEA= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYMD+ZUAAAAAgij9oQAAAACCMhGlAAAAAwKcLakAAAACAOFxqQAAAAGAQCGxAAAAAYM09bUAAAAAAyYBvQAAAAMBC6W9AAAAAICntcEAAAADAMABxQAAAAIBptHFAAAAAwJ8TckAAAABAs6JyQAAAAAATwXNAAAAAAN8RdEAAAACgHDB0QAAAAIDbsXRAAAAAwAHFdEAAAABAixJ1QAAAAEAIVnZAAAAAAGljdkAAAACAAXJ2QAAAAIAkkXZAAAAAQJwCd0AAAABAtiR3QAAAAECvRndAAAAAQIxid0AAAADAEUZ4QAAAAEApVXhAAAAAQN/AeEAAAAAAVtN4QAAAAEABC3lAAAAAQJPqeUAAAABAIDJ6QAAAAADRTnpAAAAAQFxie0AAAADAg3V7QAAAAMD6tHtAAAAAgE//e0AAAABATUV8QAAAAIB+AH5AAAAAAEajfkAAAAAAjvR+QAAAAMC/WX9AAAAAgMAogEAAAADADjKAQAAAAMCzmIBAAAAAoJXDgEAAAADgLc6AQAAAAEDXBoFAAAAAgGM6gUAAAAAgBl+BQAAAACCBZYFAAAAAoLqtgUAAAABgQzCCQAAAAMDnSoJAAAAA4F9kgkAAAADA+RGEQAAAAOAx3YVAAAAAwEvyhUAAAAAgp2CGQAAAAKC7a4ZAAAAAQGlyhkAAAADgm/SGQAAAAKD6KYdAAAAA4Pikh0AAAADgKiCIQAAAAKCAVIhA + NrgMGZxjYkCOTWWFS4NqQOJgFSPMRGtAxwSPFv4SckACSSuYVWJ0QI5fI1AWRHhAWJ0vne3SeEDksydVrrR8QBD8YesCAoFAhbo3Zq5igkCk3AUnWgqFQIXpJZBa64VAzdyM9mxCiECjOuJ6snuJQM5kZH3+s4tAzQt7IBnLi0D4Nf0iZQOOQJWQCo1qvI5AYF3GR1t6kEDgsFGZ6IWQQPbFkpoOopFA4HS9XLE+kkCF7vCPOmqTQPT0gMS62pNABQbopJAulUA+5VJi5t6VQE/2uUK8MpdA8Pu3cCwrmEBkC/tD4k6YQAUR+XFSR5lAFiJgUijbmUAsN6FTTveaQJQ5V2d+D5tAQkziVHQTnEB4TypvtJOcQA== - + - /80sQNU1KECAl4FA34EaQO73bECNDdE/ggyKQIJnJEAR+ItAXi6VQM7FSkE0ZddAQn0dQRL2CkBRD+lARxB3QLWsKEF85N0/tNwvQEQTFEFex6VBdbceQZcad0D/GKhAax4CQU1c3ECP58s/t4c3QLO4m0GVAoZAPf78QBCFxUA3oIdBZezgP1+rqT+2XC5BBFzUQPMD6kBNZp1AkTXoQAXDHEAlFro/x/s4QGtzyj8SByRB0iOPQB54FEDGBa1A9UFuQJA+uUAKhRhBmFGTQDT8G0GfSoZAa8+FQH4wqkDFs19B95EiQqMGL0BE13VBU5PTQB+PG0BW6LJBw43cQPx4qUGSGpRAJh8zQcyBnUDfwHBA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwA0KXEAAAACA93VcQAAAAMA4C15AAAAAgOcnYEAAAADABEVgQAAAAKBFo2BAAAAAgEvhYUAAAAAgNGNiQAAAAIB+o2JAAAAAwLCkY0AAAABAgcZjQAAAAICTKmRAAAAAgIxMZEAAAAAAS+FkQAAAAGB5YWVAAAAAwFGuZUAAAADAAtNlQAAAAEB8pmZAAAAAINPkZkAAAADglCFnQAAAACDzYWdAAAAAoKvAZ0AAAAAgu6JoQAAAAOBZH2lAAAAAwA+naUAAAAAA6+BpQAAAAAAtB2pAAAAAIKYkakAAAABAPUFqQAAAAEDon2pAAAAAQOLmakAAAACAuUZrQAAAACAcZGtAAAAAQLjNa0AAAABALyFsQAAAAICX5mxAAAAAwCi+bUAAAADAz+RtQAAAAAC0IW5AAAAAwPlCbkAAAADAgGZuQAAAAMDcfG5AAAAAgAufbkAAAAAA9+JuQAAAAIDoSW9AAAAAgANnb0AAAACAVKBvQAAAAEA8UHBAAAAA4DJlcEAAAAAAkXNwQAAAAICTgHBAAAAAQOmKcEAAAAAAVLJwQAAAAOARxnBAAAAA4LvUcEAAAAAgwe9wQAAAAEAmA3FAAAAAAC0TcUAAAAAg01ZxQAAAAAD2aHFAAAAAwEhzcUAAAABAD4RxQAAAAEDkknFAAAAAQIihcUAAAACgANJxQAAAAEBJHHJAAAAAIN8tckAAAAAAtDhyQAAAAIC2QnJAAAAAIGRVckAAAACA2mRyQAAAAOBWcHJAAAAAQOiyckAAAABAcNFyQAAAAIDS8nJAAAAAgLcOc0AAAACAA0VzQAAAACA1UHNAAAAAwKxgc0AAAAAAPn5zQAAAACBo13NAAAAAACLnc0AAAABAWvNzQAAAAEBgAnRAAAAAAKkRdEAAAADAsC90QAAAAACEQXRAAAAAQIFidEAAAAAAfnF0QAAAAKD6j3RAAAAAgBWjdEAAAABAUQF1QAAAAICbIXVAAAAA4IwxdUAAAABA2D11QAAAAID0TnVAAAAAIG1jdUAAAAAgjXp1QAAAAIBKk3VAAAAAgOOtdUAAAAAAuL91QAAAACDR8nVAAAAAYPUPdkAAAACAPiF2QAAAAOBdTHZAAAAAgAFJeEAAAADg46R4QAAAACCssHhAAAAAoHXkeEAAAADA3BR5QAAAAODkHnlAAAAAAK9neUAAAABgFBZ6QAAAAODEInpAAAAA4KCVekAAAACgKvl6QAAAAEAVdXtAAAAAYAoOfEAAAABgKB18QAAAAOBLonxAAAAAYOvDfEAAAABApvN8QAAAACBwMH1AAAAAIB9TfUAAAABgi4h9QAAAAKATq31AAAAAQB61fUAAAABAlQF+QAAAAKCrQX5AAAAAIADhfkAAAAAgahd/QAAAACA1In9AAAAAYCU9f0AAAADAy1Z/QAAAAKB6YH9AAAAAYCiEf0AAAABgtON/QAAAAEAFQ4BAAAAAIF1LgEAAAAAgXVKAQAAAAIAtaIBAAAAAAAuEgEAAAABgApSAQAAAAOBmm4BAAAAA4GgLgUAAAADgc/CBQAAAAABP/YFAAAAAoI8igkAAAADg3suCQAAAAMBSUYNAAAAAYCIEhEAAAACgWCuFQAAAAKAZmYZAAAAA4DvRhkAAAABAQDaHQAAAAEBnlIdAAAAAoL6aiEA= + NrgMGZxjYkA= - + - ZB+zQF12uT8axJpBtchVQbglAEGfOoZAMHIOQQ9t7j9JNylBXumOQBdPQkDTmaFAZ9WBQByCkkAl61FAxKzLP0F3uT8NkgFAIU3fQJ8iyz8C2xxAc1udQKVi4D8naNpAVd8AQUEBokCacCVAVbCBQBN5S0BGRgtAuCyXQFxm8D8/niNA/kywQHhcjkDzi7BBxbwmQOYZtkG5FetAEoYlQKihL0BDghZByJ6MQIarnUAXPblAE1QjQBgZMEKDEmdBB+eQQOrxpUCSQm5APQxIQf9bDEH5iBFAWtC3QGGSh0IFGnpA0g0oQeZeVUCSdfBAlszuQJK7i0HLpYpArwfRQCDvKUGJAAtAADEtQdMO3D/4Z/8/MU3mQEyu3kBw18FAkLuTQLUNlj9uV0NBfTTMP5/ROUHiWCVANhZsQrm9qUBYa7VB61eIQTCZr0GmxFFAN7CZQvAfxUJLwRdBkVZ2QSh8X0LMonNAGEg8QdgTn0CMyfdA22vbQUgNokA3eCpBrHbTQZTwJUE/PYtBpzmjQqZ7DUEs28pA9BTYQFvWW0ChFwdCb2S4QazgCUIDMU9BynniQGpXP0F5kLk/uG2JQD+EKkGEe7JAkh7xP4jRpkCYnJNA1hy/QVwdm0EHNRRAnbc9Qdd9B0FvTIJBYyK0QK0tEUE2Y6dB/yBVQLNIikBLGwtAxASdQK3dgUGd1s9AERssQZrxf0Fod7VAsRLDQRZmjEDzj4RARO1zQQ8gs0ECXDlAJXdIQDNh8D+jbTZAot8tQEZNAUDsgBRA1Pn3QHSCr0C4us1A9ZS6P0w4C0BfUolA6QlBQb+EEUFOKa5AGnPUQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIGdXV0AAAABgpsNYQAAAAAAuDllAAAAA4BZIWkAAAABgxIhbQAAAACCwEFxAAAAAQIA+XkAAAAAAUMdeQAAAAKBcSF9AAAAAIGsAYEAAAABASCVgQAAAAEA6R2BAAAAAIKhjYEAAAABgCapgQAAAAADs4WBAAAAAIAECYUAAAAAAmCthQAAAAAA+QmFAAAAAgLNoYUAAAAAg26FhQAAAAMA8wmFAAAAAgBLjYUAAAAAg9VBiQAAAAEA+Z2JAAAAAANeGYkAAAABArAdjQAAAAMBdLGNAAAAAQHdDY0AAAAAAsWNjQAAAAICSfmNAAAAAwJ2kY0AAAADA1MZjQAAAAMCP32NAAAAAQKsEZEAAAAAgxCVkQAAAACB2fWRAAAAAQGOfZEAAAAAA8MZkQAAAAEAjHWVAAAAAYLtEZUAAAAAgFWRlQAAAAMCuf2VAAAAAYDqpZUAAAABAQeBlQAAAAECYA2ZAAAAAgGwrZkAAAACAWGNmQAAAAECypWZAAAAAgHe9ZkAAAADAauJmQAAAAGA/KWdAAAAAoHFgZ0AAAABgBMFnQAAAAABw6GdAAAAAgBMGaEAAAACA/U1oQAAAAEBJYmhAAAAAgCzPaEAAAABAqCZpQAAAAIAfgGlAAAAAQOPBaUAAAACAb+tpQAAAAMD8BGpAAAAAgEEkakAAAADA1z1qQAAAAADnhGpAAAAAgA6eakAAAAAAfORqQAAAAMCJBWtAAAAAQFkfa0AAAACArWRrQAAAAMA4hWtAAAAAQBmia0AAAABAMsZrQAAAAECM5WtAAAAAgFoGbEAAAABAPn5sQAAAAMBsmWxAAAAAwBLDbEAAAAAA++ZsQAAAAMAcGW1AAAAAQJlAbUAAAABA4mVtQAAAAACVhm1AAAAAQFqjbUAAAABA5MZtQAAAAMCG5m1AAAAAAK0BbkAAAABA8SluQAAAAIDNum5AAAAAAGMBb0AAAAAA3iZvQAAAAAAVQW9AAAAAgDZib0AAAADA+4RvQAAAAAB2r29AAAAAgHrcb0AAAADAESNwQAAAAKA8N3BAAAAA4Ot/cEAAAABgw5JwQAAAAKAzoXBAAAAA4C2wcEAAAACANc5wQAAAAABM4XBAAAAAIM/vcEAAAABAcABxQAAAAMA4EnFAAAAAIJIfcUAAAABA1TJxQAAAAGByQnFAAAAAwP9hcUAAAADgSnZxQAAAAIDwgHFAAAAA4DmlcUAAAAAAHrtxQAAAAEBD03FAAAAAQO8AckAAAABA62tzQAAAAIC3knNAAAAAgO99dEAAAAAAxYt0QAAAAMAVp3RAAAAAoH+/dEAAAADAydJ0QAAAAMAA6XRAAAAAwH8CdUAAAACgcRJ1QAAAAEDXPnVAAAAAwB6EdUAAAACAvpd1QAAAACBLuXVAAAAAYFPkdUAAAAAA0Rx2QAAAACDxSHZAAAAAQPd1dkAAAACAjIN2QAAAACC7lHZAAAAAgD2odkAAAAAgWrp2QAAAAEDtyHZAAAAA4BfYdkAAAACgnu92QAAAAMCNA3dAAAAAQLAbd0AAAAAgJFp3QAAAAKDvk3dAAAAAwO6kd0AAAACA+MJ3QAAAAIDpIHhAAAAAgCgyeEAAAABgQXR4QAAAAOB8iXhAAAAAoH2UeEAAAACgNbV4QAAAAKA9xHhAAAAAQCsDeUAAAADADxF5QAAAAEBfHnlAAAAAgEY7eUAAAAAgUlN5QAAAAOALYXlAAAAA4GyVeUAAAABg8KN5QAAAAOCptHlAAAAAAEjSeUAAAABgDuF5QAAAAGCWNnpAAAAAIAxTekAAAABge6h7QAAAAEBpnnxAAAAAwJM0fUAAAACgbG59QAAAAED4hH1AAAAA4DWkfUAAAADAqLN9QAAAAOB0831AAAAAwMV2fkAAAABA2YV+QAAAAKBipH5AAAAAwFrKfkAAAABAchV/QAAAAOAXJH9AAAAAYK1Ff0AAAABAOcZ/QAAAAEBZ1n9AAAAAQM0RgEAAAADgpTOAQAAAAEDxOYBAAAAAgMxygEAAAADgs3uAQAAAAOD+mYBAAAAAQLupgEAAAADAZMSAQAAAAGCa8oBAAAAA4BL6gEAAAAAAOKOBQAAAACCQKYJAAAAA4JCNg0AAAABAM92DQAAAAOBpGoRAAAAAYDR6hEAAAAAAyoGEQAAAAIAwkYRAAAAAwOT4hEAAAACgEAKFQAAAAGA0ioVAAAAAgNSShUAAAAAgB7WGQAAAACCFwYZA + KBZXds7jZUCuZ9p1aSJuQG+XdYaqQnFA15HJDo0idkDAl4Ml0LJ3QN3oPxAoQ3tA1++lYuUzfUBuIw4yQCqBQH/Y9uxJooJA/UtsJ2zygkCqAnnvldqEQCh27im4KoVAOSvX5MGihkC8VpJlDzOJQDlaxQ5uK4pAyIIjBJrzi0C8hYCPu7uMQPGCqtOsK49AXlq33DMikECPxKc8ByqRQHLaekQ9vpFA - + - dWJCQCtnzEBpY/hAJ/OEQO22ZkEIiBxAtcOVQFNE3j9CGd5AUZGGQEIlT0FqdaVBdWUdQHPim0By1r4/ErYUQTI1OUDBr8dA8a0CQV9Hg0H2F7JBMj+9QPFYoUDf7NNBkbbdQXagj0BsADZAG8/wPwYYy0C0i0tAlponQdAMykCEtW1BnAZdQNKjQUDKeQJA2d8OQSG0pj/3bphANgELQU7nE0Dw7HBARK9cQXYdq0EE8KFAsoBBQMpQXUB64gFAGvXdQGYxZ0GQ321AlwaZQowcFECE098/3ccBQO+8SkDk9e1A651sQb/LN0FwFI9AEBCgQNIa20FIxyVAyV4jQYDZq0DGaUZBQMlTQTOt3T+y0JNAXHefP0IH5kAbF65BJ9GqQFx4jUHUWy1BGGVfQeQBj0CwEmRAt2BmQWEYW0FN8fhAnwsCQfxwukGwuG9B2og4QfLv/EDFhTBBJIARQZBViEF2j2VBAWPcQZZbAkJzlOZCl1m9QnZKk0G0M9BACYw/QcnQyEInA9FBlNAzQ5xoEkJdSrxA/JgXQkpbX0EsLgFCraQyQDF0rUBaqPA/CuDFQU4J7kLhRBBCY8nEQi4tv0FjHrFBWs7iQKODmEDJaoxBz4XiP3cnjEGPwFJBHp1LQGPsdkHL8ApB0X0BQO70hEB6g7g/431OQLBhwEDOYodBDS2FQASn0kGWw2pBVsCqQTJegkECTlJBgngvQN9+KUEaIGJB0gQSQFwSdkEfuj9CoBIDQTXiJ0Ao9G5AEeK5QBlTf0F0LatBMiGjQa8+4EC9fx5AMjk/QIOjZkH4CRRCfouSQY1z2EEN14JATx+QQhTyeUIa7YlCh9d5QCdOJ0LHvlpCPT+WRJcid0KcQ/dA+LIoQ6Z3k0GUDC5BiXl+QYDdgEDYTc1AZJ1hQcd4HUA/klxAdV8bQaAGnkCw3KlBbIkfQcOvA0FFPLlBkSCmP2qKf0E43NxAxTckQF2mY0EpkVlBXd5dQKwgiUG7YPtAm1dPQ5jDpUFX7EtAFaUPQXpV00BKcapA4DYoQSRU3j+ctLhAVXgBQWPCj0FEqKxAEAqHQcubr0Gj+vE/ouReQrmF8kBlw29B0+mlQWbCwEBbAPtA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwKIlYEAAAACguihhQAAAAMBzy2FAAAAAYFAKYkAAAABAkGNiQAAAACAniGJAAAAAoASiYkAAAADghsBiQAAAACAJBmNAAAAAYLEnY0AAAADg8sNjQAAAACADpGRAAAAAANtFZUAAAAAgPH1lQAAAACAHwWVAAAAAoEcEZkAAAACAvqdmQAAAAMA142ZAAAAAABZDZ0AAAACAj2NnQAAAAIA3hGdAAAAAgD/6Z0AAAACA12FoQAAAAEC1KGlAAAAA4EUIakAAAAAgGWNqQAAAAIBT4mpAAAAAYIYpa0AAAACAoWFrQAAAAKB4RGxAAAAAQBtrbEAAAADgkd9sQAAAAEBDfm1AAAAAAFOibUAAAABAgOptQAAAAIDlBG5AAAAAAJdnbkAAAADAVIJuQAAAAEAtoG5AAAAAwJTJbkAAAAAA3AJvQAAAAEAbTG9AAAAAABB/b0AAAABArplvQAAAAMC4ym9AAAAAIMkhcEAAAAAglTNwQAAAAODWcHBAAAAAIBWQcEAAAAAg3gBxQAAAAAB6JnFAAAAAgHZAcUAAAACgjk5xQAAAAOBOc3FAAAAAwNh/cUAAAABArD9yQAAAAEB0UHJAAAAAgHdlckAAAAAAWHNyQAAAAACRgHJAAAAAgGTFckAAAABg6NRyQAAAAMAE5XJAAAAAIKoBc0AAAACgXRFzQAAAAGCCQHNAAAAAgDmTc0AAAABAbrxzQAAAAEDzH3RAAAAAYJk8dEAAAABAuEZ0QAAAAMDuUHRAAAAAALx8dEAAAADg1Y90QAAAAMCwtHRAAAAAIJTddEAAAAAAlf50QAAAAICwDnVAAAAAgEUjdUAAAABg2UJ1QAAAAEAfeXVAAAAAgGaHdUAAAACA2aF1QAAAAGARsXVAAAAAgCbBdUAAAAAAI991QAAAAABA9HVAAAAA4LMKdkAAAADA6h52QAAAAMDbNnZAAAAAAIxGdkAAAADADnx2QAAAACB9lHZAAAAAYMm3dkAAAACALMJ2QAAAAMBGzXZAAAAAQJTXdkAAAAAglQp3QAAAAKCwIXdAAAAAoNlNd0AAAABgMGJ3QAAAACCMendAAAAAYIWWd0AAAAAg5MR3QAAAAGAO1HdAAAAAoJ3wd0AAAACALCV4QAAAAODsPXhAAAAAYLJTeEAAAACArmV4QAAAAOCScnhAAAAAACqBeEAAAADATZV4QAAAAIApuXhAAAAAAG7EeEAAAADAZNR4QAAAAOAtAnlAAAAA4FcQeUAAAADgYyV5QAAAAODWNXlAAAAAoBlHeUAAAADgQFV5QAAAACC0ZnlAAAAAgNmEeUAAAAAgE5J5QAAAAKDJnXlAAAAAgOOweUAAAABAac95QAAAAODa3XlAAAAAYFwBekAAAADATxN6QAAAAACNI3pAAAAAYNEzekAAAADAJ2F6QAAAAGBWbXpAAAAAAP2kekAAAACgMTl7QAAAAED303xAAAAA4NXkfEAAAACgDyN9QAAAAMC8On1AAAAAoLF3fUAAAABgbIp9QAAAAKBilX1AAAAAIP28fUAAAABgoSh+QAAAACDvY35AAAAAwLLCfkAAAADAPAF/QAAAAOA3En9AAAAAIA4gf0AAAAAg3mR/QAAAAKCCd39AAAAAYM+Ff0AAAACgVcl/QAAAAGBj1H9AAAAAYOnuf0AAAABAKC+AQAAAAOCGNoBAAAAA4PxFgEAAAACgFVWAQAAAACDpW4BAAAAAYDRhgEAAAADguJuAQAAAAIArooBAAAAAQEOngEAAAABAkbOAQAAAAKAx4oBAAAAAoMVhgUAAAADAwmqBQAAAAOBkjIFAAAAAAEedgUAAAACgG6uBQAAAAKD87YFAAAAAQBj3gUAAAADgWCuCQAAAAKAoM4JAAAAAoFFGgkAAAABgOmKCQAAAAEAvaoJAAAAAoOu6gkAAAABg6cOCQAAAAKCU0YJAAAAAQGPmgkAAAABgXPCCQAAAACCe9oJAAAAAABP/gkAAAAAgawiDQAAAACDYD4NAAAAA4FwZg0AAAABgux+DQAAAAAAwKINAAAAAwD8vg0AAAACABkWDQAAAAGCaWoNAAAAAYH9zg0AAAAAgVoWDQAAAAOAhi4NAAAAAYJaig0AAAABAuamDQAAAAKAvA4RAAAAAoBoLhEAAAACgvTmEQAAAAOD4pYRAAAAAIHithEAAAADgX+GEQAAAAGCSMYVAAAAAIFqBhUAAAAAgptGFQAAAAKAiKoZAAAAAYCExhkAAAABg8DqGQAAAAGBKioZAAAAAoDO8hkAAAADgScWGQAAAAKBD/IZAAAAA4DABh0AAAACg8AuHQAAAAAB5GIdAAAAAANcfh0AAAAAgHyWHQAAAAIBQTYdAAAAAAI6Mh0AAAADAk7mHQAAAACDYrIhA + NrgMGZxjYkDXkZP9yKNsQBu6YmAmQ3BA6yam0jxjdUAbGD+0flR3QA== - + - cy16QOAolD8lXF5ACbJ7QBj6nEAsz+RASEJmQqbnyz8QR/1ALlp0QdDw3T+QBXVBg1bePzzt8D/D6BRBTpAcQUe18ECcq+JA62WGQCdXtEFeB1dAcutDQLnPykD1qKBA4vqFQMEzlD/msAxAGhwyQPRooEBW9HdBiTBVQL+VzD8SroVCezSpQKoG8T9hWFZAT2OGQEtCakCQsOlA942BQLkNMEC3OtNA3COdQPKLAUAdVrk/4D+uQYz+FUHFpIpAv9CmP0manUHtpAdBfy4pQ+JM8UCCO3dAECKzQEh/y0KGu39AzwLpQHAQjkAHDpQ/JuiSQ6A2rkDOba1AIRsyQ6EllkEQzdlBYdwjQFo4nEC9PSBCCUsRQQ1ZtUDpvXBAPrLdP9+9eUG8nwNB16iPQLAOiELk5K9BtgIkQBqpB0EUOg5Bb/CkQB8bk0Be2o9AmwvbQCQ/3j8US7k/ECcxQCfmxUHMdXdAU+SCQFgbRkFJzMZCEoNpQXv2LkOAEcRBryTSQbbfQ0LHCiJCJqb4QcI9FEFJGIFAKlw6QHgI20BlyYxAUXbLP1dUVEE1ZYlBqclGQ2U5skEq58BB1k4NQtdVTEHRQoFC+GrzQZsWLkEuBBFB+VjKQCYSVkDhIHtBJxI7QRWIGEGlbbpAxahwQMbqVkLkfFFAzUWjQe2Jp0INRyNB/AKQQiKFikKa419Cqix1QSO9vUNNEqVBlyneP73gqUHM/hxC0jcJQSYAj0HVDBZBF0cLQMb/hEAOCg9CK0mRQfdSHUBifUtApHy4QD09PUOubKRAGnU5QCNhtUJENzlCkmaTQaNSAEKSf/FB3qCPQIR4gERBp/xBpTIfQR2mBUIVf+hA7WkKQaQGU0GvDKtBOA9PQoog2EDuooFAi718QM3MJ0F60p5BsQ0tQWkeOEHyLkJAnrGvQJPOZUEzd6lAWZLFQB0goEAN18s/XqKDQ2RGlELqHmJBqtYeQRjENUC3SUFBH+sAQhKCfEDdJT1BSgBwQv9zRkH2cjRBKWx1QXeehEEWhepAS604QW9JNkFSAnpA8zfYQLQcj0Br+w1BsC6XQJm380DXefJB0zqaQQpplD+TqUtAyovXQLQ/CEByWzlAoKumQNO3Q0H/yo1BnHTwQFVsvEBnKEtBzs0yQZIPKEBUtoBCthU0Qc7OHkG0uipB/gd9QPo6xkGNe51A + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoJilYEAAAADA8qRhQAAAAMCnyGFAAAAAQApeYkAAAADAuaNiQAAAAOBSymNAAAAAIHPfY0AAAAAAMehlQAAAAGBaAGZAAAAAgPIkZkAAAAAA9kBmQAAAAOCOI2dAAAAAgJBKZ0AAAABAvWhnQAAAAID3fWdAAAAAQFHBZ0AAAACAluhnQAAAAGChaWlAAAAAgFGkaUAAAADAfcNrQAAAAAD9BWxAAAAAABkobEAAAAAghkVsQAAAAKDuZmxAAAAAYJaIbEAAAAAg0aJsQAAAACDUuWxAAAAAoATnbUAAAAAggv5tQAAAAMBjIm9AAAAAQEZob0AAAAAAiAJwQAAAAKB/IXBAAAAAgEKlcEAAAABAmrNwQAAAAKAPBnFAAAAAABMUcUAAAADA5kBxQAAAACDhUHFAAAAA4OtjcUAAAACAkvRxQAAAAIB4EnJAAAAAAO96ckAAAADgXLByQAAAAEBe/3JAAAAAYE8ic0AAAAAAXS1zQAAAAED2oHNAAAAAgAjyc0AAAAAgbnV0QAAAAACO8nRAAAAAoFQCdUAAAAAA9V91QAAAAMAFdHVAAAAAwBKCdUAAAAAgddJ1QAAAAABK7HVAAAAAwLIBdkAAAACgjRF2QAAAAEDxLHZAAAAA4FFndkAAAABAJ3h2QAAAAMC7m3ZAAAAAQEq2dkAAAABAzt12QAAAAIA7FHdAAAAAwMhOd0AAAACAO393QAAAAGASlHdAAAAAIFHQd0AAAADg7ex3QAAAAMD8EnhAAAAAYIkieEAAAAAgiTN4QAAAAACGm3hAAAAA4BGmeEAAAADg++J4QAAAACDK+3hAAAAA4CwueUAAAABgiFB5QAAAAAC7XnlAAAAAYJhreUAAAAAgz4R5QAAAAKC/mHlAAAAAIE+0eUAAAABg98R5QAAAAGAg1XlAAAAAAMjieUAAAAAAWDl6QAAAAEDyRXpAAAAA4HdtekAAAADgtX96QAAAAKChunpAAAAAwOzVekAAAAAgK+R6QAAAAKDU+XpAAAAAIJgDe0AAAABgVKR7QAAAAOBDEn1AAAAAQEfyfUAAAACgByR/QAAAAKDIxn9AAAAAQIHtf0AAAACgHnOAQAAAAGAzeYBAAAAAoDeGgEAAAAAgcmqBQAAAAKCB24FAAAAAoA8IgkAAAAAAiiOCQAAAAOAnLIJAAAAAIDA7gkAAAABACkmCQAAAAGAXa4JAAAAA4O+5gkAAAACgsOeCQAAAACCU+oJAAAAAAAVCg0AAAADA8IqDQAAAAKAjk4NAAAAAYHXag0AAAABgzqOEQAAAAIAJAYVAAAAA4ExyhUAAAADAsomFQAAAACA9+4VAAAAAoBEYhkAAAAAgnFSGQAAAACD0YoZAAAAAYDKDiEA= + KBZXds7jZUC2sNCooUJpQBTpB48/A3JAW7ZEKKmyc0DbQ5zIVzR7QO/F1o2s431A7VA8DtgigUC/jpFWQvqBQFF+BitkO4RAv71/gO6ChUBRrfRUEMSHQCPrSZ16m4hAGNmaZHzMikAjGjjHJiSMQOLgYxf+5I9AwyMBcllekEDxB6kg1baRQEM7+IavIpJAgDAHFgF/k0A= - + - QVhvQEU4zUAhXH9BwFQuQFr2E0BuIXpAYLHwP7ZCHkDXs/4/8neKQNVxqkDXe/A/EY6UQUitr0G4qDRB64TdP/YCTEA7xxhBeRcBQHcSsEAVQJ1ADJhMQExgGEHE1oRA0wwlQKd2hUBB1YBAreTFPxw5HUCulkVBoLhAQH/A+kCqdE5B3vk4QMYVpUBkDBVBieqAQGzAyUBN+z5AVJN3QSmOcEDrxJtAotReQfJM6UA8Y5dASDG6QV09fUEbSYxARdKkQPbju0ACnsJAsnccQH1gXkBEMvZBzUgEQuGq7kCMBzhBha87QuJfKkFm7w5BijVSQVzFwEC64sRA2LxAQCLcL0ByX2VBUJUIQLvPikD6mVBBwNeYQKl7B0BXfTlAuwjOQVKoxj8gcjxB9JupQca6AUAYe1NB8FYuQXwGzUH+wKVBZJ2fQCJVuD9CDCxCKZ0oQWRKUkF8a5xBksW3QDzB3T/ubktAnXsZQgekwUFHxiNBmWcHQUId3UGmVMdBf8xhQ2auEUAtAHlAAlttQBjW3T9/uxRAwP8DQa3EFEKWE+ZB4kqLQZP1KEHumAlBGtWPQdPGO0HaBLRAIkPnQQKdDEEQd21BGJvZQHr5WkFDWsBAU5SuQNJiiUJJHjhB9YzwPyf4LEBhUXBAicMtQPa9QUIVFatApjllQNKOnUBUuKZArMr2QQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoJdwYkAAAADAnodjQAAAAKBwyGRAAAAA4I2jZUAAAAAg/YJmQAAAAEC/7WZAAAAAAEhEZ0AAAACA4OdoQAAAAMCJPWpAAAAAACUaa0AAAADAxaJrQAAAAIC7OmxAAAAAQKZubEAAAAAg06JsQAAAAEAs4m1AAAAAABUEbkAAAABANSFuQAAAAGAwSm5AAAAAIB3AbkAAAADAhx5vQAAAAAC2hm9AAAAAQCQEcEAAAADA7iFwQAAAACC9NHBAAAAAoK1FcEAAAACAqsRwQAAAAEDlQnFAAAAAYLrkcUAAAADAQvJxQAAAAKByA3JAAAAAQBVEckAAAAAAulpyQAAAAKApcnJAAAAAgDOzckAAAAAAocZyQAAAAED3AnNAAAAAwMF+c0AAAAAArLBzQAAAACBz0nNAAAAAAOvjc0AAAABAGxl0QAAAAMDEQ3RAAAAAQOh2dEAAAABg/5B0QAAAAODN5HRAAAAAQGX0dEAAAAAgHxJ1QAAAAKBuPHVAAAAAwIhqdUAAAACAtH11QAAAAKD72XVAAAAAwLz0dUAAAAAAMQN2QAAAAABgPnZAAAAA4Fd2dkAAAACAGJd2QAAAAEBmzHZAAAAAALTidkAAAACAePV2QAAAAKBUA3dAAAAAIGwhd0AAAACAMUJ3QAAAAEDNT3dAAAAAQH58d0AAAACAV4h3QAAAAMCkq3dAAAAAoLPhd0AAAABgp/V3QAAAAKBBAXhAAAAAgDYVeEAAAABg0lV4QAAAAOAMfXhAAAAAQJILeUAAAAAAsi15QAAAAKC5bXlAAAAA4CF+eUAAAAAgl6J5QAAAAEBptXlAAAAAwIjAeUAAAABgftR5QAAAACBSF3pAAAAAoMczekAAAAAgL0Z6QAAAAKApX3pAAAAAoFlsekAAAAAghHh6QAAAAGBKjXpAAAAAgNukekAAAADgALV6QAAAACAzFXtAAAAAABdMe0AAAADgAVZ7QAAAAIDgeHtAAAAAYNiCe0AAAABgMZp7QAAAACB1wXtAAAAA4AXrfEAAAADAofp9QAAAAKA3Wn5AAAAAQPWEfkAAAACgY71+QAAAAEBNKH9AAAAA4PJnf0AAAACgnXd/QAAAACBBgn9AAAAAoCXFf0AAAABg/y+AQAAAAKDmioBAAAAA4IKSgEAAAABgKqqAQAAAACC53oBAAAAAoDoigUAAAAAgOyeBQAAAAOCWSIFAAAAA4EBqgUAAAABghpCBQAAAAMBoyoFAAAAAINjdgUAAAAAg1vuBQAAAAADymIJAAAAA4BO7gkAAAABgjMCCQAAAAMDEPoNAAAAAADJLg0AAAADArYiDQAAAACCqCoRAAAAAoCEahEAAAAAgSyaEQAAAACD/V4RAAAAA4AcBhUAAAAAAKAqFQAAAAID7yoVAAAAA4IMrhkAAAAAAdtGGQAAAAOAPWodAAAAAYPEZiEAAAAAAaHGIQAAAAOAm+ohA + NrgMGZxjYkAsECBNt2JpQEMdzoN8QnFAPcnXHQrCdECUHdwiorJ3QA== - + - WtyJQArPsEAcUc5AR6TLP3bzy0C/B75ALbzvP0a4AUGzOttAvnZSQVJSQUDtdwdBcgLIP45yXkBonBRAdRyAQIwC3j8YTztBxt8eQC+EsEC4sLg/EBkoQLF8AUD2n4RAIUI0QZdsZEBFGrBAx1ojQHBniUDjMRtA7vwSQR84YkCvC7ZA2p3LP1V+CEIBn49AX4WFQVZI6j+uUSFBTzpBQAJVtEDxPIpAmdLwP/UccEFcbatAPMfwP/NJHUDdnAFARFkdQE/PcEDRfOZAEMoTQNgTwUDNOb1AsLp4QFmdIUGaOeRBRHL3QA9ZvUB08f0/53yZQNwjXkD8vOpB0OOIQZS+S0DC6ahAgmvpQDS2k0E5HYhC8TXYQOb9u0EGchFC2aIGQZ7Kv0GngmdAlJ+EQNJPyz9TQv9ANkYRQC6zE0JVE4BAs0hhQdv610AMIjFBCd9UQIh5t0CGQBxBfqmtQUo9oEC778xAt7wrQdqJiEDfxf5AoPerQNvnjUB40aY/MS4UQNHoE0DP5mBAoXqgQJh1j0CXnT9BpKkIQveppkCC3ABBycEUQbG/SUEcpxxBbNYiQV6BHUBFcy1B2/3SQc2rWUHEMVtBMzigQEIIS0H32lRAeinePyZmHUBHcDhBJLgPQjbko0Dw+PZACYpnQLLzl0JgHrlA2lbeP5QSVEGvodFB5nSgQX9SLkG64aY/gX/8QEw/+0C1zaY/VYsUQAVPFECq/JtA + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwBihY0AAAADget9lQAAAAICETmZAAAAAYLpgZ0AAAADANqJnQAAAAIAsBGhAAAAAgFYlaEAAAABgFUVqQAAAAOBEXmpAAAAAIORoa0AAAABgaMhrQAAAAGDcZWxAAAAAwIznbEAAAACAqURtQAAAAKDcBW5AAAAA4CwrbkAAAAAAkkFuQAAAAGD5pW5AAAAAQGEeb0AAAADg2WVvQAAAAGDQvm9AAAAAABElcEAAAAAAqjFwQAAAAAD8QXBAAAAAgBmgcEAAAABA8bBwQAAAAOCwxHBAAAAAACn+cEAAAACAGyJxQAAAAEDIQnFAAAAAQJh0cUAAAABAVqJxQAAAAKAxsnFAAAAAgIfUcUAAAAAATBNyQAAAAMCNY3JAAAAAAIBvckAAAABAU5ByQAAAAMAep3JAAAAAwLeyckAAAABAjTRzQAAAAADgRXNAAAAAgARtc0AAAABADY5zQAAAAMBPn3NAAAAAgLWpc0AAAADAU8NzQAAAAMCM/3NAAAAAwJcSdEAAAACAcFB0QAAAAMD6unRAAAAAwKjkdEAAAADAtTJ1QAAAAIDKQXVAAAAAQFrhdUAAAAAACvZ1QAAAAMCvIHZAAAAAQDM9dkAAAADAslB2QAAAAICviXZAAAAAQL+kdkAAAADAmr12QAAAAACV8XZAAAAAgKE+d0AAAAAAJIR3QAAAAEBZlHdAAAAAAFjDd0AAAADA/Nx3QAAAAADgUXhAAAAAQAx6eEAAAADANpV4QAAAAMCWn3hAAAAAwB63eEAAAACAy8V4QAAAAMBm4nhAAAAAQHL7eEAAAABA+g15QAAAAEAmYXlAAAAAwGFseUAAAACAHYR5QAAAAEC+kHlAAAAAwLugeUAAAADAKbZ5QAAAAADY1XlAAAAAwBrleUAAAADAdfZ5QAAAAIAhBXpAAAAAQF0cekAAAAAAJUV6QAAAAIB7cXpAAAAAgMR+ekAAAADANI56QAAAAMBro3pAAAAAQA0le0AAAABA8p17QAAAAEBe9HtAAAAAwG5OfEAAAADAv7R8QAAAAEAl0nxAAAAAAAPefEAAAADA5/V8QAAAAMB/Ln1AAAAAwIU9fUAAAADA2Ft9QAAAAIBjfX1AAAAAALayfUAAAABAPPN9QAAAAEDqBn5AAAAAgI8/fkAAAABAZ0l+QAAAAEDyW35AAAAAAPdrfkAAAAAArZJ+QAAAAECNpH5AAAAAgEi3fkAAAADAKRt/QAAAAKBPboBAAAAAIL57gEAAAADgaaKAQAAAAMBP+4BAAAAAQOIEgUAAAADAdCOBQAAAACBiMYFAAAAAQIg5gUAAAAAgNF6BQAAAAACdi4FAAAAAgKDDgUAAAABgD8qBQAAAACDp0oFAAAAAIOragUAAAADgFxiCQAAAAEDyIYJAAAAAYEEzgkAAAAAA6myCQAAAAOCpdoJAAAAAoPF8gkAAAACgbYKCQAAAAKDcpIJAAAAAYAwPg0AAAAAgSByDQAAAAKBzUINAAAAA4C9Wg0AAAACgSVuDQAAAACD7YoNAAAAAYImLg0AAAAAggpKDQAAAAGB5yYNAAAAA4AjQg0AAAACgEfiDQAAAAOC+AYRAAAAAAHMHhEAAAAAAlg+EQAAAAGCYZIRAAAAAACR7hEAAAAAgk6yEQAAAACCbh4VAAAAA4BaQhUAAAAAgbYSGQAAAAKDSk4ZAAAAAgEu2hkAAAADgFryGQAAAAOD5xYZAAAAAIPnNhkAAAACgowOHQAAAAKBACodAAAAAQIMQh0AAAAAgFy+HQAAAAODXW4dAAAAAQA+rh0AAAAAgZbqHQAAAACA3+4dAAAAAAKQLiEAAAAAghzqIQAAAAGCdQ4hAAAAA4BO4iEA= + NrgMGZxjYkBxWoXuS4RsQBu6YmAmQ3BA - + - Mk+8QPouA0DWxvxA0Sc2QRsglEC9Kvs/OmvwPyLpv0EcR7BArd5aQAmy2UDfNrlADHxTQCqkqkBPWM5Awcn+QPoZrkBq4u5A3ipIQStB5EDEXLBBrUEjQQsCXkCcYCNALGTMQLDxWkIE1hJBuffKP5sv7z/xzd0/W/ulP9JhJkDnV0tAAhbLPztKkkB4UolBguiqQHVGQkDQLapAjdwtQKOHKkE1iwpAJyIdQKg8VEBDd/5B3WTUQDKOhEDftuVAn933QA59rEC3UStBhYJRQO7LuD8lWAZBpqMnQMFFE0H/w5tATYW4QU7lHUIFmrdAYYHiQJFyUkEwPh1AynYBQLfwnEAoeQJBRSxcQSrep0EbGOZABAW8QOlmHEEnTpM/7PPTQdPd80A+50tA4L6OQILA3T9nohNAsVdpQYAIWUHWA6hBWajKP6GzLEH2TZ9BShsqQT7tSEGlra5BN8SEQOcShkA9DddBitQ2QlhZZUHWL4lBpKtSQer65kG+K/A/a1CTQHauAEEleQlBYMDvP/7/yj+wI5tCqpAqQlP65kEP+M1A73pxQBSuPkBW1EZBLFn+QNfowEE7uQlBygDaQN1scUGq59NAxp2MQZ3szkCO6FxBZvFHQJ0nkUHGYcFALE0/QLF0AUDLsdFAvoygQJI4RkLfwvw/Ht7uQUgDz0F/e1xBxbXOQBs88kD1FktAnXusQCMMHUBMjdBCukMaQbN5mkF/wFRAtHipQHskMUFASLBCmNMkQvnC3EAgux9BUZDRQoFBsEGlnsFAm/4eQRv8jEGRRttCRt+xQmYlMkIHghtBE/zJQEJIeUAWjApAfsuVQeuwWEHvVnJBYGt2QDc+HUCI9r5A7EqUQG05oUFTphVBLFz4QCJVpkBZyFtBDv6tQGYfbUCnJhVBcUW8QHKxBUKJaqZB0LgJQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAQMSeZUAAAACADyBmQAAAAIChKmdAAAAAgNFjZ0AAAABAMIdoQAAAAGBzQ2lAAAAA4KPdaUAAAACAeYJqQAAAAIDLA2tAAAAAIJtBbUAAAABAoUZuQAAAAEDw4m9AAAAAQHJhcEAAAABAAW9wQAAAAICQoHBAAAAAgKMBcUAAAADA0zNxQAAAACBpV3FAAAAAgKESckAAAABAWcNyQAAAAEAo4HJAAAAAQC0Dc0AAAABAuA91QAAAAMDnUXZAAAAAQKHAdkAAAABA2dF2QAAAAEByZXdAAAAAADPdd0AAAADAmwR4QAAAAIC2D3hAAAAAQJJFeEAAAACA/lV4QAAAAMCPZHhAAAAAgL2GeEAAAAAA4g15QAAAAABitXlAAAAAQOyhekAAAABACcB6QAAAAIB5QHtAAAAAABaCe0AAAADAY6N7QAAAAIDgE3xAAAAAwBaPfEAAAABA3xR9QAAAAADRU31AAAAAwKLxfUAAAABAOQV+QAAAAMA6F35AAAAAgDNifkAAAABAIsN+QAAAAMBGVX9AAAAAwG1lf0AAAAAANXR/QAAAAIAyuH9AAAAAwHfxf0AAAAAgwDOAQAAAAIDrW4BAAAAAgCuKgEAAAACgc5+AQAAAAAACxIBAAAAAYNfcgEAAAAAg+uaAQAAAACCBHIFAAAAAwLhMgUAAAABgsWOBQAAAAIBlo4FAAAAAIEa+gUAAAABg6MiBQAAAAKB124FAAAAAYMLjgUAAAACglfiBQAAAAGBsDINAAAAA4KM5g0AAAADAbKWDQAAAAICufIRAAAAAgFuphEAAAAAA9bqEQAAAAOCiwIRAAAAAgMsThUAAAACgJ6yFQAAAAGC22YVAAAAAYA3lhUAAAAAg/2uGQAAAAKCLdYZAAAAAoAmLh0AAAACAapuHQAAAAEBoOIhAAAAAIO/HiEAAAADA2eqIQA== - - - - - - fSEKQAfYaEC6EUVAzYgaQa35k0DtUwFAwUrwPy5Kyz8sAAlB8OjjQAiOEECAG79Advk3QeYmyz+dKtxA1eadQTYf8D+CdDhA1sFBQR15m0ADyS9Ak0UBQLM9NUHGZZM/D67dP5hvrkANuLg/xgqpQLc9r0BgckJCfhXfQKemBEFuK/RA9BhYQQ2GPEFKyShAriGXQFHE3T+NPddACdwkQXqhf0A3sd9AQPv/QJOQVED4LHBAzcI1QQwNyECBnQdAOgfjQTA6pkAeyJpBcDl/QQhMuEDSJR1A1sDMQPzVZUAHWYVAhledQBLLikD8IUNBS6d+QVtpnkEbQ0ZB/P+wQU5shkFGZnRBmda+QP8ml0CcJllBA/rdQPxFGUG3qAdBdNF2QC9+XUAplAVBE624PwvilkAW/wlAw0SyQPxwI0F/VX9AYkIvQLGAZ0JnKL5Bv/5HQF3b7EBLSCxA8LXZQOrsjkE= - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQD1kYkAAAACg0EdjQAAAAKDFqmRAAAAAAMJKZUAAAADAPOVlQAAAAIBeoGhAAAAAgJ2AakAAAADACadqQAAAAIDlIWtAAAAAIPslbEAAAACgwl1sQAAAAODjqGxAAAAAwMYrbUAAAAAAqrltQAAAAADOHm5AAAAAgEkkb0AAAACgE0pvQAAAACCYY29AAAAAQLKlb0AAAACgUulvQAAAAECERHBAAAAAgDjCcEAAAAAAPBNxQAAAAADaLXFAAAAAAFw/cUAAAAAAtE1xQAAAAMBlWHFAAAAAQGrTcUAAAABALgVyQAAAAEBME3JAAAAAwNwyckAAAADA+BZzQAAAAMCfOnNAAAAAQGm/c0AAAADAPRR0QAAAAMAUJnRAAAAAwHOYdEAAAAAA6/90QAAAAIDGEnVAAAAAgHgidUAAAADAZUV1QAAAAEBatXVAAAAAQHpzdkAAAADAb6J2QAAAAEA/W3dAAAAAQDFsd0AAAACAbYx3QAAAAMDFIXhAAAAAQMEteEAAAAAAJD14QAAAAABAgXhAAAAAADOleEAAAACAOft4QAAAAID0HXlAAAAAgBhDeUAAAABA5U15QAAAAADrYHlAAAAAwMqEeUAAAADA7pp5QAAAAEBdp3lAAAAAwIHHeUAAAACApd55QAAAAACI7XlAAAAAACz7eUAAAADAL0N6QAAAAEBSZnpAAAAAgDiDekAAAAAA7LR6QAAAAEBj3HpAAAAAAFkRe0AAAAAAkiZ7QAAAAACZNXtAAAAAABZ+e0AAAABANpd7QAAAAMBSwHtAAAAAwAfze0AAAADAUgV8QAAAAMAGGXxAAAAAQJ0nfEAAAACADTt8QAAAAACIZHxAAAAAwEx0fEAAAAAA4L58QAAAAEDuyXxAAAAAAEzqfEAAAACAegF9QAAAAEC4E31AAAAAwCAgfUAAAAAABTJ9QAAAAIDOT31AAAAAQMRdfUAAAAAAzGx9QAAAAMArg31AAAAAwFGQfUAAAADAnJ19QAAAAMCRsn1AAAAAQC/UfUAAAACAc+F9QAAAAICj/n1AAAAAQOMMfkAAAABA5Tl+QAAAAMCnUoBAAAAAYMSLgEAAAABAkpCAQAAAAKAxm4BAAAAAoEqygEAAAADgpLuAQAAAAADNwIBAAAAAQEHJgEAAAABAbNmAQAAAAGBk5IBAAAAAACAdgUAAAAAgGSKBQAAAAOCIJ4FAAAAAYBxAgUAAAACgRGKBQAAAAOAaZ4FAAAAAgOyBgUAAAAAg6qWBQAAAAMDZqoFAAAAAoDrKgUAAAAAAqtqBQAAAAOCH6oFAAAAAoFjvgUAAAABg/A2CQAAAACBAMYJAAAAAIGQ2gkAAAADAdTuCQAAAAKAHU4JAAAAAoGx5gkAAAADAZ3+CQAAAAKARsYJAAAAAYJ25gkAAAABgaMmCQAAAAKC0zoJAAAAAwFjfgkAAAAAgAeaCQAAAAECi8oJAAAAAABv/gkAAAACg2wWDQAAAAIBeE4NAAAAAIAIdg0AAAABgmUeDQAAAAKCGUoNAAAAAQDN6g0AAAABg7pODQAAAAADWmYNAAAAAIE2sg0AAAAAgP7yDQAAAAIDFwYNAAAAAQKDMg0AAAABgBdaDQAAAAGBk9oNAAAAAoK/7g0AAAADg0gKEQAAAAGAqGYRAAAAAQL4qhEAAAABgGDOEQAAAAGAyRoRAAAAAoN1UhEAAAAAge42EQAAAAIDAqYRAAAAA4M20hEAAAAAg99KEQAAAAGCV8YRAAAAAIGz3hEAAAACguv2EQAAAAIDmEoVAAAAAYJdJhUAAAAAg/HCFQAAAAEDggYVAAAAAgGWHhUAAAABgDJuFQAAAAEDopYVAAAAAQAqvhUAAAADAt+SFQAAAAGCpA4ZAAAAA4NtNhkAAAAAAelSGQAAAACAOXIdAAAAA4On3h0A= + KBZXds7jZUA= - + - igIXQSz+E0CQYI9A5y8jQYPbv0AYCwBBYXmuQPZPj0DLuQdBFgZeQEH5OECAEgNB+A7FP4sOuEDi0GNAV3giQg9WlD+swMVA246wQOFJJkC/sz5ABGO4P1M/RkHvT21A5rZWQZyfNEKMNMpBiFhvQLyqjEAR2xBBpgyUQDyYMkEuwxNAMUhDQCbAGkE3N0tAuJpJQZv6ekAmlbpAl6y1QLnIAkHie9M/JOq+QLBfuT/siD5B4tFUQHcrREH9szVBo5LTQHHQAkH1WQpAPi42QNMEJkE+Aj9AookyQUTPyUCOA0lB+iLKQcgcHUEXNo1AdieIQeOV1UHfpJdBTu8AQR7YJkFiPSFB+RZiQa3YQUG3KJ1C2LBfQfVD3UBL9NRAyFAqQVHZ3T/yxyBC0Z50QYR/IkIcvzRCqGWlQczckkFgBDtCmuJrQVEj1kIs5RZBbnbuQfiTT0GGLpdC97cCQqanqEAekOZBrVZNQZzNlkFNlTpByB2HQQ65qkLSdBNDWJZLQOAZkkHvWmJC0TEWQ07xw0GyXgJBDIGLQUhWiUAcMzVBQscuQbJKV0GeEBxBsxOXQfUGG0KSsiJA9AcdQAOaEEHgBF5AuptzQYSgXkEWZq1BhLg2Qik/AELHWEBBjHY7QVTGk0CtwolCNR8NQqWHFEAVBIlC1MSxQb1RXUFRC6xBxZOKQKlqtUBi4bZBUpu3QLYDL0HDJBpBiA3vP6xNT0Eu7G9AZ7lnQZ8SoEHS3bRA5KvUQaf0A0LGC35Ceh25QQb7/EHc47pB8IEHQOfdLkGS1DhA7bDRQLv/BkHmXSNBZqdhQa36oUBbELlAQlfoQCCj3D+Oj9BBHmp8QWB4mkFyhBdB+JpAQaZuE0Ew6Mo//AM7QQFQI0EVq0FBlDh3QABhZEBQ7bJAjO2CQfXFAkAXMKVADEF4QNYH5EDGEgFAMzRnQKFLbEEMDoBA3VOXQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAABH5a0AAAABAXM5uQAAAAKBS429AAAAAgENxdEAAAAAAVyR2QAAAAECCZXZAAAAAgHZ1d0AAAADAyuJ3QAAAAABICHhAAAAAwPCCeEAAAADAg1V5QAAAAMASAnpAAAAAwCJnekAAAACAHdR6QAAAAABlNXxAAAAAQNqEfEAAAAAAHtJ8QAAAAACVLn1AAAAAQD15fkAAAABAELZ+QAAAAMCe0X5AAAAAACHjfkAAAABAERd/QAAAAEA1JH9AAAAAQNB1f0AAAACgfgiAQAAAAKCiGIBAAAAAAAt7gEAAAACg+ZiAQAAAAEBd2IBAAAAAIBgwgUAAAACgC0OBQAAAAIDrg4FAAAAAoK2KgUAAAABgp5WBQAAAACAgGYJAAAAAoAcxgkAAAADgOoWCQAAAAGBzpYJAAAAA4BeygkAAAADgbcqCQAAAAGBu3IJAAAAAQMEYg0AAAACgyjaDQAAAACAYQINAAAAAoEJKg0AAAADg2nGDQAAAAKA0jINAAAAAAFCag0AAAACgy6eDQAAAAKBAt4NAAAAAYGbPg0AAAABgUFKFQAAAAMB6WoVAAAAAoMOihUAAAABgfOuFQAAAAEB2N4ZAAAAA4IzOhkAAAADgCLKHQAAAAKAvGohAAAAA4EpCiEAAAACgEWOIQAAAAKAxz4hA - - - - - - oA/mQAHxpED5cT9AvkwSQJjy10AhcEtAKPOXQPh9YUDCT51AXrBUQIBluD/qPV1A6zCuQKPbdkCYHSpB8MaTQCvckEFfx01BZHf+QKd1Y0BjiQFB0yuXQEenUUCTe4RBqnwGQpNfkkCMrulAtdkQQHycLEAlxohAbjNCQLQo3ECcTQdCkYGjQBCEwUABl0dB8dDsQIni80BuAr5B/XKcQQmnOEAqFjdASv8PQVrMyEEcA15AKuYAQYUnrkCx5npBLeN/QLrRpEC3xCdA07Q3QQEyJkHZpIVBvqHMQfQRAEG0bg1C/1x9QYifKUENlkNBnRtMQXKzR0DWn5tA - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAOvoZUAAAADArEFoQAAAAIAcx29AAAAAYMRjcEAAAADA8RRyQAAAACAxJnJAAAAAwJGUc0AAAABAZLRzQAAAAIA5RnVAAAAAQF1xdUAAAAAA9P92QAAAAMDSG3dAAAAAwPZ0d0AAAACAYq93QAAAAEDJB3hAAAAAwA41eEAAAACA8EJ4QAAAAADR13hAAAAAwOEXeUAAAADAsyR5QAAAAEAhpnlAAAAAQNy0eUAAAADA7hB6QAAAAMCIoHpAAAAAQKh9e0AAAABAL2V8QAAAAMBJ5XxAAAAAQEE3fUAAAADAYoR9QAAAAMBHwn1AAAAAwMv2fUAAAADAbAB+QAAAAMCcDX5AAAAAwL9UfkAAAABAxpx+QAAAAMCv9H5AAAAAQDwif0AAAADA9FZ/QAAAAAAx139AAAAAIIICgEAAAACAiBmAQAAAAGCPJYBAAAAA4E9QgEAAAACgolqAQAAAAEDVboBAAAAA4IqTgEAAAADgLveBQAAAAODxCIJAAAAAYJBjgkAAAADgPZqCQAAAAIBvk4VAAAAAYAnkhUAAAADgQCGGQAAAAGB+bIZAAAAA4HUAh0AAAADg6yGIQA== + KBZXds7jZUD60UzrnGVsQBTpB48/A3JAjMDylKZDdEDbQ5zIVzR7QJ7m6rtEBX5AgALyH4OigUAWn5ttDguCQBTjlVvaqoVAqn8/qWUThkDXheROxzuJQKjDOZcxs4lA1cnePJPbjEBqZoiKHkSNQDRVQTz1cZBAfyMW4zqmkEAYaxREK/aRQMkT6IBmqpJAnXTSzZJmlEB7Kk2PrPaUQIGKpdXI6pVA+0FEpAK7lkABopzqHq+XQA== - + - N1eSQNN4lz81JwFAHfgbQfHdUkHzD0FATAKlQClD3kBLqC9AyOdBQAcaJkCIIblAkgSqQLYX/T/fYotArYztQGr3E0FLIkJAaHTdPx0OoEAAeQdAIiigQPJMdkC6B+BAhUyOQONjS0FmrG5BOWE3QS1x4kB5cjVAEqwdQLlbAUAf7lxBsG52QDKeaUK1IrdAvwk+QVf9jUHZTcJAM9jLQFC9eEC6KutBb1FIQR8ltkFC4QpB5kyQQSN/CkBAk11AFvMHQih2SUBY0fA/kZhZQTPpjEBL1ANBfgdtQM90EkE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgIzEWEAAAACgCUVZQAAAAGDqyFpAAAAAwKyKW0AAAACAovZbQAAAAMBTylxAAAAAYDtBXUAAAABAkL5dQAAAAEBRUV5AAAAAQNJMX0AAAAAAvSRgQAAAAAAIQ2BAAAAAgGFfYUAAAAAABoNhQAAAAMDPpGFAAAAAAGbBYUAAAAAAbCtiQAAAAMAFZmJAAAAAAFagY0AAAAAA8MRjQAAAAEBU5GNAAAAAIO8DZEAAAAAAISlkQAAAAOA0YWRAAAAAgPqGZEAAAADAhehkQAAAAMAoIGVAAAAAIEKiZUAAAABAtb9lQAAAAEBl42VAAAAAQD0dZkAAAADA+mpmQAAAAIBQoGZAAAAAgCHnZkAAAADACQJnQAAAAEB8IGdAAAAAwKk+Z0AAAAAAelpnQAAAAECzhWdAAAAAQBG/Z0AAAACAJSxoQAAAAOBTnGhAAAAAwCHkaEAAAABAAWJpQAAAAMARhGlAAAAAYN6maUAAAADAfx9qQAAAAADnQmpAAAAAwIpoakAAAABAwoRqQAAAAMCqpmpAAAAAQMrEakAAAACAhuVqQAAAAEBIHWtAAAAAwElFa0AAAAAA8GBrQAAAAABkiGtAAAAAgLmka0AAAABACuNrQAAAAIBNQGxAAAAAAB1hbEAAAABAHX9sQAAAAEBepWxAAAAAwJzHbEAAAAAA8uBsQAAAAACyHG1AAAAAQKZjbUAAAAAAP4BtQAAAAIDxom1AAAAAABYAbkAAAADAGCRuQAAAAMC5Q25AAAAAQB9lbkAAAAAAdYBuQAAAAMAAm25AAAAAwKYjb0AAAABAREVvQAAAAIC9Y29AAAAAALqMb0AAAABA3KZvQAAAAGAQE3BAAAAA4PojcEAAAACA5zJwQAAAACAte3BAAAAAAPevcEAAAADgZ75wQAAAAEDB0XBAAAAAALTfcEAAAADgffBwQAAAAMBkAnFAAAAAwIoicUAAAACAyjFxQAAAAMDySHFAAAAAAEN+cUAAAADA3oxxQAAAAMDOqXFAAAAAQMe0cUAAAACg89RxQAAAAGAg5XFAAAAAwHv4cUAAAABAJAJyQAAAAAC4EHJAAAAAYJkgckAAAADAwT9yQAAAAACETXJAAAAAYP9xckAAAAAAO4JyQAAAAICflHJAAAAAAIDSckAAAABAC/FyQAAAAMDl/3JAAAAAAIoTc0AAAABAR6h0QAAAAEBjsnRAAAAAgDK8dUAAAADgUsZ1QAAAAGDDFXZAAAAAoNohdkAAAABAPTN2QAAAAAA6anZAAAAAoBZ1dkAAAAAgEfN2QAAAAKAVyHdAAAAAgAXVd0AAAACgTvl3QAAAACBzj3hAAAAA4KuweEAAAACgFMR4QAAAAIDvAnlAAAAAAJ5qeUAAAAAA19R5QAAAAGDw5nlAAAAAILQzekAAAABgukR6QAAAAMAJXHpAAAAAwD13ekAAAABACed6QAAAAOANCntAAAAAIN4Te0AAAADgqyd7QAAAAKB1NXtAAAAAwOdje0AAAABAE397QAAAAMAsjHtAAAAA4AGge0AAAADgOex7QAAAACDAIn1AAAAA4Om4fkAAAADANsd/QAAAAOCS0X9AAAAAoPgMgEAAAABglHKAQAAAAGBqe4BAAAAAIGBSgUAAAACgn/mBQAAAAKC84YJAAAAA4GCKg0AAAAAAlZKDQAAAAGDmS4RAAAAAwCjKh0A= + KBZXds7jZUAsECBNt2JpQGaLOdoMYnFA - + - 3jyKQApCOEDDxdNAWeHEQJZfQkCJSJBAfn5MQWwil0C08rdAjMYHQCQQl0CIjq1AR204QeVXuUDqIERAWS1kQN65hECSfiJBkBMUQJV0OkAL5RNANB6OQDfYSECEmjpBwHZwQEgMekD84PRAs0BQQTkBHECppz9BJV7hQSLikkHlD3lAwNoBQUzqgEAcIdRAOn8vQKZ0q0GJ9y9A4PXaQKTeVkH0PPA/ZMaYQHqzQkF5dwpA+L2vQJyidEEUlsJACPl5QDXC3j+3lxJB4pGnQZrhlEBkO0pBWIQmQAzzrUA/bdRAQ7jOQEB8nUDaOxxBVmoXQixtAUDpuWBB2gjJQEnlXEES7uhBycksQFOTZ0CLcZ1Amx45QHo1M0E64TNDNYhXQHbl7EC+lEtAEc2kQPn6uD/GP4tA49laQc+GSkImk0tBNA5QQebbtkH7XZVB2QpYQS8WkECBHwpCIAqgQZjUs0L3DR9Bxg2lQCCXbEGSv0dB+m7tQOjYDUHjP9NAX5LOQPwLI0Kjf5RBFir5QSCsK0Jp40BCionKQHdLGkEv1ZhARoP/QQH9GkFVNrBBSRcyQU5geEF94+ZAxgITQXKPkkAsJqc/CiQ9QRI+1kCulJhAuvr8P45VE0FVn91ARM9OQZhxoEAOHnNBVn9LQClEiUGK6xpBmt59QV3yvkBiVx1AnceGQPouQkBDK5RA5F+dQB4dpUCV6A5CCErIQRJADULqgkhB2GNbQTIB2EDAeExAZx3BQSadQEPJJjdB837RQO2Dy0CLr8RAH+4TQGSXUkEtHN4/1vIQQJJxUEK4qhJBuWiSQOn11UB8KtlA/fWOQTkT/UC4ZoVAm18dQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4Ecja0AAAADAw0dsQAAAAKAryGxAAAAAwPoGbkAAAACAeyJwQAAAAACEQ3FAAAAAIPoNckAAAABAQdJyQAAAAIC1H3NAAAAAgMt8dEAAAABADzN2QAAAAIAodnZAAAAAgF7NdkAAAACAKlJ3QAAAAMAAP3hAAAAAwM1UeUAAAADAxsl5QAAAAACzdXpAAAAAQIuyekAAAADADOR6QAAAAICmkHtAAAAAgMowfEAAAAAA3P58QAAAAAAPFn5AAAAAwJ9zfkAAAABAIMN+QAAAAMDg1n5AAAAAwAwMf0AAAADApRl/QAAAAIAzlX9AAAAAAJnif0AAAABAghuAQAAAAECoIoBAAAAAAJs0gEAAAADAVnKAQAAAAGCqeYBAAAAAQCSvgEAAAADg/7SAQAAAAKB3zYBAAAAA4OgcgUAAAADghwGCQAAAAOCVEYJAAAAAoJxqgkAAAABg4pGCQAAAAIBp6oNAAAAAIMX6g0AAAABgVzGEQAAAAMDdSoRAAAAAgAuJhEAAAAAAF9SEQAAAAOB5eoVAAAAAoBOvhUAAAAAg+S6GQAAAAMDEkYZAAAAAQL8LiEAAAACg1i6IQAAAACBFd4hA + NrgMGZxjYkA= - + - EKeBQISKuT/wcOI/0O84QL2iSkHesCdBo5HdP285HUCXXss/aSQaQCxk9UC+DAJAirICQE1sGkBnap1AwriMQU00DEHytrhA06azQNfnlEA2TCZBydY1QPCwbUBD+C5BQMU2QZlFHUDpwY9AExiLQOdZXkDuV6lAbaQnQCMWokBRkAJAMvnLPxYNl0Cp5Mo/NYVCQNHlyj85VMJAiS6rQCK0CkBJ/MlAHJwmQJHvP0HN2hlABMmmQL7IoUA5WY5AFN/KQf9xkkCxKmNBzr3lQFpTAUBu65ZBwPRsQJU8nUBvLsdA + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoHqickAAAADABxJ0QAAAAACAA3tAAAAAwM8me0AAAABA7oZ8QAAAAAAdkn5AAAAAQPwsgEAAAABgxw6BQAAAACDUUYFAAAAAoLOdgUAAAADgH8KBQAAAAGDp8YFAAAAAICcYgkAAAADgMzKCQAAAAODgiYJAAAAAwM23gkAAAACgT8KCQAAAAKDsyYJAAAAAoIQHg0AAAAAgVQyDQAAAAOB+W4NAAAAAoNxzg0AAAAAgyZ+DQAAAACCMw4NAAAAAILDLg0AAAACAWtuDQAAAACDmNYRAAAAAYGVihEAAAABAC2uEQAAAAEBscoRAAAAAIIN3hEAAAACAPoqEQAAAAOAclIRAAAAAAFqqhEAAAADg0rOEQAAAAOC+2IRAAAAAYLX1hEAAAABgQ/uEQAAAACAoSYVAAAAAwApjhUAAAABgcXOFQAAAAMD9ooVAAAAAYIavhUAAAACgcc+FQAAAAKA+3YVAAAAAAKPuhUAAAABg3PeFQAAAAADH/YVAAAAAYIADhkAAAAAgExKGQAAAAGBANoZAAAAAIHpEhkAAAADAxGKGQAAAAKDIeoZAAAAAgJyGhkAAAABgX6yGQAAAAOAew4ZAAAAAII7ghkAAAADAngmHQAAAACCfEIdAAAAAoN50iEAAAACAerCIQA== + NrgMGZxjYkA= - + - zvmhQD3zR0B0QgNB4YsBQNoOE0Bd841AS8alP4Go4kDtkmdA9d3SQBqVEkG1/iBBIF3wPxitFEGZug5BjP2YQERk3T/T6K9A0Ug+QRXEHEB8FQBB0+1PQTl8XEBkfpdAlud2QCP4q0G1SpNA0LXcPzrOXEFmPZJAKPwRQXaDoEFWwLZB10DFQBeUpkCdSKZAgiPFQH8kN0HMZxpAgtR+QYGajkAARxpBFwqYQetvMUFiDJxAWZU/QYjTg0HIU0tBx+6XQCimD0FEY+ZAu15AQDTt50D4FtVASPVmQkWc3EC61y9BszFpQc+t9UAmdxlBQN+uQIxuN0A= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIIPEY0AAAADAncNkQAAAAAAr4WZAAAAAQMgibEAAAACAcEFwQAAAAADfZHBAAAAAAGtwcEAAAAAACsNwQAAAAEDH4nBAAAAAADuzcUAAAABA8o1yQAAAAEC51XJAAAAAgHwDdEAAAABA58R0QAAAAAAl5nRAAAAAQCUxdUAAAAAAWoN1QAAAAECeAnZAAAAAQPIwdkAAAADAXUN2QAAAAACNNndAAAAAQALgd0AAAAAAbPB3QAAAAAA1AnhAAAAAwJNyeUAAAACA8UR6QAAAAIBChHpAAAAAAKyke0AAAADAgN17QAAAAEChiH1AAAAAwEKffUAAAACADwl+QAAAAADfFn5AAAAAQAtSfkAAAACAu1t+QAAAAMC2fn5AAAAAQGiefkAAAACgbH+BQAAAAKDQuoFAAAAA4E3TgkAAAADAXyKDQAAAACCkOYNAAAAAgHXDg0AAAAAgpdaDQAAAACDwAIVAAAAAoEQ0hUAAAACgYOyGQAAAAODdVYhAAAAAQOr7iEA= + KBZXds7jZUBImCMySWRuQBTpB48/A3JAS41ZENNCd0AUR+TilxR5QKHhXRVrs3tAHQQWLaOSgEDQH520YWKBQJdLQ8TNaoRAsOS5aPqahEDAS8qT4KKHQBQShIWGs4dApRYFHshrikDAeri9jCuLQDQ/YxP0M4xARcFAOAcikECSXDRBSwKRQFrWgTktPpFAcVlUDF7SkkBD3hu2dA6TQCNwuRqkXpRAv81bTZDalECj4y5Vxl6WQG1gi7jPYpZAUXZewAXnl0Dt0wDz8WKYQM1lnlchs5lAn+plATjvmUC2bTjUaIObQH7nhcxKv5tAy4J51Y6fnEB2pAgEnKeeQLAG3q7PK59Avbi3/rGLn0CDHXxl6XOgQBiP6uESeKBA3KiubAw6oUAiT8yVF0ahQBTatZkyCKJAAaGXOyI8okDUZTGkXeqiQCaZgAo4PqNAX/DRpHB4o0DmJPwUYyCkQITounOGeqRAprB3H44CpUBEdDZ+sVylQA== - + - hvDKPw/xEECBRxpAYOC9QE9H2kDpEaU/rigRQKgJpj83XSZA3xkaQG5CW0ALzZlA1QlnQAGTVEAiR5JABUgMQIrIQUFyPaY/wQakQJkI2j8V0FBBe9cvQHa0qUDwH9ZAqWiFQNruDkEhjwpA3BqzQEj6g0GWxRBAHwzpQXrSnEF8aCZAIwiXQD/DFEEa0zlAMcYHQYqGhkAbKh1AzgqLQVaUAEHyWT9AIw4MQbtXxEE0fwpACNC7QIo8DEGFGvA/+HpGQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4KvHakAAAABArkhsQAAAAACbamxAAAAA4M0ecEAAAACA4zJwQAAAAGCRP3FAAAAAgAxQcUAAAACAaD9zQAAAAAAntnNAAAAAwPQFdEAAAACgHC51QAAAAIAHonVAAAAAwB4sdkAAAADAj4F2QAAAAMByznZAAAAAQCgAd0AAAACAEld4QAAAAIAKhnlAAAAAgBshekAAAAAA7Jd6QAAAAMCnIHtAAAAAQBBGe0AAAACAvER8QAAAAMBCUXxAAAAAwAipfUAAAAAA5tF9QAAAAABKA39AAAAAgBFof0AAAABA+6B/QAAAAEAd0X9AAAAAANfzf0AAAAAAES+AQAAAAODcUYBAAAAAwFaSgEAAAADgM5iAQAAAAGAGzYBAAAAAwN73gEAAAAAA/SaBQAAAACD+PIFAAAAA4GtFgUAAAAAgYKiBQAAAAAAzvIFAAAAAoHECgkAAAABgdyyCQAAAAKCOnIJAAAAAYHq7gkAAAADggcOCQAAAAKDG/YJAAAAAYAgZg0AAAACghCKDQAAAAKAaLoNAAAAAIBFIg0AAAABAblKDQAAAACBQhYNAAAAAIMuLg0AAAACAvaWDQAAAAMAzsYNAAAAAoPPAg0AAAABgWNCDQAAAAEBTEYRAAAAAAAQwhEAAAACgUgyGQAAAAMAlLIZAAAAAoMaVhkAAAACgHbyGQAAAAEC8wYZAAAAA4DPIhkAAAACgmg6HQAAAAMBYvIdAAAAAIDTDh0A= + NrgMGZxjYkAYxSyCnORoQMZtNYzMxW5A - + - PhKEPylBgEBFThJBCvAzQWJ1lECVYZBB20dMQGv+LUF+ptNALwilQOLQW0CMaKBAcs4BQKOkkz/svKY/5ykvQOSwiUEpM/8/5LSAQNwCvkB0O7g/d/YwQYF0Y0CXmY9A/1rCQAXrpECokKRB9vkQQUHSkUDNHvA/01DLQFBJa0LUYUxBgLCSQJgAXkCaMCxATq3zQM2mhECRHcs/ceyrQCJk4kCbJB1A7J5BQERlCUEAHw5B4lWxQgzZh0EiK1NBKUknQdM2Z0AAQxJCu5gLQoQ5eEBEqwtCbQ8dQISXZkAeyQlBbWvTQPLjuUGiSeNA6LsMQPc6qUDHlctALbF/QIUPZkJ9RKlA3VmuQPmNoEC53ZZAyz7rQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQN/DXEAAAADg+AVeQAAAAKB4Q15AAAAAwJVEYEAAAADAdmFgQAAAAMBaAmFAAAAAIFQrYUAAAABAxGdiQAAAAIBunmJAAAAAQPGjY0AAAACAcUNkQAAAAMDZZmVAAAAAAGSXZkAAAABgLmJnQAAAAAD37GdAAAAAgCAIaEAAAACAHiJoQAAAAMD76GhAAAAAgBkDakAAAADgRYxqQAAAAGDPwWpAAAAAAOoJa0AAAADA9kJrQAAAAIApZ2tAAAAAAMhBbEAAAADA7mBsQAAAAEB3iGxAAAAAwPutbEAAAABA3UxtQAAAAAAcZm1AAAAAgF2xbUAAAABA2q5uQAAAAED4xm5AAAAAQJjebkAAAADAiV5vQAAAAAAgM3BAAAAA4LZfcEAAAADA+3JwQAAAAAA2g3BAAAAAAAKxcEAAAACASNNwQAAAAABN/XBAAAAAAOQScUAAAAAAxSFxQAAAAKANb3FAAAAAIEOScUAAAACgs7BxQAAAAAAo8HFAAAAAgNgFckAAAADAxSFyQAAAAGBbNHJAAAAAAJtPckAAAABgH5NyQAAAAGDQrXJAAAAA4CLQckAAAACAeOByQAAAACBMBnNAAAAAgAIRc0AAAAAA1mBzQAAAACCRq3NAAAAAQOK5c0AAAADAps9zQAAAAMCE73NAAAAAQAsCdEAAAABANxJ0QAAAAABoRHRAAAAAIOtRdEAAAABAgs10QAAAAMBN2nRAAAAAwFjvdEAAAACAAA11QAAAAEDhIXVAAAAAgJxldUAAAADAM3h1QAAAACDVwHVAAAAAILPudUAAAACg+Ph3QAAAAOA2VXhAAAAAAK7peEAAAADg5rh6QAAAAECIznpAAAAAYMTxekAAAADgfNB7QAAAAMAXNn1AAAAAQNMrfkAAAABgO7h/QAAAAOAb6H9AAAAAoKACgEAAAABgIEOAQAAAAIAKVIBAAAAA4CmegEAAAAAATKWAQAAAAGD8yYBAAAAAgMDUgEAAAADgt+SAQAAAAOBkXIFAAAAAQMeygUAAAABgKeiBQA== + NrgMGZxjYkA= - + - ffKqQKOy3T+uMQdA9LV/QHUZI0C69NRAcBASQLSItEDaY6ZAdRMaQTMVkkCSCgpAat4sQV0MlEB0oedAgKImQJ05FkEWVpxATCg3QKmfMEH7SFFA0eQmQbBYC0A91B5Bn9jXQKDPgECEMetATZ6cQTS2VEDehZRAzCpIQJA1EEFYNu8/YqbjQAl5EkHF0AlB7udjQK/sI0DjS49ASp2wQeog00DJrDhAJHFkQIW7BEESgv9A5F/OQBZrl0EapRhBjpWkQLk9CkHQYB1C6pYgQZdycEBqa7FBAI4uQcDr3EAlieo/vPiIQIzKyj9i+XVA3WivQY32gECnv5JByC7qQOoX4UFKNShBsJapQGg79UC6fBxCcSklQfIbnEDfhpdAHqulQU6AfkEcGXpBSLVLQPDuyUBPo+NB7MEPQUdVJkCFDIRBR1eFQBSJCkGdYKlACJgKQO62W0DFbVdBhD1CQPSIzkBUcjJBlq4KQRdZAUB5Iz1Bqp2zQHmmjEGs3RBBnfCQQd2QgEA= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAIKGakAAAADg+AFwQAAAAOBq/3BAAAAAAOERckAAAACA8MtyQAAAACCn1XJAAAAAQKT1ckAAAABAn6JzQAAAAMCTMnRAAAAAQGhYdEAAAACAzVJ2QAAAAMBhpHZAAAAAwKm0dkAAAADAtN13QAAAAADCRXhAAAAAgCQNeUAAAADATjB5QAAAAEB6oXlAAAAAALYGekAAAACAZiR6QAAAAADnTHpAAAAAwEWOekAAAAAAdyN7QAAAAMDuontAAAAAgGzce0AAAADATvV7QAAAAECxp3xAAAAAgAT5fEAAAACAzhF9QAAAAMDSX31AAAAAAKf+fUAAAACA9T5+QAAAAIDZRH9AAAAAQHlWf0AAAADAGGd/QAAAAKDWDYBAAAAAID07gEAAAAAgf4qAQAAAAOACn4BAAAAAIC7ZgEAAAAAgeOmAQAAAAOAQF4FAAAAA4OQsgUAAAACgcUmBQAAAACBugoFAAAAA4MWPgUAAAACgP9KBQAAAAGDE4oFAAAAAoPLqgUAAAABgSjWCQAAAAEAvQYJAAAAAgC5hgkAAAAAgYnyCQAAAAOC8h4JAAAAAAB+ngkAAAABAZLWCQAAAAACO64JAAAAAYMYHhEAAAADALCCFQAAAAODDKYVAAAAA4BVRhUAAAADgkuSFQAAAAOB2bIZAAAAAwDt2hkAAAADgOr+GQAAAACAj3YZAAAAAgGn6hkAAAACA6RqHQAAAAKB7SodAAAAAoBrZh0AAAACgAn2IQAAAACDz0YhA + NrgMGZxjZUAoFld2zuNlQEIdzoN8wnJAiTDsKtfyckBp3hX7KtN6QLDxM6KFA3tA7kFrdQ1qgUBr2b0MGoqBQPoBHAJGUoNA - + - PkQjQVTQAEC0aLxAI5y6QaX/ZEDujLg/j2zNP4ps8D+rNTJBDEcNQcT5NkDD6FZAEK03QWKb3T/BRdpBfRSdQHrALUAhBoI/mDEbQNv4pT+QSUdB/HnIQC437z8YGi1BrsKrQfL6k0CGBxBBxBqyQL5SP0DLmC9ABnacQOBiLUFIIAtA87ktQhp6l0BM4f5AdjnEQFT4rkCM+NpAluGPQZP3iUDdQ5xBoskYQTAvN0DaVvpAnBSkQZ8z2UACTyBB+jJxQfDUJ0FTPb8/SuZEQXDtJUCwBtNAjYoIQazwQEEwm9hB5sf/QPvIuD/uIRVA34sEQZy5h0A6E15BF7SMQWnAy0CgBQJAgkSpQAOKgEC6xopAo1KBQD7wBkHGyCJB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAgD8oa0AAAADA9SVsQAAAAED7QWxAAAAAwGiqbEAAAABApyBwQAAAAKAYQXFAAAAAAJUDc0AAAACAeURzQAAAAMA343NAAAAAAPpydEAAAABAUCB2QAAAAMAuZHZAAAAAQIKkdkAAAABAKlF3QAAAAMAonHdAAAAAwKEDeUAAAACAknZ5QAAAAMBtOntAAAAAwJ5we0AAAAAALZd7QAAAAMCqQ3xAAAAAwN5TfEAAAAAA32J8QAAAAMB48nxAAAAAAMcDfUAAAAAA+gR+QAAAAADqg35AAAAAoFovgEAAAABgrqqAQAAAAODa34BAAAAAYKT7gEAAAABgjCuBQAAAAKDKcYFAAAAAIOeNgUAAAABg8pmBQAAAAMAlGYJAAAAA4DkjgkAAAABgeSyCQAAAAIATPoJAAAAAYFpJgkAAAABguWOCQAAAAKC4bYJAAAAAoD51gkAAAAAg8YWCQAAAAMADlIJAAAAAIOm4gkAAAABgHb+CQAAAAGB90YJAAAAAgO0Kg0AAAACgSUSDQAAAACAbWINAAAAAYER+g0AAAABgM5WDQAAAACCE9YRAAAAAYIqIhUAAAADg26uFQAAAACBL84VAAAAAICUshkAAAAAgEW2GQAAAAICxuoZAAAAAAIvEhkAAAABA07KHQAAAAADXRohAAAAAIPigiEA= - - - - - - TxKmP97cl0CHM9BAU5MvQHYbZkBWywFBG0HWQFc8aEEDWW1AouAjQJEt6z+7ywhBNxcBQeVOkUFZmKBAjUXSQMvyLUHMjINAEw6TPxdhd0CbFiRAxoa5QSYVyz9k+5NAZ0smQAEQA0FXna1BEF8aQVx3CkB+hxxBpGiJQYeUCkCCY6dAw+kNQYAIO0GfzlVADOjvP42hqEDUebBB+Z0TQPGBm0AmGnlA7IE3QPGvcEHfXxpBN1dJQtJcdUAn5e9A25n3QYBq2ECvwMVAm7mpQJRD3UFMTDdBkyquQJ3DmEGz6kVBZ4csQNQ5ukAqmY5B+QTLQISpoECcTaJBDu6DQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwE8gbUAAAADAFUBtQAAAAEBsaG5AAAAA4P4jcEAAAACgYwNxQAAAAKDTQXFAAAAAQM1UcUAAAADAL4NyQAAAAAA+RnNAAAAAwAg6dEAAAABA3tR0QAAAAMChAHZAAAAAQC92d0AAAABAMpJ3QAAAAIC1rXdAAAAAQPJYeEAAAAAAADp5QAAAAMBu1nlAAAAAgOgPekAAAADAl+B7QAAAAECtVHxAAAAAgGTEfEAAAADAKSF9QAAAAAADe35AAAAAAP+EfkAAAACAEcR+QAAAAAAWDX9AAAAAQHxif0AAAAAA4J9/QAAAAGAbIoBAAAAAwDaRgEAAAABA+sKAQAAAAAAuyIBAAAAAABrQgEAAAACg3NiAQAAAAGA8+YBAAAAAYCFUgUAAAAAA3mCBQAAAAOBXoIFAAAAAoBfGgUAAAADgqtKBQAAAACBa/IFAAAAA4MYDgkAAAADg8xeCQAAAAIDSJYJAAAAAwLsygkAAAAAATHGCQAAAAGCPoIJAAAAAIKa5gkAAAAAA8sOCQAAAAIBW6IJAAAAAAIT6gkAAAAAgFQmDQAAAACALP4NAAAAAIFlBhEAAAACgRU2EQAAAAABE04RAAAAAwBRihUAAAACgS4SFQAAAAIAyuoZAAAAAACWjh0AAAAAgyWCIQA== + BIYf0EKDYECwLijacuRqQHZo0FeRQnBAZCbQtP9yd0A4Cx9LfhN5QP9ls4SWRH9Ai+cXLK6Df0D3kdlwgjqDQLzSi0QOWoNAIABWYZpyhkCKcn2s2UKHQIFR/doQ24pAEHpb0DxDjEA7pN3SiNuOQBCpSfroy49A - + - udMgQbngE0CHVAFA8CYoQT7eSkCl8+FAlx2dQOECGkCGLJ1AURAmQHz5ZkC79LtAg/VmQNTOEkE/ggpA7TQmQLDXf0BDnmVAbR6pP6zqPkAZGGRAGDK4P1MRSUFZwx5BrNLXQODb6UDV0UlAiJocQDovh0DDma9AdMxJQD543EFxAY9BCMp8Qao7JkAWqoRAQ6EGQT+H2UFzPW1AluBiQeBUkEDQoSNBaC+4P9qZCUGOs4dBn1lTQIyUxz/VEC9AGOGoQrTGGEKvMhxB+OhHQvt4QUFBXuE/3FAWQVVWtUCfCFFBligdQL3iIkBrqk5Bc/TmQKdZNUE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQFRIVkAAAADAVB9YQAAAAMDkRVhAAAAAAK4JWUAAAACgaFNZQAAAACAIT1tAAAAAwICAW0AAAAAACBBcQAAAAIBeglxAAAAAQJHCXEAAAACAnwFdQAAAAGBkC15AAAAAAABJXkAAAADAOA5fQAAAAEBhVV9AAAAAQFB9X0AAAABAjwBgQAAAACC5JWBAAAAAQEREYEAAAAAAhmVgQAAAAKBjh2BAAAAA4MChYEAAAAAATiZhQAAAAACuZGFAAAAAgAOIYUAAAACgu65hQAAAACAvxmFAAAAAoCDqYUAAAADAcGZiQAAAAMCZ4mJAAAAAQPYjY0AAAAAAbH5jQAAAAAA3pGNAAAAAYD7BY0AAAAAg3OJjQAAAAKCPBmRAAAAAALFmZEAAAAAAHZlkQAAAAKCPwWRAAAAAgD//ZEAAAABAvCNlQAAAAIBwQWVAAAAAAFlkZUAAAACg1X1lQAAAAGDYvmVAAAAAIJHfZUAAAACAvQJmQAAAAOB6JmZAAAAAQLeDZkAAAABgXORmQAAAAMBCJGdAAAAAAO1FZ0AAAADAbmtnQAAAAEAfhWdAAAAAIPTgZ0AAAABA6wVoQAAAACBnPWhAAAAAQKpoaEAAAADgln1oQAAAAECFpGhAAAAAQNa9aEAAAADA+OBoQAAAAIB8QmlAAAAAQOWDaUAAAADAH+1pQAAAAMCGC2pAAAAAQJgnakAAAADArUlqQAAAAAAghWpAAAAAABufakAAAABA68FqQAAAAIC55WpAAAAAQAYCa0AAAAAANlhrQAAAAMD5omtAAAAAABDCa0AAAABAF+ZrQAAAAEDPImxAAAAAQCNMbEAAAABASGRsQAAAAIDNgmxAAAAAAPqybEAAAADAwMlsQAAAAIDm42xAAAAAgKMBbUAAAAAAwBxtQAAAAECdRW1AAAAAQFddbUAAAACAwYVtQAAAAECIqG1AAAAAQKLLbUAAAAAA+f9tQAAAAMAqJG5AAAAAwLVObkAAAADAHYNuQAAAAACxzW5AAAAAgFXmbkAAAAAA8hNvQAAAAIBsKG9AAAAAgHNob0AAAAAAQclvQAAAAMDe629AAAAAoCYEcEAAAADAWBNwQAAAAGBtInBAAAAAwP4xcEAAAABAfUFwQAAAAIBcTHBAAAAAgI9/cEAAAACgRZFwQAAAAAADm3BAAAAAAK+xcEAAAADAu8lwQAAAAEDE4nBAAAAAINbzcEAAAABAuwBxQAAAAIATEXFAAAAAoBQgcUAAAAAAo0dxQAAAAMDQD3JAAAAAoMDFckAAAADA2ERzQAAAACBJknNAAAAA4CKcc0AAAAAgKshzQAAAAICvBnRAAAAAAD4ndEAAAACAPDZ0QAAAAKBLUXRAAAAAAPFsdEAAAACA8JJ0QAAAAAC5pHRAAAAAIPD0dEAAAACA5wJ1QAAAAODoRnVAAAAAoFyVdUAAAAAAwOB1QAAAAOAr/3VAAAAAYOJ9dkAAAACgmc12QAAAAOD6U3dAAAAA4ANid0AAAADgzXZ3QAAAAIBFjHdAAAAAILmbd0AAAABAEsJ3QAAAAKBFB3hAAAAAgAYXeEAAAABgOiJ4QAAAAGDPdXhAAAAAwPqVeEAAAABgyKJ4QAAAACBos3hAAAAAQI/GeEAAAABAedN5QAAAAEBD5XlAAAAA4AEHekAAAACg8RR6QAAAAKASMHpAAAAAQOuCekAAAABAW+V6QAAAAEBa93tAAAAAoKCGfEAAAAAgFBd9QAAAAKDMmH1AAAAAIDTKfUAAAABgj/Z9QAAAAECiNn5AAAAAQPpjfkAAAADgP3V+QAAAACCbtn5AAAAA4GnEfkAAAAAg4tF+QAAAAKCz5X5AAAAA4KQCf0AAAACgPhZ/QAAAAMCzQ39AAAAAwNXEf0AAAABAUNJ/QAAAAGDC5X9AAAAAoPX1f0AAAAAA5GqAQAAAAKD7coBAAAAAICh6gEAAAABAd5SCQAAAACDT3INAAAAAoCj6g0AAAADgmf+DQAAAAKCliYRAAAAAoOCShEA= + KBZXds7jZUCAI9DqN6RuQBTpB48/A3JA - + - UJ6AQQsXhD+V2LBAMi0QQXXRXUALhR1Arj6KQMRpC0Cv22pDexgcQdRluD+NlaNAlhMtQfm86ECJTkRAZ/4ZQHf4E0BWeWxByohEQEKDsEFTJeJAZuOsQd2dDEEOCT1BN+TdP7F3jUDbXQFA/oY4QFpNxEB41mZB2QgKQLpoP0GJDJM/pBpgQQtYQkCL5WxAUD9kQTTWuD8Eds5AwO4ZQTvuDULxr39BYWs9QAk7HUAAwO1AtHvPQCR4jUHMoWlBOS28QFZQj0AExMZBObQ1QVtWMkE0VaJAAFsmQMtWAUDBb59AVwOSQJcEOUCu9bRABGPhQdC2mkHT2d0/KSUCQc87L0AscylBjm5IQB7iyj+YBNVBBK+tQai7KUHvIbdBak0BQO4zV0GPK6Y/5dE7QqFOmUHAWiBB1E+ZQoRhB0O77b9CVYb9QTV8d0F+PsVA3ijKQvcXh0E/rQtBKfq9QW44gEFe61pBPK1eQlP8Q0MDYa5BjpoTQfB82UEgzt9ApMj5Qd61k0DMuKVAIOBCQey18UEACpBB7Q60QQr2skHUj2pC0KJFQ3vMQUJNsoRADDWxQmevUUINtQlB56klQUUzakGq4TdAKXMPQZjw10AoVLtBl3kDQhJrOkIhOJNAa6aYQMip5UAgbdhC2MbjQVgCUkFEzBJB00vzQFSWVEBdSexAHGQFQREY9UAXagVBGeFdQGB+S0DJzQlBjKxSQROjMUHMgS9AgGabQIIv6EAcdShCLHNKQY5Bk0GyiMBBYdEDQsT6qEAcYoxDKBHQQllggEHckwdBvHwzRNRjjECgQJdBFVPeP8rmu0K2Ir5AuqOtQNqVL0AfxN0/aXkBQWC73EB1QQFAEvaWQG5d3T/7sDJBO/WHQPgfnUHCxLlA9D/pQCVpHkAQOoZAIHFsQAZfGUFqr90/Q01BQIPniEH/rvBAenfEQfKl20AkATtB3V68QMmaFUE6PCBD0FbFQQ4UHECQ/jdBEwcsQnYi0kBMyUlBI5/LQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4MdGYEAAAADgzEhhQAAAAEDlRmJAAAAAgNRjY0AAAAAAfCFkQAAAAIAcw2RAAAAAoGb/ZEAAAACAsatlQAAAAECawWVAAAAAAFynZkAAAABAeCBnQAAAAEDHRWdAAAAAAJx+Z0AAAABAIrxnQAAAAOBdaGhAAAAAAB4maUAAAACAB0BpQAAAACB6hGlAAAAAwLymaUAAAABAVeRpQAAAAMBjH2pAAAAAoL1ZakAAAACAB+dqQAAAAGDjbGtAAAAAQDwmbEAAAABACUxsQAAAAMB2YmxAAAAAQAOkbEAAAABAD6NtQAAAAEC7xG1AAAAAAEvrbUAAAACAeyduQAAAAECth25AAAAAgJbjbkAAAACAbV9vQAAAAEDsj29AAAAAwI7zb0AAAABglyBwQAAAAEDSknBAAAAAAHm9cEAAAACAEdBwQAAAAAAq4nBAAAAAIOcFcUAAAABgZUNxQAAAAGCuX3FAAAAAAFTLcUAAAADAgQJyQAAAACBDMHJAAAAA4DGBckAAAABAKo9yQAAAAGDvsXJAAAAAwBbDckAAAABAM+NyQAAAACCC73JAAAAAQNJFc0AAAAAAcVFzQAAAAGBwYnNAAAAAQPByc0AAAADgK8VzQAAAAMBp3nNAAAAAwNTtc0AAAAAAyAR0QAAAACDHE3RAAAAAIG9MdEAAAAAAWX50QAAAAKDSknRAAAAAgMuidEAAAABgA7d0QAAAAACozHRAAAAAgBPydEAAAADAgRV1QAAAAACdLXVAAAAAAJFSdUAAAAAAnWN1QAAAAKDodHVAAAAAwCmhdUAAAAAAzcZ1QAAAAMAP4XVAAAAAwEjwdUAAAABAhyF2QAAAAGBmM3ZAAAAAII1EdkAAAABAaGl2QAAAAECdc3ZAAAAAoLqsdkAAAACAhb52QAAAAGCM03ZAAAAAQLL6dkAAAADg0RZ3QAAAACDTMndAAAAAABdzd0AAAACA9IR3QAAAAID8qHdAAAAAIPXYd0AAAADgFuZ3QAAAAKCZIHhAAAAA4B5beEAAAADAK2l4QAAAAIClg3hAAAAAoEyReEAAAABgQ9B4QAAAAKCA4nhAAAAAIOLteEAAAACg/g15QAAAAMBY1HpAAAAAAC/je0AAAACgSPx7QAAAAEAOQnxAAAAAwLJyfEAAAABAsB19QAAAAEArRH1AAAAAoK9VfUAAAADAnUV+QAAAAGDdZH5AAAAAYKwkf0AAAAAgtDJ/QAAAACB6PH9AAAAAwOODf0AAAAAgpJN/QAAAAGA8xH9AAAAA4K3Of0AAAAAgHiKAQAAAAOA1ZIBAAAAAYOCEgEAAAACAPoqAQAAAAGBVk4BAAAAAwBbbgEAAAAAg7uKAQAAAAMAV7oBAAAAAAInzgEAAAACAp/qBQAAAAKBZFYJAAAAA4CUzgkAAAAAA2t+CQAAAAMCaGINAAAAAQM8xg0AAAAAgNpSDQAAAAGA4BIRAAAAAoKhJhEAAAACgu7GEQAAAAKDp+IRAAAAAQHIMhUAAAACgxjqFQAAAACDAYoVAAAAAwNyZhUAAAABgMymGQAAAACCnPIdAAAAAYB5kiEAAAAAgereIQA== + KBZXds7jZUAgFMxS+VFwQGaLOdoMYnFAtCNeuPyCekAt5s0TJZN6QD4/+XgK2oFA4PqvPBRigkBnP4BIHRKFQKcmVkyAaoVA - + - DmGTP+CeH0FPPtFBjO3GQMsI+EBiOSFBv1zwPxqP3T8slglAvCsyQeD23j/AjUlA2ZLOQHG12EAVOII/fJEBQGY7QkAqSKZAcfhBQB7uyz/GarVB1iGrP9qhFEBhMB1ARJdEQcccpkDnOQdBtnSHQJI7CkFYY0NAc8yOQFZGyz/cYnxAn/O4P2EI/UDYK95AqokdQTd/gUDiyMFAwZqJQBI2dEIU8z5AW01nQMMeeEAKRyRAtnUZQds9lEAU5es/Z/pbQLLwUkDa7zhAr1EUQVLCq0EBgUJAmcJkQDM23j+Bf0tAQzbPQIQ4hkAkPx1A/PjWQdNT6kCBoY1ArlH6QDwzi0D+HUxA0V9bQHFx8EDaTNhAIqvAQChwEUH9tzZB5x9FQkNYyEAX0RdBrq9LQMTT7UBSQIFAujPrP8MnCEDv+rtAGhTIQFy1B0GJCWlATzOXQCUkTkEPYTFBsyF5QhnioEBKO/E/ejOvQs9ZfECOeK9BMSH4QViGNUGVVI9AqKEkQP6f7kDu7PVBWQlsQZnGUkCGZZtBlFwDQZfQgEGdaa9AsFMgQblR/kAE5zxBnZ/4QDkHXECXNe9An7yRQQRz60Hy9fRBYniBQE2fpEE9YBpAZfczQvtoKEAqIatC0ho8QVaYyz8IAQhAiiYIQDXlzkBghXJB8DOCQXNEn0Gav11B8uhbQMeDLEKtKvlAXR7pQYxfsEGXXOc/YVouQKP/CkADTQFBvpn4QLcZvEAm+8VAzm+mP2pn70CE4g5BQfPLQfY49UD61HBAWj6AQAjNLEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQMNQXkAAAADARMhfQAAAAMBmAGBAAAAA4IMgYEAAAACAX6ZhQAAAAMCsAWJAAAAAIHaCYkAAAABA3sFiQAAAAKAP5GJAAAAAwBkIY0AAAACAt9tjQAAAAEDBBWRAAAAAYOReZEAAAAAAXytlQAAAAACwX2VAAAAAwPWFZUAAAACAzp9lQAAAAEBl5mVAAAAAQFJFZkAAAADAnEJnQAAAAEBMYmdAAAAAQIukZ0AAAACAZARoQAAAAACzRWhAAAAAYI0GaUAAAADAYyFpQAAAAEBYYGlAAAAAQFzlaUAAAADAz+NrQAAAAEA6gWxAAAAAYHjXbEAAAAAAewptQAAAAMBoaG1AAAAAgBaIbUAAAACArMRtQAAAAEAR5W1AAAAAAFc+b0AAAABABl9vQAAAAEBXg29AAAAAAN++b0AAAACApwRwQAAAAMAvI3BAAAAAgCFDcEAAAABgMI5wQAAAAOD7o3BAAAAAAOcCcUAAAACASSNxQAAAAAAUcnFAAAAAQLvEcUAAAAAgfO1xQAAAAAA9MHJAAAAAwK5lckAAAABgAoNyQAAAAOD7rnJAAAAAAILRckAAAABgOOhyQAAAAECU83JAAAAAAN/9ckAAAACA7zJzQAAAAED8QnNAAAAAAC5fc0AAAACgAJFzQAAAAKAgoXNAAAAAAHSvc0AAAAAg+dFzQAAAAACA5HNAAAAAwMF4dEAAAACgTaR0QAAAAGAMsXRAAAAAAMrTdEAAAAAg7uF0QAAAAEBM8XRAAAAA4JJRdUAAAACAWmR1QAAAAACZd3VAAAAAQFWEdUAAAABAAZR1QAAAAGCpsXVAAAAAYGXXdUAAAACAS+R1QAAAAOAN7nVAAAAAoG0WdkAAAABghiJ2QAAAAEBkVHZAAAAAwJxidkAAAACgWXV2QAAAAOAsgXZAAAAAQEyTdkAAAABgWrR2QAAAAGDXw3ZAAAAA4NfxdkAAAACgagF3QAAAAAD8RHdAAAAAwAJ0d0AAAABgkIF3QAAAAOB7lndAAAAAgACrd0AAAADAkL13QAAAACDV63dAAAAA4KQGeEAAAADAbhV4QAAAAEAqI3hAAAAAwOkseEAAAABAfEN4QAAAAGC2VHhAAAAA4JdmeEAAAACgEop4QAAAAICXynhAAAAAgBDgeEAAAAAgGMl6QAAAAKAX5HpAAAAAwFKve0AAAADg98R7QAAAAGDU13tAAAAAQCvje0AAAADAdzZ8QAAAACD6hHxAAAAAQGyYfEAAAADgxMN8QAAAAKCaEX1AAAAAQN8BfkAAAADAgk1+QAAAAOC3/n5AAAAAYNLIf0AAAADAb9N/QAAAAIAla4BAAAAA4EObgEAAAAAgq6KAQAAAAOCTrIBAAAAAgGv/gEAAAABg7jGBQAAAACCwXoFAAAAAIH2hgUAAAADgubCBQAAAAGBGu4FAAAAAoOI5gkAAAABgg1iCQAAAAAAQcYJAAAAAwM2GgkAAAADgF6qCQAAAAOD40YJAAAAAIErqgkAAAACgnDODQAAAAGB6YoNAAAAAYN1pg0AAAAAgIMSEQAAAAAAzBoVAAAAAYO0ShUAAAADggmiFQAAAAOD+iYVAAAAAYH2yhUAAAABA6AKGQAAAAOB2LIZAAAAAIA9bhkAAAABAuqqGQAAAAKBV0oZAAAAAQKPqhkAAAABgFvSGQAAAACAyKodAAAAA4MJKh0AAAAAg9PqHQAAAAAD/uYhA + NrgMGZxjYkBUwx0Hx3FyQK9rGHLRYnNA - + - BxdWQLiFEEBUegFAYNMSQRhDP0BKdxJARYfeP82TqUCmixZBSqMXQaYZ+EAD2C9APb4+QOuicED+W5Q/sx4RQXqI3j/JKrhAwsHHP2hy2j88OWtB4+YTQDooQkCu0wpA3tzvP2LgdkBXjQFAwvBwQDAAW0B8wyNAEGh/QJ7HMEGg15M/i8nxQFaQhEARVgJB3Ki4P4kZ/j/nxi9AwgxDQL00GEGsG6Y/bWUJQei4k0CoigdBUrgLQZ5hAEIrhGZB3o+yQHC6EEE235BAqBS4QFk7HEGzyLg/IhReQDt+ZkDbbqZAHBodQKTk2UD8XRBBLjGuQHd7GUH2F9c/LxgmQNr57z9MJMpAoZ4lQZ14JUGIX79B0uMCQXfPE0A7loVB7PEdQLvPsUHTYWxA9oscQYvPBUMqS4ZAEFgdQlsYlUFjalZBozEkQluw4EByv6pAi+DIQQ3pj0BZrYlBwEL6QcQZCUEc1CZA2LHQQHg27j+TUeRA/DOVQc72uEE+aGdA8WWXQcLHnUAUGYFBZ5wYQZU0b0HyHaRBhKASQTrFEEEE5J9BMcMBQAHBuD8RMr5AFqoMQKHr2kAmeaZANjY/QNQkA0L5iYlAt1mPQAI8hkCvu90/DVPLP2I7oUG4YvA/81sjQTfaTEHNF/lAt2M/QO7Skz9LzYBBdnXcQsCgkEGgJyVBCxQGQgNpD0ErUvhAUO0vQOsjVEAP+kpBul+4QI/YWkDZhJI/bQoJQXjenUBTvD1BiqE1QQ6u/ECJjnRBCRYlQTq6CkAPVsZAobd5QHdBeECN0Ms/36mTP8rDvUCl7lRAVa0sQCTQyz+wSVFA2d/zQO3v20FM9ylBgwePQH+PmEA1EiVB + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQFora0AAAADg54huQAAAAICwJm9AAAAAoHxMb0AAAABgBfJwQAAAAMAlAXFAAAAAoNBAcUAAAAAAZFJxQAAAAACxZXFAAAAAgF7VcUAAAADg0hFyQAAAAKB383JAAAAAIEwOdEAAAADAMhh0QAAAAICIInRAAAAAgPOkd0AAAAAAaSN6QAAAAIC3JHtAAAAAQCJBfUAAAADAI5R9QAAAAMDdZH5AAAAAQBACf0AAAACAbSd/QAAAAAB0uoBAAAAAYGPEgEAAAADA+nmBQAAAAGAGCoJAAAAA4ARrgkAAAADAluOCQAAAAED+64JAAAAAoNUXg0AAAAAg4S6DQAAAAOC4QYNAAAAAYOiNg0AAAACgLfODQAAAAGAnIoRAAAAAgGtUhEAAAAAgxlyEQAAAAODbhYRAAAAAYA0RhUAAAABATy6FQAAAAMCbfIVAAAAA4C2ehUAAAADguqqFQAAAAMDMsYVAAAAA4J7KhUAAAACgXD6GQAAAAICEWYZAAAAAIHSZhkAAAABgqMqHQAAAAOAzU4hA + KBZXds7jZUDs3IbI4yFtQFAtpBCXEnJAdswfOEqidUDfhPAvbyN4QJjVIWnNEntA9eoXhHnBgEBfvP0GWuKBQMPpxyPm+oRA5WQd8xuShkBSEiYZEsOGQOWTCx3IGopAUkEUQ75LikBwktAtFtyNQHh0r1gfI45AhTyYeLBtkEAcX7seQXKQQMxQR3PGUZFAnHayM5c2kkBMaD6IHBaTQOOKYS6tGpNALA2i+s12lEAwfhGQUpqUQL+mb4V+YpZAdv1zmPl6lkA/vmaa1CaYQPYUa61PP5hAhtIVleoKmUA46XqjMJeaQO7R7eSgJ5tAAlKxTKrDnEAwpv3agX+dQEvU8RjLH55AFLzQ4rcDn0DL6+gtIeSfQFFyF+zxZaBA8DXWShXAoEA= - + - WNiKQOx2t0CeVIdCHdTXQKXWjUDfQCNApzoHQNIrLEERcwFAwqKiQCwtZ0B2Rx1BwCKvQW6R3EAHSqRAlrSvQIb4CUBdRAJBRz1CQNWo4T/lGApBcrCTQU9ehEB3MidBpJBkQOTB+kCdqxJAFbkbQcr3jUDgqopAijfwP5rrfkFkgptAqTgdQGwfC0FQI15A5iGAQdD6wkBQFLBA9ko2QBMYDEFc0FJArQw5QGIRukDdZDlAZXnBQDHnRUIZawFAtwZvQWw1SUGzoKZA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4OtFYUAAAACABqdhQAAAAEDEwmFAAAAAgPVmYkAAAABg2OJiQAAAAGCpHWNAAAAAgECHY0AAAABA4uZjQAAAAADAvmRAAAAAgEBEZUAAAABgS2dlQAAAAIBnbGZAAAAAQLCAZkAAAABA96dmQAAAAIC/xmZAAAAAYIbkZkAAAAAgmQNnQAAAAGA6IGdAAAAAINxkZ0AAAADApaNoQAAAAIBdJGlAAAAAgPFGaUAAAADADOJpQAAAAIBTXGpAAAAAAJqLakAAAACAeaFqQAAAAIA0AmtAAAAAwGspa0AAAADAvF9sQAAAAIBtp2xAAAAAQFXFbEAAAACAuuBsQAAAAIDJAW1AAAAAQEoBbkAAAADAZx1uQAAAAKA2Tm5AAAAAALakbkAAAACAWsNuQAAAAMBvKW9AAAAAwDZlb0AAAAAAXxJwQAAAAGAkIXBAAAAAIHw2cEAAAACAq7BwQAAAAMCbw3BAAAAAgCn/cEAAAABAjEFxQAAAAOBpVHFAAAAAQEGTcUAAAAAgq9FxQAAAAGB74nFAAAAAIIbycUAAAABgYgZyQAAAAOBGFHJAAAAAoLNjckAAAAAAtHNyQAAAAIBponJAAAAAAHCwckAAAABg3dJyQAAAAEB49XJAAAAAQHgDc0AAAACgccZzQAAAAMDyFnRAAAAA4LhUdEAAAADACYN0QAAAAEBBqnRAAAAAYFDbdEAAAABAJwl1QAAAAMAkZ3VAAAAA4NKSdUAAAADAZfR1QAAAAGAxA3ZAAAAA4LEgdkAAAADAuDJ2QAAAAEAusXZAAAAAQIG+dkAAAACgl892QAAAAOAu3nZAAAAAQFjydkAAAAAAsS93QAAAAGA0PHdAAAAAoIddd0AAAACAnnJ3QAAAAMA1fndAAAAAQPued0AAAADgQ8R3QAAAAOCnMXhAAAAA4P5CeEAAAACAX2h4QAAAAOBicnhAAAAA4LSIeEAAAAAgv614QAAAACDmw3hAAAAA4MPVeEAAAADgeOV4QAAAAKDI9HhAAAAA4A4DeUAAAABglhR5QAAAAGC6H3lAAAAAgH4veUAAAABgZUp5QAAAAOBreXlAAAAA4DbAeUAAAADgfs15QAAAAIAz4HlAAAAAACfzeUAAAABgGQd6QAAAAIA0E3pAAAAAoLAjekAAAACgGVl6QAAAAAAwg3pAAAAAIDeUekAAAACgO6d6QAAAAODms3pAAAAAYCPHekAAAACAkuV6QAAAAMCj9HpAAAAAIAcFe0AAAABgoBJ7QAAAAADHMHtAAAAAICA7e0AAAABgHXN7QAAAAEBEgXtAAAAAIKqVe0AAAAAAyLV7QAAAAKBk5XtAAAAAIC4HfEAAAACgdkF8QAAAAMA9UHxAAAAAgFlhfEAAAABgjpF8QAAAAOBiznxAAAAAIKnwfEAAAADgArJ+QAAAAOBOg39AAAAAoMzHf0AAAADgQRmAQAAAAGC7JIBAAAAAAHFFgEAAAADgX1+AQAAAAOCyaoBAAAAAgE9ygEAAAAAgD5uAQAAAAAAs8oBAAAAAYLz6gEAAAABgKgKBQAAAAOAsI4FAAAAAgKNEgUAAAAAA1IKBQAAAAGCJi4FAAAAAQAKTgUAAAACghbKBQAAAAOD34oFAAAAA4E79gUAAAABgSi2CQAAAAKAIM4JAAAAAYLyegkAAAACgA8GCQAAAAKDwyoJAAAAAgPkZg0AAAABArVGDQAAAAMBjd4NAAAAAwGOCg0AAAADgco6DQAAAAECN2oNAAAAAoOLgg0AAAABAtgmEQAAAAKAkKYRAAAAAgFUxhEAAAACgFGqEQAAAAGBLcoRAAAAAYJKZhEAAAACgE7qEQAAAACDBwoRAAAAAoCX7hEAAAADgjwGFQAAAAGBPD4VAAAAAoANLhUAAAADAV1OFQAAAAID9ioVAAAAAAAaThUAAAADgj+CFQAAAACA3/YVAAAAAgD08hkAAAADgqEOGQAAAACAdSoZAAAAAQD1RhkAAAACgxsKGQAAAAOD1yoZAAAAAwP9Sh0AAAADA4FqHQAAAACAqpIdAAAAAYNzih0AAAAAg9uiHQAAAAGBc8YdAAAAA4BL7h0AAAACgbhyIQAAAAMD8cohAAAAAoJN5iEAAAAAg+aGIQAAAAMB6zYhAAAAAoObSiEA= + NrgMGZxjYkAKI3ffzmRvQEMdzoN8QnFAmXHSiBSzdUDgnQW7KgN2QPR9HNTXA3xAO6pPBu5TfEBI/6kFQ2KAQCdFs49NKoFA3N9NQZpqhEBrCKw2xnKFQA== - + - CYkRQoNWzkHkrkdCVKdJQsUf+UBU0rpAPN+rQddyhUEyJY1A32q1Qn8cN0GxxPhAOuOaQbExAUHk6NZBw4hEQ+3YmELaCtpAqLasQkhwt0CxCPVE9E6eQnx+pkH+KU1BGRUQQvL0zkCL2SBBqtpXQZoePkGOMAFEgE3AQVPodkGSCj5BWmTrQBEuN0ELlrpAIXz1QfVM7UGnjB1CS9juQU1hQ0GkhsFBwi4uQVdvFEEIXopB1tXUQnlhzEIoZx9CEr5jQHiaxEK/9tVCbHwWQsdA2kCQl5tABl3/QzYBFUN79mNB9CQKQast2UG8bnFBdme2QXubWkHGESZB3l58QVokJEESfn1B4tIsQmRi/kJ4Z1hBxzgpQop5CEIFV4BBNwMFQV7lRUH1zTRBKtvsQIsYtELZuv9AmxeRQD7FIEG4yKZBEf6tRJdpGEGZS5BBRNpFQQ3G0kFIe89A+XA6QKhHBUGCJCdC783LQAJvYkG6t71CnvrEQNZoeUIUAWFBtC1YQdwJqkFl51JBUgZwQvYTiUEYCedBAEcRQe5U0UGE2cFCM6byQgKxHkHg2TNBMDjqQXK5JkOeh7pAdQ/oQbxvzULDRqNBxgOvQekX9UTyJIxDhKxjQjENhEGPtONCFAMwQsIiEkJpR5JCflmVQdLcbEEuYrVBcllMQxxsiUIqqJdCInoTQo7MlEERpr9COjkRQNNld0FqeLdA4CSlQW5Ww0GIWblCawTtQWJKH0Gfa1pCOxliQZAgYUKuPIdDiifiQpAYJEINtr1Blu1RQZkaQEQ0m0xDx5JiQVriy0KumAtCMwaqQLaMn0L+uOBAwFe+QfZyakMffLNBlXIKQkY86UK9AJVBisCMQeViD0GgHuxBS03/QTRWm0DThRJC+WgJQs1OkkKXry9CKGq3QQ5Sn0LwOaJCHI9YQmaaSUH6Ju9BAlCrQ70hokIH1upDdpwlQ4XWSEH0R11B2XeSQQlpH0F0G0xCZBmgQWzmxUPquL1C7serRTNaoEQ7U09BdQAmQY7qVEGyhCxBnZP/QFqKukCWoLtBl/CkQUsEUEAy/mRBAiewQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgMM5bEAAAADgqURtQAAAAGDaJG9AAAAAwE9ib0AAAADgCr9vQAAAAIB14W9AAAAAwMfyckAAAAAA4yxzQAAAAAB7oXNAAAAAAL8TdEAAAABAEiJ0QAAAAEBPkXRAAAAAgJiidUAAAAAAFPJ1QAAAAEA5AnZAAAAAANgSd0AAAABA2aN3QAAAAIDAInhAAAAAQIpleEAAAABAg4V4QAAAAMDCUnlAAAAAgGPEeUAAAACAkg56QAAAAECrA3tAAAAAQBone0AAAADArTZ7QAAAAMDHRHtAAAAAgFoffkAAAACAeTN+QAAAAAAXAoBAAAAAgHYogEAAAACAGIKAQAAAAGCEkoBAAAAAQDi6gEAAAADg/8GAQAAAACBcGoFAAAAAIHoigUAAAADgG0KBQAAAAGCtWIFAAAAAQLNjgUAAAADA83OBQAAAAGBPiIFAAAAA4JrugUAAAADA1vmBQAAAAEChAYJAAAAAoKW5gkAAAAAgvuKCQAAAAMARIYNAAAAAABMqg0AAAABgpnCDQAAAAKBZuINAAAAAgJ3Eg0AAAADApMyDQAAAAADrKIRAAAAAIKgzhEAAAAAAW1SEQAAAAGDyWoRAAAAAoCV3hEAAAAAAo/qEQAAAAODwC4VAAAAAwBw5hUAAAADA9lqFQAAAACCmeoVAAAAAwMaJhUAAAADgepGFQAAAAMBN6YVAAAAAoJX6hUAAAACgAQCGQAAAAICYDoZAAAAAoNsphkAAAABABlWGQAAAAIDMX4ZAAAAAoEZ5hkAAAACAwoSGQAAAAGCboYZAAAAAoAKxhkAAAADg1uiGQAAAACCANYdAAAAA4MIyiEAAAACgW1SIQAAAAEBAwYhAAAAAwNTwiEA= + KBZXds7jZUA= - + - P41EQGQsjkFCjn9B7f+mP6abpT/8C45AT6zJQMoUr0BHaq5AXAvdQvwYzECPxkxAsWUcQHgbK0FISq5AHLmdQbMIgEFFTLs/0/THQBO1CkBAqgpAW2FCQI5rU0GNB6RAZIiCQQAD9EDTZfc/Z8CgQBF7dEHjoe8/RaX+QGK7CUD4fINBnmZHQl06CUEseKY/CKsfQIxRtUB2AvE/sLGEQBpOekDrjZJADQEmQdoeXkA9OtJAbox3QJvOZ0D+JwdA42rZQKhaNUJ0DAhDihs1QTb3yz+5vAJCqeVIQKFlMkIEuxJB24j8QICUb0CbZkJAMI9VQN0JjkDA5z5CpN9aQOLrdkANsplBdQwUQN5/3j9wQi5Af2adQLo1gECe08BAcpMqQQKcgT+ZcSdB0m7oQT7msEEIPHtBUwVDQYZjL0AEdzxB6ob1QA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgNxHYkAAAADAdadiQAAAAMAayWJAAAAAAOIGZUAAAACA6CVlQAAAAKD5ZWdAAAAAAOmGZ0AAAACA2adoQAAAAMBa6WhAAAAAwIpPaUAAAACAMYRpQAAAACAMpWlAAAAAoF1DakAAAAAAoH9qQAAAAEDlR2xAAAAAwEzHbEAAAACggd9sQAAAAACqJW1AAAAA4CZEbUAAAAAA6YhuQAAAAADr425AAAAAAFRnb0AAAADABuVvQAAAACDaFnBAAAAAgMNEcEAAAACgCtJwQAAAAKBW5XBAAAAAgOdycUAAAACgf5BxQAAAAIDEx3FAAAAAwDTjcUAAAACgk19yQAAAAOBKonJAAAAAIDwUc0AAAACgRoJzQAAAAMDJ8nNAAAAAgB4HdEAAAAAA63V0QAAAAAB8NHVAAAAAAIFSdUAAAACgAWF1QAAAAOAhhnVAAAAAIKy2dUAAAAAgNsN1QAAAACDjEXZAAAAAgFA1dkAAAAAAglN2QAAAAAC+03ZAAAAAwOVGd0AAAADg+VF3QAAAAOChYXdAAAAA4Mmid0AAAADADQB4QAAAAEBEM3hAAAAAIJZGeEAAAABAC3Z4QAAAAOBzjnhAAAAAYNHAeEAAAABggct4QAAAACCeM3lAAAAAoOFweUAAAABAP495QAAAAGALsnlAAAAAIC/SeUAAAACgCvF5QAAAAKCX/3lAAAAA4IkdekAAAABgUEt6QAAAAGD5WHpAAAAAAAyDekAAAAAg3ZJ6QAAAACAG1XpAAAAAwAHhekAAAAAAPSF7QAAAACAlXXtAAAAAIGdue0AAAACA7oR7QAAAAODasXtAAAAAAG7Ce0AAAAAgEPZ7QAAAAKBbBXxAAAAAoOkRfEAAAAAgsyJ8QAAAAGAgc3xAAAAA4DOSfEAAAADgzKV8QAAAAKD7tXxAAAAAIC/KfEAAAADAeuJ8QAAAAGADL31AAAAAwKs7fUAAAACgm0d9QAAAAGBDYX1AAAAAYE1rfUAAAABgU4p9QAAAAOAhw31AAAAAQFPyfUAAAABgPH9/QAAAACBamX9AAAAAwMPdf0AAAACg/+5/QAAAAOApC4BAAAAAAJcggEAAAADA4EGAQAAAAOC2W4BAAAAAgKNrgEAAAABgCXKAQAAAAGDgn4BAAAAAIEPhgEAAAABg7+aAQAAAAKDh8oBAAAAAoC/4gEAAAACgeiuBQAAAACDMNYFAAAAA4OGDgUAAAABA8YyBQAAAACB5toFAAAAAIOXDgUAAAAAg+eGBQAAAAEAM54FAAAAAQFH5gUAAAAAgPwiCQAAAAODtE4JAAAAA4N4YgkAAAAAAFiOCQAAAACC+KoJAAAAAIBZMgkAAAACgR1uCQAAAAOA8boJAAAAAYNt7gkAAAABgWYOCQAAAAEAhk4JAAAAAoMCggkAAAABgsayCQAAAAKBY24JAAAAAwGHhgkAAAADAOumCQAAAAGCHAYNAAAAAIJ8Zg0AAAADAOSODQAAAAKC7K4NAAAAAAI8/g0AAAABgTUeDQAAAACC2W4NAAAAAAIB0g0AAAACAl4CDQAAAAOBpk4NAAAAAoPymg0AAAABglNmDQAAAAGDr34NAAAAA4C33g0AAAABgpiCEQAAAAODKNIRAAAAAoBxchEAAAACAt2aEQAAAAACba4RAAAAAILqyhEAAAABA+M+EQAAAAGD+2YRAAAAAADH7hEAAAABglwqFQAAAAOB8HoVAAAAAwEROhUAAAAAgT4uFQAAAAGAPnIVAAAAAoEKihUAAAADAPcCFQAAAAKA03IVAAAAAQBwHhkAAAACgACOGQAAAACAsKIZAAAAAoPxLhkAAAAAA1G2GQAAAAID9dIZAAAAAYL62hkAAAABgMryGQAAAACBwy4ZAAAAAILfThkAAAADAUviGQAAAAODKF4dAAAAAYOI1h0AAAACgEUKHQAAAACDyY4dAAAAAQLunh0AAAAAgP+mHQAAAAKBT74dAAAAAgE8WiEAAAABgwiaIQAAAAGA5L4hAAAAAoON8iEAAAAAgRp2IQAAAAOCzo4hAAAAAYJvdiEA= + KBZXds7jZUDUvl+A/sRuQLh9x6rPUXJAkaB3ty1zd0DfPg8ifmJ6QDWTEycW035AEtiEjhjSgEA= - + - dhgBQTknREBHRvA/wrmKQD6Kj0B1DLhANcV/QMQrvz9OneVA5rwdQCddnELKWFZAbrj7QI5R2z8q3ihBsLvePxibC0EtBk9CgCcKQRoMd0AeNcU/MxNeQG7lJ0BeaR1AFfTcP9VqL0Bn2wpAFMKJQQdfGkNa4k9BR95sQBH42kCm9tdAyb2mQIhANUE2tl5BEb5RQF0zx0HVYElBRqaCQb97uEAkXo9AKBSQQAkgCED4ddxAjKaeQBS3/0HYbBRAAcGBQS6t4UATiQFA3I2oQO5z3T+s2ZBB2KAKQHlAiUA1PgJB9IyNQameXEEvEzZBarnFQILCoz/82rJA9DyAQTtE7kBbB15A8OXdP00/E0B/JkNBeSw2QB6nqkHsPDNCtdlRQawg9UHL9DdBVqk/QDtDyz+/WntB73o5QNcLAUIDDpQ/CGIhQdYwD0IsfT1B7Ez4QBi3xUDG0QdBasDlQNB4C0HkTRRCeRSSQeI9R0Eyxu1BG18mQVCiVUEH9/NA+9l5QDSGwEBR/rg/EmiGQSEt60FEfoxBZDxfQjreAUAi+HVBwsxIQKKhckAVpnpB21vRQF+AckH+2UdBj/BPQVA2l0EWnthBM16IQalayUF9/fxAJ3KFQB7HEEKw65hBDYh5QFUoHUCU70BDIHwrQVTYskCt3xdBthCeQWS8vkDYRu9AjKEbQmZegUBe8DhBKDg0QbY2/kJHHOdDjWufQmjs7EGgDltBUjRLQkiOkkGxusNARI6BQB07E0OYvjlBHedrQYwKLEHsK4tAVYSuQIohd0EhTRtBnAMYQUaMJkGK6bg/1gD/QEjbEEHx/YpBYE2NQVtCH0FmcshASF5CQTJNSEAv8XxBTg0DQRbWFUGJ9S9AEP5dQH9DdEHt1z5BYu0HQbTnnkE30nRAXK0aQYb3jkLf30BBTgvVQuEB8EAUYOdAQsz8QKN54UBBMOFAnKtmQexzXUCiVKZAsS6aQS7U7kEkaN9BzQwRQPxwB0EeGdBBYuN7QuSPkkB8LkdBQy0dQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgP/HXUAAAABgBCdgQAAAAKBO4WBAAAAAoOEFYUAAAACAqqJhQAAAAKBRv2FAAAAAYCRkYkAAAABAxKBjQAAAAECU62NAAAAAoI5lZEAAAADgo59kQAAAAIAjBWVAAAAAgDVjZUAAAADA3X9lQAAAAMBmuWVAAAAAAGzlZUAAAADAkgJmQAAAAABMImZAAAAAAD68ZkAAAAAg/kFnQAAAAEAiZGdAAAAAwGupZ0AAAACA6uBnQAAAAMD+J2hAAAAAAE1oaEAAAABgbaNoQAAAAIA3wGhAAAAAQN5FaUAAAABAAYRpQAAAAGCFwmlAAAAAgC14akAAAADATvVqQAAAAIDNC2tAAAAAAPhoa0AAAACAxYhrQAAAAAD4AGxAAAAAIDlCbEAAAACAI2ZsQAAAAECmiWxAAAAAwO+kbEAAAADAVMdsQAAAAIDG42xAAAAAwJP9bEAAAABAmmRtQAAAAECc5G1AAAAAAClIbkAAAABA9YZuQAAAAACOo25AAAAAgMv7bkAAAAAgnQlwQAAAAOABI3BAAAAAQDUzcEAAAACA/EJwQAAAAIBIY3BAAAAAIN9wcEAAAAAASvhwQAAAAABvDnFAAAAA4N1RcUAAAACgPnJxQAAAAABUjHFAAAAAgGegcUAAAADACbZxQAAAAACRw3FAAAAAAI4MckAAAAAgDzFyQAAAAADTUHJAAAAAAPllckAAAABAcqByQAAAAABasXJAAAAAgD/AckAAAADAONFyQAAAAODP73JAAAAA4JoCc0AAAADAhkVzQAAAAEBtYnNAAAAAgPtyc0AAAACA+LZzQAAAAADN83NAAAAAAOUDdEAAAAAgFhN0QAAAAADPUHRAAAAAAC5kdEAAAAAAQHR0QAAAAIBPg3RAAAAAQNiNdEAAAABgFgV1QAAAAODoH3VAAAAAgIAxdUAAAACgbEF1QAAAAOAFVXVAAAAAQAl1dUAAAABAx391QAAAAACTnnVAAAAAgNqxdUAAAABgQMV1QAAAAGCs0nVAAAAAYOMNdkAAAAAgOSl2QAAAAKCFWXZAAAAA4DpjdkAAAAAAaHJ2QAAAAGCAgnZAAAAAwHCOdkAAAABgNKZ2QAAAAIBitnZAAAAAoC3wdkAAAADg1TR3QAAAAGBgVndAAAAA4LFgd0AAAABgiHd3QAAAAKAWp3dAAAAAoNOyd0AAAAAgbIR5QAAAAOBNn3lAAAAAYNCyeUAAAADgwMl5QAAAAECT5HlAAAAAoEXueUAAAADgLnZ6QAAAAGD5lHpAAAAA4G7WekAAAABg/ON6QAAAAMDvBntAAAAA4Pgie0AAAACg9y17QAAAAKC5aXtAAAAAIJnze0AAAACg+wF8QAAAAGBRUHxAAAAAQJJifEAAAABgo6h8QAAAAGAm8XxAAAAA4FwFfUAAAAAgDC59QAAAACC4YH1AAAAAwL99fUAAAABA6pZ9QAAAACB4xn1AAAAAQNv2fUAAAAAgKzR+QAAAAGCxSn5AAAAA4J2TfkAAAABAUdJ+QAAAAKB93H5AAAAA4AA0f0AAAACgy0t/QAAAAEB2zn9AAAAAYFHef0AAAAAguOh/QAAAAGAO/n9AAAAAIMMKgEAAAABgEh6AQAAAAOA+I4BAAAAAwN4vgEAAAACgiUKAQAAAAGCVT4BAAAAAIBt7gEAAAAAgMIyAQAAAAOBgmIBAAAAAIHu+gEAAAAAgK8qAQAAAAGBg4oBAAAAAoEn9gEAAAABgZwOBQAAAAKAgC4FAAAAA4BgSgUAAAACgeSmBQAAAAGC1LoFAAAAA4NNFgUAAAABgDUuBQAAAACCXgoFAAAAAwNOKgUAAAAAAKLKBQAAAACD7u4FAAAAAwK/IgUAAAAAg496BQAAAAODa8oFAAAAA4KEWgkAAAABALCSCQAAAAIDyTYJAAAAAYAxcgkAAAACAdHiCQAAAAKBiloJAAAAAoCWsgkAAAAAgybeCQAAAACAJvoJAAAAAoEnVgkAAAAAgSNyCQAAAAODrIYNAAAAA4Korg0AAAACgdkqDQAAAAKAWXINAAAAAYGZmg0AAAAAgE3yDQAAAAGAWkYNAAAAAgBqbg0AAAABAGqCDQAAAAGB5tINAAAAAILS7g0AAAABgytGDQAAAAKAN/oNAAAAAALgGhEAAAAAgeiaEQAAAACDiK4RAAAAAoLtnhEAAAADgja+EQAAAACCBtYRAAAAAQJ+7hEAAAAAABwWFQAAAACARIYVAAAAA4FmMhUAAAADgbaOFQAAAAID3uoVAAAAAANu/hUAAAACgXuiFQAAAAIC+74VAAAAAIBgChkAAAAAA0yeGQAAAAEASSIZAAAAAQFBzhkAAAAAgn5CGQAAAAED4tIZAAAAAADOzh0AAAAAgEjeIQAAAAOASe4hA + KBZXds7jZUCYE/Y0vCFwQJ0RHYnYgnNA8x9AgH9ydkCdb/ncMJR6QOHdP93ton1AYpggqm9SgUCqQYDm7tGCQBzrAKLnUoVA10cljFD6hUBHFYOkM4uHQJGaBYTI+olAAWhjnKuLi0C8xIeGFDOMQC5uCEINtI5Auws0P8YZkEB0YPScQlqRQAX8Bd3xHZJA8E80NF4mk0CFE/3xR+KTQAfTBgePupRAJ3V5RYQGlkBk/PYCy7qWQA== - + - UseQQOqZMEInaLhA/X80QlHzMEEeFPZA7cJ/QJbTCkCZ3JM/ZxisQCe420C/8YZA0GNCQLiMc0BLuhNALiYUQPkZL0Hw3lxAxq/AQBaB20CjbhVBEi6JQKACg0DimR9B8ZiPQEbx3T8FeZlA3yIDQYsalUKcKRRA5T9eQCKuqkHQOX5AXbgKQBzv3T8iu7g/mk81QfKYoECrFppAx5caQKw0zD+Sv5M/ltpwQDizzkCHacVA+0yEQLxonEBFLjZAEXKXQE2K8D+q/c5ARB3BQJBwjUBKNCBB4FBTQWusgUG6C0RAf/7gQC0ntECO5iJDDO0JQs0WUUBjtS9AxN4xQcCWgkHS1ddAEEcFQRoGFECpFt4/U44aQYcfXUG0SfpAeYLLP/qTrEBFxlRANZgmQEg8EUEvjE9BORMFQesRMUG9gyRBffC4P1xzQ0HtdVFBnir9P2qI1UCNoZBBUL6gQNo/4UCUOm5Cqp+lQW8iikDa4YJAGnzAQLtl4EAbukxAJsOyQcYqskFuLtpBw1AJQT66+kF91fVBI6gTQCUWBUHqcrhA+erSQU1yiEEv6hZCynRIQDjA3T9WHO9AYSfcP1+EhEHEEndCsCRNQWu3vkD8EZxAOvpXQaXnE0B/JANBoyNqQi0ES0CH1aRBaTAsQ0sTPkFum7dB7P4hQtOo6kK6ej9DYhZvQoTXgEIWKmZDRUKCQd4D5kDtFiFBpZSCQXAwCEH7sSJBq0QXQdhJR0G6nUVB+zYdQAMU6EHOP3xAa0S1QarMHkDKlphAigkBQp/rn0EuvnZACW0EQfKFc0JoMOFA7TmGQEhXHUHBeE1BR/qmQQrFMUFERBJBZW7nQId3VkH4keVAud4/QbMH4kBaYYtAq2MsQbxGEkPZ33E/xxTVQQAa/0Bk7sJBkg6mQbwgtUHa4JtBz9kvQSvleUEiQhFBQlZuQS9Zc0L/kohBgRIKQrTTTkGka5RA9k4sQo6HgUCAilZA0N/wP5aSCkLCjadCZHy8QKs2q0DY5i9AHGYxQM/vPkEzIChBTOqEQdEXaUDt2RxBgITcQF9prEH63alBlOC0QGFj10GG18JBjJluQpPlKkIjzH8/+CmXQElSxUAOAwpBMNhBQWKK8kAPbhNB+qYnQSyMqUB9lxVBR+pvQfBnn0H6uBdBqDaqQfPAEkF4IC1CHnsBQGsOgEAqDgpB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQPrJXEAAAADAUBBeQAAAAIDHPF5AAAAAwC3SX0AAAABAeClgQAAAAMAvP2BAAAAAwP9jYEAAAAAAZd5gQAAAAMALAWFAAAAAoGEoYUAAAAAAWQliQAAAAIA4ZmJAAAAAoMc8Y0AAAADAJIFjQAAAAADfv2NAAAAAwEYIZEAAAABAH91kQAAAAABTQ2VAAAAAABaDZUAAAAAAp6RlQAAAAIBOAGZAAAAAQOKlZkAAAABAUb9mQAAAAIA3CGdAAAAAYHouZ0AAAABgwelnQAAAAMDDdWhAAAAAAJjEaEAAAADgiuJoQAAAAKAmnmlAAAAAAHYEakAAAACArCBqQAAAAABbfmpAAAAAQEcAbEAAAACA7WdsQAAAAEAy52xAAAAAwNkAbUAAAAAApSdtQAAAAEDEZG1AAAAAgGLEbUAAAAAAA+ZtQAAAAIDjJ25AAAAAAJFDbkAAAACANIhuQAAAAIA8wW5AAAAAQPnnbkAAAAAAFyZvQAAAAEDqQW9AAAAAgIpib0AAAADACZ9vQAAAAAC2xm9AAAAAQKbib0AAAABglgFwQAAAAKC7QnBAAAAAYGBScEAAAABg829wQAAAACB+knBAAAAAQOKfcEAAAABAOrNwQAAAAMD613BAAAAA4HrwcEAAAAAgsgJxQAAAAAAeTnFAAAAAgBhycUAAAACghoFxQAAAAAAfknFAAAAAAE+icUAAAACA9rFxQAAAAEAcwnFAAAAAoDbQcUAAAABA6wFyQAAAACAwLnJAAAAA4P1UckAAAACAtG9yQAAAAIAzj3JAAAAAILeickAAAADgUctyQAAAACAE2HJAAAAAwFjkckAAAAAgo/FyQAAAACAkQHNAAAAAoKpQc0AAAACASXFzQAAAAICwfnNAAAAAoIqTc0AAAAAAe7BzQAAAAGCPwXNAAAAAgIzkc0AAAADgSvBzQAAAAKATAnRAAAAAgDQUdEAAAACAKCF0QAAAAKAdMXRAAAAAQOxQdEAAAADA1m90QAAAAECliHRAAAAAQEWTdEAAAADANLZ0QAAAAAA38nRAAAAAALwDdUAAAACADA91QAAAAKBmM3VAAAAAgM9TdUAAAADgUmF1QAAAAEDQnnVAAAAAwKywdUAAAACAi791QAAAAGAX/3VAAAAAoNwUdkAAAADAKyJ2QAAAAKAJNnZAAAAAALdHdkAAAABAFHJ2QAAAACBdG3dAAAAAYCjkd0AAAAAgDkN4QAAAAGC3VHhAAAAAYF+keEAAAABg5zd5QAAAAABb2nlAAAAAoIJyekAAAABgxOl6QAAAAGBMFXtAAAAAgN8oe0AAAACg8397QAAAAGBCNnxAAAAAYBuxfEAAAACgksR8QAAAAOAA2XxAAAAAoBQpfUAAAACgYk19QAAAAOAJn31AAAAAYCqtfUAAAABgTXN+QAAAAOBKmX5AAAAAoA2kfkAAAAAgn+1+QAAAAKDpU39AAAAAYMiDf0AAAABgK6N/QAAAAGAguH9AAAAAoE3zf0AAAAAA+0CAQAAAAEDShoBAAAAAACaOgEAAAADAFZaAQAAAAICKn4BAAAAA4C3ZgEAAAABgGxOBQAAAAMBPIYFAAAAAgJDHgUAAAABgR2KCQAAAAGAyjYJAAAAAoFK9gkAAAABAadyCQAAAACCtZoNAAAAAAHhChEAAAAAANZ2EQAAAAGA7HYdAAAAAoAwhiEAAAADg3XSIQA== + KBZXds7jZUAot2DdIQNrQANJK5hVInJAghmwS/+xdEB37uuHRSN6QA== - + - Dj/uP0TiX0AsiwFA80cjQCCTWkDjmIE/hlJkQO6vLEBS321AYoUHQcWRLECPo1FAk/wvQLHVyz/9BTBADysyQdCxvD8ylMs/4KUBQLaHFEA1G1VAsUcbQWSmBEENCzBAZcJRQPN/8D8DMxRAjhAUQKBmEUE8SclAGajLQFNI5UCuldJAgyeeQMxPjECVqpFBS/4OQWlFu0Ciw1FBvnwoQfS9GEEQKiJBJv8BQR8lnkHXeYlAe3XWQAt/NUFmTglA9wpUQJQHGkJXu7g/Yj19QWYdBUF4WTlAMR5MQDm6JkBEAvE/qvqZP2LV3T9ei1xB3/AsQgdPFEDmMA9BfhBvQQCOOEDPro5BA3imPyajCkBF/xlB6gPdQOCF4UCcy+pAEFzhQPcPpkH1x21A8OMLQQogkUFZ41pBnapRQH7dQkEzBphAEWWeQFKFAUEmyCZA0f/4QAxPW0C6a6tAndwnQeFcE0Gf8lhBhjd0QoBNk0K25vdBJ9WyQLdkS0IiK/tAw6sjQA1HHUD5UkJAgfADQcLlCkBDjtBB67wFQhB8q0FcrSxCK6OpQf5H20CDYGxBu+PZQZgJCUHngVpAzDGLQgzQI0C+0t0/AUQtQYB5QkDv9hNATx39QVRP10BK7wZBVHIMQGFshEC4QLw/nKwpQV7u6UAMgxpBuYMUQF7nf0Bn6VRAserAQMiMFkG0/t1BTIgjQZXwbUCyIOFA5rU3QCys8D+uewpAc+PeP69pUUGJ+4BAUY5tQGg33j+jL1RBVrKBQGHucEDuJI5A1iOHQbMPUkFFDM1BH85YQcmUE0Gwg8VAYBO2QPUEpUCKlqdAMKreQECBeEG0o51ADRFkQLEjFEA= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4HQnaEAAAADgfKRoQAAAAAAHK2lAAAAAAJ9GakAAAAAAv8BsQAAAAEA3Bm5AAAAAoFOhcEAAAABgF8NwQAAAAIASz3BAAAAAwJkBcUAAAACAhkNxQAAAAGBBUnFAAAAAoMPCcUAAAAAgM9FxQAAAAMCoEnJAAAAAYLojckAAAABASWFyQAAAAECNgHJAAAAAgEqbckAAAABAisFyQAAAAEBmgXNAAAAAQD4gdEAAAADAuVF1QAAAAABgkXVAAAAAgD6vdUAAAADA6yV2QAAAAEA88nZAAAAAAPJMd0AAAAAAI6Z3QAAAAMD9s3dAAAAAQC9EeEAAAACAJL94QAAAAIDz73hAAAAAgGIWeUAAAABA0K95QAAAAMDmNnpAAAAAAIaSekAAAAAAt816QAAAAMC5MHtAAAAAAJuBe0AAAACANNZ7QAAAAIAr5ntAAAAAQJ08fEAAAAAAi7R8QAAAAAAXznxAAAAAAHABfUAAAAAAUBJ9QAAAAACjYX1AAAAAwKvSfUAAAAAAbOJ9QAAAAMCFJH5AAAAAAJB2fkAAAACA1oB+QAAAAECH6H5AAAAAQK1Xf0AAAADAQWZ/QAAAAABAeH9AAAAAwK6Lf0AAAACAQ6V/QAAAAGAeHYBAAAAAIAxigEAAAACAt6+AQAAAAMCLCoFAAAAAoPtUgUAAAADA7GCBQAAAACAqhIFAAAAAwBWLgUAAAAAgwcOBQAAAAMDYyYFAAAAAwErZgUAAAAAArReCQAAAAOBxLIJAAAAAYNU4gkAAAABgXlaCQAAAACA1Y4JAAAAAgAdrgkAAAAAgT3uCQAAAAMCRgoJAAAAAoDOKgkAAAACAU5yCQAAAAMDKu4JAAAAAwLvAgkAAAADAldKCQAAAAMAj8oJAAAAAoBcDg0AAAAAA7T6DQAAAACDpSINAAAAAIEdqg0AAAAAARIaDQAAAAOChj4NAAAAAoLzIg0AAAADgc1mFQAAAAEB0ZIVAAAAAYCBqhUAAAABgAoaFQAAAAECV2YVAAAAAwFzkhUAAAADgGPSFQAAAACAg+YVAAAAAgHgEhkAAAAAg4BaGQAAAAOCVNYZAAAAAoIpNhkAAAABgGGeGQAAAACApbIZAAAAAoIh0hkAAAADAnIGGQAAAACCbloZAAAAAQMiihkAAAACAIbuGQAAAACCh9oZAAAAAQAP8hkAAAABgiQSHQAAAAKCXaYdAAAAAgJuDh0AAAACgbbuHQAAAAGC1j4hAAAAAoLegiEAAAACgLtWIQAAAAMDs+ohA + NrgMGZxjYkDiYBUjzERrQLPFgWSkcXBANbco5QvTdUDahsnbUoJ4QJDDcjDPI3xANZMTJxbTfkBbQt3TPhqCQPzMWP3dgYNAJ/fa/ym6hUC+b6fwyrKGQA== - + - GZ4XQTzneUA/Op1A+WtKQXYoykBdlc1AAvd6QD7SL0B5xkFBTlnHQHXwWkDCe85ASoYdQDGcbUCpJNRByp/wP2bBQkEEghpA5/bdP2v8ikB7vDdAWBBVQMXTCkBgN7k/VEgdQCxdAUCFjSZAPn7IQCFvFkCx6VpARlY6Qso7KEFrW3BA0M0iQWSA60Co2EtA8mcvQAoANEEx07JAqCGiQGb6C0EU+RNAlaHcQJphiUAmY5JAT7WMQWo2BEHVgKtAB4aHQKkzC0DUHcFAj/eFQEbqxUCcIEBA6oL/QDObnUFvpgFAV7OFQcOil0DsIepACAUlQFMSykDc7S9Ax8CyQAR95kCaTZtBf8LwQY6950DaXx1AV9pXQVlabEEyuaFAuawIQZcBEUEyodBCZpVKQYksj0D9ORhBrlIdQN0sLEBd2dpBLnqAQIo4OUB9WNZBxG+vQJDIoEA0iptB4okmQFqv+0C68sRBsPXLP6/QS0BhT51AspkOQTZpMUF/LhRBOL8sQJtEQ0Fa0k5AeH5WQEOpgUB56ixBz6O9QHthykGbZkFCC8PPQRCOoEBavZRB7wCQQL/cbkEfXBVBIMNLQB5xxkGSYZ5B7SwRQaW3cEGB/MlAGe2sQdmj8D9B3MBA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAAwCbEAAAAAgMydsQAAAAMDEPG1AAAAAwGDIb0AAAAAg0mJwQAAAAKAj8XBAAAAAwOICcUAAAAAA6N1xQAAAACAqFHJAAAAAoMogckAAAABABnRyQAAAAMDSQXNAAAAAQGFgc0AAAACAzv91QAAAAAByJXZAAAAAABlUdkAAAABAaM92QAAAAMDnI3dAAAAAQEaOd0AAAADAM7N3QAAAAMAbR3hAAAAAQBcGeUAAAADA83l5QAAAAEDDoHlAAAAAQI0eekAAAABAsNB6QAAAAIAT4XtAAAAAwHmMfUAAAACAX9N9QAAAAEChFH5AAAAAAItdfkAAAACAgHp+QAAAAACkzX5AAAAAAFDifkAAAAAAji9/QAAAAIDbT39AAAAAwMlZf0AAAADAP3J/QAAAAAAh9n9AAAAAgOwZgEAAAACgT1eAQAAAACDZeoBAAAAAQNmHgEAAAAAgkpKAQAAAAODIGYFAAAAAoL4ggUAAAABgynyBQAAAAGD+j4FAAAAAYNLagUAAAAAA5eKBQAAAAOBP6IFAAAAAwO3vgUAAAADguh2CQAAAAAANWYJAAAAAoHdjgkAAAADgVW2CQAAAAGAdnYJAAAAAQB6jgkAAAADgwLKCQAAAAIBLv4JAAAAAYD/FgkAAAADApNqCQAAAAOD21INAAAAA4GgIhEAAAAAA+5CEQAAAAEDdmIRAAAAAwBnqhEAAAADgACCFQAAAAOAMJoVAAAAAYDwrhUAAAACAy1mFQAAAAGBP24VAAAAAoP/hhUAAAABgEWyGQAAAAKArmoZAAAAAgC/KhkAAAACgxFCHQAAAAOD144dAAAAA4O0biEA= + NrgMGZxjYkAKI3ffzmRvQI8BR/y9MnFAhe+Xw7/DdkAdWZMblkN3QD9ilUwZtHxAFEfk4pfUfEDuUDwO2IKBQB/gONC44oFASOC/n8sahUBQVAv4KpuFQLSB1RS3s4hAjKO4RkRjiUCrYFVD7kuMQPDQgmPQe4xAVP5MgFyUj0CfoHy/IiqQQFG34c1otpFAdG/43VnOkUADzkbcrkKTQPBeOHV1mpNAonWdg7smlUClL8Mv62aVQLmvhpf0ApdAU/eE+OQyl0AFDuoGK7+YQDnHfaxKx5hAgkm+eGsjmkDpI70OYUOaQGZfkYChp5tAaTu0I7cHnEDDiIF83aedQAudMHfzK55A - + - T3rGQC5bpz8pJExAy/NwQCFKlECg4y9AFxsOQSftEEDayRdCbzE3QWCrX0Bc/KlAiLHwP8xln0BbVF5AQ7uwQPX5HEC3mzBBQRk5QOFeW0EewbxAattBQTXrzEBcFUpArW7hP5Qcn0G9eOxBTs8nQamFSEBzd8s/jOvQQDgqnEGfAzBAcWO8QEDkeUCO+R5An1zUQX/6MUHc8wxAjNjtQKzT6UBkTfdAI4w3QQVETUBBVIRB28VUQERDBkGBwSdBmNuYQFz2kz+FUBpAQmkxQbvx/EBl/8lAL4OTQrx6kEHvHi9BkeXlQKg/Q0CEgwpANQkDQVI6Q0CUV6VAmY5LQHC3+EBsVpJAc0+iQOuoBELmFYtAtdZCQE9Rt0BxgkJBOyiHQOGR+ED6/jNBxLHZQGM0S0CaCsw/i5GrQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAFWrYEAAAABAk99iQAAAAEBOimNAAAAAAHnjY0AAAABALe1mQAAAAAAxRmdAAAAAYHWHZ0AAAABAzaFqQAAAAEBlzWtAAAAAwEslbEAAAADg4CttQAAAAMAsQW1AAAAAALoHbkAAAABAcWBuQAAAAACgxG5AAAAA4FkjcEAAAACAnkFwQAAAAODcQXFAAAAAoO1jcUAAAABgTINxQAAAAEAvl3FAAAAAgArFckAAAADgV9FyQAAAAKDH7HJAAAAA4IsCc0AAAAAAJxFzQAAAAKBegnNAAAAAwDG6c0AAAAAATCJ0QAAAAABnVXRAAAAAwFGBdEAAAADgjJN0QAAAACC3xHRAAAAAgL3vdEAAAADABwB1QAAAAECaNXVAAAAAQMlAdUAAAACg3G91QAAAAIANfnVAAAAA4PbjdUAAAABgjAJ2QAAAAOCtI3ZAAAAAAA01dkAAAAAA5EV2QAAAAICkVHZAAAAAABN1dkAAAADgRrJ2QAAAAID7w3ZAAAAAQPXVdkAAAADAo/B2QAAAAEA/FXdAAAAAwGdRd0AAAABAeH93QAAAAKBGkndAAAAA4MHzd0AAAACgaBF4QAAAAGCCMHhAAAAAYK9CeEAAAACgDFZ4QAAAAMBJYHhAAAAAgAd4eEAAAAAg7IF4QAAAAKAxlHhAAAAAoIapeEAAAABAB9J4QAAAAEBN9XhAAAAAwD0JeUAAAADAyTJ5QAAAAIBZRHlAAAAAoKpVeUAAAADAXHJ5QAAAAGDAlHlAAAAAABufeUAAAAAgirR5QAAAAOBUwnlAAAAA4KvPeUAAAADg7Nt5QAAAAAAG53lAAAAAgMsKekAAAABgCSp6QAAAAAD9XnpAAAAAILuRekAAAABg+6B6QAAAAOBaxHpAAAAAoPXfekAAAAAgtEB7QAAAAKAHTntAAAAA4C9ce0AAAADgzmx7QAAAAOANintAAAAAAOPce0AAAADgT3F8QAAAAKDU3H1AAAAAIFgNf0AAAABgF2l/QAAAAGAAd39AAAAAwCaGf0AAAADgZbJ/QAAAAGCTGYBAAAAAwKyZgEAAAAAgO2mBQAAAAGDigYFAAAAAIGS+gUAAAADgeNeBQAAAAMB7LIJAAAAAwIxHgkAAAABgBp+CQAAAAIDJuYJAAAAA4FnCgkAAAADg1eGCQAAAAABC54JAAAAAIBgRg0AAAAAAmEqDQAAAAIAIf4NAAAAAgM2Hg0AAAACgLQeEQAAAAGCLMoRAAAAAQHBUhEAAAAAgDMOEQAAAACAX5YRAAAAAAC77hEAAAABg/wGFQAAAAGDDCIVAAAAAoFkkhUAAAACgJnWFQAAAAGBDkYVAAAAAAPDQhUAAAADAnWmGQAAAACCndIZAAAAA4JO6hkAAAAAgP0KHQAAAAMASZIhAAAAAIP5wiEAAAADAsLWIQA== + NrgMGZxjYkAeR9VQy0JnQOzQoK8iBW9AjwFH/L2yckD+7sGlghN4QBtAfpDao3tAVlzbNdbje0A5kTp7MjR/QCvd20SXeoFALU0e1lpSgkC8dXzLhhqEQCK8W3POEoVAIKNG6BKziECEvypdISuJQE2p641024tAscXPAoNTjECurLp3x/OPQIr5zI8HdpBA0Q18ih1akUDTRR1T/8WRQBqQvFY+tpJAU10UaFWKk0BhpGtRVJqTQKi4GkxqfpRABXR5dpvWlUBKGpefpqKWQIWLcIvxmpdAYZ1pctc2mEDitGCHLZuZQA== - + - 5VV3QLpZDEAat7w/INPdQEerAUBQNN4/BtgeQHuUgUDLWupAIsABQP5lyD+uZQdAKOLwPzZ5HUB1aRdBL89/QMlMs0CsNiRBvh0FQeCiP0BvSaVAVAB7QhbtLUEeLtxA+q+GQU3jhkDFn9lASSXDQG9lnUAJKlVAoRCGP9p8uEFavj5BjZS4QPX7vj+7LHpAEidDQLT1wUCkufI/Q/ibQI81jEDO4VFAn1anPxpEUkDBTcFAaI64QCTjVEBCmEdB1j9yQQ6DW0B4OgBAab/RQD4Y8UCjsplBcSVbQUqyjED3tslANpzFQA+2ukGIjUJAjfDsQarcJUG/zPRAQLUBQbTKjUBoj/hAAt/AQTiGdUEn7gpAFYSmP+OZ8D+JgYRAHTEXQe7E4UA/4tlBTWuuQOborkDdic9A3DHAQZwo+EEIi9NB6t4KQKrWP0GB7jNBYLfIQMk3w0BGxs1BlDgQQHdyyEDe84hBXSiXQEsoe0CuhyZAsWXuQd8vv0DMs/A/HupXQTLpJUH9u5JAgIGJQNxxJ0GjZ4Q/02d5QJ+BmUFb4RRByeugQFtXiUAcer1B8FCPQeYPp0EEiodBg5CBQG94zj/3rMI/FinuQYXNHkGD7pdBKqgVQW3Fm0A1OaNAXuYvQFrCAUABVBhBu8goQZbekz+CZRhBsmFnQEfivEAB+9JAVckYQe+E8D8Z2GdAfHHLP6kMP0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAA4CbkAAAAAg7R9wQAAAAAAgRXFAAAAA4LIBc0AAAABAtRRzQAAAAIATQnNAAAAAAKRVc0AAAAAAgx90QAAAAIBNZnRAAAAAwAMmdkAAAADARU93QAAAAMC0tXdAAAAAwG7ld0AAAAAAH1d4QAAAAMBRh3pAAAAAQIoze0AAAACAKJx7QAAAAADsk31AAAAAgHAyfkAAAAAAjAR/QAAAAAB2pn9AAAAAwFAAgEAAAADAVAmAQAAAAABTL4BAAAAAoNJUgEAAAACAUG+AQAAAACBSloBAAAAAoGMpgUAAAABgtEKBQAAAAOBYWoFAAAAAIKCYgUAAAADAJKqBQAAAAAAfLYJAAAAAADiUgkAAAACgsJ+CQAAAAOBvuoJAAAAAAGrCgkAAAAAgsM2CQAAAAIAIBYNAAAAAoEQgg0AAAACg/yyDQAAAAOBuPYNAAAAAoCNKg0AAAABAE2yDQAAAAACafoNAAAAAIB2Lg0AAAAAAIJ+DQAAAAKB0x4NAAAAAgEHeg0AAAAAgyuuDQAAAAOA7xYVAAAAAALojhkAAAADg/yqGQAAAAIBLM4ZAAAAAAIGJhkAAAACA3LuGQAAAAAAzzoZAAAAAoHRWh0AAAACgF2OHQAAAAKCpu4dAAAAAoJc3iEAAAACgtnGIQAAAAKCbkYhA + NrgMGZxjYkCmvpxNHCRnQI8BR/y9MnFAU72qemajckCPXyNQFkR4QMdia2pWpHpAj73/o25Vf0A= - + - VwZoQEHHAUBN/pBAIIaJQOURs0D7X0JBXdzqQDLaCkCMFRFBVuLXQBy8w0CP/wpAsuryQJbvP0BT0yxAQ+AKQPp8OUCbkFNBc69bQJ+7YkEM5h1Aa4blQBR9A0HM1ZdB8NThQLYGMUDwiKY/NPWZQKGt9kBy9QBBbOXIP9F83j9Ru8tA25SJQKYODUGZlspBXrFsQceXZEC+CxFAhgZPQW4CF0LNt9ZA2RcKQbi1+ECO0JlAPFL3QYIi60CDRjdCpLJLQFY53j/SwwRBucapP2EmW0BCws9AgtCYQH5N9UEtvyZAlDheQMKfgUAcW6VAsh+OQJWOt0A+fYlA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwIvCY0AAAAAArudjQAAAAABxpWVAAAAAgHukZkAAAACgYkVnQAAAAECIqWdAAAAAIPuDaEAAAABAVuppQAAAAID2AmpAAAAAQGmiakAAAAAAeGRuQAAAAIC3hG5AAAAAIEcFb0AAAABgxkxwQAAAAMAIdXBAAAAAAFSCcEAAAABArNZwQAAAAGBJY3FAAAAAYOCQcUAAAABAg8ZxQAAAAOBvEnJAAAAAAJFfc0AAAACAPdBzQAAAAMAG9XNAAAAA4PcgdEAAAACgKWZ0QAAAAGCttHRAAAAA4DrSdEAAAADAFkV1QAAAAIBGUXVAAAAAgP56dUAAAADAQOR1QAAAAMABk3ZAAAAAoLCedkAAAADAWUN3QAAAAGCtdXdAAAAAQIjDd0AAAAAgGtV3QAAAAICmPnhAAAAAwNVUeEAAAACAhqN4QAAAAICq7nhAAAAAwHseeUAAAABgoTZ5QAAAAKCtonlAAAAAIIjFeUAAAABgLP15QAAAAGATN3pAAAAAYCe9ekAAAAAAvNJ6QAAAAGDT9XpAAAAAYLUDe0AAAABge2J7QAAAAMAtc3tAAAAAQDmje0AAAAAgs7R7QAAAAKC+4XtAAAAAoH70e0AAAADgX098QAAAAIBpXnxAAAAAQIR1fEAAAACgzYN8QAAAACBllnxAAAAAoK+kfEAAAABAztR8QAAAAGAm7XxAAAAAwA/9fEAAAADAjXh/QAAAAECYo39AAAAAIAVigEAAAAAgPn2AQAAAAODIkoBAAAAAgPDbgEAAAABAmv2AQAAAAABdB4FAAAAA4AcUgUAAAACACySBQAAAAKAAT4FAAAAAYMWBgUAAAAAAoYqBQAAAAOAt04FAAAAA4McOgkAAAACg2SOCQAAAAIBElYJAAAAAQPEbg0AAAADginqDQAAAAEA/0INAAAAAYKgFhEAAAADA1AuEQAAAAKBCFIRAAAAAgL0fhEAAAACAqJqEQAAAAKD1u4RAAAAAYHfkhEAAAACA+fKEQAAAAOCgAYVAAAAAoI4HhUAAAAAgEheFQAAAAOC8U4VAAAAAQPaDhUAAAAAgsvSFQAAAAGCDlIZAAAAAIHwLh0AAAADAniuHQAAAAODEcodAAAAAYKyJh0A= + KBZXds7jZUCO7m7sniJrQANJK5hVInJANTU3073BdEADpwfsrTN5QDWTEycW03tAWfsL8UWkfUD+9lMwFwKBQHYFT6uk6oNA/iVCWsOKhEB2ND3VUHOHQMgtCw1Fo4lA2mEH8tyLikDzV40PkduLQNqQ9RuJFI5A84Z7OT1kj0DptzolYNaQQPWy/TM6fpFAMjp78YAykkA= - + - OD/SP3LIKUDvpjFABmkdQGD+S0BjonBAP1klQKFUKEC9WJ5AJygwQBRpeEHYecpAblUUQEMhXkCt6JtA4fkvQHhJyUCkFVJAenY4QQTXS0D2ZgNAwS85QO+QlkCUFLo/UCMlQfO1uD80aSZA6nghQWqhhUCt1mpBxrMOQT8I/0BHhTFByJy6QL+EOECPiyFBw7bwPzt3mUBwqx1ARsR5QMNhLEGvuoxA2tkvQNTI50Fj//9AljuxQFynzUDwRvRAkZpDQJ3VvUBLRYBAonngQBNM80CyGoVBEAfCQXzG+0ErvUBB1EQCQpi+m0CPc+FAvTk4QV41jUF9K/dASdGgQAYLpUHxAylCseZFQtNkpUCb59xA6RqbQBpmGUJYpsNArx23QL4Jk0DRnh1AisYsQosll0FZdJdAOLwBQrcQE0Gf2JhAqd2mQBc+uT9dY29AXRCCQJQj5kEY2cVAa60BQLk17EDM0SNAwCE5QFCOgkDkRnZBK2XdQfNpDUEBMPJAT9DqQJOqq0Cz2cBAEb4eQTf2iEFWm9FAM6DgQIYzLkFdYtZA7Kk/QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQKlHW0AAAABgE45bQAAAAID5wFtAAAAAwD1LXEAAAACAWMpcQAAAAIBbCV5AAAAAAI/9XkAAAABAziNgQAAAAMA5P2BAAAAAAEDmYEAAAACA8URhQAAAAGDJpGFAAAAAwOfkYUAAAAAAtGJiQAAAAMDOhmJAAAAAwGqlYkAAAAAARmdjQAAAAEAzhGNAAAAAgKWqY0AAAADAR+NjQAAAAIAsCmRAAAAAQPUgZEAAAAAA6Z5kQAAAAKAeQ2VAAAAAoL6kZkAAAAAAwuNmQAAAAECIBGdAAAAAYI1iZ0AAAACAZdlnQAAAAGCKCGhAAAAAgJ0/aEAAAABgIvxoQAAAAADeImlAAAAAALRFaUAAAADAfuVpQAAAAMBcAWpAAAAAAJ8kakAAAABABmBqQAAAAEDJiGpAAAAAQHGkakAAAABAIGlrQAAAAMBSh2tAAAAAwO6va0AAAABAzsRrQAAAAMDM5mtAAAAAwGYDbEAAAABAVWZsQAAAAMDyo2xAAAAAAATpbEAAAACAQQttQAAAAEDJKG1AAAAAgEJmbUAAAAAArsJtQAAAAIA4921AAAAAwMBcbkAAAABAWKluQAAAAAB/R29AAAAAQOZgb0AAAABAJKpvQAAAAEAZ5G9AAAAAgL9QcEAAAACAVWNwQAAAACC9cXBAAAAAgGCOcEAAAACACKFwQAAAAMDGr3BAAAAAYHXBcEAAAABgf9JwQAAAAAAH4XBAAAAA4GH9cEAAAADAoEJxQAAAACBMUXFAAAAA4Pp2cUAAAACAg4txQAAAAMCToXFAAAAAwHCzcUAAAAAAGM1xQAAAAEAm4nFAAAAAIE/0cUAAAACAVAxyQAAAACApHnJAAAAAYHwuckAAAABAZjtyQAAAAIDyS3JAAAAAgMRickAAAADA93RyQAAAAGBCqnJAAAAA4IG+ckAAAADgZcpyQAAAAGCyUnRAAAAAYAV0dEAAAACAXtV0QAAAAGBc5XRAAAAAgNcDdUAAAAAgehF1QAAAAEBkcXVAAAAAILSTdUAAAABgaax1QAAAAID05nVAAAAAIK8+dkAAAABgaat2QAAAACBQzXZAAAAAAClbd0AAAAAABWV3QAAAAIA6dHdAAAAAQJijd0AAAABgLbJ3QAAAAKC7vHdAAAAAgI/kd0AAAADAN4R4QAAAACD7mXhAAAAAAFHEeEAAAADAddd4QAAAAICV4XhAAAAAIGWFeUAAAACgh5F5QAAAAED123lAAAAAICvmeUAAAACgPvV5QAAAAGAaY3pAAAAAYK3kekAAAADA8PR6QAAAAKAtNXtAAAAA4NQ+e0AAAADAphN8QAAAAMDNUXxAAAAA4ARkfEAAAABgZWZ9QAAAAGDccH1AAAAAYBXpfUAAAABArBJ+QAAAAOCNXH5AAAAAYGbnf0AAAABgsTGAQAAAAAACZIBAAAAAgGJrgEAAAABgXOGAQAAAACDU8YBAAAAAwCP7gEAAAADgIYKBQAAAAICeioFAAAAA4LePgUAAAABg0KSBQAAAACDk6YFAAAAA4AsrgkAAAACAnjaCQAAAAEDJwoJAAAAAIEbJgkAAAACgH1KDQAAAAODmWINAAAAA4HXbhUA= + NrgMGZxjYkD0hHOUyKJqQFRnpVdMhW5A1c6DlSeic0ArI4iavxJ4QD7DZJGpc3lAn5Cg8oBCgEBgGQ2A4SGBQItDj4ItWoNAMnFELthKhECLcn2s2eKGQMN1xcYZA4dAtpz/riUbiUDDpLPwxYuKQEp9o+p8I41AB2islz7UjkBHIM7I+rWQQE0kqOlKbpFAxzfF3VB6kkBjOenqcIqSQBC6Bapx1pNA41Dg/8ZOlED5ZSEB7WqVQFqq10ed2pVA2sHOXPOel0De6YXaLfeXQPP+xttTE5lAv0UzNjQrmkAKgpmuhKeaQKNbBj5qr5tA7pdstrornEA= - + - Af7FQNMRREEJk2lAXpAXQeXjR0GvKtpA66roQG1DkUGRYQ9CLFiZQBwroELdXTJCr+0KQf8NWkDGUM9AplohQYEsxELtBeFBniXGQPCVi0Lc7wxAjmzfQBzYAkEKOMBAFSw0QXHZSkOFyNpBG4kBQ8z/VkAXYMpAvX8cQOnHY0DloA9FnvgPQ3wUWkCkQaFA5IZUQba9+UHP659BxDqEQAuiRUBn1V9BXW2PQRtS+EBNF/ZAhTJvQZTKHkFQfg5ETwGZQGLLG0CuxTlBGEt0QXY8LEFcZR9BlN+qQa5Bo0BrcsFAHMN2QXfj7EGahQFBbC1QQbstOkBCKjZBC89sQnRZvkJChbJB5LSLQmd7bkCZm8pApPGgQh/N/0DU/jpAqtVwQjwOCUN+TShB9/iMQWoT2EEWcwtAF7xOQs/p80HaMoRA5oVYQgzBKUFh+BNC6hyiQ9qVLUEW6TNDcG16Q2d/tkHSkKpBPHSuQY5LhEBE8tJAZhFwQ2JIVUGFxJtADDguQx6Ei0FR629BRqs7Qh8AOkBxToBDdosgRvZ5J0WX8pNA+syPQXH8XkFvUWNArYcaQUCQPkH9J4lAaQiFQc6kkEJiIsNADm0gQHxtUkHgwB9B3Z5wQRFwPkEkH2RB7ZUDQ2IbU0I5nWBC7wuGQaT6RkIMw+NCAE6JQYOihUFf78dABkrKQNvUSUDxbJFAgxd1QHzlwEFEtDNB3j+JQVNg4kAapUFC+dUQQaMugEN5NcpCTKdeQYuptkGcbOBAoTK1QTe210BgYoNCPoslQsO6T0Fx6J5B/qJpQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4PpeYUAAAABg5MJhQAAAAIAwRGJAAAAAAMZiYkAAAAAAy4VlQAAAAEB62mVAAAAA4N4mZkAAAABg62NnQAAAAED1iWdAAAAAwDH4Z0AAAABAbIBoQAAAAKCZQWlAAAAAgDKnaUAAAABAA0BqQAAAAACzpmpAAAAAgNfZa0AAAACAyR1tQAAAAMDIbW1AAAAAQC7+bUAAAAAA/oRuQAAAAMBCzG5AAAAAQK3hbkAAAABAH0NvQAAAAID6hm9AAAAAwAGeb0AAAACAZSJwQAAAAOBDs3BAAAAAIDjxcEAAAABg3EVxQAAAAKC+U3FAAAAAQNBgcUAAAACghoRxQAAAAIC7o3FAAAAA4LG9cUAAAABg8tRxQAAAACCc4nFAAAAAAFn0cUAAAAAAlxFyQAAAAKBfJHJAAAAAIOiRckAAAACgwg5zQAAAAIAbI3NAAAAAQPIyc0AAAACA62FzQAAAAIA3lXNAAAAA4Hizc0AAAAAg0tVzQAAAAIBI5nNAAAAAgMcEdEAAAACAN2J0QAAAAKDpgHRAAAAAgGCodEAAAABAD790QAAAACB303RAAAAAwLrkdEAAAAAAZ/J0QAAAAKB8WHVAAAAAQPxzdUAAAABg6oB1QAAAAIBUjXVAAAAAwD2fdUAAAACANvB1QAAAAMDSA3ZAAAAA4NgRdkAAAACgxjJ2QAAAAADkZ3ZAAAAAwCiRdkAAAAAgkZx2QAAAAEDbp3ZAAAAAQOfEdkAAAABgEO52QAAAAKAbAndAAAAAIOogd0AAAABAxnV3QAAAAMDjy3dAAAAAYHsCeEAAAACgZBB4QAAAACDNM3hAAAAAoHJjeEAAAAAgmHN4QAAAAKBOi3hAAAAAYHGqeEAAAACgzCR5QAAAAMALNXlAAAAAoGBPeUAAAAAgRWF5QAAAAEAMcnlAAAAAALyTeUAAAAAg3L15QAAAAKDg0nlAAAAAINfceUAAAABgPeh5QAAAAKDAD3pAAAAA4Mk1ekAAAABgSUl6QAAAACCmVHpAAAAAQCBuekAAAAAAx396QAAAAEBQmXpAAAAAYB6sekAAAADAIc96QAAAAKAd4XpAAAAAoKD+ekAAAACAFip7QAAAAABdPntAAAAA4CtLe0AAAADAF3N7QAAAAMDuAHxAAAAAYDyZfUAAAAAgMPV9QAAAAEBmYH5AAAAAYEF7fkAAAADAJ6J+QAAAACBgFX9AAAAAwAxpgEAAAADghnOAQAAAAEAye4BAAAAAwIihgEAAAABAsciAQAAAAIDmOYFAAAAA4NtSgUAAAAAgrmOBQAAAAEB5j4FAAAAAIJfKgUAAAACgTeGBQAAAAGAbKYJAAAAAAMM4gkAAAABgWWSCQAAAAGDwe4JAAAAAwL2lgkAAAABAB72CQAAAAKBM+YJAAAAAoP1Ag0AAAACgL4uDQAAAACAlkYNAAAAAoOFKhEAAAACA12OEQAAAAKB1eoRAAAAAAMi+hEAAAABgm+CEQAAAAGA254RAAAAAYJv0hEAAAAAgpgqFQAAAAEA4LIVAAAAA4GMzhUAAAAAAnXCFQAAAAKCps4VAAAAAYOMWhkAAAADg3WyGQAAAAOCZdYZAAAAA4OyShkAAAACgzU+HQAAAAODIiYdAAAAAoJaTh0AAAABg7RuIQAAAAGA1I4hAAAAAwItbiEAAAAAg02GIQAAAAOBMe4hAAAAAQPToiEA= + KBZXds7jZUDiYBUjzERuQBTpB48/A3JA - + - g4oaQFaVnEHBpKg/HEYwQGPg70Bn+kNAxWAlQPajrkA7g+ZA/+OLQLaTpz/la+0/zB5uQEzTC0HqtFJA0/NwQNY4VUDHZAlAM/LLQGo300FJTo5AJiSsQNIDQUBaBpxAGqWvQJj0k0BTnR1AYGPBQOuUW0FPDVlBCHcsQY8L5kC6f/E/zX1nQBuAl0AE9bNAVW0wQD2Y4UDXDJU/SVQUQIeLYUDwbRFCEhsvQJHfLUB7NN1A2orwP+X5C0HvoIZAeCqiQfteL0FVA89AtJLsQLqRS0CHgBZAn0PeP+SxCEEZIJVB8mx1QYl6AULrS7lAjdneP9KM3UDLKxZBCjPxP2uxlkENnaY/CNwzQVdB8T/gNZNA5//HQIvYhEA3L5NA0b6GQMd0YEFoLaJAD60SQd2aFEDiFBhBNMcaQMKe7z/xy8pAuS/BQGflpUGCQaFABgSxQW+FhUG1eDFBmY48QfJDLEG0nXZBK7G+QKZq7T8bI5xA3uvPQCmhl0GFVyNAZuMnQtPXhEEkmDNBQ/beQMac0kAPvIRBU7iFQxflskHGABRBlSNpQcCQFEGY1GRA/QeLQJCcX0B4U3FA+0ecQOKIlD/TBk1AzuUKQLWmgEE05oFA7TSLQPZrXkFyJZRB2tgfQQy0JECyUCdCNNi7QZfg00Cuhz9At9F+QcKuSUCNqE5BqbIxQTyd4UBkOItA/DvMP9JSj0Jj8xRBa8VeQLhyw0DagQVBqKPHQDddcUBbMkxAAiCZQHFkH0GwOt8/bptcQBPxpj9jgpdAP4VaQQdizz8i16ZAl4yFQInvpUDG5Q5BM6KqQCJdcUAv/CJBx3WmQNCC8T8p4Q9BZlmnPw== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQKhLZEAAAABgh99lQAAAAMDJBGZAAAAAQH6fZkAAAADAvh5nQAAAAEAVhGhAAAAAQLpiaUAAAADAYYBqQAAAAAAjDGtAAAAAgJTobUAAAADAfOVuQAAAACBDxG9AAAAAwJN3cEAAAACg675wQAAAAOB+AXFAAAAAAKozcUAAAACAtL1xQAAAAAA80HFAAAAAgOlmckAAAACAx4tyQAAAAACSxHJAAAAAgCspc0AAAABA6XdzQAAAAEDSnnNAAAAAQFevc0AAAACAyOR0QAAAAEAJM3VAAAAAgIc+dUAAAAAAUoF1QAAAAMCYu3VAAAAAQLL0dUAAAABAczx2QAAAAMC3hHZAAAAAgPnTdkAAAABA/IF3QAAAAAB1o3dAAAAAABLEd0AAAADAE953QAAAAMDWQ3hAAAAAAFNjeEAAAACAZnZ4QAAAAEBHkXhAAAAAgK+zeEAAAACAGgB5QAAAAMCShnlAAAAAQF3QeUAAAABAAvF5QAAAAMBd+3lAAAAAADNPekAAAACA6H16QAAAAMDyjHpAAAAAwDmfekAAAABASBZ7QAAAAECmRntAAAAAQCZae0AAAABAxJ97QAAAAMCisntAAAAAgAfXe0AAAABAASV8QAAAAIDrDn1AAAAAwAUnfUAAAACA0zJ9QAAAAIBXan1AAAAAgBPEfUAAAABAQ+N9QAAAAMBT7X1AAAAAAGsbfkAAAABAMyh+QAAAAICPRn5AAAAAQJeBfkAAAAAAerh+QAAAAMCvyH5AAAAAgJT9fkAAAABAsBt/QAAAAKBGcIBAAAAAIDpagUAAAABA83qBQAAAAEDRwIFAAAAAIFvXgUAAAABAM0WCQAAAAAD4d4JAAAAA4HiggkAAAAAguKqCQAAAAOBBC4NAAAAAYGFFg0AAAACgSE6DQAAAACDFVINAAAAAIAADhEAAAAAgM2KEQAAAAADDaoRAAAAAYBn1hEAAAABAdpSFQAAAAMCb4YVAAAAAYC8xhkAAAACgkjqGQAAAAEDcQoZAAAAAIIFShkAAAADgw36GQAAAAKA/A4dAAAAAIPyIh0AAAAAgIo6HQAAAAGCCuodAAAAA4CnEh0AAAADgAluIQA== + NrgMGZxjYkAtECBNt2JpQN9iJOBzYnFAFmZs+rPCc0A0tyjlC1N3QN/AADTMc3hAqFzp1PtTf0DfHt2HJIV/QJq5cEbe+oFAuNs+B4pChEAumhSCNQOGQEngv5/L+oZAWcSWhIE7iEADM6CXQ/uKQBMXd3z5O4xALl0imo8zjUCkG/gUO/SOQOEe42rznZBA9jMkbBm6kUCEJOGYY8aRQHZLG4FvfpNA4U3RlJ/Gk0AoYoCPtaqUQPZiEpbFQpVAqHl3pAtvlkCn5PkK706XQFn7Xhk1e5hA - + - CBpxQPudFEBrgx9BkoqlQE4IzD+ZBsw/bG/wP+7BOUAXzNxAzSeFQWb2FUEzpbs/ouq3QA5II0FcmUpAQfu1QE2hOUAmNgJAqIpFQeCTYEEfrWRAFEK4QP2FAECogJNB0gPMPx2A/T+U7MBBxUZnQBizeUAVdJxBv3egQD4VbUH91AFATOu0QEhkd0ASRvZAbEYCQD4G10CIczBAgGH9QOFTokCks4dBYI2XQKiNmUBx/YRAiDkVQKsSuEEQ3QtBHrCPQOT+MEJGvgFB6DulQOL8rUG6nExBTs03QV3GmkEv4iVBlbbxPysptkAmsJ1ADeWhQuo5mkEakIFAvyJ8QPP16kAmN7w/YBlUQBH7i0B+oBVCGg1xQMCoLEFLi5FBj7qKQCUGZ0E4QLZBrfcOQYf5OkFHKu1AVgkwQKPTHUHJqixC6BJwQSqizECTQ0xAXxWaQYRViUIeSsxBCNPcQg9eKUHkSJBArStuQM/1oUA+blVAN2EPQUQ1i0CJnII/C+mEQEYJxEGqMW5BBlm8QF94x0A8eCFBuECGQO946kA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgBvgYkAAAABgMKFjQAAAAIDrKWRAAAAAwDDhZEAAAAAAPjZlQAAAAMD/x2ZAAAAAQOZHZ0AAAACAFctnQAAAAEBuAGhAAAAAQJqeaEAAAADAZ3tqQAAAAMD+6mpAAAAAAPJkbEAAAADA3MJsQAAAAIDV52xAAAAA4In5bUAAAAAgvCZuQAAAAIDmJm9AAAAAoNEScEAAAADgOSNwQAAAAIBnNnBAAAAA4KxWcEAAAADgb3JwQAAAACAAkXBAAAAAADDicEAAAACg/vBwQAAAAOCDA3FAAAAAQFUQcUAAAACg/CNxQAAAAKAnUHFAAAAAgIGDcUAAAABABpZxQAAAAKCnpXFAAAAAgCpzckAAAAAAtxxzQAAAAICkM3NAAAAAwHNyc0AAAAAA25RzQAAAAMD6rnNAAAAAAExWdEAAAADA6XJ0QAAAAECwgnRAAAAAwP2NdEAAAADgUbR0QAAAAMAaBXVAAAAAAH8hdUAAAADA6TJ1QAAAAAAIQ3VAAAAAgGRSdUAAAABgrl51QAAAAKDUhXVAAAAAgFTUdUAAAABASud1QAAAAOBRLXZAAAAAQFJ1dkAAAAAAhYN2QAAAAABMoHZAAAAAgLDNdkAAAAAAevl2QAAAAAAsEXdAAAAAAJgfd0AAAADAtzt3QAAAAMBCk3dAAAAA4OK5d0AAAAAg7vl3QAAAAOBLM3hAAAAAoDt9eEAAAAAgLpV4QAAAAGDoonhAAAAAQD2veEAAAABgbsB4QAAAAKBK0XhAAAAA4IoAeUAAAADgCA55QAAAAEB+MnlAAAAAwKhCeUAAAABAQMR5QAAAAOCT0HlAAAAA4KPxeUAAAACAlB16QAAAAABBUnpAAAAAIM9kekAAAACgQnV6QAAAAGCmmnpAAAAAYPKmekAAAAAAbgx7QAAAAOC+ZXxAAAAAIC8CfUAAAACgVoV9QAAAAOBqcX5AAAAAQHGkfkAAAADAxQN/QAAAAKBdhn9AAAAAYKPXf0AAAAAgyAeAQAAAAGBmXIBAAAAAoOiMgEAAAABgyKqAQAAAAGA2uoBAAAAAoNoHgUAAAACgkyOBQAAAACDNSIFAAAAA4FlcgUAAAACgFGSBQAAAAOCGjYFAAAAAADLZgUAAAADgEwSCQAAAAGC1GoJAAAAAQDwrgkAAAABgYn+CQAAAAOCsu4JAAAAAgEfCgkAAAADgfN+CQAAAAKCvD4NAAAAAQF88g0AAAAAgHuaDQAAAAGDScYRAAAAAINOJhEAAAABAiwOFQAAAAAB/DIVAAAAAIPoyhUAAAADg2jyFQAAAAOC5WoVAAAAAYP5ghUAAAAAAJn2FQAAAAOCj24VAAAAAYJDqhUAAAACgXeqHQAAAAIAwfIhA + 4qRcexsiYEAoFld2zuNlQHBahe5LhGxAO0xzspUCc0CsUgPnFUN2QMmjv9FtE3lAOqpPBu5TfEAksAkdMWR/QFj7C/FF5H9A2QMrnoQag0AJtwS9T0qDQAnm8ub70oZAPDH1uhCzh0DDONPec9OKQDMQdelHS4tAwjjT3nMTjUAkPKLIxuuOQBOzzv3/FZBAW6CRMATSkECTysUSVtqRQKQi0vwkLpJAuKKVZC7Kk0BETK2Hf+aTQP+2RF9ErpRAwDvtHpuylUB/zjt0mnKWQEBT5DPxdpdA+717C7Y+mECHZ5MuB1uYQJvnVpYQ95lArD9jgN9KmkDkaZdiMVObQCxXWpU1D5xALezXLlKvnEDebb+je5udQCWCbp6Rf55A3m2/o3u7nkDRONea1iWgQJ7L18/bXaBAXldT2gZAoUAqxAmi+UuhQLUFcwsSFqJAHE/zpRQmokDZj8oIHYiiQKeQXA8t8KJAyxq0DDhKo0CZG0YTSLKjQHkvrApWSqRAvhMv4l20pEDSut4ReRClQPZENg+EgqVA - + - a3ULQN32qUDDop1AsliqQJ68/UAqsc8/xMkdQPuQpz/orYtAANI2QOzBXkAPsBRAUB0SQG7QHkB1LQtA+C02QH5UF0F86klAh9YHQWmxZUBhfSdAP1wcQTOmxkBTLbBAzQUnQJ2tXkD5m25APnHHQEaJe0D80yFBXxiKQFyfnUANR6dAVEPrQDlVFUCv7ZQ/QtRVQMfpvUARB5U/8Wy5QC4s0kF+HF5ANnZGQSSogkFhpAxCXfEeQRfUB0GOaqtAx3ueQV6dDUGHbcw/PIyoQJRlsUEurCJBpv+EQPYe4z/0D9FAiIhrQeDcskFOOZlBum2QQDywuj+rpJBBRN0uQd6gPkF45AhALFEvQbSzrkD+7NhAGxwlQR55pUDFB+xB+H8HQqyTrEEs1VZAw31DQLbQiUE7WSRAJjLrQNiT5EE55SRCuOxmQcWziUCatkxAKTTKQCiwU0FCCkBBm8qUQHPH4UCjlSZAHZOXQWGTykD039FAmTfBQK9LJUEaAN0/BaAHQVtW0UCPmEZBAQ0IQRowq0Gm4sxBpJ3hQF7njkGGCghBB+JWQmGWvEAT8RNB9aizQOQEQEEsCAtAvj3+QG5w+UFCiiRA/b3UQPrvHUDRGf5AvtcdQH4lvkJG0O5AHM8qQTLlgUCTO8NArdMmQOdZ2EDZe4BBUBnfP4NUwUCurIZB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYNljakAAAACgTQNrQAAAAIAXBW1AAAAAgKZJbUAAAAAAMpZuQAAAAECDYXBAAAAAwKuicEAAAACAeQJxQAAAACDyI3FAAAAAgNq/cUAAAADAUnVyQAAAAMDRknJAAAAAgAz2ckAAAACAumNzQAAAAMAvpHNAAAAAwJC/dEAAAABAORN1QAAAAMCrZXVAAAAAgGdwdkAAAACA57J2QAAAAMAY9HZAAAAAwAgid0AAAAAAsBB4QAAAAIDQRXhAAAAAgMgSeUAAAABAA6B7QAAAAEAgNHxAAAAAQCBkfEAAAABAhHJ8QAAAAMBylnxAAAAAgAFRfUAAAABA9O59QAAAAECDNn5AAAAAQOn+fkAAAAAAIg9/QAAAAEAiLn9AAAAAQDhZf0AAAADAgbR/QAAAAKADFoBAAAAAgK4ugEAAAAAgyEmAQAAAAKCqgoBAAAAA4NGRgEAAAACgIrOAQAAAAEAxy4BAAAAA4MjSgEAAAAAA7uOAQAAAAKDA64BAAAAAgNIBgUAAAACgzh+BQAAAAMBiWYFAAAAAYM5qgUAAAAAglHKBQAAAAODWmYFAAAAAgFa3gUAAAAAgXNmBQAAAACD9aIZAAAAAII6qhkAAAABg7veGQAAAAIAqPYdAAAAAIGZEiEAAAABAWbyIQAAAAMBn04hAAAAAIFLiiEAAAADgrPKIQA== + KBZXds7jZUDEsXzkG6NpQBTpB48/A3JABGJAIxFCckA28gnAwnN3QATAHHdpU3lAfibPfG1SgEA= - + - MGP+Pz8GmUAY0AFAtu1LQAb310AC+t4/rc7TQCxrBEF1yLFAkSPgQPfzlUBb6QJBytLLP+et+0BoZPNA1g9FQHadGkBOuwdBzeSmQCqiKUFDdKc/cYGgQLD7FUHsD5lBXjkjQbR5/UAdJdpAojiVQLEIw0AR494/elHMP2c17UDvSGVAY3owQFeyBUFgJjBAHEMeQdpw+0DVyplA1Zn8QAGTHEA/Zu9Aq/6TQLYGFUH6WFVAtEiNQd8/qkDbsQJBNXGGQAw3okDYcvE/1lVdQa6yE0GJeTBBozDuPx94VUFHwD5B+xrgQNcpQ0AN4aZAtKB0QR3m3j+jKApA8wA3QDbzuEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAQChJWUAAAAAg6U9aQAAAAKCni1tAAAAAoIiDXEAAAADgGdNcQAAAAABiyV1AAAAAIIVOXkAAAABApiZgQAAAAADpRGBAAAAAwDVfYEAAAADAk5tgQAAAAEBf4mBAAAAAACUIYUAAAADAB0BhQAAAAICcY2FAAAAA4HmFYUAAAADAkKJhQAAAAOACxGFAAAAAwN0dYkAAAABAYFliQAAAAICaImNAAAAAYEhmY0AAAABA9r9jQAAAAMD13WNAAAAAQN3CZEAAAACgUORkQAAAAAAoAGVAAAAAwDRgZUAAAADAGZ9lQAAAAABq5GVAAAAA4E0bZkAAAABArT1mQAAAAIC5kmZAAAAAACvnZkAAAABALCNnQAAAAMCdRGdAAAAAgK1/Z0AAAAAAUKVnQAAAAGBT5GdAAAAAQLweaEAAAABAt2toQAAAAADNyGhAAAAAYMXjaEAAAABAZgNpQAAAAEC3KGlAAAAAAHNkaUAAAADgDeJpQAAAAMBJJGpAAAAAgH1rakAAAAAAcYRqQAAAAACApmpAAAAAwCz0akAAAABAiB5rQAAAAIBxZGtAAAAAgFuIa0AAAABABQFsQAAAAIDtH2xAAAAAAFw+bEAAAABAN2RsQAAAAMCpp2xAAAAAQHDHbEAAAAAAn/JsQAAAAMDBI21AAAAAwPpGbUAAAACAasltQAAAAMBa5m1AAAAAgLQkbkAAAAAAp0VuQAAAAMDgZG5AAAAAgAiBbkAAAAAAup1uQAAAAIChvG5AAAAAwCsAb0AAAACA3hdvQAAAAABaQW9AAAAAgLSbb0AAAACAo7FvQAAAAMDa429AAAAAAOz7b0AAAABAfQ9wQAAAAADwInBAAAAAQJ1BcEAAAAAAcJlwQAAAAAB6r3BAAAAAgFTFcEAAAACAltFwQAAAAADy33BAAAAAAFPxcEAAAAAAzwJxQAAAACBVEHFAAAAAYDUgcUAAAACg/zNxQAAAACCsRHFAAAAAIF5ScUAAAACgWoFxQAAAAEBymnFAAAAAQIbVcUAAAADgbeVxQAAAAABM8HFAAAAAQAoEckAAAACA9w9yQAAAACACKnJAAAAAQPNyckAAAABAs4ByQAAAAOBntXJAAAAAYNjDckAAAAAAvvByQAAAAIBJAnNAAAAA4KEac0AAAAAgUTBzQAAAAEAouHRAAAAAYOwDdUAAAABgE5F1QAAAACCRvnVAAAAAYKzndUAAAADgdhJ2QAAAAOCkKXZAAAAA4IhudkAAAABgl8x2QAAAAMBDUHdAAAAAIPa8d0AAAAAg+Mx3QAAAACAK3XdAAAAAYDO1eEAAAABgkf94QAAAAOC5RnlAAAAA4G3TeUAAAADA1915QAAAAGBoW3pAAAAAoK5zekAAAAAguwZ7QAAAAKBxMXtAAAAAIOtge0AAAACgB3x7QAAAAMDLiHtAAAAAIPHQfEAAAAAg4hF9QAAAACCKI31AAAAAYMNufUAAAADgXi5+QAAAAOD6pn5AAAAAIGq3fkAAAACgWMR+QAAAAOCQFH9AAAAAYL2Xf0AAAADA1HGAQAAAAKD9eoBAAAAAoICjgEAAAAAgodmAQAAAACAoGYFAAAAAYAZygUAAAABgwcaBQAAAAGC31YFAAAAAIH0bgkAAAADgrB2DQAAAAOCOaoNAAAAAgASKg0AAAABgbZaDQAAAAKBrU4ZAAAAAQPrDhkAAAADgicuGQAAAAMCm4oZAAAAAYNZyh0A= - - - - - - 3pKuQK3y3j/u/gFAmuKYQLUiHUCqb0xAvW5XQT4BVUB0tgNAiIkOQfWKpUAWfGlAacStQPXjUkDoTJxABXZEQMiMmkBOtvE/HBGdQJDmh0BpZcw/xwiOQHOfKECDa3BBuZ9DQWIug0BPuHBBbhcnQJD4FUGO9w1Bb0bJQEtLC0CYryFBXj9IQWP6z0Co/+JAuzsbQMmnWkHiGvE/edrcQGFU8T/lV7xAFviIQcMnD0GqeKVAcgO8QAWxVUDM0CZAZiarQE7pCUFaI4VAeFrLP2aF9EC6o94/AQXWQNnjzkAJRyVBfCcmQb6r5UEGT55AhNkUQCqkKUFvO0NCNYJMQfGhL0BywEhAHm0FQm8NbUL4+j5BI7/rPzZptUAfKa5A7xb3QLv4/kC0woRALHjKQfFXtUGZ7phAb/gKQLmUPkGf2V9BVvi5QVTPfEH/r8lA+m1rQapNJ0LgSyZC2FC8QgKjykG9EAxBfyhMQDA1RUGcHoZBWNqBQK6eykCtmSVBMKQGQWJu6kBT86ZArwhfQQIqekKZ8h5BWVcAQiRe1UEQHMJA0jSjQdG1lEH0ooxA9yICQNeaBUFQiXhBEdwqQaWHA0JAEalBExbMQVvhqkGXKV5BZYXQQGuuRkHjF/9AwLRqQca1HEI3AsJApwHGQPR0l0BAigxBG4sbQrH0HkAij8VCTZ/8QTVqDUJ/iZ1Ar9lcQCF3C0N6m0tC4HeMQdRIqkDq0k9BZCYKQV7Vgj/fJItAEN2pQHXL3j8vmN4/NxIeQFe+pELqG9pBQu+mQFGZpUAIyIlASVvmQCog6EAQIrk/S4pXQZE7H0FjiAtAdCteQGoYC0BupLVAjQG6P02owkC4RrxBHGKZQQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoDkEYEAAAACA0CFgQAAAAEDNoWNAAAAAQBTiZUAAAADAGahmQAAAAECtS2dAAAAAgJdqaEAAAABAbaFpQAAAACBtJmpAAAAAwM5lakAAAADAbuNqQAAAACBhX2xAAAAAgH6MbEAAAABA0Z1tQAAAAEBGJG5AAAAAAIiIbkAAAABAfuRuQAAAAMBdqG9AAAAAQFxUcEAAAADAt7JwQAAAAADf5nBAAAAAwC7ycEAAAADAMERxQAAAAGBPtnFAAAAAwMQ+ckAAAACAllRyQAAAACDmYHJAAAAAIGyFckAAAACg+JJyQAAAACDW4nJAAAAAADMzc0AAAABAkVJzQAAAAIC9knNAAAAAgCyic0AAAACA8rNzQAAAAIBnMnRAAAAAgPZxdEAAAACgcYt0QAAAAACR43RAAAAA4LcUdUAAAABA/Wx1QAAAAEAIkXVAAAAAAI6xdUAAAABAJcx1QAAAAMAE83VAAAAAAK+QdkAAAABAY5x2QAAAAABrsHZAAAAAwL3AdkAAAADAE9J2QAAAACA25XZAAAAAQBc6d0AAAACgf1R3QAAAAICIdXdAAAAAQNGjd0AAAABgK7J3QAAAAKBwwXdAAAAAwMzzd0AAAABAYRF4QAAAACClPHhAAAAAgK9WeEAAAADgdad4QAAAAEC2wnhAAAAAYJvkeEAAAADgex15QAAAAOB3R3pAAAAA4FQxe0AAAAAg1TR9QAAAAMBDp31AAAAAYLxgf0AAAABgqIF/QAAAACBDqoBAAAAA4Jm2gEAAAABgx/OAQAAAAADfFoFAAAAA4O55gUAAAAAAxdCBQAAAAEBuC4JAAAAAYA0WgkAAAACgTVuCQAAAAEAPZIJAAAAAgDc8hEAAAAAg85OEQA== + EnhTK8ihZUAoFld2zuNlQJgT9jS84XBA15HJDo0ic0CYcdKIFPN3QMVPyWv7UnpAhi/S5YIjf0Di1tLfKbKAQCQbuFwUqoNAqQJ575W6g0A4K9fkwYKFQA== - + - MEjKQIK2W0DNUhRA2wCqQP6GiEA332VA5abGQPyil0BQjC5BSoHYQGodVEA5yopBFEnePzRPcEAsMgVBj1olQNATqEDSBfVAAdySQK6kzD8EuGdAyeq4P36yuj8UBpFAJfyUP36pnEDkI6c/oyvGQM19zD8B13hABheTQOyeFEFaJnFA4Wm8QNwjC0CCaQtBUT7wQGsRsEDFlW5AeJnTQNqvVkDDHxtB/XyPQON81EDJjf8/kaW5P/iUSkB/idVBRKhwQMu2AELf0R1A+oGWPyxhtz/CGpxA2aFzQDuo5kB0gqc/VIs+QdemXkByZMpAvAfJQRgkAEC8GCJBJgGuQRloEkArxgpArj1xQFDwDUDkNpxAgUzhQM4tZkCdU9RAP0RxQNq2d0ApzVtBaQqeQdbks0D3qt1Cz5HxQJTrJkAa6Y9AhdvxP8zgukA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwFABY0AAAACAiUlpQAAAAIAj5mlAAAAA4D/sakAAAAAAM2JrQAAAAAB3CWxAAAAAQPMlbEAAAACg1EVsQAAAAMBJxmxAAAAAgPtgbUAAAADg5oRuQAAAAEDvPm9AAAAA4MWjb0AAAACA7D9wQAAAAEDPnXBAAAAAQNrccEAAAABAkvBwQAAAAAA8AnFAAAAAAFuicUAAAACAtMJxQAAAAECc0nFAAAAAQBhGckAAAADAIJZzQAAAAEAcE3RAAAAAAB4jdEAAAADA1aB0QAAAAICtwnRAAAAAwI4FdUAAAACAHCB1QAAAAMBTKnVAAAAAALeCdUAAAABArMF1QAAAAIDv5nVAAAAAQNofdkAAAAAA0GJ2QAAAAMATnXZAAAAAAFCxdkAAAAAAVLx2QAAAAAALT3dAAAAAwOhcd0AAAACAfZZ3QAAAAABVo3dAAAAAwJfRd0AAAAAAff13QAAAAMAXDXhAAAAAAMIkeEAAAADAgHB4QAAAAEDGg3hAAAAAQBWteEAAAABASeV4QAAAAICa93hAAAAAACAQeUAAAADA+h95QAAAAABeMHlAAAAAAIg/eUAAAAAAjVB5QAAAAIDbd3lAAAAAAHGfeUAAAACAUu55QAAAAED/HnpAAAAAgDsxekAAAAAA1V56QAAAAEA+lXpAAAAAgPagekAAAACANL56QAAAAAAk0XpAAAAAwHPmekAAAAAAsvR6QAAAAIAxPXtAAAAAgJxSe0AAAADAoo17QAAAAEBYvXtAAAAAgMHPe0AAAADASOR7QAAAAAB98HtAAAAAgGcFfEAAAAAAZxB8QAAAAMALIXxAAAAAwOcvfEAAAAAA7z58QAAAAIDpa3xAAAAAwOJ2fEAAAACAK6V8QAAAAMB9tXxAAAAAQBwefUAAAAAA2lZ9QAAAAMDRgX1AAAAAADmTfUAAAABAHqB9QAAAAIBDsH1AAAAAwDDUfUAAAABA1919QAAAAMDB9H1AAAAAwFY3fkAAAABAQKx+QAAAAGBOE4BAAAAAwB7DgEAAAACAD8iAQAAAAEDk84BAAAAAYKw0gUAAAACA6lSBQAAAAKDYg4FAAAAAoIDigUAAAABgvD6CQAAAAAD0ZYJAAAAAIIp7gkAAAACg+gKDQAAAAKDDF4NAAAAAwBy/g0AAAAAgaveDQAAAACC7QIRAAAAAYPXChEAAAACAyoqFQAAAAEAGCYZAAAAAQOTBhkAAAADg59CGQAAAACAGU4dAAAAAgOVXh0AAAAAg+tGHQAAAAKBMLIhAAAAAIP2riEA= + KBZXds7jZUBkuM9LfgRtQF7jFv1j4m5ATy2kEJcSckDMwkfpiQFzQOoTBNThkXZAPeujbQVDeUA= - + - a9o/QOpeSEDdodhAWsVVQKxSvT+UhQVB07gTQlwnz0Bdubk/N9veP5l43j9a6bpAAw9XQj8JbEAzRPE/OSowQEL0rkBFWbxAZkNoQPyNKEDG1c8/hL/cQAPiSEDZCq9AK2QTQbaeAkFNlmpA0gaLQC0Fuj/DnZRBxx+6P//sQkDyyqFAUrz0P3UF9UC2qg1BC+oBQEaHIUH/3UJAW9f3QBLnt0AGaxRAfLVcQcaKekAL/z5Bm9HzQIB0pUAQfsdAfbkLQmyz8T/s7IxBK8SoQJEmjUEBhRZCzuWuQrA2vED0IhtBrNu4P9eKy0DE+hRBHc9FQcc6sEACRvpAGT4wQDQhHUEAE6g/Ck2AQdyvCkBSPdlAighVQLMMJ0CGiuBAW+qSQEY1skGdNAtA0ZemQSOhMEFQp4ZALpEDQBgVtEB4cDhBfzSSP2AkzT+Jub5AKz/KQHr6qkHzZ5RBrmbiQWl85UB9rgJCwme1QF/2HEEnAoBAoELHP5LapkBegfQ/XucBQESS0ED5Sg1BmnjKQP3I2T+RtolBE/iYQJd0NkEgWElBHhOLQB0Zz0DqXb9BjDqkQR7v7UAnEi1BYFe8QBciekDxUT9B7qVHQY1b10HI2gxDkM4pQPzo0UBPJPE/PDkCQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAE9kaUAAAADgPUJsQAAAAOAzYG1AAAAAYBS/bUAAAACgaCtuQAAAAEAJVnBAAAAAINqQcEAAAAAgpf9wQAAAAICRc3FAAAAAQAgGc0AAAABAfAB1QAAAAIBTdHZAAAAAQBeSdkAAAAAA1p92QAAAAEDQ0nZAAAAAgDg2d0AAAADAmk53QAAAAAAvdXdAAAAAgDiRd0AAAAAAZKJ3QAAAAEDCEXhAAAAAQEc1eEAAAACAAOR4QAAAAEB1ZHlAAAAAQLuQe0AAAACA+ht8QAAAAEBKKXxAAAAAQG0HfUAAAACAtVV9QAAAAIBLYn1AAAAAQIKUfUAAAACARQx+QAAAAIAAKH5AAAAAQLSTfkAAAABAAq1+QAAAAIASGYBAAAAAgAg4gEAAAAAgg0+AQAAAACByYoBAAAAAAGlrgEAAAADARHSAQAAAAODeqYBAAAAAgLEAgUAAAADgGkmBQAAAACAGkYFAAAAAAAaZgUAAAADgHNWBQAAAAGBw64FAAAAAQEb5gUAAAABgqEyDQAAAAKCzs4RAAAAAoGsohUAAAADAybSFQAAAAED3bYZAAAAAoDKSh0AAAABgsFuIQA== + KBZXds7jZUAgFMxS+VFwQBTpB48/A3JADtLLr2eCd0AUR+TilxR5QDZQ5hMbhX5A0dhpgw2zf0BGUnWM2XqBQDAYW9Hy4YJARoFjtoUDhUBdHgB3VAqGQHGr5bjRO4dAiEiCeaBCiECzcgR87HqKQCv+xbBJPItAqlGEqiMTjkDlUKaowTyPQIc/p+PXlZBA7heTa3xqkUA5VgzyHSKSQG4vioDSLpNAyH5q50nqk0CDRMuB+EqUQN6Tq+hvBpVAEm0pdyQTlkBeq6L9xcqWQMSDjoVqn5dA2prilOGWmEB2mvOTsCuZQDfE0pAdl5pA8okzK8z3mkAHn3Qs8hOcQJTtwoxZl5xAHbS1LRgwnUCqAgSOf7OdQDQ3iABJxJ5AKhr7otV3n0CMpi2EPySgQKAXHtL9SaBAxFg+OA74oEBkZ6E+VCqhQITkuUI52qFAIl9BCmIQokBEcDVNZLyiQBTqKg590qJA - + - 0U/LP5h5OUBuJCdAPdEmQFYbBEE5RKVApc7OQMy1xUCF9MtAGrR6QQt7kkCyMcw/yBanP790hkDTuhtBhVIUQGbeQUBWPAdBOol7QAcsMEDzHzBAF3cLQPXJgUByPNhANzyUPxWTOEGbSANB4MmpQNls/kDlmB1AOHydQNrxIEEWdvZAr90BQPj6AEE11ds/HbbQQPt0hkAbaB1BePEOQZbCHEEkso9AAYoIQFcPC0DsrKNBOJGJQHqc6UEFPCJB9MB3QPFeOEBtkepA81hBQKHtA0E4alNA9OJmQKB5XUE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQBJEYEAAAACguYlgQAAAAMCyYmFAAAAAgCVgYkAAAACgT6VlQAAAAADux2VAAAAAAM4FZkAAAADgDupmQAAAAAB6DGdAAAAA4PIlZ0AAAABA3iFoQAAAAIAhJ2lAAAAAwN1AaUAAAAAg6IFpQAAAAMClQWpAAAAAIIprakAAAAAAzqBqQAAAAAAZJGtAAAAAAHvKa0AAAADgcelrQAAAAAB7CmxAAAAAYJombEAAAACABEVsQAAAAKASfGxAAAAAQBGdbEAAAAAAf4FtQAAAAMBMG25AAAAAAERrbkAAAABAZ2ZvQAAAAMDZiG9AAAAAgNj6b0AAAABAjxNwQAAAAKDnJHBAAAAAoNlicEAAAACgg35wQAAAAGDBonBAAAAAoEO0cEAAAABg1b9wQAAAAADC7XBAAAAAAMNCcUAAAABAS1BxQAAAAACaYHFAAAAAwOXRcUAAAACg/d5xQAAAAGC48XFAAAAAgCQUckAAAACAHzZyQAAAAEDGQXJAAAAAwO9QckAAAAAAaWtyQAAAAEBAonJAAAAA4NLgckAAAAAgFvJyQAAAAAD8IHNAAAAAIJMtc0AAAACADlBzQAAAAMBVgHNAAAAAYJ+Vc0AAAADAjqZzQAAAAMA00nNAAAAAAI7ic0AAAACAuPNzQAAAAMBGE3RAAAAAAJBHdEAAAAAAAlR0QAAAAED8gnRAAAAAQAWddEAAAACAr+R0QAAAAGAS8HRAAAAAwGEAdUAAAAAAgC51QAAAAIDrQXVAAAAAYMFtdUAAAACgtX11QAAAAAAJkXVAAAAAgKGwdUAAAABARcJ1QAAAAGB/znVAAAAAwGThdUAAAABAmwJ2QAAAAEBJQnZAAAAAoOxgdkAAAADg+rN2QAAAAMB5x3ZAAAAAoIbcdkAAAABg7/V2QAAAAOCmE3dAAAAAICQed0AAAADA7Tl3QAAAAICcUndAAAAAoGtid0AAAACA03J3QAAAACCmhHdAAAAAQOyod0AAAABgwL13QAAAAOB11ndAAAAA4Bzsd0AAAADgjKF5QAAAACBP13lAAAAAgNrleUAAAAAgxAl6QAAAACA+G3pAAAAAYCZGekAAAADAlI56QAAAAGAIpXpAAAAAIGJse0AAAACgqFR8QAAAAECc03xAAAAA4JV2fUAAAADg+OR9QAAAAGBIG35AAAAAYMJlfkAAAADA83F+QAAAACCHlH5AAAAAoE0lf0AAAABAuDd/QAAAAED5Qn9AAAAAwJlNf0AAAABgy2V/QAAAAECXhH9AAAAAwLiVf0AAAABAVaR/QAAAAEBwtX9AAAAAwLnIf0AAAACg3NN/QAAAAOCH3n9AAAAAINX3f0AAAACgpQKAQAAAACAJQ4BAAAAA4L1ngEAAAABgn4KAQAAAACCdiIBAAAAA4DrggEAAAABg1eeAQAAAAKDcAYFAAAAAYFgRgUAAAABggBuBQAAAAGB0JoFAAAAAAHBGgUAAAACg/UuBQAAAAMCoUoFAAAAAIMlngUAAAADglXWBQAAAAMBms4FAAAAAAJ3SgUAAAABAnNqBQAAAAEBe+4FAAAAAoCoCgkAAAACgyQuCQAAAAKAYY4JAAAAAgDZrgkAAAACAoIKCQAAAAOBZ5IJAAAAA4DHsgkAAAABg4/GCQAAAACClDoNAAAAAQLxIg0AAAADgkluDQAAAAKD7YoNAAAAA4M+Bg0AAAACgx6KDQAAAAKAw04NAAAAAAGVRhEAAAADAFVqEQAAAAOCAYIRAAAAAwP8ChUAAAABgEgmFQAAAAMD7q4VAAAAAgDUDhkAAAAAgFD2GQAAAAICHjIZAAAAAYKSThkAAAADAVsyGQAAAAEAk04ZAAAAAYBDehkAAAADg0CKHQAAAACB1tIhA + NrgMGZxjYkDsyMl+5JFwQEMdzoN8QnFAChqGaTwidEBq3hX7KlN5QDHbzeDqMnxAhy/S5YLjfEAszgqszCGCQI0fsiVDioNA - + - WFYSQTM78T/SrVVBzEOmQJ4hwD+o6JVAKOQmQbqWlT9s9EtA4ecEQqyDE0Eni51AHrPeP8a4EkFu3AVCoNU2QHycqUIpTahA3FW9P/Nnm0FiGu8/lX/8QbdLvT9z8gpAAKXxPzYWOUCchYZAYhgnQFqkzD+jyrk/Q2cwQHcQsEDN6MRBUjSGQekLVEADKAVBIfKbQBdyTUDlWohBUmbZQLVnzD/dV9k/XdOqQbqrvEARbJxA3QwCQNNSREBAUy5BIXsaQejDt0AZQQFBYeWpQITcOEDAtx1AFZEUQLV+DEAW5sBAoLwxQQIkWEGEW21A0gaVQKV3CUFF5D9AkTS1QGohrT8HIq5AbgM9QUR9EUABsVZA/h3jQMhuYkFPDro/yxWFQLveg0H8pUZBEXADQv8d/kF9ZpJBpyWOQYY1qUH3BwJCEUdDQQilDUH9XpdACHQJQtMRF0ELpcJAFu4RQcwwOUGgwxBBV360QCUdR0JU9dRAGGU8QYd6A0Ea4+pAHIdCQjWmnUA2/idB960IQN9bEUEpt5xBKMSxQRhAjkDuAhZBDDMVQZF7NkDu06ZAXS1VQK7NgUAhSNJBqSwuQZ/5AUAYBZtBOgsNQosGtEFy7+pBvuyXQDc2MEBYj2lC6eshQkBXL0FPMpxByn/hQqC91kGHLZpB/XSUQI8NC0AFbrdBX9sHQacg9kGOX4JA/6abQLsBP0FWA+NA61EcQEPtpkAwOZ1BfZy6QSmyTkGH0EtA9wqIQZBzaEEeChFBwEc3QYu7AUGS8cVBk8KkQd0GZkGWGZRDcYSkQcQ3vkBQr0xCgHxdQSZEUkDR1M9AZypeQBndSkHl8UhA6ywAQZtFzkGKnuFA94JQQTApAkEDZrlAsg+FQD52oECxDaJAZsc+QfwVQEGm4pBBHUuNQN1gA0LGgoVAxmaKQX+uuEAt5PtA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgDEjYEAAAADgWkRgQAAAAMC4W2FAAAAAgHnFYUAAAAAAVyliQAAAAEAMZ2JAAAAAgJt/Y0AAAADAoF1lQAAAAEBtXmZAAAAAwN0CZ0AAAACA56VnQAAAAIDt52dAAAAAQMWnaEAAAABAE/9oQAAAAMBXIWlAAAAAQNNeaUAAAABATqFpQAAAAKCF6mlAAAAAgF0dakAAAACAfV1qQAAAAADnJGtAAAAAgP4KbEAAAADgn0lsQAAAACCgX2xAAAAAICWjbEAAAABAWMRsQAAAAMA2KG1AAAAAABeFbkAAAABA559uQAAAAEDfCm9AAAAAAB4ob0AAAAAAnK5vQAAAAMCy6G9AAAAAYBwDcEAAAADA8SNwQAAAAGBMOXBAAAAAIJJzcEAAAABgJ/JwQAAAACA1A3FAAAAAoDgQcUAAAACAGzRxQAAAAEBkQXFAAAAAgHO3cUAAAABAtt5xQAAAAMDG7nFAAAAAoF4CckAAAACAHhJyQAAAAIBBI3JAAAAA4D9RckAAAAAAd2ByQAAAAMCEbXJAAAAAIGWdckAAAABgvK9yQAAAAKA7wXJAAAAAwIfMckAAAABABvZyQAAAAEATL3NAAAAAwEZyc0AAAACAj85zQAAAAMC63nNAAAAAgOXwc0AAAABgRg90QAAAACDGV3RAAAAAwJ9ldEAAAAAAtXB0QAAAACAnhHRAAAAAwO+RdEAAAABAMrF0QAAAAAA8wnRAAAAAYD3mdEAAAACAzSN1QAAAAKDYL3VAAAAAIJZSdUAAAACAimF1QAAAAAAEcnVAAAAAIGGIdUAAAACgoaR1QAAAAOAz9nVAAAAA4FUvdkAAAAAAvT92QAAAAMDPfXZAAAAAoES5dkAAAAAABsd2QAAAAAAv+nZAAAAAgFYWd0AAAADgmyJ3QAAAAIDdMHdAAAAAwJZLd0AAAADguHR3QAAAAKCYmHdAAAAAAGukd0AAAAAg3dB3QAAAAGC5LnhAAAAAwAhTeEAAAACgYWN4QAAAAABOp3hAAAAAIEW0eEAAAACg/8J4QAAAACC3z3hAAAAAoELqeEAAAADgfgV5QAAAAMBhQXlAAAAAwEMCe0AAAABA4TF7QAAAAGDOsXtAAAAA4Cq8e0AAAADAKkJ8QAAAAEAQVHxAAAAAQCmBfEAAAACgCch8QAAAAEBWNn1AAAAAQD6DfkAAAABAhKx+QAAAAOCD0X5AAAAAYE08f0AAAAAgel5/QAAAAGAUbH9AAAAAIGuEf0AAAADgY89/QAAAAEDF3n9AAAAAYH4qgEAAAADgajaAQAAAACBIbIBAAAAA4H+HgEAAAACgf4yAQAAAAOA/0YBAAAAA4MnfgEAAAABAz+mAQAAAAKBGGIFAAAAA4G5UgUAAAAAgdoiBQAAAAGCArIFAAAAAAMvZgUAAAABgTOqBQAAAAMBtKoJAAAAAgD9tgkAAAAAgBKuCQAAAAGDDuoJAAAAAIHnEgkAAAAAA0cqCQAAAACB+PINAAAAAwLhbg0AAAACgpG6DQAAAAEArkYNAAAAAoGfRg0AAAAAAi/iDQAAAAODOJIRAAAAAIDiJhEAAAADgdZKEQAAAACDUxYRAAAAA4NkDhUAAAABA6xqFQAAAAAAzIYVAAAAAYEwMhkAAAACg+kKGQAAAAABYXYZAAAAAYB1jhkAAAACgPLuGQAAAAIC86oZAAAAAAAKUh0AAAAAg1bSHQAAAAIB+IohA + NrgMGZxjYkC3D8dBTiNqQOJgFSPMRGtA - + - DK7vQD3+wEB78CZAfKdKQDF6pUCeQpRA9uNnQNG6NkCG5L1AjIJAQYhfpz/l1IBAfieLQOkU5kB+t4RAGuKNQJizS0ASdB1AT8lmQbtKi0HiS8w/BaAuQFH5E0KGCrNBhWUkQDf2BUG7cKNA7dEFQgkNq0DDySdAuwmKQMlh70B540lA/oPeQBpJnEDiowxBGEJ3QDR4xUAuxIRCJQuHQcG4FEB3FABBhqOmQC0FikDcSMtAJ/qBQPRAuT9UkI9ACoQXQRcFzD/t7IVAx98kQFG8N0F6jNtCBVcUQbpW3j/EQ85AiDLxPxLigUAs6SpB9ArTQfHINUJyRGpBki7hP/ICj0H0y09BSvCGQay3MUGS3KtAmyAtQHN2HkKWIdZBajmeQq9Gw0EUMxlCJHwMQQG1AUApWR5A6bhzQQAPsEFqsbk/yxunQc7FGkNQL9hAKFrNQArTAECu/8VBnR9gQVmJxUAFNhRBOfFnQAOg+EC9ThxCcNrMQlpgbkHOTRVBZQ5eQcNltEBqmkJAU4BQQbWh7EAy9H1BH/dJQOdy0EDCrt5Bgi4ZQlwZjkAIKmhAaAVHQT7NKkHzth1AXpI+QYuu+UCIhxlCGv3+QPNquUMt5lk/VdaUPyW2hEBgZctAwYh6QIJxOEEKFhVBjogEQf8NaEFC2sdA0O38QIZuQ0FcpxFCFVhyQRodOEG0O+VA4CN6QQimL0G5VyNB9OHCQHrI8D9ggdNCOuY8QfN72UAz9plAbpe3QOnDY0F+RqxAzy3mQLrEHUBtmpdAjzaTQYbLTEAj8rFAMRhgQKLc3kEFWjlBrulHQf2xS0Cfz51BwLTNP1qfIkEpc1NBBrNSQS8UmEB9hOFA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAQOuHYkAAAACA5ONkQAAAAKDE5GVAAAAAgKhlZ0AAAADAd0JpQAAAAADqXWlAAAAAQFrbaUAAAADAwvtpQAAAAEDxQWpAAAAAgP+fakAAAAAg80ZsQAAAAEDgpGxAAAAAoBv/bEAAAADgksJtQAAAACAX4W1AAAAAIEABbkAAAAAAn4FuQAAAACDPxm5AAAAAAFygb0AAAABAZsJvQAAAAADwKHBAAAAAoAdjcEAAAACgYXJwQAAAAOAok3BAAAAA4L/QcEAAAABANe1wQAAAAAAWAXFAAAAAgG0jcUAAAAAg519xQAAAAMCVdHFAAAAAANOjcUAAAADgO/JxQAAAACB7UXJAAAAAYLNickAAAAAA4H9yQAAAAMB1kXJAAAAAgFWgckAAAAAgFMxyQAAAAEAIMXNAAAAAgNZTc0AAAAAgMmJzQAAAAADwcXNAAAAAQGmMc0AAAACA/hN0QAAAAMAPJXRAAAAAYGR/dEAAAAAA8Jh0QAAAAICy1XRAAAAAAN4PdUAAAACgPjF1QAAAAIDdY3VAAAAAgOh7dUAAAADAjpZ1QAAAAKBQFHZAAAAAgEVIdkAAAABAUHV2QAAAAABtk3ZAAAAAABajdkAAAADgjM92QAAAAIC08XZAAAAAYCU+d0AAAABgM5N3QAAAAIDiqndAAAAAYKm0d0AAAABABsV3QAAAAGBi5HdAAAAAAP3wd0AAAABgivx3QAAAACA4ZnhAAAAA4PV2eEAAAADA2ZN4QAAAAOD8n3hAAAAAIJq2eEAAAAAgwA15QAAAAGBuYHlAAAAA4Ct0eUAAAAAgzJJ5QAAAAID6pHlAAAAAoGazeUAAAADgcM55QAAAACA/4XlAAAAAQIT3eUAAAADgjwR6QAAAAOCWKXpAAAAAoDtDekAAAADgvXJ6QAAAAIBvhnpAAAAAgODBekAAAACAt996QAAAAGCZ9HpAAAAA4Ogoe0AAAAAAUUZ7QAAAAKCOUXtAAAAAQCOFe0AAAABgxLJ7QAAAAAAVvXtAAAAAIOfGe0AAAABA9fF7QAAAAGBPAnxAAAAAIIY3fEAAAADggVl8QAAAAEBsZnxAAAAAYEh+fEAAAACgt4x8QAAAAKCRoXxAAAAA4OfFfEAAAADg4M98QAAAAODp4XxAAAAAoK30fEAAAAAgqxJ9QAAAAED0JH1AAAAAwEo2fUAAAADA2UF9QAAAAODmZn1AAAAAoKQDgEAAAACgoTqAQAAAAEB/QoBAAAAAAB5vgEAAAADgH3SAQAAAAKCXh4BAAAAAQGzAgEAAAAAgpw+BQAAAAAD4IoFAAAAAoKougUAAAADAvzmBQAAAAADFPoFAAAAA4PFSgUAAAAAg9ayBQAAAAODAvoFAAAAAoBPcgUAAAAAgUiWCQAAAAOBfMoJAAAAAYKJZgkAAAADgF3iCQAAAAACfw4JAAAAAoDTUgkAAAAAgKNyCQAAAACCF+oJAAAAA4BADg0AAAABAL0iDQAAAAIDDaYNAAAAA4ENyg0AAAACgE3qDQAAAAGDfi4NAAAAAgDuVg0AAAABgFSuEQAAAAACdXIRAAAAA4O6DhEAAAADgndGEQAAAAICZ+YRAAAAAIKcMhUAAAAAAUBSFQAAAAGCKL4VAAAAAIC9jhUAAAAAASIGFQAAAAEAqm4VAAAAAAEzMhUAAAADABeyFQAAAAIB384VAAAAAIK5EhkAAAABgxE6GQAAAAKA/aIZAAAAAQCWZhkAAAAAgvKuGQAAAAKCi4IZAAAAAAIDphkAAAACAZDKHQAAAAKD7YYdAAAAAoGmah0AAAABgLaKHQAAAACAITIhA - - - - - - 88eUP26txUHcEHhBCTVxQOZLW0G3KZ5AELtCQCaL3j8IbCBBNDenP3mtREG7QKJAC325Pwj0CUAclP4/2MumQCDIyUBE06lAAZGSQPhWekDG37NA4EEyQuujLUBLv+JB9QNVQNvnJkCG8cFA24n/P7PI3j86SLNA6nS6P86OHUCouyNCYkTxP0K+Z0AVb3pA1ZwWQS172ED098FA5HoCQSXgGkEclAdCwBalQDlBlkAHlxVByGCuQF7Q3kGrvGRAHVK7QLFlUUG75d4/xfIbQX0kEUH+RBtBvfxCQUNP1EGQH89BlbmzQd3vbUASnl5B9hgvQb92AEGmSpxBZrqrQaieakFlZKtAhhv3QHeKJkEuM9VBuooBQf9aqEC9094/H9y5PzP8zkCvyYFA48hCQHQOC0ARkQ5BgBuDQVt2WkHDUOpAenHkQPC0oEDtZwBBIebcQO64HUDSGTBBpOy5P7vgzD/U5JJBrGheQHcDi0ApW/E/SgV7QUqNLUHAtAtBOwUcQUV+vEDoWatBjhh3QLSGh0BTzK5A8z5iQZZfEUBWY9hBngA0QqmKQELXzfA/TLAOQXK5P0HfEzpBZbO2QIa6LUB4YXtBMk/eP3mKU0Mj/b1BQw2FQD/w4EA+cm5AjRtVQKNQiEK8AbZAIQxRQZYvhUE91i5BU8ImQL0Ps0DQJ8FB5+i9QPSZGEEW+ApApeBiQYp3FECyWKdBoWjSQcM/MEBLOQpBGtk6QfjDZ0BP9w1BEg4PQb0SgUDijZNBLOI2QCL/8D/Lw4Q/K0mXP+ygP0G81ABBOG/MP+eyGkBGKapAstCkQHoxH0EpNA1BiNUaQLltSELq02xBoIWCQEwKgUCIurxAaoO5QYI0ykAuzWpCxPYFQqOgOkBjG2dAeo0yQqUfwUG7UrBA - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoEzfakAAAABgcARrQAAAAEB8gWtAAAAAQH3Da0AAAACAdUhtQAAAAEBaaW5AAAAAQMEkb0AAAACAgk1vQAAAAIDWg29AAAAAgEkbcEAAAABAt7NwQAAAAKAp03BAAAAAwIUHcUAAAACA2EBxQAAAACDFVHFAAAAAgP1icUAAAACA5H1xQAAAAADFN3JAAAAAAITlckAAAABAyvRyQAAAACDZdHNAAAAAgKUTdEAAAADgcSN0QAAAAABkgHRAAAAA4DOidUAAAADg+bN1QAAAAIBiIXZAAAAAwK9fd0AAAABAb1d4QAAAAIA+YXhAAAAAgHJweEAAAABA2hV6QAAAAIBSM3pAAAAAAHZFekAAAAAAw4x6QAAAAACYs3pAAAAAgLDTekAAAADANRB7QAAAAMAnJntAAAAAQK1Se0AAAADA1bZ7QAAAAACpgnxAAAAAQBdDfkAAAADAYch+QAAAAIBc4X5AAAAAQP4Hf0AAAADACUB/QAAAAMAdU39AAAAAgApjf0AAAADAUNR/QAAAACA4LIBAAAAA4MNlgEAAAACg2HqAQAAAAICCr4BAAAAAYGy6gEAAAABgTcKAQAAAACAuy4BAAAAAoD5BgUAAAADgmkqBQAAAAEALboFAAAAA4BCbgUAAAACgdrmBQAAAAGCA6YFAAAAAIGn8gUAAAABgMTSCQAAAAGARQ4JAAAAAACtKgkAAAADg2VqCQAAAAKDHYoJAAAAAIOp1gkAAAABgTn+CQAAAAGC3sYJAAAAAgF27gkAAAACAk8aCQAAAACAJ1IJAAAAAAIdCg0AAAABgcFmDQAAAACAIbINAAAAAAEFzg0AAAADguqGDQAAAAOAPt4NAAAAAADHAg0AAAADg7sqDQAAAAKBx04NAAAAAYAj1g0AAAACgWvuDQAAAAKBwAoRAAAAAYIYKhEAAAACgx1KEQAAAAKBsWoRAAAAAIOyKhEAAAAAgap2EQAAAAMBX0oRAAAAAYDLkhEAAAABgRuqEQAAAAEBy84RAAAAAIL0ahUAAAADA/VGFQAAAAKAsWoVAAAAAYH93hUAAAACgjZmFQAAAAICCqIVAAAAAwCgzh0AAAAAgRjuHQAAAAGAhVodAAAAAoCi8h0AAAAAAxcOHQAAAACCtyYdAAAAAAIfTh0AAAAAgzt+HQAAAAMBvRYhAAAAAYD9KiEAAAADgwFCIQAAAAGA5VohAAAAAoA5diEAAAAAgNayIQAAAAGC71IhA + KBZXds7jZUCmvpxNHCRnQNS+X4D+xG5AdWjQV5ECcUDLvNRcKXN1QN+E8C9vY3dAyxqxsIGEfECm34Rph5R9QMm6IvXMWoFA0p6w3u9SgkD9yDLhO4uEQIMNA+1EW4VAjs2zeX1Dh0CuN4XvkJOHQLn3NXzJe4lA - + - NPb4QFs49EAM8t0/vMNUQH/tgkGkZ4lArFbGQqjOJUBcIbNAs4mXQKMi1kDJlyNBtH9tQKXny0F1D0JBHuh5QDg3s0B/S3pAe5BBQERFyz8w5fA/j1imQpYACEGxx9hA1Il3QOqVr0Aq9yRAKKWgQHp//T+Ilsw/HZEZQdVo3j9RRx1A3kGwQLGQGkAFAa9AMAM5QJ6npkDdPadBIF+sQd5R8T/3LSdAm++3QNJPXEDqcjBAeEEsQaVrpkB8vvtAWHacQKH4O0Eoh+FAtwofQa4LFkF9ZVVAwVAYQmnU/EDWHrpACknYQR5Uz0HwCiRB9PTlQPImWEIPO4tBnANqQtAYk0CxppND3udgQA0mQkAfzPM/HYLeQHlCoUCP2Lg/M90cQp1zpUDOKUBBfZv8QGbjpkD8hKVA7XyxQDKLEUCW/ndAUTSpQW/KN0Gh3d5AkYWMQe0iwUDWcmRBZHAqQonMQ0J4XhVBZsj+QN/nEUFYG45AudB7QaXJDkESaW9A60WiQOfm/UC9LatASAI4QEpZ6kETC8w/bqwlQBVlekCLSLlAf8MdQC9K2EHIj4FAc/wSQO2XHUCaZthAganoQEY6o0FnsS1B39daQNnTAUBg/GxA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwD9RWEAAAABg90BZQAAAAKCSlllAAAAA4Dd/WkAAAAAAorJaQAAAAEBAiltAAAAAgKjcW0AAAABAxZJcQAAAAGB621xAAAAAgILFXUAAAAAAmgFeQAAAAEBTPV5AAAAAwKh4X0AAAAAg+gFgQAAAAEBeJGBAAAAAoJlBYEAAAAAgSoBgQAAAACD7xmBAAAAAAJ8oYUAAAACAJmdhQAAAAIAyr2FAAAAAAFjEYUAAAAAg4OhhQAAAAEDjImJAAAAAAPVmYkAAAACAOYJiQAAAAMCTwmJAAAAAQIkHY0AAAAAA3iZjQAAAAECPZ2NAAAAAwDflY0AAAAAA1mhkQAAAAEBmomRAAAAAQGzGZEAAAABAMQFlQAAAACAJLGVAAAAAwApDZUAAAADA42JlQAAAAMD/y2VAAAAAwGfmZUAAAABACx1mQAAAAKDpZmZAAAAAgD2GZkAAAABAb6hmQAAAAABV/WZAAAAAAHs0Z0AAAABgrmVnQAAAAMAbgWdAAAAAIAqkZ0AAAAAAgcVnQAAAAIB932dAAAAAgMwDaEAAAABgdRtoQAAAAICwRWhAAAAAIExpaEAAAADAqopoQAAAAIANqGhAAAAAQBfEaEAAAACgIgZpQAAAAACYZWlAAAAAQHvaaUAAAAAA5vxpQAAAAID0I2pAAAAAAH1MakAAAADA4YVqQAAAAMDTpmpAAAAAwDDaakAAAADAXB9rQAAAAIBHSmtAAAAAQIdha0AAAAAA+4RrQAAAAMAoy2tAAAAAALvna0AAAACAgQNsQAAAAADLSGxAAAAAgOZibEAAAABAYoBsQAAAAEAKoWxAAAAAwMDIbEAAAACAp+ZsQAAAAMBSKW1AAAAAAFNDbUAAAABA8WBtQAAAAEDZpW1AAAAAALu+bUAAAAAAb+ltQAAAAMAbCm5AAAAAQG4sbkAAAADA00duQAAAAIAEZW5AAAAAwF2nbkAAAAAAEcZuQAAAAICk325AAAAAAKf+bkAAAAAABSFvQAAAAIAdQm9AAAAAgL5mb0AAAABAhIBvQAAAAIB7xm9AAAAAAF3pb0AAAABAlgJwQAAAACBAGHBAAAAA4MIkcEAAAADACj5wQAAAAEBPeHBAAAAA4LCDcEAAAABAY5FwQAAAAODAnnBAAAAAgCSycEAAAADA9L9wQAAAAOCiyXBAAAAAAFjTcEAAAADA/99wQAAAAIBfAnFAAAAAoGUOcUAAAADgPiRxQAAAAIA7M3FAAAAAgPxEcUAAAABgOGFxQAAAAKBrbXFAAAAAIHl/cUAAAAAAHZRxQAAAAODKs3FAAAAAgL3VcUAAAAAg4PxxQAAAACAmdHNAAAAAAOczdEAAAADAjYV0QAAAACD0lHRAAAAAING7dEAAAACgnzZ1QAAAACAYS3VAAAAA4NJvdUAAAACgIJN1QAAAAGDWu3VAAAAA4OjndUAAAADgKAB2QAAAAEA9L3ZAAAAAYLpGdkAAAACg5mZ2QAAAAKAYhXZAAAAAwCPAdkAAAABANMx2QAAAAGA94XZAAAAAYL/vdkAAAADA8xN3QAAAAGB6cndAAAAAgKOUd0AAAACgGKJ3QAAAAOD/v3dAAAAA4GIGeEAAAAAg5TZ4QAAAAOARWnhAAAAAYE6JeEAAAAAg3JZ4QAAAAKCho3hAAAAAgAe1eEAAAABgZOF4QAAAACD763hAAAAAwFQHeUAAAADgCB55QAAAAGDkQHlAAAAAYKNReUAAAACg3Fx5QAAAAGC1dHlAAAAAgBWWeUAAAACgeaR5QAAAAOCLw3lAAAAAANTUeUAAAAAg4OJ5QAAAAGBpVnpAAAAAwLuTekAAAADg4VB7QAAAAEBfpntAAAAA4OLVe0AAAABg6jV8QAAAAOAr+XxAAAAA4ITzfUAAAABg8rJ+QAAAAKCIF39AAAAAYOUhf0AAAABACnV/QAAAAGAwyH9AAAAAoLnWf0AAAABA7BqAQAAAAKDpcoBAAAAAII56gEAAAADgHJyAQAAAAEAMwoBAAAAAYI3zgEAAAAAgDCuBQAAAACD3IoJAAAAAoA/8gkAAAAAAgrmDQAAAAEAt5INAAAAAoGEshEAAAADguHuEQAAAAKCYgoRAAAAAoJv5hEAAAACgNgOFQAAAAMCkiYVAAAAAwFrDhkA= + KBZXds7jZUA/KJil8iNpQG+XdYaqQnFAtCNeuPzCdkBv9VHaAlR4QEJ7qtfU03xA/Uye+dpkfkChbMOVlvKBQEgumC/vSoRAznJoO/gahUBIXYZZm9OHQA== - + - 8dGuQLooC0CBz94/och6QFJ9W0B6MdhByRWqQH8fA0HW294/yPxnQIKagUCWJKpAwuPJQPv5+ECbslxBZiBpQax6aUAXAwtAg1/BQIMfokCsbcBAtcSUQXFsLUBBkrlApO+KQZaITUCO0c5AX+8fQTpHk0AHyZVASnAIQY5eFECJgc1BwLh3QMKonUBw9ixA9M/OQKfJJkE9IhRAdRNAQoQBhEEtRkZB3syJQMyTOUA4+N4/WqyWQWiWiULEwoxBynBGQXfpFUD3SB5Bc9xkQcnlLEE0xh1BY19bQAzY3j/Uy9VAmJo/QHclc0EBkeRAHKh8Qhxzh0FdPlRB3nw+QR8VpUHC9YVB95wwQLBrcUA4b0FAzkGJQIfZiEFRs65AqA6pQQF5nEAIYgNBWqd8QHHzpkABepdAZodYQvrTB0AhqwpAB8gmQeMRekBIXT9CTrxpQJEZFED4TclBX1EhQWW8wECC8pc/SvzSQCQa5kH0HGtBu1j+QSFUhEG+yPxCjzXAQnufyUF725Q/n8atQdMY0j+ixqxBVNxvQvmdXEEgK+BB9RH5QkCJXUK0oCVBembKQW63pkEF1J8/e7pwQf1V6kAojgxBuYKnPy4ZcULjANZC4M4AQgbWPkIyTRlCbfT9QHjlmkF+MwNB4rODQdHSS0Brb/RAwaTIQYIS+kHFgwxBRUcCQDh+OUF617dAfVl6QM6+DEH2iw5B5OkyQcWUOUDRVzZAFneoQe7l+kB6D8RAIrUyQvUMCUOfXP1AXlcpQbtQOkGzIppAcKEBQFhuiUBD07FAXNS0QGxRN0Bze+1Bww8tQQr0cUH5pEJA3timQeSDo0DMLLFA7LgHQ9vGqkKUXQNBxb37QUhY3EAVG9RAC1OhROjKVEE1FyBBVILwQr1w+kGvjUBBriNLQcTaS0Cd1KZA+em5P7EZt0D6giVAa0HHQcLFl0D6EQBCsII8QZf+A0G016lBXetMQKeaoECBmiJD9l9eQi0mcUBK3kxAg28FQdpiQ0E/zEhAjzJxQYSMAkEReF5AnqYKQLf2/D/PY+E/QCwtQjhPN0HHSthBqA8lQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAFmPVUAAAABApkNWQAAAAOASX1dAAAAAwCCWV0AAAADgUZhYQAAAAMCMAllAAAAAgIDDWkAAAAAg1AdbQAAAAMA5kVtAAAAAAKTNW0AAAABAEfRbQAAAACD6ZFxAAAAAYCOPXEAAAABAuNRcQAAAAKCGBV1AAAAAYK5PXkAAAACA0ZJfQAAAAAAOBWBAAAAAgDkjYEAAAAAAOENgQAAAAABkZ2BAAAAAwKqmYEAAAADAPAlhQAAAAIDFJGFAAAAAAEZEYUAAAACAsGNhQAAAAEDDgmFAAAAAgMcEYkAAAACAECViQAAAAEAHYWJAAAAAACaJYkAAAAAAbKhiQAAAAAC24mJAAAAAAC1fY0AAAADggX9jQAAAAMA+4GNAAAAA4NQgZEAAAAAAkH9kQAAAAICNv2RAAAAAQBslZUAAAAAAOUllQAAAAOC2gGVAAAAAQCbAZUAAAABA+gRmQAAAAEC8KGZAAAAAIPtCZkAAAAAA319mQAAAAADOhWZAAAAAANbHZkAAAADAOuhmQAAAAEBF/WZAAAAAQAMnZ0AAAABA0kZnQAAAAMB1aWdAAAAAoAKEZ0AAAACANa5nQAAAAIAmyGdAAAAAQF0EaEAAAAAAxkpoQAAAAABEaWhAAAAAICCGaEAAAADA/MRoQAAAAMAV5WhAAAAAQIsGaUAAAACAdCZpQAAAAMB/hGlAAAAAQPelaUAAAABABL5pQAAAAMA46mlAAAAAAL0BakAAAACAvzZqQAAAAIA1TGpAAAAAgEVlakAAAADAon1qQAAAAMAxo2pAAAAAgBPEakAAAAAA5ORqQAAAAEDCAmtAAAAAQDdDa0AAAAAAxGVrQAAAAMBygGtAAAAAQI6wa0AAAADAdMVrQAAAAMCi5mtAAAAAAC4gbEAAAAAAPUNsQAAAAIDJZ2xAAAAAADCFbEAAAABAAwZtQAAAAMAoJ21AAAAAgONHbUAAAAAAimZtQAAAAIDPgG1AAAAAwFTDbUAAAADAOvFtQAAAAEBnBW5AAAAAwEwpbkAAAABA8mBuQAAAAAC8fm5AAAAAQPibbkAAAACAGrtuQAAAAADo4G5AAAAAADsEb0AAAABAQClvQAAAAIBJaW9AAAAAAPOFb0AAAAAAFqJvQAAAAEDyyW9AAAAAwFvgb0AAAABAhghwQAAAAKBwFXBAAAAAgKMkcEAAAACA7zBwQAAAAMC2QHBAAAAAgIx6cEAAAACAlYxwQAAAAACrsXBAAAAAQE7GcEAAAADAp9JwQAAAACCH43BAAAAA4GT1cEAAAADAbgFxQAAAAIAxDXFAAAAAQBggcUAAAADgmzVxQAAAAID9QnFAAAAAwCJRcUAAAABA4KJxQAAAAIDA03JAAAAAwHYFc0AAAABA6XRzQAAAAEDdk3NAAAAAgGCgc0AAAAAgSsFzQAAAACB3/HNAAAAAIAEVdUAAAABgSyR1QAAAAGBgQ3VAAAAAILRidUAAAAAgOcx1QAAAACAu5nVAAAAAIGAmdkAAAAAgL3R2QAAAAOA/f3ZAAAAAIHqXdkAAAADAhSh3QAAAAIAXSHdAAAAAYGVVd0AAAADg7HZ3QAAAAEAMk3dAAAAAoEHFd0AAAADALt93QAAAAGDWCHhAAAAA4CEZeEAAAADA1SR4QAAAAKBel3hAAAAAQLizeEAAAACgUOF4QAAAAGCAtnlAAAAAQFTSeUAAAACgVuR5QAAAAGAms3pAAAAA4BuXe0AAAABgf+J8QAAAACDfA31AAAAAINgSfUAAAAAgeG59QAAAAMAF9n1AAAAAoF0zfkAAAABgtGR+QAAAAEC6035AAAAAoGHlfkAAAADg2xV/QAAAACBnJn9AAAAAIKFlf0AAAABA/sN/QAAAAGA40H9AAAAAwMrlf0AAAADgBXOAQAAAAEBgeoBAAAAA4GHMgEAAAACgwiWBQAAAACBvM4FAAAAA4E2kgUAAAABgbQaCQAAAAGBei4JAAAAAQNr8gkAAAADA+mqDQAAAAKDYcYNAAAAAIOqMg0AAAAAgivmDQAAAACABBIRAAAAAYEtshEAAAACgXIuEQAAAAKC7k4RA + KBZXds7jZUCYvfARosNsQG+XdYaqQnFAQAS5+MBidkADpwfsrXN7QEBilUwZdH1AS9vMqFjygECBAvIfg0KBQKwsdCLPeoNA3N9NQZqqg0A9MfW6EDOGQNwOPGtGM4dABF2bynw7iUBAPAaI0kuKQMuIQdroQ4xAa2aIih6EjED6juZ/SkyOQJJcNEFLQpBAF9uFezpukEAt8MZ8YIqRQHQEdnd2bpJARHOZT5GOkkCJGbd4nIqTQCiJbFfHEpRAOzAch+IWlUAMnz9f/ZaVQLtHE5w425ZAVSGAKx7zlkBqNsEsRA+YQATKU2hZN5hAGd+UaX9TmUDqTbhBmtOZQJn2i37VF5tAz9EcG9tfnED2H3x6ERidQOZU7+0L9J1AU0lsdk0Yn0A= - + - XE69QB6agkHC5JNAt22UQFLZY0EX8ApAhJWgQCOzAUBvrb1A0WPsQGMXHkCt05JBFOKeQvFbRECnj4ZAV3y5QM0T2EDUmJVA5YGtQW5HMEDHgfxBz/M1QrmeGkAa2xFAIXz4QMrnP0CPKglBReIEQNH6XUDnv4lB7Y+lQA7ctECX+QFAvnHhQBeRQ0FT/PZAnirxP606aUDIf8VBPP5wQbQtuEBcNs5ArJKQQeU1P0F7f4xBoUseQXmDjECYLkVB7BsTQKnKn0F2S85ApSqZQbWSikA9BWxBTyvBQBh5I0GWvIdBk3AaQVFa9kF6pqBAM5TKQAdskkEep49BMP0sQXwJQEBdVgJB0Kw/QWIrqkDOOlxBaQWCQYqZqUHhYLtAeBonQPPLNEFn08NBI1vvQB0wDEJIq8ZAKdiBQGDmRUExHG5B9ak8QLS8z0FQTyZBd/86QYoHG0LBGgNCH2sZQp7xlEL32QNBSRCHQQsaEUHUDQtAaFFgQQ6dHkLJAUZDEJjLQB/4P0AIyGRAdM/LP5YKWEKEx7FBlUqGQN4lEUBRegBB2Vt6QG7WqUALb4hBqMqSQJs5zEFwFaRC8erAQtZgUkPyGQJC71MHQtQGlEJ0c8FBjA/SQAZHaEH1da5AcsaBQRzSAUBeQeBBAmojQmkZhkFsxIpBOtxvQG6rB0Eu78w/haJNQTEMfUFxNStDFdohQLkEC0BHL7hB9FoUQGX7AEHJw/1A9Q0nQKiTq0B5b6FAMEl7QDggI0E1PTNB1ZWNQagHLUCBvd9AfF02Qo7HqUGAvaBBnK9/QVuDgUFSGG1DOnxGQiglF0Ec6mNEbmDVQSuUgUGgLBRAYt3fQvS29UEXJCRAsP4UQRTWpz+wQDlAW43zQDmxd0AlnBRBdGgaQF2eGkCEi2tBuV3SQN5ttEGZk8ZArQJMQGgMj0DRq51A6az+QSBHD0MRds5Bm07ZP1TlpkEBsidAsW/BQKZs3UDKghRAFTXxP7e8P0CZAd5AD6MlQWmTnkFYBYZB4M2uQN78MUEEazVB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAYICDZ0AAAABA7AZpQAAAAMCeG2lAAAAAIBrHaUAAAADA0YVqQAAAAGA7nWpAAAAAIOjEakAAAACgmeprQAAAAECdpWxAAAAAgIvIbEAAAAAAmOhsQAAAAICla21AAAAAwABNbkAAAACAvYduQAAAACAyxG5AAAAA4P7kbkAAAADAIAZvQAAAAEBfJHBAAAAAgAHCcEAAAADAbwFxQAAAAABrFHFAAAAAoKo1cUAAAACAea5xQAAAAMCM1HFAAAAAgEfkcUAAAAAgevVxQAAAAODAA3JAAAAA4EoSckAAAACgnXdyQAAAAGAmkXJAAAAAwHkRc0AAAACAI5RzQAAAAICsonNAAAAAgCEydEAAAAAgWEV0QAAAAMD3nXRAAAAAYPuydEAAAABg8kJ1QAAAAMArU3VAAAAAwB3jdUAAAAAAzlN2QAAAAMDNdnZAAAAAgI/1dkAAAABAiAJ3QAAAAEDCF3dAAAAAAGszd0AAAABAenZ3QAAAAACPHnhAAAAAQG1NeEAAAAAAhnJ4QAAAAMBWv3hAAAAAwFXWeEAAAACATS55QAAAAMD1W3lAAAAAgLqheUAAAABAkbd5QAAAAICnxnlAAAAAACHjeUAAAAAAJw16QAAAAEDemXpAAAAAgIKjekAAAACAS8F6QAAAAEDAEntAAAAAQA27e0AAAACAYeV7QAAAAIDNDXxAAAAAgMg/fEAAAABAC5B8QAAAAMAxrnxAAAAAwK69fEAAAAAANeN8QAAAAADf8HxAAAAAwN4efUAAAADAqCp9QAAAAEBXOH1AAAAAANlMfUAAAADA63R9QAAAAIBEjX1AAAAAgFLBfUAAAADARBN+QAAAAMBIVn5AAAAAQFRufkAAAACAZ4V+QAAAAECQlH5AAAAAQAb1fkAAAABA5BR/QAAAAADPdH9AAAAAQDGGf0AAAABAQJ9/QAAAAMBGuX9AAAAAYJgZgEAAAADArjOAQAAAAKBLOoBAAAAA4A9UgEAAAADgRmCAQAAAAABoc4BAAAAA4FB9gEAAAABgdoKAQAAAACDcioBAAAAAID2lgEAAAADAsqqAQAAAAKDvsoBAAAAAoH66gEAAAABgBtyAQAAAAEDK8IBAAAAA4O39gEAAAAAgkAqBQAAAAMAvEoFAAAAA4JUjgUAAAABgTDuBQAAAAOBwR4FAAAAA4BtngUAAAAAgIXOBQAAAAKDzgYFAAAAAYJ2LgUAAAACAOpSBQAAAAGDBo4FAAAAAgE2qgUAAAAAglLOBQAAAAGDYwIFAAAAAAMTHgUAAAADgw9SBQAAAAOD5EIJAAAAA4E8bgkAAAAAAACeCQAAAAGDNMoJAAAAAAPU3gkAAAAAg6T6CQAAAAOAtSoJAAAAAYPF7gkAAAAAgb4OCQAAAAKCKioJAAAAAYBSUgkAAAADgG5uCQAAAAGDJsYJAAAAAgOLNgkAAAACgpeaCQAAAAKCU74JAAAAAIIkSg0AAAACgXhqDQAAAAOCUJoNAAAAAAGNHg0AAAABgxVeDQAAAAMDEZINAAAAA4AZqg0AAAADAwnGDQAAAAOBxf4NAAAAA4OWMg0AAAACA0ZKDQAAAAGD6mINAAAAAoEipg0AAAACA5bKDQAAAAADyu4NAAAAAYKnGg0AAAADg09CDQAAAAKDWQoRAAAAA4KebhEAAAABgS6KEQAAAAMDfyoRAAAAAgJDRhEAAAAAAw9qEQAAAAMCr84RAAAAAoF4ThUAAAADAYxqFQAAAAGCCO4VAAAAAoLpRhUAAAAAgR1uFQAAAAGBgYoVAAAAA4HtshUAAAADAe3yFQAAAAACPg4VAAAAA4HukhUAAAABA1auFQAAAAGDnuYVAAAAAYObEhUAAAAAAiNuFQAAAAGCC64VAAAAAIPnyhUAAAADgXP6FQAAAAGBlG4ZAAAAAIGc0hkAAAADgfDuGQAAAAMBSQoZAAAAAIPZjhkAAAADg+miGQAAAAIAGh4ZAAAAAYO2NhkAAAABAp6yGQAAAAOA+yYZAAAAAoKXOhkAAAADghNOGQAAAAAAL2YZAAAAA4A/fhkAAAADAh/yGQAAAAEBoAYdAAAAAwOULh0AAAAAgPhOHQAAAAAAiG4dAAAAA4IAjh0AAAAAAqWuHQAAAAAD1iodAAAAAYNixh0AAAABgqLqHQAAAAMAyzYdAAAAAQAr7h0AAAACAMwOIQAAAAECSGIhAAAAA4EAyiEAAAAAgtkOIQAAAAGBrYYhAAAAAQAmJiEAAAACAiJmIQAAAAEBB0YhA - - - - - - jkWnPzNmyz/u4KVAVrCFQEIQuj/vQxRAH9tpQBpZ3j8XJRtBh1/MP460LkAkEYBBmC6UP/rPn0FAUi1CcbXTQMrCikDwfgRBDe6BP0Jj9ECaojlAGwCrQLwyF0Cfk6RBz5jgQP2GMUEcrbhApRvSQBxCAUAbh4ZAX1ZDQGmgN0A+EHFA7zVNQZetgUB61TZBANZgQVFgmEDMdy5AwmCKQIK2uT8y2VVAy+whQTYqpz9IrdNAF8OxQNM3t0H0bMhAOmJLQTjn8kAOS7k/dJFNQI6Vyz/VtmdAeqUdQbiQh0Ejt7xAakOYQJS/30C2PCRBy3xMQIEiFEDp+CNB4d+NQZcJjUFm3RFBAzILQM6TO0G5gSBBfEKJQVbG70CAuPZAZb6FQFSluUEpVkVBNKTHQc8NzEAULL5AwyqCQYmc/kAOEO9BsgrWQY+okkExrfRA4LkBQTNLgUE62rZCF1bbQPcVxkB0kZNAcezhQNe13ED69r1AcIxVQEFbJkGenRRASx8wQZgqN0Fa/GNBi4iVQQMQr0CFvo9AxDKAQIi5zUFg9LNACLFDQW3vV0CVf/tA0l26QasVcUHJwRVB24rMQdDvRUBSsN1D9qFGQ2IWJUJmMjFB9K+NQcwoxEBEV0dB1FG3QDL8q0IYYM9ACi9lQuIq7EBqlXBBG1+PQFzOhUHsT/5AlJghQb6rO0G0MBVAAhv0QR2DCEF7MYZBtvqfQRNbFEAjqHRBUrFIQbRdgkFwCVZAbKJQQoNuhT/ODLNBHpArQYcALUDlmKc/fGClQWquIUA3tGRB4jflQTK7IUGPo5RBxKMnQQZ1JkJ+9thAfSZVQPBMVUDKe5NBujKTQObpRkFrRAZBHNjoQDR5+EBdfqpA3HvLP7LKzkLKWZVB8bkwQMEQ/EHudQRB5kwwQ25sWkLysqNAkmzfQUbnLUD2AV5D+QSqQVA2sUGHKG1BSp6BQxZOiUKQf7ZBdGEwQe0qzD9WpD1CyEdxQWicFEGp8E5AjTWwQDgC+EGlTYRBoLaEQaRH20FD+eFAnrWuQEQ8mUHuBFFCmquvQHv7UEFBrB1A1dk3QZ6bakE7DX9Aa+L9QSeKJEHyvwdBxm+AQIYVwEAT4Y9A0CODQaaUEUAQuIxB - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQFsfYEAAAADAc5lgQAAAAMCs32JAAAAAYGAkZUAAAADARuFlQAAAAIDCC2ZAAAAAQHoXZ0AAAADAV6JoQAAAAKB3TGpAAAAAgEmoakAAAAAgJOlqQAAAAKBXrGtAAAAAIOZFbEAAAAAA9WlsQAAAAEBVhG1AAAAAYLKgbUAAAABA2WduQAAAAMB/5m5AAAAAgGlnb0AAAADA3clvQAAAAGCuUnBAAAAAAA2dcEAAAADglMFwQAAAAOBNFHFAAAAA4FsqcUAAAABgODRxQAAAACCWc3FAAAAAoFOycUAAAADAMb5xQAAAAMAI1nFAAAAAgKLzcUAAAADAB4FyQAAAAMDEsXJAAAAAQAX0ckAAAABgmRtzQAAAAKDSL3NAAAAAwC4/c0AAAADgsFBzQAAAAEBDZHNAAAAAgBx2c0AAAABAqYdzQAAAAADMnnNAAAAAQBa7c0AAAAAgl/NzQAAAAMCTHXRAAAAAgPRldEAAAAAAk290QAAAAOBNo3RAAAAAQB3DdEAAAACgtuN0QAAAAIChJXVAAAAAwE0xdUAAAACA4VJ1QAAAACCIkHVAAAAAYEvAdUAAAABgK9t1QAAAAAA1AXZAAAAAQCAtdkAAAADgoj92QAAAAACVX3ZAAAAAQCpvdkAAAACAdY12QAAAACA++XZAAAAAIPgEd0AAAABgdBt3QAAAAGBhLXdAAAAAYKdAd0AAAADgB2N3QAAAAODQbHdAAAAAYAOGd0AAAADgOJl3QAAAAIAYtXdAAAAA4Kz1d0AAAAAAEhN4QAAAAGDANHhAAAAAoFVoeEAAAACANHZ4QAAAAMBcgXhAAAAAwJWkeEAAAACAorx4QAAAAMATzHhAAAAAQCr0eEAAAAAg5gB5QAAAAOAmEXlAAAAAYCsveUAAAABgvUd5QAAAAACOWnlAAAAAQGdmeUAAAAAAZZl5QAAAAODrh3xAAAAAYMuIfkAAAADAdZx+QAAAAKAxXn9AAAAA4Pmnf0AAAABgSvV/QAAAAOBeM4BAAAAAoIdDgEAAAADgNsKAQAAAAMDOUIFAAAAAQJ/7gUAAAACgClSCQAAAAAB9ZoJAAAAAYP5/gkAAAACgDYuCQAAAAEDTlINAAAAA4J4jhEAAAABgAvmEQAAAAGAqRIVAAAAAQPRJhUAAAABADWqGQAAAAOBQdYZAAAAAoAxFh0AAAADA54iHQA== + KBZXds7jZUDXkZP9yKNsQIkw7CrX8nJA6yam0jxjdUCJjsh+LwR6QF/MZsIsZH1ARHZS6cOKgEA= - + - JRIeQMG1J0DZc65AZjimP4yI/UAwgcY/yq4oQNTCzkBUmo9AI0vfQE8zjkBGk49AjtJCQIv58T9BmrRADx7vQO1izD9o+cs/+PUDQd2ej0BmLRNAFrYBQGVFokCr+yZAAUFSQBdC7UB5uYFAz8CBQGVzZEChRUJAE8htQGtVeUERdjlA+JaTQTZz0ED5qW9A+aS1QXICMEAOJiFBILwfQKNB/UA7Y5BAfcb9QHdvNUGNSMw/hflIQG1nXkClHCRAFLlaQXhSikHrsgVBF/2/QA2eIkJtjjZApVcyQWgzOEFxkyVATI7vQGWwwUEndpQ/6TWFQLXj0UBVWqo/r4S/QQQHTEJp75NB0QiaQEXydUHL+UVB+hquQOfBSkKe3e5BEJOYQqx5DEEG4BVBz1mdQUqNFkD0ipJCohLhQNgO+EErflRBgLqWQEctgUEuogVCBVSuQQF5P0Gyir5A2JN0QS/uhkEuiYdAxaPRQZWM/UAJN25Ano32P2/wcUBxwR1Bl7vKQLlbA0GISvtAK/bFQLs56UC4iQxBGq1VQjG9DkGQl5Q/G8I2QCIZ8T9cUjBAzgSxQDmrCkDius5ATMJtQLy94UA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIEdBYkAAAACgAvxjQAAAAIBD7GVAAAAAIE0FZkAAAADg7SdmQAAAAEAW4mZAAAAAwBwDZ0AAAACg1x5nQAAAAECuBmhAAAAAIDJEaEAAAABAuiJpQAAAAIDsQ2lAAAAAYGChaUAAAAAALCpqQAAAAEAGR2pAAAAAAA2CakAAAAAAmgdrQAAAAIBUR2xAAAAAYKB/bEAAAADAAK5sQAAAAMBYIm1AAAAA4ATjbUAAAAAAkERvQAAAAAAYYm9AAAAAgLCBb0AAAAAgDyNwQAAAACB/Y3BAAAAA4HijcEAAAACgVbBwQAAAAOC933BAAAAAwLD+cEAAAACA/BJxQAAAAGBkMHFAAAAAYMIbckAAAADAompyQAAAAGCPxHJAAAAAYLjOckAAAAAAhPJyQAAAAMBm5XNAAAAAALn0c0AAAAAg0kp0QAAAAMC/onRAAAAAoNGwdEAAAADAMc90QAAAAMCB9XRAAAAAgJgFdUAAAABAjhN1QAAAAECUVXVAAAAAQAxzdUAAAAAAd691QAAAACDBw3VAAAAAgLPkdUAAAACAC/51QAAAAKAZTnZAAAAAQPR7dkAAAAAgOKV2QAAAAKBWyXZAAAAA4J3UdkAAAABAOuV2QAAAAODAFXdAAAAAIEw9d0AAAABgMmJ3QAAAAOC2f3dAAAAAILSQd0AAAAAg2Zx3QAAAAECiAHhAAAAAYKMWeEAAAADgJD94QAAAAGDfU3hAAAAA4L1keEAAAABgUX94QAAAAODylXhAAAAAACukeEAAAAAgmrJ4QAAAAOBey3hAAAAAYHr6eEAAAACgjRF5QAAAACCaHXlAAAAAIMMqeUAAAADgITV5QAAAACC+PnlAAAAA4E5ceUAAAAAAUdh5QAAAAGCG5XlAAAAAIAUFekAAAAAgvRF6QAAAAMDjHnpAAAAAQF80ekAAAAAguEB6QAAAACDlXnpAAAAA4FJ0ekAAAADAjol6QAAAAMA0wnpAAAAAgCTnekAAAADgvRd7QAAAAIBXJntAAAAAoFA9e0AAAADgp1p7QAAAAOBQf3tAAAAAYDyNe0AAAABgbpd7QAAAAEBc0XtAAAAAYBfie0AAAADgQgB8QAAAAGAdGHxAAAAA4HkufEAAAABglFR8QAAAAGApZXxAAAAAwOaEfkAAAADAxl5/QAAAACDMan9AAAAAIHbkf0AAAADA0xWAQAAAAICBOYBAAAAAINYGgUAAAACgRxOBQAAAACBVKYFAAAAAgCF1gUAAAABg+IKBQAAAACApiIFAAAAAYFSygUAAAADgKLqBQAAAAODVyYFAAAAAoJYNgkAAAADAkhOCQAAAAGD8GIJAAAAAYAQ0gkAAAABAr02CQAAAAKCDVYJAAAAAgNR8gkAAAAAAOoWCQAAAACBUsoJAAAAAgE27gkAAAAAgYsOCQAAAAOAl/oJAAAAAwDkHg0AAAAAADg2DQAAAAOC8H4NAAAAAYE8pg0AAAAAg64mDQAAAAGAbj4NAAAAAAPi4g0AAAAAgg+mDQAAAAGA5J4RAAAAAAJFBhEAAAADgO1eEQAAAACD/a4RAAAAAAG1xhEAAAACgK4uEQAAAAGD7mIRAAAAAIFCzhEAAAADgQ+iEQAAAAMDPMoVAAAAAQEw7hUAAAACgC1KFQAAAAGDAkoVAAAAAQLzKhUAAAABA4tmFQAAAAMCL4oVAAAAAgA8HhkAAAAAA4wyGQAAAAGC2b4ZAAAAAoJyDhkAAAACA2r6GQAAAAKAa9IZAAAAAwMEviEAAAADg7NCIQA== + NrgMGZxjYkD1hHOUyKJnQOzQoK8iBW9AzLzUXCnzc0ACSSuYVWJ0QMwasbCBBHtAAqcH7K1ze0BY+wvxReR/QKpQUX+5yoFA2QMrnoQag0DXVvYkG/OEQA== - + - +CRcQDjF3j/Q/S9A8glWQGR+AkDdkXpAV4oLQCfoP0BoMv8/dM9kQG7wFEDwXbo/yWktQCgamUBEcSdAmJinP1KGJ0AdN0xAyRmCQMKVVUCch69AR8oKQCrFj0BoyflAKIs2QFaNA0G0GpxAgvumPyNxFEEiJQRBlGieQCns1kCOd0hBECUCQJnLS0H9dARCY2cWQNQaeED43elAgE0KQSrLFEDmSUtBZKsEQYPRgUADBwpB8myBQAuYFEDbt3tAJlmBQJ/cf0FWnHhB5AC+QA8aO0HsKY5AFe4tQX7D7UC0K1dCllGWQE6Js0FqkYZAgtQVQGaNCUFRNjVBH+mJQM5Rqz8u0AFBYzImQe7IOEGE4x5Ci1mPQA61QkA2yCtCEC7NP+saMUFL2iVBcEMfQXSImkCYXAJA1wxzQG1afUHm7+pA1vQRQgND20DXbydAvJehQHAksEEV7MFBtb8vQW0BQEE1EfFBAkjWQNLu60DIm/E/roCBQZBwCUEOExZBdzfAQbgsNEHiHoRBycuKQBhm70CQIwVCw2nPQVosQ0Bn8plAN8EXQWF+XkBRD0lBNXX0QRAOuUHq1AhBRjBMQAdRgUF+8nBAQH/eQC5rvkFyTFVAFJPMPzkyBkEJ+I9AWmaRQfqwtEB+XNVA4D4ZQgFFYEESstZAiXaEP7b0AEFLW0xAVnODQRSPuUCvK+9A3AwkQj6hYkFtTKtCVxewQISzHkJmcZg/TsLfPxt2TkLe4z1Bv7p6QagpekDtQghBOTi1QBIZzEDaDzpCXF5TP/SCx0GG+QpCfS/LQG9dI0Hl4i9ABXjeP6lrAkAOL+8/ihaAQRy4U0H5pKtAdgSIQgdgXkJHxAFAD3c4QZR6j0C2eyRA5H/vQOfepkA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIDGza0AAAADAlINtQAAAAEBCYHBAAAAAwAUkckAAAACAyEFzQAAAAMDUZHRAAAAAwNkBdUAAAACAcxB2QAAAAAC9AHdAAAAAwJuAd0AAAABAKJF3QAAAAIAJXnhAAAAAQBVueEAAAAAAmKB4QAAAAICKBXlAAAAAQO55eUAAAABAD4V5QAAAAEBwEXtAAAAAwLUfe0AAAADAZUB7QAAAAABKVXtAAAAAwBYifEAAAADAq3R8QAAAAICqtHxAAAAAANYwfUAAAAAAT2d9QAAAAADloH1AAAAAQA8zfkAAAAAALaN/QAAAAMDU1X9AAAAAwIiSgEAAAACg/8eAQAAAAOCN14BAAAAAYDnugEAAAADA8iGBQAAAAKDaJoFAAAAAIAcsgUAAAADgcTKBQAAAAAD3eoFAAAAA4KCzgUAAAAAAzTeCQAAAAED9WoJAAAAAQMuTgkAAAACg7KqCQAAAAKAE1IJAAAAAoFXagkAAAACAwzWDQAAAAMBVY4NAAAAAQJChg0AAAACgIauDQAAAAODwBYRAAAAA4CoLhEAAAAAAKSKEQAAAACB1WIRAAAAAYKhxhEAAAADA16yEQAAAAKB2uYRAAAAAIF/xhEAAAAAgjzmFQAAAAODGZoVAAAAAoDpxhUAAAADAUKKFQAAAAMCayYVAAAAAoMDYhUAAAADgAfWFQAAAAKDuAIZAAAAAAGsThkAAAAAguTKGQAAAAMAqfIZAAAAAYASFhkAAAACAh5mGQAAAAKDMo4ZAAAAA4OyqhkAAAABgL7GGQAAAAABpUIhAAAAA4OTiiEA= + KBZXds7jZUA+KJil8iNvQBTpB48/A3JAaj0MlNdzdkCTuYxC6ZJ3QOkNkUeBA3xA3uLMg8d0fkD0tbbNbIqBQNKesN7v0oNA - + - 6Fg7QTJ1jkCxt99AYYALQF+KhkBPIXFALt7IQf+C8T/BJS1AlFiiQXzchUCXs65AinZCQZ1/gj/UlJ1AuKB3QK7uHUCYNYRAK6m8QGdNhUA0nh1AE1URQB2X0EARKgJAnJiKQDFivEBblZNAhXUgQS/tiUB+QgpBuqSaQLmYAUBeWMZBu70TQY2Wv0JOjxJAPwGLQH2MFEBYNUFBZssHQa4hi0B3w7dA3WEwQChcCEGghHZBO9zVQGA/LEGe+MVADCTGQXKPvEA3YX9CFdARQo2np0FE/ltAfH8QQbis+EAD0d5ArUhDQPbU/EGfzhRAWlcWQb9Z7kDzLzxBgVijQAVXgECdJpxApq9VQPs8TEEGCT1BDkGOQJ56MECMLpxAXXUFQT+pjUGAnTZATYBwQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAMxbaEAAAACgtEJsQAAAAEA26W1AAAAAYG8tcEAAAACg3XBwQAAAAKAlQ3FAAAAAANgFc0AAAADAwUFzQAAAAGCidnNAAAAAgGkedEAAAAAAEjJ0QAAAAACMb3RAAAAAgOK0dEAAAACAni56QAAAAAACeXpAAAAAQDA9e0AAAABA62F8QAAAAAA1fn1AAAAAAGOhfUAAAACAKE1+QAAAAACjlX5AAAAAQFn8fkAAAABgbAaAQAAAAOD3EoBAAAAAQDJqgEAAAACAR5KAQAAAAOBOm4BAAAAAQPmxgEAAAADATvuAQAAAAKCzG4FAAAAAgBSAgUAAAABgyuOBQAAAAOBwHIJAAAAA4L9ZgkAAAACgRJKCQAAAAKCcvYJAAAAA4M7CgkAAAADgyfCCQAAAAGCXE4NAAAAAoJgwg0AAAAAgVEGDQAAAAKCJR4NAAAAAIHRVg0AAAABgDF+DQAAAAABhhINAAAAAYDeMg0AAAABgna6DQAAAAKClv4NAAAAAYB8ThEAAAABg7r6FQAAAAEDSKoZAAAAAQFq8hkAAAAAgrJiIQA== + NrgMGZxjYkAbumJgJkNwQMRlXluOUnBAOQsfS37Tc0CLwPKUpoN2QJQXaZZBJHpAxmJralakfUCUk/19oiqCQIEC8h+DYoJAlMLrp06zhUAU45Vb2mqGQCijj+Olu4lAFBKEhYbziUBG9EvO/UuNQDJjQHDeg41AoxEd/FRqkEDjIfLVGsaQQO0B75mAbpJAYznp6nCKkkB8Kk2PrDaUQEi9TcSxFpVAC1OrhNj+lUBfQCCX4qqWQL1pEJMei5dAplTPkfiOl0AmbMamTlOZQG+AdaFk15lA - + - GmHMP1LsfEBj2s5AjFcnQK+QFEDh1JJAUH3BQFblEEE+OE1A6YdQQVpK8z/JGdlAHs6zQAvxTUCHKDdBkyWPQBkF3UALYhNAEOxfQcxA2kAto6tA9MvgQEpxs0BM0YlAfP4lQTFZx0G3OPI/GUzMQE5wA0BZ6CNAqyw4QC1d7ECoZVVA8K3TQLfwX0A8jxRCObUdQsW+uUGW/sVA4oPCQF4RhUCO3NNA5HgAQR5NFUH51zZAWcvhQDj8AEGkvuFASRoxQDTJoECypKtBzB9EQRrLqT8= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4OgBc0AAAAAASaZ0QAAAAMB7BXVAAAAAwAKidUAAAADAmGR2QAAAAEBjI3lAAAAAgDYTe0AAAACAxBJ9QAAAAMBQiH1AAAAAgK01fkAAAADgJUOAQAAAAGDGk4BAAAAAAEgRgUAAAACAOyKBQAAAAEAPnIFAAAAA4PUxg0AAAADAZ1GDQAAAAGBIc4RAAAAAQECwhEAAAADgsvSEQAAAAKAK/IRAAAAAYDcKhUAAAACA7WOFQAAAACA8vIVAAAAAYK+bhkAAAACAueqGQAAAAEDxBYdAAAAAAK8zh0AAAACA/EGHQAAAACB1SodAAAAAgGxgh0AAAADgjHWHQAAAAEAcmIdAAAAAwDC5h0AAAACgOgCIQA== + NrgMGZxjYkBcG3g88qJlQI8BR/y9MnFAIrP8DWnSckDlVUsBVqN1QA== - + - pYj/PzbsOUBBzXZBj2wYQfeyQEDdCzdA8/vxP8YcOkBiQM0/WZPBQA9xL0FD6LRAaJ8LQLDPl0CJzpJAla+rQJEhxEB/pJVAcYE9Qbd9jkGO3mBBIimLQddw0kDazWZBN0GTQPlW8j+FYIBB+UwCQJJGtUFruudBrA5RQR6bikGTwa9AOhqnQNOfREE= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAKIfZUAAAABAEKdlQAAAAOCTKmZAAAAAAB7GZkAAAACAxORmQAAAAOC5Y2hAAAAA4M2naUAAAADAhopuQAAAAAD4n25AAAAAQO0mb0AAAACgMGZwQAAAAADzg3BAAAAAAJzhcEAAAAAAgQFxQAAAAAC/D3FAAAAAQFQAckAAAACABBJyQAAAAIA6MXJAAAAAAAm3ckAAAADgT8FyQAAAAADC9HJAAAAAABEGc0AAAACAiWNzQAAAAMAHc3NAAAAAQFKTc0AAAACAZI90QAAAAAA7JnVAAAAAgLlydUAAAACA6o91QAAAAMBz73VAAAAAQDgSdkAAAABAYzB2QAAAAEB0YHZAAAAAwBGBdkAAAADAd/V2QAAAAEBwM3dAAAAAQNw/d0AAAADA1XV3QAAAAIDfwXdAAAAAwA3Wd0AAAADAN/F3QAAAAMCFLnhAAAAAwJdGeEAAAABAxoZ4QAAAAADUsHhAAAAAANvDeEAAAABAxwB5QAAAAADADnlAAAAAQCZOeUAAAACAI5h5QAAAAADiEnpAAAAAQCRQekAAAABAjNJ6QAAAAEBm4npAAAAAAEYfe0AAAADABTB7QAAAAABwUHtAAAAAgIfwe0AAAAAAMAR8QAAAAEArEHxAAAAAADYufEAAAACAn0J8QAAAAEBEZnxAAAAAAL10fEAAAAAAd6J8QAAAAMAYxnxAAAAAwF8GfUAAAACAiDZ9QAAAAMA2S31AAAAAAEtVfUAAAABAgaR9QAAAAMD8tX1AAAAAQD3CfUAAAADAhtV9QAAAAICJTH5AAAAAIJ4cgEAAAABgbPOAQAAAACAbbYFAAAAAwGd6gUAAAADg5bKBQAAAAGDz7oFAAAAAwI/2gUAAAADgzBiCQAAAAGBWMoJAAAAAIKM7gkAAAABAbGKCQAAAACC7aYJAAAAAYD5/gkAAAAAgE7yCQAAAAGAYyIJAAAAAwGzigkAAAAAAtvmCQAAAAMBtFoNAAAAA4HIvg0AAAAAghEuDQAAAACAt4oNAAAAAYLcyhEAAAACglG2EQAAAAEBFkoRAAAAAYAalhEAAAAAg1PyEQAAAAGAM2oVAAAAAwE4LhkAAAACgrGqGQAAAAOCYhYZAAAAAoGv0hkAAAAAAIvuGQAAAAGANLIdAAAAAoJSlh0AAAADAo72HQAAAAADG+YdAAAAAIPOviEA= + KBZXds7jZUBkuM9LfgRtQMRlXluOUnBATy2kEJcSckDdhPAvbyN4QNaLVoIsFHpAsnHRUIISgEB3VXSrhvKAQEGaL0au2oFA0MKNO9qig0B3hGLVMnuEQA== - + - RDyIQPTTj0BL8SRAY1sCQN97EkBity9BMcALQA/N4j8SC9FAVRMPQSaj0EBTcHRAjUfyP6fE60CPXrs/kO+qQXJ3BkJPX+dA1WQlQWrkaEH8H7o/YWW8Pw/bXkCR3NxAOsXMP+1MFEAajwpBU945QX3Suj/GnbxAJzaLQER1EUG6bZ1A2LwqQZQJVEFLXzlAsG6HQPF6NkGiDVxASxBKQJZBU0AH6xxAUdoyQoC/hEFh/WdA9G+6QfZYOUB4xwlCynCUQG+bTEDKNTFBQTHNPxp4QkH7xag/LgBEQRTNTUDsO29AslGrQev+IUETa65AXILAQSqMeUGDe5RAbG9yQG+AeUDvFXBBqlbSQX5kTEEV47o/b9oUQCe2yUCN5FJBqPkpQZvkvkCa0zxB0RcBQFsJlkC6lhdBCUcnQEhWLkDHOC5AWvymQMj2C0HmYxtAPSQPQYQB9UGBopdAKGrIQXZGx0D7TXFAn7uJQOO3fECfhBpBjCxpQJvaTUGjMh5ANo22QPDeyECmu+9ADLbLQdtR8j+vLi9B0rXxQOCD6kAnV4BA1qaFQRqsDEGGpeBAIVWqQD4x3z/fnR1AGtaCQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwJdHYEAAAACgS2ZiQAAAAEDayGNAAAAAANfHZEAAAABAneplQAAAAAAHAmZAAAAAgObIZkAAAABgL+tmQAAAACCyImdAAAAAwKzAZ0AAAACAJkJoQAAAAAAyK2lAAAAAAFY+akAAAADgYmJqQAAAAAA9CmtAAAAAABlJa0AAAADgrKtrQAAAACDZx2tAAAAAAJHna0AAAACAWypsQAAAAEAFQ2xAAAAAgHOjbEAAAACAhChtQAAAAICKg21AAAAAwHC+bUAAAAAAmuttQAAAAICXHG5AAAAAAMpjbkAAAAAAj+puQAAAAACVYW9AAAAAQPN9b0AAAAAAI5hvQAAAAIDRq29AAAAAgDrkb0AAAACgaRRwQAAAAKDkJHBAAAAAAAJScEAAAAAgA3VwQAAAACDNg3BAAAAAIMSUcEAAAAAgdqRwQAAAAECOznBAAAAAgIDocEAAAACAgPZwQAAAAABATXFAAAAAQLGVcUAAAAAgj+FxQAAAAOAjBHJAAAAAQJYOckAAAADAayNyQAAAAEAOPnJAAAAAAPJ/ckAAAABgi8ByQAAAAAAc0XJAAAAA4JTsckAAAAAA7R9zQAAAAADoX3NAAAAAwDNxc0AAAADgJJJzQAAAAEDYo3NAAAAAYHi7c0AAAACAT8lzQAAAAMDs2nNAAAAA4Mzzc0AAAACAewB0QAAAAICyE3RAAAAAQCJjdEAAAACAB3J0QAAAAMA8gnRAAAAAQLaPdEAAAACAxbB0QAAAAODk53RAAAAAALgEdUAAAAAgcyd1QAAAAODYM3VAAAAAgMtRdUAAAABAHqV1QAAAAMD9s3VAAAAAQH3JdUAAAACgOdN1QAAAAMCOB3ZAAAAAgDUWdkAAAABAYS92QAAAAGDWZnZAAAAAgDCgdkAAAADgSLJ2QAAAAGAkxHZAAAAA4KridkAAAADAgfd2QAAAAGC5FHdAAAAAYGNDd0AAAADgi1F3QAAAAIDUcndAAAAAgJagd0AAAACAqNJ5QAAAAMC4CXpAAAAAIKKiekAAAACAJHN7QAAAAKBSkHtAAAAAQNTEe0AAAACgx857QAAAAKAIS3xAAAAAYCZVfEAAAACgpv59QAAAAMBxZn5AAAAAIDYkf0AAAAAgFDd/QAAAACCnRn9AAAAA4LyEf0AAAABAIZV/QAAAACBCpn9AAAAAQIC3f0AAAAAgVMV/QAAAAKC/0X9AAAAAQHjmf0AAAACgMBqAQAAAACCpMIBAAAAAoMRlgEAAAACgPG+AQAAAAOB6goBAAAAAgCPBgEAAAADgEemAQAAAAKDkC4FAAAAAgDkqgUAAAADgH0aBQAAAAGBLq4FAAAAAAG64gUAAAACghNGBQAAAACB8+4FAAAAAoPZSgkAAAACAW8iCQAAAAMDb0YJAAAAAAOHlgkAAAABA1bODQAAAAKDLwYNAAAAAAOsKhEAAAABgiVGEQAAAAAD2ioVAAAAAIFrqhUAAAACAkvuFQAAAAEDOi4ZAAAAAAJrAhkAAAABg6a2IQAAAAOB3u4hA + KBZXds7jZUCJy7y2HKVqQBq6YmAmw3FAA0krmFUickAaGD+0ftR4QCoKcw8EM3pAPCFB5QFFfkAUtKcxLqKAQKW4KMpvWoNAAr5qDw27g0DpeyFx6KKHQEaBY7aFA4hA14XkTse7ikBMqeuNdDuMQNe00nhzRI5A3a1sJrbzjkC1SjtaZSaRQG5uLSgxPpFAg4NuKVdakkAxOnvxgPKSQDWa0zed5pNA - + - HhvuQBMaU0Dund8/FjNzQOaDi0BFophAvCOhQIJeAkCeMxtBBpiUQPfxAUEDUL5AA2nNQahx2UDI+BZB5BaFQHJKk0DcLV9AItksQSmu4UA3M7VAvS6vQK5Gx0BpSx5BwsUUQPRKxkAcMFtBUHhAQFG8jEBEkb1Aie8NQRydv0CjFVhBasM3QerXgEDycZRAmx7sP5fLpUCyTEBAQ4NbQD9T9ED7efU/a6f1QOSANEEfdpNBVZOUQCdrRECPFydCk/VJQaudgEChxO1AuRw8QV5xCkHASdA/StTxQSByCkC5tYJAkBGFQQxqZ0D8nZVB3301QfbPFUHzoC9BmfmxQMSZ80CPUBFBAIU1QW51TEBKf4lBQ1CVQG4RSUA76jlABQkuQLSWDEIhwUhBexCmQfGawEEgTotBdnnTQWAnhECSkAFCc8y0QMpVnEAmGq5B6VqLQNoMJEGbyzpBhqrTQWBjsUHJ9gFAkLaAQQ5YGkExpyNCP5ItQKBBlED6RSFCFcJVQBZYFUHxQ75Av6V3QHqYlT+QTqFAF6f7QPOTG0CYGoVBLZAIQmgOHUH9zHJB4KNHQhKmr0COUkxA81WHQQkEpEKgLThBWRkAQQRHi0BAxidBxyseQZRHQkEr78w/I6KrQE2QLUCpEPI/yHgaQTqKSkFBz98/XF+zQOu21kAq11pCsTvYQOVk8T+RFJNAv9QSQt7e50CRLKpAvugKQRdkU0G524RAr/MaQPAcCEHpoS5BLDZVQAG03EAq+/FA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwCepa0AAAADAKSpvQAAAAOA70nBAAAAAQNVQcUAAAACABY5xQAAAAEBZgnJAAAAAAGwEc0AAAACAbENzQAAAAMDAg3RAAAAAoJuEdUAAAADAgDV2QAAAAAAlQXZAAAAAgMh0d0AAAAAAyHJ4QAAAAMDAwXhAAAAAgBYffkAAAAAAFod/QAAAAGC6MYFAAAAAoIXrgkAAAADglvuCQAAAAODVKINAAAAAIMsyg0AAAADA69mDQAAAACC+3oNAAAAA4A37g0AAAABAPZGEQAAAAAAjoYRAAAAA4A3mhEAAAADgdhWFQAAAAMBho4VAAAAAgBjFhUAAAAAgctCFQAAAAKAARIZAAAAA4CiDhkAAAACAczSHQAAAAEAl7YhA + NrgMGZxjYkCJy7y2HKVqQMZtNYzMxW5A - + - PJEbQAtD4D+tgVVAQLlqQS174UAQoKg/MQwrQVy6ZEAmjZhADTDfP4IEzT994vNANuiSQK8BmEGr8NhAmzsoQTZPXEBPoDlAwxCDQRR2gEDD3MJAbWOmQK52zUEkOetBZH2mQI/vokAnzl5AhXGjQNT3x0AKUXFAAdedQRiumEBdJQpAYDTmQKUYgkC8iBpB + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAgCRBakAAAABgcbtvQAAAAOBtJnBAAAAAgNxBcUAAAACAR4NxQAAAAIBLE3JAAAAAwJ98dEAAAACA5lJ1QAAAAMD/bHVAAAAAAD2idUAAAABAsCF2QAAAAMAhwnZAAAAAwFPzdkAAAAAAxuJ3QAAAAMCQVnhAAAAAQDDveEAAAAAAjUN5QAAAAICCbXlAAAAAwC+nekAAAACAJ0N7QAAAAABRVHtAAAAAAK9ne0AAAABAeNJ7QAAAAIDD+HtAAAAAgDdNfEAAAABAq3N8QAAAAACpgXxAAAAAAFOUfEAAAADADtZ+QAAAAAB1/35AAAAAwJ5af0AAAAAAD6N/QAAAACCbXIBAAAAAoNahgEAAAABgyNeAQAAAAMA76oBAAAAA4LkYgUAAAACgZ0qBQAAAACBpU4FAAAAA4OlzgUAAAACgVM6BQAAAAADP2oFAAAAAYMDhgUAAAAAg0S6CQAAAACC+RYJAAAAAQG1OgkAAAACgS2SCQAAAAAAZaoJAAAAAwOJzgkAAAABgiYKCQAAAAEDyiIJAAAAA4Jm6gkAAAABgXMOCQAAAAKD4yIJAAAAA4BfQgkAAAAAg3NuCQAAAAKBR7oJAAAAAQMkPg0AAAACgkTCDQAAAAGAPNoNAAAAAIC5Lg0AAAADArJGDQAAAAKCjmYRAAAAAoIgYhUAAAABg5uSFQAAAAIDzOYZAAAAAIChxhkAAAABghr6GQAAAAOA5x4ZAAAAAAB28h0AAAABAwOuHQAAAAOC7GYhAAAAAICi4iEAAAACAZ9uIQA== - - - - - - TPeJQA4nk0DTI4hAMw8eQNlpEEHu4rVAL9wRQAAsHkBFPgFBZ4caQYbzzD+81aBAUL/FQP4XX0B7PKs/76sTQcL3kkD8Aqg/fED/P1L4HUCUCM0/dpolQVoCZ0BBt0FAHyCUQd9kokD3ebo/EpJwQbznt0AOogVBLn27QXkKxkB5eelAQXhUQcQ2AkA63LNAKQ/EQCJgbkCK1oJBXtkiQRbeW0CazfVAWCRlQJmgZUGvVY5ABnGUQM89JkIwofg/dYGzQP3pLEOIH1xBcyWQQROTMUD9TotB1IL3QLsccUHr3FZBGm2zQDBWeUDq6nxAlvbMP7g3AkDmBMZA0iCQQQJKJ0C+WKNAS5hVQYCDaUEt1xRAxD0QQTK5FECjKh9BYNHQQAV/OkE= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwGRKXkAAAABAg4teQAAAAICCxF5AAAAAoN+RX0AAAADAC8ZfQAAAAOA0+F9AAAAAgNaYYEAAAACgftpgQAAAAEBUJGFAAAAAAMJgYUAAAAAgHIthQAAAAGAuImJAAAAAYFcgY0AAAABgTb9jQAAAAAAZaGVAAAAAgOnAZUAAAAAgduRlQAAAAIBEJ2ZAAAAA4DFHZkAAAACgF9pmQAAAAOBVLWdAAAAAINplZ0AAAADgM+ZnQAAAAGCBiWhAAAAAgHa8aEAAAABAeCVpQAAAAMCL5mlAAAAAgBSmakAAAABAvt9qQAAAAOB5BWtAAAAAQM2Da0AAAACAfMNrQAAAAMB9/WtAAAAAgFXZbEAAAABAOUJtQAAAAAC/fm1AAAAAQGOdbUAAAACAByZuQAAAAMABYG5AAAAAAFwDb0AAAAAAqENvQAAAAIBiYW9AAAAAQGOEb0AAAAAAbaVvQAAAAGDaEXBAAAAAoJMicEAAAABAKj9wQAAAAGDmTnBAAAAAAKhacEAAAAAAHnBwQAAAAMDsf3BAAAAAgM+NcEAAAADgJbFwQAAAAKA9wHBAAAAAYLrVcEAAAAAAvQBxQAAAAGAfIXFAAAAAAGEzcUAAAAAgSkFxQAAAAOCwUnFAAAAAoHiLcUAAAADAL6RxQAAAAICG0nFAAAAAgGLhcUAAAADAHwlyQAAAAABDInJAAAAA4Ew4ckAAAADAvUNyQAAAAIDYUXJAAAAAYFNuckAAAABgzYpyQAAAAEDrmnJAAAAA4FeuckAAAAAA8MRyQAAAAMAw13JAAAAAANjickAAAACAwfRyQAAAAOA5AXNAAAAAoBoxc0AAAABgHV5zQAAAAIA1lXNAAAAAAJ6xc0AAAABAksBzQAAAAMCt13NAAAAAIKrkc0AAAAAgKfJzQAAAAIDyAnRAAAAAQPwTdEAAAAAASSR0QAAAACDYV3RAAAAAgI51dEAAAADg2YR0QAAAAEC20XRAAAAAQC3hdEAAAAAAggB1QAAAAECOD3VAAAAAoMYidUAAAADA3zF1QAAAAMATQXVAAAAAgNVQdUAAAAAAGoB1QAAAAGDDkXVAAAAAwPeddUAAAAAg+LN1QAAAAKDOw3VAAAAAILnSdUAAAABg2/F1QAAAAIChBXZAAAAAQC8hdkAAAAAAu+p2QAAAAEClY3hAAAAAwHg9eUAAAABgIFF5QAAAAIBo1HlAAAAA4KFDekAAAACgsat6QAAAAMB9BHtAAAAAwIx9e0AAAADgQfR7QAAAACCqFnxAAAAAoByVfEAAAACgAaR8QAAAAKAGtXxAAAAA4KTDfEAAAAAgQu98QAAAAMDjRX1AAAAA4OClfUAAAADg77N9QAAAAEA/hX5AAAAAIAaSf0AAAAAg30aAQAAAAIBydoBAAAAA4CKbgEAAAAAAHyKBQAAAAOAMm4FAAAAAwEgagkAAAACAZz+CQAAAAEBEmoJAAAAAYKAig0AAAACAElODQAAAAGDQW4NAAAAA4K2phEAAAABgIv2EQAAAAMBfvIVAAAAAoHsrhkA= + KBZXds7jZUDEZV5bjlJwQDtMc7KVAnNAxMM6r+Zjd0CWWL39WFN5QOIU95k+9HpArK+taP/BgEBxuel2ywKBQD20LgFBeoNAAr5qDw27g0A94xwr7QKHQGTBOflf04dAzAt7IBnLiECRx96ewfuKQMw6aUrFU4xAJKiC2hgEj0DMaVd0cdyPQA== - + - aHldQfPQFEAByhRAZVBxQELD+ECuTPE/IdvxP17ZlT8gyfE/a6aFQKgw8j9a48w/UYzDQL2PhUDdzd8/UScFQY8nZUBlwipB7HwhQYgoaECb0xVAUo7DQCRluj+LXIBAlFqOQC95zT/3S1VAAGK6P+o4x0Dg4fFAcAS6P68aQ0A+ErFADs8fQTJduj+hdhNBIXYAQAVgWkF95t5Ar37tQJUxAkADgIdBgQkbQDS0b0DyjKtA7mpDQF4ucUD1owtAKVaKQD9XmUD/2rxAsg1MQTrq5UDDighBFf2eQeBPB0Fmzp1AKTs2QQCF3z8PIhpBYX8nQejFw0AcbLo/8opUQHiJhEHFDQFBzdQcQDrJu0FZHWlBZbh3QBreEkBrSVxA4P8dQIiQUULcJDZC1dRwP0MK60A/KAlCNIRbQUnPFEL3fnFATTBVQPPi40FA2b1BYA9SQURtLUGYiZZCqlJHQiU2AEDYDclAShGTQVAd8kD0I0tAVNGdQIqfn0IBkt4/5zsHQVVNEEFpdGVBqSmbQVyzj0H1WOVB1lE1QRilL0FF7Mw/nkNuQOQP3z/ligtAHLR5QVpVkUDZtpRBwOvHQOWezEDdQNtAcR2jQM/lHEFLKwJAMe/xQFLXMEDFOV9At51cQSNzZkF4XnFA2zoCQB3Jq0EFpCxBcOXnQcfGP0I6OOtAvgBcQLi7SED/TeZAWIwwQJB5SEFsrqRA92qUQKA7qT9t+/E/1JEUQMQyz0DRLF9BXH+vQVJj+EC0f25AogKIQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4I7kZUAAAABAzo5oQAAAAOCqg2lAAAAAgKRDakAAAABgsGVqQAAAAGC5Z2tAAAAAAAlJbEAAAABAtWBsQAAAAMC2em1AAAAAoMCgbUAAAABAl7VtQAAAAOCGXW5AAAAAgK6lb0AAAADg4G9wQAAAAMBx9XBAAAAAoDFCcUAAAADA4BRyQAAAAKAgJHJAAAAAwJGRckAAAABAYAF0QAAAAACBEXRAAAAAwLBFdEAAAABADxJ1QAAAAEBMg3VAAAAAgDYgdkAAAADAicB2QAAAAEAhRHdAAAAAAIhSd0AAAACA8rV3QAAAAACuRXhAAAAAgMlVeEAAAABALnt4QAAAAEC+jHhAAAAAwLrDeEAAAABAxQt5QAAAAIBOFnlAAAAAwMYneUAAAACAJ2J5QAAAAIDi1HlAAAAAgITGekAAAADART97QAAAAAALUntAAAAAgHeBe0AAAADAyNJ7QAAAAIACA3xAAAAAQC1RfEAAAACAMGF8QAAAAEDzb3xAAAAAwE6ffEAAAABAVA1+QAAAAIDhoX5AAAAAAFVTf0AAAAAAGWZ/QAAAAIDR+n9AAAAAYFQNgEAAAADg0hmAQAAAAOB+W4BAAAAAoAZygEAAAACgV3eAQAAAAOD4n4BAAAAAIAnDgEAAAACgTN2AQAAAAGAYB4FAAAAAwMAggUAAAADgPziBQAAAAGCqUoFAAAAAwLFigUAAAAAgMnKBQAAAACCyf4FAAAAA4JJhgkAAAADglEqDQAAAAKDOUINAAAAA4Gmjg0AAAADAAruDQAAAAIC74INAAAAA4Lfog0AAAABgde6DQAAAAGAucIRAAAAAoD6KhEAAAACg3JGEQAAAACDpo4RAAAAAIHPJhEAAAAAgTQOFQAAAAIDvGYVAAAAAAGE6hUAAAABgocmFQAAAAKAAHIZAAAAAgEcmhkAAAACgaGqGQAAAAGD7coZAAAAAIPnShkAAAADg3+6GQAAAAGBpEodAAAAAQPBkh0AAAAAggKyHQAAAAAC4+odAAAAAoG0ziEA= + KBZXds7jZUAAqvrc5WFwQNzlv3T/InFA/u7BpYKTdkAACNcwPnN3QCIR2WHB43xA/kye+dqkfUD1tbbNbIqBQJx3i2fFYoJA - + - wghDQKm/iUDWzvE/lgojQUelMEB+0yZAmTOVP2jq8T8QjPQ/rRqZQAJnOEC4h7o/b0VDQHoXkEDw579AcRGFQHWZUkDVzVRA2CqoQBCO/0DPuTBAm6qGQANhX0GNGc0/PvALQrpNq0CLtwtAKvdUQLM7SUCsEh5C2lZMQKXqzkBaLHdBpt7MP/kGF0JR/4A/Ck6qQES93z9vy8w/9ufKQI3c70BbOQ5BpAoPQV+o8UDfL+5AcFxkQewuKkEhp0BAffYVQTHli0EzMthAADhTQUg0bkATfhdBfHkZQWld3z9EjYxBIHTaQPRXEEFGSkhCquhSQMnKP0FGBbhANPbvP3x5uUBHoDVBtwUIQSI8i0AKmo5BmNo/QL17cEJwxrZAfVRfQHSXKkEeYaNA1WuZQLD/LUIp/axAZgBDQMMa0UCYtDVBl1twQIc6X0AeqqxB1xj0QAerxUCaoMtA7qUNQoQ3K0KlObNAtGX9QEIaPUHTboBAn8GPQKBatUB0uYFAWEhLQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4OomYEAAAACADKNiQAAAAOB6CGVAAAAAYCUkZUAAAAAADORlQAAAAEAYSGZAAAAAwG1iZkAAAACA4OtmQAAAAGANJWdAAAAAoO9jZ0AAAABAFsVnQAAAAAAiIWpAAAAAAGtlakAAAACAraRqQAAAAID2J2xAAAAAgP4GbUAAAADAAGVtQAAAAMA2CG5AAAAAAJfEbkAAAACAPe1uQAAAAEBGIm9AAAAAAAs+b0AAAAAAeGVvQAAAAEDanG9AAAAAYFkjcEAAAAAAizFwQAAAAECpj3BAAAAAAB0AcUAAAAAg/hRxQAAAAMCaUnFAAAAA4AVycUAAAACA3JlxQAAAAODJo3FAAAAAwErBcUAAAABAR/BxQAAAAAAZK3JAAAAAYLZOckAAAADgX79yQAAAAKAUFHNAAAAAwJMuc0AAAADAqEVzQAAAAEBAc3NAAAAAIDKDc0AAAACgZJJzQAAAAEAao3NAAAAAIAa0c0AAAACARcFzQAAAAAAm1nNAAAAAwO8SdEAAAACAQiF0QAAAAMARMHRAAAAAwLtidEAAAABA7sd0QAAAAMCrInVAAAAAoK00dUAAAAAAKkR1QAAAAEAbXHVAAAAAQGeFdUAAAAAAO6V1QAAAACCl03VAAAAAgIvqdUAAAABAwjR2QAAAAGD6QXZAAAAAQNVSdkAAAABAH2x2QAAAAGA1pXZAAAAAwIbAdkAAAAAAkct2QAAAAMDr2HZAAAAAoAr1dkAAAADgewd3QAAAAKCYGndAAAAAwJYnd0AAAABAnmx3QAAAACCKdndAAAAAAJ+Bd0AAAABg0pR3QAAAAOBy9HdAAAAA4MkGeEAAAADA6Th4QAAAAAB1X3hAAAAAgK6HeEAAAADgeZJ4QAAAAAAAsXhAAAAAwPfFeEAAAACg19F4QAAAAGA54HhAAAAAoJYPeUAAAABggyB5QAAAAICsQ3lAAAAA4BZOeUAAAABgrpB5QAAAAKDeoXlAAAAA4C2EfEAAAAAgqAZ9QAAAAKDaL31AAAAAwPGlfUAAAABAeLR+QAAAAMBdw35AAAAAwEFff0AAAADgqHV/QAAAAKD4h39AAAAA4Jyvf0AAAADg4MN/QAAAAMAPcYBAAAAAgOx5gEAAAACAM6+AQAAAAICMxoBAAAAAwPXYgEAAAAAgL++AQAAAAMDMqYFAAAAAQDYjgkAAAACg2H6CQAAAAGBKhIJAAAAAwPmKgkAAAACgFbKCQAAAAKCq5IJAAAAAoNiKg0AAAABglZKDQAAAAMCgmoNAAAAA4NmphEAAAADg6yqFQAAAAGCvcYVAAAAA4HmbhUAAAAAAY7OFQAAAAGA2AoZAAAAAIG2ahkAAAABgxzOHQAAAAOC0codAAAAA4MCCh0AAAAAAXImHQAAAACABtIdAAAAAwFMTiEAAAACgYCyIQAAAACDiO4hA + NrgMGZxjYkDm926t/RFwQN9iJOBzYnFArVID5xVDdkCmvbgZjJN3QHBZobq7c35AGmN5CXyUf0A= - + - Ue7wP41kOkAIsqFAzGwRQE9hQEBZqu4/4xCPQJCP8T9P71VAmFkaQfdaXkBzroBAprWVQEJm60CRElVAL+xkQD45GEHb0lZAwHCBQH6Tl0CgO1NBYfbVQP5qsUBiOhZBp+2pQGHcFEDSu+FAOJ5zQHmDuUD2PhJAfp+XQJmn7UDhdpdAExAVQO7t8T/JZQNBeHEbQIujgEBh6F9ArFEeQFVvTEBoe/E/jGaUQMDdx0E3S3FASi+6QCfKrkCtRhFArR3YQaJ/GEFHxORAaMM6QZY8pkCKS55AZhqVQb1KSUCO7NBA5QN6QPevk0D27QtBYnbyP4PQOkHv+H9BWJNYQTtsgEBT/olAiBfjQUXyO0FrECZBpMiuQCLdeEDkX2ZBSKwZQRdIC0AikSFBqpYvQFbJCkK4VLtB1kwCQCArGEGyqc9A2No+QWOiC0GJUzpC0uv7QfiJIEGUyjlAFAVnQStABUH0r6RC0R+xQoJquj9L7Y5B9olUQdJeIEFZ5K5AhaeJQHAI0ECHtEFB3kuhQdP160DKMQ5BEMDxP27KlEEzZYxBHi3dQKgb70FoLMxB2upuQJ+GakHJtAxBk5CHQGfsLUJ8PM9BDjgDQYsZqD/41DBAIuoaQqOulUHzLTlBNHi6QDj1I0FNQapAVGDRQKl1vkDlbKJA6HItQAxkC0Dfep1AhW1CQC3bHkDVSC9Aa7n3QfgSC0B2zjlA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgN+EaUAAAAAgY2dqQAAAAADQqGpAAAAAgIHiakAAAABA5aBrQAAAAADoXWxAAAAA4ILjbEAAAADgIQBtQAAAAIDHQW1AAAAAgNbgbUAAAADAu2RvQAAAAOC4g29AAAAAQBykb0AAAAAgA8tvQAAAAAAj6W9AAAAAAD0TcEAAAACAojBwQAAAAKDeQ3BAAAAAYBVicEAAAADgUbNwQAAAAEDfv3BAAAAAALTRcEAAAAAgEvNwQAAAAAAHA3FAAAAAwHqvcUAAAAAgZ+1xQAAAAMCo/nFAAAAAwJ0TckAAAACA7nFyQAAAAMCTMHRAAAAAAORjdUAAAABA33R1QAAAAMCCknVAAAAAQCGodUAAAABAGc91QAAAAIB+MHZAAAAAQHRAdkAAAAAATFJ2QAAAAIB0YXZAAAAAAIlxdkAAAABAL4F2QAAAAIDcsnZAAAAAAGoxd0AAAAAAM0F3QAAAAEAOUHdAAAAAwKZ0d0AAAADApIF3QAAAAECAkXdAAAAAQMCzd0AAAABAhQJ4QAAAAEDjD3hAAAAAAGhEeEAAAACArFJ4QAAAAABYdXhAAAAAgDKDeEAAAAAAGY54QAAAAADWoXhAAAAAgH7ieEAAAAAAxg55QAAAAEDFL3lAAAAAACZieUAAAACACZV5QAAAAAD7qnlAAAAAwAHAeUAAAABA4c95QAAAAMDR5HlAAAAAgB0wekAAAACAgF56QAAAAEDm43pAAAAAAB41fUAAAABAOXx9QAAAAAALpH1AAAAAwIbTfUAAAAAAAeR9QAAAAMBB9H1AAAAAAGxIfkAAAAAAha9+QAAAAEDR4n5AAAAAgGnwfkAAAACAKQJ/QAAAAADyVn9AAAAAgE90f0AAAADAMJR/QAAAAMAPxH9AAAAAQDrmf0AAAABgVQmAQAAAAKC4E4BAAAAAIEsigEAAAACgiT2AQAAAAGAsUoBAAAAAoGBigEAAAABgj5uAQAAAAODbv4BAAAAAAIb5gEAAAADgszeBQAAAAKArQoFAAAAAoNdRgUAAAABguleBQAAAAKAUbIFAAAAA4NOBgUAAAABA84mBQAAAAOCskoFAAAAA4EybgUAAAACAsKmBQAAAAKDO1IFAAAAA4H7bgUAAAAAgNCCCQAAAACCzYoJAAAAAQGNtgkAAAACgkX+DQAAAACCSmoNAAAAAYK/0g0AAAADg6wKEQAAAAGDIEYRAAAAAILMZhEAAAACgeSuEQAAAACDpSIRAAAAAAC+DhEAAAAAgMpmEQAAAAKCloYRAAAAAABKrhEAAAACgJ8+EQAAAAEAtEoVAAAAA4NMhhUAAAACgUS6FQAAAAGDDVIVAAAAA4G+DhUAAAAAgmNqFQAAAAOD2IYZAAAAA4CwvhkAAAADgQjeGQAAAAOC9aYZAAAAAAGdyhkAAAAAgJ5OGQAAAAGBDt4ZAAAAAQCnKhkAAAAAA8RqHQAAAACAAK4dAAAAA4OqZh0AAAAAgw6SHQAAAACDEq4dAAAAAIOXsh0AAAADggCiIQAAAAGA2dIhAAAAAIOOfiEA= + KBZXds7jZUD1hHOUyKJnQNeRyQ6NInNA7mf6OVTSc0D5mss/EJN4QO7F1o2s43pADBeTeAR0fkDA9V95KMR+QBeQytRD8oFAc9tTeGtqg0AOb0oDe4qFQAa897PCcodAUjJDqvPSiUAzwpxZJJuKQOYS5+VK241AURNZRHwrjkACslFo0bWQQPJ5/r/pGZFAGTUkOwJKkkCU23oTJj6TQGMl9tgtTpRAEMu6qkEKlUCtFch2WVKWQFlN+3ZiZpZAoGGqcXhKl0BfLC2Fn96XQCB5oYbODplAqK5tUcA6mUB9opGCCg+bQFkwVcbpRptAxiTSTitrnEA= - + - 9NTIQHHAQkDUS+lAKvjcQJEVi0AAnIJADvLNQIVsdUHLpz9ApduKQMj5VEFDPTlAdTAIQJO6tEAt+C9A/2kFQRmNmkFmpyZAiLahQaqo8UCO8xtB+QGAQOqCNUEK2lhBRrHOQJlytUCLvKc/xv5vQooEV0L6Wrk/wpY5QEo2mEDPUKxBpiICQAFq3UD8YFlBHN3bQeCQ/UGlAxNBprZMQmUP90DzXGtBay7fPxjXt0BN7JtAd/yAQbdb8T/lvCVA6UMTQVt5uUGycVVAFc5hQprTSEGTrcFA7YbyQN2ImkF8LfhAXt2BQGEmGUJbzbRAsJj4QPE73kCNea9A/kyeQrbWf0H4SPA/MRnDQLUxcUCmteFAn42rQJNXCUGDw45AbEdbQBkngEBLDT9BPQ2LQLz+GkD8DY9APCojQZTQAEBN/aZCeAgnQNGbmECi3AtBLfxtQDlIOUIob0hAvEIvQYfDPEE6WopA+xZ3QAtdw0G+kyRBOH0UQKFdW0APKGZBSC62QDTDhEBXUpNAfFO6QG6OrkE7NJ1BkS8UQJGZgEGFZ2VAzQ1mQEwyMEDASkBD9TjZQMD6S0FsKXFAEbwhQYMTr0AzLBpCkPukQMyYFEDvrYlAAiShQHTYxkDrB3pAAH74QGmkJUCdPMFAUNqGQT9b5kDuclNAwSl0QV7060Faax5B5b8dQGZ6ekAurKJCBznVQchCMUAoPHFA4ij4QEnRAUDDpEtAF+OPQBu87ECnFwtA+VLxP+vH3j+5RJhAy2mBQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAIFUDXkAAAABA6MpfQAAAAECdI2BAAAAAYOfCYEAAAABApOFgQAAAAMBVy2FAAAAAgLwkYkAAAABAwWRiQAAAAEA2pGJAAAAAQM+hY0AAAACggeNjQAAAAMDyC2VAAAAAAEKDZUAAAACAlmVmQAAAAEB4rWZAAAAAoBrGZkAAAADgiaFnQAAAAACJAWhAAAAAgLBbaEAAAACARqJoQAAAAOA+cWlAAAAAQOnmaUAAAABAniJqQAAAACA+vmpAAAAAwN/Oa0AAAACANxRsQAAAAMAtR2xAAAAAAGdlbEAAAACAWdFsQAAAAIAu7GxAAAAAQNJEbUAAAADASuVtQAAAAMA4A25AAAAAAForbkAAAABAjEduQAAAAAD0p25AAAAAwNrFbkAAAABAgCJvQAAAAED7R29AAAAAgCBob0AAAAAA5J5vQAAAAEBgym9AAAAAgI4RcEAAAABAUiJwQAAAAICCMnBAAAAAgBNLcEAAAACA3VVwQAAAAABcb3BAAAAAQHGAcEAAAAAA65FwQAAAAACtpHBAAAAAgJ7CcEAAAADAqeFwQAAAAOAM8HBAAAAAgA8lcUAAAADgtjdxQAAAAEBEY3FAAAAAQE9xcUAAAABAgoJxQAAAAIASlHFAAAAAABqjcUAAAAAAe9JxQAAAAGBY5XFAAAAAwNPxcUAAAABABANyQAAAAMAtJXJAAAAAoMY9ckAAAADAZV9yQAAAACBNbnJAAAAAQIedckAAAACgFb1yQAAAAADT0HJAAAAA4CDxckAAAACAygFzQAAAAADDFHNAAAAAwO1Oc0AAAADAkVtzQAAAACCPdXNAAAAAAP6Bc0AAAADAy45zQAAAAGA1qnNAAAAAgDrKc0AAAADgud1zQAAAAAAVBHRAAAAAoIQSdEAAAABgFDF0QAAAAACyQHRAAAAAAH1MdEAAAAAAdXB0QAAAAGBfgXRAAAAAgLiRdEAAAAAgWaB0QAAAAGBS7nRAAAAAYKgQdUAAAADA7hp1QAAAAECXMXVAAAAAwIxBdUAAAADA3VB1QAAAAMATYnVAAAAAgKtvdUAAAABAv4d1QAAAAMB/rXVAAAAAwP6/dUAAAACA7tJ1QAAAAMBj6HVAAAAAIJAgdkAAAABgPnx2QAAAAMACE3hAAAAAAAoleEAAAAAAe0Z4QAAAACAaZHhAAAAAgIimeEAAAACAnlN5QAAAAOBLvnlAAAAAAA7LeUAAAAAAKdV5QAAAAKBFBHpAAAAAYAQXekAAAAAgkTd6QAAAAMAuFXtAAAAAQBFfe0AAAADAR8J7QAAAAMDY03tAAAAA4HLme0AAAADANhp8QAAAAEA1JHxAAAAAoKExfEAAAABgTVt8QAAAACAp5XxAAAAAQJ0kfUAAAADAh4d9QAAAACDQrn1AAAAAYG4KfkAAAACgemJ+QAAAAGBmHn9AAAAAwLYzf0AAAAAg4YV/QAAAAMDmw39AAAAA4AMCgEAAAADAyD2AQAAAAGAlY4BAAAAAYEubgEAAAABApLqAQAAAAODc/4BAAAAAQOETgUAAAAAg1DmBQAAAAABti4FAAAAAYDqRgUAAAABgRPqBQAAAAGBeMoJAAAAAIG14gkAAAACALLKCQAAAAMC+v4JAAAAAoNovhEAAAAAA+MCEQAAAAGBxSoVAAAAAgCqChUAAAADACtSGQAAAACD5O4dAAAAA4NY5iEA= - - - - - - 9PnqQFLe8D+Trh9Bs2dDQGaWB0KXAAJAZwkLQGsF/0D5z3FBe5TeP4cRDUEymYFAhmVTQLJnvUDO7EtAlewtQBjkDUHe/dxAqMcvQZwajkBMvQ5BEkIUQOauXkBeQ/8/p9k/QY5wSEDXJ0pAuxffP0jF5UAEmORAtDPMP9heQ0FCRfI/J3tGQYPeQEDGvjhBfldCQLSwgUBkdN4/UJaAQCC2OEI+M3FAZTIuQGKWAEH03RtBMulCQBCpQkC9sphAhFixQOUeuEBffkBBvfjxQMkKEkDxQmBCI24UQOfSaUBUA6c/+FiiQHHUQkDN62hBr9OdQZ/lt0CKoqtAwailQd9IFkFDETNAAmC9QNYBKUHlIb5Aa0GyQQsbyUFy9PpAopRZQVgDqUHIgypBRMrtQe6rnEGkjSNBA2CWQdqDh0G5oepAkViPQbn6IEH2BPNAGMrGQUNdrUJkDEFC7y6cQAZ9+kJ42wVBxDY3QeEtPEHuLmpB6VMnQah5xkDNcy9BZ4JlQREmIEJbXI9BT5mKQJ3bikEfxSNCoF6hQYjMJEDGtlpBrGkIQU8cpkAI+bNA4F+DQNUyzEF+Z0lAIlcRQvoCbkDoRLk/jb+cQBTRPEF8xM9A46COQUbkqkBgMjBBKj4RQUhqRUE/ovBAFDlxQJjwRkI0JKVAZSN1Qay4ykBgEINARCrHQDrZ70B+voZBYC8LQE5k5UB7tdZASri3QUYDjkIV4AtDx8XnQdJzvEEtrP5AGXavQA7otEDc/PxAjogcQPDNZUBqUwtAWrVmQNjwCUJSLjlA/iuAQKHrIkHHLiZA5w7TQWti9UBMBIJA65NJQMNMsEDM3IlAaEbAQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgLFGZkAAAABAC4RpQAAAAGDDvmpAAAAAIKTCbUAAAABg9yRvQAAAAMA9/29AAAAAwILHcUAAAABActFxQAAAAED0YnNAAAAAQFV2c0AAAACAJrhzQAAAAADm4HNAAAAAAKAFdEAAAACA0JV0QAAAAAAnwXRAAAAAgCpTdUAAAACAzXJ1QAAAAIB9N3ZAAAAAAJtFdkAAAAAAV1J2QAAAAMDoLXdAAAAAQBZqd0AAAABA0oZ3QAAAAICo8ndAAAAAgDMbeEAAAADAc0N4QAAAAECSkHhAAAAAQFu2eUAAAABA6AN7QAAAAMC1RXxAAAAAQDxIfkAAAABAmWR+QAAAAMDtdH9AAAAAQL4SgEAAAADA5FiAQAAAAEBkooBAAAAAgC3jgEAAAABA2viAQAAAAOAmAoFAAAAAYP9rgUAAAAAgPLmBQAAAAOBRBoJAAAAA4DAMgkAAAADAGBuDQAAAACBi2INAAAAAYAPqg0AAAADgvEuEQAAAAIDPk4RAAAAAIEL0hEAAAACA+IiFQAAAAGB+NIZAAAAAoHSChkAAAABglmKHQAAAAOAlaodAAAAAAFC8h0AAAACAy9yHQAAAAMAtDYhAAAAAIJ6biEA= + NrgMGZxjYkDEsXzkGyNlQOK2GkbmonFAo+J3Wr/CcUCjQFSuF9R4QKW9uBmM03lAo54wAnDlf0DC2OF7aLqCQOQvvDwP+4NAVrmFt7/ChkDUqcGrscuJQFboc+FrS4pAVhdiCxjUjUA2rZCVBOSNQBtuv19YtpBATW0tWUgOkUD/g5JnjjqSQA== - + - YAIUQCUfFEDfIZdAsK0PQcBfq0DVO+w/iKTbQCTdLUC6ci5AjrCSQK/zxkBUC1JA6/9lQKlAzD+VxL5Ahk0wQObcuT9iXwpA8zAuQEUUC0CVlkJAhZ3FQH3J4ECpnO9AIdAKQRt3yz+jOZRAT7OeQCq7P0FzXvE/71KFQAbKykD2GApBj2U2QWDFHUDg1MtBut/+QKUTy0AmphFAP2eUPxTGQkBJN7dBRrZYQDiPjUF4/DhAWu6WQWW+J0BYwS5AwhEBQXcYHUEBNQJBtknUQENnfUFSdfE/bCcRQcLDN0FpQf9ArVsgQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAoP8eakAAAADAe4ZqQAAAAIDShmtAAAAAgJwlbEAAAAAgPytuQAAAAMBaa25AAAAAwBIhcEAAAACAIjJwQAAAAOCD0nBAAAAA4ADjcEAAAAAAMw9xQAAAAMDIgnVAAAAAgAN0d0AAAADAPqJ3QAAAAEB04XhAAAAAgFqDekAAAAAA7XJ7QAAAAEC8BHxAAAAAQCgsfUAAAAAAmm59QAAAAIBWun1AAAAAwLEbfkAAAADALXt+QAAAACB9KYBAAAAAYKNegEAAAACg7cGAQAAAAOBqyIBAAAAAoNjNgEAAAABgePqAQAAAACBHKYFAAAAAgOY7gUAAAADgk5OBQAAAAOChoYFAAAAAYM8bgkAAAADAvCOCQAAAACBBMIJAAAAA4D1fgkAAAAAgfqSCQAAAAKCSqoJAAAAAgLu6gkAAAADgrdqCQAAAAEDJ7oJAAAAAQCMIg0AAAAAAhTqDQAAAAGBUSIRAAAAAYJ9ehUAAAADgsYSFQAAAAKBD3oVAAAAAgAQchkAAAAAg61GGQAAAAAD6kIZAAAAAYCfbh0AAAAAguWqIQA== - - - - - - qQ42QHjgLUEDmltARQeZQNlIEkGGbhxAwFTpQBsU7T8SSOJAS1t6QGipW0AZwuVAo44HQRua1D/fRe0/GCLKQJAAQ0CC48BAPDgTQARPOkEJYiFBKbb+QE4yQEJ0SmZAuFQ/QTJilEB/mE9BecvfQKhxk0AOgu9AQkSiQDqIsECErQFAk0VnQCFg8D+/MV9B/ghMQCVGNEEoKYNAZFEBQhJACEGGRQBArsEDQbTsJkDYDV5ABcWiQUWbF0E7rZpBvsK3QG+CEEGldx1ApAodQE5+J0E= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYMe1X0AAAACAziNgQAAAAKBLRGBAAAAAABDnYEAAAAAALERhQAAAAMCoh2FAAAAAYMzpYUAAAACAtmJiQAAAAIBJx2JAAAAAgCwAY0AAAADgfpRjQAAAAOAVqmNAAAAAwPkEZEAAAAAg5aZkQAAAAAAz5WRAAAAAgCICZUAAAABgEShlQAAAAMBzSmVAAAAAgOynZUAAAACAIZ1mQAAAAADB+WZAAAAAQG4lZ0AAAAAgekJnQAAAAADEjGdAAAAAQDQiaEAAAABABudoQAAAAECMJmlAAAAAQAzraUAAAADgiCBqQAAAAEAJpGpAAAAAQHPhakAAAAAAXJtsQAAAAEDExmxAAAAAQAwjbUAAAABAHKBtQAAAAECQ3W1AAAAAgAllbkAAAAAAb6ZuQAAAAMBLA29AAAAAAA9mb0AAAACg4wNwQAAAAIBqKnBAAAAA4DlycEAAAACg8JJwQAAAAMDluHBAAAAAgG/IcEAAAACAGtRwQAAAAACfMXFAAAAAwBJOcUAAAABgeXNxQAAAAMBHgXFAAAAAwCOzcUAAAADgt8FxQAAAAEBl8nFAAAAAAOcVckAAAABAK2JyQAAAAIDjiHJAAAAAwA6ickAAAACAB8dyQAAAAMDcEHNAAAAAoDNlc0AAAABAuaJzQAAAAODPt3NAAAAAAFPhc0AAAABAL+9zQAAAAMApD3RAAAAAQIMvdEAAAABAEpt0QAAAAIDUx3RAAAAAgITxdEAAAACAvxR1QAAAAEAQMHVAAAAAALBEdUAAAACA3F51QAAAAIBtc3VAAAAAQJnUdUAAAADApex1QAAAACBIAnZAAAAAIGBTdkAAAADA8m12QAAAAMAJgHZAAAAAIJyVdkAAAADAjq52QAAAACCGu3ZAAAAAwFfRdkAAAADgKvB2QAAAAIAsC3dAAAAAgOWPeUAAAAAg7bF5QAAAAGBUlHpAAAAA4PjTekAAAAAgCAF7QAAAAODgPntAAAAA4O2se0AAAADgz+p7QAAAAMDng31AAAAAYFPEfUAAAABgryV+QAAAACBzOX5AAAAAwGtUfkAAAAAgMoR+QAAAAOAHsn5AAAAAQCblfkAAAABgwQV/QAAAAMAvUX9AAAAAYLypf0AAAABghMR/QAAAAMBs0n9AAAAAQLvlf0AAAADApwCAQAAAAOD6CoBAAAAAwHUQgEAAAAAABDOAQAAAAAAhYoBAAAAA4LitgEAAAABgYMKAQAAAAKDByoBAAAAAANHqgEAAAABgtfKAQAAAAGA2+IBAAAAAIBpBgUAAAACAolOBQAAAAKCFYoFAAAAA4GB7gUAAAAAgoZiBQAAAAEA3yoFAAAAAwHzjgUAAAACgA/qBQAAAACBLCoJAAAAAYMESgkAAAAAgBiuCQAAAAOC5WoJAAAAAQCJpgkAAAAAA6KuCQAAAAGCx+oJAAAAAgD6Lg0AAAACAcQKEQAAAAGBNGoRAAAAAwLofhEAAAADgEkuEQAAAACDjkoRAAAAAYHuZhEAAAACg2aiEQAAAAADy44RAAAAAAKQjhUAAAADgai+FQAAAACBeVIVAAAAAwF5xhUAAAACgjtuFQAAAAODh4oVA + KBZXds7jZUCJy7y2HKVqQKPid1q/AnFA525gjBHDckDehPAvbyN4QHbGrKvp03hAzELwjN1Tf0D1tbbNbGqAQCB0WL5mqoNA7JQ2/KMChECEoSLb8sKGQKbnFvQbA4hAe4CiCSpbikCdxpYiU5uLQDXTggGiW45AAfRgP9+zjkAWWQGY7PmQQF6joJsrWpFAc4Lxkyj6kkDakuAyRyaTQFeYxJtefpRAabs+KHPulECgGgVof9qVQE3RETCpcpZAIDL8fNWel0A= - + - 9eeJQDoMk0FJt55BxCanQAnW/j9/ordA4zfLQJcFT0LNcr5AMKyZQJol+UDaQ0tA9VXsP8N3nkA09aNAznQVQMm2E0D7+e8/ERVaQK6U4ED9Uh1AKC7DRPy1pEALYztAjRv9QDnQEUG/s3FBJapYQLrQCUBhBYpEr/w0QZrev0Bn6YxAsQk7QCyNWEDJfndAjsMvQM4Fq0BazQ5CN1OvQBmL30AbEU9A+jLBQJZQREF2q39ANFr5QAaYWUBjWXxBIS//P6KKjkC7+k9ACIBzQAYfMUA0/uw/7SvMQZaUoEAQwLJBMXOzP7jK5UAufZNAMlWiQN2OOkKWApJAL/3NQLNPpkHM3u9B6wfwQAQo0EJrKcFAF+wDQrgHTkCsMApCf0ITQO1FykFv8vtAAAVVQDC8ykP/NGJAStiRQMT0z0E4QGJAqi9MQ+G0JkG069RACg0/QaGLWEBvy+VAJNmnQGBUMEK2XC1BKHb5QYVK1EGFAsU/n9YLQfwolECla6hA/eIfQ+rtY0H9cDZBjxGPQLFWnUAmu15BE3WmQBTGxD9zmIlBtiAxQDIgLkF7QodBlqFAQVVlG0E2YUtA3LJoQAgPjUCvUY1B77p/QYDK/0BvmFhAichEQImThUGu//pB/WiBQb364UBQFTFAQPuSQp6BoD9SAchBvE4nQNZbREDRIhhGBbDtQbLaKkEe1Z9CaCKgQczZ80A0SohB3h7yQgZgL0I30yZCIZoPQMBaLkDMvQlE25E7QHUoMUBQoiNBw+a4Q0D5UkGnIZVAVI3XQNj/MEC6hkBD + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwEkEbkAAAAAgJyVwQAAAAEBOdXBAAAAAIKo6cUAAAABg20RxQAAAAOAEtHFAAAAA4OJAckAAAAAAdWhyQAAAAEBlA3RAAAAA4IBkdEAAAABAW+B0QAAAAMCHUXVAAAAAwLVmdUAAAABAPnd2QAAAAAB8Q3dAAAAAwM2Bd0AAAACAPlJ4QAAAAICoY3hAAAAAwJkweUAAAABAfmF5QAAAAAD5Y3pAAAAAgOgQe0AAAADAQHN7QAAAAADflXtAAAAAwNT1e0AAAAAAqkd8QAAAAEB+g3xAAAAAAHbTfEAAAAAAlXd9QAAAAMCNQn5AAAAAAIe1fkAAAAAAWtd+QAAAAECoXH9AAAAAwDtrf0AAAAAA7wmAQAAAAGAVGoBAAAAAIKwigEAAAAAgtjKAQAAAAAARPIBAAAAAgKhwgEAAAACAIHiAQAAAAEAmj4BAAAAA4OiXgEAAAAAA1BeBQAAAAAC81IFAAAAA4AjfgUAAAABgjO+BQAAAACCW9oFAAAAAYAE0gkAAAAAgiEmCQAAAAGB7VYJAAAAAgLtrgkAAAAAgL36CQAAAAECbh4JAAAAAYJ27gkAAAAAgesaCQAAAAGCmy4JAAAAA4OXQgkAAAAAgSd+CQAAAAGD784JAAAAA4DH/gkAAAAAgIyiDQAAAAEDeSINAAAAAwDrBhEAAAAAgJ8iEQAAAAOBYUYVAAAAAIBPChUAAAABAYOOFQAAAAOAMmoZAAAAAADy8hkAAAADARsOGQAAAAKDcK4dAAAAAwKJvh0AAAACAH7uIQAAAAOD704hA + KBZXds7jZUA= - + - /ePvP6m7gUAa/+VAgUn7QHxfZEEuOfE/vJJAQIIylEBgzhBAG4ygQMAFsEDUHZRASwqLQDF/rEAdEh1A3sumP0y+zkAxHXpAnBwqQXTj70C8IGVBp0DeP9LyD0FWpcBAstmKQOs0FEAGLpdAe/uEQNeanUBAC29AnsgJQFIDSUBL8fZBpd5UQPBqvEApnR1BV5Q2QHvQukCUsWZB7NptQBttD0EN14FAnTiDQbDEO0AY0IZBXVzcQVbGy0Dw4EtAh75AQD5JvUA9lUBA6ek9QXe+CUI2kfA/TpjbQnaD1EKBYi1Cn9UWQEpVcUHaPnhAF7KsQS6ZLkAfLudB+rHKQJlh40AiGulB1JaUPz2tSkCJInpANojVQbaXDEGGKKJAuaHLP1CVB0B/FA1B + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAINWoZEAAAAAAcOZkQAAAAEArn2VAAAAAoGUnZkAAAACAnGhmQAAAAEAU/2ZAAAAAgORmaEAAAAAAaORpQAAAAOBwB2pAAAAA4MIlbEAAAAAAwYltQAAAAED5pm1AAAAAAOvobUAAAAAg39xvQAAAAMCSRXFAAAAAgJ2kcUAAAAAA+xNyQAAAAADUunJAAAAAgF1Cc0AAAAAAcoVzQAAAAICmFXRAAAAAwE53dUAAAADAZ4J1QAAAAEChVnZAAAAAAJV0d0AAAAAACoF3QAAAAACUpXdAAAAAQD8GeEAAAADANkV4QAAAAEBC43hAAAAAgD/FeUAAAADAS9d5QAAAAED/IHpAAAAAwBCVekAAAAAAuMF6QAAAAABd13pAAAAAwGG3e0AAAABAu9N7QAAAAMDdE3xAAAAAwCxhfEAAAAAApch8QAAAAACB4nxAAAAAgID0fEAAAABAEiF9QAAAAACbP35AAAAAgOZRfkAAAABAR0R/QAAAAEDbo39AAAAAIGiLgEAAAABAv5mAQAAAACCbooBAAAAA4DDXgEAAAACgA+GAQAAAAIAx9YBAAAAAYEv/gEAAAADA7yWBQAAAACBZLYJAAAAAgB/ag0AAAACg+PqEQAAAAEB6XIVAAAAAIJiDhUAAAADA54uFQAAAAMDHlIVAAAAAoOLRhUAAAAAg3kKGQAAAAGAyk4ZAAAAAINWahkAAAACAfNqGQAAAAKCmBodAAAAA4Guyh0AAAADgpTmIQAAAAED4QohA + NrgMGZxjYkDsFOgHcuJjQOJgFSPMRGtA - + - /OyEQD6Z8D8dHN4/kBEAQZUVMEARRGVA0MPlQH7gVEBQGqZAbFE5Qu/ZikDWAYBARQXdQN395UApJK5AuWsdQGBHAEDkZYZA3K4uQBilj0CzNRRA51K5P3PwBkFzRThB3O07QsWlI0HIn0tApA25PxJVJkHrv71B+d2+PzJBl0DECHpAjoSgQNURZUBUvd0/AOLOQPhH4kBkBdFA0qsKQF9u3EDL4SRCeO7qP/9rckE/qvA/iF1bQNoslD8QVe1Af1J0QX6Gyz/wSqFBpMC/Qc9apEHmJYhBvXcAQcufb0LHJ8hAE2OeQEOQNkABSD9BBCagQXcbbUFIRHpApTreP0KQpj/WI9hAhMRLQM9kuUCKnwJBQxqJQIBWfEG2NqJA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQHYgbUAAAABgJkRtQAAAAMBdKW9AAAAAgOtKb0AAAABAo8FwQAAAAIACU3FAAAAAwC/RcUAAAADgCORxQAAAAKCeI3NAAAAAwHg+c0AAAAAAf01zQAAAACCKE3RAAAAAAJCDdEAAAAAAdTN2QAAAAAD9onZAAAAAgHhOeUAAAADA32J5QAAAAEDCY3pAAAAAgKp0ekAAAACASJx6QAAAAACkI3tAAAAAQEFWfUAAAAAAeSmAQAAAAEA9pIBAAAAAgHW6gEAAAADga9mAQAAAAEBmOoFAAAAA4KdSgUAAAADgsWKBQAAAAOBA1IFAAAAAQBX4gUAAAACA2hGCQAAAAOCON4JAAAAAwPNBgkAAAADgemmCQAAAAGABf4JAAAAAYE2TgkAAAACAOMKCQAAAAKCWx4JAAAAAQO/hgkAAAAAA7RKDQAAAAMAMwoNAAAAA4GDMg0AAAAAgdACEQAAAACCNU4RAAAAAoNdZhEAAAACgf2qEQAAAAGDMiIRAAAAAwIShhEAAAAAArrmEQAAAAKBjy4RAAAAAYLxjhUAAAABgkmqFQAAAAGAFoIVAAAAAwJWvhUAAAABAYNCFQAAAACC04oVAAAAA4LzxhUAAAAAgizWGQAAAAOAHM4dAAAAAYLPEh0AAAABggMqHQAAAAMCL84dAAAAAYBz7h0AAAABguzCIQAAAAADoU4hAAAAAYLVpiEA= + KBZXds7jZUA= - + - 3F25P7WaP0CwYuVBJHQfQVEVB0FMZBJBNX8dQI1WEkA8eEJAuCp6QE4XhkB1tEtCYtRwQMeG6j8ObixBHAYwQNyPzT+8cJhBJJ7FQFbkRkG08NpBcy6LQZkyJUAlxZhAb1baQUYPokC7VFxBCdAOQfARnUCZE15Ai7E2QJitbUAcTCJBdPMbQT7xCkCmWqBCeDGcQNy7KkNl33pCV2ZDQZxX0EBLyY5AeNSnQcyYAUDjnw9Cp+q6QOY7OUDUas5B9astQLbL3T9z+Nk/rK2EQTNFlEAfrJNAjJSMQb4FDkEmnrk/O3EFQZQhnUDMsO8/QJOMQbfUAUBTzwNBL/YRQZ2MIkHBQMVAlJIrQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwLkoYEAAAACgqaNgQAAAAOBWSWJAAAAAwF9oYkAAAACAg4JiQAAAAED/pWNAAAAAINb+ZEAAAAAgaf9lQAAAAECQPGZAAAAAQBYmZ0AAAAAAM4BnQAAAAIC6pWdAAAAAgBDjZ0AAAAAAPWdoQAAAAEAVpGlAAAAAwMHlaUAAAACAq6FsQAAAAADe3WxAAAAAQDOfbUAAAACAZV9uQAAAAEDPv25AAAAAQJfmbkAAAADAlCtvQAAAAIDQ9m9AAAAAAMIScEAAAABAxFRwQAAAAICNZHBAAAAAoBhwcEAAAACArpNwQAAAAOArsnBAAAAAAOoecUAAAAAA8DFxQAAAAMDyQ3FAAAAAQIuFcUAAAADgcKNxQAAAAACp3nFAAAAAwNTucUAAAADg8QFyQAAAAODfEnJAAAAAgCojckAAAAAAu2FyQAAAAECvinJAAAAAIMegckAAAADAlrNyQAAAACDM0XJAAAAAgFcBc0AAAABgIy1zQAAAAEBNr3NAAAAAQLUfdEAAAACAxzV0QAAAAMD2UnRAAAAAAI5mdEAAAAAAlHB0QAAAAACRjHRAAAAAABCldEAAAADAAtN0QAAAAIBz5XRAAAAAwIIUdUAAAAAgyFB1QAAAAAC3XnVAAAAAQPh0dUAAAABAP451QAAAAMD3p3VAAAAAgKGzdUAAAABAFgJ2QAAAAACdHXZAAAAAILFqdkAAAAAArJN2QAAAAOCurXZAAAAAIAwDd0AAAADAaw93QAAAAMCcVndAAAAAwBRwd0AAAABgU5h3QAAAAED51ntAAAAAYJMQfEAAAABgYWJ8QAAAAEAZ1nxAAAAAwFtgfkAAAAAgm65+QAAAAOCRbH9AAAAAYL3gf0AAAAAgbxeAQAAAAOA/QIBAAAAAgLtkgEAAAACgrYeAQAAAAKBHqIBAAAAA4ATTgEAAAACAyxaBQAAAACDdIYFAAAAA4BsugUAAAAAAeOKBQAAAACAuc4JAAAAAgCnDgkAAAADAxPqCQAAAAGAoi4NAAAAAIAqSg0AAAABgiCyEQAAAAABRw4RAAAAAoJkwhUAAAABgPDaFQAAAAID+w4VAAAAAYHdkh0A= + U6vsr5viYUA2uAwZnGNiQKmz0iumAnBAG7piYCZDcEBxDmdlvrN0QA== - + - Mg3TQKmExj+EqeZAiI4bQexxJkCVf8ZBxAbMP4qwdUA5pQFBdr7sQbvNo0AxtExAxP0KQHmn8D8PyfpAr3cdQCUSFEBO20tA+++NQMn9BkE53BtAYAEUQEBsQkDcgLdArD2KQU8OOUBZ5B1BgVEfQF/kCkDqsbZA/crLP6yzoEB7TwhBBfyPQXp4ZEA6MQNBHuAmQE67GkCXLbBAtIoUQaxepkDOMh5Be8RaQMwf3j/mZdhAV43FQQZxVUEt1K1AGYVkQYk8TUEO2AdB1o2MQQYiGUFhINNAzDwuQe/+D0GpYhRAZNStQAeSHEAmDYdAoG2dQCZ7gEKuVRdBscJwQDjYY0H6twFAUoSyQTdvgUBO2ZtBRsq+QYFd+EF7jPM/yONPQiJASEJqPpRAeYrGP0Jr0EAtBe9AStlwQBeci0A5OxFBbmftP3KM40BDbYNBay4HQdBdCkDcVwJCsS8PQTHlhUFxN5RAc40gQRfVXkFyYV5AhYTMQF1N9UEAx4RD50WBQbW+SEGqwt4/t94zQlNXbEC1ZI9CTsnOQA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAA4GeMW0AAAABA50pcQAAAAEDLhlxAAAAAIGBEXkAAAAAgZM1fQAAAAODh/l9AAAAAgNMgYEAAAABgzUNgQAAAAMAgXGFAAAAAoHjCYUAAAACAQt1hQAAAAOBJXGJAAAAAwDeCYkAAAACAB+diQAAAAMDdqGNAAAAAAPMCZEAAAACgmIFkQAAAAIAVoGVAAAAAQJHkZUAAAADAQwNmQAAAAAB4ZGZAAAAAoA3FZkAAAAAA2eRmQAAAAIB/RWdAAAAAILxiZ0AAAACAd7ZnQAAAACAv/GdAAAAAQG8kaEAAAACgCkpoQAAAAMCAvWhAAAAA4HjjaEAAAADAaCJpQAAAAGA5XmlAAAAAgNuEaUAAAACATa1pQAAAAEC0xmlAAAAA4G/eaUAAAADgoABqQAAAAIAZP2pAAAAAwGtjakAAAADA86BqQAAAAABlxGpAAAAAABTnakAAAAAAowJrQAAAAAAqNmtAAAAAwLlMa0AAAACATmRrQAAAAIALjWtAAAAAgC+ka0AAAAAA2MRrQAAAAICz6GtAAAAAQBYjbEAAAABAOIBsQAAAAABrsWxAAAAAQD3gbEAAAACA2CNtQAAAAMCPRW1AAAAAgDGlbUAAAACAY+9tQAAAAMCcI25AAAAAgBtpbkAAAACA6tZuQAAAAICaHm9AAAAAwNdWb0AAAACAUo1vQAAAAMAOq29AAAAAAHkAcEAAAADgyiJwQAAAAKDFNHBAAAAAQA5EcEAAAADgb1BwQAAAAGBCW3BAAAAAgCNxcEAAAACgYH5wQAAAACC+j3BAAAAAICaycEAAAAAATslwQAAAAECx5HBAAAAAgMTycEAAAAAAghFxQAAAAKCYMXFAAAAAgJNEcUAAAADg+VhxQAAAACBUcnFAAAAAADiBcUAAAAAAfJNxQAAAACCi5HFAAAAAgLXzcUAAAACAIgZyQAAAAAC6EHJAAAAAYFkgckAAAADgBzFyQAAAAOCSQXJAAAAAwFRSckAAAAAAtWByQAAAAEBqcHJAAAAAwHqRckAAAACguwNzQAAAAODoD3NAAAAA4OMtc0AAAAAgVT5zQAAAAACsTXNAAAAAIP1gc0AAAAAAcHFzQAAAAIDck3NAAAAAQO2kc0AAAABAJrJzQAAAAEA6vXNAAAAAoO4UdEAAAAAAQyR0QAAAAEAsNHRAAAAAAEJPdEAAAACgiLp0QAAAAKCdR3ZAAAAA4GNxdkAAAADAxrZ2QAAAAOCMlXdAAAAAgLC0d0AAAABA5sR3QAAAACBMonhAAAAAgHexeEAAAABgve14QAAAAKBqXHlAAAAAIH9neUAAAADgSY55QAAAAGB91HlAAAAAAJPheUAAAAAg8w56QAAAAODjMXpAAAAAgKBGekAAAACgeFt6QAAAACD4ZXpAAAAAgAaYekAAAACgHDx7QAAAAKA1aXtAAAAAIJY0fEAAAABgvUp8QAAAACARXXxAAAAAYCOsfEAAAADAA8x8QAAAAMBR33xAAAAAwJHufEAAAABAAgN9QAAAAEAGGX1AAAAAINg8fUAAAADAq1d9QAAAAKClZX1AAAAAYER8fUAAAADgljF+QAAAAKA7An9AAAAAQBYZf0AAAADAaz5/QAAAAKCSW39AAAAAIFJ2f0AAAADAS8J/QAAAAGCAE4BAAAAA4FwpgEAAAAAgLzCAQAAAAOCQcoBAAAAAwDF7gEAAAABgZYaAQAAAAIBye4FAAAAAIO6TgUAAAAAg1JuBQAAAAADtIYJAAAAAoI2KgkAAAADARwODQAAAACDLPYNAAAAAQPZpg0AAAAAgAYyDQAAAAKB1+YNAAAAAwMarhUAAAACgsSOGQAAAAOB5M4ZAAAAAQGyyhkAAAAAALbyGQAAAAMCBw4ZAAAAAYMXLhkAAAABgyTmIQA== - - - - - - Sb4XQXDA8kADvQFA6xeVP7qiSEBYAR1Bz1A6QYIkyED0trk/rQJOQFGWJkBQF6JBV4YZQVZBz0DhTiVBK3lKQQisJkDKO0BBlt7wP8cTr0HHuR9A9yWCQPl7/UA5aRRAR0xnQAbB5UDcdjBBNV2SQaxcU0Fttb4/2YiuQKfeg0EfbR1AOCACQPDNC0A4/bg/e6yEQKRPpECKX4lAxHtLQcleB0Ghe0JAMvxUQEB94T+zHMlAB/HFQBNjP0BCGQBBXJULQaxujkFod5VA8hgLQI9YukDVa4lAsAG7QZJaGkB2HrVALDAiQW/WS0ApIs9AzHo2QL4lZECSeJZBO1ErQh2KO0HutkpBYa4FQcvgnkFyu69BWVlEQQ4+OUBMBd1AwIOGQGKfTEHdthVBvJCAQdDwFUGXj+tBgFOaQeCZsUAihBVBvShaQavOS0C7MwVBMm1SQCi0W0GaE+FArleWQV7r7EFeXZpBoGm+QS7OZEJbzSNBB0qGQWugiUD93PA/94yxQOp3sUEK9pxA5CvNQVvdIUK7rgBCeSevQe2aP0GtgWVB+iHMQSERjUEmoeNATptfQPEAzD/uiTdB84O0QTp0cUAx75tAvIWFQb2oikFgjB1AfVH7QM46pUDkit1AZOypQGqgxUA4y7NBZgQwQA72tEHcvxFC7fBeQAyZuUBJnuFA0hrLQZkCD0H5egdBS8oAQTL43EHOEro/9l8/QEBt6EG2XFtB0joYQevjOUKafhdCrJPMQPwiKEHH/1lBGQ1bQKKhpkIxSsxAxfWBPwYNPUH7J71AHHTePzd03j9SORRA80pAQdixQEE6oZ1AjHeJQsrONUGMtZ5BS2C7QbUmb0GXkdFAhbw2QEhm3j9gu+lAPra0QELK6EEjW99A/Yi6QBzP1UHT4iZA0mqhQDzZ8D//zZhA3GnTQIlnhkDctotBQG4EQbSTaUA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgDAdaUAAAACABcpsQAAAAKCbpW5AAAAAAD0Mb0AAAACgo2pvQAAAAGByA3BAAAAAwJggcEAAAADgBlFwQAAAAACFb3BAAAAAwKKhcEAAAABA0a9wQAAAAOC9D3FAAAAAADFRcUAAAAAAj35xQAAAAADk4HFAAAAAgALFckAAAACAAc9yQAAAAACQ73JAAAAAgEKvdEAAAAAAKPJ0QAAAAEBihnVAAAAAwKHvd0AAAAAAaQ14QAAAAECBZXlAAAAAQFRyeUAAAABAnd95QAAAAADA83lAAAAAAIMVekAAAACA/rR6QAAAAIDD0HpAAAAAgHHhekAAAADA//J7QAAAAEBKQXxAAAAAQJphfEAAAACAUNV8QAAAAICAY31AAAAAAOd+fUAAAACAJox9QAAAAEDMon1AAAAAAFO8fUAAAABA6V9+QAAAAECGgX5AAAAAwDSLfkAAAABAx3R/QAAAAEBWZ4JAAAAA4DLngkAAAAAghy+DQAAAACBbO4NAAAAAoJHPhUAAAABgOnWGQA== + KBZXds7jZUAtECBNt2JpQNS+X4D+xG5A - + - P17aQH1I80Bxr2dAubeNQNxBFUHqlZRAoLWEQEZIuEA6FqdAtTylQE6rtEBc8fJAvV+8QLInj0ABsvA/uEiOQFKXkkBlvXBAYy9qQLFU2EDDrQFAGp03QQstkEAKFKdB9rWmP7Y+L0Ee3u5A72eJQPc3uT8H67JABanDQET9ikBGdttA6r60QAt+i0B8sIRA6muYQaTXwUGhDYFAlTtdQX1QQkCKK1VAUDTPQIiDbUBw4QBCRi8KQV6lpkEbJgtAFqWfQnZSrUE= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYFkkYEAAAAAAfD1gQAAAAEAoZ2JAAAAAYJeFY0AAAACAhGVkQAAAAMDUpWRAAAAAYBk/ZUAAAACAleZlQAAAAEA/K2ZAAAAAYHilZkAAAADAHeVmQAAAAMDXBGdAAAAAQHAnZ0AAAADAnkNnQAAAAGAOZmdAAAAAgBScZ0AAAABAH2loQAAAAOAqhGhAAAAAAMHjaEAAAAAguwVpQAAAAEBZJmpAAAAAQIBiakAAAABAXKNqQAAAAACwQGtAAAAAoHnJa0AAAADAjEVsQAAAAKDSYGxAAAAAgPDGbUAAAACAz/xtQAAAAMBEPW5AAAAAAD2BbkAAAACAEt5uQAAAACBKInBAAAAAYOAzcEAAAAAgNs9wQAAAAGA4AHFAAAAA4KYTcUAAAABAWzhxQAAAAOAMQnFAAAAAgABUcUAAAABAuHBxQAAAAKALo3FAAAAAAOTxcUAAAACg3DdyQAAAACDuY3JAAAAAQGGRckAAAACgfqVyQAAAAEApxnJAAAAAwJwCc0AAAACguw5zQAAAAEAqJHNAAAAAwH8/c0AAAAAAsnJzQAAAACDngHNAAAAAQPyyc0AAAADAysJzQAAAAECMBHRAAAAAwI8PdEAAAABgsSB0QAAAAGD+RnRAAAAAwOdydEAAAAAAbJJ0QAAAAIBuv3RAAAAAgI7zdEAAAABAdwh1QAAAAOAALnVAAAAA4B5QdUAAAAAAN2R1QAAAAMD/kXVAAAAA4GirdUAAAADAIQB2QAAAAMBHIXZAAAAAIDs2dkAAAACAV0R2QAAAAIBEdHZAAAAAAKuQdkAAAACAHsR2QAAAAMCJznZAAAAA4LLhdkAAAABgyBZ3QAAAAKCrNXdAAAAAoJtNd0AAAAAAl3J3QAAAAOA/s3dAAAAAQKjCd0AAAABgvdB3QAAAAOBE43dAAAAAQAECeEAAAACgCSB4QAAAAADyOnhAAAAAQKFVeEAAAACA+GR4QAAAAMA41HhAAAAAoL3jeEAAAADgsfd4QAAAAIAAA3lAAAAAYEkUeUAAAABgoyd5QAAAAAAiOHlAAAAAYB9WeUAAAAAgjWJ5QAAAAKAxcXlAAAAAQJCDeUAAAACgOcp5QAAAAGCX1nlAAAAAQEjveUAAAADg5qZ7QAAAAKAd03tAAAAAYEBTfEAAAAAg52R8QAAAACDmfnxAAAAAIMmQfEAAAACg8bB8QAAAAMBhAn1AAAAAoK0QfUAAAADAt3V9QAAAAKA1M35AAAAA4LZ9fkAAAABAust+QAAAAKAV1n5AAAAAQPZdf0AAAABgR2h/QAAAAEBRdn9AAAAAwPWrf0AAAADgHrx/QAAAAEDXzH9AAAAAwKfYf0AAAAAggSGAQAAAAEDeLYBAAAAAwPYygEAAAAAg8FaAQAAAAGBuqoBAAAAAoNGygEAAAAAgxLiAQAAAAMBz6oBAAAAAoA4agUAAAABgFTaBQAAAAGAES4FAAAAAoN1qgUAAAABg/niBQAAAAGA7m4FAAAAAoFH9gUAAAAAA1xmCQAAAAOCcK4JAAAAAAIdKgkAAAABglX6CQAAAAOAqj4JAAAAAoFWWgkAAAAAgKpuCQAAAAADVrYJAAAAAwDS7gkAAAABA1cOCQAAAAMBT2IJAAAAAAFIHg0AAAACA0jKDQAAAAGBS74NAAAAAIKEmhEAAAACADvyEQAAAACC+hYVAAAAAQHiMhUAAAAAASJOFQAAAAMBnw4VAAAAAoFUahkAAAADgxCCGQAAAAOBmMoZAAAAA4BO9hkAAAAAg45KIQA== + NrgMGZxjYkD4qwju5sJuQK9rGHLRYnNADnz8nREjeUAKeGK9lLN5QJzTSL3pM39A0dL29qzkf0D5kybhQNKBQPxJH7et+oNAwL/M8KzahEBgd+nTOROHQCTtlg0584dAJ6OP46UbikC4zTpJkPuLQFLNEebxU4xAHPsEZhwUj0AZ+bf1XVyPQKUA1QU/HpFAEQaahJYekkCKhDnff6qTQKAu+HnC5pNA - + - tqdBQE/XokDqTutAg5amP1MYL0DwQgJByqapQJU8GEEqLbk/hoBdQDjib0AQIDlAIhzHQJLvE0AtpdJAxxcQQUXoWkDwvhBAEFPvQEwQcEBof4xBbe0iQT2q2UAEsqZAPH/pQPK9zkEi6KRA1OJjQD5HXEFB7kpA7bw/QgII1UANCZNBHPOFQO6UL0AWfblCXgaiQCeii0B7OqhCh9jPQE30kUD/dqY/mEHLP/F9HEBgFKc/F0uBQPhmQEAO43dDTIq4QnoKkEDAviZAKWkaQa/Xxz8+hyZACoT8QeDp4kDX1BdBaK9UQEt5P0DbLYBBP0urQVqFw0HyNK5AOxpeQC7Ji0Ay9ZJBwPf/QD5f9kDnLBBDZ4B+QX4huT8PcklC/sD+QdX01UDcP/A/75P9P2khFkPytUtC5PYvQKtl00GUqnBAwAfuQUSvH0GOTUNCCn+FQXkdSEHec8RBJWRRQBAoaEHNfUJAYkXgQjRWzUFmtb9AxhX6QKo4s0FKxtc/ID6ZQe3J40HAgWhBpFShQS0RN0JZ9EpB270KQEJZtUGBf/5B3wtcQVbBJkCZUhBCF/huQZRLrkCZM7BAyqXIP82SgEGEWgpDEg8mQIyeEkHXgZtAw2iHQdoMjEGjeCNC87qEQ0CpWEKWmr5AsSYEQUiyOECpPpRBaGfcPw2CxkFzqtRDQmLgQtEk4EDCkQdAp3bjQH6W6EBALbxAdpywQPbiPUGtqA1Byy68Qd/nWkHB5L1Ala+XQXdMPEKFZMZA+QmqQIEhEUEPfXFCUCe5QNldVECJ7cNB5w+dQzkzKULyD/1AgsyAQTwRq0ArC8w/LUgWQQOMzEDQsp5BV+dOQea3HkFmld4/L9hgQvXssUDOtptAFCshQWp/yz8= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIMVhZEAAAADgp91lQAAAAAAkamhAAAAAANSsaEAAAABAFclsQAAAAEBRhG9AAAAAoGACcEAAAADA1hJyQAAAAOA8snJAAAAAgMQGc0AAAAAAwqJzQAAAAMBkU3RAAAAAQFDCdEAAAACAAeF0QAAAAED4JnVAAAAAwLfRdUAAAADAYDB2QAAAAICkQ3ZAAAAAgJcTd0AAAAAAscN3QAAAAICXQ3hAAAAAgAryeEAAAACAnQx5QAAAAMAXXXpAAAAAgFd1ekAAAADAERF7QAAAAAA8BHxAAAAAAKgVfEAAAADAW5R8QAAAAIDTynxAAAAAAMzefEAAAAAA90R+QAAAAMBxZn5AAAAAALd0fkAAAADAM+Z+QAAAAEA3Dn9AAAAAQLauf0AAAADANxKAQAAAAEC0V4BAAAAAIKlygEAAAAAg6ZaAQAAAAKDQn4BAAAAA4CiqgEAAAAAAMNiAQAAAAOBI6oBAAAAAoHRkgkAAAAAg5QGDQAAAAOCKTINAAAAA4D1Tg0AAAAAgz+mDQAAAAMBDPIRAAAAA4J3ghEAAAABAQX6FQAAAAACUjYVAAAAAgKtfhkAAAADAPGuGQAAAAMCn4YZAAAAAAKlyh0A= + KBZXds7jZUD4qwju5sJuQNeRyQ6NInNA - + - C4NRQCI+EkBT8JM/rDUyQA5gk0AkuS9AFrLAQP6bpUHfbkxA1KV6QNZZs0BDyThAlsQNQeTSukBrE/E/skE3QHh1EUDTSvA/BjaQQBi43EDW1VRBCQtCQJ5EZ0BaXndBC8wKQBe+qUD+Ah5A1ht4QGpJ3j9TvgFAClWOQBrQp0BSE6ZBmzMdQBbMKEDMKRNBG/mpQBwZ4kB/75I/nocNQbeDWUKX9fA/a33GQOa3/EBeFBRAOOg4QcVJJkCEokFB6BIxQV6Dh0DvqepAeU+vQQSWjUFODMY/D+T0QAAQPECRxupAdpoVQQ== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoLPFXkAAAACAWCZhQAAAAICcgWNAAAAAADDJZEAAAAAgwIVlQAAAAIAOzWZAAAAAIPPpZkAAAADA1N9pQAAAAABJGWpAAAAAIJVkakAAAADABuRqQAAAAIAdeGxAAAAAoOuXbEAAAACAb4pvQAAAAABMonBAAAAAIKA2cUAAAADgcZFxQAAAAODIwHFAAAAAwJM3ckAAAABgPVNzQAAAAOCEkXNAAAAAwPs0dEAAAADAyg11QAAAAAB/s3VAAAAAYLTgdUAAAAAA+WB2QAAAAIChsXZAAAAAIJPUdkAAAADAYiV3QAAAAACUhHdAAAAAoBDId0AAAAAgRel3QAAAAKB2+ndAAAAAoCtXeEAAAACgd2R4QAAAAIB3nHhAAAAAoG0Ge0AAAADAf7B7QAAAAODjtn1AAAAAwGUdf0AAAACgEruAQAAAAED1D4FAAAAAoAskgUAAAABg2xuCQAAAAGDuy4JAAAAAIF70gkAAAABg+DuEQAAAAIDDrIRA + NrgMGZxjYkBX/v7hfVJwQMRlXluOUnBAV1zbNdZjd0DEwzqv5mN3QLJoJYGZtH1AH9CE+qm0fUCE3hTDmBKBQFQrO6TNIoNAoi/RrfCihEByfPeOJbOGQM81dlNSy4dAOaidnpG7iUCWYRxjvtOKQGauQkTz44xAtLLYTRZkjkDCf3+XJTqQQPy6aHpHVpFA2JTAmEtWkUATPjtNeOqSQO8Xk2t86pJAk1UyYs6ulEBvL4qA0q6UQBNtKXckc5ZA/lfodf52lkA= - + - BP4vQAW5/D9fgNxAWdGpQAj9kz/TBqo/hhA5QBl6e0ArzQdAE1KuQFE8A0Gh6i9ADLZDQHOVBEB+FhdBq0yxQOlm90B8hZhAQDSwQM9pokGTjMJAEFymP6PmsEBuX8VAfe8TQIMcXkCBnthAxJgSQeQqOkA0eSFBpCBeQV/8q0H4T91AvxoaQSbK6UD9+xNAVYSFQETqrUDkBFVAO1UOQRavPkA3o71ApgIwQGsxA0EhzhxAaLubQFb3SEAFvZ1A + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwLaiaUAAAACAmUVqQAAAAECTYWpAAAAA4KIKa0AAAAAg2iJrQAAAAKD5aWxAAAAAAOLEbkAAAABAR+ZuQAAAAECd6W9AAAAAQBETcEAAAABgSSJwQAAAAICsN3BAAAAAQI5hcEAAAAAA86JwQAAAAMB3CHFAAAAAgBxCcUAAAABgxoNxQAAAAKDesHFAAAAAoNDPcUAAAACALxJyQAAAAECExHJAAAAAgL3sdEAAAADAlVR1QAAAAACavnVAAAAAgMbwdUAAAACAZ2F2QAAAAICSNXdAAAAAgAN2d0AAAACA7aV3QAAAAMC6IXhAAAAAwKJCeEAAAABAylF4QAAAAMCLzXhAAAAAgD4LeUAAAABAOxZ5QAAAAMBoIHpAAAAAgMt3ekAAAABACJ56QAAAAMAM8ntAAAAAgFbpfEAAAAAA5QR9QAAAAMAnOn1AAAAAwASNfUAAAAAAza19QAAAAIDG0n1AAAAAgALvfUAAAACAgTF+QAAAAEDvWn5AAAAAwKpqfkAAAABANXh+QAAAAIA3gn5AAAAAgDEVf0AAAAAAzVh/QAAAAIBFdH9AAAAAgBOSf0AAAADAk/9/QAAAAEDvD4BAAAAAYNQtgEAAAABAXjOAQAAAAOAPWIBAAAAAIDZggEAAAAAAQnGAQAAAAOAX2oBAAAAAoN3rgEAAAABgGRCBQAAAACBkGoFAAAAAQJshgUAAAAAgyDOBQAAAAGDRY4FAAAAAYJ+CgUAAAACg0IqBQAAAAIDilIFAAAAA4MDBgUAAAAAgYdqBQAAAACBl9IFAAAAAQDshgkAAAADASiiCQAAAACCvOoJAAAAAIHRhgkAAAADATWmCQAAAAIAqcYJAAAAAILp+gkAAAAAgdYSCQAAAAKBVr4JAAAAA4Pq6gkAAAAAg+L+CQAAAAKCKyIJAAAAAwD3QgkAAAABgMNeCQAAAACAD3oJAAAAAoCf4gkAAAACgBv2CQAAAAADiBoNAAAAAoE0ag0AAAADgdS2DQAAAAMBNS4NAAAAAgJFrg0AAAABAk4CDQAAAAAB6iINAAAAAoN6rg0AAAADAdrmDQAAAAGAqxINAAAAAoHfUhEAAAACgfVCFQAAAACAzYYVAAAAAYB2KhUAAAACAD6yFQAAAAAD+toVAAAAAQEnAhUAAAABgZdyFQAAAAACw44VAAAAAoAPyhUAAAABAJPeFQAAAAKBKMoZAAAAAIKw8hkAAAABAF2uGQAAAAMB+dIZAAAAAoIaIhkAAAABgxY6GQAAAAGDOu4ZAAAAAQIfVhkAAAABAmfeGQAAAAKD6BodAAAAAoMYYh0AAAABg/ZeHQAAAACDdyIdAAAAA4Ibkh0AAAACAxXuIQAAAAMDtkYhAAAAAgFGkiEAAAADgHdeIQA== + NrgMGZxjYkAbumJgJkNwQMRlXluOUnBAQnuq19RTeEDrJqbSPGN4QDQeeadBMoBACfT2pPU5gEA0TWfR7bqDQAkj5c6hwoNA - + - gdKsQFSlzkGs3QNB5WYxQKEQokBC3f9AB9wjQJyfGkD269w/PHsBQGWScEDev5JA7mMaQd5GhkCfAadB6EBEQPaKhUBVYP5AegIUQBE6HUJxhaVAZ/YAQNC/SEBWT6dA3bZjQN+0mkBxZMs/a2cmQEi4pEB0u3BAG4JHQQeR4UDIuVtBxj4nQWFh3UAOVmpBdvplQGAj+EBS+bg/6P7lP6E5QkAX0X9At7cKQJhO8D95Wx1AzUwdQHmOAUDt5C9A/nO6Qb/sGkAnCQpBeaFxQBBAqUFbFS1BSQ4mQD2FoEDvvBVBgplwQL8cQkBPojhAJnkMQSc7VUEKnA9BLvHXQJAtAEEqjbpAAKQKQNZpBUEedAVBVKFLQXEtjEHiKohBb+2MQN41XEA3aopAKP1zQfg5pj/UeMJBFY8aQsjPvEEkeedAuwdnQMHCDEEtFc5AcaV2QaPckj9XW8s/gucHQV/s2kCevNtAgl1TQeXBUUDV8eVB7rTqQGXCAkEAB0xBiBZ5QSn2JECeXkRBZYKFQY1wVUGFMF5AkcUxQaaRgUAPBKtBltIKQM9IMUKHmupA6YK7QGCyUUChhVFAy8k8QaSJJ0GorYhBZNzkQGU9QEIA17VBR2SuQKJhLkJN/FBBk0oKQSNiv0EYX9NA//zdP9EOvkBc/y5BLWvwP8CFcEA6saFA0uM+QOlKTEE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAYK8/X0AAAAAAToRhQAAAAEDEpmFAAAAAAOgGYkAAAACgJEFiQAAAACDiA2RAAAAAgGXpZUAAAABAzWpnQAAAAAC8aGhAAAAA4HmhaEAAAACgA+poQAAAAICAMG5AAAAAgMBgbkAAAADAncJuQAAAAEAcKG9AAAAAQK1gb0AAAABAmsZvQAAAAKDNA3BAAAAAIJkScEAAAAAAJi9wQAAAAADoc3BAAAAAwHOFcEAAAABANJBwQAAAAAC41nBAAAAAIHjhcEAAAADAHAFxQAAAAKAucHFAAAAAQPCkcUAAAACAg7RxQAAAAEB/7XFAAAAAgDJTckAAAABAFKFyQAAAAIBg1XJAAAAA4Hf2ckAAAADgIj9zQAAAAIAYVnNAAAAAwG11c0AAAACgX4JzQAAAAAAVEHRAAAAAANYidEAAAACAcj50QAAAAADzYXRAAAAAwIZ1dEAAAACA5KB0QAAAAMCMIHVAAAAAgIhEdUAAAADAdVJ1QAAAAACnZXVAAAAAgIt0dUAAAADg9Mp1QAAAAEAt13VAAAAAoF3rdUAAAABAnAt2QAAAAMAUQnZAAAAAIEZUdkAAAADAJeR2QAAAAKDj8XZAAAAAYAM1d0AAAABA7ER3QAAAAMAWVXdAAAAAoClwd0AAAABAFX13QAAAAOAkMnhAAAAAYKqfeEAAAABAZSJ5QAAAACDhBnpAAAAAgFdmekAAAACgcit7QAAAAGBDBXxAAAAA4LhMfEAAAAAg88l8QAAAAMApCH9AAAAAwO3Tf0AAAADAOwSAQAAAAKBnEIBAAAAAIDcWgEAAAABAFNOAQAAAAKB3e4FAAAAAoJYCgkAAAADgrwiCQAAAACCueoJAAAAAYKWUgkAAAACAkYuDQAAAAGAwy4NAAAAAwFh6hEAAAAAgVMKEQAAAAAAmFYVAAAAA4FWZhUAAAACg9jmIQA== - - - - - - LBbDQNxJoEC1oOVAnvzcP9+8UUCf3e8/g9+TPw7VhkCdzbg/eidKQfAk8ECida9AkCvLPyFyikCakANAqyIdQC5SBUFzi4tB4GKKQFTnI0DWmqg/N+m4P/m8S0AMh8hA9n0AQBc1oUAZSPRAz3UeQWA/hkGBaIpAPKDzQKTqjEEi255AF+95QPKPdEEVEAdA4TrNQImPMUIOxXpAnn4lQIB9GUEBSK5AXhAVQUnuA0EEi6lA96G4PycIokBR0XRB2njAQEdfqUHusH9AHuI1QYA8QkDwBi1AxBs5QEjOgEFrVqtB2PeDQYdnlUF+dUVBhpGiQfvnQUDIlQpAAnLFQCbZikA0cm9AU09nQEfDwEBh390/m7dCQYA2AUCuBJBALIUAQvEGXUGOWixAhYhFQXcrrkCBWuhARJcTQNm/y0EAxtRA5jSUP3fReUDXS0JAl82lP8Q6KEE1/OdARFkJQPOYhEA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAII8oYUAAAACgduJlQAAAAAD2I2ZAAAAAIMGDZkAAAADA6UBoQAAAAECgJGlAAAAA4Kgka0AAAABg1clsQAAAAEC9I21AAAAAABlnbUAAAAAAtAJvQAAAAMAHI29AAAAAQL0icEAAAAAAz0JwQAAAAKBZY3BAAAAAwAqTcEAAAABglwJxQAAAAEAyUHJAAAAAwPzEckAAAACAIAJzQAAAAEDOL3NAAAAAoGY/c0AAAACAHXRzQAAAAKAnsnNAAAAAoIjBc0AAAAAAitFzQAAAAMDbrnRAAAAAINDCdEAAAACgwdJ0QAAAAKCzIXVAAAAAICp2dUAAAADgb8J1QAAAAMALc3ZAAAAAQBaPdkAAAABgYKN2QAAAAMAmtHZAAAAAwM3kdkAAAABAVvN2QAAAAMAWEHdAAAAAAPwud0AAAADga5J3QAAAAGAYRXhAAAAAoIVTeEAAAAAg9V54QAAAAMDf8HhAAAAAAPrGeUAAAACgsvR5QAAAAKCZAXpAAAAAYM4vekAAAABA80J6QAAAAGCEZXpAAAAAwIDUekAAAACAWOF6QAAAACBsIXtAAAAAQMZUe0AAAABgVot7QAAAACD0lntAAAAAYHjFe0AAAAAgTNJ7QAAAAGC+/3tAAAAA4GZnf0AAAADAra1/QAAAAGDWI4BAAAAA4A1SgEAAAACASjaCQAAAAGAfWYJAAAAAoLGdgkAAAADga7yCQAAAAGCq6YJAAAAAQK+gg0AAAABgVKaDQAAAAIAdroNAAAAA4Nizg0AAAACg5zuEQAAAAEAWWYRAAAAAYMO8hEAAAADgL9uEQAAAAEB6U4dAAAAAYPJch0AAAACgSI6IQA== + KBZXds7jZUBeG3g88qJrQNzlv3T/InFAdmjQV5ECdEDcQ5zIVzR4QNF0GqNUU3pAN1DmExuFfkCWQDL3C1KAQEgumC/vaoJAlm8gIbjag0CsW2JMe4OFQPqc6j1E84ZAO4TAQadLh0A= - + - 0vpdQGIejECgy41ApUmXQHutE0BbcqpAl48pQSpxL0AJDtxAeI+9QDg+uUE6rphAiqkTQAP7XUAzbThAe1quQFf1yj9GWSZAXhuRQJTbk0Bj6JNA2+fuP+3kjUALZs5AlUcmQA2DnkAZTJNBisaAQF/xSUCT4VpAAAUvQbfuhUBmxtdAwvR+QajlLUFKRL5AcdsQQbq+jUDhI7tAWcGKQJm370B5rcs/wEOPQE2UcEFT2rxAUEIBQB3fJUBIqt0/MSa6QC6rzkBHPr5AgT68QOmW6EEHPE1BEWDTQIYdBkJE4pQ/wwmAQevG1EAhA1NAmMSkQKi8OkElT90/0N/uP/Wqe0HpehpBAoGNQFkgpkCihddA1t5WQSo+zkB2Z2lBo3SBQKjhFUHGdPNARqg2QelshkHz8MBAGndRQEXSwEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwKdJYEAAAACAhSJhQAAAAIBbRWJAAAAAwBpnYkAAAADAYYdiQAAAAKB9oWJAAAAAwFvLYkAAAACAB8ZjQAAAAEBXPGVAAAAAAOGiZkAAAAAgLuRmQAAAAAAbQGdAAAAAgHhhZ0AAAADAR6VnQAAAAMDABmhAAAAAwDFlaEAAAADAUaNpQAAAAKCpI2xAAAAAoCZGbEAAAABgrYFtQAAAAAATom1AAAAAQMZEbkAAAABAoH5uQAAAAIDT/25AAAAAQHonb0AAAABAmIZvQAAAAIAeI3BAAAAAYAtscEAAAACgq0JxQAAAAOAjU3FAAAAAAMuNcUAAAADANTZyQAAAAADZQHJAAAAAwKhOckAAAABAEYJyQAAAAAAqs3JAAAAAQKTEckAAAAAg2dZyQAAAAKCTAHNAAAAAgJETc0AAAABglCNzQAAAAEAlQ3NAAAAA4Cxlc0AAAADgXNZzQAAAAOAJIHRAAAAAoBFQdEAAAAAgcMV0QAAAAIBF9XRAAAAAIOr+dEAAAADAsRB1QAAAAGDKH3VAAAAAwC5IdUAAAACA9GF1QAAAAAA7onVAAAAAwLSudUAAAACA4MJ1QAAAACAO9nVAAAAAgGwgdkAAAAAguC92QAAAAABIPHZAAAAAQPqTdkAAAAAATsh2QAAAACDf0nZAAAAAQDsDd0AAAABg5xB3QAAAAMAcJ3dAAAAAwLONd0AAAACAHLJ3QAAAAODTVXhAAAAAoC9ieEAAAACgxIV4QAAAAMBxknhAAAAAoPKjeEAAAADgBbx4QAAAACCW2HhAAAAAYBP9eEAAAADALnJ5QAAAAED/g3lAAAAAoCyeeUAAAACAVNV5QAAAAECIBnpAAAAAYGEQekAAAADgxC16QAAAAOACXHpAAAAA4IpmekAAAACAaZR6QAAAACDQrHpAAAAAQITTfEAAAADAJ7Z9QAAAACBQSn5AAAAAIKx1fkAAAABgwgF/QAAAAODWEX9AAAAA4O8cf0AAAACgAWh/QAAAACAiyH9AAAAAQLbVf0AAAAAA/ByAQAAAACCDL4BAAAAAIKs4gEAAAAAglmKAQAAAAEBoeIFAAAAAIEicgUAAAACg6cqBQAAAAAAxA4JAAAAAwJYagkAAAACAzHKCQAAAAICnp4JAAAAAoGe7gkAAAAAgHsSCQAAAAOBi7oJAAAAAwKn2gkAAAADApFWDQAAAACC8YINAAAAAYNR/g0AAAADg/buDQAAAAIDpSYRAAAAAYNqnhEAAAABgtfiEQAAAAODZO4VAAAAA4KZZhkAAAACADYqGQAAAAOD+kYZAAAAAoKYYh0AAAADAnyGHQAAAAGD8vYdAAAAA4DC7iEA= + NrgMGZxjYkAsECBNt2JpQEMdzoN8QnFAPcnXHQrCdEAKeGK9lHN3QJMd3CKiMnlACtY+Ee2EfkDuKSZuZYN/QDJxRC7YaoJAwRzcaTTahEBfd+nTOZOFQLj7W5hrcohAVlZpAnEriUDlAQE+zZqLQCBeMrXyQ45AEgim4y7DjkAnsmstKraQQIkbyobtJZFAPcesLlDSkUA7Mi+VM7KSQIe3fsx71pNAhSIBM1+2lECbN0I0hXKVQA== - + - mU4KQGzvAUHEa7BAvnubQJv1y0DwKL9BGbg4QAVNwkBpUNw/loMHQCbjdUDouuJAFDi8QdcrhkAFM8o/kTBlQHXJOECeFs1ARzHEQIlQEkKNT+ZAQpNcQJ9f3T96oTZB+kGgQXLQsED/8LlBCEz2QBLJ4EFpooA/iZ0TQJyXjUHO1bBCcMWnQVNDhECNU21Al2mBQus4HEH0rC5CAUmOQLTKpEBOIXtBwa6KQbJrgUBXufVAUy3LQLsemECtPqJBVRyKQq4ohEBCh/5AZXh5QMaiHEDLKcVAPHR/QJBA40AS4QZAF6oHQqyn0kC5r41BEyC1QbMDekLvzSRAZpklQbFuRkF98/lBDu1EQfne30D5XCJC71ncPwUYgkFenLdBsCK9QDrZiEJ0tp5BRm0JQupfqUBN3UBBB63XQJOVBkEQUQlCjG29QC4kNkJV9SxCF8EYQvGr4kCWmgdBh0UBQitPPkEJrzNBH5XPQOam4EEBgw5BQ+DuQD2vWkIIozVCrNmjQdYwWkCANapDmm5HQcxPIEHFw9VBcARLQLrRC0GwKjJBDdxYQYShoEBpZeVAHGzYQldkJkCQzIhAuP+QQVkNqUAUz/0/aA7YQKDVXkC4NwlB2AfNQYzpV0G5+2dBFXdFQc285EELAu9AOEwHQu/4Y0DxDLJAhHp6QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgGRAbUAAAADgvyRvQAAAAEA5QW9AAAAAAMjCb0AAAADAjsNwQAAAAGDnAnFAAAAAQPdRcUAAAACgz2NxQAAAAECGhnFAAAAAgPgCc0AAAABgmBN0QAAAAECZInRAAAAAgI4Vd0AAAACABqR3QAAAAECSFXhAAAAAQP+geEAAAABAZ7N4QAAAAECx9HhAAAAAAMNUeUAAAABAGCN7QAAAAEAMNHtAAAAAwPeie0AAAAAACxN9QAAAAMA7V31AAAAAwJivfUAAAADAINZ9QAAAAIAhH35AAAAAwNuyfkAAAADA30uAQAAAACD2kIBAAAAAALqagEAAAABAm7uAQAAAAKDwxIBAAAAAANnegEAAAAAgiFiBQAAAAGB7YYFAAAAAwMXagUAAAACgWyGCQAAAAEDlUoJAAAAAQClxgkAAAACgyKKCQAAAAMCSuoJAAAAAYBbkgkAAAAAgBhyDQAAAAECmdoNAAAAAoLm5g0AAAABgs8qDQAAAAMD71YNAAAAAoD70g0AAAADgYhqEQAAAAABtKoRAAAAAoGAyhEAAAAAALlOEQAAAAGC3WYRAAAAAIBRxhEAAAAAge7qEQAAAAODa44RAAAAA4KTqhEAAAABgWveEQAAAAGDrNIVAAAAAIHlghUAAAACg2XqFQAAAAMCMmoVAAAAAIFGyhUAAAAAgyM2FQAAAAEDq2YVAAAAA4L9PhkAAAADga6OGQAAAAKBisIZAAAAA4K7FhkAAAADgSsuGQAAAACCF+YZAAAAAQMwCh0AAAACgSQqHQAAAAICfKodAAAAAoMJaiEAAAADgpZqIQAAAAODQwIhA + NrgMGZxjYkCEfuNfSGJnQMZtNYzMxW5AQh3Og3zCckDjFPeZPnR2QMqjv9FtU3tABR75ysHke0BJ/6kFQ8KAQAK+ag8Ne4FASS6YL+9KhEDyN3B+r0uHQEANGF4m44dA6RbwrObjikAwhx3NyLONQOD1b9sdfI5AfNlhbhpekECiER38VMqQQCIpFBGrjpJALvDGfGCqkkCq3wYUfHaUQH9SBA3njpRAJs9Gq5dClkAOe2ICE1eWQG3j9aWtJpdAV/2izjOzl0CC+Dan00KYQDsTdtZpN5lAZg4KrwnHmUAfKUnen7uaQEok3bY/S5tANT6K38XXm0CTph2DYKecQHxSOdrbu5xAIs97eIxvnkD4QXlx94eeQLqYXIQJKqBAQPw1OuQ3oEAAiLFEDxqhQBMkj4ssUKFAWRPkSzLgoUAFr3iPRxKiQBcLhBdAxqJAgQ06K3CGo0DVAiTjTayjQD8F2vZ9bKRAUWHlfnYgpUD/kFUBqU6lQBHtYImhAqZAWByICMwUpkA1LoHvsbCmQClNRjLqJqdA9bn8+dySp0Dp2ME8FQmoQE5FLwEAWahADWMZOiB7qEA= - + - nXgTQeDzCUIkS9c/o2NLQJ4o5EAO7BxAcMxBQeAzS0AulIRA9vTcP4FXeEL35RVBwlmnQE0cAEGIuQ1B7GF4QD23+kC83jRARq8aQcc2BUKt3A9BTBkBQND4hUD6xZI/E5qSQJfCcEEpZ8o/JghKQMFxVEDn3u1AVl1hQVSFgELAKzpBaCiBQBqlbUFe85xA86qmQEclU0CIZ1ZB4/ehQI9pEUCJWgpAmduXQUIkQkG18wNBPnKGQfC3JEAW/SNAsQCkQA3iAEDhum5BHpGNQB1mAkIPCGdB9T2bQPvM8UCesrJAHE31Qf4UREH0nclBvuqEQa/M10EOcclAsc6pQIMtEEBFJyZA7sBGQVzLwEBPpWNAKFEFQXnhwECo2xFB4IO4QC2SVUGgwnZBsNalP5WZJEC5RSZA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwCJHX0AAAADAWpxgQAAAAABn4GFAAAAAIPbkZEAAAACAqYxlQAAAAADMJ2dAAAAAIM+AakAAAABAnKlqQAAAAGCQRmtAAAAAAE2Qa0AAAADgZqVrQAAAAMDNpmxAAAAAAPTtbEAAAACgrLNwQAAAACDj/nBAAAAAwKVPcUAAAACA7+1xQAAAACBY7XJAAAAAgGETc0AAAABA+SRzQAAAAOBEYnNAAAAAgDuBc0AAAABAyYxzQAAAACDXpHNAAAAAAO7rc0AAAAAAV/ZzQAAAAABQfHRAAAAAIAXkdEAAAADgpyF1QAAAAABUMHVAAAAAYPRBdUAAAABgaFN1QAAAAMBqq3VAAAAAALTCdUAAAACANNp1QAAAAODnOnZAAAAAQDpGdkAAAAAAq252QAAAAODaknZAAAAAoJutdkAAAABAoMh2QAAAAKAUDHdAAAAAQFwWd0AAAADAeD13QAAAAIAYmndAAAAA4CGmd0AAAACg/7F3QAAAAEBFvHdAAAAAgDHad0AAAAAg1BJ4QAAAACBRanhAAAAAwLV2eEAAAADAM4V4QAAAAEBJkHhAAAAAYBHAeEAAAAAAjZ15QAAAAMCrbntAAAAAYCOGfEAAAABA45N8QAAAACBCMn1AAAAAIO1DfUAAAABgKVR+QAAAAEDuqX9AAAAAAOFqgEAAAADgvu6AQAAAAIC384BAAAAAIADBgUAAAADgv8uBQAAAAABEKYJAAAAAANxsgkAAAABAS3OCQAAAAIA+fYJAAAAAQAajgkAAAAAgisaCQAAAAIAOCoNAAAAAoBUzg0AAAACgxHqDQAAAAOBWmYNAAAAAYMPqg0AAAABAgGSEQA== + NrgMGZxjYkA= - + - fXTOQDvbiECf9YFAw3N/QMpXnkAxlphANy4KQL8GhECLEANBBeFnQMXvpz8+U39AC0aiQEJj6UDeCEJAMtBBQMWGhEDygQtA+myNQPV9x0CJuYBBB6EfQaSnyUCvACNAWDd5QA/6AECNYCJB8DOkQckUDUEFsThALhssQKAvBUFoRIRAhgB8QTItrEGKx9dBh4M8QOdAHkGjHHlAyBASQZr+AkFFXclBJpVKQfbZUUHvjSZD13+JQpD9mkCBUwpApoQOQQ+FG0DmixVC4DkZQpTkf0BjxbNAaOWkQFnThUCYxyRAoBIHQISa80BOgc9ADHtcQTwFLEE8pNw/MEFGQef/jkDDuslAelcbQXuIskAGSHBAQgSGQM5HZ0B7yg1BNDt2QFsBhkA0NEtBinyNQH9QeUCv51xAptE3QOd5K0E= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4LP+YUAAAABATeJjQAAAAEC1p2RAAAAAwBTkZUAAAABAhqBpQAAAAABc4WpAAAAAICwBbUAAAACgCC1uQAAAACBJW25AAAAAgPpjb0AAAACABolvQAAAAOCKRHBAAAAAQE5RcEAAAACAcoRwQAAAAMC2qXBAAAAAIMTicEAAAADgxC5xQAAAAGAvZnFAAAAAgMNycUAAAACAPpFxQAAAAMCgr3FAAAAAQFafckAAAADAtMFyQAAAAMBq43JAAAAAgBFdc0AAAAAg9bJzQAAAAADhOHRAAAAAgAlxdEAAAAAAiX50QAAAAEB5j3RAAAAAAA1RdUAAAACgZSJ2QAAAAEAbRXZAAAAAQMlVdkAAAACg7W12QAAAAADTeHZAAAAAgMiUdkAAAADAWhF3QAAAAMDbKHdAAAAAwPc1d0AAAACA9EZ3QAAAAOCPWXdAAAAAQKqQd0AAAABAE6V3QAAAAIDTtXdAAAAAIELmd0AAAAAg2Pt3QAAAAEAPJnhAAAAAIKxEeEAAAADgl3N4QAAAAAC6s3hAAAAAIC+/eEAAAADgJ/R4QAAAAGCmLXlAAAAAwO3xeUAAAADgqRR6QAAAAIAPc3pAAAAAwF2bekAAAACA5GJ7QAAAAADpcXtAAAAAQM+Ve0AAAAAAt6x7QAAAAIBCwHtAAAAAAI7ke0AAAAAg6l98QAAAACBcpHxAAAAAYCe+fEAAAACgdNB8QAAAAMBAMX1AAAAA4OFCfUAAAADAc1x9QAAAAGC5cX1AAAAAIOu7fUAAAACgrcZ/QAAAAOCaI4BAAAAAoK05gEAAAAAg6kWAQAAAAOA0moBAAAAAoCGigEAAAADAMD2BQAAAACCfZYFAAAAAIFEGgkAAAADAeAyCQAAAAOB7HYJAAAAAIIKegkAAAAAAyPuCQAAAAAB7QoNAAAAAYHprg0AAAABgICCEQAAAACBYK4RAAAAAoHRmhEAAAACgYm+EQAAAAKD0koVAAAAA4KDBhUAAAAAAdhyGQAAAAADfwoZAAAAAoF9kh0AAAADAr4uHQAAAAGDZo4dAAAAAIIuph0AAAAAgZ8KHQAAAAKDNBIhAAAAAAFOsiEA= + KBZXds7jZUA= - + - EeifQBQg3T/X2AZBsUYcQHJXCkDR7V1AGiVRQAN6w0Agu11A8UTeQD7yAED3eIRAk71SQUkBrkAkYaU/91UKQED3QkCl4oVAuEusQNtHt0LUS8o/ONiIQDGlikCV5EpAKlH0QO1rkEFGtMJAiYxeQc3TsEAhPe8/SFttQB3deUCukIBAWM23P3uU0kG+WiVBvf6oQGrNHUHdxpNAEKakQASLkEGr8KRAJSwZQGFaqUBw0gBAMQ9wQG+D3kDzeH1BU5O0P2/tAEANIyhCw3kAQUb9OUFVh+8/ICf1QA3QFkGS5pFAmWOZQXbNjEG2yhtB9vnUQPgZ70F+ictAPyc1QI9Va0GTps5A3vJKQILX1kDWXPdB+N1iQWdGE0H+6GJBJVvwP+lN4j9MDANBQYW3P1yWJ0CBNqdBjdu+QLzYK0HePhpBVa2bQPdNVEC2A3tB7wzmQHyEXUDHU99Aa3hUQCSim0BfIlhBs+UMQY62C0FeymRBCc0sQd38rkGAMSBBT7PuP8UBdkAiLLJBxauvQLowtz8syK9AFlB4QA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgPVDYUAAAACAdaNhQAAAAICew2FAAAAAQFJlYkAAAABAAYliQAAAAED1pWJAAAAAgF/lYkAAAABANmdjQAAAAADxhGNAAAAAYLPnY0AAAADAWsZkQAAAAOBQPmVAAAAAwJ1jZUAAAACgfINmQAAAAEDg5WZAAAAAgE4CZ0AAAACAVkZnQAAAAAANaGdAAAAAAM+DZ0AAAABAUUFoQAAAACAjXmhAAAAAwAa/aEAAAABg+OpoQAAAAIBdJGlAAAAAwPZEaUAAAACAR8lpQAAAAGDCXWpAAAAAQH+CakAAAABAHOhqQAAAAIDPKWtAAAAAwAuDa0AAAABAl6RrQAAAAIA35GtAAAAAQARDbEAAAAAAJGhsQAAAACCCoWxAAAAAAMXGbEAAAAAgWedsQAAAACDCA21AAAAAYLoDbkAAAAAAJSJuQAAAAGC7Qm5AAAAAwGYob0AAAACAj2FvQAAAAMD1gW9AAAAAwNajb0AAAADAKsdvQAAAAODmAHBAAAAAQP4ScEAAAABg3DFwQAAAAEB9RnBAAAAAwPRTcEAAAACguqBwQAAAAKAvsXBAAAAAYIHBcEAAAABAAM9wQAAAAGAl4nBAAAAAwPoEcUAAAACgnkJxQAAAAECaVHFAAAAAIA5zcUAAAADAB79xQAAAAABF1XFAAAAAAMvhcUAAAAAgkgRyQAAAAEDTQHJAAAAAoIxjckAAAADAr3VyQAAAAAAdhHJAAAAAwIOuckAAAACAcMFyQAAAAOCb5XJAAAAAAEzwckAAAAAg1wZzQAAAAIBTR3NAAAAAwINhc0AAAADAZnBzQAAAAACilXNAAAAAwHmic0AAAAAAHsBzQAAAAEBaA3RAAAAAAP8pdEAAAAAgmj10QAAAAIAwcnRAAAAAQG6DdEAAAADASrB0QAAAAKCF43RAAAAAQFv2dEAAAACAdwR1QAAAAABWVXVAAAAAIHdydUAAAACgEoV1QAAAACDGkHVAAAAAgKKcdUAAAACAE891QAAAAMDp5HVAAAAAYNMEdkAAAAAA/Q52QAAAAMAXPXZAAAAAwChIdkAAAADAXIh2QAAAAECOlHZAAAAA4JijdkAAAAAgMbN2QAAAAEB8zXZAAAAAAPsVd0AAAACA9TJ3QAAAAADGWndAAAAAANpkd0AAAACgsW93QAAAACDzjndAAAAAIBSkd0AAAABAx653QAAAAGAOw3dAAAAAgMn1d0AAAAAAoDR4QAAAAGCwUnhAAAAAoDWfeEAAAACgyrF4QAAAAIBsv3hAAAAAABTSeEAAAACAceV4QAAAAKAx/nhAAAAAQGVPeUAAAACAMl15QAAAAECNeXlAAAAA4GSGeUAAAACAHZJ5QAAAAKDLoXlAAAAAwDyveUAAAABgFdF5QAAAAICq4XlAAAAAYIvxeUAAAADAVRN6QAAAAMCuKnpAAAAAII9VekAAAADAVmB6QAAAACD3a3pAAAAAoDd4ekAAAAAAQ4J6QAAAAGD6kHpAAAAAwJqbekAAAACAzKV6QAAAAAAxtnpAAAAAoErSekAAAAAACOd6QAAAAGCc9npAAAAAwDEGe0AAAACAViJ7QAAAAOAsN3tAAAAAYItie0AAAADgQHR7QAAAAKA8hntAAAAAwB2Ue0AAAAAg2bJ7QAAAAICNxHtAAAAAgKPRe0AAAABA+ed7QAAAAGAWBnxAAAAAIJ8XfEAAAAAgIDV8QAAAAGDNPnxAAAAAAP1TfEAAAAAg/It8QAAAAOANlnxAAAAAQLvTfEAAAABgq+N8QAAAAEC983xAAAAAwP1mfkAAAACgxpd+QAAAACAWZX9AAAAA4AKFf0AAAADgs6d/QAAAACDFs39AAAAAoK3If0AAAADgANV/QAAAACA4IYBAAAAAgNgvgEAAAAAgmkCAQAAAAOCESoBAAAAAwF1SgEAAAADgq2iAQAAAAOArcoBAAAAAoIuzgEAAAADg6taAQAAAAKA13oBAAAAAYH/ygEAAAACAVvqAQAAAACBBAYFAAAAAoOUJgUAAAADg6iKBQAAAAIB6P4FAAAAAIPxLgUAAAADgDGKBQAAAAMAfZ4FAAAAAwPOBgUAAAAAgiIqBQAAAAKAMooFAAAAAQECygUAAAACgPrmBQAAAAOD82IFAAAAAoNYDgkAAAABgCwuCQAAAAKCeGYJAAAAAYLwxgkAAAADg7TuCQAAAACA0eYJAAAAAAGGSgkAAAADA+J6CQAAAAOD1woJAAAAAYDTJgkAAAADgsdOCQAAAAGCBSoNAAAAAgK9Rg0AAAAAA0VuDQAAAAABNYYNAAAAAAMOKg0AAAACgidqDQAAAAABm4oNAAAAAAEnqg0AAAABgoQOEQAAAAOAsCoRAAAAAYLoqhEAAAAAgTjCEQAAAAGAga4RAAAAAQDR0hEAAAADg8nuEQAAAAACxg4RAAAAAYGO6hEAAAABg5MGEQAAAAIDqyYRAAAAAAKj7hEAAAAAguAOFQAAAAOAdDYVAAAAAQPw1hUAAAADAnDyFQAAAACDkSYVAAAAAYJ9ShUAAAADgC2qFQAAAACDzdYVAAAAAgGCKhUAAAAAAgpOFQAAAAKDONoZAAAAA4N5JhkAAAADAxFGGQAAAAMCkiIZAAAAAQCalhkAAAABAVsKGQAAAAGA4yoZAAAAA4FnUhkAAAACA6dqGQAAAAOAr5IZAAAAAoBUhh0AAAACg5yuHQAAAACD9UodAAAAAYAZbh0AAAABgH2CHQAAAAGDTo4dAAAAA4Jirh0AAAACAxgqIQAAAAKDiK4hAAAAAQKJyiEAAAAAAYXiIQAAAAOD8y4hAAAAAgLzRiEAAAADgJ/2IQA== + KBZXds7jZUBkuM9LfgRtQEwvfbx6MXBAMjrEeZeTdUDahsnbUkJ2QE+LgGTvI3lA+NeFxqrSeUCl34Rph5R9QCXsyTJoIYBANp2M0c/igUBO7FACe1mDQF+dE6HiGoVAThs/LCfihkB5RcEucxqJQKNgDEhbY4lA3XKLS/8yjEAHjtZk53uMQDK4WGcztI5AEBtC+bs9kECZc6PIbx6RQCSbBWHF2ZFArfNmMHm6kkDWsWpvC2aTQMFzKpiCVpRA7MarcDGClEAIiNmSmDqVQDPbWmtHZpVA7J2sms6+lkCz8lGAnSqXQPoGAXuzDphANo5+OPrCmEA= - + - AmdUQuX1dUE9IB5BCOkMQlRIyj/IdW5AVL/KP/qpn0Ga0ylCuGC0QISKl0C9Tq9Baj5bQchnd0B0P8FCrI1NQv6ex0AD+OhBNPu8QEcsjUCUhJxAawGmP/nqL0BWVY9EFEhtQiO1uEBnfaFBkxBYQR2OL0Bs+tJA2E1lQGF2AkGDlRxAmN64PxS2f0Cn249DCUATQhVFxUDlR5xAcDhKQKA210DeRyZAyg1VQY4Bn0Aw/OlAkKQcQJi4pj+WEgpA7k+6QATi1UEKc+8/n8wEQdaxAEBPti1BTO0qQnbnfkGPiABBgymGQf90h0K1ebBBoWDvPxrI6T+GQ/5BdBp6Qm1GvEDhbwBAXjqrQ/ht30FNXzZAwCJCQPgJl0CiUsFA6ifnQOBCgkHFcE5Bba/KP4ropEA9KZNA2LhNQRbJgEIL1glA+gkmQZ3jUUCrlA5BiideQboISECw5hVC1gUbQVYOPkK3Fq1BsjYRQZxcHEEOqiFBXcvOQAig7z8MVxRBh0YYQWvPB0ANWEJCRIEFQLKoCkFWsEBBvK/eP8ey4UBvtvRBnvOzQK+dVkH0TUREC0s6QximwUBvnrg/TIicQZLHEEF7x2pBl6j9P3P6REJ60mNAh+KSP7R8C0GS8BxC52e4QQ8nEEGlNUlBJff1QMAfRUGboopB+sbJQKERnkF5iT1BUNLcP5RmLULn6FFBmYmmQeNLDkEKyjRBAYQJQxesG0EtSjZBFvS7QCkXEUGG1EtB0E2jQF12F0LRQhtBx4EcQLxXs0R1KlpDcH4vQsiIykD7kGRCUR+MQbyJfUHl3yFCme3RQHOTl0H/9WtBHXA/QDuoUkEhppJCB9vjQLmMIkJYUsM/ErYeQvc3BELsyyRAr3RYQvXqi0DMS8s/aA+pQCx27z8XXwFA1KNfQd2ZZkD9yB5AavCCQR65dEERaINBYUZIQevJS0B+RN0/21vOQKuvtkEQE7ZByukcQGB7dkCDEeFAKjjfQiBzN0KsdzFCMJZhQRUWjkGz7z9B/GJRQUvApEBI/CdBMbICREnrBkMF8i1Bb5nXQUs9pkCUVphAXejNQNHvgEDegcJBJTElQe4XAEEg6zBB6CWHQFy2OkEiW51CIrLfQUrhZ0EffcZAbR4YQjNVjEA4UxNAfMIzQRWND0KulitCTkYKQbBl+EDvqj5Auu6JQU37hUHyxpxC8YcDQggJ6kCrqbBAJFt2QsTvZkJSYLhBxVGSQmYlyEEq/hNA5G82Qse9qECKn35DzDC2Qro9S0DYZYdAz12bQ//Zo0KMWn9CfGqmQuLTzEDxWY9A4NyKQKzPaUNb4KZCqAOdQAz2/0ApfaU/b8mzQGznZkHzFlxFFEF7RJhZfUD6kh1AZMeAP8jLUUDMfxxBLA0UQRn0CUDLZR1BvyPwPxswukA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwOuGXEAAAABA2ypgQAAAAGBCRWBAAAAAQF/fYEAAAACAU3thQAAAAMALamJAAAAA4LmHYkAAAAAAGCZjQAAAAOCrxmNAAAAAIALoZEAAAAAAzSdlQAAAAMCM5WVAAAAAgN0jZkAAAACA5KFmQAAAAEBn4mZAAAAAgJ0jZ0AAAAAA+0VnQAAAAACAfGdAAAAAQDVmaEAAAACAGOFoQAAAAADTIWlAAAAAYH6kakAAAAAAFdVqQAAAAEA2Y2tAAAAAQIsobEAAAAAAaMdsQAAAAAAh52xAAAAAQFwbbUAAAADAWWptQAAAAIAzn21AAAAAgDjFbUAAAADAX+dtQAAAAICBX25AAAAAAF4Cb0AAAADANShvQAAAAIATyG9AAAAAwBjqb0AAAAAAZSFwQAAAAODUSnBAAAAAIFmUcEAAAAAgLuBwQAAAAEC6D3FAAAAAAH1bcUAAAABAu9NxQAAAAIAD5nFAAAAAgMhgckAAAADgbGtyQAAAAMCfg3JAAAAAwE6wckAAAABgAMFyQAAAAKAR/3JAAAAAQDATc0AAAADAAiNzQAAAAIDRP3NAAAAAgIelc0AAAADAmNRzQAAAAOBtC3RAAAAA4CA0dEAAAABg+UF0QAAAAECRZ3RAAAAAoHN0dEAAAABAh5B0QAAAAMD5m3RAAAAAILeldEAAAAAA9dN0QAAAAACvQXVAAAAAoAtTdUAAAAAgA2B1QAAAAEAadXVAAAAAAHWEdUAAAAAAc5J1QAAAAGCb6nVAAAAA4Gr1dUAAAABgEyR2QAAAAIDZUHZAAAAAYCdfdkAAAAAgSJd2QAAAAKAupHZAAAAAYMYvd0AAAAAAk8Z4QAAAAKCzbHlAAAAAwCCxeUAAAAAgwcF5QAAAAAA7UnpAAAAAIN1kekAAAADgM7N6QAAAAKBkNHtAAAAA4AtHe0AAAADgopZ7QAAAAODSVXxAAAAAIJa3fEAAAABgFUF9QAAAAGDRxH1AAAAA4G37fUAAAADg7gh+QAAAACDMT35AAAAA4HfkfkAAAADghCV/QAAAAGA+kX9AAAAAYM6lf0AAAABA8LF/QAAAAOASx39AAAAAYBnVf0AAAAAgzP1/QAAAAKAHBYBAAAAAoAcTgEAAAABguWGAQAAAAGAAe4BAAAAAoMLBgEAAAACgvvqAQAAAAGAoMYFAAAAAIMFEgUAAAACAJ0uBQAAAAGDnUoFAAAAAIO5ZgUAAAABgF3yBQAAAAGDknoFAAAAAYFSkgUAAAADA6cqBQAAAAGAM1IFAAAAAIDXqgUAAAADAmw+CQAAAAKDWWoJAAAAAYHJjgkAAAADgi32CQAAAAOBOrIJAAAAAICbQgkAAAABgEf2CQAAAAECwAoNAAAAAYA1jg0AAAADgF3ODQAAAAMDrioNAAAAAoAeUg0AAAACgaQKEQAAAAGCoCoRAAAAAADAbhEAAAAAgNCKEQAAAAOD3UYRAAAAAgId0hEAAAADg/IGEQAAAAOD7koRAAAAAIIObhEAAAACAe8CEQAAAACBd5IRAAAAAoJnthEAAAADgbFOFQAAAAEBrc4VAAAAAYAbkhUAAAACAYuyFQA== + NrgMGZxjYkDEsXzkGyNlQKmz0iumwnBA32Ik4HNicUD9s+DKy/J0QKkRr3/+03dAGwWdtSODeEBwbEO5FgV+QCFjchbpSYBAY+AjX9c6gUAgkmBAldKDQGMPEomDw4RAjjmUi8/7hkAgwU5qQVuHQEvr0GyNk4lAjmiCtXuEikBLGr+WORyNQI6XcN8nDY5AdkRBmYVUj0ARPIqNvwqRQO24BduINpFAWFA5iNXukUCfZOiC69KSQG3Q/O/e+pJAH+dh/iSHlEBQ5s/3FN+UQAP9NAZbC5ZA - + - vqq3P6jVQEEqjsFBQImTP+DVQUBXz5dBtXRpQNc5kkAS2Z9AvPu6QPpf7z/14lJBL/PJQFmOr0Bl2M0/qijkQJH5JUCjmxxA7iwKQHXAbUHpokFAZIEsQkkOqkDfWu8/CuO+QGN250CFK+VAZrkxQUcCyEB2gIpATs3JP7sYuEBiagZBxEeAQb7ZHUBm7wBAxu0cQZEDN0DsVaZAkUCuQJEtAUH091tAZnStQc2xJUCXSbdAFG3XQClHm0G8EPNAb404QPyuQUB7KcVAHpXNQNkyv0DGYso/iOkAQKW7DkHvD11BlPTHQMma00BSmMtBm9HFQarmdUAROgBCqmsjQp/ln0FSS2dBuwtoQRhAVUHQhrBBDmlTQOEi8D+LjqJDrgZvQ9UHL0E5GwxBq/DoP12qx0LErD4/BQ8TQFwUG0D6yaQ/1uvaQRqkVEE825hAhBgvQCdYhEAo9kpAV1S7QHXiuj+jxKRArDF5QAegL0A4VMdBiNSAQVYYk0Dx+i5B8CSgQNR9oUB9twtAIPp1QBx9R0AsSlRAphMBQUIi5EE4Aa5BUMQJQDoonUGRicBA+BstQQCW+UCP8hpBr3mPQCk0LUHPokVB+5lGQemWrUH0RqNAPdTuP/HzPUGZXC9A9pSbQGYoOkF0nOZCb1+dQr3W5UB4ylpB6PgFQbs9/0DnKVlBJpR1QPMYQUEHpKdCbO4yQubBHkI/R89Bw4LEQTMhFEGlsHlAdAX4QFBaN0GGVyJEIYtsQw0zhEDOXY1BCGLuQIoo6kCQPGxBGrceQ348xUI= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAFdpZUAAAADATQRmQAAAAGDMJWZAAAAAYJmkZkAAAACgGudmQAAAAIC/bWdAAAAAAHWmZ0AAAADAVQFoQAAAAMDcP2hAAAAAINtCakAAAADgcadqQAAAAECIamtAAAAAQAdlbUAAAABAJ4RuQAAAAIAHInBAAAAAIHczcEAAAADgVVNwQAAAAEBGdHBAAAAAYG3BcEAAAACAU+FwQAAAAGB+8XBAAAAAoFsLcUAAAACApyZxQAAAACAGRHFAAAAAAGtRcUAAAADgJ0VyQAAAAACbw3JAAAAAQAPUckAAAAAA8f9yQAAAAAA4cXNAAAAAYHgCdEAAAAAAgiJ0QAAAAOCsUHRAAAAA4KGQdEAAAACgNLV0QAAAAIBBU3VAAAAAwLtjdUAAAACgGZF1QAAAACARyHVAAAAAQL3gdUAAAABAefV1QAAAACBZMnZAAAAAgP2AdkAAAACAfZR2QAAAAMDTtnZAAAAA4HvBdkAAAACA4tJ2QAAAAAD243ZAAAAA4HTzdkAAAAAgPkN3QAAAAEB6U3dAAAAAwD53d0AAAADAVYV3QAAAAGCYpndAAAAAwJzQd0AAAABAjOB3QAAAAIDOAXhAAAAAwNQceEAAAABgMy14QAAAAGB6OnhAAAAAYA1WeEAAAADAu2d4QAAAAGBLj3hAAAAA4LHweEAAAADgmf54QAAAAGAxKnlAAAAAQDA0eUAAAABgpkl5QAAAAOBTcXlAAAAAwKHMeUAAAAAg1uV5QAAAAKDD73lAAAAAYPAEekAAAABgWDV6QAAAACBvU3pAAAAAYPFfekAAAADAXG16QAAAAACIz3pAAAAAIA7kekAAAABAOfJ6QAAAAGD9BntAAAAAAMURe0AAAADgxjR7QAAAAMBqRHtAAAAAQB1ye0AAAACg3IN7QAAAAIBenXtAAAAAYL/Fe0AAAACA/dR7QAAAAADFFHxAAAAAoBEkfEAAAAAgjTd8QAAAACDZVXxAAAAA4Ld2fEAAAABAFot8QAAAAODtlnxAAAAAgJfhfEAAAABgrhR9QAAAAGAOJX1AAAAAIDhqf0AAAADAHHZ/QAAAACAFFYBAAAAAIE0wgEAAAACAuEGAQAAAAODmXIBAAAAAYKWkgEAAAACgKLOAQAAAAOAc0YBAAAAAIP3ZgEAAAADAxkSBQAAAAEAleoFAAAAAYEeCgUAAAABAF5GBQAAAAMAenoFAAAAAIEfIgUAAAABgG82BQAAAAOCy+IFAAAAAgEwBgkAAAAAg4A6CQAAAAIDTGYJAAAAA4NsngkAAAADgXDmCQAAAACDloYJAAAAA4He1gkAAAAAgUbuCQAAAAKBXw4JAAAAAoGDLgkAAAACgGQCDQAAAAEDYR4NAAAAAIKprg0AAAADg73+DQAAAACDhhoNAAAAAoLqOg0AAAACg9ZmDQAAAAGD/roNAAAAAIIfFg0AAAACAbQqEQAAAAOAKGoRAAAAAAP43hEAAAAAAAUCEQAAAACB5g4RAAAAAoEGvhEAAAABAoMKEQAAAAGCi1YRAAAAAwIrrhEAAAAAAZfKEQAAAAKCj+IRAAAAAIDL+hEAAAAAgTg+FQAAAAMCVGIVAAAAAoLEfhUAAAADgHcOFQAAAAMBwFoZAAAAAQHpDhkAAAAAg/EyGQAAAAKCEU4ZAAAAAYHdjhkAAAADgVoaGQAAAAKDUjoZAAAAAwMahhkAAAACggruGQAAAAOD30YZAAAAA4ITZhkAAAAAgOOGGQAAAAICy6oZAAAAAAOY9h0AAAADAKU2HQAAAAGC7y4dAAAAAgJysiEAAAACgJuuIQA== + KBZXds7jZUAU6QePPwNyQLh9x6rPUXJApjvHBz6CeUDbQ5zIVzR7QPyPywzW8n1Ap3Qu3KOagUBi9S8j9xGCQAui+Pgvs4RAHEgQG28ShkA2zHr7e+uGQC2r+imzg4pAgHXaN/uqikCApMhhpzOOQMCLnmUKjI5A - + - JHFjQIbNDEGKVVRAbrJ7QAT6iUHTS49A2xwKQMNBWkBwvypB9AirQYeDJEBH+L0/MCY3QOPUCUAYZ3dBlU2kP8WgJEHjSpJA90oKQGjL80C4By5BpztjQAZV00D5X9JAtPMAQLQ/jkBcWmpCZ7lWQHfHIEHwBcBA8NwDQJutH0BbxcRAsO4JQF4r4D9kY81Al0IWQQBqBUGwmSpBajIIQJptx0BLj90/M9MTQERiqUBvPQpAPUw9QUgthUGg2TFBLt8nQUTG+0ASegBAp0NtQIYN0D+MuKRAEAAjQEYQ1kDpvjRB3n+GQTqX/j+UOmVB5+8eQrsZRUHmYxNAuiTqQMDQg0HCIqtB/WHYP706YkHJeTlAblP0QYfOIkB47LZBI00NQsHS4D+aggVCiIAEQyh/FEEWA1lAtj1LQNxBkkFYidpBsuJfQeZJ5UAJ/EpAtr8QQpoXVUA1o9tA5CYaQsGq9UHoR7JAywQ0Qn3sjEAb/0ZAtPdBQLKWJkL9aMVAE6eBQTom+z/mVwZBwaIOQnmgCkFEw65BZrwiQDy4jkEN305BgwoBQIfqNUEUmKdAaiPSQE9VikAhs4RAYwxsQWX2lkCL0+lBFJikQUA/wkGhs8dAr2SdQKzob0G17I1CdAd2QDYxgkAw4rhBP/64QXjoC0N51kJCCV47QfSqVEEF64VAOiJ2QTO4JEM5AlFDoqOcQTDFhkDYFIlAXABwQD/6I0FQ4hxATB2/QZiAdkAjgxNASRcdQHxssUAxghxBjHZNQzpzU0LsQh9CuBckQW6aDULkRtNBesmGQe3CskBVlUBCpHJ5QDBXyj+76iVA41IvQCtzUkLzeEpCuduFQEmhr0CSoFxAHTdkQZNT2kAP4ddAyvpoQYSqfUErLfBAJXDYQKWnh0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgL/mZUAAAAAAWaloQAAAAACHIWpAAAAAgGGia0AAAADgX4ZsQAAAAABxRW5AAAAAQPLGbkAAAAAg30dxQAAAAOC1gXNAAAAAAEAFdUAAAACAySV1QAAAAABxVnVAAAAAwFTldkAAAACAHgN3QAAAAAAJGndAAAAAQPVfd0AAAACAi4t4QAAAAAC7DnlAAAAAgCN0ekAAAABAL596QAAAAIC0A3tAAAAAQIEDfEAAAACAq698QAAAAACXxHxAAAAAAFDVfEAAAACA5Ox8QAAAAEDqYX1AAAAAQMvyfUAAAABA9KN+QAAAAABuuX5AAAAAAJ/0fkAAAADAHEt/QAAAAOBnOIBAAAAAIKRKgEAAAABglZCAQAAAAACxqYBAAAAAoB2vgEAAAABgL+qAQAAAAKCm8IBAAAAAYPsSgUAAAAAgOhyBQAAAAKC2OoFAAAAA4I9CgUAAAADg90uBQAAAAOCTWYFAAAAAoEyAgUAAAAAguHqCQAAAAKDWIYNAAAAA4K1sg0AAAABgE7yDQAAAAGBIwYNAAAAAYLPGg0AAAAAg+ImEQAAAACCa3IRAAAAAAOYUhUAAAADgf1CFQAAAAKDAk4VAAAAAoFmchUAAAADA6SmGQAAAACCKUoZAAAAAoHFYhkAAAACgDYKGQAAAAADbhoZAAAAAoLSLhkAAAAAAKbyGQAAAACDqB4dAAAAAYMpbh0AAAADAAJyHQAAAACAXrIhA + NrgMGZxjYkA= - + - 0caIQIEyjUBFHQhA2ERgP2L/rUC42QRBQHrEQPUPFEEBXe8/sn42QBExeUDPTlRAmacUQGG1QUA00sZA1vfiQADc70A4BcNA3gN6QKeDHEDBSqNAwbvbP1TtJUDQ6Mk/Wq1WQTq6M0GyYwVBx3pAQGJc3EC45lJAICqgQC7Dt0GQMFhBnI0bQb/8G0F2YLNB9pMHQc+I3UCJ5u8/g74AQXzCHkGJ3CxBYZeKQI6dGUFOGr9Abjc4QJ2jC0GANy9APryOQn+gJELXNC1AqNlOQsawpT/OQhNCD4ziQGh5OEAxGbZBwbatQKlyCkKUaHxBGisPQsvlJEHKdVBBToaNQAEJQEAOoyZB+244QNaBXkDgIG5B + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAgHBLWUAAAAAAJIpZQAAAAMBqiltAAAAAoJZwXEAAAABgNsddQAAAAIB3WF9AAAAAQDUlYEAAAACA4kRgQAAAAECLiGBAAAAAQG4IYUAAAAAAXWJhQAAAAKBLHWJAAAAAQOxjYkAAAACAPuViQAAAAMBOaGNAAAAAgKymY0AAAABAF6ZkQAAAAADI5WRAAAAAoEADZUAAAADg5EFlQAAAACDBpGVAAAAAgNu+ZUAAAADAc+FlQAAAAIDHIGZAAAAAQBijZkAAAADAE+VmQAAAAIA4V2dAAAAAgCCEZ0AAAAAgfSNoQAAAAACXTGhAAAAAQBDiaEAAAADgQwRpQAAAAGCsKWlAAAAA4KNeaUAAAADAGcVpQAAAAMAo6GlAAAAAAAghakAAAACA7V9qQAAAAEBqoGpAAAAAwPzGakAAAAAAaNxqQAAAAMBiIWtAAAAAQHKfa0AAAACAlMZrQAAAAEC+5mtAAAAAAN4kbEAAAABAJVpsQAAAAMA3b2xAAAAAwKqIbEAAAAAAnqJsQAAAAIBs52xAAAAAANoJbUAAAAAAMyBtQAAAAIDHWm1AAAAAAE6FbUAAAACAz6JtQAAAAIAZ/W1AAAAAQOg/bkAAAACA32RuQAAAAIAQpW5AAAAAgFK/bkAAAADA5iBvQAAAAMA3S29AAAAAAPFqb0AAAACA3ZxvQAAAAAANwW9AAAAAgNzlb0AAAABAeBRwQAAAAIA9JHBAAAAAoNkxcEAAAAAAaFVwQAAAAABgfXBAAAAAAPmzcEAAAABAcNBwQAAAAGD733BAAAAAgNHwcEAAAACAowFxQAAAAAC6I3FAAAAAQAgxcUAAAABAw0JxQAAAAEBZYnFAAAAAIPaycUAAAAAA3tJxQAAAAECQ53FAAAAAQPz+cUAAAAAgVRJyQAAAAMDkInJAAAAAQBQwckAAAAAAk0NyQAAAAED0cXJAAAAA4F6BckAAAADgUcdyQAAAAEBr4nJAAAAAQMzuckAAAABAPgJzQAAAAGDMD3NAAAAAAOaPc0AAAAAgxyx0QAAAAKC0snRAAAAAAC/jdEAAAAAAoRJ1QAAAAKAUiXVAAAAAoGSVdUAAAACgBbl1QAAAAKDdw3VAAAAAwNXxdUAAAACgDhJ2QAAAACAPa3ZAAAAAYGmEdkAAAADgy892QAAAAGBo8nZAAAAAAM2kd0AAAADgTcJ3QAAAAIBB0HdAAAAA4FHxd0AAAABgSjR4QAAAAADrsnhAAAAA4EXFeEAAAAAApNl4QAAAAED59HhAAAAAoFNYeUAAAACABoJ5QAAAAGAW0nlAAAAAQBXpeUAAAAAgKGB6QAAAAEDDc3pAAAAA4F+GekAAAABgYul6QAAAAMA4DHtAAAAAwH4le0AAAADA30Z7QAAAAGCmX3tAAAAAIF1te0AAAAAgdXt7QAAAAECNhntAAAAAoFojfUAAAACg6/R9QAAAAMD7x39AAAAAoJXTf0AAAAAAcnOAQAAAAIDkeoBAAAAAoGmagEAAAACgfMuAQAAAACAxlIFAAAAAIN/5gUAAAABAOwWCQAAAACDDGoJAAAAA4LjYgkAAAAAALSmDQAAAAOB8jINAAAAAYMc6hEAAAABgcDuFQAAAAKAUa4ZAAAAAAA21hkAAAADg8+GGQAAAAGDGw4dA - - - - - - hzjFQP9sjkDUlPE/HSjMQOpE7z9FSU1ATutaQaR1rUA8rT9Ap20vQAw/CkCP2R1ArBiPQQNdkkCt/rQ/aUvFQGyZP0BciuxAuiFBQftuLkDmawdCK3n8QDUTg0E5QwpA2CcmQKW5RUH8OvtAF53JP69DgUAHBapAOhbNQJ6sbkBn1FlA1X/JQAKQjkAPlN1BS3GRQShEAUBzeptAYBqqQJe1AUCUU9Y/dp1PQcAXoECF5QlACAPLQR+hEkKvamlAHnUkQS6nSkEes45BliMSQTcMxkGpukhAaKLBQJh9HkCazqRAum2sQSmm4kD5zdNARh0EQYqxkj9JKrs/sqgCQH7MkkGy429AW7BuQIJnv0GQ+ptBEojuQMKDLkEfr9BBR17WQUw1BkIKaJ9BLuyVQng0oUFFVvlAanb+QMr+n0Erj2VAg+CSPxLkAELuA1VAY5owQUufIUIoCyNBqFUoQamM10Aa2kNCht4kQXOaTkFM+4VA6WUUQW4lGkEifxNA1twJQDwz+z9NDWZAhZzXQPUOHUBjTWFBnOzIQAFEN0Eop5NBJSJUQAwe0UCSxLdB7X1qQcSSP0GAbYVAal1BQTPHQUBWRW5By1FNQUiGMEFWMBFAibglQIYVOkF2hjBBUBTCQCrru0DUoB1CNrLQQGZfHkJuNPFAYMwrQYCPIkF9Wl1BSNaAQPuoQEBzWvVA0PANQQzwpEJCqcNBujaRQXp5LUFwdZJAJBFBQUQ40kGuCAlBcvzrP7/hhUB+ZeNAxxrEQNtvuEB5lClBB6yAQEuyC0HWEvVAcgPaP0ywd0D8fbJA4SBIQJg7nUDmUrg/ - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAoMAFXUAAAAAgYUVeQAAAAMAfZWBAAAAAAHyGYEAAAADAO3NhQAAAAIDVqWFAAAAAQEPpYUAAAABgPRlkQAAAAICjXmRAAAAAQL+BZUAAAAAAD6FlQAAAAIBGKGZAAAAAgFEhZ0AAAAAAZVhnQAAAAGBCJWhAAAAAIGxAaUAAAADABcNrQAAAAAAl2mxAAAAAQGefbUAAAABA1SxvQAAAAKCTkXBAAAAAIDKgcEAAAADAS+BwQAAAAIAUEXFAAAAAAPLBcUAAAACgOFpyQAAAAGCsgXJAAAAAgKaickAAAADA7wpzQAAAAIB+gXNAAAAAgGOSc0AAAAAAS55zQAAAAECdRXRAAAAAQBOSdEAAAAAgWqF0QAAAAIChHnVAAAAAAOZCdUAAAADA5mF1QAAAAEC/lHVAAAAAwFGldUAAAACAYtV1QAAAAMBLF3ZAAAAAoG5BdkAAAACg8Fl2QAAAAKCMg3ZAAAAAQM2TdkAAAABAkKF2QAAAACCxz3ZAAAAAAEYid0AAAABg7yx3QAAAAKCUO3dAAAAAYIVPd0AAAAAgoIF3QAAAAOClNHlAAAAAwM5LekAAAABADr17QAAAAEB8BHxAAAAAoNNOfEAAAABg6F1+QAAAAECux39AAAAAYETVf0AAAABg4aeBQAAAAABOC4JAAAAA4HASgkAAAABg09ODQAAAACDScoRAAAAAwJ+DhEAAAACAefmEQA== - - - - - - t18JQCUy/j+vlt0/y1MQQHbXQUB8nMlA5M6yQDJRwEAkGcVAJgDKQCwTCkC+Mt0/72nKPyg1b0CQcxdB7cYHQa34QUCuY6ZAB6+zQBg8j0AFqltA+YjaP6WanEDITbRAII3XQIoF1kC1CjpBj6IuQZDnb0BUzAVC6buhQCA/oUDxFCZAtOIJQDLxikDeOBxBMu/aQMOViEF3se5ApjLfPyY9dUFz7Og/cx8sQYPChUH5jDNBm5I4QGhlN0B8N49A9A5wQEgVLkHmQu8/DO+2PwkIOkGiSz9B/V1UQMjPIUEUXjhAiKmbQd9H/ECXT9FAUHF+QrrYzkHgPKlA+Fc+QIj3JUA3f4FAv6fJQFggG0A= - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgCCWW0AAAABgdkRdQAAAAMAKgV1AAAAAQHFUXkAAAABANQhfQAAAACCgJmBAAAAAwA/sYEAAAACA8cVhQAAAAICUXmJAAAAAQDLFYkAAAADAhh5kQAAAAACaYmRAAAAAYIwGZkAAAADALuRmQAAAAAB2K2dAAAAAQM0laEAAAABAhD1oQAAAAADfqGhAAAAAYKEjaUAAAADgacNpQAAAAIDR5GlAAAAAgFIGakAAAABgjUFqQAAAAKAtX2pAAAAAgA6MakAAAADARKpqQAAAAEDfwWpAAAAAwPHdakAAAAAASCZrQAAAAMCkRGtAAAAAQG+Ca0AAAADALuJrQAAAAMCPI2xAAAAAgGpHbEAAAAAA1YZsQAAAAEAPxWxAAAAAAHXmbEAAAACAlmRtQAAAAAAJJm5AAAAAgBaNbkAAAADAFcVuQAAAAMD56G5AAAAAQEVKb0AAAABAyqVvQAAAAIDW9m9AAAAAYC4icEAAAACApD9wQAAAAMD1YXBAAAAAwFa0cEAAAABgiORwQAAAACDZ93BAAAAAQE4DcUAAAAAgGSVxQAAAAKDwQnFAAAAAwNRMcUAAAABgDGRxQAAAAIAwcXFAAAAAwGmMcUAAAACg995xQAAAAIB57nFAAAAAgJABckAAAADANBNyQAAAAICcH3JAAAAAwKkyckAAAAAAxkNyQAAAAMBxhXJAAAAAAE8Uc0AAAACACSNzQAAAAAB+LnNAAAAAoEg5c0AAAACgB0ZzQAAAAKB9UnNAAAAAwFFkc0AAAACAknNzQAAAAADUlHNAAAAAoAKkc0AAAACAcK5zQAAAAABzwHNAAAAAwP7hc0AAAABAORd0QAAAAKBOJHRAAAAAwHCddEAAAACg8cF2QAAAAMB58nZAAAAAgPsEd0AAAACgKE93QAAAAAAC9XdAAAAA4LRCeEAAAADgMXN4QAAAAOBMwHhAAAAAQD/beEAAAABg4O54QAAAAKDJMnlAAAAAoCxeeUAAAABgHIp5QAAAACBaqHlAAAAAYKHTeUAAAABg5uN5QAAAAKDRQnpAAAAAwKhUekAAAABgIpZ6QAAAAODOXXtAAAAAwAnLe0AAAABgWTt8QAAAAEDnRXxAAAAAQDBXfEAAAABg8Mp8QAAAACDu3HxAAAAAQJhUfUAAAACg33V9QAAAACA0pn5AAAAAYCtYf0AAAACgRnh/QAAAAEBfxH9AAAAAQBfTf0AAAAAgQSqAQAAAAEB3aoBAAAAA4EFxgEAAAACgizqBQAAAAOCupIFAAAAA4EergUAAAABApYqDQAAAAOBMLYRAAAAAIMkqhUAAAABABlWFQAAAAGCsk4ZAAAAAoAyzhkAAAABA9bOHQAAAAEAAxodAAAAAAJ8xiEAAAAAgVHKIQAAAAKAN5IhA + 4qRcexsiYEA2uAwZnGNiQHzKEHuiRG1AOK1C9yVCcUB5BwETAcN1QHNPu8zVYnhAlVi9/VjTfUBAYpVMGfR+QErbzKhYsoFA - + - d+sDQc5Lt0CEY8o/Ik2BQLXpLkCdoPRA1b2WQITR1kDyEMo/sjLIQD6h3D+icco/0/YpQZqCP0BvTco/igK5QJ4kZUFeDltAhjnXP6QocEBqr7g/RzszQIxNT0E27SVA5CzFQHxslEAu3hZB94UTQKXGv0C5eThA9AMSQBXOpkAgWntB8y0dQDk/LUDuZWlAi5YAQWdzwEB6Yco/6ccyQZkLiEHozANBwKoUQcgYW0FfCD5ATNoxQdkKi0HfVrdAstKPQUJIq0Hw8AFAjcQ+QN3l1UC3o6dBGOGDQLYvtkAvTyBBBv8HQrBWyj8Wd2RBiYlJQX8o1UHRP0dByN9UQTl1uUD8FGdAPpULQR3GU0HQNEBAV6kUQSZws0Cqoso/T/2sQRjdIUG2NVJCSYnqP0WWVUFMqSJBfHwAQEpWUUD0bVRAWtyBQOIPzkE1pwpA4bOhQIVLVEDsshxAME+QQEijfkAqICRB9ptBQd7LZEHvZqFBCcNuQQwa7z8Dj11AhaPGQS1U3kCxJi5BIIAbQpX/L0ANEXdBjE7lQGjPOEIARSlBJVa3QBgu7UFkf3ZBaUuCQqE17z9EdF1Am58TQD2FLEGkpI9BHG47Qdhw5EHGL8FADeEGQmDdE0CnzhJB0zMaQYgRj0GihqhAHI95QHkkGUCX/hBBfPWyQW4E20CV3O8/zmHqQMw83EA/EaxA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYNBlYkAAAABAxd1iQAAAAKC+JGNAAAAAwGJoY0AAAADguuFkQAAAAACyYmdAAAAA4MmjZ0AAAABAS0ZoQAAAAACXamhAAAAAQI7jaEAAAADApwJpQAAAAKATH2lAAAAAYHUfakAAAACAQGJqQAAAAIB/FWtAAAAAwABPbEAAAABA2rxsQAAAAIBo5GxAAAAAoGb/bUAAAABAJWRuQAAAAMAsiW5AAAAAwJbJbkAAAACA5uNuQAAAAEA3KW9AAAAAwNB9b0AAAADA0QBwQAAAAKCmvXBAAAAAwAgicUAAAADAM0NxQAAAAGAWj3FAAAAA4OQjckAAAADAaDRyQAAAAMCjuHJAAAAAgAfEckAAAADgXANzQAAAACCQH3NAAAAAwMBDc0AAAACgKE5zQAAAACCKdHNAAAAAwH0jdEAAAACAN0V0QAAAACCHonRAAAAAgJnjdEAAAACAzxF1QAAAAGACVnVAAAAAoNV2dUAAAACgkMZ1QAAAACCnAnZAAAAAoAxcdkAAAADAnMd2QAAAAGD91HZAAAAAoIoOd0AAAAAA9Rx3QAAAAMDzXndAAAAAQIt4d0AAAACAa6B3QAAAAODn0ndAAAAA4Pvwd0AAAAAgOPx3QAAAAEBaEnhAAAAAYI9IeEAAAACghVV4QAAAAOAiZHhAAAAAIPd5eEAAAAAgrIx4QAAAAED/8XhAAAAAABMUeUAAAAAAXTB5QAAAAKDwhnlAAAAA4DeaeUAAAACA8aV5QAAAAKA/v3lAAAAAAArWeUAAAAAga+x5QAAAAIAAEXpAAAAAYCIsekAAAACgOkJ6QAAAAODvXXpAAAAA4NB2ekAAAACgu5F6QAAAAECQnnpAAAAAAMjGekAAAABgCUZ7QAAAAIBPUntAAAAAIDtme0AAAABgBIt7QAAAAOBCt3tAAAAA4Dvke0AAAABgJQJ+QAAAAGDILn5AAAAAoAU9fkAAAAAgf7h+QAAAAEAzw35AAAAAoMPOfkAAAAAgYd9+QAAAAMBpVX9AAAAA4KBlf0AAAADAdXV/QAAAAMCKi39AAAAAwIW5f0AAAACAbzGAQAAAAIDzRoBAAAAAYDiJgEAAAACgbiKBQAAAAMBRKIFAAAAAoDwygUAAAADgT2iBQAAAAOA4cYFAAAAAoBN3gUAAAADgcqCBQAAAAODs4YFAAAAAoHowgkAAAAAgSpiCQAAAAKCvu4JAAAAAQMbFgkAAAADAuD+DQAAAAGC0UoNAAAAAoK1kg0AAAACgxIeDQAAAAOD+v4NAAAAAwP8GhEAAAACg8QuEQAAAAKApMYRAAAAAAO9PhEAAAAAg8IiEQAAAAACkAIVAAAAAQDAJhUAAAACgCSyFQAAAAOAc2oVAAAAAwBRbhkAAAACAljuHQAAAAEDgqodAAAAAIIZbiEAAAACAmW+IQAAAAGDPeYhAAAAAoODUiEA= + NrgMGZxjYkDiYBUjzERuQEMdzoN8QnFAcQ5nZb4zdkBDe6rX1FN4QAKPfOVgMoBAa0WeHmxCgUACvmoPDbuDQGt0jEgYy4RAlp4OS2TDh0Bro3pyxFOIQA== - + - KkZNQTbGQkEhlNxAPfeYQNhCeUCsXApAJmHaQC/Dtz8TjItAvsWyQLjGCUDwkNdAip5dQO04yz++aEFArqocQMVlAUDbbRNAROinQALCQEDV2CtA6aPuPxbtg0B/S19BVwzdP/f6n0B0sVZB4t3uPwrXt0CqnVlBOkQkQAkLkEGyvb1BEUvJQTTlgUCS6QdBoBDKQC2z1UD/5YhAl/NKQPGEQEHUhIRAOOkJQQnHqEDCAMpAc4+0QJjxE0AY5vhA7xZkQaRUh0FwazhBdncfQQF7FUHy9CtBmRYKQLfwAEBCBQ5BOhGaQcBPGUEkaKtARShIQFaM50Fuy1JBH3nDQhmPHkEYoMJAGMGCQUAzwkAFFzBBGko5QVSpQ0HqyLJBzXcoQUTuM0FOBSZARA2UQMUMhkDIz/JBrgxDQeUyj0ASBRFBsBYdQcQNj0EsZfxAA+HKQIy0ckEhAeBAvberQNZNkkAST05BzrWHQXUJqUEnTNFAYv+5QB/tyT9KHt0/5SaCQT0Dq0DmP4RAw/hDQX+nVELyY7dA2qE6QQIrrUKQ08dBLJh/QMpsuUES3n9BHFwZQBGIXUDHzhFBuXoTQKT9pUICF5pCmJ4iQDsDCkAmey1AzE+6P3jdu0LdYkJBoqxBQdKwD0GJJQ9Bld90Qcaym0DDBYdAEeGTQBH12UANfYJAbNqzQDNXVkEEXaU/CHoQQVp4gEHm99xAgWKOQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQLIcYEAAAADAbCJhQAAAAOAB6mJAAAAAQMvKY0AAAAAACylnQAAAAID0RmdAAAAA4KVfZ0AAAABA0oBqQAAAAEBOo2pAAAAAQGrEa0AAAADA1+VsQAAAAECaG21AAAAAACTFbUAAAADArihuQAAAAICRhW5AAAAAAKNib0AAAAAgK05wQAAAAOAUkXBAAAAAoNiwcEAAAAAA6NRwQAAAAIDE8nFAAAAAQNcyckAAAACAQHJyQAAAAADHjHJAAAAA4H4Mc0AAAABAWplzQAAAAECHsnNAAAAAwMXgc0AAAACAwHN0QAAAAEA1c3VAAAAA4FKTdUAAAAAgvK51QAAAAECS53VAAAAAIEIZdkAAAABgrVV2QAAAAKBLk3ZAAAAA4HeydkAAAABAFcV2QAAAAECk0XZAAAAA4Jb3dkAAAACgOzF3QAAAACClandAAAAAIBV/d0AAAADA+G95QAAAAEBAd3tAAAAAwKjmfkAAAACgORJ/QAAAAMBy2oBAAAAA4LH/gEAAAABgOayBQAAAACDgmYJAAAAAYPPBgkAAAABAXOKCQAAAACAxm4NAAAAAYJXDhEAAAABgr3yFQA== + NrgMGZxjYkBUZ6VXTIVuQKTid1q/AnRAvNnKUkQEeUAyOsR5lxN6QA== - + - sw11QJeyikCYkJRAetQyQRiqs0BlqBxAPVoKQFWGxEAvXEZBGPKOQMsAQ0FzMEtAtbWKQL2NI0CwOgFANNJdQDg5XECewodAm3cOQR7umkFU4TlBQV2qQJOOskB93mxAoLpdQAlKIUGlXhxByn8sQK0YyEDvFiZAUuMvQUuMNEGG8ytAi2kQQnwz3T+AioRAgpMHQ0E6FkIklrJBeMN/QU+q50DCepJB/t+HQQTLtz9dPolA2eG3P63t3j+SRMk/VqGUQUQ+ZEAjZh9AIBgCQfCrpEDPK4VADku4Pwn8tz8= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwIpKV0AAAACAH4pYQAAAAOBcR1tAAAAAgJyJW0AAAABAsg5cQAAAAACJV1xAAAAAICzFXEAAAADA4FBdQAAAAICcR15AAAAAgA6yXkAAAACADQlfQAAAAOCsJGBAAAAAABxIYEAAAABgLAVhQAAAAMC3ImFAAAAAgEBEYUAAAABA02hhQAAAAACho2FAAAAAwAPGYUAAAAAgqethQAAAAADPH2JAAAAAILRiYkAAAADAXIhiQAAAAEArv2JAAAAA4JrdYkAAAAAAWCljQAAAAADhZGNAAAAAAIeIY0AAAACADuJjQAAAAMAGaGRAAAAAIESJZEAAAAAgU8BkQAAAAMCt7WRAAAAAwMYiZUAAAAAAXUNlQAAAAEA9Z2VAAAAAwEwGZkAAAACArR9mQAAAAKBCaGZAAAAAwOGBZkAAAACg/KBmQAAAAEBQ42ZAAAAAwLAGZ0AAAACgEihnQAAAAGBLQ2dAAAAAQAxkZ0AAAAAAecNnQAAAAAAcZ2hAAAAAQGXPaEAAAADgVO1oQAAAAGD9JmlAAAAAQGxFaUAAAAAAt6RpQAAAAMDf4GlAAAAAgBwlakAAAADAyWNqQAAAAMAugGpAAAAAwDCoakAAAACAyOVqQAAAAIAgA2tAAAAAQIAna0AAAAAAQolrQAAAAIACp2tAAAAAQOv/a0AAAABAVR9sQAAAAIDOYWxAAAAAQIihbEAAAADAr8RsQAAAAECUKW1AAAAAQJFobUAAAAAAC6JtQAAAAIDF221AAAAAwIv5bUAAAADAnVpuQAAAAED+n25AAAAAAAbpbkAAAACAUAhvQAAAAMA2Im9AAAAAAJJQb0AAAAAAbWVvQAAAAEDuk29AAAAAwHfAb0AAAAAAMzNwQAAAAGCsPnBAAAAAoN1QcEAAAACg+mBwQAAAAKCZc3BAAAAAIG2AcEAAAACgT5FwQAAAACAMoXBAAAAAYFy5cEAAAABAxMNwQAAAAKDd03BAAAAAAI76cEAAAABAPyFxQAAAACCZQXFAAAAAQGtxcUAAAADAY4lxQAAAAEBOk3FAAAAAYJKicUAAAACg5bBxQAAAAABRx3FAAAAAINfWcUAAAAAAe+JxQAAAAODD8nFAAAAAYN8PckAAAADACyNyQAAAAIANLXJAAAAAQAVNckAAAABAXmJyQAAAAAAxlHJAAAAAwGWockAAAACgqL9yQAAAAICh3HJAAAAAAOBQdEAAAADAl190QAAAAEAsdXRAAAAA4GzEdEAAAADACth0QAAAACD34nRAAAAAQKkEdUAAAABglBt1QAAAAGD4KHVAAAAAoEA+dUAAAADAbFl1QAAAAKDilXVAAAAAYMbkdUAAAAAgmfB1QAAAAOADPXZAAAAAYD6UdkAAAACgDKV2QAAAAGAtzHZAAAAA4BPXdkAAAAAgnFt3QAAAAOAbandAAAAAICeVd0AAAADg8aN3QAAAAADUxndAAAAAYHfUd0AAAABgpAR4QAAAAMA5PXhAAAAAoHHHeEAAAABAu9N4QAAAAGC053hAAAAA4ML1eEAAAAAgu2J5QAAAAABrg3lAAAAAQHjneUAAAAAgFUV6QAAAAECVlHpAAAAAYILjekAAAADA3PR6QAAAAMDUBXtAAAAAwIE1e0AAAABACkN7QAAAACBIZXtAAAAAQNsUfEAAAADA4VN8QAAAAGB6aHxAAAAAYGRzfEAAAABApmB9QAAAACBmfn1AAAAAQOHYfUAAAABgPpJ+QAAAAODQ035AAAAAIDE0gEAAAABAAmOAQAAAAGAta4BAAAAA4FWBgEAAAAAAy7uAQAAAAKD88oBAAAAAgP9RgUAAAABgBoKBQAAAAMAsioFAAAAAIJOTgUAAAAAg9MOBQAAAAOBh5IFAAAAAACg1gkAAAAAgsMOCQAAAAOAJyYJAAAAAQJlKg0AAAACAYVKDQAAAAGDdhIRAAAAAANDahUA= + KBZXds7jZUA= - + - HghfQBXBtz+wpIBA8FoyQNyokkFPdyJAyiE3QDJYqkC2P9Y/D9NjQK7g0kCw3KlBH6UjQW3DLUDYuKNA/NgDQbdIE0BUkSxCvv0iQJHRR0AOayRAp4CQQfKSqUBl9p9AXC39QGUHR0DphH1By+KmQWL5skHKIgJAneNjQEn8DEGFCKdACvVmQBigtz+FexBBtJC3P6QU/0ACZFRA27D9QE8IkkBcggVDDuOKQQlDyj9rApZAPDyNQhLjJUByhJNBA8f6QAAFJkAIEY9Ecn+8QQiko0CJSklAjD5PQbbR0UHi460/NZGJQDwPq0Bw/mlBfOE2QErUwz9K8SBBb623P/8FIUGDWMxApynkQ5ehRkF+ZzxBqS2uQVqRakHspWlBTCDBQe7WY0FczhFB4vE0QME+MEDckAJAjFK0QA2mWkIjOX1BiQWrQD37pD9SKoFA0BNFQVK+RkEokgBC/B74QDzU6EL/VY5Brc/JQYd7V0GgCcs/xAqVQhpyS0GMlclB4RIEQp3wB0PVqxdCFpGZQD1juUGecItCTi1VQdXSC0BCVCdCAg8aQlI+mEGnTfdBPPmfQTgN40JvQwZBzJbkQj+WqkKTVCJAl2kAQhVyQUIV00xBGaytQV0+00Bl4SxBXtRfQzFdzkByfDZBYRtUQE2CGUGuledCxQFUQCvXQkFl6WdCQidpQeYc3UCK/HpCGxw1QKQ+2EWa2UhB221RQciJi0HmDKZBvgPyP/JM/EBX4H5AU7MDQQlBBUGO+G9AiLJmQLA0ZkFOh1lA0I9kQc+/1UDYIlVBVXL+QtT+nUK8QvtARllGQnW0QUCku5I/AmqfQVa0zUI+gRBAtC7lQDDlAUJPk9w/vrbgQIp+WUEK851AaW4qQZCSrEFFeLJA8LCUQFvFAEB71/NBEE4lQP0q1ULjMCZCwNY3QeD99kD4tIhAiZ9BQNKACkI6jvFAbA/MQJJkI0JIMeBA3kDvPw== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwO9taEAAAAAAxDxqQAAAAMCDfmxAAAAAgIPlbUAAAABgPwVuQAAAAEBJB29AAAAAwCGjcEAAAAAAUcRxQAAAAMAMEHJAAAAAwCnUckAAAAAAW+FyQAAAAIBCM3RAAAAAAATQdEAAAADAYUN1QAAAAIDAYnVAAAAAgFVCdkAAAAAARVV3QAAAAICGcHdAAAAAAGufd0AAAADAW+F3QAAAAAD99HdAAAAAQIUHeEAAAADAhyF4QAAAAACDr3hAAAAAAEM7eUAAAACAblZ5QAAAAMBDlXlAAAAAAGDSeUAAAACAPkJ6QAAAAMCNdHpAAAAAQIvlekAAAACAexd7QAAAAEBmq3tAAAAAQJpMfEAAAACAoaN8QAAAAECiIX1AAAAAwPNyfUAAAADA4EZ+QAAAAIActH5AAAAAAOjBfkAAAACAXgh/QAAAAMAPGX9AAAAAAFhJf0AAAABAddh/QAAAAOD/U4BAAAAAIDHkgEAAAADAyQmBQAAAACDiNoFAAAAAoDI9gUAAAAAgLHuBQAAAAAAOhIFAAAAAgN2zgUAAAADgCLmBQAAAAICswoFAAAAAwBXXgUAAAADAOgaCQAAAAGAIDIJAAAAAoLxBg0AAAACAOmKDQAAAACAy5oNAAAAAoDqVhEAAAABgdpqEQAAAAOBhoIRAAAAAYFmmhEAAAACgK7SEQAAAAODXxIRAAAAAIO4mhUAAAACgblSFQAAAAIDNg4VAAAAA4HqJhUAAAADAsaOFQAAAAMAsEoZAAAAAYPMxhkAAAABg7DyGQAAAAGA1UoZAAAAAwCiThkAAAABg6rOGQAAAAMBQ0YZAAAAA4FvdhkAAAACA0WSHQAAAAOAva4dAAAAAwCezh0AAAACghhmIQAAAAABZe4hAAAAA4MqZiEA= + KBZXds7jZUA= - + - 6MC3P9kALED65LZArDwaQPHVqUCK3chAAy3vP85mAkI7Xx9BSBlcQJWs7j9YT7c/TEdjQMhLZkDCLBNAaSJ4QEdrnEGVS4xBtjQHQPBL6UArmNw/hxU1QFGXtkF1nbtAE3rXQOMKx0CYztRA5+RwQBa/yj8iXjhAMTDUQNClCUBSqfdA3qfkQH+MAEF6PwpA/WuAQNSOyj/CnO8/zd9jQdCKRkK1WRxAcHmlQb0MSUIvg5BBh1S4QFAr3D8WkGNA7JuOQf8rEUCeFgpBme4OQTy35EAsR6ZBRlwHQDpF70HLKRNBrezEQBg4pT8RCt1AUsyeQMCk6z/UrxdBk8txQTK7XkE8BKpA3XVtQBFiI0Emv6dAPJnmQLH5EEE41rg/3ta8QZlqd0CU6RpBu8XNQOHh/kBzMC9AZW4cQCXc9UGFRTJBgGzgQG01JkBJdnlA9EGkQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4LCEYUAAAAAA0mRiQAAAAIDtn2JAAAAAYKRpY0AAAABg8IllQAAAAEA6JWZAAAAA4IFpaUAAAACgKMFpQAAAAGDJBWpAAAAAQAViakAAAACAG6JqQAAAAKADBGxAAAAAoOMkbEAAAACA+TVuQAAAAEBLh25AAAAAAGqfbkAAAADgGWNwQAAAAABozHBAAAAAwD3WcEAAAABgs+FwQAAAAAAbQHFAAAAAAAiEcUAAAABAks9xQAAAAIDxP3JAAAAAAC1ickAAAACAFLRyQAAAAIAX03JAAAAAwOcDc0AAAACA6x5zQAAAAAD2kXNAAAAAQFnxc0AAAAAAfxd0QAAAAOCeIXRAAAAAgCNydEAAAAAAq490QAAAAABwInVAAAAAgLhPdUAAAADAil91QAAAAIBswnVAAAAAoMzldUAAAABg3/11QAAAAMDlIHZAAAAAIEUydkAAAADAq0N2QAAAACB0a3ZAAAAAoDSgdkAAAACgIOJ2QAAAACB7+XZAAAAAQLEFd0AAAADg/RJ3QAAAAMBxSXdAAAAAYF5xd0AAAAAAHa93QAAAAEDj7ndAAAAAAHsEeEAAAACAIBB4QAAAACBFHnhAAAAAYApeeEAAAABAFmt4QAAAAIAziHhAAAAAIPvkeEAAAADAz6t5QAAAAMBCdXtAAAAAwJonfEAAAADgmXF8QAAAAGD7Vn1AAAAAILXVfUAAAAAgOuR9QAAAAKDWPn5AAAAAQKhhfkAAAAAg4YF/QAAAAGAfxn9AAAAA4GcEgEAAAAAgoemAQAAAAODTLoFAAAAAAH5LgUAAAADAOFiBQAAAAKBPc4FAAAAA4I/5gUAAAADAtjOCQAAAACAZXYJAAAAAgAubgkAAAABgCdSCQAAAAECa34JAAAAAYFsqg0AAAADAm5ODQAAAAMCHnINAAAAAINV0hEAAAADg5QmFQAAAAOCAkoVAAAAAgD2chUAAAADgjCmGQAAAAOB4codAAAAAgEfQh0A= + NrgMGZxjYkA= - + - ujbvP+7Uk0D0cQ9BDswPQEp9pkCWHYpARUccQRth3D/OCSlBEeEkQUkcA0FXTyJAU/CQQc/cAEDNqdw/PJAOQToaPkEUtLZBHW07QNmmgkGTl0FAyX7aP+rXmkAEJ8NAc6ptQHu7jkALXZBBNGIxQfaROEDZ9ck/iGMLQGJqjUBEP3hAqfduQRKs3D/C2xdBYDeGQq0BJkGgfE5Bo0QJQYFeX0H8z6NBNMH8QL2Aj0Ahe1NBklqrQDLhD0AmZ6hBAqzWQTIhRz/W7XlAaTSnQYZq80Bv8QhA5qQ4QTi03UCwGgpANVoqQX3oEEHaI79BDmiAQADPyUDVRXdA5uElQJZN7z/cqF1AG9lmQDBmCUGUTjBBcw8FQbE610H+TkxB7jTlQDfUlkApH8ZAxrxBQFzsb0BHZZxAoBYmQfJASUAvjEdAz4/uP7ke3T9KSRZBBSYFQSuXFUHKpK9AjKVdQErfU0GGil1AP5hbQcvnuEC1n6JAJ2HuQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAN7fYkAAAABAJUtnQAAAAEATwWpAAAAAAGiHbUAAAAAgfeRtQAAAAMBfnm9AAAAAAAfjb0AAAABAwiFwQAAAAKBRNXBAAAAAgHh2cEAAAABAWqtwQAAAAEDL0HBAAAAAoFVScUAAAACAfZFxQAAAAIC043FAAAAAoBFFckAAAADgIKJyQAAAAMBhs3JAAAAAALXzckAAAAAAswhzQAAAAKBmVnNAAAAAQLF7c0AAAAAgiiF0QAAAAMBHZ3RAAAAAgJ+RdEAAAAAAv8h0QAAAAMDM7HRAAAAAAC73dEAAAAAAPyN1QAAAAGBec3VAAAAAAB7QdUAAAADAV/B1QAAAAAAeDHZAAAAAIIMvdkAAAACglFR2QAAAAIBKvHZAAAAAgBXWdkAAAACgfuB2QAAAAID88nZAAAAAIHQWd0AAAAAARiN3QAAAAECZMXdAAAAAYP5Wd0AAAABgdYR3QAAAAGC3kndAAAAAYH00eEAAAACgtFB4QAAAAABGcXhAAAAAABuJeEAAAABAi5N4QAAAAOCZpHhAAAAAIGSyeEAAAAAgl8N4QAAAAKDxznhAAAAAAHHgeEAAAADgrh55QAAAAMBkXnlAAAAAYICXeUAAAADAwaJ5QAAAAECvsXlAAAAAYPXXeUAAAACgAeJ5QAAAACAY7XlAAAAA4J0jekAAAADAeTB6QAAAAGCTQnpAAAAAwChxekAAAABgEZF6QAAAACDKvnpAAAAAYPbAfUAAAADglUZ+QAAAAGAl4n5AAAAAIOMsf0AAAAAgST1/QAAAACBqboBAAAAAAFmhgEAAAADgPryAQAAAAOB2xoBAAAAA4APsgEAAAADA2S2BQAAAAEBQWoFAAAAAIIC7gUAAAABA5uSCQAAAACBZNYNAAAAAgNM8g0AAAAAgKAGFQAAAAKDUMoVAAAAAoNw5hUAAAAAABcWFQAAAAGClzYVAAAAAYLcrhkAAAADgQVyGQAAAAABjFIdA + KBZXds7jZUAc6N63HmJpQJ0RHYnYgnNASRZoMb/Rc0C7YtlzMBN3QGZnJBwXYndA9gRSSeAzfkDu7RVqCPN/QAwHKr0x0oFA - + - Qy+VQN1TBUFoEUJBEhQdQOqyykDchApBciQKQGGEtz/G7N5A0DuiQP07tz8GsohASvFbQAsXpT85p1RATLcBQVzLb0CYqHVA/RGJQAa8wUDkl8pAksg/Qe89L0BDrJZABfUQQcuI7j9X3MdAGZiNQPNpkj9ebW9BH6+PQCq3QUD6fdZAxkk4QL2zAEAWeZhAOR/BQDj3T0ANLMVAWr0RQDX9CUApe7tBsYQLQaIG7z+8FFVAH9WkQONhWz9i2bJAMD3QQOBFUkCpD/dArkVGQbcD7z+k5t5Al7CjQJQpnkCLHJJA4nH8QJrEqkBfGQpA4KvNQP0nCEBmrg5Bp/gBQcy6RUJECKFATVZiQVzSPkD8lItA6C4ZQUdWyj8kC45AMhqBQe7rJkHYPRNAoE+6QGNTAEHC7s9AYL6AQZI+BUETID5AfMSYQUCNqUBgCVNBTEMIQRzyD0GpyGZAdasUQQKBp0F5JDhBvtAaQLUszEDwnQlA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgLSJVUAAAABAYUhWQAAAACAeUFdAAAAAgC+BV0AAAACgislaQAAAAICpi1tAAAAAwKTZW0AAAAAAZI1cQAAAAAAsDF1AAAAAQK5HXUAAAACAJXldQAAAAMDtR15AAAAAwJzVXkAAAABAWUBfQAAAAIBpJWBAAAAAoKJMYEAAAACgQWlgQAAAAGAWrGBAAAAAgDDmYEAAAACAqmBhQAAAAGA5fWFAAAAAADahYUAAAACgYgViQAAAAKBjJWJAAAAAQClFYkAAAADA5WdiQAAAACBqhWJAAAAAQAsdY0AAAACAO4FjQAAAAOCypmNAAAAAwPPFY0AAAABgEQRkQAAAAEA1ZWRAAAAAwMeMZEAAAADAHcFkQAAAAOAq5GRAAAAAYOQBZUAAAAAAbTNlQAAAAMBuaGVAAAAAYF2mZUAAAAAgu8BlQAAAAABv5mVAAAAA4IEnZkAAAABABUdmQAAAAODQw2ZAAAAAwCvmZkAAAAAA8gVnQAAAAAC/JWdAAAAAgK1sZ0AAAABAh4VnQAAAAICsS2hAAAAAIESBaEAAAADAwp1oQAAAAMAAwWhAAAAAAOHkaEAAAAAAAABpQAAAAIBwIWlAAAAAgCejaUAAAABAWMJpQAAAAADC5WlAAAAAgIREakAAAADAsGdqQAAAAED8hGpAAAAAQD+hakAAAABAX8RqQAAAAAC75WpAAAAAwAAGa0AAAABAEiRrQAAAAACdQ2tAAAAAgIhga0AAAAAAXYVrQAAAAABwwWtAAAAAQGnga0AAAAAAdR5sQAAAAEBUQmxAAAAAAMmBbEAAAABA+qdsQAAAAIA04GxAAAAAQP0CbUAAAABAciJtQAAAAIAPfG1AAAAAQLDKbUAAAAAASwBuQAAAAABrIW5AAAAAQIc/bkAAAACAK4FuQAAAAIANw25AAAAAAGfnbkAAAAAABENvQAAAAEA2aW9AAAAAAJ2Eb0AAAABA08RvQAAAAMAG5m9AAAAAgCsBcEAAAACAfRFwQAAAAGCkJHBAAAAAQGMxcEAAAACgYkJwQAAAAMDkfnBAAAAAgA6RcEAAAADAVp9wQAAAAIB2sHBAAAAAIPXccEAAAADACP1wQAAAACDpD3FAAAAAwJUjcUAAAADgRz9xQAAAAMCkTHFAAAAAoGh6cUAAAACA7aBxQAAAAMBhZ3NAAAAAYN+Fc0AAAABAuZJzQAAAACC2nXNAAAAAwGj5c0AAAABgwIZ0QAAAAODLQ3VAAAAA4CBmdUAAAACg9Lt1QAAAAKCF03VAAAAAIGTkdUAAAABgIiJ2QAAAAGCIcXZAAAAAIMbtdkAAAABg6iB3QAAAAIDKUndAAAAAQB90d0AAAACAQ4Z3QAAAACAylndAAAAA4LOjd0AAAABgzb13QAAAAKBnzHdAAAAAYDPyd0AAAADgBgp4QAAAAKCxFnhAAAAAIOMjeEAAAABARFZ4QAAAAKBKlXhAAAAAIMe0eEAAAAAgN+R4QAAAAODqdHlAAAAAIP7SeUAAAAAgPuV5QAAAAEC7knpAAAAA4AqiekAAAACg7f96QAAAAGA0EHtAAAAAoBuXe0AAAAAgrkh8QAAAAEA3c3xAAAAA4I0RfUAAAADg3HF9QAAAAOC2331AAAAAYDwVfkAAAADgMCh+QAAAAMAUN35AAAAA4HCjfkAAAABglcl+QAAAAEAB1n5AAAAAYNYXf0AAAABg9Ip/QAAAAKC4w39AAAAAQMzkf0AAAADgWfV/QAAAACDrRIBAAAAAQCxygEAAAADgi3mAQAAAAGCLhYBAAAAAoETCgEAAAADg8BODQAAAAOBnIoNAAAAA4PVrg0AAAAAgR3GDQAAAAEAce4NAAAAAoBSMg0AAAABg1dyDQAAAACAD7INAAAAAADv7g0AAAABgHwOEQAAAAGBtDIRAAAAAwASNhEAAAADAPtyEQA== + 7BToB3JiYkDo4r3x+qJsQHZo0FeRQnBAxfHsF6PBdEDHaN72trJ2QBby+rbIMXtAGGnsldwifUALqGuFkCGBQKmFsjXGIYJA - + - HiPMQMAt7UHKldw/elV5QOOS/EBETxxAJ+KlP/9zWUBTjalAQNaGQCysu0ATx9NAl4K3P+Vp8kAibY9By/xUQuzv0EFnWLBBmAMKQKOYQUBxKdw/HXONQPUKJkDJncJAVyKlP2zNiEFKxZZASh/zQMgtzkC2dYlAj2fNQMfgJkCiUoBAGhSFQPIGFUFtick/ali3Pz6/jkBzd5I/I1V1QCr2pD/dXLc/wB2yQVerLkGEzck/SIbOQGmOC0FKZ5VBmtuUQOAPyj/rQGxBLe1cQkTO60CmgVxBEnrkQPxcHECM+QdAhll1QRfXC0DpUhRBiMSSQYB+1kAA605BzL6BQXjaf0GTUYVBbVuJQHCWyT/k2h5Bk01/QXmIrEHMMgNCuOOKQd5Wtz/5W1NBSTUTQKRynkCTIXBAIInyQnlfD0Ht+S5B0doRQgyhmkNngIhAWlO5QG/F7j+Ia7lBD4VJQRqB+EA+EiBBZ68uQcirxUGbNZ9A2lLJQQf5ZEKkFTBDlaFTQykqmkJuEYdCnGMkQsdEE0FPN/hBos6kQUzn00Ds7YNAUhaAQll6HUIUl4ZBLOwCQaepyUCwJUFA1tVMQVKYT0NfnGJCErZWQcA06EB21yVBQDGbQPfpB0E8aIpArYEeQVW3SkDp3pNANhT4QDyW70BQGGNBZNPZQeydOUEuMvNAmMGTQOKUhkHVN/NACb3KQAbxhUNI85NCriisQVnTpD+2u0RE5PeUQa8oI0HH9pxACqusQgdPwUBtO0lA+DccQSyOnEHw46BAHzXhQPVzbEAfNLc/8Kz6QP89wEDq4EpAdwWSQL8OcUETmTVA6eeEQI2NpUHQZdtA3H6FQcfzpUCEtU9B3DHuP06t2kAeNKlA3m80Qz0uL0I5qsBAGuCIQDmuikAjfRFBu4Z4QE1GPkF+lKJBmKFdQAy2v0BERdFAslMwQoAN8EEtROVAvH0LQrf8lkA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAIbsZUAAAABgjv9mQAAAAMAFYmdAAAAAQPMFaEAAAAAAzIdoQAAAAADF5WlAAAAAABafakAAAADA7qNsQAAAAACMvWxAAAAAoKvmbEAAAABAOQNvQAAAAEBjK29AAAAAoACmb0AAAACAeN9vQAAAAECm/G9AAAAAwNIQcEAAAACAvz5wQAAAAKDZkXBAAAAAAKatcEAAAABgyM9wQAAAACBn4XBAAAAAgFfxcEAAAAAAyQNxQAAAAOAsoHFAAAAAgBK1cUAAAAAACeFxQAAAAID6EnJAAAAAgANQckAAAABAD2FyQAAAAADUcHJAAAAAANnEckAAAACACtRyQAAAAAAoC3NAAAAA4Oggc0AAAADA+Mp0QAAAAMCKgXVAAAAAwEmRdUAAAABAwrR1QAAAAMBZw3VAAAAAADzWdUAAAABAQvV1QAAAAIB6EXZAAAAAAJkkdkAAAACA/ER2QAAAAABUVnZAAAAAQIVjdkAAAADA8XF2QAAAAIB7g3ZAAAAAQP+QdkAAAACAbt52QAAAAABe8XZAAAAAgCAmd0AAAAAAVkZ3QAAAAAD3U3dAAAAAgD5wd0AAAAAAToJ3QAAAAEC5kXdAAAAAQJUAeEAAAACAThV4QAAAAAB3Q3hAAAAAgIhXeEAAAABAfWN4QAAAAEB7oHhAAAAAABzueEAAAACAkAt5QAAAAIDgM3lAAAAAgAlfeUAAAAAAm8N5QAAAAIAV0nlAAAAAgD1/ekAAAAAAJOR6QAAAAIBlxHtAAAAAAI8kfEAAAADAbHZ8QAAAAMA9rnxAAAAAgBfQfEAAAADAp4J9QAAAAMBCqX1AAAAAwNXNfUAAAACAytx9QAAAAAB2Mn5AAAAAAOxFfkAAAADA23B+QAAAAAB78X5AAAAAAAcCf0AAAADAswt/QAAAAMADVH9AAAAAwH51f0AAAADAjad/QAAAAIAvsX9AAAAAQFfjf0AAAABg5AmAQAAAAKBhEYBAAAAAgHgygEAAAABAbjyAQAAAAOCRW4BAAAAAIHx2gEAAAACAPZGAQAAAAGDfwIBAAAAA4CfrgEAAAACARveAQAAAAIAMBoFAAAAAYGgLgUAAAABghjyBQAAAAMCuRoFAAAAAYEVngUAAAADgSHWBQAAAAKB5iYFAAAAAwOusgUAAAACAJsOBQAAAAOCC0IFAAAAAYGfXgUAAAACAkOGBQAAAAKCaEoJAAAAAIF0kgkAAAADgRiyCQAAAAMDlPoJAAAAAwMFWgkAAAABgIWOCQAAAACBVa4JAAAAAgOOIgkAAAABgO32DQAAAAKAOg4NAAAAAYCMRhEAAAADgNRuEQAAAAIBvkYRAAAAAILiZhEAAAABgJ8mEQAAAAEALEoVAAAAAYNgYhUAAAAAAZiKFQAAAAOAAWYVAAAAAQBeThUAAAAAgzqmFQAAAACCYr4VAAAAAQL3bhUAAAADA2eKFQAAAAOCx6oVAAAAAoHM4hkAAAAAgw0iGQAAAAOAPa4ZAAAAAYMVzhkAAAAAg0MOGQAAAAODOyIZAAAAAwPioh0AAAADgp66HQAAAAGAM84dAAAAAgBgSiEAAAABgSVKIQAAAAKBqc4hAAAAAoLigiEAAAADgzqaIQAAAAGD8uIhAAAAAAN/liEA= + KBZXds7jZUDGeRuljWJrQG+XdYaqQnFApsMrpuzhdUD97sGlglN3QB/4w9YFxHxAlIErA1sSfUDWJwj7bmqBQC7uX565oYFAW/QERBvKhECgL9Gt8IKGQMtZU7A8u4hAviHPYKdiiUD2g9WyiPOKQIWsM6i0u4xAvlC9ilPrjEBNeRuAf7OOQLKy2E0W5I9AoG2bISHWkEC9P+CS8O2QQARUj40G0pFAIIWSNneakkAaadCOLO6SQDB+EZBSCpRA0pv3RL3mlEDpHsoX7nqWQBUCdmmTlpZAmzUvJjQHmED5F0lxyRqYQEKaiT3qdplAFyVvvU/TmUAmsFxFIPuaQMimVjJ535tAPTMvGFGPnEARKZf+mTudQA== - + - JGYcQP5rl0DJt8k/nOlVQCClOUBvbLc/BrEfQSjF20CG329AfB+pQPMOe0COlK5BswBDQWAvCEEj9i5AahmrQJJmm0AHN8RAzzemQNV+SkE+v2RB7J63QcZnm0E5Y/JAo5yhQN+rpD8dJ7xCu4V2QovdQkEnL25Aa86NQPvcAEBTQZJAujL3QPi2pD9fDxJAcxeOQHqO2z89Ye1ASnMNQUmWBUFRHzdAGveDQImD9EA6LzpBBhCPQTRUeUHnYds/bx/4QIZf/EANKSFBBIRrQCpVtUGJ4CFAgVl5QJF8qUHeL5I/TBaGQa4V2UAI4hRDcMUEQjY9hUG0+glC4zy4P7SaX0LPktNAOxCmQPmrJ0K3cyFBowc+QeLH5kCkH9RAFPAJQbrltECHHxNA+FKKQPnVEUBOtV5B/iA6QYdWoUHcVUpCOE1jQCSkmEBknehAwlfcPzy7iEA4En5CZQoAQENpuz99TxJBCB9jQAGDc0IX40FBNaWkP0kiMUF6wCBBoeJnQRbpb0CixrhAG3qiQJuHAkGFihVBYoqMQX68Y0GQnYlAPOvSQCiA1j9pE3BALtRXQSqwQEATU69BY70LQexxZkDuEIVB06xaQcroU0AFaopARbP8QTztnEO8rDFCfOTuP/FnBUG4Hf1Bii1jQXpd3UCjn1FAX3cAQQoRf0DpJehA7puDQaVluz+1/wZAyQEcQE+IEEIHewRBNbi6QWa9NEH1IYFAhFmtQUnmAEATWppCMOS2Qam2yT9jVfpAhZzJQGejQEGm8/dAa582QIaZGEEKR4FAyCOJQKOQUUEOdfdAELN4QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwMdSXkAAAAAAECVgQAAAAOBmpWBAAAAAoEBoYUAAAADAFWpiQAAAAADjg2JAAAAAYOkHZ0AAAADgjidnQAAAAMCnpWdAAAAAQOfmaEAAAABgq2VpQAAAAADC4WlAAAAAoCUeakAAAAAAEGJqQAAAAMCg6mpAAAAAwP2Ba0AAAACAiEZsQAAAAOCxX2xAAAAAoL6FbEAAAADA6kttQAAAAMAtp21AAAAAgL0CbkAAAADA6ERuQAAAAMBhaG5AAAAAQFyDbkAAAAAAD+luQAAAAABinm9AAAAAYMkjcEAAAAAAkDVwQAAAAADSRXBAAAAAQNqhcEAAAABgWtVwQAAAAICMAHFAAAAA4AZAcUAAAAAApmNxQAAAAIAcknFAAAAAAMKhcUAAAAAAZsVxQAAAAEDB03FAAAAAAKISckAAAACAqUJyQAAAAOCgdHJAAAAAACSyckAAAACA88JyQAAAAAAc4XJAAAAAwA31ckAAAACAwk9zQAAAAIBWZXNAAAAAQA+Sc0AAAAAgvaBzQAAAAGCW73NAAAAAAFYPdEAAAABAejJ0QAAAAICyRnRAAAAAYDBxdEAAAACgF5R0QAAAAMBFI3VAAAAAQI9RdUAAAABA9mR1QAAAAKD1cHVAAAAAQIWIdUAAAABAbq11QAAAAIBUyXVAAAAAoG0UdkAAAABAjyF2QAAAAOAwPHZAAAAAQEGgdkAAAADAyrp2QAAAAABCxXZAAAAAYAvRdkAAAAAgCPV2QAAAAOAQAXdAAAAAoCkNd0AAAADgORd3QAAAAMCGJXdAAAAAYF41d0AAAAAALCN4QAAAAAD7MXhAAAAAAFlCeEAAAABgGlN4QAAAAIAAc3hAAAAAoH+zeEAAAABgUcN4QAAAAKD50XhAAAAAABkZeUAAAAAgtz55QAAAAKBlSHlAAAAAoKdweUAAAACA9yZ6QAAAAIC8VXtAAAAAYFG0e0AAAAAgrhN8QAAAACBGR3xAAAAAwPZVfEAAAADA4oJ8QAAAAEDWpnxAAAAAwHajfUAAAABgE4d+QAAAAODsmH5AAAAAQDe2fkAAAAAg/81+QAAAAMAP2X5AAAAAYD1gf0AAAABgUol/QAAAAIAYtYBAAAAAIFvHgEAAAACAPhiBQAAAAGCzH4FAAAAAIARHgUAAAADgilKBQAAAAOCgooFAAAAAQOXqgUAAAADg0VGCQAAAAECbcIJAAAAAYOm7gkAAAABgMcSCQAAAAID384JAAAAAIKhTg0AAAAAgkseDQAAAAEAlzYNAAAAAoCaLhEAAAADApqOEQAAAAAC8GYVAAAAA4PcghUAAAACge4+FQAAAAEB+0oVAAAAA4GArhkAAAAAA9ruGQAAAAACR9YZAAAAAABs9h0AAAABghkOHQAAAAODlk4dAAAAA4EUjiEAAAACgJSqIQAAAAOBngohA + 4qRcexsiYEAoFld2zuNlQCa3YN0hA2tA6a+08yjycUAU6QePPwNyQLAKSS1BI3hA20OcyFc0eEB3Zd1mWVR+QKKeMAJwZX5AfHmaAwRrgUC74Vzd2LKCQA1+G5xFI4RAOKidnpFbhkA= - + - hgjuP+TWykBMPtVAt0d5QBAG3UAwRFpAMmvhQCe7hUA6jhpB7av3QAbFAEBJJDhAQnoRQvLBfkBX+RJAjTTcP87gbkGm65RBL1SKQMpmwz/uUadADW2GQOwnAUC2Ji9AWqeLQVUcY0BDq6Q/DO+VQIM+kj+z+YNAAD3FQMYALkE4ABdCS3slQZcmE0AfXCtAMKTXQLT0t0B0MKlAK6q+QAZHQUCa/LY/A/4HQaJ1gkJd2FlA9LQlQFThlkDn1QBAbMkuQCAUbECFGeFB6tGCQlRus0Cv8C9A6lnAQVR5mEFGwpVCvMBOQtxFM0EdUDFCAas8QfS4jEG0MgtBBugJQLsI60DHro5BaeTJP3mlD0GhZzxCOwszQQazJUB5ClRAGNwvQaox2D8OrkFATie7QAZST0GejAxBoWM/QS6G2kKXlhxBiBZpQeFLIkAIXBlAHCWpQDp7WUFORjhAQuu2P6KQxUBuGbc/y0sMQRMibkB3BNw/I3HJP+1IXUDZRqtA1r4SQsk1E0C9IIFAMIqWQK67zEFTMtpAnI5qQzhI8UBBNUdAWYY/QU/rBkFQ1whApVQOQeswC0FOUcJARDNaQMh0QUAWWEBBobzQQh3qT0F1jXhAv4UAQODcAUHIhGZAKL9FQZ4oskCCML5B3IIhQZ4seEAJ0wlBGLSAQGudE0Ai4dBA/zNHQDYCwUBnfco/JVjbQWDEokCpvCFA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIIa7XEAAAADAS1BdQAAAAGAIVV5AAAAAQDsjYEAAAADgwUVgQAAAACC1NmFAAAAAQK1pYkAAAADAGINiQAAAACC/AWNAAAAAYMAgY0AAAACAJYVjQAAAAKDrp2NAAAAAAE4rZEAAAAAAApxkQAAAAEBBBWVAAAAAgIBGZUAAAADApeFlQAAAAACVKmZAAAAAwFflZkAAAACAUAJnQAAAAKCwMGdAAAAAoK+EZ0AAAACgxqZnQAAAAEDfp2hAAAAAgDzAaEAAAADAMuFoQAAAAEAZRWlAAAAA4FyIaUAAAACA6a1pQAAAAOA55mlAAAAAQHIGakAAAACAqSdqQAAAAIDcaWpAAAAAgLGlakAAAADAiABrQAAAAIC7IGtAAAAAQKZDbEAAAACA0WVsQAAAAEDLp2xAAAAAgDfCbEAAAADAXQhuQAAAAMA9JG5AAAAAgJJFbkAAAAAAloRuQAAAAACNJW9AAAAAQJ9lb0AAAAAAmalvQAAAAMAe2m9AAAAA4EMBcEAAAADAehFwQAAAAIBwL3BAAAAAIF0+cEAAAADgy3BwQAAAACD2nXBAAAAAwMOvcEAAAABAdc9wQAAAAIC/43BAAAAAACMQcUAAAAAAZiVxQAAAAMAwQHFAAAAAoK98cUAAAADgQrBxQAAAAMCezXFAAAAA4FbgcUAAAAAA7/JxQAAAAGBlBHJAAAAAAOISckAAAABgmSZyQAAAAEC5NHJAAAAAQKFwckAAAABgyYRyQAAAAMBjknJAAAAAQIyxckAAAAAgiMRyQAAAAEA3FnNAAAAAgJgxc0AAAAAgjUdzQAAAAADCVHNAAAAAALRyc0AAAAAAUIdzQAAAAKA7lHNAAAAAQIz8c0AAAACgCx90QAAAAAC7NHRAAAAAYOxTdEAAAABA4HF0QAAAACAognRAAAAAQCmNdEAAAADAxMF0QAAAAIDg4nRAAAAAYOvwdEAAAABALgJ1QAAAAMCbHXVAAAAAYGw1dUAAAADAjUR1QAAAAEBdUHVAAAAAgLpjdUAAAABAJ3J1QAAAAMB0j3VAAAAAAAKgdUAAAACAFbN1QAAAAAAs0HVAAAAAIOPydUAAAAAgxAN2QAAAAODvE3ZAAAAAIP5EdkAAAADgWFV2QAAAAOAzenZAAAAAoCSidkAAAACAfsJ2QAAAAGAS/XdAAAAAAI16eEAAAABgk8R4QAAAAIAyA3lAAAAA4FtQeUAAAADgW2F5QAAAAOBgeHlAAAAAoDm+eUAAAABgioN6QAAAACBygHtAAAAAwECze0AAAADghSV8QAAAAMCy83xAAAAAYKtnfUAAAABgMHV9QAAAACC4n31AAAAA4JQWfkAAAABgDXh+QAAAACDgQ39AAAAAoNdxf0AAAABgUMd/QAAAAOCjCoBAAAAAYF9MgEAAAADgRFWAQAAAACD7e4BAAAAAwMiCgEAAAADg/ZaAQAAAAEAJnIBAAAAAoNShgEAAAABAG7qAQAAAAODJ2oBAAAAAwBTggEAAAACgnfmAQAAAAABEGYFAAAAAILXrgUAAAABghmKCQAAAAKArbIJAAAAA4HgDg0AAAABAtQuDQAAAAKBmo4NAAAAA4M4yhEAAAAAAXZqEQAAAACCDooRAAAAAgKithEAAAABggPOFQA== + NrgMGZxjYkDs3IbI4yFtQN9iJOBzYnFAlL//zkkhckDfwAA0zHN4QLuAR0b4MXpAKbPgEV46gECGwKryDlGAQFa5hbe/YoNAdjqwYbEhhkAQDGavN2OHQHZpnotdqolAPRILVZmLikDMOmlKxVOMQNqWaKjpQo5AsI0GQw4ukEDpOnRrkO2QQPehtT0kEpFA/bo305mJkkALInmlLa6SQETP5s2vbZNAhxG5PEl6lECOv7hr23GVQNXTZ2bxVZZAOSgeS4/GlkDsVjo5IuqXQLk/FWDliphASYAqNV7qmUCx/JeXNnObQGAD/QePfptAxXxb/z8PnUC9LO0Dy36dQA9tLZ1rE59APUTkGCFDn0BWgdyXgfefQPfi5Ualp6BA0DjXmtb9oEA= - + - /hVeQJctHUD/sxVB7pCKQnXJQkESo65AxSW/QbjQSkCzCbRAbmV/P0eGqkDOpTdA5HdpQZKjCUBxpZRAzvzJP+qRyT/K/7tA1mdQQdL02EC4kCRBJMStQKuND0CeVlpA2UUDQpBJ5UBEhKZA9+QTQZj+LkA0axxArX5+QO82LUCov29AIcElQDbpb0DbpKQ/F8QWQnjpwkBBwnxBE2J3QNagHEBSXgNBjZgwQdOLI0Nnh/0/LIocQCsyF0EYMRNByeh+QI6VGkB56AVA+q7JPz/lPUATytdA+vnpQL+uWUCgg/ZBOPtLQdHsyT8IjRxAVkp1QPKxmUEO8+FA8lqoQN6uwUHWkipB74N5QKU7A0BCOMk/AG0GQYTixUGiSitBxLILQdrerUAEkABAj6BnQVnO6EHLUkxBLQn0QWtxAEAyg9pA/NIrQFm5yT/KQedBW7mwQooP30K3FiRCItpRQSRMHECpWqNCQQkjQTgK7UAOj3dBaagcQaX7D0AVgBJBOhuhQAOS6UG6zCNCb6/UQFkfSkJ1PRdBjjrmQYaqJkIhC0JC+8qFQLxhmULBBYRA8JLgQC8AJEHML4FAgPWXQBZF30DmX7RAfqwaQeh9GkCEA51AcTskQBoDIEM8XU5BSM8+QeyvDkGoN2pBDx4gQt3EJEHGhmBBHxFMQeiPM0GIMktArbrXQT0dGkEqV71AENUWQpOWVkEJ45xAY5pwQekRxEDLSwlAPSOpQKNsjkDSW4ZD7nP/P8NBHEB7Sp9AkBYGQDuGQUB7aiVBEoaOQK+HLUFZKw9CpmjGQrP9i0FspmlBfY0rQVC4JUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgMLoZkAAAADAe0psQAAAAMAR5G1AAAAAQLchcEAAAACAOtJxQAAAAIB6NnJAAAAAwDZ1ckAAAADgWJZyQAAAAAB9knNAAAAAAJCyc0AAAACAjGF1QAAAAEBeQXZAAAAAwNZ0dkAAAAAA1gB4QAAAAAAqIHhAAAAAAMkzeEAAAABAq3V4QAAAAECnhnhAAAAAwKgteUAAAAAATMB5QAAAAIAY4nlAAAAAwLB0ekAAAADAhpN7QAAAAEA2IHxAAAAAgCg9fEAAAABAlSN9QAAAAMAu831AAAAAwPsdfkAAAADAIEl+QAAAAIAF8X5AAAAAQJzff0AAAACgZEeAQAAAACA3gYBAAAAAwIKigEAAAACgO62AQAAAAIDnsoBAAAAAIBsagUAAAABg1YiCQAAAAMAhkYJAAAAAIMS5gkAAAAAAmRmDQAAAAMCCSoNAAAAAgDZxg0AAAABA9LqDQAAAACAjKoRAAAAA4GEnhUAAAABgyjGFQAAAAGCJd4VAAAAAYBqUhUAAAADgmB2GQAAAAKDZkIZAAAAAoA6ahkAAAADAt0uHQAAAAGDgJohA + NrgMGZxjYkAot2DdIQNrQBu6YmAmQ3BAlLmMQumSdECPXyNQFkR4QA== - + - C9WEQDpXp0Dy5O0/WOpvQCxVWUBOwZNAwedvQMcdF0HauiVAeWfAQRB1xkBlbxNAYepiQJa4EEB+BetA5W+yQLoo8EBlDrdAmtL7P0sfk0A6ChlAYBraQWZddUAUu2xAXsucQMSe7j9l/RFBRyvDQGIBL0A58XhAOXo4QDepLEEH7OhAA81tQYFwk0BqZgBAsl34QEpOVEGgp4lBsI5iQFwCqEHc1iNB3xRUQPlot0DqFKBAec/zQWBNNkFzilFAJUgTQXVOvEBTrdJBVB/vP/RorUARoBlA + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAHBUWUAAAAAg+UpaQAAAAEBc2VtAAAAAQHBHXkAAAACAof5eQAAAAMAggmBAAAAAYA7hYEAAAACg9EZhQAAAAMC6YmFAAAAAYCXAYUAAAAAA8YNiQAAAAEDfn2JAAAAAAMwDY0AAAACA+1tjQAAAAGA5xGNAAAAAoAzfY0AAAACgJ/tjQAAAAGAOQGRAAAAAQDv+ZEAAAADAwEVlQAAAAODZhGVAAAAAoBGmZUAAAADApAZmQAAAAIDmQ2ZAAAAAQCHlZkAAAABANiRnQAAAAKD4Y2dAAAAAgFvDZ0AAAAAAe+NnQAAAAGBfEGhAAAAAwEQlaEAAAADACEJoQAAAAGCKv2hAAAAAoD3maEAAAABg2AZpQAAAAMDqXWlAAAAAQEDVaUAAAACg/+ppQAAAAIAXImpAAAAAgIVBakAAAABAUH9qQAAAAACGo2pAAAAAgMPDakAAAABAp+RqQAAAAMCgJWtAAAAAAB5Aa0AAAADAEsRrQAAAAIDc6mtAAAAAQO0jbEAAAADA1IdsQAAAAEAOqGxAAAAAQDAjbkAAAABAu0VuQAAAAMBonW5AAAAAwCbJbkAAAADAy+BuQAAAAEDHIG9AAAAAQPpib0AAAACAF6dvQAAAAMDfzm9AAAAAwBDrb0AAAAAAbApwQAAAAIA3FHBAAAAAIFQhcEAAAAAAMTJwQAAAAGAkQnBAAAAAYJNRcEAAAADA7WFwQAAAAMBtbnBAAAAAwKeQcEAAAACA8tlwQAAAAKAc5XBAAAAAoHDycEAAAADADxdxQAAAAEAbJXFAAAAA4M4xcUAAAADAo01xQAAAAIAscXFAAAAAANaMcUAAAADg59ZxQAAAAACK4XFAAAAAYP7wcUAAAACA5gFyQAAAAKDTEnJAAAAAAKohckAAAACAzy9yQAAAAKCyQXJAAAAAoMBsckAAAADgJHlyQAAAAMBvg3JAAAAAwBKgckAAAACAkbVyQAAAAMDN/nJAAAAAwH8Mc0AAAABAPh9zQAAAAMAKMnNAAAAAgO1Rc0AAAAAAnmNzQAAAACDnkXNAAAAAQNStc0AAAADgl8JzQAAAAMDx1XNAAAAAwP3hc0AAAACAQPJzQAAAAODpIHRAAAAAIGJEdEAAAACgYHB2QAAAAOBgrHZAAAAAgDG/dkAAAACg9eN2QAAAAKB7DndAAAAA4Nood0AAAADgKUl3QAAAAGBqu3dAAAAA4OIveEAAAABgrUZ4QAAAAKDOtnhAAAAAgIzceEAAAACgGUB5QAAAAEAOVnlAAAAAYLiieUAAAAAgM7N5QAAAAGBtvnlAAAAAQKDWeUAAAACg4OF5QAAAAKCv/HlAAAAAYDoXekAAAABgx0B6QAAAAODvU3pAAAAAoDhfekAAAADAg5R6QAAAAMDipHpAAAAA4EexekAAAACgWdJ6QAAAACCjJXtAAAAAwIRDe0AAAACgclV7QAAAAOAHPXxAAAAAwK1LfEAAAAAg48p8QAAAACAo2HxAAAAAIJjjfEAAAADgNB59QAAAACCaLH1AAAAAYERUfUAAAABAAJZ9QAAAACBm9n1AAAAAQBCyfkAAAAAgZhh/QAAAAGAbwn9AAAAA4G4qgEAAAAAgijGAQAAAAOCjZ4BAAAAAICp0gEAAAACgaHuAQAAAAEAkyoBAAAAAIMUCgUAAAABg8kmBQAAAAGBB6YFAAAAA4JxjgkAAAABgycSCQAAAAOCUi4NAAAAAAGrihEAAAABAL5uFQAAAACARs4VAAAAAoHyyhkAAAACg57qGQAAAAGCLwoZAAAAAwJrBh0AAAAAAZjqIQAAAAOCSwYhA + 4qRcexsiYEAoFld2zuNlQGS4z0t+BG1A - + - vnq4QCaGcUBQyC5ApBBHQPzGskBVZMk/d9yPQK2KrUBwIC1AWq8ZQfZC7j9oqa1AQZH3QFjRWUCTSQ5BGklbQFRrHEDFsxtA1Qc4QOVrpD/t0y5An/qxQMrBXUHvUgBAuzfcP7siW0CSxeRAphMoQUBtjUAj5EBBH7sGQGAbgUEAM1pApwrqQDKiCUAWFOdAjybsQO1UCkHGYClBodk0QVAty0BXPbNBI6OIQH01h0Exe5NBd6RAQACCP0CfJqFAjqm2P4YUcEBViEBA5RtqQHM0oUBW9AlA6fkhQMjiWUB26ZE/I5POQMQ4WUAM72NBJpZmQJnkU0CW3AlA7EYSQIcCXUCyPGZAQ8eSQXrYEkA3D85AKGVsQKyBE0KXDexByHghQVsjsEGgSB9B0gKiQbASFkEyaiFBYizNQXykY0FT6apAkK0HQcaJVkF0VTJCXslKQTVzLEKxMw5BopQ+QVx/bkDDjfhA9EV5QDE5L0FMZNxBh87DQUAMNkGdHU1B4aTcQE+KnEHfqqpB3Y0bQhxhdUFplv9ByiH1QN5CkEH3R8ZAl7wUQZ4cgUC/WBdBknC7Qf20M0ElRYVArctiQJ+irUBiWHtBfWu9QFSUJUJytpRAN8iDQVM4fUHFzyNBaQV5QN2OVEEuP1VBrqJdQrPa6UBwt61AY3zAQAR3dEEsgxhB9FC/QfklzkCm9hJA5kGFQJftJ0F428NBg0mhQD7at0EIzIBBtyCIQcxQjUH94AJCcEUlQdOK8UEbiFBA2zG1Qv3hPUEHzUJBufyjPziT10B11pJBPtUPQs8xxEGCUVBBhcTNQTGYxEHQwkpARDQJQZSbU0BSk5ZAZIUJQNC5UkAJgjNBF+QhQMMm80AaJlBAjedXQYBSQEIip61Bp/7TQADboz9zsYVA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4KmOYkAAAAAAMaFkQAAAACCQA2VAAAAAAEO/ZUAAAADAu+dlQAAAAGBQAWZAAAAAQNsgZkAAAACgEudmQAAAAMCEIWdAAAAAgG4paEAAAACA6j1oQAAAAOC5ZWhAAAAAQDceaUAAAAAAesNpQAAAAEC7IGpAAAAA4O9DakAAAACg+mpqQAAAAAAhRGxAAAAAQPNvbEAAAABAUoBuQAAAAODHmW5AAAAAAL8ob0AAAAAAJfxvQAAAAKACJnBAAAAAoEqWcEAAAACg6c9wQAAAACBI/3BAAAAAgPywcUAAAABAaM5xQAAAAIBzNHJAAAAA4DFyckAAAAAgGpRyQAAAAAB9wHJAAAAAgBXMckAAAAAg2PZyQAAAAGCbA3NAAAAAwHAkc0AAAABA7UFzQAAAAIAXUnNAAAAAgJV2c0AAAADA7flzQAAAAAC1ZXRAAAAAAGOCdEAAAACAiNR0QAAAAKDF33RAAAAAoPIVdUAAAAAAkTR1QAAAAMCgQnVAAAAAAGZXdUAAAACAHZB1QAAAAODNuXVAAAAAQJ3QdUAAAAAgGt51QAAAAKCl8nVAAAAAQBAUdkAAAACgFB52QAAAAMCxM3ZAAAAAoDc+dkAAAABAemN2QAAAAGBqy3ZAAAAAgPzjdkAAAADAQ/V2QAAAACAWP3dAAAAAAEBOd0AAAAAgiH93QAAAAMA3k3dAAAAAADTxd0AAAAAg6BJ4QAAAAIDtU3hAAAAAgP5oeEAAAADgQbR4QAAAAICnw3hAAAAAgF/UeEAAAACg5+N4QAAAAKCYAXlAAAAA4HsMeUAAAADAayZ5QAAAAGCRRHlAAAAAYOBZeUAAAABgtmN5QAAAACB6dHlAAAAA4Nz5eUAAAABAhA56QAAAAEAzIHpAAAAAwJcvekAAAABAKEN6QAAAAECMUXpAAAAAIGVfekAAAABgqnR6QAAAAMBM5HpAAAAA4Hsie0AAAACAny97QAAAAEBWUntAAAAAIIFde0AAAABA1G97QAAAAACkfHtAAAAAABiNe0AAAAAgRtx7QAAAAEDeAnxAAAAAINMSfEAAAABgZDN8QAAAAODzU3xAAAAAYEtofEAAAADgFvB8QAAAAODIQH5AAAAA4G6EfkAAAADAfaB+QAAAAOA/0X5AAAAAYP5Sf0AAAACg4mN/QAAAAODsgX9AAAAAoL2hf0AAAABAc7J/QAAAAEBPBYBAAAAAoKUSgEAAAAAASHCAQAAAAGArAIFAAAAAAM0SgUAAAABAuyiBQAAAAMC1koFAAAAAoHy3gUAAAAAALcqBQAAAAMDb4YFAAAAAQC8XgkAAAAAgWLuCQAAAAKDZwoJAAAAAgJ79gkAAAABgoweDQAAAACCyP4NAAAAAQO9Jg0AAAAAA71CDQAAAAGCyioNAAAAAwMfbg0AAAAAglPODQAAAAABtTIRAAAAAoAVshEAAAABgUHOEQAAAAID8fIRAAAAA4ESYhEAAAACg0eyEQAAAAOBMFIVAAAAAYMk3hUAAAABgmVKFQAAAAMCR0IVAAAAAYDsHhkAAAABA0AyGQAAAACD4K4ZAAAAAYK1KhkAAAADgTnCGQAAAACDivIZAAAAAYNPFhkAAAACA4tqGQAAAAMDQ6YZAAAAAYEyjh0AAAABgTveHQA== + NrgMGZxjYkCwLijacuRqQOzQoK8iBW9A - + - 204iQPV/qUBZ0edA+h2BQDFfyUCbzjRA6o6kP+BvQEEf8xlAxDOuQLxQZkB92sdBaXHOQGe5bEB42G9A21ETQca+7UDT7G1AgdJfQFTEyT98h5JA31UHQfA8D0CyD/hAFQe3P1df5EBg7ds/yK3HQPrZjkCoFzVAZl6vQKhjOEBe9gZA8v6GQQvlXkFMjkpBoaDuP0Ta7j9+Co1AoMASQLa7rkDIwQdBzpnvP8rtGEAFMWZAbG6kP9VVXECERCVA/H5iQOgWCkA7bI1AokH4QOtf4kDK1BdBT7LJP6+6uT8tnCVB5nUyQckLOEAOzi9CfUjfQB/aWUBODJI/M6xvQOHHxEBehaQ/NYUDQEkewkAr2r1BtViNQK5x9UAowA1BmI4OQfWiQUEnVV1BsBTRQbamOEAahJ1BnvqwQZjLM0ElrghB3DVUQclRnUALbwtCycKmQLT3l0GXBHBALB5SQi8kBUH2JbRAuFw6QR4xyEATQ7dAYg6QQIkCJ0F69MNBIHy8QELPnEIDTSlBdUJrQXmm0kCq11xAoOm/QKX9DkGYHiVAr6iiQYUCuD+YX98/XNPMQHcnpEHqo1hBrPkPQYe+F0EhIiZBGncBQb22lkCF80VCXlaoQcxe7kD4DqdBuFZWQUY2MUELIRNAuOHpQHZG4UJ52HVBq1t4QgMxo0LBxKlB0lp5QJ+sFkJ+wx5B09yjP/OLokFvu5ZAwML6Ql1VZEFKzVNBFmIkQl+Fz0Dm3udAozLAQHZO5UB6mWNAN5jUQs1h0EGj1MdAMGjlQFLYOkEuMzVBw42hQJIefz/nRphADiBTQEQLKEA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwCtla0AAAADA+UVtQAAAAGC5KG9AAAAA4JJJb0AAAAAgPRVxQAAAAGAOQ3FAAAAAQH9VcUAAAAAAbmVxQAAAAODPP3NAAAAAgGa/c0AAAAAgoRJ0QAAAAKBW0nRAAAAAILnkdEAAAACAAkl5QAAAAMBcdXlAAAAAQK11ekAAAACAgCd7QAAAAIBviXtAAAAAQJ5PfEAAAAAAIdV8QAAAAACZQn1AAAAAQLtRfUAAAADAYlx9QAAAAADNhH5AAAAAwKM4f0AAAACA6nV/QAAAAIAVKIBAAAAAICS8gEAAAACg3MOAQAAAACDN04BAAAAA4KEEgUAAAADgDjKBQAAAAGC+U4FAAAAAwAFigUAAAACgPXOBQAAAAECOw4FAAAAAwB7jgUAAAACg0ECCQAAAAAAGgoJAAAAAwIC7gkAAAADAMcWCQAAAAOAqy4JAAAAAYGJLg0AAAAAA+lKDQAAAAOD4CoRAAAAAYOQ5hEAAAACgD0mEQAAAAODYU4RAAAAAQACLhEAAAAAAJKCEQAAAACB2s4RAAAAAIBzShEAAAACA6diEQAAAACBt44RAAAAAQHTphEAAAABAzPeEQAAAAMCUNYVAAAAAgGVghUAAAAAAUtmFQAAAAOA8LIZAAAAAwNBsh0AAAABgMsKHQAAAAGBz0YdAAAAAwFQdiEAAAAAg3lKIQAAAAOD1WohAAAAA4GrDiEAAAAAA/+mIQA== + NrgMGZxjYkB8yhB7okRtQMRlXluOUnBABcAcd2nTdEDEwzqv5mN3QMjGukoPBH1AH9CE+qm0fUD1Z949STqBQISQPDN1AoNAVCs7pM0ig0AVlb3LtrqFQFRaKc55q4ZAz+edwy67iUCYHSJ18vOKQCdGgGoevIxAzxaM7dpDjUBgGw2GHPyPQI8SgMwqKpBAMKX9V2TCkUAxdPwfZ06SQEco0CqVVpNA44phLq2alEBbqJOSnvKUQNu/iqf0tpZAlaHGPPPmlkDctXU3CcuXQFvXgbxKe5hAouswt2BfmUBczWxMX4+ZQIYBBL+W45pAQOM/VJUTm0CH9+5Oq/ebQAYZ+9Psp5xATS2qzgKMnUAHD+ZjAbydQIcm3XhXgJ9A/0MP3UjYn0BOU1BwMI6gQFktunVHEqFA2ZS52UhYoUAqXnifZSSiQJkgNeRzOqJAvWFVSoTookDoVRhrcwqjQAzgb2h+fKNAfe3QVK/Ko0DdEC6SnI6kQCwCyVLNyqRAnZypnMdwpUBQQ+m43XilQHTNQLbo6qVAbs1nxuWCpkCYDmEc+ZimQPkO0S/+TKdAcM/U1g2fp0C5mkw6KS+oQMlaB94wZahA7ZsnREETqUASJn9BTFWpQA== - + - tPKEQOZsmEACdeRBaGLuQG34iEBWNhNALm8SQANnSUBe2/pAwwdaQFYmykF15CJBgo00QLfC7EBrFcJAIKzrQGVkuEGp05FAPeo0QdM82UC96LtAHijCQOtmdkD34jRA7R6yQGikgEEXWkdBYHjVQbE6EUD/2cRAzVWEQKGEQUEqKNs/9UAMQVk6xkBooqFAmkwRQJfzrkD62NVBnZUgQaBiC0NMp5hCON6zQMvD2z8sOUFAUGUuQY7tPUCD54FCNChTQo/GnECeFBlB7FvvQK2zrkBJqxdB9FdqQRYk/z98Y71Awg+YQIcMOEAhWphAyg6FQCXUJ0HaDK9Aq7mWQDeIpEHhxZNB82SSQMHCHEE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQPqyZ0AAAADAdmxoQAAAAMBsJGlAAAAAYI3eaUAAAACATwhqQAAAAMANYGtAAAAAwEUHbEAAAABgFSVsQAAAAOBGTGxAAAAAwILKbkAAAADgdSNwQAAAACDLQ3FAAAAAgBw0c0AAAADAM0JzQAAAAABagXNAAAAAQJj+dEAAAABAyDR1QAAAAADFgHVAAAAAwFJ0d0AAAACACh14QAAAAMDMKHhAAAAAgMKPeEAAAABAPzd5QAAAAEA7cnlAAAAAgMSCeUAAAADAxpN5QAAAAIAT0nlAAAAAwCwjekAAAADAEbl6QAAAAMB833pAAAAAwHMDe0AAAADAZUR7QAAAAEAQdXtAAAAAwJHIe0AAAABA+LV8QAAAAIAr1nxAAAAAABbifEAAAAAALHV9QAAAAMAfM35AAAAAQC1WfkAAAADAm4B+QAAAAMBx1n5AAAAAAN31fkAAAADA/oN/QAAAAECJsX9AAAAAAP/Ff0AAAABAQRKAQAAAAECXioBAAAAAoP6fgEAAAACgvbmAQAAAAGB50oBAAAAAADnYgEAAAABgRgGBQAAAAAB/JYFAAAAAYHErgUAAAADgm2qCQAAAACAXn4NAAAAAYMMyhEAAAADgDFOEQAAAACBrqoRAAAAA4BnWhEAAAACgqUyFQAAAAABIg4VAAAAA4HWKhUAAAACA36qFQAAAAIAJsIVAAAAAIFbPhUAAAADgx5mGQAAAAEDpIYdAAAAA4JtLh0AAAACAKKuHQAAAAAB9tIdAAAAAoKnMh0AAAAAgadqHQAAAAIC6OohA + KBZXds7jZUAAVPW5y0NsQBTpB48/A3JAAAjXMD4zdUAxOsR5l5N1QPiUWLOvxHtAJ8keqOxDfUBDdlLpw+qAQJOT/X2iKoJA0p6w3u+ygkBdm8YwJEOHQJymeZFxy4dA7MMkJlALiUCc1We7HVSLQLPvyjW8E4xAFx2VUkgsj0Awtgv3dFyPQNOi+SM6epBAmPJ8kJBykUBTuvA4kD6SQHwIUJjG9pJA - + - qtMAQElzQUCEZWVAFiYQQOcQRUFe8uVA/HM1QQYbFkI8WMZA47ZKQCq9AUEQclBBdsgEQVEZDEFqsfpAJx0AQcdMb0CZ2BJAo3weQRhsCkAwoFRAAQmBQM/EpEBGSphAeLFLQGd0REBJyBhAF9sgQcpXDUFwdApBXt9GQG+eUkE7JwFAI7XuP2eapD9/mGRBv4W6QcdjnUCgJyNBxpkOQeZC6kCFUS1A/vy2QMAUCkECv6FA83cVQdy7WEHzpzZAwnAxQtc7gkEJMQVB4FQMQT4sAECEgEVCqxlRQgpX6z++/nhA1A9GQe7Etj808UVBsT5UQK7VjkDGGy1CKc+FQcxqskAkVBJB7hFDQUe8gEBDpytAyd4NQZzAXEGzRV1ARBV3QCJaZkEI9xhB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQJsGX0AAAADAqCNgQAAAAID1RGBAAAAAYFekYEAAAAAgTyJhQAAAAMBIYWFAAAAAYOxeYkAAAAAAe6FiQAAAAEDlXmRAAAAAwOrhZEAAAADAMCZmQAAAAICi52ZAAAAAYE0gZ0AAAACgz4BnQAAAAOC2IWhAAAAAoAhBaEAAAAAgQAJqQAAAAOABP2pAAAAAoKWtakAAAADgAOVqQAAAAIBBAWtAAAAAoGmHa0AAAACAXqRrQAAAAAARJ2xAAAAAgPEMbUAAAABAwkRtQAAAAADGX21AAAAAAN5/bUAAAABAQIduQAAAAAC/Fm9AAAAAwNyLb0AAAABAgr9vQAAAAEC27G9AAAAAoKAicEAAAACAUTNwQAAAAMAoQHBAAAAAABBmcEAAAACAS5RwQAAAAEBt0HBAAAAAABrxcEAAAACgwRBxQAAAAECzHnFAAAAAwKEucUAAAAAgC1RxQAAAACAidXFAAAAAwMfxcUAAAACguwNyQAAAAECzg3JAAAAA4PuQckAAAACgD69yQAAAAMDP6nJAAAAAwBj1ckAAAABggipzQAAAAKDONXNAAAAAIHBDc0AAAADAlmVzQAAAAMDEfXNAAAAAIN7Qc0AAAABAIAJ0QAAAAIDwJXRAAAAAgDRTdEAAAADA0WN0QAAAAICYfHRAAAAAgFWSdEAAAACgswV1QAAAAEAIJXVAAAAAwFeidUAAAACgOrJ1QAAAAEAvxHVAAAAAQHrOdUAAAABgWeR1QAAAAIAUA3ZAAAAAQOkQdkAAAABguC92QAAAAMD5OXZAAAAA4KKhdkAAAABAgrJ2QAAAAGA9znZAAAAA4ITgdkAAAADg1u92QAAAAIBb/3ZAAAAAIEdBd0AAAACg1FF3QAAAAICcdHdAAAAAALyEd0AAAAAAqaV3QAAAAKBG1XdAAAAAQO2weEAAAABAc4d5QAAAAOB51nlAAAAAoJYJekAAAAAghFN6QAAAAABllXtAAAAAoBA2fEAAAABAOp98QAAAACBqVH1AAAAA4MeOfUAAAADAd7N9QAAAAKB4H35AAAAA4BFdfkAAAABAjWt+QAAAAMBOlH5AAAAAwB2zfkAAAABg3yV/QAAAAEBINX9AAAAAICpOf0AAAACgCoV/QAAAAGA+mX9AAAAAoBnGf0AAAABAeeR/QAAAAEAnA4BAAAAAYOkJgEAAAAAgBCOAQAAAAODEXIBAAAAAoDaMgEAAAAAgK9aAQAAAAIBJBIFAAAAAYLQTgUAAAADg8COBQAAAACDaRoFAAAAAYBpagUAAAABATV+BQAAAAACpw4FAAAAAoMj6gUAAAADg7eKCQAAAACDIMoNAAAAAwFtAg0AAAADAKJGDQAAAACCRvINAAAAA4MnLg0AAAADg4VGEQAAAAIAzW4RAAAAAYAzbhEAAAAAgPu2EQAAAACAxZIVAAAAAoDEDhkAAAAAgP4uGQAAAACDfeodA + KBZXds7jZUCzxYFkpHFwQPV+Nhksk3ZAsyNeuPyCd0D13BJthKR9QMqLNMsgkoFA3ptTU85qg0A= - + - ahPKP2OAAEGdL8RAjRGQQIPmb0BfOX9Ajv8uQQh3AEERAVRAcZUAQb0uUUC2lx9B1BFLQIQ4GkGAaWRAugfKP6q9BkDxws5ByOiTQOk3qz+UJhNAQ5UYQQyLQUBTcJtBtWkeQOoDJ0Exd1FAJQTMQCTCzkDfN85AriMZQKTXC0A3AcNBEJkxQH3NyT88Oy9ASEubQO1zCEGDlxxAw4dBQMIetz/ttbc/vT5dQETTrkDaX6lBemRsQBaq+0C5vjNBIJOkP0eSikDb5K9BH6YNQeh8q0BJOS5B9VpHQIiY1kBMM6tAUfVYQbFRvUHtsaRArvwGQCOlUEAQBxpBACUIQWbwSkCeNUlBWeYUQc+IX0HdeNZBe6o1QVcZnUDO4bJBdiOQQOGVL0Ct1bJApkh5QNyGnUCrMSdBbPYrQCk5HEBAywlAZuIUQSSmfEHAlghCgSebQE3shUCc6CdAzIKvQI6TiEC+GKJAgQnrQDUXm0CYxjNBFOU3QH5nm0A/89JAN7SHQe+1AEC3wVNBRC/TQEvRQEFHkYpAVMycQZv420EUwGNAJbsQQcizzEFlgQlAPjLsQrTLJUCGwUBBlcQ+QETrn0AUYAFBEFmoQSJsYkHwadw/fqgMQfYcOkFjGydBXl2dQKJXpkGIyQ9Abv8AQoXTn0ACvZxAtqclQAGmwkCe6+8/vUCmQKHvWkHxCvhAujdHQNejqkArI+8/zciwQGCraUEuDVxB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIIChYkAAAADge2ZjQAAAAOAqqWNAAAAA4F7EY0AAAADAAeVjQAAAAEBwAWVAAAAAoGxGZUAAAABgob9lQAAAAMCv5GVAAAAAYIQcZkAAAACgzgZnQAAAAEB8JmdAAAAAwGJKZ0AAAACAXIRnQAAAAEAUA2hAAAAAwMgjaEAAAADALUZoQAAAACAtZGhAAAAAQF7jaEAAAACgwwNpQAAAAMDxIWlAAAAAwOlhaUAAAABAiqVpQAAAAGCCwWlAAAAAQE0GakAAAACArSZqQAAAAAAtWGpAAAAAIDBvakAAAADgn4ZqQAAAAMCppWpAAAAAoMTEakAAAAAAH2JsQAAAAOAzqGxAAAAAQFbkbEAAAACgBwVtQAAAAICAIm1AAAAAgDiHbUAAAABANqBtQAAAAGD14W1AAAAAAAlfbkAAAABAVHxuQAAAAGBPom5AAAAAgJQlb0AAAADABoVvQAAAAADRqG9AAAAAINjjb0AAAABgThBwQAAAAOB+IXBAAAAAwM9RcEAAAACAqJFwQAAAAMAWn3BAAAAAQFKpcEAAAACA5ORwQAAAAEC8A3FAAAAAAAwScUAAAABAZCVxQAAAAMBoMXFAAAAAQG1gcUAAAAAA/6FxQAAAAMACwnFAAAAA4EvecUAAAAAAAAFyQAAAAGBwEnJAAAAAADYkckAAAABAGWhyQAAAAECedHJAAAAAQGmtckAAAABA3cJyQAAAAMBu1HJAAAAAgFgic0AAAADABTJzQAAAAAApZXNAAAAAQNt0c0AAAACArIFzQAAAAIBcknNAAAAAAE+lc0AAAABAJr9zQAAAAIAr5HNAAAAAAPsUdEAAAADAByN0QAAAAID8U3RAAAAAANJydEAAAACAqoN0QAAAAMCvxnRAAAAAgE7odEAAAACAtfR0QAAAAMBOBHVAAAAAAEhldUAAAAAAEKR1QAAAAMClw3VAAAAAgCbidUAAAAAAoQF2QAAAAACIFXZAAAAAwMkjdkAAAABAK3R2QAAAAADKonZAAAAAQG7GdkAAAACAHOp2QAAAAICG/3ZAAAAAQPcid0AAAACAfDF3QAAAAABMQXdAAAAAQGVPd0AAAADAB3N3QAAAAEAan3dAAAAAgJ2yd0AAAACArc93QAAAAMCC6HdAAAAAALz6d0AAAAAAFg94QAAAAEAHMXhAAAAAwF5DeEAAAACAMFV4QAAAAMCrYnhAAAAAwDB+eEAAAADAn414QAAAAADlsnhAAAAAQJ7YeEAAAACAbPJ4QAAAAEDqDXlAAAAAQFY4eUAAAACAOmd5QAAAAABydXlAAAAAAFeBeUAAAAAAU5x5QAAAAIBwpnlAAAAAgK+xeUAAAABAmrx5QAAAAIBg03lAAAAAQJfneUAAAADAdfR5QAAAAEDVEXpAAAAAwDM0ekAAAADA6Ex6QAAAAEAlbXpAAAAAwECDekAAAAAAhI96QAAAAEC9m3pAAAAAwD3VekAAAACAWuJ6QAAAAACd8HpAAAAAQFsCe0AAAABAVxJ7QAAAAMCDHntAAAAAALYxe0AAAADAKzx7QAAAAIDMVHtAAAAAgEh0e0AAAADA7317QAAAAEDOj3tAAAAAwO2fe0AAAABAYsN7QAAAAID3zntAAAAAwAnce0AAAABAVet7QAAAAMDS+HtAAAAAgJQTfEAAAADA1SJ8QAAAAIAOQnxAAAAAgIxSfEAAAACA3F18QAAAAAB8dHxAAAAAAB2PfEAAAABAZJ98QAAAAIA6snxAAAAAwNLnfEAAAACADvV8QAAAAEDiI31AAAAAAD82fUAAAABA+FB9QAAAAEBoZH1AAAAAANx4fUAAAABA4YV9QAAAAED6tX1AAAAAwC3IfUAAAAAANNN9QAAAAEBF4X1AAAAAwCv4fUAAAABArAZ+QAAAAEABGH5AAAAAwLU2fkAAAACA8EV+QAAAAAC6VX5AAAAAwP1lfkAAAABgIBmAQAAAAIDSUYBAAAAAQKFagEAAAAAgCoCAQAAAAMCFk4BAAAAA4JqrgEAAAACgg7GAQAAAAOCyxYBAAAAAgF4KgUAAAADgvD+BQAAAACB4SIFAAAAAIEhagUAAAAAgy2iBQAAAACDycoFAAAAAoIbTgUAAAAAggtuBQAAAAOBZ4oFAAAAAgJnpgUAAAADAowOCQAAAAOByKoJAAAAAIPowgkAAAAAAcTmCQAAAAEAqQoJAAAAA4AVTgkAAAABg8WKCQAAAAACFaoJAAAAAQJBzgkAAAAAAPIaCQAAAAIBOoYJAAAAAoPC5gkAAAADgXsKCQAAAAMAnyYJAAAAAAGPkgkAAAADg2PiCQAAAAKCSAINAAAAA4A0Sg0AAAABApzuDQAAAAMAdSYNAAAAAgJpRg0AAAAAgJWyDQAAAAOA6nINAAAAAIDWog0AAAACgx7qDQAAAAGAU2YNAAAAAAD3ig0AAAADAk+uDQAAAAEBlD4RAAAAAIHxUhEAAAABgYFuEQAAAAKA9YoRAAAAAoO1rhEAAAABggXmEQAAAAEBUloRAAAAAQHGihEAAAABgvPGEQAAAAKDJ/4RAAAAAQNkLhUAAAABgvSSFQAAAAODjQ4VAAAAAABVMhUAAAACA/VSFQAAAAGBeW4VAAAAAAHSKhUAAAABglJOFQAAAAOCA04VAAAAAYOHahUAAAAAAROOFQAAAAIAc84VAAAAAQDYShkAAAAAA8hqGQAAAAABYMYZAAAAAoFhThkAAAACgOGKGQAAAAODsaoZAAAAAICd0hkAAAADAbpSGQAAAAMBzwIZAAAAAoK3fhkAAAABg8uWGQAAAAODF8YZAAAAAYIr6hkAAAABgZhyHQAAAAOCfVodAAAAA4J+sh0AAAADAozOIQAAAACBHQohAAAAA4GVRiEAAAAAgcJCIQAAAAKBnpIhAAAAA4ALLiEAAAAAAVNaIQA== + NrgMGZxjYkA2gKvZDSNtQBu6YmAmQ3BAQoEdZDWidkBCe6rX1FN4QELf+beNs31ANB55p0EygEAy9H10CJKBQF9I+6mNaoJAJnShuflyhUB2t3YbgdqFQE90KIkMq4hAo70bweICiUAJxwiBhKuMQDaev/w5C41AAFPE190hkECb5lYT80mQQBVoBdkDPpFATf27ITnWkUAs69erNNKSQP8TITB/IpRAEAGrs2pWlEDCFxDCsOKVQKF1nYO7RpZAQi8H1wanl0CG+QFd/NKYQIwf2XQyq5lAOBBna0JfmkAugVXIbs+bQOomzHmI65tA4Je61rRbnUCMiEjNxA+eQJKuH+X6555AazyNNfgJoEA8GULfHbqgQCvICEAj7KBAhFM7R0ayoUANSgAJPMyhQHbeJEthdKJAZtUyEF/yokABII60eT6jQL9gZReCuKNAjKoutYzMo0B/7OAhrZqkQEqizoCasqRApOTJ8MKcpUD4tsZ+uLKlQC8mM1rbZqZAAneoMr2ApkD0AZI22EKnQABX8YP5eKdAf4wyN+vQp0AkmBHqCSeoQKSEGwYB06hA5CON9DQJqUDJfATVFtWpQAkcdsNKC6pAiQiA30G3qkDh3Ol9XxGrQA== - + - 9fkZQGNLGUC2iMNA+qAuQeXVxEDZAC1BXGZiQmDAvkBBLJ1CNMtbQbLjEkAtq8BBi44GQUGbk0A5ugBA46LuP8ErF0HjI6lB+CYrQWgHLEBWLDRBBxAtQiaw/0CR01NA0QkKQQUyHEChTXlAmEGSP59wZ0Fgu79Cusb9P/zfkkB5yJJACZYvQ2LKiEB3cV5BPDq3QKzZJUD39gdBiW2vQcmVTkJjgCVAtoPMQECrBkE7MxVBmgQAQptSqUFOhGNB9NUmQhnACUHADkNB6sD7P7AGd0H5PihDHAuQQKNFE0AzZ+pAoEwWQU675z8RxFNBpu1BQfI98EKczB9EIJDuQbhqtz8O4wZAqy8fQRiUAkLkkbhAgJdqQpqRkEGPsStBCHJMQWsCoEAy5X5AJVVDQdl5jUBvIvRBfOX3QF5c6kBG0VtA50WUQIZ5QUAgubBATiGgQEpCpkEHtCVBKkdjQU73SkDAjsdAstAJQIJlQkFyRQFCq/5LQVo3O0GThTNB6h8BQGv/qED4AYRAFnrkQrRemUAqbVRBP48JQOnXCUEEXDtBQsk0QqnEFUG2I5dBnFa7QYy7HUHB9KdBbrPWRLASMUNZfSFCZ5B3QxZEoEHg2XtBf+rJP3KXb0JL1rVEbCcAQgxgckFY/RBCskynQCthtEOKWxVCNHqxQTcKdkAsANFBtirDQF7r7kB1+D9DKMpgQYP780G73cRA7OOuQTRZt0B+dhhBq5u1QXGcJUEo/19BYrqJQYRV60CNEZxAJGvXQg6kwUGUIv9BBAgoQV74CULxMJJBhiHyP/vBvkHqPmxBuvW/Qfxf2EFLgIRA9Q0SQTAdVkCFCl1BVNmnQM6rEUI0ImdB3qrWQOx0UEBM+D5B8Gl3QNoGhkEweKpBeCCBQEBVGkHcJlFAu91xQlhcBkA7YrlBbN0aQmGujUER4oBBYTIwQGJAYUNyPwBCauYEQfb6K0IXWkpCCoo8QWyVh0EH9dZAmEICQB0u1ECJ1dNBBqnuP+wXeUAv2XdA88QSQIRM10DUrIxBEaltQWBNE0CJ/wJBOvcGQ05rXkL8D3FCGNUJQiUwR0B48nNB1EIVQsvCfkEuGlRAL/1iQEJwy0TscHBD52yZQShYiUE++tVAMdhkQ9LA6kII1UFB0BJHQPgUBEOWbCtBQ6j4QFD3tj+PAPNDWyPGQkTwJEG/pqQ/BdvuP8Yrb0Dpj8JDXnFHQhD8IkE6mNo/Ix+3QSfvSkGLJjhAWklUQSJqx0GaNE5BNPp4QJNSIkGSRhpB3i4TQPvv1UAlTDVB0mxrQbszNUCB1tVA7lk8QfUu0UDGszBCRT5qQsO0NEJTKplANN2GQUlTY0CPyLRAZ+tuQbzJ90JTc8xDzWFcQpYb00CfmQBAv7IAQUhne0E/GLNDtJqCQrLc6EBnselAiMezQecJtz+Py0xB5bnHQKFKH0HARiJArooYQlrW7j8= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQEFRV0AAAABAa8RYQAAAAMCVSVlAAAAAILuPWkAAAAAgqcZaQAAAAECHiltAAAAAALX7XEAAAABAkFxdQAAAAOCAT15AAAAAoNrdXkAAAACA+g9fQAAAAED2z19AAAAAYCwkYEAAAACgqUFgQAAAAMCKaWBAAAAAAPTrYEAAAACg+whhQAAAAACKaWFAAAAAwPWlYUAAAABgwcNhQAAAAMBQ5WFAAAAAIFkAYkAAAABALyNiQAAAAAC9ZWJAAAAAwKl/YkAAAADAD6ZiQAAAAADK6GJAAAAAAO4GY0AAAAAAtCRjQAAAAEAbxmNAAAAAAFThY0AAAABA1wBkQAAAAOC6JmRAAAAAAJ6BZEAAAADgy6dkQAAAAIAb42RAAAAAIPMBZUAAAABgZiJlQAAAAMDmZmVAAAAAAHOhZUAAAADArt9lQAAAAMB//GVAAAAAAL8iZkAAAAAgZHxmQAAAAMBKpWZAAAAAAHDEZkAAAAAgdeNmQAAAAMCmA2dAAAAAoEArZ0AAAADgjGFnQAAAAOB2hGdAAAAAQFepZ0AAAADA3eFnQAAAAAA4/2dAAAAAQG0naEAAAADgREJoQAAAAMDOZ2hAAAAAQIqFaEAAAAAA8sZoQAAAAMDs5GhAAAAAgGgEaUAAAACgP0dpQAAAAAAwZmlAAAAAAPB8aUAAAACAyJ5pQAAAAMCHw2lAAAAAgFPXaUAAAABAjexpQAAAAACAA2pAAAAAAEQmakAAAADAWWRqQAAAAABwg2pAAAAAQHuuakAAAABAxSdrQAAAAEANgWtAAAAAAEmka0AAAABA2cBrQAAAAIBa42tAAAAAQIADbEAAAADAISZsQAAAAEAPPGxAAAAAwGhqbEAAAADAYIJsQAAAAMCtqGxAAAAAQBjKbEAAAADAXSRtQAAAAIAwXW1AAAAAQI2BbUAAAAAAH6VtQAAAAIA4Bm5AAAAAQEYmbkAAAABAi6NuQAAAAAA+xW5AAAAAgMf7bkAAAABAJCFvQAAAAADIP29AAAAAQAxjb0AAAABAlIJvQAAAAMAXoW9AAAAAgK/jb0AAAADA7f5vQAAAAEDUFHBAAAAAwB4hcEAAAAAgyTJwQAAAAABegHBAAAAAQCCRcEAAAAAAlqRwQAAAAACTsnBAAAAAQGbBcEAAAABgitBwQAAAAMCK4HBAAAAAgNXwcEAAAADAehdxQAAAAABoJHFAAAAAoD4zcUAAAADgvkJxQAAAAMBCVHFAAAAAgMxhcUAAAACACHJxQAAAAOBthXFAAAAAAOqScUAAAACAe7BxQAAAAGAi0nFAAAAAAITucUAAAADAKJRzQAAAAICls3NAAAAAYJvEc0AAAABAyG90QAAAAECljnRAAAAAwIKgdEAAAAAgwcl0QAAAAGCdD3VAAAAAwDMgdUAAAACA20N1QAAAACAWunVAAAAAIBDldUAAAABAmvN1QAAAAACLMnZAAAAAQI12dkAAAADgwLt2QAAAAECN0HZAAAAAoOcSd0AAAADAGGd3QAAAAGB6rndAAAAAQDfLd0AAAAAgrN53QAAAAADGAnhAAAAAAKoueEAAAACg9nR4QAAAAKAOj3hAAAAAgBG3eEAAAADgC8Z4QAAAAIDS5nhAAAAAgGX5eEAAAACg5wh5QAAAAGCkHHlAAAAA4CY0eUAAAACgIkl5QAAAAAD7VHlAAAAAACJkeUAAAACgKJV5QAAAACAkpnlAAAAAoJWzeUAAAABgzNN5QAAAACD043lAAAAAIKuXekAAAADgfKR6QAAAAKC7EntAAAAAoGJye0AAAABgn7N8QAAAAKA++HxAAAAAYDi0fUAAAADgOb59QAAAACBjAX5AAAAAIFwXfkAAAABgLUN+QAAAAOCTVn5AAAAA4NykfkAAAAAgS7V+QAAAAEBRF39AAAAAIG2Yf0AAAACgAMh/QAAAAKAk1X9AAAAAQDUUgEAAAAAgZjKAQAAAACA6TIBAAAAAIO5ygEAAAADgYHqAQAAAAOCk34BAAAAAIMHygEAAAABgqSSCQAAAAAClNIJAAAAAoIo6gkAAAABgjoyDQAAAAIBZlINAAAAAgLZ7hEAAAABA5qmEQAAAAOC0+oRAAAAAgIgChUAAAADAtAqFQAAAAEAqiIVAAAAAoBuShUAAAAAgtMuGQA== + KBZXds7jZUDsyMl+5FFxQFAtpBCXEnJAQh3Og3zCdUAXiDhKr0N4QMqjv9FtU35ATwcVTFBqgEBJ/6kFQ0KCQHoxl06cooJAZ1Bm8JrShUDeXmFrKDuHQA== - + - Z9IlQFlYz0CGjDlA/IwIQHlTE0A803tAvQrvP+zDEEHAeJI/I1AVQcO5uT9owwxBQ8Q3QqD/VkF3GVBAiUU+QIJBi0DShqhAL+qiQKwkzkHedK9ArmATQBycZUEt5I5BJkFVQHCOpkAQLyNAPUuqQDG5pT+Zi9w/VkZbQdb/R0C30StAL+vIPyejkEHtKC9AAwBCQAUfGkFRxwtBaWruP23RyUF/vkpA4HyAQcVoQEGNkh1AR8UWQVBrQEFhaYRACeSFQHM5e0IOrYtBE9SHQQwtUkHO2wxBmaIsQQSyEUCyzqRBnBeOQJnk5EB2vqtBXFLGQIYQj0DxzwdBviMwQK0eiUAwHgZBI10aQEY0PkGOT5NBSprlQHC27j/MXe1Bbp07Qd2U+EBAdx5B7IRRQGEeYEHKbQRBhCaAQVBVb0EOAcBAl6W6QNXlAEBCES9AXomVQXrDDkEQp+BAiyJ3QC8PukEQZUxBirfUQBx/Y0C6i5tBpMg4QqYiL0JWCxRDgEuaQmrsr0H8xmxBCWtSQXSoN0CiMjdBcjjSQSVTZ0EaJTBDAHajQjiVHEKp6qpCo3hfQsqyCEK0GedBFKUXQT09SEGYlPpBTm+tQg2rn0Kdd/hAXKN+QjTWEUJEAAFCOr9mQK6fvEGFDrZBVOySQP4yE0HAucdA1rgPQCE3uD8YjI9AghD8QNoSl0E7/HpBruzIQCgu+EBophlCFOnDQKaiBEGzNvI/RaQLQMXQqUI5E+1Cwa1BQEWpZkB0ai1AdjVtQOdeZ0A6rKZARMQdQYALD0LRPihCSBKHQTWtpEBshEtA0J7mQQifEkLzBpBCsUcLQZ6f4kBgKMVBurnTQA70g0R2wshBUMRMQPiqo0KfmM1BI5VmQP3m7j8zG6U/ajBuQNlBtz+e3kBAAYX1QNxyqEHSB8o/r9WfQSTWNkEFWuhAvqkyQI/JtkCW2KlBnwe8QBKT1kG5xxhBPtNfQXr4p0FnySxBKHQcQ7T6nEE9aeJAX+wLQXEyCUDEKMY/QpVBQFqpmEGQmitADHKNQM7CXkCWGLNBGGLPQZtZEkDE4UhBCoi3P0HbEEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4ADHYUAAAADA5BhiQAAAAMCKZ2NAAAAAwNuIY0AAAAAASShnQAAAAIDRiGdAAAAAgC1naUAAAAAgF2JqQAAAAMA6amtAAAAAoGnja0AAAACgRqhsQAAAAACQwGxAAAAAgCpDbUAAAADg1YxtQAAAAEByTW5AAAAAgKaLbkAAAAAAJsNuQAAAAMCv5W5AAAAAALIZb0AAAAAAsMhvQAAAAECUcnBAAAAAAEW1cEAAAADgMeFwQAAAAOAORHFAAAAAIInTcUAAAACglxpyQAAAAGDKQXJAAAAAAKZlckAAAACAGYRyQAAAAGAEonJAAAAAACvEckAAAACA3fByQAAAACBRbnNAAAAAYFCCc0AAAADgVeBzQAAAAIDn/3NAAAAAYJUqdEAAAACAykV0QAAAAMBthHRAAAAAILumdEAAAAAA6hJ1QAAAAAAwZHVAAAAAwH6YdUAAAABAd8F1QAAAAACIE3ZAAAAAAGU9dkAAAACAlHJ2QAAAAAA+oHZAAAAA4LPFdkAAAADA9tF2QAAAAACg/nZAAAAAYHwSd0AAAABg3CF3QAAAAICjO3dAAAAAgCNSd0AAAAAAs293QAAAAKBlhndAAAAA4OaSd0AAAABgJ+V3QAAAAOC09XdAAAAAQDQPeEAAAABg51R4QAAAAKBaYnhAAAAAINV6eEAAAACAqYV4QAAAAMBgmnhAAAAAIJyueEAAAACgB+d4QAAAAGATCHlAAAAAgKESeUAAAABgy4Z5QAAAAKATl3lAAAAAgF6heUAAAABAt7V5QAAAAAB5x3lAAAAAwHDVeUAAAAAgfeF5QAAAAGD6JXpAAAAAAMFDekAAAACAY156QAAAAOABlnpAAAAA4DulekAAAACgaLN6QAAAAADSxHpAAAAA4OrSekAAAAAgeeJ6QAAAAOBjJntAAAAAABkxe0AAAAAgXkh7QAAAAAAVUntAAAAAoDl1e0AAAADgY4x7QAAAAODO03tAAAAAwAzfe0AAAABgyG58QAAAAOAH831AAAAAoBwsfkAAAACgSTl+QAAAAECbk35AAAAAQHClfkAAAADgWgp/QAAAAKDjIX9AAAAAQFJnf0AAAAAgVS+AQAAAACCmU4BAAAAAwO6IgEAAAABA+MqAQAAAAGC224BAAAAAYB0LgUAAAAAgrCOBQAAAAMAuPoFAAAAAYExqgUAAAAAA2IeBQAAAAOAfoIFAAAAA4C2qgUAAAABgbrqBQAAAAEDNy4FAAAAAYOD6gUAAAACAuQCCQAAAAEATE4JAAAAAgEJTgkAAAADgTJ2CQAAAAMCWuoJAAAAAgJ2/gkAAAAAA2saCQAAAAAAP8oJAAAAAgLL6gkAAAADA/zODQAAAAMDyOINAAAAA4FFAg0AAAADgSGaDQAAAAMBnhoNAAAAAgFOLg0AAAABgoP+DQAAAAKDPW4RAAAAAYKSRhEAAAABgzwCFQAAAAOC7S4VAAAAAwJe+hUAAAADgBsSFQAAAAGAtfIZAAAAA4Ly7hkAAAACA5+GGQAAAAOAzY4dAAAAAgNrAh0A= + NrgMGZxjYkCEfuNfSGJnQFRnpVdMhW5AZMjzYKchcUA5Cx9LflN1QPIfQIB/MndAWxQhfAHEekCAd4yfV0N9QCRpkOw3+oBA - + - XZAuQKjGkkAuPk9AtZojQPhWL0E6vgdAhAAUQfd0OEDwobc/h9ZIQAJUSUC4Uso/MAIaQI+Jkj/HC0hAQVSBQDo5nECkqHdAYqGPQSGlE0DZnZhACQ7RQMJxv0BU1CJBYcjdQIyU2kA8IhpAnpiAQDabgUC/iQtBdbw8QjrRQUC99YZAU9t/P4YMFEGqBiZADDudQZIQnEBNlT9AZG5rQY4g1z9qIuNAlbuyQH1ZZ0BaizlAem94QY0AJkAdmixAQkFXQV3leEH0B1RAhuRmQBotA0EL7lpBbJ6WQF+BgkBR+L4/8Gh5QdVrjEAqsMlAHGMTQHhV9kAj0FlBiiIeQgtq+z/0USdBnJylQZSkqEEHsMJA5ZSvQLm5skHeb2FBcxp9QBYgG0Focc1BEB2tQF0MAUBZwaJAHIwPQUoWWkFYaw9B1JOtQUFduUEfvNhBSUkBQPExzUBWZZtAYnSkQGIMkkFKKM8/cSyIQFaPdEGTX99A6u8hQdmLQEAc0uk/x5f4QFEVS0EiPAtAFm7KPxbpC0F43kFAY5TiQWr5X0Hj7JxAt5WkQQvPuEAe2LFB0HDfQGsKA0Eenco/rO1zQZPzZUFlL7NAsJf7P+mgCkAdTNw/zeQsQcf5rUAOMxxAGDKdQAl13UE20BdCRLI9QTRC4ED385NAT2IAQfWyIkGX4CNBhuclQE3N4UBmmEFCcWlAQbVgkUE666lAmAVFQVz+hUHjeco/IAYDQYWgwUA8OyhBhOEBQS6qgkC3cAxA4guCQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQIcyakAAAAAAQkNrQAAAAEDxDWxAAAAA4DRRbUAAAABA+WRtQAAAAIC+3m9AAAAAQDQEcUAAAACABENxQAAAAICBgnFAAAAAgMegcUAAAABAVQByQAAAACDmZXNAAAAAgHEVdEAAAACAdh90QAAAAMD3T3RAAAAAAEuxdEAAAAAAdv91QAAAAECyL3ZAAAAAAFQReEAAAACAAlZ4QAAAAMDJdnhAAAAAwLzreEAAAACANoF5QAAAAMD/lXlAAAAAgHSvekAAAAAAeQZ7QAAAAACwwntAAAAAAFYSfEAAAAAAKrR8QAAAAABTvX1AAAAAQNy4fkAAAAAAOQh/QAAAAAAmQH9AAAAAwFNXf0AAAADANbB/QAAAAEAp3n9AAAAAoGBegEAAAADA92yAQAAAAEA7k4BAAAAAYBLYgEAAAAAAvyaBQAAAAKDLRYFAAAAAoKRxgUAAAABAX5CBQAAAAMBKm4FAAAAAgIjXgUAAAADgLPqBQAAAACAkFIJAAAAAQGEvgkAAAADgIziCQAAAACB/UIJAAAAAYCxjgkAAAABgs2uCQAAAAKDUdoJAAAAAYImbgkAAAABAAaKCQAAAAODjs4NAAAAAAAWKhEAAAAAg/x+FQAAAAODtWoVAAAAA4FV7hUAAAACgKWuGQAAAAAAUkYZAAAAAYGgLiEA= + KBZXds7jZUBkuM9LfgRtQEwvfbx6MXBApoGoFS+DdkDA1D2sajJ4QN4l+pbCwntAzULwjN2TfkA= - + - l4QYQaRBCkDcKoA/1KlTQAYf80HNXZI/Sm/ZQGoykkB+NYtAi0+kQDJddkA+zI1Ab2fKPxLFAEARfiRAMtkcQO0z80AMlqVA5aTvQDRNFUGp6dlAFiCFQJiaCkEn0JZAflk2QMwQQECPygFAA4YVQbQ4ekAWhJxA2g89QbDzEUFifxNAZdeIQHGdOEDgzyVAaQWoP8fEQ0E4u/5Ax+S5QN+nBEG1zDxBNN+1QQyhBEFBhQBBBX5dQJ28WEFN/IlBgONUQGNM50B8Mr9AxU9RQbYXbUEz5rhAoctxQWqWGkHaHKpA1ymGQG6kM0EfBi9AiZ9UQG+tWUG+ShNAB1HkQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoI/rb0AAAADAdWNwQAAAAKDAL3FAAAAAYAFicUAAAABATxZyQAAAAOCcYHJAAAAAAL6kckAAAACArHJzQAAAAICik3NAAAAAoH+hdUAAAACAuNN2QAAAAEDMZHdAAAAAgFqFd0AAAADAA2N4QAAAAIAcenhAAAAAQAbXeEAAAADA1RV5QAAAAMDxh3pAAAAAANqle0AAAAAACcJ7QAAAAICwFnxAAAAAQFDFfEAAAABAnNN8QAAAAEDN5HxAAAAAwDbUfUAAAACABnN/QAAAAICXS4BAAAAAwBKSgEAAAADgE1KBQAAAAOAweoFAAAAAYGmMgUAAAABgX5KBQAAAAMDEo4FAAAAAgOzggUAAAAAgLCqCQAAAAICHZYJAAAAAYNlqgkAAAADAanCCQAAAAEBlgoJAAAAA4M21gkAAAAAAudSCQAAAAGD/BINAAAAAQG4Zg0AAAABg44qDQAAAAECBkoNAAAAAoPDGg0AAAABgLOWDQAAAAECtM4RAAAAA4FxqhEAAAADgyniEQAAAACBcEYVAAAAAwMpAhUAAAACAMluFQAAAAOCua4VAAAAAoOaGhUAAAABgvJOFQAAAAMD5nYVAAAAAAGLEhkAAAACguc2GQAAAACB/G4dAAAAAYMoDiEAAAABgawuIQAAAAKBUk4hAAAAAwPOciEAAAACgUaOIQAAAAAAx7IhA + NrgMGZxjYkCwLijacuRqQMZtNYzMxW5AWHXwwJGDdECqEa9//pN1QFjTzBTqlHtAcWxDuRbFfkCjSOY4rGKBQPIIglQDY4NANE1n0e0ahECG6SWQWmuHQMgtCw1FI4hAfcilvpEDi0BcDq9InCuMQHSnJe3Im45Ael9rM/S7j0AGMvblGjqRQGzq94QqmpFA7AHvmYBek0DrtVq/W8aTQGwZ5q7WIpVAa81R1LGKlUDr5EjpB0+XQFGdSogXr5dAmh+LVDgLmUCd+633TZuZQClI6Ulk05pAGevtjmlnm0BzOLvnj9ecQJXaLSaFM51AvSiNhbvbnkDfyv/DsDefQIPV5ijuG6BAHvr3X/aboEBBzYb0+wGhQHeFKmcZwqFAAVkC/ybkoUDQEF1uPIiiQMHkfQlSxqJAKZyPdV9Oo0CBcPkTfaijQA== - + - m+ITQWKWHEA4ZGVAzn23P7rkAEC5XDFARGK3P1al4UBYu1ZBIEqPQGJMZUD+9xhA3vnPQA0LCEK1t5NA/2VUQEP1BEEqRp5A1iIKQNcgE0AtC6s/IUC/QDk4NkEoh6RAGF+BQKm5gEFmHl0/siR3QYpAGUFEpgdBuGbUQI7BSECzpqFAn45TQfy7YUEzbO8/enSMQbqlokCoetdApcv6QOq8sUBk/KQ/zKY4QHJmlkH7XsNAk1oTQFDqAEA0OTVAU10iQIOeTkEybLNAhBhsQeyRXUDVnBlA0InzQMim+UHO+JhBIvCAQPR8BkDtZco/VAGgQH5/gUCvWzFBbN1OQRQEs0BJmYpA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAINykZkAAAABAsqhnQAAAAAC05GhAAAAAYNJWakAAAADAb6ZqQAAAAKARhWtAAAAAgLQlbEAAAAAAY4huQAAAAEBNYm9AAAAAgDPHb0AAAABgi99vQAAAAABnSHBAAAAAwENecUAAAADggXVyQAAAAICj5HJAAAAAwN1ic0AAAADAAS90QAAAAECkt3RAAAAAwMvvdEAAAACAlvp0QAAAAMCgQ3VAAAAAwF/Dd0AAAACAwNt3QAAAAMAl83hAAAAAwLYjeUAAAAAATlt5QAAAAABJjXlAAAAAAB6ueUAAAAAAjOV5QAAAAIBkC3pAAAAAwPFvekAAAABAGQR7QAAAAAAsFntAAAAAgChEe0AAAADANWZ7QAAAAEBb3XtAAAAAQPBSfEAAAAAAmV98QAAAAEDYpnxAAAAAwLczfUAAAADAJbl9QAAAAMBAzX1AAAAAgJrffUAAAADA0PV9QAAAAADtM35AAAAAQMdafkAAAACA36p+QAAAAEAg3n5AAAAAQOQAf0AAAAAABT5/QAAAAECHT39AAAAAADhlf0AAAAAAH4B/QAAAAICkxH9AAAAAgJXvf0AAAABANft/QAAAACCPEYBAAAAAoDEmgEAAAADgTyuAQAAAAGCoMIBAAAAAwBA6gEAAAACgNEGAQAAAACBTZYBAAAAAgCxvgEAAAACgL3SAQAAAACDTi4BAAAAAIK6cgEAAAABga7GAQAAAACA0t4BAAAAAINumgUAAAAAgQdKBQAAAAAD16oFAAAAAYIsygkAAAACgXjeCQAAAACCCQ4JAAAAA4LR0gkAAAABgXaOCQAAAAADVFYNAAAAAIKsyg0AAAADg1EyDQAAAAKAbkYNAAAAAgHzDg0AAAABgWOCDQAAAAACF8oNAAAAAQIUohEAAAABgSXGEQAAAAACytoRAAAAAIPm7hEAAAACgH9qEQAAAAGC484RAAAAAoOUjhUAAAABguCiFQAAAAIDzYoVAAAAAQKeqhUAAAAAAi7aFQAAAAED27YVAAAAAwELzhUAAAABAIzqGQAAAAKD7S4ZAAAAA4P1fhkAAAAAgaH+GQAAAAODgxYZAAAAAYPXahkAAAAAg8+SGQAAAAGDB64ZAAAAAILo+h0AAAADAZM2HQAAAAGBl2IdAAAAA4En1h0AAAAAAtxSIQAAAAKBXJIhAAAAAoGE8iEAAAABgtnOIQAAAAKDJoohAAAAA4Ke+iEA= + KBZXds7jZUA1uAwZnGNrQNvlv3T/InRA - + - O1GqQDcbAUASCqFA/NG4QIrcCEECMApAjGbXQEXPl0B2D7g/7VfvP2vCZkDK/CVBqLENQT2qFEFp05tAmx/MQDNKmUEd2xFBYrGDP28EFEEGal5BVka3QGrwuEFNn6lA7mPFQGO3DkHkQOxA3woBQXpcCkAfBApBLFVzQckx6kFwH0lAvG8vQPhT2UCACkhB1zeDQT8xj0DRm5lA8o2BQCcC5EHh9HNBgsm3PwtFL0CnqEJA+AkmQXE7CUFC1GNAGp3MQeFA3ECMqaNBPpuaQn3bLkATf8hC6IZdQHdIJUFh5nZBHXsPQtrrhkEhfApBuM6rQjSzvUG9PgdB9qqEQrWGzkBeE6VC21rfQStNM0EN+uBBL0XbQL6+SEFksppBMC+qQLn+X0Hafu8/pGAKQIXO1EHuIfRAHI3KP3gxxEGw1Q9BOFsiQvlQKUG1bKlACG2pQAtCFEGN3i9BE7mgQVDs5UEySbc/8o+BQOBzJ0HKNlFAnVwoQW1Nk0Gdve1AeeNPQa0M1UEVyKU/wsC6QM+pgUJTvddAaR6JQn0zw0CE0eBA5lTyQJb0fkJDXxlAsXO/QbKWqEIa2AJBj7seQR1doEDEHIZAEg3+QA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAMrdYUAAAACAQkZiQAAAAOA+iGNAAAAA4FSoY0AAAABAy/1kQAAAAECOIGVAAAAAQHJqZUAAAACAN0FmQAAAACB8iGZAAAAAQDrcZkAAAACACi1nQAAAAIBUQ2hAAAAAAD/Da0AAAADA3gduQAAAAEBTSm5AAAAA4LWIbkAAAADgXMtuQAAAAIBFaG9AAAAAAKzfb0AAAABAyiNwQAAAAIBDMXBAAAAAAIVEcEAAAACACYlwQAAAAEDpw3BAAAAAYDnicEAAAABgcyNxQAAAAKDtRXFAAAAA4PpvcUAAAABg7J5xQAAAAMADtnFAAAAAgNzUcUAAAAAAiOJxQAAAAACRYXJAAAAAoJV9ckAAAAAgKJ9yQAAAAEBAE3NAAAAAQDAhc0AAAACA4u9zQAAAAKBqFXRAAAAAIDEwdEAAAADAkl50QAAAAKDX03RAAAAAgG4GdUAAAAAAWCd1QAAAACDppXVAAAAAgA3CdUAAAACgN9V1QAAAAODt8nVAAAAAwG9ZdkAAAADgGIR2QAAAAMCYpXZAAAAAAN+8dkAAAABgM+t2QAAAAIAMQHdAAAAAQKVVd0AAAAAg6453QAAAAGCbyHdAAAAAAMAieEAAAAAAr2B4QAAAAEDXhnhAAAAAAJWReEAAAADAjJ54QAAAACB6sXhAAAAAIGfxeEAAAAAgCwN5QAAAAOBtLXlAAAAAYOdPeUAAAABgyWB5QAAAACD/cXlAAAAA4EeVeUAAAABAqLd5QAAAAKAu1XlAAAAAAOzseUAAAADArg56QAAAAKAOHHpAAAAAoAIxekAAAAAg84F6QAAAAOBhnXpAAAAAwM7XekAAAAAAcgV7QAAAAKCXE3tAAAAAwNshe0AAAAAAiC57QAAAAMDBQHtAAAAAIGJSe0AAAAAAMbB7QAAAAOACwXtAAAAAIAMFfEAAAAAA3yZ8QAAAAIC/N3xAAAAAoGoYf0AAAADA0SN/QAAAAOA2xX9AAAAA4I8SgEAAAABgVXKAQAAAAKCYeYBAAAAAAFKGgEAAAAAgKqKAQAAAAECLqYBAAAAAoCPTgEAAAABgD+WAQAAAACCm9IBAAAAAAGY5gUAAAABAGluBQAAAAGD5bIJAAAAAoLv5gkAAAACAnAODQAAAACC8C4NAAAAAALmLg0AAAADgE5SDQAAAACC12oNAAAAAoFsVhEAAAABA/3CEQAAAACBQ1IRAAAAAYO1DhUAAAABgVWmFQAAAAGDj1IVAAAAAIG88hkAAAAAgCkSGQAAAAADHyoZAAAAA4FgFh0AAAAAARLSHQAAAACByIYhA + KBZXds7jZUDEZV5bjlJwQJ0RHYnYgnNATOxPqX/jeEBkbLHC8LN8QA== - + - WDtLQBuaWkCIQ51AZWwvQAIPZ0AflnlAO8pdQbfXn0BlZBNBOIIGQUudXUCZfXlAfSAmQOTQbkD79BVBmfG3P8+BhEDKlo5AjJS1QKjzJEFe7uBAu4GBQUVY8D8yzqFAAMuTQEStI0BYoXtATaETQBJc8kAFCvs/rW8AQRBv8D8Dq4pA3L+vQH6SyUANMTtC7pQLQIa9mUBa3xxAHsLvP77+KkGvROJBnXQpQVtESkH4cBlAlF7xP4p28T8AcDJBQ9ysQIOy7z/d+dNAsl+pQPfzUUEcKb1BxTudQGMknUAvu4tBw4eOQLDy4kD0v11AjMrEQEowuz+YRYVArHYCQeaEdUC8gIFAhvF4QeaH10Ba7iVAnvsHQZYY+UHUbTxBPgjTQci7e0LVN/1AcCO4QJpxqUCEW0ZB44ORQdovF0EXBqBALPm/QUwmhkGNGrdAe0rRQJhPZEFZ/K1AUDYuQZKZ6EA0mWNAruG3PwN+OkEArIFA8/SZQZ34w0Gk7+BAvxuEQLbHHED8Sq1BnUGMQYqZpUDY/6tAaWMAQEwot0AOsQdBy8klQfA6UUCZ6SVAAzoyQqOJx0GbUahAVikdQHom80CO2uVAG7/fP33XyD++LBpBcr/5QOktH0CXQIpAUvJcQK2Rm0D2lxNA + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgLzIYUAAAACAehViQAAAAGCZYmJAAAAAQMdhZUAAAADAsSZnQAAAAGCt62lAAAAAgEQja0AAAABA6C1sQAAAAED0ZWxAAAAAQBWKbEAAAABAc2htQAAAAKBsj21AAAAAgAgDbkAAAAAAMGluQAAAAABDg25AAAAAwF6kbkAAAABAuM9uQAAAAMA9Bm9AAAAAQCw/b0AAAADACBJwQAAAAGCLQ3BAAAAAwPpzcEAAAACgLJ5wQAAAAMAA4XBAAAAAwMX6cEAAAADA9QpxQAAAAGA8knFAAAAAABLOcUAAAABAGRRyQAAAAIBkPnJAAAAAoFFsckAAAACAyaFyQAAAAKDcOHNAAAAAoNhDc0AAAACgonNzQAAAAMCShnNAAAAA4MaTc0AAAABgJrZzQAAAAEDj1nNAAAAAYHMidEAAAACAMYR0QAAAAABJjnRAAAAAgCHAdEAAAAAA/8t0QAAAAICPBHVAAAAAgBMjdUAAAACA10N1QAAAAACBVXVAAAAAgPljdUAAAABA25B1QAAAAIDDznVAAAAAIALidUAAAACgNfV1QAAAAIADIXZAAAAA4OA6dkAAAABglYN2QAAAAKDTnXZAAAAAQJ3TdkAAAADA/+B2QAAAAKC8GndAAAAAAFEsd0AAAABgAEp3QAAAAAADfXdAAAAAoEWkd0AAAABgoO93QAAAAEAvE3hAAAAAII1+eEAAAABAobR4QAAAAKA/xHhAAAAAoFPSeEAAAAAADuJ4QAAAAGAZ73hAAAAAQAoReUAAAADgJy55QAAAACCOQXlAAAAA4DRQeUAAAACgJXd5QAAAAKDqjXlAAAAAoIDCeUAAAADgPNV5QAAAAAA25nlAAAAAwMFMekAAAADANGF6QAAAACBal3pAAAAAQBajekAAAAAAgcN6QAAAAODF0HpAAAAAoI/kekAAAABgutl8QAAAAECSHX1AAAAAwMmDfUAAAACgG499QAAAAODmTn5AAAAA4OZwfkAAAABADI1+QAAAACDyI4BAAAAAoIM7gEAAAABgSmKAQAAAAODVgIBAAAAAYMKMgEAAAACgaaqAQAAAAOC25YBAAAAA4LIsgUAAAACAMEuBQAAAACA1U4FAAAAAQIlkgUAAAADAPnaBQAAAAODYgIFAAAAAwOfagUAAAAAgceCBQAAAAECnu4JAAAAAgDDLgkAAAAAAmwWDQAAAACBAJ4NAAAAAIKY8g0AAAAAASEKDQAAAAEAA1oNAAAAAIEfqg0AAAADAb3eEQAAAAGCczIRAAAAAYNnyhEAAAADgCwSFQAAAAOBbDIVAAAAAgOIShUAAAABAAk2FQAAAAOCJdIVAAAAAYIh8hUAAAACgetiFQAAAAOD0GIZAAAAAoKjRhkAAAACgpE+HQAAAAGC5q4dAAAAA4CF9iEAAAACgY4OIQA== + NrgMGZxjYkAYxSyCnGRqQEMdzoN8QnFArmsYctGickAKeGK9lHN3QHXGrKvp03tA0dL29qykfUCSF2mWQWR/QPlt/BOYioFALLn+56xKhEBcm8YwJCOGQL29f4DuAodA68MkJlDrh0Ah60mdehuKQE7x7kLcg4xAhRgUugY0jUDf9W/bHTyPQIz82/ounpBA0xCL9UQikUA= - + - WmrKP5HQd0DW/z5AARqcQJeXjUCkaso/hjGmQBCK/ECYcTxBV3GSQNuJGUHQQgpAodehQEVaE0CYtxFBhWflQNcBHEHzaMo/fjfnQGktdkDBT+8/MrayQEHGAEGO6lpAdd1jQBg67EA8u0dAiLMXQUAhMEAbRgpAl4zpQd4f0UCZTalA+N6hQNRVUkD7JC9Aj00KQAR7zECpi5xAd4N/P328AUCJQAlA6Bf1QNUdeEG32IdBwUNNQHIoS0CYUYxB+pNBQH6oVEG3/5tAY11QQkNj50DR/GBBPEpcQB40mEDAcXlAyxZdQHFlXEEa78FAIAyTQND3zECRC8tAuC3dPxsN1kCSytdBgEIXQimEA0FKF/hAmoZFQeCFLkGk6oBA211XQrkJVUEUFq9BY6QKQDc2+UBrr0FAj2imQdBo00BNJ5JApZyUQbjMYkFIamZA6p0HQoyxpT+1ONw/32sCQSCoJkFGmJxAYfyXQW0Y1EAIKoRAuGPdP6+F8kDMrQpBQcHPQCS/kj/eWbpBJtSAQY5BqUDs0tJAzPldQA9w0UElcBRBJLiDQTRDjkAe6JxBTGrFQpyXv0DTKtlAj1oYQZm7oUDgcYJAhfBXQZp5mEDCMWlBeRGGQWCSJkDZQ4ZAxFW7QKAuu0JxThdCWIJGQYEPkUHoYnBBnAG9QFcEUUAaz8ZAnIvcQBDxz0AKLlRANNVaQI3zQUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAwE2KbEAAAABARsFuQAAAAMAtgnJAAAAAQAkjc0AAAADAbTJzQAAAAID8hnNAAAAAwD6jdEAAAADA42B2QAAAAMD8b3ZAAAAAAIDBdkAAAADA1k94QAAAAEClhXpAAAAAgBooe0AAAAAAlDd7QAAAAMCcg3tAAAAAAL0AfEAAAADAe5V8QAAAAIB6p3xAAAAAgPFTfUAAAABAN6h9QAAAAIB61X1AAAAAAMxCfkAAAADAPIN+QAAAAAASoH5AAAAAwF8Gf0AAAABAaHV/QAAAAMDnhn9AAAAAgKeaf0AAAAAA0/J/QAAAAGAcCYBAAAAA4B1XgEAAAABgRXaAQAAAACAvm4BAAAAAoDvUgEAAAAAAzCmBQAAAAGALO4FAAAAA4AuDgUAAAACgfomBQAAAAOAhwIFAAAAAwD8bgkAAAABg6UuCQAAAACBNlYJAAAAAYIqcgkAAAAAg6cuCQAAAACBT+4JAAAAAoHEbg0AAAADgQVODQAAAAEAAaoNAAAAAgGJwg0AAAACAaYyDQAAAAIAMmoNAAAAAAM6rg0AAAADg8c+DQAAAAKAG24NAAAAAIFzvhEAAAADg3BmFQAAAAOCgOIVAAAAAoEeDhUAAAAAg5KaFQAAAAACB6YVAAAAAQEk1hkAAAADAoYuGQAAAAMClw4ZAAAAAgPfShkAAAAAAcPKGQAAAAGDvCYdAAAAA4DAah0AAAABg8YqHQAAAAODIgohA - - - - - - b484QMxsB0G40VBA85I4QOginUDQFZ1AVnbbQFgsDEHlqfNAcNkkQZT2yj+2FHlAF92YQNq740BwNMo/PgxRQM9Q20BG9CtAPzjsQIHQUEFdD0lAOktcQBJwB0Gg6I9AOnkTQHTq0kHuQ11B971tQU5WsEBuasBA41dvQPcpbUEbz9w/2LwXQUF5OECMGhNA6CiUQtBoTUHdyq9AHSJLQCOj+EBOqT9A0n48Qb0/CkA9/R1BoJhzQQKaOEAk8olARtvSQFyFdUATrA5BbDm2QLKjXEEs51NBqxQKQbGYXEHGKYRAQS0aQeiBSUIkDYNBC9kyQowa3EASmkFAiIaYQUI4MUFzI0tAzk/MQeA7pT8PY3hA - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwOjjaEAAAACAZydrQAAAAIAYSWtAAAAAQNpIbEAAAACgYmZsQAAAAAAvCG5AAAAAABqCbkAAAADArMduQAAAAADpBHBAAAAAQPUkcEAAAAAAQGZwQAAAAOC6AXFAAAAAgK0TcUAAAACA90JxQAAAAMBbVXFAAAAAQK8Cc0AAAABAwUNzQAAAAKBTRXRAAAAAAFojdUAAAADARTR1QAAAAAATRXVAAAAAwHhddUAAAADAled1QAAAAABbznZAAAAAADM3d0AAAACALVV3QAAAAAAuYndAAAAAAG2Dd0AAAACAoiZ4QAAAAED8RHhAAAAAQOZVeEAAAABA62V4QAAAAMAGsXhAAAAAgJlGeUAAAABAr1B5QAAAAMCJ2XlAAAAAAP8+ekAAAABA6eN6QAAAAICOsXtAAAAAQJC+e0AAAADAnuV7QAAAAMBUWnxAAAAAQM5ofEAAAADARRB9QAAAAEAeIX1AAAAAgChhfUAAAAAATHZ+QAAAAEBBin5AAAAAwKhOf0AAAADARV5/QAAAAICTaX9AAAAAAMSif0AAAADAmcl/QAAAAKCmgIBAAAAA4CangEAAAADAnPGAQAAAAAB3AoFAAAAAIIBtgUAAAAAgt5mBQAAAAGBX2YFAAAAAIB/ggUAAAAAgChOCQAAAACCrIIJAAAAAYHMqgkAAAADgKTuCQAAAAGB8Y4JAAAAAwPdqgkAAAABAJHGCQAAAAKCwgoJAAAAAIDi6gkAAAABgpcSCQAAAAGAfyoJAAAAAAF/agkAAAABAbOGCQAAAAIA95oJAAAAAIGgKg0AAAACgTkODQAAAACCfSYNAAAAAoHJ2g0AAAAAAJpGDQAAAAOCqmINAAAAAgKWpg0AAAACgxdKDQAAAACDOkIVAAAAAQC3LhUAAAADgTiKGQAAAAEAdM4ZAAAAA4A1HhkAAAABgbGyGQAAAAOBnu4ZAAAAA4EvEhkAAAADAcXiHQAAAAIDHsIdAAAAA4PjBh0AAAACgZD2IQAAAAABpaYhA + NrgMGZxjYkByWoXuS4RpQDxVZCgoxW9AxwSPFv7SckC8e+7+63JzQA== - + - kPvcP8bqUEC75O4/DJykQPzR0kBSH5lAqBPQQLA+jkCR5yVAWi4GQV9QPkDNgw5BxzC+QAiYyEGm3EFA6leFQHEicEDtasVAXv7YQLr/ZkCg3O5AllstQMw0f0C6auhAFh+lPwwrQkD4frc/JMf/Pz2TR0Grnq9A/FZIQb1LjUDNxkFAap43Qe4QB0AjEdA/VoxvQOj2yj/cgMo/WttDQV8GekAx+iVAVGH0QG6Lh0E4eTdBcOnuQPhxY0B4HBRB+g21QIrjw0FoHylAD3MbQLUfgUCsl8ZAFgygQG5fOECA5gVBKTZMQdYioEBSR39AqL2KQM5Q5UDZoKpAN3mSQKq/N0DBDZZBEYfcP+SFDkFi3yZCwKC8Qj5DPkHgdHdANOUuQTIZy0B+TzFBV8MIQddVRkHY7IlBjTSEQKmQtEAAoiRA/PbJPy3r/j+1TS5An3TBQODONT/8ZKQ/OlSNQMHxT0G3UYZCohn5QaIFqj+8nlxAYAEEQQyfpT/KC90/ + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwKkmYEAAAADAaURgQAAAAED1YWBAAAAAYIRtYUAAAACAx4RhQAAAAAAcZmJAAAAAYLyXY0AAAADAByRnQAAAAIDZQ2dAAAAAAFjlaEAAAAAA0iZpQAAAAMDLRGlAAAAAIBGnakAAAADAm8xqQAAAAOCd6mpAAAAAwJMha0AAAABAXSRsQAAAAEB9w2xAAAAAANpqbkAAAADABAJvQAAAAIANZG9AAAAAACueb0AAAADgEX9wQAAAAOAdknBAAAAAYD3EcEAAAAAAxc9wQAAAAEDmgXFAAAAAAOmgcUAAAADArbFxQAAAAADsGHJAAAAAYEikckAAAAAAl95yQAAAAKCI/3JAAAAAYCKlc0AAAABA1RZ0QAAAAECQb3RAAAAAABCddEAAAABAxfJ0QAAAAEBDL3VAAAAAILxDdUAAAADAkex1QAAAAACzdnZAAAAAALOUdkAAAADgmcV2QAAAAGAHC3dAAAAAwIkveUAAAACg2rF5QAAAAICP0nlAAAAAYDt2ekAAAAAAJvF6QAAAAOB6kXtAAAAAwPhQfEAAAACgJ7J8QAAAAOARtn1AAAAA4FfHfUAAAABA89l9QAAAAKCFjn5AAAAAoGyCf0AAAACgpKZ/QAAAAOAjAoBAAAAAgEoTgEAAAADAqWKAQAAAAKDQjoBAAAAA4IXsgEAAAACgsvKAQAAAACD0O4FAAAAAwLhSgUAAAABAqWuBQAAAAOAze4FAAAAAwHKEgUAAAABgx4uBQAAAAID6m4FAAAAAoD8KgkAAAADASBOCQAAAACBJU4JAAAAAgChbgkAAAAAAF2CCQAAAAABQq4JAAAAA4Jf8gkAAAAAgxDuDQAAAACB/i4NAAAAAIEYBhEAAAABACAiEQAAAAKC2GoRAAAAAIEOThEAAAAAAEpuEQAAAAABYI4VAAAAA4MorhUAAAADgr3KFQAAAAOBG44VA + NrgMGZxjYkBxWoXuS4RsQI8BR/y9MnFAjgFH/L2yckDlVUsBVqN1QAKnB+yts3pAIPjD1gXEfEA= - + - 7a1AQ0ZdAkMCqcZBDxxnQQWuXUHT0FxCbWwAQcs5gUXt6llBRl3EQhQI+0DRQ4ZBZCZORWtMT0Gy/mZBfc8UQVuU50HO5VFBNeoHQqOthEI4SO1BBmPSQWq1xkG7xHRBYSyvQfwZDEH7/AdDib3hQaRZr0HQ3f5BxZwwQnD8MkKSzqJCHTioQSJBLUHW83RC98d0Q613EULAiwBBrH86QszgQkQwVk9D2RoPRI5gQUL8CwFCwtJ0QQv/AUP9hnFBhaPnQS0oqEI1GApBiYQ6QRSRdUH4/hZBmnggQ9jSQkKaCLlCKc8iQt/2/0GtQ4xBAHAnQqL3r0KZC6lCtVUtQlQDAELuhlFBGFKvQQUDOkEIXY5DJ2dZQRtGRkFEau5BuUG8RjQ5e0QCxUBCjHPBQ2DcckCHggJC7hsKQzVF8ELqF3pDgV6EQoSjtEF+D+tCNdT6RDAycUHqtI1ErnwhQmusTkLBMuZD + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4DRHZ0AAAAAAxf1nQAAAAMBWGmhAAAAAgApHaEAAAACAh0RqQAAAAEAj6GpAAAAAQH8JbkAAAABA16RuQAAAAICwLW9AAAAAwBgjcEAAAABA7WFwQAAAAACVo3BAAAAAwKLAcEAAAABA7/9wQAAAAMAkJXFAAAAAIC1DcUAAAABA4H1xQAAAAADSb3JAAAAAIMONc0AAAABgYZtzQAAAAICqb3RAAAAAwMevdEAAAAAAzfN2QAAAAACNK3dAAAAAQNRkeEAAAACAXTB5QAAAAEDzU3lAAAAAAJpueUAAAABAb4N5QAAAAEAGoHlAAAAAQOLVeUAAAAAA9xV6QAAAAMAmdXpAAAAAwIlJe0AAAACAyaJ7QAAAAAB/zHtAAAAAQNAyfEAAAADAHZR8QAAAAAAG931AAAAAwEkNfkAAAAAAJXp+QAAAAICxm35AAAAAgDL9fkAAAAAA0GN/QAAAAAAvhX9AAAAAIKIigEAAAACg40eAQAAAAAAjboBAAAAAYHKdgEAAAAAAwKmAQAAAAIBZtYBAAAAA4J3igEAAAACgQgOBQAAAACCNH4FAAAAAoN05gUAAAAAgJE+BQAAAAACmWYFAAAAAoHVggUAAAAAgRWmBQAAAAADNiYFAAAAAIHCogUAAAACgWLGBQAAAAOBG3oFAAAAA4A71gUAAAABA1cCDQAAAACBJ4INAAAAA4GL7g0AAAABgNTaEQAAAAIB8TIRAAAAAIMNmhEAAAACg8XCEQAAAACBw1IRAAAAAIJ7bhEAAAADgfgyFQAAAAGALO4VAAAAAoOtNhUAAAADgZXOFQAAAAEB5foVAAAAAwLWJhUAAAACgNtqFQAAAAEAFHIZAAAAA4M10hkAAAADgaPqGQAAAAAB2AodAAAAA4HoYh0AAAAAgm4aHQAAAACDVj4dAAAAAoP7hh0AAAAAgoA2IQAAAAEAgaohAAAAA4KBziEA= + NrgMGZxjYkA= - + - QyelPxT8J0ANiHZAqXBdQGkuv0H7zhFArkRHQP2sL0CjVVRBWoznQSDRdUCYphxAnVZ/QAWk7z9VWwFAfRuEQWI5I0DrrhVBeBhwQLJcAECUThlAP9ayQDokHUADrEFALybvP7jbJUEFwYpAnYzHQCynNEBoo7o/zPYzQUL3R0HwaBtCumNMQIgIuUCXyvxA/PdBQE0G3T8ysIhBQKfMQQ+DY0F/jqFBN2D9QCaNdkCp8eBAx1hTQJQI5kCYzANBhoL2QVLKjUA6whlBOzYDQUF+gkAlIBxB4QnKQbRAhEDpiz5AhlatQHLhmkHqnTlBw0zqQMB52EB856VBRj6yQFoAAUA7Tz1B7YRbQPY1L0AoQYRAKD+FQM9Z6UAs6r9BlOn6QNxXzkCKtCtAU/bKP3/orEB6SwVCk/XIP6sdS0BD0oVAw14aQbWHyT/c8SVAh8fcP+TWAEHs2IBA4sbOQWbsCUBQAZFBbjOSQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoGZKW0AAAADAIIdbQAAAAGCpyFtAAAAAYCMIXEAAAAAAbVFcQAAAAADU0lxAAAAAAOyRX0AAAADAVSRgQAAAAEBzSWBAAAAAQFZlYEAAAAAAJbtgQAAAAGC8Q2FAAAAAgM2qYUAAAAAA88ZhQAAAAIDdB2JAAAAAAL8eYkAAAACgzGFiQAAAAAAfZGNAAAAAgGOMY0AAAABAO6tjQAAAAACjI2RAAAAAIIxhZEAAAABgJopkQAAAAMCSCmVAAAAAYHyAZkAAAADAzp5mQAAAAIB/xGZAAAAAwNvgZkAAAAAAiAJnQAAAACBIZmdAAAAAIGGoZ0AAAADAEt5nQAAAAIA5JWhAAAAAoOVfaEAAAADABsVoQAAAAOCh32hAAAAAQDclaUAAAAAAWEVpQAAAACAVrmlAAAAA4JbIaUAAAADAwihqQAAAAIBJXWpAAAAAQACHakAAAABAUapqQAAAAIDc52pAAAAAQDwka0AAAABAUGNrQAAAAADPhWtAAAAAQDaha0AAAABAtehrQAAAAMAdKmxAAAAAABRbbEAAAACAr5JsQAAAAMBgqWxAAAAAAFfCbEAAAADAGCBtQAAAAMAtYW1AAAAAgN2EbUAAAADA78dtQAAAAICe6W1AAAAAALIlbkAAAABA5OBuQAAAAABi/m5AAAAAAI1Cb0AAAADALF9vQAAAAIDJpW9AAAAAgODXb0AAAACgcBJwQAAAAMDIM3BAAAAAYC1HcEAAAACglGRwQAAAAMDHcnBAAAAAIPCBcEAAAACAMpBwQAAAAMCroXBAAAAAABiscEAAAABADsRwQAAAAAAr0nBAAAAAAJrccEAAAAAgOxdxQAAAAADBMXFAAAAAoKRAcUAAAAAgDlFxQAAAAADNYHFAAAAAwNpxcUAAAACAOYBxQAAAAECbkXFAAAAAwFaucUAAAAAgq9RxQAAAAOAr4nFAAAAAID5BckAAAAAgYFRyQAAAAMAZZnJAAAAAwL50ckAAAADAN5NyQAAAAEBvn3JAAAAAgPuwckAAAACgrd1yQAAAAKBS8XJAAAAA4Lj/ckAAAACggDRzQAAAAMByT3NAAAAAwFBzc0AAAADgyoxzQAAAAKBsEHRAAAAAQN8qdEAAAAAAggN1QAAAAKDU5XVAAAAAQMVTdkAAAACgg2R2QAAAAGCB5XZAAAAA4BWQd0AAAAAgyRt4QAAAAODBXXhAAAAAAAmteEAAAABg9rt4QAAAAADqGnlAAAAAYEb1eUAAAAAgIz96QAAAAOCcvHpAAAAAQM+1e0AAAADgdlB8QAAAACC1j3xAAAAAoFWlfEAAAAAgxbR+QAAAAKDPEoBAAAAAII6jgUAAAADgKtKCQAAAAGBMHoRA + NrgMGZxjYkByWoXuS4RpQNeRk/3Io2xACRqGaTzicUDNvNRcKfN2QNB0GqNUE3hAIxHZYcFje0BezGbCLCR+QFi0ksBMuoBA9pHZcIIagkDn3PC1eIKCQIW6N2au4oNArgiXxeSKhUBM5t11GuuGQHU0PdVQk4hAdxBgeGYjiUDZYQfy3KuLQGiKZecIdI1AQRgpK+g7jkBooEMQCgKQQLTcqYhafpBA - + - v53yP9q3dUBGJ+8/7KUJQCiwqUBokyVAu1jvP8Gd10DME21A3gC+QOogokALZtxAq+ovQLDyEkDwlitB+ESDP2IeQEF/W5tADYf9QOdfVEBOf39AKg+vQZGHcECISxxAKjP9QEkPNUBN6iVA1oKaQbHnjkCi6yxB6+SGQGDiZkAgJF1A9PRSQa1iLEDutddA9IwlQ/s8dUGG4B1BPihwQNmkykDEfQ5BWloTQK71OED+OfdAGfYSQJ2LcEALLZxANgEQQDIxkEBT761AEmyBQNYvgkG9d2VCXfATQA+5TkHzho1A1oFQQQL43D9LbBBALHWpQZDa5UD/EaU/U0eGQOgbcUBOsDVBn36lP5suxUAIfF9CmKCjQTA3/D9wcWhAOzKgQO4uJkB1GmRByJYVQVM3xUB0hBtBL7QrQLeZU0Dc7iVA2qDcP9eYh0HRVJxA5kjDQqoxxEG1O7NAKtPVQDzMnEBakyVACHJKQO+gmEGe9C9BCgjlQCX5rUCy6gZCJquSP9d9ukEQMvRAZzeoQZ20wECjboZBLI1lQX7A9UH4InBAutEcQJe2lkA/NydB/Qm4QdZNoEB9Dn1BbpkAQUbMCkI8vHFB9FORRCIYDUBk8vlA3k8CQJFuE0DzrQ5BsqRBQPz4r0GdKD1BGGqUQDIxKkEX7GZA5sRBQPogeEA+fLc/ + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgD9kYEAAAAAg+lxhQAAAAEBHqmFAAAAAwAXIYUAAAABANt9hQAAAAMAwY2JAAAAAQBzoYkAAAACARSFkQAAAACAh52RAAAAA4Cu/ZUAAAAAA3f5lQAAAAKBaJGdAAAAAgK9CZ0AAAADgJEloQAAAACBww2hAAAAAgJQqaUAAAABAOSNqQAAAACCmP2pAAAAAQE/jakAAAADANiNrQAAAAAAjZGtAAAAAoIKIa0AAAADAN+RrQAAAAABeKWxAAAAAoJ9jbEAAAABgooBsQAAAAMCqyWxAAAAAAHYpbUAAAADAHn9tQAAAAACeqW1AAAAAgB9FbkAAAACAWWtuQAAAAECzCm9AAAAAAOIjb0AAAACAhmZvQAAAACASL3BAAAAAAPtZcEAAAABg5gRxQAAAAAAqP3FAAAAAAN9zcUAAAADgPpRxQAAAAMDSAXJAAAAAwAASckAAAACgQVJyQAAAAMCMY3JAAAAAgDF+ckAAAACAT5RyQAAAAGCnoHJAAAAA4DuvckAAAAAgtrtyQAAAAMB/7HJAAAAAQEoEc0AAAADAkSBzQAAAAICRQHNAAAAAQOdSc0AAAAAAkGNzQAAAAADohXNAAAAAALoEdEAAAAAgojF0QAAAAGCCe3RAAAAAoIiSdEAAAACAl8F0QAAAACA74HRAAAAAQB4fdUAAAADgqS11QAAAAOCOY3VAAAAAYEuEdUAAAADAoKF1QAAAAOAP0HVAAAAAoKACdkAAAABA7yB2QAAAACASMXZAAAAAoAJ0dkAAAACAQqN2QAAAAMAyxXZAAAAAoDnodkAAAAAgJ/J2QAAAAKDnE3dAAAAA4OAgd0AAAACgXzV3QAAAAOAoRHdAAAAAIJ9Qd0AAAACgx3V3QAAAAODgindAAAAAIDGWd0AAAADgCtR3QAAAAIBluXlAAAAAAOYOekAAAACg9WR7QAAAAOCRK3xAAAAAYEORfUAAAADAKWV+QAAAACBMdH5AAAAAYOG0fkAAAABgWCR/QAAAAKACaH9AAAAA4EaGf0AAAADgOLd/QAAAAOAhxn9AAAAAoHUbgEAAAADgv3KAQAAAAIBch4BAAAAAYDmPgEAAAABgzpqAQAAAAODMq4BAAAAAYG4KgUAAAABga3yBQAAAAAAatIFAAAAAQFjFgUAAAABgF82BQAAAAKCt7IFAAAAAYDz6gUAAAACgRVWCQAAAAKCKyoJAAAAAoJbagkAAAAAg6OSCQAAAAOCLCoNAAAAAwJJLg0AAAADgZsGDQAAAAICVyYNAAAAAoDdThEAAAADghGOEQAAAAKAmPIVAAAAAIIRwhUAAAADgZOuFQAAAACDF+YVA + NrgMGZxjYkA= - + - toENQRiV3T8qeB1AIccuQDc/gUCBV8xASOfcP5IF7z8iSLtAXjKQQJ7IAEFASH8/xQbdP9VkxD9F/4hAywDdP3OQAUGiNCBBBQ1LQDrOoUBcw0dAicyhQIJuOEATy1BA+Y+WQKrzhUCSTxNActIPQBsHxUCXJKlA6IyBQF07j0CoDgFAT+4PQBH+pD9r9+hAsjAoQdv3iUCT7qpBr0vGQPCLg0GnR4FBhdLJPw0kZUCp2YVAyICAQUM+7z/VjY9AF441QOI6DkG0t/xA2SqPQJYUm0COOepAKsccQHD5xEB25llAACMZQG7o5kAYaoJBXgulQI7GikCLJEtANhCDQTqdY0EJ0WZAa11UQPQrGkGMiTFCDvGgQVxxXUD/ixtBJYLOQLeAtz8+YCdAyueAQITH1UDQVsJAuecIQdGeEUDWLc5ANOo0QIh2FEJfiDVBWFiSQIHhaUEdx2BA7od0QDAbxUCcldlAR90dQZj+50EP4cBAmDuBQJv03UG1zMVAflaAQSw0RUJnSI5CP72OQDSl7z+/UpRA3oHoQIzTWEHpZzhAAXiTQNkOkEB0YC9AdY+wQLPbo0GQNztB3TdzQU4yiEEBAEtAfgiUQANGlEFMvaFAarIAQDOCr0CUtx1BR/AlQDNWp0ASUu8/KgnVQE6jE0AQtS5A + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwMvHdEAAAACA2gx1QAAAAEAUd3VAAAAAwEOzdkAAAACAaOR2QAAAAMB9g3hAAAAAwM4RfkAAAACA3MN+QAAAAABIUH9AAAAAgMlwf0AAAACAVTuAQAAAAAAKk4BAAAAA4B36gEAAAABgGfOBQAAAAKC1oYJAAAAAIM1Ng0AAAABAqZWDQAAAACBWzINAAAAA4OkqhEAAAABARYSEQAAAAMDVu4RAAAAAYM3ChEAAAAAgvPSEQAAAAKDtJYVAAAAAQCbIhUAAAADgqXeGQAAAACDl3IZAAAAAIOOEh0AAAACgBJuHQAAAAKD8y4dAAAAAwNYYiEAAAADgBqGIQA== + NrgMGZxjYkCsQEUcS4JlQBu6YmAmQ3BAVv7+4X3ScUDiFPeZPnR2QHgHARMBQ3dAP2KVTBl0fUDQ0vb2rKR9QIPeFMOY0oFAIrxbc87SgkCDDQPtRFuFQOnnAYM624VAeuyCG3yTiEAW7qYonGOJQHobcUUoHIxAND9jE/TzjEDDZ8EIILyOQKchFuuJRI9Ak8rFElbqkECFJ/ADiy6RQMw7n/6gEpJAqk2Y5YZ+kkBbZP3zzNqTQCplj/rcQpRAc+fPxv2elUClVM+R+N6VQFf9os4zI5dAJWzGpk6jl0C0JpPKbyOZQNeCK7WUL5lAiZmQw9q7mkAwFtNhi++aQNIb0Y/7F5xA4iw4cNF7nEBSM8ikUdydQGJEL4UnQJ5AmUd3n2fAnkA= - + - oJEKQCksRUHV70pAqmzcQIF77UCUwwBA8RGlP5ClNkDv8etAIokAQaN7UUDveOVAcLoPQcYFWkAdVz5A8yuAQHg5HEGAbBxAI2kzQX2UzkAlKUJByWxdQGvjDkH5hwRBuZMTQFtBbUC4EaVAfAWPQdBgHEBleVxAbR43Qa7IiEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoDElYEAAAAAA/UJgQAAAAIAWfmFAAAAAAMdfYkAAAAAAM6FiQAAAAICxIWNAAAAAAAhhY0AAAADAIoRjQAAAAEDnLGRAAAAAwCSjZEAAAAAAZ7xkQAAAAMC+HmZAAAAAYJTpZkAAAABAXAZnQAAAAEBFY2dAAAAAILqkaEAAAABgHoBpQAAAAMDgAGpAAAAAgM8kakAAAAAAfoFqQAAAAEBqRmtAAAAAAI2pa0AAAACgGOhrQAAAACCcRGxAAAAAAC9mbEAAAADgU4RsQAAAAOD6Hm1AAAAAQLUIbkAAAAAAVWRuQAAAAEAJhG5AAAAAAMufbkAAAABARepuQAAAAECnB29AAAAAwH9Gb0AAAADA6d9vQAAAAGAgAnBAAAAAQF8kcEAAAADgLi5wQAAAAGAmRXBAAAAAgGRQcEAAAACAh2NwQAAAAKBMsHBAAAAAYLTTcEAAAABgtvhwQAAAAMDzAnFAAAAAABM5cUAAAACAPENxQAAAAABrf3FAAAAAAOWgcUAAAACgRdZxQAAAAMAlMnJAAAAAQHBAckAAAACAEH5yQAAAAKAPo3JAAAAAgKvEckAAAACATQBzQAAAAID6OXNAAAAAQIpJc0AAAADgMmFzQAAAACAOcnNAAAAAIOKDc0AAAAAgjbFzQAAAAEAyw3NAAAAAwIMBdEAAAABAqxJ0QAAAAECwMXRAAAAAwK9AdEAAAACgfXJ0QAAAAMCUgXRAAAAAYEaTdEAAAAAA6PN0QAAAAEBfE3VAAAAAoMcwdUAAAACAXTx1QAAAAIDOUnVAAAAAAD5hdUAAAAAAtIR1QAAAAICDlnVAAAAAIA6ldUAAAAAAIPZ1QAAAAIAGAXZAAAAAoEwSdkAAAAAgdSJ2QAAAACC4PHZAAAAAIC9TdkAAAABA32R2QAAAAACpgnZAAAAA4JeUdkAAAAAgzsZ2QAAAAGD0A3dAAAAAgH4Od0AAAACgAR13QAAAACCrMndAAAAAIAtRd0AAAABgMWF3QAAAACAldXdAAAAAoG2Dd0AAAAAAOJZ3QAAAAAAiqndAAAAAYNGzd0AAAACgucl3QAAAAEDI5HdAAAAAIDYWeEAAAABgzSF4QAAAACC6Q3hAAAAAAJVUeEAAAACgpV94QAAAACCvlnhAAAAAYHzNeEAAAADgNep4QAAAAIAHAHlAAAAAoJkKeUAAAAAgnCl5QAAAACDHQ3lAAAAA4JRYeUAAAADg4WZ5QAAAAKBsc3lAAAAAYPOAeUAAAABgdpV5QAAAAIA8onlAAAAAoBDLeUAAAAAgttZ5QAAAACBQ8HlAAAAAIL0SekAAAAAgDpR7QAAAAAAl2XtAAAAA4Fv9e0AAAAAg3Ct8QAAAACDTRXxAAAAAoDtZfEAAAACgiWZ8QAAAAEB9tXxAAAAAIGsBfUAAAABgeBN9QAAAAMDYhH1AAAAAQIyyfUAAAACgQuZ9QAAAAKCAAn5AAAAAIF8WfkAAAAAgl4F+QAAAACAqk35AAAAAwJbSfkAAAADgk0J/QAAAAEATXX9AAAAAwC1nf0AAAABgQXd/QAAAAMAOhn9AAAAAIGPMf0AAAADgfth/QAAAAKBwBIBAAAAAIIIKgEAAAAAg8zCAQAAAAMBAOIBAAAAAIGJJgEAAAAAgAXOAQAAAAOBQo4BAAAAAoI+ogEAAAACA9waBQAAAAGCEJoFAAAAAoHA/gUAAAADgtm2BQAAAAGB7hIFAAAAAIKOUgUAAAAAAa/yBQAAAAGBMGIJAAAAAII8hgkAAAAAgPi6CQAAAAGA6U4JAAAAAwLFqgkAAAABgj4uCQAAAAODjkoJAAAAAgMWagkAAAAAgTqeCQAAAAECNs4JAAAAAwHy7gkAAAAAgmsOCQAAAAIBj1oJAAAAAQNz6gkAAAACgvwaDQAAAACBzQYNAAAAA4INSg0AAAACAunODQAAAAGCrNIRAAAAAoEOjhEAAAACgQdqEQAAAACCYAIVAAAAA4GqJhUAAAACgv5GFQAAAAMCzGYZAAAAA4HIhhkAAAACAB9SGQAAAAOBm+4ZAAAAAAImEh0AAAADgctKHQAAAAEAHAYhAAAAA4OJbiEAAAACg8I6IQA== + KBZXds7jZUBK9xnL9URsQGS4z0t+BG1A+TZ8X1ezdEClWWk50zN1QGy0/XLrZHtA+ZRYs6/Ee0CKBbpdQ/V+QEN2UunD6oBA - + - C3AVQuUAdkAQtqlAdqN1QdQtpkDpS4hAKyfvP2uBm0Bqo6RAZTi2QfHaI0G4ptdAEg8KQfYL6ECgbJVBkcypQBSLVEB6ZIFAXlFiQTzvBkFsjnlBu2nuQHH4lkDro01CPliAQMkZQUBEi7dAqVQtQMuWd0H35R1C7R2CQMAhyj/WeyhAcyCWQBTVz0DzL1NAyz8KQOF8m0DXtqtAxLfFQLwW3UCmsQFA3gqlP4JirEFV+3BCYnqvQYqFOUIWgMlAoqFfQJfJqj88dM5AXAagQIU0OECg/gdAtveKQ9tTVkIOo7JA9wxSQfMXpT+FyCpBxbQEQXSmxUFRAVJA7g0BQMnlD0GfZpVBPsbIQCRUZkAys4hARX+3P+pySkHMt38/AEBgP/eScUHAbpdBpi9UQayYG0HU09pCnIW8QJU3cUFjdatA/DSpQPdvN0K2IXJC3+EeQVPepj//QL5AgJIlQVCQPEOqDHpBIkGJQNvLi0CISgxBFK3VQaUPGUF9vGhAv5kbQWV0hUDG5pJA0j/XQMDJc0JuKlJB/zhYQZ/OcEEF4thAnMH8QogWYkHP/H5BdNWEQLOr1EFSdXFCklTuQHtAa0EiGuhBNN8KQitL1z+sNrc//EIWQVH+8kDHrR5B1u4oQmpbTkEN3pVBBSNwQPNszkDKWF1BUiEMQjGKn0HXsjVA6oSpQK4Va0F4zu9BCXc0QnS6h0HlsjpB4PoAQdFKsUCR1qFAAaKdQGmPdkEZ+KU/FJq+QRM5cECG06FD2Pg/Q4bMk0CJw4hAT/4NQqHQ1EFwJBBBX73KP2+wJUSknk5AOR3mQL4Cj0DzKupAtM9SQBAHyj+Z+cBAa43vQISUK0Gxju4/zNvKQEBWWUH8paxCtaRUQhxl/UCgtOBAHn+pQEaPUEAaaQJCEMK2QdfnyEDqE4RBhTGAQ9A8kEH4RhVBIsnEQAKeeUAWQltBF6gNQa8xHECLJ51ATNKxQGodCkA0Ki9APZ0GQtxSgkHYJVJCPW/bQddQKEG3M0tAHraBQK0ClEDQdgdBDFj4QDBKL0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAF5BbUAAAADg5ylvQAAAAMA9R29AAAAAYDFScUAAAACg2NpxQAAAACAn5nFAAAAAAAdwckAAAADAnvNyQAAAACAoFXRAAAAAICMhdEAAAADADGR1QAAAAGCK3nVAAAAAgH01d0AAAACAlMR3QAAAAMCv03hAAAAAgCQne0AAAAAA4mx+QAAAAABWtH9AAAAAQOosgEAAAABAfrqAQAAAAGAdxoBAAAAAAJPxgEAAAACgfYGBQAAAAMCdlIFAAAAA4GAQgkAAAACgg2qCQAAAAOAdcYJAAAAAQMyJgkAAAADg3sKCQAAAAKCe1oJAAAAAAEzzgkAAAABggfuCQAAAAKCuFoNAAAAAYPZYg0AAAACgy8GDQAAAAKDN0YNAAAAA4F7Yg0AAAAAg0/mDQAAAACAfE4RAAAAAINVShEAAAADgAF6EQAAAAABGZIRAAAAA4Cp7hEAAAABgeqKEQAAAACA9qIRAAAAAoOEJhUAAAACgLyeFQAAAAMDoPIVAAAAAIGSDhUAAAABgbJaFQAAAAAC+rIVAAAAAgNwAhkAAAACgSGeGQAAAAKCQeoZAAAAAYFzjhkAAAACg0j6HQAAAACCHcIdAAAAAgPG7h0AAAADABsuHQAAAACC21IdAAAAA4EsBiEA= + NrgMGZxjYkCdFrCBNyNrQMZtNYzMxW5AAQjXMD7zckBOabQU9KJ0QB9ZkxuWg3ZATseQaEy0e0ANF5N4BLR9QGwYTVOkRH9AFbSnMS6igEAtayZYiTqDQHnhcU66uoNAVmutJ5xyhkDdDjxrRtOGQGw3mmBym4hA528uwN0qiUB2mIy1CfOKQP07G/mzU4tA2sVW0pULjkAmPKLIxouOQJ95kPcQkpBAjw2R+/4RkUDmjT/yJnaRQNYhQPYU9pFAYn1/iUJCk0BWOTcLa7qTQKmRLoRYJpRA8KXdfm4KlUDWUC4gwX6VQKK8Qo20lpZA6tDxh8oal0A= - + - 8TBsQO8Sr0HvuwdBAGONQJjTtkBqJZxAhKanP8kdt0Cxal5CPCH1QO2rG0HhP0xAWyd6QG37R0B8GupAYakuQd/YjUC1DBFBXYGSP+HX2UASMZFB1wnwQTQwn0Ce99xAaKPgQCZt7UHLHwdBbYncPzXIlkHV+JtAtFK3QPD8hUBQRGVAtOACQcbB4EDujA1BjBTKPzTPUEBwnbxBNPsXQgpS9UHk58tAWGccQbBRYkLj6AlBSomKQOZqPkEGbThAA2/NP1Z4DkHh+sRBInK2QPZWvEH72gBA+vkWQQngQUDiU9NA/ZOzQWX37UHzjN9AxdY7QQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAABIhY0AAAACA8IdjQAAAAADtXmRAAAAAgEyjZEAAAABgGOVkQAAAAMCpRWVAAAAA4DPhZUAAAACAKuZmQAAAAMBQYGdAAAAAgHOpZ0AAAACAtgtpQAAAAOCJKGlAAAAAwJVla0AAAABARCRsQAAAAGCSlmxAAAAAQFuqbEAAAAAAtOhsQAAAAADziG1AAAAAgBDnbkAAAACgoS5vQAAAAMBHpm9AAAAAAKBmcEAAAACARKdwQAAAAMBqwnBAAAAAgN4gcUAAAAAACrVxQAAAACA5AHJAAAAAIMowckAAAABALFByQAAAAEDWo3JAAAAAAKOzckAAAACADhNzQAAAAECRM3NAAAAAgD3Bc0AAAABAmiB0QAAAAADbUXRAAAAAQGmndEAAAAAARAJ1QAAAAIB+FHVAAAAAgFS8dUAAAACAWNJ1QAAAAECwA3ZAAAAAgJ0bdkAAAABA3XR2QAAAAMBBw3ZAAAAAAEn2dkAAAAAAtDR3QAAAAAB2gXdAAAAAQL+Qd0AAAAAAhpt3QAAAAABfxHdAAAAAQL7Sd0AAAADAR+F3QAAAAIB173dAAAAAgKIkeEAAAABAU0J4QAAAAID6g3hAAAAAQIqUeEAAAACABK54QAAAAEAJD3lAAAAAAL4heUAAAABAXjB5QAAAAIBUQHlAAAAAAB1UeUAAAABAH2R5QAAAAECzhHlAAAAAwPuheUAAAACAzbp5QAAAAMAUz3lAAAAAQH7veUAAAABAbSF6QAAAAIDKM3pAAAAAwJdpekAAAACAhNR6QAAAAMD48XpAAAAAwDYHe0AAAACATjJ7QAAAAEAjVntAAAAAAKyVe0AAAACACq17QAAAAECewHtAAAAAgAvNe0AAAADA6+d7QAAAAIC4AnxAAAAAwMk3fEAAAADA/VF8QAAAAECKdHxAAAAAAKXPfEAAAACAPvZ8QAAAAMCRH31AAAAAQCpWfUAAAACAaGN9QAAAAECGgn1AAAAAANuUfUAAAAAAt6h9QAAAAMBVsn1AAAAAQBm8fUAAAACAF+p9QAAAAGAnDoBAAAAAQDk+gEAAAADAxhyBQAAAAKDjRoFAAAAA4ORCgkAAAACgPlSCQAAAACDH0oJAAAAAAPzagkAAAABA2/GCQAAAAGCKIoNAAAAA4FqLg0AAAACgeXCEQAAAACAyeYRAAAAA4Gh5hUAAAABg2veFQAAAAICaM4ZAAAAAoBWbhkAAAADg7sOGQAAAAAAu24ZAAAAA4J3jhkAAAACgNFSHQAAAACCKHIhAAAAAoGCjiEAAAABAyKqIQAAAAOCmv4hA + NrgMGZxjYkCdFrCBNyNrQAoahmk8YnBAFmZs+rPCdkDNICQ94pJ4QD0ntHFi035AIGNyFulJgEDKPVw7/aGBQEuN9Bg1goJAwRzcaTQ6hUBCbHRHbBqGQMFLypPgwohAOUv0daOyiUDBeri9jEuMQDl64p9PO41Awamm5zjUj0AzwMOi2DGQQEnVBKT+TZFAgrZPx1gOkkCTxdZBKlKTQMymIWWEEpRA4rtiZqoulUA1J1OVZnaVQPk+NTnbwpZAtT5Kqrw6l0B5VixOMYeYQDVWQb8S/5hA9UVs5UxTmkC1bTjUaMOaQHE1rHxoH5xAMV14a4SPnECGSu19jjudQEdyuWyqq51A43Pdeco7n0CRYosK1q+fQMp6Yvf5o6BAojx4DA7+oECIcgLDB4qhQKz8WcASzKFA - + - knKSQC53yj+fw5NAcMDUQMNAhkAptIpA4SUPQJ4zL0BAkghBI/0QQRwgyj8Jfb9BfUW1QMrLpUBY1tw/yr3cP1XKQUACvFpAug2SQGMtEEC4Jp9AkjCoP2lVOEGnM/JA7jmvQBZdkz+JJWlBhQ4vQA4eUUHMXSNBiE6mQA7kpEAGiJtBQpYwQWGsjUDwtWZA3b0wQUq7jUHAOahAzQTeQF+4rkBhROFAtyd8QQvJtEEfTIRBKqQtQNlem0BiAoJAGjnFQB9w/z+bPCNBNkiLQEmaC0DtKspANfkCQSB3XUBooTdAFFEbQSxc4kIn2hZBSPPWQRVpEULxJktCe3LmQaMd8UBynkxBrblHQMyIvD/WYBNAKtouQUDHFUF68rdAJk/CQCB5WkCKsO4//vc0QKpmMkEwam1BeHmYQIkwL0DRdGNAfMs9QXuIvEAHDi5BbiTlQlAmNUAaVgFBGLBBQFA4eUC79atA42iyQDgV70Aa6w1CllwlQlJ940HAXiJB5pATQGa5AEEkJIBAtG2DQXNUlEAyxA9Bs7IXQZF+FkJyvGdCOd9ZQDqltz8RezhAb+1JQLMnL0CHOO8/haHfQCmUjkHU+S5AlO2fQIyd6T9QKQlCuMKlQdQOyj/KL39AkJBVQjJId0GiTvxB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAALTqYEAAAABADGRiQAAAAABh5GJAAAAAIBZhY0AAAABgYARkQAAAAMAaHWZAAAAAgNDkZkAAAADAl+NoQAAAAADCHmlAAAAAAPAqakAAAACA8KJrQAAAAEBIxmtAAAAAIG1CbEAAAACAdYdsQAAAAOD9qGxAAAAAgCRjbkAAAADAjyBvQAAAAMDEwW9AAAAA4EYncEAAAABgzWJwQAAAAGAvQnFAAAAAAO3scUAAAAAAYMRyQAAAAMCI33JAAAAA4Axkc0AAAADA03NzQAAAAMDkoXNAAAAAQKu1c0AAAAAAAj90QAAAAEAKV3RAAAAAwFZ0dEAAAACAsZN0QAAAAGBby3RAAAAAwLsddUAAAABAokZ1QAAAAGDKUHVAAAAAoIKFdUAAAACgj+J1QAAAAKDnI3ZAAAAAAF1GdkAAAADALWZ2QAAAAEAe0HZAAAAAIKgad0AAAAAAFVJ3QAAAAMCOZndAAAAAQG92d0AAAACgWvF3QAAAAGAPEHhAAAAAIL9VeEAAAACgYWd4QAAAAOB9e3hAAAAA4N6XeEAAAACgIaJ4QAAAAOCx3nhAAAAAAO8MeUAAAABgc2d5QAAAACBtfHlAAAAAoK2TeUAAAACgJaN5QAAAAGD9sXlAAAAAIILDeUAAAACAtdZ5QAAAAMBB/XlAAAAAoHYvekAAAACANFt6QAAAAMBDn3pAAAAA4CO2ekAAAAAgw8V6QAAAAICH1HpAAAAAwA86e0AAAACgOUd7QAAAAEAeVXtAAAAAYFpge0AAAAAgJ4h7QAAAAIBX2XtAAAAAYCHze0AAAABgOKh9QAAAAOCa131AAAAAwHozfkAAAAAgFL9+QAAAAMDoZX9AAAAAoFF2f0AAAABgwqR/QAAAAKBnt39AAAAA4D/Gf0AAAACAWS6AQAAAAKCtN4BAAAAA4I2JgEAAAADgXeaAQAAAACAdGYFAAAAAYHMigUAAAABgUmiBQAAAAIBwcoFAAAAAgDybgUAAAAAAcCqCQAAAAGAPMIJAAAAAIGRegkAAAACArZqCQAAAAADUooJAAAAAQMO6gkAAAACA/cKCQAAAAMDcLoNAAAAAYAM9g0AAAAAgy0uDQAAAAGC0UYNAAAAAwPaHg0AAAADAwcCDQAAAAKAD6oNAAAAAwDUBhEAAAABAtOqEQAAAACC3AIVAAAAA4AULhUAAAACgoF2FQAAAAKAYkYVAAAAAwD3AhUAAAAAgetKFQAAAAGC93oVAAAAAYOfshUAAAACAi12HQAAAACClg4dAAAAAoF+Ph0AAAABgstGHQAAAACBbcYhAAAAA4B+JiEAAAAAAa5iIQAAAAGB1vIhA + NrgMGZxjYkA= - + - KSOYPy2MzUBl6ZBBdvkFQVANCkDt5bc/RyjKP3ogL0Dpl2xAeqMuQBjZQUBg9ytBZxrwPxJLoECbJKBAUuJBQJKqC0GpxBpBjVvvP12tJ0G0TBBBEif/QEjKtEHw2SVAz9C3P0gzDUFZbI1AxQqrQOk2j0DyL1JB/WiYQO2pHEBx7xlBr8GyQE0k2z/nUUdA9yCYQIcJ70Cpdco/YvqqQNMmhECvihBCKBshQQh4BkD2/OtAOln7P9XXXEAf/AJBS6M7QiPClkG1EgxCy4oLQBajBkF9vI5Af66xQTVYhEAFPaBAVUncQPdRRkEe0gxB7qZrQZtF+0HQNnFBL3MuQm9Iu0DA339BvZQ2QBNInkEOiZZAjy1UQWZn4UHQAl1Bc+WrQUtQcEAgNgdBWSRUQEK4PUHXb1BB+UgTQJr/BULuCPBBCJ43QYQWDEFwLpdAAwdwQTLoMUHxOW1B4gKlP4hX+kHFLi1BAHHdQRrvnkFOfSJALFQIQY1CZkCiJwdCgtFWQfr0bkGjo5hA2s4YQnQETEFkztw/a4mkQB3a10AgCKBA+XCfQpXk7D/X8ZQ/TUYRQURL1kA5i+hBc1wcQPg3NUBAEcE/R2usQEoayj8kqvs/+HQVQetjpkDaEFRAixhdQA6pGUCqrbFA6pEUQDPSCUF59AZB + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwE3kZUAAAADgRgdmQAAAAKDUqWZAAAAAAF4jZ0AAAACg9WRoQAAAAMC5J2lAAAAAgBulakAAAABgbydrQAAAAGB1q2tAAAAAQOgvbEAAAADARUtsQAAAAAB/YmxAAAAAwErDbEAAAABA4uRsQAAAAGAU+WxAAAAAQBpBbkAAAACAwWVuQAAAAEB6A29AAAAAwCfmb0AAAABAIQhwQAAAAIAyE3BAAAAAwIEjcEAAAACAfZFwQAAAAIAcwHBAAAAAADHScEAAAABAIOBwQAAAAMDx8XBAAAAAYBcDcUAAAACAzjBxQAAAAMCUknFAAAAAAM6kcUAAAABg/8FxQAAAAEArFHJAAAAAgKNQckAAAADAx3FyQAAAAABEgXJAAAAAwF26ckAAAABAyuNyQAAAAOAU73JAAAAAAJoEc0AAAADAmg5zQAAAAIDLVHNAAAAAQOmfc0AAAABAGbNzQAAAAICwY3RAAAAAgLN/dEAAAACAeaF0QAAAAMB+sXRAAAAAgJH0dEAAAAAAMP90QAAAAMDPQnVAAAAAAJFjdUAAAAAAJ5F1QAAAAIBRv3VAAAAAALbSdUAAAADAiRN2QAAAAAApI3ZAAAAAAFA4dkAAAAAAkUR2QAAAAMDYU3ZAAAAAAGhidkAAAAAAWnB2QAAAAIAygnZAAAAAwAjjdkAAAADATCN3QAAAAEBzQXdAAAAAQPJXd0AAAADA3XJ3QAAAAIALhHdAAAAAwISfd0AAAADAcbB3QAAAAIDU0ndAAAAAwGTgd0AAAAAA6gJ4QAAAAEDTJXhAAAAAgA42eEAAAABAhkV4QAAAAEArVHhAAAAAgCp3eEAAAACAV4N4QAAAAIDeoHhAAAAAgOrFeEAAAABAbeJ4QAAAAICLEXlAAAAAwNBPeUAAAABAjGF5QAAAAABYmXlAAAAAwGq+eUAAAAAA3s95QAAAAMB42XlAAAAAwMPweUAAAADAskR6QAAAAIBWinpAAAAAwDCWekAAAADA7aJ6QAAAAACsu3tAAAAAgHHke0AAAABAeBN8QAAAAECtInxAAAAAgJxIfEAAAAAAtHN8QAAAAIAmg3xAAAAAAKKYfEAAAADA98J8QAAAAECJPX1AAAAAQNZyfUAAAAAAU9J9QAAAAEDF3n1AAAAAgC41fkAAAACAyUJ+QAAAAEBvfX5AAAAAgNrOfkAAAACAuvF+QAAAAAAQV39AAAAAgBljf0AAAABAVnV/QAAAAEDRjn9AAAAAgCfVf0AAAAAgyAiAQAAAAMAbEYBAAAAAoFcYgEAAAAAgsiCAQAAAAGASJoBAAAAAoEJNgEAAAACg5HeAQAAAAOARl4BAAAAAQP64gEAAAADAz76AQAAAAKCfw4BAAAAAgHDcgEAAAABgVuGAQAAAAKBk+4BAAAAAIOsGgUAAAACgywuBQAAAAIABlIFAAAAAQAvSgUAAAACgaNuBQAAAAEAZAIJAAAAAoLkIgkAAAADgSxqCQAAAAGAdIoJAAAAAAKwqgkAAAABAjDmCQAAAAMBwY4JAAAAAYClqgkAAAACAw0qDQAAAAOAmXINAAAAAwHVng0AAAAAgYnGDQAAAAEAegINAAAAAQKwPhEAAAACg2yKEQAAAAOB6UoRAAAAAoKCfhEAAAACgKcyEQAAAAED80IRAAAAAwP7ZhEAAAAAAUR2FQAAAACBdMYVAAAAAQFdJhUAAAAAgYI6FQAAAACBiqYVAAAAAYP2xhUAAAACgftyFQAAAAEAh44VAAAAAAM0jhkAAAABg6zmGQAAAAOA7bIZAAAAAgFhyhkAAAACACniGQAAAAKCYl4ZAAAAAwFSphkAAAABgMMuGQAAAACCK3IZAAAAAACRMh0AAAABgnl2HQAAAAGCv3odAAAAAwLryh0AAAABgTV6IQAAAAKDYoYhAAAAAIJWoiEA= + NrgMGZxjYkDiYBUjzERrQKz0JpO9sXBAykXjfRVCdEA5Cx9LftN2QFLM1MsG03xAlBdplkEkfUD0tbbNbMqAQLpqa/7EIYFAH+A40LgCg0DncBCkJkqEQIDjB7oLG4dArpy2s5JSh0A6NuixgxuLQGjvlqsKU4tAAWKOwe8jjkDK8mWVXWuPQBe0mbMoppBAeg70y9TRkECQIzXN+u2RQGA22n9JApJAp6YHoCuCk0ACmFbThSaUQEmsBc6bCpVAWb1srnHOlUBu0q2vl+qWQOsNgiHYLpdA - + - u1uYQGQNh0BThUdBUCBLQK9qeUBMT1RAk6mpQNMtuEBDbftAHP7NQBBXgUDj3EZBdj8vQP5aZUC/n9w/cMAZQI1Uyj9c6llBII0EQe/XGEGA7FFAWr5ZQeUsS0AZMedAe+MmQUJgY0B09Q9A6A1QQY/7HEAQBsxA/5EcQLAocEGOA5JC1mIaQW7KqUGhNQBBA7U1QMJpAUCicUlBv4SNQFe0NUDKm0FAemsLQe13PkADcBNACUk8QVOOBUGvo9hAIY3OQI6a0kBMUf9AJSjKP4JemEDD2JBC/CH2QOA/hEBWSb1BshLbQIBrEkEw2C9CmA6fQVxc5UCxvjxBY4HWQN7A10CB7EFAMOYRQP1zbUEOzUpAz6LcPxAxoECyybxAQNKWQLCjOEBtR3xBiblQQJrb0EK+kDVBYmg0Qqm5J0HGXw5CR4E+QBJJDUEHomtBRGyKQKkRJkCGsphBvFRrQn5+gEDTY0FAqSqpQAhUFkHQ/CpBiY0AQfG+CkHQZDVBnFg1QDkIbEFEQJRAbcVHQPDSZkDtq9w/UlipQEkFJkBaQKZA0jjdQDHkokHTDt0/huUQQofKC0GwJvZAjU7oQBVtzkHJMIhCujkOQcNOQUC8cqtAWz+YQIMQ/kFsMFRA9OV1QKedwkAu2G1BJqqaQRpWskElleBAm/FZQCgIVkI8jX1BHBaSQAyHoUDQtHNBIbHXQJcn3EEKcwxBJ/DaQeY6WEG0s7RBYFgKQItDX0EMMONB/IanQAgv2kHIboRDeReHQS0HXkB9ol1AKAaXQF0oQUBeff1BV101QeErpT8sq01BYkiyQA7nSUG/NJJAZKwBQlJ7RUGrPABADpCBQEV4pECm29RBF3DlQJYAS0BdvXxBQX9dQCvrjkE/KalCNBEGQsRdFkFw7eNBuSPNPzPqAEAlukxBgk/vPxbcLUFmlpdANpMhQT1QkkCIDtBAhmJ/QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgOVVWEAAAAAAKM5YQAAAAMB5DVlAAAAAANI/WUAAAADAC5VZQAAAAMABylpAAAAAoFacXEAAAAAAk8tcQAAAAIBuQl1AAAAAQHc9X0AAAAAAyCRgQAAAAODDPWBAAAAAgDplYEAAAAAAJaRgQAAAAIChAmFAAAAAYDsoYUAAAADAgOhhQAAAAED4JWJAAAAAwFpkYkAAAACgjaViQAAAAGC24mJAAAAAwJtIY0AAAAAA/WNjQAAAAABMumNAAAAAAELeY0AAAABAkyVkQAAAAGCUyWRAAAAAgD3dZEAAAABgDAhlQAAAAIClcWVAAAAAQIGjZUAAAAAAt95lQAAAAEDGAmZAAAAAQLkiZkAAAADgEjhmQAAAAABVomZAAAAAoO3mZkAAAADg6h1nQAAAAIB1UGdAAAAA4EtkZ0AAAAAguqVnQAAAAAAAvWdAAAAAAK7oZ0AAAADgUyNoQAAAAGANR2hAAAAAAFpkaEAAAABAsORoQAAAAEAVKWlAAAAA4ClCaUAAAADAHGppQAAAAEC3i2lAAAAAwG3VaUAAAADAJQJqQAAAAEA/H2pAAAAAQN5oakAAAADAkKRqQAAAAMAEvmpAAAAAwHHlakAAAAAAZSVrQAAAAMBhVWtAAAAAgHKea0AAAAAAWcRrQAAAAECOY2xAAAAAwDCDbEAAAABABu1sQAAAAMCQAW1AAAAAwHMhbUAAAAAA6aVtQAAAAAAVxm1AAAAAwKLZbUAAAABAixFuQAAAAMBGMW5AAAAAwHdNbkAAAABAXGRuQAAAAMABk25AAAAAQE7BbkAAAAAAnd9uQAAAAIAyJ29AAAAAgHJAb0AAAAAAE2hvQAAAAICIpm9AAAAAQD3db0AAAABAUhFwQAAAAAC+JXBAAAAAYENBcEAAAABA21NwQAAAAACUb3BAAAAAwP6wcEAAAABAScFwQAAAAOB20nBAAAAAQMjkcEAAAAAAmPFwQAAAAEDCAnFAAAAAILIRcUAAAADAYTJxQAAAACAgQnFAAAAA4MZmcUAAAADAYHhxQAAAAEAMlnFAAAAAwOuscUAAAAAAU8xxQAAAAEBN5HFAAAAAwArzcUAAAACAFAVyQAAAAEB1D3JAAAAAIHwgckAAAADA1j1yQAAAAGA7U3JAAAAAIJl5ckAAAACAzJRyQAAAACAmsXJAAAAAYODTckAAAAAAMfFyQAAAAADJAnNAAAAAIPMgdEAAAAAA5QB1QAAAAAC0M3VAAAAAoMtbdUAAAACgp4x1QAAAAIBrnXVAAAAAoO7ldUAAAABAjQt2QAAAAIA0IHZAAAAAQGdqdkAAAACgjrx2QAAAAGC88HZAAAAAoFCXd0AAAADgmKR3QAAAAOB5yndAAAAAYFLjd0AAAAAgPwZ4QAAAAKBYNXhAAAAAoBqUeEAAAAAgyKN4QAAAAODYtHhAAAAAILbFeEAAAABAp/d4QAAAAIDHEnlAAAAAAMd/eUAAAADgEL15QAAAAGCp03lAAAAAoDLkeUAAAABgFBJ6QAAAAOBxJHpAAAAAYItbekAAAABgV3F6QAAAAMBIfHpAAAAAwHnXekAAAADAyeR6QAAAAEBZ9HpAAAAAoJELe0AAAADAbVl7QAAAAEAzaXtAAAAAoBl/e0AAAAAgPJB7QAAAAOCX5HtAAAAAIOPKfEAAAABg6OV8QAAAACAoIn1AAAAAwKw1fUAAAABA0kV9QAAAAKDy9H1AAAAAoLkIfkAAAABAOVZ+QAAAACAal35AAAAAoDPGfkAAAADgFA9/QAAAAOCfJn9AAAAAYNvAf0AAAABgMwuAQAAAAKB2IIBAAAAAwGk+gEAAAACghXOAQAAAAMBBfIBAAAAA4KVCgUAAAABAwUmBQAAAAIBGA4JAAAAAoKQZgkAAAAAAatyCQAAAAED3ioNAAAAAoFGyhEAAAAAAMzmFQAAAAGC0CoZAAAAAoBfghkA= + KBZXds7jZUCdFrCBNyNrQGaLOdoMYnFA - + - C08vQGii5kA4r1BAxMnvQKbu7z8LOJM/mOykP+FMyj/YFlpAYMxHQDxYE0AVKApAec0UQRTkHEH628o/L1YEQdERxkB+iK5ASiODQaSaSUExrqc/OE/GQCDTCUDTYRNAEPXOQFkBbkGRog9AuF0NQRRc60D9yn5AuJxeQc7HFUEqGus/deceQs6syz+AMwFA+8kPQEZbjkHuAr9BCEQUQaUabUBP2rtAg3nvQLh1OEDJpxZBLcQlQH4YAEHyastAjScJQfa5UkCQNbNA3hxqQaSeHEDKYNFBi2U4QPjIH0HnBXBAIl4LQaVxGUFgUYFAr0QtQT9sskBdMC9C/fklQLwxAUBXRYFALojCQbehZUBBTHlAo7cYQAgKdUEsLyFCwdAqQAwd+EHHfBtATWl7QY9MgUAaWsVAsRUFQTQ58kBdypNBid7VQfdpCUKn44pBF1mSQMxIBUHrFkVBC469QejgNUF4egNCxeb5QYDvCUPksMFB89STQE05q0BCemFB1CN2Qb6B9EBTJLc/RfieQetmrUHHsq1BGO1vQcD2wkCnngVCczLNQdAs4EE22iZBBkBSQu4RR0DwoONAfqQyQVzwJELeqWpBfod+PzBSPkEGXWFBwhnKP8JWykH3lWxBuU/JQHDbf0D0vLc/gTEVQtQZKkHIjytAgTCNQCJ0MUGZ6BdBL9kPQYkfqkDuQxJCVRrfQASPhkHqfgdBeikvQBOSB0GAQ8o/7TrnQKX1qkBiBhVCKtPcP12zAEB1qMxAKeQ5QnGeAUHh/KZBG7uIQDCBLEGqVnlACkNDQm7A1kFMPo9AqCgpQ7O7BUIsH4RAhmoxQfBjm0D+sqFBNZ+gQNXXMEH7e4lANc2fQH9RikCdfIpAa1c4QLweG0HkQEBAq4qkQDbPk0Cl40pAWOk0QDm1kUKvmbZAK05TQUs2zkB3n7JA9EIAQW7HAkFzhuVBdAMTQPntr0B2Lv0/AlK5QA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAABPEYUAAAADgHmxiQAAAAIBlBmNAAAAAgLtpZEAAAABg6ydlQAAAAAB/iWVAAAAAwASnZUAAAAAgwcNmQAAAAEAERmdAAAAAQIxlZ0AAAADAr2xoQAAAAODBnWlAAAAAAB4hakAAAAAA4cRqQAAAAEAl6GpAAAAAgO/fa0AAAADARwJsQAAAAIBrKmxAAAAA4FhpbEAAAABAV6xsQAAAAMDKQm1AAAAAgK5hbUAAAADAnHxuQAAAAMDlHW9AAAAAgJZ/b0AAAADg+CVwQAAAAOCibnBAAAAAABW2cEAAAAAg8MJwQAAAAOCbz3BAAAAAoN/zcEAAAABg0EFxQAAAAKDxU3FAAAAAYHhhcUAAAAAAeHZxQAAAAGDzlXFAAAAAgJmicUAAAABg+ctxQAAAAKD34XFAAAAAgB0AckAAAACAcg9yQAAAAABUOnJAAAAAwFFEckAAAAAgdHdyQAAAAIC4v3JAAAAAAAEhc0AAAABgq41zQAAAAMDWo3NAAAAAQEzzc0AAAAAAiE50QAAAAOBifXRAAAAAQBTkdEAAAAAARRh1QAAAAOAeQ3VAAAAAQNJSdUAAAABAy2B1QAAAAIC8b3VAAAAAQCGDdUAAAABAkrJ1QAAAAEAXwHVAAAAAQGrddUAAAAAAZ+91QAAAAGByB3ZAAAAAAHsWdkAAAABAoDJ2QAAAAEDnbHZAAAAAgKN+dkAAAADA4pF2QAAAAIBqnXZAAAAAgBPTdkAAAABgLeJ2QAAAAIDS73ZAAAAA4GAVd0AAAADAV3B3QAAAAOBzlHdAAAAAIM+gd0AAAAAAdud3QAAAAGBb8ndAAAAAIGEBeEAAAAAgPBZ4QAAAAOBdh3hAAAAAYAeXeEAAAAAgLKJ4QAAAAEB+tXhAAAAAoNfoeEAAAAAAygF5QAAAAMDVIXlAAAAAANoueUAAAADAYkR5QAAAAED1U3lAAAAAgJZgeUAAAADgkZN5QAAAAKBCpnlAAAAAIMnVeUAAAAAAcuR5QAAAAACpSHpAAAAAgFBVekAAAACgbmx6QAAAAOA/enpAAAAAQIujekAAAAAgpbx6QAAAAKDTznpAAAAAYGnkekAAAACA2v96QAAAAEBlLntAAAAAIGdge0AAAADgmwF8QAAAAGDxhn1AAAAAwNS2fUAAAAAgV/Z9QAAAAEAepn5AAAAAYGoXf0AAAAAgcml/QAAAAGA2xX9AAAAA4Bb0f0AAAAAg/yeAQAAAAOBWL4BAAAAAYGFzgEAAAABg1O6AQAAAAMA39oBAAAAAIG8EgUAAAAAgZpWBQAAAAIDxy4FAAAAAoKzSgUAAAABAfuqBQAAAAKBBEoJAAAAAwEJngkAAAABAWnSCQAAAAIDseoJAAAAAQI7UgkAAAAAgvvuCQAAAAECYGoNAAAAAYI9cg0AAAACg6oqDQAAAAOCak4NAAAAAIGyxg0AAAACgeumDQAAAACDlVoRAAAAA4OtdhEAAAACABoKEQAAAAIDb44RAAAAAQGzqhEAAAABAqXqFQAAAAOA1A4ZAAAAAILRjhkAAAAAguGyGQAAAAKDGc4ZAAAAA4KO2hkAAAAAgJMqGQAAAAKCsEodAAAAAwG3rh0AAAABgPvmHQAAAAODOSIhAAAAAoNGEiEAAAAAgo/uIQA== + NrgMGZxjYkA= - + - kkHoQfLrPUCZmStAF7NKQIsqz0AyRtdAnlvXQH3DBkAOBrxAQUyXQf1/L0Bk5ck/MXmbQPxAVkBFB2tBHQLCQEFPuD+fat0/id3SQKpVFUGPmhxACyITQNt0oEC4ysk/jIcYQUvDZEBIVBRAodM9QIQwj0BVEHlAuf0/QJCQhUHP4bVAFr37QBq/C0AWiZtApKkRQG89nECXwAlBNZ4cQEBO9kAFrwBA141/QM51GkFS0klB2YWkQfP4AkEbG6pA96EHQUgiJECj8R1Bx5JdQI9P+0DuQRNA8huLQfCP4kAYJGJCGOE6QoACkEFM4LRAy9UqQhzDPUBav65AqNwiQKki0UGaTRhEoPqAQX6D7kC4fdw/IefEQH7oHUG5flRBtkNBQEL/CUDsOjhAFxEnQX4zIkAHqrtAP+oPQd+DyUD+CYdBMoitQM5EDEFAcThA2viAQPqOskAgsck/DjbAQfhPLkGlYvRBxftVQdk2CkEc6wlAcIdsQOVSOUFijJ5BT4gjQa+vI0Lf27pB9u01QemtLEEVrQFBwy/7QaoLr0PyjEFA/f8JQAutAEEYSbFAnO1yQcs+PkGFhEhBa+4MQXlvhEA8SD1BV5LhQBcivkGpDzhBF6U/QiUYwkC73iVCiu6RQGQwmUA75GVA/E17QWSd80CVnptAfzndPzlQ7j9VxCdBvsldQHDXLUEhNjhBa7KyQLrGyUJSYE9C0RKdQYjyb0B/Lek/0rKcQCkDhkDgJd9Ap0CKQFCDFEAwW7dARZBkQ4O4l0H9/WVBO5rKQciys0DYIZ1AhgOGQFoaAUAVr45A8gEOQTbIu0A= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAwCd9YUAAAAAAyZ5iQAAAAEDVQmRAAAAAgOMFZkAAAABgdRlmQAAAAADE4mZAAAAAQJQGaEAAAAAAkD9oQAAAAACbYWhAAAAAQCLtaUAAAAAg2kJqQAAAAMD7XGpAAAAAAKDkakAAAADA995rQAAAAEDoQmxAAAAA4L+KbEAAAAAAQV1tQAAAAIB5Bm5AAAAAYI5ibkAAAAAAy4VuQAAAAGBv1XBAAAAAIDoBcUAAAACgvDpxQAAAAOCoRHFAAAAA4I99cUAAAAAAJ+1xQAAAAECuk3JAAAAAADu6ckAAAABAuANzQAAAAOBZEXNAAAAAABpkc0AAAABgzKVzQAAAAEAtwHNAAAAAgC8xdEAAAAAAMUR0QAAAAAAHc3RAAAAAoKaYdEAAAABAUrN0QAAAAAA9wnRAAAAAoA3SdEAAAACg4AZ1QAAAAIC+TXVAAAAAoLz2dUAAAAAAwUZ2QAAAAMAmfHZAAAAAwMygdkAAAADAPcR2QAAAAIAAEHdAAAAAIDofd0AAAACAM0J3QAAAAOCSUndAAAAAINRzd0AAAADAyJJ3QAAAAKAt7XdAAAAAAFA/eEAAAAAgsUl4QAAAAKCOVXhAAAAAoMZmeEAAAABgxrJ4QAAAAADc4nhAAAAA4D/zeEAAAACAQQ55QAAAAODkLHlAAAAAwPxDeUAAAADAP1R5QAAAAMAMYHlAAAAA4FV5eUAAAABAJoZ5QAAAAKAspXlAAAAAYEDEeUAAAADA29J5QAAAAGBC43lAAAAAAG0FekAAAACAYC96QAAAAOBXWnpAAAAAQCxkekAAAACANH56QAAAAOAvk3pAAAAAoDayekAAAABgJcF6QAAAAOD7zXpAAAAAgC/mekAAAAAAFwZ7QAAAAKBBY3tAAAAAYNpze0AAAABAsJB7QAAAAEBJ0XtAAAAAAOPde0AAAADADeh7QAAAAABqI3xAAAAAoLZBfEAAAAAAxFR8QAAAAOBDf3xAAAAA4NaRfEAAAADgxqB8QAAAAOAcsnxAAAAAIBrdfEAAAAAAxwp9QAAAAMDZFn1AAAAAIEgRf0AAAAAgOWR/QAAAACBqdX9AAAAAwNmUf0AAAABgzbZ/QAAAAGBkKoBAAAAAoDUvgEAAAAAgxVKAQAAAAMA6WIBAAAAAoHl3gEAAAABgx9SAQAAAAKAJ44BAAAAAoCsUgUAAAACglU+BQAAAAEBfc4FAAAAAQAWBgUAAAABg/ZKBQAAAAOB+yYFAAAAAYEjwgUAAAAAA8AyCQAAAAODeEYJAAAAAgBMbgkAAAACA3ieCQAAAAOAORIJAAAAAgPhSgkAAAAAg31uCQAAAAOAGdIJAAAAAIJ+IgkAAAADglLuCQAAAAGCYxoJAAAAAAKv4gkAAAABgyv6CQAAAAEBACINAAAAAgNIUg0AAAADAljSDQAAAACBySYNAAAAA4P9Qg0AAAAAgYoCDQAAAACBrh4NAAAAAYIOMg0AAAAAgrsiDQAAAAOBI0INAAAAAIBb2g0AAAABAYgiEQAAAACAvD4RAAAAA4ME3hEAAAABgwj+EQAAAAGDeVYRAAAAAwIaJhEAAAABgvcmEQAAAAMCx3oRAAAAAoAPshEAAAAAgEfWEQAAAAAALGoVAAAAAYMA4hUAAAADA/kqFQAAAAOAJbIVAAAAAoBD6hUAAAAAAODWGQAAAAMD5R4ZAAAAAoFpShkAAAADAkomGQAAAAKCGvYZAAAAAgBnEhkAAAACgkdiGQAAAAOCt4IZAAAAAYCsgh0AAAADA+EeHQAAAAGCCI4hAAAAAwEFUiEA= - - - - - - t6/NP0FvdUCunxxA60B5QPBwAEGrqhxAjsCrQBEN4D/ZTCxAyh8KQISPHECPZypBB9oWQRn520DMzgBASDQvQEqIZkD3tO4//G1BQOOzBkFRJeNA16HcPybCQUCYiQBBagwKQBj3eEBnL2NAgbjJP+A3dkBsxIFAvmS3P5yjjUA9+sk/iRUHQNCCTUFu/J9Aa31HQBslBkA9KxNAoSnkQKOvQUDpRZI/3CAaQS12HUB565lB8yxdQAWz4kEIKYtBDn9uQZGmxUAo2ZBAPPGkQKljtz9eDM1Atwy3P/spBUFaiwVBBA7VQEYdekCuNUlAlHGbQO47tz9U+aZBS/C2QPKXWkCnox1BNsNwQMg/K0EnbGRBQtg5Qd5p+UAoKdw/PntjQpMFkkDrNaBAvi/CQcqfhUAkBKBAv0MEQoo7okEZZA9AjrpJQae4CUFbEbdAN3QjQgBxBkApuJlBkGKWQNctXkGSiO1BAtuyQQIfOEDk8hRC6PimQfB8dUCaVqQ/di5NQp5mgUFfMP5A85iFQHltvkE+9YBAkIhQQMetnECvNIxBP+XDQaUUOkCSeExBOMPWQbf59UCndSNAiykcQRWhjUAYjxlAowfqQA3TJUGnzYtBPtrNQGs7pED1T5BB+AHkQUgZCkHFOCNB+2s/QZoGJECnmFtAGEDdP/iTk0JUewZCXD7vP6sN2kCfYxxAOdscQm4BQ0F3YXFAfHXuP9H57kJ/DqFBUM8SQkCYuUB1bN5BvLNUQQWGLkJ81m9AeBj1QaU120D1MDxBp0e3P493yUDDaKNAdaD2QhSrXkEHjMdBVlhEQY4VhECutxtAqOnLQMXCk0AvTudAuh4ZQCklPULyLOZA7aGuQC+9oECMhvs/1AMvQCBPgUANOtlAtItsQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwGjjYUAAAABAnKViQAAAAIBwRWVAAAAAQAKkZUAAAADATCpmQAAAAEBM42dAAAAAoNQ4aEAAAABA82BoQAAAAMAtYmpAAAAAYNmAakAAAABgi5xqQAAAAADm5WpAAAAAQFxoa0AAAADgEEpsQAAAAECcx2xAAAAAIOzgbEAAAAAAGgNtQAAAAEBtHG1AAAAAADEEbkAAAAAgBStuQAAAAMDKaG5AAAAAAM+GbkAAAAAAx6luQAAAAMAwxG5AAAAAwD3qbkAAAABAJCVwQAAAACDrL3BAAAAAwJhicEAAAACgySRxQAAAAKAeM3FAAAAAwIxdcUAAAACAAwJyQAAAAAAVnXJAAAAAALy9ckAAAADABONyQAAAAOBbJnNAAAAAQA+fc0AAAABAyKtzQAAAAMCT9HNAAAAAoCsHdEAAAACgyUZ0QAAAAECJbHRAAAAAgNihdEAAAADAkrR0QAAAAABny3RAAAAAYBbVdEAAAAAA7xh1QAAAAMBqQ3VAAAAAQCpQdUAAAABA63R1QAAAAGCwg3VAAAAA4ICTdUAAAACgKDd2QAAAAKBNT3ZAAAAAQHtudkAAAAAgzLB2QAAAAAC9D3dAAAAAoJZbd0AAAAAgYnV3QAAAAKB80ndAAAAAQDLud0AAAAAAaTJ4QAAAAEClQnhAAAAA4B5SeEAAAABgZl14QAAAAOD/mXhAAAAAoJvSeEAAAACAB994QAAAAOBTBXlAAAAAIJsjeUAAAACAD0R5QAAAAOAhtnlAAAAAwE3FeUAAAAAA9dF5QAAAAOD07nlAAAAAYJP+eUAAAAAA4Cd6QAAAAADlOHpAAAAAIPRWekAAAADAkm96QAAAAGDCjXpAAAAAgCi4ekAAAAAgstF6QAAAAIC55XpAAAAAQBgGe0AAAABgQhV7QAAAAOB/IntAAAAAQEs2e0AAAADgJUx7QAAAAGBmdHtAAAAAoAqCe0AAAACg1bh7QAAAAMCZzHtAAAAAgA8FfEAAAACAlY98QAAAAECwvn5AAAAAQErRfkAAAACgo71/QAAAAKCHAYBAAAAAINIigEAAAACg3HqAQAAAAKDPm4BAAAAAAPDJgEAAAACAQ+6AQAAAAOB/A4FAAAAAoG4PgUAAAAAAvmWBQAAAAODrmIFAAAAAYDqegUAAAABgtsKBQAAAACAFe4JAAAAAIDSvgkAAAADgWTyDQAAAAADjk4NAAAAAgOCdg0AAAAAgsaqDQAAAAKDVwoNAAAAAII4khEAAAADAPDuEQAAAAAAugoRAAAAAIL+ShEAAAACAoMKEQAAAAACIzYRAAAAAYGVzhUAAAACgkJuFQAAAAOB/GoZAAAAAwBaxhkAAAACAxcOGQAAAAOCMC4dAAAAAAAIOiEAAAABg2zOIQAAAAADPPIhAAAAAYPOUiEAAAABAHsqIQA== + KBZXds7jZUCJy7y2HKVqQIkw7CrX8nJAxMM6r+ZjdECrOe5bWmN4QB/QhPqptHpAOErBSjnKgEBUKzukzaKBQHwNuvGxEoVAuFgFwVk7hkCpE1+XEzuIQEldhlmb84hAqUJNwb/Di0ADsGZRE/SMQA1wF95L3I5A - + - USCXQT4ayj/kLL5AwzD/QCJKAUD8MI9A5SDvP6lXtz+33aU/SWjwQFT1fz9aJSRBLTMvQLbxxUBqThdBytYYQEtKgUDX09NAYqlcQPOcikC6SDlB/Y0rQYzQzkDNvQJBWlE1QRLSBUEEWppAh9rIQGjB90BheRxBHVLnQJKvSkBZCBVAa/qIQHGRHED+njlBuoMcQDwJOEBofVlAIVO2QPsvyj8xyCVA3SBjQXU7Y0DmhwBCHmJqQUrab0Bys4ZBwtBmQJrcf0F1LV5BRjxJQW1mYUHOhBxAI2irQBo1NEELQZM/9yRaQeajFEE0zD5ApFOyQcv/7j+JjaZBXtgnQQo10UDyHRdCb2iPQTFMHEF+VCxA3D8UQU2btz/QY/xAUT8fQcRwlEH8qylBeboeQT2Gi0DF1pFBQeXbQMAFnUFkJXZAUmELQZDUskAzVRNAmvTNQAGNrEAQTqBAQ97DQfSZU0EBVBdCANyDQoVRxkCFfipBQEa4P+/znEDbn4FA+xpEQqMJL0EyIY9AUpxbQQ/otkBeFFRA0vGAQLZzdkFYDp1ANVmwQDnUiUEQfKJB6aOVQHY/mUBVU/o/lziEQGWCIkD7UzZBSn6EQS+EvD86copAuF1wQCnKP0AuDahAj8QyQSQIMkKm1aQ/TiiaQIIL6kBQIFRAMZt/QPOuUECJtgBAno3eQDLiSkDR+6pAj5uXQRYYhUE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYFFRV0AAAABAocZXQAAAAMDUC1hAAAAAAHzNWEAAAADg9QVZQAAAAAC+SllAAAAAQDnOWkAAAABAd4tbQAAAAODgBlxAAAAAQPR9XEAAAAAAl8FcQAAAAMCkxF9AAAAAwM4lYEAAAABgmEBgQAAAAMCmg2BAAAAAwDmpYEAAAADARulgQAAAAEC2/2BAAAAAgChCYUAAAACA/mhhQAAAAMDriGFAAAAAQMPBYUAAAAAAwiJiQAAAAMCyQGJAAAAAADxjYkAAAACA84JiQAAAAEBVrWJAAAAAAKFtY0AAAADA4oJjQAAAAMCVp2NAAAAAgIgEZEAAAAAAvGFkQAAAAEAaoGRAAAAAQP/iZEAAAAAgZyRlQAAAAGAERmVAAAAAYBxkZUAAAAAAm6JlQAAAAKBz4GVAAAAAAFAEZkAAAAAgXSNmQAAAAMD4Y2ZAAAAAQMqjZkAAAACgWr5mQAAAAAC3KWdAAAAAwN9lZ0AAAACAAolnQAAAACC7pGdAAAAAgNLmZ0AAAACATShoQAAAAODxZGhAAAAAgL6vaEAAAADg5shoQAAAAGCV52hAAAAAANcEaUAAAACAEB1pQAAAAMAbXWlAAAAAgA6EaUAAAADA6J1pQAAAAAB20GlAAAAAwADmaUAAAADATQJqQAAAAIDdRWpAAAAAwEVgakAAAABAKYVqQAAAAEDIpGpAAAAAAKLkakAAAACAvANrQAAAAMAbImtAAAAAAEhGa0AAAADASGBrQAAAAIDufmtAAAAAQDmia0AAAADAEMNrQAAAAECuJGxAAAAAwHCvbEAAAABAichsQAAAAIAm3mxAAAAAQIEDbUAAAAAA/S5tQAAAAIAjTG1AAAAAgGxjbUAAAACAZoNtQAAAAMD9o21AAAAAQEnGbUAAAADA7eNtQAAAAIBtA25AAAAAAMhkbkAAAAAAK8NuQAAAAEAH4W5AAAAAwMkAb0AAAABAHydvQAAAAAAhQ29AAAAAAMhib0AAAACAWoJvQAAAAEDNom9AAAAAgAPTb0AAAABAQOZvQAAAAICAAHBAAAAAYAETcEAAAACAnSFwQAAAAICEMXBAAAAAAKZCcEAAAAAAxU1wQAAAAMCMgnBAAAAAYJiRcEAAAADgVq1wQAAAAOALw3BAAAAAwC/RcEAAAADAi+BwQAAAAMBrIHFAAAAAwFkycUAAAABAj0FxQAAAAECqYXFAAAAAQFRzcUAAAAAgEn9xQAAAAEDojnFAAAAAICqbcUAAAACAQ6VxQAAAAAC2tHFAAAAAQFPBcUAAAADA9dJxQAAAAAB9MnJAAAAAgExAckAAAABglmVzQAAAAIAcenNAAAAAAPOdc0AAAAAAvqpzQAAAACAbxnNAAAAAwIlOdEAAAABAqGJ0QAAAAMAGg3RAAAAAYGaOdEAAAADgXet0QAAAAODhEXVAAAAAYGo+dUAAAACgf3N1QAAAAEARu3VAAAAAwIXodUAAAABAqQJ2QAAAAOCREnZAAAAAQClFdkAAAADgpnR2QAAAAGAckHZAAAAAIAKddkAAAACgo712QAAAAAD0ynZAAAAAYLLUdkAAAADg7t52QAAAAKCJQHdAAAAAYHGYd0AAAAAgbal3QAAAAOClxHdAAAAAwAXed0AAAAAgHwF4QAAAAECBLnhAAAAAgCySeEAAAAAg2J54QAAAAKBHs3hAAAAAAIDleEAAAAAgggd5QAAAAODVIHlAAAAAIFAxeUAAAACgkVJ5QAAAACA7cXlAAAAAoJKSeUAAAAAAZZx5QAAAAMCDpnlAAAAAIOW0eUAAAADgeNN5QAAAACCj43lAAAAAQDMrekAAAABAo1d6QAAAAGCw8XtAAAAAYM81fEAAAAAgGpN8QAAAAGBsln1AAAAAQPP4fUAAAABgCg5+QAAAAOCNcX5AAAAA4NShfkAAAADA27V+QAAAAEDiw35AAAAAwJUVf0AAAADASCl/QAAAAEBuc39AAAAAYE3Ef0AAAADg9RCAQAAAAKCuGYBAAAAAgGQigEAAAACgzj+AQAAAAIAIUoBAAAAAQOtygEAAAABAKHuAQAAAACClo4BAAAAAAAG6gEAAAABA3fGAQAAAACD4+4BAAAAAAOI7gkAAAACgY8KCQAAAAIDgi4NAAAAAoJ8ahEAAAAAgPkKEQAAAAGAPlYRAAAAAIEf5hEAAAACgKAOFQAAAAODniIVA + KBZXds7jZUDUvl+A/sRuQKqz0iumQnJAaj0MlNdzdkA4Cx9LflN4QMCREJlv5HpA/2WzhJaEfkBDdlLpw4qAQCrd20SXeoFACqL4+C+Tg0AqDMpuQwOFQFU2THGPO4dAlh0idfKTh0A= - + - A4kUQeWpkj/AXf8/3LoJQLaaNkCLFoBAEWHCQGXr20EZQI9AuAk+QCuZNkC+pBBCLcTrQR8Cp0E8cWZAtazJP3znU0AH94VAkQv5QKEAnUB42SVAAmBcQhYJwUB7P2RABOgRQgK27z+tn/5AygVOQZVbZECbXs9AhZUcQFOfZkHp+jJBa0CJQRolw0AEcyZBy5KkP2PTmUC3uPBBG68XQUJyKEFDO+xAjV8LQYLRhEBLzAlBXblpQrLHlkETFIlA29afQCauKEGCJY5AAEfbQIjCAUEw1Q9BH2l8QOyBJEF4Lr9AiFCoQNraR0Atb6VBJ4L4QWtaZUAOivxAERYYQWkbmEEihapBtmg4QMocP0GzbRRBsksTQIkJBkE2PyJBVeslQMhKk0ERFQlBPxoKQCuNMUGzEidBHO6gQOyVd0E/XaBAbJpsQPoi/ED1S4BB6vBtQAzudkHdgrdBtHA4QAPYXkEuDz5CrEYjQnVqV0LGMyVDxvnHQriMNkI8YD5Byxi0QUJAMEB16TRBWwyQQW1HbUI7xKRAQyTFQKJsbUA52UFDfN0rQkVIZUL56AZCWXbWQd6NiUF6KbxBRdXIQu9JxUL0FqBC7+rhQTu1QUDGbOZBNTU0QY03iUDx2H9BhTuSQbDnKkEuYnlAliwtQMzEEkFgDYFByzsjQZTFIUFt3llASicpQTyrGkH7AK1By9XyQNZvM0F7BYVATP35QE2GpEAiO0lAFp1QQVhkBUEwNLpA90eZQaZM10BpfZVBmw/DQHxxmEL+86lCW2UDQqC/QkG6vxVBvfWFQeD2a0FCEyNBkzuNQAvGOkG898NB2fcvQcoSKEEJNA9C8tK3QDC2HEOfhHxCdflvQLLpAEJBsCtCeU06RIYo0ENHkRJCN4XcP1KDz0K6JJRBBtubQDRJy0AKjVFA3bBaQNMKUkFmqBxAbPRnQDxRlUFzj3dAOkUTQIvCXUHzwo5AwPI5QcGlIkEWcnVARnFaQaOIHECmrCVARpDuQDxiv0CB7SBBzHg2Q0FRfUKaODhAfhSuQDzyAUHZVLc/ndYAQL+rLkCEEjJBfDDQQD3GjUBkIZI/CJnQQLU6QkHV7r1B + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgNlJXUAAAACANs9dQAAAAKDn+F1AAAAAwOMmYEAAAABAiERgQAAAAAAH4WBAAAAAYFZFYUAAAAAAtUJiQAAAAMAvYmJAAAAAILiFYkAAAACgoaBiQAAAAECdh2NAAAAAoAyiY0AAAADgxMxjQAAAAOCzH2RAAAAAgDPVZEAAAAAAHT9lQAAAAIAEpGVAAAAAgBPBZUAAAADA5KJmQAAAAIB4ymZAAAAAoPXkZkAAAADgICJnQAAAAEDihWdAAAAAICWmZ0AAAAAAXaFoQAAAAEB96GhAAAAAYLglaUAAAADAB2lpQAAAACCxmGlAAAAAAAImakAAAABAa0lqQAAAAGDKa2pAAAAAwLqkakAAAACAn0prQAAAAABI52tAAAAAQJIBbEAAAAAAWCBsQAAAAABfUmxAAAAAQBunbEAAAADAZcBsQAAAAMCO4mxAAAAAAJUBbUAAAAAATKJtQAAAAADW6G1AAAAAgJAFbkAAAABAyUNuQAAAAMDUe25AAAAAAHO7bkAAAADA9vFuQAAAAACEH29AAAAAgIs/b0AAAAAAtmlvQAAAAACDnG9AAAAAQHCwb0AAAACA2xNwQAAAAOBxJHBAAAAAQOUvcEAAAADgP0NwQAAAAODecHBAAAAAIM6NcEAAAADAWJ1wQAAAAIDj1HBAAAAAgCPicEAAAAAAcfBwQAAAAEDH/nBAAAAAgCgkcUAAAAAgzy5xQAAAAMByRXFAAAAAgB5TcUAAAACgSXVxQAAAAKDHjHFAAAAAwH+icUAAAABAvM9xQAAAAIAqAnJAAAAAAIMgckAAAADA+kFyQAAAAEC8UnJAAAAAIEdyckAAAADACJ5yQAAAAOAFsnJAAAAAYLm+ckAAAAAARfpyQAAAAIDDRXNAAAAAgFBac0AAAAAga4JzQAAAAKAtq3NAAAAAgE7ic0AAAACg8wh0QAAAAKCxG3RAAAAAoM4zdEAAAADgV0N0QAAAAKDtUHRAAAAAwBhodEAAAACARHN0QAAAAMA0f3RAAAAAAImNdEAAAACArqV0QAAAAICZyHRAAAAAQKfpdEAAAACAMRd1QAAAAEBBI3VAAAAAoIAwdUAAAACgeEN1QAAAAICPT3VAAAAAYHBhdUAAAADAXXV1QAAAAEAKg3VAAAAAgFOOdUAAAACgUaF1QAAAAEBUsHVAAAAAAAC/dUAAAACA8c51QAAAACAC+HVAAAAAYFMadkAAAAAgQSR2QAAAAKDAb3ZAAAAAANR/dkAAAACg8EF4QAAAAGB38XhAAAAAYEgxeUAAAADAM555QAAAAODV03lAAAAAIO8UekAAAADgdnx6QAAAAEDLW3tAAAAAIBR4e0AAAADAh8V7QAAAAMBYEnxAAAAAYL4dfEAAAACgJq98QAAAAKABdn1AAAAAoJMbfkAAAADg50V+QAAAAKA5XH5AAAAAIGlmfkAAAAAg5HN+QAAAAKB/sX5AAAAAoEDQfkAAAADgNTZ/QAAAAGDQY39AAAAA4EuGf0AAAACga5V/QAAAAMCrxX9AAAAAYNEBgEAAAAAA+guAQAAAAIB+G4BAAAAAoB0xgEAAAADg4jeAQAAAACABTIBAAAAAIF9igEAAAACAWoKAQAAAAMCup4BAAAAAoEzbgEAAAADg0umAQAAAAKCP8YBAAAAAoHwBgUAAAABAFGiBQAAAAOAgkoFAAAAAoKvBgUAAAABARfiBQAAAAKCJAYJAAAAAQN2hgkAAAADguNuCQAAAAMCQfINAAAAA4LCig0AAAABg++KDQAAAAAAwCYRAAAAAIAIThEAAAAAAWzGEQAAAAOBUOoRAAAAAYOeBhEAAAABgR5eEQAAAACC+D4VAAAAAwPEshUAAAAAAxHiFQAAAAKABSIZAAAAAgNshh0AAAACAiDGHQAAAAMDLOYhAAAAAYLSGiEAAAAAgycKIQA== + NrgMGZxjYkCEfuNfSGJnQBu6YmAmQ3BAaYA5p9LBc0BCe6rX1FN4QMSMg/KVEnpAmM+u3GzEfEBZpcEngqGAQMuWRZji6oFA6M0fHa5pgkBav6ONDrODQOj8DUda8oVAUZ4jvEVLh0ATJ5BJpiqIQH6kyGGnc4pApgc0hf0yjEAShWyd/nuOQKY2Iq+pu49A0VZlSRUikEA= - + - tLU1QBwDAEELqmJADyz4QGhwEEE+9t5C8BTXP4+p7D/3CkdC9mkmQfUU3kCtS5dAwZqsP7PGQkAKiMNAKvQfQHbj0kB8QGlAEUK2QGUxS0GWwYNBWjMAQdzbgkDzFa1Aw1HTQANvlUCJlm1AK88eQg7AikCStBpBCnbqQMTXOEFfxMVADFcPQRmkYkCgYXhA+mY8QZKYjEDvqaNAIZ7aQIubjECWgEhBJjaXQGkE2D+mmidB82NtQF5IAUAF3MtBvtgmQfCgIUAFrgNBw1IBQe4yIUEWIrRCEYUaQPAFoEDodSlCkxZ4QMXXC0AeGMBBcBBsQQicJ0EYLwNBmemqQNwCVELSG+JAcSeRQeXdyEBSvTBCz8QzQNAT7UHcvQ1CgGJJQdoCxkC6+4lCfUqWQPJVxkCkQYJAR9FiQd4GPkANKyxATIOBQLRQL0F6M6ZBOjQwQtklIkFFJRBBlalMQU9A3EH4mKlBOJzJQvggckIbPeJACjCJQddyB0IE96dA9gM6QuqAskA4/aJBT30WQchZxEE+PgJCCssLQLG+0EHMwfZAhN9pQtAcrEAofYxBBA1XQRKbVkCCvFBCidnAQLdqB0FH9hhBqQ2FQYRtwT/OrrdA8iDsQC5jlUCgcItAmvErQBLvrEBXBdNBD7OcQCzl7EGdfZFC4GOSQGor+kCQ6/5BHchkQUc4M0F3vQBBZIoWQSr4/UEddudB5CSHQuBmNUAQfq1ApCVNQMC+REN5+/pBmtCLQ0cZ3UGPsEhEilyuQsCqAUCqhnhA43s8QbQJXEGcVP1AXRANQr4t/D8lSR5B8H6VQVnMDkFpUDdAosL7QObt6kBgDodBoaBAQen9M0NC7gtA47vmQHTULkGBwsRBCf6cQOXFmkCcx1ZCJV90QK0cJ0Ia1GtBVYCmQE8N9UBVz4xAtHzWQMjHgUD63MJAQh4XQsQNh0DkEeFBalTRQIdWL0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAA4Pb6bEAAAAAAMMNtQAAAAEBJ525AAAAAAN8Db0AAAACA05lwQAAAACB5EXFAAAAAgIUxcUAAAADA7MFxQAAAAMAb8nFAAAAAAIFTckAAAAAA22ByQAAAAEBtlHJAAAAAwLUic0AAAACggu9zQAAAACBjEHRAAAAAgNbxdUAAAABAxaR3QAAAAID+oXhAAAAAgO23eEAAAACAiNR4QAAAAMDAQnlAAAAAAElVeUAAAACAp895QAAAAMA0EXpAAAAAAD1DekAAAADAtGV6QAAAAMAc7ntAAAAAgJeRfEAAAABAKA59QAAAAACkgn1AAAAAAN60fUAAAAAAJFJ+QAAAAMDYbH5AAAAAwE2PfkAAAABA7Kd+QAAAAAA71X5AAAAAQFv5fkAAAAAAsBJ/QAAAAMCDkX9AAAAAwCm6f0AAAACgeiGAQAAAAMCGRYBAAAAA4GBjgEAAAACgwZGAQAAAAMADoYBAAAAAIJfSgEAAAABA7NmAQAAAAAAn4oBAAAAAoCzqgEAAAACAbSmBQAAAAABlMYFAAAAA4P5xgUAAAAAg/HuBQAAAAACqsoFAAAAAQKYCgkAAAACg/heCQAAAAKDcQYJAAAAAYLFegkAAAACAAKWCQAAAACD1x4JAAAAAYAfkgkAAAACAgVKDQAAAAGDFGoRAAAAAIAgjhEAAAACg4EiEQAAAAAAJf4RAAAAA4BiZhEAAAACgZtmEQAAAACBw44RAAAAA4Fv6hEAAAABA6QKFQAAAAGAHO4VAAAAAIHlDhUAAAACgjoqFQAAAAOAMlIVAAAAAQHoahkAAAACgmyGGQAAAAMA5XIZAAAAAgKeDhkAAAACgq6mGQAAAAODvzIdAAAAA4EUpiEAAAADgU0uIQAAAAKC1UYhAAAAAoFlZiEAAAACAW2OIQAAAAADF4YhAAAAAoOzqiEA= - - - - - - Rdg+QfNbikG4G/RB4q5sQI9NnEAezQhBqIWsQShfWkDyIWdAv0CWQamPmECb6UpAMUIvQHiZsEB7YThA4gZUQcLOJkGzX5tAyvfPP22jbEBzstlBoNryQGA+zkDshcBAPkncP9/wb0AY+cg/DnsTQe15QUABS+I/oMqOQXOY00B4GalAclndQWFKzT85kts/9cLHQABS0kAD9UBA7/cCQd/Zb0BWS8FBIinKP0MQO0FjgvdBFB+oQo8mZUB+9EpAJ05xQTQgCkDSHu8/UN/kQkaueEB5gTVA8hGDQoSrd0AcFi9A9iKxQZBMikFqvRhBzE4RQYFfMEGUzllBuF8HQcBkwECU1hxB6P62QCpiHENI+j1C4yXNQi6CQEGKSo1AN6bjQFCdfELfjiRBe0QgQu2ePkIF4YBB1w+NQKymg0H3m61A6Z29QLTgHkFu9NxBDOyEQBj62UAmubxDc3yKQg== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQOwWXkAAAADA0NRfQAAAAKBsS2BAAAAA4EBmYEAAAADAKKNgQAAAAIBz5GFAAAAAINwiYkAAAABAn0ZiQAAAAMD1YmJAAAAAQKe/Y0AAAADg7wdkQAAAAMAOJ2RAAAAAgBRkZEAAAAAAmGtlQAAAAIA5JmZAAAAAQJH2ZkAAAABA7CNnQAAAAKAvqWdAAAAAoIXiZ0AAAADAqbtoQAAAAAClIGpAAAAAoJqGakAAAADAWKJqQAAAAMDDwWpAAAAAYMana0AAAABAJitsQAAAAADtQ2xAAAAAwMvGbEAAAADAokttQAAAAECzYW1AAAAAQBDAbUAAAAAAHQFuQAAAAMDSJ25AAAAAwONGbkAAAACA6WZuQAAAAEAcpW5AAAAAwKr9bkAAAADAu0dvQAAAAMBSaG9AAAAA4C0DcEAAAACAq1JwQAAAAADgYnBAAAAA4Lt0cEAAAABAY5NwQAAAAKAItHBAAAAA4KzXcEAAAADgF+NwQAAAACAwAHFAAAAAAMoOcUAAAACgr3JxQAAAAMBWhHFAAAAAoPChcUAAAABg37VxQAAAAGDlwnFAAAAAICPgcUAAAABAvDdyQAAAAMB1VHJAAAAAAIt3ckAAAABA1ZRyQAAAAMBQtXJAAAAAgL3ickAAAAAAFTJzQAAAAOA1dXNAAAAAQGqCc0AAAACga65zQAAAAKA9FXRAAAAAgJ8wdEAAAABAmkd0QAAAAACUVHRAAAAAoMeOdEAAAADAKKZ0QAAAAOBc2XRAAAAAgOMjdUAAAABgxzF1QAAAAACuQXVAAAAAQCtjdUAAAADA8XF1QAAAAEDSoXVAAAAAACHQdUAAAADAeNp1QAAAACCXNXZAAAAAoIZQdkAAAACAS2R2QAAAAGDqb3ZAAAAAwAqEdkAAAABAupd2QAAAAACwxHZAAAAAgIDzdkAAAAAAyyV3QAAAAKBfNHdAAAAAwNJod0AAAADgj3V3QAAAAGCyp3dAAAAAALEXeUAAAAAgAyR5QAAAAIDWL3lAAAAAwAg9eUAAAABgl5Z5QAAAAGCEYnpAAAAAIFLtekAAAADARqd7QAAAACDzuXtAAAAA4EpOfEAAAABgjIt8QAAAAKBS5nxAAAAAwFJUfkAAAABgknV+QAAAAOAtnH5AAAAA4PO2fkAAAAAgfgh/QAAAAMDFFX9AAAAAwP1Kf0AAAAAgAXZ/QAAAAOBlpX9AAAAAIGnUf0AAAABgU+B/QAAAAOCzC4BAAAAAABtTgEAAAAAgtpCAQAAAAMD02YBAAAAAoBkZgUAAAAAgAV+BQAAAAGB6iYFAAAAA4JqmgUAAAAAggauBQAAAAGBuVIJAAAAA4K+SgkAAAADAnJqCQAAAACCMGINAAAAAgD5tg0AAAADgfZ+DQAAAACA+CYRAAAAAIMBshEAAAABAF3SEQAAAAGCNYYdAAAAAACU9iEA= + NrgMGZxjYkCPTWWFSwNpQBu6YmAmQ3BA7mf6OVSSdECpEa9//lN2QBBx/GrXAnpAqW+L01ZlfUDsZUjS9xmAQGW8RgLtaoFA7JQ2/KOig0Bl6zQsmfOEQONztirbOodAyRj/SCUMiEDjoqRUh8OKQCoczjJ4JIxAnfWETP/DjkDHJMwngl6QQBhrFEQrZpFAQxQMv50qkkDKgXlScfKSQI0E3lzJLpRA4QRMJaKGlECjGR9e70qVQGEcQzr4SpZAIzEWc0UPl0B2MYQ7HmeXQDq06EV2o5hAwCFW2UlrmUDsyk1UvC+aQDwRlnBlN5tANrsf8ucznEDuJ/t+q4OdQJPkD+4jNJ5An6ni89SPn0AT/AYDevifQCjgI4ENjqBAyHUjzUrioEDoa5+LOHChQIgBn9d1xKFADK2/8UgeokDhjNHemIqiQMw4O/xzAKNABc7xRKk4o0C+wyQAj8KjQCrG2hO/OqRAfk+gCrqkpEC1UHsU0sikQA== - + - F3O3P/G3ckDQgX9A6zCQQMHXvkECmAZB0aPMQM/oxT+XkotBWZQcQMw+4EC1a21BIipBQE/1lkAdjAhBCNIrQG+6yT9fxI5BCIqfQT5qm0C5ieRA64fJQLfaC0HpEnlAvucAQJIgnUDTHe8/Npx4QDCPFkEzlQZCs/mpQHglBEF8JNA/leI9QA4Q6j8xzIFACxfKPxGVCEDCUyBBZEDcQNy8QkDqlYpAi/mgQQJlW0Efo51AQAEdQL4ELEC8FQpAcEpqQVIVUkKbJ+8/e/GIQbTW5UCQa/BAYIA4QHbSpkCA1qQ/JQr+QHIJUkEkgbNAk3mKQEmcXUEC09NAbHiJQHw4JEByyC5AGFG4QRaZBkG+W7RA7B0KQPjCpEAoHls/sPwMQKODWEFyeSBBwsUbQns0WUHNSlpACJJuQbP7lUCgcJJBuHgcQDBQE0CsnDhByqsaQiW7skALLxNB1qbjQ7JZukFrHoZB4lYJQhn5nUFkEi9Aqrk2QBKd2z+DprRANYFJQYPi4kDk9JJATZm3Qc7DBkDEryxBk7iGQuLNkkBCeYpAaFEFQd5qoUDdco9ALh+NQUIdikGHDKU/AijTQM+sg0EUdiJBlNncQ50uLUFQnzxBKqJuQch1gkFJ+V1AsLAAQCjDlkC53B1BwEeAQkJjyUF89IdBCty+QDgPs0DvVK5BwZVUQDXWDUH52F1A6CarQCht90APeq5AyRaPQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAAPlnYkAAAABgaAJkQAAAAIA0B2ZAAAAAwEkEZ0AAAACAyzdoQAAAAOD0Y2hAAAAAoDfoaEAAAADADwVpQAAAACACBWpAAAAAIE4+akAAAABA3GNqQAAAAEBDp2pAAAAAwGvkakAAAAAAeiJrQAAAAAD2wGtAAAAAYA7ea0AAAABAv0RsQAAAAEBhbW1AAAAAAHq9bUAAAABAVcFuQAAAAAB7Zm9AAAAAQNqPb0AAAADAFkBwQAAAAKBOoXBAAAAAwOTOcEAAAAAgcPJwQAAAAIA1UXFAAAAAQJXTcUAAAABAeQ5yQAAAAMC5H3JAAAAAgOVQckAAAADgSMRyQAAAAIBHVHNAAAAAgPZwc0AAAAAgkyV0QAAAAACgL3RAAAAA4FzWdEAAAADArAF1QAAAAADDD3VAAAAAQCsldUAAAACAX1F1QAAAAACvcXVAAAAAwCahdUAAAACAXcB1QAAAAMBQ9HVAAAAAwL4NdkAAAABgtDt2QAAAAEC5RXZAAAAAYPVSdkAAAABA3WV2QAAAAIAdi3ZAAAAAwFrGdkAAAADAoeN2QAAAAEAvIHdAAAAAwFqPd0AAAACgwKV3QAAAACBgsXdAAAAAoED2d0AAAABgJS14QAAAAEC2UnhAAAAAAPaveEAAAABgyb54QAAAAMAlzXhAAAAAoBPXeEAAAAAAQvx4QAAAAGDUN3lAAAAAoM5SeUAAAABgtV55QAAAAGB7cnlAAAAA4BHgeUAAAABggv95QAAAAKBmDnpAAAAAQKscekAAAACgcy16QAAAAIAYQ3pAAAAAADFcekAAAACgycV6QAAAAKApIHtAAAAAoL42e0AAAAAgn057QAAAAODhW3tAAAAA4PGTe0AAAABA3517QAAAAMA4sXtAAAAAoJzVe0AAAABg3OB7QAAAAIDQcnxAAAAAIByKfEAAAAAgnG5+QAAAAOAxe35AAAAAwAaFfkAAAABgbWB/QAAAAGDcan9AAAAA4OR0f0AAAABg7ymAQAAAACBU8IBAAAAAYB7/gEAAAADggi+BQAAAACC4aoFAAAAA4AeDgUAAAACAjKSBQAAAAEAFvIFAAAAAoG/JgUAAAAAAfxmCQAAAACC2fYJAAAAAYEiigkAAAACAs7uCQAAAACCYwoJAAAAAIH3jgkAAAACAhf2CQAAAAIC7A4NAAAAAQG4Ng0AAAADgajiDQAAAAADoR4NAAAAAYOaEg0AAAADANIqDQAAAAOB954NAAAAAYAb6g0AAAACgDxOEQAAAAMAfboRAAAAAoMaZhEAAAAAgPKGEQAAAAAA56oRAAAAAIC5QhUAAAAAgWVuFQAAAAOCvmYVAAAAAoF/WhUAAAACABwmGQAAAAGCZkodA - - - - - - DYVBQMd26EBIZYpA8BNsQEPvuj8p2IhAHQtwQMpjyT9BaDlABq1QQJje5z+No7tAD9cJQHPx7j9eJVpAHRZtQC+uNkCwmBxAf4pSQJK8EkCOMVpAe0w4QVaHVkBJAzBAt/4JQOuipT8jOPhAnAOPQO6bEUCIYIBAmVjiQH/I3EFdSBNACarJP7Vz3D+SgmZA1EI4QXUSsUBgDwBB7NXuPxQE7z/ZHixB/f7bQPc5gUBb2YVAXx4TQEYZKkEIW/NAoe4JQF7+N0GcuQ1BKYVfQb0DUkGHT7c/k6MJQE47OEBAr3tBzpsAQOfubkACjYtA1J2hQUxyIkEXmLZBbCCxQA7AyT/cBh5BJg3fQaHTxkHule5ArFyZQFUWE0AAAs5BDwzYQTla8ED7sLpBwJ5FQhSjlkA6HC9ALsGtQGYqzED6c3RB5tPzQOagc0HeYgFAqaK2QdhkIUEcSjhCFt5FQTkshkDSGxNAwopmQPqUDUGEUXhAAnJmQP3mFUCAgmNAHSu7QTje0kD8imBBBT15QdZEGEGlVClBdb7QQE7w2kA3N8BAnFgHQV0q90HMMRZBYJTaQO4QJULTiKxC78prQegmXUB8THtB3NCcQXJ+sUE6wqQ/T2C3PyphgECBlgdD9Co4QJlU1kCpvck/rH2vQCNC4z/6rQlBZbYhQNxZUEJDZKc/ - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAJPLVUAAAABA1UxWQAAAAICo1lZAAAAAIIQ4V0AAAADgfQtYQAAAAIBJBllAAAAAgOiwWUAAAADgBqFaQAAAAMDvylpAAAAAIH9XW0AAAACg/4lbQAAAAABJzltAAAAAgFS0XEAAAACAVJBdQAAAAAAyA15AAAAAwDNDXkAAAAAAypNeQAAAAMA8y15AAAAAIHM9X0AAAADAnwFgQAAAAGCyJGBAAAAAAM5KYEAAAABgOGRgQAAAAMC+n2BAAAAAADjBYEAAAABAIANhQAAAAADxQGFAAAAAgKRmYUAAAACAJ6ZhQAAAACBxzWFAAAAAALzkYUAAAABAzoNiQAAAAEDfomJAAAAAYOfBYkAAAAAAyv5iQAAAAICeJWNAAAAAADSCY0AAAAAA36VjQAAAAIAmymNAAAAAIO0jZEAAAACAAadkQAAAAEBSxWRAAAAAAJHfZEAAAACAwP5kQAAAAMBPJmVAAAAAQA9GZUAAAADgvqhlQAAAAMDGxGVAAAAAgDjgZUAAAAAA4SNmQAAAAMAHRGZAAAAAYPaHZkAAAABgj6dmQAAAAAAx/2ZAAAAAwLMlZ0AAAABg7KtnQAAAAACcB2hAAAAAoDM9aEAAAAAAh2RoQAAAAOCkp2hAAAAAQEzHaEAAAAAAKuVoQAAAAABUHWlAAAAAwHtBaUAAAAAAwoZpQAAAAIDyo2lAAAAAgCHHaUAAAAAASeNpQAAAAABHAWpAAAAAAJ8cakAAAAAAAYJqQAAAAEA+pmpAAAAAQMLQakAAAABAyOVqQAAAAEAoRWtAAAAAwMlia0AAAAAA5oNrQAAAAABaxmtAAAAAQK7ga0AAAAAA3URsQAAAAECKZmxAAAAAwEaMbEAAAAAAgrZsQAAAAEAUBG1AAAAAAPIhbUAAAADACkRtQAAAAMAEd21AAAAAQMqgbUAAAACAwMFtQAAAAMBf5G1AAAAAQMwBbkAAAABAriduQAAAAIAARG5AAAAAgD2AbkAAAACApeVuQAAAAIDV/m5AAAAAgAApb0AAAACAO2pvQAAAAIBppG9AAAAAwPjFb0AAAACAQf9vQAAAAGCHEnBAAAAAwH4gcEAAAACAkzBwQAAAAKDLQXBAAAAAADNVcEAAAAAAuXtwQAAAAEC4h3BAAAAAAFiScEAAAABAgK5wQAAAACAfxXBAAAAAgNrjcEAAAADA+/FwQAAAAEBcInFAAAAAQBNBcUAAAADAflFxQAAAAABTnnFAAAAA4JYEc0AAAAAgdoRzQAAAAMBWl3NAAAAAQMCzc0AAAADglcRzQAAAAECcI3VAAAAAAPsydUAAAADA+Ex1QAAAAGAhynVAAAAAQB8AdkAAAABAcHN2QAAAAGBd73ZAAAAA4Lr7dkAAAAAgAAd3QAAAAGCYN3dAAAAAYMJRd0AAAACg72V3QAAAAMCCd3dAAAAAIGKTd0AAAABAf6V3QAAAAODxsXdAAAAAQPrAd0AAAADAMQZ4QAAAAKCVGXhAAAAAoIEkeEAAAADgGYN4QAAAAODyknhAAAAAoHmdeEAAAADgX694QAAAAKAP3HhAAAAAAL0KeUAAAADgNiJ5QAAAAIDfg3lAAAAAYMbUeUAAAABgyOR5QAAAACDBR3pAAAAAYDd4ekAAAABgnI16QAAAAEA5JntAAAAAoOdne0AAAABA8TF8QAAAAMADRnxAAAAAQIJlfEAAAABA7AB9QAAAAOAw431AAAAAQJtjfkAAAABAQ8R+QAAAAEAN035AAAAAoHjlfkAAAACgKxV/QAAAAKBT5H9AAAAAIAr3f0AAAACgiAKAQAAAAAAxO4BAAAAAwMJygEAAAACgKHyAQAAAAMAwNIFAAAAAoDmUgkAAAACgNeSCQAAAAODKEINAAAAAYIobg0AAAACAqGqDQAAAAOANc4NAAAAA4Lp6g0AAAABgdIuDQAAAAOBjnINAAAAAoKz6g0AAAAAASQOEQAAAACAPi4RAAAAAICaVhEA= + KBZXds7jZUAtECBNt2JpQGxclKvzIXFA2+W/dP8idEDCsJiwi5J1QDE6xHmXk3hAh47Ifi8EfUCJCy3qo8N+QG5x5sFjuoBA - + - R+hKQCy3g0B9AApA8FZBQJJZa0BQ9/dAabxmQAFj3D/uOYdA7X7oP0ezFUHkXhxABQRAQNXvSkByFzhATGfJQPm9uEAZtyFBlGi7QPAfXUBPZZJByMunQT46T0Jh9KpBPJfuPwfM0kCMZalAOIUgQe1bnkC1xo9A0vmIQFASiEAenKFArcFvQCVx10CyxI9AcgeTQHTMyEA1xu8/7JGkQI87mEBmBIRB1nWlQIIGGUDEpC1BHSx5QA9x3kAF87JAxg4vQEPNj0GaRyJA0i9iQSD1HEAQlsZAT+ANQtr8EkBqUoBA9gZ5QIRVnEGKaGxAhhwuQdiFpECkyapBbGgJQJ7APUBr82tAqfYlQZHwjUA17xtBkneYQEymyj/51s5B+uBvQNmSvUFw/o5AO0+SPyku0kGsYhhClhLEQSQvDUFj5ytAb4ywQGuV7j9lPIVCsHclQXvJNEECq29ArsiMQPxE30FteCJBG+A0QxL2q0ErxOc/cshAQfIHukA501NAR3qbQLjHqUGVRqlAWMHZQbKTQ0H1vR5CmmZgQmwtT0M2bQ5CQLrKP8YplkGMwLdBwP1PQcYWHEKTUhBBGJ2VPyHL+j/cevBBaabcQCGINUHPrpNAJUGbQCK+rEFgdQBDtZWWQJIUkj+zQxhBL1Q8QSSKyUDZDjFB/hcjQWx1GkCYO8BAmEfqQG6krkD6oyVArOGJQonWK0AaQtpB+wywQfWpOEHw0CpBnGWaQd//v0MEIkpCTC0+QbmElkB2Ar1DU0k+Qy/uEkH6Iy9AQWS3P1YXUkAhdLc/CgHXQgDzDELe9gdBqOBKQHk+gUBUcGZAIRC3QBwxdUAR8ulAjciKQFQ0ZUB1j6BApnKvQNh66EAGchlBNjkTQVG4XEBqTzxBiwUfQevI7j+TSl1AO2LlQrzLZkGyoaQ/oTc4QAc10UDkBy9Az2VBQJbRZkB2HsBAYvScQTplXUC0tIhA9uTmQW5RBUHf5LhAonavQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAwJvHZUAAAACgUP1nQAAAAECZ3GhAAAAAQON+aUAAAAAAteNpQAAAAMCXpmtAAAAA4O5NbUAAAACApnltQAAAACBig25AAAAAoJnQbkAAAACAh61wQAAAAMB083BAAAAAQOYgcUAAAADAC3NyQAAAAGAO9HJAAAAAQLpPc0AAAADASLVzQAAAAIDVlXRAAAAAQLIHdkAAAACA8px2QAAAAADasHZAAAAAwNwQd0AAAACAqkR3QAAAAIDrZHdAAAAAANpkeEAAAADAsBR5QAAAAACoWnlAAAAAwA6eekAAAADAMFx7QAAAAACZontAAAAAACaze0AAAAAAjhx8QAAAAMBKvnxAAAAAQI8AfUAAAACALWB9QAAAAAB+q31AAAAAAEa/fUAAAACArcl9QAAAAEDW9X1AAAAAADBKfkAAAABAQl1+QAAAAIBPjX5AAAAAAAyafkAAAAAAlqp+QAAAAEAPNX9AAAAAgJubf0AAAABAz6V/QAAAACA1DoBAAAAAAM/ZgEAAAADgumaBQAAAAODJg4FAAAAAoHECgkAAAABAnBWCQAAAAIBeNYJAAAAAQOdlgkAAAABAob2CQAAAAEABPoNAAAAAoMeTg0AAAACAjc2DQAAAACAaCoRAAAAAYBQ6hEAAAACgxyuFQAAAAGAGNoVAAAAAYKZEhUAAAADgXnCFQAAAAADTdoVAAAAA4GPPhUAAAAAgj/uFQAAAAABMzYZAAAAAQBtih0AAAACgALKHQAAAAKBLHYhAAAAAAAGziEAAAACgF8KIQA== - - - - - - apqJQH3SkT8rVIlAVS0AQBtIw0CEUMFAzCYRQQLG8D9BgStBbPw+QK7VhEC9V9dAJRIsQBj9QkE3grc/Gx60QFDjEkB7M11Akf5iQJzGkT9eFX9AsrpIQFeItj++A1xAqvWDQOUvm0B40ddAoCRjQBvv7z/Mq6FAfAF5QOK0LkBc8JdAAsBdQZf+O0FN28VBmo0gQsHIN0JJhsk/apSfQUYhj0AaI4tBJNmIQPdUP0L3T2ZBdfxvQUnGWkA+Ye4/SJO7QOqDL0Al965AkmPoQC7eAEGC8FhBBeHiQMAI1UHnV6ZADLaZQL1Q3D9dB7NAYzOgQIvx2z/U31FBViwFQr4rk0FfXCJC6XFoQZE3iUAgpUpB4XjXQGJEtEBKqNs/rnbXQMr67j8= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoLkjcUAAAABgNlByQAAAAIAasnJAAAAAAGxhdkAAAACA3AF4QAAAAMCvFXlAAAAAAOkIe0AAAABArJB9QAAAAMBBRn5AAAAAwAtif0AAAACAukGAQAAAAGBSioBAAAAAQBGSgEAAAADgVSKBQAAAAGCxYoFAAAAAwHVrgUAAAAAATKKBQAAAACBA6oFAAAAAYF7ZgkAAAADAnjqDQAAAAGAhUoNAAAAA4K9rg0AAAABgjvmDQAAAAIAMV4RAAAAAYA9dhEAAAABAW2mEQAAAAGCxqoRAAAAAoAH7hEAAAACAb1mFQAAAACAqZYVAAAAAoNiKhUAAAADgksGFQAAAAGA4C4ZAAAAAIC8UhkAAAABgSYyGQAAAAODYmYZAAAAA4G4Ch0AAAADg6mCHQAAAAMB+b4dA + U6vsr5viYUA2uAwZnGNiQOJgFSPMRGtA - + - 06SBQNPEb0AN3jlAi05KQGloiECtJcBAve83QGshB0BWbiVAeD9QQAG7tkAtxxhA7aNIQUISHkFL5I9ArsSEQJeUAEH+qds/liDbQO9Hj0Clo45AGkakQFgF6UA0opFAqk6RP7iCm0EiQyNB1QbDQZd87j+wTIpAAJ6WQaOWR0CN0qRBT3yhQIMqDEHrsglASC9IQUeCrUDsVg9B + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQIZjaUAAAABA4gFsQAAAAMCVxW5AAAAAIO9hcEAAAADA6EBxQAAAAECSIHJAAAAAQEl3ckAAAAAAKoRyQAAAAMCelXJAAAAAQDICdEAAAAAA+jV0QAAAAGBNZHRAAAAAgOF0dUAAAACA3NJ1QAAAAIAf9XVAAAAAAG8ldkAAAACAjgN3QAAAAMBLdXdAAAAAwMm1d0AAAACAg0R4QAAAAACQsnpAAAAAQA4ke0AAAACACW17QAAAAIAI8ntAAAAAwP+QfEAAAADAC/V8QAAAAADkNH5AAAAAQDpffkAAAACArKJ+QAAAAEACGH9AAAAAwNJXf0AAAADAO3J/QAAAAMBIhX9AAAAAgNy/f0AAAAAAqvZ/QAAAAODZh4BAAAAAoG++gEAAAAAApe+AQAAAAEBlCIFAAAAAQJkfgUAAAADAaUCBQAAAACB/RoFAAAAAQMhjgUAAAAAgb3yBQAAAAEDDgoFAAAAAYIOLgUAAAAAg+qKBQAAAAMBty4FAAAAAYBvSgUAAAADAidyBQAAAAIAMMoJAAAAAgJA7gkAAAADAPmKCQAAAACDfrYJAAAAAoAH0gkAAAABg/xaDQAAAAKAJQoNAAAAAQMZJg0AAAACAjVKDQAAAAABMhINAAAAAgHucg0AAAABgdMuEQAAAAKB+0oRAAAAAYDo8hUAAAAAAS1mFQAAAAODSYYVAAAAAIKKjhUAAAACgwtyFQAAAAEAo7IVAAAAAwCD0hUAAAACgXzOGQAAAAKB/OoZAAAAAoI9DhkAAAAAgdISGQAAAAOAgjYZAAAAAICachkAAAAAAHaKGQAAAAGDZu4ZAAAAAYFXThkAAAADgaRmHQAAAAGB8MYdAAAAAIFl3h0AAAAAgCPuHQAAAACBVPohAAAAA4N3RiEAAAABge9mIQA== + KBZXds7jZUA= - + - BTJBQMDqEkCkxvxAL3LlQJ0lMEFWslBAXgx/QPETEkFhuhtBUuxGQAz9DkB4rEpA/It1QVWIJUDKNwFB+YTMQITnjkCpnGhBJC+yQKitQ0H2CSVB+ZCSQY70EkDMsH5AXA7PQFrQyUAOwoRAOwykP3B2B0FRXodBeP9hQfU61EHpYRRAf+wlQKAVDEA49tpAQSdIQPs1b0HMfWJAH/EYQPWByD+whK9Ah8tZQbyUz0HH7dxC2EYJQvnvg0AREcdA9EucQXN0AEAotIVAyB3AQJZvb0B0+RJA5bLJQG5WR0DBML5AfItRQbLNP0GNAqQ/+2olQCeWAECXQ8k/hL0wQSqP6EDYAFFBUZFUQiED7EDVzxhCDnTAQusNk0FO945AGHtCQQyhy0HQchRBNkOcQNaHhUAe+wFBM/jwQOxUu0HMaABA0XLeQIoORkGOT21Be9A5QakqgUA= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4BD6aEAAAACgrcVpQAAAAODSJ2xAAAAAwNXHbEAAAADAYwRuQAAAAAB+G25AAAAA4F9fbkAAAACAHSpvQAAAACDtaG9AAAAAgC8ncEAAAACA0zRwQAAAAOB0/3BAAAAA4DNEcUAAAABA9YRxQAAAAODJF3JAAAAAwKnickAAAACAwzN1QAAAAADaU3VAAAAAQK5wdUAAAAAAa311QAAAAMB4/nVAAAAAQFMDd0AAAAAAdzZ3QAAAAMDXx3dAAAAAgBcleEAAAABAcVJ4QAAAAEA1ZnhAAAAAQJ+EeEAAAACAlzR5QAAAAICrU3lAAAAAwAy0eUAAAADAtfJ5QAAAAMCaQnpAAAAAAPpeekAAAACAqIZ6QAAAAIBZAXtAAAAAAMwme0AAAAAAN9F7QAAAAMC+RHxAAAAAAJxUfEAAAACAN2l8QAAAAEAdpXxAAAAAwDVwfUAAAAAAdMV9QAAAAMDVWH9AAAAAgOBjf0AAAACgrRqAQAAAAOBNLoBAAAAA4PtHgEAAAADARluAQAAAAMCenYBAAAAAoG2pgEAAAABgpOSAQAAAACDPCYFAAAAAoGIYgUAAAAAgz26BQAAAAODaj4FAAAAAIKC7gUAAAAAAjuuBQAAAAOBB8YFAAAAA4J4IgkAAAABgeyqCQAAAAOCGN4JAAAAA4DVbgkAAAABARWWCQAAAACC7d4JAAAAAIKB/gkAAAADg35KCQAAAAODtqoJAAAAAYCW7gkAAAADgicOCQAAAAIC7zIJAAAAAoFXSgkAAAADA/N+CQAAAAKDoB4NAAAAAYE0ig0AAAABgStiEQAAAAMDmGYVAAAAA4A+jhUAAAAAguiGGQAAAAOBsK4ZAAAAAwEo0hkAAAAAg6VCGQAAAAMBSbYZAAAAAwD22hkAAAAAA5ryGQAAAAOBaxIZAAAAAoO0hh0AAAAAgOSuHQAAAAKBJOodAAAAAAMKLh0AAAAAgELuHQAAAAOApQ4hAAAAA4PtIiEAAAADgAamIQA== + KBZXds7jZUA= - + - 0rw3QDmU50CFx45AZ/yhQDc9y0D8v61ANdDuP9CYkkCstXRABMYtQg7CfkC/UWtAhsJTQSktJUAUSZNAXtiAQFLQ7j8goadBUCcuQAHIt0DQ8mZA3ur/PwjhQUGXdhRAFE0YQWHdIEE2I8lAj0TbP+K2kUBCLopAjmm2P7clwkBDF5lAH26hQOk+20CKOQ5B0vfJP0FhG0C7ZBZBUykVQd7uQkGzgkFAfvJcQDBnJUA883tBUxVpQcbSEEBU9xtB0hu5QHsyJUFzyypAbBubQCrBk0Au/ORAVYKqQQ7+UkG66bBAgQikP1xKb0B+b8FA2rO4QPLV1UAUVYpBwR9uQQcqNEA85yBA8I2tQM+kyD+u3vJAWCxqQlEV7kEjOEhBzLnSQA4gUkLWuIxB9mHtP7Zxu0B3Bz9AJF9rQI1okUCnx6pAmYekQB3WdUE2gx9BGkrRQJE+60F7NGJA22ccQEj1nEDRAs5AyzWbQHx1F0FqQAhBTTCGQdnmwT8= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgHurakAAAADAOOdrQAAAACAqhW5AAAAAQNzkb0AAAACgtdFwQAAAAGA2BHFAAAAAwPwSckAAAADgdaVyQAAAAADJAnNAAAAAgGpUdEAAAAAgYjl1QAAAAECQo3VAAAAAQNoLdkAAAAAAFzR2QAAAAMAP1XZAAAAAgLUid0AAAACA/kt4QAAAAIAAV3hAAAAAwDMNeUAAAABArHN6QAAAAECpgHpAAAAAgBYkfEAAAADANDF8QAAAAIDdRnxAAAAAQKCAfEAAAADAJSN9QAAAAEA6s31AAAAAgAf3fkAAAACAjQh/QAAAAABpE39AAAAAQB9Wf0AAAADAe3d/QAAAAIAWl39AAAAAgM/Gf0AAAACg3w+AQAAAAADfGoBAAAAAQHlBgEAAAADgfGuAQAAAAODDe4BAAAAAAK6DgEAAAABgOfGAQAAAAEDVLYFAAAAAoNl/gUAAAACg/4mBQAAAAGDXl4FAAAAAYGSdgUAAAADggqiBQAAAAMAYzIFAAAAAQGbigUAAAACgmfuBQAAAAKC7B4JAAAAAoIsogkAAAACgj0GCQAAAAKBPYoJAAAAAwCtqgkAAAADgPpSCQAAAACApvIJAAAAAIDrHgkAAAABgCCODQAAAAMAjKINAAAAAoFoyg0AAAACgDm+DQAAAAAAJg4NAAAAA4Firg0AAAADgltGDQAAAAKAg94NAAAAAIPwNhEAAAACgBBOEQAAAAGA9HIRAAAAAADs3hUAAAAAgbJKFQAAAAICP4YVAAAAAwKU2hkAAAACgpEGGQAAAAGBpa4ZAAAAA4MRwhkAAAABgP56GQAAAAGAewYZAAAAAAMUWh0AAAACglUCHQAAAAIALYodAAAAAIHd7h0AAAABgvayHQAAAACDH2IdAAAAAoMT7h0AAAABg25qIQA== + KBZXds7jZUCs9CaTvbFwQJ0RHYnYgnNA - + - acewQH5FOkES2VRBdUMAQFa0zEEzqlNANZQmQTr2B0BXFfA/3aD/QCUpBkFx2pFA8qkQQauLgEDN4sg/fPVJQaYV0kHtCTdBvCtCQjTYDEFEMqRAfAjcP2tvSkAyh8VA1Cy7QIznXEBuB5hAVdASQKiWNEE1pipBtxYhQbY3PEEN1o1A4+3pQJtPt0B2iZNAeQ+mQNdaJUAjyKhAwiu7QBwB7j+ovRJA/j/+QJi4OECQmbFAE+DbP4wGwEBRVZlBXfCjP0X27kA16oxA8MW7QLuxAEHmCNRBJtwoQR6qf0AMZN5AnS9eQMcRtUG+9TJA6nKWQFTcjECrNQlA5PfoQKWrEkGgOyVBp6CtQF84fUEu7BpAq4XkQHK+skHZIzRBuHFVQYgOOkHinDxCQX3MQKWqskDCyIhAB98+QGBMAEBOTi9Ayq94QUvGkUBs/TVAEDdIQbRjI0A= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoMCEYUAAAAAgLMZhQAAAAED1X2JAAAAAwJKLY0AAAAAA/b5jQAAAAECPUWRAAAAAgAQjZUAAAABAXKllQAAAAMCz4GVAAAAAIP0mZkAAAABAOSZnQAAAAEBNRmdAAAAAQJSBZ0AAAADgwP1nQAAAAMBvSWhAAAAAQJinaEAAAAAA1cFoQAAAAECI5mhAAAAA4NgBaUAAAAAAlCRpQAAAAIDBG2pAAAAAwHo6akAAAAAAm2FqQAAAAMCcpGpAAAAAwOYja0AAAACAs1lrQAAAAEAyG2xAAAAAAC7rbEAAAADAHCNtQAAAAEDcXm5AAAAA4FEgcEAAAABg04BwQAAAAKA9tXBAAAAAIPLhcEAAAAAgcPJwQAAAAAC8IXFAAAAA4HKEcUAAAACAa5RxQAAAAEBwo3FAAAAAAObQcUAAAAAAMuNxQAAAAKD1I3JAAAAAAGdackAAAABALoByQAAAAAB0onJAAAAAgLvBckAAAAAAp+JyQAAAAIDiIXNAAAAAQPNCc0AAAADANllzQAAAAOCAZnNAAAAAIFd1c0AAAABAIKRzQAAAAMAitHNAAAAAAEjlc0AAAABgOvJzQAAAACDCKnRAAAAAABRAdEAAAABg9090QAAAACAWfXRAAAAAwLvsdEAAAACgiEF1QAAAAGDNUHVAAAAAoERhdUAAAADgo4N1QAAAAIB033VAAAAAgD/9dUAAAABAnTl2QAAAAADoYXZAAAAAAEa0dkAAAADgbst2QAAAAADT23ZAAAAAIJDydkAAAACgWwB3QAAAAODNDXdAAAAAIKwjd0AAAADgyTZ3QAAAAIAxk3dAAAAAwCird0AAAACg1v13QAAAAKAlHXhAAAAA4NYmeEAAAADAal14QAAAAICOs3hAAAAAIKX6eEAAAAAgpBJ5QAAAACCB73pAAAAAwLr/ekAAAAAgOJ17QAAAAIAduHtAAAAAoB0QfEAAAABgKIF8QAAAAEBHpXxAAAAA4GXkfUAAAABgQYl+QAAAAOBC5n5AAAAAoMkIf0AAAABggxZ/QAAAACAEiH9AAAAA4GiWf0AAAACgqrR/QAAAAEDT039AAAAAAFxIgEAAAAAg2k2AQAAAACDBY4BAAAAAYImqgEAAAACAP9KAQAAAACDA3YBAAAAAICrkgEAAAACgmfKAQAAAAED7EoFAAAAA4B6CgUAAAACgppKBQAAAAODtI4JAAAAAIJWKgkAAAAAA2dqCQAAAAOA2AoNAAAAA4LMRg0AAAABgjHyDQAAAAMBTiYNAAAAAIIWUg0AAAABgFp2DQAAAAGDzq4NAAAAAIGAchEAAAADg8zqEQAAAAOCAQoRAAAAAwHNShEAAAABgsIuEQAAAAGBxBYVAAAAAAKsVhUAAAACgrCOGQAAAAODUNIZAAAAA4E7EhkAAAADgBMuGQAAAAGAIFYdAAAAAQNBUh0AAAAAgulyHQAAAAGB2FYhAAAAAAB9riEA= + KBZXds7jZUA= - + - kZ11QDz9g0CbtgdBgV6kQNWjnEDmaVNAIDdBQD0BJUCymIhADqAPQep4F0NXY2JA/VyTQDZGJUBJvn1ATBhKQH/Fj0BeEP9A+v3KQOE8iUFA98VBgvZaQZqug0ApCQdDCgeEQYJQ2kAa1c9AHgGMQCnHU0DICt8/U4CpQNLH8kDil1RAu4cOQO0+S0DHTpE/Os6JQUGfC0GrbnhAy77IP3qBD0GTHBpBEaswQeQrpUBTbHNB/hTOQDIXEUAzEeJB01hOQRgKG0H+Y4lAUzccQDiaAEKGeNFA/KKnQUZKmEDK8ONAxjWYQTAQSUFKwidBG6fJQDyL/EC2/G5AO9teQvF74ECtrP9AkYnbPw61U0Djgo1Af9Y1QaZIDEPg+l5BRKtyQBIAVkHO/uRA9gMtQuGhNUGUIslAhvobQANSgEH5zOpCcfXYP9eEG0CwMChB8LhyQU9o+ED47kBAYrclQet7AEGFgOhALCfGQEHsUkB6XsdAZ6ZTQEE/XUAMRsZAR1bEQHetSUAhcTFAB+mJQCckjUCM2xBATuoEQdXVYEEauF1BEGPbP2Q5tj+k/qtBEe8UQnzFyT+zucxC7XxGQdcM8T+uJT9ABpmTQJvK0kBQNwBBjE/aP6xK6ECSzY5BCAWmQC61f0BBJRpCkhxJQdsdlkSSEmZCrjJbQL5wPEITqNs/Ca8OQUV4iEAjny1BO54xQjTNoUF+ANs/q6+uQR7UCUG39xhBxvXkQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQJg9YEAAAACAcv1gQAAAACCDzmFAAAAAwFV/YkAAAACgJ6JiQAAAAMCbHGNAAAAAAFWjZEAAAADglQhlQAAAAAB1RmVAAAAAgNbEZUAAAACALltmQAAAAMAJ72ZAAAAAYBkmZ0AAAAAAy2VnQAAAAECdhWdAAAAAYNl3aEAAAAAADp9oQAAAAAC+JmlAAAAAYOsJakAAAACAT0ZqQAAAAABwXWtAAAAAANYKbEAAAAAAjkRsQAAAAADrxWxAAAAAwB/mbEAAAABANftsQAAAAMDGJW1AAAAAwM6AbUAAAACAm6VtQAAAAADj521AAAAAAJnpbkAAAACA3v1uQAAAAABLJW9AAAAAgFthb0AAAACguCJwQAAAAKCFU3BAAAAAgMdicEAAAABA+m5wQAAAAMBcg3BAAAAAoLaTcEAAAABgEqRwQAAAAOBo03BAAAAAAM3xcEAAAACAQwBxQAAAACC3EnFAAAAAoGFBcUAAAAAgr21xQAAAACCijnFAAAAAgEy8cUAAAAAAP0ByQAAAACDhUXJAAAAAAP6mckAAAADACsZyQAAAAEASAnNAAAAAgBoTc0AAAAAAHDdzQAAAAMCLQXNAAAAAQHhQc0AAAACgbWFzQAAAAADTkXNAAAAA4NGjc0AAAACAJgB0QAAAAKBjFnRAAAAA4P4fdEAAAACgTi90QAAAACABUnRAAAAAQOnWdEAAAACggf50QAAAAICVCnVAAAAAwBEVdUAAAABAZyp1QAAAAOCEPnVAAAAAgHNNdUAAAABAR2B1QAAAAEAKl3VAAAAAQMajdUAAAABgKbZ1QAAAAMDw8XVAAAAAAP8ddkAAAAAgJEZ2QAAAAICccHZAAAAAQEeWdkAAAABguqR2QAAAAIBMxnZAAAAA4OLSdkAAAAAgo+V2QAAAACDEJHdAAAAAYEtFd0AAAADgtVF3QAAAAKABX3dAAAAA4LPRd0AAAABg0Nt3QAAAAOBFU3hAAAAAgBBieEAAAADggX94QAAAACCnp3hAAAAAgH6+eEAAAAAgsc54QAAAAKCU5XhAAAAAYJE3eUAAAACgE1R5QAAAAOBSZ3lAAAAAIFR/eUAAAAAAGpp5QAAAAICTp3lAAAAAIDOzeUAAAAAA9MF5QAAAAOAE+nlAAAAAwIgUekAAAACgCiV6QAAAAMCiL3pAAAAAQLlcekAAAADgUWh6QAAAAGB8NntAAAAAwGdlfEAAAAAgjtN8QAAAAMCcPX1AAAAAoIagfUAAAADgsrJ9QAAAAMDbSX5AAAAAoEp7fkAAAABgkwJ/QAAAAGBtDX9AAAAAYGwkf0AAAABA7EJ/QAAAACCDZH9AAAAAYFx3f0AAAAAgw4Z/QAAAAMCax39AAAAAILHWf0AAAADghyCAQAAAAAAaLoBAAAAAYDM0gEAAAADg1mOAQAAAACDBooBAAAAAYJuqgEAAAAAAoyOBQAAAAADfmIFAAAAAYIqqgUAAAABgW4mCQAAAACBvu4JAAAAAoMzEgkAAAAAgm9qCQAAAAMBp7IJAAAAAwBQZg0AAAADgKSGDQAAAAMCLMoNAAAAAYN86g0AAAACginyDQAAAAGD6hoNAAAAAIOrhg0AAAAAghAuEQAAAAAApQ4RAAAAA4PlWhEAAAAAg+qqEQAAAACDuG4VAAAAAYJuihUAAAAAg4OuFQAAAAGD4UYZAAAAA4H+HhkAAAABgOpmGQAAAAOAIAodAAAAAoAwXh0AAAADgEa6HQA== + KBZXds7jZUAot2DdIQNrQCKz/A1pknNA2+W/dP8idEBABLn4wCJ3QPk2fF9Xs3dAh47Ifi/EfUCEryaZ7CmAQP2ZRLeP4oJA - + - kCGOQL8RNkF0P9s/k0m2P9KPSEJKdJNAiXMMQXC3U0A3S/k/H1llQRHOeECyhcRApK4yQYA0XUFyZ/9Af+osQKOBkD9JoghB2aYJQYO3rUCu4O8/IJQJQGqRvUGZ75FAKJAuQOgE6UA1YZE/QaQ6QufOEkC8F/tAHgOjPyDzjkCi6tJAEQU9QIq/CEFKbi5A/o3ZQJ8/lkCbviRAQjPzQBySpEDEZThBpZV1QNLkN0AeNmpB5DVvQkFq7kDzpStAENYLQTL5l0L3vBdBlIUJQNYYn0Ih/o9CkIoHQVgpUUHCCGNBg7gjQZ2xTUGxbaRAuPDrQKuuhUB6RY1Ag6e4QUaHtj9uQP9AebfeQIB+mUKUDy9BKukAQQnUFEGdpsBBfAKOQU+PxkA66t9AxCccQUdLekFOz09ASpH/P2qYtkC4pmJAQWvIQUpkr0D8z41CS0m0QCfvAUG790lBSoQTQP7ozEEeTRFBzH7bPwVU1UAr8pJCZ0zgQcwxH0I0XaBANDfhQhtOgUEGEL9A76KtQJKop0FiEcM/nt2BQeBHPkBnK0BB7gNsQPEI7j/XzvtBtROIQSyubkFlZTlBvSUKQ5h84kCqHvFAQl+mQPegkkGO6KM/2EA8QeV8XUDIBBxBpD4FQayxh0Liig1Ctq2IQfd7W0EcCsdBwef0QCejJUFlF5FCN0lTQYFNlkAXodtD9hHzQYfPFEGeHhxAp8eFQJUSjUAUkAdBarfJP+kXXEDQ7dpCSVlcQS5Z7kCrmglB9pEPQtgmvUBY4jVB+sY3QPgmmED6a7hB9G4VQdAsAEAwhC5AxT0AQTaumkD0cElAO6oBQL/8GUE4RpZAaSCQQbzABEGGjMRAT4V2QXrMLkA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAoDu5ZEAAAAAAa0RlQAAAAOD57GVAAAAAgBuFZ0AAAADAl6dnQAAAAIDzaWhAAAAA4POkakAAAACAQ7lqQAAAAKDlyGxAAAAA4OUFbUAAAABAWT1tQAAAAMBFYm1AAAAAALUEbkAAAABg0sluQAAAAEAYInBAAAAAgElWcEAAAACA4QNxQAAAAEAFEXFAAAAAQKiPcUAAAABAlxFyQAAAAKAPQ3NAAAAAgBJTc0AAAADAul9zQAAAAECQg3NAAAAAAIWUc0AAAABAv6RzQAAAAABP5HNAAAAAABEjdEAAAADAeGJ0QAAAAIDAk3RAAAAAgC2vdEAAAACAdgF1QAAAAIARFHVAAAAAAKpldUAAAACAzIN1QAAAAEClz3VAAAAAgKkgdkAAAABAkjN2QAAAAADwZnZAAAAAwDVRd0AAAACACHN3QAAAAIBqRnhAAAAAQOJWeEAAAACAy2x4QAAAAMCw43hAAAAAAF4KeUAAAAAASGR5QAAAAIA1g3lAAAAAgDUzekAAAADAfT16QAAAAEAiknpAAAAAAOpAe0AAAADAf1B7QAAAAIBHX3tAAAAAwBOee0AAAABAKOF7QAAAAECfcXxAAAAAAMaDfEAAAAAA9OJ8QAAAAAAW+HxAAAAAgDYEfUAAAADAQyN9QAAAAMDpVX1AAAAAQE1kfUAAAABAL6h9QAAAAACSI35AAAAAAFRJfkAAAABAuGV+QAAAAACcV39AAAAAAFyCf0AAAADABqZ/QAAAAEDQ0X9AAAAAYGwKgEAAAACAHxOAQAAAAIDoHIBAAAAA4IdHgEAAAADgaU6AQAAAAGCwbIBAAAAAwMyIgEAAAADAf9KAQAAAAECe64BAAAAAoDQngUAAAABgYlWBQAAAACCYg4FAAAAAoGFtgkAAAADgcqOCQAAAAKAuzoJAAAAA4LTvgkAAAAAgtwuDQAAAAKCbRINAAAAAYJeAg0AAAAAgDuuDQAAAAIBLEoRAAAAAoOZbhEAAAAAgz2mEQAAAAICl+YRAAAAAYNFJhUAAAADgNuWFQAAAAMBhH4ZAAAAAIL8yhkAAAADgcGqGQAAAAGAOcoZAAAAAYIMQh0AAAABASRuHQAAAAAAAOYdAAAAAoFFih0AAAAAgJu+HQAAAAEAJ+odAAAAAQBs9iEAAAAAghnaIQAAAAKDX64hA - - - - - - YcxjQJUZNEBy1fVAhVIMQez17T/kUq9A7lRVQEt5UEGSKUFAK80DQViehUAVLaBAcG7bP/vnUkDzWq1ACtEqQN/JvUHpbVRA+0fLP6g4JULA+rJBmDgQQOLsU0AR0q1A/LmIQDt/xUAzGGJBTwQ4QCCGb0B0PVVAX4Z2QSQOE0HKCD5BHEdrQE4J9EDgY/s/KxPJQcKzOUE6M5I/8xRlQYGobUDDIdtBnVvqQCP0dEAsxBtAomoaQVhzqUCcNCVAKk9cQe9xOkEeyiRA8dZZQYcLP0LZARBBKLr4QAGqeEAs4/tBcjHaQCyW6kC1r4VA5TkAQNQoUEH5P69AJEv9QEjVzkDAlD9AkEeYQOx9rkBHOSJCNnUAQFoChEIIN65AnvhdQHWZ7T8XhydBmX/uP4FcAEH2Z6xAJSzTQN5/bkBxJtNAYKqXQE6idUCv4DdAGKtZQO20D0DJhO4/UasHQ4dHl0EgyvNBoA7MQNtT0kAsNGBBi6aqQM/jGUGyAepAFMS6P/T8Q0HxQ5tAPxbcQB7ep0IHMVpBe+cHQe1Cj0DMsMFAuIOsQMzwg0EpJl1ACiw6QOj0fEDUgF1A - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYIzBYUAAAABAxmxiQAAAAAAtjWJAAAAAwNV+Y0AAAADgJuBjQAAAACB7GmVAAAAAAAhqZUAAAABAtqZlQAAAAEBNhWZAAAAAgBqlZkAAAADAACZnQAAAAMA1Y2dAAAAAwHLpakAAAAAgSytrQAAAAACw4WtAAAAAwFcIbEAAAADAIi9sQAAAAACaSGxAAAAAwIWebEAAAABAmyNtQAAAAMBT5W1AAAAAwAsObkAAAACAQ2luQAAAAMBWhG5AAAAAAMSkb0AAAAAAH+FvQAAAAGBGB3BAAAAAoDEkcEAAAADg/C5wQAAAACCKP3BAAAAAoJSBcEAAAACgIuNwQAAAACA89HBAAAAAwH5fcUAAAAAADdFxQAAAAOBC8XFAAAAAgN9DckAAAAAAIt9yQAAAAIA+8nJAAAAAQDQEc0AAAACgFiRzQAAAAABZM3NAAAAAIK1Bc0AAAADggFRzQAAAAICRYnNAAAAAAB4TdEAAAAAgtyF0QAAAAICTtnRAAAAAwMbDdEAAAADAedJ0QAAAAMCO43RAAAAAIK71dEAAAACAomB1QAAAAEB3cnVAAAAAQCCBdUAAAABAxqN1QAAAAGC4tHVAAAAAIPnBdUAAAACAg9J1QAAAAOBl3XVAAAAAoL8FdkAAAAAg+hJ2QAAAAAA2N3ZAAAAAQMBqdkAAAACgqpB2QAAAAOC23XZAAAAAoJxEd0AAAAAgLmZ3QAAAAEDTcndAAAAAYJ6Rd0AAAAAA/MN3QAAAAODR0HdAAAAAYLk/eEAAAACAEVF4QAAAAGClgXhAAAAAQM2peEAAAABAb7N4QAAAACCc4HhAAAAAoKjweEAAAACghwN5QAAAAGDKPnlAAAAAAD1SeUAAAAAAd2B5QAAAAEDebnlAAAAAYC+ZeUAAAACAIKl5QAAAAAD7wHlAAAAA4AnReUAAAACgQud5QAAAACChCXpAAAAAQCsjekAAAACgNzB6QAAAAGD3R3pAAAAAQGJWekAAAAAgKm16QAAAAEAneXpAAAAAgBeEekAAAAAga856QAAAAIDD43pAAAAAYGL/ekAAAABAnAl7QAAAAOBTU3tAAAAAoD9PfUAAAADgsoV9QAAAAEBXln1AAAAAwKXzfUAAAADAeqh+QAAAAGDsun5AAAAAIOdOf0AAAACgtJF/QAAAAEDyMoBAAAAA4Pc5gEAAAACAGnKAQAAAAMADe4BAAAAAoPqPgEAAAABg57CAQAAAACD1uoBAAAAAIOnKgEAAAADggvqAQAAAAGBaVYFAAAAAYH6ygUAAAAAAYdOBQAAAAGD4E4JAAAAAQHMigkAAAAAgikOCQAAAAOD9a4JAAAAAoGymgkAAAACg37mCQAAAACAOxIJAAAAAoHz7gkAAAADA/QGDQAAAAMCoWINAAAAAoN5dg0AAAACgDouDQAAAAAC5koNAAAAAAHCbg0AAAACgTwOEQAAAAIBMGoRAAAAAAKJBhEAAAABgwniEQAAAAKBxyYRAAAAA4OvghEAAAACgbwKFQAAAACDkFoVAAAAAoDZuhUAAAADAB4yFQAAAAMD/2IVAAAAAINj5hUAAAAAgsQSGQAAAACC8Y4ZAAAAAQHR0hkAAAAAg9KOHQAAAAIDJ5IdAAAAAQHeBiEAAAACgpoaIQA== + NrgMGZxjYkAKI3ffzmRvQEMdzoN8QnFAouJ3Wr9Cc0BDe6rX1FN4QKJAVK4XVHpAQ9mGKy1lf0BRTxgBuLKAQDCVIYvCeoFA5C+8PA+7hEAwxA+1bgOFQA== - + - MnLTQdO9FEHi3T1BOg/tPxv3r0Brw1RA1ZJTQLnZgEGAmwlAaB7qQHgdQUAPR/FATor/P5mHyUBNSJJAOKyFQMaHy0B22xFAKaEYQATAEkBK9qM//HMwQXgUGEHgyf1A38+kQPhCtj/JD0dANEWnQJUDiUDYD4lA9vRkQcj480DOy+ZAlMhuQaIMEEEtGy5AWFUSQOY9KEEKsKJBjuw3QBgCLkFMh35AvLWlQO84n0AciNs/zSF1QZGWLkBG2WNAjv8QQDi6AEBFc7hAB3RvQN+eLUGGoS9CvCF8Qe5RiUCqmmtAOXZrQBFTzD+T2hRCOCtsQPk/FUFBoiVB5jZlQ8XnzkDVqRBBbSuXQfH4jECwRPFA2Y5gQOR5eEGsXI1ACs43QK9b2EHuuqpAgHJVQWXfkUFRRzRAS5U9QDZHU0F6zwZB1iRBQtcqQkFGC9BAA4XMQeEKHEBg+pdBh4dQQYITlUAqJUFAncmMQDuyNUE8khtBAWi7QNr6KUKMmhxAhLGvQAaOZ0EmWYVBVoWgQ11Vf0BoP49Ad7nbQcL8fUE+CkFA2HMSQda8lkD9W6pA4tF4QBGdfUFch41B0R/RQGkMiUCUZxJAL0/HP+Fja0ANpTRAqXxiQM7VyD9r7dpA2Bc7QXXREkCSfd4/8e5lQHIqBUEn0MtAI9InQcOJU0Efkrs/0mAfQgqs1UAni8lAmr8JQTgF4EIhGgFCTbGpQI6LaEC4oWJAV8gZQfSWpUAhDO4/kE3zQFNdiEA6eftB+g+9QEVNrEDYQ2RBPklAQZh+CEBsy5ZCRm8GQi0mzkB+sWBBjidRQEtJSkA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAQELga0AAAABAQkttQAAAAABng25AAAAAwPAkb0AAAABARAJxQAAAAGAjU3FAAAAAgHmzcUAAAAAAivRxQAAAAEDWc3JAAAAAoNyQc0AAAAAAent0QAAAAIAJsnRAAAAAAKPEdEAAAADAqtJ0QAAAAMCbH3VAAAAAQHZTdUAAAABAz5V2QAAAAAAFwnZAAAAAQILzd0AAAADAYmN4QAAAAEDsdXhAAAAAQCIheUAAAABAgaR5QAAAAMDtFXpAAAAAAMQDe0AAAACA1tF7QAAAAED6I3xAAAAAgPLTfEAAAAAA4N18QAAAAAB9431AAAAAwFuRfkAAAAAABCF/QAAAAACHUX9AAAAAgCjCf0AAAABA+nGAQAAAAEA0qYBAAAAAQBcDgUAAAAAAPRqBQAAAAACDN4FAAAAAwNdCgUAAAAAATXeBQAAAAOApf4FAAAAAYJnAgUAAAACgCNyBQAAAAEAH4oFAAAAAAHbqgUAAAABApAaCQAAAAODwEIJAAAAAwBobgkAAAACAoS2CQAAAAOAia4JAAAAAoEKAgkAAAAAgawKDQAAAAKDSDYNAAAAAoEs5g0AAAAAAx0yDQAAAAMBPb4NAAAAAYMl7g0AAAADAQoSDQAAAAEC514NAAAAAoDfdg0AAAAAAaBKEQAAAAKD5SoRAAAAAoGNThEAAAABAR2GEQAAAAABpd4RAAAAAoL2hhEAAAAAg3quEQAAAAIBl84RAAAAAoJIDhUAAAADgoxSFQAAAAGD+PoVAAAAAwPByhUAAAACg1JOFQAAAAKDQ0IdAAAAAgOUMiEAAAABgxhOIQAAAACDskohAAAAAwI+biEA= - - - - - - 4TwQQOOPtj+dg/FA3OfDQZ/f0UDV8S9BdDdiQDt3uECDalk/z9EFQcjtoz+pibZA8P99QfBTpD9ZLHlAvlTxQJG+IkHmCrVAxOszQJj7c0Gy0TtBNV6vQGa9uUAoDBJB81clQAKoUUExggBAgzIlQuJaGUFYpdtAT9G2PxTUBkBJOetAgfOEQel/HUFtrolArsRsQE+6AEG8KapA858ZQHU1N0HaGp1BVoUhQkfwkUAlmVVBmjh+QGI89kCEzzVBczbtP3OBxEHX7jxCJZF1QOmuR0CM3D1BLnxKQHr4yT8ED6VARoeAQfqlfkCOboxB6HjAQBLyMEFbZ3hArL8JQGyUuEDX3UdAV0GjP5m55EA89mhBExygQOzIokGiGS1BrdaNQFkVgEEeM+9AuAqJQBc6/z9AB4FAEmbuQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAA4KYlYUAAAABgmiBjQAAAAODfv2NAAAAAoOJ/ZUAAAABAUkZmQAAAAOCfx2ZAAAAAwI/gZkAAAADArWxnQAAAAEC9i2dAAAAAoGukaEAAAAAAGyRpQAAAAMBoYmlAAAAAwKSjaUAAAADgvwFqQAAAAGAhY2pAAAAAQMycakAAAAAArOZqQAAAAKDpJ2tAAAAAALdoa0AAAAAAr+NrQAAAAIBnAGxAAAAAAGYnbUAAAADAfsBtQAAAAICK3m1AAAAAgM6pbkAAAACAJQFvQAAAAIBw329AAAAAQEVBcEAAAADAimFwQAAAAAB+cnBAAAAAILahcEAAAAAgx+NwQAAAAAA373BAAAAAYHw+cUAAAAAgJV9xQAAAAODunnFAAAAAYETjcUAAAAAAbvNxQAAAAAAUYHJAAAAAgKV0ckAAAAAgXqJyQAAAAMDps3JAAAAAYJvackAAAACAIy9zQAAAAOBilnNAAAAAQEOtc0AAAACg+8VzQAAAAMB54nNAAAAAQFAwdEAAAACAHVR0QAAAACBcYXRAAAAAYFCVdEAAAACgetN0QAAAAOCBCHVAAAAAQMBTdUAAAABg9Y11QAAAAACT03VAAAAA4NTmdUAAAAAArPF1QAAAAEAXE3ZAAAAAoKwxdkAAAABAcmV2QAAAAOBpk3ZAAAAAoNPQdkAAAAAghwJ3QAAAACD4FXdAAAAAIEuRd0AAAAAAFal3QAAAAID+0XdAAAAAoPXed0AAAADggfF3QAAAAMA8H3hAAAAAoHc+eEAAAACglU14QAAAAOB1gHhAAAAAIEqVeEAAAABgnMF4QAAAACBP0XhAAAAAINTieEAAAAAAFPJ4QAAAAABUD3lAAAAAYMpCeUAAAAAgaXx5QAAAAGACtXlAAAAAwC7FeUAAAADAGtF5QAAAAOC14nlAAAAA4MobekAAAADAKil6QAAAAGAAT3pAAAAAIIlhekAAAAAg+tR6QAAAAIDq4npAAAAAAH/tekAAAABgZvx6QAAAAOCdCXtAAAAAADome0AAAACgFoV9QAAAAMDbYX5AAAAAQBmHfkAAAABgfQh/QAAAAGArpn9AAAAAYBjzf0AAAAAgCXmAQAAAAIBgtYBAAAAAoOfRgEAAAADgkUKBQAAAAIDSSYFAAAAAABl6gUAAAAAgz9mBQAAAAODIUoJAAAAAoPdbgkAAAACAJ2qCQAAAAKB7w4JAAAAAwPfmgkAAAABgXDuDQAAAAEBRQYNAAAAAoO2Zg0AAAAAgHPSDQAAAACB0i4RAAAAAwGMChUAAAACgKAuFQAAAAKA+y4VAAAAAQEHShUAAAACAu9mFQAAAAMBr7YVAAAAAoGpBhkAAAAAgVUiGQAAAAKC6LIdAAAAAYO57iEAAAAAAsoqIQAAAACC3tIhAAAAAgJnziEA= - - - - - - QYIlQPmiqEBuX8w//ZJlQMGnGUHQDu8/3reFQErKnEC048hAwxCNQGLVKkCeDr5AHV5ZQE/roz9MQBdB/GMlQKS3CkFyNXhAAiRxQA+yj0BH159AaMJ4QGbUBkFGG/ZAWs6IQJdx2z+nlAlAj2HqP60zpUCDaqhBRLxZQffUJUC5rhJA8qDgQJZU10Byf8FAGSXpQOvFqEAX7RFAP6u/QJ0d/0AYgYpAOPzJP4/Jo0DfQrJAkETsQBTqPUBbPyZBj02KQPSbKEEuszZBsJKSQKFya0DatpNBWNekQXyj5kCqSX5AfEWGQadY+0DLrV5AlC2YQDG8/j9AsNtAVHSYQZ8LE0HMWWtAjHJmQE09I0Ffs2JAMOtBQdE97j+1cQ1BAODzQOIZHEH5AOVB1MsCQPZpmkGcz+hAKjMiQVkXsEGI6rVBjmUJQmRpFUHOLdZBo75OQR+Zo0He2rBAEh+3QMsqsEEwBI1B1P4LQi6sU0DboNNAlupgQQBmSkDacYpBGjP8QB/VK0Gy+oNA5orpQLRi2UHlZ4hAnfyVQQpsrUCkcpRA7eHpQCBoDkGvPARB/lmOQKwu5UGXDlpBz5l2QMYKvkAqOG5At27SQCrZQEFi1gpAWMj1QUPAY0HKnq9ArAgpQiYzdUAHCLVAF2Q3QYmRa0Cy9ZdA16qhQKzHGEBgwLBA5gnqQEr7hEDfE1lBK4IuQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYMJBZkAAAADgkExqQAAAAIDLAmxAAAAAQCwtbEAAAACA/KNwQAAAAED+w3FAAAAAQC/ScUAAAAAgJudyQAAAAOD4cnNAAAAAwJcgdEAAAACALLR0QAAAAIDTNHVAAAAAwKdWdUAAAACAnmZ3QAAAAEAvl3dAAAAAQHr1d0AAAAAAKiV4QAAAAMATg3lAAAAAANPDeUAAAABAenR6QAAAAIBy83tAAAAAwB8SfUAAAABA3pZ9QAAAAAC2431AAAAAAJMYfkAAAABA3Ex+QAAAAMDgB39AAAAAQLhOf0AAAABA26B/QAAAAIDV1H9AAAAAoKQwgEAAAAAg/FiAQAAAACA5yoBAAAAAYL7ZgEAAAAAg8PeAQAAAAKDfKYFAAAAAoKFkgUAAAADAtYmBQAAAAOAbk4FAAAAA4PmrgUAAAABgyeKBQAAAACDu+oFAAAAAYBgHgkAAAABAUAyCQAAAAOBH5IJAAAAA4Jnxg0AAAABggJaEQAAAAACunIRAAAAAQLbFhEAAAAAAZSGFQAAAAEDcMoZAAAAAoKxGhkAAAACgidGGQAAAAABCYIdAAAAAgGNlh0AAAADAwmuHQA== + NrgMGZxjYkCAen+Qj3FxQK9rGHLRYnNA - + - i2/eQDkHDEHXHtFA5pgOQfTsZUDaH5BAC0XXQNPl7T+uVgxBYpD3QLpFmEBDWAtBQdOvQMn6EkCIeBBB4M8KQaZbpz8A+TZAEVi0QMRi2z/iEj1A7nmRQFNtC0HUza1AW+oOQZuvAkEp0o9ABHwlQHfKXEAlTcVAzq0NQcwKIkBaGFlBZv0RQSAJeECtww9BHDsiQMrR/z8YkAVBWJQrQBBXoUGsXtdAIcZLQaI2jUAZFLdAt0ArQKTnJkJ8dA9BgEQHQYAeokBZwgJBQJMeQWXwRUEx1Mg/uJBvQPI1AEA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQNIgYEAAAACAiUJgQAAAACB1pGBAAAAAgDwpYUAAAADA/OdhQAAAAKCnW2JAAAAAQMtiY0AAAABg9JpjQAAAAEDb42RAAAAAACKGZUAAAABAdKRlQAAAAEC65GVAAAAAgMh9ZkAAAADAIchmQAAAAOA5CmdAAAAAwAQqZ0AAAAAAaD9nQAAAAACsmGhAAAAAwOUYaUAAAACgd39pQAAAAOCX5GlAAAAAAFpmakAAAABg1atqQAAAAAA8ympAAAAAwLDma0AAAAAAiABsQAAAAICvHWxAAAAAgLNLbEAAAABA621sQAAAAIBwnmxAAAAAgDvFbEAAAABAp+VtQAAAAECuhW5AAAAAgLfEbkAAAABAw+VuQAAAAEA3QW9AAAAAgMHrb0AAAABg8hJwQAAAAGAvQ3BAAAAAwLdecEAAAABAX29wQAAAAGDdhHBAAAAAwJiUcEAAAAAAUrlwQAAAAAD21XBAAAAAYDg3cUAAAAAAS2NxQAAAAEB9cXFAAAAAAPqLcUAAAADAeslxQAAAAECx4HFAAAAAAOYSckAAAACAITFyQAAAACBfQnJAAAAAAGRjckAAAACgnZJyQAAAAOBRo3JAAAAAACuxckAAAADgrs9yQAAAAIBi4nJAAAAAoKbwckAAAABAbARzQAAAAEAMEXNAAAAAQO4hc0AAAADAMjFzQAAAAECiP3NAAAAAwA9uc0AAAACgSq1zQAAAAKC6vHNAAAAAAPrRc0AAAABAzfFzQAAAACA+AnRAAAAAgJcSdEAAAAAAcyh0QAAAAABRUnRAAAAAQA50dEAAAADAidN0QAAAAEDD4HRAAAAA4AnvdEAAAACAOgh1QAAAAEA6EnVAAAAAIO8gdUAAAAAA2El1QAAAAODvcHVAAAAAAN+BdUAAAAAgtKp1QAAAAOD+uHVAAAAAoFcIdkAAAACAaJN2QAAAAMDRMXhAAAAA4CIdeUAAAABgmih5QAAAAGCVdXpAAAAAoEfzekAAAADgs717QAAAACDMPXxAAAAAoIdifUAAAABgTdh9QAAAAEA8dX5AAAAAILUZgEAAAADg4yKAQAAAAKDySYBAAAAAwJuDgEAAAAAgN5KAQAAAAKA52YBAAAAA4GQMgUAAAACg1GKBQAAAAGDSXYJAAAAAoOVig0AAAACA1omDQAAAAMDss4NAAAAA4Au8g0AAAACAecmDQAAAAODLBIRAAAAAoGUThEAAAADAFCSEQAAAAAClLoRA + KBZXds7jZUA= - + - +ejMQTIyTUGiO5E/KTi7QHO3CUBeraM/88KNQOvV+EAcdYVAB0DJP9UaCUDeQb0/T5u7QIKb7kDMgglA/4ufQMnAEkBDfzRAInkJQFr+G0A5Cz9AGayjP7jwZUAySCVAveL/P3MqNUAA+BJAPOOYQSDrbECtL39APK2FQKUaPkDgCYJClAUcQPf3mUCATMNBlNftP8cb80DQ9hdBy0M/Qe9yVUGo+YxAwseOQBUkIUKKu8ZB5TB4QYTK3kA/VNw/ljSYQUguWUBO1jRAtQwOQlBlYEHIM5JA6HrIPzDW3kBst4dB6WelQkLiAEGHBBxBHU9RQIwQwUBXVABAvAKSQELiPUF5foZA71mRQSe2zkA8uJhC7x4xQRxhg0IoakZBEh4iQQdgjUAY1GJBe/X4QD6kNUCOOsFARQIkQlLETEEm6cQ/614TQl3NS0Hbp0lBNQoxQQ7DHkHbgu1ARkvVQM64mkCqX+FAqZ5HQd1deEDNliFAtXqCQU9iJUGxCRtBAoF5QuEEvECGjrhBuZpxQikdEUFctcdB+yxjQBUQ/UAYrto/rFIAQY5F4UDl+2VAoE/bP7q1zUB7X/JB4OH4QCDVGEDGlpZAkO2cQLaj7kDmUiVA + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAIrmZ0AAAABgjX5rQAAAAADNoGtAAAAAQNf4a0AAAAAAoCFsQAAAAMCrpmxAAAAAwLtrbUAAAADgV8duQAAAAKAi6W5AAAAAACVib0AAAACA4AxwQAAAAEBjJHBAAAAAgK+ycEAAAADATNlwQAAAAEC7sHFAAAAAAOoNckAAAACA3UFyQAAAACArYnJAAAAAgO1tckAAAAAgmZJyQAAAAMALyXJAAAAAAJYTc0AAAAAA7bJzQAAAAEAnNHRAAAAAYCBEdEAAAAAAo450QAAAAICWpHRAAAAAwCLzdEAAAABAYkN1QAAAAADnXHVAAAAAwFzTdUAAAACAUgZ2QAAAAMAtEnZAAAAAwMhIdkAAAADAlld2QAAAAMCAknZAAAAAgGNnd0AAAACA6nR3QAAAAIAWhHdAAAAAAHC2d0AAAADAvU14QAAAAECmb3hAAAAAQEPCeEAAAAAAR9J4QAAAAIDiEXlAAAAAACAmeUAAAADA2kZ5QAAAAABTd3lAAAAAwKGgeUAAAAAAMMB5QAAAAIDm8XlAAAAAAFABekAAAABAXw16QAAAAMCOInpAAAAAANyjekAAAAAAQ8Z6QAAAAAAr8XpAAAAAQLsKe0AAAACAV0h7QAAAAIBzXXtAAAAAQAu0e0AAAABA+r97QAAAAEDh5XtAAAAAAJT2e0AAAACAbhh8QAAAAMBLVHxAAAAAwGqSfEAAAAAAJc98QAAAAIBn6HxAAAAAgGv2fEAAAADAqgx9QAAAAADNHH1AAAAAAFEsfUAAAABAeDl9QAAAAEBaRH1AAAAAwA1ufUAAAACAh6J9QAAAAIBdrX1AAAAAwKAFfkAAAAAA0RR+QAAAAIDBJH5AAAAAwHOBfkAAAAAA1qR+QAAAAABJvX5AAAAAwCh2f0AAAADAbJV/QAAAAED+yn9AAAAAgMPgf0AAAADAURuAQAAAACCsI4BAAAAA4JQtgEAAAACgjjKAQAAAAGAhRIBAAAAAAElYgEAAAABgXWqAQAAAAMDLd4BAAAAAAB2JgEAAAACgiaqAQAAAAGB6r4BAAAAA4PG5gEAAAABAvPKAQAAAAGBt+4BAAAAAAB4FgUAAAACgyRSBQAAAAMBsG4FAAAAAgFk4gUAAAAAguj2BQAAAAMDvUYFAAAAAYJFdgUAAAAAAkmKBQAAAAEBegoFAAAAAoNWJgUAAAAAgqJOBQAAAAMAfo4FAAAAAwJ6qgUAAAABgT+uBQAAAAGAt8IFAAAAAgNUBgkAAAABgNQmCQAAAAOCiLYJAAAAAwFgzgkAAAACgBzyCQAAAAIB5SIJAAAAAQKdugkAAAAAAuXaCQAAAAKCXkoJAAAAAoBqbgkAAAADANKKCQAAAAGAIv4JAAAAAYBHEgkAAAACggc+CQAAAACDY3IJAAAAAgILugkAAAACA+vmCQAAAACBeBINAAAAAgMcNg0AAAACAZhWDQAAAAGByGoNAAAAAYBk3g0AAAADgdUKDQAAAAOC8SoNAAAAAgMBTg0AAAABAMFuDQAAAAIAEYoNAAAAAgEJyg0AAAAAggXmDQAAAAECmgINAAAAA4EmIg0AAAADgxqSDQAAAAAB/qoNAAAAAYMixg0AAAABgDZ+EQAAAAMALtIRAAAAA4C7LhEAAAABg+eGEQAAAAICT6YRAAAAAIMoGhUAAAADAkzCFQAAAAODOS4VAAAAAoKNbhUAAAADA8WSFQAAAAMDWc4VAAAAAII98hUAAAACgWoqFQAAAAGDVk4VAAAAAID+ehUAAAACAeLOFQAAAAMCKvIVAAAAAILfHhUAAAAAgE+OFQAAAAEDP84VAAAAAYGQAhkAAAACg3QaGQAAAACDkF4ZAAAAAQLxahkAAAACgp2CGQAAAAEBtgIZAAAAAoIubhkAAAADAZaSGQAAAAEA8rIZAAAAAoM+yhkAAAABAc+mGQAAAAAAaHIdAAAAAAB8jh0AAAACAHjqHQAAAACARRYdAAAAAQPmEh0AAAACA58uHQAAAACDS0IdAAAAA4HYEiEAAAADguF2IQAAAAKChc4hAAAAAoJ6TiEAAAAAgLaGIQAAAAGDG04hAAAAAAIfniEAAAACg6e+IQA== + KBZXds7jZUCEfuNfSGJnQDB98YyS4XJAqZq9oOoidUCXWL39WFN8QMSMg/KVEn1AQoterePBgUA= - + - ZvLaP5jjKkD9mRJAFB8AQCEllkA2Y+NAWcnXQFFFc0Ec+RdBmYqLQKvkPEGxXW9Ao07HQJg5lEB7ze8/rnAAQHQmQEG/F0pAKOrIPxBY3j8vDwVBoAxPQfWJs0AOyaM/B50uQJ+wAUGdLJZBU6ODQL9y0kDfnzdAuNqoQGkK2EBzC35AzOoIQLBmwkHz9i9AWUjtPzK/IEGNrIVA6HYlQSAM3ECKgXhAE/JlQD9frUCybohA54wqQGaZLkBSv+Y/oLpiQNxaSUF/8bZAg9OhQXpp0kDhwxpCcJ0BQUNRl0BFgcZAiy18QeyRf0F83RpAJq2YQFF5okADhCtBcX9fQcpajUCemzdAHXWTQERNEEEYF+1B1QSsQCbp/z9TVDJBvnCIQQPsqUFISSdAJdQLQVPls0AqL65Bz/bHQNo0lkFr5gRB8oMJQKYC2z/sHxdCDCLJQggL/j/+VTdBbNi2QWHRgEDUtf8/i9uXQSYOFUHtoUhBGCzuQHiAjUA2vv1AO37pQIfpQEFXJ0FA07khQEhu3EAMaL1AeQrFQD6Rs0FngrlAEKU6Qrvb0UBOmiVAat6hQd5PukFqp9lDj6fHQjn7XUEWj5BChAd3QOVv90F6cRZBnePyQO5T/EDi4IFB1ROnQSb5GUEGpMRBPqf2QM2hHELlOYZA+pySQQblm0DAFZtBh9QGQdD5gECKyUpBkXy4QDeeLEESi09BOHFeQiC+DkBDV2JAsp7bQF9sU0CvmypAXVKtQO15BkLk1JhAd8RKQRB+JEIYEC1CzltDQb5tAUKdKpZBegbTQHfsKUF8/v1ArnzPQSbPfEHQh5xBHLb3Qbasg0KcJelBUnXMQB9YlEGaZp9CcR0FQUPoIkGpi1lBY7vfQGQS2UHOZDVDmizXQfE4ckGXy4dBziPQQnBKuUJuF2ZAmigiQltZEkG8QbBBKnxfQhM6c0FJyhJBICCmQSrxo0IWMP0/jAtkQGxFHUE9KDpBbtK2QArpWkJBGExA9XZ6Qb+8akF88RlBu+4oQcfPGUHoi4tAIP2xQRd8LEE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAQBvjYEAAAACgZ0liQAAAAGCmY2JAAAAAgN2kYkAAAAAAQ4JmQAAAAOCNCGdAAAAAAD5gZ0AAAABATqpnQAAAAKB2I2hAAAAAQFxBaEAAAACAfoZoQAAAAEBEHWlAAAAAQOs+akAAAABAl2dqQAAAAMB8RWxAAAAAAOZgbEAAAAAAu6lsQAAAAIAl32xAAAAA4ITpbUAAAADgmSluQAAAAGAvTW5AAAAAoBWobkAAAADAgMZuQAAAAMBsJ29AAAAA4PwhcEAAAADAp1BwQAAAAIAOkXBAAAAAIK30cEAAAABg1hFxQAAAAKBiQnFAAAAAgBJXcUAAAABgEnZxQAAAAKAvonFAAAAAwDCucUAAAABAygJyQAAAAIBTZXJAAAAA4IB2ckAAAADgiaJyQAAAAGC7w3JAAAAA4EvSckAAAACANQFzQAAAAIAlRXNAAAAAQKmlc0AAAADAOvNzQAAAAMBLI3RAAAAAgMWTdEAAAADAEN50QAAAAECG8nRAAAAAQCAOdUAAAACAM711QAAAAECM4nVAAAAAoBYYdkAAAADAIT92QAAAAGB1UnZAAAAAoFWSdkAAAACggcJ2QAAAAOC/03ZAAAAAgFoRd0AAAAAANlF3QAAAACCxXndAAAAAYJt2d0AAAADgZpB3QAAAAGD6p3dAAAAAoGC3d0AAAACgYNF3QAAAAOB55HdAAAAAgGL2d0AAAABgGEl4QAAAACDVV3hAAAAAoLFneEAAAABg+Hl4QAAAAGCeg3hAAAAAwIKheEAAAAAg49F4QAAAAIB993hAAAAAYM0DeUAAAACgdi95QAAAAKB7gnlAAAAAAAGjeUAAAAAge715QAAAAKCl0HlAAAAAIM7feUAAAABgpSF6QAAAACCuMHpAAAAAgLZDekAAAABAp1h6QAAAAACPlXpAAAAAoMSgekAAAAAg4rR6QAAAAODlxXpAAAAAYKrWekAAAADAqOR6QAAAAECzBntAAAAA4FMke0AAAABgN0x7QAAAAMDcY3tAAAAAYHehe0AAAACARa17QAAAAEBx1XtAAAAAwBu9fkAAAADA2AV/QAAAAGDcEX9AAAAAoP4pf0AAAABgHmV/QAAAAKDzhn9AAAAAIHAugEAAAADAFGGAQAAAAKBnloBAAAAAICXDgEAAAACAw+GAQAAAAKCBIoFAAAAAwCVRgUAAAABgk2CBQAAAAOBwZ4FAAAAAIGpvgUAAAADgYMKBQAAAAEAgyIFAAAAAIC3agUAAAACAjPmBQAAAAADXIoJAAAAAoHA8gkAAAABgbkOCQAAAAKAxu4JAAAAAYL/CgkAAAABgEOCCQAAAAACCBINAAAAA4HRBg0AAAAAgnFKDQAAAAEDbhYNAAAAA4GKLg0AAAABAPcODQAAAAGCUa4RAAAAAILJyhEAAAACgGNyEQAAAAEDZ4oRAAAAAAN8IhUAAAADgo2SFQAAAAADHaoVAAAAAQCrPhUAAAACgMzSGQAAAACAvlIZAAAAAYNi6hkA= - - - - - - uwVaQKagNUD+FQZAlxQnQOQQNkDAsAlBZNGAQNPMlD8fEQBApxWWQFM9GEB3QMZAPW6SQGYmJkCrezlBDn6IQCznykD0ViRBG0ykQNhqxED0WLVAg0WdQFyaKkAsLNw/oixNQd9mIUGxePpAt2ISQHXlPUD4Z2JBJFIJQA6CkUCX+ZdApZMJQUlLlkCEOt9AReMtQSQ0cEDUoYFBcmYbQji8e0Dm9lpA5wQMQSMQR0CN6to/fOfvQKSx2j9DYQZAEwusQMV05kC+5sg/e0lyQTy7EEEFAIBB0siOQL/A8UCYDKBBSF51QS7RLUDPwftAfD4aQegwJUBB0r5A6tuLQHiYLkCj+4NAte7lQI8NskBMoc1AsIkTQXpJiUKttI4/Yy2YQF3SqEBRl5xANvNPQVvdn0EYxwlBoSGJQSMlCUJuWfVB/nDgQHyjeEAWEShB1PW/QMzYtT8ABwtBQ1+fQMl4hUClNRdBdz5xQATtDkHO3WtBWo1KQSfgMELJx4RC9K2FQFE2U0G/ZlBAPU86QQdoB0G1Fn5A0wrDQTm3gkEnQSVAb3yjP1z5NkDRmC1BHQORP5raQEAC1hpCtwORP3YyqkACrrhA0BUbQNqpqEC0lrdAgi4lQaJ+FkEmVWtBo4i0QHGetEAAXu9BIPOsQW5X5kAT5ZhBt9OdQR0ahUAsZXJBO00eQmb85UC6KpE/gc+ZQMjmN0AgbwBBOf8EQY0dp0AleqJAcB/bPxqQhUBs+0BAw9ohQQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAwNxQWkAAAAAAxwhbQAAAAGAfjVtAAAAAgHvDW0AAAADgy09eQAAAAMBmP2BAAAAAQEGlYEAAAAAgoehhQAAAAMDUZ2JAAAAAwGGjYkAAAACAeMhiQAAAAACO5GJAAAAAwLwIY0AAAACAqyZjQAAAAMB7Z2NAAAAAQIGlY0AAAABAKBVkQAAAAAA7Q2RAAAAAwOpkZEAAAAAgEJ9kQAAAAMCy5WRAAAAAoOVlZUAAAAAAxMNlQAAAAIBX5WVAAAAAQLUCZkAAAABgrSlmQAAAACCUX2ZAAAAAwMaDZkAAAABg0CJnQAAAAOAdSGdAAAAAoMRmZ0AAAAAA+uZnQAAAAMDYCGhAAAAAICUlaEAAAADguEdoQAAAAABpYWhAAAAA4LSlaEAAAABAOh1pQAAAAIAr42lAAAAAwN8oakAAAAAAUD5qQAAAACDsiGpAAAAAQJasakAAAACAbARrQAAAAEDfJ2tAAAAAgGRia0AAAABA+IFrQAAAAADxqmtAAAAAgCLMa0AAAACAfuVrQAAAAEC7J2xAAAAAwCZBbEAAAABAPWlsQAAAAICXi2xAAAAAAPHmbEAAAADAjP5sQAAAAEDyJW1AAAAAwEVsbUAAAABARoFtQAAAAIBarG1AAAAAQFvqbUAAAABAJLJuQAAAAMA7yW5AAAAAAAXnbkAAAACAe2FvQAAAAAAJj29AAAAAQOWnb0AAAADAvxJwQAAAACC+IXBAAAAAoBNBcEAAAADgxFFwQAAAAOCjYnBAAAAAoOdvcEAAAABAZ7RwQAAAAOAOxHBAAAAA4OfkcEAAAADAwPNwQAAAAAC+BnFAAAAAICgccUAAAACg+C5xQAAAAKDFQ3FAAAAAQJNScUAAAADgjnRxQAAAAIDH1XFAAAAA4I3jcUAAAADAvvxxQAAAAODMEHJAAAAAwD4gckAAAADAkS9yQAAAACA7QXJAAAAAoKVvckAAAADA5IVyQAAAAADhvXJAAAAAwEb1ckAAAABArQJzQAAAAKC8EHNAAAAAwBsic0AAAADA9jFzQAAAAIBBSnNAAAAAgB9ic0AAAAAA5pVzQAAAAIB2rnNAAAAAACG+c0AAAACAu9RzQAAAAGB15XNAAAAAwHvzc0AAAABAegN0QAAAACC+HnRAAAAAQIosdEAAAADAhU50QAAAAEBbfnRAAAAAIKlRdUAAAAAgnTR2QAAAAKCqv3ZAAAAA4CLTdkAAAABApGV3QAAAAMBggHdAAAAAAM2ed0AAAABA+813QAAAACD8/XdAAAAA4DoPeEAAAABgVmJ4QAAAAECDgXhAAAAAoODceEAAAACgszt5QAAAACDpbXlAAAAAoAuGeUAAAABgRJV5QAAAAOAeqnlAAAAA4PS/eUAAAAAA7cp5QAAAAIA41XlAAAAAIOrieUAAAAAgu0l6QAAAAKDoXHpAAAAAYEmlekAAAABA1MN6QAAAAOBl43pAAAAAIO/4ekAAAABg+QZ7QAAAACDMK3tAAAAA4Hlce0AAAAAg5YV7QAAAAGAFwntAAAAAwLLme0AAAADA1TN8QAAAAMBRTHxAAAAAIAFffEAAAADAsMh8QAAAAMCAVn1AAAAAoJdkfUAAAABA2X19QAAAAKApyX1AAAAAoBQIfkAAAADA8KB+QAAAAMBAFn9AAAAA4II9f0AAAACg/cF/QAAAAGAXDIBAAAAAYCEogEAAAACg7TCAQAAAAIBaXIBAAAAAYJRpgEAAAABgj3KAQAAAACDEeYBAAAAAYAnZgEAAAADgOPuAQAAAAKAMI4FAAAAAoDOjgUAAAADAmKmBQAAAAIBruYFAAAAAwDw5gkAAAABA2ZSCQAAAAKBAxoJAAAAAIH7TgkAAAADAdQiDQAAAAADMEoNAAAAAoKJpg0AAAAAg/3iDQAAAAKAAjYNAAAAA4HbTg0AAAACg/ymEQAAAACCGTIVAAAAAQEKyhUAAAADAx8SGQAAAACCqsodAAAAA4KuRiEA= - - - - - - 8BzGQCxIiEBobAdBedtAQG877EAQFKlACCqoQK4yJUD64URBDGIrQQw8ikCQVidBu2EJQKLQPEDFaK1AkCIGQRFauT/WuzdAmziNQBPYiEBccG1AkGbJQGs1CUBSjp1AWOufQecTyUAfSKJA7TyfQM+HpUAMf8JAPtsaQC/3xz/dkZZAQo/QQMVBSEAoQJE/MqYVQbwolUHkhGNB0xsAQD1RlUHKHdNAfh0lQEH9l0D65zNBtpUAQHRV0UCx6z5AjNh9QA9ibEDvOFlAVXHgQOHgJ0El28RA4Z3VQBhCnkEcSHhB0FyeQd6c6T+OdDNBkrjLP4h7wkBnTddAULtKQLs4CUAKkgVCkKagQBDDoz+4KnlBoXwPQZswskA921pABOjxQE9YzkFgxhJADKcgQhw1tkHva8hBFYefQd4mDEHQENhBZ5rQQLwhH0Ek/H5AolMPQe2E40Ctcw5CGBewQdXccUIvV5pB0VnGQCTGx0CSFkpB34QEQRq56T/LF89BY7YxQaAXjUA0OYFCIqmwQC3y8kEu5x9CFhCtQSqHRkHxmnZAbocrQON8EEHgiWpBDcvaP5eU7j/N5uhBqcXIP3/n/z/zVd5B1RCpQVslZkDcQiFBKiYCQeUSjUDwixRBWZpiQLFsk0B0AsNAGWCcQdSmokGLOvxAZIRrQE5lB0H0FC1B9T2MQXnTk0HqokFCC9wMQQCNBULRbgxCpDZuQBBHlkD7MfFBBp46QawI6UAqrQlBjs8uQYBiQUG6Sg5CPhasQGqfsUESShtB33+PQVF7/UH9aYNCt3iFQCs2BUFsxIVAMkbnQH1MrkAC53s/cXqrQOL+NEGvE25AmEELQaQrAELpPdJAD6kwQS/tA0JW/5A/jacSQFkhqUBMsU9AeuVqQV/cJEDel0BAC+mRQN27kkCYo5xAjcAdQfqUa0ATCa9A3A+3P3SdGEHU8L9A9Ci2P5/t80AqAYVA5jWWQBaI/kA2F1FAyM0LQQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAGdDcEAAAAAA2EFxQAAAAABL9HNAAAAAwHEEdUAAAADAUg91QAAAAMB0U3ZAAAAAQIqheUAAAABANEV6QAAAAACEIntAAAAAwLlVe0AAAABA6c97QAAAAMDgUn5AAAAAAI+6fkAAAAAACGF/QAAAAOC9BYBAAAAAoEfRgEAAAACAliGBQAAAAIB6KYFAAAAAgHpCgUAAAABgsnaCQAAAAGC5zYJAAAAAgPNJg0AAAACgQWODQAAAAOA3a4NAAAAA4Julg0AAAABgktiDQAAAAKDjaoRAAAAAwKJyhEAAAABAfjuFQAAAAKBtS4VAAAAAIC9ahUAAAADAvLCFQAAAAGBAyYVAAAAA4KrohUAAAABgSO6FQAAAAKBQAoZAAAAAoPAzhkAAAADgy4KGQAAAAODMs4ZAAAAAAG6+hkAAAADAkMqGQAAAAEAdA4dAAAAAgCxch0AAAADgoWGHQAAAAMBccYdAAAAAIIt7h0AAAAAgXhqIQAAAAICuMIhAAAAAYBREiEAAAADgzmOIQAAAAEAzjIhAAAAA4GCZiEA= + NrgMGZxjYkCYE/Y0vCFwQBu6YmAmQ3BALCOImr9SekCvyfTFKXR6QJZAMvcLsoBAakWeHmxCgUA= - + - 3h11QEzPZUCDQXZArN6EQVbZBUCk6rFAFmKpQJyZSkCzIvxAF/yQP6r8XUDkGwBAqGvpQC0inEBV7QRBnYzJQGdXgUGZFgRBxR9JQPJ1CkBjVJ9AW+sXQbGHoz+2FDZB5TdTQPJDr0A6J9s/CUmyQBMqWkB5J4lA5RHYQPtdD0BOzTZBfjs5QgYl+kFZcwJBpHM6QR5+WUGXyfJAIpHqP+LnG0DhXTVA/NgaQSpuZELZec5BXMnzQH3tIkHbKz9AOiKwQCUymkEXiRhBT0qAQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwDlibUAAAAAAm4VxQAAAAMBnFXRAAAAAwKiydUAAAADApw93QAAAAABKUXhAAAAAgC/DeEAAAACAxeF4QAAAAABqx3lAAAAAwJYke0AAAACAdhF9QAAAAAAxpH1AAAAAQD/wfUAAAABAyHB/QAAAAMAvkIBAAAAAoOa5gEAAAAAg3MGAQAAAAIBWQIFAAAAAIKRcgUAAAAAAmVKCQAAAAKDHWIJAAAAAYAtUhEAAAACASmiEQAAAACAhy4RAAAAA4M90hUAAAAAg4I+FQAAAAMA4woVAAAAAIHrmhkAAAAAAcF6IQA== + KBZXds7jZUCmvpxNHCRnQBTpB48/A3JA - + - +IaEQHoWyD/i6bRAJyiHQFaBDkGUG+NAfpTpQEFVN0B7xT5APK6aQKpNLUF9G4pA+EwOQRh8AkEy/G5AlfsJQTkxOUG1ikVASoyuQApTEEBgSFNA/AU4Qd+GkUAKlo5AZnELQRSojkALULU/FSrYQP0W9kA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - AAAA4NyCbUAAAABAv/50QAAAAKAYQ3VAAAAAQNdmdkAAAACgBVR3QAAAAMCRtnlAAAAAwLeoekAAAACAtWB8QAAAAAB0EX1AAAAAgBEvfkAAAACAPaR/QAAAAGATaoBAAAAAwDdTgUAAAAAAJmaCQAAAAOAl7IRAAAAAIP4qhUAAAAAABjGFQAAAAGCyeoVAAAAAwPC4hUAAAABgcduFQAAAACBn7IVAAAAAYN3xhUAAAACgewmGQAAAAEDFxYZAAAAA4GU/h0AAAAAgXGSHQAAAAKAmbIdAAAAAYISDh0AAAAAgm8mHQAAAAOBt8YdA - - - - - - TxsQQHAEN0BegEBAOdZQQEhzrkDINyVAOBefQIlOhUHAjr1AQf4IQAdVEkALOJxAr95xQTmWtT/nSqpAXAULQQMnREEVvtlCIsRYQGwz0EF1I59AMMabQE3OLEJwxDdB2n5DQYKdOUF3f5A/ZwOQQaaz0UHMGoJB - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAIhBYUAAAAAA/KNhQAAAAGDwwGFAAAAAgFJnYkAAAACAfmRjQAAAAADAg2NAAAAAYEbiY0AAAAAAzP5kQAAAACDIQWVAAAAAYFdqZUAAAABgluhlQAAAAOBILmZAAAAAQGNJZkAAAABg+6RmQAAAAGAn42ZAAAAAgGAFZ0AAAACgVipnQAAAAMCHZWdAAAAAQDy9Z0AAAACAIwNoQAAAAAC1hGhAAAAAgI4kaUAAAADAPUNpQAAAAEA4ZmlAAAAAwNuDaUAAAAAABMZpQAAAAGAY6mlAAAAAwNogakAAAADgcmVqQAAAACB6impAAAAAYLqpakAAAADAFwRrQAAAAEAZp2tAAAAAQKLia0AAAABAPyRsQAAAAACgomxAAAAAQKbIbEAAAADAQuNsQAAAAMDJZ21AAAAAwBz6bUAAAACAWpRuQAAAAEBZrm5AAAAAwDsmb0AAAACAfKVvQAAAAKBsM3BAAAAAgE1CcEAAAAAA4mRwQAAAAED7sXBAAAAAgD/CcEAAAABAZNJwQAAAAGDh8HBAAAAAQBUDcUAAAAAgmENxQAAAAID7UnFAAAAAYCVkcUAAAACAttJxQAAAAODt4XFAAAAAIF7vcUAAAADgtgRyQAAAAOB3Q3JAAAAAABRTckAAAABgq2RyQAAAAGDsc3JAAAAA4K3EckAAAABAe9NyQAAAAEBO33JAAAAAoJ3/ckAAAACAjCZzQAAAAKBwU3NAAAAAwClkc0AAAADgY8JzQAAAAAA20nNAAAAAoBoCdEAAAABAA1B0QAAAAGDxdHRAAAAAAH2DdEAAAACgwLZ0QAAAAMA+wXRAAAAAoBLhdEAAAACA4gN1QAAAAMAig3VAAAAAQMOSdUAAAADAQLR1QAAAAICY0XVAAAAA4AMDdkAAAADgtiJ2QAAAACDRMXZAAAAAANJAdkAAAABgXlF2QAAAAEBCYnZAAAAAABtwdkAAAABAqZN2QAAAAMCernZAAAAAAOK/dkAAAADAiNN2QAAAAEAT5HZAAAAAQIMCd0AAAADg0hF3QAAAAIDXJHdAAAAAQDJGd0AAAACgh1l3QAAAAECnZHdAAAAAwI9xd0AAAACAkJp3QAAAAIDG43dAAAAA4PUxeEAAAAAgY1R4QAAAAICUY3hAAAAAIBR2eEAAAAAAt5Z4QAAAAGBysXhAAAAA4A3BeEAAAAAgd9V4QAAAAKAd4nhAAAAAYKz4eEAAAABgK0p5QAAAACAtcnlAAAAA4BeieUAAAAAAAsB5QAAAAOBjz3lAAAAAIH7ieUAAAABgjvV5QAAAACBvCHpAAAAAIHZQekAAAACg3Vx6QAAAAODWb3pAAAAAAIOQekAAAACg3LB6QAAAAAAkxHpAAAAAIOrQekAAAAAAeuJ6QAAAAOAP7XpAAAAAIP/2ekAAAAAAeQN7QAAAAGDUI3tAAAAAoH8te0AAAABgKTh7QAAAACAHV3tAAAAAwI9re0AAAADA8HV7QAAAAKCniXtAAAAAQBOUe0AAAACApKx7QAAAAOBaw3tAAAAAYNbOe0AAAADAWeR7QAAAAKBw8ntAAAAAQEYEfEAAAADgGQ58QAAAACAVInxAAAAA4AsvfEAAAAAg2D98QAAAAODoUXxAAAAAYDxifEAAAACg7HJ8QAAAAGAmhnxAAAAAAFqxfEAAAADAZdN8QAAAAGDcZX9AAAAAIJSFf0AAAADAgZV/QAAAAKDxtH9AAAAAII/Ef0AAAABggdR/QAAAAIDuCoBAAAAAIAwhgEAAAABgm2KAQAAAAMA8coBAAAAAoPaSgEAAAABABpqAQAAAAGAQzYBAAAAA4M7bgEAAAACg9/GAQAAAAICK+YBAAAAA4L4CgUAAAADgZSSBQAAAAKBDSYFAAAAAoOdhgUAAAAAg5IGBQAAAAKC7ioFAAAAAYJ2UgUAAAACg9LKBQAAAACDyuoFAAAAAYCjLgUAAAABgMteBQAAAACC98oFAAAAAAKD5gUAAAABgCRCCQAAAAEDDKoJAAAAAQEwzgkAAAABg2GuCQAAAAMBzfoJAAAAAQBGVgkAAAAAAC6KCQAAAACAHwoJAAAAA4HzKgkAAAABAjOqCQAAAAOBC+oJAAAAA4HoCg0AAAAAgfUqDQAAAACAXUoNAAAAAQE9ag0AAAADgRGaDQAAAAOAOfYNAAAAAgB+ig0AAAAAAV86DQAAAAOBd2INAAAAAQKTjg0AAAABgwSmEQAAAAAC2MYRAAAAAoCFahEAAAAAAkGGEQAAAAOC4aoRAAAAAQNWxhEAAAAAgfbmEQAAAAKCLwoRAAAAAYBLWhEAAAADAc+OEQAAAAGBP/IRAAAAAICIChUAAAAAAQS2FQAAAAGADNIVAAAAAoLtKhUAAAABgfFKFQAAAAAAhbIVAAAAA4J2KhUAAAADAlY+FQAAAAMBrlIVAAAAAgPS5hUAAAACgDsWFQAAAACAt24VAAAAAID0EhkAAAADgGgmGQAAAAOARMoZAAAAAAIs8hkAAAAAgMU2GQAAAAICoUoZAAAAAwERchkAAAADgDY2GQAAAACBimYZAAAAAoDjChkAAAAAgaMqGQAAAAADK04ZAAAAAoOfbhkAAAACgxVKHQAAAAACQW4dAAAAAQOiih0AAAAAgXLyHQAAAAIBa4odAAAAAILMAiEAAAAAAIqOIQAAAACBmwYhAAAAAIL/0iEA= + NrgMGZxjYkCmvpxNHCRnQEMdzoN8QnFAeiAWnryic0BDe6rX1FN4QA== - + - c+LrQBCkp0H9eipAbooVQaoTf0ApoqNAmfthQXrHf0AWhA5B/veTQJ+kkkBEaoNAwWcqQK9NBUEC+oNCR3CEQe5huEAZ9UhCJi/7PweWXEDckJFAzaIQREp7NkJLtVpBQY8JQf7YGEGR4ghAlym1PwbIUUEfyb9Aao+MQP3jBEDmehlAiRIJQCgRN0AIGylDQMmDQfQ9EkAEarU/bFyqQG5ZLkH5EBJAFrozQBl9ZEAxMkNBkWIbQDAdUUCzf9ZAz6tgQfXaJ0HeNx1B5Zi4QMf63UGj/cVBZRgLQbGguEEU7zlBJQwjQQqe7D9bMJFAVz57PzvSAkPoyLVBwVmRQCZl20CR2z5Bum/RQDBSqUA6F5JAPvBHQWSYyUF9MIVAR1P3PyFBk0CXrH5Ba6IRQErJzD+CXrlAweZEQeQNP0I2ARxBmpfLQKzepUDdjEBAMvOJQO7VhUDK6QhBrslvQiwiikEzvoVAqQYJQPIVtT8ZjiVBJb1tQE7l0EEvsIBANrS1QSVQkEAVY81AI3/JQEhUqEODBwNDeQftPxz/LEG1+RJB6J9YQAvA7D+77VJAyoZ4QfGdy0CPnghBD/LIQOTxdkF7YvJA2oODQJqzn0BLwyBAa2qaQDtQy0AzUz9BLl6nQfT6g0FitKVAQK6UQl+B0EExDts/3K9MQdcf20GT9jZBq6QiQUZRCkTuXUVDMtLFQsGW2kA3I35AUPSiQXDbUULzFZ1Aiv1hQL3T6EDce1ZBU33uQEWKwEBb/3ZAyMbGP51gJ0ETM5dBjJ52Qoyp4kEEBmtAsjPeQRyhOUKidb1BqTolQbAWEkEz7BtBegyBQPyz+UGaBxJBLsJ1QD8YGUBfeMlAAvw/QRL2/j/ZFFxAt2PbQLn5jEBRgI5AXu0EQbr4gkHoUyFB4weRQYw30EJgQQFCFJOgQdzSGUCdlqhAMgGVQVzEgEO+zotCIrG8QL7AvUH/hklAjf1GQUI32UBFAmZA8gV0QICSGEE+iP8/0pgjQZeZE0LQU1lBeuIQQZHFDkEEsCZC1GvLQbZnCEHNAAdB7s7IQDDWyEDqqc5Bqzt/QYzlLUGfrzBB1esVQTeb1EDye2pAvUq2QHtbyj/7jXBBLiogQX36LUECAgVCS/ZdQjsqq0GPKQdC2fFcQRBUBkHwhH9BqBArQQlDN0CRXOhBPHEKQyHkWkB+qrtB95ssQ5awlUGj2g5Ca+3XQOpMEECycqhAFgi1P4x5+j9kDF5BYqTjQVmii0GTcqhAwfsRQL49cEGZuLhA3b7PQpPV+UEGe+9ADX8iQbM+5ERxVQVEplQiQVjbw0BpYjNAOceyQNQckkClRSRBU+u3QA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAA2HZEAAAACAhUhlQAAAAEB1gmZAAAAAgGZLZ0AAAACAgG5oQAAAAIByI2pAAAAAYFM/akAAAABAc2hqQAAAAMABqmpAAAAAQLYma0AAAABAskdrQAAAAIAzy2tAAAAA4P4kbEAAAAAgPkRsQAAAAADVjWxAAAAAANikbEAAAABgIAJuQAAAAOB0JG9AAAAAQOpeb0AAAAAAvqhvQAAAACBcI3BAAAAAQCcucEAAAAAABkBwQAAAAICg9nBAAAAAQP5AcUAAAACArNFxQAAAAEDpEnJAAAAA4Lw1ckAAAADgeWByQAAAAEBnc3JAAAAAQH+RckAAAABgMsJyQAAAAABs8XJAAAAAQKa1c0AAAACA83B0QAAAAEDAjXRAAAAAQLFzdUAAAAAAgoR1QAAAAEDUlHVAAAAAANWwdUAAAABAoFJ2QAAAAIBLgXZAAAAAgJ2QdkAAAAAAmaN2QAAAAEAbw3ZAAAAAwE3UdkAAAABAw3Z3QAAAAMBUnXdAAAAAgI+1d0AAAAAAqTJ4QAAAAED6RXhAAAAAgMSUeEAAAACAllJ5QAAAAEBQgXlAAAAAwAKTeUAAAABA9aJ5QAAAAMAp1nlAAAAAAOJjekAAAACAcHV6QAAAAMDphHpAAAAAgEOTe0AAAACAH6J7QAAAAIA+t3tAAAAAwA/De0AAAAAAptF7QAAAAEAd4XtAAAAAwM3ze0AAAACAdUR8QAAAAIDNT3xAAAAAwJRvfEAAAACA0JB8QAAAAIAspXxAAAAAgKG3fEAAAACAb958QAAAAEDt73xAAAAAQEUAfUAAAACA+zF9QAAAAMC0Q31AAAAAALaFfUAAAAAAIaF9QAAAAIBMvH1AAAAAwN/ffUAAAABAIfN9QAAAAEDtAn5AAAAAgM4PfkAAAAAA72h+QAAAAMDEfX5AAAAAQJiUfkAAAAAAZQx/QAAAAEDDVH9AAAAAwHhtf0AAAABAIH9/QAAAAMD7jH9AAAAAQFjRf0AAAACAcBCAQAAAACDdGYBAAAAA4FAigEAAAADg/lqAQAAAACA5YYBAAAAA4NV3gEAAAACgnImAQAAAAOA/qoBAAAAAIAuygEAAAACgLLuAQAAAAGCi0YBAAAAAYKjjgEAAAACAq/OAQAAAAKAK/IBAAAAAYEUJgUAAAABA1xSBQAAAAOAjHIFAAAAAYC8JgkAAAACAERKCQAAAAIBHGIJAAAAAACBbgkAAAABg0GKCQAAAAGAokoJAAAAAwNaYgkAAAACg9qOCQAAAACAJw4JAAAAAAIbTgkAAAADAweCCQAAAAKDJGINAAAAAIJQzg0AAAABgvkuDQAAAACCCYINAAAAAQLe6g0AAAABAv8GDQAAAACBJQ4RAAAAAYG5JhEAAAADA/9KEQAAAAKDP2oRAAAAA4Fn6hEAAAABgrHqFQAAAAKCjgoVAAAAA4HCIhUAAAADAUpGFQAAAAGA91IVAAAAAIIDbhUAAAADgBQqGQAAAAKDSEIZAAAAAYMkahkAAAACgHkKGQAAAAKB6aoZAAAAAYAuMhkAAAAAAiZOGQAAAAIBToIZAAAAAwKnEhkAAAACgFOqGQAAAAMC9AIdAAAAAQMsgh0AAAAAg/qmHQAAAAICu+odAAAAAQJURiEAAAAAA6C2IQAAAAMB1cohAAAAA4OmuiEAAAAAgHr6IQA== + NrgMGZxjYkCOTWWFS4NqQK9rGHLRYnNAtWSyHxRydEDcJfqWwoJ8QEN7qtfUk31AUkBHaO3ZgkAEa5+IdmKDQJhLQ8TNaodAHEgQG2/yh0CPKsPyBAOLQOZP2c3wCo1AVlZpAnELjkA= - + - gf4AQZOJG0AOOAJBOcwuQT7VEUCzQwJB3KWjQC9AtT/RPJFAhi8XQcaCOUFdbjxBlsHqQclGwEEmja5AaYCdQEkyIkEBIYdATS62QMaXfkC2bGdCfD34QHmUm0AMyrJAD5sxQnPRbED6qfhAESQkQfe81kCgYpVBLr6EQBMvM0AVC21AaOUIQP8iN0Df5S1A/TyTQJXTKEECy2pAkX6MQGy15ED8dxJA/5udQAUqRkAKg+BAzxkYQUj0WkD8HhNA3MFVQfKpCEKCLIZBc+00QYr+A0Kkb0hAM7gGQAxoB0EcQU9A1fgtQLJ/jUI+gapBk3iAQFe0bkG3W8ZBRF3ZP1nCekGC+rJAUvOIQTK+lkFA6bxARFybQBgk6UC1gZxAZiWPPy2j8kH9q3RCMA9kQPnfREFrmGFATM3/QAJ+S0ENooFBffL/QCRjpUGja8RBIH06QUXMRUBJN8FBT94sQW0gEUImLPg/jDPrQCEWhUFKkBZBuvw6QcgpxEAAzgtCrXKEQftEu0BQ0zBBuk4RQWaepUHCwd9CtFQ+Q6FV40Dney1B5LCVQP/qukCpNa5AXFsiQVyT4UANOiBCv1IKQz2QPUL31/VAPeyNQJaJt0AaIMVAOKo9QOK4gEBHKtVAUoReQeH/KkDpT6NAU0C3QKi0xj/c+1JAz5WdQfA6JkErFwVC1bpiQd7230Id+7dBXZ2VQTD2o0D8WexB8BEDQiA/xUEGZ0BAMSgSQPv/skJk545CM1hJQVMs+UAG+RlBXT8bQAFKUUAYeK9BV+zGQC2/5j8TMf5ARWTqQLh190DxwKhAJBrjQG+7mkBsiexAKxPFQAq0/z8= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAALimaEAAAAAgd4BqQAAAAIB56WpAAAAA4GYJa0AAAADARCBsQAAAAED+Y25AAAAAgGFhcEAAAAAA0tRwQAAAAEBVsXFAAAAAgEZSckAAAADAMXBzQAAAAKACBXRAAAAAgH5xdEAAAADAeJF0QAAAAEC8I3VAAAAAQMWFdUAAAACAFBJ2QAAAAIDUUnZAAAAAQC/hdkAAAACAKyV3QAAAAMC/MHhAAAAAACGFeEAAAABAx0F5QAAAAIBjP3pAAAAAwFK3ekAAAABAtk57QAAAAAD1c3tAAAAAgHOQe0AAAACAivZ7QAAAAIDIJXxAAAAAgAdlfUAAAACAY+x9QAAAAAC+YH5AAAAAwO2mfkAAAACAINF+QAAAAICv9X5AAAAAoKYwgEAAAABgxECAQAAAAECBSIBAAAAA4OtPgEAAAABg7YyAQAAAACBck4BAAAAA4K+fgEAAAACgzbCAQAAAAOBWu4BAAAAA4B/agEAAAACgqOSAQAAAAKC6HoFAAAAAoHgugUAAAADAh1SBQAAAAMDKZYFAAAAAYBLrgUAAAADgV3+CQAAAAKAQuoJAAAAAYOpJg0AAAACANC2EQAAAAEA4tIRAAAAAYMkLhUAAAABAAhqFQAAAAKDmQoVAAAAAoG9KhUAAAAAgElOFQAAAAOBhqYVAAAAAgH6uhUAAAAAg9BmGQAAAACDiuIhA + KBZXds7jZUA2gKvZDSNtQG+XdYaqQnFA - + - CuyPPyD6bkB854hA7OnCP2XCvECMjoxAn0ckQB5+xz+y0yRAJqPsP9IzdkEdJ9o/XdMkQFLMj0DXCCxAxukpQQY9D0EijBtAaIbrP5ovlEC0ZIxAP6GjP6ugtkAuvX1AZVXsP3/T/T/5YxNBvausQFzdZEBM+PtA7xlrQYB640DPzClA9uD9QK8/lkCCvqI/tHVzQd/l+UAw4iFBs697QU829kCM6bc/lEYQQcBzeUGs34dB/dClQJM2zT8/EFNAXEZaQWxBX0Giob9AFPT6PytkKUGFSdo/PG4WQcoW4EBJ8GRBTjL1QIPJoEFOC5ZA2JckQAxS1j8qyqI/I94IQKHt80HXJ5A/ + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAIWIW0AAAAAAYclcQAAAAEAjBl5AAAAAwCDPXkAAAABgrEVfQAAAAICBiF9AAAAAQHw+YEAAAADAvEVhQAAAAMCrY2FAAAAAQMiiYUAAAABA/MBhQAAAAID+YWJAAAAAQEqgYkAAAAAgquRiQAAAAEChZ2NAAAAAgIqGY0AAAABAyeVjQAAAAECoAGRAAAAAQDJiZEAAAABgi8JkQAAAAEA+5WRAAAAAQHVAZUAAAADAOmplQAAAAMAPm2VAAAAAAIkjZkAAAAAATUBmQAAAACAniGZAAAAA4BWfZkAAAACAf+RmQAAAAOBrB2dAAAAAABMjZ0AAAABA0T9nQAAAAEB+YWdAAAAAgC7HZ0AAAAAA/+RnQAAAAABk/2dAAAAAwLgqaEAAAACg8mJoQAAAAABzpmhAAAAAQIDsaEAAAABgyyVpQAAAAADRRGlAAAAAgHrqaUAAAAAABmJqQAAAAADCAWtAAAAAwOM8a0AAAADAhmVrQAAAAAC7m2tAAAAAQATsa0AAAABAZF9sQAAAAMCwomxAAAAAwC3IbEAAAADAoOlsQAAAAACFC21AAAAAgPAhbUAAAABA0F1tQAAAAEB+pG1AAAAAwKvEbUAAAAAAGuttQAAAAEBCA25AAAAAQI4ebkAAAADAAWduQAAAAAB1nG5AAAAAAKzkbkAAAAAAMwxvQAAAAICZJG9AAAAAgGdCb0AAAACAMGdvQAAAAADme29AAAAAAKelb0AAAACADuJvQAAAAEB6JXBAAAAAwGU0cEAAAABgv1JwQAAAAAA5YXBAAAAAwBhycEAAAAAAAIJwQAAAAED/kHBAAAAAgOGgcEAAAAAAi7JwQAAAAIDLw3BAAAAAoFzVcEAAAACgPuBwQAAAAKC4+XBAAAAAQBcFcUAAAADABClxQAAAAIDvRnFAAAAAAMBmcUAAAADAqXRxQAAAAIC7fnFAAAAAIMiNcUAAAACAtaBxQAAAAKBYv3FAAAAAwIPacUAAAACgKOdxQAAAAEDd9XFAAAAAYIIRckAAAABADCxyQAAAAEBOT3JAAAAAoAFjckAAAADg0nJyQAAAAAB+lHJAAAAAgIunckAAAADgC79yQAAAAAB+yXJAAAAAAG3fckAAAABAQDBzQAAAAOAkUHRAAAAA4EdidEAAAAAgWOh0QAAAAOAeB3VAAAAA4NxsdUAAAACgdZR1QAAAAOAasnVAAAAAIAs9dkAAAABAUM12QAAAAEDZKndAAAAAoHtdd0AAAABACHx3QAAAAMBAjHdAAAAAgKWhd0AAAACgqLN3QAAAAGDjw3dAAAAAIADPd0AAAAAghUF4QAAAAKAbmnhAAAAAANbJeEAAAAAg3h95QAAAACC6W3lAAAAAYO7ReUAAAAAA4fF5QAAAACDXUnpAAAAAQJGaekAAAAAgD+F6QAAAACDi6npAAAAAoDv1ekAAAADA/gR7QAAAAGBFE3tAAAAAoOEze0AAAACg1xF8QAAAACDAU3xAAAAAoOhgfEAAAABA/mZ9QAAAAOA5+31AAAAAwBPZf0AAAACgYTyAQAAAAIAqYYBAAAAA4BrzgEAAAACAHoOBQAAAAOD0ioFAAAAAYJqSgUAAAACgZwKCQAAAAGClOoJAAAAAIPnBgkAAAACg2FGDQAAAAABSMoRA + NrgMGZxjYkA= - + - aE/YP1ku40BL1yRAlcJuQO6y4EBq7KE/EkjsPyQ62j/a4/RAtsINQgkshUAGVBlB9q/FQEUTxEBe/+NB8gKRQBeRnEGGKYBAmfauQFW4JUBemxlA+rMMQccMjz+TiyNAO2+cQNzMPkBS3lFBf5yMQERa00IoKZVBNsOUQIBwoj/2yyxCcpG0QGJ4s0CeY6I/rtkiQFgXC0H0wNNAjvgpQFk7TURYDjNC/Ju1P4ahrUDH76RAYAPaP4D3CkHyqghAVHVUQeSPsEGo4CdDJNlhQeW2BUCe15FAuUxVQb6U7D9wkEZAUcjSQM4kBUEP33ZApnKdQPIEX0HlAkNBlup+QPk9zUB4Tn1ARlXpQNA+Q0ItR7RAP5PBQR2hSUCgBglAVBuhQOx/rkFLU+BAxqC5QV3GWECugl9Cs7lOQk+FGUEskMtBgsp/QYmSGkEJyGxCTLAaQfbLg0BjkkBAk8QhQBj52EHeO5xAMeaZQkoRd0F+j/5BK21LQZH8wUG4ygpCVpswQmamqkEu7cY/wMKAQg5Vw0FEp5hAgHyIQcx9XUKpQYpAJNwEQFDXBUFFWzxBdvI9QRUv4kEyV6RCnAtkQZba0UFYCD1BnFagQscKYUKkzQpBkQmIRed4IUGcWQtBOjSfQGTdsEBVeeZBxjBjQdXsNECCRTlByILKQJJWJUEvxANB9ItyQe/vK0HNYsZAv+v3QBxQNUE+TdFBxq/0QSCMJEE7WCRA5Xm/QZfcsUG5WHZC7PYbQUDYLUGCwTRBjeItQD2Uo0CYHpdAaZWkQVyYy0LPgllB7PGhPwd1sUDv1AhANKISQr4glkHbQqhA + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgBUqY0AAAADAo8ZkQAAAAKDHRmVAAAAAABHnZUAAAADg9QhmQAAAAACuB2dAAAAAQBK8aEAAAAAAmN1pQAAAAICTQWpAAAAAgHlmakAAAACARmhrQAAAAICQ42tAAAAAQIeubEAAAACA9uRsQAAAAID+W21AAAAAIMBubkAAAADAg6NvQAAAAGAhInBAAAAAoNkxcEAAAABAr2BwQAAAACBncHBAAAAAQPmTcEAAAABAas1wQAAAAICz/XBAAAAA4GQicUAAAADgTzRxQAAAACDrQ3FAAAAAgJhkcUAAAADgxMpxQAAAAEAD1nFAAAAAYAf0cUAAAABAtwByQAAAAOCuEXJAAAAAYHgzckAAAAAgaWZyQAAAAKBucHJAAAAAgNexckAAAABg4MByQAAAAEBj/3JAAAAAQKBCc0AAAAAg1VVzQAAAAGDL7HNAAAAAgP2vdEAAAADA5/V0QAAAAKBsFXVAAAAAgIVVdUAAAABAAmN1QAAAAACUtHVAAAAAQG3UdUAAAADAcfp1QAAAAEB0MHZAAAAAYHvIdkAAAACAQfN2QAAAAED8MXdAAAAAwAtmd0AAAACADHR3QAAAAEAmiHdAAAAAoBTld0AAAABAtyN4QAAAAIBzPnhAAAAA4LBXeEAAAACgHHF4QAAAAIB2jnhAAAAAwNmleEAAAACgCLJ4QAAAAGAg0XhAAAAAoFDoeEAAAAAgKBZ5QAAAAOCALXlAAAAAYNJCeUAAAABASVp5QAAAACCYoXlAAAAAoFWreUAAAADgocV5QAAAAIDg7HlAAAAAoBkIekAAAADAwC56QAAAAGA/XXpAAAAAAG2BekAAAABAfbt6QAAAAEA75HpAAAAAQHr1ekAAAADg7v96QAAAAOCCD3tAAAAA4BRPe0AAAACAsl97QAAAAOCMdHtAAAAAANyBe0AAAACAzpN7QAAAAIDqw3tAAAAA4MHhe0AAAAAAB/p7QAAAAODMEXxAAAAAoMskfEAAAABgLjB8QAAAAMDxgnxAAAAAYM6UfEAAAADgW6N8QAAAAKBLv3xAAAAA4PbQfEAAAADAx918QAAAAAD/AH1AAAAAwC0LfUAAAABgWB19QAAAAOCx/n5AAAAAYIhAf0AAAACgu1N/QAAAACALeH9AAAAAoGizf0AAAAAAMQiAQAAAAGBLHIBAAAAAINYvgEAAAADATzeAQAAAAKCRQYBAAAAA4EBJgEAAAACgKmCAQAAAAOBgdoBAAAAAYPeagEAAAABgjbKAQAAAACAo5IBAAAAAICEygUAAAABAt1CBQAAAACCQZoFAAAAAoFZ/gUAAAADAq4SBQAAAAOCOjIFAAAAAADHPgUAAAAAAw/KBQAAAAEDVB4JAAAAA4OoegkAAAAAgpymCQAAAAGCmMoJAAAAAwAtQgkAAAACAXFWCQAAAAECXfoJAAAAAYHi7gkAAAAAgN8OCQAAAAOBY+YJAAAAAAF8ag0AAAABg1R+DQAAAAEChPoNAAAAAAOtSg0AAAABAi4CDQAAAAKAuh4NAAAAA4EyMg0AAAACgAJeDQAAAAKB5qYNAAAAAwFmwg0AAAABAbeiDQAAAACD6+INAAAAAIK0FhEAAAADAXRGEQAAAAICxLoRAAAAAQBw9hEAAAABg0kOEQAAAAAApeYRAAAAAIPKchEAAAACgrdCEQAAAAKAn64RAAAAAQA0YhUAAAAAgbh2FQAAAAGBdVoVAAAAAYNRphUAAAAAgAHeFQAAAACAp6oVAAAAA4E4ChkAAAACgdwmGQAAAACAmQYZAAAAAQOiGhkAAAABgt4uGQAAAACBP2YZAAAAA4EXhhkAAAADg5DuHQAAAAKBDz4dAAAAAQGfhh0AAAAAg4LyIQA== + NrgMGZxjYkDiYBUjzERuQBu6YmAmQ3BAX26KbtRSdkAbGD+0flR3QHy/Rlks43lAo54wAnDlf0AijW1JIgqAQLV84h1EC4NAZlBm8JpShEBEpUATcNOEQGZ/VBpH24dAO4TAQadriEBmrkJE82OLQPXWoDkfbIxA - + - ZKXCQG0gekFnw2RAl62XQLVgT0Dl+wZA/3VhQPXjl0DbwLpALnkOQNCMUkFfnXFBsh3VQLXuE0A1nmpA9yaPQF64fUCmn6E/8f0wQSwIG0DsKxRB+1QxQOTnGUEQ5i1AIVGDQIUQ5EBr2nhAD8I8QG07nECo2mpAwVOKQPR+NkAWLJ9APKsIQK+tpECb4MNANUEbQMlsCUFzZhdB6nIRQBFZtT+p4dFAWD0MQdrxKUC6TwZB0U27QPqVGUFTE9lA9GZhQe2M7T+PzU5AyingQe+uG0FbM1NBZ3maQMrDekBVoaZA7I0SQCJHS0EFGz1AgH59QJHk70ABb5NA844EQdea6z+6M/BAH0pJQVd+vUCMqsBA8KjsP7XUdEEQZc5AXUAXQKNTF0H3iIBAPzfaQQLdL0H28VlCaKmYQA6nsEELWahBH/byQbr7TkEGzNxBHsKaQL6cb0HOvepBeV/tPyK7FkGxMCNBt4LsP7Vjd0FErr9AIreiQVoYDkEIuAdBQdlbQRNZlUAZxt9ApzIkQaTpUkBEsftBDTLlQeoxhEG0rEBA0ydWQv7Qo0BU2vo/qnjWQEvF5EDReGFAYG8IQWs/PkGxfyRApYG9QAombUF3ikVAVIOFQUKQLkF7e5pAjeotQA1fAEGOh0dCsBk6QXYgF0K4yRtAvgeLQXoyoUAi6ftBqw1iQfclZUFSTuhAfYdHQHJHBEJvuFJB24PBQYpjTUHVfBFBXswUQvgPZUGOoNpBT+2eQIDkT0Lk80NBTpNMQuNnXkEN6vNAV8GLQFlyU0Hm4jJBy6SGQeK/H0Ffl2xBiCJYQZRAHkGkxAdCNifSQA9nCkG1do1C0IspQrAVRD+azJ5AvxRcQB0WvkD8JolAJn4cQiqXjkCkBzdAeB7VQbkBs0F4t2FAk/8VQarBG0BNdKBATcLsPyj10kE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIDNHZ0AAAACgd2FnQAAAAMAAbmhAAAAA4Ad3a0AAAABAduVtQAAAAEAzDm9AAAAAAFJtb0AAAADAJadvQAAAAACdHnBAAAAAgFRmcEAAAADgdItwQAAAAMCor3BAAAAAgMUCcUAAAACA80JxQAAAAIDTTnFAAAAAwKvjckAAAABApI9zQAAAAIBdZ3VAAAAAwAaCdUAAAACAZ6B1QAAAAMBEPnZAAAAAwPZkdkAAAAAANNF2QAAAAIDUaXdAAAAAQD7zd0AAAADAwSB4QAAAAMD4RHhAAAAAwINVeEAAAACAzxd5QAAAAIBFZnlAAAAAgKqVeUAAAACAG9V6QAAAAEDY8HpAAAAAgMDve0AAAACAx558QAAAAAAc6XxAAAAAgDhyfUAAAACA2Y59QAAAAMDRJ35AAAAAAFf1fkAAAADA7hZ/QAAAAMCIZH9AAAAAgPOVf0AAAACAmN9/QAAAAACF8n9AAAAAAOuRgEAAAAAAyJyAQAAAAOB1AoFAAAAA4A8rgUAAAABgSjGBQAAAAIC/coFAAAAAIOJ5gUAAAABA17WBQAAAAEAsw4FAAAAA4G0DgkAAAACg+RyDQAAAAEDzRINAAAAA4DSTg0AAAADgDA2EQAAAACBWLoRAAAAAYFx8hEAAAACgboqEQAAAAKBPf4VAAAAAAIeahUAAAACgFhCGQAAAAKDNM4ZAAAAAgNVEhkAAAACgInOGQAAAAADjgIZAAAAAIGnShkAAAABgDPuGQAAAAKDhG4dAAAAAAGdhh0AAAABAimuHQAAAAABg44dAAAAAoH3oh0AAAAAgTfKHQAAAAIB9G4hAAAAAYHlTiEAAAADgaHCIQAAAAAAffIhAAAAAINL4iEA= + NrgMGZxjYkD+9P4gH+NsQOzQoK8iBW9A - + - KWmaQAxg8kAqMpFANpIgQB17hEABgqI/j0uoQNUVB0F6e/4/gzIzQMkp/j/lK1BBamaNQBxDwUCn2KRASFDSQJFbC0GJdPtAc6OVQOxZPkA3qvc/L3Y8QDOfJEBHd4hAy6QBQcWg1kFRqhJBmGCNQLEEKUH2VBBA/uE9QJPeyEBVn/tARdi0P1LrmkCrfkFB3rc/QECbtECwO7dBGv82QLae6kD+ZnRAW2zZP+ln4UDPjOw/VOWDQW1vWkHmSJJBhhwMQowW2j86pn1AG2mSQFCQgkE/g25BD8qIQNJ/bkCeIqRA4wQBQbjcJkEQe9ZAz0RJQEZ02j/iAhtA0vHZP/t+RkBbWwBAJtrbQDmq1UBGFpJA1Nb2QEyrrEDNLWRAbUAqQenRAEEanQlBqdAEQRm8AkFhhEZAqVSDQKc/F0E138RAke2DQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQJBlYkAAAADAV+BiQAAAAAAyCWRAAAAAAMx9ZEAAAACg1mNlQAAAAADI/mVAAAAAwFqlZkAAAADgRTVnQAAAAKAnbmdAAAAAQG2CaEAAAABgeqtpQAAAAOAljmpAAAAAQLytakAAAADAvONqQAAAAABfamtAAAAAwEwmbEAAAAAAA7xsQAAAAACxDG1AAAAAACQrbUAAAABAxEFtQAAAAEA8hG1AAAAAgKfHbUAAAABAOkVvQAAAAKDHKXBAAAAAYBpAcEAAAACgUFBwQAAAAAAPY3BAAAAAIAKkcEAAAAAAdr9wQAAAAEAx1XBAAAAAYAbkcEAAAABAP09xQAAAAAAFc3FAAAAAQL2/cUAAAADgywNyQAAAAKC8T3JAAAAAYJVhckAAAADApnhyQAAAAKBygnJAAAAAIDqqckAAAABASMFyQAAAAKCA6XJAAAAAgH8Uc0AAAAAACTRzQAAAAGB6U3NAAAAAQK1ic0AAAACAabtzQAAAAIBW8nNAAAAAIKwYdEAAAACgOzN0QAAAAEBvTXRAAAAA4D9+dEAAAACA+I50QAAAAMCUsHRAAAAAgLrjdEAAAAAAs/N0QAAAAEBCAnVAAAAAIA1WdUAAAACAZaN1QAAAAABgsnVAAAAAwPq/dUAAAAAAI851QAAAAIDb33VAAAAAwK0EdkAAAADAlB52QAAAACAZY3ZAAAAAAKl/dkAAAAAg3aB2QAAAAADKsnZAAAAAICPOdkAAAAAgWuB2QAAAAEDw8nZAAAAAYGU+d0AAAAAABVF3QAAAAACQdHdAAAAAgATrd0AAAABA/H95QAAAAOCMvXlAAAAAwEvVeUAAAADgMsR6QAAAAKB033pAAAAAoGuze0AAAADgeaZ8QAAAAECsuXxAAAAA4BDGfUAAAABgnGx+QAAAAKA8k35AAAAAQOwRf0AAAADggDl/QAAAACDDTH9AAAAAwLZyf0AAAACg54J/QAAAAGCrsn9AAAAAwOHGf0AAAABAbOZ/QAAAAOASfIBAAAAAIBnhgEAAAABg6kWBQAAAAGDcSoFAAAAAoGN1gUAAAADAWpKBQAAAAGCU6oFAAAAAIOn7gUAAAADgGGqCQAAAAADjkYJAAAAA4IXagkAAAABATuOCQAAAAADF6oJAAAAAwLEBg0AAAAAgqyKDQAAAAOA4M4NAAAAA4O1Lg0AAAADgSDWEQAAAAAAnVIRAAAAAoJ3mhEAAAACgx22FQAAAAIAYaYZAAAAAwL+LhkAAAAAA0syGQAAAAADzq4hA + NrgMGZxjYkBML328ejFwQBu6YmAmQ3BAE4oR9pJidkCPXyNQFkR4QG6WW0FWs3xAW5C1Y2IqgED+9lMwF2KBQCK8W3POMoNAktf3a25qhUBPwgAZMFuGQEwq2GPmaolAs+/KNbxziUBMWcaNkvOMQEbQbnETfI1A - + - rUxkQEw9l0D8Ef5ArPzvQJ5u20Bho7pAXFUgQQ8w10AYYZxAtPohQPXWUkD499NA4LY5QWLRZkGCapxADGqAQInYnkA72odAH+MgQJ12jEBKm4xAa5gRQCz3P0A/auZAxH0AQBkZN0AiwlBANUocQD77V0B9A4hAJkXvQBYQq0EJjolAoM+8QIwsjUGGW2VA8VW0QPTx+UGi8INBTtZmQc6UG0A4KLBAys0oQYLGlkDKQ+w/3fL9QM5wmkCH+EdAMwSiQamKLUBQmbVAWsGCQVnkc0He57VAWJOAQKZB20CGsfxAXZj1QH3DDUAvUs1BPB4uQLleiEJGMThB95soQU5u2j9M5NJAsY8IQVeprUA7QaJASAzZPwsTl0CoxhlAgd0qQYE2kEGBnppABrtuQL71GkDHGsJAbn//P5JtIkAoSBBBii+DQDpG80CIE7NAdWlmQd8VLEFvX7NAaXaXQReqs0HsjXFBc61QQM06xUEvdohAA6HZQSUMZUFmu3hBYYcgQZY92EFKPllBmyBUQUdUNkHS6whB4JeVQddd8kA3E5ZALkf8QJqdYULLM3RAX+iQQK4LIEGdm0lAe3CrQaHdBEGNu7lAoljdQOuJmkBEpk5A5NfYP+CDTUHEvsFA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAHdiYkAAAAAA+99iQAAAAGB3JWRAAAAAAO1EZUAAAACADglmQAAAAMDrIGZAAAAA4NvlZkAAAACAkQVoQAAAAGDXPmhAAAAAoIJgaEAAAAAAeQZpQAAAAMB6oGlAAAAA4H7GaUAAAABAxgBqQAAAAODnP2pAAAAAIEZfakAAAADg4MxrQAAAAOCBQ2xAAAAAwHNgbEAAAADAa4lsQAAAAIACAm1AAAAAQIkIbkAAAACAEwRvQAAAAIBJaG9AAAAAgKPDb0AAAAAgMTJwQAAAAGAej3BAAAAA4Mu/cEAAAACAgNFwQAAAACC85HBAAAAAAI8AcUAAAABgAUZxQAAAAODbUnFAAAAAoILXcUAAAACAl5ByQAAAAMClw3JAAAAAAPnOckAAAACAaUNzQAAAAIAbp3NAAAAAgNXOc0AAAABA1HJ0QAAAAKCykXRAAAAAAK2idEAAAABAu8N0QAAAACAp/HRAAAAAIDUUdUAAAABgHDR1QAAAAMBSdnVAAAAAgK+cdUAAAAAgFLB1QAAAAOAP1nVAAAAA4JzjdUAAAABArC92QAAAAIAZSnZAAAAAgMxedkAAAADAV9J2QAAAAEDa4XZAAAAAwGvydkAAAACAxzR3QAAAAEACTndAAAAAAM5kd0AAAABgF353QAAAAGAJlHdAAAAAQLeid0AAAAAg49B3QAAAAOAO3HdAAAAAQNHyd0AAAABA5SR4QAAAAKAUVXhAAAAAAIpieEAAAACAnXR4QAAAAKAimHhAAAAAQGKieEAAAADgJq54QAAAAMA6x3hAAAAAwFP6eEAAAABgPwV5QAAAAMA0FnlAAAAAYKcoeUAAAACAb0l5QAAAAGAsWnlAAAAA4Kx1eUAAAADADZV5QAAAAKDTonlAAAAAwOARekAAAAAg7B56QAAAAADKLHpAAAAAoFNAekAAAAAgQFJ6QAAAAOA5X3pAAAAAYFSdekAAAAAgq8V6QAAAAOBY9HpAAAAA4JIWe0AAAACggEV7QAAAACB+VXtAAAAAQAJoe0AAAABgQ3t7QAAAACAgkntAAAAAQOyde0AAAABAE9h7QAAAAGAm63tAAAAAoHYIfEAAAACgviR8QAAAAGAxM3xAAAAAgNt4fEAAAACgl4J8QAAAAKAhDX9AAAAA4Mykf0AAAABg/HGAQAAAAOCSkYBAAAAAwOGbgEAAAADAAqaAQAAAAMBOsIBAAAAAAKC2gEAAAAAgT9yAQAAAAIAn4oBAAAAAIEEHgUAAAABg3BaBQAAAAMABKYFAAAAAYMFagUAAAAAg0bCBQAAAAEB6zoFAAAAAwFMPgkAAAABgBiuCQAAAAGCUM4JAAAAAQOFrgkAAAAAgm3iCQAAAAOCQgoJAAAAA4M+6gkAAAAAgq8OCQAAAAGAByoJAAAAAINDPgkAAAAAgTvCCQAAAAGAL/4JAAAAAwEgHg0AAAAAgdwyDQAAAAAD4EYNAAAAAIGMng0AAAADAfDuDQAAAAIBXiINAAAAAIFbDg0AAAAAgLOmDQAAAAKD0aoRAAAAA4K90hEAAAADg/JiEQAAAACDEn4RAAAAAQE25hEAAAAAgjsWEQAAAAKBz44RAAAAAoIHxhEAAAACAhAqFQAAAACAfvoVAAAAAoE4IhkAAAAAAsbuGQAAAAEAnwYZAAAAAIH3KhkAAAAAgTNWGQAAAAAAGAodAAAAAYM4xh0AAAACg11KHQAAAAEAzYYdAAAAAQAj8h0AAAADgLBOIQAAAAGCCvYhA + KBZXds7jZUCAI9DqN6RuQNeRyQ6NInNA - + - +UEiQMHyCEAV+dk/aMvZP+NrYkErodk/ep4FQa3g+T9XRZpAHB83QM6BF0BnW6BAP6EBQWqrykCXhr9Ax+KZQfWdbkBH0VJAss6zQNV4uUAq0XdAjwZIQF2bh0CoXaI/QlkeQUQTWECSzBFA7K8IQIEQIUDAQPlA4r7pQDzTm0HRecc/kyUTQS1PWEEUOyRB2/Z3QK5xmkBq6t9Acnz9P6Neoj8vsqFB67WAQIGB+UDD7iJAwWK9QH4ms0B5WDJBRw7bQI+VckGpxtFAnJwZQd46tkDQuWpAXsLJPxncQ0HCyBFA6hGTQRDw7kEVZtk/sPkWQLoj80BEFJI/+DQGQDcXrEDXrxFBHqP8QX5PIkGN3TJC6LOjQLV39z9YbLFAEF6cQOrlQEGKHBtBhunkQDYXCUCaR5ZAMU7sQCNpqkEz1V5CLRkdQSi7l0AWp8tAlcKrQe0OVUE++SJB7WUpQfAYUEG4fE5CCDo0QbJiWUCdcF5BHUUbQKF1xz/rzCFAOqVjQLMN2EGJy0ZB8Cl8QTU1FUI8rh1BJvcKQamLukAqUCRAepZwQZbPgUGKE+xBOFUJQYxtNEBDHoJBUIEYQeczkD/6XpFA+ZOHQSKkukDuLAdBfoOMQAVYDkK9wcY/6iI/QOkuLELRpxVBrN7NQapxPED4x4lA44uIQbYU90BWTQhB9SwhQiTpwkF+R45ACztAQA5KnEGlV2NC70dPQkOjikGq0JFAOLErQbC1nkFLVSBCtUAfQSjLUkBa1qZCOgilQfRr4UFSG9dBdbCoQGuAfEE/yUZA5qFsQO+FDEGd9ERBlROMQkB960C90g5BTb4yQD3mlUDOvPtA7q6cQZtG+j97YgBB548bQPw520CZgGJA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAMNpYkAAAAAgDIViQAAAAEBFxGNAAAAAIGnAZUAAAADASNxmQAAAAEAcRmdAAAAAAGJcZ0AAAAAg+HdnQAAAAIAsaGhAAAAAQG0oaUAAAACAF7tpQAAAAEAehWpAAAAAQFvpakAAAAAAwQZrQAAAAICcZGxAAAAAwPAdbUAAAABAZ8ltQAAAAKCJ/21AAAAAwFocbkAAAAAA/DZvQAAAAADHbG9AAAAAwAUUcEAAAACgwCNwQAAAAGAcbHBAAAAAgB5+cEAAAAAgwIdwQAAAAGDVoXBAAAAAwNizcEAAAAAA1+JwQAAAAMCZAnFAAAAAwBUxcUAAAAAg04JxQAAAAIAPkXFAAAAAYCnkcUAAAADghHZyQAAAAECftXJAAAAAwIXRckAAAADAMh9zQAAAAIAbQ3NAAAAAwGaRc0AAAABAw7FzQAAAAMDvxHNAAAAAgGXQc0AAAADgKQJ0QAAAAMC0I3RAAAAAYLZzdEAAAACArn10QAAAAMDZk3RAAAAAIAOkdEAAAAAA08J0QAAAAKCVFXVAAAAAQKgfdUAAAABg1TF1QAAAAAA/QHVAAAAAgClSdUAAAACg+1x1QAAAAODLk3VAAAAAgFDSdUAAAACAZOR1QAAAAADl7nVAAAAAQJT7dUAAAABg6iJ2QAAAAIAlLnZAAAAAwEpUdkAAAADALGZ2QAAAAEC0s3ZAAAAAwM/ydkAAAAAgOBJ3QAAAAED3ZHdAAAAAABKBd0AAAABAX6d3QAAAAIA7yndAAAAAAI3Vd0AAAABgsOR3QAAAAAAF9HdAAAAAIC4leEAAAACg6YF4QAAAACDtknhAAAAAAHy3eEAAAABgksR4QAAAAOCWz3hAAAAAgFvneEAAAABgfvV4QAAAAMDBDHlAAAAAwJJEeUAAAAAgRE55QAAAACDbr3lAAAAAwNvTeUAAAABg7uJ5QAAAAOBnKHpAAAAA4C5dekAAAABgiWl6QAAAAGC2kHpAAAAAYCGlekAAAAAgmrR6QAAAAEB7xnpAAAAAgBniekAAAADgRfZ6QAAAAEDs03xAAAAAwPT0fEAAAABgpnZ9QAAAACAyh31AAAAAwJUVfkAAAADgsX1+QAAAAOCFTH9AAAAAIMsdgEAAAAAg5ZKAQAAAAGA+2IBAAAAAgG7/gEAAAACgvUuBQAAAAODRVIFAAAAAYBitgUAAAADgDNSBQAAAAKC224FAAAAAoOgJgkAAAACg5ROCQAAAACB1U4JAAAAAIDpbgkAAAABABWOCQAAAAOCVoIJAAAAAIAyogkAAAAAgL8OCQAAAAIDJJoNAAAAA4CQug0AAAABgnDqDQAAAAEB7RINAAAAAgH2eg0AAAADglrCDQAAAAGDB0YNAAAAA4PPhg0AAAADgVQqEQAAAACCGnYRAAAAAYA8EhUAAAACg2gyFQAAAAAABSoVAAAAAQMSJhUAAAAAgupmFQAAAAGDj0oVAAAAAYM7ahUAAAACg39+FQAAAAMB75YVAAAAAgBMqhkAAAABg6dCGQAAAACCgEYdAAAAAYOomh0AAAACgTHqIQAAAAAAJhohA + NrgMGZxjYkCYvfARosNsQMZtNYzMxW5Auhz4ZT+SdUDRdBqjVJN2QIF3jJ9Xw3tARRrbkkSUfkA= - + - MEKJQLePZ0DgmmZA+b7KQBVOSUDlIABBD8azP/R740D+Pcc/P93ZP6kFN0C/bz5A+VkNQZoeakBowolAdBxcQK9emkAWwto/l12uQEoxxEGkmmRA9se0Pyo+IUBWPRhBOpXzQGy6tT+hsjxAq0oFQQ2ypUD2SopBA54tQeGKvED7VXBAPWdbQCZ0CkD/75hAfPvKQMEZCkFUkrQ/fFVGQIbrpEE7B6VB/9yjQDgRu0ABNiVBDincQFEqv0BZGClBzIOEQLevgEFu8QdBEYmTQdNVPUH/4YlA8y8EQsqxG0DF0HVAbYu0P6kxKUKUpB9B6pPZP7HTUkBi01ZBTKU/QZ7zE0FPQQNBZyyAQDNdSUDIkKxB4GYkQD8xKUFSHolBZWEIQeQQJED+FtlBRaS3QQawhkKfoo8/tQAgQVi/lUCuBBpBu9a5QCsWN0Bs0nRCs2MlQa2auEHgJa1AvGd5QUKcSUDgUstAhvukQSrrWEHBs+RBBYUjQP6Ag0G6OB5BMGL6QOmo+ED6DDZAIyWGQZBVBUBcx2NBPd1SQOHc7UCgaDxBfOPEQOpdF0Fz2qVBM8WXQPF/sUFftc5A1mZfQM1/KEGL7JtCm6QIQGW9WkGRYBJCi+1cQdElpkCWeFBARe8GQdHIBEEr4/lA4dXhQCTHskHE845Bx7FSQJKoiECgdrQ/qx4iQJACnkBekRdBDiqJQq+wvkFwf0VAMfUHQS4sF0FSGkpB3ZW0QcefX0Hcnn9A8lnHP5lkjkCc1MY//uBOQWc1/0A+N29A + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoOHcZUAAAABgBIJnQAAAAACLRGhAAAAAAIzoakAAAABAHqNtQAAAAMDjJHBAAAAAgGBxcEAAAABAd55wQAAAAMDzrnBAAAAAgOFScUAAAABAkxVyQAAAAGAsJHJAAAAAIORickAAAACApZByQAAAAID8sHJAAAAAwK1Cc0AAAADAjdNzQAAAAAC6M3RAAAAAgPmudEAAAAAA/gB1QAAAAAD8AHZAAAAAwLhhdkAAAACAEMF2QAAAAECTDndAAAAAgPM0d0AAAABAs5R3QAAAAID7EXhAAAAAQDcgeEAAAACAFjJ4QAAAAED2RHhAAAAAgGB7eEAAAACAu4Z4QAAAAECSDHlAAAAAAGlSeUAAAAAAlsd5QAAAAADoAHpAAAAAAMsSekAAAAAAG3V6QAAAAEC4UHtAAAAAwGmee0AAAACAATl8QAAAAIDoo3xAAAAAAOzrfEAAAAAA3XB9QAAAAEBhcn5AAAAAACmBfkAAAADAq0N/QAAAAIBtVX9AAAAAwM6gf0AAAABAY9N/QAAAAEDDc4BAAAAAwOWIgEAAAABgaZ6AQAAAAODSvIBAAAAAoF3NgEAAAABAt96AQAAAACCC8YBAAAAAIIcfgUAAAAAAG1KBQAAAAGCYYYFAAAAAYElugUAAAADA/uGBQAAAAMAl/oFAAAAAwLYWgkAAAACg8NuCQAAAAEAx4oNAAAAA4Ej2g0AAAABgZNSEQAAAAKA3GYVAAAAAoGRNhUAAAACgUdOFQAAAAIDk5YVAAAAAAMMNhkAAAADgYhmGQAAAAKD8a4ZAAAAAAIZzhkAAAAAgL9uGQAAAACA25IdAAAAAoDsxiEAAAABAx2KIQAAAAEBFoYhAAAAAYHn2iEA= + NrgMGZxjYkCRGlyHeVJxQN9iJOBzYnFAuNuj/idjeUAGJGxXInN5QANBpFU9QoBAPvEg6ebJgEA= - + - otz+P598JECTr7NA/49sQOhstj8AHiFAn0q1P623CECxc7c/8MDXQE7zk0F2QhhA/lXmP8WiiUAbMVBAu4obQE4zmkCRPyFASPlPQIn6l0BZDoNAWcLgQKQbHUGDE6FALEWlQEJa2T9jzxpATo1CQVGJjECY4BhCkqI1QZ0PaUGh+axC5boIQNBiqUAcZGFAd7ESQJwSQUGgT1JAeiBcQIfFXkBJ5bxAWPwBQS4FjUDsKJRBp5yAQA1uc0FTWEVBvTWoQKXzSUFCqu1AOHcGQlSNnEGBSy1BpbmRQZOfT0Fxztk/em/OQMe/kUAO749AipcsQYVKhUBId4xAqKozQX6mgEDAUbpAgD7PQF1tjEDoWYtA08CvQaqrVUERjC1AnwoHQd/aSUBlQZBBsukXQhXWpEF3HhJAqAASQKH6QECT3y9Bp7bcPw== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIMzFZEAAAADAvWZuQAAAAMAtYm9AAAAAwDPlcEAAAABA0fRwQAAAAID/NXFAAAAAQMCwcUAAAACAMQpyQAAAAEC0WXJAAAAAAFfVckAAAADAfC5zQAAAAIDfdXNAAAAAALXic0AAAABAK7R0QAAAAEA8pHVAAAAAAD4xd0AAAAAA3mR3QAAAAAAPm3hAAAAAAKTqeEAAAAAA/PR4QAAAAIAiB3lAAAAAQKZzeUAAAACAj455QAAAAMC5EXpAAAAAQMfmekAAAACAxfV6QAAAAMDfEntAAAAAwEwafEAAAAAA//N8QAAAAABjY31AAAAAQESGfUAAAADA4xB+QAAAAMBWHH5AAAAAwA+CfkAAAADACJF+QAAAAMAepX5AAAAAwEFDf0AAAABAsWZ/QAAAAIAMon9AAAAAAP3xf0AAAABgtCCAQAAAAOBQNIBAAAAAoDg7gEAAAACggHqAQAAAAKC6i4BAAAAAIF2SgEAAAADgXMqBQAAAAGBiBYJAAAAAQMU0gkAAAAAgc2OCQAAAAKBLtIJAAAAAYGLDgkAAAABggMqCQAAAAKAUw4NAAAAAQDbJg0AAAAAgG7aEQAAAAIDBI4VAAAAAIElhhkAAAADgbWKHQA== + NrgMGZxjYkA2uAwZnGNlQOJgFSPMRGtAQh3Og3zCckCZcdKIFLN1QJhx0ogUM3dA78XWjawjekA= - + - /hu4QDbRjj92+i1AELK5QIOe0ECm/mBAKNWsQPCKkUCWVLZAO2IjQjVTBkC8hg1AA/9bQMoNEUGOAZVB2xqlP6IMpUDQwf9AbdaUQboA5EFgVmpA0IfGP/XC7D9ctTZAFrbkQclsmUDmxiNB+1otQBskgUDoo/dBKIASQfeBmkB6biBBUKqzP1C1DEFvdwdBjPkHQpiKRkEVag1AFS/+PyWnLUC6uzJAQpuHQCuaCkFwrBBCEq4bQQObWEFynudAKFjZQCsJl0C4EDBBW5KjQj2WAEJSJ/8/zYLHP4lvpUDKgDRA+7E+QF830kA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4GWNV0AAAADA+T1YQAAAAKDRC1lAAAAAgHC8W0AAAADAe0BcQAAAAMCWfVxAAAAAgPnIXUAAAADANDheQAAAAKBBi19AAAAAYJMjYEAAAAAAJkdgQAAAAMCbaGBAAAAAAKdBYUAAAABAnGZhQAAAAMBhoGFAAAAAoP/EYUAAAACA0WFiQAAAAMC/o2JAAAAAgKweY0AAAADAbkBjQAAAAMC4W2NAAAAA4Em8Y0AAAAAAhPhjQAAAAEAoIWRAAAAAAPakZEAAAADg3MVkQAAAAABkaGVAAAAAgPp8ZUAAAADAP6NlQAAAAACWxmVAAAAAIDLgZUAAAABAMwlmQAAAAICkJmZAAAAAoH07ZkAAAADA5GVmQAAAAICYhGZAAAAAgOOaZkAAAAAg3OVmQAAAAAAg/WZAAAAAQNAeZ0AAAADAnWBnQAAAAOAfgGdAAAAA4JmgZ0AAAACAjsRnQAAAAKBQ42dAAAAAwO5oaEAAAACgJ9toQAAAAECuB2lAAAAA4J8kaUAAAACAaTppQAAAAEBVk2lAAAAAwF/naUAAAADAuSRqQAAAAABlRmpAAAAAwI1lakAAAACAr55qQAAAAMAcxmpAAAAAQIvnakAAAAAAbfxqQAAAAIBcIWtAAAAAwPTBa0AAAABAwANsQAAAAMDSQ2xAAAAAQKVhbEAAAADAbYFsQAAAAADHp2xAAAAAwFnDbEAAAADAiuFsQAAAAEC/Im1AAAAAgL6hbUAAAADAm+NtQAAAAMCoB25AAAAAAJUlbkAAAABAX2JuQAAAAIA5hG5AAAAAgF6dbkAAAACAne1uQAAAAIBRNG9AAAAAANFmb0AAAABAMYJvQAAAAIAVoW9AAAAAgCfBb0AAAABA4uJvQAAAAEDKD3BAAAAAAPEjcEAAAADAlzRwQAAAAMAle3BAAAAAIJiTcEAAAADAzrRwQAAAACCEwXBAAAAA4MzScEAAAADAz+5wQAAAAGAWAnFAAAAAwBcvcUAAAACAf1FxQAAAAECXYXFAAAAAIPWecUAAAABA27NxQAAAAIAO0XFAAAAAoOTgcUAAAABgXvFxQAAAAECwB3JAAAAAAOwRckAAAACgMiByQAAAAOCJOXJAAAAAYMFTckAAAAAAi3ByQAAAAADtf3JAAAAAwOmQckAAAACA9LFyQAAAAIC3yXJAAAAAoNTUckAAAABASPRyQAAAAEAkE3NAAAAAAAOec0AAAABAyONzQAAAAMA0sXRAAAAAQNnzdEAAAADgjy91QAAAAKA3Q3VAAAAAAMHjdUAAAADgrhN2QAAAAEDMI3ZAAAAAQFdldkAAAABAk6l2QAAAAICFynZAAAAAQIbsdkAAAADgCpF3QAAAAEDByndAAAAAAHi0eEAAAACgOeB4QAAAAMA093hAAAAAAClseUAAAACgXNZ5QAAAAKBy5nlAAAAA4CIiekAAAABAfmF6QAAAAMBcenpAAAAAoJvsekAAAADANAN7QAAAAMBuWntAAAAAIN1ke0AAAADglH97QAAAAMCNiXtAAAAAIBi0e0AAAACggRJ8QAAAACDcM3xAAAAA4NPWfEAAAACgwyJ9QAAAAGAiNX1AAAAAYM6cfUAAAACgZvd9QAAAACA/fX5AAAAA4EkXf0AAAACgI9t/QAAAAGC69H9AAAAAYMtzgEAAAACge3qAQAAAACBvI4FAAAAAQNQ8gUAAAABAvWiBQAAAAGAZwYFAAAAAgOf2gUAAAAAAGBqCQAAAAECaMYJAAAAAQG6zgkAAAABAUtmCQAAAAOCYioNAAAAAYGk+hUAAAACgrHqFQAAAAIAvA4ZAAAAAoGtShkAAAADAwsGGQAAAACCn24ZAAAAAQObghkAAAABAu3OHQAAAAGB5e4dAAAAAIN/Sh0A= + KBZXds7jZUBImCMySWRuQDtMc7KVAnNA - + - AIZFQPzWxED7gtxASU/BQGYZwkCVFYxAPaPGP/VVmkCG5sA/gcGmQUZjGkGVDfs/KL6/P8/1/T9NPew/h06YQCjelUE6tXtBcHbiQKTJ/j82tFtABZqzP/Hwxj8xyxpAAfeKQPjp+j+ImmxAPJUDQWMZmkHATndAkT92QUyRq0B6Fb9AnZfmP7eEdkCCvOs/G5pHQNtVj0DGYfJABiVzQVM8K0CWZEZA4rBxQScPzD9zIjtBBHUIQKyrjUEuNVdBJ+Y4QcNVckGs8tNAgyHcQA5qg0E7PFBA4oshQbK7BEEluhFAnVXyQMjq/T9f19g/2vYoQYo8bkBEwz9AsIgKQl1eIULD10JAfJAIQIC/mkFweNBBwMlHQI+ktEDwPbNAHxCOQehzM0Du1IJAEFdPQBCrbED4Z3lBLAYuQj16gEC02Q9CubPOQHM8RkCMEJ1BrGkIQqZHhUGSf/dAMqc2QKphEUEXMYdAYxEWQlD7zkIlZJlAHZSdQOcm0UFfqU1BTt8hQdJNo0DZ2BBCgZ0aQoH1m0A2xZNBfrSGQpa5XEHfkZ1BwVqMQPYMRUIq8pNBCicmQQoWjz9e/U1AZ82MQDKcJEAu/JJAt6LfQMLvpUA5HuJAvhhAQLieukAG1O1AETUIQY4d9kDyYmdB6DvHP0r2f0C2789AdRyGQTh5aEH9Vu9BjKyfQDbJpkD91HJBJJbcQKa6rEHKq9xAxJk3QAbJQkKHfiNAbJDRQUz6cUIUiLBAx/kwQJ7LEUPvUYxATIMkQBjf/kArJsNAjLOeQKMmPkGPZhFAEo+KQGWTP0AkyWlBB/FyQZafL0G/oSJBvPONQp7ieEGfbdBAaO6VQHss7kB0daM/WuaaQNchxz/JyzZAAghQQZx880B4Ei5BhRgkQfie90Dnn75AqLZXQKMCg0AyVFJA84GfQOYoc0BuIypARjJrQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwGGoYEAAAAAAhsJhQAAAAAAZY2JAAAAAYIR6YkAAAADAIeliQAAAAEDXgmVAAAAAQD7oZkAAAABAQSFnQAAAAIBVZGdAAAAAoC0gaEAAAABg4iZpQAAAAAC+6WlAAAAAAAgpa0AAAAAA+sZrQAAAACCwAmxAAAAAAHuEbEAAAABgNMlsQAAAAADW5GxAAAAAIMh+bUAAAACAROZtQAAAAECeAm5AAAAAwJkcbkAAAABAHmNuQAAAAMA7h25AAAAAAOOqbkAAAABAuB9vQAAAAADmhG9AAAAAAIQicEAAAABAi3NwQAAAAOAmkXBAAAAAICy3cEAAAAAA5ENxQAAAAIBmXXFAAAAA4H5xcUAAAADAK9FxQAAAACC6DnJAAAAAQLVickAAAACArpZyQAAAAAAyxHJAAAAAAEUjc0AAAACgPDFzQAAAAICfa3NAAAAAgCOTc0AAAADAv6RzQAAAAOAMB3RAAAAAgGW3dEAAAADgHMV0QAAAAKBU1HRAAAAAwMPfdEAAAAAA7hR1QAAAAGCuX3VAAAAAAElydUAAAADAOIN1QAAAAIC6tXVAAAAAQOnSdUAAAABADPB1QAAAAADia3ZAAAAAIKF4dkAAAADA4od2QAAAAIC3kXZAAAAAAJ2ldkAAAAAg/7Z2QAAAAMBJyHZAAAAAwNTzdkAAAAAATQJ3QAAAAGBPNXdAAAAA4MFId0AAAADAG1N3QAAAAIBLgHdAAAAA4HzMd0AAAAAg5tx3QAAAAEDQEXhAAAAAoO8heEAAAADgvTB4QAAAAMCuVXhAAAAA4EO9eEAAAACg0Op4QAAAAGCyBXlAAAAAAJsieUAAAADADjB5QAAAAOCrQXlAAAAAQLlQeUAAAACgP115QAAAAOAoaHlAAAAA4PiWeUAAAAAg0KV5QAAAAEBNtnlAAAAAQBLDeUAAAACgW9N5QAAAAICzInpAAAAAIMowekAAAABg5UV6QAAAAEBQYnpAAAAAYG1vekAAAADARX56QAAAAMCOtnpAAAAAoGrTekAAAAAgvOJ6QAAAAKB3AHtAAAAA4MYbe0AAAAAgYfV9QAAAACCWhn5AAAAAoELXfkAAAACgyR5/QAAAAEBwZn9AAAAAYMB1f0AAAACgi61/QAAAAKA+IoBAAAAAQFhAgEAAAAAgiW6AQAAAAODuc4BAAAAAYBZ8gEAAAAAgsMCAQAAAAODjzoBAAAAAYJjbgEAAAACgC/+AQAAAAOBXUYFAAAAAoPfDgUAAAABAQeSBQAAAAOD98YFAAAAA4NoZgkAAAAAgsiyCQAAAAADUOYJAAAAAYHFpgkAAAABAAoKCQAAAAICyu4JAAAAA4KL8gkAAAACgMAqDQAAAAIAsPYNAAAAA4PNmg0AAAAAg9IGDQAAAAMBxi4NAAAAAADiVg0AAAABAAfeDQAAAAKATAoRAAAAAIKprhEAAAACg0HyEQAAAAAD5gYRAAAAA4IGahEAAAAAAoNmEQAAAAAD86IRAAAAAICYrhUAAAACgmWKFQAAAAKBXcIVAAAAAQLN5hUAAAABgYhaGQAAAAGC8Y4ZAAAAAINhzhkAAAADghIWGQAAAAGAJKodAAAAAIN5yiEAAAADA13uIQAAAAABQi4hA + NrgMGZxjYkA= - + - Uk2AQPpKhkGGzM9AS95GQAyKMkHKQ4FAr9YGQPzrsz/2AQJCnqEiQLG3rEDUwLJATx0zQNKmKUHR87Y/oghBQHZ7zUBhGYVAMIkLQYqayEBXU1pAwPWAQETzoT+4JgZBnNgFQPSy7D/neIBA2UtcQEEB0kDW6es/rwUyQTz2+0CMSw5A0/kNQYTASUBEg2NAC5c9QGyZ+EFy4ElBeGhMQryMZkHOrWhBDjWaQHg9DUG5my5BnpAEQO49HUFD5zZAht61QAWr7UDkCrxBVBy2QY77GEKtNIZBVSgbQPPTBUB4eSZCvyG0QNDe+0AkTJxAnDdMQWFaJEBCs6lAHM4bQSArb0EEJP1BW0wgQCiQLUC/i91ADv0/QTNtRkCeB7dBMcAaQNvE2D+0f5hAVn+6QLLckUH8TOZAX5KjQGGsC0GgKGNBPO0OQkaOkEFFayFBavomQp9EV0FWuDxB+Zg2QYou+EFAnDhBqatXQC2WgkEatIJAFhgTQoTDHUGgIERBsqn9P3y63kHsyXVDOlcPQtbaaUEY7HpBCY43QWSkFkF/eIBAmUScQBrg+D8ylus/JvhEQOz3H0EIMi5CZQDKQP0Av0EAFRNBoOMaQC4y1ECK68I/2eeVQD3OoEDtqvJAeOrTQTcrxkBXZ0FA2NcVQQZ770AIa2pAVQUHQZds10A0lFJAqEwyQZLABEHwkTRDrmKeQYq80UCk2+0/J0uoQM5FrkHd0YJAxBqXQP3s0UB+OR5BU20IQH5j50AwV+s/+baQQI04mkBQDuZBQhRQQW5bf0BPb8c/sDDUPxmnTkCiBSFB + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAADWSVUAAAABAoURWQAAAACDL9FdAAAAAYHQUWUAAAABAgktZQAAAAEBpf1lAAAAA4PlEWkAAAADA8H9bQAAAACBdEFxAAAAAgL9XXEAAAABgCYFcQAAAAGAQal1AAAAAAKgcXkAAAAAA2r9eQAAAAKCRD19AAAAAQD4jYEAAAABAs0ZgQAAAAEC3ZWBAAAAAADaFYEAAAACAnKRgQAAAAMDCBGFAAAAAgI5EYUAAAACAt6VhQAAAAAA7A2JAAAAAAA5qYkAAAACAyK1iQAAAAAAc52JAAAAAwDv+YkAAAADA/EJjQAAAACDQf2NAAAAAwL+jY0AAAADAKuNjQAAAAIBmCmRAAAAAgOsjZEAAAABAqkRkQAAAAIDpqGRAAAAAIHTGZEAAAABgMAplQAAAAIAqPmVAAAAAYO1hZUAAAADAKOtlQAAAAABAJWZAAAAAABo/ZkAAAAAAUGhmQAAAAOAKn2ZAAAAAoKLJZkAAAACA6OlmQAAAAAD8BWdAAAAAAOMmZ0AAAADgzT5nQAAAAEABhGdAAAAAQLelZ0AAAABAM8dnQAAAAIBEB2hAAAAAgDNnaEAAAAAAMIZoQAAAAABspGhAAAAAAPrHaEAAAABA8uZoQAAAAECqBmlAAAAAQH4paUAAAADASExpQAAAAMDMZmlAAAAAQPGkaUAAAADAFrxpQAAAAMC75GlAAAAAgKIGakAAAABAvyNqQAAAAIC2N2pAAAAAAHRoakAAAACAT4hqQAAAAEAJq2pAAAAAQBXFakAAAACAAuRqQAAAAEB3JGtAAAAAQP9Aa0AAAABAGWZrQAAAAIBxhWtAAAAAgGbCa0AAAACAHeprQAAAAICIA2xAAAAAACkrbEAAAADAlkFsQAAAAEBsh2xAAAAAgNmmbEAAAACA0sZsQAAAAICL4WxAAAAAAL8CbUAAAACAGiVtQAAAAMCVZ21AAAAAwAKEbUAAAACA86ZtQAAAAMCqyW1AAAAAgDD+bUAAAAAAjiRuQAAAAMBORW5AAAAAgEvEbkAAAAAAAuZuQAAAAIBdAm9AAAAAAKQeb0AAAAAAnEJvQAAAAEDZX29AAAAAwKiib0AAAAAAHcNvQAAAAACW6m9AAAAAIC4DcEAAAABA9RNwQAAAAOCfIXBAAAAAIM4xcEAAAAAgCUFwQAAAACDOWnBAAAAAgJp+cEAAAADAM5FwQAAAAADTsHBAAAAAQMDFcEAAAABAnfFwQAAAAICj/3BAAAAAQO0fcUAAAABAfC9xQAAAAIC/UHFAAAAA4Dq+ckAAAABArwxzQAAAAIAFg3NAAAAAAACZc0AAAACA86ZzQAAAAABr/HNAAAAA4Km2dEAAAAAg9yN1QAAAACD7NnVAAAAAYC12dUAAAACgFOB1QAAAAGAtDHZAAAAAoCp0dkAAAABgq5p2QAAAAGAztHZAAAAAoBb1dkAAAADg3SN3QAAAAKBuM3dAAAAAYLlBd0AAAABgO1F3QAAAAOC0ZXdAAAAAAAJzd0AAAADgrJB3QAAAAODZqHdAAAAAwIjFd0AAAABAoAd4QAAAAECvFnhAAAAA4AAjeEAAAADAPDh4QAAAAEAAdnhAAAAAIJyVeEAAAACAHaV4QAAAAKAzsnhAAAAAAGBTeUAAAABgM9N5QAAAAMAK43lAAAAAwOl2e0AAAABgA517QAAAACCQn3xAAAAA4MHDfUAAAADAjed9QAAAAMCyDH5AAAAA4FcpfkAAAAAgZ6R+QAAAAEDttn5AAAAAYL3CfkAAAADAF9R+QAAAAMDgFX9AAAAAQIrHf0AAAABgXNt/QAAAAOA55n9AAAAAICDyf0AAAACA0jOAQAAAAMDAcoBAAAAAQHJ7gEAAAADgmguBQAAAAECIbINAAAAAIPFxg0AAAABAA42DQAAAAMBP+YNAAAAAIPYAhEAAAAAAoYqEQAAAACAtkoRA + NrgMGZxjYkByWoXuS4RpQI7ubuyeImtAR9UTyqeidECtUgPnFcN0QM9bBRiZM31AdK2XIC70fUDn3PC1eCKCQLG1yz5OkoJA5wvf3ySrhUCx5Llo+hqGQN7qXg5cQ4lAsROokqajiUBCGCkr6NuNQPXWoDkf7I1A+oLHsWW6kEB+tYQRMO6QQMXJMwxG0pFARHOZT5G+kkA= - + - tF3kP+tZYUEfULU/8t1aQE14gUGttNw/FDFkQEQ/2UB6AtNAwM3jP13fREEiaW1Ak3GaQEBgXkGkvH5Ad1sIQYJ3YUHOUxBCq2CiQWqQw0HrwjZA5bbGP5ONCEAyyBFAxzucQN6vUkCpKJxAXLw2QLTlxj9m0KhBhiUxQQp4M0HDwxVBYBuPP9JEwUCdT6hAnG4CQcI2XEHCQBVBEVLGQEzYiUBUikJBDQOFQIxknEDHe3dAolMIQIMcmkDpWJpBNsKFQRkuTkCQz5VAVas0QUZmgECn8zJA9h9OQSR6h0HTHsZB3yRtQTT6yEGKeElB5r0yQD0nQkF18ylAxwLCQEgeF0DOxm5BFHEgQFlRg0Be539A35QtQKo8ZUGm4/xBEFKuQUubG0ES9j9AZKU2QH2RGEEGvY1BRn62Qm5jyUE78c8/LsyfQCaafkAg1aNAogPmQM3Yr0CZ6mlA3W0GQ9rg1EG1iUBAUPViQdn1h0Gqc7lBUt92Q3WBl0EBUqxA1LnBQCrERUGZnzZBEpGXQRGo2T/WZv8/trGqQBI8vkF/pDVAjoJfQTTPWkKy9LlCkctZQ1KBKEKvx4lAzwh0Qj6ck0IRP8RALDDkQKjI1UE++J9ArW5BQunbrkH9So1BRZDpQN2zoUFp8wdCkWHDQmeObEHkoXdBiOPuP0ILqUERpspAg858QJrbEUBkPdBA8FwAQYa8B0HYppdB8CeHQb6DfUBhTqE/ByxlQLXeJEIAaM9AlOS0QfQ+O0LqeClAxpe9QUDoqEMQOqxCNjULQVMVUEE/YP4/jAqEROvc3EB14BlBRbMbQZQ0jELSyEhBqv9sQEH9jUBW9QZB81NJQIETYUCOVO1AfI5iQawy+UA15q9BUMAcQRZJ3kCicipBmkjFQFUFgUE8hgxC/iBnQRuWl0BuKkBDDLHZQaGgW0CL2ltAzHbCQB/Qh0B8HAtCr0jGQdI5qkGeYgdB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAILgbY0AAAADAQh5nQAAAAIB0pGhAAAAAgLMdakAAAACA4spqQAAAAECHMWtAAAAAgHzGa0AAAACAFCNsQAAAAIBYRmxAAAAAQF1kbEAAAAAAyN5sQAAAAKDFZW5AAAAAgEyJbkAAAAAAVCdvQAAAAIDIPm9AAAAAgDVkb0AAAADAJulvQAAAACBc43BAAAAAAOFBcUAAAACgM3FxQAAAAOBD0nFAAAAAwABickAAAABggrpyQAAAAOCYxnJAAAAAgAvSckAAAADAqwJzQAAAAAAWonNAAAAAQAQWdEAAAABAGUR0QAAAAID7cnRAAAAAgHyDdEAAAADgcpJ0QAAAAEDlE3VAAAAAAG4ydUAAAADAW1d1QAAAAEAIZ3VAAAAAwMuRdUAAAACAV7J1QAAAAABi+HVAAAAAYEM9dkAAAADAlVJ2QAAAACBFw3ZAAAAAYIjTdkAAAADAlvV2QAAAAADUBHdAAAAAgNUrd0AAAAAAa0J3QAAAAKBAtXdAAAAAgMfkd0AAAACgXwR4QAAAAOBGFHhAAAAA4Dc5eEAAAADgm0d4QAAAAMAsVHhAAAAAoAl7eEAAAABAaId4QAAAAMDbsHhAAAAA4Ib1eEAAAACAIQx5QAAAAKDfN3lAAAAAoKxoeUAAAABACqJ5QAAAAMBDtHlAAAAAoM/JeUAAAACgodZ5QAAAAMAK83lAAAAAYLt7ekAAAABA8LJ6QAAAAKAK63pAAAAAoIMEe0AAAAAg9A97QAAAAMDaHXtAAAAAYKw7e0AAAACgnE97QAAAACDEYHtAAAAAYL52e0AAAABgD7t7QAAAACAy8XtAAAAAYK61fUAAAABgSQ1+QAAAAOAiKX5AAAAAIEI2fkAAAAAgSbd+QAAAAGA9yH5AAAAAYJzXfkAAAADAa0Z/QAAAAMATaH9AAAAAwF13f0AAAADgLp1/QAAAAMDJtX9AAAAAoLXDf0AAAAAgzM1/QAAAAMDM8n9AAAAAoB0HgEAAAADgkRyAQAAAAMCwLIBAAAAAAHA4gEAAAABgGUKAQAAAAOClS4BAAAAAYENZgEAAAACg74qAQAAAAED62oBAAAAA4A0jgUAAAADgPGaBQAAAAKAncIFAAAAAwI6SgUAAAABgM5+BQAAAAKAK2YFAAAAA4HHxgUAAAADAcmiCQAAAAKBPoIJAAAAAYP+6gkAAAAAggcKCQAAAAGC00oJAAAAAAAHfgkAAAADgwj+DQAAAACAxhoNAAAAAoIuMg0AAAABgHZKDQAAAAGCnrINAAAAAYEQHhEAAAADg8nyEQAAAAMDInoRAAAAAwCsBhUAAAADgaAmFQAAAAGDGEYVAAAAAIFOGhUAAAAAAbymGQAAAAEDXMoZAAAAA4Je7hkAAAACgO3GIQAAAAICneIhA + NrgMGZxjYkDm926t/RFwQFf+/uF9UnBAIZrngq0yd0DLo7/RbVN4QA== - + - s2dhQKGhxj/lm+s/vMs2QGfPjkGJi6tANtnxQK/3W0Av3i1Bqr4NQWz0KUEWlRVB9cIoQZVxUkFNYQRAjv9yQABEqEBB4odA0cVzQRNPtz/DUNBAJ+i4QKJ5KkHT2qBClkWhP/jP9kBQ8nRBGTDjQG7If0GLyhFAnvxkQMjX0UBBx+9ARDYkQH1FBECrfZpArTr+PwSStkAh22pAoBvEQQJDhEHtMSxBEgKDQCdakkCC0RpABjh3QZE9zUBoP0JB2sBzQB1xCEAo99xA324uQdKs6z/UmRZCKH9EQuCY8kB16jtANZk1QXhQBUFoL51BL+vRQJDrxUB+xBpB4uOZQSK1nEGcmvpA14fWQEjOgEF+w6xB1AaPQTszsEGf/DJA7PDqQOzkF0KqsghDDWuFQeYO5kFELpRBexe0PwEmp0GFz1BBMCAsQZCaC0G8V29Bq0NwQV0dLEF6/dtBEEjbQIO91UFF24dAexsOQQfSnEFn0qE/zUYyQcQ7JEDAdllBW6jvQGiqoEDtgylBLM38QDe++0D2LwJB6mdtQon6LUGR0sJBuz9JQf/+aEBgqAtB0LLKQHdtIEECjGpASf+JQsFyvEGUnXNBvVuJQev8nEFA0wFCOuUfQhApJEBh8kJBMNSKQXybnkHET69AMN3ZQZbQW0Dt8TxAxNwyQGXqEUCHk1JAQQwkQDWPnkGUxHVA + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwMLqZUAAAACADKRrQAAAAIBUQmxAAAAAgLcGbkAAAADAVMZuQAAAAKDvBm9AAAAAAFZcb0AAAACA2uJwQAAAAEBkI3JAAAAAQHJBckAAAACAl3NyQAAAAED4IHRAAAAAwOUhdkAAAABA3Wd2QAAAAIBlg3ZAAAAAwNqidkAAAAAAfA53QAAAAECzQXdAAAAAwH2Vd0AAAAAAxNV3QAAAAED1YnhAAAAAwAB8eEAAAACAVJV4QAAAAICQpHhAAAAAAOXneEAAAACA/gB5QAAAAMBz83lAAAAAQEUGekAAAADATHR6QAAAAECwcXtAAAAAgEW8e0AAAABAzN57QAAAAICaJHxAAAAAgMg0fEAAAACAj7x8QAAAAECO1HxAAAAAgDbefUAAAADAMYN+QAAAAABnm35AAAAAwO1Rf0AAAACAsH9/QAAAAMCim39AAAAAwJ7Gf0AAAACgExKAQAAAAEDKGoBAAAAAQMI+gEAAAAAAIEmAQAAAACBncIBAAAAAAJmYgUAAAABAzsaBQAAAAICNGIJAAAAAID1FgkAAAABA9ISCQAAAAOCai4JAAAAA4OyTgkAAAADgBqCCQAAAAED9G4NAAAAAYMorg0AAAABABcKDQAAAAGChC4RAAAAAAOpShEAAAAAg/HmEQAAAAABnU4VAAAAAwASNhUAAAABAI/uFQAAAACA/g4ZAAAAAwD6bhkAAAABgYhuHQAAAAEC/c4dAAAAAgGogiEA= + NrgMGZxjYkCaHOeqTqRtQOzQoK8iBW9AZCbQtP+ydkAU6QePPwN4QCuBZO4X5H9A7iFO5CuagED4bfwTmIqEQFJPGAG4MoVASS6YL+/KiEBcm8YwJCOJQHY0PdVQ84tAwMiQTbA7jEA= - + - vzW/QP8f7UBJO9BAEScpQHZ7PUG0ixFAvzU1QX1vjkBq/0BB9y6lQEDJ8EAs6ZJAPY2MQBPyPUBsCC1AIxhAQMIcH0FDxLFAwvRaQE4jkUBFUc1AOkPeQHbQ6z+YEx9BAJHMP04etD+jX3RAhCyoQW/INkCm3hhBQAIbQCSs2EBQCGdCYFFXQCr6t0GeDJFAgIIRQVls20BGT1JB/MrMQNYMkD97sq5ADf7JP9UtFEEf4QVBKEATQVv+FUJPQWtB7LuqQBd4gEAuko9BF+wcQl9ICEDOcGxBaL4zQSVMIkGwjvpA36+OQLoJ3UE992BAjTKQQcdKbkAujP4/G2MJQdQER0FYfH9AZevbQCALvkAWnqxAfySaQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYGPmY0AAAABAYchmQAAAAGD+Y2dAAAAA4P3qaUAAAACA0+RqQAAAAMArxWxAAAAAYIflbUAAAACASyNuQAAAAECYRHBAAAAAoENYcEAAAACAJNJxQAAAACD143FAAAAAQGCVckAAAACgdvdyQAAAAAC1f3RAAAAAQLLRdEAAAADAT1R1QAAAAIC/sXVAAAAAQEBTdkAAAACAq4x2QAAAAMC243ZAAAAAwFPzdkAAAABAQ1h3QAAAAMAX8XdAAAAAADJheEAAAACAh3t4QAAAAAA/iXhAAAAAwKANeUAAAAAAoxd5QAAAAECkenlAAAAAgIHYeUAAAACA1eN5QAAAAMCU73lAAAAAQAqkekAAAADAL+d6QAAAAMAzEHtAAAAAAPXPe0AAAACAUgx8QAAAAAA5I3xAAAAAgPstfEAAAACAFlJ8QAAAAMDW8XxAAAAAwEROfUAAAADAuHR9QAAAAMD/KH5AAAAAAJ0zfkAAAAAAL0J+QAAAAEBzk35AAAAAQM2yfkAAAADAdOd+QAAAAACXJX9AAAAAQGlgf0AAAAAAUbR/QAAAAIBc/n9AAAAAIPIRgEAAAADAri+AQAAAACDLuoFAAAAA4NPUgUAAAABA3AKDQAAAAGC/OoNAAAAAILBBg0AAAADgunqDQAAAAAD60INAAAAAYKfhg0AAAABAnfODQAAAAKCy/YNAAAAA4CINhEAAAACgbQKFQAAAAMBCDYVAAAAAoM6qhUAAAACAAdSFQAAAACCNUYZAAAAAYIqrh0AAAACg8suHQAAAACBJe4hAAAAAQB3HiEAAAACg4/mIQA== + KBZXds7jZUDYkZP9yKNsQANJK5hVInJAE4oR9pJidkDKo7/RbVN4QIcv0uWCY35AygGcJcZkf0B44XFOurqDQCdFs49NyoNAPw0YXibDhkAeJDO+hGKHQGo3mmBy+4hAglH92hB7ikCXPT8G1COMQK17f91cs4xA2oEkg77bj0ApyA//JRKQQKjfBhR81pFAj6IOlRsSkkAPugWqcdaTQEpBg2e4+pNAYcRVOumOlUBs4/WlrdaVQHfZljsPq5ZAg2bIeN5ql0Ap8PtJVTeYQJh7CXoEh5hApd874XADmkB8kdyBOguaQMaBrh9mD5xAV/ag77ZPnEBGmaU0vNOdQLQfkevyT55A+K8KQwJgn0D/h7FEDyqgQLpPJe0OlqBAWBPkSzLwoEA= - + - +2jrPxvJm0Ck3spA+/ljQGpVgEFcOo1AHB9AQFotikFnJgNBqZwmQblXTkB+p+hBtd0hQI9zEkEz7z9AhLDrP45dgEBlny5BCLm6QFA6jEDGi8Y/CUsXQBfaxj/ci5pA6hPAQCD5C0J+l3VBfBxIQmrlUUDLLlBBZUktQLKHwT9HO7M/cdRsQBjHw0H8HglBP9rZQJSFzkAiemxCC7CcQWreB0Etc99AMwGDQD1tEkFeXnJBFvC6QFEvEEGrCSlA8jLGQJ1hEUG8PIxBHSRJQCBFikG7eUtBLTvkQHyLPEAnchRB0sJIQZDZLUGyZONBPS6xQIBSZEAb45BAuiwCQYmmJkGaxARAMRQkQHYbW0MOr5hBWmubQIjx2T/xmrxAnwaPP94OrUB1MVNCVyvRQO+LH0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAG+hbUAAAAAAne9xQAAAAIAPAnNAAAAAwJEyc0AAAABgsRV0QAAAAADv4HRAAAAAgPMDdUAAAACAUl52QAAAAMCcg3dAAAAAAEUyeEAAAACAqJR4QAAAAEDgoXlAAAAAABT0eUAAAACA4DB9QAAAAMBeRn1AAAAAwNhjf0AAAAAAhah/QAAAAMBIwH9AAAAAQGX1f0AAAABgKT6AQAAAAGB6YoBAAAAAoHaRgEAAAABAhxuBQAAAACDCIoFAAAAAYMZ5gUAAAADgVOmBQAAAAOBei4JAAAAAIIangkAAAADgte2CQAAAAAD18oJAAAAAwIO7g0AAAACA8yKEQAAAACCgWYRAAAAAYLRhhEAAAADgVoKEQAAAACA+mYRAAAAAAPrqhEAAAAAgdyuFQAAAAAB0MoVAAAAA4A96hUAAAACAZZGFQAAAAKAQu4VAAAAAADTHhUAAAAAArgmGQAAAAIB4GoZAAAAAYOnChkAAAAAgSs2GQAAAAOAU9oZAAAAAwL1ih0AAAACAiHmHQAAAAEBGh4dAAAAAIE2Th0AAAAAgNKGHQAAAAKBTsIdAAAAAAOLNh0AAAAAAYtqHQAAAAEA+64dAAAAA4Gf7h0AAAAAgIxOIQA== + KBZXds7jZUAYxSyCnORuQKPid1q/AnFAxwSPFv6SdkC1CHCBXcR6QGyVwx5OKoBAeFV0q4bygEAzwWkuujKDQNyCPsgSi4VA - + - 9L3iP1drd0B6QTRA4Tr/P5hfLUBLThBBc5mXQGpzoUAc7RxBihmpQMgfqEBiOfdApYG4QEE1vUDoQg1Cd0GaQEqRjEDjyes/RLwiQFYVnEFJzNxAkIOJQD1qLkFZ7oxBQAyRQYflFEFcx0dARJZwQcKnmkE8HqlBQFrZQEanq0FhQhBBb8+1QCYx6z+6GqhAEaZOQGAIm0GQoTZAZQvrQnQ43ECCyodB64V3QBaCDUIcprZBIkUeQbRai0Gq//5A/K3JQOr030AgOBNBkSUlQT/j9kBIZTdBYAwYQkqja0CmmJRBCweNQA5zB0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYHbdaUAAAADAS+ZtQAAAAECJqm9AAAAAwISNcEAAAACAjwNxQAAAAAA5r3FAAAAAYAi9cUAAAABA/xJyQAAAAKCVdnJAAAAAgJUidUAAAADA5BF2QAAAAMAhQ3hAAAAAQG0dekAAAACAJj56QAAAAMBHZnxAAAAAgGJ1f0AAAAAAQOJ/QAAAAGCnXYBAAAAAgIOZgEAAAABgYJ6AQAAAAICB44BAAAAAgDQBgUAAAABg4RuBQAAAAOAnIoFAAAAAgFqogUAAAABgDtqBQAAAAGCdB4JAAAAAIJMPgkAAAADASmOCQAAAAMDTiYJAAAAAoPe6gkAAAACgP82CQAAAAKBmWoNAAAAAQALRg0AAAACg//+DQAAAAAByOoRAAAAAoLRrhEAAAACgw4iEQAAAAKB9qoRAAAAAgKq6hEAAAABgIvqEQAAAAIBmaIZAAAAAQAy7h0AAAACgZ+OHQAAAACAqJYhAAAAAYJCuiEAAAADggeWIQA== + NrgMGZxjYkBImCMySWRuQI8BR/y9MnFAf9hb5OeCdUCPXyNQFkR4QH82ODhAlHxA6mttm9mUfkD6bfwTmEqCQIiWWgnEUoNA - + - UjfBQMx36z/FUY1AhrYRQFfQFEE8pk1BORskQGvMBUEf9t9AIuJIQCErLUDopdFA4XFjQBJ7GUGqwEhATsspQEjUE0AY6/pABIfcQEKZnkBWPC1BX2eAQFSvS0EJKzRAVpisQL6qG0ErwGRADDD0QNwCOUF30qhAbiIWQX8PhUDoVUxBokv+QCaeCEAmPj5A0mv4QIVilkCk861AZjbEQGueZ0Ez5Oo/jEARQHigRkBGd6g/hJNLQY3v4EA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQLRMVkAAAACAhwlYQAAAAACkSlhAAAAAoESNWUAAAADAToxbQAAAAMBG2VtAAAAAgJJQXEAAAADARw1dQAAAAKD7S11AAAAAwHd2XkAAAACgo8peQAAAAEBzP19AAAAAQIQSYEAAAADg8SVgQAAAAMCsRWBAAAAAwJxjYEAAAADgCaVgQAAAACB8xGBAAAAAgFGnYUAAAACg58ZhQAAAAMCfI2JAAAAAQLdlYkAAAABAN4ViQAAAAIBSq2JAAAAAAODoYkAAAAAAQwdjQAAAAIBbQWNAAAAAQN2nY0AAAADAMshjQAAAAMCm6GNAAAAAgBgpZEAAAABgEGpkQAAAACBqoWRAAAAAAHTDZEAAAADA1+JkQAAAAGDIP2VAAAAAYFyjZUAAAACA+eZlQAAAAKCqBmZAAAAA4CMlZkAAAACA9KFmQAAAAOCbI2dAAAAAYOFhZ0AAAABgEIJnQAAAAIBRtGdAAAAAYAblZ0AAAAAg9gRoQAAAAECCJWhAAAAAQCpiaEAAAADAfMZoQAAAAMBi5mhAAAAAgNsJaUAAAACAjh5pQAAAAACcSmlAAAAAgIOjaUAAAABA+LtpQAAAAADk4mlAAAAAAO8jakAAAAAAUkJqQAAAAAChYmpAAAAAwIuDakAAAADAg6hqQAAAAIAaJ2tAAAAAQFhja0AAAAAA+YJrQAAAAADyo2tAAAAAAFjFa0AAAAAAkelrQAAAAEAKJ2xAAAAAgLZrbEAAAACAMZxsQAAAAIClzGxAAAAAgKklbUAAAACAhEdtQAAAAMAGZ21AAAAAwMCjbUAAAAAA6eFtQAAAAMAWBG5AAAAAAN0pbkAAAABAvU1uQAAAAIABaW5AAAAAgE+obkAAAACAUeVuQAAAAABWBm9AAAAAAFskb0AAAAAA1klvQAAAAMACY29AAAAAAM2Eb0AAAADA4qBvQAAAAEBV429AAAAA4EMScEAAAADgESVwQAAAAAAtMnBAAAAAwK4+cEAAAABAN1pwQAAAAADSeHBAAAAA4AKEcEAAAABAdpJwQAAAAKCsonBAAAAA4ImwcEAAAACA+cdwQAAAAAAS0nBAAAAAgNLgcEAAAADA8u1wQAAAAKBbAnFAAAAAYMYTcUAAAAAA8jRxQAAAAKDbQXFAAAAAIIVhcUAAAAAgZXJxQAAAAICqg3FAAAAAwC+YcUAAAABgr7NxQAAAAMABw3FAAAAA4EfTcUAAAAAAKuBxQAAAAAD9ZXNAAAAAAGGWc0AAAADA+qpzQAAAAKCO1nNAAAAAgEDzc0AAAABgPTN0QAAAAMBEgHRAAAAAgPuLdEAAAAAgv6R0QAAAACBrwXRAAAAA4AIIdUAAAACA+Sl1QAAAAEDjQXVAAAAAYJdLdUAAAABAe5B1QAAAAODFpXVAAAAAAAu+dUAAAADAa+V1QAAAAAAAA3ZAAAAAoKkVdkAAAACAsjN2QAAAAKDbRXZAAAAAALRTdkAAAABgHZV2QAAAAODvvXZAAAAAIKbLdkAAAACgwtp2QAAAACDy5XZAAAAA4P/vdkAAAABgjQ13QAAAAMAKXndAAAAAwEiTd0AAAAAgtKZ3QAAAAKC2xXdAAAAAIN3Sd0AAAAAg9+93QAAAACC1ZXhAAAAAgLhyeEAAAAAgSH14QAAAAKB8jnhAAAAA4LmheEAAAABglbN4QAAAAODlxHhAAAAAgJLoeEAAAADgefN4QAAAAGA8D3lAAAAAIKYgeUAAAACgoC15QAAAAEAjVnlAAAAAAB1jeUAAAABgjpt5QAAAAAB/r3lAAAAAIJjReUAAAABgB+Z5QAAAACCW9nlAAAAAwBZCekAAAADAN1l6QAAAAGCxeXpAAAAA4HRDfEAAAAAg8158QAAAACAW2nxAAAAA4EHlfEAAAADA42Z9QAAAACAutX1AAAAAoHvufUAAAABgJvh9QAAAACDJCX5AAAAAwA8gfkAAAABgdnR+QAAAAOAhg35AAAAAwG6lfkAAAAAgE7R+QAAAAMBEF39AAAAAQGkof0AAAADgWcN/QAAAAEAr1H9AAAAAgK4agEAAAACgxyOAQAAAACDBOIBAAAAAwEdBgEAAAACAknKAQAAAAKCIeoBAAAAAwGeCgEAAAABgoMWAQAAAAGDJ84BAAAAAwHL5gEAAAACgggKBQAAAAGADFoFAAAAAQC6hgUAAAACgPayBQAAAAOAzsoFAAAAAAL8KgkAAAACgEySCQAAAAGCFLIJAAAAA4BYzgkAAAAAgYIuDQAAAACD4kYNAAAAAwDOkg0AAAABgprKDQAAAAGBYJIRAAAAAYPd4hEAAAABgqomEQAAAAKC9qYRAAAAAoL/6hEAAAADgAQOFQAAAAOCdCYVAAAAA4C4phUAAAADgkDqFQAAAACCIkoVAAAAAIPeahUAAAACgmXqHQAAAAOBerIdA + NrgMGZxjYkA= - + - o58NQHg8xj8gVE5BOe0NQX/HkEFsIcBAqdjYP32s2D+M+IVAhoQBQUOPh0DU6dg/MUobQZ9hMUJj0FRC3hH1QAH/CkIxoxpAZyiwQbobeELKdlhAxC5/QtkxxEDGvxpAzXcxQYCDCkE3DyBAddZJQKSQZUChuTJBMngpQFLMjz/CR6BB9BXrQdjYskDmRytArlHdQTckSUILTE5A2GIIQre4w0A4jKFCtIw9Q7P+j0H4BaNBE7nUQFk7TEGoJdRAYh5dQbeghUAiKzVBHCbGQORATkCrpLFAVQcDQ3QGakCbU1BCo2+oQZ3mHUCvO89AJbfiQCb6aUG0p3FBBfXqQUiFn0Dek/dA1cY1QNI8FEGvJrFAigoQQVg+tkBujupApDIlQUdqn0G4AilBd9b1QJ2srEDZM7hBAN6lQA3W00APnbM/0UBuQFuCA0Kwyv1A5HwPQf46CkHoCN1CUq7ZQeBIXEBKxYFBoxI8QR5vvkKDDoRBvehsQbAIm0DERINC2Xo/Qw7dt0NsDYVCAzIgQsgr90FMlmpAl17QQa6xNkGNvU5BsjatQBLVRUIIOrVC3K0RQuxpL0M8MKZBchhJQe4jMURaz/w/kFjKQThkDUEKgrM/cJCpQNWYckEawIVAzliMQHNT8kAsmbtBtYD3QMYya0Fq5iJBuLhGQR4gAkEwJyxCkvkAQTcuCEAKHkxBGmUiQvrHIUGuCCRAWuWzP42+IkG+1sNBh4snQY6SGkGIJJtC2NqDQyhEkUHx77I/gxK9QWxRjkD1RMhArLL8QeXgqUHShp9BK9+zPwhMLEDBXRdBq3CrQCaQN0KCKixCIszvQJ7vEUJh7TNBpEdBQmXUckBeYBJD6NeCQl++NUIiSdNBD4/iQRynK0VQHx9Bnp+YQ8FFl0Hm+aNA6wgIQIRzMEGYZylBuTMBQQU8CEAUsChAk9lqQQCuvEDQ/EdAnOQpQQfF+EHhp6xAa18gQYKmjj9j+RZAcOweQvuwmEFmLxVCoP3DQJcbCkKW4HRBcjY0QMqhsz+fO8FAwZwwQV8/9UOJGxxDWj22QaSwMkAANa5BdDHkQfjm8EGcdXhA5UvrPxqMIEDYvaBA18BkQJnwCEGQ8+9APyZ5QPdK4EBrSB1ADzGoQDmflED+snhAwSpFQc1Uc0DdOklAPq26QQmfqUJK6kFBJ+ahQKzt2kBkq9lBLdBHQVxMLUDS5J9A + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYGkBYUAAAADgU51hQAAAAMBlw2FAAAAAYFTGZEAAAABA5illQAAAAIAtaWVAAAAAYJyFZUAAAABAtGtmQAAAAMDshWZAAAAAQMK8ZkAAAACgzyVnQAAAAKAbY2dAAAAA4IdFaEAAAADgF/xoQAAAAOC5bmpAAAAAwInrakAAAADg46RrQAAAAGCzZmxAAAAAYO8mbkAAAADA5WduQAAAAMBqqG9AAAAA4MojcEAAAAAAUDRwQAAAAECBtHBAAAAAAJ7BcEAAAACA0uBwQAAAAEDWP3FAAAAAYDVecUAAAADg+HFxQAAAAADJgHFAAAAAQBDCcUAAAACgDFVyQAAAAEAfYXJAAAAAQGykckAAAAAAPyFzQAAAAED/MHNAAAAAAF8/c0AAAADgu2JzQAAAAGATAnRAAAAAIJ4kdEAAAABAPWJ0QAAAAKCW0XRAAAAAYB3+dEAAAABAcjF1QAAAAEB6R3VAAAAAgINhdUAAAADAi291QAAAAECCkHVAAAAAgMixdUAAAACA/fF1QAAAAAB2A3ZAAAAAQPQRdkAAAADA7D92QAAAACDCWXZAAAAA4JBpdkAAAACAXHR2QAAAAAAWi3ZAAAAAYHyXdkAAAADAx6R2QAAAAGBIsXZAAAAAICnNdkAAAABgvHp3QAAAAIDul3dAAAAAQJfBd0AAAACgvgN4QAAAAOCjJHhAAAAAII0ueEAAAAAgqUZ4QAAAAECBZ3hAAAAAAFF+eEAAAAAgzbN4QAAAAADyOHlAAAAAAA1KeUAAAABgo195QAAAAOD4bnlAAAAAwKKDeUAAAACgQJh5QAAAAKBG1HlAAAAAgKbpeUAAAABgwwN6QAAAAKCpInpAAAAAwP9BekAAAABAIlN6QAAAAMDQYnpAAAAAwEp3ekAAAABgd5B6QAAAAKCGq3pAAAAAYLbQekAAAABgDuR6QAAAACBt73pAAAAAYEoSe0AAAABAwUd7QAAAAGD0qXtAAAAAoMfxfUAAAABAqAd+QAAAAOC4o35AAAAAYCi3fkAAAABgZRR/QAAAAKDJV39AAAAAQId4f0AAAADg/4Z/QAAAAGAWM4BAAAAA4MVAgEAAAABg/XKAQAAAAAB7eoBAAAAAILUQgUAAAACAZoqBQAAAAKAesoFAAAAAIIMrgkAAAACgDzeCQAAAAKAmcIJAAAAAwPeHgkAAAABAupGCQAAAAMAhw4JAAAAAoPj5gkAAAACgYgKDQAAAAMC+MoNAAAAAYLBRg0AAAAAAhVyDQAAAACAJi4NAAAAAABiTg0AAAAAAIKSDQAAAAKAPrINAAAAAAOPNg0AAAABgvuWDQAAAAED5eIRAAAAA4HGGhEAAAABgo6yEQAAAAKBdzoRAAAAAIB0yhUAAAADA8kSFQAAAAEA0BIZAAAAA4LtshkAAAADgNnWGQAAAACAKDodAAAAAIPRxh0AAAABg1aqHQAAAAGALa4hAAAAAwKB9iEAAAAAAmoWIQA== + NrgMGZxjYkA= - + - ZIQNQXvEKUHS/kJCqmwRQHy5CEAQSbFAv6+JQO5RjEASLghAmmbHP02AUkBWgARCZ/vnQLPp6j+kITNA9ZnWQDTsWkCkbD9Ak/mZQEjhsz8uQ8FAjWeIQURUUkDrzBZBFqdbQA5txUATLCNCcVYLQeKPKUIBrvFARF8aQKFfXUA0WvtAHRNBQb9SrEH+BThCkLWVQCw+fUBB9mVAqOAWQL8pLUDzmR1BUyQJQfiMKUGa86xAwas2QGx8XEC2/VxByvSsQOWLLUBmmdhAQzBTQRCbJEH0rxlB2NQAQZQfF0EJ/hRBmZuSQAjcTkEwHj5AKw8xQcYFwkE8P79AKW67QCxyd0HkTqZASMe2QROCZ0H044xBEQXPQCdUNkG0D+ZAUEuVQZQf7UGI3NdA08ySQIzySUKbvSVCVucSQeIKK0CSxVpBEEaBQV+460DW5BpAqxaDQBZswkGFaRxBbThFQFQxLUF3RJdBGw2oQmZsi0H/wLpAe+amQTamKEE3Es1ASY1aQeCAPkF3EgVBv9S6QN43r0DLpxpBXk1uQPhqoELocYFBI+/UQL6oZEATYMY/bGy/QGvZrUAkxPxAzxczQT8ec0BCBe9AFopFQUNookHermRA1MkjQLo+jkG5hq1DbCPVQtaGr0Cg8AZABEJAQO9FTEHGkwhBHIiGQSIILUALYxZAfJFAQM7aTUAKJKE/aEY7QK2sH0FMlM5B60d/QNPizEBbQ7M/uJ3GP9EXxj8= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIDoAY0AAAACANwVnQAAAAIC2yGhAAAAAwCXnaEAAAABA/yVqQAAAAADxPGpAAAAAAD1pakAAAADAB2ZrQAAAAMA0pGtAAAAAQMZFbEAAAADApn9sQAAAACAepWxAAAAAgN/mbEAAAACgY4ZuQAAAACBBYm9AAAAAwCKkb0AAAABA2DFwQAAAAOBbT3BAAAAAgCxxcEAAAADgkKNwQAAAACBWsXBAAAAAgOzBcEAAAABA6c9wQAAAAMB/AnFAAAAAYK9GcUAAAACgNWhxQAAAAAAm9HFAAAAA4AQgckAAAADgnzRyQAAAAOBwlXJAAAAAwPKickAAAACAzcRyQAAAAMBQ4XJAAAAAAGRBc0AAAADAzXVzQAAAAECXEXRAAAAAQEVfdEAAAACgFXN0QAAAAMCGg3RAAAAAwBWXdEAAAACga690QAAAAGBTpHVAAAAAIN+ydUAAAABgn+51QAAAAGCeRHZAAAAA4F9qdkAAAAAAA4d2QAAAAEDsoXZAAAAA4AO1dkAAAAAArsd2QAAAAAAi5XZAAAAAoD3zdkAAAABAVjR3QAAAAED6xHdAAAAAYHENeEAAAACgzyF4QAAAAMCpNHhAAAAAAJ5TeEAAAACAf2l4QAAAACD4tXhAAAAAgNXueEAAAAAA1P54QAAAAKC4IXlAAAAAADcweUAAAAAgbj15QAAAACDiXXlAAAAAoItseUAAAACgRqN5QAAAAOB4r3lAAAAAAB3TeUAAAACgeQx6QAAAAMBkMXpAAAAAIMxEekAAAAAAd1d6QAAAACAKY3pAAAAAIMZvekAAAAAgipZ6QAAAAECGpHpAAAAAAADSekAAAACggBp7QAAAAMC8KntAAAAA4M88e0AAAABglHB7QAAAAGD6jXtAAAAA4Iyhe0AAAADAXqx7QAAAAEAx03tAAAAAAALye0AAAAAg9Qp8QAAAACDcFnxAAAAAgBQyfEAAAAAgU1Z8QAAAAKCAeXxAAAAAIIiPfEAAAABgt7Z8QAAAAKDg+3xAAAAAgAYWfUAAAADg2h99QAAAAECnUH1AAAAAQCBgfUAAAACg82x9QAAAAECLqX1AAAAAYDe1fUAAAABgK15/QAAAACAIaH9AAAAAQAR1f0AAAADAm6J/QAAAAOCZEoBAAAAAAGlJgEAAAADALFOAQAAAAAAccIBAAAAAYMeWgEAAAADAaJ2AQAAAAKCTqoBAAAAAwAb0gEAAAABgpvqAQAAAAGCEBoFAAAAAIAMhgUAAAAAgnk2BQAAAAMAfhIFAAAAAIKaKgUAAAABgpdqBQAAAAOC44YFAAAAAIOnygUAAAACgKSuCQAAAACDjM4JAAAAA4PZKgkAAAADgwV2CQAAAACBIa4JAAAAAYAB4gkAAAACgHn2CQAAAAODNgoJAAAAAAC2LgkAAAAAgWLWCQAAAAKDRu4JAAAAAYCXDgkAAAABAaMuCQAAAAGDu+YJAAAAAIFwGg0AAAAAg2AyDQAAAAGB8IoNAAAAAAOIrg0AAAABA6kCDQAAAACDJaoNAAAAAYOeHg0AAAAAA2oyDQAAAAADvk4NAAAAAoMikg0AAAACgk7KDQAAAAICi74NAAAAAoC77g0AAAAAgUBSEQAAAACDTJoRAAAAAAN5qhEAAAAAg6HGEQAAAAEBgqIRAAAAAADcEhUAAAADgsgqFQAAAACBGKoVAAAAAgMtWhUAAAAAA7XuFQAAAAMApGIZAAAAAIH0zhkAAAADgXj6GQAAAAKD4WoZAAAAAIK2PhkAAAAAgeLiGQAAAAMC9yoZAAAAAgE72hkAAAABg3CGHQAAAAICZxIdAAAAAILHyh0AAAABgbCOIQAAAAECGeohA + NrgMGZxjYkDEsXzkG6NjQD1liD1RInBAG7piYCZDcEA5Cx9LftNzQHgHARMBQ3dAlBdplkEkekDsrMEC8UN/QITeFMOYEoFAo9wFJ1rKgkAyBWQchpKEQKIv0a3wooRAzzV2U1LLh0AyNFJGMhuIQDNjQHDe44pA - + - 5aGJQPilg0AxHalAH2rGP8GRgUGBTJVAUqn9PwbBKEH4mZVA6YzzQG4TqEDA8xFAqXizP8S+rEDYdJVAKL0jQGk3WEBakrpAxAWoQM49tkAfocg/+jgeQZmbWUEAYslBoOHGP3BXhEBlT6pA5cozQAEvCEHL0kdALBHZP1l78EHIh1NAbf8eQcIR40Crv+FAOA+DQBuppEDHN7FAB/SSQNZE+0DErbhA+ZuSQDj3g0B+Pus/QpQ6QRQz+UCoWMY/e1nwQANv6kKwURxBGMpWQakutD/hQdRAo8yoQQ/ZyECW4cBAdOApQQbjLEGtAjtB5Fe6QeNczEGjWghAot/RQHxEOkFNS51CzHGGQYsZQEFilaxAGnt5QFZvk0Eq9UJBBIrQP3cleEEPSwhCMeEyQOIkKULbCfdAL8IIQRfxxUBz0kBCoJopQddncUAHCxdB2eqYQdB1xkHmfVdBQfA4QV7sekDF7LJAJSsgQqmP3kA29+FAYmfcQTJcQ0G8dwdBmMjqP7iGPkE6C5RBQJlxQRrOrUEkl4RBihJDQfI0YUFFRS9BC2m9QAhNF0FxJOhAcmqfQetpzkCi0yFA0jANQbrWDkBqhfRANxJKQC1WEEH8IE1BQ8fRQAxtHUHxVZdAY+WQQIa2LUC27iRBO3bKQHemJkFkN5lABA4kQNneXUHU4pxB38xSQM+K2ECo2BFAFmpXQCtli0K3zpBC+diqPyAqnEDsLiRArXGcQoJYnEDSLklB7ZyBQUFjVEEv2mBB0qF/Qn71VkFKXghADmamQQaWoEDY9bM//WhRQfHKT0H/Bs1B7PWzP1bRvkF4tPZAtg/ZP/YvIkAYwftBkU+UQZLFVEG42ZFAxsx+QKao/T8BSFJALlaRQR/UDUDcHspAlP4VQjfwjj92qR5Bft8+QZImez8wGx1B + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAAE7EXEAAAACAML5dQAAAAMDmCF5AAAAAgANHXkAAAAAA7SVgQAAAAMAJrGBAAAAAgDnBYEAAAABAdKhhQAAAAMAZRmJAAAAAwG6DYkAAAACAMKliQAAAAMBD4WJAAAAAgMdhY0AAAACg5KZjQAAAAECvyGRAAAAAgBDkZUAAAABgkEFmQAAAAKCUhWZAAAAAwCepZkAAAACA1gVnQAAAAEBexGdAAAAAAOD+Z0AAAADgdR1oQAAAAGAtp2hAAAAAQNXlaEAAAACATCxpQAAAAECihWlAAAAAgHPfaUAAAADguAhqQAAAAEBpL2pAAAAAQL9IakAAAADA4Z1qQAAAAIDSw2pAAAAAQC8Ba0AAAABAW8drQAAAAMAU6WtAAAAAgDQobEAAAADA6WVsQAAAAIBlh2xAAAAAANzNbEAAAACAx/9sQAAAAIALR21AAAAAgFh+bUAAAAAAheptQAAAAEBKD25AAAAAwF8mbkAAAACAGEduQAAAAEA7om5AAAAAwE/GbkAAAABA9uNuQAAAAIBSAG9AAAAAgOQjb0AAAACAF0dvQAAAAADMYG9AAAAAgAWCb0AAAADAb7NvQAAAACBLI3BAAAAAQAJAcEAAAAAAwklwQAAAAIC7YHBAAAAAgJRtcEAAAACgKoNwQAAAACCdlHBAAAAAQEGvcEAAAADAsMRwQAAAAGAD2XBAAAAAYGfkcEAAAACAnfJwQAAAAIAiBHFAAAAAAGoicUAAAABAeEFxQAAAAIDgYXFAAAAAQKyAcUAAAAAAA6JxQAAAAMAKvnFAAAAAIGfocUAAAABgagFyQAAAAMDuEXJAAAAAoPAhckAAAABAYDlyQAAAAMBYXXJAAAAAwLdyckAAAADA0KlyQAAAAGDbyXJAAAAA4DnickAAAACAzg9zQAAAAEDdI3NAAAAAAD09c0AAAACAf09zQAAAAEB3YnNAAAAAwEJ/c0AAAACAh6BzQAAAACBatHNAAAAAgFDTc0AAAACAWeRzQAAAAODn8nNAAAAAAJoGdEAAAABgZyV0QAAAAABrMXRAAAAAIALzdUAAAAAgvzF2QAAAAMACQ3ZAAAAAwN2+dkAAAAAgX5V3QAAAAGCBzndAAAAAID70d0AAAACgxwJ4QAAAAABvXnhAAAAAwE5zeEAAAAAAi8F4QAAAAKDTY3lAAAAAoAKDeUAAAAAgCpR5QAAAAGAN1nlAAAAAQARCekAAAABg0VV6QAAAAGCqX3pAAAAAYAt2ekAAAABg+ah6QAAAACBm5XpAAAAAIP30ekAAAABgqrp7QAAAACAL43tAAAAAINRCfEAAAADA91V8QAAAAMANZXxAAAAAwAt1fEAAAADAMYJ8QAAAAGBvmnxAAAAAYJPJfEAAAABAnlR9QAAAAGCp+31AAAAA4AmJfkAAAABgBWh/QAAAAKBMwn9AAAAAIG0qgEAAAACgq3KAQAAAAOA/w4BAAAAA4D77gEAAAABgUgKBQAAAACBlZYFAAAAAwGQwgkAAAABgPLKCQAAAAIBEw4JAAAAAoBHLgkAAAADA8PmCQAAAAOAdE4NAAAAA4GOMg0A= - - - - - - rcyTQAfrsUBk1oJAmMjYPxg1zkCRHppAyXCaQC643UDROcFAXFqpQEdrjj9+pQRAblDIQFUfNkL+SwhAG1T0Qax2GkD2dghA3jDLQIgxSUASHi1As0cpQBV37T988stBbC0aQvgaWkCZLaVAGvLXP8heRUDzalRB6O4aQZGPEUDY7SxAmsFtQJeaZECzq09BxoIGQzHZDULdzMRBprHLQDLXDEHmSVFA5O5IQNczg0BKvndAWvOgP5FKG0HErhpA6vpaQpR2OEGgzINATjJbQAnrIkHIHG5APc+pQRM3tkCXh+1AKwCuQbmRV0GVSaFBcgmiQADXYUG2PTFAAH5VQLvyFUHbi0ZC1NkdQ70/00AI3qVCgFnYQPZLHEEEwvVAgl1OQAjX60BC/45BEaiNQKhLr0GAmaNArv+kQvIKgUHAXpZA5S4JQHyAiUBXly1BP784QVkM2D+HE9ZAm3JrQKzNykGCX9hAEfWPQXQlHEJKEqJBLJXuQ27lCELtI5xAC/WRQftOtD/7bhJAnNuzP2bCdkIIDENB+hXfQd+B7UDjPo5AKiONQp9h7UCaEyxBRhtYQC90hkFuSL9AWimkQOwaB0GF+d1BEgi2QICYWEAa58dA5Xh4QShCCEGpXhVEusBtQnmN+0CwsDhBN/k2QfSLnkBUoI5BwfgUQeAVTkC1ebNAKoAoQiAyT0Kq4UFBKcRlQNWZ0kACLi1ATGDdQWVC9UGOnYlA4fWkQwEq3kH/H35A24wjQOvOCkHH6yRDQmI0QtGxoD9EZlJBUpF0QQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYLHkakAAAAAgzShrQAAAAECW2GtAAAAAgJPFbkAAAAAAFiJwQAAAACDej3FAAAAAQOHDcUAAAADAIvFxQAAAAGAZFXNAAAAAgEy1c0AAAAAAG5d0QAAAAABsInVAAAAAwAEQdkAAAACAynB2QAAAAEAOIXdAAAAAADSVeEAAAADAHC55QAAAAAAcdHlAAAAAgLKkeUAAAABAZ7Z5QAAAAECfLnpAAAAAQKPsekAAAACAEMF7QAAAAICB5XtAAAAAQAQQfEAAAABAbB58QAAAAICGl3xAAAAAAAcifUAAAACAeJR+QAAAAMAKdn9AAAAAQGP/f0AAAABgWhiAQAAAAGClwIBAAAAAAJQagUAAAABgjjOBQAAAAOD4coFAAAAAQNyCgUAAAADgZYqBQAAAAOBCkYFAAAAAIMbIgUAAAABg2dWBQAAAAKCN+4FAAAAA4PQMgkAAAADgqBiCQAAAAICtL4JAAAAAgFA3gkAAAAAAWISCQAAAAIBqtIJAAAAAIAvKgkAAAABAcNyCQAAAAGA894JAAAAA4B4Xg0AAAACg/CeDQAAAAODTO4NAAAAAAJdDg0AAAADgfluDQAAAACDTYoNAAAAAYGiBg0AAAACgK42DQAAAAECdp4NAAAAAIKm3g0AAAAAg3MyEQAAAAADP9IRAAAAAALg/hUAAAADgLFeFQAAAACDSXoVAAAAAAEtxhUAAAAAAy4GFQAAAAABkooVAAAAA4PqohUAAAABAXeqFQAAAAKDg9YVAAAAAoFczhkAAAAAgAnKGQAAAAODZeoZAAAAA4BiMhkAAAAAgwbuGQAAAAGAV0IZAAAAAYBtsh0AAAADg+ouHQAAAAEAguIdAAAAAoNLDh0AAAACg0vqHQAAAAKDNGohAAAAAYM6ciEA= + NrgMGZxjYkCmvpxNHCRnQOJgFSPMRGtA - + - LLD9P7usGkAAsZVA/CE3Qe2uh0Cb+H9APPdzQHlRSEBHLYNAdg7XPzBbo0ACT6NABsDYP0BkjkC+6iNAX1KcQOhYPkEs/ltA/vBEQL1BQEBMKwdAw1/2QJvGUkDkanZAqAUjQMWUykD87VNAMPLFP4NIjEDDHHVBBg80QQXTB0Dr7IBAjLktQB3Xc0CBRORARZUPQ7Y4fEIgZ/tAatPBQKUEbkDxxVdA0MsUQUwH4EHSZA1AlIAhQaq5aUB8uJJAFhEOQbKSTUHyI8c/ZlLSQP3jqEAU0IZA3NUWQOY/H0GOCOJAKGsjQQemkUGUKq1BzEA+QXkWAEFbifNA7f0WQftzjkFi55hBgfjKQHZw4UEbQo9BzeTqPxq8k0F7eDZAbd5SQshJhECSGq9B4hIUQfnNnkEMQE9B9D79QP5siUBMp/hAXN8MQYL1qkGfqvpAcg9JQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQPTCYUAAAADgEmxiQAAAACDP6WVAAAAAAA4mZkAAAABAj6ZnQAAAAMBalmhAAAAAoNNEakAAAAAA+J9qQAAAAACgympAAAAAgHEHa0AAAACAHUtrQAAAAIDUomtAAAAAoL/8a0AAAAAguWRsQAAAAAA9QG1AAAAAIEChbkAAAAAAe99uQAAAAMCNxG9AAAAAgAoicEAAAADAkmJwQAAAAMCdc3BAAAAAYAfRcEAAAABA+uJwQAAAAGDd73BAAAAA4B5EcUAAAADAn1ZxQAAAAIB+4HFAAAAAIElPckAAAACAim9yQAAAAGBejnJAAAAA4BnDckAAAACAoOFyQAAAACBvAXNAAAAAQKIQc0AAAADAZDFzQAAAAKCvlHNAAAAAQCdFdEAAAACAXHV0QAAAAEBgkHRAAAAAgEQUdUAAAADAHoN1QAAAAOBekXVAAAAAQN+xdUAAAABAI/F1QAAAAMD0FXZAAAAAQCIidkAAAAAAwYN2QAAAAMDSlHZAAAAAgFygdkAAAACA8MF2QAAAAIBjGHdAAAAAQFAxd0AAAABg9El3QAAAAOAjZXdAAAAAYOy9d0AAAABgRyF4QAAAACA7VnhAAAAAQBiHeEAAAADgqst4QAAAAKDe2XhAAAAAoPfzeEAAAADgawF5QAAAAGCXEXlAAAAAwEwmeUAAAACg3zB5QAAAAMCwRnlAAAAAAG9VeUAAAABgGGN5QAAAAEAVo3lAAAAAoODGeUAAAADA89F5QAAAACBy7nlAAAAAYGUNekAAAACgql96QAAAAGBphXpAAAAAoCe3ekAAAADAOsF6QAAAAGC00XpAAAAA4MLjekAAAAAAse96QAAAAEA/AntAAAAAYI8Re0AAAABg1SZ7QAAAAKDocHtAAAAAgJqAe0AAAABAVqh7QAAAAOCf5HtAAAAAYGvze0AAAADAEwJ8QAAAAGCoF3xAAAAAYIEsfEAAAADA/098QAAAACALXnxAAAAAoKCAfEAAAABgyJN8QAAAAIA113xAAAAAoOwDfUAAAAAgExB9QAAAAECxZn9AAAAAQIapf0AAAAAgYbR/QAAAAODvG4BAAAAAoK4rgEAAAAAAUnmAQAAAACAJi4BAAAAA4IebgEAAAACgo6mAQAAAAMCozIBAAAAAoBkwgUAAAAAg4YGBQAAAAGCkvIFAAAAA4JXLgUAAAAAAEgGCQAAAACAMDoJAAAAAIDAfgkAAAACgCS2CQAAAAGCBO4JAAAAAoJlZgkAAAACgfJmCQAAAAOB6vIJAAAAA4MjjgkAAAADgDwODQAAAAOBWGYNAAAAA4EBBg0AAAADgfX+DQAAAAMBPiYNAAAAAgMG6g0AAAABgOuSDQAAAAMAkBoRAAAAAAO4khEAAAACgZzOEQAAAAGC8O4RAAAAA4EV2hEAAAACgZIeEQAAAAIBlpYRAAAAAoLawhEAAAADgOMOEQAAAAEAUyYRAAAAAoBzqhEAAAAAg6u6EQAAAAKCqFoVAAAAAQLAdhUAAAACAczmFQAAAAGBcbYVAAAAAQJyJhUAAAABgH/uFQAAAAKBRA4ZAAAAAwDNShkAAAABgzlmGQAAAAOCqiYZAAAAAQAW6hkAAAADg5IyHQAAAAKB+lodAAAAAoJuyh0AAAACgYCaIQAAAAICh4YhA + KBZXds7jZUA= - + - kr2uQFpByEBRqjNBhGHNQFA+EUDkhLFAlBwFQaM/oT9Q6+VAuNiNQEgBU0HZsYlAq/URQKyH0UBjh3dAfemsQadVFkFHmNg/gPCiQCQuAkE6dPRAapazP0dzEUD18Y9BFKldQfk8CEAnUFFBt8YfQClf4UBBl7M/CaVYQmcXxj/MbPZAeLaSQKd/wUCy/bBATt4ZQEs0iUDFLQhAVb/vQMyTOUGTDiNAgMKWQdMJOkGnz5lAIUIyQJ+1f0CHampAvUKjQDIDM0Hf5DtADD4IQADo1EB9IpVBlrmiQSBOE0ElDzdBuBdhQMeXkkFPD7M/sv+OQAW8jj/lIs9AjSKOQPldhEHBNj9BrA2bQUe12D9Ks0dBmWOzQNv3UUGWiBZBnnnjQXcJ6UB+ONdAAuQjQA3dlUCYEfNAVAxcQMZtoUA3JR1BdvzqQDxyd0Bg74RCA1oLQMGXukDjifU/zLuNQEvPaUBOUKVA/KpgQXQrA0FVNhBBDFQAQtnKzkFOgKhBeflsQNO9GkCLid9ADwPcQQ7X/T8+kNVBdiaSQgE0LUCDz8xAeistQEnLMkDZp55BlIZnQjIdkkEaqT9AgF1PQVFCOkEVJZVBBagFQrDNcUD821VB8YAEQV8W5kAY7uZBjvmDQnQEnEEweI1C5sdHQFfNR0KUW5JBaOZsQN0G1kBzlqpBYPxFQJi6XUE+DqNAVSmoQOKhNkCPBYRBVb7YPzNpmkBB9ghBDMVQQrYO20ITH5FAesiZQWj2VUHb/7JBSenaQDpWEUDJqipB5r6zP+09LUGm8UZCzyc0QGiH2D+w3bxBdAnyQEBz00EfC6NA + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwLhiZEAAAADASm5lQAAAAAAHQGZAAAAAALeCZ0AAAAAAMGJoQAAAACAFaGlAAAAAQAspakAAAADAMGRqQAAAAGDfq2pAAAAAwEWJa0AAAACAXAdsQAAAAAAZRmxAAAAAYHNlbEAAAACgpJtsQAAAAACB3GxAAAAAwOribUAAAACg+YBvQAAAAKBnum9AAAAAQE/mb0AAAADA/R9wQAAAAKDFUnBAAAAA4A2hcEAAAABA7eNwQAAAAEBYEHFAAAAAgDhdcUAAAAAAIfBxQAAAAADnAHJAAAAAQBwUckAAAAAACiFyQAAAAICHknJAAAAAgB7EckAAAABAxdJyQAAAAIDyI3NAAAAAAJISdEAAAADAtGF0QAAAAEAgw3RAAAAAgMkMdUAAAACAQSl1QAAAAIBpZXVAAAAAwDigdUAAAADA+Al2QAAAAEBRJHZAAAAAAGhgdkAAAABAc3V2QAAAAECozHZAAAAAgPcRd0AAAAAALSZ3QAAAAABQMHdAAAAAQHBFd0AAAACA2rV3QAAAAAAK43dAAAAAAKdEeEAAAADAlVV4QAAAAMCdcHhAAAAAAIGIeEAAAABAdLB4QAAAAEDX13hAAAAAwMbweEAAAADA2gt5QAAAAMBYF3lAAAAAwKYxeUAAAAAA4kB5QAAAAMDQUXlAAAAAQBdkeUAAAABAbnZ5QAAAAED0nXlAAAAAAKyyeUAAAADAYNR5QAAAAAAB8XlAAAAAAGQSekAAAABAOTJ6QAAAAEBnPnpAAAAAgDzzekAAAADAcwF7QAAAAEBBLntAAAAAgIlBe0AAAADANVB7QAAAAMB+aHtAAAAAwPJze0AAAADAg6F7QAAAAABfxntAAAAAwPPve0AAAACAfRV8QAAAAMBzIXxAAAAAQFcxfEAAAADAEVF8QAAAAMCIX3xAAAAAQHWJfEAAAADAppx8QAAAAIAZ5XxAAAAAQCYSfUAAAAAATS99QAAAAMCSOX1AAAAAQP1JfUAAAADAoG19QAAAAIAlpH1AAAAAAFOxfUAAAADA68N9QAAAAMAI0n1AAAAAgA7kfUAAAABAaQd+QAAAAAC8Qn5AAAAAYPxQgEAAAADAuBOBQAAAACARcoFAAAAAgPV6gUAAAACAlZCBQAAAAOD00YFAAAAAYMMagkAAAABgSiqCQAAAAKCaMoJAAAAA4AFkgkAAAACgB2uCQAAAAACglYJAAAAAIJu2gkAAAAAgm72CQAAAAOD914JAAAAAYOD6gkAAAACg+wKDQAAAAOCJKYNAAAAAoHVIg0AAAADA3YaDQAAAAECEqYNAAAAAIP3Zg0AAAADA9eGDQAAAAAD+AYRAAAAAIABqhEAAAADgOsSEQAAAACBM0YRAAAAAIA/5hEAAAADALpOFQAAAAGD+OYZAAAAAAMVihkAAAAAgSWyGQAAAAEDIc4ZAAAAAYEy0hkAAAACgCfKGQAAAAGBoModAAAAAgJtSh0AAAABAk66HQAAAAOBuPIhAAAAAYPRHiEAAAACgb8mIQA== + NrgMGZxjYkA= - + - mHZ9QPKMCkFyvhFBhCb0QKBe/T9hci5BTcqXQOpdSkHwQP1A2nvFP3z84UAAUalA5qJdQSafmkCrlaNANI6/QOVXF0DdoK5AoK/SQCpiNkBcWO1A9PdAQLhKEUCEv4NAjdvAQDm9GkBUKAtCnAbAQUHymUDC5YRAh5ztQAVKD0GGSjxAAYuCQOSFWEBIXv0/hQMWQZh+PUDH+wdAmEfJQAQlT0FeFFZB6lQCQYmNNkBA6xVBUQfNQCzXD0LdUZpACb0jQP9VAEIXOgRASFRZQ7NjqUGgFf0/d2lyQZmfaEHkhhJBcgLPQDUNmEJqOYdBuJfnQPRbTkExT7ZAH+aQQGYibUB6ix5CvMfTQHs7Y0Ei/F5BKGtTQf0bNUEq47pAY9xqQGMGHEHu7BxB+knGP2G9XEFE55JB7h6cQO1d/EB7eKxBAuDPQIqEIkGWs4VBJaZ6QR3z4UDw11dBhwWhP8TCJUFdM1dAgCbFP4kvDkHIQqk/rDF4QWez20GplkBBZvSJQXPg4EEmNc5Blr72QMbfSEHYIdhAvrYxQYWX/0AC/GlAnoKsQOeM1z88SS5Bz8hqQD9ftkAiJPxAd9EJQ230AUL++BlAEur4QQi7j0HGUIlB1a4YQdKctUBoKBpB9n4FQp13KEGRIOs/oKHYQQXxdkD90N5AgNqvQCb2B0A8Tv0/YFBtQG9PK0CgFlBBCnM2QApVaUIslV1BXXJqQK7RwEEWABpAC6c/QL1p2D8A26VBsE0tQOFqd0A= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwJsKYEAAAADgiSRgQAAAAOBhp2BAAAAAYD9nYkAAAAAAYvpiQAAAAKBMoGNAAAAAAK3mY0AAAAAAV6FkQAAAAADYv2RAAAAAwATiZEAAAADATP9lQAAAACD8JWZAAAAAwCOSZkAAAAAADqZmQAAAAMAc6mZAAAAAwH4DZ0AAAADAQ2RnQAAAAKC45mdAAAAAgK1qaEAAAACAacZoQAAAAKCvBGpAAAAAgCwpakAAAABAN0FqQAAAAKBqZ2pAAAAAAJYoa0AAAACAjsBrQAAAAOApQ2xAAAAAYDJgbEAAAACA4+NsQAAAAAB+6W1AAAAAABE/bkAAAADAv2tuQAAAAACrhG5AAAAAwObkbkAAAABAGyBvQAAAAIBtSW9AAAAAQAzJb0AAAAAgZTRwQAAAACDkVHBAAAAAYPW0cEAAAACA1NRwQAAAAID7AHFAAAAAwOkacUAAAABgsyRxQAAAAACgQHFAAAAAYCCEcUAAAAAAYsNxQAAAACC/zXFAAAAAAI/icUAAAAAA2iNyQAAAAACXMnJAAAAAAIp/ckAAAABgwZFyQAAAAIBdoXJAAAAAwELEckAAAADAAOByQAAAAGAPA3NAAAAAwKwRc0AAAABgTkJzQAAAAABTT3NAAAAAIBxjc0AAAACg4ndzQAAAAAAItXNAAAAAwJnSc0AAAACAbPJzQAAAAIBuJ3RAAAAAwJsxdEAAAAAg9UR0QAAAAABnYXRAAAAAYLSDdEAAAABAQaF0QAAAAMA1s3RAAAAAgPTUdEAAAADgrxF1QAAAAKDDL3VAAAAAIKdDdUAAAADA6FF1QAAAAOBrbnVAAAAAIPeVdUAAAAAgaa11QAAAAEDAzXVAAAAAgBcQdkAAAABARCR2QAAAAADgNXZAAAAAYIQ/dkAAAAAgQEp2QAAAAMDUZHZAAAAAwDyTdkAAAACAnp12QAAAAIADxHZAAAAAwCrPdkAAAABgVfN2QAAAAEBEA3dAAAAA4P8Sd0AAAABgbjN3QAAAAOBpTndAAAAAIOZcd0AAAAAgVIZ3QAAAAICJk3dAAAAAYDmhd0AAAAAgf7N3QAAAAGBew3dAAAAAYDLPd0AAAADg5N13QAAAAODY8XdAAAAAIOkjeEAAAADgKT54QAAAAOBkVXhAAAAAwNxjeEAAAADgOXZ4QAAAAKDo33hAAAAAoOvxeEAAAAAglfx4QAAAACBZDnlAAAAAYE4veUAAAADgzUN5QAAAACBxWXlAAAAAQNNoeUAAAABgpKl5QAAAAABms3lAAAAAoAbAeUAAAADAsc95QAAAAGBp33lAAAAAYGssekAAAABgkj57QAAAAABm13tAAAAA4H49fEAAAABAIUx8QAAAAODvVXxAAAAAwGxifEAAAABA4oV8QAAAACDCs3xAAAAAQBXFfEAAAABAA9N8QAAAAKDj5XxAAAAAYMgCfUAAAAAgfA59QAAAACC3dH1AAAAAwCsGfkAAAACgviN+QAAAAMBygH5AAAAAQDPLfkAAAADAKdd+QAAAACB7Xn9AAAAAwLBof0AAAADg06x/QAAAAKAWt39AAAAAwFzQf0AAAADgHuJ/QAAAAODHAYBAAAAAgBAvgEAAAAAg/jaAQAAAAKCJT4BAAAAAIDprgEAAAACgDJWAQAAAAIDLp4BAAAAA4OG3gEAAAAAgidyAQAAAACA2aoFAAAAAYGOygUAAAABg2/SBQAAAAEAYGYJAAAAAoLUhgkAAAACAmSuCQAAAAOA+doJAAAAAAKGDgkAAAADAJY+CQAAAAOCelYJAAAAAQPCugkAAAABgV7uCQAAAAODFxIJAAAAAIDvLgkAAAADg0dSCQAAAAOAaEINAAAAAoOEZg0AAAACgiC+DQAAAAKAPUYNAAAAAQEykg0AAAACgL3CEQAAAACC4soRAAAAA4JM8hUAAAAAABYqFQAAAACCVu4VAAAAAoMbEhUAAAADAxBmGQAAAACDTIIZAAAAAwEJDh0AAAACgtbuHQA== + KBZXds7jZUAGYkAjEUJyQIkw7CrX8nJA5Dw2dppDeUBBBLn4wGJ5QJIEx5fm0n9Ack0JZXkqgECaTZA0jGKDQEmx0XUfcoNAdrd2G4GahkC4nkwf5PKGQDAKVxP5mopAgqYV0mULjEA= - + - 1QzPP97fO0Gaz5lAGhYfQasgjj9wo+o/PztEQDS+/D8MCo1ArCqaQL+kxj8HwJlA3DEGQa8ttD9oCQ5BLSXkQALcJEGPy3JA6Z+XQPiMNEDT+rFARg/bQAv/OkCjfKpAmNiCQGCbBEHEF2JC/qWWQXGpDEA3CghBTuSwQNNaA0GrNshBYszMQPQh2D/FtiRBXjw7QDAE8kB+a+o/qviNQJO7mUAqyGtCg+4XQT5OI0DgU41CmwAtQJvSi0DEBoBBdL/4P0NLUkB0CSFBpoexQK85DUAHKLM/71hyQ6YgEEChk69C7qY4QfanmkHiGnxA/dnxQCL6MUH8bF5C+gumQDy+BUHicXFBCJv0P7f89UF3kGNA+b/7QIP/+UDdYIdA1/MEQTTADUFwNP4/gjQ0Qc9kN0HDnMY/GnMAQyFsj0H7ERFAx6auQJ1qxUKxjLtB4NkVQWwqlUCgBrI/vcIfQHo0NkC4nThDCRUiQSQ/YEBVRHxAHIUoQe2fBkHiLEBCgALmQGkHhkG6FGJA6KKgQABMuUGzYSpBeGVXQYzCF0L41qhBBnHJQUMqTEEcEuRCEc1IQWbv1UBwSTtBR0jIQEdrDUAGMFJBok8hQvnpiEHqIJJBFCTqQRXEBkFPH+1A9w2gQFH4M0KESyxAjnegP+xnn0AvIDVBjsT5QP/+RECWMoVA6sAoQJwpJUGD6olBr9OIQHnSz0Ccne1AowSvQgfvfUAJMURA4U93QIJEAUHb4tZBP0JOQPJWZ0EQJ2JD6hO7Qo+DSECGnGlAFAuiQlCEjUAmEMlA62C2Q4Zbv0ADrmBAuxbuQCodAkHykytB73YVQdN2w0BV/XZAqLePQJ7ezEAiT0tCgXL4QXDo+0G4g7lAprxgQNtPj0F5ARBBSDx2QVoOYkOCSQNCJMNNQCqNUUEwUyJB9awEQfgdZUHgzzxA8KrXP98ajECxRwVAw9iOP8AsPEJe1kRA8dUaQXSRVkJRZU5BPd1AQEcTREA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgDy6XUAAAABAqy5gQAAAAOC8XmBAAAAAgLYIYUAAAAAgy8BhQAAAAOCK5mFAAAAAwNVhYkAAAACALcViQAAAAIAhYmNAAAAAgICkY0AAAACgup9kQAAAAADP4GVAAAAAIMImZkAAAACglX9mQAAAAIABxWZAAAAA4MAlZ0AAAAAAGGBnQAAAAEA9imdAAAAAwIjHaEAAAAAgRh1pQAAAAGAWhWlAAAAAQMEEakAAAACgGodrQAAAAECf42tAAAAAwIxBbEAAAACAhoVsQAAAAICqqmxAAAAAQCDDbEAAAACAIedsQAAAAMC8/mxAAAAAQBFAbkAAAACAs2JuQAAAAAADw25AAAAAQMFDb0AAAACAccNvQAAAAMBX429AAAAAwDf9b0AAAACAJTRwQAAAACCUTnBAAAAA4OJicEAAAAAAXHJwQAAAAIC7jHBAAAAAIKP/cEAAAABgdUJxQAAAAIB1kXFAAAAAQL+hcUAAAADAKsJxQAAAACDe0nFAAAAAQHXlcUAAAADAgwFyQAAAAAClJHJAAAAAYI9EckAAAACg825yQAAAAKCSfnJAAAAAgA2SckAAAAAAFrByQAAAAADgwHJAAAAAwOHjckAAAABAWyJzQAAAAMD3M3NAAAAAoOGBc0AAAAAANZdzQAAAACDeoXNAAAAAgFfPc0AAAAAAASV0QAAAAGDqM3RAAAAAwJlBdEAAAADAaGJ0QAAAAODkinRAAAAAAOOjdEAAAADA4dh0QAAAAOAvNnVAAAAAYCVEdUAAAAAAl1B1QAAAAIBDgnVAAAAAINegdUAAAADgp8R1QAAAAIAg5HVAAAAAAF/ydUAAAAAA8wF2QAAAAED0EXZAAAAAYPIxdkAAAABg8WN2QAAAAKCvm3ZAAAAA4Az0dkAAAADAjgR3QAAAAMCZEXdAAAAAIG40d0AAAACgGU93QAAAACBeZXdAAAAAgLh3d0AAAADgjYR3QAAAAKD1x3lAAAAAIIXveUAAAADAgQB6QAAAAMAMFnpAAAAAADHUekAAAADgnFJ7QAAAAGBgJXxAAAAAQPZbfEAAAACgyWV8QAAAAECyo3xAAAAAoOsHfUAAAAAgiEZ9QAAAACBFZX1AAAAAQP+FfUAAAADgCrV9QAAAAKB1Yn5AAAAAwLWVfkAAAACgFwp/QAAAAED3S39AAAAAIB+If0AAAADALJZ/QAAAAMDk3X9AAAAAYD7qf0AAAACgkhOAQAAAAACTHIBAAAAAQKLZgEAAAAAAthmBQAAAAOC4QYFAAAAAAC5egUAAAAAgWIOBQAAAAGAZmoFAAAAAgEezgUAAAAAgvP6BQAAAACBPEYJAAAAAINw9g0AAAABgdXqDQAAAAABugoNAAAAAIHYUhEAAAACAd7KEQAAAAKCx9YRAAAAAYHAxhUAAAACgH7OFQAAAAOBqAoZAAAAAoAlVhkA= + KBZXds7jZUBImCMySWRuQDtMc7KVAnNA - + - U7WSQCQl6j8PIcU//I2TQUFrxT/fGRZAGFSJQFpLHkH+LoRAYZWwQWPNkEC5aMU/hxnFP/E6IUCLQIxBuBNKQvmvXkD2Ry5BSAxXQMEnPUA/AhxAxepRQLWllUBFMXNAR60HQGndUUB0cjlBWdLfQAc3l0BmtHJAOcluQO0Z0z/+qYhBRIDFQc3vUUAdnCNA+2cFQJ1HZECMSCJAWtSpQNxuYkC6Ncc/B52SQDFlL0GVsXVAbgHvQXrUsj9+jWRAurjFP3aGiEE9jdc/cvrbQFKVCEEtZ5xAnAvFP1ioD0AcGXJAxh3+P7YCjkA67pxAk0e6QLTnBEHotxtBmjgoQHpVnULbEoRATa2IQGBnFUG1m1hBZoNHQUnDmUB+c4JBIMtZQGTae0DWKT5CbchRQCdCukBs7n5Af8yLQqpXw0A2DjtA48yCQL+XgkDXsjtBLHTnP2eHikH2qMU/Y1bvQLt1ukBYUFFB9zcxQZ3TVkH1he0/pSi6QCcCNkDPrsxAtjb+QCxVpUCxKaRBZ7uMQOMbLkFfCb9A6beMQHJpxj/QjxFAkibqP9L6jEH2Pb5Bp9qpQIcP1z+rkRNBYHm4QXxyokEVbSxBT9oaQHWUd0LqmLpAL1qHQNFgB0Bac05CkB8hQXSHiUAU6iBA0pwxQeRPD0HW/v0/lu2LQPs5uUMsJgNBv+OyP2pBGEGEM4dANo6kP5jEbkI1PhpALYGCQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAANBhYEAAAADAtMhgQAAAAOCsJGJAAAAAAH3hZEAAAABAVOdlQAAAAMBSHWZAAAAAgCclZ0AAAACAEmdnQAAAAOBmRGhAAAAAIHFkaEAAAADgvCFpQAAAACBhbWlAAAAAoKmkaUAAAAAAq+NpQAAAACC5I2pAAAAAgKJFakAAAABAY6JqQAAAAMA2H2tAAAAAwI5La0AAAABgHmdrQAAAAEAcf2tAAAAAIA6qa0AAAADApedrQAAAAACFaWxAAAAAQIeSbUAAAACAA9BtQAAAAICH/G1AAAAAwCEDb0AAAADAo2pvQAAAAMCLhm9AAAAAgNugb0AAAADAq8JvQAAAAEBoD3BAAAAAYHEkcEAAAACgt3JwQAAAAMAkfnBAAAAA4M2QcEAAAAAgXsJwQAAAAGBp43BAAAAAgE4lcUAAAADgwn9xQAAAAGAvnnFAAAAAQEi0cUAAAACAZhByQAAAAECFI3JAAAAAQNkxckAAAABATlNyQAAAACCWaXJAAAAAQJZzckAAAABASJZyQAAAAEAkz3JAAAAA4CD0ckAAAADAQg9zQAAAAIBvI3NAAAAAgDJec0AAAABA33JzQAAAAAC8lHNAAAAAQGSic0AAAACARtJzQAAAAMD34XNAAAAAQIjvc0AAAACAmS10QAAAAACoUHRAAAAAQOp0dEAAAAAgYJ50QAAAAGBvr3RAAAAA4DvVdEAAAAAAePR0QAAAAOCDBHVAAAAA4EIidUAAAADAcDB1QAAAACBuTXVAAAAAAKpedUAAAABAScN1QAAAAMC/03VAAAAAwILtdUAAAABAEhF2QAAAAEAKI3ZAAAAAIP1vdkAAAABgNI92QAAAAMBEtnZAAAAAIMQEd0AAAADAPjV3QAAAAMD0e3dAAAAAIFIUekAAAABg0jF6QAAAAMAEZHpAAAAAoJDUekAAAACg3/B6QAAAAKBKdHtAAAAAIPyee0AAAADAeSl8QAAAAMB6YH1AAAAAQNaDfUAAAADgOad9QAAAACDswn1AAAAA4MVWfkAAAAAgR8Z/QAAAAOBEY4BAAAAA4A1vgEAAAABAZrKAQAAAAOD2yoBAAAAAYGXSgEAAAABgOBKBQAAAACB2eoFAAAAAAGSSgUAAAABAKbCBQAAAAKCb/IFAAAAA4OIKgkAAAADgjiuCQAAAAIAjW4JAAAAAoNeMg0AAAADgAbSDQAAAAACSBIRAAAAAIGFdhEAAAABgsJKEQAAAAKDPIoVAAAAA4C90hUAAAABgHuaFQA== + NrgMGZxjYkA= - + - i3GGQO9PGkD2V6E/4fZ0QJ8YWUHjf+9ATuDZQoVSnkAr7aJAPj8/QD0DW0AfxpNAXpBcQdlvXUFdMxpAXBOjQPSNZULdN4BBfpBIQDFpakCNhwRA9Qk2QLvXm0CNjE1Bn3tSQTJlLUGDRj9A5fSyP/QjP0BsOKA/LQcRQCwOPkB8XvZAL1+jQP3lGEDdxTJAwBkHQN9exT+ndyhAtANjQB8WmkCBWVpBJOlOQaWHP0GGjvhA4ruyP/rQbEHMDWlAH8rjQLUkuEADfaNA4XGvQLmkFEGcyQRALDVIQRSMyUCRCvtATIkjQKk2l0D+gcNAMCG2QYylu0BlBs1AudWuQIBwV0E4N2lAfr82QRQr1kEMao1BG+cdQWG9DUH0cVFANv8DQQuVKECPuwdADtrXQTW/nkAryHtA8uoDQfgcYEEEP0NBz9NqQUTr1EAd+YtBzAqOQJzxIUF7uw9Bu6kiQcSsB0CUMCxAksCxQIdEjEE3GnFBvsiCQQdvukDuliNBbRdzQa31EEBx6SdBEODjQJkhH0AaOaFAYYlNQLP500DG+YJBRWWQQHtWFkHkbldAFGLcQ42MNEGXSkpB+NPOQCYyDUGAaMFAINVGQItUL0JmXLBBTDI9QCvgDkA= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAoFpDakAAAAAAe5xqQAAAAIDhKGtAAAAAIGkEbEAAAADASpVsQAAAAGCLCm1AAAAAQOBEbkAAAABAXeduQAAAAMA7SW9AAAAAgKqEb0AAAACAf0dwQAAAACCmdXBAAAAAoFilcEAAAAAgNPVwQAAAAIAvhXFAAAAAoMeTcUAAAAAAwOxxQAAAAOAJAHJAAAAAwLYTckAAAABgiSZyQAAAAIBA0nJAAAAA4EEQc0AAAACAcCFzQAAAAMDvMnNAAAAAgNFBc0AAAADAiHVzQAAAAABvoXNAAAAAgAvxc0AAAAAALQl0QAAAAGBEsXRAAAAAALfodEAAAADA9gF1QAAAAMDbZHVAAAAAwFqkdUAAAACAkE92QAAAAIBDhHZAAAAAQPqvdkAAAADA0cJ2QAAAAIDR0HZAAAAAgNjndkAAAACAAiZ3QAAAAMARM3dAAAAAQINFd0AAAAAAnlF3QAAAAIDCdXdAAAAAQOMzeEAAAACAEEN4QAAAAMDgUXhAAAAAwFdkeEAAAADAZXB4QAAAAABm03hAAAAAgIbkeEAAAABA1y95QAAAAMAPaHlAAAAAAAuSeUAAAABAncF5QAAAAECa1HlAAAAAACbmeUAAAABAsfJ5QAAAAAA9B3pAAAAAQLhWekAAAABAnWV6QAAAAICednpAAAAAANfJekAAAADALwZ7QAAAAABhFXtAAAAAQJAie0AAAAAAt1B7QAAAAIDYJHxAAAAAgI41fEAAAABASkF8QAAAAEAPf3xAAAAAQFqzfEAAAABAVL58QAAAAICkVH1AAAAAgEVmfUAAAACA4ol9QAAAAMD2n31AAAAAgOC0fUAAAABAECZ+QAAAAIDbVH5AAAAAwHZifkAAAADAo3J+QAAAAAAylX5AAAAAgOOjfkAAAAAAXdJ+QAAAAIDs435AAAAAgGr7fkAAAAAA71Z/QAAAAECihH9AAAAAADWWf0AAAADghSqAQAAAAOBWOIBAAAAAYKNLgEAAAABAjFCAQAAAAEA6a4BAAAAAYMuIgEAAAACgsJqAQAAAACAapIBAAAAA4ByrgEAAAADARLKAQAAAAKDo8IBAAAAAYM4AgUAAAABggD+BQAAAACBVSIFAAAAA4CdlgUAAAADgiXGBQAAAACBNjoFAAAAAIJWXgUAAAADgBNOBQAAAAMBn2oFAAAAAwA7jgUAAAAAg1vGBQAAAAOCVEYJAAAAAoHlLgkAAAAAg+VWCQAAAAGCEW4JAAAAAIIZugkAAAABA64mCQAAAAOBdqoJAAAAA4Lq+gkAAAACgesiCQAAAACD+4YJAAAAAICDsgkAAAAAgwfqCQAAAAIB1BINAAAAA4Eobg0AAAAAgbiyDQAAAAIDeMoNAAAAAAEQ5g0AAAAAA8EKDQAAAAODESINAAAAAYIlQg0AAAADgXmqDQAAAAODsc4NAAAAAYI6vg0AAAABAhruDQAAAAGAYwoNAAAAAwPbJg0AAAAAgFdODQAAAACBY4oNAAAAAwPjqg0AAAADAAfWDQAAAAID0+oNAAAAA4DIahEAAAAAgGySEQAAAAMBnT4RAAAAAoHlVhEAAAABgV16EQAAAAGC0ZoRAAAAA4FNthEAAAADguIOEQAAAAKDai4RAAAAAAM6nhEAAAADgG7KEQAAAACAzzIRAAAAAIAbRhEAAAADAdLmFQAAAAOASwYVAAAAA4KXMhUAAAABA8AuGQAAAAGDNK4ZAAAAAoK9KhkAAAABgLFSGQAAAAEC0XIZAAAAAoI64hkAAAADgZ9uGQAAAAGBO4oZAAAAAoLTqhkAAAAAgW/uGQAAAAKC8A4dAAAAAIHMZh0AAAADgEmqHQAAAAKDRc4dAAAAAwNCEh0AAAAAgHMOHQAAAAKDUy4dAAAAA4FcaiEAAAABAaXSIQAAAAODJ84hAAAAA4LL7iEA= - - - - - - +2MXQGzAykCmasU/4WxBQT6asj+WhgtByxE6QYZg9j9Fpu9ALyGEQCADTUFghT9BW1Q/QGMUjkDsc8U/vSU2QHhYUUAO41FArbJLQhoo/T8Bs/0/pNqaQGT0SEBv7ttAcDcvQVf50UBkerFAyw4RQKFfqEDPXsRAoYSSQXmVakDCWNg/7d1nQVw0h0BBSo4/imOXQKpH8ECyKtc/3M4HQH+NEECM/zJBN9YbQbZp1kBYpSdB+L1GQXdD5UA+uKNBMderQtJLv0AjQIFB7sV1QUOV6j+kqrFB8/TpP8iw4j+1M9tAS95WQALw0UAA+BxBWMWeQFlIYUC8UT5B1G10QEMlaUCuUrFAItSzQB3iCEGGNz9A6YZqQCGYm0BZ+lJBus1FQR6yZEAyaS9BD9UMQIm4rEB2ZJdAwDLYQPB1LEBcFH0/+RkXQn5td0FTqc9CC/grQQYITkFSfIlACYQQQIPJsUBWpxpCI4m1QNBigUArP7pAd3P7QBpYy0GQRBBBqo6lQHQ5OUG6r6tBWDMeQFGIO0BFebFA2mxSQb0SCEDCOo9Cs5rCQOSUYEGL4DNCo50jQJ2HUUDLOGRAr/zdQWZya0H9OahACtIEQVsYe0G+dLc/j+uyP/ixRkBjQJ5AlwpzQJbgUED7CdVAtj8RQMGl/UAfQLI/s9drQFEfn0ACJ9FA3M4YQZInS0G8lhpB0AJNQVNWkkAfIndA+ec6QQu1VkFnUZJBIkdAQQnduUDUIJ9DdQltQv5P8UGW7otAdBmfQCts8kBHYQBCgiUZQcKuS0KWrwJCGjptQRcmI0Ai0opBRqPOQjL0xkFe5vlBgWv4QYpht0B9SmJAIqjTQCr1/D+VNBhBZi0AQl7RtUAOFHdA7YkEQRs8LkKNdSNAuYC8QI4yfUN/PbBBMroaQjWKW0JyRKpBDNEjQJ3wnkCr2GtAzSzfQJE5GUH7Sb9AQ9jeQQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQLaga0AAAAAgScJrQAAAACA6Ym9AAAAAwA/jb0AAAACgJHFwQAAAAMBW83BAAAAAYBOvcUAAAAAAfMBxQAAAAIBWE3JAAAAAYNp0ckAAAADArqByQAAAAIBaDnZAAAAAgLoNd0AAAACAFkd4QAAAAMDecnhAAAAAAN5ke0AAAADAZvV9QAAAAMBGQ35AAAAAQE6xfkAAAADAb1N/QAAAAMCuZH9AAAAAQC10f0AAAABAjYJ/QAAAAABz4YBAAAAAoCYJgUAAAADgfGmBQAAAAMD3yIFAAAAAoDDqgUAAAACgDPqBQAAAAMClE4JAAAAAYM4igkAAAAAg0FGCQAAAAGBXY4JAAAAAYORtgkAAAAAg/pKCQAAAAAC7soJAAAAAANLlgkAAAACg5pGDQAAAAKDQmYNAAAAAwPnYg0AAAAAgRfqDQAAAAMAlHoRAAAAAIAwjhEAAAACAfqyEQAAAAEAYIYZAAAAAAI5rhkAAAAAg4nSGQAAAAADBt4ZAAAAAoALMhkA= + NrgMGZxjYkDEZV5bjlJwQI8BR/y9MnFA5VVLAVajdUCLwPKUpoN2QOWzJ1WutHxAix7P6P6UfUBwuel2ywKBQFYHXkfjcoFAKgzKbkMDhUC6NChkbwuGQA== - + - u0vqP7qbjkBa9hBAzKg8QHWmWkD5QodA1r7XP53OrECq9h5B7zCsQIhl8UA1RdxA9L7BQEhJqUE12yhA9geVQInSgkBxb/1AFBGgPz5CukAZH65AwwazP9n1pECfxlxB87LXPzgI2D8rCIBAGQsJQduup0AhadhA90XNQHhQgECkG4dB8ZA+QSoS5kBNzURA/YmVQawLI0Hcx+NA0Mj8P6byEEBe/sRBOIgGQXL9O0EkWCFA/Z7MQNbXkEDGXUhAbmlmQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgHp+W0AAAABg+fpdQAAAAMAmRl5AAAAAQHhCX0AAAAAA8cJfQAAAAGBCNGBAAAAA4BhJYEAAAADAuN1gQAAAAECS/GBAAAAAAPmbYUAAAACgMSRiQAAAAICRZGJAAAAAQLSHYkAAAAAAq59iQAAAAMBSgmNAAAAAwISdY0AAAABA+ytkQAAAAADDZGRAAAAAACAEZUAAAABA5ChlQAAAAIDuhmVAAAAAgPyiZUAAAABAg9VlQAAAAMCDJGZAAAAAQFw+ZkAAAACARWJmQAAAAGBipmZAAAAAAAS/ZkAAAAAALSdnQAAAAOBmP2dAAAAAoNmPZ0AAAADAEu9nQAAAACA/C2hAAAAAgI7CaEAAAABgQPtoQAAAAMBnKmlAAAAAwNinaUAAAABgRwRqQAAAAACqYWpAAAAAwNZ+akAAAABAYsdqQAAAAAB/5GpAAAAA4A//akAAAADABENrQAAAAECOa2tAAAAAwDf/a0AAAADAZiFsQAAAAABxamxAAAAAgBmUbEAAAAAADN5sQAAAAMClCW1AAAAAAAzqbUAAAADApAZuQAAAAACKg25AAAAAwJWjbkAAAACAJr1uQAAAAEAK2W5AAAAAwIAAb0AAAACANSRvQAAAAECRY29AAAAAAB6Bb0AAAACAvqJvQAAAAMCLwG9AAAAAgIoicEAAAADAB2RwQAAAAOBybnBAAAAAgESDcEAAAACA55BwQAAAAAB1tHBAAAAAYMDBcEAAAAAAfe9wQAAAAMArAHFAAAAAgFtFcUAAAAAgxWRxQAAAAKDScXFAAAAAgJ5+cUAAAADgr41xQAAAACB6oXFAAAAAQLu4cUAAAACgZcJxQAAAAEBw0nFAAAAAgPHgcUAAAADAdQByQAAAAIB1E3JAAAAAwHwhckAAAAAgAjVyQAAAAMDuVHJAAAAAwJ9uckAAAADAI4FyQAAAAGDZlXJAAAAAAP7eckAAAAAgPvJyQAAAACD5A3NAAAAA4Bkhc0AAAAAAJ05zQAAAAMBPYXNAAAAAYPpxc0AAAADguuNzQAAAAIDa9XNAAAAA4OsQdEAAAACgVyB0QAAAAOBfMnRAAAAAYF9BdEAAAACAPFV0QAAAAEDacHRAAAAAoG+DdEAAAACA1JF0QAAAAAArp3RAAAAAgCKxdEAAAABARbt0QAAAAMC95XRAAAAAAMANdUAAAADgVCZ1QAAAAICZQ3VAAAAAAI1TdUAAAAAANmF1QAAAAOAAc3VAAAAAwBuGdUAAAAAAHp11QAAAAEAbsXVAAAAAYK2+dUAAAADgqsl1QAAAACD+03VAAAAA4IP7dUAAAACg2DZ2QAAAAOBQSXZAAAAA4IlldkAAAAAg7YF2QAAAAOCisXZAAAAA4LFMeEAAAAAgt254QAAAAOBfi3hAAAAA4IUweUAAAACALWJ5QAAAACDVh3lAAAAAQI/ReUAAAADgXAN6QAAAAOAogHpAAAAAAOTPekAAAABAnV17QAAAAMD8rXtAAAAAYIDFe0AAAABgRA58QAAAACAOTXxAAAAAINyFfEAAAAAgL8x8QAAAAMAYF31AAAAAIEwkfUAAAACgMGR9QAAAAOASlH1AAAAAIACefUAAAABgowx+QAAAAGDGHn5AAAAAQBJDfkAAAADAcGN+QAAAAKDJhH5AAAAAoLKWfkAAAABgeMd+QAAAAKCs1n5AAAAA4Lc7f0AAAACgVVh/QAAAAOA9hX9AAAAA4BmUf0AAAACgZ6Z/QAAAAMC0xH9AAAAAQM3Of0AAAADAIfd/QAAAAIANA4BAAAAAYPkJgEAAAACgchyAQAAAACCnOYBAAAAAIGtLgEAAAABAplCAQAAAAKCpY4BAAAAA4DqjgEAAAACgtLGAQAAAACAbwYBAAAAAACDcgEAAAABApeyAQAAAAOAwAoFAAAAAwLIZgUAAAABgtSSBQAAAAOB0a4FAAAAAoHOTgUAAAABAopiBQAAAAAAF9IFAAAAA4Pb6gUAAAABgNAOCQAAAACC3ZYNAAAAAYHRyg0AAAADAk4qDQAAAAAAcm4NAAAAAIOPsg0AAAAAgFguEQAAAAEBdMoRAAAAAgOE6hEAAAAAAHleEQAAAAIAYm4RAAAAAgHzjhEAAAADgyIyFQAAAACAFZYZAAAAAgCbThkAAAACAhuOGQAAAAIA6JYdAAAAA4HWrh0AAAABg0DiIQAAAAABhu4hA + KBZXds7jZUDiYBUjzERuQG+XdYaqQnFAzLzUXClzdUDjPDZ2mkN5QA== - + - 6zeQQFKkWkGiDj9A8/qxP3TcFUB70oFA/6OeQI1cUkIK2xlAHALpPzPMY0BI/w5CipTZQMd7GUERKydB1hGwQOX86D92qbVAdmmxP9mNnz+TkZtAkUCfQJm9EEC2kRBATZcQQDHw6j+i819AnsCnQPUCaELKauY/mdYwQTC+nj+AKbI/0/N+QDPZP0Gj+qtBTgIhQIpHsT/GcdNAZo6dQCCfi0B2lXtBObyZQBBN/0CZbZBA3cyBQQYZp0Do1iBA0MZEQZXtiUGhmhxBdinlQQIpvEDz25pBlSsjQA3ZdkASuxtBCzq8QBegQkFSzaVAIerMQIte+UHxm5dB99avQd1nQkFo2iBAcuafP0bqaEARV55ACkRyQNlZ9kFPCgZBzvgBQU+PK0GjJp9BU478PwMD1z9vejlByhPoQJ2llEB4vUFBY+0jQa9a+UFPL+BA3l3fQDsr/D+zFh9BfiVkQcz5GEEqf2xBGWNtQC+7mEHbQrI/f9cyQdGz8UAV4hZBDiRRQf4CcUHM6Z1Al018QoFsCkI2XWxC5ZahQpSdL0GTQKVCwT4pQcs1O0AJnQpB2IIPQITPHEF5OpVAcAxqQQKfVkKcsrJBREaqQUf1s0EREpBBuZPVQMC80kDcpXZCHbQoQkizvj+DkSRBzGF2QFjADEEt1g5CpyIeQZYiKUFWp+NAJOn4QZgFpUBI4x5AFyfRQOwXSEBLF3RBkTEcQV76lkHO7nZBsO8PQRhsB0Cx8cdAAUjXP1Rrm0G001BB7YqfQUrcc0GqjlJBppHgQJ8m5UDvf1JBP6EGQaMzPkEVLulAkxTXP1pQu0E6QaxBMcHhQIIcsT8nFIlAT4VUQv7NCUIboqpCOuLeQVcHHkFiL3RDSFEcQ5W/X0D1hyNBFPinQI7CYEBqWfVB1qZgQak7M0AQSdJBQmghQHFTe0BlGIlA8XKaQLnMoECpiZ8/dzJNQHk+8UD1T/xAUZGFQcqI/kAaThJB1PocQh9enj/NivpA6uRoQBYzfUCdgK5AyEKsQE39jUHPScpBnc5oQVGZp0AacTFBhL1jQZSYEUHIp19A9pMjQUknvED3EhdBf9zEQHERUkHwEv5A + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAwAnpZUAAAADA3SRqQAAAAKA9yGtAAAAAAPpCbEAAAAAAyKZsQAAAAMBlBG5AAAAAYCKDbkAAAAAAlCFwQAAAAAAKXnBAAAAAQCICcUAAAABARD9xQAAAAMC0VnFAAAAAwB0RckAAAABALHJzQAAAAABcxnNAAAAAQCz+c0AAAAAAvkN0QAAAAEAjk3RAAAAAwGzjdEAAAADANTl1QAAAAMBxSXVAAAAAwDF9dUAAAACAEZB1QAAAAADnoHVAAAAAANGzdUAAAADABxR2QAAAAIAPHnZAAAAAwHcxdkAAAACAXpB2QAAAAADKxnZAAAAAQP0TeEAAAABAnEN4QAAAAIDEU3hAAAAAAEY1eUAAAAAAedV5QAAAAIBwUHpAAAAAgOH0ekAAAABADRR7QAAAAMDcLXtAAAAAQOCPe0AAAADA18J7QAAAAMAk0ntAAAAAwCQHfEAAAADA2hJ8QAAAAADHg3xAAAAAwJkOfUAAAADARWN9QAAAAEAzb31AAAAAwHTofUAAAABAQDN+QAAAAACJTX5AAAAAgGOyfkAAAABAvvN+QAAAAMCQFX9AAAAAQClmf0AAAAAAWnR/QAAAAAAnVIBAAAAAoKxhgEAAAABA732AQAAAAIC4xYBAAAAA4PXogEAAAADglgyBQAAAAGD0H4FAAAAAoOUwgUAAAAAg/UuBQAAAAKAveIFAAAAAINKMgUAAAABgOpuBQAAAACDqnIJAAAAAIAi7gkAAAABgbcSCQAAAAOCZyoJAAAAAgIzogkAAAADgjVmDQAAAAMCcb4NAAAAAoNCIg0AAAADgXbWDQAAAAKBC8YNAAAAAgPMJhEAAAADgEROEQAAAAGBzc4RAAAAAYD6ChEAAAABgQvOEQAAAACD1NIVAAAAA4Ii9hUAAAAAgt+SFQAAAAIBqaoZAAAAAAOOyhkAAAADgO72GQAAAAIA5KodAAAAAYDkKiEA= - - - - - - tCZpQBQH1T9lRXpBUM8kQSpTsT9nah5BicabQIdFC0E/UhBAs2KZQPXBi0AdG9ZAU6AnQWRl6T/D4T5AZXTjQPXATUDh7DRBu0qLQLkK/0DgABpB280oQFPy+T8QHq5ApTGVQGP1b0C/RxBA5i58QLJfp0DTQJNCYW1tQCIYIEHeRCZBW63EP6pk00CRH0hAtW2ZQEWcWUAazDpAredGQEn0B0G7p6JA76FIQU+BwEAEoCJBHhHIP1bU+z8HR/lAP84MQXCnQ0B4bw1BcoKEQFTwTkCxQNFAGYT8QQg40UAOBxdBfqgBQmyTkj+WMhVABMc6QO78gUH3GKxALFXoQF2Gl0DSZCpB6HrcQDuBakD5RSlBZEB8Qvnvq0CzdD1A6TMCQbZ9C0EqtQ1B5gbhQGYipUHnrSpBEw75P/o/gkCpB1FACy7DQFahUkG7Y0RAEC+EQgtH1z8XwBlA9XLRQAskN0FOw6BBMtj6QQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgOFiaEAAAAAAlT1qQAAAAICwampAAAAA4I+lakAAAABgatlqQAAAAMCAymtAAAAAwLlobEAAAABAYL5tQAAAACD6JHBAAAAAgDRgcEAAAACA5gJxQAAAAADfQXFAAAAAwEXicUAAAABANNFyQAAAAMD1R3NAAAAAAGxIdEAAAADAOGJ0QAAAAACn8nRAAAAAQLdLdUAAAABATFl1QAAAAMCTb3VAAAAAgNMkdkAAAABAjch2QAAAAADIU3hAAAAAQOdkeEAAAAAANXh4QAAAAACM1HhAAAAAgGs+eUAAAACA8v95QAAAAECZfnpAAAAAQKCgekAAAACAI/R6QAAAAAB7dXtAAAAAgMuhe0AAAABAHV18QAAAAACzdXxAAAAAwGV/fEAAAABA6Y59QAAAAIDPUH5AAAAAgAWmfkAAAACArMx+QAAAAEB+XX9AAAAAgGhof0AAAACAEsJ/QAAAAMDf0H9AAAAAYA66gEAAAACgLc+AQAAAAGAF3IBAAAAAwAfygEAAAADgbnuBQAAAACBwwIFAAAAAoHPjgUAAAACggOiBQAAAAOBq9IFAAAAAYIcHgkAAAACgeg+CQAAAAOCAY4JAAAAAYHN2gkAAAADAT4SCQAAAAKCwoYJAAAAAIB27gkAAAAAAycGCQAAAAMApy4JAAAAAQLPSgkAAAADgUuKCQAAAACD59oJAAAAA4IUJg0AAAACAv7GDQAAAAODXFYRAAAAA4MghhEAAAACgvxiFQAAAAGD0M4VAAAAAIMg5hUAAAACgumCFQAAAAAA0a4VAAAAAAPhzhUAAAAAgHAuGQAAAAODQLIZAAAAAoD+8hkAAAABgJz2HQAAAAKBCgIdAAAAAwHWUh0AAAABgJZ2HQAAAACB+KIhAAAAAgHbxiEA= + NrgMGZxjYkDXkZP9yKNsQAoahmk8YnBArs9nUoqCdkDNICQ94pJ4QJyNZ6/4sn1AzX4AkTqkf0A= - + - pb3EPwHQTEBBvw9BK3ebQLrfQ0A13kdAzpjEP3bFPkCHxR5A+6ufP8MhsEHj4c5BS/krQDEqUUBgS8U/5LKtQFnaPkABh59AQGbgQJNhw0DMdI1AUER1P629PkAffKdBHNGLQGo4jkBXPz5BmKODQICDG0FOKJVAWvExQH5zA0AxcK5A2aa6QHkkEUFgHtc/UgXRQJfNGUEyusdAKsFxQM6RDUHP7rtAw+0uQe3ZCEEaOtpAtuREQJE+/0BXFZFAhff0QCwrfUAuFS9BB4J0Qb/xBkE6v19AVOYLQYfN+0DA5o9B6xECQe+j40BogQtBqtDSQV7/PUBABWdBSSPyQJlUckCz5oxBNqL2QbTL0ED8FNtAEKzVQNcLkUATXoBBciQZQUAQaEGddCtBnwc/QJzbxEDYMfw/JqO5QWBU8UCugKtAVCJ+QNC4SEHm+KRAHwg8QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQCnDaEAAAADAZn9pQAAAAKCoTGpAAAAAAB8ibEAAAACgu+RsQAAAAIDLX21AAAAAAADLbkAAAADA495vQAAAAEBnU3BAAAAAYP+EcUAAAACgFiNyQAAAAKD8f3JAAAAAwNu0c0AAAAAADzF0QAAAAEDpgHRAAAAAwLrEdEAAAABA8N51QAAAAEAveHZAAAAAQMOzdkAAAACAtFN3QAAAAEC2hndAAAAAgAdPeUAAAAAAoJF5QAAAAIBON3pAAAAAwFlEfEAAAACAkpV8QAAAAIArA31AAAAAgMoafUAAAADAli59QAAAAMDTJH5AAAAAwHdTfkAAAABAOWV+QAAAAECRd39AAAAAQHgYgEAAAACglkCAQAAAAKD5ZIBAAAAAgJSIgEAAAAAA1a+AQAAAAADx5oBAAAAAQKEKgUAAAABASCOBQAAAAOCvN4FAAAAAQB9LgUAAAADA4YGBQAAAAKBJjIFAAAAA4EKTgUAAAADA9MuBQAAAACB91YFAAAAAoIfagUAAAADARyCCQAAAAKAYJoJAAAAA4IIzgkAAAACgAzuCQAAAACDdWoJAAAAAYNVtgkAAAABAXKWCQAAAAGAdsYJAAAAAgE3UgkAAAACAWv+CQAAAAOC5CoNAAAAAoDUUg0AAAADgsEmDQAAAACCzhYNAAAAA4OKKg0AAAACg6JSDQAAAAODgqINAAAAAIGe0g0AAAACg5b6DQAAAAKAC04NAAAAA4LebhEAAAADgfMyEQAAAAEBL04RAAAAAAOoohUAAAADAE0CFQAAAAMA7WoVAAAAAoLhhhUAAAAAAAaSFQAAAAMCEyIVAAAAA4DrYhUAAAABg3uuFQAAAAOBc84VAAAAAYKj6hUAAAACgggqGQAAAAODlH4ZAAAAAYGs0hkAAAAAgfzqGQAAAAGBMaIZAAAAAYEKEhkAAAADAUM+GQAAAAODw2IZAAAAA4DIYh0AAAAAgjyuHQAAAACCddIdAAAAAIIqvh0AAAADgZLqHQAAAACAf4odAAAAAwBPPiEA= + NrgMGZxjYkCYvfARosNsQI8BR/y9MnFA - + - LU/DQF7oakBJNJBAybmiQDEyNkBbf/FA0WjTQM5HWUCEiQZBknCeQAkYukCLZrZA5O3QQLoBqUBGdqlAfRysQDkdI0BOq+RADRKzPysSGUHmHvw/6A7XPyv510Cdk3JAKHDjQFzUjUCUftBAwN7TQM481z+b2AhBg4QoQNrZkUE6tJhBg1jEP9SOsUC9aplAdVA3QF1t6T/6i41BlZKfQHTQAkKEIehAwFxVQaF4wUIi8hZC8WXPQXBalkBOi8BA+SKnQUaY6ECZAIVA50gSQQvJLEFzg7BAe4A4QX4uiUFM8UxAtOvuQGxL20EaGjpB+33nQQLHBkHOebNBzAo1QUG5MUH+Gh9BcAG+QSTAGUDiajJBkVKnQFNorkCxBNg/SDw3QaTcVkFGc4FBo5haQcQ3m0EkDZ1BqPXHQGWyFUIj0N5BA7pjQb8Ru0DOrlpAH9aKQurxLUEzDJVB0aK5QGRSU0FYBNZA+TsiQYwBsEFXuwtB03efP9JAGUDhRAdAtduGQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4HMDdUAAAACAxBB1QAAAAIB+J3tAAAAAwMQxfUAAAAAAX0N9QAAAAGCbEYBAAAAAAA9CgEAAAABAimCAQAAAAKC1koBAAAAAoBTBgEAAAAAgy9OAQAAAAABQH4FAAAAAgDEkgUAAAAAgJiqBQAAAACAqYoFAAAAAYED9gUAAAADAqFGCQAAAAGC0X4JAAAAAoNBogkAAAADAE6iCQAAAAODp2IJAAAAAoMvfgkAAAABgcy+DQAAAAGCEWoNAAAAAAOO5g0AAAAAAZqWEQAAAAKBVsYRAAAAAoIHLhEAAAAAgo96EQAAAAICyGYVAAAAAIGM6hUAAAAAA+2uFQAAAACAwk4VAAAAAAFDWhUAAAACgK+eFQAAAAKAV74VAAAAA4G2ThkAAAAAgO8mGQAAAAKC/0oZAAAAAQJ7fhkAAAACAkBmHQAAAACDaKIdAAAAA4Ppgh0AAAABAA2uHQAAAAGADc4dAAAAAwJ6Eh0AAAACAIIqHQAAAAGC3QIhAAAAAYE6MiEAAAADg0aqIQA== + NrgMGZxjYkA= - + - PQFUQVSJVUCu6KNAIPIiQJD5CEFoEJ5Az4YyQBLq+z9RxfU/GtmrQD3A5EDLC8JB5rHJQBDbRUA6HipBREsGQV4P30CnXyxBL5xhQAFgg0BUtjFBz0iaQF72jEA3y7JA6sjlQCbNXEF6BGdBEIeHQM7f5UACVulApX1bQaPHUUC5RzRALaI6Qc0RhUFE8+lAlWjmQMLqx0DNwgVBF+KUQTErxD870n9Avp7WQQUcN0H/jo5BW5LxQE9700BEkTtAJirtQJg1IUE= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwJEnYEAAAABAefxgQAAAAKBLZ2JAAAAAwECiYkAAAACAwcdiQAAAACCfImNAAAAA4J69ZUAAAACAehNmQAAAAMATKmZAAAAAQPpFZkAAAACAE6hmQAAAAECMJ2dAAAAA4JRkZ0AAAABgcYVnQAAAAIAA92dAAAAAAHFjaEAAAAAA52JpQAAAAMAdpmlAAAAAQIMmakAAAAAAPgdrQAAAAAC6nmtAAAAAoBrga0AAAAAgFEVsQAAAACCSgW1AAAAAIEylbUAAAADAtw1uQAAAAIB4qG5AAAAAQF3GbkAAAABA2cBvQAAAAMCUMXBAAAAAIDJmcEAAAABAoHJwQAAAAOAafnBAAAAAwHuVcEAAAAAgKdJwQAAAAMAY6XBAAAAAgOMWcUAAAABg20FxQAAAAMCFU3FAAAAAwPiCcUAAAAAASgNyQAAAAABjIXJAAAAAIPU/ckAAAABABlNyQAAAAMCuw3JAAAAAoH/SckAAAADAsAFzQAAAAEDcDXNAAAAAQLRAc0AAAABAM1xzQAAAAICXdHNAAAAAQGu2c0AAAAAAZcFzQAAAAKC703NAAAAA4I4fdEAAAAAA9jF0QAAAAMDhb3RAAAAAAEOkdEAAAADgkOR0QAAAACD3AHVAAAAAAKQPdUAAAADgxyt1QAAAAMCgOXVAAAAAIM9TdUAAAAAASo11QAAAAMD0oXVAAAAAgL/AdUAAAADAAtZ1QAAAAIBjJXZAAAAAgMUvdkAAAADAeD52QAAAAKCrf3ZAAAAAoIyTdkAAAABA1552QAAAAMAfsnZAAAAAADPEdkAAAACgH9J2QAAAAOCe73ZAAAAAQHoLd0AAAADAHSJ3QAAAACBsOHdAAAAAwJlDd0AAAABgV093QAAAAGCLg3dAAAAAIAnpd0AAAADgclZ4QAAAAOAXZXhAAAAAQOVyeEAAAABAGoF4QAAAAODQkXhAAAAAAMW+eEAAAABgWM94QAAAACDFFHlAAAAAYCtieUAAAACg4HF5QAAAAKDXknlAAAAAwNeweUAAAADgN9F5QAAAAED653lAAAAAwMX/eUAAAADg2xB6QAAAAGAbHnpAAAAA4AgzekAAAABAgl16QAAAAIBYanpAAAAAoLVjfEAAAAAgSoZ8QAAAAGBJQn1AAAAAoGt2fUAAAACg9619QAAAAED55n1AAAAAwObPfkAAAABA7AB/QAAAACCFD39AAAAAYO4if0AAAABAS2Z/QAAAAOCOen9AAAAAQEGIf0AAAAAgVtJ/QAAAAGAXL4BAAAAAIDw2gEAAAAAg5qSAQAAAACCErYBAAAAAQOoHgUAAAADA7hCBQAAAAODwYIFAAAAAoMqBgUAAAABgjQOCQAAAAMBnIYJAAAAA4MstgkAAAADgozSCQAAAAAD4u4JAAAAAwBnEgkAAAABA1QCDQAAAACDtGYNAAAAAoKYmg0AAAAAgcDCDQAAAAKAfVoNAAAAAYEJqg0AAAADgfouDQAAAAMBmMoRAAAAA4ImqhEAAAAAg+1KGQAAAAODNiIZAAAAA4K26hkAAAAAgZMuGQAAAACDtGYdAAAAAYNe7h0AAAAAgdumHQAAAAKDJvIhA + NrgMGZxjYkA= - + - UJpxQDoixUAinYxBBNhoQjjJR0A89bQ/GZKWQa7GlECf5kdAf9oWQezEFkFIDOk/BD6VQYOuKkBMk/pACnw0QTrOEEHBw5RAwOe0QFjApEDevCdAqLcZQKb8m0F4pltConH4P6js80Do/kdAIXcAQRZ3ZUGXouZAcNDoQKE440B+kyJA9g8WQRIJEkGgy7RBY4zEQF+ZX0KvJl9Az5WbQJ1LBEGSNEhByMgiQph2k0HPmLNCtmbrQXB6ikJwK/tAq8QJQVXDjUEhuwFBLqkZQRRIiEAb1Q9BTAWQQnIm8z8Y5gZBZaJ0QCCPA0EwOs1CtNbzQFkFmkEfNLBBIXOLQMFez0DqgkdBX3UhQW3l6EA+JG5BIYyXQewE10BXmzdBlFUnQgwFiUGb4npArAxNQlNwcEB4zSJAFbQOQZLBUUIWxY9Bx5a1QHYSVkAgA0JBYIebQGQJvEKR8btAl6uaQP3bNkFuTx5BknK/Qh6HW0EihqJAUmKQQGQOjUHOeNNAxdk6Qi6lhUJ18X9A/rL1QVxIQ0KCdwNCzQxRQc2l4ELww3RBhypgQfFy1j8b5aJABYDjQEYIgkCSYo9BxkYAQsL/pkKcTlBAwDuuQQREhkLheZVA0CjpP9oVR0J2yaNDcFAAQrYnjUHOBOk/uXZyQCjihkC3MVZAUziZQJxdV0FodhZAPzGYQZwSGkCJgoFCEKBwQXb2pUHdCpFBJg5rQGLVi0FrXlxBEnNBQUO4oUE8ovo/uRAnQSdHi0AIMs9BDGBXQKv8zUBIswRCx6aEQSCRNUBfHQtB + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAYFchZEAAAADADuRmQAAAAID2QGdAAAAAQI+mZ0AAAACglRBpQAAAAMDXLGlAAAAA4NeIaUAAAAAAlCJrQAAAACB16WxAAAAAwK9fbUAAAADgFI5tQAAAAOCgoXBAAAAAwM3hcEAAAABA4/JwQAAAAECqcHFAAAAAgEXicUAAAAAAy/hxQAAAAKClgHJAAAAAwLTUckAAAADAlSxzQAAAAAAhsHNAAAAAgP8VdkAAAAAA+dR2QAAAAEAs/3ZAAAAAgLQzd0AAAAAAYXd3QAAAAMABs3dAAAAAAKggeEAAAAAAdfF4QAAAAMC+i3lAAAAAQJq1eUAAAADAU8B5QAAAAABCznlAAAAAAGfYeUAAAADA5eR5QAAAAACYFXpAAAAAgNmTekAAAADA7+R6QAAAAED093pAAAAAwCOye0AAAADAdDV8QAAAAEDJhXxAAAAAwDyjfEAAAAAA6ct8QAAAAAD8K31AAAAAQDJkfUAAAADAnnN9QAAAAADxc35AAAAAwL4mf0AAAABALjx/QAAAAEDQSH9AAAAAwMdef0AAAAAA3Gp/QAAAAGCrY4BAAAAAYLmDgEAAAAAg6YqAQAAAAKDplIBAAAAAIE3KgUAAAABgouqBQAAAAOAqCoJAAAAAYPtXgkAAAABgh8OCQAAAAMAjzIJAAAAAQN4Gg0AAAABAOE+DQAAAAIDoioNAAAAAoPIPhEAAAAAAJyWEQAAAAIAwkIRAAAAA4JfShEAAAACgDSKFQAAAAADeu4VAAAAAIMbPhUAAAAAg7WSGQAAAAIBv5IZAAAAA4JdAh0AAAAAgWF2HQAAAAGD8j4dAAAAAYCGah0AAAABgMuWHQAAAACDPCohAAAAAgAEqiEAAAAAgGoqIQAAAACAzy4hAAAAAoD/8iEA= - - - - - - 0F1MQDSwPkHBgWNAyvt7QfQ+1j8TPrE/hPkgQTeFMkCQTsM/UryNQL0oxUAce6lAJEXHQBxjfUCwORVAATz7P/jXHUBa2Z1AaBrIQRQWC0FvkztAzhFfQA6SlEC65FBAplC3QXRshkDkw+g/rC6ZQIIX8EE3j/xB1lAhQfgtbkHI7ytA7fEGQDsuNUCCMRFBsDpAQVWEzELP1ANBP6YLQP1Cv0HxHRBAMazLQDKlp0HUSGVBeXu6QZqgcUDmeIxAHIYGQQE8MkJhRplB8EshQOCfoEGzvJJBtegYQaa1tkLKqcM/Au0BQqr6PkCia8BAKCINQR1w9EIIUz5Bwz4nQi5dgkFoAARCu2abQCP2uUDyFwVB83jxQBkTd0FnmkZAIuR3QRbZiEAp2EtAhf3PQanusT+jkwRB5hgHQCmr+0CZkaFBVqKuQLhhGkFliz5AwqDIQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQO2DaUAAAAAA6MJpQAAAAEB/o2tAAAAAgLvJa0AAAACAmcNuQAAAAIARVHFAAAAAAEuOcUAAAACgZhJyQAAAAICjk3JAAAAAQCZFc0AAAADAuxR0QAAAAMD1RnRAAAAAIJ9wdEAAAADAJid1QAAAAODpP3VAAAAAAF9jdUAAAABA/vR1QAAAAEASM3ZAAAAAwN9MdkAAAADAGyR3QAAAAIA9ZHdAAAAAwPX2d0AAAABA4iV4QAAAAMDGa3lAAAAAADTGeUAAAADAMgJ6QAAAAIDBE3pAAAAAAB/4ekAAAADAqDJ7QAAAAIAUY3tAAAAAQFrje0AAAABAFfJ8QAAAAICpN31AAAAAANyvfUAAAADAlLx9QAAAAACrzX1AAAAAAFTufUAAAAAAPhF+QAAAAMDjJX5AAAAAgJmXfkAAAABAIr1+QAAAAAB0En9AAAAAACB0f0AAAAAAYYB/QAAAAKAeV4BAAAAA4JCagEAAAAAgTM+AQAAAAKBy8oBAAAAAgCAYgUAAAABgTziBQAAAACAnUYFAAAAAAJpqgUAAAABgZXaBQAAAAEDvgoFAAAAAAOWJgUAAAABgO6iBQAAAAEDDsoFAAAAAYATbgUAAAAAABzGCQAAAAMADPoJAAAAAwItagkAAAAAAlX6CQAAAAOBQiIJAAAAA4GezgkAAAADgu8SCQAAAAICuD4NAAAAAYNsbg0AAAADgWieDQAAAAKCGSYNAAAAAQNJVg0AAAACg02ODQAAAAOAmdINAAAAAAOqAg0AAAABAitWEQAAAACBiYoVAAAAAYIZnhUAAAADAY2+FQAAAAECErYVAAAAAoGH3hUAAAABgoiOGQAAAAMCvS4ZAAAAA4AuRhkAAAACgyKKGQAAAAAB+toZAAAAAgAzXhkAAAACAjE2HQAAAAOBpv4dAAAAAwP/ch0AAAADgzUeIQAAAAEASTYhAAAAAIPN8iEAAAACgMdeIQAAAAODG84hA + NrgMGZxjYkD+9P4gH+NsQK9rGHLRYnNARtUTyqeidECvyfTFKXR6QIF3jJ9Xw3tABR75ysHkfkBSQEdo7ZmAQMm6IvXMeoJAGWztd1mig0Bav6ONDjOFQESWb3ql2oVAeBBgeGbDiEBExV2kUWOJQNw9KpXy24tADs0mV9N7jkAJRM86VASPQA== - + - aACQQHqmlUCC94FA0t3ZQMV5yUDvb7NATFGeP+qiV0BCw55Amv5gQJhDx0CpkI1A8knjQKlaKkE1EK5ANrDCQMCipEDnUF5BqsDZQPoBEEDkKDVAaOnJQNgL6ED8/F5AGWuNQPg9gkHEts5BFI4PQSApdUEYtWdBEKo5QB9COUDR8x1CuNyxQMErp0BEc+hBDNXCQNKWxEB++bRAeL8rQFoJR0GjyQZAE5YSQi9TUUF0q3tALS4EQU06TkDlGrdA4jhaQBBxJEH3MoRAeSupQCE+YEC/S/lCapKPQUnW7UAdVnNAPxtsQXZ7uUBqjtdA17IWQSFZekHPbYZAnu2HQSURIUDZQ8VByBiWQc2+kEGbyQdBuravQI43N0EY2qdAMimVQdiby0CDcV1CLPZBQThZckEl6DVCgjDdQd23U0IKuNBAO3aLQbXOpEDgSuVAwDikQd4MNUDDoQNBHZUqQkuPR0BMD2hAjF+ZQCbQCEFxR3pA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwP59YUAAAABgc2RiQAAAAOBlgGNAAAAAQAGiZEAAAACAAyZlQAAAAGBWp2VAAAAAwCzpZUAAAAAAEipoQAAAAADVgGhAAAAAwFUhaUAAAADAiUBrQAAAAGBF3mtAAAAAwP0nbEAAAACAnoVsQAAAAAB7421AAAAAAGgGbkAAAADgleJuQAAAAAAOJG9AAAAAoBghcEAAAABAJWVwQAAAAOBUcHBAAAAA4LOicEAAAACA79JwQAAAACAi9XBAAAAAABlWcUAAAABgiqVxQAAAAMAfIXJAAAAAgE6fckAAAAAArsJyQAAAAEDJF3NAAAAAwLsjc0AAAAAAQWZzQAAAAIAPPnRAAAAAoHBQdEAAAABAZGJ0QAAAACBrkHRAAAAAQMivdEAAAABAeNV0QAAAAODf43RAAAAA4NXydEAAAABAU/90QAAAAMB2EHVAAAAAAA8hdUAAAABAg6J1QAAAAGBTw3VAAAAAgGvRdUAAAAAgoSB2QAAAAKAxXXZAAAAAoM9tdkAAAAAgPYN2QAAAAEDckXZAAAAAQL+bdkAAAACgdLB2QAAAAEDc0XZAAAAAQFfddkAAAADgKgd3QAAAAKAsFXdAAAAAAN4hd0AAAACgpUV3QAAAACD1dXdAAAAAQDWSd0AAAADg3Ot3QAAAAOCyBHhAAAAAwEcYeEAAAABgqD54QAAAAKBhVnhAAAAAQHpjeEAAAABAYnF4QAAAAOBBgHhAAAAAoLOReEAAAABA4qd4QAAAACBcv3hAAAAAIIPpeEAAAADACvt4QAAAACCLCXlAAAAAIBMkeUAAAABAHzl5QAAAACDSc3lAAAAAIMLJeUAAAAAgPu95QAAAAKBaBXpAAAAAAG4PekAAAABAojZ6QAAAAGAiT3pAAAAAYMZdekAAAAAgfmp6QAAAAOAtwHpAAAAAgM/RekAAAACAYOF6QAAAAIA4BXtAAAAAoLMye0AAAACgDXN7QAAAACBIpXtAAAAAAE3De0AAAADANOR7QAAAAGAX8HtAAAAA4EEFfEAAAAAg3xV8QAAAAGDvMHxAAAAAwI9IfEAAAAAg+FZ8QAAAAACeaHxAAAAAIEGJfEAAAADgRZh8QAAAAKAVw3xAAAAAIELTfEAAAABgZwF9QAAAAGCZHH1AAAAA4JtGf0AAAAAguC+AQAAAAICRQYBAAAAA4BRNgEAAAABgc1aAQAAAAOAPaYBAAAAAIJ95gEAAAADgGZqAQAAAAIBPqoBAAAAA4K+8gEAAAACAmfiAQAAAAGClCoFAAAAAQKUfgUAAAADgfSiBQAAAAADrMIFAAAAAIMc/gUAAAABgkoOBQAAAACBNz4FAAAAAAKb1gUAAAAAgRwOCQAAAAACEDoJAAAAAYIwVgkAAAACgwiOCQAAAAGCdU4JAAAAA4NVegkAAAACg0ZKCQAAAAMBOuoJAAAAAQBPBgkAAAABgFcmCQAAAAKBoBINAAAAAYOEbg0AAAADgokmDQAAAAAB9a4NAAAAA4CyAg0AAAADgNYaDQAAAAADZkYNAAAAAYIazg0AAAACATMyDQAAAAGDZ7INAAAAA4EsHhEAAAADAxR6EQAAAAEB5JIRAAAAAAEZqhEAAAADgLW+EQAAAACARgIRAAAAA4E2ahEAAAAAg28iEQAAAAIDf64RAAAAAYCn0hEAAAADgdxaFQAAAACDnJoVAAAAAIAA9hUAAAACATneFQAAAAGAVBYZAAAAAgI8chkAAAAAglIiGQAAAAMAfmYZAAAAAgMOrhkAAAACA8LyGQAAAAODb44ZAAAAAQAkGh0AAAAAgkS+HQAAAAKAlVIdAAAAAIAe6h0AAAABglsuHQAAAAEBJ44dAAAAAIAN+iEAAAACgguGIQA== + KBZXds7jZUA3lC1samJwQDitQvclQnFAWrZEKKmydkCrOe5bWmN4QA== - + - Zk6nQGnebEFGvNU/bOY0QKmSsD+Q6u1AFISwPyyTNUAeGFlBQq8UQBAUREGo0Q9AU1EVQMWnT0D7aSJAEIfNP4PLpEBcFkdAbKPQQN62pECCoQZBW4AiQA+43kCAojJB/cXUP972j0Dt/us/Fce0QAVy7EHQPwdAJw/xQIKflkBxiLRAFikNQT052kBZOYtANGtPQNpT6D+pv5JA/pK2QOtCTkCxKSdAghDLQAdmm0AFUvo/yEvoP6MkGUDNakZBpXOrQBU8NkExfSlBQM0BQRprHkC/JLBA+oUGQbNVPUGTkGBAkAwCQOCVZ0HeZ9U/wMChQVPk1j/jE7JBxtPuQLRf6D9HKmVBviK/QZrY6UBWKVpAsS9gQeuQpEAENE1Cvf9aQelUhkFClQZBlL16QZ+6L0FQOqFAxXfRQfT2HUDak55BqmiGQAy4YEDNlIFAiTWoQUeBZEEo7/dANhzMQJmks0DCTxlCaDmeP7VC+kGDMStBiD+sQZLYYUAyVA9BZNQvQanx3kBpd4s/U8kPQXFeNkFdtDZBALS2QXGL10GuqC5C/dU6QQGU5z8RecdA/QC/QOTGgkEtBKJAxwcZQGusdUBdD5BBh9GaQXbVgkAq9j5Cw7VmQiBBxD8WgjVBqAECQGFC0kDbimBBZBujQGh5XUE8FXJBjP8BQHlpD0EfG5NBV23sQC+SXkC4UENA0Y08QtGkpECE/FdCckTnP//ONEBwIZFBIgm2QlD9S0FTGMM/nhgIQgxOt0E4ynVAkh3VQOpxnj+WxPo/6yzGQeyRzkAN2jRAbgdtQXSFj0Fh7pRBuboWQcI50UEv3d9CmzjcQI35HkGLvotBjN9UQZY1WkEOET5AQUXcQRDKmkHPS7dBRXawP2MAC0FmG2tBO3bOQPiFTEAs8v1Bd3auQFwgmUAGcr5AsMWGQDO7K0A= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAYP5nY0AAAACAPOpmQAAAAICoZmdAAAAAgI28Z0AAAACAiCBoQAAAAMCdYWlAAAAAALZkakAAAAAAM2FrQAAAACCOf2xAAAAAAFvnbEAAAADAP+FtQAAAAMCZBm5AAAAAwA9KbkAAAACgWF1uQAAAAACxKG9AAAAAwLi+b0AAAAAg0iJwQAAAAMB7AXFAAAAAAOUScUAAAACgGyNxQAAAAGBEPnFAAAAAYA0CckAAAACAe3VyQAAAAMBpnXJAAAAAYOKyckAAAABgr8RyQAAAAKDBz3JAAAAAIHwnc0AAAACgS2tzQAAAAMBCgHNAAAAAQEylc0AAAAAAwPNzQAAAAKDqEXRAAAAAAFR5dEAAAADgbIN0QAAAAOCnlnRAAAAAYPwddUAAAACA3DB1QAAAAMDOQ3VAAAAAwD1SdUAAAADADXZ1QAAAAOCYhXVAAAAA4GUfdkAAAADAMm92QAAAAECMy3ZAAAAAALrcdkAAAADA8/R2QAAAAEAJAHdAAAAAQPgPd0AAAAAAnCB3QAAAAKArMHdAAAAAQJVXd0AAAAAAer53QAAAAOCx83dAAAAAIK81eEAAAABgYld4QAAAAAApenhAAAAAYD+MeEAAAADglPJ4QAAAAKAqBnlAAAAA4IMReUAAAADg6y55QAAAAKAhVXlAAAAAYJa0eUAAAABAIcZ5QAAAAEAFAnpAAAAAoEkiekAAAABABjJ6QAAAAKA8XHpAAAAA4PSkekAAAABglbJ6QAAAAABn0npAAAAAIFbkekAAAADgXEJ7QAAAAGD3VntAAAAAYClwe0AAAACgW6l7QAAAAMAFtntAAAAAQHrHe0AAAABAs/V9QAAAAGD3Mn5AAAAAoP28fkAAAABAP/l+QAAAAOAIbH9AAAAAIDG7f0AAAAAA4iKAQAAAACCwL4BAAAAAgM85gEAAAADgnSKBQAAAAGDwKIFAAAAA4BVbgUAAAABggmSBQAAAAODlaoFAAAAAINOdgUAAAABAOfeBQAAAACCELYJAAAAAgA9agkAAAABgFHGCQAAAAOC5tIJAAAAAQLq6gkAAAACAGdOCQAAAAODkO4NAAAAAwMOMg0AAAADgZ8mDQAAAAKCp3YNAAAAAwNp7hEAAAACgAImEQAAAACCF/YRAAAAA4IIEhUAAAACAV7yFQAAAAAAKe4dAAAAAoJ1yiEA= - - - - - - 4P6rQJdKx0DSDZxAb8mtQB7D1T9WCj5AyvstQSueXkChBvFA9Iw1QJppwkAw2b1AMFPlQLU9KUCjLQZBeRsmQQI5pUBfJp4/19H6P+QVaEDFVNJAkX20QLX+D0Aq/H1A8jm3QAx2EkLb38lA1U2/QJKzhkDAeWxAwbgGQORpmUAXT1VAgi9BQSVfRkCkkh1BiU8nQDmPQUEHFCFABFIiQHhHBUHfpaRA8EjmP5nVgUD0NpBBxtjpQLZagEGTQCdBbwFzQSi8u0Cz/dpAkZP6PwernkBYbjVBQ1CXQPGB4EF3T0dAPB7oQBxmjUGLlVBA5SWePwBxE0GVfBBACtUJQY5wnUCfb51A5thWQZhJu0GV9wVCJgLdQd6edUBuwShCWs2UQHt5GkHvD89BPPhbQQFi+kDndANAhNTLQANvwkABwJZAsWWNQO+DQ0GYtJxBqNqnQSkQzUCm0B1BNDA1QT2DUEEytT5BJ1RXQW88W0FeHatAlBYTQSxuFkA9IMM/DapHQKBHDUFvpYJB7OrKQS8XsEDIHA5BzsZGQXD2TUCzH9pAvVkJQRYjG0HY4NZAWqkoQcoSG0HIJ/M/cbn7QA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAACgCXEAAAADApgldQAAAAICQNV1AAAAAoCuHX0AAAACgkSFgQAAAAEBuR2BAAAAAAJSmYEAAAABgEP9gQAAAAGC9Q2JAAAAAQPhiYkAAAACA6MtiQAAAACCbaGNAAAAAoMbiY0AAAADABh5kQAAAAKBbJmVAAAAAwNRFZkAAAAAgAYxmQAAAAKBipmZAAAAAQEnmZkAAAADAh51oQAAAAECww2hAAAAAAG7qaEAAAAAANUtpQAAAAMCEimlAAAAA4IEmakAAAAAg0EBqQAAAAEC7ZWpAAAAAgM3EakAAAACgxN9qQAAAAEB4Q2xAAAAAgL5hbEAAAAAABIVsQAAAAMA8pmxAAAAAgMjBbEAAAACA3ANtQAAAAABEiW1AAAAAQL3tbUAAAABABgNuQAAAAMB0hG5AAAAAAOuibkAAAABAycVuQAAAAAC0DW9AAAAAwCVGb0AAAABABhVwQAAAAOA1NXBAAAAAoNNNcEAAAACAjHNwQAAAAAAko3BAAAAAwCHCcEAAAAAADfFwQAAAAGAjAnFAAAAAQLUgcUAAAAAAzz9xQAAAAEAttXFAAAAA4ODHcUAAAABgme5xQAAAAIB1EXJAAAAAoPwickAAAACAejNyQAAAAIAfU3JAAAAAgB2CckAAAAAgfa9yQAAAAICTLnNAAAAAAC8+c0AAAABA/FVzQAAAACC6c3NAAAAAIHeEc0AAAADAlrtzQAAAAECP0XNAAAAAQLTec0AAAADAgO9zQAAAAMDt/3NAAAAA4OwRdEAAAADA5Sd0QAAAAMCaM3RAAAAAIJJWdEAAAABgYXB0QAAAAEB7knRAAAAAgOq1dEAAAACAoTR1QAAAAEBiQHVAAAAAYBhidUAAAAAgqXJ1QAAAAEARknVAAAAAgMz0dUAAAABgVw12QAAAAGB8GnZAAAAAoHkwdkAAAAAgBwR4QAAAAOB8FHhAAAAAILckeEAAAACgfzN4QAAAAACRRXhAAAAAIIFReEAAAADAuSF5QAAAAOB6NHlAAAAAQDdoeUAAAADA7XN5QAAAAKDw0XlAAAAAwBuGekAAAABgEZJ6QAAAACDGpXpAAAAAYC60ekAAAAAg0MB6QAAAAKCa5XpAAAAAoA9Ve0AAAAAgU8J7QAAAAGBvgHxAAAAA4OitfEAAAADgNWR9QAAAAEB1dH1AAAAAQPDVfUAAAACgEQh+QAAAAOC0RH5AAAAAICNgfkAAAAAg/XN+QAAAACDkhH5AAAAAoMITf0AAAADgyCN/QAAAAOCaM39AAAAAoG5gf0AAAACAXxmAQAAAAKDGIoBAAAAAoDLbgEAAAAAA8PmAQAAAAGCbQ4JAAAAAIN6QgkAAAACA2ZmCQAAAAKAfI4NAAAAAAIsrg0AAAADgijCDQAAAAKAPs4NAAAAAQC28g0A= - - - - - - npa5QTzvmUNkt2NBwuAbQhxFakUtYwxE6+ldRLhh0UHv7olD8TZPRFyyD0J609RC8ikXQuwkD0LmwO9BU4s3QsOzj0JPcB5C8giuQ/h+ykKfu/lCzOB9Qr2xaULGor9CQTf4Q2yYG0IDljlDjcR6QmsWoUId21NFJGbdQ0+DokEdLgZDvyOSQok+gEIQBmxCAbJLQ1bWoUFypFhGg45BRPhcTkRUxK1BIzoPQk7XyELT4kpCHRWuQxo+YkHKAYVC1kJ1QniHyULqngBCq4ILRPd+oUOVwYNCTYWWQWenhUKeAIpFmjozQgEGiEIlFsBB0YIkQqrv0UKT9SVFejVRQ20goUFZbm1EjGHTQqhMmEZ1bvBCo9wLQnTv9UJRQkBCmK19QlOnq0LXoBhCCjZFQ1IJuEIMm6lCdKJxQxG0FkRCDiJCS1XRQaDB/0FklaRC8K9sRJBiL0OF84VDufwnQl9OH0Jay/tB7ErLQg9RG0S6E+hCiDiRQlBkFUU38qJC5ypuQ+LciUKisn1DUOhJRL3Aw0GHqiRCsp3SQpxMiUF8/aBCEuWkQt2pX0LyCiJCoNWVQYunI0afDSREdQ00Qb1qvEJtPO9C8bl0QtrCV0WtOStDGCI1RBqveEPDRAVDLEn9QlrhKEYVA4tE5AcfQoYONEIfyW9CE07JQnin10LwQctEawPhQ2AUwEFQQ5RGUWYBRQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAQM1rbkAAAAAgxSdvQAAAAEA1SW9AAAAAwN2RcEAAAADg58BwQAAAAMAY0HBAAAAAQCVwcUAAAABAHZVxQAAAAKBMqXFAAAAAIA5fckAAAADA9rFzQAAAAID2/3NAAAAAAJETdEAAAADgW1F0QAAAAIBDg3RAAAAAgLZCdUAAAACguTN2QAAAAEAvQ3ZAAAAAINhVdkAAAADArWJ2QAAAAMDfoXdAAAAAwP6BeEAAAABAVhN5QAAAAMDr8npAAAAAwD4ne0AAAADA7hB8QAAAAECDT35AAAAA4EW6gEAAAABgAtaAQAAAAGDQ24BAAAAA4OfhgUAAAABgTFiCQAAAAKCxZYNAAAAAwPWHg0AAAABgdcWDQAAAAMDu0oNAAAAA4B4JhEAAAACgehaEQAAAACByIoRAAAAAwHsphEAAAAAACVKEQAAAAIAEWoRAAAAAYJCwhEAAAADAGbqEQAAAAGDP8IRAAAAAYP38hEAAAADgDw+FQAAAACAEKIVAAAAAYDFghUAAAABAi2mFQAAAAICHgYVAAAAAYA2nhUAAAABg3caFQAAAAKBYeoZAAAAAoHcYh0AAAADAzpmHQAAAAKAdqodAAAAAYKHKh0AAAACgiPCHQAAAAMCOKYhAAAAAwF5LiEAAAAAgRFKIQAAAAIAVqohAAAAAgKrJiEAAAABgk/GIQA== - - - - - - 7SPQQDWhNEJ4RJZAGuS2QLAwREE+k49A7nrMQBx8OUE7HNU/WSeeQI2uYkCeYQZAxREBQj1DbECC/QlBDu+YQG81RUE9xPNAgCmgQEMgnT8GAHpAinKIQOR6/kB99eNAEhkWQQvjn0Bczvo/3gf1QPgNxUA8bnVBYZuaQFfvy0BsG95ARCWdP0TwD0Cn+eVB8k/jP9qRukGoA4JAxjYNQT9dYEKlY3xBiu6iQddoxEDJggRB/xTHQEauREGrWQBBhQHDP6SaXkCcr+5B5xzZQQnU/EKClZtB+YYGQc+jHUAU+SFBIYp1QCN9cUE6PqBBdv+RQIUxHEEFW0JB/JBrQE69RkE= - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQLNmY0AAAABA6OZkQAAAACBvoWZAAAAAQHJnZ0AAAABAF+lnQAAAAGANJWhAAAAAgF1BaEAAAAAgESZpQAAAAMACP2lAAAAAID9IakAAAACgy+trQAAAAEAKp2xAAAAAQOkBbUAAAABABihtQAAAAMBzgW5AAAAAwDPCbkAAAACAP0BvQAAAAEBkZ29AAAAAYJwicEAAAADg51ZwQAAAAECsY3BAAAAAgNs/cUAAAABgfWBxQAAAAMDd73FAAAAAwOv5cUAAAACgRCNyQAAAAEAWUnJAAAAAgM5mckAAAADAI6RyQAAAAKALxXJAAAAAoDX1ckAAAAAAXDZzQAAAAMBTRHNAAAAAoMsidEAAAABgmE90QAAAAICuXHRAAAAAIK7TdEAAAABASOF0QAAAAMAX9XRAAAAAALwUdUAAAADgvyN1QAAAAKAtT3VAAAAA4I3QdUAAAACgElR2QAAAAMCca3ZAAAAAYM+zdkAAAABARcJ2QAAAAEBY0nZAAAAAANrjdkAAAAAABwN3QAAAAIBjEndAAAAAYBSPd0AAAAAARd93QAAAAGA16XdAAAAAYKr2d0AAAABgjAN4QAAAAEDnJXhAAAAA4O9VeEAAAACAcmF4QAAAAIAXknhAAAAAgKTKeEAAAAAgOuJ4QAAAAKAK8HhAAAAAIB4LeUAAAABAOR95QAAAAOAfM3lAAAAAALJaeUAAAABgSnN5QAAAACCP0nlAAAAAoIr7eUAAAABgihh6QAAAAKA8JHpAAAAAIIIvekAAAACgI0B6QAAAAOAeWHpAAAAAAIpiekAAAABg/696QAAAAIAoxXpAAAAAICEBe0AAAADghh97QAAAAACIOntAAAAAYORLe0AAAABAzGZ7QAAAACAneXtAAAAAoBqEe0AAAAAgtpV7QAAAAAAw1ntAAAAAIEbie0AAAACgcfV9QAAAAMAEVX5AAAAAoFBhf0AAAAAgCnV/QAAAAKCECYBAAAAAwLNQgEAAAABAXYyAQAAAAIBeQoFAAAAAIPOxgUAAAABAFbeBQAAAAIBoGYJAAAAAQBYogkAAAABgfUGCQAAAAGBocIJAAAAA4IB8gkAAAABgUrGCQAAAAGCsu4JAAAAAgAwAg0AAAABg5AWDQAAAAMB/DINAAAAAwDc4g0AAAABAA0KDQAAAAEB2d4NAAAAAIAiJg0AAAABA6Y6DQAAAAEA6+4NAAAAAAMQmhEAAAACgdUCEQAAAAECHa4RAAAAAoEByhEAAAADAjZeEQAAAAOASWoVAAAAAQNSNhUAAAADgO9mFQAAAAOCq9IVAAAAAICoHhkAAAAAgJwyGQAAAAABpFYZAAAAAAMdkhkAAAAAAF5uGQAAAACARXodAAAAA4Lyvh0AAAABgZDeIQAAAAICNwIhAAAAAAL/XiEA= + NrgMGZxjYkAtECBNt2JpQAoahmk8YnBAcRTa8R4Cc0BlJtC0/7J2QJjVIWnNEntAhy/S5YIjfEDqO02fvhmBQIpDj4ItGoFAeWSrlOrhgkColEtthaqEQKSOLZc2GoVACLz3s8IyiEBi5ytl/aqIQGIWGo+pM4xAnJyb7xk7jEDxPniE1fuNQJzLiRnGw49A+DYz10DCkEAV+nMH+cWQQJURaxxPipJAQicFdWzGkkD0PWqDslKUQPI6WxiLipRACVOrhNhulUCBY7kNt1KWQFBnWn/uUpZAZXmMFe3Wl0Dfj7h0GhuYQK77zOENM5lAKYCKEkYfmkDFfp+0PseaQEADXeV2s5tAQW7fS1qTnEBVGJ7mnM+cQA== - + - aCgrQNPBKkAknwpATRDwQPcdOUCY+HxAb5i9QKPDIUHGLitAHGsoQW6brz87QnVAD7+vP2L3GEDr1aFA5kJ/QD+wyEDXlohA9Fr9PxgwqECDQNdAEm+SQIRowkAApE1Ahc9QQblMF0E8mGZBIIGfQC3WWUBHywtCBVoZQJrGh0E83RJBAruqQG3S+T+tMHE/nvTIQIPBvkDajy5Bh5APQZ/X70Ckwvk/RHqdQABZgkFsfnhBtVAZQG7q8UHalYhAz8xhQcQFIkBO0D1Ao069QOJSAkGVw4xAbzZGQD4xZEGQmfk/Xch+Qc+G+EDhPR1AT+8jQdntLUEdY3ZB2M49QeTMjEB8jqZAQOSPQhs9Z0HWMkBBWjNYQbCUCUJUQ5xBbWUiQeNOh0HigGNB/pDbQL1wN0EMECJAiIfoQPdoC0DE6JhBYuGQQEIuw0D3xcBBwwsBQRMkA0FdoXNByEdSQO/jYkCDw55AjbPCPyW6NUHeTQJBLuJfQBKGykEkp71AHjdoQfo2YUDA0GFAEo5hQIzhhEF0QDJBXF+kQEBSw0BzGVRCNKHJQhMCVkKDObdArCLSQbeDp0Bl9D1Azl5tQjdSeUCM9H1BHBA+QbAyBkAuG6xChqHUQPqe2UEswx5AI+tqQfclAkHWtERAoMqlQZ7DkkE28oxAfDQiQM6sXUAzgOs/KANPQI8piECmTA1B/m9UQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgGbraEAAAAAAcihqQAAAAGB6xmxAAAAAIIjvbEAAAACg0ChuQAAAAOB2xG5AAAAAACvmbkAAAABgRQlvQAAAAEBFRm9AAAAAQFYFcUAAAAAAms9xQAAAAABaInJAAAAAwGtFckAAAAAA421yQAAAACDZknJAAAAAQHvjckAAAABA9251QAAAAMDBSnZAAAAAgLVfdkAAAADA0QN3QAAAAEDkRXdAAAAAAKFXd0AAAACARR14QAAAAACbV3hAAAAAgAqReEAAAACAUBJ5QAAAAIBAhXlAAAAAwOn7eUAAAACA8oV6QAAAAMA0y3pAAAAAAJsve0AAAABA5r57QAAAAEAq03tAAAAAgHVVfEAAAAAA5F19QAAAAEDIbH1AAAAAgJ99fUAAAAAA9Ip9QAAAAEAdxX1AAAAAwONxfkAAAAAAW5N+QAAAAICjBn9AAAAAQJNjf0AAAAAgSRGAQAAAAGAPV4BAAAAAoHB4gEAAAADAfZuAQAAAAAAP7IBAAAAAwE49gUAAAADAEEyBQAAAAODxbIFAAAAA4E5zgUAAAACgQn+BQAAAAODOtYFAAAAAANq6gUAAAADgpN2BQAAAAOC+54FAAAAAgMoHgkAAAAAg4RmDQAAAAGD1KYRAAAAA4NSZhEAAAABgqauEQAAAAKCe4IRAAAAAAHMthUAAAACgigSGQAAAACCwM4ZAAAAAwCZshkAAAABA93OGQAAAACAc0oZAAAAAAIrnhkAAAAAgZV+HQAAAAGAlcodAAAAAoKZ6h0AAAACgRYCHQAAAAKBqtIdAAAAAwBvCh0AAAABA4xaIQA== + NrgMGZxjYkDEsXzkGyNlQFRnpVdMhW5A - + - P2U7QCPaREBTJXVAGJtKQVjgNkGfD99AH0ieQE07NEAsxUZA9y3DQPGgCEF7xWBAjN4wQCqeGEBdxjVBYb3iQJe8TUAIWwtADU2RQFyHdUBEmn5AIKQBQKKgwkCm3MhAOopCQXQHIkDfqPVAIPTEQF+crz/9ExdBxS65QKl81T9nfoZAf/pTQcKvn0D3d8tA2q6gQWdx0kD6ANU/riMbQQ5N7kC86QtBDQiyQPcDCkEMZ/I/+IGVQMoUsT/R4ZhA902fQQfbq0CvcrBAelfAQEPonEC0tHZBp9xVQbpWlkCF7L5B+Bf1QVJtx0BXWI1AAz8GQA4x5z+zJCJA+iKsQIrUGEA8hAFBW6KOQcHLXEGmgQhBJz77QFecVEH0VTpAbECdPyvikUCkoOY/aW3eQKtSQ0A= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwAWjakAAAAAAmF9tQAAAAICymm1AAAAAwNVqbkAAAAAAQ4ZuQAAAAAA5wW5AAAAAwN1fcEAAAABgdxhxQAAAAEDctHJAAAAAgKZEc0AAAAAAwHFzQAAAAIBEZHZAAAAAwNYieEAAAACA/TN4QAAAAMD//3hAAAAAgPCCekAAAAAAlTR8QAAAAMAKcn1AAAAAALp+fUAAAACAE8F9QAAAAIBJUH9AAAAAwHFmf0AAAABAh4N/QAAAAMDC0X9AAAAAYF0vgEAAAADg00OAQAAAAOCooIBAAAAAYEPLgEAAAAAAQ9OAQAAAAGBdaoFAAAAA4MlygUAAAABAlNqBQAAAACCP34FAAAAAoGLmgUAAAADAMiKCQAAAACCzOoJAAAAAQHZkgkAAAABgT22CQAAAAECXloJAAAAAYPi/gkAAAADAqgODQAAAAOBkuYNAAAAAwEhghUAAAACgE6iFQAAAACCQBYdAAAAAYL76h0AAAACA1HqIQAAAAGAA74hA + NrgMGZxjYkBTq+yvm2JjQHJahe5LhGlABGJAIxECcECPAUf8vTJxQCKz/A1pknNA5VVLAVajdUBJdESFF6N7QOWzJ1WutHxAuQU6OsNigUAuTR7WWrKCQPV4xOXGuoVAwhi2TZJDhkD1p7IPc0OJQFb5WYnpS4pAINI0Er97i0DlIbh+FRSMQEv8thQLtI1AEihdJHc8j0DaJBUKN3yPQO2pAZpxIpFA - + - fAwyQaAcmEAHdIlAhJ7lQEacXkAKTjlAnmToQUwvi0AO/WtAfjWdQEO1gUB+vJpARtl+QPyvD0DKc1FAER+wQFEr1T981UZA3rLZQDuYNEEAdtdA2OUrQNpLpEBngX5ANCOcQIgc80C3L6BAPFOcQQJZ2EBDZEZBZNzSQHourkDG/y1BSniKPxJb5z+rZNdAfo2kQLbYtUEMgIVBA7GTQQ8iAUD+rg1AOVZCQNRnn0B70b9Av3VuQUcK3EA085hA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIP5FYUAAAACghqVhQAAAAMBpxGFAAAAAIBllYkAAAABAvCNjQAAAAMCoe2NAAAAAgH7lY0AAAACAQUZlQAAAAKAdZ2VAAAAAgMrWZUAAAACAhuJmQAAAAEClCWdAAAAAQN1oZ0AAAAAA04NnQAAAAAAQRWhAAAAAYD7AaEAAAAAAGyNpQAAAAIBvR2lAAAAAQEb6aUAAAABAuCFqQAAAAIBMZmpAAAAAQE+iakAAAAAAIuBqQAAAAMCyo2xAAAAA4LbHbEAAAAAgBihuQAAAAEB1JG9AAAAAgOx2b0AAAACAD6VvQAAAACDrIXBAAAAAIA80cEAAAACAT2xwQAAAAEAXsHBAAAAAwFrIcEAAAABgfvBwQAAAACC8E3FAAAAAoBEhcUAAAABAlDJxQAAAACCiR3FAAAAAAOJWcUAAAACAzcNxQAAAAGDe03FAAAAA4F7kcUAAAAAgw2FyQAAAAOBvc3JAAAAA4HW0ckAAAACA+cZyQAAAAMBuEXNAAAAAgAZyc0AAAAAgIoFzQAAAAEBAn3NAAAAAAMW0c0AAAAAAHcNzQAAAAAC5jXRAAAAAoNbgdEAAAAAAmAF1QAAAAAD1DHVAAAAAgIYxdUAAAABgbkx1QAAAAACJk3VAAAAAAHbTdUAAAADAPwJ2QAAAAMCDD3ZAAAAAoLMmdkAAAAAglUR2QAAAAICRUXZAAAAAIHxndkAAAACAbYN2QAAAAECMzXZAAAAA4PXYdkAAAAAgjwV3QAAAAMApEXdAAAAAQFsfd0AAAACAdy53QAAAAACzQndAAAAAoKlcd0AAAACgw8J3QAAAAGB03ndAAAAAoOE4eEAAAACA1EZ4QAAAAKCAVnhAAAAAAICBeEAAAAAgALN4QAAAAKD2xXhAAAAAwN/SeEAAAADg8OR4QAAAAOAF+3hAAAAAYE0FeUAAAADgdRt5QAAAAKAgLnlAAAAAIEdFeUAAAABgDFp5QAAAAKCJdHlAAAAAIGCDeUAAAABgRtl5QAAAAICz8XlAAAAAIMT+eUAAAADASzx6QAAAAKB0XXpAAAAAQLB0ekAAAACg55d6QAAAAMAxr3pAAAAAYLe9ekAAAAAg1tB6QAAAAEDK6HpAAAAA4NT3ekAAAACAWwx7QAAAAMDMMXtAAAAAIMY9e0AAAACgM3l7QAAAAEDyintAAAAAoKChe0AAAABgV9F7QAAAAOAw3HtAAAAAIL32e0AAAACgnAJ8QAAAAMBBNnxAAAAAALpDfEAAAADA11N8QAAAAIAtaHxAAAAAQN+EfEAAAABgMpZ8QAAAAKBko3xAAAAAIMjJfEAAAAAg8Nh8QAAAAGCPf39AAAAAIHL4f0AAAADgoQKAQAAAAMD+K4BAAAAAAH5XgEAAAADgMXKAQAAAAACWs4BAAAAAYOfSgEAAAADgdvKAQAAAACBo/YBAAAAA4KoDgUAAAADgpRaBQAAAACB9G4FAAAAAwEYngUAAAABga1aBQAAAAOAFgoFAAAAAwFuLgUAAAAAgNp+BQAAAAEB8s4FAAAAAoDu7gUAAAACgcOmBQAAAAODoG4JAAAAAIBsygkAAAADgEDuCQAAAAGBXWYJAAAAAYJaegkAAAADgfb2CQAAAAIDUwoJAAAAAoKnLgkAAAADglNuCQAAAACBFAINAAAAAwNo0g0AAAABg6VGDQAAAAGCrc4NAAAAAwM6Bg0AAAADgV4eDQAAAAAC6soNAAAAAgKC6g0AAAACgzeCDQAAAACDK64NAAAAAIHNBhEAAAACA4FGEQAAAAEAoc4RAAAAAINORhEAAAADAILeEQAAAAOBJwoRAAAAAIMz5hEAAAABA50iFQAAAAOBFUoVAAAAAIHhphUAAAABgrIqFQAAAAGAtk4VAAAAAYPmqhUAAAAAgRcmFQAAAACAszoVAAAAA4K7uhUAAAAAgvfuFQAAAAMCmEYZAAAAAoFg6hkAAAABgIUuGQAAAAABBUIZAAAAAgGvChkAAAAAAkcyGQAAAAAAH24ZAAAAA4G7jhkAAAAAg/OmGQAAAAADdCodAAAAA4As0h0AAAABgrFKHQAAAAKDwWYdAAAAAYAObiEAAAAAARsOIQAAAAMBhzIhAAAAAAA7TiEAAAAAg9fuIQA== + NrgMGZxjYkD0hHOUyKJqQFRnpVdMhW5AmBP2NLzhcECYcdKIFHN2QCZrQlSU8nZAJ8keqOyDfEC0wo5zbAN9QFqQtWNiSoFAUUBHaO0ZgkDpuBNZjhKDQBhs7XdZIoVAsOS5aPoahkA= - + - gp4JQZCco0DamJhA0iMdQXGVgUBMWTxBqxcnQGcjGUFC279AHu0zQNQ3qEHbcFRBLEOdQR7UhUA8hD1Bd7EYQK4MWEOhgbVBeduBQGYNUEBODLlAQUfoPysRH0BuoH9CkTeoQL915kDE7ME/0HWYQIPFnkDvIDBAncg7QCtt/ECu8d9AgEPCQH6EsD/NtphATBKSQFqc5kBH9ME/V1ylQRGGgUBbFvRB52T5QcTUikLJenlA3t1GQDWpGEBn99ZACzoUQA1tMUCccsVBJgfBPxk930BCrIVBA4ZMQJvqEEEsriJCjEKwQHvFpkBr1vlBqz32QEcThkDIkmJAw+2CQAHVVEBkC3tB2gqVQGB/H0F+4e5BDAYoQTj0WEFykFlBkf28QeGCWUDNSAxAYk17Q416yUCwj7A/4DE2Qdb8IUE30DtAY8mMQO8D8UCB3SVBmdJPQazgXUA6VhVBZHS2QPWQmEAP0MZA/G7PQZ1BZ0HePVFBj0cWQcHtMUEouZNBGRkEQIxfFUEpq8VBDv9UQJDuq0FlSkBCREsnQfjPOEB6YotDpf9KQvgoMkF0PA9AUjOPQQG6RkGMiQlCtoCGQUagWEHMRYE/UWDhQYqS+EE9ZkBBj98ZQdFUF0FUkYdBQ13QQUtgq0A9mB9BJtUuQahbIkBG4QBBsfTUQHzmd0Gd6ShCQmEHQYCLXEF2yxhBjVzCQMLu2EGO3EZBOGlHQc7wJUG9qG9BeAoMQU2LPUConshCQELAQUxkBEIL+3xBvPhGQOYXn0AyMt5AbthWQXZLgUBDUDtAv315QJE7EEE+dt9BHFeWQUTP8ECBYZBBUgoDQdOwq0HSmoFA0+m0QUJ0h0EziRpBwt1iQSf8g0AsnZhAbi/nP5o5O0GB8GtAjE2dQOuCdkKdaC1Btu95QeByTUK2ikxCTDVWQAB+mUL0BQVBY2ziQPl8mUA8N8hAfKRaQfk/j0Bespw/hYoyQbKUNUGVighBA1d9Qu6J50ApZ0tBlE8rQLCFnkABc5ZA6TpVQLoPQUT5FHhDjmkIQTNYIUH23/g/Ac6TQFlpR0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - AAAAIGAGY0AAAAAA5YNkQAAAAIBAamVAAAAAIMiDZUAAAABAPMhlQAAAAEBMIWZAAAAAgHxlZ0AAAAAAihxoQAAAACB9ZmhAAAAAgC6naEAAAABAZEZqQAAAAACSZWpAAAAAAGgEa0AAAADAHSRrQAAAAICHf2tAAAAAwILda0AAAADA/UVsQAAAAIA5AG1AAAAAQC8qbUAAAACAfqBtQAAAAMAdgW5AAAAAYPXHbkAAAAAAaSNwQAAAAOABY3BAAAAAoNdycEAAAAAgTYVwQAAAAAAQ0HBAAAAAQNQAcUAAAABgYQ9xQAAAAIC5MXFAAAAAYH5WcUAAAADAbcFxQAAAACBo0nFAAAAAYNPGckAAAAAAunFzQAAAAOCbkHNAAAAAAN3Cc0AAAABAR1V0QAAAAKBBsnRAAAAAwLcxdUAAAACAJkJ1QAAAAKCqk3VAAAAAYJPUdUAAAADApPl1QAAAAAAuIHZAAAAAQPJUdkAAAAAApnJ2QAAAAMAqsHZAAAAAgMLJdkAAAAAg8f92QAAAAAD6EndAAAAAAE0id0AAAADgzTF3QAAAAECpwHdAAAAA4D7hd0AAAABACzR4QAAAAEC2UnhAAAAAIHpkeEAAAAAgtbJ4QAAAAKAT8HhAAAAAABQEeUAAAABA8hB5QAAAAEB3LXlAAAAAwKlbeUAAAABg8m55QAAAAACsh3lAAAAAwFWzeUAAAAAgmb55QAAAAKD23HlAAAAAYCoDekAAAABgFw56QAAAAOA4G3pAAAAA4K07ekAAAAAg2Fh6QAAAAGDnY3pAAAAAoIyAekAAAAAAFJp6QAAAAEAEsHpAAAAAYAHCekAAAADg3dF6QAAAAMBk83pAAAAAgHYqe0AAAACAxXF7QAAAAOBeh3tAAAAAgCice0AAAADgCqx7QAAAAMAxwXtAAAAA4IjRe0AAAACA0AB8QAAAAMCfO3xAAAAAoKVKfEAAAADgv198QAAAAOBeinxAAAAAQEuWfEAAAAAgK9x8QAAAACBZDn1AAAAAYMklfUAAAADAeG59QAAAAOBdmH1AAAAA4FKifUAAAADgGmd/QAAAAEB9c39AAAAAYOcBgEAAAADAmRKAQAAAACBLIIBAAAAAwIWNgEAAAACgGLGAQAAAAGDQzIBAAAAAYBjigEAAAADgVemAQAAAACCy/oBAAAAAIHkSgUAAAADgIR6BQAAAAGAdJoFAAAAAYEmDgUAAAACgjq6BQAAAAGCAu4FAAAAAYFHogUAAAABgDQ+CQAAAAKByK4JAAAAAgKVMgkAAAAAg+2yCQAAAAEBAgIJAAAAAYG+IgkAAAACgLrKCQAAAACC/u4JAAAAAIK7BgkAAAAAAr+mCQAAAAKD8+YJAAAAAwGb/gkAAAACgdAWDQAAAACD+CoNAAAAA4NcZg0AAAACgUimDQAAAAGAFT4NAAAAAoKSFg0AAAACAra6DQAAAAGBO0YNAAAAAYE3zg0AAAAAgH/mDQAAAACBeCoRAAAAAwHRHhEAAAAAg+V+EQAAAAKAdooRAAAAAIGXDhEAAAACgHACFQAAAAIC6DoVAAAAA4EYhhUAAAADgiimFQAAAAGACM4VAAAAAAKFYhUAAAABgXGCFQAAAACDbioVAAAAAYD1LhkAAAADgn46GQAAAAGBg84ZAAAAAgBskh0AAAADAfaSHQAAAAOATs4dAAAAAwDS+h0AAAABgT/iHQAAAAECeFYhAAAAAII6SiEAAAADg3aCIQA== + NrgMGZxjYkDEsXzkGyNlQBu6YmAmQ3BA0BY+T/zBcUB2xqyr6ZN2QF5uim7U0ndABR75ysGkfEDsxdaNrON9QMm6IvXMWoFAI2mQ7DcagkDAmaIjBPOEQCOYfhbkooVAh8VIM3D7h0A= - + - hkBPQQ3gxkAZAqlAupA9QK7Snj+UyZw/FRi2QI2p6D/a/L9AZzORQPjQ6EBirlVAK5vBPwxrIUCoiEhA0kEMQL4G80CA9+xAF9ORQDrf5EA6utBA/Ly9QEzpqkAOUfM/OqmjQCKAiEC62Y1Bk4qbQdKZsD+wTI1AAqKwQKjgAUBDl9Q/q6kEQoiPHkB5y3BAyfdCQchBZ0Cmk3xAlEkxQHRigUBJZwdB1wjsQJbX1D9u2ZRABO0MQLtSNEBFnwxAo6YoQmTMy0D09qJBtDJHQYVhDECWxJFB45zcQBv3mEBUeaFBQjYrQLXKTUJR3NpA2ExaQAEKMEGad49Aa4GuQlb5YUFyD+c/SxV+QEtwD0AXdrRApww1QSRYoUGhAZlB/L4UQpLUAEJ17/FApyPUP9Dh+kASZAxBp+ADQRyLAEJ1fdlAcb89QKt+oEHwKpZALI6oQDn7BkHor61A59SLQL81nUCRbGRBVfo3QdhcdUBDwpZAmT/SPyb2S0GayIRBunJfQSHBPUCSUYBBfOP8QVUvAUEu5EFAGGoAQcfSo0B+QvxA8s6aQJXgDECLMfo/hlrVPyjsij99NuNAIjvyQQ+hhkCx5fZAxE8fQefiHkJi7eg/48B0QBtVKkEkSPZAoIC4QAN/1UDvm7VBEoBgQL6EMkLSXIdCr8VOQAqjr0B8P5dBw2w4QvShRkKdXnpBrlcMQHeIlkAyRddAxmQpQgtCC0GDvD1AXKaZQY+iBkCzs1RBibsDQmSjpkEYfp0/MnQ0QP6dRUGxfxRB4j6NQJ63WEGZB0dBUboDQtPoDULirJlA4FanQQdSiEFcfNVADggwQIth2UA11wNBEdDCPznnqEDafa8/zbUOQLh/MEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQJHoZUAAAABAFeFmQAAAAMADhWhAAAAAwGalakAAAABAFShrQAAAAECaQm1AAAAAwJGFbkAAAADAmSFvQAAAAAB0wW9AAAAAAEPjb0AAAACAJZ5wQAAAAAAgsnBAAAAAwDrNcEAAAADAggRxQAAAAOAxE3JAAAAAABIjckAAAABAWk9yQAAAAEDbj3JAAAAAAJ9Cc0AAAACA41VzQAAAAGDOkHNAAAAAAFw0dUAAAAAAdkN2QAAAAMClcXZAAAAAgDisdkAAAADAUr53QAAAAIBb2XdAAAAAwKzpd0AAAACA5SF4QAAAAEAYSHhAAAAAwEnFeEAAAAAANxN5QAAAAECVJ3lAAAAAANbmeUAAAACArvJ5QAAAAMC30npAAAAAwF5We0AAAADAqlR8QAAAAMC8Y3xAAAAAgAKFfEAAAADA4g99QAAAAMAWU31AAAAAQC1nfUAAAADAT3J9QAAAAIBPyH1AAAAAgA7ifUAAAAAAhEh+QAAAAMA9ZH5AAAAAQHVyfkAAAABARYR+QAAAAEAW9n5AAAAAAFgzf0AAAAAAXld/QAAAAABuZn9AAAAAgI3Kf0AAAADgcwCAQAAAAKA6OoBAAAAA4C2LgEAAAADgwJmAQAAAAAAPoYBAAAAAAMXCgEAAAAAAIuOAQAAAAMCjB4FAAAAAQGMigUAAAADgeUKBQAAAAKC0R4FAAAAA4LF/gUAAAACghY6BQAAAAEC7roFAAAAAoBfIgUAAAAAgMvaBQAAAAKDG/4FAAAAAAMwAg0AAAADg/gaDQAAAAKBkD4NAAAAAIDeAg0AAAACA1aqDQAAAACAwCYRAAAAAQO8hhEAAAABg9WqFQAAAAOCI1oVAAAAAQMnbhUAAAAAgLxuGQAAAAKBTbYZAAAAAgCRyhkAAAACgi3eGQAAAAEBUaIhAAAAAAG57iEA= + NrgMGZxjYkCEfuNfSGJnQOJgFSPMRGtA - + - Z70yQQ5GD0B8i2JAaJtpQCCuEEAA8sxALJ7EP+ksOUCvVOc/6vSvP/DXnkHLH/0/nBtHQOPmf0G9U4dBnAqVQOHPikBbcIs/5gfRQI4Ww0DN8V1AnCX6P1faaEALEQpBDeEYQA0CckDhmQZAAjcFQfiXt0GB2tNBVRhiQYEeI0JH0tJAM+SCQA4QmkA3UERAq+/EQL52AUHYwZFA6msAQcVIjUB7ChdBBapiQIRUDkGGJxpBb1RAQRvGYkC56ShATmBYQZxYmkA+aTRBelm0QB0ot0Dxl7tAShqpQOV8YUALhl9BF5DeQAH9sECRnBNAgWLXQB9DJ0FIxIpAdLcmQMUEgkDXg6tAD4wPQZjaYkAvr5FBAuPzPxtxOkFIUB5B1KH7QAIKV0HPQPA/9dSKQTlS90D1AyJAP4QRQTti0ECSu68/gvWOQSVcwEDxRJRAl2eVQD6Jwj8a789ABdAEQQ== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYNPqY0AAAADAXaRkQAAAACCMRGVAAAAAAOrdZUAAAADApulmQAAAAECIZmdAAAAAwEbnZ0AAAACgdmRoQAAAAEALgWpAAAAAoEGYa0AAAADA7OVrQAAAAIBXKGxAAAAAYJlIbEAAAAAAXOhsQAAAAOAfhG1AAAAAwNakbUAAAADAAMZtQAAAAABRH25AAAAAAL5CbkAAAAAAaYFuQAAAAOCUyW5AAAAAIHIDb0AAAACAtMZvQAAAAABbLnBAAAAAgEKQcEAAAADARs5wQAAAACC54XBAAAAA4PAScUAAAACAOUNxQAAAAGBr9HFAAAAAALMAckAAAADgqxNyQAAAAOBvdXJAAAAAYKCTckAAAADA/MNyQAAAAMBjznJAAAAAQIUec0AAAACAWoZzQAAAAACE1HNAAAAAQFXwc0AAAADAkiN0QAAAAMA2YnRAAAAAAPKQdEAAAABAfKV0QAAAAMAH/XRAAAAAQC8gdUAAAAAAkS11QAAAAMB+U3VAAAAAABbfdUAAAACAsRJ2QAAAAADqJnZAAAAAgEFSdkAAAABAS5R2QAAAAEBhs3ZAAAAAAF3ydkAAAACAsgR3QAAAAIB8E3dAAAAAwLkhd0AAAADAQjV3QAAAAEA7THdAAAAAAO6Ad0AAAADAaKR3QAAAAMCBs3dAAAAAwALSd0AAAABAxQR4QAAAAID4H3hAAAAAwPQxeEAAAAAA/EJ4QAAAAABwVnhAAAAAAMVkeEAAAADAs294QAAAAMBNsHhAAAAAgEbheEAAAADAOPF4QAAAAIBsB3lAAAAAwPgWeUAAAACADCF5QAAAAIATP3lAAAAAgABQeUAAAACA2XB5QAAAAEAJgnlAAAAAQNmdeUAAAAAA2tB5QAAAAMD0+nlAAAAAQCgRekAAAAAATB16QAAAAICWK3pAAAAAAOl+ekAAAAAAc9Z6QAAAAMBT8npAAAAAgKMUe0AAAADAJyF7QAAAAMDjRXtAAAAAgDqZe0AAAAAAn/F7QAAAAABGAnxAAAAAQCYvfEAAAADAskR8QAAAAMCqdXxAAAAAwNmTfEAAAADAHeJ8QAAAAIBMEH1AAAAAwEcmfUAAAADAxVd9QAAAAIBIpH1AAAAAQDm0fUAAAADAhsF9QAAAAEDvz31AAAAAwJbjfUAAAABApwV+QAAAAMCxEH5AAAAAAFcqfkAAAAAg1ECAQAAAAODqyYBAAAAAIJ6bgUAAAABgZNuBQAAAAKCPLoJAAAAAoExkgkAAAABgbbyCQAAAAEC1woJAAAAAoMzsgkAAAACgOgODQAAAAMAlHoNAAAAAIEVKg0AAAACAx2KDQAAAAKAqa4NAAAAAgNqUg0AAAABgtdeDQAAAACAwIoRAAAAAgCRbhEAAAABgbaaEQAAAAOBaw4RAAAAA4PX1hEAAAAAAfSKFQAAAAGCwQYVAAAAAAMxLhUAAAACAxGGFQAAAAABzZ4VAAAAAoJNwhUAAAABgpdeFQAAAAGCRE4ZAAAAAYGZhhkAAAACgi2aGQAAAACCCboZAAAAAQJ3zhkAAAACgH/qGQAAAAOAuQYdAAAAAwC2zh0AAAADAZFKIQAAAAAA2y4hAAAAA4PnUiEAAAABAYfaIQA== + NrgMGZxjYkDEsXzkGyNlQHBahe5LBG5AQx3Og3xCcUBatkQoqXJ0QGUm0LT/snZAu3rUuZcje0CBd4yfV4N8QCRpkOw3moBA - + - cssPQBwiFEDS+tZApNJpQND58z8gB3A/KSSNQAvQqUGuwJFActueP/zwDUGWkvs/UNqvP2AIg0CHoSZBiJeIQLvYQ0BaJIZANCI+QNgdXkAsvSpAa8AUQalVij+eiQJB6fRzQPWN4kAQzoxB0wj6PyfR20BYizRAJ1Z6QCAJ0EDi/7VAoh0GQDNxSUH9KaZAiPzbQPTxn0CcgK1BhhiaQCygfUAZV7tAe0RjQQtT1T82U0NAyC9bQfXhl0C+YmpA9VtQQILfikB+oaBBXg0yQeOu7kAUvR9BXeRrQHxaPUBE0wpAb4UwQBMEBkBzpcxBifMnQNtKBkAIzwpB/PEFQAjcCkD2gdBAqC80QUvQLUKuM1pBSG+TQfqPk0FAC/o/VvbmPwwUi0ByGJtBJAVLQVf6jEADn7tAo1XVQMlBwkCO2Jw/5YyEQYq0ikCDSC1BB/v3QLZjeEHQx4xAGionQb70PkCvdj1AljUPQHuwrz/hjbZA6uidQWTLsT98QV9B1nrXQdIp3EB3OMVBbMmPQLGOi0E1J+hAtKjKQSEwwj9A8qFAKcspQp+bi0E9Hg9BU/cxQKDKpkD9H5BBbCsGQGVlo0Dqrp1AE+DeQDZPhUEPmSVBLLozQl2dBEJnMxJBi9ScQgCs00ESCmFBilCCQW8hC0F/CA9BHzMCQUyCJkHSRi5ByqgNQCCTUUEYgoZARGNQQL2b7kGQ1JpAXNctQRoXK0AlZdtBMn8rQZj5EEHBo7hBx/rCP920dUChh6tBcNPsQGgvukBxQOc/LBcOQGOk4kD/ruxAENiDQADKyUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4K9JYEAAAAAg9kBhQAAAAEBAZmJAAAAAgEeDYkAAAAAAjyBjQAAAAAC/ZWNAAAAAwOmDY0AAAADAb7xkQAAAACBw5WRAAAAAgP4EZUAAAACA2SRlQAAAAODwpGVAAAAAQELIZUAAAAAAKqVmQAAAAIAOBWdAAAAAAJ0haUAAAACAmEBpQAAAAKAi52lAAAAAQJVAa0AAAABgdmRrQAAAAMDnS2xAAAAAgLFmbEAAAAAAD59sQAAAAEAPx2xAAAAAABDibEAAAACgKCBtQAAAAMCmZG5AAAAAQMuDbkAAAABAWeRuQAAAAEBIB29AAAAAQD8kb0AAAABAxt9vQAAAAMC5M3BAAAAAQBJicEAAAABg5bFwQAAAAKAfMXFAAAAAAMnBcUAAAACAF9VxQAAAAIAz83FAAAAA4CgCckAAAAAgwnVyQAAAAIBPwXJAAAAAICfgckAAAAAA7vJyQAAAAOCS/3JAAAAAAHouc0AAAADAioNzQAAAAGDKknNAAAAAwAWlc0AAAADgK7hzQAAAAMCIxXNAAAAAoLZ+dEAAAABAwpd0QAAAAGAIonRAAAAAQIeydEAAAADAG051QAAAAMBybHVAAAAAIF+2dUAAAADAM8N1QAAAAOBY2HVAAAAAALlEdkAAAACgtGJ2QAAAAMDHnHZAAAAAwHjGdkAAAACAF+52QAAAAKCKFXdAAAAAAFODd0AAAACAOyV4QAAAAMCqVnhAAAAAQOtyeEAAAADAa7N4QAAAAADH1nhAAAAAoFLxeEAAAADggRF5QAAAAIBZJnlAAAAAADBAeUAAAABgbId5QAAAAEBtsXlAAAAAoIvLeUAAAADAGQd6QAAAAADoFnpAAAAA4IAzekAAAADAtEF6QAAAAOCvY3pAAAAAIMqiekAAAADAyrp6QAAAAOBg0HpAAAAAQB3jekAAAABAAvR6QAAAACDhAHtAAAAAoOsce0AAAABgLaN8QAAAAGDjNX1AAAAAQPtUfUAAAABgv8R9QAAAACD71H1AAAAAoL1mfkAAAADg13B+QAAAAMCUkn5AAAAAIFnmf0AAAACgvgOAQAAAAEANCoBAAAAAYN9SgEAAAADgo4KAQAAAAEC1m4BAAAAAwK+ggEAAAAAgXeKAQAAAAOAddIFAAAAAwMR6gUAAAABgO/qBQAAAAIBeA4JAAAAA4AhUgkAAAAAg3ZmCQAAAAOCTu4JAAAAAYEDCgkAAAACgWyODQAAAAKCVYoNAAAAAIDj0g0AAAADgvvyDQAAAAOADA4RAAAAAgBs8hEAAAADA2YyEQAAAAGAzm4RAAAAAwNoahUAAAABgACmFQAAAAGBoMYVAAAAAIBl7hUAAAACAYgOGQAAAAKAzCoZAAAAAIKQRhkAAAADgny2GQAAAACCrXoZAAAAAwJyShkAAAACAqJuGQAAAAGBQ44ZAAAAAwARih0AAAACgN6KHQAAAAOAstIdAAAAAICK5h0AAAACgkgGIQAAAAKBiQYhAAAAAoABJiEA= + NrgMGZxjYkASeFMryKFlQE0azAB4wmxAVGelV0yFbkDHBI8W/tJyQIEZsEv/sXRAO6pPBu7TekCBd4yfV8N7QOxlSNL3GYBArtmomzgigEA/3ik0etqCQKa4KMpvGoRAbOTO2dsChkBt5M7Z2yKHQP3oT3Idu4hA/uhPch3biUDEFPaBicOLQCvv9Bd/A41AvPN1sMC7j0B+Z9Z5AcSPQNVILL4m/pBAJ3x7JAE6kUBVYCPTfMKSQISlayA9OpNAy7kaG1MelEBs4/WlrVaUQLP3pKDDOpVAr8/tIomilUAv5+Q33waXQA== - + - ThISQQnKIUOcaoBCjmfoQH2wv0CkKIhEiO9HQmpOfkGGpOBB7CHTQOcuz0GTBwFFGffpQcnfAEKur7ZDsOKaRfIIw0IMU49B1gF+QUyHaUPoppBB0/BxQVhBK0EiEXVCyb4zQldgYUHitTBB2n6QQsYsSUK6lQxEtOlTQVG4gEFp1YBBBYI1QYKwv0FycbJC5TToQNiyE0JOZhxBK1XoQZCFd0HIycBBauJeQTQ2/0PfFbNB29NbQvzm9kErWAVBqkKkQe4aa0EIvC1BEuJqQmy+j0JzTPlCRL7xQdVwkEIJppdB58lgRDRqkETOxIlCfcWrQXDbS0PoRZdEX6WEQnOe9kEWiLxBX2swQWAkwEFTvStCeTiyQSZLJkFWReVBoAY3QRT1kELCC25CPGmEQbVwF0LvNGRCEuC/QCbBzEEiWLFCz1b9Q41b9EElyyFDp0+4QSMFQUGPnoNDL2GuQcd68UNSxodA0//nQKcGHkLAO5RCDtbbQYfIIUVhck5DZBInQbfjw0JkKb9Au13CQS9GLkLgIv1Ay+hDQiT7hUFY711By4OMQr35R0I4anRCcy/UQLeylkVu2yVEdCYOQ+vbTEEbRSJCMpnzQRaoWkKogSBCkRVPQUiHJ0Ke2KNB0BA8QjEqk0LzHxhCA1ySQ8NvNEJKQcZBstw2Qd4ow0J8QWlB3I52QmOGHEJgxehA9tzgRtHHHEWWP09BicaSQdXvwUBygZhClMbGQeSSWELdFJhDrAUuQw== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4HEjcEAAAACAKQB0QAAAAEB2A3VAAAAAwDaDd0AAAABA3HN4QAAAAAAH+XlAAAAAgCyCekAAAACA8VJ7QAAAAADsAH1AAAAAwMShfkAAAADAfRR/QAAAAKB6UIFAAAAAYIp3gUAAAAAgu9CBQAAAAEALY4JAAAAAgP6MgkAAAABg12SDQAAAAIDddoRAAAAA4LV8hEAAAABgbeqEQAAAAODH8YRAAAAAYAkqhUAAAACgsDGFQAAAAKDyeIVAAAAAACKPhUAAAAAg4LqFQAAAAIB20YVAAAAAICr2hUAAAAAAYAiGQAAAAECSEYZAAAAAwJBUhkAAAADghhiHQAAAAKBEIIdAAAAAYIA2h0AAAAAgO0CHQAAAACDnSodAAAAAQBKFh0AAAABg16iHQAAAAKAayodAAAAAIFnSh0AAAADg09qHQAAAAMCS5YdAAAAAQJnxh0AAAACgAjuIQA== + KBZXds7jZUCEfuNfSGJnQL8gXDX4gm5AA0krmFUickAhmueCrbJ1QE7OrXfqcXZASFsv+lvDfUA= - + - 7CErQSDF1UBMRXBA55D5PwkxK0BQnvk/gKDAP2Sf4ECHRw9ARfoiQa0j7UAflhhAeK0YQJDkwz/aZTtBKy7lQHnLnz9oKQBBdqWPQOvYaEGCv8tBkp6LQN6KskEaI4BCZEwZQfVUU0HjW2hAG1OdQDjyNUKuTIhB0u2DQBzqIUAdQjRAwmG5QB+vr0FrjIhA1E4fQpIrJ0C6CJpBBIevQOVvTEGXnqJAE7roQeRaBkE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQLyCZ0AAAABAMeNwQAAAAMCJEHJAAAAAQOLCc0AAAABAhNRzQAAAAOD0EnRAAAAAgKKBdkAAAABALmR3QAAAAADMNXlAAAAAwBraeUAAAACAwSB6QAAAAIA5kXpAAAAAQFbDekAAAAAAH+N6QAAAAAAc1HxAAAAAgBD+fUAAAACAzkZ+QAAAAADvZH5AAAAAAOJvfkAAAABAHvJ+QAAAAEBDaH9AAAAAAFHUf0AAAAAAa5mAQAAAAOBuIYFAAAAAAAAqgUAAAAAg8VmBQAAAAEAEfoFAAAAAQMivgUAAAACAavOBQAAAAED6+YFAAAAAALsogkAAAABAhkGCQAAAACAspoNAAAAA4G1MhEAAAABA4VqEQAAAAEA/84RAAAAAwOgWhUAAAABglzyFQAAAAGCySoVAAAAA4LrqhUAAAADgMy+GQAAAAOCHOYdAAAAAYCviiEA= + 4jyZjTbDXEA2uAwZnGNiQKxARRxLgmVAxm01jMzFbkDk926t/dFwQAXAHHdp03RAOkxzspVCdUBgzGbCLCR7QGENuylEU31AP687Cs5xgEDDRtecbZqBQNCzvKIPKoNAinJ9rNmihED73T6lW2KFQIoGnZqHKodAt3giUjvLh0DioqRUhwOKQFEyQ6rzMopAD6lJ+ugrjUAYXum5XzuNQEOIa7yrc49A5f0UeTCWkEA32Xbf+9WQQEInBXVslpJAt/Bt9FGakkAmPdh8ohqUQJsGQfyHHpRAplTPkfjelUD4LzH4wx6WQLtpEJMe+5ZA0X5RlEQXmEBVWSH0/x6YQLWUJJx6m5lAbNzzxjCzmUCC8TTIVs+aQJmq96OwH5tA4L6mnsYDnECZdAebh2OcQPXT55/sH51AfYraor3nnUA+VihsDXyeQIVq12YjYJ9Ax3qsQOnrn0BorVSCJ7KgQO9+vwkNwKBA8zf1gjpAoUATwN9vHW6hQOXC3oZVAqJAbEsSd0A0okAJTTaEYHSiQC3XjYFr5qJA - + - 5zJbQeMdQ0Ah0YFAjH4PQOXIS0BlP8NA/YW2QCoWlkBHvZhAxFSBQJrPOECdM61AKou0QLQUsEBR4UJA3V5eQE1RK0EvnxBBlNa1QPlk1UC80qNAVjHAQACyVUGOVrZABf7GQEVCPkDJutU/VE4PQMggs0A5VbpBiNgfQTgnwEC7f/FAiTICQa8MBkB/APxB5vRjQX3uQkBWRjFAqHPOQQ5MOUFsF3pB0uJTQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoP5nZUAAAACAEIdmQAAAACDrJWpAAAAAIMFCakAAAACADKZqQAAAAOCLx2tAAAAA4JcmbEAAAADAlzxsQAAAAMDMBW5AAAAAILVsbkAAAADADoRuQAAAAAAAaG9AAAAA4PUicEAAAACAmcBwQAAAAGBARHFAAAAAwGZXcUAAAABAQbZxQAAAAMB7ZHNAAAAAAMlUdEAAAABAimZ0QAAAAIB273RAAAAAQERidUAAAABAYNN1QAAAAABSEHZAAAAAwAtidkAAAABAeXN2QAAAAEDsj3ZAAAAAwCSidkAAAACAL7B2QAAAAEDjUndAAAAAwImud0AAAADA2y14QAAAAACdOHhAAAAAgGpDeEAAAACAX4F4QAAAAIDf83hAAAAAwLlUeUAAAAAAZIp5QAAAAAC21nlAAAAAAIYkekAAAAAATml6QAAAAID2c3pAAAAAwF2DekAAAABAoax6QAAAAEBWJXtAAAAAgKCDe0AAAAAAWrh7QAAAAMDbxHtAAAAAgAzhe0AAAADAseJ8QAAAAMAc8XxAAAAAwPv/fEAAAACAWzF9QAAAAICedn1AAAAAwM+NfUAAAADAAAJ+QAAAAMCRFH5AAAAAQOBrfkAAAADA/nx+QAAAAMAO0n5AAAAAwH4+f0AAAADA4d9/QAAAAICH/39AAAAAIMkHgEAAAABA2h6AQAAAACB1J4BAAAAAoGhDgEAAAABg/3uAQAAAAKDIqYBAAAAAIJuygEAAAADgiLmAQAAAACD7yYBAAAAAQMnrgEAAAADAbf+AQAAAAODZGYFAAAAAIN8fgUAAAACgcQqCQAAAAOCnEYJAAAAA4McagkAAAADgBsqCQAAAAKAI7IJAAAAAYCe7g0AAAADAx3qEQAAAAOAMjIRAAAAAAJXShEAAAABg3dqEQAAAAAA9+oRAAAAAIPr/hEAAAACgUGGFQAAAAICKgIVAAAAA4P0IhkAAAADgABKGQAAAAAD2IYZAAAAAoG9qhkAAAABAWeGHQAAAAGCVaohAAAAAQCTYiEAAAABgGu2IQAAAAOA/+4hA + NrgMGZxjYkBK9xnL9URsQFRnpVdMhW5A - + - zk/rQO8r6kB/Sw9AvG8OQZ85dUBsuj1BsTMzQdCthkHOnvhBwrpQQE8tS0Df3hxBeKhwQfEwAUAP/cVB+zp5QGGlvUDyHEJAJBoHQdtTIEBhHzRA6rlGQBo+gUAJCptAkKWhQP1ueUDa4aBBXVyOQYDuzUB+ugtBXL4TQKn5akFG7b0/VPiqQC4ncUCH/h5AQ5sKQcpP5kCzPyhARl0GQeh/ckG74EBCvwqnQAnEeUDJGHxBsDa7QHbrKEF7/4VAh3/LQJyFJkFq4LZAhTMwQUNYBED599xAVKTcQBAhV0EzOSRBnPcXQIJzsEG9DktAfWkaQcKHlUAQEWdANVloQXnIoUBKBKRA2HPBQazRAUEc56FC/M2rQmYyPEE/uEVBIZXoQaPKo0G3nZBBpCzmQEXvoUIxoKtBN1w0QLgTOEEmyp5AVC+KPxk/UEB20M9AEMWXQo/AoUH5zOY/9K9oQH59sj+bW6BB6BoUQjWu30HCRldAMkR+QD3kAkDAyJRAeGLtQJgrrz8pELJA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoJnjakAAAABA94hvQAAAAECsJHBAAAAAoAjUcEAAAADAN+NxQAAAAMBwM3JAAAAAYAq1ckAAAAAAlAFzQAAAAEA8PXNAAAAAwP30c0AAAACAzx50QAAAAECSoXRAAAAAwPoDdUAAAABAH9N1QAAAAMAsVHZAAAAAwDZldkAAAADg7m92QAAAAEA6s3ZAAAAAAG1+d0AAAABA1fJ3QAAAAIB5FHhAAAAAQGdzeEAAAABAw5N4QAAAAMCVonhAAAAAgLyxeEAAAACA/td4QAAAAAB88HlAAAAAgDMUekAAAAAA2A97QAAAAICcIntAAAAAwAxye0AAAACASNR7QAAAAADoE3xAAAAAgNe1fEAAAABAIeR8QAAAAADKMn1AAAAAwJlCfUAAAACAUkZ+QAAAAABPY35AAAAAgK5zfkAAAABAh/J+QAAAAIAoQX9AAAAAgB9if0AAAACg3FaAQAAAAGCukYBAAAAAIHyYgEAAAADgDcqAQAAAAGDT2oBAAAAAgPMhgUAAAAAgHUqBQAAAAGDvYoFAAAAAIJyCgUAAAACAfeuBQAAAAIDHE4JAAAAAQC5NgkAAAABAS2CCQAAAAKCNooJAAAAAgG7bgkAAAADgIi6DQAAAAMAsiINAAAAAwAqng0AAAABgI6yDQAAAAICaEoRAAAAAoHgahEAAAADgvD+EQAAAAMD3V4RAAAAA4N9ghEAAAACgmGmEQAAAACAmcoRAAAAAALaGhEAAAADAzIyEQAAAAOBJoYRAAAAAIBCrhEAAAAAgbbKEQAAAAOCB6YRAAAAAAF0whUAAAABgoTmFQAAAACDmcYVAAAAAYAKHhUAAAABg77KFQAAAAEBQvoVAAAAA4GHKhUAAAACAvuiFQAAAAEAH84VAAAAAIFEEhkAAAADg6jaGQAAAAGCJT4ZAAAAA4KlqhkAAAADARriGQAAAAGA74IZAAAAAIAICh0AAAAAAsjGHQAAAAGDeR4dAAAAA4Gw7iEA= + KBZXds7jZUD1hHOUyCJpQKPid1q/AnFA7mf6OVSSdEAMubYkrCJ4QLzZylJEBHlAYg27KUSTfEDZKoc9nJR8QEKLXq3jAYFAM8FpLrpSgUDRs7yiD8qCQCqg6Vzx6oRAYrg9O1GChUDk8slUaeuIQBwLHjPJgolAdfdK7aqji0AT6p1hABuNQAQgqeLWa41A7QqiOLYRkEBLEpU9DBKQQDQfUTPM9ZBAYCfWPjIukUCnO4U5SBKSQPrcZXEt9pJABGV1NYQSlEDe8jh5Y3qUQE5VR9OvFpZA - + - ePaKQI0brz+KCmZAw1bUP76e0ECEb5hAjLbmP7QXUECvWs9A4bLmPxYWD0GwpspAl0ThQa2V50AEitpASopUQPvv1kDGX4FAsvpVQX1Krz/eFmdA9PrPQOpnDEBVEQZAHHGBQNWCakCjSGdAKy+NQON+vkEUD9g/ZUwdQauTPUDQt6RAaFgGQaghaUBZPrJAJlm9Qa/WC0FLIEJA/wurQIuPBkDGbrNBy1UwQViNn0Fa7jxBN0MHQc5iL0E+5AdBhaUGQ/o+dUAtaEJALqKHQHYpMkJR/l1BFw49QfY6LUHOtiFACJcWQBc0v0BST1lAsupvQJfTCkGuUKdBnqeRQMLA+UERwQxBkCw8QSp+w0FsQapAFh4OQ+xjzz96m8xCHZxrQVr4hUCe9hBBmWovQIYQkEIGmWdBnOqqQTLFBUD8deY/sivEQOGynkCrVT1B3i3eQMpSDEFA4wVAr5JTQatC7UHb67lBg0OjQD3yJUC0GE9B6gMrQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoH5iYEAAAABAmaRgQAAAACB/wmBAAAAAwObfYEAAAABg3r1hQAAAAEDxZmJAAAAAQCipYkAAAAAAkARkQAAAACA6IGRAAAAAwFVgZEAAAABAkuJkQAAAAGCeZWVAAAAAQBTkZUAAAAAApR9mQAAAAIAChWZAAAAA4AWlZkAAAABAAcFmQAAAAGCtpmdAAAAAYKWmaEAAAACgs0lpQAAAAACixGlAAAAAQJgAakAAAACARoZqQAAAAGBnZ2tAAAAAQK97a0AAAACAYCdtQAAAAAC2Zm1AAAAAgFukbUAAAAAAOgRuQAAAAEAcHW5AAAAAwCxGbkAAAADAgmJuQAAAAECVim5AAAAAQB3tbkAAAAAApkRvQAAAAIDEam9AAAAAQNSDb0AAAABADMZvQAAAAIAzBHBAAAAAYAUWcEAAAAAgSTVwQAAAAIAEcXBAAAAAwI3lcEAAAADArPJwQAAAAMD4AXFAAAAAgHMWcUAAAADAuSNxQAAAAIDrOnFAAAAAgJ5ecUAAAADgOnFxQAAAAGCWuXFAAAAAgOTFcUAAAACAm9xxQAAAACAoFXJAAAAAwC8ickAAAACAeFpyQAAAAMBHknJAAAAAwAXBckAAAABgNeVyQAAAAECREnNAAAAAABAyc0AAAACgM0RzQAAAAMAbYXNAAAAAwNmVc0AAAADAnrFzQAAAAMBnzXNAAAAAgLcFdEAAAAAAdhJ0QAAAAECfJ3RAAAAAYPoxdEAAAADA6550QAAAAMBitnRAAAAAIA31dEAAAABAECB1QAAAAGBIL3VAAAAAID5AdUAAAADgw1R1QAAAAIBEY3VAAAAAQClvdUAAAACAj6F1QAAAACAyrnVAAAAAgIPPdUAAAABAdv91QAAAAOA2RXZAAAAAoLxWdkAAAADgwH12QAAAACDciXZAAAAAwHjOdkAAAABgp+F2QAAAAGBP8nZAAAAAoHg3d0AAAAAgEWR3QAAAAGARcXdAAAAA4Eh9d0AAAAAgyo93QAAAAOB1p3dAAAAAQLi9eUAAAAAgn8d7QAAAAKDOSnxAAAAAYOBYfEAAAABAe+V8QAAAAKBFJ31AAAAAQC+mfkAAAADAEAN/QAAAAGDCSX9AAAAAIPV1f0AAAAAgS9d/QAAAAMCd8X9AAAAAANScgEAAAADA1+GAQAAAAAAVM4FAAAAA4F5GgUAAAACg8VyBQAAAACCyfoFAAAAA4KWmgUAAAABA1guCQAAAACDLioJAAAAAIOC7gkAAAAAg7xqDQAAAACDCIYNAAAAAYKB5g0AAAAAgKc6DQAAAAKDj+INAAAAAYOJxhEAAAACgMIOEQAAAAKDej4RAAAAAIOzDhEA= + NrgMGZxjYkDEsXzkG6NjQHJahe5LhGlA - + - +y2NQATkK0EYSJw/UESUQLgbTUAMfzhBTEMwQLo3LkH/Tvs/7D7zPwJNVUDZR61AWgtbQQZZQEFXvQlB5zVPQV06ij8abtdB6KrGQJj70j+70XFANWYPQHPx3UC8gaxAoDvUP3Xc5j9yiopAuwomQJNCFkERICtA/kxpQNvjeEBf369Ajc2aQHnGdEGXsS1BcECPQGOLtUCyA/xAQEDZQBBM10GPq8tBsyvgQGbtrj9Sv05B45a+QCfVOkEavJBAxUurQLjhyEFgFt9AIyrTQJv0DkA2ss1B78ktQfXY80BSc1FBaaQmQd9nnD+l+4lB9Q82Qb8N+z+jmWFAy2WNQUMVAkBBqSdBAJmZQFzVmEF9ygFAfU8YQUKJtEDlJixA5odpQAQITUGqmL9BoyScQc1JPUFG7whCeoLVQS5Wy0HcIoRBjTssQdIiwkAQv2JAMtwFQDZJuEAuRDRBQ7CeQVzMxkG8P/lBUgHmP+y8G0EcvrxBnznHQFPezkE+ndRAz9ZDQHXrzkDkB4pC9r0OQHYBe0AeZK1Ape4LQVfLYEGS/6hB0OcPQd3YHkNdHug/RdvHQIjeJ0GE3RxA6S8GQfoMM0E14R9BEp+jQnM5ZEDPSkNAl91MQdYLDkGNDsE/N2mIQLgni0CBufFAkwgGQFyNqkAz5+Y/cvrbQA== + AACAPwAAgD8AAIA/ - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoMkmaUAAAADAU59qQAAAAMAToWtAAAAAoHM7bUAAAACAsKNtQAAAAODaf25AAAAAIFYgb0AAAAAAqWlvQAAAAOCc83BAAAAAAPoAcUAAAACghLFxQAAAAEAq0XFAAAAAwBMRckAAAACAJDRyQAAAAMBVZ3JAAAAAgNTCckAAAADABWZzQAAAAIA8UnZAAAAAgLp1dkAAAAAAtiN4QAAAAAAVRHhAAAAAwCFVeEAAAADAiAF5QAAAAEDLDHlAAAAAgHgxeUAAAABABkR5QAAAAAAkZnlAAAAAgJQxekAAAADA4xV7QAAAAIB/p3tAAAAAQEnHe0AAAABAUl98QAAAAEAogHxAAAAAQCzgfEAAAADARwN9QAAAAIA9FH5AAAAAQMmDfkAAAADAv45+QAAAAIDlwX5AAAAAgB4Df0AAAACA+SV/QAAAAADSOH9AAAAAwIlHf0AAAACA2FV/QAAAAIBZaH9AAAAAABvkf0AAAACAUfZ/QAAAAADrEYBAAAAAYGQagEAAAAAgrB+AQAAAAGBET4BAAAAAQB+KgEAAAACgQrSAQAAAAGCov4BAAAAAYFjbgEAAAACgSOKAQAAAAOBmHoFAAAAAIJOBgUAAAABgGt2BQAAAAKA7BIJAAAAA4KkYgkAAAAAAYyGCQAAAAKDBXYJAAAAAYIFjgkAAAADgnZmCQAAAAOBwv4JAAAAA4GfUgkAAAADgYeaCQAAAAIAWK4NAAAAAYKs3g0AAAABgF0KDQAAAAKCrhYNAAAAAgNmOg0AAAACAVqCDQAAAAKAtyoNAAAAAoKPRg0AAAADgHteDQAAAAOAf3INAAAAAIILog0AAAACgRveDQAAAAOBLA4RAAAAAIEUhhEAAAABgmT6EQAAAAOAqQ4VAAAAAYI5fhUAAAACgmKmFQAAAAODB44VAAAAAYKsphkAAAABAOTeGQAAAAOBDPIZAAAAAgAZbhkAAAAAgtWuGQAAAAECvfIZAAAAAQE+IhkAAAABgKrKGQAAAAGAsvIZAAAAAYPXEhkAAAABAlCqHQAAAAGB9O4dAAAAA4DFBh0AAAAAgZYyHQAAAACBGpIdAAAAAYESth0AAAABgqOuHQAAAAOBZ+4dAAAAA4Ah0iEAAAACAN5OIQAAAAKDisohAAAAAIMnJiEAAAADg4tqIQAAAAOCp5IhA + U6vsr5viYUAoFld2zuNlQNS+X4D+xG5A0BY+T/wBcUDBMzRFF9NzQO5n+jlUknRAF4g4Sq9DeEBiDbspRJN8QMWW/JxPIoBA3LBfF+6BgEBUv1qSe+qBQAfb4Rk6uoJAMgVkHIbyhEDon/7N0vKFQBPKgNAeK4hA - + - aOnlP8oTw0AQOBhACajEQBPcT0C9K8I/g0O7QI3x7j+VZp1B+YMFQXbVwT+9DOY/hkQmQVvep0BtOJw/H//kQG8fwT8iXY9AqQJQQBAa/EConRdCmn7mP2HIzD/Q+G9A399yQBCDF0GatNw/atfxP8rljEDNt91ADLZPQOmRvUAs1TZB3NcMQQ0RnUCNBAJBJCqyQLf4r0DzIWJAoiANQTxWtECFU4FAcIkFQBmca0AFXJVAB/7RQFoZD0DWb5pA0qwOQJNgR0G2p59AvhYCQGf7dED5RxZBwUJaQECwU0GSsHVBzfhYQY+Dh0ETLlVAheKIQS71nUBoXslAnkyiQlFs90DOMjVBRqQ9Qbjsi0HknuJAcEzmP3LGsD8iakJBK/qkQuodJEEXCiBAcqeRQsVUkkIOPbVBwh0PQC5Ka0FXvGpBkfYqQbUA6EGYoJlA0NMgQXQvBkJUSGhBDfAzQCghlkFIg3xAEgkrQfUJE0IyExhCbG8RQZy8vUB/Rfk/sPIOQAM71D/yLF1B1zkWQeALL0As8dM/t/DRQJtoOUFJ1vk/A9qKQCh0dUBIMHlBIGJ5QDU59kARyAVA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwOFAZ0AAAACARClqQAAAAIB7Zm1AAAAAAOskbkAAAABgTsxuQAAAAOCEY29AAAAAQLYyckAAAACgW4NyQAAAAEDAknJAAAAAgN/sckAAAAAAVDR1QAAAAEAMcHVAAAAAgOazdUAAAACAecZ1QAAAAMC5VHZAAAAAgMsgd0AAAADAC3B3QAAAAABzHnhAAAAAAMpEekAAAAAAmoR6QAAAAICL8HpAAAAAwEA6e0AAAADARYV7QAAAAIB04XtAAAAAAGh3fEAAAABAggF9QAAAAEBGQ31AAAAAgEatfUAAAACAXOB9QAAAAIDTVH5AAAAAgCx0fkAAAACA/HZ/QAAAAIB5hH9AAAAAgGaTf0AAAABAm7l/QAAAAMDoBoBAAAAAYFaDgEAAAACg4MKAQAAAAMDW0YBAAAAAwJbbgEAAAADgCvKAQAAAAICWMoFAAAAA4AJHgUAAAABgLlCBQAAAAICVW4FAAAAAIC+CgUAAAAAg9omBQAAAAKBam4FAAAAAwGq4gUAAAACga8GBQAAAAMAu14FAAAAAwObfgUAAAAAgLwCCQAAAACAHGoJAAAAAIOMwgkAAAABg63+CQAAAACD1iYJAAAAAwDeqgkAAAAAgrMuCQAAAAOCA04JAAAAAAE7ngkAAAACgByODQAAAACD3QoNAAAAAoAVmg0AAAACgt2+DQAAAACAZhINAAAAA4JKjg0AAAABASM6DQAAAAIAZyoRAAAAAQBkhhUAAAADAwjSFQAAAAOC/WoVAAAAAIEGHhUAAAAAg96OFQAAAAGCrrIVAAAAAIKrGhUAAAADg/O6FQAAAAGDM+4VAAAAAoDoEhkAAAACAwDSGQAAAAGD5OoZAAAAAwLCPhkAAAACAjM+GQAAAAKAv1YZAAAAAQHoNh0AAAAAgTByHQAAAAOC5i4dAAAAAQHChh0AAAAAAQRKIQAAAAICni4hAAAAA4DfQiEA= + eg5Y0/EhYkA2uAwZnGNiQJe98BGiQ25AQx3Og3xCcUAis/wNaZJzQGUm0LT/snZAhy/S5YIjfEDpDZFHgcN8QFQcagsDyoBA9LW2zWzqgUBUS1g1r1KEQDh5r3TlMoZAVHpGX1vbh0DJfTANJ+uIQH+kyGGnE4pAkKnWHJPzi0BG0G5xExyNQCGuV7XUq45AOOh6IBMqkEAlV2/C8/GQQIBqu+wzhpFACW1Cyil2kkBkgI70aQqTQB6Cg8tPkpNArQLPwIpmlECemXrgpVaVQE9kSxTHipZAHrFx9fsal0DPe0IpHU+YQGczssEcd5hAsLXyjT3TmUCBkqc3Y5uaQPk3M1peL5tAl6foOIm3m0BDKAX4iTOdQHu9u0C/O51AxD/8DOCXnkA= - + - sCX5P0Xu5kAxGIZAk6cpQNpEPEFt9SpAwxGNQNxcV0DT8QVAtqTAP3gZ+T/ICLhAiYTFP+BprUBBSXlAViePQM33jEDvW05ABlEMQDjxrj+KUQFAwpMhQB3l4D/w8vJADY4OQAkpD0AxkrRA1Z2DQIGcn0CJl+ZAxT67QLI9wEGNnxpBMuaUQUEmdUCLoB1ABCHtQJtjxkECfmhBCTgUQdobPkH9ywxB6vAaQYwYLkHTPo1BkOYVQ3Tj/EGeOypADvbTP37SmEF0ptlBII2YQCyW1kGPkttAXcuhQLmZCUHIJ4xA4OOcQNiPgkF1JHNBP/cwQSMNSUHt+IBAidv4QXG5C0D674ZBTyG1QTq7vUAivhdBXjHeQBNGPUFuPaxAhhJ6QE4Ga0KapXhBTszGQT3yYkKZamJASVCVQYJB7UGxgt1ANcWMQYYIOUGAyT5BT54hQDrgXkFBia9AH9lGQCp1o0HkrtJBcFMaQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAAyNVUAAAAAADk9WQAAAAADgUldAAAAAQGiGV0AAAADAXcdZQAAAAICk/1lAAAAAAMxPW0AAAABg44pbQAAAAKAn0VtAAAAAQD+4XEAAAABg4hBdQAAAAECuD15AAAAAAGdBXkAAAACgUYtfQAAAAIBsDGBAAAAAgHUmYEAAAABAi2lgQAAAAID7oWBAAAAAwNgjYUAAAACgHK1hQAAAAMBfwmFAAAAAACtnYkAAAABApqhiQAAAAIDyvWJAAAAAAJAAY0AAAABg/pxjQAAAAMCI5WNAAAAAwLVkZEAAAACAHKJkQAAAAABSwWRAAAAAQLvlZEAAAABg1SRlQAAAAIAHRWVAAAAAoDl/ZUAAAACgqcBlQAAAAAD94mVAAAAAQJAdZkAAAABAf8NmQAAAAEDV6GZAAAAAAHUDZ0AAAABA1CFnQAAAAADcZGdAAAAAQM5EaEAAAADAy8doQAAAAADJ32hAAAAAAElIaUAAAAAA7l9pQAAAAEDOn2lAAAAAgI6/aUAAAADAJeRpQAAAAEAIO2pAAAAAwIF8akAAAADAmMVqQAAAAIDh6mpAAAAAgFFKa0AAAACA4GVrQAAAAMCogGtAAAAAQBHAa0AAAABAJuRrQAAAAADJBWxAAAAAgKVEbEAAAAAAKH5sQAAAAIBKrWxAAAAAwE8EbUAAAABAVahtQAAAAACzxG1AAAAAwNgCbkAAAADAijBuQAAAAEBsfG5AAAAAQB/GbkAAAAAAV+RuQAAAAEC9Jm9AAAAAAP5mb0AAAAAAIYZvQAAAAMC+zW9AAAAAIC4BcEAAAABAbxJwQAAAAECCInBAAAAAoAowcEAAAADAekBwQAAAAMAIUnBAAAAAoN56cEAAAAAABIdwQAAAAIBYk3BAAAAAwBS0cEAAAADAReFwQAAAAMD0AXFAAAAAwOsNcUAAAADAsiNxQAAAAICJP3FAAAAAIKROcUAAAAAAr6NxQAAAAECNxnJAAAAAQOgJc0AAAAAgSIVzQAAAAADekXNAAAAAwJCbc0AAAABA6LVzQAAAAEBzBHRAAAAA4Ph4dEAAAADAVIR0QAAAACDYBHVAAAAAQDSSdUAAAAAgtrx1QAAAAGCo5HVAAAAA4BQSdkAAAACA0SR2QAAAACDrQXZAAAAAgHF0dkAAAABAjIJ2QAAAAACWk3ZAAAAAYHqpdkAAAADgZOV2QAAAAKCeLHdAAAAAoJBUd0AAAABg12J3QAAAAECpeXdAAAAAoHOOd0AAAABgF8R3QAAAAKCMCHhAAAAAoPIXeEAAAABggil4QAAAAKBJOHhAAAAAIFyAeEAAAAAAYZZ4QAAAAIDBo3hAAAAAYEq0eEAAAAAAn9N4QAAAAKDN33hAAAAAoPwGeUAAAAAgNGZ5QAAAAGAdgnlAAAAAoPuReUAAAABAUdV5QAAAAKDt5HlAAAAAwHFGekAAAAAgQgl7QAAAAMBLcXtAAAAAoNyXe0AAAADgAgp8QAAAAMDeNnxAAAAAoGJFfEAAAABAC3d8QAAAACCs931AAAAAQH4FfkAAAABAG2Z+QAAAAOCbp35AAAAA4HS1fkAAAABg6cl+QAAAAODrE39AAAAAwIojf0AAAABgKsZ/QAAAAOD01X9AAAAAILjkf0AAAADgjHOAQAAAAKBYe4BAAAAAQEcFg0AAAAAgNWiDQAAAACARc4NAAAAAIEDkg0AAAAAg5PiDQAAAACB5/4NAAAAAYKUIhEAAAADgg4yEQAAAAGBplIRA + NrgMGZxjYkDiYBUjzERrQPrRTOucZWxAU72qemajckBxDmdlvrN0QA== - + - M1OyQF7joEACHZhAa6ghQAYcq0ChygVAqoXmP9hu6EEQ6FZAqGQFQM+LPUCr2BBBXfSuP9IMVkA+4YVA0p1KQdGzyUGJRZVAizKrQNpIH0CksllALGmpQX0+RUEhZt9AKL5yQMbGBUDaBw9BwH0dQaDaT0BUiAVB8MYXQXEzWUGs7YpA0uBiQIvdT0CCvQtAAg75P6b++UB/bydB/urDQHAxqEEPyzBBic8qQDCfgkB79kZBdLQhQPG7GUCaAMNACqtvQd7NZEFUncE/TPvDQNYYlkAfruY/vtdRQTYxNEByRYVBjgeeQWFCZkE3GsBAHN90QNqz/UCKRwZAoprBQtbXFEGCA4FCkuXbQoqOYkADD9ZA8jrJQOs0UECIEt1AFNr8QBZvqkAGiLVBuyL0QPgeokGKGIVCb88QQ3lmxUGJLXlAt7JLQnY2IUDPxs9BYm0lQlhoEkHkIAJBZrh/QYEZ1EHptCpADIyHQUOUWkAb2z1AND0VQt7gREHksqdC4kBMQsUGcECO4fBBvEKrQFiaC0FX0+1AhEEwQORuikAHiSVB+werQEfrz0BW5d1ALx6kQFB+TEAROblAuEbhP6bCc0EG0QNB63cbQvJ0J0DGX0FBS7/xQeAdhkFnu6hDSueIQq8nx0HQDZ9AHY6eQbYhH0SvUwNBjwSsQc1QwT8U7WJB8tIQQYbrcECivIVAhoUcQEm2iUIOWb1BgI8JQR229kAfuq8/MJI4QHacb0Diqx5A3b7eQGE7ckFYc7tAYRfhQGayXUAKRlFB0aeVQD4r2UDotxhCZFKjQDEaMkAEjAVAKffoQO7tEUNyzuZBudLUQBZU5j9E6bg/9LFPQLIag0EfonFAByyLQOUDRUFiYy1B + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgPwkYEAAAACAQWFhQAAAAIAzhGFAAAAA4EgHYkAAAADgP2NiQAAAACBBpGJAAAAAgMugZEAAAACgZ0RlQAAAAGALv2VAAAAAYNTpZUAAAADgIEpmQAAAAIABnWZAAAAAgP7oZkAAAACAIB1nQAAAAECBY2dAAAAAINygZ0AAAADAfEdoQAAAAMAvYGhAAAAAILsqaUAAAADAsqJpQAAAAIAeH2pAAAAAQBWEakAAAAAAfyhrQAAAAMDKSWtAAAAAYAfPa0AAAABA8kNsQAAAAIDayGxAAAAAwHF6bUAAAADAjaZtQAAAAMCKCG5AAAAAQKgDb0AAAAAAPClvQAAAAIBLZ29AAAAAwMoicEAAAAAgFDFwQAAAAEDCQ3BAAAAAgOFVcEAAAADgKHBwQAAAAIAze3BAAAAA4P3RcEAAAAAgY+NwQAAAAOAK7nBAAAAAAH9CcUAAAACgf1BxQAAAACBJcHFAAAAAYByBcUAAAAAAKpBxQAAAAIAuo3FAAAAAgMHGcUAAAACARPpxQAAAAECaQHJAAAAAQLVTckAAAABgR2NyQAAAACD/w3JAAAAAAEnRckAAAAAAeQRzQAAAAACqEXNAAAAAYDA1c0AAAACAv0BzQAAAAOCRUXNAAAAAYMVkc0AAAAAAcHhzQAAAAAAkknNAAAAAwHazc0AAAADg78ZzQAAAAMAK8HNAAAAAIPcddEAAAACAJC90QAAAAKCARXRAAAAAQF5TdEAAAABgN3N0QAAAAAAFgnRAAAAAwBCUdEAAAADgyaR0QAAAACDxw3RAAAAAYMH/dEAAAAAA2A11QAAAAMAkPnVAAAAAgBFedUAAAAAAYrJ1QAAAAIC2xHVAAAAAABMPdkAAAADgTR12QAAAAMARLnZAAAAAAL09dkAAAACAn5N2QAAAAEDpo3ZAAAAAgOrAdkAAAACAh9B2QAAAAKC3FHdAAAAAQLksd0AAAABgyFJ3QAAAACApZHdAAAAAoMmSd0AAAAAAvLp3QAAAAID65HdAAAAA4F7yd0AAAAAgdzB4QAAAAKCfVXhAAAAAAJtkeEAAAADAZnJ4QAAAACAYg3hAAAAAIFuUeEAAAACgL8B4QAAAAOAS03hAAAAAAEAEeUAAAADgzRF5QAAAAOBrNnlAAAAAQO5NeUAAAACgsGJ5QAAAAEDQj3lAAAAAYKyleUAAAABAM7B5QAAAAGDN4XlAAAAA4N4CekAAAAAAUxN6QAAAAKA+J3pAAAAAYIg1ekAAAABAU0N6QAAAAGD7XXpAAAAAIKFpekAAAADgepV6QAAAAOAG3XxAAAAA4KV0fUAAAAAgM5R9QAAAAGAQu31AAAAAIDVxfkAAAACgagF/QAAAACB/FX9AAAAAoNYif0AAAADgDFp/QAAAAKDWZn9AAAAAIFRzf0AAAADAL4d/QAAAAEC+t39AAAAAwKvTf0AAAACgfd9/QAAAAEDeL4BAAAAAoDuhgEAAAACgh7aAQAAAAGDDwYBAAAAAYMQGgUAAAACATVyBQAAAAEDJaYFAAAAAYHDBgUAAAABAk/uBQAAAACAGA4JAAAAAAPs3gkAAAAAg81OCQAAAAEAfhIJAAAAAoMyPgkAAAACA1KSCQAAAAEA0vIJAAAAAwGXDgkAAAAAAuf+CQAAAACB7GoNAAAAAgJshg0AAAAAAMCeDQAAAAKCNMINAAAAAgAk3g0AAAAAAD1mDQAAAAOAbXoNAAAAAAOSIg0AAAACgasyDQAAAAEDu+oNAAAAAYETchEAAAADglxSFQAAAAKCacoVAAAAAwMN8hUAAAACgWMqFQAAAAIBci4ZAAAAAgFW8hkAAAAAA28SGQAAAAKDCGIdAAAAAACkih0AAAABgeUOHQAAAAGDgY4dAAAAAQK5ViEAAAAAgJX2IQA== + NrgMGZxjYkDiYBUjzERrQEr3Gcv1RGxAAAjXMD6zc0A0U9kEUzN0QFZc2zXWo3lAEi7PV9x0fUC+jpFWQtqAQNDCjTvawoFA6bgTWY4Sg0DHoQ1qEVuFQHq9lPHPyoVA9KeyD3ODiEAOnjgtJ9OJQLvTWB/fi4tADs0mV9NbjUBM2Nm3IESOQJ7pZX4aQpBAyE1pr0xGkUBQAMuMYI6SQN/QO4J92pJAmvCcKoySlECQUiP3puaUQOEETCWidpVAdGj2/txqlkCTG7Ez6AKXQCZ/Ww0j95dAdzGEOx6HmEBtkwoIOduYQCiza7BHk5pAt4PcpWTfmkA/Nj6DeCecQGmaQbSqK51A4Ze61rRLnkCAHRSH27+eQCoa+6LVp59AgJoFzhhCoEAHGGfVBZagQKWS7pwuRKFAklnQPh5goUDJ0w4DP/KhQFBRcAosRqJAVF6vA1KAokBC3FkORwijQHlWmNJngqNAnZe4OHgwpEAE4TjTekCkQI8iojyT8qRA9msi15UCpUCB9sLXqJClQIGti0CutKVA - + - TBVhQFOj0z8C2JBADKHCP2KTIEEwtxxCRMmEQaxkn0D2Ik1BDAgNQWkmHUE+70NAPN7iQG/VRUHJ3qpB43WPQPOBI0CourZATmFhQUcErECqRxJBo78XQEWpRkB3U8tA0K7ZQNli+UCaQ+RAVzzVPxmUXUBT95lAFsyKQGZcykBtGjpB+bEaQqXgD0Ldh4pAT54FQI1HPUE97jhALyPyQOoG3D+mqQVAJeRTQhNxl0H1wa9A25iAQXH7sUDCWDRBPQN+QLJ38UFBycZCHOOEQXfyk0CWtCdDkmB0QHUGJEK4bTVBbsb5QHy6vUEnOD1A3NuBQRMXWUCnOjpA1eVtP+JG9kG2oDRBxiwuQkXaI0H5NIxAAGLUQIOq9kB4bF1AIOwqQJFS5T8Nq9c/PxuIQppSpUBPSoVBuX2gP+W25kBOCCRBv0CcPwHsKEGSgaNB+qTwQBrErEK7r+hACjtMQrbLeUDoB9lAW3prQfIROEIWOURBUgj2QK2lIUDyFaRA6UC5QMsVgUCbgNFCyEsPQqM+XEHq8wpCdAK0QEXAa0K+5UBBWO7WQOOurj+EqUtBCBsGQc+XO0BOjxlBgVqeQdkhH0E56ZZB4iO7QS04UELE+t5BbtbxQE+BgkEJZ1VDF8a3P8wNzUAO/whBpPzlP2j0SEG6bw9BDE+YQLaYGkLCqRZB5kacQfAyLEEAPppCn/eTQKMzY0FGPzlByqdqQT6la0G4IeFDjyUUQSnIB0J+ektBB/qIQcnBEUGsBcNA35LkP5UPAkFz4CVAz8VlQTASA0HDppFA5a7NQAfAnkGXfAFD6EcKQh1TJkHwWMBBGRRRQS/lk0CKHQ9BlpGNQYj5qUF5wA1BRV+PQIaNXUBm15xAXh0vQPdNwT9q3axA82NiQMV3XUCjVr9Azig4QHgcGEBWrWFB+FwAQcZfwT+PTQJBcqYFQI/vD0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQLngZ0AAAADAqYttQAAAAIDGr3BAAAAAQNYlcUAAAAAgrIJxQAAAAEA0snFAAAAAoCRAckAAAABg4oByQAAAAADW8HRAAAAAQOhTdUAAAABA84B1QAAAAEBDZHZAAAAAAI1xdkAAAACAxQR3QAAAAEBeb3dAAAAAwPsHeUAAAACAIhR6QAAAAEBr33pAAAAAQOuDe0AAAABAc+F7QAAAAAABLnxAAAAAAFPwfEAAAADAjAB9QAAAAECBNn1AAAAAgMWIfUAAAABAijF+QAAAAMDSWX5AAAAAwCTHfkAAAABAwXZ/QAAAAIB0hX9AAAAAQNySf0AAAACA3b5/QAAAAGAEe4BAAAAAAGWIgEAAAADg1ZaAQAAAAEBZvIBAAAAAAFfwgEAAAABgASqBQAAAAIDWUIFAAAAAwNtxgUAAAAAgm4GBQAAAAKDnioFAAAAAgHScgUAAAABg7KWBQAAAAAAlyIFAAAAAgPb9gUAAAAAgbRiCQAAAAKAiO4JAAAAAgAy/gkAAAACgOsuCQAAAAGAh0oJAAAAAYN8Gg0AAAADgTx6DQAAAAGANZINAAAAAQO5og0AAAAAgDYCDQAAAAKB3mINAAAAAYLoJhEAAAACgpsKEQAAAAOAFL4VAAAAAIGQ/hUAAAADg4luFQAAAAAD/eoVAAAAAgMOFhUAAAACgjpyFQAAAAICGv4VAAAAAQHfHhUAAAABgj+KFQAAAAOBw7IVAAAAAwN35hUAAAABgVAiGQAAAAGB1XYZAAAAAINFthkAAAABgEnOGQAAAACDK64ZAAAAAIIDoh0AAAAAgN++IQA== + NrgMGZxjYkD1hHOUyCJpQHJahe5LhGlAooOBwRKidEBgbopu1NJ0QMDUPaxqMnhAhy/S5YLjfEA= - + - vuKYQPxNIUCmKj1AtDSfQAhAlEBp7Jw/JnOGQGpvc0CP0S5ATRItQTbbwj9QzYZAFE6dQPkv4kBlL69AAM+vQNSmgUBRYOU/Ug6yQHz/k0E2rI5A0HoWQRg5rj+0kWtAvfz9QKgGe0Ae5aBAA0lnQKdGgEHQkHlASGS5QM4LeUB3VyRBo73PQJ956EABmp1BEG6fQE4n9UDHrehArCHIQcfuoUImSgVBdI24QPH4M0AB7XFA0EdsQYGtrT9aNJpB+QMGQaunkEAdmoZAcpGiQIaPPUH1gIpAP5QGQSV51UEsHFBBT8qcQL47fEGMqShBjzsiQceroUAAPyZBNToYQmYO1EBxMJlAFTB6QOL8a0A5NFNB27WkQOJXCENaJY5BzOeCQM7feECkaohBcWCyP32Pe0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4F5bYEAAAACgUMVlQAAAAECypmZAAAAA4J7pZkAAAAAgeaJnQAAAAEApTGlAAAAAQF+Ja0AAAADAqOptQAAAAKBQV3BAAAAAQCYucUAAAADA+WZxQAAAAKC/jXFAAAAAgDSgcUAAAACAR0FyQAAAAEBsUnJAAAAAAJOmckAAAAAABsNyQAAAACAe1HJAAAAAwGTzckAAAABgZC50QAAAAEARgnRAAAAAAJW4dEAAAADgpO10QAAAAICRDnVAAAAAgGXEdUAAAADAVg92QAAAAMCq43ZAAAAAoAYAd0AAAADAMhl3QAAAAGD/IndAAAAAwChUd0AAAAAA6sd3QAAAAOAgEXhAAAAA4NnUeUAAAADgTYKAQAAAACCMlIBAAAAAoKEOgUAAAACAzvyBQAAAAAAF64NAAAAAwJeDhUA= + NrgMGZxjYkBxWoXuS4RsQI8BR/y9MnFAOAsfS35TdUCxCkktQaN2QI5fI1AWxHlA2MuQpO+zfkBakLVjYuqAQBaQytRDkoFA65Q2/KOig0AWv7j+7xqFQKXnFvQbo4dAFu6mKJyjiEA= - + - 8DshQMZlG0Em02FAJ5WeQLmiwUCfS8A/064SQMdjfECt4spAYsOUQAnaIUGnHi9AZVtGQKB5CUGqxDBAlIG0P2lF0z9uCexBCqzBQDbiRkCnGx9BLKAlQKOmp0A0kyJBpIYqQAXcrT8g8eZAQieWQTbzMUCOOKdB7p3DQIIPlUG9++Y/OjxmQMRJwD8MeC9B+H6fQDbi8kC5VGlBiMIYQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwEkDXkAAAAAAEiVgQAAAAKAgoWBAAAAAgLTkYEAAAADALmdhQAAAAODroWFAAAAAAIXmYUAAAABgY0NiQAAAAICHZmJAAAAAgE+iYkAAAAAgacBiQAAAAMD36mNAAAAAQDHoZUAAAAAAqctmQAAAAABOY2dAAAAAIB2IZ0AAAADAGalnQAAAAICDymdAAAAAAMemaEAAAABgh55pQAAAAIBDpmpAAAAAwGMja0AAAAAA/8FrQAAAAMAdImxAAAAAgMMrbUAAAACAOWZtQAAAAMCnwm1AAAAAwGvjbUAAAADA/MJuQAAAAIDOGm9AAAAAAIA0b0AAAAAApUpvQAAAAAAtZW9AAAAAQImdb0AAAACApuhvQAAAAMDvAXBAAAAAIOATcEAAAABgziNwQAAAAGDGUnBAAAAAYNldcEAAAACA5HFwQAAAAIAGkXBAAAAAgOadcEAAAACgDO9wQAAAAKAZEXFAAAAAwC5BcUAAAAAAFFBxQAAAAMCecXFAAAAAQFiTcUAAAACgc6VxQAAAAIArsXFAAAAA4DnTcUAAAADAAANyQAAAAIAMFHJAAAAAQPEtckAAAAAA3UZyQAAAACDbUXJAAAAAgBhyckAAAACAUYFyQAAAAIDNknJAAAAAoB+hckAAAADAHK1yQAAAAIBBzHJAAAAAAHfackAAAAAgZedyQAAAAAAOInNAAAAAQEhBc0AAAAAgiF1zQAAAAOAEc3NAAAAAgOuhc0AAAAAgBK1zQAAAAOCREXRAAAAAwCshdEAAAABgDzF0QAAAAMC5P3RAAAAAgORRdEAAAACg+nJ0QAAAAEArgXRAAAAA4FCTdEAAAACAp6J0QAAAAECJsnRAAAAAwI/1dEAAAADg4QB1QAAAAODnL3VAAAAAwMRAdUAAAAAAI1J1QAAAAGAPYnVAAAAAgHJ3dUAAAADgLcR1QAAAAID3/HVAAAAAgMcwdkAAAAAAsoF2QAAAAKAjK3dAAAAAQGxDeEAAAABgpAt5QAAAACBWMHlAAAAAoBV2eUAAAAAgm/Z6QAAAACCLFHxAAAAA4JWafEAAAADAhcV8QAAAAGCHYH1AAAAAYDq2fUAAAACgtnh+QAAAAECqln5AAAAAIHYRf0AAAADgBIV/QAAAACA0mH9AAAAAIM+lf0AAAABgd8d/QAAAAGDwGoBAAAAAwJ04gEAAAACAB2OAQAAAAODYc4BAAAAAYHyagEAAAABgXhSBQAAAAOAcYIFAAAAAIBmQgUAAAADgtvmBQAAAAOCEAIJAAAAA4F/MgkAAAAAA4gqDQAAAAGDdMYRAAAAA4MV6hEAAAAAAJHqFQAAAAGA6goVAAAAAoLJ7h0A= + NrgMGZxjYkDYkZP9yKNsQEMdzoN8QnFAChqGaTzicUBhbopu1NJ0QDHbzeDq8nlAKMkeqOwDe0A= - + - U33yQC5Y/UABJnBA5z0hQJhD0z+4jINARJQFQEJGk0D3vuU/Nef5P63VDkA8BDZBlYQcQZ4zL0Dyq20/FRTXQGKmtkHbZTJAW2DGQL61wD8CAmdA9WSYQNapGEBl/otAnFEdQa5bC0FAiAVAVQqDQSOOrj+l4bVAU859QFeQ30DfkzNA6XwfQnjlxkCxPzpBnEqKQVus7UAjfEZAUTAvQHj5QUHTy8A/C37NQP/pBkIJdUNAIdLpP6TPoEALdPBAWPx8QP7xAEH3YWBBi/HjQJJ2+D+xnJNAIDDTP75RN0Ehz4lB/3BnQF8vMkDmhWtA5YEAQcJSvEAAy+RAaD4rQeabU0AgHU9AJl+8QNiXBUBjb6RBkZTdQO5XSUGEwOxBfnmsQGXgJUIeW6hAhqHmQAHcO0JxDHtA+juYQPLpakBC/rJAl9qgQJzrsUAzT0pB7IRqQLBWpUFbUeFARzhmQPRO90AS1X1AyH+GQcy+/0ARMi9AeumcQRu+BEH7ejhAMhqYQMNhQUGfkjtB1jU4QZ0fn0AugZBByWJTQZ/69EDTrutAPViSQMGIl0GUJh9BtCreQGgGQUPAZnxBABTsQLLS3UBuLVRBSZesQVwWtUBLrzFAbBMXQDgthEH40cA/hpmTQEJnwkCKONlA1DkmQXDrkECkOUZAmxaYQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwC/mY0AAAADA52dmQAAAAAB4YmdAAAAAIFZFakAAAABAwGZqQAAAAGAWeWxAAAAAQDsEbkAAAAAA0yBuQAAAAKA4SW5AAAAAYKAicEAAAABAY0RwQAAAAKA1cXBAAAAAgArCcEAAAAAA9G5xQAAAAICHsnFAAAAAwNfQcUAAAACAdeRxQAAAAMBi9HFAAAAAAMdTc0AAAACAvFF0QAAAAACQf3RAAAAAwPH/dEAAAAAAD+J1QAAAAEChH3ZAAAAAgLk1dkAAAABAPFd2QAAAAMBD8XZAAAAAALohd0AAAACAFUR3QAAAAACHVndAAAAAQITtd0AAAABAMSd4QAAAAMDvQHhAAAAAACKEeEAAAADAHKR4QAAAAADJ03hAAAAAwJ0PeUAAAACAvMN5QAAAAMAN0nlAAAAAQLreeUAAAADA2SZ6QAAAAIC2f3pAAAAAAPrnekAAAACAVQx7QAAAAMDzF3tAAAAAwMBwe0AAAACAoZN7QAAAAAAFtXtAAAAAgD8kfEAAAABAEy58QAAAAABOQHxAAAAAQCZTfEAAAADAWDx9QAAAAMAMdX1AAAAAQF3WfUAAAABAdRF+QAAAAMALsn5AAAAAwJXBfkAAAADApNl+QAAAAEAa6H5AAAAAwDg2f0AAAABAHEJ/QAAAAEA3Tn9AAAAAgMJhf0AAAAAAj6d/QAAAAIBxsX9AAAAAQBPHf0AAAABgDDeAQAAAAOC1coFAAAAA4C14gUAAAADAVD2DQAAAAADSQoNAAAAAIORbg0AAAACgeGiDQAAAACBbdIRAAAAAQPiphEAAAAAA0wOFQAAAACBeDIVAAAAAABEfhkAAAADgkUuGQAAAAAA0eoZAAAAAYP2BhkAAAAAgzHiIQAAAAOA6hIhAAAAAoKihiEA= + NrgMGZxjYkDOIQhxcuNoQOJgFSPMRGtABGJAIxECcEDlVUsBVqN1QHgHARMBA3hAA6cH7K0zeUDOWwUYmXN8QFn7C/FFpH1AdtZggfgBgEBmUGbwmtKCQDApQXlwAoRA9XjE5caahEBbU8N7vDqGQLykavUyo4dA - + - NMl5Qe+03T9RnlxBtMKLQAxCiT/HGotBHpSbP3al10CMaipAjo50QYl/ZEGn8qxAt5cOQGY+QkAK5a9ALdYAQNhCWUHGrp5AkUOYQOyEi0BWjKFAc1sPQYCTAUCljQVAyJuuP0CTuECcqR9BFD1iQF4kc0BCybhAgu8dQCkTPUBEA8E/Um5pQOU7CEGsjlJBEQi/QVwE4EBP2XhACkAMQOJ1m0HKh9RAO9YwQZ6QLkH4b64/f5wuQDUSx0DzsMVA0317QAQwD0G/6JNAtzUWQfrAKkDq4apANVVBQaSZnEE8e4pAzrO6QLRyHEFH8npBTS8sQfUpiT8lAzJBbn+JP1JtQkB/fRVALW+LQGx9XkEo8AFAksyBQK1WJ0HLVClB+iVOQLfBuUCYw7hAib0vQc32OEM2jvVBFFS9QLDk8ED/gRdB/FNVQKvBFEC9totBBt3BQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIKnkaUAAAACguKJrQAAAAIB+3mtAAAAAAO0lbEAAAABAVmJtQAAAACA76W1AAAAAAN7JbkAAAAAAYxlvQAAAAGDDFXBAAAAAgAq6cEAAAAAAGOFwQAAAACD7YXFAAAAAoC6PcUAAAACgDLNxQAAAAEDpwXFAAAAAANMSckAAAAAA+ylyQAAAAEAYVnNAAAAAgKoydEAAAACA7nR0QAAAAIBEgXRAAAAAwIkbdUAAAAAAo1V1QAAAAIA8wnVAAAAAAA3VdUAAAABAvTB2QAAAAACQQHZAAAAAAIJSdkAAAADAzeh2QAAAAEAZindAAAAAAIh9eEAAAABAeo94QAAAAMCwwnhAAAAAgLe/eUAAAABA4/R5QAAAAIDvAnpAAAAAwPkPekAAAACAf9B6QAAAAADmEntAAAAAwOHie0AAAADAPcx8QAAAAEAd6XxAAAAAgCD2fEAAAACAhmN9QAAAAEBx0n1AAAAAABAUfkAAAABAU1V+QAAAAIA1n35AAAAAQKr0fkAAAAAAVCV/QAAAAMCxMH9AAAAAgKl0f0AAAADAzYN/QAAAAIBauH9AAAAAgHE0gEAAAABAL2KAQAAAAOCYi4BAAAAAYGGTgEAAAAAgcJiAQAAAAGBcroBAAAAAYBu3gEAAAABgjMGAQAAAAAAI4IBAAAAAoFr0gEAAAAAAb/uAQAAAAGCbOYFAAAAAgGFLgUAAAAAgvVaBQAAAAGDYa4FAAAAAYJGCgUAAAADA0IiBQAAAAGCjkIFAAAAA4LOngUAAAABgP62BQAAAACAMwoFAAAAA4PjagUAAAABgueiBQAAAAOCqBYJAAAAA4E4rgkAAAAAAazKCQAAAAKC8SoJAAAAAgEBRgkAAAACgnV2CQAAAAADHY4JAAAAAoPdugkAAAAAgn4WCQAAAAOAbmoJAAAAAIC/HgkAAAABAZQODQAAAAMC4IINAAAAAIAM5g0AAAAAgxUqDQAAAAKCfY4NAAAAA4Dl3g0AAAACg+ZWDQAAAAOAZnYNAAAAAYCDXg0AAAAAgOpqEQAAAAECVzIRAAAAAYOf0hEAAAACgAfyEQAAAAOBAHIVAAAAAIO4jhUAAAAAgNFuFQAAAAICvY4VAAAAA4M5qhUAAAADgfXyFQAAAAOBRhoVAAAAA4F2shUAAAACgm7WFQAAAAKBo0IVAAAAAQBjxhUAAAADgH/qFQAAAAMAhA4ZAAAAAoCQUhkAAAACAEE+GQAAAAGB+aIZAAAAAoCKOhkAAAAAASZOGQAAAAKAqmIZAAAAA4C3MhkAAAADgJNWGQAAAAOCp3IZAAAAAoEWxh0AAAABgDLyHQAAAAGDPx4dAAAAAQFvnh0AAAAAgWY2IQAAAAMA3tohAAAAAYK/aiEA= + KBZXds7jZUA0WUyRs0FwQDeULWxqYnBAUqoIfAvSc0CSoHe3LbN2QEBoCNl5AntAgF53FJzjfUBNOimSnqmAQM7Xmf/5uYBA3j6qKuBhg0CIKnr3cbqEQA== - + - ZqTTP1RMDkDQTI9ABeDIQPjqMEB2EUtAO9sXQa4InUBN569AWRgvQPp0YEDGPRhB0nIFQLr8VUAK8apAFYzUQOZWvUCrOThAPcpjQbjgM0BDy6RAIrvdQMomGEDj5TNAM3afQML6wUAxnS9AbmieQWnlN0DZXa9AkUZ+QGzcWECu+vg/zjtbQXNxjkGAO+RBznARQsY/K0EoEPk/+vxPQDG4AkGeQoZARyw9QUn6wUD/xj5BDSo8QLTg+z+9DflAZU/iQNNDlUFcTVlBVkQ2QvvVYEGa6sNA8g4GQYGSQkEpUMJATJl1QAs9N0DfJYpA4Z+bQB8InD+F8zlBnS31QBJQnD9fKsE/AbzFQcHj1kAzSohAlq9gQ9zZMUIaxgdBeZWAQAFFU0GWz9JAt52mQfZOn0Dc7NBBFYbyQC79PkHQUUBBezsrQDubn0EV71hAZQ6cP9js5T+iKc1BhCkYQMYv9D+B0gJBPuoXQLkTzkA7bK4/Vs7rQGirIEJXR15CQSiWQCOrKkDp0ilB+wvQQFGuEEEWwGhB6uuKQSAjhUCCRJNCTpLhQeCKWkHoKeFBRl2/QseQxkEN/KVApHpdQpMNikLhcJ5BwrjuQKTE3kHC4W9BI6yWQRMKKkHUC5lB2/4OQAINdEGIPHM/SSKxQTjBtUGNL4ZArsmLQboxEEBM64xAdAEZQg== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoIFpYkAAAADAjwhjQAAAAKBv4mRAAAAAgLn/ZUAAAADAjmlnQAAAAMCZ4GdAAAAAgGmEaEAAAAAgdQFqQAAAAIB6H2pAAAAAwJOJakAAAADAHYRrQAAAAMD6ymtAAAAAgK/ha0AAAACgaURsQAAAAOCnKG5AAAAAYCJHbkAAAAAAQF5uQAAAAACMzG5AAAAAQElfb0AAAADAGFJwQAAAAOCk03BAAAAAACZDcUAAAAAgwVRxQAAAAGCusHFAAAAAwMw2ckAAAACAjo5yQAAAAGCoxXJAAAAAoOTzckAAAADgwP9yQAAAAIALFXNAAAAAYGJgc0AAAADghIVzQAAAAEC6YnRAAAAAgMCEdEAAAAAAYyt1QAAAAOAsP3VAAAAAAH5SdUAAAADAVGV1QAAAAGCtgnVAAAAAgOeXdUAAAACA1aN1QAAAACCNxHVAAAAAYI/kdUAAAADA4h92QAAAAEBeQXZAAAAAgGlSdkAAAAAgdF92QAAAAICPknZAAAAAAIGidkAAAACAYdR2QAAAAEC2B3dAAAAAgN8Sd0AAAADAriN3QAAAAAAzT3dAAAAAIABZd0AAAACAxHJ3QAAAAIDSlndAAAAAYATPd0AAAADgWPN3QAAAAOCUWXhAAAAAwG97eEAAAACAnbJ4QAAAAAD88HhAAAAAYPkEeUAAAACgpqN5QAAAAED/sXlAAAAA4M3SeUAAAAAgdiZ6QAAAACB0NXpAAAAAwMlhekAAAABge3x6QAAAAICxlXpAAAAAQIDTekAAAADAkN56QAAAAODwFHtAAAAAwIYme0AAAAAgx0R7QAAAAIBjU3tAAAAA4B1xe0AAAADgdJx7QAAAAGB5qntAAAAA4ADLe0AAAABA79R7QAAAAKBxV31AAAAAwEggf0AAAAAgmjp/QAAAAEDVZX9AAAAAYBiAf0AAAACArCKAQAAAACCVLoBAAAAAoNJQgEAAAADARnqAQAAAAAD8toBAAAAAwBLIgEAAAABg/+GAQAAAAADiIoFAAAAAQF9pgUAAAACg9pmBQAAAAMCGCYJAAAAAoHcfgkAAAACgSSqCQAAAACD+M4JAAAAAwE9kgkAAAAAAgKGCQAAAAGDQqoJAAAAAALq6gkAAAAAALcOCQAAAAEDCRINAAAAAoKKHg0AAAADgI7uDQAAAACDMyoNAAAAA4K1HhEAAAAAgpmGEQAAAAKAYAIVAAAAAYPaJhUAAAAAgXZiFQAAAAKAXnoVAAAAAAE1ThkAAAAAgG3aGQAAAAICQfIZAAAAAYAOUhkAAAADAGb6GQAAAAKAK6oZAAAAAwApEh0AAAACA9kuHQAAAAKDhkodAAAAAoCIsiEAAAADgLWmIQAAAAKB8b4hAAAAA4GbxiEA= + NrgMGZxjYkA2uAwZnGNlQEMdzoN8QnFAQh3Og3zCckBlJtC0/7J2QAl4Yr2U83tA830c1NfDfEBdbNgGeHqBQL6OkVZC+oFAiJZaCcSyg0DpuBNZjjKEQE3m3XUaS4dAQuk6ATyzh0AUEoSFhlOKQKYWBR7IS4xApRYFHsgLjUCde9SsDyqQQJx71KwPipBAHZPLwWXukUA= - + - wwX4P3VrYkBcZ8E/4CJ+QOoziEDavgVAX5sFQNSMKkC7pONAmXbUQGJrekBV2NM/R6MqQDXFBEEozCpAehTCQN3/EUHwP2JAGMFPQKn8QEAcb7pAUWs2QeAbYkAuwBNBK15jQd1M8z9ExrNBpy4MQLNryUFpIiJA6IaBQB6E5j+M29hAB04tQcekJUCVuo5ARaf1PynVt0Gcl7ZAQyUMQGBbIkFPCRJAKnqBQAjw20DqFw9AwFsjQAgXEkEs+aNAUB8aQCn/jEBq/IpBbX6/P4bP+D9LB4hB/sosQT+9GUGICPk/fv0XQcyNy0BjnJpBNj0eQuzYzkBkJNJBvhNkQRcpAEFIe9M/mdY8QM7hN0E9SAxBebRfQbbrI0EgSqtAB5gRQVC3w0ABN9hByPj0QPQRC0Bs3vc/5EgVQEdUBkHkgqtBFEodQau+T0A/SphAdt6uP0f20z+xLk1BEGiVQIkRDUCTSKtAYF6MQQ9QOEAB+LRByrKBQC0mD0C4k4JBxm1jQWeK3ED2GFlA7G7eQMaaHECjRllAvONqQROLJUEAvglBu0gVQqY7bkGjXME/h/D8Qbc3PUCyKBhB7oerQSKJ0z+P6d1BHOfrQHKIxkBHdENAqaKRQBmFwT+fpqZArcxSQT/4rj9/f3RBgKx3QlZmN0EB7Q5AuUWcP/swH0GXPWhAxYzqQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAOdFaUAAAADAYYVqQAAAAAAn4GpAAAAAwGW/bEAAAACAnHluQAAAAACXQXBAAAAAYCHycEAAAACALWFxQAAAAADcn3FAAAAAAPHTckAAAAAAwtJzQAAAAIB5c3RAAAAAACOwdEAAAAAAJ850QAAAAADNUHVAAAAAQEvNdUAAAABAZCl2QAAAAMAgMXdAAAAAQIBMd0AAAACAulx4QAAAAABz9XhAAAAAQKkxeUAAAABAa615QAAAAMBluXlAAAAAwKDGeUAAAACAKRV6QAAAAEDxtXpAAAAAABZ9e0AAAADAghR8QAAAAADBcHxAAAAAgE7tfEAAAADAZbB+QAAAAICxBH9AAAAAQHwvf0AAAACAsUR/QAAAAMByVH9AAAAAQKRmf0AAAABAnsV/QAAAAIAYEoBAAAAA4BcsgEAAAACgYjqAQAAAAOB+P4BAAAAAANprgEAAAACAhnSAQAAAAEAsi4BAAAAAQCO7gEAAAABgKO6BQAAAACCVN4JAAAAA4HfDgkAAAAAAIxyDQAAAACDjl4NAAAAAoNPCg0AAAACAGcyDQAAAAADuMYRAAAAAYGRyhEAAAABA1JGEQAAAAGDpm4RAAAAAoLGshEAAAADgrrmEQAAAAODew4RAAAAA4I3fhEAAAAAAf/OFQAAAAIBhO4ZAAAAAgKWAhkAAAADgOuSGQAAAAKCJWIdAAAAAgHGDh0AAAACgjByIQAAAAGAGM4hAAAAAINjHiEA= + KBZXds7jZUCO7m7sniJrQNS+X4D+xG5ADtLLr2fCc0DF63mLQrN1QCwjiJq/UndAxUlW35rEfECgyEiKr1N/QAslMj9gmoFAe46mxyPigUALVCBpDCOFQHu9lPHPaoVANn6ia1hbh0CkvRvB4qKIQPDQgmPQW4tApOwJ644rjEB/+eBY/CONQNHyrpDwU49AcpPVOkQekEB+jphJHsaQQLuDp9hvIpJA - + - P9VJPy5dFkGEnSNBDthwP7VQBUCbwZRAsd3GQDnDxD/qfNk/ZpbCPxAUD0AjOMxAisrEQExmAUEwt9M/Di4wQcdNWUAJbJ0/TaoFQKufr0Gr1QNBZ3mtQHhglkAv1bdAsblUQYySD0Boja4/eb7+QOj8RkGMUhpBc1gpQUnKDEHyyKFAKrgKQH590z/5bZRBn68TQeJycUJgYYxAc4FEQfOHlkHRQ2E/oEHtQI8zX0G26ZFBnBYAQqveSEGFvnlAVQErQJ05aUDKeqxBr7AQQsHuOUCdx5hA3kGrQJMzHEJ5PzpBqjXeQCyOfkGhybFAci6AQTtHWEA8irFASt0GQgxm5j8iH4xA8ACUQGgcSUFNP9BAzT4AQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4BIjYEAAAAAA+6BgQAAAAICJIGRAAAAAYJSfZEAAAACAgrxlQAAAAEAl4GVAAAAAAB+gZkAAAADAGuRmQAAAAIBJTmdAAAAAANsFaEAAAACAo2doQAAAAIBVqGhAAAAAIMxdaUAAAAAAPOVpQAAAAICUBGpAAAAAIPMjakAAAADAImpqQAAAAAClxmpAAAAAAGzma0AAAADADSNsQAAAAAB4RWxAAAAAgC9jbkAAAACAbIBuQAAAAKD/MXBAAAAAoP1GcEAAAAAAI15wQAAAAOBAhXBAAAAAgNikcEAAAABgXf9wQAAAACC7QnFAAAAAQMlOcUAAAAAgmoJxQAAAACAJsXFAAAAAIPbIcUAAAAAg4OJxQAAAAOCJA3JAAAAAAA43ckAAAACAeIRyQAAAAABmo3JAAAAAYLTEckAAAACgKQJzQAAAAMAqQnNAAAAAQPxzc0AAAACAAoNzQAAAAIDLo3NAAAAAQKCzc0AAAACAQAB0QAAAAMCjEnRAAAAAgIkedEAAAAAA5Hd0QAAAAGCQ5HRAAAAAYILzdEAAAACAxv90QAAAACDREHVAAAAAYPMhdUAAAACAHzd1QAAAAOCFdnVAAAAAQJuWdUAAAADgBaZ1QAAAAMBF0nVAAAAAgN/idUAAAABAffZ1QAAAAMBnEnZAAAAAIIIidkAAAAAAWjB2QAAAAMCtPXZAAAAAwJWVdkAAAABAAqJ2QAAAAADHsXZAAAAAwKTDdkAAAADAiOV2QAAAACA3UXdAAAAAQFFod0AAAAAgupJ3QAAAAAA5uHdAAAAAoEDed0AAAAAglOh3QAAAACClIHhAAAAAIHxTeEAAAABAHWx4QAAAAKDHrnhAAAAAIMTCeEAAAADA+NJ4QAAAAODS/3hAAAAAoDgReUAAAADAfCl5QAAAAACOaHlAAAAAQDdyeUAAAACAWJt5QAAAAOCgqnlAAAAAYHm1eUAAAACgDMN5QAAAAGCtz3lAAAAAwFyLe0AAAADgYtV7QAAAACAlU3xAAAAA4BACfUAAAAAgXEV9QAAAACD9bH1AAAAAoKZ2fUAAAACgH2V+QAAAAKDFgn5AAAAA4NHQfkAAAABAFF1/QAAAAOD/aX9AAAAAQAougEAAAACAbTWAQAAAAKCfSYBAAAAAYG6KgEAAAADg8aKAQAAAAECO7YBAAAAAACATgUAAAADgP2uBQAAAAKC+ioFAAAAA4Oq0gUAAAADg8RiCQAAAACDEIIJAAAAAYF4sgkAAAAAA6VKCQAAAAOA6aoJAAAAAoF6QgkAAAABg9KuCQAAAAICEtYJAAAAAYKu7gkAAAABg0kuDQAAAAEAv5INAAAAA4HJlhEAAAADAzqOEQAAAAGDGsIRAAAAAoP0zhUAAAAAggTqFQAAAAEC1iIVAAAAAYJDDhUAAAADApciFQAAAAGCo04VAAAAAIDYXhkAAAACAZhyGQAAAAOAMlYZAAAAAIH+8iEA= + KBZXds7jZUBML328ejFwQJ0RHYnYgnNAOu18Gelhd0AraWmosJN5QIvtirgO0n1A+OH+cGRigUAppA95k4GDQL8NpYDQaoRA6jcngxyjhkDj9u9wC4KHQLFjzZKIq4lA4yXemrcKi0B4j3Oi9LOMQONUzMRjk45AP7sZsmC8j0DtGaZ5zRWRQIPz32BmYpFAaQnmEOnhkkCXc6PIb/6SQH2JqXjyfZRAE2PjX4vKlEBhn3yAKAKWQI9SI/emlpZARbVPiF6Gl0APahoM/VqYQCnLIpCUCplAj4ERIVMfmkAN4fWXyo6aQCL2NpnwqptA7KoBHY8fnEAGDAqhJi+dQJ7BZivVa55AuCJvr2x7n0DZIJVJ7wOgQE4coVvRf6BAlxg1Ff3poEAfTV+F75GhQLwQHuQS7KFA - + - GXgrQSSI5j+fwpw/MBcTQYQtdEDWLYdAwJccQfF5+UDcv5xAQgaKQFATh0Euk4s/EE+vP8usM0GNo0dBNDgdQUK+BEHrTSFATrIlQRG65j9ksrRBC486QBH55kHKDY9AJH+nQLTz3D90k9M/iDL+QJTKDEEUDJ9BcO93QUdEpEA/PONArbwFQNW75j/zuwlAHSdfQVE98kAmnuU/mJ/AQow5r0GUZsJBIwShQLl2nkALb1FA3FcgQrmeHUByLjRAdm67QGk/pEAjPZRAJcmdQBhFfkA2DdM/nPf9QAv8eUDSUMRAxzORQamqPkEdWeY/+ezDQesV10DrMaVAn0AnQd3+IkFyahNBjtGZQCl0BUBD9HRAKR2UQsUoc0Fu1QxCvkUSQf9D7kCr7GJBV09OQAJokkFFmAdBrCeyQvkcU0FVrHFAw82vQLJbAkETMCFCQk0YQL6f00H2xok/m+7TP2GNiEFR4OJA6IsHQiX40z9pkWdB6RKYQFJWokCa/tVA9l+HQTcG3kDw2vxAyc4FQdLiCkG25FlAHiNMQkIJFUM/DMtBqsjkQlYok0LVwfJAT/LSP9VDYkDH8y9Ae8QTQDOD4EDKzKFA+RBtQU0mO0E5I7FBeJCTQNNiqEHAiFNBz0MWQinDEUEYdTdBfBe5Qgm1+EAh4x9BY0nxQAmOtkD0FyJAX9iDQEwyBUGQYcJB25erQPxRREHCGWJAgmtDQRQrHkHvvhlB+L8iQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQExCbkAAAABAg4NzQAAAAEDt1HNAAAAAAKhkdEAAAABAHmh3QAAAAADj/ndAAAAAQBcVeEAAAADAN0l4QAAAAEB1hnhAAAAAAEDqeEAAAACAM6J5QAAAAIBz8HlAAAAAwEMUfEAAAACArjZ9QAAAAMBzdn1AAAAAQPkufkAAAADAyfN+QAAAAEAdNH9AAAAAQI2gf0AAAACAIrF/QAAAAEB44X9AAAAAoCgngEAAAAAg/1KAQAAAAOBiY4BAAAAAIGh9gEAAAACgnqqAQAAAAKAmsYBAAAAAYCK3gEAAAABgdcaAQAAAAGAN74BAAAAAwLVjgkAAAADA8F+DQAAAAOAKM4RAAAAAAJxChEAAAABAtiOFQAAAACB6O4VAAAAA4GJbhUAAAAAg5Q2GQAAAAGDUHIZAAAAA4PkmhkAAAABgZKaGQAAAAAAFu4ZAAAAAoHDbhkAAAAAgEPWGQAAAAGCAVodAAAAA4POIh0AAAADgj3OIQA== + KBZXds7jZUAQHUC2t+NsQBTpB48/A3JAr89nUoqCdkA7qk8G7hN6QK8tRKbik31AgQLyH4MigEA= - + - bQsRQGEseUApxE9AFe+hQMgTpEC7mr5AdqjCPx9SzkDMcJlAVcvTPwlDFkHgnr1AgKpGQLH8Z0F2KyJANB80QPeHCkGA3TpBvnnEQANNgUAtdIdA+u37QIoZwT+nj6hAXxKvP4Z6eEEJv6hA+PfPQDJ/okFFWgNACrGTQBmwYUDXSipAt7M/Qdp0lEFa1u1ArvIvQH0HD0Ai+g5AS8EfQdHCF0DatzVBPSg6QI1MHUDY2QtB/u9kQbZ0IUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4CH6aUAAAAAgcUFxQAAAAOAiqnFAAAAAgCDFcUAAAACAzQRzQAAAAABtqHNAAAAAwNnTdEAAAABAvWB1QAAAAIBdNHZAAAAAgLZydkAAAABA70J4QAAAAMCvbntAAAAAwOSTe0AAAACA6AB8QAAAAMAuE3xAAAAAgJvIfEAAAADAO1F9QAAAAIDohn1AAAAAwBAefkAAAAAAiaJ+QAAAAMCuJ39AAAAAQBxFf0AAAAAgYgGAQAAAAKBrGoBAAAAAoG8hgEAAAADgM4mAQAAAAABc+oBAAAAAANJCgUAAAACgwliBQAAAAKD+qYFAAAAAwK2ygUAAAAAgy9eBQAAAAIDZT4NAAAAA4AG1g0AAAABgkgqEQAAAAKBCB4VAAAAAwAkNhUAAAADgkNuGQAAAAIAmTodAAAAAIKZViEA= + NrgMGZxjYkDsFOgHcuJjQHzKEHuiRG1Asaxs2egRcUB5BwETAcN1QHgHARMBQ3dAmhADRISzfEA8Dp/mpvN9QN6MgroDEoFAr4vQCxWygUBybSb2WhqFQBK5miihSoZA1prwEueyiUCmmT5k+FKKQGefcasoa4xAN56//DkLjUDIokCVe8OPQGRRoMq9QZBAFmgF2QNukUDzef6/6QmSQKWQY84vNpNAPPw+jApmk0DspBLJRRqUQA== - + - IU+CQJgjpEDeCRhAN4vCP/jHDkB3DOdAfYJXQDKcZkCDIME/k51sQFCbkUAO9U1B7OzEQKyyiD/kXPVA1IVmQPolLUFwpWtAoxJUQBcFiEBAEQ1BBcQKQLNIP0FaCCdBQjT3QHp/10GaKo5BzDhWQZKJgkENwAVBd5IuQeP2nkHmjpFATvscQk4+lUAtuulAZns9QTmJBUBCUrtA1PKbQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgKH+ZEAAAACgQwZnQAAAAEC6umpAAAAA4M9nbkAAAAAgHeZvQAAAACCUKXBAAAAAwLYCcUAAAABgLCtxQAAAAMDLn3FAAAAAgOsYckAAAACAHaxyQAAAAECx0HJAAAAAAEQBc0AAAABAzWdzQAAAAEDGdHNAAAAAwD6dc0AAAACAuMFzQAAAAIBO7HNAAAAAQI9QdEAAAADAzo50QAAAAIDsrXRAAAAAAGgBdkAAAACAnzZ2QAAAAMBBQXZAAAAAwOb9d0AAAABA+kN4QAAAAMAoYHhAAAAAQMq5eEAAAAAAp6R5QAAAAACjoHpAAAAAgFa8ekAAAABAY0V7QAAAAAB/YntAAAAAwBule0AAAACA7+J7QAAAAACsA3xAAAAAwG4/fUAAAADAaFJ9QAAAAEAaX31AAAAAgINufUAAAABAtrt9QAAAAMBTM35AAAAAQABFfkAAAADAsFF+QAAAAMB2fn5AAAAAwIHUfkAAAADAp0F/QAAAAKBAfoBAAAAAII9pgkAAAACgBLyCQAAAAGBFc4NAAAAAIBoNhEAAAADgYzqEQAAAAGAha4RAAAAAID8/hUAAAACg5tSFQAAAAABh44VAAAAAID0YhkAAAACgsGWHQAAAAMCgg4dA + NrgMGZxjYkD1hHOUyCJpQHJahe5LhGlAVv7+4X1ScEB6IBaevKJzQHRPu8zV4nNAmHHSiBQzd0C2wo5zbMN6QHStlyAu9HpA1BNLXsRTfkDKAZwlxmR/QA== - + - t9rTP2UbwT9uYfBASMYzQb22+D8R8Pg/q7bPP49Mbj8ioydAdT6IQInS1kDOVyNB2lTYQKTZ1D/6GNBAyANGQUON4kBxmK4/WDlLQbbQtkDs/hdAkXcDQCpYwj9qfSxBk4+vQNPf0z9so+VAe/BQQVHnZkDE46VAxaLiQZ3xjEDd1XpAW3grQfS4rj9fV61AFIIAQKAnnkHtQ7FA4hsPQmoKQEH5qeU/OhmfQTeQPEEGvBpBpeOYQRvczUCOM3lAqszrQHHU1kCC1WJANykJQEMhIUCNVttAb4lSQeSKrj8uB9NAX1VdQUmEb0COcok/ + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYMrlZUAAAABgH6dmQAAAAID+3WZAAAAAYPjuaEAAAADgryVqQAAAAIDvQ2pAAAAAgJxnakAAAACAIkVrQAAAACC1xGtAAAAAQLAmbEAAAAAAWkdsQAAAAKAeYGxAAAAAgB6LbEAAAADAAkxtQAAAAADHJG5AAAAAgDxIbkAAAACAAGFuQAAAAGD0gG5AAAAAgA0kcEAAAACg51JwQAAAAECuIXFAAAAAIONDcUAAAABAyxJyQAAAAIBbcHJAAAAA4GbFc0AAAADAIjB0QAAAAIA1lHRAAAAAAMChdEAAAADAneR0QAAAAACTZXVAAAAAwCqAdUAAAACAdpJ1QAAAAMDbIXZAAAAAQIU8dkAAAAAAnUZ2QAAAAMCKcXZAAAAAwKLHdkAAAAAAqxJ4QAAAAMAYJHhAAAAAAFxUeEAAAABAX394QAAAAMBE/XhAAAAAAFwveUAAAACA63R5QAAAAACC1XlAAAAAQF3feUAAAADA56R6QAAAAMB4DntAAAAAAFVRe0AAAABAkMp7QAAAAMBV4ntAAAAAgDXue0AAAABAVQR8QAAAAACJQnxAAAAAgNhSfEAAAABAx2V8QAAAAACUlXxAAAAAQCrifEAAAAAApUJ9QAAAAAA8xX1AAAAAQNTEfkAAAABArid/QAAAAMDHZn9AAAAAYFlcgEAAAAAg9mGAQAAAAKCj64BAAAAAoCEQgUAAAABgCieBQAAAAGCUNYFAAAAAQLdigUAAAAAgDXqBQAAAAKCluoJAAAAAYJfDgkAAAACgax2DQAAAAEAyioNAAAAAICWTg0AAAADgqsmDQAAAAODj8oNAAAAAoIP8g0AAAADg00aEQAAAAGDlgIRAAAAAQFDyhEAAAACgDvuEQAAAAOCNAYVAAAAAICIMhUAAAADA61OFQAAAAOB2KoZAAAAAoK9ThkAAAACAHbqGQAAAAMCf0oZAAAAAYKnchkAAAABA5CKHQAAAAGBNc4dAAAAAYN0BiEAAAADAVQqIQAAAAICfFIhAAAAA4P2uiEA= + NrgMGZxjYkDEsXzkG6NpQDitQvclQnFAQx3Og3xCcUD/B9cwPnN3QAYkbFcic3lAUAjlz2PjfUBXJHr2R+N/QFWKl40TGoJAWBjioAUag0B+ih5dJlKFQIEYaXAYUoZA4I3tRnlqiUDlRTONpGqJQBBwtY/wootAn5gThRxrjUB0bpGC0HKNQA== - + - tS+CQAcelkDPwNM/TEiYQPUZNEBebJw/0IhgQGJAeEBKYQRBLOMJQL0o1EDCuX5AS2JDQNVaL0A83tQ/E4CWQJzsZkCtOMJA8MSYQR1j5j8vSeY/tv0VQYxSO0CbjaZA+UO6QBYPD0ArmtlB0msBQIn5CUDfua4/7s4qQGMmbEC3xQ5AS6HwQNaJNEHsWuY/+s2JQh7sl0CmpqVBmoRvQd6+RkHpS5ZAjUfTP21IGEH73A1Akr7uP5Y/iEA0mSZBgU2pQOU7AkFmKrRAAGRGQFcMlUAY/PZANdWAQXgCs0Crr6VA/AmPQOJtO0ECwIdAmxhhQI61+D//sDNAgQMCQZEO1EGzAsE/z8OQQIBWvUCzo2ZAYuLSQFT2XUFzDbhCsjKBQR9mDEGXlNJBn1QrQsKptkHQNz1AhJCRQLkRMkFii61Aj6MrQekHtECf7fg/Q9NRQYPSekBtAw1AoW5dQBO5hEH4z19A20arQPrpDkCEDLBBVPycQIyAZ0F7QcNAjZkfQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYL4aYEAAAADAkkhgQAAAAKDHfGFAAAAAQGtmYkAAAADAh6NiQAAAAEBhvmJAAAAAQOWgZEAAAACA0lxlQAAAAKCgwmVAAAAAoFwjZ0AAAAAAEURnQAAAAMDIY2dAAAAAgFnjZ0AAAABg6ztoQAAAACDqIGlAAAAAgA+haUAAAACgUgBqQAAAAMBNI2pAAAAAQHxDa0AAAABAymVrQAAAACBbw2tAAAAAAPJDbEAAAACgP8dsQAAAACDFQW1AAAAAQHl9bUAAAADAQN9tQAAAAADg/21AAAAAQE1ebkAAAADA9IBuQAAAAIAdB29AAAAAgHaHb0AAAADAdDJwQAAAAECdcXBAAAAAoI+xcEAAAABAROZwQAAAAAD8IHFAAAAAIDQ3cUAAAADgWENxQAAAAMDHUXFAAAAAIOt1cUAAAAAgGoBxQAAAAICu7XFAAAAAINo/ckAAAABATkpyQAAAAIBycnJAAAAAoOeCckAAAABg/sNyQAAAAAARz3JAAAAAQETzckAAAAAAKQBzQAAAAEDzDnNAAAAAgPo7c0AAAABAM1RzQAAAAICaIHRAAAAAoJ01dEAAAADAUkJ0QAAAAAA+tXRAAAAAIA/ddEAAAACAc/90QAAAAIBpJ3VAAAAAwAA+dUAAAABgxkp1QAAAAAAVhnVAAAAAoEiidUAAAAAAba51QAAAAECYv3VAAAAAgLcJdkAAAABgjx92QAAAAGDpPnZAAAAAQLpZdkAAAAAgnpJ2QAAAAEB5oHZAAAAAwNDCdkAAAACgycx2QAAAAGB84nZAAAAAgCMQd0AAAACgmSV3QAAAAGCDM3dAAAAAYNJEd0AAAADgXVN3QAAAACAGZHdAAAAAoDGSd0AAAABgOKF3QAAAACC7sndAAAAAIDnRd0AAAADAMTd4QAAAAKDVQXhAAAAAYHNVeEAAAACACmV4QAAAAACpgnhAAAAA4JK+eEAAAADg1NB4QAAAAOAq7XhAAAAA4ChAeUAAAABgoGR5QAAAAKBKc3lAAAAAAN6GeUAAAADgLJN5QAAAACDfsXlAAAAAoH7OeUAAAACgLQd6QAAAAMAbEnpAAAAAAP8jekAAAABg2TN6QAAAAGAoYHpAAAAAQOtyekAAAAAAoJR6QAAAAKADoHpAAAAA4E6XfEAAAABAK6N8QAAAAGAn1HxAAAAA4MlEfUAAAABANoJ9QAAAAOC4vH1AAAAAIHkGf0AAAADgWhV/QAAAACBKZH9AAAAAoAGEf0AAAAAgr8x/QAAAAEBzLoBAAAAAQE0zgEAAAACAf1eAQAAAAAAcY4BAAAAAAGyfgEAAAAAgoc+AQAAAAODo+YBAAAAAgNuBgUAAAACgMtOBQAAAAABr2oFAAAAAwMXrgUAAAABAUHSCQAAAAGCxuoJAAAAAgMzDgkAAAACAIwKDQAAAAGDJFINAAAAA4L0ag0AAAACg7C+DQAAAAAB5P4NAAAAA4PJag0AAAABgUmGDQAAAAKAfjINAAAAA4ByYg0AAAABgH8SDQAAAAGAJ4INAAAAAwB3og0AAAAAgWfODQAAAAGBnOoRAAAAAoFmShEAAAABA1KaEQAAAAKBqYIVAAAAAIErrhUAAAABggguGQAAAAKAnkYZAAAAAYLUZh0AAAABgqLyHQAAAAGDQHohA + NrgMGZxjYkBcG3g88qJlQJe98BGiw2xAG7piYCZDcEA5Cx9LftNzQMu81Fwpc3VAlBdplkEkekA= - + - CufTP3WhEEF+v09A62rMQaA4m0J7qSpAr+6VQAyGtEBAleJAAFMkQYxVrj/SbJdBUL7TPyn1wD/tAexAtI64QDdY00ABjkZAtgl+QDcDG0FrUWJAQ1eaQZoUwT8EVHJAvVe0QSKOrj/+/gxAJlghQH04pkAiiK4/ix6UQDTRT0E8oAtBnhOsQBrkM0Ckw3tATvebP3BogkIdlxNB4CPGQMOWYEAQ4w5AnIeGQptUPECPltlAANUqQDEhIEJcj1hBIJaKQFpSE0JxyQZBqiHNQJ4vWUAdDmtCapdnQa5wiUFarQpAFKKhQExK1EJnD9dBkhcvQLIGe0AxvqpAgniRQcC2BECtoIZAzv1GQZY2okHbK5w/kuuEQdkTnEJj9zpBOtBVQsT6nUBm4YVAz4ezQEj2sUFipQpBynAbQdjRuEGoaWlBiopmQNm6uUAFqIdB2NIwQE6pXUAd1Q5AypA4QgUqikEzaRpCyN88QqwngUD7sSpB2kqLQceXKkGzZoFAtOiQQQOX0z+A+/hAliFcQejDTEKRKhhCSG30QNUWokFY6S1Dne1PQJKDKkD3yzhBCzDiQA9ua0A3og1B783UP1QaFEA0XHFBATxUQoydYEDhFc1BypGxPzdkAUJVO15DZkIhQw7xxkGVbB5AYIDoQTZEIUBAKsI/qgmHQdGZn0EGWSpAa2mYQEyogkHoo/xC0zuRQTiRp0CzsLhBfjo3QVL2R0EscVhBWhmfQc2v3z9OhIZBoHW7QConxUAjnPhAoAvhP+kNyEBGL11AOS1iQTgD3UGz0LBAl9DyQCiKmUCjvrBAWFufQTiiVEDF6IFA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoEziZEAAAADguwRmQAAAAODRJWZAAAAAQC1gZkAAAAAg28NmQAAAAEAVmGdAAAAAAH0HaEAAAADA5SJoQAAAAEAjQGhAAAAAQBnFaEAAAABACGVpQAAAAICs7mlAAAAAYOc/akAAAAAA/QRsQAAAACB3SWxAAAAAwDlFb0AAAADAtyFwQAAAAGD2XnBAAAAAgKbjcEAAAAAg8TFxQAAAAGAvc3FAAAAAIEzkcUAAAAAAr1lyQAAAAIDxw3JAAAAAQLzQckAAAAAAtQJzQAAAAMDRP3NAAAAAYGUOdEAAAABA8lB0QAAAAICgc3RAAAAAgMSSdEAAAAAAXLJ0QAAAAGBLwXRAAAAAgF7kdEAAAABAIfh0QAAAAGCsFHVAAAAAIOtXdUAAAADA7ZF1QAAAAGCKrXVAAAAAwLnUdUAAAABA+v91QAAAAIB3UXZAAAAA4IqfdkAAAAAAtMR2QAAAAEACz3ZAAAAAgDXkdkAAAAAgpA93QAAAAEAhQ3dAAAAA4P9jd0AAAAAA2HN3QAAAAKBkiXdAAAAA4CeUd0AAAAAADON3QAAAAODh7HdAAAAAwKMDeEAAAADgwxJ4QAAAAKBEI3hAAAAAYOQweEAAAADgHEF4QAAAAED8VXhAAAAAoLdmeEAAAABgv4B4QAAAAODFs3hAAAAAwNa/eEAAAABgIc54QAAAAED/I3lAAAAAoF5AeUAAAAAAuld5QAAAAABhZnlAAAAAoF+OeUAAAAAgs6l5QAAAAKBN1HlAAAAAgFUXekAAAADghC96QAAAAGDgRnpAAAAAgJdRekAAAACgQl16QAAAACAF5XpAAAAAICwle0AAAAAAYjR7QAAAAOClUXtAAAAAAChle0AAAAAAYHp7QAAAAGAxlXtAAAAAYBqze0AAAABgJdB7QAAAACD/33tAAAAAAKXue0AAAABA2wV8QAAAAOC1GnxAAAAA4McufEAAAADAJj98QAAAACBeZnxAAAAAQIFmf0AAAAAgTy+AQAAAAMAoU4BAAAAAQP65gEAAAACgF/2AQAAAAGBs7IFAAAAAYKwBgkAAAABgGnGCQAAAAKDRmoJAAAAAYA63gkAAAADgPbyCQAAAACD8wYJAAAAAgOfPgkAAAADgfOqCQAAAAKDA/oJAAAAAoGkEg0AAAADAKQqDQAAAAGCTNoNAAAAAoAZ+g0AAAACgUIiDQAAAAODf24NAAAAAYE5ThEAAAABgIlyEQAAAACBRbIRAAAAAoLJ0hEAAAACgWgSFQAAAAKCJD4VAAAAAYNtRhUAAAAAgfqKFQAAAAKAExIVAAAAAIPPahUAAAADgsQaGQAAAACCnIIZAAAAAoA9khkAAAADgFHCGQAAAACCQ1IZAAAAAQJhah0AAAACgc9uHQAAAAOCBHIhAAAAAoHlkiEAAAACgYuuIQA== + NrgMGZxjYkCmvpxNHCRnQOJgFSPMRGtAqbPSK6YCcEDHBI8W/hJyQA== - + - LRIUQI74lEHXgSFAfMoCQWF2HEA0dUJAOUM/QPLu4UBj9hJBWK6HQHIRAUGpSwFB3iEHQspcD0EttsFAb8Q7QC5J5j8XsK4/NbGoQEOLy0A4lcE/1gWUQLBPgUGWt3RB2Vn5QNchtT8S5q1A29+KP79+4kDqrKhAWbeuPzO4T0BELbdAnAa1QfoTakDxdzhBxuMGQaWFrj/kThhASD2mQL39YUDoBqhADOb0QOLu2kGypiRC/teBQTSg0z8qKoxBGNQRQc8ju0DgSZtA7u/RQJsbwT8nmipAJAJ7QX/rB0GWxFNBtChiQI5Bp0DmcSdCGr+/QEIS9kDLlGFB8jHdQMONgEFhD5ZAnltVQSxWe0KcFttB6LQSQaRS70BHXrNAMO9SQXiO/UHMS3FAZ1qFQZwNBELj7hxBWwaEQAbOoUAk4gFBBpGfQcOApUGmYr1Adp8oQaHgfEENVzNC5LO3QVtM9UCigwhCl+PvQKIx6UDc7q9BixGmQeEC2EH8CA9BHvnmQG/75kBA7T1BJG4CQR+3gkDNmK4/VvKOQcv7D0L8hAZCeClIQAfd1UC095tCefKNQlNrFkKD2jJBe34VQbQlC0Kw2JpA9vDNQK2ta0AHd5hCaUm2QH8g3j/ibD1BQ44nQU3/tEDgKINA/+IDQcs1iELJ6zJA2KxmQYRGvkDIwGNBUlrRQEpDWUCUbkZAa6w8QNva0kA= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwFgtaEAAAADA7JRsQAAAACDlZm1AAAAAwMDCbkAAAAAA7bNwQAAAAECtAXFAAAAAYJEPcUAAAADAphFzQAAAAMApc3NAAAAA4Jp/dEAAAADAJqN0QAAAAEB0xnVAAAAAwIzUdUAAAACA1QR2QAAAAEA21HZAAAAAABsEd0AAAABA+KN3QAAAAADpDnhAAAAAwIVMeUAAAACAE/R5QAAAAADAIHpAAAAAgLpPekAAAABA9qt6QAAAAAAIOHtAAAAAAKPNe0AAAACAoCx8QAAAAABWe3xAAAAAAKiWfEAAAACA0PB8QAAAAEAaSX1AAAAAQGVVfUAAAADAe4J9QAAAAIDuoX1AAAAAwC20fUAAAAAA9L59QAAAAADeCn5AAAAAQDoYfkAAAABA+mh+QAAAAECLE39AAAAAAGJ2f0AAAACAroR/QAAAAECBk39AAAAAANajf0AAAAAgqg2AQAAAAGA/G4BAAAAAQIQ3gEAAAABgHHOAQAAAAKBdgoBAAAAAYIyLgEAAAADgmaqAQAAAAECws4BAAAAA4OS4gEAAAADgf92AQAAAAOCl8oBAAAAAwOIBgUAAAADAQx+BQAAAACDIUIFAAAAAgG9ngUAAAACAm4KBQAAAAGDEi4FAAAAAANCjgUAAAADAF6uBQAAAAOCLyYFAAAAAYDHTgUAAAACALQGCQAAAAKAfC4JAAAAAwDwTgkAAAACAgiKCQAAAAOBwOYJAAAAA4NZBgkAAAAAgF0mCQAAAAKART4JAAAAAIMxXgkAAAABg6GWCQAAAAEAKkYJAAAAAgAWdgkAAAADAM7yCQAAAAIBWwYJAAAAAYE3HgkAAAABguNqCQAAAACCK6oJAAAAAQGnygkAAAAAAkPeCQAAAAKAdAINAAAAAYEIjg0AAAACAGEuDQAAAAMDxV4NAAAAAIPKBg0AAAADApYmDQAAAAMDHkYNAAAAAwNyqg0AAAADgt7eDQAAAAODLyYNAAAAA4MXRg0AAAACg79eDQAAAAODzyYRAAAAAYAPthEAAAADgZvaEQAAAAAD3DIVAAAAAoBYbhUAAAACgD1uFQAAAAID1X4VAAAAA4FeDhUAAAABAbJqFQAAAAKD/oIVAAAAAoEqphUAAAABgdK6FQAAAAOAl7YVAAAAAIPv1hUAAAACAeP2FQAAAACDoBIZAAAAAYF02hkAAAADg/TuGQAAAAOD5RoZAAAAAQP+JhkAAAACgyZGGQAAAAMCunoZAAAAAIKyjhkAAAADgRbuGQAAAAKCq0oZAAAAAAEHlhkAAAADALyqHQAAAAOArcodAAAAAQNqAh0AAAABgwP+HQAAAAOAsQIhAAAAAIFWAiEAAAADgWYqIQAAAAKBSmohAAAAAYBasiEA= + NrgMGZxjYkCJy7y2HKVqQBu6YmAmQ3BA - + - 5OGUQPUapEAWo8ZA50ZKQaPqgUAg5WdAz8uqQDCraEDC34NBgYDTP0UMMUGjia4/a7CaQAzqE0Dt7HFAQHBUQEAvUEDSch5AMSCUQZpdmUD2Rc5AMmghQBfJr0AcP1VAnZ8eQdDNuEDQvYtBCvh4QDRO5T+SuAVBz9txQLSOb0GqdtM//TMLQVpEfEBNw0xAG1VwQMNTaEDikgdB9bXuQIN/HkI8fGtBJigHQfPaU0Ax6A5AcA1lQVOSCEESXkpApd17QEvjDEHV3kpAikurQEO5tUBWfwJBOvL1QRpe6UC8vgVAQVkJQmSTbUPJLJ5CSUMAQYfjmUHCzhtBXDWxQWJhIUC3gB9BemWtQNwB9EEEll9AGDN7QLdH4kB/dGVBRCjIQL8FV0EuEIFA/p35QMX45T8SYv5AD+fpQEFOIkAW/JJBG6vPQOoukEAodntAIsD4P343BkBIMGZBoHwOQc4PDkH1UHs/TeoTQe9Mg0Gn4jBBR1RTQWXJ20DtsIxBRw2mQM4PsEFMI4hAqapOQcnYP0JrVKdAqbsmQVbz2EAmWYNCMKNqQs05g0A0zQBDIwiNQO+DCkIoTJBASbylQvMd40ApjC5B4o9/QmNaRkHRZrZBdgdWQYjyM0BgxAhC6nH7QHczp0B3tOhAym21QDK3KEGnL7RB4+xPQc2DSUEiQaVBxsd5QQ== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAIJ0cZEAAAABgUidlQAAAAGCy4GZAAAAAoM6hakAAAACgNcZqQAAAACAlZmtAAAAAoMmla0AAAABA3SJsQAAAAGBjRWxAAAAAwMhlbUAAAAAgauVtQAAAAIAmYG5AAAAAgEynb0AAAADAkRJwQAAAAEBno3BAAAAAoFYJcUAAAAAAwGJxQAAAAMBQgHFAAAAAAOqhcUAAAAAAaOJxQAAAAKCu+XFAAAAAwNcfckAAAABAaj9zQAAAAAAomnNAAAAAwMMidEAAAACAKPJ0QAAAAIDlA3VAAAAAwMWRdUAAAADAB/B1QAAAAICLAnZAAAAAQCQUdkAAAAAAcJp2QAAAAIA98XZAAAAAQLEfd0AAAACAMzF3QAAAAEDuUndAAAAAABjRd0AAAAAA4gh4QAAAAMDdpHhAAAAAgNEJeUAAAAAApCd5QAAAAID1VnlAAAAAwINseUAAAAAA1OJ5QAAAAMAz/nlAAAAAALiuekAAAADAFMh6QAAAAMCnGntAAAAAgHhke0AAAAAAV6h7QAAAAMDVBHxAAAAAQJdBfEAAAACAWd18QAAAAIBvD31AAAAAgOgifUAAAAAAPDF9QAAAAIBwb31AAAAAQOOTfUAAAACApgt+QAAAAMDSK35AAAAAwHtGfkAAAABAuVZ+QAAAAIC8CH9AAAAAgEMtf0AAAABAuZJ/QAAAAODhBYBAAAAAYPcggEAAAABgRieAQAAAAOAJRIBAAAAAIA1KgEAAAACgYFyAQAAAACD/IoJAAAAAANxagkAAAADgKqOCQAAAACCR54JAAAAA4B0qg0AAAAAggHCDQAAAAGCDfYNAAAAAYGOEg0AAAADAXbqDQAAAACBhxINAAAAA4ATfg0AAAADA4wSEQAAAAKBho4RAAAAAoFeohEAAAABAA+WEQAAAACC9loVAAAAAoCwphkAAAAAgxaaGQAAAAGBO/IZAAAAAoD8Kh0AAAAAAkxKHQAAAAOC4RIdAAAAA4Hvmh0AAAABg3ryIQA== - - - - - - WhaWQEwziEASTQJBeLW1QN2zmz/AL4hA7F/BQNT/K0FSWFVANAFZQHXmCEG8JIpBndrlP3FLkEAF7uA/K6mEQJfHIUFTUQJBqJKOQFklYkASa8xACUuvPyVAMEFQifxAnYwLQR7YYEDKSy5B5jz4P777mUB2U3BA9mEWQM+N6UAgIVBA59QiQVOSTEF5LqNAkig/QcDbP0EIah5BCbeaQIe7mkCyy49AI2HLQBVr+ECFtjNA1Hc0QSpl30AEEXBBBNXdQBacbUHI2kNAyhUYQLYFI0HmREFAQlyQQTyyUUJ/zi5AUVTAQg/iSkEXLJZA7NwOQZjeo0BstEZBxWASQR+qOEHKkJ5AugAiQcZxNEHZMRNB+L+dQW1cZkAfbVRAS+kzQEPDiECD+whBPo21QO2kdEC47ItBmdUMQTKNHUKd7QVBbP5PQVfe4EAildtASGUIQa7MsUDd2yxBCTfXQdp9EEFHiW9A2uvUQBca2kAJJNQ/nj80QUPqdEA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYBlHYUAAAABg081hQAAAAGDEY2JAAAAAoPHZYkAAAAAgGmdjQAAAAMDyQGVAAAAAIMeeZUAAAABgrv9lQAAAAOAshWZAAAAAALKlZkAAAAAgB79mQAAAAMA66WZAAAAAQLpmZ0AAAACAoiNpQAAAAICJQ2lAAAAAgFOJaUAAAAAA3WJqQAAAAIAQLmtAAAAAgCFia0AAAABA2KZsQAAAAAA3ymxAAAAAAB1nbkAAAAAA/h1vQAAAAECBEnBAAAAAAC8gcEAAAABA2kdwQAAAAIA+dHBAAAAAoAmQcEAAAAAAKM9wQAAAAOAS83BAAAAAwBJEcUAAAABA2mZxQAAAAED003FAAAAAoOvgcUAAAACgsgNyQAAAAIARQ3JAAAAA4GxTckAAAABA4GNyQAAAAEDadXJAAAAAIBjFckAAAABgO9VyQAAAAMCo7nJAAAAAgE9Sc0AAAABA32RzQAAAAGDcgnNAAAAAIIm0c0AAAABAaexzQAAAACDTM3RAAAAAwP1ddEAAAADAv410QAAAAGA8u3RAAAAAoNU/dUAAAABA8oN1QAAAAAA+A3ZAAAAAwOs3dkAAAACARlF2QAAAAEAVZXZAAAAA4FhzdkAAAACAvb52QAAAAMA+5XZAAAAAQA4Cd0AAAABgiFx3QAAAAMAPZ3dAAAAAIOmxd0AAAADg3/x3QAAAAODSB3hAAAAAYJJFeEAAAABADn14QAAAACAqn3hAAAAA4DSweEAAAADgZuJ4QAAAAEDNEnlAAAAAQJ0meUAAAAAgI0R5QAAAAIAtT3lAAAAAgE9jeUAAAAAAAJJ5QAAAAGDR1nlAAAAAgB3ieUAAAACgRfJ5QAAAAEDzFXpAAAAAYJsfekAAAAAAj0J6QAAAAOATWHpAAAAAgC57ekAAAABAvo96QAAAAADIonpAAAAAIBuyekAAAACAs8F6QAAAACB35HpAAAAAgLjxekAAAAAAGAN7QAAAAACbFHtAAAAAAK0ue0AAAADgF0t7QAAAACDdfHtAAAAAgFyKe0AAAAAgBK97QAAAAICrxHtAAAAAQIvSe0AAAABABwR8QAAAAMAwMnxAAAAAoJJAfEAAAACAi1N8QAAAAGDEX3xAAAAAIEqCfEAAAADgHpV8QAAAAMBo0nxAAAAAQBhdfUAAAADgHSd/QAAAAOBlUYBAAAAAIGSCgEAAAACAaZCAQAAAAADptoBAAAAAIG3igEAAAADge/GAQAAAAMC6AoFAAAAAoMEfgUAAAAAg1muBQAAAAGCWgoFAAAAAIMKKgUAAAABA3ZSBQAAAACDJm4FAAAAA4P2wgUAAAAAAEryBQAAAAGD00YFAAAAAIG3lgUAAAABAhwCCQAAAACABCYJAAAAAIBxygkAAAACgTYmCQAAAAOAToYJAAAAAgMu6gkAAAADgAsKCQAAAAOC92oJAAAAAIClMg0AAAACgvVGDQAAAAEBaioNAAAAAALCSg0AAAACAWaCDQAAAAKBu+4NAAAAAYEAShEAAAADgoS6EQAAAAGCjU4RAAAAAIIFbhEAAAAAgx22EQAAAAGCKgIRAAAAAwEuchEAAAADAUruEQAAAACCE3oRAAAAAIOz9hEAAAADgOEGFQAAAACAfS4VAAAAAQJVshUAAAADgaXqFQAAAAGDLioVAAAAAgDKShUAAAADAXqOFQAAAAIAL44VAAAAAQKHqhUAAAAAgZAuGQAAAAAAyE4ZAAAAAYAkjhkAAAADgrUWGQAAAAKCTS4ZAAAAAACfDhkAAAABgKteGQAAAAKDW3IZAAAAAIBAbh0AAAADg2iKHQAAAAIA+RYdAAAAAYGBTh0AAAABgXVuHQAAAACBBY4dAAAAA4PRuh0AAAACga4iHQAAAACAdrYdAAAAAQJfyh0AAAADg2BeIQAAAAMA4bYhAAAAAIFqLiEAAAABgvZSIQAAAAODcmYhAAAAAIBP7iEA= + NrgMGZxjYkCYvfARosNsQFRnpVdMhW5AWrZEKKlydEAFwBx3aZN1QA== - + - 5+Z4Qec/1kB6rwZBgopmQIGfCkHXt8tAsxkKQDdxmz/fcps/Bw1fQJM5HED2cxBClr6VQY5AoULbIF5BjGBoQbnrlEBrCllAqma3QIwVA0GliI9AwY7lP1DfcEA864lAclL6P8yXBUCqsQVA989GQK5j6UAgCllAQOAmQL2ZQ0DoCoVAYhT2QCsdA0FYNsE/PfTwQNsBHkKsGdM/t3sGQWwy90C4ECRB50TwQAN0kEBYYSxBHx0jQWpAhkCD3w5A+MLAPwU9vkDSLCFACT6kQKLLwEC66O1ArncOQV/ZmkE9x3RAy1MqQIhyIkEkLDlBDKSFQG9n3UIsWLRB1Qm0QPLqHUAPx51Bibi5QQXNlEAIjKBB212rQDVNxUAzuJNA968YQUdD6kETzfNA8748QC39W0C+UaFAn60vQdOub0CcUCVBdHnLP+9/RkDPb8VBvQEYQGjOA0FXGSJAoqZTQNeEukHNsvVCqD0KQhzW00DIyLhAiOGhQFU1cUBSp5dBBBa6QFTeBEJF7bZBCv8LQeW350FoMhBBNLoTQimlt0AnXmZA2ymQQLeIJ0H/49VBDI6oQBMxzEARj6tAtkr3P6tQoUDYhfFARg7ZQJMJh0Ebc11CSOUTQe3THUGDf0xCL2mDQW+8hEFMUZ9BJtwxQWQ7JEG83DhBVwksQWIzVEAWpYxA2dcTQMTBmz9JvNI/GNsYQS2F70Fomo9ButfZQMnijkBiwU5BNIVzQc2J3UB6kJ1AofK9QMEc+EBnQCFAOqc5QE4dnD/JOjhAb7MfQcTclUAX0wtAG7/RQMsRYUCiZIJBeZ+XQOq+z0CUPUBBarSuQXFYiEDS6kBBjX6EQduDikARzdxAvfYqQTJJMEGwxgZB1SUtQhvQQkH2yhNAGYhBQKOiQEGNd5s/hu2pQ5im5EK1uJZAfrqhQLPkw0BkrgZAw2c+QajMX0CDIkVATRvmP9qIYkAwC5hAkkqJPw== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwPVBY0AAAACAHIRjQAAAAKD+qWNAAAAAwBNHZUAAAADAHuhlQAAAAACxqGZAAAAAgEDCZkAAAADAgWtpQAAAAIARompAAAAA4H3BakAAAAAANGhrQAAAAAC2QmxAAAAAADmBbEAAAAAgJqtsQAAAAACBYm1AAAAAYMWmbUAAAABABehtQAAAAMC6Cm5AAAAAwPWDbkAAAAAgmxJxQAAAAMArtHFAAAAAwNQWckAAAAAgcWZyQAAAAABnyXJAAAAAQMvtckAAAADgUT1zQAAAAADQcnNAAAAA4O7Bc0AAAABAvXJ0QAAAAAD45HRAAAAA4CkYdUAAAADAg1p1QAAAAOAEbXVAAAAAoLCCdUAAAADAEK11QAAAAKCcE3ZAAAAAIOI/dkAAAADA1ZV2QAAAAMDJw3ZAAAAAQM//dkAAAADgehd3QAAAAKDiNHdAAAAAQCBXd0AAAAAgTLd3QAAAAIDSw3dAAAAAoATOd0AAAADAYdh3QAAAAKAz43dAAAAAYKEMeEAAAAAgrTJ4QAAAAOAJVXhAAAAAQDZieEAAAACgqnV4QAAAACB+x3hAAAAAoCsMeUAAAACgTSJ5QAAAAOAeMHlAAAAAIPBZeUAAAAAAhGV5QAAAAGCfsHlAAAAAoHIJekAAAADgyiZ6QAAAAGCfM3pAAAAAYOFcekAAAAAgIW16QAAAACDGnnpAAAAAIG23ekAAAAAgMlR7QAAAAIDhZ3tAAAAAoEWQe0AAAACAUKJ7QAAAAKDqrntAAAAAwALee0AAAAAg6jB8QAAAAEC5UHxAAAAAoOJcfEAAAAAgN3R8QAAAAOB4lnxAAAAAIOnGfEAAAADgQxJ9QAAAAABVIH1AAAAAYBk3fUAAAABgIE99QAAAAEAyh31AAAAA4NSkfUAAAABAPa99QAAAAKD2YX9AAAAAgHwWgEAAAACg3SiAQAAAAGAwV4BAAAAAAF55gEAAAABAHYuAQAAAAOB3koBAAAAAAIKvgEAAAACgGfuAQAAAAOC69YFAAAAAwFEZgkAAAAAgYyWCQAAAAOD4S4JAAAAA4EdcgkAAAACgQ2uCQAAAAKC2s4JAAAAAwNa6gkAAAABgacOCQAAAAKBgyYJAAAAAIB0Cg0AAAAAACgeDQAAAACCaRINAAAAAICpMg0AAAAAgCIKDQAAAAGBBi4NAAAAAgKaSg0AAAAAAPbeDQAAAAMBfwoNAAAAAYK3ig0AAAADgIeuDQAAAACCu8oNAAAAA4GMwhEAAAAAg6TaEQAAAAKBMXoRAAAAAYO+ihEAAAAAgutyEQAAAAGDz4YRAAAAAIBgXhUAAAAAgXx6FQAAAAMAOVYVAAAAAYPV5hUAAAAAgyX6FQAAAAIBplIVAAAAAgDxmhkAAAAAgaY6GQAAAAGCCqoZAAAAAYOnahkAAAABgWlqHQAAAAOCvbYdAAAAAQP/Mh0AAAABAYfuHQAAAAEDMPYhAAAAAYL2LiEA= + NrgMGZxjYkA= - + - KYnDP8SYbkBtWxxAzI7SP7AsLUH4QIJA1IYFQTdiMEAygwRADOnSP52fG0Gvo69AqZoBQdtfcUAMUYhAjbRmQB6qxkCryuU/ScLTQY2+GEHJo/k/jPVUQdXQ5UCGD1RC3BSQQAx6BUBdBwhBNSpGQAUUQkBdM49A1ELDQHs2B0GQeYg/kBuiQHaFNEBFiQBArk5kQfVMiEADhDRB1gCOQBaiYUEkTA1A1OlYQWUgO0Gk060/mMG4QGP9a0E/ywFB651KQQVCBUDQ8h1CrZQ7QSDEwT/l5xVC4u0TQNbl6D/1OOxA3u+YQu9/Lj8mOr1AGqaPQJU4hUAjazNAK/JXQhJo1UA/fbpBN+V0QKRty0AI6rxBHi71QMe32EC8bkBBPkaDQZF/BEAI/d9APJfVP6GB50AFxxRBUqF4QNnOBEKkKFxBR47UP+nVcEBFBQJCQWifQpQyb0H1HbZAwSwFQDJG0EDa2wJAc+J0QNHYTUBzmf8/cO4BQY3oXUCDagNBpgPAQAPw5ECNg2pAOccyQVUbdECpgpRB3KFKQqYj0EAwkp9AHV3qQQeugUETvn1AVPwcQIgI/kAs8kJB+6t0QLSyiUH8bCdBuBQhQMt2k0A7TfNBFLb0QP0hC0EcJl1AZ0YNQZ+IAUGCNK1AkzITQcp0mkAhXfBAElIhQAksUEEygsU/5H04QA4+NEBGID9BiaqYQKTbwUDvx8A/CXqDQAOcNEEY/o5A0dUhQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQC7haUAAAAAg3KNrQAAAAIALyWtAAAAAoF0nbEAAAACAhEFtQAAAAACWZm1AAAAAID7IbkAAAAAAqGFvQAAAAIDN4m9AAAAAQKNAcEAAAADgucFwQAAAAEBXFHFAAAAAYAyicUAAAABAUeNxQAAAAMA/s3JAAAAAwIW/ckAAAADAs89yQAAAAICTFHNAAAAAYAJUc0AAAADA4Ix0QAAAAAD6z3RAAAAAQCQDdUAAAACAiDZ1QAAAAEC+UXVAAAAAQCGvdUAAAADAK8x1QAAAAABAMnZAAAAAwARDdkAAAAAA53R3QAAAAEChQ3hAAAAAACBjeEAAAADAOIV4QAAAAIA0IHlAAAAAQJy9eUAAAADAUO55QAAAAECOAXpAAAAAgLoUekAAAABA3jJ6QAAAAMDUS3pAAAAAQPSTekAAAABAK9J6QAAAAEBz93pAAAAAgJBQe0AAAACAw5R7QAAAAEAZrHtAAAAAQMbBe0AAAACA/+h7QAAAAAB3AnxAAAAAwKIofEAAAAAAnZN8QAAAAIAGtnxAAAAAwNvSfEAAAAAAKvZ8QAAAAADCDX1AAAAAADsufUAAAACAFoN9QAAAAECgrX1AAAAAwObSfUAAAABAa+t9QAAAAECfGH5AAAAAACOJfkAAAADAgZZ+QAAAAMB83n5AAAAAQJkGf0AAAADAJyJ/QAAAAMC/dX9AAAAAAMaNf0AAAABAxvx/QAAAAKDlh4BAAAAAwJOSgEAAAADAo7qAQAAAAKDt8YBAAAAAgGr3gEAAAAAgtRaBQAAAACDMHIFAAAAAYIMvgUAAAABgeTeBQAAAAICnWoFAAAAAIIdogUAAAACgUHyBQAAAAIB4goFAAAAAgOuIgUAAAADgVpGBQAAAAABApYFAAAAAwDHKgUAAAABgZNyBQAAAAGBm8oFAAAAAoKn/gUAAAABg+BqCQAAAAOB0KoJAAAAAoDlagkAAAAAgHHOCQAAAAGDFgYJAAAAAgDqOgkAAAADgUpqCQAAAAGCiw4JAAAAAoCfNgkAAAACAYeiCQAAAACCNTINAAAAAgO1Rg0AAAADgPliDQAAAAKBjY4NAAAAAwC5ug0AAAACgRpCDQAAAAOBIloNAAAAAYBWPhEAAAABg2Z6EQAAAAMB6q4RAAAAAIOO1hEAAAACgp9KEQAAAAEAz94RAAAAA4C39hEAAAACgQBiFQAAAAKB5H4VAAAAAYBRChUAAAABghEuFQAAAAABCWoVAAAAAoARkhUAAAADgnmuFQAAAACB+e4VAAAAAoC2BhUAAAAAAbK2FQAAAAMCk3oVAAAAAYKv1hUAAAAAAMgWGQAAAACA3S4ZAAAAAIISRhkAAAAAgEtqGQAAAAMDI7oZAAAAAYKAKh0AAAABggRyHQAAAAOCfSYdAAAAAgEF1h0AAAABgs5qHQAAAAADUuYdAAAAAQBzQh0AAAACAO/+HQAAAAADLTYhAAAAAYNGTiEAAAAAgL9qIQAAAAECj7IhA + KBZXds7jZUDodNMYclFwQJ0RHYnYgnNAr89nUoqCdkDYs5VeiKN6QK8tRKbik31A6wg5WXDagEDXRRB9nVKCQKVbGVHo2oRAaia0uPRahkDDrNU7QGuIQGpVouKg44lAJLCkJZODjED+NUYe+OuNQIjdbkIfnI9AsTGIHUKCkEAOXwk/O9KRQGKzb5JrjpJAjnYAVJGWk0Dx282Hl1aUQNhm0vG8mpVATgW+g9NWlkBYfskGE1+XQM4ctZgpG5hA2JXAG2kjmUBdRROOVeOZQIqsJSqvr5pA/6aP4ZEHnEA7Lg2f2LucQA== - + - ymZdQH0MnUDSmcdAunBwQAXFjkDYWIpAuw2FQSpoaEBQl8hAqK+bP0UfnUCwFqZAb5aTQEkcOEBVFf5AH7H9QA6y7ECPW4pAZ72WQLV+iD9XA8E/NnSmQMjMFkE4m4VAV4zPQB36wD/U07FAGWMGQY57+0Aywj1Bm68NQTSuPEBk46dABf0zQePhnUHKma1BKGpYQTDTdED7cwJBRx6pQJS/X0CkHRZBEl2KQO41SkBuxShAVDyMQTBYFUH8C3tAiMI4QCpdCUGSZjpBYWquPw1voUBYCZZBQoPGQNsfcEAM5FhA25wlQTy7pEGAiRxAPCznP9aqdD9EqgtBeMdvQS4UdEEs4yNCwmaLQWsEmEDCTNNAGYTgQLe4RUCh54dA6MoAQTXv+EDP4k5AQnDbQaRQrj+LPH1A6GFrQIzuE0F1SVVDupc2QeczVEHbjWlADFjZQJHi+EE4/yNBlIXlP7iaIkGJa9RAmDu9QM4PgUBppalAdHZaQUffs0CiBIlBYf/eQMirc0H0+2VBW6kFQUevIEEU8axAyPEFQX6SKUFaP1BBwTI7QQQqNEHR8LFAC5oYQX724EAoaopAsxYTQWTsPUFOt61B87sIQQy0IkKuA/1AvwbaQfMvpkD3+MA/BFxDQZPa7EFhbxFAebmsQtEIeUEjGxtB7kZSQu/rpEH7Zk1Aca4rQSmUVEEGIvlAjOOwQR2SDEDZMFFBUAj5QHOQQUDO75lA8lpaQYSZWEIn1bBA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwABbYkAAAAAA+mRkQAAAAEBum2RAAAAAQBWAZUAAAAAAUKhlQAAAACAAqGZAAAAAwB5kZ0AAAACAOcZoQAAAAEB45mhAAAAAQMhkaUAAAADguudpQAAAAACYRGpAAAAAwBWQakAAAADAYalqQAAAAABlGmtAAAAAgOhEa0AAAACAqKprQAAAAMBh7GtAAAAAIFklbEAAAADAUUpsQAAAAOAXpmxAAAAAIAMFbkAAAABALqNuQAAAAAAKIG9AAAAAwDPBb0AAAADALyBwQAAAAIALYnBAAAAAgHCEcEAAAAAgpMRwQAAAACB3E3FAAAAAAJ8+cUAAAAAgbpFxQAAAAKDY9nFAAAAAoN+PckAAAAAgz8RyQAAAAECUz3JAAAAAALYCc0AAAABg9CRzQAAAAOD8hXNAAAAAgJXEc0AAAADAEO5zQAAAAACJrnRAAAAAYPDfdEAAAADgrDV1QAAAACCAQnVAAAAAgIBkdUAAAACAxnx1QAAAAMAW5HVAAAAAYCfzdUAAAABAjAJ2QAAAAACKHXZAAAAAAO1DdkAAAACAWFd2QAAAAABqe3ZAAAAA4DuVdkAAAAAgZsZ2QAAAAEDG8HZAAAAAQHMPd0AAAACgFDB3QAAAAAB8Q3dAAAAAANJNd0AAAADg+mR3QAAAAGCJ43dAAAAAYC4PeEAAAAAgAyB4QAAAAMBiMHhAAAAA4ME8eEAAAADgukd4QAAAAGD6VXhAAAAA4CZkeEAAAADApHt4QAAAAKDIhnhAAAAAYAyVeEAAAABgQbJ4QAAAAODg13hAAAAAQOcCeUAAAADg7WN5QAAAAGBEg3lAAAAAoDuVeUAAAABg3bN5QAAAACAnwnlAAAAA4ErSeUAAAABgX/N5QAAAACDpGHpAAAAAIGWgekAAAAAAirB6QAAAACAX23pAAAAA4HbsekAAAAAghAF7QAAAAGA/DntAAAAAAB9Be0AAAACgLVJ7QAAAAGD+f3tAAAAAQBuhe0AAAABgOd57QAAAAKDiGHxAAAAAIDgDfkAAAADAHRd+QAAAAOAwm35AAAAAIDS5fkAAAADgcNt+QAAAAGArIX9AAAAAYB5qf0AAAAAgrECAQAAAAODoSIBAAAAAoJ5dgEAAAAAgePOAQAAAAAAdI4FAAAAAoAZqgUAAAACAZG+BQAAAAGDB1oFAAAAAoAEbgkAAAACAyjiCQAAAAACikIJAAAAAgJe6gkAAAABA8jGDQAAAAKBCQoNAAAAA4I9Ig0AAAAAgloaDQAAAAKCGjINAAAAAoFmbg0AAAACgt6uDQAAAAMB9BYRAAAAA4ChyhEAAAAAg/n+EQAAAAKAo64RAAAAAoO3/hEAAAADAI42FQAAAAKCRnYVAAAAA4OzuhUAAAABgWfqFQAAAAIBfqYZAAAAAoLm0hkAAAAAgoT6HQAAAAGCl6YdAAAAAgA1UiEAAAADgdnCIQAAAAKCk8YhA + KBZXds7jZUBxWoXuS4RsQDtMc7KVAnNAOAsfS35TdUACpwfsrTN8QKyw3zpuVH1AgALyH4OigUBWB15H4zKCQBTjlVvaqoVAIA8n+mRLh0CjC/RQBnOHQDI0UkYyO4lASzmp/LCDiUB2Yyv//LuLQMYU9oGJQ41AdpIZKalEj0DjIfLVGmaQQIW5XjKAppFAyKVWr1vykkCcPDEFsTqTQIBSBA3nvpRAEpYoTYf2lEAitIBgI+OWQMMXEMKwApdAbKRS/k7nmEB1LnXQ9k6ZQOy7SROlq5pA9UVs5UwTm0Ce0q4h6zecQKdc0fOSn5xAHuqlNkH8nUAndMgI6WOeQGiAhaJDJKBAOTJNUwo0oEBAQflcWCqhQApjC30oRqFA/O30gEMIokBlOeIrbiyiQIcvXupb0qJAWHuUmI5yo0CsJ0e5cdSjQBgHEKO5VKRAbLPCw5y2pED3PWPEr0SlQD3/+HHPVqVAYYlQb9rIpUCCyAPFwtKlQIUTqGzlOqZAdQq2MeMYp0CqC5E7+zynQDWWMTwO+6dAapcMRiYfqEDjqik6LPuoQMMiP01JRalAozalRFfdqUDoGigcX0eqQGPCIE+Cv6pA - + - eIlGQLQ0nECXaok/uj89QM3w/EBgMwRA6Y8KQAPgmz9dDa9ABfV9QFK0DkAbMKVAXfEOQDIktEBjpYNAb+s8QHxeTkBN6wxB2OIfQPZVc0D5OGJA10sWQcLWTUHeIxhAtYWhQOdqIUDlXiVAX8QOQDy4uECGrwhBPNZGQWZH40BhQK1ApVGMQO7uqUHuX+pA3BJqQBmwrz+zRp1Ap3X4PweQ8D9gOBhB+vfAQICxz0DKXW5BIxuPQMyDwD80Q+Y/OPcXQO1d9T+RhTVBoNZZQMy/3j95gzZBNuwaQT2k30FUsY9ANfI8QF44/0CXN71AzNubP5RTRkBgub9A4EiTQHKdH0CMpNRAdthFQJZqrj9VwOFBBHSZQHBmWkGcSnBBemUdQTbIb0DLFQpBwibBQbZqDUGDqdw/9bexQCjfyEAJVzVCsFeWQQW6zj+QG1tBIAW7QRLDHUG9wxtBLsD5QMBFwEDauDdBbc35P9AESEFLTz1BsVUeQIbPjEB5fPFA/g05QZ9b5UDbcaZAbCWcQWrU2EACuNQ/Uv+KQQfEz0C/j6RAacM/Qc9jhUFMoI1CuSg0QC/FKkBhdMpAgJy6PyiMHEFL8CZBhp1oQd4TxECsqutB+U91QLrLmEE7v3NBeT48QJ+umUFBcfZAr69PQNo4vkDQzRxB0+C1QakwkkDkpRhBcglLQJ16NkFqyIdA/unxQAS8zUARIUtAcInXQADRCUC0LiFA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAGVraEAAAAAgi+pqQAAAAMCY5WxAAAAAgBvtbUAAAABg/GpuQAAAACCE7W9AAAAAgGzEcUAAAACAcxNyQAAAAIDacnJAAAAAABIvdEAAAADAaHR0QAAAAMC/5HVAAAAAgH89dkAAAABAYFZ2QAAAAMDkVHdAAAAAAOM/eEAAAACAgmN4QAAAAICUdXhAAAAAAF+jeEAAAADAsrR4QAAAAMDTFnlAAAAAAJwzeUAAAABAKKZ5QAAAAMD0w3lAAAAAgHkAekAAAAAAQll6QAAAAEAIIXtAAAAAQGqDe0AAAADAoZJ7QAAAAIAQtHtAAAAAQONjfEAAAABAKHN8QAAAAEARm3xAAAAAwIdAfUAAAADAp1N9QAAAAEAWgn1AAAAAAIWsfUAAAADAOeV9QAAAAMD9ZX5AAAAAQPOkfkAAAADAsrN+QAAAAMAv535AAAAAQJMDf0AAAADAk1x/QAAAAAD0lX9AAAAAoOAKgEAAAADA1haAQAAAAOAXLIBAAAAA4N30gEAAAACAbvqAQAAAAGBTAIFAAAAAINFxgUAAAACgP3+BQAAAAMCPj4FAAAAAoLqbgUAAAAAgnqiBQAAAAGBf2oFAAAAAIDvjgUAAAAAAABuDQAAAAICAaYNAAAAA4H3Kg0AAAADgoOaEQAAAAOA1FYVAAAAA4AR7hUAAAABAa7KFQAAAACDJLoZAAAAAQIs6hkAAAACgCXaGQAAAAIDs0IZAAAAAYHZ8h0AAAACg1rOHQAAAAKC7m4hAAAAA4Ea7iEA= + KBZXds7jZUCJy7y2HKVqQNzlv3T/InFAsyNeuPyCdECjQFSuF1R6QNrkpS+rk3xAtU3085dCgEBk0VLGDOKBQBZRw93qWoRALtkbeY76hkBDV2iDTIOHQDo26LGDG4tAcpwUIAdDi0CeY7LODzSOQHLLAkqzy45A0OjTdwr6kEAZIiuFMx6RQDCl/VdkspJAGtmlFTb+kkCwvPRsunaUQMzvCiR8ipRASN9Ku5dWlkBSHnHA9pqWQF9iHY7I6pdAN6LVmTcnmUAQ5AQD8vaZQLORFTFT85pAwvppETiDm0D9gefOfvecQHQRzx9+z51AeXEnZprDnkAmKDQuxFufQBZERjrwJ6BA - + - YOgdQBeXRkD6QZ0/Hup0QO/TQkD7FkxApAMIQXzJF0AH/EBBlreUQElRp0CIvZNA1c09QKUXsECZpjxAgpJGQOxackBhteY/PxiUQNFlT0Ag4UtAmOKeP/ZbDkAkO6RAYEwbQQVUPUB80YxA5EudQJW2+D+VnzxBoXIhQEafnUCdvSJBzbgLQRb+oEBc3N9A3uX1QAHw60AUORtBBPe/QGltEkHEASBB16jIQGGNkUBAZS5BbsMKQLKQU0HdI9pAtIG7QVYKJ0Ae4Q5A7xL4P2QKfUCZTxhAmymuP6fVA0FRgY9Bra7GQPB+rj+2WOdAbNdvQJI9PUAHayZAlE+pQRNSMUBhnsJA4EglQW4GD0COGRZAiWWDQGdDdkFKCC9B3vFhQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwLgCXUAAAABAIgNeQAAAAKCy119AAAAA4FkhYEAAAAAAFURgQAAAAGBdo2BAAAAAwOOCYUAAAADAs2RiQAAAAMDeWmNAAAAA4EigY0AAAAAAgDplQAAAAEACZGVAAAAAQD1EZkAAAACgzqhmQAAAAABE4WZAAAAAAPgFZ0AAAADgAyVnQAAAAGBpRWdAAAAAwMGtaEAAAAAAOMVoQAAAAAAC3GhAAAAAgJMkaUAAAACgW8hpQAAAAKAzImpAAAAAgL1IakAAAAAgfWBqQAAAAMC6a2tAAAAAgDsibEAAAAAABURsQAAAAADkZWxAAAAAAMOBbEAAAABAMaZsQAAAAED0w2xAAAAAAI3hbEAAAADAmSNtQAAAAECAQ21AAAAAwK6CbUAAAACAh6xtQAAAAIBSCG5AAAAAgKRDbkAAAABAn4VuQAAAAIC4pG5AAAAAQEfBbkAAAABAseRuQAAAAMCSAW9AAAAAQE1Ab0AAAAAALGdvQAAAAIAtoG9AAAAAwCjTb0AAAACgshBwQAAAAOB/KHBAAAAA4Ck0cEAAAACgjUFwQAAAAIA3U3BAAAAAoCqEcEAAAABAf5RwQAAAAKCFpnBAAAAAYJmxcEAAAABgAfVwQAAAAMDmAHFAAAAAYN0QcUAAAACAjCFxQAAAAMDJNHFAAAAAwFNCcUAAAABA3lNxQAAAAIAtlHFAAAAAIOq0cUAAAABgyMNxQAAAAMC97nFAAAAAYMcQckAAAABA/CFyQAAAACDCNXJAAAAAIK5TckAAAABg12VyQAAAAMBWkHJAAAAAAH+hckAAAADALbVyQAAAAABcwnJAAAAAoCbQckAAAAAAE+FyQAAAAGAaBXNAAAAAQEYqc0AAAACA+DNzQAAAAOCoRHNAAAAAwGhSc0AAAABg/29zQAAAAMCIe3NAAAAAAMmSc0AAAACg2bpzQAAAAAAqx3NAAAAAABXUc0AAAABAWvJzQAAAAMApAHRAAAAA4N0VdEAAAABAf1R0QAAAAMDKbXRAAAAAgNeBdEAAAAAApZJ0QAAAAGD+rnRAAAAAQB3UdEAAAABg/OJ0QAAAAMD27XRAAAAAwC0VdUAAAABAdid1QAAAACDTNHVAAAAAwP5DdUAAAABgnG91QAAAAKBbg3VAAAAAQPmVdUAAAADAY6V1QAAAAOBS3XVAAAAAYLj0dUAAAABgewN2QAAAACDhFHZAAAAAYNX2dkAAAACAghR4QAAAAOCwMnhAAAAA4AvBeEAAAAAAvBF5QAAAAGDjIXlAAAAA4E8xeUAAAADA6HR5QAAAAOAa03lAAAAA4KCCekAAAACgQpN6QAAAAGB46XpAAAAAQDZUe0AAAACghGd7QAAAAKB/pHtAAAAAwGXFe0AAAADAjkF8QAAAACBQTnxAAAAAYMmifEAAAADA0c58QAAAAGCdVX1AAAAAYORlfUAAAADAVXd9QAAAAOC1An5AAAAA4BlCfkAAAAAgSUx+QAAAAMA+c35AAAAA4MeBfkAAAADAeBZ/QAAAACDEJX9AAAAAQIhmf0AAAADAdHJ/QAAAAMDp8n9AAAAAYGsagEAAAABgTyOAQAAAAGAi0IBAAAAAID3bgEAAAAAAXuOAQAAAAMCMCoFAAAAAQBgygUAAAACA6byBQAAAAKBUQoJAAAAAAFBLgkAAAACgbJKCQAAAAIAhzYJAAAAAIAQig0AAAAAAvymDQAAAAOBeW4NAAAAAINiyg0AAAAAgYLqDQAAAAIAmQoZA + NrgMGZxjYkDiYBUjzERuQKPid1q/wnFAwrCYsIuSdUBm6RUuZfN5QLBumA36wnxA518q/KgpgEAWItWzPpKBQOeOGCZVsoNAFlHD3eoahUDnvQZQATuHQBaAsQeXo4hApagP/cJrikBK69BsjdOLQJyHjyv6A45ArO6fVuDrj0DiQ4t9Bp6QQPhYzH4sGpJAYluCklxikkA= - + - xc31QMZwREBgdpNBbB+SQ/gPx0KGUiBDotQsQGYa8kLcbFVBG5o5QJmEokAWiL5A1g2OQTLntEFL4IRB5XWLQUWPK0D3ThNBhBEtQVSje0EcBrJAUXqFQO9nQEBs7UBCyY2TQR5hAkGV2y9BJpzHQFoYokNu0TVCFIefQLbOCUHgwaxBC/pdQDDbkUAJZYJAskgrQIVXH0GAowJBBklLQR3MqET8FYhB5v1kQvCCykHTlzdAtvZ7QVSjHkAWoxlB8iA0QTBRvT9vbTJBkJoQQa9jTUDj0ClCkBaZQKrPpUGcAdBBrjzNQEstXEE7iYZC4uw3QGNIGkJQTh5AZJAFQni78kFbh5tBSsQhQAH6GUEkoJdB3v/uQ/zFU0FfrlxBp8hbQeJsI0GXtStAr/krQLemq0LBtTVBbLD0QFcrBUDhgStAZXl2Q0ynXUIrd0VBZgiuQMzF8UIHQDpBLFIKQfXu6UT673pB/TORQUI0i0JmZ3FB5EwNQfQ1jEAolYFBGlgEQfPuqEBB05dBVcowQQO8zUFksrtAYmIHQbKobkGJKOJC9qwXQVDm3kASiwlCwFYvQUDE7kG+8MtAdiEIQ8zC2UHMeahBBEeTQNf3REA1Oq1CGs9RQeFczUC3PohDhVl1QQDRpEGcVgVARH6lQu92B0GhgYVBGeKsQbafukHvw/A/wDtZQbJGvj/Ui2hAoPzPQRaBcEEydk9BDnJ6RMkEhEF2aX1BSkYPQSABSUHWfrtDZ8LSQD4I30HIMS5CZnoTQfwuzkBV5StA6FOORPCJI0IHqcZArKeiQVkWnEAD5VFAp9FpQaYWI0FGa0tBA+joQHxRLkH+tg1B3slHQ79apEIHi4hBdHb/RHsyokHrd5lA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4CbhZUAAAACAAaVnQAAAAEBqR2lAAAAAAOOhaUAAAABgmeBpQAAAAMCoR2tAAAAAgIR1bEAAAABANiltQAAAAEBSAm5AAAAAQMpJbkAAAADARjFwQAAAAKCAQ3BAAAAAIJCFcEAAAABA5KNwQAAAAMArs3BAAAAA4LNucUAAAADAH55xQAAAAADyI3JAAAAAQK1mckAAAAAAoDRzQAAAAMBZQHNAAAAAQBcUdEAAAACAHSV0QAAAAMBDdXVAAAAAQGjjdkAAAACAzTR3QAAAAMBN8HdAAAAAQOxGeEAAAAAAj1Z4QAAAAID00HhAAAAAAKKTeUAAAADAhvh5QAAAAADjVHpAAAAAACySekAAAABADVd7QAAAAICRd3tAAAAAgGG1e0AAAADAwcB7QAAAAMBCB3xAAAAAQCcSfEAAAABAkCJ8QAAAAED6dnxAAAAAAN+EfEAAAADAU8t8QAAAAEB8LX1AAAAAAC9WfUAAAAAAV4J9QAAAAMD3nH1AAAAAQNLFfUAAAACA6+x9QAAAAEAiGX5AAAAAwJksfkAAAABAKdJ+QAAAAMBpJX9AAAAAQN91f0AAAABAQqZ/QAAAAIBmvX9AAAAAwOvwf0AAAADgUAqAQAAAAMAQMYBAAAAA4O1NgEAAAACg932AQAAAAKDNn4BAAAAAINmogEAAAADAwLGAQAAAAGDpt4BAAAAAoA6/gEAAAADg/tiAQAAAAKBg4YBAAAAAoPbmgEAAAACA7PyAQAAAAOCxWoJAAAAAYEFsgkAAAACgBHWCQAAAAGBsg4JAAAAAADmbgkAAAADgNuOCQAAAAOAdI4NAAAAAAPQpg0AAAADgk2SDQAAAAOBBeYNAAAAAIN/Cg0AAAAAgbMyDQAAAAKCz0oNAAAAAINXag0AAAAAgiuODQAAAAGDY9YNAAAAAYO4dhEAAAADA1CmEQAAAACBEZ4RAAAAAYK56hEAAAADgk5iEQAAAAKBzroRAAAAA4HHMhEAAAADA7Q+FQAAAAGBXaIVAAAAAgBWyhUAAAADgf/+FQAAAAOBoIYZAAAAAINNQhkAAAADA7GiGQAAAAOCpb4ZAAAAA4Am1hkAAAABA5suGQAAAAOBn4YZAAAAAQCnzhkAAAACgizuHQAAAACChXIdAAAAAAJnAh0AAAABgeu+HQAAAAGDZC4hAAAAAgCw0iEAAAACAW1uIQAAAAGCIdohAAAAA4DnFiEA= + KBZXds7jZUA= - + - LvkFQOMRa0C0EH5AWP19QCFDlkDgspBA3YUXQKh1l0G4KQZBAQWkQJ/b0z+ojsVBeUjBP0bZeUC/D+Y/kPcXQeh4DEB+98ZAizlXQEhVH0Ed7r9AJ6ASQc0LWUDM0wtAp6A4QWa2b0DXSL9AEG5TQQNgD0GIvgNBQG1+QVVq9EHMnypAAK7sQIx4A0GEJD1A5jK4QBH0gEBrwEdB+RweQMhUCUFlJNdAecxVQLDkBEIz9BRAkNdUQDwv3kGweSRBUa4dQfpwREKicQ9AHnJCQYhtSkAQz1dAkIiOQU/TkECrDDxBaMNrQSxWQEGEV6hALUBQQUQz0EEGdyZBS1MCQS4qkkEypJZBvZWIQfyq60D7lkdB0vJ8QWQmG0I0+1NBVFbfQEmFKUH9sLtABS6CQformEHGvwdBOQ1VQYmZM0BsJhRCcgTwQd3nqUGVSyhBo0TaQYD2i0ELBclA+dMiQWI5E0G5H4dAQL0RQWJE/kB/5tRBQTH6QDuXK0FDbfFBUP+FQZddiEBRirtBgBVZQEQBR0OMfj5C5GgoQ1dV/kAs/CFBQ64bQTSjQEGyUZFBFTGmQSlfMkF20XRAQMIGQocokUDXN5ZA8NmOQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYKsfa0AAAAAA0uptQAAAAIAtY29AAAAAgEKecEAAAAAgEtFwQAAAAKAcFHJAAAAAIPtcckAAAAAgKmR0QAAAACAWf3VAAAAAwF12dkAAAADA/UN4QAAAAMBkx3hAAAAAQNMOeUAAAAAAW9d5QAAAAIBxEHpAAAAAQOtyekAAAADAfaJ6QAAAAEAU2X1AAAAAgP0ifkAAAADAJtd+QAAAAEBlTH9AAAAAANRXf0AAAACgfWKAQAAAAODKkYBAAAAA4BfUgEAAAADABP+AQAAAAIB0I4FAAAAAYFxjgUAAAAAgSZOBQAAAAIDxn4FAAAAAIB+5gUAAAAAgsv6BQAAAACAXZIJAAAAAoKtsgkAAAACgbryCQAAAAKAUzYJAAAAA4CzsgkAAAADgDxiDQAAAAGC2JINAAAAAYFlAg0AAAACgM0WDQAAAAEDxaoNAAAAAwAWrg0AAAADgKuWDQAAAAKDI7INAAAAAgOQLhEAAAAAgdzaEQAAAAKAkRIRAAAAAAIlnhEAAAABAU3eEQAAAAGCpiYRAAAAAIGvEhEAAAADgL8GFQAAAAADP04VAAAAAoDMghkAAAACgc0CGQAAAAEBpa4ZAAAAAgN3chkAAAADANkCHQAAAAMDP6IdAAAAA4FsSiEAAAADgwEWIQAAAAOC10IhA + NrgMGZxjYkCJy7y2HKVqQMZtNYzMxW5ATOxPqX/jdUDjFPeZPnR2QExKLP3X9HxAa5vo5y8Ff0BEdlLpw0qBQB0EFi2jEoJAcXz3jiVzhEAdMwRXT5uFQJ6CnDSHm4dAqq4t0xGciUC801gf3yuLQHHa0+J9pIxAIAEjPGtEjkCC3TuPalaQQKQA1QU/vpBAEQaahJYekkAkGMwalYKSQJEdkZns4pNApC/DL+tGlEARNYiuQqeVQDNYISUXD5ZAJbVLFkxDl0B9SPPCQhOYQNfLsCSSz5hAYV7GyniXmUBm9A4avpeaQCcc2wjal5tAfXfh7O4rnECnM9IdMFydQJT6s78fwJ1A2w5jujWknkAjIxK1SyifQD647wY5ZKBAUp0E5VB2oED+Q2sRZEahQCPOwg5viKFAV8+dGIcMokDjWT4ZmmqiQA== - + - +hCuP1xzukDqBg9ACG7JQLFMXEEV+OtB5kR5QJNGBUHA2k9AHWeIQO/br0GXybhAekPfQdgY0z8msYNAblciQXfsmkCz35RBUmnmPzMzGEBx05NB6fipQeK6ZUDSNnFAenACQCOADkCnuwpBl6vMQMbgN0GudXpBBDfJQJub4kDrD5tBcG0NQRq4k0DTlD1BNf4pQVrGEkHlXi9B4/INQXff/UDTp6hAkxwdQQWiLkHeM01AP9IqQKntDkAU9cI/4o7DQL36kEB9bopAX6toQDdTPUCWaps/ijaxP8hsLUE4hxdC8/LFQbyf0z/zlM1ADrF9QJy060A4MXpA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAANg/cUAAAADAkgR1QAAAAEB3Y3hAAAAAgE4Te0AAAADAMo1+QAAAAIDIx35AAAAAwBP1fkAAAAAAC1l/QAAAAECHB4BAAAAAwHshgUAAAABgrV+BQAAAAAAq3YFAAAAAgPmKgkAAAAAgLg6DQAAAAGCegoNAAAAAIPknhUAAAAAgsTmFQAAAAGBnfIVAAAAAYI0ChkAAAADgvoqGQAAAAEARoIZAAAAAoPvlhkAAAAAAgGKHQAAAAIB6s4dAAAAAIKHch0AAAACgGPSHQAAAAMDnAohA + KBZXds7jZUD60UzrnGVsQNS+X4D+xG5A6yam0jxjdUBqPQyU13N2QIeOyH4vBHpAsoE6DFWUfkBoaXt7VhKBQKZ0LtyjmoFAaJhppQKbhECdU64K2zKFQJPC66dO04ZAnYKcNIe7iEA= - + - AsG8QPhLEUFE+JxAe5fLQOI78z8EQABBS0xOQDXMfkD+FqtAQNT/QLuI7z/4X0tA7G8TQArZKkBsIxtAbQH6QEdTCUFwkKxBRpmMQO9o2kHKRbQ/bUfLQEDsnkFaImJBMqYzQRDNa0EqBmFB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAAAQGZkAAAACgl2hnQAAAAMC+q2dAAAAAIDulbUAAAADA90VuQAAAAKAWo25AAAAAADlhb0AAAACAybNwQAAAAKDvv3BAAAAAQEHRcEAAAAAA4A9yQAAAAICrdnJAAAAAoOfzckAAAAAADVR0QAAAAABQfHVAAAAAgJ4ddkAAAABA7zZ2QAAAAICCeXZAAAAAAHi2dkAAAACA9BN5QAAAAECUMHlAAAAAwIGveUAAAAAAh815QAAAAMCL5nlAAAAAQKoRekAAAAAAWTF6QAAAAACAyHpAAAAAQHBje0AAAADAUwl8QAAAAMA+YnxAAAAAQHXofEAAAACA+CR9QAAAAEDjQn1AAAAAgOynfUAAAADAeNJ9QAAAAABs3X1AAAAAwAr1fUAAAADACAx+QAAAAAAKVH5AAAAAwFLxfkAAAAAALjF/QAAAAECPg39AAAAAQLvsf0AAAACgyDKAQAAAAGARcoBAAAAAgCB7gEAAAADgfZaAQAAAAODymIFAAAAAQLs5gkAAAADgW0qCQAAAAAD8yYJAAAAAAKj7gkAAAABg+omDQAAAAMBVk4NAAAAA4NUjhEAAAADg2+eEQAAAAGDfh4ZAAAAA4PD+hkAAAAAgB/OHQA== - - - - - - TGeFQEaSsEDDmphA/iIMQNviPUHDgZw/+oV5QHMOiz9SPnNALRBTQY+swj/VQg9AmTgNQKMLT0AFkuY/ssy3QFdsh0DMBq8/2ngdQOR370CJ+pBBcHshQDIL6kCJxAJA7hCvP+elr0Bh1L1A5Gj+QBwJ/kBqPIxALiSdQAejJ0GcsoFA88XtQP+fAkEeax5AG31DQcGTAkCe+T1By5htQahmlUE4bxNAx6ZBQHH8j0C4M3pBn00WQe/CrEBnhvhACrNDQDy6uECcOexAZR1nQO50zEFj941Bh65fQFcJdEFRdwlBhNB8QQD4OEA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYNnHV0AAAADALUVZQAAAAEAuwllAAAAAAFaNWkAAAAAAFI5bQAAAACDRxltAAAAAALlMXEAAAAAgaH9cQAAAACCt0FxAAAAAwG9AXkAAAACgSEhfQAAAAAA6ImBAAAAA4O1GYEAAAAAggKVgQAAAACBC5mBAAAAAQC7+YEAAAADAHEBhQAAAAIAsamFAAAAAwGijYUAAAABg+8NhQAAAAACp3mFAAAAAIKYjYkAAAAAg6GRiQAAAAICgiGJAAAAAgEAEY0AAAAAA6R1jQAAAAEBfZ2NAAAAAgD6/Y0AAAAAAR99jQAAAAAB2IWRAAAAAIGlJZEAAAAAAYGZkQAAAAAApomRAAAAAgKPJZEAAAACg6N1kQAAAAGDcBGVAAAAAAAAnZUAAAABAm0plQAAAAGDMaGVAAAAAAOSYZUAAAABg3LxlQAAAAEBa5WVAAAAAoNwQZkAAAADA2j9mQAAAAIBFwmZAAAAAQG/hZkAAAAAAyv9mQAAAAAArKGdAAAAAwAVHZ0AAAAAg72RnQAAAAMBFgmdAAAAAIEGoZ0AAAABAhudnQAAAAIDSCmhAAAAAANEkaEAAAABApkNoQAAAAICxZmhAAAAAAIB/aEAAAAAAjKNoQAAAAMBgwmhAAAAAQI3kaEAAAAAA1/9oQAAAAMCEg2lAAAAAQIChaUAAAACA47xpQAAAAICJ5mlAAAAAALX+aUAAAABA1yJqQAAAAMD1QGpAAAAAgI2EakAAAAAApp9qQAAAAMCQ42pAAAAAQD8la0AAAABAVYVrQAAAAABDnGtAAAAAALO9a0AAAADAa+JrQAAAAADUCGxAAAAAAGwobEAAAADALcdsQAAAAICx5GxAAAAAADoEbUAAAACA2CZtQAAAAEDBQ21AAAAAQBxkbUAAAAAAwnttQAAAAEBAo21AAAAAAE3EbUAAAACACeVtQAAAAICkA25AAAAAQDo2bkAAAACAmp5uQAAAAIB3xG5AAAAAAL7xbkAAAAAAbQlvQAAAAADmLG9AAAAAAL9Bb0AAAABAIl1vQAAAAIDNgm9AAAAAQJupb0AAAAAAS8VvQAAAAICI429AAAAAwFECcEAAAABAPBRwQAAAAMB0I3BAAAAAwNAxcEAAAAAglGxwQAAAAIAQgXBAAAAAIDaScEAAAADgF6pwQAAAACAvvHBAAAAAgF7UcEAAAABAvOJwQAAAAKDCDnFAAAAAAC4pcUAAAABAOTNxQAAAAICHQ3FAAAAAIDxUcUAAAACA6WJxQAAAAMCMcnFAAAAA4DCHcUAAAADA2ZhxQAAAAKDqsHFAAAAAwOzBcUAAAABA8tFxQAAAAAD3z3JAAAAAQJeUc0AAAAAAb6JzQAAAAIBlDnRAAAAA4IAldEAAAABg4oh0QAAAAGCslnRAAAAA4JWtdEAAAABgfOd0QAAAAKAsPHVAAAAAYJNGdUAAAADADZt1QAAAAIAOunVAAAAAgHDodUAAAAAgMPJ1QAAAAACIInZAAAAA4CZBdkAAAAAgIFR2QAAAAOA1b3ZAAAAA4LmZdkAAAADggbp2QAAAACDLyXZAAAAAwD7VdkAAAADgUUN3QAAAAODXk3dAAAAAoBumd0AAAACg4sJ3QAAAACCaAHhAAAAAYCEieEAAAADAond4QAAAAGBOkHhAAAAAIOWdeEAAAAAg57N4QAAAAMD763hAAAAAINIDeUAAAAAAkQ95QAAAACCZG3lAAAAAIPgleUAAAABAFTJ5QAAAAID8UXlAAAAA4E13eUAAAACgxpd5QAAAACAkp3lAAAAAQM69eUAAAACActN5QAAAAIDN5HlAAAAA4Nz+eUAAAABg4S96QAAAAOBWU3pAAAAA4DljekAAAACg49F6QAAAAGC7d3tAAAAA4Labe0AAAADA6rR7QAAAACDHNHxAAAAAoLxifEAAAABggnp8QAAAAMBS+HxAAAAAIKAkfUAAAABAEmN9QAAAAODWg31AAAAAQLfEfUAAAACgSPR9QAAAAKDcXH5AAAAAoLdzfkAAAABACJJ+QAAAAECzon5AAAAAQM21fkAAAADgkcJ+QAAAAMCf235AAAAA4H4Zf0AAAABAq7J/QAAAAKCEw39AAAAAYGzTf0AAAACg/gGAQAAAAIBFEoBAAAAAQPwagEAAAABgEzKAQAAAAOD8N4BAAAAAgERUgEAAAAAAWGKAQAAAACDnc4BAAAAAoOt6gEAAAABgR4OAQAAAAGC+8YBAAAAAwN75gEAAAACgdyKCQAAAAMBqXoJAAAAAYItkgkAAAAAg0KuCQAAAAGCui4NAAAAAYAaTg0AAAACgwyGEQAAAAID9aIRAAAAAQLNwhEAAAADgu4OEQAAAACD/+oRAAAAAIFkDhUAAAACgj4iFQAAAACCSQ4ZAAAAAoJTKhkA= + NrgMGZxjYkBDHc6DfEJxQM1e+AjRYXFAXLZEKKlyd0B+v0ZZLGN4QA0Xk3gEdH5Al1i9/ViTfkCk3AUnWsqCQN+MgroDUoNA - + - KWBwQLLSnD+o8nxArpp5QAgvrEFKj31AU1MYQEZcjUDP9NI/YqO0QIDuPEA1o7lBDEyuQXd7FUBWdaZAdYNCQWmFmkB2vqJAQuXVQNL1B0LmcUFA0wCdQAHqmEGslGZBkIEhQGKFIUErKYs/3rGFQIX4k0DGHxRAaze9P8pb9kA6dYdBFMM6QJNR1D/cPiJA6e/TP+ns1ECe/7ZA2fO+QAiJDUEOrddBQC8AQb9tKEHrJAxB5YoFQCU3B0Fi375BhYiKQb9DgULNkKNAwBcMQEEwNECaTlpBNxcgQfkSIUFo+YFBivFwQOP/9ECQtyBBuCHrQA91l0FquC1BuSxiQR+IOkCmCQ5C9Ly9QO3zXkF4nQpAHV2GQXgweEBAcdBActwEQcfvTUH0qOU/UehFQRx5oUHcCNQ/wH6IQKJX10ExA2tAGU0eQbPqE0FBVbhBlT7LQAbs+D+wmHNBRoQDQS7XfkCeyvNBN+QqQFCTXUBW9SVBisnbQNL/e0JLdxNCCQTVQqQKqkLEiNhBcSyXQcPa0kA9TR1AtWb+QIBxQ0FCWqJCWugjQfJMgEGS+49DKfm9QoKIAULBuRBC0nWkQZljfkGkhkpBHzkfQiJOq0LH601C4ZucP0MhB0JzuAhC0hUDQobnYkLvEJlB8wTZQFDzmkHuLXVAhP2hQHGilEHNKlNBFb6cPzSWE0J11JFBt9w4QailLUGg1kZA3AitQFLWSEFScMVBjwyxQclTw0CrwTRAXO/MQctaFkCTvnBASJUBQd4GS0KufSFDL4EuQiRjnUC6GnpBrwvBP2Kvl0EkcNQ/7RYYQIjRtUEsKBpCfDirQP1XGEIcev1BckVIQl94XkKySm9CeCGsQT80j0CU0JpBYgo2QcbHlkSxreBAfNR5QNvpwEL+ZOhBqA4dQczazEDdw9pBzFGBQC5CwkDcRslAPTlZQMKp1EDTS1ZA0ElEQClUbEC0i61AifKJP/NJ/kCARhRBQUrvP8dtkEE3X8tAGPCaQPQxJkBkyoxADB+dQc0ve0AECttAE+eJQAihFUE7cRFCeYbUQImeTED87V9BYgK5QI40eUGL5tJAlCMAQdSECkBz9WVDt3ZPQvNHF0GD4gdCmMfUQNPlA0EHMwBBgUYHQbE6fkBd4shBWjPUP7pNFkG6TAFApnH2QMTTU0EXJcNBvJjFQJTDd0G3DtQ/mIYkQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIKHaZUAAAAAAbKJqQAAAAMDgKGtAAAAAACtsbEAAAABgzyRvQAAAAMDZ4G9AAAAAAFdVcUAAAADAQBRyQAAAAAB3VXNAAAAAQCWcdEAAAAAAOdN0QAAAAMCnFHVAAAAAwGyUdUAAAACAE9F1QAAAAIB1NndAAAAAAA1zd0AAAABAW0V4QAAAAMBHlXhAAAAAQMYzeUAAAADAU4Z5QAAAAIATMHpAAAAAwCNEekAAAACACZB6QAAAAECax3pAAAAAgJAIe0AAAABAdGJ7QAAAAIDmontAAAAAwBonfEAAAADAgq98QAAAAADJz3xAAAAAQMoGfUAAAACAxwZ+QAAAAMBaL35AAAAAwOFofkAAAADA7+V+QAAAAMBAv39AAAAAADTzf0AAAABghh6AQAAAAGCGYIBAAAAAoBeggEAAAAAgCqaAQAAAACDar4BAAAAAQJS/gEAAAAAAnMaAQAAAAKDm2oFAAAAAwGdjgkAAAADgInCCQAAAAODPI4NAAAAAgEZMg0AAAADAToqDQAAAAMCkPoRAAAAAIDTdhUAAAAAgWmyGQAAAACCEdIZAAAAAoNDhhkAAAADgm+eGQAAAAMDx9YZAAAAA4E8Jh0AAAAAAYzSHQAAAACDVcYdAAAAAYE6sh0A= + NrgMGZxjYkA= - + - Rj4TQefWRkDjoGJAtYpUQBp09z9wMSdAf1eBQZ72E0Jh6xxAv4LwP743mUDs+UBBq3sLQOZI+T+PciZBm5TCP69L40EdXkZBvFw8QH4uAkH+tSFAJc8rQQ31nD8fbldBq1OWQDAhf0BMgTlAxjACQUbiJkFVpoZBepiPQDtFGkEzl6hAmpRmQc6rq0AjpVlBi5ovQAqrdkAMQ15BrLu8QT8GiUC8DD1B4bTmP4VUNEAy7TlBe1xjQpiKFEHRXMZAHW8YQKQh1D8nxYZBRIL/QBaYNkHaWOI/Bp+iQaPqPUF9fSFAm4cYQGTho0AMlhBBCtjiQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwO4FYEAAAAAgrgRhQAAAAMBuaWFAAAAAwMzhYkAAAABgQ+ZlQAAAAEDOaGZAAAAAgMIoZ0AAAAAAYUVnQAAAAMDpq2hAAAAAgA0fakAAAAAg1UJsQAAAAMCoi2xAAAAAQCfkbEAAAACAyQVtQAAAAIC7I21AAAAAABtkbUAAAADAQ6ZtQAAAAEAeX25AAAAAAM9mb0AAAACA0aBvQAAAAKAKGHBAAAAAYMExcEAAAAAgL0RwQAAAAGA0cnBAAAAAYMx+cEAAAADgfpxwQAAAAKCjyHBAAAAAQKVBcUAAAABA/nRxQAAAAEBjwHFAAAAAQMnMcUAAAABAUANyQAAAAOCMcnJAAAAAIGaCckAAAAAA/sdyQAAAAMC27nJAAAAAwBpCc0AAAADAI5RzQAAAAMCY6nNAAAAAQOVIdEAAAADgP3B0QAAAAMCcoXRAAAAAwIq2dEAAAABg8MZ0QAAAAMCo/nRAAAAAwCoudUAAAADAdFJ1QAAAAKDCYXVAAAAAQG1udUAAAACAhYV1QAAAAEC7xHVAAAAAwFQ2dkAAAABgrk12QAAAAIDnbXZAAAAAIG/CdkAAAABAtuB2QAAAAKA4AndAAAAA4E0Sd0AAAABAgjV3QAAAACApY3dAAAAAgLFzd0AAAADANod3QAAAAIBsr3dAAAAAAI7Qd0AAAACg9eB3QAAAACCA/3dAAAAAAPIbeEAAAADgZUt4QAAAAGBeVXhAAAAAACeFeEAAAACAXJN4QAAAAEBy03hAAAAAoIDxeEAAAABAv/J6QAAAAEAIc3tAAAAAYNG0e0AAAABAbRl8QAAAAKArcHxAAAAAYKOwfEAAAAAgW9B8QAAAAKAEMH1AAAAAYDVHfUAAAABg0uZ9QAAAACAFPn5AAAAAICFKfkAAAADAopd+QAAAACBAxH5AAAAAYM3VfkAAAADgT/5+QAAAAOA6jX9AAAAAYC7Jf0AAAADA6fF/QAAAAGCKJoBAAAAAwEM7gEAAAABgikuAQAAAAGD5YoBAAAAAYGiJgEAAAAAAWZ+AQAAAAAC1vIBAAAAAIO/WgEAAAADgIPuAQAAAACDaOoFAAAAAIA5UgUAAAADgQlmBQAAAACCKkYFAAAAAgA2XgUAAAABgv6KBQAAAACC18oFAAAAAwNn7gUAAAADgbjOCQAAAAEC0XIJAAAAAQBFjgkAAAABAsZSCQAAAAKDg2YJAAAAAgLvfgkAAAABAcSmDQAAAACAdloNAAAAAwHfEg0AAAACgaMqDQAAAAGB37INAAAAAQBgShEAAAACgTSiEQAAAAIBQMIRAAAAAQHtohEAAAABgva6EQAAAAGC2toRAAAAAgBZ0hUAAAAAAim6GQAAAAMBddIZAAAAAwI3dhkAAAACgOPSHQAAAAGCcOohA + NrgMGZxjYkAAVPW5y8NqQAoahmk8YnBALCOImr/SdUDHBI8W/pJ2QORVSwFWI3pALIFk7hfkfEAfsUqmDDqAQFCTEu+DcoJA5tzwtXhCg0BHcpIduwqGQHq9lPHPSodAEXpb0Dwji0De6l4OXOOLQC/LF7uUs45A3hlNOAhsj0BJ/PBrEOaQQDgPZ+gkEpFA+xJWelZykkAcJTrwWpaSQEUDKBiCdpRAZhUMjoaalEApGfsfuPqVQBgscZzMJpZAcps77NhWl0DKQtaqErOXQPKyMgEvG5lAWWs0oD57mUCkyZcPdWebQD7vmHl/B5xA7rlpraBrnUC63tgQm9OdQNLPPLXW755AFwjJDNfTn0B1qQfEA0KgQJkzX8EOtKBAyw/gkBbMoEDvUAD3JnqhQPK+kcgx2qFArUigwjRgokA500DDR76iQA== - + - 19i+QACTA0GqjgVAye1dQP8MHkGHLPk/CSSWQLszwj/wGtBAduJbQfj5+kB7zc1A4DHVQLJrAUC4xL1AepYOQCn2y0DyJ+Y/BkgIQVic9kDijbRAo5UyQftzp0E7+t5AmiC6QPQZa0AvMRNAKWhnQCvUA0Gt9Y9AWulkQc4KokBK6dZBqUFcQJo4GEDe4WdA1zrLQCr+j0BK0BtBDhnRQEyd30A4LrRAZjYhQubIAkDHf/hAVgDMP2T+HkK54CJBjgGLQAjs8kDABj1A9hZYQEc4hEGx9+RADTxZQEFPCEGmCHNBYB4iQs1gCUF2WMdAo/0aQcns+D//WL1Au7yrQBxcT0B7x0FAnh7UP/l2ekEVzK4/YdqAQayyk0Bz3GhCKOoiQfogBkAUsR1A1lZgQa7pc0GYm3VBcHhhQoqfYEH9Jy9BuiDcQU1pSkJm1YVAdWbBQVjJkUFZGINAYNppQUQtk0GwdjtCUpEnQcbNqEHYSrlCMgsqQLs2NEBLg7ZA93n7QT1fO0E4MsNA3SEeQOXK8T+HVbhAhaEBQfaW90Ax6QpAw8kKQbqK1D9FfQhBO6ZeQXyXuUCzM45BOKeKQCda9UCQXpFAlt6GQfs5p0BhzIlBMGhKQb7Y3UAtvvxABSxMQGWsREJyfUNBdOelQSqnFEJQLjdBfVYPQEFXxkCJFyRBAbjQQJLnVEC7DxtB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQHwHa0AAAACAFEVxQAAAACCUsHFAAAAAYPwDckAAAACAiVRzQAAAAACwA3VAAAAAAKRmdkAAAAAAGgJ4QAAAAMDYHHhAAAAAgE0ieUAAAACApjl6QAAAAECx7HpAAAAAAFQTe0AAAAAAkkJ7QAAAAADMa3xAAAAAgCbifEAAAADAxqN9QAAAAADEsn1AAAAAwESEf0AAAAAg4HCAQAAAAADxkoBAAAAAAJCagEAAAACg4bKAQAAAAGBWuIBAAAAAoKbPgEAAAACg4PmAQAAAAGCvI4FAAAAAoH4wgUAAAABgeamBQAAAAAC4roFAAAAAYDi6gUAAAABgUfqBQAAAAGAEFIJAAAAAoJAagkAAAABgAEeCQAAAAGA5o4JAAAAAQP8Eg0AAAACAvRCDQAAAAOAsOoNAAAAA4Ml1g0AAAAAgOIeDQAAAAIDryINAAAAAYEpAhEAAAADAwlCEQAAAAOC8XIRAAAAAIEuqhEAAAAAAbemEQAAAAEBlMIVAAAAAIKk5hUAAAACg8nmFQAAAAGCnp4VAAAAAoAWyhUAAAADgVrqFQAAAAKC8xYVAAAAAYP3hhUAAAAAgrXKHQAAAAED844dAAAAAgHRyiEA= + NrgMGZxjYkCN7m7sniJrQOJgFSPMRGtAmXHSiBSzdUAKftVJ9cF1QIcv0uWC43xA9TjwE52xgEBUHGoLAyqBQIY9cazeaYNAuEk0KI9ChEDjc7Yq23qGQOhAQJYxgodAd2mei11KiUB2VFpmMoOKQNuWaKjpYoxA2oEkg74bj0DbxVbSleuPQATEZBQQIpFABOb9u/uJkUBOtDayOyaTQOlpYpU8FpRAmKQIUGcqlUCa60kKZiKWQBSUSOeC9pZAGgNBH7zml0DGqq31yEKZQJoaODQSq5lA45x4ADMHm0CrLhLPCc+bQCqxJ/tI65tAqsgeEJ+vnUCj65QGW7eeQPNKX9y/C59AGYr5fcM/oEBrMBny+kegQD0UUXvOsaBAYVVx4d5foUDEu0v5HW6hQCHh7OsJQqJAhEfHA0lQokCo0R4BVMKiQHpsH/MsCKNAZsm+zGGoo0DBgM7tQuyjQCTBXphvjqRACJV96FjQpEDiuP5jfXSlQMgg+fKDsqVAbfpnzZU+pkBTYmJcnHymQJLyUJyrQKdAeFpLK7J+p0AdNLoFxAqoQAOctJTKSKhA3b81EO/sqEDBk1Rg2C6pQCTU5AoF0alAf4v0K+YUqkBr6JMFG7WqQD2DlPfz+qpAYQ3s9P5sq0DEc8YMPnurQCGZZ/8pT6xAhP9BF2ldrECoQGJ9eQutQHokmgZNda1AzMq5eoR9rUBsr4MKaDeuQBPfaHWaYa5AkPCjcHjlrkBQfB97o8evQI89KhHD1a9AOYM7PNccsEDLo0tv33OwQME/7r7xjbBAq2mJ9PTksEBthYdCAyGxQIsvx3kKVrFATIFXKAqUsUD3DwHXFNmxQF79yw8VFbJA8DBaDSV8skBweUD3H5ayQLbRDkIx4bJANhr1Kyz7skCWl0zHRlKzQOJfjq89jrNAQt3lSli1s0BUopHJXe6zQPTbApdID7RAOSFTF1JWtEDAgssmaHG0QOVm7JpjubRAUqPbWXDItEB3h/zNaxC1QJBSvKeEgrVAVoPMs3KDtUBo/0CbfQS2QPwy9gSPBbZArUSRG4dLtkDbLsbqlXi2QA== - + - PZEpQLq+MkBK6vg/oesFQIOxz0BCFmNAdekTQcibb0DSD1ZBm5lGQLKBrUBYCSZANmFwQL1350ClPjRBUZ/HQNJQVkCWbBhAEKXBP7ioL0CqMBdBTL2nQeoMOUEhxmBAfHoWQYdl40EyYUBC/iMGQeFVlkBLO/1A8IlwQLRLK0HkrAtBZ0XLQL91gUCX3WFB64IJQfNc+T/WCNBAlduVQI48qkFF/eZAeA0dQAMNjEC8g4dAcck8QRWDQkDU6kpAchnRQS5bFkD99gVBgh45QSR1+UAkkp5Aq3BBQQ5r/EHErsRA/4WEQg== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQPUGakAAAABAA8NqQAAAAIARG2xAAAAAQPlTbEAAAACAtF1tQAAAAMBsh25AAAAAQF6rbkAAAACgQAZwQAAAAMB8M3BAAAAA4K5TcEAAAADgV3VwQAAAAMCUq3BAAAAAwN/WcEAAAAAAsBdxQAAAAICQonFAAAAAAPTBcUAAAAAAP7tyQAAAAMDcRHNAAAAAAFnSc0AAAABAQOJzQAAAAEBJKnRAAAAAQEKDdEAAAADAj+J0QAAAAIBsJHVAAAAAQNsedkAAAABA10V3QAAAAACxlndAAAAAQE0XeEAAAADA0T14QAAAAEC5mnhAAAAAgODDeEAAAACAtfJ4QAAAAACrkXpAAAAAQNvEekAAAADAySR7QAAAAICkZntAAAAAQEs9fEAAAABAIlV8QAAAAIBKenxAAAAAADDUfEAAAABAsiV9QAAAAEACNn1AAAAAwPmOfUAAAAAAVJt9QAAAAMDMv31AAAAAwFPUfUAAAABAzN99QAAAAMBHSH5AAAAAwJ+xfkAAAABAas9+QAAAAED35H9AAAAAYAQTgEAAAACAwC2AQAAAAEASN4BAAAAAICVIgEAAAAAgW2WAQAAAAECbkoFAAAAAIOnXgUAAAADAO56CQAAAAABds4JAAAAAYM0qg0AAAACg3VWDQAAAAMAZkYNAAAAAwLOWg0AAAABgPMKDQAAAAICuu4RAAAAAQLCKhUAAAADAM+SFQAAAAGDgHoZAAAAAQIcnhkAAAACgHZKIQAAAACB+uohA + NrgMGZxjYkDGbTWMzMVuQLPFgWSkcXBA4xT3mT50dkB6IBaevKJ2QJwpGM8/E3xA43LT7ZaFfUDsZUjS95mBQI8KpmEjU4JAIA8n+mQLhUDslDb8oyKFQIQ88RbxI4hA7MMkJlCriEBQ8e5C3MOLQOhpuzN9vIxA - + - 2w2PQKRfDECA3a1AyDEmQPUrMkBlOaRAgTiKP8p7A0A3Opw/v3DEQI3sFEAjgME/1okTQQTwVUG0XMNActqJP3sNh0GfZMo/tJFpQDzUhEC+OOg/pNOaQInemkA4WCZALzWxP7gkEUH3I4JBT/wqQWYlIUEkQEBB0ireQEGeX0BjdfQ/SoMvQAnfzUEzaSZBwohRQZnt60D6opxBS8EVQWPIh0ESFvdBr3+rQZXAz0A26F1Asw7SQHZQWUABNAZC7q5DQCTPL0B6AK5AV9wzQGoZOUGKKCRBv7oCQBVRrEAN0kZA9PELQVcgHEHYUChA/63CQZx6pkBIx8ZA/09fQZWnuUBURPxA58Y5QCKsy0HeIKtAS5EYQFUzzECl5pJA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYEGCXEAAAADAxvhdQAAAAEBOQ15AAAAAIE/JXkAAAACAc1BfQAAAAEC3k19AAAAAoC+7X0AAAACgq09gQAAAAAAd5GBAAAAAoIEbYUAAAABAykJhQAAAAIDjZmJAAAAAoGq/YkAAAAAgqgVjQAAAAMBmf2NAAAAAAIWaY0AAAADAJ+JjQAAAAMCzRmRAAAAAAASfZEAAAACA179lQAAAAIAQ7GVAAAAAIGT6ZkAAAACAzitnQAAAAMC6hGdAAAAAAA/JZ0AAAACAZExoQAAAAMAhYGhAAAAAQP3GaEAAAADgpiNpQAAAACB4AmpAAAAAYM1kakAAAAAAE4prQAAAAMD6JmxAAAAAwGZDbEAAAADA/l5sQAAAAMClkmxAAAAAQAHBbEAAAAAACg9tQAAAAADgQm1AAAAAQPVmbUAAAABAOsZtQAAAAMAv5m1AAAAAAAoEbkAAAABAGDVuQAAAAMA1Y25AAAAAAKiFbkAAAACAIapuQAAAAABlwW5AAAAAgFEpb0AAAACAuUlvQAAAAADCnG9AAAAAgCe7b0AAAACAj+NvQAAAAMDgEXBAAAAAQOAhcEAAAACgEWFwQAAAAIBzkXBAAAAAAECkcEAAAACAp+twQAAAAMD2A3FAAAAAQDIRcUAAAABAyyFxQAAAAKCsNHFAAAAAQGNOcUAAAAAAK3RxQAAAAAC6gXFAAAAAgCmUcUAAAABAgqVxQAAAAIDqvXFAAAAA4MnTcUAAAABgquRxQAAAACD57nFAAAAAgLYEckAAAACAyiFyQAAAAEByMXJAAAAAYGJhckAAAAAAxLByQAAAAKAFz3JAAAAAQKHZckAAAAAgbPRyQAAAAMALAnNAAAAAIGEQc0AAAACAYxxzQAAAAACLKXNAAAAAwKc0c0AAAADAclxzQAAAAEDMcnNAAAAAwCKEc0AAAADAWuVzQAAAACDnAXRAAAAAgAcTdEAAAAAgkyJ0QAAAAMDZNHRAAAAAgHVBdEAAAAAAZVN0QAAAAMB7c3RAAAAAYNKSdEAAAAAgnp50QAAAAAAqxnRAAAAAIMsAdUAAAACAKRR1QAAAAOAnKnVAAAAAAFxgdUAAAADgO251QAAAAGDweXVAAAAAoP2GdUAAAABgZKx1QAAAAED0wHVAAAAAwOfndUAAAACABQJ2QAAAAECaQHZAAAAAoGNSdkAAAACgS7B2QAAAAMAO4ndAAAAAgMvFeEAAAACAGtJ5QAAAAAAsFnpAAAAAIAljekAAAAAgZTR7QAAAAKD0VXtAAAAAoGB1e0AAAADAG5V7QAAAAKAiIHxAAAAAIMgsfUAAAABAvXZ9QAAAAMCLnn1AAAAA4IAvfkAAAABgZ0J+QAAAAEB6Zn5AAAAAoKB3fkAAAAAgmI1+QAAAACBFpX5AAAAA4CjGfkAAAADgJjZ/QAAAAMBAVn9AAAAAQJJif0AAAABgwYR/QAAAACB2qH9AAAAAIIvFf0AAAADg5wGAQAAAAMCOMIBAAAAAYBJSgEAAAAAgqWKAQAAAAAAxc4BAAAAAAE+OgEAAAAAgD8SAQAAAAGDN2oBAAAAAYBvqgEAAAABgJRGBQAAAACAHUYFAAAAAgHhqgUAAAACgPJKBQAAAAEDE+YFAAAAA4DQbgkAAAACg88qCQAAAAIDo1IJAAAAAAE/ogkAAAABgT1SDQAAAAGB1ZINAAAAAoMhyg0AAAAAANXmDQAAAAODn0oNAAAAAgHUKhEAAAACAzyuEQAAAAKAnM4RAAAAAAJFChEAAAADA3teGQAAAAAB2OYhA + KBZXds7jZUDAIFw1+IJuQIkw7CrX8nJA - + - +MDdQKVCrz8nMzRAkqnuQC5YD0DnEY1ARI2vP4SZ2D/RkE1Cls5dQLp7rz/+ellB39gjQbrJn0ADPb0/R4mvP2HJi0Ac3sZAfPxPQNuYy0AD/1hAMYCSQG8GMEBT8qBBlB5CQKjZzUDhbqRAv5C2QA8cpED8AsI/0iJUQfuSbEDzAxRBw6EeQUTXKEGgmaFAwCFeQPuXmUAcqRhAlA3BP1TlGEFxaM1Ako84QGhMYUHIdx9Bt3JqQE5GD0A671lBh48hQHB60kC0bjZCdTBtQdirgUCfDKVAltC6QNu5K0C4ZPRASpW7QKqO40FRILxAw6tOQL46E0E4t8tAzS8YQVE1skA97hNBnWqkQOh5lkDZWBxBslGGQZsp1D+/W+RAf9wyQdtaFEC13eVA5Wo4QC5nh0DyuFhBEmNiQNjxBUAf6RtBjy2dQQR8bkGeAbdA5somQOeolUHOKDdCy3UgQQn9nkCwCH1BZugPQli1MUAA20xCNcA+QhbDDkDLBINCuvhGQDcxsz+SYJ5B+PZPQEbabUDKkydBG4IdQuQ030A27DNBLfmoQLc2z0E7YJ9B4TuWQCJr1kCrQ68/93FXQTATm0DovThA6T+iQT3C1EFo+Zs/Ag2bQGmmgUDyAHpAMWVNQNikukCO2HdB8iArQayJGkHBm9NASqo9QRQx9UChi4FAWxYjQafPYkC2K9FAeSpEQNxbKkK5U8tB9EnvQLSmx0L8sVtB4x6MQ025PkLWtq9AWF9KQGjob0GHXx1BvK7UP0p+u0Aaz9hA72IPQMyoWkHSjBxApCRtQc1WREERwA1CdI3VP9Jx30CQoixB48MMQP8rtEC5hTxB4omKPwvL4kB+1pw/IQDDQXA+NEDxUPBBDwl/QEvYRkAmyqNA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwNAiakAAAABALwRsQAAAACArBG5AAAAAYFLObkAAAAAgOENwQAAAAACRXHBAAAAAoDuHcEAAAAAASQFxQAAAAKDeD3FAAAAAoAUXckAAAABg4iRyQAAAAOBxaXJAAAAAoCN0ckAAAABAvxFzQAAAAABocHRAAAAAwNjedEAAAAAAj6Z1QAAAAIApHndAAAAAgHBQd0AAAABASnR3QAAAAMAghHdAAAAAQGwjeEAAAABAYo14QAAAAMBrs3hAAAAAwOLCeEAAAAAAGwB5QAAAAMDBPHlAAAAAgL2peUAAAACAQMJ5QAAAAEBLlnpAAAAAQLzje0AAAACApeh8QAAAAEBFL31AAAAAgMBQfUAAAABAxlt9QAAAAMDMc31AAAAAADqQfUAAAADAFcV9QAAAAEA03X1AAAAAQIjnfUAAAACA/g9+QAAAAIBgi35AAAAAwE+lfkAAAACA5LJ+QAAAAEDyHX9AAAAAwKF1f0AAAACArIp/QAAAAMBg1X9AAAAAwNPjf0AAAACg5waAQAAAAOAVGYBAAAAAQP1qgEAAAABgBH+AQAAAAKDHnoBAAAAAoOTagEAAAAAgiPGAQAAAAMBDC4FAAAAAYBErgUAAAAAAUD+BQAAAACDVTIFAAAAAoM5agUAAAAAAR2GBQAAAAKCDc4FAAAAAABOBgUAAAAAg8IuBQAAAAOABloFAAAAAIAmbgUAAAAAAjsOBQAAAAIBE04FAAAAAYMzegUAAAACAehuCQAAAAICHIoJAAAAAQBUpgkAAAABg/DGCQAAAAODKO4JAAAAAAB+FgkAAAABgrIqCQAAAAKC0u4JAAAAAQKDCgkAAAAAg+fGCQAAAAIDx9oJAAAAAYMr+gkAAAACgkEuDQAAAAEDxWYNAAAAAgJNog0AAAACg7ICDQAAAACBti4NAAAAA4FKeg0AAAABATcmDQAAAAGCLw4RAAAAA4MjThEAAAADAEBSFQAAAAMBhWIVAAAAAYPxjhUAAAABAB6aFQAAAAGB0q4VAAAAAoHnChUAAAADAY9CFQAAAAGDC7YVAAAAAYD31hUAAAABAChOGQAAAAKACMoZAAAAA4Nk3hkAAAABAMUaGQAAAAGAOgoZAAAAAoJeKhkAAAAAgiteGQAAAAOA35oZAAAAAYPIah0AAAAAgyyCHQAAAAGBtKYdAAAAAQEprh0AAAADgFIKHQAAAAOBY/4dAAAAAoJmRiEAAAACgxtOIQAAAAKDA4YhA + KBZXds7jZUA= - + - DGUEQB71KkAcCLBAFrDkQEx+3kCcihhAD/pLQGtn7kB2ishAAw3CP/R3H0BUMkdAAdh1QATI/UDu+m8/aQ+kQCOVxUCZHzJBdA7CP4KtfkDUTSlANX55QBwMA0Dpa9A/IKU9QHSg40A/MZ5ARlIPQNtTNEBIffpAc8YvQCdWy0Bq2DtBIIAkQScBzEDoWw9A6sh9QWmtjkDORDJB2m0lQU6zFUGdk6ZAJHeNP0i+Q0CSWzJBUYDMQXLnkkEK51hB+iSUQIDFckFMeB1A8xgPQHezCkF24GJBkrLCQOCm0kB7uOJAl93GQCP0V0F+GmxAc7GxQC3znD8pft5As8bOQuTTx0GUyRNBd+m4QNWdVEHG+6RBdHGkQTEUzUHsP1BBueJBQEogDUB1h6ZAPewLQWtgsj88VN5Aq3rgQCdQsj+bH1JB6cGVQer8xkBO35RAFKqLQUTrEkJ0BQ1CNhsEQfjBaEB76CFA6DeuQBMrHUE+5sNByh3kQPPzIEKE+x5BV84TQQ86HUFKxGNBJiwxQbpBOkCQnhRAV5iCQp6GT0EvDx1B8wbEQWsvWkEJ0tdAKPfBQd2uLEFAt45B2GUcQWqNMkGHO0BBKAESQXraQ0FgzTFA + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoOpEYUAAAABAFWVhQAAAAIBGRGJAAAAAYENoYkAAAABAeohiQAAAAACs42JAAAAAAAZlY0AAAAAAzIBjQAAAAOCo5GRAAAAAIN+iZUAAAAAgX8NlQAAAAEDCtmZAAAAAgAveZkAAAAAAZgNnQAAAAADsp2dAAAAAgFulaEAAAABAfyRpQAAAAAArRGlAAAAAgI5ka0AAAABA7adsQAAAAOAHx2xAAAAAgLrHbUAAAACAqwhuQAAAAABU025AAAAAQD/pbkAAAABA+AVvQAAAAAAXJ29AAAAAgIQzcEAAAADA3AJxQAAAAICLJXFAAAAAAMMzcUAAAADg/VNxQAAAAGCpxnFAAAAAADT0cUAAAAAAbsJyQAAAAGBE8nJAAAAA4P3/ckAAAAAAuz9zQAAAAID6YXNAAAAAwCBzc0AAAABAUYxzQAAAAIDQnXNAAAAAwDsCdEAAAADAN4d0QAAAAOB5lXRAAAAAYASidEAAAABAylF1QAAAAMCksXVAAAAAwBzDdUAAAADAedN1QAAAAMCaCHZAAAAAoCYjdkAAAAAA6mN2QAAAAIAXnHZAAAAAQP6qdkAAAADAW7V2QAAAAMA48HZAAAAA4OZWd0AAAACgU2h3QAAAAOAIgHdAAAAAQL2Od0AAAADgdeN3QAAAAOAQ8XdAAAAAoMomeEAAAABAzAB5QAAAAKCZEHlAAAAAwIUheUAAAAAgAEF5QAAAAACDhXlAAAAAoPTAeUAAAAAgM9R5QAAAAMA/5HlAAAAA4IUxekAAAABgDlR6QAAAAKCNZnpAAAAAYIakekAAAADg4tB6QAAAAGDZ9HpAAAAAoFwAe0AAAAAguSR7QAAAAIDyNXtAAAAAIDmwfUAAAAAgusR9QAAAAKAS1H1AAAAAIH11fkAAAADgTJV/QAAAAKA/VoBAAAAAYESDgEAAAACgo5uAQAAAAOBk4YBAAAAAINTpgEAAAAAgFROBQAAAAOBSI4FAAAAAoB9wgUAAAABgWXWBQAAAAOAB+4FAAAAAQDwDgkAAAACgOFCCQAAAACDuu4JAAAAAYMVxg0AAAADgzKuDQAAAAMBG8INAAAAAgAb4g0AAAACgFwOEQAAAAECXPIRAAAAAYM2KhEAAAABgqxqFQAAAAEDmIoVAAAAAAGErhUAAAAAA8Y2FQAAAAKATBIZAAAAAADAMhkAAAAAgKpOGQAAAACBDnIZAAAAAwLPihkAAAABAnWyHQAAAAGBRsodAAAAA4Ja7h0AAAABAtPqHQAAAAMDFKohAAAAAwEZDiEAAAACARkmIQAAAAIBoTohA + NrgMGZxjYkD4qwju5sJuQEMdzoN8QnFAUqoIfAvSc0CZcdKIFLN1QKj+DIGjQnhAmc+u3GzEfEAO0ma4ySGAQOq4E1mO8oFAN9Lth9xZg0AICtBD5oKFQDcB3LGI4oZACDm+bZILiUBiK1601BqJQKbuVltNY41A+LLD3DTcjkA3jX613DWQQGDvNHZQ8pBAAlGxyYwWk0AvSgHtLR6TQBdm8sqyMpRAr2H4AYTilECXfenfCPeVQD6KVvevqpZAq/2sRxKTl0DNsrTs23KYQAgnnUNOk5lATcqrATI3mkAdPN5EdK+aQGLf7AJYU5tAM1EfRprLm0Csz76gg1edQMJ5fTvGk51A - + - pzHgQr15bUEcjK5BiKd0Q36ohUHLNxBB+oe0RLM8qkFHzqdBaDsuRX8980HCf8ZBjMlbQnvg3UO52+1BiX5hQdasxUWz1MpCIEzDQ1EEMkJ2fShDWC0rQgEwYkGowt5Cu48QQwYdHUTk61BBtcsIQj+ofUHxrQBC9iC7QeYcYUElgBVCNKGFQci2FkKURTJEvbc/Qpj6OEIuxPZBQR65QQ7sk0LhQClCzbR4QpFWPkIUEHVCl/aEQ6fK4UJSfiVE99qiRO5tpkLK/ztCKX6ZQhyx7UJeH9lE3fA0QWqK80FghT5CmGbDQSL/OEETgUdCiOG7Qe3FEUHAKQJBvD+nQRSbhUFItMdC0C85QQBdvEHsvSVD5Cs8Qs1Ox0I7o95BmYb6Q/KByUE+G65DyGY1QuXJnEMcwEpEbNZdQcnzIEKKRQlCMqA2QqiuL0V8OyBDxNZuQ0A+w0EGsCBCp3a1QbuwnEJPV+dCinlOQr0pbUIg1i1DdmLWQljoN0K4bs9FGUdQRNmIG0IlTepA7sPoQaNVvEF+vpNC+nN2QgMEFkGbXbdC2g+1QiaSM0R/qY1C1g43Q8U76kCBuQVDX0KTQUcpFEfPcoVFjiaKQSddhUFlM4RDuCLDQQ3zA0Hl1wZDWqX0Q1/3QUOcmIRC + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAPi/ZEAAAAAg0CpmQAAAAADXYmZAAAAAoM8gZ0AAAAAAZJ1nQAAAAAA1CGpAAAAAwEnJakAAAADAT+NqQAAAAGBBKGxAAAAAgEE8bEAAAAAAPUNxQAAAAIA8TXFAAAAAAILjckAAAADA/jh1QAAAAABtc3VAAAAAAM54dkAAAADABrd2QAAAAEB1MXdAAAAAgP12d0AAAAAACMR3QAAAAIAVkHhAAAAAgJxueUAAAADAKrZ5QAAAAEBmFnpAAAAAAJaCekAAAABAMJN6QAAAAECZoXpAAAAAwFhje0AAAABA3a17QAAAAABJMnxAAAAAgKjhfEAAAAAAV/98QAAAAMBI831AAAAAgDclfkAAAAAAO0F+QAAAAMCRYn5AAAAAQCaAfkAAAADA0il/QAAAAABHZX9AAAAAwLWEf0AAAADA6hqAQAAAAOBIIYBAAAAAwAuKgEAAAADAPJCAQAAAAECuo4BAAAAAIFsYgUAAAADgvSmBQAAAACCEIYJAAAAAIJtbg0AAAAAgeWuDQAAAAOC2goNAAAAAoJnCg0AAAAAAMyaEQAAAAKCSMYRAAAAAIERMhEAAAACAboOFQAAAAOCtr4VAAAAAIAsjhkAAAABAWDqGQAAAAMCbz4ZAAAAA4Ddlh0AAAABAhqqHQAAAAGBtOohAAAAA4ItCiEAAAADA3YmIQAAAAGD59IhA + NrgMGZxjYkA= - + - bfm3QCLMwj/NXwNBx2UNQexQ1T/UhGxA+emdP1c91T/f7bxBzPhfQKgC6D8nfbhABafwQIm/xkDoj1lA40F5QHfWt0As3spAUdKYQLHXA0GyI1dA3YwAQbadWUByyiJAlXoXQOTvFEAWXx5BBEL6P5JlsEDIoYhAfEbVP6OFAUGVsOdAmi6NQF31wj9gAQhBujDAQACTvkG8AmxAJDDHQN85aEDYsQNBs4AYQP87RUGRoB9BpwmbQIS7aUJ6JbA/TtMdQH3GfkC2sitASwv0PwBQq0CEq1lAH0FZQRnnh0BNoiRBkAAGQNbYS0AU8/BA/Ew5QWtWlEBj/Z9BbJiWQFG/rUAh9wpB + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAwLYqZ0AAAAAAx0JuQAAAAICEpW5AAAAAoMGecEAAAAAgR/dwQAAAAADEyHFAAAAAwGfVcUAAAADggFJyQAAAAEDLYnJAAAAAgD1zdEAAAABAWhN1QAAAAEADbnVAAAAAwH4VdkAAAAAAdZJ2QAAAAEDeU3dAAAAAANFneEAAAABATxJ5QAAAAMCbMXlAAAAAgNZPeUAAAADAuZR5QAAAAADrsHlAAAAAgEoEekAAAADAWVx7QAAAAABkNnxAAAAAAJdGfEAAAACALGZ8QAAAAIBeiXxAAAAAwEeXfEAAAAAA9VJ9QAAAAIB5631AAAAAQDjVfkAAAADAjxd/QAAAAMCZJn9AAAAAAOpaf0AAAABAhs9/QAAAAACo239AAAAAgHf2f0AAAACALgOAQAAAAMAUo4BAAAAAgOYHgUAAAABgn0SBQAAAAMCVfYFAAAAAYK+NgUAAAABA15+BQAAAAGC0t4FAAAAAoBe+gUAAAADA/fGBQAAAAGBGAIJAAAAAgN8IgkAAAAAAyvSDQAAAAADTE4RAAAAAoEKJhEAAAADAuJiEQAAAAIBHeIVAAAAAoH+NhUAAAABggaKFQAAAAKDMMoZAAAAAoJpwhkAAAACg6muHQAAAAEDHlYdAAAAAgI8xiEAAAACACZuIQA== - - - - - - gwgBQWC+1kC7W5VAyLUPQGy1XkAcibxAPe6lQEu8nT9cBz5AZ/j5P019O0Eyx6ZAH6hGQbnFnj+MU91AH1jeQJMOmkHNI0ZBTeQpQPOOUUER0u5AOyepQEvvGEHGjYZBPOwMQL6Aj0DE9ClAT65CQIsRhEAOCUdA5nc9QBSHF0GmWR9AeiN6QAaHskFZei5B3wiaQYKfD0G8dmxBXboiQIOLSUFjoetBsLeGQZjdZkHENwlBzBwkQXHcGUHKD/VAfr0sQX4WPkCg2iBBWEQUQZafkUB+klVAm2UPQTG/fkBtxTBBRBOOP595rkBVUD5BRrQ4QYtqAkE= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIIVnYkAAAAAgdKZiQAAAAGAJ4WNAAAAAwKXEZEAAAABAv4NmQAAAAOCQZWdAAAAAIKLwaEAAAACAFilpQAAAAAAOampAAAAAYFOeakAAAADAJmtsQAAAAMBIoWxAAAAAwEDrbEAAAADgJONtQAAAAIB5A25AAAAAAEWab0AAAACgOcRvQAAAAABlAHBAAAAAAF8vcEAAAACA74FwQAAAAIDnsHBAAAAAgJvQcEAAAADAVQBxQAAAAIDZM3FAAAAAwBKfcUAAAACAo+dxQAAAAIBmI3JAAAAAIGEzckAAAACg6U9yQAAAAICLZXJAAAAAQCGCckAAAAAAFSJzQAAAAMAgMnNAAAAAwIVAc0AAAAAAQYJzQAAAAEANkXNAAAAAwInWc0AAAACAUDJ0QAAAAMDLiHRAAAAAAJmVdEAAAACA2QB1QAAAAAA9FnVAAAAAwCRRdUAAAAAAoyJ2QAAAAEBvUnZAAAAAACZcdkAAAACAXa52QAAAAMAKxXZAAAAAADbidkAAAACAjQ93QAAAAMDFJXdAAAAAwHled0AAAADA3Hh3QAAAAMB8h3dAAAAAwPSgd0AAAACA67J3QAAAAIAzwHdAAAAAQOMReEAAAACAtUF4QAAAAABxhnhAAAAAAJeyeEAAAACAyMF4QAAAAIB85XhAAAAAgGceeUAAAAAAJTB5QAAAAICiUXlAAAAAAIJseUAAAACASYF5QAAAAEAglXlAAAAAgMaleUAAAABAdrJ5QAAAAEAEy3lAAAAAABYsekAAAADAhjx6QAAAAMDUVHpAAAAAwPqxekAAAADAjMV6QAAAAEAr6HpAAAAAgIT2ekAAAAAA+iB7QAAAAICVSHtAAAAAQC1Xe0AAAACAqmJ7QAAAAECdrHtAAAAAAG7Be0AAAACArc57QAAAAEAr33tAAAAAADXve0AAAADAywF8QAAAAEAtEnxAAAAAAB8gfEAAAABA1z98QAAAAAAoVnxAAAAAQFeGfEAAAABAWcF8QAAAAID30XxAAAAAQAv2fEAAAAAAmg99QAAAAICKI31AAAAAAGVgfUAAAABAynR9QAAAAABcmH1AAAAAQG+kfUAAAAAAQrl9QAAAAIDown1AAAAAAAXVfUAAAADASex9QAAAAEAcKn5AAAAA4CRqgEAAAABgdtaAQAAAAKC98YBAAAAA4Az7gEAAAABA4IKBQAAAACCei4FAAAAAAKUagkAAAAAA/WOCQAAAAGCOwIJAAAAAoNfTgkAAAADgpmGEQAAAAEC5coRAAAAAIPL7hEAAAABAXCOFQAAAAGAeKYVAAAAAQBIuhUAAAABg+jmFQAAAAGBFVIVAAAAAoOprhUAAAACgAn+FQAAAAGA0i4VAAAAAwCymhUAAAADAUMeFQAAAAGCS14VAAAAAYBobhkAAAADgPCOGQAAAAKBkO4ZAAAAA4EdHhkAAAADgw06GQAAAAIBLVIZAAAAAgG7LhkAAAACgStuGQAAAAOBF44ZAAAAAoDwih0AAAAAgOlOHQAAAACAFW4dAAAAAYBFkh0AAAADgv3SHQAAAAKCPrIdAAAAAQMwEiEAAAAAg2YKIQAAAAAANtIhAAAAA4NDEiEAAAADg1/mIQA== + KBZXds7jZUAUn+iE5kFrQFAtpBCXEnJA - + - DJFHQCdf8T+g+/BAOjiUQOKqK0Flg91AcBzjQJPTMEFohBlA2fjeP5RJcEFAZp0/W42dPzICkkDgZItAm7/3P616aUBf3B9BuCQPQP5Y1T/hhLtAeIcyQZtmCkEfrzRAiWgrQJd0nT+FP0tAxRaMQV/UpUBg151BAJcQQbwtWUBl59RAedRCQCChiEEX4GxAAJrCQOvLJ0FBMQNBgEKRQN/1VkHK+tQ/T3H7P+NpBkEcCx1Bd5oCQWo1EEDu5nBAUDgRQjfeYkA/Lg9BGnAHQcWOrEAW6zRBe9MYQD55BkCAta1AazFKQU0AUEH8S1JAMALrQSDgPUAudGxAh1pbQT/kakBy5hVCXm7CP8RNsEAD2+g/uAJ5QV+NB0B0Gos/4P3oQLkdp0BHgzRBPhfeQMhEH0EEER9DhMKNQVvyYUG1ADRBZBr6Pwxn5kC6gYZAomyLQepjhUE4QjVBFkwhQTu38UCFdwNCkDCBQeD0iEF4tnNBgLJgQQSUHkEy/c5A6Y8mQK4X40CV+oVBOg0bQW4BKkFLQ0xCSd1CQR6sMULTL4RBvH0cQZFkGUFD2ZZBEnYLQX2bMUGcdUpB8oemQByMykEyqDhA6WvKQHTWoD+eC7A/4NTEQJXN40GB1aI/MThEQIQEoEAZ3JFAhKBzQMz45z8fONhAylVpQOLXTUFtcghCA64BQdDAPkFMGt5AdYNSQShtQEHAEz1AYC+7QPZEsD9j9qZBsIqJQTeoHUEW4HNBBDb4QDxmEkMiHQVCLgkZQoByt0AQ0qZALgKkQHzNtkCEa9NA8KVeQfPaAkE= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAIGEBaEAAAABAfcZoQAAAACBoAmpAAAAAILhkakAAAAAAhKpqQAAAAADvPmxAAAAAQEokcEAAAAAgq6JwQAAAAOCnR3FAAAAAIO6vcUAAAABAywRyQAAAAADlsXJAAAAAgADKckAAAAAAxaJzQAAAAMAqQnZAAAAAgD+QdkAAAABAjyd3QAAAAIBJRHdAAAAAgEDCd0AAAABA5+B3QAAAAABlVHhAAAAAwEYOeUAAAAAAICJ5QAAAAACuVXlAAAAAgEikeUAAAADANLh5QAAAAIAqdHpAAAAAgLoVe0AAAADAmtB8QAAAAECg2nxAAAAAgPmrfUAAAADAvMd9QAAAAADsC35AAAAAAP7nfkAAAABAWw9/QAAAAIC3HX9AAAAAwA1mf0AAAACAsJF/QAAAAKD9GIBAAAAAYNsqgEAAAACgXUuAQAAAAODPc4BAAAAAoCCqgEAAAADgkbeAQAAAAIDN64BAAAAAoEX2gEAAAABgawyBQAAAAEAiIYFAAAAAYAgwgUAAAAAgB2GBQAAAACCIuYFAAAAAYFrEgUAAAABAruiBQAAAAKC/7oFAAAAAYOz7gUAAAACgQguCQAAAAECFGoJAAAAAoFdDgkAAAABgnkiCQAAAAKD1eIJAAAAAoJ9/gkAAAADgComCQAAAACAikIJAAAAAoAe9gkAAAACgytOCQAAAAIAa24JAAAAAYEUag0AAAACg6SKDQAAAAEDFPoNAAAAAIABBhEAAAADggGCEQAAAAKCN04RAAAAAIGtmhUAAAACgjCGGQAAAACDtKIZAAAAAAJS9hkAAAACgOtKGQAAAAOBrOYdAAAAAgHzZh0AAAABAbgqIQAAAACD/SIhAAAAAQIqZiEAAAADAhu6IQA== - - - - - - iNE5QPwEuUCMK+c/A5qWQF7QC0GbpalA5nDOQGDoh0CNXgBBepSiQdq1cECPlJpBFCSyQKGQRUBAmdBAKkICQTjO5D/nZ4s/gNJVQKQ7T0DDTbA/JMLCP55wSEHF9BhA9APJQCZOzj8M8RBCMN5JQXZ6zECWqOxAe5noP1KaeUCuW3JCQ0haQMndkUFgeepANXfSP+zCTUBRcOVA10LXQMBv80DWZUhBQFAXQMgffkEV+h9AdUR5QYvjrz+9mIFA3ktpQTNgwkB9zIhA/oJWQXAi/EGHRllBrFrlQLRLnT+DksdA5W6VQVZ5rkCh7LRArTdbQXraj0K576tA9FGdQHBMLkFhdSZB0Q8SQRLxg0AqCjtA7vouQQReRUCSpkZAEjqiQObodEGFQgJBb9ZZQC83KEAXfBBAF1UOQVyZEEGG0vBAXON1QImfYUE= - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoBrbYUAAAADAvGFiQAAAACCbY2VAAAAAIH2oZUAAAADAUx1oQAAAAMBfPWhAAAAAwDCKaEAAAADAjENqQAAAAAB622pAAAAAICqKbEAAAADAqX5uQAAAAMA1nm5AAAAAwMnAbkAAAADAh+VvQAAAAIDmE3BAAAAAoPdScEAAAACg94NwQAAAAEBJIXFAAAAAIHNCcUAAAABgVpNxQAAAAKAWpHFAAAAAQJ0MckAAAABAcXFyQAAAAABmj3JAAAAAQNujckAAAABg4cpyQAAAAMBy83JAAAAAoH+kc0AAAABAwoB0QAAAAEAT9HRAAAAAQO8ydUAAAACATEV1QAAAAABsVHVAAAAAIEFzdUAAAADAZ351QAAAAKAmtnVAAAAAYInjdUAAAABA7PF1QAAAAOAPEnZAAAAA4M0mdkAAAABgSjN2QAAAAGBY3HZAAAAAADsid0AAAAAA43B3QAAAAKDqondAAAAA4NzRd0AAAADgP+V3QAAAACCN9HdAAAAAoKIEeEAAAABgGFZ4QAAAAIDcc3hAAAAAIH1/eEAAAADgh6N4QAAAACC70nhAAAAAIJr9eEAAAAAgoxJ5QAAAAOCqI3lAAAAAYEBAeUAAAACgI1l5QAAAAOBqc3lAAAAAoK+QeUAAAACgOeB5QAAAAGCB9XlAAAAAoFsQekAAAABgBB16QAAAAABPLXpAAAAAQLtXekAAAAAAgGh6QAAAAGAaeHpAAAAAIPvNekAAAABAuvR6QAAAAKA9A3tAAAAAYCUQe0AAAABAAyJ7QAAAACCOPXtAAAAAADdve0AAAAAg7H17QAAAAOD/wXtAAAAAoP3Re0AAAADA3ON7QAAAAEBL9XtAAAAAgK1UfEAAAABgkGJ8QAAAAGDTcHxAAAAAoD95fUAAAAAgsAp/QAAAACDEWn9AAAAAQBlpf0AAAACAHCOAQAAAAKCbEoFAAAAAgPwjgUAAAACglViBQAAAAMAufIFAAAAAgNGsgUAAAADg88SBQAAAAMD924FAAAAAIEnigUAAAACg7OyBQAAAAABWCYJAAAAAQFQrgkAAAAAAJbuCQAAAAGAXwoJAAAAAQK3lgkAAAADg8P6CQAAAAKD2BoNAAAAA4LEig0AAAAAglYGDQAAAAODXh4NAAAAA4HG0g0AAAADgi1OEQAAAAGBLb4RAAAAAoJaQhEAAAAAg/JmEQAAAACDwkoVAAAAAYKK8hUAAAACApweGQAAAAODtkYZAAAAA4GykhkAAAACg4seGQAAAAMCY+4ZAAAAAIIPJh0AAAAAgaMSIQAAAAIDD8ohA + NrgMGZxjYkA= - + - CE/vQN3WlkE3dFdAxhsTQXGZY0A+jXBAFXejQPrxwj9OvJZAqgOOQE+jnT8/YSJA9lFzQGcazEBpG39AhYCMQH9jIkD5WQZA/Q9/QFZS+kDIw1RB6A/xQNzeiEBIYw9AmqHLQKXqQ0F4Ml5AANanQL1knT9Q+bA/6sgGQMBdzEA0k4tA18vnPxduAUEJSDBArrqBQFHL5z/W1EFBMTOsQG6B3kADWZVAbE2UQPV6IEEt37ZAVOSiQAMut0DAMRlBSD6lQCRSHEFHccJAfj5eQNL4MkGrA99AMyiJQXdZsUFhgZ5BSVbEP0ZUL0IzFMdA17FCQZLDQUHiwENAgIxEQYw/JEFgy5FBSXgoQmZNJUEEedZArlakQD1s50CPEZtAXwFjQeNWMkFMokNBMzcJQmB9+UAtkHlAiKIrQe3Yy0ETwpZAiQi+QC/XL0FgPAtBQ0myQFOH2kE9sqFBWKwrQbjGsT8pw8RAUF4IQcVlD0EGkcNAWJakQdy2rUBNlKRAs5iWQFIBgkA0lStAuWEIQffACUJTLyxArEvlQBI+vUEcwDJCTSmiQMihM0HJYndCzQJ/QfIswz/XPFpCGROXQIEgAULoF3JArBxYQZZoxkEOGug/YKgXQd0tOUAHxJRAQVxyQJMiC0GDGSlB + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQLAKXkAAAACgElReQAAAAMD2hF5AAAAAwCTIYEAAAADAGiNhQAAAAOBhJmJAAAAAgDGhYkAAAADAL+NiQAAAAMBZBWNAAAAAACckY0AAAADAC2VjQAAAAMD9gmNAAAAAwAXmY0AAAADAxb5kQAAAAABgiWVAAAAAwEwgZkAAAABAxV5mQAAAAIDchmZAAAAAYO4kZ0AAAACAykVnQAAAAOARFGhAAAAAAJQnaUAAAABA1MRpQAAAAMDs/WlAAAAAAFAoakAAAABgaoNqQAAAAGCIBmtAAAAAAN5Ea0AAAABgiKZrQAAAAECr52tAAAAAgIQkbEAAAADATolsQAAAAAD5yWxAAAAAQAklbUAAAACA2uVtQAAAAED7Bm5AAAAAABaEbkAAAACAW4NvQAAAAECIom9AAAAAgE37b0AAAABAMiVwQAAAAIAKRXBAAAAAwGJUcEAAAAAApIBwQAAAAMDxn3BAAAAAYP+wcEAAAAAAgOFwQAAAAICR8XBAAAAAIL5DcUAAAADAPGBxQAAAAGCxgHFAAAAAgHO2cUAAAADAMsBxQAAAAACj4XFAAAAAgG4DckAAAABgoSJyQAAAAGBGSHJAAAAAIIhTckAAAABAjmNyQAAAAIBPdnJAAAAAwFqLckAAAACACLRyQAAAAMDJ1XJAAAAAgFsVc0AAAABAKiZzQAAAAIBVQHNAAAAAgMpSc0AAAABAiG5zQAAAAEDDf3NAAAAAgCSMc0AAAADgBqZzQAAAAIDwtnNAAAAA4HvDc0AAAABAk9BzQAAAAADx3XNAAAAAgKTyc0AAAABAPwx0QAAAAOBWKnRAAAAAAMc5dEAAAACA/WF0QAAAAICldHRAAAAAICHhdEAAAAAAFe50QAAAAECiAHVAAAAAwCQTdUAAAACgHjV1QAAAAGA2X3VAAAAAwGvidUAAAABgvPN1QAAAAAAZAnZAAAAAQIcfdkAAAABg5DJ2QAAAAIAZVXZAAAAA4BaEdkAAAABgR5N2QAAAAOAZ1HZAAAAAIEABd0AAAACg4yt3QAAAACCZRHdAAAAA4GcGeUAAAADgSit5QAAAAEBylXlAAAAA4J+7eUAAAABgvsZ5QAAAAABD7XlAAAAAYJJPekAAAACAqY96QAAAAKCA1XpAAAAAADQGe0AAAABAwTN7QAAAAGBbg3tAAAAAYIaVe0AAAABg0KJ7QAAAAKBlw3tAAAAAQNPNe0AAAAAgs9x7QAAAAGBvNHxAAAAAoE54fEAAAADA8aJ8QAAAAMCGrXxAAAAAIGbufEAAAADAqQZ9QAAAAKAjVH1AAAAAIFuLfUAAAADge6N9QAAAAGAovn1AAAAAIL/LfUAAAACgxNt9QAAAAOC4cH5AAAAAYH3SfkAAAACgkeV+QAAAACAEM39AAAAAoBY9f0AAAACgksV/QAAAAGCZE4BAAAAA4DsagEAAAAAgSEGAQAAAACDUaoBAAAAAwGZygEAAAABgvaCAQAAAACAqAoFAAAAA4MYMgUAAAAAABiyBQAAAAGAtU4FAAAAAYAXbgUAAAAAAO+GBQAAAAMAM+4FAAAAA4GkagkAAAAAgVbOCQAAAAKBtBINAAAAAIFxKg0AAAADghWCDQAAAAKBueINAAAAA4BcZhEAAAADg3SuEQAAAAACyN4RAAAAA4A1UhEAAAACgDeOEQAAAAOAI7IRAAAAAIDcLhUAAAADAHhGFQAAAAODBmYVAAAAAoJChhUAAAABggauFQAAAACBx64VAAAAAIGNBh0A= + NrgMGZxjYkAot2DdIQNrQBu6YmAmQ3BAlLmMQumSdEAbGD+0flR3QJQXaZZBpHtAG3YbCNdlfkDKuiL1zFqBQMcN7ntjM4NA - + - 1A01QXmFjD8Okm9AWSnJQCYmt0AEpos/cZ2YQhxHY0DfXj5ATT/eQOBY5ECRlghB8YUGQAj0+T8SMZFASe61QU4edUDQXYdA2cCSQKIOxUDCCedAmiS9QJNlvECYMjlAYbeWQEwO2UDAkdU/Vrw2QODHwj9Q850/lpTAQaNEBkC5w/dAhDCEQIp4skAbcpRA5uQQQQHPr0A6p5hAweheQCDy9z8SHQtB9+uPQEaNVUDzQ6FAjRssQFvwNEC2oSRB+oadQG+D1T/WsRhAgLOPQEvQEkEIbo1AzkSVQVnDq0EOIBxBh9n2QKLOWkFsK7BAhk13QRHYi0HmvA9APRYiQVoOgUGMBhRBOSlPQS0Ka0DppLtAeXJsQHTlTUEZEdxAmWFUQZwVMkEvritBBSyZQV+6UEAvoZBA2VK5QN3HGEE1CtU/amS2Qd7t6kKvy3lC4jcnQGJYnUCYnclBYGWUQJhUvkFSbz5AtpGaQZ4/IEFKTcFByYcEQqZCrz8xLCpAJDrsQC6NpkGV7e1AOiajQJ9aj0FZmmxAOAWtQeop50BRUAlCqWPQQNKFUED3/hBBA7VOQQEB40AhMMdAp3ItQRsFD0HGp2BAP0NHQS973UE0Z3FArDpHQBCShEEMNyVB38CnQPa0jEHpnytAUo0rQRuaD0AffmhB2VAgQVp9DUE2YcI/eYncQK1z+UB6kulBECw3QVID6D+xTVlBngPDQJqOwEBpsbBAzDKRQF/ycUEkljRAowdQQKYy/0Bj+BFB/GBLQqWxXUFZpPk/tQsVQQbJdkFWgpVALqoTQph94UAhRqVA/McJQdjYBkFA6FRAgmofQPGKLUE4VstAz5yQQSL8/0BMFRVCV8aTQZ+MFkG37IxAwKKkQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAAALFcUAAAABAZbRyQAAAAKAuAnNAAAAAQJsSc0AAAADgRnF0QAAAAEC0E3tAAAAAgBumf0AAAACAXsF/QAAAAICSYoBAAAAAABajgEAAAADgvcKAQAAAAGCZ04BAAAAAoGBogUAAAAAglVuCQAAAAGD1NINAAAAA4GLDg0AAAAAAbcqDQAAAAICQ0INAAAAAwA30g0AAAADATQSEQAAAAMChD4VAAAAAYH83hUAAAAAgG0eFQAAAACAyWoVAAAAAYLKPhUAAAACg6fOFQAAAAEAZg4ZAAAAAQDjDhkAAAABg7haHQAAAAEAyUIdAAAAAIG1Vh0AAAABAJFyHQA== - - - - - - aBa1QD0RmUAlyW1Bg/4DQC3xC0Defo5Bj5wmQF/t8UB8z9U/Zy3KQQgKc0BgzIFAoloGQDVIwkD4JfpAYKSKQQ7IkkGM9xRAY1ZAQfqaokCQOoZAWSGEQFHNgkGTfrlAOMyEQfT6IEEORblAewkuQZniO0Fd9AFBUGVWQHRVm0A= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgG9nYkAAAAAgUKNjQAAAACCa4mNAAAAAIOtDZUAAAADgf2RlQAAAAMA64mVAAAAAwNMbZkAAAACAec5mQAAAAID97GZAAAAAAHsVZ0AAAAAAn2ZnQAAAAIDC/GdAAAAAYDghaUAAAADgRTdpQAAAAGCSY2lAAAAAIAzmaUAAAABgTidqQAAAAEBngGpAAAAAYAkmbEAAAABAjUNsQAAAAECCY2xAAAAAwFOJbEAAAAAgiKNsQAAAAED4xGxAAAAAABzmbEAAAABgLwZtQAAAAMBJ/m1AAAAAAA2GbkAAAADg0iFvQAAAAMCdo29AAAAAYG3hb0AAAABguyFwQAAAAIBUM3BAAAAAwNBkcEAAAABA3rFwQAAAAEDawXBAAAAAAOD9cEAAAACANxVxQAAAAMACRnFAAAAAIE9vcUAAAAAAW4txQAAAAMDD0XFAAAAAgGvlcUAAAACAfU5yQAAAAID+Y3JAAAAAAJFyckAAAACA2YVyQAAAAICBw3JAAAAAwDzbckAAAAAAxTRzQAAAAEC2T3NAAAAAAGdvc0AAAADAHYJzQAAAAIAcwHNAAAAAQKvSc0AAAACAqZB0QAAAAECDpHRAAAAAgGbUdEAAAAAA9PF0QAAAAMDkB3VAAAAAwFUUdUAAAADAmVR1QAAAAEBBgHVAAAAAwJOVdUAAAACAGa11QAAAAIDZzHVAAAAAwHUWdkAAAACAejd2QAAAAADxT3ZAAAAAANV0dkAAAABAhl13QAAAAIDHdXdAAAAAADiCd0AAAACA+5N3QAAAAECGx3dAAAAAQMfUd0AAAADAYhB4QAAAAMA+I3hAAAAAAJK0eEAAAAAAi8F4QAAAAEDb1nhAAAAAwL/zeEAAAAAAShR5QAAAAECYIXlAAAAAgPkreUAAAACAtlF5QAAAAMCrZnlAAAAAAKyPeUAAAADAp7V5QAAAAAAl1nlAAAAAgG3keUAAAADAYfd5QAAAAIC6KXpAAAAAwOs/ekAAAACAKkp6QAAAAIAnV3pAAAAAgD5kekAAAAAAldJ6QAAAAADA5XpAAAAAwLT3ekAAAABAuAZ7QAAAAIAVE3tAAAAAwCIxe0AAAAAAoGN7QAAAAEDNgntAAAAAwDGRe0AAAABAQ7N7QAAAAABR03tAAAAAQND1e0AAAACAchB8QAAAAAABO3xAAAAAwJ2IfEAAAAAARrV8QAAAAAB2xHxAAAAAAMfofEAAAADAt/h8QAAAAAB1A31AAAAAQCMgfUAAAAAAyT59QAAAAMArT31AAAAAwPZjfUAAAAAAhG99QAAAAEAgkH1AAAAAwAqjfUAAAACACb99QAAAAEB5zH1AAAAAQPDafUAAAAAA/PB9QAAAAAABFX5AAAAAQDksfkAAAAAARcZ/QAAAAEDJ7n9AAAAAAFcygEAAAADgUm6AQAAAAKCddIBAAAAAwOGZgEAAAABgl7mAQAAAAOCM0YBAAAAAgDXzgEAAAACgS/mAQAAAAECmAoFAAAAAoA4LgUAAAADAFiqBQAAAAIAEg4FAAAAA4PuJgUAAAACgH7SBQAAAAODz0YFAAAAAIJ/6gUAAAACA8UKCQAAAAGBXV4JAAAAAAATLgkAAAABgntSCQAAAAECn2YJAAAAAYIpRg0AAAAAAGFyDQAAAAGArBoRAAAAA4PAjhEAAAACAnliEQAAAAMBmaoRAAAAAoK+6hEAAAAAgKcKEQAAAAGDc+YRAAAAAQJ8jhUAAAABApDyFQAAAAKCaRoVAAAAAIIBLhUAAAADAilGFQAAAAOAvioVAAAAA4C2ThUAAAADA9sCFQAAAACBu24VAAAAAoN8PhkAAAAAgnBqGQAAAAMBLI4ZAAAAA4EVJhkAAAAAAmKKGQAAAAGBaq4ZAAAAAgBbEhkAAAACgbc2GQAAAAKB524ZAAAAAQDo+h0AAAABgb1OHQAAAAKARWodAAAAAwOVyh0AAAABAYJKHQAAAAKCbnodAAAAAIOq7h0AAAAAgPoyIQAAAAIAXoYhAAAAAYDyriEAAAAAgs8mIQA== + NrgMGZxjYkCRGlyHeVJxQN9iJOBzYnFA38AANMxzeEBUIfpaH4N5QA== - + - Tj2iQMN+x0B3SZlA3t9UQID81ECOgRBA0Li/QOTtD0DEnlBAUIReQHuAwkA/y0xAUf44QvwdskAXIdFAYMFQQNBCxD9BbZ9ADXOwPw43GkF4EnlBsB29QAThq0E8UV9AsJbVP/uJlEAGWONA6XOLQOvWWUCPwQ9A2LetQLp1iz/a/nVBEweEQLnynT/bYjlAV0+QQVnmPECaLTBAxUJ6QBlDuUCSkrhBeIEfQf2ULkGD4ttC6UlhQTpe1T8lK5VAyOctQWrlkUC+qZ5AxeGYQByuF0JWoplBDocOQKhlyEFks+5ApRsZQMm91T94nYpBOu31QKtuC0CVhctATDOCQWP0o0A10Z9As/0LQKfKfkBMWjJAmuH7QObVikLCdrE/4aQIQTohD0FJZNU/9/aKQJ75j0ARJ75AAJy8QQXPiEC1CjVA+jyjQBjbckFmjalAsh/vQM+f/EEI42FA2StjQETIjEF6p1tBYx1VQBBfK0Fc2aVAzpkXQIN4BkAoeblBD9CDQD7nokFeHP1DJ5eSQnUViEDY9m5BtjErQdLcWUDbNTJAdvidQQPw9UC5X4tADCYVQVCBOEEdVdJBtqScQULqoEDbIypB10NsQIKnY0GMUBVAVDSbQGM1OkFi2Z0/2aOAQoPUJkE8bKNBfeM0QBvHBELYbzpB/TiCQfqnjkLFDZ8/hJFVQm3fAkFIpn5AiMKvQLAmLEJ6kB9BxD9RQAB9C0D0ozVBjWtpQo48bEHOwwpB7QvVQCg9hEAUlUVD6LPhQaAbBkHRZOxA7yi+QHbKQkDhB8BB0kx6QPYXJUAmqS1BsUwNQWuAmkDn2blAom8RQGq52D+maJ1A0jILQZ/m4ECXlbxBHrEPQCXTAUEk/TZBUl6PQQFBP0Hi39FCOMdDQRvX1T925ohAUBeZQDh6hkHK06VBBkMmQXqUMUJclZNB2opcQlK0dUFkbFlBZ2zQQOKrBUTrlh1DLfZ+QPbnA0C4lwZBOTc7QH+XuUBKAmRBzMc0QZRig0E= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAQAsKX0AAAADAayJgQAAAAIA4RmBAAAAAwIDfYEAAAADgz2BhQAAAACDio2FAAAAAwPFnYkAAAADgkadlQAAAAAB8AWZAAAAAQFumZkAAAACAy7tmQAAAAADXAmdAAAAAALtGZ0AAAAAAZGxnQAAAAOBx5GdAAAAAAAZlaEAAAACAOsJoQAAAAEC/v2lAAAAAgIUnakAAAACArURqQAAAAKCFImxAAAAAIEVFbEAAAAAg8GRsQAAAAECAwWxAAAAAAIhjbUAAAADAEY9tQAAAAADWCm5AAAAAAAVJbkAAAACAVGBuQAAAAMAChW5AAAAAwPagbkAAAACAAARvQAAAAABag29AAAAAQAKjb0AAAACAZMRvQAAAAID/629AAAAAYLmEcEAAAACgs55wQAAAAADhuXBAAAAAgMgScUAAAAAAUyJxQAAAAKCvc3FAAAAAAOl/cUAAAAAADbJxQAAAAAAKUXJAAAAAADRgckAAAACg8mxyQAAAAEDRhnJAAAAAwKSjckAAAABA0L5yQAAAAMCwDHNAAAAAADAdc0AAAAAgn1BzQAAAAOAsY3NAAAAAwIFxc0AAAACA3qBzQAAAAEAwxXNAAAAAgFIDdEAAAAAgSiR0QAAAAECZN3RAAAAAICpSdEAAAAAAbmJ0QAAAAMAvbXRAAAAAoMGHdEAAAABgW5J0QAAAAKANo3RAAAAAAEOxdEAAAABghB51QAAAAAAuNHVAAAAAQChWdUAAAACgEoV1QAAAAGCFoXVAAAAAIKe5dUAAAABAbBF2QAAAAECZH3ZAAAAAwFdXdkAAAABgNqN2QAAAAKDMtHZAAAAAAAbCdkAAAAAAAON2QAAAAGCJ8XZAAAAAoAwdd0AAAABAFzl3QAAAACB1m3dAAAAAAM60d0AAAACgw8F3QAAAAKA25HdAAAAAYGjzd0AAAADguQJ4QAAAAKA1DnhAAAAAIBFEeEAAAACAMll4QAAAAEDNY3hAAAAAINNzeEAAAADgtcF4QAAAAOAL5XhAAAAAYFElfEAAAAAgpoJ8QAAAAGBTNX1AAAAAQCNjfUAAAACg2XZ9QAAAAGBFsX1AAAAAoMvDfUAAAACgikl+QAAAAMDk4X5AAAAAQADzfkAAAAAgBwJ/QAAAAOAjF39AAAAAIMmGf0AAAABgo5R/QAAAAGDeS4BAAAAAwHFjgEAAAADgAtyAQAAAAMCTS4FAAAAAwJ6EgUAAAABgTpiBQAAAAGCTu4FAAAAA4FvBgUAAAAAAoumBQAAAAKDlIoJAAAAAYBkqgkAAAACgRoOCQAAAAKDxAINAAAAAwNoJg0AAAADgTmmDQAAAAGC76YNAAAAA4OpShEAAAAAgotOEQAAAAMDB24RAAAAA4JV8hUAAAAAAFOyFQAAAAGDeCYZAAAAAAPuZhkAAAABgmqKGQAAAAAA67IZA - - - - - - pxWPQIVVS0FEl+tAIfWCQOfZUEDT1QtAyZ9+QKS/2T8tDYlAHq3zQHGRwz8YdsM/4rEPQHbH1D+utuBA1j0EQNpHNkHZFPs/iQ6nQPiRekDoA+Y/IHwLQtS7SkF1bpxBcGA5QaAiqUDK5eNADLkrQIbyI0Fi65lCf5H4P4aiokAE49U/ov8OQZyL7kB70iBBlctiQAebKkDMQtdAl02EQBS23EA9LBlA1DEhQLKTlkH/pgZAuBo1QBZVI0ETnodA3fWoQIyyR0DEcLA/2GWeP5RZLEG0a8lARq2gQOAgsEBlkDpBUJxxQCPwdUBstsJBb+TLQHYfE0Er75VBsyJIQBCcpkEPIZlAP9IWQbRQ9UCbFTVAJlmNQB//90DIyl5BABWJQEj8jUBvL3tBJLiNQvnBCEFRayFBf5f8P+A2YkLcWv5AqzX3QOM+m0FJyw9AoJPJQF/9BUGQrjhC/WiLP2Ygh0Glnd4/HXA+QI4owUBZz5BAdki0Py0bw0DKxnxBF6y3QNoTHUFP8NU/KKtPQe26eUGO1p9A08uwP3wwrUAOryBBppgyQixEBkEmJ8M/wg3JQPaFiz86SepAov66QEESc0AGQJxBpq3vQH2cq0GGbx9AkVegQL0oFkL7wMNBT8C0QdgaJEBE1QBDDrxoQVzcIUC67zZBBKlxQdB1IkGePgRA0FVRQH0JdEDDJ7dAI6AIQ76TqUEeTBFB - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAA4NcaYUAAAABgWGNiQAAAAIDPaWNAAAAAAHviY0AAAACg5mJkQAAAAEDz/mRAAAAAoGsnZUAAAADAMIxlQAAAAEC7JmdAAAAAAKlEZ0AAAAAAlWNnQAAAAEC7g2dAAAAAoHyeZ0AAAACgrMFnQAAAAEDo3mhAAAAAAB8laUAAAAAAK0JpQAAAAGCEB2pAAAAAgEXjakAAAADA9wdrQAAAAMBAImtAAAAAwGSKa0AAAABgLa1rQAAAAEByxW1AAAAAgJHfbkAAAAAAbvpuQAAAAEBchG9AAAAAwOepb0AAAAAgYVVwQAAAAKCicXBAAAAAQBuJcEAAAAAAQ8RwQAAAAED/4nBAAAAAgIMPcUAAAADgrDBxQAAAAICcQnFAAAAAwPWBcUAAAABA0LBxQAAAAADK6nFAAAAAgJD1cUAAAADAMVJyQAAAAMDXY3JAAAAAQI6AckAAAACANo1yQAAAAICPwnJAAAAAgJnrckAAAACA9fxyQAAAAICiRXNAAAAAgKhRc0AAAAAAkl5zQAAAACC9bnNAAAAAQL+Cc0AAAADgRa9zQAAAAMCV0XNAAAAAAIMEdEAAAABg5RJ0QAAAAABfdHRAAAAAAH6CdEAAAADglpN0QAAAAIBuoXRAAAAAQJzkdEAAAACAfAB1QAAAAGA6HnVAAAAAgFp/dUAAAADg5JJ1QAAAAAAesHVAAAAAAFXBdUAAAACg19R1QAAAAMBo7XVAAAAAYGHHdkAAAABgKtN2QAAAACAb4XZAAAAAoPrydkAAAAAgPgB3QAAAAAAHG3dAAAAAwERSd0AAAADgGF93QAAAAGA6w3dAAAAAoCrid0AAAACgq1d7QAAAACC6B3xAAAAA4DpMfEAAAAAgtFF9QAAAAMDStn9AAAAAYI8RgEAAAABA8rmAQAAAAGD/woBAAAAAIHYLgUAAAABgp8iBQAAAAKAG+oFAAAAAQKIRgkAAAABAUTOCQAAAAEBla4JAAAAAoBSFgkAAAABg3tqCQAAAACAp4oJAAAAAIFHsgkAAAADgE9qDQAAAAKDiEoRAAAAA4H9RhEAAAADgjHOEQAAAACBLrIRAAAAAYDichkAAAAAgY1yHQA== - - - - - - G2v8P/fCtUAk9hZBVGrcQHkS6T+DyZ1AczeCQYVb+j8/NcM/TRdVQNdVVEF60QZA8AGgQP5e0kDRttBAZ+a7QBEX5ECFm+g/bXCsQXnhFkHVM99AtkCLQOmejUC9cJBAFOU/QGdixUAafCtAfwdAQGL6EEGRe/dAAWroQC0ZYECOFAdANv4fQPnwmED3gRBBl7tQQATpFECHeCtBOqYQQG6zCEH89LtAIj3qQDZVT0F85aBA9OvRQqyMgEEwqvI/36/gP7DY2ED61DRBm/EIQbwqIUFY3YdBZhb7P1IAGEGjypBAKy2BQNTYPEE+/FBACtP6P5LNskFNjJ4/bLceQXb23UAERG1BBmp9QUgKHkI0DilBElPUQN3eFEB4Au1AcO/pQK9ozUBaceRAsBm4QcZyk0GzlUdAtOmPQTFg9T8dtQZBowuHQKG/vkDFjplA5y6xP8pxUEHN/FNBL2W6QCZHqUC+9SxBm9yrQLxGhEBoCqxAohAtQC33IkEnEutCqrBLQawvSkF/J3JAoWCQQCzJ0T8sheg//ucKQQRS80A= - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwFHKXUAAAACAvUReQAAAAEDSY2BAAAAAYP6mYEAAAACA0eRgQAAAAMBeA2FAAAAAgB5mYUAAAAAg8R9iQAAAAEA7Y2JAAAAAwJjEY0AAAADAh2JkQAAAAKCMgWRAAAAAwFOjZUAAAAAAZ+RlQAAAAAClI2ZAAAAAgE5kZ0AAAABAhoBnQAAAAEDGrWdAAAAAIM/CZ0AAAADAx+JnQAAAAADoJWhAAAAAwGPEaEAAAAAAt0tpQAAAAADZ4WlAAAAAQIGeakAAAACApOVqQAAAAEASYWtAAAAAQDCEa0AAAAAANKJrQAAAAKAtRGxAAAAAAG9lbEAAAACAPgFtQAAAAEA8ZG1AAAAAwCOBbUAAAABAYEVuQAAAAEBLrG5AAAAAgJjFbkAAAADAKidvQAAAAMBNbG9AAAAAIGIScEAAAAAgcx9wQAAAAIDbMnBAAAAAwKxQcEAAAACAx2BwQAAAAODmdHBAAAAAQP9/cEAAAAAAF5BwQAAAAOAEwnBAAAAAgEjTcEAAAABgUOBwQAAAAODLAXFAAAAAQNMPcUAAAADg1nBxQAAAAKDMj3FAAAAAQJafcUAAAADAnbNxQAAAAODvwXFAAAAAYJXQcUAAAADAz+JxQAAAAOD9AnJAAAAAwBASckAAAADAED9yQAAAAECOlXJAAAAAAOTXckAAAAAArv9yQAAAAEBMDnNAAAAAAPdRc0AAAADg/nBzQAAAAEAjgHNAAAAAgCSRc0AAAABAAKZzQAAAAADivnNAAAAAwDDhc0AAAAAgKBp0QAAAAAA1MnRAAAAAwLVIdEAAAABAYYt0QAAAAMCGn3RAAAAAACi1dEAAAABA88R0QAAAAMDADXVAAAAAwG8wdUAAAACgaD51QAAAAOCnU3VAAAAAYGJidUAAAACgXm11QAAAAEDpoXVAAAAAgGrTdUAAAADAURN2QAAAAIBxQHZAAAAAoCxkdkAAAABg33h2QAAAAGBGg3ZAAAAAIKWydkAAAADAyO52QAAAAACxAHdAAAAAYJcRd0AAAAAgLSF3QAAAACDbQHdAAAAAwD5rd0AAAADgsTl5QAAAACDvZHpAAAAAwNSse0AAAADAGU58QAAAAKCNz31AAAAAwAHPfkAAAADg6e1+QAAAAMAUBn9AAAAAQJEVf0AAAACgwyR/QAAAAOA31X9AAAAAwCERgEAAAACguCmAQAAAAOA7WoBAAAAAgDGfgEAAAADgRhuBQAAAAEBkQ4FAAAAAAIpggUAAAACA44CBQAAAACAZiYFAAAAAYBqmgUAAAAAgBtuBQAAAACDjeYJAAAAAQO2SgkAAAADgzRiDQAAAAOBCfINAAAAAYPJ8hEAAAADgZyOFQAAAACAkkoVAAAAA4OfChUA= + NrgMGZxjYkA= - + - xQQXQM0y1j8T91VAKc1BQVcoIUEcsiJAtrZoQJ2knj/4Cc5AYT49QFxJsT/QlA9A3hj6QG+K8kHuRZ5BaparQNZM+z/fbUBBRpzzQNYLt0HdaKlACZSGQFm160BGj9dA727oPxOJPkDOc7BAIHb6QPYFiUCTb1tBpmxAQKWgIkC3BdxA5fKwP3DABUDuj3pAC3P7P8HhbEGiOfBADDYVQUVGY0DblZtAovd6QKKcV0Db+1pB4v4OQGwjmECDmWhA6M11P9PflkBFI9Y/DbRbQLGI2UDSXno/NbuWQHqO/UDFZSdANQLjQNQESEFWEqVB6XvzPwfLoUA3rLJA0ZsuQSbUEUHyiXM/UZuVQccp00Clep9A8OcaQXwJNUCFMs1ApHw+QCbU50C6+wFBnHzuQaP6bUHpIgtB0a4IQNSSIkBLafM/c6eOQcwWIELQEuRA6UFjQmBmxkEVo2pBHFJcQbR33z/oCrpAceiEQMT+E0GwlYFAxi2xP+dgk0ISMTpAupqeP4JCsT8lTT5AwyXAQZavTEGkWRBAx/YRQTvatkKHd5pABPsQQZMIa0Eok/VAWJxjQFx9a0Cca0ZD6OpeQerOkEHwVoJAElSpQD92Q0Eo9pFAffsGQTPzF0FEdUZBIPH9QW6iFEBeBppAoGr/QPlD1UEZCURAFvpVQIFWhUHyZbZAqEj1QA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAA4EPgaEAAAADAHh9pQAAAAEC1C2xAAAAAIGNFbEAAAABAkIFsQAAAAGCrwG5AAAAAwO3EcEAAAAAAiGtxQAAAAMDFdnNAAAAAQDlCdEAAAAAAn2B0QAAAAGBoNHVAAAAAwNl3d0AAAAAA1Qh4QAAAAAA8Q3hAAAAAQJkDeUAAAACAUiN5QAAAAEBS1nlAAAAAwIo0ekAAAABAf2N6QAAAAICE4HpAAAAAQP1Ee0AAAABAKaN7QAAAAECnAXxAAAAAABbxfEAAAADAYAN9QAAAAEBtMX1AAAAAAHx+fUAAAABAFbh9QAAAAMAt2n1AAAAAQHsRfkAAAABAMkt+QAAAAMDaVX5AAAAAgALxfkAAAABA+l5/QAAAAICqcn9AAAAAQP+Ff0AAAADADqV/QAAAAMCqwH9AAAAAYCNkgEAAAACg0JKAQAAAACBXsYBAAAAAYG+3gEAAAACgBsWAQAAAAEAm0IBAAAAA4AHpgEAAAADA0feAQAAAAEAvCIFAAAAAoHBBgUAAAACAKVCBQAAAAIBXW4FAAAAAICVzgUAAAACgX3mBQAAAAKBZgoFAAAAAoCeKgUAAAADgCY+BQAAAAKDwmIFAAAAAoCTFgUAAAACAkc6BQAAAAGCU+IFAAAAA4HMFgkAAAACgBgyCQAAAAGDJGoJAAAAAoE05gkAAAACgvLaCQAAAAGC/zIJAAAAAQMLVgkAAAACg09qCQAAAACAb44JAAAAAQI70gkAAAABAC/2CQAAAAKAfOYNAAAAAIF1fg0AAAACgxGuDQAAAAOC1hINAAAAAoP6Lg0AAAACgl5KDQAAAAEDcrYNAAAAAoPC2g0AAAACAkM+DQAAAAKDe24NAAAAAYFnKhEAAAAAgrROFQAAAAADoQ4VAAAAAAF1UhUAAAADgwVqFQAAAAGB4Y4VAAAAA4MB9hUAAAACA9JuFQAAAAIBjo4VAAAAAIHishUAAAABg4bSFQAAAAMBP7IVAAAAAoL/yhUAAAABgtveFQAAAAECICoZAAAAAQLcrhkAAAABgkDKGQAAAAOBKOoZAAAAAoNc/hkAAAACAO0qGQAAAAGD7pYZAAAAAgBHYhkAAAAAgdheHQAAAAGBeJIdAAAAAYMBrh0AAAABArKOHQAAAAODEG4hAAAAAYCKGiEAAAABgFouIQAAAAOAVyohAAAAAIFr0iEA= - - - - - - K7ApQMCLwz/vN/s/3pfWPye4nj/lYalBzCo1QL+X3kDDWaw/N0+wPyiuK0BznY1AZj2FQFHFnUDEG+NA42jxPzsxwUAjrr9AJ4tGQS1oQUBx2gZAOctbQDnIlkBnlxlAZyITQbJbLEF6W3FBbi4QQC0V/UBvDcxAl1ZYQAHK0EC+lCJAuZRYQGPgH0CUlKZBIHCDQchRyUEenwZBzRpiQIloNUAvB01A0u0RQck4/0BY15VAUsdxQEPMzkAZbvU/XmvEQfn1FUCnnyNALY1dQninB0LexuVCNpUdQp4JnEBtqqJArZCMQB8Yn0BK8ztBwpXrP8qWVUFV1kRA+vH7PwNMKEEYRa1ACaOeQEGjMUGh449ApDsvQdos4EHmdndB1btnQQSw1UBFOjRClQVaQSKtpkHwurxBQa4hQeJ2n0Dp+JBBtMztQFoYPkFtZvRAz2+rQKj1FEDV9cRBoMIdQIvQIUHdwpxC9FOeQirJIEGOWDpC44O1QsqYjkC9ACxAkGWLQCqw5UGa5ZpBKPCdQcDubEBEh3xB4wcaQSPFkkE9mA1BrQ3MQIiYsEB5DQpB3pD7P6nno0AEqrE/djoUQQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQK6NVkAAAADAOMhWQAAAAMAKyVdAAAAAYEETWEAAAABAr1lZQAAAAEBHzllAAAAAgD6+WkAAAADgtj5bQAAAAEAbg1tAAAAAwJnJXUAAAABgsxReQAAAAMCnVF5AAAAAYCTTX0AAAACApyJgQAAAAGAcQ2BAAAAAgN5pYEAAAACA4UVhQAAAAIAApWFAAAAAgOHFYUAAAABAbt9hQAAAAADEI2JAAAAAwI5lYkAAAAAAVYJiQAAAAAC1n2JAAAAAQEECY0AAAACAnyFjQAAAAMCShWNAAAAAQLYDZEAAAABA9SRkQAAAAIAKYWRAAAAA4BqfZEAAAABAL8FkQAAAAED+5GRAAAAAoI0CZUAAAAAALCBlQAAAAODMP2VAAAAAgCqIZUAAAADA18VlQAAAAODf4WVAAAAAQKYFZkAAAADA7i5mQAAAACBVRWZAAAAAYOZjZkAAAADAqqZmQAAAAOA1xWZAAAAAAFnkZkAAAABA2yVnQAAAAMDkRWdAAAAAwCpkZ0AAAADAaoZnQAAAAMD5tWdAAAAAIGHhZ0AAAACgEx5oQAAAACACRWhAAAAAIC9oaEAAAACgEKpoQAAAAIAmyGhAAAAAwJnjaEAAAADAAgRpQAAAAKBCHGlAAAAAQI6naUAAAADAAuRpQAAAAEC1/GlAAAAAAHpEakAAAAAAIYVqQAAAAIBhq2pAAAAAwH/vakAAAACA+whrQAAAAMA0HmtAAAAAgDtma0AAAADA98NrQAAAAACl3mtAAAAAgGQmbEAAAABA719sQAAAAICzsWxAAAAAQM3HbEAAAACAZuVsQAAAAAC+/2xAAAAAwDEmbUAAAAAAb0FtQAAAAIC9v21AAAAAAA4IbkAAAABAyCduQAAAAEASym5AAAAAAC3kbkAAAADAOwFvQAAAAIDtHW9AAAAAAIVBb0AAAAAAuGNvQAAAAAC5gm9AAAAAAFu+b0AAAADA8OlvQAAAAAAtAnBAAAAAgE8ScEAAAABAkSNwQAAAAODrMnBAAAAAwH5IcEAAAABAl4JwQAAAAABLknBAAAAAYD6jcEAAAADAfLJwQAAAAABgwnBAAAAAAA3ScEAAAAAAf+BwQAAAAMBBJ3FAAAAAwIsycUAAAACgTkFxQAAAAMAAX3FAAAAAAJdvcUAAAACgNoFxQAAAACAaknFAAAAAwHSjcUAAAACAE7RxQAAAAABbyHFAAAAAgGjVcUAAAACA7OFxQAAAAKAUZHNAAAAAoP9yc0AAAAAg0aFzQAAAAIA9tXNAAAAA4G8UdEAAAACgaH50QAAAAMDjiXRAAAAAYO6rdEAAAAAgRMV0QAAAAOAHBHVAAAAAIIUSdUAAAABgXTR1QAAAAOBtRHVAAAAAgPd9dUAAAABg0b51QAAAACDA23VAAAAAYMzpdUAAAAAgFEF2QAAAAODxS3ZAAAAAYEd9dkAAAACgeYt2QAAAAEAelnZAAAAAwIihdkAAAABAQrx2QAAAAOB1zXZAAAAAIECId0AAAABgBKR3QAAAAGDWw3dAAAAAIJ/Wd0AAAADgTC14QAAAACDjdXhAAAAAIHmOeEAAAACgJrN4QAAAAOCCw3hAAAAAoNvneEAAAABg+gN5QAAAAGAyEHlAAAAAoGIeeUAAAADADlN5QAAAAKDwcXlAAAAAIOCVeUAAAACAXKV5QAAAAICU0nlAAAAAgMXheUAAAAAgx/Z5QAAAAKDBDHpAAAAAYEJFekAAAAAg7Vt6QAAAAKB0cHpAAAAAoAGVekAAAABA2iB7QAAAAKBlYXxAAAAAwOaWfEAAAABgAIF9QAAAAOCowX1AAAAAoG/2fUAAAABAMqN+QAAAAECttH5AAAAAwJ4Wf0AAAADgQo9/QAAAAKBtxX9AAAAAIDfXf0AAAADAS+J/QAAAAIBJEoBAAAAAoKAxgEAAAAAgcFOAQAAAAACpbYBAAAAAYANzgEAAAADg9XuAQAAAAKBSm4BAAAAAAFrMgEAAAAAA9vGAQAAAAKDY+YBAAAAAAKyZgUAAAACA4MqBQAAAAKB0ioNAAAAAoBuYg0AAAACAbBeEQAAAAEBIKoRAAAAAoI16hEAAAACADfuEQAAAACBGi4VAAAAAIBWShUA= + KBZXds7jZUAAqvrc5WFwQFAtpBCXEnJApoGoFS+DdkAACNcwPnN3QPzVrBrH83pAVlzbNdbje0CPb9clJTKAQI/btzd3CoFA8pyhQrFKg0Ag4DjQuMKDQB3HI0X9goVASwq70gT7hUB2ND3VUDOIQB32EW+pC4lAlIX5v6jDi0CAI9yLNaSNQA== - + - Ua6GQNY+GUBRXBlAHGEGQOgaoED4meg/mOQ+QDKkwz9v0mVBXLr1QBFcMkAG9mlAxIsiQJvMxEFBywJB/3JjQAIhE0ECY9xAq6X9QWR6VUDvpCVB8j8NQjY+PUHu+LlAcPZ0QQ0dI0Er+mpAI/s0QOhkf0Bw7YpBhHo9QSH4S0ERl5tAPKoQQCSbIEB1iTxAE30cQZdzT0F7nqhBOjCeQOBPOUGXusVA7i0NQWl0nUDSoMQ/GXMrQC1Jk0F9RJJAhlW5Qlx/HUGurfRA7YnIQDycUEE47tVAa5eyQKeoIkCqoGNAI8WWQObKdkGh3fU/DtAEQeRRIUJnP3NBXWQ+QPJ8zkHa0Z5AM3DOQGOXR0ARDrdAb1+KQa0+dUFuVyxBUpLoPx6T5UDyvqRAoPeIQSjf+z+/xWJBtDoaQeCTOUDUKRJB9GuNQQtlvkDm4PhB91rVQQjStUGLgpFB+7nhQnMQnEIyOS9ByQvjQCuiIkA3H5lAZZ4UQtjCJULS2jRBJ/D1QKPjekNEYodC4aGCQjw8lEKuep1BXnxCQQCm2kBExwFC0EbCQrq70kGg5y5CAgkCQsbK6D9MEdpAs3wOQRE5hkFimAtBEbA4QeXHUEBtZPM/iV2SQM7OBkBg7lZBrQGZQTczMUEKhS9BhSnqQLUAsj+kIX5A4SjxQDXKIkDPnlJBPYIdQZD2okFlal1ByB6FQTIZEEJc48w/eknWQUawpUFG65xAefJYQN/0FUJTcx1DSh4XQDFrrUDX65BB0p1EQOj3T0FXfStCOiWgQapRSEKPByBAMFnjQJrOC0KSxg5CJuOZQrYhd0JSLT5AruyjRLqUEUIo1L1CT3kPQYCGdEAse4tAzemBQErtrECP861AlP6DQI3mj0CLJ+Q/ebWsQIIDkEHA4BNByoA+QDC66UFtQNRBw16PQegm0UCFxQVBO+bmQN8F+0CAMEBBKICUQMFlWUDO935B/saJQ8wDiUJo2BlAI0pNQEhPW0IashtBrTmZQKLyK0BiloRBmPWLQcPFMUBmMihA51SWQeKdx0EGggdCtKPJQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAKOOVUAAAADg9EpWQAAAAMAdR1dAAAAAYDHOV0AAAACAHQhYQAAAAKDWuFpAAAAAoOpSW0AAAABAU4tbQAAAAMDM0VtAAAAAgKKSXEAAAACAZnxdQAAAACCVDl5AAAAAABxIXkAAAABgFtBeQAAAAIBkP19AAAAAwPfNX0AAAABgOgFgQAAAAGCgJmBAAAAAQIVHYEAAAACAg2hgQAAAAID3omBAAAAAwEPcYEAAAAAArCVhQAAAAKDRZ2FAAAAAwCygYUAAAAAA9cJhQAAAAIAL6WFAAAAAQBdTYkAAAACAGnBiQAAAAECqg2JAAAAA4BnkY0AAAABA5gVkQAAAAIAHImRAAAAA4BmHZEAAAACAzKlkQAAAAOA5A2VAAAAAgFklZUAAAACgXUdlQAAAAOA1XGVAAAAAYJCGZUAAAAAAqr1lQAAAAECIDGZAAAAA4G8qZkAAAACAA2xmQAAAAIDcg2ZAAAAAgA/GZkAAAADg6OlmQAAAACBd/mZAAAAAQEUkZ0AAAAAgpEJnQAAAACDEZmdAAAAAwKenZ0AAAAAAASFoQAAAAEAJQWhAAAAAoGBoaEAAAABg4IRoQAAAAMAowWhAAAAAgO3jaEAAAADAJP5oQAAAAEBDQ2lAAAAAQIVdaUAAAACAW39pQAAAAMC752lAAAAAgJoAakAAAABAtxxqQAAAAICNR2pAAAAAgP5makAAAACAmH9qQAAAAABhqGpAAAAAAD3CakAAAAAAZuFqQAAAAACSB2tAAAAAQIgda0AAAACAFmlrQAAAAIC5hmtAAAAAgH6qa0AAAABA8sNrQAAAAMDp4mtAAAAAAMwJbEAAAABAm0BsQAAAAEAbhmxAAAAAgM+3bEAAAABAJgZtQAAAAED7Jm1AAAAAwPOFbUAAAACACaltQAAAAIAQwm1AAAAAQJTkbUAAAACANANuQAAAAAC4KG5AAAAAAAo/bkAAAACA/mJuQAAAAACOwm5AAAAAAKvfbkAAAAAAvQlvQAAAAADrKm9AAAAAABtbb0AAAAAABrBvQAAAAACmxG9AAAAAwA3sb0AAAABA6AJwQAAAAMDNEXBAAAAAwPQkcEAAAABgOTFwQAAAAOC2Q3BAAAAAQBRQcEAAAADg3XBwQAAAAMDff3BAAAAAYHeQcEAAAACAc7JwQAAAAMBcvXBAAAAAoOfUcEAAAACAGetwQAAAAAB6/HBAAAAAwEoLcUAAAABgSyJxQAAAAMCRSXFAAAAAAFdXcUAAAAAgXZlxQAAAAABSYnNAAAAAQFSSc0AAAACAR6BzQAAAAADR/XNAAAAA4HcVdEAAAACA8oZ0QAAAAKDiknRAAAAAALOedEAAAADACrN0QAAAAKDTz3RAAAAAACwjdUAAAACAyER1QAAAAGD/g3VAAAAAgEG8dUAAAADgFeh1QAAAAOD8hnZAAAAAoBDjdkAAAACgT+12QAAAAMD2BndAAAAAIKUTd0AAAACA61F3QAAAACDgZndAAAAAoOZ0d0AAAABACIp3QAAAAKCGlHdAAAAAgEqkd0AAAADg8bJ3QAAAAKAEw3dAAAAAYH7kd0AAAABgugd4QAAAAKA5FnhAAAAAYJkkeEAAAACA9zN4QAAAAEC0lnhAAAAAIAejeEAAAAAg37F4QAAAAECBx3hAAAAAoCLUeEAAAABgP+J4QAAAACAPZ3lAAAAA4MuDeUAAAABgw9R5QAAAAKBHB3tAAAAAQIwme0AAAADAD3p7QAAAAOC3MnxAAAAAIB51fEAAAAAg4BN9QAAAAOCJlX1AAAAAQMHwfUAAAACgSNR+QAAAAODAAX9AAAAAoMMSf0AAAAAgI6V/QAAAAMDhxH9AAAAA4L3kf0AAAAAgOnOAQAAAAKB7e4BAAAAAAHXDgEAAAAAg1QODQAAAACCicoNAAAAAQIJ3g0AAAAAgw/qDQAAAACClA4RAAAAAII8LhEAAAABgPIyEQAAAAGCQkoRA + NrgMGZxjYkA= - + - u3geQUPVHkFjOFFAvlCxP93LBkCKXotAROo0QFpVaUA139BAOg0iQeyXsT/g37RAWeRMQFLUuUB529xAaqWeP+LpBkBgkF5BCIXPQASl2EHVkIRC6puPQCJpNkD7dDVAMDXWPzs01j/+qepA5MwaQTl4iUHt6nRBwJhSQEfSV0BtYdY/WMGrQHaUI0EzXihAu8vVQIIui0CH8Po/AP8rQNiVzkDb0aJAWswXQd6yp0FiwtQ/aqr0P0eQBUGW+E5BmjBIQvsQlUCS5BZBdW6EQFSKw0C2E9JA4Nu5QAsnykDFNbVAy+SDQU0IpUA9y/s/kufhP37J8UDvRwRC1vzQP6vZnj/uiHpAf/ueQHMMkEGJ+TNCZAD+QDJurEGgLC9B68KMPx5zj0E1L+xA53vMQLvbBUI2YQ5BJivVQCMMD0GZb+pABMoGQt58gELMroZAcy0NQYAkR0EcWOlB0Fg7Qa1QTENMHQJBGL7CQDgco0DFzPo/epcQQfRShEE4OT9AHzOPQfJDnz8N+blBTuMEQiS0IEIuJnZCSZj2QvIIdkPeiSVCAOGJQf/soD/o0YJCgpwtQl2lFEGgrplBHP7tQCGe8kCtUaZBkuEZQTBXgkKRzHBBVKxMQE1NXEGrePs/wqI8Q8W4nT8fMb9AzxSxQOQNL0H5KvZAhFh/QPMyqED9pA5BrPqLQLN9TkFpmi9BMkkHQaxP+EAUwFdBJ3PWPwpTQUFge1FBW399QDLvFULLM81A95AoQgxZvUG1dtE/DrrWP051REBcVrpAsDQTQdkbwEMKwtVCMT1vQJzB00EUPyREulo+QFFGzkD2GUlBicqcQNwB7ED58XtAKV8iQHOarEJ8MHJAAl1jQM9qskCAx8dAk+ibQFEjKEGnBOk/zFLBQanD1j9r4K1A04MaQTdWX0AY70FBaXl7Qc99F0MmrVJBEjhdQS9KjkCbtgBB3hKHQMa9HEKnFjhB5MaxP0N9vUGSNGtA + AACAPw== - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIB3qXkAAAAAArmRgQAAAAMCTH2FAAAAA4KuFYUAAAADg6ihiQAAAAKDnZmJAAAAAYGahZEAAAADAByZlQAAAAECxXmVAAAAAwKrfZUAAAAAgoaNmQAAAAGDUIWdAAAAAgNynZ0AAAABgrOJnQAAAACALkWhAAAAAgHHpaEAAAADgchtpQAAAAECmrGlAAAAAQDNeakAAAAAg0KRqQAAAAMDBJ2tAAAAA4Ltka0AAAAAAGmRsQAAAAAAyo2xAAAAAQCa6bEAAAABAC2JtQAAAAMBEqW1AAAAAQNvKbUAAAADAsOdtQAAAAEBSAW5AAAAAwMJjbkAAAACAs35uQAAAAAC75W5AAAAAwIAsb0AAAABAnGVvQAAAAEDIgG9AAAAAwEcncEAAAADgPHFwQAAAAGAgn3BAAAAAAF7HcEAAAABAWOJwQAAAAOBuMnFAAAAAwH5AcUAAAACgJ3BxQAAAAMD6onFAAAAAgLu+cUAAAADAnRVyQAAAAMBvJnJAAAAAwFAzckAAAABAOGdyQAAAACDWiXJAAAAAoCmxckAAAABg8L9yQAAAAEAU1XJAAAAAAK4jc0AAAADgYDZzQAAAAMD5pXNAAAAAgKqzc0AAAADgotBzQAAAAEBjAnRAAAAAgFITdEAAAACAZx90QAAAACCrM3RAAAAAQKdTdEAAAACAk2N0QAAAAOBadXRAAAAAwJF/dEAAAABAUpN0QAAAAAAXxXRAAAAAQHwRdUAAAACAvV51QAAAACAkinVAAAAA4BmadUAAAACATO11QAAAAAAA/HVAAAAAgO8TdkAAAADAICV2QAAAAGBzNnZAAAAAoHlBdkAAAABg51J2QAAAAGCcYHZAAAAA4FKsdkAAAABAiMN2QAAAAOD97XZAAAAAwMwEd0AAAAAg2SJ3QAAAAKAoPXdAAAAAYE9dd0AAAADAD753QAAAAOCK0ndAAAAAIMjud0AAAABAz/93QAAAAODGDHhAAAAAYBYoeEAAAADA5D94QAAAAODCVnhAAAAAAJHTekAAAABgxZB7QAAAAMBRPHxAAAAAYEGFfEAAAABgNJN8QAAAAECeiH1AAAAA4EIxfkAAAAAgGEl+QAAAACBcY35AAAAAoP8tgEAAAACg8TOAQAAAAOBkOYBAAAAAIB9igEAAAAAgyOOAQAAAAKAl84BAAAAA4O35gEAAAAAgaXKBQAAAACADyYFAAAAAoLXTgUAAAACgRvqBQAAAACArAoJAAAAAQKpLgkAAAABAkVaCQAAAACAbzIJAAAAAINAZg0AAAAAgOjqDQAAAACBmW4NAAAAAAHxjg0AAAABgxouDQAAAAKDnqoNAAAAA4OIWhEAAAAAA4x2EQAAAAGCaKIRAAAAAYF0JhUAAAAAgq1CFQAAAAGAhrIVAAAAAYDnihUAAAAAgqPuFQAAAACC/coZAAAAAoIZ9hkAAAAAgdJOGQAAAAEBzwoZAAAAAoPU0h0A= + Jv8eN4WFXUDOIQhxcuNlQD8omKXyI2lAQh3Og3wCckDnbmCMEQNyQD3DZJGpc3ZAZCbQtP9yd0CCd4yfVwN7QADKAmVPpH5A2MuQpO9zf0D/k2/c09qCQOyUNvyjQoNAKr7x3h8ThUC55k/US9uGQE6YBeb2WodAecKH6EKTiUBK69BsjZOJQNvvUQXPS4xAefF1Eu8bjUAIGtQHG+SOQGz00p0QBI9A - + - KKvXP/CNQUEfbVlAMwm8QHALnkBiMFpAUQm1QL1R1UB3aQJApsBGQUObhkCDQW1Dy8wXQY+4IUBuWpBAxDAMQbrPX0B/LP9AkAYTQUB7BEOhgGJA+qPtQHfGQkBjPhBA4iY/QEXeG0H4EC5B4wYOQa3yvj+ChsM/yNvHQD00GUArbFpAJHpjQOscUUDdaBxBcFCCQP12gECMjKdANGoiQFe0IkCJniRAmp3OP07LY0AcoixBsQD5PwoGB0BCe6ZB7zeQQIn9C0DYQYJAE1cGQZK9FUCBNbVBKzbMQKPhnz+Zn8VBNuoGQAbnekAU5FJBgrerQHbm5z9n6QZA7bqAQfg2WkDVT3RB1jP8QaVIzEB5BGFATqX2QNwXZ0GIynI/nDiaQV0xn0KnpClB+V3MQLxDkEDNecJB6KY0QepHiEGLJDJBm5UKQTao6D8GEQxAoKjQQAYwr0ALk3pCLpiCQWTaEkGTHRNB0bwwQHrkBkJbppVAsZlOQCd+vECA47tASbMYQTvOOUC8yddAfdcGQfzuCEGnpRRB+ue4QF9GjEBwPARBGcw5QnUW80G2u/VAG4bEQLltPkDUlMlB1ri3QFU/REAaPUxAz92PQGrbaEDbCZVAYYIUQTI3jT+uuixBzb4rQfjX8kC8jpNEoJ0OQmWIpkGWkq1CYc4OQapwgkDN/R9AnmgOQKegWUBR+DhBZcU+Qp7icUDLjdxBCObpQNcisUALT2hATdybQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYDzAYkAAAABArIdkQAAAAEDIQmZAAAAAwEdqZ0AAAAAA/uJoQAAAAMA/621AAAAAQNosbkAAAACgc0huQAAAACCsFHBAAAAAoFljcEAAAACAigNxQAAAAODXxXJAAAAAwPffckAAAABA3+5yQAAAAMCsvHNAAAAAAJgAdEAAAAAA7410QAAAAABqsHVAAAAAAG4gdkAAAADAAUx2QAAAAEAyXnZAAAAAgF7TdkAAAADA0N92QAAAAMADpXdAAAAAAEXzd0AAAADA/Tx4QAAAAABM33lAAAAAAKFgekAAAACAXKN6QAAAAIBE73pAAAAAgKSpe0AAAACAb957QAAAAEASC3xAAAAAgPxKfEAAAABAEF58QAAAAABocHxAAAAAAEiXfEAAAAAAKL18QAAAAAA19HxAAAAAwM4yfUAAAAAAUUF9QAAAAADZZn1AAAAAAJN5fUAAAAAAKod9QAAAAABTkX1AAAAAwIOgfUAAAABAP+V9QAAAAAAq831AAAAAwEYUfkAAAABAl8R+QAAAAECP5X5AAAAAgPsbf0AAAABAhT9/QAAAAADjh39AAAAAwDKef0AAAADAS7h/QAAAAEC5CYFAAAAAgEobgkAAAABgKyOCQAAAAIAVZYJAAAAAgGWvgkAAAAAgacyCQAAAAKC20oJAAAAAYOMyg0AAAACAExeEQAAAAMCm14RAAAAAgP7dhEAAAACAi9KFQAAAAKDa14VAAAAAIPTkhUAAAABABW+GQAAAAOBjhYZAAAAAoNQkh0AAAADAjN2HQAAAAIBKJ4hAAAAAYF9DiEAAAAAg/JiIQAAAAEBloYhA + NrgMGZxjYkA= - + - SpYIQXgX4kCp8mNBtCBqQKwpUUAzvxNBxuMGQNz+ZUBiElZAy6cCQR8Jnj9Pn/dAXny3QNh/sEBoaCdA2c+5QGFFMUBnPnxBVhohQWUaIUBkt/0/XJEGQCafGEGSGoJA1LYwQOjeBkA/JxhBCAQQQH56vkAvxhFBxBlRQNK2NUBKqtlBMrK3QD/zg0GK1G5Bp9qiQJRnP0FIDD1Bsm7YQI+vxD/Y9gVAHLpDQJnDq0D7mo0/3abQQLejEUCDFRtBdlYTQQqFHkAe0mRBMp3wQFIROEFMOElAhJCkQcoSg0EmO/NBdd67QCy8CkHfO5hBN7keQqJrkUA7Vz5AHK65QQ6XC0BaAUpBeME0QeNsAkLSBQxBOPOLPwkIXkET0h9Bf33/QSNjS0G3FNdAjE6MQezXnUAEheI/ + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgJ5GYEAAAAAgVQViQAAAAEAnYWJAAAAAgF6mYkAAAAAA7ORiQAAAAICco2NAAAAAQKfGY0AAAACA4+BmQAAAAID4x2dAAAAAwDdDaEAAAAAAX6FoQAAAAGDayGhAAAAAAN8KaUAAAACgD39pQAAAAKD992lAAAAAQElpakAAAACA4MhqQAAAAMAgY2tAAAAAQBm/a0AAAAAgQedsQAAAAMAILG1AAAAAAC5jbUAAAABAPIVtQAAAAIDayG1AAAAAwH0JbkAAAADAAwtvQAAAAEBiZ29AAAAAwB+Cb0AAAADAV6VvQAAAAEDo6W9AAAAA4MFQcEAAAACA2mZwQAAAACALBnFAAAAAwA2lcUAAAAAADr5xQAAAAMDp8nFAAAAAQKoFckAAAADgaxNyQAAAAIC+HXJAAAAAoHpeckAAAACApG5yQAAAAEAxy3JAAAAAgLvyckAAAAAA1ENzQAAAAEBzcHNAAAAAQH+Hc0AAAADgQBR0QAAAAGDsQnRAAAAAQHNTdEAAAAAgMXx0QAAAAMDfkXRAAAAAQAsGdUAAAACgZyN1QAAAAIBIQXVAAAAAwFBXdUAAAAAAAWJ1QAAAAMCKi3VAAAAAwKCzdUAAAACAEM51QAAAAAC8/nVAAAAAYBASdkAAAADgTC92QAAAAMDlbnZAAAAAgMWCdkAAAABAvZF2QAAAAEDgonZAAAAAoNu2dkAAAAAgkBV3QAAAACALKndAAAAA4ISGd0AAAABAwZR3QAAAAEBwrXdAAAAAAO/Sd0AAAABg2xJ4QAAAACDjH3hAAAAAwMNveEAAAAAgNnt4QAAAAEDVmHhAAAAAoP4De0AAAAAgUud7QAAAAGCEl3xAAAAAoLcXfUAAAABg0YZ9QAAAACDPpH1AAAAAIJLtfUAAAABgdtJ/QAAAACALgYBAAAAAgItUgUAAAABgxluBQAAAAIAE3IFAAAAAYALjgUAAAADgYvaBQAAAAIDoaoJAAAAA4KRzgkAAAADAlXuCQAAAAODol4JAAAAAYFKrgkAAAADgKMGCQAAAAIDTGoNAAAAAoCijg0AAAACgk+KEQAAAAICEBYVAAAAAgPRyhUAAAACA9H+FQAAAACAy/IVAAAAAAFurhkAAAAAA0KqHQA== + NrgMGZxjYkDEZV5bjlJwQEMdzoN8QnFAi8DylKaDdkBq3hX7KlN5QIznFyyuw35AUhuHzr60f0DUt8VpqxKCQFf4jK4YGoJATtcM3U+yhUA45Y+GN6uGQHkBj9+b6odACCrt1MeyiUA4FH6w4zOKQAhZ2/5zO41AOENs2o+8jUBjbe7c2/SPQDUuVXTjqZBAMU5uA8S+kUB+sJVABAaSQDDH+k5KkpNA4s9VeO3Kk0CU5rqGM1eVQOFI4sNznpVA3Wj7UlSzlkBhYNnYyWKXQHd1GtrvfphAjurix32/mED3jBHvRUOaQA4C2tzTg5pAVRaJ1+lnm0B3pAgEnAecQGorytgPhJxA5hoKcCtQnkApu20S4lOeQD/QrhMIcJ9AL51KPEysn0C8j0WENoSgQHnzCREn3qBA4YcuU0yGoUDSfjwYSqShQJIKuCJ1hqJABoAXImKIokA= - + - 9LorQIxuNUBzTYtAkazoP9h8PUABo9Y/7X6wQMkGUkB/0QdBR7/DP2QEBkA17CtAl3NaQAlXiz9Uxy9BOTnHQDtszEBzUfhAGalsQChVckDyNYtAlII9QapCPkDfPzVAH8qBQIxWYkHi2vxAgAW4QNb+kkDKUWBBwtMOQb+kuUDdlitABBfYQG4u1UDoohVBQwauQZxdjUDoJpBArFVaQHKfRkDOeUNAV3qhQE0cUUAq+XFAPQTSQCI6e0COqjpACcehQX2fnkLAW7JAbz2iQZFTx0CflXM/rtk0QeUo7D9DoKRAvCcEQfYtrEAl7kdAXL5EQXEugkBhkfFAtMcVQZ9HBEHwGg9CO+iMQRVd6kCllN5AGoRbQDr91UAYy54/WDrzQFCm0kG5telBN6IAQsSOiD8WLRpBajyEQILDH0EWPItAnbHoP3APnUJztjJAzsuaQK5xB0BXs8I/MqsEQV5SGUB/rFpBpoc3QZJU3EB8CIw/y7UPQQLqaEDtYiZBHm3lP9HgCEF2ZJxBehexP3M1/kBIYNRB4mCLQA377kCJUjVB7+WWQU5/u0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgHYmYEAAAADA4z9gQAAAAEA6pmBAAAAAQB1lYkAAAACgLqxiQAAAAACi5mNAAAAAILSlZEAAAACgb+xkQAAAAECtRGVAAAAAQPNdZUAAAAAANgJmQAAAAGASJmZAAAAAgFieZkAAAADA72RnQAAAAMA942dAAAAAgJgjaUAAAADAZiRqQAAAAKDEaWpAAAAAwJvjakAAAACgjmFrQAAAAADwQmxAAAAAwHtmbEAAAADg/uNsQAAAAMBxCG5AAAAAgJuDbkAAAABAIqVuQAAAAAC16W5AAAAAgOkFb0AAAAAAkRlvQAAAAMBNW29AAAAAgISib0AAAACgjiNwQAAAAABQNHBAAAAAIIudcEAAAAAg4dJwQAAAAKABAXFAAAAA4OgLcUAAAABAABZxQAAAAGA1QXFAAAAA4H9ScUAAAAAAT61xQAAAAMCo4HFAAAAAQMwlckAAAAAgeDRyQAAAAIBsZnJAAAAAAL+AckAAAACgnrRyQAAAAADRxHJAAAAAQNoBc0AAAABAVxFzQAAAAMABPnNAAAAAwAlxc0AAAABA67JzQAAAAIDbw3NAAAAAIA8AdEAAAADgaxV0QAAAAAAvMnRAAAAAQHNjdEAAAADAsX90QAAAAMDHtnRAAAAAoMvTdEAAAADgQuB0QAAAAEDA+3RAAAAAALMSdUAAAADAhiZ1QAAAAKDsg3VAAAAAAHmRdUAAAADAc9J1QAAAACDH8HVAAAAAwH39dUAAAADg6At2QAAAAKBgI3ZAAAAAQPUtdkAAAACASzx2QAAAAGAjVHZAAAAA4FZkdkAAAAAAlm92QAAAAMBbk3ZAAAAAYKDEdkAAAACAq852QAAAAKDNAHdAAAAAwPwVd0AAAADgHzJ3QAAAAIAeUXdAAAAAoEaAd0AAAABAPKN3QAAAACCZsXdAAAAAIP2+d0AAAAAAKNF3QAAAAKA733dAAAAAYB32d0AAAADgqRR4QAAAAGASKHhAAAAA4AREeEAAAACAZFR4QAAAAKBHcnhAAAAAIK6SeEAAAABAPct4QAAAAEB35XhAAAAAAF0FeUAAAAAAPCp5QAAAACBzO3lAAAAAgJBaeUAAAACgdnN5QAAAAKAdoHlAAAAAwOC9eUAAAACgj9d5QAAAAGBM73lAAAAAIO4wekAAAADgkN57QAAAAMDEQ3xAAAAA4BBSfEAAAAAgW618QAAAAEAWAH1AAAAAYAMRfUAAAACglzR9QAAAAGDEb31AAAAAoGEufkAAAABgSIR+QAAAAMA4on5AAAAAYJEQf0AAAAAgbz5/QAAAAGBuXX9AAAAAQFNrf0AAAABAbXZ/QAAAAKAb2X9AAAAAYND4f0AAAADgFR+AQAAAAIAXMIBAAAAAoE9JgEAAAACgTamAQAAAAOCvP4FAAAAAoOVqgUAAAADAdMSBQAAAAKDcF4JAAAAAYOoggkAAAADgLE+CQAAAAGAzXIJAAAAAoC10gkAAAAAgT46CQAAAACBYmIJAAAAAwH6tgkAAAACgF7uCQAAAAGB9xIJAAAAAoFYKg0AAAADg3EiDQAAAAIBEbYNAAAAAwNP6g0AAAABgJjSEQAAAAOBbPIRAAAAA4Fp6hEAAAADgHduEQAAAACBQ6oRAAAAAwGsChUAAAAAg5xuFQAAAAOCrioVAAAAAoCqShUAAAABA5MGFQAAAAGAsGYZAAAAAIAgjhkAAAABgfnuGQAAAACAonYZAAAAAQGO9hkAAAACAHzyIQAAAAOCokYhAAAAAgAGaiEA= + KBZXds7jZUDEZV5bjlJwQBTpB48/A3JA - + - mCtfQChy4kC6GBVAOgjZQURGekDGqNc/GvEuQR309EDxnoRAKVVNQIYbvkDIpWNAqG5MQOPh3UDxKTFA39TDP5JktUFzoKxAJhnDQMBsBkCjaY5B6WOYQRe5K0CfVTVAqrHnQJHORkDDIzVAO/nDP7zscj/JlYtAIpP9QFkoNUCyQRBAdUsgQbUlrkBq+LFBn7ohQDtTJ0C2BAlC2h4SQAoI1D+HKTlBFFrWP3rqlEDYDQdBDTyLQNEKTkFjhIBC0RULQTzenj80wqZAWEjTQHbokEK4kCNB4Bk/QbBnLEFKYfVAm+v4P6cNrkC2F6ZAioDXP4tHxUDaiAdA8vahQKyI7D+MbBBBraNvQn4sxEBACQtBcHRrQAe9DUBmQrlBpV+bQUZ6nEFebG9BAxIEQb3ZAUHZysJAYkNQQu1Ra0Id5hhBCwSPQa7OlkB/6oNBQlkeQQB140B/QRdBGuDEQb6jFEFLIy5BLtbCP7rK7ECMRAxBT6xDQatrWkLc54hAMowpQD6n2kCtj41AZEH2QI759kFDEwtBXCprQkIiZ0CEnI1AIDYpQfSqmkEcESBBiesrQKNwm0DzxZpAOTD6QYiZ00CpBCxC/ysOQgC/WkGVunRAWTVzQcJ0qUCD8VBAJABgQSyOr0FO0hBDbqV2QBjyf0A+RsZBowjMQKI1OEGwjzFDJ9U0QCSsrUEkSENAznSbQZQMCkHI1+JBSEQlQQ24B0HKHqBAEW37P0jIl0GpoqNBuZSYQa7V3EJtKrpB5g6GQbRpp0As3p1A43LWP8MiR0CbpzRB+LGdQNgb5ED5vSdA+T6RQGzrYUB+6edAbMqeP9rof0CpyrVBm1KiQC3TpEBPcORAHJd+QPEIa0AohCJAVtpFQQ== + AACAPwAAgD8AAIA/ - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQD6fZUAAAACAJ6RoQAAAAIAK52hAAAAAYETnaUAAAABgDSRrQAAAAEAyxGtAAAAA4I0XbEAAAADAzypsQAAAAIBIQWxAAAAAYNXDbEAAAABALQduQAAAAEC4RG5AAAAAAOMeb0AAAADAZ2BvQAAAAEDPJHBAAAAAwHoycEAAAACA+6BwQAAAAEDJQnFAAAAAwFFScUAAAABAzqBxQAAAAEAb1HFAAAAAwHIfckAAAADARoNyQAAAAIAD0XNAAAAAAE11dEAAAACA2oB1QAAAAEBi1XVAAAAAAIOtdkAAAADAkCN3QAAAAACHNHdAAAAAgBNEd0AAAABAanZ3QAAAAIADk3dAAAAAQJoEeEAAAACAfhR4QAAAAAC3UnhAAAAAwAlweUAAAAAAEox5QAAAAID67HlAAAAAAMJTekAAAAAAP6R6QAAAAEBItnpAAAAAAPjcekAAAABA+vp6QAAAAMCuEXtAAAAAQJ0je0AAAACAGYV7QAAAAICfvntAAAAAQGlUfEAAAADA6ZZ8QAAAAMAB23xAAAAAgNzkfEAAAADA9/58QAAAAACIRH1AAAAAwANVfUAAAAAAkmd9QAAAAIDfun1AAAAAQC3GfUAAAAAAOER+QAAAAIDqg35AAAAAgFfwfkAAAABAKDV/QAAAAEBiS39AAAAAgMtYf0AAAABAv3h/QAAAAMA/5X9AAAAAoM4JgEAAAABgnBuAQAAAAMD6MYBAAAAAgFlMgEAAAACg/m6AQAAAAEBwk4BAAAAAwJmcgEAAAABgcaOAQAAAACCctoBAAAAAYMPZgEAAAADAaOmAQAAAACAGBYFAAAAAYEULgUAAAACARBWBQAAAAOBOI4FAAAAAALMpgUAAAABgpF2CQAAAAKB5cYJAAAAA4IR3gkAAAABgK96CQAAAAMCj6YJAAAAAwIkBg0AAAADAGFGDQAAAACDBbYNAAAAAAKKHg0AAAAAg6rKDQAAAAGBtu4NAAAAAwLjshEAAAAAAGDSFQAAAAODVgoVAAAAA4NUyhkAAAACALkuGQAAAAOBVdYZAAAAAYPN6hkAAAABgrqGGQAAAAGCOy4ZAAAAA4F8yh0AAAADgxLyHQAAAAEALw4dAAAAAIOLJh0AAAACgmxKIQA== + NrgMGZxjZUAoFld2zuNlQGS4z0t+BG1A - + - JVepQJy61T+UYhlA3DV0QOrd1T8QgfI/ITPzQfpdAEI1I4JA0MYnQMy2UkF3Kow/912iQKdh3kCGStVAcK9eQeZP+z/E5tFAQVl/QD6dIkCCRqVAT3MlQZzky0CUVqlAAsWjQH7QnUDBlppAGSQgQTv6REHs6oVBh5MhQKgE40CqhaxAes2GQGYmNUDD5CNB+QYJQaAeJUE5qHxBDizYQTL9JkDzUklBuhvOQfemPkAp/dFAZVmCQVfG8kBCIR1B82Z/QCAsXEHNyHdBHaUDQri1qEDKThlAkLjKQNRC40CiXBBAdLLnQE3XDUL20a9AnX0CQY3jO0HuYr5AQegUQJX5TkDieBZAIM1EQL1cykBey3ZCGlFpQZWNi0CFJVhA4loXQiab20ELWftA50L9QXONmUHGS9pBS1nrQNUrCEJCqFJCGcAiQSBxq0DFMDtBHpOoQNp2DEFYCRNCiyvdQMjfUkE3z51A9zeCQIEvkkAUJydChAsGQqp6+EFGkGZCnP33QAnYIUGs/WJC0Zm5QAcXE0GDRrZAtaCrQKIENkIJZR5By23BQGrd/UA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIEuEY0AAAACABP9jQAAAACDDYGRAAAAAwEzKZEAAAACAHkRlQAAAAOCgp2VAAAAAgP/pZUAAAADA5gNmQAAAAMC0A2dAAAAAgIFDZ0AAAACgs2xnQAAAAMDHg2dAAAAAAPZBaEAAAADAtGRoQAAAAOA2KmlAAAAAgOhcaUAAAABAiWxrQAAAAABxpGtAAAAAgJ7na0AAAACAQkVsQAAAAIDBg21AAAAAwL2jbUAAAACg4TluQAAAAEA/Z25AAAAAwCvFbkAAAADAfGdvQAAAAOCGJnBAAAAAgHtvcEAAAABgV4BwQAAAAICrj3BAAAAAIE/AcEAAAADgI1RxQAAAAAC6r3FAAAAAYCDAcUAAAABA9uNxQAAAAEDSsHJAAAAAYFLIckAAAAAA+gJzQAAAAEAQFHNAAAAA4FUzc0AAAADAyoRzQAAAACCf7nNAAAAAoH4AdEAAAACAmhN0QAAAAEC4JnRAAAAAwINxdEAAAABA3vJ0QAAAAICQBXVAAAAAwA80dUAAAAAgZFV1QAAAACDvs3VAAAAAgMPEdUAAAADAxPN1QAAAAMAtEXZAAAAAwJpFdkAAAABA85V2QAAAAABTonZAAAAA4O2xdkAAAADAoc92QAAAAOCRMndAAAAAgGVdd0AAAAAA53V3QAAAAMBZ4ndAAAAAoJUheEAAAACglUJ4QAAAAGDdVXhAAAAA4OijeEAAAADgP8J4QAAAAGBz5HhAAAAAIJn1eEAAAACgPjV5QAAAAMD1RXlAAAAAgFCieUAAAADgALR5QAAAAKCavXlAAAAAwBPLeUAAAAAgVAd6QAAAAABMIXpAAAAAQHRQekAAAAAAfGF6QAAAAEDbb3pAAAAAIIHBekAAAAAggeJ6QAAAAMCJAHtAAAAAoAwle0AAAADgeUZ7QAAAACDza3tAAAAAYEV2e0AAAABgccF7QAAAAIBT/3tAAAAAAOscfEAAAACgcid8QAAAAKBeMnxAAAAA4Mh9fEAAAACAPZB8QAAAAMDMm3xAAAAAoN7UfEAAAABgDOt8QAAAAEDs9HxAAAAA4BgGfUAAAABAsSB9QAAAAGB6TH1AAAAAQBw0f0AAAADAvlN/QAAAAGBxYX9AAAAAQGp3f0AAAAAAjSqAQAAAAOBpVoBAAAAA4JpegEAAAADg/aaAQAAAAIDuA4FAAAAAYBQkgUAAAACgjWuBQAAAACANhIFAAAAAQBmLgUAAAACAQ8SBQAAAACAoyoFAAAAAoIgOgkAAAABgcB2CQAAAAMC6S4JAAAAAYAZVgkAAAADgMWOCQAAAAKASuoJAAAAAYHHBgkAAAACAPQCDQAAAAGByEoNAAAAAQMhAg0AAAACAGWSDQAAAACBBcoNAAAAAAGx9g0AAAAAAWoaDQAAAAKAjoINAAAAAwKS+g0AAAADg+c6DQAAAAOBV4YNAAAAAwBTtg0AAAADgnvuDQAAAACCNB4RAAAAA4IobhEAAAABg+yKEQAAAAEDLVIRAAAAAAJ9phEAAAADAMuyEQAAAAODr84RAAAAAoL4PhUAAAAAAohuFQAAAAKAoMIVAAAAAoG81hUAAAACgwMSFQAAAAOBK0IVAAAAAIFpzhkAAAAAA1oeGQAAAAGCFlIZAAAAA4F+chkAAAAAgAuCGQAAAAOAJUYdAAAAAoOZVh0AAAABgYmaHQAAAACCcmIdAAAAAoKbkh0AAAAAACPyHQAAAAOC6YohA + kn+Pm8LCZEDEsXzkG6NpQCTMEZkksnBAdmjQV5ECd0CUuYxC6ZJ6QLjbo/4n43pAlkAy9wtygUCUZA9U9mGCQCONbUkiKoRAUJMS74NyhUDquBNZjjKHQBqb26EFi4pAtMDcCxBLjEDU7buZfYuOQLeJ3gHEJZBAzgyx1PTJkECbn7EJ+qmRQCs2odAwypJATbYWGEA2k0AxzOkfdrqUQBC6BapxVpVAe7y7vaG+lkD0z9ixp9qWQNjlq7ndvphAUfnIrePamEC8+37BE0OaQDUPnLUZX5pAPBN21mkHnEAakwCPWuucQCGX2q+qk55Amqr3o7CvnkCC1tZb8AugQD9g5VXzGaBAMOvOWQ4MoUDudN1TERqhQCJ2uF0pzqFAE23GIiccokAF+K8mQt6iQBS4aspJFKNAXoPiLWWko0DCzGLIZxSkQFAOzDGAZqRAtFdMzILWpED/IsQvnmalQGJsRMqg1qVA8WR2nL6spkBUrvY2wRynQOPvX6DZbqdAB3q3neTgp0ACw+403xyoQLDX5jL9HKlA+btpCgUnqUAdRsEHEJmpQKIZmZ8dY6pAD4hzdDDfqkAtWwIJNi2rQDMSy3E7UatA - + - gkkaQAg6RkBoCixA1OfrQPNRQ0B6P4lAqLn+PyMPK0HdOIJAvkqxPySzPEA1K7E/TzSfQF1NsT83O/9Avk2eQE7viEAGXlZBDHDWPw19i0Cu9AZAMTOMP3KpqUCKV/hAECCNQOdGEEBDb4BAD/MPQB0tNUBtTzVAQPfDP4jt5j+/aalAcxNQQN3lyEBYCOg/8pYhQi5YTEHO9/8/LuD1QNjr4z8rrMRAe6oiQFq4ckBHuaRAbhLnQc3xmkCiRChB7YCrQCjHH0CHZ6hAfj17QDdxAEHAA55ADP8lQTFvi0AQGNNAWH9xQOXI5EDHgExBJz/KQCbyH0GiVPJARJc7QN49h0FH3rBA+E8lQQMmS0FE1/1AfmSxP+KjH0FLPp5Aeb4HQb/2aEC5EgdAF9N+QfKNz0EYRbpA8Gb3QLHDCUGHfw1B3Yz9QNgSQEHJ9BBB6UfAQGxlzECXRg9C4NIYQV0eM0CZXnpB6jkLQTmza0FgQn9AwPXgQO5fAUK431dA9jAQQP00FEFgFshAC5veQPp/+UH6dZtAz2VQQQuwsUAVsG5B/NmEQesinkHS5h9BDgUQQadUFUDZG1pAIA11QpEPdkAcwLE/BDepQKwnEEBo0qNB4VoRQf1qk0G1MRtBbwbaQNOMIkFIBMRB3PPFQUACP0EpyR9AkCSEQe/WkUASYspAGJIwQvGax0KfIIhADgU/QHj44UHHEyhBFwYJQXYx0kDh+gVBxTTSQDLCNUHydoNAwhOgQUx85UIjsmBBbhELQQxBOUFciAdBQco6QA7j4z8DHlpAjjGfQI65DkI033ZB2pNuQbBepUArS/FAyqqNQEjwGEEdaAFB8FRaQZ0Zjj9h0vQ/ + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoBn1a0AAAADAU0VtQAAAAIAdTG9AAAAAwASCb0AAAADAar1vQAAAAECPIXJAAAAAQKSydEAAAAAAHPV1QAAAAMDX3HZAAAAAwHIYd0AAAADAZDV4QAAAAMAJvXhAAAAAQASDfEAAAACA+Zd8QAAAAABXJX1AAAAAgE01fUAAAABAoJN9QAAAAID9AX5AAAAAABiAfkAAAACA3Ld+QAAAAEDdKX9AAAAAwJFff0AAAAAA6QGAQAAAAIDXIYBAAAAAwA2bgEAAAACAYbOAQAAAAMB2jIFAAAAAIKuVgUAAAAAghJuBQAAAAIBnuYFAAAAAwCPGgUAAAABAeiGCQAAAACC1L4JAAAAAIBpLgkAAAADgRVGCQAAAAADqiIJAAAAA4GWPgkAAAAAgM5mCQAAAAGAD1YJAAAAA4MsPg0AAAACg8BuDQAAAAMDySoNAAAAAwFNjg0AAAACg93iDQAAAAKAYgINAAAAAICqRg0AAAACghLKDQAAAAEDpv4NAAAAA4PMPhEAAAAAgd0aEQAAAAGB9ZYRAAAAAYJSDhEAAAAAgZa+EQAAAAMCe0YRAAAAAIBDihEAAAABA1gyFQAAAAKBdIIVAAAAA4ElrhUAAAAAgFFSGQAAAAMB0jIZAAAAAoBh0h0AAAADgu/yHQA== + NrgMGZxjYkDodNMYclFwQAoahmk8YnBA0XQao1STdkDWMtN14IF3QPg71aZj8nxAvzIaAMPDfUCNoutrczGBQMNG15xt+oFAUm81kpnCg0CN0dmVH7qEQONztirbeoZAHtZaLmFyh0B0eDfDHDOJQK/a28aiKopAPgM6vM7yi0B0pyXtyLuMQKIwBNlaC49ABaymhQp0j0BL2BMPJhaRQM0HwgPJUZFAfx4nEg/ekkDHx1OmQeKSQPsNZ6kqqpRAEbglRG3mlEA= - + - ix/7P8Z4PkBkiZRAlwJhQNa+6T9qiB9AcXy1QLfmdECSdxVARvxNQGcQfEDrokZA8Wv7PxE2EEDepWdB3QWXQA9vg0B01CtAOn88QYRQi0AXoMdA+eNYQIROykC96DxBwnKiQFtrgkDA8Z1AH2yQQF9+EEAsWD5BRMCiQFGKDkG0YxNBOWhhQRL+IkBiKJpAxJ6wQP0JGUAWC9Y/Ubq2QLT4dkH+OXZAQmHWP+DQgkDmqAdAvPxJQfpXKkDEbkVB7dqmQDZgP0FUGQxBDN4QQdSDzUG2wINBHei1QJeVAEGp0zNBL4joQCPrFUDIdZtBmqL1QFSpgkE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQFkHZ0AAAADAvURrQAAAAACZa2tAAAAA4O+qa0AAAABAiMdrQAAAAMBeQWxAAAAAYO5ibEAAAABAOP9vQAAAAMAfvnBAAAAAQFiicUAAAACASsJxQAAAACCrJXJAAAAAwCZBckAAAAAAIhJzQAAAAMDzKXNAAAAAgJubc0AAAACAuapzQAAAAEAM4XNAAAAAAE0BdEAAAABARXR0QAAAAICQgnVAAAAAgKzjdUAAAAAA2OV2QAAAAAApNXdAAAAAQBy7d0AAAABA+vB3QAAAAIB8PHhAAAAAQHa2eEAAAAAACPN4QAAAAABN/nhAAAAAwKgSeUAAAAAAIyZ5QAAAAIAgAnpAAAAAQNYYekAAAABAtkN6QAAAAIDekHpAAAAAwIKkekAAAABAmhp7QAAAAMCaantAAAAAwP3Te0AAAACA2gV8QAAAAICuHHxAAAAAADGyfEAAAAAAlPp8QAAAAABTM31AAAAAgKFIfUAAAABA4JB9QAAAAED2pH1AAAAAQLrEfUAAAADAEUV+QAAAAADEZn5AAAAAgH7DfkAAAADA/7B/QAAAAABPKIBAAAAAQPc2gEAAAACgguWBQAAAAEDQVoJAAAAAQOgAg0AAAAAAeSuDQAAAAECFQ4NAAAAAoLlNg0AAAABgyXuDQAAAAKApu4NAAAAAYPjEg0AAAADgOdqDQAAAAGBS4YNAAAAAwJwYhEAAAADgL1SFQAAAACBZiYVAAAAAIOTdhUAAAABg/OOFQAAAAKDU8oVAAAAAYBb6hUAAAAAgNieGQAAAAODMS4ZAAAAA4AALh0AAAADgM1yHQAAAAABv6YdAAAAAgDYriEAAAAAAsTKIQAAAAKBNvIhA + KBZXds7jZUDEsXzkG6NpQDitQvclQnFA2+W/dP8idEA4Cx9LflN4QNtDnMhXNHtAjl8jUBbEfEBOJR3OfrKBQCrd20SX+oJAslLn6grLhECOCqZhIxOGQLKB1RS3U4hA8jdwfq8riUCysMM+Y9yLQPJmXqhbtIxA+Uom6YMekEAL78atdzqQQIsGvsLN/pFAq2GL98lqkkAreYIMIC+UQD0dI9ETS5RAvTQa5mkPlkDdj+caZnuWQD1MEfu/05dAXafeL7w/mEDvYnYJBmCZQN2+1UQSBJpAoXnbF0zsmkCP1TpTWJCbQFOQQCaSOJ1AQFciyIGcnUBppYEnuFSeQMBuGd3XYJ9AdV48HocMoEAA6dwempqgQLlCv/WO1qBAWXQPJr3AoUA= - + - vfjoP/F+sT97VM1AasxxQUD0iz+Gd3FAbwohQSWUGUCyhlVArgA0QKVFHkDD2D5AylYQQC4kMEGjDPZAvKqdQY68eEGXAolAKkISQVt4VUFoGIlAtEE6QBbs1UD/0oNARVkVQeV/aUE6TpJA/whzP6LY5EB0A8Q/D9q5QF21lECl7fo/ZSqZQGFKT0BPLhxBL1c7QOQz9kDWsuFAaSdRQBE/EEAm9JRBkNxnQIGTGEEC2qZCz6pxQcx2JkJTur5AzciiQI6zBkKtJ/ZA7Fw8QRmbRUC8YhlAU6dFQb1X90ClHwxBxf5HQETM0UCYdLFASszYQYbidEBFe8BAsFz7P+YX6T8mrs5ATH6BQcMGjEAjfT5AZ/8IQb/cZkHNONJAAGRNQNXaFUGZ4LBBfKMzQScWH0DVQcNAeLa5P/CVPkDPexlA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAMCKWUAAAABgpIVbQAAAAEChSV5AAAAAYOvDXkAAAACAqodfQAAAAECUx19AAAAAQLUhYEAAAACAHANhQAAAAGBSv2FAAAAAwKX1YUAAAABgoVxiQAAAAAB2hGJAAAAAgC2kYkAAAAAAWOBiQAAAAIC1p2NAAAAAwOjkY0AAAADAfwNkQAAAAEDhK2RAAAAAQD4/ZEAAAAAAeGNkQAAAAKCzJ2VAAAAAAABmZUAAAADArAJmQAAAAOA6GmZAAAAAYNNHZkAAAACAsIhmQAAAAECtv2ZAAAAAgO4GZ0AAAADAFSBnQAAAAAALSGdAAAAAAERfZ0AAAADAjKBnQAAAAEB55mdAAAAAwIwBaEAAAADg1xhoQAAAAGBGRmhAAAAAgLtZaEAAAACgP55oQAAAAKAewGhAAAAAQBPxaEAAAAAA9CZpQAAAAEC3aGlAAAAAgGCHaUAAAAAAuL5pQAAAAMDr4WlAAAAAoEMlakAAAACAnkFqQAAAAODMZ2pAAAAAwFvIakAAAADAIuNqQAAAAEAlXWtAAAAAwGima0AAAAAA9yJsQAAAAMAkRGxAAAAAADxqbEAAAABAfYhsQAAAAACSo2xAAAAAwArmbEAAAADAIj9tQAAAAABUU21AAAAAwM7MbUAAAACAveJtQAAAAIDOBm5AAAAAgFM9bkAAAADAHl1uQAAAAEBgf25AAAAAgLqlbkAAAACAqMRuQAAAAEBjJW9AAAAAwJFJb0AAAADAKWFvQAAAAAD0g29AAAAAgFikb0AAAACgxiJwQAAAAEAvL3BAAAAAIJ4/cEAAAADAHE1wQAAAAMD4c3BAAAAAAEmycEAAAAAAM8NwQAAAAADA0XBAAAAA4BLlcEAAAAAAhvNwQAAAAIByBXFAAAAAQCYScUAAAACA3C5xQAAAAODMQnFAAAAAANhMcUAAAADA5lhxQAAAAEBfZXFAAAAAwGaCcUAAAAAgLatxQAAAAACT5HFAAAAAwPTxcUAAAABAmARyQAAAAIDxEHJAAAAAIOIgckAAAABgIDNyQAAAAICJRHJAAAAAIDhSckAAAADAaYZyQAAAAMDGl3JAAAAAgK+ickAAAADgrbVyQAAAAOB64HJAAAAAYLsOc0AAAACg+R1zQAAAACAUKXNAAAAAwIFJc0AAAACAxmVzQAAAAEAScnNAAAAAgD6Uc0AAAABARaJzQAAAAMBBtnNAAAAAIHHEc0AAAACAlNRzQAAAAMAH6HNAAAAAwJkhdEAAAADgYCt0QAAAAMDjOnRAAAAAQLlNdEAAAADgkm50QAAAAKC5NXZAAAAAoJa8dkAAAADgawl3QAAAACCuYndAAAAAIOWhd0AAAABgCL93QAAAAEAe0HdAAAAAALoheEAAAADADDZ4QAAAAADZUnhAAAAAAJeueEAAAAAgENp4QAAAAMBO63hAAAAAACQ4eUAAAACg+0R5QAAAACBVh3lAAAAA4JyUeUAAAADANLV5QAAAACB6w3lAAAAAYBXVeUAAAACgKuV5QAAAACDORHpAAAAAIGBYekAAAAAgFeN6QAAAAGDR+HpAAAAAoPEOe0AAAABgfh17QAAAAMDVoHtAAAAAQFC8e0AAAADgJfV7QAAAACD4MnxAAAAAYLNPfEAAAADgCKN8QAAAAOCBzHxAAAAA4G3efEAAAABA6AN9QAAAAEAaIX1AAAAAoGpUfUAAAACgJ199QAAAAKCe9n1AAAAA4PutfkAAAAAgpMd+QAAAAEDpGH9AAAAAIDmAf0AAAAAg479/QAAAACDlyX9AAAAAQKzTf0AAAADg7yuAQAAAAEB6coBAAAAAAOx7gEAAAACgqrOAQAAAAEATw4BAAAAA4KD7gEAAAABASQOBQAAAAIB0CoFAAAAA4DqggUAAAABAAiuCQAAAACADMoJAAAAAoNJogkAAAAAAhcSCQAAAAADizIJAAAAA4CJRg0AAAABAgGWDQAAAAOARjINAAAAA4KQqhEAAAACgXpuEQAAAAKCAjYVAAAAAQAQ6hkAAAACgZbSGQAAAAOAOzoZAAAAA4HG9h0AAAAAgw8OHQAAAAGDzM4hA + NrgMGZxjYkBKAwDktuFlQOJgFSPMRGtA - + - KnlRQAGMNkEjxf8/zd+bQBkB1z9ydp5A+0LoP+hGoEDFEkdAaFy2QLGnMkFE0yVBU1FaQA88wUDwUylBZBERQMeusT9jApNBTVE0QL7AQ0CjegpAO/5HQEMA0UAKwRBA3xelQB9CkEBCDqVAPNyBQOfGjD9PCPw/Dq4ZQd6htUCFDQxA7NhsQI55dD9dwl9AD+OLP1GyGUCKsoBARB/RQF0VLECpWLVAFBUXQBiUQ0DCwGVBLB2TP29NtUF7bcRAiAwBQTIR1UDX50FBjQDDQILnGEGBMhdAZND/QFKaqUCm9iJAoQ9KQZZ9IUHvGnJAOsebQBwAJUFjEbVAzBFOQEsb7T84m6dAMP9VQc4B+kH0h1FA6zVhQGDp1UA/AE1BZ9CrQHuIdkC5MixAilZ+QWAJBEEdecJAVMDbQEufFUDiJwdAff9CQtCMOUEe38RBhFYNQVx8EEBXYbJBB8LWQIocnUCiAMdAz5ICQLasOkC3Ek1AMhXXQK6Bp0B1rQFCJpDUQSAzAELvvvVASypFQUTW30BRyyRAc9bdQBU9Q0H5XaFAFPSZQSJVOkBeJWVAiP2AQSDvd0Fd3etAHhjTQdO6EkH4/FBCKm22QGXMIEIeIcBBgZubQDLsekA5yBNBHy4sQOKIDUGH3zNB0AMrQj/T1j+XogdBy1ieQJNgkkHWBhdBEGHTQAjgTEDBKjpB+6XjQDROfUF5brRBCVCzQDEPmUH4EDFBCTeUQCHgR0AuWeNAvp9kQB1wqUBs4KNBVKsXQms8E0KxMgxBcXyiQQ6qI0EJGHFBQtoiQR2tUEEhkKNBXbfTQQTNskDQdARCQ7qQQlspjkAlXJJBlosjQjPyL0LIXD1AFX1fQOYWSkEl/ohAcHtIQQNnjkEH7hZBuycHQBbnO0KmbFhC9AiaQd04kEAcpZRAGkexQctRPUDOZ+hAmnfbQEOGe0AwwFBAdMWdQaaJWkA0lr1BTnkfQcz5xkC9sdNB2M3xQEbXGEH6q4w/4DchQCrMq0Aj5BZAdMytQPbNhkBduKxA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwPgFYUAAAAAAhiZhQAAAAGBaQ2JAAAAAwAPgYkAAAACATwFjQAAAAGDyImNAAAAAYFBdY0AAAADggaNlQAAAAECGH2ZAAAAAoAvDZkAAAAAAHehmQAAAAAA2AmdAAAAAAP+IZ0AAAAAAqQRoQAAAAAAgM2hAAAAAgKViaEAAAADgD8FoQAAAAABJHGpAAAAAQINBakAAAADAqn1qQAAAAEAMJmtAAAAAAPbDa0AAAACAUuRrQAAAAKD5JmxAAAAAIJY/bUAAAACASGBtQAAAAEBu9W1AAAAAYB4gbkAAAABgYWRuQAAAAMC3im5AAAAAQGbHbkAAAACApOBuQAAAAEA6Bm9AAAAAQJwpb0AAAADAMa5vQAAAAABfQ3BAAAAAYMlUcEAAAADgApNwQAAAACAs/nBAAAAAQJo/cUAAAAAgKFVxQAAAAOBWdXFAAAAAYLbAcUAAAADg+PVxQAAAAOD0EXJAAAAAoLk0ckAAAAAAjqNyQAAAAMC2xHJAAAAA4FTRckAAAACgreFyQAAAAEAS8nJAAAAAYO0Ec0AAAADAzyBzQAAAACB6sXNAAAAA4B7Hc0AAAADAvQJ0QAAAAOA9I3RAAAAA4FZkdEAAAABAiHR0QAAAAKCTgXRAAAAAgG+UdEAAAABAfdV0QAAAAIAsFnVAAAAAgBk6dUAAAADArmR1QAAAAKDhjXVAAAAAgAyidUAAAAAg5LB1QAAAAEBUw3VAAAAAgG/RdUAAAADAXRR2QAAAAMC6JXZAAAAAQAI0dkAAAAAgPlJ2QAAAAAD4lHZAAAAAgP/GdkAAAABgmNF2QAAAAAD84XZAAAAAgP7wdkAAAAAg+B53QAAAAGAkMHdAAAAAAEBld0AAAADAyHN3QAAAAOA7hXdAAAAAoMSld0AAAADAHet3QAAAAEAb93dAAAAAoI8ReEAAAADgIyZ4QAAAAGBpNHhAAAAAAGBVeEAAAAAgm3t4QAAAAGA2hXhAAAAAoOmPeEAAAADgaQx5QAAAACCTLnlAAAAAIPlHeUAAAADAOoF5QAAAAEC3kHlAAAAA4GejeUAAAAAgk7d5QAAAACBk03lAAAAAoHfieUAAAAAAFQV6QAAAACDcKnpAAAAAYFBbekAAAADgzmd6QAAAAOCFnXpAAAAAgEi+ekAAAADAwuZ6QAAAAICaSXtAAAAAADZVe0AAAACgYHR7QAAAACAjw3tAAAAAwDPae0AAAABg7cp8QAAAAOBZxn5AAAAAIBllf0AAAABgYnp/QAAAAEDYnH9AAAAAQKzYf0AAAADgDBmAQAAAAKD5LoBAAAAAoIaLgEAAAACgXJOAQAAAAMCJ+4BAAAAAYEEjgUAAAABg8ViBQAAAAOB+aIFAAAAAQLHSgUAAAABgGPSBQAAAAKBV/IFAAAAAQAoTgkAAAABAyCKCQAAAAGAPQoJAAAAAoFNIgkAAAABAX2+CQAAAAABFeoJAAAAAQNWFgkAAAADgFZyCQAAAAGD8u4JAAAAAIBPEgkAAAADgq9WCQAAAAADa5oJAAAAAYHP0gkAAAAAg9SqDQAAAAGAwM4NAAAAA4ItCg0AAAACgVU+DQAAAAAA1foNAAAAA4LSHg0AAAAAAGMSDQAAAACCVBYRAAAAAoOckhEAAAACgTkmEQAAAAGBCUoRAAAAAABCLhEAAAADg9c+EQAAAAMBO3IRAAAAAYC/jhEAAAAAAbwOFQAAAAADAE4VAAAAAICJQhUAAAABg2n2FQAAAAICvqIVAAAAAoI1FhkAAAABgZUOHQAAAAEBocIhAAAAAIBe6iEAAAAAgIf+IQA== + NrgMGZxjYkCJy7y2HKVqQMZtNYzMxW5A - + - DxBWQPNQckC5GiFAy7fHQHc5NUCa4GFAhgYzQLd8nUHj0LE/giDGP+AUu0CyCZdAzF3gQCR8EECNkLM/PtlEQJiEukDxWQdADO6dQII6sj/YbkRBvVj7P3IRkEA1hUdAATZtQF6pO0B8IXNASMkYQXesGUC/0IdAu1pRQGsz/D/9oDVAcjqgQb31O0CQzmhAgo3PQL2NUUAIakBBDek7QLyQBkHn0nZA5uGaQERBf0BdAwtBlFuxP6hYYkDv4ARCftlKQTJegUEMg7lAok/6P7d1nz9AHXhBqXKsQDA8HUGDKy1BV6qfQEFet0AKBiBANjIKQbUaVkD+2kdBcbUXQTa6HUH7NxNBH4SLQKsMSEDSTRBA9ryJQbQD9j9ozLpATOuGQau4dD+xcTNA+SynQQGxQ0FQbNY/AicsQWvJxT/Sh+VAmmEsQKd7BUHLLidB3PA3QU89jEA3wJZBSiUxQVv8OUCZkGhBBn8QQiE2hUHXR1NBtQ5kQLcSq0HiX/lB6vGUQK9E1ECgHlpAGjWdQdZ6i0BWOhJBM7lYQZKnWkBkvrFB/cdIQVOHt0AKBfZBHfqLQcbH1kBy1LZBxig9Qcq6OkEVcZ5ArCe6QTy36j8mAxNCULlbQZ4Zy0BxUvFAKlWJQLfbaEDuNupARdVqQF5AMkE9MBNBsSIhQno+yEDd6YdBH3QnQYjIKz9wdmNAjKSeQQ3WNUHs4wtBAsZHQIWfsT9Ow9pBJCy8QPKGV0HDWedBl8cuQSKIGUAIvAlBlS67QLxmyEDcbqpAUA2yQUxkMEEkjOlA1hgUQs74+0DNTCNBEhsHQfpf00BXFRxB6RIAQdZ7xUCdGUlC6GdhQIzQ0UGeAP9AYinuQMZlUEBNkhNBVCaQQeFjSEB+rZBBO50+QcWABUE= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAACHCaEAAAABAdP9pQAAAAMAQJGpAAAAAgOAIa0AAAACgqGNrQAAAAMCexmtAAAAAAMk7bEAAAACAmQttQAAAAIB35W1AAAAAAPkDbkAAAABAs4FuQAAAAMC67m9AAAAAoIggcEAAAADgtkRxQAAAAMCIU3FAAAAAwDk1ckAAAADAxV1yQAAAAEB5sXJAAAAAAJzTc0AAAAAAz3J0QAAAAABP0nRAAAAAANLhdEAAAAAAjrV1QAAAAADVyHZAAAAAQNsTd0AAAABAkyl4QAAAAMAdVHhAAAAAgHVmeEAAAAAAT4d5QAAAAMD/o3lAAAAAwP3KeUAAAADADGZ6QAAAAIDPkXpAAAAAQNKgekAAAADAbqp6QAAAAIA87npAAAAAwHMve0AAAACAf+V7QAAAAIA1V3xAAAAAgHxwfEAAAADAuPd8QAAAAEAURX1AAAAAgNT8fUAAAABARDF+QAAAAMARVX5AAAAAgOp0fkAAAABAFYd+QAAAAEBQZH9AAAAAoCBygEAAAACggraAQAAAAABg6YBAAAAAoHLxgEAAAACAfyOBQAAAACAGTIFAAAAAIARsgUAAAACAa5eBQAAAAIBAdoJAAAAAwJa7gkAAAABg1cKCQAAAAIAZyYJAAAAAQAEAg0AAAAAgIwqDQAAAAGBMVINAAAAAIJtjg0AAAAAgepmDQAAAAMAA3YNAAAAAYGvvg0AAAADgPgOEQAAAAGBhJYRAAAAAQK70hEAAAADgMAKFQAAAAABWOYVAAAAAID1dhUAAAACAVmOFQAAAAOAfk4VAAAAAoNK8hUAAAACgySyGQAAAAOCmvIZAAAAAoJLkhkAAAACg9+mGQAAAAOACJYdAAAAAYLxSh0AAAADg+JKHQA== + NrgMGZxjYkCOTWWFS4NqQK9rGHLRYnNAW7ZEKKlyd0A9w2SRqXN5QA== - + - BNycQGVuEEAHyrlACyZRQCe1sEDWtc1Av8iCQIpPVkDvixRB/EAQQPQVe0DwZ+hAoTSOQbBiiUDcaohA0qeaQKyZsT/99vU/i5srQXovUkBwOa1AUEHpP3EArUBX+JdB6cybQLnYIECLUlFBy9nPQF31MEBSB0ZAFEIbQa1DaEB7ok1AqcxJQZO03EBxVeBAKsuPQWB89z9snqJAUVQiQW5cdkCGXdhAgrMxQGF8yEB5CrxAVcBuQVKMsT/7rTpAiGtIQXh0vUA7DrJAagcpQNcLAUEjb8pBPsyjQaeGkEEz9OZAktFxQYUGlEHC+ZpANLmvQanGBECUc6ZCjNDHQI3R10AW43pAprpHQTKLNUBuYaRANlIRQYwUlkB2pA1B6fi8QPT/REKIJP9ASL/UQZ5BBUD6hDZAOLOxP4p2XEEpUYVCpUaOQVN8z0A= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIEleYkAAAAAgGwVkQAAAAGAfrGRAAAAAACVHZUAAAABAVM5lQAAAAOC062ZAAAAAwIRkZ0AAAABAKOxnQAAAAACmqWlAAAAAwERqa0AAAACAiMRrQAAAAGAR5GtAAAAAgChKbEAAAABASWBsQAAAAEBOo21AAAAAwFUIbkAAAAAgPohuQAAAAIBOpG5AAAAAgI+Ib0AAAACArclvQAAAAOBhAXBAAAAAwJ4wcEAAAACg8lNwQAAAAICrZHBAAAAAgIZxcEAAAADAA5RwQAAAAMC8tHBAAAAAYADTcEAAAABgQeRwQAAAAODzAXFAAAAAwK4lcUAAAAAgiUNxQAAAAECEsHFAAAAA4Bn/cUAAAACAIkNyQAAAAGDpdnJAAAAAoDOEckAAAAAAjcJyQAAAAIDU9XJAAAAAgPYTc0AAAADgtDJzQAAAAAAoVnNAAAAAAN2jc0AAAABAorNzQAAAAOC0P3RAAAAAQHpSdEAAAABAUpF0QAAAAACinXRAAAAAAPuxdEAAAABADMB0QAAAAEDm1HRAAAAAwLsidUAAAADgvUB1QAAAACB9lnVAAAAAYGShdUAAAACANrJ1QAAAAABz0XVAAAAAwMrkdUAAAABAzwl2QAAAAECRTHZAAAAAgO9WdkAAAACAj6J2QAAAAGACyXZAAAAAwCbldkAAAABA1u52QAAAAAAFdndAAAAAoJWUd0AAAABAOa13QAAAAKBRxXdAAAAAoP/xd0AAAABANyB4QAAAAACxUnhAAAAAgLl8eEAAAABgWaZ4QAAAAGBZ1XhAAAAAIPD7eEAAAACg8FV5QAAAAKCpcXlAAAAAILLZeUAAAADgjQl6QAAAAGBiF3pAAAAA4D0qekAAAAAgoEN6QAAAAMDZUXpAAAAA4IphekAAAACg33F6QAAAAKCkg3pAAAAAIA2gekAAAADA8sd6QAAAAOD91HpAAAAAYGgZe0AAAABA4DV7QAAAAICWVntAAAAAYPpxe0AAAACgt4J7QAAAAECzj3tAAAAAgPKde0AAAABgXr17QAAAACC27ntAAAAAQGgDfEAAAACgeDV8QAAAAABxbHxAAAAAYCmTfEAAAABghaJ8QAAAAKBKuXxAAAAAAFvFfEAAAACAZdp8QAAAAGCl5XxAAAAAIFUQfUAAAABgvCB9QAAAAGBaNH1AAAAAwL5QfUAAAAAgKWV9QAAAAEBpq31AAAAAQMMggEAAAACgv0mAQAAAAGBGYYBAAAAAYJVygEAAAADgN8uAQAAAACAZ+YBAAAAAoF0jgUAAAACA1WaBQAAAACAWg4FAAAAA4AuKgUAAAAAgdJSBQAAAAICTp4FAAAAAoODrgUAAAABgLBGCQAAAACBoMIJAAAAAAP5RgkAAAACg+GqCQAAAACDecoJAAAAAQEOygkAAAABg4LuCQAAAAOC2w4JAAAAAIID+gkAAAACgtQeDQAAAAGApE4NAAAAA4E8ag0AAAABg60eDQAAAAMC+U4NAAAAAAISDg0AAAABgnoqDQAAAAEA9nINAAAAAAMrFg0AAAADAxOmDQAAAAGA+74NAAAAAIEkFhEAAAACgmHGEQAAAACCOj4RAAAAAwDKghEAAAACg4buEQAAAAIDG4YRAAAAAQIH1hEAAAAAgPQGFQAAAAOAqEIVAAAAAIAkchUAAAACg7juFQAAAAKBCVoVAAAAAQDlbhUAAAABgd2mFQAAAAMBqeoVAAAAAoEeshUAAAAAAN+qFQAAAAECc8oVAAAAAIPkfhkAAAADgD0qGQAAAACC1Y4ZAAAAAIPCLhkAAAACgBSSHQAAAACBlModAAAAA4JNbh0AAAABAG6yHQAAAAKC7I4hAAAAAQPUxiEAAAABA5KqIQA== + krjVFDGDWkDsFOgHcuJjQEiYIzJJZGtAMCfsaXjDbkBH1RPKpyJzQPMfQIB/snVA1Sxg6X8zeUBOLIrLQgN8QP72UzAXooBAVBxqCwMqgUAr/fjVeMqDQOj8DUdaMoVAWAOee9ryhkCvKLRWxjqIQIUJQyE8G4pAQC017wfzikAWDsS5fdOMQEBcIxm0e45ApxJFUr+Lj0A= - + - 04+LQBCPpECFjhlAdMrNQGz1lEB8gJtBMikHQCq06D+RgIhAQU4sQDtk4kDjmfY/pm1kQWuqwj/mTAdACqQxQASrF0HerJRA5GArQD8gX0BSkHZAgh8/QU6RqEAUo3tAlCkgQGuHtD9v5IZAhBtrQcBSsUCJtLBAF3yEQFaHFEEN125B+hPEP8qOhkGrdhFBwDzBQLq+dEFIkJtAxExPQDMdqECPJiVBmdt7QFSyZEAnkw1BkT4HQO8+/kDWFnNBegXCQOITBkCwonRAeHeVQXPL8j9MnzlBYeu0QJjmK0DfaSNB/QuHQcCB1UAJ5+FAbv8jQeFAgkAaHfpBRGBRQCBeB0BfQGpBcwWHQAhGP0AhR5JA2PgYQYieCEFN5hFCuosUQXlPoECmlopBjRGUQRrV4EFGDGtARvqQQU8yDkJ4RlVBDUUtQWj2HkHFxTdB03sEQnHKnUDzSrZAgDj5QW5lAkFu3oNAH9uWQFwH5UFL6Y9A4UZEQKGwFUHmDsZBsLLBQUKdnz9QAmhBaJT5QCo7f0AkcxNC+MZcQIYhzUGcqIVB/3wXQYaMn0BZ8wlBkBYbQj7uykFs6RJBYPw0QIKNVEEMEPZBmOR7P3G1VUDSseg/W+yUQNL45UB49zlAX5CQQQ8Zc0FBWf1BpEwPQUKYREADGAdA7Gx2QKe9k0ASxmtAHHkyQJoPpUH7puZB9MKwQOLefEKinQFCq4kIQnK1z0GVptVAUOlVQCPCwEBMBNY/kZtOQbHsj0FjjVBBv5YiQYhvqEAyEQJBysXsQP56PUFi8cxASBMpQdPJGUD5AidByZx1QdDAm0EEEVhAYmfFQTeoY0CqwmhB+KJCQSg3wUBVyJVBHYfOQNWOAEEgc6dAOvYkQWy1BUFS8VxBIRvRQHufIEANaIFB9dCxP7ZWSkGb3+U/H79RQM5320A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAPyhYEAAAABA02NiQAAAACAnDGNAAAAAQHjiZEAAAADAMWVlQAAAAAA4iGVAAAAAgFe6ZUAAAAAgSotnQAAAAABx4mdAAAAAAI4JaEAAAAAA5ztoQAAAAAAq6WlAAAAAwE0gakAAAACAPqpqQAAAAODc5WpAAAAAIJRBa0AAAACAoahrQAAAAIB6JWxAAAAAgMGIbEAAAADAw+FsQAAAAAACpW1AAAAAwMvgbUAAAADAQAVvQAAAAAD2KG9AAAAAQGOnb0AAAABAHMdvQAAAACDMIXBAAAAAgNwzcEAAAABA5HZwQAAAAOB7s3BAAAAA4Ca+cEAAAACAB+1wQAAAAOBqBHFAAAAAIM4TcUAAAADgYkRxQAAAAKBDVHFAAAAAAEdscUAAAADgQOVxQAAAACBw9HFAAAAAoCpGckAAAADA83xyQAAAAMAzk3JAAAAAoH/UckAAAAAAxAtzQAAAAIBLRHNAAAAAwMQPdEAAAAAA+CF0QAAAAODHNXRAAAAA4LFAdEAAAADgwHl0QAAAAGAThHRAAAAAgPWSdEAAAAAAFqR0QAAAAKALtXRAAAAA4EUCdUAAAABA3w91QAAAAEALJHVAAAAAYNA/dUAAAACASlJ1QAAAAKBoXnVAAAAAwA1ydUAAAAAArX91QAAAAMC3lXVAAAAAwNSndUAAAABgkMN1QAAAAIA243VAAAAAoCTtdUAAAABAeQh2QAAAACB0IHZAAAAAIHkzdkAAAADAFUV2QAAAACCF0nZAAAAAAOf3dkAAAACALhJ3QAAAAKA7HndAAAAAAHw0d0AAAACA/j53QAAAAGBNUHdAAAAAYCBid0AAAABgTXJ3QAAAACBglXdAAAAAIOCyd0AAAADgI+d3QAAAAOD88ndAAAAAABoLeEAAAAAgMTR4QAAAAOAmVnhAAAAAIO1leEAAAAAgyoZ4QAAAAKBFlXhAAAAAwAqveEAAAADgztF4QAAAAKCF5HhAAAAAANLveEAAAACgCw15QAAAACA4RnlAAAAA4CRieUAAAABAEpV5QAAAAKAXu3lAAAAAYBnWeUAAAAAg9vF5QAAAAICKCXpAAAAAQLRRekAAAABgDGF6QAAAAECSjnpAAAAAIGi1ekAAAACgHot8QAAAACChLX1AAAAAwDeEfUAAAAAg8bt9QAAAAOAdyn1AAAAAQCs5fkAAAADgyYB+QAAAAGD6q35AAAAAYDBjgEAAAADg8IaAQAAAAMDejoBAAAAAoPrfgEAAAADgyxiBQAAAAGBXRIFAAAAA4HdLgUAAAACg33eBQAAAACCpjIFAAAAA4B3agUAAAAAg/TiCQAAAAGBWUYJAAAAAoNFrgkAAAABg9HuCQAAAAADdpoJAAAAAgDjDgkAAAABgM9iCQAAAAEA244JAAAAAIJ3vgkAAAABgCviCQAAAAOBt/YJAAAAAwKodg0AAAAAgGDiDQAAAAACJQ4NAAAAAQBF6g0AAAACA4YeDQAAAAICjpINAAAAAYNPsg0AAAACAyGmEQAAAAEB7fIRAAAAAQCbIhEAAAACgPfWEQAAAAAC0A4VAAAAAoP8LhUAAAACgu16FQAAAAID1aYVAAAAAAJx7hUAAAACA14OFQAAAAMAWtIVAAAAA4MvchUAAAADgq+SFQAAAAEA//YVAAAAAQNUDhkAAAADgOlOGQAAAAECLhIZAAAAAIPOdhkAAAACAO9OGQAAAACBRQIdAAAAA4KGqh0AAAAAg+/KHQA== + NrgMGZxjYkCeFrCBN6NsQK9rGHLRYnNAPcnXHQqCdUCdKRjPP5N6QLFumA36gn1AYvUvI/dRgUBYZrowKUqCQOlqO8lqAoVAprgoym+ahUBNmAXm9hqIQNO+zW/RwohA3pyGfjjTikBmn3GrKMuMQHJ9KrqP245AkcnzrXQDj0B6+15lAA6RQGtVeusNupFAHWzf+VNGk0AsEsRzRlqTQDKBIPt5YpRAdgKWEXJelUB8cfKYpWaWQL+E1t2SupZAk/TEa9b6l0Bxmzvs2EaYQLodfLj5oplANVZBvxIfmkA6NXPNT2ebQH9GE10+I5xAl15jyYtnnUD7NVP0We+dQBNOo2CnM59A8NzbZs09oED8MTu07lugQA== - + - J7HqQGreMUEvxB1Brwl/QKFzbEDBEj9AhB5jQDMNdT9fCwVAkDYEQV4pckD2XNVA9qvEP940l0AK+IZAv7+eP+awWUH4yixBRurcQZiVm0BPr58/yqRWQOmEqkBc7j5A86OgPzF16T/48zpA/5YPQPjKwkAK9YBBQQUeQAvMCUHIUXxBJdzCQCQi4kG2fNtApy9WQa7B40ADkwNAvMaUQEIeckDxTQhBqo/pPxJxDkEILQVCuPsPQfTd6D+79rE/XM+GQJ0osEGP2W5ASUH8P5gbxEACP/0/yRrlQepNpkBsHdxATBD7QDqDzUGBl7dAq0/BQLIHHEFaWpZAj8hyQIEb2EDurKlBZJobQcdAB0ALbVFAwJ4aQWMa0EC9Ttc/bd64QImAgkGf5UVBvuWwQHuOdkD9uh9BlPmLQO/GvEDSGhpBE2A5QdiDgkDp0lFArMC1QHigpUC7Qm1Ak1NNQKHLm0BU5PpAtsscQbi1YULwzZhBxNqUQMcTmkGwX75BtCEeQSkFikCKsidB1DOjQTOalEH17cBAZOWwQej2jkBvwQFBdP7TQEusFEEifQBB81hIQKeU/D9gxp9A1jsPQO4etT/SkGlBViT9P6siMEHGpadASjFNQWQQpUCAI2xBS82jQdPRZ0HXFfk/nSRZQgYRA0EYm8dAZ/7uQDvSFUKabNpAVcDIQHT67EAmBglB4WMQQMuknz+Q8xlA1VoMQIxzgEGYi8xAy3YHQAxZC0HSu2tAIAGNP8x92UC7agxBIJg6QMqogED8aJlCTDSSQISxMkEsW4hAk356QeKCDEH+eG1ADqRlQS2kgEBTfZ9AtgDXP8ejtkB7rHY/C0b5QB/63kArvotAcuszQHee1j8= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYF1OXUAAAADAlCRgQAAAACCsRmBAAAAAACxmYkAAAABgUaBiQAAAAKAzzWJAAAAAgNGjZEAAAAAASEZlQAAAAIB8YWVAAAAAgPjnZUAAAADgfBpmQAAAAACFqWZAAAAAwFIjZ0AAAABg615nQAAAAIDGImhAAAAAABHDaEAAAABAISRpQAAAAIBXRWlAAAAAwLWfaUAAAAAAXd5pQAAAAIDjJWpAAAAAwB6rakAAAACARMhqQAAAAICNI2tAAAAAQP/Ca0AAAABAOeJrQAAAAMD2RGxAAAAAQNpkbEAAAACAwaJsQAAAAEBtu2xAAAAAwCfibEAAAABAiyFtQAAAAIAGmG1AAAAAgIrjbUAAAABAhUFuQAAAAIBVhm5AAAAAgJjMbkAAAADArmdvQAAAAMCfpm9AAAAAgNfHb0AAAACA9TBwQAAAAEDVUHBAAAAAwMSDcEAAAAAgWJBwQAAAAIBdpHBAAAAAwE62cEAAAACAmsZwQAAAACCGFHFAAAAAQJpycUAAAAAg1pBxQAAAAMCa0nFAAAAAoMcGckAAAADg9xByQAAAAOBHInJAAAAA4JwvckAAAACAKURyQAAAAEB2T3JAAAAAABNmckAAAACAK3lyQAAAAKAeg3JAAAAAgHOUckAAAADA76ByQAAAACDM9HJAAAAA4LYgc0AAAACAVTFzQAAAAADQQnNAAAAAAMWhc0AAAAAApbVzQAAAAAChwHNAAAAAQLLuc0AAAABgXBF0QAAAAMA1HHRAAAAAoPFDdEAAAADAI7t0QAAAAGB1z3RAAAAAoOTcdEAAAACgwPN0QAAAAAC2AXVAAAAAYNMUdUAAAABAzDB1QAAAAIBfYHVAAAAAwD+WdUAAAADA2rN1QAAAAICF13VAAAAAAMfmdUAAAAAgy/N1QAAAAOASAnZAAAAAAKAXdkAAAADgXiJ2QAAAAMByVXZAAAAAoCdwdkAAAACgXYN2QAAAAMCfk3ZAAAAAYMi6dkAAAABgZPR2QAAAAGAJBndAAAAAIKG3eEAAAACgHPF4QAAAACCpYnlAAAAAYBvGeUAAAACg+jR6QAAAAIB2hHpAAAAAYAEje0AAAACgrYh7QAAAAOBsIHxAAAAAIJx6fEAAAAAgK4d8QAAAAGA0pnxAAAAAQDHmfEAAAADgpWd9QAAAAGAAh31AAAAAYJzHfUAAAABgTNh9QAAAAOAF731AAAAA4BxjfkAAAABAMnJ+QAAAAOC3hH5AAAAA4AvWfkAAAACg5GB/QAAAAOBVAYBAAAAAoFwTgEAAAABgWzqAQAAAAMCHZoBAAAAAoNpwgEAAAABAgH2AQAAAAMAli4BAAAAA4B3agEAAAABAHgOBQAAAAMDpFIFAAAAAQHYagUAAAACgWSGBQAAAAGA9eoFAAAAAYMOBgUAAAACgaIuBQAAAAOCX6YFAAAAAIH0LgkAAAACgexSCQAAAAIDN3IJAAAAAgKyRg0AAAACg4QKEQAAAAABUIoRAAAAAoKiyhEAAAAAAPL2EQAAAAGBgI4VAAAAAoJy+hUAAAAAgRT2GQAAAAOCt6YdA + xLF85BsjZUAoFld2zuNlQD1liD1R4nBAb5d1hqpCcUCTuYxC6VJ1QMqjv9Ftk3dAtcKOc2zDekDsZUjS9xmAQEj/qQVDYoBA2QMrnoQag0BQkxLvg7KEQGoIrDbG0oVAfZm3lOXah0CVMi45EguIQKqfXDpHA4tAwjjT3nMzi0CJZHnu3zuOQA== - + - HF88QD+r40F2mt9BXDCAQa0lEUIDD2BAoDzJQWd2kkCx8MM/YxigP5DLEkKYqiJA0IaCQat02D9X16ZA0ETGPyVbKkCS3dVARnSMP46iukA7VmVBEluvQeyMTkBABbI/u7AEQBdJ00D5lAFCcs8lQWIhvj9MValAZSp1QNilIkDHRQ5BpWwdQcMrC0G+EStDEf3KQKZIE0GxJKVAXKzWP6QHEEEwCrpA7f+NQW8x20B36hlAOAcsQfE/LEDZbek/C8fjQMhOgkA7VbhA39cBQXjvJ0B0bBVA2NiUQF1BikGntGhA68WiQEy8gkC7RUVApWaTQVPYGUFBWTlBjLOeQZ7ZB0FgEydBnm8ZQY7q0UDz70RA6vUXQTaMrUKsgmk/Gjs6Qfh/cUMkrtpBS6MeQJYJaUHwPE1BVKmfP0SJ+kCT2gRA9qoPQf9mbUB1Z44/5aSGQaieFkFlPzpAS/CGQGx/UUDkXC9ChCbrQQhb6EAm+RdB6IrxQLOkTUFGD1JB3lunQEBCNkGltIBBGEDoQP+D8UH2rQlCUZveQd9IhECLKhdAr9DBQds5FkFKSIJBf2ouQdNPK0Me8/5Adhh1P45S80AlCVxB1QIVQWL4VUBx4B9BtTBaQOmgvECWyvFAjhG2QJGiWkLj9mZBXBnsP6c410Aw4z5A7ECWQF2+FkGjDK9BT70DQ8wu6j8EKpFAzgMjQBbd1z+ESDJAahGRQmAwx0F5IYNAsHYiQTwCTkAhG1BB3d5cQzLiFUDgNthATj8jQO5+mkAU3Ps/ + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4D3lbkAAAACg8ZJwQAAAAABaonBAAAAAwIwvcUAAAACAKUZxQAAAAIAeU3JAAAAAwNmmdEAAAACAvrN0QAAAAICkQXVAAAAAgD+HdUAAAADARPR1QAAAAMDJY3ZAAAAAQLzBdkAAAAAA2tJ2QAAAAIBBFHdAAAAAQJ+Ad0AAAABAkVN4QAAAAMBO03hAAAAAQFgPeUAAAADAdUV5QAAAAIC1UnlAAAAAwOCjeUAAAABA/jV6QAAAAAC57XtAAAAAgLAUfEAAAADAcnZ8QAAAAIA3kXxAAAAAQJSyfUAAAACAgpN+QAAAAADUw39AAAAAQHnyf0AAAABgQQyAQAAAACBVcoBAAAAAgDGigEAAAABgjLyAQAAAAGBAI4FAAAAAYGBJgUAAAAAgInGBQAAAAGD4doFAAAAA4GyygUAAAAAAwtGBQAAAAIDH2YFAAAAAABrrgUAAAACgtQGCQAAAAKB0EIJAAAAAAGUygkAAAACgf06CQAAAAGAPY4JAAAAAgJaQgkAAAACgn+GCQAAAAOArKINAAAAAYIM5g0AAAAAgUlODQAAAAOBncINAAAAAYDHrg0AAAADgcPaDQAAAAECnGYRAAAAAYL1ohEAAAADgxXSEQAAAAIB5eoRAAAAAwLCwhEAAAABgAfqEQAAAAMDTAYVAAAAAgFxJhUAAAAAA41GFQAAAAICFcIVAAAAAADR8hUAAAAAgQ4uFQAAAAGB+kYVAAAAA4G7KhUAAAABgddqFQAAAAABX4oVAAAAAYDwChkAAAADgeBqGQAAAAAA3VIZAAAAA4LKhhkAAAADgL96GQAAAAMBELIdAAAAA4HMfiEAAAADgVTKIQAAAACDky4hA + XBt4PPKiZUAoFld2zuNlQGaLOdoMYnFAIrP8DWnSckBzswqtjkJ5QNow+sn8YnlAMIX+zpTTfUA= - + - B60NQdm0w0CwLSBBRdJqQfu4jUBmNDhBhRoaQAtiLkCQ6VpATbb1QCt9kkCUj+0/rlnHQdPNhEA8qYRAaviCQbUrrkDo6ek/e2DbP6BZdUFIGxpAKGrNQTZw9kBbRrI/NXIsQGC4fkBWo+NAyGuGQarSHkBcdG1AiQ8tQJ+vkEAfAvtAUvhJQXVDU0BUahJAjL9rQXrKsULK5zVBKSdIQEj+10KCgyJBtg+kQEtVgEKgZyxAuGFGQEjWnUGDpfpAiyMrQJi6G0HenhlCmC+VQEJPN0HqNwtB9DKJQKAjnkBkE6NBC3UEQeZyBUHy2LJA73WNPz5iw0JbnXpBHV9WQX2YWkF9vzVAihGLQR1LGUJ7F7NApoTNQK47QkPP5HRBNfA+QJTaqUHMuyFB16j7Px4oZEC1rdFAcmMWQUvwsT+tw4tA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQLmiakAAAAAg02xtQAAAAED54G1AAAAAoF0CbkAAAADgSylvQAAAACAiRG9AAAAAoBVUcUAAAABg8pxxQAAAAIBzv3FAAAAAoPHScUAAAAAAfuFyQAAAAEAL4nNAAAAAwNtodEAAAAAAFSV1QAAAAMDYRHVAAAAAgAuCdUAAAADAXud1QAAAAIAAMnZAAAAAwBZIdkAAAADAlcV4QAAAAEDU03hAAAAAwOI8eUAAAABAtld5QAAAAECcw3lAAAAAQKNBfEAAAABAsk98QAAAAABjUX1AAAAAAFmsfUAAAABAAel9QAAAAMC+BH9AAAAAQLBVf0AAAABA9tl/QAAAAIChKoBAAAAA4PpQgEAAAACAk1yAQAAAAKDRiYBAAAAAgGjCgEAAAAAAVNqAQAAAAKAQ+IBAAAAAIKUBgUAAAACgchuBQAAAAAATRYFAAAAAwLdagUAAAAAgln2BQAAAAID1h4FAAAAAoAucgUAAAAAgJ7uBQAAAAKBBw4FAAAAAoKMNg0AAAACgQCKDQAAAAOADKINAAAAA4J8ehUAAAACAVwGGQAAAAGCys4ZAAAAAILIth0AAAACgz2GHQAAAAOCja4dAAAAAIDPOh0AAAADgrpmIQAAAAGD+pohA + KBZXds7jZUAnt2DdIQNrQANJK5hVInJAW7ZEKKmyc0CxCkktQSN4QMqjv9FtU3hAB19NMtmTfEC4Yb8u3IN/QIPeFMOY0oFA299NQZpKg0AGCtBD5oKFQBa/uP7v2oVAmupzfz2LiUCqn1w6R+OJQNXJ3jyTG4xALssXu5STjUDV+MxmP6SPQBf9gnIgjpBA5mumSjuekUAtEsRzRqqRQEMnBXVsxpJAmIILWYEqk0D1PWqDslKUQBRyS/Cc9pRADME8VuPmlUA= - + - K9EsQHMeFEDplLI/s48iQHKGwD8wJsFAI64HQFUhoT+34EpB4mZkQOjGhECyfZZA3PekQKlokUB9uFBBlWq1QLWTsz850J8/H0BGQL6Z6EC/M9s/iW/aQGluF0FpeupAXwXmQNUfukB/FoBAML0iQZBiBEHckfFBL3s3QWSb+kCis1lA93jqQI+DdUB39X9AuHgbQa6r/D8bWq5AmnllQSGP5kC4qzpCXvuoQeXz3kBENSNAREWmQE05tEFQlUZBZnhgQHRqIUEDtnBA5R4IQIjFvUAiHrw/QFVHQMI+iUBA3E1A9ND2QIilvkDAbQ1B + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgO3cZUAAAAAA8AhuQAAAAKAb5m9AAAAAAPghcEAAAADAsdd0QAAAAECMs3ZAAAAAQNnTdkAAAABAYyt4QAAAAIAfQnhAAAAAAOB2eEAAAAAApaF4QAAAAICOF3lAAAAAAIWMekAAAAAAMt56QAAAAMArAntAAAAAwIGfe0AAAAAAvDB8QAAAAEANJX1AAAAAgGTXfUAAAAAAWLuCQAAAACDFwoJAAAAA4Fz+gkAAAACACo+DQAAAAEAXvIZAAAAA4ARdh0A= + NrgMGZxjYkAQHUC2t+NsQK9rGHLRYnNAiGz8LjSDdUCvyfTFKXR6QBx8jpQ3tH9AO5LE/6BSgEA= - + - tVQIQFw7TkB/s6dAfFAgQR7FG0GKsFFASOypQNR1OEGDzNY/qL4HQKBZ7EDRKoxABgp4QemLCELX1LBAHBZqQPs6H0A6mdpAoaOCQDhdV0E/TpFA3LH8P7je3EBJeFRBoHKnQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAGxUWEAAAAAg4rxYQAAAAIDBCVlAAAAAQOISXUAAAAAgN6xdQAAAAIAaA15AAAAAAEpQXkAAAABA2EhfQAAAAIBlRWBAAAAAgIomYUAAAADASmVhQAAAAABXqGFAAAAAgJQEYkAAAAAgJ2NiQAAAAICCKGNAAAAAQJjHY0AAAACgWwlkQAAAAEDmXWRAAAAAgAWEZEAAAADgt99kQAAAAEAAOmVAAAAAwGblZUAAAADgNMZmQAAAAMB8oWdAAAAAgMkkaEAAAABAblxoQAAAAIDo5mhAAAAAgB8maUAAAABAfURpQAAAAGDBbGlAAAAAgKPEaUAAAACAVeNpQAAAAIBpK2pAAAAAAPHSakAAAABA+R1rQAAAAADKQ2tAAAAAwFmla0AAAADAuORrQAAAAICZ/GtAAAAAQKkybEAAAABARV5sQAAAAECopGxAAAAAwD8SbUAAAADA0idtQAAAAABAZW1AAAAAgKOJbUAAAACAqKZtQAAAAECb421AAAAAALQmbkAAAACAfXluQAAAAAC4x25AAAAAQEfobkAAAABA6wNvQAAAAID6HG9AAAAAAE9Cb0AAAAAAi2FvQAAAAIAokm9AAAAAgMreb0AAAAAAQjJwQAAAAEBJRHBAAAAAQH11cEAAAABAHoJwQAAAAICOjnBAAAAA4IatcEAAAADApLhwQAAAAGBkw3BAAAAAQLz0cEAAAABgGARxQAAAAMDtF3FAAAAAwCgqcUAAAADAsUlxQAAAAEDlVXFAAAAAYBNjcUAAAABA/3JxQAAAAODdgnFAAAAAoImPcUAAAADgnLBxQAAAAMD2z3FAAAAAYOXfcUAAAADAmANyQAAAAIBiFHJAAAAAwHEgckAAAABgGVNyQAAAAMCCX3JAAAAAAH5sckAAAADAcpByQAAAACDdnnJAAAAAoMuwckAAAADAwtxyQAAAAOB28nJAAAAAQOsBc0AAAABgjXJzQAAAAAA8i3NAAAAAQDWWc0AAAABAMMFzQAAAACCHHHRAAAAAYM8EdUAAAABgmDB1QAAAAOC2R3VAAAAA4FeMdUAAAAAgz9p1QAAAAGAZVHZAAAAAYFSkdkAAAAAgoeV2QAAAAMD/jHdAAAAAwJqjd0AAAABgPBp4QAAAAABarHhAAAAAwEW4eEAAAACAp8J4QAAAAOCk5nhAAAAAgG20eUAAAACgdwd6QAAAACBvtnpAAAAA4Hs1e0AAAADgoiR8QAAAAMAsQHxAAAAAIAFlfEAAAAAgQqh8QAAAAEAbsnxAAAAAYNOBfUAAAABgu3Z+QAAAAEB/xn5AAAAAwLEjf0AAAACg7EF/QAAAAMAaW4BAAAAAYBGcgUA= + NrgMGZxjYkA= - + - T5n/QCS6xT/BnxlAoIAMQLxIc0A+vfhA50g9QHzqHUEx5A5AS0HqP67atEDXtSNAxj2DQOrlLEDX2QdApIojQXyW/0DKzMxAw7vEPzmCd0DPvfxAuuMHQJEh+0DRKGRAET66QcxGiUBGSc1AmqQhQq8UJkFRtPY/M5jaQNC/ykDMXyhBbBiOQIFoP0BciMJAfGI2QE99bkF6xXZA1dzwQLwMNEGVxaRBG6QiQNrYN0Gugi5BVpJpQU6v9EH6Bb1A5JzDQfF8OkFWnLY/soQ4QaXLtUAbQIRAV/UrQFZqSEArqitBhvaGQMWi3kLILGxBdZtkQHqUdEEsx9FAVfXLQBxFQUF5f1VANJGWQEv3PkFV/lhA6GzEP8mYfED7DoRBoR2BQTi4ikLk8WZC0GmOQa6aaUAcr1pBPM8YQdjf+EBY99VABCuQQSmj3kEJgkhAM27xQBBXREHlHRBBxMTKQHO2D0FMvLZBYw9rQU92FEFnAEpBpgiWQAwV2T/ep5lAmeNNQDu8sj9U/adAqHuuQFmvyUDS0bNB+d5pQOvmjUEmohtB9qt5QMFKZEDZOy9D4WtdQK/hF0APLv0/mxD7QKLLi0CfyDNAdsGTQXqinkDllGRAe9PTQHCSuEEtOFxBxltNQA4/Y0Cf71lAwdWyP9USPkFTq+VA+OUYQA== + AACAPw== - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAByDYUAAAADAGR1iQAAAAOCgnWJAAAAAwLTaYkAAAABA9aBjQAAAACA66GRAAAAAwFJiZUAAAAAAUYdlQAAAAEAKBGdAAAAAoOImaUAAAAAA9UNqQAAAAEDbZWpAAAAAgPvoakAAAAAgBedrQAAAAMCa2mxAAAAAICgVbUAAAACAwmptQAAAAEDBZW5AAAAAgP+Db0AAAADAR7tvQAAAAABe6G9AAAAAIBIOcEAAAADApjFwQAAAAMAwcHBAAAAAQNq0cEAAAAAAFgNxQAAAAABjInFAAAAAYBYzcUAAAADA98dxQAAAAOBO0nFAAAAAIPPvcUAAAAAA8gByQAAAAMAbRHJAAAAAwLxQckAAAAAAkXVyQAAAAIAngnJAAAAAwG7wckAAAACAtw1zQAAAAMABJHNAAAAAwKNDc0AAAABg9GBzQAAAAKBq03NAAAAAICTsc0AAAACgKwV0QAAAAKBGFnRAAAAAgK97dEAAAABAuIZ0QAAAAKDE0HRAAAAAYDLedEAAAADgSAl1QAAAAKDmN3VAAAAAwNFidUAAAACAWX51QAAAAEA8lXVAAAAAAD+zdUAAAADA/MZ1QAAAAEBxFXZAAAAAgFExdkAAAACA9j52QAAAAABrVHZAAAAAQHF0dkAAAADgr4N2QAAAACBPk3ZAAAAAgDChdkAAAADg2rN2QAAAAOA69HZAAAAAQEn+dkAAAACgZih3QAAAAKCCaXdAAAAA4Ox2d0AAAACAm4B3QAAAAICUmXdAAAAAIGWpd0AAAADASLp3QAAAAOAVyHdAAAAA4L3Td0AAAACgr/Z3QAAAAGDQEnhAAAAAQIwieEAAAAAgmDZ4QAAAACDreHhAAAAAAPqkeEAAAACAMOZ6QAAAAKCD83pAAAAAoDgPe0AAAADgRYR7QAAAAKDto3tAAAAAYDqFfUAAAABAbZZ9QAAAAMClbH5AAAAAoBuGfkAAAABgUjyAQAAAACBPAYFAAAAAQPjagUAAAAAANuyBQAAAAABrE4JAAAAAwJ8cgkAAAAAAXCSCQAAAACCOc4JAAAAAwA8bg0AAAAAgmiKDQAAAAADSOINAAAAAoMHjg0AAAADAMnGEQAAAAICSA4VAAAAA4FZWhUAAAADg5HWFQAAAACA1hIVAAAAA4C0JhkAAAABAYw6GQAAAAOBbWoZAAAAAoPmrhkAAAABAvtOGQA== + NrgMGZxjYkDOIQhxcmNnQMZtNYzMxW5A - + - JksRQBghiUDnyYhAZV4rQLsqAkE0nv0/MD9sQOtl4UDTqP0/uWvGPwUyMkD0VLNAeS0RQMZ1xEDgZeZAOpFZQG8PSEDgCqpAMlYyQWU8s0C8pf0/QTg7QBRTW0CXJUdAcoVpQAhe1UE6qDBBbRihQBTeX0GV5xRBvPTFP2vREkF/BtVA86hyQA2/I0AUjCNA9tOlQOKHxT++AM1BpI0HQZog/T/aBwBB2AWEQR9wUkB5V2dB4fRjQwWz3UB6I6A/7rvxQNqzvkBKOKNAVtwGQWFniUAMc1JAMm3lQMH9hEBjraZBgbNHQMD06j+WGDVBNGqxQSpqiUDekgVByw9DQUnSQEHcpNhACfJzQQmCZECjJUVA/36bQHcLsz/Ik6xBwJdLQU3zL0DA7VdAeRs/QNorpUB5UO1BNA9OQbopjUCRY0FCOGw/QAtTqkC+7mNAaLjRQMdybUAhjJpAPEqPQvuNZEAEE0BB9gDFPxJHOUG3a1JA4tOQQEeMiEC+z5dAnrj2QA4mIEFHSXxBTEHXP/3GGkCBWZJANmOSQP48pUAUa2xCAuA7QZic9EDtDqBA/qj5QPvwJ0F43MU/zty+QAN66EA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQKRkYkAAAAAAV2hjQAAAAECswWRAAAAAQKajZUAAAADApglnQAAAACDIJGdAAAAAwCcCaEAAAACAZyhpQAAAAEBYQ2lAAAAAwPwka0AAAAAA0WZrQAAAACAdHWxAAAAAQMtBbEAAAABAP2dsQAAAAACfaW1AAAAAoJjlbkAAAABgHCNvQAAAAEA6Qm9AAAAAYByhb0AAAADgUANwQAAAAICvInBAAAAA4LIycEAAAAAgu7JwQAAAAMAM8XBAAAAAIHzVcUAAAABgFPFxQAAAAGCUZXJAAAAAgOs7c0AAAADg1KFzQAAAAID+5HNAAAAAQB41dEAAAABAk3V0QAAAAGB4tHRAAAAAAGC+dEAAAABAfyR1QAAAAIBxgXVAAAAAgFCLdUAAAAAAScF1QAAAAICV0HVAAAAAQBPhdUAAAABgKSR2QAAAAEBJM3ZAAAAAwBNUdkAAAABAznp2QAAAAKCSj3ZAAAAA4MCkdkAAAACAMsF2QAAAAAAi8nZAAAAAQOYBd0AAAACAO0R3QAAAACA+WXdAAAAAIDKJd0AAAAAg06J3QAAAAGApsHdAAAAAQFS/d0AAAADg+NJ3QAAAAGBJ8HdAAAAAYJg+eEAAAABg8Ex4QAAAAIBHZ3hAAAAAIBF8eEAAAADgcZJ4QAAAAGAVnXhAAAAA4JyneEAAAABgZb94QAAAACBwzHhAAAAA4JfneEAAAADghBB5QAAAACCLHnlAAAAAYJY2eUAAAAAAtUR5QAAAAGDKhHlAAAAA4ALjeUAAAADAFP95QAAAAKBwFHpAAAAA4CgiekAAAACgRjN6QAAAACBDWnpAAAAAIJFuekAAAADgkMt6QAAAAMAP8HpAAAAAIGMKe0AAAADgLC97QAAAAKBkQHtAAAAAwFJSe0AAAACA5mN7QAAAAOD1oXtAAAAAIDH0e0AAAAAgrhR8QAAAAADuJXxAAAAAoK87fEAAAABgQFx8QAAAAACHrHxAAAAAoG++fEAAAADAtsx8QAAAAIDc2HxAAAAAYM3lfEAAAABA1f98QAAAAIAmIX1AAAAAYHwufUAAAABgG2N9QAAAAOD84X1AAAAAoDPjfkAAAADAuQ9/QAAAAKCvdn9AAAAAoE9QgEAAAABghmeAQAAAAMAlcoBAAAAAICSPgEAAAAAgLqCAQAAAAMBOq4BAAAAAQB67gEAAAAAgQdqAQAAAAGCX6YBAAAAAoDgSgUAAAADgWxqBQAAAAMDgQoFAAAAAAOtKgUAAAABgbmyBQAAAAECde4FAAAAAYIuEgUAAAABg2oqBQAAAAGDLCoJAAAAAoP4agkAAAAAAXVGCQAAAACAu+oJAAAAA4I0Dg0AAAADgshCDQAAAAEB/P4NAAAAAYHxng0AAAACABYaDQAAAACCVjINAAAAA4M/Eg0AAAAAg69ODQAAAAGD654NAAAAA4I7zg0AAAACgexuEQAAAACDnKoRAAAAAoBc0hEAAAADgk2KEQAAAAEClcoRAAAAAQKH7hEAAAACg5ASFQAAAAGDLDYVAAAAAwBsjhUAAAADg3SqGQAAAAODJbYZAAAAAoAFzhkAAAADgscGGQAAAAOAQ3IdAAAAAoDT1h0AAAAAgXCSIQAAAAKBPSohAAAAAAC/EiEAAAADgfcuIQA== + NrgMGZxjYkCmvpxNHCRnQEMdzoN8QnFAjgFH/L2yckCwCkktQSN4QEN7qtfUU3hAmc+u3GzEfEDSE0texJN9QHiygyQOkoBAhro3Zq5igkB44XFOuhqEQLPA3AsQi4VAowv0UAZThkDnzuz3fpuKQH3Ipb6Ro4pAS/y2FAu0jUA3G4a2CaSOQG9uLSgx3pBA5f0UeTBWkUD+losdXaaSQC/u5hZcWpNASIddu4iqlEC+FkUMiCKVQJJ3L1m0rpZACAcXqrMml0DvoB9V8K6YQLodfLj5sphAXH/4CzbXmkDUJIQuMTubQHGUOQ1c85tA66dWAWLPnEDxqzAisredQDjA3xzIm55ASNFG/Z3PnkBe5of+w+ufQIFCIOno959AZWKw2gSqoEDvfr8JDdigQKx2X9UajqFAFHeo2CLaoUBsAtvfRXCiQA== - + - QuDTQGkNz0AQ7lM/F2TtQHIEEUBC/AZBB/RhQCGk7EGArB5Byfz3QHxeckCj+kdAOI7TQIF8oD/PePNAIAGqQCggjj+yk8Y/Z9rYP1+4PEB3fvBAvcA3QRHy80AtpOo/AIUaQLA0GECvN+ZAgVrmP9mk6j/55hRBaJYNQb3+B0DQylZBnhKFQLR4C0GNACpB19TqPx78c0H499c/IGAjQQA2dkD31otAQX/OQHi6CUHfKZZBnX7aQAPWbECYYjxBi5UZQcYLnEA6iI4/sEc4QXYoc0Fy94RAVjX2QO0n3EBAsatBr4BhQUQgN0EYaNhBy3o9Qf/Q80B/h2xAsfh2QOkySEBCvDNC0X4qQYeSI0Dpwy5B3YD9P6QA1D9BAp9AT8INQfQmg0HkZclB3Al2QZfAaUDOShhBRAz7PyovX0E2RbM/WSN2QWrzXkJQ+LFBMoqgQL293kAvvgdANmQHQY6PV0ByXtg/n7LfQGBml0CYaaM/gOb1QusMFkIYoYxBEvsfQWIeJUEpjO1BNxZRQahkhEH8CoxAv26HQChDIUFkliJB2P5NQA/FK0E/DnxBnPKzQOX1LECOS44/N6ltQJcpTkBRbCdBcSd0QpH6hEEuWCBCR29XQNyeQEFU+ghBX7YTQQjgzEDhw99AHNgbQTYUckGJt+o/8S4gQHnjEEApM6VABkAuQRPjbEHjrgVB78gDQZ2/UEDExmRBFyk2QAuyukFxIodC5J84Qaj400DcBZhBKAc7QZgj7UAdPkBA3qVqQTm5hEDoXIlAgJusQHYqyEDvbRZBq22hP7cY5j94+vRACfqIQ+TsTkI= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwOx8VUAAAAAgNcdVQAAAAEATPVZAAAAAoMRFWUAAAACAs4NZQAAAACAKwVpAAAAAgIeMW0AAAADgR89bQAAAAMA+PVxAAAAAoCjJXEAAAABAmApdQAAAAEDMPF1AAAAAAL0NXkAAAADAEU1eQAAAAICXSV9AAAAAwITEX0AAAABgyClgQAAAAKDgTmBAAAAAwLZkYEAAAABAKp5gQAAAAGDt42BAAAAAYIJQYUAAAADAN59hQAAAAEDN52FAAAAAIOQdYkAAAADAO0ZiQAAAAEB6X2JAAAAAALaEYkAAAAAAgadiQAAAAACeQ2NAAAAAYNiDY0AAAABA3qNjQAAAAMD/vWNAAAAAANTlY0AAAABgmSVkQAAAAOCKqWRAAAAAAIDDZEAAAADANONkQAAAAMAUAGVAAAAAAH4kZUAAAABAd11lQAAAAMC0pWVAAAAAwJO9ZUAAAADAA+dlQAAAACAWIWZAAAAAYCCBZkAAAAAgGsNmQAAAAIDD4WZAAAAAAJYHZ0AAAACATCtnQAAAAKDvRWdAAAAAwHZcZ0AAAAAAuaZnQAAAAKDhAGhAAAAAQJI9aEAAAABA0WNoQAAAACCtgWhAAAAAwBSnaEAAAADgULxoQAAAAAB76WhAAAAAQD0IaUAAAADA/iJpQAAAAIA3RmlAAAAAgPqiaUAAAABAUsNpQAAAAECk4GlAAAAAAHv8aUAAAACAgSRqQAAAAAA3QWpAAAAAAD5uakAAAABA2YVqQAAAAEBapGpAAAAAgPDEakAAAADAbeRqQAAAAADwAWtAAAAAgG+Ea0AAAABAXZtrQAAAAEC1v2tAAAAAQIzoa0AAAADAYSBsQAAAAEAmQGxAAAAAgHRdbEAAAAAAfYVsQAAAAMCt0WxAAAAAgOwEbUAAAADAYCNtQAAAAECrRW1AAAAAgBZbbUAAAADAzL9tQAAAAIAZ5m1AAAAAgOQEbkAAAABAByduQAAAAABkP25AAAAAAP1ibkAAAABAwZBuQAAAAAABwm5AAAAAgMrfbkAAAACAhyhvQAAAAACIWG9AAAAAwG2Fb0AAAACALqVvQAAAAMDzxG9AAAAAgP/ib0AAAADgXABwQAAAAKAgEXBAAAAAwF8kcEAAAACg8jBwQAAAAKC3QXBAAAAAwL1PcEAAAABg5WZwQAAAAAC9enBAAAAAABCHcEAAAAAgIZJwQAAAAACpsHBAAAAAgEa/cEAAAADA9txwQAAAACC49HBAAAAA4L7+cEAAAACAfAxxQAAAAKAOInFAAAAAINkvcUAAAADAWElxQAAAAIA3U3FAAAAAYOGjcUAAAAAAEcByQAAAAEAcBnNAAAAAoB6Ic0AAAADAyZdzQAAAAAC+pHNAAAAAgET5c0AAAAAA01J0QAAAAGCBpHRAAAAAIFXVdEAAAABgTfp0QAAAAGCQIXVAAAAAwP81dUAAAAAgSON1QAAAAID+G3ZAAAAAwNZWdkAAAABAcKp2QAAAAMDQ3XZAAAAAIPdUd0AAAAAgYmR3QAAAAMCgendAAAAA4I2Md0AAAADAfAh4QAAAAODcE3hAAAAAAOoieEAAAADgvzV4QAAAAMALV3hAAAAA4GWGeEAAAACgXJd4QAAAAMCktHhAAAAA4D3EeEAAAABghOR4QAAAAKCOV3lAAAAAYC3UeUAAAAAgyuZ5QAAAAMDU83lAAAAA4FsOe0AAAADgkXZ7QAAAAOCVpnxAAAAAYIKwfEAAAACgaxF9QAAAAGAPXn5AAAAAIMXAfkAAAADAWNB+QAAAAKAuFX9AAAAAoDrCf0AAAACgEeV/QAAAAABUc4BAAAAAION6gEAAAABAc4OAQAAAACB0q4BAAAAAwNwhgUAAAACg1HODQAAAACB8goNAAAAAYHiMg0AAAACgaZKDQAAAAGD9+oNAAAAA4MUChEAAAADgVIqEQAAAAOAqk4RAAAAAACGshEAAAAAg4dqEQA== + KBZXds7jZUDEsXzkG6NpQACq+tzlYXBAZos52gxicUA7THOylYJ3QC3mzRMlk3dAjEyBUbvyfUB+5tuySgN+QKrTisXpEYJAXEQqRP2RgkDrbIg5KVqEQNPTEZX8SYVAepXmLlUihkA= - + - x5APQUBZM0CK089B2IGOQUCzcUBEWlJAXzyAQGploT8nec5AMje3QELyM0A6uCNASlD9PxhCLkECxsdAceDaQOxQ2EGb6uRAWvw1Qo2HhUGjINg/bFheQEbIrECGIrtA6ixuQEuB/T+VmpVBxlgRQCYOxj/alRpATogYQd/qKUF3IG5Akp1bQNU4ZUC0UMJAq+2nQH3VrUBFPd0/O93TQeDeR0A3US1AwHOVQAE5qUAo2JBBeLaUQWJauULPGVJAHRoqQbCfy0GQWApBYbMPQLtnyEDteadB0yaoQWl2GUEIf7FBfI4wQYpOGkELEmdBkRG4Px2lG0E/JPJADoIvQV3nskArCy5Bn05RQJWFjED5L/0/O+kzQXckmkC0xaZBU679P3c2AkHnuT1BWMOVQQELQEEebFFCl8/1QC5Gxj+x+dJBAcM6QUdkM0G1qj1A61jIQlr+b0HKMElA8OQ9QGzCC0ISjg1CYB5PQ/IBNkLedvlAYoznP9oXLUDZxr9BBKdfQSJWUkBgcQBCEuQqQdNERkCky1xB8jzpQKtZOEI63GZCJ4sCQ7KQh0OyYy9Cp7zuQD3fAkG/g3hCWzs5QcCdE0J8/55Bg8GgPwuZnEElK4xAYWVRQK8oKUH/b4VCrYBFQG3sjUELImBBFCFiQHk4oUA0DhBBOoffQfzx+UIhegVA9RkDQbeygEC1JLFA4dQfQWciKkGj0WNARcG9QS2FVUHlNkFBBxRFQTBkREE5z3dBLdqrQZmY4UCoIPBBRmTtQbrarEPLhZ5CWvwoQS9pn0E0ZqBAUdChQZ6RPURVEgZBhF5QQHx6G0E+aSFAesF+QrYNRUHl+oJAx0H4QNjoMkAacm5AHE7IQNzsfEH3G4xAawOxQHDhP0B05nVBGxMtQJzrwUFit1BD83c3QjwO5UCvwq5A1Q/GP8vGWkHLXpVA75qOQHQDD0H6qAtCOX8wQR3RaUFa8CFBKs+RQJyj2D8= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAEtDbEAAAACguIBuQAAAAIBaIW9AAAAAAIfFcEAAAAAgr8lxQAAAAMAoVnJAAAAAwMKQckAAAADAwtJyQAAAAMB+mnNAAAAAQGhWdUAAAABAvnJ1QAAAAMCqg3VAAAAAAMBkdkAAAACAsJF2QAAAAEAtonZAAAAAwMDTdkAAAABA2fB2QAAAAEA7BHdAAAAAAAY4d0AAAABAdoZ3QAAAAECt5HdAAAAAQAfseEAAAABA2wJ5QAAAAICayHlAAAAAwGMUekAAAABAMzh6QAAAAIC2U3pAAAAAwDDDekAAAADASON6QAAAAMCA9XpAAAAAQAIue0AAAAAAOAR8QAAAAIBbNXxAAAAAAKyEfEAAAAAAwv58QAAAAABWNH1AAAAAwNJFfUAAAADAsTR+QAAAAEAXSH5AAAAAQMakfkAAAABAO/B+QAAAAMA9ZH9AAAAAwJXDf0AAAABg2DCAQAAAAODxi4BAAAAAwCSUgEAAAABAEYmBQAAAAOBwF4JAAAAAYL6BgkAAAACgppeCQAAAAIAfuoJAAAAAQN7CgkAAAACgoFmDQAAAACA+e4NAAAAAoNO3g0AAAAAg5XOEQAAAAGBeo4RAAAAAoFeqhEAAAACADiuFQAAAAAD154VAAAAA4J4vhkAAAABg8wKHQAAAAMCkGodAAAAAQERbh0AAAABA12OHQAAAAOAIEohAAAAAIDyViEAAAAAgHquIQAAAACAcsohAAAAAgBW6iEAAAADAPMuIQAAAAGAm34hA + NrgMGZxjYkC0UdoP9eFsQBu6YmAmQ3BAaIA5p9KBdEDiFPeZPnR5QFY+OQRBsntAOGn7ntbkfUArzgqszGGBQC25/uesqoFAuvZoofgpg0C84Vzd2HKDQEv76Tk64oVAvBBLB4X7hkB2JWw8hhqIQLPvyjW8k4pA2lI2WRKzjEB6G3FFKJyNQO1AkkHfHZBAOX34uS+akEA= - + - IFCVQJvITUCF2NFA/S7rQMDoh0CPlZtAOV6kQDwx7UG6Lm1A8fU+QGqwSEJI+DZAZ8WgP3TqG0G5RqBA5zrHP+dgjkBjicpAJccOQsV/hEAMndFA5yqBQODTP0BCH2pAjTK/QOyk60Aqez1BC/WCQLdnSkJWpq1Asn4iQXDx/T/VghtBWB0RQApGCEAWBzRBDJdUQVQNv0DgXcY/qN23QZPWREEyzaBASdWCQG5ZHUEKQSBC+r6zPxRC8EG08ZJAApPuQE052D/4bVJAShmXQl9+2D9no0ZAmNQgQb6Xb0BMS59A+UTRP7XnB0AEr9RAKjOaQCQdUkC7HaFA+EwnQm4uPUEj4hpAuVU1QTixvEHgAltArS9JQBKUDkEliLNA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgB1Sd0AAAABAw1R4QAAAAMBRA3pAAAAAgNPEe0AAAAAA4uN8QAAAAABLGYBAAAAAAMs6gEAAAABgnIqBQAAAAOD7HYJAAAAAIPgag0AAAACgGsODQAAAAKA1FYRAAAAAQGubhEAAAABgvaOEQAAAAOCk64RAAAAAIEr5hkAAAACgzQKHQAAAAODaEodAAAAA4FB6h0AAAAAAngGIQA== + NrgMGZxjYkDOIQhxcmNtQOzQoK8iBW9ArmsYctHidEA9w2SRqbN4QHXGrKvpE35ABB75ysHkfkCTk/19oiqCQGhpe3tWMoJA - + - xRdFQAXaTUFukv0/37AaQcPJeEFKnNQ/I6LyQHo6B0AE1NY/km8CQQLVDUHjGvJArGCQQdFP7UC65ihAepm0QApOgECeUypAUp+VQMnGR0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgMDFcEAAAADA+p1yQAAAAGCxp3NAAAAAgKbge0AAAABAJUF9QAAAAADJ8X1AAAAAQFZBfkAAAADARYV/QAAAACAEI4FAAAAA4HZUhEAAAAAgyZGEQAAAAKCY4oRAAAAAIAB7hUAAAAAg0qSFQAAAAOBHBYZAAAAAAISKhkAAAABgDLOGQAAAAADPKYdAAAAAAEJVh0AAAADgZXKHQAAAAADx44dAAAAAwMLrh0AAAACgzPeHQAAAAKAKBYhAAAAAwOEyiEA= + NrgMGZxjYkBImCMySWRuQOO2GkbmYnJAf9hb5OeCdUDjFPeZPnR5QNUsYOl/83lAOWn7ntbkfUBqRZ4ebIKAQMm6IvXMGoJAznJoO/gahUDJ6RAfeaOFQA== - + - VzFJQM3cI0Cvie1A8fbrQIH3oEDpekVAOcrrQCeBq0DNuoVBBjrTQILVYEDYoolAJEjXQRDErkCBzrNAVHR3QDDRtT+h3wZBFQ/PQGyIUEE+48ZAon26QCZZUkDFp8NAJv+HQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYHRdV0AAAACAgEFYQAAAAEC7hVlAAAAAQIfFWUAAAAAgYEhaQAAAAACX0FpAAAAAAN6LW0AAAABgjQRcQAAAAIBP2VxAAAAAwDHBXUAAAABgtzpeQAAAAMB2T19AAAAAAMyVX0AAAADAichfQAAAAOBbA2BAAAAA4PAjYEAAAABAYEdgQAAAAIAdCmFAAAAAYJw5YUAAAAAAX4dhQAAAAIBIqGFAAAAAgPfBYUAAAAAA9mZiQAAAAAA3iWJAAAAAgIGmYkAAAADANuViQAAAAECpKWNAAAAA4PdIY0AAAABANadjQAAAAECQxWNAAAAAwFTmY0AAAACgGEpkQAAAAAARY2RAAAAAQJGkZEAAAABAQuRkQAAAAKCOJGVAAAAAgJVEZUAAAABA9mllQAAAAECVg2VAAAAAIG6mZUAAAAAA0LxlQAAAAIAw42VAAAAAQEkDZkAAAAAAty5mQAAAAMC9QmZAAAAAwNNkZkAAAAAAzqRmQAAAAMAj4mZAAAAAgBEoZ0AAAABAzklnQAAAACBJZmdAAAAAACWHZ0AAAADA26hnQAAAAADfx2dAAAAAIMHoZ0AAAABA3gdoQAAAAICdL2hAAAAA4EtraEAAAADgFn9oQAAAAMBRn2hAAAAAAKG/aEAAAABAY91oQAAAAIBfCGlAAAAAwBEtaUAAAADAZUlpQAAAAEBQZ2lAAAAAgO2gaUAAAADAHslpQAAAAIAT52lAAAAAwOb6aUAAAABAQiJqQAAAAIBvT2pAAAAAgKODakAAAADAUqJqQAAAAEBMyGpAAAAAgNoDa0AAAADAlSZrQAAAAIDVaGtAAAAAwAGBa0AAAAAAdaBrQAAAAMCPx2tAAAAAAJDka0AAAACAHQdsQAAAAABaJGxAAAAAAKdIbEAAAACAk4dsQAAAAECQqGxAAAAAgBLHbEAAAACA0udsQAAAAADiC21AAAAAgKYlbUAAAADAcUVtQAAAAEDlpG1AAAAAgLTHbUAAAAAADuBtQAAAAABbBG5AAAAAAI0nbkAAAADAj6VuQAAAAMC4v25AAAAAgHPvbkAAAACAmAZvQAAAAMAUIW9AAAAAAHhBb0AAAACAxGVvQAAAAAB0g29AAAAAgKXBb0AAAACAFuhvQAAAAAA2A3BAAAAAgBwTcEAAAABAqSJwQAAAAEDESnBAAAAAAIOAcEAAAADgGJNwQAAAAMBSoXBAAAAAANaxcEAAAACA3L9wQAAAAID70XBAAAAAAEvjcEAAAAAA9ftwQAAAAABQEnFAAAAAgNQhcUAAAABAXDNxQAAAAAB9Q3FAAAAAABdgcUAAAACA6XRxQAAAAKCCgXFAAAAAYNGNcUAAAAAgUaVxQAAAAEC+s3FAAAAAQGrPcUAAAAAgF9xxQAAAAAD09nFAAAAAwAJkc0AAAABAq3JzQAAAAAAejXNAAAAAIDSXc0AAAADg2qVzQAAAAADxInRAAAAA4DVDdEAAAADAkIl0QAAAAIB0InVAAAAAQKEydUAAAACgnnB1QAAAAMDDfHVAAAAAIJ6ldUAAAABAisR1QAAAAMA68HVAAAAAoHMWdkAAAABgH0R2QAAAAGARb3ZAAAAAwOx/dkAAAAAgmox2QAAAACAlvXZAAAAAQIvKdkAAAADAe9Z2QAAAAIAMMHdAAAAA4FWEd0AAAACgiJh3QAAAAOAoondAAAAAYLGtd0AAAACgYcF3QAAAAEAvBXhAAAAAYJJ3eEAAAACguot4QAAAAKDspXhAAAAAAOG1eEAAAACgJeN4QAAAAGAZ8HhAAAAA4BoGeUAAAAAAWhZ5QAAAAOBnJHlAAAAAwMxHeUAAAAAgw1F5QAAAAKBWXHlAAAAAIKFneUAAAAAAu5V5QAAAACDzpnlAAAAAoDHVeUAAAADAlOZ5QAAAACDL/nlAAAAA4HwyekAAAABgNlZ6QAAAAODMYHpAAAAAIKd0ekAAAADg4cV6QAAAAGDP1XpAAAAAoNbke0AAAADgTp18QAAAAEAx03xAAAAAwEKYfUAAAADgvrR9QAAAAOBBBH5AAAAAoFWifkAAAAAgRwR/QAAAAOCSFH9AAAAA4Mwqf0AAAADg7oR/QAAAAOAmwH9AAAAA4KvYf0AAAAAg1hGAQAAAAAA2G4BAAAAAoNczgEAAAABgp0iAQAAAAGATc4BAAAAAYCp7gEAAAABAupuAQAAAAKD8uYBAAAAAALDygEAAAABgf/uAQAAAACBNYYFAAAAAwCfjgUAAAAAg2CGCQAAAAGBxWoJAAAAA4IfAgkAAAAAgu4uDQAAAAGCR9oNAAAAAgKYZhEAAAABArHOEQAAAAKA8e4RAAAAAAI+BhEAAAACgIfuEQAAAAGAsioVAAAAAoNWThUAAAADAPD2GQA== + NrgMGZxjYkBxWoXuS4RsQBu6YmAmQ3BAOAsfS35TdUAbGD+0flR3QD0hQeUBxXxArLDfOm5UfUCVbyAhuPqBQHQpLAiPOoJAlZ4OS2SDhUDWLPvx4VKGQFzKtFrQi4hA9H233DnjiUDA9353XCSNQBLPc8eRc41AUfz/D57cj0AJ/7D4Hn6QQKgV9xylspFAiRaoDXVCkkAoLe4x+3aTQNKY6NmVnpNAt1VMJyc/lUCEr03o2+qVQEZ+qhxTB5dAaMUg8BFvl0D3/5GRfBOZQOjcFwVoM5lAhijwhqjbmkBkzFecg/+aQK1OmGikW5xA41HgguTbnEAtZo99+h+eQGNp15c6oJ5ArX2GklDkn0ByQGdWSDKgQA== - + - 9mhtQNKkPEHCDpBA6jGkPzenAED0V2hA2rLHQRV83T8Tn5dAWPQAQDFHvUAYi9w/gLc4QC7vtUCT5S9A4zZnQZD0ukGLM49ApSmcQLs2EEEyjGJB9eUiQssilUGJSI5A9AgjQGoKtz9wjhNAtRY/QFE6LUFWAQFAnuwdQRFdW0CeCG5BMrmdQYD1tT8VN+hAx9PgQJtb3T/4EoBAYd56QRzKtkDwXjhCRhUeQTaTS0B0cApA7iOAQLndp0GxDuA/vdqPQSS5V0ArR25Cspv8QI4cdEFmx+JA0VSOQIOTKED//ldBSRkEQYFI8EAkURJBc9zMQK+NgkDivolBeCFWQIwJ7EDvWZpBn0oLQRRVzEETvOtB1ggwQPS0EUB8vTlAyKBBQf3giEF4Ix1BQ2LJP+7wPUFq9alB7vAFQd1tCkB5KaxB7vzOQbEZOUCgwtxAElWeQIkSxUDJIrFA8HRNQXWNPEFeq/RAlX3TQbtdMEF5Z5lBg89oQEvUcUB/jUxBymwoQcbFNkE8NQpBidGOQeQB+0Gw+qpBQowbQy3ilEJDR4dB9Ee2P6LCQkBizLA/x02jQZVGpkIA+DtBCipWQ7+CK0N7RqJBLstEQnwH6UAbquNB6NCBQdZSc0FUE69AWMO3Qe9vWEKSs1lCl4cuQpoDhUKqBcE/SNVtQHdfQUFS2sZB4qyjP1sESkDVTQpAAjAdQCWtzz9vnC5BIsDbQJuASkESLIJAj2akP05Y/kGK4wxBxhDyQXFD1EATmNdAHKH6QDL8ikGmxD1BuUtxQYc51kFohC1BsxPoQMVVckHf63NCLF+VQp0ZzUAvF+JAVYu4QL6uEEEc84BBzPQyQQ6PVEBPfyhBhDw0QbbjoUBHZbhA5fFWQHR7BkHJAkRBFKmjQj99n0K4pyhBi21AQQsSIkJ4Sy1A0xPOQHr+wkQyocFByNYAQ5L5hEGvLItByigWQfAE2kHG4lxB3hXUP8wM+z9G8gxB6rEvQDzUvUFKWFtAQADcQC5aZkHuotxATvaZQWK8p0Cg51xBZMYFQSgGaEB/K4RBzjcZQKuKE0EUiRJB56wvQTTnyz8M1IZDvNBzQk8bokCceVZASfOiQUxtcUCC3rZAf0DcP4ypE0Brg25ARPmlQC6G5EG6aBJBCrriQJfUvkBC0lVATkjeQJyuekJgjDpC4GYhQbm8CkA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwI1BaEAAAAAgImFqQAAAAGALimpAAAAAQCBIa0AAAADg54NrQAAAAMBbrWtAAAAAQMbKa0AAAABAMmNsQAAAAMAoh21AAAAAoLMJbkAAAADg7IhuQAAAAAC8q25AAAAAgBMlb0AAAAAAZuRvQAAAAIDuInBAAAAAAMMycEAAAAAAAbJwQAAAAAAJC3FAAAAAAJxDcUAAAACA9JFxQAAAAACcH3JAAAAAwO0yckAAAADAGMByQAAAAAB93nJAAAAAwOUFc0AAAABA8D9zQAAAAEBAUHNAAAAAAHJvc0AAAAAA7MZzQAAAAIDEFnRAAAAAwC9GdEAAAABAtG50QAAAAIAtn3RAAAAAQPROdUAAAAAAC491QAAAAEDY4XVAAAAAgJgxdkAAAADA68R2QAAAAMDgLndAAAAAQKpSd0AAAACAO2J3QAAAAEB/vndAAAAAQH3Xd0AAAAAA6/53QAAAAMDVVXhAAAAAwCJkeEAAAABAYAB5QAAAAMB9EnlAAAAAQMN0eUAAAADASoZ5QAAAAMDQoXlAAAAAQGHjeUAAAADAbvF5QAAAAECpEXpAAAAAgGkhekAAAACAgXV6QAAAAEComXpAAAAAgJnTekAAAACAcu56QAAAAEDBJ3tAAAAAwMWFe0AAAAAAwO57QAAAAMD3BHxAAAAAwIhGfEAAAAAA8lN8QAAAAIBCg3xAAAAAwEe2fEAAAAAALv98QAAAAIDgMH1AAAAAwCtBfUAAAADANGN9QAAAAAD0cX1AAAAAQCWDfUAAAAAA5rF9QAAAAEAbJH5AAAAAwHqCfkAAAACALJJ+QAAAAAATyn5AAAAAwAgDf0AAAACA8Wd/QAAAAMAspX9AAAAAgF78f0AAAADgJRqAQAAAAODrL4BAAAAAIJVigEAAAABgB3OAQAAAAEBkq4BAAAAAoBexgEAAAACgz8iAQAAAAICn24BAAAAAYLPlgEAAAAAA3xqBQAAAAECRKYFAAAAAQENbgUAAAAAgjHKBQAAAACBbmIFAAAAAoAW6gUAAAACgnMCBQAAAAKDZ14FAAAAAgKDggUAAAADgPvCBQAAAAKCCEIJAAAAAoPAYgkAAAAAgRCGCQAAAAEBAKoJAAAAAYLNigkAAAADgoGqCQAAAAAAheoJAAAAAIDiCgkAAAACgYrqCQAAAACD+xIJAAAAAgAPjgkAAAABg2QKDQAAAAKCPCYNAAAAAgEoUg0AAAADgM0mDQAAAAEAsaYNAAAAA4Ap6g0AAAADguo+DQAAAAKAkpINAAAAA4JEIhUAAAACgPzyFQAAAAIDBQoVAAAAAoE1LhUAAAABA4YqFQAAAAGA/qYVAAAAAYBHhhUAAAADALhyGQAAAAGBqJIZAAAAAoAkrhkAAAADAZTOGQAAAAOABvIZAAAAAYHrFhkAAAACgmiuHQAAAAIADO4dAAAAAAMy4h0AAAAAgnMSHQAAAAKCB0odAAAAAIHHmh0AAAAAA/yqIQAAAAGBBoohAAAAAoAipiEAAAABACdWIQAAAAKBT6ohA + NrgMGZxjYkASeFMryKFlQBu6YmAmQ3BACRqGaTzicUAJeGK9lHN3QA== - + - mFIXQB1mjz+xpy1AOmcbQNv2ZEDrfG5AauTwQGfZKkDR5wlB8sWtQKxfskA64BFABGYYQU0Soj991LFBOEAsQXQ2B0GwJ/lAYkm0QZDGP0FXeBdAKIYTQeemtkDiAZ1Au64aQTywFUJz0AJBZIBqQN2+EkBDTwhBtJm0P/T0wUAb23RAYcnTP5Yyoj/9mQhAsXpYQZ5pH0GcPpFAvdzWQaiMGUGQXsY/oz6NQOYlhEA4hO5BL6b/PxQCjEEM5HdAx/7MQPhgtUD99jZA13fiQIXy4EH9JBJA97MhQN2t5UADyppASdWlQCUvJEAuGLFA9AbhQEPSJkHQCJFAXvFlQQedCEH1GEBA6GQAQOZ7dkG+HApBNkZAQLcq7kAjKctADZrlQPm9kUH53IxA8CcMQc3fCEAMbbFA6wLFQIA3UUHfhtRAkWwbQMJTJUHINRBB627rP341v0DrQw5BksFIQE/d0j8vp81AhdeDQZFyCUFYczFCdphsQDeiCEAWSvRBzcPmQcO00UBFMCRAEMItQDilPEEb23hApMm/QcJEakGG3tpBq5MgQdBKbkBsEBVB31DiQZ5aKEPTW+tByGItQMab50A3pfJAgDC4QIyazUA0349Aal5YQVnBL0ESbto/veoKQHyhCEHMVBtA0TN2QBnmmkDmIodA5dLVQE1E+kFkK+w/hM/qQexdHkHbWMVCQStPQaZHG0BjiHdAbq2TQbZKQEFA/aY/dHmSQRpg60CL4wtBCmniQFDvzkEDc7FA + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgCzJZ0AAAADAsuNqQAAAAABgLWtAAAAAQJOmbEAAAADgIMZsQAAAAECDxm5AAAAAQHoVcEAAAADgyxFxQAAAAOAgBXJAAAAAwHGBckAAAACAGfpyQAAAAIBKVnRAAAAAQAJtdUAAAAAAd311QAAAAMB8lnVAAAAAwBvzdUAAAAAAB2Z2QAAAAMDqwHZAAAAAwHhxd0AAAABACyJ4QAAAAACUhXhAAAAAwHCgeEAAAADAqMh4QAAAAAAVdnlAAAAAAGaReUAAAACAc/h5QAAAAED/RHpAAAAAgJ9lekAAAADAjvd6QAAAAMBYUntAAAAAwKTHe0AAAADAWvN7QAAAAAAZN3xAAAAAQKhRfEAAAAAANqB8QAAAAEBeR31AAAAAwJ32fUAAAABApWl+QAAAAMBRp35AAAAAwLqyfkAAAACAx/t+QAAAAMAcE39AAAAAQIJzf0AAAACAw4Z/QAAAAMCkpH9AAAAAQGPaf0AAAADg/xmAQAAAAADiJ4BAAAAAYHlKgEAAAAAgv2GAQAAAAKCpkoBAAAAAIFabgEAAAAAgVceAQAAAAGADIoFAAAAAQO0qgUAAAAAgCDWBQAAAAKARQYFAAAAAwFJOgUAAAAAAAFSBQAAAAMAtWYFAAAAAIPF5gUAAAADAI4OBQAAAAOBgi4FAAAAAALO+gUAAAADgvcWBQAAAAIDI4oFAAAAAIFzpgUAAAADARfaBQAAAAKDICIJAAAAAgDcigkAAAADgFzGCQAAAACB/QoJAAAAAIOlNgkAAAAAApGOCQAAAAOCQroJAAAAA4Oy6gkAAAAAgocSCQAAAAKCb1IJAAAAAoN7kgkAAAACgDBuDQAAAACDaOINAAAAAwGVYg0AAAAAgo5yDQAAAACDgpINAAAAAIBirg0AAAACgGLeDQAAAAKAUv4NAAAAA4HPKg0AAAADAgNODQAAAAEAZ74NAAAAAALRYhUAAAAAgSGOFQAAAAGC6k4VAAAAAoPbBhUAAAABAl9OFQAAAAGCw24VAAAAAACkbhkAAAACg6SGGQAAAACC7LIZAAAAAoJZkhkAAAACgN2uGQAAAACB0eIZAAAAAYB2QhkAAAAAgNLeGQAAAAMBQwYZAAAAA4LcEh0AAAABgHkiHQAAAAGCRWodAAAAAICWyh0AAAABglOqHQAAAAGAdKYhAAAAAQMouiEAAAABAFmOIQAAAAGD5aYhAAAAAoN2ciEA= + NrgMGZxjYkDEsXzkG6NjQMZtNYzMxW5A - + - q6HlP0uVCEADvxpAQPo+QKbnBEEh/gRBvri0P3owxz9PnrBA/HEuQHZFm0CgJkBAgtIgQPJ6iUCcxI5AmSLsP5/Vc0Bu30ZBIB/mQKVdzUALpaVAbz9rQIbTRUCEbYRAmlbHP59ukUAzY8RASmhJQYomZUCzzilBOi2qQHxQPECERABBJc3IQI6R00DIUeQ/7yhLQGdsEEE1d9RBJ2WFQDASGkESoi1ATZ4QQiChK0DZ5FdAqGzwQBjYtUGDMmtAJaU9QZlh6z/ufC1BIn3WQNvjl0ClBEhB1oHWQW4R5EBkiS1AM2uaQHo+3kCV3G9ACu6AQflqiUIoISpCmmQCQY1wI0GLH1xA8QAZQC83sUD7cPBAFtlwQeufHEEOL6pALb6KQeDNvkBOnIBBzVYkQMi0I0Fjj4pB7b29QZX+gkBQXtFB15MeQaEEhkHsSXRBn/INQalCPEEVtilBTeccQUSRmEGr6TBBWvITQbFsJEGewCJBSg/5QNdHIUFAW3FBVd/TQIbWS0I2AV9BAEXIQQodB0HmUB5BJl4iQdELQUFjXclB15oAQrkZe0FVg69ACH6gQXc94UAkMgZBZi3wQIeCakBqdShBQ1WqQQ== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIF9HYkAAAACgR/JjQAAAAGA1iGVAAAAAQA/eZkAAAABgewFnQAAAAAB6YmdAAAAAQPqeZ0AAAABgnR1oQAAAAEBjAWlAAAAA4O4naUAAAAAARaNpQAAAAIBKKmpAAAAAoDKKakAAAAAAH7JqQAAAAGDkAWtAAAAAwJYhbEAAAABAtKZsQAAAAGAN6WxAAAAAQJB/bUAAAABAHSBuQAAAAMBwRm5AAAAAQO9nbkAAAAAg44JuQAAAAABPLG9AAAAAwD3Ib0AAAACgjAJwQAAAAADVJXBAAAAAgF6ScEAAAACA7MxwQAAAAAAI1nFAAAAAoAHkcUAAAADAZDVyQAAAAIDdRXJAAAAA4M9gckAAAAAAWJNyQAAAAEDln3JAAAAAQG3TckAAAABAVfJyQAAAAAD3IXNAAAAAoCKVc0AAAACg/SB0QAAAAGApoXRAAAAA4NGvdEAAAABg6PR0QAAAAABwJnVAAAAAoB9bdUAAAAAgTHV1QAAAAEC6InZAAAAAwBM1dkAAAACAP0R2QAAAAEDeT3ZAAAAAACWSdkAAAAAA/LV2QAAAAMD403ZAAAAAYOUDd0AAAACgQBB3QAAAAAAUIndAAAAAYHMyd0AAAAAAvVt3QAAAACD883dAAAAAwF8AeEAAAADAcDF4QAAAAGDmYXhAAAAA4P6weEAAAAAg6vJ4QAAAAKBRTXlAAAAAQGVYeUAAAADAVZF5QAAAAGDcnXlAAAAAgKnWeUAAAAAg/+F5QAAAAKCHBHpAAAAAoChCekAAAADgbGB6QAAAACAMcnpAAAAAABuCekAAAAAAVZR6QAAAAOCZonpAAAAAIK+yekAAAADgKOF6QAAAAMA/73pAAAAAYDpbe0AAAAAA3X97QAAAACC8n3tAAAAAAMate0AAAAAgvcF7QAAAAMB78XtAAAAAICEAfEAAAAAgCDR8QAAAAAAsRHxAAAAAIBt1fEAAAADAopp8QAAAAEAVyHxAAAAAQMnWfEAAAABgkzR/QAAAAEB3WH9AAAAA4AwugEAAAADggTaAQAAAAKDEQIBAAAAAYNxOgEAAAABg+5mAQAAAAMDFoIBAAAAA4PO6gEAAAADgU/OAQAAAAGBGAIFAAAAA4H0ugUAAAAAAkIOBQAAAAGAaioFAAAAAAO6jgUAAAACg76qBQAAAAIAVvoFAAAAAgLLxgUAAAACgovuBQAAAAACMH4JAAAAAYJQrgkAAAAAgZzyCQAAAAKBbQoJAAAAAoPR2gkAAAACgfoCCQAAAAOC5ioJAAAAAwCzEgkAAAADgZMqCQAAAAKCv6YJAAAAAwEUhg0AAAAAgnlKDQAAAAECDy4NAAAAAwGMnhEAAAACAgaCEQAAAAEAQtIRAAAAAAMm/hEAAAACgLB2FQAAAAKB0TIVAAAAA4PRxhUAAAADgyouFQAAAAKBkk4VAAAAAoHrOhUAAAAAAtumFQAAAAIChpIZAAAAAoFDAhkAAAABgKceGQAAAACDoAYdAAAAAwDkuh0AAAABg5FOHQAAAAKAkW4dAAAAAoCVqh0AAAAAg7byHQA== + NrgMGZxjYkASeFMryKFlQBu6YmAmQ3BACRqGaTzicUAJeGK9lHN3QA== - + - pM5lQN7d2T8roltA9UbsP6M1sUBsqhpAeoD+Pxf9bUB4ljNAOU8tQiHeiUB1VRlA+D6AQEC+B0AXzIxALsIRQDSYIkGTqmFA25o/QFghZkCy5iZBvIOrQKAvXEBVDkBABTKTQDPKpT/2C9o/FjCDQI7CVkGbX8Y/tp36QMRN0ECFcBdBQVKDQUvSEEEezdk/h+f5P3dVbUFcH8RAfLMbQNLCvUAuCtJAPXCwQC9WJEC70NRADAcjQVi3I0CcgSRAEFPTQNWkL0F/Co5ATzbKQPlXJEBPG6dApluPQNA9WUEqKmFAwxVGQcd5ykEj021AEImAQFxDoj9MA+w/dTCqQNenikDgrb9BE5aiQMjvk0CipGpA1qZHQb0dEkElhy5Bldb2QE2KCUHDBRdAAAK2QNplFUJP2dc/bPwRQY9ZS0EStYhB4jGtQKC5gED6VwhBYJM6QFKdhkEOd6JB8W9lQUiTbEFvkIJBbPPpP6l42kBPYQhCxrYHQGtuoj/+W5pA8v0AQpisl0B66hFAezY9QqWmvkDHMBtA2vhnQZzp3D/dfhdAEChUQi3uC0FiGPhALnxIQPA6kUCuH/ZBhYvtQM/NsUCj9pVBIhRAQPiavEAR4YdAV4ggQVAxqkC/tQhBvAufQEjlBEGsRDxAZlUGQalESEAEtulBb1FlQPfniED81m5B7V49QJilGUEB2NlBBDQwQMqUUkCBkZNAA0icQCQ9NUFFUFBA1yciQYthYkF+PrZA7g1CQVvIj0K1sKtC7jAlQaYgB0E= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoJ5hbUAAAABAL8ZuQAAAAKBdXnBAAAAAwH22cEAAAADAB7FxQAAAAIDiP3JAAAAAQA+QckAAAADAkaJzQAAAAIDgI3RAAAAAALU/dEAAAACA8V50QAAAAICLn3RAAAAAQKySdUAAAAAA69R1QAAAAMCCP3ZAAAAAgDECd0AAAAAAKNR3QAAAAIB4NXhAAAAAgFZFeEAAAADA2WB4QAAAAED/wnhAAAAAwKQreUAAAAAAbmh5QAAAAMA2tHlAAAAAgIUYekAAAAAAPiZ6QAAAAEC9WHpAAAAAQGh/ekAAAABAxt96QAAAAEBxBHtAAAAAgL/oe0AAAABAA5R8QAAAAMDruXxAAAAAwDTxfEAAAAAA1AF9QAAAAEANLX1AAAAAQARyfUAAAADA/bx9QAAAAIB/FH5AAAAAgNtUfkAAAACAGo5+QAAAAEDyv35AAAAAQPsRf0AAAABAFXZ/QAAAAIC0iH9AAAAAADqWf0AAAADAL65/QAAAAMDA8X9AAAAAYIdFgEAAAACAkoKAQAAAAGCw1YBAAAAA4D3dgEAAAABgBCuBQAAAAKBYMYFAAAAAQPhBgUAAAAAgaVCBQAAAAAAuYoFAAAAAoBx+gUAAAABgn4OBQAAAAMCpioFAAAAAQDyUgUAAAADAj56BQAAAAMCCwoFAAAAAYKPSgUAAAADgfAKCQAAAAABjEoJAAAAA4E8jgkAAAAAgvSiCQAAAAEBnOoJAAAAAoLJYgkAAAADANWKCQAAAAOCCkoJAAAAAYPqogkAAAACgga+CQAAAACC8uoJAAAAAYGLAgkAAAADg99mCQAAAAKCC6oJAAAAAICgRg0AAAAAgKTeDQAAAAGCGRYNAAAAAINBLg0AAAABg+l2DQAAAACBcaoNAAAAAoHqKg0AAAACACZCDQAAAAODjmINAAAAAwGSmg0AAAACgJrSDQAAAAGA+0INAAAAAACLWg0AAAADA+ZuEQAAAAOAC+IRAAAAAYNU/hUAAAADAskqFQAAAAAD4WIVAAAAAIHtihUAAAAAAxWiFQAAAAKAcboVAAAAAAACahUAAAAAgsaWFQAAAAOBVrIVAAAAAoD/ihUAAAADAWumFQAAAAABb74VAAAAAQOAFhkAAAAAgzCyGQAAAAAAFN4ZAAAAAAE4+hkAAAAAAiUeGQAAAAIAJdYZAAAAA4M16hkAAAADgzY+GQAAAAIDqloZAAAAAgG3QhkAAAABgFOOGQAAAAICgA4dAAAAAoCskh0AAAABgtCmHQAAAAGC3YIdAAAAAAKN5h0AAAABg4LeHQAAAAEBay4dAAAAAAAMRiEAAAACgBBqIQAAAACBzhohAAAAAQEuhiEAAAADAUdSIQAAAAMCi24hA + NrgMGZxjYkBK9xnL9URsQAoahmk8YnBAbFYhH5NTd0DRdBqjVJN5QFoUIXwBhH5AX8xmwiykf0A= - + - wNNzQIB4TkEFAohAs/liQB67LUAgSC1AeBe9QIV9qkDM/BFAlVFlQN0YdUDMompAZ4OiP7JF/EDv6DZAAOXGP3XN+T/cBGhB38LJP7PY+z8jUcc/dFa9QP6KpUDPFixANveeQf8h/D/AQL9AK71XQYLBl0COlQhAZmtFQCZC/UCE3t9AOhIJQP6rR0GM/EZB1M2HQL73XUFCsFJAmnSSQQsN0kDYXDxB8j8dQf5rbkIPf9tAdGc8QWBTk0CDrI8/KfTlQB/a+kAOxCdBK+NyQaHf2T/eoBZBfR5AQX7MY0CjVKpAwJCuQV0yPkMuc2RC5ywgQSTZiUD1dctA3GbqQQFbh0GVNDZA9g9zQer1W0D2dgVAsOMBQQKcoEE3XjdB3uCpQPL4vECh1YBADt+PP8fT0UHdXJ1BG6EIQQAzxz9WtB9BJ9p1QQWQLUHs7RpAa4atQZjmAUH6MRtA0Z2RQXzDa0CcLixBQHtjQOvToEBGv8NBrkXKQPsLCUCqL45BcEb3QayTGkCvN4dBfomcQB2eg0KjuwBCsR5LQQxAGUKj/AxCTSOcQBaZkkGNBsBBafhXQaybJkE20dk/x1EbQVV5JkGXJCxBYIRxQVAoTkEt7t9A6qfdQInDsUDdvf5AaBv3QHcZxkC5a9o/FhqQQVv9mkAf+tc/cDbgQEVXSUAWi2FB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4AkEa0AAAACg60VtQAAAAEDTxW5AAAAAILUkb0AAAACAfUFvQAAAAEBYMnBAAAAAADWycEAAAAAA5MNwQAAAAAAnUnFAAAAAYJoTckAAAACAtCNyQAAAACDysHJAAAAAgM0Ec0AAAAAg5BBzQAAAAECSEXRAAAAAACO1dUAAAAAAStR1QAAAAAC9JXZAAAAAQHtUdkAAAADA1QN4QAAAAIDxTnlAAAAAQAuSeUAAAADAksF5QAAAAIDPBnpAAAAAwN1iekAAAADARHN6QAAAAEAllXpAAAAAAMEie0AAAABAX4p7QAAAAIBVVnxAAAAAgBFlfUAAAABAE6V9QAAAAECNZH5AAAAAgFi0fkAAAADACruAQAAAAKCywoBAAAAA4GI4gUAAAACgL1uBQAAAACCiuoFAAAAA4G85gkAAAAAgpEmCQAAAACBDW4JAAAAAAD+BgkAAAACgo4aCQAAAACBtmoJAAAAAYFfHgkAAAAAAE0SDQAAAAIBtwINAAAAA4NlFhEAAAAAgrlGEQAAAACDDXIRAAAAA4H+KhEAAAADggZaEQAAAAIDbnoRAAAAAYIHShEAAAABgOeOEQAAAAIBiA4VAAAAAwAAhhUAAAACA2lKFQAAAAAC0foVAAAAAIE3GhUAAAACgFNmFQAAAAEAi/4VAAAAAIEc8hkAAAADAVxCHQAAAAGB+y4dAAAAAIA4UiEAAAABA61OIQAAAAKA7XIhA + NrgMGZxjYkA09fyw+iFwQPtPkeoS03RA - + - TbusQGPWWUDsGWxAgZydQq9TfUAEjvk/wbPrP4Q3k0BsBvlBC8vIQH7IBUBH0WtA6NqwPyCJAUGxbs1C6hYSQPiOGkHa3JVA6LjJQL2H7D8rbdo/ki+IQHGPKkAZV2JAIPqtQIhCu0B34rQ/Bqe0QQEj2kAyXA9AqO6dQNuoWUCTQKI/y0B1QLVLFEJ3ZSVBC2SQQFi5P0A8025A1GyjQSjbVEHDklZBnANsQbioJkFx7bM/3cgxQpsbu0CBI6BBqOabQYK4hUG9QhlBJvlMQZg8zz80uypAblRsQc9bIkFFCNdArK4tQN7WgkGxaixBaTyiP+y6d0AwjBNBH5mRQBqgjECkbwdBa64kQL617kHFdRtA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4F+iZkAAAACgzsFnQAAAAED8iWpAAAAAwBVnbUAAAABApX9tQAAAAOCaCG5AAAAAwITFbkAAAAAgzCZvQAAAAOA+3G9AAAAAAC7dcEAAAABA1xFxQAAAAMDiJnFAAAAAwIBhcUAAAADgN45xQAAAACB1E3JAAAAAAGl3ckAAAACA9LJyQAAAAMBO/3JAAAAAgI5ec0AAAACAV6VzQAAAAOAMFHRAAAAAwCpldEAAAABAUaB0QAAAAAANs3RAAAAAQP0NdUAAAACAN5V1QAAAAABuEHZAAAAAQLJmdkAAAADAM4J2QAAAAEBilXZAAAAAQLEDd0AAAADAfHV3QAAAAIAxpXdAAAAAwOkLeEAAAAAAtER4QAAAAADxbHhAAAAAAMp2eEAAAABA+wR5QAAAAIA6LXlAAAAAwBW9eUAAAACAPs55QAAAAIB6WnpAAAAAAG5nekAAAABAJLR6QAAAAECNBXtAAAAAAMUke0AAAADAtEJ7QAAAAMCdTntAAAAAwLdde0AAAADAhrR7QAAAAICy4HtAAAAAQGHwe0AAAABAZ/t7QAAAAMDRlXxAAAAAAISvfEAAAAAA3iB9QAAAAECBUX1AAAAAAP3UfUAAAABAyul9QAAAAIAoGX5AAAAAwMQifkAAAAAANVl+QAAAAAAZ/H5AAAAAgG4Kf0AAAABAfiN/QAAAAEDbQn9AAAAAgH5zf0AAAAAAoIR/QAAAAMDzl39AAAAAQBnTf0AAAABgCwOAQAAAACAUE4BAAAAAwIgmgEAAAADAsEaAQAAAAODdUYBAAAAAgKGZgEAAAADgULGAQAAAAAB3vIBAAAAAQHPCgEAAAADgn/KAQAAAAOCdBYFAAAAAIJQRgUAAAAAgxkSBQAAAAEAAUIFAAAAAIAlbgUAAAACghWuBQAAAACBFc4FAAAAA4JaCgUAAAADgN4qBQAAAAKDkkoFAAAAAYJKjgUAAAACAQ6uBQAAAAKCwyIFAAAAAIDbagUAAAADAku2BQAAAAED9D4JAAAAAwEMWgkAAAACgfCiCQAAAAGA7NIJAAAAAwHw6gkAAAADAllaCQAAAAGAiXIJAAAAAQDhlgkAAAAAAl3OCQAAAAIBydYNAAAAAwGeSg0AAAADgYJ6DQAAAACAZuYNAAAAAYF3ng0AAAACgrSuEQAAAAKDYMYRAAAAA4HlbhEAAAACgI3yEQAAAACBHg4RAAAAA4HyahEAAAABg8aKEQAAAAGDOxoRAAAAA4MbxhEAAAAAghA6FQAAAACAAF4VAAAAAYAJshUAAAACARnuFQAAAAGBMm4VAAAAAoE/yhUAAAADAtPeFQAAAACAn/YVAAAAA4MtKhkAAAACA32uGQAAAAOBddoZAAAAAgCZ/hkAAAABg+cWGQAAAAMCaG4dAAAAA4FtHh0AAAACgCYGHQAAAAMCHmodAAAAAINYbiEAAAACg5TiIQAAAAKDJSYhAAAAAYDR0iEAAAAAgToiIQAAAACAby4hAAAAAQJTeiEA= + NrgMGZxjYkDs0KCvIgVvQIB6f5CPcXFAnSkYzz+Td0CnO8cHPoJ5QAJIEVMB039AmBxVmiHigEA= - + - yVv7PwcvG0Af4rU/08gTQXekuECdruNA+YuUQd/qhEAui6E/wRIAQVa2kED88tk/t5jsP3suqkA57oxAJR1aQF4uk0CrPOw/UbpHQEyn/T99pRpA6kchQJVRn0ANp6NAFwAbQKCqKUG3w6NAt3pbQDibnEALA6pA/OKBQMZ9vEB43YBAwwm/QJv8V0C0wlJA5S5dQUeDS0EeQzZAcaJXQepibUEMQkZBkKUpQC3HxUCUhIpBNUEQQdbcukA1uOw/+YmvQKyXCEDVb2pBh5WAQJOQyEDhpAhA72QIQRgHk0DhGf8/DKwSQf9oAEGcct1AuTE3QG70TkEucNlAGqbsQR3WrECheI1AmUmMQhFFsUA1TsFB7mPsP87CTkCGeB9BF1XHPx92iUB7945BXHo8QWGBd0HVALZAwGIJQZ7Opz8FcVpBZJWaQL+mXEGWveNBBqaHQLm5CEB7nSBB4/SDQysRRUJDGW5BZHaSQQ+LoEDU+wNCtyvRQOScJ0FeZb9Bj9SvQLoLhEDc/V9BiGupQQlMjUIAhZpBHQAlQG9v8kDHtxJBHXSMQN3baUJWNBRB2IiQQs2Hl0LKHGFBfVZCQfANuUG+srhBvnzVQimhNEECHiFC6scpQcFLRkKrBCVB7S4WQUrIO0EUmwZB6IYTQq/Wqj+GBa5AioiNQfgsAEFRwUdBOviSQY6HT0GprC1AUoIHQB57RUDZMZVBSJxuQEkZAEFtII8/acS0P7HvIkHbArdA8voUQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgKBmYkAAAADAAoVjQAAAAMAFo2NAAAAAoA3hZEAAAABAASNlQAAAAEAugGZAAAAAgMc+Z0AAAACAWYVnQAAAAKCbR2hAAAAAgK3kaUAAAADgTIFqQAAAAEAGB2tAAAAAAB2FbEAAAACAEX5tQAAAAGCh9m1AAAAAYOILbkAAAAAg9iVuQAAAAIDGXW5AAAAAwBjhbkAAAABAk6lvQAAAAAAqvW9AAAAA4DcFcEAAAAAgCSNwQAAAAAAYRXBAAAAAQJtxcEAAAABg2LJwQAAAAEDPz3BAAAAA4B0GcUAAAABgPURxQAAAAKDKkHFAAAAAQIjicUAAAACASnVyQAAAAAA/4XJAAAAAwJGRc0AAAAAAOdJzQAAAAABF6XNAAAAAAAoldEAAAAAA1DN0QAAAAMBQVnRAAAAA4DOAdEAAAAAAvrV0QAAAAGDB1XRAAAAAYAgGdUAAAADgylR1QAAAACC8nHVAAAAAYEjWdUAAAADAHuV1QAAAAACqBXZAAAAAQJhWdkAAAACA29N2QAAAAACX83ZAAAAAoGAgd0AAAADgiJN3QAAAAMDXpndAAAAAYPWzd0AAAAAgbs93QAAAAEBg63dAAAAAAH31d0AAAADgOf93QAAAAMDaV3hAAAAAYHx9eEAAAAAgT694QAAAACBsz3hAAAAAYHLjeEAAAADAwfB4QAAAAIDHAXlAAAAAwDAPeUAAAADgLoN5QAAAAODBsnlAAAAA4PHUeUAAAABAauh5QAAAAKDzAHpAAAAAoPwKekAAAACgUiZ6QAAAAICTNHpAAAAAoFtTekAAAABgd2V6QAAAAADsmXpAAAAAoBMAe0AAAACg42d8QAAAACBBhn1AAAAAQMiWfUAAAACgWBZ+QAAAACB4l35AAAAAoEIXf0AAAABgw6J/QAAAAOCfuX9AAAAA4MYZgEAAAADghUqAQAAAAGCa4oBAAAAAgEn6gEAAAAAA3SqBQAAAAEC4MIFAAAAA4E03gUAAAABAKUqBQAAAAKDgU4FAAAAAQJdtgUAAAAAgsHWBQAAAAIAB0YFAAAAAgL3bgUAAAABgiuKBQAAAAGAT8YFAAAAAAH86gkAAAAAgE1GCQAAAAOD5YYJAAAAAYKR8gkAAAACAwoKCQAAAAKBoKINAAAAA4G07g0AAAADA8USDQAAAAMAki4NAAAAAYBPrg0AAAADA4g2EQAAAAGCOj4RAAAAAIJ2yhEAAAACA/AOFQAAAAKDFC4VAAAAAgOF6hUAAAABg3NKFQAAAAMAA5YVAAAAA4Cp0h0AAAACgZaWHQAAAACB+24dAAAAA4BR7iEAAAAAgnJaIQA== + NrgMGZxjYkCwLijacuRqQOzQoK8iBW9A - + - vX/sP8zYZUDJpek/5p0IQDnISUAG9YBAH7WPQIGjNUB3nYxALl2cQL5JWECkwMhAc6SpQFTTCEB6tuxAIPlfQCJ4ZUBG6RhBbRc9QMSuTkCNP0dAsglKQL+5tD/wfX1ADyw3QBS9f0CG4PtAPAEPQmttAUE/WLFAvtRqQXcuZkFTGi9AHZ0kQMFIZUBNDgRBmHvyQPvWLUC+z8pAZcODQMptjkCiBDdAmN4jQXoLE0FPpItBvvLUQfzmH0IVOyZBb303QC4byUCC399AWfsaQQU2HkFSmSZB0W6EQBTIxj9K1DdAkGP6QLmhc0HUewFB5cMhQq85mkAMKd5BPdqVQBXOCUEcTNxApsDxQfBGgUC0pQ9ByBZ2QRQE3kCac0hBqNOpP07UUkD6Ox5BWs+CQbOVcEHMgIFA3O0iQKshN0DwzLpAy98LQSkRdEB00axAXiGDQAEgbkH335ZAOzPPQFqawkDTYAhAO+McQVVM7kAEOH5BZ0iNQSPKaUHhY4xBItjgQYltFkFeJBdB7oHWQbWqikEso8hAivVNQZ+sKUDIu+s/fWiQP2goNUDVxSJBjraaQbWYC0EUxT1BW2BHQJJMokH5bY5AawF8QReE4kIHQotBV56AQH+ySUDysw5A9HjsP9rpNEDxDOtAsVXBQfAIukA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4NxqYkAAAADgR4tiQAAAAGBkxGNAAAAAwBwgZUAAAAAgAkxlQAAAAEC1xmVAAAAAQDECZkAAAABgdzxmQAAAAIC+7mZAAAAAoEsfZ0AAAABArwFoQAAAAIDwI2hAAAAAABHlaEAAAADA8xBpQAAAAABQw2lAAAAAgBuoakAAAADAzx5rQAAAAKBZ6mtAAAAAgNRIbEAAAADAgWZsQAAAAEDCpm1AAAAAQOnCbUAAAADAp2huQAAAAEBOim5AAAAAAN6sbkAAAABA19puQAAAAEDVpG9AAAAAgL3ob0AAAABgjRVwQAAAAGAHIXBAAAAAQNWycEAAAAAARwNxQAAAACAnNXFAAAAAIBZWcUAAAAAg5TRyQAAAAGAbxHJAAAAAYHfZckAAAABgR/ByQAAAAMC6MHNAAAAAQANZc0AAAABgtoRzQAAAAADXAHRAAAAA4LKGdEAAAABAApF0QAAAAAC71HRAAAAAgEXkdEAAAACgiHV1QAAAACDEknVAAAAAoH0VdkAAAAAg1iN2QAAAAICrOXZAAAAAwB5XdkAAAABAa7J2QAAAAKDGxXZAAAAA4DfVdkAAAAAAz/52QAAAAKCnEHdAAAAAgG01d0AAAABAZEF3QAAAAIBOfndAAAAAAHqOd0AAAADAH6J3QAAAAEBJ0XdAAAAAYEn3d0AAAADgnBB4QAAAAID6MXhAAAAA4LRTeEAAAABgxmV4QAAAAKCKsHhAAAAAIO/jeEAAAABgQQZ5QAAAAOByEnlAAAAAYBMweUAAAABgmEJ5QAAAAKAFUHlAAAAAYINfeUAAAACAsnZ5QAAAAACWgnlAAAAAYGHXeUAAAADg7uV5QAAAAOCuCnpAAAAAoCwVekAAAABgBzZ6QAAAAMBbVXpAAAAA4BRlekAAAABgQHd6QAAAAKBLmHpAAAAAoFytekAAAACgxNB6QAAAAEBD3npAAAAAABghe0AAAADg7lJ7QAAAAECEcXtAAAAAQIaCe0AAAABAFZB7QAAAAECcn3tAAAAAoDrWe0AAAACArwJ8QAAAAMBOdXxAAAAAoFiofEAAAAAgXcJ8QAAAAIBv2HxAAAAAwMTkfEAAAACgdQR9QAAAAADDF31AAAAA4JAjfUAAAABAvVB9QAAAACBId31AAAAAoLyRfUAAAACgE6Z9QAAAAEBAfn9AAAAAYNiUf0AAAAAgeyCAQAAAAOApVoBAAAAA4HSigEAAAAAAELKAQAAAAODY3oBAAAAA4PdVgUAAAADA03uBQAAAACB+q4FAAAAAIDDCgUAAAADga+yBQAAAAGB+UIJAAAAAwMBXgkAAAADgUl2CQAAAAGAvaYJAAAAAQHu9gkAAAABAkcOCQAAAAICP6oJAAAAA4In+gkAAAADAoAiDQAAAAGCqMINAAAAAgNxrg0AAAADgYIaDQAAAAGBmr4NAAAAAIAT4g0AAAABgdgOEQAAAAKC4GYRAAAAAwAcghEAAAACg+2yEQAAAAAALdoRAAAAAoGWbhEAAAADgotWEQAAAAKAa6oRAAAAAgBfxhEAAAACg4CGFQAAAAMB3O4VAAAAAIHlWhUAAAAAgLVyFQAAAAGCheYVAAAAAIMylhUAAAADAYbWFQAAAAGAqGYZAAAAAYA1MhkAAAACA0sSGQAAAAKCNH4dAAAAAAEwzh0AAAACAD7SHQAAAAGCYz4hAAAAAYJPyiEA= + NrgMGZxjYkBImCMySWRuQEMdzoN8QnFA - + - NtudQOQbmEA47jZAkmq5QJmzxj9EKtk/3eDZP7o3QEBj+xpAnG3EQNgT3UDwJsc/r6ciQIUsDkDrPlxAV++SQMyr0EDCU0pA+y0FQALOQEGDQGpANh7/PxaKzUBpyUdAEltfQaURQUAfmTdAVOiVQNJlZUFjw5pAdoHYQApVBkHzazRA0cSAQR0Jk0AyFUNC6DUFQhI5+kDisRpAOlvIP9e21kDXb0lAWbs/QDZkfUBW8itA1ERAQKr0iUAHStg/p9QIQM87j0AynFJBEZSyQK/jfUAiq1RBTz/7QJ4tNEGnpJFAqyaKQOQLe0HaieRAfIURQZc8CUFfx49AeZM8QNhZtkAQuyBAPciSQc0DZkHn+1NC1YiJQCurCECq+y5BfY7HPypdW0FdaRtA9OuVQfoPLUDnHBpBVf0VQbTBlkEhpOhAF4oSQPLBWEAyLAVBTS6RQMpuvUGHuItBkCF3QMCv8UFBiElA1tNMQRUF7EAp+DZBN0mPQMBzmkA2Bv1AU3IkQL66q0AVvrhA/TZ4QVA3iED0/yJB9mqwQWAClUHa4dJBfrCRQOBqxj/MqI8/R1bbQAvjzkFcli5BQSx9QA9tA0ECBvZADh0zQJ76NECmWR5BJGmqQKSVbkBSXh5BlCVYQfdjIEDLb81A3mJDQZzU2UC1KWBBjunsQWIjGEI4oKhACZM9QjITUkJ/rINBLzgbQKwxPUIkTJJBuqNYQZoqTkFU6t1A9ZKJQd3UCkG24+1ArsR1QbPGOEHu2mNB8PAUQZxlmEDhrcpAg7wfQkcxnkEmhrQ/lGRZQcVMN0DmxbxAN+E0QJN8kkAFZolBmL7cP4e/eEBcaINAVrNuQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAABFrYkAAAABgxSZjQAAAACAZI2VAAAAAgLxfZ0AAAACA1CZoQAAAAABERWhAAAAAwDKCaEAAAAAAEyJpQAAAAACp5WlAAAAAgBIEakAAAAAAeDtqQAAAAICLa2pAAAAAIIrHakAAAAAAF2drQAAAAKAAZ2xAAAAAIAi9bUAAAACAoKxuQAAAAMAPSm9AAAAAwAShb0AAAADgGDFwQAAAAKDpZ3BAAAAAIH8lcUAAAADAfUJxQAAAAGADgnFAAAAAwKy/cUAAAADg8PdxQAAAAOA7OHJAAAAAII20ckAAAACAzMVyQAAAAADI0XJAAAAA4PrxckAAAABAfVRzQAAAAOBIYXNAAAAA4OSFc0AAAADAPaBzQAAAAMDzXnRAAAAAYLx+dEAAAAAAqZJ0QAAAAOAnpHRAAAAAAOnhdEAAAADg5xB1QAAAAOCcJ3VAAAAAQD9HdUAAAAAA94N1QAAAAECe5XVAAAAAIHMUdkAAAABAVh92QAAAAOCCnnZAAAAAADPFdkAAAAAAmdF2QAAAAMBnDHdAAAAAoPktd0AAAADAmkR3QAAAAIAQYHdAAAAAIHuBd0AAAADg2rJ3QAAAAKCvE3hAAAAAIH80eEAAAABgfT94QAAAAIB+UnhAAAAAILtqeEAAAACAb314QAAAAMA9ynhAAAAAINv8eEAAAADgkg95QAAAAOA+JHlAAAAAgMAyeUAAAACgcz55QAAAAGAJUXlAAAAAIKdbeUAAAABgmJF5QAAAAGDY0XlAAAAAQKLbeUAAAADg4w16QAAAACAAHnpAAAAAIDcqekAAAACgcjV6QAAAAEABQnpAAAAAYJRWekAAAADgf2B6QAAAAGBob3pAAAAAYN57ekAAAAAgtNN6QAAAACCJD3tAAAAAYMUfe0AAAADAQzF7QAAAAKD5SntAAAAAQItve0AAAABgwnp7QAAAAIC/intAAAAA4KC3e0AAAAAARtZ7QAAAAICg5XtAAAAAoKIhfEAAAADgnDR8QAAAAOAdc3xAAAAAQGaDfkAAAADAZ2R/QAAAAKAolH9AAAAAYHAhgEAAAABgV0SAQAAAAOAeioBAAAAAYKiwgEAAAABAMdyAQAAAAGCQ5IBAAAAAoFdLgUAAAAAg3GqBQAAAAMCe/oFAAAAAIDkPgkAAAAAgPEGCQAAAAGDacoJAAAAAYEa8gkAAAABgKQCDQAAAACCNBYNAAAAAILoKg0AAAABA2ECDQAAAAOCpZoNAAAAA4C97g0AAAABgIYqDQAAAAKBdvoNAAAAAIJHDg0AAAAAgfd2DQAAAAAADFIRAAAAA4OoZhEAAAACgkmuEQAAAAGBPcoRAAAAAQOaYhEAAAABg2rGEQAAAAMBMA4VAAAAAQP1QhUAAAAAgXnmFQAAAAOAwuoVAAAAAYPXfhUAAAABA0POFQAAAAODACoZAAAAAwEpchkAAAABAO72GQAAAACD4dYdAAAAAgBnUh0AAAADAX7qIQA== + NrgMGZxjYkA= - + - ETK1P5lmCEAGhxFAWkPbPyhE2T/TIoFAjsu4P4Puh0AYP/8/piWDQO6CT0A6LPxAD/oTQMD9/j9ruwhA4a/IP7z40kC3udRAKvT+P1Chz0FpKnpAFENuQKId90BqHk9A1HRPQObuQUEZLrU/zVYAQfpuXELNh25A1BUSQLoKlkB2/StA4vHZP5iFHUENedtADIG+QK6PZUHE9wlB8MrZP6FdEEHapKVAWezZPxzaXEDxIKFAZxq7QD/dakA2RLU/Nai8QMx1L0HuLbtAU9bmP8P+VUFAWVJAcwtJQPX/iUA+y6NAzmPbQP1KQEBIYqtB/eHpQC+h7T/IhnBBv+4AQiA7r0FOz1ZBAVCAQeALtj/90rxBU/6hQULD2EBbEwdBdxdlQfwOEkA/ZA9CGiEIQk8Bg0DWd/k/A+etQdhVwkHJacg/e5qyQE7Er0B8wtlArQR+QOvJiEHnb51ArViXQRlzkEF2AnFBWcD7QAhveEF6E2RBVVAlQYXx1kGLx31A4MAEQbsuiEDGg1VB7vYoQQXImUGJF3hA6kD9P1yBDEEM1GJBvzgFQW3Q6kDj+o1B2xklQDY0YkBUBLU/zIWYQr7HT0KdOJ4/DG4bQOWFF0FA0N5B5uUfQYSaZUAb7VZB56udQQ//8kA8SYVAb644QGpnIkJ+Xh1Cpl6TQQ7lHUETiMo/ye5FQH2u7D8AgPJAOfF3QDsASEHCKCZC4+XDQPjfQEB+vVBAIouTQM6AfUA= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAgAwpYEAAAADA20dgQAAAAEDqY2BAAAAAwE1oYUAAAACgZqBiQAAAAGAo4mJAAAAAICinY0AAAACAWqRkQAAAAMAsCGVAAAAAoPtlZUAAAABApr1lQAAAAEDB52VAAAAAQC5HZkAAAACAz5xmQAAAAICO4WZAAAAAwCohZ0AAAADAbGdnQAAAAICkQmhAAAAAgAZkaEAAAADAw1xpQAAAAICzpmlAAAAAgMRkakAAAAAAyuhqQAAAAIClLmxAAAAA4BJIbEAAAADADYNtQAAAAKDhnW1AAAAAAJ/FbUAAAACA2GhuQAAAAAAC/25AAAAAAKQYb0AAAABAbMtvQAAAAABXM3BAAAAAQIpjcEAAAABgyW1wQAAAAICuj3BAAAAAYCvScEAAAADAjvBwQAAAACDjQXFAAAAAIBJQcUAAAAAgnGJxQAAAAKDpf3FAAAAAYAjncUAAAABg/yVyQAAAACB1QHJAAAAAQAhSckAAAADAnoNyQAAAAMBaxnJAAAAAAKwBc0AAAAAASgtzQAAAAIBBMXNAAAAAACNDc0AAAABALVJzQAAAAACvdHNAAAAAIMLDc0AAAABAYNRzQAAAAKCp33NAAAAAACcDdEAAAAAgsiF0QAAAAICBMnRAAAAAwC1GdEAAAAAAN1V0QAAAAED0cnRAAAAAIG+GdEAAAABAtZR0QAAAAABK1XRAAAAAAOzodEAAAABgyv90QAAAAMBhEXVAAAAAYDUidUAAAACArqB1QAAAAIA4sXVAAAAAIEzEdUAAAACg+gF2QAAAACDsFXZAAAAAYLQgdkAAAABAHZN2QAAAAKDun3ZAAAAAQIHFdkAAAACgNt92QAAAAMA6IndAAAAAYJIsd0AAAADACT53QAAAAEChUXdAAAAAgOTNd0AAAADg5EF4QAAAAOCPVXhAAAAAoFFseEAAAACAmIJ4QAAAAGDLk3hAAAAAwAC6eEAAAAAgzMN4QAAAAEBa7nhAAAAAoEX5eEAAAACgARd5QAAAAIBKKXlAAAAAoNxAeUAAAABg43l5QAAAAEAGknlAAAAAgA6neUAAAAAgkbN5QAAAAKCoAXpAAAAAoCkUekAAAAAguyJ6QAAAAOA6UXpAAAAAIJpeekAAAABgSWl6QAAAAOCCkHpAAAAAYCHAekAAAAAg90R8QAAAAMCUhXxAAAAAYOzdfEAAAAAg+ER9QAAAAKDxc31AAAAA4DSRfUAAAADAm7R9QAAAAMDM/31AAAAAICHHfkAAAADgkQB/QAAAAODxEX9AAAAAYGplf0AAAABganN/QAAAAGDrgn9AAAAAYHPOf0AAAADAltp/QAAAAODtBIBAAAAAYI4LgEAAAADghy+AQAAAAODTYoBAAAAAALTGgEAAAABA4tGAQAAAAGBXIIFAAAAA4E+/gUAAAABAUdKBQAAAAEDm/4FAAAAAAPUWgkAAAABAmx2CQAAAAGCTK4JAAAAA4OhNgkAAAADAMGqCQAAAAOCujIJAAAAA4IWvgkAAAAAgtbqCQAAAAAC8woJAAAAAoLIMg0AAAABgiRiDQAAAAGCTIINAAAAAoBoog0AAAACg0ESDQAAAACDKWYNAAAAAIOW5g0AAAADAWcCDQAAAAODfDIRAAAAAwBwShEAAAADA8miEQAAAAGCFpYRAAAAAYG2khUAAAABAZcOFQAAAAMAJ+4VAAAAAQEBUhkAAAACAr3SGQAAAAKC5iIZAAAAA4ImShkAAAABA4ryGQAAAAMDF74ZAAAAAoJYXh0AAAABgfxyHQAAAAGCGIodA - - - - - - RTntQPDvlj8yU5A/37P/P2DkDkLY66M/5+8IQJH4HkF7pRtAcyaFQPLinUCOBlFB6dbsP9oF7j+8mYxAiRDUP8tTk0EB9lY/9ropQfVuQkDJcEBAom0RQA+NxEAmV6hA17heQYdDWEEDFO0/+agbQEhiMkFVLbhAQYj/P+7lSUDS68ZAK1CqQLaF2j94B7hARUHaPwfEIUDHF2hC44RBQOWo/z9r0ipBV/8LQWEjIUDARQtDVsCwQB/8rkA+B+FCe/6fQvnBrT+JMKJACfEIQa5f7kAJFWJA9GbnQKwLCUBr19ZA93BrQNjGbUKqJzxB0MeXQJGjb0D0NNRAgM7PQFVjkz+lDaxAAzkeQS3fY0Lf2opB6mMLQkEH2j+zgQFAaJr/P7KASUFODpJBRZK3Qc8nM0JqGf1B89CTQrKTez+jhANC+L6DQJNz7D/T5pdBhBYqQVHANUG9IHJCZRasQTPkOkJZ2rlAPYDMQRIzXkK07StBYq3fQMHzZkHsXUpATSkTQajgiEEvXwVAWf3kQF/vwEGq/xFCG/ndQVlNKkHsVGRBEO3vQgPZs0BRwPtApDYCQXHWbkBkJ5xAP08uQbB39EAkLQhAAWySQcCEsEGQ95FBUgnCQf/Tk0ESrSFABeicQZJD20DtqyNBanO9QU0/oj8qI6VBj4kbQDCW10OQCUtBj+rMQTENUUAYp8RAMSP8QHziYUAraYhA49FrQI55B0J2voxAvlXgQWItVkFtH5lAljSOQbWcp0KGqtJBRiIQQJ1gBkLldFZBclEbQbJ2qkD2BaxBMAMDQWomu0AEIbJAIqj/P1CMo0AKgnRBfPtPQGf2CECqXbZAdSDaPz6dZED1UY5BX+GEQR3vc0GrXFxA+hKfQdPv7kC0hJxA - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAACbtZEAAAAAAf2tmQAAAAMDjPWhAAAAAQLbpaUAAAADAvMZrQAAAAEDHJWxAAAAAoKnBbUAAAADAtgduQAAAAABCJ3BAAAAAQImucEAAAAAgfEJxQAAAAICoY3NAAAAAgGBRdEAAAACAop90QAAAAAA1V3VAAAAAQO11dUAAAABAZaF1QAAAAMALn3ZAAAAAgD5yd0AAAADA8ix4QAAAAEB8AnlAAAAAgJhSeUAAAAAAtsR5QAAAAEARBntAAAAAAIkRe0AAAABAEWB7QAAAAMAV4ntAAAAAwFcTfEAAAACA0nh8QAAAAADhiXxAAAAAgLHifEAAAACAePJ8QAAAAIA1hX1AAAAAQM7mfUAAAADAwh1+QAAAAEBCqX5AAAAAwCK2fkAAAADAP9V+QAAAAABSin9AAAAAQIPvf0AAAADgSBqAQAAAACBhJ4BAAAAAIJJ2gEAAAABA6aGAQAAAAODbsYBAAAAAoLXegEAAAADgZwCBQAAAAGByJoFAAAAAwEMrgUAAAABAZfmBQAAAAGB3IIJAAAAAIMLIgkAAAACgUnqDQAAAAICR+4NAAAAAIHMkhEAAAAAA8jSEQAAAAICyVIRAAAAAoNyfhEAAAABgo62EQAAAAGDYEIVAAAAA4MiDhUAAAAAAQIqFQAAAAKBfW4ZAAAAAoMCPhkAAAABg7ZiGQAAAAAAbq4dAAAAAoBUyiEAAAADglDmIQAAAAGBiWYhAAAAAoKWriEAAAAAABciIQA== + NrgMGZxjYkDiYBUjzERrQKz0JpO9sXBAAkkrmFUidUD5NnxfVzN2QA== - + - by7XPwpDpEBL/yRA3T2iP0PlukBv8xdCW+nBQIeB5kCEvfBA/QzSQHlMHUGuv4BAjpKrQJuDtT8TdoFAWWAhQE8/CUC8pLU/Ez2TQBxNuECBWwBASwysQOT9NkAQpsc/X3mAQPilWkAJ6TZAYOLsPznh8kCnqTNARHO5QfVeK0F3o9s/98q1P/zfpkEUYG5BPHIhQCke/j/xoY5Ab9+jQIAkiEBI4UBAgdpqQbw8iUEVobZBpUsKQeA4n0DJQQpBiO3IQSmCU0BBFNRAwqGJQGzKKkDkLNdBg4OoQCMEyD+M6uNB9Ed4QNS2cEFDqidBEJIGQuwEM0FYrg1Bbmx+QCx6/z8ySxJAs1M2QFTnD0IZT8g/wNCuQcoJDEE= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4BplbUAAAABAjypvQAAAACDgY29AAAAAoBbTcEAAAACA21FxQAAAAEDDFXRAAAAAgLB0dUAAAAAAIIB1QAAAAAC/QHdAAAAAoLuld0AAAADAuOd6QAAAAECaIXtAAAAAwGM4e0AAAADADO57QAAAAIAwVH5AAAAAQNbTf0AAAABATbyAQAAAACDGc4FAAAAAYG7RgUAAAACgnfqBQAAAACD2dIJAAAAAgNehgkAAAACA/bqCQAAAAGBl8oJAAAAA4BEDg0AAAACgX8GDQAAAAKDtUYRAAAAAoFOZhEAAAADgD3qFQAAAAGDUkYVAAAAAYDpBhkAAAADg1GqGQAAAAOA8V4dAAAAA4Nxlh0AAAAAAHn6HQAAAAOAH24dAAAAAIPlSiEAAAADAfHGIQAAAAGAM6IhA + KBZXds7jZUAKI3ffzmRvQBTpB48/A3JAouJ3Wr9Cc0DX76Vi5TN6QGXpFS5lc3tA9UBiTT3EfUCyI/nAXkKBQL7jqU2XKoNA - + - QZO5P/96KkHm52tAPYeWQC0GxkHkvPdB2tSkQHDd/z8ClSRBraqDQAJA7j9J5BVBPVBTQPQGt0DNRUhBAdTLQH1CBkKtmNo/kpABQfnRCkDXnwJBMWUlQTAeD0D75chASB61P6HPVED6eulBHi4HQExuyD8GWjxCxKYCQfy1JUEGmwhBhGE5QQkPwUBWwJRBiZhYQKVjk0Bq1htA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4AplY0AAAABAZuBjQAAAAEDMo2hAAAAAgCMPbUAAAACgx8BtQAAAAMCSFW5AAAAAQIZHbkAAAACAXohuQAAAAAAMv29AAAAAQLtEcEAAAACApOVwQAAAAADD/3BAAAAAgBuDcUAAAAAAMp1xQAAAAMDfzHFAAAAAADMCckAAAABAhpByQAAAAEA1AHNAAAAAQJBDc0AAAAAADIFzQAAAAMCuoHNAAAAAwGE8dEAAAAAAXK10QAAAAIAwuHRAAAAAAAoEdUAAAACAF5N1QAAAAMB8qnVAAAAAgCwhdkAAAADAPSt2QAAAAMDBQHZAAAAAwLNjdkAAAACACbV2QAAAAIDy1HZAAAAAwE3rdkAAAABA2LF3QAAAAMAjwndAAAAAQHuQeEAAAACAyv14QAAAAABYHnlAAAAAQPrzeUAAAADAfA16QAAAAACrI3pAAAAAAEAyekAAAACAgkh6QAAAAEA9f3pAAAAAAJK+ekAAAAAAodF6QAAAAMAvQHtAAAAAAEpVe0AAAAAA4KN7QAAAAIBF5HtAAAAAgEIEfEAAAABAsDV8QAAAAICS4HxAAAAAABX3fEAAAABAVRJ9QAAAAACVJH1AAAAAACkvfUAAAABAmZV9QAAAAMCuxX1AAAAAwMzPfUAAAADAVDx+QAAAAAA9SX5AAAAAQJ98fkAAAACAQYZ+QAAAAMAIlX5AAAAAwNCwfkAAAADA+11/QAAAAECxZ39AAAAAQCaEf0AAAAAgQGiAQAAAACBXcIBAAAAAIOPMgEAAAABge/6AQAAAAOBSb4FAAAAAYKx5gUAAAABgkp6BQAAAACDuvYFAAAAA4EXKgUAAAAAALoSCQAAAAACRmIJAAAAAwCShgkAAAABg4sKCQAAAAIA+KoNAAAAAYMY1g0AAAABgo06DQAAAAOB4YoNAAAAAAL/Dg0AAAACAdcyDQAAAAOD2AYRAAAAAoAdUhEAAAADgoeWFQAAAAIA5AoZAAAAA4EAzhkAAAABghUSGQAAAAACgToZAAAAAwHOwhkAAAADATLaGQAAAAEAtFodAAAAAoPDJh0AAAACg3M6HQAAAAMAT1odAAAAAoAUZiEAAAACgnzSIQA== + NrgMGZxjYkD+9P4gH+NsQEMdzoN8QnFAf9hb5OeCdUAGJGxXInN5QKHhXRVr83pAvjIaAMODfkCW8lln6MGAQIpDj4IteoFAKtP9oj/KhEAeJDO+hIKFQFX9f6WLAodAHlMh6DALiUBVLG7PN4uKQEl9o+p8Q4tA6AwSC4+TjkDcXUcm1EuPQIkbyobtZZBA0C95gQNKkUA4n/WwFaqRQBmyuU0kppJA6SDdJT+2k0CZybBiemqUQDMRr8NqupVA47mCAKZulkA= - + - HZ6rQHgCwUA4fhtA/tyOQDpEyj9CWLY/6FiDQe1L7T8kj51ASIlxQZ+i5z9iISRA1jdKQHW6N0CrQU5B5vGjQfxELkBdBdw/zDkCQOngL0Cx0gZC2z3bP8H6mkAdPLJA/A2BQAHVE0FS/olAnXAuQJ4xhEBfjjJB9N5nQX99KEFGgEBBlfxmQfXtfkC36wpA6E8DQbCFm0ANOD5Aj87PQARdTkHFNWBBRbF0QZtLrUBqW3JCU5TeQOsuqUAcmkFA9yswQVIIfUHtD85By/iWQGVSJkG+AxpAfpyjP8d2QEAFyPZBuJKpQr5SMUHIRRlAr0+PQIAvNUKRe8NA206PQIEI+kBr4MxAy94IQCTJmkCBCQBAPXJHQGrtYUH2VIxBn5aAQVUU20B71w9BYWj8QEph8kC6rv8/TTHtQETdNEDKJ8ZAnB8PQc0tyT8Nl3JAEq0mQVJpG0FSCtJBkAZeQmAfC0BCd7hBe7S2QBIW3EBEiytApaQLQf/MtkDXCEBBeCweQGZHb0CcI+VAgrVUQinQoUCoBUpBENzaP46t0kA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAG1jaEAAAADAQUBsQAAAAEDJhWxAAAAAgFokbUAAAADAkeJtQAAAAKBsKW5AAAAAQL/Gb0AAAAAAGgNwQAAAAADyUnBAAAAAwEyhcEAAAAAA/XJxQAAAAAAMw3FAAAAAgDzVcUAAAAAA3P9xQAAAACA483JAAAAAwEgjc0AAAABA8b5zQAAAAEA6U3RAAAAAQOU0dUAAAAAA+4J1QAAAAEDZtHVAAAAAQEFddkAAAADAqVN3QAAAAMBCcndAAAAAwK8heEAAAACA5Od4QAAAAAB8NXlAAAAAQLGTeUAAAACAC1x6QAAAAAAl2XpAAAAAgF+Xe0AAAAAAIxF8QAAAAMBmSXxAAAAAwB9VfEAAAABAjaB8QAAAAAAjan1AAAAAwIDifUAAAAAAOfJ9QAAAAADNCH5AAAAAQN4VfkAAAADAe1B+QAAAAEDj9n5AAAAAwPwDf0AAAADAIEV/QAAAAIB2V39AAAAAAM7Wf0AAAABg/FiAQAAAACCIl4BAAAAAYB2vgEAAAACg6wGBQAAAAMA2OoFAAAAAABNegUAAAACAJnOBQAAAACC+e4FAAAAA4O6CgUAAAAAg37qBQAAAAEAnwoFAAAAA4CvTgUAAAAAAf92BQAAAAODH8YFAAAAAQK4IgkAAAAAgfhGDQAAAAMCqIoNAAAAA4N5+g0AAAADAKaOFQAAAAOBuEIZAAAAAYEwzhkAAAABgTzuGQAAAAKDdsoZAAAAAAFG6hkAAAAAAF9uGQAAAAKCSZIdAAAAA4F6Hh0AAAADAz5qIQAAAAGBzpYhA + KBZXds7jZUA= - + - QtobQIQ0K0BcNSRAN4kJQUjOpEDpi/8/LaC2QNq07T96IMJASbEQQYXfwkAdwHlBNKdvQM7tbkBipAJBPB4uQP2R50CoByVA5T1iQDT4ykBc07U/3mWpQBQ6fEF3d7pAsn51Qar/fT/zArRARS+lQNP/NUApRq9AK/wNQcIl8EDzxBBATaCjQDZGLkC9d/k/YR7PQPeO9D8UdtJAh1AhQSEflEAs1JJA4HRfQf88wUAK2Ow/tECvQOqdgEHd8Y9B6FvvQCwEQUAJoXdAyBdAQW2V7T9HfhBBaNXSQFwpBkHq3+0/5c9SQXhTX0Hh/LU/AxwGQlsxi0FNrIhAioK8QMOXqED4AklA+U/JQBXzkUAqR0pAr/gtQblvyD8cpyVBaDaXQGJmIUHceutA + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAAMRAW0AAAAAA/B9gQAAAAGDzOWBAAAAAwFmDYEAAAAAAqKZgQAAAAID2yGBAAAAAgHUlYUAAAAAAgQZiQAAAAEBqQ2JAAAAAwNRlYkAAAADAnuFiQAAAAKCSX2NAAAAAoMhiZEAAAADAkmZlQAAAAMD95mZAAAAAgIUDZ0AAAAAgMSBnQAAAAAARY2dAAAAAgFgoaEAAAACgr2VoQAAAAEDGiWhAAAAAQDujaEAAAAAAeuVoQAAAAODDBGlAAAAAwFwsaUAAAADAUIJpQAAAAKD66GlAAAAAYI8makAAAACA1FdqQAAAAADEp2pAAAAA4LvRakAAAACA6SdrQAAAAIBrxWtAAAAAwAsHbEAAAAAAGERsQAAAAAD9amxAAAAAABKJbEAAAADADaNsQAAAAABwyGxAAAAAQAftbEAAAACAKghtQAAAAABpgm1AAAAAwNnkbUAAAADAjAhuQAAAAADURm5AAAAAwDqHbkAAAAAAOsRuQAAAAEDu225AAAAAAMwOb0AAAABA2ENvQAAAAMA8rm9AAAAAgDTCb0AAAABAKBFwQAAAAGA1QnBAAAAAgGVScEAAAABAH3ZwQAAAACCInnBAAAAAAPywcEAAAACgKNdwQAAAAEBn43BAAAAAYGb9cEAAAADASRRxQAAAAIAaIHFAAAAAoLszcUAAAACgN0JxQAAAAKCSUnFAAAAA4Cx1cUAAAADAuoFxQAAAAGDPlHFAAAAAgMS2cUAAAACAyeVxQAAAAIBo9XFAAAAAQHkRckAAAABARzByQAAAAMDWRXJAAAAA4BRwckAAAADAToJyQAAAAID6mHJAAAAAAImjckAAAAAAsLNyQAAAAACZw3JAAAAAwIDRckAAAADgk+NyQAAAAKBk83JAAAAAwFoYc0AAAAAgvCtzQAAAAICdN3NAAAAAQIREc0AAAACAIXJzQAAAAEDLmXNAAAAA4Hm7c0AAAAAgN9NzQAAAAGCl43NAAAAAgPbyc0AAAAAAbwF0QAAAAKAsEHRAAAAAQMIzdEAAAACAX9V0QAAAACB04XRAAAAAAIEDdUAAAABARQ51QAAAAICEHnVAAAAAQGUqdUAAAABA1zZ1QAAAAADTTnVAAAAAINdidUAAAAAAkXR1QAAAAICzgXVAAAAAQH2OdUAAAACgW7N1QAAAAGDjvnVAAAAAoPjXdUAAAACAdAN2QAAAAIAd/XdAAAAAIDMmeEAAAABg7jR4QAAAACD9XXhAAAAAwFOieEAAAABANgR5QAAAAGA1InlAAAAA4GRXeUAAAAAAPY15QAAAACBu13lAAAAAIMyEekAAAAAA/696QAAAAED8BHtAAAAAQH6jfEAAAABgJFt9QAAAAOAFZX1AAAAAQNEFfkAAAABAknF+QAAAACBwf35AAAAAIHbXfkAAAABgBQV/QAAAAOAPFH9AAAAAIEiCf0AAAADgFBuAQAAAAEDZSoBAAAAAIGqTgEAAAABgQZmAQAAAAIBT2oBAAAAAoJ8SgUAAAAAgyXuBQAAAAOBTgYJAAAAAoCyUgkAAAACgGbOCQAAAAAAEyYJAAAAAoL4Rg0AAAAAgtx+DQAAAAMDlJINAAAAAoCyLg0AAAADAXrKDQAAAAOCWvYNAAAAAYLwjhEAAAACAGD2GQA== - - - - - - /th5QHrqCUIzSktBJO5AQObI6kFAjgxBy3IAQH2LhEAuZJJB/jSeQfzOqEAl7m9A4Ee5P1I0tj+1SMg/MI4uQG6eK0CbcztBA2BBQGgbP0B/mJ9AqmfxQHKiEEBMcaFACKraP3VlyUAk0hJABPdJQSmgl0BFS5tAt/DdQI1mxUCDeldBJsSPQNj/m0J20y5AfqCtQGDviEEIaO4/GRHYQFDRN0FsfN5AJ2P7QATEOUGo2QVADI1MQyRJgECkxJ9AIpTZQDiqjUFkjZZAYIIRQGSo2z9y/QtBvB3yQEDJBEG2GgFBwuNtQdvqDUH4Bcg/IfY1QZN7EUCaSKFAHdkMQaTaa0DnnQ5B9lC6QIep3UBoiJ9AVIsAQG8e5UAkQ5JBiDa8QoTpkkC0XkpAN0f7QDLnaEHMWSVAw/eaQK2RuUJOonpB/g04QZhK00B9R8I/LHbFQKOzYEGROHVA6dWOQAlKH0G/4OlA/AeQQ/mfG0If5MZBUWMfQmrANEEG0aM/EAaqQZr0C0FbJVxBWA6NQEehXEA8vzdBDQCaQBIt50AqCEhB/HMyQQINlkGgJaBBHOU8QILi5z/3WVJAxBSEQOD0l0HHqSxBm3HRQOA1m0FmFGNBWeXpQGvlm0AUR7RBq6WeQeZwxUCqUixB7XMAQv4JZECTqp9AQT3JQKdB5kG7yTVD6cJcQOBWKUKnwjRB+xbXQDrzk0B1i45Aw/Q3QLzsLEM2NRxAyDYoQeEmQUAgNHVAyD/zQEQ0/ECOOzZAQnklQOa0kUB8j8g/lyPqPwuI90DzUABALCAcQFWygUOICDNBeBTnPyLLa0A= - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIKMkZ0AAAADgO6FnQAAAAMD3R2hAAAAA4LstaUAAAACAA2JpQAAAAAA27WlAAAAAgJiaa0AAAACAmS5sQAAAAECDhGxAAAAAYIqhbEAAAAAAez5tQAAAAMD0h21AAAAAwLrLbUAAAAAgPv5tQAAAAIBeE25AAAAAAOClbkAAAAAAw8VuQAAAAIDe425AAAAAAG4Gb0AAAABA0KFvQAAAAEDC6W9AAAAAQEUbcEAAAAAg60RwQAAAAGBXXHBAAAAAQLRycEAAAACAFIFwQAAAACCEknBAAAAAYLivcEAAAAAAnL9wQAAAAACY0XBAAAAAYO3hcEAAAABApPJwQAAAAOBbEHFAAAAAgMIicUAAAADAKGNxQAAAAEBvo3FAAAAAALf0cUAAAABgMANyQAAAAIClEnJAAAAAgBwgckAAAADAfkRyQAAAAMAglnJAAAAAgGv/ckAAAADAYEFzQAAAAEARlnNAAAAAQK3yc0AAAABA5QZ0QAAAAADxMXRAAAAAAN5DdEAAAAAAO3B0QAAAACAXlXRAAAAAAAirdEAAAADANEZ1QAAAAEBZYnVAAAAAQLGSdUAAAADA5qJ1QAAAAMB0yHVAAAAAgOvSdUAAAADAVvJ1QAAAAEBVNXZAAAAAwGlCdkAAAABAflN2QAAAAIDwYXZAAAAAAOfsdkAAAAAA6hV3QAAAAIDPNHdAAAAAABxVd0AAAADAiHV3QAAAAIDWhHdAAAAAwLKkd0AAAADAzrZ3QAAAAACBBnhAAAAAgGEfeEAAAABAvEN4QAAAAMD6UHhAAAAAALpheEAAAABAfHh4QAAAAEAanXhAAAAAAH3DeEAAAACAZtN4QAAAAEBXEXlAAAAAgM01eUAAAACAXml5QAAAAADhvnlAAAAAACDreUAAAAAAZv15QAAAAACyCnpAAAAAAFgUekAAAAAAwSV6QAAAAIBpL3pAAAAAgO5UekAAAABAMeV6QAAAAEAuJXtAAAAAQOM3e0AAAABA5ER7QAAAAEB6VXtAAAAAAOlie0AAAADAEnR7QAAAAMDEwntAAAAAwAbke0AAAABAIfR7QAAAAMD0BXxAAAAAAM1FfEAAAABAb5V8QAAAAMBDsnxAAAAAgEDBfEAAAADAbtN8QAAAAEDX9XxAAAAAwEMEfUAAAABAFCt9QAAAAAD5Q31AAAAAgJBSfUAAAAAA2l19QAAAAMC4d31AAAAAQImUfUAAAACAabJ9QAAAAIAHvH1AAAAAQAbTfUAAAAAAPO99QAAAAAAmF35AAAAAwFcyfkAAAACAsFh+QAAAAECwZH5AAAAAAJKafkAAAADAqal+QAAAAIDkA39AAAAAAK8nf0AAAADAEnV/QAAAAEDIhX9AAAAAAKO1f0AAAAAAlcB/QAAAACClGYBAAAAAoCIfgEAAAACgAiaAQAAAAGB7MoBAAAAAIKRCgEAAAACgjkiAQAAAAECLU4BAAAAAABxqgEAAAABg+KqAQAAAAIATuoBAAAAAoCHLgEAAAAAgudGAQAAAAGBY2oBAAAAAYIHfgEAAAADgh/GAQAAAAOB994BAAAAAQK0BgUAAAACgyRuBQAAAAGC/LYFAAAAAoE06gUAAAABg1EyBQAAAAAAHVIFAAAAAYKtpgUAAAABgo3KBQAAAAKAhgoFAAAAAQPOKgUAAAADA3JOBQAAAAGB7mYFAAAAAQHmggUAAAAAgz6mBQAAAAKCNvoFAAAAAoIrOgUAAAACA29uBQAAAAMBM4oFAAAAAYATqgUAAAAAg+vqBQAAAAIAuCIJAAAAAAHQZgkAAAAAAZx+CQAAAAKA3J4JAAAAAINIygkAAAACgKjmCQAAAAOBsTYJAAAAA4K1VgkAAAAAg912CQAAAAADrfIJAAAAAIA+CgkAAAAAAiJGCQAAAAGANnoJAAAAAYBGqgkAAAACAUraCQAAAACAnvIJAAAAAoEHDgkAAAABgj8yCQAAAAOBf04JAAAAAINDfgkAAAACA4uWCQAAAAAC37IJAAAAA4EX3gkAAAADAUgODQAAAACAmCINAAAAAoGUQg0AAAACA2SSDQAAAAOA/LINAAAAAYFtEg0AAAACADUyDQAAAAICbU4NAAAAAAIpag0AAAADADWqDQAAAAGD7b4NAAAAAIDR4g0AAAADg5X+DQAAAAKAsk4NAAAAAYMqZg0AAAADg/J+DQAAAAODnp4NAAAAAwPa3g0AAAABA1ZqEQAAAACAbpIRAAAAAgG2uhEAAAADgpbSEQAAAACCcv4RAAAAAIAHKhEAAAACg8NCEQAAAAIDK3IRAAAAAQO32hEAAAABgp/yEQAAAAEBxAoVAAAAAIM0fhUAAAACgayiFQAAAAGBAPoVAAAAAYC5ZhUAAAACgWWSFQAAAACBva4VAAAAAIJp0hUAAAADgY4SFQAAAAABai4VAAAAAgGaWhUAAAACg+JuFQAAAAIAHqoVAAAAAoM6vhUAAAACAE7eFQAAAAEB8v4VAAAAAIGPFhUAAAADgZ+yFQAAAAKBr9IVAAAAAwDj7hUAAAAAgtwKGQAAAACDwC4ZAAAAAIKclhkAAAAAABiyGQAAAAOA4MoZAAAAAwGg6hkAAAACgM0iGQAAAACDaToZAAAAAYH9vhkAAAAAg45GGQAAAAGDCl4ZAAAAAwCW9hkAAAACg3cuGQAAAACCQ2IZAAAAAwDrfhkAAAAAAgemGQAAAAGBA/YZAAAAAgH8Dh0AAAAAgwhCHQAAAAMAvG4dAAAAA4CUjh0AAAACg/yqHQAAAAKBGM4dAAAAAgMA6h0AAAABg8kmHQAAAAEDhVIdAAAAAoGN1h0AAAABgq4qHQAAAAOBNoodAAAAAYHWuh0AAAABAJLqHQAAAAMAlwYdAAAAAoEPqh0AAAABgEBKIQAAAAMCZKIhAAAAAIGBLiEAAAABAFlWIQAAAAGBui4hAAAAA4BKSiEAAAABgOZiIQAAAAGBsoYhAAAAAYOamiEAAAABgHbyIQAAAAGA/2IhAAAAAYG/giEAAAACgVfSIQA== + NrgMGZxjYkAbumJgJkNwQIxiFkFOcnJAGxg/tH5Ud0AACNcwPnN6QACzWUJLwoBA15PoDMHCgEC6BTo6w8KEQGp0jEgYy4RAk3QTGCsDiEAcCQkkFtuIQEUJkPMoE4xA9HfiAX4bjEDs9JkXwA2QQFdl4fz6DZBA13zYEVHSkUDReP7wAJqSQDSmyA2N0pNAUZD1BVdelEDmvC0c0x6WQNGn7BqtIpZA - + - /fiaQJ4YAEDPdLxAvZyTQMnHJUCMr3BAe1QAQN4XBkDTCGZAfLkFQQeqPUDncD1B2TJsQGNE10A+ORNB2fTIP9F5hEK+XwlADjbnP8u5wUB0BsJAtlcJQDRsk0CUEINBrek2QSxOKkGsFwJANMy2QD8CQUBQlQlA7ZVZQDpRoUDxbIBB5ie9QL17DkHnAUdBsX4bQC4v10BqNIBAMXS+QMV9D0B/XglAXzUbQM8yyT9cgaM/jidnQCzuoz+akL9AQkrAQPZ5nkAk0B1B2ooJQICiKEEFMcpAKeMSQM5fkT/xjkJBI9IZQA2/JUDDc6xAH9ZKQAuaFUJ8H6Q/11nGQKBnyUDmfjxBkUATQDBKrkIsHeZAHnrSQAuYLEGxA9pASeckQDNZ3D/FKtpBMAnlQOOiPkHjRnRBpWGMQRsLpEDfs9dA5UrbP8YWzkAcW4hB4bstQarTOUBso55B4XWvQNhqGkFKS2RBD1wHQW7qHkFqtAtBWwjQQA9zQkGpw2BBudsDQavpykCKAYc/EIeVQi/nQkGQ0MVBvbvEQPVZaUAdiQhBXujZQIR1fUEY1fNAIOQSQKMJK0LWvbpAEPdSQNCGiECpczlBdGjXQJeMGUF80KFBwRCmQKEBLkG4Gy5B7uhFQVierEGyBLQ/K2UJQaM8Z0EO/qlBwtEaQqPvhUNAu7NCraKkQJQy50DWku0/aXUaQuj8LED92ahAzLq3QRpzQEBqOgVBhU6CQScOi0BplG9ATBIaQXLSEECMCPhBeN9iQBxZKULF5GxB1GJ9QV2xpEHgCfBBCnL4Qc5mDELp1SRBsZvHQd+1pUC3c5dEY59aQ51iMENGEPdA56DBQfTY7T/BeBxAcm0kQavaAkOvNk9BxG25QBfIbUG+kItBx21tQBCAikA2OwBAAEUtQnYGXEGqgoRBZAubQVBGbUL139VBbr5PQcmi90BHNT9AqYntQP0MykHQ3+9BBiqsQWS7DEIiGzdAAYIdQf45W0Ekh7Y/H/i3QXHfpkGzk6tANuhkQR6j7kF/dj1AGZl8QThABkJ/eUVCadV3QcilnEJUFCJBuFwSQRdpVUFs5gxDiaFUQspZOkHSjR1A1boIQPGvNULERydB2v1ZQZ0y1kA4jMdB5G8JQvYuGEISOD5Bnq3EQfp4DEEI/6RBFEbUQiAPrUH8vpJCEskJQkZUYkMc5ENCELSdQVT/1UJEcIJBQZ3UQa4tv0F4661DK85HQ7dkJ0EGAw5BDuwTQfOu5kBHvQVEJzkGQo24yUH7dwNBLpHMQaiCiEHdQZJAYa83QHC7iULT+2BCd/TxQGCqKkNDxL9Ba3XOQZQLGUGbmW5DJRsJQgBTk0BDlQVCkUiTQZOqkEHHc1NBQzTPQDAu2z9ZaEVBWRLsQB6P2EElWgBBp2aXQjFOI0Him9s/W2YKQSSSBUIajxtCa3MGQpUJG0AUNM5A+wiBQMmPEEGWmJdBteiFQoccREIw3udAOPhAQMgqqkAcA6lCXGQeQdQW5UA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIFzLWEAAAABAsItbQAAAAAC9QFxAAAAAoDEPXUAAAAAAuEddQAAAAIBPgV1AAAAAgA3JXkAAAADgI0ZfQAAAAGCIjF9AAAAAwNYiYEAAAACAPUhgQAAAAKAWo2BAAAAAYEO+YEAAAACA0eBgQAAAAICYxmFAAAAAwDNkYkAAAADAQKRiQAAAACAt4mJAAAAAgB5sY0AAAACAYYRjQAAAAADJomNAAAAAwO3FY0AAAACA0AdkQAAAAIBMHmRAAAAAQKqYZEAAAADAB4llQAAAACDQqmVAAAAAABnmZUAAAABgIgJmQAAAACCuJWZAAAAAAHJFZkAAAACg9mZmQAAAAGDin2ZAAAAAgOrSZkAAAAAApOZmQAAAAMCAJGdAAAAAQDNfZ0AAAAAgLIZnQAAAAABlp2dAAAAAgMvFZ0AAAACgJANoQAAAAIBxLGhAAAAAQFVCaEAAAACATZ9oQAAAAADQ52hAAAAAwN8maUAAAACASuVpQAAAAKAAImpAAAAAAKc9akAAAABAK4hqQAAAAMDKqGpAAAAAwCzEakAAAACAOt9qQAAAAAA1IWtAAAAAAI9Ea0AAAACAtG1rQAAAAAAWgmtAAAAAQJCna0AAAABAU8VrQAAAAMB45WtAAAAAAFgjbEAAAAAAWEhsQAAAAMBAY2xAAAAAQIGIbEAAAADAZuhsQAAAAADUB21AAAAAwO9hbUAAAAAAc6RtQAAAAICmwG1AAAAAwNsEbkAAAABAthxuQAAAAMDYbm5AAAAAgK7KbkAAAADAUydvQAAAAAA5X29AAAAAQPqEb0AAAACAc6dvQAAAAEAaxm9AAAAAACLlb0AAAACgSBFwQAAAAODAIXBAAAAAIDMzcEAAAABA6F9wQAAAAOCWbnBAAAAAwN6AcEAAAADAeKVwQAAAAACPtnBAAAAAINTCcEAAAABAo+FwQAAAAIAr8nBAAAAAgAMJcUAAAABA1h5xQAAAAIAuLnFAAAAAgPdRcUAAAACgwGJxQAAAAMBHc3FAAAAAoLCFcUAAAAAg3JVxQAAAAIAbpnFAAAAAYFq6cUAAAADAV+BxQAAAAADP7nFAAAAAQG8DckAAAACgLRByQAAAAKDdJHJAAAAAALUwckAAAABgJT9yQAAAAID/VXJAAAAAoH1xckAAAACAeZFyQAAAAKDOrnJAAAAAQPXYckAAAACAv/FyQAAAAGDoC3NAAAAAwCQnc0AAAAAASDZzQAAAAMAYSXNAAAAAgKZic0AAAABAS5NzQAAAAGDNpHNAAAAAALGyc0AAAACAjr5zQAAAAACe1HNAAAAAYC7gc0AAAABgAhF0QAAAAMClK3RAAAAAwNdAdEAAAAAg2zd2QAAAAECiWHZAAAAAoId3dkAAAADAqL12QAAAAIBjyXZAAAAAoK/UdkAAAAAAauV2QAAAAGAXN3dAAAAAQKhnd0AAAADgfaZ3QAAAACDFuXdAAAAA4DXGd0AAAACgE9N3QAAAAIAJ83dAAAAAgCZFeEAAAAAAE6Z4QAAAAGAttnhAAAAA4NvFeEAAAACgXOp4QAAAAKB89HhAAAAAYHsHeUAAAAAgrDh5QAAAAGAYYHlAAAAAoAt1eUAAAADgrcN5QAAAAKD603lAAAAAAF7heUAAAADg3i16QAAAAGA+R3pAAAAAoOlUekAAAACgzV56QAAAAKC6o3pAAAAAQIPjekAAAADArgN7QAAAAMDNM3tAAAAA4Kxke0AAAADg1ux7QAAAAEATNnxAAAAAIMRVfEAAAAAgZml8QAAAAKCxo3xAAAAAYFjKfEAAAABAhNl8QAAAAEC853xAAAAAIAYdfUAAAACg1lV9QAAAAGCvZX1AAAAAIMaGfUAAAADA+6N9QAAAAMDnxX1AAAAAoNbzfUAAAABgLWV+QAAAACCAhn5AAAAA4GiXfkAAAADAitR+QAAAACCIJX9AAAAAoDg3f0AAAADAa1d/QAAAACCtdX9AAAAAQACjf0AAAADA1cp/QAAAAIBiEYBAAAAAwNgrgEAAAABgWDKAQAAAAEBHaYBAAAAA4M9zgEAAAACg1XqAQAAAAADdwoBAAAAAYEb6gEAAAABA4GSBQAAAAOAcy4FAAAAAoMzbgUAAAABgh+KBQAAAAOApMIJAAAAAAE5cgkAAAADgsWOCQAAAAMBhwoJAAAAAQB/MgkAAAADgUiGDQAAAAIA1jINAAAAAYPmSg0AAAAAgbbODQAAAAODS4oNAAAAAYNPxg0AAAACgsDCEQAAAAKDNQ4RAAAAAYONMhEAAAABgh6mEQAAAAGD6qYVAAAAAgG08hkAAAADgDLSGQAAAAIDguoZAAAAA4ErChkAAAACA7dGGQAAAAECWYodAAAAAQBSsh0AAAABgSzKIQA== + NrgMGZxjYkAAVPW5y8NqQBu6YmAmQ3BAJ2tCVJRydUBCe6rX1FN4QCfJHqjsg3xAfR0jrYR0f0A= - + - 2HCAQNq4iUCkOdtAKrXEQKAZskDrPJxA/8jBQO1ocUDWRsdA+SjgP4AzJEFXUzlBqz0lQDCMDUH2nAFBFmkuQbCrHUHt/Mg/CQVtQaG/EkD17IdBYi9BQB0KZEA/dddAflehQBQTtkGyfM0/F/R/QMI1EUEqYutAqefyQK5zuUFUfctAXi7JPzkz5UD0wTZCa7CBQbsc+kCRh3pATGGNQC0FSkEgxYNA6QsPQXNmb0BRFJdA8QhZQDCQdkCxxotA3tuBQUznk0AT5S5ChIXmPwYKp0Aq7K5AemGhQOdNuUATmC5A1fZGQIb+xEAyfhhB3CU/QRrGGkBW88dA2JnwQL7OMEF7TBRBC2ZeQZqvTUF4NltAlonxQKH/8EFL0No/tH2UQRr19EA9zJ1A+PgNQsGTG0J3pC5ATOaSQHM9CUEE26RBP83OQE7Bc0EZy+4/O8fAQBFl7EAEZcVANBYoQQEwpkIMZfxBmvsuQmK32UA/vkxBaKsbQXtfB0CwMBtBFu2QQSY7M0FQea9ASI5LQQFCAECUE8RBV3XBQHipvUE5KENCfuh+QgQxsUDrEVpBuhE+QPfV6UDGkBFADA+2QNtsoUBdw1FBUqCdQX+ZYkB8ZQZCPODGQQUGDEJwziNCNMnZQYh3okHk4W5C5MrAQFDsEkG8mRhBwK62QNAFtEHEdn5AhzKNQO67skLL4+VAjBTOQGiSNkFajSVBEYcJQAD0oz9Xo0BB2cMBQZTUPEFaS8hBGYksQfv2mkBeh+lALxUlQKtFA0GexVdBN9C1P5BI6kEyxb5A8iBdQV3ajkCox+VByGMwQQqsQ0Gby+0/SPWDQaWggkE0MNpA5ObuQYMl4kFDl8JAD4oSQJofqkDiEpdBBzAKQUx0LUEQnrNAdja7QZ7qFULl1MpB86mKQeyuX0LNFJdCI+zbP0+HpEDSMD5B0SxBQFiBtj96ojVDVUEWQr4cnEHeXo1A38xcQJ2L+z+LxTdAbJHbPx6YYkEVcBZBj1GGQsQivEHZQ5BBRfx0QjbqBEFkNphAFKy+QaLst0AEx5tAKZwdQUlypEBByo5AWFQvQpAQ80CZ0aBBUj3FQAmqjUDWToVAn5+PQeRm3T/ONNlAji5CQEBcEUGGF4ZAYG2hQHKes0BuvolAugojQdZU4UHZN8FAJ3MxQb6X0kAumZNADYQsQC2c0kA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAInoZ0AAAADAbPFoQAAAAID1o2xAAAAAQGYPbkAAAACAUcFuQAAAAAC6H29AAAAAQMpvcEAAAABgpf5wQAAAAABMdHFAAAAAYBARckAAAAAAcJZyQAAAAIAKLXRAAAAAILchdUAAAABAUUB1QAAAAIARmXVAAAAAgMMEdkAAAAAA8VV2QAAAAAAVdndAAAAAANAaeEAAAAAA9UV4QAAAAIAdYnhAAAAAALqUeEAAAADAhKV5QAAAAAAqx3lAAAAAgPZVekAAAABAuER7QAAAAMA74XtAAAAAQHxWfEAAAABAk5d8QAAAAIDzw3xAAAAAAAtLfUAAAABA0lR9QAAAAEBIiX1AAAAAAOCvfUAAAACAQ9J9QAAAAECe6n1AAAAAABMFfkAAAACAOjN+QAAAAMDCVH5AAAAAgMxnfkAAAAAAetd+QAAAAIDa4n5AAAAAAKwSf0AAAABAkBx/QAAAAEBpNX9AAAAAwPtef0AAAACAtnR/QAAAAMCi7X9AAAAAQOctgEAAAABA3FiAQAAAAGBUZIBAAAAAYEqlgEAAAAAgh7qAQAAAACBUBIFAAAAAYCNDgUAAAADAWlCBQAAAAODCcIFAAAAAAD2DgUAAAADAmouBQAAAAKDykIFAAAAAYNGrgUAAAACggeOBQAAAAMDa6IFAAAAAIAr/gUAAAACAMjOCQAAAAMBRZYJAAAAA4JuQgkAAAADg16iCQAAAAOBKsYJAAAAAYAbfgkAAAAAgremCQAAAACDDHoNAAAAAIDgvg0AAAACAVHODQAAAAKAhg4NAAAAA4DiRg0AAAAAAd6+DQAAAAKDjvINAAAAAIAfRg0AAAAAgtpmEQAAAAOB17oRAAAAAIJQ0hUAAAACgmkyFQAAAAOBOXIVAAAAAoJJjhUAAAABgtn+FQAAAAAAhpIVAAAAA4FOshUAAAABg8+yFQAAAACCv84VAAAAAoB40hkAAAACgIjyGQAAAACAuRoZAAAAA4AxchkAAAABguGKGQAAAAKBdcoZAAAAAQIR9hkAAAADgaYeGQAAAAOBmj4ZAAAAAwMTRhkAAAADgS9uGQAAAACDv64ZAAAAAYGwSh0AAAACgeR2HQAAAAMCI0YdAAAAAAFX/h0AAAABgrTGIQAAAAKBWS4hAAAAA4EWPiEAAAABAqK2IQA== + NrgMGZxjYkA= - + - Lc2YQO6QfkDe85pAXFcbQPyIEkBiRsg/YUkTQHbDVEC+roJBR545QCcPQkCR7pdAcNyjP3DajkHpyINAPYKRQJosK0D0yLRAhVsgQbYc2z91khtANvUYQNy8FEGnPPJA1NUEQQYVgkG238RAuXEUQHBJ50ClXNFAdwIlQWy1UkAUKxJAzIArQcpIAUEeN0BBWZOSQJ+bGEDDMLtAyt9+PyhcgUCpl5NA4L22Qd3sU0HQZwBBSbyeQF3fCUKysFNA4hBgQXZ2dUDuDgZAzyTJP1gQSECb/6NAXskSQsCtbEBZhqtA9qctQxomXUKXY9NA4JwHQTkt5UDbNiNB4OrIQPud9kAaYNZAY+ymP0diB0EOxghA5KogQRITwEAb9ndAo6OPQK+gj0D/eqBAQC0+QVxF6kESLmxACD1dQQ7rM0CuCBNB4MYrQZQ4QUDYKwFCXrsQQTarFUGWnAVCjE+tQDfyV0JFf+JAEVSmQqwRJ0EBM8xB9aFlQeElQUD2a8RAwOhkQN4l5UFF8p1ALP0AQX9nsUGGigdBfJM6QevDyEESQYpAXbbnP4Q5NEDflBBBKN2KQSR8uEE= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAYAGCcUAAAACgswh1QAAAAIAdBXZAAAAAgPl1d0AAAACAItKAQAAAAABkIoFAAAAAoDxxgUAAAABg312CQAAAAIB8iYJAAAAAYIzLgkAAAADAedaCQAAAAOBW7YJAAAAAoCBmhEAAAACA+OqEQAAAAMAfOoVAAAAAgGNBhUAAAADgrnmFQAAAAKBOkYVAAAAAoJ7phUAAAAAgd4qGQAAAAAAUc4dAAAAAgEbZh0A= - - - - - - k46dQDxbrUDJ3FFAUmqIQIrfyD+GdLdBRtvuP/NyoEApRYpARvHbQMIFy0AT30lBkpcJQHqvvkBMEClBlswAQV70rkHdewdAAx0rQPncx0BIXydB9SmqQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAADEnbEAAAADgO0psQAAAAICwC25AAAAAAJ5Ab0AAAAAAZF9vQAAAAIDbInBAAAAAQPk0cEAAAADgk7NwQAAAACB1wnBAAAAAIF1CcUAAAABAoVJxQAAAAGAXYXJAAAAAQN9BdEAAAAAArKZ1QAAAAIAZNnZAAAAAABuBdkAAAABA/cV2QAAAAEDpMHhAAAAAAMxbeEAAAACAcVV5QAAAAMB31nlAAAAAQLafekAAAAAAbPJ6QAAAAADkkntAAAAAgLv4e0AAAAAAe5d8QAAAAEDlI35AAAAAgBNWfkAAAADA0bN+QAAAAMD6VH9AAAAAgJ1mf0AAAAAAFIt/QAAAAKCwX4BAAAAAQERqgEAAAACgoOiAQAAAAOAo8YBAAAAAYLg5gUAAAAAg8buCQAAAAKD7woJAAAAA4Cwsg0AAAAAgZK2DQAAAAMCXcYRAAAAAgGSBhEAAAAAg4RqFQAAAAGCTgIVAAAAAYF3BhUAAAAAgRM2FQAAAAEBkw4ZAAAAAoPMLiEAAAABAQoqIQA== + NrgMGZxjYkDEsXzkG6NjQBu6YmAmQ3BA0BY+T/wBcUAbGD+0flR3QNB0GqNUE3hAVrq3iS51fkDQ0vb2rCR/QOQvvDwPO4NAIrxbc86Sg0DkXqpmu8OGQEANGF4mI4dA5I2YkGdMikBAPAaI0quKQNtsGL+e5I1AQGv0sX40jkAfTfFtlX6QQA== - + - 2TevQF7EEkAM3lhAkXfXQP1EJUBDKsZAMPylQEsmqUBO6ktAbtIBQWer0kD0Fo9A442IQFL+0EA3N5ZAIrJ4QEVpIUJfNyVAyaupQAwHXUAdn6Q/wPSAQN24kUBWYyVAJWWGQD1sK0GwbR1A/xDJQB9GrkAjooFB4mlrQUF0xkDsCxVBzTGEQHtViUGWkK1A0f8YQAZFw0H38bZA+DSOQDhGLkAy+RtBZmByQY7dN0DrJLJAth8uQBXhN0A4su9AMaOuQGbEN0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgCDCWEAAAACADRBZQAAAAABNSFlAAAAAgLOPWUAAAADA8dNaQAAAAMB1w1tAAAAAwED8W0AAAADAHIlcQAAAAEDps1xAAAAAgIMJXUAAAAAAPQVgQAAAAMDtJGBAAAAAAMZGYEAAAACAeKVgQAAAAIDf6WBAAAAAoNnhYUAAAABAxmBiQAAAAIClmWJAAAAAwHXkYkAAAACA7wRjQAAAAICtSWNAAAAAgJqhY0AAAABAlaZkQAAAAACT72RAAAAAQOc+ZUAAAABg06FlQAAAAGCM5WVAAAAAgO7+ZUAAAACgFyBmQAAAAED7pWZAAAAAYJjkZkAAAADAJgBnQAAAAICiJGdAAAAAQPdCZ0AAAACAz15nQAAAAABFf2dAAAAAYLSjZ0AAAAAAV8NnQAAAAGBP32dAAAAAwDdFaEAAAACAXHBoQAAAAMA0w2hAAAAA4AkCaUAAAACAvCFpQAAAAADXYmlAAAAAAIWpaUAAAADA9sVpQAAAAMD342lAAAAAQAAgakAAAADAJaBqQAAAAMDz5WpAAAAAgGoFa0AAAACApxhrQAAAAMCALGtAAAAAAAtHa0AAAABA0chrQAAAAMDVJ2xAAAAAAB5KbEAAAABAEWRsQAAAAEBOhGxAAAAAwIewbEAAAACAbd1sQAAAAIA3B21AAAAAwGkebUAAAADAiEJtQAAAAEC/oW1AAAAAQLLibUAAAACADwRuQAAAAIDtHm5AAAAAQI9GbkAAAADAToZuQAAAAECFoW5AAAAAwN7DbkAAAADAHOpuQAAAAMDkKW9AAAAAgKpqb0AAAAAAo39vQAAAAAAhom9AAAAAgCjFb0AAAABAMONvQAAAAABqEnBAAAAAQM4kcEAAAABgpTJwQAAAAMA9VHBAAAAA4I6ycEAAAAAgGsJwQAAAAOCS0nBAAAAAQLvgcEAAAAAgLvFwQAAAAMD/BXFAAAAAgH8RcUAAAACguDJxQAAAAMCOQHFAAAAAQNNScUAAAACAwmNxQAAAAIBhkHFAAAAAgDencUAAAAAAo7JxQAAAACDy0nFAAAAAAF3ecUAAAAAAB/JxQAAAAADPEHJAAAAAAHQfckAAAAAgN3JyQAAAAGDgfnJAAAAA4JHSckAAAACgK/lyQAAAAKAFD3NAAAAAoH4ic0AAAAAgS/N0QAAAAKCjMXVAAAAAQKeNdUAAAABgYaN1QAAAAKCxxXVAAAAAYIjRdUAAAADgw+J1QAAAAOCEEnZAAAAAQLoldkAAAADAjTN2QAAAAMD8VXZAAAAAQM1rdkAAAAAgV4Z2QAAAAABavHZAAAAAYDPkdkAAAABAVfB2QAAAAKCyAXdAAAAAAJZwd0AAAABgGsh3QAAAAAB9tHhAAAAAoE5FeUAAAABgcs95QAAAAIDy23lAAAAA4PQwekAAAABgYFl6QAAAAGBsZnpAAAAA4LxzekAAAABA8YV6QAAAAGBP4HpAAAAAwH/qekAAAACggQd7QAAAAMDyFXtAAAAAQKZWe0AAAAAgmmZ7QAAAAECBfXtAAAAAQOGNe0AAAACg8E98QAAAAMDWJH1AAAAAoEVqfkAAAADAZaZ+QAAAAEBMyH5AAAAAoCQXf0AAAADgSMZ/QAAAAKBUUIBAAAAAoH9kgEAAAABgknKAQAAAACDCeoBAAAAAwA6DgEAAAADAIzyBQAAAACANooFAAAAAgHTDgUAAAABA/iOCQAAAACCK2IJAAAAAwCvigkAAAAAg84qDQAAAAOBetYRAAAAAwCU6hUAAAAAAGkGFQAAAACCCgoVAAAAAINPJhUAAAABgA0+GQAAAAGDP2YZAAAAAYAd0h0AAAABgNH2HQAAAAKA2xodA + NrgMGZxjYkAbumJgJkNwQFgXFG05cnNAOQsfS37Tc0AnyR6o7AN7QOCdBbsqA3xAG/kEYOE5gEBNt+9LboKBQNVL5VdZOoRAsOS5aPoahkD+S2wnbHKHQBQShIWGs4pAHJ0oEsQCi0AyY0Bw3kOOQIDK8i5Qm49ArbHjn/i9kEDye94l7hmSQArb05s0vpJAH/AUnVrak0BPpc4hKhqUQMuUDrlF5pVAwVGR8Jb+lUASqb2zW8qWQHNo9v7cSphAksC0yLGOmEA= - + - l1sOQSW8ykCan9o/Gt0JQEr6kkFdT7tAQ1aXQF/QXEDRHmZATk0IQXcGtz/EfbhBUQSyQCx7jkCI7CpAde+iP9pxnEGrH6RA6JI8QXYOHEB/mNM/76sEQUXKMkHB2lBBLbGDQHRWu0AbNbNAAsWTQWxynkGkbxlAiUz0QLH0R0DMPo1AleXHQA9VhECnzyRBZb2OQPjRjkD9CRpBZQ/cQCXfbUATRARBNFLwQKWJqEGmkH9A08trQCzSEkARTFxBi8H5QZKTCkBG6TdAzSjLQE76UUDcxm5AO0ORP5GO3UCF2s5BVilmQDJ9KEKo8jFBUFP7P7CyQUH6zVpAMg2fQBjxg0Goi8RANr1DQZ1rDUFkdblBnRrbP/blDkG8x/BAh7kbQKnhyD85dT1AR7MWQY/+QEAT0t9Bhv6iQCB7gEE7CYJBl4inQCnJ0EAFBh9BmMjZQcEqOkGGCDJCHK8QQnEZp0JYcvZAafigQFZaeEGiebVBovf4QMNfk0GCT/RAqc+AQBjuzkAZafZBioewP7izjkGzwnFCM2eDQdBEnkFUKdhAKcfbQO9RnEE8sCFBXsfQQEW9tkAyzJtBAWlpQj2l0kB2HBpAyxtbQEBYf0DfKYhA7EGmQY3MYkD6wXpBDFlHQhUCW0Dhim9AQJAGQeIqAECgPds/7bEmQewGh0FU+N5ASdwlQZAOTkKCa4JBmMIvQhDdbEFpvuRA0lsvQZ05S0GnWKpAjc6dQVegh0I4JkpAlOGLQk8hhUCbhgZDrZKXQW7Q9kBukS9C4QMcQE39hUDUVzFBH7DzQDT7v0BwByVACO8qQDU6bEKWQzxCHXdrQEilhEDhXy9A1HY/QJUrmUCgyRJA6VpRQO5Ds0HXyGxA+jqPQSZ5FEGxTFJAHv4zQImGN0AaX9s/aJYAQYpZJ0AUpa5B + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwN6hckAAAACADQR1QAAAAGAoZ3VAAAAAIMIvdkAAAACA1m93QAAAACDqsndAAAAAwLl7e0AAAACAjDF8QAAAAIDhZnxAAAAAwGrDfEAAAAAAS0F9QAAAAEB+Yn9AAAAAAMF0f0AAAABA2EeAQAAAAOCu0YBAAAAAAOchgUAAAAAg+2+BQAAAAKASroFAAAAA4FrygUAAAAAgtA+CQAAAAODjSYJAAAAAQJZigkAAAABA092CQAAAAGBELYNAAAAA4Exrg0AAAABgEZGDQAAAAACB2oNAAAAAYOFqhEAAAACgRKeEQAAAACCkOoVAAAAA4PFyhUAAAACgocqFQAAAACD5A4ZAAAAAILVlhkAAAABg/WqGQAAAAOD+4IZAAAAA4HFOh0AAAAAADXKHQAAAACBqAohAAAAAYNxgiEAAAACg/WiIQAAAAABIbohAAAAAwOuYiEAAAAAgVtiIQAAAACAD5IhA + NrgMGZxjYkA2uAwZnGNlQBu6YmAmQ3BAQh3Og3zCckB2xqyr6ZN2QGQm0LT/MnhA/kye+dokf0BkhKwIWER/QH5VvaYZG4NAvr1/gO6ig0CF6SWQWquGQHU0PdVQs4ZAFu6mKJxjiUCiOuJ6stuJQDM/YxP0k4xAFh2VUkjsjEAat6geUA6QQNV+HMdPepBAMDp78YCikUDsAe+ZgA6SQHoqTY+sppNAbBnmrtbSk0C1myZ79y6VQPpBRKQCa5VAzB75TSjDlkBDxIRwI8eWQCfaV3hZS5hASA455UOPmEDtl2y2ukuaQMglMPqZU5pAba9jyxAQnEBqh6xN1necQLYxpJcxbJ1AgQp/IAcMnkAAInY1XXCfQAEidjVd0J9AWZztoVF+oEA= - + - tFMiQfLtBUGd6r9AmUUlQRWtqkBZ21FA5RndQP5z3j/LGUhBR4//P0TqC0EXVI1B5aTaP2feA0HjT49B5e0gQtJrZkBnfwdAq2trQIXMMEFg9IlAhbOrQXKxLkFwI0FB3OyaQKa38kA2fzJBAk7dQAH1E0FiimlBzKhwQaCiLEE8XdtANF04QsQGg0DMuzpB3hm7QOHyIkD4cZxAofInQq5Kc0Dh+F5B79kbQG2WQEDUj09B + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoBIDYkAAAACASGlmQAAAAEDa5GZAAAAAwJkKaUAAAACA2ShpQAAAAABxvmlAAAAAwLrqaUAAAADAF0hrQAAAAMAzpmtAAAAAIIilbEAAAAAgOb1sQAAAAICI3mxAAAAAgMaebUAAAABApmFuQAAAAACj4G5AAAAAgGYwcEAAAACAcaRwQAAAAKAmwHBAAAAAQOwycUAAAABAe1RxQAAAAMANs3FAAAAAgGLUcUAAAABAwGRyQAAAAICzg3JAAAAAYA2fckAAAADgw8VyQAAAAMCGz3JAAAAAAO/mckAAAABAEf9yQAAAAKBFw3NAAAAAYEPxc0AAAABgtwN0QAAAAEBlRnRAAAAAwJ1XdEAAAACAZpJ0QAAAAOCM5XRAAAAAIMLydEAAAAAAIxF1QAAAAMDDVnVAAAAAIKmfdUAAAAAAKBJ2QAAAAIDaJnZAAAAAAIhRdkAAAAAAVGN2QAAAAOBjb3ZAAAAAwN/LdkAAAACgPzJ3QAAAAED1QndAAAAAYJVid0AAAAAAJHV3QAAAAKB8rXdAAAAAoP/0d0AAAACgeCR4QAAAAECgY3hAAAAAoJ+xeEAAAADAtiN5QAAAAIBrcnlAAAAAQH2FeUAAAAAgXdR5QAAAAKDFCHpAAAAAQJEdekAAAACglmF6QAAAACC4gnpAAAAAAD6OekAAAABAI6d6QAAAAGCetXpAAAAAYDfDekAAAAAA1s16QAAAAODu43pAAAAA4IXuekAAAABA1hV7QAAAAMAOKntAAAAAYBA5e0AAAACglKd7QAAAAKBPwHtAAAAAoCv9e0AAAAAA0hB8QAAAAGDFK3xAAAAAoPQ4fEAAAAAg7kJ8QAAAAIB8e3xAAAAAoNWQfEAAAAAAxNR8QAAAAGDF4XxAAAAAYJ7rfEAAAABgfEV/QAAAAOC9g39AAAAAYLLcf0AAAACAHAqAQAAAAOAFb4BAAAAAoCqDgEAAAABAd4yAQAAAAOAS4oBAAAAAIADzgEAAAADg/x+BQAAAAEAug4FAAAAAwFyDgkAAAABA7pyCQAAAACApvIJAAAAAgNs/g0AAAAAAKUqDQAAAAKBvYYRAAAAAYEmEhEAAAAAgx4yEQAAAACDJw4RAAAAA4BPghEAAAACgykyFQAAAAMDaioVAAAAAYEqVhUAAAAAgr1SGQAAAAAAbcoZAAAAAYIShhkAAAACAmcOGQAAAACAizYZAAAAAYHYyh0AAAACAbVOHQAAAAGC1W4dAAAAAIEjCh0AAAADgl8yHQAAAAGAu1YdA + KBZXds7jZUCPTWWFSwNpQDtMc7KVAnNAPExzspWCdEBiDbspRBN7QCoKcw8Es3tAqGVdQ9khgUCoZV1D2eGBQGK4PTtRIoVAPEYBfzDqhUCN4r89nVqHQA== - + - p+MsQPzHJECijHhA1kbdP2ILAEIorkBAW2O2P+e2E0CYV6FAsiGSQcik5UDOTytAypNYQEswwUBd3qVAtnUMQYH02j/8a7NAePemP6CrN0CsB0FA49AeQSCkmkDe0HNAwiSKQDA+LUEXhpFASXDYQDSSk0GoUaM/U0tXQSpUoUC6GNRAdU8lQAU0SkC74QhBSRrcQKpdMkFNj2NA1NUOQKSzdEDMjDRAC6mJQFcFHkET2CRANBfAQMfow0Cv8whBdhFiQlLugECu0gFBC/IGQTxBeEBrKEpAraHJQePhP0GoqS9Bq4EiQCkW4kChERhADj6mQEwBtEHWralAi66iP0TVBkIgI7hBUQ4CQZpA0UAL3Q1CNXIQQga+I0HI2vVB5WIJQBP1SkGD9L5AsgJsQa91YkGrIPhBqKVCQVW4WEGW0MRAbAwvQU+KPUCaIds/9HfEQMEVmECBFgBArKeDQDSMUUBAVj1A1j2rQUKHy0DTG45AYYzaQP0L8kGohwBBfrVaQKpAvEBwjBFB4CA9QT+aykB9Vts/BdZAQa5ef0AgxSpBBRtFQTZ5WkCDt2BBFZhTQFNtQEFXo9xAHfgHQUSC80DbqChBNjiCQP9ayEJEEQFCLHCqQBMeAECHZMNA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAwMeiZkAAAAAA3R9nQAAAAEDayGdAAAAAANlecUAAAACAiMJyQAAAAADe1XJAAAAAAFTzc0AAAAAAvNZ1QAAAAIC8aHZAAAAAgO10dkAAAADAs5J3QAAAAMAYwnhAAAAAwAdDeUAAAABAsKF5QAAAAAC9B3pAAAAAAM2he0AAAAAAtxd8QAAAAIBmg35AAAAAwPaDf0AAAADAttV/QAAAAIDA7n9AAAAAgChwgEAAAABghL+AQAAAAGD09YBAAAAAAIs0gUAAAABgi1GDQAAAAOBzaYNAAAAAwDCNhkAAAADggjyHQA== - - - - - - 5y3fQBX33T/ExeRALnE3QP/OkT8gq6Q/+CBDQcUs6z+yAjRAvAGyQIwqLUBQ7vtAJEqvQO3twUCUG5dAYyMNQQdTjUEKeE5BPoLmQGEJ60BiQUJB9MU9QQbdjkBghuBACHRyQcgnykBtgD5AoX9CQaGlEkA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgJQOXkAAAABgvyJgQAAAAMBkZWBAAAAAwMjFYEAAAADA395gQAAAAIDXY2FAAAAAIKcaYkAAAAAAFkRiQAAAAMAZZWJAAAAAYHyoYkAAAADAXCRkQAAAAOC4RmRAAAAAAIRcZEAAAAAAIehlQAAAAKBPQWZAAAAAoNN/ZkAAAADgIeFmQAAAAACeAmdAAAAAAMSEZ0AAAABAVahnQAAAAOB8YmhAAAAAAKaraEAAAABgziRpQAAAAEC1lWlAAAAAIHLlaUAAAAAgnWdqQAAAAABipGpAAAAAgHQUa0AAAABAFjxrQAAAAOAWaWtAAAAAYJGna0AAAADANAVsQAAAAACGHmxAAAAAwMdlbEAAAABAyqJsQAAAAAApx2xAAAAAwHpqbUAAAADAUKNtQAAAAMCZH25AAAAAwHOKbkAAAADALwFvQAAAAEAkY29AAAAAQDehb0AAAACg3SJwQAAAAGAuPXBAAAAAIPODcEAAAACgI5RwQAAAAMDqtXBAAAAAgGnBcEAAAABgidFwQAAAAIDa4HBAAAAAoCzwcEAAAACAXxZxQAAAAGA7JXFAAAAAABVDcUAAAABgUmFxQAAAACDAcXFAAAAAQL+CcUAAAADAo45xQAAAAIBdw3FAAAAAgHbUcUAAAAAAJ+RxQAAAAMCRAnJAAAAAwEoxckAAAAAA/05yQAAAAIC7YnJAAAAAgNujckAAAACATRFzQAAAAAD1U3NAAAAAgG10c0AAAACA6oZzQAAAAEATlXNAAAAA4Nr6c0AAAABgxRJ0QAAAAABjInRAAAAAAK0ydEAAAACg5kB0QAAAAICeU3RAAAAAIGtxdEAAAAAgTIF0QAAAAABPkHRAAAAAYBendEAAAACA9AN1QAAAAOBZFXVAAAAAgB0hdUAAAACAEzB1QAAAAEDGP3VAAAAAwBxSdUAAAADACGN1QAAAAAAPkXVAAAAAgDCgdUAAAADA4a11QAAAACC2xHVAAAAAAK/odUAAAACg6vR1QAAAAOD3DnZAAAAAwP08dkAAAAAAtEp2QAAAAICg/3dAAAAAoDA/eEAAAACgIBN5QAAAACCxLnlAAAAAgIPyeUAAAAAg6xF6QAAAACDHIntAAAAA4PPSe0AAAACgGPd7QAAAAMCoEnxAAAAAQO7jfEAAAABAUVp9QAAAAMAion1AAAAAoArDfUAAAAAgdEF+QAAAAGDFaH5AAAAAoCRzfkAAAACgpIl+QAAAAKDglX5AAAAAoFfKfkAAAAAg0jJ/QAAAAOAGVn9AAAAAQCdif0AAAADAjoV/QAAAACCllH9AAAAAoAbGf0AAAAAg4/N/QAAAAADzA4BAAAAAIA8bgEAAAADgcjWAQAAAAOB5PIBAAAAAoIJUgEAAAABgzGmAQAAAAKAn14BAAAAA4CzdgEAAAACA22mBQAAAAECSkoFAAAAAoMX5gUAAAADAbSaCQAAAACBmmIJAAAAA4KLDgkAAAAAg29KCQAAAAODdzYNAAAAAwNX2g0AAAAAgKwqEQAAAAGBCFIRAAAAAYGgzhEAAAACAmsmEQAAAAOCNcYVAAAAAQJ40h0AAAAAAujqIQAAAACBvuIhAAAAAIMXCiEA= + KBZXds7jZUDiYBUjzERuQBTpB48/A3JAcQ5nZb4zdkCIjsh+LwR6QOWzJ1WuNH5ARHZS6cOKgEDyCIJUA6OCQEOlQBNwE4RA - + - 062yQM8p/0CNufw/M+F4QL6Z90GrDLJABuyiQKyVoz/5W6lA5+I3QPHzT0BLSC1BoMSAQJQD+0At7IxAVBKdQMqiNkEiuAlAqp59QWlt7kA/pBBBUr/7QFy1jUBV0lZBE4lAQPs8ZEC03cpAJJO/QCDQv0CmcLJAcCowQKxX7j+bHQ5BPY8jQRrIdUC6OQBAwpFKQdQzZkDVXhpBivN3QH87BkA2HkhArP7bQfLVOEHNkEhA2e/aQPDQx0AF6iFAcPERQJoq7j8L/9ZAghm0QUYaN0Fy76Y/DjCbQA1XO0GMvL5Bd1ZqQdTsmkAeNQlAat4uQR1rZkDWE21BVz+KQePv20B8SWRA9xcSQRFWQUHP0L1Bm4FHQI1ON0FKJN9AoVGmQCYaqkGam0hBfqh9QmoguUFJOCNBTLyjQs8P/UAHvxJBB8v3QFe7/UCVtf4/7AhSQBvTB0GqHDpB2MuyQfHni0Jvb7Y/TM9jQKmHHkLNsgVC++0SQXB6xUFvyHhA5VcRQZ0RG0BHBhxA6PNAQBmHdEDM/xlAxxpUQFGlQEFGPkVBrUecQPVpvUGu/uNBLAwYQWicqkFtFo1BFiyOQM6y1kCrX4VBkZaMQWqmqUDN1FlA1X7VQTf/RkKAnshBfItIQfSKLkKO+v8/1zwQQzJpWUEEpCpBCBLjQBedqkATHZhAkF3UQBvx7T+l3W5Av+GOQBknX0FgWERB2kE1Qs9YaUGt2dM/GyonQb8Yr0Cv3rZAXzqYQPvkeEFY2c1AptezQZv/kUCfLmVBL+yDQCf0NkE7PGNAfOAHQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAM1kYkAAAAAAqYpiQAAAAMBHy2NAAAAAgB0pZkAAAABAr71mQAAAACB3ZmdAAAAAAFb9aEAAAADgzF9qQAAAAACH32pAAAAAgI2ka0AAAAAgveJsQAAAAICWBW1AAAAAgCfHbkAAAACAxtxvQAAAAGAWEHBAAAAAwDI0cEAAAADAC0FwQAAAAODBd3BAAAAAoIDgcEAAAAAgIFJxQAAAAOCTknFAAAAAwIrYcUAAAABATDByQAAAAAD8UnJAAAAA4GFockAAAADgcHJyQAAAACDCf3JAAAAAYN/zckAAAAAgChJzQAAAAMBVv3NAAAAAILvqc0AAAADA4yV0QAAAAKBFM3RAAAAAoF5LdEAAAADA83R0QAAAAGCxlXRAAAAAIIsTdUAAAACgx1V1QAAAACDgYHVAAAAAYOikdUAAAABARrV1QAAAAICG4XVAAAAAAHfvdUAAAABA6yN2QAAAAEAidHZAAAAAQCnvdkAAAAAAXB93QAAAAEDeVndAAAAAAFyUd0AAAADAlqx3QAAAAGCs5HdAAAAAAEDyd0AAAACAvRB4QAAAAKDWfXhAAAAAgG6OeEAAAABgg7F4QAAAACDywHhAAAAA4BXTeEAAAACAUeZ4QAAAAIApDXlAAAAAYJgweUAAAAAA20R5QAAAAKCQa3lAAAAAILGjeUAAAAAgyrV5QAAAAGAD1XlAAAAAYL7jeUAAAACAA/l5QAAAAAAxBXpAAAAAYJNUekAAAACg9WN6QAAAAGDbc3pAAAAAIF2XekAAAAAgCel6QAAAAEBEGntAAAAAYISBfUAAAADAuSJ+QAAAAKC1CoBAAAAAYIhZgEAAAABg0WKAQAAAAKAFdYBAAAAAIIrAgEAAAAAgJBuBQAAAAGCwSoFAAAAA4O9TgUAAAACglHOBQAAAAMB4eIFAAAAAwIbdgUAAAACAaOWBQAAAAIAlOoJAAAAAYFFQgkAAAABgFYiCQAAAAIAsAYNAAAAAIDcng0AAAACgY0WDQAAAACDwaoNAAAAAwMHzg0AAAACgDs2EQAAAAOBC8oRAAAAAQBkDhUAAAADAsgqFQAAAACC3KoVAAAAAQFxLhUAAAACgI3uFQAAAAODy24VAAAAAoPizhkAAAAAAP2OHQAAAAEC4fIhAAAAAIGX8iEA= + NrgMGZxjYkDXkZP9yKNsQBu6YmAmQ3BA6yam0jxjdUAbGD+0flR3QA== - + - V04pQXcnekDD035AfyN/QMU2wUCMV3VAk9wuQBJ03z/jKQpAuhGlP2aqJUCeXqtAxLzSQBy7e0FTVqNAozXZQCGRkj8R7VRBACEcQKuD50EJgxJAQjySQLn+wUBCcQRBOnmWQK2TZEDGoLc/o+4HQIFrBkB3/SFAHOABQUwb7EA+Ack/h0TlQET+b0Hg2lNAJUSyQbUg9kGHtshAcgrAQG8HL0Gt0BFBVFEaQcY1EUHftnFAuo0/QMxNW0BaXZNA/nkKQeFn10B6vs1AstebQch6kUBecEJBl3bJQKh+hUCX5I5AUyFrQbsYeUEfILJCLPsRQbGFeUCw51xAsnAzQYwrfkC/ZUpBCSjvP1LiEkACWIpBspbxQdTCh0E0JoBAxcQmQaKux0CrCPRApWNBQLKtlUF/oe4/OZoHQTQyhEAve55BCRQ4QTBW50AfLRBC33u7QYVyN0EoJYZAPaZCQh6WQUD0CVxB7y8AQN3FZ0DuyUdBwL+DQY43tEBfa5ZAC/WRQL7QhEAyAhBAfqN6QioCy0FLmVhBj89vQPlA5UDj/NBAoeQgQRGnAEG3PcxAS35GQA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgLpoYkAAAACg6WNjQAAAAEDMr2NAAAAAQASlZEAAAAAgKdxlQAAAAACGIGZAAAAAIHGqZ0AAAAAAvj5oQAAAAIA8X2hAAAAAoHpkakAAAADAKcJqQAAAAMDB6GpAAAAAAJ9pa0AAAADgb2VsQAAAAEAzIG9AAAAAAAnLb0AAAABglFFwQAAAAKAhY3BAAAAAQLKkcEAAAACAOdZwQAAAACDR5HBAAAAAoFAzcUAAAADgUkRxQAAAAEAxV3FAAAAAIA6zcUAAAACgo8RxQAAAACCg9HFAAAAAYBUzckAAAAAA54FyQAAAAIC3oHJAAAAAIHrMckAAAADgIxNzQAAAAACAQnNAAAAAwCXkc0AAAABgaLd0QAAAAIDKx3RAAAAA4A8ndUAAAAAAj1R1QAAAAMA9fHVAAAAAYDPLdUAAAADAMCN2QAAAAMDfQnZAAAAAAKbRdkAAAACAs/N2QAAAAADh1HdAAAAAgHPgd0AAAAAgoGF4QAAAAKCKknhAAAAAIFW1eEAAAADAJvN4QAAAAKD3FHlAAAAAALgseUAAAAAgwXF5QAAAACBFoHlAAAAAoIWzeUAAAADAP8R5QAAAAADA1HlAAAAAYKzxeUAAAADg4AZ6QAAAAKCBanpAAAAA4HHDekAAAABgqEJ7QAAAAKAuV3tAAAAA4KY7fEAAAADAgmF/QAAAAKCqsH9AAAAAANdigEAAAACgbCGBQAAAAGDXT4FAAAAAQOAWgkAAAAAAgDKCQAAAACBzuoJAAAAAoL7mgkAAAADAWoqDQAAAAKDACYRAAAAAIPRNhEAAAADgolqEQAAAAMAsZIRAAAAAYA7chEAAAAAgNfGEQAAAAKD/CIVAAAAAYHIbhUAAAADgcmiGQAAAAAAc1YhAAAAAQH37iEA= + NrgMGZxjYkDsFOgHcuJjQHZo0FeRAnFAjwFH/L0ycUDqDZFHgQN5QLbCjnNsQ3lAsWglgZk0f0B9HSOthHR/QOyUNvyjooNAeOFxTrq6g0B4EGB4ZkOHQKbnFvQbo4dAozrierJ7iUA= - + - 91qWQGaxNEAnWvdBJ+iKQGrWJEAyu9s/MZMaQLObQEAe5KhApJxTQLSnQUFb8IBBUsQ3QKso8D/8MMk/ROsPQSCtNUGNWQBA3IxrQCzIEkDjZYhAQyQAQFz9r0BABM1AI20rQFLbtkBGv4hAsrc0QFfxxEDxeZ9AsjeIQTPNqECtcBJALwmYQJW2a0ANZg1BPEnEQOO9n0AEr8tAyBO8QaPBn0BjzABBY1Y4Qf1ie0GSCBxAV5GkQH6TDkG4buZAVg7oQOS78kBLjYpBnl51QKjrBEEZjqtBJeXrQPNLKUFN4YpBBimkP3dbIkGuvV9BrNt9QLh1jEFqiDNBnWADQWpxHUGILxVBL3kEQTEkLkFiqElBpYpaQbVqSkCT0JlBgqWwQN6REUKG6DdBAgi4QcyRJUFKzulAPWsUQQGbCUCvWcI/uo1tQC0F7j98iglA7/OzQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAADblaUAAAADAIchrQAAAAICexW5AAAAAoJ0AckAAAADgosVyQAAAAECEFHNAAAAAYA6Tc0AAAABA/UF0QAAAAKD3jnRAAAAAAAI0dUAAAACA7kN1QAAAAID3bnVAAAAAQC9SdkAAAADAVtN4QAAAAABUM3lAAAAAwP+XeUAAAAAANPJ5QAAAAAAn/3lAAAAAQLoRekAAAADAL4N8QAAAAID9lHxAAAAAAKTKfEAAAAAAv/Z8QAAAAABeBX1AAAAAgKIKfkAAAACAdnZ/QAAAAIBF5X9AAAAAoB9YgEAAAACgZ4uAQAAAACAB9IBAAAAAQF0IgUAAAADg0SuBQAAAACATbIFAAAAAAACFgUAAAADALvSBQAAAAMDk+4FAAAAAgGIBgkAAAACguCyCQAAAACD2RoJAAAAAoF9ZgkAAAACgBGaCQAAAACCWdIJAAAAAgBaDgkAAAAAAJaSCQAAAAOC6rIJAAAAAINm1gkAAAABgGb2CQAAAACC56oJAAAAAgB8Yg0AAAACgTh2DQAAAAOCVI4NAAAAAANlKg0AAAACAzmKDQAAAAKAIa4NAAAAAoKF1g0AAAAAg336DQAAAAIBGnYNAAAAAQC2qg0AAAABgyb+DQAAAACDgyoNAAAAAoDngg0AAAADg4OmDQAAAAGAm8INAAAAA4DP3g0AAAABAoAaEQAAAAOCqC4RAAAAAwKsVhEAAAACgfBqEQAAAAICNH4RAAAAAANIzhEAAAACgY36EQAAAAMDoW4VAAAAA4IyjhUAAAABg/tqFQAAAAMC1/IVAAAAAQJs8hkAAAACAsGqGQAAAAIDXg4ZAAAAAIOnLhkAAAACgzf2GQAAAACDuD4dAAAAAQFihh0AAAADAcK+HQAAAAOALC4hAAAAAIN1diEAAAABgeW+IQAAAAGBMkYhAAAAAwG20iEAAAAAgJteIQAAAAOA68YhA + KBZXds7jZUAmWGpEdaJuQBTpB48/A3JANTU3073BdECIjsh+LwR6QKna98KtwnxAqpfKr7J0f0BUHGoLA+qBQMwqZYaQUoNA - + - w7i2P8XCLkDaFF1AVsb6QJNkz0ClT9s/Xg2+QLyw7kA7TgBAtqCAQF5hfEHjzwRBcBPhQK4E7j+7QJVB8sOqQNwAEkGZPds/EnaIQAj1QEAqpoZAaTkYQWbTd0ATjytATIYEQZqvnkCahwZBOrC8QE30EkBfvolB5S6cQVU9AEB99BJAkhXuQNwfzkG8f19ByIWHQSJv7j/qZLRBk9rXQBGjyz/9gNxCxEC6P8E64kGKIY5B4byDQW/Fo0HCNFtCKVOvQeUpVUFmKW1BxXTuQZcmqkBP7c1AnP+CQbH7PUJhsBdBlZq0QVAT+kHVKZ9BUom3QcbO3kIZCMc/3KiHQZLMOkKsn4RAfrCIQR57k0JiikJCHkpnQhHqWEDJb0hBimQzQWFGR0CxmlRBULG7QGp5kkDLnIVAK3/aQUrDEkDg8EFBcYuJQAHV6UEhdCxBzFNHQeC8oUENXqpB9/hYPzoX+UDvZ3pB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAALnJW0AAAADAWVheQAAAAOAUpWBAAAAAwKrFYUAAAADA5uZhQAAAAKAfAWJAAAAAwLVhYkAAAADAocRjQAAAAAD5wmRAAAAAgNtjZUAAAABAOeZlQAAAACD/AWZAAAAAgIQgZkAAAABAmoJmQAAAAICmwWZAAAAAQGboZkAAAACAXv1mQAAAAMBSRGdAAAAAQMZeZ0AAAADgHp1nQAAAAGCu+2dAAAAAAFhiaEAAAABgHohoQAAAAMA7fGlAAAAAQC7AakAAAADAlgJrQAAAAEDsJGtAAAAAwG2Za0AAAAAA7+JrQAAAAMCUh2xAAAAAgBCnbEAAAADA2CBtQAAAAIBcZG1AAAAAQBDfbUAAAACAUBhuQAAAAIDuXG5AAAAAAL6ObkAAAAAA1cluQAAAAEDy5G5AAAAAACEkb0AAAACAdJxvQAAAAMBcv29AAAAAgGzkb0AAAADAyQRwQAAAACDMT3BAAAAAgKJ0cEAAAABAZqNwQAAAAOAqtHBAAAAAAPPPcEAAAADAU+5wQAAAACDa/nBAAAAAgHUIcUAAAADgqhJxQAAAAMARQ3FAAAAAYFpScUAAAABghbFxQAAAAMDIxHFAAAAAYDnRcUAAAACgtuBxQAAAAEDx73FAAAAAoEcAckAAAADgXA5yQAAAAODGIXJAAAAAwLozckAAAABAinRyQAAAAGB8kXJAAAAAwFyrckAAAACAxb1yQAAAAICg5XJAAAAAwEMCc0AAAABgQxFzQAAAAEBTTnNAAAAAoCBzc0AAAADgLJVzQAAAAKDtqHNAAAAAgA2zc0AAAACAAMJzQAAAAKAl0nNAAAAAoETqc0AAAAAAK/VzQAAAAKBvE3RAAAAAAGEhdEAAAAAAXUN0QAAAAGBnZHRAAAAAAFeGdEAAAAAAI5R0QAAAAGDSonRAAAAAoFK1dEAAAACAAsR0QAAAAMDr0XRAAAAAQLHfdEAAAADAuvh0QAAAAGDoGnVAAAAAQGgwdUAAAADA0UV1QAAAAAAPc3VAAAAAALCTdUAAAACgyLR1QAAAAGAC5nVAAAAAYE1BeEAAAADARXd4QAAAAOD80HhAAAAAYL3reEAAAACgNlx5QAAAAOAJxHlAAAAAoJhCekAAAAAgA1N6QAAAACBEM3tAAAAAoENZe0AAAABgkzZ8QAAAACDls3xAAAAA4NbpfEAAAABAyvZ8QAAAAGBmZ31AAAAAYOeIfUAAAABg8hd+QAAAAGASi35AAAAAwFQjf0AAAADgajp/QAAAAKAkvH9AAAAAoFt0gEAAAABgI7SAQAAAAOASaoFAAAAAoP6QgUAAAACgv5aBQAAAAEDHs4FAAAAAQBhDgkAAAAAgDPqCQAAAAGBRhoNAAAAAoLqMg0AAAABgqZSDQAAAAMD5jIVAAAAAgHb7hkA= + NrgMGZxjYkAot2DdIQNrQFf+/uF9UnBA72f6OVTSc0B1T7vM1eJzQEW8/j7sQnhA6fR7vMXje0A7JuTtTvqAQOxlSNL3OYFAfWrJajnyg0D1eMTlxvqEQH2Zt5TleodAOTy9jD9DiUDBXLA7XsOLQDlrq7bry4xAym8sTy2Ej0B7r5Az1sOPQKFtmyEhZpFAyrv6gFdOkkD+losdXWaTQN/QO4J9apNARas6GHNKlED2Uw5Vrv6UQNTTmA2fEpZAP9ZOIc9alkA= - + - Za1LQMSr7T/HQYZAFky2QGAJUUAPY+4/fjajP2DMDUHdevlAKHY0QDzuN0BC9AdAObuFQNyopkA0aIhAoG+0QLlIHEAEigtBy3UXQfUWLUDXCX4/wa8AQZI6HEAJ+rVAfvUAQa/aG0DyYVNAb0cWQXujCUA1UftAUFsNQfd1fkCMKBxBHVtvQKYNcUFBWmdAyKDTQMKUhUAGDMNAyP+xQB9wtj+QVBNApvpCQQKqtkDV1gBA8s/tPwu1+T+aBDhAjBpiQp9seUJRQ/dAEbtKQXJC2kDE/VxAr63AQQfpJkGbhlNASyoLQUz6SUDNK5dBWzGJQXALm0BjRo1AYtCpQPkA10Ce46BBsmngQEJiA0HrhZJAu/ezQdYEkEA0m8RBO+2DQAqqjEL9fKRB7T3zQo4B10B/l+lAvkQVQQtatUCZg59Ao5o+QXaPu0DD7JFAKUDOQIoarkAHchtBdXKBQY2YBEHFb+c/vqaHQYzwDEFy24VAnqMgQqEI7kBs2XVAdQhLQieLT0DsUZ9A1XKiQPG6kUAG5ZNB5yxUQIEmSUFT+9VAJuOAQb55MEK8IptAnKGCQjEJyj8whmdB6HXDQcEXU0B90GRBOjeKQAdT2UDAN9pB13dlQT0vBEEkjCJBwtAFQEHZBkEC81JAHZAJQDdBKUG2vnpAHAQcQArU2z+IvA1B5E6YQBsCoUACFABAtK0JQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoFNLX0AAAACAfCNgQAAAAGBYQ2BAAAAAYMt8YEAAAACg2MhgQAAAAECz4mBAAAAAgAqEYUAAAAAgUGJiQAAAAEBmHGNAAAAAIAdMY0AAAABAgqRjQAAAAODKJmVAAAAAQBVLZUAAAABA/mRlQAAAAICgo2VAAAAAQNbDZUAAAABgK+VlQAAAAAD/kGZAAAAAQKmlZkAAAAAAI8RmQAAAAECF5mZAAAAAgEsiZ0AAAADAUWdnQAAAAAD5gmdAAAAAwEvYZ0AAAABguGdoQAAAACCHp2hAAAAAgAHCaEAAAADAO+xoQAAAAOAOPGlAAAAAQMIJakAAAAAABB9qQAAAACDYRmpAAAAAYOtjakAAAACAw6lqQAAAAEBG6GpAAAAAwI/Aa0AAAACAX0NsQAAAAACZZmxAAAAAQFDEbEAAAAAgIOBsQAAAAACBJ21AAAAAQCxkbUAAAADAnaNtQAAAAABl421AAAAAQM+HbkAAAACA/qtuQAAAAEBPKG9AAAAAwMlNb0AAAABAWWZvQAAAAICjmG9AAAAAgN+/b0AAAACAgkBwQAAAAABCgXBAAAAAgACfcEAAAAAghARxQAAAAKBTJnFAAAAAAGRzcUAAAAAgxIJxQAAAAMARlnFAAAAAQAmicUAAAAAABLJxQAAAAABXxXFAAAAAoHHicUAAAADg2gVyQAAAAKBdYnJAAAAAAGuCckAAAABAkZByQAAAACC/o3JAAAAAgF/DckAAAAAgit5yQAAAAMBe9HJAAAAAgC0Dc0AAAABg5xRzQAAAAID1KnNAAAAAAPk8c0AAAADAmUZzQAAAAICQVHNAAAAAwIpkc0AAAACAYXJzQAAAAECSf3NAAAAAADeLc0AAAABgcqBzQAAAAEAgAHRAAAAA4G4fdEAAAADgUzJ0QAAAAMDbU3RAAAAAgCxldEAAAACAinB0QAAAAIB6enRAAAAAYGSEdEAAAABAZ5J0QAAAAABYonRAAAAAAESwdEAAAABAFsZ0QAAAAEAm5nRAAAAAgOD/dEAAAABA+Q91QAAAAMBsJXVAAAAAQMczdUAAAABghmJ1QAAAAEAqhXVAAAAAAJu0dUAAAABAnMF1QAAAAIAy0HVAAAAAALLjdUAAAAAgeAF2QAAAAEB4FHZAAAAAoFgndkAAAABAuDN2QAAAAOAdVHZAAAAAAA1ldkAAAACAj3F2QAAAAECNfnZAAAAAYDiUdkAAAABgc6N2QAAAAIB3wnZAAAAAgCvcdkAAAABA6+V2QAAAAEA68nZAAAAAgBgDd0AAAACAlxJ3QAAAAKCHI3dAAAAA4KdUd0AAAAAAKHJ3QAAAAMD2lHdAAAAAoIi1d0AAAAAgw8Z3QAAAAOBS4HdAAAAAQIDzd0AAAACAvAF4QAAAAOC+EHhAAAAA4HNCeEAAAAAgvF14QAAAAMCPcnhAAAAA4AS2eEAAAADgAMp4QAAAAGAi3HhAAAAA4BzneEAAAADA3vB4QAAAAAC9RHlAAAAAgKMVekAAAADAJwR7QAAAACAtOHtAAAAAAPCQe0AAAABgLsF7QAAAAGCcz3tAAAAA4AQRfEAAAAAgDiJ8QAAAACAhRHxAAAAA4IdXfEAAAAAgA4h8QAAAAGCGlXxAAAAAQCu9fEAAAACgUuJ8QAAAAMCpMn1AAAAA4GFHfUAAAADABWd9QAAAAKCDeX1AAAAAIBe4fUAAAABAqM99QAAAAOBH331AAAAA4Bn5fUAAAABg7wJ+QAAAAEAKo35AAAAAIJbyfkAAAABgegN/QAAAAOBnE39AAAAAYDclf0AAAAAgrKB/QAAAAEBqsn9AAAAAQNkngEAAAABgrT6AQAAAACAbSYBAAAAAoFFZgEAAAAAA4mOAQAAAAKARiYBAAAAAoGu7gEAAAABgSMOAQAAAAKD+yoBAAAAAwLDcgEAAAABgLAKBQAAAAOA9B4FAAAAA4I8MgUAAAADAdDqBQAAAAIBYTYFAAAAAQNJUgUAAAADgFIKBQAAAAAASmoFAAAAA4MKjgUAAAACgtamBQAAAACDGsYFAAAAAgEHbgUAAAAAgEeCBQAAAAGCx6oFAAAAAoCj1gUAAAACgKyKCQAAAAGBAKYJAAAAA4J8xgkAAAADgLGSCQAAAAMA3c4JAAAAAYErAgkAAAACgjuKCQAAAAKBB7YJAAAAAYPABg0AAAABgbQqDQAAAAOA1Q4NAAAAAoDN/g0AAAAAgHKuDQAAAAGAmxINAAAAAwLmohEAAAAAgrtOEQAAAAKCx2oRAAAAAgE0hhUAAAABA6imFQAAAAGB1MoVAAAAA4EV2hUAAAABgUHuFQAAAAIDkhIVAAAAAINWbhUAAAAAgGtOFQAAAAAA/2YVAAAAAIDnphUAAAADgaQqGQAAAAIANE4ZAAAAA4KFhhkAAAACAEZqGQAAAACAkooZAAAAAYHrrhkAAAABgnfSGQAAAAKDS0IdA + KBZXds7jZUCs9CaTvbFwQDtMc7KVAnNAykXjfRVCdECWWL39WFN5QCVSLcnYknpAs6l56LDjfECmiTqgw1GBQB2YNRtRuoJA - + - wQA4QEpRu0I7YZZBQacvQLnOoz/8EMk/M1ISQKQ0kUL+JQBAnWyWQPF5kT/0UxJBCprGQHYVuj9OTPNAsuozQB5ho0CmEgtB/0QDQb7XbkATd5VBKMwYQTWrD0Eev8dAXDi1QM/C9kDdK9dASQQMQUAZ+0GT+TNAIXtTQJ34i0Fl1XtBZZH5P+B/q0CPOGZAgvLIP+BVjkOQBJtBHtQ5QZNdZkD62tBA5K+EQJ6Fu0AmjeBAwpBORJYzjkHiyDRBzzhBQMUZf0BTfedAgQ56QR+JLkBtptFBbwcQQX5UvkBaCUFA3RZHQdjjJEFJZe0/UIFsQRKoWkGPvr1AgTcFQegAjUBb/OVAzVziQLgZ/EAxrrNAxg/IP6DXmUAidTVBOMhVQUxrCUDvIhdBzLcWQUqcPUFTNWxAf8w8QUK6ukG+MABAIeo9QGzb7T/QIBxAeFdKQRWxDUGQg9JA2XryQPU+JUC6WGRAE7/pQKJY3D/YoHhA5bgrQZQJBkAw2MNArleQQV5PvD8FaRVB3K0GQgIAJkG8YBhCVimRQe1kJEFjSmZAtlvbP9Vwl0ElkWxCG7fHQJoEL0CzgX9DxgLVQAvOfkHU/UJAE3SbQffUEUKe4tJBgKtFQXrXdUFsvwNCpayqQDzhJkGku1xArn9RQWyRPkCQsRJASmG4QKZAikFqP3BDTukPQtWab0HROalB9BWyQGKY6kH9+11BYIKxQIeSAkE0KjRD1TmQP4tD2z/GDyVA96UlQUPEU0ANTwBAK6PPQJxAAEA+Q9FAD/0bQCejDUJcP15BQwvXQLiY/EC0fJJAtg0SQPFDj0B5yQRDFo2JQF74FEPg5ptBC+0tQNKYm0BGDUZBEtO8QCgtOkK8fAlAcPhzQxoCbUF4CAVBieMtQND2TkJLUclAkAU3Qd0dtEH1PmRABnzhQe4LgEAKZPdA2jAPQm1dE0H35LdBqiaoQGhTCUEKLz9AS0jcP9XE/0HV0hVBza6BQTUGXUCu2ZpCvmQQQVGhbUEX3udAGwhcQPcXiUDFIpRBkurqQOipwEOWS3JBLKbbP7TPEkDEhlpBQ8bNQNQHG0C0ze4/j78NRHdQ9kKDtSVAA5l4QV65LUFW7tNAA8suQH+Nf0A35ZpBZLchQMLyPEK6qJ5A+0AKQSJKC0LGccZB81uhQH44lkD0foBAoeUlQZEumUK0gOlAgRb/QL4CN0QX2gJD4sdZQmnrCUCFc6FA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAACZkcUAAAACgYwNyQAAAAOBdDXJAAAAAoOkRc0AAAADAMjV0QAAAAABqYHRAAAAAIIDSdEAAAACAywJ1QAAAAMDQUHVAAAAAQAlydUAAAADAR4R1QAAAAGCttXVAAAAAgMzBdUAAAACAtlN2QAAAAABbYnZAAAAAAGaydkAAAACAI3J3QAAAAMCwtXdAAAAA4KyCeEAAAADAJpR4QAAAAIBmp3hAAAAAgGrGeEAAAADAJ9d4QAAAAACPBHlAAAAAgIhDeUAAAACADaR5QAAAAKDN9XlAAAAAgG0TekAAAAAA2SB6QAAAAEDWMXpAAAAAgONGekAAAAAgoch6QAAAAMDe1HpAAAAAQN40e0AAAABAbkN7QAAAAMDsgntAAAAAQD6le0AAAABgMeR7QAAAAGDb73tAAAAAILrGfEAAAADA79t8QAAAAODz9HxAAAAAwIsGfUAAAACgOkR9QAAAACASd31AAAAAoMsCfkAAAABAtxN+QAAAAICHJn5AAAAA4CFUfkAAAACAO2F+QAAAAOB55H5AAAAAAPMjf0AAAACgGXV/QAAAAIBghX9AAAAAgOHXf0AAAAAAxPJ/QAAAAIAxAoBAAAAAAHcKgEAAAADgBRGAQAAAAED/OoBAAAAAQBWLgEAAAACAFquAQAAAAADiwYBAAAAAgN/KgEAAAABAqtGAQAAAAMCrEoFAAAAAoNQegUAAAADADjuBQAAAAEAtUYFAAAAAQBpcgUAAAADA1niBQAAAAMC0goFAAAAAgGGLgUAAAABA0ZSBQAAAAOAUpIFAAAAAIMCqgUAAAABA3K+BQAAAAMCty4FAAAAAADH0gUAAAABACQOCQAAAAEBsCYJAAAAAYLESgkAAAABA3zOCQAAAAADJOoJAAAAA4HJPgkAAAAAAmFuCQAAAAMBgYoJAAAAAgBNxgkAAAACAmKKCQAAAAMBfsYJAAAAAgIG7gkAAAADgs9qCQAAAAGAD4oJAAAAAYAD0gkAAAADg5CaDQAAAAGDwLINAAAAAoDJRg0AAAAAAWWODQAAAAEB0bINAAAAAYGaLg0AAAABA+6mDQAAAAIB7s4NAAAAAQD26g0AAAAAgEs+DQAAAAEBM4oNAAAAAoAfzg0AAAABgVROEQAAAAGCAMIRAAAAAoOY6hEAAAAAgYEOEQAAAACDZSoRAAAAAoPd6hEAAAAAg7oGEQAAAAIBWmoRAAAAAgMGghEAAAABA1qqEQAAAAMAZyIRAAAAAQJ3RhEAAAACAqduEQAAAAOA84oRAAAAAoIg8hUAAAAAgJ1qFQAAAAIAdY4VAAAAAwLprhUAAAADAh5KFQAAAAECCqoVAAAAAICS8hUAAAABAucSFQAAAAMBU+oVAAAAAQJ0ShkAAAAAgDCyGQAAAACB0UoZAAAAAYCdfhkAAAABAonyGQAAAAEBCjIZAAAAAgICShkAAAAAAE6SGQAAAAGBN2oZAAAAAIEDjhkAAAADAbIuHQAAAACDckodAAAAAgFaih0AAAADA3LSHQAAAAKB3zIdAAAAAgK3Uh0AAAADASuyHQAAAAMDtA4hAAAAAwOUSiEAAAACAJx2IQAAAAMBsRIhAAAAAgLxkiEAAAAAAyGmIQAAAAADErohAAAAAAN+2iEAAAACAwbyIQAAAAEC104hAAAAAwCriiEAAAACAnPKIQA== + NrgMGZxjYkCsQEUcS4JlQHipJL+oMXBAr2sYctFic0B4BwETAUN3QK/J9MUpdHpA0dL29qzkf0CGi0k8ArqAQPeR2XCCuoFA - + - Hx5wQVuDRkAhhGZAgjsnQjDkxUHQPOxAFUV2QETzJUBqpmtA+xH2QPLjNkE9SJdAa3cYQV3ZQkBt1qM/i1FpQCz2FkICly9BUxtaQd5HiUClhKM/LNlKQTDzy0D0TEpAmkcsQIc5xkFG1VlAGrODQCnHxkBrV0JBG+ngQAtVc0EaqZxBxf8zQRdUrUGR3sBA9gkbQZEhDkKi04hAf42kQJA1g0H2MUJCS0eLQd2ZB0HeN+4/ZqlKQHo47UFIAV1Abm2wQbpQMEEQFexAeIWsQOeOO0LPbFRB/V0HQa4TY0CdxmpBIQS8Pxv0OkGUYAlAPF3BQbgYY0GrOIVAh+kWQYJBCUBy9MZB1csMQozot0B56IVAf3IAQNvxm0A4IYpDELHhQbgzgkEk9V1B+qOhQUulzD+2HIRA/ivYQJLqJEB5tLdBmhIcQEKiYkKNY9pAyb8lQPeU+j+yl0BAWqX/P6PMSkDhm5NAu+hsQDv5kUBqHvJA6q76P+q+PECZjKRAmoAdQVkSgUA51hxAEukTQTd9OUHZNgNCfkEuQZ3Q2j9U4bNA1WqfQPKKBEECYyFBOKFcQuSVw0Er3GNBq/XEQNYPtj8zfNdCBlyoQcKYIkD/lY9CxIsMQlEkTkHGoY1A2ALuP1Q8GUGHlV9BLQVIQEjtSEGjMSFBrOzzQOTRJEHtNG9A4spRQQOWCUB1uRBAc/J0QPGioz9y/LlAXlcwQNR44ECwYPNANn42QJVvEkH4WJFB83CcQBt0mkDGLUhB1zDnQKE/BUGjA9tAgiawPxOU3z9UmypBmXuNQG+fWkC0g4ZBn1BRQSN83UDoJUFByAzVP44WMkE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAA4DtoYkAAAABAdqFjQAAAAAAW5mNAAAAAIIolZUAAAAAgkUNlQAAAAIA5YWVAAAAAgMuhZUAAAABAr+JlQAAAACD35WZAAAAA4PghZ0AAAACAqkJnQAAAAAA3ZGdAAAAAQBiIZ0AAAACA4DdoQAAAAMDEZmhAAAAAQJykaEAAAADAKeloQAAAAIABJWlAAAAAgKWoakAAAADAEudqQAAAACC/QWtAAAAAAONia0AAAABAMudrQAAAAICACWxAAAAA4H5cbEAAAADAsYVsQAAAAIBxqGxAAAAAQOfnbEAAAADAG2JtQAAAAEAVpW1AAAAAwD4CbkAAAACADB1uQAAAAAAgfG5AAAAAAIWqbkAAAABgzcVuQAAAAIDc6G5AAAAA4F0Ob0AAAADAEj9vQAAAAGCLgW9AAAAAQMQAcEAAAABg119wQAAAAAA7b3BAAAAAYHm0cEAAAACgTe9wQAAAACB1/HBAAAAAoIwGcUAAAACA9BFxQAAAAAArJ3FAAAAAQDxCcUAAAAAA2VBxQAAAACBEZHFAAAAAID98cUAAAABg7o1xQAAAAOAonnFAAAAAwNiscUAAAABg3rZxQAAAAKB85HFAAAAAYGAEckAAAABAcWlyQAAAAGA7dHJAAAAAoJumckAAAADAyrNyQAAAACDIz3JAAAAAAIrnckAAAABgGPNyQAAAAIDXEnNAAAAAwHodc0AAAAAgwURzQAAAAIDwc3NAAAAAIDG3c0AAAAAABsZzQAAAACCI5nNAAAAAAOH6c0AAAACgmB10QAAAAGAWNXRAAAAAoARDdEAAAADAJ050QAAAAIDHZXRAAAAAAE9wdEAAAAAA2oN0QAAAAGAqpHRAAAAAYBnIdEAAAAAAb9J0QAAAAABl3XRAAAAAANTydEAAAADgGkZ1QAAAAODyUnVAAAAAwENzdUAAAAAAM6l1QAAAAEAQtXVAAAAAAKrtdUAAAAAgJzl2QAAAAMD7U3ZAAAAAwANldkAAAADg5HB2QAAAAMCOfXZAAAAAgCKMdkAAAADAZO52QAAAAKCI/3ZAAAAAYCImd0AAAACgn1R3QAAAAEDlYXdAAAAAwAx0d0AAAACApIV3QAAAAIAxnHdAAAAAwFyyd0AAAABg+t53QAAAAOCd9XdAAAAAIKoVeEAAAABghiN4QAAAAAB9O3hAAAAAIAVGeEAAAACgK1p4QAAAAGDLgnhAAAAAwJGTeEAAAABg/qh4QAAAAOBiuHhAAAAAADfDeEAAAABg39l4QAAAAMBf8nhAAAAAIOYReUAAAACADSd5QAAAACA4NXlAAAAA4DtDeUAAAACAkHF5QAAAAKBWx3lAAAAA4OjxeUAAAADgbQF6QAAAAOCfF3pAAAAAgIMvekAAAAAggkJ6QAAAAKDSVnpAAAAAQBp7ekAAAABAjJJ6QAAAAGBYo3pAAAAAYDSuekAAAABgXtZ6QAAAAKAJ43pAAAAAAO/xekAAAAAgfwV7QAAAAKAIPHtAAAAAIPdte0AAAABgJH97QAAAAGAsjntAAAAAoD2me0AAAABAxcR7QAAAAGCM1XtAAAAAgGvke0AAAAAgyPd7QAAAAOAuBnxAAAAAYP8pfEAAAADgkjl8QAAAAOClSnxAAAAAoD5YfEAAAAAgcmN8QAAAACCRcnxAAAAAYKyNfEAAAABgRZp8QAAAAGBHqXxAAAAA4FPEfEAAAACg+9N8QAAAAGCk53xAAAAAIGb2fEAAAAAAAA99QAAAAMALHH1AAAAAwGpFfUAAAADgLlp9QAAAAMB8Z31AAAAAQAB8fUAAAAAgkZl9QAAAAKBfrH1AAAAA4Jm3fUAAAADgJtF9QAAAACBM331AAAAAQKjxfUAAAADA3P19QAAAAOAWdH9AAAAAIPURgEAAAAAgViCAQAAAAODRKoBAAAAAIE4xgEAAAABgyTuAQAAAAKBIQoBAAAAAYDhRgEAAAAAAp1qAQAAAACBhYoBAAAAAIABpgEAAAABg0X6AQAAAAKA5ioBAAAAAYKuPgEAAAABghJaAQAAAAEDNnIBAAAAAoJOrgEAAAACgXLGAQAAAAGBiuoBAAAAAwFvKgEAAAAAg8tWAQAAAAIA27YBAAAAAYBrygEAAAAAgqvqAQAAAAMBMBoFAAAAAgMcQgUAAAADgICCBQAAAACDEMoFAAAAAIFZEgUAAAADgX1GBQAAAAMBzVoFAAAAAYPaBgUAAAAAgBouBQAAAAGCSkYFAAAAA4IaagUAAAADgxKKBQAAAAGB3qoFAAAAAYDSwgUAAAABAuryBQAAAACB+yoFAAAAAQA/ZgUAAAABgvOiBQAAAAMCh84FAAAAAgEr6gUAAAAAgrAGCQAAAAABWGIJAAAAAgHofgkAAAADAcTCCQAAAAAAzNoJAAAAAoCdDgkAAAABgdU2CQAAAAODkUoJAAAAAYHRigkAAAADg1WyCQAAAAKB0dIJAAAAAgBV8gkAAAABgS4GCQAAAAKAFiIJAAAAAYOqTgkAAAADgba+CQAAAAOAjuIJAAAAA4G7AgkAAAACAhMWCQAAAAOAa0IJAAAAA4M7WgkAAAACg6+aCQAAAAOCJCINAAAAAwFIOg0AAAADApRaDQAAAAOCfHINAAAAAIIcjg0AAAACAfyuDQAAAAOBtM4NAAAAA4Mg4g0AAAADgyD6DQAAAAKA1XoNAAAAAAKpkg0AAAAAgm3KDQAAAAKCxd4NAAAAAACaAg0AAAADg/5ODQAAAAKBfnoNAAAAAINqog0AAAABgMq+DQAAAACBcwYNAAAAAwDrKg0AAAABAaNeDQAAAAGDG3YNAAAAA4PTig0AAAADg7vGDQAAAAACh+INAAAAAwFkZhEAAAADgyh+EQAAAAKDpJYRAAAAAIGIrhEAAAADgMTOEQAAAAECVOIRAAAAAQEM+hEAAAACgWkWEQAAAAGBWTIRAAAAAwA1ThEAAAABAbmKEQAAAAGCpaYRAAAAAgApwhEAAAADAOXuEQAAAAMDqg4RAAAAAwIyMhEAAAADgRpOEQAAAAODfmYRAAAAAYJ6qhEAAAADgibKEQAAAACDnt4RAAAAAAADDhEAAAABgu8qEQAAAACAT0oRAAAAAYI7chEAAAABgmeSEQAAAAOA/8YRAAAAAoK/2hEAAAABAQ/yEQAAAAED3B4VAAAAAwGARhUAAAAAAkhiFQAAAAADqO4VAAAAAwD9DhUAAAAAgTUuFQAAAAODFWYVAAAAAwApkhUAAAADAV3WFQAAAAECaj4VAAAAAYKKahUAAAACAxKKFQAAAAGBkrYVAAAAAIH60hUAAAADgrtSFQAAAAGBY44VAAAAA4DrshUAAAACADfOFQAAAACD7FYZAAAAAwDEchkAAAAAggCiGQAAAAADHL4ZAAAAAwEs6hkAAAADAEkOGQAAAAGBcS4ZAAAAAYNJRhkAAAABAXlyGQAAAACBZcoZAAAAAAPJ3hkAAAACA7oGGQAAAAKDPiIZAAAAAIA++hkAAAACgJsiGQAAAAOAq0IZAAAAAoEjXhkAAAADg4v+GQAAAAGB2HodAAAAAILJjh0AAAADg6mmHQAAAAIAMoIdAAAAAYNCqh0AAAADAM7KHQAAAAACwxYdAAAAAIFbXh0AAAADA/PKHQAAAAIDDBYhAAAAAoBEMiEAAAACAfjOIQAAAAABLP4hAAAAAoFlHiEAAAADAYFqIQAAAACAvZIhAAAAAYEB0iEAAAADAAH2IQAAAACAKkYhAAAAAoA6XiEAAAABgCbKIQAAAAMA10ohA - - - - - - ZwXzQAhCyT8zDoVAWzsBQFOxy0FqgRJABoeyQKFEi0HmiQlAuUS/QES5t0BFkiBB3alIQO4TAECRm6M/mQrPQGK2EkCvx1NAyfgKQXA7XEDNhNk/Jl+WQGJkHEAKDM5ADxPuP8EpW0AgYxpBgZ4GQP8XyT/71VNAtGqrQK2ou0B/l6M/JSlyQfYRjEL2LmFBiBMTQWyNSEEL+bZBbt4hQPsOg0IVw1tBAM8SQPT6CEE4kFFBaTCuQAmHLkBG50lB/fxFQSbbtT+kHlxA+C5VQi42ikMnRP1Ajl8lQk5xSD+rUqVARDXXQc79iEAgXXNAQTMpQdQnUEDEESBBk2XTQILdCkGLmEJBTp8sQJShG0AkIBNBxlpcQVda3UEonIlB8dOrQaBh9UDhtNs/EGI0QYqMQUFLwQlAL/2OQEjFE0LWHDZBL2PXQK429UGcrpJAswL9QAirn0AoMapAZxS9QIKMAEGy9yZBc3KkQW7rn0HUcPlB6BgZQYyEkkDBVbI/hVkKQEZrJUCkcBxA9m/aQLFnk0Ck7jtB4UL2QiQj7EE2qrpAorc0QL3UvEALEZNBomeAQKArkkHVLp9B3ekDQfipKkDu1xJC7KReQuqx4kE//vdAVOU3QE9pckHYYOtAMsK5QzUZh0H5fyRBC+gHQgygpEGaAIZBb7azQXC0DkFhDxhCCasFQFzpTEDZDrhAkKC1QdgLgkGHi6tBHVXvQY5o3kEuXwBAUoQJQKnx3D/rmq9BtkVBQSPxUELrdIRBgFI+QYB5Y0KkjQZDA+rHQlcHXkJE2QdBsaoJQelvR0GJHxJCsmP7QqC7aEKkJxpBdsfEQn0TaELOIhpC/f9PQhc25EEMxJ5Bmmv/QANVbEJW2qZCcbsbQX21ZUKUF91CBfi/QxeLrUF4HmlCXIzJQIaWz0MDhIJCoE2RQsotqECu3glArOk4QcLvLEF5jGVBTUsqQalrEEHGqOpAPWYYQeGwEkFJr+1BNzmjQRRWPkGPQ7NADcjeQcMedELUzIJBZb3uQbCVzkEmw+RA8JNcQG4dtEDaP/ZA1aygQF5iKEGCBopBSR9RQO23G0L5S+pADChKQKemhEFSu7pBBhqgRChoWUPMAjBCjtKsQc52ykFIqWpC2MkBQr6EX0IARV1ANHIeQceJU0HKbLNDCnLeQhwKF0GABhhBXg9bQvaPjkE3NUdAb5zqQFS4p0HGDZdAi2kAQcL/R0LTLJZAH7ybQaMY9UE6ryVA3m69QTF/a0OQaptClhuvQY+BNEGveoZBqGxyQTR0XUIIyetC2EGsQblyzEETFY9AIyQzQsiYV0IsTn9CiIEAROEfUkLmIxZBc+LAQVqN9kC4GbJBmDdSQtLqBULzYYtBwATfQuiugkTu009B/g82Qqi8tEH+kG5B/NpsQZPQMUJWSopB3iQ7QTrULUGrRNdBjnsCQj+rH0FWobhBvv52QUX0YEE2BqNB2JPnQaQznEFhhdNBDZswQTzwBkHf4FRCHT0JQ2yAYUBWuoNCdm4bQ4gElUIhI/VBCOcGQnUnJUIVj3dBfkSGQ6g0mUJ/w41CWhLDQtrhYEIvCY9AK/cuQTLaU0AmDmlERV0dQ5WSoUCGiyVCLpX2QZjLt0CE5tNANl/9QYMB80ABmV1C26pSQIHMWkFe5oxCsTzvQLNjJUFP0ItCvCwEQacLGEGMuWtBCRSTQmFu4EHNvFFBpdkZQK+HfEFiMM1C6xw/QcR0LkINBvdBlRmRQaq8pkMEf6tCBmqYQTofXUDRwQNB9yruQAqzwkGCPsRBdim9QkT+aEKkjrNB8w6KQZ17ZUFff85AQg8oQeVjf0C1B6hB1tD6QQuCyD+JZqBAI363QOsH+EC02E1C+PuwQZVsY0GxDNJB - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwFnhZUAAAADAyz1oQAAAAAD4J2lAAAAAYA28akAAAABAZflrQAAAAMBuYWxAAAAAQM+FbkAAAADgXyRvQAAAAKBxQG9AAAAAgEFob0AAAAAAdYlvQAAAACDrcXBAAAAAgLS1cEAAAACgMYtxQAAAAOAoZXJAAAAAwKjTckAAAADAkPNyQAAAAIAqXnNAAAAAwCOhc0AAAABgc7xzQAAAAAC3MnRAAAAAAFxTdEAAAAAgPY10QAAAAACwpXRAAAAAwDLMdEAAAACgxOB0QAAAAIDIb3VAAAAAAJR9dUAAAABAnNB1QAAAAGC/7XVAAAAAALo0dkAAAADArER2QAAAAMDGUnZAAAAAAE91dkAAAAAAb5h2QAAAAEDspnZAAAAAoDu0dkAAAAAASdB2QAAAAGDt93ZAAAAAQI1Td0AAAACAF3l3QAAAAOBVhndAAAAA4MASeEAAAACg1Dh4QAAAAKChUHhAAAAAIEKUeEAAAADgpv54QAAAAACqDnlAAAAA4EAyeUAAAADguTx5QAAAAACKe3lAAAAAYCqSeUAAAAAgHsN5QAAAAOCA1HlAAAAAIK0BekAAAACAUhZ6QAAAAIBqQ3pAAAAAABpcekAAAAAATqZ6QAAAAICwwHpAAAAAgArfekAAAAAgZfB6QAAAAAA8+3pAAAAAYLEHe0AAAACA3Td7QAAAAGCbRHtAAAAAIJBne0AAAADABtp7QAAAAOCW5ntAAAAAwGnwe0AAAACAhR98QAAAAGC0RnxAAAAAIFlQfEAAAADAkGp8QAAAAKBngnxAAAAAYEaNfEAAAAAgs7Z8QAAAAOACy3xAAAAAgCHlfEAAAAAgRPd8QAAAAEBvDn1AAAAAwN7AfUAAAAAg/rV+QAAAAGBEGX9AAAAA4HZ3f0AAAABApwGAQAAAAADjC4BAAAAAoLQ5gEAAAAAA12KAQAAAAOCvaoBAAAAA4IihgEAAAACA266AQAAAACClvIBAAAAAYKHNgEAAAACAkOGAQAAAAGAgI4FAAAAAII00gUAAAADgMWKBQAAAAOBOgoFAAAAAgEG9gUAAAADgMsOBQAAAACCy3oFAAAAAABn5gUAAAADghRiCQAAAAEDvMYJAAAAA4CO6gkAAAACAasaCQAAAAMBnDINAAAAAoGpSg0AAAAAg5XKDQAAAAAD8voNAAAAAYAfZg0AAAACgOe+DQAAAAICZB4RAAAAA4P8fhEAAAABgdmeEQAAAAGBAmYRAAAAAoOLthEAAAACgeAKFQAAAAGBbXIVAAAAAIO6BhUAAAACgNKSFQAAAAODwq4VAAAAAwPa7hUAAAABgPPOFQAAAAABVAoZAAAAAoJmIhkAAAABgcNaGQAAAAMDS84ZAAAAA4Eb8hkAAAADAsFOHQAAAAEAWeIdAAAAAgDQYiEAAAAAgLyKIQA== + KBZXds7jZUAc6N63HmJpQCzFq0ZnQXBAFOkHjz8DckAxOsR5l5N1QCwjiJq/UndAH/jD1gXEfEA= - + - f96TPwNeikBq3UZANh1QQAWKrUAczGtAcxO0QCdDSkBXmW9AIjYuQMSmEEAf2rFA2umDQDamfkD+mgxArUr8QFUevUAZHCNA6RsnQCRIZkEghMo/7z/uQLh0gUChzttABakJQELNgkHnjYRAct2cQLsCY0Dcxi5BNlHJPx0cBkBS+UlAMwA2QByltkCLM9RAeAdfQPndQ0GfdXFAjEZKQF6TTEEwqUhAsB1rQZCIt0F9N2xAryHJP6WUsECog5RAwucgQiQP/kCr17NAriuxQOR2hEHWYMk/uG02QS+F0kDIdRdB1p+OQJZR2EHQH7dA1TQFQfjyzUAooBBBFOWbQC49pkHSHn5AuBbcQQCtAkGH8olA1kiyQPjFIEHBLAlB4BgTQd0Cu0GyOKRCdImDQV4dIkIe7yJCxYlWQbbKKEHaRBNAB+SvQOIPzkA/Gr5AGqrMQWDrskF6jiRCIZIBQSuTJUHg2H9AX5cAQdmsSkH3Pw5B03YpQTE7gUGUxjdC73OyQDdb3EARk8VC9S+MQYjBeEB55ehA/vTEQJkHakH40W9Azro1QcfLHEE4tP1Bjy3HQE/tOEG4pxBBTHUQQhEqn0GYY5pB0rYmQj3HYEI/jalBqcojQXWVhUBwVLJA3oJJQOTIEkBFZ75A45X+P203gUAEc/RAG9hLQM1NjUHbVAdBSQXXQDLSSEAxzBJATa3HQQn8IkE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAA4DAbYEAAAAAArGpgQAAAAKC8+mJAAAAAAMzhY0AAAACA6shlQAAAAICk6WVAAAAAAM7pZkAAAAAAJCVnQAAAAMAnpGdAAAAAgDUgaUAAAAAAa+RrQAAAAICOR2xAAAAA4DuAbEAAAACAttdtQAAAAIAKyW5AAAAAwOIAcEAAAABAFU9wQAAAAECFhHBAAAAAYMfScEAAAACACOJwQAAAACDfIHFAAAAAwF5lcUAAAAAAv8FxQAAAAEDR6XFAAAAAYDoVckAAAADAVDJyQAAAAGDoonJAAAAAgOC/ckAAAACgueVyQAAAAGAkEHNAAAAAgFwkc0AAAACA21BzQAAAAOBAd3NAAAAAABiWc0AAAABAsWh0QAAAACDgs3RAAAAA4BfgdEAAAADgFxB1QAAAAKDUQ3VAAAAA4A1odUAAAADAEoR1QAAAAIClvHVAAAAAQHfhdUAAAACANPJ1QAAAAGDDHnZAAAAAgDd1dkAAAABg15F2QAAAAOCKrXZAAAAAwBTGdkAAAACgCvl2QAAAAOAZFHdAAAAA4Bgvd0AAAACAQTx3QAAAAOCgc3dAAAAAgFegd0AAAAAA9z94QAAAAMCHQ3lAAAAAgAG1eUAAAABgGsx5QAAAAKAoRXpAAAAAoACBekAAAABgp1R7QAAAACBVd3tAAAAA4B/Xe0AAAABgtB18QAAAAKCIu3xAAAAA4OU7fUAAAADAgGB9QAAAAMDHpn1AAAAAILn2fUAAAADANg9+QAAAACBup35AAAAAYAFGf0AAAADAsmR/QAAAAGD5dX9AAAAAYPyIf0AAAABAM6F/QAAAAGBLDIBAAAAAgJsYgEAAAADggGCAQAAAAEDxkoBAAAAAYFubgEAAAADgJbeAQAAAAOCXCYFAAAAAICsvgUAAAABge12BQAAAAGAOd4FAAAAAoJuDgUAAAACA6KKBQAAAAEBjq4FAAAAAoHrxgUAAAACgo86CQAAAAIBFeoNAAAAAoBhChkAAAACgqa+GQAAAAEAg44ZAAAAAQPtHiEA= - - - - - - dV4IQK35CUAsR8tAulPwP5DeEkCWAgdA8NS6PxRYQUAMyw9A11IIQN36CEB2io5AtcjtPzEq1kCogCFCaXVSQK8Hj0Awits/m3X2Qf6RIkDXcgpBj241QAiJ2z/UU21ApOdTQGCxJEDDZAtAbIQUQVIrPUHlEgVBXislQcJ8K0BFUlhBth+bQEqtqEFW0ts/2uatQdY1ZEBsk5JAyv5FQWKqrUHYJopBrWzFQA0b5UGjcsZAZNpwQYob9EBk+hhBMXkbQfscPkAo0alA8oLPQOmfyUHhSIZAT6UEQhNMtj/HOaFAzXTRQFnLBUHJ1hZBPlKFQWlyx0EiM4xBZAg7QdSGFkHl4qhASdVXQdYQCEE6YCJAsMolQZO+SEETAU9BaR8VQRBSUUFC8kBAxbmPQK2Nx0AiJCdBd0sVQu3AC0EXk0BCO0ILQZ45qUFGCBlBVtwHQeOcPkBy5zdB1wxvQftyNUGtqepApCpOQmHNF0EBQYpANtqNQCX2cEGHpYVAebAhQQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgMJNVkAAAABA6EdXQAAAAKA6hVdAAAAAgPjQV0AAAACA8kdYQAAAAMCVT1lAAAAAQCHGWUAAAAAgWI5aQAAAAGBnzFpAAAAAQF9KW0AAAABgHYRbQAAAAABZlVxAAAAAQHrNXEAAAACgoIddQAAAAMD0Bl5AAAAAgFx+XkAAAACg79NeQAAAAKC6w19AAAAAQPMhYEAAAAAg0kNgQAAAAGDggWBAAAAAgGnjYEAAAADgDCVhQAAAAMDJY2FAAAAAANjBYUAAAACAu2NiQAAAAAC0hmJAAAAAIDKlYkAAAADgpyBjQAAAAACrRmNAAAAAQKp3Y0AAAADAushjQAAAAEBp5WNAAAAAoDQiZEAAAABAKlxkQAAAAMBdoWRAAAAAAF3BZEAAAABAhDhlQAAAAIC1pWVAAAAAoMnnZUAAAADgQP9lQAAAAEAiJGZAAAAAoKdhZkAAAABAWKNmQAAAAADg4mZAAAAAgN0kZ0AAAABAAWRnQAAAAADgp2dAAAAAwOG7Z0AAAACADulnQAAAAIDuAmhAAAAA4I8iaEAAAAAAt0hoQAAAAEBdaGhAAAAAwNjLaEAAAADAGuRoQAAAAGDKBWlAAAAAQOUjaUAAAAAABExpQAAAAEAlYWlAAAAAgHeCaUAAAACAhpZpQAAAAECAwWlAAAAAQNDpaUAAAADACD9qQAAAAMAbYmpAAAAAwGOFakAAAAAAmdxqQAAAAEAL82pAAAAAQCgra0AAAABAK2VrQAAAAADqhGtAAAAAgJiha0AAAABAhMlrQAAAAEBbJ2xAAAAAwERHbEAAAACAzqRsQAAAAIDPw2xAAAAAADjdbEAAAABAzCRtQAAAAMB2QW1AAAAAAA9ubUAAAACAOIptQAAAAMBiom1AAAAAQB/HbUAAAACARudtQAAAAAC9CG5AAAAAwDIobkAAAAAAz8VuQAAAAIAK4G5AAAAAQOIBb0AAAABAICVvQAAAAMDVQG9AAAAAwNBgb0AAAAAA84dvQAAAAIBNp29AAAAAAM7hb0AAAACg+xFwQAAAAKCDI3BAAAAAYN01cEAAAACgBUhwQAAAAMCCU3BAAAAAoBWAcEAAAADg/pFwQAAAAEAGo3BAAAAAwOG0cEAAAABAqsFwQAAAAMAa0nBAAAAAoIjicEAAAAAAFQRxQAAAAEDvEHFAAAAAQI0lcUAAAAAApzNxQAAAAABlQnFAAAAAgJpkcUAAAADAOHJxQAAAAICDh3FAAAAAgGaUcUAAAADAyqNxQAAAAMA/tnFAAAAAYIXScUAAAADA4OBxQAAAAIBB9XFAAAAAIB9QckAAAAAgbmpzQAAAAAA3dHNAAAAAoAKic0AAAACA1CN0QAAAAGDwZHRAAAAAQP2CdEAAAACATzN1QAAAACADZnVAAAAAoAGedUAAAACAC711QAAAACBs2HVAAAAAYHXmdUAAAADAWvV1QAAAAAC/QnZAAAAAoHV1dkAAAABgH7t2QAAAAID/zHZAAAAAIHDgdkAAAABAbhF3QAAAAIBulXdAAAAAgMOsd0AAAABAUMV3QAAAAODn1ndAAAAAQB3jd0AAAADAbwJ4QAAAAKBwLnhAAAAAoAVZeEAAAACgWnV4QAAAAKCfiXhAAAAAAPiweEAAAABgbcJ4QAAAAMBl63hAAAAAYM8HeUAAAADguhl5QAAAAKDuJHlAAAAAAIRReUAAAAAAqGJ5QAAAACD6cXlAAAAAID2WeUAAAAAgk6V5QAAAAKAo1HlAAAAA4LLmeUAAAABAnfp5QAAAACCZCXpAAAAAYJs1ekAAAADgtFx6QAAAAEDQiXpAAAAAIH2cekAAAADgfMh7QAAAAOCB3ntAAAAA4Oo2fEAAAACge5d8QAAAAEC6mH1AAAAAYBOmfkAAAABA+f9+QAAAACAXFH9AAAAAgHkRgEAAAAAgxx+AQAAAAOCqM4BAAAAAYJRYgEAAAADg62mAQAAAAEBMc4BAAAAA4Hh6gEAAAACg9MOAQAAAAKBt0YBAAAAAIBzigEAAAADg0/KAQAAAAODRAoFAAAAAIBGygUAAAABgW+yBQAAAAGBYEYNAAAAAICiMg0AAAACg5ZGDQAAAAKD4GIRAAAAAYH2shEAAAADgSfuEQAAAAMDZA4VAAAAAYLGLhUAAAABgkJOFQA== + NrgMGZxjYkCPAUf8vTJxQKX7jOV64nFAGaFN1WrjeUBv9VHaAtR8QA== - + - svwSQM/vkUAbWNw/IWfLQAEHwUCaBiRBNapmQKAM3D9jCCxA4pAcQK3qZ0FNqAZB8x4cQODipD/ZY9xAfAO3QBNUjUDXX0FAaE70QWmg30Ee2t5A+lkAQbZWmkDQhjtB2DwKQifcf0EeFWJBCP8SQLIYzUAEq1VBh+RrQb7OMEH2xb5ALGRSQO43yT+EohlBjdVKQZq8bUEtBOxAQi3MQRXk8kAkWbY/cg7YQNwEE0B9QdFAwISzQV2qqUI4T80/SPbbP5VRkkBtdIJAqV1yQABe50DxwOdAlwjFQC7KB0BycVlBvNZ+QArfZEHGbohAYbNTQX7l7D/ir5FALpiaQVqMJUBC6OZA7bpSQXuBpD/urotAlg48QeRKEkFlbwJBK2clQcZVj0GAJ2NADo8FQT3rXEBiH5BBLe7zQKa1GEG3BHVA1qNbQbqO1UCUS4ZAaS4LQdqbJUBsPNJBwI0tQEIUWkFJoBtCop4yQl8VE0JjIipDDTaIQsZoy0FovlVBfi0yQXLw90A6q45ClXsQQfgb70CqB9w/Q0ZuQ3ecT0KeGWpCKFVnQreEJUES8wlC5bT0QV1S3EAVpUpACFtEQUlZXULMD4BC2FKfQvJTPkJu2VNAF0jnQe/zZUFrpC5BmsqAQX14JEG+QCVAPl4EQZoeG0Hg/i5AblojQResnEGG/45AFjtrQdFaqkFf0elA4Dr/QC54BEJgxTxBZ3VuQaPtLEFXMfNBTgjRQIZV7EEgKg9D/n6jQGFaSkANGoJB6uQCQWt2TkFj3uJAnkTtQDPJlkEkUCNB9OqaQIiUrkDLIulBi5PaQe5OjUCjnQxCCFmqQuA6lEJ+IppAdBsLQlgCKkFX3bZAAlaPRNNVVkIiuCVD3weWQVG9DUGsgwtBKEvaQIVqdUBFbI1AkysMQVhR80BNHkpAbDbiQL39qEAarmNATj6kQAOTP0Cil/NBqJSPQVvqeEAykyxAwXYwQPcazEAPFEpDU6uBQnt4BEFFW8ZAvSZUQKE820GpdBxAeAFuQMqZWUA4y35AzaeUQSLxA0H5ZSJAy44IQT2FSkKfLLJB0YrgQaiRN0E= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAgMdiakAAAABgHIxsQAAAACDHhHBAAAAAQAQ0dkAAAABAf9p3QAAAAIAB83dAAAAAwOlVeEAAAABASYh7QAAAAEBxnHtAAAAAgJjDe0AAAADAJDd8QAAAAEAhDX5AAAAAgHI0fkAAAAAAnbN+QAAAAIDyY39AAAAAQIt1f0AAAADADJmAQAAAAKCjxIBAAAAAIN6LgUAAAADgFZKBQAAAACBpsoJAAAAAQGPCgkAAAACgjq6DQAAAAOBW8oZAAAAAoNuziEA= - - - - - - rnSTQMKJbEAa3xtA/5K2QO/dCUBxzQNB7ilTQQjTLEBhE9w/bEBxQBLJ4UAHzn5Bg+4FQcUHvUDeLRNAvXYKQA7fu0Cb7SpBr5kPQBgKaECwaAdBSGq7QCSmO0HwAV1Ab123QA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAoApnYkAAAABgASBjQAAAAKCzZGNAAAAAgCi6Y0AAAACATEBlQAAAAOAK62VAAAAAgKmkZkAAAACAM+RmQAAAAOAJKWdAAAAAQOgFaEAAAABA0x9oQAAAAICtamhAAAAAAMtHaUAAAACASpZpQAAAAEDgvGlAAAAAwODqaUAAAACgMY1qQAAAAMChpGpAAAAAQKwpbEAAAACg0UJsQAAAAIBpZ2xAAAAAIBaDbEAAAABA36dsQAAAAIDG52xAAAAAoIAlbUAAAABAAadtQAAAAMBsAG5AAAAAQNpJbkAAAADA0oZuQAAAAMCmsG5AAAAAgEHJbkAAAABAwYRvQAAAAECgJHBAAAAAANhicEAAAAAgfuZwQAAAAODzQXFAAAAAYKeMcUAAAACAAtNxQAAAACDB/3FAAAAAgNA/ckAAAACAv2dyQAAAAIDngXJAAAAAwBySckAAAABA58ByQAAAAEDm8HJAAAAAIIYjc0AAAACABjNzQAAAACBnpHNAAAAAAAOyc0AAAADA18JzQAAAAKA81XNAAAAAACbqc0AAAABASRl0QAAAAMCkQ3RAAAAAwGJydEAAAADAvOV0QAAAAACV9HRAAAAAgCMFdUAAAAAAxBR1QAAAAIAmPXVAAAAAIK6QdUAAAADA7bJ1QAAAAIC/9XVAAAAAILQSdkAAAAAAMz12QAAAAADHVXZAAAAAoDJidkAAAACAB8p2QAAAAEAd13ZAAAAAYH4Bd0AAAACgwBF3QAAAAEBuIndAAAAAgCwyd0AAAACgy1p3QAAAAMBbc3dAAAAAoAuFd0AAAABA3ut3QAAAAKDxEXhAAAAAAAQkeEAAAAAA/FN4QAAAAGAFY3hAAAAAID2zeEAAAACgE754QAAAAMCF5nhAAAAAoMAqeUAAAACA0jR5QAAAAODATnlAAAAAYK+SeUAAAAAgK6V5QAAAAIBLwHlAAAAAQJDLeUAAAABAVtZ5QAAAACDd4nlAAAAAwFgFekAAAABgWhZ6QAAAACCmJXpAAAAAIJtYekAAAABAQI96QAAAAKB0nHpAAAAA4D3iekAAAADgYvZ6QAAAAABlGXtAAAAAQBMre0AAAAAgtF17QAAAAMCUcXtAAAAA4LiNe0AAAABgDZ97QAAAAMAewXtAAAAA4NHhe0AAAAAAwu17QAAAAECHBXxAAAAAAKkPfEAAAADgeTp8QAAAAIAWRHxAAAAAAMBqfEAAAABA1HV8QAAAACB0g3xAAAAAwNWefEAAAAAAyr18QAAAAAA6ynxAAAAAoFkJfUAAAACgzh19QAAAAMAGKn1AAAAAQH9EfUAAAACgzGJ9QAAAAEDocX1AAAAAwDiCfUAAAADAg7l9QAAAAOBozH9AAAAAoEQ6gEAAAADgiF2AQAAAAACsbIBAAAAAIJVxgEAAAADAmcOAQAAAAECg84BAAAAAYLf4gEAAAACg32CBQAAAAMAMgoFAAAAAgCCLgUAAAAAggKWBQAAAACBSuoFAAAAAoJLDgUAAAAAgWOuBQAAAAMBOWoJAAAAAQPlwgkAAAAAgZ3iCQAAAACDusoJAAAAAoBS8gkAAAABg/fSCQAAAACB7/oJAAAAAYOkHg0AAAACA6yGDQAAAAKCBQ4NAAAAAIPBKg0AAAABgWYGDQAAAAEAxhoNAAAAA4HyTg0AAAABgpZuDQAAAAOBdqINAAAAAIJCvg0AAAAAgosqDQAAAAABo5INAAAAAoOLqg0AAAADgwwWEQAAAAIA+GoRAAAAAIBQxhEAAAABgV02EQAAAAACVcIRAAAAAIKB8hEAAAABgvIyEQAAAACDMk4RAAAAAIOulhEAAAABgP9KEQAAAAAA43IRAAAAAwBHthEAAAAAg1P+EQAAAAIBXBoVAAAAAIAFXhUAAAAAgvlyFQAAAAGCybYVAAAAAICiFhUAAAACArYuFQAAAAGDdu4VAAAAAYCfIhUAAAAAAQs+FQAAAAODa1oVAAAAA4HDlhUAAAADgd/GFQAAAAEAo94VAAAAAoEEDhkAAAABgLBeGQAAAAKCTKoZAAAAAILszhkAAAAAAL0eGQAAAAMAPa4ZAAAAAIKCMhkAAAACg6ZOGQAAAAGALo4ZAAAAAgLP4hkAAAACA3huHQAAAAKDlUodAAAAAIEh2h0AAAAAgtYGHQAAAAOB4n4dAAAAAIL2qh0AAAADgE7WHQAAAAGAF9IdAAAAAoMQUiEAAAACgJSWIQAAAAKC+V4hAAAAAIM1ciEAAAACg1GWIQA== - - - - - - 4ZhEQVO7o0DkBZM/NivdP/F8uUDjQrRA5mGvQJtibUDTN1FA3Ci8QHO/lUBqmi5AP8yBQCVCDEFZkx1AucZfQFRbzT/5tFtAhVmkQC7XGkFtUaFAFIOpQLjTEkA/BwxBWfUJQCGxhUBvmupA9hITQOMljUBQjfJAsYMCQpXH/kCRs6RARmIRQLQWN0BfnK1AQ9G3QBVI3D/G3shA5qzvP9XCw0HALeg/i60dQZqPAEE4+45AkYCqQO64yT8gCtw/rZ2RQGKhQUAfeZlAQA0iQD9Je0CTWj9A6yfwQPCAjUDiviBBLz0WQdmZuEBgBBtAoFMlQEeiQUGBDZI/HWg9QRBuh0FHFAVBDgCQQH1VvECigftAe9+KQF6t9EBGjktAKOF4QBl2ikE4C4dB/FAKQOr85kACY8k/M2ChQHZRN0FSM38//dcPQOyXvEBLKktBEBqeQdjAgUGk6FRAUh+tQHvcM0G9mEFAv+BTQKV010ArX4dBwbyDQYyySkDDIsRAYR+3QA6uUEHFvCtAMM4yQkhS+0Ag7W1BluBHQL5SeUFAzApC6mGrQlgY5EAUDwFAZIVXQq54NUFb8zNCkMvNQX2XnEHZae5BWww1QmpOSkFO1nhAe3uAQSAAMUKPQyRBTr5fQU9QxkEML/JB8/m2QPV8wkCIghJCKLELQ7RItkFeaxdB1wqPQUbFhUAP4npAZB1BQfKQyT8RErJASQ+XQd2oPkD3O5pDGjWPQo4pg0E2urVBQ9l5QXfMKUH8D1FAAOkAQ2g0qkI1Z41BHLALQXQ7VkHOsBdB3ZyKQK48TEDIg4JBJusPQFZiN0Ca2AJBJcJ0QQNofUEwSo1AeJLFQWBjP0KAF11AZLdKQFxGpUDZpVFBgt/bQORQgUHpLvhASZ/QQN8tDEKqMz1BLmxEQca7LkCAEwJBbhhWQRu6oUPXfVtCOsJTQY24gEAewahAADJ3QXZ7nkFuYr1A6bIdQaBMpEHuAMdB/s6lQLaF0EBWfclAmzVcQYwxLkFCu6RAaWGVQZ0hTkGitZhBPv+oQmZiJkHOBfNACHXMP791QUAJKZJCWk5qQWn3G0FFdWxAK5OSQR+hi0FadKpAdeuXQOoYZUDM+hJBy2ZMQZe1rUA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwECqZUAAAAAAjeVlQAAAAOBwhGhAAAAA4MklakAAAABAemlrQAAAAEATgm1AAAAAYD/zbUAAAADAeS1wQAAAAMBtX3BAAAAAAJDicEAAAABA7wJxQAAAAKDyQ3FAAAAAAHgSckAAAABA8GVyQAAAAACT4HJAAAAAALruckAAAADA5AJzQAAAAAAes3RAAAAAgAJPdUAAAADA3EV3QAAAAEDML3hAAAAAQHdCeEAAAACAtVZ4QAAAAEBJ23lAAAAAgNF1ekAAAAAAzOB6QAAAAMBTMHtAAAAAgBefe0AAAABAVy18QAAAAIA6TnxAAAAAwNpkfEAAAADArrZ8QAAAAIBPQX1AAAAAQFZtfUAAAAAA6H59QAAAAMCHjn1AAAAAgLqffUAAAABAsbB9QAAAAACF431AAAAAgHL7fUAAAACA8F1+QAAAAMDpdX5AAAAAwLGXfkAAAACAPgd/QAAAAEDRM39AAAAAwO5Ef0AAAAAADKZ/QAAAAGDZIYFAAAAA4FjQgUAAAADgH9uBQAAAAIAtY4JAAAAAgI5qgkAAAADAV6OCQAAAAICIu4JAAAAAIIbngkAAAAAgf1mDQAAAACAcooRAAAAA4HPzhEAAAABAzYiFQAAAACDum4VAAAAAIC3PhUAAAABgTYeGQAAAACAR1IZAAAAAYJO6h0AAAACgFcuHQAAAAEDFa4hA + NrgMGZxjYkDibPs7jeFnQMZtNYzMxW5AOBGS194hckAFwBx3adN0QA== - + - UQZCQGhskj9XOtw//4LcP87Buz9RYwpAvVOSP3ohcEAwMblAmOnCQDZX30BFQ51ALBEAQGYQyj+aFipB9ABSQOln+kC+DptAvd6yQCwbsUCbpvxAcU+yQHamXkAPNBVBzsqWQAGR1kCKCQBBU488QTib40DFSNw/4bX3QNbQk0BdqMo/HLKgQEwn9kBgQRBCo5FoQeEVf0BQ1J9ASEdIQOuKY0D4X8lA9IKmQIaw5UB7ptNABpkbQZWpHUFEh69Ax9GGQcczikB9oaFAlo+rQTuX50D2ec5AlN7OQJ4j8UDgYypBZKAJQEsfuUBZ+oFBmb3VQN9ZVkGnFgdBINUUQdyHbEAYU0FA + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYAXRcUAAAADg4s5zQAAAAICqoHRAAAAAgEABdUAAAADAj7V1QAAAACCEMnZAAAAAgANddkAAAAAgRAZ3QAAAAAC/kndAAAAAAPc2eEAAAABAwYZ4QAAAAAA0pnhAAAAAQLfzeEAAAADAnAx5QAAAAEAT9XlAAAAAAIMXe0AAAABAm7J7QAAAAICjznxAAAAAgK+PfkAAAACAOpN/QAAAAKBmk4BAAAAAwATKgEAAAAAA6SGBQAAAACCPKIFAAAAAYBbLgUAAAADAWWOCQAAAAKCua4JAAAAAACGrgkAAAACg59KCQAAAAGCO2IJAAAAAYOFhg0AAAADAhMuDQAAAACCy1YNAAAAAQCPeg0AAAACgsiGEQAAAAGBzZoRAAAAAgLhrhEAAAADgg6qEQAAAAAAPsYRAAAAAoLO6hEAAAADguyqFQAAAAOB9OoVAAAAAwO1BhUAAAABgEpmFQAAAAKBzyIVAAAAAIIgAhkAAAACAxAWGQAAAAODnH4ZAAAAAYKBlhkAAAAAgUWuGQAAAAOCJcoZAAAAAIIvhhkAAAACgPOmGQAAAAMDFYodAAAAAYIxxh0AAAAAAbXaHQAAAAOBBe4dAAAAAoNKDh0AAAACgCtuHQAAAAIAbAYhAAAAAIKxYiEAAAACAt2GIQAAAAIBfo4hAAAAAIN7AiEA= + NrgMGZxjYkCsQEUcS4JlQOJgFSPMRGtAAAjXMD6zc0Ad+7bHPfJzQI9fI1AWxHlAHVmTG5YDe0C8sm6zLKqAQNDCjTvawoFAvOFc3dgyhEDuE0omMlOFQE3m3XUa64ZAGT7MKH6Lh0BGRHHO37OKQJGp1hyTM4tA1WzPwwt8jEAg0jQSv/uMQCfs7FsQEpBADRhkNUJikEA8AS5dNi6RQFaapAFjvpFAyymMUmL2kkDWsZsWuYKTQO00bunpFpVAUDNK3MlmlUBtTGX+P9uWQDRJHeT/6pZAGF/w6zVvmEAfY8oMhieZQC50Me1bi5lAZnd5B5wLmkA= - + - SfHJP2CHHEDeZBZBvBThQHeTJ0Gun0JBptO+QJFqmUCYVv8/bf8TQIWLQEB5F/M/veWkP28WEECdq+NAPT2iQJ8OLUDCkTtBbgDvP+yBEEBlHE1BS4QeQMMerUKZHShBfh9wQB+2J0DufdlAlKLuQIBlqUDriLJA1r8kQWwwL0Cq6xJA64s4QC19m0B3RBNABp/gQJJuXUCDVFtAMtiIQaLhUkAyob9BSKYHQfvLbkCFKPFA8erNQM6NDkB2ZKlBqWtWQg1PRkH5yFxAgIkKQbIMQEDrCDNBzcqgQKHNiUBnMBNBXlLMQM7PQ0FNxqBB7J1YQd3GiUFT5VFAQwK1QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQNwiYEAAAAAgPKRgQAAAAMDM5mBAAAAAYAJjYUAAAACAhQJiQAAAAAA0YWJAAAAA4IEmY0AAAACAe+RjQAAAAECmm2RAAAAAgBxjZkAAAACAbaFmQAAAAAAZx2ZAAAAAgAE8Z0AAAABAE2ZnQAAAAECQfmdAAAAAAHIDaEAAAABA3ydoQAAAAABxZGhAAAAAQCrOaEAAAABAxAlpQAAAAAD3JmpAAAAAQDKEakAAAADAewdsQAAAAGCMIGxAAAAAoMlFbEAAAADAHmNsQAAAAMCTp2xAAAAAAG7ibEAAAACAPERuQAAAAADlZG5AAAAAgH+EbkAAAADAiQFvQAAAAADCKW9AAAAAwE5rb0AAAAAA24FvQAAAAIB5wG9AAAAAQJAucEAAAACgH1xwQAAAACB8b3BAAAAAQEvKcEAAAACAwfVwQAAAAIAoA3FAAAAAYFIRcUAAAADAE0BxQAAAAGCjlXFAAAAAYB6/cUAAAAAA/SlyQAAAAABGOXJAAAAAQIxDckAAAAAAe1NyQAAAAEA+Z3JAAAAAoCJ1ckAAAAAAEIVyQAAAAKAfkHJAAAAAYG+jckAAAABArsNyQAAAAGC203JAAAAAAHQAc0AAAABgBUFzQAAAAID3YXNAAAAAYCRuc0AAAACgZ4tzQAAAAMB9tHNAAAAAAGLFc0AAAAAADOZzQAAAAABOGHRAAAAAALgodEAAAACgyUp0QAAAAGADYXRAAAAA4Dx3dEAAAABAsfF0QAAAAEC0BHVAAAAAQMFVdUAAAABA8HZ1QAAAAIDCgnVAAAAAoHqRdUAAAADAh551QAAAAKDT0nVAAAAAQMLwdUAAAACAyyB2QAAAAIBXK3ZAAAAAwD49dkAAAAAAbkd2QAAAAGB8VXZAAAAAgCNvdkAAAAAgBIJ2QAAAAEDxk3ZAAAAA4CKydkAAAABg6Md2QAAAAIAGIXdAAAAAYJxUd0AAAACglWJ3QAAAAGD7dXdAAAAAAGu1d0AAAADgpMx3QAAAAIDg13dAAAAAQJLkd0AAAAAgn/J3QAAAAGD5FHhAAAAAoHkgeEAAAABg7zJ4QAAAAKC8VHhAAAAA4HhneEAAAAAgN3R4QAAAAIBkmnhAAAAAIPy/eEAAAABg4+N4QAAAAADz73hAAAAAoA//eEAAAAAgvAx5QAAAACCrLHlAAAAAQMM3eUAAAADgDFh5QAAAAGBLYnlAAAAAQI2ieUAAAAAgQct5QAAAAGD83nlAAAAAYIr1eUAAAADAjgp6QAAAAGC+3HtAAAAAYCdVfEAAAADA+4R8QAAAAECvvXxAAAAAIPgAfUAAAADgWWV9QAAAAEDpdX1AAAAAoFRHfkAAAABA/35+QAAAAEBb1n5AAAAA4CsTf0AAAADABl5/QAAAAGCMbH9AAAAAYHHKf0AAAACA2S6AQAAAACCuM4BAAAAAYHI6gEAAAADgfYOAQAAAAKBzkoBAAAAAIDCigEAAAAAgogKBQAAAACDaQ4FAAAAAYGJWgUAAAAAA2sqBQAAAAKAn4YFAAAAAIO3/gUAAAABgywuCQAAAAKDuF4JAAAAAIC5JgkAAAADAoG6CQAAAACBydYJAAAAAQICUgkAAAADgGLKCQAAAAMAAvIJAAAAAwMvEgkAAAAAAigeDQAAAAKBdS4NAAAAAIK5Tg0AAAAAAPaKDQAAAAOAr5YNAAAAAIAb8g0AAAABAh3uEQAAAAECi44RAAAAAILoihUAAAACgf1CFQAAAAGAYiYVAAAAAIPiQhUAAAADgosKFQAAAACCGGYZAAAAA4IUjhkAAAACA2BuHQAAAAGC8ZIdAAAAAQF+ViEA= + NrgMGZxjYkBxWoXuS4RsQMZtNYzMxW5AOAsfS35TdUBXXNs11mN3QDhp+57WZHxAqFzp1PvTfUDJuiL1zFqBQIG0GZBfEoJA8rqpxN+ShECB4we6C5uFQKwNirxXk4hAgRL247cjiUAQO1TZ46uLQJ9jss4PtIxA - + - 4eJwQdeFskD49H5AkcU/QCr0uT+dpwBBpqrlQBC9rUD0z7c/8wItQObPBkBH/0tATSHYQNGw3D9yugBAxuiTQGItTEDTMjtBOdLGQAenQUCQDy9AabgrQBR3y0B856ZARN12QVX6EUCisFZAaHDdP/kPf0BDMtBAs/g2QfwLiUCbZlJAxPxBQLo+yj9Mbi9A6dCNQFJq8T9WUt0/49ErQNJ790CBmyRCc9feP4esSEFKxVxAZVh5QPsnq0HU9+8/VeIAQJcsmUDkJxxBUvi2PwlMyj+s8tk/hGKyQGyeykJVvxxAtFsGQg6MiEElyRdBqojJP/hQXEE0nSJCBit8QSuZJUBBvFxAbYKvQXTIHkHYgNBAOkxBQW1lm0F68sk/FmZrQWoEQUAeO2VAcrwmQogEG0G/LMRAvP3vPyXUqUGeBzxBoq7wQa1B80CMmu0/ZkIKQATmPkAFL+dA10k+QFqL7EJA4f1APLbqQXxq3T8Kfc9BvlsCQjBD+0CzFj5Bmpc1QVzaskDKz6BAVqzcPzhRpkAa+KtCMy23P7SOCEBglSlBCGAMQTg9hkHPhBFAc1a5QVjKiEDLLIJBOlCEQHgCqkHSnwxAgstKQDTDyEHgcChCdpwtQDkwLUFeh3VADpY5QZkNi0HycK9AkAqWQZJRJkBk4tdAIjA4QHPAm0B4SylBtTKPQK2GTUOU3ARCFGKzQKeCDUO6fS9Cf6LAQYhFCEG/su5Al2k+Qe717kCXmHBAQMi7QFunv0BLXphAj69OQcuVBkGgCx9CUZsvQaq/L0GmU1xAbtuQQcagYUHOgedCJviQQWjETkEUUNNAqgg4QAUHBkEAvhxAMwGCQVDB0kB+L9lAdHqOQGls1UBckxdBsE8CQQePeUAkDtJBoOTEQL1S7z//s9g/HXC9QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwE4pYEAAAAAg9n5gQAAAAIDzpWBAAAAAwIkoYUAAAAAAaeRhQAAAAKBMXGJAAAAAYLLFYkAAAABAO4ZjQAAAAIBQH2VAAAAAADdpZUAAAABA3X9lQAAAAABKo2VAAAAAwCCEZkAAAADAI8VmQAAAAMCU5WZAAAAAQD6IZ0AAAABAJZ9nQAAAAGAQOWhAAAAAIOCtaEAAAAAgNFNpQAAAAMAll2lAAAAAgM2la0AAAACAxUhsQAAAAIAmZ2xAAAAAAA+2bEAAAACAMeRsQAAAAEDSAG1AAAAAwBdmbUAAAADA/IBtQAAAAEBkAG5AAAAAgAqCbkAAAADApb1uQAAAAIDaq29AAAAAAAnJb0AAAACgewJwQAAAAEA9EXBAAAAAwP4icEAAAABA1kJwQAAAAABrUXBAAAAAIB7AcEAAAAAghOBwQAAAAOAO73BAAAAAYKD+cEAAAACANzNxQAAAAICHQXFAAAAAAI5dcUAAAABA/XJxQAAAAMBZg3FAAAAAoOqhcUAAAACAGMNxQAAAAEBQ5HFAAAAAgPESckAAAAAAZlVyQAAAAKC8Y3JAAAAAYFqnckAAAADA+8ByQAAAAGD98XJAAAAAAP01c0AAAABAiVRzQAAAACDzY3NAAAAAQIKhc0AAAADA/bJzQAAAAAA4IHRAAAAAIOczdEAAAABgA2d0QAAAAGC0eHRAAAAAwMyidEAAAADgIbN0QAAAAMC443RAAAAAoN71dEAAAADgYCB1QAAAAKCeNXVAAAAAAGpVdUAAAADAxWN1QAAAAOCHcHVAAAAAQJmYdUAAAACg8KV1QAAAAMCmtXVAAAAAoBfRdUAAAABgaAl2QAAAAOA2I3ZAAAAAwGBFdkAAAABATlN2QAAAAKBignZAAAAA4BHXdkAAAABg6+12QAAAAODhB3dAAAAAAHY1d0AAAABgNUB3QAAAAOB5XHdAAAAAoLlReUAAAACgxz16QAAAAOCfznpAAAAA4J9NfEAAAAAgBf18QAAAACDEYn1AAAAAQG7lfUAAAADAd/19QAAAAKCNk35AAAAAIPznfkAAAADAYAF/QAAAACC1sn9AAAAAwJfGf0AAAACg6NV/QAAAAKD0A4BAAAAAACVhgEAAAADgLeOAQAAAACBEQoFAAAAAAPSmgUAAAAAgr1uCQAAAACAIjoJAAAAAIF4KhEAAAABAZgOFQAAAACB10IVAAAAAYFCzhkAAAAAACzaHQA== + NrgMGZxjYkAnt2DdIQNrQEMdzoN8QnFAIrP8DWmSc0Bq3hX7KlN5QEl0RIUXo3tA+TViGgNkf0C4Gkb+4tmBQBps7XdZQoNA - + - 4YN2QByt7j++4F1AUEaBQH0ztz9EDHJBsdxvQP9CcEC6n+8/aFftQP+uSkC7/0RBZg/vPwquGEFToJY/0q2+QDvhvUCAV65AhQiiQJ9/DEF/MpdADpfDQMHIXUDezRNBojWTP154q0Df53hArpGfQHWS7z+wji9BF26lP92PvEDIYqU/4PuqQBvcBEEz7XlAwKVhQXchLkBjt4tAluluQCaSikCiPktARQ8NQWMlP0GJXGVA1kc3QMAjZ0D9qLtAViIKQO8EpEBKYXBBelqyQAISqkBSSrc/qr1/QPyDDkHbLqlA4k04QG6RpT8m+rdAMwC6P7O9HEBMPBNABbvvP7MPgkA/aiNBz+eJQPRQUUHtC2dAUzjqQPYdhkBIWBdBfONOQe4FEUKqaThAMYYNQVEOUkF3MQBAHxUAQQBDN0BHy6FA/pNDQNAB3T90BNlADlduQTCBmkK56sk/FgVOQnKvQ0AXCgFACA2qQU+f+UARtpNBEfGRQkZYXEGI0d4/fdvdQMvvj0FLwB5BkZiBQMLec0FN1/4/d2qlQU6MkEI2johBpD3jQOALhUHeoARBBEFRQjW2pEDom+BA2Zu3PwRmoUAAjd0//tLcPyWidkE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAoDgjbEAAAABAWopsQAAAAIDZxWxAAAAAgCPJbkAAAACAzA9wQAAAAECdHXBAAAAAQM4zcEAAAABAv3FwQAAAAEAzwXBAAAAAgOjEcUAAAAAglIJyQAAAAIBClXJAAAAAILkyc0AAAACA6KJzQAAAAADywXNAAAAAgDAWdEAAAACAzCR0QAAAAECONXRAAAAAQMGhdEAAAAAgJMB0QAAAAMBmVnVAAAAAwCR/dUAAAAAAzWZ2QAAAAIAf0XZAAAAAgClyd0AAAADA3IF4QAAAAID1vnhAAAAAACcLeUAAAACAl015QAAAAIAUlXlAAAAAwMuweUAAAABAgzJ6QAAAAACEV3pAAAAAgJ6YekAAAACA0wV7QAAAAIAndXtAAAAAADPUe0AAAACAFeJ7QAAAAEAZ9ntAAAAAwIgUfEAAAADAT1N8QAAAAACMl3xAAAAAwIzufEAAAACAaC19QAAAAEDrRH1AAAAAAJ60fUAAAADAKgF+QAAAAAAbLX5AAAAAwHNPfkAAAADAwXh+QAAAAEBZ2n5AAAAAABj2fkAAAAAAWwV/QAAAAECmdn9AAAAAACqCf0AAAACAiY1/QAAAAAAzwH9AAAAAADDef0AAAACAczOAQAAAAGC4ToBAAAAAIGp9gEAAAAAgkrmAQAAAAKA56YBAAAAAoCPugEAAAABAhPWAQAAAAGCB+4BAAAAAoGsOgUAAAAAgCCyBQAAAAKALOoFAAAAAQLSBgUAAAADgYIuBQAAAAAAKkoFAAAAA4I+igUAAAADAyq+BQAAAAAC9w4FAAAAAwLnNgUAAAABAkQKCQAAAAOANCYJAAAAAQAMPgkAAAADg9keCQAAAAEDTcoJAAAAA4NaDgkAAAABgf5OCQAAAAKB1moJAAAAAoF65gkAAAAAg0d2CQAAAACA15IJAAAAAAJn7gkAAAACApgmDQAAAAED+EYNAAAAAoLwXg0AAAACgHC+DQAAAAMAkVYNAAAAAIGdag0AAAADgL2qDQAAAAMAseoNAAAAAYJKEg0AAAADAaomDQAAAAOD3lINAAAAAgCaeg0AAAACAdsSDQAAAAKCb2oNAAAAA4FGbhEAAAACgP6qEQAAAAMAjK4VAAAAA4E1MhUAAAADAtlOFQAAAACBucYVAAAAAQFd3hUAAAAAAiJWFQAAAAOComoVAAAAAQDKlhUAAAACgILSFQAAAAGC8uoVAAAAAoNLchUAAAADgAOOFQAAAAGBw8YVAAAAAoMkKhkAAAAAgtSOGQAAAAODBK4ZAAAAAIGJThkAAAADAQ3WGQAAAACC4fYZAAAAA4Ia/hkAAAAAgC8WGQAAAAACn6YZAAAAAQIoJh0AAAACA4w+HQAAAAEBYWIdAAAAAIA9gh0AAAAAgvaGHQAAAAGAh64dAAAAAYFYZiEAAAACgj3aIQAAAACBvmYhAAAAA4KzAiEA= - - - - - - g9DvPy44dkDKy4pA/k4dQoO6qD8OCBRBkBhWQJGxwUGLAnhArG6FQJG9SkEkndRAjBiCQX6hVED6Dfw/EDDqQDlbiEBIK2dAPysKQVwGzUCkJQFAGlaJQJeNCkAIZv5A+qQpQiu0FUEzpNhA4j3TQM4RQkAcREtAbDq3QIsPvUAjWy9ANwcmQIYf3T8oGvtAqDQcQKWvJkHil4hBsIbvPyq3jUCfstdA+2imP7oAkEBfJx5B8e2dQZT+3T8Lo89AA4d6QXkxlUDlO0VB7B8bQkFDKEHoc5ZCn4n/QIrek0ETTCZABdscQIq1MUCQq7pB0l2dQF7lFEE2BUJAHoSnQQYqRUHsgLNAV/MuQQRRUUF8j8BBVM+uQ9I6T0LHiH9BQuvJQHxGbUGbq0JCSQ9AQaMmSEDFMtY/PFJJQbOeeUCKFrlA/6FHQW5QTUHmWF1A7mVaQUCTekE5vIpA0FoxQbaQWkBVNiFBvswlQHq1j0FmtcpBpIgGQKwokz8yv+FARcg4QG1knED4aONA91nUQK+IFUG/bBNBHC83QQnlKUGhOT9BEDH3QGl9jUDix6pBK/4rQPaVrUGLv89AzioBQBpbD0Lqhr5B+hFkQtHx70DjXyZAHAL2QfE+b0NDikNBYrOKQPqKpUDc/atBAMvZQQXFvUHo/vdAkEbKQppjjkFtM8VAQhGXQckSt0By7HFBVPpwQFye80Bzh5hBqkkCQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwGcGaUAAAACgYn1qQAAAAKBDJGxAAAAAoJuIbUAAAACgyYtvQAAAAOCZsnFAAAAAAMbCckAAAADgnERzQAAAAIDqZXNAAAAA4DJ0c0AAAACgcYZzQAAAAEBfC3RAAAAAQI9xdEAAAABAlIZ0QAAAAMDdE3ZAAAAAgFZbdkAAAACAz8F3QAAAAEAn1XdAAAAAQBXpd0AAAAAAzbN5QAAAAICxh3pAAAAAwPb4ekAAAACAuhV7QAAAAIDNKXtAAAAAwM6Ce0AAAAAA16R7QAAAAACxwntAAAAAQMIlfEAAAAAAvat8QAAAAACX03xAAAAAwGLnfEAAAAAAb/V8QAAAAMA9E31AAAAAgO73fUAAAADA0CF+QAAAAACQP35AAAAAgGNdfkAAAADAyXF+QAAAAMAjdX9AAAAAgATmf0AAAADAgPR/QAAAAMDHQoBAAAAAQGRLgEAAAACASVOAQAAAAMD7pYBAAAAAIBCxgEAAAACAYhKBQAAAAGCtO4FAAAAAIHSJgUAAAACATJSBQAAAAMB5s4FAAAAAYDrQgUAAAACgueuBQAAAAKDA8oFAAAAAwK4DgkAAAADgZSOCQAAAAMC6KIJAAAAAIOd2gkAAAACAAJ+CQAAAAED5q4JAAAAA4ODtgkAAAADgBviCQAAAAIDePoNAAAAA4ApNg0AAAADgZYSDQAAAAOBjjINAAAAAAIurg0AAAAAgu7CDQAAAAOADyYNAAAAAwKrUg0AAAAAggfKDQAAAAEAj/YNAAAAA4MAghEAAAAAAxSWEQAAAAOCmOoRAAAAAQOVChEAAAAAglE6EQAAAACAqWYRAAAAA4K5zhEAAAADgp8KEQAAAAIDAyYRAAAAAYKjohEAAAACA7u+EQAAAAACd/4RAAAAAQBoShUAAAAAgRxuFQAAAAABfMoVAAAAA4OM7hUAAAADgGlWGQAAAAOBObYZAAAAA4JJzhkAAAACgWIOGQAAAAKAEi4ZAAAAA4BjwhkAAAACgQfaGQAAAAAAd/YZAAAAAQDEjh0AAAAAg8miHQAAAAECfkYdAAAAAwCqvh0AAAAAgJ7WHQAAAAEAd7YdAAAAAQMP5h0AAAAAgSP+HQAAAAKCcGIhAAAAAANN9iEAAAADAMoSIQAAAAGCp6IhA + KBZXds7jZUAsECBNt2JvQANJK5hVInJABMaPA8rhdkCLzxzmRrN6QAQkbFci831AVmyPC+URgEACQaRVPYKCQFabfTWRmoNAk0Ul7n46hUBWymtfPSOHQNcIHpX3golATanrjXS7ikDO553DLhuNQLDWtaoAVI9A - + - QoKFQEtEX0Ak1X5AQ7M4QIA0vEBCaRtAm/uJQGHuIkC9zfs/sjoPQeUI00B+gZtAIRkBQIy63D8CoOw/O9nGP+ZHiUAYTIFAFczxQKJyqkCpEyZA7dXdP/HN6ECXzhlAATp5QNiOuECExadAVpvOQC41uECV/QBAwF84QD0tL0H2oyZB2GKQQBpqUUCOShJByM89QSkKdUGRsqlA3HYCQhML4UF/Xk1CvlLHQXdE4D8Mtq1BU9g3QCEj3ECn6bQ/NbQkQYI6oEC9DLlA+G1tQIGdzED/KzhATKZzQc0EYUFiCKdBaCObQc0prkDg7lxAqnEqQTEXjECxqpBBbxZaQDJu5UBKGgxBHSXqQDz7L0Ao2fxBrX1gQae2u0JAxE5BfIMpQu/sD0ONXoRBDUQVQV23i0GMbYpAA2s+QOMrlEAM54VBH0mCQZr+L0FkM4ZBTYA8QlTFyj/XI7ZAllyqQHeU5kDBnaRBNWxRQFOfS0BF4KRAXC64P3aZokFkBFJAbEx2QXBcQUHFWW1ABUhJQT3EJkI2455BnUnLQi2WjkClSL1AB2g4QZZeFUGAPQRB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgLtKaEAAAACAk0dtQAAAAMCJYG5AAAAAgB9mb0AAAABAYIByQAAAAACHXXNAAAAAgMaGc0AAAAAAQkB2QAAAAAD9RXdAAAAAwBU1eEAAAABAD0V4QAAAAIAFTnlAAAAAgEhzeUAAAAAAdhV6QAAAAACMKHpAAAAAQA5xekAAAABACWV7QAAAAAAXRXxAAAAAgJpjfEAAAACAX1Z+QAAAAICwbn5AAAAAQOyEfkAAAAAAf1V/QAAAAEAMn39AAAAAoI8ZgEAAAACAX0KAQAAAACAhpoBAAAAAoFVqgkAAAACgcf+CQAAAAMBWQ4NAAAAAwNEehUAAAADAPCyFQAAAAEAYPIZAAAAAYPamhkAAAAAA3uCGQAAAAEAVcodAAAAAgE7kh0A= + NrgMGZxjYkB8yhB7okRtQOzIyX7kkXBAeQcBEwHDdUB0T7vM1SJ5QO2swQLxw31AHtUnA/cpgUB2BU+rpGqCQNgnCPtuKoVA2jIZyDCDhUADUor9umKHQGs3mmByO4hAljIuORJri0DMOmlKxVOMQI0RrmdJA49AXlq33DMSkUAQ+ahR0IWRQN5xrvGJ1pJAbSKZTQyGk0A7m57txdaUQLcSa+s3ipVATxtiVc9ylkDLki5TQSaXQJkLNPP6dphAKLweT30mmUD2NCTvNneaQKjTFWTT6ppAQCX2jGJ7nECgkJibJNOdQLwUNiR+R55AURKAEE7fn0CDAgTh1CWgQE1KYG63naBADo2k4eezoECm1ZJ12mOhQL2hnN8FtKFAZmEOgAVGokAWLc/mKNqiQBR2Bn4jRqNA512NEEfso0BbirV4OSqkQH/L1d5J2KRA2Z8/fWcypUA= - + - eGbKP+CHTEAV3WRA7DRCQDDGhEB89wpA1cKSQASjI0BM7IVAfZgMQAbZVkENVqU/6oc4QLjk4EEnecVAyhR2QQU3WUFFJWVATUMiQb20CECPK4ZAtKZLQX4VjUEYcLg/YGiXQDiXoEF5oz9ArBUfQejYBUGqLJM/8bTYQA/SGUAC/M5AyP0AQc8EQUHfcUFB5OihQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQKwPXUAAAADAtSJgQAAAAIB7RGBAAAAAIPz/YEAAAADAt2VhQAAAAABlZWJAAAAAIDqIYkAAAACg9aNiQAAAAAB8YmRAAAAAgN+iZEAAAADAfCFmQAAAAABSPGZAAAAAwPVYZkAAAACArqdmQAAAAGDyI2dAAAAAoFepZ0AAAADAs+lnQAAAAMBzAWhAAAAAQPamaEAAAABA5v5oQAAAAADZBmpAAAAAQLwnakAAAACAWUFqQAAAAEAyY2pAAAAAYG6eakAAAAAAhsFqQAAAAEDY4GpAAAAAwLIIa0AAAABAh4lrQAAAAMBFRWxAAAAAQOtqbEAAAABAd8VsQAAAAAB9BW1AAAAAgNwibUAAAADA4OltQAAAAICGPW5AAAAAQFuEbkAAAAAAPq1uQAAAAICkJm9AAAAAAC18b0AAAAAAlQlwQAAAAEBHInBAAAAAYEGEcEAAAACAc45wQAAAAMDFoXBAAAAAAF/AcEAAAABA5uNwQAAAAIAuL3FAAAAAIBpCcUAAAADAH01xQAAAAICXYHFAAAAAAISBcUAAAADg2I1xQAAAAEBlsnFAAAAAYLXjcUAAAACAfvRxQAAAAMDSD3JAAAAAgDgeckAAAABAKT5yQAAAAAC1T3JAAAAAwOdjckAAAACAyHxyQAAAAGDgk3JAAAAAQJKzckAAAAAAPfNyQAAAAAClAHNAAAAAwHAhc0AAAABAyi5zQAAAAGCmQXNAAAAAYLF0c0AAAAAA/I5zQAAAAGBApHNAAAAAgCmzc0AAAABgsMxzQAAAAKAY3nNAAAAAQJfyc0AAAADAfBF0QAAAAGAML3RAAAAAAHJzdEAAAACgwX50QAAAAMCOu3RAAAAAgHPHdEAAAAAAL+J0QAAAACBX8nRAAAAAAHH9dEAAAADgqzJ1QAAAAIDldXVAAAAA4OuRdUAAAADA27Z1QAAAAEBqxXVAAAAAAKnfdUAAAACAXAR2QAAAAGACFHZAAAAAYJo0dkAAAADA4FN2QAAAAOAucHZAAAAAoGuDdkAAAABAlc52QAAAAAAT9XZAAAAAwIUCd0AAAADgxxR3QAAAAECRN3dAAAAAoI6pd0AAAACgwLF4QAAAAKAX8HhAAAAAINAVeUAAAACAQjd5QAAAAAAaY3lAAAAAAD+1eUAAAADgjNR5QAAAAIDwFnpAAAAAgMQxekAAAABgIDx6QAAAAKBVhHpAAAAAIHbBekAAAAAgZuZ6QAAAAKBtIntAAAAAYBUye0AAAABAgqJ7QAAAAGAY0XtAAAAAYP7ze0AAAACg1IR8QAAAAEDHonxAAAAA4OxlfUAAAABAfHV9QAAAAGAfpn1AAAAAIOPEfUAAAADA9z5+QAAAAMABQn9AAAAAQGVaf0AAAAAgrGR/QAAAACDlf39AAAAAIPmRf0AAAADg+QGAQAAAAGDQIoBAAAAAAKc5gEAAAADgm0OAQAAAAMCoZIBAAAAAQBNrgEAAAABg03CAQAAAAGBcfYBAAAAAgJuKgEAAAACgQZGAQAAAAAALmoBAAAAA4G2wgEAAAACgVbWAQAAAAGAc2oBAAAAA4F0ZgUAAAABg8SGBQAAAAGAUTIFAAAAA4KJjgUAAAACgftqBQAAAACDM6oFAAAAAoCD7gUAAAABgTgmCQAAAAKBHEoJAAAAAABdDg0AAAAAgVJKDQAAAACDWIoRAAAAAoB8shEAAAAAgzIiEQAAAAABQmoRAAAAAgMWyhEAAAADgw7uEQAAAAKC38oRAAAAA4CkihUAAAABAwq2FQAAAACBs5oVAAAAAgN/rhkAAAADgyxuHQA== + NrgMGZxjYkBML328ejFwQOO2GkbmYnJAooOBwRKidEA5Cx9LftN2QKLhXRVrs3tAdK2XIC70fUDvQWt1DWqBQNcnCPtuioJADZMnYGX6hEDXVvYkGxOGQDi9qWKxModAAoF4J2dLiECc6nN/PcuLQJZhHGO+U4xA - + - tL+BQO7ODUTcsi1CpMKHQJjao0Ds59pCiiUOQnsFLUKL5glA+pPgQzX2p0L7MLpAy/pmQHWmgkGA+iRBcY0iQEfGUUGFNZtA87mBQHGwvEFuiT1A6biEQmtkk0Bd2mxB7xYWQQK3FUBMPURBrx2oQYHLmkBjm/ZDRs5BQgyxKUKuJfQ/UvhzQKWfvT/mVNpAAscNRZn2YEHgZ5NAJwpZQHQe9UBDOo5B0pYwQN2hNUHqml1BCA7MQO4uCEDAiIxAq1TQQFRalEBE6GtC1mOFQfEOZkESE4FB6rBkQpsTv0Fhn69A3qXfQC8RCUG2IItCTC0IQAmCVUBRpqlAEneAQTVBk0A4AaRBvuELQ+1gEEEMFGdAIu81Qhw9zEEkpAdA1SccQUfnoEGE9S5AGOKKQYPIY0RUZ0FCbKa9QBlYZ0BnSjRFDSbLQu5y8kA0/i9BSRPsQGI60UGKAxVAk5QzQYNVkUHxDgdBYFqaQVRzqkCqh7dC3BKaQN50QERB2LdAOtjCQK7CjEHQBIlDK7scQSA/C0I4rNc/LMt0QEKt2UCBMkdCIPLWQb9NMEAbKf9CsHOdQfHQLEE7y99A/cjFQq9rwEAXTYlDpjkPQmLVo0F9wvpD9Tp4QAIhgkBtUhRCvHS/QLAVz0IYlutCvWrQRPCvPEEaFfM/lDYeQpzRnkAQxAJCpwLNQevbG0Nys6pBPiwsQUO/m0BuynRAnhT0QxwMzkGH9YNBTqTUQHFZg0ERb95A7vpSQq2xAEHxKwZA0kanQELor0BZXn1BcyruRFZ6q0FkJCNA3026Qac5qUBnL5ZCX9fkQMO8t0J7sGlBOmz6QPja5UFcP4ZD/QjDQG0uHUFWhQ1B9lxgRcpyvULTz/ZA+oWOQHEREUEyEj9Av5OPQZ1oJEE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAAoiakAAAAAA2eRqQAAAAAChO2xAAAAAIKtobUAAAABgLwduQAAAAICNx25AAAAAQE3mbkAAAABAgQRvQAAAAICfdHBAAAAAgOeCcEAAAAAAfuNwQAAAAIA0BHJAAAAAwC00ckAAAACANnNyQAAAAADGlnJAAAAAgKQjc0AAAACA7sFzQAAAAIBvFHRAAAAAgIUmdEAAAAAA1TV0QAAAAGByVnRAAAAAgAumdEAAAACgGyl1QAAAAMCc1nVAAAAAANJSdkAAAABAEWJ2QAAAAMA6E3dAAAAAgCx2d0AAAADA5pF3QAAAAMCy0HdAAAAAwKDld0AAAABAIsB4QAAAAMDe03hAAAAAgNhleUAAAABA37p5QAAAAMA6xXlAAAAAQOfceUAAAADAOlN6QAAAAIB2aXpAAAAAwIaFekAAAAAAIch6QAAAAADr0XpAAAAAwFbjekAAAAAAN/16QAAAAACVKntAAAAAQKE/e0AAAAAAq1J7QAAAAMA8cntAAAAAAOyFe0AAAACAEuZ7QAAAAICO9ntAAAAAgDMFfEAAAADAgRF8QAAAAEAZJHxAAAAAAJVVfEAAAADA4md8QAAAAADW2HxAAAAAQCDzfEAAAAAAtx59QAAAAICpOn1AAAAAwE9FfUAAAADAKlF9QAAAAID8ZX1AAAAAgI2qfUAAAABA+bR9QAAAAEAu231AAAAAQArtfUAAAABAQRp+QAAAAIA2PX5AAAAAQFhdfkAAAACANsJ+QAAAAIAB5n5AAAAAQClNf0AAAAAAFnR/QAAAAMBCg39AAAAAQGOxf0AAAACg7gCAQAAAAKDgCYBAAAAA4G9FgEAAAADgAkuAQAAAAKDqaoBAAAAAYK5ygEAAAADANnuAQAAAACAlh4BAAAAAYFKdgEAAAAAAoaiAQAAAAMCGtYBAAAAA4IG6gEAAAAAALsGAQAAAAOCQ34BAAAAAgJztgEAAAADAIPiAQAAAAGBNHoFAAAAAIPQjgUAAAAAAsyyBQAAAAIBDP4FAAAAAoMRGgUAAAACA52KBQAAAAMBzdIFAAAAAYGyCgUAAAAAgtIqBQAAAAOArkoFAAAAAYJmlgUAAAADA2aqBQAAAACDPuoFAAAAAoGfHgUAAAACAEdWBQAAAACBL64FAAAAAwBnxgUAAAADgHwGCQAAAAEBUB4JAAAAAAM4PgkAAAAAgOxiCQAAAAOA7IoJAAAAAgAQzgkAAAAAglkqCQAAAAGA9W4JAAAAAYKJjgkAAAADAunGCQAAAACDue4JAAAAAgOGDgkAAAACAt6GCQAAAAEDeqIJAAAAA4Mm5gkAAAADgQcuCQAAAAOAI0oJAAAAAQK3YgkAAAADgt92CQAAAAGC94oJAAAAAYDT+gkAAAACgNBuDQAAAAGCWIoNAAAAA4P8vg0AAAABAbFGDQAAAAGBXY4NAAAAAgC1tg0AAAAAglXKDQAAAAAA5e4NAAAAAoEKAg0AAAADAKIaDQAAAAKBnloNAAAAAIPabg0AAAADgZaSDQAAAACBTr4NAAAAA4Pm3g0AAAADg4b6DQAAAAEDdy4NAAAAAYA/Wg0AAAABgGt6DQAAAAKCx44NAAAAAAE3qg0AAAABgde+DQAAAAKDN/4NAAAAAYOXZhEAAAACgguaEQAAAAEBm64RAAAAAYBYEhUAAAABg7hmFQAAAAKAtIoVAAAAA4LknhUAAAADgIUiFQAAAAOBYWoVAAAAAgGJlhUAAAAAAT26FQAAAACDDeoVAAAAAYDyMhUAAAACAi5OFQAAAAECMmYVAAAAAYAWghUAAAAAglK2FQAAAAEDisoVAAAAAwALIhUAAAACgJtWFQAAAAKCP24VAAAAAYJnzhUAAAACgmP6FQAAAACChC4ZAAAAAoIkehkAAAADggyOGQAAAAIBwP4ZAAAAAgDJbhkAAAACg62SGQAAAAGB/a4ZAAAAAQKB0hkAAAABgc4yGQAAAAKAnl4ZAAAAAQICmhkAAAADgarmGQAAAAGAvwYZAAAAAoOrZhkAAAAAg6OqGQAAAAGDg/YZAAAAAwFoDh0AAAABAGz2HQAAAAICMSIdAAAAAYNxYh0AAAACgk2qHQAAAAOCLm4dAAAAAoKajh0AAAABAl8aHQAAAAGAh5YdAAAAAYEPrh0AAAAAgNwmIQAAAAOBXFYhAAAAAgCMeiEAAAACgXSyIQAAAAMChNIhAAAAAINJpiEAAAABgUXKIQAAAAMBReIhAAAAAgLqRiEAAAABg7KKIQAAAAGCZtohAAAAAAFK+iEAAAACAW9qIQAAAAKCd/4hA + NrgMGZxjYkASeFMryKFlQOzQoK8iBW9A93mpclIBckB2xqyr6ZN2QDIcIkgCInlAnYf0IpikfkCNKGyTxXJ/QNU8FL+OgYFAiJZaCcRSg0BoHbj65YmFQOzDJCZQa4ZAhm505T0aiUDs8hJQ/POJQKS/MNCVqoxACkTPOlSEjUBSdw/9oBmQQJTKxRJWipBABI50C+elkUDeupewgY6SQCXPRquXcpNAYbdkByOmk0A8Uhl+yAaVQKunNqVOqpVAy3p3c/TOlkArvy26pG6XQEdqtwoQm5hAQkIAjdUCmUDDWfehK2eaQA== - + - IvPvPxnrMkF3vxNAm3NiQAUCZUAbniZCbZYVQfcygD9A2hFBcrfjQCBz0UBHm7RAyF7DQEJmL0CsFktBnVq4P64sT0FtaN0/G/pdQCWTxUAf3kBBMBOgQGDwXUC0c29A1eZdQOpcqEF+glNB7mbsQUZcCkBEZ35B6UB8QJfQ7T8JUYZAGQTtQFbOnEBYN5RBwJjAQKGdGkEiHslBc1PaQJzHqT/J+0hAwgf0QEaiiEF9p7o/qkcmQEZ7s0Du0D5AszqWQRgNNULSPA5BSiEUQElLAUAC8mtBdyldQSYMpUBB3a1BB3PCQbXVjkCsLXBAPVyBQNB/bkGce8o/9GCcQaXLHkLRUr1BstNIQe8q20BAGC1CN+PlQLBMdkCR8DJBaiiGQPIJA0NacvlBzBT7QMTxF0GARC9CEe0KQiOx60BCJTlBat4KQFcPGEHniS9An/olQFndCUGz+X9Bpfz1QIRBeED44y5B7pFbQe1rBEGxzMlBGf+NQNRG4kDiHhFBGKAQQQhFP0E3Rx5CAYRHRKtbaEPKI/NBFGG3QeXdx0Co1a5CmLIcQY7KV0H3jABBNGA0QbhQpEIleDhBbsgoQTPT80EMh/5ADvhwQU7HOkKi+MpAtvBCQVeulEGRPj1BtlCdQArC/EBOTT9BUW2QQfqJBUHqkFVBENeAQOIqt0DWYwRBanczQf2gN0GqUhNB/tDxQJ0NbUFESEpBGT7yQFwCWkHK8cNBBZQLQY9wzECmcQdChfqKQOiJ5kHKQAhBTiGuQslGCUIar6RBvqqtQVVRM0LqyxBBDjWJQITFL0DEtd1Aq+bnQaSAhUH6EN4/F2M1QdYTPUEMpYZBvpHhQckmfkFElVdC1t4rQgiMhkCQFRBBxElhQ1ga80IyNohAD60yQQuWtEJYZ15B+xsDQaCiiUNlBM9B3FJHQSLuJUHupgVCFfbXQ+XPy0BEnLg/EwuUQFjlckNmbFZC4Gy1QekZbUDnmedAkwOdQAM65EKWvSJBmgMpQdZbtEAcLYhCirBbQq5NU0BcHDdDoI7SQUIP8D+k4iBCfjJHQTyCcEAAIvRByrcIQbD5yj+5t+VApAGGQDYmLEKu5ldB4RO8QOruwUC0+5ZBLQPvP+Q/ykBsjh1C+KY3Qh4FE0GQRmtC + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQHveYkAAAAAgoIZjQAAAAMBBpmNAAAAAYBubZEAAAABgIeJkQAAAAICXRGVAAAAAQGqkZUAAAADgKehlQAAAAED+KWZAAAAAQIZjZkAAAAAAyGNnQAAAAICdA2hAAAAAIKtjaEAAAABA1H1oQAAAAEBspGhAAAAAwHfuaEAAAABAKgNpQAAAAMAuH2lAAAAAoGdAakAAAABAnFxqQAAAAICphGpAAAAAwBTGa0AAAAAgCuBrQAAAAOCDIGxAAAAAwLlHbEAAAADAeOZsQAAAACCBKG5AAAAAgD5sbkAAAABgQ4NuQAAAAACOJ29AAAAAgHFFb0AAAAAAr4VvQAAAAMDSsG9AAAAAoMoUcEAAAABAiiJwQAAAAOAoM3BAAAAAgLNecEAAAABg/e5wQAAAAEAhEHFAAAAAYDtDcUAAAAAgyGZxQAAAAEBEf3FAAAAA4DD/cUAAAABg7QtyQAAAAGD0bHJAAAAAgObEckAAAADAf9pyQAAAAACME3NAAAAAYA0gc0AAAAAAArRzQAAAAKBA03NAAAAAwKQTdEAAAAAgYEN0QAAAACAJbHRAAAAAAKl2dEAAAABATJR0QAAAAIATq3RAAAAAwNS1dEAAAADAZdF0QAAAAKCz3XRAAAAAYBQwdUAAAAAgJ351QAAAAEBxmHVAAAAAYHu5dUAAAACAbcZ1QAAAACAH33VAAAAAwFk1dkAAAAAAocN2QAAAAAAy9nZAAAAAwAsDd0AAAACg8xB3QAAAAGBvI3dAAAAAgBI0d0AAAADgiEN3QAAAAOCuT3dAAAAAgHhvd0AAAACgz5p3QAAAACCzx3dAAAAA4GLdd0AAAAAgMhJ4QAAAAKAMKHhAAAAAQGJDeEAAAABAeVR4QAAAACCKaHhAAAAAoN5yeEAAAABAi3x4QAAAAMDEiHhAAAAAIIPTeEAAAAAAiAN5QAAAAMBhHXlAAAAAYMY6eUAAAAAg97N5QAAAACCmwnlAAAAAIHzUeUAAAAAA6gF6QAAAAKBjInpAAAAAgLkwekAAAAAAFUR6QAAAAGBnYHpAAAAAoFhxekAAAADgh6F6QAAAAGBYynpAAAAAIEfkekAAAAAAKvR6QAAAAGBnFXtAAAAA4D8ne0AAAACgsFd7QAAAAGBLZXtAAAAAoDdye0AAAACgYrR7QAAAAKCS0ntAAAAAQCSYfkAAAADgtcZ+QAAAAECIaH9AAAAAYGmHf0AAAADAJZ1/QAAAAGDRp39AAAAAwMSxf0AAAACgHgOAQAAAAGB6L4BAAAAAAMtfgEAAAADgIYqAQAAAAEDXk4BAAAAA4LndgEAAAABgvyyBQAAAAOByOIFAAAAAoKRigUAAAABAwmiBQAAAAOB7c4FAAAAAYLaugUAAAAAgy8SBQAAAAEDi+4FAAAAAIBofgkAAAACgoqOCQAAAAODcu4JAAAAAACPEgkAAAACA0AODQAAAAODFDYNAAAAAoPA3g0AAAACACImDQAAAAEBZj4NAAAAAIM+ig0AAAACgNrKDQAAAAMCTB4RAAAAAIMZQhEAAAADgiXqEQAAAAOAaiYRAAAAA4CmfhEAAAABgQ86EQAAAAEDa04RAAAAAYMnzhEAAAADg6gGFQAAAAGAFCoVAAAAA4PIshUAAAABgAHyFQAAAAKC/24VAAAAAoCZqhkAAAABAjpKGQAAAAIBwl4ZAAAAAoCrRhkAAAACg8tmGQAAAAKAu5YZAAAAAIJDxhkAAAAAALvuGQAAAAGCLA4dAAAAAoIY6h0AAAADAZXaHQAAAAOC/cohAAAAAYO95iEAAAABg7YGIQA== + KBZXds7jZUBImCMySWRuQIkw7CrX8nJAJCru7HxDdkBQi4Bk7yN5QEYz8B0AtHtAOybk7U6agEA2+ptKV+KBQMwqZYaQUoNAmidmZ+P6hEDMWVOwPNuGQFR6Rl9b+4hAzIhB2uhjikA= - + - l0qPQGI7dkA7mVRAWpqKQNi7hUCh5zhAPhVIQEUz/j8a2QZB2OI3QNQACkEw6oBAIJwvQAi9JEAsku1B5BalQM1k8D92TMs/0IWFQIsSj0AYj4JA4Mo3QFEG3T/nMA9Cv4PFQd7wskD31QpAJqdhQYhg1j/iBy9BKZV3QJMdm0BuA4VAXAyJQNl8xUCYsZpBoGpdQU8XOUAtm0lAQoEdQqHjjkD+DR1AO/elP2PzwkG0MtA/QEpcQq2AS0D5EyNAk1iFQOmVAUCsdVRApPmlP6uZyj+DT15A7CIUQDgB40AhTpNAXvU/Qei8OUFmS8JAmJu6QC1RE0BZb8xBWqt4QHX5aEBiR8s/yBmbQL6Qj0GXFmZAOTgBQWhhJkA0e7dAdN8sQIxoFECKSidBBGU4QDzR+EC6d0tAxEG8QHerjkBrD94/lvyWQGkNUEILACtBLgUVQC+XhEEAm4RALDLLQCG1MUE8wqpBvMvBQe7EPEHn6gdCy4kuQGRwH0H+LrtAFvuWQDCSAUDr3L9BgtcQQXeIhUAzKeFBoF3+QTBXD0FzEzdAdx50QZn7P0HGpKtBm5naQIVzhUDnc51A5s1ZQXOTZ0CgyIpA66mQQNVnG0EAcQFAvVgBQKIsX0Fj+aBB8ffUQOZRVUHdpCVAFpvvPwOLgkFwRnlACJ7nQMTyZEHFXr1AXpl6QYMB0EBmBddAOuSTQKYjo0G84E9CAdf9QX5p6kB3wYZAmY9LQAB/EUILJJdBN6UdQXY7VUHaETpBIQuVQV28m0A2uQpAqWqHQAj1t0AcMvRAlVGAQFWojkGkBoFBH9U/QfelmECfS4ZADH6gQHcIqkP4EqZAOmsBQZKk20B24C9AR7FoQE2OKEB1qolAskNNQMYwoEBdg4tA/X4mQBd4KEE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQMRjYkAAAAAgI35jQAAAAIBXx2NAAAAAgHpEZUAAAADA3WRlQAAAACA06GVAAAAA4HzDZkAAAADAxGRnQAAAAACYjmdAAAAAwD/CZ0AAAAAA8SppQAAAAEA54WlAAAAAANRlakAAAACAln9qQAAAAICJpWpAAAAAQKWna0AAAABA98ZrQAAAAGAjQWxAAAAAIBhebEAAAADAPkdtQAAAAICa4W1AAAAA4Lf+bUAAAABAuYhuQAAAAAA5pm5AAAAAQKvCbkAAAAAgfGJvQAAAAICGh29AAAAAQAukb0AAAADACMRvQAAAAIBlD3BAAAAAgL0icEAAAADg/mNwQAAAAKABsnBAAAAAIL3UcEAAAABg5AJxQAAAAGCZFXFAAAAAoKFBcUAAAADgD1NxQAAAAADic3FAAAAAoGyAcUAAAAAg3p9xQAAAAIAm03FAAAAA4Hn8cUAAAAAAnVByQAAAAMACYnJAAAAAIBRzckAAAACAZoJyQAAAAECVx3JAAAAAAMMkc0AAAACAQ6FzQAAAAMAtxHNAAAAAAH7hc0AAAADACXZ0QAAAAIA5tHRAAAAAAPfEdEAAAABA2/Z0QAAAAKCFJXVAAAAAQJI2dUAAAAAg5Jx1QAAAAEDSsHVAAAAAIOThdUAAAADg1PR1QAAAACDiQnZAAAAAwEhRdkAAAAAghpV2QAAAAIBdynZAAAAAwCnkdkAAAADAnu52QAAAAAClGHdAAAAAQJ8yd0AAAADAlEF3QAAAACC/XHdAAAAAwDVyd0AAAACAsYV3QAAAAOChxXdAAAAAINnSd0AAAACAuAd4QAAAAMAwI3hAAAAA4EBXeEAAAACAbq94QAAAACBNxXhAAAAAoE/VeEAAAAAgjFl5QAAAACCMb3lAAAAA4ASneUAAAAAgJ8J5QAAAAEA30nlAAAAAIF7heUAAAAAA6u95QAAAAIDGC3pAAAAAgBEXekAAAADgezB6QAAAAOA0VHpAAAAAADxjekAAAACgBXF6QAAAAKCAh3pAAAAAIB+TekAAAADgPaN6QAAAAKBf43pAAAAAIMHzekAAAACgQQR7QAAAACCONntAAAAA4CFZe0AAAADAbXh7QAAAAOCGh3tAAAAAIIqZe0AAAAAgWqN7QAAAAKB9sHtAAAAA4Nble0AAAADgnvN7QAAAAOARInxAAAAAYBwzfEAAAABg5D18QAAAAADOTnxAAAAAAPBYfEAAAABghGx8QAAAAGB/dnxAAAAAYKOTfEAAAADA5qV8QAAAAKAltXxAAAAAgFjOfEAAAAAgduR8QAAAACDFE31AAAAAoG8hfUAAAADA+2t9QAAAAKDSiH1AAAAAoMahfUAAAACgPv1+QAAAAOBxaX9AAAAAICGUf0AAAABA8QmAQAAAAEAQIYBAAAAAgOpBgEAAAAAgBEmAQAAAAMC3UYBAAAAAIMtigEAAAADgTnCAQAAAAOBBeIBAAAAAYBiogEAAAAAgx7CAQAAAAMBm0IBAAAAAgP3xgEAAAABgUvmAQAAAAIB5JIFAAAAAwBcygUAAAABgT1SBQAAAAACfaYFAAAAA4NWCgUAAAACgvouBQAAAAGBKsoFAAAAAINfBgUAAAADgnuKBQAAAACD7IYJAAAAAAHswgkAAAABg91KCQAAAAIDKaoJAAAAAYBJygkAAAADg47qCQAAAAOC/woJAAAAAAMLIgkAAAACAWNuCQAAAAOA+8oJAAAAAYHP6gkAAAABA/gCDQAAAACDRCINAAAAAAMYkg0AAAADgmEWDQAAAAKBqToNAAAAAoJtfg0AAAACgMomDQAAAAACPjoNAAAAA4LHAg0AAAABgTMyDQAAAAOAnG4RAAAAAYN0hhEAAAADg5TOEQAAAAKAbPIRAAAAAIG+ThEAAAAAgSaeEQAAAACCX04RAAAAAwFHchEAAAAAA9eGEQAAAAECt+4RAAAAA4KoBhUAAAAAgRAeFQAAAAACdFYVAAAAAYHxLhUAAAABgdliFQAAAAGBGXoVAAAAAwHdvhUAAAADAiYKFQAAAAEDOioVAAAAAoIWShUAAAADg+JmFQAAAACDy14VAAAAAAILlhUAAAADATPiFQAAAAMCJKoZAAAAA4JoyhkAAAACARkKGQAAAAOAPUIZAAAAA4FZuhkAAAADgV5GGQAAAAGC3o4ZAAAAAYGa7hkAAAAAgbsOGQAAAAGBYzIZAAAAAYN8fh0AAAAAgvCmHQAAAAOCsQodAAAAAACVTh0AAAABg3lmHQAAAACDsY4dAAAAAIIuLh0AAAABgrvKHQAAAAKBq+4dAAAAA4A0ViEAAAADAMSaIQAAAAOBNvohAAAAAwCDTiEA= + KBZXds7jZUA2gKvZDSNtQDgRktfeIXJAnREdidiCc0BzswqtjkJ5QJ1v+dwwlHpAu8C1x4gkfkCxOAWFfjmAQO7kW/yFyoFAFWbPoQpSg0AX5eLLmAKFQD5mVnEdioZAqsWGB/AKiUBnZt1AMMKJQKr0dDGck4xAXkVdb2dajUDT9PsAr8uPQMMich89SZBACjchGlMtkUCAfVBTCHqRQCBMYht5SZJAAJVHaF4+k0AEYjUjr82TQICsPn20ApVAgFF1usqZlUDHwO13yuaVQGRnSMIAHpdAR9jkjCCrl0B76hqVMbKYQNYAQ4JMc5lA7YMVVX0Hm0Bzp53MgpqbQDYGViGeY5xA876U4dhenUC2HU029CeeQDxB1a35up5AKeJTQJUnoEBX7ee2IoigQHD2AjurC6FA4i5RIDtSoUAwgn5F1u2hQNS5OiRWFKJAVAzWQuFfokCSsdrvY/qiQBSYUU0MQqNAhDzE8368o0DUI81XNySkQA/HZPSRSqRAM1G88Zy8pEBfZTbBT+6kQD0RnqWhiqVAaSUYdVS8pUD7CD5xr3CmQCmxk39/nqZABckfJbQ+p0BOqXxOlaCnQA+JAdm4DKhAWGleAppuqEBoFDTg29KoQHyqfmiqHKlAoDTWZbWOqUAmDNSr6bipQGDAUXDgcKpAbSCDpv+cqkCRqtqjCg+rQDHxD5r+gqtAHOxDDSPZq0A= - + - enfJQDe5UUBAPG1BeCzTQKycvUBjuy9AuoAHQRHIekFv6KpAattLQKtMk0CqqhlARQC3QIURCUAI3aVACrYCQUhPnEAOczVBNCiGQF5tuD8vs2lBGDMsQNqmiUEQ0uVAQ7plQL/IZkDJhCNB0C/7P3hdzkDGORZCRT2PQHJNokD3cM5ABSjdP+oJokBg469ARMINQaRt6UBqTlxA4pnOQIJzdkDT+FZB9uakQMp+EEDAeRBCInM0QbQFSUF3EtpBES92QB5GdkELBDlAtj5bQFbIbEAFCgJBPJHLQIDYE0B6Yy5BKoa3QFDjqEFusqpBF4PbQFhIS0C0xwFBwWihQKByr0Dsz5lB6YXQQJAoeEDt3KdBphFMQZY1HUCqM61CzmZBQQeIEEEYv6pA4v95QD5kTEFDqRRBTjc0QkV/jUADCahAEZqwQDqrRUGa1jxBdH0zQe7wP0E8G6NA9MChQSe9b0CibxFCmu8MQL9ePUEhOdpBzmKTQffe7kB7MThBO7psQdTghUGQaDtDGERBQgz7yEG3WYJB/H4yQRmlQkIdiMJBWzldQjHYnz++HK9BfjBGQWsDe0E4+idBnPTvPwymM0EhWpVBn8SUQXVJK0Hg0bZA1A8dQBYA+EBlh7g/eIXdP9owCUHuxhpCxpiFQeUD7kKQBFFAwD8BQJ92r0BtHIFAngl5QOge5kBvNX9AfqwBQBiCm0ABwdtBxcdvQG4LP0Gp3X9Ag6meQc9MKkEHxWNAiZqgQS61s0GOyBNAHouBQL3ENUHLn/xASqzWQorfNkFaoA9BvK8OQZ22EEKWD2ZAUbP+QGqKk0GCVJ1AkP0NQZ4kuEEwmRFCdaTjQAJNJkD7JyhBS2mBQH2glUE4kWRC6JgdQtQoJkBXQOpA50GuQK/kLkHcGaxBIbidQOcKr0E+W5RAIXoPQYIsvEAlutBAie2gQV12aEC0BbxAW181QCz0xEESzKlBlQMPQQJiVEHAcOpAZmlbQYQPFUJX1XBA0zs1QVuFH0EbQh5C1FmuQY6ebkDDdZJAXLsYQZSaOEBQaV5CUOPwQRY3ZkE7bwFAAK3lQGz6wEBRMOpAUr9RQCg4fUFug5tAL7nTQEZCEEDvaMxBGt8QQ07UMULY241A9WfyQGw83j8nYn9AHpDAQDMZQkAjNghBUxrLQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4PNlZkAAAAAAxKpnQAAAAEAtBWpAAAAAQMgjbEAAAABAhklsQAAAAIASJm5AAAAAwA8icEAAAABAWUhxQAAAAACKU3FAAAAAQFUjdEAAAACAazN0QAAAAADkNHZAAAAAANtUdkAAAACAxnJ3QAAAAMCk1HdAAAAAwKCReUAAAADAGOJ5QAAAAAB3lXpAAAAAwLCSe0AAAACAbb57QAAAAABGYnxAAAAAwI9lfUAAAACAy359QAAAAEDGpH1AAAAAAEEwfkAAAAAAF0F+QAAAAMAVa35AAAAAgFrEfkAAAACAyXF/QAAAAIDfgX9AAAAAIHUfgEAAAADgPiyAQAAAAADpTIBAAAAAoPxrgEAAAADgi3OAQAAAAGCBg4BAAAAA4ByegEAAAADAsLqAQAAAAKCk1YBAAAAAwOHbgEAAAADAf+OAQAAAAODmJYFAAAAAQII7gUAAAABAjQiDQAAAAKDsD4NAAAAA4I0yhEAAAABg/RGFQAAAAOCBgYVAAAAA4LKLhUAAAACg2QOHQAAAAGBsEYdAAAAAIPaph0AAAADgKL2HQAAAAOBWOohAAAAAQGlCiEAAAAAgqcyIQAAAAEAZ2ohAAAAAAEDwiEA= + KBZXds7jZUBImCMySWRuQDeULWxqYnBAQh3Og3zCckAJeGK9lPN4QMujv9Ftk3pASP+pBUPCgEApldiPL5KBQI3Coqy7qoRAEgdzuMTahUAc6wCi53KGQKML9FAGk4hAHBrvy5P7iUA= - + - LyvLP8nuCkDdRZtA9JoVQgKNWkBgK/8/xkndP7W13T+aGvA/PGhUQHawskDE5IZApcibQFjvckH3hy9AonLHQIaYpT+Wk1JAjKYFQXZaTUCoad4/ackaQKQfEUBX9fxAe1BTQCAsFkC9345Al/+qQN5f1UE4bfxAVBi5P5B/l0B4qQpAJGrdP00+ikAZCLlAjBA3QWrXMEEewlxBOm3YQIT0MEFeu4xB9FUdQHJIj0HlT+4/M6OTPzX+AEFCkwxCVu4EQq9THUAPPoVASgnXQK4SF0LtgApAw05lQIIWz0BkwpBBEvEFQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwOQgakAAAADA1uhrQAAAAKAXO2xAAAAAQOuibEAAAABA2QJuQAAAAMBUiW5AAAAAQPw3b0AAAACg0aFwQAAAAGA2H3FAAAAAQMGvcUAAAAAAVstyQAAAAEAn1XJAAAAAQDdwc0AAAADA7QJ0QAAAAODhU3RAAAAAAEohdUAAAAAAYWR3QAAAAAA3gnhAAAAAABOweEAAAABA+vB4QAAAAADthXlAAAAAANaWeUAAAADAisd5QAAAAIDf43lAAAAAgMH+eUAAAABA7bB6QAAAAEDt4npAAAAAwJX2ekAAAABAowN7QAAAAACHFntAAAAAgHv1e0AAAAAAKQV8QAAAAEB6En1AAAAAgJUjfUAAAADADcB9QAAAAEAHz31AAAAAQIb0fUAAAADASjJ+QAAAAICosX5AAAAAAHXRfkAAAABAwCZ/QAAAAMCcX39AAAAAACyWf0AAAADAbfJ/QAAAAECz/n9AAAAAYHoEgEAAAAAgmoqAQAAAAAB9koBAAAAAINyngEAAAAAgHtOAQAAAACAv5IBAAAAAYBQTgUAAAACgFIiBQAAAACDYloFAAAAAQKfngUAAAAAgjvCBQAAAAGCQmYJAAAAA4LXCgkAAAACgscuCQAAAAAAW2oJAAAAA4NLigkAAAACAxQKEQAAAAOCgCIRAAAAAYOCIhEAAAABAy4+EQAAAACBjloRAAAAAIIqChUAAAADgiLKFQAAAAMA98IVAAAAAQNk5hkAAAADgfT+GQAAAAEBVsoZAAAAAQNjKhkAAAAAAoluHQAAAAMAAZIdAAAAAYBtyh0AAAADgQDuIQA== + NrgMGZxjYkDiYBUjzERrQDRZTJGzQXBAcQ5nZb6zdEBWYk7CNrJ1QHFsQ7kWxXtAVsAqFo/DfEA45Y+GN2uBQFhmujApioFAWJWoWtUShUDMxTPCjnOFQF3KtFrQK4hAT3QoiQyriECK0FkAMlSLQLOh8qWYw4tAGfm39V0cjUCz0ODPREyPQAwU0w+FUpBAoXyfYjiKkEC+Kjgey96RQLj/cTVpHpJAAYKyAYp6k0A6Gni15qqTQLoxb8o8b5VAS3KEn7V+lUDRtEGdbQOXQMuJe7QLQ5dAUcw4ssPHmEBLoXLJYQeZQJpOeX7kI5pAy7hp3rfLmkDgzarf3eebQPd3aXogJJxA - + - sW+bQGZlkkDquy9AG2irQPSvuD+MF6BAJEgcQKvqdUCbhQxBQIKpQad5/EDpz+pB/WwBQU+M7UBfvMNAoVmDP+zOr0B3NTBBri0cQJ3lzkBvCK5AG3faQAUTiUD2nqY/aLEZQT5S4kB15LNCJhymQLSnZEAPyg5BriXwP6aGgT+DF6pArRZCQE313kHPhbRAnmZUQLy5mkAuGIE/DxpPQjrr/EC97vpAMuB1QQFJzEFI6e5AqR8ZQZTKokLwtnBBb8ZiQXx3gUENGMs/XRBtQIgesEDJXmdAQJXqQE3S0UE2biBBm8axQtg/JEEJDO8/U0F5QHRlLkDH/t1AzS4dQJZHFEFgC21AXqyQQDagqkBc8cZAkekSQi5LokGsgPhASjrBQKLNqUIiUa1Bek43QHKlpkA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwKtiYkAAAACA0ORiQAAAAEBZnGNAAAAAQOylZEAAAADgIm1lQAAAAEAJBmZAAAAAgAoCZ0AAAADANyFnQAAAAAC45WdAAAAAwMahaEAAAABAnuBoQAAAAACPBmpAAAAAgOdhakAAAADAj95qQAAAAAAHaGtAAAAAoA2oa0AAAACgVENsQAAAAMBki2xAAAAA4JzlbUAAAABgqUxuQAAAAACXY25AAAAAQN+5b0AAAADgthNwQAAAACBbHnBAAAAAgHJBcEAAAABAoXVwQAAAAKDyf3BAAAAAoGUFcUAAAABgOYRxQAAAAECnkXFAAAAAQGLUcUAAAADgHC9yQAAAAGDaTXJAAAAAwKVzckAAAADAAIdyQAAAAMBmm3JAAAAAQAbDckAAAABArhFzQAAAAECAIXNAAAAAQA1hc0AAAACgHLFzQAAAAGBjyXNAAAAAoC7fc0AAAABAcwV0QAAAAIAgF3RAAAAA4JsndEAAAADAdHR0QAAAAADYz3RAAAAAwKT9dEAAAABAPRB1QAAAAIDJQXVAAAAAAM1SdUAAAAAgRW91QAAAAEAMlHVAAAAA4OqvdUAAAADAoeZ1QAAAAAAfU3ZAAAAAgO2OdkAAAACAQMR2QAAAAMA80HZAAAAAAAjwdkAAAACAOvt2QAAAAMB6EHdAAAAAoPtAd0AAAAAAhnR3QAAAAICqgndAAAAAgGeRd0AAAABA0KB3QAAAAIDzqndAAAAAIAb0d0AAAADADwh4QAAAAGAdFnhAAAAAoIUzeEAAAAAgZXx4QAAAAIBZk3hAAAAAQCeneEAAAACA87R4QAAAAGDvw3hAAAAAgC/TeEAAAABgugN5QAAAAKBgDXlAAAAAIHcoeUAAAACAJUN5QAAAAGCcsnlAAAAAoGzOeUAAAADABuN5QAAAACDU83lAAAAA4DoAekAAAAAgXhR6QAAAAOCKUXpAAAAA4P9hekAAAADg8Kd6QAAAACDK5HpAAAAA4Jb+ekAAAADgjIV9QAAAAGD4u31AAAAA4FXQfkAAAADAhTV/QAAAAEB0SX9AAAAAwJOXf0AAAACAXhKAQAAAAGAMUoBAAAAAYEFjgEAAAAAg1peAQAAAAEAtyYBAAAAAwJFBgUAAAACglE6BQAAAAIAuc4FAAAAAQGjSgUAAAADAI9yBQAAAAOAqF4JAAAAAIH85gkAAAAAAH0mCQAAAAGAdW4JAAAAAoLWCgkAAAACgAZOCQAAAAOC4roJAAAAAILK8gkAAAACgNt6CQAAAAMDV8YJAAAAAIF8rg0AAAADgNzuDQAAAAKCKY4NAAAAAQGB0g0AAAABgboiDQAAAACCc54NAAAAAgOFThEAAAACgGPKEQAAAAIB7BIVAAAAAoNEKhUAAAABgEkyFQAAAACASW4VAAAAA4KnahUAAAAAg2rWGQAAAACDtZYdAAAAA4FV6h0A= + KBZXds7jZUBxWoXuS4RsQNS+X4D+xG5AVv7+4X3ScUCmgagVL4N2QJGgd7ct83hA5/R7vMVjfUBpiEbp1LN+QAIjnNMOeoBAKyMjoyHygkBmUGbwmhKFQLwnpDtjqoVAS1ACMY9yh0CEoSLb8qKIQBJ8qED7eopAGILGFkqrjEAwzWQrUwuOQIxYWiD7GZBAfHyFnd+JkEA92kGVJCaSQEI6mttAipJA9FD/6YYWlECHyhMzUCqUQD3TP7ancpVAm0rXmlnGlUC5wn9Nwz6XQK/KmgJjYpdAL+KRF7kmmUADs1Hr7kKZQBnIkuwUX5pAE/hkH++qmkAoDaYgFcebQP3dZfRK45tAffVcCaGnnUBy/Xe+QMudQJF1IHGqQ59A7uy3VVyXn0DT+nHs2W+gQJs3/JC+eaBA9MIumOE/oUD48lq773GhQNchOTcSQKJA0LPOdQR4okDJrCI7LQKjQJA/SoAvWqNAEMHRNUPmo0C1NzNPRVykQAJMuzleqKRAJtYSN2kapUD8S+JJW0ClQEoXM515yKVAVdcUUX5mpkAID9Noh66mQHlhbE6J2KZABOwMT5xmp0Dgz0YjnLSnQEsAvEmySqhAJ+T1HbKYqEBvihNHvbyoQLJulh7FJqlALxaPUeieqUA= - + - 1sdKQDwmyz+272NAsMjdP07OTUDUXQFA1Jq4PykxJkAMsYBAxoG4P9IogkB7JGRAEQemP0bcB0DIF+JAANsHQMLLvUBEn90/3/UsQEZlJkD+SgFAWGwZQXWVxUDLwb1AzBN6QPHo6kE0I/pAbDhCQeZPq0DS2MpAmsoFQWS5FUEbQGhBEcmKQMxMVkGoj8o/46NwQCM/vUAquwhA4fY4QJyeN0GwIv1APFu4P+CYwkGjRBBBiZjdP6GOL0AqaNRARsCvQUDzzEFHSNNApiedQUBCAkLWm9s/a5XqQFJHKUIqwotB2TxeQHoPCEHzcEpAzutcQCjCOEAAQA1Bet8TQERMNkBBQp1AJlwUQZusGUBCoIFAfTe9QZhEq0Cei7k/aeiIQBcNjEImwd0/EpUtQTRtu0BhN8tAErvqQKIPE0E9YOFB2pW8QWHpJULJVRVBw/AyQRb370E5vEFBNVmPQKDXZUEaxZJBpfhFQTlLvUA45u1AiuhUQR3zE0DoVJdA32oBQJl1OUF5WYtAcCELQefQZ0HMKoVA+peBQE/yOECpGQtB37FUQBBE/UBylZM/xE0NQRpP2UGmwElBE1JCQN3TE0D3oEdBzEdGQaIRA0Gxxk5BIQmlQLz+KEGzKMs/CQghQRWTgUCi6C5Aec1DQaOGTkFmT0tAvh4dQN4hzEAvygVDrfsJQNf0JEAeD7xA3eT7QJwYXUBWQSdBMRYmQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAgGYqb0AAAADghRR0QAAAAEAkfXVAAAAAwGgee0AAAAAAnWZ7QAAAAICVUH9AAAAAAHa9gEAAAADA1sKAQAAAAKC0y4BAAAAAAL+TgkAAAABgCNSDQAAAACAiQoRAAAAAILlThEAAAAAgs2GEQAAAACC7wIRAAAAAQEyOhUAAAADA5LCFQAAAAKBjwoVAAAAA4OEKhkAAAABgrzqGQAAAAACGuIZAAAAA4OPKhkAAAABg3wCHQAAAACAmDIdAAAAAYGifiEAAAABgJLmIQA== - - - - - - SG2EQVmF3EAHR0JA4te3P24xekDkNpFAcizaQNyjtj96abdAy3WKQAb4CkFaYwhA2BtWQcuVUUCivmBB2rf0QXGkpkCgpwdBPNPrQC6zKkHELNpADO7dQAuexkDHE3JBuOHmQIuJJ0A= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4MPAYUAAAAAAqgVkQAAAAAC0aGVAAAAAwKTAZUAAAADAq59mQAAAAGBHBWdAAAAAQKVkZ0AAAAAAQz5oQAAAACB+omhAAAAAAKDeaEAAAAAAQAVpQAAAAOCdg2lAAAAAwEFka0AAAACApvZrQAAAAKCPyWxAAAAAQMIHbkAAAACACElvQAAAAED4Zm9AAAAAgNcicEAAAADgcbhwQAAAAMDWwnBAAAAAAGcjcUAAAACAZmNxQAAAACBQonFAAAAAgLfycUAAAADgRg1yQAAAAAADRXJAAAAA4AVTckAAAADgS3FyQAAAACBxk3JAAAAAALjAckAAAACAFCRzQAAAAGC0MnNAAAAAgFXEc0AAAACgvm50QAAAAOA5gnRAAAAAQPawdEAAAACAgeF0QAAAAAAjI3VAAAAAwFwwdUAAAAAgo1J1QAAAAIDHb3VAAAAAoICBdUAAAAAg1JF1QAAAAIC/4XVAAAAA4PnydUAAAADAWQN2QAAAAICCHHZAAAAAgEEydkAAAADAwpJ2QAAAAKAZoHZAAAAAgGyydkAAAACgt8B2QAAAAMCj0HZAAAAAIIbhdkAAAADgB/Z2QAAAAMBPAndAAAAA4MiId0AAAACgvLF3QAAAACAJv3dAAAAA4MDVd0AAAADg1g94QAAAACCUL3hAAAAAgD1TeEAAAADAiqJ4QAAAAECBs3hAAAAAoEoSeUAAAABAxjF5QAAAACB8QXlAAAAAIHNTeUAAAACAe5h5QAAAAAA+rnlAAAAAwDXOeUAAAADgk+N5QAAAAADw7XlAAAAAwAo9ekAAAADgZEd6QAAAAAC2XnpAAAAAYLduekAAAAAgIX96QAAAAKCMr3pAAAAA4APRekAAAACgIeB6QAAAACCM93pAAAAAIDwDe0AAAADglhZ7QAAAAMBFK3tAAAAAwJphe0AAAADgFHZ7QAAAAOCr+X1AAAAA4Hi6fkAAAADgYyKAQAAAAOArPIBAAAAAAKBagEAAAADg8nOAQAAAAIDveYBAAAAA4NPxgEAAAAAg3QuBQAAAAOAsg4FAAAAAwO9PgkAAAADAOGOCQAAAAGBTc4JAAAAAYHXfgkAAAABggfuCQAAAAKDJP4NAAAAAYOVKg0AAAABgTYqDQAAAACC3k4NAAAAAYL+2g0AAAADgVL6DQAAAAKBG84NAAAAAQE45hEAAAADAt1eEQAAAACBIa4RAAAAA4Jl7hEAAAADgNAKFQAAAAGCOQIVAAAAAIMyahUAAAABAaXGGQAAAAGBno4dAAAAAwCKph0AAAACghbSHQAAAAIAa5YdAAAAAYDdKiEAAAACAf4OIQAAAAGD2iYhA + NrgMGZxjYkDiYBUjzERrQIB6f5CPcXFAzLzUXCnzc0CA2Fvk54J4QMwasbCBBHtA2+SlL6vTfkCYHFWaIaKBQDCVIYvCmoJA - + - h6GWQMQSVECkbTdBwWtCQI0I8T/9VOI/3TnAQTfOW0B8JLVAOSo2QI6cokCFUJ1ApgqJQCOGYkGAxmxAZ7CsQIkcpj/KkAhA0Oy4P5o0q0CyDAdBU6j8P/6ppkF/b49AiiRfQCz0skBOuS9AEn05QbusbUEXZAhBQtqTP3Q29kG+1RJBOSCMQGpawkC/aQNBqNTDQPiPcEBSQ2dAldS8QI5sKEHcCk1CRi4zQjMrpUAQhCBB9VAVQd4lCUFDEB1Ape1nQf87O0H8JJRBPezPQLgHhUCjXzpBy2fJQC0dvEDSn6JA/fFjQVQiekBfOkJAlXA1QWYfvkAhEs9ARIlUQHFsFUGc9zdB1wkoQDKuL0AtJb5A7gKWQV5DzkEAhu4/WOcDQrcEWECB8xdBt34mQGsDDUHTHDhAYL6lQrZD8D9PrR1Al9WbQe9v6UAcjFNCpZSFQ9ARf0G2WsVAMttTQKVCjEFQjZhA2QdYQdOGzkBeThlBB0gHQp0e/UGXHRdBTjkgQYtu2UCZjoFA9+vAQFHQ+0BhS+dA26ioQRWjH0HxUm1A6o70QLyEDEMM+h5CnM4IQac1RUGfbxpBskDqQKcxa0FbH79Atf2aQexKyz9/4utAODTyQOgCAkGWx/A/WnkmQPiFh0C3eMVAdgXiQMAWtEDxwIJB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQDTnZUAAAADAsopoQAAAACAHZGpAAAAAgG5obEAAAADgK49sQAAAAKBdJHBAAAAA4L6ycEAAAAAAUCJxQAAAAACXQHFAAAAAAPoEdUAAAAAAP3R1QAAAAAA41XVAAAAAQBEsdkAAAACAGsV2QAAAAAAFEXhAAAAAgJxBeEAAAAAAv454QAAAAMCsRHlAAAAAQPOEeUAAAAAAhOd5QAAAAEDRNHtAAAAAgHkHfEAAAADAkZR8QAAAAECeK31AAAAAwPwxfkAAAACA9i9/QAAAACBNXoBAAAAAIMaCgEAAAAAgZ7WAQAAAAGAv8oBAAAAAID0FgUAAAADgknqBQAAAAKBqgYFAAAAAQJ+TgUAAAACgaZ2BQAAAAMBKuoJAAAAA4ATEgkAAAADgOVaDQAAAACDBhINAAAAAAFf5g0AAAACARYGEQAAAAGDWmIVAAAAAIPDChUAAAABgyduFQAAAAKADvYZAAAAAIGYTh0AAAABgv86IQA== + KBZXds7jZUCRGlyHeVJxQDtMc7KVAnNAuNuj/idjeUA7qk8G7hN6QA== - + - Ne2hQOSQeUDDhss/Es6eQFu2VED42s1ASoxUQP7zoUBFMltA54jPQB3oikA0rZ1ANfzoQP9BekAeQEJAIeTKQMGLOED3iRBAEDD9QIjZskDzNmRAPslJQS/xwEAJt90/o9XAQPxQ2j8KjFZB+lUsQUS77j9+BYVB89DuQVNxEkHNTYZATMYcQZL0LUA2yV1BO1dYQUngQkKpiMhBNJd/QQyYs0DyZpxA21DKQGspHUDpkQdASfwiQfEXq0A= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAAFDKX0AAAADAEyJgQAAAAMA0RmFAAAAAIBfkYUAAAADAWUpiQAAAAOCAZ2NAAAAAgOjIY0AAAABAFOZjQAAAAIAq4mRAAAAAgI5jZUAAAACgxqRlQAAAAEDF5GVAAAAAQHGlZkAAAABAo+dmQAAAAABDYWdAAAAAYEFkaEAAAAAAu+RoQAAAAIB1JGlAAAAAADnlaUAAAACAZUJqQAAAACDMhWpAAAAAgK5pa0AAAACg3UNsQAAAAKDgZmxAAAAAQE6ibEAAAAAAi/1sQAAAAEDESW1AAAAAQARtbUAAAABALJJtQAAAAICOqW1AAAAAgPXHbUAAAABAjuxtQAAAAAD6xW9AAAAAQB3mb0AAAAAAQPtvQAAAAOAhF3BAAAAA4OjicEAAAADg2fBwQAAAACC6A3FAAAAAQLsPcUAAAAAgoSRxQAAAAOCiRHFAAAAAANNVcUAAAADALIVxQAAAAKDaj3FAAAAA4OekcUAAAABAiLRxQAAAAMCr5XFAAAAAAEQFckAAAABAeEVyQAAAAIBbhXJAAAAA4MOUckAAAACAuqJyQAAAAKB6yHJAAAAA4J4kc0AAAABAED1zQAAAAMBKZXNAAAAAQIiDc0AAAABAb5dzQAAAAMCfonNAAAAAQATtc0AAAAAAnTZ0QAAAAADuS3RAAAAAAK1VdEAAAAAA/2J0QAAAACAye3RAAAAAgIuFdEAAAACAM6t0QAAAAMCkvnRAAAAAgDXLdEAAAADAPfF0QAAAAGDxCnVAAAAA4FQfdUAAAABgV0R1QAAAAGD6TnVAAAAAwGJddUAAAACAgnV1QAAAAEA4gXVAAAAAQHiydUAAAADAd8R1QAAAAMBGFHZAAAAAAH4mdkAAAADg6DR2QAAAAKDZcnZAAAAAoFWEdkAAAACAOZF2QAAAAICco3ZAAAAAIKSzdkAAAABge/h2QAAAAKB6AndAAAAAYFkzd0AAAADAREN3QAAAAOD+U3dAAAAAQBSUd0AAAACg8al3QAAAAOBTv3dAAAAAYNPXd0AAAAAAfPJ3QAAAAAD0FHhAAAAAYOQfeEAAAABgdFV4QAAAAGDIc3hAAAAAIL19eEAAAADAPI14QAAAAGDJnXhAAAAAYPyyeEAAAABgBMR4QAAAACAxWXlAAAAAACXmekAAAACgwEN7QAAAAMB2g3tAAAAA4E1FfEAAAAAgQWZ8QAAAAMC8pHxAAAAAYDDGfEAAAACgrYR9QAAAAKA/lX1AAAAAIEqkfUAAAABgUBJ+QAAAAECbJ35AAAAAIJXFfkAAAAAgu/h+QAAAACCQKn9AAAAAYA9rf0AAAABARbh/QAAAAGCIeoBAAAAA4EOfgEAAAAAAs7mAQAAAAOBQS4FAAAAAYKFVgUAAAAAgu2KBQAAAAOCva4FAAAAAoMWKgUAAAACgHrOBQAAAAAAC24FAAAAAQCXjgUAAAACAmCuCQAAAAKDDNIJAAAAAgLE8gkAAAADAFnSCQAAAAGBCioJAAAAAoAurgkAAAABAm/2CQAAAAACGGoNAAAAAgG5ag0AAAABAtmyDQAAAAIB4woNAAAAAoLb8g0AAAAAAclSEQAAAAKBfdIRAAAAAIL7yhEAAAADAuwOFQAAAAAD2DIVAAAAA4H5ThUAAAAAg/hyGQAAAAGBjJIZAAAAAgG6shkAAAADAgQuHQAAAAKCPPIdAAAAA4ImMh0AAAABge2yIQA== - - - - - - Am2JQKHJrEBc4yZBRM8jQt9g70DZhaxCN7ZoQRyfIEGY515BneosQ6szJEONBxBCR2YDQWLq2EIRnw5C+qhMQadOAkHjCHlD2+hBQcmxEEFBhiBCqE6SQf/xd0KarMBBpAQuQnSJb0HX65hBQQ3GQHHpokDB5KFA2P8EQbK4lUBjBiFDXtCaQdp4iEFEfl9BFW7QQTU4u0DVxIBEYW2NQcM4eUC8OoVAXuJhQifY4EAQhQlB205XQvJl0ECU/3BCp9gMQroIjEL05MVAiHZKQkBMS0GLMIlAfUR8RG1WNEHkRKVCNL/tQj/y1kF9U1ZBGMONQiCGgULsSy9CdRQGRGktmkE1qf9FhlQmQ/J9LEGevPVB/+DfQYAi5EEPs5xDJuNbQeD7mkKLgmVBwD5FQor/w0J3JLFAcwCBQTQ9i0FhsIBEbQe7QICAE0JqZlhBjLMgQjLMUEH6eCJBszChRMS0OEEAIP5BoVt/QwdywkCKi5lB6G73QXgxu0DBAKJACbcUQhfaTUKGdE5EjvMkQdGQlUImhZ1E2XWGQ9KZQUHg9l5BtxFNQouYDUHDg65APDVwQYeMHEIiZoNDV+uIQWOuCkIRjC5D/GXOQQ6rfkXKmApDm1QDQlA0A0EatVNBMYQoQUkcykGvZClBO9MYQqbJWUEDv0BBi/TZQUditUKbTElDx5wHQWnpAkFfpM9AoFCaQUICGkG4hTJEjNIxQpn5SkK1JxBBy623QYAY+kBBTO1A8KoDQgw4nkDGF45DuT/UQBhWgEELjq1BI9opQQXqMkFH67ZAg2u7QDcSAkX3GxpBmlO7Q0VKTEGkFxRCRBHhQol4u0APdf5CZX4JQUXDSUI= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQJ0nZ0AAAADAXGdnQAAAAED4AGhAAAAAAI1ma0AAAACAuI5tQAAAAMBLp3BAAAAAgNHCcUAAAACAUdRxQAAAACAkknJAAAAAQFric0AAAADAsCJ0QAAAAECun3RAAAAAgFRvdUAAAADAEMt1QAAAAACGUnZAAAAAgJt1d0AAAABAX6V3QAAAAED2t3dAAAAAwG01eEAAAACAc7V4QAAAAICTtHlAAAAAQCPIeUAAAAAALHJ6QAAAAMBaantAAAAAwBO8e0AAAADAs/58QAAAAACaIX1AAAAAgOtpfUAAAACAlYZ9QAAAAECddH5AAAAAgDINf0AAAAAAohd/QAAAAEACPX9AAAAAgEORf0AAAABAeNR/QAAAAEAW339AAAAAIOBagEAAAABgsMqAQAAAAGBd9IBAAAAA4I76gEAAAACgA7WBQAAAAOAsuoFAAAAAYBHCgUAAAADg/O2BQAAAAKCB/4FAAAAAwFX5g0AAAACgHCqFQAAAAOA3ooVAAAAAYPSqhUAAAAAAbwKGQAAAAIDbD4ZAAAAAoFQxhkAAAACAtkuGQAAAACAmjYZAAAAAoEbDhkAAAABgadOGQAAAAOAJIYdAAAAAILRih0AAAADg1bOHQAAAAMCICohAAAAAIIFxiEAAAACAAZqIQAAAAKBAxIhA + KBZXds7jZUDPIQhxcmNtQNS+X4D+xG5A - + - 9iGXPySjQ0H5MlJAcDGlQIxyc0B40RlAVX24QO3bMEEHDIpAuW63QFmMP0DgK+tAO5aEQJXEUUBC8+hA9stUQBejuj+G97pA7RrgQJ9kZ0CXoCNA8DUdQLPRf0BzlntBT7oOQU5U1kC9CYpBFqzJQPGMKUFgiz9ACINQQWzeIUFAXsVAxAEKQSaIhEBPnlRAwsHlQGZz/z/Ot7lBCMelQM8pykC2cUtA9vOfQVQrcEBotQ9BP0jwP+c4QkBUyo1A+y+SQK9VZ0D9yixBOM8LQRDFpEBbYEtALWJkQIK0k0DaBDpBwQNvQZ12hUApbktADnVaQXUNG0HwPjVB + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAIKacbEAAAACg80huQAAAAIA9JG9AAAAAQF1DcUAAAABgkgRyQAAAAMDqdXNAAAAAgLgxdUAAAADA7CF2QAAAAAAMSHZAAAAAAKOUd0AAAADAFtJ3QAAAAICI9nhAAAAAgOqmekAAAABAssZ6QAAAAMDfaHtAAAAAQDqGe0AAAAAApJF8QAAAAED/wHxAAAAAQFxxfUAAAACAlCyAQAAAAOAg/IBAAAAAwFkHgUAAAACAIMiBQAAAAIA54YFAAAAAQEPvgUAAAAAglxKCQAAAAGBsKIJAAAAAoJdXgkAAAABgGnqCQAAAAKDCgYJAAAAAYNO6gkAAAAAAjsKCQAAAAOCi0INAAAAAoK3hg0AAAADAUeeDQAAAAKAUOYRAAAAAAMRRhEAAAABgzFqEQAAAAOAX2oRAAAAA4HEghUAAAAAg7iWFQAAAAOARUYVAAAAAoPVnhUAAAADgMimGQAAAAOA5PYZAAAAAYCrKh0AAAADg3VGIQA== - - - - - - 36GbQGWwQ0FQn7ZAuJjXQF7dX0EAN2RATyvKQK31wECoo0xAGVS4PzdF3EBtyNZAbA7wP3VlEUHksxNA8rWyQB0qHEEA06U/I8MCQUJr9kA9GtxAMyIqQar3BUG+7UxAkBQeQeDYMUG1eptAHebkQPtKVEE9iHlAuHjnQDHaLEAdOMs/LgjGP6YAJUFhUNhABlYOQSr37UCjAss/DbquQKPWB0EwIRJAvtiCQffofUGBM2dAiLWYQFCUpj8= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAQAWfakAAAABgAiJtQAAAAACWI25AAAAAgDK3cEAAAAAgQkFxQAAAAAD6FHJAAAAAgH8tckAAAACAB5VyQAAAAMBoFHZAAAAAAIMyd0AAAACAlCR6QAAAAMCQP3pAAAAAADdPekAAAADAH6J7QAAAAACZUXxAAAAAAPwDfUAAAACAfpN9QAAAAADS0H1AAAAAQN1LfkAAAAAAH/N+QAAAAECPM39AAAAAQKDAf0AAAADAwOF/QAAAAEA7GYBAAAAAgBgrgEAAAABgCdWBQAAAAGBE4IFAAAAAYBtUgkAAAACA4myCQAAAAODNcoJAAAAAAGSegkAAAADgTtODQAAAAKB9I4dAAAAAYN5nh0AAAAAgSPmIQA== - - - - - - 1bvXQHjUPkBOnVRAdbXdP6ri/kCyqQ9BooGcQGKEzz9KvzJBunstQHtfL0AmeoJAhfbqQDijxT9XQJNA98T2QNL0j0Cm+dlAtseoQa9oh0AXTQtAa4NLQb5YuEDbYT5BXsXLQMCN8kCNwepAGqD9P6scGEG4Fd4/oVsFQZL8QUBGawNByXj/QGaqcEA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYKZkYkAAAABgSidjQAAAAKC0IGRAAAAAQCwCZkAAAABglR5mQAAAAEAuh2lAAAAAoIZAakAAAABA+F1qQAAAAABYRGxAAAAAgO6IbEAAAAAgMKtsQAAAAEAiBm1AAAAAQLJGbUAAAADAr0hvQAAAAIDMqW9AAAAAQD7rb0AAAAAgijFwQAAAAEAFZXBAAAAAYAaScEAAAAAgusNwQAAAACBLQnFAAAAAgDv1cUAAAAAA97ByQAAAACCzyXJAAAAAQN7zckAAAACAuQVzQAAAAGDbUXNAAAAAwDhsc0AAAAAgDM5zQAAAACBIInRAAAAAQNVbdEAAAABgInN0QAAAAMBFgXRAAAAAIJGRdEAAAABAlLN0QAAAAGAiv3RAAAAAwO3QdEAAAADgtwB1QAAAAACyE3VAAAAAgAE3dUAAAAAAImR1QAAAAOCIdXVAAAAAQMCSdUAAAAAA+6l1QAAAAMCUxXVAAAAAgGcBdkAAAABAtSV2QAAAAGDIYXZAAAAAAE+ndkAAAAAAtsh2QAAAAIAO53ZAAAAAIHgAd0AAAABA4XJ3QAAAAKArjXdAAAAAAAmyd0AAAADgZ9B3QAAAAKAe33dAAAAAgHD4d0AAAADA4RR4QAAAAGA2NHhAAAAAQNFieEAAAABACYd4QAAAAID7nHhAAAAAIM7DeEAAAABAwc14QAAAAOB/6XhAAAAAoGj8eEAAAAAg0gl5QAAAAEBCHnlAAAAAQMRCeUAAAADAe1V5QAAAAKBuX3lAAAAAAPN/eUAAAABgsxB6QAAAAKD4H3pAAAAA4DM0ekAAAADAgz96QAAAAABPYHpAAAAA4J2FekAAAABgaMN6QAAAAKBQ1HpAAAAAoIcHe0AAAADguWF7QAAAAGAMdntAAAAAINSFe0AAAAAARM57QAAAAOAd3ntAAAAA4Evte0AAAABAwFd8QAAAAOBehXxAAAAAoISVfEAAAABARfx8QAAAAEAYMX9AAAAAwA1ef0AAAACgxqV/QAAAACDGeoFAAAAAAB7AgUAAAACArgyCQAAAAMBigoJAAAAAoFm1gkAAAAAgIryCQAAAAIDcw4JAAAAAoJACg0AAAAAgyweDQAAAAKC2GoNAAAAAAKQ2g0AAAABg9j2DQAAAAKDfT4NAAAAAQEh3g0AAAADAM4iDQAAAAGB67oNAAAAA4GVRhEAAAABgQXCEQAAAAOB+h4RAAAAAAKOWhEAAAABgn5uEQAAAAODS5oRAAAAAwN/5hEAAAADgrh2FQAAAAADca4VAAAAAIONzhUAAAAAgv+uFQAAAAKA6B4ZAAAAAYCYOhkAAAACgRzWGQAAAAEAyU4ZAAAAAIHUCh0AAAAAgbySHQAAAAMBkOodAAAAAIO6+iEA= + NrgMGZxjYkC3D8dBTiNqQOJgFSPMRGtAxwSPFv4SckDKReN9FUJ0QAKnB+ytM3lABehbU8Vie0BbPGBYXdN/QHiygyQOMoBAWEiyrvohgkCi3AUnWmqCQA== - + - UV+IQNnbhkBTcCZA5MrpQNTdk0DeretAoZivQNCk20AKsCxBHCfwP0mZzD+DX/VA4+tRQPeiS0AZ6hBBp3QBQGSj8T/gtb1ANd8NQTOYCkCiHR1AnkhCQFd0N0BZkcJBJgonQdaUeEDtd0VBajGOQL3cJUBfAvA/Uu6LQZluJkBEXtNAh8n8P2Z+6j8pgOhAijkZQXqxskAczYhAcQskQKEGwkC81eBAgJGpQMLfZkD13/pAM9YdQINpNUHcgI5AnZftQMs9BUHgXUVBNR+UQGsAnUA9XJ1BXFz6QKiv5UBW5bBB0hZdQCNBE0Fcli1AZ9aGQeFdQkDZjSZBqWzYQXGvjUCT+rg/3vjkQVQgbEEGPxBC5ll3QAlc3UBIVbxAfEOJQGgDqEB5UAZCYmqfQfld9EB+iFNCFQD8QYFTR0EKQ8w/d4cKQRVu60CVV4lA2+7OQB98lEFaU5FB6DJnQLHx2kA8WfNB73gjQO2mP0BBG+NBuiKgQIvbGkBxvEhAr2VZQVkghkGeIoFBkvXtQU0VxUBnR6BAuiybQc6NskFZV6Y/m8uYQGUhZkHIWVRA4rgpQdpPF0IH2kpBk40RQZdYXkGy5kBBeA81QTF3KEEEhANBruUKQGR/ukByiSxB2W6xQPvEskDZWm5CDKZDQbfIkEAtuJ9AtjF6QD0aTUFXkNpADUfMPw== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoAQmc0AAAAAAI3F0QAAAAGCvs3RAAAAAACWCdUAAAAAgY7B2QAAAAAAlY3pAAAAAwDe1e0AAAABAn498QAAAAADrkX1AAAAAYLw2gEAAAACgJHKBQAAAAKBRiYFAAAAAQCnRgUAAAABA+dWBQAAAAGANAoJAAAAAIFMZhEAAAADg6/iEQAAAAKCBgYVAAAAAAGqKhUAAAABgQdyFQAAAAIC744VAAAAAINbZhkAAAAAAjwKHQA== + NrgMGZxjYkDGbTWMzMVuQAojd9/OZG9AOQsfS37Tc0Cnmr2g6iJ1QGDMZsIs5HtAp/iZ9EI0fEBYZrowKSqBQHz800k0UoFAWJWoWtWyhEAQ3XeFi1qFQOmZKfMWa4dAOwf6h9eSh0CfNMSkY6uKQC1dIpqPs4tA - + - pS1kQNWh7T9nBcdAJhYdQP48HUC9PpdABEORQGJrJkDyO4BA7O+4P07xEEGGmzFBeC5lQSdkokCudss/2PiqQCXXkkDUeSZA7egcQF9PokCnoRRB8/ehQJ44NEE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAMTgbEAAAAAgAEZuQAAAAECax25AAAAAYEL4bkAAAABA4cJvQAAAAKCsEHFAAAAAwEAicUAAAADgmbBxQAAAAIC6lnJAAAAAANEUc0AAAADAGK50QAAAAIAMJnVAAAAAwEA4d0AAAADARHR3QAAAAICTInhAAAAAQJ91eUAAAACAq7B5QAAAAACn1XlAAAAAwMAzekAAAAAArUd6QAAAAEAM03pAAAAAQOkVe0AAAAAAGT97QAAAAECe9HtAAAAAwGxRfEAAAACASGZ8QAAAAMAQlHxAAAAAAFYwfUAAAABA8tt9QAAAAICY9H1AAAAAQC4AfkAAAADAySB+QAAAAABMVn5AAAAAgLItf0AAAADAfYd/QAAAAGChSYBAAAAAIGbagEAAAADgZt+AQAAAAGDy6oBAAAAAoEEMgUAAAACgGBqBQAAAAOAhJoFAAAAAIFlagUAAAACgVHaBQAAAACC8goFAAAAA4OuKgUAAAAAgxpCBQAAAAEBUr4FAAAAAIMHGgUAAAADg482BQAAAAGDq1YFAAAAAoIMBgkAAAADAfw+CQAAAAAAhJoJAAAAA4Ni3gkAAAADgZMuCQAAAAKAD2oJAAAAAADwXg0AAAADAnSqDQAAAACCHMYNAAAAAoGNDg0AAAABAkGSDQAAAAAC2coNAAAAAYHGIg0AAAABAdZKDQAAAAKCcq4NAAAAA4FC4g0AAAACgfNODQAAAAGCGxIRAAAAAICzLhEAAAACgd/uEQAAAAACIXYVAAAAAAA9jhUAAAABgUaOFQAAAAABk3oVAAAAAIO/jhUAAAADgpvKFQAAAAGD2JoZAAAAA4C8xhkAAAABgDzaGQAAAAGCYO4ZAAAAAICdxhkAAAADgIYuGQAAAACArGYdAAAAAYL2Zh0AAAACg5yiIQAAAAMBdTIhAAAAAIIiKiEAAAABgmtWIQA== + KBZXds7jZUA= - + - sRcUQLIRH0FJ/xpBBMnLP5WfqD8tbhJAUAynQPY2/UCGSopAa0WtQK8ZvEA2NPE//RuHQC87sUHeAYBAThTfQI5V8D9ba6ZAoZrwPybRHEHZzOxAVTxnQMGzoUAe6qhAa98AQWNWAkED0iVAMA4lQX7maUExeglBdVU4QOJ0GkDNakJAcI+HQTtT6j8ye3BAPn8xQchsC0HsNkJALtEFQSwwA0EH0hRBOLo4QKLHM0HUygRDTwAwQvGh4T+b+aVA7rO0QD0pokA5ABdB300OQQzoS0Bf5/A/9HOxQb6UBkEgkvhACrc8QW0PbkHd/wpAyCUPQTSpcUG0N1xAIazjQImLC0J2DZpAB8Y6QThb1EEJaaJAQK7LQeCpjUDyfBVCTy3aP944JUIrvZtAbdjaQCgzhUKWQFpBWJIJQrcPGUG+VatA8GO/QHB2jkFpbT9B5tkRQDLcjkAaMUtAeLUzQYnLxkE= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQNheYkAAAAAAMeFjQAAAAMDBtGVAAAAAAFjoZUAAAABAMwpmQAAAAKCYh2ZAAAAA4GZJZ0AAAAAAPl5oQAAAAAARI2lAAAAAQKvYaUAAAADAqOVqQAAAAGDoQGxAAAAAoBclbkAAAABAnqFuQAAAAEAl7m5AAAAAQCEeb0AAAACgmVBvQAAAAADSgW9AAAAAAG7Gb0AAAACArtpvQAAAAGA7FHBAAAAAQNEgcEAAAACALD9wQAAAAKAAc3BAAAAAIBHUcEAAAAAgM0VxQAAAAKDnTnFAAAAAoDJhcUAAAABg0dNxQAAAAADsA3JAAAAAgDAQckAAAAAg5TByQAAAAIA6wnJAAAAA4C/XckAAAACAp/FyQAAAAECL43NAAAAAAE1BdEAAAAAAB5J0QAAAACBcqXRAAAAA4F3RdEAAAABghRB1QAAAAMD1g3VAAAAA4HSXdUAAAAAAYsJ1QAAAAACf43VAAAAAAD3ydUAAAADA5QF2QAAAAECBI3ZAAAAAADxIdkAAAABgBFp2QAAAACBkoXZAAAAAADWvdkAAAAAA38N2QAAAAMBC3XZAAAAAQPsPd0AAAABghVN3QAAAAMBImndAAAAAQMGxd0AAAADgbMJ3QAAAAOCi1XdAAAAAAO/gd0AAAADgRAZ4QAAAACCpL3hAAAAAANo7eEAAAACgGXN4QAAAAKC/gXhAAAAAgEijeEAAAAAg7N54QAAAAECQAHlAAAAAoN4ReUAAAABgzSh5QAAAAIBYRHlAAAAAQIdSeUAAAACAi3B5QAAAAIAfwXlAAAAAQJfieUAAAACgCgJ6QAAAAEDbEnpAAAAAQBseekAAAADAuS56QAAAAOBRR3pAAAAAYFukekAAAAAgvxF7QAAAAKBIHntAAAAA4F4ve0AAAADggT97QAAAAGDRU3tAAAAAYDppe0AAAADgp3R7QAAAAACYmXtAAAAA4K23e0AAAADAe8N7QAAAAAAaNnxAAAAAYHZMfEAAAADAWoR8QAAAAADqkHxAAAAA4OKmfEAAAACA/rl8QAAAAIDOxXxAAAAAQBzVfEAAAAAgjON8QAAAAGALBn1AAAAAIJclfUAAAABAsUN9QAAAAOA6a31AAAAAgDdygEAAAACA1pmAQAAAAGA43YBAAAAA4FsCgUAAAAAgrROBQAAAAIBQJIFAAAAAILhBgUAAAACAFG2BQAAAAKBReIFAAAAAYGuCgUAAAACATYqBQAAAACDQ+YFAAAAAQDQsgkAAAABAmk+CQAAAACDqooJAAAAAYNfygkAAAAAgD4yDQAAAAMBaloNAAAAAIM6wg0AAAABgqNKDQAAAAEAMBIRAAAAAIOsqhEAAAADgDmyEQAAAAKB1KIVAAAAA4CdBhUAAAAAgt4uFQAAAACAUkoVAAAAAQFbChUAAAAAgVhKGQAAAAMCgYoZAAAAAYBpzhkAAAADgwJKGQAAAAKD5woZAAAAAICM0h0AAAAAgi1iHQAAAAGB4bodAAAAAAEVCiEAAAAAgtmGIQAAAAKBww4hAAAAA4NfLiEA= + NrgMGZxjYkDXkZP9yKNsQEMdzoN8QnFAsiNeuPyCd0CeKRjPP5N3QNB0GqNUE3tAnof0IpikfkBoaXt7VhKBQMYi+j+D6oJAaJhppQKbhEAqUMRcDwOGQLl4IlI7y4dAIutJnXqbiEBNFcyfxtOKQLBXooByY4tA24Ekg76bjUAXHZVSSOyPQKGjiypKEpFA08T2GiBakUDp2TccRnaSQB2Ty8Fl3pJAZKd6vHvCk0BGAygYgnaUQBa+38rBTpVAxhofLdg6lkCSrR9i3RqXQEYyFkIu/5dAEsUWdzPfmECNRsU8ROOYQClI6Ulkc5pAP10qS4ovm0BzOLvnj3ecQL90IWDg85xA - + - F9k1QKlt+EB2M5RANO9nQDorFEAwyh1A22ojQCyX8D8il7dBG1WGQEhbuT9idJdAqjUQQcM9oEA9fJ1AKcw1QftchkBLujlAVJ5LQOcBSkDdFXJAyIa1QRVDd0AwHGNBYB7CQFwBUkBZm8JAIwuKQOQEuECcyaZARD6CQE+dJkAcE0NANS9kQFjDyz+4SxpBznS+QCxtvUDw4EhBA/6eQVZyzkDCRVNAZK6eQPZ+gUHYxiRBGZM2QHPBL0D+tc0/tq9nQNdrEEF8naJAmq2EQEM2ykAqTg9BybYaQOICT0FkJzFBhveoQPpzOEFYWQVC8W5nQEfU80AkriZA0lHMP0RBCEE6dLdAsKHdP8m88EC3+NdAIzmvQZEkpUDNwMs/h4AUQEcTjkCRqwFAkRiKQMOOmUBK2yZAqiZrQZIWgEE6xFtA9s+mQOM2uT/zzo5AI91IQG3tlEGKOB1CIXd6QALrBkLMOjVBeDRcQfXkyUBEjNxAEkfQQTOUskHjvqlAjyfGQEZbLUJkabdBenq6QSjVHUHwNBpAqoBeQOYXsEC40FRAuPCvQFKPlUATATBA5jneP5DBkkFc7aRAKnsJQIhvakFqcVZB2nclQNb2E0Ag3nhCxteYQMwNnEDyV9BAAL3UQPIddEGcorFBmI/HQI5UW0HD8GpBx+AiQh5X9kDMKodBLiuQQRI/pj9xG9o/OFjqQLgiZEDWco1BphQ2QbdLIEE3MLJA0rhwQIGZs0EWFHZB2dgKQOcS70BTkO9BRHEhQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIDEgZ0AAAABggX5pQAAAAIC5xmlAAAAAQFwJcEAAAAAgcGFwQAAAACB0A3FAAAAAwMRAcUAAAADATOxxQAAAAIDyEXJAAAAAQO/TckAAAACA9RRzQAAAAEBDEHRAAAAAQC0gdEAAAACAdoZ0QAAAAIBd03RAAAAAAFCPdUAAAADAZ7J1QAAAAEDdNXZAAAAAQBRrdkAAAACAgZR3QAAAAICpz3dAAAAAQDcueEAAAAAA0jh4QAAAAIA2lXhAAAAAQPfCeEAAAABAZNR4QAAAAACQBHlAAAAAAF5heUAAAAAAMHN5QAAAAMDtBnpAAAAAwN4iekAAAACAn+16QAAAAABp/npAAAAAwEZRe0AAAACAlkV8QAAAAIA+0nxAAAAAQEFVfUAAAADAKIN9QAAAAID/j31AAAAAAIyefUAAAADA9rN9QAAAAAB4931AAAAAQCaPfkAAAADABMp+QAAAAACcA39AAAAAQBIYf0AAAACgpMqBQAAAACCQIoJAAAAAQEhkgkAAAACAHpCCQAAAAEBKC4NAAAAAQKR8g0AAAAAgcIaEQAAAACC9m4RAAAAAIOeohEAAAACAcSaFQAAAAGBGpoVAAAAAINXOhUAAAABgmwuGQAAAAMBjrIZAAAAAoBEUiEAAAACgbNqIQA== + KBZXds7jZUAYxSyCnGRqQNzlv3T/InFAjMDylKZDdEAyOsR5l5N1QOIU95k+tHhAMpigze+kfEAdt29v7tR/QB0EFi2jsoFAXA/JjfCagkBhxw7UG/uFQFw+t7ecI4ZAh2g5uuhbiED0p7IPcwOKQLRu3l9KhItAu9NYH98LjUBIT4KboYyPQFlZ7CYLUpBAIBcBZWySkUCjSb7ENlaSQAQt1GyiFpNAusyQl2fqk0DQ4dGYjQaVQE4dpgrOGpVAUPnIrePKlkDwfiJeCj+XQDeT0VggI5hA8lpFASDvmEDGuy9OTOuZQHJyPBZ2s5pA29BwT3IHm0CIh30XnM+bQFvoZ2TIy5xAOp7iJeJbnUA//jps/k+eQA== - + - EiF+QNxxB0BAhMo/Q00dQNACpkAjBFFAPmnyQL80FUFXHKBARfAPQYQSyz/3nnBAUODFQDcKvUBRRbg/O7u9P+lxXkDMwpJADZxtQJ2t+ECCI+dA2WGJQF5CAUD1eiFB7dI6QV/k80AGZz9AKLoLQW9+CkDb2d0/2mjLP20BgEFdB/E/IjCVQHBe0EA76aRAHxIpQTpb5EABhTBC6hLIQFMuc0HCIdNAC5OyQKMs6kDYaotBfdgvQIc/TUB/n69BPSogQT8FQ0G5sgZBsoq6QKxx5kCCuOhAxQMdQKY8SEGTTWRBERuFQdTGcUFQ38lAMZGdQPa7L0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYJ6+ZUAAAAAAskdsQAAAAMAmvW5AAAAAAAplcEAAAADAAcRyQAAAAEAPRHVAAAAAwMkAdkAAAACAuRV2QAAAAIAVBndAAAAAgJi+d0AAAADAZBZ4QAAAAMBuSXhAAAAAQJYyeUAAAABAzKV5QAAAAMAp53lAAAAAQNZge0AAAADA03F7QAAAAID4AHxAAAAAwCw/fEAAAAAAsFp8QAAAAMBDo3xAAAAAwLQCfUAAAAAAYiR+QAAAAAANSH5AAAAAwK+PfkAAAAAA+al+QAAAAMDxy35AAAAAANIUf0AAAACA11p/QAAAAEB0s39AAAAAQNvIf0AAAABA1dZ/QAAAAEAi439AAAAAAFsdgEAAAACAPiKAQAAAAEBIS4BAAAAAYMpjgEAAAAAgDJqAQAAAACDmqIBAAAAAYJ/ygEAAAAAAqzeCQAAAAKDJQIJAAAAAoF77gkAAAAAgYzKDQAAAAKDFLYRAAAAAgOwyhUAAAAAg5aSFQAAAAODcq4VAAAAAQM3ihUAAAACguDaGQAAAAADFcYZAAAAAIKuEhkAAAADgq+CGQAAAAOB+6oZAAAAAQHRih0AAAABgnXOHQAAAACDa0odA + KBZXds7jZUDOIQhxcmNnQANJK5hVInJA1c6DlSfickDKo7/RbVN4QA== - + - xbHdP38QcEHuPvA/oG+LQJSh3T/cnUtAHn9UQDPEWkABuI1AsnBoQHpEeEA14MRAVn4vQD3P1UB9b7tACHoKQNJUO0DIoZhA6wPLPyhOCkCdWLg/kw1LQGiA3T8O2iRAK2oEQSRr4UAuPotAdraCQBlSk0ALbXpBvJL2QB0zcEA5UFtAFDOoQGoBjkAJ5ZdAf8GvQN2UNEFNamZBZ0kSQDOSlkG20GBB6s/SQBLDbEANdYRAgLfKQSjGokERMpJBcHmcQPtIE0FHr9lA1HAcQBXUWEEIL2BAiHvRQMpC3EDYFnJB + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAGkiZEAAAADg66JkQAAAAKBQg2VAAAAAQFTmZkAAAADA/AhnQAAAAKDxomdAAAAAgE29aEAAAAAgrAJpQAAAAKDiIGlAAAAAQJF/aUAAAABg/AVqQAAAAIDv3mpAAAAAgCwpa0AAAACADWdrQAAAAGBopGtAAAAAQA7va0AAAACAOkBsQAAAAEB/0GxAAAAAgKyHbkAAAACAUcluQAAAAKDXim9AAAAAQEXob0AAAAAAd2JwQAAAAIBHb3BAAAAAgCaCcEAAAADAYaVwQAAAAGA0tnBAAAAAgDAwckAAAACAzFNyQAAAAACy1HJAAAAAAPrkckAAAADAfRtzQAAAAIByQHNAAAAAAFCyc0AAAAAA6cFzQAAAAEDD4nNAAAAAgIMqdEAAAAAAvrJ0QAAAAMAgRHVAAAAAwGFydUAAAABA2H91QAAAAEDGiXVAAAAAwLihdUAAAADAo9h1QAAAAAAAknZAAAAAwBDidkAAAABAMTJ3QAAAAICFQndAAAAAQIi0d0AAAAAAFc53QAAAAABmN3hAAAAAgGKdeEAAAACACPJ4QAAAAECR/nhAAAAAgJCHeUAAAAAAs8V5QAAAAACTD3pAAAAAgONhekAAAAAAo4x6QAAAAEBb4npAAAAAgKD1ekAAAACAd3N7QAAAAECBlHtAAAAAAKTVe0AAAAAAUOZ7QAAAAED083tAAAAAwOMwfEAAAABA7zp8QAAAAMDxY3xAAAAAAERwfEAAAABALoh8QAAAAMBM13xAAAAAwJ7jfEAAAADAyvR8QAAAAMC7Ln1AAAAAgDFnfUAAAABA3999QAAAAEBjNH5AAAAAwGRSfkAAAACAToN+QAAAAECnon5AAAAAAB20fkAAAADAw8Z+QAAAAAD24n5AAAAAQKkef0AAAAAA+J5/QAAAAIAJw39AAAAAgK3kf0AAAAAAI/Z/QAAAAICSIYBAAAAA4KQygEAAAACgf4qAQAAAAOApkYBAAAAAIKlygUAAAABgiIiBQAAAAKALkoFAAAAAoMjlgUAAAADgmRuCQAAAAGAHK4JAAAAAYCczgkAAAACgGjqCQAAAAEDZwoJAAAAAwIjLgkAAAABAB0mDQAAAACA1w4NAAAAAoL7Jg0AAAACgRRyEQAAAAGAbIYRAAAAAQBMvhEAAAAAAnpyEQAAAAGBgooRAAAAAYECqhEAAAAAAzzKFQAAAAGBskIVAAAAA4OYphkAAAABgKjSGQAAAAGAMzIZAAAAAgGHyhkAAAADgvAKHQAAAAADeDodAAAAAgNVah0AAAADg22KHQAAAAIA+tIdAAAAAgJNEiEAAAACA2aqIQAAAAEAztYhAAAAAgK3AiEA= + NrgMGZxjYkD1hHOUyKJnQAoahmk8YnBAeiAWnrzickAKeGK9lHN3QAKnB+ytc3tARRrbkkSUfkCxtcs+ThKBQIEC8h+DQoFAQrpM14/Kg0DlL7w8D1uEQGALCcLnWodA3A48a0bzh0AaXum5X1uLQEA8BojSi4xAfouz1utzjkCgNfpYPwqQQD/dUABM/pBAUkxfZ4WWkUDx87UOkkqTQK91T2PBlpNAbeP1pa0WlUA+nq1Y7V6VQB/6WrTzopZAhyDuJA67lkDONJ0fJJ+XQJ8RUslJZ5hAXV37FFBnmUBBc84chouaQN108immK5tAwYrFMdxPnEBZZDLBwfecQAoNBv78q51A - + - UiQpQPr/BEHGn+pAxF12QY/kAEGrEw1BbpUKQBB3rkAPx7tBnQHLP1xVnUDrV4FAGPl1QDdxkj9+UalAs+akPzylokDa8ThAGlLDQbMHgz9o/DhA3XuPQLsEyz99JSNA+VPcPyUGFUCN2qQ/7BIdQNkHtUCZH1RDc4+BP2VuMEE6r4BASHfMQZTlbkAnPUtA4oR1QdW13T9RV90/Wtf7Qx7gLUGj26JA11d/QLnWPkB4RgVCamfpP/KMEkJib1RAxIGIQV24uj+qOTVA2NB7QbYKzEK/uvpBQWSBQOI5i0JIQ5xA2+cZQMHreEEGYPVDmmPNQU8LIUFQY7xACyV+QccrAUASi/U/PievQNCGCkC2vrZDw2rZPyKXU0EaqIpBTABlQoaIYUG42kFAL8fvP0PEj0Gu0B5BwjmhQGQLLEAiJpJDUC7qQHYHyz/oGrlAgE0BQMqPckEG+o5BAXh4QdH9bkLn7mhBRN2/QAQ69EOnHN1BeyPQP/8uqEO2RoNCTWypQFi1SkHKrw5BhKcEQiXBB0E4AUxEGzQGQ1tGN0GUlJtAhEQWQf+opEAOxYRBZtjBQMLsNUIEqXZDUL2NQViF6ECrdvNAgJHzQBM+Z0Bpp88/h5M+QDQmHUARoc5AlLHoQ8JZhkIAw21Au92uQFjoy0JC6HxByAMUQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoK6faUAAAAAA1ghqQAAAAMD/PmpAAAAAIPPBa0AAAABAKuZrQAAAAMBiY2xAAAAAIHjCbEAAAABAC2dtQAAAAMDrnW1AAAAAwL4EbkAAAAAgFx1uQAAAAACvQ25AAAAAwF3IbkAAAADgAm5wQAAAAABt5HBAAAAAgNADcUAAAAAADU9xQAAAAMDngnFAAAAAAD+lcUAAAABgV7RxQAAAAOD/AnJAAAAAQD+yckAAAAAAW9JyQAAAAIDesHNAAAAAgI3Oc0AAAAAghTR0QAAAAADBYnRAAAAAIPuudEAAAADAlhR1QAAAAKCdQHVAAAAAQGbldUAAAACAtRh2QAAAAMCSPnZAAAAAwI5UdkAAAACAFmJ2QAAAAAChAndAAAAAwCJkd0AAAABAVXV3QAAAAADYg3dAAAAAQGWVd0AAAADAOCx4QAAAAICTX3hAAAAAwNmUeEAAAAAAjch4QAAAAIBzRnlAAAAAQB2HeUAAAABAg5V5QAAAAEB/vXlAAAAAQBbeeUAAAADA5/N5QAAAAEAoCHpAAAAAwNQTekAAAACAMmZ6QAAAAECop3pAAAAAwIYVe0AAAACA81N7QAAAAIDakntAAAAAQInke0AAAABABP97QAAAAEBdJHxAAAAAQPdCfEAAAADA7FZ8QAAAAID8tHxAAAAAgHnGfEAAAAAAzDV9QAAAAMC+XH1AAAAAwPi9fUAAAACAEdF9QAAAAAAp831AAAAAwHUEfkAAAAAA1hR+QAAAAIA6Vn5AAAAAADR/fkAAAADAv5F+QAAAAMC0nn5AAAAAQGXVfkAAAACADf5+QAAAAMCmHX9AAAAAgDwpf0AAAAAA03R/QAAAAMCxhX9AAAAAADWZf0AAAADAU+5/QAAAACDLMoBAAAAAwAQ9gEAAAAAgDUOAQAAAAOBrYYBAAAAAIFKXgEAAAABAiruAQAAAAOCUw4BAAAAAYG3RgEAAAABAed6AQAAAAMCL8YBAAAAAIAgEgUAAAACgiSiBQAAAAKD+MIFAAAAAoJE3gUAAAADgHU2BQAAAAIAIVIFAAAAAAGxZgUAAAADgyYKBQAAAAKAVi4FAAAAA4KiRgUAAAABAeZiBQAAAAGCVnYFAAAAAoCylgUAAAADgyLKBQAAAACBDx4FAAAAAoJrbgUAAAADAq+KBQAAAAMDP64FAAAAAYJL6gUAAAABA3AeCQAAAAKAwLoJAAAAAIB0zgkAAAAAAMDqCQAAAAGAkUIJAAAAAgMtcgkAAAADAapSCQAAAAMAVooJAAAAAwBSsgkAAAADAlrKCQAAAAICbuoJAAAAA4GTCgkAAAAAgL8uCQAAAAOAd14JAAAAAoE7ngkAAAADg4y6DQAAAAGDVOYNAAAAA4ItIg0AAAACA3VKDQAAAAGDVW4NAAAAAIMJjg0AAAABgFWqDQAAAAKCZeINAAAAA4MyBg0AAAABgSIqDQAAAAIAykYNAAAAAQDGZg0AAAABgdXuEQAAAAIBRmoRAAAAAwCumhEAAAACgH7KEQAAAACAPu4RAAAAAQMPLhEAAAADAjtuEQAAAAODq+IRAAAAAIOf+hEAAAAAAGQqFQAAAAOAkIYVAAAAAYPgmhUAAAAAgxEKFQAAAAMAqS4VAAAAAYIddhUAAAACgiWOFQAAAAAD7aYVAAAAAoE98hUAAAADAW4aFQAAAACBNrIVAAAAAoCGyhUAAAABgYsSFQAAAAOAW3IVAAAAAwC72hUAAAABAXvuFQAAAACAbCYZAAAAAIDQRhkAAAACgLSaGQAAAAACYK4ZAAAAAwME8hkAAAACAoEmGQAAAACC0UIZAAAAAoNhrhkAAAAAg64OGQAAAACA/joZAAAAAgH2UhkAAAAAg8pmGQAAAACDOvYZAAAAAQMrLhkAAAAAgnNqGQAAAAECM4YZAAAAAYBLzhkAAAABAdwaHQAAAAMCWJIdAAAAAYMAxh0AAAACA2DyHQAAAAEDneYdAAAAAIASSh0AAAAAAhpqHQAAAACB/s4dAAAAAAHK+h0AAAAAgAsWHQAAAAIAaJohAAAAAQCZJiEAAAABgm0+IQAAAAGAUkIhAAAAAIMuXiEAAAADgutuIQAAAAGCl4IhA + NrgMGZxjYkByWoXuS4RpQJi98BGiw2xA6q+08yjycUCUuYxC6RJzQA== - + - dQsIQWEvs0CGVupAWaQjQbaLKEEEL/A/biyQQIPr40ATkrRAobjyQMWqkz8XvW1A3DpbQsySAEFWqy9AL/pJQJSc3T/r/LBA5fdXQTVuoEBM9W9A8bXHQOEwZ0Bk/btAHqTzP8YlpUCLYgFAJiQWQX0YNkCde0hAHxUVQTs/AUBivL9AyZZpQfJaXUA6zNpA5D/OQITYf0I3fOlA1j3LP4Y2hkAMSCZAfz+QQeXkFUEg10NAODbzQISXgUCsxHJBTdt5QQ70BEEfCh5C9IvBQXApiUDWxuVA30JCQJq170ARl4FAHQ6MQWvhOkH3oM1AvmmNQbTPukA43glBnMC3QT1beEFphcBA56BBQVQwhEH7jbhA6QdLQYE3AUDCnrhAK/BIQMu8eUDnCgZBBNcEQdVfUUBOI3VBInLyQGFgYEPo9/RBFmOeQD0rq0Dzk/dBmr2AQWyHSECDbDVB++wsQUmWCkAX711BYCXjQQzhoUDNpVhBxQ1DQO7kcEBgTW1AJJBjQdhliUFHmYlBkTOoQAu1JURJSspCAyM0QlaBNELMQq5AED2WQAcCJkFs6z5AtpmMQtvZH0ETKcJAod58QdUxYkHJ/xFBZWWVQUEXKEFQPkJBx6wNQtBfbEHC4RBBUGWCQJCjC0Fm6RpBTDFeQcJZK0FTOy5BST2DQZ/2pT/lxuJADENtQf0CNEG+D7lAg45UQLlsqkH3K4lA0tA4QBmZkkDUTIhBhF9SQi8kyz/4Le0/gn/qQPoJOUA6Xso/rYzzQFZL70ABWBZCD/1FQSiKikD48MhBRQfSQa5bA0LQ+99AJiegQHB/BUPmR85CcIE+QaTvUUK4hABDl3OFQiRS3ECQGA5B9h5CQ2Z1TUJCcMVBCN4/QYDP6UBNiZJAQdRUQC8erkK3BRZCALeAQagaGkBovWJCTFISQjY5MULczCVBe57IQY/uHUOOmUxAwNvKP0sWQkAoEY5ANRPOQci4M0Fo1LRBKDbLP9kjhkB7EClC814VQatQWkETY5xBzK+RQSaOOEFjZT5CGvAPQkQnAEMNFCFB + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4OQocEAAAACgwWVwQAAAAEAitHFAAAAAgATQdkAAAAAAWkt4QAAAAADjVnhAAAAAoKhjeEAAAACAbnR4QAAAAEAMVnlAAAAAACvifEAAAADAd5J+QAAAAMDOK4BAAAAA4PKLgEAAAABg7UyEQAAAAGC0b4RAAAAAAMTChEAAAACg1k6FQAAAAIA1k4VAAAAAwF7shkAAAADAZXWHQAAAAKCLe4dAAAAAYHeah0AAAABgo5eIQAAAAMBPqYhAAAAAIGfGiEAAAACA69KIQA== + eg5Y0/EhYkA2uAwZnGNiQDAn7Gl4w25AG7piYCZDcEDuZ/o5VNJzQGy6cP9Ls3ZA7sXWjazjekCTe7h2+sN+QPRn3j1JmoFAOybk7U66gUASuZoooSqFQAUuraDQ0oZACZgaV9jCiEAuLjRw4wqKQDaev/w564tAVy67P/ZCjUA2za0m5nOPQKuu1DTRZZBAr2Yae/xVkUDCMacHAvqRQMPm3eIF8pJAPiHnnh3Gk0CoakK8Rn6VQM1JRZRJjpVA4l6GlW+qlkBKzL4Pg6KXQCxPWDObrphAyuO1JNlmmUBAzxubpEqaQN/49iX/gppAwOYSsPoOnED2e8n4LxecQD/+CcVQc51A - + - NQ1CQFU+NkBMV6tAmfgTQC/DE0DorEJB/WkFQS10zkAT67hACerKQBCAv0B8uYpAUtbgPxdkSECHUqBAWmDwP0n8cEEUTsJAAszuQJxcAUAs5K5AA/vvP23yJUH4kbBAGg6JQNtWQUE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgL1LW0AAAAAg+IVcQAAAAGD/yVxAAAAAAF1NXkAAAADAHCFgQAAAAIDBpGBAAAAAAHQiYUAAAADgfEViQAAAAADzZmJAAAAAgH8oY0AAAADAjmRjQAAAAOAd5WNAAAAAwK2HZEAAAADAsUdlQAAAAEAVpGVAAAAAQHfgZUAAAACgpBtmQAAAAIAV5WZAAAAAQFwnZ0AAAAAgxV9nQAAAAMCz5GhAAAAAwHigaUAAAACgqkZqQAAAAOBglmpAAAAAgPlfa0AAAABA76NrQAAAAICMxmtAAAAAABTga0AAAADA6KpsQAAAAEDX4WxAAAAAAEQlbUAAAABAUWltQAAAAABMo21AAAAAAKO+bUAAAADAVuNtQAAAAIBqA25AAAAAQERHbkAAAABAHWVuQAAAAMAAhm5AAAAAAJSubkAAAABA9iVvQAAAAIBoP29AAAAAQO/pb0AAAABgkBdwQAAAAMDLJHBAAAAAYHZRcEAAAAAAt49wQAAAAIA5sXBAAAAAwDLxcEAAAAAATx5xQAAAAIDNOnFAAAAAIKVScUAAAAAg/2FxQAAAAAATb3FAAAAAgFB/cUAAAACArpBxQAAAAEAYoXFAAAAAgBvUcUAAAADgeOxxQAAAAOA7/3FAAAAAQEYUckAAAADgTyFyQAAAAMAVNHJAAAAA4II+ckAAAABgAVRyQAAAAGDAYXJAAAAAQNh3ckAAAACArI5yQAAAAECPs3JAAAAA4B7CckAAAAAAodJyQAAAACAXBHNAAAAAAEkSc0AAAADAyiRzQAAAAKDJPnNAAAAAIFNdc0AAAADgnW1zQAAAAAAvk3NAAAAAALiec0AAAAAAPLRzQAAAAICnvnNAAAAAIEPRc0AAAACAI+BzQAAAAOAm8nNAAAAAwGv9c0AAAACAUxJ0QAAAAKBwXnRAAAAAQCxvdEAAAAAAF9V0QAAAAAA+43RAAAAAQN7zdEAAAADAgBF1QAAAAEDTHXVAAAAAgIEsdUAAAACAgXJ1QAAAAAAqgXVAAAAAQMiQdUAAAAAgH+51QAAAAIAuBHZAAAAAIJUfdkAAAABggzR4QAAAACDfInlAAAAAgFgYekAAAAAgRUJ6QAAAAKAeZHpAAAAAINzRekAAAADgceJ6QAAAAMC70ntAAAAAwL4MfEAAAABA8S18QAAAAOC7RnxAAAAAwDlofEAAAACgY+h8QAAAAGB+Zn1AAAAAoOxJfkAAAADA8nB+QAAAAEBPsH5AAAAAIJvOfkAAAACg/TF/QAAAACCElH9AAAAA4PMZgEAAAAAgyySAQAAAAIBmbIBAAAAA4C6EgEAAAADAuZKAQAAAACD5m4BAAAAA4JyjgEAAAAAg3HOBQAAAAKBD+oJAAAAAwG+yg0A= + KBZXds7jZUD60UzrnGVsQBTpB48/A3JA/caCySZEdUAUR+TilxR5QA== - + - qCbLP82JeUDwCvdAGrfvPzcPAkFxdt4/Z3RxQJs/CkC6c7g/ZVFCQBcOyz+xioJAL6gKQEI5U0BcYupAWMLmQJgM8D8zl/NAXVRTQYXngUBvrJhAh6jdPzZmzkAfjU9Bzl7kQEN7m0B61C5BPeaTQCKCOEHMQcFA1lUSQJn7K0CLUtBAZBXEQTFlk0GqcCZAVC+AQYaw30DG13BB2mJtQHqNAkGe6AlC/K4OQeEPfkHIa8k/oGtBQVoRpj8qXixBvYpkQEKa3T9M5itB/tbdP8X7FkHMF4E/lnebQA3MEEHyw1RA7kIwQOdKjkErY3ZAWna/QRwbjkBG3upAgD05QGPQ7D+Aoy9AXF45QMUqx0FjHzlCWl2eQDTwnEHWU5NAbPXGQFAuUUBQumZAdpleQKoG0ECm+NBAwB39P1DmgUE9TXJCOI9FQt6WV0HSUDNCn3XFQDMGikFD30tAnWAmQE7FiEHPauFADFs5Qd7S8UBPEZ1AxU8FQme070GcMM1BfgS4P8zRs0E6hCZAeI+pQJO2WkCw7rBAtiemP0VbJkAMX9RBKfiyQBnpQEHZu7lA3vpsQMieQUFUCndApj+5QKyz6kAal3xCAuYcQF51qUEibRRB7GLQQJhBbUAi3MBAAOGKQYPUYkFvBolAhlevQKg4rUHOrv9AB/tBQHuhKUG0aPNA8Kd0Qg== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIKddZ0AAAAAgW4hsQAAAAMABzW5AAAAAgNzqbkAAAAAAOtJwQAAAAACLj3NAAAAAgGdzdEAAAAAA/oR1QAAAAMAIoXVAAAAAwPrBdkAAAAAAOXN3QAAAAEAv0HdAAAAAQClTeEAAAAAAM415QAAAAICiu3lAAAAAgCIhekAAAAAALmt6QAAAAECps3pAAAAAQNDle0AAAACAjvt7QAAAAEBvsXxAAAAAAI2FfUAAAAAAVL19QAAAAMB1+31AAAAAAK1TfkAAAABAdHF+QAAAAMAbV39AAAAAwAJ1f0AAAADAYoJ/QAAAAEAQmX9AAAAAQLq4f0AAAABAE89/QAAAAMDi4H9AAAAAoDQSgEAAAAAAdSuAQAAAAGAWdYBAAAAAIEmGgEAAAAAg/5qAQAAAAGDPwoBAAAAAoPTrgEAAAABgpCqBQAAAAED+QYFAAAAAgMJNgUAAAABAa2yBQAAAAEAPfYFAAAAAIJmCgUAAAADAEIuBQAAAAKC0lYFAAAAA4A+bgUAAAADgw66BQAAAAIBqv4FAAAAA4KzJgUAAAAAgBdOBQAAAAIB52IFAAAAAgHDfgUAAAACABO6BQAAAACD++oFAAAAAgBVdgkAAAAAgkGaCQAAAAGB3n4JAAAAA4Kgmg0AAAABgPyyDQAAAAGAhM4NAAAAA4HRIg0AAAABAEFCDQAAAACBaWINAAAAAoKhMhEAAAACAhpuEQAAAAMA71IRAAAAAANj5hEAAAAAAkz2FQAAAAKD8QoVAAAAAYIZThUAAAABg/1uFQAAAAMDMZ4VAAAAAoLVthUAAAACgF7GFQAAAAGBgt4VAAAAAIH9NhkAAAAAgHIuGQAAAAACDkoZAAAAAYK28hkAAAACAJeaGQAAAAKB584ZAAAAAoD0ph0AAAADg3DOHQAAAACBbd4dAAAAAIMsKiEAAAADA1peIQAAAAOBSqYhA + NrgMGZxjYkA= - + - 3oWYQJED8D+0VW1Ao5FyQNu1yj/Ho4pAdbvcPyscq0DXkNFAnBG8QJZsrkBOigpAcmEKQIthQUBwZ9xBDazYQEoEAUDTboFA0ralPzsdIUEf2cxAuCSCQKGbOEEwz5ZAN83KP/64LkDWtc5AckKJQdeZaUE5p3lAv2xmQXGBI0FWK1FAfMLnQFTdHkGMay9ASgvdP1oXCkHpQFRBxJC9QJjHqUBC1JU/H9EUQHzQeEFH0/pAMxylQqx8ZkFQMUFBycjJQHO73kCEfbg/q5WVQVxkt0FhUZxBdT35QKi13T8zyPBBG4zEQFxdS0C1oS9Ag7e2QLpDyj9OQt0/f97JQBrD40AuDaBA32YoQO75k0D/r11AqO0XQc6CGEL8cQBBd/mbQdWx0EDNfCtCszikQRlpC0I2ZkhBfIKcQehpP0DWC4hB9k5uQf4OSkFYj3dAc/7MQL7CDUGJl/A/sChCQKjre0E2vnZA + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQHkIZUAAAACAccVtQAAAAICyxXRAAAAAwJxldUAAAAAAtnB1QAAAAMA+gXVAAAAAwBYrdkAAAABAg1J2QAAAAEByj3ZAAAAAgKfedkAAAABAfQJ3QAAAAMAg8HdAAAAAQAkFeEAAAAAAhkR4QAAAAMDLQnlAAAAAwOaveUAAAABAXnN6QAAAAEDk3HpAAAAAwFfnekAAAABAq2Z7QAAAAECnJ3xAAAAAAGdTfEAAAABAvjV9QAAAAMDt331AAAAAQJztfUAAAABAjiJ+QAAAAMCBv35AAAAAwKT5fkAAAADAFSJ/QAAAAID0VH9AAAAAQGqIf0AAAABAipR/QAAAAMBj7n9AAAAAIHA5gEAAAACgrUiAQAAAAGAQgoBAAAAAwMGrgEAAAADAfMKAQAAAAKBoyIBAAAAAQGbigEAAAACgWReBQAAAAKCYIYFAAAAAYCApgUAAAACAjjGBQAAAAGAQUYFAAAAA4IhYgUAAAAAgATGEQAAAAECOOYRAAAAA4Il4hUAAAADApxKGQAAAAOAXQYZAAAAAgPVThkAAAABAOF+GQAAAAGB6bYZAAAAAIJf7hkAAAAAAMASHQAAAACDZKYdAAAAAYE66h0A= + NrgMGZxjYkDsFOgHcuJjQOJgFSPMRGtAdmjQV5ECcUBxDmdlvrN0QJ0pGM8/E3lAX8xmwizke0DOQ3oRTBKAQC+VIYvCeoFA+W38E5hKgkD2wMeaLoOEQBe/uP7v2oVAI8dsQJCrh0Cqn1w6R+OJQLanEHzns4tAO6Td0oibjEBF0G5xE3yNQMrMO8i0Y45Aa+r3hCoakECv1u8BBjaRQLXaySJWHpJAxlnC1DbKkkBEAygYguaTQKpvldxsTpRAWRhpGagClUAqh4zxwhKWQNkvYC7+xpZApnbMiN7el0AjIDLMKcuYQCaOw500o5lAozcp4X+PmkA8owSfWr+aQOy5aa2g65tA - + - LceTP84auD+waqc/coAjQdvwrUBl1lRAWiFSQMtuIkHZ9xJA8FEvQFsrZ0BpbVtA078RQLr9gD9tKjVBxFG7QNKKE0DDFLlANDndPzivOEAud4RApXBdQFxpnECJOKJBZw75QNEmi0BdPi9AmupRQA74SUHOhxBAzKxIQB3ISEArhdxAZoPhQOSy+kCdJspBGILGQYTb7kDnEC9A/kCgQZT8HEAE5EhB6MlMQBfUE0DBQTFBn2AdQWPsHEBey6BABWqDQZ9sykBi5JFBq91/QU6m1UA3PKZB2peWQR0Q3j/Oj59AYXw3QQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAAF5nYUAAAABgB2RiQAAAAIDMomJAAAAAYFlZY0AAAACAw6hjQAAAAMDAwmNAAAAAwBHnY0AAAAAAOOhlQAAAAMB9aWZAAAAAAAPFZkAAAAAgviRnQAAAAGB1RGdAAAAAQKfjZ0AAAACAlCJoQAAAAIAmqGhAAAAAAHjHaEAAAACAeedoQAAAAICUKmlAAAAAgHdiaUAAAACgUHhpQAAAAEDp2GlAAAAAgKQfa0AAAACAxMFrQAAAAKCYAmxAAAAAQDdMbEAAAAAAFGZsQAAAAEBni2xAAAAAwNqubEAAAAAg/8ZsQAAAAACzHW5AAAAAgKpKbkAAAACAWoxuQAAAAMBupW5AAAAAwMfhbkAAAACAHdFvQAAAAKCsMnBAAAAA4OzAcEAAAADgcNJwQAAAAICs5HBAAAAAQNsCcUAAAACAdFBxQAAAAACVZnFAAAAA4LeBcUAAAACg/tBxQAAAAED+4XFAAAAA4FsBckAAAADASoRyQAAAAMBmlHJAAAAAwDKmckAAAACAPUJzQAAAAEDshHNAAAAAILqUc0AAAABAr6dzQAAAAIBzunNAAAAAoD3Oc0AAAABgBO5zQAAAAAAoQ3RAAAAAAA9SdEAAAACAAGF0QAAAAADvfHRAAAAAoB6jdEAAAABAGcV0QAAAAAD+HnVAAAAAwFMudUAAAADAljh1QAAAAEAdUXVAAAAAwA18dUAAAADg+8Z1QAAAACAtAXZAAAAA4IQzdkAAAADgBlR2QAAAAEBwcHZAAAAAYNuxdkAAAADAx792QAAAAKCb1XZAAAAAoO/pdkAAAACgLvd2QAAAACAPBHdAAAAA4AQRd0AAAAAgiSl3QAAAACAXe3dAAAAAID0IeEAAAADgNBJ4QAAAAAA5I3hAAAAAIHQveEAAAADgDkh4QAAAACDzcnhAAAAAAJ6AeEAAAAAgnY54QAAAAGD3v3hAAAAA4M3neEAAAAAgMP94QAAAAACSIXlAAAAAIDwlfEAAAABAjmJ8QAAAACAdpHxAAAAAoFBqfUAAAAAgHXR9QAAAAOCjhX1AAAAAwIWafUAAAADg5mF+QAAAAKBfhn5AAAAAQIhGf0AAAACg9FZ/QAAAAOAwzH9AAAAAoC8ygEAAAADgbHeAQAAAAOCC5YBAAAAAwH4pgUAAAADg9jqBQAAAAABesIFAAAAAoAG2gUAAAABAQ9qBQAAAAGDyCYJAAAAAANklgkAAAAAgjTyCQAAAACBMFINAAAAAoKobg0AAAABAHiKDQAAAAOB9kYNAAAAA4FGcg0AAAADgB6ODQAAAAECcrINAAAAAIMMLhEAAAAAge3qEQAAAAGCeA4VAAAAAAB8MhUAAAACgWOSFQAAAACC2JIZAAAAAQBk5hkAAAACAAayGQAAAAGD1s4ZAAAAAIA2+hkAAAACga8qGQAAAACCd+oZAAAAAwIs7h0AAAABg+KmHQAAAAGCQs4dAAAAAgMTniEA= - - - - - - VGakQI4WNUD7hFRAHyyVP8/kGUBQX4tAigIBQCmzmECidKVA68rgP1xfXECAMGdBYycjQITx0D8smXlA7TGXQF5at0B66hRAZ//cP+VKnUD76j5A+xreP+N8yj9/uYZAgF2JQVwOxj/CIiZAx9sHQbzaZkA0sRNA+3IVQexibUE7jt8/xRpLQMLe3D/7sqU/OgDgQEt2YkH0HJlAeYKbQa1+pT8beBtAOT5LQOByw0GJRbdBT2UkQSUjQUH8buZAA0WUQPzsfkFWcTJBKfcbQZZHZEF675RA4EkKQPE9fEG4Lg9B7OZ/QZQxCkCTqEBB1aYzQXRmQkBjXnBAa/NmQMF14ECNHRVDePQeQdUZuD/GzZNA1dJBQKukVkEmwjxBi2kFQYHHj0AU+11BCHWqQR/wDkFtp6VAGbEMQlZBgEH+wxZBx+UHQoJW9kHIWNxALuEzQZOEVUDcCoZAPiU+QJD3rkHeMB9BM7owQo3720E14l1A3OD0QI5XjEEjVM9A8TuSQGVA3T//RPRCzyBKQa5OI0DdVQpAVUc9QVYOQkAsRtJAWOzuQI1SXkBpT3RBujHNQDmCf0Bd5jRBK42dQGlbEEJXjG5A5rddQJTBCkD3mxxBGajIQbN1iEFv/lBBHgphQaGteEEH+whCu0MSQa1rVECjQwJD2iykQX6U7z9/26RAipxdQBgfo0ItLplAg895QdCROEAvRB5A3L/GQkrALUE8je1A6mYaQQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQL1GbkAAAACAxNJwQAAAAKBY6HFAAAAAIFYTc0AAAABArrVzQAAAAACLRHRAAAAAgNf0dUAAAABArVB2QAAAAMBmg3dAAAAAwK/EeEAAAACAbxZ6QAAAAEBqRXpAAAAAwP0+e0AAAAAAPLV8QAAAAMDDW31AAAAAAL6TfkAAAAAAmeN+QAAAAMC29H9AAAAAoJsrgEAAAABASH6AQAAAAOCrQIFAAAAA4PqDgUAAAADgPaeBQAAAAEBtuoFAAAAAIKPRgUAAAACghgiCQAAAAEDhQYJAAAAAANJWgkAAAAAAX1yCQAAAACDTwIJAAAAAgFbKgkAAAADgqdqCQAAAACD49YJAAAAAIHoIg0AAAADgNE+DQAAAAGDteoNAAAAAIJmSg0AAAABgdpeDQAAAACD+pINAAAAAwMPOg0AAAACgP/qDQAAAAMCmA4RAAAAAwDsKhEAAAAAgSSSEQAAAAGDcUoRAAAAAINZahEAAAADgMXGEQAAAAGDMkYRAAAAAQNeZhEAAAABg4b+EQAAAAIBd2YRAAAAAYPrqhEAAAABAdxGFQAAAAICNG4VAAAAAwPQqhUAAAADgXGOFQAAAAGBnaYVAAAAAIJtwhUAAAAAAkYqFQAAAAOBHwIVAAAAAoL7ihUAAAAAA5OuFQAAAAGAZQoZAAAAAAAlMhkAAAAAAPHSGQAAAAOCofYZAAAAA4B+UhkAAAACAiZqGQAAAAMBK3YZAAAAAYKkKh0AAAACADROHQAAAAGBFGodAAAAA4Ccwh0AAAAAAjzuHQAAAAIClRIdAAAAAwPRKh0AAAAAg1lGHQAAAACAyaYdAAAAAYEGhh0AAAAAgnrSHQAAAAGApzYdAAAAAAEDUh0AAAAAgUt+HQAAAAGDo54dAAAAAAJMkiEA= + NrgMGZxjYkA= - + - hGAuQeVoZED63GRAadAAQFkxAUAe6CVA8PlBQHyht0BdzABA1nGKQOiJGUCm/dFB0LcDQePmtEARO1RA92HaQDYaMEC5DApA0B6lQH7nKkHzxr1AnculQCyyTUEalZJAbb5tQFTdy0H+soZB0kuAQAAGeUB20AVBA9YeQXMacEAJ/K5ALgeBQD4uN0EX+KRAUNh9QMFGA0FiOIpABueNQVeFHUGnSIFAeL+gQJJXEELIanZBeL/xQH7ElECquYtBHdx+QSFwqUCwJ90/tvyFQOZHdkCCPuZAJC8KQObwpEF55j1BDAytQHbEykCO6dxA4ik9QVhgCUG2joVAXzHbQSqyGUD6mghBiN7cQIILikA6jtxBYt7OQuP1nUFmglRAdHimQY+RbUDq/7c/tGYzQV4aiEBl6QNBpmrSQFjicEHzTNxA4T4HQMCxA0KggIBBXF8rQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQJsDWUAAAAAA0JlbQAAAAMB+y1tAAAAAgG7KXEAAAABg0AReQAAAAMDNPl5AAAAAQLPOXkAAAADg7iZgQAAAAEAEh2BAAAAAoMGsYUAAAABAdEZiQAAAAMBBcWJAAAAA4EqHYkAAAAAAXKJiQAAAAEDYAWNAAAAAgKUlY0AAAAAAGGZjQAAAAAD4p2NAAAAAAG7GY0AAAABAduljQAAAAECyH2RAAAAAwMZbZEAAAAAA1wZlQAAAAKA6aGVAAAAAgGiKZUAAAABAdKNlQAAAACAe4mVAAAAAYCwIZkAAAADAUiZmQAAAAMBIRGZAAAAAoFt/ZkAAAAAALaRmQAAAAGAih2dAAAAAQDYcaEAAAACgW2VoQAAAAODzh2hAAAAAAIWqaEAAAADAgGlpQAAAAECbhGlAAAAAgL2kaUAAAACAXd5pQAAAAIBcLWpAAAAAwH56akAAAABALKlqQAAAAED04mpAAAAAgOIIa0AAAAAAJyFrQAAAAABlo2tAAAAAQAXaa0AAAADAMAFsQAAAAEBmIWxAAAAAwJRJbEAAAAAAYH9sQAAAAMAkpGxAAAAAwCMkbUAAAAAAOGNtQAAAAMCmCG5AAAAAQB5DbkAAAADAamJuQAAAAMCwf25AAAAAQJWnbkAAAACA2OVuQAAAAIB1Sm9AAAAAgK1db0AAAAAAPZ9vQAAAAOBZMnBAAAAAwHBFcEAAAACg+U9wQAAAAACEZXBAAAAAgKhycEAAAACgpH1wQAAAAIDqqXBAAAAAwOi0cEAAAAAgqRNxQAAAAIBJMHFAAAAAgIxTcUAAAAAglGJxQAAAAADNc3FAAAAAQBaScUAAAACAs6FxQAAAAACMxnFAAAAAAJzgcUAAAABgYPJxQAAAAMAFA3JAAAAAgAsUckAAAACAUDByQAAAAED5fHJAAAAAAPyJckAAAADAk6tyQAAAAKA61HJAAAAAgIQxdEAAAAAAlU90QAAAAGDp7HRAAAAAAAHMdUAAAAAAQ/Z1QAAAAACFA3ZAAAAAoNyNd0AAAAAgVIl4QAAAACAE+XhAAAAAYPEoeUAAAACg4lZ6QAAAACD9xHpAAAAAoNT0ekAAAAAgpRJ7QAAAACBTiXtAAAAAwFs5fEAAAADgJBZ9QAAAACBdBn5AAAAAIDfYf0AAAADgz3mAQAAAACBC5IBAAAAAwELUgUAAAAAg59uBQAAAAKDuoYJAAAAAwCmqgkAAAACALdyDQA== + KBZXds7jZUBkuM9LfgRtQKz0JpO9sXBAVOXpVsLyc0A0exjhrkJ5QFRDxqoaBHtAqpfKr7J0f0CFeyaA1LJ/QI6exU/RuoNAVh63e8Hhg0C7pGr1MuOGQOr+WrcY6odAu9NYH99rikDqLUnhxHKLQLsCR0mL9I1A6lw3C3H7jkCncXVCcf6QQIwxbljpEZFA8WFH4JwCk0DpWl5UJRKTQP5vn1VLLpRABeIKSKaelEB+h5ZqofKVQKdDh5viwpZAxwnXNsJOl0AOHoYx2DKYQPEzWTkOx5hA - + - A4k4QDqJJkANELg/igqLQGgYoUD0bKZATH7NQMTuJ0GWgDhAXSmdQHDxIkDWREZBqHmpQO/dWkCMDaBAjGAOQaKLTUFn26o/C9rEQOUyGUA3EbRAQ024P9ukwEDQNzBBTKbdQKLvZkBqA0lBKv03QXu4lkAbjrhAjlW3QJpkR0Bw49w/RM6sQOTcxECG5lJAbNUuQIJ2tz89L+BAIGmlP5HT3D9Z2S1BXN0GQeeHzkBdZ6hAaOytQDv2t0HDR49AYDiLQT7djUBZ97tAvmdjQD7iQEGvSEhBDugJQKeOcUFu9ddAhz1eQP4t6EELIq5BOUOYQBi07z82TadAyU7pQAgnOUHitlNC8DBdQUaMEkJKDatBmLVwQVnzQUDWiNtAGgyQQIoaJ0HKn/BAMvEAQKxQD0EF9w9BbcjcP66YI0Gx4qtAx5ZaQMGxbkKpPAdBUk7IQJAQDEGKl4lBp4gAQNrxLkHrkaZAYdQSQLlapT/dDRxCtIhwQOYKfUE9/QBAjDoTQeDvsEGo6KpBDJqKQKwuuD86VCVB78+7QH82vkDvWvA/1T7yP2KTdUBFSwpAkKcNQWOIE0Cf4ABA713OQM8S4UAAZQFAwBC5QK+xjkA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQPs9YEAAAADAkZpgQAAAAEC54mBAAAAAoLX/YEAAAAAABzBhQAAAACA7YWJAAAAAABAEY0AAAABA7HBmQAAAAKBB5GZAAAAAgAP4ZkAAAABA9mxnQAAAAMBQJ2hAAAAAQEA8aEAAAAAgMj5qQAAAAMB2bWpAAAAAIKSYakAAAABA4QFrQAAAAIBBSGxAAAAAIJdmbEAAAAAAaMJsQAAAAEAG5GxAAAAAgPkkbUAAAAAAU4ZtQAAAAIB+421AAAAAoNsFbkAAAADgRkhuQAAAAACPh25AAAAAwCapbkAAAACAQCRvQAAAAMDyWG9AAAAAgNOHb0AAAABAfBNwQAAAACCoU3BAAAAAgOq2cEAAAADgSuVwQAAAAMBi8HBAAAAAgGEEcUAAAABAAWdxQAAAAGDPf3FAAAAAYIuPcUAAAABAWp5xQAAAACALwHFAAAAA4BDTcUAAAABglCNyQAAAAECFcnJAAAAAQMmLckAAAAAAgKRyQAAAAMDA0XJAAAAAoJ7jckAAAAAAPQxzQAAAAGA7QHNAAAAAwJJjc0AAAAAAmnNzQAAAAMAlgXNAAAAAoMSOc0AAAAAA27JzQAAAAIC0/nNAAAAA4GwmdEAAAAAA6jF0QAAAAAClPXRAAAAAwHOCdEAAAAAAFZl0QAAAAEA65nRAAAAAwBjwdEAAAADAyQR1QAAAAICWE3VAAAAAoNUhdUAAAADAODJ1QAAAAIBuQ3VAAAAAgPFUdUAAAADAa9J1QAAAAIBCDnZAAAAAQJ0vdkAAAADgUVR2QAAAAEAA1HZAAAAAoAbidkAAAADA/PV2QAAAAOCCBHdAAAAAwEASd0AAAABAmiB3QAAAAMC/M3dAAAAAYNSCd0AAAAAg8pR3QAAAAKAGv3dAAAAAYBTVd0AAAACgq/V3QAAAAAB/IHhAAAAAgCh9eEAAAACAQZ94QAAAAADis3hAAAAAYDHEeEAAAADAeM54QAAAAGA4EHlAAAAAoGUweUAAAACgzHJ5QAAAAOAmpXlAAAAAQEG0eUAAAADgfMt5QAAAAIDU2XlAAAAAYCcWekAAAAAANS56QAAAAOALQHpAAAAAQNxQekAAAACg+Gt6QAAAAKCBgHpAAAAAYA+RekAAAABAZMJ6QAAAAGCI0XpAAAAAYAzjfEAAAABgqmZ9QAAAAEDC5X1AAAAAwPUBfkAAAABgPKV+QAAAAMD5r35AAAAAIKnHf0AAAACgQDmAQAAAAOCSU4BAAAAAwK9bgEAAAADAAWyAQAAAAKALdYBAAAAAgN6LgEAAAABg7p2AQAAAAGBiwoBAAAAAILrIgEAAAABAH9KAQAAAAIDO3IBAAAAAQEEjgUAAAACg9C6BQAAAAOBYQ4FAAAAAYMJJgUAAAACgmVCBQAAAAEDvWYFAAAAAoL2JgUAAAABgU6mBQAAAAGCGwIFAAAAAAG/bgUAAAACAdDKCQAAAAKCdRoJAAAAAIOhRgkAAAADg1IyCQAAAAOBKm4JAAAAAgAS7gkAAAABgOOOCQAAAAKCs6IJAAAAAAM9ng0AAAADAN3KDQAAAAOBLiYNAAAAAgKLCg0AAAAAgsPuDQAAAAGCIAoRAAAAAoCJRhEAAAAAAw1uEQAAAAOCheoRAAAAAIA7ShEAAAACALduEQAAAAIBR44RAAAAA4G+6hUAAAACg1cGFQAAAACDG6oVAAAAAACPzhUAAAADArBWGQAAAAGAJnYZAAAAAwHj0hkAAAACgJX2HQAAAAECr0odAAAAA4Mrgh0AAAADAP+qHQAAAACACc4hAAAAAoOl5iEAAAACgZ7SIQAAAAEBrvIhA + KBZXds7jZUAAqvrc5WFwQCKz/A1p0nVA9X42GSyTdkCqOe5bWmN+QBxAfpDao35AOUrBSjlKgkDYJwj7bmqEQH0NuvGxkoZAbAisNsZyiEDhOoQOPquJQNA1dlNSi4tAdBsoSpWzjUAU+W76ytOPQJ+ReH4LZpFAPJOciyt2kUDpgUocN2qTQN70GN9nmpNAJ3dZq4j2lEDhPs1TiFKWQLaft6C0vpZA - + - EIrcP67dGkBcZyVA8DQeQDyrokAwSzhBWL6fQP7eSkCtaLY/8q1TQE3j7z9ZpXZBl6bgQO4hTkId2NpAAlugQMfH3EAl9AFCWlofQSezcEFHw59AUcNjQCa1xEBxnuhBGPxEQS0/CEFNbxRDtua6QaAqE0D7ZxlAqO3SQEYD3EB5lwFBas8LQVaZpEC+ypNANZEcQOhQzUCWarBAyFHEQJHBAEB5zDhA8hvuQY63okBpxw1BQd+SQP15HkEmXtw/pjISQTDyJUB6wF1AFPGJQPJQF0HOg9w/EUn1QAFiE0Caa3BAQAT1QE/2WEAkmV5B2hWGQERUr0EeKmNAcBelP74KhECIkbFAMdvkQAiDQUAywxhA0FIHQkiTs0Ar3sk/0vUPQTEcLkJH1rBAXBbGQMQuckEsx4hADQ63QOl0G0GfwBdBwocOQT8BIULf6UpAyZWAP9+YtEHsD11BQky9QUCPR0CiOA5C5qKNQIAjJ0FwW7RADpBBQBwVZ0Aho9dAbHXEQAWidEEgpTZBZNO6P/uLzEHvQUVBS7MAQAwwJ0Jv6YhAT+KnQU5BkEHKExlBF717QfR72UCLNL5AjwbcP+nQgUHLt7Q/c1M4QPZygUCyhxxAxlfcQMQkAEGjmJZA4LDxQAtfI0GinGVBi26NQNrfc0HAnqFAa++EQB3gF0Fg0ZNA687JP3kCuEF11L5BI5acQMZLLkFsfDNBmAHlQYuWZkCxmB1BFhhNQQtLmEAOxElAGWSkQOCD3D9EpqZAibBkQDmyCkHl7MlA+bbHQL7/5UHuMZ9AVvY+QggZPkB3zxZBHUQ3QSzptUHr8qlANTfMP3sQL0D5XNBB2qt1QOL2YkBPaQBAdIEBQaWVBUG4/TRAtnt0QVIClEHyc+NCyUTRQTzotT8C3Z9A + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwE/HaUAAAADAeDxuQAAAAEAj0m5AAAAAwF5ycEAAAACgXkFxQAAAAODwz3JAAAAAADbqckAAAACgp5J0QAAAAMD7PnVAAAAAwJRQdUAAAAAAMnB1QAAAAIA5E3ZAAAAAwBYSd0AAAAAAIiN3QAAAAECwR3dAAAAAgNtwd0AAAADAiZJ3QAAAAICKEnhAAAAAANZHeEAAAACAwgx5QAAAAECJdXlAAAAAwLEGekAAAACAP3N6QAAAAECpU3tAAAAAQJRze0AAAACAy6R7QAAAAIBe8XtAAAAAABN0fEAAAAAAVqF8QAAAAEBgJn1AAAAAwI9WfUAAAACA2FJ+QAAAAEBFwX5AAAAAgC5Df0AAAAAAc2B/QAAAAMDscn9AAAAAAE4QgEAAAABgRB+AQAAAAKApRYBAAAAAIBTygEAAAACgRfqAQAAAAEAqBYFAAAAAII08gUAAAAAgtoOBQAAAAODCioFAAAAAIEWagUAAAABAJcWBQAAAAIC72oFAAAAAgNv7gUAAAADgHwmCQAAAACCbKYJAAAAA4HkvgkAAAACg/jeCQAAAACASRIJAAAAAoEtbgkAAAABg52eCQAAAAIDAkINAAAAAYGihg0AAAACglMyDQAAAAKCO1YNAAAAA4BHng0AAAAAAau6DQAAAAKCi+oNAAAAAAE4xhEAAAAAgkIaEQAAAACBem4RAAAAAwPnJhEAAAABgchWFQAAAAOCZO4VAAAAAYGi1hUAAAACgs9yFQAAAAKAY5YVAAAAAAJ/2hUAAAABAXgKGQAAAACBdK4ZAAAAAoEd9hkAAAADAEYSGQAAAAOD+oIZAAAAAIMoQh0AAAADgfuKHQAAAAGB17IdAAAAAwKmEiEAAAADgX6KIQA== + NrgMGZxjYkD60UzrnGVsQEMdzoN8QnFAhe+Xw7/DdkAx283g6nJ4QKyw3zpu1H5A+vA1WshRgEBNt+9LbgKDQPHPtYj/6YNATebddRqLhkDorjW3NoKHQETFXaRRI4pA34215W0ai0BwkjZ+r9KNQNilAeCoK45ANVVBPPVxkECCOe1cg+2QQLFEgdMQPpJA/igt9J65kkAtNMFqLAqUQH5AJAn1fZRAqSMBAkjWlUD6L2SgEEqWQFql6HZx4pdARCA2PjxOmEDWlCgOja6ZQOaBspF4cppAIIX6q7iym0BmmammzjacQA== - + - i89KQDRFb0BQvIRBzvcLQWLnAEBYHVRATsdwQX7weEA/sa5AQvjbP0Rq3D+a3lNAHph+QMDOhUC3YH9AkL62P+1A3D8720pAeQOlQGFMLkE6kt0/u4JLQL4zQ0EarCVAp42CQH6d20CUZ/NANHkUQab4JUD97FlBXdHuP+brrkD0aPZAh7juP9VzHECsCiRBFv10Qfv/iUCMyek/JmWlQPVpQUBmVHdBanUpQZasxkJXtA5CSmNqQZAL0UBEe1VBC6G5QIQSpj96UhxA5OTJPy5qlkBdG0JAnJ5BQAgS80AU5W1AgtwYQogk5EBQxIRAnp7qQFop+UGXzJNA8NW7QeUUr0HKRNBBKg0NQtJg+EFKvGRBVlRGQbCGwEBua1BAsVYQQS6IwkHUn+4/0/OjP6Gai0F1qwdBUXVuQTRfD0EoRAtCN7kcQc4sjUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoFPpakAAAACAZGRrQAAAAODuomtAAAAAoAO8a0AAAAAAPjNwQAAAAECWQ3FAAAAAQK2UcUAAAAAAwfBzQAAAAMA8AnVAAAAAAPQVdUAAAABAHDJ1QAAAAICE0nVAAAAAAMQAdkAAAACACGV2QAAAAAAgcHdAAAAAQOyCd0AAAACA2pR3QAAAAIAO8ndAAAAAgJJGeEAAAADApnR4QAAAAMCaRnlAAAAAANvHeUAAAAAAbfR5QAAAAAApBXpAAAAAAJATe0AAAAAApFR7QAAAAMDhcXxAAAAAwD2CfEAAAADAyKF8QAAAAEC44nxAAAAAQEOEfUAAAAAAxPF9QAAAAICyBH5AAAAAwP8VfkAAAACAikR+QAAAAIB9BH9AAAAAQK4gf0AAAADAGzV/QAAAAADiC4BAAAAAALEhgEAAAACgUUOAQAAAAOCPkoBAAAAA4BOZgEAAAAAg8NGAQAAAAGBrIYFAAAAAwL8qgUAAAACgakGBQAAAAKB4U4FAAAAA4Ad5gUAAAACgPoCBQAAAAKCWpoFAAAAAQJy1gUAAAAAAR/iBQAAAAGB8/oFAAAAA4OQHgkAAAABAtTKCQAAAACD+SoJAAAAAQBKKgkAAAAAggZmCQAAAAAD9sYJAAAAAADDCgkAAAADgDcuCQAAAAKA51oJAAAAAIPjdgkAAAADgRRCDQAAAAOAiSoNAAAAA4IdQg0AAAABgVWeDQAAAAGAbcYNAAAAAIEWQg0AAAADAN5uDQAAAAMBW6oNAAAAAoAcThEAAAADAEUKEQAAAAKCXa4RAAAAA4HlRhkAAAAAgM76GQAAAAKDtTIdAAAAAgKlyh0AAAADgUwKIQAAAAGBmDIhAAAAAgARziEAAAADgwqeIQAAAAGBw0ohAAAAAQKPqiEAAAAAgSfOIQA== + KBZXds7jZUDiYBUjzERuQFAtpBCXEnJAAAjXMD4zdUDfhPAvbyN4QCIR2WHBo3pAAY7yYPKTfUBYtJLATFqAQMdyH0Bl0oFAdgVPq6Tqg0CBxf833dKFQA== - + - VG/uP8pQDUFgVrlAKtuDQMFgUEDZOspA9zvJQACJkUAidJJBhXvbP4ySHUEVwOZAgYmoQAWkuUCdyPBAPw6qQDk0jUDB4rFAPFZbQCcbqUBao/BAxKq1QIOx2UCLMxFASJ2FQN/kCUHGTddALiuXQHRZAECoQu1AVTAcQP1dbED7wrpB+gsXQQShlkAajwlARhB+QM0cCkBun45AaJqDQK0zU0BjJqFAu1hZQHTYB0CjlM5BJd2lQJyCtUAp1WBB91rbPyMZ7j8hAhpBPgMQQm6MCUB/kodBjHucQMP+wUAi8Pk/Nd+BQKk7EEKYcxxBZF8dQWCv8kBai0ZAvlUrQXDsR0EfBI9Byk1sQTYpNkBo0xJAgrJYQe3jf0GYrYNAnv1wQaGLDUH7ij1BHhkTQYyaiUG0BQRB4oLHQauNWUDr1pFAQQ7qQAM3/ECjha1A4W0tQmRT1UA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAQPbvbkAAAACgZFpvQAAAAAD10HJAAAAAwDkIdkAAAADA9a14QAAAAIA7IH9AAAAAoHiTgEAAAAAAuaKAQAAAAIAYsYBAAAAAAEUqgUAAAACAeDCBQAAAAMAScYFAAAAAINwBgkAAAACg1WqDQAAAACAV7oNAAAAAYHtRhEAAAAAANPWEQAAAAKBU+4RAAAAAIAJxhUAAAABgaZKFQAAAAKAZE4ZAAAAAIHOGhkAAAADgSMGGQAAAAOCMAIdAAAAA4J4Kh0AAAADAXVqHQAAAAIAsKIhAAAAAQMbCiEA= - - - - - - 9RYUQHdrAEFfKmZA/GCKQDB95z/AOwhB0BjMQOgc7j+VRyVA9+u2P/k9/EBerfhA36vSQDynCUBzqIBAwekSQIvO90B3ziZB2M4YQEsa10B+0AVBzNC4QJCok0A2CoBAJPTBQLEmFUEWsQ5BmLItQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgFmvZUAAAABAO+hpQAAAAGDsI2pAAAAAgHrfakAAAABAJONrQAAAAKApY21AAAAAIPtkbkAAAABAD31uQAAAAADzJG9AAAAAYEREcEAAAADA2MBwQAAAAKDc63BAAAAA4PMhcUAAAAAAFIFyQAAAAADkVnNAAAAAYCxmc0AAAAAApXZzQAAAAICMBXRAAAAAQKbWdUAAAACAwSV2QAAAAED8ZHZAAAAAgNuTdkAAAAAAlOV2QAAAAMA6P3dAAAAAQBdTd0AAAABAjod3QAAAAIBIyHdAAAAAAKxBeEAAAAAA6pR4QAAAAIDGpHhAAAAAwCMmeUAAAAAAqb55QAAAAEBsyHlAAAAAwGbueUAAAAAAkYV8QAAAAEDTIX1AAAAAADQsfUAAAAAAYqF9QAAAAADc5H1AAAAAQHMDfkAAAADAyix+QAAAAEBKOH5AAAAAgPJmfkAAAADArrV+QAAAAED2JX9AAAAAQLhQf0AAAADAeGF/QAAAAKAWDYBAAAAAwGgpgEAAAADgDVGAQAAAAGANWIBAAAAAoCVigEAAAAAgS2uAQAAAAIBTh4BAAAAAQNOTgEAAAACgI7WAQAAAAOBU0IBAAAAA4CnjgEAAAAAgoemAQAAAACB18IBAAAAAIEAQgUAAAADAtjiBQAAAAOBDSoFAAAAAIGhqgUAAAACgKoOBQAAAACBxjoFAAAAAwGPTgUAAAAAguNuBQAAAACDb74FAAAAAAD38gUAAAACA+xuDQAAAAADcM4NAAAAAIHCrg0AAAAAgWSmEQAAAAKDaM4RAAAAAoMY8hEAAAACglVCEQAAAAAB9a4RAAAAAAB1yhEAAAABgDpeEQAAAAICQ+4RAAAAAIAoFhUAAAADAOLGFQAAAAABA84VAAAAAQGZThkAAAACgppqGQAAAAECjoIZAAAAAYDkUh0AAAABgfkKHQAAAAMBelYdAAAAAYMK7h0AAAADgKBKIQAAAAGA3MohAAAAAoFk7iEAAAADgjlaIQAAAAODmXIhAAAAAoFh7iEAAAABgFKCIQAAAAEDzpohAAAAAIByxiEA= + KBZXds7jZUAmWGpEdaJuQNS+X4D+xG5Aaj0MlNdzdkAlUi3J2BJ5QIxGDsVa5HtAtKl56LAjf0CpUFF/uQqBQNoDK56EGoNA1HrTgQVDg0BrCKw2xtKFQPLLj2xd04ZAg9AQBZ+LiUDONXZTUmuKQD0j8fwWjI1AmD0/BtSDj0AeqW+TYYqQQCnID/8lwpFAe9Jfj52KkkCp3wYUfIaTQAr7vYTJUpRA8PO1DpJqlEBTff5Q6q6VQDl29tqyxpVAmpGtSwCTlkDInlTQ3o6XQBqppGBWV5hAJchEzBqPmUB30pRckleaQKXfO+FwU5tAXFb5NdPjnEACCSzdrFOdQEuLbKnNr55ADm1eRBkwn0DtWWXP/DugQKx3TwgdRqBAeOQF0A/KoEBsA8sSSCihQNFvONcykKFAXo60FmPqoUD1sFg9Qz6iQLU81EduIKNAIJOT25Yio0BAx3RIga6jQN6KM6ekCKRA - + - b1wJQAv/I0AR9yVB2rAZQp2OU0C7cNs/8H62QUNgZUAZURxAtE7ZQAUeSkB/BwFBrVrZQFARKkEVsBJBPojFP9w1NUEdF1NAXU3XQDM2RkH+FLY/NMQ3QKrziUB9AX5ApTwgQXOWEkCu5ZdAK3xRQd6czkChgYdBD3NGQNUek0FKzyRBSfylQC0RyT/nEu5Afgw2QBYaJ0E+fLZABQGyQPb4rEG1pAhBF8YHQBL5AEGxNXNB37f5QdbeUkFc1aJBD6u9QDhGikHQ6co/sy/VQOVtXkGh2zhAvpC4QFaE3EAephtALPyOQso7m0EaVK1AOU7QQAzCjEEWGABA9D6tQDq47T/TfzlBqEL7P5NJGEDRXJVBBFQcQZ35sUAE045ABgN3QDqoAUFibytBoVdkQPEP5UBZPCNA61YOQUs9AkNY+mVAoRQ0QKmjPEH0Z4hAaO6tQeoH3EHf9f1BnGpTQP38sUBg4pdAPaPgQL7gDEIeS5ZCp8tLQlTo80J9nLVCK/m2QUzljERpsL9BD08uQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoB3lbkAAAABA7JZwQAAAAEBFM3FAAAAAoD1TckAAAAAAf550QAAAAID7z3pAAAAAgH7Hf0AAAACAlPZ/QAAAAOBjAoJAAAAAgJRUg0AAAAAg+HqDQAAAACBluoNAAAAAgGDEg0AAAAAg1huEQAAAAGBhpIRAAAAA4MH7hEAAAACguQKFQAAAAOAOioVAAAAAII7ghUAAAACgIyKGQAAAAABZM4ZAAAAA4PO7hkAAAABgjgyHQAAAAEDJgYdAAAAA4EuSh0AAAABgQcKHQAAAAODs2odA + NrgMGZxjYkCEfuNfSGJnQOJgFSPMRGtAmBP2NLwhcEBxDmdlvrN0QNO1bgpsQndArLDfOm7Ue0DTE0texFN+QIEC8h+DIoBAFLSnMS5igUCsLHQiz1qCQA== - + - 1di5Px6qVUFjW35Ahs9PQHlMGkGRUyNAGoQ3QGsDnUDwZO1AWuNkQObXM0DK1n1BPBkhQP9uUEGAi61B4m2qQbzUKkHssMlBLkkOQRhzLkAODoVAQrjwQLLUx0ElnlxACzSSQSdIwUEyBAxB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYLWia0AAAADAUQFtQAAAAIDlRW5AAAAA4MpqbkAAAABAKAdwQAAAAGCydXBAAAAAYELxcEAAAACAlKRxQAAAACCOEXJAAAAA4G8mckAAAACg8OJyQAAAAOAcIXRAAAAAwE9zdEAAAADA0jN1QAAAAECvpXVAAAAAgNuzdUAAAADAb2R2QAAAAMBZxnZAAAAAgPxxd0AAAABA34N3QAAAAICUVHhAAAAAwOZjeEAAAAAAe+d5QAAAAIAlpXxAAAAAwJZffUAAAADAn719QAAAAAAxK35AAAAAQGlDfkAAAAAA/ZZ+QAAAAICT7n5AAAAAAMaBf0AAAADA77p/QAAAAIDA2X9AAAAAQIIegEAAAAAg1XKAQAAAAECKqoBAAAAA4EEEgUAAAABAEEuBQAAAAIBKgYFAAAAAIE+5gUAAAAAgSPKBQAAAAACsCoJAAAAAwB5kgkAAAABgFIaCQAAAAKABqoJAAAAAQHm9gkAAAADgS8qCQAAAAGA94YJAAAAAAEgwg0AAAABgqjmDQAAAACChP4NAAAAA4MSOg0AAAABgfKeDQAAAACCPtoNAAAAAYM7Ag0AAAACg7cmDQAAAACBK0INAAAAA4HnZg0AAAADAKOODQAAAAGCW7INAAAAAoKP8g0AAAAAg/QKEQAAAAGBoQoRAAAAAYKZahEAAAAAg1YuEQAAAAGBJzoRAAAAAoHDXhEAAAABAjMyFQAAAACAiWYZAAAAAAMbihkAAAACgbuuGQAAAAOCn+oZAAAAAYEYDh0AAAACgNnKHQAAAAGBnw4dA + NrgMGZxjYkA= - + - jAIaQN7DFUHuyv8/0vlaQECNjkBPKqlAQC5mQIzHukDy6oRAzAQqQSCHN0DZaBJAPBi2QHuvG0AAiTdAoOiJQGi4s0A/kitBJuQbQQjetD8gGlZB1ryOQVveIEANWJNAG2kqQAQuAUFbbMlAR1H4P0HHu0AvOpNApqfeQNkAkkDWpSxBbSsuQJp7f0C43qVA81gPQaY0YELIMmhByNBcQRDASUDeKk5B2gkFQWpsO0GIDJE/iN6SQIXT30Bw+I1BACFOQQtlLkEgy8VBeLkaQW17rkDvgOdAZUyJQCxzEkCJ6sc/4mSHQTJkZEJgzwhBfLnQQZdcQEBS5ilBhbETQX9pkUAdy41BRNtgQV43zkDkE5VBVtgyQTbodkB1WTdC1v70QPBenkESFcFA + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAJSdYEAAAACgr0thQAAAAGAMBGJAAAAAQE5fYkAAAAAAKn9iQAAAAKAjn2JAAAAAgOuhZEAAAAAAvsFlQAAAAAAK6mVAAAAAgIlhZkAAAACAZgJoQAAAAMBto2lAAAAAwBULakAAAABAVylqQAAAACCcfGpAAAAAYLEma0AAAADgv0VrQAAAAEBqZmtAAAAAYMpBbEAAAADAVMhsQAAAAEDTgG1AAAAAAKUMbkAAAADAj0NuQAAAAIAMiG5AAAAAwBO/bkAAAABA5uNvQAAAAOCSE3BAAAAAgOYjcEAAAABgclFwQAAAAICWX3BAAAAAwK90cEAAAAAgsX5wQAAAAMCbsXBAAAAAgAO9cEAAAAAg5M5wQAAAAAClQ3FAAAAAoNFQcUAAAABARkByQAAAAIBrT3JAAAAAwPhjckAAAADgu3FyQAAAAEB9gXJAAAAAgHnFckAAAABg8gBzQAAAAEDhNXNAAAAAIJo/c0AAAABApnJzQAAAAAAo3nNAAAAAwEwBdEAAAADA6RF0QAAAAAA1IHRAAAAAwIkzdEAAAABAymV0QAAAAMA043RAAAAAwGbzdEAAAACAcQB1QAAAAMCTDHVAAAAAAGU6dUAAAAAAgUR1QAAAAOD2VHVAAAAAgNOgdUAAAADAFq91QAAAAMBvvnVAAAAAIB/NdUAAAAAgbPF1QAAAAKDJJnZAAAAAANM8dkAAAAAARJJ2QAAAACAtnXZAAAAAgDasdkAAAABAiMd2QAAAAMDU2HZAAAAAoHsBd0AAAACgGRN3QAAAAIAgJHdAAAAAQGFAd0AAAAAgWVV3QAAAAKBbcXdAAAAAgB2Vd0AAAABgA6J3QAAAACB+tHdAAAAAoNK/d0AAAAAgHst3QAAAAABBJnhAAAAAgHQ7eEAAAACgZVJ4QAAAAEDNXnhAAAAAQM5oeEAAAABg9nx4QAAAAOAPj3hAAAAAwAqkeEAAAADglb54QAAAACDu43hAAAAAwEf2eEAAAACgNSJ5QAAAAICnUHlAAAAA4IlheUAAAABg/3R5QAAAACCtonlAAAAAAAa1eUAAAACgI9J5QAAAACDt33lAAAAAoM4AekAAAABAJxR6QAAAAGASI3pAAAAAoOhbekAAAAAgTY16QAAAAKCJSHxAAAAAIEpWfEAAAABAM4Z8QAAAACBlz3xAAAAAYLhBfUAAAADApVZ9QAAAAKDOgH1AAAAAYPizfUAAAADgwkV+QAAAAMAQAn9AAAAAQFsQf0AAAADgmGZ/QAAAACCSdH9AAAAAoMeCf0AAAACgx8F/QAAAAOCl1n9AAAAAIDfmf0AAAADgpfZ/QAAAAOAALoBAAAAA4LczgEAAAADAW1WAQAAAAIBVEoFAAAAAYCVagUAAAADAMaOBQAAAACDBqIFAAAAAIN2ygUAAAADgzuqBQAAAAMD1uYJAAAAAoInEgkAAAACgPNWCQAAAAABr4YJAAAAA4FbrgkAAAADAdf+CQAAAAABACYNAAAAAQIUYg0AAAABAeySDQAAAAODaMoNAAAAAIDlag0AAAADgX3yDQAAAACD4hoNAAAAAIHuag0AAAAAAOweEQAAAAOCQQ4RAAAAAACWkhEAAAAAgfsyEQAAAAEAIB4VAAAAAQH4dhUAAAABgS2OFQAAAAOBK7YVAAAAAgAL5hUAAAABgpw+GQAAAAGBBGYZAAAAAIMyChkAAAAAgSxiHQAAAAKArIodAAAAAAGpEh0A= + KBZXds7jZUA= - + - 1PzpP4D6NkBLCjNAMKFuQJNIQEDXn3pCthdcQO7IUkB8SKpAtaLIQG1rDEHp1YlAuP+kQKyDCEA979k//lQzQIec7D8sqAhAiLcIQFOI5z/9RWBB+xHGQGZFG0DEnhBA/7OhP7EjM0C6o09ADVuNQCz4PkByRRtAto/kQGKKBkBTzOw/o7byQDbCSUAUJ5tCeom8P1AU4kKKaRdAx/F3QQKBG0EUHm9ADoEBQu4QGkLUDoVAu3uXQMgdnECkpqNAQUJHQG4sKkBKTPNB/Cd5QQ/yuUBSTahAAZtqQHz6QkKsfv9AB9aBQUrrl0Et1uVANMINQEabnEH7m/1AqvJSQGKwH0E6whBC14/YQE2+u0FZr/tAcgRIQE6gmEHeO2BA9PeBQWsQN0AjEpZA9B93QQG6GEGm8u1A88wIQL8dkUA7iElAPLK/QHfiSUGaVKhApVO0P+5CQUK10jxBduPzQMHLs0EeSDpBsTjTQETEokKYpiRAeoadQUQMn0DXMH1A/M8oQRjdL0E6qYxBPXeHQaQMJUJS5KRAZa9dQq8fDUIStDtCW9yqQhRqlkFWNx5Bz7g1QXLmOEENSZVBR+TdQEMtCUBLhJhBSiHpQbTMvEAV9wNCNJU/QWcilkHUkt5AiP+zQHofkEHeEpFB4qwVQXTaL0EUiDlDX1vRQvf+8ECbsYhBJ3fwQM35hEF3YYBAIQLOQLkzN0DQrE9CdQMMQT3NykBp1UlBu2zOQKHwg0HrVxtA4uqOQLMzU0EzZABBOyZtQR7ZRUA+EYNBvqqEQEnUaUG9el5B4elxQWuOvEDQbtZADQK0QNPt7UAXVZxA09TRQC2Qoz/M6wZBswiXQN7s60FqLDlBf0AXQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIHsbZkAAAAAgQqRmQAAAAEDOH2pAAAAAAE9LbEAAAACgUC9uQAAAAIDjJXBAAAAAwPszcEAAAACAOEVwQAAAAIBlRHFAAAAAILi0cUAAAADA+IBzQAAAAABrJHRAAAAAQJNzdEAAAAAAgRR1QAAAAMBcIXVAAAAAgOJvdUAAAABAP7R1QAAAAIDDxXZAAAAAQCtXeEAAAAAA02Z5QAAAAADG0HlAAAAAgCkzekAAAABAyFR8QAAAAAAkRn1AAAAAQIeffUAAAACAsk5+QAAAAAC3k35AAAAAQEH6fkAAAACA8V1/QAAAAMChxn9AAAAAQMbqf0AAAADg7F6AQAAAACD4cIBAAAAAQBexgEAAAACg/AOBQAAAAIAIC4FAAAAAoE8dgUAAAABgO7mCQAAAAEBK+4JAAAAAIGNTg0AAAACgFKiDQAAAAEAmDYRAAAAAQFEchEAAAACg2oCEQAAAAEAjw4RAAAAA4CDJhEAAAADAj/GEQAAAAIDv+IRAAAAAIEZihUAAAACgt26GQAAAAKDbvYZAAAAAAEsBiEAAAABAQhKIQA== + KBZXds7jZUA1uAwZnGNrQKPid1q/AnFA3mIk4HPidUAxOsR5lxN3QGy6cP9L83tAMZigze8kfkDHYTmY57GAQN93dvbjGoJAx5AnwpM6hECmoxwGUCOFQNHNngicW4dAx78V7D/Dh0Bi0h+h3ROKQIES9uO3w4tAj9jERj88jUCfY7LOD1SPQF7vNHZQMpBAp3F1QnGOkUAZIiuFM66RQIuHSEqnEpNAMKX9V2RCk0ChnIlLzS6UQLexykzzSpVAFSliMaXOlUBcPREsu7KWQJvHnVQpz5ZAclJSLeHOl0D48I1QZc+YQPJpSUI3k5lADQbPUYvrmUBygUBXjVebQPEbolnBb5tAuwOBI66znEDVMXVh9/OcQAIYMB7El51AuUdIaS14nkBLmnDq5POeQALKiDVO1J9AF9gheQ08oEAl7xsYMlygQAljC30o/qBASTA8fkIKoUD77fSAQ8ChQAm8t4ht7KFAhniVgVZOokDJRzOTmM6iQDSNjX90TqNAVNLTk6tco0B4XCuRts6jQCYYd4OPEKRAsaIXhKKepEBrnt391hSlQDwtuIS1LKVA9t9GZ+/epUAuuKGI0O6lQFL5we7gnKZAG9gvNgXhpkDdOitY+WanQGLs3jAbxadAaHyUwRExqEARAdcuOcWoQIy9tCci36hAF0hVKDVtqUDRjFI5ZKepQAnTPixQL6pAkRjOQ4+JqkD7XSgwa/GqQLVZ7qmfN6tAu+mjOpbTq0Cn5NetuvmrQK10jT6xlaxAf6VLaM//rECf/3ZCzFetQNgwfm/yJa5A - + - HmFkQChrhUBb/qI/4GEmQZPqDkGKQuRAlpiVQHekG0Ahaz1ACmvZP1Hr/j8grqRAPPMRQNIb7D9mkmNApqL/P2SLWUDkkllChuMKQQlJyT8z4/ZAwhCTQJnCm0G0pjJB4aliQPee30BHJVxAkVs8QfAFFkH7Iw5BnhOsQHCI5EDkWshA/C99QMrdiEEH7DtA4vDrP5y3NUJrXt1BGz5QQqZZGkJsbrdBlasuQeDmT0ATrj5BbXqFQngv4UCmR6I/1do7Qt89t0CG4tk/q5WOQALFCEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwLGMW0AAAACgNMhcQAAAAOAR/VxAAAAAIDdBXkAAAAAAOdFeQAAAAKDNQV9AAAAAADeHYEAAAACAe75gQAAAAKBOpGFAAAAAQM/AYUAAAABAd+FhQAAAAIBDJWJAAAAAwFBlYkAAAAAgFH5iQAAAAICJymJAAAAAgMbqYkAAAADAPQFjQAAAAIAvq2NAAAAAwI8EZEAAAADAu6lkQAAAAMCWwmVAAAAAQE3gZUAAAACADwVmQAAAACDfZGZAAAAAAFqnZkAAAADgqSBnQAAAAMAeSWdAAAAAALWGZ0AAAAAgWKZnQAAAAMDuQWhAAAAAIHXmaEAAAACAZQ1pQAAAAEBGQGlAAAAAICCkaUAAAACAJuZpQAAAAMBAB2pAAAAAQA5AakAAAABAYWFqQAAAAADdfGpAAAAAAMXaakAAAACA/QJrQAAAAAD3XWtAAAAAgNFnbEAAAACAQ8tsQAAAAMAI32xAAAAAgBH+bEAAAAAA+SVtQAAAAAASam1AAAAAQMakbUAAAACAYQpuQAAAAEAhXW5AAAAAwEiGbkAAAABAXLluQAAAAACQ5G5AAAAAQF8sb0AAAAAAPoNvQAAAAMCaqG9AAAAAQBfmb0AAAADAs/5vQAAAAADGJHBAAAAAAOEwcEAAAAAg1kJwQAAAAOD1U3BAAAAAAHF0cEAAAADgI7RwQAAAAEBMz3BAAAAAoI7kcEAAAABgHfNwQAAAACCM/nBAAAAAQPUMcUAAAAAAJiZxQAAAAKDaMnFAAAAAgFJBcUAAAAAA3l5xQAAAAACPcnFAAAAAwIV/cUAAAADAmItxQAAAAEBNlnFAAAAAwG7RcUAAAACAKOVxQAAAAGDS8XFAAAAAQNsOckAAAABAwCByQAAAAED4L3JAAAAAwDFCckAAAACgs09yQAAAAMBzYnJAAAAAoOSLckAAAABARKFyQAAAAIBW0nJAAAAAYKbzckAAAACgFhxzQAAAAECWMnNAAAAAIPFDc0AAAACgbFFzQAAAAKBWYXNAAAAAACqVc0AAAADA1apzQAAAACAnt3NAAAAAoHfIc0AAAABAINNzQAAAAECD8nNAAAAAQBoadEAAAABgUjJ0QAAAAEBcS3RAAAAAgLZldEAAAACggsF0QAAAACDsQXZAAAAAQGi7dkAAAACgQ9Z2QAAAACAh8nZAAAAAAOAMd0AAAADgyJ13QAAAAMBtxHdAAAAAYEzSd0AAAADgTyV4QAAAAMBbtHhAAAAAIITceEAAAABAYfB4QAAAAACvNXlAAAAAIO1XeUAAAABgr4J5QAAAAODylHlAAAAAIF28eUAAAACARdF5QAAAAKBi9XlAAAAAIDdFekAAAABAyld6QAAAACCbZXpAAAAAIDTLekAAAABA4+R6QAAAAOBO9HpAAAAAYJ8ce0AAAABAXzF7QAAAACAglXtAAAAAwDI0fEAAAADAdEp8QAAAAMCbynxAAAAAoGTYfEAAAABAZuR8QAAAAKDa73xAAAAA4JBWfUAAAAAgQGR9QAAAACDJ831AAAAAICUXfkAAAADgbSV+QAAAAKAmg35AAAAAIKePfkAAAADg5qN+QAAAAMDosX5AAAAAYL89f0AAAADg47d/QAAAAOBnxH9AAAAAoM/Vf0AAAADARfh/QAAAAGBYAYBAAAAAYJEMgEAAAADgdiSAQAAAACBtKoBAAAAAgHcvgEAAAADAemmAQAAAAEDaboBAAAAAYEd0gEAAAACA8HuAQAAAAECRg4BAAAAAoGTOgEAAAADgyvuAQAAAACAmXIFAAAAAYBnJgUAAAAAgswCCQAAAAOD3TIJAAAAAgEjBgkAAAABgFoyDQAAAACBynoNAAAAAIEFBhEAAAACgJ7OEQAAAAID5KoZAAAAAgAc1hkAAAABg1LKGQAAAAICnuoZAAAAAIHbEhkAAAADgb9GGQAAAAKA7M4dAAAAAAGXih0AAAAAA/DWIQAAAAGAGxIhA + NrgMGZxjYkByWoXuS4RpQABU9bnLw2pAHvu2xz3ycEAACNcwPvNyQA== - + - kuNKQNSwEUAEMNo/pLVJQNxuQEDg3C1AvEtAQOB2BUA+Q9k/proDQfkAB0EflhtAoj7/P46QCUGEez5AOAzaPyHEjz/J6v1ACF7HP9BQ40CZUBlBvkA7QW8Ej0GFpMo/IDUQQankAEFtmelAP+5iQYts6UCHHANCzRi4QF0jnUCmn+w/fkEQQXKMCEEbGVxAcxDfQUXcJkFF8LQ/Y6XHP6UAQUGz8K5AlOWmQE7sAkHvC1JBnem0PzHdAEGHW0FBgPG6QKB3gEHglOw/K1TCQDPHMUGCS4RA12eZQXaD0kHpwKlASYQkQBLERUCUiFZBU8kQQS3C50CU9D9BTSVTQHxtf0F/ohxAHT3/QSYlDEIxD+BA9OOuQGc9g0GS2KZAuYp8QQiwJECT9FlAVAafQBKR5UARVbtAY9PNQInihUHQDIhB2h5EQqg8B0F1TwxCADG8QOa7LEHMyDZB2sEBQZJIXEABfY5Atty0PwoT40Gba7BAIU1AQPi9KUH9mJ5BZN+TQr+NUUKasshBd0n5QEECMEEgVSJBROyCQbmjpUDW+n9BtcoFQt8XgUAtmz9BzNuGQnrCVEFAR51AhrcLQVEZJ0FMQ4tAsWCbQNcjHEBy5PNB1JrSQSKASUFIO5RB1lVMQaqY9EACDkdBbQrrQB45Z0KT/8hBPZoGQrr460FXtDtBwixAQDKxp0HPBqVAX+cRQZl0SECg8e1ABaCiQYaoOkJoRpJC/qGbQWqi5EBYP/5B/vqeQuzFHEEhfwFB2WyHQcWb3j9ADQpB4EFZQbbcf0CQJV5BKSy4QInTQEDLQxtAAczZP01qQEDoCIRAgVbEQF1bSUKAaZVBxjEOQrWeq0FaDPlAZPsUQk+4dUDjMB5Bwi9AQdSLSUDcCKpA4uusQOsi6EDrB2tAUHCLQenILEJ3PgNBRb7aP0T9W0GcpbQ/s4CMQEiX2EAdvdo/0GkPQUUOLEDkXRtAFO2kQXXNSkC/y+1A + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYGCScUAAAACggjF2QAAAAOAgc3dAAAAAAKDXeEAAAABACcV6QAAAAABg5HtAAAAAIG9VfEAAAABgP/d8QAAAAMApCH1AAAAAgLy7fUAAAADgHAV+QAAAAMDgZ35AAAAAwA0of0AAAABA7EuAQAAAAMBMgIBAAAAAwC6DgUAAAAAAGYqBQAAAAMBtooFAAAAAgNczgkAAAADAEKKCQAAAAKCY4oJAAAAAgKcjg0AAAABAaHKDQAAAAIAPMoRAAAAAQO88hEAAAADAsZuEQAAAAECF0IRAAAAAgBdbhUAAAACg6mOFQAAAAOBEioVAAAAAwMCOh0AAAADA1ZqHQA== + NrgMGZxjYkByWoXuS4RsQJS5jELpknRA+0+R6hLTdEDqDZFHgQN5QPutbT5r5HtADBeTeAR0fkAq3dtElxqBQBeQytRD8oFAQrpM148qhEBILpgv76qEQHNYGjI744ZAYAsJwue6h0AEXZvKfJuJQI0RrmdJ44pAlWEcY75TjECNQJyR9WuOQMCLnmUKjI5A98ihBTbakEA+3VAATB6SQFTykQFy2pJA - + - zPYTQHSLnEA2fqhAVtu0P1uHE0Fy6g5BMVsCQThtKkB+m91Aaff4QB5iykBdlYlA7U4CQdLIjkBHaPJAXJ2aQWBMhUAqazxAA5B8PwY6LkGvo51AmU5+Qekp3kCBaVxAewkcQc4RAUInChJA0muOQO/qHUEDA09AdF6qQNPlo0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwLJNWEAAAACAUMJYQAAAAGDTQllAAAAAoEaCWUAAAAAAw8VZQAAAAICH0lpAAAAAYF6NW0AAAADgOlFcQAAAAMCpel1AAAAAYA3PXUAAAABA9BZeQAAAAKAJfV5AAAAAgDCLX0AAAABAvcZfQAAAAIBJ9l9AAAAAQJ0lYEAAAAAgsERgQAAAAIBNnmBAAAAAwH3DYEAAAABAX6JhQAAAAAD9vGFAAAAAYB5mYkAAAABAWZ5iQAAAAID64GJAAAAAwHIEY0AAAADASItjQAAAAADo5WNAAAAAgMkiZEAAAACAe9pkQAAAAEDAB2VAAAAAwDwcZUAAAABA+FtlQAAAAIAfjWVAAAAAYJ+jZUAAAAAAleJlQAAAAKDcH2ZAAAAAIEfgZkAAAADAxCJnQAAAAACPP2dAAAAAgKhiZ0AAAABA8YJnQAAAACAuZ2hAAAAA4GPHaEAAAAAAKeZoQAAAAKDrIWlAAAAAYOteaUAAAABAtuRpQAAAAMDzI2pAAAAAgIdDakAAAACAEGNqQAAAAIA0oWpAAAAAwNPBakAAAABAhuJqQAAAAAAtKmtAAAAAgJpfa0AAAADA+JxrQAAAAEAs2WtAAAAAQFAhbEAAAADAoU9sQAAAAIAgaWxAAAAAwOGGbEAAAAAA3J5sQAAAAABx5GxAAAAAgGskbUAAAAAAv55tQAAAAIBW5W1AAAAAwGwubkAAAABAGFFuQAAAAEDKZW5AAAAAQAmJbkAAAABAYKBuQAAAAADgvm5AAAAAQC0ib0AAAAAA4EdvQAAAAEDuZW9AAAAAQO6Lb0AAAACAyKdvQAAAAIC1x29AAAAAwIzfb0AAAADA5gJwQAAAAIBYFnBAAAAAwFYlcEAAAABAF1ZwQAAAAECIhXBAAAAAoPWWcEAAAADAfqRwQAAAAGBLsnBAAAAAYKnFcEAAAACgINRwQAAAAECv4XBAAAAAAP/xcEAAAACA2/9wQAAAAKD0EnFAAAAAwBUycUAAAACgiUFxQAAAAEDFgHFAAAAAQE6ecUAAAAAAPbJxQAAAAID903FAAAAAQP/wcUAAAABAFwNyQAAAAIBbEXJAAAAAAOIeckAAAAAA3TByQAAAAIAfPnJAAAAAgLpPckAAAADgemVyQAAAAGAxdXJAAAAAAHaBckAAAAAA56VyQAAAAABksnJAAAAAALfAckAAAAAA0tFyQAAAAEC6AHNAAAAAIB5Cc0AAAAAgsAF1QAAAAKCIMnVAAAAAYBNXdUAAAACgUot1QAAAAODUm3VAAAAAAAjHdUAAAAAgs/J1QAAAAGBHEXZAAAAAgHojdkAAAAAgBkR2QAAAACCeanZAAAAAIA13dkAAAABgnsl2QAAAAMCsU3dAAAAAYFNkd0AAAAAgv593QAAAAKB2x3dAAAAA4GTbd0AAAABgSmR4QAAAAOB2tHhAAAAAQK7keEAAAACAifJ4QAAAAGDdV3lAAAAAAImbeUAAAABg8Lp5QAAAAOCk03lAAAAA4OzgeUAAAABgLVN6QAAAAECBYHpAAAAAYHZ0ekAAAADgtoZ6QAAAAECb6HpAAAAAwKcAe0AAAABgAA17QAAAAEBkVXtAAAAAQPlke0AAAAAg7Hp7QAAAACBNiHtAAAAAQKvke0AAAABAFwF8QAAAAOC6FHxAAAAAQCUjfUAAAADAXDZ9QAAAAMBYAH5AAAAAIM8xfkAAAACgM7Z+QAAAAED5F39AAAAAoAjJf0AAAAAgJth/QAAAAMDzcoBAAAAAIP54gEAAAACgnoKAQAAAAMDPCoFAAAAAoEBygUAAAADgchqCQAAAAMACi4NAAAAA4KCTg0AAAACgk8GDQAAAAKALO4VAAAAAIEZMhUAAAADgDuSGQA== + KBZXds7jZUAnt2DdIQNrQDeULWxqYnBAtmSyHxTyckBV5elWwvJzQHM2pkEag3dAfb9GWSwjeUCfyEiKr5N+QGH0pZ6Is35As5Hu4WNigkCUJx1sUHKCQCUsngSSKoVAqnBuEJv6hUA5mcwFx8KHQIlZaCEeQ4hAyMEq+/KKiUAaXum5X/uKQFnGq5M0Q4xAOK+lpLeLjkA= - + - uTj+PxCNGEE4KFJAj0EXQGKnSUALz4tBMn9eQaRrDkHj7nVAuKjZQFJSqEDIgAhAFLfdQJLHIEG6765ATso3QbSfpEECjdk/poGoQJxMt0CgonpBJDDgQFzth0Bvitk/NOc+QdEQiEAK1B5B061JQOA3RkFAWKtADDQnQWXnDUBE505Ahd0HQWiTUkF3CJJBXDBrQXZQckL0ogBCTVtIQSoVnUCDZeJAI/EkQBl7T0D9kiRBr8jRQMA8ZUAYfaBBLs9VQZzvd0DL5YNBWZ/5QK7SGkHlPpNBMRZaQDjQtD8QWClB1n8aQtbZYUC0fyhCeaA1Qaf0PUBpzkRBx1GlQQPCKUCDomtAYxczQF4Ss0CZx8xAAOWsQPPjEUC0qmFAjNgXQfDAgkGcLjVCfAPWQWDaH0KVmHJBWjGiQauwCEC4N4RBzkgTQlgfakA2VZNBFdh2QQlvzUCGRW5BGv30QGzyLUJD/2ZCWIuoQv7HnkGQdhFBS2GAQcT3qEFYgBFAdmPEQBIcQEDU4Q5C26AXQSJySUBdOItCW8mbQdFWjkD77RhCgYl0QAOzX0Hp5CVCfm85Qa/yFkBRu1JAkXJhQCKDdUB0IeJA+KbYPy/4NkDH7QRBLohuQKqzt0FXDBdBVAg6QQ/pqUB9m1VBUnhqQAyuvUBW4j9B5xDpQJI870EmIBtAnNdjQW9cD0Fbc+NBPLesQAY1hUBVFRtAiMXGP1kJ+0C90JdAN9IYQQJ02EFloIJCyxOjQS7j30BDTJpCs2s3QQWng0EK6JBBgKV4QtYRfEHRx9FBUTBCQYYGTUNZIUNCgloIQB9ZZECvmes/7tmOQWXzRkHjtYRB4z7gQFspzkDT0bFAGj5YQXZ7+0Ddm2lCjuA7QDxBpkDXV89AdCAzQWtHoEALWVpBzcsFQTFhUEGbiQRAO1BJQLY+K0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwJYkZkAAAACAjGhnQAAAAABDSmpAAAAAYM0Da0AAAAAADwVsQAAAAGCXSmxAAAAAQPr9bUAAAADgAyNuQAAAAMBRhm9AAAAAoAOmb0AAAACAzMNxQAAAAECUInJAAAAAwOhfckAAAADA6NZyQAAAAMDb4HJAAAAAQF1lc0AAAACAnuNzQAAAAMAME3VAAAAAgNFndUAAAABA36h4QAAAAEAe0HlAAAAAwM9jekAAAABAinF6QAAAAABlw3tAAAAAAFcHfEAAAABAJE98QAAAAIBD5XxAAAAAQGkPfUAAAAAA0DB+QAAAAEDzVX5AAAAAgGa0fkAAAAAAFgV/QAAAAMDhIH9AAAAAwPfaf0AAAACAOfd/QAAAACBWOIBAAAAA4GzkgEAAAADgioGBQAAAAOBEo4FAAAAAgHC7gUAAAACgddOBQAAAAGCD3oFAAAAAIFcDgkAAAAAg7guCQAAAAOB8xYNAAAAAQNvlg0AAAADArEKEQAAAACBsnIRAAAAAYLMohUAAAABglIGFQAAAAMCvmoVAAAAAQO3AhUAAAABg9pGGQAAAAOB27IZAAAAAYHo7h0AAAAAggGGHQAAAAGBBcYdAAAAAAJeQh0AAAAAgqMeHQAAAAGDmzIdAAAAA4EgHiEAAAACAnqSIQA== + KBZXds7jZUA= - + - 1Q+7QMOwCEDhUolAZHqMQLXY3D8tai9BugcbQBlNhUC1cLU/ISXsPyudRkAhSe8/0BHSQAxsJkGtAKJAn6m0P7SXpEANYCRAfEI+QRHBAUHz+RFAnORJQNYa8UAs+29BCqasQHgKrUHdkBxA9ESDQKy+o0GMxtk/fIelQBsaZUExzIxBoAZnQSinEUCskWpA1CW7QT6mv0DOqDZBxmQ5QdBH1kFEjpZBqKK6QPkZA0Evv5JAGNAhQTYLeEBdEfpAg9e8QJbGNkAtNyhBZyiNQbbVN0EmxetAhSmlQGEdSEEy7HxBjJAwQWsqWEASiKVA+HiaQdrZukA= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoO0oYEAAAAAgRENgQAAAAACenmBAAAAA4MnhYEAAAABgAQJhQAAAAAA2pWFAAAAAQCPEYkAAAADgXUdkQAAAAAAIXmRAAAAAYECiZEAAAACgBttlQAAAAECCPWZAAAAAgHfDZkAAAACAnmtnQAAAAABshGdAAAAAgJVnaEAAAACgZ4VoQAAAAGBRBmlAAAAAQLAnakAAAABgS0FqQAAAAEBjq2pAAAAAQD9DbEAAAADAWGVsQAAAAMB/wGxAAAAAQNQ+b0AAAAAArXpvQAAAAEB9xG9AAAAAAGLqb0AAAACgsCJwQAAAAMBtTnBAAAAAQLWRcEAAAACgi8JwQAAAAOAL0nBAAAAAwHD2cEAAAACAMwVxQAAAAOATD3FAAAAAYGkkcUAAAAAg+UNxQAAAAGA3T3FAAAAA4J2EcUAAAACAd8NxQAAAAKBU5XFAAAAAACFyckAAAABAfn9yQAAAAGD5i3JAAAAAAGyickAAAACAj8VyQAAAAGAL5HJAAAAAQKX+ckAAAAAANDBzQAAAAGDbP3NAAAAAIJFac0AAAAAguXBzQAAAAOAJgXNAAAAAAOuxc0AAAABA1/9zQAAAAMCyI3RAAAAAgKNWdEAAAACgEJJ0QAAAAMDYEHVAAAAAIEEhdUAAAACg81N1QAAAAGCjcHVAAAAAgIh/dUAAAAAAdJl1QAAAAACG9HVAAAAAYI0CdkAAAACAWSR2QAAAAMArRXZAAAAAYN3IdkAAAABg3uJ2QAAAAIByAHdAAAAAwFMPd0AAAABgSjV3QAAAAIBaUndAAAAAYLGBd0AAAADgeY93QAAAAOCSnXdAAAAAYKexd0AAAADAx8B3QAAAAKDp0ndAAAAAoLjhd0AAAABAmfF3QAAAAIA+FHhAAAAA4NQgeEAAAABgTlV4QAAAAMBGZnhAAAAAwCOceEAAAADAm7R4QAAAAGBP13hAAAAAwFzieEAAAAAAG+14QAAAAGD4A3lAAAAAoAkUeUAAAADgEyx5QAAAAKBSRXlAAAAAwM5UeUAAAAAgLmR5QAAAAGCAdnlAAAAAQD6DeUAAAACAXa15QAAAAOCl0nlAAAAAYN/deUAAAAAgOQV6QAAAACD6knpAAAAAoCgGfEAAAADg6n58QAAAAMBdJn1AAAAA4A40fUAAAABAgh5+QAAAAKDQmH5AAAAAoIzDfkAAAACg5PV+QAAAACCWZX9AAAAAIBPOf0AAAABgYth/QAAAAIBKLoBAAAAAoEMzgEAAAABA9D6AQAAAAGCGpoBAAAAAAKTHgEAAAABgJNqAQAAAAKAuI4FAAAAAAC3lgUAAAABgEPyBQAAAAMA7GIJAAAAA4BRQgkAAAADgUleCQAAAAGA8l4JAAAAA4IapgkAAAADAgrKCQAAAAGClu4JAAAAAwNvDgkAAAAAAsfCCQAAAAOAD/4JAAAAAQB1lg0AAAAAA+4yDQAAAAGBY04NAAAAAYEfig0AAAACAieeDQAAAAKBqdIRAAAAAIGM8hUAAAACgTomFQAAAAKC/yoVAAAAAYKcYhkAAAACAemqGQAAAACB1Q4hAAAAAYEuciEA= + hH7jX0jiZUAoFld2zuNlQGTI82CnYXBAFOkHjz8DckBShvO9FZJ3QKNAVK4XFHhA4N0/3e2ifUAxmKDN7yR+QLcaRv7i2YFAGHu+ECSbgkDiRMgALxKEQN+mZCCQo4VARnKSHbsqh0Cm0gow/KuIQIo1i8Qzc4tA6pUD13T0jEBRYTHUn3uOQKfh5nmABpBAjMbr8QXCkEC99id7piKRQAze4gZchpJAoQz7gtymkkDw87UOkgqUQIUizooSK5RA1AmJFsiOlUABEg4iLveVQFQhgCseU5dASpRO7k5Tl0CTFo+6b6+YQA== - + - mZt3QDXaEUD+3ilAxaoiQDI07kCAHyJApfzYPyWa/j+0hdk/OtooQfFfeECAeLhAPpcIQD/Uxj/L6TJAqLcXQZcOSUDC0TZA0sohQSseSkFCaLQ/z/cSQUImwUAcwh5BF4oyQJiBGUAJVblAn5MsQVaw1EAr2t5APLHvQIvAIUFNML9AlSVYQFcmm0DyytZAWUpAQfRED0FfelJADHY8QLQVBUEoRSVB7peVQPYvBkBJb/JAzuRcQaAFkUJGbTVAoixQQGmvYkCSiLQ/ACmtQPmcrECRCJ9AbMSMQXQG7kBCNrNB5wOvQGbKfEB2hVdANgr0QP/7m0DizwBBTeo5QeW8UkENDS5BOtYzQdDnm0A7RCBBUR4iQX7/BEH/0kpBIJkXQBajfUA6E5JBvAAuQfZIxj+eMFhBtJkTQijFS0Fqm8ZAg9cgQZTEt0Dwhj5AF/+QQGdnHEKk7AJBcTF3QWINQUHB3cVAILSSQVEoLEE0MelAeuFpQa7u7UHQAitAN4GyQfT8iUHBlwhACVLZPyWvjEAaRwpBrDqQQXQeU0CSFQFBuilFQH4YGkA6r1JADCSIQGCa+0BQjE9A6G0TQWX6kEAkJgpCsnnTQdA/+ECltBlC1ld7QZtMzUDDaAlBZiy8QUAyPkCgLJNB5uHqQGVS60AjIVBBEOy3QC0/3EBzON1AwULJQGdUyUBmZ2BCnfyIQSi/A0EFaOJBUa7NQPidEUB+FUZA7ml8QHS5UkBVfxFA3ZahP15kAkEPWcRATv4kQRD9skD6xsg/e8FzQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYIAmaUAAAACAeURpQAAAAIBN/2pAAAAA4Beia0AAAACAjzttQAAAAGCEaW1AAAAAAGwibkAAAACA0P1uQAAAACB1MnBAAAAAAACzcEAAAAAAYgVxQAAAAECWsXFAAAAAgLTfcUAAAACgTkFyQAAAAABn1HJAAAAAQH7ickAAAABAhQF0QAAAAACzj3RAAAAAwPyudUAAAABAvQV2QAAAAEADZ3ZAAAAAwDmBdkAAAACA9YN4QAAAAEA1o3hAAAAAwO3yeEAAAABA4/p5QAAAAAB3BXpAAAAAAMAVekAAAADA1WZ6QAAAAECH43pAAAAAgOTyekAAAACAemJ7QAAAAEDFInxAAAAAQLI4fEAAAACAPFV8QAAAAAAYYXxAAAAAwJuifEAAAADAx+F8QAAAAEB6XX1AAAAAwBTBfUAAAABA89F9QAAAAED2R35AAAAAgEXBfkAAAACATdJ+QAAAAAAI6H5AAAAAgMVEf0AAAAAA6GN/QAAAAIDcln9AAAAAQCKkf0AAAACAg9d/QAAAAIBe9n9AAAAA4OMigEAAAABA2SmAQAAAAIClNYBAAAAAgJlKgEAAAABAIFeAQAAAAAChY4BAAAAAwN9zgEAAAABgUYqAQAAAAGD3n4BAAAAAwFTCgEAAAAAATN6AQAAAAMBX/4BAAAAAgAN3gUAAAABgJZqBQAAAAAARroFAAAAAwD3vgUAAAACgPg6CQAAAAGAFMoJAAAAAwK1GgkAAAABAOWaCQAAAACBQgYJAAAAAAPaKgkAAAABA5piCQAAAAICmuIJAAAAAAKPCgkAAAADgXsqCQAAAAKAL0YJAAAAAIMvXgkAAAABAnemCQAAAAEAy+IJAAAAAgKgBhEAAAADgPAmEQAAAAKBwkYRAAAAAYFaahEAAAACAnWqFQAAAAMBd8YVAAAAAQNo3hkAAAADg/kKGQAAAAADPVYZAAAAAwGi9hkAAAADApMWGQAAAAMBQLIdAAAAAYPlah0AAAABg0WSHQAAAAGANFIhAAAAAYHmCiEA= + NrgMGZxjYkA/KJil8iNpQOJgFSPMRGtAQh3Og3wCckA5Cx9LftNzQJ0pGM8/U3hAx2JralbkeUDYy5Ck73N/QFW6t4ku9X9As5Hu4WPCgkDxCIJUAwODQLg0KGRvC4ZAs8DcCxBLhkDlOs0J0TOJQODGgbFxc4lArGZzGT08jECn8ifB3XuMQNlsGL+eZI9A1PjMZj+kj0BOkjm7VVaRQOxNg3SldpFAMqgMw4vakkDQY1Z82/qSQBa+38rBXpRAX4y0cQfDlED607LS9+KVQHYPh0Q4V5ZArOoX4T1vl0C/kccQWbOXQML/WOJji5hA1hSa44lHmUA= - + - D6kRQOeACEDOCew/eLuVQB2wiUDVJDxAuIGnQAUndUBHN81AmKJuQCwyPkAnugZBlH20P7oPdUAAdkhBt3DBQK0j7D8V1xFACk6WQNLxFUH/cSRAVR7pQLIWOkF1iUtB21nsP/YxBEE9DR5Boo3KQNAxd0C+mDJCq87vQDUYk0Cl9tM/RbXTQBfQlUD1woRAccmxQECdLUCvqhZBs/yNQI9T2UC3WlxA1mctQBZaV0Fsvew/zMDRQA7vsz//So1Anz7NQIailUClNYRBuw4dQdPmRUCNkTZAxCoiQd0uPUA8x6BAVXMXQbD/0EIwEoVAmV/+QFCulUEE8M1AXA7+P7O0WUD87n1Brv3jQcptZ0Fjq1lAtuxbQRrL0UE/8ZVBRI5mQZCKb0G9RVBB0d4/Qn4hTUHQ041B1kRGQHdLSUHQXIBBj0wGQW8i7D9Vl41A/KeAQWgh80H9/iVBbiPpQV3PGkBb7JxAhoPKQEKFY0Gp/QxBoLPiQTABEkAb8IxBqNnEQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIBMkYEAAAABAUUVgQAAAAGBtA2FAAAAAgChkYkAAAADgoYRiQAAAAODJwmJAAAAAwD7gYkAAAACAKW5jQAAAAEDso2NAAAAAIE4nZEAAAACAxUxlQAAAAADo42VAAAAAQINjZkAAAAAATedmQAAAAMB9ImdAAAAAANRiZ0AAAABgiuVoQAAAAGAOIWlAAAAAoK+iaUAAAAAAN+BpQAAAAOA2I2pAAAAAAHA/akAAAABgd2BqQAAAAIAqx2pAAAAAACCna0AAAACgOglsQAAAAEB9RWxAAAAA4JxnbEAAAACAfcRsQAAAACAP6mxAAAAAwBoFbUAAAABA8wBuQAAAAACmKW5AAAAAgAmHbkAAAADAf6luQAAAAEC2E29AAAAAoNcmcEAAAAAAG2dwQAAAAGDafnBAAAAAgO/DcEAAAACA7eJwQAAAACBW/HBAAAAAoHorcUAAAAAA2WFxQAAAACBhcHFAAAAA4BGhcUAAAADAnbBxQAAAAKCb/3FAAAAA4NwwckAAAABA25FyQAAAAMC5onJAAAAAgM3CckAAAABg8NpyQAAAACA893JAAAAAYEABc0AAAACABC9zQAAAAAAgQHNAAAAAgGpRc0AAAABAVmhzQAAAAKAuc3NAAAAA4Cqfc0AAAAAgIcVzQAAAAMA4BnRAAAAAgJYadEAAAACA5C10QAAAAAAbXHRAAAAAABJwdEAAAACA5IB0QAAAAACXjXRAAAAAgNykdEAAAADAa8N0QAAAAMAH1HRAAAAAAFrgdEAAAADAlAJ1QAAAAECLFXVAAAAAgFYldUAAAABAyTJ1QAAAAABbT3VAAAAAACeCdUAAAADAbaB1QAAAAMB70nVAAAAA4KrldUAAAABAzPN1QAAAAAD4EXZAAAAAIMQrdkAAAACgyFJ2QAAAAICsZHZAAAAAgBl1dkAAAABAapl2QAAAAGDIpHZAAAAAYFzAdkAAAAAgCul2QAAAAGAG9HZAAAAAQL0Ud0AAAACg9DZ3QAAAAEA6THdAAAAAQAdxd0AAAACg3a93QAAAAKBq4ndAAAAA4AH8d0AAAACg5A14QAAAAGDsVHhAAAAAYPBheEAAAABgUm94QAAAACDdjXhAAAAAACiueEAAAACgTNt4QAAAAOCo5nhAAAAA4OkueUAAAACAjQZ7QAAAAEBYYHtAAAAAIPBxe0AAAABgLCR8QAAAAOA+QnxAAAAAwDS0fEAAAABgEeN8QAAAAOCqE31AAAAAIKw0fUAAAADA12F9QAAAAMBobH1AAAAAIO2GfUAAAADgXbd9QAAAAMCs3n1AAAAA4CbrfUAAAABAqAR+QAAAACAAmH5AAAAA4AO1fkAAAACgpsd+QAAAAKAR735AAAAAIDcCf0AAAACgTIZ/QAAAAEDixH9AAAAAoGQUgEAAAABgvCGAQAAAAGD5RIBAAAAAQI9SgEAAAACA1liAQAAAAODVYoBAAAAAYPNzgEAAAABAt7qAQAAAAGDzyoBAAAAAAP/UgEAAAABAMAuBQAAAACCON4FAAAAAILRBgUAAAACg03mBQAAAAIBvkoFAAAAAIGKZgUAAAADAKOiBQAAAAEAGDIJAAAAAIGwdgkAAAABAtSKCQAAAAACqLIJAAAAA4PtTgkAAAABgE1uCQAAAAIAY0oJAAAAAoIDogkAAAAAgzAKDQAAAAKDvCINAAAAAIGChg0AAAADg+biDQAAAAMAu64NAAAAA4FY9hEAAAACgSayEQAAAACC5KoVAAAAAoPR6hUAAAABgVeSFQAAAAKAECoZAAAAAIA4ThkAAAACgSVuGQAAAAGDamoZAAAAAYDGjhkAAAACga+uGQAAAAGCY9IZA + KBZXds7jZUDOIQhxcuNoQDeULWxqYnBACRqGaTzicUDF63mLQnN2QNB0GqNUE3hAU0PGqhqEfEDKPVw7/SGAQGN0Q02FQoJAXh4Ad1QqhEAqoOlc8UqFQIlIgnmgYoZA8cuPbF1TiECJd3CjTOuJQPH6fZYJ3ItAGnzxO46jjEC4JiSmdeSOQGrn6BkDUpBAQCnl2nD2kEBO/bshOdaRQCQ/uOKmepJAl3/87Vkyk0CpSHZsDuuUQF09ESy7MpVAKWBtgWSvlkBBU+Qz8baWQFZoJTUX05dAholdfaCvmEA6fvg8TVeZQM8LnknBC5pAHpTLRIPbmkBlqHo/mb+bQE8jlV4X0JtAljdEWS20nEDlv3FU74OdQHpNF2FjOJ5ALkKyIBDgnkBeY+pombyfQDq8FbVfbKBAxjVRDiZwoEAsR/+4ei6hQIbBzBhRUqFAD6YJWKsuokBIxqvdhIqiQDPnKb673KJAOlGV4Z9Mo0AlchPC1p6jQCzcfuW6DqRA04YLwPSepEAeZ2jp1dCkQPfHKyYFTaVA3vLj8wCzpUC3U6cwMC+mQNB9zfcbdaZAQt5HMUO9pkDCCLf7NjenQGfWMABZv6dAcB2v+VQ3qEA/l6S6bcWoQGKomP1v+ahAmCLXwZCLqUBUM4IBi7upQLxj9yehOapAeHSiZ5tpqkCu7uArvPuqQA== - + - Oc4KQlzNI0F0CFlA+n5aQjqsAkEzY59ACrhGQJB6lkAkuxFB6eBHQM+kM0DNF/4/K1YQQbaypUByx4lAEMUKQTqvQEBeUG5A8+KMQBrIg0Bu9ZRBVonZQLpUIUET8BZAzB49QKIwrUCg2dpCeDwgQRFmi0EO0o1AgnaIQIvmM0C2xJ5AfkSdQ4yh7kFmXiFB6zzBQCk4zkD1qJtBw5sKQQ2G2T8KCSlBUd2QQBQT1UCIoJ9AMJpIQGvcjkAHaltASZ3rP5OvM0AhDxtCMQGfQJd2lkDhi81AEvQLQfn+F0CF7o9BJzcHQU5PDkDnxcNBQM89QZOiOkGghoZA88f+QNhIi0EslYxAhg3FQZRnF0CeHMc/7DVnQPMEn0DiEcxAqdLrPzmYLUDZtFdAQRqYQPcie0HzRDtBd6KFQUl5AkG8eAhAp8BYQKbgjkAFEaZBmDm7QFqh/UKdfxhB+PmvQNy2sUCCA1RBlLoTQk9IGUL9I1NBiQZ3QNWNT0Btzn1Au3WNQM9V+0A7ebRC5DWVQTLEkkEhy1pBLHATQU0DSUBFTZxA+cCeQHEA60Jnk8hBhKG7QGCRr0B2RbhBmkprQK5PXECqpRhB5CgqQIvpT0BcPAdBvLFJQn0NMkLd6o5AHk9DQUqVoEDqanFBGUXgQDBarUCbuYRBOg8AQbeWKUEUqjZCnEGYQM+rxj+KUphAraWxQAAmoT+UUI5AsiyaQEpnpkFu1pBA3ccvQDTUgkH4/MhAjZwgQaZVwkB7ai5BZDQQQbzGGkCXhRpA2wbQQaLkf0FrkKVAYC0AQtsS4kJr899BnMQfQQf+gkD9aX1AKhLwP/rojEOgZDNCxWhJQKCzTkC1PBpBwhi4QHUP0kC9eQlBC5m2QR+OvEA1tBJCWxfkQECoZUAH03NDQtirQvceZkBeTNBA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgLvjaUAAAACArmBuQAAAAAD0JnFAAAAAgFEUckAAAAAAN5VyQAAAAIAs1nJAAAAAgPnjckAAAACArMB1QAAAAIB90nVAAAAAQBT/dUAAAABA2DB2QAAAAAA6oXZAAAAAgLX/dkAAAADAmjh3QAAAAICEZnhAAAAAwJb6eEAAAADAymB5QAAAAEBpFXpAAAAAwEtkekAAAACAuY56QAAAAECzo3pAAAAAgMy+ekAAAAAAwOZ6QAAAAAD6z3tAAAAAgLgVfEAAAAAAH698QAAAAMCvwHxAAAAAwB/QfEAAAABAReB8QAAAAMCWOX1AAAAAQO1PfUAAAADAnF99QAAAAAA9cX1AAAAAQAHHfUAAAADAMt59QAAAAECVEn5AAAAAAOmCfkAAAACA25V+QAAAAEDe2H5AAAAAgJD8fkAAAABAyzF/QAAAAAByhH9AAAAAwI7Qf0AAAABg3QmAQAAAAOBGGoBAAAAAIJM5gEAAAADAP1eAQAAAACA+04FAAAAAYIU2gkAAAABAOcSCQAAAAGCjzIJAAAAA4ARZg0AAAADgiX+DQAAAAKAkW4RAAAAAwKrHhEAAAAAg1eaEQAAAACC064RAAAAAIGf6hkAAAABgcmGIQAAAAGCTZohAAAAA4DK7iEAAAABg3/KIQA== + NrgMGZxjYkAYxSyCnGRqQI8BR/y9MnFAAAjXMD4zdUAdWZMblkN3QA== - + - jx3bQFItvUAemUJBcoSaQYhlhUDm2KdBQRTiP7CJxj/WQ2RAPHTyQDvakkBgekhA7RbbQHwcg0A86Y1AJw/MQFOKEUAwHAVBzYItQIFeI0AYdN1Aq7BRQC8y/0Gi6FJAZpx8QAjysUDCZYZB3fx9QH1wP0L0GbhAJs8FQQB/EUFuyEBBPxFAQPiaPEH8t3ZAdn2zQHnKBEHFB45Ao+79P3e/KkErGW9B/DO2QKY12T+deE5A3bILQa3TMkBGfdZA70MQQeu330HxRw5AM3QnQbHl30BWwnk/3ufDQGgXMkG3hqtAx/xEQFwMrEB6gdFAyCIkQeQstkE= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4NBFZ0AAAAAgYgJqQAAAAIAr2GpAAAAAQHXCa0AAAADAOz9sQAAAAIDBhWxAAAAAABRGbkAAAABgBNpuQAAAAEA1XHFAAAAAQGfhcUAAAABg7zRzQAAAAICDQXNAAAAAwKdxc0AAAABAm+R0QAAAAACPk3VAAAAAwCMfdkAAAACAgzR2QAAAAICcQXZAAAAAQN2CdkAAAAAASv13QAAAAACiOXhAAAAAwBfDeEAAAADAKeR4QAAAAAC50HpAAAAAwHQve0AAAADARnF7QAAAAMB7X3xAAAAAwI91fEAAAACA4ZJ9QAAAAEBLGn5AAAAAwCEnfkAAAADAizF+QAAAAMB1035AAAAAwCFFf0AAAADAxuF/QAAAAEBn7n9AAAAAYKNbgEAAAAAAdGiAQAAAAMCXc4BAAAAAgAy0gEAAAABAQ9mAQAAAAIB+aoJAAAAAILxygkAAAADgmmWDQAAAAGCZgoNAAAAAADm3g0AAAACAKoWEQAAAAKBOsoRAAAAAYJT8hEAAAADg8oqFQAAAACCzw4VAAAAAgM+rhkAAAADAlAOHQAAAAKB6X4dAAAAAIFdrh0AAAABgTcKHQAAAACAiKIhA + NrgMGZxjYkBK9xnL9URsQAoahmk8YnBA+0+R6hKTckBgbopu1NJ0QH2/RlksY3hAiqfdCeujeECo+Jn0QjR8QAsXk3gEdH5AfybPfG1SgECwtcs+TnKBQHYFT6uk6oNAd+FxTrp6hEA= - + - j0acQL5ixT9Ns8Y/VdKAQJVAF0Gy6xpAeoLRQCyWEUAKeBNB1l0rQYQgnECO1es/3mIIQPhoxj/8nYJBurdFQBTrsz8h0DZAcw+FQIq6nUBuW8FAakRVQbReSUA+01dAQ4M2QPxiZUCQ+KdAQIqSQSDlf0BuVgJBHBGDQAqJU0EkTFJAKXZAQKNMI0GjOUlAUSqRQDOKEUCqfWxBt9EbQRRdwUFiAYVAml7UQF2OqUH/VxlBU7QQQXwTmEApFkhBfgGbQHIcg0DyZaxA90g1QaXQ7UCAkwNBLoOOQpS02kDRXW5A + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgA2IakAAAAAAyyRwQAAAAEAMUXBAAAAAwCM1ckAAAABAfaVzQAAAAOB0xHNAAAAAwNrkc0AAAADATeF0QAAAAEDBdXVAAAAAgHGJdUAAAACAH8R1QAAAAAB2QXZAAAAAgOi0d0AAAACAogB5QAAAAECudXlAAAAAAJSIeUAAAACAd615QAAAAEBM/3lAAAAAQAYnekAAAABAoFJ6QAAAAMAxfXpAAAAAAHKSe0AAAADA/8h8QAAAAIByAX1AAAAAgGVqfUAAAACAL9N9QAAAAICGY35AAAAAQFfRf0AAAAAAwvp/QAAAAAAaNIBAAAAA4I1FgEAAAABg90qAQAAAACB5WYBAAAAAwHmKgEAAAAAg1JOAQAAAAMCmxIBAAAAAoAXjgEAAAABAnRiBQAAAAEB8IYFAAAAAYCEzgUAAAACgMU+BQAAAAAD+WIFAAAAAAIJpgUAAAABg/iGDQAAAACCqloNAAAAAwDq+g0AAAAAgzEaEQAAAAOD6ZoRAAAAAoKGMhEAAAACA3eWEQAAAAGAY+4RAAAAAYKUChUAAAADgeE6FQAAAAAC7+4ZA + NrgMGZxjYkD1hHOUyKJnQFf+/uF9UnBACRqGaTzicUCyCkktQaN2QAl4Yr2U83hAsmglgZm0fUBkhKwIWER/QCDgONC44oFAUJMS74Myg0BN5t11GguFQA== - + - ts+0P/Mnwz9mIdk/RgT1QK8l5j/AO1Q/BOIEQB52a0B/n5FAjXwFQIiDNEDupP4/VJoNQHU4mkCbgm5AgE8tQKV2FkF6pz9AxfMaQLB0sz/vOx1BGacdQVm1KUBsX65AZDEmQJ67P0DtlLI/Q+aJQbQ2hkEya1FAtt8CQclxAkEIUyRApGyNQFwh6j867p5ArJCDQOVnY0GhtZ9AQcMPQXqLSEFk1f0/99WMQBXRN0GkcxFANA2FQGkh/UC2XtBBIJtSQIiVcEE9JjhBB7bIQCqP6z9BDKhA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAPhpbkAAAAAAyyhwQAAAAMCpJHJAAAAAwHgBc0AAAACghsN0QAAAAEAUAXVAAAAAwNNjdUAAAAAAYHJ1QAAAAIC5QXZAAAAAQCJRdkAAAABgZ112QAAAAECZcXZAAAAAgMmSd0AAAADA0HF4QAAAAEDGA3lAAAAAQMgzeUAAAABAkfR5QAAAAAB+D3pAAAAAALA1ekAAAACAukV6QAAAAMCA23pAAAAAALPxekAAAABAPwZ7QAAAAMD5EntAAAAAgCdEe0AAAAAALFZ8QAAAAICzonxAAAAAwIWxfEAAAACAnQJ9QAAAAAAVdH1AAAAAAAyUfUAAAADAZbJ9QAAAAABhW35AAAAAAByzfkAAAAAAhvJ/QAAAAKAyCIBAAAAAwMlDgEAAAAAgFZGAQAAAAACQmYBAAAAAgFv7gEAAAADgkyGBQAAAAKAJT4FAAAAAIBS7gUAAAADgcdqCQAAAAKAvGYNAAAAAIJMqg0AAAADALjGDQAAAAMCAeoNAAAAAoOqgg0AAAABgr6iDQAAAACBNuoNAAAAAYDcGhEAAAAAg3xCEQAAAACCpaoRAAAAAAP2fhEAAAADg/qmEQAAAAKCmEoVAAAAA4II6hUAAAACgDkGFQAAAAKAjXoVAAAAAgG2shUAAAADACfOFQAAAAOCnAIZAAAAAIP4PhkAAAADASxuGQAAAAGBtSoZAAAAAIPtfhkAAAACAQeCIQA== + KBZXds7jZUAeR9VQy0JnQKPid1q/AnFAHvu2xz2ycUAXiDhKrwN5QA== - + - qNm6QEVifECa6EhAPp+XQIQrUkDhQbZAUPrJP5M+GkEEBZRArCwrQFW/dkBclzZA8+qDQK8U6UAQfrpA8tbJPyR7/kCZ95lAhw6jQPPTMkCcdWJAhlKoQCRMpUB6E9tAzQX+P9n/m0D1wLRAN6ArQYVK8T9I1SFBdmFJQHY7oj9slmpAt2Q8QCdnr0CyfBFApvttQIAqc0DNNMY/LADjQLycZUIgL/0/Qb+1QD89BkFTxsFA93o5QcOtVEEQNRBBmPodQiA3CED06sU/n+wqQddcBEFwVTVA/GQRQMTRBUAK9tg/MjIPQlc6oUD0UI5BK50aQQf61UAyzgRAa9DYQKc8d0BuCYJB53EIQD6SxkA= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQOL/YEAAAABAApxhQAAAAGCFw2FAAAAAgOVMYkAAAAAg2GZiQAAAAAC2gGNAAAAAAHmZZEAAAACAM2RnQAAAAACBqWdAAAAAAG/saEAAAABAlwxpQAAAAOC8JGtAAAAAAEzDa0AAAAAgvuBrQAAAAGB3ImxAAAAAYMdFbEAAAACgYkJuQAAAAIBvvW5AAAAAgDPibkAAAAAA5CRvQAAAAEBbZ29AAAAAgA2Kb0AAAAAgQwJwQAAAAOAwgXBAAAAAAInFcEAAAACgo9BwQAAAAKAfM3FAAAAAoFlDcUAAAACgEWRxQAAAAKD3bXFAAAAAwOmRcUAAAAAggKFxQAAAAEDPEnJAAAAA4MMhckAAAACgiiFzQAAAAEAzLnNAAAAAIDuCc0AAAAAAmJJzQAAAAIC0z3NAAAAAQNvfc0AAAAAgHfhzQAAAAKAxjXRAAAAAYAnTdEAAAACA0vN0QAAAAGCiFXVAAAAAAEFUdUAAAADA32V1QAAAAMAidHVAAAAAQJeBdUAAAAAALY91QAAAAEDEq3VAAAAAwM28dUAAAAAA5OR1QAAAAED583VAAAAAIM4JdkAAAACgmx52QAAAAAA7QXZAAAAAgIxjdkAAAADAUpJ2QAAAAEA3oXZAAAAAoDL5dkAAAABAmh53QAAAAGBbNHdAAAAAINNWd0AAAACgi313QAAAAOBSlndAAAAAoEy4d0AAAACAXcR3QAAAAOBc1ndAAAAAgI0OeEAAAACgEx14QAAAAGA5M3hAAAAAIGpFeEAAAACAglN4QAAAAOBoaHhAAAAAADqgeEAAAABgj7F4QAAAACD+1nhAAAAAoBLweEAAAADANv94QAAAAMA0EnlAAAAAQEk1eUAAAAAgnT95QAAAAAAxUXlAAAAAIC9feUAAAADgIZZ5QAAAAGCUwXlAAAAAYDPVeUAAAACgwfB5QAAAAKBZNnpAAAAAYOtDekAAAAAgsU16QAAAAOBTbnpAAAAAgK6AekAAAAAAvsx6QAAAACDD3npAAAAAIPDwekAAAADANAJ7QAAAAKB2F3tAAAAAYHAqe0AAAABAyEx7QAAAAMBHjHtAAAAA4IdpfUAAAAAgHJZ9QAAAAODD9X1AAAAAIG8CfkAAAADgtKV+QAAAAIAdc4BAAAAAAIB6gEAAAACgyciAQAAAAOBV6YBAAAAAgIr6gEAAAACgQzWBQAAAAGADcYFAAAAAoAV9gUAAAADgdbiBQAAAAMCMvYFAAAAAoGxHgkAAAABgDE2CQAAAAGC2VIJAAAAA4CN0gkAAAADgRJCCQAAAAKAjn4JAAAAAoG3SgkAAAACgAOOCQAAAAAAd+oJAAAAAwP0Sg0AAAADAPoWDQAAAAOAYi4NAAAAAQPaSg0AAAAAgiJqDQAAAAGDXeYRAAAAAQB1hhUAAAAAA24OFQAAAAOB4s4VAAAAAYNkLhkAAAAAAtHGHQAAAAKBY/IhA + U6vsr5tiY0AoFld2zuNlQOJgFSPMxG9Ao+J3Wr8CcUBfbopu1BJ3QGbpFS5lM3lAX8xmwiwkfkD1QGJNPUR/QMFqtPlXyoFApUozqWragUDslDb8owKEQGx22bjW4oRAGZvboQUrh0Azon/IQuuHQKx7f91cM4tA7fRfwLrri0DXpQHgqGuNQO0jTupmdI9Aa+r3hCp6kECoKIyDeUaRQLL+pn9AXpFAlhR6h3bikkBZqnP4olKTQG+/tPnIbpRAFixxnMymlEBfrrFo7QKWQP7nEu/0NpZAR2pTuxWTl0Du1g9eGcuXQATsUF8/55hAx4FK0GtXmUCrlx3YoduaQLVtONRo85pA8qvM0re/m0BnhJ3irn+cQHLDw+cNhJ1A55uU9wREnkCH2ATpM6CeQKJiwnkgIqBAaWRrwy9SoECU7at9O+SgQPSl1CxIHKFAhniVgVamoUB/MHUtW6qhQBEDNoJpNKJAo3GVk2tYokADjh+GhPaiQGP9EJ6WOqNA206TQJn8o0Ah9bBppCCkQM3ZfES0vqRAeoDjcMfmpEBsC8104qilQA== - + - YHCcQT3htUD7jkxBdHQ0QMAy9j+R6sY/sXdzQBqOzEEaRyBAT3xSQCmnukC91us/5jgqQWTPoT9sef4/DwoIQR+z7D9HdMk/qFzZP+xjEUG8B0BAqiOqQExH9kCwQMRAHEGWQJVeFkDnNSRA2o8EQQUMVkEWvMU/xDQkQaOepUC/65ZAv5zHQKpMHUISzytAbVkzQc4R6UDvZuxAtw21Pwwu+T8pS3RAldZkQZyk1kD8DOZAq8oQQODPDUEYlJRBROVTQuqgiUDumxlBC+ikP8DoDEGlKsc/jWGAQB+yR0CWDBtAxRqoQAKpsECRBFNAa7akQAIgpD/p/TNBZM4rQMwmG0AOtRFA2iGXQKnGiUAl1UdB5hUXQe+yL0G2Ml5BjE39QE3hmkBzcy1A5dnGP+LZxj9+zFBAX4IIQfgOf0HllHNALnIuQRQwhkBSAS9CrkEAQrPvB0AtFz9AARGPQjrMkEA0QrQ/glgVQvSy0ECHWo1CvEmoQNVoAkEvaENBCGV8QR94QEM0F0ZAsj4FQs2+l0FrlkZArrxGQBRYDUBF85JA0lNJQCg3hkHqjmJCy0OvQFIAzEGcCSpApay6QHpTAEF9fydBDHKwQRutEUBXm0ZBwqZ8QExZzUA6LbNAIoMIQBTQL0FYT0BBTnWIQFslf0Hpn5dAE9S1QD+pl0DzWa9CcK81QuWsHEGTuBFAKNUsQdSDLUDh4hFAHNjGPzMVLUCmPCdB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAANmhbEAAAADA8gZuQAAAAED2xm5AAAAAILFFcEAAAABAOABxQAAAAMD4E3FAAAAA4OChc0AAAADAR1R0QAAAAMD3sHRAAAAAwOXCdEAAAABAfoJ1QAAAAEC+L3ZAAAAAwIVWdkAAAAAAI4R2QAAAAMDF8nZAAAAAAKQyd0AAAACAeMh3QAAAAABns3hAAAAAgOcReUAAAADA7i55QAAAAMD2unlAAAAAQIghekAAAABA10F6QAAAAMAF7HpAAAAAAI6Ee0AAAADARI57QAAAAABQxHtAAAAAwAjme0AAAABAjf17QAAAAEAKE3xAAAAAwL2OfEAAAABAfp18QAAAAIC6MX1AAAAAQPPQfUAAAACAiPJ9QAAAAICbEX5AAAAAAM5UfkAAAADARtJ+QAAAAMAmdn9AAAAAgPaWf0AAAADAacx/QAAAAIBlF4BAAAAAQE0dgEAAAAAgaTKAQAAAAIBfV4BAAAAAgA1ggEAAAACAi4KAQAAAAGC5uoBAAAAAYHTDgEAAAACgqciAQAAAAEAl2YBAAAAAIMMdgUAAAAAA4yuBQAAAAODeMYFAAAAAAI1HgUAAAABg2WWBQAAAACB2coFAAAAAgAV+gUAAAABgFIOBQAAAAOBpi4FAAAAAoJfRgUAAAACgfNaBQAAAACCR8oFAAAAAoBQAgkAAAACgBw2CQAAAAOD1MYJAAAAAoJptgkAAAADgVXuCQAAAAOBFhoJAAAAAYFyqgkAAAABg1vqCQAAAAODeBINAAAAAYJIXg0AAAACgQSuDQAAAAOC1PoNAAAAAoK1rg0AAAADg6nGDQAAAAECFgYNAAAAAYBeJg0AAAAAAsZmDQAAAAIA/roNAAAAAgCvJg0AAAACgAZuEQAAAAMDTFIVAAAAAIIo9hUAAAABgs1qFQAAAACAoo4VAAAAAgE/thUAAAACAKDeGQAAAAIB+SIZAAAAAYBx0hkAAAABg8siGQAAAAOBD0oZAAAAAIBfZhkAAAACAs/WGQAAAAGDL/IZAAAAAoDpIh0AAAABgjfqHQAAAAGAJSohAAAAAgMKhiEA= - - - - - - GaCaQCdgE0DHzTFBrXaAQIx3kkCDnjVAjYvHP6W+iUCKTn5B/tcdQehVUUDY5Z5AxCMBQR9QbkDp4xFAXZwSQR7SA0EalO1AvqCjQBbkW0CMfg5BPRkSQbeOF0B4gKZANHWhP8lb1kAN7KBA1Q+/QNNPs0DKQ45A06prQGB6WkDtvENBIL1/QLRnG0C+bXNBdpyeQME8P0FJeIlBrhpHQaqg5UClxOg/pNwwQQllo0D9WbQ/78AhQWd8LUAuCvVAD00kQKmyM0ELm8Y/YyrGQXFnYEHRTG9Ae6AwQZRnhUHIDktB8A2kQMAAnkLNqXtBSm5cQd/5ZEANTZpAe1+0PySKHkGeTDVAMSUzQXRWM0HLZmFBeR6iQUyjykDBLm5Bvc85QQrWt0C7bq9AMyYRQVGsA0FC68VAnmpxQUNm5EDWmcpBD4ptQeAkF0DFfCFBGXBRQfZq7EFUJsxBJOqCQjXERkGyes9Bnc11QMaQT0FNFHNBykYRQMN8BEAt8aBA44okQllqSEHg9TRAlcH2QA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIJQUXUAAAABgZk1dQAAAAMCw/l1AAAAAwFmNXkAAAABggidgQAAAAEA4pWBAAAAAQFTjYUAAAADAzwNiQAAAAEBXJmJAAAAA4PFjYkAAAACAf2JjQAAAAECcfmNAAAAA4MqpY0AAAABgYMNjQAAAAIA6I2RAAAAAgAgpZUAAAAAAjUZlQAAAAADywGVAAAAAAHvqZUAAAACAhBlmQAAAAEAuLmZAAAAAADdJZkAAAACAgKJmQAAAAMBm6WZAAAAAoOxnZ0AAAADgxZ9nQAAAAADgwmdAAAAAQLICaEAAAABAhcNoQAAAAEBVgmlAAAAAgBTpaUAAAABAZCdqQAAAACCta2pAAAAAoDyWakAAAADAv+BqQAAAAKA6ImtAAAAAIIiJa0AAAADAeOZrQAAAAED/Q2xAAAAAwP5nbEAAAABAasdsQAAAAEAwCW1AAAAAADQ3bUAAAACASGVtQAAAAEDPpG1AAAAAgIvcbUAAAACAoUZuQAAAAEA9gW5AAAAAwB6jbkAAAAAAL8VuQAAAAMBHn29AAAAAQLrGb0AAAAAgcAVwQAAAAIBXEXBAAAAAgKQjcEAAAADAiVNwQAAAAKBCgXBAAAAAIBWQcEAAAADARKFwQAAAAOCkw3BAAAAAgKQCcUAAAADgwjVxQAAAAEBRQnFAAAAAYCtycUAAAADARIJxQAAAAKAokXFAAAAAQGujcUAAAADA/8JxQAAAAIAR4nFAAAAAoOD0cUAAAADgdQVyQAAAAIAxFHJAAAAAoBwkckAAAABA8C9yQAAAAODmU3JAAAAAoCNjckAAAABAq4FyQAAAAICNoHJAAAAAYJPEckAAAABABtdyQAAAAED1AnNAAAAAgIokc0AAAACATj5zQAAAAID8YXNAAAAAoKiDc0AAAACg1NVzQAAAAICq53NAAAAAQI73c0AAAAAgIRl0QAAAAMDrI3RAAAAAwBw0dEAAAABAF050QAAAAIClW3RAAAAAoH9ydEAAAABA6qJ0QAAAAIC0snRAAAAAwMkbdUAAAABgyCV1QAAAAICMQHVAAAAAwANhdUAAAADABXV1QAAAACAhkXVAAAAAAAqidUAAAADA5a51QAAAAMBi0XVAAAAAIFDedUAAAAAA7ut1QAAAAADDDHZAAAAAYLFVdkAAAABguWR2QAAAAGABcnZAAAAAYNiRdkAAAADAbaJ2QAAAAICys3ZAAAAAYJXfdkAAAACgMOp2QAAAAGAH9HZAAAAAwIQUd0AAAAAANCN3QAAAAKA2PndAAAAAoNJzd0AAAACga2B4QAAAAKCKI3lAAAAAYNw0eUAAAADAXmJ5QAAAACCQkXlAAAAAYFuveUAAAACgUjJ6QAAAACD8tnpAAAAA4Mf0ekAAAABAXgJ7QAAAAOCvEHtAAAAAYG1We0AAAADg5GF7QAAAAEAplXtAAAAAQFa9e0AAAADg3w18QAAAAMDOTXxAAAAAINvnfUAAAACgkfl9QAAAAODJHH5AAAAAoPN0fkAAAADgYfR+QAAAAMBMA39AAAAAoE8Tf0AAAABAqkR/QAAAAKD81X9AAAAAAJwTgEAAAAAg0CuAQAAAAGDhWoBAAAAAIA+MgEAAAADg0teAQAAAAGBK5IBAAAAAgLT6gEAAAADg+zSBQAAAAKCcX4FAAAAAwAWIgUAAAAAAlqeBQAAAAOCafIJAAAAAINySgkAAAADgThyDQAAAAGBcIYNAAAAAYC17g0AAAADATIKDQAAAAGA0y4NAAAAA4O0LhEAAAACgRxGEQAAAAIAaioRAAAAAoHKShUAAAACgYxyGQAAAAMDzZodAAAAAYDl8iEA= + NrgMGZxjYkAot2DdIQNrQOzQoK8iBW9A6q+08yjycUDMvNRcKfNzQEW8/j7sQnhAQGKVTBn0e0A= - + - 82saQJg9NkDPHnhABCTnP8RZSUG3QzZAhsfBQP9LakDHzylARTFQQWAdb0C1gKE/JgUFQSjW1EBWrXdA8ryjQAiI6z8e3PY/bJ7SQBI6AEGMO5VAr3EwQSXUEUD17o4/10qVQeG+pEGdvuZAthUYQci9/0DROxpAqwiRQPQ9/j8VlqNAK+pXQG+y6z+jsIpAX/sRQFK1MkB8AX1Ann48QcWqj0CBJgRAwv+EQP7hxkDqUBVB8quHQBZdBEBWANk/8HiAQC+07EAP5BpAO08EQBV2g0BFlctAIfxkQEn5hEAxLs1AaU4kQCf580CN5BpA85OUQKNTvEH9VupACVC7QLBWAUFGyaVAcow8QMqGfUGr3AdBc94cQdIaeEHShFJBvfxGQCVfgUAgYNo/PbjDQC9R/j/NrJVA8d1kQbPPnkD09UZBbLKdQG9S+kD69ipBd2ABQfpNYUB39A1BCqUCQTzzCEDKSTNAmJyAQbCeakHLI7Q/M9rsP1e270BQC/NAWfRNQXWsoEEDaU5CDBQLQrm1RkElYf5AoZlnQcFK4UDo84lAI4cRQexQ/kBfXbpAa/1AQYpuOUEyZlpBIKAWQTr4XEG+Lg5Bnzy3QZXFT0CRUX9Bs4zRQKZOZEHW5i5CC3OKQJDoP0C8A6pA0m2ZQSC56z8b8aBAUjbNQASY7UCQtExBWsUYQFL3P0Aa8fZAPZcKQff+aUB6yvdAzee8QSr19kDkqstCkzYrQGWJNUB5sxNBt54RQOK/70Dz2PJApBczQDkaF0Cu7mpDBRAkQNSPxkAu4ARBthcGQPqBgUHinrVAt8TLQDuZGUGSuq1B2PfrP9jdhkJ/CYVAxDUkQOL1UkEvtolACHEtQA0D2T9XiVJAsPFrQEtC/z8aFv9AAjQ0QZmbDUARx9FAFvS6QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwLVUX0AAAADAmahgQAAAACDxBGFAAAAAAAeFYUAAAABgQ15iQAAAAMC/eGJAAAAAQG4iY0AAAABA50dlQAAAAEA1nWVAAAAAAHHiZUAAAACAmx1mQAAAAGAkp2ZAAAAAgEgIZ0AAAAAA5oVpQAAAAAAuCWpAAAAAAH5cakAAAAAAjKZqQAAAAADbympAAAAAINxfa0AAAABAyyZsQAAAAMCx2mxAAAAAAG0CbUAAAACAHSdtQAAAAIAySW1AAAAAQNVibUAAAABAq35uQAAAAAD2pW5AAAAAwIgnb0AAAABANGdvQAAAAMAcgW9AAAAAoD1WcEAAAABgdnVwQAAAAKC303BAAAAA4IrkcEAAAAAgox1xQAAAAKA+NHFAAAAAgHVIcUAAAABAIVtxQAAAACBcoHFAAAAAIIEBckAAAAAA6w5yQAAAAEC2JXJAAAAAICBFckAAAACgWKFyQAAAAAD1sHJAAAAAQALVckAAAABA3lBzQAAAAAAPtXNAAAAA4GjUc0AAAAAgZeVzQAAAAKD4UnRAAAAAIC9gdEAAAADAUXJ0QAAAAAA/hHRAAAAAQMmSdEAAAADA8rN0QAAAAKC1wXRAAAAAQIvmdEAAAADg/AJ1QAAAAKA4NHVAAAAAgHSPdUAAAAAAUK51QAAAAKAiwHVAAAAA4A3UdUAAAAAAeOR1QAAAACBc8nVAAAAAgO8sdkAAAAAggqV2QAAAAOBmtXZAAAAAYGHBdkAAAAAg4892QAAAACDb8XZAAAAAQDw3d0AAAADgtEV3QAAAAGDQcHdAAAAAgGGRd0AAAACAnK13QAAAAODR1HdAAAAAIKD1d0AAAACgHp58QAAAAKA7an1AAAAAYFmTfUAAAABAgsZ+QAAAACCb/H5AAAAAQBspf0AAAADg3rN/QAAAACCN839AAAAAwMcagEAAAACgGTmAQAAAAEDe04BAAAAAQONKgUAAAABgJ9uBQAAAAMDl44FAAAAAoMzwgUAAAACA9kOCQAAAACD/VIJAAAAAgF+dgkAAAACAKcSCQAAAAIAyyYJAAAAAgKuag0AAAACgrbOEQA== + NrgMGZxjYkAsBDo09kVuQFRnpVdMhW5ApFlpOdMzdUDDqiUkK0R3QA== - + - ttAiQRz2GkDeiRlBckhJQD6230ACuLtAHlfYP2leQEB51E9ALFzYP3Fo2z8KI5dAQTViQNHr6z/xJ1pAQXyVQDrXjj/3i1pAD7EgQUDDoT9JQ91A6qE/QOclS0EkhMhAe2DFQEAxoT+Uceo//Oj2QLC6RkDEd7FAJOvbQN+RdUBmozZAyiZJQC0PPUAsxhFATi9MQWTLm0DHDEBAq+g9QIqBGUAtQJxAEDIkQPH5PUDDtFtAJWfMQQpFKEHts09B8hrJQGLiR0BQKCFBhqLKQMVY1EA7GCdBu/PKQKGHj0D+HYVA7f8UQfxPJkF6KKVAVEICQewA90G/a48/VZtaQatOLUDcnCBB/2oHQTXzzkCfgRhBgW8uQMMZ6kCKdT5BQP6PQLRl0EEUgNFABon9QAj7iEBE12lARJtSQXuX6EBdjLpA6YwBQTV/LUCkdgJByRSFQMNyOUF3rJZA9q/+P7CazkDeia5App4yQdJy7kDDq9lArPHcQMGtIEHhRL9A/7AjQeD9pEBlkWNANSJ0QCugBUI= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAIP2FXEAAAACAyPxcQAAAACBqUF1AAAAAoN4IXkAAAABg9EdeQAAAAODIKWBAAAAAQF5FYEAAAABAyl1gQAAAAKAb4mBAAAAAgLf/YUAAAADgG2ZiQAAAAKD6gGJAAAAAwMqjYkAAAABANmdjQAAAAADT42NAAAAAwItaZEAAAADAYYpkQAAAAEBgQmVAAAAAwGtnZUAAAADAr4hlQAAAAMBjYWZAAAAAAFnjZkAAAAAA3CBnQAAAAIAugmdAAAAAgN6lZ0AAAACASupnQAAAAOBQaGhAAAAAQAuHaEAAAAAgvKhoQAAAAEDaBWlAAAAAoA0maUAAAACAd0tpQAAAAKA1rGlAAAAAIM/paUAAAACA4AFqQAAAAIDgxmpAAAAAYEQ8a0AAAACg72hrQAAAAAAsqGtAAAAAQPAcbEAAAACADkFsQAAAAEAWo2xAAAAAQLDDbEAAAABAlt5sQAAAAMCbZW1AAAAAwPGDbUAAAACAEsBtQAAAAADc5W1AAAAAQGYHbkAAAABAnh5uQAAAAIB9QG5AAAAAQDaHbkAAAACAA6FuQAAAAICQ7W5AAAAAwOoAb0AAAABA3UpvQAAAAMC3YG9AAAAAgG2ib0AAAAAA4eRvQAAAAGCOA3BAAAAAQFQicEAAAACgz1BwQAAAAICEhHBAAAAAgI+mcEAAAADgirBwQAAAAAABw3BAAAAAgCTUcEAAAAAgNfBwQAAAAIBrD3FAAAAAYNofcUAAAACg+0FxQAAAAOCMYnFAAAAA4N5zcUAAAADASZNxQAAAAEARpHFAAAAAYBDScUAAAADg3OZxQAAAAAAwBXJAAAAAICwockAAAACg6j9yQAAAAICNUnJAAAAAwONzckAAAAAAMINyQAAAAGAWw3JAAAAAYGrVckAAAACgvfRyQAAAAKDKAXNAAAAAwGoRc0AAAABAMyBzQAAAAGC6NHNAAAAAIMFbc0AAAABgq3dzQAAAAIB5hnNAAAAAQGbsc0AAAABAug90QAAAAGByJHRAAAAAwMcxdEAAAAAAmUJ0QAAAAEBFT3RAAAAAwINudEAAAABA7H50QAAAACDik3RAAAAAQEgPdUAAAADAESN1QAAAAMBfM3VAAAAAoO1HdUAAAACgmWR1QAAAAIC+cnVAAAAAIDyxdUAAAADgCcF1QAAAAIDsz3VAAAAAQPr7dUAAAABAokd2QAAAAKCEVXZAAAAA4GR5dkAAAACg9w14QAAAAAD0QXhAAAAAYCxSeEAAAABgRdF5QAAAAGCwEXpAAAAAoLF9ekAAAACg9vF6QAAAAEAgX3tAAAAAIH5we0AAAACg14F7QAAAAGDBlntAAAAAwG8KfEAAAABAJhZ8QAAAAKCrMXxAAAAAIIGHfEAAAACgD5R8QAAAAGCqx3xAAAAA4AbjfEAAAABA61R9QAAAACDrlH1AAAAAoOsAfkAAAACgQzF+QAAAACAZR35AAAAAIJxjfkAAAACgKrR+QAAAACAi9n5AAAAAwN0cf0AAAADAcjR/QAAAACBeWH9AAAAAoFuDf0AAAADgiah/QAAAAMDuxH9AAAAA4Knof0AAAABgxQGAQAAAAMDUNYBAAAAAAF08gEAAAACgqWKAQAAAAOB6i4BAAAAAwK+ZgEAAAADAMOqAQAAAAIBLA4FAAAAAwN4KgUAAAADAymaBQAAAAOCklIFAAAAAIKCsgUAAAAAAf+iBQAAAAIBN+oFAAAAAoNqkgkAAAADgZ9qCQAAAAGDQM4NAAAAA4EZTg0AAAADgr3mDQAAAAGCbqoNAAAAAQC/Fg0AAAADgRAGEQAAAAMDsCYRAAAAAoDIyhEAAAADg11yEQAAAAEBLhIVAAAAAIIADhkAAAAAAaZSGQAAAAADiOYhA - - - - - - yHG4P+YaCEAFXMY/TfSuQCpOnkDRrxNBVk0hQCVjmkA9qINCcWhKQLOvn0Hjb7M/miARQJNtukBEO+lAu1OEQVeP2T9bQ2VAFXc0QXVo+ED44MxAmr/0QBS5P0ALYVJBoowrQR4IxEBMlqlAqwwNQB4E6kBF+yNBPES0QGX8SECm5RBAM1PtQId88kCC0AZBNJKgP2z3p0BK/P0/ybzkQAjDtUACwFdBM01xQT340D/0veRAjzPIQNVBR0CIt4xBeMkMQaFL1UGXMwhA8SMtQKPXbUD1329AviRkQCE58kCESAtBlCFvQqa39kDOJrFAC9tcQgze1z+lcJ5B3pyWQIc0GUHMaXdAK0htQC2WXEKTwdpAl0SIQHJc1kEHh2JBLEVDQbqGnkDmgqtBc1y/QWIe90BxPvBBjqRPQI71tUARhWpAv6hNQd7HF0HtHTBBigC4QBRmHUFCSwVBuXDrP+jcAEF3i4tBXMteQryLRkGwz5hBRbKzP+NWBEIqJK9Bh5IeQnF5XkITcYdAbIVkQiTQfkAhyAJCsMEWQEReM0LQwSNBjoxnQUfIQULDcUBA9KmfQbR4IEEr88A/iVQKQQ9xg0DYxlRB53UqQCg6H0GU2TtAwcixQEuo4kGUZJxBinJFQXwXF0Ede7xAmokKQYr69kBpn39AQRvJQAHOPUJWcXg/VK2YQdLfIEEPlkNBUdeoQIwhWEBXYxpAgcuxQJbNW0GgGyFB7RiqQR7MyT8Dxuo/UmmgP5IQjUKV/gVCcXDOQly5WEL+qepDey58QJfh7EH+GwhB3RoJQc1eBEIUvSNB3IaPP4jBW0HBGBFARGTpQF9U+0BECntBhErgQM5wNkB8CC5CmdmyQI4o+0DM4oRBCIcAQQsO/T/sQy1AvKGJQO8mnED/OD9BqgNxQjt2EUDKJrBAJ7saQFRk4j/xDo1B - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAFRka0AAAABgr6NrQAAAAGBjx2tAAAAAwHcFbkAAAADgByNvQAAAAMCsf29AAAAAwBxfcEAAAAAAV1FxQAAAAIDFEnJAAAAAgGIlckAAAABAeQBzQAAAAMDtsXNAAAAA4H4/dEAAAABALJJ0QAAAAMD6onRAAAAAwJ8EdUAAAADAixV1QAAAAEABRHVAAAAAABDDdUAAAAAAgjJ2QAAAAACsYXZAAAAAwON0dkAAAADAjoR2QAAAAEApVXdAAAAAgE6Dd0AAAAAAGGJ4QAAAAACp8HlAAAAAQEgGekAAAAAAEFR6QAAAAICvfHpAAAAAwBikekAAAACA/RN7QAAAAMC553tAAAAAwJkqfUAAAABAqjp9QAAAAEBNgH1AAAAAQHqkfUAAAACASwR+QAAAAEAMEX5AAAAAwHctfkAAAADAqUN+QAAAAECvoH5AAAAAgGe0fkAAAADA0S1/QAAAAEBZZn9AAAAAgCB3f0AAAABAFyiAQAAAAMB1VIBAAAAAgPyRgEAAAAAgjNiAQAAAAEAoFYFAAAAAAOIggUAAAADg4imBQAAAAICnY4FAAAAAIGpwgUAAAABgbIOBQAAAAGB9oIFAAAAAIB21gUAAAAAgSruBQAAAACBhEYJAAAAAYMFKgkAAAAAAEJmCQAAAAGC4oYJAAAAA4ByrgkAAAACAwLqCQAAAACA/z4JAAAAAQEDbgkAAAADAQ+OCQAAAAGBB74JAAAAAoHD3gkAAAABgRxGDQAAAACCEGYNAAAAAINZKg0AAAABgJWSDQAAAAMBYdYNAAAAAQBSYg0AAAAAgbZ6DQAAAAGDRyoNAAAAAoEjSg0AAAAAAgdqDQAAAAEA1EIRAAAAA4L8XhEAAAAAgDyOEQAAAAOBoKoRAAAAAIJI+hEAAAACgjkSEQAAAAOCDWIRAAAAAYMNqhEAAAABAzHeEQAAAAGCE44VAAAAAYNQIhkAAAABAYTaGQAAAACBxcIZAAAAAYFmRhkAAAABgfNiGQAAAAOCu44ZAAAAAABn7hkAAAAAgwDOHQAAAAOCHV4dAAAAA4K1xh0AAAACgp3mHQAAAAEAXF4hAAAAAAJLqiEAAAADA4vKIQA== + NrgMGZxjYkA= - + - CSylQCN2rUDwT5dAdFbdQHRcDkDtSFJAJzVSQExhg0CHfAdBJ5RrQC6RGkDfRshAXgeMQK8b+0D9CGJANr0KQe9i6z8un2BAaKWXQJc6jkC/PoNB1DrWPxbQ2kCdIJxAHl8LQdrFzEBJnMU/kGCgQP+Zxj/0qxNBzr6eQAMTA0JDs2lA0is6QY1fCEJP8NE/06oaQJmNFEPlZ0tC3hVPQADIbUEa2rVAqCjrP4L5oD8tJ6pAkeCjQAzykEC6C+s/QcgnQmYnjkACtE9AbmDzQhWYsz+SZY1BfmNUQnS8zUEpbEVBuiX4QjMnl0GANSxBYQ4AQaPbAUMcTC1BB2lzQNmExj9jw/0/VXujQfyDOEGEo8FAVC1jQQ7QfkHLKdBBJ9PdQYgyKkAMyMhA5ALpQG/Up0BpBqI/ENttQG0tl0CfZ5RBnbBVQbr0p0D4dAtB9vKEQRVmrkBO/xhBYPtXQLK4G0GUbkRBwPf9P0gYukBBf1JAqe4sQOwHsEBEVW5BkwJOQIFfm0Hxu+Q/7RcyQuNXakGcAm9BsgUWQ3U2W0E= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYGMwcUAAAADAKX9xQAAAACCAw3FAAAAAwH/QcUAAAAAA7k5yQAAAAADeKHNAAAAAwG1SdkAAAABACsZ2QAAAAEDzgndAAAAAAOGjd0AAAABACEJ5QAAAAADvUnlAAAAAAPT0eUAAAAAAQWd6QAAAAICls3xAAAAAQN2zfUAAAAAAGfB9QAAAAKBVGIBAAAAAAKVJgEAAAACgqHCBQAAAAKCvAYJAAAAAQF0KgkAAAAAAuJiCQAAAAOCVz4JAAAAA4BRTg0AAAABgyXGDQAAAAMA+/4NAAAAAwI4OhEAAAACg2hqEQAAAAACZe4RAAAAAIBH2hEAAAACgBvuEQAAAACBrAoVAAAAAoCyLhUAAAACAHZKFQAAAAGB5u4ZAAAAAAKwjh0AAAADgpzOIQAAAAABpOohAAAAA4M+aiEAAAAAgdb6IQA== + KBZXds7jZUCmvpxNHCRnQGS4z0t+BG1AwTM0RReTdEDnbmCMEcN1QK/xM6KFw3tAIhHZYcHjfEDNQvCM3VN/QLqIc4DzqYFAXQD49CVCg0Aetj2df8KEQF0v5h7SyoZASeC/n8v6hkBAvz/OApOKQKHy3sVKE4tAMBs9u3bbjEBeEPy4WiOOQBillXIRMpBAEx5RZOOVkECPDZH7/mGSQBBiGKpiGpNA2f1imSpmlEAIH5vhswKWQFkVWq6AKpZAcJgsgbG+l0BSD21/3waYQK84XXsbB5pAIq+Rj/cKmkBrMdJbGGebQCsonRI305tAtSGk+UNrnUB1GG+wYtedQPw1U/RZT55AvwhBTo7bn0C8ksnFug2gQIQOeCTSX6BAFR78zN3ToEBCBhjw30WhQNWpd9cItqFAm5FK9wIMokCVNfPhM5iiQFsdxgEu7qJA7sAl6VZeo0AbqUEMWdCjQKy4xbRkRKRAdDR0E3yWpEDQQh2yb7akQDIsFN+JfKVA9ToGgYW4pUBWtmvclO6lQBoz70+buqZAe65Uq6rwpkCf73QRu56nQNgqjxupoKdAhj+HGcegqED4eqcY3sSoQIO8EIL2jqlAqzdw6NyiqUBDSIyMIXGqQCeWMYQFF6tAaEB1Wzdzq0AmOBUnRVmsQKP08h8ui6xAGMP+KmAbrUBjgG4qWW2tQIcKxidk361AX9etJXb/rUAdz03xg+WuQFg7hFGC8a5AqFnu8ZZzr0AYx/9brdOvQIBykPzcHLBAa9/Pk91csECFUoFW34OwQH2kexLjlbBAqdzYU+r1sEBcoEv46QixQNVlQHr3abFAov0xivqYsUDnKuz4/KKxQILDbw8QCrJA - + - U2yfQDrExT9MxwpBPEARQIrR/T/+6BBAgBAIQNn35kAO0/0/JI/bQKODukATm0VAMcKYQfcN6z8BcSNB0M1yQVbKMkDlD6NA9aSEQPxqcEGRnwpBHhaMQFoY8kAzX4xAmfUsQPhm2D+gVB9BXa4fQXepdEDj8cU/RxHaQFZeyUGn5JlAJGz0QAf53ECJ2ZpAo7rhQJvgFEGQHMVAU3z0QT3QnEE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAQEvnZUAAAAAAioZqQAAAAEAHpWpAAAAAgMU/bEAAAABAvWNsQAAAAKBKJHBAAAAAgA96cEAAAACA4EJxQAAAAMABsnFAAAAAACl0ckAAAAAAqYRyQAAAAODCJXNAAAAAQLxBdEAAAABAPdN1QAAAAAAj8nVAAAAAAIE+dkAAAAAA5cV2QAAAAIBEE3dAAAAAAM80d0AAAABA3cZ3QAAAAMBrVnhAAAAAAKBleEAAAAAAwBR5QAAAAAAsQHlAAAAAgFRVeUAAAABAb3N5QAAAAEBhgXlAAAAAgHXEeUAAAADAHqR6QAAAAMBC9XpAAAAAQIgHe0AAAACAlnt7QAAAAMAwj3tAAAAAgEhFfEAAAACAulN8QAAAAIBVA35AAAAAQBwgfkAAAACASlJ+QAAAAOAeMYBAAAAAgEhUgEAAAACgKlmAQAAAAKA8XoBAAAAAoKNpgEAAAADgNX6AQAAAAKCkuoBAAAAAYJffgEAAAABAjeaAQAAAAGB6A4FAAAAAIO4tgUAAAACgOUKBQAAAAKC0loFAAAAAgB68gkAAAABgT8SCQAAAAKDl+YJAAAAAYOlQg0AAAACAoduDQAAAAOBI84NAAAAAIBEIhEAAAACAIw+EQAAAACCz64RAAAAA4L8KhUAAAACgXfuFQAAAAAAgu4ZAAAAAYOvChkAAAACAvu2GQAAAAKAfJIdAAAAAoJlHh0AAAABgZ1OHQAAAAOCNhYdAAAAAIJyWh0AAAADggKCHQAAAAGAuDIhAAAAAYPQiiEA= - - - - - - 4JzFP7rYs0CU9rpAwG0DQeaYI0CCOJhApYL/QApSAEH2LIlAQtQ2QNu6LECpa9g/HGFrQKkKFkEmi7I/1vSSQA5FVEFg3shAjq5WQF4Kxj9rrIJBqYB9QCn5QkEc3wpBtsEZQaZ4vkCZIghAI++MQMaqGkAuU/BAfK6nQJ7wHUFyHC1A20OzQBqxbkAQDMhABRwIQFK71z9Mr4NBVEgpQM8q5j9y43xAMNYsQHySc0C2FJxAHeY1Qc9mO0FYMMY/K/CvQXAwmkCot2RAbzfdQWjGhEDLU7dAWQlaQm9SqkF08Nc/L5nkQD+Mf0AmXeo/KReaQBZCs0BJOVtA1dgfQFKQZEC5qdZAgocTQUL7R0FfNg1A0wvcQMqGMkAIAus/rQDWQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQOdkYkAAAACAYXpiQAAAAAAuv2NAAAAAgBkLZEAAAACA3SRkQAAAAEAD5WVAAAAAAGQqaEAAAACgpihpQAAAAEBvpWlAAAAAQN5CakAAAABgPmtqQAAAAEDJI2tAAAAAQBNia0AAAADAuqJrQAAAAIDYI2xAAAAA4IjobEAAAAAg1lxtQAAAAADhgm1AAAAAYE3qbUAAAABAToVuQAAAAMCQqG5AAAAAQCPmbkAAAADglyNvQAAAAECZi29AAAAAQG6mb0AAAABArLlvQAAAAIBEJHBAAAAAALA0cEAAAACAgVNwQAAAACCYXXBAAAAAAIizcEAAAADAgPJwQAAAAMAto3FAAAAAQPDFcUAAAACAgfpxQAAAAMC7QXJAAAAAIKFTckAAAABASGNyQAAAAOCjdHJAAAAAwK2sckAAAABAUMNyQAAAAMDcFXNAAAAAwAE0c0AAAABAZklzQAAAAAAuZXNAAAAAgIjFc0AAAABAXxZ0QAAAAABILXRAAAAAQE5EdEAAAADAhWh0QAAAAIBAgHRAAAAAAFaSdEAAAAAA4gN1QAAAAEDSNXVAAAAAAO1FdUAAAADAb7J1QAAAAIC30HVAAAAAQCUWdkAAAACAJiB2QAAAAMB4YHZAAAAAQDFzdkAAAADAN5R2QAAAAICDnnZAAAAAwKq7dkAAAAAAEM52QAAAAADC83ZAAAAAgKQmd0AAAADA0zd3QAAAAAATUHdAAAAAgPZad0AAAACAgGV3QAAAAICglHdAAAAAALuid0AAAAAAT7V3QAAAAABAxndAAAAAAJ0AeEAAAAAANFJ4QAAAAECeYHhAAAAAAP93eEAAAAAAkZd4QAAAAADLonhAAAAAgMSweEAAAACAqMB4QAAAAICm03hAAAAAwL4MeUAAAADA7B95QAAAAEBwM3lAAAAAgLNCeUAAAAAA11J5QAAAAACGhHlAAAAAwFWjeUAAAACAObJ5QAAAAAB7z3lAAAAAgG3peUAAAACA9gx6QAAAAEDFHnpAAAAAwGouekAAAABA+Dx6QAAAAICdVXpAAAAAQFdgekAAAACAdpN6QAAAAAC3tHpAAAAAAHzGekAAAACADNV6QAAAAEAI5XpAAAAAgDb0ekAAAACANwZ7QAAAAMC9FHtAAAAAACw+e0AAAADAalB7QAAAAED7cXtAAAAAgKeze0AAAAAApsB7QAAAAICz1ntAAAAAwDrle0AAAADAZgJ8QAAAAEBSHXxAAAAAwOw3fEAAAADAdnF8QAAAAEBuiHxAAAAAAMqTfEAAAABA46J8QAAAAADVsnxAAAAAwL7FfEAAAABAmxV9QAAAAMDKH31AAAAAwHtZfUAAAABAYmx9QAAAAMBgf31AAAAAQAKTfUAAAABAJq59QAAAAMBxvX1AAAAAAD3afUAAAAAAyfN9QAAAAEBGAX5AAAAAQJwifkAAAADA9dJ/QAAAAMBS5H9AAAAAICkZgEAAAACgtGKAQAAAAGCQbIBAAAAAgJtxgEAAAAAgwXyAQAAAAIA9uoBAAAAAYP3rgEAAAADgxPOAQAAAAMAd+4BAAAAAICNagUAAAACAZYOBQAAAAEDliYFAAAAAwCWRgUAAAACg87OBQAAAACDwy4FAAAAAQIrigUAAAABgffKBQAAAAGBY+4FAAAAAoB0tgkAAAABgMFiCQAAAAIBEe4JAAAAAIJPCgkAAAABASiuDQAAAAMDNiYNAAAAAQFCwg0AAAACg8/iDQAAAAECvAYRAAAAAIHoihEAAAADgZEKEQAAAACComoRAAAAAINzzhEAAAAAgevmEQAAAAGDbBoVAAAAAoBhnhUAAAABgdnKFQAAAAIBHioVAAAAA4DyThUAAAAAgpbqFQAAAAEAMCIZAAAAAIJwRhkAAAAAg1TuGQAAAAKBeSIZAAAAAYKWahkAAAABAfKOGQAAAAOB0woZAAAAAgGXKhkAAAACgC9qGQAAAAOCjRodAAAAAYMJTh0AAAABg0FmHQAAAACCyoodAAAAAgCwliEAAAAAArjqIQAAAACBUpIhAAAAAoJGpiEA= + 4qRcexsiYEDhRWbibsFgQI7ubuyeomlAOK1C9yVCcUBH1RPKp+JzQMYEjxb+UndADjCoA8ATfUCNXyNQFoR9QFi0ksBMeoFAStvMqFjSgkCuCJfF5OqFQLzhXN3YEoZAIA8n+mQriUASNmHicIOKQKM64nqyO41AZNIfod1zjUAENNZLHyqQQOT/9N40BpFA50mpU1WukUBkF+zzisqSQHosLfWw5pNAmWAOYpv6k0CvdU9jwRaVQA== - + - bSmzPxlZ/T9TnRtBUn+8QIyCpUCdRhhAY4sZQHpd0UCklj9AHiNlQHGirEBCW/tAvi/ZP8ntvkDJR/0/WsZtQNAldkAjS9g/IFLJP9RE+UDA98xA9+OZQKTNO0DHBrFAPVWzP+EIgECG1QdAqUusQFoVAUGA9INBU6oiQSwszUFEE4BBGynWQCKjrkB0FhFAg9tQQbRaMkLIqFdBLNu1QGIyFkDs/xBAEmbrQGPtM0DnMgxBi7AjQEq8W0DNRv0/uyc2QLu6TkGqrYpBQLXMQTjGgkHyG/JAB1fFPzwWtD/wTgtB5YcEQUFau0BDevpAM1MaQEDVvEErrENAbi1JQIuzi0D/ZwVBXfGDQdDrCEE2z+xA8cA/Qu7tJEGQlOZAIPeIQC2GGkAJ5LI/Jzk0Qf0ZCkEfWQ1AbxMHQWJIrEBwaIVAXTgaQeIHJ0E7czJAVjYWQjQ9DUKYDxpCL+BtQSVd9UCoWfU/hriyP74OSUEMF9lBzmdbQCHefUFvztNA5N3vQeAkGkBia61ChDzuP8iEbUCtDYxBCJNxQdCfO0GX3N1DsnyAQppxd0DsdgdAxtmLQGI/PkHrjhZA/2OIQU+6xUCElU9AtPZXQf09bkFse1dAxO0iQb3aDkGRdNVAqel9QFc9KUGOpp5B0fteQT5my0F8zxJAiIe2QRg+c0CczFpCa2ViQYXPJEGEKoBASpSIQTqKl0GuuStAI8JtQFDFrUAI/xBAyY8jQIQ2EUCLfxpBTrKLQLEl2D8Fd5BAaNUPQPaGx0EixG5BflaRQEIJjELjzgFCPOeNPyMzQ0G6jUdByAbYP5K53EDQp+5AIHAiQvOeI0AZ2NFBQfOaQY7RG0EAOYNAmUF/Qelr8kDzaHFBvSBbQLVgfUExNdg/eQ3rQDNDmkELOfJA9kakQAi/DUHfBO5CUe3DQdPgQ0HqJ/lA/zs/QGrIqUDqHZ1AdpBEQi56P0B4c9ZBLHBGQZL7mkDHXNg/QTFVQ6hp70J30d1AwozqP9M7TkE+hT5B4i8CQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAFNkYkAAAABAB8VjQAAAAOCZ1GRAAAAA4MfkZUAAAACg24VmQAAAAMCvR2dAAAAAAKcmaEAAAADAkF9pQAAAAABMoWlAAAAAAP/iaUAAAABAKAFsQAAAAKCkGWxAAAAAgErLbEAAAABAvAJtQAAAAIDkJG1AAAAAQNSDbUAAAAAA5IlvQAAAAABppW9AAAAAYJEucEAAAAAgNu5wQAAAAODyEHFAAAAAwH5icUAAAABA+4VxQAAAAGCps3FAAAAAYKjwcUAAAACgF2ZyQAAAAKDTdXJAAAAAwMjFckAAAABgoOFyQAAAAMDQgnNAAAAAIIqkc0AAAABg4bBzQAAAAICfRHRAAAAAAAtRdEAAAACAZ2B0QAAAAAAvhXRAAAAAAIOhdEAAAADAnLF0QAAAAIBJ/3RAAAAAYO4kdUAAAABAhWF1QAAAAACGf3VAAAAAgOWwdUAAAADAp+J1QAAAAEB6bHZAAAAAQCt2dkAAAACgZoV2QAAAAIDj1HZAAAAAwD/idkAAAAAgn/N2QAAAAACNEndAAAAAwDVTd0AAAADg1353QAAAAAB/s3dAAAAAQNDDd0AAAAAggNx3QAAAAKDd8ndAAAAA4JMTeEAAAAAg/FV4QAAAAMByc3hAAAAAQO5/eEAAAABgmZJ4QAAAAIBqsHhAAAAAAFfEeEAAAABg6SN5QAAAAKCML3lAAAAAIBZneUAAAACgWa15QAAAAOAS2nlAAAAAoDbqeUAAAAAAqgB6QAAAAMCIJHpAAAAAwHcyekAAAADAoEN6QAAAAGARYnpAAAAAIMThekAAAADAXPV6QAAAAMA5A3tAAAAAQCcVe0AAAADgIUd7QAAAAICUU3tAAAAAIGOBe0AAAAAgI5t7QAAAAGDp5ntAAAAAoPMJfEAAAAAAXBZ8QAAAAMCqMXxAAAAAgBY8fEAAAAAgAUZ8QAAAACC6VHxAAAAAoIdjfEAAAACAlHZ8QAAAACCIgXxAAAAA4MyOfEAAAADghcB8QAAAAGCg1HxAAAAAQDL0fEAAAAAg4BF9QAAAAIBlJH1AAAAAIGw1fUAAAABAlF59QAAAAGDQaX1AAAAAYK/afUAAAAAgQJN/QAAAAKCDLYBAAAAAwGdygEAAAAAgrnuAQAAAAACij4BAAAAAwO+4gUAAAADAEtyBQAAAAKD78oFAAAAAoKD9gUAAAAAglwKCQAAAAGAMOYJAAAAAQIqagkAAAAAA+7GCQAAAAKAfvIJAAAAA4APrgkAAAACAJVGDQAAAACCZbYNAAAAAIHiKg0AAAABAaxSEQAAAACBIK4RAAAAAIDs6hEAAAABgvpKEQAAAACDQ6oRAAAAAIKX6hEAAAAAgeg6FQAAAAOAbGYVAAAAAYMBEhUAAAADg4IGFQAAAAACxOoZAAAAAoCthhkAAAACgxGuGQAAAAIB8koZAAAAAoEiahkAAAABgotGGQAAAAODiFodAAAAA4BMhh0AAAABAmPyHQAAAAGBowIhA + NrgMGZxjYkAtECBNt2JpQHJahe5LhGlAbFyUq/MhcUBbtkQoqTJyQI5lltx2knZAsQpJLUGjdkCstlLHziJ6QAdfTTLZE3tA - + - 8RnYPw7B6j+Z+HNA5GOhQLuB0T9Pkz9AU/yNPyeOP0B8XaBA6SPpQHkaW0A3p01AO8KDQEVyIEFfK1xBVtRRQHvtbEH+WuhAR4n1QGv4dEHq6uQ/wEo2QHXn1z8ZfiRA5psaQV9Lc0BcL31AxfBdQZQ76z9n/0VB7y0OQCu7PEAj1ptAXHFAQO9Vsz9+0khAvjORQK5/+0Aqui9BcO2xQGdpxj8ondhAu6qgP1C8TEHeq2pAau/GP6FlukAGCz1AryP7P3P1I0H+IQhBpbUjQM9AE0Ga0L5ABJIGQeP/IEGxrP0/jnvFP+T7NUC83nFBnsJaQSsu+UACRnRAvNzKQCs+d0Bbf8BAJ/rqP8vCr0FtHGhBMJCOQBr+IkFRYnc/RR6qQDj6SkB4u7VAxGQgQM4l2D9eDzxAHfAUQWAwg0BX7j9Ar6lkQICf0kBXnH1AMasSQaXXMkGuxoFBgMeNQBPZLEBANyVBfIWfP+Vxl0BT9URAfPULQUwO1kJ6ccFB/2LbQVmh/0BMHDpBlHqzQChviEBigppAzQgtQJYEKkHpE8lAfxOQQbJn/D9+I9g/u4+VQGcxLUAsYVtBi20aQLTbj0ACjnZAAIdKQApIwEBhB61AmrHaQDne6UDBKCNBRtelQdTEkUE+/cxA7fmZQOxTq0H7u1dAxCb1QNc+akG+ezBBufa1QHloM0EKoNdADW2RQbWQLUAGPt9AYJISQUFVMkApxxJBqIFKQas78kAfMZpA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoChiYkAAAABAvOZjQAAAAMCDI2VAAAAAwLDqZUAAAABAhmFmQAAAAOD85GZAAAAAgNwGZ0AAAACAhiJnQAAAAACKQ2dAAAAAwFGwaEAAAACgOgNqQAAAAOBkRmpAAAAAYMdnakAAAADAcaVqQAAAAKCtKWtAAAAAwOQHbEAAAAAgySRsQAAAAODNZWxAAAAAAKBYbUAAAABgPQduQAAAAADRZ25AAAAA4GjfbkAAAACAjSZvQAAAAEDIZW9AAAAAAFGjb0AAAACAJVVwQAAAAEBwhnBAAAAAIHzGcEAAAAAAwkBxQAAAAOBNs3FAAAAAANvicUAAAABg1ftxQAAAAMDNjHJAAAAAgGalckAAAAAgHLJyQAAAAIBzxXJAAAAAAMTSckAAAABgJfVyQAAAAOA7AnNAAAAAgBkXc0AAAACgNDZzQAAAAAABZnNAAAAAIH7Sc0AAAABA/BB0QAAAAIDZNXRAAAAAgOdDdEAAAAAAInN0QAAAAMDQpHRAAAAAAGMVdUAAAAAg4il1QAAAAACHM3VAAAAAgHRHdUAAAABApHZ1QAAAAEBDtXVAAAAAYCf+dUAAAACAJSJ2QAAAAMAZPnZAAAAAoNKhdkAAAABAvsV2QAAAAEDa1XZAAAAAAPkDd0AAAACAKhF3QAAAAIDZIndAAAAAQBU1d0AAAABgb053QAAAAABPgXdAAAAA4Eiqd0AAAADANPJ3QAAAAID9AXhAAAAAYC0PeEAAAACgjBt4QAAAAGAmVnhAAAAAoIhkeEAAAACgDoV4QAAAACBbxXhAAAAAoDbQeEAAAADAFPR4QAAAAMCNBHlAAAAAQIEgeUAAAABgDy55QAAAAKDmdXlAAAAAoPqEeUAAAADg76N5QAAAAKCCrnlAAAAAgJW+eUAAAAAg3dJ5QAAAAKDi5HlAAAAAoLv4eUAAAAAAFCV6QAAAACAPQXpAAAAAYOZPekAAAADgClp6QAAAAGBvaHpAAAAAANd3ekAAAACg+aF6QAAAAKCbs3pAAAAAICnCekAAAABgwNh6QAAAAKAO5HpAAAAAIEvzekAAAAAAZg97QAAAAGDJIXtAAAAAIJhRe0AAAAAgDnF7QAAAAKBQhXtAAAAAoBG6e0AAAADARAh8QAAAAMDWsHxAAAAAIBtyfUAAAADgrfV9QAAAACAtKX5AAAAAYFpJfkAAAABAuaR+QAAAAGCGvn5AAAAA4MvMfkAAAAAgfWR/QAAAAEA5dn9AAAAAYCaff0AAAADgd6x/QAAAAGBuxX9AAAAAYK/zf0AAAADgM5mAQAAAAEBPoIBAAAAAgL+xgEAAAADglhSBQAAAACBRI4FAAAAAYEhpgUAAAADABnKBQAAAAAB2qoFAAAAAYM37gUAAAABgEwSCQAAAAEBDG4JAAAAAAEQjgkAAAACgcp+CQAAAAKCKu4JAAAAAYObBgkAAAACgzwCDQAAAACBfQ4NAAAAAIPpUg0AAAABgtW+DQAAAAOB9iINAAAAAYBiQg0AAAADgBaCDQAAAACAOs4NAAAAAQP/Bg0AAAABgKMuDQAAAAKA734NAAAAAgGcJhEAAAABg0ROEQAAAAIB7J4RAAAAAgO5ahEAAAAAAP7OEQAAAAOCg54RAAAAAoD30hEAAAABAgA+FQAAAAOACY4VAAAAAQHuHhUAAAAAAicSFQAAAAKAYa4ZAAAAAQH+ThkAAAACgED6HQAAAAEABWodAAAAAYFq8h0AAAACg7CqIQAAAAOBdcIhAAAAAoJx4iEAAAAAgh4KIQA== + KBZXds7jZUA/KJil8iNpQGaLOdoMYnFAeiAWnrzickDBl4Ml0LJ3QMsgJD3iUnlA46CFVlMjfUA= - + - 5HAqQSCAckCKe99AJMIQQOy0/D+jeZhA22TRQA+pnECM+aA/iCyXQOuDNkB2lQ1AtjfZQDLliUCby6dAsGcsQHPVvEFIjq1AEPSEQJ5YNkDDOnlAB16fQGsAfEDLtBpA6nQ2QMVUFUE0rmVB1K4AQEIkHUG0IilAOKKJQLuHzUCNwcRAFI7UQGLLDkAdDlRCiDjLQT4Y40B7MIBAQoMaQExHNUEK+JBAopukP5KKCkH8UtZAkbPJP/8ECEDQJaA/g5AWQfZVTkDpLoBAj4KeQPSJJkIPdBBAGPkHQHPcH0BSg8NALr7fQMZJxUD/BIVB4gwjQMbuyUC3+MVAF1cXQYX/zUEg8xdBU6M2QWupm0BYPFdAsBJzQIV2rEB1DAhCG+f2QDLKA0I1YF1BJKd+Qfc3CEAV6W5BcEhOQEA7uj+LJ4NBiY+iQU1pEEHwpC1BDLunQTeeiUBK72RBLh/8QU4k7D+mnCJBRjq5QIzALECT8rZBDtNjQYJC2D9nof9BQmIqQUDl40AKfRFAkg8pQbw8fEBD/8U/7WBTQfceQkFgV69AH7VVQd8zIUEwo9hAGUGVQNZ4ykBnce4/K8pcQKQV6j8HrpFBEHk4QNivD0IyUNFAqHYfQazNiUEEqz9AInJpQXfNh0CVx7M/ltkrQRL8oT/AdKhBYKPDQVHOKkCGDAtB/AAdQbhJ40BXq1lBCOTLQI2iEkFO6zVCEjK2QCT8rUCg8ABBq9LFPxYZCEGyVPhBZsFtQUszCED90Pw/EuYyQXKTGkC/HjVAqFqjQTP2zkA18FVBIO8NQZ5V70AxcbdBWwTrP7C07kDPXCdBWRf9QA0mLUDHCy1AbEG6Qlw0C0EAlCFB3kqMQJykrEAsz3lBAjIOQV3xVkE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQBvNWEAAAAAgvyJZQAAAAECqTVlAAAAAwCiIWUAAAABAtsJZQAAAAMDZzVpAAAAA4CANW0AAAADApYhbQAAAAMCVT1xAAAAAIMB/XEAAAAAAUL1cQAAAAIB5TV5AAAAAgHJDX0AAAAAA7ixgQAAAAADxQWBAAAAA4IuqYUAAAAAALiViQAAAAMDqX2JAAAAAoPunYkAAAAAAoeJiQAAAAIAZImNAAAAAADJcY0AAAADAx8JjQAAAAODj4mNAAAAAgLQdZEAAAAAAhmFkQAAAAMAN42RAAAAAgOcBZUAAAAAAYmplQAAAAEDMnWVAAAAAoPPkZUAAAACAIABmQAAAAAClJmZAAAAAwN2mZkAAAACgS8RmQAAAAEBu4WZAAAAAQOMiZ0AAAACgwUFnQAAAAOAKYmdAAAAA4Lt+Z0AAAABA5adnQAAAAID352dAAAAAgMcpaEAAAADA1UdoQAAAAIBsnGhAAAAAgCXkaEAAAABgoP1oQAAAAIA2JWlAAAAAwBVEaUAAAACAIWVpQAAAAABy4WlAAAAAgCAHakAAAABAiyNqQAAAAECCZGpAAAAAgBiFakAAAADALKRqQAAAAMBWwGpAAAAAwCfkakAAAADAnTdrQAAAAACkZWtAAAAAAJ2ga0AAAACAlL1rQAAAAICL5GtAAAAAAC0ibEAAAACA/D1sQAAAAMDuYmxAAAAAAAaMbEAAAACADMdsQAAAAMC96GxAAAAAgAz/bEAAAABAuiJtQAAAAAAWa21AAAAAACOBbUAAAADAVuRtQAAAAICkCW5AAAAAwMUebkAAAACAr19uQAAAAACVn25AAAAAgAXBbkAAAABAtihvQAAAAIC0Y29AAAAAAL6gb0AAAACAYOBvQAAAAMB0AnBAAAAAAFgUcEAAAACACyRwQAAAAADuLnBAAAAAwLdQcEAAAACAKnRwQAAAAGC7sXBAAAAAgJDBcEAAAADAZNFwQAAAAADy3nBAAAAAADvxcEAAAAAAUgBxQAAAAECZEXFAAAAAwH0xcUAAAADA00FxQAAAAIAWTHFAAAAAwOBkcUAAAAAAZY5xQAAAAACAo3FAAAAAgGzJcUAAAAAg09NxQAAAAMBO4XFAAAAAwGzycUAAAADA6RFyQAAAAMCLHnJAAAAAQGVXckAAAACgdHFyQAAAAIB/gHJAAAAAwCywckAAAADA27xyQAAAACCYzHJAAAAAwKTrckAAAAAAyfVyQAAAAMAgBHNAAAAAAEMxc0AAAAAA9xp0QAAAAAAcr3RAAAAA4N+/dEAAAABgNI51QAAAAKC0u3VAAAAAIIztdUAAAABAPxJ2QAAAACBoVXZAAAAAoH9wdkAAAAAAoL12QAAAAACQy3ZAAAAAoBfzdkAAAACgDJZ3QAAAAOD0pHdAAAAAQLrBd0AAAAAAzdV3QAAAAGB063dAAAAA4BG0eEAAAACgMr54QAAAAOAv0HhAAAAA4K4BeUAAAAAgVkx5QAAAAGApg3lAAAAAoDGUeUAAAABgKM15QAAAAGDr33lAAAAAoGD2eUAAAABgFhV6QAAAAEAmQnpAAAAAQINRekAAAAAgTF16QAAAAOBecnpAAAAAoBZ+ekAAAABgSeJ6QAAAAEB07HpAAAAAwHQGe0AAAABgWhB7QAAAAMBRYHtAAAAA4Dh9e0AAAABgS4t7QAAAAGCXNHxAAAAAQHTJfEAAAABAn/58QAAAAKBsI31AAAAAQAIyfUAAAABgB+R+QAAAAEB3Fn9AAAAA4LscgEAAAADgzkGAQAAAAGCZcoBAAAAA4A17gEAAAADgurGAQAAAAGCF3IBAAAAAgMpCgUAAAABg6UmBQAAAAGBdd4FAAAAAIKG7gUAAAABgBfWBQAAAAKCZF4JAAAAAoJZHgkAAAABg8tiCQAAAAIDVi4NAAAAAAJ+Sg0AAAADgwTuFQAAAAACCRIVAAAAAIFqchUAAAAAAHLKFQAAAACDpvYVAAAAAoH9ihkAAAADgAGuGQAAAAOAowIZAAAAAgN7jhkAAAADglOyGQAAAACDoEodAAAAAILdsh0AAAAAgwnOHQA== + KBZXds7jZUAYxSyCnGRqQBTpB48/A3JAGrpiYCZDc0Bv9VHaAlR4QBoYP7R+VHpA/Uye+dpkfkDUt8VpqzKAQH5VvaYZu4JAAb5qDw1bg0BFgWO2hcOFQAHtWDm544ZADK0JxvHLiEA= - + - wxFYQIyW10CoW1dARHyhP25+2D9slhZA+q6zP15eWkE9ttZAaJdHQOv5j0HvKyBAEXp8QBs9xz/kZPNAmLW3QBra+ECJfSdBpwkRQGQigEDmoFtAtfVEQBCobUCCTSNBO4yBQB0y0ECVUd5AH06AQKumkUAEpIhBCF1qQaxiCEEaOOFBElHeQDpEwEArlPU/4CSaQS0NG0H7pBJB82dhQNR9jUCJ4f4/q2ZNQfsqoj9ZXHRAfEOCQFyME0Ez6BJBttxpQP0t0kDS8u1BkhMPQSVUEEGH7BJBR6trQJ9n9kBhx+ZAGVoNQkCrJEHeg5VBQ9CKQUNguD8Ts5xAEBpOQqOZOUHrYzJC7M4UQXLDnEEWBWRBQPoOQH3yGEJUmyBBOxsDQMh7V0Ap201AEOx1QWvDY0GGqV5A7sZSQVPBCEEZw4BCbjmWQViGwkHMdndAxSdTQIFTrkFiGPJA4WEEQDKvK0DzwDFBe35aQGjAgkKi3ghBblAoQ+DAOUKC/OZAhhyRQKTVHEKYKug/81RjQPERHUGOVchAjqsdQUK4vUG4HDBBQywaQaFoe0LYVhRBZBLrP+ybH0I7M/ZABqY8QJevnkAfNC1B+pQfQXhgxj+HnSpBUSJYQAeNUUC+IiRB6vFHQYZSJEEts8tBZnuiQWWmEUF/VkZAYM3oQAYE50Av2/pAyOI7QbNGDUBOv3dAh5W8QAsBqEBzN6NADT9tQP7wgUGYKNU/8rWIQJrDpEFdXqE/IOFjQHzmAEK43BNCSe7mQH3Njj/zPf0/EK1cQj50oELvoOpB5uGeQMlWo0A02N1A8K/gQXqok0DDOCBCpIZxQ1w/v0CY/E5Aya7cP6+1xUDSltpB1P1jQd/uiEH7SYNBdHNkQMdjkUC7utdC06H4QTGSGUBzjKRA+ir7P5xbLUDYnztBAymGQAqxBEAn5d9A7AVuQMBAJEGFACNBDGSbQS77NUGO0rRAB9oUQXhxKkAARQhA2JRiQLjjZ0HR1CFAWny1QGWjrEClibxAaUe0P15KQEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQODiaUAAAABAfm9sQAAAAECFZ21AAAAAQITFbkAAAACAguJwQAAAAMDoE3FAAAAAoH+OcUAAAAAAQKFxQAAAAMDLsnFAAAAAIAMTc0AAAABA0K5zQAAAAIAtNHRAAAAAQKEydUAAAADAdDN2QAAAAEA6QnZAAAAAwElTdkAAAAAAx2R3QAAAAECZdHdAAAAAgBmSd0AAAABAI1J4QAAAAABwm3hAAAAAQJQzeUAAAAAAi6d5QAAAAADz8XlAAAAAwHsCekAAAAAAvRB6QAAAAEAB1XpAAAAAgNpEe0AAAAAA5Vd7QAAAAIAXY3tAAAAAgI+xe0AAAAAAUuZ7QAAAAMBo9HtAAAAAAN2AfEAAAABAwLF8QAAAAAC58nxAAAAAAAUufUAAAACAe0x9QAAAAMCmhX1AAAAAgBmxfUAAAAAA6r99QAAAAICnWn5AAAAAgJO0fkAAAACA10Z/QAAAAAAUdH9AAAAAQKWCf0AAAABAPpR/QAAAAMC3r39AAAAAgH/lf0AAAAAgsCCAQAAAAKA9V4BAAAAAYHtfgEAAAADAgGeAQAAAAAAgfYBAAAAAgEeXgEAAAAAgQbuAQAAAAOA9wYBAAAAAQE3VgEAAAADAO96AQAAAACCl84BAAAAAYDwogUAAAADghTmBQAAAAMD9U4FAAAAAoFRogUAAAAAA0oGBQAAAAKAOi4FAAAAAwAyVgUAAAADg2qiBQAAAACBU3oFAAAAA4M/6gUAAAABgpEyCQAAAAKD2UoJAAAAAoPlZgkAAAAAgln+CQAAAAKA2koJAAAAAwCScgkAAAADA3b+CQAAAACCByoJAAAAAgM7ogkAAAADgfQmDQAAAAAC/DoNAAAAAgFwbg0AAAAAg5ymDQAAAAEDxUINAAAAAwHRag0AAAAAgQ2yDQAAAAOCTeINAAAAAoKaWg0AAAABAXKSDQAAAAMA8SoRAAAAAYEmahEAAAABglMOEQAAAAECW1oRAAAAA4JbchEAAAACgqQOFQAAAAMCVZoVAAAAAILxuhUAAAADgsIKFQAAAAKApioVAAAAA4E2XhUAAAABAZKaFQAAAAKCnr4VAAAAAQPb0hUAAAABgYfyFQAAAAIDeE4ZAAAAA4HpGhkAAAACgtFCGQAAAAECOeIZAAAAAgKeRhkAAAACAQKqGQAAAAKAXw4ZAAAAAICTPhkAAAACgO9qGQAAAAIBs34ZAAAAAIGQSh0AAAACg9CGHQAAAAADgLodAAAAAoCA9h0AAAADgEneHQAAAAKARjIdAAAAAYOqch0AAAABgxMGHQAAAAGBkO4hAAAAAgKZLiEAAAABgTJOIQAAAAKBc1YhAAAAAIOneiEA= + NrgMGZxjYkBImCMySWRuQBu6YmAmQ3BAJCru7HxDdkAbGD+0flR3QA== - + - r0H+PxMzC0Fw4ZtAwmj2QXqMPECetzBBytl6QFtogUAb35tAAnodQa3jGkALYW5AdHSmQPLCgUA65CJBRqaNQGURQUAUr4RBF8m1QBJIUUC5dcRA1e/9P99jYUDJbjVBHja4QKeCnEG7iBFA7fP/QJerq0DwCGFAKvbFQHMJjUEou5VAFoVXQH2L6z9i4apAWio1QW8QAEEBAGVAK7RGQe2RwkGM9IdAO048QEVcdUAit3hCslmBQhkiDUETHRxBFvUTQVvZNkBYFRJAWoGlQJQtRkFiWPtAuOIEQEpPbkBlHw1B/cZoQWKJhEDGArZA6I5gQGphgECUqd9ACqLYP22MN0OXIRlC98YoQr6mb0EN7p9BORllQDdmN0F3L4BBQVYDQS7PMEE3CXVBMv8yQao1F0E7Y3ZBxIYYQbqnIEHnPopALDDaQCqBiEBOFLtBLV1kQQpP+kEO+TFBOO7jQO6A7UEhnGpAJS2aQMEbzUABZUtBeNdrQG8SsUAaNgJCd7UXQog670HefyNBjjwIQaH9A0CoH6dCBpuAQiSuGEJmgHo/5Q3nQSVsr0C9P1NBKPNbQTrK+0Bmw1FATzaOQFWTiULWOChBAvaCQIRmhUBOGHpB96Z1QAvdg0EHEpNBfX4WQXe/tEEuPvpA8hOgQUVZLEHcvcZAkUklQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwC5dZ0AAAAAgfkJqQAAAAMCMg2pAAAAAgDm+bUAAAADgjUNuQAAAAODUq25AAAAAgDgucEAAAAAAJ1RyQAAAAEB1dHJAAAAAgHHVckAAAADAmuJyQAAAAICGInRAAAAAAIOVdEAAAAAgGbR0QAAAAID80XVAAAAAwPD1dUAAAADAwK92QAAAAMAPM3dAAAAAwBqmd0AAAADAIR54QAAAAIBsZXhAAAAAgCTweEAAAAAAGxR5QAAAAIBKxHlAAAAAACgFekAAAADA4+V6QAAAAADh9HpAAAAAQL5/e0AAAAAAnIh8QAAAAIAPxXxAAAAAQCbqfEAAAADAJEF9QAAAAEBpWX1AAAAAwKvEfUAAAABA8E9+QAAAAMArZH5AAAAAAMHBfkAAAABAudJ+QAAAAID35X5AAAAAwM9Af0AAAACAeEt/QAAAAIBfZn9AAAAAAHGlf0AAAABACON/QAAAAMDi8X9AAAAAgHgKgEAAAABABBqAQAAAACAyUYBAAAAAADNngEAAAADg6IqAQAAAAABgkoBAAAAAYF6tgEAAAABgiNCAQAAAAOBJIIFAAAAA4HlSgUAAAABgunKBQAAAAIC7iYFAAAAAQMejgUAAAABgubSBQAAAAMBFz4FAAAAA4Cf0gUAAAAAgfvmBQAAAAGAsFIJAAAAAIMYzgkAAAADg9EqCQAAAACDfU4JAAAAA4JthgkAAAAAgL2yCQAAAAKD4c4JAAAAAIO9+gkAAAACAL6mCQAAAAGAJwoJAAAAAYInIgkAAAAAgeNGCQAAAAIAg14JAAAAAQDgIhEAAAADAmYmEQAAAAOBWkoRAAAAA4NL3hEAAAADgoVSFQAAAAECVYIVAAAAAIP2xhUAAAAAgdsWFQAAAAIA5GIZAAAAAoJAxhkAAAAAgnzqGQAAAACD9QIZAAAAA4HVZhkAAAABgk2uGQAAAACDiu4ZAAAAA4E/KhkAAAABgs/GGQAAAAOA1XIdAAAAAYBBhh0AAAAAgUJSHQAAAACBFTIhAAAAAoGaNiEAAAAAglpSIQAAAAGA6x4hA + KBZXds7jZUD60UzrnGVsQBTpB48/A3JA - + - /wb9PyBsFUFV5r9A3QDGQPa2YUBKmLFAyGcmQdZKl0DKz3NAf+6IQX3l1D9DahNB3BllQFTANkDn+RZAucb9P2uiJEAjd6E/A1g/QMaKrEBLaew/EY3rP4X0EkEX2xpAc3viQJIGOkFJ0ZJAT1wfQSLop0Bgi3ZATCg4QIh6gEBQQk5ACBkQQTK9gUAJqwxBKyduQUpp1EC16A1Axk7GP+cjS0FnKx5B5IdBQRU+HkEpCdZAmTeOQNGeBUETdcc/CsiRQOTP40FLM6NAw6F7QYUAhUDhkEVALuSzPz8BI0Cd+khAjHURQVqHLUC1eBxAkoj6QX+V3j8f2zxAaWDMQBis/T/FAYVA28eHQG3bEUFfCQtAObFkQbJzd0Aw0dxBYpfQQV7DfEE3BO9A0p3GQAr+I0BC3r5AWeKzP+ZJPEHWHBRBtr5kQGoz2UBZs79BvjotQIgE3D9WJMhAXyuqQCzSZEDHjOtA2kazQeHT9T//NSRBxr9FQBlXEUCoBg5BMysHQcsFEkCLVahA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYDHEaEAAAADA1iJuQAAAAMC4yG5AAAAAoCbibkAAAADAQiVwQAAAAGC1MXBAAAAAAG//cUAAAAAAMKNzQAAAAIC973VAAAAAwGM1dkAAAAAAjUJ2QAAAAACDVHZAAAAAwCtldkAAAACA9d12QAAAAADsdndAAAAAwEuEd0AAAABAzkR4QAAAAEAgtHhAAAAAADbVeEAAAACABON4QAAAAEDDMXpAAAAAAJaQekAAAADAnbd6QAAAAEBN53pAAAAAgML3ekAAAABAYbh7QAAAAMARZnxAAAAAwCATfUAAAABAg1Z9QAAAAEA2Zn1AAAAAANaCfUAAAADAz7F9QAAAAMCZ8n1AAAAAANaHfkAAAACA95R+QAAAAICUCn9AAAAAAH4Vf0AAAACAmaZ/QAAAAOBoEoBAAAAAYCM9gEAAAABgQHqAQAAAAAAvuIBAAAAAIOjugEAAAABg2xGBQAAAAODOKYFAAAAAIN0xgUAAAAAgdDiBQAAAAOASaoFAAAAAgJ6CgUAAAABgddiBQAAAAGAT34FAAAAAoNvogUAAAAAg6/CBQAAAAOC4/4FAAAAAIDkLgkAAAADgthGCQAAAAID2OIJAAAAAIJWQgkAAAADg0pqCQAAAAGCirIJAAAAA4LfKgkAAAADgO9yCQAAAAODD44JAAAAAYKIBg0AAAAAg1Q2DQAAAAKCrE4NAAAAAoIUjg0AAAACAMzqDQAAAAGAsgoNAAAAAoJ6AhEAAAABAA+yEQAAAAEBSFIVAAAAAoOhThUAAAACgwMOFQAAAAKDF2oVAAAAAYCUNhkAAAABgcTGGQAAAAEAvRIZAAAAAYMz3hkAAAADAGz2HQAAAAKClFohAAAAAoIKjiEAAAACAi6qIQAAAACB3r4hA + NrgMGZxjYkDiYBUjzERrQOJgFSPMRG5AxwSPFv4SckDHBI8W/pJzQB1ZkxuWA3hAO6pPBu4TekA= - + - PDIIQNQnAEE4J6xBLcQ/QEugHkF9vYxAAbL8P2IgRkBBDEJARIFbQNBaW0HCiGdB6l8RQDUYBUBZ7SlB7zCWQNKseT9urklAu9/vQHOibkCvtS1AfelOQA0+z0AUZBdBjj8uQF8E7kAhrno/whifQFHau0DgMZRBvBn/QMVHIUABajdAxDNzQS8EkUHayo1AGUzUQI+kr0BDrx9Bver4QJlpJEAjVUFBSXAXQbqCbEB+389AjU0eQehIXUEAuIBA04fNQFAi40DmZE9AV8q7QcW/LUBgSI8/bC4BQYugsUCdYNZAxLM5QPXQqEHacWFA224bQMuehEETuHdA/Ez7QJw57kAm9aE/wm3KQERsg0CtUlZBnHOmQdPZD0DkM0RCwNfGP8ipUkDg9i5BmZQeQkDaLUDlR0VB7mwGQe0VWEHkQfNBWxZNQvMXAEGz8KRA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoE8Ob0AAAAAAmN1vQAAAAIBeAnBAAAAAwKtScUAAAABAKQFyQAAAAIB5ZHJAAAAAAAOcckAAAACgKtFyQAAAAMBSAXRAAAAAINakdEAAAADAMu50QAAAAKDnyXdAAAAAwArWd0AAAACAD+R4QAAAAMDZ3HlAAAAAAIRTekAAAAAAwmR6QAAAAEDIH3tAAAAAwN7Te0AAAADAh+F8QAAAAABHVX1AAAAAwCLufUAAAACAHvl9QAAAAICwFH5AAAAAQOZCf0AAAADAN2Z/QAAAAKDReoBAAAAAgHShgEAAAABAgfqAQAAAAID5AYFAAAAAQEuBgkAAAABA09iCQAAAAKDLiINAAAAAQDzxg0AAAAAAtm6FQAAAAACK6IVAAAAAABNwhkAAAABgXeuGQAAAAGDf8IZAAAAAQINNh0AAAADgbHiHQAAAAACTm4dAAAAA4CGyh0AAAABA5wOIQAAAACAtQYhAAAAAwGByiEAAAABgSJSIQA== + KBZXds7jZUDiYBUjzERuQBTpB48/A3JAk7mMQumSdEACpwfsrTN5QAdfTTLZk3xAgQLyH4MigEChAOODRNqBQIAx4Ekvq4NABC6toNByhkDkXqpmu0OIQARdm8p8+4lAArBmURPUi0AEjIn0KISNQLwCR0mL1I9AfrWEETCOkECnA+RwZkaRQP7MeyaGUpJAJxvbhbwKk0A= - + - +/VRQcUQU0DkLrJAE2rIQKOfAkEYEmtAs6nKPyVBoz9QErg/ov2eQOAihUCbmwhAZqARQJHyNUD+/BhA71mXQHqRukDseQJBCTGjP9SDEEFQZe8/r6aHQEtkxz9t6fRAnQOAQL3CHkCMNbxA3+j+P7tMxz+iGjxBlI1QQIz/ZEAlr4hA83UJQUalwECNI1xApuFkQdCaPkDG1olAAo+zQNk87D9WmppAx0U+QbKl60A0jthBXCGfQIhIYUE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgGOFYUAAAABAB6RhQAAAAMAaImNAAAAAwNykY0AAAACAscJjQAAAAKBOImVAAAAAAPKoZUAAAABgncZlQAAAAEAuBWZAAAAAAEPiaEAAAAAAWkRqQAAAAEA5YmpAAAAAIANmbEAAAACAcYVsQAAAAMAxwmxAAAAAQKxFbkAAAADAxo1uQAAAAMBgqm9AAAAAYCwFcEAAAABAqjRwQAAAAEC1T3BAAAAAYBuRcEAAAAAgn7BwQAAAAGB+EHFAAAAAoFMhcUAAAABAczBxQAAAAEC6Q3FAAAAAADFxcUAAAAAAaYBxQAAAAKC8rHFAAAAAwCEWckAAAACAepNyQAAAAIAmwXJAAAAAQODbckAAAAAAMu1yQAAAAMBuZnNAAAAAwLGUc0AAAABAvM5zQAAAAEDzA3RAAAAAwAUTdEAAAACgKi90QAAAAAAmRnRAAAAAYH9hdEAAAACAW3V0QAAAAICxknRAAAAAwJ+ydEAAAABgisB0QAAAAACiI3VAAAAAIE8+dUAAAABg6WF1QAAAAKCTcXVAAAAAIDuSdUAAAADAoNJ1QAAAAOAiB3ZAAAAAAOMTdkAAAADgZDF2QAAAAKBXYXZAAAAAgON1dkAAAAAALIN2QAAAAKDMwHZAAAAAAAcad0AAAACg2UF3QAAAAGA3UXdAAAAAYApzd0AAAACg+IF3QAAAAGC4jXdAAAAAIHSud0AAAABgN9F3QAAAAKDq3ndAAAAAoI4YeEAAAACATCN4QAAAAMDoSXhAAAAAIIZgeEAAAABgRnF4QAAAAOBZo3hAAAAAgL31eEAAAAAANAR5QAAAAMC15XxAAAAAIHtIfUAAAADAQoV9QAAAAKCJl31AAAAA4Brgf0AAAAAAlQKAQAAAAGANhIBAAAAAYL6KgEAAAABgtJqAQAAAAGCtw4BAAAAAwK7zgEAAAAAAaUiBQAAAAKDUcoFAAAAAYKbggUAAAACgCgeCQAAAAODGZ4JAAAAAILwEg0AAAADg6Q2DQAAAACBgU4NAAAAAAFPQg0AAAABA6wSFQAAAAMC6C4VAAAAAYKzshUAAAABgg/2FQAAAAMDujIZAAAAAQNqjhkAAAABg+quGQAAAACAmPIdAAAAAoF5Eh0AAAAAg+x2IQAAAAKCphIhA + NrgMGZxjYkCwLijacuRqQAoahmk8YnBARtUTyqeidEBlJtC0/7J2QA== - + - nMP/QJgsDkC2HgBAHGL+QLa3k0BRxZM/4Hq1P5/FPEDVNhxAiLztPwqRsUC7FhRBWmMbQHBAEkBNcZtAFkLaP7KQQ0HO8TdAD6AFQIT2lUBQWx1BOUXkQIeMS0GkkdJAEFOxQNMJM0HaKUlAIw2eQLXdF0BQqftAvq66QLaqoT/+kjZAhM6HQXXJGkDv4xtA4ZjNQEwb8kD+bBxBOhLaP8hfkkFdsfZAkrgDQcJGtUCgC/5AAiLrP0bkoj/NtgpBnYDHP181Q0EsxdNAgiO4QF1Q+z+1X5FANpCBQZYIlEGjDfs/rnWiP6AEpED99CZBjiZ9QOh1GUEe12pAWlgJQR8VqUHhGfxAIeuIQK+P1UDzNRZBoHgFQMv/akD64ORAkqp+QGRi9UD6vQRBEcxkQgYVKUEjdJxAEpChQElix0ABhyRAF6HHP9gL8j+PI69ATH3LQPYJikCApes/2NwpQFb/DUHw5e9AKE+BQJsyDkDblZVBVvsIQOGsNUGxja9AGjXaPy8chEIQgqhAGb0CQY8xOkFD3QtBy6NJQCFqy0BQADND/27mQcViREFEjaVA + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQJDCYUAAAADAm2djQAAAAKDWwGNAAAAAgMrGZEAAAADAh0NlQAAAACCSrWVAAAAAoIolZkAAAAAANORmQAAAAIAJR2dAAAAAwLMCaUAAAADAvjBpQAAAAIABRmlAAAAA4CSlaUAAAACAFSVqQAAAAOAnFGtAAAAAwFxha0AAAACgv3prQAAAAID+F2xAAAAAALFcbEAAAAAADKZsQAAAAECwI21AAAAAAKPhbUAAAADAhCBuQAAAAMAIA29AAAAAgDvKb0AAAADgFBNwQAAAAIAgK3BAAAAAAE5RcEAAAAAAAnRwQAAAACAt0HBAAAAAwFrycEAAAADgyiFxQAAAAICX7nFAAAAA4FAKckAAAADA9EJyQAAAAADXVHJAAAAAQCVjckAAAADAFdByQAAAAADcMXNAAAAAgLdzc0AAAABAihF0QAAAAECUJHRAAAAAIIJAdEAAAACAq890QAAAAGC87XRAAAAAwNwAdUAAAABAug91QAAAAICFIXVAAAAAIEIsdUAAAAAgiUV1QAAAAICoUnVAAAAAoG+ydUAAAACAdsB1QAAAAABG0nVAAAAAQBlKdkAAAADAb2h2QAAAAMAic3ZAAAAA4HSwdkAAAAAA3MZ2QAAAAAA20nZAAAAAwKxkd0AAAACg1nd3QAAAAOBZhXdAAAAA4NGQd0AAAADgRbB3QAAAAABNwHdAAAAAINXWd0AAAAAgpuZ3QAAAAGDoFXhAAAAAINxCeEAAAAAAT2J4QAAAAMCfeHhAAAAAYDXkeEAAAAAgACp5QAAAAKCpOHlAAAAA4M1CeUAAAAAgG1Z5QAAAAICEZ3lAAAAAYOh8eUAAAADgnIZ5QAAAAGBxwHlAAAAAYLndeUAAAACA3Jd7QAAAACA/9ntAAAAAYFeYfEAAAACgVuR8QAAAAOCrE31AAAAA4H/ZfUAAAADgqGV/QAAAAMDPc4BAAAAAYNuwgEAAAACAH82AQAAAACC02oBAAAAAII/fgEAAAAAggOiAQAAAAOBF/IBAAAAAID9bgUAAAACAinSBQAAAAOBRhYFAAAAA4KiwgUAAAAAg8wCCQAAAAECXCYJAAAAAwLdDgkAAAADA8G+CQAAAAKBYdYJAAAAAYCY5g0AAAACA4wSEQAAAAIDyw4RAAAAAQFPjhEAAAADgehSFQAAAACBDG4VAAAAAwIUihUAAAABgVFuFQAAAAOALYYVAAAAAQNunhUAAAABgXrOFQAAAACD1koZAAAAAgKeqhkAAAADg2OqGQAAAAED4c4dAAAAAYM/rh0A= + KBZXds7jZUCJy7y2HKVqQNzlv3T/InFA - + - fcJSQFsOqkDUgqI/i1BYQKYt3EDMagVACiLsPxYAxEBXWxpBnL/SQDoqLkFpMTtAkz+TQO+HQEAnmP4/QI0tQO9Ig0D38H1AIGJ1QCiv7D+u7Nk/NesNQCDsJECgRetAqPctQAXDikBybJxAlWykQA4QSkCEuSpBNhoSQMCRjkDWdJJATBQSQIyHikERduw/u5ZjQFIq0ECntwJBq6AkQAELKEF3xv4/fF8jQcMOLkF1wUZAMZ0EQNH0WkDh3kZAX8fFQDxUAECiucZBjDUcQlC/HUEBkYtBV/O0QFR+ZUDPphBBzAJtQHk3rkD0lktBQf2eQVinNUF20yxBizF8QfoxvkFcRRdAlz1eQYp/6UAcNxlCx48JQBy0IUJhtxFBrTTrQPyjCkHYHoxBbe8oQXyuKUA/UqhA2dvrQK9qTEGAnpJBIgxCQSF6G0Drzt4/vsp7QfIqf0ATfVhAR2RuQfQ0f0BjpndAK62bQcbYgEDVZnhAmA+1P1DAg0IVuiVBXCzhQCaxjEDB3lFBRkMNQXAbyUHwYDVC4ssMQWjPpUAmPIFB3zchQeiKm0BH3alA/MXmQFHxFkFsTRVCNgwkQNivwUB+LDxBgSN3QVKc7D9G6DVBNuWPPwERH0H42KVATBDZQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAIN2gZUAAAADAjqJnQAAAAMBxYWpAAAAAQLpla0AAAACAgUFsQAAAAKA2Z2xAAAAAwKxCbUAAAABAd2ptQAAAAICdf21AAAAAIP9nbkAAAADg5oVuQAAAAKDMp25AAAAAQGLBb0AAAADAuU9wQAAAAMCRsnBAAAAAwDXgcEAAAAAAIvRwQAAAAEAl1HJAAAAAQMLickAAAABgj3FzQAAAAICepXNAAAAAQEsQdUAAAAAACiN1QAAAAACgL3VAAAAAgLUPdkAAAAAAreF2QAAAAAB3M3dAAAAAwCtEd0AAAACA3lF3QAAAAEBH9XdAAAAAAJbqeEAAAABAzfV4QAAAAMC3B3lAAAAAQOBteUAAAACANsV5QAAAAEAbv3pAAAAAwOjkekAAAADAYvt6QAAAAIBTEXtAAAAAALtBe0AAAACAavV7QAAAAACWY3xAAAAAgIfvfEAAAACAKFR9QAAAAEDqg31AAAAAgNLwfUAAAAAAqhV+QAAAAICyon5AAAAAwOfOfkAAAADA1U1/QAAAAAA1dn9AAAAAQKf2f0AAAADgMlOAQAAAAGB3X4BAAAAAwMZmgEAAAABgmoqAQAAAAABrkIBAAAAAoGesgEAAAABAucKAQAAAAGA244BAAAAAgFD4gEAAAABgFSWBQAAAAMA4UoFAAAAAoMRYgUAAAACAemKBQAAAAGCCbIFAAAAAINeQgUAAAADgkqWBQAAAAKCnq4FAAAAAgFGxgUAAAACgdcGCQAAAAGDIv4NAAAAAwIX9g0AAAABgNgiEQAAAAKBPD4RAAAAAIAhyhEAAAADgeniEQAAAACA/g4RAAAAAoFZlhUAAAABAbt2FQAAAAKBapYZAAAAAoJDOhkAAAAAAClyHQAAAAEBUY4dAAAAAAMmIh0AAAACANo+HQAAAACD3oYdAAAAAoJLRh0AAAAAgSteHQAAAAGDX5odAAAAAoE2liEAAAAAgDrCIQA== - - - - - - 0tPZP24+JEDDmYxAHHs1QFNdfkHMrtk/Q2PaP18rj0BRn0lAfF/AQNbySUGm6VJAaQYLQZWqekAuy6FA7gXYQPByOkFKpJBCmDLLQF6eoj8fASFAWeNiQAenkUBz/55ACE7sP2jm/j8vCbQ/0gmuQJAnhUA5SYVA2oYEQVGLGkHJCHtBYh7sP4yfJEIg7EhB2HwTQxY5LUBlJtJAmqORQmacQECBg6JAUn33P7ddKkBqAK9ANte0P+OmkUA7ucRAe6a3QAbOjEKqY2FArr3yQCTLLUB5D6xB+SP+QPgR80IUUHBAe8C9QGW0gkHyG4pAXl+CQS5c6z+s6b9A3zAgQnMs2T/Vnfk/yb6kQLKpwEEiSRBArkKmQHCaP0GMgg5AevAAQVb0P0KPTbhA4ejkQgeGxz9a1MBAo24zQTSKLkBPV5xAVPcKQGoqKUIa0upBSHt0Qj6Tt0AoaQRBMPAlQVVQukCJ3JpA6zvQQPpLN0A= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4A+eZEAAAADAVKJlQAAAACB86GZAAAAAgIRlbEAAAABAuYNuQAAAAEDj0HJAAAAAwLXkckAAAACATHF3QAAAAEDFV3hAAAAAgBDveEAAAAAAoZ96QAAAAADX0XpAAAAAAM/kekAAAADAUvd6QAAAAED9LXxAAAAAQDlQfEAAAACAS3V8QAAAAIB80nxAAAAAQANlfUAAAACAldJ9QAAAAADk+n1AAAAAgDMlfkAAAABAQop+QAAAAMBRm35AAAAAwHPhfkAAAABAqe9+QAAAAEA4gX9AAAAAgEfEf0AAAAAAV99/QAAAAMAjA4BAAAAAAO1MgEAAAADAi1KAQAAAAEAwi4BAAAAAoKuegEAAAAAAf6mAQAAAAOCasYBAAAAAALHIgEAAAABgqeWAQAAAAGDZiIJAAAAA4DuwgkAAAAAgoMOCQAAAAADJyoJAAAAAoLgBhEAAAACgakGEQAAAAGCGooRAAAAAoPGehUAAAAAg9qmFQAAAACAg34VAAAAAwAbfhkAAAADgB1uHQAAAAGD3ZIdAAAAAAO7Dh0AAAABApJqIQA== + 4qRcexsiYEAoFld2zuNlQFjpTSZ7Y25Ab5d1hqpCcUCsUgPnFUN2QG/1UdoCVHhAjUYOxVrke0AHX00y2ZN8QKuXyq+ydH9AoQDjg0TagUCcd4tnxcKCQMwqZYaQEoRAK6DpXPGKhEDyy49sXZOHQJYyLjkSK4lAgfTtYYlbiUD6X/hVnkOMQOUhuH4VdIxAPAEuXTY+kEDis2AEEK6QQCykMqI7spJAIYWSNnfKkkDeupewgT6UQNOb90S9VpRAJc9Gq5cilUAJ5RmzzaaWQLgfXB7+4pZAUPnIreOKl0DNNJ0fJP+XQDQPnLUZD5lAXF37FFDHmUB7I0uwL/OZQMI3+qpF15pAc+DN54Bbm0BCT/G/m5ucQPP3xPzWH51AWdLDkswvnkCCICPyAuieQMk00uwYzJ9A - + - Nhw3QNrvBkAErAxBryJNQZs9AkFisB5BGmstQDVjUUKFqvRAySqIQHHtukBsKwVACToGQhyHK0GQitk/gxvaQECVXEB4SR5BY3IOQu+Gy0ARSbhA6NO1PzB6mUH6ABxBRf89QdYklkCkJto/sHPsPwmvUEAPj25AmixbQh5IZEHpmgpCbzXaPzwbAkHqAOJBCPqmQP12/j9UDpdBiPARQMCytEJs9LZB99oUQZM1M0HJSedAVoQcQtH2xUCJJrBBa441QUS0+kHP3IxBP2u0P5+aUkA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgNJiYUAAAADgq2ZiQAAAAKCwY2NAAAAAYMvEY0AAAAAATeNjQAAAAAB+52RAAAAAwDkmZUAAAACAbZ9lQAAAAIAn4mZAAAAAQBslaEAAAAAgCWRoQAAAAAAvBGlAAAAAgAwkaUAAAAAAT0JpQAAAAAC2qWlAAAAAAC7LaUAAAAAgkl9qQAAAAIBW5mpAAAAAAFoha0AAAADABmZrQAAAAMB242tAAAAAwAxFbEAAAABg7GNtQAAAAMComW1AAAAAgLGJbkAAAADAiMJuQAAAAADB4W5AAAAAwILnb0AAAAAAef5vQAAAAAAGk3BAAAAAoBfEcEAAAACgvzRxQAAAAABvUXFAAAAAoASmcUAAAADgncRxQAAAAECpJHJAAAAAgDVCckAAAACADl1yQAAAAECLcnJAAAAAwNmEckAAAABg/bRyQAAAAAAVynJAAAAAYJv2ckAAAADAugNzQAAAAGCcEXNAAAAA4A8fc0AAAACgpEJzQAAAAABfVHNAAAAAAIBvc0AAAADAkH5zQAAAAMCUj3NAAAAAQFWhc0AAAAAgsBB0QAAAACAoQHRAAAAAYKZidEAAAAAgxm90QAAAACCqgHRAAAAAwBeldEAAAABAGdN0QAAAAMCV4XRAAAAAAB//dEAAAABgNCN1QAAAAKDkRHVAAAAAYGeBdUAAAABgdZ91QAAAAOBYsnVAAAAAgM3DdUAAAACAv9J1QAAAAID+33VAAAAAAHjudUAAAABgeCF2QAAAAKDrf3ZAAAAAgOrZdkAAAABA6OR2QAAAAAB5R3dAAAAAoGNcd0AAAACA7HN3QAAAAKA0uHdAAAAAIJLQd0AAAADgG+x3QAAAAKCaBHhAAAAAAH4ReEAAAAAgYVZ4QAAAAOBjZ3hAAAAAQK9xeEAAAAAgSMJ4QAAAAMCZBHlAAAAAQGszeUAAAAAAqmF5QAAAAGDWe3lAAAAA4I+3eUAAAADg6NZ5QAAAAKC9/nlAAAAA4BYfekAAAAAgay56QAAAAODyPXpAAAAAQLVOekAAAADA7GB6QAAAAIAWcHpAAAAAoCV6ekAAAACApIx6QAAAAIBqmnpAAAAAYH7SekAAAABgoBF7QAAAAGDKQHtAAAAAQBVLe0AAAABgy3J7QAAAAKAcnntAAAAAQIi/e0AAAAAgT+J7QAAAAMCu73tAAAAAgMP8e0AAAACAzB58QAAAAEBXVHxAAAAAYKpjfEAAAACgDId8QAAAAKDoXX9AAAAAILqEf0AAAADgVTGAQAAAAADCO4BAAAAAoMJKgEAAAAAA3peAQAAAAKCsqoBAAAAA4DTkgEAAAABgACuBQAAAACBpN4FAAAAAQIFagUAAAACgTXOBQAAAAOAApIFAAAAAIEj/gUAAAACgMAWCQAAAAABuNIJAAAAAYDdBgkAAAACga3qCQAAAAGDWu4JAAAAAIJvCgkAAAABgkOGCQAAAAIBvB4NAAAAAoHANg0AAAACA2BWDQAAAAMCfQoNAAAAAANtKg0AAAADgOlODQAAAAGD/Y4NAAAAAYHKIg0AAAABgNbKDQAAAAICr2oNAAAAAwJj2g0AAAABgJwaEQAAAAGD0P4RAAAAAAA1whEAAAADgX5aEQAAAAGAu84RAAAAAIHkchUAAAABAnDaFQAAAAIB8fIVAAAAAoFuLhUAAAABgp+OFQAAAACAW7IVAAAAAINoFhkAAAADgAw+GQAAAAKBya4ZAAAAAAMuJhkAAAACgSZuGQAAAAKCRmYdAAAAA4MjYh0AAAAAgouSHQAAAAGAE7IdAAAAAYPdAiEAAAADAclCIQAAAACCVcYhA + NrgMGZxjYkA/KJil8iNpQEMdzoN8QnFAH3KoplGjc0AKeGK9lHN3QFoUIXwBxHpA0dL29qykfUCwaCWBmTR/QGiYaaUCW4JAT5MS74Myg0Box1fPruOFQLPA3AsQS4ZA3upeDlyDiED8p/sKBuyJQCfSfQ1SJIxAcssCSrOLjECL/0cq3jyPQDl9+LkvCpBAQe9jrIpqkUC5lO/Ohc6RQFcEpa2whpJAa6tU3ctak0DmLAOj3E6UQB3CuesR55RAZkT6tzITlkBnsouJPeuWQOZb8cyI15dA - + - oFMcQMDL8kBPgSpAWQS2P2MNfkCXlcJAekUbQHyrHkGuh1lBi0NNQegnn0DjupZAsJT2QYlvUkBFSGVAqqQkQG4SAEDSU5FAlTH3P/Q5ZkE/E59AEXbLQJONJEAejtZAxyFvQEiWBUDaCo8/DPq1P0AlqUDfdDxBhCtuQGtx/j/8IDVAQVAQQe+72T9x6FhBFzUkQYo0b0CFnu0/iCxaQAhgU0AYNvJAmGDIQdo5hECES7hAkXCiP7SpokBIIqdARyXOQAmoEEHivthAJzaKQJflsUCbvElAIHSRQF7y3UBFB4BBL+6qQaeYSUAi9Y8/8eJSQLCu+UCqXAFBngB1QOVYxUEbiAFBKHrkQJajckH2ppVBeubgQIm7IkE0BPA/mDGmQbBtxj+tvVJAt4iOQB0VLUDhJqdA/k10QDXWxEH6nQJBK8m9QNypA0Ip4KhAmi7sQGKJzkH1YOlA5+L2QEB1J0KBlctA+vSgQPUWmUBzdhtA3rz8Qa4mMUG/TyZBOgzeQVtJ40DL1OBBaV2KQSTJCUEs2DZBX9cOQLxC8kFYQtZA9L9nQbGBX0GR3Z5AghIQQd/C9EE8KhBCu0cyQe7aMEGte8c/mUA5QZzA0EECbNtA/xpvQSOskULU7k5Bq/12QDb4uUAWLZBBhnEJQfEEN0G0jI5AfQw5QQhn80BxDnFBQa04QVcbvECHLYJArE7TPw7u0UCX9WlBY/TAQJAs/0CiKdFBoSI0QRunIEGeLU9B4/JPQuAlekFAIHlA5XnAQb31/j+1/BhAC2XQQU5DuEAVD7NAfi9dQO5/L0LdYTtBjXDsPwgNJUCh8tNANUd7P9Gd7D/jQkZAfZx+QZ9VDkCZ0HdAqPxaQcieH0EMSxtAwTtQQNbb5kK6pKhBNXRJQAsvCkHvzTBB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoDG4X0AAAADAb6hgQAAAAOA4gWJAAAAAAG/OY0AAAACAL+plQAAAAIBwAWZAAAAAQKcgZkAAAABgzgZoQAAAAKAKomhAAAAAgJ9JaUAAAADAJmdpQAAAAIAXHGtAAAAAQLZka0AAAADgHOFrQAAAAOBvSWxAAAAAwPvLbEAAAABAH2NuQAAAAIARgm5AAAAAwJ6mbkAAAAAA8IZvQAAAAIBkxW9AAAAAIGUQcEAAAACAtY1wQAAAAODlonBAAAAAgOv9cEAAAAAgtjhxQAAAAMDeUXFAAAAAQL9wcUAAAAAgC4NxQAAAAIA8j3FAAAAAgLLScUAAAAAAUxByQAAAAEAwZXJAAAAAQATwckAAAABA8m5zQAAAAIA+tHNAAAAAgFH1c0AAAAAAxBF0QAAAACC9NXRAAAAAIENBdEAAAAAgs1d0QAAAACAlcXRAAAAAQBOBdEAAAAAAMZJ0QAAAAEBfo3RAAAAAgCXFdEAAAACAZ+J0QAAAAACjXHVAAAAAQCRudUAAAACA9o51QAAAAADlmXVAAAAAIHyydUAAAACAkr51QAAAAABS0nVAAAAAAC7jdUAAAABgOfV1QAAAAACkVHZAAAAAYEZ0dkAAAADgurl2QAAAAODDynZAAAAA4DzgdkAAAAAgoep2QAAAAKA59XZAAAAA4AQBd0AAAACgFxV3QAAAAEDBU3dAAAAAQHRkd0AAAACgVKl3QAAAACBdt3dAAAAAIH3Rd0AAAAAANfB3QAAAAAA79HlAAAAAYFKmekAAAABgvtR7QAAAAMABZn1AAAAAwB50fUAAAAAghYR9QAAAAOBuJ35AAAAAoKokf0AAAABgK0R/QAAAACDshH9AAAAAINPWf0AAAADAxSiAQAAAACAcioBAAAAAIF/EgEAAAADAU/mAQAAAAMCFLYFAAAAAYDzPgUAAAABgOvKBQAAAAKBL+4FAAAAAQOd3gkAAAABg4KGCQAAAAGBA2YJAAAAAYFXdg0AAAABgyhmEQAAAAAD2bIRAAAAAYIKzhEAAAADgm/qEQAAAAGBBi4VAAAAAQM+ThUAAAADgtuuFQAAAAMB7BoZAAAAAYOlMh0A= + KBZXds7jZUCN7m7sniJrQG+XdYaqQnFA - + - TkW0P5NmqkAa5RFABt9CQdon5j9nRD5AYiIZQSr2nkCNIlxAMAfZP9ocykCjMKhAPd9qQPi92T+Z0URBsEZ0QHc9N0D/MVVCNTGIQPCE1kDCJ1pAAvaMQJiq1kCEfsc/YEvHP6LHIkFzrQ5B6H+FQHSvYUDbtdk/UyoDQc6XK0FfrJ5ATy/aP3K1pUAGNZNAlEqnQCTuTkHMoWFBdxa/QJirT0AQITdBe543QL9Q0EFvdMVBXtkJQePH90B2OQBBk/JzQLBHw0EfyepAsy0lQjvNjkBnZUJCKVi2QQN9D0H2Lg9BfYCOQKDUYEFmlaZANIGcQGbvnUCYe90/UgH/P1Fpl0AElahAYtwuQVPggECzNOlA1Dr7QHoGx0BschtADMxZQV+vsUBmqIlBbg6fQOtnr0ATBCVBW98BQYUL9UDEwLxABlUJQScsLkHqCgdBaKERQDv3CEBOBQdBEzJLQOoHrUHmUZBBgweSQBZza0Ao3lFAKnIiQUfNVEEhRLU/+KiAQJHgjEAmEZRC7JSAQJLlxj9aiCRAP+GMQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgDsFYEAAAADgliFgQAAAAIA4p2BAAAAAwGxeYkAAAABAZkJjQAAAAGDjyGNAAAAAYFLoY0AAAADAdslkQAAAAAAZpWVAAAAAQMksZkAAAAAAoblnQAAAAAB/QWhAAAAAwKxmaEAAAACAlYloQAAAAABt5GhAAAAA4DknaUAAAABAl79pQAAAAAAygmpAAAAAoLPpakAAAADgpgdrQAAAAIA9KWtAAAAAgLSoa0AAAAAgD+RrQAAAAEAY9m1AAAAAwFiCbkAAAACAlctuQAAAAIBFZW9AAAAAgL7lb0AAAADgXh9wQAAAACAfNXBAAAAAAFJDcEAAAADAlVBwQAAAAIDOsXBAAAAAYIPRcEAAAABAngFxQAAAAEB7LHFAAAAAYNVvcUAAAACACZNxQAAAAKCEs3FAAAAAAIADckAAAABAtTNyQAAAAOBzk3JAAAAAQMHCckAAAAAANfhyQAAAAACHPXNAAAAAALZKc0AAAABAn1xzQAAAAGCBcnNAAAAAIBOBc0AAAADAoJBzQAAAAGAxsnNAAAAAIJDVc0AAAAAAx1F0QAAAAACjXnRAAAAAgMZydEAAAACA5oF0QAAAAMC0knRAAAAAwGGxdEAAAACgRtN0QAAAAADSAHVAAAAAQI0QdUAAAAAAhh51QAAAAABmNnVAAAAAoPFTdUAAAADgy3B1QAAAAMB+f3VAAAAAAPiOdUAAAACA8qJ1QAAAAMA4InZAAAAAoOY0dkAAAADgiEN2QAAAACD2UXZAAAAAgAWmdkAAAADgTLV2QAAAAMCI8nZAAAAAwBwad0AAAABg/zZ3QAAAAOC9V3dAAAAAILN0d0AAAADgKLd3QAAAAOAmyXdAAAAA4Dnjd0AAAADgbgZ4QAAAAGCfGXhAAAAAICrQeUAAAABgqU96QAAAAIDDr3pAAAAAwOIEe0AAAAAgcIV7QAAAAKB/wn1AAAAAYAzhfkAAAAAg0CV/QAAAAKBVNIBAAAAAIIDAgEAAAACAHdOAQAAAAACpCoFAAAAA4B8jgUAAAACgbTiBQAAAACAYXIFAAAAAYErsgkAAAABgxTODQAAAAKCQSoNAAAAAwKJRg0AAAAAAuWKDQAAAACA8u4NAAAAAQMPDg0AAAACgmSOFQAAAAMBfDIZAAAAAoIpDhkAAAAAg5OaGQAAAAOBs0odAAAAAgB1wiEA= + NrgMGZxjYkByWoXuS4RpQMRlXluOUnBAxwSPFv7SckBSvap6ZmN2QB1ZkxuWQ3dAcA5nZb7zeUBzrZcgLrR7QDi2oVyLgoBAsLXLPk5ygUBBukzXjyqEQPIIglQDg4RAQek6ATyzh0BUDFE+VpuIQKLsCeuOy4tAVDs/aAIkjEDlP8AARNyOQFw/6uIGzI9Abg+glz06kUAuN2yGWaqRQIQk4ZhjVpJAdUsbgW+OkkCaOSKaiXKTQFlh7oilEpRAfk/1ob/2lEDZeOWd+9aVQMVjpJzV2pVA - + - Wj5NQTDo2D+gJRtAjcijQFimj0BHpP4/9OL+QGkVIkAzQ85BQvZtQEXtnkC9xKxAvXq0P/AX1UBppC1A38rNQRL6jz8sRaM/CyJAQMf92T/zB+w/OiHCQL3gEkF3SThBIZ4dQZYY5T+IfOw/b+i1QeDmlUAjVqFAzqZMQS0XRkBb1f4/SFrsP4xCAEGAzPJA/olHQBnhr0Bvp/4/Ntw2QGI0oz8PIiJAWinYQIDos0AhzzhBesgNQQe8DEFEPXVBGHyyQIjr2T9ubYxAyCgbQTozLEHOCtVAqpYaQcvEYUKWJl1B3AMOQSMJ7D/wRo8/L4IyQD3Vh0CXz4hAR8enQE2dUkA7dXdBy6YrQe0AtEEdS59AkY05QUsynEEVGohBU4+hQFVJS0AAxmRBboybQCDpEEFQGG9ANkNOQB9hVT9ivtVBT+swQfz/ZkAzoTlBhTaTQGYvMUH9xeBA3OjUQCc7A0F0J6M/iPwhQWrKK0HT1YFB5NsrQU20lUCG8RtB/UYKQQacDkG0DoRAiLx0QO7iK0BoTUdAb8LAP3qJ7D/uI/pBDBXDQvyqg0D9ObZABQzSQJtc6EDCShVAhNcBQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwHJoaEAAAAAgnmFpQAAAAMC4pWtAAAAAYI4kbEAAAADALEtsQAAAAEAei25AAAAAYJ5/cUAAAAAARRNyQAAAAOAzBXNAAAAAgFiUdEAAAAAAqQx1QAAAAMCmHnVAAAAAwPwydUAAAABAfD11QAAAAABhTnVAAAAAwDdtdUAAAADAxrF1QAAAAEAKVXZAAAAAgJ9fdkAAAABAK7Z3QAAAAIANR3hAAAAAgB+leEAAAACAOfN5QAAAAIALYnpAAAAAwEj8ekAAAACAnQd7QAAAAECJMHtAAAAAQMg7e0AAAACAIMd7QAAAAEC5IXxAAAAAgEpefEAAAACALil9QAAAAICpYn1AAAAAgJqSfUAAAABAjuF9QAAAAABpIH5AAAAAAMk/fkAAAABAtL1+QAAAAECgG39AAAAAQKx1f0AAAADAhvd/QAAAAGBDOoBAAAAAAFJCgEAAAAAgy1aAQAAAACAfgoBAAAAAYEmYgEAAAABgwcuAQAAAAGBP6oBAAAAAQI0QgUAAAACgixqBQAAAAOCJKIFAAAAAoLkzgUAAAACgkbiCQAAAAKAKaYNAAAAAoNaXg0AAAAAgfcGDQAAAAGBrMoRAAAAAYN5xhEAAAACAEoOFQAAAAMA8Y4ZAAAAAYF1rhkAAAAAgDSGHQAAAAEAkKYdAAAAAoAC7h0AAAAAg6NaIQA== + KBZXds7jZUA= - + - 1U5RQGmAmEBGdGxAWK6HQE8YiEBBkKlAsITVQAt5V0EBNKtA0V5wQKsVxz9u+xFAB2XYQGfZOEGmxAhAr0bBQPFDjUBxIDdAj0KBQIcvQEAAH1g/rsEYQe5AbED8ZKVAWceRQCCmtD9PwghAxlc2QUgKEkDw759AeaMXQe2LQECkelJBkZPmQLOqiUHI+PRA27QzQZ7cPEDh3IZBq7lPQPQH2T8w3O5Aj1CfQKA0GUJR2c9B1j6iP9cZg0BDg0lAurNzQTFboT/G25BBY/mLQQBtVkL8LF9BZzwvQRghiEBPCspAyIi+QODO3T+6gyRAdOyjQeSueEFty7JArvK6QE6EgUA= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAFhGYUAAAACgl8FhQAAAAEDPyGNAAAAAYItAZEAAAAAASKdkQAAAAAA1uWZAAAAAANCGZ0AAAADAUcdnQAAAAADupWhAAAAAwA4naUAAAABATcNpQAAAAMDlPGpAAAAAgBnpakAAAACAaDprQAAAAEBOKWxAAAAAwOlDbEAAAAAAPV1sQAAAAEAz52xAAAAAgKz/bEAAAAAA64ttQAAAAMCBwm1AAAAAgJ1HbkAAAAAAsGZuQAAAAGAV5m5AAAAAAOeGb0AAAABAPOpvQAAAAEBSAnBAAAAAYMAvcEAAAADAKF9wQAAAAGAZwnFAAAAAoE9DckAAAABAplRyQAAAAACKZXJAAAAAwHB1ckAAAAAAwMxyQAAAAECH5HJAAAAAgEz7ckAAAAAgcyBzQAAAACCJNnNAAAAA4Jhjc0AAAAAAvLNzQAAAAKDY43NAAAAAgKoTdEAAAABAa1F0QAAAAAA3inRAAAAAIDnOdEAAAACARu50QAAAAOCuBnVAAAAAAD4jdUAAAADARlh1QAAAACDmcXVAAAAAIKKWdUAAAACg9KN1QAAAAEDb9HVAAAAAwJZEdkAAAAAgS2V2QAAAAMD7fnZAAAAAICOLdkAAAADA7eJ2QAAAAACG8HZAAAAA4B8Yd0AAAAAgbkl3QAAAAECMV3dAAAAAQOxqd0AAAACg7YF3QAAAAKCt1XdAAAAAoDLmd0AAAADgGfF3QAAAAIDKI3hAAAAAAHRweEAAAADglZR4QAAAAIDD83hAAAAAoPxVeUAAAACg23J5QAAAAOCTo3lAAAAAQG3meUAAAABgSPN5QAAAAKCC/nlAAAAAYFIiekAAAACgD1N6QAAAAMCgbXpAAAAA4FGEekAAAACAAI96QAAAAEDhmHpAAAAAIPisekAAAACA4s56QAAAAIDz5XpAAAAA4IgDe0AAAACgaWF7QAAAAABMhXtAAAAAYBqSe0AAAADg6Np7QAAAAMDu83tAAAAA4HX+e0AAAAAAwxJ8QAAAAKD8L3xAAAAAQCxDfEAAAAAgm898QAAAAOCs/XxAAAAA4EeVf0AAAADgeqZ/QAAAAEA8YoBAAAAAYIdxgEAAAABgc5SAQAAAAICTqIBAAAAAYBzfgEAAAADgTwmBQAAAAOANRoFAAAAA4PhvgUAAAADgpn+BQAAAACCIs4FAAAAAIHG+gUAAAAAAbsmBQAAAAAAML4JAAAAAYE59gkAAAADAe5uCQAAAACDtoIJAAAAAYE+2gkAAAADA87uCQAAAAIBk4YJAAAAAYGjxgkAAAAAgSyODQAAAAKBJU4NAAAAAgFVcg0AAAAAg93qDQAAAAMCtjINAAAAAgHWVg0AAAAAgEKSDQAAAAIB4qYNAAAAA4Jjkg0AAAADgyFqEQAAAAKAvpYRAAAAAoH67hEAAAABgMNyEQAAAAOAI5IRAAAAA4B/qhEAAAABgv/iEQAAAAGCPJIVAAAAAQFhBhUAAAACgPHmFQAAAAIBdioVAAAAAwECShUAAAABgM72FQAAAACCNxoVAAAAAoOlThkAAAABgGmGGQAAAAGBpw4ZAAAAA4DjMhkAAAAAg6tiGQAAAAEBu4YZAAAAAYH1Oh0AAAADgpFOHQAAAACD/k4dAAAAAwL0tiEA= + NrgMGZxjYkCJy7y2HKVqQOO2GkbmYnJATOxPqX/jdUA+w2SRqbN4QGo9DJTXc3lAPiFB5QHFf0Cs/YX4IlKAQAK+ag8N+4JAECtQFa9qg0D5nOo9RJOGQBBaPj9b84ZAiMVIM3BbiEA9YOPkvBuKQMyIQdroo4xAoI2tAUm0jkAwtgv3dLyPQA== - + - dLyaQPf8M0B8n7Q//rktQMV7sUAQBg5AlvyOQEwdG0Csro8/BsA0QR1OtkDETiZAH3gKQSMO6z8qzSpAXFBYQIAllEA7UGxA55lTQP9S7D/ye9ZAW4jsPxbpc0EzilhAMA4rQMqtgD8MzN9AGcSSQBEd20DN/wJBxN8RQGBTn0A5GVxAQX/dQNMVqEAaWFhA2jUCQZoYiEArYMc/TOpbQPIO30Avwt8/Wy7AQEfsBkGZqXdAYzzNQGd4F0F+Kqg/8qq4QSLuN0F+Ka1A9MYjQNO2/z9YZApAgcU8QMQ+vEDbMGNBExZiQfcgu0FerTxAl7duQOfTjEFHlatBsIFQQRV5jz9Ig9tA8YoRQfANjkBdcj9A2F5DQSMfgUCAmGdBBqViQbVYE0FzY+RAwxwmQI6RCUG2Ft0/50qcQBfSzUDYTKpBrGrsPw6sLUD6pHdA1SKNQXaA7D+Af8BB4EXBQNHwtEBELrtAIovrP8/sm0AXD01BOm0wQbpBhkHfsD9C0JYrQqnUEUAdaORA8J43QzPRIkHPX0lApBOfQDPbjEC6j8lANwLSQctXlkFlYQRBbGYIQfC3PEB1RkBA7C/AQCYnukDRK9tB7O1TQQpfBEGfEE9BXpYCQaz28UAI/m1BhTboQMvWd0CyFI1BaFkzQIAIvUEn7gNCtkhAQJb+BUG0bHhB7AyTQELrE0HyeQJBG+/TQD9jQkHcUGdBp7XKQCo+M0F64eVAsqHZQC+wQUC0oj5B8xMOQTcoqUDT2nNAckWBQHoaQEA8Wsc/gTnsP/wmoz/lyghB7SiYQUoBeEGqULVBq8SQQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgNfoZkAAAADAWMhpQAAAAEA4Y2tAAAAAAOs/bEAAAABgemJuQAAAAECRyG9AAAAA4JwDcEAAAAAAeSdwQAAAAOAoZ3BAAAAAQAYEcUAAAADAGxNyQAAAAACegXJAAAAAAPhudEAAAABAN5B1QAAAAABvAnZAAAAAQCdRdkAAAABA6YR3QAAAAIBk6HdAAAAAQD9aeEAAAACA25N4QAAAAMDN03hAAAAAwBQSeUAAAACAM8p5QAAAAABCAntAAAAAgOgze0AAAADAT5J7QAAAAACUIXxAAAAAwJqlfUAAAADAEQF+QAAAAMAVcn9AAAAAQKCOf0AAAABAKgKAQAAAAIA3DIBAAAAAIPZZgEAAAACgfNyAQAAAAIAB6YBAAAAAYMcpgUAAAADAHDKBQAAAAIDPOYFAAAAAgKZagUAAAAAA6G6BQAAAAKBsk4JAAAAA4L/XgkAAAABgdEiDQAAAAKDWU4NAAAAAgHiNg0AAAADg/DeFQAAAAAB8uoVAAAAAgG1ohkAAAACg6FeHQAAAAIAEo4dAAAAAINTgh0AAAABgNfOHQAAAACBxY4hA + NrgMGZxjYkDYkZP9yKNsQEMdzoN8QnFA - + - /5gzQPYDf0EkDzdAb9IrQBlExz+nm5pAoCRAQBmXd0CUK61Ak0sbQPAjI0Efwtk/FaW0P9P9d0CqJ7NAa0c2QKaDtD/CxP4/MJUtQGcstkA52GhBV6FkQO1gs0Dvmy1Ao/cMQWOcGEEuyJdApyHGQFN0TEHcnYpBgJxlQNZ8PEExDYNBUMb8P0NkjkD7mARBm/ySQBXYtD957ltAJqSzQD9CYkFiQBtABHFHQR2m+UD8b4dAiWtJQDcdRUGfBJNA97dVQRj9z0AMR3RAB+g+QXhf20ChLZ1A + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4OEmZUAAAACAICRsQAAAAGAHaWxAAAAAIPSDbEAAAABACiVuQAAAAOClPW5AAAAAIG5tbkAAAABA0yRvQAAAAEDhA3BAAAAA4GNbcEAAAABAdnBwQAAAAICglXFAAAAAYMufcUAAAACAESFyQAAAAEBKSHJAAAAAgDSTckAAAADAJQhzQAAAAACoMnNAAAAAwNZFc0AAAABAo89zQAAAAEAyBHRAAAAAgEQmdEAAAACASQN1QAAAAIAZo3VAAAAAAN4QdkAAAAAA+TV2QAAAAAAvsHZAAAAAwOsFd0AAAAAAPjN3QAAAAMARQXdAAAAAgCCQd0AAAABAe6Z3QAAAAAATUnhAAAAAQGqTeEAAAADAEbl4QAAAAICGx3hAAAAAQB5FeUAAAACAWBF6QAAAAMB/IntAAAAAwJoue0AAAACAa3N7QAAAAIBnhXtAAAAAAKnEe0AAAADArth7QAAAAEDMBHxAAAAAQK5TfEAAAADAVdF8QAAAAMCc4XxAAAAAQJMOfUAAAABAJjd9QAAAAIDcRn1AAAAAAFyFfUAAAAAAXpp9QAAAAEBoEn5AAAAAAA5IfkAAAADA27F+QAAAAMCXdX9AAAAAQDWBf0AAAAAAV5V/QAAAAMBusH9AAAAAwNvEf0AAAADg5xGAQAAAAOCmIoBAAAAAYOItgEAAAADgkE6AQAAAAAAZiIBAAAAA4IYkgkAAAABAYlqCQAAAAACLgIJAAAAAAMqfgkAAAADgJKaCQAAAAODZMYNAAAAAQCeag0AAAACgRqSDQAAAAOD4uINAAAAAwCrGg0AAAABg3SaEQAAAAKBQYYRAAAAA4GhxhEAAAADg1KGEQAAAAAAyq4RAAAAAoOQihUAAAAAAnDiFQAAAACBPpIVAAAAAIJ+4hUAAAADgld6FQAAAAODgJ4ZAAAAAIBwvhkAAAACg1dqGQAAAAEAsEIdAAAAAYB1Uh0AAAABgOWCHQAAAAOCLb4dAAAAAwGvqh0AAAACAXiuIQAAAAGCvVYhAAAAAQLa7iEAAAADgI8qIQA== + NrgMGZxjYkA1uAwZnGNrQBu6YmAmQ3BAPWWIPVEic0A9w2SRqbN1QGQm0LT/MntAZISsCFjEfUDDF+lywVGAQMNG15xtmoFAw0bXnG3ag0AmdKG5+TKGQA== - + - ZQmiP7PXW0DXZMRAY8IhQFboCUAdK4tAMluQP6KJmkGQ3QJAuJO/QBITkEDsXjdA0TWiQChrqUCw2sc/3FKtQIepBkHI8RlBOrMOQAAKHEFxjRtAIC4rQcxQBUBXU/8/UWAbQHDUfUC+J6pASe9XQVOwRkDqLpE/9Vd2QE00AEDVXjxA633wQKpTgEBJ5JVBQV+RQPQaJkFDP6xBkhYaQTzNNkHrRihBov0bQfpJh0HCN5FAu5BlQNba+D/+HKBBA03MQDcfCEKPmixBH1dSQFz/GkI0WwRBoyqnQOyiM0AVLKhAouzsPwccyz+H3+RAlaHPQChwS0DrBqdAdrGqQQeLrkBKcIVAZ+g8QZdzcUGBxMlAyhoWQp84vz/ENjNBgGAbQJemiEGCtJ5BE9l+QKsyk0Ab6pxBBJUSQVrQjUFECpE/PfVjQQ1rX0Gf7z5BG91JQAGywEFiPwdBVRk0QfAweEAQrvFABYGuQJbMTkFhC21BXNZZQYFaQ0E4JZZAOr4YQZm/A0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgN6hYUAAAADAQ8RhQAAAAEBn5mFAAAAAgHwlYkAAAACgjUZkQAAAAIBcpGRAAAAAQAXKZEAAAABA40VlQAAAAMDQpmVAAAAAwPPIZUAAAAAA28NmQAAAAOARZ2dAAAAAgF+MZ0AAAACgeQpoQAAAAMBjo2hAAAAAwP3GaEAAAACA8iJpQAAAAGDUaGlAAAAAQGCdaUAAAAAAscFqQAAAAMAtBmxAAAAAYCZBbEAAAACgC59sQAAAAADFxWxAAAAAID4qbUAAAACAdG5tQAAAAKD+pm1AAAAAwN4GbkAAAAAgEUVuQAAAAIB9CW9AAAAAIFUTcEAAAAAgpyFwQAAAAIALLnBAAAAAAOi0cEAAAAAAqMFwQAAAAMCXz3BAAAAA4F8EcUAAAACAN0JxQAAAAEAskXFAAAAAICyjcUAAAACAW7VxQAAAAGD4wHFAAAAAwIn7cUAAAAAApSJyQAAAAAAWl3JAAAAAgHKTc0AAAADAhaFzQAAAACBhs3NAAAAA4DvDc0AAAACgA1R0QAAAAICmcHRAAAAAoCuLdEAAAAAAy5Z0QAAAAGDLtnRAAAAAQHTDdEAAAABApg91QAAAAMCOJnVAAAAAAAU0dUAAAABAdEJ1QAAAAIDtUXVAAAAAAApndUAAAACAjap1QAAAAICV7XVAAAAA4PUBdkAAAADgOTV2QAAAAMD0RnZAAAAAwF9SdkAAAABAlJJ2QAAAAAD9o3ZAAAAAAMPGdkAAAABA99J2QAAAAGDH5nZAAAAA4LgSd0AAAABALiR3QAAAAIAHNXdAAAAAwP0/d0AAAAAg/lN3QAAAAEBWYndAAAAAgMd0d0AAAADgOMV3QAAAAACU83dAAAAAQCAFeEAAAADg8Cx4QAAAAOB6PXhAAAAAIJ1keEAAAABglXJ4QAAAACAvsnhAAAAA4CHieEAAAACgDw55QAAAAEBnN3lAAAAAoC2BeUAAAADAqcB5QAAAAAAB0nlAAAAAYGDgeUAAAAAAufR5QAAAAECNWHpAAAAAYDZzekAAAACAMIB6QAAAACChl3pAAAAAgPzAekAAAACAq816QAAAACDa4HpAAAAAQLIHe0AAAAAgqxJ7QAAAAKC+HntAAAAAoKwze0AAAAAgRmx7QAAAAKDYf3tAAAAAAKiTe0AAAAAgP717QAAAAMB/7ntAAAAAoKIEfEAAAACA6SN8QAAAAADvNHxAAAAAIJ1GfEAAAABg9lZ8QAAAAKAffHxAAAAAYB6NfEAAAABgk5t8QAAAAKC/rnxAAAAAgLHIfEAAAACgmd58QAAAAMCFZH1AAAAAYHFxfkAAAAAgTLV+QAAAAKD3xX5AAAAAoO0Of0AAAACgY5J/QAAAAMDio39AAAAAYGnGf0AAAACgKOR/QAAAAOCvc4BAAAAAYJt7gEAAAABg0ZqAQAAAAKCPqIBAAAAAAJELgUAAAABgVIOBQAAAAIDOjIFAAAAA4BqzgUAAAACgARmCQAAAAGAqYoJAAAAAYFx3gkAAAADAEoSCQAAAACClo4JAAAAAYGnLgkAAAADAT+6CQAAAAGBr+4JAAAAAoLVTg0AAAACAy4uDQAAAAOB2k4NAAAAAILC6g0AAAABAYCCEQAAAAKC6K4RAAAAAQCNWhEAAAADASGOEQAAAAKBQ9IRAAAAA4NgxhUAAAADA80iFQAAAAIDQ64VAAAAAoK7whUAAAACg7DKGQAAAAOBoOoZAAAAA4PVHhkAAAADgSVuGQAAAACDSpYZAAAAAINSzhkAAAACA+8KGQAAAAIAs5oZAAAAA4KBTh0AAAABA7FqHQAAAACAoZIdAAAAAgJLBh0AAAACApfuHQAAAAOCgKohAAAAAQKuaiEAAAACgcfKIQA== + NrgMGZxjYkA8VWQoKMVvQBu6YmAmQ3BAGxg/tH5Ud0B+Hj3y2IN7QBt2GwjXZX5A0m/CtEPKgUDU5rOTVzuCQMlOQuN6YoVAAe1YObljhUCS8dnR+huIQMAtwhGy+ohA9h6k7oY0i0CHWWghHgOMQIcjJYfI7I1AToUOMYoLj0B1qPdRqkKRQDZr5Q3xTZFAWb7KWeDGkkDogUocN9qSQNnVwW42i5RAiuPGb3P+lEBo/h9kYlOWQAr7vYTJwpZArxLPXng3l0CKErWZH4eYQC8qxnPO+5hA0SZklDVrmUCvQb2IJMCaQGBPwolhM5tAUaM53GDknEDgZrmet/ecQAO6nuqmcJ5AxHyMpu17nkBJcf5vaRygQLvJeNoZZKBAO/znc4TeoEDfCplAKhKhQC2H0XefoKFAOJbLR03YoUBc1+utXYaiQOt+cUOthqJA5xhVF3ZQo0CpdhEPu2yjQNmjPhuREqRAzm763dBupECZL7olvPSkQFm7NTDn1qVASs27efnipUA8WKV9FKWmQBlHsToSuaZA - + - 5vjsP6rniUCepypAFR5uQFOlg0AmxElAUyWWQNByhUDU5/4//hyyQMdon0AAVE9BNchJQJnGH0FnGm9AnYTgQHolHUFNUMlAAiRmQBxvbUDuAYpADLoiQaBaWUCP66VASmn1QIDo+D+HhMBAROf7P4LJr0BSUQZC64ioQDp130BR4S1AqirjQDS5jkAe/2tAVG+qQHwF+UDSToBAZr5GQK632j/9Au0/psA9QbsM0UCiZxdBknUQQVI3xkCbF7U/oS4tQf6hiEC1uMhAtPXIP6kztUFgp95Av31AQO8FCUCkCMNAKloSQW19tT8iKNo/oshlQAusvkD+IOtBzsssQWzlyD8db7hAlhLtP0cXHUC7s5A/d90zQR9NpUH1gcxB0SGwQK9PU0Do1CRA7nyGQH3x/z9EcQhB2uEiQV6h3UDQavRAS9JGQDugZUCU53FB1ojbQOa0bEAEpy9BLrumP0IUlkAAS9lBbAKmQbk55T8ECX1Bz0sSQN4d90BIifg/Vd6RQQtohkAyodlAADN8QROX00Bn9rpAzvcDQXoak0G31SxByXK1P7LDPUFdm9pBgM12QYRalEGm+IhA/JP7QOPLIEGeSNFAsvUHQs7rrUEYfeo/48PyQIbMzEEyRAlABKj0QWCytUGQf5A/tcpuQURRKkHp/HhBrpLSQJOG8UJ3uaJBS8W/QDA3ukA04XRCAzDHP/aDF0FDMQBAXqT1QA4890BEVPVAbD/dQEhakEEK0uFAWnQ3QnGFS0HwJeJBbZOAQINJ80HoZdpAOhwSQMDi1EKjeIBBMtErQNBFXEEoevc/Q7yfQU2ILkDj+rFA9JIbQE+CNULTNvNASF2hQFZPWUG7R+lAvLzIPxEdkkBf725AzeZdQdOGa0DzRvhAE/rBQfaLJkFFXq5AHNmjQHn+h0BIDAhBjwbVQBjCgEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIB/RV0AAAABAjUpYQAAAAIAhRllAAAAAANOEWUAAAADAvzpaQAAAAMClf1pAAAAAgDRAW0AAAADARw5cQAAAAKAfTlxAAAAAgIWYXEAAAACAWwxeQAAAAMDLSV5AAAAAQP2/XkAAAAAgwElfQAAAAIAfI2BAAAAAoFZKYEAAAAAAGuBgQAAAAIBH/WBAAAAAgEa/YUAAAAAAritiQAAAAMDlaGJAAAAA4GyjYkAAAAAAyMtiQAAAAMAQBWNAAAAAAEY9Y0AAAAAAomhjQAAAAMD5r2NAAAAAQLzDY0AAAADAwOBjQAAAACAPJ2RAAAAAwC+DZEAAAAAAJgNlQAAAAEBSe2VAAAAAgFWjZUAAAACAAqVmQAAAAIDzwmZAAAAAwGUmZ0AAAADgmT9nQAAAAIBUZWdAAAAAwOWJZ0AAAAAglKRnQAAAAGD0yGdAAAAAwLMoaEAAAACgC0xoQAAAAMAbYWhAAAAAwN7kaEAAAACAkyFpQAAAAID2QGlAAAAAQPmIaUAAAAAAH+5pQAAAAEAsRWpAAAAAQOtnakAAAADAOaFqQAAAAMBIympAAAAAwI3jakAAAAAA7iFrQAAAAICHQGtAAAAAQPNea0AAAACAxIJrQAAAAEDlu2tAAAAAwLTka0AAAABAOyZsQAAAAIAKZ2xAAAAAgK+ZbEAAAACAmhZtQAAAAACFSG1AAAAAwNxfbUAAAAAAV4NtQAAAAECvnW1AAAAAALG5bUAAAACAZxluQAAAAMAXQW5AAAAAQDOlbkAAAACALMNuQAAAAADFCW9AAAAAgBpmb0AAAABAaH9vQAAAAIAwnG9AAAAAgIa+b0AAAADAAudvQAAAACApInBAAAAAIAsycEAAAACg5FlwQAAAACBPZHBAAAAAwDVzcEAAAACgAH1wQAAAAKBSl3BAAAAAgL+hcEAAAACA6rNwQAAAAEDr0nBAAAAAYJv1cEAAAAAgGQFxQAAAAMAzQ3FAAAAAgCldcUAAAADAkHJxQAAAAKBOh3FAAAAAgDmScUAAAADgUqBxQAAAAIDhsnFAAAAA4Im/cUAAAAAAG9RxQAAAAMAQ5XFAAAAAANHucUAAAAAA2g9yQAAAAACoIHJAAAAAgJowckAAAACApYFyQAAAAIBaknJAAAAAoPuhckAAAACg2btyQAAAAID88XJAAAAA4G5TdEAAAADAf2F0QAAAAIBvcXRAAAAAgLCQdEAAAAAgtxF1QAAAAOD4Q3VAAAAA4LSFdUAAAADgkLl1QAAAAODH4HVAAAAA4HnzdUAAAABgBQd2QAAAAOCnvHZAAAAAIPHKdkAAAADgiNZ2QAAAAGBCCXdAAAAA4PA5d0AAAABgT193QAAAAKB9oHdAAAAAALm+d0AAAAAgL9F3QAAAAGBWMHhAAAAAgNJGeEAAAACgeld4QAAAAKAVt3hAAAAAQDIZeUAAAADgyjl5QAAAAKDlRHlAAAAA4KdZeUAAAAAgE5V5QAAAAABMx3lAAAAAwHLWeUAAAACALuZ5QAAAAOA6U3pAAAAAIOtdekAAAABAL3d6QAAAACBmgnpAAAAAQMP9ekAAAACglwl7QAAAAKDYG3tAAAAAoGZIe0AAAACglVZ7QAAAAODn43tAAAAAYNA1fEAAAADgRHh9QAAAAKDt831AAAAAwAMBfkAAAACgiRN/QAAAAOB+iX9AAAAAIHaTf0AAAABA/DmAQAAAACDKcoBAAAAAgA97gEAAAABAuZmAQAAAAKA4qoBAAAAAIJzNgEAAAABA6tSAQAAAACCjDoFAAAAAQA6TgUAAAABgbrCBQAAAAGD4e4JAAAAAoOLpgkAAAACAC/uCQAAAAMAxi4NAAAAAIAWTg0AAAADgb7CDQAAAACB2u4VAAAAA4P3ihUAAAADgmTGGQAAAACBaOoZAAAAAIENLhkAAAAAgR1KGQAAAAMDbw4ZAAAAAgNPKhkAAAABAJxOHQAAAAOClG4dA + KBZXds7jZUBmiznaDGJxQN3+1P+6wnJAiJQ7C5DSdkAEwBx3adN6QIjyF1/o431AILFKpgz6gEBhSkgaTIKCQCDgONC4goRA9CrsVaOKhkCx5Llo+jqHQPRZ2n9PE4pA2uRAOA1zikA= - + - wzuTQN2noj9PFpA/R2GIQEf5CEBQcf8/bHiNQKqtjUAZE5NAVDfZP8yGakEHl5dA67a5QOhNoECagiZBF+/dPwBwNkMMlr5B3WoIQYqxfUBZXXZBD0HgQCoviEBz+BJAiFB6QIjL7D8c7idAS/CuQNkP+D9cmsY/bKaAQKWTZUB4HNo//BBpQa7ZW0B4FrhAwOXKQca6IkBktEJBhnyOQO6k7UFdgew/pk4hQSIBt0GxAto/8sUKQcfxwkGmMUZAxhUnQYwbgUFy9opA4oopQbdIxkCvNh1Al5vyQDegBkImVN5AcS60P2QALkCxhs9BUhQSQLKmT0Ce9aBAk4o6QTZeXUEE25JATNh4QL3uLUB+Qdo/juCVQVfIKEFLvhlBnwjLQGdyvEGjCFZBh8PCQKoDUUACMb9A59JhQC6uo0DuioBAXJI5QQ9VUUGXA+w/w6ZMQUo85kEnWw1CftJbQ7xCF0FwSVBAqM1JQaUXY0GwqQhC96wqQEJ6cUFATA9CQuvJQUSxYUGjhs5AebAGQnVQgEGarRFBe04HQa6ePkFaCBtCgXwkQbkRtT/awnBBVAsqQI04rEGwIclANiq0PwzTOULkbPhBexiIQKq3jUEiD5hA/PRSQBS2zEHm4YdAgOJVQrhVEkEyVIFCQE0/QdwMZEHjrSJAkuejQIEfBkP22ClBc2oFQy6WqkAE6wtB/OanQbFAG0DIvllBTVOXQNuFlUEGxIRAJY/sPyPWCEAYoRVDQOKoQqnz/kCKdmBEBXbQQysLT0CAEg9B8GStQ6+yBUG6EwBA+FSBQZUn6UEVZhpAsOi1QH/hl0DBou0/nOxSQOz70EBkYEdBBHPbPwd6mEBj3x9DcGQ0QGFbWkFZ0shApp99QB5ookBfmvg/hdtIQFvEkkC5j71AA0qFQFeyoECrWctCH+ffQRSMIEECch1B6UODQLr1lUCyoL9AQWrIP2KkJEGiKxxCbMOtQM+c80G0y31A + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgLU/akAAAADgQENsQAAAAGDhbmxAAAAAgKsvcEAAAACgOQRxQAAAAMDeE3JAAAAAwBmkc0AAAADAMTF1QAAAAEDsu3ZAAAAAgEGTd0AAAABAdi94QAAAAAAxRXhAAAAAQOsDeUAAAABArk95QAAAAMAjxXlAAAAAwNDeeUAAAABAQIV6QAAAAMBUFX5AAAAAAAA1fkAAAADAm0V+QAAAAAC/d35AAAAAwIOhfkAAAAAAoSV/QAAAAEDJNn9AAAAAQFVSf0AAAADADq5/QAAAACCoIoBAAAAAIJ4ogEAAAAAAhmiAQAAAAKClcYBAAAAAQM2wgEAAAADgh+mAQAAAAMCA0IFAAAAAQOtigkAAAAAg9d2CQAAAAKCjAINAAAAAYF+Eg0AAAAAgerKDQAAAAIBqEIVAAAAAIE6ohUAAAABgyl+GQAAAACAQaYZAAAAAYOvyhkAAAACgzfqGQAAAAKAAW4dAAAAAwO6Wh0A= + EnhTK8ihZUAoFld2zuNlQGS4z0t+BG1AmBP2NLzhcEDG63mLQrN4QF9uim7UEnpAjUYOxVrkfkCTZA9U9iGAQKpQUX+5CoRAXWzYBng6hUDslDb8owKHQHF8944lE4dAAKVVhFHbiEA= - + - 18VQQGhJZUDsqTZA53ODQM76oT/+xbRB4fisQJq37UA2L/JAs9bBQOxFU0EMY+JBqDOTQBlr50DLt4RAcmhcQP+2CUGbY8dAmD6cQP+S/j87X7Q/r+q8QDAQvkFiPWhB3JssQjyVrEDJKYlB123XP8xYLUGtBJFAAd+uQLqMLUA+hyZBkR6UQYKxiUEUu29A5VoIQLPpFEENOUlAYGyXQcmK4kD6WgVBWnzwQCjnPkFNAQxBf///QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwLYmYEAAAACgMz1gQAAAAEClXGBAAAAA4IHJYUAAAAAg1GViQAAAAEDV2GJAAAAA4LtpY0AAAAAgQchkQAAAAMA/KWVAAAAAALqMZUAAAAAAa6ZlQAAAAEDF52VAAAAAAKEEZkAAAAAAdLtmQAAAAKBfZGdAAAAAQHM/aEAAAADAWKVoQAAAACCf/mhAAAAAoKskakAAAAAA/WdqQAAAAMBy4mpAAAAAgE+Xa0AAAACAukRsQAAAAECpaWxAAAAAwL64bEAAAADAAR9tQAAAAEC4R25AAAAAQMyDbkAAAACApqVuQAAAAMAAKm9AAAAAwCKbb0AAAADA58hvQAAAAIAq429AAAAA4CsicEAAAAAADmFwQAAAACC+f3BAAAAAwIiXcEAAAAAg07NwQAAAAEDFwnBAAAAA4O4jcUAAAABA8J5xQAAAAMBis3FAAAAA4C7NcUAAAABgWC5yQAAAAICCQ3JAAAAAYC1/ckAAAADgJd9yQAAAAMDZA3NAAAAA4Bkyc0AAAAAgs1NzQAAAACB8YnNAAAAAwKCDc0AAAACA1JNzQAAAAABc0XNAAAAAABP0c0AAAABgiAV0QAAAAEA0UXRAAAAAoLpwdEAAAACgiZJ0QAAAAMDEonRAAAAAYLmtdEAAAABAFfV0QAAAAMAfA3VAAAAAwKgOdUAAAADAQCR1QAAAAGD4NnVAAAAA4AeFdUAAAABAK6N1QAAAAAB3tXVAAAAAwDcQdkAAAACAmzV2QAAAAAAlVXZAAAAAAO5sdkAAAADgWXt2QAAAAEB6hnZAAAAAQGDCdkAAAABAvNF2QAAAAGBe5nZAAAAAYLb0dkAAAAAAc/52QAAAAGApIndAAAAAgMdSd0AAAACgW3N3QAAAAEAaoXdAAAAA4F3Dd0AAAAAATeJ3QAAAAEAf+ndAAAAAoCMkeEAAAAAgO1F4QAAAAOAJYXhAAAAA4JlweEAAAADgbYJ4QAAAAOAFtHhAAAAA4B/BeEAAAABg1Nt4QAAAAOAfDHlAAAAA4O1ceUAAAACgEsl5QAAAAOAVU3tAAAAAwF85fEAAAABgt4V8QAAAAGBFo3xAAAAAwLfCfEAAAACgDDJ9QAAAACAVY31AAAAAQCp1fUAAAADA5LB9QAAAAGDbxH1AAAAAYCPUfUAAAABgduR9QAAAACCU8H1AAAAAYNz9fUAAAADAMxJ+QAAAAEDMh35AAAAA4FSifkAAAABg8qt+QAAAACCv5H5AAAAAwJHwfkAAAACgiAR/QAAAACD3kX9AAAAAoHOff0AAAABg8QKAQAAAAECPGIBAAAAAoAlSgEAAAADAxlqAQAAAAED4uYBAAAAAoHLCgEAAAACge9OAQAAAACA/B4FAAAAAwPgggUAAAABALjCBQAAAAGCOOYFAAAAAIL+agUAAAACgaumBQAAAAMARHYJAAAAAIEcigkAAAAAAmGaCQAAAAKA9oIJAAAAA4G/ogkAAAACAmgKDQAAAACDICoNAAAAAoG5ag0AAAABgo4qDQAAAAGDesYNAAAAAwG/rg0AAAACgpvKDQAAAAMBIUIRAAAAA4NRwhEAAAADgJpqEQAAAAMCMwoRAAAAAYE/OhEAAAADgYdSEQAAAAKB0c4VAAAAA4C16hUAAAAAABQKGQAAAAOA4C4ZAAAAA4MZ6hkAAAAAANZqGQAAAAIBhpIZAAAAAIHhsh0A= + NrgMGZxjYkCYvfARosNsQI8BR/y9MnFAj2WW3HaSdkBWXNs11mN6QOpx4Cc643xAWLSSwExagED1Z949SfqBQFjjgOr44oNAIm6D46oihUCF6SWQWguHQIabTQA3u4lA5uz0ea0ji0BA7i34rruNQKA/1XElJI9A - + - yQz+QLaDIkDD5aI/zq2VQPkX8kEFXElADF0IQFCYSkGz6hdAZK9IQIS+tUAtyRFBhvjGQHSZjEACMMBCJH0YQeoU7D/aEghAkPkYQk1FuEDaTGBCT3uqQHErhUIEiWFBlipjQeM2XEA8L/I/nh0WQ0pktD8YxL5A7+zzQP5E2T/KMZZAX9sxQe03zkAKxBlBCqiHQJOd8ED8rLdAMHiBQNvtQkFYMxFAnof/P9oaqkC8TY9A5Ua0P0lM30Cz4m5A75o2QH4aP0Gd4zBBQXa9QYr83UASGstAcu6VQOa2ykBKvSxAkT1pQaxXHEEyxTNBvXRFQK+srUCgRABB8kOVPyutVD8oYbBAPhhYQQ4l1EGfiMNA6lqUQdRojkBcOSNCl3l4QfTNekEoq9RAJ6GiQYljv0AnFIZBo3SlQLTGCkEj2aA/RctSQCJxmkEt541AxprtQIesikIUI5tBW3ZJQKihD0HJxvRAesfQQaSmGkEodf5BhvvrQAgVe0IT1WtBocDrP7WFgEGCDYhA319EQReaN0Hu0DtAAUqUQKK040EW2tBBQO/dQHy96z+wCbZA2QVdQEN67UBSm/tAMBPwQKJyo0AyAylCRp0OQc910UDA9axAquENQkyzTkFwhvBAVqs7QN2ntD9xJ9JAPH8eQqRB+kBspWpBACiBQaW1lEHnTNNAtkcIQGpm20BfB6hAoGSgQVS0LUDKgOVAr+w/QpsQIkGAjhtBFT5uQKVgSUJkmc1BeBOjQfBFSEBQuhFAK5sGRPfRlUFhX9tAk7+gQArGskBG1JxBfv6nQDfDYECO75xA+KJRQRArgkEz38xBHUGOQL1YLEMJ5SdBFTAkQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQGPCY0AAAABAUp1nQAAAAMDjDmhAAAAAQMsDaUAAAADAUmtqQAAAAGDSY2tAAAAAALSda0AAAAAAzTRsQAAAAMD9SWxAAAAAoPukbEAAAABA8KJtQAAAAEDqyG1AAAAAwI+BbkAAAADA14dvQAAAAMAzxG9AAAAAAEXlb0AAAABgbgNwQAAAAEA4EnBAAAAAgFX3cEAAAACARSNxQAAAAOCydnFAAAAAAEKkcUAAAAAAs+VxQAAAAMAIEXJAAAAAIOVTckAAAADAeNFyQAAAAGDwZnNAAAAAwA6Xc0AAAABAqeRzQAAAAOAlRHRAAAAAgFJzdEAAAAAAz7F0QAAAAECRF3VAAAAAwLowdUAAAACAA0J1QAAAAABQU3VAAAAAwNyPdUAAAADArqN1QAAAAICu03VAAAAAgLzzdUAAAAAACA12QAAAAAD5QHZAAAAAoFGfdkAAAAAAHtF2QAAAAMCY83ZAAAAAINtUd0AAAADg6rB3QAAAAKDu4ndAAAAA4Cvwd0AAAACA+wV4QAAAAODblXhAAAAA4LbkeEAAAABANfJ4QAAAAKBVT3lAAAAAoOqTeUAAAACAUqN5QAAAACAqsXlAAAAAIAjTeUAAAACgZxN6QAAAAEDAYHpAAAAAAHd0ekAAAABg86N6QAAAAGDiyHpAAAAAQDn1ekAAAADg9DF7QAAAAACDTXtAAAAAoOOxe0AAAACgbsV9QAAAAMBXB35AAAAAQDoVf0AAAADg4Sd/QAAAAOAxRn9AAAAAoAhaf0AAAADgKiKAQAAAAKByJ4BAAAAA4CEygEAAAABgC0CAQAAAACCaYoBAAAAAAHlrgEAAAABgMYmAQAAAAGD3qoBAAAAAgIjDgUAAAAAA2/WBQAAAAEAoDIJAAAAAIKkSgkAAAAAglX6CQAAAAKDCo4JAAAAA4OqtgkAAAACg1sOCQAAAACCVyYJAAAAA4Jmrg0AAAACgXryDQAAAAIBx2INAAAAAgMlqhEAAAACgcMyEQAAAACC33IRAAAAAwOTjhEAAAABgGHOFQAAAAIDsDIZAAAAAILC5hkAAAACAUXWHQAAAAIDYgYdAAAAAoAqTh0AAAACgTBCIQAAAAADuFohAAAAAgItJiEAAAACAe4mIQAAAAKAe04hA + KBZXds7jZUDYkZP9yKNsQEIdzoN8wnJAO0xzspUCc0CRoHe3LXN3QGneFfsq03pAWPsL8UWkfUA= - + - RejsP/dRy0DgjvU/agrZP2oRG0D4VzxBZaQtQMtLCUEcz68/dwrEQMUTG0AcJZRAj5dXQNo3qkDIgAdBhw6TQEjvYECoy/ZA//ahPy735kBMUYpAbFe8QFRLSUABxWdBVUP/QM2wj0AwCBtA7jsrQVtT7UANk9k/KIELQbzwc0Cr8YRAKnHiQPyO6z8Pbf4/HAlHQGff2ULLUAdBbHIuQRlcrUBwvWtBY1sZQSQiq0DmkaNA2J+LQciqoT+CHUBATB+EQVmc4UB8HLlB5Q6tQRlLBEFH5lNB7d8yQBjokED20e5AR0bpQP+8ykIhgrpAQ8/TQKTUlEI7vGdBBCgUQCLcSUHWSX9B+P+CQJAKxECSOxZBVGCfQdWcVEH3a9tA2PlEQJ7Z1kJCw44/n4MQQYwQOkEAlKNAEBLNQarziECJxiZBELewQZop7UHoDZNA95U+QKxdb0HXKXVCbABYQH4PYEHfMpxAvdGOQQXm9T9cImFAziL6QVryF0DKVlRCcb/ZQdE8b0KdS45ApzZOQEwdJEG2TUlAMbmeQMI9tkCXNgJB4bDGP9MLUkG6lZVA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgG5qVkAAAADASwtXQAAAAKAG11dAAAAAIJ0HWUAAAADAMNJZQAAAACBdW1tAAAAAwB+PW0AAAACAY39cQAAAAOCDzlxAAAAAAK5QXkAAAACAzdBeQAAAAMBSRV9AAAAAIJDCX0AAAABAnCdgQAAAAIBbRmBAAAAAAFpmYEAAAACgeqVgQAAAAEA27GBAAAAAwN0AYUAAAACAqYJhQAAAAEAYqGFAAAAAgGfDYUAAAACAiiJiQAAAAAAHaGJAAAAAgInoYkAAAABAAt5jQAAAAAA4YmRAAAAAgIGGZEAAAADgbJ9kQAAAAECVwmRAAAAAAPnlZEAAAACgAQJlQAAAAGBEImVAAAAAgMo+ZUAAAABA7mxlQAAAAMA6iWVAAAAAoBGiZUAAAACgq8FlQAAAAEAa42VAAAAAAJb/ZUAAAAAA1yJmQAAAAAAPZWZAAAAAgLm+ZkAAAACgbSZnQAAAAMA3UGdAAAAAgC1oZ0AAAAAgqn1nQAAAAICxv2dAAAAAQD3kZ0AAAAAA4GRoQAAAAEBKh2hAAAAAAH2/aEAAAADgBd5oQAAAAKDlAGlAAAAAAEchaUAAAACAZkZpQAAAAIA3cGlAAAAAQJ+haUAAAACAsedpQAAAAEC3AGpAAAAAAAAlakAAAAAANF9qQAAAAMBJj2pAAAAAQGGnakAAAABAXudqQAAAAMBwJGtAAAAAgII5a0AAAABARmJrQAAAAIAuhGtAAAAAAMOea0AAAABA78RrQAAAAIDD5WtAAAAAgO4MbEAAAABA1CdsQAAAAIB3tWxAAAAAgIvLbEAAAADAdOJsQAAAAIDeKG1AAAAAwMNDbUAAAAAA3mdtQAAAAIAghm1AAAAAAMSnbUAAAACAuMFtQAAAAICb3G1AAAAAwP0CbkAAAABAkatuQAAAAECQxG5AAAAAwJXkbkAAAACA5/5uQAAAAADJHG9AAAAAAMJDb0AAAACAAGFvQAAAAMA+gG9AAAAAADOhb0AAAAAAaQBwQAAAAED7EXBAAAAAIGIkcEAAAAAgcjJwQAAAAICyQnBAAAAAIIRTcEAAAADAuGFwQAAAAIB2b3BAAAAAAAWAcEAAAABA2o9wQAAAACAZnnBAAAAAQAWpcEAAAACAkbNwQAAAAEAjxXBAAAAAwIvQcEAAAAAA3dtwQAAAAIBC9nBAAAAAoM4BcUAAAACASS5xQAAAAGBjQXFAAAAAwIVRcUAAAABAfGFxQAAAAODRcXFAAAAAQLCTcUAAAAAAQp9xQAAAAIAXsHFAAAAAgInAcUAAAABA6dNxQAAAAMAY63FAAAAAwFFgckAAAADAmmJzQAAAAEAPt3NAAAAAoPwkdEAAAABgWYF0QAAAAAAFjHRAAAAAoLusdEAAAABgO8B0QAAAAKC7FXVAAAAAoLIzdUAAAABAcUl1QAAAAKDKonVAAAAA4BO7dUAAAACgPcd1QAAAAOCK5nVAAAAA4LIDdkAAAACgzjt2QAAAAAD5cXZAAAAA4BiDdkAAAACAzZJ2QAAAACA/yXZAAAAAYB3WdkAAAACgjSJ3QAAAACAweXdAAAAA4GGKd0AAAAAAtZl3QAAAAGDtwXdAAAAAAMQ0eEAAAAAAnYx4QAAAACAJrnhAAAAA4Dq4eEAAAABgv+R4QAAAAKDt93hAAAAA4C8EeUAAAAAAxQ55QAAAAIDjGnlAAAAAYG9TeUAAAAAgqZd5QAAAACDZp3lAAAAAYPTTeUAAAADg6+R5QAAAAKB6R3pAAAAAoIlXekAAAAAghTN8QAAAAMAPl3xAAAAAIO29fUAAAADgp/N9QAAAAMALYn5AAAAA4Eh3fkAAAADg/49+QAAAAKCBpn5AAAAAIJm2fkAAAABg5RR/QAAAAKA0I39AAAAAoNhif0AAAAAgkrF/QAAAAOAaxX9AAAAAIAXTf0AAAABAgBGAQAAAAACXcoBAAAAAIJt6gEAAAABgmNGAQAAAACAZ8oBAAAAAgNb7gEAAAABApKuBQAAAAEAhEYJAAAAAYNZ6hEAAAADAiPmEQAAAAKAnAYVAAAAA4PiKhUAAAACg4ZCFQAAAACAsxIZAAAAAYFnLhkA= + NrgMGZxjYkCmvpxNHCRnQHzKEHuiRG1AqbPSK6YCcEBbtkQoqTJyQORVSwFWI3dAtsKOc2yDeEA/YpVMGXR9QPFkB0kcpH9ArtmomziCgECj3AUnWgqCQD/eKTR6OoNAzgaIKaZChEA= - + - CMOEQF6VBkD8T3dAYcdEQCvvrEC5RwhA1h8PQcLipUD7l9g/lxgkQD09A0GTJ+w/tiz9P72hCULsN6E/EnbYQKQZRkAVvqM/RgWhPyeU6z/got5AqNbPQErnNUBCQ69B/WylQOqBXkEnG6E/rfUOQTsmLkFo3bpAWDwRQMP+sUCeyspADyvtQO9GG0GBbcBAJaoaQNrbY0EIxbJB5pz+Px3er0GsCY8/msmzPyivqUAM1EFBSHQ8QgAIRz9VpS9BzLNsQZh1l0FyKDRBSUwCQTUhZEEwjoJBXvb8QISupkBnvpZBbnW0QcSP7UFlVANB+fHQQF+2ZEBEmfVADe0qQS2O4UBC+JVAZSOMQIbdpUDv/ElBllf9P/8XX0GbJqlBSo5bQEZNwEBLvH1BToAUQfYJJEHQmTlB5li6QVmx8kBYbOxAVOF/QfUzBUH/3YlBwZcJQXl/yEAmAFFBYBZOQZkgyEEebFlBQvW/Qi6E2kKS5R9C2+5tQevmhEBJ7rM/NkJLQmyjKEFMtQhByQ/kQGWwP0Bq+YhBq3aKQ/lEhEKDZ+FB+x6EQXU7LkIVLtJBXgn4QdEjEEEz0ZBA0qOkQLJj6EK8/1JCWnZ5QWfwOUI2fgBCzM4xQdg2F0EjeOtBtxMsQTlJbUG6JC1AT8EaQNUPc0C4J+BAJw9fQMiBZUEiUAZB21+eQCc9o0BQPCpBlsQJQRN3FEG3x5dAiH42QPSbKUG2hWBB87IqQfpwGUE1V05B6JMRQdi1I0G/CS5DsDbWQdcqCEDq5GNB3jMtQF6nqEE67HxBrPJCQXfHIkFmSQBCJU8QQGu4sz9KXulAlK05Qk89b0Kh1eNCfVsJQlZ7i0RkbjJBo730QneMLEGI4zNBWSGfQLb0V0B3Hv1ADr5XQBq1iUHlvdFA2e0sQGwVoEChU1JAH2lJQPYMrEH5OchAANaxQCYXfkHqBeJBv7w/QJT2WEEYAE5DBqXiQRyHI0BKwLtBh6piQSns6j+jSNRAKGyEQFK960Es1S5C6selQSRXo0EQQVtB0AaNQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgEf3XUAAAAAAQCJgQAAAAIASnmBAAAAAoFjqYEAAAADAfmliQAAAAED/nWJAAAAAoG7hYkAAAABAuYtjQAAAAAAdn2RAAAAAABFlZUAAAACgyuplQAAAAEC5H2ZAAAAA4Gf/ZkAAAADAfCVnQAAAAMApYGdAAAAAwCTCZ0AAAABAHCdpQAAAAACQZ2lAAAAA4AGhaUAAAADA1yJqQAAAAIDQPmpAAAAAIBusakAAAABAltJqQAAAAABRIWtAAAAA4NBca0AAAAAAOaBrQAAAAADyG2xAAAAAQNNIbEAAAABAqMFsQAAAAECO/mxAAAAAAF+EbUAAAADASIVuQAAAAECrqG5AAAAAAOQGb0AAAADAkoFvQAAAAIDQyG9AAAAA4OUCcEAAAADgukZwQAAAAKC3UHBAAAAAQHp/cEAAAADAno9wQAAAAGCNoHBAAAAAQEEjcUAAAAAgc1ZxQAAAAAA4YXFAAAAAIClwcUAAAAAA8sVxQAAAAID2EXJAAAAAAFVEckAAAABAGlByQAAAAEBBc3JAAAAAoLeVckAAAACA3KJyQAAAAEBw43JAAAAAQCERc0AAAACAQCJzQAAAAIByL3NAAAAAQMVJc0AAAABgMZ5zQAAAAICisnNAAAAAAE7Dc0AAAACAgfBzQAAAAEArEXRAAAAAgNy7dEAAAACAH8Z0QAAAAIAt0HRAAAAAIFDhdEAAAADAgvB0QAAAAGAlAXVAAAAAQCokdUAAAACgmjN1QAAAAKC/43VAAAAAwJbwdUAAAABgIQ52QAAAAEBOLXZAAAAAgC9YdkAAAACggHN2QAAAAMBZgnZAAAAAYEm2dkAAAAAg8Px4QAAAAAAuNXlAAAAAoD1leUAAAABgndV5QAAAAGBfE3pAAAAAwBtXekAAAACgZ2d6QAAAACC3hHpAAAAAYBDIekAAAADgs9F6QAAAAKA2BXtAAAAA4HYfe0AAAAAgdS17QAAAAEDcIXxAAAAAIAymfEAAAABgMWN9QAAAAKAPh31AAAAAwIWlfUAAAABAlSR+QAAAAGD0pn5AAAAA4Di5fkAAAACgf2N/QAAAAOBiOYBAAAAAIIlBgEAAAACAOoqAQAAAAIDsGoFAAAAAALQLgkAAAACAchKCQAAAAIC3O4NAAAAAoICDg0AAAAAgEZ2DQAAAAIDTtINAAAAAQGYjhEAAAADA3JKEQAAAACBjr4RAAAAAYDu0hEAAAACgKbyEQAAAAIArLoVAAAAA4NPEhkA= + KBZXds7jZUA= - + - SIH9P7zJyEGJhtg/1qOzQL3GOkFRgF5BEquQQIKE2D8MjYBAVFDjQKladUCcoBdBRBHrP4E0qEGv92RA5GmSQDIoJkGdi2JA86MyQPkuBkFafYxALOOZQIBK6z8im4dA6QfGP5+kW0AJ0GBA9GM1Qf8EUkAcfTJAXDWlQGi/i0JhLS1AiUJbQIhNO0HsIy1AsSBuQLUzrkDSDnxAB1XfQFwwMUE6aPY/kU/rP+6rjkGDg9RAQhOhP+8kPkHQcGlAh/CEQIsjSEDyKZVAmAR9QNgJxkBztw1B7x0rQdDLDEFjCHdAqbbdQUxfbkHuwUtBtWMKQUCBjj9bl9dB1/yHQnwvSUAoI/pAERSoQe0SzkE5EIVBvTivQS3FVkE0wNlBNnb5QY/9s0ElZm5ACyiHQZwdaEEJYoZB2hJmQYyX+0AbcTVAGilTQexG+0AQRQ1Bg8qdQZUwE0H0tHFBJBkPQPZnYUBA1AxBfpZpQUzGg0HfW4dA7cQ7QFG7KUL8NxtBl1SAQChAHkFjiFtALIeFQBxXlUCGvl9BlVJ9Qb8RlUDHa5VCYCifQTdAyEAMF1hA2GnIQLKhtkCob/NAkCkNQSSeP0CYPPVAjYBgQjPYOUEBgKBAiJVhQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAANPjZUAAAACgy+JmQAAAACDgKGdAAAAAAMhmaEAAAADA9mBqQAAAAKAtgWpAAAAAgLC/a0AAAABApKdtQAAAACCX2G1AAAAAwPgBb0AAAAAA+oZvQAAAAABUI3FAAAAAwBZtcUAAAAAAtoJxQAAAAACCwnFAAAAAQPPTcUAAAADACtJyQAAAAIBP4XJAAAAAwBPNc0AAAACAgCV1QAAAAEDiDXZAAAAAgKE1dkAAAAAA2HV2QAAAAEBVUHdAAAAAgM1vd0AAAAAANJB3QAAAAIBQCnhAAAAAAClHeEAAAAAABrV4QAAAAIDnDXlAAAAAgPMzeUAAAADAr5Z5QAAAAACPxHlAAAAAQEXTeUAAAABA3hJ6QAAAAIDAc3pAAAAAgDnjekAAAABAQvR6QAAAAADRRHtAAAAAgORQe0AAAACA6mF7QAAAAEA9jntAAAAAgG7Ge0AAAACAtwl8QAAAAMDQYHxAAAAAwK94fEAAAACAMmR9QAAAAAC/8n1AAAAAwO5EfkAAAADAw4J+QAAAAMC8pn5AAAAAQDPUfkAAAACAReJ+QAAAAEC1Bn9AAAAAQPLff0AAAABgvYqAQAAAAGBmlIBAAAAAYIqcgEAAAABAW6SAQAAAAGBnrYBAAAAAYE/8gEAAAAAgMiuBQAAAACDsYoFAAAAA4Ap6gUAAAABA3n+BQAAAAKAroIFAAAAA4KOzgUAAAAAgEb+BQAAAAKCo4oFAAAAA4Cn5gUAAAADgrf+BQAAAAGAeBoJAAAAAoHoLgkAAAADAqkKCQAAAACBQ3YJAAAAAAEIbg0AAAABgZ7CDQAAAAKCvuYNAAAAAAO53hEAAAAAgAoCEQAAAAKA8kIRAAAAAYF6YhEAAAAAgqKOEQAAAAEBmFYVAAAAAIALLhUAAAACgazGGQAAAAGCfO4ZAAAAAYCljh0AAAABAemqHQAAAAODl/odAAAAA4DsTiEAAAACge5uIQA== + KBZXds7jZUA= - + - IhxFQKutUUBL2KxAtj+zP0MQsUB80tg/6SUjQE47AEE2WBFASsEiQQBKW0DxpGBA4bjyQGodK0Cx1LFBKqbDQD/QrUFzOnVApoo9QJRcs0CjZ/JASIjRQOphNkCjlI4/jAytQZVFaEHWL2BBKyYeQciyZEAbkz9BEyzyQSND6T9ix59AWyHNQEJKpEBM8DZA3VEpQAgjCEDAhypAAwPBQH4AHEEQ+5tAV7xSQGSnukCqFkVATiZOQOGX0kDB9a9Auo9gQNAy5EFW4CJA1m+lQCOFrkCIDfRBbKFmQcC120AbFp1By4CsQDMEwkDMp+hAJtTjQCh+sUAXoe1AxdI2QdZxrEEKIR5B2nU/Qfn5uUH303FBiTCzQA4iI0EnhmRBsr82Qf3shEBYS7dAggl1QUhsrEAzsSNAZCROQBPOzUBK+OZBjNv3QE9elUApTj9AZFpzQFZu8UGKXjRB/i+GQdqIhUEF+nJBaTQcQSjYxUA= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYOqnYUAAAAAAC2ZiQAAAAIDfg2JAAAAA4BSjYkAAAADACb9iQAAAAKBLQmRAAAAAQEyEZEAAAACAoqJkQAAAAADJ6GRAAAAAAPCIZUAAAACgW8BlQAAAAEBdBWZAAAAAoLghZ0AAAADA9UFnQAAAAEBco2hAAAAAIFAiaUAAAACAzGVpQAAAAIBop2lAAAAAwAXJaUAAAADgn/5pQAAAAICqJGpAAAAAQLFnakAAAAAA0khsQAAAAEDUXmxAAAAAYANjbUAAAACAOIJtQAAAAMB2nW1AAAAAAPDHbUAAAABAEkZuQAAAAAAdam5AAAAAAGbFbkAAAADATARvQAAAAADShG9AAAAAAAjMb0AAAACAzh9wQAAAAEBaZHBAAAAAoJ/fcEAAAABgljJxQAAAAKDBQ3FAAAAA4PtTcUAAAABAyMRxQAAAAAC4P3JAAAAA4H5UckAAAAAAyWlyQAAAAIBdsXJAAAAAAAHEckAAAABgjc5yQAAAAIBB4XJAAAAAwIT/ckAAAAAArBRzQAAAAIClRHNAAAAAALFcc0AAAAAAV6FzQAAAAEAEtnNAAAAAwCLhc0AAAACAZPtzQAAAAOCVFHRAAAAAIEEgdEAAAABAkTF0QAAAAED4b3RAAAAAgFrgdEAAAAAgNP10QAAAAMA0EHVAAAAAwNU/dUAAAABgXlJ1QAAAAMDGoHVAAAAAAD6wdUAAAAAg1gF2QAAAAODxHXZAAAAAgPUudkAAAACgaZZ2QAAAAEAbpXZAAAAAwOKzdkAAAABAcMZ2QAAAAGAd0XZAAAAAAFDkdkAAAAAgiPJ2QAAAAKACI3dAAAAAYK8vd0AAAACggEN3QAAAAADGTndAAAAAoH5ad0AAAACgvMx3QAAAAOAzVHhAAAAAIJtieEAAAACgWHB4QAAAAKCFgnhAAAAAoCSteEAAAACA0r94QAAAAIAt6XhAAAAAADH1eEAAAACgKAN5QAAAAEB1L3lAAAAAYBKDeUAAAABg9JB5QAAAAODztnlAAAAAgAXCeUAAAACg6c55QAAAACCg+nlAAAAA4PsEekAAAADADhF6QAAAAMAYKXpAAAAA4JFbekAAAABg8Wd6QAAAAGD0tXpAAAAAYOxAfUAAAADgK659QAAAAKDauH1AAAAAoCZzfkAAAACgT4V+QAAAAMCL/H5AAAAAQAEUf0AAAAAgqWJ/QAAAAKA23X9AAAAAoLMmgEAAAACgzC+AQAAAAKBgQ4BAAAAAIGhkgEAAAACgjKiAQAAAAMAW7IBAAAAAYBTxgEAAAADgikmBQAAAAIDEX4FAAAAAIGWKgUAAAADg7heCQAAAAOCNLIJAAAAAYFy7gkAAAACApcKCQAAAAID76oJAAAAAYG/0gkAAAACgFhqDQAAAACC6TYNAAAAAoJFZg0AAAACAXYuDQAAAAOBVw4NAAAAAYI3pg0AAAADgLwOEQAAAAOCXoYRAAAAAIImphEAAAACghPqEQAAAAGDeI4VAAAAAoOXJhUAAAABAoxCGQAAAAOBPi4ZAAAAAwEfrhkAAAADg7RiHQAAAAMDoIIdAAAAA4M67iEA= + KBZXds7jZUA/KJil8iNpQNzlv3T/InFA525gjBHDckAXiDhKr0N4QKp1/l+383pAaIhG6dSzfkAAygJlT2R/QDNzkZ6W4oJAurdhqp+yg0D9elpRGPuHQIS/Kl0hy4hAt806SZD7i0CE7hiHzVOMQOL3vEvcM45Are6fVuCLj0Ci/cWaFyaRQOUfriAcjpFAVBQrqV2ykkCXNhMvYhqTQJ2Wa3V+DpRA - + - Z/L9P4ofSUBKCr8/xK5lQglArUA/fkBAhNxtQLyF1UDSGwdBBalzQALsMkHoIKtAYzjFP1AubUBqLKhAJQzvP/RqAUFztAVB24aMQFYvXUAe8WtAN3mHQB+YZkCPW8U/J9T9P8rXakFI0xpAU9OOP1j7gkBrdY5AVmTZQFgvAUHuW1lAwsNYQHv7EUAGbx5Bp+xIQKJfUUDA3f9BSlRwQFMi0kDcUwtDVIa4QJrTBEHUKSNADv5LQrepxD9OC+w/5ZMUQh8Bxj9hO2BADXTUP+2pFEHmST1BaTeiQGiY00CwNRVBTDuaQp7Sb0Al0Mk/VpGgQIagVEKh0JVAdqekP9wp+UAImVFAVNlkQd1aEUAi89BBtIqXQC5OA0KpaOlAJ029QJ/xUUE2wkpAnqK4QOWJLUChgEhBZ7b9P2amsj9sEINBM59kQN7lmUBGAB5C9lp0Qb1+EUCqxDxBeD4PQXe7a0JLVhRALv9cQAQafUDSddFAsCGxQVVZ0kBHBY1BHSwFQIv9fkHMr0RBmhPNQBprzUBS+k1CIJDnQQpHvkAGUy9Bt/3XQDVfdz9trYhA0heRQIV2xj9mTrZBmRfxQFANy0D87BlBB7ReQfYuJ0NS0bM/+g0tQEN+qUHhV9RALkQYQaLBDEECd5dAS940QIUrr0DDA1xAp/xGQik2EEAEe3xA5z0BQVJm4UGyLyVA1IYaQMP0ykEjOhFBhOeZQKnEZEDktNpA83YWQrNhEUCyqqxA8p58QJ1BPEGvM0FBt+yIQTYLf0G9ph9BCt6CQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwILkZ0AAAABgKBxsQAAAAMAHA25AAAAAYGjHbkAAAADg8SFwQAAAAIBmVnBAAAAAgDaycEAAAABAJ/VwQAAAAIB1A3FAAAAAwBQRcUAAAADAXB9zQAAAAEB1hXNAAAAAgHpbdEAAAACANld1QAAAAMBTk3VAAAAAwO8Wd0AAAABA0FV3QAAAAMBjb3dAAAAAwEd1eEAAAABA/zF5QAAAAADkxHlAAAAAQCPfeUAAAADAf5Z6QAAAAEDK0HpAAAAAQAmge0AAAAAAAuV7QAAAAADn9HtAAAAAQHp1fEAAAAAAnqJ8QAAAAMDcLX1AAAAAwEtCfUAAAABANnF9QAAAAICjgn1AAAAAwHDafUAAAAAAWOl9QAAAAIBcIn5AAAAAwJw4fkAAAADAj3F+QAAAAEB6Fn9AAAAAwCEif0AAAAAAE0V/QAAAAMBec39AAAAAwB6Gf0AAAABAycV/QAAAAEBj0H9AAAAAQOn5f0AAAAAgHkKAQAAAAGCsa4BAAAAAgGaJgEAAAAAgSI+AQAAAAOBJFIFAAAAAgGo2gUAAAAAA5kOBQAAAAGCNfoFAAAAAoNKDgUAAAADAs4qBQAAAACCAkIFAAAAAYPCjgUAAAACAHa2BQAAAAOBJs4FAAAAAgO/QgUAAAAAgReOBQAAAACCZ9IFAAAAAYAgKgkAAAABgrR6CQAAAAGBkOYJAAAAAAJVrgkAAAAAgUpiCQAAAAKC4uYJAAAAA4CvBgkAAAABgOtCCQAAAACAwEINAAAAAYFIyg0AAAAAgiomDQAAAAIBhk4NAAAAAIHyrg0AAAADACNKDQAAAAIDGm4RAAAAA4FvRhEAAAABg4POEQAAAAMAeDIVAAAAA4PQXhUAAAAAgV02FQAAAAODEWoVAAAAA4N1ihUAAAACgZ6SFQAAAAIAbqoVAAAAA4E6vhUAAAAAgGLyFQAAAAGBEx4VAAAAAYCfshUAAAADgMPqFQAAAAIDGBoZAAAAAoAQkhkAAAABgmjKGQAAAAGAvOIZAAAAAADFHhkAAAACgO12GQAAAAKDmjIZAAAAAQILPhkAAAADA0deGQAAAACBYG4dAAAAAQF9Ih0AAAADAHpiHQAAAAKAvFYhAAAAAwHWFiEAAAACgEaeIQAAAAKCd0YhAAAAAwGvXiEA= + NrgMGZxjYkBUZ6VXTIVuQAojd9/OZG9AHlmTG5ZDd0BM7E+pf+N4QB63b2/uVH5Ap/iZ9EI0f0COCqZhI7OCQFMrO6TNIoNAVTZMcY+7hUAaV+GzOSuGQKl/P6ll84dAgjzxFvHjiEBj0h+h3fOLQOZpuzN9fI1AjvyhoyksjkCVFlrteuKQQPkUNuBaYpFARy2/+8BukkCrK5vuoO6SQPlDJAoH+5NAj0Fu9tZylEBAWNMEHd+UQPJuOBNja5ZAVf+CNDhzlkA5FVY8bveXQG5eeKp+N5hAIHXduMTDmUCDBSjamfuZQDUcjejfh5tAamWvVvDHm0BOe4JeJkydQLELzX/7U51AYyIyjkHgnkAUOZech0yfQKo24YhXxJ9AfCc10l5ooECuJqPLTqigQNWyZ9mBLqFAB7LV0nFuoUAuPprgpFSiQNjik/yPgKJAucg64bfiokAxbsYDs6ajQGfdMt/V4qNAi2eK3OBUpEC8ry9ty3CkQH3yc+D7FqVArjoZceYypUA9fu/qJvmlQG7GlHsRFaZAyL9YVD/DpkAuUhCGPPemQCFLi1ti6adA3GYIhFr3p0DO8fGHdbmoQOHWBmaNy6hA - + - 5WiXQBrYUUCGlXNBjzdZQZpAjECWXc9A99nYQJM43z+WJHNAYq6vQPdBa0AeSedABJI8QcBT5ECAm55AMGpSQAXS7UDwVY5B30ygQFjKmUBdMglBI7I3QQdGsUBsUhFA6TBAQLACjUBhDcpAjhTEQL93gEAekshAHXQ2QKT/s0BW7OFAiJzwQKyMSkAl3RRBZEcCQXiNFkH0JkhBm2A2QEPbP0EHq6JBaWkSQeDdnkABmgVBV1xOQDJYAUHcz6VAUMucQB16qEBmFu1AkNqEQGiQSUA5KL5BkGneQgWmh0FmdFlAOZp4QXirskEgjz1BGMp8QBFJ/kFYyPZAP/xHQO3r5kCKHvBA6UIgQO0+5EEi3oNAOTCMQKatc0DSeB1BKIR8QAU7cUEfr69A/XR3QIZa3EGXtS9B9Vo2QJqrMEEifndAwtzLQbHdW0Hu8wtCCJbUQe09vkK9vIJADu1sQGRyykDls25BTWy/Qg4rNUEjKVFCALsUQQkz5kBEavJBpg+oQKrrPEF2F71ByD5qQXghG0J29lZCNpwWQDYo/j8YQrNAVrMkQXmLKUHtVGhBGLTZQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIBnlbkAAAABg6pFwQAAAAIBtnnBAAAAAoEkucUAAAABAQLBxQAAAAIDTw3FAAAAAQKZTckAAAAAgn690QAAAAABZwXRAAAAAALeFdUAAAAAAfuR1QAAAAMB8xXZAAAAAoLsDd0AAAADAboB3QAAAAAAOhHhAAAAAQPtDeUAAAADA7FF5QAAAAECLb3lAAAAAAIOieUAAAADAZPN5QAAAAEC303pAAAAAwMPjekAAAACAWuZ7QAAAAEB/j3xAAAAAgFvTfEAAAADA1hF9QAAAAIBssn1AAAAAQGLRfkAAAADAGpR/QAAAAOB5AoBAAAAAIGoJgEAAAAAgeRyAQAAAAGCac4BAAAAAoKSTgEAAAADAaJuAQAAAAOAsoYBAAAAAYPu7gEAAAAAgRM2AQAAAAIB7CoFAAAAAIIMigUAAAACgpkKBQAAAAODgcIFAAAAAgJd5gUAAAADAMKOBQAAAAIAcs4FAAAAAIMLpgUAAAABgLQKCQAAAACB8C4JAAAAAIHlIgkAAAACgk7GCQAAAACB3yoJAAAAAwCjSgkAAAACAVtmCQAAAAGCoVYNAAAAAYBd1g0AAAABgmouDQAAAAKB0kYNAAAAAoEang0AAAADA9e2DQAAAAGARHIRAAAAAAAEqhEAAAABg8E+EQAAAAED5aoRAAAAA4PtwhEAAAACAhquEQAAAAICW9YRAAAAAQC/7hEAAAADg5IuFQAAAAKDukYVAAAAAoHvBhUAAAAAgcA6GQAAAACBPG4ZAAAAA4BhIhkAAAAAAm4GGQAAAAODAioZAAAAAYFqThkAAAADga5mGQAAAAIBxtIZAAAAAYDXZhkAAAAAgseGGQAAAAIAo7oZAAAAAYPoah0AAAABgOGaHQAAAAKCBp4dA + NrgMGZxjYkBImCMySWRuQOO2GkbmYnJAmHHSiBQzd0BxDmdlvnN4QCbJHqjsQ31A8tmTKlc6gED2kdlwgjqDQIa6N2auQoRA - + - YzUFQbSsP0FlXLlANiSbQL0dz0Dj1DRBDeorQJH3K0CPxxNBsxiNQPnZCkHOdTVBmmh8QIl/2ECHqto/MowCQvMoCEEHUNY/USeuQe76sj/BSD9BRtuZQcfzmkDTgmBA3B/kQJhONkA1foJBgThPQMn69kDglhpANk8OQMJyKkDa+uo/HFpkQBA2R0CV6TJBpx2FQJEaYUHkOAdBi/o6QZhzukDZIdRBc3b5QEqj0ECg4xxBe4YwQawFkkF0kY1AhimkQFDR7UCEMHdAtgePQsMUNECn5ixAZ0asQMFeW0BIPQhAyC2EQeQJOkHMkrBB1xq2QG2dGUE2L6NAuHi1QHaxW0DBVxxBlsSHQhl0wkLrGWhBqJGoQATkIkBa4ylBnrl0QFEOV0GA6+lA9CjZP+WdE0GW7hxBqJYuQ40h4UE5JGBB8TmoQA/bOkHGUf1A + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQDqpZUAAAADAZehlQAAAAMC2p2ZAAAAAgGoFZ0AAAAAgT1hoQAAAAACgbGhAAAAAAKHEaEAAAAAAviVpQAAAAIC/A2pAAAAAQDcpakAAAACAmN9qQAAAAADSiGtAAAAA4NCja0AAAACg0atsQAAAAAAoCG1AAAAAQKMqbUAAAAAA+Z1tQAAAAEBTym1AAAAAwHj6bUAAAAAAbyVuQAAAAEBjqG5AAAAAACqAb0AAAADASKNvQAAAAOB34m9AAAAAwKoCcUAAAACA8S5xQAAAAABYRHFAAAAAAM+ncUAAAADAoBNyQAAAAEDzgHJAAAAAQL6UckAAAACAImNzQAAAAMAhJXRAAAAAgOZCdEAAAABA0tx0QAAAAICs73RAAAAAQGADdUAAAABA/9R1QAAAAAAl7HVAAAAAALAldkAAAAAAiDt2QAAAAEBwoHZAAAAAQN/FdkAAAACAvTZ3QAAAAEC7f3dAAAAAQE0meEAAAADAKDl4QAAAAAAeRHhAAAAAAKtQeEAAAABAOYB4QAAAAEAmp3hAAAAAAFfgeEAAAADARVh5QAAAAEBApnlAAAAAAP7meUAAAABANNZ6QAAAAIA0W3tAAAAAQAFpe0AAAABAp4R7QAAAAMCUkntAAAAAwJ4AfEAAAAAADh58QAAAAEBbNHxAAAAAwEtAfEAAAABAbFV8QAAAAABUeHxAAAAAwJCWfEAAAABAf6R8QAAAAABev3xAAAAAAH8SfUAAAACAhTh9QAAAAECDWX1AAAAAgPCJfUAAAACA2LN9QAAAAICE0H1AAAAAwCzdfUAAAACAdPN9QAAAAEDVX35AAAAAwELGfkAAAAAAYvd+QAAAAED3Fn9AAAAAAJFWf0AAAABA6GJ/QAAAAEAZbn9AAAAAAOuKf0AAAABAPqN/QAAAAICOv39AAAAAQKvef0AAAADA5eh/QAAAAIAE839AAAAA4AQAgEAAAABAphGAQAAAAED4FoBAAAAAQJ8ygEAAAABAND+AQAAAAKCARYBAAAAAoLFbgEAAAACgY2KAQAAAAEDDcoBAAAAAoH57gEAAAADAOIaAQAAAACA1mYBAAAAA4HmjgEAAAACAkq2AQAAAAODntYBAAAAAIBK7gEAAAADA7MSAQAAAAGDbyoBAAAAAID7bgEAAAADgyfCAQAAAACDM9oBAAAAAIBABgUAAAADgPhOBQAAAAACPIYFAAAAAwPo2gUAAAADgrUWBQAAAAEDHSoFAAAAAIKxTgUAAAACggGaBQAAAAGDyc4FAAAAAQMF5gUAAAADgqoKBQAAAAGBeioFAAAAA4FAhgkAAAACAroiCQAAAAABxvIJAAAAAYNlHg0AAAABgFXqDQAAAAOAGjINAAAAAoFbyg0AAAAAAJnKEQAAAAEBvI4VAAAAAIMPFhUAAAACghvOFQAAAAODkbIZAAAAAYGyBhkAAAAAg2iKHQAAAAKD9o4dAAAAAIPTYiEA= + NrgMGZxjYkCJy7y2HKVqQEMdzoN8QnFA7Cam0jxjdUAKeGK9lHN3QA== - + - iYqVQL8MJEDgSxdAmfVuQKy8IEFiZOhAwuIjQOalW0DQbE5APaFaQbC1e0HAX3g/dHChP3Jju0A4SQhAyK0iQdbhMEFU2AxBKqrMP+RzoEBgG9hANNazP2gSSUByUGVBTiO0QQ6GjEAlyIdAlNOkP+9UkkDGLlJAeL7XQDdQZUHqmRlB6DDGP8DbbUA8YZVAp4FmQFvySEDDbilBTusHQvmKGkCy/otA2NbZQT7jJkHZK4FA6LhkQCbAQEHCJTs/dtYQQemqW0AqPlFB8k9SQJ22rkBKr1xBg/avQJ0R6z+elNpAuf9tQPrQtUDNjjpBOPGCQUowV0BkYiZBv65DQbpIB0EXFElAfMmuQUxs+kDyuChAGAmFQFEljUFXKFdBgwVhQJDGG0GEGS1A9Ho8QYl7pEDNYsZBuQjGQMGgw0CD0SdBwVqhP3FDq0HkJHJBJpoKQVwOeD90Dt5B0qVbQGyO0UB6l0tC4El1QtS1BEFtap5AHEb5QMRG1kG9NClCnoPiQcljF0F+t3JBQUuhQR/NQEHJUWdBknQRQCAJvULPIB9BBmFbQPqOJULhLo4/08YJQDa4n0FiwmtBITrEQaaSJUCGIihCRu4VQqSk70A0jEVBYGCxQF59EUNpdEJBXKe5QIhfEUBHa35BO3vuP2xACECvfuVBmTUjQNshEEB/ySNAx9/2QLERqkBgXkNCMNinQCxOUkCSK/VAtJc+QV7orEA0uZxAE+7DQA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwHarZEAAAAAAIuFkQAAAAOD8Z2ZAAAAAANhkaEAAAACA/OJpQAAAAED0J2xAAAAAwHyHbEAAAABAdwBuQAAAAMBfWG5AAAAAAPImb0AAAADAjydwQAAAAMCMQ3BAAAAAIJKDcEAAAAAAqURxQAAAAMANXHFAAAAAwES3cUAAAADA4slxQAAAAMB8UXJAAAAAgHdickAAAADArTJ0QAAAAIDBVXRAAAAAAJFndEAAAADAwnJ1QAAAAIDxkXVAAAAAQLGxdUAAAAAAKfF1QAAAAIB3UXZAAAAAwAWRdkAAAABAhql2QAAAAIDTMXdAAAAAgAx1d0AAAAAAOIJ3QAAAAACp8nhAAAAAwF0BekAAAADAh1V6QAAAAMB7rXpAAAAAwBzDekAAAABASS17QAAAAIA1YHtAAAAAABuue0AAAABArMJ7QAAAAECZZ3xAAAAAwO++fEAAAAAAQ+J8QAAAAEDi73xAAAAAgLhcfUAAAABAo4R9QAAAAEDltn1AAAAAgJvUfUAAAAAAkCV+QAAAAABdUH5AAAAAwPCefkAAAADALvd+QAAAAEBGEn9AAAAAAP58f0AAAADgEB+AQAAAAECzOIBAAAAAAPtIgEAAAAAgb1eAQAAAAGDXnYBAAAAAQC2jgEAAAAAgrKuAQAAAAEBUt4BAAAAAAK3TgEAAAACAwuKAQAAAAKBS94BAAAAAwJIdgUAAAADgZyaBQAAAACB0K4FAAAAAQNY3gUAAAABAkIiCQAAAAAAuuoJAAAAAAAHCg0AAAADgchKEQAAAAEBkLIRAAAAA4BQzhEAAAABgklKEQAAAAGDXoYRAAAAAoBF5hUAAAADAKYSFQAAAAGBFjIVAAAAAYEXbhUAAAACAimuGQAAAAMDmiYZAAAAAYArahkAAAACAZuuGQAAAAGCQ/oZAAAAAoMM8h0AAAABAblqHQAAAAABfo4dAAAAA4Faqh0AAAACAFMmHQAAAAKA8OohAAAAAwANEiEAAAADgnlqIQAAAAGCBmYhAAAAAINeliEAAAADAKa2IQAAAACCC9IhA + KBZXds7jZUAYxSyCnORoQNvlv3T/InRAAAjXMD5zdEA7qk8G7pN7QE+LgGTvI3xAgQLyH4PigEAKcwrPg6qCQOQvvDwPe4VAbqDU6w/DhUCM8ZDWZ1OJQJ6CnDSHe4lARkRxzt9TjUACsGZRExSOQNW4nfU1NpBA - + - J/d8QH1BJEBckflAoRM4QeWPZEEMn9VBHTgrQKYU0ECXdlJAMGLFPykjGkEVBTxBIwicQO8MekGy1o4/1uUWQMJs6UBFHyRADmMPQJMUWEEaDjNAFinGPy1xiEG5e+RAyAdAQURy7D/II5dA5vIjQG/QjUAezXxBgMTuQWvvnkCshOs/+k8IQL2e9UA3cFlAYuZeQZAD0kCcGqpA48ENQVi1GUCFnI4/O2rGP2K6F0KZeMFAGGAZQd0j3UAHDP5As4v9P3XyLEHUm4lAdp9NQUD4V0BmHRdB/yDBQCUe1kCWT1FAxW8EQZbAW0C1j7NBj4EeQe4iCEBbkCNBEc2/QEmb6z9en4lAygS2QLze4kFN/DNCcrJiQeakjUAGxqBAvfXbPwClGkBwnT9A0QK/QP2sskD+77VAYuXMQJXxTEIP3qVBDlkZQL16lUB2v7M/SftRQDfoLEDQ6N9A0JYmQdgxrkFD3KlApu1CQSQeLUC6zDdBKueFQfHv/0B8nKRA0qeOPwOGCUL/v9g/ + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAYBLjYUAAAACALYRiQAAAAKCcxWNAAAAAAJqeZEAAAAAgIkFlQAAAAKDfpGVAAAAAQIGiZkAAAADAtSpnQAAAAKCWPmdAAAAAoHNeaEAAAACA06RoQAAAACBoKWlAAAAAoLznakAAAACAkMNrQAAAAABBKmxAAAAAAPiFbEAAAABgKAttQAAAAMCJQ21AAAAAAPhsbUAAAACAcANuQAAAAAB5Y25AAAAAwCEib0AAAABAtp9vQAAAAEB3xm9AAAAAwBTbb0AAAADgNiJwQAAAAICTdXBAAAAAQKWzcEAAAABgp8ZwQAAAAKAG9XBAAAAAIE9UcUAAAABgTrRxQAAAAGDAA3JAAAAAoNozckAAAAAAcc5yQAAAAMCwP3NAAAAAwNgRdEAAAACgTxx0QAAAAKBVJnRAAAAAwD5jdEAAAACAZ3J0QAAAAEBOB3VAAAAAAM0XdUAAAACA20N1QAAAAMC3eHVAAAAAwACEdUAAAADA9ZN1QAAAAIA7s3VAAAAAAIrIdUAAAAAAmu51QAAAAKBTEHZAAAAAAFkjdkAAAACgM1R2QAAAAECqZXZAAAAAwDSYdkAAAAAgK7J2QAAAAIArwHZAAAAAwCDQdkAAAACAyON2QAAAAABi93ZAAAAAwPIPd0AAAADgDyF3QAAAAOBfQ3dAAAAAIL2rd0AAAACA+eV3QAAAAODWFnhAAAAAAEFCeEAAAACAEmJ4QAAAAGDdcHhAAAAAACzDeEAAAAAgKgZ5QAAAAKCOEnlAAAAAwIxPeUAAAACgSWF5QAAAAKCXg3lAAAAAACaleUAAAACAm895QAAAAKB45XlAAAAAoAj0eUAAAABgLwV6QAAAAEDrLHpAAAAA4JtRekAAAADAWmh6QAAAACABc3pAAAAAoMaDekAAAAAAXY96QAAAACAw8HpAAAAA4Mv5ekAAAACAfwh7QAAAAABkL3tAAAAA4OZAe0AAAABgZ1B7QAAAAGBfW3tAAAAAIGZ9e0AAAABAa+17QAAAACD8A3xAAAAAYCctfEAAAAAA/FF8QAAAAGCxYHxAAAAA4Ax1fEAAAADglKJ8QAAAAODzv3xAAAAA4CXNfEAAAADAw+V8QAAAAICA83xAAAAAYF8kfUAAAABAGkt9QAAAACDvXn1AAAAAQKpofUAAAADgyHV9QAAAAOB5ZX9AAAAAIL7if0AAAAAAjzWAQAAAAGDpOoBAAAAAoPVGgEAAAAAgXVKAQAAAAADMWoBAAAAA4HZygEAAAADAQsqAQAAAAGBu2oBAAAAAoHKHgUAAAABgTNqBQAAAACCoAYJAAAAAoHcLgkAAAABglCyCQAAAAAD0MoJAAAAAQCJagkAAAADA6c+CQAAAAGC86YJAAAAAoJf6gkAAAACgVQODQAAAAAA0NINAAAAAIG1Tg0AAAABgv2qDQAAAAGD/foNAAAAAIEmGg0AAAACgeIyDQAAAAOBIvINAAAAAAH4ohEAAAAAgFDCEQAAAAKCJU4RAAAAAIClchEAAAABAFJiEQAAAAGCCv4RAAAAAQL90hUAAAACA64CFQAAAAKCtioVAAAAA4AWVhUAAAAAAXaSFQAAAAABn+4VAAAAAIIIUhkAAAACg6CuGQAAAAOBuQ4ZAAAAAwAZihkAAAADgU3OGQAAAAOCSgYZAAAAAwEiUhkAAAADAzJuGQAAAAGBEwYZAAAAA4B/KhkAAAABALeuGQAAAACAC9YZAAAAAYOw4h0AAAAAAEEaHQAAAAOD7eYdAAAAAoMGCh0AAAACgGIqHQAAAACDhwodAAAAA4IvPh0AAAABgz/OHQAAAAEDWRohAAAAAYMZziEAAAADAVsuIQA== - - - - - - sDPYQN7pbUARO0lAoTChP3mHKkGsjsY/mIffP0T9PUF9ohpA4loIQNq33kCR9NpA4tuNQsDEV0Dfr7VAZqA2QCEzg0CTjdZAbGgTQJSHNkAVYTlCepkMQWmr3D9HyaxAjEDGQIZcUEHVY7NA5iMcQc07jUB6n71AasmxQIKARUFIQixBoImhP6UEGkB8rs5ApQK2QE1lLUAeMORA0cYpQf7wb0Dbm/tA7Q6dQIPeukDFUpVAqqv5QEoj6kE/EZpANowEQOCQgED83EdB1W6VQJabgEBs7qBAZFsIQJr6bUDhBWVAgacoQWHKjUALjvhBZ2u3P0MyrkDDgJVA5qQEQUCesz9p9ttA4XARQCnbHEF8NYNAirayQTj58UD6ANc/Lx1oQbT3/UBcGlZB62frQGyIiUEErBFA7BCTQDIyJUFOze9Aixz6QFAz0UEl5GFBfdC2QPdOc0Dyg4dBlEGiQWlyv0C62B5BfpqWQYzAHELqdRRB5Ai0P5hkvUBf0bZAlP37QHbmV0CWEQRALjmFQJuiuEA7e1JA7lDnQV9Cx0H0/IFBg1mFQRbfP0BCDOhA+V/nQR0HjEDcaS1AHzf/QBoH00F7bkhAEXdDQdqdKUD+elJAuxBuQGrqFUEH7adA1QOFQFQAF0A/JOBAMFyzQM7cGkGQCgJByYW0QUCEPUD4/hxB4jKRQsQuTkBS5P0/exJXQYxbk0BtmiJBB+WQQJHyJ0Hz+b5Azoa8QIPMkkCO3h9BpdiOP8rZZUD+bthAjiTZP+g4jEADtsY/dpoaQDBBakBkdiVBXK27QIk46kDcOwFB2IVuQd6+IkGuRVJAwGIZQU5mr0Ehv7Q/W1MIQIKa4EFju15BcIWeQK7IOEGL2E1DBUo4QhdPyUDZVgBBgSJwQXUR/kChtLdA40+XQJA76kA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAA4B1EZ0AAAADgsmdqQAAAAIDJ5WtAAAAA4DkHbEAAAABg5ABuQAAAAABbx25AAAAAAO0/cEAAAADAbpFwQAAAAMCWsnBAAAAAYLrDcEAAAADARJRxQAAAAGBFn3FAAAAAQKOwcUAAAAAAawFyQAAAAICOqXJAAAAAgGfzckAAAABA/g9zQAAAAAC1oXNAAAAAYGsDdEAAAABAF3J0QAAAAGCVgXRAAAAAwPuPdEAAAADAJ6x0QAAAAAAVkHVAAAAAAJGrdUAAAAAAL+d1QAAAAEDALnZAAAAAwO85dkAAAADAcVV2QAAAAAA/pXZAAAAAAPMrd0AAAABAH3V3QAAAAIBIt3hAAAAAgKvkeEAAAABAzr95QAAAAEAt83lAAAAAAHP/eUAAAABAwBJ6QAAAAEB+jnpAAAAAAOapekAAAABAPON6QAAAAEDMAHtAAAAAAOcVe0AAAAAAv+d7QAAAAABtPHxAAAAAwGO0fEAAAADABtF8QAAAAIC+83xAAAAAgG0OfUAAAABAIjx9QAAAAIB2aX1AAAAAgMfSfUAAAABAUd99QAAAAIBvJX5AAAAAQPOXfkAAAADAU1p/QAAAAECbc39AAAAAQG6Zf0AAAAAA3LZ/QAAAAABd739AAAAAoNoegEAAAACgzjKAQAAAAMAYQoBAAAAA4FHWgEAAAADgfPeAQAAAAMAN/oBAAAAAwFwLgUAAAACgxxmBQAAAAOAxJ4FAAAAAIDctgUAAAAAg6DeBQAAAAKDxQoFAAAAAAMNJgUAAAACA4lKBQAAAAIDOboFAAAAAIMiCgUAAAADgWYqBQAAAAGCClYFAAAAAYJqcgUAAAABg/qeBQAAAAABttIFAAAAAoC7bgUAAAACg9eKBQAAAACDrB4JAAAAAQP8qgkAAAACgPTyCQAAAAIAaZIJAAAAAIM12gkAAAABgkn+CQAAAAGDHjoJAAAAAAC6/gkAAAABA7MaCQAAAAGAQJoNAAAAA4IQ7g0AAAABAik6DQAAAAOA0YYNAAAAAgNZqg0AAAACAx4KDQAAAAGD9joNAAAAAgB2khEAAAACgKauEQAAAAMAHv4RAAAAAYPzMhEAAAACgSfOEQAAAAIBRKoVAAAAAwFsyhUAAAABg1EOFQAAAAKCbW4VAAAAAgEJjhUAAAABA5miFQAAAAMDpcIVAAAAAYMGehUAAAACgOa2FQAAAACDQsoVAAAAAQDS8hUAAAABAkcyFQAAAAOAY5YVAAAAAYPHqhUAAAABg9faFQAAAACD9AoZAAAAA4DAyhkAAAABArUiGQAAAAEC0koZAAAAAQN7chkAAAAAA2BmHQAAAAKBcPIdAAAAAoHRWh0AAAAAgDryHQAAAAMAc4YdAAAAAQOvoh0AAAACAykaIQAAAAGBeVYhAAAAA4NSViEAAAAAgHtiIQA== - - - - - - gyqDQLCXSkCYTz1AB/aEQJBlpUBAFJRBlvUSQJWhgEA8e81AOpcSQZnw00DNTCBAKhk4QZ842T9B2itADlyxQPGc2UB0CLQ/DfeCQO1Oh0BBi0dAiJ7rQJC2HkF0yfo/0YbhQP7hsz9XmulAO+6eQOLhEECURBtA4sG8QIiFcEHaruJAViVzQFEeJECOezlB2MXMQG5MzkBlBp9AbBkKQYO1akBxXpFAToESQZJCOkHBM45AdbOuQGIR/j+ZjnxBXXEfQa/U+D99PNk/bHGRQRizkEDQhQhAyE1qQZqS+UC5Cl5CUVRZQanpfEEHJiBA43mcQHeflkBMCpdA5PMWQCCtxUCo/z1AjKj5QGI2jECUbqFAclMIQPab40FpHoNAzLuCQSyC+EA304pBWKZiQ84Ec0K8pxhB/hN0QDk4zkBzywJBSEPGQcKzpEDHq0tBCndxQf6YiUAwnJlB0BHZPyYJ1EDE/MJB0FwRQTBoYUFTpWdB1FBeQQKU3kEGXLNAUQ2eQbfEX0F2+0ZBHA2AQBg8i0GJbyBBwFNDQXHHeEEXInNAHxDrP87trUFuaFFB9+5lQSdeV0K906pCA0CcQBIj3UIC3R9BSotSQPLeVkI0y7FAgOqOP/BKhELGUW9Bqp6yQJxt2kH6kzZCtrnkQY0tSUAKPBFAYoo2QAi360FNOfdAUFN3QNScBUH59bZA1H5FQfOR4kE= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAFkDYEAAAACA7T5gQAAAAIAKcGBAAAAAgKFEYUAAAACAGuVhQAAAAMCno2JAAAAAoHi+YkAAAADAG+FiQAAAAMDaXmNAAAAAINdJZEAAAAAgDOJkQAAAAIBFK2VAAAAAwElkZUAAAABAPKdlQAAAAMC0wWVAAAAAQDlCZkAAAABgLJxmQAAAAGCd5GZAAAAAoD8gZ0AAAACAWkVnQAAAAACfCGhAAAAAgIrwaEAAAABgMyBpQAAAAMDHZGlAAAAAYFDmaUAAAADAyidqQAAAAEBtYGpAAAAAAHhqa0AAAAAAQQRtQAAAAMBvg21AAAAAQFehbUAAAACAJgNuQAAAAMAlf25AAAAAgP3QbkAAAAAA2iVvQAAAAICDY29AAAAAQI6pb0AAAADATsNvQAAAAODVL3BAAAAA4M1WcEAAAACAYwJxQAAAACDIJXFAAAAAYBpUcUAAAAAAXXFxQAAAAMCggnFAAAAAoPCRcUAAAABAuORxQAAAAAA5BHJAAAAAgDkfckAAAADAJWJyQAAAAACQgnJAAAAAAB/SckAAAABA3fJyQAAAAECaInNAAAAAAPhBc0AAAABAloNzQAAAAIDNxnNAAAAAQAbZc0AAAADAJPtzQAAAAGAqK3RAAAAAIOc0dEAAAACAP1N0QAAAAMBMfHRAAAAAANeGdEAAAABgiLF0QAAAAKC80HRAAAAAAE8KdUAAAACANkl1QAAAAIAzVHVAAAAA4HtsdUAAAACA+qR1QAAAAAASsHVAAAAA4C3AdUAAAADgxAB2QAAAAIBQFHZAAAAA4C8idkAAAACAfTh2QAAAAIAXZHZAAAAAIP9wdkAAAACAz4B2QAAAACDukHZAAAAAQPOhdkAAAACgFLV2QAAAAACB9XZAAAAAICcFd0AAAACgcjF3QAAAAGCycXdAAAAAIIeDd0AAAACgY493QAAAAOAloXdAAAAAAB6vd0AAAABAtMB3QAAAAEC9FXhAAAAAoNAgeEAAAACgbXV4QAAAAOBxq3hAAAAAYOq1eEAAAADgMIJ7QAAAACDlhX1AAAAAwKyTfUAAAACgcyJ+QAAAACCa1n5AAAAAoF+Vf0AAAACg9aR/QAAAACAl2n9AAAAA4NwKgEAAAAAg8YuAQAAAACCXyYBAAAAAgK/OgEAAAABgf0uBQAAAAOBWo4FAAAAAAFnagUAAAACgrGmCQAAAACDHiYJAAAAA4GDPgkAAAABgehCDQAAAAOCcHINAAAAAwFtxg0AAAAAAm/GDQAAAAKCMw4RAAAAA4B4EhUAAAACgn1WFQAAAACBg2YVAAAAAoAZMhkAAAADAS12GQAAAAKBPOodAAAAAIHGMh0AAAACgpuqIQA== + KBZXds7jZUDjvI3SRrFwQJ0RHYnYgnNAa0N/IDhCeUDuESso/vJ5QA== - + - 3uWgQLevkEBZbGJAf2jWQHXENUH2PhtBx7F8QBR0hUBL9MFAwOhjQOYLtD84yBFA7AZEQV9iLUAXzBpAZsPfQP2u9kBINTFBulVHQLOn1kD8GY5ArS13QF0e3kClrYlANwbZP4xaQECTfwhA3goUQYiN/j/iPapASn9uQYFHtD+POr5Am8ANQZi0A0Ev45JAFNMWQMhFD0HWBAhAd+XrP0C1CELNgptASSW2P0RNxz98Un1A2l7rP8+Isz9KUoZB0lvtQKhMJUGlzC1ABUNzQDH6wEAwyvVBTiEIQLYBgkAIkWtA66PrP6cRrkFnYaVAtSUiQbJE1kFreahDr0qSQPa5rz/1jGpAMsViQBt0pkBXPZFAg3T7QJGY6z+h7NNATt8RQKKG6z9KRxxCvZsfQG8VmUGd6PFBhmrcQKDJtUBfPNJBktn3QM5Lw0I4DehAmHGzP11sf0CWLdk/o+boQHY2U0EHd4pBKpz4QJE4MEGUGF1CpmzJP041akJbaRdB7ePSQD/askAMoUBDW7+cQMnJrkA7f1pB9ww9QFXpWEC3T6NAF3mAQGTGNkCpEs9AtobNQbCjwED1wRlBoB44QZl5P0CccMBAp6hFQJ0JDUFK3VxBgjnKQJlXAEEMW7JApJ3cQi5tIEFpzI1BqDT4P8exFEHrmFpBy+E5QV94JEE= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoP6iYUAAAADAgsdhQAAAAEB0ZmJAAAAAQNadYkAAAADA5UZjQAAAAEAHiWNAAAAAwC5oZEAAAADA139lQAAAAAAg5mVAAAAA4JYgZkAAAACAaudmQAAAAAA9CmdAAAAAAExBZ0AAAABgR2JnQAAAAIDhB2hAAAAAoCOhaEAAAADA9UNpQAAAAABD42lAAAAAoC5qakAAAAAgo4tqQAAAAAADqWpAAAAAgNXkakAAAACAkR9rQAAAACArnWxAAAAAwAjEbEAAAABAjAttQAAAAECeI21AAAAAIMA8bUAAAABgd2FtQAAAAICqSG5AAAAAwEyHbkAAAABAYgNvQAAAAIDJJm9AAAAAAD9mb0AAAAAAoqNvQAAAAMAiyW9AAAAAgBwecEAAAABAsjNwQAAAACAysXBAAAAAgG3ocEAAAADgqQBxQAAAAECGEXFAAAAAYJclcUAAAADA2ERxQAAAAECCXnFAAAAAoASDcUAAAABAvI5xQAAAAGAgoXFAAAAAQFTncUAAAABgNARyQAAAAEClJHJAAAAA4DRBckAAAACABMNyQAAAACBc03JAAAAAALL3ckAAAADg3AJzQAAAAEAjD3NAAAAAABUhc0AAAABgqTZ0QAAAAEArV3RAAAAAQEexdEAAAADAdcJ0QAAAAEB61XRAAAAAIM5kdUAAAABgc7R1QAAAAMAt5HVAAAAAADXxdUAAAACgyl12QAAAAECm4XZAAAAAABvxdkAAAADgNCB3QAAAAADrVHdAAAAAAIVmd0AAAADAWnF3QAAAAOAEpHdAAAAAYAzHd0AAAADAEeN3QAAAAIB5JnhAAAAAYDZTeEAAAAAAyl94QAAAAADCtnhAAAAAIPnUeEAAAACgewB5QAAAAOAWLnlAAAAAIMk9eUAAAADgVVB5QAAAAGASWnlAAAAAYP9reUAAAABgzX15QAAAACBbo3lAAAAAQLTTeUAAAABgs915QAAAAMDb8HlAAAAAAPkvekAAAACgTUZ6QAAAAABDWHpAAAAAgMN1ekAAAAAgBYR6QAAAAOCOlnpAAAAAoHSjekAAAADAQLZ6QAAAAOCNw3pAAAAA4CfoekAAAADgLgZ7QAAAAKCuN3tAAAAAAOa0e0AAAABgNMR7QAAAAEAJF3xAAAAA4C0qfEAAAAAgykl8QAAAAGBYVXxAAAAAIP1ffEAAAAAAVY98QAAAAEDTwnxAAAAAYJTPfEAAAABAlAR9QAAAAMAItn5AAAAAYLNDf0AAAABA1pJ/QAAAACCho39AAAAAIH9LgEAAAABgjXKAQAAAAGAtfYBAAAAAAByPgEAAAADggvOAQAAAACCl+oBAAAAAoA8DgUAAAAAg7A6BQAAAAGBCSIFAAAAAoA1zgUAAAAAg5oGBQAAAAABQiYFAAAAA4C+YgUAAAAAg5rOBQAAAAOD4yYFAAAAAYFeggkAAAADgBcOCQAAAAIBN/IJAAAAAAEgSg0AAAABgZjyDQAAAAECRVINAAAAAoLZag0AAAADgKIuDQAAAAACxlINAAAAAQMSyg0AAAACgNrmDQAAAAOD694NAAAAAIL9ThEAAAACAiluEQAAAAKALdIRAAAAAoPWFhEAAAAAgroyEQAAAACC0qoRAAAAAIEPEhEAAAADACwOFQAAAAOA3EoVAAAAA4J8ahUAAAACATUiFQAAAAKC9YoVAAAAA4Gp8hUAAAABgXYuFQAAAAOAyk4VAAAAA4BKrhUAAAADgyTqGQAAAAODCY4ZAAAAAIEW1hkAAAAAAeMSGQAAAACByI4dAAAAAYPlSh0AAAADAqViHQAAAAKCUxIdAAAAAAPWViEA= + NrgMGZxjZUAoFld2zuNlQBTpB48/A3JA - + - ys02QPTqdkA4QWFA6svrP1RxT0CKRttAFutbQIvWhkAJz2BAWt31QLq23EC0wrlAN8h8QFpiD0FqEypAhOYNQAKBTEFBrRFAo7IJQWj4sz9S9RZAZTdHQAALJkBNji1BFPzNQIj2+0Dqjq1A7J7rP4JKBEEQcldAIuQ/QCNnjEC7lSNAO9xFQNoRjz8mpDxAl+VAQZOEGEAGdQFBPhsQQcuirEAbBhtAWJ57QSbwhEDq8D1An1I+QQbodkDFwUVBGkggQBLUW0BKVsY/IFcjQKupBEE5Ks1AqAbXQGKwEEAZCTxAgoYEQdfziUCpFSRAgrOCQZbJXEFJVolAkxFuQEmBIEApnUVBxWxMQZS2IEBcVo5AiqBZQE8XhUDoc6E/yB4oQup9NED8FSNBKakRQA0OqECCrmNBtAX+P3q8nkFmUIxAqxr+PxLlfEAoultBcpxqQEGb1kAaAqhA+mpjQZ2K6z9kcQRA2z4JQWv+nkBSh+VAyt0BQvSD+0AgJjlBdZNqQKZxB0A0VmVAVYDfQNYX60GZiS1BWh3CQXKHVEEVVglBnaPpQO51R0EClIxBOhGzQJKE9kHikvFBGdHpP/o8cEFxzqNAJrixQZJzoT9MPHtBWB7HQMoQu0C0JYFBASkkQBqxsEH0lGhBVoqyQDSaxj8OFsdACYM2QHa6TkBS/SNAyPwjQAkuLULel5tA3oHWQDT3N0FcsgBAoZe2QSAwLUFbm4xAxrW/QHYvNUBDJ6ZB7UbJPyrqekIujuJBvLPzQEzVN0GeG4JB6rqeQKXs9UAKuOZALyIsQG4atz+wV7RACcSxQKlvlUCBqFtAMCYUQLA6tkC1ZklAScgaQHNEWkGnRZFAYoyOP3qbskDAJiRBDdCsQJCeNkAK/iFB8OEsQg2NNEG1MFFB0MPYQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwGBiYkAAAACAqmhjQAAAAIDZZmVAAAAAQM2iZUAAAADAJeBlQAAAAIBbLWZAAAAAQCSrZkAAAADAOSxpQAAAAEALjmlAAAAAAEu+aUAAAABANUNqQAAAAIAXqGpAAAAAQDwhbEAAAAAgTKNsQAAAAKDV5mxAAAAAIAwbbkAAAAAA9YRuQAAAAIBH329AAAAAACGUcEAAAAAAFv9wQAAAAICpMnFAAAAAQKGVcUAAAACAyq9xQAAAAAC3zXFAAAAAQCvzcUAAAAAAdWRyQAAAAMBct3JAAAAAwKFRc0AAAAAAgmJzQAAAAEBB43NAAAAAgNwQdEAAAADAvk50QAAAAEAWgXRAAAAAAPPRdEAAAAAAsR11QAAAAMB/KHVAAAAAALFidUAAAACA5bZ1QAAAAMBF0XVAAAAAwH3edUAAAAAAbRR2QAAAAAAGQHZAAAAAgIKUdkAAAABAm8B2QAAAAIAA0nZAAAAAgHPfdkAAAAAADjR3QAAAAIB7QndAAAAAwDhcd0AAAADAMHN3QAAAAIBXsHdAAAAAwI8AeEAAAABAegt4QAAAAIA2InhAAAAAgOU3eEAAAABAgHR4QAAAAMAstXhAAAAAAKP9eEAAAAAAWhF5QAAAAACAH3lAAAAAwGUyeUAAAADA4EJ5QAAAAIB/U3lAAAAAAGFleUAAAAAAkXB5QAAAAIDfoHlAAAAAANWweUAAAADAWtN5QAAAAABa53lAAAAAQLDzeUAAAAAAzAN6QAAAAAAKIXpAAAAAgMIsekAAAAAAjEB6QAAAAMA/UXpAAAAAQKueekAAAAAApdJ6QAAAAAA95HpAAAAAAPbxekAAAADANRZ7QAAAAMBZI3tAAAAAgMwue0AAAADA+lN7QAAAAMDMo3tAAAAAwBC0e0AAAAAA6717QAAAAEBa1HtAAAAAgI7le0AAAACAngB8QAAAAIC9EXxAAAAAACIffEAAAABADi58QAAAAADmRHxAAAAAwAhpfEAAAABAbKd8QAAAAIBjyXxAAAAAwD7/fEAAAAAADRN9QAAAAMBLNn1AAAAAwKtWfUAAAACAwHR9QAAAAADKhH1AAAAAwF2UfUAAAAAAzZ99QAAAAICjrn1AAAAAQDfVfUAAAABALQh+QAAAAADJVIBAAAAA4OtjgEAAAAAg27yAQAAAAADv4YBAAAAA4EbygEAAAACAGv+AQAAAAAD5cYFAAAAA4IGEgUAAAAAgVIyBQAAAAECGs4FAAAAAgA1SgkAAAAAglXuCQAAAACD/poJAAAAAINXCgkAAAAAAmxqDQAAAAKAnLINAAAAAoNGSg0AAAABguZqDQAAAAMBs3YNAAAAA4CAshEAAAADgvTqEQAAAAABPcYRAAAAAwMj4hEAAAAAA5gCFQAAAACBXKoVAAAAAoN5fhUAAAADAo3KFQAAAAODwfIVAAAAAIN2JhUAAAAAgCZ2FQAAAAKB17YVAAAAAQKgLhkAAAABANkSGQAAAACCqS4ZAAAAAIJyYhkAAAADg+MOGQAAAAOCey4ZAAAAAgInqhkAAAABgqlOHQAAAAAAhW4dAAAAAoN8DiEAAAAAg5yOIQAAAAIBfPIhAAAAAwP2jiEAAAADgwaqIQAAAACD+s4hAAAAAwKfMiEAAAADgQ9uIQAAAACDC7YhA + KBZXds7jZUCAI9DqN6RuQIkw7CrX8nJA34TwL29jd0CHbPwuNIN4QBbESE4MlH5ABkY4px10f0DKTkLjesKCQJ5CyGJdUoNAyWxKZamKhUAufAwAB1uHQIO/Kl0hi4lALqv6KbPjikA= - + - GVjZP3YotD9FYP0/gH31QDXrLEDYKkBAqWbbQD/UBEGIZP4/BaCaQMSRKkEPmQ1B+PsNQFYEHEEDEbFAh65SQDtOtT9fCGFAwoB5P8zdKUAKdNo/aje0P/QEB0G5saE/342RQXn2uEBlSXFAHAOTQO9a2j9vPYxAwW1aQTEB6ECyZwhAN5pqQP3QMkHUL59Av6ZtQBIIxkB6+sY/L+E9QIFIkUAT76E/7ZW0PxPxgUGaek5ANokRQBpLXEDxJD9AhkvQQfIltD8IbQhA0MUXQXeY6z9+dTNBRGULQL+iMkGUVrpBLmeAQEjvW0EtHxNCsYnPQRuBSkI5rdFA9XplQMqXxj+PxDlBkic8QV4eg0DlqjtAoXEUQRdp1D8DuilCNPI4QeoFyECbhFpBDtOXQH+LxEE44IpCT0sxQieLEUEgKdE/FjllQNrVm0FtFphBB8uPQXmgFUC411tAnXEIQEA1MkEvaydB9DTNQMGKh0CgXy1ANKG/QKMxsUCu5BtBlvm1QE4HSUE8g5ZAEjkGQDZT7UBNe2FBlsnBQKS4zUCFWFNBP5E+Qc/MukHGeB9Bu9zzQFeriUDtF2FCKY6UQWfSoUH3WwlB4olqQay1BEFTfCVByg8dQVMe70GAichAMsYaQW4knECu11tAODYYQfx4UkAmXzNCuWtJQKFFjkCh92RAZ3H1QL/Ko0Afd3NAQ5tFQRvWIUFpdvc/vhOMQZSb0UAgVRVBKRL3QG45SUCWiQtB6WgcQBGN2T/U8sFAmlwJQTuSTEJLuo5BwLKJQHu4xj/8a1dACTKoQMxsVEKdSyVBrPWoQFzta0BD3+c/ + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQAmCbkAAAADAoVRwQAAAAIACQXFAAAAA4NdScUAAAABAGuZxQAAAAKDi4HNAAAAAAKL0dEAAAABAmzF3QAAAAAD7VXdAAAAAADMWeEAAAADA+EJ4QAAAAIC5dXhAAAAAAAeteEAAAACAgwh6QAAAAEBGJ3pAAAAAQFgDe0AAAADAnx57QAAAAIAyZHtAAAAAgBThfEAAAAAA5P98QAAAAACztH5AAAAAwMiDf0AAAACAWCqAQAAAAGCyO4BAAAAA4CyLgEAAAAAgcRGBQAAAAODsSoFAAAAAoNrigUAAAAAABOqBQAAAAOCuEYJAAAAAYP5Cg0AAAADAAWmDQAAAAEBDc4NAAAAAoPgChEAAAAAg6DyEQAAAAIBtVIRAAAAAgH6PhEAAAADgMfOEQAAAAKA4o4VAAAAAQHezhUAAAAAg8SSGQAAAAOC2/IZAAAAAgNhzh0AAAABgT3yHQAAAACBQwYdAAAAAILiJiEAAAADgqqKIQA== + KBZXds7jZUBkuM9LfgRtQEiYIzJJZG5ARtUTyqeidECN6DFxAtN0QK/xM6KFQ3pAoeFdFWvzekC+MhoAw4N+QGrZvQwaKoFA - + - HnqVQEsbtkAT6bM/HvfTQELK2kDLSa1Au5+HQFVqqUD/CX1AP7GeQE34zUDgmolABPzYP7cv6z8y0MxAyIpOQP8QBUF57BpArfzoQGXrBECf6nxAWk+DQEnutUCGISBABVzYQF66CEGkNy1AMmw4QVAMr0ACcwtBRGe/QD8Jv0DuJ1xAP4ggQP33hECyTFJAGwaFQGccM0GESo5Au0niQHP/2D/phitALo2lQKWYdkEjtdZA18e1QBxBF0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgJeDakAAAAAg8O9rQAAAAMAcxG5AAAAAQA0icUAAAACAWUVxQAAAAABGVHNAAAAAgM+vdEAAAACAOIF1QAAAAMCDkXVAAAAAgAASd0AAAADAvoJ3QAAAAEDqNHlAAAAAwEo2ekAAAADA33R7QAAAAICAvXtAAAAAQBiCfEAAAAAAVJJ8QAAAAAAssXxAAAAAgPTkfEAAAAAA4/N8QAAAAADxEX1AAAAAAI1DfUAAAADAy1l9QAAAAEAktH1AAAAAgFTFfUAAAABAWdx9QAAAAACFQn5AAAAAgFEGf0AAAAAAhHd/QAAAAIBbhH9AAAAAwB/Mf0AAAADg6AiAQAAAAGB7ToBAAAAAoGJogEAAAADAEJaAQAAAACCCnoBAAAAAwCC5gEAAAABgSdOAQAAAAKDR4YBAAAAAIAP+gEAAAAAANDiBQAAAACAfSYFAAAAAQIdigUAAAACg04KBQAAAAOBhi4FAAAAAIIeRgUAAAADgOZyBQAAAACBrtoFAAAAAAKXAgUAAAADgUMiBQAAAAOAe04FAAAAAgN3agUAAAAAg9/mBQAAAAGA4DIJAAAAAoEYWgkAAAADg9SOCQAAAAEA1NYJAAAAAYBc+gkAAAABgNVuCQAAAAOC+k4JAAAAAQL2pgkAAAAAgnbGCQAAAAGB1xYJAAAAAgCrygkAAAACgfveCQAAAAMD5BYNAAAAAALgxg0AAAACgtzyDQAAAAGCPQ4NAAAAAgKhQg0AAAACgP4CDQAAAACBgjYNAAAAAwIWXg0AAAACgxaWDQAAAAGDZr4NAAAAAQKu8g0AAAABArs2DQAAAAKDT2YNAAAAAICLShEAAAADgEFyFQAAAAMAse4VAAAAAoOmjhUAAAADg1eKFQAAAACAT6oVAAAAAoCTwhUAAAABg7viFQAAAAKCxI4ZAAAAA4OE4hkAAAAAg94GGQAAAACBbj4ZAAAAAoJ3IhkAAAACgetSGQAAAAKBe9IZAAAAAYMYEh0AAAACgUGmHQAAAAKDDs4dAAAAAgErhh0AAAADgQAmIQAAAACAVQ4hAAAAAIJHTiEA= + KBZXds7jZUD60UzrnGVsQKPid1q/AnFAJCru7HxDdkC1CHCBXcR6QCSIykDVVH1APW7norbigEBaM6bq2uqAQIc5S5A8E4RANE1n0e16hEBOZfGfqBuHQDR8VfuZA4hARURxzt+zikArW9Up0ZuLQEVzX/iLPI5A8oZ7OT2kjkCQRpBvT+aQQB6pb5Nh6pBAM76wlIcGkkAQXoeEpaqSQLPVp6ndypNAlGdFDg0blUD9xXlHCc+VQHh9GBZDn5ZAfd1wXF+Tl0A= - + - LZbrP6wBk0CeJqE/UEhqQD4SPEFhrQ5AEHtrQJV6gECMGQpBDIF9QGvR7UAl4+JAcr/dQDGDUUGMz6tBaVP7QPbJS0CVMElBKPILQcBobkCYnQJB3mnmP4yLQkHqqKpBOuiMQV/eCUHWD8Y/3IQ1QGa8LUHRPiFBxsiVQE1bdEB6BtVAUecHQFOpCUGlnRFAKo+qQBlnYkEfr0ZBHTMkQBsUbUHIygVAqiwkQAxBDkNupyxCDi0hQhROu0CmXMU/z0MwQXhITUFs+YBBDsRwQeNRSUBbL05AsDAYQUM6HkLd7SVA+9BWQVk7HEHINx5B7PnMQN0P/ECChbtB/Tf3QZArjUELZD5BIbIjQGEOQEC+fZFAfmr1QKLHGUFgbJZBEO87QVNx7UBQ3rFAZgoPQaK8r0GBNS5BkQZkQeQvQkLGCMxA9AxIQrmUjEBNXOVBAkZVQn+qRUAAJ7hB6phBQkL2eD/QPStBu2E7QQmHmUFR8eo/54ftQJgIiUBrMFxAlHPCQG9F0UAia29Bohz+Pw== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoAQuYEAAAADgaaVgQAAAAADvAWFAAAAAoCplYkAAAADAdUhjQAAAAEDTyWNAAAAAwF4DZEAAAAAAxLVkQAAAAACsJ2VAAAAAYEjDZUAAAADAPKBmQAAAAIAQS2dAAAAAgNuEZ0AAAAAA4ulnQAAAAEDQIGhAAAAAQJjAaEAAAACg8MBpQAAAAGAyL2pAAAAAAEFEakAAAAAAo2NqQAAAACC4gmpAAAAAgOWoakAAAAAgoaxrQAAAAMBI5WtAAAAAAGcgbEAAAABA0EVsQAAAAEDQZWxAAAAAALSkbEAAAAAAXMJsQAAAAGCE4mxAAAAAgLtbbUAAAABgPOdtQAAAAMC/L25AAAAAABNjbkAAAADARYhuQAAAAEBiqG5AAAAAwLy9bkAAAABArQRvQAAAAABL5W9AAAAAIB81cEAAAACAEkBwQAAAAMByonBAAAAAYK/BcEAAAACg5ulwQAAAAEBsNnFAAAAAwAlFcUAAAADgOKNxQAAAAOA1tHFAAAAA4OLGcUAAAAAgVNNxQAAAAAD963FAAAAAgFcLckAAAADAczByQAAAAMCIUnJAAAAAgHNjckAAAAAAUXNyQAAAAAA/h3JAAAAAIA7AckAAAABAEwRzQAAAAMB5M3NAAAAA4H5xc0AAAAAAgIFzQAAAAEBjkXNAAAAAAMGvc0AAAABA81J0QAAAAOAkZnRAAAAAYMJxdEAAAABg+pJ0QAAAAMDyoXRAAAAAAJLSdEAAAAAAZOZ0QAAAAEAFE3VAAAAAQPcldUAAAADAnC91QAAAACASV3VAAAAAYIxydUAAAABg3NJ1QAAAACDIFHZAAAAAQM4kdkAAAACAiz92QAAAAACpU3ZAAAAAIHmDdkAAAADARsN2QAAAAEDv3XZAAAAAIK/xdkAAAABAzAh3QAAAAOBFZ3dAAAAAYFl2d0AAAABgB7Z3QAAAAKA6AnhAAAAAANQNeEAAAACArCF4QAAAAGCgMnhAAAAAgC56eEAAAACAZZl4QAAAAKCMsHhAAAAAYKPBeEAAAAAgrs54QAAAAOCY43hAAAAAQADzeEAAAABgARF5QAAAAOBUP3lAAAAAQPFWeUAAAABg5WJ5QAAAACAJgnlAAAAAwGeQeUAAAAAgfpp5QAAAAOBmpHlAAAAAQC6/eUAAAABgAM95QAAAAKAm4HlAAAAAYPfueUAAAAAAVP55QAAAAACgMHpAAAAAYK1FekAAAAAgAlh6QAAAAMBYcHpAAAAAYHqBekAAAADAw5V6QAAAAAAWpXpAAAAAQHfDekAAAACgUtJ6QAAAAAAq5HpAAAAAQCvvekAAAACgWZJ8QAAAAMDXpHxAAAAAoA+zfEAAAADgdvV8QAAAAMADZn1AAAAAINVzfUAAAACgguJ9QAAAAOCFEX5AAAAAINykfkAAAADgwBR/QAAAAKDMZ39AAAAA4B0RgEAAAABgEzGAQAAAAKCHS4BAAAAAgDZRgEAAAADgFVaAQAAAAGBbcoBAAAAA4H96gEAAAADgFMGAQAAAAEBVyYBAAAAAQL7QgEAAAABAwNeAQAAAAKDB+YBAAAAAYAQEgUAAAADgaBiBQAAAAEApIYFAAAAAQHBSgUAAAABgNduBQAAAAGA164FAAAAAYCcFgkAAAADgg0qCQAAAAKCqk4JAAAAA4GbSgkAAAACAndqCQAAAAGDj64JAAAAAIB4Fg0AAAABg/jWDQAAAAABnaYNAAAAA4Adzg0AAAABg1HmDQAAAAED4ioNAAAAA4KSgg0AAAABg3LmDQAAAAOC+woNAAAAAIFv6g0AAAACgwwKEQAAAAODMHYRAAAAAoMUjhEAAAADgYEqEQAAAACAXUYRAAAAAQHVahEAAAAAg/MqEQAAAAOBy2oRAAAAAIHHjhEAAAACAMgyFQAAAAGA0PIVAAAAA4PBchUAAAABAttuFQAAAAODC64VAAAAA4JTzhUAAAADg31uHQAAAAECn34dAAAAAoI3rh0AAAAAAlVuIQAAAAMAxc4hAAAAAYCJ7iEAAAACgWruIQAAAAIB95IhAAAAAYDfsiEA= + NrgMGZxjYkDiYBUjzERuQOO2GkbmYnJAk7mMQumSdEBrPQyU1/N6QJMXaZZBpHtARiOHYi0ygEBbkLVjYoqAQEZSdYzZuoNAn1OuCtvShEDXVvYkG3OGQAKBeCdna4lA14XkTsf7iUA= - + - viipQPqzNECkWlBAU7qHQKoUQEDP6gZBW4s2QJczjkDySG5AGUGbQLBYpUBnH45A1tUaQJkXSUBzpIlAFRZlQPcJAEHthcdBvBU/QsJ26z/S1ilAsMfFQLkrjkBTTOw/Q3q8QIv1jEL6kt1AN0OOQExDdEH8SOw/VkeAQFIiD0Ef9QdA0L4YQJITYENdOodB2xWxP5iD6z/hxrNAKWD9P1/4BkC3uq5AZYKRQJQqxj9LultARiycQKS4ZEAUtbtAPI4BQW2U3kDeZl1BABOhP+J+l0BPYctBNzEEQOi8nkDa5G1AXlHCQWE+kkCYVsM/babfQF1sqUCJGWBBbd4aQBcW+D9fhJJAcC8kQI8/AUFMPEVBiHf9P+xTgEE6EkRBmrr/QEp6ukFTWW9BWb6OQHpz/0D8eDJA4q5gQBLD0EAOgCVCWdSaQJooLUAC11BB8wEIQQJ0EkG6KQhAJZVOQH4QCEBz/ZhASIODQewqwUBfWbM/zW5GQjBClkHXGjBC5L41Qaz3nkBcXVFAFf08QKuhS0CdVZVA7M/rP3SWPUCqed9AQKeqQdb65UCjUy1BmiMtQAijoT+pReJBynhRQLmwg0BPdZFBR9ogQvQVW0E+jkJBj7CrQa9JFEGqOKVBHoccQbN+IkF5lg5Ao4W8QHvAEEBgR+pAkMwgQLoc6UD6Dk9CB0/0QK1rsz+PUa9B+7AIQauFeUGZlZdAKOqSQT6f0UB2PAZB6yZSQB2LgUFz42ZB/IsKQaDMgEEWWahBoikJQNSBF0BZ6mJBNzEtQKw0DUAfOlxAWMlkQoeZVEBhRjJBpQvLQLHdv0CMxldBTwkgQLgAQEBjxK5AIO2VQfEai0FeL+s/HXCQQSy+v0HjGTRBT+eKQXi4EEEz46I/5MIQQgIqbUFgRQhAxOk8QQIRIULbKIVC2IaZQdOxnEA8f4ZC/oPtQBZASUDIRVBANlQDQWWu+EHEEl5C07BbQIVXdUFJKaE/mJkeQZ9+QUFyWBtD/PQVQo8+xj8WoDZAjVeNQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAAvlZEAAAABA6ipoQAAAAGDX3WlAAAAAgIACakAAAACAESBsQAAAAEBrVGxAAAAAQIIebkAAAABgE9hwQAAAAGDTI3JAAAAAgAS7ckAAAACgF8VyQAAAAACnE3NAAAAAgB8jc0AAAABA4p1zQAAAAEA6IHRAAAAAwF2AdEAAAACApqR0QAAAAAAGJ3VAAAAAQPU6dUAAAABAPu91QAAAAMCwA3ZAAAAAQNQ2d0AAAAAAMEN3QAAAAADbhHhAAAAAgH2eeEAAAADA38J4QAAAAIADBHlAAAAAwJcyeUAAAADAZmB5QAAAAMDU4nlAAAAAQGxJekAAAADAxWB6QAAAAIBPh3pAAAAAwBjzekAAAACAmht7QAAAAMDhVXtAAAAAQHOwe0AAAACA88Z7QAAAAMAE7XtAAAAAQGADfEAAAADAiBN8QAAAAAA9JnxAAAAAgC5VfEAAAAAAfnN8QAAAAIDUznxAAAAAQFb3fEAAAABAUCR9QAAAAAAvMH1AAAAAQDI+fUAAAAAAvVN9QAAAAIDmj31AAAAAgJC2fUAAAAAAj+Z9QAAAAEBGEX5AAAAAwFVFfkAAAABANld+QAAAAAC3c35AAAAAQPykfkAAAABAHcJ+QAAAAEAIFX9AAAAAgG6Vf0AAAADAObF/QAAAAMAf739AAAAA4B0pgEAAAABgcTmAQAAAAEDmR4BAAAAAwOpbgEAAAAAAw3KAQAAAAGD/o4JAAAAAYGrcgkAAAACglAuDQAAAAGDAK4NAAAAAYMAyg0AAAACg9lCDQAAAAOCqe4NAAAAAIJOEg0AAAACg9JSDQAAAACDMm4NAAAAAwP+7g0AAAACgZcKDQAAAAAACKIRAAAAAIACFhUAAAAAgn52FQAAAAGAPo4VAAAAAIELYhUAAAAAgFeGFQAAAAGCo6IVAAAAA4JkbhkAAAADAeymGQAAAAEC/U4ZAAAAA4COJhkAAAACAy6eGQAAAAKAjB4dAAAAA4DIPh0AAAACg3FiHQAAAAKBXdIdAAAAAIHKdh0AAAACAoLmHQAAAACDT54dAAAAAIGmRiEAAAABg8buIQAAAAMA9y4hA + KBZXds7jZUA/KJil8iNpQHEU2vEeAnNAqZq9oOoidUBf0tlOjTJ6QHD1UdoCVHtAkxY3xNIxgECv2aibOEKBQNjZL2tLeoRAXR4Ad1RKhUDYCB6V9wKIQA== - + - EJClP8Czl0CPgAhA+kmdQNngDEF6XC1AMtbSPyJMsEDD1dBAt93tQEFNN0CWG9JA4jMkQBwPLEJ9HxpBSZrHQENuxj+++IJA8mhuQNwkg0BxcVhAMUCgQYH6BkGxe5dAU8MIQcBA50C8bDxBzO4vQZRuukB1wZdByQ6yQKsKJEDDm7VAN6cRQDibC0FATUVAlqrHPz4UtkDsTY5AeMwNQOwkpUBrgbZAugdcQMZdukEygrRBsRYkQIA53UCh479BGcHAQIo5G0E7vjdBG5sEQWTF/j/a3Lk/UucQQoAa10Dw9BRBhg0uQUHKGkAOPv8/YdwSQTHf20DoZi1Aog2DQc6ZqkF6P7pBcIP1QKrdEUEiDOhB4GHOQOx5akHKSBtB2pnVQEBIkUClGGFABfprQMHnsz8VAIVA5Sd4QXbgyEAy8KRBzrpNQd+9mkHaphtB7WQzQBaQe0HaTABCNe/wQJkvJkHLjgtBfLjhQCvYZEHvdNRAiTBJQeyIFEITKwlB2jg6QRCJxz85Q25AQ4wfQWt6cEEUErJB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAA4OegW0AAAADgmwNcQAAAACAjv1xAAAAAwLCVXUAAAADAbr9dQAAAAIDHi19AAAAAQHsJYEAAAABAoj9gQAAAAMAcomBAAAAAINjeYEAAAADghcFhQAAAAOC/4WFAAAAAIEhHYkAAAAAgPmdiQAAAAEAwNmNAAAAAAO+lY0AAAAAgiwRkQAAAAMD9I2RAAAAAgDJfZEAAAAAACaBkQAAAAEDA/WRAAAAAQM+hZUAAAADAHOhlQAAAAEAkCWZAAAAAgFAdZkAAAADAsExmQAAAAEAXpGZAAAAAwJnJZkAAAADAX/5mQAAAAEDPImdAAAAAQFA/Z0AAAABgmGxnQAAAAMBkhmdAAAAAgBCiZ0AAAABAselnQAAAAMCO/2dAAAAAwJQjaEAAAABADz9oQAAAAAB8nmhAAAAAYGfIaEAAAAAAv6BpQAAAAGDhyGlAAAAAQDD5aUAAAABgRUFqQAAAAECfX2pAAAAAQJDFakAAAABABSJrQAAAAICoQWtAAAAAwIWfa0AAAAAAdCpsQAAAAIBMdmxAAAAAAK8HbUAAAADACSVtQAAAAED7QG1AAAAAgBpfbUAAAAAAwYZtQAAAAEA9AW5AAAAAAGonbkAAAACAoHxuQAAAAAAgwG5AAAAAAAzibkAAAAAAvwJvQAAAAIBVZ29AAAAAwLSJb0AAAAAA/aRvQAAAAACiD3BAAAAAwPAkcEAAAACgykRwQAAAAEATUnBAAAAAoD1icEAAAAAARJJwQAAAAIBes3BAAAAAAAfEcEAAAADAc+1wQAAAAMBwE3FAAAAAQOc0cUAAAACARkNxQAAAAEAlU3FAAAAAACNmcUAAAABA33BxQAAAAEAUjnFAAAAAQASgcUAAAADAUshxQAAAAAAc0nFAAAAAQHrjcUAAAABgOfBxQAAAAECC/XFAAAAAoB0PckAAAAAgXyJyQAAAACCpMHJAAAAAoHM9ckAAAAAgl0hyQAAAAIAWZnJAAAAAYL6BckAAAACAIa1yQAAAAIBcxHJAAAAAwHrackAAAACg2OlyQAAAAABEB3NAAAAA4PcUc0AAAADAQiFzQAAAAAD7MXNAAAAAIB1Kc0AAAADgtmBzQAAAAAAdc3NAAAAAYAaXc0AAAABg6qZzQAAAAECys3NAAAAAwHjTc0AAAADASC50QAAAAEBdYHRAAAAAgJ2rdEAAAAAAq8F0QAAAAAAASXZAAAAAoEKKdkAAAABgSJ52QAAAAABzuXZAAAAAYOzDdkAAAAAAmuJ2QAAAACCLIXdAAAAAwJtOd0AAAADgIsl3QAAAAICSAHhAAAAA4Oe2eEAAAACg7sV4QAAAAKDu3HhAAAAA4OPoeEAAAAAgovV4QAAAAODiL3lAAAAAQHpmeUAAAAAgDpF5QAAAACDPzXlAAAAAwC7meUAAAACgO/V5QAAAAODKRHpAAAAAAK9WekAAAADA73J6QAAAAIBDhnpAAAAAYBClekAAAABAFNV6QAAAAMDR4XpAAAAAICBpe0AAAABg2sR7QAAAAKCVI3xAAAAAQDY0fEAAAADgnFZ8QAAAAMDoyHxAAAAAYLzWfEAAAABAp+N8QAAAAEBo7XxAAAAA4HsDfUAAAADAKyl9QAAAACAaVH1AAAAA4BpefUAAAADgop99QAAAAECRwn1AAAAAII4HfkAAAAAgJRh+QAAAAOC0d35AAAAAYGaVfkAAAADgs6Z+QAAAAMD/tH5AAAAAwEz8fkAAAADgZRN/QAAAAMDIJ39AAAAAQNo4f0AAAABgaGh/QAAAAOCtg39AAAAAIKixf0AAAABA1ch/QAAAAOCWKoBAAAAAoBExgEAAAAAgr2qAQAAAACDzc4BAAAAAYPG7gEAAAAAgsfqAQAAAAKAfKoFAAAAAYDqagUAAAAAgAqKBQAAAAGCkwIFAAAAA4PjsgUAAAACgCyKCQAAAAOBYO4JAAAAA4HRBgkAAAABA0MWCQAAAAIA20oJAAAAAIDKMg0AAAABAvJKDQAAAAOCamYNAAAAAIFnxg0AAAACAHvuDQAAAAGAJLIVAAAAAIJRRhkAAAADA4bKGQAAAAMAAxYZAAAAAwIXLhkAAAADg6rqIQA== - - - - - - jK+AQPb45z+b3z9AXo+EQPqL6z9FQP4/ZPe8QBwSo0B0lqFAqTQ1Qd76ekHst+1BHFRSQOrSB0FVJElAdU5uQIFynECkgxpABBLuQPG7Y0AyJVQ/T8k/QMSaxUBW5YZBkfgbQK3aXEA/NrRA+jwCQbgHf0Cc1QZBl4QuQJGcp0B1ToBAqHVFQR/KPUGJrhpBZHU4QYIsUUGr4UJBc4G3P9iniUCmzI4/H1ISQWBXBEJYfcJAp/+cQR5rpUG4N0pBYVSMQDc+tEDGwqpALzbmQJpnlUAAHdpAFKcZQapWukAgnCBAPXVxQT/qLUG1duQ/OYMRQeVovECFbnBAwSEkQaj7rUFGMhZB+IITQfClukHvJBJBmHXZQZ+EpEDxWJpA+sfGPy41gEK/5c9AVOksQFTRpEEul/hBJ9XMQftqCkAQ6CRBRkJBQYk6BkEbNZVApj7DP+rTMEEB4ZJBU5X1QWIDbkHHeyhC9mtQQWolk0Eyst9ALZN6QWav4UA57EZBN4jTQNWvsEFFHKtBh82FQdfRcEGZvs9BTA4rQrDDF0L8yKBACP7AQf7kHULC6RtCapJYQbuXlkBIZC1AxnyVQPgLK0AbWYBAS06GQSiT30CaILlBWxLpQBJZ1kDHDnVBmdpfQXsrz0A+/BxB9NzZQMqDMEGhHZVBJHwdQdje3EC4l4pBT5zyQJBg/UDymQlCVwjbQV5UwkFwelRBBx/zQXxsIkAfbCxAE5nGQJWcOEA4cTpBe9AaQL34sUA1e4NAxgVUQRiAgkEogyVCuW1BQon+J0FHcxZBUt9EQJm3gkHSoMhCWycZQP0ZQ0Hu+Oo/HtHYP/iNDkBw4rM/pRTAQE6d/j+F9YRAc9ORQNZIakGubsY/NgJ8QGpcrUHo+F5Br0H+P5LkbEHACqRCwfNPQcU31UHcULxBoHxSQL3My0CT6vg/ClZYQF0K7D9o5bRAxn4IQfePCECzsJpAkqgPQHzv/T9YqhhAs8gVQl8tUUFm8Ng/IdShP+I2dUCwP11AxUo2QKqOX0G1ibxBjtFZQCy0GkA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgJABaEAAAADAUSRpQAAAAMDjRWlAAAAAQNYibEAAAACgaIduQAAAAIDNE3BAAAAAgJnGckAAAABgb9dyQAAAAEAE73JAAAAAQAczc0AAAADA7VFzQAAAAAAZwnNAAAAAwDJxdEAAAAAAk2R3QAAAAIDI8ndAAAAAgGmjeEAAAADAMPJ4QAAAAEDYAHlAAAAAgFEieUAAAABAjsN5QAAAAEBFRHpAAAAAgO9/ekAAAACA4uJ6QAAAAEAv8XpAAAAAAHqOe0AAAABAL6Z7QAAAAMD5AX1AAAAAgPtbfUAAAADAwmh9QAAAAMCys31AAAAAgHnTfUAAAABAj/Z9QAAAAEAeYn5AAAAAgN+xfkAAAABAq8F+QAAAAMB9135AAAAAQIVVf0AAAABA6pp/QAAAAOAQRoBAAAAAoFtSgEAAAADgSleAQAAAAKCpioBAAAAAAHyhgEAAAABgKcuAQAAAACDK0oBAAAAAwOrbgEAAAAAg9e+AQAAAAEB5EoFAAAAA4KAagUAAAAAgSCmBQAAAAODOQoFAAAAAgOFWgUAAAADgBXyCQAAAAODqxIJAAAAAIDTNgkAAAACAXGCDQAAAAODvaYNAAAAAQPK6hEAAAACAUVKFQAAAAAB0g4VAAAAAoJKihUAAAADgh3iGQAAAAODRg4ZAAAAAoFLUhkAAAACAeFyHQAAAAKDtmYdAAAAAYCfUh0AAAACgI0KIQAAAACBlzIhA + KBZXds7jZUAkaDOB0mFtQNvlv3T/InRAAHKZnVfhdUAWiDhKr0N7QCcz4RQG8n1Ai3jwODqRgkDUS+VXWbqCQP91Z1ql8oRAUqSWSKaZhUBiozF3MYuJQAz3dkAemolAYtIfod0TjUAMJmVqyiKNQI4SgMwqipBAuKmXQ6vdkEDOvthE0fmRQHIoU9RgDpJA7heTa3zak0CzQj0eEoaUQDgIZQmo3pVAQmubEz5OlkC096Sgw6qXQPSBACKEmphAyHdoCM1GmUA= - + - NlkKQOUljEB11FtAmJq5P7mqW0C4kO9AlsbGP1o7rEFIJP4/t3xSQBniV0D0Jw9BADyaQOX/w0B+TnZAFmkdQUssx0AWLp9ANMZhQeYWbkBtn5dAiuVsQMNaLkKdEhJB682FQW3njkBYbBxBuwt1QVQ3TkAP+ZFBHoFgQPmgGUEdDiJAwhRGQVeh1kEY+yNAmDNZQKXSWEEZ5N5AaFW1QLLPg0AQgeZAQ7Q4QZKqrkCM4whBH2gqQcbwm0CeTIFAWl8pQet9AEGg+7JAjjZXQRuAY0A3C2JB6PvMQfdzL0LUN7dA4caOP6Evo0BX1d1A+QkHQPYPMUG+2j9A7w9iQIZ9kEHyDIVBxLXmQP/qWUAHwE5B + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAExiaEAAAABA+aBqQAAAAKCfoGtAAAAAoHPnbUAAAADA/wRvQAAAAEAvpnBAAAAAAIjEcUAAAAAAOtVxQAAAAODvL3JAAAAAwCXBckAAAABAv9VyQAAAAEDf4nJAAAAAgBmhc0AAAABgKgZ0QAAAAIDTQnVAAAAAAAHBdUAAAABA9tF1QAAAAICX3HVAAAAAAKJZdkAAAACA3HR2QAAAAEC2kXZAAAAAgEkxd0AAAAAAgVF3QAAAAMDydHdAAAAAwNq4d0AAAAAADxh4QAAAAMDftXhAAAAAgInieEAAAAAA+PF4QAAAAABvJXlAAAAAwKs0eUAAAACAHbF5QAAAAICqEXpAAAAAANuyekAAAABAsud6QAAAAEAK+HpAAAAAAA4Ge0AAAABAQhh7QAAAAEAoYXtAAAAAAGZze0AAAACAaX57QAAAAAAShXxAAAAAwFmhfEAAAABAmtR8QAAAAIAK4HxAAAAAAPxmfUAAAADAqYJ9QAAAAAA1pH1AAAAAQLh9fkAAAABAdKZ+QAAAAACQxX5AAAAAwBfofkAAAAAAwgR/QAAAAECyEn9AAAAAwDxZf0AAAAAA2Gx/QAAAAEDxlH9AAAAAwEvYf0AAAAAgZQCAQAAAAKCcWYBAAAAAoKyNgEAAAADgR5OAQAAAAEBmmoBAAAAAoEykgEAAAACAvdKAQAAAAADN34BAAAAAgKv/gEAAAABADGqBQAAAAGDZeYFAAAAAYFOIgUAAAADAosOBQAAAAKDR4IFAAAAA4OALgkAAAADgqhKCQAAAAADXm4NAAAAAoFSrg0AAAABgjrqDQAAAAEBSBoRAAAAA4OGFhEAAAAAgdJGEQAAAAMCqmoRAAAAAgKzchEAAAAAANHyFQAAAAKCrHIZAAAAAYGEyhkAAAACAiTmGQAAAAACLaIZAAAAAYHquhkAAAACg09KGQAAAAGA52oZAAAAAgP8Lh0AAAADgQlyHQAAAAOBGY4dAAAAAAOaRh0AAAAAAoJqHQAAAAKCkp4dAAAAAYLqxh0AAAAAgqRyIQAAAAGBim4hAAAAAoJSiiEA= + NrgMGZxjYkBML328ejFwQBu6YmAmQ3BATI1ZENNCd0BCe6rX1FN4QA== - + - a48PQOzJ2D+6SMxA4DaTQK0JW0B890hAuH7rQWjetEAMwdQ/oL92QILBukAdaOBAmQdHQBojjUC6Dw9B/V93QFxufEDMkCdBIJeYQMqX00Dt+bVA29uwQCYsJEBmXidB1CfEQJhcDkFesPdAvJcaQQ2XMkCeDKFAq4fzQSQXtEAaP25AXWEPQXCKJEBRB3BBZp4aQCfjP0CW8jdB2u7FP42L1D+xmd9A35nxQKWgFEF1H9k/+jk3QZEAtD/RTpZAG/zYP7tLv0DDF4VAH/G0QXKTuEAJu3dAUCkkQF3sjUB94P0/8mUCQj/isj8dpBpAYeQ7QGqOgEHsaVdAN/5EQDnHrkB300BB6eyQQHynH0G6iRZBKtINQKMJrUA62qBBdqG5QS2Ia0FHe5dAlzkQQM/p/j+FU0pBpCICQlDwYEFo2wVAu46bQKSFlUAbNA5BjrU9QSmaBEFrDapAJWHrQFY/m0H8P3xBOLuAQDJpSkHWxzNCBT0cQTNOsUAun9NA7qKEQCcQ10CxwGRBtVmoQA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAAMgEcEAAAACA8QByQAAAAIAeSHRAAAAAQGtEdkAAAAAAgYB2QAAAAADY1HZAAAAAQKHvdkAAAABAjYh3QAAAAMB8QnhAAAAAAN3TeEAAAACAewR5QAAAAMBOo3pAAAAAQHMtfEAAAABAZEB8QAAAAIB1mXxAAAAAAJIOfUAAAABAhiR9QAAAAABVSX1AAAAAwKjHfUAAAACA20N+QAAAAODvkoFAAAAAIKm7gkAAAAAgj8SCQAAAAMDg24ZAAAAAAJDRiEA= - - - - - - ZAeaQDP4/T99aRBBZOiOPwTCDUGshQtBTYi8QJ32/0CbJ/8/J764QKlJCEBnZnk/KyKBQINmxj8K/u9AML6mQBCko0BR6b1AqShuQMjfoEDyxnlAZn7YQBcW/j/YqN9AbrBzQQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAIBVicEAAAAAAPf5wQAAAACBtJXJAAAAAwD7GckAAAACAndJzQAAAAKDH4XNAAAAAQMKTdEAAAADAXgF1QAAAAIBqdHVAAAAAgLqEdUAAAACAL9N1QAAAAOAfKHdAAAAAANk3d0AAAACAr1R3QAAAAED9QnhAAAAA4LBTeEAAAACALnd4QAAAAIBB0HhAAAAAgEuxeUAAAADAIjF6QAAAAIDgMHtAAAAAgPtie0AAAABAOsV7QAAAAABR8XtAAAAAwM3lfEAAAACAZJd9QAAAAADvQ35AAAAAwNG0fkAAAACAExqAQAAAAACAOIBAAAAAIPuBgEAAAACgwJKAQAAAAOBgyIBAAAAAIEELgUAAAADg6ROBQAAAAIC0VIFAAAAAwNqJgUAAAACAZqKBQAAAAGAYtYFAAAAAoF+7gUAAAACgFMKBQAAAACDX+YFAAAAAgGZDgkAAAAAge7CCQAAAAKC244JAAAAAYMMhg0AAAADg1GeDQAAAAGAus4NAAAAAALW5g0AAAAAgaduDQAAAACAYBIRAAAAA4JoKhEAAAAAAFTOEQAAAAGDCPIRAAAAAYLSPhEAAAABgBPyEQAAAAICvFoVAAAAA4EpPhUAAAABAJmeFQAAAAGABhIVAAAAA4PiPhUAAAAAgGZyFQAAAAGCpNYZAAAAAoBRRhkAAAACgKUSHQAAAAIBqb4dAAAAA4D51h0AAAABANnqHQAAAAOD5wYdAAAAAIO7gh0AAAABAZ3GIQAAAAMDlzIhA - - - - - - +DetQIDd6kB9w8Y/4UyzQFl0tD+xEGVACUH/P/vmGUD6vMY/U0aNQTow2T+j4G1BSDFcQbP+jkFV6KBAoP41Qe8u40BrJctARQA0QWHYGkA+/7NAdJz9QA8VSUC18CFAF5ZwQVhYAkExHQ5B7lEFQKV0SUD0qIJBM/KhPzC6oEDyx1FBNHnGQNbyC0HxpPlAp0BJQNeLTkE0JklAS5XJP7ldJEBLC4VA0NshQIFDrkCs25BAaEFqQBWPc0CrwuRA0SwtQaqSj0DYSadBxLfRQLXI4UClXxpArUHMQfF4r0BKrv4/1kS3QACEDkE5Jdg/PqnrQHvMg0DsFxBBLknWQD+GrUC6lO5Bg/LNQMzow0DwC/s/6mvtQNE3fkCj6K1B - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAwIrOa0AAAAAgM0lvQAAAAKBVcnJAAAAAQJM/c0AAAACAeKJ0QAAAAIBaAnVAAAAAgM0wdUAAAAAAJVZ1QAAAAIBot3dAAAAAwLIfeUAAAABAV7Z5QAAAAEA+0XxAAAAAANxVfUAAAACAeWd9QAAAAECVtoBAAAAAwEEhgUAAAACgOBKCQAAAACDwS4JAAAAAgJFqgkAAAAAAlq6DQAAAAMCpWYRAAAAA4LuJhEAAAAAA26eEQAAAACCas4RAAAAAYGs5hUAAAABguaGFQAAAAECnq4VAAAAAYI2zhUAAAACgnOGFQAAAAKBBIIZAAAAA4N80hkAAAADAEEKGQAAAAOCzSYdA - - - - - - bJaaQNNaNkGFvUpA1337QFvd0EAHGoRA+ZrfQPAazUCdSQJBHLK7QKYyHkHQoY5AT4U0QXi1W0AUJY9AOK/KQCWkEkElUBdB60UqQIVOWEEaDMc/uu1UQlJDJUEPr95BGLuEQTj2+0DDjTBBIgGoQDBhtkAt9+1AFLl5P1MaPEFFMDVB - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQHXlaUAAAACAt8BrQAAAAGAZn3BAAAAAABJecUAAAADA5PpxQAAAAIDE5nNAAAAAgBS0dUAAAACAH7x2QAAAAAAsDXdAAAAAwHmXeEAAAACAn/R5QAAAAACKiHpAAAAAAITQekAAAADA86F7QAAAAEAdKH1AAAAAwDZmfUAAAACA0HJ+QAAAAIC4vn5AAAAAQBBSf0AAAADA0eZ/QAAAAEBj9X9AAAAAIMQkgEAAAADgJomAQAAAAKBOpIBAAAAAIDrWgEAAAAAgQv2AQAAAACAxX4FAAAAAIO2KgUAAAABgYeGBQAAAAEBH6oFAAAAAIN87gkAAAABgpWCCQAAAAOAmdIJAAAAA4FGagkAAAABgJLSCQAAAAGASuYJAAAAA4AXsgkAAAACAzCOEQAAAAGDxQIRAAAAAoMnShEAAAAAg+d6EQAAAAIA9EYVAAAAAQM8fhUAAAACgQWuGQAAAAABbsoZAAAAA4HDbhkAAAABg7vCGQAAAAKB/+oZAAAAAoJoih0AAAABA3F+HQAAAAODSkYdAAAAAoD1MiEAAAADgca+IQAAAACCD4ohAAAAA4GrziEA= + NrgMGZxjYkA= - + - c3yrQGL1GkBiRZpA7xNOQH0ihUDRY9BAZtFcQIqL/j8eWrNADsy6QLXtxj/Z1yBAjimoQD6VV0Dkctk/X5PGPx0vNkGvAopA2j8eQVvJOEEoq9RA8+VbQUsxpECuHKhAwOzaQKE620DeKadBugtPQbo9BkFv3JtB3VvyQFIPkkE92zZAS/ciQczwJUHuFyRAfy02QYJPLUH5YaNAjZjFQMA8qEAF/PZARY2xQfRnqEBcFORAc+D5QG7rFEHhEoNAyCrSQMDh3EBLoNNAqvuEQMSqbkHur8Y/WO0aQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQPxqakAAAAAgqqdrQAAAAIDXZm1AAAAAwAdNbkAAAACAF8JuQAAAAIDz5m5AAAAAALAmb0AAAADAyqBwQAAAACCwE3FAAAAA4J2hcUAAAADgkANyQAAAAEClE3JAAAAAQGKXckAAAADAtaJyQAAAAEAqqXNAAAAAgEZ7dEAAAAAAZK90QAAAAMCs8XRAAAAAAJ8DdUAAAAAAjGx1QAAAAMD51HVAAAAAwKIvdkAAAAAAd1h2QAAAAMBW53ZAAAAAgLUyd0AAAAAAKnN3QAAAAABrondAAAAAgElEeEAAAAAA5n54QAAAAED9xXhAAAAAgAwQeUAAAABAtXF5QAAAAIClg3lAAAAAwJPweUAAAACA/gJ6QAAAAIBdEnpAAAAAQOYeekAAAADAS3V6QAAAAACQEntAAAAAQIhFe0AAAADASlV7QAAAAEAxm3tAAAAAQLPTe0AAAABAxuR7QAAAAIBJM3xAAAAAAI9EfEAAAAAAM418QAAAAECcz3xAAAAAQPbffEAAAABAC/Z8QAAAAIB1BX1AAAAAAOYlfUAAAABACzN9QAAAAEB0UH1AAAAAAKSyfUAAAADAp9B9QAAAAACl331AAAAAQJUmfkAAAACAgFB+QAAAAICzZX5AAAAAQIR2fkAAAABAIK9+QAAAAMB6z35AAAAAgB/0fkAAAABAT0J/QAAAAAD8dH9AAAAAgE6Ff0AAAADAlpJ/QAAAAACutn9AAAAAQDjjf0AAAACA/C6AQAAAAAAyNIBAAAAAQAhbgEAAAACgIGKAQAAAAKC/aIBAAAAAoIJ6gEAAAAAgHpSAQAAAAODGrIBAAAAAQDzxgEAAAACA8xuBQAAAAAAHIYFAAAAAYH4mgUAAAABg9zOBQAAAAEA/O4FAAAAAoDBMgUAAAADAo16BQAAAAOC5aoFAAAAAoI2CgUAAAABgEoqBQAAAAAB2kYFAAAAAAL2XgUAAAADg9Z+BQAAAAKCUqIFAAAAAoD/TgUAAAACAktuBQAAAAGDv4oFAAAAAAGD+gUAAAAAgrwWCQAAAACDLDoJAAAAAICokgkAAAAAgVTWCQAAAAAA6OoJAAAAAoHdZgkAAAAAg8V+CQAAAACDjbIJAAAAAoOZygkAAAADg2oOCQAAAAGD3iIJAAAAA4CqZgkAAAAAgqMiCQAAAAABQz4JAAAAAAMLWgkAAAADg/t6CQAAAAOAt6IJAAAAAINgJg0AAAACAJRiDQAAAAOA1J4NAAAAAAABDg0AAAADAKU6DQAAAAECFVoNAAAAAAJJcg0AAAABAGWODQAAAAKBOa4NAAAAAoEGSg0AAAADAPauDQAAAACB5m4RAAAAAIAOlhEAAAACgY8qEQAAAAMBxGYVAAAAA4EQ1hUAAAACgQT2FQAAAAMBkT4VAAAAAYD1dhUAAAADAomSFQAAAAKD6aoVAAAAA4IhxhUAAAABgfYiFQAAAAKAHroVAAAAAwBq0hUAAAABg/M6FQAAAAEA23YVAAAAAYHL0hUAAAAAg/fqFQAAAAGBoAYZAAAAAAN4LhkAAAABgL0aGQAAAAKCFS4ZAAAAA4LVmhkAAAACgX22GQAAAACArj4ZAAAAA4BOWhkAAAAAgobuGQAAAAADGwYZAAAAAwK7YhkAAAAAgB9+GQAAAAMAT64ZAAAAAYPITh0AAAADgoxuHQAAAAKBAModAAAAAoBCNh0AAAAAgzJqHQAAAAKD2vYdAAAAAoCzkh0AAAADg4vaHQAAAAKDTHYhAAAAAAJ9IiEAAAAAA0U+IQAAAAGBwb4hAAAAAAK6MiEAAAAAgr5KIQAAAACDtl4hAAAAAIB3biEA= + NrgMGZxjYkDAIFw1+IJuQEMdzoN8QnFAh9H1kSpSd0Bq3hX7KlN5QA== - + - zgkqQIWCkkCoR2RAXBhJQKLQC0ItUMY/IuQsQMeakEAYeQpBypNrQL2p5kCITU5AducZQYjWh0BtuJ9Ac5pnQP3IB0CVdWBAFMxrQAWM/T+WjrY/TsRNQAQprECw/SxATjKDQMac8UHwN4RAW9BYQDpfxEBm0MxAO8g/QFFug0DpoSBBbPZ8QTqfkkAWNppBsWqRQKA9/T9fIUlA7LjbQK83nEB2yf0/TOOqQe68KEFk4sU/Kp2VQPNvxkBw069BWaX6QBZmSEAONes/B/JPQdv7J0ErZVhANTsRQEf590E3D2pAjdSgQMU0kUABtppAO7saQJjJ4z+YvTJAOuD7QC9w6kAeofJCHD4mQojnz0EbDSRAP1lbQIlKEUBFyBZANLRvQf4RjEAFJppA9XAkQffQX0HCgFtB4rAHQdSebUGMwzVBfW0JQYhY3kCzJ9VAdgRPQGjykkDycG5Bd3+9Q5k6pkLa58ZBRe67QdHbtUD24jFBmt0/QHIzI0JH/DNBzemaQaR4/T8X4tZAaDLlQQ6zUUHepNU/4IPLQbfuD0LgCy5Aa+HkQDI7i0HSS5VAxZzPQMVmZUEguB9BPZwZQfr1LEBucJ1Bzuy3P9GozkEvFPJAbmqOQY+HukFpFS5BL3OJQFrxnkCI8lhCABMgQhdaBUG2JfFBASOlQIyoa0HEGnRBt//wQG80/0BXOVhBoGofQXKrjULu3ohB+gHZP3H0REGUom9DZMyoQG/P2kAUBNhBtv7dQqE+kkKqcsY/pv2/QN7HnEGQkGRChuYiQZn/00FMDVlCZVuGQS6DNkA7POtAOmb6QWhzDULO+rI/RPddQceNGkBM+NFBQOQMQXpcAEEPNy5BEhf2P+fPlUDvfhBBn1MVQVY/AEFCSxNCZAyhQBkg6EHvZxlCC0H0QQ== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgFMCbkAAAAAgnxVuQAAAAADjbm5AAAAAANSgbkAAAAAgtoVvQAAAAIDhJXBAAAAAIOnscEAAAAAAHkdyQAAAAIATU3NAAAAAgBdBdEAAAABA9FF0QAAAAICfFXVAAAAAAEx2dUAAAAAABj52QAAAAMC3znZAAAAAwK1CeEAAAACAF/F4QAAAAMA8bXlAAAAAgCdpekAAAACAG9N6QAAAAMB4QHtAAAAAQIS0e0AAAABADwV8QAAAAICtRnxAAAAAgIKlfEAAAACAv8Z8QAAAAAAHhX1AAAAAwI02fkAAAACA/3l+QAAAAAACln5AAAAAgHOjfkAAAABASCR/QAAAAAAhZX9AAAAAwM7jf0AAAABAtCiAQAAAAIDWS4BAAAAAQDdZgEAAAADAlXyAQAAAACBXo4BAAAAAgHapgEAAAABgSbOAQAAAAED+uoBAAAAAoLbdgEAAAABgoeKAQAAAACDM6YBAAAAAoAzzgEAAAABAgxGBQAAAAOAfGIFAAAAAoL5jgUAAAACgAmuBQAAAAOCrfIFAAAAAINa6gkAAAAAgK/yCQAAAAECKW4NAAAAAAMDlg0AAAACgsBGEQAAAAKAIQ4RAAAAA4O/yhEAAAADA5AKFQAAAAKAQMoVAAAAAILF/hUAAAABg+zKGQAAAAED9SoZAAAAAADRnhkAAAACg/7uGQAAAAGBa04ZAAAAAIOAWh0AAAABgoyOHQAAAAGDcgYdAAAAAoDi+h0AAAACAt+GHQA== + KBZXds7jZUBML328ejFwQKmavaDqInVAOu18Gelhd0DkPDZ2mkN8QCirfHZXkn5Av3/AvXeBgUAF/752JCqCQDApQXlwYoRAUmBk+c6JhUAnCMGnp/qHQHCxIOQmGolAHudA1t6Si0A6uemWqDKOQLLH5BE2m49A - + - VebuP0gYoT/M1FhAOKH9P6w/uEBnmjdBkxYAQSXskEAWPahAnT5ZQLkIB0GoKAhAsqdkQIoPoj8bMXFBRL+JQKQT4UC1CwtAKoHCQBhCo0ANcrM/6wXGPyHtSEDhsiFAZQE1QSHj/T/R5f9AXqXZP0KpTUARhJJBS5CgP+vrhEDqdUlAxrH2QBXNBEGFwehA2DiYQMIFSUBy1vFBNEcyQRI9NUAjuOo/h56QQLLBRkBEy9pAsgGtQEksjkADfJtAhPPjQBKlxEEgUPlAJLGJQV+WjkFpGixBCEKTQPhF5EAsw/ZAYfeCQLnVDUFAQaZAO78fQOtGxj/RnNFAfhtuQV/Z7EAS1stA9APNQMhalkEWWTtBOqXaQLaOaUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAIL6lYkAAAACg2EFjQAAAAIBJm2NAAAAAQFDJY0AAAAAAgehjQAAAAMDgPmVAAAAAQCJmZUAAAADAA+pmQAAAAMBGRWdAAAAAQNuAZ0AAAAAgxGJpQAAAACBBG2pAAAAAIEelakAAAAAApORrQAAAACAvwGxAAAAAgCXIbUAAAAAgsiluQAAAAKB2QG5AAAAAANpjbkAAAADA6QdvQAAAAICNjW9AAAAAIKYjcEAAAAAgGFlwQAAAAKDHrXBAAAAAQB/UcEAAAAAA/TRxQAAAACCHQXFAAAAA4OVgcUAAAADAAHVxQAAAAEB3oHFAAAAAQJTIcUAAAACAsOJxQAAAAIBWHXJAAAAAADFwckAAAABAl4hyQAAAACDWlHJAAAAAgJGuckAAAABg9uByQAAAAADoEHNAAAAAYKUgc0AAAAAAlrBzQAAAAGDn33NAAAAAILQSdEAAAAAAak90QAAAAIBdz3RAAAAAAKFNdUAAAACgR8R1QAAAAMA44XVAAAAAQJtBdkAAAACAooB2QAAAAMCIk3ZAAAAAwOuhdkAAAADgNcZ2QAAAAABm2HZAAAAAAC77dkAAAABguRF3QAAAAEDRHndAAAAAQJ5Vd0AAAABg5J93QAAAAOC1wndAAAAA4IXgd0AAAACg2fF3QAAAAGAyR3hAAAAAgKySeEAAAAAgaMx4QAAAAKBfNnlAAAAAYINLeUAAAADgVVp5QAAAAIA2cnlAAAAAIBuAeUAAAAAgFI95QAAAACDFtXlAAAAAQDTCeUAAAABghUt6QAAAAKCzVXpAAAAAgNaaekAAAABgkPV6QAAAAAAbA3tAAAAAoO8Te0AAAACgbSN7QAAAACDUQXtAAAAAAJxTe0AAAAAgkLl7QAAAAOAExn1AAAAAYE0yfkAAAADgLmh+QAAAAKD+DX9AAAAAIMxHf0AAAABAVqd/QAAAAKBm8X9AAAAAgOkrgEAAAACA1omAQAAAAOBcu4BAAAAAoP4BgUAAAADA4lGBQAAAAKA+nIFAAAAAYP+rgUAAAADgfvmBQAAAACBRKoJAAAAAwBp3gkAAAADgCJKCQAAAAGDR7oJAAAAAIDNxg0AAAABgW6KDQAAAACCP2oNAAAAAoDz4g0AAAABAKDeEQAAAAEB7hIRAAAAAADGRhEAAAABgs6mEQAAAAKArzIRAAAAAwH8ShUAAAADghKqFQAAAAADSEYZAAAAAwCJrhkAAAABgn5OGQAAAAODa1IZAAAAAQCnehkAAAACAeuuGQAAAAIAO/IZAAAAAwEhuh0AAAABg0nWIQAAAAGB9oYhA - - - - - - Xr1iQDNjrEDAgohA+dn8P6hujj9qtadAT9iEQGutiUB8cw5ASVIOQfq50j90OS1AhCkmQbycjUCpPHVAXzzGPyTeckAZbtNA/W7qP+JOv0CJzQlAxbE9QAQt9UAuIXdAn4P3P5M3EUBGG09AyD2BQaJU2D9L4wNBhUUXQqjnGkCqWc5AoHb5QNJCt0AcRE5ABoONQRN3GkAxUxpBnAwpQDw9TkBZ6hdBsNF3QKHaA0D2pXtAnupPQF/XI0AAFiRBwhI0QAOqskDQEg1AuKDMQNplMkASUwpBTlWNQURuqEAtUQ5A5DJ4P1N8OUH63ahAGo8TQTCMAUH0r2FA5OUUQUbR0kD8AzFB8LRRQbvcbUEWWQNCFKR1QeCo5UCBPghBYcjjQQotFkDAaVBA9DybQC4RBUG9mndBlCGaQBg+cUHT8OhAUTuxQHTmRUCfTgZBKcsNQYuTZUGplZ5AACuoQLkOW0AbFXRA+I8wQUBQNkCG6xZAwMFbQCzGFkFlasFABqyHQKgMjkIJKJ5Aq/DHP1hZO0LsNUZBR4+pQAtZqkB9J45AQbaSQObdUUDYaJZA+26HQfSuw0AnPwpB6FykQewHxED9dLtAdwRdQWsvj0J/5gdAduwFQcQgWUB5tdk/9tAXQTDKI0Cd+zNB - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgDrKakAAAABAnGluQAAAAOAXsXBAAAAAwCe9cEAAAACAstNwQAAAAEBf1XJAAAAAQJrnckAAAABAIdJzQAAAAKD2U3RAAAAAwCNydEAAAADAlzB2QAAAAABfU3ZAAAAAgKVDd0AAAAAASll3QAAAAMBTJHlAAAAAQEpwekAAAABAHdV6QAAAAMBaQHtAAAAAQAkkfEAAAACAYv58QAAAAIAPdn1AAAAAAMeRfkAAAABAtWV/QAAAAAAGxoBAAAAAoGvggEAAAADgNCOBQAAAAOAgKoFAAAAA4KtegUAAAACg83mBQAAAACCFoIFAAAAA4E6zgUAAAABgf7mBQAAAACBQ1oFAAAAAAMfigUAAAABg+EeCQAAAAKCeT4JAAAAAAJxigkAAAAAAXZiCQAAAAKABzIJAAAAAALYcg0AAAABgMkqDQAAAAIDmmoNAAAAAoGgOhEAAAAAAQOuEQAAAAKCwFYVAAAAA4POHhUAAAABgHJCFQAAAAOAarIVAAAAAAGXAhUAAAADgqdOFQAAAACAo3IVAAAAAwEXshUAAAACgBxCGQAAAAKDo7YZAAAAAIKSvh0AAAACgnM+HQAAAAICk9YdAAAAAQKL7h0AAAABge0OIQAAAAED/y4hA + KBZXds7jZUAtECBNt2JpQNS+X4D+xG5AiDDsKtfyckA+ydcdCsJ0QKo57ltaY3hABSRsVyLzekAidShCeoN+QJj37bjIk39AJBu4XBRKg0Bf3BqYO9KDQO4EeY1nmoVAG/o3i0vihkBSMkOq87KIQKz+uCONmolAOycXGblii0DmEuflSruMQGZRmRsFm41AET1p6JbzjkA= - + - dTPrPxVA9EB9BCdA9sG1QBNjjz+mCxpCmcnqP8rmUUAO9CNArHWyP+pfGUEyfcU/1lJPQu3cqkB9aUVBp0ERQMapGkH/7G1AcQMXQAvqR0EcrR9AjeFtQAChZED+YXpBS92+QNtyYEB8vZJAiTE8QJVKYkATHZ9Ank02QBkpyEDmyrVAt2jvQKaTTUFgJvBAzJCuQJbbe0CVhSJAGXkEQcSF/T+RZr9Az7tVQVAY90BauXJA2IIgQZXTm0F1oMVAw4aWQkxozkE6QLM/S/zjQH76KUHrC7hAexVhQAc/sUG2FP0/XwCzPzTJO0FzF4VB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYC5kY0AAAABgMPxjQAAAAACN4mRAAAAAIGSpZUAAAADAZQJmQAAAAAAbgmZAAAAAgM0EZ0AAAAAgs6dnQAAAAMB442dAAAAAIDbsaEAAAABAvCNpQAAAAMATJmpAAAAAgEWIakAAAADAsaNqQAAAACAXbGtAAAAAAOkBbEAAAADg0sZsQAAAAKAZZW1AAAAAwEDHbUAAAADAZmhuQAAAAAD56W5AAAAAgESJb0AAAAAgQxNwQAAAACDYJnBAAAAAYMt1cEAAAACAUAVxQAAAAMBpT3FAAAAAAOaecUAAAAAAmLRxQAAAAKDp9HFAAAAAQN3/cUAAAACggiNyQAAAACB3R3JAAAAAQNNjckAAAADAF5RyQAAAAADr8XJAAAAA4Ghgc0AAAAAAi3lzQAAAAGCTknNAAAAAgJKxc0AAAACAC9ZzQAAAAACV4XNAAAAA4HhBdEAAAADgoXV0QAAAACBlonRAAAAAgNDRdEAAAADAkyV1QAAAAEDEenVAAAAAgPihdUAAAAAgHMN1QAAAAKAU0nVAAAAAYDHidUAAAACgTf51QAAAAOCBQXZAAAAA4MxRdkAAAACA9HF2QAAAAICulHZAAAAAoGaudkAAAABAqeB2QAAAAEDx73ZAAAAAgMAAd0AAAADgEDV3QAAAACBjTndAAAAAoKOFd0AAAADg4p53QAAAAKChtXdAAAAAgCMVeEAAAADgnVJ4QAAAACDMZnhAAAAAgNN2eEAAAADAHs14QAAAAOCh+3hAAAAAIFMjeUAAAABgCoZ5QAAAAOA4nnlAAAAAYG3BeUAAAAAgv/x5QAAAACA6InpAAAAAgAo1ekAAAAAgLEF6QAAAACA1UXpAAAAAIMBjekAAAACgQnV6QAAAAGBGf3pAAAAAYMqPekAAAACgydN6QAAAAKBU73pAAAAAQNIFe0AAAADg0GB7QAAAAMASiHtAAAAAQAOUe0AAAADgQeJ7QAAAACBR8ntAAAAAoBP9e0AAAABgKUR8QAAAAOBzN39AAAAAoGBGf0AAAAAgYgqAQAAAAMD9HYBAAAAA4BEzgEAAAACgbZuAQAAAAOC6sIFAAAAAIHnPgUAAAACgHVuCQAAAAOA3u4JAAAAAIEkIg0AAAABgqw6DQAAAAKCNK4NAAAAAIBtKg0AAAACgI4aDQAAAAIDImoNAAAAAIJbrg0AAAABASfWDQAAAAOB9G4RAAAAAALZUhEAAAAAgY2iEQAAAAKB7cIRAAAAAYD/zhEAAAADAcRuFQAAAACAiIoVAAAAAwCLphUAAAAAgb/2GQAAAAKAOO4dAAAAAQGFKh0AAAABAW6iHQAAAAICQvIdAAAAA4Mvih0AAAACgB+yHQAAAAECe/IdAAAAAILhtiEA= + KBZXds7jZUCmvpxNHCRnQBTpB48/A3JAU72qemajckBqPQyU13N2QKkRr3/+E3dAapvo5y+FfUCpb4vTViV+QLR84h1ES4JA - + - QaT4QLm8RECr05BAn0LcP4flRkBAGZNAg2pqQUURtECMi/0/MJOCQOdTvEGRcgJBBbAaQNQ7KUDhLOo/8rsMQZNuZED9OCRBfyB3QHWW3EDK3BFB3SCoQDfKxT+pTIBA33JzQMZMzD9eggdA2uwjQO9pO0D8KqNAJh/HP79jJ0HETP0/EmuEQOUwbUABu3xABBqDQeIiM0C0481ANK8/QJ+SxT9qqgVBIn6zQD+N2D8TmshAQogaQN7+bUDZ6GNApizjP0Kr/UHQX1xAnFf0QLFl2D87sI1AEfyCQPwLv0DlQ1dAn6XEQEp2cEBzV25ALplpQLNsg0FzELZA9X31QJtCGUHmJjhBj1U8Qf0/lkB/U25AtVC7QCBiMUE0WZdAT52AQJrzDkHOO5ZA314RQOvEe0AsVxJCghy6QTB5qUDk2FVBL1cRQU3N1kAnmiFAOxgbQLYlTEGwECBARwCVQDgbiEFw4otBvkQQQRTtx0HKP25C+sqLQXgLCEF3GktBPwbnQOC6zEBSiZ9A4HvGQrZ0zUAWgYlAL5+yQL23MUFtuKtBkljyQObKkkFgmj9AgJFUQjbiMUEa+IxA7PPoQOTELkHCqQBB106BQYSUK0HBWZdAUmDzQDfDE0HH5rxAkbSNQY1FLUBXriNAvQwaQDm62kDu3w9BNDsHQ+Oa7UH6ubtAgTsfQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQEb7bUAAAACAo8RuQAAAAGAX425AAAAAgC/nb0AAAABA6gJxQAAAAEAtRHFAAAAAABKQcUAAAADgpuVxQAAAAABAsnJAAAAAoBoXc0AAAAAAeNR0QAAAAIA6OnZAAAAAwGUed0AAAAAA03J3QAAAAIDfhHdAAAAAAKpTeUAAAADAU2Z5QAAAAED6lHpAAAAAwKD3ekAAAAAAEad7QAAAAEDR2ntAAAAAwG7ye0AAAAAA+ER8QAAAAABtlXxAAAAAQA+pfEAAAABAuO58QAAAAIBYKn1AAAAAgKY8fUAAAAAAyFp9QAAAAIC8kH1AAAAAgMagfUAAAACAG9F9QAAAAEDU5X5AAAAAAJ4Tf0AAAADAZHJ/QAAAAGClPYBAAAAAAMHKgEAAAAAgYtKAQAAAACCU3oBAAAAA4PrtgEAAAABgIfSAQAAAAKAh+YBAAAAAAAMDgUAAAADgdx2BQAAAAKA6J4FAAAAA4P1ogUAAAAAAqoKBQAAAAAAVi4FAAAAAINSkgUAAAAAg6qyBQAAAAOAWwYFAAAAAIAPJgUAAAAAgeNSBQAAAACDG6YFAAAAAoN38gUAAAADgChqCQAAAAKA0MoJAAAAAQKFhgkAAAABgMaeCQAAAAMCtwIJAAAAAIAjqgkAAAABAvvaCQAAAACBqN4NAAAAAwK9Bg0AAAACgk0yDQAAAAOAJZYNAAAAAoIpqg0AAAACgAHSDQAAAAKAGfYNAAAAAYKGIg0AAAAAAQ5GDQAAAACARnYNAAAAAQGe7g0AAAADgl9WDQAAAAOAIyYRAAAAAwCVHhUAAAACgiVqFQAAAAIAnZIVAAAAAgC+AhUAAAACgf6SFQAAAAEDru4VAAAAA4B7HhUAAAACgOd+FQAAAAMCd6oVAAAAAoIjvhUAAAABgW/yFQAAAAADuBYZAAAAAABcrhkAAAACg6zOGQAAAAODhOoZAAAAAIBZEhkAAAABA8FCGQAAAAMDKZ4ZAAAAA4Ex5hkAAAABga4GGQAAAACDc44ZAAAAAoPcXh0AAAADgVXCHQAAAAMAbd4dAAAAA4Gesh0AAAAAAL8OHQAAAAIDz7odAAAAAIOQKiEAAAADAPjGIQAAAACBsO4hAAAAAYCFEiEAAAABgSXuIQAAAAGCXi4hAAAAAIAnTiEA= + 7BToB3LiY0AoFld2zuNlQARiQCMRAnBA3OW/dP8icUBVYk7CNnJ2QP7uwaWCk3ZAVEPGqhoEe0B3a1DzueJ7QKqXyq+ydH9Ag2FOCcn5gEAAdmdapfKBQOeOGCZVEoRAK6DpXPEqhEBWymtfPWOGQOe9BlABm4dAuvc1fMl7iUAQvo0fFNOKQLomJKZ1BI1AO+gPImALjUDlUKaowTyPQGYSkiSsQ49ASB6KE/y9kEBWPibcliKRQF4zyxQi2pFAa1Nn3bw+kkB0SAwWSPaSQIFoqN7iWpNAil1NF24SlEDIfFfZ+D6UQKByjhiULpVA3ZGY2h5blUCPqP3oZOeWQFKJ8ybaepdApb0+6ooDmEA2n8YuEP+YQO4/f7arX5lATLQHMDYbmkBqL79NxyubQGLJSDFcN5tAsUNuSN0PnEB43okyglOcQPrFrhT+a51AXPRcOrjXnUCs3BMjRPieQEAKMELuW59A8/DCHVrcn0ASkAElEnCgQJ65AXU9nKBAnRqiJSX+oEDC+iHbTUqhQOaEedhYvKFAj6WLKUDAoUAKD9HVYy6iQBowLCpTTqJALlDxO3TcokDIRCQocU6jQFKREaKEiqNAdhtpn4/8o0C6zw0sjBCkQAGmCaCiiqRAJTBhna38pEBo5AUqqhClQLC6AZ7AiqVAWm/vLcXSpUBwRn2o62ymQEz62DHglKZA+9Adqf76pkA+hcI1+1anQB9bdaYJbadAYg8aMwbJp0AR5l6qJC+oQFSaAzchi6hAA3FIrj/xqEBGJe06PE2pQMP8w7hq06lAOLDWPlcPqkC1h628hZWqQCo7wEJy0apApxKXwKBXq0AcxqlGjZOrQJmdgMS7GaxADlGTSqhVrECLKGrI1tusQADcfE7DF61AfbNTzPGdrUDyZmZS3tmtQG8+PdAMYK5AsvLhXAm8rkBhySbUJyKvQKR9y2Akfq9AU1QQ2ELkr0BLhFqyHyCwQDvvs+omK7BAXUkGMSVZsEC0tKhsNIywQKKOVrEuoLBALXqd7kHtsECCVJQ2RBGxQKY/knBPTrFAx5nktk1YsUDZXpA1U5GxQP1Jjm9ezrFAHqTgtVzYsUAwaYw0YhGyQHYPg/FrL7JAwomcZ2poskDNGX/weq+yQFSqrJpyv7JAEl/PcIT2skBmb1gZePiyQHg0BJh9MbNAiyTE8pFXs0AKVRTLhYizQNBpFHObnrNAnHUk/o3fs0BJLwn1qP+zQK460HyTGLRAwvT9drZgtEBagGkApXu0QDu68vjDwbRA7KB5M63StECA/0J5zQi1QP5lJbKyC7VAxUST+dZPtUDdYfWXuX61QAqK43nglrVAb4IFy8HVtUCDT9j77fe1QLTHVUvLHLZAYA3vztx/tkAvlXF//4q2QKVSP0/mxrZAdNrB/wjStkC3F+vN6/+2QLkfEoASGbdA/Fw7TvVGt0D+ZGIAHGC3QEGii87+jbdAQ6qygCWnt0CI7wIBL+63QLpngFAM77dAzTRTgTg1uED/rNDQFTa4QBJ6owFCfLhA33IOViunuEAXWpRbROO4QIu4p9k8CrlA0P33WUZRuUD3H9LgWVS5QBVDSNpPmLlAo2VrZGu3uUBaiJhaWd+5QBwrYOZ4GLpAn83o2mImukDkEjlbbG26QK5LcBmBb7pAdjNJjnTEukCzK2Fzg9a6QCJ54hGGJ7tALPFV9ZA3u0BxNqZ1mn67QA== - + - zAsqQPTgmUE+Vw5AovymQBL8/T/1Q7JASTmhPzMM5kC5tJFAp9CVQPqkP0DJ35tA+X32P3ZwUUGrCBdBQwz4P7CoREDx75VBPrP7P+ZPRUCNheRA5cSCQHaZg0Dh4D9A8gNKQTaklUAWKo1AXxk1Qe8pSEHiyitBuy6VQOZL8kCR8+FABN+CQTNNG0Ig3s5AqEAzQaWExT+eaIdAF153QNb6H0Bj+3JA4eT8P+q62D9/F5dAMi2OP12F60KWFc5BRRHXQMhYNUGqbz9AE4JSQQ9I6EG2eTZBpDbrP8n+hEH3zDJAI7mFQY7ltkFKDm5ACI0eQWVcyEG4Zh5BDBLZQElwHECEt0ZBdN7pP4U9wUDfH4JBUM2ZQfrnl0Eem4lB7DSCQdqYlkFwXPRAshgVQLKh8EFofRdBaagyQNHxQUI5UhVBu2BhQV2QL0EirxFCTZdIQsiRDEGF8mZBu/jpQJadhUKh8opBw+KNQYvsDkA8OT1BI8qIQA04LUAUrMU/alcEQUARkUHLysJAQmcvQce0akHcEfdAUhc6QV7RgkAvFKtBsRSDQJ6VDUFufElBERKnQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwIASXkAAAAAAd8VfQAAAAGDnJGBAAAAAAK5FYEAAAAAA+p9gQAAAACA05GBAAAAAwD07YUAAAACAW+hhQAAAAIAdBWJAAAAAoKkiYkAAAAAAJmZiQAAAAEA4PWNAAAAAAFl4Y0AAAACAvidkQAAAAAD0YmVAAAAAgPOEZUAAAABAebJlQAAAAEBuyGVAAAAAgGMkZkAAAABADE5mQAAAAGBLuWZAAAAAQBsoZ0AAAABg4ZhnQAAAAID/YmhAAAAAwJ+DaEAAAADAY79oQAAAAACPv2lAAAAAgMMBakAAAADgvYNqQAAAAMAaAWtAAAAAYMwla0AAAABAYHprQAAAAECoqWtAAAAAAPxjbEAAAAAAZclsQAAAAICmZm1AAAAAwHTQbUAAAACA4uxtQAAAAADZQ25AAAAAwPOEbkAAAADAGUZvQAAAAAC/A3BAAAAAoJRNcEAAAABgvHNwQAAAAIBu0nBAAAAA4CX0cEAAAABAShJxQAAAAMA5MXFAAAAAwB0+cUAAAACg009xQAAAAOCJhHFAAAAAgEagcUAAAABAx7NxQAAAAOAGxXFAAAAAQPHkcUAAAACAzwdyQAAAAKCoFXJAAAAAgLofckAAAABAWnVyQAAAAKCJlHJAAAAAIOuvckAAAABAntVyQAAAAMAh8XJAAAAAAOf7ckAAAADAz3RzQAAAAKAZpXNAAAAAwM7Tc0AAAABg2xJ0QAAAACA/PHRAAAAAgCpPdEAAAACArHN0QAAAAABjqnRAAAAAwHK7dEAAAADg99N0QAAAAGB46HRAAAAAgF8LdUAAAACA6jJ1QAAAAMDRPXVAAAAAwABNdUAAAAAAWmJ1QAAAAGAScXVAAAAAoM6YdUAAAAAAS8R1QAAAAED51nVAAAAAgLPldUAAAABAE0Z2QAAAAGCcYnZAAAAA4KhzdkAAAABgz492QAAAAGAn4HZAAAAA4PLxdkAAAAAgbCN3QAAAAOD0MXdAAAAAICY9d0AAAAAAIWh3QAAAAKAAdndAAAAAwGuLd0AAAABgrBx4QAAAAADgO3lAAAAAYIaPeUAAAABAx6N5QAAAAKBW0XpAAAAA4JW/e0AAAABAx+V7QAAAAKAj+3tAAAAA4O1KfEAAAACgE1Z8QAAAAGDQnHxAAAAAwJcFfUAAAADgYoh9QAAAAOBXaX5AAAAAIA6EfkAAAADgW7Z+QAAAAMC9wX5AAAAAQEsGf0AAAACgtCp/QAAAACD2SX9AAAAAoC93f0AAAADAxdR/QAAAAOCE3n9AAAAAIEu1gEAAAABA1faAQAAAAAA9CoFAAAAAwC4cgUAAAACgECOBQAAAAOA0PoFAAAAAwMRTgUAAAABgeICBQAAAAKC1p4FAAAAA4JHAgUAAAAAAwPiBQAAAAECQcIJAAAAAoKcag0AAAABgZZyDQAAAAGDkyINAAAAAYBp+hEAAAACgyIuEQAAAAKBpm4RAAAAAAFqzhEAAAABg8ROFQAAAAGA0I4VAAAAAgG4kh0AAAAAgYmOHQAAAAGAFsIdAAAAAoLDah0AAAAAAe5uIQA== + KBZXds7jZUAot2DdIQNrQNS+X4D+xG5AIrP8DWmSc0BqPQyU13N2QEAEufjAIndAwJEQmW/kekDOWwUYmTN9QKd0LtyjeoBAEtiEjhjSgEA2nYzRz0KCQBIHc7jEWoRA/cgy4TtLhUA9MfW6EJOGQI7Ns3l9A4hA - + - 96aQQP6myEBS9jtBtYKCQD9y9EDCBRZBIzQRQMYPHEFnosU/WyazP+jIykBUvuo/1rbKQHsPK0Ghv/VAzhwgQDrMukCRqRBAJxXIQFwAUkDTRldArJY/QFKQoEEhJS9BaNEEQQk6SUC4bVpAvP4QQFRN2kATLv1AG5g4QRvb2z9kRyZBpUKVQOySEkESHsE/OjkOQVNqCEDwXOo/WzItQX9xnkAJpClBoxXBQDxgCEDBtOs/CDp2QLyMb0HC1w5Av2ENQXDzM0AjfTtA9Ml1QcTmZEBo8w1B/9KHQVyFl0D8KH9B+YXxQD4FUUC/ntFA0qrTQMra4EA9EcU/ZU/YP05j6ECrDqNAA6GMQLrXYkER3wdAWIUqQRwOTUJ+DcZAKgtMQdyJGkB1USBBr9s6QCmHxT/MWAlCdnMBQcWEBUL18j9AgKTMQIyZrEDg6zJBhf0lQcmnNUDkt2BBxLNhQcLvZUEQ0ERAnUKGQb9xDkI3baFBpTOOQdjmc0GMChZAs4mKQbfcDEBBm2JBHRsCQQJdTkBiPWJAxuCDQQ8LEUA4yilB+LwsQ36tPEGltxxB7lUmQSOD6j8MuaBAyEZDQUZONUHs8RZBAxBhQUXkgUGUqSJCuDPZQVju4kO8ZntC5T16QQ67t0B84otAhAiOQCYYlUCpXvZAox4CQaGGuUG/RrRC4LIcQXWMT0D3Xp9AZigRQf5Zw0AlWrFA4MxIQKi+B0Bt1xhAKJXKP5UgQ0E1hNFArGQyQOSA/0AuHIhATtzFP05DNkA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIDigcEAAAAAghiJxQAAAAIB8AHJAAAAA4EZCckAAAADAk15yQAAAAGAalXJAAAAAoA9ldEAAAACA8pV0QAAAAMAi4nRAAAAAoCrFdkAAAABA5IB3QAAAAIDIpXhAAAAAAHTUeEAAAAAAhQB5QAAAAMD/MnlAAAAAgFtieUAAAAAAAyR6QAAAAMDggHpAAAAAQNYQe0AAAAAAqSN7QAAAAIAkUntAAAAAwCOHe0AAAAAAIMh7QAAAAMAltHxAAAAAAFjUfEAAAADAvSR9QAAAAECM931AAAAAgBADfkAAAABADyp+QAAAAMCsoX5AAAAAQO7ff0AAAABAk/J/QAAAAAAw/39AAAAAoIURgEAAAACgkUKAQAAAAIB1dIBAAAAAIFbYgEAAAADAWyKBQAAAAADkcYFAAAAAII+ZgUAAAAAAp8+BQAAAACBK4oFAAAAAoKrwgUAAAAAAFBuCQAAAAEB1P4JAAAAAYD1JgkAAAABADHCCQAAAAKCUg4JAAAAAoOqSgkAAAADgT62CQAAAAOBi1IJAAAAAYLvagkAAAADgXPWCQAAAAICZGoNAAAAAIKpDg0AAAACgiWODQAAAACDYgYNAAAAAIOOHg0AAAABgJrGDQAAAAGD5zINAAAAAQKoMhEAAAACgQySEQAAAACC5goRAAAAA4MTRhEAAAADgVdyEQAAAAOB0NIVAAAAA4GdKhUAAAADAO2KFQAAAAODGmoVAAAAA4IOxhUAAAADgjsKFQAAAAKC+44VAAAAAYP4BhkAAAAAANyiGQAAAAKBZaIZAAAAAwIiQhkAAAAAAK6OGQAAAAGDquoZAAAAAYG3yhkAAAADgnvqGQAAAAADuS4dAAAAAQNJ1h0AAAADATfaHQAAAAKBxE4hAAAAA4Ik6iEAAAAAgl2GIQAAAAICbrIhAAAAA4AbFiEAAAAAALsuIQAAAACCT34hAAAAAoMzqiEAAAAAghviIQA== + KBZXds7jZUBkuM9LfgRtQEiYIzJJZG5AQh3Og3zCckBZnS+d7ZJ2QA== - + - 4Y6RQIn6DEF5DhFAuXh2QfW4IEEIU1tANf6xQDY68kAQNiNAmJJtQIhrGEBIcYNAUscHQRhV0kBOZVhA8Ac2Qfk1P0DaALdAEBMnQftt0UByXnJAso0AQfi+fEBmLmFAOpQ8QDzJjUAKuiNA194pQBYsrEBH/L1BauO3QAydkkD+nWRAiMkWQLHBv0GWSARBkJvhQHjCC0Hs3AFBYjv0QHj02kBkhD9AxW+XQNgPh0BwKTxAwI9KQIlrEEE5K6hBwJQgQWax10GnNAFBniKaQOCuikEI3UhAjiTWQIP8ukDGwG9B+ufPQaLxhkCaPuRA8hjPQCDTzEEUFxxBzPKaQOo9EUGOoMJAVpCgP4S8c0AD0odATHsNQBhCWUA4aXJAw2goQaKRf0Gk3+RBs6JGQEWuC0GFEahAL4dAQYEH2D8yEt5A5UM0QOSk30CD9jNBUWMZQYwQo0EEPSRC0LVHQWg0CUE6ei9CpGmjQKa4FUE= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4A5fZkAAAACgw6BnQAAAAKDsQ2hAAAAAYEBoaEAAAABAfSduQAAAAMCuEHFAAAAAwKx/cUAAAABA+URyQAAAAOCqU3JAAAAAADJlckAAAAAAt6ByQAAAAMBeP3NAAAAAgJKcc0AAAACAXNVzQAAAAADEA3RAAAAAwPS3dEAAAADAuQR1QAAAAEDYlXVAAAAAwNXBdUAAAAAAJxd2QAAAAED3RHZAAAAAACaydkAAAAAA+fN2QAAAAMDIRXdAAAAAgC+5d0AAAAAAEnF4QAAAAEBqzXhAAAAAAF/beEAAAABAUfV4QAAAAEB48XlAAAAAgJhSe0AAAAAA49x7QAAAAADw63tAAAAAwCsFfEAAAAAAiG58QAAAAMD/2XxAAAAAQGkvfUAAAABAOTp9QAAAAEDUcX1AAAAAwB+PfUAAAACABZt9QAAAAEA2031AAAAAANbkfUAAAACAZil+QAAAAED6SX5AAAAAQL+4fkAAAACA2Qd/QAAAAECrc39AAAAAwF6nf0AAAADAzuh/QAAAAGB0KIBAAAAAYLR5gEAAAACgVPuBQAAAAKDaIYJAAAAAwC1dgkAAAABgtqCCQAAAACC9woJAAAAA4Dsxg0AAAADgfD2DQAAAAKBti4NAAAAAgJ2gg0AAAABgL96DQAAAACBy54NAAAAAYA0mhEAAAADgGiuEQAAAAOAOMoRAAAAAIDrPhEAAAACgpiKFQAAAAMCV4oVAAAAAoO4ohkAAAAAgEIOGQAAAAADlC4dAAAAAgJBuh0AAAADgIpmHQAAAAKB0oYdAAAAAYKXmh0AAAACgZuyHQAAAAGB9MohAAAAAgCxOiEAAAACgzbqIQAAAAICcw4hA + KBZXds7jZUDsyMl+5FFxQNeRyQ6NInNAE4oR9pJieUDX76Vi5TN6QG3y0pfVSYFATiUdzn6ygUBtIcHBgdKEQOIFwQnWuoVAziSQq9TqiEBGM4smYlOKQA== - + - /QjIQMXgkEAkQZ5AeReJQM6OPkA9wPs/cuNRQH39LkFsuVtAmZUFQHPgi0ChIYhALv/mQSJEbkBeOzlA4VbYP4XiMUC1wwdAksEoQDoT/T/l9dc/iZxNQNggsz8v16JACyYUQWcK3UA6oi5BW/oQQJF+PkDdz0hAKPGjPxoWGkG0EJVBAJnGP0Sd6j/b42xBDBgcQv6DiUGJtgdAn94LQjJe0EA4rt9All/oQC5GeECvM6BBYF56QesF/0D3JVtAjd6ZQByeVkE76mJB0ugZQGGxUECxa6A/s+BHQcHryUEgGzBBrWsEQTMWsz+wvgFBgnEBQXUjPEEoGZpAHO4tQb55KUE3TgRB1KFPQbshs0F0xFxBH6tBQlLKEEGG3pJAdVcnQdCZo0CaQGBBE366QWLP40Ccw8xAeyvYPwOPFEEK9bI/ + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQJZoZ0AAAABACO5nQAAAAIDz22lAAAAAwHbsakAAAACgit9vQAAAAID/P3BAAAAAQBsDcUAAAACAJkNyQAAAAKCSgnJAAAAAQBq0c0AAAAAAqDR2QAAAAAB7snZAAAAAAM4Rd0AAAAAAf0J3QAAAAABDW3dAAAAAwKfieUAAAADAZu15QAAAAACtBXtAAAAAQINme0AAAABAhqN7QAAAAIBII3xAAAAAAILkfEAAAACAuGV/QAAAAABfdX9AAAAAwF2df0AAAABgXoKAQAAAAKCum4BAAAAAABKrgEAAAACgb7KAQAAAAGCPE4FAAAAAAOBbgUAAAAAgOK6BQAAAAADkw4FAAAAAwODggUAAAAAgBQeCQAAAACDCFoJAAAAAgOQfgkAAAACgg4+CQAAAAIA9moJAAAAAIImjgkAAAAAgJKuCQAAAACDisYJAAAAAgCW7gkAAAAAA0/GEQAAAAIA3IIVAAAAAQKxzhkAAAADgYYyGQAAAAICz7oZAAAAAQHj9hkAAAADAJgmHQAAAACBbcYdAAAAAoE39h0AAAAAg1gyIQAAAACDz1ohA + KBZXds7jZUAAVPW5y0NsQGS4z0t+BG1AIrP8DWmSc0AyOsR5l5N1QOkNkUeBw3lAjUYOxVrke0AijW1JIgqAQKpQUX+5CoFAIrxbc86Sg0A7VdIX+8KDQLHkuWj6WoVAAoF4J2fLhkA= - + - BxPNQP4IwUCoZURA1hHvQJ0zGEDIZS1AXvtWQE4a1kAsZ/s/+5o/QIuHh0CSuhtBcJ98QA9X2EDGDFdBHZULQTJ5IUFswb9B++z6P6x8kEAn+F9Ant2QQMITN0FdeRpArf0sQK+RckANO+o/zpBgQPGCI0CFlodAaqyvQprwdkCiHFVBCOmLQTiA/D/mTghCj+uOPzNQIkG2sIlBQxexQGfh40B+REpAz4QcQjSRI0BdQI1CoOvHQFoOhUCxauNA+3s0QVogW0CH7YJABVsbQfxlP0AebsNA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgIEmckAAAADA2ORzQAAAAEAA9HNAAAAAQI4EdUAAAABA1Dh3QAAAAMC4UnhAAAAAALgVekAAAAAAduZ8QAAAAEB70H5AAAAAgAgVf0AAAABA2/B/QAAAAMCdOYBAAAAAANa3gEAAAADA1sKAQAAAAIBcnYFAAAAAQIWJgkAAAACgvNGCQAAAAGBXi4RAAAAA4BeahEAAAABgUUeFQAAAAGCwooVAAAAAYOrphUAAAADAzRCGQAAAAIC2KoZAAAAAIMKdhkAAAAAgDMGGQAAAAMAFfodAAAAA4G2nh0AAAAAgynKIQAAAAKAty4hA + KBZXds7jZUC2sNCooUJpQDeULWxqYnBAfWFqBdQRckA38gnAwnN3QPEGK/XDEnpADljn3xujfUB/Js98bVKAQJiwdIjPiYFAECtQFa8Kg0D83T6lW6KEQKEv0a3wwoVA87y+05I6iEChXr/XnEuJQDCHHc3IE4tA8+us/T7Di0CE8C2WgHuOQJKK7LYbLI9Akse2py7ykEDzef6/6UmRQDqOrbr/LZJAEt+tvIS2kkC6paTPVfKTQI7O7VOggpRAAyjlm3ZOlUBA5VJi5g6WQEyqJWiXqpZAiWeTLgdrl0DQe0IpHU+YQP7Ainbd9phALaUyJVlPmkB+2IGLM7uaQHYnc/F5q5tAx1rCV1QXnEC/qbO9mgedQA== - + - kF1xQOMlW0BCMC1AcrS1QA6nNEEAWD1Bo74jQG3EoT8ORtg/LPgaQAahg0BsTQhB3q4jQO74V0EaAKpAwFjfQEQsTEG3yfJAnqpkQIvIbUD7KoBAF/yQQCrLqUDE6zRAo/yUQKUIEUDreL1BMQh4QEjyjUCwFdZA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAA4OjfbEAAAADA62xtQAAAAABwpm9AAAAAIEdhcEAAAACg48FyQAAAAIAvcHNAAAAAIIfBc0AAAADgCPR0QAAAAEBbP3ZAAAAAwEyVdkAAAADALiV3QAAAAAADRHhAAAAAQMZSeEAAAAAA1BB5QAAAAMDkdntAAAAAwASlfEAAAACA1/V8QAAAAICGcn5AAAAAwKyzfkAAAADA6Q6BQAAAAICUooFAAAAAoBMThUAAAABAtyKFQAAAAMB0bIVAAAAAgOWRhUAAAAAgFKOFQAAAAGBbqoVAAAAAYKAqhkAAAAAg9/2GQAAAAIBzDIdAAAAAgC1Dh0AAAABg40qHQAAAAKAC0odAAAAAQC7Zh0A= - - - - - - Jk1/QKc6akBV37I/VYPfQDx19T//U4lANxNIQUqckkEs0vw/Vk/YP2ueMkCaUXNAw5grQXssPEA4USNAtgiOQGBmo0DFJ/4/C1m6QCYwmEDft5VAjiMaQUZ7DkDAKyZB4/YsQBfXw0B+qohBknywP3m5EEEDf+FAPTaVQFgjEUDEFWhCvSd+QQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQN4BZEAAAABAFyJnQAAAAMAKk3BAAAAAwNK/cEAAAAAAbNJwQAAAAMCVRHFAAAAAgApRcUAAAABAfNFxQAAAAEDLc3RAAAAAQIyDdEAAAABA3aR0QAAAAACKYnVAAAAAADSDdUAAAADAbK11QAAAAIAhAHZAAAAAgBMQdkAAAADABTZ2QAAAAAC38HZAAAAAgHhRd0AAAADAvXJ3QAAAAACUkndAAAAAgM/Ad0AAAAAAl9N3QAAAAMAp4HdAAAAAQOgMeEAAAABAaSd4QAAAAIBiUHhAAAAAgCyweEAAAABAdAR5QAAAAEADTHlAAAAAANPUeUAAAADAO0F7QAAAAADku3tAAAAAAKMlfEAAAABAvZF8QAAAAEDiMX1AAAAAwKZifUAAAABAF999QAAAAABrU35AAAAAQJWWfkAAAACAmMV+QAAAAECp0n5AAAAAQAHifkAAAABAFvl+QAAAAMD+L39AAAAAQFfbf0AAAADgJDmAQAAAAGCEPoBAAAAA4HdKgEAAAABgnHGAQAAAAODo54BAAAAA4GOcgUAAAACgTs2BQAAAAMBMQoJAAAAAoPLIgkAAAABgT/yCQAAAAEADRYNAAAAAoJGJg0AAAABgfZaDQAAAAKB5C4RAAAAAwHUuhEAAAACgu6iFQAAAAOCdO4ZAAAAA4LGMhkAAAADgMUGHQAAAAKBXxYdAAAAA4NVNiEAAAADgqfSIQA== + KBZXds7jZUAKI3ffzmRvQBTpB48/A3JA+TZ8X1ezd0Co+Jn0QjR8QPmUWLOvxH5ADk8tcpkagkC3KReXrbKCQHJ8944ls4ZA++wPPib7hkDCGLZNkgOKQCzP14ads4pAVvlZiekLjkDAr3vC9LuOQMTtEGkw4pBACCadwDAGkUBmT428bAaTQLo8As92UpNAA79Cm5eulEAYZvLKslKVQIPWObDtcpZA/elWpPPel0Dg/ymsKXOYQH0BTrlJo5lAYBchwX83mkA= - + - dhb9P45w0UCCjGRAcauoQObd7T9NBFdAAcJtQMZRykCM8llA/a/5QO2ppUCf835AsrcHQGu0v0AwnG5AqKznQFXuVkAba2lAisxHQYCwhEAgMyFAnasNQehaP0CcyN1AcInoQIe6TUALrkhArKRQQMYdEUBBDpNA6xsrQfVeHEHerjdAsUelQGdMXkFjCaNAZPq1Pwnom0B24H5BnbkzQP5cskD4p9pALIe1QFUWsz9pWnRBVgDNQOEtnEFq02lB+XODQCIRfEDpyXxAmh+VQNOWv0DKqehAjAjNQBjJO0AxCaxB/4gCQsqntUAyMf5AWQx9QMdxV0FHYlVBQiygQGlYEUGwoDNBtU2XQD9nM0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwPaTc0AAAAAAAkN0QAAAAEBrYnRAAAAAAKRWdkAAAACgveZ2QAAAAACqcXdAAAAAQLTEd0AAAAAANmV5QAAAAGDD23pAAAAAwDtEe0AAAADAYe17QAAAAECU/HxAAAAAQJRofUAAAAAAFSZ+QAAAAGC/I39AAAAAgF/hgEAAAAAAZvqAQAAAAKAxBIFAAAAAQCQZgUAAAAAAaCKBQAAAAKAFV4FAAAAAAB15gUAAAACA3oKBQAAAAMCvjIFAAAAAgGeqgUAAAADg77CBQAAAAECGPIJAAAAAQDlsgkAAAAAgZLSDQAAAAMBku4NAAAAAQIYThEAAAADg80KEQAAAAEBISoRAAAAAoMWchEAAAAAgltKEQAAAAECF2IRAAAAAAJQ8hUAAAADAjmWFQAAAAMAMcoVAAAAAgOFghkAAAADg+P2GQAAAAEDoU4hAAAAAgFCxiEA= + NrgMGZxjYkByWoXuS4RpQJ0WsIE3I2tAbFyUq/MhcUA5Cx9LftNzQA== - + - y49aQBLnREDFEjhAMjkYQNJCfkBK0A5B5I82QalDjkAB4ytB8+osQCC7eEAJt+I/EN/8PxduPUEji+lAtKlcQHqzE0HctFdAqMIFQXXY6T8CEOo/sq90QfCcAkLSwCNA2zUaQDTLtUDSLVtA0pQbQZz5q0CHrbNAWqHaQO77gUFKkTtAWZmjQbt5oT+SEBFAfb6lQKz3K0FflAZAiqENQQ9P1T9OkhFAByPbPw== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQFgBZEAAAADANYhlQAAAAGC16WVAAAAAIMEkZ0AAAADAMWdnQAAAACChXWhAAAAAQNXFaEAAAACgOOhoQAAAAAD+mGpAAAAAYNfiakAAAABAV6BrQAAAAIABSW5AAAAA4FV/bkAAAABA+4BvQAAAAKC6vm9AAAAAQHfDcEAAAABgqNFwQAAAAMBJ/3BAAAAAQPBLcUAAAADAIRJyQAAAAIBSjnJAAAAAgOOuckAAAAAAGddyQAAAAAB7j3NAAAAAAPyfc0AAAABAKKpzQAAAAIAJvHRAAAAAQEuRdUAAAAAA7OZ1QAAAAMBGP3ZAAAAAgC1ydkAAAACArup2QAAAAMBfZHdAAAAAQAmxd0AAAADAt953QAAAAMC/7HdAAAAAQCOTeEAAAABA3aB4QAAAAED0tnhAAAAAQJzzeEAAAABAHQd5QAAAAAACNHlAAAAAgIVIeUAAAACAQ355QAAAAACYlHlAAAAAAIymeUAAAAAAHSh6QAAAAICtb3pAAAAAAPJ9ekAAAACAhIx6QAAAAMDronpAAAAAQD60ekAAAABAeJx7QAAAAIA7r3tAAAAAAHRDfEAAAAAAzYd8QAAAAMCStnxAAAAAwI7gfEAAAABAhgR9QAAAAMAPJH1AAAAAQFEufUAAAADAtTl9QAAAAIC6XX1AAAAAwK71fUAAAADA7yZ+QAAAAMDSQH5AAAAAgJpLfkAAAADANl9+QAAAAACd0H5AAAAAwDDefkAAAABAPRN/QAAAAEARIH9AAAAAwB8wf0AAAACA4zeAQAAAAIBacYBAAAAAwB+agEAAAADAnv2AQAAAACDbJIFAAAAAYMNTgUAAAABANuuBQAAAAOBEAoJAAAAAAF1CgkAAAABAaWOCQAAAAGB+oIJAAAAAwBbLgkAAAADgm0qDQAAAAICEgoNAAAAAIJKMg0AAAADgjsGDQAAAAID9yoNAAAAA4CJlhEAAAADgBW+EQAAAAICSoYRAAAAAYN+qhEAAAADgf/2EQAAAAOAqgYVAAAAAIAeHhUAAAAAAa9uFQAAAACCQ44VAAAAAIPH2hUAAAACAENOGQAAAAACl6oZAAAAAILYPh0AAAAAg0tSHQAAAAACcOohAAAAA4EWkiEA= + rEBFHEuCZUAoFld2zuNlQB37tsc98nBAiTDsKtfyckDkVUsBViN6QFCLgGTvI3xAVthvHTcqgEDTb8K0Q0qAQGGYIKpvEoJATbfvS27Cg0Dc301BmoqFQFh3oNimqoVABwrQQ+bCh0C8pGr1MsOIQGo3mmByW4xAINI0Er9bjUASRT0s9S2QQMJ/f5clOpBACZQukjsekUA= - + - TvzpPyqmkUClRBdA2cGEQHtEIkCnQfc//QulQAeyp0DNEjZADRmlQO2IIUBiETZASt6ZQJG0w0BqJhlBjXe1QFh5RkAIdk5BL+fgQFCRREBcGJ9AnOL2P5GKS0HhvslAH5KkQZ1txD8UjnRB9HzNQBXFBECujxdCDJ/hP/mmJECLxTNAQe2MQb3HukFn88dAaubXP+71qkA0xhhBquWKQTmcsUHF1wRB3OT2QM0KEUD5GYxAVtmZQMJFvEBIzQdAtZodQ5f5PkCbmE9A45sqQAzhOkEj6lpAySc7QErNhECvjm1AgAysQDbALEDilrFB3L/WQtl6z0CqVQ5BT7OWQBapoD8Hu/NBlwb1QDc1WkHAJItBZlUSQa0+oD90lU9A2cj9Pw6PxT8JZrhAeyXdQHUHdEExNrM//bfwP9hC3kB0noRAKD7qQezUgEG0yQFB1hseQRNhl0AjCgJC+JcnQU2FWUCQAQJBkMppQebTYECOoeRAbWmkQLzRskDG1sRDhx72QRCOREBiq41A+e+/QDPQxD/jUS5BExk2QTYY6z819iFBJOyNQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAAK79ZkAAAADghChnQAAAAKC9WmpAAAAAwL8pa0AAAACAeohsQAAAAICNam1AAAAAoP4xbkAAAADAjAVxQAAAAAAHQ3FAAAAAYChwcUAAAABA5JRxQAAAAMBnXXJAAAAAQGtvc0AAAACgE6RzQAAAAMD3w3NAAAAAAFMwdEAAAACAp2Z0QAAAAICJgXRAAAAAgP2TdEAAAAAA3Nh2QAAAAED6EHdAAAAAALSSd0AAAABAm9Z3QAAAAAAYRHhAAAAAwDNQeEAAAADAmxN5QAAAAEC9IHlAAAAAwI6zeUAAAADAQNJ5QAAAAEC4NnpAAAAAQOZAekAAAABA1mx6QAAAAID+4XpAAAAAwCHvekAAAABA2wJ7QAAAAAAyXntAAAAAgLCDfEAAAACAFvp8QAAAAMCwF31AAAAAwNT2fUAAAAAANwZ+QAAAAEDuE35AAAAAAIIffkAAAABAgtd+QAAAAABEDX9AAAAAAO5Xf0AAAAAADKN/QAAAAMCGxX9AAAAAADjxf0AAAABA4AeAQAAAAOC2GYBAAAAAYNBZgEAAAACgwoqAQAAAAOAKl4BAAAAAYJPCgEAAAABAtsmAQAAAAODZ8IBAAAAA4GkCgUAAAADArh6BQAAAAOCVKYFAAAAAoE9OgUAAAAAAxWGBQAAAAODYaoFAAAAA4A+DgUAAAACgMIyBQAAAAEBer4FAAAAAwFfUgUAAAABgM9qBQAAAAGC2+oFAAAAAoFkFgkAAAAAgOBmCQAAAAGBgY4JAAAAA4IlsgkAAAADgFIuCQAAAAGDCg4RAAAAAQG+hhEAAAAAAY1SFQAAAAIDj6IVAAAAAwK5qhkAAAACgPXSGQAAAAOAVkoZAAAAAgNHEhkAAAADAPPCGQAAAAODRJIdAAAAAIGNkh0AAAAAgImyHQAAAAMDzc4dAAAAAwNSqh0AAAABgMnqIQAAAAGDvmYhAAAAAoBbxiEAAAACAlvuIQA== - - - - - - YPJhQF7gF0BD5xFAsmgsQKfR6UBYicU/zQg/QWib1UCttp8/1opjQMkgRUHqCuw/ZUTEP82WDUCkFBtA2MvEP/J2TkCE+sQ/TGtJQEo+u0AxkW1BNOcWQOF4X0DQ05lBqzsXQQyuWkJfxbRAOjzEPxReKUFhYPNA4jMcQQk8kEA5cQRCq+goQa0JIEBUi19ApkkYQFqf40AouBBAEi38QPnuK0CjLm1AQ+aUQPrb7ED4GO1A790VQtpU1z/YgjVB9MdlQSdnp0DYykxAfYlWQPET6j9WL0pB+xxXQTJzsj8w+zdBmD8VQD9QGUGNJo0/gCuSQA0aIEHEJwNB6EmAQJ7sqEAzTKA/rrWqQA2uWkDB8ttAxymyQWyzdkAC+GxCbVGOQK3YuUCORCpAt39qQFb0D0CaUZFA6dNzQrYa6UC9JaA/pmGCQDCLFUEK5P9AiGWwQaQXYUCOd9NAi+qfP+7v/UBG7VpATc6gP6DNWkA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAEnFZ0AAAAAgdR9pQAAAACDmQmxAAAAAgChnbEAAAACA4YduQAAAACBtoG9AAAAAgP0VcEAAAADgUmJwQAAAAAD94XFAAAAAAHYRckAAAAAAfyVyQAAAAEDtnHRAAAAAgAC4dEAAAABAFYN1QAAAAIAdHXZAAAAAQNczdkAAAACAvW92QAAAAACEpnZAAAAAALPldkAAAACAdgZ3QAAAAMCJQ3hAAAAAQANjeEAAAABAtBx5QAAAAMDjM3lAAAAAQCUte0AAAADA2aF8QAAAAECw1XxAAAAAQP3lfEAAAAAAplF9QAAAAMBKt31AAAAAgFQGfkAAAAAAiFR+QAAAAIDmjH5AAAAAwDrNfkAAAACAauN+QAAAAADuDX9AAAAAQM10f0AAAAAAoal/QAAAAEBA8H9AAAAAYOkKgEAAAABAbCKAQAAAAODNaoBAAAAAwMSEgEAAAADA6POAQAAAAIBkAoFAAAAA4EBVgUAAAABAp2iBQAAAAICahIFAAAAAIAaXgUAAAACg17CBQAAAAIAC3IFAAAAA4PLpgUAAAACAdQGCQAAAACBADYJAAAAAQPUogkAAAAAAnDOCQAAAAMBcS4JAAAAAoOlkgkAAAACgTKGDQAAAAECV+oNAAAAAYFADhEAAAAAAzByEQAAAAOAyKoRAAAAAQG5whEAAAADAiZuEQAAAAEDE+4RAAAAA4EyLhUAAAADAU0KGQAAAAEDRfYZAAAAAQAGFhkAAAACgx6KHQAAAAOABHIhAAAAA4DZTiEAAAADgfXiIQA== + 4qRcexsiYEA2uAwZnGNiQP9T9bnLQ2xAVGelV0yFbkBW/v7hfZJyQKoRr3/+U3ZAVlzbNdajeUAet29v7lR+QOUAzhJj0oBAjgqmYSOzgkDlL7w8D1uEQLk0KGRv64RArFtiTHtjh0CAYM5z2/OHQKuKUHYnLIpA - + - HFivQBZ2O0DZKf5A/e4ZQKJLxkDPcPw/Tpt7QO7TjUBXVg5BPnOJQQB2SEC6gFFAxX6DQN34VkCA0aVAr5sSQDRzgkCqk9g/Ys/EP0gHt0B17BlACKX/QCGMMUBHOQVAXCabQGFv9kBYTNFAtS3vQKPE20Ajoh1BH0BiQempG0HzkalAsBo8QVU46ED6m21BbnsUQUHJIkHyBcNA3hNpQMigjELGExpCUy4dQVVPyEDC3jRBwoYSQSdGGkAIvjJB9ewGQGvnFkFVuoFBXoquQFFiuUEzGYdANwu1QcBuVkBrEoVANH62QSiUGEBWxgBBhKIpQiMAQUEeiPFA5jzXP5iP6EA73u1AfWdaQJApA0GkdTpBwjsMQJb9d0EI08c/Msi1QBIK9EA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwLkOXkAAAADAcolfQAAAAICM4l9AAAAAwHRDYEAAAABgOW1gQAAAAICOwGBAAAAAwMPfYEAAAABg7AJhQAAAAGCKRmFAAAAAwL0tYkAAAADAk2RiQAAAAEAaCGNAAAAAwKIDZEAAAACAaihkQAAAAMCnw2RAAAAAQLa0ZUAAAAAgKuFmQAAAAMBzCGdAAAAA4HeKZ0AAAABAeWZoQAAAAKAxpWhAAAAAYCnqaEAAAAAgOwRpQAAAAABFJmlAAAAAAB/maUAAAABAKmRqQAAAAGBAsGpAAAAAoNEaa0AAAAAgfItrQAAAAGBBpGtAAAAAQJTCa0AAAACAIuVrQAAAAAAsH2xAAAAAgGA+bEAAAABA4oRsQAAAAMBxoWxAAAAAAG4JbUAAAACATmJtQAAAAICNg21AAAAAgOHCbUAAAAAA8OJtQAAAAEBQBG5AAAAAgNkbbkAAAAAAinZuQAAAAIDIoW5AAAAAwB4nb0AAAAAAyUdvQAAAAAC6nm9AAAAAQN66b0AAAACAueFvQAAAAEAsGHBAAAAAQNglcEAAAAAAdVNwQAAAAOCxYnBAAAAA4ExycEAAAACAY7BwQAAAAEAY3XBAAAAAAJPwcEAAAADAxwtxQAAAAMC6I3FAAAAAwPpDcUAAAACAH1NxQAAAAIB8cnFAAAAAYIiWcUAAAADAq6RxQAAAACD0s3FAAAAAgK/DcUAAAACAHdZxQAAAAAAh5XFAAAAA4GbzcUAAAADg/AFyQAAAAIDmMnJAAAAAoO5QckAAAADgLGByQAAAAMBeiXJAAAAAgFbTckAAAAAAq+ZyQAAAACAr83JAAAAAIJMGc0AAAABA3CxzQAAAACCvWXNAAAAAoGR9c0AAAADAZMVzQAAAAMCu1nNAAAAAIBUDdEAAAAAA7RN0QAAAAEBCH3RAAAAAAH03dEAAAABgcER0QAAAAGCPUnRAAAAAgAtidEAAAAAAwnJ0QAAAAMB0gXRAAAAAwG2idEAAAADA19J0QAAAAOAz/XRAAAAAwF8VdUAAAAAg5SN1QAAAAECMNHVAAAAAoMpDdUAAAAAgo191QAAAAKBIa3VAAAAAQKt3dUAAAADAtYx1QAAAAOBMsXVAAAAAwN3CdUAAAADAvdN1QAAAAIDc7nVAAAAAYCQEdkAAAADgjRB2QAAAACD5GnZAAAAAYMwvdkAAAADg4U12QAAAAGDkYHZAAAAA4Dp/dkAAAABgl712QAAAACDqDHhAAAAAwChteUAAAAAgl9F5QAAAAKDo6HlAAAAAIJV8ekAAAABgOhZ7QAAAAOCmV3tAAAAAQFSwe0AAAADgw/V7QAAAAOAMA3xAAAAAQEESfEAAAADAQRx8QAAAAKBxhXxAAAAA4DacfEAAAADg0OB8QAAAAKDDEX1AAAAAYFw2fUAAAABgTV59QAAAAEC3c31AAAAA4FeRfUAAAABAZ7x9QAAAAKBYF35AAAAAYLNHfkAAAADgTWV+QAAAAKDBs35AAAAA4LDDfkAAAAAgJzV/QAAAAEDDUn9AAAAA4Kxcf0AAAAAgamZ/QAAAACCCg39AAAAAwEekf0AAAABgxcR/QAAAACCqAYBAAAAAIH8GgEAAAACgjxuAQAAAAGDkR4BAAAAAQMFRgEAAAABAmlqAQAAAAKAJYoBAAAAAoLDjgEAAAAAAU/GAQAAAAKCIaYFAAAAAIL2KgUAAAADgOJKBQAAAAEC3mYFAAAAAwFSzgUAAAABg1/mBQAAAAMCvAIJAAAAA4GNBgkAAAADADhyDQAAAAADGK4NAAAAAQNtLg0AAAABgVWODQAAAAGBvbINAAAAA4Ntyg0AAAACgDHuDQAAAAGAOuINAAAAAID39g0AAAACA8gmEQAAAAGA0MoRAAAAA4DiYhEAAAAAgzDyFQAAAAAAmcIVAAAAAgHybhUAAAACgzNqFQAAAAKAM44VAAAAAALmUhkAAAAAgbCWHQAAAAKAdKohAAAAAYH86iEAAAADAXkKIQAAAACA2jYhAAAAA4HCbiEAAAABg37uIQA== + KBZXds7jZUCGpXi5ZgJtQNvlv3T/InRAHl8GqPbRdEA28gnAwnN6QOW5muEOA35AQ/mLL/RxgEA= - + - gFMFQeJ8ikA/JwdA6gcbQs56EEAgFZ8/7lTSQqKiDEHMhzpA9dD7P0Q+KEK7jDRAiJyxP8uTqUAqEz9B02m1QA2ALEFdtoNAgtqFQV+wHkD/MSRB0KKwQIM6VkDUnu5B+bq6QVUOEEBA0jVBOvX7P3McxD9zk2tA25KLQBG4BEBeXohBbXuQQUlWZUD5VAFBk2i1QJDPsj9m/eBANA0RQc4sQEHJWBpBJCG5QOJvHUHr+8M/8AWlQHruxz+giAhCh94TQbbRR0AIznRBZBk6QqetcUAtU2VAqMYAQSyNM0HndQJBmuItQkGkwUAxqI5BRZ/TQZos80HcPIFBCfdkQYT1mEG4vABB1oBlQaeVf0EXf4RABYKzQanDF0K3zW5BNrPXQEPMPkDFEe9BJ6WSQQ+6sEGWnIVBjNPTQXegMkErxHRCEZukQcVYz0DWDy1BoiACQcynQkLGrAFBrxDLQgbO+D94y0ZAjhzMQIwzDELgNMQ/vnwjQIb7IkCMJYVAzi9wQRY6HENBC7pAOcmDQcXjhEFHyqVByp2JQdeXIkATKixCUwIoQpctrkCiZBdB0vRjQX4LKEDX1j1BTKZ/QKBXnUE87+BANZlfQAiYjD8no85BboYMQt+N10Gh5AFBE1KpQT9JEEBsC+1BpQ4IQeWv7EB9KZtBXOphQl1OKkH9a8NCVngHQghXe0BuB19BKWO3QBvxmEEOtfpATrygQKKqtEC7+5hA4P7hQWsBDEK8n6xBS4MpQZ/QYENz1H5CDjkGQv5UBEGlJHtDFx8aQYLEbkR0kbFCmVGaP9CLKkGA1yhBawwIQRTH2EBE93FB8WUOQeffM0AP9eRBbUbnQLNqQELl1gFBx2ybQOF6DEOIstlA3i6aQEeaNUBaNDpAzi8vQWBBH0H1p7xBluYPQaXO1j+9CRhANN1xQMS6FUKKJNBC0dHvQPGsf0Cxf4ZBlgcYQYYO6kCH/NU/lKU2QXbuTEGjwRdAAZlBQd/4MEBFxpRADkJUQQ4yG0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQBfFYUAAAADg4OpkQAAAAEAJImVAAAAAoINAZUAAAAAAtH5lQAAAAEC6ImdAAAAAANqCZ0AAAADAUs1nQAAAAIAWKWhAAAAAAIfiaEAAAACgYN5pQAAAAIBKAWpAAAAAgC7FakAAAACA1uRqQAAAAAAN6GtAAAAAQKACbUAAAADAoiVtQAAAAMAoa21AAAAAQMnjbUAAAABAVkhuQAAAAACyZm5AAAAAwAt7bkAAAACg1iRvQAAAAEBibW9AAAAAAKymb0AAAAAAuMBvQAAAAEBF4W9AAAAAIFwhcEAAAAAg4rJwQAAAAOC37XBAAAAAQDozcUAAAABgiHNxQAAAAODjsXFAAAAAIFjTcUAAAABgo/BxQAAAAICnlHJAAAAAQJSyckAAAAAg3vJyQAAAAACfAnNAAAAAgIcSc0AAAACAmTNzQAAAAGBgwnNAAAAAQD7ic0AAAAAghwV0QAAAAOBIFnRAAAAAANBRdEAAAABAuXR0QAAAAIBYknRAAAAAAIWwdEAAAADgmOR0QAAAAGCfMHVAAAAAYFhddUAAAAAAH4p1QAAAACD3k3VAAAAAABfFdUAAAACgPvJ1QAAAAMDkEHZAAAAAAOZBdkAAAABgCpN2QAAAAGDjpHZAAAAAgNC0dkAAAAAARsp2QAAAAOCh2nZAAAAAgMDzdkAAAACAwwV3QAAAAIC+JXdAAAAAYNpAd0AAAAAA9kp3QAAAAACFVXdAAAAAwC1vd0AAAACAU3l3QAAAAKB5sHdAAAAAwGTDd0AAAAAAKdd3QAAAAAA273dAAAAAIG8CeEAAAAAgLTJ4QAAAAAAhSHhAAAAAQIVkeEAAAACg+nR4QAAAAGC/kXhAAAAAYJSleEAAAABgDeJ4QAAAAMCx8nhAAAAAgECSeUAAAACg96h5QAAAAOCxu3lAAAAAYI7ReUAAAADAseV5QAAAAGAQ9XlAAAAA4OFEekAAAACg3VZ6QAAAAMCzcXpAAAAA4EeFekAAAABAuRF7QAAAACB3HXtAAAAAQLcxe0AAAACgzkR7QAAAAMAZUXtAAAAAID9ie0AAAACgGJ57QAAAAOAms3tAAAAAIE/Te0AAAACAO3F8QAAAACALfHxAAAAAgHmjfEAAAABgMs58QAAAAAB/2XxAAAAA4Ej7fEAAAAAA8SJ9QAAAAKCMLn1AAAAAQE1dfUAAAAAgLmp9QAAAAKCGen1AAAAAwIHtfUAAAADASVt/QAAAAEDFv39AAAAAgNsPgEAAAACA6iCAQAAAAGBHOoBAAAAA4DxFgEAAAACgVmGAQAAAAAAzc4BAAAAAwFF8gEAAAAAg8amAQAAAACB0s4BAAAAAIF66gEAAAAAgS8qAQAAAAIAH04BAAAAAIAXqgEAAAADAmUGBQAAAAMDQUYFAAAAAoG55gUAAAAAgMreBQAAAACBO8IFAAAAA4MRbgkAAAACgmIWCQAAAAKBVs4JAAAAAICzUgkAAAAAgxOOCQAAAAOCN84JAAAAAwNr8gkAAAACgogyDQAAAACDCaoNAAAAAQL9yg0AAAABg5oyDQAAAAKDPkYNAAAAAoIMshEAAAABg8TqEQAAAACB0U4RAAAAAwEFthEAAAADg2YmEQAAAAGAQsoRAAAAAINbThEAAAABgQgGFQAAAAABQgIVAAAAAYKOQhUAAAADg3GKGQAAAAGCpcoZAAAAAAHGUhkAAAADAvLuGQAAAAMCzwIZAAAAAIBbhhkAAAAAgr+uGQAAAAODsMIdAAAAAoDxKh0AAAABgMVOHQAAAAGD+XIdAAAAAwOZzh0AAAACgInqHQAAAACDrg4dAAAAAgIfPh0AAAABgC+2HQAAAACDL8odAAAAA4GsriEAAAACgtnKIQAAAAOColIhAAAAAgE2yiEA= + NrgMGZxjYkCmvpxNHKRuQBu6YmAmQ3BAcQ5nZb6zdEB1aNBXkcJ0QMwasbCBBHtA0HQao1QTe0AmyR6o7IN/QPeR2XCCOoBAvr1/gO5Cg0CTk/19okqDQA== - + - ZVH7Py93KUAIxKtA8tsZQFX5x0AEvMM/QpWjQCw9ZEBVHAdAU3epQIK83UBw+VBA2bETQntnJEH3KINANscBQq3XV0DqRbJAqeNsQF4aYUDUKE5Ben0IQL6DH0GbQdA/CHAZQJrEykDOTbxAdsf6QPGxP0HzNX9ALe6IQFzptT/Llb5ABuP8QPyd1UBrYWNAqop/QA7y0D+AxVxBmdflQMX4t0A54d5AoLCiQINJlUDUc89AqnPyQAc/vkCOKUZBDnOXQMX0JUHB7JRAR0jfQB7bnUC0fadBcSzdQJRAFUCjKrA/y1UIQv6uNUD/qilA4BdfQGJV3kCfmURBhr87QScmk0GAEx9BGt87QYH1oEFGZC1BhgdzQMxJEEGclvtAWGR2P75R6T8YPnZAq+IyQT8gqkDtfY9BxYmsQEz4MEGG6rE/0kQ2QYTMUECDCwdAJxCDQPWkTUBz1NNASj4LQa0oxEF5/+FAdgY9QDw8E0GccBpCkqCpQMKY7kDgjxZBEbo7QJpHX0BFGvZAM4kSQdj7h0F7EHxBIj0QQBNMxD+AwpJADrvQP6AITELfGQdBilUAQtcB4z8YSkVBmJO+QCuWGUBfMCFBJzYcQZ2a+z87bgxBtHLLQLnNwECkPIRBMgh6QOOKhEBH0/NAmIFNQSkSikB88DtA8XAyQX40p0C0MKVA4NjVQHxN6T95ZfU/cqdgQJvjkUBCipdALQtNQVaEJ0FyseNAhXIvQp5EOkCkaa1BwAwpQB6CEEBGyepCqYMEQhR7wEAr4lZB4Cc8QZ5dUUBUCidBHvu8QQsl/UF5gJ5A8iQpQH0TOUJj9iRB5bvOQN8AV0BzmjJBEY38QBwdzED+kplAFho3QR0gYUH2FwdB4iVeQaCVnEHJtL9AyCOiQUZMM0KiIY5AdpxTQZ5rrkDhsmBA7MmeQIO/GEH5EVFATd0iQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIGQpYEAAAADAcuJgQAAAAMBrEGJAAAAAwPqBZUAAAAAA5uRmQAAAAMDWHmdAAAAAwHNEZ0AAAACA/mNoQAAAAECZAGlAAAAAoLY/akAAAABABo1qQAAAAMB3pWtAAAAAwMRObEAAAABAvuVsQAAAAMCyAW1AAAAAAKY0bUAAAADAzuhtQAAAACACBW5AAAAAAIODbkAAAAAAyahuQAAAAIDK/W5AAAAAQPXmb0AAAACAylRwQAAAAAAMBHFAAAAAYEoVcUAAAABg3ihxQAAAAECPRXFAAAAAgELBcUAAAADAfAFyQAAAACD7Y3JAAAAAYJpvckAAAACgCYJyQAAAAGB5pXJAAAAAYJXEckAAAACgNs5yQAAAAABI4XJAAAAAIG4Qc0AAAACAQGBzQAAAAMASc3NAAAAAgAv2c0AAAADARyJ0QAAAAMDtU3RAAAAAgDd1dEAAAADAWYt0QAAAAIAnpnRAAAAAoOcDdUAAAABAyQ51QAAAACAoPnVAAAAAAL1ZdUAAAAAAdHV1QAAAAIAGlXVAAAAAwAq1dUAAAAAAaNF1QAAAAEDH/nVAAAAAgF8VdkAAAAAggy12QAAAAMC3SXZAAAAAIM5UdkAAAAAgzmJ2QAAAAGCxgnZAAAAAQHqOdkAAAAAALrF2QAAAAMDHwnZAAAAAwHPSdkAAAADAGOJ2QAAAAECnFHdAAAAAgKg1d0AAAACglVV3QAAAAGCwYndAAAAAIMN0d0AAAABg47Z3QAAAAKBoy3dAAAAAYBACeEAAAAAgkhF4QAAAAMAeIHhAAAAAoF1VeEAAAACgFIx4QAAAAOACnnhAAAAAQPOoeEAAAABgVLV4QAAAAECnwnhAAAAA4KPWeEAAAAAA9+F4QAAAAOBh7XhAAAAAgKT/eEAAAACApzB5QAAAAMAGXXlAAAAAYKZ2eUAAAACgvLV5QAAAAKBFxXlAAAAAgNvUeUAAAAAg+Od5QAAAAIC19XlAAAAAQCwUekAAAADAfC16QAAAAAAyO3pAAAAAwJdSekAAAACgYmJ6QAAAAGDekHpAAAAAAJ7DekAAAAAgrOF6QAAAAKD/83pAAAAAIO/9ekAAAACgAQN9QAAAACC+aH1AAAAAoPODfkAAAAAgH5V+QAAAAODcJn9AAAAAoE0zf0AAAAAgDMd/QAAAAGDhFoBAAAAAgMg5gEAAAAAgfZyAQAAAAOBQsoBAAAAAYJ3BgEAAAADAncuAQAAAAOAo2YBAAAAAAODhgEAAAABgtOeAQAAAACAp+4BAAAAAoLcigUAAAACgimmBQAAAAMCOiYFAAAAAQEn6gUAAAABgFCmCQAAAAMBzRoJAAAAAoMJTgkAAAACgylyCQAAAAKAzsoJAAAAAIEa7gkAAAADA0sqCQAAAAIDwB4NAAAAAINweg0AAAAAgI1CDQAAAAGDqV4NAAAAAwAd9g0AAAAAgdoaDQAAAAGDdjINAAAAAQGbQg0AAAABg9+mDQAAAAGALBYRAAAAAAAQMhEAAAAAgXhuEQAAAAEAjVoRAAAAAICNihEAAAAAAkaSEQAAAAKB/y4RAAAAAoB/ahEAAAABgut+EQAAAAGDg7IRAAAAAoN4BhUAAAACgFiqFQAAAAKCmcYVAAAAAYD59hUAAAADgWaKFQAAAACD9u4VAAAAA4FryhUAAAAAgX/qFQAAAAOB+G4ZAAAAAIJNyh0AAAAAgMIeHQAAAAGA2+IdAAAAAQMtCiEAAAABguXCIQAAAAADCeohAAAAA4PyEiEAAAABgeoyIQA== + NrgMGZxjYkDiYBUjzERuQKPid1q/wnFAOAsfS35TeEA38gnAwvN7QJMXaZZBpH5AGyjziY2CgUBbkLVjYgqCQKwsdCLPOoRAW7+jjQ6ThUDZMhnIMGOHQCXHbECQq4pAPGDj5Lz7i0BpimXnCPSOQPayw9w0/I9A - + - IBOxP7S2FUGkmA1AXIgRQPCT6kB39zBAiWa6QHZRsEDTOUhAup0DQVpmB0CqN9c/WEeZQKdRB0BmTrE/GZ0XQReym0C4X65AIgG9QeqX9T9yK74/HdIPQOe1uUAoVihBa9d0P0nCBkBnh0VAMaabQNpgnz+OWyRB4cJ/QOEnjD+FZxpA1Bo3Qf27oUEGNeZA1OVXQCUbKkAtcZFA17orQJveIEGXGW1ASDbWP0Aw+z8utXFAlGrKQDa1lUAmZrBAiyVeQWDlikFBHTFBO5HWPzDwQ0DQewlB3cAiQILf8kAWviNBZwe7Qb5mDEFQyrBA57GpQDytGUD2CZFA6vUDQYpWFUAgGARBYhkHQE+JKEBAlT5AyK8kQZnv1z/u6oZAn5OrQFeDyUCGsXRBLCueQITQnUEDraBAv7UHQQAKnkBSYTdByndmQbioI0Ga4i9BXsveQGp8PkBucgNBgqaFQSlra0HIVC5BhfhsQXCyk0F5E3NAnnGSQTmhEEAJYuRBoPKjQXPDokFiUA1C7yFCQVJyfEBn+AZArP+tQMObDUB8LAlBsVuuQGJVWkG+GkpBgytaQMFY00CmoxlA6I4wQIoK8UBrvW1CDnoqQUhIS0EdmVZBymALQiDA40Hm1QFBAvXaQL93V0AQz3tADF4bQaYNHkEJHJdB/v8rQPrqMUCMmek//pajQe11KECyhoxDQzKMQE2KO0D3SlFA2ToZQCySX0J28mRB/LSGQFRV00Bt8jhB5awrQNiPY0AFMYJBlYtXQN1NrkCJ3cQ/fn/DQL8bp0AIjtZAG+2DQep0SEDClSNBHnGePzyfnj9+ZYVASv9MQaFVokCSSMQ/2qB1QOtYw0B3OgdAGMyWQLZ5tUB12RFBEampQH2ApUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwNWcY0AAAADA4M9kQAAAAEB/5mRAAAAAYJMDZkAAAAAA7UdmQAAAAABnKGdAAAAAwHBFZ0AAAABAbWJnQAAAAEDJX2hAAAAAwIV8aEAAAADAm1xqQAAAAKAQIWtAAAAAgDFoa0AAAADAbGVsQAAAAMAHjmxAAAAAQELjbEAAAADg2GRuQAAAAOBqqG5AAAAAgPAJb0AAAACghYBvQAAAAECV0nBAAAAAQFTicEAAAACgqjRxQAAAAMD9QnFAAAAAgD9zcUAAAABA8aJxQAAAAECHsXFAAAAAoJ3OcUAAAABARO9xQAAAAABkJHJAAAAAwAE0ckAAAADAZHNyQAAAAIC6knJAAAAAwMGsckAAAADgAsRyQAAAAEBJ5HJAAAAAAG1Hc0AAAABAImVzQAAAAEAfhXNAAAAAAAySc0AAAADAmx10QAAAAIAUb3RAAAAAQBSvdEAAAABA7MF0QAAAAICc33RAAAAAQOYIdUAAAACAukB1QAAAAIDnbHVAAAAAwGePdUAAAADAZKJ1QAAAAAANsHVAAAAAAC3odUAAAABAYRV2QAAAAAC5IXZAAAAAgJKMdkAAAADAIbN2QAAAAEAXbndAAAAAQAiDd0AAAADAZsN3QAAAAABG03dAAAAAQFzmd0AAAACA7TZ4QAAAAAC7RHhAAAAAQPVUeEAAAABAw2V4QAAAAEANtHhAAAAAQJExeUAAAADAck55QAAAAIAvYXlAAAAAQNVveUAAAACAYpZ5QAAAAICToHlAAAAAgOLCeUAAAABA0Ot5QAAAAICLEnpAAAAAwEE/ekAAAAAAqlx6QAAAAED4dHpAAAAAgHqAekAAAADAwpZ6QAAAAECEo3pAAAAAQEa/ekAAAAAAj8t6QAAAAMCj1XpAAAAAABVVe0AAAADATnF7QAAAAAAh53tAAAAAQGH2e0AAAABAaQx8QAAAAEDpF3xAAAAAQH8ifEAAAACAATJ8QAAAAMBIPXxAAAAAAIaNfEAAAACA6Z18QAAAAIAl0nxAAAAAAKz9fEAAAADAeSB9QAAAAABBNX1AAAAAAJNMfUAAAACAY2d9QAAAAEA9jH1AAAAAwG+jfUAAAADAybR9QAAAAMDBwX1AAAAAwMfmfUAAAADAu/l9QAAAAMBYJ35AAAAAwFhBfkAAAACgLhyAQAAAAGA9NIBAAAAAQDZCgEAAAAAgwUuAQAAAAKAeVIBAAAAAoEtwgEAAAAAAn6iAQAAAAADru4BAAAAAALPYgEAAAACA5wmBQAAAAOAUFIFAAAAAYM1BgUAAAADgWVuBQAAAAIB7YYFAAAAAIL5ugUAAAACgUJOBQAAAACBhqYFAAAAAoNPTgUAAAABA1/OBQAAAAMAwS4JAAAAA4PyBgkAAAADg7ZWCQAAAACDL24JAAAAAAHHkgkAAAAAA6CODQAAAAGAuZINAAAAAYNRqg0AAAADAs6KDQAAAAEBIqINAAAAAoKDgg0AAAABA9/GDQAAAAOBwE4RAAAAAwNhkhEAAAABgX42EQAAAAIBco4RAAAAAoI+uhEAAAABAosyEQAAAAOBv6IRAAAAAgIL0hEAAAAAAjPuEQAAAAKCRAIVAAAAAoEMahUAAAABAgkuFQAAAAOBla4VAAAAA4Ol2hUAAAAAA1JmFQAAAAKDU2oVAAAAAoNbihUAAAACgBPCFQAAAAMAZBoZAAAAAoGAohkAAAABgRV6GQAAAAEDbZYZAAAAAwDB8hkAAAACA6YSGQAAAAKD2iYZAAAAA4FCkhkAAAACANLWGQAAAAKD2uoZAAAAA4MwDh0AAAAAgEEWHQAAAAOAgT4dAAAAAQFlUh0AAAABA3pyHQAAAACBDK4hAAAAAIH56iEAAAACAvJqIQA== + NrgMGZxjYkBML328ejFwQBu6YmAmQ3BAooOBwRKidECpEa9//lN2QDDbzeDqsnpAyxqxsIHEe0CGL9LlgiN/QGW8RgLtaoFAVBxqCwNKgkAbSBAbb1KFQB8PJ/pka4VA5jrNCdFziEAbd/5EG9uIQLBClrxSjI1AJIp6WOq7jUD2WhA0K2KQQNg4QnN/ipBAvE4Ve7UOkkB2cgdJgSaSQEFY0wQdf5RAW/ZrIsKylEA/DD8q+DaWQMFvyhlzQ5ZApYWdIanHl0CcNS8mNDeYQO4H3u3JI5lAHE0mO4r7mUADHR/v7z+aQGXPZgerV5tA5zLy9iXEm0BJ5TkP4ducQP1HM/hL4JxAyfwwJDegnkBHOAWWd+SeQA== - + - X94iQES7kUDGh5ZBG/ytQBObDEGrRvo/43ylQH4vM0CS7h1CU9nuQEY7C0FYy+g/881qQIXIakAjJpZAX0eIQLVG4UChIZ8/yomiQIruyUAsROs/OjkmQFam9UAe1nNAdiqVQEuYjD9Kf8BAyMopQEZbtkGzrnRBFcu9QZFL+T/LM5pB7zPoP//CTkDOhuU/GVMfQCaNXEESWhBAshmCQFSDp0G8DolApmuEQKutnUBG7bBA4qXgQGl9hkCfcQRAUpSGQcsvTkGwpa1Ae0uOQb3YNEEmmc1AMFAbQdMjoEAGS3JArk0sQARr80AzTrE/GaT6QA48IEFSGx5B8XgAQWVIEEBznHNA3MbZP0E7UUA7rylBLMnAQYrS0kBtMJtAz6+bQXBdEECe+VBAYy/WPw/OuEDBOeFAyPHoPxOO/T/SqotA4nI+QAWM5ECJUyxAtQnaQM3E6T8hr+FAMetwP7lbj0GJFiRBW/geQTafOEH0DglBuoZ6QW9lG0GhRLlB7yafQAo4TUFaQzdBbkFaQN/2yUG4RhpBu7/VPwKMI0G2OCxAXv79Qe0W80CaUWNAVKb7QKpQsEAn0z5B+sP8QECw0ECa0ChA1vdQQISeT0GtmipAfFWxQIKA6kAQwztAdaaHQbs1VkHMqYdAMvcMQHidjUAP7ZVAWe6dQBJfNUBVv5VAm5LVQFVFKEESkg5CrbdxQH1ajkDPSlhC7WfYQeMdkUB0u11BztGyQJ8HSEC6S2FAOBvuQG9MI0Gtag5Cgc0aQZhDaUDOmq5BdBW1QJ20lUB8Fo1Ay16MQMI9qEDBay9Bpac/QUBBNUGDJLhCUWpLQdzoSUGOGRVBPB+rQYp7P0IMRiFB4vSjQRX2okBlArpAu9bFQPV9W0Dlw5ZALeIGQXUvOkBhaEtB2WgDQWOQI0GJvYRAkxkTQIbbgkA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAANJia0AAAADAJ6drQAAAACD35WtAAAAAwMlqbEAAAAAgmh9uQAAAAGAoeG5AAAAAIL/jbkAAAAAA16dvQAAAAODn329AAAAAYE0TcEAAAADAGmZwQAAAAEBzqXFAAAAAAOGRckAAAADASANzQAAAAID7YXNAAAAAgDiBc0AAAABA0jF0QAAAAOAmaHRAAAAAwAHCdEAAAADA4tZ0QAAAAECDT3VAAAAAIPDDdUAAAABAJ9V1QAAAAICQInZAAAAAwOkxd0AAAABALxB4QAAAAMByJnhAAAAAAM9VeEAAAADAfGZ4QAAAAMDJ83hAAAAAgExGeUAAAACA9lN5QAAAAABFsnlAAAAAALESekAAAADA/CN6QAAAAEA41HpAAAAAwHBofEAAAADA7Md8QAAAAACD5XxAAAAAwLlBfUAAAABA/LN9QAAAAMCBx31AAAAAADnnfUAAAAAAhwR+QAAAAIDQHn5AAAAAgAuVfkAAAACALr9/QAAAAEBz139AAAAAQLPif0AAAACAhgeAQAAAAEBrL4BAAAAAQJc5gEAAAADAuniAQAAAAIAwo4BAAAAAoA0KgUAAAACA8RqBQAAAACCSMoFAAAAAQN87gUAAAAAgJ1KBQAAAAMDhcoFAAAAAgMB6gUAAAADg1IGBQAAAAEBPi4FAAAAA4EzCgUAAAADgVceBQAAAAMBs74FAAAAAoMoLgkAAAAAgHmqCQAAAAMCgcoJAAAAAIAV7gkAAAADgBYGCQAAAAGDTvIJAAAAAYC3KgkAAAADgF9WCQAAAAGAnL4NAAAAAgLlKg0AAAADA16KDQAAAAIBe14NAAAAAgBAIhEAAAABgsA+EQAAAAMAdM4RAAAAAIFs7hEAAAADAYlyEQAAAAGDUaYRAAAAAoBZzhEAAAAAg/p2EQAAAAGDcqYRAAAAA4NO/hEAAAAAg7u6EQAAAAADJDIVAAAAAoAMJhkAAAADgqiSGQAAAAKBIUoZAAAAAgI1yhkAAAABgk5KGQAAAACCQ44ZAAAAAoO7thkAAAADgXQOHQAAAAODiC4dAAAAAoG1bh0AAAADgd2KHQAAAAOBAk4dAAAAAwC3Mh0AAAABgnVeIQAAAAGDZfohAAAAAYOTLiEA= + KBZXds7jZUAKI3ffzmRvQBTpB48/A3JAhe+Xw7/DdkACpwfsrTN5QBRH5OKX1HxAkf5TC4ZEf0AeBBYto3KCQNzfTUGaqoNA5S+8PA97hUCjC/RQBrOGQNwOPGtGE4lAozrierI7ikDcPSqV8puMQOf92iErhI5A - + - H+r8QC7SBkBOOdY/cud3QJuapUCG3oNApJseQWnIxECciCFB2MEZQd0EDkFj0gVBMTS1QOWjC0CIfwZAzaLsP7RPmUAeO3ZAtUmnQBJTQEJz/wJBhAiNQHPXKkCte8c/X62aQf9Y1j8dmZRALhc6QKZ9PkCtlkFBZh0LQkVjYkAN9nVA6LQ+QOtad0B/zEdA+5CLQGsCjUDE4DNARvQPQYFWZUEX01tBrgLEPwrvOUCkpCJBS7/VQHbGMECRCjBBXaIZQCeeJUGpF3RBdgn7P+q5KEEl2sxB/xqkQFuWD0GfP7I/ZiOaQJUwwkBO4XpAqssiQEkS/0CECwlBcrXWQX7jDkJc6mxAVYCCQj8imkEBmZdBmsveQDbRh0HO2IJAlEpOQYr9K0E5ZWlBiu4nQcJ/HEGjJLdA7WtsQOnyxEFAbNZCcMJxQamIHUExatVBRoPDP4xr1EGoaRlAmKvQQXHRA0KEJUtB/Ru1QOvnwUDpZsM/vJvsQG8t0UDzLDVAwo8/QW5qg0Fn8ohA5M3aQlK0e0H2iTlBqyYkQZaHi0DEfwZC6+6xQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoHklbkAAAACgXuhuQAAAAGCNl3BAAAAAgG3BcUAAAADAhiJ0QAAAAIAjFHZAAAAAIGxMd0AAAAAATYF3QAAAAEBmD3hAAAAAQEnOeEAAAAAAdKF5QAAAAADqZHpAAAAAADA4e0AAAACA7IF7QAAAAEATNX1AAAAAQOZyfUAAAABAfa99QAAAAMDwZ4FAAAAAwJ1wgUAAAABADwGCQAAAAGBcQINAAAAAQNIahEAAAADg4EGEQAAAAEDyuYRAAAAAINjxhEAAAACgb/iEQAAAAAC3A4VAAAAAAKiNhUAAAAAAXhqGQAAAAGB8AohAAAAAgDMyiEAAAAAAFjqIQAAAACAgUYhAAAAAIM+7iEA= + KBZXds7jZUDGeRuljWJrQKPid1q/AnFAqhciDF/ic0DF63mLQnN2QMwgJD3iUnlAG0B+kNrjekBaeHBcumN/QNRL5VdZeoBAkWkCS2nKgkD9S2wnbLKDQFiVqFrV0oVAjlDtv61qhkDpmSnzFouIQKyhqaoF+4lAsMXPAoOTi0BzzU+6cQONQN3LdKjku45AbP2M6/4NkEA2eulOCEKQQLR/zbcfapFATf27ITnWkUA0l8TMdS6TQM0UszaPmpNASxqXn6bClEAWl/MCsPaUQJIuRpq8ppVAyK1YEfaClkCpsRht7TqXQKzDKxksB5hAjcfrdCO/mEA77IkOWM+ZQNZJLEFEG5pAhG7K2ngrm0C6X/9Iep+bQJjujUKCx5xAbHZkV8ArnUB8BGFKuEueQFCMN1/2r55AkhmiS95nn0BNB7yVCwagQO1N8Yv/YaBAppLunC7MoEDf2NqPGiShQH5TYldD0qFA - + - S3aMPyJ2b0Gm5yRBhE1zQdESUUDTboJAOkECQW4rw0DPfYZAxD6SQNg0LEC4gA5BVaUZQB5jm0CYs+g/B26xP1C9pECMMqBAJLwyQYK5wkBJpSxBVSgEQfAv1UDcRWRBx96lQLV4IEIPF/hAUvr1QJGu/UCOMuRAKgPpP1VvQkHllR5AVrJgQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYPkfaUAAAAAA0UFqQAAAAMBN2GtAAAAAoEg6bEAAAAAAOAhuQAAAAMAfInBAAAAAwJ3CcEAAAABggm5xQAAAAEDr1HJAAAAAAP5zdUAAAADAutd1QAAAAEDxbHdAAAAAgPbTeUAAAADAFIh6QAAAAABJ43pAAAAAQC5xe0AAAACAe2N8QAAAAABzpnxAAAAAgHy1fEAAAAAAHtJ9QAAAAIDw4H1AAAAAQDikfkAAAAAAj9l+QAAAAEA89H5AAAAAQM07f0AAAABASK5/QAAAAACE6H9AAAAAIGVAgEAAAAAgYUqAQAAAAEA6UIBAAAAA4A6KgEAAAACgTpKAQAAAAOArrYBAAAAA4O87gUAAAABAzEiBQAAAAEAgjYFAAAAAoJmrgUAAAADAwrKBQAAAAMCov4FAAAAAgM3agUAAAACABAeCQAAAAADFKYJAAAAAQBmUgkAAAABgeMKCQAAAACCwy4JAAAAA4IARhEAAAACAO6GEQAAAAMAwuYVAAAAAAL/BhUAAAADAKMeFQAAAAKDtSYZAAAAA4D9RhkAAAAAgIGSGQAAAACBZW4dAAAAAoGBjh0AAAACgpLmHQAAAAODgiIhAAAAA4MLSiEAAAAAgC9mIQA== + 4qRcexsiYEAoFld2zuNlQB1H1VDLQmdAsaxs2egRcUCpmr2g6iJ1QNO1bgpsgnZAy6O/0W2TekD1vnA77/J7QHbWYIH4AYBAB9vhGTq6gkBEZ4FQ+RGDQJYDQA9mgoRAwS3CEbK6hkA= - + - LTqeP4AlSkE1myxAEISbQLPMyEB9oOc/uj84QR6Rnj9W25RC9XY7QdNdhECaYeFAIovVPzAxLUEIr6VCEf+IQEDa8EBBPUVA6PjDP7UgWkGUuh1C99qHQRMQ90BmsDJBVjjWP1hOj0HuDk1AKPWmQKIPekEdnchByAu7Qbm1z0Hyr41AhY7VQLMNB0BDpNVA89j/QHnOBkGvGBJBC+EwQLdTaEAkRulAFLYOQa7DjkISKMBA4bpOQdiWx0A951ZB/mcMQmMzSkCyXMxBnbCWQSv2akGMlH1CWmgPQfBsY0CsbAJAqIgLQcAgyUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgDRFaUAAAABAmYFsQAAAAGBDqGxAAAAA4G0LbkAAAADAp4ZuQAAAAGDtxW5AAAAAQDPibkAAAACgCNRwQAAAAAAQInFAAAAAgH+wcUAAAABAWeNxQAAAAIDsBnNAAAAAgB0Rc0AAAAAAWlR0QAAAAEDPM3VAAAAAQH5DdUAAAAAAD2J1QAAAAIC0cXVAAAAAAMGCdUAAAACA7w93QAAAAMAo5XlAAAAAwIdWekAAAACAN3N6QAAAAEBk4HpAAAAAgMghe0AAAACAw0J7QAAAAMBIxntAAAAAgBbUe0AAAADAtFR8QAAAAEAU33xAAAAAwEVFfUAAAAAA9lV9QAAAAEDrin1AAAAAACmgfUAAAACApxJ+QAAAAABEVn5AAAAAgNBtfkAAAADAqMd+QAAAAAC++X5AAAAAQDIjf0AAAACAui9/QAAAAEAnbn9AAAAAgNZ4f0AAAAAAKoN/QAAAAACFoH9AAAAAYDcTgEAAAABgpCqAQAAAACAKcIBAAAAAIFC3gEAAAABg386AQAAAAIC464BAAAAAoBf2gEAAAABg2fuAQAAAAOBkCIFAAAAAIKsugUAAAACA5k2BQAAAAOCUW4FAAAAAQDRjgUAAAACAvnGBQAAAAGA+goFAAAAAoBuLgUAAAABgE5KBQAAAAOBK1IFAAAAAIE/agUAAAAAg3fKBQAAAAOA4+oFAAAAA4N8DgkAAAABgjxKCQAAAAKBqHIJAAAAAoIg/gkAAAABgZkuCQAAAAGDjWYJAAAAA4B5jgkAAAACghoCCQAAAAOB6hoJAAAAAIIuqgkAAAACgN7mCQAAAAMALw4JAAAAAALfxgkAAAAAguA6DQAAAAECfNoNAAAAAwEdAg0AAAAAAFGiDQAAAAGAacoNAAAAAoPyNg0AAAAAAPJSDQAAAAABZnINAAAAAgIKxg0AAAACA6NWDQAAAAOCdWIRAAAAAoL8MhUAAAADATGGFQAAAAGCtZ4VAAAAAwAGJhUAAAABAB6WFQAAAAEDTq4VAAAAAYHCzhUAAAADgTueFQAAAACAN74VAAAAAYPz3hUAAAABgcP6FQAAAAGB8NIZAAAAAAFA8hkAAAACgOEOGQAAAACBbWYZAAAAAQMFghkAAAABA+oeGQAAAAACtj4ZAAAAAIPuWhkAAAAAAXtOGQAAAAMBJDYdAAAAA4H0Xh0AAAADALVOHQAAAAKC1YodAAAAAIDKwh0AAAADg5/OHQAAAAGD+e4hAAAAAgHWriEA= + NrgMGZxjYkDiYBUjzERrQBjFLIKc5G5AxwSPFv4SckAACNcwPnN3QI5fI1AWRHtAO6pPBu6TfkBakLVjYqqBQIEC8h+DYoJAhbo3Zq7ig0CuCJfF5IqFQLDkuWj6GoZAPw0YXiZDiECwE6iSpqOJQDbsl4xd24tAamaIih6kjUA2G4a2CWSPQLVKO1pllpBA+DYz10CykUAxOnvxgGKSQHhOKuyWdpNAery7vaG+k0COY2vtvJKUQJE/jpDSUpVApHis7uKulUBDVvOeGN+WQO5ofowOs5dA0n5RlESnmECgf+OaVP+ZQC+oQZCAp5pAtpQknHobm0DhvqaexjOcQMypZZ2gN5xA - + - /24YQG7+NECf1v1AGvF6QGat8T926oxBDhlTQbn3BkAd66ZAv105QRPA+j+FVbdA7goSQErGR0AF9ztASgJ5QA7H8ECvTYRARi1RQJShjUCTZEdB3VEnQYWdXkAPrg9B0ryiQG85DUFB6+hAd32UQCQZe0BfoiJAq9N1QAADrEAe7eBADvXwQMir3kD9WD5A0eyPQDWbHEE4FQhBmlN9QSRPbUA8ZF5B/1mzQVop3kBbsv5AUaZ8QLO9TUFuojJA/DdjQHN/Y0HJkKNAY9JNQXkqkkBfAgtBV4QOQYnOrUHFW5BBHWraQI2vX0C2+q9CtH4jQnplnEHrRZVBSnKAQKh9MULvunFAlmSnQH7flECSLm1Bt5uNQbqGGUBLT21A+F1NQUYLIkEJ/A9A9k4SQR97ukC8IhNBb7deQEx300CJ01lAMxqqQacZj0HUe39AgMSHQVNDQ0C/lJJBUJn6QA39HEGPDiJAE60MQa9j5kAmHotAubuDQFgYjkGpTMBAOv1LQWnORkJ2VBZBKMaAQWW50ECrOiVCeGMpQQpdGUDSYMFAG1AgQUn+lkCeJzFCnvZ5QWspq0A/d9hAJqbCQSvWCUHOWTNAjdnvQTaEh0FuBQRBhwSJQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYNJwaEAAAACg+6VpQAAAACDuQGpAAAAAAAmma0AAAADgXjtsQAAAAMBpZmxAAAAAYCSAbEAAAABgCW5tQAAAAEAv4W1AAAAAAIXFbkAAAADgeopvQAAAAIA/VXBAAAAAAKFycEAAAADAILBwQAAAAMD273BAAAAAYMEHcUAAAADAF3VxQAAAAIC0f3FAAAAAQEOicUAAAAAAt7BxQAAAAIAB43FAAAAAIBr/cUAAAADAZxNyQAAAAMA5MnJAAAAAIJmSckAAAADAgDFzQAAAAIAjonNAAAAAwOwxdEAAAACgd2Z0QAAAAGA2dXRAAAAAwEqIdUAAAADAc9N1QAAAAIDCDHZAAAAAAD4wdkAAAAAA8UB2QAAAAECpS3ZAAAAAQFtXdkAAAABABXd2QAAAAEAnJ3dAAAAAwEg1d0AAAAAA1ER3QAAAAEAgZndAAAAAAP90d0AAAAAAoYF3QAAAAADFkndAAAAAgDOnd0AAAAAAkbR3QAAAAMBURXhAAAAAwEZSeEAAAAAAvt54QAAAAMBBDXlAAAAAwDK2eUAAAACABcB5QAAAAADJ1HlAAAAAgEzveUAAAADAKg96QAAAAABrKHpAAAAAAEDtekAAAABAafd6QAAAAMABQntAAAAAQDVje0AAAADAs4J7QAAAAEAhlHtAAAAAQH/Ve0AAAAAAT+J7QAAAAEBX73tAAAAAAC0BfEAAAACAwGN8QAAAAIA4jHxAAAAAQKSzfEAAAAAAh8R8QAAAAIAZz3xAAAAAAJTvfEAAAABAxCF9QAAAAEC+LH1AAAAAQLVXfUAAAAAA7Jd9QAAAAEC8r31AAAAAgHC6fUAAAABAbdB9QAAAAECHOn5AAAAAAKxPfkAAAACAZGZ+QAAAAICNlH5AAAAAQAuffkAAAACAQbF+QAAAAMBF0X5AAAAAgN4Hf0AAAADAEFh/QAAAAED7Zn9AAAAAALV2f0AAAAAAuoB/QAAAAEAXsH9AAAAAAMTDf0AAAADAXNF/QAAAAIA88n9AAAAAwHMHgEAAAADAmjKAQAAAAKCke4BAAAAAQOudgEAAAAAAw6+AQAAAAOBfv4BAAAAAQIbJgEAAAAAgGNiAQAAAAGAK8IBAAAAAoFL2gEAAAADgHwqBQAAAAMCpHoFAAAAAIKEygUAAAABAS0KBQAAAAKCBVYFAAAAAoGFugUAAAADg8HmBQAAAAIClgoFAAAAAwLmLgUAAAACAHJKBQAAAAMBUmYFAAAAAIG6rgUAAAAAAnLOBQAAAAOCi14FAAAAAgGzdgUAAAADgtPGBQAAAAEAw+IFAAAAAoAACgkAAAABgTQ+CQAAAAICrIYJAAAAAIC0/gkAAAADAi0mCQAAAAGAzVYJAAAAAwIBegkAAAACgV2SCQAAAAICoa4JAAAAAII53gkAAAADgJIGCQAAAAGAtiIJAAAAAoBKOgkAAAAAgZaWCQAAAAAByqoJAAAAA4Cy4gkAAAADAGsGCQAAAAEC8y4JAAAAAYK3TgkAAAADgew6DQAAAAGBAIoNAAAAA4EYrg0AAAADAh1GDQAAAACBgV4NAAAAAgNxcg0AAAADgH2aDQAAAAKBUbYNAAAAAoDJzg0AAAADgEn+DQAAAAEA8hINAAAAAoMaQg0AAAABgO5eDQAAAACBdooNAAAAAIP2xg0AAAACg2JqEQAAAAAAqpYRAAAAAoKuthEAAAABgg9iEQAAAAMB39YRAAAAAIAkThUAAAAAAGBuFQAAAAEBFIIVAAAAAYOwyhUAAAADgtjmFQAAAAEB1Q4VAAAAAwERZhUAAAAAAvmSFQAAAAADWa4VAAAAAIKmFhUAAAACgeoyFQAAAAMCmrYVAAAAAAMqyhUAAAABgnryFQAAAAKDd2YVAAAAA4DrqhUAAAACg1fWFQAAAAKAg/IVAAAAAINoDhkAAAADAFAmGQAAAAABdJYZAAAAAAN4whkAAAACgdGqGQAAAAKDacYZAAAAAQOx6hkAAAADAtIiGQAAAAGCTkoZAAAAAYIyahkAAAACAxLyGQAAAACC914ZAAAAAoLLfhkAAAAAgWOyGQAAAACALCodAAAAAoC4zh0AAAABgzzmHQAAAAOCbc4dAAAAAoNeyh0AAAACAQAyIQAAAAGCQSYhAAAAAwMOOiEAAAAAgyLCIQAAAAOD72ohA + U6vsr5viYUA2uAwZnGNiQJi98BGiw2xAVGelV0yFbkDMvNRcKbN0QPMfQIB/cnZAunrUuZfje0BnxQBwb3N+QNfLkKTvc39Aeo6mxyOCgUButeCvLzqDQAuTJ2BlOoRAmd9isntyhUA4mcwFx2KHQJC+4uCyColAL3hMNP76ikC9xIeGFDOMQFqizjZKM41ATskIH1brjkDueDMKwVmQQIp6VxfhmZBANY3iBNc9kUDno0cTHZqSQLF8IpzyCZNA+v5iaBNmlEAxlBmxSJ6UQN4UNnBJ6pVAehZafWn6lUCPK5t+jxaXQA== - + - l68GQPAkVkDbyMJAV7VeQe/osUAo5VBAS2stQfxgokDkvtU/n+HtQRbSf0AqqatA00kWQF9OFkDoNlJATKSvQDnQD0FIhz5AOHD6QCJiqEDLOnZAAf6wP0NznEF7FUVArtgZQItulkDW+yZA6CYMQfb5L0FQc4hBS52fQECFM0Ek74FAX8uCQFvUlkDuvaRA80SMQSc8dEDTcalAmLhCQVs3J0DVbgJAYfCPQAXvmkC4qQVBNOPgQLJd80C3jD1CItuBQB9VvkDaBRxC3FMPQdH3a0HgFmhAedBDQV9NxUGjRU5A8NPHQD2f7ECkS4tAPB41QIju1j/AiwdBej1DQZstxkHB/yFBMHIcQVDGR0ArbZlBux8QQFfGu0DfW7pAaIrsQBPpLEEcv/I/NrSZQLJ4E0HbFjJBia27QSsZoEDziptAviY/QZ55m0DaaUNBqIJiQUGNV0HXblFAlIPLQWGutkEvlqJALU20QqfDRED4FBFBQPRGQVMf8UDFDZI/NMWfQI5fp0ET8mlBXbqBQTiiq0BPkOo/WfoJQRfowz9K5JJBMBqyQdvKGkFuDB5BE8GFQCvPUEConp1BFkQSQjo8DkHPqrlDVTliQjr7RECFPD5BQv4UQtAtf0C15nFBWGujQVGz+j9ZWPNAedtDQH0qJEFBJhBBzBndQMamr0GU8FhBgGcRQfTJDULIkDlBuqhgQY1UJkEOeChA6f3EQUDvFULrD6ZAvkdzQKVEwz/4e5RA65grQFG4sD8iUSxBaeUIQWq3nkBrzXhB8BkQQFEFmkDtbxFC/ujHQTVaJ0AwHHZAE9HVQUGsr0GR2qlBFL5qQe1+KUBcTHdB2iWCQAZZl0H8F7RBywEDQO+r30AKjZBANqR7QMlmnj8QZz9BsVygQIiijEK4SYVCbdA2QY5zfUBrrrhCKVIRQpMkUUA7eBtBLaljQEqROUOt7G1AUDCHQIJFFEGA1ehAgWgUQswSskHrfltB7nneQALDGUBIm+NBxjZrQDKR2D9nl0NCEAAMQsylUEAABMhBxgp/QG7ZAUFERFpA9uU3QcIDn0DvtmxB9v5BQXuPfECV/jNC + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQG7PWEAAAAAAyFJZQAAAACCAz1lAAAAAgPdHWkAAAAAAvoxbQAAAAOB0hF1AAAAAgDgBXkAAAACAqU1eQAAAAAAgKmBAAAAAAChCYEAAAABAGgRhQAAAAEBb42FAAAAAQL4pYkAAAACApWRiQAAAAMBFfGJAAAAA4PCkYkAAAADAWMFiQAAAAADaY2NAAAAAAEGbY0AAAABA09tjQAAAAOC1C2RAAAAAgHEkZEAAAACAOqhkQAAAAGDy42RAAAAAwJEoZUAAAAAA3kFlQAAAAODxY2VAAAAAIG6LZUAAAADAfwZmQAAAAAC/IGZAAAAAgOs3ZkAAAACAhWNmQAAAAACNgWZAAAAAIL/gZkAAAABgWAlnQAAAAADsSGdAAAAAAFBtZ0AAAADgTqFnQAAAAMBdzGdAAAAAQElgaEAAAAAA0PxoQAAAAECMK2lAAAAAALSKaUAAAAAAHatpQAAAAMAdBmpAAAAAQFflakAAAABAQGFrQAAAAIA0gWtAAAAAwGCga0AAAABA6L1rQAAAAADb4mtAAAAAQDUFbEAAAACAmyhsQAAAAACXQmxAAAAAAKh+bEAAAABARq5sQAAAAMBd42xAAAAAgFMkbUAAAABAn2VtQAAAAIDL5m1AAAAAQB0lbkAAAADAH0duQAAAAACnkW5AAAAAANGsbkAAAACAEcZuQAAAAIDs525AAAAAgKckb0AAAAAAMz1vQAAAAID4hm9AAAAAQMujb0AAAABAf+ZvQAAAAEA6G3BAAAAAQH0zcEAAAACA9kVwQAAAAODsUXBAAAAAgAZgcEAAAADAH3FwQAAAAAABgHBAAAAAAFmycEAAAABgy9RwQAAAAACIEXFAAAAAwNRTcUAAAACAAWJxQAAAAABQcnFAAAAAwCyEcUAAAADA45JxQAAAAGAmoXFAAAAAoGm3cUAAAABg38ZxQAAAAICB0nFAAAAAwODvcUAAAAAAHf9xQAAAAABRF3JAAAAAwARlckAAAABAEXByQAAAAECifnJAAAAAgDaeckAAAADgO69yQAAAAABsFXNAAAAA4O01dEAAAACA9up0QAAAAKAI9nRAAAAAYPo0dUAAAABAk8d1QAAAAGAN53VAAAAAYI3zdUAAAACAHwV2QAAAACD4IXZAAAAAwOU5dkAAAAAAuxR3QAAAAGDgb3dAAAAAIEmXd0AAAADAUcF3QAAAAOD/9HdAAAAAwEEHeEAAAAAAwGl4QAAAACDXlnhAAAAAYI3zeEAAAADAB/94QAAAAKD9RHlAAAAAAC1feUAAAADg6dt5QAAAAKCPMXpAAAAAwPeHekAAAABgH0R8QAAAAGDsZ3xAAAAAQKtyfEAAAADARdp8QAAAAKDYdX1AAAAA4L+CfUAAAADgFsZ9QAAAACCp0H1AAAAAoKE2f0AAAADAFcV/QAAAAGBs44BAAAAAwHlogUAAAAAgHdOBQAAAAGA78IFAAAAA4MhMgkAAAABgTcuCQAAAAOBcUoNAAAAAQBKfg0AAAABgjqyDQAAAAMA51INA + KBZXds7jZUAmWGpEdaJuQANJK5hVInJANTU3073BdEB37uuHRSN6QE4sistCw3xAzULwjN2TfkDuQWt1DWqBQPcl+V4wAoJAtW0RhXlyhECIKnr3cbqEQIhZaCEeQ4hAGJvboQULiUCzg+ojanuKQKmfXDpHw4tAbdbKG+J7jkC605J25G2QQOiBShw3ypBA0OjTdwqKkUBomUExjY6SQC0SxHNGipNA6LA4RuNSlECtKbuInE6VQEXaKEIfU5ZALUGynfISl0Bb72lDRW+XQN9XF6w4n5hAQHPOHIb7mUA8gQeodJ+aQIn1DummV5tAUpZIqZq7m0DSrT++8H+dQDsMdPfso51AGzCAihHcnkAfIkf/IiifQDJZYCsZHKBAAhyNgyxWoEC94wAsLKqgQOV6lyJdVqFAbPj4KUqqoUAJvLeIbQSiQCrwmPVXkKJALrSgV4MGo0A= - + - c7ObQDQCtUBTaDRAVDcZQEYr1j9nk6lAWG/qQCoxi0EPaLI/6COyQCkbZEC8c1JBRwrWP/Ug5UDFDzVA/zSEQIzl+j/eRVZA4d70QNMR+z/pnZ4/PcTmQFFIdkASFYJAvfsrQF80KUEqN3FAqZuBQVwwa0FKGXxBdliEQOodJUFTdkhASp8rQSDoNEAMKPs/GDiqQM+bXkC/Vz5A5kjXQBYyH0EYEF9B5EyAQW2DGUDz6d5A2Ix7QZLeiEFZWaJAusUiQIpy8UCyXSpBtImlQEekPUFv0YNAViY6QEyYHkC4O8FAVALFQP3x10BWF2dByg8SQWFUt0C7pwZBVBHmP5US+kBjbpRAjXGiQKsZqkCruB5Bp6XLQL26K0FfkcJA3SHYQWqQNkKZF3tBrw6fQXE0N0JOoIVBHjXpQVx86D+aJitBUOhfQfcDi0C9A29BM2CxP0wdsEFPfgJCuLliQeAFpkCqpv0/2F2EQr2lBUGY6AtB1iVFQJIeLEAj4lJC3GqdQAD+j0B/vD5AcpoWQQQ3z0HiURZA0h/WPyTV2UDuMr5AxOXIQdwgPUAFI0NAa7xMQNLVp0Exq/s/YuXDPxaYy0BhJohBO7xDQDkJhEF2vI1Bz5s6Qm6KYkJNe2NAfmy4QZ602T+5chVCtsIKQVMVD0E960NBeNsBQa6W7ED2xQZAl99YQE8G4UG+XCdAkfmNQOMP6EBTLcpADuSIQAAzvkDoag1BRNgCQd89qUH46aZA/c0rQEwwF0GvRoJA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAExDXkAAAADASihgQAAAAMDXK2FAAAAAoHtyYkAAAABA0OFiQAAAAEDFX2NAAAAAgJlXZEAAAABAS2FlQAAAAICP42VAAAAAgPZ9ZkAAAAAA7ORmQAAAAGBTIWdAAAAAAPhkZ0AAAADgToFoQAAAAKD8wmhAAAAAAMkCaUAAAACACSZpQAAAAEDvOmlAAAAAAN+FaUAAAABAOApqQAAAAAAvJGpAAAAAgHOIakAAAACAod9qQAAAAIDoH2tAAAAAIImoa0AAAADAaPtrQAAAAIBpQmxAAAAA4LBjbEAAAABAZwhuQAAAAACwOm5AAAAAACqDbkAAAADA/q9uQAAAAEC3vm9AAAAAIBslcEAAAACAsHJwQAAAAICv33BAAAAAoMUycUAAAABga9NxQAAAAAD44nFAAAAAgIkEckAAAAAAg1VyQAAAACCmZHJAAAAAgBVzckAAAADAdn5yQAAAAADZ6XJAAAAAQDAUc0AAAAAA0DBzQAAAAGAwRnNAAAAAYMJhc0AAAAAgj4RzQAAAAGCg/HNAAAAAAD4OdEAAAABAOiR0QAAAAABqMnRAAAAAYAaBdEAAAABA3+B0QAAAACBX73RAAAAA4IkBdUAAAABg7Th1QAAAAOC4j3VAAAAAAC+mdUAAAACA0LF1QAAAAMDJwXVAAAAAwBEVdkAAAAAAbCp2QAAAAICENHZAAAAA4CxFdkAAAACA11N2QAAAAAC8ZXZAAAAAILN7dkAAAADA9ax2QAAAAMBdvnZAAAAA4OLgdkAAAADAcu52QAAAACDuBXdAAAAAYG0Wd0AAAADg+CV3QAAAAGCOP3dAAAAAIPBvd0AAAADAN353QAAAAODZr3dAAAAA4Ejhd0AAAACggPV3QAAAAKADFHhAAAAAIM45eEAAAAAAmUR4QAAAAOBYVXhAAAAAYC5leEAAAABgOXZ4QAAAACDJunhAAAAAgPjdeEAAAABAUhp5QAAAAKCxBntAAAAAQNTEe0AAAADA+R98QAAAAMBPTXxAAAAAYDyFfEAAAACgXvF8QAAAAMAlMX1AAAAAICBnfUAAAADAXMR9QAAAACDM131AAAAAQLQEfkAAAAAgzSN+QAAAAKAtRX5AAAAAYGT2fkAAAABgITZ/QAAAAEBKVn9AAAAAIOg8gEAAAADgvlKAQAAAAMBWQoFAAAAA4J1ngUAAAAAgRnGBQAAAACC4i4FAAAAAQBgdgkAAAABAXyKCQAAAAECwR4JAAAAAoMv8gkAAAACAIQKDQAAAACDpW4NAAAAAgDO8g0AAAACgUcODQAAAAGBqzINAAAAAAFbqg0AAAADAu/KDQAAAAGB5TYRAAAAAAJXFhEAAAAAggfSEQAAAAACbE4VAAAAAwB5KhUAAAACA0AaGQAAAAOApmoZAAAAAAE6jhkAAAABAd+uGQA== + NrgMGZxjYkDiYBUjzERuQOzQoK8iBW9AzLzUXClzdUB2xqyr6ZN2QMwasbCBhHxA/kye+dokf0D3kdlwgvqAQKpQUX+5yoFAhro3Zq7CgkCG6SWQWkuGQHRYGjI744ZAdIcIXOdrikBQ8e5C3GOLQAOwZlETNIxAextxRSicjUCUtOfpVOyOQGDvNHZQ8pBAyvHqiYA6kUDgBiyLpraSQOF0vVyxzpJA94n+XddKlEBhjLRxB5OUQA== - + - KvU0QAfKaUGr3jBAXzP7P4c7GUDshBlAmDuyPwwE4T/UEoJAcWiZQEfEKkBpu7A/AFx9QX8RQ0DRkeg/WipZQIsRtUDtYxlALmKzQDo2BkGKR1VAuQqyQATMhUEbJ6ZAJq98QUGfIkAyxPRBKcf+QFfUzUBNHBBAdDMHQtYtC0EyvcI/D+Q7QK7omkB+/BNBMpM+QEBHMEAi7IhAfmxMQPX/1T/pA6VA3pxxQANAs0BwrJ9AtEgTQT7DiEBgzmBAhHgaQSBXHkAGLwVB4QYvQaOLwEB/6n1AsXePQQKEakFGPJ4/oMkLQT8Lf0HBK01BBnKoQEzvwz96inFAegEFQXkgKUET+49ARweiP362XUF0SY9A3JTjQR4i/ECi0eRB/vhQQm6HOkAYx9U/t5VXQT630EAVzhdBgSwEQHwyEEK0nwVCRH99Qbcb10B+IMFAj92FQURY/j8fcwVA1XCbQMGnmEAAe39AgmDfQapem0CKYUdAq7UrQCl7jUBXbT5BJ1KPPz9EkUFf6j5BNjaDQTEL6EClfaRADwYOQfp8aUHSGYRAMgjPQRlnZUH7moRBg/mBQLS8bkF6DNY/pxhWQHLbWUEtHXdBAngiQJRt5z/Q3GJB4ERaQPmySUGYU7JAF6C5QLltCUDQcyJAXOu1QhtOBUHvMcBARSA6QOKQl0BREIJAfYu7QOg6kkDp6VtCh03WPyydwEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYONlZkAAAAAgY4lmQAAAAEB8P2hAAAAAAG5TakAAAADAIMtrQAAAAACtSmxAAAAAwDrabEAAAABgQKNtQAAAAEATJ25AAAAAwPRBbkAAAABAmYRuQAAAAKAj525AAAAAwDRJb0AAAAAAmGlvQAAAAOB+InBAAAAAwH0xcUAAAADgKkVxQAAAAMD9gHJAAAAAAA+ackAAAADAfMFyQAAAAADFvXNAAAAAQHhEdEAAAADA8mB0QAAAAAAxu3RAAAAAAFcFdUAAAADA00F1QAAAAMD2IHZAAAAAQHg9dkAAAACAL8V2QAAAAMB0FHhAAAAAAJVReEAAAACA5LV4QAAAAIDt03hAAAAAADsseUAAAABAq0B5QAAAAEBktnlAAAAAgAjgeUAAAADAlDZ6QAAAAEChVHpAAAAAgN+IekAAAADAlvR6QAAAAMD3D3tAAAAAgMt5e0AAAADAsqN7QAAAAICWAHxAAAAAgKEQfEAAAADAwDB8QAAAAICbRHxAAAAAgKprfEAAAAAA35B8QAAAAIDYpHxAAAAAgP0lfUAAAACAZDN9QAAAAICIU31AAAAAgJBjfUAAAAAAMIJ9QAAAAMC/9H1AAAAAgCEdfkAAAACAy0V+QAAAAADrXX5AAAAAwFrQfkAAAADAhTB/QAAAAADGpX9AAAAAgFPjf0AAAADgQwGAQAAAAMCrG4BAAAAAABo/gEAAAADgcViAQAAAAEC8X4BAAAAAIO5tgEAAAADg3oSAQAAAAKAc6YBAAAAAYMnwgEAAAAAg/w6BQAAAAABiKoFAAAAA4Pg9gUAAAACgWWuBQAAAAKBPeYFAAAAAALqBgUAAAABgU0mCQAAAAOAliYJAAAAAgDK7gkAAAADgNcGCQAAAAMDx2oJAAAAAwLD+gkAAAACAn1KDQAAAACDGWYNAAAAAQARjg0AAAABAuo2DQAAAACBymYRAAAAAID6ghEAAAADg+++EQAAAAKAWBIVAAAAAIPFbhUAAAAAgHm2FQAAAAODQgoVAAAAA4AyMhUAAAAAgxr2FQAAAAKBww4VAAAAAgHDlhUAAAACgxxeGQAAAACBwbIZAAAAAYH2JhkAAAAAgopqGQAAAACAvvIZAAAAAYAv2hkAAAAAAJiuHQAAAAMCSVIdAAAAAAMl4h0AAAAAAvYGHQAAAAKAytIdAAAAAAHfHh0AAAACgJfuHQAAAAOAwC4hAAAAAwMYoiEAAAAAA7pKIQAAAAKD35IhAAAAAADP0iEA= + KBZXds7jZUAaQ3GBEtJyQKmavaDqInVAqJq9oOrieEA9qk8G7lN/QB7VJwP3iYFA5QDOEmOygkDo3PC1eKKGQK8Il8XkyodA - + - ThoQQI6txUBagL5AiAVUQY62sj/vl1pAsfLhQOSR6D9Qj4ZAnGI+QLXbbEAgX8BAucaGQBHtZ0DTaMVAmOfMQKTE7kCSCIs/CL8XQQf05EDQ/05A5XidQXIUxT/cJ4RADKIGQBefBkF7cj9AA8ueQeN7oEFHLZ5AMIFzP25OjUA2Kfs/YszoP8HdD0ASh0VAGPCeP/t/zkDJr7RAlst7QaM2FEH07QhBnaqZQFxuwz9lrStAu3ZsQEg+wED+BmZBMpbAQBv8pkD9i1VAIGENQQ19lEBrtec/M6y2QDQqJ0A/bZRA8vCWQP5DM0EcI4RAe6xMQQVkA0EmPFdAXsDQQM0dEED+PJlATKVHQaf0rUHUprBBExx2QJ83EEA/UXRB+v4CQHre/0A0LtZAeIdVQarriECKY1xBhQADQLwRUUCeaDVCVOnwQdkX1j8yLBBBknnLQfh1SELxrIJC2+qLQQ4aJkKpMPxA/TV2QHFc/0AV8DpA0V6kQo6TVUB943pAwD+lQW7YSkJ5LiNAEtxgQWhtr0Ckcvg/dABtQZqBR0DJeURADfR6QGDIgUD3CmpAvHO1QOwTIkBMnR5Atrh7QFc5xkDD9XRBQMrNP1HPX0BaaptAgEExQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgPOnYUAAAACAl6VjQAAAAGALy2NAAAAAYIrgY0AAAAAgnwtkQAAAAICopmRAAAAAQJPnZEAAAADAaAJmQAAAAMDd5WZAAAAAIO0CZ0AAAACAZypnQAAAAECiX2dAAAAAwDcZaEAAAABAnR5pQAAAAOCXrmlAAAAA4JFna0AAAADA0edtQAAAACDdhW5AAAAAwAQYb0AAAAAA0MRvQAAAAIBKBnBAAAAAAM8icEAAAAAAPmNwQAAAACAFc3BAAAAAYHeTcEAAAADgoMVwQAAAAIBURnFAAAAAgExxcUAAAABA9YVxQAAAAKD2pHFAAAAA4KTTcUAAAABgfh9yQAAAAEB6MHJAAAAAQE9zckAAAADAcQVzQAAAAOAAEXNAAAAAgM4hc0AAAADgD29zQAAAAGDusXNAAAAA4DQVdEAAAADAOSJ0QAAAAAAcL3RAAAAAgMySdEAAAAAAIqd0QAAAAKDesHRAAAAA4B7BdEAAAACgL+x0QAAAACDcDXVAAAAAgFcfdUAAAAAAaDV1QAAAAMBXRnVAAAAAgIVbdUAAAABAprJ1QAAAAAA/z3VAAAAAAAbudUAAAABA7wF2QAAAAKDbKnZAAAAAYI5AdkAAAAAAJ4Z2QAAAAMDgq3ZAAAAAQIW8dkAAAADACNJ2QAAAAOBS4nZAAAAAwOcVd0AAAADAgS53QAAAAKCoUHdAAAAA4MVyd0AAAAAg5ZJ3QAAAAMCj53dAAAAAwCTyd0AAAACAzQR4QAAAACB3IXhAAAAAQNUyeEAAAABgdFN4QAAAACCUbnhAAAAAwJ+DeEAAAAAg25B4QAAAAIC/snhAAAAA4PLAeEAAAABg7dF4QAAAAKDo9HhAAAAAYG8geUAAAABgUz55QAAAAMDIWXlAAAAAgHhteUAAAAAgand5QAAAAIA/n3lAAAAAAIOweUAAAAAgNdR5QAAAAACZLnpAAAAAIGBBekAAAABgqlJ6QAAAAOANcHpAAAAAACZ7ekAAAADg74R6QAAAAKA073pAAAAAADoGe0AAAACANS97QAAAAGCnQHtAAAAA4DlSe0AAAADAqGJ7QAAAAMBdcXtAAAAAQOOHe0AAAAAA8ZV7QAAAAMAEpntAAAAAALfue0AAAAAg+vp7QAAAAOCPBXxAAAAAwAnxfEAAAADAF3N+QAAAAMAOtn5AAAAAYMcxgEAAAAAAGjqAQAAAAKBjtYBAAAAAQK68gEAAAAAAffCAQAAAAMC8+oBAAAAAgCQTgUAAAADgTyOBQAAAAGD3Q4FAAAAAQBijgUAAAAAgF9OBQAAAAAAv8IFAAAAAYLkBgkAAAADg1DmCQAAAAMDkVoJAAAAAQBZxgkAAAACgM4qCQAAAAIDfuYJAAAAAQBj6gkAAAAAgqUKDQAAAAGBcS4NAAAAAALpRg0AAAACgLKuDQAAAAEDaxYNAAAAAIFH8g0AAAACgFySEQAAAAKBlNoRAAAAA4NJMhEAAAADAP42EQAAAACC9q4RAAAAAANgdhUAAAAAgHSOFQAAAACB8S4VAAAAAoPl6hUAAAADADAuGQAAAAIDI7IZAAAAAwCsZh0AAAABAWmKHQAAAAICOs4dAAAAAYBa8h0AAAADAO+SHQAAAAGCo64dAAAAAIAz1h0AAAADgMk2IQAAAAKAGY4hAAAAAgFZsiEAAAACgHISIQA== + NrgMGZxjYkBcG3g88qJlQAoahmk8YnBAnMs7e+cBckBgbopu1NJ0QA== - + - KkrTQCH9K0AB/O5AhYN1QZX7nUDDDKdACTexPyvpFEB6s61ATrdGQK+nm0BiKbBBc6ciQDrrmEDfnTBAqw38QBwxeUGDVtxAeV5FQJ/TBkC3FjVAvUWSQAQAw0Ctr+NAmL2dP0b0iED78JxBquiYQFF9DUGJK7dAsVEZQC5k00BusDBAdTfyP2IAuEAB57RAEc3eQH3iTEAbEnpAsN09QcYpTECHHDVAeM2kQDVIokDy8v5Ahdf+PypA2UD1jxdBoNKlQFEhoEA+exdBqmEnQRc8xUBg/PdA8kUNQU5yP0EqSgVB4gkLQauoAUGtDqtAXzPzPwCIu0GmFrtByuVVQP8vFEEC415BKAdtQRekY0Bv8ARBv63sQCiCA0Lbq4NAP3/GQGka/EBpDndBkEoNQSnSj0DzDyxADzD4QIAf7EDWcc5ATNMmQU7SwEGcSNFAmSCSQAavNEACEntBte0wQMjJpECpguFB3HpyQY1u8kFqXWZB9kt/QbdjU0HMbCBBkJcWQdfemECQecdApeDEQK+B7EA1p6BAUF5GQF5zhkBDR2VBuCDpQYLzt0EVQuw/plldQQxjmUDVQ4tAb0YaQgBPFkGAYKBBdqAyQNMtt0DQJL1Co7cQQYzsfkG3B7NAScgrQBPQUECVTr5AFTZMQGSzgUHfFPhBcRR+QLWj/kDMkIdAL0iNQA+P3EC8HSFCCpknQJpcIEGx0t5BqLwwQHRGNUDvfiJA52F9QKdYlUAeFxpBQuXfQPjo4EDsZ8lAeIHWQHQBwz8iDm5B+oSNQFgkxD+8enNAEDrTQOg+AkJMbL5B+4A2QR0HA0HvlA1Dir8HQe2DOEE= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoLtmZEAAAAAgPrlkQAAAAAB9QGdAAAAA4N8GaEAAAADA7eNoQAAAAED3gWlAAAAAwHYAakAAAAAgbyFsQAAAAABfjGxAAAAAwCg/bUAAAACgyYFtQAAAAOBBpm1AAAAAACchbkAAAABgWYVuQAAAAEBbVXBAAAAAQGnVcEAAAADgKTVxQAAAAOA/Q3FAAAAAgPnBcUAAAABA8ZFyQAAAAEBAxXJAAAAAQPzkckAAAAAAjulzQAAAAACLIHRAAAAAAOKOdEAAAADA0iZ1QAAAAICuM3VAAAAAgC/BdUAAAABAQUZ2QAAAAADggnZAAAAAQLrRdkAAAADACO52QAAAAMCkE3dAAAAAwBA0d0AAAAAAcT93QAAAAIBvlXdAAAAAQN7zd0AAAAAABit4QAAAAMABYXhAAAAAQPGEeEAAAACApTx5QAAAAIA2R3lAAAAAwKgaekAAAAAAmU56QAAAAIC+bnpAAAAAgL9Oe0AAAADAZm57QAAAAIBq/XtAAAAAALgefEAAAACA0Sp8QAAAAIDBQnxAAAAAAK+EfEAAAACAKsR8QAAAAMA6Dn1AAAAAQEwmfUAAAADAikV9QAAAAAAlen1AAAAAwOCFfUAAAABA4q99QAAAAECxzn1AAAAAgLXZfUAAAABA/eh9QAAAAACiPn5AAAAAwGJufkAAAADAlr5+QAAAAIBb135AAAAAwLUXf0AAAADA3zh/QAAAAAAHc39AAAAAwEx+f0AAAAAg+xeAQAAAAKASKIBAAAAAwBI6gEAAAABg5T6AQAAAAGBvaYBAAAAAIBODgEAAAABA7pOAQAAAAAB8toBAAAAAgKbrgUAAAABgNPmBQAAAAEBabIJAAAAA4NSBgkAAAABgxJSCQAAAAEDEs4JAAAAAABS/gkAAAACgyuqCQAAAAKBv+IJAAAAAwCIfg0AAAACg9HuDQAAAAGCuu4NAAAAAAMjEg0AAAADgbgaEQAAAAMClm4RAAAAA4G3ahEAAAABgcyaFQAAAAOAjV4ZAAAAAIHqmhkAAAABgwcWGQAAAAABYCYdAAAAAwAoTh0AAAACgQVaHQAAAACCTbodAAAAAoPeph0AAAACA+WaIQAAAAKB5bIhAAAAAIF62iEA= + KBZXds7jZUD242ktdYNuQBTpB48/A3JAb5d1hqpCd0A28gnAwnN3QKo57ltaY35AcZSClXKUfkBmIXjG7umBQPKcoUKxSoNAZlBm8JpyhUDiFqexUxuJQA== - + - ti7jQNecgUCWKx9AImxQQd+rD0Cf0I9Abhn7Pxlbq0C219Q/PZwGQIHtDEAiIhRBNNyoQKL1AkGIKIxAYQ/IQHFlY0D7L0hBAqY0QFJmOEHHT/VAFs+PQFrU1T+4XkdAjl0ZQIBgY0FbDItANT0aQes+cUAn/MdAiP80QBsn+j+mM9FAWvFdQfMu1T9ugzFAYoKNQNVmukD647tAguEpQdCUgUFc4J9APKAEQY4/IkBm1YFAF3tNQFvZFEFtipdBDHm/QGtEMkAFvnVAwu8GQU0fjEA/VohBHUbdQf9UyUDoaUdB7y5mQV5ZnkGvgy9BserAQQzwnEFMLRZCsOZqQJgELUEYPVdBVhSkQE/0wECLD/9APCsyQKxwx0C3vdBALTNEQXDr2EFFIQNAO/hZQWzjiEBtUBVBVNXCP5+glEDvF2hA73giQFVzDEAOn5BA2oVuQQUNzkBJVxZCv3nyQd2HQEEY6jhCn6CVQBs7QEEEcfo/zqIPQWfm/kBTIYtAXBH+QdlMg0GUtmlBdgqLQC+5KUHD1yFBnUwZQKRDDUEpu9lAs8XZQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgFRgaEAAAAAgZ8ZsQAAAAAA8Am5AAAAAgHsfb0AAAADAuyRwQAAAAMC9IXFAAAAAgKLwcUAAAAAAACByQAAAAIAVunJAAAAAgBKBc0AAAABAhsF0QAAAAAD09XZAAAAAQCQfeEAAAADAOkZ6QAAAAEBIlXpAAAAAQAbNekAAAADAuOZ6QAAAAEAZHXtAAAAAwEoPfEAAAAAAc1N8QAAAAEB6o3xAAAAAwL9kfUAAAACAhJJ9QAAAAEApwn1AAAAAgJw0fkAAAACAEU5+QAAAAEDHxX5AAAAAgHXmfkAAAADAHwZ/QAAAAMDmIX9AAAAAAOY0f0AAAACAf0F/QAAAAMCCYX9AAAAAwFT5f0AAAABgBgSAQAAAAKA2C4BAAAAA4P1XgEAAAAAgQImAQAAAAAA48oFAAAAAAF5ehEAAAAAg4quEQAAAAOAsy4RAAAAAwOXrhEAAAACgrQWFQAAAAEDMrIVAAAAAAJ+6hUAAAADg6uKFQAAAAKCDKIZAAAAAoGVSh0AAAABg25+HQAAAACDk54dAAAAAYJS9iEAAAABAdeuIQA== + KBZXds7jZUCCq6/ifYNvQFAtpBCXEnJAwTM0RRfTdkBQi4Bk7yN5QOM8NnaaQ3xAcpSClXKUfkBxTQlleaqBQDh5r3Tl0oJAj57FT9E6hUBWymtfPWOGQA== - + - +h8ZQL6/iz9ZvvRADSmzQOW750C0kHM/caSLPxOYXEBUzIlAxH5sQJIP5kBZ8GdAdfAvQQYJbUFzh9I/TBI+QBqPsD/QgQlBtv6DQCo/+j8ixWRAQrPEP5hgM0AI/WJAqHkBQRJO5kAmLsdAWeP+QHuhGUHsLEBBdq+SQSuS1T/gPug/+AULQX4OTT+k3yJAXwIUQtGfH0C8OKRBA982Qbvxwz+A/MRAR5p/QV0ssEDeiHlCrLeUQCQdgkDRBAhC+xSQQaxd4kGVel5BM3PnQByRlkA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAMjBbkAAAADgTI9xQAAAAEATaHNAAAAA4HkjdEAAAACA5Ed1QAAAAGAhc3VAAAAAAHh1d0AAAABAHYh6QAAAAIB/k3pAAAAAgCwke0AAAABAD5V7QAAAAECx5HtAAAAAQPKmfEAAAACArVN+QAAAAACad39AAAAAAFzuf0AAAACA7AGAQAAAAAAUGYBAAAAAwNOIgEAAAACgf9KAQAAAAGCbOYFAAAAA4K5RgUAAAABgUYKBQAAAAKCoi4FAAAAAABOSgUAAAABAMwuCQAAAAKBAJoJAAAAAIJ2zgkAAAADg7MCCQAAAAGAR5IJAAAAAAELxgkAAAAAAjEODQAAAAADwc4NAAAAAICfHg0AAAADgL+qDQAAAAGBCCoRAAAAAoOqZhEAAAACA7aSEQAAAAOD0I4VAAAAAwF1ThUAAAAAAuZqFQAAAAGCXUoZAAAAAwEOhhkAAAABgWeuGQAAAAGD4GodAAAAA4Gy5h0AAAAAg9/OHQAAAAKDqeohAAAAAYOeEiEAAAABgzayIQAAAACCs0IhA + NrgMGZxjYkAbumJgJkNwQFgXFG05cnNA4hT3mT50eUBYdfDAkYN6QA== - + - H9CEQQYJ+z+sM5RA5rSrQNn7j0CyHeNAvU2kQF84F0FH/BJBiw5rQOkbY0D8kw9BXbVQQOTbn0AIdv9BWVf6PzOALUFetJ5AJU6HQe6eVUEFHblAR+1wQMUXhELvJMM/bS6aQEVGnUD+52JA/Te5QOWWiEDE7K9AiC1jQBaKrkERpJRAKPrHQMiuzUCgqydBI9gxQnFBbEAyT75A0/0EQTnoAUEM1fk/gkuzQdLmjUGcdyVBVpPVP50fEEDcN2xAmlFsQCUTrD+WDFNB + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgMaiaEAAAAAAK+loQAAAAAAkY2pAAAAAwCOEakAAAABAuIltQAAAAGDHJm9AAAAAAOzGb0AAAABgeP9vQAAAAICnEXBAAAAA4GDTcUAAAACAfwJzQAAAAEBdtXRAAAAAAGSQdUAAAAAA6MZ1QAAAAIDFVHZAAAAAQHAfd0AAAABAPnJ5QAAAAACTtHlAAAAAwOYDe0AAAABAQTJ7QAAAAEA2h3tAAAAAAHude0AAAAAA27Z7QAAAAMB773tAAAAAADXofEAAAACAA8N9QAAAAEDW0H1AAAAAgI31fUAAAAAAgwJ+QAAAAAASR35AAAAAwI9TfkAAAABAvGR+QAAAAABshH5AAAAAQDaOfkAAAACAgKp+QAAAAABsP39AAAAAwG5ef0AAAACAN3Z/QAAAAEBkg39AAAAAwFXEf0AAAABAjtZ/QAAAAECP/39AAAAA4GUOgEAAAADAUj+AQAAAACBDXIBAAAAAQFd3gEAAAABgdamAQAAAAOBYvoBAAAAAoL/NgEAAAAAArtKAQAAAAEDZ+4BAAAAA4EAWgUAAAABg8zSBQAAAAMCNYoFAAAAA4F2bgUAAAADg7suBQAAAAOBA2oFAAAAAYLLfgUAAAADgjvOBQAAAAOAMA4JAAAAAIGgagkAAAADAxSqCQAAAAEBlNIJAAAAAYJY5gkAAAAAgAHKCQAAAAOBNi4JAAAAAAP2ZgkAAAADA9b6CQAAAACC/1IJAAAAAILTbgkAAAABgBOeCQAAAACAtAYNAAAAAYFc9hEAAAAAAqEOEQAAAAIBSgoRAAAAAoPenhEAAAACA/byEQAAAAGDT1IRAAAAAoEHphEAAAAAgNFuFQAAAAKDqY4VAAAAAoEiJhUAAAACgk46FQAAAAMDjqoVAAAAAYHOYhkAAAAAAgsmGQAAAAOB14YZAAAAAYAZ1h0AAAABgiKyHQAAAAEARAohAAAAAIH0hiEAAAADg5tqIQA== + KBZXds7jZUCmvpxNHKRoQKPid1q/AnFA - + - VjL7P0oqgkDYJTVATgbDPx7m1D//cXFAqAqwP/2LkUARyg9BsTQkQU9T3D+FQbc/UONsQMnL5kFNxoNA/BEcQc+yO0GcJrE/EcMPQfDJiED3nOxAPPaIQKO8EUEusppBigPWP5NJGUBc5KZAO+y7QLQZB0H/ZGNAkO2mQC/wy0Afb1tBxEMqQedPtD82/EVB6ez7QDML8ED0VtY/nsBGQfySjkC2YgZBG3KiQMgghECwHl9BsNH3P1jcvEGNgLA/As9OQW27F0CI6udAzYMbQdolAkANaQhARB5MQbQ0G0E+pKdBlte7QQ93O0FAo+dAIboPQTb/T0FYCfxAgr4qQfottD8uTv4/Rth/QASTgEHs+O5A18h6QEyTvUGG8TFBqGEgQWMFIkFJdExA5jwqQWnXFEDbNu1ABzWfQMnM1kCOdPU/IxnMQEaSgkE7fv9AoJE7QVjVR0HaoiJAomEGQDBUwz9H9P1A33AHQdC53kA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQP8scEAAAABAeVNwQAAAACB4ZXZAAAAAwAZFeEAAAADAYFJ4QAAAACCT9nhAAAAAQMNxe0AAAACAaGR8QAAAAEBpU39AAAAAAFwdgUAAAAAAbnGCQAAAAIDIaYRAAAAAoLkQhUAAAADA3QGGQAAAAAD/KYZAAAAAQCVUhkAAAADgjF+GQAAAAEDt1IdAAAAAwFrah0AAAADgOFqIQAAAAMBfcIhA + NrgMGZxjYkByWoXuS4RpQCi3YN0hA2tAxwSPFv7SckC7HPhlP5J1QO7F1o2s43pA4t0/3e2ifUCKQ4+CLXqBQLgaRv7i2YFAR0Ok8w6ig0BElm96pXqFQA== - + - UURjQN5hbEAyDRBA3AApQcmkEkHoqhZADdHCQG7Nq0CyUbVAN5MdQeMpWkBM7llA/M8GQIhnRkHSixZAvX3AQOIsPkBleMdANkp6QG4740AizZ0/ + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQPQHbkAAAACgayVwQAAAAMBKU3BAAAAAwCsBcUAAAAAAZB10QAAAAEAwUXVAAAAAwEwFdkAAAABAcSB2QAAAAMDiY3ZAAAAAQBR1dkAAAADABH92QAAAAMAtBHdAAAAAAL+Ed0AAAADAT8J5QAAAAIBeMXxAAAAAwAZ3fEAAAADAFHR9QAAAAADj1X1AAAAAQNqUfkAAAABApqZ+QAAAAACVGoBAAAAAgNEygEAAAAAgVbqAQAAAACBA34BAAAAA4P4pgUAAAADAvTKBQAAAAMC+coFAAAAAoKIqgkAAAAAgL2GCQAAAACAFboJAAAAAwMG5gkAAAAAgu/eCQAAAACCdC4NAAAAAIMQvg0AAAADAvNuDQAAAAGBfGYRAAAAAoLUwhEAAAADAqYuEQAAAACD3yoRAAAAA4IAphUAAAABgjTiFQAAAAADOP4VAAAAA4CJLhUAAAAAAsa+FQAAAAKB3yoVAAAAA4OLThUAAAABAE9mFQAAAAOBE+4VAAAAAYPsKhkA= + eg5Y0/EhYkAoFld2zuNlQARiQCMRQnJA9X42GSyTdkDkVUsBVuN9QLzZylJExH9Ab3HmwWOagkA= - + - a3tfQL5a0T9u/IhBpcDCPwotdUA31TRArBZIQIzG5kAIhJZAP1gZQF9QsUBRrJtAPaaMQQ71zkB8NDBBnI0iQJyODkEqOLFAfNq9Qd8OHUEMjwZAjWwgQBtdbUHRlk5BCdsEQRDVjEDzB59A8zXDQIq2oECYRXNAFej7Pyhvq0AKJOg/txUWQPl8wz8cF3NAnABtQe8xx0CwCQpBT3rDPzaHi0Ag/FdBP11DQJQVnkA2zL9Br1F/QIXoLkFArLJAE5dkQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIPgmYEAAAACAlMRgQAAAAEAtpmJAAAAAwAjBYkAAAABA1yVjQAAAAEDeW2NAAAAA4MwmZEAAAAAgMSdlQAAAAABzhGVAAAAAgKPCZUAAAAAALN9lQAAAAAB74WZAAAAAwCkrZ0AAAABAAEJnQAAAAAAEXmdAAAAAoC+JZ0AAAADAAgRoQAAAAIDsP2hAAAAA4CkpaUAAAADABz5pQAAAAIDbYWlAAAAAYKHaa0AAAADAA6NsQAAAAOBF42xAAAAAIAZ8bUAAAABAj6htQAAAAEDvCG5AAAAAgPo9bkAAAACAUmJuQAAAAMATn25AAAAAwK4Jb0AAAAAAUkNvQAAAAAAkI3BAAAAA4DsxcEAAAADApYNwQAAAAAD0rXBAAAAAIIhBcUAAAACAdG9xQAAAAMBIlXFAAAAAYOigcUAAAADgO9NxQAAAAIBvPnJAAAAAoLZSckAAAAAgFnpyQAAAAMDbhXJAAAAAAGMDc0AAAABAkRFzQAAAAAA9InNAAAAAQCpEc0AAAADAU1BzQAAAAOA4dXNAAAAAIMOTc0AAAACAebJzQAAAAGAYxHNAAAAAoCATdEAAAABgeSB0QAAAAGAHL3RAAAAAgN1AdEAAAAAAwlN0QAAAAABOb3RAAAAAACJ5dEAAAADALYR0QAAAAACupnRAAAAAIB0AdUAAAADgRyF1QAAAAIDoMXVAAAAAgBRBdUAAAAAg+WZ1QAAAAABnhHVAAAAA4DyxdUAAAABAWbx1QAAAAKDS5HVAAAAAQIP0dUAAAABARwR2QAAAAMCFFXZAAAAAwH0idkAAAAAgRjN2QAAAAAAqYnZAAAAAABOQdkAAAAAAXsN2QAAAACAWznZAAAAAIGL2dkAAAADAKRR3QAAAAGBKMXdAAAAA4P1Od0AAAADgu2J3QAAAACBgcndAAAAAYFSGd0AAAACgnrR3QAAAAOA9w3dAAAAAYPHNd0AAAAAApNp3QAAAAGANDnhAAAAA4McreEAAAADgZ0Z4QAAAAGAMVHhAAAAAIM5ueEAAAABgNYN4QAAAAEBilHhAAAAAIKGmeEAAAABAurB4QAAAAKD9z3hAAAAA4BvzeEAAAAAgBwN5QAAAAOABHXlAAAAA4FtFeUAAAAAgsmV5QAAAAGB5g3lAAAAAoJyQeUAAAABgl6R5QAAAAMAEtXlAAAAAwBPTeUAAAABgvA96QAAAACBOInpAAAAAwPY5ekAAAADAC2Z6QAAAACBLhnpAAAAAoFqQekAAAABAu696QAAAAEAcIHtAAAAAYEN3fUAAAABgXqp9QAAAAKBJpn5AAAAAoLu2fkAAAAAgzRN/QAAAAODyUn9AAAAAwDRif0AAAACgdYV/QAAAAKCQn39AAAAA4A7Ef0AAAADgJ9Z/QAAAAEB86H9AAAAA4BIwgEAAAAAA8DeAQAAAAMAjVoBAAAAAoFRzgEAAAABAjnuAQAAAAGA1y4BAAAAAgHr9gEAAAADA3xKBQAAAAADVMoFAAAAA4FirgUAAAAAgcrCBQAAAAGAiv4FAAAAAIPfdgUAAAACgjvKBQAAAAMBIGYJAAAAAIIw4gkAAAACAwVGCQAAAAOCyX4JAAAAA4Ex0gkAAAADgMryCQAAAAKBd9IJAAAAAoDgMg0AAAACgZBKDQAAAAKB3IoNAAAAAIL9Sg0AAAADAJYuDQAAAAIDQk4NAAAAA4OWzg0AAAABAasmDQAAAAGBXEoRAAAAAIH5KhEAAAAAgXE+EQAAAAGCle4RAAAAAAA+qhEAAAACg6fuEQAAAACCtC4VAAAAAYOQjhUAAAAAg2yqFQAAAACCQNIVAAAAA4L46hUAAAACgpLOFQAAAAACquoVAAAAAIPMDhkAAAAAgqjuGQAAAAOCfUoZAAAAAoImIhkAAAADAJZOGQAAAAMA3uYZAAAAA4Mr0hkAAAADgiAuHQAAAAOBnIYdAAAAA4IS7h0AAAACgaQSIQAAAAIBpg4hAAAAA4MTCiEAAAAAA4sqIQA== + NrgMGZxjYkDiYBUjzERrQNeRk/3Io2xAeiAWnrxidECZcdKIFLN1QNB0GqNU03hAu3rUuZcje0DyfRzU10N+QBHP2L4vlH9AT5MS74PSgkCMH7IlQyqDQLdJNCiPYoVARnKSHbtqhkA= - + - PsoPQGeGwz9edhlADAq7QLJZNUDCmsQ/dWzyP1tBfECOOp1A4l+kQAkF1j/3h9U/lBnoQHXnW0BvTEVAaH1DQBofrECSzhlAeq1fQJ0vEEBRsZ0/7ljRPxcdAUEoxFdAw4f6Pyu5tD82umxAAfSWQDkZdkDUBO5AwE6SQLh0g0D89JFBjuyhQAPcd0EMVu9A2AwDQTEcuz/Xz8xB0g/sQKy1UEDCo7JAe2DVQHdqDkE0NwtAJMISQsCzL0FZPMA/xB7iPyji/0BMTTtA3JkBQjFcHkHrDAhCNm9jQMN6pUBl01lA1nEGQO7e4kBEfzJBqTRMQKpqGkFRtSNAQPAjQdPDpkBvVQNBOCBRQVptjUAaRbE/AAEmQZ7gO0DQ9/lAwYr8QBi2g0DMYSBBlLckQWvSuUCSuOc/qEVYQLzEFUCrB21AUt4GQLepD0JUM4BBSlK7QKAWIEDigwNBYNEuQT3a+j90r/JAullTQV4dGkHLDl5BfuvIQLiYI0E66jtBNmChQS4KMEHxhkRCZJEwQI++8kHT91lBgAz8QECuO0DHxw5BD/QqQ3dX3ECHAWhAkQ6kQWm5D0HcPEdCy5JTQt+bhUKM8WhBPIYWQZKuHUFCM71AlAQHQBuCC0GnFBFAyvA0QALfdUEq+VZAbtMCQQ2DUkE4zyJAXJ2DQR8cJEBgyQZAgUG5QfbjZ0BZr75A/I+GQvQLh0Hgf3xAfDh6QmuMkkFlMfs/uMZ+QJZ0/EBY27FAXavRQaTFYEDKpzRBUMHlQaqHnj/uFb9BzCOaQeOChkAXk9BALYiwQL5bNUCU7OdA++CeQE6BakC0b8dA8gSgPyRqsUKF/1pBVKwiQPYJ9T8Pwvo/1OQ5QB4Kb0H8VI1AcmGUQc4ioECxA5lAQoCbQEG4lkJn2NlALs4DQWV/ZEGYAEBBPC8iQRgazED5oY1A4/HqQCNVukGevMlAGLVNQMm0EEFEkTxB5VqjQADbtEBbLI0/1GKqQYrouEE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYA9/ZUAAAACgeqZnQAAAAGCjK2pAAAAAQNBGa0AAAABAnyJsQAAAACDKRGxAAAAAYDRjbEAAAADA/qFtQAAAAOCu521AAAAAoJ+CbkAAAABAiqhuQAAAAACBKW9AAAAAwCphcEAAAADg4qFwQAAAAIDPxnBAAAAAQG7/cEAAAACAU9JyQAAAAABZ43JAAAAAwILDc0AAAADg+hN0QAAAAMDTI3RAAAAAwA2xdEAAAAAAoRR1QAAAAMDVEHZAAAAAAA9Cd0AAAAAAYlB3QAAAAAAR8XdAAAAAAIBReEAAAAAAQ/R4QAAAAEB4DHlAAAAAgD9weUAAAADAtcN5QAAAAIAp0XlAAAAAQH6UekAAAACAXad6QAAAAICh5XpAAAAAwKHyekAAAAAAi0B7QAAAAEChUXtAAAAAgPeFe0AAAADA20J8QAAAAEB6ZHxAAAAAQHiffEAAAABAidF8QAAAAIAC7nxAAAAAAKIifUAAAACAjz59QAAAAMB6S31AAAAAQMhmfUAAAADAGYJ9QAAAAAA4kn1AAAAAAC68fkAAAACAHdh+QAAAAIDP435AAAAAgGDvfkAAAABAayV/QAAAAEB6M39AAAAAwPBNf0AAAABAU2F/QAAAAIDVnH9AAAAAQAz2f0AAAABAagKAQAAAAGDTeoBAAAAAoJmJgEAAAADgcZOAQAAAAACqyoBAAAAAIPX4gEAAAADAwS+BQAAAAOCOPIFAAAAAIPtYgUAAAADgA2KBQAAAACBLo4FAAAAAwPWqgUAAAADg1biBQAAAACDCyIFAAAAA4AvigUAAAACAMu6BQAAAAGD/kYNAAAAAYOvBg0AAAADgThKEQAAAAEDYGIRAAAAAoPFPhEAAAADAVXGEQAAAAKB8eIRAAAAAYJYEhUAAAADAuDuGQAAAAEDgo4ZAAAAA4ESphkAAAAAAtM2GQAAAAICmWodAAAAAoO+Jh0AAAAAgGpOHQAAAAICCw4dAAAAAwGvLh0A= + KBZXds7jZUCJy7y2HKVqQNvlv3T/InRA7Cam0jxjdUAxOsR5l5N4QGDMZsIsZH1A0m/CtENKgEBbkLVjYuqAQGZQZvCaUoRAvr1/gO6ChUDKfTANJ2uHQA== - + - kZ0nQLSP/ECulo1AH5OeP/XWYUAI21NBdvVHQJcHvkCX6ZBAlPLQP7oiQ0Eo7K9APYUHQCQHckAniIlADFLoPzYAEkNWavI/ayjAP43LlkDgw2NAXIjWP8KoaEAlgl9B1AAVQLjEwUB8pD5AS1KIQFvNB0GH10ZBJP50QIDgnkE2XHU/6TsQQFs0w0Bu845DO5W/QGJr3kKgYYxBvyPgQCQDI0Amu0JB4h0pQMFViEF/n0lBYmY8QNyOLEDyTo1Bx1CgQB8HUEFZKDpAOZwQQcF66T8b9OFA/xHMQD2VG0HEHJJALJD6QdV1F0CecohAoKIQQe7Z6T8TGtxA5BE4Q+KhjUANtJ8/+9jHQIZDqEDrQ0tBuEvaQk0J7EG2TMxAg54hQYvlEkEcTuk/1ygSQPcyMkFD0bRADFXaQIz4uUDv1mNA/FGeP1pjm0P8aqBBqVowQcyXuUCw4I9BlvxbQc8kvkDywsBCv9AsQ0R46ECfvIVBvQtgQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAwE9hYUAAAAAAQcZhQAAAAIA2p2JAAAAAQIDFZUAAAABAqSZmQAAAAMBdSGZAAAAAAFSAZ0AAAAAARKJnQAAAAADgx2dAAAAAgFDrZ0AAAADgCkZoQAAAAMDCqWlAAAAAQJAIakAAAADANmFqQAAAAEDdnGpAAAAAYM6/akAAAABgkCJrQAAAAODsZmtAAAAAwJ+Da0AAAADAHx9sQAAAAMAcrGxAAAAAIMoIbUAAAACAE0VtQAAAAIC9XG1AAAAAQBRCbkAAAADAr7luQAAAAADj125AAAAAQJuHb0AAAABA1qNvQAAAAKBUDXBAAAAA4GklcEAAAAAAaFRwQAAAAMDRj3BAAAAAoHKxcEAAAAAAqMVwQAAAAGD48HBAAAAA4HcDcUAAAAAgHBJxQAAAAOAvSnFAAAAAQHeBcUAAAAAAQ69xQAAAAGBlMnJAAAAAgBg/ckAAAADAhlJyQAAAAEDKgnJAAAAAQMnCckAAAABAkOZyQAAAAKBBAnNAAAAAgJgic0AAAACAUjhzQAAAAMBkQ3NAAAAAwIdOc0AAAACAOl5zQAAAAMCIeHNAAAAAoMzkc0AAAAAAmfJzQAAAACCRAXRAAAAAwK0SdEAAAADASDJ0QAAAAKC+UHRAAAAAgL98dEAAAAAAo7F0QAAAAMDYBXVAAAAAYHURdUAAAADALlV1QAAAAEDGkXVAAAAAwE6vdUAAAAAAxeV1QAAAAEB6GnZAAAAAgOlRdkAAAAAAyV92QAAAAMCjcnZAAAAAwOR8dkAAAABgtpR2QAAAAMCMVXdAAAAA4J9yd0AAAADgE5V3QAAAAAC3wXdAAAAA4OLXd0AAAAAg5Qh4QAAAAGALV3hAAAAAYFNleEAAAAAA2YN4QAAAAOClpHhAAAAAgOLgeEAAAADAmfB4QAAAAGDAAnlAAAAAoOYteUAAAABA6lF5QAAAACD+XHlAAAAAYLdveUAAAADgbJ55QAAAACBtEnpAAAAAIPpefEAAAACghJd9QAAAAOCbWn5AAAAAwJzxfkAAAABA9DOAQAAAAGAeb4BAAAAAoCOKgEAAAACg8JKAQAAAAGCXuoBAAAAAoDPDgEAAAACgRcyAQAAAAOCTB4FAAAAAoMQZgUAAAADgfSGBQAAAAEBmSIFAAAAAQEaigUAAAACAy7uBQAAAAKC7C4JAAAAAoIBqgkAAAABgmHqCQAAAAGASnYJAAAAAoHiygkAAAACgvxODQAAAAKD3lINAAAAAgBbAg0AAAAAgpBmEQAAAAKCPxYRAAAAAYMznhEAAAAAgHQSFQAAAACAWC4VAAAAAIIUdhUAAAABgw2uFQAAAAGBlPYZAAAAAAHOshkAAAAAg4rKGQAAAAEBtE4dAAAAAYMM8h0AAAABgIkWHQAAAACDhGohA - - - - - - 5VKxP7IJxD+P3pZAVjpEQK3TAkButAdBbl71QHPK/EDqG35AsI+bQH2QsT+8JIJAdNu+QA3yekAfWkBAh5bwQP7I1j8qBYVBcWxyQGW+T0EmINY/zAqQQKHDDUBg0qRATOMiQItUUUBwzWxAWMN7QHs1xUAwVp8/KIFkQEwZOkEG0XRAeOqhQZ/DWEB28rtAQmLoP/aNVkHt6gpBDiABQYB9wkBwfTJBNi+1QO9kn0AhTu9AXA3BQEoPkkDEnhpB5z3ZQGT9G0GPMeI/UC+lQI/PgkBv/npAG+zVPxhAYkAEY5JA1DnTQJktOEFhCcNAetIJQdOo20BicblAFSZiQNEpGkAOLl5B1egwQcE9zUEBLJBADeSGQLKn7UCveB5BffeLPyIUkEDh5WVBE0nRQDSkGUAKBOk/yli/QEBXNUA1UtpAKpggQUg0LECrhKFB2YiiQHSlaEHo1h5Bw4k8QdyYVUCtHBpBFhcHQGp3OUGfYRBAKyKNQd2tQEFKsMBAenspQX5SoEA9TRBApcoLQUH5BkCNA35Bc281QBGa1UDBttVA7kBfQP903kAmpAJA/5o6QCfsnUCaM5lAFfF1QVHqhkB7J4BANyBNQS9cBUGhOxBA8gMDQWIgsEDKZVpAiGjjQElW7UE1H9pAYO3JQMnDGUGOD5JALg4HQEZxDEGE0ANBM+DJQuOKF0EpdqlA - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAwO7hYEAAAAAAzWVhQAAAACARZ2JAAAAAQEKpYkAAAAAglehjQAAAAEAI6GZAAAAAgOhkZ0AAAAAA9NpoQAAAAAAPrmlAAAAAADMiakAAAADgDKVqQAAAACBqnGtAAAAAYC8EbEAAAADgcUdsQAAAAIDfim5AAAAAAM3mbkAAAABAigJwQAAAAAAYVXBAAAAAANthcEAAAABgMxFxQAAAACBEcnFAAAAAINDmcUAAAACAK/FxQAAAAAAkMXJAAAAAgGRsckAAAABAjMVyQAAAAMDRIHNAAAAAwBpFc0AAAADgFqJzQAAAAIAMsnNAAAAAYF7ic0AAAACgJyN0QAAAAADlMHRAAAAAQEGUdEAAAADgMtZ0QAAAAKDg4nRAAAAAYB/ydEAAAAAAIf50QAAAAGB4D3VAAAAAQGczdUAAAABgckF1QAAAACBKc3VAAAAAoCjRdUAAAACgOBJ2QAAAAICuI3ZAAAAAoLFLdkAAAACgG3F2QAAAAMAprnZAAAAAwHjjdkAAAAAA5P52QAAAAGDWEndAAAAAYMkid0AAAAAAeVN3QAAAAGDJbndAAAAA4Jx/d0AAAABgRJB3QAAAAAAH0XdAAAAA4GPjd0AAAABgefF3QAAAAGB7FHhAAAAAIK8yeEAAAADAa0B4QAAAAABDU3hAAAAAgJVkeEAAAACAZ7d4QAAAAAArMHlAAAAAwIpAeUAAAAAg11J5QAAAAOAkb3lAAAAAIFqBeUAAAACgf5B5QAAAAKCHBnpAAAAAIE4jekAAAADgaVJ6QAAAACA0Y3pAAAAAILVyekAAAADgZHx6QAAAAGBMjnpAAAAA4BCgekAAAACAocN6QAAAAMD35npAAAAAAFTxekAAAAAgmAZ7QAAAACDnI3tAAAAAwG9ye0AAAABg7IV7QAAAAKAkU35AAAAAQJxkfkAAAAAgiZ5+QAAAAGDpF39AAAAAoHIvf0AAAABAkw+AQAAAACByJoBAAAAAQEwygEAAAADg7D2AQAAAAADDiYBAAAAAIIe1gEAAAABgnNyAQAAAAKCR44BAAAAAQODrgEAAAADgCSOBQAAAAAA3NYFAAAAAAPrSgUAAAACAHP6BQAAAAKD/LIJAAAAAoNpZgkAAAABAso+CQAAAACBDvIJAAAAAYJYAg0AAAADgURKDQAAAAOC6PoNAAAAA4EqHg0AAAADgLZGDQAAAAODHwoNAAAAAQLzQg0AAAAAAoQeEQAAAAICUQIRAAAAA4OVIhEAAAADgF6WEQAAAAICjFYVAAAAAoJgahUAAAAAgJaSFQAAAAIDlAYZAAAAAYJl1hkAAAABgFMOGQAAAAODfUodAAAAA4EFfh0AAAABAE2yHQAAAAABBvIdAAAAAYFbDiEA= - - - - - - n33qQM3vn0DHbABBbdQrQA8BhEANP4hAzSyCQOL49j95zIxAaZHcQEwZWkCgXjFADTjiPwZ++z/P2DJAr+MPQA1s6ED+i5tAGULMQB6NRkE2NbJAu62tQE8GvECiMKBA3i+JQP9pDEECp2JAr7EVQb/fj0BwIr5A45dZQa7LSUHNAOpBmIHzQMTHNkHdaxBAyuRuQbuQ3kB9i4ZAjlBZQYxlMUBlDLxAFwogQfDD0UC2p7FA5pLXQASGzkCSwE1BlnYpQeTWlUAwO58/g48GQet2lUH1qLdBzPUgQMRTjUDlHE9BhTUEQOJbQ0HmZiNBb+kcQR5pfD+sPApCH7fCQGI7tUAX6ANBgggSQTl2ZUFIYDpCEg2yPw02x0HqS9pAXkGwQCFTyEFkjyVBSA4QQFLdRkGWcI5BfiWfQcKkY0A9Re5AxoOVQW/tCEL6l9NArNizQR7lv0F1OHZAC0nrQAeZDkFSlJVB/Z3VPylJFUEEtBlBzZlPQfQ2sUGgvENAIz+tQMsc9kAAVPtBi72dQWxee0DKNJBAcvcDQbz2MkDNA4JA9S9IQDZQtkEjXWZBge4UQceBnUAAdDNC/BzIQ6p7/ECZBn1AhCqzQUJfhkJTpcxAdaAJQZdXi0AF1YhA6XWzQOCXm0CFjn9AE9GnQMf0VUArfENBNwttQNkAxEA+/7BAMw38Pw== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAwMcRX0AAAAAAmCVgQAAAAEAUR2BAAAAAAEmhYEAAAADggGthQAAAAEABHGJAAAAAQLllYkAAAAAAdIliQAAAAEDahmNAAAAAgKmbY0AAAAAAjMhjQAAAAEBtBGZAAAAAAEdkZkAAAADASQdnQAAAAIDKIWdAAAAAQCZfZ0AAAACgjt1nQAAAAAB1AWhAAAAAQEXHaEAAAADASqNpQAAAAOCx02lAAAAAgLRAa0AAAABA+EZsQAAAAIDQvWxAAAAAgBafbUAAAABAA4ZuQAAAAEB0pW5AAAAAAOjdb0AAAACAyVFwQAAAAEAoxHBAAAAAQKA/cUAAAAAA7JxxQAAAAKCKtHFAAAAAoEPycUAAAADgUQtyQAAAAMC1LXJAAAAAgKJBckAAAAAAYVFyQAAAAMBSh3JAAAAAoDvdckAAAADg7/ByQAAAAKBgFHNAAAAAoCdwc0AAAADAAJlzQAAAAIDDsnNAAAAAAJvMc0AAAACgUeNzQAAAAKAT8XNAAAAAwNYWdEAAAABAci50QAAAAGBVc3RAAAAA4F2SdEAAAAAAJbR0QAAAAICr0nRAAAAAwJ7zdEAAAACATQN1QAAAAIAZF3VAAAAA4JgzdUAAAADA05N1QAAAAABhp3VAAAAAgCKydUAAAACAtsF1QAAAAMCi0XVAAAAAIA/gdUAAAAAgEBN2QAAAACB8VHZAAAAAgFOydkAAAAAgy852QAAAAGDe7XZAAAAAoPH/dkAAAABA8CZ3QAAAACD0PndAAAAAgK1Qd0AAAACgHWR3QAAAAMDWcndAAAAAgPucd0AAAABgqc53QAAAAOBL73dAAAAAYN0jekAAAACga1J6QAAAACBdgnpAAAAAYBufekAAAADAwPZ6QAAAACAsZXtAAAAAYMmYe0AAAADASaZ7QAAAACBzsntAAAAAwGCMfEAAAADgecR8QAAAAGCA03xAAAAAQI0zfUAAAAAgdGV9QAAAAKAbuX1AAAAAwA0gfkAAAADABCOAQAAAAECRKYBAAAAAAGQ0gEAAAACAlIaAQAAAAOBAwYBAAAAA4BLSgEAAAABAruKAQAAAAOCVDYFAAAAAoHcTgUAAAADgWhuBQAAAAGAoKoFAAAAAYEJhgUAAAAAgeoyBQAAAAKCZqoFAAAAAoLy1gUAAAAAgZfKBQAAAACBI+YFAAAAA4PJlgkAAAABAOXKCQAAAAOB31IJAAAAAoCLbgkAAAADgZ+OCQAAAAAD+AoNAAAAA4HMxg0AAAABAD0WDQAAAAOB1ioNAAAAA4P3Zg0AAAABgcQqEQAAAAIAtG4RAAAAAYCTMhEAAAADg1PqEQAAAAIA9i4VAAAAAgFOThUAAAACgvaaHQA== - - - - - - Li+JQAt5JUIk6odA9kefP4BMa0CUKSxAquiZQMTWb0HYDltAH5rEP0VAA0Gl16JA4huQQKhwK0DzztFAXrhRQS2I1z/aFJJBf6QzQENpL0E4ut9AulrDQFuov0FQIhpAMX4sQBfIGUOfqGpA2uz/QGEEsj9qqQhAjTkJQW+PKkFv9zpAK/iVQRgx0UAOuL9AL8pEQLenB0DCt1ZB6UxIQMbljD9+tTJAKquYQfqmBUFJZLFACpaGQR4IikDahXdA62pNQVuOhEANfbRB1wLsQdF30EDyszdBeuuXQDYCKEDC+mNAEkCqQK8gOEI9A09BGZ+nQTy4s0JPMnJCViSCQERiD0FjA6tCjnaQQJ6amUAzKJFAwEZlQbHxdkFmuwlBGLX3Qdv06kCDe05A6Jr9QEBvj0JNdZ8/0gU/QNPFNkBqBIdA2pwoQLFkR0GqV2xAQ13WP0pQoUC+s4NAV/EXQZ42dT8Mf6BB70AVQSPYW0KBm+FA36cEQYz/dUARA4BArDh7QLyIh0HzZpxASBINQDC4vkBLe+BBe933QeDui0BYSr5AO0m0QZ2eh0H5T5BAAyC/QEbpvkJnEr9AF1EHQCM1TkC4qA1B916BQOt3FEFauRtBVYc7QC8AhEGnxCxAzLBxQQ/RAEHxQ79A7kW5QDecHkJqY4lDmM2wQQgl8kA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAADsHXkAAAABAuCRgQAAAACDypmBAAAAAYMbDYEAAAACgvCFhQAAAAECTgGFAAAAAQDNlYkAAAAAAmYNjQAAAAABi5mRAAAAAAC+oZUAAAADAjgFnQAAAAECSJWdAAAAAAPzBZ0AAAABADyBpQAAAAECwYmlAAAAAIAvnaUAAAACAsx5qQAAAAOC+iGpAAAAAgDu5akAAAAAA8NxqQAAAAEC7ZGtAAAAAgG6Ea0AAAAAgDFRsQAAAACBWaGxAAAAAoAylbEAAAAAAvmdtQAAAAEDwiG1AAAAAwB9obkAAAACAgeFuQAAAAACBCm9AAAAAAAQeb0AAAABA9q5vQAAAAMAi5m9AAAAAgNwScEAAAACgKGJwQAAAAOAu7HBAAAAAIDUUcUAAAAAgKSBxQAAAAEBHRnFAAAAA4BPGcUAAAACA289xQAAAAECjMnJAAAAAgIuAckAAAAAATZJyQAAAAECWnHJAAAAAIKXTckAAAACAgDBzQAAAAICLQXNAAAAAwAxkc0AAAACgsJxzQAAAAIDZsHNAAAAAQHa/c0AAAADA2t5zQAAAAMCP73NAAAAAwGAhdEAAAADARkV0QAAAAOC7X3RAAAAAoFt0dEAAAABgqoJ0QAAAAEBHnnRAAAAAAOC+dEAAAABgUNR0QAAAAIBB5HRAAAAAYNAhdUAAAAAAeDJ1QAAAACBeU3VAAAAAQL2SdUAAAACAL8B1QAAAACAn0XVAAAAAAPr6dUAAAADAKBN2QAAAAIDOR3ZAAAAAAGVUdkAAAACA8mN2QAAAAIBLhHZAAAAA4JyjdkAAAADg9LR2QAAAAIAr3nZAAAAA4N33dkAAAAAAugN3QAAAAMDDFHdAAAAA4Ok1d0AAAABgIUZ3QAAAAKDbX3dAAAAAQG+Id0AAAABg5tx3QAAAAGB863dAAAAAIM37d0AAAACA8xF4QAAAACCJHXhAAAAAILkteEAAAACgaoF4QAAAACCpjXhAAAAA4HDheEAAAACgaOl5QAAAAOC2k3tAAAAAwE3Xe0AAAADAkvR7QAAAAKBT9HxAAAAAoD0GfUAAAABAb+N9QAAAAMCoBH5AAAAAoH49fkAAAADAZmR+QAAAACCEI39AAAAAQKasf0AAAACgkjuAQAAAAOCFQIBAAAAAgLRSgEAAAAAg34qAQAAAAABFvIBAAAAAgLrjgEAAAAAApvKAQAAAAKC4KoFAAAAAYK9OgUAAAABA+ZuBQAAAAIDm+4FAAAAAQJEqgkAAAAAg4nGCQAAAAIBZe4JAAAAAIOSDgkAAAABgNJuCQAAAAOAas4JAAAAA4DnXgkAAAAAAUAuDQAAAACCREoNAAAAAoGgjg0AAAADg+ZCDQAAAAGAoooNAAAAA4Pf0g0AAAADAEAWEQAAAAIBJS4RAAAAAwKRnhEAAAAAgjXSEQAAAAMBKloVAAAAAAIYihkAAAADAnCuGQAAAAGC1MoZAAAAAoIt0hkAAAACgLqyGQAAAAMDjtIZAAAAAoLDQhkAAAAAgnzCHQAAAAOBiFIhA + KBZXds7jZUA= - + - iFREQAvG9EB8RMQ/07aeQGVOfECZnA1AyR7WQCZATkD6839AAaRWQURfEEEshoRCuPTnP8kVPUExXeZBUeR7QD3LYkHyVjxASfsiQJi6zkB+2Y9DsJ2EQMD6RkHusqZAPcMYQZDbxUAMmPU/5XvoQLNqAEOkHTxBih9nQTYGrEBtOaNAm6EQQaNy1UCCWcRAL6VlQVyr1z8ruFBBqpZ3QQ1LhEECTbxAv9C0QPH5fkBDMDVBkEf8P5gAh0AM7R9A6QazQZQFB0Aien5BZ/qPQDi6/D982RZBhvSiQH8waUED96ZAj9E9QeXSDUHH/hlB58FqQBYqyUAhUttAy/gCQmpT/D/UcW5BwXAeQZsd/UC1ep9BgAytQDCk9kCHJtJBaWcjQCVTGkGAN31A4csCQBP5XEDkn79BgfFMQb/QuUD1zf5BB8VNQOeq+j+KMw1BlXGxQdfYTkB3WsxAiKZzQcQz6T9qdU1AmVxzQJCN60HwaRxBfrssQLLVckB4JHVAwqh/QE+ha0GnQNZA7DcOQa08VUH0ngZD60mpQS/eYECURdpAKFnEP6K930Bmcd9ATwQaQObvlkEypO5BBaV0QS2yCEEy1uk/DMrAQOV6oEAvlzNADVsQQF5VSkGNpxtCVo9fQchcLEGvq3xBrQcIQerCfUQAbeFCzt5TQXRYsj8yap5AgkONP9YpxT/5EYdAP3MZQSXAp0Dl0KNA9OC9QiRm3kFdAeRAF60CQdCiw0CmcydB3YyMQcQ6sj+1u0dA + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQG82ZkAAAABAMdlmQAAAACDeBm1AAAAAAKgabkAAAACguQZvQAAAAGDsoXBAAAAA4J3OcEAAAADAg7RxQAAAAAANIXJAAAAAgNXRckAAAAAArjBzQAAAAMC4ZnNAAAAAQFqDc0AAAAAAcRB2QAAAAMAWw3ZAAAAAQEQRd0AAAADAK3J3QAAAAIDtonlAAAAAwCiyeUAAAACAztB5QAAAAAAx9XlAAAAAQD+zekAAAACAdeN6QAAAAMDy8npAAAAAAHNqe0AAAABAp3d7QAAAAMCaNX1AAAAAgCRlfUAAAAAAwx5+QAAAAADDR35AAAAAQGTffkAAAABAWPB+QAAAAMAqnX9AAAAAQH+0f0AAAAAA1OJ/QAAAAGAmGYBAAAAAwOZRgEAAAADAr4qAQAAAAADWkYBAAAAAYMv2gEAAAABghtSBQAAAAACEiYJAAAAAQO6PgkAAAACgK72CQAAAAKAAw4JAAAAAYGjIgkAAAAAgqjSDQAAAAAAN3YNAAAAAAJH9g0AAAACgiDqEQAAAAKD0oIVAAAAAoF67hUAAAADg9uaFQAAAAMADY4ZAAAAAABTRhkAAAADAuAGHQAAAAAA7C4dAAAAAYJhbh0AAAADgtWOHQAAAAKAHqIdA + xLF85BujY0AoFld2zuNlQAjEgEYihG5A2+W/dP8idEBVYk7CNrJ1QCzmzRMlk3pAHL3i+07jfkCn92ci1AGAQAolMj9gGoNA - + - HNljQCx+vkBxSuE/NciWQIcxKEA6xKA/k90sQKm5f0DEvPhAYKFJQoeKK0HmNKRAGlUbQSBCg0Dn2MhAul/kQIbDrEKJCIRAXoLEP50c6EAWmIRA5WDpP46t50FcpOQ/AOyyQIMY9kDou5pASjsaQcCZYUCOlAlBGg3BQCpARkAGIpdAPqabQMLakUDg5BlAIB9RQfVLZEL5RoxAfCh1QKmjm0BQ4z9CwqpLQTIeu0APL/tClwMOQbUgzUCK52FBv5dzQBoHuUCch9NB7R7uQHK/skC1f/9AANGeQMjjQ0Ch/u9AKomCQuhBPkEXUBlB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQEAnYkAAAAAA86NiQAAAAABPwmNAAAAAQNsJZEAAAABAD2BlQAAAAIB32mVAAAAAAMFlZkAAAABgDIhmQAAAAMBLomhAAAAAQFjEaEAAAADA9ydpQAAAAOA/X2pAAAAAQFvlakAAAAAASCNsQAAAAABnaGxAAAAAQCKFbEAAAADAWKJsQAAAAMD1YW1AAAAA4CVlbkAAAAAgNaZuQAAAAIBjxm5AAAAAYPUgcEAAAADgvjBwQAAAAICjVXBAAAAAgAyPcEAAAACg4K9wQAAAAOCf6nBAAAAAQE8hcUAAAABALzNxQAAAACBpRHFAAAAAoLGwcUAAAACAUfNxQAAAAMDMOXJAAAAAgCRickAAAABA8WtyQAAAAEBRonJAAAAAgCvFckAAAACADtZyQAAAAMAwI3NAAAAAoAlxc0AAAABA4KJzQAAAACCjsXNAAAAA4GkwdEAAAADgEWV0QAAAAEBYw3RAAAAAgF3jdEAAAACg4GN1QAAAAAAacnVAAAAAgBqFdUAAAACAX9N1QAAAAED233VAAAAAwIgzdkAAAADgnEN2QAAAAABKUnZAAAAAQBCDdkAAAACAm+F2QAAAAABs8HZAAAAAgPFdd0AAAAAA33F3QAAAAGAc03dAAAAAgJDgd0AAAADA3xR4QAAAAIANLXhAAAAAIABSeEAAAACg6rN4QAAAAKCk5XhAAAAAYAwfeUAAAADgOSp5QAAAAKBcdXlAAAAAoIaQeUAAAABg19Z5QAAAAGCO63lAAAAAoJYEekAAAADgu0R6QAAAAECyUXpAAAAAoG6tekAAAABgFeN6QAAAAOB1BHtAAAAAAPAfe0AAAABAHpN7QAAAAOCuoHtAAAAAoOm3e0AAAACAjcN7QAAAAKDrD3xAAAAA4PUkfEAAAABg/jh8QAAAACDLRHxAAAAAwEdxfEAAAABAD7x8QAAAAMC5z3xAAAAAwPDifEAAAADANhB/QAAAACDhdH9AAAAAADcAgEAAAABAVxuAQAAAAGC6WIBAAAAAYJ2bgEAAAACgj4KBQAAAAECfmoFAAAAAoJHTgUAAAAAgk+KBQAAAAGBt84FAAAAAoND6gUAAAACAoCqCQAAAAGDAL4JAAAAAQNw+gkAAAAAggG6CQAAAAKARdIJAAAAAoICLgkAAAACAbuuCQAAAACBEBINAAAAAALsfg0AAAACgIlKDQAAAAEBlZ4NAAAAAACV7g0AAAAAAoouDQAAAACAvp4NAAAAAYNMWhEAAAABgeS2EQAAAAGD4g4RAAAAA4OeuhEAAAABgdriEQAAAAKDW24RAAAAAoPzrhEAAAABADW6FQAAAAEAitYVAAAAAwGjChUAAAADgVtSFQAAAAID2F4ZAAAAA4I5LhkAAAABAqoKGQAAAAIBW24ZAAAAA4GzkhkAAAACgNy2HQAAAACDqSYdAAAAAwIhVh0AAAACAL2OHQAAAAMAZrYdAAAAAwB4tiEAAAACgPGqIQA== + KBZXds7jZUDOIQhxcuNoQDeULWxqYnBArmsYctGidUBZnS+d7dJ1QMy81FwpM3lAWfsL8UXkfEBaFCF8AUR/QHMpLAiPeoFALbn+56wqg0ACUor9ukKDQL69f4Du4oVAZn9UGkfbh0BPwgAZMJuIQC2r+imz44pA - + - vMl/QNnWq0CFi2xAWabEPxiw40CoAyFAJKp1P42AB0A2N2NAEIO+QDfl8UCKPMNA/+MCQrF5B0CeKcNAeBd7Qd88oUDvYPhA4wQ/Qa4lZED8Vp5B4iSyP+1vrkA1Ht9An4XaQNrSgEDOPjZAgmsGQPOnG0EYVhZAXZX6QAlrDEF+OMU/uwpzQGjW+UBnwlpA8931QEhqVkB3ydpATaq8QPWkdkEbFcFAiB47QE68gkD6lcQ/EitWQM67NkEn+oNBD8TjQONcfUC/H9ZAwkpYQcN96kA+a5JADSmBQd/N0kDKRdc/4s+cQZM5vT+VC3tA3YIBQRArdEBeKJpB/4NyQMRkwj/Owek/li2uQNO8D0FonUpB9ngoQcCYB0AGJCNA0YeyPzlFkEAkv75AleLoQZBUG0G6Pfw/tDkhQYZRBUJ2EHVBs9n/PxT7hkDO6QdBGKeLQDHHDkIn7HtADNotQeHHuEBpCJVBD6Z2QA1bBUKdGrI/41jDQOsOwj9wBe9AX8NfQVPQQUFS0qBAoosfQLGbkkHuLo1AQipJQbQStEG4edpB8Z5OQddoYUK3ETZA1Q0/QIdnHUGu5tY/CqqwQS3YUkKPiLpB9wcdQRu0UUFtC4NBZCGXQBZvoEC/dhpB2IZmQt2oxD93bbVArKCfQLL+zkAFCpdASGZRQBIB2kATfptATk8rQRQ/mkE2SKRCV/sCQXhqh0Bvf9E/i/U7QdVS9kDLZixAnAACQYPdVkA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwOPKZEAAAACAd+BkQAAAAIAaSWZAAAAAYKtfZkAAAABA+QJnQAAAAMA/Z2dAAAAA4OOqZ0AAAABAGMhnQAAAAOAmZWhAAAAAQDXpaUAAAACg3QdqQAAAAKB+xWtAAAAAAGPpa0AAAABARyRsQAAAAOD2RWxAAAAA4MHBbEAAAADAegNuQAAAAMDQZW9AAAAAYPqJb0AAAACg0SBwQAAAAED7Y3BAAAAAgCdCcUAAAABAKxJyQAAAAEC+5HJAAAAAwB76ckAAAADA+VNzQAAAAMDXhHNAAAAAAGaOdEAAAADAFaR0QAAAAECi03VAAAAAQFZudkAAAADA5HJ3QAAAAMB3hndAAAAAgHMVeEAAAADAxU14QAAAAAAbwHhAAAAAQL1NeUAAAABA3qx6QAAAAMB8wXtAAAAAAHvSe0AAAADAXOB7QAAAAEBCGHxAAAAAALxifEAAAABAzeF8QAAAAMBs93xAAAAAwEl1fUAAAACAZrR9QAAAAACSF35AAAAAgAhlfkAAAACAb+F+QAAAAMAILH9AAAAAgEeMf0AAAACAbZd/QAAAAMANpn9AAAAAQFG1f0AAAAAgIRSAQAAAAGD4H4BAAAAA4JpXgEAAAAAg0mmAQAAAAKA2gYBAAAAA4GKegEAAAABgtKuAQAAAAKAD2YBAAAAAAG7jgEAAAACgwOmAQAAAAMBT9oBAAAAA4FYLgUAAAADgeiaBQAAAAACDK4FAAAAAoPBngUAAAADgclKCQAAAAGACWoJAAAAAoHbygkAAAABgNTCEQAAAAICPOYRAAAAAIMqShEAAAACAUbOEQAAAAICTw4RAAAAAoCvyhEAAAABg3xKFQAAAAGB4g4VAAAAAIBKMhUAAAABA38OFQAAAAGBJ0oVAAAAA4KJ0hkAAAACg2JOGQAAAAKAV+oZAAAAAAP0ah0AAAADgBKyHQAAAAKAOtodAAAAAALjKh0AAAABghNqHQAAAAGARAIhAAAAAoPw4iEAAAAAAKUKIQAAAAOCfWYhAAAAAwEhhiEAAAABAe6OIQAAAAIBFvIhAAAAA4JLIiEAAAACgFPOIQA== + 7BToB3LiY0AoFld2zuNlQARiQCMRAnBAo+J3Wr8CcUBatkQoqXJ0QMXreYtCc3ZAfL9GWSzjeUCI8hdf6KN+QAoXk3gE9H9AQyh6WaDagkCyke7hYyKDQNJQ2E7MooRA9lTniNxqh0CZfH5eOKuHQL2AjZhIc4pA3T93BbHzi0BMqeuNdDuMQApGHKsSHI9ATNjZtyDEj0DpOGFdPxKRQNdt1NA57pFAMruhKWBukkAg8BSdWkqTQEfQ4iqGipNABAbopJDOlEAr5rUyvA6VQEH79jPiKpZA - + - wLJ/QPGHRkAtfehAuO4NQTm3oEAqyhhAYmTFP8jMo0DWjqVBIV3IQcBbIUHznkJBEEYHQLEhykKuxYRAkjSlP0OJbUDO4qlAG8eLQBZgD0LXsrVAMI+1QQ9C6T+eSS5B1yTRQAZk7D9wfjNA67vXP1iQ80BFxj9AVCbFP9K++EESxCxAWZkSQCKFSEBhaNhA+HGIQHZ0fkDW44xBuhL/QGAmGkDZoQVBLvKkQEbVHkKyOjtA6vVhQOKhEEHpkdU/07cFQQTduUEPxTpBKef4QAtAhkD1YwdAQMKrQfO5wEAls7dB7worQVFDUkGH87hAryObQl4uREHuMhdBl0xFQcJSC0HezC1BEZU7QCQax0LR4cdCOhE2QBei1z8q9vRAQc7TQA4Sm0BM/YdAepG/P2rKP0EvteRAPIIVQWipVkGaA+lCG0sSQvy4A0Frc/tAQHYZQYiTrkCHpQlB2jyVQOOx2EBCLSRAWFQzQIjvDkFh9WFBPijxQVZxukHWYqBAy7sHQIzuLEE8DzNACJ9NQDW040A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4K/pYEAAAABgkN5iQAAAAKDZZGNAAAAAwJQEZEAAAABANkNkQAAAAADmX2VAAAAAAHrfZkAAAABAh+FnQAAAAIDXZmhAAAAA4CSnaUAAAADAjchpQAAAAAAyhGpAAAAAIOYibEAAAADAjKtsQAAAAEBnwGxAAAAAgDBFbUAAAAAAmSBuQAAAAMB7SG5AAAAAAHr9bkAAAACAUmZvQAAAAKACBHBAAAAAYDJBcEAAAAAg+dJwQAAAAKC443BAAAAAIOsBcUAAAADgcjVxQAAAAMBHVXFAAAAAICticUAAAACgFpJxQAAAAIDlonFAAAAAAMDkcUAAAACgkvJxQAAAACBzNnJAAAAAAHdCckAAAABA5WFyQAAAAECmj3JAAAAAwNXCckAAAABAXtxyQAAAAMCZ+HJAAAAAQAklc0AAAAAgwj1zQAAAAMDQhXNAAAAAAELWc0AAAADgQhJ0QAAAAEBzL3RAAAAAQOBAdEAAAABg21J0QAAAAICHfHRAAAAAAL3CdEAAAABAmdN0QAAAAGDN4XRAAAAAIFbvdEAAAABAoP50QAAAACD3C3VAAAAA4HRBdUAAAABAulR1QAAAAEADbnVAAAAAwEChdUAAAAAgzrB1QAAAAIAexHVAAAAAgBMPdkAAAAAgxSF2QAAAAIBddXZAAAAAgKSBdkAAAABgrpF2QAAAAOBMoXZAAAAAoDOzdkAAAABgkr92QAAAAMCM0nZAAAAAIM0Cd0AAAACgRhl3QAAAAKA7TndAAAAAADFxd0AAAADg/Yl3QAAAAMD3oXdAAAAAgMW8d0AAAABAq9B3QAAAACBU+XdAAAAAwJUHeEAAAABgZhJ4QAAAACCCLnhAAAAAoGJVeEAAAABA2Gd4QAAAAECOc3hAAAAAwK2ieEAAAABgmrh4QAAAACBqmHpAAAAA4EmCe0AAAADgHV18QAAAAOCBhX1AAAAAQBYrfkAAAADg3zV+QAAAAGCNhH5AAAAAwNDGfkAAAABAAeJ+QAAAACDFh39AAAAAYCaif0AAAACgKwaAQAAAAGD6PIBAAAAA4G9ZgUAAAADAjsKBQAAAAEC824FAAAAA4C3igUAAAACgK+yBQAAAACB/G4JAAAAAILqsgkAAAADgc9GCQAAAAKBHHYNAAAAAYKEThEAAAAAggquEQAAAACC+/YRAAAAAgIAEhUAAAACAHlWFQAAAAGDGfIVAAAAAYKDIhUAAAACgr/qFQA== + eg5Y0/EhYkAoFld2zuNlQLWw0KihQmlAN5QtbGpicEBatkQoqbJzQDfyCcDCc3dAzlsFGJmze0CI8hdf6ON9QBS0pzEuAoFA19kva0v6gkDb301BmgqEQJ4F1nq3AoZAbsDxfPESiEDLC3sgGSuJQJfAeEwES4tAhV5bGJErjUCX72Z2sNOOQMLGJKEeWpBAFPpzB/nFkEAJ29ObND6RQFDvgpZKIpJA - + - JdIEQZmU6EDwK4xA7v35P+Qv2D96Tt1A0HSFQNyrFkCcHqNAQ6kyQFH3yUBA8ORAexGEQKDJLEBUyjxAYmqyP/kxVEH3gmBBy3o3QY63oEBtF+s/jobXP0EWdUA9zWlANO39QbSICkEXp7VA4mH5QKLXOkC+hRRBzeOfPxRpI0C4yJlAQygvQTImakDtcWlA7wnsP9QhKkDrqixAKdZEQF5qZECkdvdAJeX1P3Ol2D8XdSlBqEHRQPz/wUALwNFCbSw8QGQWe0HUOgxBfGuyP0YuD0FxXCFBC1H7QJ0L8ECViyxA9wnkQALT6kCebB9BtOpAQaGbf0D/l4VBKPQpQJ5QD0K8m7pB16y7QXqSTkGuHv0/5OvrPwU/CUH96xpBVp//QMGoFUH4ve9AMnMbQuh+sEEhBgdB86HMQMOp4kFj7IdBRHGsQI6YNkGntZtBmtNuQaKsrUGNeE1Bg/ThQNqqH0IrIIZCh3YaQCgKNkCS73ZAPJmDQMvOJEHjO0BByPkPQdIK/UAeNRpAjPenQH+jI0BoTIRBSvtYQJc80kApmRpAMZDRQKHVO0CX0rdAP9ibQIGHPECcAhBAqvCBQra2kD8q1+s/jtVZQYUTLEE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgLeVcUAAAABAtuJyQAAAAEC9VHRAAAAAAItTdUAAAABgPXR3QAAAAOD9hnhAAAAAAOsmekAAAABARyl8QAAAACCcAX1AAAAA4DIjfkAAAADAYeR+QAAAAAD1AYBAAAAA4E8ggEAAAABAa8iAQAAAAMBUJ4FAAAAAwNuCgUAAAABgkYuBQAAAAMC0qoFAAAAAQNHHgUAAAAAA8jGDQAAAAIC1dINAAAAAIHMThEAAAACAFEGEQAAAAEBBnoRAAAAAgNFkhUAAAABgAUWHQAAAAAC/YIdAAAAAAAuZh0A= + NrgMGZxjYkCEfuNfSGJnQHzKEHuiRG1AZMjzYKchcUBbtkQoqTJyQPIfQIB/MndAIhHZYcFje0DyfRzU10N+QCRpkOw3uoFAwGq0+VcqgkDrlDb8o8KEQAQuraDQcoZA4nO2KttaiED7DC3PBwuKQCY3r9FTo4xAwjjT3nMTjUDtYlXhv6uPQKuMO43ljZBA9sihBTaakUBdo6CbK9qSQNredA1sHpNApLdPlkG+k0AjYbXZjHqUQO05kGJiGpVAanVk1KJelUA= - + - pEctQO72nkANkcU/558yQDUy/UCs4bdAdd3tP5O3i0CugIRALH6yQKZA1D/I5tFAqBoRQGdQRUA6GzxBG3EYQsJY+EC2UUNBWzq/QB2cFEEz2b9At5QTQSxgukDwXBhAmdFhQNK5xEAGbrZAncygPw== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgMLmZkAAAAAA2QJoQAAAAACEqGhAAAAAgIXFaUAAAACgOiZqQAAAAMBjx2tAAAAAQAw/bEAAAABgIspsQAAAAKCvR21AAAAAoIDNbUAAAABA20ZvQAAAAMDIInBAAAAAwCo4cEAAAABAjI5xQAAAAIC0wXFAAAAAgIrUckAAAACA8JNzQAAAAEAIUnRAAAAAwCL1dEAAAAAAKRR2QAAAAAC5PHZAAAAAQMJudkAAAABAucd2QAAAAAD5U3hAAAAAwFtneEAAAAAAQoR6QAAAAMANkHpAAAAAgAjdekAAAACAbvJ6QAAAAMDXWntAAAAAAM/Ae0AAAAAA9fZ7QAAAAMDpWnxAAAAAANCcfEAAAAAAX/Z9QAAAAMBrGn5AAAAAgOePfkAAAADA87Z+QAAAAABJ835AAAAAwMQGf0AAAABAgEF/QAAAAAD6YH9AAAAAAMyif0AAAABghASAQAAAAGCUGoBAAAAAoLxXgEAAAADARGGAQAAAAOB7b4BAAAAAoL57gEAAAADA4IuAQAAAAKCAw4BAAAAAQBDMgEAAAADABNGAQAAAAGDM6YBAAAAA4BMCgUAAAABAQQyBQAAAAOAGLYFAAAAAALRDgUAAAADgfkyBQAAAAMCpXIFAAAAAIL28gkAAAADgDcWCQAAAACCfYYNAAAAAoEJrg0AAAACAEZCDQAAAACDlvYNAAAAA4IkEhEAAAADgkS+EQAAAAIC0cYRAAAAAIKCrhEAAAACAW9qEQAAAAIDb5IRAAAAAgAPxhEAAAABgav6EQAAAAGCwO4VAAAAAoGBOhUAAAABgelyFQAAAAGB4goVAAAAAYFG/hUAAAAAAlsSFQAAAAGDbzIVAAAAAINzyhUAAAABAmCyGQAAAAOBoboZAAAAAILO8hkAAAACgVO6GQAAAAOC7EodAAAAAIKhXh0AAAAAgO2eHQAAAAOD3fYdAAAAAYJ+Th0AAAACgFPOHQAAAAKBJC4hAAAAA4FQkiEAAAAAgXJqIQAAAAKA89ohA + KBZXds7jZUCmvpxNHCRnQHVo0FeRAnFAqZq9oOoidUA8w2SRqTN3QNBbBRiZM31AyhqxsIFEfUCv2aibOKKBQPht/BOYqoJAEwdzuMS6hECkC/RQBnOHQMJ1xcYZw4dAzzV2U1KriUA= - + - MzYEQKDx2D/+eus/pvHYP1guPED8RM5AlGnrQAbYvEAxXFRAkN5aQBjKhEC4rt5Aj2frP5en+T/VfOdBMjvDP8eC6T9ObHxAbw8LQd+jqUApmBtBJUmhPxMzE0HMjZxA5y8pQI652D8XNpdBzRZQQIV0QUDcm61A4u0aQM4rbkD9LJxAon03QTa8KUGPfn9AxamQQH3Wc0BLd44/uq8+QN7rK0Eu9JJBQRokQD8UxEBOEvpAt14gQKclcEF+rkJBXApOQPcVoj8o0WRAxNdOQGRNGkCTwpJAfQVlQOA2F0AqYDRAZLIvQY2XjEE5YEtBAXdcQojypD82Zh5BWHIAQOvW5kHOi59AcmE5QUQDMkLgvQdAIM07QLpaDUBIfD5BAIqTQADx70BEMtg/nMzMQIR2uUEXqYBAY74HQthTc0Bgsdg/Z2/KQG0NNEBikU5ByruRQV/rckDax4RAxAnSQMWrAEGS1FFAs1A8QTRlV0ARu91BScdbQTSmgkDtSeRA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgM+4a0AAAAAgyyFvQAAAAEAcgm9AAAAA4OKRcEAAAADgdqJwQAAAAIBrw3BAAAAAQN2RcUAAAACATaFxQAAAAACWs3FAAAAAYLHScUAAAADAn5FyQAAAAMBry3JAAAAAgCdXc0AAAABAjWJ0QAAAAIBgA3VAAAAAAHy1dUAAAACASGB2QAAAAID40HZAAAAAwA/Rd0AAAAAAnRN5QAAAAMC4dHlAAAAAwLIEekAAAAAAsi96QAAAAEDpA3tAAAAAQDQzfUAAAAAA9ER9QAAAAIAyhH1AAAAAABrXfUAAAAAA9tZ+QAAAAAALgH9AAAAAAESQf0AAAAAAdqN/QAAAAGCwKoBAAAAAoPI/gEAAAAAgCnKAQAAAAID7qoBAAAAAgEPPgEAAAACgZyKBQAAAAKC3m4FAAAAAAO/WgUAAAACgu/mBQAAAAOA+QoJAAAAAoJTKgkAAAACg4wKDQAAAAMCz2oNAAAAAYJYQhEAAAADgeIaEQAAAAKA2oIRAAAAAYHqshEAAAAAgQTmFQAAAAACwA4ZAAAAA4HdLhkAAAABgMnWGQAAAAMBYfIZAAAAA4IaPhkAAAADAQZyGQAAAAKBbsYZAAAAA4Ge6hkAAAADgM+GGQAAAAEAAE4dAAAAA4HkMiEAAAAAg5zmIQA== + KBZXds7jZUBoiwPJSGNvQNzlv3T/InFAKGtCVJSyd0Cf7F1IpVN5QEp0RIUXI31A+vink2ikf0BQZCTF18mAQOApnmbA6oJAF5DK1EPSg0CmuCjKb5qFQA0wQwwiE4ZAN72pYrFSiEDUW+kbjhuJQP+Fax7aU4tA/uhPch1bi0BiFhqPqXOOQLnYSxZSVI9Aeo3Nk/WVkEC5FRYHZaqRQJCiDpUbspFAayx7Fas2k0Dty/6QV7KTQB1D4CPxwpRA0eHRmI02lUCD+Dan08KWQL+kXHct55ZAAxAuvCmHmEA/vFOMg6uYQFXRlI2px5lAtJEVMVOTmkDKplYyea+bQPcyEeHl65tAPkfA2/vPnEB8vbtAvzudQFNcAd0h7J1AYNOOSPW/nkA3ctTkV3CfQKL0MKgVIqBAy01i8Em4oEBk+Q9tSVqhQHliWu5nuKFAVoT5cGQcokCdo3pUeGaiQHrFGdd0yqJAKOXjvZAwo0CeBjo9hXijQIFwFsWz9qNAXpK1R7BapEBB/JHP3tikQLcd6E7TIKVAZT2yNe+GpUBCqIhP5q6lQPDHUjYCFaZAJQeT7havpkDiUjw6HdemQBeSfPIxcadAuhOw9DHdp0BwHa/5VDeoQPunT/pnxahArVViYVIjqUA44AJiZbGpQO7pAWeIC6pAkWs1aYh3qkDGqnUhnRGrQIP2Hm2jOatAuDVfJbjTq0BmVSkM1DmsQEPA/yXLYaxA8d/JDOfHrEBnASCM2w+tQEpr/BMKjq1AJ42blgbyrUAK93ceNXCuQIAYzp0puK5ALjiYhEUer0ALWjcHQoKvQFJ5uOpVzK9AmM2rNikYsEAhAlF3OEewQO/XpzU4mLBAgoTAWVLjsEBG4qM0RxixQPtJtdtfRLFAv6eYtlR5sUB0D6pdbaWxQATt6DZewLFAFrKUtWP5sUAgVUPhfgiyQGWak2GIT7JAfspzynKCskDDD8RKfMmyQNF6zb6S0rJAo9UB0JE6s0CxQAtEqEOzQF2GpMe5prNADO7g5KDDs0DWS5lJxwe0QLgzemiyJrRALVaVSNaHtEBkeRPsw4m0QHKb5cjfzrRAu4MP69IJtUAEvPX75yW1QLABj3/5iLVAEo4L6uGJtUBX01tq69C1QCnHgwEH6rVA0JhQ7PgxtkC755M0D0G2QM2sP7MUerZAljkFIQWXtkBGcjQ1Itu2QEJ/nqQW+rZAi7eEtSsit0AIIFPZIl+3QB3YlOgzebdAdACNNi3it0B04pDnQvm3QCBGJro+RbhABgOhGktQuEA= - + - F+GzP85sCUF/u59ArauOP0/aAEDw0r5Apn2xQEzHoUCFYxFAYVqFQKlyd0ANjoRAXhDpQAoN2T/sUthAcxWhQBuFYEAO8tpA77+RQC7CFkF76ZlAb8ckQfxHUkD/p/4/Ij4gQE35SED9Y8Y/MaqeQBLhH0GXubhAZXIRQCoRCEAcRDhB1ae8QMRkhUE99NFAXvMNQdjwPUHxBBFAwcUyQISFMkKs00VA2Do5QcoOrUCd2tg/INORPz/CLELezD1BKIHdQJ8Y5kEv1n1Ah/p+QRZgpUBafilAzZyJQNCbcEEm3jtB5EdjQSLHZUFh3Oo/3YiJQOajHUI= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwFrpakAAAACAJU1sQAAAAMAeZGxAAAAAwN8jbkAAAAAAxgVvQAAAAGAiKm9AAAAA4Jpib0AAAACA3cNvQAAAAODYY3BAAAAAIOKlcEAAAADgIqVxQAAAAABJv3FAAAAAAPmLckAAAABA2NpyQAAAAOCz5nJAAAAAwK4gc0AAAACghTRzQAAAAMDzm3NAAAAAgD2SdEAAAADAgFJ1QAAAAAAmvXVAAAAAwLUgdkAAAADA70N3QAAAAADcbHdAAAAAQAFkeEAAAACAdZh4QAAAAMDmr3hAAAAAAJndeUAAAAAArGV6QAAAAEDknXpAAAAAAI/jekAAAAAATmB7QAAAAIB3i3tAAAAAQMxSfEAAAACAtJZ8QAAAAAD+o3xAAAAAwDoSfUAAAADAM2R9QAAAAICN1n1AAAAAgMzofUAAAACAa9J+QAAAAIDYBX9AAAAAgHAWf0AAAABAGrZ/QAAAAEA+1n9AAAAAIOgOgEAAAADgix6AQAAAAOBLRIBAAAAAoNd5gEAAAAAgsIiAQAAAAGBAkoBAAAAAYDrbgEAAAAAgNuCAQAAAAACH+4BAAAAAYCgqgUAAAACA/HWBQAAAACB+foFAAAAAwF2ZgUAAAADgDLqBQAAAAGBzw4FAAAAA4BzTgUAAAADgzgOCQAAAACCVG4NAAAAA4KQIhEAAAADgnI+EQAAAAKB7lYRAAAAA4CMyhUAAAAAgNyqGQAAAAGCYMoZAAAAAYO47hkAAAACgLo+GQAAAAIDSq4ZAAAAAIJfphkAAAABgovuGQAAAACB+LIdAAAAAwDhih0AAAAAABGyHQAAAAGCvkYdAAAAAwFmqh0AAAABgAvyHQAAAACCbQohAAAAAQE+BiEAAAABAmp+IQA== + KBZXds7jZUAYxSyCnORoQNS+X4D+xG5A525gjBHDckCRoHe3LXN3QEJ7qtfUE3lAs6l56LDjfEBkhKwIWIR+QGj9mmkEOoBAXWzYBnh6gUBoLImTsMKDQHu9lPHPCoVAXwsJwudah0AMwhWKEcOHQDfsl4xd+4lAXzr365PjikBVPVR3tYuNQMNnwQgg/I1A5GWybOFTj0D3yKEFNhqQQA3e4gZcNpFAVPKRAXIakkDXtr2PMTaSQGkH0wKYNpNAV860pIf6k0B/HBQEvlKUQNflq7ndvpVA+wtUm9kelkDuaH6MDlOXQJ1t0O4VQ5hAN+u+WC+vmEDm7xC7Np+ZQC0EwLVMg5pAlBSvVGuvmkB0GG+wYmebQNsoXk+Bk5tAiS2wsYiDnEDwPZ9Qp6+cQJ9C8bKun51ABlPgUc3LnUDmVqCtxIOeQE1nj0zjr55AlHs+R/mTn0AiQMhUAEKgQO5+vwkNeKBARoHouhDwoEC/r30zK4qhQNHCUSQpuqFAfacd/zhwokCRTs0uVJyiQAgyvv9L/qJAUdpIOX9+o0CTvF4AX4yjQLdGtv1p/qNAQtFW/nyMpEBDHPuln8SkQM1b9/6PGqVAZ6ZSo6o2pUAm5ykGs+ClQK66AZ7AGqZAOUWintOopkDmcqUQ3sKmQF2GwgTkVqdApGpF3Ouop0CkmnH/+TqoQGT2wOYWi6hALyUSAA3JqECIgBjkIf2oQFNmMmYdd6lArME4SjKrqUDep5vPNUGqQNG5IRlIrapAaekEOU4Lq0BcRMIZWzurQMJ0N0Bx0atA - + - 0+z9P6Qvoj+0xf0/dTbGPzX6SkGNyRpAK2dkQFsMPEAwTOw/k7dkQBrUnkDpnhBBWDe1QPXNd0D+SRdAGGvIQOLtI0BGr4RAS7+zP6MTRkE94j9Af9n9P4sCs0AwyGBA2P7qQJiCiUDDL9FBGKEFQWT1Y0DPC9ZAWO33P8GVNkC0qsNAU9quQRfHDkBiRSVAf+w8QPxzMEFS8X5AfiSxQIxfxj9flhJBi70oQcF3nkDySCNBMtHYP6TMGkANY2FBSkuhP/E7d0CMV4NAt2GAQFLyLEAAqYlAZRYrQVnwgEFO8iRBSYiaQUQM1T8KcbxAvSqkQcNk6z/pCG5AuHKPP/wsI0HJZpFA3DYkQGofS0ETkP1AGantQJ+2OUGsB8BBOBaOQTwNTEE8UtRAioPeQBBz/UBH039ByXyrQTjYjEAeDLZAzkR9QDO1N0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYO1jaEAAAAAApoZpQAAAAICep2pAAAAAIKNnbEAAAADgvUduQAAAAADahW5AAAAAwGLCcEAAAACAk49xQAAAAOAhNXJAAAAAAFK8ckAAAABAOD1zQAAAAEATc3NAAAAAgPWdc0AAAADAAsRzQAAAAMAHs3ZAAAAAgKUwd0AAAAAAC+R3QAAAAMCXgnhAAAAAgJdPeUAAAAAARLZ5QAAAAICrVnpAAAAAgEN2ekAAAABAQ796QAAAAEC2YXtAAAAAQKate0AAAADAzuV7QAAAAMBgBHxAAAAAgGkffEAAAAAARip8QAAAAEAM0XxAAAAAQDCWfUAAAACAmhZ+QAAAAIDLRH5AAAAAQPVVfkAAAACAIqF+QAAAAADw4X5AAAAAQPvqf0AAAACgFyKAQAAAAEAcJ4BAAAAAIP0rgEAAAADg5QKCQAAAAIB0oIJAAAAAYLzGgkAAAACAAieDQAAAAGD4cINAAAAAgNu5g0AAAAAgnMaDQAAAAGCu3oNAAAAAYJbng0AAAADgjAuEQAAAAADCOYRAAAAAoPIOhUAAAADAhoGFQAAAAACpvIVAAAAAIMzfhUAAAABgh0WGQAAAAKC5EIdAAAAA4AEziEAAAAAAUKOIQAAAAECYxIhA + NrgMGZxjZUAoFld2zuNlQNzlv3T/InFAQh3Og3zCckBrPQyU1zN3QGneFfsq03pAa5vo5y9FfkDBarT5V2qBQPkQ7ZoQa4NAiJZaCcRyhEC1nP+uJZuHQD3U5UGJs4dAtcvt2NEji0D3JsY5AbSLQOD1b9sdXI1Ahk8kLy18jUBDP4msbIKQQKIRHfxU+pBAuCZe/XoWkkBawlt/nRaSQAzZwI3jopNAz6kw0Kuqk0Dw7pOVGSeVQE/BJ+UBb5VAB3JmaEq7lkAz1/rsN/OWQB2Hp2lw15dASOw77l0PmEBeAX3vgyuZQAGdenGmW5lApRUs6pkPmkDsKdvkr/OaQF7Gam3iW5tAnkBA8/V/nEDe3WGCOCCdQB5YNwhMRJ5AXvVYl47knkC+wBMCRCKgQDu8FbVfPKBASQJ9a1zsoECUR0i8ggKhQKKNr3J/sqFAH4mxJZvMoUAtGFBzkkCiQPC5b0+53qJAUVlw2aLuokAURMdMxFCjQABuaNfA7qNABs+wUN8SpEBfWuNXAtmkQNgu3JHV9KRAg+Q6VQ1LpUBjuXyS6IKlQHVvJFkoDaZAVURmlgNFpkAA+sRZO5umQHnOvZMOt6ZA0lnwmjF9p0DYujgUUKGnQMTk2Z5MP6hAh88wEm6hqEDobjGcV7GoQKsQUXh+T6lAuZ/vxXXDqUA2m/F4kd2pQEThWC+OjapAjyYkgLSjqkCdbIs2sVOrQBpojenMbatAKK70n8kdrEDJfIXn6m2sQOg5cKr0/6xAiQgB8hVQrUCoxeu0H+KtQOKTM/k4Fq5ABh6L9kOIrkBW2uOyPeKuQCqo4vNO+q5AtTKD9GGIr0BIZc22WKSvQKDekXo6C7BA6fe22zUZsEAYpIb8R2ywQK+YaxBCfrBA+GnEgV3dsEAoXmCST9+wQNSj+RVhQrFAvgp5tmlCsUADUMk2c4mxQJpErkptp7FAegrsz4IYskCvlWK6hByyQIzPl06IUbJA9NqyOo5jskDj2ZNNl9GyQNSg8L+j1LJAmkGl9K85s0BM8nJiplqzQBMHmna9mrNAtApSd7Xjs0CFNh/G1Rq0QJTQj/zKVLRAl7KTreCbtEANloR+2LW0QLnbHQLqGLVAqS4IlesctUCJ9EUaAY61QA== - + - ubvYP+FloT/N+AxBQkwiQK4+W0BLjS1A8L0hQTeGEkAzUwhAoE2DQHrJ8UCJyDBBzsscQdYm8UAbR7tAEz9EQfqkiUDNMMZAhkKxQDZa+0De6rdAAFWZQNdF30Cox5hAeLUhQYzjkkBgDqZBbFcCQfKGEkH7M71AH2pFQd9q90ASnVhAdiHrP9bjrEBSW4xALRXZPwME+j/QHdhAC7xSQcYKbUFJMb9B5uOuQL5ilkHq00JBD+04QaxbXkGuMUdBmcIEQSjGDkFNjIdATvKaQeCaKUHgoihB3GfDQDBDPUHymv5AKAi2QHcJCUFzTZpA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwHD/akAAAAAgzERrQAAAAEAvgWxAAAAAQKZqbUAAAADgEQRvQAAAAOD9X29AAAAAgDCJb0AAAADgZpJwQAAAAOC24nBAAAAAYHExcUAAAABALENxQAAAAOA0lXFAAAAAgPS2cUAAAADA2P9xQAAAAEAIAXNAAAAAoHGnc0AAAACAI8JzQAAAAAC/RnRAAAAAQIxjdEAAAAAApJF0QAAAAEDrY3VAAAAAAKRzdUAAAACAYKR1QAAAAEACb3ZAAAAAQIkzd0AAAABAEGh3QAAAAEArjHdAAAAAAMq6d0AAAACAZOV3QAAAAMAe53hAAAAAgMO2eUAAAACAwu15QAAAAMCUFnpAAAAAgFBfekAAAABA5ZN6QAAAAIBD4HpAAAAAwKiEe0AAAAAA+ep7QAAAAICspnxAAAAAgCW0fEAAAACAstN8QAAAAMDBEn1AAAAAwBkwfUAAAAAAxlh9QAAAAECL331AAAAAQAMBfkAAAACA1hR+QAAAAAA6NX5AAAAAAL9UfkAAAABAVIN+QAAAAECCxX5AAAAAgN/lfkAAAABAkD1/QAAAAICJSX9AAAAAgChtf0AAAADArXh/QAAAAIAalH9AAAAAgL8KgEAAAADg7hOAQAAAAEAxI4BAAAAAgKQ7gEAAAADgEnGAQAAAAEA+eoBAAAAAYDeAgEAAAAAANoWAQAAAACD5ioBAAAAAIKKQgEAAAAAAVpqAQAAAAECgtIBAAAAA4OO6gEAAAABgKOyAQAAAAKC794BAAAAAIFAGgUAAAAAgWhuBQAAAAKBuIoFAAAAAAMo6gUAAAADAvm2BQAAAACA6e4FAAAAAgICRgUAAAACgp7SBQAAAACAvw4FAAAAAwNvMgUAAAAAg4OuBQAAAAKB5/4FAAAAA4JkigkAAAABgki6CQAAAAGAKUIJAAAAAwKNWgkAAAACgqXGCQAAAAADwqYJAAAAAgI2xgkAAAADgH7eCQAAAAKA3vYJAAAAAIObagkAAAABgOv6CQAAAACAVDINAAAAAIIsTg0AAAACAuBmDQAAAAKBJIoNAAAAAYA8og0AAAADglC6DQAAAAODjN4NAAAAAwC9Hg0AAAACgmVWDQAAAAAB3Y4NAAAAAYHF+g0AAAADgz4eDQAAAAEDzj4NAAAAAQLaag0AAAADgL6GDQAAAACAUz4NAAAAAIJ/Vg0AAAAAggOWDQAAAAKCf8oNAAAAAQFb6g0AAAADApwOEQAAAAODbDYRAAAAAoAwYhEAAAACg9iWEQAAAAGA4RIVAAAAAQNNThUAAAADAm1uFQAAAAKB3YIVAAAAAIFuDhUAAAACgG4+FQAAAAGC/moVAAAAAYBOohUAAAABAbOSFQAAAACD6EYZAAAAAwE4ohkAAAACgflKGQAAAAKCLV4ZAAAAAoMV+hkAAAAAgAZeGQAAAACAQtoZAAAAAYGS8hkAAAACgH+CGQAAAAODq5oZAAAAAYB3uhkAAAADgXPOGQAAAAEDeEYdAAAAAoHIih0AAAADgmyiHQAAAAKD6NYdAAAAAIMRZh0AAAABA0WqHQAAAAGCscYdAAAAA4NWHh0AAAADg9JmHQAAAACBcoodAAAAA4OKph0AAAAAgmbSHQAAAAKB14IdAAAAAAEzqh0AAAABAsvuHQAAAAEBWDYhAAAAAAMAbiEAAAACgroeIQAAAAECRnIhAAAAAoDqyiEAAAADgubeIQAAAAOBm5IhAAAAAIGH7iEA= + NrgMGZxjYkA2uAwZnGNlQHJahe5LhGlAdmjQV5ECcUB0T7vM1eJzQOoNkUeBA3lA6PR7vMXje0AT2ISOGBKAQKEA44NEGoFAogDjg0TagUAFLq2g0DKEQA== - + - fAeRQD/N/j/piHdAnySRQAcRqEBclkBAAmL+Pxg57D8UuFBACUl9P8kvZUBWIVxAkpgkQIY7hUC/9sZAXMa0P5PwV0BElJ9AUxcuQEUQhkDAP5NAHQ9iQHJKoj+tp1lALsJuQCE4BUD9IZdA3fQ3Qbp8jEGvOJdAgNaIQJNrt0Da+a5ABAtlQNE8B0H0ewxB32BSQBfwjUGWt/JAcPW1P9/Qp0GXcI9BoSkmQfPTP0BR8RJAdVS0QGnDoj8IAQ5B6g0PQRuDEkEa8yNB4Wj8QF4JkEI5q4JB1a2lQIctEEFrSitCLKIFQWtUqkBCUvFBPhekQZ5xEUCkoRpCrBZMQY79ZkHGuoJBmhdgQc2iTkFw5FlD0q0iQT587D/kj8NBUY6PQX3nh0EPrtM/0zbmQNqX7UC8BhRBJ4o9QP6zMkH+P99AhSq8QTYKJUGLcbdAiTdxQfxvD0Gy5qxCXS43QXFI20B72IxB/i2bQL+iUUIVAgtC5A0SQMbql0K0qMc/TU+DQJyn9kC5OG5BFtlFQJ/a/j+YOdlA5Je0QW0gREFaE+9AzQ4vQbAidkKAn6VCst2xQWK4ckFc3URCpINRQX6MNkJeKMRBfvVmQRk3DUKhMQpBny4qQjCHikCnaiFA+kG+Qf1ZgUEcYdZBaZ0CQSTdUUKsi8lAwsrGQbkEBEMK0NJANA2VQVnbB0A12IhAbI2aQfBEgkF8IsBBd6iZQQTMKEH2NCRCzi68QcD9d0DOVLw/T2YkQ/vulELy+xFA/ST5P9GrjUIhsRlCSXPcQX8t2T9clIxAJIb6QWGsnkGbRYBAw0vBQHHkg0GvyklBVXE1QsqWgkEAVH5BX0arQZHnq0E5LuZBCHaTQg== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQCamYUAAAAAAp8BhQAAAAKCAP2JAAAAAQBl+Y0AAAAAAbZ5jQAAAAICEJGRAAAAAIBJjZUAAAACA14plQAAAAMBQp2VAAAAAAADmZUAAAAAA5CJmQAAAAOBCPmZAAAAAwLCEZ0AAAABAwwFoQAAAAABKIGhAAAAAgM4+aEAAAABAh5xoQAAAAICY8mhAAAAAALkiaUAAAABADcxpQAAAAEALA2pAAAAAQKNKakAAAADAH4JqQAAAAMD6imtAAAAAQKf/a0AAAABga0psQAAAAMAtxGxAAAAA4Nc/bkAAAACAuotuQAAAAKBYo25AAAAAoG+Nb0AAAACADc9vQAAAAGB4AXBAAAAAgPNFcEAAAABgzVhwQAAAAODAgnBAAAAAoKuMcEAAAAAgktJwQAAAAECIE3FAAAAAAAmwcUAAAABgK9RxQAAAAIBR4XFAAAAA4IYQckAAAADAOLByQAAAAAAUzXJAAAAAALVFc0AAAADgPLRzQAAAAMBNxXNAAAAAgInlc0AAAAAgURR0QAAAAAA7knRAAAAAoFMddUAAAAAAoMR1QAAAACD1+HVAAAAAQHwFdkAAAADAShV2QAAAACDXIHZAAAAAgIZUdkAAAACAdnR2QAAAAICWh3ZAAAAAgKSldkAAAACAwLV2QAAAAKDi2XZAAAAA4J4Ed0AAAADArBR3QAAAAACfOHdAAAAAQK93d0AAAADAOIZ3QAAAAAD2ondAAAAAYGnBd0AAAAAgZz94QAAAAKBIYHhAAAAAABt5eEAAAADAzIZ4QAAAAOCAlnhAAAAA4H3XeEAAAADgJBR5QAAAAMCaLXlAAAAAYJdEeUAAAAAgvFh5QAAAAKDgZHlAAAAAgF3IeUAAAABApyN6QAAAAODlM3pAAAAAwNhMekAAAACgRH56QAAAACDVw3pAAAAAwFDQekAAAAAge+d6QAAAACDf93pAAAAAYIYQe0AAAABA0Sx7QAAAAGAdWHtAAAAAgNhqe0AAAAAgnnV7QAAAAKAM4XtAAAAAYN/6e0AAAAAAUBJ8QAAAAABnKnxAAAAAwHhAfEAAAACgHlp8QAAAACAghXxAAAAAIOCVfEAAAAAAYLR8QAAAAKDawXxAAAAAQLrUfEAAAADg0PB8QAAAAGCOCH1AAAAA4CIWfUAAAADgK7h+QAAAAKDQBn9AAAAAIJZsf0AAAABgIrR/QAAAACBICoBAAAAAwJURgEAAAAAgyjOAQAAAAGD2i4BAAAAAIJi5gEAAAADALfGAQAAAAGDFI4FAAAAAYAoygUAAAADgVUeBQAAAACC1ZIFAAAAA4E6DgUAAAADAK4qBQAAAAEAnnIFAAAAAwJfrgUAAAABgzPOBQAAAAECgA4JAAAAAoKkZgkAAAABg/x+CQAAAAICmQoJAAAAAwC6MgkAAAAAA/JyCQAAAAIDr14JAAAAA4ED+gkAAAACgloKDQAAAAGCDlYNAAAAAgKO6g0AAAADg5MSDQAAAAKBD2INAAAAAoIDgg0AAAAAA+OeDQAAAAOAQC4RAAAAA4OUPhEAAAABg3WOEQAAAAMCXaoRAAAAAAMuAhEAAAABgW42EQAAAAODOoYRAAAAAYHmzhEAAAABgwtSEQAAAAIDO2oRAAAAAYAcahUAAAACAvyOFQAAAAODLSYVAAAAAgM9bhUAAAADA3rmFQAAAAACo24VAAAAAwDzshUAAAAAgR/OFQAAAAKBwI4ZAAAAA4OVChkAAAADgKlOGQAAAAKBniIZAAAAAYOmXhkAAAABgiqCGQAAAAKBV64ZAAAAAoCb0hkAAAACg0wuHQAAAAEBbI4dAAAAAIPYrh0AAAABg/r+HQAAAAODAU4hAAAAAwKGziEAAAAAgoeqIQA== + KBZXds7jZUC3D8dBTiNqQG+XdYaqQnFAo+J3Wr9Cc0A28gnAwnN3QDI6xHmXU3lA/Uye+dqkfUCNRg7FWqR/QOJTmZn56oFAZHRDTYVig0Cpfz+pZfOEQPV4xOXGGoZA1KnBq7Erh0D1p7IPc6OJQGWuQkTz44lAINI0Er/bi0D2ssPcNJyMQK/6kgfro41Ah7dEdXZUj0DmpSd5IZqQQNlw4zthxpBA/Lpoeke2kUA2mtM3ncaSQOE+zVOIQpRATR2mCs5alED2Uw5Vrl6VQGMy5wv0dpVAdmsFagQjl0DjSd4gSjuXQI3u1zw1t5hAY2HVNaD/mEDWcBgJVhOaQMCKxTHc/5pAuobrEIyXm0BAorxGMsScQDqe4iXiW51AJLiPTmhInkCXx9IhHlyfQG060BqJpJ9Ai+9kGzqQoEDCXtH2XJygQEt74CVlcqFAgupMAYh+oUDWBYEmeACiQA117QGbDKJAYUfqj5DKokD/tp9uu1KjQBBc4o2uyqNAikFAb87go0Cb5oKOwVikQNFV72nkxKRAvyej9NEGpUD130Zn7zalQONow1ritKVAgGrnZwLFpUAHquPA8mKmQED2YnItp6ZAkjSEwQXxpkBkN4PYPVWnQIS/bcUgs6dAq0sy01M5qEDdSqDMQ3moQDaNmzxsA6lANtbS02Y/qUAoGIVAh8WpQI9hBduJBapAgaO3R6qLqkAao25Eos+qQAwuWEi9GatA - + - SpXsP5FiG0BC4f4/vX7HP4DuwECh1J9ABaocQFSyEEEXDVxAcDkZQF0RiEDmmSJAXXrEQOrqBkG2nUpAEslqQCEzxz/151VB3KfbQBwgSUB+uOdAgeYqQZconUDZWv8/vKt5P9dKCEGgdINAEAD/P95QV0LP5XlBpEl+QFOBOUBStyVBf/WAQZvXlUDjl0BAHL0RQCWmgEC/FZ1AK/eNQe57SkCfuv4/FcwtQJjniUGHKoJA4uwqQBGEpEE+4QdBIHo9QLxFR0BMcgZB2UwfQflDaEFEYO4/Rx21P7U2E0HYDQdBdwJsQLeLMkFwHZY/3OVHQMgnWUDWhZ9A79iPP8smKUElS/xAOOffQMHE9D/WCvFA66nHP2SsIkHoha1Bv+K4QItftkAQr0lAMyssQMw0vUAEuS5ACSiEQfdk5UHbzRNAWxSSQLTiLEAO8IlAUQLfQCAVGUJnIzdA7gzlQWvnEEFhMLxAdjWBQTLZR0Gg/2FArupWQRZDUEJ81flA1ZOSQYJe5D+x4NtASTQ3QLw4OEDEaLxBSUiIQPZ+P0JFczVCgqqwQbeIqUGe2zFB1Js2QBL/G0Heh/xAxi2gQRiQG0Fv44lAWN/7QRmBJ0E1K69AL1OFQL8tGUGYg8dA8d+XQPVDAEE1kglBB8weQYmgIEFY8k9A1B55QYA4kz/NiGtAKrVtQeSF5kDHWIlBMIsnQtz3yEAzWZBB7+W2QN+4LUGENOBAQl6BQBJvuEBYmOw/uaWVQvLnS0AioKNAKlA5QI3DEUB5Q5xBGWMqQPpsF0GUDhdB8DSoQMof7kDFWe1BRyrxQAVs4UAydUdBi3u0P1UxzD/BTXRAwz/cQip21UFgKypBSFgqQcOOgkC4RoFB0GyhQX3x/j9nYdxBiaEcQXZA6T8O3hBBZsOrQa14xkAxzSVANYhJQMJaH0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQC9Aa0AAAACAVuFrQAAAAMBjo3RAAAAAQMvBdEAAAADAA9B4QAAAAEAYE3lAAAAAQNAQekAAAABAqjd6QAAAAAAfgXpAAAAAAF3IekAAAADAz1p8QAAAAEBUZn1AAAAAADfWfUAAAACAPB1+QAAAAEDyk35AAAAAAOi0fkAAAABAseN+QAAAAMBSdH9AAAAAIBwlgEAAAADAZG6AQAAAAOBGlIBAAAAAQGGlgEAAAACgRNqAQAAAACBoBYFAAAAAoE4SgUAAAAAgolmBQAAAAIDd/4FAAAAAoKgxgkAAAABAJTeCQAAAAOBpW4JAAAAAYM5jgkAAAABg76WCQAAAAECpuYJAAAAAwDDlgkAAAADgHQuDQAAAAGDFRYNAAAAAIEaDg0AAAADA9uyDQAAAAEDPEYRAAAAA4K4qhEAAAABAODKEQAAAAMCwOIRAAAAA4K5jhEAAAAAg0WuEQAAAAOBjpYRAAAAAgL3VhEAAAABgo+KEQAAAAKBPFoVAAAAAYN9BhUAAAABgIFOFQAAAAABLfIVAAAAAIN+BhUAAAABA/KaFQAAAAKDP6IZAAAAAYG9Bh0AAAAAg3tCHQAAAAKBQu4hA + NrgMGZxjYkAsECBNt2JpQFRnpVdMhW5AxwSPFv7SckA9ydcdCsJ0QI5fI1AWBHlABCRsVyLzekAidShCeoN+QFqQtWNiioBAWGa6MClKgkCDkDwzdcKDQA== - + - BXIxQU29lUBfcoxAY9yyQNsxQEBdullAwC34QLM6NkBn5T1BOotQQFhAKEHf5FVBfNqDQArbp0DbqY5AdkqkQbvt6EBaeg9Ay9h3QPJYGEHGmOlAba5UQdzqdEBoqZA/R+VSQOHDEEGNqcRA15BuQOm+CUGccTdAZozWQOLA40AEMIVAsRydQFi+3EATEE9AG/UuQeDBqUEgOsQ/gCasQXGsjUGJEABBxskvQXMoV0E7HG9AGmMTQAk6KUFt8H1BgfwvQOEZ3j8v4gxBRLNwQEIOR0G+8ew/a7aDQPn82UFPmZxA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIMa/YUAAAADAsr5jQAAAAOAKxmdAAAAAwMjFaEAAAABA1eFoQAAAAICCAmlAAAAAAHEiakAAAAAgkURqQAAAAKCkZ2pAAAAAIACAakAAAAAA7kZsQAAAAKAVZmxAAAAAAHqPbEAAAADA2ixtQAAAAECOQG1AAAAAwKpmbkAAAACAichuQAAAAADNY29AAAAAwKXfb0AAAADAJQZwQAAAAED4InBAAAAAIDkxcEAAAAAgokNwQAAAACCZd3BAAAAAIOLgcEAAAAAgwPFwQAAAAMCIcnFAAAAAQJDScUAAAAAgOYByQAAAAECwknJAAAAAgDcDc0AAAACA7XBzQAAAAMDUtHNAAAAAwJLFc0AAAACAfyV0QAAAAID8M3RAAAAAwG5CdEAAAAAggG90QAAAAACAeXRAAAAAQJekdEAAAADAMM10QAAAAICPE3VAAAAAAA0ydUAAAAAA0T91QAAAAGBOVXVAAAAAoIeVdUAAAAAgLqN1QAAAAOCw33VAAAAAQG4ydkAAAACArW92QAAAAED5oXZAAAAAAL3udkAAAABAQBx3QAAAAEBFKndAAAAAoMhSd0AAAADg6bF3QAAAAGCX7XdAAAAA4P9BeEAAAACgcld4QAAAAGAHaHhAAAAAoMJxeEAAAACgiYF4QAAAAICRlHhAAAAAIEWweEAAAADgrcx4QAAAAICZ3XhAAAAAIB8AeUAAAABAEzF5QAAAAID3YHlAAAAA4PF1eUAAAADgsIV5QAAAAOCPkXlAAAAA4A23eUAAAAAgw815QAAAACADFXpAAAAAgP1cekAAAAAgfG96QAAAAICUeXpAAAAAQF6eekAAAABAPrB6QAAAAMDi0HpAAAAA4AvfekAAAAAgz/d6QAAAACDIAntAAAAAwOMMe0AAAADgPCl7QAAAAODiNHtAAAAAQO5Ce0AAAADg/YN7QAAAAMCzwntAAAAAQDnQe0AAAAAgeeJ7QAAAAKC3B35AAAAAYJYigEAAAACgpmuAQAAAAGDxEYFAAAAAoISjgUAAAAAgbbCBQAAAAOCO6oFAAAAAgA16gkAAAACgVKOCQAAAAOCEqoJAAAAA4O8Jg0AAAABg0BWDQAAAAAADaoNAAAAAYCdlhEAAAAAgRm2EQAAAAGD9m4RAAAAAYOvbhEAAAACgYuOEQAAAAKDNQ4VAAAAA4HxzhUAAAACgRY6FQAAAAMDGTIZAAAAAYFFThkAAAABAItqGQAAAAIDpuodAAAAAoLjCh0AAAACABeqHQAAAAMCLG4hAAAAAIC6LiEAAAABAF96IQA== + NrgMGZxjYkBmiwPJSGNsQMZtNYzMxW5ACRqGaTyickBfbopu1BJ3QAp4Yr2Uc3dAtcKOc2yDe0CZz67cbIR9QL6OkVZC2oBAYEj7qY3KgkDpuBNZjhKDQO9wWZ+5koRAFOOVW9pKhUAcd/5EG7uHQEHpOgE8c4hArXt/3VxzikBsE70DiKuKQD6AAHaeK41AmRliqenTjUBpqoJ46mOPQOOPg6clfpBAfdeBCBYOkUD6ElZ6VhKSQJPswgk8KpJA3G4D1lyGk0DeKCmCjJaTQPGDRNeCopRA9D1qg7KylEAIBxeqszaWQAvBPFbjRpZAINZ9Vwljl0Afiul85MqXQDWfKn4K55hAN1lQKjr3mEBMIv1QO3uaQE7cIv1qi5pAYTc+UmGXm0Bk8WP+kKebQK1zpMqxA51ARU0RWpcbnUDCiOXL1x+eQFzQ4yzIr55ACwsmmPh7n0C6Kdt//CGgQBCQs0wPTKBARWtE6RTsoEA00dOyH/qgQND15OkneqFAWBL0GDCooUBbN05TQESiQONTXYJIcqJA5sHuU1PSokAH3rR/U+SiQHFMj1RmYKNALNadTmnmo0DK18FbiSakQB5hh1KEqKRAVWJiXJy0pEDg7AJdr0KlQENZcCGaqqVAa3ejXcLQpUCc5KIovXCmQF0CjWHdkqZA - + - PNNSQM1zdECkeEBAfvwZQWviLUB3If5AJbEtQfaNoj/TMBJAXiCFQCtys0C+bcVA6ZHyQD7Y1kBfDEZBl0UqQAXgrUBGaH1Aqy1KQMAl1T+BES5A17CJQDqjgEDud2VADbrXQPuKG0ABPco/m4ukQGnFZUDXzPg/0dS/QC/ff0AgeMhA1RInQYHYjUFZXw9BgwvvQFBDs0HGPRRBm8veQGXhCkFX6ipAKdeaQcLe9kCMDj9AUaIsQa30FULgXbZA1OstQJmPDkFQNgVAj342Qej3kUE3b0BAJVCkQAOm6UD45MVAwJujQM38MkB9Qo5AJKMxQWJiC0F87AtB5RIgQq89T0Cw1glBo8p7P4Q92j9je2VAw1jsP0LX7D+BSG1AGKBVQRaBEkEr7cJAMmimQcZrLkH+WhJAvsLJQWOJNUByJ/8/d/ttQJeADkFxy/1Aqs1KQeQMsUGO8h9Cf0tKQW49j0EBM9lAgts0Qt2bZUDfkY5A6BxCQtTqtUDORbZAQfqQQf3Lxj8bVFxAYhbGQKHfEEIZMJNAXuaXQENl3UAx+o1ArGUNQY9wHUFtVC5AWMkwQQv560AgZBJApDcSQJ2YIEFoMgZBDMxSQEKzBkC1gMc/RFykP2af4UCiw39A+tZ4QcNfa0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAwJw+Z0AAAACA1l9qQAAAAADdaWtAAAAAQCmja0AAAACgJ2hsQAAAACD1h2xAAAAAgCGnbEAAAADAmWFtQAAAAKAopG1AAAAA4ILEbkAAAADAM+duQAAAAECvAG9AAAAAAHLjb0AAAAAgjRFwQAAAAEDbIXBAAAAAQEpDcEAAAACA23FwQAAAAADygnBAAAAAwJGccEAAAADAHs5wQAAAAEAa/3BAAAAAYAMQcUAAAADg7CRxQAAAAMD2knFAAAAAYGCjcUAAAABAIMJxQAAAACA39XFAAAAAYNcHckAAAABAuhRyQAAAAMCdI3JAAAAAANxSckAAAADANSNzQAAAAMBnZHNAAAAAANexc0AAAAAAywF0QAAAAMAHNXRAAAAAwN5DdEAAAACAHFZ0QAAAACD/cnRAAAAAgDqAdEAAAABAdaR0QAAAAMD1sXRAAAAAYIJAdUAAAADAizJ2QAAAAEDbP3ZAAAAAgBZUdkAAAADAOW52QAAAAIBYjHZAAAAAwJKddkAAAACADuR2QAAAAABA9nZAAAAAwFk1d0AAAAAARkV3QAAAAEAKdXdAAAAAAF6Ed0AAAADAiuJ3QAAAAAAjBnhAAAAAwJkieEAAAACAEUd4QAAAAMCaYXhAAAAAwCKzeEAAAACA8/N4QAAAAIAmDXlAAAAAQFkfeUAAAADAxEB5QAAAAEBncnlAAAAAAByieUAAAAAABbl5QAAAAMCSznlAAAAAgI/jeUAAAADAAfF5QAAAAMB4A3pAAAAAQJATekAAAACAWh96QAAAAMDdRnpAAAAAwLxlekAAAAAACq16QAAAAIC5AXtAAAAAwJpIe0AAAADAlFN7QAAAAMBYfHtAAAAAQM2He0AAAABAHbZ7QAAAAACA5XtAAAAAwFX4e0AAAACANRh8QAAAAIBqTXxAAAAAABpmfEAAAACAaHV8QAAAAECRkXxAAAAAADyxfEAAAACA8dB8QAAAAMD1FX1AAAAAQBgpfUAAAAAAIzt9QAAAAEBtZH1AAAAAwG5xfUAAAACAgYF9QAAAAICyu31AAAAAwJjFfUAAAAAAPu59QAAAAICr/31AAAAAAGUhfkAAAADApTR+QAAAAADYRH5AAAAAwMRpfkAAAADABHd+QAAAAEA1jH5AAAAAQLGcfkAAAADARbV+QAAAAMDswX5AAAAAAHD8fkAAAADA6wx/QAAAAEAbHn9AAAAAQJoqf0AAAADAGjd/QAAAAMAjRX9AAAAAABVVf0AAAADA7nN/QAAAAED0hX9AAAAAAOuxf0AAAADAqcB/QAAAAEAz9X9AAAAAYF4CgEAAAABA5BiAQAAAAODKIIBAAAAAAMAlgEAAAACALSuAQAAAAIAlMoBAAAAAYJ9HgEAAAABgQFOAQAAAACCVaYBAAAAA4AV0gEAAAACgF3yAQAAAAOATiYBAAAAAwGmqgEAAAADgNbiAQAAAACBixIBAAAAAYNTwgEAAAADg0PqAQAAAAMC5AYFAAAAAoLYIgUAAAAAAmx6BQAAAACDPJoFAAAAA4Gs5gUAAAABApEKBQAAAAAA0S4FAAAAAYJBqgUAAAABgRYKBQAAAAED7ioFAAAAA4GmWgUAAAADgwZ2BQAAAAIBGpoFAAAAA4IjSgUAAAADA5dqBQAAAAGBq44FAAAAAoBbvgUAAAADgLfSBQAAAAOAQ+4FAAAAAQLkBgkAAAAAgZA2CQAAAAKDEFoJAAAAAIEgjgkAAAABAIyiCQAAAAGAxMYJAAAAAIKU4gkAAAACAEUuCQAAAACBxXoJAAAAAQJlkgkAAAABg72uCQAAAAKAMfoJAAAAAQEaNgkAAAAAgxJKCQAAAAKCkl4JAAAAAIGGegkAAAAAgBa2CQAAAAGDmuoJAAAAA4BLBgkAAAADgt86CQAAAAACn2YJAAAAA4AjjgkAAAABABeuCQAAAAGBa9IJAAAAAQFULg0AAAADgAhGDQAAAAECTH4NAAAAAoMAqg0AAAADgQzKDQAAAAGB0Q4NAAAAA4D5Rg0AAAACgJ1aDQAAAAGAJYYNAAAAAwCRng0AAAAAAl3aDQAAAAKCCjoNAAAAA4JCUg0AAAABA7puDQAAAAICUoYNAAAAA4Buwg0AAAABgW5uEQAAAACB+pIRAAAAAoDiuhEAAAADgNLOEQAAAAGB7u4RAAAAAIB/KhEAAAADgz9OEQAAAAKBC2YRAAAAAIKr1hEAAAACgXvuEQAAAAKDICYVAAAAAQCIghUAAAADgUCuFQAAAAABlMoVAAAAAIEM/hUAAAABAtUeFQAAAAKCITYVAAAAAIFlbhUAAAABgqmSFQAAAAEDjaoVAAAAAYBh8hUAAAAAgYYmFQAAAAEDypoVAAAAAYEawhUAAAADg47aFQAAAAGDs4YVAAAAAoAn1hUAAAACgqvqFQAAAAKCwAIZAAAAAoLkGhkAAAACgrw+GQAAAACDvJIZAAAAA4Ek3hkAAAABgiUqGQAAAAKAoUYZAAAAAwIpphkAAAABAgXKGQAAAAOCgh4ZAAAAA4DiShkAAAABgUZiGQAAAAOCBoIZAAAAAIHO7hkAAAABgLMKGQAAAAABNyIZAAAAAIA3YhkAAAABgBuGGQAAAAMCf6IZAAAAAIMsLh0AAAACgtiOHQAAAACAfL4dAAAAAYM43h0AAAADgTEaHQAAAAGCyVYdAAAAAoHZrh0AAAABAXHSHQAAAAKBFeodAAAAAIKyTh0AAAABAy5mHQAAAAEDisodAAAAAQLq8h0AAAAAgwcOHQAAAAKBF3IdAAAAAIIHkh0AAAABghiSIQAAAACDbLIhAAAAAYJJGiEAAAADAyk+IQAAAAODHVIhAAAAAIKRziEAAAACAh5eIQAAAAABNn4hAAAAAYM6liEAAAACg8LGIQAAAACAyyohAAAAAIN3WiEAAAACgWd+IQAAAAOBY5IhAAAAAgMP6iEA= - - - - - - GGE0QRfNTUAmn0BAfnwSQNXIQEDf5qtAYxxTQLaTO0EPyGxAY4DZQSzs+UAJDglAdEEuQDQM70CPyw5BgtNTQTnqcEHJ0UBAA/zHPxfaWUAQ4alAtYfFQGfBnkGMYJ5ASckXQKIMQEHXw9o/mFKZQINIVUEM9ftAVvgbQThWa0D0FG9AdX+MQE0+5j8Is39A57mPQIYLiUA8ezdAcR0JQJWC2z+liiFALIOeQSSjgUBViFZAkgL9QO7V6EBWNwVBcdPaP65ackCsy/BA3dXaP9QdI0DKOYRCF2i7QFj36ECvLJhAtI1SQPmoIUJRuPRAb4IYQPOAp0AdfxdBFjb4QMTxfkEbfpE/viUsQW7OCUJsUJRAqJUsQYwBCkE3v2lB+EsRQQHmP0DcospAgEWWQH8X7kDHobU/Bux9QY23BUBg3CBBtysXQb+KqkA6Q+FBudcqQkvg50AYJolAo6AtQM5LiEEV2GVAUpABQD6O1EGfJQdBzXpuQb4NGkJi2IFBNp43QOfTJEG0FuRBtddMQB2pPkGKMQ9CDqEwQemcfD/2sDpBtCW3QaBrEkB3LqpAZTHNQSYvw0BWBz1Bz9BMQfVwNUHBMnNAJA2KQZhbiECHkCZA2qcSQq0iiENthYlCzHQXQt93AEGIgQFAGUfUP3zQg0AxDMdAHw0VQYSlqEFCiHZB80m8QPQCbUBJXbtA2Pl5QAYxAEBOXS9BuSpGQXJmm0G93q9BaBrcQCDn30GPqgJBUmCbQS4Fy0F5lxxB7BJlQV9U2kHfMolBcBk8QkGwX0Q1tzRDYapMQk4J10BiTCdB1u8JQjLVUEKUGlVC8KsmQaB4hUBoNeJBwJC8QWedg0GgOpZB8KZHQTfBK0DEdJBBVCtpQbQ2CEE+hRZCzy1HQmsg00Cba9pBusWUQXyjeEAH/Z5BXV8bQVwWQ0D5OS1BBkAdQWzOq0BIuglBaKrMP6TJ7D+CVohBP5XbQOqGNEBUogtCtfdJQqTLJEGUr89AY7OFQeYpqkEIRaxBnBXpQEjqnkJAY5VB4+PoQao0gUHzOFpB6aKqQEiCTEGiksZAdDbtQPnQcED++htBHqcyQbN90UFioTxB7AnlQWYNKEJbsnBAUtJGQogUiUBcV6hAfPwGQmTthEKoj7pAY0a5QK4SAkO8qe1CXwzDQP2s10IUGiBBkYCHQ5fUpELvqK9BxfuMQ4e7i0MGTftCoX+aQHKq30FZQLZBllJUQDYlm0Khs4dCoUA2QoFOuUFmKidBp1y3QtlUwkLocL1AOMtrQUKewUCfGWNACFUVQ8aWPUM5nIlBs5KUQEKZoj/dPfBBmNKQQZ53a0AazadB7Q8LQXiWmUFzzL9AkdKaQPtKMkFHZRVBaBtjQf4HrEIiBCNB9LsRQf347T+EuDxBq+JTQUS16kGNYWA/ZBEjQaKIk0Ipf4JBf+pJQJz0tEGwEiNBss38Qdix+EG0pipCDd64QA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAHNDWUAAAAAgrIVZQAAAAEDJSltAAAAAIPeOW0AAAADgKSRgQAAAAID3fmBAAAAAILprYUAAAAAgeQViQAAAAMCAW2JAAAAAoPz/YkAAAABAUshjQAAAAEDj+2RAAAAAQFcpZUAAAAAAOUNlQAAAAEAKfmVAAAAA4Py6ZUAAAABAAN5lQAAAAMBdCGZAAAAAQHJGZ0AAAADg94RnQAAAAMA9KWhAAAAAwECBaEAAAABAqaloQAAAAKCewWhAAAAA4CEDaUAAAABgHilpQAAAACCKQGlAAAAAAIhlaUAAAABABYdpQAAAAOA3w2lAAAAAQM/aaUAAAAAAdABqQAAAAIB8zmpAAAAAwJfjakAAAADA3P5qQAAAAEAEJ2tAAAAAwM2Ia0AAAADAE8ZrQAAAAMDEBWxAAAAAQOtBbEAAAAAAxI9sQAAAAMDgpmxAAAAAANG+bEAAAACAmvxsQAAAAIBBEW1AAAAAAG0qbUAAAABALUZtQAAAAACzYW1AAAAAAMCIbUAAAAAA5OVtQAAAAECXAG5AAAAAAIIrbkAAAADADD9uQAAAAEAyiW5AAAAAADmobkAAAABAvOZuQAAAAMB/Bm9AAAAAQOgrb0AAAACA/UdvQAAAAECuZW9AAAAAQJF6b0AAAACAUaBvQAAAAIB94G9AAAAAQKIAcEAAAACAjCBwQAAAAECaQnBAAAAAQK9PcEAAAACAiKBwQAAAAEAPsnBAAAAAQF7JcEAAAAAgcdRwQAAAAGB95HBAAAAAIM3zcEAAAAAAUw1xQAAAAEAPM3FAAAAAwM+icUAAAABA6rJxQAAAAIBHwnFAAAAAAEzecUAAAABAYO9xQAAAAKDaAnJAAAAAAE4WckAAAADgJkZyQAAAAGBZcnJAAAAA4O6SckAAAACAZMRyQAAAAEAE0nJAAAAAgGDkckAAAAAAq/5yQAAAAICdD3NAAAAAoCYwc0AAAADA3EFzQAAAAAATYHNAAAAAQBRwc0AAAACAg35zQAAAAMAHm3NAAAAAgGWmc0AAAAAAOLRzQAAAAGCQxHNAAAAAQK/3c0AAAADA/qR2QAAAAIC8LHdAAAAAQPJld0AAAACgWel3QAAAAABxRnhAAAAAYBtueEAAAABA+JR4QAAAAOB/93hAAAAAID9meUAAAAAAjYx5QAAAAKBTG3pAAAAAIEhDekAAAAAgz5J6QAAAACAmp3pAAAAAwHK7ekAAAADg0916QAAAAMC09XpAAAAA4BkFe0AAAACgvyx7QAAAACCUN3tAAAAAwP5Re0AAAABgP3R7QAAAAMBzF3xAAAAA4NlIfEAAAADg6GJ8QAAAAKBXwHxAAAAAwBLofEAAAADgSyh9QAAAAKAMmn1AAAAAQPc1fkAAAABAAVh+QAAAACDhiH5AAAAA4K9Uf0AAAABglPd/QAAAACDWIIBAAAAA4K4ygEAAAADggTqAQAAAAADigIBAAAAAAEHTgEAAAAAAeSuBQAAAAKA5SIFAAAAAIKVTgUAAAACgiXqBQAAAAOCKn4FAAAAA4IPMgkAAAACgVEmEQAAAAODp3IRAAAAAAHcrhUAAAABAoTqFQA== + KBZXds7jZUA= - + - BNiAQDHu7T9VZSxA2FOhQEvdKkL+21pAP2BZQD9jEkAzD7Y/UifJP69Eb0BSRO0/rlZGQLwzr0AT9iRA6m2ZQC9tkUE8dp1AYsR3QTiCokCWOp1A8t6aQJTLG0CtlRhAJZCKQOawjED5A0FALVTLPwewqED/GaZAAIJcQH51NkCIcsxAKLUmQZuSN0AQEKRAlucjQWMztj/f0IFBPbt4Qf8HNUHUXSVBgnWAQR8xkkDKFSFA48eGQdgHhUBTDbo/UqajPxh3GkGTqyRBF4mFQFHHs0DolzRAjJPfPwRlF0EigcRAPKnnP7AeHkCiDzdBGXIRQOAoU0C5CmlBzRO4QRJi7UEmDF1B531TQLrhxUAWEQlBb6+8QSI60EAbwGlBTS+XQZaeD0E5QBRBnLINQaP0PkErcPhBBakRQ/7U60H1pxZCzLogQYowNEEH6RtAcS6nQRXlM0LkrnRAEWJbQLLRI0LIxyBCS2hAQKYdkEEd4SBC0gZ0QvEdVkHiRBZBN+SRQRuPM0FROLBBlkxFQd2yu0F7FZZApHbEQJhIx0CAWe5A7HIqQnak50DB4Mc/TKY3QBBfAkFi7IlButrEQE4tAkL+vQVD9F7EQNx6eEAyzktBp/gFQVOOLkHhcxpAmzLIP+LqUUBF2oNAlLvAQKOwyD/1at5A7fxgQchwCUCB2P8/qgtCQdlaGkE1PKg/SO+nQCdevz+7yu0/FOI9QQGAjkD8rh9BTLoJQTK5LkCI0I5AfCouQFRpCUCQ2rNA37w3QHaMxUBflMBA80sjQKIUTkE= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgHFmbEAAAAAAFkduQAAAAIDq73BAAAAAQLQxcUAAAACAG2JxQAAAAMBdFXJAAAAAQHGZckAAAADAkZJ0QAAAAIDukHVAAAAAQBXQdUAAAABATGB2QAAAAIC2zHZAAAAAgKbtdkAAAACAnnV3QAAAAMC34ndAAAAAwNpTeEAAAADAE8l4QAAAAIASA3lAAAAAQGcQeUAAAAAAIWR5QAAAAACnjHlAAAAAQLTSeUAAAADAD+J5QAAAAEBJyHpAAAAAwNMQe0AAAADAgbB7QAAAAABGS3xAAAAAADtVfEAAAABABXV8QAAAAACSQX1AAAAAAPtnfUAAAABAzox9QAAAAIBTqH1AAAAAgOjMfUAAAABAodZ9QAAAAOCgeoBAAAAAgBMggkAAAABg47CCQAAAAOBHuoJAAAAAwFXEgkAAAAAAPd6CQAAAAKCVIYNAAAAAwG4PhUAAAABgamyFQAAAAED63oVAAAAA4H85hkAAAAAgbNyGQAAAAGChRIdAAAAAQGJ0h0AAAABgWnSIQA== + Ukz2Fu+BYkCO7m7snqJpQNiRk/3Io2xAooOBwRIic0ATihH2kmJ2QL/UPaxqsnZAouFdFWtzfEBNLIrLQsN8QLU+I1vNKYBAYvUvI/fxgEDxHY4YI7qCQG+RA1NFKoRAHEgQG2/yhEA2valisTKHQIB12jf7CohAxeUHWN36iEDwD4paKTOLQK17f91cM4tAGzoMXXVrjUDagSSDvluOQEZkjl/Bo49A0VZlSRWykECjSb7ENpaRQOZrpko7zpFALYBVRVGykkBVYCPTfCKTQJx00s2SBpRA35a6U5c+lECxiRPPuCKVQF+usWjtApZAlZ/m1u6mlkB0w/JpEx+XQKwiuakfO5hAitgzazk7mECg7XRsX1eZQMOli3xQz5lA5wEkZ3U7mkB1vPCKllubQMsX926rv5tAi9ExjLx3nEDS5eCG0ludQChB52rnv51Ab1WWZf2jnkAbaCFT87eeQKm1tLYZFKBAAD96rRQeoEDNPwy0JIagQCU3Y3wqIKFAWIF1HT1QoUB8C80aSMKhQEovTEtAIqJA - + - v6SWQL2PiUAtaLc/i6g+QHKpiEBIHXdA6kFCQQDgJUDBdA9A7mjdPwCoyT+q/xlBF/01QEN11j+vSS9BNFRHQWhcokANIBpAypCkP9i+i0HZqM1AWM1TQNVbrUDT/F5Bgn+SQFepoECoZwBAQb1KQKP7E0FVNjJBPHglQJLQxEDM57NAcr3WP7O+JUFBEqQ/vpJeQS5nY0FKxTpBZVwlQVDCbUCs9CpB2mbKQBcZzkGo3p9BwNVaQKI3yUCIIhNA7zNHQMaDhUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoGQUc0AAAAAAKfR3QAAAAKA6QnlAAAAAQBLheUAAAADAjYR9QAAAAICYFH5AAAAAQF6FfkAAAADAOE5/QAAAAAD+ooFAAAAAYF4IgkAAAACALzOCQAAAAAAOa4NAAAAA4AIghEAAAABgni2EQAAAAEAKRoRAAAAAYMCLhEAAAACgMdOEQAAAAKDjH4VAAAAAINgkhUAAAADAET+FQAAAAOBqXoVAAAAAYItyhUAAAAAga4SFQAAAAMAbrIVAAAAA4NoshkAAAAAgw0iGQAAAAKAJgYZAAAAA4FMIh0AAAAAginSHQAAAAKCz04dAAAAA4CL0h0AAAACgakmIQAAAAAABj4hAAAAAwOKTiEAAAABgsNWIQAAAAODQ44hA + KBZXds7jZUAQHUC2t+NsQGaLOdoMYnFAdswfOEqidUCNTIFRu3J5QNHYaYMN83tARtWu0glCgED8zFj93QGCQGQma71h0oNAjdHZlR+6hEBkVVnnDVuHQFT9f6WLwodAj3/b6VmTiUBULG7PN0uLQB6oOd+FW4tAr6y6d8cTjkB9LPWeSoOOQDtssMMZjpBAIqxNV9vFkECE7vCPOuqRQKLDRGwxipJA60WFOFLmk0DO3sItZu6TQM9bWECIapVASs4CxYG6lUBPc09V3i6XQPzkZ9PHRpdARWeon+iimECZYyHzCTOZQIx7V5r+hplArnhi9C9PmkBwkSqiNAubQPWMEe9FM5tAIqiPsHqXnEBxfFGGYf+cQNS+9L7AI55A8ZNIm7fDnkC41MfG9qefQB1CjZzxY6BAQYOtAgISoUBPLBbQGxqhQDMOlwYd1KFA2m1/OTTkoUAz+bFAV6qiQPOZEhFItqJAVzrSpmdYo0AX2zJ3WGSjQHt78gx4BqRAPNMbRm5mpEBtBtwQk8ikQGHLBBWEaKVAkUf8dqN2pUC1iBzdsySmQLpWNxynjqZAQBO93caypkB64rIm0nCnQDKepuHhdKdAVt/GR/IiqEAo96ok8HCoQBZrQlIdBalATe+T8wVzqUChrKu7Nc+pQCWwB64aeapAX6RLh0O1qkBJOl+rJeuqQOrltPBbf6tAkE4OpjvPq0CqcTD7hmGsQFDaibBmsaxAA/1iAqonrUD+7oGuhLGtQCc+g2i61a1AS8jaZcVHrkAj52p9mrOuQAnAejHTLa9A43Lmh8WVr0AtAZuX49uvQARaA/fqIbBAqEV5SvcmsEAhC27MBIiwQFtk//X5obBAJuteJgfvsEDthA8pAvmwQLgLb1kPRrFAzUpNrhdqsUDK0BrYFH+xQN8P+Swdo7FAqpZYXSrwsUDxi20UKCSyQKO3sZM6k7JA0Ic9+i6XskBiqE0tN+6yQPrBrZJJE7NA9MhdYD9Fs0AGjgnfRH6zQPPiBslZtrNAmK4ZEk3Vs0AFX3uwZDe0QET0spVeaLRAy/8v5XCctEBWuV4UZKG0QHdFyWiCL7VAAv/3l3U0tUCJCnXnh2i1QMifrMyBmbVANVAOa5n7tUDaGyG0jBq2QMdwHp6hUrZA2TXKHKeLtkDTPHrqnL22QGtW2k+v4rZA/Xbqgrc5t0AqR3bpqz23QNxyumi+rLdAI2jPH7zgt0Du7i5QyS24QAMuDaXRUbhAALTazs5muEAV87gj14q4QOB5GFTk17hApxPJVt/huEBymiiH7C65QKzzubDhSLlAJbmuMu+puUDJpCSG+665QDd+WrH04rlAW8U0uQMGukDJnmrk/Dm6QDuLcj4Zd7pAqJo6ygOtukC6X+ZICea6QE0H5yUk+LpATID2exE9u0CkEeMkM3i7QPjFj/8ioLtAhNcgqkjpu0DYi82EOBG8QKhheKdTW7xAniyCuUR2vEC6JiQmWZS8QH0oUp9L6bxAJgdeg2MXvUBDyQbUV069QDiD0mpumL1AI49EWW2/vUC1r1SMdRa+QI+Nzml9GL5ALnVJDoN3vkBvUwzvkom+QHO6mY6Mvr5ABdupwZQVv0AbmaVypBy/QJf7ufScbL9ALRUaWq+dv0AQwa52qs2/QKBIxyBdD8BA0XDfVFkSwEDpWE864TrAQBqBZ27dPcBA8CM0MGZvwEDZO+78a3PAQFN0jkrsocBAlZ7ovfKjwEDernDXds/AQNAEu2V088BA5+wqS/wPwUCMZ7Um+yPBQNfPyQ2HSMFAYgqC6INVwUDGzbGACoLBQDitTqoMh8FAT7AHQI2ewUD0D0lrk7fBQPLSLwASwsFAffKeKhbUwUDGAidEmv/BQPsQ6nOXAsJAnKXzBSMxwkDr84g2IjvCQIuj23imasJAp1aD96hrwkDwZgsRLZfCQJThlewrq8JA4Emq07fPwkDd8R0GsNbCQJyspJQ+AMNAmVQYxzYHw0DiZKDgujLDQJ8cncG/M8NAa0f2nz1Pw0CP/zuESmzDQA5qHmDCcsNAS2I2RdGcw0D+TL0iTavDQJRyvl5VyMNAEBJpoVLkw0CdsHjS2gjEQAD1B2TdHMRAAAHT7GA7xEAJM8LXYl3EQO/+ul/kdMRADKO6BOSQxEDFoYchbabEQA== - + - ZqAlQPE8OEBxUopAX0oKQGhI7j+qfRlAsl/IQEOPSkAOtCFAvHfCQAtJhEAevj1AaOnLQFOVh0GKSUlBgX8yQdF4+EDDG0tAyGogQTjkS0CedOhAtQ2KQN+cfkAwejBBs88CQTCJ3UDsG2FBDMWYQSqjh0GtsYNAU8xdQZRWo0EFnxBBNO1nQXhGT0F8zihB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQEa/Z0AAAAAgZQNoQAAAAOCoRGhAAAAA4EOHbEAAAACAPMhuQAAAAKBGsXBAAAAAwB7EcEAAAADA+9FwQAAAAMA9onFAAAAAQJDOckAAAAAAL/dyQAAAAKDgE3RAAAAA4NkfdEAAAAAAU4F0QAAAAADilXRAAAAAQLdRdUAAAACA+491QAAAAIBhM3ZAAAAAACBFdkAAAAAADWR2QAAAAEBFc3ZAAAAAgNFyd0AAAAAAHX93QAAAAEDJKHlAAAAAQIeEeUAAAAAAYcV5QAAAAEAY03lAAAAAgNjweUAAAACAIgN6QAAAAAAm4HpAAAAAgGzzekAAAAAAQgR8QAAAAIBmlHxAAAAAwG2hfEAAAADA5rR8QAAAAEAyr31AAAAAQAe8fUAAAACAAFZ+QAAAAMDSdX5AAAAAwFa/fkAAAADAWs1+QAAAAMBUIn9AAAAAAPtFf0AAAAAAX1h/QAAAAIDKkH9AAAAA4BEigEAAAAAgcFCAQAAAAKCNb4BAAAAAoI3SgEAAAAAgfyCBQAAAAMAGMYFAAAAAgAxIgUAAAAAAAoSBQAAAAGCVoIFAAAAAADy6gUAAAADguMWBQAAAAOAm+IFAAAAAoBoogkAAAAAgiHKCQAAAAAA7h4JAAAAAQFXTgkAAAADglOKCQAAAAEAP64JAAAAAoJITg0AAAACAWxqDQAAAAGBUH4NAAAAAIM0og0AAAADARDCDQAAAACAMSINAAAAAYEBOg0AAAABguFWDQAAAAABzd4NAAAAAoNOMg0AAAADgRZiDQAAAAIA7s4NAAAAAgLLRg0AAAADA+e+DQAAAAOCv94NAAAAA4Hj/g0AAAADgNiyEQAAAACAfMoVAAAAAoER7hUAAAAAgj6SFQAAAACCiv4VAAAAAIGT+hUAAAABgJjqGQAAAAIDCe4ZAAAAA4DiJhkAAAADgvEKHQAAAAMDXUIdAAAAAoMmoh0AAAAAg+e2HQAAAACAGdIhAAAAAgD69iEA= + NrgMGZxjYkCdFrCBNyNrQAoahmk8YnBAbFyUq/MhcUAna0JUlPJzQFoalAhiUnhAeGtQ87liekA= - + - PIm8QAATE0A2nV1AalFQQGG6SkCFNe1AfDeBQKu0GUFSYRtBYU5cQdb9qEBSQYJADGRvQMaaAEBrsttAJevmQIvOL0D/lihBp56BQa2JKkEUVdU/zkEuQbzkEkAcunhAh400QG9hf0FuAEVBWyO/QMwQ3UE6p/9Ad0mnQQnZqkCCPRpBc0Q4QB8JgUB/hFlBKrdcQDfz2D/AJJtAFQiEQFeYeUDYEKBAXv0YQJKBu0DGfc9AcUslQVaNdUEahlNBUzYUQRkHAUF3S8BA1rdoQMOHLEHcVqVBGRLOQKCoYEEln8ZAdVJdQNj5dUBb3pNASGw7QYPwUEFLiD1AwgIuQazCt0HpMJBBJFFmQJ7wn0CUAf1Cr360QkCvH0JBjK5APzmmQDc9pEDghjhAjFNxQZilPUGXbBpA60NdQD26ckGw16lAHyKhQKfGCUBHLkdCkHwiQpMS9UBGv7Y/np67QG5SnUGXByFB50umQO/rnEA+7gNCPfgzQw== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgMvVXEAAAADgqVReQAAAAEDZImBAAAAAABBKYEAAAAAAjZ9gQAAAACBOZGJAAAAAgKGfYkAAAADAm11jQAAAAIAGRmRAAAAAQB/oZEAAAACgzYRlQAAAAGBRJWZAAAAAIHyaZkAAAABg3O1mQAAAAEAqS2dAAAAAwC2HZ0AAAAAg/ahnQAAAAIB0xmhAAAAAwEzmaEAAAAAA3sJpQAAAAMBZyGpAAAAAAPkQbEAAAACAG0psQAAAAED7P21AAAAAAONkbUAAAADAZXttQAAAAEBoo21AAAAAgBFBbkAAAADAD4ZuQAAAAADzTW9AAAAAgEl/b0AAAADAjKRvQAAAAIDz/m9AAAAAAO4icEAAAAAgx1RwQAAAAGBGg3BAAAAAwGS0cEAAAACAyB1xQAAAACBQLHFAAAAAoNxBcUAAAABg4lFxQAAAAAA6cnFAAAAAoG2hcUAAAADgZbVxQAAAAKDG1XFAAAAAwG0BckAAAAAADg9yQAAAAIBrM3JAAAAAQBBlckAAAAAAMY9yQAAAAICronJAAAAAYNsIc0AAAACAviFzQAAAAABhLXNAAAAAQFo+c0AAAADgJ2JzQAAAAABhlXNAAAAAYLSic0AAAAAgILJzQAAAAECGxnNAAAAAIHHbc0AAAACASOVzQAAAAGDp8XNAAAAAoJAQdEAAAAAgkCB0QAAAAMCsO3RAAAAAAG5bdEAAAABAWWh0QAAAAOD4onRAAAAAQJq+dEAAAACgwdd0QAAAACCg4nRAAAAAgPABdUAAAABAw351QAAAAEBHvXVAAAAAAN3SdUAAAADAKeJ1QAAAACBoBXZAAAAAYFQSdkAAAADAljB2QAAAAOAbRnZAAAAAgBxUdkAAAABAKXR2QAAAAMBLgXZAAAAAoJeRdkAAAABAIb92QAAAAGDh0nZAAAAA4ITcdkAAAADgBAB3QAAAAKDOCndAAAAAYO1seEAAAABgCjZ5QAAAAEDPb3lAAAAAQF7TeUAAAABgvEd6QAAAAKAkXXpAAAAAIGdzekAAAABg+QR7QAAAAGABMntAAAAAQCh9e0AAAACgJd97QAAAAKAoi3xAAAAAQE8LfUAAAADAjxZ9QAAAAGBXZn1AAAAAoHd1fUAAAAAgMJF9QAAAAEDk4X1AAAAAQIwJfkAAAABAYEZ/QAAAAKDodH9AAAAAoIPCf0AAAADA2eZ/QAAAAIBrIIBAAAAAoF4mgEAAAADg6jqAQAAAACBcQ4BAAAAA4LNwgEAAAADAE3uAQAAAACBSiYBAAAAAQK7GgEAAAAAAt82AQAAAAABF1IBAAAAAIO8agUAAAACg9CGBQAAAAOBMK4FAAAAA4KBagUAAAABgzGGBQAAAACCn2oFAAAAAoGzygUAAAAAAtfuBQAAAAGDpCoJAAAAAIPwTgkAAAACABR6CQAAAAGDfIoJAAAAA4BSzgkAAAABgsNGCQAAAAIATioNAAAAAwIm/g0AAAACA3OODQAAAAGDp6oNAAAAAYEkphEAAAADAt7qEQAAAAOD9woRAAAAAQIHqhEAAAADAvSyFQAAAAOBOm4ZAAAAAIGPFhkAAAAAAG2SHQA== + NrgMGZxjYkDsFOgHcuJjQCe3YN0hA2tA2rgoV+dDb0CLrVCWSzJzQChrQlSUsndAsm6YDfpCe0DY+BnRwiGAQIE3U9aP2YBArGHV2NsRg0CiAOODRDqFQDEpQXlwAodA8CTOf1Rah0CVVguW/BqKQFRSmJzgcopA43r2kQw7jEDZGQQ9dWOOQAIiw5/gTZBAV8FfIsepkEAWooYH6umRQPki3HUDzpJAYJJYpRXuk0CnpgegK9KUQN6mQE9EWpVAJbvvSVo+lkC7JssHNW6WQG49MBZ7mpdA - + - 7x+SPyUWDUAUGI9BLzZBQL5RekAulyRB0OpAQncXC0FgGHZACKWkP92kC0DgV1dCoFBqQZxME0F/BC9ANmqJQWHiLkDdXJtAhLK7QDh1HECjdJ1AUlUdQfEPYEGOVAhBzbimQETwLkCCQQxB+d6+QBkcUULUm+5ANnk/QMmAAECRBV1Apzy1QO7M+EBxVLtAlXGlP1/yIUGElplBB2kDQdtj3EDlIQRB5LAAQDOFHkHJVFlBKbzPQCehSkDI/jNAMvrcPxZ/AED7pLNAOClEQfDSJ0HBhy5AejIBQWsIXUDZNbVAlR4+QfiTF0Ehto1A4f5GQDhXxEChRrc/JDEvQQFprUCthslANDCgQN8d7EA13FxBsg5cQqTnCEH446BBwoo9QhEwyEAYbLo/SxaQQM4JdEBNydVAOpEyQegetkCptS5A7CK8QcMOJUHIHzZBPPGYQZKLjUD5wNNA6uLHQZypAECMqlRBWZRKQAIxm0Dk7G1BvGIzQWDm0kFtlQxBGLqRQHnGqkArzNJAM88uQSJx7j+JJ31Bh6N3QVFvmkDOOG1CBFywQLZ/LkHwXPs/pz2BQCrrWkFlRplADalmQVYX50DxkVhBsLTDQJ3wWUCuQh9Bi9O5Qb7JPUBdQApBCVKeQEaIykAFaLdBaam7QOgCwUFw+yVAI10LQE2HJUBIhxtAXNy2QLqwfkDBZI1A82B3QZEO0EDbM9xAX0PoP0qR90BFe6FBX001QMTwCEFk35E/BoUUQfnQHENNlDNB1MefQK4yjUDTfRRA49wIQEuRjUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwJWEY0AAAABAEKRjQAAAAADa4GVAAAAAAKQBZ0AAAABgy2tnQAAAAOBxo2dAAAAA4MbiaEAAAACghiVpQAAAAAC/Q2pAAAAAAEGmbEAAAAAAFMBsQAAAAACPB25AAAAAoNfIbkAAAACAImRvQAAAAECKrG9AAAAAwJxlcEAAAAAAbHNwQAAAAIBbgHBAAAAAgHmTcEAAAAAg+7FwQAAAAOBYUHFAAAAAgNWPcUAAAACAC+ZxQAAAAABE9XFAAAAAQP//cUAAAAAAoTNyQAAAAEApQXJAAAAAwBbDckAAAADASi9zQAAAAEDRQXNAAAAAQE1Wc0AAAADANJtzQAAAAEBL23NAAAAAwAhmdEAAAAAASaB0QAAAAADr0nRAAAAAAJHgdEAAAACA6PR0QAAAAMBrBnVAAAAAAHwQdUAAAACA8u91QAAAAMCzAnZAAAAAwM0ldkAAAADAsWx2QAAAAIBMs3ZAAAAAwNu+dkAAAAAAuNR2QAAAAIA133ZAAAAAAEoSd0AAAAAApzF3QAAAAMCLUHdAAAAAQANmd0AAAACAvIZ3QAAAAACDxXdAAAAAAJIBeEAAAABApUV4QAAAAMANVXhAAAAAwP9jeEAAAADA0HF4QAAAAEDWgXhAAAAAQLateEAAAADArdF4QAAAAMD05HhAAAAAAEH9eEAAAAAAgB15QAAAAEDFN3lAAAAAAPBCeUAAAADA5FF5QAAAAMBCf3lAAAAAAISVeUAAAACAl6J5QAAAAABIz3lAAAAAgO/peUAAAAAApwZ6QAAAAABIHnpAAAAAQPMvekAAAABAIUN6QAAAAABej3pAAAAAgF7BekAAAADACOJ6QAAAAMA2JXtAAAAAQKRUe0AAAADAy7N7QAAAAIDKw3tAAAAAQLvOe0AAAACAvd17QAAAAIBE9HtAAAAAAHEAfEAAAABADgx8QAAAAMC4JXxAAAAAQAk1fEAAAADAS1N8QAAAAAAydXxAAAAAQCCSfEAAAADA/8J8QAAAAMBT13xAAAAAwJTzfEAAAADAtBl9QAAAAEC2LH1AAAAAAEc6fUAAAAAATUt9QAAAAAC4Yn1AAAAAQBGIfUAAAADAu5N9QAAAAMB0sH1AAAAAAN7AfUAAAADAufB9QAAAAMB1F35AAAAAgEMifkAAAAAATbJ+QAAAAEAT7n9AAAAAQM97gEAAAAAgFIqAQAAAACB40YFAAAAAYIbigUAAAADgtvuBQAAAAOAdAoJAAAAAoIdxgkAAAAAgF5qCQAAAAKC604JAAAAAoKfZgkAAAAAAJuWCQAAAAKBbXINAAAAAwMWSg0AAAADgdg+EQAAAACCBQoRAAAAAYPf9hEAAAAAgsCGFQAAAAEAyLIVAAAAAILFLhUAAAAAgLXOFQAAAAGCB+4VAAAAA4C7chkAAAACgYRuHQAAAAOCrUIdAAAAAoBFbh0AAAAAgFRSIQAAAAODJoohAAAAAIBGqiEA= + KBZXds7jZUDEsXzkG6NpQNvlv3T/InRAqbPSK6YCdkCiQFSuF1R9QA== - + - 5lWKQAXukT+NPKQ/slALQT447j/FDqBAvNpvQFiT0UHuHvZAm3okQcjfYECFhAFARIHJQMkrAEDDQu4/de7bP6/CfkBvSH9AI9adQBg0zkAcR8k/bR9eQAFZU0A2NRdBIEY4QDW0tj8n3Mw/Xm4AQFDH5z9cB+k/9LkJQeBvUEAqyGhBpG9DQaVxu0A4qfNAI0D7P4txxUDNg2VBIV4iQMJGlUG5CRNAu71fQSYgJEA6ckdA1b+OQP2lxEAQOitAP+0SQHAEoEHECFpAossQQe6/SkD+CXlAYqTGQD0eB0Gm3YRAMXKLQDhyK0Ak7BJAGTqMQZv7L0FlhTBBIugBQSM3IELg+5ZB6mmJQqdDGUAW6xhAZnRUQffuN0DchkpBeEXoQWIFHUBSyIBBgLSsQSyaZ0EkDUFAbdlpQRu6iEBoA7VAhduaQHHuoEHArrc/mGX/QYtarUB83Ns/TLwfQatHd0Hl34NAj/d4QZdpIkBVU7pAuIhDQOLg4EDwnts/wZL7QDKbfEHKTjRBWoNKQS124UH2gKJBBqjdQCHYN0F6tjNBZI6wQSKSWUFQ7eVB+lEpQbcHgUAOyhtAxi+kP+AFuUBwQkhBul8AQE54rUBG1FVB8MeqQOD3qkBOVlNBCZMcQdFcR0EZUBxBGMWrQTJ4ZkDEsfhAs7pKQC9U2z8cu4VAvOYDQcgkeEGmHBpBgJjuQF2WgUB9A5I/AIOfQCN6ZEDvSL5CricOQg== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAQA/BZ0AAAACg5CNpQAAAAKCPpWtAAAAAABZlbEAAAABgkqRsQAAAAABOxW5AAAAAQKbibkAAAACgTWdvQAAAAKB6gG9AAAAAAN7nb0AAAADAuhVwQAAAAMAAJnBAAAAAgMZUcEAAAAAACHNwQAAAAMBoo3BAAAAAYL+xcEAAAAAAUBRxQAAAAADjkHFAAAAAQJivcUAAAABAnsNxQAAAAICXYHJAAAAAoG7TckAAAAAAC+NyQAAAAMBhM3RAAAAAQMREdEAAAAAA41B0QAAAAEAbZHRAAAAAQPeldEAAAADAFUR1QAAAAEDaUHVAAAAAwH9hdUAAAAAAPuJ1QAAAAEBZFXZAAAAAgDYwdkAAAABAFUJ2QAAAAIBVUnZAAAAAQBjGdkAAAADAClV3QAAAAECjdHdAAAAAgEaUd0AAAAAAX014QAAAAEDWcHhAAAAAAKXfeEAAAACA4yl5QAAAAMDAvnlAAAAAwHXxeUAAAAAA4CF6QAAAAMAhMnpAAAAAACqQekAAAACAUKF6QAAAAAAc03pAAAAAgGDkekAAAADASe96QAAAAIAbQHtAAAAAwEXZe0AAAABAiuN7QAAAAAAe+ntAAAAAQCoEfEAAAAAAXFF8QAAAAICTlnxAAAAAgJ3wfEAAAADAVA59QAAAAID0LX1AAAAAALlbfUAAAADAGt99QAAAAMBDVn5AAAAAwLapfkAAAACA/Rl/QAAAAEBXQn9AAAAAADl0f0AAAADAkoR/QAAAAAAfpH9AAAAAAEy0f0AAAABA2QqAQAAAAKDCHIBAAAAA4HMzgEAAAABgFmCAQAAAAODmZIBAAAAAABxugEAAAAAgRIOAQAAAAADeqYBAAAAAAI65gEAAAACgzsKAQAAAAKDKyYBAAAAAAJf6gEAAAABAEB+BQAAAAOAPJYFAAAAAwAE8gUAAAACAO2qBQAAAAGBKgoFAAAAAQKyKgUAAAABgmZOBQAAAAEC0woFAAAAAQIzTgUAAAABgRuCBQAAAAGAX8oFAAAAA4BcIgkAAAADgi1eCQAAAAOCKaYJAAAAAgChvgkAAAAAgyIOCQAAAAOBrioJAAAAA4KqVgkAAAACgTJ+CQAAAAKDusYJAAAAAoFfHgkAAAABg2viCQAAAAOAlCYNAAAAA4BlDg0AAAACg8kqDQAAAAGBqgoNAAAAAgBGLg0AAAACAcJuDQAAAAOBppoNAAAAAADKyg0AAAABgvceDQAAAACBU0YNAAAAA4KDng0AAAAAg/wmEQAAAACCAEoRAAAAA4EYUhUAAAAAg+0uFQAAAAKBXY4VAAAAAYOhshUAAAABgDpOFQAAAAOCrmoVAAAAAoAekhUAAAADA+8WFQAAAACBk/IVAAAAAILoOhkAAAADAnBqGQAAAAOC+IoZAAAAAwI4shkAAAACgpDWGQAAAAEC+OoZAAAAAwFJYhkAAAAAA0l+GQAAAAOA0gYZAAAAAoG2LhkAAAADgoJmGQAAAAOBan4ZAAAAAYDalhkAAAADgUq2GQAAAAIDys4ZAAAAAwGa6hkAAAABAkMOGQAAAAAAayoZAAAAAwCHXhkAAAABgg/WGQAAAAEAz/YZAAAAAAFgKh0AAAAAgABKHQAAAAIAuOodAAAAAIJFAh0AAAAAAmEmHQAAAAOBRU4dAAAAAoOyBh0AAAAAgFIeHQAAAAMAhjYdAAAAA4EWkh0AAAAAgC7uHQAAAACCU2YdAAAAAgPBaiEAAAAAg4GeIQAAAAKB6hIhAAAAAQG7eiEAAAACg8uqIQA== - - - - - - HnQAQCmSa0A+RQtBG+MGQZqSiUBUwzhCN7lnQIdP2ECPRtlAbE53QHKQyT/BorY/V+moQHqsSkC8hHVAWvefQIbTuEBxwfNAuKuFQIBS2kDH9NJAKXliQP0LWkC99EhA+qXfPzI1xkDSg8k/e1bXQGLE/ECFXKRACZGPQGNW6UCXo6Q/8E9vQaA7BUGAU5lAlLpAQHNGpT/gfVJCwJbJQJMekEBw55FAYVSKQNDGoEHl2TpB8i6KQKx7X0BKIY1AFdwJQPzBHEESYeBBRl+QQUciSEJFGANB3FEeQed2l0HAJkJB0HMAQNhri0DmvnlB+TQiQM3+J0Es/AJBAUwDQZEsg0EYDYFAWmT4QAwYxkFQaOlBhfSfQk5PJUI1sNZA7qAgQdta7UDH2a9BGduqQP47HUH550lBQiH2QI6gP0GGAIRA+iwNQaaNyT8bABhBIGC/QHEM5UDuJwtCksG/QffqmkH4kt9Dt72GQihGo0B7vf8/SrSkQGrwiEAppCpBF+1oQGg3cUHb6CJBGcupQPoL6EGQotVA7EanQRO220AdjjhAmmJaQfHvnUGQaO4/FcnwQcGFGEAy9zdAjb4RQh2JM0EX3ddActFwQA4JoUGFJAdBYC+hQbb040FJ6SdBHrmmQp0DCkChpkBAB+7WQeB4JEEWI51AtXSGQLFVtUACQDpBDVFFQgD9rkAMn7RBE6nuQeXkGUHTT5FBeD0JQ7jpqkBc6ORATBCmQWK7QEKYF3pCEwnAQnj5m0HD5BJB+1V5QSLrUEBQL9dBY6UdQffw70EireBAGO1fQZgHLkCczVpCZ5MFQXlBqUCpsSNBLJmaQkzig0Is7CVBWxrRQC8m8UH7D5JB/dHWQdwQbEJa4EhB/Q2lQOh+BUE= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgNNqbUAAAAAg8GNwQAAAAMCLIXNAAAAAgMu/dUAAAAAA3VN3QAAAAMAIYXdAAAAAQJGCd0AAAACACdV3QAAAAIDYcXhAAAAAQEFDeUAAAAAAuJN5QAAAAEB0V3tAAAAAAPAPfUAAAACAPsJ/QAAAACBFwYBAAAAA4OkLgUAAAADgoz6BQAAAAGAZ6IFAAAAAINA+gkAAAABg222CQAAAAECUu4JAAAAAoPbKgkAAAACg7+qCQAAAAMDJMoNAAAAAAI9ag0AAAAAgK2CDQAAAAGAemYNAAAAAgAcbhEAAAACAKy2EQAAAAKBLVIRAAAAA4NhwhEAAAABg3bWEQAAAAAD2uoRAAAAAIC3GhEAAAACAGeWEQAAAACCNh4VAAAAAICLEhUAAAADgtmeGQAAAAMDHbYZAAAAAwCKFhkAAAADgi7GGQAAAACAkMYdAAAAAAMM4h0AAAACAB4KHQA== + KBZXds7jZUCwLijacuRqQBTpB48/A3JA - + - Bs2WQfQ8tz+rRoxATXQnQDbEQ0AUc3pBrGvcP2F9pT/68p9AjKw0QAaNuUEYcwBBFyuHQbimrEC2xxRA5QE6QJGn5kBDpLVAkRa9QOlPd0AsWydBr7LbQJIMSEE3MphCVigAQ8LaikF4KF1A1onGPzT7YEHHE7dAc+TuQoBMj0Mf591CtpoHQQmlb0BMh4pB6MpJQApkLEFwgABBsrvuQEBlskAiJZxAnLVVQZtReUA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwNVEaUAAAABAErpqQAAAAOBHX2tAAAAAgNKka0AAAACghapuQAAAAKAW6W5AAAAAwCk0cUAAAACASsJxQAAAAIBFJnVAAAAAgN8RdkAAAACAIWF2QAAAAADqJHhAAAAAgNWheEAAAACAwPJ4QAAAAMBPQnlAAAAAAD/leUAAAACAYmJ6QAAAAMCSsHpAAAAAQOLTekAAAACAIHJ7QAAAAMBu43tAAAAAAJdRfEAAAADAaqJ9QAAAAAAYsH1AAAAAAOHSfUAAAACAQHF+QAAAAIDeQ39AAAAAQObqf0AAAACAFRqAQAAAAGDSqYBAAAAAwJQegUAAAAAgFCWBQAAAACDAOYFAAAAAwDpbgUAAAAAgT3KBQAAAAKBHeIFAAAAAYGOCgUAAAADgA9CBQAAAACDoAIJAAAAAYMwygkAAAABgVnmCQAAAAMB4voJAAAAA4CrbgkAAAABgGOmCQAAAAGCgGINAAAAAoO4qg0AAAAAgy8KDQAAAACAuyYNAAAAAoHX8g0AAAABAxxmEQAAAAGAiN4RAAAAAIGlshEAAAADgDp2EQAAAACAGs4RAAAAAYDoyhkAAAACgevuGQAAAAIDyV4dAAAAAIJddh0AAAABAf2KHQAAAACDQyohAAAAA4JjSiEA= + NrgMGZxjYkA= - + - qYuCQPFcCkD4/oRAPA46QOBP3D/mmPJAm+DuP9sPhECf9y1BQPXuP519DkF38UNB95klQKoMAEGmclRBYTx7QAiQ1kFKhqRAPis8QanbtkBP7UtBLlhdQJp/ZkEZvGtAB9vuPxVRZ0BR8kBAQfU0QQH6YEEa+G1AwPW+QLcKoUBKt+hBnuKAQBhcR0LpKo1AA5/KQJq8ckGE4JhBLe9vQDLR30CWiIxAlAIlQZwlwEC7hhNBWSwIQQdQIkEKKalAIOgqQSiJN0G9XyFBp1ktQThnCUC2UcJBGTJdQNrpOUGenzBBGZWNQC7gz0A2tCJC3zEIQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - AAAAIIKFZUAAAAAgVN9oQAAAAEDPRGlAAAAAICdaaUAAAAAA0p5rQAAAAAAGZGxAAAAA4LQEbUAAAABgW2tuQAAAACC2IHBAAAAAgGSTcEAAAACguaBwQAAAACDDwnBAAAAAgO9QcUAAAAAgyNZxQAAAAEAlUHJAAAAAAKXuckAAAACAaXNzQAAAAICZ43NAAAAAQENkdEAAAABA5bR0QAAAAEDChHZAAAAAgOv/dkAAAAAAdiJ4QAAAAMDcRHhAAAAAwOcseUAAAACAPkN5QAAAAEDuYHpAAAAAgBxzekAAAADABod6QAAAAACw8npAAAAAwKNTe0AAAADA/LR7QAAAAICLPXxAAAAAAAvmfEAAAACApiN9QAAAAEDWsn1AAAAAAERhfkAAAABAJDR/QAAAAAAlg39AAAAAQL6lf0AAAACA++J/QAAAACA6KoBAAAAAYKkzgEAAAABg32uAQAAAAKDjgYBAAAAAYAqlgEAAAACgm6+AQAAAAKAzuYBAAAAAoL7DgEAAAACA2faAQAAAAOACF4FAAAAA4MlDgUAAAADA/VeBQAAAAADegYFAAAAAIOSbgkAAAABAz8uCQAAAAOBh04JAAAAAYMLbgkAAAABAshaDQAAAAKCaLINAAAAAIMhcg0AAAADgZ4qDQAAAAOCwm4NAAAAAIJSjg0AAAAAgzqmDQAAAAMDm4YNAAAAAQKoQhEAAAAAgayuEQAAAAKA8M4RAAAAAoIxZhEAAAAAg6bmEQAAAAICIdoVAAAAAwIOJhUAAAAAgIfqFQAAAACCqGoZAAAAAIKN8hkAAAADgt1qHQAAAAKD1aYdAAAAA4PW0h0AAAADg7ruHQAAAAAD/IIhAAAAAwLZCiEAAAADgBoWIQA== - - - - - - 9XcdQP/78j8ofttAsRo4QEV1gT94P4lABy4nQch5PkEwlbc/MgsdQq3foEALg+o/2qYeQNnxL0E40hFCDEufQS/OXEDX2QRAzNuXQL4KZUByW39AQlZwQL81MUA/mRlAtPYrQFj9ZkK4OD5CsYk/QBPtqEAagF1Acg7eP5/sFUA68Mo/+kMTQH5xSkBPSWRAfNEAQNL3BkGUw0hAAXZ3QPhrxT9DSsZCUBpKQHiW20EuHhZBo+0uQHnVSEAsTRBCXTZUQFvYF0GjVadAs7HMP+PKIUErwkxBfiUGQZvVC0Aur/VA3Zz8QNxKxUAPYwpBuzlCQF7mVEASlg9B0B7TQJWsL0GhNbZATsIPQmYYy0Kyi4RBUoeBQU3SDEJaDVJCGBUJQQNTZEDrCyxBo4ySQKqBH0E7wERA1jgZQg2EekDi9gBAuyRJQnuSA0E= - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - AAAAAPeAaUAAAADgy8JqQAAAAMBlP3FAAAAAQIyxcUAAAAAAKWZyQAAAAAAX03JAAAAAgE/mckAAAACAWG91QAAAAICyYHZAAAAAwC5Fd0AAAAAAoVZ4QAAAAMB9wHlAAAAAQNMQekAAAAAA1np9QAAAAMCWiH1AAAAAANyKfkAAAAAA9EV/QAAAAIA5eH9AAAAAIO9ogEAAAABgNnqAQAAAAKD/XoFAAAAAYOv5gUAAAADggy2CQAAAAMCTSoJAAAAAoFC5gkAAAABABRODQAAAAOCgeYNAAAAAINSwg0AAAACgDueDQAAAACAfIoRAAAAAQBGAhEAAAAAAWomEQAAAAMB8kYRAAAAAYMe5hEAAAABAFb+EQAAAAKA+yYRAAAAA4NXjhEAAAADgSR2FQAAAAKDpaYVAAAAA4LKThUAAAAAAmaOFQAAAAKCQw4VAAAAAAMrJhUAAAAAg8tSFQAAAAEDmKIhAAAAAYLnLiEAAAACAK/SIQA== + NrgMGZxjYkCJy7y2HKVqQAoahmk8YnBAWHXwwJGDd0CeKRjPP5N6QEYz8B0AtH5AMkJWBCxigEA= - + - L3sjQH4vZ0AiP11AiKZUQMgSxUDYw+8/GofwP3IXBUDWxRxAp9wxQYq720AYwY1AedKTQPe36UCM9QBAOsQEQUn6WkAM/uNAfrJ2QN54zkATwdw/zQ/TQALwLEH+HK5A1Z6pQaKhXUFq/CtAm+U+QrBj70AnRExBBNwAQTom+ECXrKNBj9PPQEoMIUHtZKdAw9vGQBvtDEC8kSZAvv5jQAtn80Bq9bRBL6KKQBe/W0FCLVRBGs67QGVncEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYHysaEAAAADAR+dpQAAAAIBZTGtAAAAAoMSma0AAAACABcJrQAAAAIB4L21AAAAA4KNGbUAAAAAA9qVvQAAAAODdX3BAAAAAQHxycEAAAACATuNwQAAAAIA1BHFAAAAAoFATcUAAAACA+jVxQAAAAACRUHFAAAAAICKRcUAAAACAlxNyQAAAAGCfJnJAAAAAwBRdckAAAAAAIHByQAAAAACvA3NAAAAAQOcyc0AAAACAlEZzQAAAAEC3gXNAAAAAAECbc0AAAAAAkXB0QAAAAADxWnVAAAAAgAqUdUAAAACALq91QAAAAMAqDnZAAAAAACStdkAAAACApjV3QAAAAACycXdAAAAAQNgleEAAAADAl0J4QAAAAEA+hnhAAAAAQKzReEAAAADAGg95QAAAAMBMIXlAAAAAANzgekAAAADAOO56QAAAAACUqntAAAAAAAAVfEAAAADA0zh8QAAAAMA+YHxAAAAAwG+FfEAAAACAd6B8QAAAAAAf5HxAAAAAwBEofUAAAADAzH59QAAAAIDQ1H1AAAAAAOzffUAAAABAMVZ/QAAAAMAwaH9AAAAAwD6Cf0AAAAAA6wqAQAAAAEA2UoBAAAAA4F9agEAAAABgsGuAQAAAACAGmIBAAAAAoBmfgEAAAABAX6eAQAAAAEBauoBAAAAA4KjAgEAAAACA8wGBQAAAAMDHGoFAAAAAILZKgUAAAADgT2KBQAAAAKCnf4FAAAAAIG2LgUAAAAAgZJKBQAAAAKDYqYFAAAAAIMC0gUAAAADAH8yBQAAAAMAA0oFAAAAAwLragUAAAAAggRCCQAAAACAeHYJAAAAAAIk6gkAAAABAE1yCQAAAAKA4Y4JAAAAAwEprgkAAAABgUsSCQAAAAEAewoNAAAAAYFqghEAAAACgX6WEQAAAAMDzrIRAAAAAwBwxhUAAAAAgjNqFQAAAAMDs44VAAAAAIE41hkAAAACgYTuGQAAAAOCyQoZAAAAAoAljhkAAAADg9GuGQAAAAEBydoZAAAAAIA/JhkAAAADgEguHQAAAAODPPIdAAAAA4JRVh0AAAADgspeHQAAAAKAbq4dAAAAA4JsDiEAAAABghheIQAAAAKBnK4hAAAAAYFlBiEAAAAAgdHSIQAAAAOBlhYhAAAAAYC2OiEAAAACgaLmIQAAAACBy64hA + KBZXds7jZUB61vaTY2FrQANJK5hVInJA - + - VvddQNYIU0CQ5DhA/bIXQUyxuD/04+NAGVU5QBsmXkBygss/JzgMQEvIyUCIO3xAW1TwP5Z1I0Bofz9AdvZmQJrXL0GkPKk/r5GBQDaoKEGP/cs/oJ0SQcnmZkDuFV5Ar6OSQMxDx0GsWS9An9GwQO0jmEHgnS9A96zlQKkEUkFM5w9BDo7FQNxQLkJFHKY/n7rOQLRRGELl6rhARmlcQgxrzUDj5yVAJRPsQPJpEkBYx4FAFXEOQaLkUUDwlEJAD5OLQBf9L0BWP21AE9Y1QDN8v0GnHvBAu8ZNQFi9UUHev+pAmvpJQCUri0E94xdCcHCbQUXH7EDgto1AsNLMQL1AC0Fkf9VBqiclQdSIoUGABwNBF9QKQKueUUBuKGZAGVcbQBw2+0AM/uNAIiDcP9hPukDyOoRBCfjSQFyHKEE/ksxCp57nQTF23T/TTyVB7tZ4QWGHOkHxA0JANE68QL/JYUHtBhVBdCgeQVcs4D/F3SlBu8+7QMg+T0JgZp5B8UiBP3JwU0Fm7lRA/i7zQC4m3T9nZ3dAv1EBQGVswUC9eZxAbZp5QOQJQUD5qs9AwzNSQXoGTEAXlb5A + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgPEhYEAAAACAiWZgQAAAAAC8YmFAAAAAQLalYUAAAABgOOlhQAAAAACWamJAAAAAIC4DZEAAAACgOidkQAAAAADqoWRAAAAAQK9DZUAAAADABr9lQAAAAKCY7GVAAAAAQBgAZkAAAADAlCNmQAAAAMCvqGZAAAAAQHfCZkAAAABAaQFnQAAAAEAZI2dAAAAAoGFnZ0AAAADAUatnQAAAAMA2ZWhAAAAAwHqGaEAAAACAu6NoQAAAAMDPxWhAAAAAIMriaEAAAADg2zxpQAAAAODpYmpAAAAAIE9/akAAAACAJmVrQAAAAIDOgWtAAAAAoIPpa0AAAACAoABsQAAAAEBWJmxAAAAAQHhFbEAAAABAG4FsQAAAAIBgmmxAAAAAgNLKbEAAAAAAN+JtQAAAAID3ZW5AAAAAAKeHbkAAAABAFwFvQAAAAIDivG9AAAAA4OIFcEAAAADgRCJwQAAAAKDSVnBAAAAAQHahcEAAAABgItBwQAAAAEAZ4nBAAAAAgHzvcEAAAADAZAJxQAAAAIByFHFAAAAAgCA1cUAAAADgnp5xQAAAAEAMtHFAAAAAgGTCcUAAAAAATN5xQAAAACCxAnJAAAAAgEESckAAAACATlhyQAAAAEDDY3JAAAAAwDBuckAAAAAA6IZyQAAAAEANoXJAAAAAgKe1ckAAAACAAeJyQAAAACAN8nJAAAAAINMDc0AAAAAArkFzQAAAAGAiXXNAAAAAIPCEc0AAAACgk7FzQAAAAIBMz3NAAAAAABlEdEAAAACAFVZ0QAAAAMDGYHRAAAAAQAFzdEAAAABgaH90QAAAAIBerXRAAAAAoPkXdUAAAAAAzzd1QAAAAOBTV3VAAAAAQJJjdUAAAAAAsHR1QAAAAACosHVAAAAAgK/SdUAAAACAyft1QAAAAEC7D3ZAAAAAYKs+dkAAAACgMVN2QAAAAAAGY3ZAAAAAAIJ+dkAAAADgII12QAAAAGANn3ZAAAAAgO6rdkAAAACAj8J2QAAAAGCY0nZAAAAA4EvedkAAAAAgz+l2QAAAAIAf9XZAAAAAAO4id0AAAACgvVB3QAAAAGDfcXdAAAAAYKyQd0AAAABg9i14QAAAAOAPNXlAAAAAYMFVekAAAACglHN6QAAAAOA1inpAAAAA4IFle0AAAACgeBl8QAAAAKCCTXxAAAAAwDaTfEAAAADgoRF9QAAAAMAMH31AAAAAYGHlfUAAAAAghfZ9QAAAAGDrv35AAAAAYOcpf0AAAABA0TZ/QAAAAMANcn9AAAAAoL3Ef0AAAADAoNV/QAAAACCD4n9AAAAAYG8XgEAAAADgWz6AQAAAACDTUoBAAAAAwD+BgEAAAACggouAQAAAAKBLr4BAAAAA4AIXgUAAAAAgTUGBQAAAAGAcn4FAAAAA4EumgUAAAACgutmBQAAAACAS4oFAAAAAILUKgkAAAACgxRKCQAAAAMD/GoJAAAAAAFwugkAAAADg2ZOCQAAAAOAtG4NAAAAAQOd/hEAAAACg2YSFQAAAAKCd0ohA + NrgMGZxjYkDibPs7jeFnQNq4KFfnQ29A - + - uGMmQHVBGkD1QXpALWJCQGjpFEFsZ7pAfHwBQLEnhkBfMcs/ayNCQE8B70Ddud0/VrslQO5rAEEvHqJA/T+WP2qu7z93UdpAJLe4P0kqy0EPNbc/d1+SQDkmoEDbUcs/DVe7P6XlJUFWhPA/Q+4TQKosEkDmL0JA8/qWQLpsZ0D7HoZAQ3o9QfqkGkATBcJA8IemPzz780A3t6ZAk1AUQFMmoUB+tttAEUYlQUWUPEFBYKY/eGO+QDP2zD+gMgpA0ZcKQDTIm0HcxsFBN2xcQfTw5UBYVglBf3M4QZr9XUDjGgxBBIn6QF4s80DdEKlAbt81QKVkpj9ekYFA6+S9QP7x4EBbhyxAFWSXQK4qlECYSJJBwgtdQKXd7UDhff9A+8mIQeCet0A/6hxAHQ+DQHEoI0A96iVB55nLP3OOSkActRJBhtusQnJEbUAMbg9B+XclQGIcXkDkMoZAA4ZNQZH+zkCbYppB9h0zQTpLyz9WW9BAhx7/QHjQqkB+QJBBmTo5QTyj7UEybTFBSxtNQRK/wkEIid5BJwRLQeYeFUE3ccJAODLYQJTnE0Bq3LVA1bEhQU+dLkDFskBCGjPBQGT+DUEoPg1BNVUuQZqXSkF+GV5BDUqyQFhK2z+qbItBk2uWQCnOGUNV4IJAWs1BQEgaykBkGAlBMdzdP9zOwUAjdZ9BhOQ1QeAHz0Bz0ANB/xwDQWrJ4T+sfLhAueoZQSCkcUIijD9A5tCbQPyrq0CAkF9BSN6KQCsFVUBuxss/ + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIMbdYEAAAACAEUZiQAAAACAKAmNAAAAAAKSiY0AAAADAgStkQAAAAADNAWVAAAAAwJimZkAAAAAARydnQAAAAABNbGhAAAAAQP6FaEAAAAAghWdqQAAAACAw6GpAAAAA4JVfa0AAAABAEFJsQAAAAADkZ2xAAAAAwAb9bEAAAADAvFxtQAAAAMDzo21AAAAAwKLpbUAAAADAtYVuQAAAAIBDoG5AAAAAQDVDb0AAAABAHaZvQAAAAKA0E3BAAAAAgDBFcEAAAACAIH5wQAAAAEBjsnBAAAAAADfgcEAAAADgjwVxQAAAAOCyQXFAAAAAAMCwcUAAAACATuBxQAAAAIAHEnJAAAAAgPFwckAAAAAguoJyQAAAAIAdw3JAAAAA4LLNckAAAABgJAVzQAAAAKBmI3NAAAAAII4zc0AAAAAABEVzQAAAAEBoYXNAAAAAwLWQc0AAAACAG6VzQAAAAEAJtHNAAAAAIG73c0AAAACApRV0QAAAAAC8VHRAAAAAgBGUdEAAAACAk+V0QAAAAEA9IXVAAAAAoNQxdUAAAABARF11QAAAAED9cHVAAAAAgIC0dUAAAAAAcfN1QAAAAIBxD3ZAAAAAYJ85dkAAAACgolN2QAAAAMCBxHZAAAAA4LfTdkAAAADggDB3QAAAAEDCW3dAAAAAQAZyd0AAAACgSJN3QAAAAACJrHdAAAAAgNrqd0AAAACg2S54QAAAAECaUXhAAAAAICeQeEAAAAAAFaF4QAAAAOCBr3hAAAAA4J3BeEAAAADggtR4QAAAACAe7XhAAAAAYE0PeUAAAABgCx95QAAAAKDObnlAAAAAYH+GeUAAAAAgxpl5QAAAACAKpHlAAAAAoCXEeUAAAABgB+95QAAAAKDA+HlAAAAAoGcJekAAAADAtUV6QAAAAOBpWXpAAAAAoPxlekAAAABgRJB6QAAAAICKrXpAAAAAYJq3ekAAAABgicF6QAAAAGCX0XpAAAAAoPT4fEAAAABAoAt9QAAAAGCIKX1AAAAAICGXfUAAAAAgB0l+QAAAAGCqk35AAAAAoM2sfkAAAAAg1kl/QAAAAKAyVX9AAAAAoD1pf0AAAADgQHR/QAAAAGCnO4BAAAAAwORAgEAAAABgx2GAQAAAAGBHdYBAAAAAQEp8gEAAAACgtomAQAAAACBV44BAAAAAAN3ogEAAAABgmfKAQAAAAGBJ/YBAAAAAoIkDgUAAAADACAqBQAAAAED3VYFAAAAAgHGRgUAAAABARpqBQAAAACBc7IFAAAAAYP4RgkAAAAAgDRuCQAAAACCyKoJAAAAAIJY+gkAAAACAVlSCQAAAAKBUhIJAAAAAIOe6gkAAAACgdcKCQAAAAKAa8IJAAAAAoF0Ig0AAAADAfxCDQAAAACA7PINAAAAAIEBEg0AAAAAgkFeDQAAAAOAiZoNAAAAAoFByg0AAAACgR4aDQAAAAKCPjYNAAAAA4E6zg0AAAADA8+uDQAAAACA0BIRAAAAAYBtqhEAAAADguZOEQAAAAKAiw4RAAAAAYPHfhEAAAAAgNgSFQAAAAOBmdIVAAAAAoAvjhUAAAACgc+uFQAAAAKC9+IVAAAAAIKxHhkAAAAAgT2CGQAAAAMCFqoZAAAAAgKoCh0AAAAAgpmKHQAAAAOBV+odAAAAAIHp9iEAAAACgM5KIQA== + NrgMGZxjYkDiYBUjzERuQI8BR/y9MnFA - + - CtESQaW4tEBew4ZArOuqQMHMcEAaik1AhhUUQKWtyz91JANAtTfZQMCmlD8B10JA3LOBQGRjB0HOPm1BUit6QDX5L0BPNklAEaZLQMP2lEFonMNAGfNmQPEHmUDWkIE/n6WUPxPq7z+UMiJBr94BQGELC0BAANxBxll2QMfUpj+DLABBu9aMQOKWL0D+W95BAxcjQVnKpkC4peM/yX8YQbUr7UARVABAQ2PaPxV9aEERFLs/osWSQHJzKEFv/AlAMuRdQFQc3EBayt4/4iUJQRty2EB9owFA6K4mQPxL00AsFCVB97G0QCcXlD9AWRlCaO0hQRPD6kDlBUFBlPrlQH4SBkEQZkJAtlkVQbz5l0ASD0xAVXVxQPipI0H/HMs/ttpBQMTygUG0PolAyzwDQQSSIkEC9aRA66YcQdDWwECbgc0/3W8MQIy070Fh1UJAstBvQbQr0UGYPbdBsfBpQFDK4EF3iC5AyqG0QJ511UAx6TdA09EwQPGhDkHhIMw/8OctQWQUP0HHOxhBq8JtQLwU+kAknq5A02rDQcA5MkHwVbdA3F+rQHKzuD/SlmRB9zqhQdwa2D+3xQ9C9pfJQfTrwUErDx5BG72TQfL9NEHuOFlB7pUlQOxO4UBBBAFBlizLP9m0A0Ko2wVBEWGEQYBTPkH6RthAkOuiQWq9N0JHnElAPND1Q1hA/kCRI49ASVRnQMu/O0HlvrlAmHrFQBVAWUJORCtBSMT4QF2owkCXajlA6RXzP2HX5UDVDu8/wEtuQKBxBUGe9KpAH+6bQD9x0kBE/alA5IoZQezouD9H/bpA12OuQHYwNUEdsPNAG3QUQMiQoUA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAIJzfcUAAAABA32VzQAAAAEBwoXRAAAAAQGBDdUAAAAAAxIV1QAAAAMDrg3dAAAAAgBS0e0AAAAAAhOZ9QAAAAEAfSX9AAAAAIK4tgEAAAACALIiAQAAAAKB+c4FAAAAAQELkgUAAAACg/miCQAAAAGAchIJAAAAA4N+LgkAAAADAkLqEQAAAAKCFwIRAAAAAgMfVhEAAAADgfyKFQAAAAKBM4oVAAAAA4MVDhkAAAABA0/GHQAAAAEA7M4hAAAAA4FLDiEAAAACgW8yIQA== - - - - - - 1WyGQEhPFEC1YFVA7OsnQCiDukDncIhA9bmUP9zucEDw5dFAVIH4QBE7VUD7BHdATz68QJaym0H8RNBAXE9iQawTqkEWUbtAXWG5Py4uEUE6uRpAhlurQLzGpkCJmzRBfNn/QYEDuT8= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYN3KXEAAAADA5A1dQAAAAIBMH2BAAAAAoKcDYUAAAACAT6dhQAAAAIBKHWJAAAAAQPZpYkAAAABgy0ZkQAAAAGCrJGVAAAAAwDPiZUAAAABA3WhnQAAAAMBtR2hAAAAAgIemaEAAAACg5t9oQAAAAEDDQWpAAAAAwMRlakAAAACAfwRrQAAAAMDhJmtAAAAAwOvba0AAAAAgAiJsQAAAAIBNnmxAAAAAAE/GbEAAAACAOoNtQAAAAICXwm1AAAAAwOjfbUAAAABAjv1tQAAAAMBuJG5AAAAAAL1lbkAAAABA55huQAAAAIBjAm9AAAAAAMyjb0AAAACAGBNwQAAAAMCfZHBAAAAAAPCPcEAAAADgEbJwQAAAAKCm2HBAAAAAYD3wcEAAAACAm0RxQAAAAGCFU3FAAAAAgEPNcUAAAABgtuJxQAAAAKDIEXJAAAAAgJh3ckAAAAAA+aRyQAAAAEDw03JAAAAAgBolc0AAAAAAi0RzQAAAAIDDT3NAAAAAwDplc0AAAACgknNzQAAAAOAugXNAAAAAwKWSc0AAAABA0KRzQAAAACA9unNAAAAAAJ3Uc0AAAABAkQ90QAAAAGB5MHRAAAAAwFFkdEAAAABgR3R0QAAAAKDNknRAAAAAwCiidEAAAADAIbN0QAAAACBTwHRAAAAAgCrqdEAAAAAAnQZ1QAAAAOBXKnVAAAAAoPszdUAAAACAnT91QAAAAKBmUnVAAAAA4MBfdUAAAACAXoR1QAAAAAAvknVAAAAAwD7HdUAAAACAbzd2QAAAAOB7RHZAAAAAIFFUdkAAAABAy3d2QAAAAODFjXZAAAAAgBCddkAAAACg0Kx2QAAAAIAgxHZAAAAA4HPSdkAAAADAR+F2QAAAAMCg73ZAAAAAoLA0d0AAAAAgqlR3QAAAAEAZmHdAAAAAYHYPeEAAAACASBF5QAAAAKClInlAAAAAQLyZe0AAAABArdh7QAAAAMByJ31AAAAAQJeUfUAAAABA6sR9QAAAAEAIZ35AAAAAwOuHfkAAAAAgn6x+QAAAAGBJzH5AAAAAwF4Wf0AAAABA3ix/QAAAAGDWQ4BAAAAAYAK3gEAAAADA88mAQAAAAEDx24BAAAAAQN8OgUAAAADAONiBQAAAACCICoJAAAAAYDhYgkAAAAAAAmqCQAAAAKBQuYJAAAAAwMnEgkAAAADgw4SDQAAAAMBWfYRAAAAAoMz0hEAAAACgeBqFQAAAACCGhIVAAAAAIKGMhkA= + KBZXds7jZUA= - + - QAcnQMSOtECW4KBAPvzrP9RgCUH9DQJAmFmOQA5C1UB4N8tAYCM4QPQB9kCi5C5AnvIFQj4tfUAbt8hAetwBQCheCUEknrdAy0nTQMxqM0InYbk/DTyqQPpAVUCf7qhAhuX9QAx/hkATmMVAIIynQPgUqkAy6s5AIsS5P9h4E0Fp3QpAUiMDQHeoS0DC3gdA9UeLQdlWFEBubKNA+CXTQETbAUDKF9NArnJeQMNYhkDCJ8w/XcCXPzV0gEAC4nFBHVSqP8b18D+QaSRAZmc3QQuekkAnKXxBD3gaQOXIOUEUy0xBy+omQG90OUBCPhRAojIUQGrZkkDCox1AQBIRQYCB8T/+Tg9Bpe0RQSxJqEAbjLpBSH4zQavpS0AzQilBQ8aJQP2PuD/MwjZBib1CQJSWO0FsUERBHBKFQH3f8D/sVDpCnnkEQeiH2kFuXMZA0AsRQA8BdEKBCtdAKoOJQJYZN0BBDkpB8mjmQPj+LEDfTvA/DV4FQU7SlkHY+VdBIwIVQbLl2kHpzB1BEvIwQURaGkHmNnpANZagQMfvq0DiY2dATfVfQV4xqkDBaZJDbV05QKx7/UDY6ThAD9yBQFRrekDr6npAGMwuQatYA0F+zAFAwNHxPw== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQAtgcEAAAADgKgJxQAAAAKBnYXJAAAAAwAz0dEAAAADg2BF1QAAAAIDxBHZAAAAAoP4VdkAAAAAAAkN2QAAAACApVndAAAAAQOQseEAAAACgb0B4QAAAAMCuVXhAAAAAwL5zeEAAAADAbct4QAAAAMCAZHlAAAAAgKlyeUAAAACA+X15QAAAAAA+FXpAAAAAAPItekAAAACAh8h7QAAAAMApIHxAAAAAADrlfEAAAADAzg9+QAAAAICbpH5AAAAAACywfkAAAABAfEZ/QAAAAAAzhIBAAAAAAJ6KgEAAAAAAvqaAQAAAACACu4BAAAAAACnAgEAAAAAAHsmAQAAAAEDxCYFAAAAAoIcQgUAAAACgRj+BQAAAAMAlooFAAAAAYKDfgUAAAACggeSBQAAAAGBr6YFAAAAAoMHvgUAAAAAgKAGCQAAAAGAnaYJAAAAAQPhygkAAAADg0HmCQAAAAMDiiYJAAAAAYHLsgkAAAAAAqiqDQAAAAKAJqINAAAAAoPCvg0AAAAAg07uDQAAAAIBY+YNAAAAAwMiLhEAAAADg1cqEQAAAAKAzDYVAAAAA4IqbhUAAAADAaKKFQAAAAOCoqoVAAAAAQGkqhkAAAACgnjKGQAAAAKB3QIZAAAAAoKpahkAAAADAPYOGQAAAAOC5kIZAAAAA4H+bhkAAAADgDumGQAAAAOB1+oZAAAAAoCEOh0AAAABgATuHQAAAAMDIcodAAAAAAHktiEAAAADgE0uIQAAAAOA4cYhA + NrgMGZxjYkA= - + - gQH1QDUUVUBdb9hAaauTQeKRCEDJBcw/3VauQFcRTECcVjVBOU8UQOupaEHoLn9BtnuPQUOTuT+Try1AjglNQL/mkkCfVv5A1cQBQDlyGkBSupQ/hc+wQeHdvD9cCvE/zrWJQBbr30FuUXBBIoKbQC7h+EDJHLw/fHE5Qf43b0G+9lNBgtJWQLCVAEA643hB93kRQAvj3EDUwhdBldtLQKA5s0CCrcdBP/pnQaK8RUHvZitBPcLrQMtS4UAOxR9APlhBQRrFJ0FWvaJAZdSqQKdxFEBR0bdAe2CmQDSuUEEexi5A+F/OQVGzx0A21SZAtX0FQKTczD/0QkFAz7VKQQEr+0CbGotAiVWhQMdriUDkIH1BpGEJQSbHSEDaIcw/ + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYCrqZUAAAACg655nQAAAAADRLWtAAAAAwKQHbEAAAADASyRsQAAAAAC+p21AAAAAYAyibkAAAAAgUx1vQAAAAMB5AXFAAAAAQCzFcUAAAACAePVxQAAAAADUE3JAAAAAAPC/dkAAAABAYIN3QAAAAIAiQXhAAAAAwDBmeEAAAADABiF5QAAAAAACMHtAAAAAgFdCe0AAAABA21B7QAAAAEAPhHtAAAAAQL+1e0AAAAAA6sZ9QAAAAACECX5AAAAAwCfifkAAAAAAWx9/QAAAAACRMH9AAAAAQC9Tf0AAAABAVCyAQAAAAKAhcYBAAAAAILZ5gEAAAACA23+AQAAAAOBrr4BAAAAAYCjigEAAAADgj+2AQAAAAGDD8oBAAAAAACURgUAAAACgKRqBQAAAAMDqJYFAAAAAIIpKgUAAAAAgwpKBQAAAAMDJnIFAAAAAIPDWgUAAAADgzuOBQAAAAEBw+IFAAAAAQJkDgkAAAAAADnCCQAAAAKBlEoNAAAAAwEwyhEAAAAAgK6CEQAAAAGAnioVAAAAAYFy6hUAAAACAdMGFQAAAACBDzIVAAAAAYFHohUAAAADg2PKFQAAAAGC+bIZAAAAAIDF8hkAAAACAmKiGQAAAAEDi4YdAAAAAQARciEAAAABgGqKIQAAAACDNqYhAAAAA4CK6iEA= + KBZXds7jZUCGpXi5ZgJtQGaLOdoMYnFAV2JOwjayeED6mss/EJN7QKhiXGFcIn9ANiDGFwDKgUA= - + - WpjMP7go9D8M6aBAMERMQJjGhj/IkJNAi3unP3uoOEB/vEJA9wFDQO5rQ0DMDOBA1wWoP+OwzD+LtCVBfHYUQLMT3z9chhVAxMOmQN0UGUGBOxhB/FIiQVpRtkCFz0tBKOuiQOTX1EGZnlNBFOY4QV5UOUB6CwJALqYoQewukUCLSxNAc6nxQPBFC0Dcr8pA7FZDQakdX0Dgmt5AruyBQO6L3z8IYYFADj9NQS+W6EDekwxBboF7QV7rgz+FOy9Ba/RuQPb9DUFXVsxAH9mbQXrLzD/Ms5xAlwaTQBhOJ0BiCThBUUSrQMp+zUBdEpVAvdTrQEMmi0HIl7pB1i1eQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwGGMXEAAAACgInpdQAAAAMDCDl5AAAAAQLKuXkAAAACgEAZgQAAAAACEQGBAAAAAIK2lYEAAAAAAweJgQAAAAECAAWFAAAAAQOPEYUAAAABAZN9hQAAAAMCFY2JAAAAAYDKkYkAAAADAkqVkQAAAAGC342RAAAAAwCEnZUAAAABAgmhlQAAAAMARqGVAAAAAIEfLZkAAAABA/eNmQAAAAMDTA2dAAAAAAFpgZ0AAAAAgJYJnQAAAAEDy5GdAAAAAAMtIaEAAAAAAZCNpQAAAAEDDP2lAAAAAIP6caUAAAAAgmRxqQAAAAECJPmpAAAAAgF9nakAAAABA24pqQAAAAMAHompAAAAAwFzBakAAAACADwprQAAAAAD+TGtAAAAAwNnEa0AAAABAV/xrQAAAAICDJ2xAAAAAgAajbEAAAACAWAFtQAAAAMBpJG1AAAAAAPBHbUAAAAAAd2NtQAAAAMDhqW1AAAAAwEzlbUAAAADAcApuQAAAAADfPW5AAAAAQO1zbkAAAABA58ZuQAAAAEBYQ29AAAAAAHNmb0AAAABAlYdvQAAAAEAgom9AAAAAgPEScEAAAADA9yJwQAAAAIASQ3BAAAAAYL9acEAAAACAgXNwQAAAAABNgnBAAAAAYHWecEAAAAAg/bNwQAAAAKAkwXBAAAAAoBnVcEAAAACAkO9wQAAAAKBi+XBAAAAAQDckcUAAAAAgyC5xQAAAAEBOQ3FAAAAAYBRScUAAAABA+X9xQAAAAMDai3FAAAAAYEaicUAAAACgR9RxQAAAAAC273FAAAAA4NICckAAAAAgwBNyQAAAAED7JHJAAAAAwLk1ckAAAAAAiUJyQAAAAOC8THJAAAAAINBhckAAAABAZW9yQAAAAKDzk3JAAAAAgHnKckAAAADgYehyQAAAAGBt8nJAAAAA4BgOc0AAAACAgCFzQAAAAMB2MHNAAAAAwMM/c0AAAABgr1lzQAAAAMB6ZXNAAAAAABp7c0AAAAAAYdNzQAAAAIBI9HNAAAAAAOwFdEAAAAAA3xJ0QAAAAAAmI3RAAAAAwAEydEAAAAAAEkF0QAAAAIA5U3RAAAAA4CRjdEAAAABAHHJ0QAAAAIDFhHRAAAAAANeUdEAAAABgMaN0QAAAAIAjxHRAAAAAoFoQdUAAAABANCJ1QAAAAECuMHVAAAAAAIxFdUAAAADAflF1QAAAAMAyY3VAAAAAYAZzdUAAAABA1pF1QAAAAAApsHVAAAAAwIq8dUAAAAAAZsd1QAAAAABH0XVAAAAAQOrtdUAAAAAgKPl1QAAAAKAFDHZAAAAA4FwidkAAAAAgUlJ2QAAAAIDVYnZAAAAAIB2BdkAAAAAAodJ2QAAAAAB1DHhAAAAA4I5xeUAAAABgbtN5QAAAAMDC6nlAAAAA4H8tekAAAACgGHt6QAAAAABTzHpAAAAAoB0Ge0AAAABgil17QAAAAOBxoXtAAAAAYPCte0AAAAAgoLd7QAAAAOAUDnxAAAAAIH52fEAAAABAGoN8QAAAAEAYt3xAAAAAYOj0fEAAAAAg5Xh9QAAAAOAOj31AAAAAYJ27fUAAAABgrMh9QAAAAGC3631AAAAAQOBEfkAAAACgwWJ+QAAAAMD65n5AAAAAQOI1f0AAAADgSFl/QAAAAMArg39AAAAAoJ2tf0AAAAAgqsR/QAAAAOCXzn9AAAAAYG4CgEAAAACAJRKAQAAAAECmG4BAAAAAADsigEAAAADgAEyAQAAAAOBWYoBAAAAAIIWagEAAAACg8dOAQAAAAGDY2YBAAAAAAGsDgUAAAACAJxqBQAAAAGDaaYFAAAAA4NmTgUAAAACgA6uBQAAAAAC60YFAAAAAYO75gUAAAABgZT+CQAAAACAwXIJAAAAA4Dcsg0AAAACgFPuDQAAAAOC6CoRAAAAA4GYyhEAAAABg9juEQAAAAGCX+IRAAAAAoCaEhUAAAABg9TiIQAAAAKDePYhAAAAAIHm7iEAAAADgmcOIQA== + NrgMGZxjYkCj4ndav8JxQEyOc1Un0nFA - + - N9wRQMkkAkBkRv5AV41VQE78LUD5atNBA0lMQEEP2UI3wS9AiHdYQPwEOkASABpCsIzFQItHj0AE0xFAYc9nQD5gC0AWINVAGeJCQDUAk0A9hNk/KHX8QCG72UCPJQpA5ZPmQGb7ikHXV4tA0C4FQXEi60Dmxd4/BZ0wQQTjmUBqGZNABfCjQMawiUAIG2hATs9yQIbPBUGVkBdAm1/fQMwBMEDPCPdA5UInQKkaZEE3afE/I6FFQceDKEBctU5BX7oTQYOISEBAb85A7dKUP6+2/0AozWFCGdoOQflztkGlADNBqY0KQcOAXkB+M3RAhOewQASN0kHjjOtAMAwsQb4FUkLA6nRBoE0xQbUVokHRdxxBNaTCQLNGcUCZaAtAflDPQNoBWkG5UqxBhmQbQpPXJUBaEAFBwMIdQF5c4j+apepAv3fMP3KqP0Bq+KJAl1KdQbb/R0HQ5xVB7MXqQBRSbUE2dqc/rvutQIzjqEJtyAVBL8bKQBD2y0AXswBC7OyJQM4gEUJ9wxRBlGGzQvUOG0LNuoxB6Y45QMimbkLkILtBysSBQNE1pkAeRWlA4K2gQEFdq0D1HZhA/IHmQZ7Xhj9iT5ZCAkxoQdJUpUAtYXVC2xGMQR806kAyTEpBWPugQezrQkBt5C1BnBbCQI3RcUHBHelA6qnxQCvNfkCsO4BAI/zkQFr0CEJMm7RB1BwsQYRRLUEW7RdBpz2XQNdrBkKVTsdAwCA0QVCDq0Adj9RBGcPfP3kbgEKeTTZB8sOUQdSJAUH/kZtBcVJVQLvq7D+DK5pBqGsaQatLlEK9OHFAQ4tiQzk/E0JNNWZDIgG5QVyvXURPjwdChPqQQjZATECWAHhAp/CEQF7R70A1rP1BPC9xQPyr9j9i2UhBKFLbQCmjH0FRO8BBfTskQi1aAUGZYDZAvjAkQ2YoJ0CaoqVAV3XMPyxOQ0GufyZChzHwQsbpL0CRRl5A7iK+QN5OTEJGPz5BVrcUQDODpUA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgLpGbkAAAABAL6BxQAAAAKAYFXRAAAAAAPgudkAAAACADA95QAAAAEBuAXxAAAAAwAoTfUAAAABA0WJ+QAAAAMAy1H5AAAAAgIqUf0AAAAAgw1qAQAAAACBuioFAAAAAIMoqgkAAAAAAqUSCQAAAAGApaoJAAAAAoFp0gkAAAADgJbGCQAAAAKDFuoJAAAAAoCnigkAAAACgNkKDQAAAAACwbINAAAAAYCm9g0AAAABAzMWDQAAAAKDYBoRAAAAA4MYshEAAAABgZ1SEQAAAAIByj4RAAAAAwJV4hUAAAADgTOSFQAAAAKDeAYZAAAAAgKoahkAAAACgYU2GQAAAAKD0ZYdAAAAAIGHBh0A= + KBZXds7jZUCdFrCBNyNrQBTpB48/A3JAcRTa8R4Cc0BqPQyU13N2QDhvbis3M3lAVsAqFo/DfECl34Rph5R9QIxj5HQaeoJAFjO7W7wSg0AdaGUNXDKFQKc3PPT9yoVAYStetNR6iUAIOwveUOOJQJdjadN8q4tAf3wanywLjUD7kDPwCMSOQKqmnKF4Q49AxkpaRCW+kEDVasVlEmaRQEZiUVl7gpJA - + - 7q1fQTExlEC87WFBcfPMPwQb8kCOPQJArQ3yP8giikAxMNhA1oBvQJ6IUEFcVlJAlGehQEZVT0FB9iZBVSxVQKa5DUEOOG5BhXrGQFTel0BepRRAVJpwQdt6D0EP4cNBWQsUQaxWy0FRmgtAte6XQRylDkLpY/pA8FKbQRv2XkFQtlZAsy4pQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAID6JV0AAAAAgU45aQAAAAKAK1FpAAAAAAMsTXUAAAADA6AheQAAAAOAqUl5AAAAAIM4oYEAAAABAqaJgQAAAAKDj5WBAAAAAgNCJYUAAAADA3udhQAAAAAB6fGJAAAAAYNelYkAAAAAg1+NiQAAAAAAyQ2NAAAAAIFgiZEAAAABAgWpkQAAAACDM4mRAAAAAQBAmZUAAAAAA9YZlQAAAAADjomVAAAAAgBHnZUAAAABAkwhmQAAAAKCwRmZAAAAA4GVlZkAAAAAAsJ9mQAAAAIA25mZAAAAAIMwIZ0AAAAAgpiVnQAAAAIAlTGdAAAAAwFpkZ0AAAABAlKtnQAAAACBc5GdAAAAAQCxhaEAAAADgrIJoQAAAAECwJGlAAAAAwM5EaUAAAACAnmRpQAAAAIBKjWlAAAAAQJugaUAAAACAgOZpQAAAAEDzB2pAAAAAgC6kakAAAACAXetqQAAAAMDQMGtAAAAAQPt3a0AAAADAPaFrQAAAAADewmtAAAAAgIwlbEAAAACAToZsQAAAAEDZw2xAAAAAAK/gbEAAAAAAJR5tQAAAAABPaG1AAAAAQPGpbUAAAAAAo+1tQAAAAEAdK25AAAAAQK5FbkAAAACA12JuQAAAAMAoo25AAAAAQN3VbkAAAACAlwdvQAAAAEBnKG9AAAAAAE5Vb0AAAAAAsm9vQAAAAOBtFnBAAAAAwFIzcEAAAADASUJwQAAAAACrUHBAAAAAgFNicEAAAABgr3BwQAAAAIA1gnBAAAAAwPqQcEAAAACADq9wQAAAAADc0nBAAAAAQOvucEAAAAAg/BJxQAAAAECOU3FAAAAAwH93cUAAAADArYNxQAAAAIA+lHFAAAAA4AqicUAAAABApfRxQAAAACDGAnJAAAAAQEkTckAAAAAA6SxyQAAAACA7UXJAAAAAgEV8ckAAAABAD7tyQAAAAMBv0nJAAAAAYP3hckAAAADABRFzQAAAAGC0M3RAAAAA4LPrdEAAAAAgBzJ1QAAAAMDwh3VAAAAAgEWpdUAAAADAIvB1QAAAAIC49nZAAAAAoKURd0AAAACAhvV3QAAAAODIU3hAAAAA4DaEeEAAAACgCpR4QAAAAIDSo3hAAAAA4KP0eEAAAADgav54QAAAACDZNHlAAAAA4JzVeUAAAADAVaN6QAAAAMASrnpAAAAAoJrDe0AAAACgTxZ+QAAAAOBSxX9AAAAAoLnbf0AAAACgQQyAQAAAAOBd0oFAAAAAYJHbgUAAAADgFvuBQAAAAGD+CYNAAAAA4OUyg0AAAABgKlaDQAAAAOBFzIRA + KBZXds7jZUDEsXzkG6NpQGS4z0t+BG1A - + - 6E4LQKQ4bkAj0dlA7KnRQLlIC0DfAE5BUQjVQKT6OUDO07VAInmnQLSJMkGafk9BiZP9QHyQ9kBYycw/3RVoQIISr0ACc5hA+JajQJTp/T+G+hxA7rdgQHbQgUBwDwtAniKhQTxGTEBfCzxCuB7fPwWcL0BbyQFAzhb7QLeUq0BFHAJAkbUdQA7gS0EfXERBzCknQBblKkEAgbo/UVbqQEiCUkD0nYlASg+FQG63OEAwUf5A4kLiQLDTLkE0bVpBfyLyP/99uUC4+SZApCiGQaAOHkEiwkhBx9rMQUunQUAWQWJB6oC7P3qswUCjuJJAXi0oQfQYJkHtd7o/VTGdQCZF40Btb7BAvsJJQk+U0T8ULQ5CejwRQQcNiUIS6ZdAjyICQEEu6EBdTfJAG06PQDLq9kB2TV9BtztyQe7JGkIK4odChvEOQZYiJ0LYLqFBu1HmQEaHSUAGFmhAMulKQvJNJ0D+oPE/aqugQLX5aEAIhlVAQqCAQUwv8T/KbB5Bg1mwQPy3uUBPjd8/NhQQQTK82j/xTqVAyEK7P4Qtr0AskKc/pohPQkbq8kFZGUlAIzkTQCFSW0EB5QdBwdmeQLgB3UCzkJpA09xEQM4y/EB+KF5AL0/tP2Gul0CMdgpBj4VmQBSjN0DdWKpA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAF/BYUAAAADgEQpjQAAAAAA5vWNAAAAAoJ7kY0AAAAAg2iNkQAAAAOCOQWRAAAAAADSqZEAAAABAlaZlQAAAAECgImZAAAAAgLNpZ0AAAACA8t5oQAAAAIAyJ2lAAAAAQNKCaUAAAAAAEyhqQAAAACAvg2pAAAAAoJjGakAAAAAA2WBrQAAAAIDIqWxAAAAAQBUEbUAAAABgvQZuQAAAACBKTG5AAAAAAI+CbkAAAACA9M1uQAAAAACtS29AAAAAoGFScEAAAABgd2ZwQAAAAEBm0nBAAAAAQMjjcEAAAAAgSJNxQAAAACACxnFAAAAAQN79cUAAAADAcTJyQAAAAIB7YHJAAAAA4E6SckAAAAAgwcJyQAAAAIB61HJAAAAAgHv3ckAAAABgRlJzQAAAAEAIkHNAAAAAYDzGc0AAAAAgZOJzQAAAAECbBnRAAAAAIBITdEAAAACA7UB0QAAAAIDRX3RAAAAAYNmfdEAAAABAneR0QAAAAEBkM3VAAAAAICGvdUAAAAAgV9N1QAAAACCDFHZAAAAAwBwfdkAAAAAAVEh2QAAAAAAMVnZAAAAAADV3dkAAAABAnJB2QAAAAMAZ0HZAAAAAwP3pdkAAAAAgU/V2QAAAAGAjBXdAAAAAwKMed0AAAACA3k53QAAAACCed3dAAAAAoGu9d0AAAACgSet3QAAAAODv/XdAAAAAwBEWeEAAAABAuit4QAAAAGANNnhAAAAAIJ1VeEAAAABgTXB4QAAAAMAzpXhAAAAAgPiveEAAAABgTRt5QAAAAIDBTHlAAAAAADJmeUAAAADgzoF5QAAAAIAywnlAAAAA4DsxekAAAACgv0B6QAAAAGDbUXpAAAAAQGJgekAAAABAgHV6QAAAAEC4k3pAAAAAQKKkekAAAABAwhB7QAAAAODJJntAAAAAIH86e0AAAACgf057QAAAAODzZXtAAAAA4DSZe0AAAAAgbbF7QAAAAMDgCnxAAAAA4HIXfEAAAAAgESN8QAAAAKCEQXxAAAAAIFxsfEAAAACgCIl8QAAAAKCumXxAAAAAIMgmf0AAAADgf0J/QAAAAKB6V39AAAAAoM5zf0AAAABgV8V/QAAAAGC/639AAAAA4MmIgEAAAAAgXrSAQAAAACBZAoFAAAAAoMizgUAAAADgds6BQAAAACD82oFAAAAAIOxPgkAAAADg9JqCQAAAAKCQoIJAAAAAICTLgkAAAABg9AGDQAAAAKDlEINAAAAAoENXg0AAAACA7HyDQAAAAGBqiINAAAAAoAabg0AAAABgdUOEQAAAAEAYaoRAAAAA4DxzhEAAAACgc5GEQAAAAMAeoIRAAAAAIDrjhEAAAADgofOEQAAAAAA+LIVAAAAA4NVDhUAAAADgaqSFQAAAACCTxIVAAAAAICTrhUAAAABgjvSFQAAAAADHIoZAAAAAIEcrhkAAAADAlJeGQAAAACBQpYZAAAAA4MayhkAAAABAXmeHQAAAAAB4wYdAAAAA4FRyiEAAAADAguiIQA== + KBZXds7jZUCeFrCBN6NsQKPid1q/AnFA - + - O0VVQBks9T/EAdA/U6heQCfViUAJl45AZu0oQAgIqkA9g81AoJGdQGwKzD/0foxAkp9EQBB4C0CyjwFBI2dlQDVuMECwU9BAw16XQHoGMEBdLXlAXkwKQrdwC0BVCQJAe+yFQOPfi0CjdIdBGrzSQLLbNkD9G98/MX/xP0fulUFLwtxAwlZoQKawrUDaX1dBNZ8+QeP+mEAiEZtAzO65P0kLMkDjtYlAC6k5QId2hkBzU9BAOWbKQOVLk0AfZRpAW9q2QJvX00Dl6LhBdeSgQIEzhEHNcoBATqCGQcub/j/nnhRAeDYAQQkYfUA87l9A4Mm/P8fJ8T9iE2xBqxbEQN60zD9anBRCLyWOQO0UgkC+cQ9A9sjKQGJKEUFqfwJAAVppQRILUEFD5l9BVtyOQOgK4kCI2zdAyBbvP9AvC0C8kfNAomf0QCuTJ0GoVVhBlgrwP6WzQUEMs8tAS+6eQEU0h0GOgGFBmiikQF8I6kBHVgFCTM1tQUt3gEDC8A5BFGf6QW/fekAIaVxAL0FOQI4OYUG5T3dAhOwxQGr7JkB0xLRAq0kLQGUDpELgq25AMFqQQJ/zlUF+Mbo/nFdeQM7hqUD5P/5AWRSoQL5SkUBXi/E/cPMCQUnCckGvr5NBMAOMQit07kDLSotAw0xDQCFmF0H4OlZAi05TQknBbkCO1MlADcCsQMPMQkBSMhRA3Tx6Qb4/zT+XDfdBK46KQIHoPEEb4IdABwCLQCMTD0G8VplABkHiQCS7wkA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgDshZ0AAAABAWcRpQAAAAKBIoGpAAAAAAAOha0AAAADgtstrQAAAAEAc5WtAAAAAIDQmbEAAAAAAGkZsQAAAAMAdaW1AAAAAwHfjbUAAAABAl0ZuQAAAAEBIxW5AAAAAgD3mbkAAAAAgcgZvQAAAAACN5m9AAAAAgNQPcEAAAAAANnZwQAAAAABJkXBAAAAAQL7WcEAAAADAACNxQAAAACCytHFAAAAAwFnicUAAAADA1P5xQAAAAIApGHJAAAAAgKtzckAAAABAK4NyQAAAACCqknJAAAAAQBghc0AAAAAA+UJzQAAAAKAUYHNAAAAAgMeTc0AAAABgbdNzQAAAAIDlFXRAAAAAQPA1dEAAAACArFJ0QAAAAMDybnRAAAAAQNaFdEAAAACATJB0QAAAAIB+pHRAAAAAQJmydEAAAADAZEF1QAAAAIB4gnVAAAAAQGqzdUAAAACA3dF1QAAAAIBQIXZAAAAAQEw2dkAAAAAAMEF2QAAAAEDbUHZAAAAAAIa1dkAAAACA4BN3QAAAAADgMXdAAAAAAElld0AAAADAIXR3QAAAAEAdh3dAAAAAgGiUd0AAAADA6cx3QAAAAMBf5XdAAAAAwEsGeEAAAABA6ER4QAAAAMD4UnhAAAAAQBN3eEAAAACASKJ4QAAAAIB73XhAAAAAQN8UeUAAAAAAyD15QAAAAEC+snlAAAAAgCXieUAAAADAsvN5QAAAAMAqAnpAAAAAAJ8UekAAAACARi96QAAAAMBJSnpAAAAAAPByekAAAABA4KR6QAAAAIDusXpAAAAAQHfBekAAAABAZep6QAAAAABR93pAAAAAQOMse0AAAABADDt7QAAAAMB+U3tAAAAAwOuUe0AAAAAAzMd7QAAAAEC543tAAAAAgAr1e0AAAACAUAR8QAAAAEAvFXxAAAAAAKpCfEAAAACA8VB8QAAAAEArfHxAAAAAwMO1fEAAAADA0r98QAAAAICC8nxAAAAAACwCfUAAAAAAEiR9QAAAAIC2Nn1AAAAAQPFcfUAAAABAkGZ9QAAAAEB0x31AAAAAQNvofUAAAACAWQl+QAAAAAAVFH5AAAAAwHE0fkAAAAAAWVR+QAAAAACgln5AAAAAAPykfkAAAAAAv65+QAAAAMDQwn5AAAAAwKDyfkAAAABAlCV/QAAAAMAVMH9AAAAAANZBf0AAAABAcVV/QAAAAMCUdH9AAAAAgJmGf0AAAAAAdZd/QAAAAMCyuX9AAAAA4PARgEAAAACgPxiAQAAAAICLHoBAAAAAIK0ygEAAAAAgYTmAQAAAAODCVoBAAAAAID9pgEAAAABAjIqAQAAAAIBGoIBAAAAA4KyzgEAAAADgsLuAQAAAAODlwYBAAAAAIADTgEAAAACgo+OAQAAAAGD28IBAAAAAYE/2gEAAAADgJgKBQAAAAGDiC4FAAAAAYPoSgUAAAABgXyCBQAAAAGDBJYFAAAAAoNszgUAAAACgrTqBQAAAAMDlQoFAAAAA4ItNgUAAAADgpGiBQAAAAGB4d4FAAAAAQPqBgUAAAACgT4qBQAAAAOC8koFAAAAAICaZgUAAAAAAXaGBQAAAAMB1qYFAAAAAgDu5gUAAAADgD9WBQAAAAMAS2oFAAAAAIODegUAAAACAMuSBQAAAAKAS64FAAAAAwOL6gUAAAADgDASCQAAAAACNC4JAAAAAIMsUgkAAAADgWiKCQAAAAGDVMYJAAAAAgBU6gkAAAABg3UmCQAAAACCwUYJAAAAAIItZgkAAAACAvmCCQAAAAMAuaoJAAAAAYF18gkAAAACA24GCQAAAAGBXioJAAAAAoKWTgkAAAACguZmCQAAAACC3n4JAAAAAwJykgkAAAACAosOCQAAAAMBxyoJAAAAAQNvhgkAAAADgseiCQAAAACC0FYNAAAAAYBEhg0AAAABALieDQAAAAOBTLoNAAAAAgAo0g0AAAAAgzTmDQAAAAKCpQ4NAAAAAIHdMg0AAAAAgDVqDQAAAAGB0aINAAAAAAN9wg0AAAACgLH6DQAAAAICVi4NAAAAAoDmRg0AAAACgmJeDQAAAAGDip4NAAAAAAB+0g0AAAADAy4uEQAAAAAAbnIRAAAAAwJqjhEAAAADgbayEQAAAAMBDtIRAAAAA4AnJhEAAAABAldGEQAAAAMCM2oRAAAAAIEfkhEAAAADAFvSEQAAAACB5+YRAAAAAQBwAhUAAAABg1RKFQAAAAMA9IYVAAAAA4B0/hUAAAACgzFqFQAAAAGC1ZYVAAAAAIDh7hUAAAAAgBIaFQAAAAEDUm4VAAAAAAJGshUAAAADAzrKFQAAAAKBLvoVAAAAAoKzGhUAAAACAmc2FQAAAAKDY2IVAAAAAoKrghUAAAADgvOmFQAAAAODr84VAAAAAYGL7hUAAAABA7wKGQAAAAAD2DIZAAAAAYLcdhkAAAACgiSmGQAAAAGDJP4ZAAAAAYFlIhkAAAADgFVCGQAAAACCpZoZAAAAAQD+JhkAAAAAA6ZGGQAAAAGD0mIZAAAAAIPWshkAAAAAg1tiGQAAAAKAu34ZAAAAAIH/shkAAAADgrQqHQAAAAOBKLYdAAAAAAIg0h0AAAADgDE2HQAAAAGDqaodAAAAA4GVxh0AAAACgh3eHQAAAAOAtiodAAAAAoJObh0AAAADAjq2HQAAAACB+sodAAAAAYOi7h0AAAACAcsOHQAAAAKAv4IdAAAAAoDn5h0AAAACgIgKIQAAAAMBuGYhAAAAAYNAjiEAAAACg50mIQAAAACBfXohAAAAAIOyRiEAAAAAgBpeIQAAAAMCPnYhAAAAAgBKliEAAAABAbcKIQAAAAMAD2YhAAAAAYLriiEAAAADAAeyIQA== + NrgMGZxjYkCO7m7sniJrQEMdzoN8QnFA - + - OrCOQCM+i0DgVZlAdxuKQNfkbkBRk5VA/UfvQMdazT/H9oBAK3e4QDcRzT93yYZCgXsXQZHvDEHEMSZB54NLQf4+yUCT09NAPaW+QMqppUA4iuNAsyx7QDwYTUFyTuRAnAdQQEV+U0C3J69AuIKHQAjk2EDxo7JAnFacQHVjcUDa9tpAre1FQcDEC0BP0N8/kaEKQWhpJ0CdczVB37D8QAgIVkA4Rl1BoH84QZYR3UEMLOpA5FKIQPO6VEDI7OVBQNyOQe6gAkDaEYpAJElCQJNotkKTtzBAtiMKQX8fAUEcu7tAXa5hQVIzvkB+oBFBctnfP51qI0EvsjZBwMjKQCVeAkGZr79AQ+Q5QNb2GkGSgn5BNXVSQtD4yUCXs4tBbRKcQCIBhEGy4O9AbSd7QOVZlkB4fI5Aq4v6QNX++EC/aExAeKiVP5acw0DoI+1BjLM1QR/9eUF7M/9AKtgyQdGQCUE5oyRBzgIPQQzNOEB7KzVBobBVQIUyAUHSL7ZBkHlKQbm4EUEDR7lBVHjBQaiKkEFL9yVBC5yFQNR9a0FoBdxAaZgKQfRlGkEwJxhBkjzeQZMg90FL6V9BG6YCQYPklT+viqxDUzpJQv7DJUCWWWRBdEWVQC2nDEGeRB1BWUjlQTqOHEGYJI5B0vU3QdhwJkFjPyZB86CNQTlZC0Dc/YtAYs8BQOQErEG8awBCTn5ZQTE2F0GWB0VBhL4sQZba80G5wgVBZUmTQFTSOkI6fExAsmJjQki7SkJSh01BDn2ARBdlHkNx8q9C9SSXQepGCULYIjxBcvSwQHGO8T8iNaVC0yKCQVLutUF2DRZBXs5tQajGqkGrBFtB52CGQeNnIUH58P1BtC4JQfxt9EAyQjdAK6a6P3GBEkIDG5VBZEW4QTupTUENA+VBv3QbQIsb3z9OJt5A8Xn0P8QZQ0E1C5lAOnZIQcUpZ0Cu9ZpBjn/wQETebUJUoa1B2I9PQZBAuUEsezZBlXcNQvxDwUEWP0JCTK2KQnVk60H14jtCZWABQ1NWZkJ/ZhpCjEyZQGjNekCjUjdCZIoVQZawVUDI6ItBi1etP0rtiEHKc21BgmZFQdf1pkFTf1FCfzRgQQgHBkH2xaBCx+MQQuub+0G4jadDn7ygQbhVwkLMS2pBic+vQydOyEGmZlBBsNEvQRqA8UELSJlAgkIrQgSuZUEiMdhDp1MZQ2SQAkEAq2BBxu7wQU6rrUH+g7hB0G/vQhWTLUGLHKhAWxtdQS+KukKUEGlCIJ83QMlXgEOfiW1CTjceQN77C0DENDpBRXe7QCzc9UEQeS5Ar7/yQSc9AEJDHw9BrjYKQVzinECkQh9BQNOHQmKQ/kE+yytBpbuGQAnK9kDA3zBAJrQtQWxlHELD5+NABUC5Qm6DIEHVn7xA47WJQBVaQ0DaXlNCN8MLQFJPmj8= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgFdrYkAAAAAAJ2RjQAAAAOCbxGNAAAAAoM6fZEAAAAAAYwZmQAAAAIAYKWdAAAAAoDHlaUAAAABAzEdqQAAAAGAUSmxAAAAAAD1rbEAAAACgsAltQAAAAIAaXG5AAAAAgAqHbkAAAABAF8puQAAAAEB6Im9AAAAAAEVHb0AAAABAkHxvQAAAAAB+AHBAAAAAIGsTcEAAAABA/EVwQAAAAEDlwnBAAAAAoEHlcEAAAAAg3kBxQAAAAMCiUXFAAAAAIICkcUAAAADALzRyQAAAAGDpZHJAAAAAoETHckAAAACgi1hzQAAAAODWcXNAAAAAAEyUc0AAAACAHtZzQAAAAKBy8nNAAAAAoPwidEAAAACABbR0QAAAAGAr8HRAAAAAQLoRdUAAAABAdjF1QAAAAEC1oHVAAAAAAPzBdUAAAADALRB2QAAAAICzRnZAAAAAwA1TdkAAAADgT3B2QAAAAIDk03ZAAAAAwF/kdkAAAADAwBB3QAAAAOCrsXdAAAAAYNAVeEAAAAAgBUB4QAAAAECwdnhAAAAAwDOHeEAAAACAJJR4QAAAAOB9nnhAAAAAAB+veEAAAACgYH95QAAAAADQlHlAAAAAwGSyeUAAAACgXcB5QAAAAECj0HlAAAAAoNPmeUAAAAAgchZ6QAAAAOC7UHpAAAAA4KVhekAAAADgfZN6QAAAAOCWpnpAAAAAoHX6ekAAAADgjB17QAAAAOC+L3tAAAAA4OpBe0AAAAAAH2R7QAAAACChpXtAAAAAIOmxe0AAAACgFvV+QAAAAGDgv39AAAAAoNwigEAAAADAni2AQAAAAOBUQoBAAAAAQClrgEAAAADgp4uAQAAAAIC8xoBAAAAAoCRxgUAAAACAH6+BQAAAAOC/wIFAAAAAIJ7bgUAAAAAgwiGCQAAAAICzMYJAAAAAoPhhgkAAAADAtm+CQAAAAIANooJAAAAAQLgIg0AAAABAe0WDQAAAAODaU4NAAAAAgB+Ig0AAAAAAhY6DQAAAAKD7moNAAAAAYIirg0AAAABgKcuDQAAAAGCsAoRAAAAAoHIQhEAAAAAAX2eEQAAAAKDe2IRAAAAAAOf5hEAAAADAcgaFQAAAACCiXYVAAAAAYPZzhUAAAADg+9CFQAAAAKBZ2oVAAAAAgKnjhUAAAAAgEzSGQAAAAKC7VoZAAAAA4IizhkAAAACAD92GQAAAAIACfYdAAAAAoLREiEAAAAAg6rKIQAAAAGBy6ohAAAAA4FnziEA= + NrgMGZxjYkA= - + - Jnt4QOT25EDeuDBA7HHNP6eYEkA6RBVAvokCQBeB4D+XMrhARx0PQWn0HUEmiStApiPxQTaf4D/aX9M/8EloQEY8zT8IRy5AAN8OQdkBXEDIcUNAhxOeQLY4nEARR6g/8JfqQBHLkEAnyy1BXA0GQVxcPEEU/bFAu/RVQHE33z+b0GFAtJ24QA1OoUAWhIFAzZVMQFiBmEFCmqNBqvotQKPuq0AJBE5Ar6yMQVr6/EBENbhA0ofNPxfNHUBfqZRA24BlQKCwkEBLBHtA7mBLQYdZHkCUZLNB3XzBQLzVbkAJ165A3Ou0QZYtakEESlxA8YZwQHsghkBTRO8/Ve4jQeemMEDZYYdAY6FIQT0qfEAk1YZB2LWmQbr+FEBMg4VBAK1lQH4bvEAu9wNAFByKQLr8vEBPIExBOZckQQGOzUBQlJ9AQU38QDNAFUEt2AdB4ZZgQfEjHkDFhJ9AFRT0QIp490Htk1RAtqTXQEeJJkL1WqRBcSWfQVia3z/0ohFBuM6VP0/K70AwgoJAGI/2QIphy0Ec9RRAzXg4QfxlW0Hd/5lBEhY/QTsr8j8F4kFBGImVP0iRQ0De6R9AvJ64QFssG0DW9q5AVheuQIqFl0HFdLZAKv0nQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQJTIaEAAAACA/udoQAAAACCipmtAAAAAwJrnbUAAAACAijluQAAAAOBAiG5AAAAAgCuzcEAAAACA4QVxQAAAAID+RnFAAAAAQHSScUAAAABAuZRyQAAAAGCpQXNAAAAAANIxdUAAAAAAykR1QAAAAMBgY3VAAAAAgFGUdkAAAABALbR2QAAAAIBnsHdAAAAAAPTGd0AAAACA69h3QAAAAABT0XlAAAAAQCAkekAAAABAKH56QAAAAEDIlHpAAAAAQKDjekAAAACA/AJ7QAAAAACJQ3xAAAAAwALCfEAAAACA3Nx8QAAAAEC8Mn1AAAAAAGFGfUAAAAAA5LR9QAAAAECCwX1AAAAAwJ/wfUAAAAAAE1d+QAAAAEC9aH5AAAAAALWOfkAAAABAOuN+QAAAAMCW835AAAAAwEU2f0AAAACARO5/QAAAAAC9F4BAAAAAgP8lgEAAAACAp0+AQAAAAAD9V4BAAAAAAAljgEAAAADg52mAQAAAAICnioBAAAAAYKy1gEAAAABAxtGAQAAAAOBCJYFAAAAA4AQ7gUAAAABA/VaBQAAAACBRcoFAAAAAwATIgUAAAADg68+BQAAAACDl74FAAAAAIPEJgkAAAACgRhOCQAAAAIB7H4JAAAAAYJ0wgkAAAABAVU2CQAAAAKA4c4JAAAAAICSRgkAAAADAVaOCQAAAAEAouIJAAAAAgLLBgkAAAADglsmCQAAAAKARGINAAAAAIJkwg0AAAADg8kuDQAAAAKAGY4NAAAAAgKlqg0AAAADADIKDQAAAAMBSkYNAAAAA4Puzg0AAAACgjteDQAAAAMCv3INAAAAA4Njrg0AAAAAgVPmDQAAAAGAwAYRAAAAAIMoLhEAAAABgLBOEQAAAAID7JoRAAAAAIEczhEAAAADg0EmEQAAAAMDgKIVAAAAAQOZWhUAAAAAgC4WFQAAAAMCYpoVAAAAAYPDhhUAAAADg2OmFQAAAAIDxIoZAAAAAIFFjhkAAAACAlWqGQAAAAKDWcoZAAAAA4G6ThkAAAACgzgKHQAAAAGBDFYdAAAAAoEMrh0AAAADgPGSHQAAAAADmbIdAAAAA4Bd0h0AAAAAg7beHQAAAACAf8odAAAAA4Cn8h0AAAABgbYmIQAAAAGConIhAAAAAYOHbiEAAAAAA/viIQA== + NrgMGZxjYkA= - + - 6aVfQEIJkUDB1gtAwUyZQG5+TEB27sE/Ax17QBGiQ0DLRjFAGAFEQGuhEkDiKvJAUL3mQH+9MkH9dQlA9eteQH9iKED0eOtAUZJ5QB51uz++ORZBDJvkP1MOKECTVhZAVMKzQHp1okC6NIpAqVm4QC2JkEEwULtAcXsAQZl2eEAQxbs/TpkxQTyXL0L0c/BAEDnpQDC+TEDDjwNBhenwQCkMgkCoy7o/qksIQReWk0C4pyVBBz8lQAur4D8Z+TdBNZuvQfjMtEB1UI1Ba1CUQSPJKUH55zBALyaTQbI6lUEctpZBg8mKQHhKVkDcHohBhuSzQHrHEEKYWZFB4kaRQOCG7j9ZNUhBPF8lQKsqe0AGcB9BwZ7NQVH9tEIG1AJBmZmmQfSXaUF3yRdE6ACBQdfwq0AaCCdAGy1kQRaAjUEhxeRAaqg7Qnr3xEBZwmFCDDweQPX1lEETSkpCoufaQUIZb0C0+ZNBjJkyQqhOvEDnvYZAHoEVQbHXx0DYC4pAh1x6QJKt2EAoQSRBMKBlQZ/dJ0CYkKRByBXRQCjN7kBm8G5CWbKQQWL6kUFMdcZAcX5IQTKca0E= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAALC8X0AAAACgZshgQAAAAACz5mBAAAAAoDihYUAAAACApKpjQAAAAMAn9GNAAAAAgLenZEAAAABALGVlQAAAAKDqpmVAAAAAgL3DZUAAAAAAvylmQAAAAOBnLmdAAAAAwIXGZ0AAAABgV95nQAAAAEB9JGhAAAAAgPOZaUAAAACAZhdqQAAAAECrp2pAAAAAILPwakAAAAAA4KhrQAAAAICP5WtAAAAAALA9bEAAAACAIJ5sQAAAAMB5w2xAAAAAgNBobUAAAADA5eJtQAAAAIBTt25AAAAAAOHAb0AAAADAx+tvQAAAAKDHMnBAAAAAYIbFcEAAAACgTu9wQAAAAEBBDnFAAAAAwL4kcUAAAABgSkhxQAAAAIAYYHFAAAAAwN2AcUAAAAAgTLNxQAAAAICo0nFAAAAAQAbhcUAAAADgXgNyQAAAAIDTNXJAAAAAYPllckAAAADAIYByQAAAAAA6o3JAAAAAwGW/ckAAAABAvDBzQAAAAIDNUHNAAAAAgI9yc0AAAACgUsxzQAAAAKBO6HNAAAAAIGPzc0AAAACARS50QAAAAMBwWXRAAAAAwNpodEAAAADA7XV0QAAAAEAOgHRAAAAAwNGSdEAAAABAp8J0QAAAAAA6BXVAAAAAQAgTdUAAAABALlN1QAAAAACAYHVAAAAAQLZ9dUAAAADglo51QAAAAIAHn3VAAAAAAFMldkAAAADg40J2QAAAAKBmUHZAAAAAQEZsdkAAAACARbR2QAAAAIDq+HZAAAAAgCUhd0AAAABg8TR3QAAAACDlS3dAAAAAYPCad0AAAACgx8R3QAAAAOBa1XdAAAAAYPznd0AAAADgR/R3QAAAAOCLJXhAAAAAoJU7eEAAAABAA0Z4QAAAACCOYXhAAAAAQOnkeUAAAABg2v15QAAAAGDGB3tAAAAAIHd0fEAAAAAguPh8QAAAACCfYH5AAAAAQFSIfkAAAAAgpOV/QAAAAECVE4BAAAAAQEcbgEAAAAAgy2GAQAAAACADhIBAAAAAoM2rgEAAAADgM72AQAAAAGD+0oBAAAAA4BrYgEAAAADgcvWAQAAAAGA6A4FAAAAAoGAzgUAAAAAgK3yBQAAAAOAzCIJAAAAAIDFGgkAAAACgwkyCQAAAACB8Y4JAAAAAIDhrgkAAAAAgnNOCQAAAAEAT2oJAAAAAQAQ2g0AAAADgbjyDQAAAAMCsY4NAAAAAIPuKg0AAAADgqcSDQAAAACBcG4RAAAAAoD+nhEAAAADgv/uEQAAAAOCeNoVAAAAAYGm7hUAAAABA80qGQAAAAEDYeIZAAAAAYH2KhkAAAADAUryGQAAAAKDR6ohA + NrgMGZxjYkD1hHOUyCJpQBu6YmAmQ3BAeiAWnryic0AJeGK9lHN3QHp+8vEUtHpAX8xmwizke0BqRZ4ebIKAQFxs2AZ4GoFAk0Ul7n66g0DwTHxCzyKFQCYmySnWwodAgVH92hDbh0B4MH0JSHOLQGrpwdBOC4xADBEhRZ97j0BhyEH/haOPQAagh7clgpFAsPuXFBmWkUCCj8dOQU6TQPrrabJEmpNAdtupSWBmlUAk8UOifXKVQL9d6hWBwpZAbuEVQKl2l0AJTryzrMaYQIJh2aeyEplAINGOht1amkCZ5Kt646aaQDbmz4cDd5tAGfyijzlrnECy1Q8fH0OdQJkTmqSPL55AMu0GNHUHn0DyATah3RmgQA== - + - /WGpP4wTrEBfyWJBzIaWP9c9vz/Yps0/D2eWQEWg0T8NpCtBA7+TQFePQ0BgsEJBu7QMQZJY4T+RI7VA+sE6QG9t3kD8UdRBiKUNQe2N4D/xQTxALe5CQaYaDEBMxJNAHvLBQMa74D/l8hFBSPQJQDP2CUF9kZlAHKWLQGk9SkBkdtRATpNDQQ1yBkEqRTFAoo9DQBaTFkHDS5pA1NXPQETCpUD6Pm5Blx8TQNeuc0DoAzhAb/7vQHcplj8j7PI/8UusP7ubk0E7x0NADVc3QKBsc0BMjkRB2SBmQTRuZUCKBAFCayCXQeMmfkCvryVAcKFGQesPfUHuqQtBw/0RQc3hPEHZOrlAHtC0QAe55kF24RJACd2UQL7EikBxtbFAf7K+P1llTUKSUmRBMFMiQtu0AkB7Q4FBK0y7QE15AEHUZCpBm5yVQJ3yMEBlEmFBwjLUQN8npkDQnOVA4ooYQcvkEUJCYGZAKdamQfVtMkHFL0FAbOQEQbSM+0APM1VB1L6UQJSmnkBZjnhAkM9UQRR+60HDqVdAkItzQQ3YMEEVyJNAL+gaQUuFFUA1w9ZA1amtQNyjuEFz6OA/7BEGQVDThkB8JkJC9Rp2QbYmw0CMTR9C/26LQEpgnUEjsaJAB+eAQGVXSkCqJsNAJ7piPwbuC0D02UFB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYI+EZEAAAAAAkehlQAAAAMDSqWhAAAAA4DB8akAAAAAA6S1sQAAAAOA2ZGxAAAAAgDwgbkAAAADAcyNwQAAAAEDso3BAAAAAQM5CcUAAAABAw6hzQAAAAADXwnNAAAAAAJ3hdEAAAACAZRN1QAAAAMAgYnVAAAAAwKvJdUAAAACA7jF3QAAAAMDI83dAAAAAgDE0eEAAAAAAcZl4QAAAAEBfxXhAAAAAQL30eEAAAAAAi5h5QAAAAAA0FHpAAAAAQDDFekAAAAAAZ0d8QAAAAADiY3xAAAAAwIQvfUAAAACAEIx9QAAAAADqln1AAAAAQBIUfkAAAACARUp+QAAAAEDVZ35AAAAAQBjmfkAAAADAiPt+QAAAAAAnI39AAAAAgJgzf0AAAABAnFt/QAAAAMC+hX9AAAAAQLOUf0AAAAAAbdZ/QAAAAKAgAIBAAAAAIMMQgEAAAADA1COAQAAAAIADjIBAAAAAwEimgEAAAABAe/OBQAAAACDYV4JAAAAA4MqfgkAAAADgZ9KCQAAAAIBpKYNAAAAAwLI0g0AAAABAY3yDQAAAAKBxqYNAAAAAoM+7g0AAAACgBxuEQAAAAMCFI4RAAAAAAOZ3hEAAAACA0TCFQAAAAKCxN4VAAAAAYCadhUAAAAAgjOKFQAAAACCY7YVAAAAAIGj7hUAAAACg+yeGQAAAACD1LIZAAAAAQFpthkAAAAAghq2GQAAAAOBq54ZAAAAAIMsNh0AAAADgYhSHQAAAACD2I4dAAAAA4DVYh0AAAACgFl2HQAAAAKAKn4dAAAAAoN7ih0AAAACgbOyHQAAAAGB6NIhAAAAAIH28iEA= + NrgMGZxjYkA/KJil8iNpQOJgFSPMRGtAdmjQV5ECcUBxDmdlvrN0QA== - + - GNawQGkQlz8TlzNBoLMcQNMij0Bn7pVAaECVQP5aaED5waVAuJxWQDrfBUG4DJVAClGQQD4KAEB/qF1AwQv/QJFteEBIXihAnzauQPwDXUHYQExAkOUOQJeJFUBdhrFAXZgpQFlEb0D73w1AEZjwQW+GMUA65ORBbmSpQK19TkG8mPY//xyGQFZWp0CeViRC7X+4QaKFFUCkGQZBav+MQU1htUAgGmlAP5SnQB2pdkE6Sbw/fLy2QbGfFUB+EYhBcmKIQYlnBUDrMYtBgnDXQKw41EA/UE1AEw/iQDXtI0F0PWBBCt9DQNLCN0FClyFBPYRBQYDCy0G/9C5AnvmnQN8Hp0JLoYNByoY7QH+5U0BWAyJBT0uAQCD1g0HVxA5BRn40QUa7FUDxRkJChqA2QqiZA0Hufz9BG/C6QA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAAJpIakAAAAAA7MNwQAAAAMDd43BAAAAAQOx/c0AAAABg3cJzQAAAAADCrnRAAAAAgIwVeUAAAABAa2Z5QAAAAEBmYXpAAAAAwPJ8e0AAAACAUKN7QAAAAEDvKHxAAAAAgHeSfEAAAADA0qJ8QAAAAMAd53xAAAAAAHgmfUAAAABAHj59QAAAAMBH5n1AAAAAAFNIfkAAAABADqV+QAAAAMBZ9H5AAAAAwKUsf0AAAABAzYd/QAAAAAAipX9AAAAAQOHAf0AAAACg1p2AQAAAACADtIBAAAAAgFTTgEAAAACgbgiBQAAAACBUIoFAAAAAoIY/gUAAAACgwkeBQAAAAECpDIVAAAAAAN0shUAAAADAtzOFQAAAAKDnTIVAAAAAIFWfhkAAAACghrOGQAAAAGCvZIdAAAAA4HKFh0A= - - - - - - CCYDQIrQoUBo3c4/tIFZQA52tUD1o6k/xtCLQOYpqECMNVlAy8TPQIFgJUAKXNRA9Y0MQEI4KEBR5cZAlmr5QJ4FD0H+hJNAgoIYQbN++UDs0d1ALDOBQBld4EBqi1ZAITWSQG8EmUDSRPlAWjvCQI6OlUFlMyZB79R5QQgHcUH52ENAkIypP1CnaEFI12hAiS9TQYwra0EvsdNA3krhPw== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoKQlaUAAAACAaWFpQAAAAEDvQmpAAAAAIKzlakAAAACgrX5uQAAAACB+oW9AAAAAgNdOcUAAAAAggn9xQAAAAABIjHFAAAAAQP2hcUAAAABAPhRyQAAAAIDZg3JAAAAAwLzDckAAAAAAcHBzQAAAAEBeI3RAAAAAADm/dEAAAAAAgPZ0QAAAAEC5MnZAAAAAQI1YdkAAAADAbbF2QAAAAMDkEXdAAAAAQPFCeEAAAADAEXF4QAAAAEBHEnlAAAAAwOiPeUAAAADAm8V5QAAAAADA1XlAAAAAQNyAekAAAACAQ+l6QAAAAAANpXtAAAAAQKuue0AAAACARRN8QAAAAMAJL3xAAAAAQBrJfEAAAABADg5+QAAAAADUMX5AAAAAAIvlfkAAAACAwwR/QAAAAMDNVn9AAAAAgIZlf0AAAADAWHZ/QAAAAADqhH9AAAAAwNK6f0AAAABAkMR/QAAAAMA0GYBAAAAAQAtBgEAAAAAgJ7qAQAAAAGD6yYBAAAAAwDzhgEAAAADgse+AQAAAAODJEoFAAAAAQFopgUAAAABgWKSBQAAAAEBjvIFAAAAAQKDKgUAAAADgg/iBQAAAAABuAoJAAAAA4ERHgkAAAACgUmGCQAAAAMAWZ4JAAAAAgPS0gkAAAAAgOMyCQAAAAEBXZoRAAAAAILidhEAAAADAj8iEQAAAAKBK/IRAAAAA4BqEhUAAAAAgTsaFQAAAAGBX1IVAAAAAAOXbhUAAAAAgzzOGQAAAAEDgW4ZAAAAAIIhrhkAAAAAAQFuHQAAAAKAzmodAAAAAoMunh0A= + NrgMGZxjYkAbumJgJkNwQJEaXId5UnFAuNuj/idjeUCvyfTFKXR6QA4wqAPA031ABR75ysHkfkCWbyAhuHqDQNEfnbRhAoRA0U6L3g2Lh0Bgd+nTOZOIQA== - + - 9ks9QOGMqT9iN6RAj9eLQBDvqkCc/YBA3bTFQOrVPELcntVAwl60QF8nlkCsQwNAUrJqQR2rCkEeYvM/3D2dQGpoo0D/n9dAyUjLQLJcKEDEC49Ak0hPQGzQX0DQqdxB468vQbHL1UDTGwNAyc/NP/xk7EDQZAFBbrsFQWVFmEA2RihA02nIQDYVekDt2x5ARFfpQG/BnEACN4BBRyV2QOnF8z9L8cJABC2/QP7RuED/fYJBiybZQIvblEBa6qdAfzIaQduC4z/fXKhAZ3GXP2kQDEGJpJtBefBNQcagFUAyJ85AMho3QaCfCUG8FhBA1G6ZQWu2sED2MYFABt9TQHpsjEFnldlAoY7cQGh3FUGoj0xAA7q8Pw95tUAyCBhBNiyeQKRyb0Fy+MJA9AdXQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIGapYEAAAADg2GRhQAAAAID5CGVAAAAA4DJiZUAAAABANSBmQAAAAEBkp2ZAAAAAQNIjZ0AAAAAAl4RnQAAAAEDgQmhAAAAAgC3DaEAAAADAIuZqQAAAAMBKA2tAAAAAgA4HbEAAAADgwQdtQAAAACC0RW1AAAAAQFtlbUAAAACAzqhtQAAAAADSZm5AAAAAwEBHb0AAAABA23lvQAAAAOD4FHBAAAAAIGEgcEAAAAAAci9wQAAAAADZRXBAAAAAIOdlcEAAAADA3OJwQAAAAADNNXFAAAAAwIJCcUAAAADgBWBxQAAAAMAuGnJAAAAAQKVxckAAAAAgonxyQAAAAKDPo3JAAAAA4G/EckAAAABA29NyQAAAAOAX4XJAAAAAoA3yckAAAABgygJzQAAAAIDdIHNAAAAA4Mc9c0AAAADg4GlzQAAAAGDDc3NAAAAAYBvmc0AAAAAgEPlzQAAAAKCkCnRAAAAAQNAUdEAAAACAoCp0QAAAAKCUNHRAAAAAYJRDdEAAAABgglV0QAAAAECxZHRAAAAAYD+YdEAAAABga6Z0QAAAACA5xnRAAAAAQGfWdEAAAAAgduV0QAAAAIDHNHVAAAAAoHxhdUAAAADgo3F1QAAAAGAkgHVAAAAAoGOTdUAAAAAgdKJ1QAAAAIDlznVAAAAAAGPrdUAAAADAs/91QAAAAGDuD3ZAAAAAYIogdkAAAABgTFh2QAAAACAvenZAAAAAoFuQdkAAAAAAnJ52QAAAAMCusXZAAAAAwF3CdkAAAAAA4wl3QAAAAGCYJndAAAAAoJFDd0AAAADgglB3QAAAAOB7aHdAAAAA4NaSd0AAAAAgDK93QAAAAABT/XdAAAAAIOoVeEAAAABgZid4QAAAAOBZMnhAAAAAIMNEeEAAAACAP1J4QAAAACCFYnhAAAAA4FCieEAAAADgBMZ4QAAAAECA1HhAAAAAoGdBeUAAAADgEVR5QAAAAOBtYXlAAAAA4Mx9eUAAAAAAlox5QAAAAIBzpHlAAAAAoEq7eUAAAACAWMd5QAAAAKBd1nlAAAAAIKbieUAAAAAgdvN5QAAAAIDiGXpAAAAA4OU2ekAAAABgBH96QAAAAICri3pAAAAAoMRFfEAAAACgxQR9QAAAAEAnVn5AAAAA4FJjfkAAAABA/5R+QAAAAGB4iH9AAAAAQFGZf0AAAAAgUrd/QAAAAGDZxH9AAAAAYLkPgEAAAABgYyeAQAAAAECcOYBAAAAAYO1XgEAAAADgGGyAQAAAAIDAhoBAAAAAIJmNgEAAAABg1KqAQAAAAIB4zoBAAAAAIPv/gEAAAACAXTKBQAAAAAAZO4FAAAAAQFxEgUAAAACgFkqBQAAAAGCZVIFAAAAAYPSlgUAAAABgh7yBQAAAACAwy4FAAAAAYEHSgUAAAABAmN2BQAAAAOBO7IFAAAAAgDr3gUAAAABg4wuCQAAAAABoWoJAAAAAoBuJgkAAAABgrqKCQAAAAIB+woJAAAAAAIHOgkAAAACgFN2CQAAAAOC5+YJAAAAAAMApg0AAAABgg0uDQAAAAKB8jINAAAAAoAL8g0AAAACg/QCEQAAAAGAKI4RAAAAAgGdKhEAAAABgy1OEQAAAAMAaxYRAAAAA4HPQhEAAAABAfhmFQAAAAOA5U4VAAAAA4Ad8hUAAAABgGrOFQAAAAED544VAAAAA4EfrhUAAAAAgKxaGQAAAAGCQA4dAAAAAIGdah0AAAADAjmSHQAAAAOBSaodAAAAA4Dx6h0AAAACAtNaHQAAAAKBl9IdAAAAAgLWMiEAAAACgnpmIQA== + NrgMGZxjYkBX/v7hfVJwQACq+tzlYXBAO0xzspWCd0AaBZ21I4N4QFWnFYvTo39A/lIRhjuzf0Cd+sSt9WmDQA4BVeJ1aoRA - + - 6LTOPw0bqj/+lQxA/3QfQBH6vD8h1G5B5QmqP/yerECEzrw/2sThPyjQvkBaT+FBW5YxQCuHh0BGiHxAaN8eQC/5WEA877lBkVs0QGJ/4kDmDao/zyaqP9j7DEGjTBtB/lIDQu5Dv0FNrFZAQib1QLnQHkBanL1BwEAfQB4qQkCZpX5BBALsQOBApECM6YNAkvAMQV5lH0BvErVARtf5QNrrZUE7IphC4e+cQCJVN0KRgVtBg1TRP8g4zEB1Q69AvA+aQSmozUH+v1NAxwScQVrzS0Enl71AFazBQSfC4UDM2PpBVmCzQblwA0D/ORhCFOeUQcsvHEJyR0VB43cFQyNhnkAY/6tA0PuqQFiDT0FK/kVBHU2CQQIFhT/iJgdBgFeeQNKMhkJd10NAgJk/QXdXjkH82UBBHPs9QagZEEGzcndBKdlCQfsHtUB4LM8/wk3WQUEveUEyjBdBYtnQQWLJ2kDg2aFAm/EMQN3P9D87+AhCy/vEQXJ/LkII0IFBeKYIQ1bsNkFSigpBHaqQQCbRokHvoHJCT2kDQKQWOkJB9pxAuJ6YQcPF4EF23XVDpFvGQGIhkUCAbohBFkRFQJ14oUA6uTFBk+LdQNYTiEEyqfBAu+HiQGua3ECgaXRB6EDOQFBCOEGCtgpBDjxFQMBl0EHb7ShCCaWjQtZd8D9TbZ5A4YsxQXElokANl9JANUePQNinEUEK6ihBHvG6QNTSHEH47+ZAbyOtQUkxOkCAaUtAYospQm5evUCkCQNAKIe4QTx3tUBpQHJA4V9uQfaLjEEOwapA1QlFQ07jlEEy2UZBeiIFQWIOFkCSPURA6gBHQUC+h0DUUwxD5bvOQF9E9D8uV9dBUk+oQCsylUAohblAi9l7QJnHGEGQNfM/TAXDQPLIwUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwMh5bEAAAAAA4OBsQAAAAIC0g25AAAAAQGPUcEAAAADA/UZzQAAAAECylXNAAAAAgG4FdEAAAABAjhJ1QAAAAAAGZ3VAAAAAwAktdkAAAAAAvrB3QAAAAAD5YXlAAAAAwIrUeUAAAAAARkZ7QAAAAMDIVHtAAAAAQDXBe0AAAAAAMFN8QAAAAIBifHxAAAAAQBXNfEAAAACAHDd9QAAAAAC8tX1AAAAAABIOfkAAAABAhSx+QAAAAIAKrH5AAAAAQMpEf0AAAACA9G9/QAAAAEB96n9AAAAAIIYYgEAAAACAvyuAQAAAAOAeQYBAAAAAIHFSgEAAAACgspqAQAAAACBgo4BAAAAAQI60gEAAAABA6tOAQAAAAAA12oBAAAAAIK0ZgUAAAADAfUGBQAAAAEB1XYFAAAAAwNh5gUAAAAAgObCBQAAAAKACyoFAAAAAQAzegUAAAACgFwyCQAAAAMCsE4JAAAAAgNEdgkAAAADAfiuCQAAAACAWSoJAAAAAIAtigkAAAADAfnOCQAAAAEDVpoJAAAAAIM78gkAAAACgxgeDQAAAAGC1K4NAAAAAIHQ5g0AAAABgPWKDQAAAAIC7a4NAAAAA4Llxg0AAAABgY3mDQAAAAOBZnYNAAAAAwI2rg0AAAADgHdqDQAAAAKBi6INAAAAAANoXhEAAAABgsD2EQAAAAKBnW4RAAAAAQJ+QhEAAAACgOrqEQAAAAGClwYRAAAAAYDLKhEAAAAAgZc+EQAAAAIAU34RAAAAAYBPohEAAAADAjgCFQAAAAEBLCYVAAAAAAHbuhkAAAACANhmHQAAAAOCbIYdAAAAA4J5uh0AAAADgE5GHQAAAACBNtIdAAAAAAEzph0AAAADAJfmHQAAAAGCAMIhAAAAA4KY6iEAAAAAg85iIQAAAAMBJoYhAAAAA4PD3iEA= + NrgMGZxjYkA= - + - P6lUQJG4DEDdzaJAdLfDQGC23z+OelFB/+IdQOM1lUD9jLVAcZipP7Apq0DIOpVBY72yQU0WikGkDGo/E+KoQFRU9D/452BBJahNQE8tEEEAXqtA0liHQVLrJkGjh6o/puncQPBbg0BqlLFBE3KxP3XhAEFKBpo/b2VqQEqGJEGuAKdA0P9pQdaxTUDGf1xBEK2LQGQKkEDqjYZBgaGvQDXlCkBjCpRA34bzQb9Im0KLGKxB9pwYQCfaCkA44kdBzKIDQKdBHUB1/QxBl29VQPsdV0GrOyRBSzSYP4BpvkDaPhtBp+2zQIC6U0Hj9LNB+NjFQcRKhUFcv3hAcB8BQtTdW0EOzhRCPYItQW3hO0Gu+w1CNBgmQctoPEHA9AdCwoRzQXiDiEFE5qxBgFUxQWP9wkFOaqo/5LrsQSbkyUHjA0hBuswIQqdIY0AFx6lBVylCQeHIMUBG+JRB8VSgQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIFHic0AAAABAOL91QAAAAAAxNXdAAAAAwM5neUAAAAAAxnR6QAAAAEAwI3tAAAAAgITXfEAAAAAAqD5/QAAAAKAWA4BAAAAAgFQYgUAAAADgB6SBQAAAAMCO4YFAAAAAoH/shkAAAACg8/SGQAAAAAAsdIdAAAAA4BDTiEA= + KBZXds7jZUA= - + - RPHPPwmFA0CluhVBnbwXQI5c5EDZ8RVAuodIQQB/g0CqtaNAfs1UQEM3dEDD4phAY4rYQIydD0JRmf5A7LG0QA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQJn2ZUAAAACAFulmQAAAAEDQZGlAAAAAwBTraUAAAABAs6NvQAAAAEAp6G9AAAAA4BLRcEAAAADgJIJxQAAAAAAJE3JAAAAAwNYidEAAAAAAJ5F0QAAAAODln3RAAAAAwKwkdUAAAAAArI11QAAAAMBl5HVAAAAAwAzxdUAAAADAGgR2QAAAAMDVFHZAAAAAwNQzd0AAAADARIJ3QAAAAICepXdAAAAAgP9GeEAAAABAfV54QAAAAEA4fnhAAAAAgI8NeUAAAABAEGl6QAAAAEDKg3pAAAAAgKeXekAAAAAA2DR7QAAAAEByU3tAAAAAgNbue0AAAADApDJ8QAAAAEADT31AAAAAQPGTfUAAAADAXrF9QAAAAID44n1AAAAAwBMDfkAAAACAuTh+QAAAAIB3335AAAAAALQ8f0AAAADg+SWAQAAAACDMVoBAAAAAYDBugEAAAADgWY2AQAAAAIBHo4BAAAAA4PipgEAAAADgxseAQAAAAIBy8oBAAAAAYDgNgUAAAACgxhyBQAAAAKC1JoFAAAAAgH5sgUAAAAAgH4SBQAAAAECmi4FAAAAAID6ZgUAAAACgZK+BQAAAAMCgtYFAAAAAYMpAgkAAAADgXmOCQAAAACB4aoJAAAAAoP1ygkAAAABAMq6CQAAAAKAh4oNAAAAAoIRfhEAAAACghJSEQAAAAEAU+4RAAAAAgBWEhUAAAABA9wGGQAAAAGBhD4ZAAAAAQA5rhkAAAACgWK+GQAAAAKBotYZAAAAAQDslh0AAAAAADrOHQA== + NrgMGZxjYkByWoXuS4RpQInLvLYcpWpAW7ZEKKkyckDEwzqv5mN0QFsUIXwBRHlA5sw84GnUeUAEHvnKwWR9QC25/uesKoBA - + - QqHPP8k9lEDH7M8/2DMWQJYb4j8Z3QNA0wGMQKe7DUKLj+I/Fs1YQDZ8b0Gr60RA4HaBQK7TfEB028xA3o0fQBfeA0Dbh/M/gIDiP9vSTUBnEZZAoK6HQAXeUUEjEKRASC17QPeRp0BJaMJADmQPQRL02kCAy6o/7oLhP/7PA0DmqFZADsviQNxPaUAiGPlAdFCIQZrfzz9X8ZNAX/3PQOkXgkCE43FA1rGfQav00T+GFXtA5NYwQLT2L0GN4VFBP6DFQTq7O0Dz2ARBm0q5QEkRS0E6p8dA7WC6QCXvLEG6/C9BizNYQHbG8kGyoOpAfUSrQJdCi0E7hoJA/5s6Qd5IkEAJj+I/8AzyPyeytEBF3uI//SE5QY3rC0HuzxRANuEQQS3H2UA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4PEDaEAAAADg5wNqQAAAAAASQ2pAAAAAAENua0AAAACgu4FrQAAAACDbKmxAAAAAAABFbEAAAADAVWRtQAAAAACKZG5AAAAAoMSEbkAAAAAgdk1wQAAAAEBodHFAAAAA4PmxcUAAAADA7NRxQAAAACArsXJAAAAAAHm+ckAAAABgm9RyQAAAAIBO5nJAAAAAwB5Tc0AAAABAxKtzQAAAAABl0nNAAAAAwG10dEAAAACAMNJ0QAAAAIDfUnVAAAAAgNdGdkAAAAAA6TV3QAAAAICEcndAAAAAQPWDd0AAAAAA9CV4QAAAAAD38nhAAAAAgPTFeUAAAADAvdV5QAAAAAC6xXpAAAAAALvkekAAAAAA0vV6QAAAAIARJntAAAAAAD+ge0AAAAAAQzF8QAAAAABkdXxAAAAAgO2EfEAAAACApph8QAAAAAB+tXxAAAAAQGPCfEAAAACAgdV8QAAAAEAqZn1AAAAAQKPVfUAAAACAwuB9QAAAAIB5Pn5AAAAAwGeDfkAAAACAMON+QAAAAEAqOn9AAAAAgHRHf0AAAABAOnF/QAAAAADcr39AAAAAQNnPf0AAAADA8AGAQAAAACA4EoBAAAAAAN4ggEAAAAAAsU6AQAAAACCReIBAAAAAYBWGgEAAAAAgYouAQAAAACDQkoBAAAAAoIiigEAAAACgw6iAQAAAAKCcwIBAAAAAYGvTgEAAAADgBgOBQAAAAACdLoFAAAAAwJg9gUAAAABg/W2BQAAAACB2g4FAAAAA4MW2gUAAAACgscGBQAAAAGCPy4FAAAAAwNjwgUAAAAAgGBOCQAAAAGAfNYJAAAAAYHpAgkAAAADgClGCQAAAAIAkW4JAAAAAwMpjgkAAAACgqoGCQAAAAMB1loJAAAAA4JWigkAAAABgccOCQAAAACAGy4JAAAAA4G3ZgkAAAADg1d+CQAAAAMBQ5YJAAAAA4ELygkAAAAAApgCDQAAAACAsIYNAAAAAIK0ng0AAAADgNzODQAAAAOBBUYNAAAAAgNBZg0AAAABg4m6DQAAAAMBhg4NAAAAA4FqRg0AAAAAgm7ODQAAAACBsvINAAAAA4E3Og0AAAAAAdt+DQAAAACA06IRAAAAAwCgbhUAAAAAA2CmFQAAAAMBJeIVAAAAAINOThUAAAABgLa6FQAAAAKDBtYVAAAAA4LvLhUAAAAAAvvOFQAAAAOBoWoZAAAAAYDZhhkAAAACgCpKGQAAAAGDmHIdAAAAAgJJbh0AAAAAAYLKHQAAAAKAhuIdAAAAAAKUCiEAAAACgMwqIQAAAAODlTYhAAAAAYL+SiEAAAADg35qIQAAAACDPz4hA + NrgMGZxjYkDsFOgHcuJjQLGsbNnoEXFAQx3Og3xCcUCZcdKIFLN1QOxO5a6YMnhAXHhwXLrjfUB6pjHOcEN+QFY8v/3vKYJABP++diQqgkBWa60nnLKFQGgsiZOwwoZAg3FSzf3aiEDMWVOwPNuJQBZS9ghV44xAzIhB2uhjjUC8qmL5032QQAgmncAw1pBAOJqikO9JkkCEFd1XTKKSQNr7HuQrbpRANZfEzHWulEBaExb5gTKWQH+HlmqhspZADCp7B8i+l0CWCmk90kaYQL5A4BUOC5pAFiJgUigLmkCiVrMdRI+bQCqiI7oxp5tAhmyGJXoTnUDbIwsvW7OdQPA4TDCBz55AFZXkGqbbnkDSXiEI6VGgQJ0UD2fWaaBA9p9Bbvn/oEA= - + - 6nKPQJ0aB0ECHZg/PBCUQAgHFkDi8c1ACUfOP+o5+kCBLas/gIW0QNDErEASDLlAHzbUQrAMXkFPvWNB3FrVQCoM20IC6lZANio7QK86qz+zQDJAHpv0P6Jny0A40XJAsYLhQPZIgkE2sopAsgNqQMnY4T98e19BI2n1QCadyEB+BuFAzkPlQpVuhEHZdF1A3PqPQO8Pi0FWve5AzqgBQV3ANkH4PZpAsIk8QSbeTUDWCkpBlc+ZQGNQE0HLkgJBLzfBQc4kZ0AGljRCUb7EQcxOi0H4bqNAfgAiQRCZhEL8/iZBwNFNQXUYTkARZjNAOGAeQe7+00KylmpBGdY+QZ6/SEH2//tAAXfqQJt/REHxabZAs1BFQZ5zPEH06jxBhlKTQiU9p0Gw49tBXICqP/lUEkGK2otARJD0P6ad0UEuN6lBarU5QQi6XUCmTx9A2/LGQPjl+UJuAgBCXqIVQU/8K0FaEjJADiGZQX7CTEANF79Cnsi4QUZ9j0Bh3EZAAhEKQSO7d0HbsERAjFVbQWBc0kGw3XtAKtoKQXELHEHFWiZBdg8UQU0YFkBEtHlAjY4DQIcgSUFc9BBB8CHoQLeRikCErh1C8CtjQXFSrEAGS49AvWntQpQBOUDgP6hAyF4PQdDgMUHRTMxAscx2Qs5EG0F28epB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgJJFZUAAAAAAdUJnQAAAAADZ62hAAAAA4FEHaUAAAACAaMBqQAAAAKCGBm5AAAAA4PknbkAAAAAAAuVxQAAAAGA40XJAAAAAQGUQc0AAAAAALB1zQAAAAIARMnRAAAAAQCc7dkAAAAAABnh2QAAAAMA3U3hAAAAAgJOFeEAAAAAAmvZ4QAAAAEAwoXpAAAAAwPvSekAAAAAAY1t7QAAAAABAkXtAAAAAwFSde0AAAAAAVql8QAAAAIDO0HxAAAAAQCsNfUAAAAAAEEp9QAAAAEABYn1AAAAAgIxsfUAAAAAAktd9QAAAAAADHX5AAAAAwBxAfkAAAADAgp5+QAAAAAC7jn9AAAAAQE+mf0AAAABAwfN/QAAAAEBDL4BAAAAAoBRIgEAAAADgIFuAQAAAAOCUY4BAAAAAgHlpgEAAAAAAvHCAQAAAAOANe4BAAAAAoPuhgEAAAABgP6qAQAAAAGDItoBAAAAAYKHWgEAAAAAAoFiCQAAAAKBHZIJAAAAAYH7YgkAAAADg2gGDQAAAAOBvSoNAAAAAILR5g0AAAABg+F+EQAAAAGAQ/oRAAAAAAJkkhUAAAADgJbGFQAAAAKAD/IVAAAAAILQ7hkAAAACAs0SGQAAAAMC1YYZAAAAAwLOAhkAAAABgDZ+GQAAAAKBurIZAAAAA4PKyhkAAAADgh62HQAAAAMDd04dAAAAAAMpkiEAAAADgEtGIQA== + NrgMGZxjYkCwLijacuRqQOJgFSPMRGtAH3KoplGjc0A5Cx9LftNzQHXGrKvpE3hAOWn7ntbkekA= - + - IOHlQEBH4j/JqPQ/y370PxpxH0Dk9gVBcGO9PzDIDECkT31Au3PwQFtIK0FPAedAKbcMQE3VGEGiCTtAyK+CQNJUCUHCjL0/UDyoQEtHSUHCF/hAizT3P4KYD0E/BURAY/fCQGJfOUBUaGJBKzuAQU4eRkFGxZlAUL6MQQbI8UALxM1AwR+VQPdDh0CdaPhAC3GOQYMwakDyOBVBGx+pQENRi0BdLApALHQpQOznOEF1dapAqwthQK7Buj+cnUhB+f2OQeV1zz8t1ChB/cGvQI10pEGyc85Arvz6QHA7yEDovzpAELRvQJ/I9j/ucZ5BaiuyQGEiLEE8tEhBTF3lQQPvCUE/58JA2z3TQJMsvD8= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAALIaZUAAAADAYOVlQAAAAABSImdAAAAAIHhpaEAAAAAAKClpQAAAAABghWpAAAAAgOylakAAAACA4+VqQAAAAICRzGtAAAAAwFUfbEAAAADg80dsQAAAAID55W9AAAAAoA84cEAAAABApgNxQAAAAAA3VHFAAAAAQOcAckAAAABAIRRyQAAAAIAfJXJAAAAAgBwzckAAAABAA5hyQAAAAAAJxHJAAAAAwN9Cc0AAAAAA6KNzQAAAAIAI1HRAAAAAQLkBdUAAAAAAYSV2QAAAAMAwQXZAAAAAQPpkdkAAAACAqNR2QAAAAIBWKHdAAAAAwBQ0d0AAAADAsUN4QAAAAIBfVHhAAAAAAK9+eEAAAADA5I95QAAAAADqL3pAAAAAQBClekAAAABA4Md6QAAAAIA6UXtAAAAAAEL4e0AAAAAAiH58QAAAAMCL+nxAAAAAgAUOfUAAAADAUKV9QAAAAMBxv31AAAAAwMrPfUAAAAAAUvN9QAAAAMDTH35AAAAAQIdOfkAAAAAAzX1+QAAAAEBAkn5AAAAAwMqcfkAAAADA3Lx+QAAAAEBo4X5AAAAAQLkef0AAAADAKi5/QAAAAIDJU39AAAAAwMyBf0AAAAAA041/QAAAAEBcq39AAAAAwPTRf0AAAADA8v5/QAAAAGCKGIBAAAAAANwogEAAAAAgeKKAQAAAAOAQsIBAAAAA4Ia5gEAAAABg28qAQAAAAMDH5oBAAAAAYKbvgEAAAAAAVgCBQAAAAKA3G4FAAAAA4MQggUAAAADAAzOBQAAAACC42oFAAAAAwHVRgkAAAACgcGKCQAAAAMDbaoJAAAAAABNEg0AAAADgS0qDQAAAACDre4NAAAAAIBmJg0AAAAAgQ6CDQAAAAKCj1oNAAAAA4JIzhEAAAABgmUWEQAAAAKCCaIRAAAAAYO7HhEAAAAAAaEKFQAAAAIAxkoVAAAAAQAishUAAAABgINuFQAAAAGBm44VAAAAAwMVDhkAAAABgiUqGQAAAAKAmbYZAAAAAIHyhhkAAAABgEcOGQAAAAKBU0YZAAAAAYI0Rh0AAAACg9VyHQAAAAOAHYodAAAAA4Jmsh0AAAABg5vCHQAAAAEBO+IdAAAAAYHFziEAAAACgC6uIQA== + NrgMGZxjYkCJy7y2HKVqQFf+/uF9UnBAGrpiYCbDcUDLo7/RbVN4QFVc2zXW43hAcq2XIC50fEDLAZwlxmR/QHQpLAiPeoFAuQU6OsPCgUCSeujy5gqFQHNYGjI7w4VAvaRq9TJDh0CRqdYck1OJQCHSNBK/W4pA - + - DB2jQDF/lEE9QKo/nvrJQLRuoUApgB9AI3lpQLGmTUA9iopAuidUQWS2qj9WSh9AOVBWQFLIikFecuA/ZRsmQATx/UI50IdAjjmqP9LCMkCcWQ9BhHgUQCGmTUBJPoZA5lobQp0oi0B3tOJAvmc4QG7Kz0CzVDJAEnteQO4WFUOC+ntAyyLoQHqvI0H/xJNBs5/sQHRlQkHECWJB2O29QMPXW0HtxgdBtjgkQc+jH0GImBFBoeLAQO9f2UBiooJA+NQxQFmlckD5rzBBrmKBQEsqhkEdvvNAN7fpQT8yvkAl+ndCjif7QBTwaEBEhAFBuowBQXOsLkEEG8ZACVMbQe1jhEBjkZ1ApL9NQLCJJUEsESVBjTfcQHMoK0GhQ4pBHb3mQp13h0GX04pAEcLQP5jqFEI1nzpAREPiP7JMNEFMoIJAforuP5H4hEHQ7kxCzpxyQNQ/REB6kpFBPUnWQErcwUBK5iFBFO8fQNd+2EHGur1BCodOQLlNEUHD5ANCcPwVQUZ2r0D+PpxBfX/PPwLZHkKSxrNC9AknQTDREkI5pgJCp4ZeQOT5OEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYLdhcEAAAACA2ANzQAAAAKBB93NAAAAAYPiidEAAAAAgXAB1QAAAAAAudXVAAAAAQAnfdUAAAAAgRSR2QAAAAOCriHZAAAAAQO7QdkAAAADAzDV3QAAAAACbVHdAAAAAQD9VeEAAAAAA8JF4QAAAAGD6Q3lAAAAAwEJUeUAAAAAAAGV5QAAAAID2cnlAAAAAADElekAAAAAA0ad6QAAAAAAws35AAAAAgG5Tf0AAAADA8iCAQAAAAABbOYBAAAAAgHmBgEAAAACAAcqAQAAAACDiAIFAAAAAgAYogUAAAACgRqqBQAAAAABbs4FAAAAAoGkxgkAAAACgz7qCQAAAAODoHYNAAAAAgC1Bg0AAAAAgIVWDQAAAAOBKs4NAAAAA4JN9hEAAAADAUoqEQAAAAKBPuoRAAAAAoJPQhEAAAACgIxCFQAAAAMC3coVAAAAAwDmbhUAAAABA3aqFQAAAAABwGIZAAAAAIHMzhkAAAAAgFmSGQAAAAIANoYZAAAAAIITshkAAAAAAM3OHQAAAAADOPIhAAAAAoF2SiEA= + KBZXds7jZUD1hHOUyCJpQNzlv3T/InFAooOBwRKidEADpwfsrTN5QGneFfsq03pAWfsL8UWkfUA= - + - WACiQHmpdEBygeE/jpNNQAwrqj+KAfU/VUr0P3JY9D+s6ohBbX8cQS8X+UCqueE/YQO3QDScKEB1hDtAIt5WQIxX4j+Y++FAxIJgQJcVFUAuEx9A9jmvQEdWVEBWt/FASiGVQJBDO0B+f5NA5B/CP2UT00Aw/2tAOAzQQBwOQEFce+BA1GkoQJAdh0BEKn1AmKq8P0rL/0D2cqFAFdwpQfM/rEADBnhBaVppQOthlECRHkRAOpspQH+YTUDuVM8/SqThP7VObkHNNgVBHU55QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIHSRakAAAACgUkdsQAAAAAB7EnJAAAAAIEowckAAAAAAKW1yQAAAAMB1pHJAAAAAgMPSckAAAADAAGVzQAAAAMDNjndAAAAAAMtUeEAAAACARe94QAAAAADD+nhAAAAAwP4meUAAAAAAJlJ5QAAAAABbxHlAAAAAAAISekAAAABAbSR6QAAAAMAZk3pAAAAAgOzUekAAAABAZeN6QAAAAECY83pAAAAAwGRAe0AAAAAAplV7QAAAAADmx3tAAAAAQJBmfEAAAACAL3V8QAAAAADa/3xAAAAAQEiEfUAAAADAVuh+QAAAAIDvRX9AAAAAwMNbf0AAAAAARIGAQAAAAMB8iYBAAAAAIASUgEAAAABg+PmAQAAAAACnWYFAAAAAgK9hgUAAAACgK6eBQAAAAKB+y4FAAAAA4M7SgUAAAACg2tuBQAAAAOCn+IFAAAAAoOpyg0AAAACgyZGDQAAAAAAy6oNAAAAAoCpxhEAAAAAA2jOFQAAAAEBhW4VAAAAAgE57hUAAAAAgtZaFQAAAAMCatoVAAAAAQPbfhUAAAABAHcuGQAAAACCsCIdAAAAAwARbh0AAAACAJoyHQAAAAGCtkodAAAAAIE9ziEA= + NrgMGZxjYkDiYBUjzERrQMRlXluOUnBAOQsfS37TdkBM7E+pf+N4QGDMZsIs5H5AnexdSKVTf0BdbNgGeJqCQHf2tXPl4YJAXZvGMCQjhkAxSZZrXeKGQFpJHTtwGopA8HtqbHsrikCHT8Lg0UKNQB2CDxLdU41AGFRDeRP7j0DB12yXNDaQQL7ABsvPiZFA11o/amXKkUAIsdho+42TQCFLEQiRzpNAHzSrOywilUDTYXYW11qVQNFKEEpyrpZAHOS24ve2lkDozeIco0KYQDNnibUoS5hAR+dMHTLnmUAyvrS6zkaaQKQQPRlu55tAstWrzyQLnEC4kACBd4OdQMlYfqJVn51AzBDE6IAfn0ATSVBAgaOfQDc5IJ7eoaBA4q9ap+P3oEBtOvun9oWhQJDEUqUByKFA - + - K1KKQF/DVkDyXpdAEFbPP3umYEDBCmdAvpxIQYLsoUAsvkRArbQeQCcJ9D+FEohACZ+CQKwoaUAMrhxBL9EcQJxkzkAZpZNAn7BJQb2oA0KXwyxBGH+3QU/xe0DB+ClAJOCRQLk5rT9tna1AbQ/sQOxJzz+DVCZA5rjEQb9OFkDi7vFBBgy9P09ihECDUFBBk9LOP+Y4aUGR3yVBeOCfQeh06kBEB70/k47+QJD78kBsoHJAEeq5QQCtzEBiOB5AdNddQUt/sEFrjItB7fjzQLGSvUDOxj5BmNL/QHcmX0JeMr0/xDyeQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwCmVa0AAAADAFMZtQAAAACDTP25AAAAAQN1FcUAAAADAy69xQAAAAODs03FAAAAAwN9BdkAAAADAlPh2QAAAAECgs3dAAAAAgKbAd0AAAACA8rJ4QAAAAIBFVnlAAAAAQDLSeUAAAAAAT/Z6QAAAAEB8lntAAAAAgFrke0AAAABAaSJ8QAAAAIBu0nxAAAAAwM4BfUAAAADA+mJ9QAAAAAAthH1AAAAAAD7+fUAAAADAiql/QAAAAIDowH9AAAAAoFI6gEAAAACAoluAQAAAAKDMaYBAAAAAoLKvgEAAAACgxsaAQAAAAEBX3oBAAAAAoA3vgEAAAABg4iCBQAAAAACRKYFAAAAAgKougUAAAADggUKBQAAAAMCXjIJAAAAAILzBgkAAAACAC0aDQAAAAKAUTINAAAAA4MLBg0AAAACgIdmDQAAAAECFSIRAAAAAwKqThEAAAADANR2FQAAAAACJjoZAAAAAwOrXhkAAAADgihqHQAAAAOCeXYdAAAAAoGi0h0AAAABgHhuIQA== + NrgMGZxjYkCmvpxNHCRnQBu6YmAmQ3BA4rYaRuaicUAACNcwPjN1QBsYP7R+VHdAdiSJ/0GlfUDHYmtqVmR+QI7btzd3aoFAnr+OHC3rgUCsLHQiz/qEQFgSbxSl64VArFtiTHuDiEBP8e5C3IOJQKM64nqyG4xAbUKrLTQUjUCjadCkXqSPQLa4zCtwTpBAYF3GR1uakUAyqAzDixqSQNxMBt92ZpNAsr8D2OHek0A5dvbasmaVQEHoYc0Np5VAV/2izjPDlkDrjFvp+PKWQAIQLrwph5hACRQI3XkPmUBQKLfXj/OZQIInJdF/S5pAND6K38V3m0ACPxzm1Q+cQLRVgfQbPJ1A - + - yUkDQF1zmT+3eoU/NO6YQMqH4UAp25lAihE7QJyCuUDwKLtAFNgVQAPW40B/OGhAopNMQH1guEDe7FZAtrrfQdqMKEAnLCtAhnenQE9tFUH552VBz7XhP7Yvd0GPtIhAmYqCQNTukEFPRoNAsPj7QL7FSEGwz1BBEjRSQe40kkBdI95Avu/ZQPTzwUBearxAa6m4QJBVVUL7HCpBGKYCQAiCkUAos81Bo74HQX8PFEFMp7tAqmlCQXvhEUDY9Lw/FNv5QN8FxUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQEXhYUAAAAAA8mJiQAAAAECMoWJAAAAAwNeAZUAAAABgUcJmQAAAAEB/JmdAAAAAoGnBaEAAAABAt9hoQAAAAMDPJmlAAAAAgJSmaUAAAAAgyx9qQAAAAMA2RWpAAAAAAPGnakAAAAAA/sFqQAAAAEDv3GpAAAAAABYBa0AAAAAgaGRrQAAAAEAKomtAAAAAgHAdbEAAAAAAN4VtQAAAAGCmxG1AAAAAQNbgbUAAAADgAEBuQAAAAIAJqm5AAAAAwGSJb0AAAABAtLZvQAAAAIDD3W9AAAAAoJY0cEAAAADgbnFwQAAAAGAfQnFAAAAAACFmcUAAAACAz45xQAAAAECPo3FAAAAAwLHDcUAAAABgeeZxQAAAAIDEMHJAAAAA4GRBckAAAADAeaJyQAAAAAD5H3NAAAAAQE9Rc0AAAAAgJH9zQAAAAIDapXNAAAAAAFG5c0AAAACA0OBzQAAAAMAyBHRAAAAAAJdIdEAAAADA3LN0QAAAAGBR1HRAAAAAoCPfdEAAAAAg6fF0QAAAAMDXFXVAAAAAgAZgdUAAAAAAJH51QAAAAGB0s3VAAAAA4PT/dUAAAADgFw52QAAAAMCeJHZAAAAAgFhFdkAAAACAab92QAAAAAD/5XZAAAAA4MfydkAAAACASQx3QAAAAED7HndAAAAAQPMyd0AAAAAA4U13QAAAAMCKbndAAAAAwMTPd0AAAABg2+F3QAAAAGC/63dAAAAAIFD2d0AAAADggw14QAAAAGB8YnhAAAAA4NN4eEAAAABg4JZ4QAAAACAA03hAAAAAINbpeEAAAADgP/Z4QAAAACBLDHlAAAAAQGVFeUAAAAAA0JR5QAAAAKBwoHlAAAAAwKPceUAAAAAgk+15QAAAAAD3E3pAAAAA4LszekAAAABAPD56QAAAAGAGS3pAAAAAYFlzekAAAABgO4Z6QAAAAKAfmHpAAAAAYEP2ekAAAADA9BV7QAAAAADQM3tAAAAAwCNAe0AAAABAk1V7QAAAAOBTZXtAAAAAYN+we0AAAADAl8d7QAAAAOD51XtAAAAAgK8lfEAAAADAbE98QAAAACCsYHxAAAAAoG5/fEAAAAAAsKx8QAAAAKASz3xAAAAAQNfifEAAAADgBfN8QAAAACCjA31AAAAAYEEWfUAAAABgCCR9QAAAAKCAMH1AAAAAwMY8fUAAAACg8PB/QAAAAMC6Y4BAAAAA4O94gEAAAACgDZGAQAAAAEAn9IBAAAAAANecgUAAAAAAabSBQAAAAKAE64FAAAAAIAUdgkAAAABgCayCQAAAAADluoJAAAAA4HP/gkAAAADAMyuDQAAAAKA6a4NAAAAAwKZxg0AAAABgoXaDQAAAAADJgYNAAAAA4CKJg0AAAABgZKODQAAAAGCw6oNAAAAAoDT9g0AAAACgVwuEQAAAAGCZHIRAAAAAAHNGhEAAAACg736EQAAAAKAXl4RAAAAAIOq7hEAAAADgtcaEQAAAAACS/IRAAAAAIHo4hUAAAABgL0qFQAAAAGAnnYVAAAAAIE/ThUAAAAAApPKFQAAAAOC434ZAAAAA4MjphkAAAABA1lCHQAAAAECsc4dAAAAAYM66h0AAAAAAd+SHQAAAAOBf9IdAAAAAYI5biEAAAABAnXKIQAAAACBJfIhAAAAAoPaqiEAAAAAA4MqIQAAAAAAQ+ohA + NrgMGZxjYkBeG3g88qJrQFf+/uF9UnBAdmjQV5ECdEAaBZ21I4N4QAp4Yr2UM35A4V8x7zu0fkCBtBmQXxKCQJgcVZohIoNAErmaKKHKhEDDRtecbVqFQBLoiFJNU4hAw3XFxhnjiEB061c8oGuMQCajj+Ole41AnxXaPuyjjkBRzRHm8bOPQIEh0i08npFAWWjwZyLmkUABOclCkmKTQNl/53x4qpNAF04KRLh+lEAiAihJmQaVQGuEaBW6YpZAYT7c4eOClkAdm80jAO+XQEbCQLskD5lAzhy1mCn7mUD42KXJapuaQD/tVMSAf5tAXUUTjlXDm0A= - + - I6YTQLR9nkBfWpBAVJQoQH0flkDhjm1Bo7lDQGxm9D+sCy9BGuccQGbwiEAqt9NAtpdhQbTvFUGVzv9AWkWUQD9R0EB8dQNAZyHiP1KlFkCG5xdBx2j0PxDIM0BRlMxAwy8oQBiDvD+lWDZBrjTLQJ3rt0CsYyNBfGSbQEtylEFPcyhAqn1HQSqWrT/zJERAY3yNQFFNDUAVGxVBzEEeQb/lXUA6aqJAsoiuQDyyVkDgy7dA7yOPQCB8FkH0WPlAZG0DQMGc2UCtIXBAXtwzQTa7XED2xSRB9p1vQdpUr0G05RxAhm0WQNYaokCKzZxAolpgQOOlKEB337w/0SE7QB9Fzz8pGtA/DEOPQJJzWUEoQ49ADZbiQJgW4ECtEdA/ciUpQhuTw0AUUB9A9lStQNDYSkHzkihAEK7mQFOdJkDUgThA9HyqP7buzUGQ/LJAoxK5QKnQe0CuJwZBzpeoQVOb0EBwCbNAWW8DQCskAkFy0pxBzkiHQVxyv0GO/oJACSgTQWyse0F5vQBAkuSXP5hrlkISjDFBtV6XP6cyCkF0oIRCvsAEQqBsy0Bk2LBBUzHqQXiWAkD3ppRB7Ft+QcSmSEHQIANBw2coQGmm9D8ufhRBAKtCQTzVjELs8KpAAcFKQSVLa0FDXvQ/b6mCQDkai0K8jyhAvjXQQI/qyUBp8rJBLBk0QfY0s0Do9ilBWhkCQk1uREA55ItAv17MQUpY0kESsANBNKrQQEbinUHVJABBIsO1QUrcIUGOWp5AGeMkQekst0Dv96JBoww6QPtTREBo9MFA6uzoQCdJNUEuoPM/yNd7QPtPlkKdJjJBObeXP/LGvD9H85BA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAID0pZ0AAAACATUdqQAAAAMB4imxAAAAAwDKhb0AAAABAHwVxQAAAAODLsnFAAAAAwPbAcUAAAABAhtZyQAAAAIDyYnRAAAAAgJMhdUAAAACAPW51QAAAAAD+EnZAAAAAgJphdkAAAADAAYN2QAAAAACYQXdAAAAAwFSzd0AAAADAaPd3QAAAAMDQSHhAAAAAQJFueUAAAAAAnsJ5QAAAAEDEt3pAAAAAQAoGe0AAAACAtxZ7QAAAAMASJHtAAAAAwPlke0AAAABA2aF7QAAAAMDdAXxAAAAAwAPDfEAAAABAmgh9QAAAAEBEQH1AAAAAQNxPfUAAAABAcmF9QAAAAIC4gH1AAAAAAB20fUAAAADAYdh9QAAAAIAyBX5AAAAAQL2FfkAAAABA2cF+QAAAAMBO2H5AAAAAQLoTf0AAAAAAuyJ/QAAAAMBnM39AAAAAAEWLf0AAAADA9Jx/QAAAAEBmrn9AAAAAAKjFf0AAAADABOF/QAAAAOCHAYBAAAAAoLUGgEAAAABgsBqAQAAAAICmI4BAAAAAwJkwgEAAAADgBzqAQAAAAGDVRoBAAAAAYGtXgEAAAACgsmeAQAAAAGDhb4BAAAAAIFKHgEAAAADgD6qAQAAAACC7wIBAAAAAYAfHgEAAAADgc/WAQAAAAOAoAYFAAAAAwHA3gUAAAADgE2+BQAAAAIBje4FAAAAAwP+BgUAAAAAAc5qBQAAAAMDVvIFAAAAAIMPDgUAAAACgvNOBQAAAAIBk5IFAAAAAQDvrgUAAAACgAwqCQAAAAODgE4JAAAAAAJn5g0AAAACgE4qEQAAAAEClCIVAAAAAgIpDhUAAAACATZGFQAAAACDSzIZAAAAAIHRQh0AAAABAnGSHQAAAAMCRf4dAAAAA4L6rh0AAAAAAnpeIQAAAAACvnYhAAAAAQMe5iEAAAADgw8GIQA== + EnhTK8ihZUAoFld2zuNlQG+XdYaqQnFAzMJH6YkBc0Bv9VHaAlR4QMwgJD3iEnpAyj1cO/0hgEAaKPOJjcKAQPVn3j1JWoJAqVBRf7mKgkDHoQ1qERuGQL9vp/DKcodAVsprXz3jh0BOmAXm9jqJQGzpwdBOy4xAINI0Er/7jED7ESDGepOOQEv8thQLNI9A15TAmEsmkUCvH3VxA5aRQFest62h6pJALzdshllak0BGuj5Ziu6UQAgunyLL9pRAT0JOHeHalUA= - + - BnpUQPFZREAfFDRA7Mz0QLrQA0BjkuE/L9c4QdrO1EDbOztAWvMxQH8Ho0Cfjc8/c7fPP5KZA0Ab8wxA47sTQPgbzz9nspNAzqYEQIktBEFtsE1ABg0EQbyffEBboElBkoDwQFiVCEHKmoFBxji/P3ZwXkAfczFAQDpXQKljFEElHI9AN0a0QD+a20BIFBlBuHpUQfo1sUDsn6NAUr5yQJewq0DMUcNB8jEPQU0UO0Bek99Aj+8yQJzMHUEbfQdBc8MoQTn0kkGkinlAr+GHQdyH4kBiJOVB/3KXQbeGHEFs7Jc/WE4fQk68IUKZGrtBJPKiQfbQPULnrotBenwaQeJ13kDeC3hBFcq4QCbtvUFiuBBBkh0UQMZgWUHNsxpC8HubQBmFI0EpK6BBBDcfQPyijEBqBdpAP5FSQcglMkDMM6xAuwZrQB4hYUBgAQtBzCFrQSh/ckHIduE/86qnQFbMtEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAIvkZkAAAADApiBpQAAAAEBZZ2lAAAAAIDh7aUAAAAAg2SRqQAAAAGB3pmpAAAAAQNwmbEAAAADAIT5sQAAAAMDbu2xAAAAAIKFCb0AAAAAAZ5FxQAAAAEDw43FAAAAAwOm9ckAAAACAW9VyQAAAAEA9CXNAAAAAwMtyc0AAAACAW9FzQAAAAADcMXRAAAAAwBSidEAAAAAAXAN1QAAAAEB4QHVAAAAAwK6udUAAAACAw9R1QAAAAADENndAAAAAQGtsd0AAAADAwYF3QAAAAEBAGHhAAAAAAKizeEAAAAAABcJ5QAAAAICp/3lAAAAAAFJGekAAAADAJVx6QAAAAIAKgnpAAAAAgEi5ekAAAABAquF6QAAAAMBHEHtAAAAAgBdTe0AAAAAA7Gx7QAAAAICVhHtAAAAAAEKPfEAAAABAJzJ9QAAAAAAjQn1AAAAAgONhfUAAAAAACG19QAAAAMAl9X1AAAAAgHdAfkAAAABANdp+QAAAAEAU9n5AAAAAgFu0f0AAAAAA9/B/QAAAAMAJEIBAAAAAwJkZgEAAAACgnFmAQAAAAMCnYIBAAAAA4PVqgEAAAABAnXGAQAAAAOD4ioBAAAAA4B62gEAAAABAKMKAQAAAAOCk2IBAAAAAgDt5gUAAAABAXQGCQAAAAIBBj4JAAAAAYIbCgkAAAADgC+CCQAAAACANBYRAAAAAQJoShEAAAABgUoWEQAAAAABTBoVAAAAAIH0yhUAAAAAgclOFQAAAAKBNooVAAAAAIC2qhUAAAAAA0/6FQAAAAMD5SoZAAAAA4KRnhkAAAACg4JaGQAAAAKDAm4ZAAAAAIJCuhkAAAABAsNCGQAAAAICJ7IZAAAAAQFcfh0AAAAAg+VuHQAAAAACm7IdAAAAAwAX4h0AAAADgjguIQA== + NrgMGZxjYkAbumJgJkNwQOzIyX7kUXFA7Cam0jxjeEDiFPeZPnR5QA== - + - +g2YP66VmECYjJBAwC29P5gDI0Fq/lJBkyPCQBSczz8tVgFArLhpQPSh2UBWdA9AFJYDQOAtz0H/OvBA56ofQAxss0AhvoZAR2yBQG3HZUEAVDlAghJ7QOkJXkAEF1BAMMVyQIUoMUJIhjlBtSQWQCprwkCKnao/MGgMQYiQFUHQyMZAkA+gQA4qvEGReYVB4w65QHhqnkDi9zVB8pkvQTCN0UDXi/Q/emiJQb1Qh0BrRTJAZ0PAQcpmpkBjhF1AVYoaQUB+QEEYTkVAM5ODQQQBIEK82ZZBb9WZQZ4zokCl7JpCBRUGQg+rp0ChNMFBO5vnQMhKm0BwfwlCyTSRQkVp+ED+4VhBG0S8QZd/qEDA7bw//yUWQENCTkBD2eNA1krIQVETL0FUDGBAbjjMQdNfrECQvDpBXbDLQFtjV0DB2HJAFxFCQZ8QP0LuqHxAs6v2QJRlq0E= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYDjobUAAAADAOwlvQAAAAECbn29AAAAA4HiCcEAAAAAguAhxQAAAAKAQJHNAAAAAIOR0c0AAAADA049zQAAAAAATUXRAAAAAAAiddEAAAADApTF1QAAAAICNQHVAAAAAwEO+dUAAAABAX3F2QAAAAMA5m3ZAAAAAwFuldkAAAADgebB2QAAAAABQwXZAAAAAABjVdkAAAAAAwud2QAAAAMBpH3dAAAAAYArAd0AAAAAAfRF4QAAAAEDxLnhAAAAAQI5GeEAAAABAv+F4QAAAAMDVA3lAAAAAQMlBeUAAAABAEVR5QAAAAEDW03lAAAAAgFcsekAAAABA4WJ6QAAAAMAUk3pAAAAAAD0Fe0AAAADABkR7QAAAAMC/Z3tAAAAAgNGBe0AAAAAADaZ7QAAAAICuuXtAAAAAgAUzfEAAAABAyE18QAAAAAD7hnxAAAAAAGyofEAAAADASMx8QAAAAMDmAn1AAAAAwF0bfUAAAADA1mN9QAAAAMAypn1AAAAAwMXVfUAAAADA8fR9QAAAAIAlBX5AAAAAQByefkAAAAAAscV+QAAAAEBj9X5AAAAAwK/Uf0AAAADAfeV/QAAAAADb739AAAAAoGUCgEAAAABgNyOAQAAAAEAOP4BAAAAA4FJZgEAAAADAhHGAQAAAAGBWmoBAAAAAwJnRgEAAAADgJuuAQAAAAIDa94BAAAAA4BAKgUAAAAAAW1OBQAAAAMAbaIFAAAAAAAV+gUAAAADAGoiBQAAAACBcw4FAAAAAAOrpgUAAAABgzu6BQAAAACAjAoJAAAAAQL8HgkAAAABgEBCCQAAAAOBLG4JAAAAAoEkzgkAAAAAAz0OCQAAAAODcSYJAAAAA4NdigkAAAABg84uCQAAAAGDhk4JAAAAAYDqagkAAAACgu6aCQAAAAABXtYJAAAAAYE68gkAAAABgStuCQAAAAMAD4oJAAAAAIKbogkAAAAAgZf2CQAAAAED9BYNAAAAAAP0Kg0AAAAAg+xKDQAAAAMByKYNAAAAAgKYug0AAAAAgkUGDQAAAAODQS4NAAAAA4Ntng0AAAAAAe6WDQAAAAOCasoNAAAAAAA3Ng0AAAAAghNODQAAAAEDa44NAAAAAoBPyg0AAAABA7f+DQAAAAICLBoRAAAAAIIkOhEAAAABgVhqEQAAAAGCeOYRAAAAAIDpPhEAAAAAg6leEQAAAAKDAY4RAAAAAQPifhEAAAACgiKiEQAAAAID6v4RAAAAAgHbKhEAAAACg9OyEQAAAAKDYDIVAAAAAwNIWhUAAAACg2DiFQAAAACDRWYVAAAAAYLFphUAAAAAAWHyFQAAAACArjYVAAAAAgMKahUAAAABgwKWFQAAAAODkwYVAAAAAQIPahUAAAADgUuaFQAAAAOD264VAAAAAIIsBhkAAAABgTAiGQAAAAICyHYZAAAAAwJw8hkAAAACgT0iGQAAAAEDeToZAAAAAAB95hkAAAABAxomGQAAAAEDhu4ZAAAAAoFDqhkAAAAAgVweHQAAAACDIGYdAAAAA4GAjh0AAAADgVi6HQAAAAEAaZIdAAAAAYEpuh0AAAABgIIGHQAAAAKACnIdAAAAAQKekh0AAAABgnquHQAAAAKBZs4dAAAAAYFi8h0AAAAAgUMKHQAAAAMAI1YdAAAAA4AoIiEAAAADg3iOIQAAAAKDkMIhAAAAAIGNLiEAAAADAZ3KIQAAAAMCMgIhAAAAAgAiUiEAAAABgJKOIQAAAAEAgqIhAAAAA4Cu4iEAAAACgsMOIQAAAAADB04hAAAAA4L7riEAAAAAg5/mIQA== + KBZXds7jZUA/KJil8iNpQBTpB48/A3JA - + - 7NGYP/cMDUD8gpVA15SbPyppiEBB36lAxhz6QC7P8z/bvBZASaZLQMwbjEC2NpRAp2l0QbmL8z/lixdBKlcYQd+xQkBIVRhBVs07QMnckEB3sx9BEln2QG4oTkDhrc9AUYNPQOBKG0HwhMhAtYRuQZVtDUAMF2tA7BFOQC5Fc0Bn1EdB7oTQP5jQoEDHDcBAtoVVQO9jKUB+BilB5uUEQV1x1UBoSPtAGWbQQHiW8EBwTIY/JdsDQTbNrT+RqkRAzOBFQS7W6kHJT6tAF8J9QcpUV0CGF6pAvT3CQLrRoECroVhAvpsVQECYBkEePnBAmyyNQG4nhEH8soRB7oCwQMdlAUIQWMhB7Zk7QATOIEDnOjZBTTXoQMqKqz91fLxAE/MKQeRlEkFcS2NBr90DQJsL8EASziRB7+AXQXlj0EAJiQ5BHYMSQc84skAkk8JA3EiVQPw53EDPH4xBc0sWQo37ckDOakBBdEUdQdDXSUEeBcJBK1ahPx0VrEDqOoZBCyFeQeL6vUAGwbhAIYJUQRm4cUHciINANmM7Qd7TGkGgNgpCQslJQUF0zEA99ElBMB5dQQw6hkDNUvI/6SuUQWBbikGSZvpA2O9wQYi6+0BNM6RA4ZVMQTliBUEyH/xAL9WnQJglE0HAW+1BNFa9P4uOwkCK5jpB6NDWQAEJwUH+h+NAQ0EmQUmF6kFPKIFBg7/2QJozG0Fso71A0qZPQOOgT0HpkVpBx4BsQEPOekBHImtBiYXOQSYh4z/0vGlAwy+TQcuqHkEVSNdBEh7CQQ/kqkB0ZBlCsiejQHCeY0JolMpC3XutQUqpnkDRfRZAPlQ/QY3aAUHkEQRBy7kDQDza1EC5oY1BteovQdp57kFNREJBw55oQRUBmEGpkTJA10dRQIWBokE= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAF0jbEAAAABgycZtQAAAAMD6425AAAAAIBRbb0AAAADAo4VvQAAAAKBWAXFAAAAAYA7TcUAAAACgrBRyQAAAAIAQTXJAAAAAwNpjckAAAAAgetByQAAAAGB+BXNAAAAAQAX2c0AAAAAAT0V2QAAAAMCLFXdAAAAAQJMzd0AAAAAAAUZ4QAAAAICtcnhAAAAAwD/NeEAAAADAbQ55QAAAAABtN3lAAAAAAGL2eUAAAAAAoUB6QAAAAICOgnpAAAAAgCnQekAAAACA/jR7QAAAAICHeHtAAAAAgJjye0AAAADAqBJ8QAAAAAAeInxAAAAAQAqQfEAAAADAWTF9QAAAAEAuXX5AAAAAADhVf0AAAACAHoR/QAAAAADR5X9AAAAAQEDwf0AAAABgtBWAQAAAACBSOYBAAAAA4HpagEAAAABgbmKAQAAAAEBueYBAAAAAIFiQgEAAAAAAS5eAQAAAAKBLvYBAAAAA4BjFgEAAAAAgosyAQAAAAGBx2oBAAAAAoLbzgEAAAADAmC2BQAAAAGBoQoFAAAAAgG1LgUAAAACgSlKBQAAAACCpXIFAAAAAQJNqgUAAAACg43eBQAAAAOAThIFAAAAAgPqIgUAAAADAuZGBQAAAAOCDyIFAAAAAoAjWgUAAAACg9uWBQAAAAABYAIJAAAAAQHQIgkAAAABA0g6CQAAAAKAHFoJAAAAA4CQ8gkAAAADg7EWCQAAAAIA9Y4JAAAAAYOtsgkAAAACgMHWCQAAAAGBjfoJAAAAAQCXJgkAAAADgtNKCQAAAAKDK2YJAAAAA4ADwgkAAAADgCfyCQAAAACDWGYRAAAAAgNjphEAAAAAg4fCEQAAAAODN9oRAAAAAoIh9hUAAAACAXFWGQAAAAEAPZ4ZAAAAAoLtyhkAAAAAgCoSGQAAAACA6LIdAAAAAoO2ph0AAAABgBtOHQAAAACAvFohAAAAAYK0yiEAAAACg7kKIQA== + NrgMGZxjYkBK9xnL9URsQFRnpVdMhW5A0XQao1RTd0BsViEfk1N3QL1WL764w31AlHu4dvqDf0BWipeNE3qCQMlsSmWpSoNAVrmFt78ChkDAS8qT4OKGQOlLUWPzGopAuLxUoRIbikBMnfjcaSOOQEx5G4B/s45AimRP9uqVkECK0uDH9d2QQA== - + - eJ8mQXAxHkB39l5A+HkTQdQ/0D8kIB5BECZzQPbfk0DzAM1ALfzKQGwkXECiZldA+rGPQN8dDUDJVg1AskQeQZrRHkJJIPc/tNWnQRxlIUFKBKxAEG22QAtf/kA9BTdBBENYQTKy2kBjGw1A22kgQQKEfEGYynlAgADfQZGV0j8Yf1tBP6t6QX/A6kApzL0/coYyQPU5DUFt3iBAMem9P2Qhk0DubIxAT7LLQPRPDkATPXBBpeG+QNqO0EBJ+MtA2tPyP3oaPkHKX9lAK9piQUDMb0FGVDdBBsKDQZkMiEHLzSZA6UY7QCcXfkFRkKxAW/IEQb+8D0EGbL0/oT2yQKhhrECtW5FASr5YQY64ukHO3fdBhCwUQRAWAUHHFyFBC3P1P9LWmUCDxR9AMGS3QWtAFUBa7TdBj3tQQbb2tUBAfSNBcEMNQBj9BkFMeJg/Kuc2QdzE2EHTPGtAx6yCQBRxGkH63KJAmzUfQDbTZ0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAALg/YEAAAADAFgdhQAAAAMCIqWJAAAAAwA7DYkAAAADA1yRjQAAAACDuYmNAAAAAoAOjY0AAAACglqBkQAAAAMCX4WRAAAAAIGQBZUAAAADA62NlQAAAAGBPqWVAAAAAgENDZkAAAADAtn5nQAAAAACaSWhAAAAAYPaJaEAAAADAKAppQAAAAIBTIWpAAAAAgNelakAAAACATtxqQAAAAKAZ4mtAAAAAIDKhbEAAAADg9UFtQAAAACD4pG1AAAAAQN4pbkAAAAAATkFuQAAAAED7ZW5AAAAAwCYCb0AAAACAVyFvQAAAAMA/qW9AAAAAAOHJb0AAAAAAWxBwQAAAAIBCMHBAAAAAIBOJcEAAAACAibFwQAAAAOD3xHBAAAAAAPvicEAAAACA9g5xQAAAAADJU3FAAAAAQDDEcUAAAAAA1zByQAAAAEBUUnJAAAAAwNSRckAAAACAW+NyQAAAACCe8nJAAAAAAEIEc0AAAACARhJzQAAAACATUHNAAAAAQC92c0AAAAAAjaNzQAAAAAA3zHNAAAAAwDYSdEAAAAAASiB0QAAAAEDnMnRAAAAA4ENTdEAAAACg2nF0QAAAAGBYh3RAAAAAQFGfdEAAAABgb9B0QAAAAMA1EHVAAAAAAEgidUAAAABAHTJ1QAAAACCgUHVAAAAAAImzdUAAAABA1+91QAAAAABGAnZAAAAAwEQrdkAAAADgMTZ2QAAAAGBGT3ZAAAAAYMhedkAAAABAGH12QAAAACDWhnZAAAAA4D+VdkAAAAAAmc92QAAAAGCW7XZAAAAAYLISd0AAAAAA3C93QAAAAOAGQHdAAAAAIJtWd0AAAAAA/nd3QAAAAKD3l3dAAAAAAGWzd0AAAABg6dJ3QAAAAGCpNHhAAAAAoFhWeEAAAABAZGR4QAAAAOBsdXhAAAAAoIl/eEAAAADggI14QAAAAOCNs3hAAAAAQLy/eEAAAACgGdF4QAAAAKC55HhAAAAAoMPyeEAAAAAAvTV5QAAAAKA/j3lAAAAA4IejeUAAAAAgx7R5QAAAAGDe23lAAAAAYHYRekAAAACgph56QAAAACBMMnpAAAAAgIqdekAAAABA2HR8QAAAAKD+lHxAAAAAQHWlfEAAAABgfLR9QAAAAKCJwn1AAAAAYDc4fkAAAAAghG5+QAAAAMCrrX5AAAAAoOF4f0AAAADgSw6AQAAAAEAQWoBAAAAAIARigEAAAAAglMGAQAAAACBZ64BAAAAAgJ3zgEAAAADALQOBQAAAAGCIJYFAAAAA4F50gUAAAADganqBQAAAACByrYFAAAAA4Ky/gUAAAACAesyBQAAAAMCE0YFAAAAAwEfagUAAAACgAVOCQAAAAAD+WYJAAAAA4GSKgkAAAACgoJKCQAAAAOAzpYJAAAAAYMGxgkAAAADggr6CQAAAAADC4IJAAAAAYGT1gkAAAAAArRKDQAAAAGA8QINAAAAAACtSg0AAAADguVuDQAAAAGCAa4NAAAAAoMWhg0AAAABA1K2DQAAAAGB/4YNAAAAAwEfrg0AAAACgNSOEQAAAACDOcYRAAAAAgGR7hEAAAABgbAKFQAAAAOBICYVAAAAAYEUshUAAAADgV22FQAAAAKDxi4VAAAAAQEydhUAAAABgKqOFQAAAAGBnV4ZAAAAA4IxghkAAAABgMSKHQAAAAKCpzIdAAAAAoKIjiEAAAABg0zOIQA== + NrgMGZxjYkCzxYFkpHFwQN9iJOBzYnFANbco5QvTdUB6IBaevKJ5QNB0GqNUE35A/BG9HiQEf0D1Z949SRqDQMo9XDv9IYNA - + - rngpQHYeJ0Bgfr9AV1StQEYrIEDmkGFAMJmkQFMo9z+6hhZAW9LwQKJbzULv6YxBxMINQAcgAkD+xUtAdh4gQFU6LUHC3xRBQbGoQEeAq0CEqOM/uDlfQHKggUNw+pBACwjxQMjcC0DLWahApsYFQQohBEASwV5AMha+QFuNg0BsoptBeswLQVxlCkGtxHxAk/q2QErBO0GZvsFAQbwkQeDA9T8n6ktBxT2MQEFKMkCe3DBAWi4CQRdUokBQdDhB7Ku9P/T1v0BFs5FB+7wxQMyhHkH6NjxAgeSuQMUNzUDnystA4De+P2jAV0DvZARA3iwrQM9rLkHBHb1BOoiDQ6gxTkH6dphBE8CVQJdo70CjdVdAehMNQM9I0UCcoytBqO1NQdXyj0CR9aJAoG3/QYSjc0CK09I/gTY8QLqeJEGJtT1B5DS+P5QTK0FWmqxBGkuOQKaoDUBjFspBC6ZiQEyAikHYT2NBodMBQepSX0G+ZF9AEn5lQb0YQUEJczJApeJGQGEkWEILmx5B5Y/2QS0oXUF9OelA7+jJQAopc0H9QCBB7ZqDQOUqq0JDjTBB0T+RQEFSqz/wf0RBnmIyQZzn0ECfR6RBs5lWQCtDjEB/9zhCJ0rAQBcT0EBDl3JBLYgkQS8N5ULVG59A50orQfAfIEC3MmlBIBkwQT6VQ0B2JiBBf9x3QSw2XUEWhSpBgw1PQcOiDUBAAUBBow+YQdahRUHlu2ZBDVFFQKExDUAGPo5BGHzWQBbdq0GpkrhBKyExQbXJsEDuLJ1C3J+lQqqLqkNmanhBImfyQEWIcUHpXX9Bz1MOQRMeYED6/N9ArXVhQL0V0kDGA7ZA55kyQPRDSUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgCiMaEAAAACAFKZoQAAAAIAALmlAAAAAgFZEaUAAAAAAd8RqQAAAAAC/6GpAAAAAwKoea0AAAACgpMprQAAAAEDWBmxAAAAAINMnbEAAAACA60hsQAAAAMAHimxAAAAAgLplbUAAAADglR5uQAAAAKAgSG5AAAAAQN4Gb0AAAABAYoZvQAAAAMDAom9AAAAA4JXGb0AAAAAgvyRwQAAAAOA0MnBAAAAAAOTDcEAAAABAlfRwQAAAAECL/3BAAAAAAFU2cUAAAABgOEBxQAAAAKAntHFAAAAAAMXEcUAAAAAAWM9xQAAAAIBp83FAAAAAQHB2ckAAAAAgEsByQAAAAKCZ43JAAAAAAA12c0AAAAAAEZFzQAAAAAAGzXNAAAAAoMpqdEAAAACAOYN0QAAAAEA6k3RAAAAAgAeodEAAAADAmOV0QAAAAMC1FHVAAAAAYD8kdUAAAACAo1B1QAAAAGAMgXVAAAAAQGIIdkAAAACAGDB2QAAAAECEQnZAAAAAgO1PdkAAAADAJnZ2QAAAAECck3ZAAAAAQCD+dkAAAADA5BB3QAAAAMDcHndAAAAAAHUsd0AAAACAyWJ3QAAAAMB9vHdAAAAAAGLId0AAAACA8eJ3QAAAAADn9XdAAAAAABQIeEAAAABApVN4QAAAAADQgnhAAAAAAP6TeEAAAADANrN4QAAAAEAKxHhAAAAAgNbaeEAAAADAv+V4QAAAAMC/A3lAAAAAgE0VeUAAAACASVt5QAAAAEB6l3lAAAAAANCleUAAAACAzeZ5QAAAAAB+9XlAAAAAwLMaekAAAABAAS16QAAAAADPUnpAAAAAAKFgekAAAADAuoN6QAAAAABUwXpAAAAAwD8Re0AAAADAq0J7QAAAAMC+TXtAAAAAgOhge0AAAAAAEqh7QAAAAIAI1XtAAAAAwCDfe0AAAACAIwN8QAAAAMD1MnxAAAAAgD5UfEAAAABANW58QAAAAECyhHxAAAAAQMrSfEAAAADA/wx9QAAAAMByPX1AAAAAAJRXfUAAAAAA4JR9QAAAAED2pH1AAAAAgDnFfUAAAADAF+V9QAAAAIA1En5AAAAAwJNCfkAAAAAAyFR+QAAAAMDeZH5AAAAAAJy1fkAAAACAIcR+QAAAAIAV0X5AAAAAAPrlfkAAAABACvB+QAAAAECkAX9AAAAAgI83f0AAAADAskJ/QAAAAABpTX9AAAAAwKxnf0AAAACAXHV/QAAAAEBclH9AAAAAgPqgf0AAAAAAdsV/QAAAAIBa139AAAAAwK3qf0AAAACAGvd/QAAAAADZAoBAAAAAQMsLgEAAAACALBGAQAAAAADBGoBAAAAAIEYlgEAAAADA2CqAQAAAAKC8OoBAAAAAoLJCgEAAAABgVVCAQAAAAOBpVoBAAAAA4IphgEAAAADAtGyAQAAAAOCFeoBAAAAAoC+FgEAAAAAAZouAQAAAAEDwm4BAAAAA4OWngEAAAADg8LKAQAAAAAAGxIBAAAAAAPbKgEAAAABAt9SAQAAAAGCo3oBAAAAAIEbrgEAAAABgQ/SAQAAAAMBL+oBAAAAAgIIQgUAAAADgBRqBQAAAAMAzJIFAAAAAIAQ4gUAAAAAgWD+BQAAAAGDJTYFAAAAAoCxUgUAAAABgDGGBQAAAAKAAaoFAAAAAQBdwgUAAAACApYOBQAAAAEAkjYFAAAAAgBCTgUAAAABAUZyBQAAAAKBapYFAAAAAIOy0gUAAAADgI8KBQAAAAOBBzYFAAAAAoDzSgUAAAADgRfCBQAAAAKBP+oFAAAAAgBsAgkAAAACgTxKCQAAAAIAdG4JAAAAAYBkkgkAAAADgdCyCQAAAAABlMoJAAAAAANJCgkAAAACAqE6CQAAAAAA+ZIJAAAAAwMhqgkAAAAAAJXOCQAAAAGDtf4JAAAAAAIiGgkAAAADgNI+CQAAAAOC4roJAAAAAQAW4gkAAAACgO8CCQAAAACD/yYJAAAAAoN/OgkAAAADg69uCQAAAAKDx8IJAAAAAYAUAg0AAAACg7Q6DQAAAAMDIGoNAAAAA4KMmg0AAAACAfy2DQAAAAMDFVoNAAAAAADZdg0AAAAAg/2ODQAAAAOBPa4NAAAAAQB15g0AAAABAG4WDQAAAAIA6joNAAAAAYKmTg0AAAACg75mDQAAAACDjn4NAAAAA4Aiyg0AAAADAh76DQAAAAIANyINAAAAA4B7Pg0AAAACgu9WDQAAAAGCU4INAAAAAIPLqg0AAAABAQPODQAAAAIAH+YNAAAAAwKEChEAAAACAiAyEQAAAAKCiFoRAAAAAIGsdhEAAAACAVSWEQAAAACA4KoRAAAAAoKcwhEAAAACgi0iEQAAAAIA+MYVAAAAAoHI2hUAAAADAZVSFQAAAACD6XoVAAAAAoPtkhUAAAADgk3WFQAAAAMAgg4VAAAAAIPKMhUAAAACA25GFQAAAAMATnoVAAAAAAHOkhUAAAADAo62FQAAAACAvv4VAAAAAIHLFhUAAAADgd86FQAAAAKAH4oVAAAAAoDfohUAAAADgK/aFQAAAAKDJD4ZAAAAAgMIUhkAAAAAgXB6GQAAAACD3J4ZAAAAAAMY6hkAAAACgtUmGQAAAAKCpXIZAAAAAIPpshkAAAABg74GGQAAAAGApioZAAAAAIDSVhkAAAACgC6yGQAAAAODWvoZAAAAAIDzEhkAAAAAgROeGQAAAACBU84ZAAAAAIHL7hkAAAAAAqAeHQAAAAKAhJIdAAAAAQOQph0AAAABghzKHQAAAAEDhWYdAAAAAYGFjh0AAAADg8myHQAAAAOC+dIdAAAAAIImah0AAAACAw6OHQAAAACDxrIdAAAAAoFSzh0AAAAAgmbyHQAAAAKCA0IdAAAAAYJfkh0AAAAAgH+2HQAAAAKBs84dAAAAAwOH8h0AAAACgliWIQAAAAOB6P4hAAAAAQJVFiEAAAACAfUyIQAAAACCRVIhAAAAAoFRmiEAAAADgVHeIQAAAAKCphYhAAAAA4HiMiEAAAACg8KeIQAAAAOCSsYhAAAAAwHq5iEAAAABAxsSIQAAAAGAe5YhAAAAA4MfsiEAAAABgIPmIQA== + NrgMGZxjYkAAqvrc5WFwQEMdzoN8QnFAVv7+4X3SdEBDe6rX1FN4QFZc2zXW43tA5QDOEmNygEC+jpFWQvqBQHQpLAiPOoJA2Fb2JBtThUC+vX+A7oKFQPansg9z44hAtZz/riUbiUD21qA5H2yMQKx7f91cs4xAPYAAdp5rj0D2BY9jy/SPQEKXdqx73pBAmi9A0uqBkUAmrUm0sWKSQBpHN+dARpNAY8l3s2GilECrtgc+GdOUQOPgbsi3ZpZAJ6ZH1TSflkBuuvbPSoOXQJX309b9sphAgjq6N1QfmUBHDjnlQz+aQJa6fZ9du5pAXCN65mlbm0ByOLvnj3ecQBbSdLSzf5xA8k+y/OU7nkCW6WvJCUSeQKv+rMovYJ9AubPUCB4AoEDhCfflKj6gQMNztrwizqBAOpUp7U0EoUDNM5hwJ5yhQPG9720yDqJAkyBc9HAqokCvtY85QPSiQFOs1/6bDKNAd+33ZKy6o0Bxum7+cyykQDd5c2/XnKRAY0VYAo/upECHz6//mWClQPVwEzvlgqVAGbIzofUwpkBHWysKxUKmQNep02wDF6dAB+emFPAkp0CVoXM4Ef2nQE77VQ8GCahAp4aIFinPqEBVLe9CPN+oQMsQ4BM0QalAeiXYEVLhqUCcQZ49UlOqQDqxUxx9w6pAXM0ZSH01q0DFO/QckFGrQAxQoxemNaxAgcUCF5M3rEA= - + - mKarQMR/zEDh6b4/uIIgQbIOHUEaTjdBpBl6QZ9n1D9Qz09B5TvQPyt0BEB/Xpo/GdcHQfwIX0CxtilAgQUoQUyV/EDQG4hASGCrQIKh0EAfGklBASpsQJL6C0BoFKhAx5zSQKJHjUCIO8tA6fghQMV04z/q+QNCbB84QeGCC0HahANBYN3QPyTWMkBpMf9AOwCXQEinDUDrzANBXN3lQAVZIEDXnblA4xBYQLha9D8HtTJCwv9uQcFT5D+K6ypBhrObQXsxIED8Cd5BpmeFQa/3FkATZVlAlnjHQB4uskAUxYpBpVxVQS6bo0DvyL4/pj4WQQRqfkGVZ1lAfnLZQN9DgUGQCntBDpUpQGUqzEC5+3xAkLzRP+YZcEHjj4ZAVATTQRTPRkDd5hVBbhxEQSeoL0I3pilAwqVNQeaPKUDoowBBD0sHQUHFtUDJTE5BPz9NQbgZD0DA0cFAzggLQdq7KEF0HoNB1uh2QQxqBkH6UnFBIvR3QZmCEUEFUZZBMguaQcriXkCNxaFBtnzPQdfaAUEKj3NAFw3BQLa/AUEDO/dATlSGQX0iakER1oJBq8AWQc3DBEAmvrpAkv/iQXlyukFXODtCrkmYQVrFq0AFpbFCSVKCQXKPCEGMEyJBWNYUQiYvtD/XHbZAs/8lQW5gw0CBtJZA/RThQo6eHUEVrUhCw47RQa1dRkIZp61CNmsFQfYQiUFmBz1BmKFNQ7mGtT/28gJC3TdlQpqkBUQ9eaFBEl++QICxPkLXOBtCm0qHQsvdr0GbvLJBDt6+P8ooO0Jnj4BCAUk0QdIjU0EklHVBVLDIQAopi0CGibNC7EsjQlot3UHUgilASRUEQvU2V0FWmitB2qDrQGOeB0Jm3P9A71sBQS+YBkNhWudAhvXEQFbX2EIc4HtC9fBrQuC6WUEo4jFBkYocQupEqkNJF4xBGH3YQHy/kEICNtxBepxxQSPEFkESyIlCyqOxQrA4VkHQMI5C7EhwQea4qUEcsY5BSmVpQ6iBvkKr9n9AQh+nQgNIcEI4wOtCBWknQQtY/0FX++RAw4UDQV1pEUOCqSxDpmYpQsA3VEKU8C1BQ1dGQJu7OEJuF+VBRDABQljLCUKP0TxCkCqmQhLnbkEevRRA5SVBQiKoHkKpV61DWRXcQsLuW0GyjDFCA5mpQQbsGkGyq51B2vS4QWWuvkEUjD9C0Jq7QC61MkClvctBkPKkQZehKEJ7XW5CrrF2QyLssUFYkbZCDyTMP1RZN0HmlYpD7IT/QnYlFUG0oBhCm13wQEuiA0LsJQBCmihxQc/m3EHDLB1CS0AEQLA0C0G2tfNBdf8mQcw8a0DB7MNAMccIQeHTQkFc/k9B5fKIQQ6jSkGsLu1BLfYOQzsPu0GgmYtB11p5QfFHfESMpNNCdS1hQOtdxUDKLUFDaKkYQxGjqUIk6VhB0gueQKRkokC9bbxBbd58QP/nd0FPHQdCiga5QNedmkG65ytCHHK+Py27HUFW9QNCFIXFQHEuAkEuCF9CQAiZQfDml0GTM79BA8yMQDyQrUM= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQFtjZEAAAACA2ONlQAAAAICU6mZAAAAAgDklaUAAAABAX+RpQAAAAABBVWpAAAAAgHClakAAAABgUgJrQAAAAMC5Z2xAAAAAABF/bEAAAACAfD5uQAAAAOBOhW5AAAAAAKmZbkAAAABg60lvQAAAAOA4BHBAAAAAAD0icEAAAABAfmJwQAAAAIDncHBAAAAAIMCjcEAAAABA4BFxQAAAAECvInFAAAAAQCOxcUAAAADAqO9xQAAAAAA9EnJAAAAAgHMhckAAAABAALJyQAAAAADKPXNAAAAAwPlhc0AAAADAYKRzQAAAAMCuIXRAAAAAQMk0dEAAAABAjm90QAAAAMC+gnRAAAAAgIG4dEAAAACAdQx1QAAAAAC4NXVAAAAAQGtQdUAAAABAQWJ1QAAAAICXdHVAAAAAQPmddUAAAAAAzsJ1QAAAAAB74HVAAAAAAA7wdUAAAABA5A12QAAAAIBfpnZAAAAAwLiwdkAAAABAYMB2QAAAAIDMIndAAAAAAPR0d0AAAAAA4qF3QAAAAIChsXdAAAAAwAcBeEAAAADAvYF4QAAAAIC0kHhAAAAAwMKjeEAAAABA6bN4QAAAAACc/nhAAAAAwI0OeUAAAABADyN5QAAAAMDsL3lAAAAAgKJBeUAAAADAH1J5QAAAAAC4Z3lAAAAAgImCeUAAAACAP6p5QAAAAEBUv3lAAAAAAH7XeUAAAABAQQR6QAAAAABcHXpAAAAAgK4vekAAAADAajl6QAAAAECaSHpAAAAAgOZaekAAAAAAAKR6QAAAAECNunpAAAAAAF/eekAAAACA2ut6QAAAAEBQAXtAAAAAgH8he0AAAAAA7jB7QAAAAAD8Q3tAAAAAAChWe0AAAAAAjLJ7QAAAAIBUwntAAAAAAEDYe0AAAACAafB7QAAAAEDt/3tAAAAAwPg7fEAAAACAomB8QAAAAIAud3xAAAAAwI6wfEAAAACA2Np8QAAAAEAn9HxAAAAAQAMFfUAAAABAExp9QAAAAMBxMX1AAAAAAIBrfUAAAABAS319QAAAAIDojn1AAAAAgFWzfUAAAAAAa0x/QAAAAGDVAIBAAAAAoNY5gEAAAABgRVOAQAAAAGCzwoBAAAAAoB4BgUAAAACADCKBQAAAAIBHKYFAAAAAoFpzgUAAAACguaqBQAAAAMADyoFAAAAAQDEqgkAAAACgyDmCQAAAAKAuXYJAAAAAIO6XgkAAAABgdluDQAAAAOBSaoNAAAAAYEXQg0AAAADgVvyDQAAAAODWBYRAAAAAANcohEAAAABA4JOEQAAAAMAaCoVAAAAAYA4khUAAAADggDOFQAAAAMApZIVAAAAAYFFxhUAAAACgFouFQAAAAEBSooVAAAAAANkHhkAAAABgmCuGQAAAAGC4mIZAAAAAoDqrhkAAAADgjGWHQAAAAGBw9IdAAAAAwEIziEAAAAAAOWuIQAAAAICKd4hAAAAAIMbfiEA= + KBZXds7jZUA0WUyRs0FwQBTpB48/A3JA20OcyFc0eEBbGpQIYlJ4QHhrUPO54ntAMeVGi6RigEC8ZJYjCXqBQJUSEagwe4NAIJJgQJWShECVQf/R3AOHQCRqXccIzIhAZFVZ5w3biEDIgiMEmvOLQLhKAQNg1IxAyLERLkZ8j0C5znD9a2qQQA== - + - zEq1QIbjBEBBhUlAc2x2QLxTmkCKZVlAomKcQN3Bvz+nYNU/sOmLQX4oSEEZ8QRAknmEQJIgqEBsHE9A375/QImznT/8I7ZA8cqaP4cLKEDh6jJBGwF1QDHA7EBn0xtB2NOBQcQzw0DCr9xBTu65QGITrT84frBAQxiMQX+vS0F6VMVAcJAgQC6TEEHnU5BAO1kUQWL/o0FSzeNAHElsQfY8AkHxj3FAOWHaQOoXR0G9mJVAbKMfQCKf8kGHF0lAzkLMQORb9kCd5QRA/cWcQeLPMkEF4BdAaGMXQcCxdUEMKRhAJ68nQSXyyUG40P5B2DomQtsufED0+D9BjH8UQatswEGiqrlAsYOeQPiQ30BC3ORBB96AQRf1XkFjJDVBcvXOQIW1xUDXO5lBdtu/QJfbLEBJZfFApuDdQQcyfUAGXWJCSJ3gQM4OVEEsNblBEfaWQDwQ+kAXgQlCpMGoQRAi9z8IHqxALIb0QF5zg0FcpCtBii5zQY/onUGimjxAg+eCQS8sIEBMkn9BhnXCQSdsokAVNfc/wAyfQNII3kD72QhBqQj3P7Esf0C3MOU/gr8kQYQNKkC6CVRBfjTCQbPmgUL46slBqw2PQchW0kAr7plBQVzAP6Rti0B1oD1BXbZFQCWiiUG+icZA4DGtP3ecBEEuxkVAPVWWQTToKkFqKhpBPj6sQRZD7kD0gApBKOe1QMNFlkDYYh1Bl0lCQfGtPEAwgTxAKhMjQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4GrGYUAAAACABudhQAAAAOASLGJAAAAAAHChY0AAAAAAc05lQAAAAEAlZmVAAAAAAPyCZUAAAAAgZsNlQAAAAIBNJGlAAAAA4Ay+aUAAAACAVYNsQAAAAIDJn2xAAAAAgBLkbEAAAACAnyBtQAAAAGCvRW1AAAAAIMtnbUAAAACApyZuQAAAAEBWHG9AAAAAQBw6b0AAAAAAm79vQAAAAGA8G3BAAAAAgENDcEAAAADAilFwQAAAAADib3BAAAAAIBemcEAAAACAwLNwQAAAAMAdwXBAAAAAAAXmcEAAAADATVJxQAAAAOBLXXFAAAAAoDrRcUAAAABgkO1xQAAAAIDbCHJAAAAAIO8nckAAAABA3EJyQAAAAGDIY3JAAAAAYJ+lckAAAADAdONyQAAAAMDv8XJAAAAAgGkrc0AAAADgi1FzQAAAAIClYXNAAAAAAMZyc0AAAADAP5xzQAAAAMAdwXNAAAAAgMBhdEAAAABAaXF0QAAAAODnf3RAAAAAwJi1dEAAAACAT8N0QAAAAOD58XRAAAAA4LoDdUAAAABA1RF1QAAAAMB2VHVAAAAAQMdfdUAAAACAWYB1QAAAAGCXknVAAAAAANugdUAAAAAArLd1QAAAAKC+w3VAAAAAgB3VdUAAAAAAa+F1QAAAAACkDXZAAAAAIH0hdkAAAADAMSt2QAAAAIBwQnZAAAAAwKGTdkAAAADgwM92QAAAAICUQXdAAAAAgK9Yd0AAAACAPWZ3QAAAAEDgcXdAAAAAYBWBd0AAAABgGZN3QAAAAOBSsndAAAAAYEXdd0AAAACge+x3QAAAAOCGM3hAAAAAQBJHeEAAAACATFJ4QAAAAOAeknhAAAAAoLHIeEAAAACgLOJ4QAAAAKAZNHlAAAAAIBlBeUAAAAAgeFB5QAAAAKB0d3lAAAAA4BuYeUAAAAAA+6l5QAAAAEDa03lAAAAAYMTteUAAAABgRPt5QAAAAKCoEHpAAAAAYCEgekAAAADgeDB6QAAAAOCwPXpAAAAAYN5cekAAAAAgFIZ6QAAAAIBzrnpAAAAAoM/2ekAAAADgKAV7QAAAAGCoIHtAAAAAAPQwe0AAAACgbEZ7QAAAAIDvVntAAAAAYAdme0AAAABAk3V7QAAAAEARhXtAAAAAwIeYe0AAAAAgErN7QAAAAAA5xntAAAAAgFbQe0AAAACgGOV7QAAAAKDl8ntAAAAAoF7+e0AAAACgwg98QAAAAMCfIXxAAAAAIK4xfEAAAACghkh8QAAAACBkXHxAAAAAoGZrfUAAAABgnDd+QAAAAKBZ1X5AAAAA4GXjfkAAAABg/SV/QAAAACCYkn9AAAAAwPPOf0AAAADgQRuAQAAAAGB9VIBAAAAAwLRogEAAAAAAnHqAQAAAAGBjjoBAAAAAQC+YgEAAAACAq8+AQAAAAIC54IBAAAAAILXygEAAAACgDRaBQAAAACAuLIFAAAAAoAdUgUAAAAAg6HGBQAAAAODYgYFAAAAAAFe6gUAAAADgZ8KBQAAAAKA7yYFAAAAAoD/RgUAAAADAbeuBQAAAAKB/AIJAAAAA4I0YgkAAAACgmiOCQAAAAOBgKoJAAAAAoMIygkAAAABgyDqCQAAAAICdSoJAAAAAYISCgkAAAACAz6SCQAAAACCh94JAAAAAgFojg0AAAAAgyzyDQAAAAMBfQoNAAAAAoPtSg0AAAAAgQG2DQAAAAIBYfINAAAAAIIKeg0AAAADAk9iDQAAAAOC25YNAAAAA4HwthEAAAACgCkOEQAAAAKCvaoRAAAAAwAtzhEAAAABgQYiEQAAAAIAGwIRAAAAAID8ChUAAAAAgzBCFQAAAAOB1JYVAAAAAoP1BhUAAAABgn0mFQAAAAMAuUoVAAAAAIO+EhUAAAABAlZGFQAAAAABFuIVAAAAAIEbAhUAAAAAgl8iFQAAAAEBd2oVAAAAAoBcahkAAAADg1SKGQAAAAOCFKYZAAAAAIGZNhkAAAAAAwKiGQAAAAKDVsYZAAAAAoEzbhkAAAADgHA2HQAAAAMBFOodAAAAAoFJDh0AAAAAgnVOHQAAAAGC1WodAAAAAIN2dh0AAAACAbbqHQAAAAGDUCYhAAAAA4B0liEAAAAAAPnuIQAAAAABzkYhAAAAAYNu2iEA= + NrgMGZxjYkBUZ6VXTIVuQAojd9/OZG9Ahe+Xw7/DdkBxDmdlvnN4QPmUWLOvxH5AcWxDuRaFf0AOTy1ymRqCQJzja3kXW4RALKDpXPGqhUCcElqjw+OHQHBj4gNq84lAk/HZ0fp7i0A3j4gT1vuMQIrQWQAyFI9AFzcEoQZKkEAp/v8HTw6RQJMmRDgiFpJAy198W4syk0ATPjtNeNqTQFqI2lC3+pRAxVSgW74mlkCjChsd2FaWQEVsl3AU65dAADQLGRRXmECASwIuahuaQPeC/H5aN5pA25jPhpC7m0AirX6Bpj+cQA== - + - R5vlPx1ngkBb30VANwYtQCGVVkH+BjlBpMWsQQ/JF0D2YqhARg1OQLxOT0B0o+g/5pTWPx0r8EBcR9ZBfSRTQFS1gEAMuvc/uVlQQJ7JD0FveZ5AQw+jQCy4WkDcrQ5AcJcbQXZg0j8etp9Aa40GQXblyEAq+4g/i/KFQNm8fUB10w9Bfg/4P8HhkUBFDXBAiQBiQIoT9kDmbAhBk0n/QDqGgEHQdiNBhiIuQU4LHUEgvzVA9lgHQVJ6bkGqdA9AgdpUQCe/IECOkNY/agfGQbx8HkEYwylBDZhHQPe+AELJZtg/Mh4FQZ/4ikHvAjxAANaNQEKaiEGS821BJZKDQHLNDUFeMcRAKV62QHWQ8UDuovZAV4kpQb/VFULSh2dBZMAGQTdSNUHN/QtBuJPAP7f6sEHPnLNAy3FKQHk85ECEPqBA3YpRQfhnv0AH8eFA7AVhQbD2w0FIfAZAJPTPQPyBl0A1L/c/VueuQZ+ZdkH8BphBaJrMQWLGv0FtPIlBuzdPQLQ/0j9+fKhBqnX0QchU8EBONtFAcn4FQUywpEB2dDpBjqnzP1wAYkBklkJCzLcUQiwgP0LV5mJBfeYzQPzl3UHMxPNAMx3lQBQ7G0Gvsv9AVmltQWQ2qEFtCRdBc4YXQCNpg0DSMyFAMRA4QWo21kCOrhhBbIUOQJ2wkUBLaQFCXZ4CQc6qyEHp2TJA8MKFQcSUmEAEVBBAOQhtQFodB0DSKyBBjmW3QDjBtkADyj1BmA5WQEBW/0EvHjZBU3i7QBYPm0CIT09Axy5NQSjwzUC2HD5BM0VLQUmK90Ax9PY/3g9GQFFUn0ALaqxAd73BQOPx0j/lcEZAzfsGQUMgskD2nXA/wDwqQONU0z81AFdBdzQAQU3qCEEioTRBYvwNQJfkvkDiYKlB/dIYQaiaY0HEYipADMc4QdbqFEKJhFtBCH57QFiTq0D0k5BAoBTyQH93BUBZVntC0X8rQRrTnEFRqzlBBNNZQQe9ckG4T0lB0auSQGp7WkDz45ZBRzmtQXq+MkHExJdBfpwVQZmA8ECwJPNA5oRYQHOwmUAfcLRB1P/pQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIAQpZkAAAABA6OBpQAAAAKBF/mlAAAAAoJEoakAAAADAHGRqQAAAAIDBImtAAAAAYK6aa0AAAACAfCVsQAAAAMARQ2xAAAAAICenbEAAAACAmepsQAAAAIB8iW5AAAAAQDqrb0AAAABgdSVwQAAAAADltnBAAAAAYMg/cUAAAADgkI9yQAAAAMDOo3JAAAAAAIKwckAAAACA98RyQAAAAKD1nHNAAAAAgGpjdEAAAABAF7B0QAAAAMAIkXVAAAAAgArKdUAAAACA9DF3QAAAAMDlcXdAAAAAwMeHd0AAAAAAkoR4QAAAAAB1E3lAAAAAQG2ReUAAAABAq6p6QAAAAMA2vnpAAAAAwP0Fe0AAAABABEJ7QAAAAID9/XtAAAAAALVAfEAAAACA+Y18QAAAAIAasHxAAAAAQLrjfEAAAABADe98QAAAAICztX1AAAAAQJIlfkAAAADAlHh+QAAAAIDBiX5AAAAAwAQrf0AAAAAAMIh/QAAAACBFa4BAAAAAoFWfgEAAAACA9a6AQAAAACAM24BAAAAAAKbsgEAAAACgfh6BQAAAACB2JoFAAAAAYMNSg0AAAACAC3uDQAAAAOBvsYNAAAAAYAEGhEAAAABgiRmEQAAAAKDCNIRAAAAAICyEhUAAAAAgb4uFQAAAAOBJMIZAAAAAgGoTh0AAAABgJSSHQAAAAECKO4dAAAAA4C5Zh0AAAACgJ3yHQAAAAMAxqYdAAAAAoJrMh0AAAACgDweIQAAAAKCBOYhA + NrgMGZxjYkD60UzrnGVsQI8BR/y9MnFAcQ5nZb4zdkCPXyNQFkR4QA== - + - P57MQPymmUBR9EZBxnN1QOjhckCoPGFAVqMPQDJVLELjIbNAjBpcQDYZnD/dO5s/PMGbP2Px20CSDgZAWGY8QbMNrj+6thRB8HvAP6jVZEBXQ2tAkxUgQI5opEBCoYxAnk3KQHluekAt7ZVA1RhAQSIIa0Cze4JAD2kYQDxDpEDbOuFAAwaJP700T0C3HbpA7wBzQLGggkCs4AVA9HCIQTb150DMbEZAZjI+QZcZiEDOnGxBU5QcQdTC00Buc9hAwCrSQQcPNUHlSIVAADKfQNuhlEBWdW1BCMXmQH+fp0C2/DtARi6cQb59T0CF5U1APqckQroE+kFJhzNAfos1QcXPjEHxzQ5AThOqQDTpIEGaoY1AH6xlQERp+EG4E0ZA + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4JThYkAAAACAVqFjQAAAAIBaAmRAAAAAoKpEZEAAAAAgwWRlQAAAAIB56GVAAAAAIM0jZkAAAABA24dmQAAAAGDprmZAAAAAQIfoZkAAAADAtgRnQAAAAEAmKmdAAAAAAMFGZ0AAAADgAV5nQAAAAOC42mdAAAAAAD0CaEAAAADAKkVoQAAAAIBBJWlAAAAAgFFeaUAAAABApoRpQAAAAEATAGpAAAAAQEsjakAAAACAnJ5qQAAAAAD1wWpAAAAAYIIea0AAAAAARYZrQAAAAEAnpGtAAAAAgOXGa0AAAAAgYOdrQAAAAMAuRGxAAAAAwEhBbUAAAACAnYJtQAAAAADmhW5AAAAAgPOibkAAAADAqsduQAAAAMBeA29AAAAAAEhFb0AAAACAumhvQAAAAEDMxm9AAAAAoPQVcEAAAADA9B9wQAAAACDic3BAAAAAgFKCcEAAAABASJVwQAAAAIAE5XBAAAAAoNYhcUAAAADg0ThxQAAAAICrRHFAAAAA4JhmcUAAAACgo5JxQAAAAACqp3FAAAAAwF61cUAAAADg7MVxQAAAAIAc5nFAAAAAYLEVckAAAADAGDJyQAAAAMA+PXJAAAAA4D5RckAAAAAgRXZyQAAAAKCCgnJAAAAAwByyckAAAACAXsByQAAAAIBRP3NAAAAAAK1Uc0AAAACAKXVzQAAAAMBPzHNAAAAAgD3jc0AAAAAg+il0QAAAAED2M3RAAAAAIGlHdEAAAACA3GV0QAAAACCbo3RAAAAAIKPCdEAAAACAXuV0QAAAAMC2L3VAAAAAIKNUdUAAAADAaZB1QAAAAEDso3VAAAAA4EixdUAAAABAQsJ1QAAAAIBs0XVAAAAA4M3ydUAAAAAA6AZ2QAAAAIBKFXZAAAAAAEhCdkAAAADAc1Z2QAAAAEBnaXZAAAAAoLmcdkAAAADAZs92QAAAAKBc83ZAAAAA4LAGd0AAAABAATh3QAAAAEDnZHdAAAAAQMl4d0AAAACA+YV3QAAAAKCZmndAAAAAAPa0d0AAAACgA+J3QAAAAGCT9HdAAAAAIPcBeEAAAABg4TN4QAAAACA4UnhAAAAAoFNseEAAAABgGZJ4QAAAAGCyoXhAAAAA4IC2eEAAAABgCNJ4QAAAAKBT8nhAAAAA4AIMeUAAAADgCBh5QAAAACAVJXlAAAAAYEtBeUAAAACA8VN5QAAAAGCUdHlAAAAAIA+AeUAAAADAIp95QAAAACD8xHlAAAAAAJ/jeUAAAABglxZ6QAAAAAAaMXpAAAAA4PFFekAAAADAS1x6QAAAAADrZXpAAAAAABWDekAAAAAgtsR6QAAAAEAy4XpAAAAAIAr6ekAAAADgkmJ7QAAAAKB6cXtAAAAA4I2ke0AAAADAtNJ7QAAAAKA863tAAAAAYGL3e0AAAAAgzBN8QAAAAGACJHxAAAAAYA06fEAAAADg7VR8QAAAAGAGenxAAAAAAA+FfEAAAABg05N8QAAAAGBmxnxAAAAAYLTVfEAAAABg4fV8QAAAAODVn31AAAAAQH7HfkAAAADgKgl/QAAAAEAhEYBAAAAAgEwagEAAAABgCS2AQAAAAGATXIBAAAAAIPRhgEAAAAAgpcOAQAAAACBAyYBAAAAAAOcygUAAAACg/j2BQAAAACCyS4FAAAAAwPhxgUAAAABgYYKBQAAAAIDJioFAAAAAoBG7gUAAAABg9MqBQAAAAAAL5YFAAAAAgMvrgUAAAAAgb/uBQAAAAOC0EYJAAAAAAAEXgkAAAAAApTyCQAAAAGDNQYJAAAAAABFcgkAAAACgCXuCQAAAAKA3m4JAAAAAAC67gkAAAADgPvSCQAAAAGCgKYNAAAAAILFVg0AAAAAgSGyDQAAAAMBGmoNAAAAAwH+8g0AAAACgP9qDQAAAACBQ5INAAAAAAHsghEAAAAAgJiuEQAAAAACZO4RAAAAAoBlLhEAAAABgCVOEQAAAAGBfZoRAAAAAAGR6hEAAAAAgubaEQAAAACDpw4RAAAAA4EfchEAAAAAgS+OEQAAAAGAP8YRAAAAAQNwPhUAAAAAAzBqFQAAAAGAdK4VAAAAAINQ5hUAAAADg6kKFQAAAAOAtTIVAAAAAwGiihUAAAAAAQNuFQAAAAMBq5YVAAAAAACTshUAAAADAfBuGQAAAACBuI4ZAAAAA4AothkAAAADgFDSGQAAAAKBKfIZAAAAAoF+LhkAAAAAg35mGQAAAAGB27IZAAAAAYPrzhkAAAABg4wqHQAAAAMB9FYdAAAAAQPQhh0AAAADgpCmHQAAAACBYWIdAAAAAoMifh0AAAADAqRqIQAAAAEDIVIhAAAAAACxciEAAAADgDWSIQAAAACADrohAAAAAYPSziEA= + KBZXds7jZUAtECBNt2JpQBTpB48/A3JABcaPA8rhc0ACpwfsrTN5QAUkbFci83pAWPsL8UWkfUA= - + - h7HSPwI51kD69itAIwqvPxTJPkBnw6xA2p4hQHMly0AOMt9AuMpPQERxY0BG2mlAOD1MQatPZEHVzipAolazQNg+KkGLTY5AwUWHQEyN0z99ztM/Qd+nQB78E0EoExdBGth7QGn4gkDD/VZAJ0arQOR0ukDVEfpBEvjlPxWFJEFQ38tCNBA1QXjN9T+5UT1AS9n4P3s54UDDvZVBOPVEQH49hkBkMFJBLkrtQLJvOUHRkg9BSvLLQHiMg0CQVNZAVv6lQBmYGkAnZARCa1r/QA/gDkDGpgZBFukOQAu5DkDZhfFAiVk+QOQPGEDLtTNAHyKVQLPerkBP7adAPOhpQLHvmEBb7fpAEI6HQJWUh0C22yNAzzQiQaRQYEBf1fdASZ2uQPCGP0BtxINAU1IDQvxlkUHZItk/Tb82QZRsfUGeFb9Alx1uQYiooEDgM2lBGJoqQMLvFELN0TZBFTYkQaTZKEHqTTtAQK6dQTzohEEEXDhBJnXoQHiOFkJSbo1AS+FfQatRIEFNuGBAGdXAP31KlUF8E+1A6LZJQPJmnUFUpipAdISuQZHawD8Ega4/ggU3QTE5VUGxTbpAFKoCQZLobkFohwVApWWpQTF1rj/es3VBBOlYQC2K6EAF7ixB3yhhQSAKzEF/GzBB0X3QQXLJq0F2ZNlAf30OQDVcEEIA239C/1LBP7e0BUDqehFD1isSQQUp+T/VKwpB0Hg7QJZGIEHYj3ZBg9WrQQoMzkA23fpCS/MoQYbIG0GUaTJAl3E8QdAWoEEyIPFBpDzeQcqzd0LBuwVAiEn6P3ouMkArN1JA4MVtQR3Eh0Eipy1BdHhLQYvfPUGOi31ARgEQQaUUYEL9Lz5BCA8YQI3vmkB/Kw1CEcqwQIDk0z8vY6xAVKMJQlIst0E/Co1AiJQ5Qa6vN0FEVFdAt3MfQBD1wD/FxbFBjFvfQME5gkFg02dBzrePQCp5lkF30t5AT1ChQehCjEB88sRBl57DQO2jWEG5rn5AEv+SQIgqykCklVJBIVogQQFzkkDPQps/WMiaQIDieELothdB4918QRoexkEKdF5BDWR1Qnb3EkFRVLRBcp0oQIhnz0BBNg1AoPhaQdFvnD8jvEhBqjflP/345T+WRohA4eC0QQXlgUGDNq4/SZrNQFXHt0DAw5FAjAIdQpvIlEE4zVZBG3yBQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAF7mZUAAAABAcD9mQAAAAKA2SGdAAAAAoARlZ0AAAACgOmFoQAAAAIA0pWtAAAAAwOODbEAAAABADqxsQAAAAACbyGxAAAAAIDEebUAAAADA/4tvQAAAAEDGcnBAAAAAwJzFcEAAAADA9dFwQAAAAIBojHFAAAAAQG4AckAAAADAWyRyQAAAACAMM3JAAAAAQP1GckAAAAAA5WRyQAAAAEC2E3NAAAAAgMdDc0AAAACAvYR0QAAAAMC0o3RAAAAAgOj/dEAAAADAlzh1QAAAAMDnU3VAAAAAgNLwdUAAAABAHDZ2QAAAAAD3fHZAAAAAAEWSdkAAAAAAO7N2QAAAAICH0nZAAAAAgOLvdkAAAABA0VB3QAAAAEBJY3dAAAAAwPV/d0AAAACAnJd3QAAAAMCPrHdAAAAAgOrQd0AAAACAtCN4QAAAAADrdHhAAAAAAEmIeEAAAADAqpZ4QAAAAAC0o3hAAAAAQI+9eEAAAAAAMBB5QAAAAIDETXlAAAAAwPtqeUAAAAAAlMx5QAAAAIDB5XlAAAAAwIv2eUAAAAAALA16QAAAAMASGHpAAAAAwOwwekAAAAAArUt6QAAAAMD5YXpAAAAAAGlzekAAAAAAdIV6QAAAAIDktHpAAAAAAHXSekAAAACAHvd6QAAAAEC+D3tAAAAAwPVFe0AAAABA2lF7QAAAAMAIf3tAAAAAwBjHe0AAAADAE+Z7QAAAAMBh8ntAAAAAQNkFfEAAAADAmDJ8QAAAAICyPHxAAAAAAGLafEAAAABAbud8QAAAAEDbFH1AAAAAQN4yfUAAAABACEd9QAAAAEDbXn1AAAAAgLFzfUAAAACA8qV9QAAAAMCnsn1AAAAAQJ/EfUAAAADAr+R9QAAAAMD5Fn5AAAAAQL+GfkAAAADA3c1/QAAAAEDU5n9AAAAAIPkIgEAAAAAgURuAQAAAAICfUYBAAAAAADp4gEAAAADg6PqAQAAAACBuR4FAAAAAYPlXgUAAAABA63GBQAAAACBBmIFAAAAAQK7GgUAAAAAgAtOBQAAAAIAeTYJAAAAAgGphgkAAAADgtXiCQAAAAGCQlIJAAAAAIF6+gkAAAADg6t2CQAAAACD4+YJAAAAAQN0mg0AAAADgkDCDQAAAAGDcUoNAAAAAQElvg0AAAABgW32DQAAAAODeg4NAAAAAYBmkg0AAAAAg2KyDQAAAAEB9t4NAAAAAIDvSg0AAAABg2+ODQAAAAGDm6oNAAAAAIKsphEAAAACAQlOEQAAAAABUlYRAAAAAAOudhEAAAAAgirqEQAAAAKBi7YRAAAAAYAH2hEAAAACAswKFQAAAAKCrUoVAAAAAgO+EhUAAAACgbqGFQAAAAGDKq4VAAAAAgKnahUAAAAAguOGFQAAAAADe54VAAAAAIPAjhkAAAAAgjCuGQAAAAMAqfIZAAAAAIHmLhkAAAABgBL+GQAAAAKDSw4ZAAAAAoGMDh0AAAABgCUyHQAAAACBiVYdAAAAAAJprh0AAAACg+3OHQAAAAIBQvIdAAAAAoLHCiEAAAAAgANSIQA== + NrgMGZxjYkDiYBUjzERuQBu6YmAmQ3BAOAsfS35TdUAbGD+0flR3QJMXaZZBpHtAj73/o25Vf0BdbNgGeNqBQCsMym5Dw4JAoS/RrfAihkArO7iY70uGQMxZU7A8W4hA5Y2YkGdMikCGrDOotFuMQBC4GpOzhIxAhtsh0mDkj0CqvQkdlmaQQHUEdnd2fpFA9K3busFqkkDSLWZzsn6TQAsxro3y/pNAUkVdiAhDlUC9RxOcOIuVQNJcVJ1eB5dAPV8KsY5Pl0A= - + - ZAJiQVd+EkHwZL1ANd0GQKJwd0HfcRpBiX7IQPPe9D8QU5xArjfmP3yCIEBwzXhBujeMQfacEEAh0SlB0ycYQFLpDkBscn9B964FQBt1rj9rDPhALmoFQaagzEBcBa8/HlPIQOJejECbu9U/YhIBQiVNa0AyTWZBq4nDQLbv40Bv3xpAS8RgQWnSA0Au+nJA77/TPwWkT0Dtw4NByudpQf/Bw0C3p3RAKYVGQHCQnEBXsIlAhc7fQI8UeEAphwdBJJ9VQZd1BUDYqYNALV0FQEbGTUH2f79ABvSbPxPviT8OK05AGHKRQWBB3UGKy/FAoyn5PzcBwT9AchBBBRDfQJxQ8kB+6jNAhT2jQAy920CSnMxApUY3QSg3NEJLGRpAw0JPQX7eZ0Cko+JAC56uP/+V30DrUJ9Bsqc8QQ4wP0HHcfBAeTwFQXefVEFq8zNAS0nUQILWkEBrOX5ASHHWQFkjNkG8oExBje1yQOMVCUE2kY5ACo9UQmIEj0E37J5A7EVnQc/+40BfsJVA8f+aQDvVB0IflBlCLK+KQaatyEH4zbxAHLNPQObgGEC8JqJAp7KFQR4SPUEnR+1AIHWyQIE2W0G2Epw/7j8hQLmNgUF0sXtAFl2aQUemNEAMdEdBDwDOQXN2RkBtYopCVhYZQW5fLEBQrS9BxwwMQZPtDkBqGSJBiOSiQcgmlUDXyodBGWQdQdjetUBAh0ZAMxLOQL10+D/dQIhAKZwhQGbY60CfVUZBnEfRQOzbAUG/YuNA8eVGQLDlKkE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAACvdZEAAAACAnkllQAAAAAD7fGVAAAAAIOPCZkAAAACAZgJnQAAAAICQJWdAAAAAQGhDaEAAAACAp6doQAAAAEC9J2lAAAAAQHTIaUAAAACgEa1qQAAAAEDZwmpAAAAAAF8ha0AAAADgZHxsQAAAAGCJBG1AAAAAQIctbUAAAADAqN5tQAAAAEA9525AAAAAgEQub0AAAABgZVlvQAAAAMBchm9AAAAAIFUicEAAAAAg5DpwQAAAACD5U3BAAAAAQI/BcEAAAADgjRNxQAAAAEBdRXFAAAAAQKOzcUAAAACghvdxQAAAAOA+4HJAAAAAIGABc0AAAAAgWStzQAAAAICaPXNAAAAAQLFmc0AAAADAv4JzQAAAAEA4v3NAAAAAwDHSc0AAAABAAeZzQAAAAGBAiHRAAAAAoLGldEAAAABAgyN1QAAAAKByZHVAAAAAQHS1dUAAAABg4OR1QAAAAED9AnZAAAAAYM8SdkAAAABgMHd2QAAAAMBW1nZAAAAAYMrudkAAAAAgwDN3QAAAACBxTndAAAAAwINYd0AAAABAMuZ3QAAAAEAI/XdAAAAA4E5CeEAAAACA8nB4QAAAAOAlrnhAAAAAoFvdeEAAAADgZ+t4QAAAAKALEnlAAAAAAMEfeUAAAADguDV5QAAAAICvU3lAAAAAILuFeUAAAAAgKJV5QAAAAKDKsXlAAAAAYCTieUAAAAAgRwR6QAAAACBEFnpAAAAAIMIxekAAAADgN2h6QAAAACD2d3pAAAAAIGusekAAAAAg67t6QAAAAGAm/3pAAAAAoL0Se0AAAADAjyN7QAAAAGCKMntAAAAAYDlee0AAAAAgFXR7QAAAAODdfXtAAAAAgEaxe0AAAABgRMJ7QAAAAGAd7XtAAAAAICAEfEAAAACggBN8QAAAAEAmM3xAAAAA4OtSfEAAAAAAWGB8QAAAAOB5cnxAAAAAYHOUfEAAAACAGNF8QAAAACAG4XxAAAAAQI3xfEAAAACghER9QAAAAEBB9X1AAAAAYFoWf0AAAAAgK31/QAAAAGB4wH9AAAAAYKg4gEAAAACAo2OAQAAAAKCRHoFAAAAA4EcugUAAAABgEoOBQAAAACD7soFAAAAAoD3YgUAAAADg7C6CQAAAAECPf4JAAAAAYAq7gkAAAACAF/yCQAAAACClBINAAAAAIPs2g0AAAACgfkWDQAAAACCPaoNAAAAAYGdxg0AAAABAvIODQAAAAABym4NAAAAAwJewg0AAAACAufSDQAAAAECBGoRAAAAAIGwzhEAAAAAgnYOEQAAAACCTxoRAAAAAYNgEhUAAAABAxB2FQAAAAEC3UIVAAAAAYLmShUAAAABgKJuFQAAAAKA39IVAAAAAoIcRhkAAAADglzuGQAAAAACGW4ZAAAAAAPV6hkAAAADg5MKGQAAAAOC344ZAAAAAQCPqhkAAAAAA23KHQAAAAKCf9IdAAAAAoF1ziEAAAACgpHuIQAAAAOCAyohA - - - - - - 2A8sQAqaqEAFhek/53KEQBS/IkBq3TdB5KGVQLdhwT+mTfs/DQvAQNj74ECxMxxAuCRbQDIgnD8PkbZAvlp+QDr+AECE6jNA08b4PwhWKkC3geY/uashQLTi0z/N2xJAAseuPy5uhEBYDBxAFblKQZTdM0Coz5JAqpePQATSDkA0GjRAniI/QMxbW0DmNZw/7GKCQMCufEBwv5JAIHCxQFikT0AAe6dA/+zeQE4jPUAva2pA7UsxQYtSYUA611hAIV2jQYwCI0BbfI1ATjaLQAwU40Dez4xAwy/IQD4kxkExz2RBO6YOQa4OgEEsJZ0/4iTlP91vhEFqxq5Az0WaQJfwIEFSQppAc1AhQBsHskD0109B2y5hQBhniEDcD1JA9BpSQca/XkFQzWpBAF6tQTzrz0Ex40FAQy6+QIK3QECAPRVCJjkPQZKOF0Gx4jlBts4qQOQteEGdPOY/QgUaQqy4M0BkdDhB0HSxQcc+YkLmwhZBzSm3QBKOlUCBpatAfxF+QFAqCUFc4xtBAJb/QP1Y30Ay4AtBJ3YUQb7pTEEH+1BBKTk1QSqwWEJ0bT5BtZ4DQBD9+0Ht8rVAkwAYQKYdsEH5nlZB5hvUP7NankAi6PNAHDWAQeqlD0EcY8hAQdQfQSTgMkClDwhBrw0VQfYWGEBGEwZBjGSXQdXIH0FnmylBGAPdQCRLIUA3k8RA/lseQX9wlUDZbsNA6y6fQM1qrUDa7ChB0VnYQtwy60D8cglB - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIK9XXkAAAACApSBgQAAAAEDUTWBAAAAAoNAKYkAAAACAAotjQAAAAKDpJGRAAAAAoJbmZEAAAABAA4FlQAAAAICQp2VAAAAAgDnnZUAAAADA3YRmQAAAAMAvmWZAAAAAAEDkZkAAAADAQiBnQAAAAAA8a2dAAAAA4EOHZ0AAAACANMpnQAAAAEDhpGhAAAAAQE5maUAAAABAy0NqQAAAAODcoGpAAAAAgLkKbEAAAADgVyVsQAAAAICbSWxAAAAAAJ9vbEAAAADgrclsQAAAAED/9GxAAAAAQK0qbUAAAACArQRuQAAAAIC4J25AAAAAQBGDbkAAAACAbaVuQAAAAED3BHBAAAAAoBJTcEAAAADgF+NwQAAAAABAMHFAAAAA4NuycUAAAABggMRxQAAAAMBi0nFAAAAAoGvecUAAAACAGvNxQAAAAADFInJAAAAAALJVckAAAACg45VyQAAAAECvpHJAAAAAQCYEc0AAAACgtF5zQAAAAIBVcnNAAAAAAJWCc0AAAAAAQrVzQAAAAABXxXNAAAAAgGbWc0AAAAAAC4R0QAAAAADSkXRAAAAAoDmzdEAAAACgEfh0QAAAAMDHEnVAAAAAgB0ldUAAAADAUFN1QAAAAEDeaXVAAAAA4POGdUAAAACAxp51QAAAAIAjsnVAAAAAANTRdUAAAACgovJ1QAAAACBpE3ZAAAAAQOw1dkAAAABALGJ2QAAAAIA4hXZAAAAAoD6bdkAAAADgCNJ2QAAAAGAp8XZAAAAAoCj8dkAAAACgbwx3QAAAAEC8MXdAAAAAoGFEd0AAAADgM1N3QAAAAKBRhndAAAAAQAzVd0AAAADgBel3QAAAAGD/9HdAAAAA4EYVeEAAAAAggR94QAAAAEBBZ3hAAAAAYA10eEAAAAAAsIB4QAAAAMDqjHhAAAAAwOKseEAAAADgLr54QAAAAOAL2HhAAAAAIIPweEAAAABAvzV5QAAAAOAcFXtAAAAAoDMxe0AAAABgeaV7QAAAAKALIn1AAAAAYI00fUAAAABgQ0F9QAAAACBeZn1AAAAAQKWtfUAAAABgKtl9QAAAAEC1Bn5AAAAAQDQ8fkAAAACgYEd+QAAAACAltH5AAAAAwP4Vf0AAAADgMZV/QAAAAEBkon9AAAAAgOwAgEAAAADg/RiAQAAAAOA5OYBAAAAAoJtEgEAAAACgBneAQAAAACAii4BAAAAAID6SgEAAAADg47GAQAAAAGAN0YBAAAAAoCTigEAAAAAAVjeBQAAAAKAHRoFAAAAA4IdMgUAAAAAA9W2BQAAAAKDVnoFAAAAAYDmxgUAAAADgUb+BQAAAAGDoD4JAAAAA4CYigkAAAAAAGGeCQAAAAMABeYJAAAAAYFSbgkAAAAAAIbKCQAAAAAB5zoJAAAAA4NXXgkAAAACgcwqDQAAAAGDKEoNAAAAAoB5ag0AAAADgv8GDQAAAAABT5INAAAAAIDdDhEAAAACANmKEQAAAAIDBbYRAAAAAIEmfhEAAAADAoCqFQAAAACD/SYVAAAAAoLGvhUAAAAAg+CSGQAAAAKCOW4ZAAAAAQCqahkAAAAAgO6mGQAAAAAAQwodA + KBZXds7jZUD+9P4gH+NsQKGDgcES4nNAqZq9oOoidUCPQYEegRJ7QKn4mfRCNHxA5ZWFIxmDf0Ae9USU2PmBQOjc8LV4IoJAHiQzvoSChUCiL9Gt8CKGQKJev9ecq4lAYucrZf3KiUApE9J0adOMQKKNrQFJNI1AtdypiFoekEAUIWDPCi6QQJQ4V+Rg8pFAVz4m3JZCkkDxYUfgnPKTQNdVHfHsBpRA7Wpe8hIjlUA7Uhl+yPaVQAOAn/M4P5ZAu2kQkx67l0B/b9+KVAuYQMjxH1d1Z5lAoO10bF9HmkAS4vH0oGubQA== - + - htcFQH7W5j94EsFAPb5vP2FdWkAaCTRAQNXBP83MBUC2GIRB+mUYQHcZnT9Ej5w/edSeQIIcBkICd35ARHihQPX+w0AbeME/CXI6QQEpKUCtPlhA9TcRQCgt2UDQZYFBL6zRQJ1tbEDXf/5A6f7WP4NHGEF5oVNBSNltQR3NoUAyvOY/Al2jQALERkDRgtQ/PlRQQAMd+T8mjA1BczcwQT58PUClt4BAeOprQJLLnkDlMdQ/zoy9QCIGBkAHsJFAXwKKQK+7gUGSuOJAXmFJQSe3A0HMopJBMoCjQEouikGDShFBetspQSBWfEDI3CpA8+DgQPYIm0EX3p9BvKLCP5fNG0DrNaFA0TdjQTKmFkCbKAZAgJXBP9YDo0GXQulBOFEPQKiQYkDWDlFC7cfpQBBQbz8Bx8lAIJAUQRKKwUAzsJFAQv8NQXzDikGw0FBBowMxQSJc1kAPOnJBUWGIQKkwH0G+bdQ/RpadQALSa0AzGQtC9UVjQIq0UUB9rJFB8d2CQGJ3zkF7CWtBY6CcQdDDZkKRhLNA8HjTQpIM7UFfHU9BMMsbQVpJdkBKEFBAterjQEK+4kGC+QZBgHIFQvxjv0A8/pNCUuOAQTTF5EB+bEVB/ylFQasL6T/ssAhBV5AmQbj4PkF5PjhD3P8qQIud3EAkY5ZAH58/QHKg90DobzZBvJ5aQIwXhEASlcZA6x8+Qrs6+T/l3Ps/WweEQGFHB0Cij+hAZDO8QIOqRUG24SpAQK2eQXg4sT8HIC9BDUtFQfMmakExiiVBv2F1QOUeM0GGv+JA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoJaRWEAAAADAXoFZQAAAAKAkx1pAAAAAwPeOW0AAAADAW8JbQAAAAIBGBVxAAAAAQCoJXkAAAAAg8RxgQAAAAEARNmBAAAAAoHoMYUAAAACAF2hhQAAAAAASpmFAAAAAQI7mYkAAAABgNOhjQAAAAADyAGRAAAAAQOcgZUAAAADAZUNlQAAAAMATpGVAAAAAQNjCZUAAAABgiuhlQAAAAGD//GVAAAAAYLslZ0AAAADgsUNnQAAAAAACY2dAAAAA4PsFaEAAAACAi0ZoQAAAAIDlw2hAAAAAgKjkaEAAAACAHwJpQAAAAGCyO2lAAAAAwC2DaUAAAACAKEhqQAAAAMAwZmpAAAAAALGGakAAAADAkKJqQAAAAMCkxmpAAAAAAKbpakAAAABAGwdrQAAAAIAbV2tAAAAAAAeGa0AAAAAAZtxrQAAAAAClQ2xAAAAAgMqGbEAAAACArqNsQAAAAEAlwWxAAAAAwK//bEAAAADAkiNtQAAAAEBlhW1AAAAAgN7kbUAAAABAQCJuQAAAAABSRG5AAAAAQGiNbkAAAABAAstuQAAAAIAb5m5AAAAAQHQBb0AAAADA9SJvQAAAAMBTzm9AAAAAQEABcEAAAACAPhNwQAAAAAAUInBAAAAAwG4zcEAAAABgRGdwQAAAAMDpo3BAAAAAoLfBcEAAAADAkNRwQAAAAIAO6HBAAAAAoM4JcUAAAACAZVtxQAAAAMBRonFAAAAAQGK/cUAAAADgzeBxQAAAAID98HFAAAAAYLIFckAAAABAiBRyQAAAACC8InJAAAAA4MFTckAAAABg2IdyQAAAAKBdmnJAAAAAQDazckAAAADAx8JyQAAAAOAR0XJAAAAAgN3ackAAAABACvJyQAAAAACsAXNAAAAAoLARc0AAAACAA2JzQAAAAIDrcXNAAAAAACGHc0AAAADAmqVzQAAAAAB6vXNAAAAAwG/ic0AAAADA8fRzQAAAAGD5CXRAAAAAYAcYdEAAAABAHzB0QAAAAGD8o3VAAAAA4NwVdkAAAADg7F52QAAAAIAJnnZAAAAAoIi+dkAAAABg3TB3QAAAAKChf3dAAAAAYKDmd0AAAABgfCV4QAAAAOD7a3hAAAAAAAbzeUAAAADgfx16QAAAAOCVK3pAAAAAYLRRekAAAAAgf5R6QAAAAEB4pXpAAAAAIBS1ekAAAAAgTfp6QAAAAEBPLHtAAAAAYGr0e0AAAAAgRwp8QAAAAKBe1XxAAAAAwOokfUAAAABgI4F9QAAAAGC/Rn5AAAAA4K5QfkAAAABAYmR+QAAAAGDq1n5AAAAAwP9Xf0AAAADAh2N/QAAAACB0cX9AAAAAwEBDgEAAAAAgiVOAQAAAAOCHcoBAAAAAYGl4gEAAAAAAbZ2AQAAAAECHuoBAAAAAIL3BgEAAAABg5+mAQAAAACBEK4FAAAAAILZLgUAAAAAgwqOBQAAAAGCjdIJAAAAAIJ3MgkAAAAAgofGCQAAAAKBgI4NAAAAAIPZZhEAAAABgs6KEQAAAACABvYVA + LOmK85jCZkBe4xb9Y+JuQFl7Y03ykXNA - + - dwboP7DNc0ANDCpAPpBuQIO6FkDF+eY/1g4NQUFLBEK2ludAgW8EQdgC5z+nwVNAXy/UP3+ggEBRnjxAWBhUQcufjEAK15I/POtGQHcTmEF1Kq1AQ5BLQZF5DkLVCQZA5BMrQI7wBUDjEAdBrtIIQTQ7DkFQBPc/qqCtQLv3LkB7HlBAwR2VQDszMkFVTNQ/PR6kQT0arz9eHQ9AGZwHQQBVHUGUGIlB94fZQbbhrECWO9Q/BGt6QKpInUB+iPk/Gz8jQOShl0AOXT1AepMtQEn6ikB454lA/ibCP9779kAa2U5ASW8EQXAW1D9THsJBxOlyQYWtVEHyWZBAjpyTQTBgvkHEp4tA+lZZQQz1ikAJkoo/WHorQZg5LUNaAgRBFA7kQVZIiEGHeNQ/EwEGQZKX7UA9PKZBlz0fQRc4jUAnphNB5wVjQbp6uUHEqd1B5qEkQa7oLUH6f4NB/U6aQNqMqEGBBGxAnE4+Qef3v0BkvTdBmIVmQeFEw0ATHA9AGG1xQU0xjUCN/ldB0byVQcjoT0ADhBJBbQsPQkqNiEAaNS5CmZLtQOAFyUGurIhBXGr5P3e9W0Lb/FhDfUq5QRn6hUGsRjRAn+sFQNo9+T9GUopBWWmnQaOA6T9H0C1BfD6nQOv2tUCtO4RAuKP5P5esRkBM88ZA4D9TQDeGYkDKWn5AVNYFQI5QtT9jwnxAwbMIQDXcUED0t9Q/UgJ3QjddGEBFFOc/y6ilQJrYQEEH2oVAOXLQQAuwR0Bb4ElB + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgDs+ZEAAAADguqlmQAAAAMC5BWlAAAAAAEIEakAAAABAcYxqQAAAAIC1gm5AAAAAgHPQcEAAAADASNJxQAAAAABxVnJAAAAAALgVdUAAAAAAfVx1QAAAAIBX0HdAAAAAgA3yd0AAAABAiAN4QAAAAMDC5XpAAAAAgIIoe0AAAABAkEJ7QAAAAEB38ntAAAAAQFoAfEAAAAAAW3J9QAAAAMA8A35AAAAAgDAffkAAAADAboV+QAAAAEDcsH5AAAAAwA84f0AAAAAANX9/QAAAAMDhv39AAAAAYB0DgEAAAAAgVdeBQAAAAGDLOIJAAAAAgBGehEAAAADgOuOEQAAAAKCL84VAAAAAoEREhkAAAADg1eiHQAAAAKAWjYhA + KBZXds7jZUAtECBNt2JpQIkw7CrX8nJAPsnXHQrCdEBpJPcIHJR+QI9e8X2nMYBAxZb8nE8CgkCPjd+nU7qDQPDAfp+bOoRAgcX/N93yhkCPvM3R/0KHQCDBTmpB+4lAgfTtYYl7ikBL69BsjTOMQIEj3Is1BI5A3O9RBc/rjkC5znD9a+qRQOa0K7o4XpJAA79Cm5fuk0BD3hu2dF6UQBnUg5y9CpVA - + - aWXXQD6CjEDJqidB2S0PQO/1BUD4TlFAdKIrQBNj1UB5ewlBMqVaQBHHDkEamj5AfLGMQJpYWkBSaqlA4bu2QBC9D0D8/ChCoqczQeVI1ECq7z1AUkv6PzXIu0DrgJtBsZhrQA6yUECgavFARWHGP6i8BkIi8ddAZ1WRQELm5z/9FFBAo2gGQOcZnj/GoU5A + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAoF00cEAAAABAV+FyQAAAAMDqo3NAAAAA4CXkc0AAAADgKhN0QAAAAIAfHnRAAAAAYOBNdEAAAAAgi5N0QAAAAIA88XRAAAAAwKUQdUAAAACAO1N1QAAAAICOZnVAAAAAgOu3dUAAAAAAwQR2QAAAAIDcM3ZAAAAAAKgPd0AAAADA4yZ3QAAAAEAuNXdAAAAAoDBBd0AAAACAflR3QAAAAGCLtHdAAAAAQE/2d0AAAABAVEJ4QAAAAIA/VXhAAAAAAH9yeEAAAACAcp54QAAAAEDq1XhAAAAAwBvTeUAAAADAZv55QAAAAIB2EnpAAAAAwH5CekAAAADALJV6QAAAAMBW0npAAAAAQKz3ekAAAABArSF7QAAAAEA0xXtAAAAAwKVofEAAAACAU5R8QAAAAADPtXxAAAAAAA3lfEAAAACA8/Z8QAAAAACEYn5AAAAAwGSUfkAAAACAVCR/QAAAAADtTn9AAAAAgLXZf0AAAABADCyAQAAAAGBUM4BAAAAAALJZgEAAAAAgtu2AQAAAAOCRS4FAAAAAQI16gUAAAABgC6WBQAAAACCZqoFAAAAAgNfrgUAAAABAR3KCQAAAACBziIJAAAAAIOCegkAAAAAgFiCDQAAAACAWU4NAAAAAoK7qg0AAAAAAliyEQAAAAGARcoRAAAAAIKB7hEAAAACg8QGFQAAAAMAICoVAAAAAYGqthUAAAACAgCuGQAAAAABcM4ZAAAAAoEwsh0AAAACgwLKHQAAAAKC1uodAAAAAAFZEiEA= - - - - - - Vz4HQQYqekCYchFAW6D1QMgub0EB9rZAaB+DQV/rwj/7/vo/R6nAP3Z3RUFtOus/cZ8mQOSb1D+tlLM/WreWQZEn6D8Yr/FAZza5QPnsikCa+YNBqOZZQDqWbEGqRcM/UHAaQT9aW0DZ6mZBhYngQJ1BxECkde0/kTSAQI65eUDMYbM/C2GzP8pVFUGGa51ATSIYQEIaiEEdQGtA2ZV9QNp2IkCl4cpAHJPEQEOQCUHHK3I/xu6xQP0Wb0CgQAFBEC0HQDRQXkGZ/nE/Bm5cQc99UEC0Vtg/RJsBQatIEEGoxQ9Ad3grQDGXoEC8xLNAA7pFQCgc40A3QUFC7broQOiL3EHP5r5BOy0ZQd8tPkBhL5NAhW+oQLTs60Aj2eNAf943QQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwNTIaEAAAAAAAENpQAAAAODwg2pAAAAAIO7cbkAAAABAM2JvQAAAAMBaNXBAAAAAIHaTcEAAAAAgUlNxQAAAAMA1VXJAAAAAAID2ckAAAAAAIQJzQAAAAAAonHNAAAAAANdUdEAAAACACLV0QAAAAICG7XRAAAAAgIwFdUAAAADA/iF2QAAAAMAEaXZAAAAAgBUEeEAAAAAAHdZ4QAAAAABl8XhAAAAAwBxDeUAAAAAAbk95QAAAAMCa7XlAAAAAACE2ekAAAABAHUB6QAAAAEDoY3pAAAAAQFCkekAAAACAvox8QAAAAAAor3xAAAAAAHvjfUAAAACASeB+QAAAAEAHIn9AAAAAwKY2f0AAAAAAWIR/QAAAAMBnxX9AAAAA4CEsgEAAAADgmz6AQAAAAEATdYBAAAAAYArBgEAAAABglvaAQAAAAIC6/YBAAAAA4CADgUAAAACAhRuBQAAAAIDFI4FAAAAAIJNQgUAAAAAA/laBQAAAAEANXIFAAAAA4OOAgUAAAACgYpaBQAAAAOAFroFAAAAAgO0rg0AAAACg70qDQAAAAICtcINAAAAAgNCHg0AAAADgqp6DQAAAAKD+qoNAAAAAwLINhEAAAAAAZRWEQAAAAIC6I4RAAAAAoLMrhEAAAACg0DSEQAAAAMDiOoRAAAAAwBS6hEAAAABAu+GEQAAAAACb64RAAAAAIO4ShUAAAADgl4KFQAAAAIDzo4VAAAAAQEbRhUAAAAAgf+CFQAAAAGD+8oVAAAAA4MMXhkAAAABgBnSGQAAAAAApz4ZAAAAA4HvZhkAAAAAAnuOGQAAAAOCTDodAAAAAoHceh0AAAADguFeHQAAAAIAwbYdAAAAA4GShh0AAAADAG6uHQAAAAKDxtIdAAAAAgOa8h0AAAADgf+CHQAAAAMB1QohAAAAAAFtLiEAAAAAgIZiIQAAAAKCvo4hAAAAAAJ+riEA= + NrgMGZxjYkA= - + - W2jcQEepGUCPT0dA+jL2QFDO/0D5GndABC7DQWzXGED/a+tAMCxgQRnMcEDO9a5A+742Qf+viz/D2IlAqC41QXsLoT8zuCtABaFIQCyTPEEf46NAjOfPQW6oD0BU+ZJAIAUTQLZ07EA0/CxBTgL8QEVmUEBAhxxBRFnbP9JPFkA8CJ9BrNyaQDfiBUE19g5BrV01Qj76+j8w1hBAMz2JQenCBkDV2FhAD6CbQE2nf0DEnhdBOfPgQCDcykCpcSJAc2MaQJbJBEHiVYFBrCvUQLddwEBwV4hCChEVQuh2nz9CRhdByJwXQjeDSUHyo9U/CKAXQeFJNUBKsw1BuJ0QQMWh1T+zzAZCoHcVQf9ChEDI5sJB4fNCQXSBXEFpSCJAo+7hQEYy6kDQu0dB1HXDPw8rqUCBsU9B3eGmQcll90AvAyNBGgKNQfLMD0Fdxb9AEG+eQZlOQkG4TRhBWH6NQMYexT9WINJARW4HQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgNWkZUAAAABAhOlnQAAAAKB6r2pAAAAAQO9+bUAAAABgc6ZtQAAAAODxYW9AAAAAgERvcEAAAABA+EJxQAAAAMBoZHFAAAAAwIqmcUAAAACALUJyQAAAAMAggXJAAAAAgFWWckAAAAAAIcRyQAAAAMBqU3NAAAAAgBCic0AAAADAqnd0QAAAAEA+hHRAAAAAwGPjdEAAAABAxlR1QAAAAEAx9XVAAAAAQJgPd0AAAADAdlR3QAAAAICH9HdAAAAAQDUTeEAAAABA85J4QAAAAICet3hAAAAAgI3DeEAAAACA4c94QAAAAIDm4XhAAAAAAL/0eEAAAAAAOgV5QAAAAMB1onlAAAAAANLWeUAAAAAAzuN5QAAAAACtFHpAAAAAwH4lekAAAADA0YN6QAAAAECqknpAAAAAgIlze0AAAAAAAoR7QAAAAABLxHtAAAAAwAAAfEAAAACAQiV8QAAAAIAqT3xAAAAAgFWNfEAAAADAnZh8QAAAAMAmNn1AAAAAQNanfUAAAAAAprZ9QAAAAMDh9X1AAAAAALwifkAAAADAfU5+QAAAAEB5WH5AAAAAQN9jfkAAAABAmH5+QAAAAACsvX5AAAAAAPfSfkAAAADATAJ/QAAAAACpF39AAAAAAElDf0AAAADAh2t/QAAAAEAnjX9AAAAAwO3gf0AAAAAAmBWAQAAAAADeIIBAAAAAYKVAgEAAAAAAkEeAQAAAAGCJcYBAAAAA4DCLgEAAAAAgCquBQAAAAIDCM4JAAAAAYI6DgkAAAAAgSaSCQAAAAIDGqoJAAAAAoCfKgkAAAAAgFBWDQAAAAGAGGoNAAAAAYCkpg0AAAADgYzODQAAAAKAWZ4NAAAAA4KCdg0AAAADgYqSDQAAAAGBcqoNAAAAAwGBUhUAAAADgc1uFQAAAAICDYYVAAAAAYG5thUAAAABAnuKFQAAAAOCD7IVAAAAAAEV6h0AAAABgcHKIQAAAAGAx/IhA + KBZXds7jZUAtECBNt2JpQGS4z0t+BG1AiDDsKtfyckBxFNrxHgJzQMdo3va2cndAqjnuW1pjeEAdveL7TuN7QMeKqkay83tAuohzgPMpgECOb9clJTKAQEmx0XUf8oFAuZlZKHFqgkDkw9sqvaKEQNq1Ug5hqoRABeDUEK3ihkARyoDQHsuHQJQIMwbZqohAcs1PunHji0A= - + - jsU0QSDNIkAYPFxAxfaxQAq1WUDFqdZAzGXYP4sewkCFRyxAr/OBQDqegkBDNoBCMH+KQBeAx0Ab51BAW1DtQC37EkETQZ8/ERehQE4TgECu7ItBdba+QHNN6T8gbdc/N0zxQUaC3ECj1A1BiJq7QBQ+nkAXFJ8/wQ4eQUeI6T8M/r1AQCDiQdFjJEDg9ZVBAYnpP/eM/j82a/dAtj6SQB9no0CxG4lAgr8lQOO3CUALktY/DNkLQq0zh0EdUj1ALH7ZP1jdNkD4ZDVAm/U3QNUOCUJx3MFCyGxmQIoI7D+Mq5FAEWznQSC1n0A7JtNAGiHAQETVD0HY7AhBkwWJQOkybEAX8b1Av5ztQBp9NUDOt/1AxikHQC9fxEAcJKBAw5XpQH/2D0Io171ArdY+QOkoEEGubpM/R3jlQZWhEUA0abhAe/iRQKQGiEE2EEBBO61iQFE7SEDQscBAN+NaQaJEm0NLzidC8rTzQDXckkCafKFC + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAACPyckAAAABgOBR1QAAAAMB4JXVAAAAAoK9zdUAAAACA1vZ1QAAAAIApBXhAAAAAwCJSfEAAAABAmit9QAAAAMAR5H5AAAAAIH8ggEAAAADg9VqAQAAAACCxc4BAAAAAwA7BgEAAAAAggduAQAAAAGDVsIFAAAAAoOLagUAAAABg7eGBQAAAAIAUI4JAAAAAYG8rgkAAAABgxXuCQAAAAEBVzYJAAAAAID/igkAAAADAmjODQAAAAKByO4NAAAAAoPFcg0AAAABg6KmDQAAAACA1s4NAAAAA4K7ng0AAAACgOfODQAAAACAYAoRAAAAAIHYXhEAAAAAgID2FQAAAAEBBU4VAAAAAIJ7ahUAAAAAgz9+FQAAAAICQI4ZAAAAAIIMqhkAAAACgw2uGQAAAAMCCgIZAAAAAgKSFhkAAAADgQ8SGQAAAAOB/zYZAAAAAACYhh0AAAACgOaOHQAAAACClzIdAAAAA4HPqh0AAAAAAw/KHQAAAAGAr/YdAAAAAgM4JiEAAAADgeCyIQA== + U6vsr5viYUAoFld2zuNlQGS4z0t+BG1A4mAVI8xEbkAACNcwPjN1QDI6xHmXk3VAT4uAZO8jeUAAZrOElkR8QJ4kwOAuKoBAAOJHbPeqgUAvKUF5cOKCQAARNpajM4VAJgjBp6d6hkApEb1ltmuIQB3nQNbeEopAVDs/aAKkikAdFi8Ai5uNQFRqLZKuLI5AwKF8jgtakECqzA1erdqQQMDhTl/T9pFApSXhZ0zmkkCk9yFnCXuTQLs6ImlyApRA6wvRYR9flEACT9FjiOaUQDIggFw1Q5VASWOAXp7KlUBINcFdW1+WQC15U2bUTpdAQ46UZ/pqmEAtuSU3nOuYQMOli3xQL5pA38+KReJ3mkBDvYKRpvObQF/ngVo4PJxAWdLDkswPnUDb1sHxUwieQG1Sh/rVq55AV8YBiW/Un0D3NL8HFjigQFAkoSpImKBAt8A6EkEaoUAOHEH2VX6hQDKmmPNg8KFAd0y2HGz8oUBp158gh76iQPIxFP6L0qJAFrxr+5ZEo0DCYtInqoSjQE3tcii9EqRA - + - BbXWP7Dm1z+8b2RAmP0oQc26bUD0QmNA0SBkQKGKukA9IAdBOd8JQZ7Zsj8b0glArXQiQNU6r0AQ5dc/SNy7QJwQSkARkNNBecPlQCnC0kBS8rBAXznqP/twm0Cy6ONAEAc1QIuiQEDNzoRAVm0qQe2sS0F85SxAjZa9QLq+dkDC6AhAJ3MbQAzbKUHidm1AN3IeQYlaI0Bp741A4Jk1QfwVLEASy6lAE5OoQFG9bUCymdRAulLnQfXJNUGirZZAWgDYQGaeB0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQMtPXkAAAADAhiJgQAAAAACXQmBAAAAAQB2lYUAAAABAbwFiQAAAAMC/ImJAAAAAYJxpYkAAAAAA64ViQAAAAKAXwWJAAAAAgERfZEAAAAAA0DxlQAAAAMCj4mVAAAAAAAH9ZUAAAACAbSlmQAAAAGAQ32ZAAAAAgMtoZ0AAAABgrERoQAAAAOAgymhAAAAAQP0GaUAAAABAvmdqQAAAAMBYoWpAAAAAgDPAa0AAAABApd5rQAAAAAAT+mtAAAAAgDknbEAAAADAFEFsQAAAAMBoaWxAAAAAwMumbEAAAADAdQltQAAAAMBOdm1AAAAAQEzlbUAAAAAAgCRuQAAAAMAwlW9AAAAAAEPHb0AAAAAgHipwQAAAAMC0gHBAAAAAAFyhcEAAAACAArZwQAAAAOCGwHBAAAAAoIfycEAAAAAAoQNxQAAAACCYMHFAAAAAAOdCcUAAAADg7GBxQAAAAEBkpnFAAAAAQPwgckAAAACAo0FyQAAAAKAdXXJAAAAAwFVuckAAAABABHtyQAAAACBulXJAAAAA4LWhckAAAADAcMNyQAAAAABQE3NAAAAAgMofc0AAAAAgzTpzQAAAAOBWRXNAAAAAwKyTc0AAAAAAidVzQAAAAOBe5HNAAAAAALX3c0AAAACA2RN0QAAAAOAxIHRAAAAAID80dEAAAAAAh0B0QAAAAMByYnRAAAAAwLGzdEAAAAAALMh0QAAAAEAx5HRAAAAAgLXxdEAAAADA1/90QAAAAABAInVAAAAAYKYvdUAAAACA7UB1QAAAAMD/b3VAAAAAIN2HdUAAAADgo6N1QAAAAGDwtXVAAAAAYIDQdUAAAACAsdp1QAAAACBzAnZAAAAAoJMQdkAAAABgdiB2QAAAAOCFP3ZAAAAAQKRLdkAAAACg01Z2QAAAACCTZXZAAAAAwDKEdkAAAABAaqN2QAAAAKDSr3ZAAAAAwIPAdkAAAAAg+9N2QAAAAODyBHdAAAAAgOMjd0AAAABAIUx3QAAAAODRn3lAAAAAIGu9eUAAAAAAMRJ6QAAAAMAPIXpAAAAA4A9yekAAAACADyd7QAAAAODjd31AAAAAoEkYfkAAAAAgZGd+QAAAAGBxd35AAAAAYDBTf0AAAAAgmoR/QAAAAEDzmX9AAAAAwMjDf0AAAADgawOAQAAAAOAYSYBAAAAAwL5agEAAAACgDGOAQAAAAEAccIBAAAAAIGuCgEAAAADg1+2AQAAAAEAmAoFAAAAA4FETgUAAAACg1VmBQAAAAKDb+oFAAAAA4IQhgkAAAACgpyuCQAAAAGBpX4JAAAAAQLbGgkAAAADAFPqCQAAAAKDFBINAAAAAAHVLg0AAAACg0FGDQAAAAMBleYNAAAAAoOcKhUAAAADgiG6FQAAAAOCueoVAAAAAACaIhUAAAABAc5OFQAAAAOCfwoVAAAAA4NXKhUAAAABgBSWHQAAAACDxg4dAAAAAYC+0h0AAAACAMzqIQA== + KBZXds7jZUA3lC1samJwQOzIyX7kUXFAkqB3ty2zdkDahsnbUoJ4QOj0e7zFI3tA+NeFxqoSfEAFRjinHbR+QJFL+sg6IoFA/BoxjQGSgUAgdFi+ZuqCQItDj4ItWoNAtm0RhXmShUCxeNlWqKKFQBqb26EFq4hAFaajczS7iEBA0CV2gPOKQKufXDpHY4tAz/iDa6y7jEA6yLovcyuNQMnwGCWf845A6BO5SiwikECsjDuN5V2QQC8oaEVCBpFAwqF8jgt6kUCrF6jcXdKSQNkkT2E8DpNAIqePLV1qlEBdLg3rox6VQA== - + - UD+NQGnaCUBscgdBrHpyQOxpjUD/fnpAa/nsQErbyUCmCrM/UJA/QFeCF0Gk2iNAr2QJQGVApEBJ6AxBvHKEQPBeLkCMiyVAUWZWQNIKcUDka39AnfedQOzpikHwtuRARexRQPbLokCSsEtB5oNIQEhAI0CWiypBtPCaQB0xeUHKCDhAKfC1QLYfHEFJxtdAxE9IQZEnWkBYZFFASiQ7Qk23kkEGygdAuMXFP3kj0UCAG1BBMWXjQNBtDkH0TBFApHKEQc7aJUGeYYNBgyizPzCfGEEbseNANrGoQA6xDkE8ECBB8ih3QOMuEUBy6gdBRB6OQNy1RkHxKRRBIe+pQGBQPkCeXDZAfWi8QW1XR0GB+kRBrTARQDJP8UEXPmNCCHP5QX5PlUGTp4VAD+yKQGkT5ECfhJtAAtRMQu3LY0GQypJBwpu6QGI7bUC4tqBBfLDoQNDpx0DnT9pA8GezQPKTUEFfILVAZfyaQZNIM0Hxb2RAsbwTQLhmgEDBbuNA9OZIQDigqEARQrNAsIf8QOj0PEG7W99AF3E4QWVCqUGdn29BmCVtQBzzxkH/cQBBw4bPQYMPtUDB2o9AgWY0QWTBvUI6xiNAspNIQPfoqkBhxuVAQR+GQBmeA0GKq/RBVLqSQNq/IkDN2w5BMiAAQd0S6z/JlphAktCEQAnom0APhcFAdaODQXCh/EBp26A/fu5DQQB0eUAepeNAf9DqP77lEEE9xKI/S16CQZwXA0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYP/MY0AAAACgGWRlQAAAAKCZ42ZAAAAAAFIqZ0AAAADg3J9nQAAAAAA952dAAAAAwFfoaEAAAADAIQFpQAAAAODOhGpAAAAAYMINa0AAAABAqylsQAAAAGC0x2xAAAAAAGvlbEAAAAAAEUJtQAAAAIA0gW1AAAAAwMCGbkAAAAAAGr5vQAAAAMBneHBAAAAAgNiRcEAAAADA0wBxQAAAAEC+EHFAAAAAAOpPcUAAAACAUcRxQAAAAOCtHHJAAAAAIDEqckAAAABAdzVyQAAAAAClUXJAAAAAQL+CckAAAABghI9yQAAAAMDWnnJAAAAAQIrLckAAAAAAxuRyQAAAAICJRnNAAAAAgJF2c0AAAAAAZqBzQAAAAMB4sHNAAAAAwLc0dEAAAAAAx0V0QAAAAECos3RAAAAAQM7CdEAAAACA0zZ1QAAAAADYRnVAAAAAAKmkdUAAAABAYxJ2QAAAAEDhP3ZAAAAAgBmydkAAAADAo9h2QAAAAADe5nZAAAAAQJT3dkAAAADADxJ3QAAAAIB4PXdAAAAAwEDHd0AAAABAld13QAAAAIDpUHhAAAAAwEuTeEAAAABA3dF4QAAAAIDq4XhAAAAAgH8BeUAAAADADCJ5QAAAAMBkenlAAAAAADaleUAAAACA/L55QAAAAMB/InpAAAAAgO1CekAAAADAFFJ6QAAAAID2b3pAAAAAQI9/ekAAAADADMJ6QAAAAIC8BXtAAAAAwN1Ee0AAAACA8517QAAAAMBUJ3xAAAAAAGpQfEAAAABAqLt8QAAAAEDdz3xAAAAAQK7ifEAAAACAnPZ8QAAAAIDdLn1AAAAAgJrJfUAAAAAAReN9QAAAAABT8n1AAAAAgMsBfkAAAAAAmit+QAAAAEAOPX5AAAAAwPhMfkAAAADAK3B+QAAAAEBwin5AAAAAQBGrfkAAAADAIMd+QAAAAIDI435AAAAAQCcPf0AAAADAgi1/QAAAAMAYR39AAAAAwGhTf0AAAABgyGiAQAAAAGCDb4BAAAAAQHrSgEAAAACg8vmAQAAAAOCsJYFAAAAA4P4vgkAAAACAFoGCQAAAAEAXi4JAAAAAAAGfgkAAAADgF6+CQAAAAID7yoJAAAAA4Bszg0AAAACgV1CDQAAAAKCMc4NAAAAA4FD+g0AAAAAgGCmEQAAAAGDRLoRAAAAAQM5ihEAAAACgMGyEQAAAAKCauIRAAAAA4KL1hEAAAADgXv6EQAAAAKCaFoVAAAAAIGZChUAAAACg9lSFQAAAAKC6WoVAAAAAIBN/hUAAAACgG4SFQAAAAKDPq4VAAAAA4La1hUAAAABg/rqFQAAAAKCw44ZAAAAAYAMLh0AAAADATluHQAAAAMCGjIdAAAAAYB8ciEAAAABg2dmIQA== + KBZXds7jZUD60UzrnGVsQMTDOq/mY3RAqZq9oOoidUA38gnAwjN7QP9ls4SWhHtArtmomziigUDKuiL1zNqCQHUFT6ukqoRAkebIBDnjhUA/DRheJsOJQCTHbECQ64lA6/ISUPzzjEBdXtRIflONQOFFzzIFNpBAWv1tAT8GkUBgXcZHW/qRQA== - + - 1hzrP33SY0Ha0SNAw80dQP+kDEBRgo4/olfPQFF/kkBPON9AAqr9P3yikkD73mdAGyPuQLn2SEAwoI1AYPNQQM8l30FvF39AmFTXP3T4g0GJV3VBSo/SQDn5qUBnzQ9AHA6zQAcidUBpnxpAbt4jQD5BjECBXJhASfnCQBtgR0A74ftArhwLQGEH+UEegtxA1YtRQC55KkGWJaJBPgLQQHUHPEEEqT9A2TsQQFvnu0AG4lJCspKEQOdYLECXMXZB5EnYP6D5t0A7WmtBdMaCQM2/Q0HAs+1AbrKKQRxnGkAqI7xAKhRlQLyPskA3+gdAdweBQLrZSEAMdoBB0NkjQK+BbEAhA3ZA+uCSQhMAGkFbhTlBlbrFP2hc5UFI/jVBKxVSQIyWDkFHrrM/EhcMQK12fEAjSCtDNrUdQkcQNUBiqjNB1RrTQN/OQ0EgDYVBtJZqQcrh8ECncJVCBvRtQJBUbUD+Z3ZAC3KEQClizEAgvyNApOsIQAw5kEEmMo9BQdVtQD+h2D/G87lBZX0YQS6qmED149c/rumlQelKE0EtlBJAtgJSQF9FkkCTCJdAXCnYQMNh3EA23UNBeWqpQfVywkEHoQtCd866QcTil0EhkgtCBRstQA6B2D/NdKJAOO/nQjkR60FUFkdBGLWgPwGOqUCaRpJBRXfOQDAMoz/zHI5A8rcPQUVb7kA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYOzlZEAAAACARIhlQAAAAKAnIWdAAAAAIIN9Z0AAAABAtNtoQAAAAIDoJ2lAAAAAQLpoaUAAAABAkClqQAAAAEBxRWpAAAAA4NueakAAAAAALr5qQAAAAGBsG2tAAAAAQK1gbEAAAABg4+JsQAAAAABUjG1AAAAAAC/rbkAAAADAPzBwQAAAAOD36nBAAAAAAKABcUAAAAAAHhRxQAAAAEDDNHFAAAAAwHtecUAAAADAGo5xQAAAAEBjg3JAAAAAgOSwckAAAACAEs5yQAAAAGDN33JAAAAAANP0ckAAAADA6zdzQAAAAADPdHNAAAAAAKOfc0AAAAAAQ8xzQAAAAEDk3nNAAAAAAKwidEAAAABAxS10QAAAAIBGUHRAAAAAwEyndEAAAAAA2j51QAAAAIDdfXVAAAAAwO0ZdkAAAAAAJD92QAAAAIBDdHZAAAAAgOSXdkAAAABACMx2QAAAAMDz4nZAAAAAwFdUd0AAAABAra93QAAAAMC9HnhAAAAAANlCeEAAAADAoHR4QAAAAABeeXlAAAAAgECVeUAAAACAa8d5QAAAAABv83lAAAAAgABuekAAAACAHYR6QAAAAAAYk3pAAAAAwGiiekAAAADAk716QAAAAAAQA3tAAAAAQNsQe0AAAABAAIV7QAAAAECokXtAAAAAwH3Xe0AAAAAAk+J7QAAAAEA08HtAAAAAACYDfEAAAACAmjl8QAAAAACbSHxAAAAAwAQwfUAAAABAjFB9QAAAAADSbX1AAAAAgJnFfUAAAABASPR9QAAAAAAzDH5AAAAAABozfkAAAABAj0R+QAAAAIBdb35AAAAAQMmAfkAAAADAe4x+QAAAAIDJ3n5AAAAAAAz1fkAAAADA0BB/QAAAAMCNI39AAAAAwCGnf0AAAAAg5A2BQAAAAMBFHYFAAAAAwLJBgUAAAACA76uBQAAAACAwJoJAAAAAIOpbgkAAAADAtwuDQAAAAOAuEoNAAAAA4Jcmg0AAAABgIUuDQAAAAECsaoNAAAAAIMzbg0AAAAAggfuDQAAAAMD7IoRAAAAAoBE+hEAAAAAAO0uEQAAAAMAJY4RAAAAAYKd5hEAAAABg3paEQAAAAEB/pYRAAAAA4PuqhEAAAAAgCOaEQAAAAGAJ74RAAAAAIO43hUAAAADgO0CFQAAAACBaw4VAAAAAQGrKhUAAAADgcSuGQAAAAKB4hoZAAAAA4GXAhkAAAADgBVOHQAAAAKDPGohAAAAAABZKiEAAAACAdFyIQAAAAGDehIhAAAAAQPzsiEA= + NrgMGZxjYkAot2DdIQNrQBu6YmAmQ3BAlLmMQumSdEAbGD+0flR3QJQXaZZBpHtAo54wAnDlf0DBarT5V2qBQFF+Bitke4NA4oKHw6UzhkCLcn2s2YKGQA2tCcbxa4hAi6Fr1oULikCc1We7HTSKQO7ONfMRpI5AAAMy2KnMjkAPKnfhgC6RQD2lrzdqUpFA8z9K6baykkAhu4I/oNaSQLDj4DTMnpRAuf1eJxizlEBi+kVDEuuWQGsUxDVe/5ZAqQ71PSjPl0DrK7tKtMOYQL4jNj9O65hAB6Z2C29HmkDQrx8k9U+bQIe9bSDFC5xATJ9fuxAcnUApH+pzATCeQMy2VtBm4J5AqTbhiFf0n0Am56ZyXlKgQBQn7M5W3KBA1fuecHxSoUA= - + - 5zhiQFPDUkBOTM5BdW+TQNT3dkDNyAZBJw7GQdnPWkBPc0BASzw1QPUir0DxpytBSJU2QOjKRkEYO75AIdeOP8qUG0Kx+FxAVzgIQCC9SEBRNrdA6IGZQKp66j9QA9JAuDp2QAs/vUIdZqVAiWDFP4GiXEGLg8BAA9X+QXEuwkA+xNBAdyE2QEcdCEAvj3dALGkqQdhvRUH1JndA7MFhQCJrTkKV3kdBw8igQI5Ez0AxL8g/uGgpQTLQ9ECnn1JAQCMKQc2FJUGiddxA8f+tQcJABUEDQlpAFb6CQf2okEEDp65Ar7/9P74qJ0MXNhlCx83JQDCCv0CG9gxCIjRKQqy2oUIfLi5CU9GTQM1tr0BCav0/tmQgQVGYkED063RDtrCTQBzRHUEkE8hA6JQ2QKDycEEkcMVB+hkCQlY1OEFpgJ5BbEYwQEohh0FMoYRAVIhuQL57NkAUrhpAUIWEQdhJ6z/C4QNBspSEQctayEDBuTZAGgwBQsakukAMAyRA5GLxQGSO2EBdUH9BqlNrQZSQAkEzZYRAWU82QHGckEEc2wNDD9/xQSbtUUHJNgNCOCOFQxOwSkCUqvRB9kMRQFkUuECcPw9CMQmlQMg0EUAlvPxA6/DXQH8HBUHhLP4/Lk4/QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4LAjaUAAAADgSZ1qQAAAAABe525AAAAAIPk+b0AAAACgyyJwQAAAAKBhk3BAAAAAAE0RcUAAAACgdzJxQAAAAACU8XFAAAAA4BhSckAAAADAjjFzQAAAAIAJ8nVAAAAAwHZ0dkAAAAAA4/d2QAAAAMBkMHdAAAAAANCEd0AAAADAZ493QAAAAIA3sndAAAAAgFXXd0AAAACAA/N3QAAAAMCKZ3hAAAAAAGBAeUAAAADA+2J6QAAAAMBm2XpAAAAAQEYSe0AAAAAAtW57QAAAAEDK53tAAAAAQGn0e0AAAACAtSF8QAAAAECvQnxAAAAAAKaHfEAAAACAX5J8QAAAAIBFonxAAAAAgEf/fEAAAAAANFh9QAAAAMC8bH1AAAAAQKamfUAAAAAATLJ9QAAAAIDv131AAAAAAF7/fUAAAABAoTN+QAAAAACNRX5AAAAAgM7UfkAAAAAAJ0R/QAAAAECUk39AAAAAgH7nf0AAAABgwx6AQAAAAOBbSIBAAAAAYNmMgEAAAABghqmAQAAAAKA2s4BAAAAAQBC7gEAAAADAX9qAQAAAAGDV8YBAAAAAIPz/gEAAAABADRGBQAAAAAD0IYFAAAAAIC06gUAAAAAgnkGBQAAAACAXSIFAAAAAYD1wgUAAAAAAuHmBQAAAACBEgIFAAAAAoDbXgUAAAAAgdvmBQAAAAKCuAoJAAAAAYMYRgkAAAADAB0GCQAAAACANW4JAAAAA4DVjgkAAAADgUIyCQAAAAOC4kYJAAAAA4P+lgkAAAABgE7OCQAAAAGB3yoJAAAAAQD/SgkAAAACAzPmCQAAAAKDsLINAAAAAIORQg0AAAABgOGuDQAAAACDRkYNAAAAA4Fi0g0AAAAAgLr6DQAAAAGB6z4NAAAAAgNvWg0AAAAAgyOODQAAAAGCF6YNAAAAAIKnwg0AAAABgMP+DQAAAAOAdB4RAAAAAgNUehEAAAACgySOEQAAAAIDQOIRAAAAAoL8/hEAAAABgwEiEQAAAAKAYW4RAAAAAACJrhEAAAADA7IeEQAAAACBur4RAAAAAAGS7hEAAAADg3M6EQAAAAOCokoZAAAAAACnihkAAAADg0AuHQAAAAGDOOodAAAAAYKxKh0AAAADgaFOHQAAAAMCwrIdAAAAAYHG8h0AAAADgtuWHQAAAACAsO4hAAAAAoONBiEAAAADghkuIQAAAAEBraYhAAAAAIFV4iEAAAABg8MmIQAAAACCg0IhA + KBZXds7jZUDYkZP9yKNsQNvlv3T/InRA7Cam0jxjdUAKeGK9lPN4QCjJHqjsg3xAb/VR2gJUfkCLQ4+CLdqBQNVL5VdZuoJAGmztd1mig0BoLImTsMKGQNS+zW/RoodAXwsJwudaikABxXIVM8uKQF869+uT441ALssXu5TzjUBFsjz37w2QQBPVy/TlxZBAWul67/upkUAqNqHQMJqSQHFsTcIsPpNAzJcdJG2+lEC7XB9gWEKVQJ9y8meOxpZAfRkFmZbKlkDo9DI0ryKYQB97gezS7phAilavh+tGmkBo/cG480qaQEwTlcApz5tAO9iW/BRTnECWA2deVdOdQN05E1BRd55ArYY5MYZnn0B7TfQVziWgQOHeuxTJgaBAOUWU4dsLoUBsaVwV3A+hQMSG/Ur01aFALPXXHwfyoUBPyGa0DKCiQOrsd+sU2KJA/dxesiqgo0AP5WC6KtqjQCFntq81EqRAVvkPtUC+pEDfXlZ7Q/ikQAPprXhOaqVAJ3MFdlncpUBIO8IhYQSmQOf+gICEvqZAocb0KIQqp0AM92lPmsCnQA== - + - 2c+EQCoh2T8iLBZCbEWzP0iCNkCaySxAdvb9PzciI0HHqHlAt8C7QAFcoT8mXSJAqxOKQMY+CEDkYzZAbfytQHsQxUBSF/hA1pXqP1tQhkAM4BNA8eXoQTOIe0ITD7U/9e88QYaxhEEu5LJAOCp5QM41LUDMZRFAal8dQZ7OuUCJs2NAUBltQbLF7T/Ro1pAxzOOQUsnbEA8eqVAV0A2QD+pP0CZrFJAxmhjQKVd2D//1ytAHzo4QVJ3xj8c+Nc/ATWdQEQ5DUHeFKE/JqgsQT2MSEGYQVFAyVN9QXpw2D9YrE9BdtaAQrlavEAk8Os/7KcOQ8hgCUGJ/vxATYuOPxlBJEB0cY9CLxVYQRV1oEA55yZCO+O2Qcgeu0FhYX5BSfj9P4iFbEAfBndBLV9JQQIFhkAzsOo/H/jtQGhnEUDqd2FBd0+IQWWsW0AOrj9BTVx0QcpUrkHQZ4FBaPQBQcQrm0EchqdAmbKfQh09iUG4DcxA4U8IQNJl7D/TEKxAQh66QO9PgkFxXAhDsEWSQJzwCkFFdj9Atzy0QKG0PEFJb+dA4yxJQGiitD/LQ4lAbVAlQF0K6kD6xAlAJuQfQfMI3kAkHm5AiGQFQW9ZCUNIuqRA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwP9jbUAAAACgNBFwQAAAAAAGZHBAAAAAgMzzcEAAAAAAvQZyQAAAAMATwnNAAAAAQLdgdkAAAABA4053QAAAAEDbdXdAAAAAwA7Ed0AAAABAaWF5QAAAAEAtmHlAAAAAwNSqeUAAAABAZBR7QAAAAEBhE31AAAAAgAAffUAAAABAQzF9QAAAAMDMdX1AAAAAQLplfkAAAACAZ7V+QAAAAICtw35AAAAAQN9nf0AAAABAWcd/QAAAAEDRkIBAAAAAQNajgEAAAACAHdOAQAAAAKAHIoFAAAAAAFFygUAAAAAg34GBQAAAACCeiYFAAAAAwNvUgUAAAAAAbpSCQAAAACBkuoJAAAAA4LDqgkAAAAAgTwuDQAAAAOCeEYNAAAAAQLMdg0AAAAAAEzWDQAAAACD8QoNAAAAA4Hhag0AAAAAAWl+DQAAAAOB6qoNAAAAAoKEWhEAAAABgJyyEQAAAAIDoSIRAAAAAIP1yhEAAAACAH6qEQAAAAGAYtIRAAAAA4Pu4hEAAAADg1P2EQAAAACCeCYVAAAAAoMM5hUAAAABAT1GFQAAAACAIiIVAAAAAYB6NhUAAAADA38CFQAAAACB3xoVAAAAAwGxShkAAAACAV1uGQAAAAABBY4ZAAAAAoL+HhkAAAADgbaWGQAAAAKBTK4dAAAAA4GCgiEAAAABgO6WIQAAAAADp+YhA + NrgMGZxjYkBeG3g88qJrQN9iJOBzYnFA1s6DlSfidUDfwAA0zHN4QFthxzm2wYBAX9oFiYgKgkBL28yoWJKGQE9UC/gq24dASwq70gQbikDiNK8zguOLQKwNirxXM45AVh488wF+kEA= - + - KrwWQWe2GkDv7rQ/wzQtQGQpjkC2K/hA/B9IQaixEUBHV1tApmhuQKMn1EDKSLFBHI+hQFZkxkCMR8hAicmuQCzZAEGeHpxATTguQOBCCEAWk3BAryicQEkkUkF5PudAqQVMQPqPDkH4UTBBVzqzPxu410DelqBATk/WQIIv1z/MgBVBX1OOQE9IwUBukIZBjajKQbiZtUEvTdg/moqBQ+gDi0JnWNtB7A3CQN64K0J3hLhAfuOfQlpqGkBzWk9Cn0whRKCRDUEWaVtA24zSQHec2kBAfNhAm9rFQD5KqEGmlQdB/Oi7QGhegECec5hAeWvlQGi8oED3JFRBNHdpQZ0TKUE6eaJA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIK8hYEAAAADAxt9gQAAAAEDViGJAAAAAgMJEZEAAAAAAHaZkQAAAAID2aGZAAAAAgHAhZ0AAAACgwqVpQAAAACCYC2pAAAAAwN4pakAAAACg+2pqQAAAAGAXg2pAAAAAIPijakAAAACA825rQAAAAMBnamxAAAAA4EPnbEAAAABAww1tQAAAAAD4OW1AAAAAAL3obUAAAACA1gZuQAAAAAARg25AAAAAQD+nbkAAAADAUANvQAAAAMDah29AAAAAoFkDcEAAAABABZBwQAAAAOBYxHBAAAAAQHPjcEAAAAAANQdxQAAAAIAPQHFAAAAAAPtScUAAAAAA3oBxQAAAAACXi3FAAAAAoCa9cUAAAAAA/QNyQAAAAIBVD3JAAAAAIE5FckAAAABgNMVyQAAAAIACz3JAAAAA4B/tckAAAADAazNzQAAAAKBSP3NAAAAAANlYc0AAAAAgEnVzQAAAAABAw3NAAAAAgI3fc0AAAABALPVzQAAAAMBsIXRAAAAAAAMvdEAAAAAAaHB0QAAAAMCZw3RAAAAAANHWdEAAAABgVwd1QAAAAECfEnVAAAAAgF45dUAAAABAVkd1QAAAAMCRVXVAAAAAILyFdUAAAADAf611QAAAAGC88HVAAAAAAIz/dUAAAAAAozt2QAAAAGCgUnZAAAAAgONodkAAAABA9nV2QAAAAMDBgnZAAAAA4AfFdkAAAAAg2NF2QAAAAGCK73ZAAAAA4EP5dkAAAADAIgd3QAAAAIBtEXdAAAAAQEEhd0AAAAAgj3N3QAAAAEA4hXdAAAAA4OWrd0AAAADgrrV3QAAAAOAEwndAAAAAAM8TeEAAAAAg+iR4QAAAAEByVHhAAAAAYENjeEAAAABgZZZ4QAAAAKCVpHhAAAAAIMy6eEAAAABAhsV4QAAAAOBJ13hAAAAAYLLoeEAAAACglPJ4QAAAACDpInlAAAAAAJAweUAAAAAgzl15QAAAAKAWk3lAAAAAYDygeUAAAAAAurl5QAAAAMChzHlAAAAAoJzgeUAAAAAgPAV6QAAAAGD+FHpAAAAAQBkhekAAAABAAzh6QAAAAEC5QnpAAAAAwCJTekAAAAAgy2R6QAAAAMDa9npAAAAAQNwifUAAAADgEz59QAAAAMBzaX1AAAAAoHl0fUAAAAAgG6N9QAAAAKBDyH1AAAAAwNHhfUAAAADAYoR+QAAAAEA/lH5AAAAAoKemfkAAAABAsM5+QAAAAOCCX39AAAAAINCpf0AAAADgzeJ/QAAAACCQLYBAAAAA4ClegEAAAABAIIeAQAAAAKBhmoBAAAAAgPKpgEAAAAAgLNaAQAAAAGAW44BAAAAAACREgUAAAACgBFSBQAAAACA4hYFAAAAAoJ3/gUAAAABgsFyCQAAAAOB1gIJAAAAAoBG4gkAAAAAgCL+CQAAAACDYw4JAAAAAINPdgkAAAAAAZAiDQAAAACAfEYNAAAAAQBwkg0AAAADgtUSDQAAAAEDMToNAAAAA4BGIg0AAAADgAbKDQAAAAGDctoNAAAAAwJzCg0AAAAAgfh2EQAAAAKBAQYRAAAAAQJVRhEAAAADAJ3OEQAAAACDi0oRAAAAAwMlDhUAAAADg2lqFQAAAAACta4VAAAAAoCZyhUAAAAAgMcOFQAAAAOCq4oVAAAAAwOjrhUAAAABg+COGQAAAAGDKSIZAAAAAoB9ZhkAAAAAgk6mGQAAAACDCvoZAAAAAIImDh0AAAADgyY+HQAAAAKCA2IdAAAAAYKPkh0AAAADgAwuIQAAAAOAkc4hAAAAAgH18iEA= + NrgMGZxjYkD1hHOUyCJpQOJgFSPMRGtA - + - 0PXAQMHJqEHWNmRAnvaBQHd3SECnhgdAbAEXQUkcxj8pXAVBcTlSQCMiK0FqPR1BDP4HQH7EhED0/b9Am5yOP7vkuEGBdjZAOpAJQY1RbEB1cuhBGrb8QKdc00DIR6pASUw1QThsw0A4oRpA+/AsQFXh6j8/sNg/Ceq3QIf9dECEzdxAQsy0QF33u0CQbLdA70swQLwQNULOIhJBlHtPQbtt5UC0oClB/FmnQU46XUAE47JAY3euQP+0oz95nc1AbOsTQQ/TZUG/WtxAY73AQPHiskBxIYlAqVBlQejF6kGdEClCFiqJQCq8ZEDHj4VAcoQ/QPMAoEB8ZZNB+hN3QOdYUUDVrI9AhsAnQqjvB0CArpJAndGaQInKxUDbemZAF0Z6QHjUbUB9aDlB/NJbQXZHXEA7nI1BzcciQYfDiUDItqVBC3DYPyzwhEDUTIBAl+85QTNfkEFDC7FAt2qkQSXDHkA1uuxANwGGQSCzT0FmpwFB6R4mQafqmUCGK3ZAqXjRQVE3XkIUAdpB44I2QDLBjkCHFqtB5WdUQmbh3kGooLxAVSSiQItkm0DT9ltBnkJbQbuwZEBbOStBpqVRQI2qjEBJoGpBT/6+QEhC0kAUdBlCempkQOEXv0CNIxRC2m8LQlYekkDe7HhBMw0AQCm55UDzyzNCkivBQCAUmUGQUI5AZZPzQLAx6z/9QD9B3P3KQVgWr0Gsr+xB+d+kQWfih0QYM+lApEsuQuADhEGBULNAeTK7QpoQgkBpUThBgCXlQAdAs0CqoVxAK9ZtQAWfkUHIbgVBJ6CyQDiO/T/cTEpBW5zhQN8hTkH+NDxBoCBzQUng/z8SJRdB8hJSQLRr/T+WepRAIP/OQFKHMkEDg0pBbLoQQX7T6j9wThZBcxUOQQ== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAgNVHbUAAAACAOidvQAAAAECvQG9AAAAA4IGQcEAAAABgZrJwQAAAAEBcvnBAAAAAwDVRcUAAAACgmZJxQAAAAOAronFAAAAAYGGxcUAAAADAXb1xQAAAAODwgXJAAAAAAJiVckAAAABA/rByQAAAAECb0HJAAAAAgPUSdEAAAAAATyZ0QAAAAIDoX3RAAAAAwM5qdEAAAACgcoN0QAAAACDdkHRAAAAAAKlRdUAAAADABmR1QAAAAIBTcnVAAAAAoLewdUAAAACAvPJ1QAAAAIAXE3ZAAAAAwPh7dkAAAABAvtN2QAAAAMAjwnhAAAAAQEEOeUAAAAAAHPJ5QAAAAEC3AnpAAAAAAGMRekAAAABALCZ6QAAAAEBkYnpAAAAAgNHPekAAAABAwt16QAAAAID+73pAAAAAQMgee0AAAADA4DZ7QAAAAEBukXtAAAAAgFKVfEAAAACA99J8QAAAAAAd7nxAAAAAgMEmfUAAAACABzF9QAAAAIAaVX1AAAAAQFCefUAAAADAPHB+QAAAAAAZaX9AAAAAQB91f0AAAAAAAIJ/QAAAAIAPln9AAAAAgMoKgEAAAABgDrqAQAAAAGBh4YFAAAAAgAQEgkAAAACg5laCQAAAACDLmYJAAAAAAPqsgkAAAABgJ+qCQAAAAEBTMINAAAAA4PR2g0AAAACAOoeDQAAAAGByqoNAAAAA4Nezg0AAAACgTfyDQAAAAKBLCIRAAAAAYKYjhEAAAADgMlSEQAAAAOAytIRAAAAAoM//hEAAAACgnRuFQAAAAKBGOoVAAAAAoFw/hUAAAACgj2OFQAAAAKBKo4VAAAAAQG6/hUAAAAAgsOGFQAAAAKC6JIZAAAAAoLEvhkAAAADg1GKGQAAAAGCFaoZAAAAAIBVxhkAAAAAAv4iGQAAAAGAYkYZAAAAAgEyghkAAAADgHa6GQAAAAGCT6YZAAAAAIAnzhkAAAACAUcyHQAAAAABOVIhAAAAAoKVbiEAAAAAg7JKIQAAAACC05ohA - - - - - - LXbXQETBqUJaaW9Bq24jQMPgzEGbT/JAHQAKQmG1ekJ+yNNB5RHeQefKoUAtSI1Ah4M2QBkEuUB7nENBHzp8QqJtuUEXlxpBbFsUQAQQwECdD1FBOtCfQVP7KkGUnodBb+gHQEI0/ECn721AaXDrPzWyP0Dm9ohAcCMQQZsSxUBYPH8/joUdQRATFEBJKOs/OS0XQfm4P0BpgqlByARwQCe1tUAREyNBDeCFQBvVb0DbPhpAT+waQH7ZyUAt7wZBlk+JQJoJVECGuaBA+iJBQdK0pEAv3ydBGLZbQcCx6z8Rr+VA0OOXQFpWAUHHLI4/dQ84Qf3TKUHu/mBBcIG7QfFWG0G6jaBAxre6QHqOoj9kGHBBdyz9PwB2OUGsCW5AJqzTQDGtB0F1FFNB11XaP06g2D9MxidBE0fMQOKO80Dq6LM/OZc4QS3pR0HjYeNAOLqkQLfrskCQu/E/kSllQcRxDEG3paBAHzAaQLsjGkBZ1aVB+tzJQBlJNkAbvYlB - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAoMFgYkAAAACgpIVjQAAAAKCXpWNAAAAA4IiaZUAAAADgieZlQAAAAMATHmZAAAAAQPxIZkAAAADg/qFmQAAAAECz3GZAAAAA4C0GZ0AAAABgByNnQAAAAEBo3WdAAAAAAGklaUAAAABA/WRpQAAAAIDH1mlAAAAAgP4LakAAAADAuKNqQAAAAKBCxGpAAAAAwGypa0AAAAAARSpsQAAAAEDiYGxAAAAAIHGWbEAAAAAAl2ZtQAAAAOC/CG5AAAAAQONhbkAAAACAX6RuQAAAAIDEQ29AAAAAAAhnb0AAAACAOMdvQAAAAAAK6m9AAAAAwH0EcEAAAACgc21wQAAAAIAyx3BAAAAAIBjicEAAAAAAsQJxQAAAAODAFXFAAAAAAGgjcUAAAAAgo0JxQAAAAKD/cXFAAAAAgFXEcUAAAAAgIdNxQAAAAEBFpHJAAAAAgHDPckAAAADA6+VyQAAAACBzEHNAAAAAQD80c0AAAACgWFJzQAAAAIBbYnNAAAAAwGzWc0AAAABAjPBzQAAAACA9NnRAAAAAwNV0dEAAAAAAS9F0QAAAAIDoDXVAAAAAoGo8dUAAAADAh1N1QAAAAGDTcXVAAAAAYAaxdUAAAAAAydF1QAAAAEDV83VAAAAAIAhEdkAAAABgcmZ2QAAAAGC1f3ZAAAAAYC6RdkAAAADA7L92QAAAAKCbyXZAAAAAQEvzdkAAAABgnf92QAAAAEAYFHdAAAAAYKojd0AAAABgFT53QAAAAABrhHdAAAAAYI/Sd0AAAAAgNiR4QAAAAECaNnhAAAAAICGCeEAAAACguZR4QAAAAAA3tHhAAAAAQADjeEAAAAAgaAZ5QAAAAMASHnlAAAAAQHkweUAAAABgZqt5QAAAACCYtnlAAAAAwCbUeUAAAADA/gJ6QAAAAAAtEnpAAAAAwFYkekAAAACgHC96QAAAAOCydHpAAAAAoJ+/ekAAAACgxdB6QAAAAGAH5HpAAAAAoF/wekAAAADApAR7QAAAAKALQ3tAAAAAoAtXe0AAAAAgkYt7QAAAAOACwntAAAAAIOXte0AAAAAgzzB8QAAAAGB7QnxAAAAA4NlgfEAAAAAACnN8QAAAACBvhXxAAAAA4AymfEAAAABgBL98QAAAAMDX0XxAAAAAwJDmfEAAAADgWMZ/QAAAAMBI2H9AAAAAIGARgEAAAACAz5mAQAAAAOADo4BAAAAAoBy0gEAAAAAgJsmAQAAAACCtJYFAAAAAoO4ygUAAAAAA9jiBQAAAAGB3UYFAAAAAQMVbgUAAAAAgP3GBQAAAAADIjIFAAAAAYHmlgUAAAACAZgOCQAAAAMCRVYJAAAAAQG56gkAAAAAgt+aCQAAAAOBM/oJAAAAAAJYDg0AAAADgVwqDQAAAAGAGMYNAAAAA4MBOg0AAAABgrHaDQAAAAEBlh4NAAAAAYNKVg0AAAADApryDQAAAAGC44INAAAAAYPIfhEAAAADg1yuEQAAAAKDA+YRAAAAAoOskhUAAAAAgEjSFQAAAACAFPYVAAAAA4HJEhUAAAADg0GKFQAAAAKARioVAAAAAoMAJhkAAAADAtBSGQAAAAKA2G4ZAAAAAYNw7hkAAAABgN3SGQAAAAMBHVYdAAAAAIPeNh0AAAABgQVOIQAAAACANW4hAAAAA4BlgiEAAAAAA5KGIQA== - - - - - - iJWEQPBdCEDqsttAzD2jQAJXGUG8NDlBcBuAQN6kgEBfcHlA9giOQFXbiEEBfydA+l+PQJ/OYUBlNidAG4mzP9SxL0EEMTlAAI5aQChoSUEGxCRBFpgPQYavm0B7fus/UzODQdmzyEGPhhBA7DMtQPZa10DAC4FAQpI2QJokZUAyxOBArCNtQJUDpUAAm6BAdX8eQv9Q7z/rr29BPpsFQX1GkUDRfi1Ae0J5QKkp3EA4ZEFBfugvQSiOXUC82hRBbG3yQFprxj/qsOVApDrMQI+4OUHXREhAZnV3QKUvV0El3wlBiehPQexY6z/1JRRAGCs3QN5vv0DK4OFAunuMQNFKH0FBBOZA+2FaQRY+rkD5rOs/s54RQOpkZ0DOjZJAIZu2P+TVV0Eg5ZdB9u9IQMt3WkCuwxpAUuatQDETA0EwaSVBtpOlQJhCLkJF5aBADnSxQLiPB0Gsso1AmHAoQc7L3ECOh+VAXLoJQTj0bUBPgqFBHR8uQrlpEUC0oJtAVjLfQCirJkJaYIRAAfsHQWSD80BINBlBbpKfQXQinkGsWsRAiLxAQTgqDUP9vxpBskEkQbEDa0EoZqE/nQiMQQNjd0By2cU/IY+GQXrsF0FljKNBe6GxQnyVrUAibHpCNnARQNljmkGH2ZhAiOrFQGnEiUAZrIxBqYb4QYACJEJhN5ZCErwFQlwfIELH/HtC8QatQBlJaUH1D49A+4I4QTHgCUBoQ5pBYTu2P4skSEFbkZ1B58SVQfxcL0G614BCv/WEQIizZUHSBxxB+4/FQH07h0DAhLNAOZshQQ9bd0CMPGZA6WMJQA0rxEJcUs1BHmwVQMI6/j8= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAICgEbUAAAADgUXZtQAAAAOAARW5AAAAAgDuKbkAAAAAgA55uQAAAAGAAH3BAAAAAAKxFcEAAAAAAuW5wQAAAAAAptHJAAAAAgMfTckAAAADAGOZyQAAAAAAdZXNAAAAAAIJyc0AAAADAKoRzQAAAACCM8nNAAAAAwD1CdEAAAACAmpR0QAAAAICWY3VAAAAAwOmEdUAAAABgdZB1QAAAAMAnnnVAAAAAgMqidkAAAAAAC7F2QAAAAECA8nZAAAAAgCGBd0AAAACATMZ3QAAAAAD91HdAAAAAgFrid0AAAAAA2yR4QAAAAMDcMnhAAAAAADzSeEAAAABAmRN5QAAAAEAkpHlAAAAAQGPkeUAAAADAyPF5QAAAAMBWU3pAAAAAwO8Fe0AAAAAAZSN7QAAAAMClhXtAAAAAwDoDfEAAAAAAmBJ8QAAAAIAtqHxAAAAAAMm2fUAAAACAL4t+QAAAACDEEoBAAAAAIDJqgEAAAAAg+3KAQAAAACB0oYBAAAAA4OzAgEAAAAAgLfGAQAAAACDv+4BAAAAAIBmCgUAAAACg2JKBQAAAAEA2mYFAAAAAoGqbgkAAAABAiKmCQAAAAEBAtIJAAAAAYOAMg0AAAABAq0KDQAAAAABXs4NAAAAAIFrag0AAAADAX+GDQAAAAKDuGYRAAAAAYB8hhEAAAAAAvkKEQAAAAOBmSIRAAAAAQChThEAAAADg1a2EQAAAAOB37oRAAAAAwNI3hUAAAADgwD+FQAAAAOAhkYZAAAAAYGwhh0AAAACAEy6HQAAAACBSaYdAAAAAQGeCh0AAAABgI6uHQAAAAKAGtIdAAAAAYLC6h0A= + NrgMGZxjYkByWoXuS4RpQI5NZYVLg2pAOQsfS37Tc0ACSSuYVWJ0QAKnB+ytc3tAGf8pKcN0f0Cu2aibOOKAQBso84mNgoFArgiXxeRqhEDiU5mZ+YqEQK43he+Q84dARoFjtoUjiUA9YOPkvLuJQNeF5E7H24tAPY/RDmlEjUCC3TuPaiaQQOP/9N401pBAxxXI5mpakkB6mr7Guw6TQEctv/vAHpRAwxz/ktxqlECOQW721gKVQHUzZKEit5ZADlllCy3HlkBZSTepWDuYQI5wXCCDi5hAoF3mo24fmUCl8y7zsx+aQCULJggK5JtAmBpp278HnEC0M4T9NaydQBgyYPAVzJ1AX0YP6yuwnkCYSVcFbDCfQA== - + - gSylQYovs0Do2lVAB1oTQWgSW0B0ZqBAEKuJQOs8DkH2zBFB6ZagQXzjI0Ce5TVAsOAFQbTl/0AcSZZAN17qQCIkrkAHWcVA0XhxQsP4D0Iy9A9AgNxfQqFGiUFFWaxAYV9UQCuHNkCQlYlASb5+QNhtEUDn6BpAKcezPypKUkAUxjZAq0JkQaIIokCUvhlAMUkUQWKQB0DdpIlA3UJRQLNRYUA0hI5AoVKbQP9Y6z/vtjZAeimkQEVhNUCCwKZANp4sQBiIZEFxrEZB6POUQhvE/UDE6qpAF94aQMYSJEB7HhFAB63OQE/daEBdi4hBN2ylQQztq0GWsZ5AxqynQUipd0CEfSVBj9EuQTrqNkHa+59BQigVQ/1H6kDZH65A4bysQeOrc0HWnitBsWa/QaIrI0EYvYBBjo5nQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwDAqaUAAAADAcINsQAAAAABdpmxAAAAAAAPlbEAAAADgEmhtQAAAAACrK25AAAAAQGHBb0AAAAAA4OBvQAAAAEBzaHBAAAAAgMSjcEAAAAAAx01xQAAAAMBKjXFAAAAAwLIQckAAAACAQjFyQAAAAMBJc3JAAAAAgHKic0AAAAAAJXF0QAAAAECvpHRAAAAAQEvBdEAAAABAh8R1QAAAAMAQ63VAAAAAQFL3dUAAAABARgh2QAAAAACEInZAAAAAwIw2d0AAAABAi0d4QAAAAECf1XhAAAAAANIMeUAAAACAUSl5QAAAAAAb4XlAAAAAQBknekAAAACAorl6QAAAAMBLtntAAAAAQL7Be0AAAACA2tR7QAAAAACzVHxAAAAAQFaDfEAAAADAEKZ8QAAAAACGaX1AAAAAwAN4fUAAAADAt4F9QAAAAEAgj31AAAAAAFrLfUAAAACAkXl+QAAAAID5kn5AAAAAwBDDfkAAAABAjCJ/QAAAAAC9Vn9AAAAAwKSJf0AAAADAD/V/QAAAAMBUCIBAAAAA4AgWgEAAAAAgmCiAQAAAAKA9VYBAAAAAYPvNgEAAAABAuNqAQAAAAIA16oBAAAAAoOQZgUAAAAAA0SSBQAAAACAPYIFAAAAAIPlwgUAAAADghLSBQAAAACCR0IFAAAAAQEwSgkAAAACA7DGCQAAAAADQP4JAAAAAwHBHgkAAAABAPGOCQAAAAAAbaIJAAAAAABNvgkAAAAAgmoKCQAAAACD4iYJAAAAA4IXEgkAAAABg3syCQAAAAECi8oJAAAAA4BMLg0AAAAAgBRODQAAAAMC3IINAAAAAwDJDg0AAAACAr5eDQAAAAABKooRAAAAAYCothUAAAACgmqeFQAAAAAAPsYVAAAAAAEFthkAAAADg13KGQAAAAICTeoZAAAAA4Ikah0AAAADgZyyHQAAAACBNaYdAAAAAILHzh0AAAABgoUaIQAAAAIAGTIhAAAAAoCSkiEAAAACgf7OIQA== + NrgMGZxjYkDEsXzkG6NpQOJgFSPMRGtAjwFH/L0ycUDQFj5P/AF0QFZc2zXWY3dAVrq3iS51fkCwCkktQaN/QB+xSqYM2oJAGlfhszkLhUDpuBNZjvKHQEddhlmbM4hATebddRoLi0CrilB2J0yLQA+4GpOzZI5AazeaYHKbjkA1M0RFDxKRQO3f8aKavpFAklw0QUsSk0DSY1Z820qUQBJ0K1ah1pRA53iXfQFnlUAp9/0o0mqWQP77aVAy+5ZAPgw/KviGl0B+E2FliL+YQCOQowM5E5pA2zxRYcS/mkBbVEh2GoScQAgUCN15n5xAuipt678rnkDqfKZrRkyeQGxB0vkFuJ9AnJMLeozYn0BBYlJmG6agQMELuKlmMqFAs5ahrYH0oUC9wBMCRBqiQH1Mjwxv/KJAL/ViSapoo0DW18ETksKjQPphGRGdNKRA7ewCFbhOpECF7LkRsMKkQEZ4NRzbdKVA - + - qTQGQYIsEUGKdcY/xayQQFIb2T+nZIlASGCNQbZUCEDOLBpAVHl6QflpUUAla+8/ew0cQTswHkCopZJAdqzOQHUUMEAMRxpA2GUIQOcuZEBEVLxA1F2gQCBU70AuuKdAUEv/P6UILEF4/RpAbBJSQdI4CkDvgSpBi6RtQN3HIkGCIJxAnsP4QPmhmkCzdSVBKAmPPwWZ3kALVLtA8bFBQKfhGkBe9K1BxoXXQNS1NkDpNJxAyrH6QKvnEkCK9QZBQSaqQGhZA0GZhSxAJHifQMZqJUCGh45AKuYJQY5WUUBM97M/IO4SQpCGqkFViJZAs43FQIeuEUCLkz5B/zbKQCspnkCngOs/DOKmQPzxk0EZxjo/irHFQLMuv0AMwEJAASGPP+S1f0EOv1lB+ALrQR0GI0Bq+BpAQif9QDM7UUBnKAhAWZC8QC5NNkGOZ+g/2mSKQC+7W0DuC0BAJdkaQLXfpEASgCpBljH8P94UIUEb5n5BuldnQOFr9kA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAQKkvYEAAAACAm0ZgQAAAACBnw2BAAAAAwG7HYUAAAABAjmJiQAAAAMA2g2JAAAAAYKSlYkAAAADAIR1jQAAAACBFpGNAAAAAgNVjZUAAAABg44llQAAAAMCeBmZAAAAAwButZkAAAACAz0ZnQAAAAACihmdAAAAAwEvdZ0AAAAAAEcpoQAAAAADQK2lAAAAAQJKeaUAAAACAVQFqQAAAAIClKmpAAAAAAC1JakAAAABgumFqQAAAAAB+pWpAAAAAQPnGa0AAAAAAeiNtQAAAAODze21AAAAAADE7bkAAAACAbcFuQAAAAMBNb29AAAAAQK7ob0AAAABAKy1wQAAAAOCkQ3BAAAAAYO9RcEAAAACgV19wQAAAAMCbeHBAAAAAgMTCcEAAAAAg3eRwQAAAAAC5I3FAAAAAANkvcUAAAADAIHByQAAAAIDGmnJAAAAAgJ6lckAAAADgNtFyQAAAAACp8HJAAAAAoNIvc0AAAAAggX9zQAAAAKAtjXNAAAAAACSgc0AAAABAxrJzQAAAAECw0nNAAAAA4D/xc0AAAACAyxR0QAAAAEAKJXRAAAAAQH8+dEAAAAAA8090QAAAAGAdYnRAAAAA4AKUdEAAAAAAOMV0QAAAACCP23RAAAAAgCoTdUAAAABAVR51QAAAAGCuUHVAAAAAQPxydUAAAACAXpF1QAAAAEDBtHVAAAAAoPbUdUAAAAAgNOV1QAAAAGBx9HVAAAAAgK0XdkAAAADghy52QAAAACCWTHZAAAAAoNZgdkAAAADgeZR2QAAAAKCmNndAAAAAYMlUd0AAAACgCmZ3QAAAAKCpfXdAAAAAYMmJd0AAAADgEdN3QAAAAADy6XdAAAAAIG74d0AAAAAg/kx4QAAAAOADa3hAAAAAYNKFeEAAAADAr6B4QAAAAGBmsXhAAAAAAI77eEAAAABg2wV5QAAAAEDEE3lAAAAAgD8geUAAAABAUyp5QAAAAIC9N3lAAAAAQKhqeUAAAADADIR5QAAAAKAfJXpAAAAAwMuCe0AAAABgQBt8QAAAACD4RnxAAAAAoNaifEAAAADAmhR9QAAAAGCFMn1AAAAAYM2HfUAAAADg1JZ9QAAAAOCfZX5AAAAAYOd2fkAAAADgkhd/QAAAAEAvRH9AAAAAoE+kf0AAAAAgYhaAQAAAAKCPHYBAAAAAwFxegEAAAACA6GeAQAAAAMDLcIBAAAAAIOsqgUAAAABAtTaBQAAAAGCrdYFAAAAAIBd9gUAAAADglpKBQAAAAECZsYFAAAAAIBfbgUAAAACAGCSCQAAAAOAaKoJAAAAAgJtegkAAAACAtZKCQAAAAMBwmYJAAAAAoEWjgkAAAACgUrGCQAAAAEAoJ4NAAAAAYO88g0AAAABgURKEQAAAAEA6koRAAAAAYN0DhUAAAADgdw2FQAAAAGCxYoVAAAAAoMTChUAAAABgVR2GQAAAAOARQ4ZAAAAAoB2thkAAAABg2DyHQAAAAGDtoodA - - - - - - JKNEQOCI/j9R57xAIjHaPziCQEHw7i1Ah0UzQIJqAUBEjqRAZ0nHPz7PLUCBHx1BSbh5QJ3TGkAvev4/tBnwP+RwjEEyS8FAIlsRQMVsUkBylwtBckmiP1GzoT+CJDpArcmJQEc9/z9yxp9ANJ4iQQ9D4UAqqsRBu3QbQP0SHUCfjDRBTjyOQDM3nEDqBVBAiG0HQVXAskBKpTFBcZxBQPnFwUCbcOBA5RHsQBQ6P0BmRDhBghYSQQV3rkA2SjhBIFv7QFYAFEEiPRJATCkAQNcLl0BdyRdB/kuhQC0UlUBC6lpAUQUAQClLD0HHughAsL2JQCabykBbWpdA92k5QV4irUHk3jVB9paAQMKjVkAwhpdAuRAwQkJh9kDNKoRCo4yaQemexkEmxA5BMhelQIATIUFP6zdBRPN7QT6RJEAzAgVBZwoAQdJ+DkHTzrJBZmi3QKreUEHmqJFAbbEEQZz0GUH5C6RB6jbBQZe1A0H115FB025yQDAjh0AEpk5BBtCxQD0zz0AE1MpAX0REQf6Ih0GSTKJAMWsvQLZ970AOQllB8LMmQvfBjkD8rmdBMFXMQUn9uEEQc6VAtGRAQl726kB9eapA1rcIQJNiVUBeathAdCHTQBR3JEHVkhNBTOAcQhXqFkP6YSBANIK/QJ0VeUIyTdo/goK8QG0TSkAl1S1AAFedQa+CvEDFaJxAUoNLQX7VCkA/3wpAymGLQPeb5EAg5GdC3h5sQD+gNEFPmflA - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwMo2XEAAAABAdABdQAAAAGCdBV5AAAAAQJ9YXkAAAAAAc4ReQAAAAGCcKWBAAAAAQB/kYEAAAADA72ZhQAAAAMCsA2JAAAAAwH8fYkAAAADgAWRiQAAAAMANo2JAAAAAgC9kY0AAAAAAQoZjQAAAAMDH72NAAAAAgB1gZEAAAABA2qVlQAAAAACyy2VAAAAAAHUFZkAAAAAAFE1nQAAAAIDWhWdAAAAAYHVhaEAAAACgLn9oQAAAAICAp2hAAAAAYOHfaEAAAABAYiVpQAAAAOBg6mlAAAAAwFpIakAAAADArWpqQAAAAEC5g2pAAAAA4AymakAAAADArN9qQAAAAMA2AmtAAAAAYNFia0AAAABAs6JrQAAAAAA54WtAAAAAAKKKbEAAAABAsKFsQAAAAADNBG1AAAAAQFpGbUAAAAAAInptQAAAAABfo21AAAAAwNPcbUAAAABAtwVuQAAAAADIaW5AAAAAwAy8bkAAAADAZ15vQAAAAED7nm9AAAAAQBcCcEAAAAAgMTZwQAAAAMArRHBAAAAAoH1zcEAAAACAD4FwQAAAAOD/tHBAAAAAQHjScEAAAACgGvFwQAAAAADmFHFAAAAAQLcgcUAAAADAo0ZxQAAAAECxdXFAAAAAAF2ScUAAAADAo6NxQAAAAIANs3FAAAAAgEfEcUAAAAAgP9JxQAAAAODc23FAAAAAgKYDckAAAABgqxdyQAAAAEDLUHJAAAAAIOlfckAAAABg5HByQAAAAICElHJAAAAAABC7ckAAAAAAHM1yQAAAAMA33XJAAAAAwPXyckAAAACAn/9yQAAAAOAlGHNAAAAAAG81c0AAAABATEBzQAAAAIB/X3NAAAAA4M1sc0AAAADAa3dzQAAAAIA3g3NAAAAAAIGQc0AAAADAKvFzQAAAAADsAHRAAAAAwJgRdEAAAADgJyV0QAAAAABFMHRAAAAAgMtBdEAAAACAD1d0QAAAAACRcXRAAAAAAJGSdEAAAACAq6J0QAAAAODKtHRAAAAAIKXCdEAAAACAPSF1QAAAAECDL3VAAAAAgCBFdUAAAADghlR1QAAAACByZHVAAAAA4BNwdUAAAADA8np1QAAAAGC7h3VAAAAAwPSkdUAAAAAA47B1QAAAAEAxxHVAAAAA4CvydUAAAABgfRJ2QAAAAEABMHZAAAAA4MxEdkAAAACg1H12QAAAAABDE3hAAAAAoBzoeEAAAACAeQJ5QAAAAMD7aHlAAAAAIKV0eUAAAABAjtJ5QAAAAOClB3tAAAAAQGZ+e0AAAABA6rN7QAAAAKB0RXxAAAAAoNeGfEAAAADgDs18QAAAAKBfcH1AAAAAYIqnfUAAAACg1SN+QAAAAECHQn5AAAAAQO7QfkAAAADgtTR/QAAAAMC8XX9AAAAAwN+Hf0AAAABg38R/QAAAACDbAYBAAAAAwJkagEAAAAAA4lKAQAAAAOCjyoBAAAAAwJPZgEAAAABgAuOAQAAAAODWk4FAAAAA4COigUAAAAAgaaqBQAAAAGDpsIFAAAAAYPzKgUAAAABg2vqBQAAAAKC4CoJAAAAA4G2igkAAAAAgtauCQAAAAODmEYNAAAAAgIuig0AAAADAddyDQAAAACDfCIRAAAAAICs1hEAAAABgJ9OEQAAAAABSCYVAAAAA4EwbhUAAAABgc3OFQAAAAMBnk4ZAAAAAYByrh0A= + KBZXds7jZUAaQ3GBEtJyQDtMc7KVAnNACAFx3oACekB27uuHRSN6QISvJpnsiYBAKnH7MkXigkB7jqbHIyKEQCqg6VzxaoZAe72U8c+qh0C5yEdSHTOIQHKcFCAHQ4tAufc1fMm7i0Ae0m5pxC2QQMF/f5clapBAnullfhrykUA9b78uQTaSQOX9FHkw1pJAvYa2Q5f6k0BlFQyOhpqUQDl29tqyxpVAXdKOxdeCl0C5je3vCIuXQOz67LoDS5lANX0thyRXmUA2675YL0+bQNfeqdpge5tA - + - +EbaP9hGkD9mDm9A4/igQNBTlEDR5oFAgmibQXQUk0CLi2VAn/epQL0G80DJizlBupVUQBErkD8mQjBAqsuiP5c0eEAsTElAXbWFQOtsVj8wmRpBQS6lQJ3ZCECa87pAppcbQBnIG0FpMc0/EFXDQBpFGEETFM9AsOFbQIKiQkCqmUJAqwV1QC2qvkCCHKBAE6n5QI0ck0Dv6ZRAIPmpQIsWMEARSW1Bq5g2QUmCqkDpnCRAXbL+P9HYW0BkDYNCU9AbQC/cLUBGYzJBoATHP3Mq4UCmg7tAxVp4QHnIQkJEKv8/AM8HQXFlAEB4maFArCT8QDO+tEFIDoNBjj8SQD/GzkFgv81AltqXQN4ObkC4BjFBo3rKP4wRCEGDVO9AfKOgQC45lkG1/tw/IdIjQTYVI0F8uoFAmcuAQFaX5kAnlSRA6U0+QbvCbUAHZElAVWuOQH0ECEF/AvlAEIeHQf5xWEH2D0dChxUCQqwPLEHcQ6pC30snQeFwnkFydktAydSqQIcjv0Fy9RJBzaFuQS9OA0LEvbdBl3+oQGPmykC7AdlAwHQoQYsPxEHT6ENCH0ZvQUhc2EBp3mBB9yl6QUp/ZkHYDRJAfCuMQOeg8D8Qw25AouXTQLmjgUAiio5Arv0QQd7oyEABcAlA2pSBQTm3aEGVUIVAXyYRQQXiJkGwa0NARfAHQSI2/0HcS3FBhC8mQnK4E0NynrVBbrQQQVN4l0DWX/xAY+wHQQhx00BNKRJAtDd4QAFotD89dGVAkZk2QKEeiEH4taZAi64OQbv/5UAN9+w/r/HsP9EtLUC38MpAG0QKQTvqkkC6Q19B8rHBQbI9N0GvDCFBT3iwQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgIxsbEAAAABgzqRwQAAAAICg03BAAAAAQPmicUAAAADA1PNxQAAAAMCYpHJAAAAAoGXVckAAAABAbOVyQAAAAAD3T3NAAAAAAO5edEAAAADANBR1QAAAAIBbJHVAAAAAwAyBdUAAAADALAF2QAAAAAANHnZAAAAAAKmVdkAAAABAY9N2QAAAAED8ondAAAAAQBEGeEAAAADAvlV4QAAAAIDUYnhAAAAAgKpveEAAAACA54p4QAAAAIAqsnhAAAAAgJLHeEAAAABAKNR4QAAAAIBy6nhAAAAAwIf5eEAAAADAn8V5QAAAAMCC/HlAAAAAABwyekAAAACAlYp6QAAAAIAQ5XpAAAAAgEj4ekAAAADACV97QAAAAECSBnxAAAAAwFZefUAAAABA/5J9QAAAAMBtcX5AAAAAAKPVfkAAAADAkUJ/QAAAAACJVX9AAAAAgOqEf0AAAACAP5N/QAAAAADKrn9AAAAAQKfyf0AAAAAA6h6AQAAAAIC9MoBAAAAAoL9EgEAAAABgTHyAQAAAAOBdi4BAAAAAwCaTgEAAAACgT8CAQAAAAEA/yYBAAAAAYMTwgEAAAACgcwGBQAAAAMCQGIFAAAAAoMUhgUAAAACgHjiBQAAAAMBJRIFAAAAAIGxQgUAAAADAmVaBQAAAAAAFdYFAAAAA4DN/gUAAAACg0KeBQAAAAKBZuoFAAAAAIPvHgUAAAAAgTeKBQAAAAEA4EoJAAAAA4A8xgkAAAACg/JeCQAAAAMAkuoJAAAAAYH7CgkAAAABgHMuCQAAAAIAs8IJAAAAA4Gb+gkAAAAAgdg+DQAAAAKAqIINAAAAAoOZdg0AAAADgd2uDQAAAAAD3c4NAAAAAAMV7g0AAAACAQJ6DQAAAAKB7poNAAAAAIPy0g0AAAABglMmDQAAAACBdDIVAAAAAIEFYhUAAAACg4GqFQAAAAEBu24VAAAAAIFNYhkAAAADg5tKGQAAAAKBgAIdAAAAAwHAth0AAAAAgpVuHQAAAAIAmYodAAAAAIDRoh0AAAACAHZKHQAAAAKCqmIdAAAAAYBjEh0AAAAAgCAaIQAAAAGDJIYhAAAAA4Gp8iEAAAADgf7SIQA== + NrgMGZxjYkBoiwPJSGNvQBu6YmAmQ3BA72f6OVTSdkCvyfTFKXR6QEW8/j7sQntA9bW2zWzKgEBArzsKzjGBQCDgONC4AoNACrcEvU9KhkA+MfW6EJOGQArm8ub70olACDm+bZKri0A= - + - rd/cQCCGNkBec2dBJEZSQAfcykCYZo5APTplQlMILkB0P9o/6qcTQW25xkA3QRJA8pT+QNo/k0DhMolA3B8AQI2rZkET5IVApfXrP9OoSUDt0rhArg5YQDF2QUCWvxVBoGKHQFWvSkEmUoVAwdSvQMGttEApxdxAanz+P/NIiUFqtHpC7iEzQaT2k0D9qeRAEhkfQbq1XEDCjIBBSd/sPxKTyUBOpYZBYAWtQOKyl0BMvx9BVo7YQImwm0DqXZNAKFYAQYxSREEArIxCmRYqQRR8LkIipWVAH5nmQFv9uEDoPto/oW0tQA0mTULSZBtAiiB3QF+8NEHoE2VAIzqBQud5tD9ov9xAD/1+QIgSA0GfDV1AHsVZQYGvCEBMlwVBB73iQrgDbEC1Lk5BYhNiQc76tEG+4Ow/hmyWQZXJd0AfUzdAs3gMQvaOAUFzVfJAucWJQGLYbkBDIjpB9wvVQZ+1ZUDHvGVBEVoTQrFxeEAb2slAyXmOQDK/cELR0KVBVzQZQK0eKkIeNDdAIGPaP4QooUAsW0xCULZYQc4o8j8= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgKJmYkAAAADgOgNjQAAAAEAy2GRAAAAAgDy+ZkAAAAAA1YlnQAAAAAAZ42dAAAAAoFUmaUAAAADAEj1pQAAAAAD+o2lAAAAAoH66aUAAAADAO25qQAAAAACm1GtAAAAAgHL/a0AAAABgQuJsQAAAAOCcK21AAAAAgMQpb0AAAACAhGJvQAAAAMA2UnBAAAAAQKVhcEAAAAAgBqNwQAAAAADX0XBAAAAA4CYQcUAAAAAApkFxQAAAACAcYXFAAAAAIMaEcUAAAADg2wlyQAAAAEAarnJAAAAAoAACc0AAAACAyDFzQAAAAABiwHNAAAAAoF41dEAAAACAU9B0QAAAAOB953RAAAAAIP7ydEAAAACAUBB1QAAAAACRJnVAAAAAAMlHdUAAAADghWR1QAAAAACRdXVAAAAAYNGTdUAAAACAPrF1QAAAAOB5w3VAAAAAwMvddUAAAAAgbO51QAAAAMCNIXZAAAAA4J4+dkAAAABAs092QAAAAEABXHZAAAAAQP3QdkAAAAAgSEZ3QAAAAABBU3dAAAAAIIFhd0AAAABgM3B3QAAAAADx0HdAAAAAAIjhd0AAAAAAbfN3QAAAAOB3QnhAAAAAYANSeEAAAAAgE2F4QAAAAGCQgHhAAAAAYKGQeEAAAAAgl7J4QAAAAKAmL3lAAAAA4IJSeUAAAABg+215QAAAAMD+enlAAAAAYB+1eUAAAAAgcQV6QAAAACDWM3pAAAAAIFxhekAAAACgzWx6QAAAACDah3pAAAAAAPSlekAAAABgkLt6QAAAAGADx3pAAAAAYBrzekAAAADgdAN7QAAAAAB8IntAAAAAYFM7e0AAAADgY/Z7QAAAAOCq531AAAAAoHr6fUAAAABgGpV+QAAAAMBmiX9AAAAAgOMSgEAAAADgsS6AQAAAACARc4BAAAAAoOmYgEAAAACgcLqAQAAAAEDv2YBAAAAAoOHigEAAAABgLfqAQAAAAKCfAYFAAAAAwHETgUAAAADguyOBQAAAACBwlIFAAAAAgOvMgUAAAADgpRaCQAAAAMA8HIJAAAAAIA07gkAAAACgnlqCQAAAACAzgoJAAAAAYOW9gkAAAADg4sOCQAAAAEAYC4NAAAAA4C5Jg0AAAABgt1aDQAAAAKCiaoNAAAAA4HSGg0AAAADgxIuDQAAAAID+kYNAAAAA4Oi2g0AAAADgB8uDQAAAAKAiB4RAAAAAIPsZhEAAAAAgQHuEQAAAAMAlooVAAAAAQFxihkAAAAAAoHuGQAAAAKDm6IZAAAAAoPJ1h0AAAACgCpuIQA== + KBZXds7jZUD60UzrnGVsQBTpB48/A3JA - + - W63YQLnD/z9F/xtAouHHPwxmIUEvJZ1AyA6BQN1BEkABB/RAlxAfQbnZlkDQTJ9Aa1v/P3DQxz9dPWZAHk93QMyuwUAyKf8/AaaFQDKBN0AxaABBlwdBQKl6eUCVkeJAajQkQPdmoEFnYxxBS6R5QVGzG0CuWXhAkKalQN09C0FR0IxBdtT/P6Ni2UBLxFhBzaxlQBpA3kA2pVNAS2xCQbwzAEFaxLdAViEZQTCfGUEhapNAnkMFQdZA9EAHE+0/GHJQQJArt0DHhUBAoFJHQetZA0HuxbY/nHxKQB2hI0FkyklAjpCXQRBagkEJBtlBVut6Pznn2EALhP8/lY4bQFDgbUK8H+0/0lpVQKO5eUGyVhJBxYm0QSPjnEG88ZlA8y0PQQg6h0G7kolAGy2SQRBlbUE8UONBFqMmQf7bG0Ankq5AmewtQXizmUBLA7hABrnsPz75j0ErNqI/S7RSQbu76kAl8xZArnvOQb5YCUAKbhtAdP2zQNBTuUCFGRJAf8YDQYy7HEE08MZA7JsjQfvkLUCjHBtBaP6BQF8FmkCmqQ5BkqXrQf5oIEEUN4JAbK9fQzKYGkI3j8FAjqgRQbja5UDnn/VBASUmQc0m/z8lC+0/PRWTQHzD2ECkiP8/Y1IKQZimFUE= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAgJUiZ0AAAACAs2VoQAAAAEBvrmlAAAAA4OvJaUAAAABA3alqQAAAAMA9XmtAAAAAAEKra0AAAADAuuZrQAAAAGBOC2xAAAAAgMAvbUAAAACAZkZtQAAAAAA+YW1AAAAAgBxibkAAAABg0+JuQAAAAACBI29AAAAAwONib0AAAADgo4VvQAAAAACFQ3BAAAAAII+tcEAAAACAs5JxQAAAAMBB0nFAAAAAwNd1ckAAAABAxgVzQAAAAICxo3NAAAAAgOHCc0AAAABA4jR0QAAAAAAfcXRAAAAAQMSEdEAAAAAARsR0QAAAAIBS1HRAAAAAwLg0dUAAAACAcER1QAAAAEBNUnVAAAAAQHridUAAAACAxRh2QAAAAIDPMHZAAAAAQO5gdkAAAABAsXR2QAAAAMARsnZAAAAAQM8Ed0AAAAAA0h13QAAAAACAU3dAAAAAADtnd0AAAADAPuJ3QAAAAEDWEHhAAAAAAKyweEAAAAAA1PJ4QAAAAIBEdnlAAAAAgDnxeUAAAACArBZ7QAAAAMBZSntAAAAAgJd2e0AAAABAoI17QAAAAACY9ntAAAAAAH0VfEAAAAAA2kN8QAAAAIBeVnxAAAAAQKVlfEAAAACAe/h8QAAAAEDCEn1AAAAAQCYmfUAAAACA0TJ9QAAAAACBPH1AAAAAQAJnfUAAAADAPJN9QAAAAIArsH1AAAAAwA14fkAAAAAAiYR+QAAAAMB1k35AAAAAQOaxfkAAAACA2PB+QAAAAEAEFX9AAAAAQIQnf0AAAACAlDN/QAAAAIBVRn9AAAAAwAFVf0AAAABgnwaAQAAAAKD5F4BAAAAA4NFLgEAAAAAgVViAQAAAAGAIYIBAAAAAgMGogEAAAABAYtKAQAAAAIA5AYFAAAAAoPUhgUAAAACATCmBQAAAAIDOd4FAAAAAIEKCgUAAAABgqpuBQAAAAEBIooFAAAAAAHOogUAAAACA8LOBQAAAAMALwYFAAAAAQBPZgUAAAABgiOGBQAAAAED58IFAAAAAoNMDgkAAAAAgdAqCQAAAAGBxFIJAAAAA4DElgkAAAADgMzyCQAAAACBrR4JAAAAAoH1pgkAAAACA5IWCQAAAAIC9koJAAAAAgCWbgkAAAAAA0LOCQAAAAGAowYJAAAAAwND+gkAAAACAOQuDQAAAAABmF4NAAAAAICMfg0AAAABg4zyDQAAAAAA4S4NAAAAA4Ctdg0AAAAAgwXODQAAAAMBkiYNAAAAAwOaRg0AAAACgxZmDQAAAAEC7m4RAAAAAoKuqhEAAAABgrbCEQAAAAODcxIRAAAAAwNjyhEAAAAAAgRWFQAAAAKCQK4VAAAAAALMxhUAAAADA9kSFQAAAAODiWoVAAAAAgGizhUAAAABAjbqFQAAAACDDwIVAAAAAIJfKhUAAAAAgVAuGQAAAAEDuFoZAAAAAgBhDhkAAAACAEEyGQAAAAGAu74ZAAAAAoM30hkAAAACgTFGHQAAAAOCUZIdAAAAAIAFxh0AAAADgqXeHQAAAAMBxiodAAAAAYMu3h0AAAACAANiHQAAAAID1UohAAAAAYA9aiEAAAAAg8mGIQAAAAGCka4hAAAAAYPyhiEAAAACgfLuIQAAAAODi1ohAAAAA4NvriEA= - - - - - - EigJQPdj7T8XhOVAJlS0QD1PJ0GJypZBtlZcQL7SXkLDIwlABTRSQBsILkB9E5NAsCYoQWjI/z/MThJANftuQ0dgnkFnqhJB8yxHQYTIuEFAhwlAharHP28YQUCSeZhB4A1KQFuBW0HwMSxBlLuEQO+aJUOKMg1CEqhSQFnLC0G0FKxA65pfQRyg4UAzRONB7HQDQCf52T9Uqy1A2cIFQRcHCUC9D+w/tdS8QFi200CLtaE/jCKFQELoJUB0FxdBZENcQkUoyD86kBtAap8VQXgTJUCIrCVBdyoSQexic0F3KE9BaGzcP+xyqkDNBDZCpT+9QYL2N0CmbQFBCN5jQVnRUkBMlIlBxdSJQUIueEDUDY5A+cAKQXn6H0ErGK5AKGQRQONKeUA7SMRBdxYdQAPx2T+GSXRBN5ssQQAPAUFVYF9CUuJkQBbRtD9LVI5AebkIQRoUhUFnLaxBNE8AQGd4QUFfH0JCVRaQQPNynkEyVMpAQA08QT0Q40DWK/RAe0GTQaQdn0HJ5gdBDsYEQnOcXEEnQo9AGauKQJLE30D+sfxCw62uQYw6AEHTwSZBZrESQN5cKUDtljZAle97QNQiL0BNBmlBf6JJQcL+30GQ1rU/JNSdQiorJkB+A6FAN9y3QM1/SkGM/ZNAREnJPx21EkFrPbY/UOVaQajW70DkNYFAM5jzQPcMT0LFwFBCdjFPQKib5kAB5Y5AWtItQwQEb0L+zqtBpPkbQM2fMUEx8bBBV+rqQG356kCil/VAGv7YQUb4ukBCVHVBq3AtQXAgb0CEXyZBoryDQI4Etj9vag9BC81PQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4DufYUAAAABgm2ZiQAAAAIDwjGJAAAAAwD4DY0AAAABAH+RjQAAAAICeKGRAAAAAIFamZEAAAADgsGRlQAAAAAAG52VAAAAAQD0jZkAAAADAwmhmQAAAAGBGyWZAAAAAYEPwZkAAAADAHAhnQAAAAIDWZ2dAAAAAINEiaUAAAACATohpQAAAAMC7qmlAAAAAABbDaUAAAAAA0SRqQAAAAIBKR2xAAAAAYJVibEAAAAAgMItsQAAAAICeuWxAAAAAoFxmbUAAAADANsRtQAAAAECoKm5AAAAAABFGbkAAAADABV9uQAAAAID1hm5AAAAAYFilbkAAAACA6NxuQAAAAKA4AG9AAAAAAPlkb0AAAAAAUYlvQAAAAEAXpm9AAAAAIKwhcEAAAADA5URwQAAAACDLlHBAAAAA4FbRcEAAAABg3vJwQAAAAKA5JHFAAAAAQICCcUAAAABA6zFyQAAAAEDzZHJAAAAAwP53ckAAAACglNByQAAAAEBnMXNAAAAAgD5Mc0AAAAAgRXRzQAAAAEADgnNAAAAAgGO0c0AAAACAksBzQAAAACBF9HNAAAAAADFEdEAAAADgAGJ0QAAAAIBmc3RAAAAAIAJ9dEAAAABgKtR0QAAAAOAg5HRAAAAAoFA2dUAAAAAAk1h1QAAAAGAvZ3VAAAAAgNdzdUAAAADg+IR1QAAAACAxlnVAAAAAgB6/dUAAAABACVV2QAAAAMCkZHZAAAAA4A52dkAAAADg45F2QAAAAIDjvnZAAAAAYJvjdkAAAABAPvR2QAAAAAC4EndAAAAAAOQrd0AAAAAglkV3QAAAAAC1UXdAAAAAgElzd0AAAACgscZ3QAAAAAAKA3hAAAAAIDYUeEAAAACgNB94QAAAAABlM3hAAAAAwBJDeEAAAABgxIR4QAAAACAR6nhAAAAAYGAbeUAAAABAuVB5QAAAAEAzhnlAAAAAILKmeUAAAABgqiF6QAAAAGAyL3pAAAAAIFlXekAAAAAgUHB6QAAAACBfhHpAAAAAQBaSekAAAAAgxK96QAAAAGC/xXpAAAAA4EHVekAAAACAvVx7QAAAAGB2c3tAAAAAICeGe0AAAAAgkZR7QAAAACDUsXtAAAAAQGXAe0AAAABA2O97QAAAAAAzAnxAAAAAIDoSfEAAAAAguCJ8QAAAACC9MnxAAAAAINlVfEAAAADg7Gh8QAAAAAA6hHxAAAAAgCypfEAAAADgL0F+QAAAAOAL1H5AAAAAYKBDf0AAAABAo1V/QAAAAGDDgn9AAAAAQJ/Ff0AAAABg5hyAQAAAAIAYXYBAAAAAIPWbgEAAAACAILeAQAAAACBkxIBAAAAAAFlMgUAAAAAgJmqBQAAAACDPuoFAAAAAgBbCgUAAAACggc6BQAAAACA22oFAAAAAoAfrgUAAAABgNQKCQAAAACAIS4JAAAAA4LtugkAAAABAdpeCQAAAAOB/sYJAAAAAoErcgkAAAADgk+2CQAAAACBLKoNAAAAAYK8xg0AAAACgUleDQAAAACBhY4NAAAAAwFeDg0AAAACg3YmDQAAAAMBnm4NAAAAAIPa1g0AAAAAgYsqDQAAAAIBJ6oNAAAAAQFcmhEAAAACAbVqEQAAAAEDwroRAAAAAoBTFhEAAAAAgK9KEQAAAAEAF24RAAAAA4HTphEAAAAAAcvGEQAAAAICKO4VAAAAAQKlAhUAAAACAJUyFQAAAAGA2eIVAAAAA4OWQhUAAAADAF6qFQAAAAEAexoVAAAAAAJTShUAAAACAlNmFQAAAAAAG7IVAAAAAIHn1hUAAAACAQwOGQAAAAEBhFIZAAAAAYCcahkAAAAAg3iKGQAAAACAOsoZAAAAAAHO5hkAAAACgIWOHQAAAAKClYYhAAAAAAHHciEA= + KBZXds7jZUCAI9DqN6RuQIkw7CrX8nJA+7PgystydkCJjsh+LwR6QKffhGmHlH1AyGE5mOdRgECNwqKsu8qCQIK0GZBfUoRAEd13hYsahkBXymtfPeOHQBEMZq83o4lAdRsoSpVzi0DLXkanr6ONQHVKFnRB/I5A - + - OrcnQMnDoj+xyoBAL084QLfq2T+2FCVAmohAQJo0DUEBkF9Ayvv/P/KoyT+9TbU/e6NKQUL3j0EQU6I/JDV2QcxMikDgwC5BlumEQN39I0ES1BVCCfgtQDVcHED3n6M/FtaAQJCVrkDLPldBGZNKQEav00D+VTJDkKtqQRNwN0CGPQBACiLtP5fld0B5q5hA+Af6QKjoWkBKrLQ/G2waQh764UBchF1ANrdAQM3sVUGu1apAzyEXQSP3s0AGfuZAYjccQJw/2j9GahtAmF9mQHoZZkBepl1Au7wSQMH/JkJXRdhB7q2xQHlIJUAngV1BJk4SQClvAkFIaYVA9BntP8Wqs0Fv9IZABVkbQUVNM0IuZTFBOW8FQTph2j83vRpB+oewQkaA7EEiwYBATGKTQDPDy0C61kpAeSntP8BEBUFjU3pDsBTLQROcX0ApJgdBh5XLQHFdSUBQ7RVCbR9aP3L7t0AqhaZBuBIuQYOOr0BwCCZB+mPMQX3gG0BXtpZApzXYQHTlXEBENr9BuRP7QHSIJEBP485Ayrm1Qe9iN0DZw4xBPl/IP1uV6ECRvcVAamkKQvjmQkEk3kBBxljJP33wX0EcgdJB7tVlQJM1EUFqDVNA0zuxQWNl5UCWuI5AuFzUQGGjHkEPneQ/HJiRQO+nT0H7SKVAjBQBQffNIEFdKy5Ad51MQaIIkEE+6g1BMtVqQXm77T8t9u5AaMGlQd8iWEEps45A3ngmQcvpGUGFwNJBHj5KQQS8LkEeGKM/NZqlQAj34kClJ95BS0W9QY6AmUGpNFNA0UVcQBQf0UBK/BVBGvvqQIMLb0BaK4VAYdJbQA+KnEBTc7xASGsKQS7nUkH55uFAKtS3Qe4nVEHWoDdAEGODQc8toUCO48tCuuOJQK06U0BPbEBAxA0rQV4xtkJ3ATZCpUSSQaHva0Bd2qpAcnVBQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgJU8aEAAAABAXZFoQAAAAACVG2pAAAAAwOBDakAAAACAJopqQAAAAECSqWpAAAAAQClMbkAAAABgN/RwQAAAAMA6A3FAAAAAoMgPcUAAAAAABTJxQAAAAMAsUnFAAAAA4LjzcUAAAADg2xNyQAAAAEB1JXJAAAAAgJx0ckAAAAAAetZyQAAAAKDn8HRAAAAAQFRKdUAAAACAFih2QAAAAAB3NHdAAAAAwMdDeEAAAACA9ZR4QAAAAEDWDXlAAAAAgH6UeUAAAABAqK95QAAAAEAC43pAAAAAgFFie0AAAACARnF7QAAAAIAsoXtAAAAAgGqre0AAAAAAyMR7QAAAAADb73tAAAAAQAY5fEAAAADAbYF8QAAAAMDAk3xAAAAAwGmzfEAAAAAAuqZ9QAAAAIBIX35AAAAAQAKBfkAAAAAAaZd+QAAAAMDvIH9AAAAAAHg0f0AAAAAAc1Z/QAAAAMBLcn9AAAAAgBOPf0AAAADgeAqAQAAAAGCoOoBAAAAA4JlJgEAAAAAgF1SAQAAAACBQlYBAAAAA4DidgEAAAABA76iAQAAAAEA9xIBAAAAAIEDPgEAAAAAgAtqAQAAAAGBs34BAAAAAICEhgUAAAAAA106BQAAAAGBaaIFAAAAAIB5ygUAAAAAA/3aBQAAAAIAVi4FAAAAAYByrgUAAAABgJ8mBQAAAAMAk24FAAAAAIKfngUAAAAAgCO+BQAAAAIAV94FAAAAA4H/8gUAAAACA7gmCQAAAAGBwPIJAAAAAIJpjgkAAAACAimqCQAAAAAAwdYJAAAAA4H+rgkAAAACgqrSCQAAAAOBvwoJAAAAAQFvNgkAAAACgpN2CQAAAAMCcFYRAAAAAIPZZhEAAAADgYpGEQAAAAID0t4RAAAAAwI/ghEAAAACgTOmEQAAAAADpAYVAAAAAAH5DhUAAAADgV3OFQAAAAGDNeoVAAAAAwBXLhUAAAAAAaduFQAAAAOAR5oVAAAAAoO1BhkAAAAAgTmuGQAAAACBfuIZAAAAAIITPhkAAAABgiPOGQAAAAMAbEodAAAAAIB4th0AAAABgIYmHQAAAAKBDmodAAAAAYE2hh0AAAADgZymIQAAAACBsMohAAAAAAFSMiEAAAABAnamIQAAAAOBw5IhA + NrgMGZxjYkA= - + - quAYQTe82T+Kf5A/18lyQfmeFEDHdRtAMDMbQMihnECriIBBmSM6QJ7WB0E3juFAh+v+QAqU1EIL1fFAAQb/P8XCm0CHf6BA9Y/9QN6PpUDQzNtAcK0NQ1OI/z/eFBJAo9SuQFFmxUCfapNBeE7BQDs3zUC6cVZAChSGQOBsW0BYZSdAfrgCQVkjFkHRI9FAYvSbQKhXlEAbvg5BUMulQNDBaEAUcM9A+/Z7P74dH0KpcjhBQafmQIp2e0FL88BAxRTtPzyJeEHunMlAeOqYQLIwkT+Ga1JA46g4QBDSgEGPa+0/iVOFQODROEF3vgRBljTtPx5fJEA137dA3qCJQCzhl0BEgNhBQuaTQZnPP0DKP+VAXqQzQaBi5kCphhtApNSYQuwBGEECcABB4rBjQezoyECaOLxBLKDiQdvJ2EEENgNBt/y5P6dmqEAHtUxAmRLmQGUGAECC9gBADuHxQW0f0UF9lMFAkvicQFKD2kGdeB9AYPz1QO8ecEJ8xVtAaA7bQIyLKkEqnNo/ksugQHoRLkCgGPZASg08QVoYcEEVK0ZB3mbsP8t3QEAURRJA + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQKtkZ0AAAADgb4doQAAAAKBUw2hAAAAAIMEHaUAAAADAiGZqQAAAAOD6qWpAAAAA4JCla0AAAACgW95rQAAAAAAvCWxAAAAAgL0fbEAAAAAALkBsQAAAAMCVp2xAAAAAwPVmbUAAAAAAwYZuQAAAAIBgxW5AAAAAIJbibkAAAADgCPtuQAAAAEATZW9AAAAAgCeJb0AAAABAKqpvQAAAAEA/OnBAAAAA4PFzcEAAAAAAS7BwQAAAAACG5nBAAAAAYGXzcEAAAAAgBxNxQAAAAACtI3FAAAAAoFd3cUAAAAAABuZxQAAAAKAsBXJAAAAAgMijckAAAAAgR7NyQAAAAEDJB3NAAAAAgLwUc0AAAABAaXpzQAAAAEAGoXNAAAAAYI6zc0AAAAAAcOJzQAAAAACL/3NAAAAAwJQzdEAAAABAMUJ0QAAAAEAMZnRAAAAAAG1/dEAAAAAAKY90QAAAACA2o3RAAAAAAN6zdEAAAADAAsl0QAAAAACM1HRAAAAAAKvkdEAAAADgZ/R0QAAAAICTRHVAAAAAgEpUdUAAAACACIN1QAAAAIDA03VAAAAAQN7hdUAAAACAovN1QAAAAEDeA3ZAAAAAgDEydkAAAABAmj52QAAAAEAOUnZAAAAAQCB0dkAAAABA46N2QAAAAMDHH3dAAAAAAPNxd0AAAAAA94R3QAAAAIAUkndAAAAAwH4GeEAAAABAcCd4QAAAAMBFVXhAAAAAQMdjeEAAAAAA2sl4QAAAAEDl8XhAAAAAAFIBeUAAAABAYjB5QAAAAAC9X3lAAAAAgH2DeUAAAADAopR5QAAAAEBmpHlAAAAAwHuzeUAAAABAYMx5QAAAAEAT9HlAAAAAQD0DekAAAADAJxN6QAAAAMCUJHpAAAAAgKwzekAAAAAAGFV6QAAAAICCpnpAAAAAQP22ekAAAAAAY/R6QAAAAACNIHtAAAAAwP0xe0AAAAAAU0J7QAAAAECsTntAAAAAACtze0AAAABAU+d7QAAAAMCG+HtAAAAAANEVfEAAAACAFjx8QAAAAIDPfHxAAAAAAOiHfEAAAADAh6R8QAAAAMAKsnxAAAAAwLDNfEAAAACAmAV9QAAAAMCTGH1AAAAAQCotfUAAAACA9zh9QAAAAIApZX1AAAAAQJvBfUAAAACArc99QAAAAIBb4X1AAAAAgETsfUAAAAAAAPd9QAAAAMA2Bn5AAAAAAKATfkAAAACAWB5+QAAAAMAJSH5AAAAAAA9YfkAAAACAOmN+QAAAAMBEc35AAAAAQJicfkAAAAAALKd+QAAAAAAWxX5AAAAAgPvcfkAAAACAFfx+QAAAAADGIn9AAAAAAHMsf0AAAAAAjEt/QAAAAAByVX9AAAAAQMh1f0AAAACAN4V/QAAAAMBxl39AAAAAAFewf0AAAAAA8Ox/QAAAAEC8BoBAAAAAYNkdgEAAAACgPyeAQAAAACAZNIBAAAAAAFY7gEAAAAAgFVuAQAAAAMAmaoBAAAAAILB2gEAAAADAo32AQAAAAGDJioBAAAAAQNKcgEAAAADAdqKAQAAAAABbqYBAAAAA4LG3gEAAAABAjsKAQAAAAOB60IBAAAAAAE7cgEAAAADggO+AQAAAAKDj+YBAAAAAAPIAgUAAAABgOgaBQAAAACCSEoFAAAAA4HgegUAAAACgvyWBQAAAAOD7OIFAAAAAAEM+gUAAAAAAkkyBQAAAAOB0U4FAAAAAoFJsgUAAAADgyHaBQAAAAGCsgoFAAAAAgFKKgUAAAABgFZOBQAAAAKChmoFAAAAAAMqqgUAAAACgX7OBQAAAAODBvIFAAAAAQHHcgUAAAABAveWBQAAAAEDs7oFAAAAAIGf4gUAAAADAxf6BQAAAAEC1CIJAAAAAIA0dgkAAAACAezKCQAAAAOCcOoJAAAAAAP1FgkAAAADgvVKCQAAAAODAZYJAAAAAYGFygkAAAADAf4GCQAAAAOCkiYJAAAAA4DuUgkAAAACgm5mCQAAAAGALqIJAAAAAQDazgkAAAABgv8CCQAAAACC514JAAAAA4B3dgkAAAACgeQODQAAAAMAHD4NAAAAAwM4bg0AAAADAhCeDQAAAACB4LYNAAAAAoCozg0AAAAAAAEODQAAAAAC7TYNAAAAAAP9Vg0AAAAAgfluDQAAAAOASaYNAAAAAgLByg0AAAADgmYSDQAAAAOAyjYNAAAAA4NuUg0AAAACgkJuDQAAAAMBZooNAAAAAYOuqg0AAAADAk7KDQAAAAGBTlIRAAAAA4P6ahEAAAACg16OEQAAAAGCkqYRAAAAAoMG5hEAAAAAgP8aEQAAAACBDy4RAAAAAoNrShEAAAABg1t6EQAAAAKD//IRAAAAAIMQRhUAAAADg9hmFQAAAAOCPIYVAAAAA4OYnhUAAAADgWT2FQAAAAOAKRYVAAAAAwFxPhUAAAAAgdFuFQAAAAKACZYVAAAAAQBFshUAAAACgAYWFQAAAAACNi4VAAAAAQPurhUAAAAAgKrOFQAAAAKAQuYVAAAAAoKPFhUAAAACAddOFQAAAAOAn3oVAAAAA4LrqhUAAAACgEvSFQAAAAOCd+4VAAAAAgGgBhkAAAABAPQeGQAAAAKByEYZAAAAAQI0khkAAAAAgDS6GQAAAAICJSIZAAAAAoGBRhkAAAACgwWiGQAAAAGBxb4ZAAAAAoO2PhkAAAAAgXpeGQAAAAGB6n4ZAAAAAYM2thkAAAAAgsLuGQAAAACCX2IZAAAAA4CjfhkAAAADAL+uGQAAAAGCYAYdAAAAAYLULh0AAAACgoxGHQAAAACD0G4dAAAAA4IIjh0AAAAAA0i2HQAAAAKD1OodAAAAAoD5Qh0AAAAAgfXWHQAAAAEBOi4dAAAAAwB6bh0AAAACADKOHQAAAAMCQsYdAAAAA4CLDh0AAAADgM8+HQAAAACCH34dAAAAAwKPmh0AAAAAgSPuHQAAAAECaBIhAAAAA4JoiiEAAAAAgOCuIQAAAAGAsRohAAAAAQJxMiEAAAAAgeWmIQAAAAGDYgohAAAAAYNGKiEAAAABg2pCIQAAAAGB9lohAAAAAwBaziEAAAACgArqIQAAAAGBnz4hAAAAAYHrZiEAAAACgS9+IQA== + NrgMGZxjYkD60UzrnGVsQOO2GkbmYnJAU72qemajckB1xqyr6RN4QOMU95k+dHlAY4SsCFhEf0AEa5+IdsKAQC+VIYvC+oJAT5MS74Myg0AmdKG5+ZKGQE/CABkwu4ZAJqOP46UbikA/PAaI0ouMQCbSfQ1SpI1AaQ7V4RRKkEDEaqZ7Ut6QQLKQFa41ppFADe3mR3M6kkAjAihJmVaTQDKoDMOLapNAbIRoFbqylEB7Kk2PrMaUQJA/jpDS4pVA7JtfKhB3lkDZwc5c8z6XQDUeoPYw05dAikO20RxLmUB/DnKUXNeZQApbreZyD5tAd8v0y62/nECKcqT7yNOcQPfi6+ADhJ5ABmLkkuSfnkAcdyWUCryfQMMFJesXJqBAs7P7GBvgoECB/cS2JQyhQKU+5Rw2uqFAcz93I0bCoUAwyYUdSUiiQMzKqSpp6KJA8FQBKHQqo0A= - + - bmYuQGzoRUC9CGZAywlGQKt4X0E2f3hABVXOQOmSgkE29G5AYJ7gPxyfU0A3TH9Aymc/Qf757D/OKlRC1kspQcVOb0Ccq9pBRWB8QcmfhkBFACVAnUZxQfBg60C+9wBAO2uOQIxs60Bv10BAdSGhQPW+6z8I9tNAGJOGQFK+2j/u4CFBy5zhQJdNHkEvEbY/Sub/P2qckz8QytxAF90OQVvCQEBeeFxBoCgwQNekgUGO4IBAuggZQSZB6EApUWVApO0kQEZULkD7GkBAHUGJQBWnN0BgFMZAvF4FQSDFs0BXqag/rrgbQAL/RkDGNpxB2DbbP8kXM0BGTkRA7+RhQmCPjUE+rzlAJ9UoQckVEkBzbGlABQuZQDJS9EEUVUBABkIlQHz2oUGIu3RBlvAHQa/bbkA7brNAp+wrQQgTmUEvfy5AVhfsQIqMiUFL+TZALoEBQfXPV0GrmqVA91nLQPh2qkHJNX1B4dTTQM4K0kHOerZAtfCAQFacSkLmqrhAsZJ8QXxKjkEC+QdBNFPkQMedBUGyrHVB6CHwQckmJUDqmMpBKHh7Qo4vJUFIi4ZAUOHjQXmIAUKSrWpBPT+FQf9/oUETMqNBpHefQfTwZUDH4X9BTueGQfs2h0HCu7U/MLZXQZGl/j+LUzBBZqU4QXj6y0HdXvNAvtyOQJCdCEETRjdBUleDQ62DnkLoyqxAIpXAQWDbCEHXBwFBajC8QTPg9UHg27RBFs8dQP3kxUDIAh5BqPMJQZqzTkGd25NBhJh6QR76hED5DLlBKwYKQs6gmUEJGLNBhVoqQezKsEGutlZByGWTQA77iEH3H6xAiIBnQtPY50ECA7FBEDIjQOizekLK0JFB8F0vQgV8b0Ge7YNEswYYQ0Tfz0KGxZ1BDsGwQGPguEAJ2olBnJMMQ6pkVEF86to/zWuqQLF0dkHGkwlBvII4QmGy5UHh06U/QCjLQc37gEC/Y5JBZNLRQSTwNUHYzatBg5K7QRT8CkF+DnJB1lHsQF9MiUF8WOBBoic6Qew++ECU/ktB5LX0QK9OvkKlsqVAxURyQWMeJUDHSWJC0qKAQWNHXT8kANJC81U5QuZxyEE1jbZB91mzQqBeu0CJ+IxBy0GqQbv3GkFV9EhBI63SQU4tbkJ7KBZBRM+6QRpurUGyO7NA/DoUQv14qUFT8BBBu4pcQA6OskFEk1NCSLvzQNXtz0Fn7g1CzcGBQLRR9kFUJ2ZD7hQhQqxNdkKyon5A4+y9Q7/sg0IzCoxArBoSQPqKK0FVldFBOHi6QKjsGURO6CdCKKWjQR+iOUFtEK1A3SnnQOZsCUFWAQBDPDaoQui/VELxVp1BNwASQyent0K5YstBKpalQJqni0F60FFDNy8wQsqbBUG0j4dBSX4bQJnsoEAVlZ5AQ+MZQaIIUkIByP1AHjWqQGI/hkK3wwJAdIGiPyxLFEC9dTdAExghQk9bLkDOE+pBx93tQJ7ycUCfREtAfGWqQYN6MUGvaXlBhGqmQbC11UGFOq9AQ0sEQShJIkNCMxhAeyyqQND8OUFcIlhAUoN7QqbcDEE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYBr/akAAAACA+gZuQAAAAIAEInBAAAAAwDgUcUAAAADgDVJxQAAAAGAuYXFAAAAAAE9CckAAAABAZcRyQAAAAMChM3NAAAAAoN5gc0AAAACAdNZzQAAAAAAgYXRAAAAAAPKhdEAAAAAgj4V1QAAAAADmT3ZAAAAAwK9fdkAAAABAvtJ2QAAAAECMQ3dAAAAAwKQjeEAAAADA/Nd4QAAAAACJ5HhAAAAAQE4geUAAAAAAQTl5QAAAAMCFRHlAAAAAQIpbeUAAAADAA1B8QAAAAMBhxHxAAAAAQK0tfUAAAACA7TN+QAAAAMDGsH5AAAAAwNeCgEAAAACACIuAQAAAAOCpkYBAAAAAIEyjgEAAAADAoNqAQAAAAKD14YBAAAAAQFNTgUAAAACAK2aBQAAAACCieoFAAAAAoDyTgUAAAADgeKqBQAAAAMAcy4FAAAAAALvWgUAAAAAg1gCCQAAAACBVSYJAAAAAgNprgkAAAADAiZCCQAAAAGDPwYJAAAAA4AXdgkAAAADg4OSCQAAAACDn+oJAAAAAgF0Ig0AAAADguCWDQAAAACDrNINAAAAA4KVGg0AAAAAgLZGDQAAAAICT04NAAAAA4Kj8g0AAAAAgngGEQAAAAADHKYRAAAAAoKiMhEAAAABg0ZOEQAAAAOD7m4RAAAAAwBXAhEAAAABgGsqEQAAAAGCuAYVAAAAA4KMShUAAAABAbR+FQAAAAIC+SIVAAAAAoKBZhUAAAADAIWWFQAAAACDQe4VAAAAAYKCShUAAAADg7sGFQAAAAMA4y4VAAAAAoD8lh0AAAACgkzmHQAAAAEDqQ4dAAAAAoN9Jh0AAAADAuFuHQAAAAMCuaodAAAAA4Kh9h0AAAABgELOHQAAAAODxw4dAAAAA4MAWiEAAAACgGiCIQAAAAKDaRIhAAAAA4KmJiEAAAADgxvuIQA== + NrgMGZxjYkAYxSyCnORoQOJgFSPMRGtAlLmMQukSc0B6IBaevKJzQEF7qtfU03lAHEB+kNqje0CgbMOVlnKAQDsm5O1O+oBAL5Uhi8I6gkDKTkLjesKCQFq/o40Oc4RAkXro8ubKhUCegpw0h7uIQFuCsaVo44pAaIpl5wjUjUCfRapM4SuPQBjbhXs6bpBA5TeWpxaykEBf7zR2UFKRQCxMRaIslpFAdnIHSYHmkkCsYzy3glqTQF56ocXI5pRAGNSDnL0KlUBhVsRo3maWQNpp4VzkspZAdmsFagSDl0CMgEZrKj+YQA== - + - gh1DQH2VvECYi4VAtfbuP3ea5kAtPjhAjxI7QJkfuUCW6KtAj4oAQBaR7kBiMzhAHoCvQHe92UCv+i5A7NGHQCPY3UAOf+1AeE0IQfibz0DEA7BBJad5QZAsgUDoYK9BkSHTQLJ1ZkBrrhRBY4aYQL+BCUD1D29A5UXUQIeZ9EDEVW9ASwq9QUa5lUG4YphA46gYQWkMCkBtsyxB1bgOQIaaJ0BBJXFAQnFdQEPDpkCk+hBBqySWQfN9vEBzSJ9AIASpQfitAED3k0FA9QoPQVpoREGCXqBArpYQQU3DOEDID4ZAenoAQgJzAEFcO35A5fCFQvFIiUG8lfZA2rlBQHWLXUAvkRFBHE1iQhSEvkAb0N1A6TKmQBXegkGF3+9Aho52QJZX7j+YP8k/bk3/Qa2mIkLzaSFAa66NQDNykT+GgL1A8rJYQYjr/EEXfR1C9uWcQKpEgUD6QwZBamf/QHo/+EA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAPmpa0AAAADA629sQAAAAKCyjGxAAAAAAAsDbkAAAACgu5ZuQAAAAEBHgG9AAAAAgOwTcEAAAABAIaBwQAAAAIDl5XBAAAAAQG8DcUAAAABAo3hyQAAAAAB8k3NAAAAAgHdedEAAAADgUNZ0QAAAAMCn8HVAAAAAQLYIdkAAAACApjF2QAAAAEAKTHZAAAAAwKpVdkAAAAAAqZN2QAAAAAB2RndAAAAAwCO9d0AAAADA8zR4QAAAAMDk+XhAAAAAAKgDeUAAAAAANhN5QAAAAMALI3lAAAAAwG6PekAAAABAgdZ6QAAAAMCWDXtAAAAAgIfue0AAAAAAV0h8QAAAAMAgdHxAAAAAQJLbfEAAAACAnzp9QAAAAMDvZ31AAAAAALuVfUAAAACAD9Z9QAAAAMCbK35AAAAAAP88fkAAAADAD1V+QAAAAIBZZn5AAAAAAHzTfkAAAADAyUR/QAAAAIAKdn9AAAAAQG6Uf0AAAADA7J9/QAAAACA1D4BAAAAAgFIpgEAAAAAgzEaAQAAAACBNUoBAAAAAIN5XgEAAAACAPXKAQAAAAOBpe4BAAAAAALOGgEAAAAAg1qiAQAAAACDytIBAAAAAIFvygEAAAABgQguBQAAAACBLEIFAAAAAoLcegUAAAAAg8yeBQAAAAIBXO4FAAAAAIFJpgUAAAACgZHCBQAAAAMAoe4FAAAAA4AmDgUAAAAAgTsmBQAAAAMCmCYJAAAAAIJAWgkAAAACgih2CQAAAAICZJ4JAAAAAwBc9gkAAAACgYU6CQAAAAAB1VYJAAAAAYORjgkAAAADAIm6CQAAAAOBQd4JAAAAAAJuAgkAAAACA946CQAAAAOCKl4JAAAAAgOy5gkAAAADgBNCCQAAAAEA754JAAAAA4OX1gkAAAACArACDQAAAAKDxCYNAAAAAILwRg0AAAACg0ByDQAAAACBmJYNAAAAAIAcvg0AAAAAgiTeDQAAAACCzP4NAAAAAYK1Lg0AAAACgvlmDQAAAAGDvYYNAAAAAgKWFg0AAAADgBo+DQAAAAGCelYNAAAAAoGidg0AAAADgrLKDQAAAAGCquYNAAAAA4PXBg0AAAABgTdKDQAAAAOCh2YNAAAAA4Nnjg0AAAACgb/SDQAAAAOAT/YNAAAAAwD0GhEAAAADgMA+EQAAAAODeFoRAAAAAYCgehEAAAAAg2CeEQAAAAIAxL4RAAAAAgKxFhEAAAAAgMMuEQAAAAMBlOIVAAAAAYOxRhUAAAADgF12FQAAAAOA/Y4VAAAAA4Pt7hUAAAACATJSFQAAAAAAgo4VAAAAA4BCohUAAAACAIbeFQAAAAOBpw4VAAAAAQD/mhUAAAACgQieGQAAAAKCSuYZAAAAAoK/qhkAAAABggvKGQAAAAICb+oZAAAAAANYoh0AAAACgni6HQAAAAIBYSodAAAAA4KZqh0AAAACgL3GHQAAAAKAAe4dAAAAAAC+Ch0AAAABg7IuHQAAAAOCyrIdAAAAAQFuyh0AAAAAgHruHQAAAAKBC04dAAAAAAOf8h0AAAADAIAuIQAAAAAARHYhAAAAAAK4ziEAAAADgJkOIQAAAAGDGVohAAAAAgDJdiEAAAAAAAN6IQAAAAMAO5IhAAAAAoM/4iEAAAABAsf6IQA== + NrgMGZxjYkCEfuNfSGJnQOJgFSPMRGtA - + - VvuAQDAtM0Frt9NA2oOhQIgONEHKFoFAl18AQPZ3kT+KextAeL2OQIMgeEDz6q5ApZD4QHGLCUDoCopACbXdP+RCakF67AVBMHehQAG8ikGoZCVAt85VQLZ1CUDfSeJAj6bmQNDXHEGXSopArFqlQbqwgkByCUJBS2c+QYCxoEBXpoJAzggrQk9BIEHlz05BYV+2P1582EAD9f1AMNvhQHIFvUAjgtNAwWW3QMbcm0EMxeI/e82RQXjYVEKoTD9BEyuRQJKKg0HCxulBmpGBQUhkt0FVUopBa8rrQYMRmEGQjxhDO84kQJXnlkD8KwZC59jiQYMhFUGhweVAwPYSQbN8O0IwOTJBVZylQDMGYECweW9Bb03mQaLEM0J2hgxBwJkqQbLyhUJZsLFBG7MKQN5hkkGLKuZAWDHYQfDL7T9A7oBBePAzQsinYUFrwrFBXPXMQWR12EKrMGlAc9+bQII0mEDzA31ASjS6QVLijkDorkBAtE6GQZvCgkIHEKdBsWe0QrQQ0kKNg9BBt1s7QU+Zx0DUsJNBW60AQcq2E0KXgcpAHzqKQKDnaEH2PJFBZEeOQYnImkEvKVRCGw14QoPv7T9QyT1C1K7FQZ08ikA+mf1Aqv7TQPZqk0BL1dhACdcoQdlL+EHWTwRCWi3UQVO8ZEEshklBMhwIQg4ISkJWrE5Btww3QYghZkAcHvhA24y4QW1xEUL9HjdA8Se3QpFeDkOYtTRB9LZRQTWp0EAMm6xBdndkQsQc70DiZyVAiMlcQJTYB0F220hBmMnIP+97G0L3VoJBOUqzQBYFKEECO5RAh+qRQh5No0E= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIGrpakAAAACA765wQAAAAGD+I3FAAAAAgIKfcUAAAACg2qZzQAAAAGC+g3VAAAAAgJn0dUAAAAAAJV92QAAAAABDf3ZAAAAAQEakd0AAAABAXYJ4QAAAAIBpQXlAAAAAAGaVekAAAACAvFJ7QAAAAEA/+HtAAAAAAMK1fUAAAACAvMN9QAAAAAArKn5AAAAAwEr5fkAAAAAA1yl/QAAAAIC9nn9AAAAAIAMMgEAAAADA0zqAQAAAAGC1f4BAAAAA4DWTgEAAAAAgKKuAQAAAACDv0oBAAAAAIOEAgUAAAABAhXKBQAAAAGC8AoJAAAAAgNGZgkAAAADg9+2CQAAAAKBM+oNAAAAAQLkNhEAAAAAA2xuEQAAAAGAQS4RAAAAAoJ/ahEAAAABgHuKEQAAAAKC++YRAAAAAwMIDhUAAAAAARAqFQAAAAEDrRIVAAAAAoLZThUAAAACgi4GFQAAAAGAWioVAAAAAQJuThUAAAABga9yFQAAAAODgE4ZAAAAAoFcahkAAAACgez6GQAAAACDoUohAAAAAwFXiiEAAAABgXOqIQA== + NrgMGZxjYkByWoXuS4RpQLAuKNpy5GpAdmjQV5ECcUCUuYxC6RJzQA== - + - 4WIDQSQJ8T9DoW9AfNkHQYNLi0CRib9AsvyjPxlbAEA7MlBBYtb0QEbLEkDeqEpANHOvQKh5tz8Q/sVAv26iQDZ4VkC5DFRAMuvOQH7/BUFVKiJB+yxUQQl5YEECuIBAk7OZQHnDEkBxqotCCHVVQbtVV0JprY1CpKefQG7c4kFWghhBPogbQJIpkEC2zGNBCkIoQyJ7yT+Ldg5DGHbsP7yWP0HpWRNBCOlAQIWJSkDeeIBCJV2mQABBuEC+ryxBH0seQVGN60EBaUxBVECRQ4LqEEE= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAA4NIBZkAAAACgUkJoQAAAAEDZY2hAAAAAgByiaEAAAAAAZsBoQAAAAGAgDGlAAAAAgJkoaUAAAABgmOFqQAAAAMCrYmtAAAAAgM+ea0AAAABAcIhsQAAAAKAWg25AAAAAQBCobkAAAACA8eZuQAAAAKBtRHBAAAAAgIOlcUAAAAAAyxdyQAAAAABrb3JAAAAAwM2xckAAAACAuPJyQAAAAMB/NHNAAAAAwByRc0AAAAAA0HJ0QAAAAEBphXRAAAAAQAdCdUAAAAAA7qF1QAAAAEDyEnZAAAAAwB4Ad0AAAACAd3F4QAAAAIDs83hAAAAAwBl1ekAAAAAAVZR6QAAAAAADpXpAAAAAgD7nekAAAAAAzxh7QAAAAIBJxXtAAAAAQGn7e0AAAACAQ3B8QAAAAIBw9HxAAAAAgD1UfUAAAABA43N9QAAAAIBDoX1AAAAAgCXAfUAAAACA2ZZ+QAAAAACosH5AAAAAwNgkf0AAAAAAaTd/QAAAAMCjhH9AAAAAgCSTf0AAAADAx8Z/QAAAAEC/DYBAAAAAoG9JgEAAAADgFlqAQAAAACD7fIBAAAAA4ByOgEAAAAAALpSAQAAAAKBI3YBAAAAAYCjigEAAAABgq+mAQAAAAKDz8oBAAAAAoBQFgUAAAAAgLFuBQAAAAODkaYFAAAAA4N26gUAAAACgocOBQAAAAIDT64FAAAAAoEIMgkAAAABATjKCQAAAAMCGOoJAAAAAgI5DgkAAAABgWVKCQAAAAIApXIJAAAAAgAB2gkAAAADgEX+DQAAAAEBvqoNAAAAAIFzeg0AAAACgKyeEQAAAAGAbLIRAAAAA4INkhUAAAABg33KFQAAAAKDMi4VAAAAAILbXhUAAAABAOO6FQAAAAOBh+4VAAAAAoGUAhkAAAADg3y+GQAAAAEBWNYZAAAAAoMRKhkAAAABgRYuGQAAAAMBOKIdAAAAA4Jpph0AAAADg3cuHQAAAAIA554dAAAAAIPT7h0AAAADgPAOIQAAAAABTCYhAAAAA4L18iEAAAAAgdIKIQAAAAAAcjIhAAAAAQL+hiEAAAACA6rmIQA== - - - - - - S2nrQIdWeEAbI49BOoFDQNDsyD+g9qBAkmm4QEnRlEBNz+I/8g54QHt70kHNkAlAXo8JQGR/hUAY7NhAHhkcQKNeIkGo7IlA4R4NQV9b10DlcZNAZ/mIQSQq+EBA4aNAvMCJQO5yXECEk5NA3KBMQEzChkD6JqFAC4wMQYGL00CPZkpAEXQuQI0sJUCaDXxAumvMQNqP2z/qjQBBb1jYQOtZAECdBs5AuRfJP8an6kFWRmlALO1iQJHkd0BJ7aM/X4ZbQdLOJUE08hVBawJGQbn4EkGlpEBAvNoIQWBjb0HBkxlBCrU3QFaBXEAgfwBA6LNJQHLAnECj+1xAayjPQGepgEHvxthA+c6jQS+tFkECCKZAXN/tPwhXEkCJboRBTaAxQLPKP0ABiJ9AQfb9QAIUbkL5WE1Aa8sjQVBtD0F1hrBAizwJQJM2JkF6fgNCn9q5P5zy3kFpksZBy4pWQKJuOEFitIBAUi1KQNgaQUD8YiVAq1oYQ+fKw0KLV7pA2AjPP732HkHN6BJAQcwqQbVaekA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgK6pa0AAAAAAXKFtQAAAAMB7bm5AAAAAAHEZb0AAAADg2/FvQAAAAABFL3BAAAAAoJSkcUAAAAAAcsdxQAAAAICyFHJAAAAAwEbRckAAAADAXIN1QAAAAMAIFnZAAAAAwN0jdkAAAADAJGJ2QAAAAIA8gnZAAAAAgL4ld0AAAADAA1V3QAAAAIC8v3dAAAAAgOlIeEAAAABAhLN4QAAAAMBQAXlAAAAAAPk/eUAAAAAAzWJ5QAAAAABss3lAAAAAgBPReUAAAABAxuR5QAAAAECWEHpAAAAAQIMgekAAAAAAWL16QAAAAMChkHtAAAAAAIwxfEAAAADASOd8QAAAAECPIn1AAAAAwGS+fUAAAACA69N9QAAAAAACSH5AAAAAwM0if0AAAACAuFh/QAAAAEA2dX9AAAAAQPymf0AAAADgBieAQAAAAGDVQIBAAAAAYLxQgEAAAACgcHKAQAAAAKDzm4BAAAAA4OWggEAAAABgz+KAQAAAAKCzJ4FAAAAAgG6LgUAAAAAgisqBQAAAAEBg0YFAAAAAACjbgUAAAABgNzuCQAAAACB2TYJAAAAAYLiHgkAAAABAl8OCQAAAAODtC4RAAAAAQLj6hEAAAADAanKFQAAAAKALi4VAAAAA4CHHhUAAAABgidOFQAAAAMC63IVAAAAAAB9YhkAAAABg72mGQAAAAKD0coZAAAAAYEUbh0AAAAAAN2CHQAAAACDpcodAAAAAYMGfiEAAAADgb7KIQA== + KBZXds7jZUBkuM9LfgRtQN3+1P+6wnJA/wfXMD4zeEAS0PIDhCN6QCER2WHBo31AMWiA0dRJgEDAkN7GABKCQCRpkOw32oJA67pgyUxKhEB6476+eBKGQBtIEBtvcoZA3OaNqMsqikB+ddo3+wqLQNPFDdcCw41AD3pb0DzDjUAyZcc3oj2QQB5AADvPdZBAwY0lLc4FkkCeV/dPJTqSQEGlHEIkypNALYBVRVEClEBYKO8UVV6VQHYClhFyXpVAoaov4XW6lkDy8dWojSqXQFPBlO+7BplAo3O9Hbc2mUDqh2wYzRqaQM+w1IbX0ppAAJ2tGfM2m0BHsVwUCRucQBmhpiQD15xAWzEgfBK3nUBiI+fwIzOeQKulJ71Ej59AKnfR2bFPoEBOASnXvMGgQFIxVfrKO6FA - + - aa1cQNqbXEDaXAlA9sSQQCZFb0D2R4VAPcHtP19Xk0BaNZRBuI/TQGriNkCmyxtAjtdyQI5iykA8Mds/YtBtQWxXsEAACUFAn2acQJAsSkBgmwlAQyEmQFDEckDQLiJAUVGLQE61l0CJFrY/1f1AQBvuFEAJG+lA7EMAQBsXokFPxRRAwK96QMYaHkAqZMNALaWGQAW5qUF13DlA4a5GQTYtLUHcKl9BOGEwQKzxb0CPrGtAxiIPQagELkGXti5ASiOmQKuYikCPVwNA6xq/QG4faEDleqFAfB6uQYkR7UCrFc1AbtUSQKAgJkGJFiVAfTAmQTw8kT+kPEdBU8O0QGK99UB1HZE/zdISQMBrUEEuw1hB2jusQR6sN0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgJsjYEAAAADgDSRjQAAAAEAJgmVAAAAAgMRjZkAAAACANsVmQAAAACDOQGdAAAAAIL2mZ0AAAAAAk2toQAAAAKA05GhAAAAAgBf+aUAAAABAGYdqQAAAAGDdnWpAAAAAIL9ma0AAAADAckJsQAAAAEAE3GxAAAAAgN+bbUAAAAAACAhuQAAAAEBOOG5AAAAAwIdMbkAAAADANIhuQAAAAMCWY29AAAAAwLKZb0AAAADATt1wQAAAAMC6AHFAAAAAQE8ccUAAAACA0EJxQAAAAOBQhHFAAAAAgK/FcUAAAAAgf99xQAAAAKC5EnJAAAAAQC5CckAAAACA625yQAAAAKAGhXJAAAAAYHihckAAAADAB9FyQAAAAABl8XJAAAAAIPhBc0AAAACg619zQAAAAGBwq3NAAAAAwEG9c0AAAACA1fNzQAAAAEB2IXRAAAAAQJNvdEAAAACAg390QAAAAMDtknRAAAAAYK0QdUAAAADAe4F1QAAAAACmjXVAAAAAAHLhdUAAAADAJgJ2QAAAAICpNnZAAAAAYHRUdkAAAACAmqJ2QAAAAMCOxnZAAAAAYKkyd0AAAAAgrXN3QAAAAMB8pndAAAAAgL2/d0AAAACAvM13QAAAAKD933dAAAAAoA3vd0AAAABAIv93QAAAACC2JnhAAAAAYHNQeEAAAADAPmd4QAAAAKCRdHhAAAAAIIXXeEAAAADgdhV5QAAAAAD3I3lAAAAA4BAyeUAAAACg1kN5QAAAAOAzXXlAAAAAAGpueUAAAAAg6a95QAAAAICTA3pAAAAA4IcUekAAAABghI96QAAAAEAyU3xAAAAAoAKrfEAAAAAg+iZ9QAAAAKCPPX1AAAAAQDlKfUAAAAAg4Hh9QAAAAECfxn1AAAAAwJTlfUAAAABg/UF+QAAAAKA/Un5AAAAA4B9cfkAAAABAl3B+QAAAACCGO39AAAAAoNBaf0AAAACggml/QAAAACAQgn9AAAAAIEAagEAAAAAAfiWAQAAAAOC1L4BAAAAAIF4/gEAAAAAg1lOAQAAAAOATg4BAAAAAIKOjgEAAAABgYsKAQAAAAED46IBAAAAAgOzygEAAAAAgvCOBQAAAAKCTNoFAAAAAoB9hgUAAAAAgE3yBQAAAACBQg4FAAAAAwMSWgUAAAADgmrGBQAAAAOCO0oFAAAAAAKfigUAAAABgWD+CQAAAAAByRIJAAAAAoCVmgkAAAADgf3SCQAAAAMA+moJAAAAAwC23gkAAAAAgFfGCQAAAAODohYNAAAAAYGySg0AAAABg/ruDQAAAAOCjzINAAAAAoGdYhEAAAABgqoOEQAAAAID/o4RAAAAA4PPOhUAAAAAAEuCFQAAAAEBlFoZAAAAAoFxChkA= + KBZXds7jZUD60UzrnGVsQGS4z0t+BG1AOAsfS35TdUDG63mLQrN4QKyw3zpuVH1AVUPGqhrEfkB0KSwIjzqCQKpQUX+56oJAZKMxdzHrhkA+MfW6EFOHQD5g4+S824pA+IPVsojzikBcsZ/PFGyOQOFFzzIFBpBA9ex+YiAakEDGyTMMRpKSQNpw4zthppJAD0x02Gbuk0CL8sqwirKUQCVhtdmMCpVAonWdg7tGlkDXdxro0paWQOv33U/copdAV48R/ShbmEACe7AiDTeZQOa3b/JUI5pAgpKnN2P7mkCYp+g4iRecQN508immC51A84kzK8wnnkCQZGtw2v+eQHOhKkAi7J9Aj8bkMgNkoEBFkn6JKcCgQE9SYD0uRqFAadOe7zluoUCo3ZJEUQyiQPQUCFlSOKJAM2gzRWSaokDM1XsTZz6jQFepU6t0SKNAvxcugIeEpEBK6wUYlY6kQOOhhX2S9qRAPC24hLXUpUAqtjR4qNqlQOpBsILTvKZAYSWhU8vWpkAQOplR6danQN2DYu/zAqhA0MUUXBS5qEAkmBHqCeeoQMJQ/l8ve6lA06wJ6CfnqUC0krDMT8GqQBrBuOI9y6pA2BwIylozq0DaTDTtaK2rQA== - + - qxokQc058D9L74BAMgkAQOoosECthhxBlnBAQK3Cl0Dqo7NAnvsTQbLkgEB2aMpAxgF4QDJKAEBDuIBA5QYAQKorl0AeI5BANVBBQMYxE0CmSkpA5SSTQBj+qkCsKu0/CSjVQP1MvEDw0Mg/FCpmQPBU9EA57RVBFuQbQN81v0DH2qpA/Of9QKu8nEA9qNlAakrtP77wvUCIThNBgzikQR6U9UDGDxxBh3GLQY8cEkApfm9AUl0AQPccUkG8DBxA9BojQeB6RUHXGxRAjGg/QRCs7kAtGRxAGU6tQWWQU0BLtLNAI273QKA7AEDQqgBBZt0IQdGv7EAC1IlAMyUAQD/PQUFWCds/6J2DQRax3kCj1J9B4AIAQHZwoUCWiKpAdGLeQB2ZeUCnWVNBtypKQNTUSkC5uhpBVDYSQVpGxUAfOpRAES4oQGqM6UCyR4ZAuSNUQK5gDUH8O2NB678TQZy3a0HLtmdA4KywQRqOJUIwHKNCV86JQdS5wUEm/IVBqsQXQQHmM0HVpvRAwMlyQdlk3D+Rr2VB0FGNQblnA0H3rN1AI9yTQFLGL0EtYXlBcczfQJwm4kB0vxJA2rtUQE5DBUL8RVtCDqlUQFT2HUFSNiVA/pKKQCibckHa7jRBwh1MQbWqVEBU53JCEKWsP+rWtT+DvdtA/M+AQMiyAkG6i9hADNIbQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAD/mZUAAAADAHyNmQAAAACBtJGlAAAAA4EQGakAAAADACSVqQAAAAGChZGpAAAAAQOMnbUAAAABAA4FtQAAAAMCSc3BAAAAAQMK2cEAAAACgTUVxQAAAAIDcinFAAAAAwCyecUAAAADAClVzQAAAAMDzznNAAAAAgCYgdEAAAABAsDV0QAAAAIAhT3RAAAAAgF1ldEAAAACAHXB0QAAAAAD1hHRAAAAAgNbDdEAAAADAfkF1QAAAAAAocnVAAAAAQBOBdUAAAABAC7x1QAAAAMDyFHZAAAAAAIuPdkAAAACAZdN2QAAAAMD4nndAAAAAwMtBeEAAAADAnV54QAAAAMCwg3hAAAAAQDTYeEAAAABAFSR5QAAAAIAHbnlAAAAAwJ31eUAAAADAxnV6QAAAAMCUoXpAAAAAAArhekAAAADA48R7QAAAAMCu4ntAAAAAwGBBfEAAAACAwU58QAAAAEC9cXxAAAAAwFSufEAAAAAAH9B8QAAAAEBZ+3xAAAAAwMkufUAAAADAyLJ9QAAAAAB+zn1AAAAAQHz1fUAAAAAAPyV+QAAAAADcP35AAAAAwJ9ofkAAAADAa4J+QAAAAAD3lH5AAAAAQA5Hf0AAAADA83V/QAAAAACukn9AAAAA4EhCgEAAAABAYkqAQAAAAGCsUYBAAAAAIAZZgEAAAAAgsW2AQAAAACBHiYBAAAAAILyPgEAAAAAAj6yAQAAAACB5zIBAAAAAIKqpgUAAAABgf8mBQAAAAADfD4JAAAAAILuagkAAAABgpCqDQAAAACAWxYNAAAAAoHHig0AAAABg0A2EQAAAAABnTYRAAAAAgL6/hEAAAAAAzM+EQAAAAOAF14RAAAAAYExDhUAAAABgrZ6FQAAAAGAVE4ZAAAAAINuyhkAAAAAgc9eGQAAAAEBDKIhA + NrgMGZxjYkDY/G+vNiFkQBu6YmAmQ3BAbFyUq/MhcUAvYzJ/mVJ5QK/J9MUpdHpAim98ylyjf0DwYcBn+gmCQKFsw5WWUoJAqrSgX3IKhkCR5sgEOSOIQCAPJ/pk64lAPpVEm8kSikDnOs0J0fOMQAXB6qo1G41A0cbWgCR6kEB6HfgM7HWRQOhJqVNVDpJAw5842QzSkkAKtOfTIraTQJpgDmKbWpRArBVkJ1/alUD3if5d11qWQA4N0TAI75dAkZnIAKBmmEAlkKMDOYOZQEOwLQ/m8plA9caSHSx/m0DH8R9XdaebQN0GYVibw5xAP7dku1eDnUAmiaEkvB+eQIg5pYd4355A2J8GMwKsn0C2J7xH1zGgQA+z7k7696BAaa5EtSlKoUDCOXe8TBCiQIsRsOoibKJAtMRgwGfSokDknOLxRTKjQNgFgSZ4gKNACN4CWFbgo0CTaKNYaW6kQP39afWNgqRAVomc/LBIpUBkmWGCh4ClQK8UzwPUDqZA79rK659KpkB6HDRVuBSnQKFWgXD0VKdAKDEsU9YUqEByhz+aEmeoQJYRl5cd2ahAgbxeWvk6qUC6Urf9LYepQAz+x8MRBapANrF4mVb7qkC6EsDBLwWrQCg8Yp1xvatArJ2pxUrHq0DQJwHDVTmsQE00S2yHv6xATIbCXn6trUD7SENqpb+tQIbT42q4Ta5APsh0y57zrkARFU3U0BevQPRqYMfyDrBAGIUTnN8csEDUMJ5MCICwQPhKUSH1jbBA5vVJyw25sEA= - + - 7GEWQVpJS0AII1RAU9HPQOHShUBYCJ9A3Ae5QAxp70BWThxAQgNxQCzSAEFKOhNBn+3tP9idJUB8raxAHmUeQOzGvkAztwNB0/UmQC55Q0Blf4hA9S+BQHOw1kCFFuJAL1rCQI6XTEDj0wlASwwTQJSKs0Cti6FA6b/gP+6g9UAfD9w/brl7QP+raEGA7U1B5vUUQD0dEEHA/4FAUSKnQJrjTUCpfxxAKHWFQZsz3T+nlGZA9ZvuP6GZDEFn5E9BHwfwP4IkC0C1osk/qm5WQKa8CkGbsa5BrZI/QfFSSEGqhstAGFypQLQzr0GaO7JBp5d4QGDeG0Bx5NJBgtj8QZ2wE0FS029AHSLwPxA6LUGsbrBBXbrPQD+c00Byo3JAJX4uQYnTSkCZvQlAyezIQMa13ECDjpNAvHR6QChYHECyh01B8QgNQUQtikLTBHlBX2H2QKoUB0FJ9B9B + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgBECXkAAAADA9SBjQAAAAIDXHmRAAAAAwI48ZUAAAACgl51lQAAAAADFhGZAAAAAQP6oZ0AAAAAAF59oQAAAAMBgzGhAAAAAIAAnaUAAAADAgX5pQAAAAECH5GlAAAAAYNgJa0AAAACAmoJrQAAAAIB85mxAAAAAwDFibUAAAAAAwqptQAAAAABhb25AAAAAgNasbkAAAACAsStvQAAAAMC8im9AAAAAIPACcEAAAAAAkhVwQAAAAOC7L3BAAAAAgFZFcEAAAAAgBmdwQAAAACDJxXBAAAAAAF7ucEAAAAAA5ApxQAAAAEDur3FAAAAAwLPAcUAAAADASNVxQAAAAGB64nFAAAAAgB70cUAAAACA9QxyQAAAAKCTMnJAAAAAANySckAAAACA47RyQAAAAGBa9XJAAAAAQFAQc0AAAABAqG5zQAAAAMCVgnNAAAAAIE+lc0AAAADgfb9zQAAAAICJ0HNAAAAA4PTdc0AAAADAngB0QAAAAAAyJHRAAAAA4MEudEAAAADAUXR0QAAAACA9onRAAAAA4OKwdEAAAABAEL90QAAAAIAU0HRAAAAAICYOdUAAAADAYDF1QAAAAMBfQHVAAAAAwJdTdUAAAADAz3J1QAAAAADxgHVAAAAAAIGSdUAAAACAFrJ1QAAAAIDDwnVAAAAAgBbWdUAAAABASCF2QAAAACC/UXZAAAAAoOFidkAAAABAFHV2QAAAAODsk3ZAAAAAgK2ddkAAAAAALqt2QAAAAEBixXZAAAAAYBDzdkAAAACApQR3QAAAAKC+TndAAAAA4N5bd0AAAADgPm53QAAAAGDfh3dAAAAA4MAZekAAAACgcC96QAAAACCc0XpAAAAAAI/iekAAAABgzvJ6QAAAAKDgW3tAAAAAYI7xe0AAAADAS098QAAAACAlhHxAAAAAoPqkfEAAAADA2mN9QAAAAGCkJH5AAAAAYGitfkAAAABgywp/QAAAAKBfUn9AAAAAoOLZf0AAAABgnweAQAAAAMDgEoBAAAAAQJcdgUAAAABgADiBQAAAAECfX4FAAAAAIK+cgUAAAACA/KuBQAAAAMAC24FAAAAAgA8TgkAAAABgXIyCQAAAAGDGG4NAAAAAoKKhg0AAAABgodODQAAAAGAI24NAAAAA4Ijzg0AAAAAgKCOFQAAAAKA2lYVAAAAAwE6rhUA= + NrgMGZxjYkA/KJil8iNpQD1liD1RInBAQx3Og3xCcUBDe6rX1FN4QMXreYtCs3hAxUlW35rEf0DlAM4SY3KAQHQpLAiPOoJAdgVPq6Tqg0DYVvYkG1OFQA== - + - L6SYQDzVHECQiUpAMhSlP1B37UAu6iNB4bOqQM67rUCJn0FAXpUcQLYc0EDHz4VCvlSvQNAXA0AIId5AxpWLQh8oBkFHwQNBUKPCQOCvZkCrgK9AHZXtQIcgiEDiAsxBDCCpQFm13D/NboFAwSb+QNctQkFAralA/zaeQMGH7z/exG9BFKmhQLtbOEGGVFZAd689Qf9sMkEXi1lBEvciQVLoAkBA4qpAYJ/CQCsX7z/He4FAfC/rQTV+qkBrO8o/1S3OQOclb0CDnRxAJICZQAKij0DsgXtAxM+pQRDzpEFLbu8/t35WQW53gEJ0UgVBvt4FQZdEoUB7TwRC8LbrQKCpYUB10NhA4kwhQWZooEJ4wkpBEd/UP31W2UDFpJ5AysoOQWozCkDmAyhBCRQEQV49z0HQZzpAUjiTQX8RS0EVD3RA1rgMQXdSNEFrvSBB+OmsQbihDUK0wSlAOYKEQht380HQVcdBPFdnQXQpAUBegAFBjXFfQoccYEGrU4hB9tqqQCsDfED1zNpAD22dQKTzk0EpMC5DiE/JPzUYuD/YcVtBPpRmQIPYuEBQ67NAG/Y7QYghCkAfY6ZAuYDePw== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoECkYEAAAADAryFhQAAAAIDlwmFAAAAAQPiiYkAAAABAXcNiQAAAAMD75WVAAAAAYCskaEAAAABAz79oQAAAAMApo2lAAAAAwFXgaUAAAAAAcGRsQAAAAIDxYG5AAAAAgOr9bkAAAADg6h5wQAAAAMBRsnBAAAAAwD/kcEAAAAAgG/NwQAAAAMAZAnFAAAAAYDQhcUAAAACAkUByQAAAAKC283JAAAAAgBZWc0AAAACg5GVzQAAAAABrgHNAAAAAoKPOc0AAAADAWAJ0QAAAAEA3IHRAAAAAwANEdEAAAADAi2N0QAAAAKDX3nRAAAAAAGUBdUAAAACApWd1QAAAAGBLgnVAAAAAQNScdUAAAABgxr91QAAAAEDW4HVAAAAAAP73dUAAAAAgcxJ2QAAAACD+qXZAAAAAAE7AdkAAAABg2vl2QAAAAEAfH3dAAAAA4LE0d0AAAADgIWd3QAAAAKBd0XdAAAAA4H7dd0AAAAAgw+t3QAAAACBGF3hAAAAAoDY+eEAAAAAgO0h4QAAAAGABUnhAAAAAYAOLeEAAAAAgYqN4QAAAACDSunhAAAAAABPMeEAAAADAbz15QAAAACAT+npAAAAAIPGie0AAAACgP7F7QAAAAMCt1HtAAAAAYEUkfEAAAACgdGl9QAAAAKCRdn1AAAAAwM0kf0AAAACgdtt/QAAAAEBfQoBAAAAAoM9qgEAAAACgjYGAQAAAACD3iIBAAAAAYJKRgEAAAABg7yGBQAAAAIAjc4FAAAAAoGBUgkAAAABgb2qCQAAAAGBgioJAAAAAoDPrgkAAAADAkAGDQAAAAGDKQ4NAAAAAoOIahEAAAABgxDyEQAAAAOCUU4RAAAAA4Eu9hEAAAAAAawSFQAAAAKD4XIVAAAAAYNB1hUAAAACgAcOFQAAAAODJ4oVAAAAAwAZxhkAAAABAhzqIQA== + 4jyZjTbDXEA2uAwZnGNiQLaw0KihQmlAo+J3Wr/CcUDvZ/o5VNJ2QMXreYtCM3dAtsKOc2wDfUCI8hdf6GN/QIaLSTwCuoBAcf8w1VXagkCGujdmrkKEQATg1BCt4oZAs8DcCxBrh0AED8M6WWuKQKqfXDpHA4tAOci6L3PLjEAEPrFkBfSNQJx71KwPKpBAgrZPx1i+kEDjj4OnJQ6RQJk5IpqJUpJAcrjhnFHWkkAZURmv3xaUQPLP2LGnmpRAqHl3pAvflUAJU6uE2C6WQO+NJp8hw5ZAiWqimS7zl0BvpR20d4eYQLa5zK6Na5lACYKZroS3mUAyqQxGqTebQImZkMPae5tASSzfGNrLnEDTiWJhBoCdQMlD1i0wkJ5A6gw1NDcUn0DfWBcvVqyfQE1HjlQwkKBAyTe+Hk6coEBxiK66QD6hQLt5cItu4qFAQrls5F5QokDfupDxfpCiQANF6O6JAqNA - + - wNKqQAcv9D+Ke4dA2y9yQKpICkAO2y5BbM5KQDymRUCVFYZAZX6tQCc4VEALUO8/doOeQIKFYEFfjV1A5lxxQOvCQUD9daJCJxm0QO/CAEAWcKVBAqBBQcRFeUBVK8JAOGAcQUHkRUEE71ZAV+uIQY6JE0ERP51AnoHDQMAPlUESQ1lB/1LcP42rA0HHsdw/76fGQNOi60DqMWZAsCoXQt4tyj9xuL1AL/icQJJfOEAGWxNBhnnKP0bKNUEcBURBSopVQbYVlj9wfyRBZCOAQXl5vUCFUQJBwrLcQfLBsUBhjgBAQ4N4QbbHlEHOFcZBAT5LQPOWykBpdZhAXaAAQOMLgUCjWRxAABfJQL/wD0GcExZBVJbSQektTEH9NCVCaV04QECqIUH7Hso/DPjvQDYXa0GLkGZAnhDQQMlU0EC9OVRAZNwcQD/IXEAPvApBtEU1QHA/OEAPr8o/zKvJP5fzAkE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAALEZZUAAAAAAKodqQAAAAAAghmxAAAAAoOnEbEAAAABgQARuQAAAAIDJIG5AAAAAAGghcEAAAAAgz6BwQAAAAIBNMnRAAAAAgFMGdUAAAACA3UZ1QAAAAAAwFHZAAAAAwMzzdkAAAABAbDR3QAAAAEB113dAAAAAwBTUeEAAAABAUMZ5QAAAAMDdEntAAAAAwH8de0AAAABAHEh7QAAAAAAUaHtAAAAAQKsNfUAAAAAAeiR9QAAAAAC9M31AAAAAwHRNfUAAAABArYF9QAAAAAAs231AAAAAwL47fkAAAAAA+1R+QAAAAEABb35AAAAAwE+nf0AAAABADLJ/QAAAAEAozX9AAAAAwAQHgEAAAADg5BeAQAAAAKAcIoBAAAAAIH2KgEAAAADAOqmAQAAAAKDh3YBAAAAAYHLFgUAAAACgc/eBQAAAAGCnI4JAAAAA4OhTgkAAAABgSIeCQAAAACCa1oJAAAAAQJogg0AAAADAOCqDQAAAAGA/eoNAAAAAIKm7g0AAAACg1sODQAAAAKA84oNAAAAAwGsChEAAAAAAO5qEQAAAAOAuqYRAAAAAYF6uhEAAAAAgS76EQAAAACBle4VAAAAAgLyyhUAAAACgTGCGQAAAAGB9aIZAAAAAYHiohkAAAABg2a+GQAAAAOBz2odAAAAAoEUFiEAAAAAgbRmIQAAAAICRH4hAAAAAIIQ8iEAAAAAgxWSIQAAAAMCZaYhAAAAAwC6riEA= + NrgMGZxjYkBQecKZJCNsQHzKEHuiRG1A - + - qwXQQHKACkA3YyZAvzYyQMipE0BE2IpAgAUpQXji50BVw69AjCWrQCZbI0FESC5BI020QM7b8UAGYYFAf4poQOF0okHCCss/w47xQNejYUAXCqlAmYq4P4hRH0ES8/lAUnsmQHmRpkAzWwVCuqLQQbXBE0DB0zhADoRLQEior0BXtiVBRR2ZQAndTkCQnEtA0p0mQUFLEEG7GBBBAtWLQHq1BkGqE4ZACdeWQIdGE0EFuSFBYvJSQetbg0EKCkJAJCGhQYtFJkDath9B0b44QHoT0EDUDC9CWLw4QY6XeUBy+5BAfMngQYTw0EHQZGVB2TpPQyQ2DkHWELtBboa4P25LQkBe+F1BfehgQeqkykFwGqBAcbclQQ== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQOJlcEAAAADA6QJ0QAAAAIArU3RAAAAAQMJid0AAAADAlL96QAAAAIB1+HxAAAAAwLtRfUAAAADA6e9/QAAAAOBrM4FAAAAAgLQrg0AAAACgV0SDQAAAACCbyoNAAAAA4N9bhEAAAAAgt2qEQAAAAGCRQYZAAAAAoIlHhkAAAACgcpCGQAAAAEAh04ZAAAAA4DfihkAAAAAg9euGQAAAAMB1AodAAAAAQCKqh0A= + NrgMGZxjYkCdFrCBNyNrQBu6YmAmQ3BA4hT3mT50dkBgMdDnOVN3QO6IHAcSZH1AqW+L01alf0ABvmoPDfuCQNpxWCCVSoNALOjsEVkzhUDaoEZKQdOGQJAVty7ly4lAoczsWa3biUBKaJcmXcyNQGvUtQwv9I5Agt07j2rmkEDnAMCUXcaRQMtffFuLQpJAdikeiomOk0B9duFp0c6TQChAg5jPGpVADJ8/X/2WlUBxwsNk8HaWQL61pG1D45dAzuuzYCx3mECjOQlHhG+aQCsVpFxod5pAh0/cTrrzm0DdKwlrrsOcQAdn02MQuJ1A8kBKbNTfnUAJxBw/BXSfQN0+HDkrAqBAz8kFPUbEoEBd7cCmJeCgQLZ4861IpqFAkc7kAXr8oUB2BG+4c4iiQFFaYAyl3qJA - + - wjYBQFS0L0BEh90/nIZ/QLacVED165NAelW0QH2cTUChVRhBZUQ4QGasr0B/djJCMdevQObOJUHjlQZBn3d9QVT59EDGtBJBceIeQkiVeEEYJTtAcBQoQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYLt7aEAAAAAgt8doQAAAAMBTZGlAAAAAAJreaUAAAAAAH2VrQAAAAODtmWtAAAAA4Omza0AAAADAiNhrQAAAAOCNi2xAAAAAIPCibEAAAABgkNpsQAAAAECJ2m1AAAAAQM2fbkAAAAAgSuduQAAAAEBmJm9AAAAA4KZeb0AAAACAmhRwQAAAAMAjJHBAAAAAgLZjcEAAAAAA1LBwQAAAACCLwnBAAAAAYJjPcEAAAABAe+ZwQAAAAMC2HHFAAAAA4LiScUAAAADAfshxQAAAAMBaL3JAAAAAQHBqckAAAACAlqZyQAAAACDREnNAAAAAwPZqc0AAAADALtVzQAAAAMCSI3RAAAAAAORQdEAAAAAAbXV0QAAAACCJoXRAAAAAQPfWdEAAAACgri91QAAAAOA1T3VAAAAAgLjCdUAAAAAA0R52QAAAAICtMnZAAAAAQNJUdkAAAADAIGt2QAAAAID1dHZAAAAAACFBd0AAAABAd3Z3QAAAAABdnndAAAAAQLFXeEAAAAAA8mx4QAAAAIAMhHhAAAAAQHuaeEAAAABA9PJ4QAAAAMC+E3lAAAAAAB9FeUAAAACAqFR5QAAAAEAgs3lAAAAAgEjSeUAAAADAkxZ6QAAAAMAqU3pAAAAAAFvSekAAAABAIgJ7QAAAAMBxE3tAAAAAwJdne0AAAAAAunJ7QAAAAIAjlXtAAAAAQP7Se0AAAAAAuyF8QAAAAAAmVHxAAAAAQHyhfEAAAAAAF7B8QAAAAECqxnxAAAAAQNfzfEAAAABAoTR9QAAAAAAXRn1AAAAAQKqEfUAAAADANKd9QAAAAEA8tH1AAAAAQDfHfUAAAACAGQh+QAAAAACQIn5AAAAAgEZSfkAAAADA2n1+QAAAAIBmj35AAAAAgCvVfkAAAADAChV/QAAAAICaR39AAAAAwMdff0AAAADAHnF/QAAAAAD0gn9AAAAAYFgJgEAAAADgbBqAQAAAAMCgM4BAAAAAgH5LgEAAAACg7WeAQAAAAECugoBAAAAAIGOZgEAAAABg2aKAQAAAAIA4sYBAAAAAQES2gEAAAAAguL6AQAAAACAh34BAAAAAIIr6gEAAAABgQACBQAAAACCQB4FAAAAAQMZDgUAAAAAgHlGBQAAAACDnWYFAAAAAoKlxgUAAAABAy3uBQAAAAEATg4FAAAAA4GaKgUAAAACg3ZmBQAAAAICtp4FAAAAA4GC8gUAAAACgRsKBQAAAAOA/24FAAAAAoH38gUAAAABg4QqCQAAAAKDpSIJAAAAAgEdTgkAAAAAg2mmCQAAAAEA8cYJAAAAA4NR+gkAAAACAIYqCQAAAAKBLu4JAAAAAQMPQgkAAAAAgn9uCQAAAAOCx44JAAAAAYKTpgkAAAADAVPGCQAAAACCaGoNAAAAAoLAkg0AAAACg4imDQAAAACCDPoNAAAAAgHlHg0AAAAAApFGDQAAAACDMYoNAAAAAoAVrg0AAAACg0oODQAAAAKDci4NAAAAAgOGbg0AAAACgSaODQAAAAOCZq4NAAAAA4OHZg0AAAABAe+KDQAAAAMB4/YNAAAAAoLIIhEAAAADAaBaEQAAAAOAgM4RAAAAAAK05hEAAAABgc0GEQAAAAKDzUoRAAAAA4FFZhEAAAAAgLmGEQAAAACBcjYRAAAAAYOKahEAAAADAMXGFQAAAAKDbeoVAAAAAgJy/hUAAAACAdeOFQAAAAKCvAoZAAAAAYJ0MhkAAAAAA3xKGQAAAAGDXfIZAAAAAIG6RhkAAAADAT7OGQAAAAGBovIZAAAAAIFbMhkAAAABgTDSHQAAAAODXOodAAAAAAEhah0AAAADgx2OHQAAAACBwo4dAAAAAIJGzh0AAAADgYsyHQAAAAKAO04dAAAAAoNsiiEAAAACgqaiIQAAAAICK8YhA + eg5Y0/EhYkA2uAwZnGNiQOzQoK8iBW9ABGJAIxFCckAma0JUlLJ3QAp4Yr2Us3lATSyKy0LDf0D0tbbNbKqCQCZFs49NaoNAWOOA6vjChUDtcFmfuXKGQBI2YeJww4lAgFH92hB7ikASZU8MHUyNQICA6wS9A45A06L5IzqqkECd6WV+GgKRQLe4zCtwLpJATwDLjGCOkkA30MNAxvKTQEe9TcSxdpVAgcCV3vH2lUDKQtaqElOXQCxBsp3yAphAQ8SEcCOXmUB8WTu5WJ+ZQMXbe4V5+5pA - + - 9JgKQH6CaEAciMRAaXC5Qci7o0E2uIZBTB9RQRMAPUFAwMtAZ8cvQB/fKED4i7dAbGG2QNO3NkEtzWtB+sKTQfVrQkD7Qo9AoqXdQSwF2kFZwUJBOMuKQDb6akG2fbRA+JPXQbrQYkHDwsA/okK0QDlSt0HanQhBzt5rQFWLiECD7qFAdr8WQ67cS0A0uSNBGuv2QbZUpkEkDgtEDrcxQU11QkAfShVDFIG1QDvFSUKPlupBwAsgQSG56UCEXfA//dKKQAxO6EDo2flArB+nP/8/mEDitSZBgblKQip1XkB0sC9Ar4GmQJE0RUHhfHBAg7gdRNiGDkA2xetAlLeJQZroqEA4dZ5AAA4UQYzjikBBd0RAVnx3QcaG00D7ITlBpAxYQO0xj0DQcwNBrfJnQHmHNEGEWfhBIBtxQKOFwUAdx01ALAdVQJVfq0CgdrJBUVXgQI6Gk0AziIFAc6zQQTibXUHtHCZBFP8VQOTE40BNg0tAkW5nQPkTrEAicQNAiqHXQLfVJEK3C9JBuktjQBsoFEAW8KdACqrrQbvnA0GCTWdA5DfnQuj9lkFA1Q9BzDA/QRWJp0FAlNg/xbCiQqcHDUEC1F1AsxoGQTcWokAl7iJBlIc8QTkbhkA3NtRA3fQUQPHx7kJ0vMFBe7oEQQ5sBEK35xtCvoA0Qc5N10E3yldBFQSYQBwWR0FmFDlACT3NP20POUDlgqFBQeuQQLbCpkDkbwBB2uuNQYi0mEBAfKlBEl2tQf7ZuD/I2pNAGNB7QVAzXEA298JAdWMDQF+n3T+dWZVD/gAhQr75s0GPSEVBT35XQIYljUGf9xdC2ZimQG5Hpj9ExFNBPVW2QXqgRkHuApRA/x05QLvMk0HWPyRB0OP3QSqVcUBSWgFBT9ddQPIoDUFetwdCGzvEQwnPE0Jj8K1AVV8NQcJ5/0FJHvVAVK2jQNuljEBGvwpA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQDdDaUAAAADgJ6FrQAAAAIB+nnBAAAAA4NyxcEAAAACg0zZxQAAAAECYZXFAAAAAoDDzcUAAAADgNa5zQAAAAEBb8nNAAAAAgDIwdkAAAADAJVV2QAAAAMAk8nZAAAAAwDOGd0AAAACAtq53QAAAAIBE4XdAAAAAQPupeEAAAABA9eF4QAAAAIBkIXlAAAAAQCmSeUAAAADASQB6QAAAAMCumntAAAAAAOYCfEAAAABANol9QAAAAMCd5X9AAAAAQNn2f0AAAABghliAQAAAAGCFY4BAAAAAQAVzgEAAAABAupKAQAAAAABkrYBAAAAAoIzNgEAAAABAqf6AQAAAAGCiQ4FAAAAAQOGXgUAAAABgo8KBQAAAAKAQ3YFAAAAAIKL3gUAAAACAHyOCQAAAAGANPoJAAAAAYE1KgkAAAACgnJiCQAAAAKBFzINAAAAAgBLqg0AAAACg/bOEQAAAACCKQoVAAAAAAK5bhkAAAACgp3SGQAAAACCW44ZAAAAAYEXyhkAAAACASoaHQAAAAAAQ24dAAAAAwHNPiEA= + NrgMGZxjYkA2uAwZnGNlQHJahe5LhGlA - + - BcdUQKOxZ0Bd/Lg/BRPLPyIkOUArFQ9BWA+dQGJLpT99P6tAcJCfQK2vcUDF1DhAQVcmQMsKdUAbOSlB0BbCQC4ScEDk7bg/PE86QLdCH0Gi39BAkHDPQMixC0AZBJ5BhyXOQK8+QkAlnGFBfKAfQYOV4z9WWcBAeLsfQbVdh0GbxKZB04MPQdvL2kFwq6FAwOpmQNwl0ECW87g/cS5JQRwdqEAnwRBBwajQQTsSqEH12BFBjhe6QG0b+EDkTA9BJ0IBQFzE3UCtP5U/oQKcQQ== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAByqYEAAAACgrARhQAAAAOBvKGFAAAAAoN8GYkAAAAAAKaFjQAAAAEAox2NAAAAAoFSCZEAAAABAVAJlQAAAAADdYmVAAAAA4MfkZUAAAAAAEItnQAAAAADcJWhAAAAAQDbjaEAAAACAbAZpQAAAAIDCKWlAAAAAoDhAaUAAAACAvIZpQAAAAGD6o2lAAAAAQOQMakAAAABAxiNqQAAAAEDa3GpAAAAAAKUDa0AAAAAA3H1rQAAAAAAG52tAAAAAwHRkbEAAAADg6JFsQAAAAIAW/mxAAAAAABeZbUAAAABgTCduQAAAAECaZG5AAAAAAD+HbkAAAADABMhuQAAAAIBK525AAAAAgF4kb0AAAADAYEVvQAAAAICdFHBAAAAAIAcicEAAAACgeVJwQAAAAMAIlXBAAAAAIAHwcEAAAACAdARxQAAAAADKMnFAAAAAwKpScUAAAAAAMGVxQAAAAEAZcnFAAAAAYI3PcUAAAACAXPdxQAAAAIAFUnJAAAAAQMxbckAAAADglaVyQAAAAIAVxHJAAAAAYAYPc0AAAAAA7b9zQAAAAIAf1nNAAAAAQMYBdEAAAADAT0h0QAAAAMC+ZXRAAAAAwKSSdEAAAADA/rp0QAAAAECN0XRAAAAA4EcgdUAAAABAUTJ1QAAAAAC/QHVAAAAAYHVRdUAAAADgEl51QAAAAOCScHVAAAAA4Jm9dUAAAAAARuN1QAAAAMCZ9HVAAAAA4IcRdkAAAACgoXR2QAAAAEChjnZAAAAAYGuddkAAAACAkK92QAAAAKB+3XZAAAAAwN7udkAAAADgCDF3QAAAAGBEPXdAAAAAgOJOd0AAAACgC3F3QAAAACBN3XdAAAAAgGX+d0AAAABAixB4QAAAAGC2I3hAAAAAoE08eEAAAADgREZ4QAAAAEAAj3hAAAAAYG+ZeEAAAADAbbN4QAAAAEBCxnhAAAAAoKvjeEAAAABg9AJ5QAAAAAChEHlAAAAA4JEfeUAAAADgU0J5QAAAAGAkVXlAAAAA4LFfeUAAAABgZ4F5QAAAAGDFs3lAAAAAYCPoeUAAAADgb/h5QAAAACC2InpAAAAAoCU0ekAAAACgiG96QAAAAOCPw3pAAAAAwGvQekAAAAAgg/F6QAAAAOD//XpAAAAAIEEQe0AAAACgiCZ7QAAAAKBeM3tAAAAAQNpNe0AAAABAFFV9QAAAAEAikn1AAAAAQFDMfUAAAADglFV+QAAAACBTZn5AAAAAwAaEfkAAAAAg5JN+QAAAAEAkL39AAAAAwAyFf0AAAABASD2AQAAAAGDdUoBAAAAAAPRggEAAAABgp8GAQAAAAOCs54BAAAAA4LTsgEAAAADAAPSAQAAAAMAaFYFAAAAAoAo6gUAAAAAgikmBQAAAAEAbUoFAAAAA4H3IgUAAAAAAydOBQAAAAGA644FAAAAAQHspgkAAAADgoDKCQAAAAACPUIJAAAAAoPtYgkAAAAAgHDuDQAAAAOCCSINAAAAAINxNg0AAAABga6KDQAAAAIAKwoNAAAAAgNjLg0AAAAAAnOuDQAAAAKC+/INAAAAAIDtDhEAAAAAgAkuEQAAAAGB2WoRAAAAA4BBkhEAAAACAB3KEQAAAAIADeoRAAAAAABfBhEAAAADgQ8mEQAAAAMAS2oRAAAAAYG0khUAAAACA2FGFQAAAAOBhWYVAAAAAYNJnhUAAAACAKuSFQAAAACCu6oVAAAAAQAP+hUAAAACAqAiGQAAAAADrEodAAAAAgPc0h0AAAAAgl1yHQAAAAADhc4dAAAAA4KKLh0AAAADgN5OHQAAAAEA9zIdAAAAAgPLjh0AAAABABOyHQAAAAMAhNohAAAAAoApRiEAAAADgmdqIQAAAACDj4YhAAAAAoCPsiEA= + KBZXds7jZUD1hHOUyKJnQDtMc7KVAnNAooOBwRLic0BdVXXjGHN4QA== - + - gGmkQGHqaUN6COM/6GwTQMWsk0DnHE1ALZEQQRrNDkDHOOpAlbrQQfcpEEBpJEJAqjjfQJfUGEC23w5Ahw7JQNS1VkIY47dAgErgP1TVKkHpZmJAZ6S3QMpjI0BvQuE/dgLeQYR+N0D38BhAASPRQLomeECWrbBBXriQQRJe3kJpSkFBMzHfRIKcBkKFy/1AixNgQPmdw0GkK9dAvak3QBMXU0GnDMFAuJQ/RC9fx0GtvKI/sjUoQan8dEDAgDRCxDdTQDHZ9D+jZIlBJAhCQIS6akDSC55AMu/RQDWus0D62rNCpelBQKHZD0D6hCxBs0GaQG8RpED8FmBAS/bMQF2lbUEt5LBC9Rn1P7AGXkGh4eFBIl8kQA3NG0NcD7JAAw1hQKahI0DKUT9BmMKPQB/mbUCqvcxBOtMPQaxqlECeSCNAQr/GQKLMmEASVzxA8fQYQiYEtEFB04tBVJqeQPg7FUOsFatB+jKyQa24GEGpQC1BzCOPQANdN0EaF39ABSGmQTY3vUDqLLFBHIpYQf6ONkJ6yZ9BsNrrQHbXRUIjSw5CIosAQUEhtENN9sBAZna8QavAREER5cFAgJzCQCwJAkGmhiBBGxWqQLuNk0GCKSNAgewvRDZ//EEstNpBxiQoQCy1T0H6NNdAhTXhQKn0fkE/WgRAMIUtQHifcUF2ZthAnOQTQdaFdkC5cThA2mNdQnHCqkBXcG5B0WeAQN36DkG4xIVAEc/vQL+Yb0EJAC5BOMa/QfhTK0IGftJBDBqfQcOZakCeykJAEuH3QLcqDEGtapZFf5/iQzJhBEB0q7JAgi4/QXMGGUAzI7ZCrSBWQXnFiUKQ+0FAZ1fuQFYJkkGiQp5AllajQLdzqEDDdbhAIr5BQJZGh0Aj63lALmT/QaW/t0En69ZAb6EeQ1r/yECBe49AmR0MQYCQMULRLyFBO2N/QA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYARLXUAAAACAb4pgQAAAAABkvWBAAAAA4AXnYEAAAACAAAJhQAAAAEDXJmFAAAAAQCmIYUAAAACA+MNhQAAAAIANRGJAAAAAAMScYkAAAADAOMNjQAAAAADp7GNAAAAAwMIgZEAAAABAruJkQAAAAIBySGVAAAAAwDppZUAAAACgdKZlQAAAAIBr4mVAAAAAIKUrZkAAAAAA60VmQAAAACAIYGZAAAAAQILaZkAAAAAgHyNnQAAAAAB7PWdAAAAAwOuEZ0AAAADgyK1nQAAAAKDM32dAAAAAYAMiaEAAAACgnR9pQAAAAMB8PmlAAAAAYL6LaUAAAABAUGVqQAAAAIAQqWpAAAAAAAbjakAAAAAAVf1qQAAAAMDNImtAAAAAwIpAa0AAAACA7VtrQAAAAABNhGtAAAAAgNGpa0AAAABAzodsQAAAAAAAnmxAAAAAQMDmbEAAAABApiRtQAAAAAAaR21AAAAAAKnjbUAAAAAAmihuQAAAAEDYiW5AAAAAgNmxbkAAAADAdMduQAAAAEBSBG9AAAAAgJ4gb0AAAAAABUVvQAAAAADHZ29AAAAAQF3Nb0AAAACADBJwQAAAAGBfK3BAAAAAQD41cEAAAABgYlRwQAAAAAA9ZnBAAAAAABCCcEAAAABAfARxQAAAAMChD3FAAAAAwHEdcUAAAACgBTBxQAAAAAATUnFAAAAAID9ecUAAAAAAYZVxQAAAAIDPoHFAAAAAgAfEcUAAAACgoNBxQAAAAAD/6HFAAAAAgOHycUAAAAAAJxFyQAAAAKBzI3JAAAAAgPUyckAAAABA97NyQAAAAKBhz3JAAAAAwIPZckAAAABAPO5yQAAAAMCU/HJAAAAAAAQSc0AAAAAABCJzQAAAACBKQXNAAAAAQKVQc0AAAACA2WxzQAAAACCClnNAAAAAoMK0c0AAAAAAo8JzQAAAAECKz3NAAAAAYFn9c0AAAAAAUBF0QAAAAEBSNHRAAAAAAOJRdEAAAACAomJ0QAAAAIAFb3RAAAAAANKQdEAAAACA+ad0QAAAAAChtXRAAAAAwLDSdEAAAADgCOF0QAAAACBWk3ZAAAAAgIigdkAAAADgN9Z2QAAAAGD2QndAAAAAwLCNd0AAAACgOZx3QAAAACCT4HdAAAAAgG9heEAAAABgiXR4QAAAAKCXgXhAAAAAACC3eEAAAADAxjN5QAAAAADISXlAAAAAoId1eUAAAABg8JB5QAAAAMB0ZHtAAAAAYE6He0AAAABg16h7QAAAACB/A3xAAAAAoDXLfEAAAABAW2V9QAAAAOCB031AAAAAoLEDfkAAAADAwjR/QAAAAODtgX9AAAAAQJckgEAAAABgksyAQAAAAGDwR4FAAAAAIEWSgUAAAADgXMOBQAAAAMBf6IFAAAAAgOn8gUAAAADAS0uCQAAAAOD0Y4JAAAAAIGCfgkAAAADgiv6CQAAAAIDYAIRAAAAAoI4whEAAAADgeYKEQAAAACAI04RAAAAAIAr6hEAAAACg07yGQA== + NrgMGZxjYkDEZV5bjlJwQOO2GkbmYnJA4xT3mT50eUCLwPKUpoN5QA== - + - ChmuP8Zqzj+l6ohA1ayBQICyikAqo2dAsndrQAktJ0CRgc4/sxhxQDY7FEArXGM/JthMQDLg9EBFHcw/qMQBQMfhAUF2BkVAHNMBQVVgvkCjof9ANk3oQMsczD9wt4BALkdgQWSJp0DwNEZALg/xP9cpKUHXA1VAeS9WQEt9pkBuug9BKK8dQLfRuz8UgOJAdW5sQLSS3kAZuQFA600yQW28uT9FWmhAhlusQeAp/0CdQZhAs1i5P2UXC0DNCIlAL/0mQe5XOkHxsQpAU/0LQgSd5kGbinxAn5aDQEY1pkBN5KVBwhNEQFVjj0CV94pAK7b8QYLBTkFw9k1BDIpXQJsucEFLooVBFNYkQVOwgUC+CktBRFcMQLlGtEDlaqtAv2RzQDzAbUGtNcs/srOPQM+cn0ERVMZCkCEPQBKaVEFgjrk/3tCmPzjOQUFrzdRAxSiZQNz/CkCOkr5Aag96QEAoa0DKyiZAKCXJQST0H0C45NNBHY8GQrYMhkATVFZBRiWtQNM0a0ABDatAFslnQdwWC0D6201BXvIaQZZO3kA8XmJBaL4PQRktv0CZqitBCukBQDFMO0Fivl1Bi/vLP6Qy1UAMgXVDLyGnP7pahkB5g4ZBnYKmQMoegkCfmGdAnK/7QcURdECNmDBBt5wdQA5y50B6Zh1AeZAIQXE/7ECQSlZANRwFQZ4LPkGK5VZBMIYIQeI18T+mqaNAQG0JQaRwMkESlR1AutIBQOoIBEFSBxRAY9K5P4K0K0E= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoEWCZUAAAADgbWlmQAAAAOD+G2dAAAAAgH8laUAAAABA5aZrQAAAAKDUhm5AAAAA4M0Cb0AAAACA2x5wQAAAACC+0XBAAAAAAPzzcUAAAADgndNyQAAAAEC8hXRAAAAAgCMBdkAAAAAAuvB2QAAAAECqB3dAAAAAQL/md0AAAACASrR5QAAAAAAWyXlAAAAAAFC0ekAAAACAleR6QAAAAACX9XpAAAAAwGhHe0AAAACA0FN7QAAAAADFYntAAAAAgIR0e0AAAAAA2ER9QAAAAIBtXX1AAAAAgG21fUAAAAAAGAx+QAAAAMAaNn5AAAAAAHdsfkAAAACANbd+QAAAAIAYAH9AAAAAQH4jf0AAAADAgl9/QAAAAMDn9X9AAAAAoJAYgEAAAABgJDqAQAAAAAC6R4BAAAAAYFZSgEAAAABgvGqAQAAAAIDlioBAAAAAIK4BgUAAAAAgUCWBQAAAACBEQYFAAAAAoLRbgUAAAACA4mCBQAAAAODiaoFAAAAAAD6JgUAAAABgepGBQAAAAMBmqIFAAAAA4I8BgkAAAAAgEEODQAAAAODpJIRAAAAAwMBwhEAAAACgQHqEQAAAAIBof4RAAAAAAF+EhEAAAAAgLQSGQAAAAOBOC4ZAAAAA4Lcfh0AAAACgUluHQAAAAODZY4dAAAAAYJ+Kh0AAAACgzJKHQAAAAABlrIhA + KBZXds7jZUBkuM9LfgRtQOJgFSPMRG5AjegxcQLTdEBfbopu1FJ2QOj0e7zFI3tAgXeMn1fDe0BzKSwIjxqBQMBqtPlXaoFAoC/RrfBChECw5Llo+jqHQM01dlNSa4dAsBOokqbDikDNZGR9/vOKQPpqCSNgHI5AsEKWvFJMjkDUEIv1RPKQQC/M6R92WpFAHZPLwWVOkkCv4+A0zB6TQJmCC1mBGpRA4Ja6U5f+lED507LS9yKVQCkZ+x+4WpZAdcPyaRPvlkDbL2Au/qaYQL+zxAc/85hA8rIyAS87mkBhFUFbexebQHLKKRaF/5tA4Sw4cNHbnEC7TGripVudQCqveDzyN55AO2Rh9/sfn0Cqxm9RSPyfQO7ibiUcoqBA4SQhkjzIoEAT21f0MaShQDqwU5lf7qFA0dL3vz+KokBe8XP/b5yiQIJ7y/x6DqNA9srgjlWMo0BAc2vIiPSjQLZWXJmAbqRAZLSLLpmipEAirCv6poilQA/ijqCjlKVAmiP4CbxepkDiN6cE0mqmQFqvcxTnQKdAosMiD/1Mp0Dl8Nx9/wqoQB4i5KolwahAcDJG5xfVqEDerV+1UKOpQDC+wfFCt6lAAu9/G2FRqkC7/ypbW4GqQMDmH+duN6tARkGUxHNLq0Bqy+vBfr2rQIBym/GZGaxA - + - +xLkP2GnmEB2MHpA6rz2QLnwr0ALqMBA+CJEQEsqcUBQCII/b0/MP4QnFkF3d5RAStdXQFiRakCx5UtA6yA8QICdHUB5WRRAcIp5QVCFikGm0NFAEcwvQEYCpz/lW7tAEjn/QISTj0D90kBBf10hQPIDJ0E1PfA/fUsvQRlMC0AdlApBPmXeP3kYokDcltlAHpQ6QI/mxEFvZeJAQPuhQO+M4UAmTvdB2/9dQBetlD/nB/FAYGgoQd0GLEHCuzBA+kxHQZ4OcUBGhmBBuxyFQbTuE0DDPExBx6UTQvIUOUB9ng1CSBAeQZ6LmUFN2CVBg38PQaa75EG1+zJBdBmkQeD3cEGgeIFA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAACMlakAAAACASWBsQAAAAADbRXFAAAAAgP30cUAAAABgxtRyQAAAAKDz5XJAAAAAwLAzc0AAAACAA5JzQAAAAMAjYnRAAAAAQJCzdEAAAADACqN1QAAAAGD2IXZAAAAAgEezdkAAAACAMUV3QAAAAIAVW3dAAAAAwO4SeEAAAAAA0eN4QAAAAACVtXpAAAAAwB1ke0AAAAAADhB9QAAAAIDddn1AAAAAQHjTfUAAAACAsm5+QAAAAIAAcX9AAAAAgAf3f0AAAABgsSKAQAAAAMD0RoBAAAAAwH+hgEAAAACgJcOAQAAAAOBTLYFAAAAA4MFKgUAAAABgSLeBQAAAAOBhwYFAAAAAAL3QgUAAAADA+OKBQAAAAABqFIJAAAAAYGQcgkAAAAAgzCOCQAAAAKA7LoJAAAAAoCU2gkAAAABgHkiCQAAAAOCeUIJAAAAAIKhVgkAAAABAEWqCQAAAACCLwIJAAAAAoETKgkAAAADgfDiDQAAAAOC9oINAAAAAYOIVhEAAAABAITuEQAAAAGBuR4RAAAAAwDVahEAAAABga2WEQAAAAODSjoRAAAAAoCeahEAAAABAAaSEQAAAAEAEw4RAAAAAYMzphEAAAABgfxOFQAAAAGB2GoVAAAAAgMNahUAAAACgoGmFQAAAAGCKh4VAAAAAoPaShUAAAACgj52FQAAAAOBpooVAAAAAYJiphUAAAAAgpsKFQAAAAOBVzoVAAAAAoGbThUAAAAAA19qFQAAAAGB/J4dAAAAAYLpCh0AAAABA4kyHQAAAAODwUYdAAAAAoPFbh0AAAACg9GmHQAAAAKCwcIdAAAAAYMi7h0AAAABAvcKHQAAAAOAT3YdAAAAAoKQViEAAAADgLiSIQAAAACC6PIhAAAAAgFR6iEAAAAAg7cWIQAAAAKBd7IhA - - - - - - 5BUnQHy2c0DPqQFAX3VeQMq0zUKRqyZAbeZNQETQpkA2nF5AlBaqPzbtJkA8N2dAggO5QI2i8kEbAS5BSqIxQShuPUFzfmhAyG/SQEwYe0D91PM/lfuTP8jQ7UD6i/VAb0WoQKVQHkD2nblA71qTQSm4rUGK7ptBV9goQOiPLkHo3bRAIeMLQBtSwkB3nrRAo1rQQMxohkE3KDVBensYQYinvUD2rYVBaGqZQV4dh0C2yP9ATFReQNdVWEAa019ABSDaQJ7HLkG1WpBAs7uiQHhGRUHQdqhB8/reP6QCJ0CWi8s/NvDNQJugjkGwSl5BjpfbQJFBMkKGS5RB2nL9QhCmvkC9vrRBwHPDQIV9x0AahDxCNBI0QQCw8kAn83BBk54JQcaG3j+UuvVAPRFuQdC8uUHSFIlBCszHQE+iC0DHIkBBMW4WQRWbSEELM1xBNj9DQJpKjkFsO6JA - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoOpFbEAAAACg28VuQAAAAAB8Y3BAAAAAwN7ic0AAAABgJBJ0QAAAAMABAnVAAAAAAL3gd0AAAACAWjN5QAAAAMARQ3lAAAAAgP24eUAAAACA01F6QAAAAECaVntAAAAAAJsDfEAAAADASiR9QAAAAIByFn5AAAAAADT5fkAAAACAvTGAQAAAACByQYBAAAAAIKhZgkAAAABg07qCQAAAAKDWC4NAAAAAoNAXg0AAAAAgrDeDQAAAAOAwR4NAAAAAQHpcg0AAAAAghsODQAAAAKCHboRAAAAAgFO2hEAAAADgw7uEQAAAAGAQ24RAAAAA4GY6hUAAAAAgiFuFQAAAAKBRZYVAAAAAYHbAhUAAAAAgZcaFQAAAAICRy4VAAAAAADuIhkAAAACga42GQAAAAAA2nYZAAAAA4HMRh0AAAACgbSWHQAAAAAC4K4dAAAAA4FQyh0AAAABgZXqIQAAAAGCtm4hA + eg5Y0/EhYkA2uAwZnGNiQFRnpVdMhW5A0RY+T/xBc0A5Cx9LflN1QGBuim7UUnlAOWn7ntZkfEAwZjNhFjKAQGPgI1/XOoFA95HZcII6g0C+vX+A7kKGQC3o7BFZU4ZAvuxtqpoLiUA= - + - ehEKQeL+S0CP6PA/cBcAQXYOekCJ5mdAm5cmQWKfvUDmiYZAWSerQFh2lD8gQblAgrWBQDxyj0DfW6k/zyzBQDawH0G4rddAeEy+QI/zy0Cg4eNASGtQQfBWAUIsFylBisGfQlCTBUFmvXhCfH1zQ173bkIr015Amm7eP8vlS0AYOkdAwVi/Qfl1IUEHfidAwdcfQXdhV0BgoG5B6qSUQeEXrUB9pYFAd0mGQDM/iUAHZBZB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4BN+W0AAAADgdktcQAAAAMBRlVxAAAAAgAbIXEAAAAAg9xReQAAAAODLJmBAAAAAgMsEYUAAAACgcGdhQAAAACBrm2FAAAAAoJjEYUAAAAAg4yRiQAAAAEDlaGJAAAAAoDmLYkAAAAAA0uliQAAAAOCqJWNAAAAAoDdiY0AAAAAgEMdkQAAAAACnBmVAAAAAAAonZUAAAADAbGJlQAAAAEBAwGVAAAAAQBbdZUAAAAAAFwJmQAAAAIDAYWZAAAAA4Ed/ZkAAAADAWKNmQAAAAMDiQmdAAAAAYBRkZ0AAAABABY1nQAAAAEBi+mdAAAAAwN9JaEAAAADA+aZoQAAAAGBbB2lAAAAAgF0uaUAAAACAZUVpQAAAAADDYmlAAAAAoA+iaUAAAACg1L9pQAAAAMCy4WlAAAAAwARHakAAAACA/6pqQAAAAIBgxmpAAAAAAH3fakAAAADAZQZrQAAAAIB9ImtAAAAAAIBNa0AAAACAUcZrQAAAAICS6GtAAAAAwIEEbEAAAAAAQilsQAAAAIB1QmxAAAAAwMCMbEAAAAAANKdsQAAAAECCxWxAAAAAwJzmbEAAAABAfgFtQAAAAECQQm1AAAAAgMjlbUAAAABAGCZuQAAAAICpPm5AAAAAACaEbkAAAADAZL9uQAAAAIBU625AAAAAwJIib0AAAADAzURvQAAAAAB4gW9AAAAAQPijb0AAAACAjr5vQAAAAMAh6m9AAAAAQLICcEAAAADgIyRwQAAAAGBcSHBAAAAAYJpXcEAAAAAADmJwQAAAAMC9qXBAAAAA4K2+cEAAAAAAh8hwQAAAAKCO23BAAAAAIJT0cEAAAACAPv9wQAAAAIC2DnFAAAAAoJ8jcUAAAADgujRxQAAAAKDoYnFAAAAAoGazcUAAAABA+MFxQAAAAIByznFAAAAAAPLhcUAAAACgsPNxQAAAAGALBHJAAAAAYNUgckAAAADAG0xyQAAAAIDbZHJAAAAAoPt8ckAAAADA8KJyQAAAACAfs3JAAAAAgHbAckAAAABAWeFyQAAAAGDm+nJAAAAAwGEMc0AAAADAOh9zQAAAAIC8SXNAAAAAAMVfc0AAAAAAXnJzQAAAAIAIhnNAAAAA4NfDc0AAAADA//1zQAAAAKDtK3RAAAAAAPUjdkAAAADAXKd2QAAAAGC39HZAAAAAYBcNd0AAAACgOx53QAAAAIAM4ndAAAAAQBLvd0AAAADgcXV4QAAAAGAp1XhAAAAAoJyQeUAAAABgd7B5QAAAAGApynlAAAAAYL7neUAAAAAg6yB6QAAAAOCBlnpAAAAAQMGnekAAAACgtLZ6QAAAAOAoz3pAAAAAIPH7ekAAAACgD2V7QAAAAOCeeHtAAAAAIKvke0AAAAAgyhd8QAAAAMDTXnxAAAAAwPLXfEAAAABgIyx9QAAAAKAGmH1AAAAAoML1fUAAAADgfER+QAAAAMB+ZH5AAAAAQFVEf0AAAAAgsESAQAAAACCH0oBAAAAA4MlJgUAAAAAgHlKBQAAAAGCYpIFAAAAAYICrgUAAAADgMBuCQAAAACCvoYJAAAAAwNXvgkAAAACg5CSDQAAAAECWKoVAAAAA4I4ThkAAAACg6KKGQA== + NrgMGZxjYkAot2DdIQNrQK9rGHLRYnNAIrP8DWmSc0AKeGK9lLN5QOkNkUeBw3xALIFk7hckf0C8sm6zLGqBQF1s2AZ4moJATbfvS24ihEDAmaIjBDOHQHq9lPHPSodAh8VIM3A7ikBExV2kUWOMQEEYKSvoO45A - + - mn2BP7hcVUChMlBAdqMmQKwd1UBjbRZCt5C5QI8zNEEBIKtAxuCBP66aBEAIN4ZBTVCwQCuJHUA9dhRADGJ+QEL5XT8KJF8/tn2uQDIXH0AmA5BBved4QWlvlD+8gOdAwOGBP+54x0CIKK5BH2txP5UZdUBk3olB+nreP+UyBkHyhNJAvrCaQMzklkBo3edAXyJ6QBdY8T9/hp5A5zsUQE0UNUGH9cs/npXSQAJ5y0Di1A1AEWyQQBKgOUCsUh9Bm5gJQT4J50DRCoBBQEe6QcoXGEFUTTBA6e8YQdAi6kC6hh1AQu/iQDoe8T8GxQpAgsXaQCIDyEBgCnFA5ww5QDg+S0G31cZA/YgBQCdvj0BoC7w//rDNQaForEDyzaxBe8gfQUgUBECCo7dBYMqBQZIjYUChEZRB3P5RQbHRkz9c/INBI2VeQLksfUDcuPJBjw+oP3qyZ0AifThBlanLQkISQkHrRzJCnMxPQciFr0FcrYFAWpZZQXNax0CBi5RAeKdCQJqlKkJnyIhBpds0QqKC9EAvXPFAXoRJQcf9HkLGf6ZAhAmwQemoHEIX0aBAaS7RP/qsAUFErg1AhDeaQJsiekA1D+xA8AyKQRnh0UC7AtVAwATaQH0v7kBzY4E/f5x7QFARY0F4WrxB9imAQ8/A+kH9iblAqoEGQXv+EUFKHgtBVnHsQNvpkEDjPFhBS+vKQE/gPUHhNflACEFoQDQiVUDQHLpAh2IUQA9PBUD0FAtArY93Qf5AMECfao1BHTtVQJtJLkGVlN4/CuaYQJTWr0BE2QJAqVZeQMpS2UA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAACUIbkAAAAAAjXxuQAAAAIDy83BAAAAAAGGgckAAAABAjaJzQAAAAABZDXRAAAAAAOZwdEAAAADASdB2QAAAAAC2xHdAAAAAwBLHeEAAAADAm5R6QAAAAMDVsnpAAAAAwG+me0AAAADArDR8QAAAAMCUwHxAAAAAQNlEfkAAAADAIYV+QAAAAMA3xn9AAAAA4LlsgEAAAACAEHuAQAAAAGCTwYBAAAAA4HnSgEAAAACg1+WAQAAAAOAUCIFAAAAAoMlCgkAAAADARWqCQAAAAKAFk4RAAAAAgIrKhEAAAAAgQxWGQAAAAIDFT4ZAAAAAwHRDh0AAAADAcW+HQAAAAKAz5YdAAAAA4LiMiEA= + KBZXds7jZUC0UdoP9eFsQBTpB48/A3JAoYOBwRKid0Bv9VHaAlR4QNwl+pbCwn5AGijziY3CgEBSQEdo7XmCQF7r6zAGC4VASR/HliQShkCiruTXflOJQBMnkEmmKotANo+IE9ZbjUDaUjZZEjOOQMW35ggCJI9AxnFGDDcWkUAfQAA7z2WRQEJhhqNS4pJA0VZlSRWyk0CMUVhBfuaUQBrZpRU2DpVADGlPVtSqlkBkyXezYRKXQHreuLSHLphAm5GtSwBzmEBe9Iu8vbKZQLIUgB4xB5pA7Rzqsel6m0BkK+Usd1OcQJ8zT8Avx51ASa9JBrjfnkC0SJDBVeOeQBgcaKy4V6BAys8N0vFxoEDGMGCq1lehQCNbQNkUmKFAUXLJE+8hokB85nLgN16iQHX8IBH6k6JAoHDK3ULQokDOh1MYHVqjQCuyM0dbmqNAJxOGH0CApEDZxitFeZqkQJe+yxCHgKVATAtv7lWCpUAiSWwRmg6mQD5NIVt2yKZAe9SeGL00p0CX2FNime6nQMLoTRPTGKhAIhq9y7G4qEC0czcX7tqoQD/+1xcBaalAaS5sxsecqUBk9sDmFmuqQCm659DyfqpAiDfhTCcZq0BOstCfCIGrQOHCE1RKP6xADKpwaxZnrED+NFpvMSmtQDpORlttZa1AIr+xbDybrUAs2S9fiCeuQEe3mjtSna5AHxviy6htr0AY6FhlcK+vQG4JwUvbKbBAdIyLR8dgsEAaT1rP7IywQCDSJMvY87BAPtmxzPf+sEDmctn/5FixQOoeS1AJkrFAxjgXhfrJsUDJGhs2EAWyQA== - + - IYCcP+yWQkD73INAXtLQQOPrV0BkL1lA14YdQO4iC0DuVx1AwlnHQNcS3kAyf4ZAegSHQAWjQkAWq51AAPfZQGh/VkAYCNVA9MLeP5zES0B6hLk/A9/IQGYZVEHs55FBLvzDQaRfcEAU2ApBz5WdQHvfAkF4iB1AkukPQRkjTkB78BhBZiStPw== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIJylYUAAAACgbm5iQAAAAABRBGNAAAAAQAgGZEAAAABAzYNkQAAAAAAlw2VAAAAAAKrpZUAAAABgnehmQAAAAEAYoGdAAAAAwMClaEAAAAAg/u5oQAAAAMCqP2lAAAAAoFAuakAAAADAq4NqQAAAAICfhWtAAAAAgJq/a0AAAAAAw8ZsQAAAAACc3mxAAAAAwIckb0AAAACAwsJvQAAAAIBx429AAAAAQFYQcEAAAAAAhCFwQAAAAKC8QXBAAAAAgKZgcEAAAACgX4dwQAAAAMC1kXBAAAAAgI6zcEAAAACgEs9wQAAAAMDI9HBAAAAAICEEcUAAAACAAjZxQAAAAICgUXFAAAAAoBVwcUAAAACACANyQAAAAMBGEHJAAAAAIKIjckAAAACg109yQAAAACAEhnJAAAAAoEObckAAAADAVsNyQAAAAOBa1HJAAAAAQFbkckAAAACAEPByQAAAAEAkFHNAAAAAwPJzc0AAAADAtoBzQAAAAIDNtnNAAAAAQBzvc0AAAACApxN0QAAAAIAOY3RAAAAAgC5zdEAAAAAAt5B0QAAAAKBcn3RAAAAAwPfodEAAAABALUB1QAAAAACUkXVAAAAAoDPWdUAAAACATBF2QAAAAIAeMnZAAAAAYBlgdkAAAABgZcV2QAAAAECd1HZAAAAAgJ8gd0AAAABAFzV3QAAAAKDXQndAAAAAQNzVd0AAAADAjvd3QAAAAOBwMXhAAAAA4KxTeEAAAAAgi3l4QAAAAGCXtXhAAAAAYKzSeEAAAACgyFB5QAAAAIBaknlAAAAAAK+zeUAAAAAgx8V5QAAAAGB6z3lAAAAAgH4sekAAAAAgVkF6QAAAAIDNTnpAAAAA4GtfekAAAADAq296QAAAACBvsHpAAAAAQAvnekAAAADgfAh7QAAAAODhKHtAAAAAgP5Fe0AAAAAg8lJ7QAAAACDxentAAAAAoGKxe0AAAAAg6MF7QAAAAICtXnxAAAAAwGSUfUAAAACgsHR+QAAAAOBUiX5AAAAAYPcUf0AAAACgSlh/QAAAAGBlkn9AAAAAoBPlf0AAAADgERyAQAAAAACTLoBAAAAAQPZPgEAAAABgAYaAQAAAAKDPq4BAAAAAINexgEAAAADAOOqAQAAAAEBQ+4BAAAAAIC8EgUAAAAAA6gmBQAAAAGCoV4FAAAAAQMZugUAAAADgBXWBQAAAAOAbioFAAAAAoFPqgUAAAADg90OCQAAAAMAZloJAAAAA4OG8gkAAAACAzQODQAAAAADLDYNAAAAAIIEkg0AAAAAgKX+DQAAAAOBrtYNAAAAAIPMThEAAAAAgrFqEQAAAAMCIa4RAAAAAQOjbhEAAAABgIwOFQAAAAKCMS4VAAAAAADtThUAAAABAw7mFQAAAAGCZe4ZAAAAAIFTJhkAAAADgtPGGQAAAAOAU04dAAAAAYBgKiEAAAADAwZqIQAAAAOCguIhAAAAA4ATciEAAAAAAweyIQA== + NrgMGZxjYkByWoXuS4RsQBu6YmAmQ3BAOQsfS35TdUB2xqyr6ZN2QHStlyAudHxAdiSJ/0GlfUB0KSwIjzqCQFjjgOr4YoJAheklkFqLhUB9PKgbXhuHQERoTivKI4pAdWMr//xbi0BElzxVdqyNQJO05+lU7I5Auc5w/WtqkEAvXlhOawKSQLGL8zS9UpNAq02Y5YbOk0DGoDQ2426UQPJhR+CcspRA3LV1NwmLlUByeT718naWQFiltc4kV5dA8pA1Ckk7mEBuuvbPSnOYQDsTdtZpl5lAtzw3nGvPmUC7Km3rv1ubQEZllZGXl5tA0q0/vvDvnEBd6GdkyCudQGHWnbMcuJ5A3f9eeR7wnkBVLO+/HgqgQBPBz6IfJqBA4LaPwDGYoEDTTEutSgihQJ6uL4w/fqFAk9jGt3XqoUApOdCMUgyiQLdiHrWAXKJAtMNwjWWaokB1Wr6AjkKjQDAiMimODqRAaJxw7a6IpEC7Y5uSptikQK+wH+jEbKVAe+8WndG6pUBtegCh7HymQCsP4YPt4KZAtlBK7QWrp0Avf99lILWnQP1k+ecbj6hA3ZPXYz61qEC98HTyRnGpQCSohl5UmalASDLeW187qkDkMwJpf3uqQAi+WWaKHatAPb80cKJBq0A= - + - K40KQf1LMECxvyZAoo5VQNINFEDYNDBAoUFMQKMe8T/YU3lAJhSnP5SHD0G8I5c/Q6heQO1GlEDtNTBAhACbQKNMuUBURoxAI6rkQZ/VL0FNdJQ/uW+dQGpkFEB4bTBAdydMQIlohkDB5hpBhTHsQJwDzD96pRtBBC6yQKKDnUBwyB9BdlfPQB5hUEEEoNBAVBYwQBI4oEBBwEtAJxzMP8C2AUEoGsw/T8i0QFOOR0HW3IFAixoXQGmgmECdNvE/s2KGQKxW3kCjoX9B93jeP813NEFgIjBA8/nLP2xmjEBygZQ/rkEUQAhNPUCkU15Bjh1MQNGfVkDCUmFBz/e9QFzDFkEBkaNAaQtQQaA3jUFQIodAv8e0QIcJaUGL0YFA6sC7QHIAOUDnCgRBZnZLQTemjkFc61lAeKOwQVqKMUCMNPlA/HOBQPLRNkH6t15AMQ4LQWVY7ED0MsRBRptuQXnOmEEFE6xADjcIQUIiQ0EJgL4/zo/nQDQ98T9C9wFAiECRQdXThEGHny9BT5y+QIcTOEGVQ61A6vjSQFxxy0DXBPE/fkisQJF2BkFjgeNBhOaVQTTwlEB+l0pBxISVQCHgG0GvmpQ/AMvwP9+uFkBprZdBzEodQeBlq0Ds84RAbEuXQYXUJEIPVtVAyIHxQHI1L0LZCixBktZoQbvFAUBbfQZBNYu5PxCs8j+4L7VAxy31P5BZS0Ejvy9AiozSQCRUOUEXDg1BpgXMQNA5dEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAINVqbUAAAAAARKlvQAAAAAAeInNAAAAAQI3TdEAAAACAD5J1QAAAAKDPPnZAAAAAgA43eEAAAABADVR7QAAAAEDPEn1AAAAAgLt+fkAAAADArsF/QAAAAGC1OYBAAAAA4P7DgEAAAAAg2zGBQAAAAGCCEoJAAAAAIN53gkAAAADgmCmDQAAAAKBOO4NAAAAAIC+yg0AAAAAAdNuDQAAAAKBu+4NAAAAA4PV9hEAAAACAGq+EQAAAAAAjwIRAAAAAILfthEAAAACgaAKFQAAAAMBON4VAAAAAIHI9hUAAAAAg0sGFQAAAAKCfSYZAAAAAwJDShkAAAAAgYuKGQAAAAIBqaodAAAAAoKLTh0AAAAAAYfSHQA== + KBZXds7jZUB61vaTY2FrQGS4z0t+BG1AiDDsKtfyckAExo8DyuFzQIiOyH4vBHpAmNUhac0SfkCndC7co5qBQMwZf94SkoJAC6L4+C+zhECaylbuW3uGQGD6IhpqmoZAKfO044dDiECNAMi/y8KJQFb5WYnpa4tAVCxuzzfLjEBN2Nm3IASPQKYF9363MZBACgLAY0YGkUC9iMlR6MWRQCGFkjZ3mpJABJ14TP6pkkBLsSdHFI6TQGt1ZNSinpRA/ceMVVoalUDrjFvp+GKWQK/e8WOgZpdA0BDAwjnvmEAv9uh49iqZQEQLKnocR5pAgicl0X97mkCLH9l0MiubQP4WZWibR5xA - + - zNOaQHqngUCV4FdA+iCmP6HZHEBODxRAEjsdQBE+O0HJpmBAPWLZQCCTtEBkYso/l7iAQfC+L0DPE0BBeD8dQAr4k0FwzAJB3DbvQc5makLp08hAd+3qQPVOCUFZCtVAnqE4QL5mgEEYFppD1LLcQArS+UBcyz9B57R5QGBLO0HW9axAzn+YQMD13D8= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgEKKW0AAAADg84pcQAAAAIC9qWBAAAAAIGckYUAAAACAp7thQAAAAACJoWJAAAAAIFzqYkAAAADAqGVjQAAAAACCxGNAAAAAANkmZEAAAABgdl9kQAAAAECYo2RAAAAAgHirZUAAAABgc+ZlQAAAACA5ZmZAAAAAAJsfZ0AAAACg7FxnQAAAAADA4WdAAAAAQMhCaEAAAADAEWJoQAAAAACjhmhAAAAAYK/naEAAAABACgFpQAAAAMC3JGlAAAAAoAyFaUAAAABgFsBpQAAAAAB892lAAAAAIJwlakAAAADA0VlqQAAAAOCYgWpAAAAAoCihakAAAABgEyRrQAAAAEDgYGtAAAAAAGrDa0AAAABA9wVsQAAAAEAsR2xAAAAAwFz8bEAAAABAVCRtQAAAAICXP21AAAAAABdibUAAAAAAEeltQAAAAAAMYm5AAAAAAOaFbkAAAACA+MxuQAAAAIDN425AAAAAAEwBb0AAAADAQCNvQAAAAADUR29AAAAAAGJlb0AAAADA44FvQAAAAIBaom9AAAAAwMskcEAAAAAATEFwQAAAAADvVXBAAAAAQNlhcEAAAAAgZ5NwQAAAAAAos3BAAAAAgELDcEAAAACgatJwQAAAAIBu+XBAAAAAAFARcUAAAABAekNxQAAAAECsWnFAAAAAICRucUAAAABAJ8NxQAAAAGBG5HFAAAAAoDrwcUAAAAAgDQhyQAAAAEAqEnJAAAAAgG5DckAAAABA819yQAAAAECXcXJAAAAAQCeNckAAAADgibByQAAAAECzynJAAAAAwEHXckAAAAAAXuRyQAAAAKCp9XJAAAAAoOsHc0AAAACg8xxzQAAAAGDULXNAAAAAQJFbc0AAAADAFXZzQAAAAADAlHNAAAAAwAzUc0AAAABgMP1zQAAAAKDiCHRAAAAAwPssdEAAAADA2090QAAAACDPXHRAAAAAYEigdEAAAACAOLJ0QAAAAACHv3RAAAAAgObUdEAAAABAPwJ1QAAAAMDtIHVAAAAAIM42dUAAAAAAV3F1QAAAAGBp9nZAAAAAYDkjd0AAAABAO0B4QAAAAIA9bXhAAAAA4HgTeUAAAABg5uJ5QAAAAOCElnpAAAAAIJgFe0AAAADgQDl8QAAAAKCnlXxAAAAAoEZXfUAAAABAw259QAAAACDxf31AAAAAYKmpfUAAAACg+rl9QAAAACCvNX5AAAAAYMRwfkAAAABA0n1+QAAAAOC1sH5AAAAA4Kqnf0AAAADgmbSAQAAAACDfioFAAAAAoPxKgkAAAAAghMKCQAAAACCcU4NAAAAAoAWJg0AAAAAgMtSDQAAAAECS/4NAAAAAoKlEhEAAAABgxWuEQAAAAEAey4RA + NrgMGZxjYkAAVPW5y8NqQFf+/uF9UnBA - + - hoWPQNItHUHhciZA4oBLQBNSAUCJa7ZBwIvwPyRQBkGFl4VAZ37vP9KLJkBvaJdB6kodQIiZuD8WhMJArXzwP/lnr0D0MB1AUJ0tQQpcyz9GgIZAMKxyQJc98D/MDBtBvZ/PQEFaa0BfC11B2awBQJ5JekA7doFAZRFVQA7HuD/dubg/16vLQJP+p0CAS8s/Tu1dQHAo7z9b3JM/zalwQCmhj0CUg1VBsDs/Qezmw0GhfYlAIC/+QMIs4EB/d51AzJ0dQWSdmEHF3QVBqMbIQc60uj84fgpAAby4P9ChikAgym9BVuDLQUTsVEBeYslAAdOeQF63vkA7VBtCPlsWQUb2jkAvQDRCploMQNt1l0Cys7lAw5kmQI4M3j8EarpBDH3nQDSV7kFfMhJCxwLiQD4uXkBWkZ1BB690QrUvKUIvuWFBClPqQVpFnUDJ9Z1ANIRNQDogRkEasjhBVN4KQYQV+kAbbMo/PdAsQovRpULayBNAvJt6QFrFm0IvxC9AWm6wQUVu20AakSZAbljmQI5rv0B1MhRBjBWdQFx0pkCt+QNBRAiWQogZJUH67N0/b47rQR8FAkHA0g9BhR7eP+fHCkFA5vFAyGZwQOflYkHekw9BQ5b9QBEilEAmggFAvhwmQEniXUGr5RhCxWy0QHsfmUAo07g/n2lMQb2FWECRCadA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQMLkYEAAAABggahhQAAAACA3m2JAAAAAgMhcY0AAAADAbWNkQAAAAEAwyGVAAAAAIN0GZkAAAAAAtX9mQAAAAEA5hGdAAAAAwD2jZ0AAAADAckRqQAAAAOCtKGtAAAAAQKHFa0AAAACAnE5sQAAAAAC6oGxAAAAAALOebUAAAABA7/9tQAAAAACoUG5AAAAAwHKHbkAAAACAkcVuQAAAAMDmLm9AAAAAQAVQb0AAAAAAy4ZvQAAAAECQw29AAAAAwHTnb0AAAAAgin5wQAAAAIBCo3BAAAAAgKL0cEAAAACAuwBxQAAAAABkE3FAAAAAwFoxcUAAAACAx0FxQAAAAKB7ZXFAAAAAoC6CcUAAAACgIr5xQAAAAMAFE3JAAAAAYCU2ckAAAAAgM0FyQAAAAKBBYHJAAAAAAHFqckAAAACA3HZyQAAAAIAAgnJAAAAAQPqkckAAAADA78JyQAAAAAAS4XJAAAAAQMohc0AAAADAJD1zQAAAAOD2YXNAAAAA4Fqlc0AAAAAgFrZzQAAAAID60nNAAAAAYMPhc0AAAABA3fRzQAAAAAAnAXRAAAAAgO8fdEAAAAAgdix0QAAAAMBKP3RAAAAAoM1SdEAAAAAAUaR0QAAAAMB383RAAAAAQMgDdUAAAABAMiF1QAAAAMAqNnVAAAAAIM1FdUAAAACAclF1QAAAAABYinVAAAAAwGqVdUAAAADAarJ1QAAAAMAIvXVAAAAAYII+dkAAAACggFF2QAAAAKBydXZAAAAAoEKQdkAAAACga6B2QAAAAIAztHZAAAAAAAf6dkAAAADg1tR4QAAAAEBH4HhAAAAA4LpyeUAAAACgixN6QAAAAMC0W3tAAAAAwM/Ve0AAAABALxV8QAAAAEBkRX1AAAAAwADYfUAAAABg4u19QAAAAOBrt35AAAAAwDv/fkAAAABABYZ/QAAAAKD7k39AAAAAwNqlf0AAAAAgLLd/QAAAAMDBAYBAAAAAYJNigEAAAADg87mAQAAAAKC6E4FAAAAAYG9ogUAAAAAAHCOCQAAAAGAkaoJAAAAAoJXrgkAAAADg1vyCQAAAAKBj+YNAAAAAYN5lhEAAAACANUSIQA== + 4jyZjTbDXEAoFld2zuNlQHBahe5LhGxAFOkHjz8DckA4Cx9LflN1QBRH5OKXFHlAOGn7ntZkfECKUmAb+BKAQBh7vhAk24FA - + - LuO0QDBZ0kBDo5VAzMc4QN6ay0Bh9QtAF57rQNgt0EBRq0FAfZReQHPmcECO0jhAMEG/QDJFSUHOMGdA/+1KQBtDyz8YbahAI4SmQPdLTUHNZIVBGK+UP6enQUD1dgpA1J3iQE6lVEDcTuhAk4NZQRrxAEB0udw/XMBnQO8/e0G57AJB7BZLQPcTCkDN3uJAcFC0QFNMJkDjljFA1C2rQPs7fEGXWvhAKjYmQJaeWEEx4aFAzkLBQKQ6WUERcRhBo4EBQRRCpT+wAfA/ajEMQULwCEH33AZBWkGqQBlRzEBJVZ1ACFbSQP0F10DiV8tAxMs/Qck8R0KkK75AVYh5QKzGuUCk+mtBA7t7QWhZ3T9tRiJBeXKxQZgIS0CLrFRBthd7QcLoXUCAQBFBjMhrQWmyxkBKbYJA8TeeQKJvLUHLxso/uOLGQAEK+kAF0RRBN/a4QAZCUEGEKO8/Mo5EQQR4H0FMr1tBCO9LQIMcMEFGjF5BiZQKQp81Z0D1rBxAORXvP5tlNEGsXChAw3kkQQcJAUHAjjBACa86QbZFZ0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoCOHaUAAAAAgof9tQAAAAAAFMnJAAAAAAOVUdkAAAACA8RV4QAAAAECb13hAAAAAABQWeUAAAACA2Ed5QAAAAABmk3lAAAAAAI7TeUAAAABADGN7QAAAAEC9tXtAAAAAABpRfEAAAADA9lN9QAAAAEArdX1AAAAAQGiTfUAAAADAH2Z+QAAAAIBkTH9AAAAA4MQggEAAAABgo1SAQAAAACA4+IBAAAAAINRPgUAAAABAXpCBQAAAAGBPqIFAAAAAIOq6gUAAAABgC9WBQAAAAMDc/oFAAAAAIMNthEAAAADAQ7iEQAAAACCoA4VAAAAAgMtYhUAAAAAAcJOFQAAAAOA9Y4dAAAAAgFoziEAAAABgm5qIQAAAAACN1IhA + 7BToB3LiY0AoFld2zuNlQNS+X4D+xG5A - + - YObdQNr82UDeMXlAZ78BQET9JUCNPEtASqGTQBbqgUBo6g1B6mQvQFMI0UC0lFRAB6nwQDLClED7WSVBwd4AQAnSk0B9hdlAc0M6QPDhyj+xr7NAwv8AQX+doUCGBiZAkigWQWnRKEFGU8JA04mdQCKLnUE5VAFBLaIvQPCy6UHCeAdBoUt8QcRmxkAXqlBB + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoFQGYkAAAACguMFiQAAAAADGyGRAAAAAQHfnZEAAAAAgoSJlQAAAAAAr4GVAAAAAwK0BZkAAAACAPydmQAAAAECVqWZAAAAAgBNCZ0AAAAAg14NnQAAAACDOhmpAAAAAwMVLa0AAAACg56RrQAAAAOD9PWxAAAAAwDnHbEAAAABAod9sQAAAAGD9Hm1AAAAAwOLfbUAAAABAlANuQAAAAEBQym5AAAAAALonb0AAAAAg7EJvQAAAAKDcIXBAAAAAoIOhcEAAAACg0bNwQAAAAGB8FXFAAAAA4DsjcUAAAACAukJxQAAAAGCwWXFAAAAAYMWBcUAAAADgDkJyQAAAAKD8wXJAAAAAANTuckAAAACg8QtzQAAAAICeFXNAAAAAwLpic0AAAACAe25zQAAAAACzeHNAAAAAwBafc0AAAAAg/bFzQAAAAGDT03NAAAAAoCPmc0AAAADA3v9zQAAAAAAxMXRAAAAAQEBDdEAAAACgb1V0QAAAAMBxoHRAAAAAgAbHdEAAAAAAEuV0QAAAAOC4FHVAAAAAIDU/dUAAAABADlJ1QAAAACDXb3VAAAAAAJCfdUAAAABAKLF1QAAAAOC05XVAAAAAwJ/ydUAAAADgrxR2QAAAAABEd3ZAAAAAALSTdkAAAAAg6rV2QAAAAMBW/nZAAAAAQNETd0AAAACAgzN3QAAAAOBzWHdAAAAA4OuSd0AAAADA0ap3QAAAAIAJzHdAAAAAIF4NeEAAAABAxR94QAAAACA6OnhAAAAAgCNgeEAAAACgK5B4QAAAAADls3hAAAAAAO4DeUAAAADg9Q55QAAAAODOHXlAAAAAoHEyeUAAAAAgLEB5QAAAAGCVdXlAAAAA4PSFeUAAAACAuZF5QAAAACC9snlAAAAAIBXpeUAAAACgb/Z5QAAAAOAkO3pAAAAA4MqyekAAAABg+cB6QAAAAEDP3npAAAAAYH3qekAAAABAePZ6QAAAAOCSEHtAAAAAYPRTe0AAAADg/l57QAAAACDHoXtAAAAAYCuse0AAAABgHsB7QAAAAODB03tAAAAAoOHme0AAAAAAtPB7QAAAAKBaO3xAAAAAwL9FfEAAAABAfVN8QAAAAOClZnxAAAAAQJh0fEAAAADg1Y58QAAAAODjunxAAAAAQJfIfEAAAABALNh8QAAAAMBb6XxAAAAAYHwEfUAAAADAlqx+QAAAAECft35AAAAAIHzkfkAAAAAgj1l/QAAAAKAU5n9AAAAAoEkDgEAAAAAgv3eAQAAAAKDegoBAAAAAADWsgEAAAADAZNCAQAAAAOAyGoFAAAAAIOshgUAAAAAgLTSBQAAAAOAdOoFAAAAAwF5ngUAAAAAgyXCBQAAAACDwdYFAAAAA4PCDgUAAAAAgF6CBQAAAAGCaF4JAAAAAQI5MgkAAAABgc3CCQAAAAIAKeIJAAAAAIPmNgkAAAAAAiqOCQAAAAGAp+oJAAAAAoCdrg0AAAADABnmDQAAAAEAVkYNAAAAAAAWag0AAAAAAnaqDQAAAACDDyoNAAAAAYEzhg0AAAAAASAKEQAAAAGBqIYRAAAAAAHdxhEAAAADgmJKEQAAAAMCztIRAAAAAwE7ChEAAAACgPuuEQAAAAGA1OYVAAAAAAGBShUAAAABgw3CFQAAAAOAnA4ZAAAAAoB0YhkAAAADgSSOGQAAAAGD3doZAAAAAYBqBhkAAAABg7NOGQAAAAKBcBIdAAAAAIIXch0AAAACgKFOIQAAAACCcXIhA + NrgMGZxjZUAoFld2zuNlQOK2Gkbm4nNAqZq9oOoidUDLo7/RbZN6QKkRr3/+E31A6fR7vMUjfkCSS/rIOqKCQMQC3a6hWoRAvXV8y4bahEDEMcvYTeOHQCCjRugSc4lAKF+V9dl7jEAg0jQSv/uMQFOJF/gltI5AOO1p8T4ikUAIJp3AMGaRQH8BGexUBpJAyINZuHVik0C6PALPdrKTQK0HvpG27pVAbFNn3bz+lUDsal7yEsOXQA== - + - ZCYmQGau3D+zEiZAkEG9PzAvJkAEmxdB7XHiQBzWI0Gze6FAHI84QHSG3D/i9k9Am+TKQP0MoUAsOvVA9ao8QRn0h0CqLu8/uIi5QDDyAEA8RBdAbdZTQU08WkHsWY9AzRWGQJTupz+v1pVA+f+OQPGxOED3chpBNp5UQB9JE0CO6npBOb8mQXmfE0AOdu8/Yc2IQeNYwUAPSb5Aq/y8QGkqAkAHdohAdH2hQC34pEBYyfY/xOWFQHPbTkBlqD9B2dDwQEE5h0D+4jFBGgAwQMp5kEGsiqNBJSeSPxHpa0DxEatAwBkMQb2tA0ELqxxAwRZcQVHA3D+x/apA5TaoQOeBikCQSlRAXGGZQBacmEB67RNBzGEKQGWRDECJQHlAnehCQUsFuEBwYydBAoBiQGpfL0A6KwRCjziSQUuspUAs8yhBpxYXQX7QEEHCEy9Bg9ZOQfgMGUIT/tpAkY74QEWOikAQJZdAc9mTQZgmVkA3uhBBeqFtQmIlvUFJRcJAQDaTQQ1JBkHYe9ZA2X+mQEEq30EyqcZAatBjQdZxXUDFrRVAJw2qQSbgeEEzspJChV23QPJeT0EYfL9A5f9bQRRCB0LoKXhAXWrwQM7nX0GUCVRApikvQWFYSkCxm81AXRSmQGHeqEEXaC9CtA7/QcSLE0JbodE/d6UcQWruLkHmSxFBUcisQaLB/0CD1r9BuePCQlmGikDvUApA7BIPQVvWF0LgF9FAjxNwQPiOfUHJPYFAV2vdQeJsgUEeGSlAEgxFQhlTE0DTk+8/of++QAN8VUHDhY5AkENwQXvr3UDfz7xBjhc4QAHkREBqu8BB3xtAQcxxfEApVB9BTKqBQFzky0AKaNw/LuYhQQr87UEe5N4/ + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYOPhYEAAAAAA7eJkQAAAAMDB/mRAAAAAwOkiZkAAAADAIDpmQAAAAMA6I2dAAAAAAF6daEAAAACAiytpQAAAAEBPH2pAAAAAoGqAakAAAAAAHqJqQAAAAIANJGtAAAAAgOjQa0AAAABAEB5sQAAAAGBm5WxAAAAAIHUmbUAAAABANaVuQAAAAEBI6G5AAAAAgEckb0AAAAAAo0ZvQAAAAMAwb29AAAAAgLSCb0AAAADAzFtwQAAAAACtjXBAAAAAQLPDcEAAAAAggEFxQAAAACCzVHFAAAAAwDFlcUAAAAAgR3JxQAAAAEAll3FAAAAAIEvFcUAAAADAzwRyQAAAACBBHnJAAAAAQEdUckAAAACAWWRyQAAAAECii3JAAAAAAFLEckAAAAAAgNRyQAAAAODc7XJAAAAAIPD9ckAAAABApxRzQAAAACBdU3NAAAAAgCH0c0AAAACgKyV0QAAAACBPN3RAAAAAoIJBdEAAAAAAq190QAAAAID1hHRAAAAAwP7wdEAAAACAzBR1QAAAAECOi3VAAAAA4LKcdUAAAADgHrV1QAAAAIDMwXVAAAAAgJvTdUAAAADAQ+91QAAAAKCSAnZAAAAAII8sdkAAAAAAJkJ2QAAAAGAmU3ZAAAAAAGqFdkAAAACAXpR2QAAAAAD2rXZAAAAAgDLFdkAAAADgtt52QAAAAEBM8HZAAAAAwPIMd0AAAACg1RZ3QAAAAOBGMHdAAAAAgIJFd0AAAACglGx3QAAAACCQdndAAAAAoL2td0AAAADgV/F3QAAAAICpM3hAAAAAoBNTeEAAAADgR2d4QAAAAODKhXhAAAAA4EfPeEAAAADg5eZ4QAAAAMDjOXlAAAAA4D1GeUAAAAAgHVR5QAAAAABZbHlAAAAA4G+KeUAAAADADZt5QAAAAIB8sXlAAAAAoPPVeUAAAADgR/B5QAAAAKCiAHpAAAAAIFkUekAAAAAgNDd6QAAAAOBuYnpAAAAAALJ2ekAAAADg9Id6QAAAAKDmknpAAAAAoFyiekAAAABgCa56QAAAAMCEvHpAAAAAYLzVekAAAABAPPB6QAAAAECZCntAAAAAQI8fe0AAAAAgdy97QAAAAKDKU3tAAAAAoHSLe0AAAABgAbB7QAAAAEB/yH1AAAAA4NUKfkAAAADAzIN+QAAAAKCwmX5AAAAA4PS5fkAAAADA2ZN/QAAAAGAtnn9AAAAAIADGf0AAAACg/xyAQAAAAIBMQ4BAAAAAIEWDgEAAAABgs6GAQAAAAMCKz4BAAAAAoNnigEAAAACgU/mAQAAAACCyA4FAAAAAQHQLgUAAAADgpzmBQAAAACCZZoFAAAAAYCyjgUAAAADgf+GBQAAAACAdH4JAAAAAIPtugkAAAABg93iCQAAAACBigoJAAAAAgCqLgkAAAAAgE5uCQAAAACCiu4JAAAAA4GXEgkAAAADgt9SCQAAAAIAn+YJAAAAAQPAOg0AAAADAtzqDQAAAAGAIQ4NAAAAAYKdOg0AAAABA+1aDQAAAAICPdINAAAAAIDiIg0AAAADgY5KDQAAAAOBWwoNAAAAAAKDNg0AAAABgG9SDQAAAACAGAIRAAAAAoHYGhEAAAADACAyEQAAAAECCU4RAAAAAALNihEAAAADgl2uEQAAAAOCSc4RAAAAAYHN7hEAAAABgLISEQAAAAADCi4RAAAAAoHXEhEAAAABgFgOFQAAAAID5C4VAAAAAYIIahUAAAADgg5qFQAAAAKCho4VAAAAA4Or1hUAAAAAg8YmGQAAAAOATh4dAAAAA4EIEiEAAAACgMQ2IQAAAAKDNK4hAAAAAAFuqiEA= + KBZXds7jZUA/KJil8iNpQGS4z0t+BG1APWWIPVEicEAyOsR5l5N1QCsjiJq/UndAiI7Ifi8EekArgWTuF2R+QMBqtPlXaoFADk8tcpkagkBPkxLvgzKDQA5+G5xFo4VAPw0YXiYDiUAOrQnG8SuJQD88BojSi4xA/iYPNZT8jkCfNfpYPwqQQManNhVgYpBA27x3FoZ+kUCEuV4ygJaSQFvUbivcQpNAms6fM6ayk0DXw67C9w6VQBrmlkj8dpVAHthdvQ3zlUBh+kVDEluWQDVbMJA+h5dA - + - pJ4DQYOBpT+14wBAXuCOQOsH0EDjxV1AKVsKQAQFnUCAca9AkBRnQCpfnEE2Pu8/E4E4QMFupT+6hwxA6yvCQNK87z/Yiu8/7pAcQawH4kAUd5tBnGB8QYMK3T+AndhA+IaKQIdVY0F1XcdAsqnKQIytA0HaJiNB6XAxQLmtHECzRXlAaxGhQBVMCEGPQFJB69iiQbkSaUEVZZZBOrRKQdl6EUGsMudAURYYQUA7TUBD9utAaHSjQHTdk0AUN49AdKSNQRByEkGh3mRBdIHiQMD4tz/T/KpAiOuLQEaniUC0qotBgDLHQLiK/0DyKVBB7CfAPwOqDEEHS49ADVOkQSYvBUE/AbhAmWmAQUv9gkD6OXtASihrQLDxzkAEj2lA8YKYQDXsyEC2+ABA8tlxQWVamEC1RJJBolHiQJA7ykEd0ONAykTLQAHeeEFQd4lCyTVcQpom50CukLtAxOyYQTQD3T+yhn5BTg6/QDPUtz/cTOtB/Lb9QHd6K0ElSl1A4zGZQVARqUGGtd9B+NhBQG4PiEHKK49A7zZ+QvsHiEFX2GtBLUWpQcdedUGBFKtAfB4pQfB3pkBGbMlBTbQKQYk3kEB6MLFApCcNQZZkGEKRJ/dAhoMCQcaxzEE+M/VA+EQyQnWhpEATpd1ArGVwQMdCq0DrIcJA/MI9QX/qrkFQi89BX2HRQaA6pT+akeJB3jKBQFKKoUBHoGZBooqjQYAGc0DO1vJAry2hQDt2a0D4cbNB3VaHQFmGoUBtoThAcMAbRFttwkCAjYpAuoHCQX70MUB7FepAIGOdQq8HzUG+TY9AA8O8QOjE6kFOIqFCXANCQgYcrkFhPS9AMc/QQNi5X0DeH1ZAOG5wQYwd50Bza4lBH7LeP9q660F+8bNAHRBwQEgQvUCfFR1BMCQTQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQGMMakAAAABAZ2ZtQAAAAMAQ8m9AAAAAgH27cUAAAADAjm5zQAAAAGBO4nNAAAAAgCEFdUAAAAAAz1N1QAAAAEDrYHVAAAAAwOCxdUAAAAAAmrZ3QAAAAIARwnhAAAAAgDUzeUAAAABAzYJ5QAAAAEDjoXlAAAAAALDCeUAAAACAZdB5QAAAAAAVqHpAAAAAgGGCe0AAAADAddJ7QAAAAAA5r31AAAAAQJlTf0AAAAAADW5/QAAAAEBbln9AAAAAgMG0f0AAAABgo7aAQAAAACDAwYBAAAAAoELKgEAAAABA5/GAQAAAAADO+YBAAAAAoPwUgUAAAACgUiOBQAAAAGAgToFAAAAAINmJgUAAAADgV9uBQAAAAMDZ44FAAAAAYMsagkAAAADAhGKCQAAAAKCxbIJAAAAA4AZ4gkAAAADAlK2CQAAAAECou4JAAAAA4Fn5gkAAAAAA7AeDQAAAAGBcF4NAAAAAAA0tg0AAAACgsEyDQAAAAAC1yYNAAAAAoIrgg0AAAACgAfSDQAAAAGBwBIRAAAAA4PlihEAAAAAgPIyEQAAAACCFlYRAAAAA4N2yhEAAAADAsrqEQAAAACBv2oRAAAAAoH/yhEAAAADglTyFQAAAAGCg6IZAAAAAoD/whkAAAACgUTSHQAAAACAyR4dAAAAAAH12h0AAAADgY7KHQAAAAGDm6odAAAAA4MTzh0AAAABgIwmIQAAAACCBLohAAAAAICqSiEAAAAAg+qiIQAAAAGAwzohAAAAAIFnUiEAAAADgLOuIQA== + NrgMGZxjYkDiYBUjzERrQNiRk/3Io2xAzLzUXCnzc0CzI164/IJ0QJMXaZZBJHpADjCoA8DTekBkhKwIWER/QFxs2AZ4GoFA - + - Tld5QD/y3D8YyVVAsdCqQAbGz0C9QA9BuXdhQNOM3UAp329AOqxRQejYYkCjExNAqJsaQR9G3T9E0V1AGchqQIyyoUDh0rJAXHcmQTLEakGZvSxBiWWlP0pyEUKIoYpAFxYTQOC5VkGTQC9AytkMQRZyMECH7bc/7FlRQSnIbEBMBGdAmYS9QEfpokBjuV1AhvtBQHMUvkHoOAFAUQI0QMYbwkDM8JNAX2UIQc1FH0E20co/J/PBQP6vE0CUA49AcsNzQSkyj0E2pqQ/2FymQEAM+kDQcblBnZUIQVpLRkCEKclArgEjQVOfNkE1xTtA4d4oQbBjQUABPVdBAmDnQRVhm0FLNLhB32j2QAHl/0FS+gVBegJ3QbTVU0DseshBRLCJQVaBi0I= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAwBAjYEAAAAAAZUhgQAAAAMC/A2FAAAAAQOrnYUAAAAAgDIhiQAAAAADLwWJAAAAAwB4gY0AAAADAZchjQAAAAAAoxmRAAAAAQPgpZUAAAACALmFlQAAAAOD+5mVAAAAAwEEBZkAAAABAPQhnQAAAAAA8O2dAAAAAQGKFZ0AAAADAIMFnQAAAAID3oWhAAAAAwIDjaEAAAAAA4R9pQAAAAMB+e2lAAAAAgGrnaUAAAADAM4dqQAAAAECz5GtAAAAAIIgkbEAAAABgCGttQAAAAACgA25AAAAAwA4lbkAAAADAokRuQAAAAIBXRW9AAAAAwBdtb0AAAADAOutvQAAAAKC9EXBAAAAAoCEzcEAAAACAR0NwQAAAAIBjg3BAAAAAYEDvcEAAAACgHARxQAAAAGCQJHFAAAAAgB5DcUAAAADAGrNxQAAAAKBsv3FAAAAAYO1HckAAAACAnlNyQAAAAIBcl3JAAAAAgAPDckAAAADAZAdzQAAAAAATE3NAAAAAAJwmc0AAAADALzJzQAAAAKAZXnNAAAAAYOt3c0AAAADAIoJzQAAAAICYk3NAAAAAwLi0c0AAAAAAtsJzQAAAAADD43NAAAAAwAJqdEAAAAAAGZt0QAAAACC87nRAAAAA4D4HdUAAAADgWBN1QAAAAAC2T3VAAAAAANKkdUAAAADgFQd2QAAAAADQIXZAAAAA4NQ5dkAAAACgcVl2QAAAAEDReHZAAAAAQCaDdkAAAADg4KF2QAAAAEDqsXZAAAAAIAgAd0AAAABAIg53QAAAAOBaG3dAAAAAwKc1d0AAAAAg1K93QAAAAGDrwndAAAAAYKXgd0AAAACgPv13QAAAACAxJHhAAAAAoPtPeEAAAABgu1p4QAAAAODXfHhAAAAAoB3FeEAAAACgUdJ4QAAAAAA4BHlAAAAAgAYPeUAAAADgIx95QAAAAGAVWXlAAAAAgK10eUAAAACAac16QAAAACDCJH1AAAAAIGFVfUAAAADgl4d9QAAAAGDfNX5AAAAAYL1EfkAAAAAgB1V+QAAAAKA1ln5AAAAAQHvOfkAAAACg1SB/QAAAAEBkLX9AAAAA4EiBf0AAAABgebF/QAAAACCYxn9AAAAAwK3Xf0AAAACgW0KAQAAAAOB9oIBAAAAA4Nu2gEAAAADggtGAQAAAAIDc4IBAAAAAoJ7ogEAAAAAgTu+AQAAAAKBnNoFAAAAAoKE7gUAAAAAAVmmBQAAAAEClgIFAAAAAIKnbgUAAAAAgZROCQAAAAOATGoJAAAAAQPhBgkAAAAAgB4OCQAAAAKDWqoJAAAAAgBHDgkAAAADgcPGCQAAAAGAFCoNAAAAAQG8eg0AAAABA6iqDQAAAAOD3UoNAAAAAwBCTg0AAAACgVbuDQAAAAKDfzYNAAAAAgP3Sg0AAAABgsvGDQAAAAKBdbIRAAAAAoNt0hEAAAACg/KCEQAAAAIC00oRAAAAAQAbihEAAAAAgNRmGQAAAAKCLyoZAAAAAYO57iEA= - - - - - - FpSAPxqLD0GgXipB+mQnQMZvCkDszUFADy0BQCaakEDAsXdAqXyUQMWRmEDW8JxAOqQTQE+Q0UAniqZA6T8mQCHDHED56GZApX3+QGMAHUCAM6tAKb16QO6osUHfB7g/+jmQQJz5HECipA9BV9BqQAxt3UB/j8ZAAE6DQGgd3T8Rf8o/aau5QCjM3D/KuutA8MwcQOQy/UCa7RxBSgniQNyf7z/kMGZA7UICQGkTcEBpzKVANg9VQTZv3D+vT4ZAJKCqP5YceUAEts9A+oyIQO5RmEClZXlAGC/NQdC0j0FwPiRB4kUxQWIzZkFB6ItAQGsTQEDjgEEfUYVAgARLQD0OgkHadhRBtLqjQRU+L0FPgYlBGS3vQEGEVEDyIidBJA+zQZ6+30Co14VAehEYQTBxfUE+IG1BL0OsQTC1MkGqMgxCPFPdP6G570An1t5AOswKQXRm+UAqylhB6Ov0QA4qH0EapGpArMYQQQQpAUDAO5xAAxIfQCAWGUHroOJAeFQcQNzHZkDrOYhBcCnPQdohPkKUSclA5R/+QqBDJkCy7jpA1EW+QW83D0EVcnlAK0pJQaCMy0DQHBRBSxY6QsERnkEOojtCZvh3QAZUHUEY/1RBZfMhQSO4sUEY5PJA+nFnQpp/oUCe1U5BJYPfQH+J4kAFfstAjDKPQP50cEAr4gxBIPzPQAZfHEG8RYhC3YwTQfW5QUDcPI9Ag5OYQHEdVECq8+VAfVARQcsfnUCMmBNA8LgHQQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIO4oYEAAAADAv4RhQAAAAMD3I2JAAAAAwJl3Y0AAAADAx6RjQAAAAIDHiWVAAAAAYNgkZ0AAAABAc0lnQAAAAABBY2dAAAAAQJpkaEAAAADAnaBoQAAAACAO4mlAAAAAwO4BakAAAACAiY5qQAAAAMB4qGpAAAAAgKgkbEAAAABAVElsQAAAAGD5a2xAAAAAoKPGbEAAAAAgcQptQAAAAEBiYm1AAAAAQPYCbkAAAADAvCRuQAAAAAAram5AAAAAgDWDbkAAAAAAT65uQAAAAICcwm9AAAAAAMsAcEAAAAAAPSJwQAAAAKDwQnBAAAAAYFRTcEAAAACgAZJwQAAAAMCaoXBAAAAAwAm3cEAAAABAm8RwQAAAAGAKAnFAAAAAwMR3cUAAAABgaqFxQAAAAIAzzXFAAAAAgB0BckAAAACgBNRyQAAAAMA4N3NAAAAAYICAc0AAAABA6IxzQAAAAKBemHNAAAAAwEW3c0AAAABApAV0QAAAACC8PHRAAAAAoCRzdEAAAAAgM6V0QAAAAIBAtnRAAAAAYAzUdEAAAACArOV0QAAAAID28nRAAAAAwND+dEAAAADA1RJ1QAAAAKBFJXVAAAAA4B97dUAAAAAgcLR1QAAAAAA43XVAAAAA4PP2dUAAAACAahF2QAAAAIC8JHZAAAAA4E1edkAAAACgcJh2QAAAAGA3sXZAAAAAALPQdkAAAAAgrOF2QAAAAABn7XZAAAAAoKMQd0AAAAAg9jN3QAAAAOCQUHdAAAAAINyvd0AAAACg4tV3QAAAAOBzB3hAAAAAwMYeeEAAAACgPHN4QAAAAMCvhXhAAAAAILfyeEAAAADAMhN5QAAAAGAXY3pAAAAAYEX1ekAAAACA4Qp7QAAAAKBeFXtAAAAAgOlje0AAAAAglD98QAAAAMBcJX1AAAAAwH8+fUAAAADAflR9QAAAAGBkYn1AAAAAwBetfUAAAADAEdx9QAAAACC26X1AAAAAQA47fkAAAADA3EV+QAAAACAkFX9AAAAA4G9Lf0AAAABgsQ+AQAAAAECMFoBAAAAA4MAvgEAAAAAglkaAQAAAAGBWiYBAAAAAYNOOgEAAAADg0pOAQAAAAEAFroBAAAAAYKnrgEAAAABgmx+BQAAAAKCIJ4FAAAAAwPhpgUAAAADARnCBQAAAAEBmn4FAAAAA4MpogkAAAAAge5OCQAAAACBD1oJAAAAAoArcgkAAAAAg7QGDQAAAAEBuC4NAAAAAYL0dg0AAAADgyyuDQAAAAGAkMoNAAAAAYLdDg0AAAACAxJGDQAAAAGAdu4NAAAAAgAHTg0AAAABA8/yDQAAAACBlC4RAAAAAYJ0rhEAAAADAMl+EQAAAAADUm4RAAAAAQCOmhEAAAAAgvIyFQAAAAGDqm4ZAAAAAYDmlhkAAAAAgoAaHQAAAAGA3WodAAAAAQPNniEA= + NrgMGZxjYkAbumJgJkNwQHKwihFm4nVAdsasq+mTdkDNvNRcKTN8QHYkif9BpX1AZo1Y2ECigUBomGmlAvuBQJOT/X2iyoRAaMdXz66DhUCTwuunTlOIQJXN/HQQrIhAwMiQTbB7i0Bf1cUnksSNQMD3fndcBI9A - + - HgXrQPmJVEDcru8/OnehQGOamEDrPHBA8/Y8QQThU0CnzAdB1HZUQEy340BUq6U/BemcQBeLL0GELp9AWz/PQR+OOEFReQNBEqQvQBpPJkAtdVZAV7R/QcrRXEFH3RpBkLykQANhgUCbeDtAqGq9QIIkuD+LwDhABp5mQJlWyj9T2WZBKjhDQSPCHEAGaRtBMtJdQNXWHkAQkpZB8Dq4P2filEDsCmdALNDzQPmHW0GcUQ1B7s1DQXvtFUGEqlRBxFEKQCS4fEEKnV1AVbqoQI9quUHIBEJA2Vl8QFQV/UARUgFBtJi9QHov+kBc8O8/FY6xQPLPykH2PAFAQqg7QXUQkUF/UCZAcdDCQSTByj9QFgFAKTGVQS6BmEI8LD9BnqnGQKAvJEF61tw/ov0LQN83SUFO5TBC4LBCQKDI+UB6IwJBIrteQKnFHEERj19CBiJCQM/O40AGeGRB1oWuQh8kR0GXYLpAH/NrQdDZTEOaTnBANGOXQ5mL2ECeDDlBDNtQQQoLXkCIixFBD6+nQIblR0Jc1/VC+1rjPyBxl0EGW6BBWtaJQibreUGECyBBxRaQQIIOX0Ed/JFDIUpXQYVII0GIB5ZCp8RpQb18REHyhrpApFixQg8IjECeJS1B8u5vQCSeKkEYRnRBhIvLQHah7z/dH+5AtDSGQZjlIUHQQshBgWHEQBZKj0Bg2KBAFEXHQLR/pkAJLchA0CJCQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoNgpaUAAAADA8D1pQAAAAOBl52xAAAAAYGKVcEAAAADg1bJwQAAAAIB8xHBAAAAAYHDicEAAAABAODJxQAAAAICP1HFAAAAAoJJPckAAAABgnnJyQAAAACBoFnNAAAAAgI7ic0AAAADAd4Z0QAAAAIC8eHZAAAAAwCwkeUAAAABA+ER5QAAAAMCmVXlAAAAAgCVkekAAAABAlnR6QAAAAIBGsnpAAAAAgHCee0AAAAAA7ed7QAAAAMBJUXxAAAAAAAaSfEAAAACAB+B8QAAAAADU6nxAAAAAgBMWfUAAAAAABzF9QAAAAMBOtH1AAAAAwP98fkAAAAAACdd+QAAAAICZx39AAAAAQC5qgEAAAAAA1Y+AQAAAAOAZnYBAAAAAYCOigEAAAADgWqmAQAAAAGDG1oBAAAAAAED1gEAAAABgBxiBQAAAAEAUH4FAAAAAoEQ6gUAAAADgV22BQAAAAMCIcoFAAAAAIJoCgkAAAADgwAiCQAAAAIBaEoJAAAAAQGJFgkAAAADAwVuCQAAAAKAkkoJAAAAAANa5gkAAAADgjQ+DQAAAAECRG4NAAAAAINglg0AAAAAg6z6DQAAAAKA2UINAAAAAYBRYg0AAAAAARMSDQAAAAKAGyoNAAAAAgGgKhEAAAADgBBqEQAAAAGDKIYRAAAAAQPEuhEAAAAAgGYqEQAAAACBYj4RAAAAAYF6yhEAAAADgHtGEQAAAAIBwmYZAAAAAoAj9hkAAAAAgSD6HQAAAAABuo4dAAAAAYOrJiEAAAAAgvdOIQA== + NrgMGZxjYkBGCTcNzmJoQAoahmk8YnBAat8vQH9idUBFvP4+7IJ3QMXreYtCs3tARRrbkkSUfkB0+j3e4pGAQAMjnNMOWoJAhJA8M3Vig0ATuZoooSqFQGQma71hcoZApL0bweLih0BkVVnnDfuJQNHDwGZEC4tAgqYV0mWLjUA08YqD0KOPQL3CSoDOkZBAPNpBlST2kUA= - + - ZI1fQIdP3T904KFApMYxQGoMiEBXGwZBBZ+oQLRVdkEu2K9A+71qQHL0Z0C+bbRAhksmQOoBlECVDcJAbe2BQSflm0GeEgFAC3YSQr89eUBC0J9AtIsvQEyqVEChVnpAaev5QAnKQkBZtxVAXcxyQfxzgUBb5V9CpfTdQGd/CUHONt0/RCtnQKyueUFb93ZARkEWQa6hL0AQszFBDsClPya0cUDNhp5BIMafQpKlgUH/RrxC36OHQmpyIUFsAylBHcj0QMRArz9JT8lAkPi1QMT3okCSrL5AdsD5QJEJi0DZIzFAkZdVQMWUpEDdwyhBdcgTQHDqHEFHwM0/uCUdQXK2pUBaLkJAUtNgQlWOPUEc2gtASxjCQKGk+EDHzrBAHMWiQs7RuUE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgC7sZkAAAAAA4SJpQAAAACCZpmpAAAAAYLxCbkAAAAAA4KVuQAAAAMAF8nBAAAAAwAs5cUAAAADA14VyQAAAAICSdHNAAAAAwBOec0AAAACAE+JzQAAAAMD8C3VAAAAAQM5gdkAAAAAAddJ2QAAAAAAj4nZAAAAAwCtid0AAAACAaMx3QAAAAMASE3hAAAAAQIEmeEAAAACA/2R4QAAAAAB3X3lAAAAAgLENekAAAACAJHl6QAAAAMC/pnpAAAAAwC1Ve0AAAAAAT/17QAAAAEBLUnxAAAAAAEyNfEAAAADAX6J8QAAAAIDUAX1AAAAAAPIffUAAAADAa2h9QAAAAMCt731AAAAAQNdUfkAAAABAoGZ+QAAAAIDF035AAAAAgBMWf0AAAABA8U1/QAAAAEBu7n9AAAAAgPr7f0AAAACAfQiAQAAAAOACG4BAAAAAIGoigEAAAACgf0CAQAAAAGCjOYJAAAAAwMFzgkAAAABAoxGDQAAAACBWGYNAAAAAYCcrg0AAAABA9aODQAAAAKD0HoVAAAAAwItahUAAAADgtOOFQAAAAGBa7IVAAAAAoIj2hUAAAACgMfyIQA== + NrgMGZxjYkA/KJil8iNpQFRnpVdMhW5AAAjXMD4zeEBxDmdlvnN4QFsUIXwBhH5ArLDfOm6Uf0AlaZDsN9qCQLkFOjrD4oJAgDHgSS/rhUAlmH4W5GKGQOzDJCZQa4lAgGDOc9tziUBQ8e5C3IOMQHc/TqISDI1AN6HVFhoKkEDSovkjOhqQQOm3OiVgVpJAyl98W4sCk0DNzQ0tltqTQEp3c3DhxpRA - + - v+DJPzeeVEC2PApA3/x8QBWHpkAwJwpA9ZwTQKJRh0EkhDhAwFJBQMNjcECC0M5A5HrUQE3FXUBrYgFBQSK3P27bf0Hw95I/avIdQJH7mkE5t5xAl04yQU0cAUBWX6NA3PP0QAPT/0GPSQpA8tuUQaCMvUBirkFABounPx9Mq0AolBNAYkONQi05F0HZxgpBMaUAQFJ4EUHovb5AMmfxP0Otg0EeL51AjQorQUlqN0Ha/KlAOpqhQJwP2EG0+J9Afg2JQQc0kUE5UKZApXdUQEvSB0M6gQBCUYPLQFzZy0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQDa9XEAAAAAA+bFdQAAAAMBRS15AAAAAYFUEYEAAAADA/D5gQAAAAOB+CmFAAAAAgL1FYUAAAADAQcZhQAAAAKAFKmJAAAAAQGNNYkAAAAAAu6JiQAAAAAAjJ2NAAAAA4ESoY0AAAAAAbsdjQAAAAACI5mNAAAAAQPZHZEAAAABgEyhlQAAAAMDXaWVAAAAAwIbCZUAAAAAgeOllQAAAAICufGZAAAAAwCzBZkAAAACAUjNnQAAAAECljGdAAAAAAGbJZ0AAAAAAteJnQAAAAGA+R2hAAAAAoM6yaEAAAACAfwdpQAAAAEDnfGlAAAAAoF3CaUAAAADAJyJqQAAAAAAghGpAAAAAADoFa0AAAABAAyJrQAAAAEDHSGtAAAAAgBvFa0AAAAAAyQNsQAAAAAAJp2xAAAAAwMXXbEAAAABARQZtQAAAAICcgm1AAAAAANHmbUAAAAAAihNuQAAAAABYsG5AAAAAQHbjbkAAAAAAayxvQAAAAAD7RW9AAAAAQO5cb0AAAABAkwNwQAAAAEB/M3BAAAAAwHBQcEAAAADgn3BwQAAAAIBHgHBAAAAAQGrScEAAAADAsfFwQAAAAMB4B3FAAAAAgCQUcUAAAADgkEVxQAAAAOBQUnFAAAAAgCdycUAAAAAg94RxQAAAACCfo3FAAAAAgKPicUAAAABgDwNyQAAAAICwEHJAAAAA4CckckAAAACAz31yQAAAAACik3JAAAAAoOikckAAAACAZLByQAAAAKAr0nJAAAAAQFnjckAAAAAA6fByQAAAAEBa/3JAAAAAQF0Pc0AAAAAgzEJzQAAAAMA0k3NAAAAAwAayc0AAAACArsBzQAAAAIDp0HNAAAAAoOPsc0AAAAAAUgJ0QAAAAADxE3RAAAAAQCw4dEAAAABAk0N0QAAAAKCbUHRAAAAAAPRgdEAAAABAx6J0QAAAAAB/uHRAAAAAAAvSdEAAAABAh+V0QAAAAKAcUXdAAAAAgBG4eEAAAACAhtt4QAAAAOAISHlAAAAA4PTieUAAAACg2xZ6QAAAAOBUsXpAAAAA4MmXe0AAAACgLqZ7QAAAAGAQLXxAAAAAYOXPfEAAAADAyvh9QAAAACA6A35AAAAAwCFIfkAAAACgWjOAQAAAAOByzIBAAAAAQHQrgUAAAAAgi5OBQAAAAOCRlYJAAAAAoNgJg0AAAABgA4qDQAAAACB8W4RAAAAAYP3kh0A= + rEBFHEuCZUAoFld2zuNlQG+XdYaqQnFAxet5i0KzdUA2lC1samJ2QIzoMXEC03pA7KzBAvHDfUDiPDZ2mkN/QNkDK56E+oFAcU0JZXkqg0AAdmdapfKEQNkyGcgwg4VALXwMAAcbiEA8YOPkvBuKQHE/Bad/Y4xAWrGfzxSsjUACRIY/wRuPQCnID/8lopBAszgoribakUDb3nQNbO6SQP0o+ktS3pNAOAhlCajulEBNHaYKzgqWQK8/X1qYKpZAxFSgW75Gl0D/MwsZFFeYQCF+kFf6RplASSTdtj9bmkDTlPVlQJObQPs6QsWFp5xAT4Q1/VtfnUBEvYKRpgOeQN6sk/KHJ59Ac49/cvEToEDIYXwA57mgQP/Q6NsJ3qBAI1tA2RRQoUCI7fcKEpyhQOPmu+M/MqJA4XgqEjViokBucVzkUsCiQPn7/ORlTqNABnET4Upko0CR+7PhXfKjQBw9HUt2vKRAdVq+gI7CpECZ5BV+mTSlQA== - + - JJolQNA3CkAZuIpAX3CvQJLPBkGSU7o/MComQE5fqkA+kDhA4g47Qe4LqkBr4LRA+F1+QeET9UA5yxxAn+TzP8d1m0Bajl1A1eDvP6hlZkCFYAhBZDLKP4ysR0E6Sy9AvroMQQIBH0A0Gp1AKL4yQECg3UA+5lJAflUKQI40zEAY0IVA6nnXQagZe0Fv9ABAm44NQOhr9EBD8phB7IY/QTC9K0Ev1vE/cTuYQE6GK0HVe5BBaysDQQLvpUJOqQ9AlHcwQI/vSkDzT91BB8yFQH7VMEFnNkpBwhe6PzgS2UDSaCBAaRLiQKiPEkGK9JFB1bZvQCRySUHtbxFBivSyQCc7wkCsxgBAq2hOQEYGq0DaE/JBrFFxQUMof0EM5+VC6i4dQr9JL0Cyr1NANz+3Qb2RMUF+iIVA+HvEQk1tJEEIdJNBeO4AQOUYV0E6fC9BNnB5QWlbUUCH3PxAtBBNQVzjYUCaU5pBRmRKQAnM5UGQqIpAWHIFQcDqE0G7ycJD1Dz6QMe2C0H9OF1BYRLQQLM3OEBkVwhBbKehQglw1ECFQ+dAfoWtQE1/n0A9XHFAlxFxQDiFE0DNRoFB8Bd6QJ1oCUG/gctAzHPrQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAACBlbUAAAACA/5N1QAAAAMDucndAAAAAAByieEAAAAAAgah6QAAAAABaIn9AAAAAgCvXf0AAAACAYC+BQAAAACAxgoFAAAAAoATSgUAAAADA9OmCQAAAAACrC4NAAAAAQIAVg0AAAABgP7ODQAAAAEAi24NAAAAAgCDgg0AAAAAgEVmEQAAAACCedYRAAAAAQG2AhEAAAACg4quEQAAAAMDP24RAAAAA4CTvhEAAAACgyzeFQAAAAKBEPoVAAAAAoLe7hUAAAABge/uFQAAAAECaC4ZAAAAAAJdJhkAAAADgYNSGQAAAAKABOodAAAAAQJ1hh0AAAABApqmHQA== + NrgMGZxjYkDGeRuljWJrQBu6YmAmQ3BAOQsfS37Tc0Cmwyum7OF1QFsUIXwBRHlApiEI+kTzfEDpa22b2VR/QGCMLflkeoJAgDHgSS+rg0AnuNMI0YKFQIBgznPbM4dAuLxUoRI7iEBH5bKWPgOKQOJjnV0uTItARxShwOqLjUBzaB72bwSOQA== - + - SdaJQDmUaUD5wdw/qmy3PyfWnEDZtdw/NybvQDUojkGC9OxATWJCQKiGokAG5qpA7dxeQAhLG0EUkcdCJ+EMQJx2yT80gRFBBxJMQdeIAUHEvEFABEb0QQzzVkMv7XFAkysdQHzwkj+Ve5VBOVgPQbZzZkDnihNAQcUDQSooOEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4GzfZEAAAACgaOVlQAAAAGBrH2dAAAAAwPCAZ0AAAAAA8KFnQAAAAMClB2hAAAAAgLikaEAAAACgrtpoQAAAAEA7YWlAAAAAwC8ia0AAAADgBaVrQAAAAMCaGGxAAAAAQLhBbEAAAADAleVsQAAAAAD/ZW1AAAAAgIeGbUAAAACANnlvQAAAAOAwv29AAAAAYMUvcEAAAAAAwD9wQAAAAADSZHBAAAAAAJd8cEAAAACAQQRxQAAAAEDyc3FAAAAAIKfRcUAAAACAgO9xQAAAAEAennJAAAAAQMWvckAAAABg1s9yQAAAAICYEnNAAAAAgJ1jc0AAAABAa6BzQAAAAMAB0nNAAAAAAJrtc0AAAAAATPpzQAAAAMDeMHRAAAAAgJaUdEAAAABAabV0QAAAAMCnMHVAAAAAwO6CdUAAAABAPsN1QAAAAIDj03VAAAAAACTidUAAAADAPD12QAAAAEC9gHZAAAAAgMjPdkAAAACA0OJ2QAAAAAAYN3dAAAAAwMpbd0AAAABAVXd3QAAAAABz4HdAAAAAAFofeEAAAABAfz14QAAAAEBXTXhAAAAAAAJ0eEAAAABAH4x4QAAAAAAql3lAAAAAQAGjeUAAAABAZrB5QAAAAMCY6XlAAAAAwJcFekAAAACAzxF6QAAAAIAQVnpAAAAAQLZjekAAAADA8Xp6QAAAAMArlHpAAAAAQNasekAAAABAMb96QAAAAMBKBHtAAAAAgGsPe0AAAABAokJ7QAAAAIAijntAAAAAQGrJe0AAAADAi9l7QAAAAMA543tAAAAAALLxe0AAAABAn/97QAAAAIA0JXxAAAAAANhdfEAAAADAcPJ8QAAAAIDgW31AAAAAwBNvfUAAAABAYXx9QAAAAECj931AAAAAQBUGfkAAAABAlF1+QAAAAMBJa35AAAAAQEOFfkAAAABAkI9+QAAAAEDoon5AAAAAgOfUfkAAAABAUeF+QAAAAADIEn9AAAAAwNUgf0AAAAAAfDl/QAAAAACuSX9AAAAAoAkggEAAAAAguY2AQAAAACAb/IBAAAAAYJAPgUAAAABg8h2BQAAAAKCJI4FAAAAAoH1SgUAAAACg3o6BQAAAAMB2q4FAAAAAoNm7gUAAAACgasOBQAAAAKAE4IFAAAAAwH0mgkAAAADAxQqDQAAAAKBzFINAAAAAoA0qg0AAAABA20yDQAAAAGBaXINAAAAAADRrg0AAAACAa3qDQAAAAICzt4NAAAAA4DDIg0AAAADAE9uDQAAAAMA64INAAAAAoFAahEAAAACA91mEQAAAAODadoRAAAAAYHyIhEAAAADAjqaEQAAAAOACroRAAAAAoPGzhEAAAABA+LqEQAAAAECG7oRAAAAAAC/2hEAAAABg1TaFQAAAAEDdO4VAAAAAIBpChUAAAADAWYqFQAAAAGCUtYVAAAAAYHrDhUAAAADgkMyFQAAAAEAv44VAAAAAAN0whkAAAACgMziGQAAAAKAPc4ZAAAAAwBmIhkAAAADg4cKGQAAAAMBQIodAAAAA4ARmh0AAAAAg70OIQAAAACCS0ohAAAAA4PLriEA= + NrgMGZxjYkDEsXzkGyNlQOzQoK8iBW9APWWIPVHicEAFwBx3aZN1QA== - + - 9NVBQaL9EEF+DHVCops4QAeiq0ACSkJBix7IQJB/G0JS6Y9B+co5QBDARUCjWwpAHTxJQfHxYkIkzRxA/+UAQDulmEAGpzxBDLkoQv3VHEC3skFAXudzQVDVEkFOSetAlHmmQDdLpkB+kT9B+61yQIwAykIfWs9AExJoQdADrUFvvKFASKu9QOnMQUBmhd1AlhXvP66mS0HEJS9AlQi4QNOWwUH3fClBLMTQQERy60J+o6ZAShS8QSS2OEA6oEVBycMpQP81S0F/azpB2qQYQeY2MEGYoJBBJGuAQJw2zUDAeTtCrjAHQPF4CkDjvMhBwDkGQWQQtEBybGZAcViBQIxNMEJFRQpATdKdQZyWDENLaEdCwjYLQsxnMEDX4q5Cj/fqQMeyqEHkjm5CaDsXQg9u+UDW3EpA6/VmQA9AjEE9TNlBpHWWQ90ohEG8MLpBXm0NQYWDPUEm2KFAoK5aQk0pPkHLhSlC0kzwQFFtRUCw6V1AbG6eQcBPmkCx0DJBnYgvQJ1AeUH2c3FBtq8YQeRmTUEYVIFAhxzwQKgNBkEAz8hBZd2SQXHi1kBGg9NALg/uQUMKskJmiThA7TmiQFSOy0ENoLc/JcptQa4Do0AORqZA3NrpQWNhAUFT39hByYJPQTOpu0BxCmVBQMUFQqcOaUOUXopASvSHQQaAikDWg6xCUpnZQFPR0kPDAzhDaW6jQO8/3D9q7wNBP+qJQj0K+UFvhhNAgdT4QMNhpkCyPSlBu2QKQLvPVkF7IqU/qh0MQOr7jkGkWHlAGBAmQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQNFkbUAAAACAJ4RuQAAAAGD6JW9AAAAAgD95cEAAAACghqtwQAAAACCCunBAAAAAQDpgckAAAACA8Yx0QAAAAID+P3VAAAAAQDLYdUAAAADAswR3QAAAAMACQXdAAAAAQPmRd0AAAAAAk9B3QAAAAEASUXhAAAAAwAh3eEAAAACAyCN5QAAAAMBnYXlAAAAAwG2FeUAAAABAvPN5QAAAAABQaHpAAAAAgPKkekAAAAAAPeN6QAAAAAD3FXtAAAAAwA+he0AAAABAByZ8QAAAAIA52XxAAAAAANz9fEAAAAAAio99QAAAAEAkRH5AAAAAQMR2fkAAAAAAg/t/QAAAAACTCoBAAAAA4KlLgEAAAABgYVeAQAAAACBlaYBAAAAAINp4gEAAAABAsqqAQAAAAGBexIBAAAAAoObTgkAAAADgObKDQAAAAGDY4oRAAAAAgJcghUAAAADgiGaFQAAAAABQqYVAAAAA4H3zhUAAAACAdXWGQAAAAKDvw4ZAAAAAIEhwh0AAAACgHcSHQAAAAGAQLYhAAAAAIDXEiEA= + NrgMGZxjYkD60UzrnGVsQBu6YmAmQ3BAcQ5nZb6zdEAWYPltUzR2QMwasbCBBHtApLdFjStFfEDCCAJ4g9V/QPeR2XCCOoBAhbo3Zq4CgkDyCIJUA6OCQEzm3XUaC4VAHw8n+mTLhUBKOan8sAOIQNhhB/LcC4lASmiXJl2Mi0DYkPUbiZSMQA== - + - IntMQJ5VQUDnusZA6FRIQMh9qkDKdFZB2v63P/gyj0ATgi9A69YAQS/UhUBtyV5Ams4JQCO+VECkgE1AZ9UcQIp23z/8vh5BcZPOQAJz5EBjrV1AmCMuQBX1LkC9uQBARlXLP642OECLuYNAJyiBQKSYxkBZZQpA5ZEYQX4N4kC5J98/07pkQdT38kAM2FpBeD0KQFJ1m0CwK8tADlyfQB4uwkAH1RxA2MDkQLlj2EG7biRBol8EQRnYrkEWwsNAeIBbQZzIA0D6Frc/fJaKQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAG0iYEAAAAAAgkdgQAAAAGBpgWBAAAAAIEniYEAAAABgBh5hQAAAAGCtYGJAAAAAYHNjY0AAAACgYp9jQAAAAACB6GVAAAAAIJsrZkAAAABA85xmQAAAAKCPAWdAAAAAQMYrZ0AAAADAjMVoQAAAAODM4WhAAAAAgADpaUAAAADAeGRqQAAAAEC5fWpAAAAAQFSdakAAAADAtcVqQAAAAADWJWtAAAAAoGNHa0AAAAAAmyFsQAAAAIAcSWxAAAAAQN9hbEAAAAAAEehsQAAAAOC6IG1AAAAAgCsMbkAAAABgZiduQAAAAMAWZW5AAAAAwLCAbkAAAABAp6duQAAAAMBnJ29AAAAAAJHkb0AAAABg5hVwQAAAAKA9JHBAAAAA4DqScEAAAADgmqJwQAAAACBes3BAAAAAwLkBcUAAAADgJURxQAAAAEBUIHJAAAAAAC8xckAAAACAoMRyQAAAAACh4HJAAAAAAHvvckAAAAAAjyFzQAAAAADsM3NAAAAAQHdic0AAAACAbG5zQAAAAIDounNAAAAAwGbjc0AAAAAA4+9zQAAAAMABGXRAAAAAQP1udEAAAABAl3p0QAAAAEADkXRAAAAAQEujdEAAAAAAGcZ0QAAAACDP1XRAAAAAYHcDdUAAAABAjRF1QAAAAIAAK3VAAAAAgLo0dUAAAAAgPFR1QAAAAKDfeHVAAAAAQPmsdUAAAAAAksB1QAAAAIBF8nVAAAAAQOgDdkAAAABAmBJ2QAAAAIAkJXZAAAAAAMw9dkAAAADgp1R2QAAAAAAMY3ZAAAAAQP52dkAAAACAl5J2QAAAAED9qnZAAAAAYOrEdkAAAACAxul2QAAAAAD5NXdAAAAAoCxRd0AAAACgdmd3QAAAAGCycndAAAAA4IeHd0AAAABgPQd4QAAAAACOJXhAAAAAQDpXeEAAAABAnXp4QAAAAGCQhHhAAAAAoGSSeEAAAABgtJ54QAAAAGC3rXhAAAAAoN3CeEAAAADg99R4QAAAAGAy5HhAAAAAIEQyeUAAAABgjEV5QAAAACDMW3lAAAAAYBeueUAAAACgdcB5QAAAAGDrzHlAAAAAIMPgeUAAAABgXPF5QAAAAIDNBHpAAAAAYJ4PekAAAADgvzR6QAAAAGC2RXpAAAAAIHxRekAAAACgN196QAAAAKDhl3pAAAAAgMjpekAAAABgx5Z8QAAAAEBSC31AAAAAYEOdfUAAAAAg7M59QAAAAODrL35AAAAAIF9CfkAAAADgC2l+QAAAACCChn5AAAAAoGmjfkAAAABAm01/QAAAACAqYn9AAAAAYDNvf0AAAADAaLB/QAAAAEBl0H9AAAAAoNUAgEAAAABgJxmAQAAAACCJM4BAAAAAIANcgEAAAAAA+WOAQAAAAABgfIBAAAAAQHaQgEAAAACgnquAQAAAAGBHwYBAAAAAwAfYgEAAAAAAveGAQAAAAAC05oBAAAAAoIL0gEAAAAAA9hGBQAAAAEARQ4FAAAAAoHlWgUAAAABAZ3OBQAAAAOBSm4FAAAAAwDASgkAAAAAA4CWCQAAAAODULoJAAAAAQFRDgkAAAACgWGuCQAAAAOBAcoJAAAAAoG2JgkAAAABAgpSCQAAAAOByvIJAAAAAoHnDgkAAAABga9WCQAAAACB53YJAAAAAYM3kgkAAAADAmAeDQAAAAOAND4NAAAAAoMgXg0AAAADAKCeDQAAAAGDrP4NAAAAAwMNOg0AAAACgYmKDQAAAACAAaoNAAAAAYLx/g0AAAAAAl4aDQAAAAACoi4NAAAAAgKfqg0AAAACgsfiDQAAAAKDFC4RAAAAA4GwThEAAAADAYFCEQAAAAKDHlYRAAAAAQIDahEAAAABgxOGEQAAAAGDA8oRAAAAAoNQJhUAAAABgZGqFQAAAAKB7w4VAAAAAwEHshUAAAACAYVWGQAAAACApX4ZAAAAAAGp7hkAAAABgVLyGQAAAACBX9oZAAAAA4DFah0AAAACgymSHQAAAAADUgYdAAAAAwPPah0AAAAAgKhGIQAAAAED1GIhAAAAAAOQwiEAAAAAApkGIQAAAAOA0qIhA + NrgMGZxjYkDOIQhxcuNoQEMdzoN8QnFAQh3Og3zCckCYcdKIFDN3QAp4Yr2Uc3dAX8xmwixkfUCZz67cbIR9QPeR2XCC+oBAk5P9faLKgUC+vX+A7gKEQFu/o40OE4RAheklkFoLh0C/7G2qmiuHQOoW8KzmY4lA6RbwrOYjikAXHZVSSIyMQHz3k+g9LI5A3kg7YrSUj0A= - + - fEakQVS9vUAeejhADA66QpNRkz8IdjhAclrbQEjc+UCBs5hA2GmYQAXz70CiODhAG1PnQMQR6EBqrco/XWZUQF5PckCOd90/76+MQDSi1UB4oFhBXJAGQe8KYEDXyEtAcYOUQNZCTkCcDkJA4rriQLSypT+Yii9A9zksQe/Yj0GproA/72EzQD/wtz/Du5BA8HV7QTN37EAKAgFAs8lDQsYvRkHFE7lAn8PiQFMJhELteedA+dFvQDGVX0AnJt8/GqGYQFP5HEBbr8JAA615QP4cCkHLinBAVR25QKmQ4kBEpr9BpnnKP6h+QUDb30ZBmKTTQCcWrECCy2JBwgkyQepbgkDUh5hAbBNQQEZXmEA/PEtAsoIKQDd6pz+QPB9BXGDiQee5j0AMp1FBbNavQJ/yMkF6ECNBNKJ0QiJnlUE3Cl5Bsi9nQLCPG0EwIQNBXC1pQaR4jEFedCZA1psWQpL6N0FSFOdA9RkvQbaY4D+vVo9AK7OLQcWdiEGbol9AkY6oQHRP30HrtqRB/ArVQb/cD0GZ61FBsZnGQCsiDEB05OFCWvvrQLLreEB+6/JBAygoQYIuS0IOVLg/MjcmQLCfCkCF8QBArJSHQc7yMUANufVArtRdQC9QgUA7KBdBxSEWQYNGZ0DvN/1BXl67P7uwikBTU2lBIOEjQVURJEHINadAnpJ7Qkdon0GXYClBjeAkQvYRuUBsELlA9O3DQB8zdUNurFxCHvg8QO2uVEAuA15B0cAGQcPzukBftIpA6S64Pznpe0ELTUdBkAkMQG9JekHbseJAfqMKQELS7z9i4pNCTjUVQjMHRUBAyilCkgAtQb3/6UTfxnNAqD60QMTNXUAAc3dBmknRQToxS0Gkkf5AHFRQQfxkWEP3P1pClRcQQeQh4D/2jjxAT14BQBPQCkGZ7KxAHLsGQQZvJkHe3d8/y+o4QZQsq0BlcQpA92OmQPykrEGr/jBA2ffwQMn7gUHvwrc/gQQFQcboyj9EfsRA8mltQV1F3T/x9qpAp3f2QFDfhUCggXFA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAKenakAAAACgf0xrQAAAAIAEp25AAAAAgLrjbkAAAACAjwVvQAAAAICkD3BAAAAAYHQycUAAAABgvcRxQAAAAOC9U3JAAAAAgNVUdUAAAAAAdYJ1QAAAAMAW9HVAAAAAQOG6dkAAAAAAKcZ2QAAAAMAnMndAAAAAADXTd0AAAAAA+O53QAAAAIB+mHhAAAAAQNpBeUAAAAAAHFx6QAAAAMC+ZnpAAAAAwBDTekAAAADAXTV7QAAAAABNg3tAAAAAAAOle0AAAAAAWjZ8QAAAAMAmlXxAAAAAwAYLfUAAAABAJVV9QAAAAIDwZH1AAAAAQL+SfUAAAACA8KR9QAAAAMAVsX1AAAAAgLHFfUAAAABANjZ+QAAAAED/c39AAAAAQPDHf0AAAAAA8gSAQAAAACC6iYBAAAAAAIiWgEAAAABA96eAQAAAAKB61oBAAAAAwJ3ggEAAAADgmTiBQAAAAOBxPYFAAAAAADBLgUAAAAAgRGOBQAAAAEBjcoFAAAAAYCZ5gUAAAACAlpOBQAAAACD3noFAAAAAgHa5gUAAAACgAcqBQAAAAKBT/oFAAAAAIIADgkAAAADgnwiCQAAAACDlWIJAAAAAYMi9gkAAAADA0/iCQAAAAGAgE4NAAAAAgHMrg0AAAACgOTuDQAAAAKAzcYNAAAAAIIytg0AAAADAZeKDQAAAAGCk/4NAAAAAQJAFhEAAAACA4BeEQAAAAOBHKYRAAAAAgJcxhEAAAADAwT6EQAAAAMAPaIRAAAAAIOJvhEAAAACA73iEQAAAAGAciYRAAAAA4OWShEAAAACAAqiEQAAAAIA/s4RAAAAAQJy6hEAAAABgKdSGQAAAAKBdyohAAAAA4IDUiEA= + NrgMGZxjYkCwLijacuRqQEMdzoN8QnFAeiAWnrzickBlJtC0/7J2QJwpGM8/U3hAhy/S5YIjfEBi9S8j9zGAQMNG15xtmoFA - + - xfafQDCQ7z+wmV1AOf+IQVlojUCBn0RB02IEQkvJhUAnnwxBvBadQAQfn0C6ruRAdSCAQSY1zj9cyBxAJoPKPxFcAkE9mRNAHuvcP3d9MkFK3yRCT5GlPzsJqUB37gBAqe6XQGUWAUCKoAhBbyQbQXD0OUBv0c9AVEqHQBiGMkEXmrhBEDw2QSdmeUDmKINAoz4BQG6SL0D/sTlAm1G0QHBBREBElYJBg0uMQd9iP0Kw/TtAiKoRQesd/EAYF3dCbGDVQFdyD0GJthxAm3DnQJ4gYEBKiDZB5r0dQiREsUCA1fBAWsCSQThi50DlgJhA8dS0QGKZhkDzbi9AO9ERQTChxkCzO51AspvHQZxJCEKwsWtBEG0IQVZ/skEGNo5Bjyh8QYrauECsjxNAFNSMQSyjYkGlv4JCINkeQfJfCkDTN6ZCFKIzQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQLIjYEAAAAAgcTdgQAAAACA242BAAAAA4NngYUAAAACA+2hiQAAAACBV6mJAAAAAIP1eZEAAAAAAbqdkQAAAAAB7bWVAAAAAwFdoZkAAAADgTINnQAAAAMDwn2dAAAAAgNTgaEAAAADAmCVqQAAAAAA4n2pAAAAAwOjGa0AAAAAACPBrQAAAAIAdZGxAAAAAwBiJbEAAAACAE7dsQAAAAEDMymxAAAAAgAv4bUAAAABAtUVuQAAAAEAjKW9AAAAAADBab0AAAACAeoFvQAAAAICyl29AAAAAANnYb0AAAACAehxwQAAAAMAtV3BAAAAAYMVtcEAAAADA4IBwQAAAAGB8kXBAAAAA4HG9cEAAAABgbvNwQAAAAKCcAHFAAAAAoPQOcUAAAABAh0RxQAAAAGCYVXFAAAAAICFxcUAAAACACORxQAAAACDHCXJAAAAAIBweckAAAAAAukByQAAAAECncnJAAAAA4JaAckAAAAAA+aVyQAAAAEDmxXJAAAAAwEVCc0AAAADgF3xzQAAAAAAK13NAAAAAwPXnc0AAAABA9wV0QAAAAMDwFXRAAAAAAEMydEAAAABga0V0QAAAAIC1U3RAAAAA4MpmdEAAAAAAq3d0QAAAAEBrsHRAAAAAQHUDdUAAAAAArB11QAAAAMAtKHVAAAAAYL8ydUAAAABA2Yl1QAAAAID543VAAAAAgKkadkAAAADAuFV2QAAAAEAynnZAAAAAoMGudkAAAADgj9N2QAAAACA463ZAAAAAoBskd0AAAADg7VZ3QAAAAACmdHdAAAAA4JDyekAAAABgFdZ8QAAAAGCeZH5AAAAAwBHafkAAAABA5HN/QAAAAKAohX9AAAAA4E+Sf0AAAABgc8d/QAAAAKBOBIBAAAAAAPUbgEAAAADA+kKAQAAAAODpYoBAAAAAQJsEgUAAAAAg2BuBQAAAAOAlZYFAAAAA4C1ugUAAAAAAAYGBQAAAAKDkkYFAAAAAYD40gkAAAADgZIOCQAAAACCLUoNAAAAAYJOgg0AAAACAFgqEQAAAAAAAtIRAAAAAYNPKhEAAAAAgawqFQAAAACBgbIVAAAAAoAaKhUA= + 7BToB3LiY0AoFld2zuNlQDAn7Gl4w25A2+W/dP8idEDzH0CAf7J1QMmjv9FtU3tAgneMn1fDe0BSQEdo7ZmAQNuwXxfuQYFA40TIAC9Sg0A/3ik0elqEQHYlbDyGWodAogv0UAbziECjKxHi54KKQDbsl4xd+4xAXX7x2V+DjkBl5h1k2oGQQHivyorbRZFAwg8OYBaCkkDCn5woB0qTQNmS4DJHFpRAdLYBN02WlUAjg7LQchqWQCbNZkWTIpdAbAXznJN2l0C1hzNptNKYQKK8ptyu7phAmZ0GcepWmkAerOZzyrqaQLAg2UMb65tA0MJLghAHnUD5ohkQPEedQEIlWtxco55A - + - NnZ5QCp7L0DoWN0/r0enQGDIAEFHy4tAMVqvQAfxU0Av1DBA3GwOQbg6JEFVe3BAqiFCQK/wW0FvlflALulBQVIoN0FgOWBBavwlQDmxgUDzBwtAx7CqQZjaCkHQ7ANBjikBQGbTJkGvvvJAlKd5QA3lEUHPCo9AIC06QHMayj9De19A/pahQAgRUkEsVAFBSQfLP/ay1UDiHA1Bt2hGQc1d3T95ygZBm66vQM7Ptz/sshxBUhJLQBwsNEEoOuxAz3+GQJo5uEFW58dAjB0AQs/Ga0FrMXlA2fO+QEzSnUD41ANBrEYnQLG/7z98Mp5BGixuQZJVBkIrCbRByJ4bQZETnkHgc3JBmBH8QSUGVUAhC1lBqwwwQMPoCkCyejJBmV50QX9gMED4jpNAu9MXQSs2y0BhAP5Aa+7mQLQQ9UDt4bhBVu7+QL9Y4kARejhA4+sSQe5DikDCxchCsRRAQdYfAUA2bZxAKpILQcZsXUCf6MNAwofZQFyouUCtD99AjFc3QSGGCkB4FZRAfNlLQBYaS0FyLDhAK42zQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwBEXXUAAAAAAX8RdQAAAAGBfNF5AAAAAIIMHX0AAAABATgZgQAAAAAC1JGBAAAAAYKZBYEAAAAAAsaNgQAAAAIDYZGFAAAAAgAiCYUAAAAAAh6dhQAAAAIACBWJAAAAAQNGnYkAAAACAsOFiQAAAAECJAmNAAAAAAGAgY0AAAABA0oVjQAAAAMCT32NAAAAA4PNJZEAAAAAAOD1lQAAAAID8wGVAAAAAoGjoZUAAAADA7AxmQAAAAAAaP2ZAAAAA4DdkZkAAAABAAsNmQAAAAKAr/2ZAAAAAYDgqZ0AAAACAK0tnQAAAAGCxZ2dAAAAAAEHvZ0AAAAAAO0FoQAAAAMDXlWhAAAAAgAKtaEAAAADgxsVoQAAAAIA6BmlAAAAAoCsfaUAAAACgeoVpQAAAAMDtv2lAAAAAQJwaakAAAADA90hqQAAAAIC1wmpAAAAAAO7iakAAAAAAhCVrQAAAAMDAQWtAAAAAwBxla0AAAADAVYFrQAAAAICRo2tAAAAAwIvBa0AAAACAcB1sQAAAAEA5RGxAAAAAgHdobEAAAABAKodsQAAAAMC0omxAAAAAAInQbEAAAABAWelsQAAAAICERm1AAAAAQALJbUAAAABAUfBtQAAAAEAoGm5AAAAAwGlCbkAAAAAAe2tuQAAAAAABgm5AAAAAQD2kbkAAAAAAu81uQAAAAADQI29AAAAAwENgb0AAAABATodvQAAAAMB1pG9AAAAAAO4EcEAAAACARRZwQAAAAMAXI3BAAAAAYPAwcEAAAABgsT9wQAAAAECTTXBAAAAAgLpZcEAAAADgTG9wQAAAAEDpg3BAAAAAQDqjcEAAAADgBrVwQAAAAODnx3BAAAAAgDTicEAAAACAlPVwQAAAAMDKAnFAAAAAAGAPcUAAAAAg4h9xQAAAAEC2LnFAAAAA4AJ0cUAAAABghqNxQAAAAIBKwHFAAAAA4HnhcUAAAAAg4+1xQAAAAOB5AXJAAAAAwO4zckAAAABABEVyQAAAAAAFUnJAAAAAYNpzckAAAADgAaRyQAAAAMBMxXJAAAAAILLickAAAABgG/JyQAAAAEDsAXNAAAAAQJUPc0AAAABg3SBzQAAAAKDtRXNAAAAAoGJic0AAAADAXmxzQAAAAIAGdnNAAAAAQCCmc0AAAADgzLVzQAAAAIBb0XNAAAAAQCQxdEAAAACg+Qp2QAAAAGDcRXZAAAAAgDFvdkAAAADAqKh2QAAAAKCGNndAAAAAoKhFd0AAAACgSHd3QAAAAMBNjXdAAAAAYOvpd0AAAABgYEZ4QAAAAOBea3hAAAAAIHzFeEAAAAAggNd4QAAAAGDnhHlAAAAAQGSWeUAAAADgtvR5QAAAACB6HnpAAAAAYF0yekAAAABgXFt6QAAAAICyk3pAAAAAwCOmekAAAACggbR6QAAAAGBI5HpAAAAAoKUDe0AAAACg/xJ7QAAAAKB5ZHtAAAAAwOpkfEAAAAAgUoV8QAAAAGD+5HxAAAAAILwFfUAAAADAwiZ9QAAAAGD+NH1AAAAAQPNHfkAAAABAI4h+QAAAAKAsrn5AAAAAoNYAf0AAAABgYVJ/QAAAAKAkf4BAAAAAACawgEAAAACACMWAQAAAAKCl+YBAAAAAYBdIgUAAAAAgQHqBQAAAAGCimYFAAAAAQFWigUAAAADg5hqCQAAAAKC+5oJAAAAAwIEjhEAAAACACFWEQAAAAMCS2oRAAAAAoF8rhUAAAABgwuOHQA== + xLF85BujY0AoFld2zuNlQAkahmk84nFAO0xzspUCc0BZnS+d7ZJ2QA== - + - WhlLQOz+ZkAA/2ZACiyFQDrlAEAq4OFBGjqZQCbb3D+/tr1AP16BQELqiUA95pRAcnDzPy97S0H7i2BAPe6vQApHMkCkqDhAHkcKQHgKTUDnZIdBxdvqQCCd7z/pDihAKZGhQJgpAUAJ9VhAYJkTQXNEpUGgmf8/fnviQCA/7z/TQt0/3a3/QIKA0EBpf3BAA+jcP++/pT820x1A4WunP6JCyj920kRAMvvPQCmEKEGOIh1B3nulQE94QkCLgBNAO+OmQa/WAkBE8v1AfN8nQC0nRUF5DfRAWC9nQBpwmECs19w/0GIDQT+DDUFmmZdB4wVEQerzvEFacUJAg98uQEqpr0H80ehBKhuRQGgxIEE6q/lA1OIvQLy/i0Ek5YZAi1IvQHy9KEHmrkJA5rGNQSTRJUCo1hpBwtd0QabwDEHpNy5CVb9dQQx1s0CgT9xA6hWGQO3Zl0F2yZVAmoq7P0T9AEDNlVpCbSMyQ9FnCEGGjOhBq2E9QWMcJkABIotBn68YQZjmhkA3uQFBNtM+Qc6JmEFOa6NCT/7gQnGZoUBgkHZBOCIHQhTKzUEAa0xAM/sAQR15pT8jmB1B/BgrQfxkFUHWxEFARxv2QI6ijUFfEWxBJROTP1BZwkAgWXpBzXC9QCervUBRDQJC0X6FQeBgvUBVV2FBoFw7QX73dEGotGtBi46SQFNiXUAL4FdCpX0QQ56pKUHViC9AyUeaQJtVC0FMsolBOn8mQQO6ikBZLrRAvIxUQFROTkAhl29BAE0rQfCdfECV3gNBOh2YQRgUxkATNQpBrhgaQQJIQ0Fn2d1AU9f/QIBs7z8qPe8/Ujc2QVOyNEGaNjRBi6uLQE1YNEGFXApA+/b2QGvMIUE= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgOmpY0AAAABgpIVlQAAAAMCUv2VAAAAAIK4rZkAAAADAyB1nQAAAAMC+5GdAAAAAwKSeaEAAAADAvdxoQAAAAIBJpGpAAAAAIGzKakAAAACgoV5rQAAAAKB6nWtAAAAAwP++a0AAAAAA3wNsQAAAAGCDpGxAAAAAYHfFbEAAAABAxidtQAAAAMCQZ21AAAAAADMJbkAAAACAwGJuQAAAAGC0pG5AAAAAwOTGbkAAAABgPeNuQAAAAMBh/25AAAAAAJ8qb0AAAACAZmlvQAAAAIBYym9AAAAAIGMRcUAAAADgVLNxQAAAACDSU3JAAAAAwLAcc0AAAADg42JzQAAAAEBV0nNAAAAAYJnmc0AAAACg5xJ0QAAAAIB4ZXRAAAAAoABwdEAAAAAA/J50QAAAAACN4nRAAAAA4G0BdUAAAADAd1R1QAAAAGA+cHVAAAAAoNGFdUAAAACgFpZ1QAAAAEA64nVAAAAAwFbvdUAAAAAAQQF2QAAAACB8EHZAAAAAIAMmdkAAAABgBWV2QAAAAIAZdXZAAAAAAKKndkAAAAAAGPR2QAAAAGALDXhAAAAAQPYieEAAAADA/S94QAAAAOA0SXhAAAAA4LxgeEAAAABAJpN4QAAAAKAE2HhAAAAAoN7heEAAAAAgDhN5QAAAAGBeIXlAAAAAoC0ueUAAAAAgYTx5QAAAAGDzcHlAAAAAoM+DeUAAAABg6pF5QAAAAAD3pXlAAAAAgHqzeUAAAABgfsN5QAAAAMBP9XlAAAAAYLoDekAAAAAg2yN6QAAAAGDTQHpAAAAAIGNjekAAAABga4x6QAAAAKDzu3pAAAAAwILRekAAAACgz+F6QAAAACBD73pAAAAAgA1Ue0AAAABg6F57QAAAAKCDcntAAAAAoIJ8e0AAAADgUY97QAAAACAcxntAAAAA4A3Xe0AAAABgf/V7QAAAAOCYEHxAAAAAwOYifEAAAAAg4Tt8QAAAAEA7VnxAAAAAoHBmfEAAAADg1HF8QAAAAKB3jnxAAAAAYHqqfEAAAACgkbt8QAAAAOCbz3xAAAAAABPffEAAAAAA0vZ8QAAAACDjeH1AAAAAIBUTf0AAAACgv0l/QAAAAGAoM4BAAAAAIBNWgEAAAADgIniAQAAAAGC2qoBAAAAAoPIigUAAAAAgK0CBQAAAAGBaXIFAAAAAIMiVgUAAAABAwc+BQAAAAGB624FAAAAAgJgYgkAAAACAbCqCQAAAAOAFP4JAAAAAQOdjgkAAAACgeo+CQAAAACB1r4JAAAAAwBj9gkAAAAAgv1eDQAAAACAScYNAAAAA4Px6g0AAAABAV5qDQAAAAIDun4NAAAAAgE3Pg0AAAADgK92DQAAAACCxCoRAAAAAgCgphEAAAACg4D2EQAAAAAABrIRAAAAA4Oq2hEAAAADg5iyFQAAAAOCsOYVAAAAAoMtGhUAAAAAga3SFQAAAAICHe4VAAAAAoLCzhUAAAACgnueFQAAAAGAhA4ZAAAAAYFcahkAAAADAKXOGQAAAAKAEeoZAAAAAoPSghkAAAACgTM+GQAAAAGDs1oZAAAAAwKIDh0AAAACgx1mHQAAAAIB7hodAAAAAIBCNh0AAAAAgq62HQAAAAOBYvYdAAAAAYN3ch0AAAAAg7PGHQAAAAKD1UohAAAAAoMNbiEA= + NrgMGZxjYkByWoXuS4RpQKX7jOV64nFAOQsfS37Tc0BsViEfkxN4QMdia2pW5HlAp/iZ9EI0f0D2kdlwgvqAQOIkq29NYoFA7XBZn7mShEAAdmdapfKEQO2fR8llG4hAjPGQ1mfziEBRzRHm8TOLQFMdN+bT+4tA4kWV2//DjUBR/P8PnryOQHASrwJlQpBAo7kv/EUukUCFJ/ADi16RQCPRJhGc8pJAfeRyO9xGlECA+hYN2PKUQNoNYzcYR5ZAISISMi4rl0AyEXwbHj+XQAU45Tlkr5hAsihzMHQDmUAbTSY7isuZQPk8IiuK55lAQy30yLXrm0DNY4tJ0BecQFqwxpvmf51AKo17RQwYnkC32baXIoCfQEEQThg9rJ9ARgAQWzTYoEA0+A1TNOagQGqKZ1g/SqFAv4KuU0d0oUAqFuNiaiyiQLENmFdiNqJA1ZfvVG2ookCDoRVqjVKjQISs51KLqKNAMbYNaKtSpEAAC6nusxylQPFBiXLWNKVAi5VJ78aqpUCvH6Hs0RymQErNu3n5WqZAblcTdwTNpkBvqxz3/P6mQGDi/Hofj6dAyDZP/h/Fp0BDQQcaUI+oQIjCyghLp6hAilW2FGZzqUBGumrUWI2pQK7fDRJx5alAa7JTo26PqkD187wMh8mqQF09PaeJUatATn/vE6qPq0AdybixtDOsQEFTEK+/paxAyt2wr9IDrUA= - + - YeqFQIETrUBstiBAxkLKP5DnAUGxWstAIAOBQPP/9D9PG49AuMNqQK7xCUBlcoFAXRwKQIXa3UCKJ49AxWQXQAWb00AaIWZBMbOhQAJUCkAh07c/ZzZBQM3Ltz/xQExArZRNQPTgCUBzk0FAMUyuQHwxy0BOFR5AmlO3PxOZAUExvYVBI51GQZhmOEAseu8/V5+4QNcMhUHbBedAwhiLQNQmC0H3QApAfgpLQO9yGEHAXKFAZVzZQPK83UB0NNRAPIqTQLi8p0AQDiZALYN7QNhKqEApPEdBR7zOQEifk0Ew5XRAV5BvQEmAuECEODtBLiaPQJVipkA0Dk5CF52JQLqYgUE/Ev5AfQAeQKWvGkEBVR9BWwxCQQXgnEDmomRCpz4KQI8WhUCKZThAQxYrQYa5zUGasoNB9OtdQqitvUGh/gBByDh9QjdBpT/RKy9A35xdQZyRSEHoJRxA4ViYQKCuj0EU/fxA1oIoQRrhXEB1RApC5iDfQJUcM0FZOitCu5TSQUk5lEJi3SNC2ZK/QZE5O0HDFhZBtn46Qc0q/kHqBtBA7E7+QRX+EUH6CNdAWpCMQiRxYUJa6W9AN3aVQYSUXUEq2QpBaPiOQYIegUCptC9B5BtxQCTNpEA7bmdBKf0xQW85O0FkXRNAkznwQICTr0DGEzdB4ly0QVPEQ0HG1w1BA+0AQBfHAUFUTFZAJ/hKQIpGR0FCUL5BQUHAQSq/lUCbcjhApeZvQFoPL0AdFR1BUw0KQJevZ0HsTTNA/E6mQDXUHUDOrBNANxcmQIW59EDwlkZB3fiAQByyAULcwx5Bye24QCVLekAf7SdBEhg+QQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwNKka0AAAAAASOZrQAAAAADBZW5AAAAAYPEnb0AAAACAa0FvQAAAACDDXm9AAAAAYKuRcEAAAADAX6RwQAAAAODZrnBAAAAAgEnIcEAAAABgWtJwQAAAAKART3FAAAAAQMiRcUAAAADAiKNxQAAAAOBcsXFAAAAA4IbTcUAAAACAXONxQAAAAICIpHJAAAAAQHXDckAAAADgK/ByQAAAAEDQB3NAAAAAwEEUdEAAAAAAbSN0QAAAAECnTXRAAAAAQN9fdEAAAACA4XF0QAAAAOCLfXRAAAAAwGqPdEAAAADABFJ1QAAAAIDcYnVAAAAAwDZvdUAAAACA2hR2QAAAAEA4NnZAAAAAQHBXdkAAAACAtpB2QAAAAEBosnZAAAAAwKCjd0AAAACA9JB4QAAAAABj7nlAAAAAwIEAekAAAACAlhN6QAAAAIBzYnpAAAAAgBHTekAAAACAfuJ6QAAAAMAH83pAAAAAwBoqe0AAAADAOzd7QAAAAIAm6ntAAAAAwKJ7fEAAAAAARx99QAAAAIAZ1X5AAAAAAH5mf0AAAACAZ3F/QAAAAIBygX9AAAAAgPCQf0AAAADA7qR/QAAAAEBqEoBAAAAAQKAZgEAAAABg0zKAQAAAAACzuoBAAAAA4M/TgEAAAAAga8CBQAAAAEA8yYFAAAAA4N3hgUAAAACgS1KCQAAAAKChY4JAAAAAoGmXgkAAAADAnruCQAAAAGCL24JAAAAAIA3rgkAAAACAORaDQAAAACCMIYNAAAAAoL40g0AAAACgqkyDQAAAAIAzUoNAAAAAoMt2g0AAAACA/KaDQAAAAEC6sYNAAAAA4BPDg0AAAADgdlOEQAAAAGB8W4RAAAAAYI15hEAAAACAXoSEQAAAACDsm4RAAAAAYG6jhEAAAABgqrCEQAAAAOBsz4RAAAAAYKwihUAAAAAgETiFQAAAAMD9P4VAAAAA4DdHhUAAAABgf1qFQAAAAAB+aYVAAAAAgHOHhUAAAAAge+CFQAAAAIAxFIZAAAAAYNkZhkAAAABANiCGQAAAACCCMoZAAAAA4G+ihkAAAADADaqGQAAAAMCSr4ZAAAAAgPm7hkAAAAAgSOqGQAAAAGBLS4hAAAAA4AtUiEAAAACghF2IQAAAAKDrcYhAAAAA4BjXiEA= + KBZXds7jZUBOGswAeMJsQNzlv3T/InFARF4i65PxcUD5NnxfV7N0QGZnJBwXYndAT4uAZO8jeUAtwrhVL5N9QBbmFJ4HVX9AQotereMBgUCcd4tnxWKCQNGzvKIPyoJAK6DpXPEqhEA14Ya/m+KFQCJ/aYsow4dA - + - 7QVXQLdmikCkyopAyu/YQsYvJUA5cYlA3vF/QXLJXUCVW3BAKhWcQAcuHUB+F4lCtCWgQuDMGUIne8NB6jv5QH3sEkHe2NlAzHqcQKv1b0CcpO4/Ae2vQugwdkGiIahBI5BcQLcqeUFlmRNAXwMHQZx7REHlKcFAJvoSQM+GJUD3ylVAqjIWQT9yeEDie0FAL65fQPsSw0BPu1VA3wovQWVF3kApX9JAP+sTQO2i+UCKBAdBGRCTQYqfPUBhPwFBMTuiQBf/vEDala9Ai/ouQHJJAEDYwaNB14+7QJxAjkCxOzhBjTLBQFw9EkELX3hCRoyYQKwjr0Dc6QlAOCHSQHaPOEE7gl1A64G+QXxImECBDMJAwfVtQd1+SkBrjWlBRGvVQXKsSkB4xAhBIW2eQlySfUKLEHFBVEHdQThpxEKZO75BzjptQZmdeECq2RJAygp5QXxgt0HqNlRAAjRdQNpYjUGXI7BBcB0RQe5ijECWkphAKEuYQPteDEHkFr1AKkYnQTSxkkBIV0JAkkeCQCsLGEHUNRVBAIHfQI1NHUF1XxxBAkO/QfxUAECf2QxBMb9EQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgFUfbUAAAAAAvMpvQAAAAEAMVnBAAAAAwP7NcUAAAAAAyuNzQAAAAAARR3RAAAAAgKtUdkAAAACA2MB2QAAAAEBQVXtAAAAAQEhRfEAAAADAg7R8QAAAAICAxnxAAAAAgC89fUAAAAAA1mZ9QAAAAECDtH1AAAAAAFnmfUAAAABASA9/QAAAAAB2RH9AAAAAgDpqf0AAAABAwCKAQAAAACCmS4BAAAAAwExYgEAAAAAAiIuAQAAAAOAktYBAAAAAQEHggEAAAAAgnfaAQAAAACCZLIFAAAAAoOSDgUAAAAAgpdWBQAAAAOA89YFAAAAAoPoBgkAAAAAg6EGCQAAAAKBcmYNAAAAAgMBWhEAAAACgdoyFQAAAAKBrr4ZAAAAAADQmh0AAAACg6ryHQAAAAGAJxYdAAAAA4HCbiEA= + NrgMGZxjYkAbumJgJkNwQFgXFG05cnNAqRGvf/5TdkDMvNRcKXN7QNDS9vasZH5Aj17xfafxgECQaQJLaWqCQCI/lbn++YRASrziQuFqhkDpajvJagKIQK7prF9tA4tA6Zkp8xaLi0A= - + - 0k2lQKx4i0CKcTdACxZ4QK90S0Bi9ABBEfPqQOHkl0CI4ts/FMLOQJzrEkDL4cxAbqEcQd/+ukCjnS5AjiwcQCcAU0BGGplB7T6KQOzKDEC9qFtB7c2FQWaxSkE0IN9BUtzYQNgrFEBV1w5BrKkiQmXKgEC+5l1AW1TDQeQxJUCQHRNAhhAFQWqXM0FrVhxAkRrSQYjFpUBmd45AoYjaQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIEwIWkAAAADAsD1dQAAAAMCSxV1AAAAAgOlEYEAAAADgfV1gQAAAAMCYBGFAAAAAgJZGY0AAAAAAJH9jQAAAAEDNoWNAAAAAQLwKZEAAAABAaiNkQAAAAEBqxGRAAAAAABocZUAAAACA+4dlQAAAAIBt62VAAAAAALKmZkAAAACgTeFmQAAAAKDDAGdAAAAAgEBWZ0AAAACARYdnQAAAAMCZo2dAAAAA4KHkZ0AAAACAw6loQAAAAKDKQWlAAAAAIF1laUAAAAAA4YNpQAAAAOCqp2lAAAAAwAPoaUAAAABAGh9qQAAAAICphmpAAAAAgPWcakAAAABA4w1rQAAAAMCRI2tAAAAAwMfHa0AAAADA++NrQAAAAACnB2xAAAAAQCxFbEAAAAAAcWFsQAAAAEDxi2xAAAAAwHOgbEAAAAAAXsVsQAAAAMBW5GxAAAAAABgjbUAAAABA3m5tQAAAAABqgm1AAAAAgM8MbkAAAADAK0ZuQAAAAABVh25AAAAAwMyebkAAAADAMsNuQAAAAIDP9W5AAAAAwDEjb0AAAAAAsd9vQAAAAEDwEHBAAAAAAOMgcEAAAAAAWTJwQAAAAAC0SHBAAAAAANtmcEAAAADAGnNwQAAAAIBbg3BAAAAAoPqPcEAAAADgQ55wQAAAAICC5nBAAAAAAAfxcEAAAABgbwJxQAAAAKC8E3FAAAAAwIhRcUAAAADAGZtxQAAAAAAnpnFAAAAAgMKycUAAAABAydVxQAAAAABa4XFAAAAAgJTzcUAAAADgrw9yQAAAAIDbHnJAAAAAwCgpckAAAAAgQ3FyQAAAAKBOe3JAAAAAQJ2YckAAAADAx6ZyQAAAAIB7snJAAAAAgF7TckAAAADAJOJyQAAAAKCiEnNAAAAA4Esgc0AAAAAABTtzQAAAAAB7VHNAAAAAgFyyc0AAAACAw8BzQAAAAABQznNAAAAAgO7pc0AAAABgV/VzQAAAAEBcA3RAAAAA4DMRdEAAAAAg+Sx0QAAAAEDSTXRAAAAAoPhidEAAAAAANXV0QAAAAODakHRAAAAAwCemdEAAAACgtdF0QAAAAMCnB3VAAAAAILSedkAAAABgrKh2QAAAACDud3dAAAAA4DaYd0AAAACgqt53QAAAAEBjtHhAAAAA4Eu/eEAAAABAX0J5QAAAAGCdTXlAAAAA4BXleUAAAACgn3V6QAAAAMAySntAAAAAYBaIe0AAAAAg2QN8QAAAAMAqKXxAAAAAQDXJfEAAAADAz9d9QAAAAGAKNX5AAAAAwClQf0AAAABgDRyAQAAAAOCMgoBAAAAA4C21gEAAAAAAPruAQAAAACDHk4FAAAAAQAmagUAAAACgzBmCQAAAACD8cYJAAAAAYAQFg0AAAADgC8mDQAAAAODg2oNAAAAA4HRZhEAAAABgbLKFQA== + NrgMGZxjYkA2uAwZnGNlQHzKEHuiRG1A4rYaRubic0DNvNRcKbN0QD3DZJGpM3pA3+LMg8d0fkCodC7co/qBQJx3i2fFYoJAb6DU6w8DhUAApVWEUfuGQAClVYRRu4dAANRDrv2DikA= - + - dRJTQMYqEUG2Zy5Ai3gIQe5TyD/CfIhBxQWhQGonz0A8Mc9AVTybQI6FmkDu3yRAfc6iPxYW6kAey9o/sek2QJ4vhUDGC+tAG6llQPyh70AmpC5Bwza4QfWoQEA+5BtBBQvYQB8KSUDK/9o/hOZHQZZW3UBI7xFACj+AQES2WUFqn3xBKuzbQMmrUkD/BhxB/lyqQCg7ZUCo3sc/Ba+cQMiOEkA+qatBJgcuQVPWSUBnotxA28qTQDoE3UDrKrNAMSTBQBzn30C6tKRAky9mQt4U4D/6nrJALZgjQflnZEHeSZxAACTGQD3L7kAohyFCQmfJQLXzvEAjO0xAEoU3Qa54fkD5SeFAsGKgQb9pTkGPCOVAE6f3QD/ImUGBDds/w0ERQXtxE0H6yvVAvJwUQJnSmUEXfrU/fr22Qd/FcEHtUaZBBbQCQvifQEATfGFBWslSQYevtkGiUrhAfmIAQv+7gUGhXLhARjIYQZLihUE5I5ZBYgMcQTSCz0C8dW5BGTq5QZ0oi0AB7ZtA3F8qQVZfrUBRX8tBFbXePzsLuEBYm15Aa76dQUJajEBoD0pAHhpOQdq+HUPFtQNCsFSUQPUgvUDOTVFBsdM9QZtPx0CpPq5BcjU4QspucEFSBh9BQTxbQeTb1kByYfBAIfJSQAWRJECAoq9BvwMKQd+NjkCtRZFApIlbQIDvkkDRqgVBw86QP2NTTEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoEJnbUAAAAAgqnxtQAAAACDxdHJAAAAAoEFDdEAAAABASyF2QAAAAMAyk3lAAAAAABDUekAAAADAKFZ7QAAAAMBW9HxAAAAAAJAPfUAAAABAsCl/QAAAAAAUxH9AAAAAwBORgEAAAAAA4cKBQAAAAADGJoNAAAAAgP2Kg0AAAACAybODQAAAAEB30YNAAAAAAMHcg0AAAABA0juEQAAAAKARUIRAAAAAQMSqhEAAAADAhu+EQAAAAOBbEoVAAAAAQJE2hUAAAACgmzuFQAAAAADhfoZAAAAAoFLLhkAAAAAglxmHQAAAAGDvYYdAAAAAwJGTh0AAAACg78yHQA== + KBZXds7jZUCwLijacuRqQG+XdYaqQnFA - + - VzU9QXyIG0AwsPhAksGXQI9tpUArXlxAQOCcQClrEUANT11AJCBxQNu0KkFzUABAufMoQURcLkC8DoRBtG04QQ/0YUHjQP9ARnWYQnyvm0AnS3dBfYW9QJAKMEJaBRJAd1NtQ9v7BUOI8vhANI4TQUFGeEB0yuhAGL3rQIeEzkA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAgNd1d0AAAADA6gGBQAAAAKCswoFAAAAAgEAkg0AAAACgulmDQAAAAKDHDIRAAAAAoA02hEAAAADAaGmEQAAAAICvrIZAAAAAQKG+hkAAAAAAHzqHQAAAACAARIdAAAAAoCxbh0AAAACAWWyHQAAAAGAka4hAAAAAgBfDiEA= - - - - - - 7SV3QK69LEGSP6tALg7KQLZ1UUB1EDdAMF2KQPuOMEGg/vBAc+j+P3CkB0O206BB2W1kQPKPt0DwS1JAAJXcQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4F8KXkAAAAAgxSZgQAAAAECJR2BAAAAAgP/HYEAAAADAO+tgQAAAAECSBmJAAAAAgNG8Y0AAAADA70dkQAAAAECln2RAAAAAgG0dZUAAAACgQkhlQAAAAODxhGVAAAAAwFLfZUAAAADAeSZmQAAAAIBLhGZAAAAAAOpLZ0AAAAAgQ2RnQAAAAMCmomdAAAAAwFFmaEAAAABAMuZoQAAAAMBFIGlAAAAAgM5gaUAAAAAgDuJpQAAAAMD1h2pAAAAAwGOvakAAAABg9yJrQAAAAMCO62tAAAAAIC4XbEAAAABgWUJsQAAAAGAya2xAAAAAAD2kbEAAAACAzeJsQAAAAADkJ21AAAAAgPZRbUAAAABAQmVtQAAAAIBTCG5AAAAAgJlBbkAAAACAN8duQAAAAAACIXBAAAAAIOdgcEAAAABgkrRwQAAAACAB53BAAAAAgDMScUAAAACA0iRxQAAAAACZM3FAAAAAYMqPcUAAAADA8KNxQAAAAEC+s3FAAAAAACDEcUAAAAAge9RxQAAAAEBS4XFAAAAAIHH2cUAAAADAFgNyQAAAAICjDnJAAAAAYG85ckAAAACgevJyQAAAAIAXFHNAAAAAgC5Wc0AAAAAAw3ZzQAAAAEANlHNAAAAAIICjc0AAAAAARrVzQAAAAADIwXNAAAAAIKHPc0AAAABgOTZ0QAAAAAC+TnRAAAAAQEdjdEAAAACA9I10QAAAAGC8onRAAAAAALnidEAAAAAgI/B0QAAAAKDI/nRAAAAAoNESdUAAAAAAGTJ1QAAAAICmTnVAAAAAgChcdUAAAABAKHF1QAAAAEBHhXVAAAAAAKGhdUAAAADALLN1QAAAAMDywHVAAAAAoBvMdUAAAACg8gN2QAAAAMC3JnZAAAAAYE9UdkAAAADgqmB2QAAAAKCzcnZAAAAAIEV/dkAAAAAgG4l2QAAAAGCuonZAAAAAoAixdkAAAAAgzsh2QAAAAEBi9XZAAAAAYFEEd0AAAADgOyN3QAAAAABDN3dAAAAA4Dp2d0AAAACgYIV3QAAAAAD4L3lAAAAAwP85eUAAAABgwoF5QAAAACAW33lAAAAAILQ1ekAAAACACNZ6QAAAAKAM73pAAAAAwLB2e0AAAACglvR7QAAAAOAdHHxAAAAAwDpNfEAAAACgXFt8QAAAAOCkcXxAAAAA4MSjfEAAAADAD7R8QAAAAEAw/nxAAAAAILszfUAAAAAg5Ot9QAAAAOBcNn5AAAAAwKqDfkAAAABAS8h+QAAAAKBaCH9AAAAAoNkof0AAAAAgokh/QAAAAMBDpX9AAAAAoCfFf0AAAACg1tp/QAAAAKD/6n9AAAAAIM4ogEAAAACgSkeAQAAAAKCfmYBAAAAAAMDDgEAAAADANR+BQAAAAECVKIFAAAAAoDeugUAAAACAK7yBQAAAAODw2oFAAAAA4B3ggUAAAABgjRyCQAAAACBuI4JAAAAAYCIugkAAAAAgD8uDQAAAAMAA24NAAAAAwFj5hEAAAABg5QKFQAAAAKBlK4VAAAAAIDCkhkA= + KBZXds7jZUByWoXuS4RsQDeULWxqYnBAjwFH/L2yckCN6DFxAtN0QLbCjnNsw3pAG0B+kNrjekA6JuTtTpqAQFJAR2jt+YBAZyyJk7DCg0DmIOujRAKFQBFLbaaQOodAIX9piyjDh0AvnCmR6MqKQCGuV7XUS4tAvsSHhhSTjECw1rWqABSNQN/5OljgDZBA5xO5SixSkED9KPpLUm6RQDwjK1QcDpJARxnM6X1yk0BTpv0mTaKTQGop0Pl9NpVAwwgMgZk+lUBOP6MBtLqWQA353R7FQpdAZFTkAtrWl0AjDh8g616YQK3WJM/6MplAgDcPHCdfmkA= - + - FXkgQRgTUUCipOFA56M2QH0q40APgOlA/pa/QHHStUAgxlpA1mHGP9ENAEB+QVJApvVtQNtjSEAsTyRAuuEHQDqdMkCoD0hBZLRkQExBgEAUJz9BN10RQK3YC0Ms/ABApkqvQetbokDuqxxBJMlAQbyLkD8DJ25A5qcvQA5PoT8SQO0/gKk8QUQN+UJoVes/i3AZQIA7gEBOaTZAv3+JQLlqqUBKUsZA+o9ZQcNWWkA85e5AREWAQUYSRUEre1tAQnbLQAm2jkFUQwhA448QQQdEEUC1IQlA5fNYQdMjr0FOc9FAtrbHPwSPEUAWnsJAScZDQYRlBUFE00hAOZrAQKxQQkB0YLFAIb4+QKhU5EBzjQNBSduzPyeW2j93EAdBlNjcQEiDUEFIVnJBK/NOQXu360GADNhAJOD7QBa9h0FAxh5Cj8L0QdtjD0Eq4bhAZALoQGMshEBErJRDFSivPzy+FEFWZ11AVWk2QEMnyEAYTo9B71tIQeXPi0EbL+pATr+sQR0A2UC0zetAJV+OP5pWhUH8nN5Bv9bYQQGmyUDiPS1ABgp6QKRT+0LI+wtBJ3kZQmtzdkCjKEBBbDIZQ5a7GkCDogdACaMCQcLUFEHgiBxBpdl1QeOTJUCJ3WRAxGFaQB8RRkFWaVxAKu23QJA8d0KwL3JBvuA3QOgzH0G0pIlB7nibQAHPZEDHHG5A0e0jQToLJEC8DfBDoFobQEqIvED68OBAFgkkQL0wdkDrGjVBQK0FQZltXkEIcOs/bndbQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAFbeZkAAAAAAIsRrQAAAAAC7omxAAAAAALPsbUAAAABA4MtuQAAAAAAqJ29AAAAAQMMdcEAAAADgWURwQAAAAACEjnBAAAAAIOGxcEAAAADAIcBwQAAAAIB0kHFAAAAAYC81ckAAAABAHHJzQAAAAAB0NHRAAAAAIBFwdEAAAABANjF1QAAAAABrTHVAAAAAANvZdUAAAADAVBN2QAAAAMAMMHZAAAAAAGdLdkAAAADA5V12QAAAAIDCg3ZAAAAAgNcJd0AAAACAf2R3QAAAAEBGdHdAAAAAALayd0AAAABAaBF5QAAAAMDfO3lAAAAAwKOAeUAAAAAA/cJ5QAAAAAAg5HlAAAAAQAvxeUAAAADAfv95QAAAAMCCEnpAAAAAgIlGekAAAAAALn96QAAAAADN73pAAAAAAJcFe0AAAAAAn5x7QAAAAIAL43tAAAAAQJ/4e0AAAACAEyh8QAAAAMCpLX1AAAAAgKJAfUAAAAAAYnd9QAAAAACahX1AAAAAQMy/fUAAAACA5tF9QAAAAEBo9X1AAAAAwHFhfkAAAABAR4R+QAAAAADYq35AAAAAAD7kfkAAAACAXf5+QAAAAICHLH9AAAAAgBVzf0AAAADAnoN/QAAAAIDmu39AAAAAgBMhgEAAAAAAWyuAQAAAAGAsP4BAAAAAoFRagEAAAADg9YaAQAAAAGAbzYBAAAAAgITSgEAAAABAF9uAQAAAAEBm84BAAAAAgBUDgUAAAACg2wqBQAAAAAAzEIFAAAAAYDQYgUAAAADg4SOBQAAAAICfMoFAAAAAQPo8gUAAAAAg8UyBQAAAAGCcUoFAAAAAIINcgUAAAADAbWmBQAAAAICggoFAAAAAYE+KgUAAAAAgjpWBQAAAAOBpmoFAAAAA4NKhgUAAAAAAL6qBQAAAAODYuoFAAAAA4KLIgUAAAABgE9eBQAAAAOD73oFAAAAAQNERgkAAAACgqCSCQAAAAADlKoJAAAAAABI0gkAAAACgn1OCQAAAACAlcoJAAAAAIEaLgkAAAABgUpGCQAAAAGDkq4JAAAAAoFXGgkAAAACgOt+CQAAAAKAX84JAAAAAYGMFg0AAAABguQuDQAAAAMBgEYNAAAAAoIgug0AAAABgwDuDQAAAACBkQ4NAAAAA4Idag0AAAADgxWGDQAAAAACPaoNAAAAAYM91g0AAAAAgz5GDQAAAAKBBoINAAAAAYNIAhEAAAAAgPKSEQAAAACBLuIRAAAAA4HbOhEAAAAAgadiEQAAAAIDD9YRAAAAA4GohhUAAAADg3EeFQAAAAOAFWoVAAAAAIApghUAAAADgZmuFQAAAAKC5gYVAAAAAIKOGhUAAAAAAN6yFQAAAAACutIVAAAAAoHvLhUAAAADABtKFQAAAAKBP64VAAAAAYET1hUAAAACAMvuFQAAAACB/lIZAAAAAIKuhhkAAAABANLqGQAAAAIBew4ZAAAAA4B7ZhkAAAADgPt+GQAAAAGAdU4dAAAAAgKF3h0AAAABggMSHQAAAAIAyKohAAAAA4HveiEAAAABAm/KIQA== + NrgMGZxjYkBcG3g88qJlQOJgFSPMRGtA0BY+T/xBcEDHBI8W/hJyQF5uim7UUnZAVVzbNdYjeEBezGbCLGR9QOQAzhJjEoBAWGa6MCnqgUB1BU+rpMqCQIVsX9aKEoVAPDH1uhDThUAWceBuzMqHQMisHjfT04lAQ3eFFC7zikBuoQcXeiuNQIL//i5L1I1A/6WIr7vjj0CllVKfW26QQLDUq0wH/pFAJa1JtLEykkBi6xBbTYqTQLTVp6nd+pNAq21RJ27mlED9V+h1/laVQPTvkfOOQpZA4W27fTTblkA9ctK/r56XQPjwjVBlb5hAIYilx+UimUBBc84chsuZQGoK5pMGf5pAJYmhJLxPm0CBjbhmNxOcQG4L4vDcq5xAZaOLbm2XnUC3jSK9/QeeQK4lzDqO855AABBjiR5kn0AeJxUY3V2gQFkT5EsyeKBA3rKQIghAoUAx1FcGR36hQNA9eiYjAqJAVRV4bFcsokDgnxhtarqiQH5SciRBAqNAa+GB1oKEo0BhsXzDcQKkQI8iojyTMqRAUzxmx4zEpEAaZAumq/ykQHd9hi2dcqVAJCTtWbDKpUAmkn4ru3KmQOSvaGTbrKZAGB1oL9Y0p0DWOlJo9m6nQKOnCDDpwqdA+ntyzgYdqEAuMqkw/FCoQIW92zcf56hA - + - ZEQ2QCQFNkANwLhA8GFZQSVvOUG6AcFA4YH9P9N/t0D9YZtA+NrqP+496z8EdDNBbDIIQKqPpEAS5UhASWapQOv0N0ChgNg/xNgAQW4gB0CZWes/HuyRQF1HTUEUBAlBuQFRQCyzI0B7LftAQyMIQPgLb0F3cXZA0ePEQFVHd0BhsxpAbigwQhjJPkCsXD9CJ5k/QUe4u0DdfqVAx7DOQJoREUArdLxA5lTTQNnj9kC+ArNB/JkOQYENZEFtYvtAmshYQUo8gEGCa4FAppENQYALbkFDhjZAvIKXQKDPFkEPFc5BeVRdQh90kEGh6hdBwbYeQZ5XrUELalhBEusXQQamyUAKJMVAEL3FQPv5uUGkbuBAyMNIQHlbJ0KrrmxB3sAbQa1NbUCf9kpATr62QQ/qEkHAwn5ArHzYP9lvEUAFH4pDTI/AQb4hRkF8IUNBQwQIQGgdmkEOFZxAobcbQGQDP0EeZiVCHVLKQJWDNkC0IutBJmHtQCKYpEDC1CNAJa9AQRTKgUCW3wxBf3EVQWjv9UHWU+VAnt5JQeRz/D8oIXBAuytSQHrTlkAc5jxB9ZNDQV5cp0FU89VBzqpeQZplDEKwdSlCaDLaQNpAvUDTjkNBM/bgQMTBXEGGhDVBrx1LQf/MjUFU3gZBGEfyQMeShEIL68ZBtFj5QR5VBEP46YJBN8IJQpNMI0JRYstAVl34QRBvTEFGuvxBnNFDQZEbK0FuXGdAOfrZQoORZ0Gl+CRACJ2NQCAyVkEgCBZB9h3+QQ9oMUE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwPxdYUAAAAAAvIlhQAAAAED95mFAAAAAgPbgY0AAAABAZYVkQAAAAEDaBGZAAAAAQDorZkAAAACATsdmQAAAAAB1RmdAAAAAQE7/Z0AAAAAA+qdoQAAAAACshWpAAAAAwOgBa0AAAABA6oVrQAAAAGBe5WtAAAAAwIcgbEAAAADA5IZsQAAAAKAYxGxAAAAAoC9rbUAAAABA+SFuQAAAAIDDp25AAAAAQKcmb0AAAABAbJxvQAAAAACE5W9AAAAAAIUycEAAAACgb29wQAAAAICpsHBAAAAAQHoScUAAAACAesVxQAAAAMDaA3JAAAAAgMMjckAAAAAA60JyQAAAAADjgXJAAAAAAMmickAAAAAguehyQAAAAMC3E3NAAAAA4O5Gc0AAAADA11FzQAAAAAA2Y3NAAAAAwKyQc0AAAABg1cRzQAAAAOBd0XNAAAAAYF8ZdEAAAABg6D10QAAAAACRjXRAAAAAYHzNdEAAAABAE+F0QAAAAIDpI3VAAAAA4IQydUAAAADgznB1QAAAAOCegXVAAAAA4AC0dUAAAADA28N1QAAAAMCg3HVAAAAAoLEQdkAAAAAg/yN2QAAAAOCSM3ZAAAAAINtTdkAAAAAAKXJ2QAAAAIDkgHZAAAAA4EONdkAAAABAYLJ2QAAAAMDO1HZAAAAAgL71dkAAAABglRR3QAAAAKBvSXdAAAAAoDmVd0AAAADgcZ93QAAAAIClrndAAAAA4JbEd0AAAAAgB9Z3QAAAAKCy4ndAAAAA4FH0d0AAAAAgGQ14QAAAAEDgPnhAAAAAIC9NeEAAAACAdIB4QAAAAKCqwXhAAAAAoDPReEAAAACg3D55QAAAACDVYnlAAAAAQA5yeUAAAACgiYF5QAAAACBCpnlAAAAAgHvPeUAAAAAghfZ5QAAAAMD3FHpAAAAAoGH/e0AAAABAYr18QAAAAEAHJn1AAAAAIFQ+fUAAAAAgjUR+QAAAAOD8U35AAAAA4IPvfkAAAAAgjxR/QAAAAEBaJn9AAAAAQGo6f0AAAACgOYl/QAAAAEBv2X9AAAAAgGsRgEAAAAAgrjuAQAAAAECIaoBAAAAAgCZ3gEAAAABgqpqAQAAAAECrtIBAAAAAQAC6gEAAAACgdL+AQAAAAICW64BAAAAAYGtXgUAAAADg03yBQAAAAACQhIFAAAAAIA29gUAAAAAAdkCCQAAAAODPRoJAAAAAYAhTgkAAAAAgUmmCQAAAAOA/loJAAAAAAMisgkAAAABgLLOCQAAAAIDkwoJAAAAAQKPPgkAAAADAVguDQAAAAOCWKINAAAAAYGQwg0AAAAAgflODQAAAAKAPi4NAAAAAwLvLg0AAAADgkdKDQAAAAECN/INAAAAAQIYchEAAAADgTaSEQAAAAGAD04RAAAAAAPkthUAAAABglxKGQAAAAOBdHIZAAAAA4O8qhkAAAABgUD6GQAAAAKASooZAAAAAQBLKhkAAAADA2VKHQAAAAKBqXYdAAAAAABGTh0AAAACg2COIQAAAAMAPdYhA + NrgMGZxjYkBmiwPJSGNsQOzQoK8iBW9A1c6DlSeic0B2xqyr6ZN2QCsjiJq/EnhAsWglgZm0fUCGL9LlgmN+QOm4E1mOkoFAikOPgi06gkDp5wGDOhuFQFFvNZKZQoVAsBOokqYjiEBRniO8RcuIQHc/TqISLItA4qKkVIeDi0CkRfNHdFSOQAD0YD/fE49A6Lc6JWBGkECAkae0RU6RQDA6e/GAopFAlxR6h3bikkAUUE75tiaTQA== - + - BmClQKyr1z9Gk2RA/ZCzP8SetEAURb1AZTuOQPGXGkDQR39AGUqlQKAcqEBYW4BAJdkjQKdSUkATFV1AHDgjQUNf80BQlxBAr0ctQFDybUBqagNBZNnqP/pYW0D6WhRBr+6QPxpyakAWreo/fPESQL+FbkAxB5RBxGUDQQyx2D+pckZBANmOQOodE0FCr0pBVpvZQLN/80ChU4xAnszqPx/0C0Gg6dg/8KUKQH7qEEAJpI4/LR8dQJOPg0Bb7ThA9QqCQLWuWkGB8B1Bf9gBQSvz2j+N0apBEBr9QJU3zEBupWRAuTu9QLKNP0A5NYBAzVXmQOMbg0E6sdc/qp8BQXp/0UAiyBxB+KCKQb9BDUAM9No/OsEjQC0tEUBNFZNBHSvoQJGNNkCYRsY/SVyQQVe6k0Gvoa5AI6OqQNXLQUGU4l1AzFYyQV+piUBdPyZAlkDMPysT10D66qlAaNUiQNW0IkGJDVFA1VwEQlHq8kEpMi9BLoTAQBJVUUAfwMJBMlilQFr4d0JKwV5AMM9OQa4DrkCrUJ5BwKhaQUrt/z9GVqVBRrdMQaJA00FZ5RVCkasaQKlNGULsvvFBdmCQP/19nUKOe4NCRJsAQdaGkUHyjRpA9DolQWALgkBaPq5A00cFQTY3LkDc1tdASsg1QOzqbkAJWLdA0iRFQsE39z8vTsVAn0IKQa68z0EKBO9AgGzrP21bxUAkMWRA5UegQAIH9EAT2BtBmPmcQE5dDUHhehFAKeP8P55L+kBK40dA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgE6lZUAAAACAI+NmQAAAAMCn+2hAAAAAALMlakAAAAAgkp5qQAAAAKB8jmxAAAAAwOmJbkAAAABAQYNxQAAAAMCX0XJAAAAAAKfrc0AAAABA53F1QAAAAACJlnVAAAAAQAoldkAAAADAGFF2QAAAAIBRsnZAAAAAQDcReEAAAAAAXzB4QAAAAEAZtHhAAAAAAFLyeEAAAABAiZZ5QAAAAEBkxXlAAAAAAJLfeUAAAABAEO55QAAAAEAEcnpAAAAAAL6BekAAAACAoq56QAAAAACF43pAAAAAwMHxekAAAABA/wJ7QAAAAMB8nHtAAAAAgOKre0AAAABA1sR7QAAAAABk13tAAAAAADXXfEAAAABAMOF8QAAAAID4n31AAAAAQIJIfkAAAABAoXl+QAAAAEBjon5AAAAAwLvTfkAAAADAnkd/QAAAAEDB3n9AAAAAIOgMgEAAAAAAMyeAQAAAAOD6OIBAAAAAYCuIgUAAAADAVI2BQAAAACCJS4JAAAAAICWrgkAAAACgVsOCQAAAAEAby4JAAAAAID4Pg0AAAADgwECEQAAAACCPnIRAAAAAoDuihEAAAAAA9IuFQAAAAGCMwYVAAAAAYH1ghkAAAACg6VmHQAAAAKCCp4hAAAAAILCviEA= + NrgMGZxjYkBcG3g88qJlQNAWPk/8QXBAG7piYCZDcEA9w2SRqbN1QPfXhcaqUnhAWxQhfAFEeUCxaCWBmbR9QBnhh/ctw31AjB+yJUNqgkDslDb8o+KCQB0kM76EIoVAfZm3lOWahUA7de+o3LKIQH3Ipb6RI4lAO6Td0og7jECbGWKp6bOMQMyoXmvK845ALB7jQStsj0CWpui1a3qRQLBEgdMQfpFAxlnC1DaakkDfKCmCjNaSQA1ucc9MfpNAVvCxm23alEApGfsfuNqUQHKbO+zYNpZA1gepsMOelkCHsHzt/lKXQA== - + - P+qOP1daDUFE8DZANzVuQO6d/T9WMwhAh+6eQOCLSkFwbBxBw6TfQMWfiUKvy2dBsZc2QNRKCEBPesVABfWgP6kUREEIf9NA/pukQU55UkAgCoNBQn8aQNUYiUDzvJFAzZicQOchUkDK9N9C537hQM2Qb0HZSS1AiwhlQDoRvEAflCNBIg1TQVamc0FtwphA9rI/QA9Dd0DL1B1C/fMuQL6aF0H+q+s/Fg6DQf4fG0AsVZ5BwUysQgHZKkEttAdAu32SQLw5u0J7KtlAWqtDQfaCykGieIJBwH2XQlm8gkCxSEJBt0HwP0gvP0K1mf9AXLfOQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAQC7CXkAAAABAYQdhQAAAAECtJmJAAAAAQFclZUAAAABAcqBlQAAAAMDuZGZAAAAAgGhhZ0AAAAAgDKZoQAAAACDuJmlAAAAAgNnnakAAAACgSbxrQAAAAAAp5WtAAAAAgD8hbEAAAACAmIJsQAAAAAAgZW5AAAAAAPEIb0AAAABAmn1vQAAAAMAqxW9AAAAAAMjkb0AAAAAATn1wQAAAACA4oXBAAAAAoEqxcEAAAACAYwNxQAAAAAB8dXFAAAAAIO+BcUAAAAAAyA9yQAAAAGCbIHJAAAAAgFP2ckAAAACAYUFzQAAAAKDm1HNAAAAAgAjjc0AAAAAA3fVzQAAAAMC6UHRAAAAAYBtedEAAAADgGnN0QAAAAIAFkXRAAAAAAErgdEAAAADgufF0QAAAAGAqLXVAAAAAILmAdUAAAACAoZN1QAAAAMDD5HVAAAAAYJLzdUAAAACAJiN2QAAAAGDvhnZAAAAAgE6hdkAAAABgSMB2QAAAAIBmz3ZAAAAA4P0vd0AAAACgPER3QAAAAGBVYHdAAAAAIKhsd0AAAACgtKx3QAAAAGCd3HdAAAAA4NXrd0AAAADg/BJ4QAAAAGAXRHhAAAAAYGhUeEAAAADACqN4QAAAACBQwHhAAAAAoHsAeUAAAACg3Ih6QAAAACDKFXtAAAAAIHSke0AAAAAgatR7QAAAAMAaG3xAAAAAAItFgEAAAABgupGAQAAAACDdoYBAAAAA4GnzgEAAAACgcgqBQAAAACDOcYFAAAAA4OkEgkAAAAAgr+uCQAAAAGDZuINAAAAAYJc0hEAAAACAH1uEQAAAAGDJsIVA - - - - - - 9P0HQEIcFUGV9GxAILfrP0OtnEAlCCRAziPYP7nYvEA1qKRAekPvQACx/T9h+ZJAKuEyQSftl0DzM4tB965PQXH9xz/hNBhBZzXmQGYrJECTj5dAlAdvQIPQokKxNlNAlwWhP2KD6ECsmNxAns/lQZwfDkGIgiNA/GOAQGwjLUCdt9g/aE4aQEXzmkAj/MZA78h0QQ5rykAutXxAd/YuQRhkUUDjhI1AdZ2lQPCm00CCVb1AfBtQQaT1vEE5UaNA5yXRQLi440Dd6phAV/sLQsOzoUFx0lVBzM4TQfWNQ0Gu6s9BVIqOQICZzUCn7rBAMAzCQFJim0AVyhVBZ8+2QWUh20H0folBxj42QdN1zEG5WIBAQMUBQa3nyUB40Y1Ccj2TQPRduUF7glJA0Q34QNxdPEH11hBB - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAAJobEAAAABgtqZwQAAAAIDD03JAAAAAgGyTdUAAAACAHyJ3QAAAAABH0XdAAAAAgNTUeEAAAACA/TN5QAAAAAAMw3lAAAAAQNADekAAAABA92F6QAAAAICLCHtAAAAAwF5ne0AAAABA3uV7QAAAAIArUnxAAAAAgBmOfkAAAAAANa9+QAAAAMA27n5AAAAAgD4Uf0AAAADAd0d/QAAAAMBv2n9AAAAAoKmIgEAAAABgqaaAQAAAAMDM6YBAAAAA4PcKgUAAAABAe3SBQAAAAABIfYFAAAAAQDGKgUAAAADA6pKBQAAAAOA1uYFAAAAAII3egUAAAABgbo2EQAAAAICq5IVAAAAAQPw/hkAAAABgexKHQAAAAODRpIdAAAAAYBvTh0AAAADA7e+IQA== + KBZXds7jZUCEfuNfSGJnQDtMc7KVAnNA - + - +8uzP9Aio0DKNapAM+41QPc0HEAzvMk/jveWQde+/j8hx0FBbFJCQBiNEEA8oG1A06fAQAqUB0BAd4lAahE1QIDT1UHBMuZA0zeUQDjXEEHy6EhBmO79P3zFLUBr0bdA/1RMQdueokFd9LNAx0qAQIeWlkAjDz5BrxmAQe/UGkCl275AM6WTQQeuekBMDN5A4o86QfbmKUE= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIOBjZUAAAAAA26FlQAAAACChKmdAAAAAoAcwaEAAAABAJcVpQAAAAAAYCGpAAAAAwIxGakAAAAAAiIZqQAAAACDvo2pAAAAAQNDnakAAAAAgayRsQAAAAAA0aGxAAAAAwMQDbkAAAABAe01uQAAAAAAVh25AAAAAYJwhcEAAAACAXKVwQAAAAGDe/3BAAAAAAG/QcUAAAAAARyNyQAAAAABHRHJAAAAA4IXUckAAAAAgvuxyQAAAAIBFFXNAAAAAAIRGc0AAAAAAXoNzQAAAAEB4nHNAAAAAQD2mc0AAAACAX6l0QAAAAMAXt3RAAAAAwEoMdUAAAACAqRd1QAAAAEDpSXVAAAAAAIZTdUAAAACAyF11QAAAAADDcnVAAAAAgF2RdUAAAABAUMN1QAAAAAByFXZAAAAAQPD0dkAAAACAgDZ3QAAAAABPNnhAAAAAALZ0eEAAAADAzEZ5QAAAAABzX3lAAAAAAA2UeUAAAADAh6J5QAAAAMCaxnlAAAAAQB7TeUAAAADAmAl6QAAAAMA2j3pAAAAAAC/nekAAAACAv1N7QAAAAEDOZntAAAAAAK2ce0AAAADAK9V7QAAAAAC983tAAAAAADsDfEAAAACAY0d8QAAAAEDEY3xAAAAAgG9zfEAAAACAqIt8QAAAAMCF43xAAAAAQHoqfUAAAACAgTt9QAAAAMBB3n1AAAAAQPP/fUAAAACA9D1+QAAAAEDCZn5AAAAAANiWfkAAAAAAsoV/QAAAAADLxn9AAAAAAI4JgEAAAADgdRiAQAAAACAwH4BAAAAAABBSgEAAAABAx1eAQAAAAACdioBAAAAAILCRgEAAAAAgXauAQAAAAMDpsoBAAAAAwBztgEAAAADgpcaBQAAAAKCqCoJAAAAA4OgzgkAAAABgTmWCQAAAACCfa4JAAAAA4HmJgkAAAAAgD5OCQAAAAMBXmYJAAAAAoOe0gkAAAACgG8uCQAAAAKB51oJAAAAAAIr5gkAAAABgwhaDQAAAAGChH4NAAAAAIE80g0AAAAAA0mKDQAAAAOAWd4NAAAAAgMWNg0AAAABAnZKDQAAAAEDVuoNAAAAAYIPGg0AAAABAXteDQAAAAGD2IIRAAAAAoLkrhEAAAADg32KEQAAAAMDkdIRAAAAAIEibhEAAAABgjaKEQAAAAODiqYRAAAAAoOC4hEAAAAAAi8+EQAAAAOB914RAAAAAIHXrhEAAAADghgCFQAAAAKBBQ4VAAAAAgDBQhUAAAACgQGiFQAAAAEBAb4VAAAAAgOSuhUAAAABgKraFQAAAAGBk94VAAAAA4Mr8hUAAAADgnQqGQAAAAGBtGoZAAAAA4CkihkAAAABg+CmGQAAAAGA2QYZAAAAAwLRehkAAAABgAmaGQAAAAEAuiIZAAAAAID2ohkAAAAAgxK+GQAAAAGDkz4ZAAAAAYGDjhkAAAABgAPaGQAAAAODOEYdAAAAAALwXh0AAAADgBiCHQAAAACBYbIdAAAAAoG6Qh0AAAABgO6+HQAAAACCutIdAAAAAgAHVh0AAAADAgdqHQAAAAMBMHIhAAAAAgCJEiEAAAADAYWSIQAAAACAlbohAAAAAALCxiEAAAAAgBvuIQA== + NrgMGZxjYkBImCMySWRuQBu6YmAmQ3BA - + - CsgSQXvbsz8qUhVBVv0pQQelr0AIJtxAG45IQA5HnEGO32NA+GDjQI4AA0EQPFNBQLmWQfPmjkHgZqtARfL2QJm190DiV6ZA0UzrP8QMDEEQYzBBOjvkQCPbR0CZ6v0/RLWhQCLtrUCSxYpBg2saQWuEnEHo4X9AhsViQUDqhED6g7M/9jJ2QNSBoEAOA/4/lX+SQAN6PkBcNyRBUgyBQeIoiUFQbTNB8nQFQQ0Jq0FhlJxA+MyzPzHKuD9rwSFCtlRDQK6hOUFDLxFBAzgEQVOb1j/ytpNAMEQjQFIkQkENHidB51vrP3M6GkA1msJAcnRjQIUfp0GWh/FAMRNcQK76lkG9wYpCoKK4P/7lDkOZDuNAAHLxQf5nEUBFJZ5AmVu3QBI9gEDUILJBqDGiQB18HEHfRbZBygUFQP1jF0GdH1pBEOxhQQULG0Cx8gNB/rnzQIw4hkBDmIRA2BYEQcYPLUAPec1AMDqEQI6a3ECYCp1BGhVAQVTUNUGuQD9C7+BqQXBfgEBl7mxAVytYQEt9A0GmIi1CiKq0QddsiUEVSixA3mVaQHxtGEHGt5JBUC7VQSlmxUDKTaRBLQMIQQf4FUF0dDZAzK14QOPehUEwxF1BD+ryQOKDhECTwJxBpwUgQRSedUHmMA1C34HaQBDCwUFCBlRB1oi8QKw0JEDp4zhBwGh1Qq61IEK87YRBoL+OQ+fnpUIVEjZBv2dxQGwFn0AKaEJB3uVRQsvaKkFpxPVBs6scQcxCKUEYXJxBHU4NQuYVIEFwyClCQMesQQWo8EFCGLJBQ3/pP/fqdUA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYKNpbUAAAABA4oduQAAAAAAzEHBAAAAA4OdVcEAAAADAVGNwQAAAAIBHEnJAAAAAwP6CdEAAAABAbu52QAAAAMC4lHlAAAAAQHqmeUAAAACAr4R6QAAAAEA+V3tAAAAAwLsjfUAAAACAiaR+QAAAAECjxX9AAAAAAKrAgEAAAABgfkyBQAAAAOB4gYFAAAAAoJlQgkAAAADgQ7+CQAAAAEDpyYJAAAAAoDsMg0AAAACgDlqDQAAAAKBwsoNAAAAAwDXZg0AAAACgBN+DQAAAAGCTOoRAAAAAIFdfhEAAAAAg1XuEQAAAAMDEpYRAAAAAwE+rhEAAAADg7PGEQAAAACDzNYVAAAAAIDc7hUAAAADgz4yFQAAAAMAVSYZAAAAAYOO6hkAAAADg+dGGQAAAAGDC24ZAAAAAoOERh0AAAABgCkWHQAAAAODAuodAAAAAgEzXh0A= + NrgMGZxjZUAoFld2zuNlQAkahmk84nFAA0krmFUickAhmueCrbJ1QA== - + - TbcHQCNW6z8j5QBATKkjQKV+PkAGs3lAWE2lQAG3ZECFxjpBLCr9QOrUpEAX1NdAG5KuQHjfjUC5LpJAM1EsQFFlEEE/iYFADmuSQFkpvEDy+6lAH/hHQe4UOEDXo11Bs7lcQry/+EE0EC5BEPBIQEe+JkE7ylFBfE+sQYa9Y0L96khDUWgSQzPIeEDN74hA5eDTQHYxmEDzaIpBC6S6QMJtSEA+XG9AyJA7QQ== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAI7BYUAAAADAtQhiQAAAAECAI2RAAAAAILAoZ0AAAABAS4ZnQAAAAOD0yWdAAAAAwAzkZ0AAAAAAgIJoQAAAAECEJ2lAAAAAwHVBaUAAAABAJGhpQAAAAAB23GlAAAAAAFD6aUAAAADguD5rQAAAAOBZa2tAAAAAQBcmbEAAAADANKlsQAAAACBXK21AAAAAwGtFbkAAAAAAlL9uQAAAAABg/m5AAAAAAPwjb0AAAADAGmVvQAAAAGBvVXBAAAAAQIVzcEAAAAAAALBwQAAAAIABxHBAAAAA4OPkcEAAAABAfhxxQAAAACCPVHFAAAAAgOSAcUAAAADA9pVxQAAAAIDc2HFAAAAAwOAWckAAAAAAaTxyQAAAAOA7cHJAAAAAgHakckAAAAAAC7ZyQAAAAKDk8XJAAAAAwPVSc0AAAACAHXRzQAAAAGBpf3NAAAAAQNO7c0AAAAAgI9BzQAAAAEA84nNAAAAAYCTyc0AAAACgaUN0QAAAAIBqYnRAAAAAwJKRdEAAAABA5SV1QAAAAOA5RXVAAAAAwFZydUAAAAAgAqJ1QAAAAKCNt3VAAAAAgOn2dUAAAADATmN2QAAAAKBGc3ZAAAAAAA+KdkAAAAAAU6R2QAAAACC6sHZAAAAAAK7TdkAAAADgBvV2QAAAAIDR/nZAAAAAQFUdd0AAAABAgjV3QAAAAECQo3dAAAAA4Ieud0AAAABgn813QAAAAMBicHhAAAAAoLeDeEAAAADgSJZ4QAAAAIDbzHhAAAAAoMr9eEAAAADghhN5QAAAAEDhIXlAAAAAgPwueUAAAAAAIEZ5QAAAAKBdbnlAAAAA4ByheUAAAAAgSKt5QAAAAKBz0HlAAAAAYIfieUAAAACgV/R5QAAAACAiEXpAAAAAIAukekAAAAAgu7J6QAAAAICkvHpAAAAAIOTeekAAAADA0PJ6QAAAACAoDHtAAAAAAH4ie0AAAADgWFR7QAAAAIAoXntAAAAAIJ1ue0AAAABA3n17QAAAAABZjHtAAAAAIP/Ae0AAAACgleB7QAAAAIAAQnxAAAAAoNRifEAAAACAu3F8QAAAAKBgnHxAAAAAgNizfEAAAABAqMB8QAAAAMDK0HxAAAAA4FAEfUAAAAAgFiB9QAAAAKDHFH9AAAAAYFPDf0AAAACggTKAQAAAAKBnW4BAAAAA4BZ3gEAAAACgNpqAQAAAAMAcA4FAAAAA4CslgUAAAAAgeG+BQAAAAAAh1IFAAAAA4FUYgkAAAACgwyCCQAAAAOCth4JAAAAAQMKRgkAAAADglamCQAAAAACQCINAAAAA4Mceg0AAAAAg+zCDQAAAAGA2O4NAAAAAwNV4g0AAAADAXZiDQAAAAKAorINAAAAA4IjYg0AAAADACWmEQAAAAEA7l4RAAAAAIMe2hEAAAABgOdOEQAAAAGDmPoVAAAAAoOFahUAAAADAAmyFQAAAAKDrjYVAAAAAILS1hUAAAADAdNuFQAAAAEDZ/YVAAAAAwHEMhkAAAABg1xiGQAAAAGBxIoZAAAAAQFV5hkAAAADAu8SGQAAAAGC7+YZAAAAA4PsCh0AAAAAAzVKHQAAAAGCKhYdAAAAAYFtMiEAAAAAgglOIQAAAAAC9YYhAAAAA4FXriEA= + NrgMGZxjYkCJy7y2HKVqQOzQoK8iBW9Ak7mMQukSc0CMwPKUpoNzQLEKSS1Bo3ZAqhGvf/4Td0DIYmtqVqR6QHhl3WZZ1HxAkbfa2ox6gEC74Vzd2PKBQA== - + - 6rSyP81S6z83f0hAN5mGQUyPsz8xUMlAEFQLQLx4C0BqcclA8CCzP8tOTECodolAcI5RQZe/LUD2wT9AfTtuQMTA/0CqYFtAkB6dQAr5lUC44hBAy3FRQMsqG0CVRsY/7N+qQAyfSUCl3odAa/fFP48r6j+lRYNAn0kRQF4BUUBFkT9AruqSQECgI0HiNQhAUhChP6svE0FSwtg/7tRzQfV3gkDHpmxAMJggQYKLNkCq0CNA8/kCQV01s0A+EkFAeLr9PzMy6j8TAGZBcB2jQC4BkkD5dYlAjyvrP9U6lkC8wZpByrkEQUauB0HD5/s/KPDlQAPW2D/ld3dAq30YQZgJnUDy/JtArCBtQAKAiUGlN45AuM4oQSnOI0GZjgpBkhR4P93nI0HiXzRBei8pQXGUY0AXNWhBucI3QIG/UUA6ZCNADbKjP6EzREHYdORB0v9OQCTD/kBaIbdAzuaSQAq4zEG3wohB7JSoQSOOgUK/H+BBtvUqQX1Al0BWtNdAUB+VQDKBGkDKPkhAbP6EQWdEoUEkjGVBNf4nQW3Ho0ECKqNBlwqWQZjFPEGHJI1CQycjQKiMXUKgaFJA5pgxQXXq+UFHzmFByvERQn308UGYsKZAoKdbQTTlZEB4SdVB4XJbQMP5WkCeByRAD65wQPmLOkFq2UVBVcU7QetnPUEU6bNA1v7YQd6u10CxnoVAwndEQnNx+UBftEVBhgtEQZmZqUDYxHhA8guSQHGmjkBFrj9ATvqIQBYwwUDsstdA73FwQMimmEAcNXdACTdAQb08A0FtZSNBjCQRQF+QiUCIzO5A/OoNQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwGFBaUAAAACAJwFqQAAAAECxSGtAAAAAAGxmbkAAAADA5OluQAAAAKBvgm9AAAAA4FWUcEAAAAAAoKRwQAAAAADts3BAAAAAIJ4tcUAAAACgKEBxQAAAAECFR3VAAAAAQI4SdkAAAACASSB2QAAAAEADYXZAAAAAQGozeEAAAAAAjXJ4QAAAAAB+xnhAAAAAwAUyeUAAAABAI0R5QAAAAADIv3lAAAAAwBdlekAAAACArnB6QAAAAIBY0XpAAAAAwIlye0AAAADA9Yd7QAAAAAAOdH1AAAAAgHnTfUAAAAAA2y1+QAAAAEA/P35AAAAAgKhxfkAAAADAhAV/QAAAACANi4BAAAAA4MCSgEAAAACgC5qAQAAAAMDOooBAAAAAgJSqgEAAAAAAMs+AQAAAAMDhGYFAAAAAYDM5gUAAAACg/XGBQAAAACAye4FAAAAA4KzbgUAAAACgE++BQAAAAOBPAYJAAAAAoPkygkAAAAAAQXeCQAAAAKBEiYJAAAAAIJ4qg0AAAABA+T+DQAAAAKB6T4NAAAAA4AVag0AAAADgo7WDQAAAACAPw4NAAAAAoHbog0AAAABgfh2EQAAAAMAzJ4RAAAAAoM9VhEAAAABgRGyEQAAAAGBDgIRAAAAAYGCIhEAAAAAgyI+EQAAAACCplIRAAAAAICC0hEAAAACgK9KEQAAAAECq2YRAAAAA4IGch0AAAAAAHjSIQAAAAADQyohAAAAAoJbRiEA= + 4qRcexsiYEAoFld2zuNlQHBahe5LhGxA3OW/dP8icUD/B9cwPnN0QKNAVK4XVHdAwZEQmW/kekA= - + - qtfqP9GINUBKIi1AGgx2QJnctUBeYw9B+eAIQQ7chUGAhRFANaxjQaqDOEA32sU/WldSQF7qSEARWDZA93BaQFLD7kBUajZASdvWQEOddUFYc9xAi4hNQfs7w0DyPQxBuBOuQNdfN0B0TTdAd+qIQBNum0CH0lpAhhOhQGpcHEBypuo/8Ti+QHanjkAS38FAaTmXQVs0s0DANR5BGkYvQmcxQkLeWOlBG0QMQfWh1z9kfgtCiM7GP418sz+sj9xAZznGP09WH0ExvZxA4HgZQucfxUDeF1tBbbF9QREBoUHrjKNBaz8zQVsvDkHXhlZBVKUNQaFoN0Aj3IRAchnTQDJXZkHRJH9AsqDwQMBoPEGgN5dCTm1AQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAKLDYEAAAADAOWFhQAAAAMAYQWNAAAAAwPXLY0AAAAAg1CVlQAAAAMChPmVAAAAAwJS9ZUAAAABAW+RlQAAAAKAlJ2ZAAAAAYOXmZkAAAAAAgSZnQAAAAGDtYWdAAAAAQNS9Z0AAAACA/6NoQAAAAAAV4mhAAAAAQD8laUAAAACgSaRqQAAAAEDV12tAAAAAAPkTbEAAAACAPWZsQAAAAOAsg2xAAAAAwNmmbEAAAAAAYkFtQAAAAECj8W1AAAAAoFhobkAAAADgBYJuQAAAAIBCum5AAAAAAEbkbkAAAACASCpvQAAAAACISW9AAAAAABB3b0AAAACASQRwQAAAAICzZXBAAAAAYNhxcEAAAACAUbRwQAAAAIBD9XBAAAAAoFpRcUAAAAAAguBxQAAAAODXEXJAAAAAwElNckAAAACAYmdyQAAAAEAno3JAAAAAQLTSckAAAADATwZzQAAAAMA5RXNAAAAA4A9dc0AAAAAgxLBzQAAAAABhwHNAAAAAQLD1c0AAAABggkB0QAAAAEAqY3RAAAAA4B9zdEAAAACADIJ0QAAAAAAEsHRAAAAAYKzjdEAAAADAHSJ1QAAAAOCfj3VAAAAAIB+mdUAAAADAjrR1QAAAAMDl0XVAAAAAgKTxdUAAAABgiPt1QAAAAOBJR3ZAAAAAwIhwdkAAAADAjH92QAAAAEBZl3ZAAAAAQO6jdkAAAAAgLMV2QAAAAAAlHXdAAAAAQIY0d0AAAAAAR2N3QAAAAKDpc3dAAAAAIG1/d0AAAABgTZN3QAAAAABEs3dAAAAAIELHd0AAAABgLtl3QAAAAKAWAXhAAAAA4PwPeEAAAADgsSR4QAAAAMBjMHhAAAAAwGtBeEAAAAAgx2Z4QAAAAKBihHhAAAAAIMKTeEAAAACgSqJ4QAAAAICKsnhAAAAAIELMeEAAAADAydZ4QAAAAKDsRHlAAAAA4OmPeUAAAACgcaR5QAAAAECOvnlAAAAAgCfheUAAAAAgCvh5QAAAAIByBHpAAAAAIFMXekAAAACALlJ6QAAAAKBCYXpAAAAAIFtxekAAAABAuYt6QAAAAIAYlnpAAAAAYHsSe0AAAACgEWB7QAAAAKCfcXtAAAAA4GmGe0AAAADg6Zl7QAAAAGAEx3tAAAAA4I0VfEAAAACgLE18QAAAAOA35n1AAAAA4K9Hf0AAAABgKJN/QAAAAKAWqX9AAAAAoJUCgEAAAACgPUOAQAAAAGB4WoBAAAAAIENigEAAAADgAmyAQAAAACAkeoBAAAAAAIaGgEAAAAAgYbOAQAAAAECRyIBAAAAAYPHYgEAAAABgayqBQAAAAMC/f4FAAAAAoPuzgUAAAACAQEGCQAAAAKDDS4JAAAAAoIBZgkAAAADgVaiCQAAAACBTt4JAAAAAIEK8gkAAAAAAXseCQAAAACAf1YJAAAAAgLkMg0AAAABgUkCDQAAAAGCogINAAAAAQFS6g0AAAACgoeKDQAAAAKDf6oNAAAAAIN78g0AAAAAA9hiEQAAAACAMW4RAAAAA4NPhhEAAAACAvOaEQAAAAMDs7YRAAAAAwGcMhUAAAABgAYyFQAAAAOD4vIVAAAAAANUChkAAAADgqCSGQAAAAGClQYZAAAAAgAdKhkAAAAAgkIaGQAAAAMAT64ZAAAAAwKZ6h0AAAACgjYOHQAAAACCKkodAAAAAwMCjh0AAAAAgK6mHQAAAAMAUzIdAAAAAQFvTh0AAAACg5jmIQAAAAGAp/YhA + NrgMGZxjYkDiYBUjzERrQMRlXluOUnBA4rYaRubic0A5Cx9LftN2QAl4Yr2U83tAJ8keqOwDfkAyQlYELCKBQMBqtPlXKoJAKSHWMmO6hEBUS1g1rzKGQONztirb+odAjE6gT+9SiUDjoqRUh4OLQLd4IlI7i4tA - + - Mtz7P0wX/T/gf3ZAaDZIQdwBCEDVoj5A3MRkQCCEH0IyePRALG62QGhF+z9WApNAM2mXQEbKY0AMoZ1AwFgRQMkegkEN5LBAU6wjQKuRTkEM6ABBV4nJQOu97UAl68BAFqD9P/7KkkDGCkZBA3JkQOUih0Ahi81AerQDQdjNkkBK02pBR5G1QHX5TkH4Um5A+RnrP61wGkD5879BrQHcP9yj4EC7dJJAUUllQBYFMUH4yoFA/NuWQKYRzkCz0ptA1wtaQXeWNUD6hvVAH8ACQYhcPkDBjNg/2gXTQJYuQUAc2hpBaPF1QFe66j+orT5Ai6HGQeH+cUAURT5BRpuZQX0UG0G0gxlADaD3QC3rT0AHsZdB7/9HQGYlCkGplMJAoa5tQGShIEFAOnFB0pk1QIYnt0AfqrhA/+92Qb4XnkBxlYNBHWc2QB57JUDuyqlBJmgRQDX8LEBjt9g/3d6gP+BoFkKy7AdA+gx5QROhyUBsdRtB+F2QQfrQIkI/MhJBxoSEQIUtKUE/5tFAv70uQCXfkEPlJqBC6gWBQMbGBUKyp6tAeC6YQZZZgkHcLkpBZTTPQNXRnECCQ9g/bwMtQBS66j/zn/tAkr/YP+O8/T/19RhCqgKvQeW7gkDZv6hAJepoQTnQ7T9sE21AkjdRQHb/dUCEum1AIkgtQPZ6tEASFMVAn68jQCHJ/D8yqrVAF0t/QASEG0Kq6ohAaq65QKhWFUFaNK9Be9p7Qa/YVELaO6lBCRuOQIv/20BWtxBAsxCOQEKesUCPdJNAw+osQOWoqkDrGtg/jj71QHi40EBiDsVALMsbQUjDLkFiVWxABkGIQtN7CEF5UzZA24KNQBEz7EBEDIZA1tDMQBElUkANij9A + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoG6MWUAAAADA7FNaQAAAACBtiFxAAAAA4OLAXEAAAACgFcFdQAAAAIAeJWBAAAAAYEtFYEAAAACAA2RgQAAAAGBU4WBAAAAAALuJYUAAAAAAmMthQAAAAEAFqWJAAAAAgNzEYkAAAACAhuViQAAAAMD8I2NAAAAAIDFFY0AAAACAteBjQAAAAMCdJ2RAAAAAoMngZEAAAABgqSVlQAAAACAORGVAAAAAAONmZUAAAACAqYllQAAAAMCyxGVAAAAAoPblZUAAAAAA+QZmQAAAAIAUv2ZAAAAAgO3iZkAAAABA/ypnQAAAAMA/Q2dAAAAAoNBiZ0AAAADAn4RnQAAAAIDzxWdAAAAAgORFaEAAAACgt2ZoQAAAAADqoWhAAAAAwDDDaEAAAAAAevtoQAAAAMBzbGlAAAAAQOODaUAAAACAtP9pQAAAACCsKGpAAAAAwKNHakAAAABgP2hqQAAAAADTo2pAAAAAQP65akAAAAAArOVqQAAAAIASB2tAAAAAgDFCa0AAAADAo4JrQAAAAMA7n2tAAAAAQHvBa0AAAADAyARsQAAAAMBdKWxAAAAAQP1CbEAAAABAx3xsQAAAAMBhyGxAAAAAQInjbEAAAAAAbjltQAAAAIBDfG1AAAAAgImnbUAAAADAtMZtQAAAAAAa6m1AAAAAwMX/bUAAAABA2S1uQAAAAIA9RG5AAAAAQBxjbkAAAADA14ZuQAAAAIBTom5AAAAAQMnDbkAAAADAz+BuQAAAAIAXBW9AAAAAgFojb0AAAAAAM0FvQAAAAMCtVG9AAAAAAHVpb0AAAABAl6ZvQAAAAADDxm9AAAAAACH9b0AAAABgshlwQAAAAOAMJHBAAAAAAKNEcEAAAAAAl2ZwQAAAACD2pHBAAAAAwPG1cEAAAADALcFwQAAAAMC8znBAAAAAoFjjcEAAAACAi/NwQAAAAGCeEXFAAAAAwLshcUAAAACAJqNxQAAAAECOsnFAAAAAQNLAcUAAAABAEdFxQAAAAGAW4HFAAAAAoJbxcUAAAACg8AVyQAAAAMABHnJAAAAAgII3ckAAAABg8FdyQAAAAID7knJAAAAAwCquckAAAAAAusFyQAAAAMBW03JAAAAAAKDickAAAACAMe9yQAAAAOAhAnNAAAAA4B0Rc0AAAAAg2CFzQAAAACBfY3NAAAAAIFxwc0AAAABAD4dzQAAAAICTkXNAAAAAoLGic0AAAAAAPa1zQAAAAMAL5HNAAAAAwFz7c0AAAACANw10QAAAAKDaF3RAAAAAgPAvdEAAAADge6J1QAAAAGCKFnZAAAAAABt7dkAAAADg/aJ2QAAAAKBrxHZAAAAAQMuGd0AAAADgEWx4QAAAAMDWyXhAAAAAYKiFeUAAAAAAlZd5QAAAAGCvtnlAAAAAYFfWeUAAAADAHR96QAAAAMDkk3pAAAAAoMqkekAAAABgnK96QAAAAOBg83pAAAAA4H0Je0AAAABgv9B7QAAAAMD1VnxAAAAAwAYgfUAAAABgBFh9QAAAAEDSyH1AAAAAoHvnfUAAAACgnvh9QAAAAMCQB35AAAAAoOijfkAAAAAAcMKAQAAAACBD1oBAAAAA4MoJgUAAAADADUuBQAAAAGDaVIFAAAAAYM2TgUAAAADg4aGBQAAAAACGQoJAAAAA4ER8gkAAAACgMYqCQAAAAGDHk4JAAAAAYKErg0AAAAAgCVmDQAAAACBaKoVAAAAAABIzhUA= + NrgMGZxjYkCEfuNfSGJnQHJahe5LhGlAOQsfS37Tc0Ais/wNaVJ3QMdia2pW5HlAc7MKrY7CfUBIguNLc6mAQPaR2XCC+oBArK+taP/Bg0DtcFmfuZKEQECQUaRWyodA7Z9HyWUbiEBAvz/OAlOLQICA6wS9I4xAN56//DnrjkDkrbUhSTyPQDnriYs6gpBAZb8xnMh5kUBNa03zQx6SQEnVBKT+/ZJAyez7uFTClEBFKNAqlQaVQBABq7NqppVAjxiiyMAKl0A= - + - lzO8QD2JZEA/UJtAyhKLQJgyd0AAiLFB6QvwQEN8UUDG0sRAPQagQNs72D+7XT9AMdltQJG5SEBTwAdB9APtP/y+I0D0B6pAXpegQIoA40AJ7SJAdv8sQVN9k0CI2KdAWMJoQZQiNkCH6eVAQHbHQUThuUAHA4VBAuLuP/O+p0At+hhB9E+OP1zvP0H5VAZBov1tQKZ3D0G+g0JB7hssQD/vNEBXpD9AEZwaQKWHmkBZjQVBRuRKQab3FkGapy5BDj/FQJaXJEKvLBFAMcREQXgL+kBfCYlAXH70QMDLO0H3kRtAmw4HQezHH0HMXdg/dWOSQCfXK0BTraFBVTMtQIHzd0B0M4RA0k4ZQQ34AUEUgRpAMEIIQWTSnUFDRQJBmh6BQZX/EkFtPuBAH8CkQFTgIEHCzLI/A6gCQhu3KUFMxXZBcKfMQNP4R0AYS95AvgeIQSSkgkAM05dBITE1QF0kdUFbFpxAZleTQXwvXEGTsL9AINhBQjylDUE8995Cs0/AQRGPiUGxZPNAJJ8cQaLC2D/nSgZBsluyPyYpjECGAm1AS9EtQe0LqEEAGAFCRmtpQTitSEAqAAlCAtMKQj3+B0DIb/lAR+fWQFQJP0FcGrpAkBkyQb1p8EA5LcFBXvNvQWF13EAOFL5BV6IjQHEOJEGsGrNAI52mQOnQnUHb7UBBJSNBQJjGqUATekBAl7cjQOqJXEEMuu9BxeHeQs+gukI+yfxAn97GQVoB6kAIKstBFAprQSF5m0ArhQBBllF9QC0FoECEGcVACYiOQK4wNkBD5YNAg5jZP6ziDUF3NAlABucHQFCjEEHgZ55AJ+/AQJTvqUAvMvs/8/A1QAdZGUCM1a1AitUQQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAPcrYEAAAACgEPxhQAAAAICyv2NAAAAAgA1gZkAAAADAERxnQAAAAEBVSGdAAAAAAPhdZ0AAAACgJ4xnQAAAAEAjSGhAAAAAAPFlaEAAAABAtQFqQAAAAACpJWpAAAAAIMGEakAAAACgGqVqQAAAAGDVJ2tAAAAA4Gxla0AAAACAdYZrQAAAAABCKGxAAAAAgDelbUAAAAAAuAFuQAAAAECeHm5AAAAAgBX7bkAAAAAAG4hvQAAAAMAmqG9AAAAAQMftb0AAAABgahZwQAAAACDkQHBAAAAAYF3ScEAAAACAhwBxQAAAAABBgXFAAAAA4BXGcUAAAADgmQRyQAAAAGBEk3JAAAAAoKsic0AAAABA0LJzQAAAAGBKxXNAAAAAoIgodEAAAADAIEB0QAAAAOAtcnRAAAAAAK0BdUAAAACAeBR1QAAAAIAyI3VAAAAAYD8/dUAAAABAo1V1QAAAAMBucnVAAAAAYLyDdUAAAAAgENt1QAAAAAAs7nVAAAAAgMIBdkAAAABAEA92QAAAAMBtI3ZAAAAAgFY3dkAAAACgBkd2QAAAAACXiHZAAAAAQCGhdkAAAABACax2QAAAAKDD63ZAAAAA4AkDd0AAAAAAIjV3QAAAAMDuQXdAAAAAYGead0AAAACgLbZ3QAAAAOD/x3dAAAAAYMbUd0AAAADAiOF3QAAAAKAV9XdAAAAAYL4/eEAAAACgUlJ4QAAAACCFvHhAAAAA4GTGeEAAAABgHwJ5QAAAAICVD3lAAAAAAEFzeUAAAAAAFZZ5QAAAACDvonlAAAAAAB2xeUAAAACgLcp5QAAAAKDvE3xAAAAAoB2TfEAAAADgFCh9QAAAACCPPH1AAAAAIHaDfkAAAACgZMF+QAAAACCFIH9AAAAAIJp/f0AAAABAzrV/QAAAAGBTN4BAAAAAYOZYgEAAAAAAOXmAQAAAACAVhIBAAAAAIKCigEAAAABAUMmAQAAAACDz34BAAAAAYNzrgEAAAACgvSuBQAAAACAIdYFAAAAAoD5+gUAAAACAkaKBQAAAAGC+QIJAAAAAoP5FgkAAAAAgNrKCQAAAAKC4KoNAAAAAIEF1g0AAAABAAXyDQAAAAGD0yYNAAAAAIHbQg0AAAAAgQduDQAAAAGCp44NAAAAAgAYUhEAAAACgixmEQAAAAMAGLYRAAAAAIBbWhEAAAADghDOFQAAAAGC+VYVAAAAAYAuQhUAAAADg6ZeFQAAAAGCTq4VAAAAAYEu6hUAAAACghdmFQAAAAKDPE4ZAAAAAABc0hkAAAABgWUuGQAAAAKB+soZAAAAAYGhUh0AAAADgzFKIQAAAAACqWIhAAAAAQM+IiEA= + KBZXds7jZUBOGswAeMJsQG+XdYaqQnFARF4i65PxcUCN6DFxAtN0QJqyJvArYnZA4zw2dppDeUBhDbspRJN8QKqXyq+ydH9A3LBfF+6BgEAAdmdapfKBQGvZvQwaSoJAj57FT9G6g0CY32Kye3KFQIZ9RX4IU4dA - + - EkDYP5gBQECOMixA7xFJQIz0T0GjGXtBoy2OQMsLCkHKVYBAH0dIQF8ggEAgE+s/hZ2IQcuLAUDwZNs/CHTYPwoGl0DREghAC8XYP0RVzkDa6C1Bd1JhQTcsQECt3iNAE3E/QBOuEkAI6wdAgvcHQPyIdkAazglAx9SyP7NLuEHH8JZANzqeQEpZG0F0/o9BszBdQVryhEDItEhA+BY1Qfw/2D+EN21A8SByQZ6mm0A8S61AUC7rP7OmLEGT5qRAHpelQGzHkkChThxA3Dt2QLVp3EAtghhC3gTGQXQsQUAMa5NAGHwaQHXGLkB0LXZA2U23QO7MzUC0VlZAosCyP3aEnkEVuadAmoomQctYjUEBUm1AxZnvQABngUGdEPVAQUPKQHGfAkEhkLM/dO5QQUHQMUF7uP0/wVz4QDX3ckF96xlAWwqkQMdKAEGzgTFC95eTQja9xT/Agp1BHkqmQeXRl0H3qClB28n9P/DUp0A5otg/eSgeQmV/T0H0RQlBUULTQD9iv0B9UttCqH/DQTFwhEDQDjBBvV3cQEVLkkH69CJBhlKXQOAWS0B9R4RAIAR+QWu5kkCY12JBwjs4QazDkkD/rmNBZWiUQVRtvkGlvbJAfrRzQasATEF6zYRAUQCnQACoP0H1gQZBvkL9P1crjkALuLZABVqzPw== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAE23X0AAAADgg2NiQAAAAIBRp2JAAAAA4LDBYkAAAAAA+91iQAAAAMD1ZmVAAAAAwNemZUAAAAAAauhlQAAAAMAUJ2dAAAAAIFNmZ0AAAADAUSdoQAAAAECiRGhAAAAAIHikaUAAAABAUPNpQAAAAAD3aGpAAAAAgNxha0AAAABAV2ZtQAAAAEAae21AAAAAgGvkbUAAAABA6ZRuQAAAAEAsYW9AAAAAgKeBb0AAAADALKhvQAAAAACTvW9AAAAAICQCcEAAAACA8x9wQAAAAEBNMHBAAAAAAAR0cEAAAADANH5wQAAAACA6j3BAAAAAgNuicEAAAAAgPLBwQAAAAGDiAnFAAAAAwHw/cUAAAABAM1RxQAAAAODAcXFAAAAAwO2CcUAAAABg+NRxQAAAAAAm33FAAAAAAHsOckAAAABgEiNyQAAAAECzb3JAAAAAgGSEckAAAACA2dByQAAAAECNAnNAAAAAgB0ic0AAAAAgdjFzQAAAAEBngXNAAAAAAEetc0AAAADA2MRzQAAAAMCpD3RAAAAAwNojdEAAAADAz0R0QAAAAADwU3RAAAAA4Ax7dEAAAABA7850QAAAAMB54XRAAAAA4L4xdUAAAACASEJ1QAAAAMD0UXVAAAAAwHxydUAAAACgR5N1QAAAAMCHoHVAAAAAgGD/dUAAAADAaBV2QAAAAIA/I3ZAAAAAQIQydkAAAAAgCFh2QAAAAMBCdnZAAAAAQBqEdkAAAABg/pN2QAAAAKCNoHZAAAAAYDGzdkAAAABAfcN2QAAAAID/0XZAAAAAYCz/dkAAAADgvS93QAAAAKCtRHdAAAAAINZld0AAAACAh3N3QAAAAICvf3dAAAAAAHuud0AAAABg88B3QAAAAGCf1HdAAAAAgD7wd0AAAAAAy/p3QAAAAOCFDHhAAAAAoBh2eEAAAADge4p4QAAAACChqnhAAAAAYG7We0AAAABAjLZ8QAAAACBMXn1AAAAAIK+FfUAAAADg9tF9QAAAAKDMMoBAAAAAIGlJgEAAAACgtGKAQAAAACAoVIFAAAAAQEjbgUAAAABgQ/+BQAAAAIA8E4JAAAAA4NRxgkAAAADggICCQAAAAGAztIJAAAAAoIq6gkAAAADgkgKDQAAAAGAvC4RAAAAA4MlbhEAAAAAggQGFQAAAAEAUU4VAAAAAQMZRh0A= + NrgMGZxjYkBUZ6VXTIVuQFgXFG05cnNAHlmTG5ZDd0DMvNRcKXN7QG9Zobq7s31Aj17xfafxgEBx/zDVVdqCQEmx0XUf8oRA1Cz78eFyh0AQ3XeFi/qHQA== - + - HnqzP9xSnEDBAYhAhLHZQC7s9EAt8ohAXWIcQe0750BC+uVA0J2qQHX6uECQYN0/fnGzP0ZIEUCZ84JAFYfFP/2ejj9yrQVB037zQNQjCEC8qCNAsITAQKCx00Ajh6BAL5UHQF3ukkCgZENBfHSXQLyPGkA7GMpAh2UkQIGf6z/O+ItAAtOhP8MRk0B4HMZASwC1Pw+VQkCJ0QlBjhNJQIsURUGqejZAeQMGQf5HLECAc6VAIImiQQvLP0AkJR5BQ1zGP9Vl3D/qm5lAvRSqQDcfzkDiQkdB3SwaQibnu0BKOrxAMXoaQT17SEGMDTxApuFBQOOH2D8P57xAatfSQGSbf0H6REhAhHDqQDgcvEBOQydBwpAaQUxBbUHAqMNB4EGWQTMPUkDF26dAmmlbQHF6yUBcRHRBkVezQPsQvEA9xwBBt/ImQT5zf0FfEes/fhodQULDPEEKNW5AOoWDQc68CUGz55JAJDzrP0yT80CP1FxB4o8CQs6Va0F4FLQ/htMaQAwckUGvtAdAaDrYPymNgUCdNBFBquCRQDpvXUBOwl9B7IgeQQktiEGtJKlAOay5QFgOEEGVHElBZRw7QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQAICYUAAAADADyBhQAAAAAA/Y2JAAAAAoOnGY0AAAABA/+ljQAAAACBoCGRAAAAAwNOFZEAAAABARuRlQAAAAKAnAWZAAAAAQLVCZ0AAAABAMEZpQAAAAACUhmlAAAAAQBqMakAAAACA7H9sQAAAAOBPoWxAAAAAQLEBbUAAAACg9CltQAAAAABuxm5AAAAAgOsjb0AAAACANEdvQAAAAKChknBAAAAA4EIycUAAAABg8VBxQAAAAMCqZHFAAAAAwEdSckAAAACAFnpyQAAAAICHs3JAAAAAoG5Mc0AAAACAnrFzQAAAAIDvYXRAAAAAQJJsdEAAAAAgWvF0QAAAAAAsEnVAAAAAgKxPdUAAAACASHF1QAAAAGDG8HVAAAAAgC40dkAAAACAuVZ2QAAAAACVdHZAAAAAwLmEdkAAAADAafF2QAAAACDgW3dAAAAAYEjrd0AAAAAAcT14QAAAAOAOsnhAAAAAoIfEeEAAAACA/GV5QAAAAEDxdHlAAAAAYCPLeUAAAACg1uR5QAAAAKAxKnpAAAAAINI0ekAAAAAARHB6QAAAAOCk8npAAAAAQL1lfUAAAAAgGJJ9QAAAAMDl031AAAAAYHmEfkAAAABA6JZ+QAAAAKDNsn5AAAAAQFtYf0AAAABAAux/QAAAAKA+OoBAAAAAAFJbgEAAAACgxGeAQAAAAACpkYBAAAAA4J7qgEAAAAAAt/GAQAAAACBnOoFAAAAAgFJDgUAAAAAA/8qBQAAAAGCE0oFAAAAAQNArgkAAAAAArnWCQAAAAMAOO4NAAAAAIPpyg0AAAADA5cqDQAAAACCB4oNAAAAAQG3rg0AAAAAgKFuEQAAAACCJYoRAAAAAQBpzhEAAAAAg/XiEQAAAAKB8k4RAAAAA4A7ChEAAAAAg3MuEQAAAAKB5U4VAAAAAYApahUAAAAAAJySGQAAAAGChxYZAAAAAwC/qhkAAAAAAaPmGQAAAAICCUodAAAAA4DGLh0AAAABgaJKHQAAAACCX44dAAAAAoFnsh0AAAABgCzSIQA== + NrgMGZxjYkBeG3g88qJrQKPid1q/wnFAr2sYctHidEBqPQyU1/N3QPmUWLOvBH5Adsasq+kTfkCndC7cozqBQGaNWNhAQoFALbn+56xKhEAKovj4L9OFQJHmyAQ5Y4dACtHmItxbiUCZ+UQYCCSLQNWpwauxq4tA - + - NgFCRQPq6EI4zVlC+491QVauR0I453ZBUqCJQgIXu0MUfXZBIOsoQnYJtEJVi0VEZ7HMQUaz3UKBS2pCap+dQn7obkJU7rFE2mC9RnohZERk2JZDfT3jQSgURkbrgLxDkgwWRABboUKx15RC8sGdQmsDzUKDnZ1EKIvQQ7XTSEHi6RxCp38ZQi5muELkAQ5CKui4Qkg7R0NJ44FFcvgdQ/D9J0PjdaBCfsyFQraXHESXlRRF/nk7Q4DpdEP+P4xC5oRrQkg03kJOvORCJi6MQva9wEFhW/JDgA25Q677UkIajHpC0tAbRqikb0RXdKJCIbyTQi+qoUI8kA5DY/6FQtkCtUFXPgtDCamAQyIRg0IX1xBD+kMnQ5j/WUSEDwhD8LmvQsiQMEJTre5B5DcfQhSH30OpSxRC2KheQzEvlEf4XBVGcV6BQxQKnkGLjXZCaeDKQmeHYULi3gNE/AStQ9x3WkJfS5FBkkzjQWHwwEF/W0VDXBaNQ6ae+kJjldtEGTdtQ3JHakM= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwLA7XkAAAADA3UtfQAAAAIB0ZWBAAAAAYMAHYUAAAADAxeRhQAAAAAC0Y2JAAAAAwExAY0AAAABAQWhjQAAAAEDcRWRAAAAAAK1lZEAAAADA/oFkQAAAAIBfYWVAAAAAAJDEZUAAAADAJwlmQAAAAEA3BWdAAAAA4DIfZ0AAAACAVklnQAAAAOAvgGdAAAAAYJyoZ0AAAACgH+dnQAAAAABFAWhAAAAAgLJpaEAAAADg1+JoQAAAAGBqCWlAAAAAgM/paUAAAADA7RtqQAAAACA84WtAAAAAwCIkbEAAAADAcGRsQAAAAEAZ4mxAAAAAQAaibUAAAAAAFuhtQAAAAID7Rm5AAAAAALVibkAAAABAvoduQAAAAMB/pm5AAAAAgAnYbkAAAACAv+1uQAAAAIBIIm9AAAAAgPuGb0AAAACA9ppvQAAAAMB1sG9AAAAAYC9xcEAAAAAgrrNwQAAAAABJZHFAAAAAYKGicUAAAAAA87JxQAAAAODaw3FAAAAAANjQcUAAAADAvA9yQAAAAACKIXJAAAAAoHcwckAAAADAPVpyQAAAAECymnJAAAAAIKqmckAAAABAsNJyQAAAACDa5HJAAAAAII7zckAAAAAA+jJzQAAAAEAMQXNAAAAAgBFOc0AAAABg3XBzQAAAAEBbzXNAAAAAwNnbc0AAAABgrvNzQAAAAEAMEXRAAAAAYG4gdEAAAADg7VJ0QAAAAMCtbXRAAAAAIG6DdEAAAADg1q90QAAAACAz1XRAAAAAwInvdEAAAACAePt0QAAAAODrMHVAAAAAACJCdUAAAABAR1N1QAAAAGDUcnVAAAAAwCKTdUAAAADAZqV1QAAAAEBgw3VAAAAAAHHPdUAAAACgc+F1QAAAAKCK93VAAAAAQIEDdkAAAADgxBJ2QAAAAKAFJHZAAAAA4A5QdkAAAADgj4F4QAAAACCJjnhAAAAA4IbgeEAAAACgJg15QAAAAKD3UXlAAAAAYLyUeUAAAABgYq15QAAAAACdxnlAAAAAYDv7eUAAAACgKBJ6QAAAAKCqZXpAAAAAgAemekAAAAAgd8Z6QAAAAEDIBHtAAAAAIBwVe0AAAADgRiN7QAAAAEAPiXtAAAAAYAInfEAAAADgPsN8QAAAAGAH9HxAAAAA4AcDfUAAAAAgpxJ9QAAAAGCmNH1AAAAAwIFKfUAAAABgxYF9QAAAACA4y31AAAAAwEQUfkAAAADggYd+QAAAAMBQo35AAAAA4GwSf0AAAADgRI1/QAAAAKCXu39AAAAAYDj9f0AAAACgrgOAQAAAACBkFoBAAAAAQL0vgEAAAADgtjuAQAAAAADmR4BAAAAA4Pd7gEAAAACgVsKAQAAAACDkAYFAAAAAINMwgUAAAACgNkOBQAAAAOBznoFAAAAAoAvcgkAAAABgieeCQAAAAIDyKoNAAAAAII3jg0AAAABAgjOFQAAAAGCyUIZAAAAAQFNwh0A= + NrgMGZxjYkA/KJil8iNpQOzQoK8iBW9A - + - ZBfjQF0Wl0CK6tZAmrqJQNjLN0BOqQRBOYJbQJI0YUD+c1tAn+wjQOXNxT/KfH9ABN8jQERfhEDlN3FAflbtQJjCm0DW8C1B1uhIQN4Rs0DvaBBAkNLOQAYibkAH7XVAYY2xQNGodUAV+0dAJMB/QBbAxT85dt5ACNfkQE8CSUC0AY5ANjvrPwfNEUA9AcY/9m0RQDg6jkCpU1pA2oQZQe8UgUHzuj9AVCJEQc0CA0HzQHdA2W61QH0rg0LMXEFAQV0lQWpXX0G4QkFAxEjzQDvcI0H2cGVCKAFTQICRfUKXw+o/OH+pQPRgQUHu8k5By6PFPx3UR0HHgtpBbbIAQQShHUHTYOFCynMWQRsj30Aux4RAiy/9P4LJS0BR88hBA4ZgQaRkSED3BolBDkrsQb6t8UGWbnNCDyEIQ/6C7kAsGhpA8/fZQBtfiUHKzdBB5EqBQfNYXkBqDdtAuRU4QMtIFEFNuBxBPifnQNis0UAceD5BFmsOQfcN6kDM/NxAQJ2ZQcMBpkCdqsJBvekXQf+ikUGEqkhAvQXZQGob2D92pBpA0u8oQtAB6z90h1VBN4eWQYbHYEHKDHZA6Py3QExR3kHypE5B3yjAQYYv3EAGHm1AHfLqQPo/QkHNwUhAMM0bQEnlAkHOahVB544HQcwLLEH/qNg/i+jqQBqOFUGsyBhBuYvzQEppB0E0dz9AKPHjQABDiUC8tkdBJZg+QQHyqUBdJQVB23KEQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4BRHZkAAAACA3oZoQAAAAEBPHmlAAAAAgDmpakAAAADgbsJqQAAAAIC+fGtAAAAAACZFbEAAAAAAO2dsQAAAAKDnI3BAAAAA4JCmcEAAAACAnLJxQAAAAOAEFXJAAAAAAG8yc0AAAACAIUZzQAAAAICkUnNAAAAAwPjCc0AAAAAACn50QAAAAAB74HRAAAAAAKVEdUAAAADAGnJ1QAAAAMAb+XVAAAAAwKxhdkAAAADAjTJ3QAAAAMC2oXdAAAAAQDf0d0AAAADAxjF4QAAAAMCHgXhAAAAAQHTxeEAAAACAyLV5QAAAAIBsxXlAAAAAQDDbeUAAAABAdOd5QAAAAEBB9HlAAAAAABYFekAAAADAUxx6QAAAAMCkKHpAAAAAQItTekAAAADAyHN6QAAAAECbqHpAAAAAgE/AekAAAACAmN96QAAAAEAZ/3pAAAAAgOo0e0AAAACALZB7QAAAAIDJnntAAAAAAKwBfEAAAADANGF8QAAAAIAmdHxAAAAAQKSUfEAAAADAl798QAAAAIAL0nxAAAAAQEbhfEAAAABAURR9QAAAAABSN31AAAAAAEmDfUAAAAAAbPN9QAAAAIB8AX5AAAAAwBESfkAAAAAAgjN+QAAAAADmSX5AAAAAAEShfkAAAADAQbR+QAAAAADbxH5AAAAAgMlKf0AAAABAp21/QAAAAECWjX9AAAAAQD32f0AAAADgdAGAQAAAAMDqLYBAAAAAoJ1KgEAAAABgIFmAQAAAAOBBb4BAAAAA4Kd1gEAAAACgE36AQAAAAAAfo4BAAAAAYAKogEAAAABgAr6AQAAAAOC4yoBAAAAAYFHXgEAAAACgfAWBQAAAACCcDYFAAAAAIJ4SgUAAAACgxRqBQAAAAGAZp4JAAAAAwH3NgkAAAADAjAmDQAAAAOCfFINAAAAA4Do6g0AAAABgT26DQAAAAODAYoRAAAAA4ApthEAAAAAg9RKFQAAAAODzZIVAAAAAYHFqhUAAAADgyYmFQAAAAOAWzIVAAAAAoHYihkAAAACgi3yGQAAAACBQ2oZAAAAAYDbnhkAAAAAgJymHQAAAAKCLW4dAAAAAwIJqh0AAAAAgf5qHQAAAAGCC34dA + NrgMGZxjYkA2uAwZnGNlQOJgFSPMRGtAAAjXMD6zc0DithpG5uJzQHAOZ2W+83lAWxQhfAEEekCSF2mWQWR/QFuQtWNiKoBA9pHZcILagkDslDb8o+KCQLPA3AsQ64VAI5h+FuQChkDqwyQmUAuJQBbupiicg4pAFe6mKJxDi0ClFgUeyEuMQA== - + - cf2OQMy2B0EpNbpAXqMiQDAsoz+fegVBz5T9P7hRvEBTGnpB0nd4QK5AZ0Br1alA/WEAQQXzxEBLYY9APy6zPxIHNUDwqI1AlMpHQNzIC0InnT9AmZsbQV0G7UBElsU/0RHbQAEvXUFo6sZAuuNnQHSwSECCeVpBZTQoQTCSpED0LTBBr1EHQRxQCEFchIdBgge0QN6hlkDkT6JBtuuoQV0Isz/e+0dBRv5QQnGfikCqH0tAWgsUQfbE/z/CcbBBmb1HQBvnm0ALmENBiDpTQKvHBkEN7+BAcz4aQKUdzkAvF1dBLCDeQbaI10BYA3ZAhoq9QQZ8nkEdXGNAgrklQYcsH0LdiL1AVDJBQSg5gkGlZ5ZCJiNTQHEhNkBM4gVCrqKyQPBtBEEztV1AbCxTQKmeG0BQywFBAZG8QHZGxkGwezNB5LESQWy8oD/udpVBCfASQcLkUUD3AbBAdJcOQdWldUDzpQtB8aD9P1dEP0BNcKRAoV+vQLqrtkB/KBFAnl1WQO9QZ0D33Ng/58cfQTsltEBuIfBApkIOQbqno0C6lMtA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4FnkYEAAAABALgNhQAAAAMBrYmJAAAAAQA+KYkAAAAAAacBkQAAAAAAxamVAAAAAoP3sZUAAAAAgeQZnQAAAAMCjJ2dAAAAAwGkkaEAAAAAAYSVqQAAAAEChZ2pAAAAAAEKnakAAAADg8kZsQAAAAICxamxAAAAA4M6hbEAAAADADi9tQAAAAKDjmG1AAAAAoCbmbUAAAABAcGpuQAAAAEBcrW5AAAAAQHdEb0AAAAAAEmlvQAAAAADKjG9AAAAAwAnfb0AAAABAiSZwQAAAAGBpkHBAAAAAwIWycEAAAADA6dNwQAAAAEAaQnFAAAAAYBtPcUAAAABAKHNxQAAAAKAGgnFAAAAAQKQRckAAAAAA2x1yQAAAAIAcM3JAAAAAAGDFckAAAAAgNABzQAAAAID7EnNAAAAAQFmCc0AAAAAgI8BzQAAAAKD+5nNAAAAAIA8AdEAAAABgfiB0QAAAAIAjNXRAAAAAICNIdEAAAADg3VN0QAAAAICuYnRAAAAAgMiVdEAAAAAAgaN0QAAAAACisnRAAAAA4BzedEAAAADAz/N0QAAAAABzBHVAAAAAYFAVdUAAAABgzCB1QAAAAADOTXVAAAAAYICDdUAAAAAA5pN1QAAAAECpqnVAAAAA4L/DdUAAAABApM91QAAAAMDwLHZAAAAAwHQ4dkAAAADA71J2QAAAAICVa3ZAAAAA4FeXdkAAAADAUqR2QAAAAGAwxnZAAAAAIDTQdkAAAABALRJ3QAAAAMAeRHdAAAAA4DKRd0AAAACg+cJ3QAAAACBI1ndAAAAAwD7rd0AAAADAvg94QAAAAADHIHhAAAAAYMwteEAAAADg21Z4QAAAACBsdXhAAAAAIEKFeEAAAADAJJN4QAAAAKB3pXhAAAAAwB/IeEAAAACg6Rh5QAAAAKCPRnlAAAAAQIBQeUAAAACA1Wx5QAAAAEBnd3lAAAAAgDSYeUAAAAAg69F5QAAAAAAmHXpAAAAAYNlAekAAAACgsEt6QAAAAMCKXXpAAAAAwJdwekAAAABg53x6QAAAAKDYhnpAAAAAIHuqekAAAABgCr16QAAAAODr9HpAAAAAAG0Be0AAAADgCwx7QAAAACCVI3tAAAAAoFs1e0AAAAAg1UV7QAAAAKD9UHtAAAAAAIlse0AAAAAgX5J7QAAAACCLqHtAAAAAQI4UfkAAAACgIEN+QAAAACDtVn5AAAAAICmGfkAAAADAZJJ+QAAAACDaoX5AAAAAoD22fkAAAADAvsN+QAAAACAZEH9AAAAA4MRIf0AAAABAnmZ/QAAAAEC+iH9AAAAAINGXf0AAAABAXsV/QAAAAKA5LYBAAAAAYK05gEAAAADg2k+AQAAAAGBmW4BAAAAA4OaZgEAAAAAg58uAQAAAAECi4oBAAAAAoHDpgEAAAACAHPKAQAAAAMAcOIFAAAAAINs/gUAAAAAg5USBQAAAAODVUoFAAAAAANKegUAAAABgAwGCQAAAAOB8GoJAAAAAIPkrgkAAAABg3DSCQAAAAKArPYJAAAAA4HJHgkAAAACgaYGCQAAAAICeh4JAAAAA4PuOgkAAAACgVZyCQAAAAGCLuoJAAAAAAA7EgkAAAAAgxOmCQAAAAGAH94JAAAAAYEc2g0AAAACgTT+DQAAAAOAPR4NAAAAAoLhig0AAAACAl4eDQAAAAGDUj4NAAAAAwH2bg0AAAABgZKqDQAAAACDzwINAAAAAwC7qg0AAAABg0/qDQAAAACDLBYRAAAAAQOoKhEAAAABA2RmEQAAAAGCCSIRAAAAAIMNhhEAAAACglGuEQAAAACCmc4RAAAAAYNN7hEAAAADgZ4OEQAAAAGD9wYRAAAAAAGXqhEAAAAAgwVuFQAAAAKDvYIVAAAAAQOmDhUAAAACg96+FQAAAAOBLPIZAAAAAIFdphkAAAABgfnKGQAAAAEDohIZAAAAAYDuLhkAAAAAgkpKGQAAAAIA7tIZAAAAA4JfDhkAAAAAA3duGQAAAAGC+Y4dAAAAAgNcliEAAAABgoVqIQAAAAOBHgYhAAAAAIB2ziEA= + NrgMGZxjYkA= - + - AYEaQn9W1UCREkxAAFN/QPvl6j82ImVAS2RmQHvo6D/e5WJBjYvqP42vP0A0C3FAtT8RQEO2qUAuKSRAHvuNQPUYwUBI0wdABbgjQGXP2z8+4uo/ddxNQagoEUEwH0hAktHUQKpPjkDcVQdAwNfFPy42JEBRgwpCA5GEQHb9NEDuf0BANLkjQJBwpECVCgpBKjOmQqCLzUHxtMBAtsojQLb4bUD8I44/3e0HQCcFKkHVtFNAUEqcQH0jJkF5ai1AJrRhQYkm4UASkhpAKe2GQcHIz0DVEJdAETheQJDBoEAVhnZA7tx2QGABB0H4nCFCGDkQQSifxkAsnupANqFHQBK1ikG9r6RANYwGQWc2gEDoTXlC8KKYP6EQgECGvUtAulEEQSs2JEHE2UNBsaEOQTdTyD9ge6BADOWRQRhmD0IvXdg/urvpQeFNa0CHSRFAromUQckjDUEZm4A/RgH9P1tOeUKqPKpAuaibQfbCFUHE8p1ASWWyPyy2SEBkk21COIksQskXMkDbKFJAfvZCQntcPUJwl3ZBszS1QAy5qEH9c5lBInJFQbkkxUDT0ZhBUrwaQsiuGUEjBrM/K3aSQPVBj0FrYyRBRh+uQaaDxkHWclFAhfS0QaOzAUF43IVBcsQsQDOO2kHoALM/HDouQOo1C0F28MJBRuCIQLYLjkAFPwFANg4iQUNeqUBXjKNCH8CjQW5v6EDzQW9Aj1GXQMBm80Bws2ZB08LHQM9QWkBmRLhAlmVLQbmhR0ATnpxAOmkJQUDB10DCimxB1symQfy/CUH7m5BCYEJ0Qf/CqUDwPoRA2htsQLMeb0IEnYRB2M6wQH+vy0RgYj5BhYiuQPtLm0CE0B9BbCqAQF6foD/mDBdDHGXSQlxqiUCjoMVAjv8vQZq6jUAPfGxB6Fw7Qh0sPkKFASpBoUcaQFAk3EAuvyxAlq3lQPiAe0EszcRA9Gx5QA3P1kDYwq9Aum2AQn5smEEkK8pAO6MJQbqy6j8NSFJAv0+XQJSVHUEPboBBoNEQQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYCKMZEAAAADAvMZoQAAAAMBKZWtAAAAAAKNKbEAAAABAdYJsQAAAAEChi21AAAAAQMOhb0AAAABARlBwQAAAAMCqRXFAAAAAAJYOckAAAAAg3H5yQAAAAMCsw3JAAAAAgDbVckAAAAAgvOxyQAAAAMBJdHNAAAAAQO8ldEAAAADAl3N0QAAAAIAnVXVAAAAAwK5wdUAAAABAMJZ1QAAAAAAXQXZAAAAAAH5VdkAAAAAAz4N2QAAAAICX7HZAAAAAwJkTd0AAAACAmDF3QAAAAAAblndAAAAAwPKnd0AAAABAnsB3QAAAAMAmBXhAAAAAwGZ7eEAAAABA0694QAAAAAC/0XhAAAAAgOIDeUAAAAAAARJ5QAAAAMBwjXlAAAAAgEvDeUAAAADAcBt6QAAAAAAnJ3pAAAAAQItHekAAAADA/1Z6QAAAAADHYnpAAAAAgHRxekAAAABAAQF7QAAAAAAuMXtAAAAAAE2Re0AAAACAmqZ7QAAAAABG+3tAAAAAALAvfEAAAADAlD18QAAAAEDbS3xAAAAAANxmfEAAAABATI58QAAAAIArrHxAAAAAQBTDfEAAAAAACPJ8QAAAAMBQHH1AAAAAALcwfUAAAABAxm19QAAAAEAiln1AAAAAgJ7ifUAAAACAIKh+QAAAAMBBuH5AAAAAAKXufkAAAACAwf9+QAAAAMDTO39AAAAAgOFtf0AAAABANHl/QAAAAMAKzH9AAAAAwC7jf0AAAADAUyeAQAAAAMACMIBAAAAA4M13gEAAAAAgN4eAQAAAAGDQuYBAAAAAoMXAgEAAAABA2s2AQAAAAICW4YBAAAAAQIbwgEAAAABALweBQAAAAABtMIJAAAAAwKm8gkAAAADgvgGDQAAAAIBtU4NAAAAA4IVfg0AAAACgBG6DQAAAAMArgoNAAAAAICGKg0AAAABAtBKEQAAAAKA2b4RAAAAAQAqjhEAAAACAGVmFQAAAACANbIVAAAAAgIOAhUAAAACg0KOFQAAAAKAU5IVAAAAAoPS5hkAAAAAAGsCGQAAAAOC71YZAAAAA4BYmh0AAAACAWyuHQAAAAEDDXIdAAAAAYFh6h0AAAADgwLCHQAAAAEDX54dAAAAAoHzzh0AAAAAA7juIQAAAAMCveohAAAAA4K+kiEA= + KBZXds7jZUAeR9VQy0JnQOX3bq39EXBA3OW/dP8icUAyOsR5l5N1QKxSA+cVQ3ZAbdw8T0e0fEA= - + - AMrpP4nVxEC+Eus/CBzbQIP+IkFddcU/yAD9P2TgB0DRgq5Ap4BAQLUIOUCoYz9AdqmNQObmxT9UCjNBgCI1QU5LGkCKgIRBPWgtQR76/D/MvKRA2KJvQE0fEUBWrlFAUpxIQMAblEDvHz9BEWwaQMYTikH90z5B7DQMQdtMfUFsmsVAgaw1QfHXxkG6MhRBWl9RQXZgSkFEjfJAuA9aQOblqUD11C9BfAvyQHoeNkD4TalAeNItQH+aP0BkLfNA5SdbQG4PhECLcPNAbSLYQeoI2D+bfBJByQ4RQENmu0DyOOhB8NKfQARfGUGzv1lA6eYmQXt6ikHzZLNASsCEQB4cs0DaqbBB9omEQe9YW0BaT2lBAbQVQRfXXEAZrEZCvrIZQbhkvEAgpQRCSkqnQCaN80Ff6UdBHpbsQO7pCEEu+oNAiv67QKsuSUF3cYxBxCJ3QJ1pMkGT3pVAwflMQXfDNkCuTVpBlhbzQAImQkAW9wlB5oYGQWhhwEBmjw1B7pkbQfQAj0CJ255AS0QqQYu2/j//yklAYKVhQTD6I0Dxs0lAJo9tQCTQt0BCmHdAOOKhPw== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAwK0BYUAAAABAvEFlQAAAAICSJGdAAAAAoKYEaEAAAADA+0FoQAAAAEBLgWhAAAAAQIecaEAAAAAAHcxoQAAAAAD722lAAAAAIDIlakAAAAAghYhqQAAAAAAax2pAAAAAgNLoakAAAADAqyRrQAAAAEArI2xAAAAAgJrIbEAAAADgXyNuQAAAACCPP25AAAAAQFKibkAAAACA5s5uQAAAAMCfAm9AAAAAAAgmb0AAAACAm8tvQAAAAABeQHBAAAAAIG9fcEAAAACAK6ZwQAAAAEDGtHBAAAAAgOPlcEAAAABAOgNxQAAAAAA/EnFAAAAAoPkjcUAAAACAcz9xQAAAAADOFHJAAAAAAKdTckAAAACgIHNyQAAAAOCgpHJAAAAAoJC+ckAAAADA7NJyQAAAAEBa33JAAAAAIOQec0AAAAAAii9zQAAAACDJgXNAAAAAgL6Oc0AAAABAccxzQAAAAIB5E3RAAAAAQDNUdEAAAABgNGV0QAAAAID5cnRAAAAAQAWbdEAAAABgdb90QAAAAGAS1HRAAAAAYF3vdEAAAADAwBB1QAAAAEAXUXVAAAAAIDpldUAAAADAs4B1QAAAAOBBo3VAAAAAIKzwdUAAAABAjRR2QAAAAEDcUXZAAAAAgONndkAAAACg0YN2QAAAAGDTlXZAAAAAYPqhdkAAAADA2LJ2QAAAAIDv1HZAAAAAIJrhdkAAAACAoAN3QAAAAIAJJXdAAAAA4Akzd0AAAAAAIUN3QAAAAMDZtXdAAAAAoFTQd0AAAACAZdx3QAAAAKBuVHhAAAAAIDV1eEAAAAAgy4N4QAAAAEDTknhAAAAAAMuheEAAAAAgi7J4QAAAAMBhWnlAAAAAYNRpeUAAAADgAK55QAAAAADq1XlAAAAAYG3heUAAAABALAV6QAAAAODaD3pAAAAAAC8lekAAAACA9WR6QAAAAOBElHpAAAAA4LewekAAAACgb8R6QAAAAKADGHtAAAAAQO8he0AAAACgPi97QAAAAOAOPXtAAAAAYJ52e0AAAABg7Yl7QAAAAADClntAAAAAYJeze0AAAACgmdZ7QAAAAKAt/XtAAAAA4P2PfUAAAAAgk9Z9QAAAACAZQH5AAAAAoGZmfkAAAADgcIJ+QAAAAKD3k35AAAAA4I1kf0AAAABAWrV/QAAAAEBhv39AAAAAoMA2gEAAAACgRnKAQAAAAODDgYBAAAAAgLCJgEAAAADgEc2AQAAAAGDI+oBAAAAAAHcKgUAAAAAgi4eBQAAAAGA3u4FAAAAAIC7RgUAAAABAE2OCQAAAAKApbIJAAAAA4PmVgkAAAABge6KCQAAAAAAgyIJAAAAAILv2gkAAAABgkvuCQAAAAMD1BYNAAAAAQLcjg0AAAADAB1KDQAAAAOB+V4NAAAAAoBZ0g0AAAACgm36DQAAAAMCchoNAAAAAoIK0g0AAAAAA7bmDQAAAACD4zYNAAAAAoNoThEAAAABg9TGEQAAAAEAeToRAAAAAwBdbhEAAAADglWqEQAAAAOBSuIRAAAAAQD3UhEAAAABgKtuEQAAAACCqGYVAAAAAwEBZhUAAAAAg4l+FQAAAAODmvIVAAAAA4FPrhUAAAACgtfKFQAAAAAAagYdAAAAAABP1h0AAAADgy3iIQA== - - - - - - snUGQPsMgEAb0yxABGQCQBSWoECrzw1BOfWfP6bJkUBmEeo/e3OJQFPbE0EaLKlAOnG2P4zKvD9KLZNAZp+qQKKKK0GqJbM/54kLQVwOjEBqIBFA0Lw0QW75GEFXhaA/BCa3QF/r2D9E1Ok/VLPNQJFxAEH8fw1BqB1SQDoVE0FdPv0/6dxMQA0Rsz8zYLdALP4VQXOIy0DJgJtA6C5lQCZe7z9TM44/VOO3QDi+TEEb1LJAB8MDQTjnG0F089g/AyuhQHet10D/expAGd4LQdEHI0C+ppBAwnvuQOvKPkB+QbBBtuIIQUBfGEHLttxAamTQQMs2ZkF273ZAVD7qP66Zxj+TyjVAtyLZP+QoakCqk+hAYlfvQHY8W0AuVuFAWECTQJ8yCEBvb3tBALP4QAlNv0DasYBAfVKOQB4DVkFqMMhAwIIxQgYdl0HT6kVBoPO8QB2a6j/5W4hBoq7uQSroE0D9xk5Bf0hJQeF1tUCDnEJBPhgWQgIz5UGoKAVBJAsPQYZ57kBFIT5AKNNXQPy3ZUABYsdAOzgRQDwbjkBaQBFBZzfIQKLxvkCpcBdB1TAzQeWm5UDHEFpAnxn5QI4A1kBDmZRB25sAQThtVUJLTq5BlVduQI7h/UAJ80NBLf7BQe6Q2D8aNsBAGmB6QbOR4kAoWSRBQE0tQdNYxT//JMRBRE6pQMYzKEEW2gpBO1TcQGLDXEJNC8dBz8ivQctHpUB13A9BAdyzQImAP0Bjt/NAha3bQFlQW0DbAi1BtXUtQTFWukD2kDVBLoiUQD7QPUEOShdBC5iOQRaPxUBiVw1BqGFsQMMrFkE= - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQHNhYkAAAABgB6ZiQAAAAKDRgGNAAAAAAKGfY0AAAABg/OpkQAAAAIC9ZWVAAAAAIBneZUAAAACAzQZmQAAAACCexmZAAAAAgN/oZkAAAAAAGs5pQAAAAEBdIWpAAAAAIPHJa0AAAABg3uNsQAAAAIDLA21AAAAAYC84bUAAAAAATaJtQAAAAGCZy21AAAAAAE4JbkAAAAAAYItuQAAAAEALpG5AAAAAgOXCbkAAAADAzQxvQAAAAKBMJG9AAAAAAIBfb0AAAACA4QNwQAAAAOAzI3BAAAAAYGJjcEAAAADg73VwQAAAAOCA0nBAAAAAIECgcUAAAAAgFNNxQAAAAGBZBHJAAAAAAPcTckAAAAAAq2xyQAAAAKDTzXJAAAAAwDpRc0AAAACAJZZzQAAAAGBKs3NAAAAAIIISdEAAAABAql90QAAAAAAoc3RAAAAAYMyWdEAAAACAU6R0QAAAAGDGtXRAAAAA4EPUdEAAAAAAX+Z0QAAAACDV8XRAAAAAAMspdUAAAADgUTR1QAAAAMB2YHVAAAAAwK5ydUAAAACg7pV1QAAAAEAgvnVAAAAAwIPTdUAAAAAg2Gd2QAAAAOCHm3ZAAAAAoH+pdkAAAABg88V2QAAAAIC383ZAAAAAYIT+dkAAAAAAZml3QAAAAOC8gXdAAAAAQLCkd0AAAAAAx9B3QAAAAICDBnhAAAAA4FITeEAAAAAgGiZ4QAAAAGDtUXhAAAAAwGpgeEAAAAAgObN4QAAAAECJDnlAAAAAgLozeUAAAADAHIx5QAAAAKAS0HlAAAAAYAzaeUAAAABAoup5QAAAAIBVHnpAAAAAYO0oekAAAAAALTN6QAAAAKC7Q3pAAAAAoKFuekAAAADge4J6QAAAAKCr8npAAAAAoIpEe0AAAACAVX97QAAAACBJn3tAAAAAQBIGfEAAAABg9RJ8QAAAAOCrgnxAAAAAQDKRfEAAAABARqJ8QAAAAGBr2HxAAAAA4GvzfEAAAADgUiJ9QAAAAGAuLn1AAAAAYDZBfUAAAABgkFt9QAAAAMChIn9AAAAAoJyVf0AAAADgdqN/QAAAAKAAvn9AAAAAoE7Tf0AAAACgieB/QAAAAOAW7X9AAAAAIFgKgEAAAABgwzeAQAAAAAA94oBAAAAAADX3gEAAAACgwkaBQAAAAIBKgYFAAAAA4OqPgUAAAACAdcSBQAAAAOBu+YFAAAAAYJYhgkAAAADA0lKCQAAAAKB7iYJAAAAAoLyrgkAAAACgcMKCQAAAAEAey4JAAAAAoC/2gkAAAADgOQqDQAAAACB0PINAAAAAoMhVg0AAAACAsZODQAAAAIDjooNAAAAA4Ferg0AAAAAgbbSDQAAAAIAGvoNAAAAAoNLIg0AAAAAgAtmDQAAAAGBp7INAAAAAoJ0uhEAAAADgfDuEQAAAAMCMUoRAAAAAINSHhEAAAAAAV5KEQAAAAGCqm4RAAAAA4PHYhEAAAABgORuFQAAAAIBWaIVAAAAAwON0hUAAAACAMZCFQAAAAEDDtIVAAAAAoHf2hUAAAACA85CGQAAAAGCrq4ZAAAAA4IK8hkAAAADgg/qGQAAAAKBOaodAAAAAoDezh0AAAABA7v6HQAAAAMDKMohAAAAAoFyTiEAAAAAAleKIQAAAAMAt+4hA + NrgMGZxjYkAQHUC2t+NsQBu6YmAmQ3BA3mIk4HPickA9w2SRqbN1QDlvbis3M3lAkxdplkEkekCUe7h2+oN/QLUga8fElH9AW0Ld0z56gkCHlloJxPKCQIZsX9aKsoRAtJz/riUbhkAXceBuzGqHQN/GgbFxU4hAF6DOmHjzikBAylCbxGuMQA== - + - oo+IQKMWd0Boleo/nHYAQNodjkD6dolAp7OZQBEhrEDQ5AZBi7XMQJEhJEHhB8U/CxSmQHlGGkDlQT5AgoVDQd1stkCTO2xAd4Z/QH6/B0BuIe1A+pQxQQ/C20CnRYlA+GwIQfsZsz+0VRVBSKcGQIIC/UD/Dx1ApbSSQOVHt0CEtvxABQgnQfxrI0D4ll1B/AkmQY0Rc0CqozxB5LhwQBqWgEHmj+RACvNcQKW9M0G6VU9AgkyIQceT80A9pz5AP7UOQQCDHEF6IC9BjgEUQBGufUGoETtBws43QFrYBUGtBoBAmiuwQPHt90DIKrM/Bh9wQROtZECGpDhByveDQRJzekCR/odBrvwnQQG3n0AAAKVBGJWDQVDhRkGNy4JANcnsQFCnAUG5yZhAMc+fQAyTgUDxxqlA/V2uQGa24UHM3LNAqPAFQWwMkUHLMPdAKyDVQbKsBUHdFFFAwdTEPy1ZkEDVBN0/55jKQXTDBUEmdo1A88BBQXDbKUERvCxCE4YCQXWl3EArWVNAn36lQrArMEFg3q1AgomEQSR+00CXgmdBB31vQbvxtEDev9tA9UG9Qb31EkHQM7FBZGaDQuVJmkIG8kFBTULqP3ipDkEuSI1BB/ZiQLS0B0Bv4gJBTcOYQXTBn0D11DdBPjKOQaRSjUCIhZJAP8XiQXYtJUFNQy9BaKgfQe4a5EHgdfxA5ObZQKYtCEG+L7dAboD0QFVuoD/HDGFAEt63QVgcd0BPn31BERWAQBJb10DSLJFAIyxMQXRhkkAPo/w/FiWlQMnHR0EeDOpAlWfFQZZ53UFeC3tA4ctJQL2HFUH23gxB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAgLEDXkAAAADANT5gQAAAAAAoo2BAAAAA4LGEYUAAAABgv2liQAAAAADYhmJAAAAAQAJGY0AAAABAfaNkQAAAAACN4WRAAAAAgDlhZUAAAADAtu1lQAAAACDiamZAAAAAQLElZ0AAAAAgU0VnQAAAAADFY2hAAAAAAPezaEAAAACgyhFpQAAAAOB4ZWlAAAAAADfEaUAAAAAAQeBpQAAAAEAVBGpAAAAAgP8eakAAAADAiGtqQAAAAIB9hWpAAAAAwDyfakAAAADA+N1qQAAAAGB2A2tAAAAAACVIa0AAAACgTuRrQAAAAKCL/2tAAAAAwGYrbEAAAADAPkRsQAAAAKAQaGxAAAAAAK24bEAAAAAATiNtQAAAAIAOhW1AAAAAQP/qbUAAAAAA+wFuQAAAAIC4IW5AAAAAQCdXbkAAAADAT4RuQAAAAMBDRG9AAAAAwGJqb0AAAACAm8dvQAAAAOCWDnBAAAAAwBIkcEAAAACgrTNwQAAAAMAionBAAAAAIKywcEAAAAAg3fxwQAAAAGBqJHFAAAAAgJVKcUAAAAAAjVZxQAAAAABFo3FAAAAAgCvDcUAAAACgbs5xQAAAAACn43FAAAAAYHQSckAAAAAAhnNyQAAAAKBQkHJAAAAAAAuhckAAAACAaxFzQAAAACC/ZnNAAAAAIHx8c0AAAAAgjJxzQAAAAEDttHNAAAAAQILDc0AAAAAANuRzQAAAAGAxIXRAAAAAwCgwdEAAAABA8Ft0QAAAACAsdHRAAAAAIFj4dEAAAADAXwh1QAAAAIBpH3VAAAAA4MYvdUAAAACAMj91QAAAAICjjnVAAAAAoACxdUAAAABAEhV2QAAAAGBPM3ZAAAAAAPJSdkAAAADAI2F2QAAAAEA1bnZAAAAAQCmEdkAAAACgR5N2QAAAAODErHZAAAAAAMfDdkAAAACA59B2QAAAACDO8HZAAAAAoDIPd0AAAACgGDR3QAAAAKDxRXdAAAAAYPdfd0AAAADgZJN3QAAAAODO0ndAAAAAIPHzd0AAAAAAsgF4QAAAAGCvb3hAAAAAwNt/eEAAAACAF7R4QAAAAMDPwXhAAAAAYFXueEAAAABgdAh5QAAAAOBrFHlAAAAAYNSOeUAAAABgwYJ6QAAAAKA+6HpAAAAAoG74ekAAAABgYxR7QAAAAOA8HntAAAAAAAIve0AAAABAk8N7QAAAAKAP13tAAAAAQLcLfEAAAABgAjZ8QAAAACDxW3xAAAAAQH7MfEAAAADgytx8QAAAAMDVJn1AAAAAQH4+fUAAAAAgCIN9QAAAAEAG231AAAAAYNI5fkAAAADgQUZ+QAAAAOAWVX5AAAAAoNnWfkAAAADAbeF+QAAAAMDyFX9AAAAAoIakf0AAAABgxwKAQAAAAOCrFYBAAAAAYJoagEAAAABADEWAQAAAAEAaSoBAAAAAwB5mgEAAAACghHWAQAAAAMCAiYBAAAAAQEOPgEAAAACg1JaAQAAAAMCqrYBAAAAAgE21gEAAAAAggr+AQAAAAOAb4oBAAAAAQOTqgEAAAADg0u+AQAAAAICy9oBAAAAAIEATgUAAAACgHBuBQAAAACBJIIFAAAAA4FI2gUAAAADA7kaBQAAAAAB/bYFAAAAAgHqegUAAAABgAKSBQAAAAODwrYFAAAAAoF64gUAAAABA9fuBQAAAACC7HYJAAAAAwIgpgkAAAACA7mWCQAAAAMDOdYJAAAAAYC6NgkAAAAAAHbGCQAAAAGD714JAAAAAoAzggkAAAABg5wqDQAAAAOABHoNAAAAAoBE0g0AAAAAggbyDQAAAAOCe7YNAAAAA4IIFhEAAAAAgSxWEQAAAAKB4TYRAAAAAoCFrhEAAAAAA4pqEQAAAAIDsp4RAAAAAgMashEAAAAAgituEQAAAAAB7I4VAAAAAQLushUAAAAAAzbmFQAAAAGAk24VAAAAAACL3hUAAAABg7CyGQAAAAIDNqoZAAAAAwCwKh0AAAACAeRKHQAAAAIDFF4dAAAAAwMyTh0AAAAAgIWiIQAAAAOCSpIhAAAAAIIuyiEA= - - - - - - v5p5QU48z0BUcUBA7g9YQBxyzEATgZtA+TARQMlHWkH9qbc/W9zbQGZaNkB3T9pAPf84QZWV0EDIt6tA+3qaQMOsbEBaWLY/mROEQPWFLkBSHhpAEehjQAQsCUE0C/9BuW63QADOhECi8sVAXKTHQF9RuUHnT9g/X4ZoQmKmRkE0LG9AVu3qP27x9kBVSI4/juTtP3LmBELIXoFCvAr8QfQQf0BtdgdAlJEaQGvRhEBupdNADTbmQKqDmECGQo5BxAohQciHKUFl6qlAYaqqQEgu7UDagFFAgrvrQYV8HEFPMjZAlJQBQS606j8wFOpAbleXQAv1zUDfLaI/tsY/QvaUakHSylNALNqNQSPobEE83r9AcxDTQNbphEB7x0dBp9TFP5gDEUHUqY5AMiF3QPecw0C7h4VAiGhmQfeXo0FYcmxAdo5bQDt5iUDqHcFBJ9yKQBIZVkEs88RBhvd/QXNWm0BemshBUoVBQfUhJUMNm4RAMn9JQdFkwEBrAhhCnQSHQeEICUBSQLVAi80JQkQhikDfEoBAAKhHQI91OUIDboFBqYFcQBVGGUE5n5NAYvC6QKpge0JZf7NA9F+dQTJorkAwBY5AswyOQHcPkEH8kpZB9rqDQTSKm0A8bsBBCnNDQrEON0IgZPxC5qwERAX84EKkYFdAxcluQBroXEB6CVtA2NkFQmgzsEB/HdBBvG1wQkYy8kJl7qhAfNK5QJKTuEFkk2ZDNGFUQoHSI0BxBoNC6LDzQJqX2D97VW9AR3oMQldKgEFMzz9A1EylQKcf/T+S7IlBFUBPQUZr4UCP6itB0oX3Q48BvkE1vjNBk/o+QGhdtD8qSyNBQ+/BQKayOkKw2MdAppplQd6ZA0H67oFDl8ylQFzgqUBD8YlA7IpbQGQLyUHZ0RBAJdhkQN8pKEHQ55xAI8suQFZrJkL+3k9Cnh6aQHaqUEFNs59BeQeTQJETB0EadKhAbmGfQaVyuEBEjt5BatzSQEQ7DUC4YJtAwBlfQNIaEkHMvMNAfbM0QQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQNdOWEAAAACAwkRaQAAAAOC8fltAAAAAIFiMXEAAAACgC9BeQAAAACDDTV9AAAAAQCB1X0AAAACAJChgQAAAAEC9XmBAAAAAAKl/YEAAAADAoN5gQAAAAIAS/mBAAAAAQGG/YUAAAAAA0WRiQAAAAACqxWJAAAAAgOrgYkAAAABACSBjQAAAAMDcfmNAAAAAAPeiY0AAAABgx+RjQAAAAECkB2RAAAAAwFKEZEAAAADgkKBkQAAAAMBQ4GRAAAAAgKkNZUAAAAAAekllQAAAAGDjwWVAAAAAgDrpZUAAAAAguPxlQAAAAMD3JGZAAAAAgIufZkAAAABAp8tmQAAAAEC85WZAAAAAINACZ0AAAACA5ihnQAAAAIByX2dAAAAAIKKpZ0AAAABAfeBnQAAAACCeHmhAAAAAwMZgaEAAAABgSYFoQAAAAADfwmhAAAAAwCDcaEAAAADAYwJpQAAAAID3I2lAAAAAQL/BaUAAAAAAE+VpQAAAAIDf/mlAAAAAAC4kakAAAABA/j9qQAAAAMD2gmpAAAAAQDGoakAAAABAwsBqQAAAAMCEBWtAAAAAwDIla0AAAABAhEFrQAAAAMCSY2tAAAAAgAd9a0AAAAAAAahrQAAAAEBgwGtAAAAAwDsBbEAAAAAAqSJsQAAAAMCtRWxAAAAAQPBpbEAAAADAdIhsQAAAAIBpv2xAAAAAgNQDbUAAAAAAMCNtQAAAAAAWSm1AAAAAgFuEbUAAAADAdcVtQAAAAMD43m1AAAAAQDeLbkAAAACA2btuQAAAAMDh3m5AAAAAQDD8bkAAAAAA0yNvQAAAAEBaZG9AAAAAwPiDb0AAAADAM8dvQAAAAKDrAXBAAAAA4G4icEAAAABAG2RwQAAAAIDvfHBAAAAAoGmUcEAAAADA0KBwQAAAAGC7rnBAAAAAgETCcEAAAADArs5wQAAAAKAU4nBAAAAAYDz2cEAAAABAsgFxQAAAAGAeDXFAAAAAgFVCcUAAAACA52FxQAAAAMBPbnFAAAAA4EOIcUAAAACAfpRxQAAAAOAnonFAAAAAAOy9cUAAAAAAhtNxQAAAAAAS8nFAAAAAoCgSckAAAAAgYx9yQAAAAAAjLnJAAAAAQAU+ckAAAACA5lJyQAAAAIDZX3JAAAAAIORsckAAAAAAbqNyQAAAAABp6HJAAAAAYNMZc0AAAAAg8F10QAAAAECHb3RAAAAAQL4SdUAAAABgLIt1QAAAAIBjvXVAAAAA4MLtdUAAAAAALQR2QAAAAGCccnZAAAAAQA3CdkAAAADgatF2QAAAAGCT8HZAAAAAoOFkd0AAAABAI553QAAAAGDYt3dAAAAAYFbHd0AAAADgjud3QAAAAGCs9HdAAAAAYNIieEAAAABg/FJ4QAAAAMC7cnhAAAAAIFe2eEAAAAAg2CZ5QAAAAGBwRnlAAAAA4MrFeUAAAABg89R5QAAAAIDR7nlAAAAA4DZTekAAAABg5F16QAAAAKB0a3pAAAAAwEHTekAAAACgEP16QAAAAMBBXHtAAAAA4N1ze0AAAADgBIV7QAAAAEAwxntAAAAAQKfXe0AAAABgE2d8QAAAAEBPg3xAAAAAQBAJfUAAAAAg0/Z9QAAAACDdFX9AAAAAYNulf0AAAAAg6L9/QAAAACDoOoBAAAAAIA5ygEAAAACAz3mAQAAAAODjwoBAAAAAYCaygUAAAACgQ4uDQAAAACCxk4NAAAAAQMTbg0AAAABAS6GFQAAAAIAZtYVAAAAAoAq7hUAAAAAgscOFQAAAAKA7RIZAAAAA4I9ihkAAAACg8GmGQAAAACAlw4ZAAAAAgHPLhkAAAABAKvKGQAAAAKCaFIdAAAAA4DYch0AAAABgyL+HQA== + KBZXds7jZUBcG3g88iJnQDeULWxqYnBA0BY+T/wBcUAma0JUlHJ1QMXreYtCc3ZASHREhRfjekDrCDlZcBqAQLU+I1vNKYBAfA268bHSgkC1bRGFebKDQA0SO4rzioVARnKSHbtqhkBxPwWnf6OIQNd2E7b8IolAAkSGP8Fbi0A4euKfTzuNQJNIB9gCFI5AyX5jOJHzj0BfuURtJyaQQK1BcmjpVZFAEdCpe22ykUBfWNd2L+KSQFpS6keODpNAdG0YeFX+k0Cj1CoUr2qUQL3vWER2WpVAVFYSidh2lkAGcpkQl7aWQJ3YUlX50pdAuIj+Ht1CmEDmWpMhGi+ZQAELP+v9nplAZnKKNnDzmkBKjX+3HvuaQK/0ygKRT5xAzpY9QYZrnUD4dgvPsaudQA2MTNDXx55AsqwQSbzvnkArh0ZO/BGgQH2XqIruJaBAHRIwUhfUoEA= - + - ktBcQPO0IUHjucg/U9SYQc6NFEAc10ZBYdy3PzeDLUFNIRpAW4qWP0F3V0OhYjFBnbEjQEvhckGkjolAmsjFP7ODjEDyyYhATdzFP+hqYkEbSx1AAdqzQHZfsz+fT9lA+Ed3QPs34ECsETJB0h5IQDsafT8IbxRAlw1lQNyvGUAKtVVB+ZP9P9OUoUG+4EZB/TlwQaFDd0D38PBAh2TvQFUz6T9gaSNB2oNRQJIcCEAD3cRAtkTdQGy2CkC9OZNB5zhIQElw2D/fRq5AMl9TQVLioD+flYlAtuaeQdEVAUGJT9g/FghMQNIjdEA2WwdAP/eSQFRYFECYPQBB6dhLQYA7FEEdJ4pAnyUsQF7vBkFwQjpB2ha1QauDW0AoHqVAta0/Qe02bUHnotc/JC8YQVlAsEB+KVlARecYQcii70Dblc1AWuWWQAzNRkH+aIZBbSFjQrXAFUNRXvJAGXE/QKv/4D9bcVFA0sCEQEwud0CXqC9A4W5oQkjmnkEHBYhBs322QrTUU0LLgnVB8EM0QuJNv0FX+T5AUFMRQWoMVUK8IqxBgZ6yQBniaUCgodg/4QyzQLoMVEA3FD9ARHJ/QF79LEH0x0FC6HSqQcaIdkCSW9dBHAcMQtfWkkBsiTBB9EljQiVBpUA07/5BB/4MQg61hEK8yaZBknuaQXpA6kDuR44/gRrfQFva6j/Hk4FAtbdUQUg9XkCofuhBPyFtQrjjgkJ2AwZCeNguRGaoxUO7vg1BaA3bQIr9l0NIMXVBx6+UQAvtoD+sNthAew3mQH6+F0H+yyxAl4fYPwIdxkA+Xl1BKwQ/QNgSOkBBWbdA+XreQrJ0DUFGKpdAzVENQtSPyELD5ARCBF+LQG8rPUHiCadAyzyvQXuV/D9uNf1AWXqqQN4gLkDHE6VClMUBQnq6oUCPSFtBXrugP9o03EA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoL+GY0AAAADAkd9kQAAAAIB6JGZAAAAAAAcmZ0AAAAAAvGJpQAAAAMAYqGtAAAAAIBzlbEAAAABA/QNtQAAAAECjHW1AAAAAgKxdbUAAAABAbH9tQAAAAKAWI25AAAAAQEhHbkAAAAAAbuJuQAAAAGAJwG9AAAAAAOfTb0AAAADAqGRwQAAAAACMm3FAAAAAQPEAckAAAACA7fJyQAAAAEASYnNAAAAAQKNedEAAAACA8rN0QAAAAECs4nRAAAAAQHBMdUAAAABA5Ix1QAAAAIBDtHVAAAAAQKTkdUAAAADArwx3QAAAAEBns3hAAAAAQMMzeUAAAAAA7k95QAAAAMBQcHlAAAAAQOmWeUAAAADA86N5QAAAAACLs3lAAAAAwCnNeUAAAADAPFN6QAAAAACmcXpAAAAAgAgOe0AAAACAg6t7QAAAAIA9vntAAAAAgDb9e0AAAACAEGN8QAAAAEBkoXxAAAAAwKq2fEAAAACAPMN8QAAAAMA213xAAAAAQMjrfEAAAACAPzd9QAAAAEA3WX1AAAAAAJRlfUAAAAAAg399QAAAAMBBzn1AAAAAgNXbfUAAAADA1IV+QAAAAMC7pn5AAAAAQLT0fkAAAAAA4YF/QAAAAECKxn9AAAAAYGwEgEAAAADAzAyAQAAAAKBFQ4BAAAAAIJdGgUAAAADg5niBQAAAACBqs4FAAAAAIEWHgkAAAACAtJyCQAAAAOBz0IJAAAAAIJcJg0AAAADgHhWDQAAAAGDrYoNAAAAAgJGSg0AAAAAAMrKDQAAAACC5G4RAAAAAYIxIhEAAAAAAzaKEQAAAACDdrIRAAAAAQP7ThEAAAAAgdp2FQAAAAAB8woVAAAAAIBfLhUAAAABA4NuFQAAAAGAz5oVAAAAAwLwThkAAAABArCmGQAAAAOCPLoZAAAAAoJs0hkAAAAAAYpOGQAAAAGAjK4dAAAAAYBhMh0AAAABgnYiHQAAAACDXoodAAAAAYKwYiEAAAACg6yOIQAAAAEBQKYhAAAAAoI2qiEA= + 7BToB3LiY0AoFld2zuNlQDeULWxqYnBAdmjQV5ECcUBZnS+d7dJ1QHbGrKvpE3hAtKl56LAjfEDR0vb2rGR+QG214K8vGoJA/Ekft606g0Cau4VVkUKFQClQxFwPY4ZAmupzfz3LiEC6VEX1UBuJQEtZxo2S04tAmhliqelTjEApQsCeFRyOQA== - + - K3mgP5h/2D/aV/0/pt4/QLDnvkDtfPhA8AJuQKfMNUHIef4/Igi9QECA7j/eW45ALK8AQbhhpUCSxv0/DEbmQGOrI0Bfig5B7PwHQIXDsz8TpFFA2D3BQNkAsz8dzUhAy2IRQEOBwEDmEqFAYsipQJlBGkCvbyxBkmf2QHDmXkGkCvJAncboQEiKE0GTr39AEq4/QKTCwkDhIMZAJ1kVQfbSwEBFbBtAxQSQQWb8CEE0VNNAINSkQasK9EBzwgxBtWCfQeBYoUGwMTZBDEMaQLYvvUD0LEZC++IpQVit/T9q0chAfaySQZNSCkFqutVB89cAQGZ5BkFMPo9AVC2QQFwhxUD6dYhB2W1XQWnnhECx6yVCZ4gcQUzyLUDMx1FA4rD5QNaaAUIS5jtBwUwBQILl0kHpvSRBJTICQVBwXUIKMpxBeja6QCpzGkBxk2pBDmWbQP56lUJu1sdCxR5rQTAPxj8j+rpAWsgcQT9mkUBdCCRAWSfIQLwXT0EyWFJAlJzRQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQJYdYEAAAACg7p1gQAAAAOAkw2BAAAAAIDoFYUAAAACAkSFiQAAAAECORGJAAAAAACUiY0AAAABAkEVkQAAAAADYP2VAAAAAwC/iZUAAAABAwaZnQAAAAKDoIWhAAAAAQHzhaUAAAADALCBqQAAAAIA9gmpAAAAAgLujakAAAACgYmFrQAAAAMA14GtAAAAAwIIibEAAAABgoD9sQAAAAABxhWxAAAAAAGObbUAAAADAoP9tQAAAAIBoIG5AAAAAwMiDbkAAAADADaVvQAAAAGAuA3BAAAAAoCEZcEAAAAAgezFwQAAAAMCvc3BAAAAAgAyjcEAAAADAVRJxQAAAAKAgdXFAAAAAQPLjcUAAAADAIBFyQAAAAGBSIXJAAAAAwDw2ckAAAACgUVRyQAAAAGCkgnJAAAAAoFeTckAAAABgIq9yQAAAAECC3nJAAAAAQC/xckAAAADAzgJzQAAAAEChH3NAAAAAgARNc0AAAABAglhzQAAAAMBcdXNAAAAAQASzc0AAAAAARcVzQAAAAICP43NAAAAAwNX1c0AAAACAmx10QAAAAMCIYnRAAAAAwIiLdEAAAABA0pV0QAAAAEBk0nRAAAAAIA72dEAAAACAfwF1QAAAAADfEXVAAAAAQCojdUAAAAAAdzF1QAAAAEAvbnVAAAAAIO6BdUAAAACgGo51QAAAAABnonVAAAAAQCbjdUAAAACgnQF2QAAAAMBKEXZAAAAAYIwedkAAAABAkTJ2QAAAAIBQQXZAAAAA4I1XdkAAAAAA23B2QAAAAKBrgnZAAAAAQImmdkAAAACgrLN2QAAAAADwwXZAAAAAwPnRdkAAAABgLPZ2QAAAACBoBHdAAAAAoNsZd0AAAABgwDV3QAAAAGBLQ3dAAAAAQDadd0AAAADgNsZ3QAAAAMDk4HdAAAAAALTzd0AAAACg4FF4QAAAACBMxHhAAAAAgPDieEAAAACg6ux4QAAAACCq/nhAAAAAgGEgeUAAAADAsUd5QAAAAAA7aXlAAAAAoE1zeUAAAABgpH95QAAAAABronlAAAAAYGjEeUAAAABgt/R5QAAAAIAK/3lAAAAAoG4UekAAAADgSCh6QAAAAAB2MnpAAAAAAG2de0AAAABgtDh8QAAAAKBFYXxAAAAA4HwnfUAAAADgfDt9QAAAACCNv31AAAAAQFojfkAAAADgKD9+QAAAAGCPkX5AAAAAIOARf0AAAADgICh/QAAAAMC6Z39AAAAAYPCBf0AAAADAspN/QAAAAOD9qH9AAAAAwBPlf0AAAABg6hSAQAAAAIDHQYBAAAAAwKxKgEAAAADgyWuAQAAAAKAUgIBAAAAAoGCNgEAAAADgicaAQAAAAGBp1YBAAAAAoMHmgEAAAADAaO+AQAAAAOCTAoFAAAAA4I4NgUAAAAAAExaBQAAAAODyOYFAAAAAoKN2gUAAAAAglYGBQAAAAMBYo4FAAAAAYMLVgUAAAACAgvKBQAAAAKBrQ4JAAAAAAItIgkAAAADgpFqCQAAAAAD3aIJAAAAAALnLgkAAAADALDuDQAAAAMAoW4NAAAAAgDhjg0AAAABgFoGDQAAAACACnYNAAAAAwPnJg0AAAACgD9CDQAAAAGCHE4RAAAAAYMEchEAAAACAcWCEQAAAACAGdYRAAAAAANihhEAAAAAgwsqEQAAAAEAl44RAAAAAwCAhhUAAAACgxSmFQAAAAGBVXIVAAAAA4BichUAAAABg7LiFQAAAAOCX2oVAAAAA4AtEhkAAAADAul6GQAAAAKBepIZAAAAAYPXqhkAAAADgIQOHQAAAAADECYdAAAAA4BgUh0AAAACAfqSHQAAAAGBd0YhA + KBZXds7jZUDPIQhxcmNtQNS+X4D+xG5A - + - Yqx5QEjc+UAWttg/0mkQQedoI0C6GrhA/ULrP9+Gtz/+W1RA+KqzPxnL6j8bTstA46iyQBVAL0CWmo4/2YV/QGhthEB0ljlBOaB/QXhVCkFoCotABgbQQLIDbkD9Xn9BP+lRQPn6NUHgUbM/X3ERQKp+xEDbkoFAw3xbQHCG/T90x/NAkpkbQGBGgEDqeYpAgnp6QdgZGEGfAr1BjGLzQER8GkDaBURB0t+SQIcuokAL1k9Ag7cQQSqfm0BQLtw/gq1lQTgoA0HbpQBBAbM6QXKOEEEnFQhAdGz9PwyuAEHyFtpADOMSQbiDAEDKvwxBxKwUQQ9CUkBCXUhAxGcaQJdxhEBeEAhAzDglQdjgX0HNarxB4EOOQGyihECD4bFA1u9MQOkALUD74QRBOCVuQBVq7kAcOgxBHInfQHiUMkFnUX5BoywIQbcjgEFSnclAnsAmQRt6m0DuoRhCRWSQQJUsP0CCFDVBEPG+QAZIDUDOmuNAzWg8QaTs6UBa2b5BK+iLQSmxZEAlaZdA4mqiQaC5mEEv9A5Ail9PQdAxeEDJYV1BLyFTQHSQDkGhc8VAQE4QQazRwEGT4ZdAR2mbQJMslEFsGpNBUObqP95z5kE4holAIKYeQzl6AkFEhpRAaqc/QEFcW0AOBQVCLT/QQGrTSUAASGZAYrRAQXFvZUBMhhFALrpmQsi51UBpBYlBAIsMQYQzREGcPFNBu0/rPwA1WEFLa/RAZzaSQKPGkkDri39Cqm40QcvUkkFWHuFATHDAQFEDuUA9WvBBpM5QQcSVz0Fy8+k/hdi4Qe9QC0EnfYVACqodQZWMOkGF9SdBmmRvQahfoUDwl4dAt8YQQc2bB0FkS2RABGU3QYKlLEFAdspAU7X+P/g/pkGQlFFBz0VfQU8kxUCIziRBQnRTQIccKkEvx/RA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAwE2QXkAAAABAXBxgQAAAAMArY2JAAAAAoJClYkAAAABgcr9iQAAAAACPXmNAAAAAQJ/lZEAAAACAd/5lQAAAAMDK52ZAAAAAwL1qZ0AAAACA42FqQAAAAEATxGpAAAAAwAbga0AAAABgf19sQAAAACDMh2xAAAAAwBLlbUAAAABA3PpuQAAAAEBOHG9AAAAAwF9eb0AAAAAA4N9vQAAAAECmNHBAAAAAwO5OcEAAAADgt3BwQAAAAMBw4XBAAAAAwK8RcUAAAACAJDRxQAAAACDtRXFAAAAAQBhRcUAAAABAQ3FxQAAAAGD58HFAAAAAgNsickAAAACA3mFyQAAAACCds3JAAAAAgHfwckAAAADAZCFzQAAAAEDoMHNAAAAA4EF9c0AAAAAAWbJzQAAAACBcx3NAAAAAAJQidEAAAADAQVZ0QAAAAEDHfHRAAAAAAPyQdEAAAACAiM10QAAAAABv3HRAAAAAABIAdUAAAADAGAx1QAAAAAB5M3VAAAAAgDpSdUAAAACgumB1QAAAAADccXVAAAAAAPqVdUAAAABATtR1QAAAACBcD3ZAAAAAQFpzdkAAAADAin92QAAAAIBpkHZAAAAAoOSgdkAAAAAA7q92QAAAAKCX5XZAAAAA4OUNd0AAAABAxS53QAAAAKAyY3dAAAAAIMB0d0AAAADg0op3QAAAAEDKrXdAAAAAAM6+d0AAAABAwOV3QAAAACBZE3hAAAAA4NcieEAAAACA4DB4QAAAAOA4PHhAAAAAoLxueEAAAABgGH14QAAAAAASpXhAAAAAIA61eEAAAACgk2V8QAAAAEDMw3xAAAAAoFiEfUAAAABA99R/QAAAACBhVYBAAAAAIIp8gEAAAABAV9qAQAAAAOAmMYFAAAAAwBJLgUAAAAAAAnGBQAAAAGBLfIFAAAAAgAiIgUAAAAAAF1SCQAAAAACCOINAAAAAIANKg0AAAABAQhqEQAAAAADt6oRAAAAAwA8NhkAAAABgPluGQAAAAGDxkoZAAAAAYG6yhkA= - - - - - - 2Gl4P+FdoD941rpAmrEaQB4CfUAylRBAiLmzP46NLEBdCfJA928dQLhFFUHYOM0/7calP10USUBqmAlAsJHMQDoK0kAKNZJA2/2WQdhFHUCGYQ1BXwAkQCidB0EDwRpAXELKQGXTpz9RWP0/LlLGPwQ78kDqURFAILEGQu5+2D/EwFFAMID9QMTDeUACFC1AJBHWQIIENkAvfz5A00AVQQb/m0CBF7JCQVMRQK+WH0H9B2JBrN15QEesYkGBV6lAoP2vQLBJUUBmb55AAFGpQEatZ0EC7XlBxZzqPyqKI0APIaZBvJlIQQZaB0FEnT5BczYDQTVToUCyc4NBTRMsQIllUkAs9jJBjmynQMZfe0H0eQpBL+C1QKiOokApWmlBDLCPQco7gUGyibM/kzASQSjC9UC5zAdBXAJGQq/DkkBHEEtAbr0+QaPcUEFNSEJAHgQ2QT3NK0DsxTNBaQckQD06T0GykxVBcLplQLz1xT9hJYBAVWZ/QEqqDkE4GspAjBIhQQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwLcMZ0AAAABAviZpQAAAAGCIhmpAAAAAwOnKakAAAACAueZqQAAAAADMmGtAAAAAQNRCbEAAAABAzcBtQAAAAACrQ25AAAAAAF5obkAAAABAAsduQAAAACDR6G9AAAAAwEkjcEAAAADAgpNwQAAAAICGk3FAAAAAwB6fcUAAAAAA0KxxQAAAACBtfnJAAAAAgGePckAAAADAPQBzQAAAAICmZXNAAAAAQB7vc0AAAACAQjJ0QAAAAMB5cXRAAAAAgMx9dEAAAABAYdx0QAAAAADnHXVAAAAAgGawdUAAAADAMNR1QAAAAIDSAXZAAAAAgIZDdkAAAACAsQR3QAAAAEDUW3dAAAAAwNRzd0AAAADA7oR3QAAAAAAlZHlAAAAAwAxxeUAAAABA4ZJ5QAAAAEBZxHlAAAAAwJ/UeUAAAACAXPF5QAAAAEAeAXpAAAAAwDwOekAAAADAMrR6QAAAAIAm+3pAAAAAgM5je0AAAADA3J17QAAAAMDHt3tAAAAAgN7Ve0AAAAAAlOF7QAAAAIDy7ntAAAAAQCyPfEAAAADATSZ9QAAAAMClUH1AAAAAgI51fUAAAADAXrF9QAAAAMCDxX1AAAAAgBndfUAAAACACBN+QAAAAMAeBn9AAAAAAEkjf0AAAABAKHd/QAAAAMCdhH9AAAAAgJC/f0AAAACg4xqAQAAAAIDGU4BAAAAAIGeVgEAAAAAg7baAQAAAAED35YBAAAAAwN3sgEAAAAAgC/OAQAAAAIAwBYFAAAAAgB8agUAAAACghyWBQAAAAADaOIFAAAAA4GlFgUAAAABgF2iBQAAAAEAibYFAAAAAICKDgUAAAABg34yBQAAAAKCpoIFAAAAAoIKpgUAAAADgmruBQAAAAGDuwYFAAAAAACHKgUAAAADgyc+BQAAAAMBq2YFAAAAAIAzxgUAAAABgEvuBQAAAAKDlBYJAAAAAoFslgkAAAAAg4zWCQAAAAECNPIJAAAAAwJZcgkAAAABAo4aCQAAAAMB3mIJAAAAAoLTHgkAAAADAdO+CQAAAACBcBYNAAAAAoCYTg0AAAACA6CKDQAAAAABTKYNAAAAA4HNLg0AAAAAgfGCDQAAAAKBaZoNAAAAAoEiKg0AAAAAA/5CDQAAAACAvnINAAAAAYOabhEAAAAAgkNmEQAAAAOD46oRAAAAAYM76hEAAAADAdAuFQAAAAKBBLIVAAAAAQCA7hUAAAACg9kqFQAAAACA9ZYVAAAAAIEyrhUAAAABgNrOFQAAAAGB9y4VAAAAAwMXshUAAAACgfPKFQAAAAAC594VAAAAAoPAohkAAAAAg0kqGQAAAAOB9WIZAAAAAYLKMhkAAAAAgxZKGQAAAAGCK1oZAAAAAYBPchkAAAABAtFuHQAAAAGDCe4dAAAAAgCaMh0AAAACAKeaHQAAAAGCz84dAAAAAoDsIiEAAAAAAgBeIQAAAAIAVK4hAAAAAwJdiiEAAAABAv4yIQAAAAOASoohAAAAA4LaqiEAAAACg79iIQAAAACDA4YhA + NrgMGZxjYkA/KJil8iNpQD1liD1RInBAG7piYCZDcEBxDmdlvrN0QJhx0ogUc3ZA830c1NfDfECYz67cbMR8QCRpkOw3moBAhro3Zq5igkAkmH4W5CKEQIbpJZBa64VA3upeDlwjiECxE6iSpiOIQN4ZTTgITItAcssCSrMrjECd9YRM/2OOQAsg8t1pdI5ATSSo6UoekEBOkjm7VfaQQJam6LVrepFA - + - iXAIQPHUSEBDZ/1AagSjP/dIE0FPoy1Ay6l3QCZnSkA1futAiJYbQPS6WEHCV8tA/gbZP1SAsz/HN1pBXpvrQEpi6z+zeIBAm4U/QAh02T+Zz69AeEAkQFgKIkHaYhZBpa7GP9MCx0D00slAkIsIQPlBAECMbghAzTR2QETOSEAkB8ZAMHKzQfnSZ0Dsj3hARTyfQKaZtD/8IxNBRpWhP+J800CQISBCgfPXQINBLUA/IbQ/qIudQQIIZUCP6VtA/VSOQMurXEAOFLY/U1MkQWSJfEG/TK5AoJ9cQOGVCEDyJtdATKioQbaqgECjyqlAbILrP5isBUK1dQhAIhDoQWw4QEDpGJ9AMeL9QJTs9EAD+9NAODwHQnzvu0DZwg5BCTpPQCh02UDoQ79A9OOJQM2GPkFBn7JA70QhQ0jIVUEpKYVA7quSQMVlIkIO1QlBqxISQFmjMEFzRflAIIpHQSfEdkAPgUZBYJeuQBDpYUGosshAIp3AQeQ+DUEuFH1B+adRQVkXZkBNJBtAWrMRQCvQYEHFT/1A1HgIQJZdtUFPkcVArXjPQF4SVEEHwG5AisQfQd0cG0F3Ltk/hmyTQMhgNkATKpZB6i+yQUgonEAWKdBBsER3QtIx2kGeFxZD2IpVQdY0JkJt+7NCflZ3QIQN9UBRdLBATyvYQDa0pkHcny9CsxlEQaIn00Bely9BxoalQLgBT0GaHShBM6YYQabrjEH/CqM/WU7JQM6qA0LQ3hFA8FARQRKLikJk0TVB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoBhmbUAAAACgl4NtQAAAACCgQ3FAAAAAIGUDdUAAAADgleR1QAAAAIC3RHZAAAAAwBtmdkAAAACAxHN3QAAAAICGFX1AAAAAAMgmf0AAAAAA1gqAQAAAAADRQIBAAAAAwOJagEAAAACAWMCAQAAAAKBz04BAAAAAwH8ggUAAAABgv4KBQAAAAOBhoYFAAAAA4F+igkAAAAAgBQ2DQAAAAEBUKoNAAAAAoJ6Jg0AAAADAWrKDQAAAAACv2YNAAAAAoE7fg0AAAABAL4CEQAAAAABEqYRAAAAAwJ/vhEAAAADgxjeFQAAAAGD0WoVAAAAAYD7LhUAAAAAg/NqFQAAAAECXCYZAAAAAoCZEhkAAAADAesCGQAAAAEBl4YZAAAAAwPtyh0AAAADggoKHQA== + NrgMGZxjYkA= - + - c1qxQd50pUAjp85AOEKoQFzUkkDSl0tAhfeEQCGAVECNCDlB9mskQOIS2ED0sHtBvESAQC4K80BQmC1A8OyOQaS6UkALpHpACtAAQWJ6BkEreKhAUBmpQMza/UFMps5CBQYPQslkhkEiAzVBzPJGQQhzi0On1RBBeKe2PwBT/j/yOtZA9MqAQTUoMUE8hqFBKArlQZDONUE= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQA2jY0AAAABAscZjQAAAAACk42RAAAAAQOCgZUAAAAAAkdhmQAAAACCFImdAAAAAQDZkZ0AAAACgmYZnQAAAAGCW4mhAAAAAAE4AaUAAAAAAOi5pQAAAAAARYmlAAAAAAPGDaUAAAAAgiSFqQAAAAMCSI2tAAAAAgARObEAAAACgb99sQAAAAMDWZW1AAAAAQEWAbkAAAAAgSqhuQAAAAMA/4G5AAAAAwA8Hb0AAAADAsbhvQAAAAEAh2m9AAAAAgM4vcEAAAAAg12RwQAAAAABqc3BAAAAAwOmecEAAAACAEABxQAAAAEDgMHFAAAAAwNbAcUAAAADAes1xQAAAAEAZOnJAAAAAAI5mckAAAADAGaZyQAAAAACAsXJAAAAAAPTQckAAAABAbWZzQAAAAEDOn3NAAAAAAHqtc0AAAAAArdFzQAAAAACW3nNAAAAAQEDsc0AAAAAAubJ0QAAAAMBLvXRAAAAAAKzwdEAAAADAS0V1QAAAAEBsWXVAAAAAAId/dUAAAABArtJ1QAAAAABv4nVAAAAAAJc/dkAAAADATs12QAAAAEDqCndAAAAAAMjUd0AAAACAwPN3QAAAAMBFAXhAAAAAgH4feEAAAACANkR4QAAAAADXjHhAAAAAAHWieEAAAABAhuR4QAAAAECJDnlAAAAAgL8YeUAAAADAIzZ5QAAAAIDflHlAAAAAQCmieUAAAABAXet5QAAAAACIdHpAAAAAgKqUekAAAABA+L56QAAAAMBnA3tAAAAAgOFSe0AAAACAR5F7QAAAAIAmoHtAAAAAgAXRe0AAAADAd+F7QAAAAIAn7XtAAAAAAB2SfEAAAABALdN8QAAAAMCc6nxAAAAAgHP4fEAAAABAkgN9QAAAAAAoFH1AAAAAQAcufUAAAACAPm19QAAAAIAUen1AAAAAQJKTfUAAAADAPrp9QAAAAEBhyH1AAAAAgIsKfkAAAADAtUJ+QAAAAIA/gn5AAAAAQNSMfkAAAADAeph+QAAAAAA7pn5AAAAAwLXifkAAAADAHCN/QAAAAIDkOn9AAAAAwCpVf0AAAABAHJZ/QAAAAMDe0H9AAAAAIPiPgEAAAABgdNuAQAAAAAAJ44BAAAAA4E8bgUAAAADglymBQAAAAGAVnYFAAAAAwGrqgUAAAACgDwuCQAAAAGByJoJAAAAAYGc6gkAAAAAAK0qCQAAAAGCKcoJAAAAAwCt6gkAAAAAAoZuCQAAAAODiwYJAAAAAgAcLg0AAAAAggRKDQAAAAGBAXYNAAAAAYFyWg0AAAABghLWDQAAAACDXyYNAAAAAoM4bhEAAAACgSCKEQAAAAGD+SoRAAAAAwGRXhEAAAACA5F+EQAAAACBycoRAAAAA4NGGhEAAAACgG6aEQAAAAKCkq4RAAAAAYDXihEAAAADg8PCEQAAAAKDaN4VAAAAAIDSNhUAAAACgwMKFQAAAAKBnzIVAAAAA4Cf6hUAAAABAGTKGQAAAAKBuO4ZAAAAAAGXDhkAAAADgyNGGQAAAACBLB4dAAAAA4F0vh0AAAACgJ7GHQAAAAICdAYhAAAAAICDyiEA= + KBZXds7jZUDm926t/RFwQDtMc7KVAnNAkaB3ty1zd0BufmD77qJ4QJH+UwuGhH5Abtw8T0e0f0BILpgv78qCQMpOQuN64oNAAoF4J2fLhkCEoSLb8uKHQJZhHGO+04pAhNAQBZ9ri0CWkAqNalyOQIT//i5L9I5A2JTAmEuWkEDtqQGacVKRQCKFkjZ3mpJAStPxla1Sk0A= - + - CsURQNJOEUDRMzpBq/XAQNEZQECDPQBCrIV2QJ4pA0GT+0JB7160PxK9WkAbTKtBemXqQGD4x0CUnltB4p93QIzVLkJVHodBmghtQQnwukDY5wlAIH2OP0eqWEAWPetAO5QJQguPMEGxxRFAOFjZP9GenUAvEF9AapnOQFzWS0D38m1A298sQPj8NkAXQIFBlKM0Q+99BUFiGJJC7rIRQGLHP0BhfQ5BykBwQco+g0IK8jVA8xgaQKx7BUHiCNFAPXlPQcXPS0A6xu1AyVo9QscdVUBMK6JAklbrPwOaH0FQXeBAhRIMQBG5w0AsDGRAyvLGP+NfqUCV9oxBpRasP5warkAgKbhByZJBQe65C0GCLD5CyDu0PyetakNNt+ZBwPcCQSFaYkJp955AzKcDQmsCoUJYMx9CO2e3QGmcQUFyf7FA6Lo2QIzanEBqKhtANJIUQb/vvEPwimFAjbkGQVwFU0G3W+ZAq2ywQT7FEkFanCNC5UB0QXW8rkAEjA5B4x3EQayLmEGqjF5BKtgOQXxYdkD8E19Baxb9PzyObkDDQ65AkIDDQBxMXUE/pIBAsVKgQNsaikAQbSpBFdoZQAl6CEB2JoFBJjacQJuHEUAjKVBB2s5KQkuqX0He3ltAAuGIQdSoiUA22MBA5+KIQsyWV0EPwH9A17t2QQIhZUCoYgpBWZqlQAuXkkPHMrdCog2aQVjdvELMbAVE0nGAQJ/8OEKeLLVBIEiGQWj8CEEfLMhA4C28QPtcSEBor0ZB+TIOQTo0JECow9xAMO16QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4NpjaEAAAABASn9oQAAAAKDVp2hAAAAAQOoEakAAAACAfu9qQAAAAOBEHmxAAAAAIEumbEAAAABAOwtuQAAAAMBK9XBAAAAAABYCcUAAAACAwxJyQAAAAGBD5HJAAAAAQDwFdUAAAACA9ON1QAAAAIAiBnZAAAAAgOftd0AAAACAFyF4QAAAAADmRnhAAAAAAIRQeEAAAAAANvR4QAAAAICxNnlAAAAAALnjekAAAAAAbIJ7QAAAAIDGIXxAAAAAQBsufEAAAADAd1Z8QAAAAAAiFn1AAAAAgEXEfUAAAABAaQx+QAAAAEBcV35AAAAAQCNhfkAAAACAMnJ+QAAAAEDjnn5AAAAAgGrYfkAAAACAxxN/QAAAAAB2VH9AAAAAgEXzf0AAAAAgRlaAQAAAAOB7hYBAAAAAoEGLgEAAAADAetCAQAAAACAv6YBAAAAAINACgUAAAACgAjeBQAAAAICXa4FAAAAAgOeIgUAAAABAm46BQAAAACCGsIFAAAAAYFDGgUAAAABgQdyBQAAAAGCh9oFAAAAAIPVjgkAAAABgsMiCQAAAAECyJIRAAAAAwCdhhEAAAAAgYdOEQAAAAOAW8oRAAAAAgMCmhUAAAADAvNuFQAAAAMDQ64VAAAAAICsFhkAAAACAeDmGQAAAAODnSoZAAAAA4OlvhkAAAADgIxqHQAAAAIASlohAAAAAYIGuiEAAAADgw+aIQAAAAAAS94hA + KBZXds7jZUDXkZP9yKNsQDtMc7KVAnNAEooR9pJidkA7qk8G7hN6QA== - + - kD79P9aVJkBNfNk/dQC4P2vx1kAUZOpANWU2QBWJ+ECJxpRALMdIQFoiUUJ6QqpALkkmQIZ+2T87cndAZircP4dl0UCtZ8tBxzMKQVHeF0FsZCRAfwWAQW0H1kAwjXdAYrChPyCrS0FSMHtB6MF5P2LEqUCKZkhA7KZkQUWtrkAp5bVB5XqAQIypZUAdEmVAp+WkQERdgkEFMlBBglKHQDUszECyuRFA6aeaQT5VDkHWfXdA3AtlQOriEkHBXadBhd+MQMjmHkHjQoBCZ785QbOGC0G94Lg/9zmcQOgPoj8qZEJCxVdfQf5QZkGLmytB6xyPQWVEpkCpEbNAEqVmQCLjrkBdxvtARFjZPz5VgEEkIIhB + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQCAkaEAAAAAAVIJqQAAAAAAsYWxAAAAA4NOFb0AAAACgQGFwQAAAAMAgcXBAAAAAgJjRcEAAAABAeAJxQAAAAECqdHJAAAAAgMMzdEAAAABA1mF1QAAAAIC30nVAAAAAgKGkdkAAAACAgOF4QAAAAECgO3pAAAAAwIose0AAAADA2SN8QAAAAABOhXxAAAAAAKUFfUAAAABApWB9QAAAAIDxdH1AAAAAwESHfUAAAADA/KN+QAAAAMANvn5AAAAAQGDUfkAAAADAi/N/QAAAAGBvHYBAAAAAYBQtgEAAAADADDOAQAAAAKAeUoBAAAAAYEaxgEAAAAAgTbuAQAAAAIDawIBAAAAA4FjMgEAAAADgD+SAQAAAAKBrB4FAAAAAgJS4g0AAAABgWnCEQAAAAMC7gIVAAAAAIJiJhUAAAACgW8qFQAAAAKANKIZAAAAAQPnMhkAAAAAgdCuHQAAAACCweIdAAAAAIEyih0AAAACAzRWIQAAAAGAAOIhA + NrgMGZxjYkD1hHOUyCJpQOJgFSPMRGtAQh3Og3zCckA5Cx9LftNzQJhx0ogUM3dAYMxmwizke0A= - + - LFNrQBHFlkBtcWRAQbNSQK5O3D+jidxAjhkbQLhs6UBrZQhAEIZeQHNAv0CXOEBAyWkRQLft7UDkGapAr4kvQRHXzkA4K7ZArRq8QE85ZkHr7hhB9+wRQKm5/j/cZiNAoeuKQXgvxkBwWJxAKJqQQarslkB5NIVAHu41QC5/AEDoQARB1fo/QMUYJUHQWHxBNgBwQKf6YUF+xG1B1bX4QB3bF0FyFkdBQVNbQJEA9kAErfdA8/W3QLFc00DHVbxA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQCaIbkAAAADA1CZvQAAAAOArMXBAAAAAgOpScUAAAABAtBN0QAAAAIDFIXtAAAAAwCkFfEAAAACAYCN8QAAAAECw2HxAAAAAwP8BfUAAAACABr9+QAAAAIAQ0n5AAAAAwBLVf0AAAABAvkqAQAAAAECfg4BAAAAAYBxMgUAAAACA23eDQAAAACAgkYNAAAAAYASxg0AAAABgkN+DQAAAACClJoRAAAAAQPpRhEAAAADgv9CEQAAAACAdAYVAAAAAoAEWhUAAAAAA2GeFQAAAAGAzl4VAAAAAYHTmhUAAAACABM2GQAAAAEBMgIdAAAAA4DyriEA= + XBt4PPKiZUAoFld2zuNlQNS+X4D+xG5A0BY+T/xBcEBqPQyU13N2QFidL53t0nhAwJEQmW/kekAf+MPWBQR/QN93dvbj+oBAniTA4C5KgUByWBoyOwOFQDIFZByGUoVAMjRSRjLbiEAsq/opswOJQMYU9oGJ44xAwIueZQoMjUBgXcZHW0qQQMAz67wAcpBAqk2Y5YZOkkAKJL1aLHaSQPFhR+CcMpNAiju0b4I6lECjeKzu4r6UQKBQ9XCoVpVARdooQh/jlkAgaOyF/hqXQDZ9LYckN5hAjlxpDkA/mECl3zvhcNOZQA== - + - +IftQEK0y0GatJlAyi84QWREtkE9/BpAQ0QFQW4HSEDLsDVAfCW0P5/z+EDrBmRAr0y0P7G6gkB21BpAqiswQXmCskA3Q9k/hsDXP2KrQUGI0LVBfY8PQmmebEEjjXdA8/s4QF1q00DpzDlBNQZCQVQ5CEDl1hxBPhUhQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQM0mZEAAAACAD61lQAAAACBp5GVAAAAAILAfZkAAAAAAIGpnQAAAAABEA2hAAAAAwJ6HaEAAAAAAmG9qQAAAAAAJo2tAAAAAgOfpa0AAAABg3sRsQAAAAEDHKG1AAAAAwMpmbUAAAACgjSduQAAAAGDEkG9AAAAA4CoOcEAAAAAAs2twQAAAAIAVv3BAAAAAIG3kcEAAAADg4hFxQAAAAMB8IXFAAAAAQNFWcUAAAAAAA6RxQAAAAAAJ3HFAAAAAYFfkckAAAAAAdu5yQAAAAAA8ZHNAAAAAAL69c0AAAABAvQJ0QAAAAECAEHRAAAAAQOUydEAAAABAc0F0QAAAAMD/UXRAAAAAwG9ldEAAAABgwed0QAAAAAB6VHVAAAAAwKqddUAAAACAjhJ2QAAAAMAHUHZAAAAAgGNidkAAAAAApHN2QAAAAKB7iXZAAAAAYJ3DdkAAAABg7AB3QAAAAID8FndAAAAAwO4id0AAAACAdzV3QAAAAEAMWndAAAAAgJifd0AAAADA5LV3QAAAACAjNXhAAAAAoJNYeEAAAACAg3B4QAAAAEDzgnhAAAAA4Pj1eEAAAACg5gB5QAAAACALInlAAAAAIBsyeUAAAADAtaN5QAAAAKBLwnlAAAAA4KLZeUAAAACA8/N5QAAAAAAmPnpAAAAA4FVIekAAAABgEpV6QAAAACBZtXpAAAAAwJPTekAAAABgkuJ6QAAAAODQ83pAAAAAYL9Qe0AAAACg1Vp7QAAAAMAxwXtAAAAAwMvXe0AAAABga/F7QAAAAMAtCXxAAAAAoFITfEAAAACgKyV8QAAAAKCHNXxAAAAAoOREfEAAAAAAZ2l8QAAAAKABdXxAAAAAQLGFfEAAAABAsMZ8QAAAAGDX1XxAAAAAoNThfEAAAABANvZ8QAAAAED6A31AAAAAwMj0f0AAAABgDw+AQAAAAGABK4BAAAAAANpAgEAAAADAgXaAQAAAAMACkIBAAAAAwNuUgEAAAABA9uuAQAAAAMBS9IBAAAAAgP4DgUAAAAAgXhuBQAAAACBkKYFAAAAAIAg2gUAAAABgO0GBQAAAAGBFWoFAAAAAoPiogUAAAABAtLSBQAAAAMCo2oFAAAAAILsRgkAAAABgNOOCQAAAAODY/4JAAAAA4Jgpg0AAAABggGmDQAAAACAHdoNAAAAAIMCLg0AAAACga5ODQAAAAMCpzINAAAAAoEjbg0AAAACgj/WDQAAAACDRGoRAAAAAYOYfhEAAAABgKIKEQAAAAIACiYRAAAAAoGyahEAAAABgEfyEQAAAAGAuCoVAAAAAoKMwhUAAAABg1zqFQAAAACCaVoVAAAAAAClrhUAAAADgQgqGQAAAAOAgwoZAAAAAYAHHhkAAAABgtyCHQAAAAGDjPodAAAAAYBhSh0AAAAAgs3uHQAAAAKDUFYhAAAAAwB9TiEAAAABgqFuIQAAAAKA81ohAAAAA4I7riEA= + NrgMGZxjYkASeFMryKFlQOJgFSPMRGtAkUKbY9Vhc0CZcdKIFLN1QH8Am8BDknpAmc+u3GzEfED60i3YmUmBQGBI+6mNaoJAPpYmfxKShUBgd+nTOfOFQKLD8JueqohAxKSz8MULiUCi8t7FSjOMQAhorJc+VI1Am2nBANEdkEBhXcZHW6qQQBuBuBUn4pFA3UwG33Z2kkBlcYqzUuaTQH+ugjKzmpRAeobLtHgClUDGwjEtyX6VQA== - + - yqdRQGjohUCRmmVAEYJJQKXYJUCCmTdATz1pQKGZRkBqHXhA0ButQGMxiEHUQENBChYkQGjM1UB15zZA+Yi3QEUtREHpido/FnlAQAcRG0BMSVNAyWDaPwI2JEApTrNA/D/KQCI/kEBEr6I/8AhcQPGuEUDArTZAaR0EQamqCkF64z9AQWqFQI8lKEFF8uVABM3/QKvJUkCTfcFAMcDlQMeBQUGrIbU/mV1QQI2T7D/CumJAPYO4QIX2XEE0jXBBka3pQBCAPkHHKM1AVeqeQbMNTkHKnGVBddocQTwiaUHFTZ5BVhPeQcgrn0EgzjBA+pgqQd6r6UHIm5JArzMfQRmLCEC/vjpBrqzJQKA0gUFikxJBMPYxQrMnrEHMIq1BWxvSQEv5uUD15xFAO1RkQC+hCEBx5whAU5V0QRJo2UH6YHRBXQ1UQREvmUGyqaZBq+uAQGKBQUCRCXo/CL6bQLG5BEI8mWxByz9NQf1wiEHs32hB3V/UQLeRkkFhWgNBT1WTQA7ULUDEiFJAuv9lQaqRckDm5q5ArI4AQSpUGEF7SsdA5cYXQZu04EAYsqRBnybgQNe/UkAcx85AqOyBQTsj7D/g4VtAwKVkQfJKfUEl4hpAP3GrQOv100DNjOpAqiATQWvDLUB9vBNBi3xsQTEJTEEUUgFBL5sEQLTLbkDfq0lAPF2AQD+/KEKCIYlA3VrBQMNu4UARhlVABnxXQQF7WEGz1rdAnwjvQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwKMIY0AAAABAEWpjQAAAAKBvYWVAAAAAwIanZkAAAAAA/SZnQAAAAKB0RmdAAAAAoORuZ0AAAACAMQ1oQAAAAACCO2hAAAAAwB1faEAAAABArupoQAAAAEDKAGlAAAAAQD1laUAAAAAg/oRrQAAAAEDbz2tAAAAAAEVEbEAAAACg43tsQAAAAADAoWxAAAAAwPglbUAAAADAQm9tQAAAAED95m1AAAAAwO4EbkAAAAAAB4ZuQAAAAABRK29AAAAAgEVCb0AAAAAAPKJvQAAAAEDYyW9AAAAA4NYwcEAAAAAArUJwQAAAAICEdXBAAAAAgOixcEAAAACABvFwQAAAAKD/QnFAAAAAYAZhcUAAAACgCIdxQAAAAMCUn3FAAAAAQDUgckAAAACAr5RyQAAAACCOpHJAAAAAgKCyckAAAAAAPcByQAAAAMDtMnNAAAAAgHFlc0AAAABAz3FzQAAAAECMk3NAAAAAgOuhc0AAAACAnjB0QAAAAMC7b3RAAAAAwNGCdEAAAABAn5V0QAAAAOC7oXRAAAAAAGzBdEAAAADggfV0QAAAAAD3BHVAAAAAQL9RdUAAAABA53J1QAAAAMDTg3VAAAAAQCKRdUAAAADAHbN1QAAAAKBa13VAAAAAIHgIdkAAAADAe0B2QAAAAIAJYnZAAAAAgFZ1dkAAAABAdoF2QAAAAODHsXZAAAAAwMMAd0AAAAAApxR3QAAAACBbIndAAAAAgO8yd0AAAAAAw0B3QAAAAMC0dHdAAAAAABWZd0AAAADg1q93QAAAAEBV3XdAAAAAAILud0AAAACgPRF4QAAAAKDjQHhAAAAAwH60eEAAAADgyCN5QAAAAKA3VHlAAAAAgG5ieUAAAABALW55QAAAAOCVfnlAAAAAIJeSeUAAAAAg17J5QAAAAOA12HlAAAAAYDDleUAAAADgnfN5QAAAAICwEXpAAAAAII5vekAAAACga5F6QAAAAOBOqHpAAAAAoGXEekAAAAAAM+R6QAAAACA2CXtAAAAAINQqe0AAAACgNUJ7QAAAACADWntAAAAAYDlke0AAAABANI97QAAAAGAHpHtAAAAAQDMRfEAAAADgwSx8QAAAAEDJT3xAAAAAYNFcfEAAAACginN8QAAAAEBbfnxAAAAA4IOrfEAAAADA2bt8QAAAAIAF5HxAAAAAYLkHfUAAAACgzCJ9QAAAAGBpPH1AAAAAIN3efUAAAAAgQjZ/QAAAAECRVX9AAAAAYPWxf0AAAAAgPQWAQAAAAECCaoBAAAAAIGxvgEAAAACAY5qAQAAAAMDrxIBAAAAAoPHQgEAAAAAgFOeAQAAAACDtAoFAAAAAAIAMgUAAAADgNROBQAAAAOB+l4FAAAAAgJjbgUAAAADg3/WBQAAAAKBPA4JAAAAA4H0SgkAAAACgclCCQAAAAKBtmIJAAAAAoK2kgkAAAACA0rKCQAAAAGAb04JAAAAAYAE+g0AAAADAiEODQAAAAGBHV4NAAAAAoFWNg0AAAAAgl5SDQAAAAODMqoNAAAAAYLnKg0AAAABgWtiDQAAAAEDf3YNAAAAA4ODjg0AAAABAyPKDQAAAAODI+4NAAAAAwHMChEAAAAAgvB+EQAAAACCsUIRAAAAAYLJhhEAAAADgEXmEQAAAAEDe3oRAAAAAIO7uhEAAAABg58mFQAAAACCw04VAAAAA4ObahUAAAAAgBBOGQAAAAEAvQYZAAAAAIGRJhkAAAABgpmuGQAAAAECgxIZAAAAAgIwph0AAAABgEXGHQAAAAKAavIdAAAAAQIUziEAAAACAzpSIQA== + KBZXds7jZUBe4xb9Y+JuQBTpB48/A3JAIxdM7iFyd0CIjsh+LwR6QCN1KEJ6g35AOybk7U6agEA= - + - xuk2QKUJxz8H9UFB8oy0PyI6xUBPOtdAyyc/QEhLt0DkTJxALMrNP9jW2T+/JYFA2TARQafNokB0qY8/u3BSQKTmZEDB1f0/RCQJQGOfLUCSUz9AbRmSQCMpXEAVTSRAijCFQDtmEEGxrr1APyFyQLZi7D8uJIZA3C1JQLMlUUJnSCRA98AfQa+4jkCPQxpAbfDwQALk2D/WtetAHtm3QN6HNEBnCNpAL4ASQAvlBUE4uLxA3/NkQDsqSUDEho5A8NfZPy08xz+y3sFAiQglQPs6HEAHmbBAXmLCQMk1pkBhoAhAtY+AQNCFaUE+6c9BHVZBQWXuW0AUs41AIIPGQdIr+kBV3v4/4LrlQP5Q2T98ipBAdz4lQaEcpEG7XOs/3X7+QM0fk0CVfyRBWJibQeGzmkAldZNA7h3OQFkVpkBhnvVAScM/QaAb1z+Ivm1A6+z3QMj5p0BZSP8/ybgyQRsQnUBARP8/hm/4QI1fE0FBapNBxm/pQDc27T/+nThBFwbXQQozpUHmT+VBXaczQC+RjEG/jZlByEZsQOTB9kHbfeVAoFFkQU/pPkBB0u5ABgnkQoLNI0JuT7dBktQAQlOjYEFSrWZBGO/+P8RYP0CHtTlBgLozQfRzh0HeKDZAsIZlQHHBxUE8HGxBC/uXQP8eXEF3iRhBwUB/QdSShkDcG0RB4yC4QGmBlEHh+XdAMx6gQccDI0HRoLdBAuRfQQEbmEA+pZZBuUAYQX4jFUII8HdADL2FQQu4tkF3SihBGdvZP1XTNkJ5Zg9B3eNJQcB+/z9RAcNABEaCQMuylkKbTUBAUIUOQTGVHEEwFDBBziQ2QacfIUHqX+pAlv3BQS/coT+I7kxAuBfxQMhwNUIMtoxBqCZuQL5xxUCk2jJBGpVlQNFOhUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwJimZUAAAAAAoOxlQAAAAID2NmdAAAAAQOQmaUAAAAAgY1JpQAAAAKBYC25AAAAAQAxKb0AAAACAW0RxQAAAAIB9gnJAAAAAIDvFckAAAAAgwvFyQAAAAABDoHNAAAAAQOb9dEAAAAAAJFR2QAAAAEA73XZAAAAAgFz0d0AAAAAA3hF4QAAAAMBFInhAAAAAwD9QeEAAAAAAEPJ4QAAAAEDyC3lAAAAAwEFMeUAAAABAhMF5QAAAAICp0HlAAAAAAJXkeUAAAADAm6R6QAAAAIB0+XpAAAAAAGNAe0AAAADApU97QAAAAIBLBXxAAAAAABpyfEAAAADAOqR8QAAAAMAsx3xAAAAAwFkFfUAAAABAEGF9QAAAAADMAX5AAAAAwD0mfkAAAAAAb0p+QAAAAMDEV35AAAAAQAVnfkAAAACAorZ+QAAAAMDa2X5AAAAAQOQXf0AAAAAA8iN/QAAAAID4RH9AAAAAgHIQgEAAAACAYkmAQAAAAOCkUIBAAAAAoJ1bgEAAAABgOHSAQAAAAABmp4BAAAAAYG6zgUAAAADgmIyCQAAAAGACpIJAAAAA4HuygkAAAADgv8WCQAAAAGAdC4NAAAAAYCwbg0AAAACAfS2DQAAAAMBDNINAAAAAYLlmg0AAAACgraKDQAAAACBbs4NAAAAAIApDhEAAAAAgGjGFQAAAAGBO5IVAAAAAAM/rhUAAAADgj/OFQAAAAICccoZAAAAA4Nl6hkAAAABAWPWGQAAAAADWg4dAAAAAAJy6h0AAAADg5G2IQAAAAEBWeohAAAAAIL76iEA= + KBZXds7jZUA2gKvZDSNtQANJK5hVInJA4hpqJp/CdEBZnS+d7ZJ2QK/xM6KFA3tACdyxnU3TfEAwGFvR8qGAQGrZvQwaioFAW0Ld0z7agkDOBogppqKEQFIhXQJ2coZAMApXE/m6iEA= - + - 4EIaQBLvoEAKsbhAfm6pQELkjECIBsc/iynYQAG3v0DRxyxCUhKQQGwdJED3mRpBsJz+P/CUokCxGLFAhXe9QJY0hUE5E4VAVCgZQV5toEAuwdZAWJtuQLkN00AQSTVBHyKqQY2xbUHpcIFAFfnGP/jq6z8N4LpAGZ/OQHczl0Eyw+VAx6ijQDQn2ECBVDhBy/KyQIjCXUFb9GJCma7rQHFinkB5p8c/lGGtQLoB30Bw4O9A3eDrP9/HD0HzPsBAnVelQNPEoEBz/V9BXm5GQa97VUADfmZBhw5AQKkGZUBJWKNAXfp/QaBPNkFaB6FB2CtcQIiICUExsQJBZ2vJQO+7HkEYlBVDJCulQnBDNEHGzAdBXEfvQCL3IEGc85VAX29fQKcfBkE41WRAgt+8QQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgLV8akAAAABAmORuQAAAAMDCY3BAAAAAgL2icEAAAABAm69wQAAAAAB3AHFAAAAAwCcxcUAAAAAAighyQAAAACC2IXJAAAAAgFk2c0AAAAAAcq90QAAAAMDX9HVAAAAAgP0XdkAAAACA+0R3QAAAAIBAL3hAAAAAAEdDeUAAAADA0fV5QAAAAAARYHpAAAAAAFDxekAAAADAZ5B9QAAAAMDXon1AAAAAAA0vfkAAAAAAPnJ+QAAAAEB2Y39AAAAAwAF3f0AAAAAAhpd/QAAAAOBlN4BAAAAA4AWOgEAAAAAA+JmAQAAAAABvqIBAAAAAwCrXgEAAAACgcBuBQAAAAIAwKIFAAAAAID85gUAAAADgqXGBQAAAAOAleYFAAAAAIHeHgUAAAABg4rqBQAAAAKBB7oFAAAAAABUPgkAAAACAADGCQAAAAODCwYJAAAAAIAYog0AAAABASEmDQAAAAMBEdoNAAAAAQLq1g0AAAACgL7yDQAAAAODryINAAAAAIAD2g0AAAACgchiEQAAAAOC0JIRAAAAAQDuRhEAAAADAGbOEQAAAAKAjkoZAAAAAYNXYhkAAAABgYeWGQAAAAOAg8oZAAAAAYJzIiEAAAABgJM6IQA== + NrgMGZxjYkA= - + - jMRpQK0FHEFrfh9AOoLPQBsmW0DGGlxAca/KQM6CnECfHbY/+yAbQL1S00C+qYpAzlv+P4Ah3T/KC6FALShlQF2MrkBHddhBt4MCQQm3CEC5VKpB67u8QBMYG0AIbBFAhWyiP0VQa0GBYiRAIE6AQeEy1kCTdlVAHItzQPYza0EaFtlARV3SQXWCX0KWXG5BiG33QDANDUGIc8FAYCskQIa0m0AvRzFBbqMIQO8iyUCwLmtBOr4/QDMUr0D5/oRAO84BQnacN0DS9K5AJvhIQdG+REEtzFtAxqrsP40APUGVXwhAYm4yQWTVzkA= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgCLbX0AAAABADqRgQAAAAMCmhGJAAAAAICa+YkAAAADg7eZiQAAAAMAYwmNAAAAAAMJlZUAAAACAYallQAAAAABn32ZAAAAAgKZnZ0AAAAAAseFpQAAAAODSRmpAAAAAwGOmakAAAABAJaZrQAAAAMANKmxAAAAAIGuNbEAAAAAAYqRsQAAAAMBSZm1AAAAAwCbubUAAAABAngVuQAAAAAB/om5AAAAAQIS5bkAAAABATtpuQAAAAICRvm9AAAAAIK8ycEAAAAAAznZwQAAAAAC0sXBAAAAAINjxcEAAAADgZVJxQAAAAMCDY3FAAAAAQOMCckAAAABA/RFyQAAAAIDnQnJAAAAAQCFTckAAAADAtXNyQAAAAABAknJAAAAAwCCkckAAAAAA7c5yQAAAAKB97XJAAAAAIOIFc0AAAACgKBVzQAAAAAAyJnNAAAAA4FxFc0AAAADgZo9zQAAAAACttHNAAAAAoEPBc0AAAADATNVzQAAAAMAL9HNAAAAAAMcEdEAAAACAmyN0QAAAAEBnMXRAAAAA4AdXdEAAAABg12N0QAAAAMAQfHRAAAAAAGSvdEAAAADANOF0QAAAAIAQQ3VAAAAAwBBndUAAAABgU391QAAAAMC7inVAAAAAAGz2dUAAAAAgmhN2QAAAACBIcXZAAAAAwOOPdkAAAAAAnqN2QAAAACANsHZAAAAAwJzPdkAAAABgeep2QAAAACC7VXdAAAAAQPdyd0AAAAAA+IB3QAAAAOA7lndAAAAAACaxd0AAAADgZL93QAAAAOAI7XdAAAAAwIoKeEAAAACgJhl4QAAAAGD+I3hAAAAAoKsyeEAAAADgW0d4QAAAAKBiXnhAAAAAoEV3eEAAAAAgA4N4QAAAACCIm3hAAAAAII/geEAAAABgUld6QAAAAECWSHxAAAAA4FJ7fEAAAABgT4R9QAAAAKCwgX5AAAAAoJjHfkAAAAAgH75/QAAAACDwI4BAAAAA4NW6gEAAAACgOA+BQAAAAEABGIFAAAAAIIopgUAAAACg1lmBQAAAACDYsoFAAAAAYBzbgUAAAADgeh2DQAAAAICgsYNAAAAAYO3Cg0AAAADAzd+EQAAAAEBcAYVAAAAAYEgGhUAAAADgQFOFQAAAAKCnHIZAAAAAYCr9hkA= + NrgMGZxjYkDYkZP9yKNsQEMdzoN8QnFA7Cam0jxjdUBq3hX7KlN5QOyEgiaVdHxAyM8uueyxgECUk/19osqBQMj+HOOYOoRATubddRrLhUCCUf3aEDuIQE4VzJ/GU4lAoKK5xWjLi0Di9W/bHVyNQKDRp+8UVI9AO+uJizqykEBQAMuMYG6RQIXbWylmtpJAmvCcKoxyk0A= - + - j5yFQNJY6z/RVTxB9by0P22viUBhbgtAnobBQH9NUkCmhXhABGI6QOrWNkBq3rdA5RnsP3JFxz/URKFAOcEIQEIkZUA1nrQ/egtsQMoXCEAkhZFAuVFuQF/mq0DrSddAcNQtQM4/hUD3gltAA3vZPwbUt0AV+7JACDWkQOUI+0DMO7hAoLExQfdS70DVX0hBo+nZP4zrGUEgUadAcQvsP4zrZUBmwTxBpdQtQNpu6kA+NI5ANFOVQKyS3T/SpDFBE1RuQHCeCUG+jMRAcaapQAMNJ0C1sbZCqQsYQWwQkECYORJBS+bfQaUWs0AigrBAMDaRQfY6MUFiivdARvtBQXT8TkGihidAhnduQMCBHEAPsy1AgH1qQekjhUAIXI5AkVXfQGs1rkB2AeFAEnzdP44g5EGKosBAnYiWQc08A0GQc7NB0LaIQcl6DEEV/RJC2hM2QND2LEA6ID9AiKhvQYGmW0LccFdBJ2GOQPMRpUBI3qFAUy8RQST5JUGk6f4/9hsRQRtrjkCiM2VAi8swQaRGeUAR0zxBmXC0P+lOakB5aHpAwGD+P56mXUA7HnFAoTzKQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAwLBEa0AAAAAgUyxsQAAAAECVpWxAAAAAQFVmbUAAAADgB6JvQAAAAMAYtXBAAAAA4G/DcEAAAAAAPOVwQAAAAAAShnJAAAAA4N6ickAAAACAmb1yQAAAAMDc4HJAAAAA4KaGc0AAAACg0aBzQAAAAAA81HNAAAAAQK5GdEAAAABgR1J0QAAAAEC2cnRAAAAAYBQJdkAAAAAA7R92QAAAAADSEXdAAAAAQF01d0AAAAAACUZ3QAAAAICA1XdAAAAAAFLvd0AAAADA0hR4QAAAAEBR8XhAAAAAgJkDeUAAAABASHV5QAAAAEDdtnlAAAAAwMnAeUAAAADAIdF5QAAAAMDdVHpAAAAAAKliekAAAAAAAYN6QAAAAAA4nHpAAAAAAB3lekAAAADAZWJ7QAAAAEDwlXtAAAAAANOle0AAAABASSJ9QAAAAMChN31AAAAAwCR1fUAAAABAwOV+QAAAAIAP8H5AAAAAgHMwf0AAAADAu0R/QAAAAEBEdH9AAAAAwNjTf0AAAADASvl/QAAAAIB5A4BAAAAA4IkUgEAAAAAAWFWAQAAAAGC7mYBAAAAAQLy6gEAAAADARc6AQAAAAKCd2oBAAAAAQI3sgEAAAABg9XqBQAAAAKBsyYFAAAAAQG0DgkAAAADAJ0KCQAAAACAnSoJAAAAAgGxQgkAAAABgN1qCQAAAAIDNZIJAAAAAYGSDgkAAAACghJOCQAAAAOAonYJAAAAAACHTgkAAAACguuSCQAAAAOCv6oJAAAAAoEMMg0AAAACAQyCDQAAAAGCac4NAAAAAQKF6g0AAAAAgNZSDQAAAAKAypINAAAAAIKu5g0AAAABA3NeDQAAAAKBH5oNAAAAAIAkEhEAAAABAvAuEQAAAAADUIIRAAAAAoOg/hEAAAAAA4l+EQAAAAEB4jIRAAAAAYKOUhEAAAACAo62EQAAAAOA4CoVAAAAAoM4QhUAAAABg3CiFQAAAACCgQ4VAAAAAYOZQhUAAAACg1omFQAAAAOD0rIVAAAAAoJu0hUAAAADgqsiFQAAAAOBlzoVAAAAAIGfbhUAAAACArOWFQAAAAODi+oVAAAAAALAMhkAAAACgMRmGQAAAAOCwIYZAAAAAIKU7hkAAAACg9kCGQAAAAABFa4ZAAAAA4FKSh0AAAADAc5uHQAAAAEDcAYhAAAAAYC0UiEAAAABgIKSIQA== - - - - - - OHOkQHI56z+Fho9AJZwOQfeWvUAg5OFAbMR2QNANGUHyYW1AwO49QY/M2T+cMxpAZuaSQNn7j0EKaEhCtWZwQCy8D0EpihtAVv26QA0v6UB4ADdAVWFBQA1eKEGaD/NBdaN2QTz6AkHHZhFBsYehQDv1N0DUKMo/duiEQHjb1kCg2wdAaDE3QGqHNEGsJRxAYuCoQRDrd0BwayNBIq8UQTo4tkDZC7NAvSReQWBjAEIJw3RAMPo2QCi66kBSXThAvNPyQJx8ykCToINBT3iKQCCLwkA00whCgKgjQbL8S0J24sVA75xJQOGbPUDpZqZAQFtrQSZcG0APL4pByB83Qbffd0CvopZBM2NvQC5WrEG3FcZA3g21QXAXlEB2Jf8/7Bm4QPbC9EE7wBRCwMClQMJ0N0LUsghByOwaQKg/oULD3hFAS1pDQoPqwEBYdEFC1kUbQILU+kDUoltAh9eXQJl7CECv2TtB9jIiQU7LLUBrgIpBzlZAQDgGwUDq9MlAeR1hQcz+rEGq2kpBBYpnQS3ooT8ZHZZBwB4SQEY9M0CHxMY/oqqJQKePgkGZnZtCYMTOQDh6+EDjWjJBt0s3QI+/fUI= - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAIHbhYEAAAAAA4v9gQAAAAMAGa2JAAAAAQI1+YkAAAAAAZ8VjQAAAAEDdoWVAAAAAoKSAZ0AAAAAAOztpQAAAAADrhGpAAAAAAKi+a0AAAAAAGE5sQAAAAKDyiGxAAAAAwCucbEAAAADA545tQAAAAICtx21AAAAAAIzmbUAAAACA1ANuQAAAAMDqKG5AAAAAAKqGbkAAAACAk6duQAAAAIBgqG9AAAAA4PATcEAAAACAWXJwQAAAAKAb83BAAAAAwEYBcUAAAADgPzRxQAAAAGDld3FAAAAAgNijcUAAAAAAAMNxQAAAAADq13FAAAAAgDphckAAAADABYdyQAAAAACZwnJAAAAAABZFc0AAAABAkm9zQAAAAMDVgHNAAAAAQOmuc0AAAAAAy8JzQAAAAGBAIXRAAAAA4EpDdEAAAACAW1F0QAAAAOCOZnRAAAAAgErSdEAAAAAArUh1QAAAACBsb3VAAAAAoCSDdUAAAACAjpN1QAAAAOBgo3VAAAAAQMnKdUAAAADAe/F1QAAAAACOAHZAAAAAIPUWdkAAAADAGmB2QAAAAOArb3ZAAAAAoHmAdkAAAAAAz5J2QAAAAMDqxXZAAAAAwADSdkAAAABAseJ2QAAAAOAKIXdAAAAAoPc0d0AAAAAgPGB3QAAAAGDPhXdAAAAAoOOmd0AAAACAOMF3QAAAAGC75HdAAAAAwLADeEAAAABgig94QAAAAACMKnhAAAAAgEdVeEAAAAAgJsN4QAAAAKA003hAAAAAgMDxeEAAAAAg3iR5QAAAACBwM3lAAAAAwMRCeUAAAABgKpx5QAAAAKDsznlAAAAA4KfueUAAAADg+QZ6QAAAAGAAFnpAAAAAoH0yekAAAACg8EN6QAAAAGC6WnpAAAAAINN8ekAAAAAAhpF6QAAAAABuwnpAAAAAIEzTekAAAAAgrMR7QAAAAMBtx3xAAAAAIMhVfUAAAABAYXN+QAAAAEBdRX9AAAAAIKpdf0AAAACgeGh/QAAAACB/eX9AAAAAYOKDf0AAAADgqtJ/QAAAAICCLYBAAAAAwKUygEAAAAAgnVCAQAAAAAAbXoBAAAAAYC+sgEAAAABgzsWAQAAAAKDv0IBAAAAAYKvigEAAAAAAUOiAQAAAAEA/+4BAAAAA4EpMgUAAAADgsLKBQAAAAED2vIFAAAAAAHLjgUAAAACgvPuBQAAAAMDRLIJAAAAAAK02gkAAAACg+j+CQAAAAOCDW4JAAAAAQBJxgkAAAABA57uCQAAAAGA4wYJAAAAAgGnJgkAAAABgr9uCQAAAAABWB4NAAAAAwDwQg0AAAABAx1CDQAAAAIDUaYNAAAAAAMl/g0AAAABAh4eDQAAAAOCmkoNAAAAAIPTyg0AAAABgaECEQAAAAOCFSIRAAAAAoH9ThEAAAABgaG+EQAAAAEAYLYVAAAAAgKiThUAAAAAg9jKGQAAAAOBHvoZAAAAAoOPUhkAAAAAgofCGQAAAAGD3SIdAAAAAYOG7iEAAAABgvPuIQA== - - - - - - 0HQoQipUJEArDphAXXmAQFAIZkCxBpVASwB1QKqc4EA1fMc/bO9ZQCKGs0CSGdo//sCPP30ZbkB/HhJAumuOQGvbukA+QbU/h1IrQTHxtD9WpEpAAiY0QSdw/j9GJR5BRWdcQZrw7UATrCRAaQmvQNOjEEGYZkRBHNeJQXf0gEAYM/5BAKIkQMv0mEBy5tRAkYTIQIHjTUF72m5AgpzMQYQ5oEBx4K5AFA9SQEec3EA4O7RBFFEHQe5iFUCvS7NAnkk3QCmnxkBhLJ1BpnPSQL8XdkFEqUJBxKc2QKTnez+hqNdBCneJQSVsr0Hn0l1AUg0fQey0hUEcDFNAdwFPQjM9LEG/+QtBXO1xQKic+0CxRJVAeTHfQTcKuUG0zRZBJhguQHBMvEA1KHVAgkkaQc+StT/8XBJB+j4TQcaBykKKDlpBUOt0QLScrEHs+WNCDlO8QM8dQEH9Gg9AsDCiPwe9fUGD8ipBfUVVQdHtNkDFxCpBrQ60QHslDkGQYZxAT0PZP1MWHkEFNrZB7CxLQTuP00HP35FCJGqpQQGX/EBKwi9BPRwnQ5BCrUAhA3VA6pNuQI0zk0BiZhtA/RDkQBPWwEBt1M1AEbMMQQBlZUBeExtA65LFQDDHI0K0le5BJcOAQExIoEEHcZ9ESKCyQDaYkkHSSSVBHDfQQXstS0MXj7NACPsVQaKOU0C5aslAX6TrQJL+ZEFoTJRAKPoVQaHXhEAR4u5AkhuTQN6iLkFGaoBAOZ1iQO1MCEA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYFhFY0AAAABgqf9jQAAAAMBL6GVAAAAAYKCFZkAAAACgbWZnQAAAACBnmmdAAAAAAO/qZ0AAAABgfgZoQAAAACC9SWlAAAAAwBQmakAAAADgvmVrQAAAAECmoWtAAAAAQMnGbEAAAABA+YltQAAAACAGTG5AAAAAAJ+FbkAAAABApjBvQAAAAKAnSW9AAAAAgP7fb0AAAACAvhNwQAAAAOBOJXBAAAAAYLVScEAAAACAHG9wQAAAAMAllHBAAAAAYDnIcEAAAADA+uJwQAAAAMBmMnFAAAAAIOFRcUAAAADAmMBxQAAAAMB80XFAAAAAQDPfcUAAAABgriFyQAAAACA0NnJAAAAAYNFQckAAAABAIGtzQAAAAMAddXNAAAAAwCmGc0AAAABAd6JzQAAAAAA2snNAAAAAAIjTc0AAAAAAcnV0QAAAAACBs3RAAAAAwD4RdUAAAAAA4251QAAAAEAFy3VAAAAAAIhIdkAAAADATn92QAAAAEBhxnZAAAAAQAHTdkAAAADAyhB3QAAAAABDHndAAAAAwIc0d0AAAADADcR3QAAAAIAi7ndAAAAAAGUXeEAAAABAtUR4QAAAAMDQfXhAAAAAAF/DeEAAAABA+fR4QAAAAADJFHlAAAAAAPkkeUAAAACAbld5QAAAAIAXhnlAAAAAAK/QeUAAAABAVSV6QAAAAMDsZHpAAAAAwEOlekAAAAAAZfF6QAAAAIBFWntAAAAAQLJte0AAAADATcJ7QAAAAAATEXxAAAAAwGwlfEAAAAAAY098QAAAAMAcXXxAAAAAQM7RfEAAAADAUuR8QAAAAED/HX1AAAAAwMJlfUAAAABAf/R9QAAAAAD4An5AAAAAwItsfkAAAAAAkpN+QAAAAICOt35AAAAAwDbRfkAAAABAV+R+QAAAAADOK39AAAAAwAM2f0AAAADAkEp/QAAAAIBmaH9AAAAAwCWhf0AAAABAuq9/QAAAAMC21X9AAAAAwJjff0AAAAAA8vJ/QAAAAEAkAoBAAAAA4LwLgEAAAACg0hiAQAAAAIApwIBAAAAAINsJgUAAAAAAJXSBQAAAAEBdeoFAAAAAwMSRgUAAAABgV6uBQAAAAOBnsYFAAAAAgNkqgkAAAADgAjOCQAAAAOD6e4JAAAAA4LXCgkAAAADA2/6CQAAAAOACDINAAAAAYPMZg0AAAADAHCSDQAAAAOAHL4NAAAAAYElDg0AAAAAAb3aDQAAAAOCBfINAAAAAAASUg0AAAADA1JyDQAAAAOAKtINAAAAA4KIrhEAAAACghlSEQAAAACCGWoRAAAAAIERhhEAAAABALAaFQAAAAGBoMYVAAAAAoKZMhUAAAABgtlWFQAAAAOCKY4VAAAAAAACphUAAAACAWtOFQAAAAGCY6oVAAAAAoNcEhkAAAADgQQuGQAAAAMBjEYZAAAAAQJ4ahkAAAACAY2OGQAAAAOB3iYZAAAAAgFamhkAAAABgWMyGQAAAAID4CIdAAAAAAKQWh0AAAABg0z2HQAAAAOBiQ4dAAAAAAANNh0AAAABgEVaHQAAAAKCeYIdAAAAAIONnh0AAAACg6YqHQAAAAGDvj4dAAAAAYELMh0AAAAAgpNqHQAAAAEAiI4hAAAAAgGW0iEAAAACgmLyIQA== + KBZXds7jZUDYkZP9yKNsQNvlv3T/InRA2obJ21KCdUBPi4Bk7yN8QNrkpS+rk3xAp3Qu3KOagUAnRbOPTUqCQJ5TrgrbMoVAinJ9rNnihkAyNFJGMjuJQA== - + - v53/P947REC+5KlAC1/aP2ARpUAaSmFAYzuMQcCuqT/qw7JA4ECFQK5U6kEu53dAAfMnQEqbZUDJgBFAK9SiP15gskFbkktAkoTaP9CZQEAXwwRBmsrbQHwEQEAvkMpA9tbHP1vuCECn9gpA2oaFQVzk/j/i06I/+ZvHP5Y6CkEVQANBYmV1QFRroz9mBgFAFiKAQFARVUBfHpNA9jxRQLIa7kD5XEBAWXnKP51nOkAu+fhAO1IMQSrvGkCDJEVBRL4FQQKYMEEAO4tBH1TTQKc5DEAvkCRA4usuQDx7HECLiuZAFpxkQKTKF0I4j5xBqHwkQQ7Yd0AiQHlAmd7OQImCskAW4olA4aNDQLRDU0Cs4yJBOyn0QBhmG0B5M15A/X62QDfsSEDoCAFBJfGBQcSVZUA6zQhAEdepQGVus0BWIt1A4pDhQPa+6kAuRQFBZAiaQOBmckFEVIVBh8suQWl6yUAss0lASotPQZNDD0FiYH5A4RRNQSDCwEFQs6I/eR4tQEnwo0GyZqpAZwRTQEgJ5EJBp5VBpuOhP/QZCUHTvW1AO26AQW2sukGwEjxBOmImQJb6xUBci2lArMPFQCuBgkHmOf1A1dTfP1i1OEIfBotCI8LIQIIOr0BLcs1AntIyQd5KGkHZx7JANWEJQUJjtUG9/aFBluDRQCqshkHRDnFBzBD/P5VVgEAdoqdAukEhRO7elUIeHHVAR4JMQAQ/qkEoDmNBPTgaQQ9nA0GZTdo//iDHQeN0sEES9ZBBYjBlQOnON0GLogdEZ7pFQs8ZzUHv+olAqJiJQATFsECIxmRAIKdkQda4AEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwMwkYkAAAACASd5iQAAAAIAWJWNAAAAAwKLeY0AAAADAeCJkQAAAAMAu6GRAAAAA4JUeZUAAAACg5EhlQAAAAMBS4mVAAAAAwDJDZkAAAABAXcJmQAAAAECAC2dAAAAAQFtsaEAAAAAgCadoQAAAAEBWKGlAAAAA4MOHaUAAAACgSMJpQAAAAOBBAWpAAAAAAHVCakAAAADgIoZqQAAAAADooGpAAAAAgG/hakAAAADg605rQAAAAOAkqWtAAAAAgPwibEAAAAAgN0xsQAAAAIBKdmxAAAAAwMjDbEAAAACgf2NtQAAAAIAvzW1AAAAAADbqbUAAAAAAu/9tQAAAAEDeZm5AAAAAgDOEb0AAAADA1a9vQAAAAECK529AAAAAwPL8b0AAAADAdpZwQAAAAEAKwHBAAAAAwKnucEAAAADAGkFxQAAAAEALc3FAAAAAYFaEcUAAAADAHqJxQAAAAMCV0nFAAAAAAEFDckAAAAAA0qVyQAAAACD0tXJAAAAAIKPUckAAAADg/SFzQAAAACC6ZHNAAAAAgC1wc0AAAADAMZpzQAAAAGBHs3NAAAAAgD/Fc0AAAADAEtFzQAAAACBS5HNAAAAAQBwidEAAAACAHUB0QAAAAEBYTHRAAAAAAPeldEAAAADgzvB0QAAAAIBwI3VAAAAAQG4xdUAAAAAAjkN1QAAAAECbXXVAAAAAwCOCdUAAAABA2ZR1QAAAAMCUA3ZAAAAA4H0VdkAAAAAgRCB2QAAAAEAlQXZAAAAAgK9pdkAAAADgeYN2QAAAAMBvtXZAAAAAIPLCdkAAAACg1fB2QAAAAKAFGHdAAAAAgFU2d0AAAABAskN3QAAAACDRWHdAAAAAQHWNd0AAAACgMaJ3QAAAAKD9tHdAAAAA4NrBd0AAAAAAut53QAAAAGAi8ndAAAAAQFQAeEAAAABge0B4QAAAAADNUXhAAAAAoCaXeEAAAABgFsN4QAAAAEDW1HhAAAAAQALheEAAAABg3wh5QAAAAMA2SnlAAAAAIIJkeUAAAACgMnN5QAAAAOCxl3lAAAAAgCGxeUAAAAAA9cF5QAAAAGDt8XlAAAAA4JcZekAAAABAEOl8QAAAACDFCH1AAAAAoBQ3fUAAAADAYXZ9QAAAAMCDtn1AAAAAQFTafUAAAADAwQB+QAAAAGBGRH5AAAAAYGiqfkAAAADgCyJ/QAAAAMAYfH9AAAAAYJeHgEAAAAAASuuAQAAAAOC5DIFAAAAAoJgYgUAAAAAA5EuBQAAAAKBpU4FAAAAAgAxdgUAAAADA+HKBQAAAACD6d4FAAAAAYCZ9gUAAAAAgj4eBQAAAAOBA5IFAAAAAoD0DgkAAAABAaDKCQAAAAOA/QIJAAAAAoDVFgkAAAADgk06CQAAAAOBBr4JAAAAA4Di7gkAAAACAZgCDQAAAACA0CoNAAAAAwLZag0AAAAAAy2uDQAAAACB8i4NAAAAA4Nmpg0AAAABgPsSDQAAAAKDWy4NAAAAAAGbSg0AAAABggjyEQAAAAIBfdIRAAAAAIGqVhEAAAADgKQOFQAAAAEBnE4dAAAAAoHSbh0AAAABg4siHQA== + NrgMGZxjYkDYkZP9yKNsQOzQoK8iBW9AE4oR9pJidkB2xqyr6ZN2QJjPrtxsBHxAOktZbUFzfkAuqi1P4vGBQF9I+6mNCoJALtkbeY56hUDyKJ/l5BKGQFvfwB7woohAhglDITwbikA= - + - uheBQFZoG0A9ZppAYekRQHA670DNSqhA60hAQL1Q/z9Ln9JAPDChQME88T+IjrNAwJ5JQMPrd0DmVcZATLW6P8fZ10Aql+w/bVx6QHWSNUF1bhtACDDsP0b3GkBCZxJBIgw6QXJi4UBpdKpAl9yJQJh8GEG42iZAQgwBQFx2AEAUOSRAxiYKQat3AECJg3tADi4wQGq1BEEHof8/IgwGQZLy8D9uIAJBUd/sP/s8pUAOqUJAoKNSQLOZEUC+9LdAjog2QPaXEUCfotk/VY3IQP3s00DwYZFBdTSDQVTgwUDw/3dAyk5AQEf8bkCpqcJB8n+3QU8VN0C4piFB6OaQQKZFp0ABN3hA2WP+PzAmMEFklxJBSklmQIyHz0C1si5AjvJnQezoPEExWaNBchD3QGounkGncR1AZjRnQcO7WUCEvFpBaOvoQJhRmEHEJWNBGpmRQEQktUCGM59BExOvQJ+mJEAs9ZJAw3gDQRSDZUA/zh5B3DLhQOAHrkFCfwlBscblQIB010GIYpxBkmAdQAYt7T+AbQNCEEjJQbegeUEH+zVAWITKQJvt7D/tcBNAB1g4QQMQ40DvRiJB6BhSQQxfyEFdI85AEerYQVh44EEPBwlADACBQNc7ZkDax8pBILDdPzSuM0Gb6zdAWqWAQGZl7EBqzUVB5sNmQAt9bUCss3hCQnrBQQfuCEBxJYRBpQqBQKj8m0BzLP8/rzCVQHKcxz9HAg5B+J+zQMxc2EBTyixBgL8jQL8dUEHWVRNBBe8SQUSkxz/pQUtA9NPsPy1D3UA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - - - - - - - - - - - - - - - AAAAoGxaYkAAAACAFMRiQAAAAODeXmNAAAAAANDFY0AAAAAAewloQAAAAAD1QWhAAAAAwI3laEAAAABA3yRpQAAAAIBjqGlAAAAA4DxWakAAAABAxohqQAAAAGBcRWxAAAAAYHCfbEAAAACgBeVsQAAAAIA1xW1AAAAAgO2mbkAAAAAAMOBuQAAAAICJj29AAAAAgPI1cUAAAABAh0NxQAAAAKAYdHFAAAAAwEa9cUAAAAAA5tBxQAAAAEAJ/XFAAAAAoE0TckAAAABgwDByQAAAAMDKk3JAAAAAAMXkckAAAACgP/JyQAAAAMBGQnNAAAAAQBTtc0AAAADAM2J0QAAAAKDelHRAAAAAoNHCdEAAAACgnNJ0QAAAAGBGYXVAAAAAoJ/MdUAAAACAne91QAAAAKDmRHZAAAAAwFyhdkAAAADA2bV2QAAAAABC1HZAAAAAQPGBd0AAAADAF5F3QAAAACCW8XdAAAAAIEn8d0AAAACAuxJ4QAAAAMBAMnhAAAAA4M1HeEAAAABg4XR4QAAAAGA1k3hAAAAAgJKleEAAAACAJe94QAAAAMBVEHlAAAAA4DAfeUAAAAAAyTB5QAAAAIAahnlAAAAAwLGUeUAAAACATKJ5QAAAAGDK9HlAAAAAIBIPekAAAACgziB6QAAAAOBGMHpAAAAAAEU+ekAAAADgRk16QAAAAGBpb3pAAAAAYGahekAAAABAK696QAAAAID3w3pAAAAAIEHeekAAAAAgHhV7QAAAAOCkMHtAAAAAAORBe0AAAABA5FV7QAAAAMCCsntAAAAAICbHe0AAAAAg5tJ7QAAAAEBr3XtAAAAAwIb0e0AAAAAgLxt8QAAAAOCXMXxAAAAAQJBlfEAAAACga8x8QAAAAKC72XxAAAAAIATlfEAAAACg1/R8QAAAAMBOEn1AAAAAoDwhfUAAAADgwjR9QAAAAKBpY31AAAAAILZvfUAAAABAJIR9QAAAAOATsX1AAAAAoDm/fUAAAABAyNV9QAAAAKDgv39AAAAA4B3igEAAAABgEEWBQAAAACD5XIFAAAAAoDOagUAAAAAgGqaBQAAAAGBFEIJAAAAAIBAhgkAAAAAgSUaCQAAAAGBDU4JAAAAA4Ld7gkAAAAAg5ZWCQAAAACCOooJAAAAAYGr6gkAAAADg6/+CQAAAACADJoNAAAAAIJZ4g0AAAACA7oSDQAAAAKBO/4NAAAAAADErhEAAAADgQTqEQAAAAOAk44RAAAAAwKUdhUAAAACgkiSFQAAAAOAtXYVAAAAAAKxmhUAAAABgXWyFQAAAAKDqo4VAAAAAAIfZhUAAAAAgFeaFQAAAAMAiPoZAAAAAQJzyhkAAAAAATgSHQAAAAOBBI4dAAAAAYJQ6h0AAAACA8D+HQAAAAEDbVIdAAAAAYErKh0AAAACg4h6IQAAAAOCFQ4hAAAAAIL6RiEA= - - - - - - G2+qQNuA2T98Lf4/AxpmQPsmxz+bL2VAzJbNQH7ziUC7WCVAJ8RuQB/8qkAcoi5ATF22QEMxkD818KVAi4ikQNoW+0BpkK9Affn+P8a2c0BLN5E/RMEOQSaX00BJjtlAt7dSQAyupUCaHLU/G47EQNtRzEDe/s5AlLGAQNUJEkDuDRJAs1/hQERF9EAKGZxBVL+JQAXqQkAo/uE/NjpuQIbXwUB+pP8/kcgAQRz2MUFhU9w/7YMvQIDfbUCMD4BB/XkgQVdjtT9VGgZBmcuqQUbzLUBmGUxCCwOlQZTpO0NUgQhAdqMnQbN1BkF4m2RAOwdnQd/XHkJXbiBB/S2MQBjjFkE6HMFAeg0sQcKfhUDSDgdBNVKOQIDP2kCay1JAOQHGQHHKvEApuew/rhWCQeAgz0BmZWxBxr/8Qe7t0UGydoVAfVJWQZfLikBJO5FASOzQP3z7LEBC74xBsJcDQXIeG0EBW6VBL3+TQZ0+UUEjPAZB/u38QArGxz8jc6pAqbfLQO+RgkGa+3dAQlBKQMzOTUKgZ1RCDNfrPyDcIUGObMNA0fGbQO5sg0EAsglCO/4LQr0l6UDf3hxBp67GQIz8d0CnHg1BTvg9QURodkHf/yxBJqnvQAE5OEKYTnlAcPfDQl64lEGqGvhAW4gbQGPvgEH51MZArJjBQEAYk0D/9aNATPG1QRWllUE2S+0/Nk8IQV4DA0H+B7Y/UNFSQA== - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + - - + - + - AAAAgI8kaUAAAACA16BrQAAAAGBh42tAAAAA4PckbEAAAACAEaFsQAAAAAB6xm5AAAAAgApxcEAAAACgAtJwQAAAAADNC3FAAAAAYJ+RcUAAAADgcXJyQAAAAACe1HJAAAAA4AZjc0AAAAAAtbNzQAAAAMB8E3RAAAAAQC8ndEAAAABACXF0QAAAAAA7gXRAAAAAgKKpdEAAAACAedZ0QAAAAADQM3ZAAAAAQPBUdkAAAADArAJ3QAAAAMAHJHdAAAAAgHJSd0AAAAAAxWx3QAAAAAB3dndAAAAAAFfSd0AAAACAkkh4QAAAAEAnL3lAAAAAgKL3eUAAAACA4AF6QAAAAMBPDnpAAAAAwHkYekAAAADA1MV6QAAAAEBR9XpAAAAAQO8Ee0AAAADAxCZ7QAAAAMAiNXtAAAAAgC+Fe0AAAABAKOZ7QAAAAMDdsnxAAAAAwALGfEAAAABAANB8QAAAAAD573xAAAAAwBEHfUAAAAAApxd+QAAAAMBeV35AAAAAwOGffkAAAAAAE/p+QAAAAABYDn9AAAAAAPYhf0AAAACAvHh/QAAAAAD+hX9AAAAAwPK2f0AAAACARMV/QAAAAMCR5X9AAAAAQJwCgEAAAAAArAuAQAAAACCaHoBAAAAAoPIjgEAAAABgTViAQAAAAEAZrIBAAAAAgBq4gEAAAACA79SAQAAAAKDF+4BAAAAAoGUMgUAAAACgoCCBQAAAAKCVM4FAAAAAoLk4gUAAAADgN2qBQAAAAGAtgoFAAAAAgGyLgUAAAADAG5iBQAAAAGBUuoFAAAAA4MbSgUAAAABg6+mBQAAAAOA8/oFAAAAA4L8KgkAAAACgMhGCQAAAAGCYMYJAAAAAoDlHgkAAAADga2OCQAAAACBYaYJAAAAAIMjqgkAAAACASvKCQAAAAODIAINAAAAAgEUMg0AAAAAghhuDQAAAACCQOYNAAAAAoGFPg0AAAABA/VaDQAAAAAC9XoNAAAAAIIJpg0AAAABgf4ODQAAAAECkj4NAAAAAwE+Yg0AAAADgfJqEQAAAAICru4RAAAAAYKTQhEAAAACg09iEQAAAACDG44RAAAAAQML3hEAAAACgPx2FQAAAAKAxQIVAAAAAAItYhUAAAAAglF2FQAAAAEBcZoVAAAAA4ASEhUAAAADA9YuFQAAAAMDFpIVAAAAA4L+thUAAAABgSMWFQAAAAKC2z4VAAAAAIKvXhUAAAADg2/SFQAAAAED4/IVAAAAAYFwDhkAAAAAgih+GQAAAAOCuS4ZAAAAAQEp7hkAAAADA7puGQAAAACC2y4ZAAAAAYLfVhkAAAACAfduGQAAAAMANLIdAAAAAwLw3h0AAAACg1kmHQAAAAOCEv4dAAAAA4AToh0AAAADgfUiIQAAAACBVY4hAAAAAgJKPiEAAAABAtpeIQAAAACD72IhAAAAAYFreiEA= + NrgMGZxjYkASeFMryKFlQI8BR/y9MnFACRqGaTzicUC2wo5zbEN5QDDbzeDq8nlAW5C1Y2IqgEBSQEdo7fmAQFJvNZKZwoNA - + - JlYTQSDbLUBdxb9AVU0wQKN57D+4xDNBdxikQHlQtT/JFGlAHFMYQX9DQ0Ck7whAqZ+qQOs3eEBz66lA7pWAQAaSI0EOaAxA2AzjQBzBCUD7IyZAmvItQS+7ukADOS5Av//wP2/UZEDqYyhBOYWcQHx02j9aZMFAHpyzQLo03UD15Z9Bj/+tQFpXSUA7Ws5Ar83qQMoeFUEO0ShBrQpVQGuOfUFdU5NAxGvBQBkDC0Dn7LlAATShQA+80EEnO0BAZho+QFYvxz/j5qI/ayWBQSAGpkEFLc9ALGHMQKKHfEAWFFZB/1zKP5JlCEDUA81AmhhhQZ6Ks0DXYJA/Ju6iP5V+t0AEW+tAQ/VtQEz4oUB9kN9AQQaPQPBaz0FAsA9DeuE9QpULw0DOlyNBD1W1P4R2i0CZrw5B9cQeQfv/LUC7E1NB1CF6QVa1TkFU3eVArXLxQEiyl0DIS8NBeusJQo8nWkGoleFAcoDLQdixP0EvYKtAdBMpQTDwX0EYIiZBXdJdQQb610DZY8NBTnJLQrd2TkLizeFAELF8QEGQx0AC+K5AJQztP1rmLUA8F3ZCpmQjQZm+KkI8T95AYsIfQuD6H0LvxlJBp3kFQeysTkIijElBMdCoQP9DGEHH7CVB5fqPQH6umECcFAFB+oY3QSpJ9kEg4yRAAo9WQUUh8UBrhztBLKcuQmGlBUE1i4BBl3saQaOM4UFS47FBm2ztQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + @@ -79072,9276 +102416,6240 @@ - AAAAQHYXdEAAAACAE8d2QAAAAAAcBnpAAAAAwFTxfUAAAABA9cF+QAAAAIArdIBAAAAAQLC5gEAAAABAVTqCQAAAAGDBF4NAAAAAoGYsg0AAAABAa0+DQAAAAODJw4NAAAAAAMIChEAAAAAgiyKEQAAAAEAsU4RAAAAAwN4AhUAAAAAgwSeFQAAAAACnPYVAAAAAYAYShkAAAAAAasuGQAAAAGARKIdAAAAAQGRSh0AAAADA46OHQA== + NrgMGZxjYkAot2DdIQNrQOzQoK8iBW9AlLmMQumSdEDqDZFHgYN3QLbCjnNsA3pARRrbkkTUfUDuQWt1DQqBQEDeKTR6eoJA5SDro0SihEDUvs1v0YKGQKxMkbOwqodAm+pzfz2LiUBALTXvB7OLQJLJ8610I41AXn7x2V9Dj0AT1cv05ZWQQEZCy7/gNZFAXFcMwQbykUCja7u7HDaTQNxuA9ZctpNAuu6Njk3KlEA5mPPRmLaVQA== - uSo+QOU9DEGikS1Al+2lQCPESUCu5CRA3kQbQOkYk0BU7UpASan4QIMTWUFG+gdBIg0JQI4A5kHLEZdBPdm1P7auSUDxUqpAXU7GQCI0HUFCUt1ANMboQM+waEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwB1mbUAAAAAgVIRvQAAAAAD8MHFAAAAAQFq/ckAAAACggjJzQAAAAEAU0nNAAAAAALcBdUAAAAAArXZ3QAAAAMAlgndAAAAAgNVgeEAAAAAAk5N5QAAAAECwQH5AAAAAQOfif0AAAACghweAQAAAAGBClIBAAAAAoEuqgEAAAADgCiKBQAAAAGCMIYJAAAAAYK2igkAAAACgsOCCQAAAAGA2LINAAAAAYNlNg0AAAADgZ1mDQAAAAGC7bYNAAAAAAD6Sg0AAAABgrbGDQAAAAKBIt4NAAAAA4BXag0AAAABgjWKEQAAAAEC6qIRAAAAAYAixhEAAAAAgn9aEQAAAACBR74RAAAAAwKw3hUAAAAAg0T2FQAAAAKCnrIVAAAAAgCy5hUAAAAAA6sOFQAAAAIBZOoZAAAAA4HvDhkAAAADAqzyHQAAAAKAudIdAAAAA4PWFh0A= + KBZXds7jZUBImCMySWRuQNS+X4D+xG5ArFID5xXDd0DzZSGOcPN3QAKnB+ytM3xAjZO0gg8CgEA= - + - Oq9cQTUKLkCN6BxANzNJQG9+XEBd8QBBDmU3QDutpUBKYntB+laWQPOnmUBqAMFALSy5QMhpEkDESVRAtVhcQLSnOUHFL11A53/PQM+8K0FGq29A546LQR879EATOBhBIQ8+QYiLVkGPi+1AtTnEQqJiYEBs4x5B1HOAQLMrd0EGUo9C0iqXQ/2Rn0CklapAjKJvQZmNXEBp37JBAYppQXSYYEEPnSVBl8YkQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYKVTX0AAAABgeIFfQAAAAGDyJGBAAAAAgAH9YEAAAADgqEFiQAAAAMAFwmNAAAAA4M/nZEAAAADAZmllQAAAAAC/jGVAAAAAgHKjZUAAAABAFdtlQAAAAACKYGdAAAAA4IDqZ0AAAACAdyppQAAAAMDl32lAAAAAYDBqakAAAACANMZqQAAAAIC+B2tAAAAAQABgbkAAAADAkEJvQAAAAIBZgW9AAAAAAC3AcEAAAAAg9ABxQAAAAABEInFAAAAAoH9CcUAAAADgnY9xQAAAAAB8oXFAAAAAwEqzcUAAAACAMsFxQAAAAMDj0XFAAAAAQDvgcUAAAAAAVvFxQAAAAIA4QXJAAAAAwABPckAAAADgaWJyQAAAAADKfXJAAAAAQNGjckAAAABg/OFyQAAAAMDa8XJAAAAAYOsgc0AAAABgcDNzQAAAAIA9QnNAAAAAoONdc0AAAAAARX1zQAAAACD7j3NAAAAAgMzVc0AAAABA5vRzQAAAAKALBXRAAAAAYHocdEAAAADAZlR0QAAAACDbYHRAAAAA4A2GdEAAAACAPsN0QAAAAECLE3VAAAAAwMUudUAAAACgP4B1QAAAAEDEkHVAAAAAQPCedUAAAAAg/q51QAAAAKCY03VAAAAAQDkJdkAAAADgWyZ2QAAAAADgY3ZAAAAAgCODdkAAAAAASJ92QAAAAKB4vnZAAAAAINbPdkAAAAAgyPl2QAAAAGCYJXdAAAAAwFFtd0AAAADg3J53QAAAAMDMwHdAAAAAQB7Od0AAAABg9uh3QAAAAIDJBXhAAAAAoDU/eEAAAACgjVN4QAAAAGAfjnhAAAAAQFKfeEAAAADAadV4QAAAAIA4+nhAAAAAgDX+ekAAAABAw6N7QAAAACCjr3tAAAAAICLXe0AAAAAgo/N7QAAAAKCsaH1AAAAAIJ9YfkAAAADgZmt+QAAAAOBcAoBAAAAAIFMegEAAAAAAmTaAQAAAAOBee4BAAAAA4DKOgEAAAABA0pOAQAAAAMDspoBAAAAAANTygEAAAADgegSBQAAAAAD5cIFAAAAAwI6WgUAAAAAgvEqCQAAAAIBHqYJAAAAAoH9yg0AAAACgr6CDQAAAAKBTxINAAAAAQCoZhEAAAACgqzOEQAAAAKA0moRAAAAAoIHFhkAAAABAfmSHQA== + NrgMGZxjYkA= - + - 8V/aP42U/z9LdFxA67ETQRRmyD+uHiZB/SjhQE3AzkAxq2VAjeoAQeZ+1UCjTnlAzWVuQDmCLkDjnABABorUQOLVoj94HWZARpUQQcyu6kA1B8VAW7MvQGUeDUJk3sc/ShIJQL5o2j9YBrpAfd9tQMMLoz+wLM9AfCIJQKvWCUB5xKtAFCGtQHUud0CuS7hA6vluQAVsd0C1D41B2v2EQGCUrkCEfppB8PF3QPWVXEA1VtRAZGgDQbu8oEAgSY5A53vuQFMrDEEmkvtAMp5IQT7li0G/jes/TzYvQBT9bUJN8UhA2jOLQAxhS0DiN31BiVoSQG6fvECOdbU/2CFTQPhxxUHH4elBKtogQQjOqkCJuwhBSMAZQUa7O0G7Fto/2lOAQPh/e0CgxTVBuwnaQZBJJ0F3Jo9BFeBDQXQ8hkC6M7xAV4mhQV+X8EHz9Oo/l6KAQJg8EUEDzTNBmGzgQP2SwEFP88BAwsQFQQcqPUEYsto/jDZTQHpGXkG8m/5AV2L/QEdk0UE07n9CMxlWQTv/AUHSFG9ARRSFQPeIgEA5joBAJQplQEwrs0CcLBVByBaGQANMVEE= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYIXmaUAAAACAL0ZvQAAAAABOInBAAAAA4Gk2cEAAAAAATQJxQAAAAGDwPXNAAAAAgLRRc0AAAABAV0h0QAAAAAAQVHVAAAAA4PnhdUAAAADAFDN2QAAAAICPpXhAAAAAAFx0eUAAAADAODR6QAAAAEAYxXpAAAAAQAqge0AAAAAAB8x7QAAAAAB+4XtAAAAAAM5UfEAAAADA0WZ8QAAAAAADAX1AAAAAQH0mfUAAAACAipN9QAAAAIAOIX5AAAAAABpWf0AAAADgN3GAQAAAACBLioBAAAAAYHa7gEAAAABgMuCAQAAAAIBX6YBAAAAA4H0vgUAAAACAQGGBQAAAAIBdioFAAAAAIOKxgUAAAADgA9SBQAAAAEDe44FAAAAAwB/8gUAAAABg2Q+CQAAAAOBjo4JAAAAAQBS3gkAAAAAgD7yCQAAAAEChw4JAAAAAIOLigkAAAADA9wKDQAAAACBeHYNAAAAA4ONpg0AAAADgEIuDQAAAAKA5P4RAAAAA4FBPhEAAAABgi2+EQAAAAGBChYRAAAAAIOKQhEAAAACA2aWEQAAAAKCPzYRAAAAAIObmhEAAAAAA0iyGQAAAAKD8vIZAAAAA4IAjh0AAAABgtSqHQAAAAIAbXIdAAAAAILG+h0AAAABgx/eHQA== + NrgMGZxjYkBImCMySWRuQEMdzoN8QnFAS41ZENNCd0AKeGK9lHN6QL8yGgDDQ39ABGufiHbCgEDxHY4YI1qCQASajbIiS4RA8Ux8Qs/ihUCVng5LZAOHQPF7amx7a4lAT/HuQtwDi0BUqTSJBwSOQOLRkn4zDI9A9ERsYi8GkUBxgEDUb0qRQA== - + - GucIQBmEG0C1oUdBzFe4QADuZEAZFrNAnB6vQNklpkBB8EBA4cQVQc2BMkFJ/RNATLWOQOUR3kD/is9AE2nJP+ELz0D5a+0/EqjZPyVSU0BJBwlAsVi0QKCWyT/4quZAYIgsQUePnEC4EDZBgrBdQIhqVECGdgBB4sYnQbOCkD+1I1RB5MR9QQAxOEDlg7FAG0gWQcMpOkEIpYlBKy5uQPTVIEEAPaRBUqZlQLCdSUA1TXBAiT39QKlj70CNqOpBbZQhQdn37D8s7FRBMTMMQdhQ40G6THhAe3B1QefMG0A0KotBJFfRQPHKU0BuVABAwjXLQEvGikA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4C7IZEAAAABA5x5lQAAAAKAN5GZAAAAAQJslZ0AAAACA5GtnQAAAAOBnyWdAAAAAAOhjaEAAAABALqRpQAAAAIAxKmpAAAAAQNc9akAAAAAAjcJsQAAAAECa32xAAAAAAJd+bUAAAAAAViJwQAAAAAAfM3BAAAAA4ESOcEAAAACAGydxQAAAAADzi3FAAAAAILDhcUAAAACgfhNyQAAAAIBLNXJAAAAA4OVkckAAAADAscpyQAAAAGCR1XJAAAAAwPRCc0AAAACAiFJzQAAAAIBGbnNAAAAAwGLvc0AAAACA1gN0QAAAAKDgNHRAAAAAIHiBdEAAAABg0ZR0QAAAAKBcEXVAAAAA4P0hdUAAAADAHix1QAAAAEA1UHVAAAAAYAVndUAAAAAAFp91QAAAAKCUsXVAAAAAwFDAdUAAAADgk891QAAAAKAQ73VAAAAAQOoSdkAAAADAeHB2QAAAAMBwlHZAAAAAQFYXd0AAAADg/i13QAAAAIDyX3dAAAAAINKQd0AAAABgOrJ3QAAAAEDHz3dAAAAAYB/2d0AAAADgKBJ4QAAAAOCZaHhAAAAAYHK6eEAAAADgS1d5QAAAAEC4i3lAAAAAYLy1eUAAAACg+C56QAAAACC+T3pAAAAAoCJoekAAAABg+XF6QAAAAKCJfHpAAAAAQCmNekAAAAAArK96QAAAACCrDHtAAAAAgPUme0AAAABgE2h7QAAAAKDgiHtAAAAAYLfCe0AAAABAU8x7QAAAAKBg83tAAAAAQKMBfEAAAAAgVEF8QAAAACC+VnxAAAAAwPRzfEAAAABA+0Z+QAAAAGA4hX5AAAAAwHuzfkAAAAAgasR+QAAAACD6GoBAAAAA4Fs7gEAAAACAwJSAQAAAAGCH04BAAAAAYOwKgUAAAABg+BGBQAAAAKDwGoFAAAAAoG9YgUAAAABgU4+BQAAAAGCzzIFAAAAAYBrggUAAAACA8gGCQAAAACBYHYJAAAAAACArgkAAAABgfmyCQAAAAGDUgYJAAAAAIDeLgkAAAADgaMOCQAAAACCJ6oJAAAAAoJhCg0AAAABg2WyDQAAAAMAgdINAAAAAwM9+g0AAAAAgeLGDQAAAAGDM5oNAAAAAoJ+KhEAAAABgb+2EQAAAAGAlDoVAAAAAQOIahUAAAABAgSmFQAAAAKAEMoVAAAAAYNuThUAAAAAghfCGQAAAAOA7YodAAAAA4KiKh0AAAAAg85CHQAAAACDwtIdAAAAAoLDrh0A= + NrgMGZxjYkA= - + - aynFQFPStD/kA3hALR/aQN9V7T+AyC1AcezWQLbTGkDy7DhAHtIbQAEZo0BlruVAIe5SQLvwJEA22yRACnvPQFqUSUAN59o/9sSAQC83mEBMyuxB9cgsQejIlUBWtKVAGq2zQDtxekCdu+FAyCtlQPlQA0AWxtNA5f5lQCEoi0DWpoRA8c9uQB2aEkCR7qVA6x4GQXaxCUHJf7hAdUo7QdAJk0Au/Z5BeKEFQQeP7T9nw0BAWjgMQVj67D8eV9ZAry+cQIvYUUEjwBNAXaaEQTZgXEFEnBxBqxerQWRO/z8zhRJAyF3BQLBrqEJamgJCoPEiQXryk0EWIflAEAQvQK7y+EB4WwlAe1aAQabm/z+jwV9BngEBQeX+UEFByslCFZM3QHM6MEDYmsRBFm+CQDmZN0BzB0hBQehuQK5qN0CD1IlA5xL9QHvstUHQVN1AdQLdQCCO7T89MwhBpJEqQZDvh0In6SdAhNFmQYyMrEAeRWFBWKffQGpBxkDIOjFBBCOTQHKQrEB//f8/gDCmQO/0W0B1+3FA8sYtQZJ4EEHZNAlBUx8UQM2XeEA7P69A8GAiQuhquECw0y1Bh0/vQJ6AwUDe5MRAOJvtP21w2j+vS6FARNJGQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYMmBbUAAAACAoKJuQAAAAMDzoXRAAAAAYDTDdEAAAADADAB1QAAAAMCBd3ZAAAAAAICCd0AAAADAiuJ4QAAAAIDal3lAAAAAgCykeUAAAABAHPR5QAAAAICPDnxAAAAAgNnEfEAAAAAATRJ9QAAAAMC40n9AAAAAAFwGgEAAAACg18KAQAAAACAq0YBAAAAAYM0ggUAAAADghWOBQAAAAEBAyoFAAAAAoEsggkAAAADguYKCQAAAAKC/3IJAAAAAICwNg0AAAABgkpWDQAAAAGC5oYNAAAAAIFWyg0AAAAAAM7eDQAAAAADn2YNAAAAA4Pveg0AAAABAhS+EQAAAAADRYYRAAAAAYBJzhEAAAADg8ZKEQAAAAGD6qIRAAAAAoKuuhEAAAAAgLcOEQAAAAMC774RAAAAAoL42hUAAAADAFjyFQAAAAGAcQoVAAAAAAH1zhUAAAABg5sOFQAAAACAiBIZAAAAAAIcJhkAAAADA5BOGQAAAAMCz3oZAAAAAIIxsh0AAAACgknOHQAAAAKCMiIdA + NrgMGZxjYkCEfuNfSGJnQAoahmk8YnBA - + - JRZKQORSNkHSgpdABIAbQBzOyECNE29Ai4MLQOnBuD/T5otA/nJpQGPAOEGYzfE/0+i1P9rz+EAcZepA0aQtQEZASkHqK61Bpzr6QeE9b0CNbV1B9p2AQGP3kEBsi7ZA65UMQUfvMUExM/RA/rhIQfHxI0Gh7hdCU2XpQfXT70Cv4UBAytp4QY5+qkA9WtJBHkC0QcwAWUHWHlhCCqXsQqljXEM8L3JBuicAQBFVwECj0zFBn9sTQVC3L0FeOQVB2HObQN8YhUCkYgZB + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYNrmbUAAAABgN59yQAAAAOCFxHJAAAAAQNJCc0AAAACAmaNzQAAAAOAw0XNAAAAAAMyVdEAAAAAgz0J2QAAAAMAs9XdAAAAAQG9CeEAAAADAH7Z4QAAAAECG6HpAAAAAwElXe0AAAADA4n97QAAAAMA1d3xAAAAAwDj9fEAAAAAAY0V+QAAAAIDJA39AAAAAAJu2f0AAAABA99V/QAAAAEC64X9AAAAAQPYDgEAAAADggluAQAAAAKA0dIBAAAAAYKp7gEAAAAAggYiAQAAAAMASnIBAAAAAwFmhgEAAAACAatiAQAAAACBMQIFAAAAAIMpTgkAAAACAy2OCQAAAAGAY1YJAAAAAYCLrgkAAAADg5hGDQAAAAGB5I4NAAAAA4MVyg0AAAABgHdqDQAAAAODuA4RAAAAAoEgghEAAAACgWSWEQAAAACDVeoRAAAAAgMWzhEAAAAAgGfuEQAAAACBqRYVAAAAAgDRjhUAAAACg9byFQAAAAIDC5IVAAAAAoHkahkAAAADgyGyGQAAAAACJcodAAAAAwKV7h0AAAACAcQKIQAAAAGCHRIhAAAAAoJGdiEAAAACg5aOIQAAAAKAArIhAAAAAgNv8iEA= + KBZXds7jZUDiYBUjzERuQIkw7CrX8nJA - + - vTucQAya9kAuPkpATWIcQBgEMUCHhoZAcMzLQKy/SkDxyZxA6/kOQQLbSUDZqhVB85EMQYFSsECxiutApvuAQD7TjkDHawlAqljPQEK/VUHGfA5BCI6LQFf8z0DLVfRAfIbBQAwwHEHo6jtBAAzmQA3dFUHvfLhAaYvtP2h20EDnXKFAHTcUQSjyBEAwMoFA3YWXQQaWnkFhpj1BQ400QRgZZkAYWWZAL8+KQMsqXUBUd+lBFOBOQA9F20CvQppBV9PVQX8io0EliBJAXC62P/TJFEFEq+0/S2ThQfjXyUDlRf5ADsj/Pw== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4Fi0XUAAAABgdwJgQAAAAIAZSGBAAAAAwJpkYEAAAAAAjaNgQAAAAGBN6GBAAAAAAAmkYkAAAADAHttiQAAAAOBf5GRAAAAAQL1nZUAAAAAAUmNoQAAAAAAgYmlAAAAAgJCkaUAAAABgBcBqQAAAACAyoWtAAAAAwIUgbEAAAACAOoFsQAAAAEBJymxAAAAAgBF/bUAAAAAAMwJuQAAAAIBuNm5AAAAAQHDIbkAAAACA1ONuQAAAAIBMBG9AAAAAwHZIb0AAAABAFHhvQAAAAGBjInBAAAAAQKJUcEAAAACAUF5wQAAAAMCRz3BAAAAAQOzucEAAAABgBhVxQAAAAOCtJXFAAAAA4FlAcUAAAADAkFFxQAAAAMB7YnFAAAAAwIKlcUAAAADg//NxQAAAAKAVNnJAAAAAgPhCckAAAADAO3VyQAAAAKBphHJAAAAAAH2tckAAAABAscByQAAAAADu0XJAAAAAAF7gckAAAACgufZyQAAAAEDCC3NAAAAAoK5Oc0AAAACAWFxzQAAAAMDj4XNAAAAAwOTyc0AAAABggwV0QAAAAAAsLXRAAAAAwP5CdEAAAADAxlN0QAAAAMDzYnRAAAAA4Kd8dEAAAAAggpR0QAAAAADqn3RAAAAAoBKzdEAAAABAb8F0QAAAAKASzHRAAAAAwBgXdUAAAABAwDx1QAAAAOCCYHVAAAAAAB+FdUAAAADgc5p1QAAAAEDwwHVAAAAAoMtUdkAAAADgLHJ2QAAAAICng3ZAAAAAwO6PdkAAAAAgtZ92QAAAAKD/sXZAAAAA4O27dkAAAACAMtJ2QAAAAECn5HZAAAAAYHQHd0AAAADgJRJ3QAAAAOBjNndAAAAAwElEd0AAAADgCHR3QAAAAIBBondAAAAAwI+sd0AAAAAAC7x3QAAAAKDsGXhAAAAAINYjeEAAAACgMzF4QAAAAEBUeHhAAAAAgOeQeEAAAAAgBWZ6QAAAAKBWhn1AAAAAoL2kfUAAAABArrZ9QAAAAODZ1X1AAAAAoD7tfUAAAACgNHp+QAAAAKDlF39AAAAAoD43f0AAAADgjC+AQAAAAKCKQ4BAAAAAAPywgEAAAAAgj7eAQAAAAACz64BAAAAAIPYKgUAAAADAoVSBQAAAAGA/q4FAAAAAAHf8gUAAAABgjZyCQAAAAAA6voJAAAAAYHe1g0AAAACgVgOFQAAAAKCBU4VAAAAAoFFyhUAAAADAhPqFQAAAAKCHA4ZAAAAAACJShkAAAACg3NSGQAAAAGCd6oZA + KBZXds7jZUBImCMySWRuQG+XdYaqQnFAS41ZENNCd0BdVXXjGHN4QDlLWW1Bc35AQotereNBgEDKq1FcAmKCQEG6TNePyoNA - + - SBC2PwSxoz+bSyVAjqqjQHsXAEAcx3pAuX4bQPh+HUG2Dg5BKG17Qb1BHUBZ9txASQ/bP5wm8EDu4z5BVky+QHTfUECx8RtAXxrIP8cDnUDmwSxBpQb4QCbNxj8S6w5BGU+4P3TKyD8pMYpAAZIbQB6d7T/YzApB32eOQfDrgEDTZsdAlJMJQFLNF0GImF1B+Zi3P14/tj+1pa5AX6a+QM+HREEWljBBd5T/P75JEkDdhT9BiuYUQac1tz9Pj4dBEfz9QOO3rUAqG4pAQ5QJQADrKUETwDdA8BpyQWt08EB8ZzlAIsiIQro8dEFR+JNBqCyPQMB/gUA+PIVBkzYuQNwmH0FQ9IhA5DP0QJtnkEHgghNA+1TmQD2l80ANVLNBCPHUQS6+dEBg/vJACiyKQOeKHkGwDKFA1eiXQaZif0Bn+9NANeaGQbpe+UAKL8g/7LbvQPrGLUG6PShBhzQlQaGrE0G4ke9AHrBUQKFc3UCAEDZCiaAxQW2MuEHLrvBA9N5cQLdZy0C1M5lA7zShQAY5nEG3XgdBvvNuQLMBn0GSSIpAT1DrQEG9eEAby+0/3osSQU7bXEA1I5RABc+YQA3BwUHpUNs/66mOQP4I9EBrpxpBUyOkP51mpUAddW9A + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQK9GaUAAAADgDypqQAAAAKDi6GpAAAAAoP3Ja0AAAABABwFsQAAAAED76W5AAAAAgAQ2cEAAAABANkRwQAAAAOByNnFAAAAAAP2gcUAAAABgQYFzQAAAAIBLD3VAAAAAAID0dUAAAAAA8BF2QAAAAIBc1nZAAAAAQNEUeUAAAAAAZUJ5QAAAAIBvY3pAAAAAwL3CekAAAAAA8tN6QAAAAMD753tAAAAAAGESfEAAAABA0s58QAAAAMAus31AAAAAwN91fkAAAACAJdV+QAAAAACGZ39AAAAAwER2f0AAAADAqiCAQAAAAECGOIBAAAAAgKKKgEAAAACgBbeAQAAAACC0+oBAAAAAYKI6gUAAAACgeVOBQAAAAOCDbIFAAAAAIINxgUAAAABAuYGBQAAAAGDQiYFAAAAAIDDhgUAAAADgYgCCQAAAAICGSYJAAAAAgANxgkAAAADAOn2CQAAAACBpgoJAAAAAQOLBgkAAAADg3iqDQAAAAGAQP4NAAAAAoK9Kg0AAAACgok+DQAAAAACqYINAAAAA4Ilog0AAAACAqa+DQAAAAOCFyINAAAAAQHztg0AAAADA6BmEQAAAAEC3TYRAAAAAIA96hEAAAACgzYqEQAAAAKD/j4RAAAAAYO6lhEAAAADggrOEQAAAAKARu4RAAAAAYJ/ahkAAAADAr/qGQAAAAIBdc4dAAAAA4PTKiEAAAACgxdGIQA== + NrgMGZxjYkA2uAwZnGNlQHZo0FeRAnFAQx3Og3xCcUBlJtC0/7J2QD3DZJGpM3dAX8xmwiykfEAsgWTuF+R8QMNG15xtmoFAw0bXnG1agkDucFmfudKDQA== - + - rjr/P+e6N0Bs3MFAonDwP1jxhEB1XCBBC1SzQIkQQUB8fhtAYgVmQMX9zT9FqRtAfCCmQMy5/z//kxJASCSVQDYIB0EiKXdAYYZvQNdmOEGzMeA/JsHEQJObakC86IhAGFN4QPtPkEHHmopAPdIbQOUT3z+VToFACpJyQApOzT8/J8lARJ86QfP9G0DO+GVAjgL6Qda5EkHCNQhB01EJQPbyrUHbGS5BXEJ0QciyEkBE1mVAH30uQATQpUBgZUBArUmxQARZ7T9PkxVAAzclQNgr7T9yAghBPygAQD6qHEBKI0RBOStBQEHKjkCS4OtBR06WQUN7VUG4WR9AmhjJQPsTK0H7OnpA1EsfQtWx70A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgIEhY0AAAABA0rNkQAAAAMCc42VAAAAAQPaKZ0AAAADAfARpQAAAAEAcZmlAAAAA4APkaUAAAAAgBaJqQAAAAADC6GpAAAAAYGcga0AAAABArmxrQAAAACAEqGtAAAAAgMzha0AAAAAAxGdsQAAAAGB0L21AAAAAAJlhbUAAAABAjRtuQAAAAAB/rW5AAAAAADHhbkAAAAAApiZvQAAAAMAHSG9AAAAAIKOhb0AAAADAIcFvQAAAAGCpE3BAAAAAwOYkcEAAAABA0qBwQAAAACDHs3BAAAAA4LYhcUAAAABgTwJyQAAAAEAnJHJAAAAAwKPQckAAAADgD+9yQAAAAEDxgnNAAAAAAImSc0AAAABgGaJzQAAAAMB5tXNAAAAAIPIBdEAAAAAgMx10QAAAAMAnRXRAAAAAAE5TdEAAAACAFnJ0QAAAAMAJhnRAAAAAIDqTdEAAAAAgy7l0QAAAAADUTHVAAAAAoBh0dUAAAAAgvLB1QAAAAKCbvHVAAAAAoNokdkAAAACAzkR2QAAAAACmUXZAAAAAIHBpdkAAAADg9ed2QAAAAIDj/XZAAAAAgIENd0AAAACARhl3QAAAAOBRJHdAAAAAoKo2d0AAAACA1FR3QAAAAMAMdXdAAAAAABKXd0AAAABgIdV3QAAAAIBn63dAAAAAQNT3d0AAAACAoA94QAAAAIBZNnhAAAAAAF+jeEAAAADgQ7N4QAAAAOCtyHhAAAAAwH/deEAAAABAP+14QAAAAEBJC3lAAAAAoCoVeUAAAACgCiZ5QAAAAGABM3lAAAAAANFheUAAAABAj3h5QAAAACCBxHlAAAAAIHbXeUAAAAAgfeV5QAAAACDpEHpAAAAA4FUoekAAAABAxFJ6QAAAAACdZHpAAAAAIDJ5ekAAAAAg1Yt6QAAAAGAUvHpAAAAAoFXIekAAAABgGNR6QAAAAOCR9HpAAAAAgAwme0AAAABgFVV7QAAAACAMcXtAAAAAACiAe0AAAABgiot7QAAAACChoXtAAAAAYO+7e0AAAACAbN57QAAAAECgBnxAAAAAYApCfEAAAABAPmZ8QAAAAGDkcnxAAAAAIHqJfEAAAABgK5V8QAAAAECWtXxAAAAA4FTAfEAAAABgvux8QAAAAEA3An1AAAAAYCgWfUAAAAAggUR9QAAAAKDOYH1AAAAAYDJ1fUAAAAAgcYZ9QAAAAKAKp31AAAAAwPXMfUAAAADAYQiAQAAAAGCRHIBAAAAAILyqgEAAAACAbeyAQAAAAAAS9IBAAAAAIJkhgUAAAABAV1GBQAAAAGBbZIFAAAAAABeDgUAAAADAwriBQAAAAICn9YFAAAAA4JBCgkAAAACgLlSCQAAAAGCIa4JAAAAAoIyEgkAAAAAAP56CQAAAAAAHqoJAAAAAoHXPgkAAAACgTNSCQAAAAICQ5IJAAAAAIFgKg0AAAABgNxODQAAAACDmUoNAAAAAQOxcg0AAAADgZpeDQAAAAGCKo4NAAAAAAJ7Tg0AAAABgr+mDQAAAAKB0M4RAAAAAoL9ghEAAAADgOW6EQAAAAKBIeoRAAAAAAJKBhEAAAAAg9IeEQAAAAOAhjoRAAAAA4KKohEAAAACg3wSFQAAAAEDQCYVAAAAAYKMUhUAAAADg/COFQAAAAABJO4VAAAAA4OdRhUAAAADAmVuFQAAAACAGnIVAAAAAoLrrhUAAAABgLzSGQAAAAKD3V4ZAAAAAIBRjhkAAAAAgQH2GQAAAAKDwmYZAAAAAIGLChkAAAABAVsuGQAAAACDh2oZAAAAAoBvhhkAAAABAFj2HQAAAAIDGeodAAAAAoFaGh0AAAACgsZSHQAAAAMDf6odAAAAAgFcEiEAAAACg0BKIQAAAACDZJIhAAAAAANcsiEAAAABgZ3KIQAAAACCisohAAAAA4GPIiEA= + KBZXds7jZUA= - + - 5AZmQGesrkAJmrY/gqRKQI9nJUDCtaNBouelQMS3xkESmxJBWa5FQd88QUB1tXRAifvkQG5C4ECiLj9B34yjP3NuJkGNOVBBbQ2kP+/qG0Cq4bdAxss3QBfpEkDD02VAHD7TQANvtj8Ia6BALKqaQf8zZkD/J4xAmm5VQfJer0CJGy9C/G1RQZ4JZkBRawBA1ZsJQSU6DUCCdIFAok1KQDr6u0DclnJAxUOMQYjXE0GqCxlBsTWkP1bJeEBSfQlA6UJUQZ/2I0EZW4pAjO1TQEVgSUHPa8lA/T4cQA3OC0C4t7Y/xWuyQK5j4kD+XSZAaHRKQJFwrECLuRtB+Ml0QdL5G0GM86BAkcgHQe6p80CufP5A4gXwQLYOikGURcVBhVaQP8AKhUFOMZlBoJ3bPw46XEBkAg1BCfEiQfgJj0DWiLhAvIIoQWazA0BLV7Y/PxvrQEu7rkHnNyNBmLaFQJvcmUAeQO4/xzAiQtAB6kFXf5pB+RaxQNzRckAsPdFAuOTbPzrsi0FdHdlBkMgjQXLXmUBhI0hBjZFHQZ9FRENkpiVB7PtcQNburkCuT4ZB1KqnQSVoJUBlDlJB+4b6QDkWkUGE/rpBrLMoQfqR2EAWaMpBh8btQDOls0C8vW9Ah72FQF3LDEKA5yFB1CNwQeFpVEEHA4ZBIMskQXMOD0EFcaxB/wMkQbk8FkGEhMBACBVdQJf/PkEpadlAwvbaQBpCrEAEmzNBm7x4QBbvokCJYY5CrqwuQKqIS0HP111B+hX5QO0wZkAoxsk/0TAZQda5lEGfHck/CVUeQE0sikDbjppBl4yvQXIy+EDq7R1AxDG+QGqwU0CxVgRCoT6CQfJnoUA17JRAHHaTQOSrWkHSMw5B/cfaP6zOsUCMWwNBEujfQPtoXEAzPItAjG8SQMkPE0AkpbY/p4oLQB+gnkDIbo1Bv9UjQRJlHUKjlWZBrYeOQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAADMJXEAAAABAv8VcQAAAAKBIvl1AAAAAwBlRXkAAAABAC0hfQAAAAODnJmBAAAAAAItBYEAAAADAVQFhQAAAAKA8J2FAAAAAgAKIYUAAAAAgeMlhQAAAAGAYZGJAAAAAgCOlYkAAAAAA26djQAAAAAC8hmRAAAAAIHniZEAAAACgIj1lQAAAAODfVGVAAAAAAMXAZUAAAABAsmVmQAAAAGC0smZAAAAAQPYDZ0AAAAAA0iRnQAAAAOAVg2dAAAAAQNKhZ0AAAACguN5nQAAAAADPAGhAAAAAoIK5aEAAAABA191oQAAAAIBkP2lAAAAAAFSiaUAAAABAheVpQAAAAOD4RmpAAAAAAMZhakAAAAAAuH9qQAAAAABPumpAAAAAgO8pa0AAAABAGuJrQAAAAMAhEGxAAAAAQFIobEAAAACA+kNsQAAAAIALZmxAAAAAgBaDbEAAAABAAKJsQAAAAMCXx2xAAAAAQHnkbEAAAABAzgRtQAAAAAC7IG1AAAAAQKBwbUAAAABAKYhtQAAAAAARyW1AAAAAAF/lbUAAAADACiJuQAAAAADUSG5AAAAAQGNlbkAAAACAcYVuQAAAAADruW5AAAAAgCbjbkAAAAAAFShvQAAAAEC2QW9AAAAAACZkb0AAAAAA1KRvQAAAAMACw29AAAAAgIHfb0AAAACALf5vQAAAAIDRE3BAAAAAgPokcEAAAACAbDBwQAAAAAA4QXBAAAAAADhScEAAAACgR2RwQAAAAGABeXBAAAAA4J6CcEAAAABAdJNwQAAAAGDmoHBAAAAAIJO0cEAAAABgksJwQAAAAOCw0XBAAAAAYA3zcEAAAAAAf/9wQAAAAAAAFHFAAAAAwH4gcUAAAADgWC1xQAAAAIAGU3FAAAAAIL1jcUAAAACgTHBxQAAAAEAvnnFAAAAAwH6zcUAAAACAL8BxQAAAAMBm1XFAAAAAIA/xcUAAAABAKRByQAAAAIBrRHJAAAAA4A1VckAAAABAe3FyQAAAAEA+f3JAAAAAgMuhckAAAAAAP7JyQAAAAAAOwnJAAAAAAIbRckAAAABAsuRyQAAAAADZAnNAAAAAQPoRc0AAAABgSydzQAAAAODENHNAAAAAoGJBc0AAAADAz1BzQAAAAMARcnNAAAAAYCaac0AAAADAcadzQAAAAKA0u3NAAAAAAKHPc0AAAACgbuBzQAAAAIBp9HNAAAAAQFYCdEAAAABALBF0QAAAAODiK3RAAAAAYJ9TdEAAAACg/GJ0QAAAAAA7lHRAAAAAAHKpdEAAAABASt50QAAAAOByonZAAAAAwNlTd0AAAADgVeR3QAAAACDbE3hAAAAA4PkneEAAAACgBJ94QAAAAABQI3lAAAAAYABGeUAAAAAAenZ5QAAAAACfDnpAAAAAACInekAAAADgcTZ6QAAAAIB1VHpAAAAAIMmrekAAAADgzvx6QAAAAGB6TntAAAAAoPLJe0AAAABAlip8QAAAAMC8QXxAAAAAoARTfEAAAABggct8QAAAAGBy1nxAAAAAoFP1fEAAAABAEap9QAAAAKAr2X1AAAAAwM9ufkAAAADAm7t+QAAAAGA7935AAAAAIMYTf0AAAAAg9SR/QAAAAECar39AAAAA4IT1f0AAAAAARhyAQAAAAKCfQYBAAAAAYFVMgEAAAAAgUYiAQAAAAMDbs4BAAAAA4E67gEAAAACAtdKAQAAAAODaMIFAAAAAYO8hgkAAAACgoVSCQAAAAEDU1IJAAAAAYHfsgkAAAABgGfyCQAAAACBpzINAAAAAQOpbhEAAAADA7dSEQAAAAGCjs4VA + NrgMGZxjYkCAI9DqN6RuQEMdzoN8QnFA59KvbMpid0BDe6rX1FN4QOcwjMAidH5ANR55p0EygEAH+embaEKDQJYhSJGUSoRA - + - UDPuP3WnSUGmI5hAm/14QDx3S0DDFwhB2KMVQVAPuUFz8xJAwCM4QI3HQEAKRkhBt8nOP+zVLEGsmRJAx9DzPxEwBEBVup5Aph2BQDEYOEB6UhxAg4cuQCa/X0Cahz9A2qlqQUhFxECo1wtBdIq3QIMgOEA1idVAXbK3QAjHfkE/TptBpjIDQn1wV0AyQeBAsSYcQPIgVUBMcDJAIv3iQK8n1j//2hdBgM2qQY7UKUPYLTdCwzOjQaXxGEG8NphBPhKiQJt7hUG4b+4/qxsxQH0kTEHaUck/HKG1QYA3iUCj599AhE7/QTpuKUMYYcJA4VIVQTSXSkD73WdBbjPUQJcr2UAebQZBvssNQkVxwEE2svNA8vsJQSRLW0Ds0jRBGA9xQfs5eUD1dG9A/66RP9DQjEAhxhJAn8COQBdoqkCqpbRBqIY/QYiW+kAeVNdAB9/bP0k/yT80h9RBE6h4QHFFa0AsL8pARQtPQT+MgkHV2p9Bp9WlQNSxgEAzVwBAdGIRQZr1JELG5ohB51aVQi2fCkJ1C49A3joJQHVJMkGqNQtBXgchQhw4eEAX9BBBmBNvQerOZ0EbE5lBwC3oQVluJUCsqSBBBogNQqCGHUBdV65B302fQRCzpkHcqRFBAP7cQJAmHEA5NRRAlSrSQGGVqkAnfB1A25eOQd4AAkGRQNs/njkxRFLv40A+BYxAfLVPQdb/i0AI5KpARbgvQd/CSEFXgqVAXJ22PyESvEAB2nhA+78uQDb7IkN+a+dAIG3zQbh/nEA8rNJBF+38QGdt5kBw4Ns/mD1cQYApyT+hn4VAwffbP6LIXEBlQQBApyxbQVpDz0BH/RJAnrVkQUIgXEFVfw5BCGz2QJhazkDLXxJBKpW4QB1qyT/kl69BUKCGQJvxG0BTw7xA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAFqjbkAAAACgKWNwQAAAAKChEnFAAAAAIHZhcUAAAACA9+VzQAAAAEC6U3RAAAAAoDH0dEAAAAAgAgF1QAAAAGAzMndAAAAAAHRWd0AAAADAIfF3QAAAAMCTRHhAAAAAANxTeEAAAABALrR4QAAAAACoEXlAAAAAQPJheUAAAABAtaZ6QAAAAMDoxXpAAAAAwD/ifEAAAAAAPUN9QAAAAAC29H1AAAAAwPk4f0AAAABAokZ/QAAAAIBoMYBAAAAAQOtggEAAAACAf3mAQAAAACD7PoFAAAAAoL1OgUAAAAAgvHKCQAAAAGCLwoJAAAAA4E85g0AAAACgsoKDQAAAAGClpINAAAAAIGW6g0AAAAAgmfuDQAAAAGAafIRAAAAAYBrjhEAAAACgfaOFQAAAAKAOA4ZAAAAAIOYphkAAAACg3mKGQAAAACCCKYdAAAAAYGtLh0AAAACgR7WHQAAAAOAWY4hA + KBZXds7jZUDXkZP9yKNsQBTpB48/A3JAQh3Og3zCckBqPQyU13N2QEJ7qtfU03lAapvo5y+FfUA= - + - r4lKQcyxb0A9d9RAcFHfQKgI4kC2WRxA5XwzQXQ4VkA9wxtAOm2TQWHdMUHfUbhAY1ulQITI40CrKxNADfISQNs7j0BC8RJAcTiFQTUAXUBEyjdAYGzJP6DJTEFrmaZAVjpdQCKQHEDUvApBCwkCQU70k0Clm0lBOyxVQZWt2UD1PkFA/2eFQAnTU0BxuxRB5X7cPzUzIUE9DyVAPubuQM8+iUGV8ZhAV9frQAmSyT9TP69A + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYAV/ZUAAAAAAf6VnQAAAAOA4h2pAAAAAoP9JbEAAAAAAPmZsQAAAAGDm5GxAAAAA4PApbUAAAAAAO0ZvQAAAAMAxUHBAAAAA4D+PcEAAAADABJZyQAAAAICtAXNAAAAAwBKic0AAAAAAjEF0QAAAAIBMVHRAAAAAwJhwdEAAAACAxgd1QAAAAEDOJHZAAAAAwFNCdkAAAACA3aB2QAAAAABTgndAAAAAAF/Ad0AAAABAgRR4QAAAAEBGlHhAAAAAgJzteEAAAADAEGV5QAAAAEDpc3lAAAAAwGLEeUAAAADAHtF5QAAAAIDe4nlAAAAAgCMiekAAAAAAPK96QAAAAADN1npAAAAAgAHmekAAAABAs1F7QAAAAACLbntAAAAAgGmJe0AAAACAQtR7QAAAAMDbBnxAAAAAwJFlfEAAAABAAHV8QAAAAACsp3xAAAAAwIPifEAAAABAQTR9QAAAAEAydH1AAAAAwOSBfUAAAAAA3d59QAAAAIB9ln5AAAAAAFm3fkAAAAAAf/V+QAAAAMBJI39AAAAAgCxAgEAAAAAA5mOAQAAAAOBaeYBAAAAAoLiDgEAAAAAgZKOAQAAAAKCx4IBAAAAAINv1gEAAAABggACBQAAAAKDSCoFAAAAAoI83gUAAAABg8lqBQAAAACCcYoFAAAAAwLdpgUAAAACgRZOCQAAAAOCE24JAAAAAQDXxgkAAAADgakaDQAAAAMC5S4NAAAAAYBadg0AAAACggR6EQAAAAEACaYRAAAAA4FDEhEAAAABghdGEQAAAAOCp4IRAAAAAYEtjhUAAAACAgG2FQAAAAGA24YVAAAAAYPPHhkAAAADgnPqGQAAAAMBDEodAAAAAgPhuh0AAAABA+auHQAAAAEDt+4dAAAAAwOxdiEAAAABA8tuIQAAAAAAX4YhA + KBZXds7jZUByWoXuS4RsQBTpB48/A3JAYG6KbtRSdkA7qk8G7hN6QCfJHqjsg3xAkf5TC4aEfkC+jpFWQnqAQKwsdCLPWoJAUm81kpmChEBADRheJmOGQFKeI7xFC4hA+l/4VZ5jikA= - + - je3/Pw1tXUEotkFAp1I7QH8wMECRz29A1y93QXQRtz9lya5A40ZBQG6mnEA8T6JAeVkfQKhv3D/gmGdAFrBTQHXNF0B3gxJAm8mJQHTe7j+q5FhAgKDJP6e2JUCl+L1AJRE7QYzzJ0DS4wlAco3VQKabrEAQlr1AfthAQBct7j8/6LNBUDm8QBrxmEC93nFB6zFdQNSbEUFFApRACpf6QG6MUkAKlk1BamOpQE4fykBnCJhAuZIlQCTAmEA6xEpAPXPBQLX2JUAv+rxAcx+iQMEmkUCaQ9w/tvO8QBQo9UBMYMk/KqioQT6ryD+rNYVB/BO3P5znakLlPZtB5nC4P8/CDEH+V49A5scWQsuhyUIp8KJBZWcaQnGzV0JdHy1Buq/rQFYLFUF32yxB8YSdQQFR7z9kIIRBWLIPQVUXPUGEEKtAF0O1QbTjqEBL5rJAqsmcQF4P1UDUEThA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAgMA/Z0AAAADg2yBtQAAAACDXYW1AAAAAwPI3b0AAAACAEYdvQAAAAICKwG9AAAAAwCNTcEAAAACgwDVyQAAAAADvbnZAAAAAwJ6IdkAAAAAA9rB2QAAAAMDM8XdAAAAAgG0jeEAAAAAAVB56QAAAAIA+hHtAAAAAgIbUe0AAAABAzph8QAAAAEAb03xAAAAAgN2bfUAAAADARgB+QAAAAEAVSX5AAAAAQDPAfkAAAADAwYF/QAAAAIDW339AAAAAgO8PgEAAAABguieAQAAAAABRMoBAAAAAwK5sgEAAAABgT3mAQAAAAOC/h4BAAAAA4BmOgEAAAADgY82AQAAAAEAd54BAAAAAoKb7gEAAAABgpwmBQAAAAECiSYFAAAAAIFZ6gUAAAACgun+BQAAAAOAdCoNAAAAAgN8Pg0AAAAAgTiODQAAAAEDMM4NAAAAAQEBgg0AAAADg5KKDQAAAAICjuYNAAAAAwFLAg0AAAACgxSyEQAAAACBSwoVAAAAAYBfNhUAAAAAgANmFQAAAAICmHIZAAAAAQHF4hkAAAABg/tiGQAAAACAKC4dAAAAAgH5Th0AAAABg5WKHQAAAAEDLaIhA - - - - - - 35nJP+dapD/OyC5A30TQQLWqhUDSQjhApiSmQN1CikDMr75A55bvQNIFE0DRhe4/sAxmQMs54kAZDvI/2KiFQE73HEELwoVA0BITQKZRsUCV0ANBNKoWQQV6RkEE2pVAddYRQdpGJkAePd1ABHaQQR5z1ECvaYpAh1QaQfW7ZEEY7L9Ai4ccQKHSXEAr/SxB7MAJQU71oEHHRxNAu1IQQpMCkj+eESBBMUQ+QhbWqkBiJvZBf6B4QInxs0BAXRhBobWXQWExFkENNWZA2yajQADxeEC+XT1BqU/dP6HUj0CI/RBB - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAgLWcYUAAAABgNMRhQAAAAADcW2JAAAAAQFvBY0AAAADgIOFjQAAAACAd42VAAAAAwJ+JZkAAAAAgQatmQAAAACCq7WZAAAAAwN9iZ0AAAABAaaRoQAAAAAACCWpAAAAAwEJnakAAAABARoVqQAAAAEALpGpAAAAAAF7lakAAAACg+WlrQAAAAEAWzmtAAAAAYPKDbEAAAADA5aNsQAAAAECbyGxAAAAAwEolbUAAAACAYChuQAAAAEDuaG5AAAAAAH3HbkAAAAAA/CJvQAAAAAAUP29AAAAAwJtrb0AAAABAWIdvQAAAAICqIXBAAAAAAJQ3cEAAAAAgomFwQAAAAICksnBAAAAAAEfEcEAAAABAptFwQAAAAKA78nBAAAAAQPtCcUAAAACAIWJxQAAAAADScnFAAAAAwEWjcUAAAACgJOBxQAAAACAiQXJAAAAAgNFkckAAAABAQoJyQAAAAIAHxnJAAAAAQFXkckAAAADA7P5yQAAAAODiF3NAAAAA4ANQc0AAAAAAlWNzQAAAAIBngHNAAAAAwM+Tc0AAAACAMqRzQAAAAKC/tnNAAAAAIHfDc0AAAABAQTN0QAAAAEAZp3RAAAAAAJ3LdEAAAABA9uF0QAAAAIDuE3VAAAAAQIEjdUAAAACg3zd1QAAAAECKQnVAAAAAQMdjdUAAAADAgIF1QAAAAIBgs3VAAAAAQK/tdUAAAADA5QF2QAAAAADMHXZAAAAAAGIydkAAAACgpkR2QAAAAKCaU3ZAAAAAoGFjdkAAAABgdHZ2QAAAAKAhvHZAAAAAwJ7QdkAAAAAAx+F2QAAAAIBM93ZAAAAAAIw/d0AAAABALF53QAAAACAUwXdAAAAAQLTMd0AAAADAEOF3QAAAAMCoA3hAAAAA4DcleEAAAADgWlt4QAAAACA9g3hAAAAA4E+1eEAAAADAieB4QAAAAAAeAHlAAAAAgHoMeUAAAACgIBp5QAAAAOC8ZHlAAAAAQCF/eUAAAACgTaR5QAAAAIAGyXlAAAAAoP3TeUAAAADA2t55QAAAACArLnpAAAAAoAc4ekAAAACAeEJ6QAAAAOCIY3pAAAAAYGB+ekAAAAAgG6F6QAAAAGCErnpAAAAAQNbCekAAAADAT+J6QAAAACAg73pAAAAAIKD9ekAAAACgWwl7QAAAAGClH3tAAAAAQBo0e0AAAAAgQVR7QAAAAEDjantAAAAAgCege0AAAAAgkrR7QAAAAKAywHtAAAAAYJfNe0AAAABAz+B7QAAAAOC07XtAAAAAwPoCfEAAAAAg8CJ8QAAAAMBqNnxAAAAAABJJfEAAAAAglFN8QAAAAADdZXxAAAAAIAaHfEAAAABAU6B8QAAAACBXtHxAAAAAoGAkf0AAAACgaGV/QAAAACBYe39AAAAAwP3Pf0AAAAAgAPd/QAAAAIBkBIBAAAAAoKoPgEAAAABAMyuAQAAAAGCQaYBAAAAAAIBzgEAAAABgkbeAQAAAAOA754BAAAAAgF4PgUAAAACg8lOBQAAAAICJgoFAAAAAgLWJgUAAAABgx46BQAAAAKDosoFAAAAAYFC+gUAAAACgqNKBQAAAAAB/74FAAAAAgJ35gUAAAADAzQyCQAAAAMAMP4JAAAAAgDNRgkAAAADAlmKCQAAAACAfm4JAAAAAIKijgkAAAAAgmLuCQAAAAIAWwoJAAAAAYKnXgkAAAAAg1eGCQAAAAEDN7oJAAAAAYHgDg0AAAABAbDCDQAAAAGDfSoNAAAAAYDNTg0AAAAAgqYuDQAAAAMCMlYNAAAAA4Myzg0AAAABgRMiDQAAAAMCN3INAAAAAIED2g0AAAABAATCEQAAAAKADOoRAAAAAIGVAhEAAAAAgz2OEQAAAAEDoe4RAAAAAQC6EhEAAAADgMpKEQAAAAKA1o4RAAAAAAMi4hEAAAADgSb6EQAAAACAbyIRAAAAAgCbXhEAAAABARv2EQAAAAGAVA4VAAAAAYMkIhUAAAAAgtBiFQAAAAMAvVYVAAAAAoPOKhUAAAAAAw6iFQAAAAID3sIVAAAAAoB7XhUAAAAAA+OGFQAAAAOAu64VAAAAAABgUhkAAAABgkDmGQAAAAGArYoZAAAAAoAChhkAAAADAnrOGQAAAAIChuYZAAAAAQIDEhkAAAAAghtSGQAAAAGDdCYdAAAAAoJUjh0AAAABgJ1KHQAAAAIDLkYdAAAAAQPvoh0A= - - - - - - we22P0/ihkGZG2ZAE+bzQEJISEE8inpBgCVCQNTsyz+yx/VALqEOQdqmQ0BG3LY/DMPRP7CQCEFz5i5A8dHuQMYG3EAh5glA2KS2P71zVkE54EJAD3K9Qd7a8D+jhABAdwhSQV/r7j9ndBtBuGKKQO/30EB+IWtB4x8CQFBh3D98FKVANZ3JP/wa8UAw+rRAyR45QOjXpUCU7ApAocKRP6mE2EBbVZhATMKlQD+aN0DdbYZBqky3P6ab3D/QW4BAOrslQP4IOUGwoL5AUh0HQf/6SEHIS4BATFDtQEc7OEHn/C5Aov5DQBhmAEDb1c9AzCJ3QWoz3D/c0oVAjlwMQfgzRUG0cAlAJtUxQk7m6UHlBI5AtzB8Qb8rikDtZ61AURhHQRy4lEI1iqRBQKbXQCHct0EyKTtB2HIAQNYl+UB8DoRBIj3cQJnDgkAkuMpBMwKdQNiPNEErC4FA6uw8QndBIkKXKM1A287QQZPTWEFJJlxA2O7fQMJUE0Deu+5BvK1xQRW9IkHFhANBOqcHQQ30GEF7hB9Bx+XNQI0dp0F46j5Aiy2PQUqyIUETrypBaHVjQg76pEEaDihBm2kdQTvKJkC/aidBg7qOQatXFUEBXQJCxmwOQbSBEkDsLkFBet6LQrqNMEAsoMxBQ8zIQX5n60GTKylBa5yKQSWhC0HUFBdBSggdQON6c0HIasJBtasuQPFFA0GJftRA/DyKQIhyYkFurVNArIleQrK+q0H8W5hA2jcPQV8jREEaryVAO2TbP+0P1UFmxyhB7hdjQbXWKEHQpDhAuWrOQOOeokG2rYRCFNfpQBJJLUHIA7dBPoIlQXe++UFuX8o/91aWQfpDkEFrnBJDc27cP96W8UCpJ5RAObePQTblFUM2ZklCLBBgQQDFGkKAoLZAZArHQML6lkEdxSpBJfOMQVP8iEGd6K9DnoGYQqrIpD+G7C5BQcoyQZiJ0ECpjwhBjah1Qdg6q0Lx661BHdtwQdW2A0EtaOtA+GMWQfnJOEC2Ax9BZWsfQf+lNUH+0KVAU28WQb9BgUCh1g9BODaKQMOpFEGSPKZAUQhxQAJYtkBSEWZA2RC3P7hHGULtFuJAhWsRQQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwHtEZkAAAABAk+VmQAAAAODK52dAAAAA4K2caEAAAAAAw2VpQAAAAMCzomxAAAAAwIpib0AAAAAgkiBwQAAAAMDZknBAAAAAQAD1cEAAAACAmURxQAAAACAMk3FAAAAAAPWhcUAAAABgpwNyQAAAACDFnXJAAAAAQB4zc0AAAABAhqJzQAAAAEA9DHRAAAAAgOJCdEAAAACAm1R0QAAAAIDovnRAAAAAQAXidEAAAAAAmAN1QAAAAECuNXVAAAAAgKNudUAAAADA+qJ1QAAAAIDUwXVAAAAAgFNjdkAAAADAs4B2QAAAAIAnpnZAAAAAQOTFdkAAAABAfdF2QAAAAEDi3XZAAAAAwAdCd0AAAAAA+mN3QAAAAEC3g3dAAAAAwKOfd0AAAACA/K93QAAAAACexXdAAAAAAOqEeEAAAABATjJ5QAAAAADmP3lAAAAAQHVceUAAAABASnJ5QAAAAEB9l3lAAAAAQH7FeUAAAAAACT96QAAAAABrYHpAAAAAAP+BekAAAAAAauZ6QAAAAMDn9HpAAAAAQPn/ekAAAAAALzJ7QAAAAMAcQHtAAAAAwO9Te0AAAAAAAGl7QAAAAMCTdntAAAAAgPy8e0AAAADAWN57QAAAAIDfD3xAAAAAgMEffEAAAAAASTN8QAAAAEDMcXxAAAAAgLesfEAAAACAW+J8QAAAAABIBn1AAAAAwNBEfUAAAACAklZ9QAAAAIBXb31AAAAAAM+jfUAAAAAA9rZ9QAAAAED83X1AAAAAAMH4fUAAAABAeTt+QAAAAKDjPIBAAAAAoG1KgEAAAABgUaeAQAAAAGCh7YBAAAAAoHcpgUAAAABAgkKBQAAAAODtg4FAAAAAoLyrgUAAAABg3MOBQAAAAIAgEIJAAAAA4IQzgkAAAABgv2mCQAAAAODnhoJAAAAAAI6dgkAAAABgwN2CQAAAACCoZ4NAAAAAABOMg0AAAACgA8iDQAAAACAnUoRAAAAAQCNohEAAAACg98eEQAAAAOAlBoVAAAAAwNGShUAAAADg4LWFQAAAAIBVzoVAAAAAIKD5hUAAAAAgDwSGQAAAAAD3V4ZAAAAAYI57hkAAAACgW4OGQAAAAEAeC4dAAAAAYGQTh0AAAADA1XOHQAAAAGB4n4dAAAAAAHnjiEA= + NrgMGZxjYkBImCMySWRuQEMdzoN8QnFARtUTyqeidEC3wo5zbEN5QIF3jJ9Xw3tAW5C1Y2IqgEBNt+9LbuKBQOyUNvyj4oJAFOOVW9rqhEB9mbeU5ZqFQD8NGF4mI4dAzjV2U1LriEB9yKW+kSOJQMUU9oGJg4xAEKlJ+ugrjUApQsCeFZyPQOX9FHkwlpBAkBCgZiaakUBlFQyOhlqSQEGSh9tPppNA5SwDo9welECKFMincAKVQC6vQ2/9epVACiy/vMbGlkCuxjqEUz+XQFOu/4jnIphA90h7UHSbmEDTxfadPeeZQKjKYsWdp5pAU93tspOrm0AkuqJcuXOcQLAG3q7Pq51A1tAHa///nUD69q9M+6+fQFLARwIbzJ9ATWp7fhhYoEA9h9OwKLqgQNj0G38r5qBAYcjzFjlooUDKfwWDRqihQIUJFH1JFqJArd4PIneookBFlY+HdPiiQPTyvhyNjKNA9KmHhZL4o0AYNN+CnTqkQBmicFSo+qRAPSzIUbM8pUA= - + - YYklQAmXVkCcHN4/YWrqQOKjpD+7Gd4/kqt6QOBux0BI5kNAiSidQIsNmEDJlsk/P104QEWByT/ntrNAIt+2P9ootz9fnIZAEHQjQfEQgUA/zo5AFXq3QBmk6UE4mwBA22NxQAQ4tEB+TqpAFXgJQMmSpkA39e9AyM7BQIJTcUBwzOBAvVagQGiX/kB9ASlB3yG7QIbPIUH+a3tAbQ1gQUppk0BPVN5ALlKXQdQ+k0DhAO0/d32RQLnchkC8wck/42SFQIg/mUEWyRNBF0iKQK5OP0GQueFAaYVAQTk/ckHWJLJA/RSYQIaeJUC7FVRA4Ly4QFWkeEC9UgBAKTO9QNT/tj87v+9A87mIQW6qAEBwRRFCorSuQCfcCUC5kf5AtqNUQYtWuUDOkYFATSYAQL/INEH+6jpBHLEEQR2PAEApoqQ/g7QTQDWF8EE4Hc1AHfstQTo3aELcBY9AJ9zeQYy4BkK5SMZAGkI5QIUUCUHSRNw/5Vi/QS34HEG5D4dA6h2eQG74nEB5soVA4hJmQDcH0UACGU9BRCATQFu+FEGK4thAAYQLQUP0DUGApKdA7/6rQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAI6jZUAAAACA/iRnQAAAAICMKWhAAAAAAGYmaUAAAADg5qlqQAAAAICBgW1AAAAAwEdfb0AAAADAWxFwQAAAAAD1A3FAAAAAADUtcUAAAAAAfEVxQAAAAMBex3JAAAAAwJ7yckAAAACAv3NzQAAAAECVrHNAAAAAgEE3dEAAAACA31J1QAAAAMC+onVAAAAAAGDzdUAAAABAaQV2QAAAAIDm83ZAAAAAQHYPd0AAAAAAIRh4QAAAAACYMHhAAAAAQFYCeUAAAAAAMld5QAAAAMAR0XlAAAAAQL0UekAAAAAAPWp6QAAAAECXkXpAAAAAwPoFfEAAAAAAmFB8QAAAAIA/jnxAAAAAwFqufEAAAADAVtV8QAAAAADK7XxAAAAAwDUJfUAAAACA6bZ9QAAAAEAY031AAAAAAKj1fUAAAADATyV+QAAAAACEP35AAAAAwEtWfkAAAABATmZ+QAAAAEAXc35AAAAAwBcjf0AAAACA10Z/QAAAAMA/eX9AAAAAYE8+gEAAAADA1YyCQAAAAKD0moJAAAAAoBqjgkAAAACgpayCQAAAAMDYGYNAAAAAoJIlg0AAAAAgZyuDQAAAAKCHM4NAAAAAAOJeg0AAAAAg96SDQAAAAADbVIVAAAAAgBhbhUAAAABgSNKFQAAAACCt5YVAAAAAoN7rhUAAAAAgFPSFQAAAAIDNFYdAAAAAIIQih0AAAABgqyeHQAAAAGCneIhAAAAAIND6iEA= + KBZXds7jZUBImCMySWRuQG+XdYaqQnFA6yam0jxjdUA28gnAwnN3QEYz8B0AtHtAXbNRN3GEf0A= - + - CmJmQOHxbUFZLwlA3l8lQGoWgUCfdnhAYKMaQVb1tUAp5AlAdBXCQP4tp0D29m5BUCncP2mRJUCnGhJBEZWFQOzQVUDZ1xNAg0yhQJvC2EArBg1BqOf/P9JuaEHhTOJAgauVQOMRpkAjdvNBTc9mQXrThUG0sRNBX5xDQdX0YEFx/WVAiHNmQB4unkAr/d5ATp3uP9VFE0CBE7c/qT2YQJzhSEFWlcg/WCC+Qaf9GELw7LBA/LkRQeil8D/7oeNBBj5uQaBV60Dzv1NAuqnfPyQPtEDiToVBvIUpQUhLW0GD1W9B5JSZQWabjkG3KxNAFr3BQJdCikBWU1xCV/ebQpwXf0HM2ElB1gXuQXXygEAHaxRBPVfMQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgNgkZ0AAAAAgr51qQAAAAGBizGtAAAAAAF8zcEAAAACgS+xwQAAAAAALU3FAAAAAANphcUAAAADAP+BxQAAAAIBcAnJAAAAAIPSFckAAAABAwlRzQAAAAECHg3NAAAAAAA2ic0AAAAAAtE90QAAAAEAVZXRAAAAAgM4CdkAAAADAVBp2QAAAAIBSoXZAAAAAwLzEdkAAAABA6ph3QAAAAAAJr3dAAAAAAEJfeEAAAACA0654QAAAAECy9nhAAAAAQNUseUAAAADAS055QAAAAEB4cHlAAAAAwB/beUAAAACAjgF6QAAAAAA7THpAAAAAQAF+ekAAAADAT/B6QAAAAACGBXtAAAAAAMive0AAAAAAwO97QAAAAAB5InxAAAAAgNJNfEAAAABA3mp8QAAAAICbpnxAAAAAADG2fEAAAACAQT19QAAAAEB4R31AAAAAQPBwfUAAAADAC9l9QAAAAECj5H1AAAAAQLMgfkAAAABAwGh+QAAAACDos4BAAAAA4PeBgUAAAACgvJWCQAAAACDdS4NAAAAAAMlqg0AAAACg2JODQAAAAODN8INAAAAA4O8shUAAAADgpQ+GQAAAAMBMS4ZAAAAAgAZ5h0AAAADgB0SIQAAAAGAa1YhA + KBZXds7jZUCN7m7sniJrQIkw7CrX8nJAzv0oxEAidkARt914yIN7QEKj6bMwI35Af7ruahtagUA= - + - 2DYcQWZZY0FDUa9AL/huQJ/nLkCVlkpAmQa0QDGtk0D4M2RBrNLbP50D/z9oeCVAwPXaP+NSoUDznh1A2DW/QFjHQ0H4hnxAQ4qzQExNpD+SVV1A34hKQIzMkEAfzk5Bh75TQB9LAkGsny5A0+UlQI+gJUBUsMZArcdAQIrfHUEQd7pAItPYQKfMMUHuBrxAPU18QW9q8EE+XbRBxJT0QGEIgEG8ZUNBqdN4QO4hMEJmyiVB9QuYQPRhCkFmG1VAG0q5P78/ZUDYPjRB0qolQOwYgUCNuTZBi43BQBa6jkD2E2BBIBahQLqLgkAYcwBA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwJGhY0AAAADADYtkQAAAAGBnpWRAAAAAwFDIZUAAAABAUiNmQAAAACDwoWZAAAAAQGT5ZkAAAABggE5qQAAAAAAupGpAAAAAYIEoa0AAAACA5UdsQAAAAKDJZGxAAAAAgImHbEAAAACA1EttQAAAAGAkaG1AAAAAIFTGbUAAAABAiwVuQAAAACCLY25AAAAAAHanbkAAAABAesNuQAAAAEC7KG9AAAAAQCdIb0AAAADAXuxvQAAAAMDpVXBAAAAAIKCOcEAAAAAgbZ5wQAAAAIA913BAAAAAoCHlcEAAAACgNfFwQAAAAABXBHFAAAAAwIc0cUAAAABAv39xQAAAAIBPkHFAAAAAYFEBckAAAACgG0NyQAAAAOCdYnJAAAAAgMiTckAAAAAASiNzQAAAAGCMhXNAAAAAwEi7c0AAAAAAbsVzQAAAAAAX/XNAAAAAgMkUdEAAAACAWSN0QAAAAGCXmnRAAAAAQFe2dEAAAABAYeB0QAAAAOCf9HRAAAAAgGkrdUAAAABgElF1QAAAAOBIcnVAAAAA4FuGdUAAAADAYpF1QAAAAGBHoXVAAAAAQHX+dUAAAAAARjV2QAAAAACmY3ZAAAAAwOOVdkAAAACARaB2QAAAAMB2sXZAAAAAoCgjd0AAAACAJ3l3QAAAAMAbkndAAAAAwFqkd0AAAAAA67x3QAAAAODF0ndAAAAAYDPkd0AAAADADPJ3QAAAAGDXgnhAAAAA4DmQeEAAAADg0KJ4QAAAAECMsHhAAAAA4MjAeEAAAACAas14QAAAAACQ4XhAAAAA4LkNeUAAAADgWhh5QAAAAKA/O3lAAAAAYDlieUAAAAAgXZB5QAAAAGBGtnlAAAAAAAHEeUAAAABgruZ5QAAAAGCo9HlAAAAAYJIiekAAAADgIUB6QAAAACBjpnpAAAAAoAXwekAAAABgcP16QAAAACB1J3tAAAAA4FU+e0AAAABgYmd7QAAAAIA/fXtAAAAAwIuQe0AAAACgspt7QAAAAICgtHtAAAAAgPzEe0AAAABgXgF8QAAAAKDjEXxAAAAAoPAkfEAAAABgBUF8QAAAACDuZnxAAAAAYDJ2fEAAAAAgPph8QAAAAGA1pXxAAAAAwOqyfEAAAACAy9N8QAAAAODw3nxAAAAA4N7xfEAAAAAg2RF9QAAAACBNJ31AAAAAoKc+fUAAAACgkkh/QAAAAODSVX9AAAAAICSVf0AAAABgO7Z/QAAAAGA73X9AAAAAoD8CgEAAAABARCqAQAAAAACKPoBAAAAAQI9SgEAAAAAA25KAQAAAACAsn4BAAAAA4P7TgEAAAADgfQKBQAAAACBUPIFAAAAAYJxIgUAAAADAb3uBQAAAAEA9j4FAAAAAoEKUgUAAAADA36+BQAAAAKCo24FAAAAA4NDjgUAAAACgXfKBQAAAACCJ/4FAAAAAYBxagkAAAACACG2CQAAAAAADm4JAAAAAgCX5gkAAAABA3QSDQAAAACBtIYNAAAAAQO4tg0AAAAAgQVKDQAAAAGC/WINAAAAAILyOg0AAAAAgy6uDQAAAAGAltINAAAAAgM4JhEAAAADAKFuEQAAAAIANjYRAAAAAwBq0hEAAAADg/caEQAAAAKDT2oRAAAAAwFjlhEAAAAAgFjeFQAAAAMDSW4VAAAAA4BCrhUAAAAAgTv2FQAAAAICYDIZAAAAAgPuQhkAAAACgVqGGQAAAAKB9tIZAAAAAYOW8hkAAAAAgcbSHQAAAAODSuodAAAAA4PTlh0AAAABAZC2IQAAAAGA7W4hAAAAAwGqAiEAAAABg6OqIQA== + NrgMGZxjYkBImCMySWRuQBu6YmAmQ3BAf9hb5OeCdUA9w2SRqbN1QKHhXRVr83pAmM+u3GwEfEDQH520YQKBQMuWRZjiioFA - + - n+x3QJERB0H9NDhAMlzyQPPzeEAO1HhAm6Q3QCdHAED7Y+dBA0ocQBYjDEDRxwlAPt0VQYopyT8qPXdB3DCvQEvRhUC/16VAYUalQNN/JUB5+yhBdTgtQK5zqkDwpQlA0RYMQH7ttj8FrXhADYeDQPyHuEDjqSVBtvzFQEoGZkCN1YBBBBYxQORj+UCHWPA/8gs5QAYGAUEeI69AN+CAQHzTLkAHXjlAfdPvQHTGgUH1GEZA2znUQF3MnEAWaQBAFmPBQIRQGEEh8RJAIbuFQBeTcEDG88pA4ISwQEWm7j+7xSxBKFnLQJYTj0C+jMBAbh1UQDgiiEBVPIVAmzRxQd63tj+hc6FBoZlbQXD2iUDz5ZE/A5rNQMCvu0A65KlB0KIpQUUwQkB8pp5AqM+2P7hkQUBDiWZBDPI3QNb2QEF08PlA447uP3dOlUHMKlxAveOAQBo8OkC/NAhBRwhBQXIWqEDR86FAjYvYQOC2jkAvdQpC8jTWQWUlp0BYXcJBYFTuPynB20E2RlNAAVEEQn73EkCYq5ZBP2BUQRbbdkKpnBBCYIe3QM8tAkK/DcJAHjWmQPjPOkFl78NBrkcPQn0xQUDWk7c/2eSSQuUf40AR7UVBIIFCQUBm7EAoh91Azj6ZQOxKOUHVfZNBC3SeQMhCAUHsPetAyhhfQex2KEDiekpCEGnAQD05FkIFApNACa4JQDAh2z+jyDlBREDJQCy1G0BDCBxAtFKLQZVsMEFJ/e5BTaczQSjLYEKHM49BZBSCQU5Q50HirSNBKNz9QAr0EkCtyGVAvd+dQAZdXEBTcUpBUhLyP1Q0+EHsZntBszcmQcWiF0GyJ/BAQ2bBQMc98kCd0mxByOnzQbH0qUF6PglBN3sfQTjO9UDh3rxAWFIDQQ5cGEE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIGjiakAAAADgyaFrQAAAAMAXI2xAAAAAwBepbEAAAAAAkchsQAAAAEDPRm1AAAAAYE7rbkAAAAAAcCVvQAAAAEC7aW9AAAAAQMMhcEAAAADA85NwQAAAAKDb8XBAAAAAQCfScUAAAAAAsh5yQAAAAAC9oHJAAAAAgLtgc0AAAAAAs3ZzQAAAAAARc3RAAAAAgCY1dUAAAADAd1N1QAAAAMBfMnZAAAAAQOHOdkAAAADAwJJ3QAAAAIBCQXhAAAAAQL/FeEAAAACAEfJ4QAAAAAClIXpAAAAAQH2YekAAAADApaV6QAAAAIBsB3tAAAAAwIgUe0AAAAAAD4d7QAAAAACYtntAAAAAwBHEe0AAAAAAhPJ7QAAAAIBYRHxAAAAAwBYvfUAAAADAA0R9QAAAAMARVH1AAAAAwJCmfUAAAADAAGF+QAAAAEB8eH5AAAAAQDSFfkAAAAAAr9h/QAAAAAAcHYBAAAAAoJdHgEAAAABg6mGAQAAAACBrc4BAAAAAIIyZgEAAAAAAI6KAQAAAAGCVyoBAAAAAwDrpgEAAAADA/yqBQAAAAKCEYIFAAAAAAEiWgUAAAACgyNKBQAAAAKBu3IFAAAAAIHD8gUAAAACgUBeCQAAAAGCUY4JAAAAAILaOgkAAAACgoJOCQAAAACBZnIJAAAAAoG2ogkAAAACgKMKCQAAAAOCq8IJAAAAAgMoTg0AAAABgoyCDQAAAAAAKN4NAAAAAIJZOg0AAAABgyXqDQAAAAOC7oINAAAAA4Hy6g0AAAACAbdCDQAAAAGBP5YNAAAAAoJfrg0AAAACAEhGEQAAAAICBN4RAAAAAoPZQhEAAAAAgO1+EQAAAAKD4aYRAAAAAgJ9AhUAAAADAzdKFQAAAAOByM4ZAAAAAIPVIhkAAAADAmlmGQAAAAEA7cYZAAAAAIOmzhkAAAAAADLmGQAAAAKAe1oZAAAAAIETwhkAAAAAgT2mHQAAAAKBLeYdAAAAA4Buxh0AAAABgV9OHQAAAACCu7odAAAAA4Jzzh0AAAABgYDyIQAAAAECzQ4hAAAAAoBqNiEAAAABgtNWIQAAAAKB734hA + KBZXds7jZUDUvl+A/sRuQKz0JpO9sXBAiDDsKtfyckBzT7vM1eJ5QE+LgGTvI3xAkKB3ty1zfUBz+j3e4vGAQOsIOVlwWoJA - + - AQ+bQYY+AEAtrUpAAbUSQCfSq0ASoxtA9R+nQLegF0G1GKFAt3HGQOxgJkGUghxBDGHbP0ULCkB6eMg/fuqCQdg0nkD4f7lAgzVBQK6aeEAjO2ZAW/RMQOoLbkAymm9AWmlVQEHD2j8v6YFAPGChQKD9yUCMgaNBdgTJP11+u0BgDlRBjpPtP9L0CUFWgEtACobaQBN5VEAIRjlASOs/QbKl2UA3QVtBEVW9QK/2t0Ce59NALFYmQQmxhUA0OkJAsEacQcZdXUCFjrY/lK7jQAcOmECm5DdARto/QUw6NEEF/TBAzr//PyvunEAGGaZAoxV1QS6uqUGRq0BANE0mQJ6JOEKeS1RCYKNWQM/CLUGRgf8/4+e8QKAYLUEYrDpBv6VVQc3pXkAgMPVANX7jQRUzAECMaIZASHAuQC2Ttj+DjetAntHNQaDB6EFmOe8/KLkSQDIcHEDmDqNAsDBeQaJIwUCO5FZCzNVnQP9YQUD00qpA07cnQI4C9EEZ51VCYbJWQCFwCUGb7LJBVVYxQWBXr0MPyIZA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgCtEW0AAAABA9ktfQAAAAOBFxV9AAAAAgIhCYEAAAABgzQFhQAAAAADMRmFAAAAAQBSfYUAAAACgvkRiQAAAACDdZWJAAAAAwCmgYkAAAADARkFjQAAAAKDVbGNAAAAAIE1CZEAAAACAF6NkQAAAAEBRx2RAAAAAALDqZEAAAADA3CZlQAAAAMCMQ2VAAAAAwBZlZUAAAABATYVlQAAAAEBaY2ZAAAAAYJbBZkAAAACAguBmQAAAAEDnJWdAAAAAAJNJZ0AAAABgu6VnQAAAAMAaO2hAAAAAgNH/aEAAAACAzUhpQAAAAKBIZ2lAAAAAICVHakAAAADAPGJqQAAAACBKfWpAAAAAQDGnakAAAAAAn8hqQAAAAMD94mpAAAAAwEQHa0AAAAAAfkJrQAAAAECRZmtAAAAAgPXCa0AAAACAhCRsQAAAAMA4SWxAAAAAAG1jbEAAAADAtYJsQAAAAMCbo2xAAAAAAHjBbEAAAADA32RtQAAAAAB1oG1AAAAAgFfEbUAAAADATuNtQAAAAMB8BW5AAAAAAHIgbkAAAAAAWkluQAAAAAAiYm5AAAAAQGaabkAAAACAvMZuQAAAAMBU5W5AAAAAgIACb0AAAACA1iNvQAAAAMDRQm9AAAAAwNuHb0AAAABAfNxvQAAAAKAYAnBAAAAAAM0UcEAAAABAnyFwQAAAAEAdMHBAAAAAYP9EcEAAAAAA515wQAAAAACHsnBAAAAAALHDcEAAAAAATNRwQAAAAMBxAnFAAAAAoBwRcUAAAAAA4idxQAAAAGD6QXFAAAAAAKdYcUAAAACAZ69xQAAAAEC3wnFAAAAAwCfScUAAAACA+d5xQAAAAECz8XFAAAAAgI0CckAAAAAAjw9yQAAAAADpL3JAAAAAwIVRckAAAAAAGWFyQAAAAIApcnJAAAAAwNvAckAAAADgW+NyQAAAAEBv73JAAAAAABoAc0AAAABA/Q9zQAAAACAuH3NAAAAAAP8sc0AAAACgsjhzQAAAAEBnVnNAAAAAAMdzc0AAAAAAl4NzQAAAAIDQkXNAAAAA4KXHc0AAAADgKvNzQAAAAEBHCnRAAAAA4G+RdEAAAACgYap1QAAAACCrQnZAAAAAACrUdkAAAADg+SN3QAAAACCsg3dAAAAAYMq8d0AAAABgXP13QAAAAECbkXhAAAAAAP21eEAAAAAAptd4QAAAAKD9W3lAAAAAALtmeUAAAACA5HR5QAAAAOAG63lAAAAA4Gr1eUAAAADA9z56QAAAAGCvaXpAAAAAYHC+ekAAAADgeNN6QAAAAKAepHtAAAAAYP9lfEAAAABg/X18QAAAAEAl6XxAAAAAYNcCfUAAAACgTA59QAAAAGCxPX1AAAAAQLjEfUAAAADAlM99QAAAAMAQ731AAAAAIC0bfkAAAADg8NZ+QAAAAMDjaH9AAAAAwO2Sf0AAAAAAf0KAQAAAAGB++oBAAAAAIECTgUAAAADgmJyBQAAAAABWXYJAAAAAQHZ6gkAAAAAAlQKDQAAAAKChXYRA + NrgMGZxjYkBML328ejFwQI8BR/y9MnFApzvHBz6CdkAXiDhKr8N5QC/CuFUvE39AOUrBSjkKgEDSs7yiD4qDQMwqZYaQEoRA - + - zQVeQGItFkFuRMVAOBEMQFjbG0EfewlAAmAwQQPNJkCUQUhAmfYSQFYrCUAuBjFAtPhMQGZd7j8c1IZA0Lm2P1BQXEC9byVAf9vbP8p+5j8znW9A878SQAqVJUDv8q1CGhuRP4hJE0FRYYpA2knuP3dpuED4P+tAI2PYQJZNc0FDRck/f+4AQmasjUBFDcpBXgoIQZYduEA6tqlBV3NmQNdGr0BMr9s/sOX4QIImh0FG6yFCgo3/P/T0EkCPiUpAsSHdQMeEOUH7e+5A1walQF4hGEHj2AVBglG5P1ib4UBfjFtBhxrqQIoajEHYTppB0KXNP07J7ECaijBAZJeZQTCJEUAMYclAx/ddQHBZ7j+3ZSNCvDbhQdQjyT9v24RASXEZQS2bzkDS2hRBj72pQDT+k0EuLolA5qriQfAsA0LdyxBDBHJbQsjw0kE5EHhB+O2rQNNAtj/nqK9ALCbeQLah7UCEoAVB/oqSQGhCGUJpggZCk3bYQcDYCEFYmApAbTWyQQ1ZG0KXaixBO7RaQVd/hUBE6oxBgY8lQEMNb0BUPX5BfTkZQv6Y5EDQv6ZBjc+TQcVwh0B+qh1CKAeWQdAzvUBIw7tBC16DQRHvYEEE9EREoRlaQ/+HnkIwKSdB8NZ7QWbjXUG3BPJBwkaYQTkApEHONiFDGZOBQwWGmkJL7zhBlNuiQ8GI6EJev6pAQEOoQRm1BUG43GZB2jyHQMOzU0BvUQ9B/xpEQRS/OEBOcbFAEAimQBlXEkH0DIFA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQFTAXEAAAAAAAwheQAAAAECXgmBAAAAAAKveYUAAAAAA991iQAAAAADuXWNAAAAAwJQnZEAAAACAQL5kQAAAAIA752RAAAAAgF7oZUAAAABAjSZmQAAAAICpXWZAAAAAANjCZkAAAABgXuZmQAAAAKAZiGhAAAAAgMK6aEAAAABAdSVpQAAAAAB75mlAAAAAQJkGakAAAAAAhkRqQAAAAAALXmpAAAAAAIqoakAAAACAoORqQAAAAIBPFmtAAAAAgKuAbEAAAACAj59sQAAAAAB8yGxAAAAAQKgjbUAAAADAKWZtQAAAAEDi5m9AAAAAoBsCcEAAAACg5BZwQAAAAKAUUXBAAAAA4MtccEAAAAAAbLxwQAAAAKAx5HBAAAAAQEbxcEAAAAAAihBxQAAAACCRInFAAAAAwIRKcUAAAAAAKG5xQAAAAICCtHFAAAAAAAYRckAAAAAAMDJyQAAAAIDtknJAAAAAAGehckAAAAAgjbFyQAAAAMD6wnJAAAAAgHfhckAAAACALfRyQAAAAICK/nJAAAAAwD0Sc0AAAAAASWBzQAAAAIB5jXNAAAAA4GSjc0AAAADAtbBzQAAAAEDBwXNAAAAAoGUVdEAAAAAAOTN0QAAAAEBmQnRAAAAAQHBUdEAAAACAzZJ0QAAAAIARo3RAAAAAYF27dEAAAAAA6xx1QAAAAMAsL3VAAAAAQERRdUAAAADgIXF1QAAAAADWoXVAAAAAoP/EdUAAAAAAEdZ1QAAAAIALRXZAAAAAwEpUdkAAAACA3mJ2QAAAAEDMcnZAAAAAAEeVdkAAAABgQvJ2QAAAAMCoA3dAAAAAQB1Bd0AAAACg7lF3QAAAAMBJdXdAAAAAAOv1d0AAAACgKkB4QAAAACDjMnpAAAAA4D9SekAAAAAgRtR6QAAAAOD9y3tAAAAAIN70e0AAAAAguC58QAAAAKCho3xAAAAAIO8QfUAAAADgoBt+QAAAAMAEkn5AAAAA4E7UfkAAAABAdgR/QAAAAOBXT39AAAAAwDfHf0AAAADgeNp/QAAAAEBx5n9AAAAAIAUYgUAAAADAvR+BQAAAAOAWqoFAAAAAYJ3bgUAAAAAAYRWCQAAAAKDwcoJAAAAAYNnSgkAAAADg3CCDQAAAAODn2oNAAAAAYD3qhEAAAACAfIKFQAAAACAx1IZA + NrgMGZxjYkBImCMySWRuQBu6YmAmQ3BA - + - MHsAQHAkLkHOvNw/D0MuQCMcX0Ay3RJAbrHBQLLiN0Bce5lA5yF4QEnGf0ALRYZAhElDQH29AEGjwds/iw/yQKopaUCfNW9CzBy2P1KfU0DgK4tBkv2ZQKzKOEGhN8xBA+TtP1mcpEK6obY/ciZmQCbzEUK/z9o/KLf/P/O32z/YxOdAmR7xP+Zi1EDU5qY/Oz45QEybpECGfCVAd9HOQS3FJEB/3VxADF+HQGM/j0B6aWdA6+eGQLP0jUBIgCVAFWItQeoU0UDYJhxAlritQDSuCUBsLtpBjRsWQPBE9EDp3BJAYo3dQL2vMUErTIpApjhmQHIsrEGoqLY/WAfrQJDOOEB0OKFBcA+0Qd2nGkJ0AaZBsA0xQVR5iUDzKkFAwFKbQfr3AUDBAIhCnb8cQcBLtEGR8aM/zCkPQdzpTEGxLuZAyCqYQHltQ0CDNgJACKizQH6PjkBav6VBZSJSQjA5+UAWYYNCTulNQasPxkBZjOpB51XeP8A5ikDKUHhAMhDUQLRAYEJnTKJAgpCBQIlHhUB1AtZA4FNTQ84EVEBfnapAs2QBQJJRpD/488g/bacuQHwsc0E0l0pA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4GqJaUAAAADguqdpQAAAAMBXompAAAAAYOqra0AAAADg3iRsQAAAAICczW5AAAAAYIHkbkAAAACgWGJvQAAAAMDZ4G9AAAAAAA7jcEAAAADgrI9xQAAAAMBqGHJAAAAAgLFGc0AAAAAAGIF0QAAAAEA8xnRAAAAAwEkzdUAAAADA77p1QAAAAMA1H3ZAAAAAgOA0dkAAAACAc0J2QAAAAMBnVnZAAAAAgG8Rd0AAAAAA6DR3QAAAAEBZmXdAAAAAgBS1d0AAAADAS+J3QAAAAMCbInhAAAAAQB8zeEAAAACA8ZR5QAAAAIAa7nlAAAAAgOb7eUAAAAAAWRR6QAAAAAAUJ3pAAAAAwIbRekAAAABAPvF6QAAAAABKG3tAAAAAgJq/e0AAAADAm+h7QAAAAMDK8ntAAAAAwMZTfEAAAABA6Zd8QAAAAMBUpnxAAAAAgILLfEAAAABAkOl8QAAAAIAA9XxAAAAAQLUgfUAAAADAH8R9QAAAAMA40X1AAAAAgE8EfkAAAAAAxRV+QAAAAMAiJ35AAAAAAEsEf0AAAADAYnJ/QAAAAID7h39AAAAAAHe2f0AAAAAArsJ/QAAAAICtNYBAAAAAoElFgEAAAADAP3KAQAAAAMD5oYBAAAAAIAHIgEAAAADgqtSAQAAAAMDZ4YBAAAAAwHP0gEAAAADgJAKBQAAAAKA0DYFAAAAAYLoVgUAAAABAGymBQAAAAADtYYFAAAAAIFGDgUAAAABgHYuBQAAAACDEkYFAAAAAoCSjgUAAAADAHrGBQAAAAKCkuoFAAAAAYEbLgUAAAAAg0tyBQAAAAGBt5oFAAAAAYMIIgkAAAAAguB2CQAAAAOCcK4JAAAAAoDAzgkAAAACgoIqCQAAAAMBmuIJAAAAAACYDg0AAAAAAvCSDQAAAAODQN4NAAAAAIJZOg0AAAACgvlqDQAAAAGC+boNAAAAA4CmWg0AAAABgDpuDQAAAAIAkpIRAAAAA4Fb3hEAAAAAgPR+FQAAAACCQVoVAAAAAYEhnhUAAAACATmyFQAAAAGCiiIVAAAAAYAOuhUAAAADgtbOFQAAAAOCVuoVAAAAAAM3ThUAAAACAe9qFQAAAAIAK64VAAAAAAFD1hUAAAABgCP6FQAAAACD2I4ZAAAAA4EMthkAAAADgGUeGQAAAAKC8YoZAAAAA4KKJhkAAAADgyZaGQAAAAGCFzIZAAAAAoNvXhkAAAADA7P+GQAAAAIB3MIdAAAAAINw4h0AAAADAlESHQAAAAOD/c4dAAAAAYPOZh0AAAAAgir6HQAAAAOBtkohAAAAAAN7SiEA= + NrgMGZxjYkCmvpxNHCRnQEMdzoN8QnFA525gjBHDdUCeKRjPP5N3QPR9HNTXA3xAQnuq19QTfEDMZ1duNkKAQCdFs49NKoFA+W38E5hqg0DxTHxCz0KGQIxOoE/vcodA8XtqbHvLiUA= - + - 4KFJQG3Z2z/9ask/gy/JP7Ra8D+kgC9BX4ldP1SoqEBjFBRBTtCOQOjrEkA3LhxAtSkhQN+rxUBfb5ZBZcW4QOK3LkCTAe4/0xMBQYHGyz+oOLk/avSnQOXPykB39qNAx7kFQQVh3UCgTVdATDorQYqnU0BGD1NAtiybQF51HEFgxOBBoDPJP1HuTUCxK6Q/55fdQMx+hEHe1LY/pOYFQc8yFkDNoy5ARGOSQbRmCEHZcLZAQDmqQI7pzECGR5NAJcRqQU8nz0D53u0/vfqjQbcTmEElsJ1BdAi5QFR0PEBefhFBqSCGQQpltkEyY8lA+WMcQOMgwEDN9jNB+c8SQJ5WaEGsmlhBXfWGQdkjKUErGxRADEPrQpxso0GtfqtAY+E3QD0yxkD1YIpBDVHdQOz7nUEzYnxBDsYuQKkACEGVdbY/zogKQVvVCkDiUDxB1JgKQQPdpEFaAaQ/veltQcijfkFUwt1B8NyQQfgJSkFEnoVAp6ZrQWAXAEEabQBAF6B3QTRE6UFeakhBZYJ3QifkhUEoDMhA1TfWQFH0ZkHWiBtAfv1HQiA6L0FxVE1ANHwHQnbS1UGtiGZAjdZcQErc+0EPjvRAHdTEQRZ9BkH6csZAGqVJQcTiyj+PiaBBzp0DQQxaxkDpi6FBjdYNQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQDf9XUAAAABgL0tfQAAAAEBAKWBAAAAAQGbEYEAAAADgguNgQAAAAGARZmFAAAAAoFzjYUAAAABA3VpiQAAAACDZqGJAAAAAwMOmZEAAAABgs1xlQAAAAMDp5GVAAAAAoK2HZkAAAAAgksxmQAAAAEC2C2dAAAAA4Nx9Z0AAAAAAgMVoQAAAAABXmGlAAAAAwFkGakAAAACAbyxqQAAAAIC9oWtAAAAAQFrla0AAAABAVDlsQAAAAIDWY2xAAAAAAPmcbEAAAABA8MRsQAAAAIDPwG1AAAAAANngbUAAAABAXoVuQAAAAEDJZG9AAAAAAHd9b0AAAADA26BvQAAAAMBT5G9AAAAAQMRCcEAAAACA02RwQAAAAABsknBAAAAA4MKncEAAAACAi7RwQAAAAIAw43BAAAAA4HTvcEAAAADgUxhxQAAAAMAYaHFAAAAAALtxcUAAAAAgp5dxQAAAAMC1xHFAAAAAQD7icUAAAADA8fRxQAAAAEBOEnJAAAAAYEFOckAAAADgYmFyQAAAAICZgHJAAAAAICWpckAAAAAAvMNyQAAAAMAq7nJAAAAAgKYFc0AAAADAyFFzQAAAAIBcjHNAAAAAgLWec0AAAADAOtRzQAAAAAAT8nNAAAAA4BEAdEAAAACAdhJ0QAAAAIDCMXRAAAAAwHRDdEAAAACg22J0QAAAACAocXRAAAAAwGaNdEAAAACAE6F0QAAAAKB8vHRAAAAAAGfkdEAAAABAzxN1QAAAAEDVJXVAAAAAgG06dUAAAACAs1h1QAAAAGArZ3VAAAAAAFF0dUAAAAAAFYF1QAAAAIDbmXVAAAAAoO2udUAAAADAK8B1QAAAAKDR5nVAAAAAoNT2dUAAAADgDQZ2QAAAAABFFHZAAAAA4JYmdkAAAACgUDd2QAAAAIDwUnZAAAAAoOvid0AAAABAH8d4QAAAAKC7NnlAAAAAIJyDeUAAAABgkRZ6QAAAAOAVhXpAAAAA4Bcee0AAAAAgeyt7QAAAAGAFn3tAAAAA4ChGfEAAAADgRYR8QAAAAKB8lnxAAAAAQMD2fEAAAAAg/CZ9QAAAAEBwZ31AAAAA4JGNfUAAAADAy61+QAAAAEDE4H5AAAAAIA0Jf0AAAAAgMR1/QAAAAGBi239AAAAAYCIrgEAAAACA8EuAQAAAACAuUoBAAAAAACVigEAAAABAV42AQAAAAKBZsoBAAAAAoJDagEAAAADgLBmBQAAAAGBsJIFAAAAA4PJMgUAAAACgTVuBQAAAACC5e4FAAAAAYO+jgUAAAAAgkDiCQAAAACClRYJAAAAAgFTEgkAAAABgWVmDQAAAAIDG6INAAAAAoHlhhEAAAAAg6qeEQAAAAKCdmodA + NrgMGZxjYkA/KJil8iNpQHzKEHuiRG1A - + - 19DKQEchcEBjhoVAJ3kSQEE5okAQYEFA72qkPyBfcUC+QLxAwzbbP5iYSkDAgABAhHfuPxV3Q0AMcKFAfKzdP950lEDAQRNAHaEJQKXlZUCcW4BB5IW9QLvy7T/5XBFBgGNBQH5J4UDQqgdBiIuwQBx8vkE52lRBmI7uP27A5UERzIBAZTvRQMwTSkCb8TtBSwDSQEw1okEK9+ZArJKHQUAkVEDeYGdAqddvQElE+UC6+5VBGaEhQXttVUDpni9AjTscQEj1yT+EmC5Ay4rFQZJsZkBwqNRA498HQXoVp0D7oARB9FVqQcx4yj9Kw3w/qbA4QLN7fUEOnQpCLx60QW4gE0Ew/U5Ck955QPXCb0CLL/VA5q/xQJjlcEHCkJNAPQYjQfKR5UGGcABCQvSBQAyjgUDdKotBHkZ6QZWiJUFAn7xAW8wVQbTyE0Frh3xBqv6cQDRFLkCztLxBfC2LQN1Ox0BFOIZBkbBLQefaCEGr6JBBzJg3QJo0AUEZLpRAqO90QRGCBEE64CNBqJLQQCeb7j8mgzdAE/tEQUnZ2UD3MABAV5bLQE3eIEFDgqdB7VavQKnRCUCf2oBBosPJP+7yG0GfYlNAHXbrQAHtv0Cuj/BA1uthQa7zyD9ewQxBNHNBQPv1ikEGnxpBNlChQMMqHEDhIgpAV2EEQQX3sECOvZNA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYPuSWUAAAABgS0dbQAAAAIAFxlxAAAAAwPuCXkAAAACgqM9eQAAAAABKRF9AAAAAQJ/IX0AAAAAAjQlgQAAAAIAlm2FAAAAAQCIkYkAAAACgu2diQAAAAIBeoWJAAAAAwCbmZEAAAADA9mZlQAAAAOBOgmVAAAAAwIGoZUAAAABgCGVmQAAAAAC4wGZAAAAAwKImZ0AAAAAAyUhnQAAAACDPm2dAAAAAgBXjZ0AAAABgDx9oQAAAAIANRGhAAAAAwEZmaEAAAADg4IRoQAAAAMDQYmlAAAAAYN6faUAAAABAxr5pQAAAAAB14WlAAAAAgIsGakAAAACAch5qQAAAAICViGpAAAAAgNmnakAAAADAxMNqQAAAAED+5mpAAAAAgPIDa0AAAACAemhrQAAAAAAKomtAAAAAAKfCa0AAAACAO/xrQAAAAEAoKWxAAAAAwKRrbEAAAADA8MtsQAAAAMDn42xAAAAAwAthbUAAAABASIVtQAAAAMB5p21AAAAAgL+9bUAAAABAMuZtQAAAAABpaW5AAAAAwJGqbkAAAADAN8ZuQAAAAIBGIW9AAAAAwDxBb0AAAAAA4GBvQAAAAEBHdW9AAAAAwA6pb0AAAADA78RvQAAAAAD75G9AAAAAYIUkcEAAAAAAkTJwQAAAACDHUXBAAAAAoFtecEAAAADgcXBwQAAAAABaf3BAAAAAQHmRcEAAAADAPbFwQAAAAIBm5XBAAAAAQMX/cEAAAADgehNxQAAAAIDfJ3FAAAAA4NE0cUAAAAAgqkNxQAAAAEBJWHFAAAAAAFRlcUAAAADAJXFxQAAAAACjmnFAAAAAAFClcUAAAADAp7JxQAAAAGDZ03FAAAAAAKbjcUAAAADgKfRxQAAAAOBtBXJAAAAA4B4RckAAAAAA4iFyQAAAAIA9MnJAAAAAwG5BckAAAABAplByQAAAAED8YnJAAAAA4FZuckAAAACAsoVyQAAAAKDQmHJAAAAAYAGnckAAAABAELZyQAAAAEBWyHJAAAAAwNjwckAAAABAUAVzQAAAAMAID3NAAAAAABwic0AAAADACTJzQAAAAABVPXNAAAAAgLtRc0AAAADA/GtzQAAAAABMd3NAAAAAoBSHc0AAAACAvZdzQAAAAIDmqnNAAAAAYEq1c0AAAAAgZdBzQAAAACDz5XNAAAAA4An5c0AAAADA0AZ0QAAAAECfEnRAAAAAQB4kdEAAAACgYD10QAAAACBQTXRAAAAA4C9kdEAAAABABn10QAAAAMBDxXRAAAAAQOwRdkAAAACgcEB2QAAAAGA+hXZAAAAAwDa9dkAAAADgGMt2QAAAAGD65HZAAAAAQGT+dkAAAAAgpBR3QAAAAEC0I3dAAAAA4A00d0AAAADAuFN3QAAAAODiZHdAAAAAoLB1d0AAAAAAwJ93QAAAAGB0q3dAAAAAQBC8d0AAAABgiNd3QAAAAID95HdAAAAA4C35d0AAAADgkQR4QAAAAIB7FHhAAAAAYKoweEAAAAAgcz14QAAAAOBBeHhAAAAAoMSCeEAAAACgRsB4QAAAAGBAznhAAAAA4CrjeEAAAAAgUgF5QAAAAMCRDHlAAAAAQBxJeUAAAABgQVd5QAAAAOBEZHlAAAAAIN5yeUAAAABgep15QAAAAIB92XlAAAAAIDbkeUAAAADgagV6QAAAAODSInpAAAAA4HgsekAAAADAYjp6QAAAAABuZ3pAAAAAYMl1ekAAAABApKN6QAAAAMCLsnpAAAAAQAq9ekAAAABgFdN6QAAAAKCu3XpAAAAA4LMMe0AAAADAACN7QAAAAECrPntAAAAAYLBMe0AAAABgMGF7QAAAAOBAhHtAAAAAoISVe0AAAAAg6OR7QAAAAEDM8ntAAAAAQCUFfEAAAABgPhh8QAAAAMBAJnxAAAAAQKIxfEAAAABgEEx8QAAAAMBjWHxAAAAAYGVkfEAAAACgbMN8QAAAAKDh0HxAAAAAwCjgfEAAAABgc/F8QAAAAGC5/HxAAAAAYEYmfUAAAABgV2B9QAAAAOBtfn1AAAAA4L2LfUAAAADgmbB9QAAAAGDavX1AAAAAIDX1fUAAAACgyQh+QAAAAECIIn5AAAAAQMc6fkAAAABg+0Z+QAAAAEDaY35AAAAAIO1xfkAAAACgLJ5+QAAAAKBvvn5AAAAA4JvUfkAAAACgJRJ/QAAAAODtNX9AAAAA4PQigEAAAAAgWV+AQAAAAKBdf4BAAAAAgDOygEAAAADgEzWBQAAAACCST4FAAAAAQL2YgUAAAACARauBQAAAAEAbvIFAAAAAIJfzgUAAAAAgcQCCQAAAAKB7fYJAAAAAQHiSgkAAAABg7ZqCQAAAAOCdrIJAAAAAoPq6gkAAAADAOwuDQAAAAOAbOYNAAAAAIH4+g0AAAAAg+WuDQAAAAGBldoNAAAAAgEjzg0AAAADgYQGEQAAAAMAdEYRAAAAA4AhLhEAAAABAQGuEQAAAAOCli4RAAAAAIASVhEAAAABAeaOEQAAAAIB934RAAAAAgIjkhEAAAAAA2gmFQAAAAIDgM4VAAAAAIApUhUAAAADgoVqFQAAAAED0s4VAAAAAIIHUhUAAAAAgZ5OGQAAAAGAlSYdAAAAA4MBPh0AAAACgzluHQAAAAOC4z4hA + NrgMGZxjYkDAIFw1+IJuQBu6YmAmQ3BAPcNkkamzdUCH0fWRKlJ3QKna98KtwnxAZISsCFjEfUBUHGoLA+qBQE+TEu+DcoJA - + - qNvuP/KZpD+AELJANDtmQN6GzkClE1RAcmheQJZ7pT/6ziVADuAuQIWNpkBzSwBAzCkRQR6m7j9zVQxB1e86QDnYekATXb1AjUOfQwPhFEJ0kEpASPWRQDriGUFI1rY/vUw3Qa3PpD91oqRBEa0nQHDXLkDdtiVB8PyqQJmNyj8e025BCXVjQ8BSzUEpzydBfUQcQJ6BgEBBDgRBURO7QMT9bkACzi5AqIJaP0b6tj/FuE5BWrSJQNtJQ0BeJhpB/OYVQKcaKEHsdSVA9EEfQKM130Cke15BuE/9QKK/BkE3XihATOdhQUZeG0F3EOZB8J8mQU5VXkBZGLc/7pEeQTKHAEGmdKFAMgO9QHOwp0FSzLdAtuE1QpuHGEI8mGZBPABWQUk+30GVSBpBTIgnQP4O0EGY57NB7jacQpt12UD1uW9AShc0QVDZRkG+V8VAoROwQHEhXkK/Gj9CreEWQlU9UULwZ5lBIlCMQeYFiUHoE99Ah+jDQT6/k0KE3NBA/gk+QZUhWkIC06ZAbxvAQRXZlEFXYHlBLbfAQWOhu0ERoj5CPkzBQtq0iULhHStBMlkWQVxh6EP8XoRCQGAvQS74NEGdVRVChBYbQVZHXkKsXrpBXujiQbH8UEE7fjhBJFlmQBGsmEJv1/NBtUuLQ44MhkLA7bhBah+cQSb3VkOam+hBrcAOQWIxwUEjSo1BbN/uP5pniUO0ZjtCFE6GQUXylEAYuwhCGhgZQgCVCkCDTdRA7mrnQeGxOkBaOEFDtogYQkBDg0E+rgdC5wPSQUA3UkM91E9D6RgeQ6J4l0N7UwJCUtfaQPOuHEAktYdD4l2KQsw0NUGAUDpCZmuEQlF88kDYWABF7Cn5QpIMG0HvY7FCitkpQxz7h0HMSXlApbrPQKvq5kCkvsNBM9g3QNn7DEFv7Q1CV4qEQQ7jS0FQf/M/9h6iQuIUhUIZt+NBuUuCQC6BEkIFvJFBMQ7KQfMfXEJZ6d1Burw9QweeHUPzldBBEXShQqaniUMchetDVVIHQsXofUMre+hBWLNhQfEppkDfdV5BLucTRJZdk0S9qbhAdlxmQMvNpj9p+oNBh57GQBHOpEAsoZZB0itdQJU56kDvUjBB43yKQL2jEkArN/5AicocQGUSp0A/qJ5AA5HJPyPos0B9X+VAPPOFQN+3wUAtRbRAfvQSQIrVyT9E1YdANyB5QIQ7a0FEKd4/BsLrQHMZC0BhoABAq2bLQD6hJkGnNhxAbcp4QHKtnEBEfNw/FTS7QOJWXUCDxAtBpOidQJ5QIUFVdedAShy9QKA8TUGWKvFAtK0fQQJEe0A5eDZB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIGUvWUAAAAAg4vxaQAAAAGDZTFtAAAAAoOTDXEAAAABAu/1cQAAAAMCOvV1AAAAAwCQLXkAAAADAu5NeQAAAAMDuZmBAAAAAAGKiYEAAAAAAW+ZgQAAAAADURGFAAAAAAD9mYUAAAADApL9hQAAAAIBMKGJAAAAAgO1DYkAAAABAcqFiQAAAAKCq4WJAAAAAwBUhY0AAAABAat9jQAAAAAAIImRAAAAAgAxlZEAAAADga8RkQAAAAMAs52RAAAAAwPNlZUAAAADAeX1lQAAAAADinWVAAAAAAI3BZUAAAABAhfdlQAAAAECvIGZAAAAAQHtmZkAAAACAfelmQAAAAEAcBGdAAAAAgEshZ0AAAADAC2lnQAAAAIDig2dAAAAA4AOkZ0AAAABA5N9nQAAAAEDHCWhAAAAAYChmaEAAAABgenxoQAAAAKAp4mhAAAAAgOQiaUAAAACAtaBpQAAAAMD+6GlAAAAAwGYhakAAAADAm+BqQAAAAIC+CGtAAAAAwDwja0AAAAAAmGVrQAAAAMAc6GtAAAAAQIsubEAAAACAYGxsQAAAAIAZnGxAAAAAgLy3bEAAAACACeFsQAAAAMAFJG1AAAAAQL4+bUAAAADA/lhtQAAAAIDbo21AAAAAgEjnbUAAAAAA7ypuQAAAAIB4Y25AAAAAgOG8bkAAAAAAE+BuQAAAAMD+G29AAAAAwBpLb0AAAACA5mJvQAAAAABFgm9AAAAAQAcTcEAAAACADCFwQAAAAACVMXBAAAAAQJhQcEAAAABAomNwQAAAAGBYd3BAAAAAQCKScEAAAAAAErhwQAAAAIDhD3FAAAAAAHMbcUAAAACgailxQAAAAOBjM3FAAAAAQExDcUAAAACAlk9xQAAAAMC7Y3FAAAAAQFlzcUAAAAAgmYBxQAAAAMBFtXFAAAAAQMPScUAAAADgg+RxQAAAACBN73FAAAAA4OQYckAAAACAD1ZyQAAAAKC7aHJAAAAAAAibckAAAABAAL1yQAAAAECKEHRAAAAAgKyDdEAAAADgqv90QAAAACCERXVAAAAAoN+7dUAAAADgaHl2QAAAAODitXZAAAAAYL41d0AAAADgXPp3QAAAAMAkdXhAAAAAAOXCeEAAAAAgazJ5QAAAAMDYCnpAAAAAwPS4ekAAAABg4OV6QAAAAEB+dntAAAAAQEI7fEAAAABg2LB8QAAAAMC0on1AAAAAwBB1fkAAAABABnh/QAAAAMDOuX9AAAAA4Dj2f0AAAABgR9qBQAAAAKB2goNA + NrgMGZxjYkA= - + - GexLQBx/LEHjRrc/oF2mQLYwikA6pNs/yCEIQdUVcEDDI0pAfKaUQAxiZkCW4Mk/QBbiQCb3r0CF1eVAnLMbQOegGkJ1e29BDWNmQFgobkCdRwpAXQxWQXBRL0DusZNA9AHvP6gkyUCheO9ALHm4QNQrbkGUgSdB1I1KQBPoLkA3V8k/NVgAQCWhMUEv9RJAXmicQZ8oMUG407Y/Xk2UQGYWlUBX0kdBUX8/QRjGAkFyCEtABUcIQQ9UOEAMeNw/qxQ4QUL0o0CZowJAVE4cQE/pRUAECsBBUreBPxpg/0G0IPxBHB7GP7AKeUCwkyVAy6OFQHROz0Bq9T9C8gQbQXSlE0Fi+C5A/y7UQZpOBkGULLRAX4RgQXbz7j9S+nlCwH4dQziIw0A30axBk5uHQRTFcEFmxWZAy57PQB0IZkEoyyJC5UKAQezK/UBud05BuYhgQRE230G4HpNAsZ6LQg1IdUHWwgVBwtowQaIMHkEYtFRCSJMLQU92rECf8MpARCcdQelNOEAnX80/79MPQT/AV0GPnSVAVP7uP/LcFUFy9UpAqRyYQdQmVECkmndBNpZmQCq4yT8Dsz1BWaaKQLFeyT+qbnFAT+m1QNgTpEG8o8ZAyLrLP2b4eEBbVutA + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgBwvZ0AAAAAANmpnQAAAAGBUjGdAAAAAwM0eaEAAAAAAyhxpQAAAAOCDxGpAAAAAQCYCa0AAAADgu+lrQAAAACASAGxAAAAAAFlNbEAAAABA+cVtQAAAAAC1h25AAAAAQFrlbkAAAACAa0NvQAAAAAABpG9AAAAAgORmcEAAAAAArKJwQAAAAMBXrHBAAAAAwBW2cEAAAAAATjJxQAAAAABPVHFAAAAAgECScUAAAAAAT6ZxQAAAAKAAsXFAAAAAIILCcUAAAADADG5yQAAAAIA84nJAAAAAgGZVc0AAAACAgX9zQAAAAIBukXNAAAAAQB8CdEAAAAAAzBF0QAAAAAD6KXRAAAAAgHE1dEAAAACAXWR0QAAAAEDshHRAAAAAgAqXdEAAAADAX7h0QAAAAEDuJHVAAAAAAAlDdUAAAAAAEYp1QAAAAEAf03VAAAAAQPggdkAAAAAAZT92QAAAAMBBgXZAAAAAwOysdkAAAADAhw53QAAAAMBHNHdAAAAAgBtCd0AAAAAAlHV3QAAAAICcgXdAAAAAAP+Sd0AAAACAAbp3QAAAAIBrBnhAAAAAAM5ieEAAAACA7pR4QAAAAEABo3hAAAAAAFQUeUAAAAAAeHV5QAAAAECYh3lAAAAAQFegeUAAAABAN+V5QAAAAMAeYXpAAAAAALJvekAAAACA44J6QAAAAMABs3pAAAAAgG/4ekAAAADAJy97QAAAAMCRQXtAAAAAgC6Ce0AAAABAdp97QAAAAABUvHtAAAAAAJcVfEAAAACAhEB8QAAAAIBnnnxAAAAAwFe0fEAAAADAzNJ8QAAAAACRDn1AAAAAQNJ8fUAAAADA8+x9QAAAAIAL/n1AAAAAwFcefkAAAADAQlZ+QAAAAEANeH5AAAAAQI+WfkAAAADAf6J+QAAAAACc5X5AAAAAQF80f0AAAABASX9/QAAAAODsDIFAAAAAQF8vgUAAAAAgSkuBQAAAAMC9kIFAAAAAIIMjgkAAAADgkGOCQAAAACBJeYJAAAAAIFkJg0AAAACgqxqDQAAAAIDhVoNAAAAAYGBlg0AAAADg0XSDQAAAAECBk4NAAAAAoBTmg0AAAACgTzeEQAAAAIDnWYRAAAAAgCJfhEAAAAAgLqyEQAAAAGDHCoVAAAAAwOkShUAAAAAgSkSFQAAAAKDIi4VAAAAA4FaThUAAAADgpp2FQAAAAEBu6YVAAAAA4P8ChkAAAAAAGbeGQAAAAGAYg4dAAAAA4EnDh0AAAAAgZ3yIQAAAAEAzo4hAAAAA4HCtiEAAAABgSrKIQA== + NrgMGZxjYkBImCMySWRuQFf+/uF9UnBArVID5xXDdECsUgPnFcN3QAKnB+ytM3xANdn0NAdUfUCfJMDgLqqBQC5NHtZasoJA - + - PeinP/jduED4feM/qNQ3QMKyoECuuwZAJ9aHQERBikDcHqxAqqocQBdHukC6MY9ArCjvP6VOOUBee+4/kWZlQeNNVEDXEso/rRwcQCF4JUD60Nw/khLNP+2hs0CjqI1BccuTQGKBAECgn7NA6h3wP2Qip0BOXwRBKev9QEpFeUCh845ArA8wQDWg8EDeF3pAR05xQPaX3D8smJpAFkpeQN0ojkG+fg5B2JKZQEAboUDgfZhAt7EAQLSa+kDwfvA/kR69QC+73UBmNOFBTg9oQKYuZUGZUHJBjMwmQNDtDEALxHdBDo7kQHzT8D/QpExAGbiTQNK/A0LicWVBSs4wQDBi40AAJCZAqq+GQXlc60Gdv7c/djbyQI+SBUHZv9pALFAKQDX8b0CIt6RBx8SKQKPKq0DwxI5CMZHdQLCpAkI224JBpEqjQea+a0ECqUhBrYMJQvzWZkDk2cFA2pUfQVpZAEBnzSVAMUm5QLNKPEGoN0JAEkymQDDzikCHo6hAQO6qQRW3LEILRstArZQHQgctw0BmtApCKTFJQZVADkEt6QtBcduFQMuOgUAAsKpAEs7eQGPUAEBZlQBASaEtQdIhgEE5bnBAvkQPQZsV+kDtftJAmvgvQdRnHECMGqNBMGiBQctEOEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4O+ZYEAAAABADSRlQAAAACBJRmVAAAAAQKjiZUAAAACA/UdmQAAAAODfIWdAAAAAQO7hZ0AAAADAuChoQAAAAOAkYmhAAAAAAIbCaEAAAABA399oQAAAAOBUD2lAAAAAAPAkakAAAABAv6JqQAAAAEBaXWtAAAAAIIipa0AAAAAAwIBuQAAAAABMoG5AAAAAAC4Hb0AAAABAsCFvQAAAAIChP29AAAAAgCoycEAAAAAAmmJwQAAAAGC7v3BAAAAAgM6CcUAAAACAFbVxQAAAAMDTwXFAAAAAIM3jcUAAAADAOhJyQAAAACDPZXJAAAAAwNfMckAAAAAgbv1yQAAAAGDqMnNAAAAA4IRvc0AAAADgaoVzQAAAAIDg9nNAAAAAYF/TdEAAAAAATEB1QAAAAOBMXHVAAAAA4IR+dkAAAACARB53QAAAAACcM3dAAAAA4FyTd0AAAAAAyqJ3QAAAAKAv0HdAAAAAACJmeEAAAACAXKZ4QAAAAAD67nhAAAAAoFh3eUAAAAAA4ZR5QAAAAKDDpHlAAAAAYC7ceUAAAABgPAN6QAAAAOCqVHpAAAAA4OtiekAAAABgyo56QAAAAEBrtXpAAAAAQC3bekAAAACgc1x7QAAAAGCUxXtAAAAA4Arwe0AAAADACAh+QAAAAMB0l35AAAAAIPppf0AAAADgRjOAQAAAAMABW4BAAAAAIKpigEAAAACgX6iAQAAAAKAe3IBAAAAAICqTgUAAAACAN6+BQAAAAGCL8YFAAAAAAPLLgkAAAADAAOuCQAAAAADm84JAAAAAoKoHg0AAAABgeVqDQAAAAIAsu4NAAAAAoPDhg0AAAABghuyDQAAAAKBTNoRAAAAA4KNChEAAAADgFZiEQAAAAADt6YRAAAAAwAT5hEAAAADA/ASFQAAAAMDW+IVAAAAAIH3DhkAAAABgkvOGQAAAACAJQ4dAAAAAoEd7h0AAAABgxIOHQAAAAEBGpIdAAAAAQP/Nh0AAAACgi9uHQAAAAOBmGohAAAAAYBo0iEA= + NrgMGZxjYkDAIFw1+IJuQIIZsEv/sXRA+0+R6hLTdEBw16+obeJ7QPutbT5r5HtAKAG5oYEqgEAcGSLxwgmBQCgwp8sts4NAHEgQG2+ShEBHcpIdu8qGQIxdcei5y4ZAR6GAR2dTikCDPPEW8WOKQBRBcq8yHI1AnA1D2wQSkEAZSRdNRVaQQA== - + - 416KQAyqM0GK1qBAci2TQIPVyT9a0o9BNH3JPxxdHEDVJktB5hHvQD69fEDDp0pAtAS0QNbBEkJRdXJAgTYlQDXlCUCRGChAG3+fQLToJUDp+y5AYMzPQP1S8j85fXlAE7TJP3dG6kDFjyVAer0DQUe1z0CLChtBDMjBQQk9kUAEP/tAjKQ3QDegFUF13M4/qdcbQDlakUDAb6FBC4C0QB+wnEB75T5BqIIYQSnNyEBnHHFAfHkJQETpKkGR7olB0eIaQfIufUGtYwxBKrVUQY7geUEQ4dBBIFzWQHpmFkQBDXNAxW1sQUS9E0FaQuVABzSXQdAso0A4Osk/ckShQLh3ikBv3apCxKykQTRCDkFqOBNA+H8PQW0wG0KAZ0FA+7VUQaN6+UCYoaQ/RaX5QFJFCUHUYotBIQHMQkY4wUG4GWZABHiBQP6qMECY8yVBa84FQdxOl0FMrgBAUgSwQLo2KUHuJYFAD5iqQvjLTEJENElBk4AcQCeZoUBcaKpATPzdPw== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoMBpY0AAAACAOKljQAAAAOC84mVAAAAAQBpgZkAAAAAAweNmQAAAAMDGA2dAAAAAwKAnZ0AAAABAlQdoQAAAAIDxqGhAAAAAwCpkaUAAAACAqAFqQAAAAAA0pGpAAAAAwLHIakAAAADAZ+FqQAAAACBFY2tAAAAAQBvua0AAAADAFGZsQAAAAMCQqmxAAAAAAGSrbUAAAADA2MptQAAAAGDgim5AAAAAgMbqbkAAAABgNytvQAAAAEC5RW9AAAAAAM5qb0AAAABAvuRvQAAAAMCrBnBAAAAAYHsucEAAAADgnmVwQAAAACAum3BAAAAAICw8cUAAAAAA0NBxQAAAAAAVAnJAAAAAQIclckAAAABgaFJyQAAAAGAdd3JAAAAAwOCQckAAAACAKrRyQAAAAICcvnJAAAAAYDjRckAAAABgmSJzQAAAAECaLnNAAAAAABZFc0AAAABgPVJzQAAAAMBaZXNAAAAAgBqDc0AAAAAAAbNzQAAAAKBQ1HNAAAAAwOr1c0AAAAAAkgl0QAAAAEBDG3RAAAAAgBxldEAAAABAgtR0QAAAAMB483RAAAAAwHEUdUAAAABA41B1QAAAAAD2rXVAAAAAgIq6dUAAAADAacR1QAAAAKD183VAAAAAoEQTdkAAAAAAzCB2QAAAAGAoP3ZAAAAAYKxVdkAAAADgN4F2QAAAAEAum3ZAAAAAIAHEdkAAAABAJgJ3QAAAAEAjIXdAAAAAAAFld0AAAAAA9nF3QAAAAECcnHdAAAAAIJi0d0AAAACgrNd3QAAAACAj9ndAAAAAgOAOeEAAAABgwyF4QAAAAGABLnhAAAAAgL9DeEAAAADAHIN4QAAAAIDAl3hAAAAAQOyheEAAAADAtsF4QAAAAEBV1nhAAAAAAMDueEAAAADgIRN5QAAAAODoMnlAAAAA4KNTeUAAAAAgHcd5QAAAAODn3nlAAAAAoJMIekAAAADArBV6QAAAAGBqS3pAAAAAYC17ekAAAABA/ZZ6QAAAACDlvHpAAAAAoO3VekAAAACAAOh6QAAAAMDQC3tAAAAAIBIYe0AAAABgmSZ7QAAAAEBORHtAAAAAAJpae0AAAADginF7QAAAACDwgntAAAAAgCS4e0AAAAAA+fN7QAAAAGDpA3xAAAAAYKEOfEAAAACgay98QAAAAGBgQ3xAAAAA4ACDfEAAAADAbo98QAAAAKAhp3xAAAAA4O7OfEAAAABgWdx8QAAAAGC6A31AAAAAQIoUfUAAAADAmSJ9QAAAAKANMn1AAAAAoFNQfUAAAABAq8h+QAAAAOAkGH9AAAAAIOUjf0AAAADgVyGAQAAAAGC6LIBAAAAAQF86gEAAAACAIkSAQAAAAAAlioBAAAAAQKSVgEAAAAAgjNOAQAAAAKCH+oBAAAAAIH4agUAAAABgszqBQAAAAMCKSYFAAAAAIJp6gUAAAADglIKBQAAAAGD2jIFAAAAAoEK5gUAAAAAgQtOBQAAAACD/HIJAAAAAQF4jgkAAAADAmESCQAAAAOBqTIJAAAAA4C1UgkAAAACgx3KCQAAAAGAztIJAAAAA4LW8gkAAAAAA5f6CQAAAACBUBINAAAAAwF0ng0AAAAAgHzuDQAAAAOBUhINAAAAA4Giqg0AAAAAg/7qDQAAAAAChzINAAAAAQDDeg0AAAACgD+WDQAAAAEBJ7INAAAAAALoShEAAAADgNDuEQAAAAOBqRYRAAAAAYOlchEAAAADApHqEQAAAAEALjoRAAAAAoAOrhEAAAABASMyEQAAAACDzCoVAAAAAoOEThUAAAABAVCiFQAAAACBeTIVAAAAA4KlbhUAAAAAgomOFQAAAACAXqoVAAAAA4CgshkAAAABgXGGGQAAAAOBbyIZAAAAAIALThkAAAAAAHJqHQAAAAKBt4IdAAAAAwL7lh0AAAADgteyHQAAAAGABAohAAAAAYGEjiEAAAACg5iyIQAAAACBScohAAAAAYPx7iEAAAADgtpOIQAAAAOCQ4IhA + NrgMGZxjYkA= - + - PrXuPyN14kB9DWhAM+xDQKAe3UBSX2ZAjozsQXHtE0HtQedAgIiqQCD3gEDMHbpBzQhlQNzHWkF2EApAavlxQChhhkAHfwZBmKuhQDosTEDztBVBGB2eQMI7HkFMARNASMwdQL6UJ0EE1o9A98wlQC4nzUBaG9RAP3n7QASBpD/4L0pAAATvPw/pAUEckMk/hJ0AQBD0w0ChBRRAw8MaQWY72UCoao9ArLWEQVJfOECz6LlBRWm8QMP6cUA9C3tAS++OQDt63D8pAzZBEBjCQHHYs0AMGztBMx20QDXZDEFEWQpBmtIlQJzc7j/rxLFBmBM2QUnFN0ABx29AlGSLQGeNZkDkQnRBOSSHQc2xE0FpVdw/jewJQGylO0FwUYxBXTVBQOg0ZkAa44BAF8b2QLdOl0EKalZBQdJKQNK12kGepPVA8sh8Qaiu2EAgqABAZEG5QX9inUAyxoxBWEoaQZ/KuEDxsJBBMwX+QOpTw0A+PWZAl9E6QaMPd0E/1mFBiduqQCjVJUFPr9RA5vgMQWUYFELOLAJBily8QZZVSUJKGKlBfyGCQKnAf0HCoNdBjeSIQcxPFkH0uWZA7I4wQYq30kEIMMJAljdxQTz+FkJr+DNB6bAdQofVk0C3Oq9A5blnQAZToUDJ4xpBT7mhQImDrEBe7tFBRE7JPxOci0BYap1BBDtjQXRpiUH4UbpAAR4cQP8lEkG3N1hBbsGKQiQgj0CoddRAuN/JP2dgAkFsHZFBcKgNQUII9ECe2AlASXzcP7vEMUF/WPFA/OTHQMTmikDfPopA9zdwQGwvZ0EMubNAz1gKQWUgh0EDsApBq9S5QCRnFkIRaxxAMdQmQO3NgkDszihBzAeUQIyHHECRzQZBI38fQb3DG0Ekt7ZBZiJUQFnuKEF4ygNCaKQXQTrIs0El4g9BSmkQQce8XUB6Qx9Bi18WQdXcJkBsfZBADeENQHCiGEGxlK9AmqUKQgDoTEH/1XhAVMjbP0mYz0CPPSRB + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwFiCZkAAAABA1ilnQAAAAACznmdAAAAAIKJ9aEAAAADgh6FoQAAAAIAfZWlAAAAAAFlsakAAAAAANadqQAAAAACbVW1AAAAAgMjsbUAAAABAOCduQAAAAMB2hm5AAAAAwJT5bkAAAACAMaBvQAAAAABMvG9AAAAAAMjeb0AAAABA/vZvQAAAAIDxDnBAAAAAQKwhcEAAAADAsTBwQAAAAACtsnBAAAAAQDHjcUAAAAAg3fRxQAAAAMCZV3JAAAAAAG9lckAAAACAEKZyQAAAAECpsHJAAAAAADjFckAAAABAun9zQAAAAICRjXNAAAAAgIigc0AAAADABrRzQAAAAEAmv3NAAAAAgCLYc0AAAAAASeJzQAAAAMCq8HNAAAAAACczdEAAAAAAjHN0QAAAAMCKtXRAAAAAAEDLdEAAAABAy+F0QAAAAIDoEnVAAAAAQP0sdUAAAAAAFFd1QAAAAMD1qXVAAAAAwLK+dUAAAABApOF1QAAAAEAA8XVAAAAAgMcZdkAAAADAeSN2QAAAAACKOHZAAAAAAKFgdkAAAADA+oV2QAAAAIAUonZAAAAAgH3VdkAAAACA+vB2QAAAAEBjAHdAAAAAAKQZd0AAAADAhyN3QAAAAEAnW3dAAAAAQNJsd0AAAACAoKF3QAAAAMDkvndAAAAAABHTd0AAAACA0+F3QAAAAIDK7ndAAAAAwHj8d0AAAAAAdy54QAAAAMClPnhAAAAAQAZTeEAAAACA1XN4QAAAAEB/fnhAAAAAABajeEAAAAAAEsJ4QAAAAMCTzXhAAAAAwDvjeEAAAAAARAR5QAAAAEA8RHlAAAAAwGBUeUAAAABAAJZ5QAAAAIDXv3lAAAAAwOrUeUAAAABAcuN5QAAAAEDr/XlAAAAAwIwNekAAAADADh56QAAAAMBvK3pAAAAAwF43ekAAAADAS2R6QAAAAIC0dXpAAAAAAIWAekAAAAAA4Yx6QAAAAIBKnnpAAAAAQHKxekAAAAAAsb16QAAAAMDC0XpAAAAAgHoFe0AAAAAACiF7QAAAAMAOQ3tAAAAAAI9ee0AAAABAnG17QAAAAEC+g3tAAAAAAEKUe0AAAAAApLx7QAAAAABny3tAAAAAQA3ce0AAAABA7Oh7QAAAAIAa+HtAAAAAwF4FfEAAAABA8BN8QAAAAIDlPnxAAAAAQBtPfEAAAADA1WV8QAAAAMDRhXxAAAAAgLPFfEAAAACAYNl8QAAAAEC453xAAAAAwDz6fEAAAAAAKB19QAAAAMD1Kn1AAAAAgFxNfUAAAAAAqFx9QAAAAECwbn1AAAAAwJOsfUAAAABATb19QAAAAIDY1H1AAAAAgNjkfUAAAADAnRR+QAAAAIB3Jn5AAAAAQEg6fkAAAAAA9kd+QAAAAIAIVn5AAAAAwDZnfkAAAADAOnR+QAAAAMA2h35AAAAAQGq0fkAAAADAFsx+QAAAAEC6135AAAAAQLzqfkAAAADA4fR+QAAAAACg/n5AAAAAQPsTf0AAAADAnR5/QAAAAMCVUH9AAAAAgDVef0AAAABApYl/QAAAAACmm39AAAAAYD+BgEAAAACg2oqAQAAAAICzyYFAAAAAoIsRgkAAAACgpxmCQAAAAID4IYJAAAAA4M57gkAAAACApoOCQAAAACAInIJAAAAAYK35gkAAAAAgxhaDQAAAAMAWI4NAAAAAoNUqg0AAAADAs4ODQAAAAMCfy4NAAAAAwDrag0AAAABAXuqDQAAAAGBF8oNAAAAAoC77g0AAAAAA+iqEQAAAAODiM4RAAAAAYLc9hEAAAABge0mEQAAAAIAIeYRAAAAAwC+EhEAAAACgYYqEQAAAACBesIRAAAAAQOK+hEAAAACg2TmFQAAAAODmSoVAAAAAoLqwhUAAAADAFbqFQAAAAIDU4oVAAAAAoBrohUAAAABAViKGQAAAAGDKe4ZAAAAAADyphkAAAACgqbmGQAAAACAT/YZAAAAAwH0Nh0AAAABgV0KHQAAAAABTfIdAAAAAIPqah0AAAACgi+SHQAAAAKD66odAAAAAwODyh0AAAABgawqIQAAAAICmXIhAAAAAIMNqiEAAAABgGauIQAAAAKCYxIhAAAAAANr7iEA= + NrgMGZxjYkBImCMySWRuQBu6YmAmQ3BAf9hb5OeCdUBCe6rX1FN4QNUsYOl/83lANB55p0EygEBqRZ4ebIKAQJVvICG4uoJAliFIkZRKhEAmdKG5+XKFQMFLypPggoZAajeaYHK7iUB7nqqLWIOKQCSKeljqu41ANfGKg9CDjkBvbi0oMd6QQD3aQZUkZpFAhINuKVf6kUCGXIJhRcKSQJtxw2Jr3pNANQVWnoAGlEAbibp3waKVQH/1JzysCpZAMZ77eOe+lkDJ5fnZ1w6YQEghzksYU5hASf3w7i3TmUCSEaDpQ1eaQA== - + - nyM6QBuvj0AzbZlA9peqQHZXGEB2nxNBBvQuQNyKDEJ1J4VAx5w9QU1JiUAZtw1AGscZQTQXUkCKrdg/a3lQQaFsO0H84QhB50YFQRFAcEDSFVVBNBHAQOMgiEEGNutAWDqLQFhhtEHFLBVCXj1GQGYluEEfixtBhZVKQRfh3UCPBAlB2OoQQUHiM0F0yu1BLvFIQVqnrEFpnoVARGHhQAEioEGfC7tAYw60Qbbf5kLZ+YVBYGZ3QQrCrT/rmYNAuDPEQV9aqUGaHoxCBDbvP8MZk0GepcpAl5uEQHN2yUGy1qVAWC9PQ5l4QkHrNnlB0XRaQFYztEE8491AdAhWQbZLkUGU1LxCVjisQeRdLUJ79PRBSE4sQQ7hj0OKhMhBHjS1QHz2r0KLWsRB4lG/QQ6p60EF++hCVEktRHmxAUJPrrBButgCQyrxr0DpfDJBoeiXQcDq80I1tNlBQ3oBQl4z3UETceFBTR73QbI4gEDPtDFDu82eQ4ZaF0G0v1FB4LveQlx+J0J03oxBOBiMQerB9EHmRCZCtFULQqj4QEKR0OlBlZzSQX4lG0LOlltDEmcQQusGsUAQLblBKHEHQoYoUUKWxCpC0BXEQwj39ULaE9pCWA9QQNOVmkJT2q5BdQlxQ5wLBkTvNA5CCXCYQyoFw0Gm3e1BZCihQWT3GkJULklCtpYVRHgsmkPbcyNAwFXLQCiPMUEcYpNCOEYsQgyZpELkSu9BU1U9QWQikEHSgRxBfSwqQ/hjCUI2H5BB5GY8Qe6NsEBzAEVA5UFxQFzVYEEvLcM/xnmRQSq2GUEkEjNBXQe3QGZvr0DGEvdAHecAQX/2u0Ho5tVA3mC8QCMSqkAWPlNBrvENQJTQqUBmySFCSZaZQHLjH0HctJlA4CyZQFdFm0AkwIdAekx/QcBL8UC/d3BADo3DQdfyDUAC+hhAct/oQIwak0ADiphBYN3dQEhY6kDjgVpANK7xQPKsnkBiQYVBpt+fQIOxe0CGpwNBW4HGQemT4UB7HpNBd6PZP2p3JEBGyexAxsPaQDufiEB5EA9BQTJ0QQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIIflZUAAAAAAbyVmQAAAAOBvImdAAAAAQJhnaEAAAADAvoNoQAAAAOCeoGhAAAAAQGDlaEAAAABAmYBpQAAAAGBooGpAAAAAoHYma0AAAACAZTtrQAAAAICsAmxAAAAAQLBobEAAAABAeaxsQAAAAEAzKm1AAAAAgBXlbUAAAAAg62tuQAAAACBmYm9AAAAAwPoycEAAAAAAokJwQAAAAEAJUXBAAAAAIMlicEAAAAAA05VwQAAAAGBWEHFAAAAAAKmXcUAAAADAebFxQAAAAECvw3FAAAAAYOjRcUAAAAAAovJxQAAAAAAjc3JAAAAAgNKAckAAAABAPxRzQAAAAADlZHNAAAAAwLVxc0AAAAAAS6BzQAAAAACltHNAAAAAQNr3c0AAAAAAdDZ0QAAAAECgQnRAAAAAwO2SdEAAAACAZrR0QAAAAAB4dXVAAAAAwM3WdUAAAABAeZN2QAAAAMAGnnZAAAAAwD7vdkAAAABAflZ3QAAAAIDO7HdAAAAAgERSeEAAAADAAZR4QAAAAMDu03hAAAAAwIaSeUAAAADAHbd5QAAAAEC+1HlAAAAAgEnfeUAAAACAJ/V5QAAAAEB0AHpAAAAAQMAUekAAAABA/CV6QAAAAIATOnpAAAAAAG5/ekAAAAAAZdJ6QAAAAEDSV3tAAAAAAI9we0AAAABAzJB7QAAAAICxnntAAAAAgKzme0AAAAAAMvx7QAAAAIC9MHxAAAAAwG5DfEAAAADAz3B8QAAAAIDXgHxAAAAAAKKSfEAAAABAgaR8QAAAAED2tHxAAAAAQG/kfEAAAABAFAZ9QAAAAMBoP31AAAAAwFRUfUAAAABAmY19QAAAAAA3nH1AAAAAgD6mfUAAAABAW999QAAAAMAf7X1AAAAAgIQYfkAAAACApX5+QAAAAICVkn5AAAAAwCfEfkAAAAAAlTJ/QAAAAMA3PH9AAAAAQDV5f0AAAADAyKV/QAAAAMCMwX9AAAAAwJLSf0AAAABACuh/QAAAAIBOR4BAAAAAoKBjgEAAAABgmWyAQAAAACDAgIBAAAAAQMqRgEAAAAAggJyAQAAAAKBny4BAAAAA4MP1gEAAAAAAWvuAQAAAAIAYA4FAAAAAIHAJgUAAAACAGhyBQAAAAGCnOYFAAAAAYCZTgUAAAADAnFqBQAAAAABXYYFAAAAAoOVrgUAAAAAgDK+CQAAAAIBA44JAAAAAoH4Cg0AAAAAARkWDQAAAAGDcVINAAAAAQLZxg0AAAAAgnXqDQAAAAMDYkINAAAAAILyYg0AAAABgddGDQAAAAMCq8YNAAAAAYLZJhEAAAADgL5aEQAAAAICBo4RAAAAAoP2xhEAAAAAgtgiFQAAAAOAlVIVAAAAAwFJihUAAAADgCGmFQAAAAIBncYVAAAAAIIC+hUAAAABgdgSGQAAAAAD6JYZAAAAAoG8shkAAAABgvTaGQAAAAEDjTYZAAAAAAAdrhkAAAACgnYqGQAAAAOBRlIZAAAAAYLHxhkAAAACgtQOHQAAAAGCUNIdAAAAAYLp/h0AAAADADaOHQAAAAGCuqodAAAAAIJ/Oh0AAAACgZtqHQAAAAIA57odAAAAAoCQbiEAAAAAg9EuIQAAAAOBNXohAAAAA4CyJiEAAAAAgw46IQAAAACC0oohAAAAA4HbRiEAAAACgsNaIQAAAACC55IhAAAAAQM7siEAAAADgl/SIQAAAAICO+4hA + NrgMGZxjYkDOIQhxcmNnQHzKEHuiRG1ArmsYctHidEAFwBx3adN3QNB0GqNUU3pAJ8keqOxDfUA= - + - PIqJQYfHgEA6/BNAINcBQK4lpkDobN1Ay3tfQWQpVEBfnslAkiE3QOA9HEBFdu4/lEGKQMSGaUGtMChAXompQCTClkG+HlZAKk9BQHpIhECCDhNBWx84QPL2N0Ap1lRBGupmQU9hQ0Fvi29AppOcQFJQnkHMaPBAK4u2PzZ/HEJ1EMtAaGeJQCz5FkHncRhBiC2GQMpxeEC4bRxBnG5mQON2X0GzZO4/7tWbQFPjDkEDtY5AB32TQJk9GEGRh01BgeGNQHzsfkEh/MpAxvh6QJmZ3UBilxxCks/0QG2lI0Hg68BAOaelQNthJ0Bn06RA2qCjP7ZQnECx/0tBVrrsQBkAEkCPwflAd7uEQEQ48EE9PAlAaHdlQKD8zUFLwJpBwiEhQvIX8UC3ckpAC5+OQPoBsEHGvkpAwFvJPzUOW0FiWYZBZupMQQQo1EAWiyVAeKsKQUbDBUHARd4/dnYQQiVEcUH0u4RAdlw8QlRH1ED0C8JAtCqZQT2oQUEfC7JCNg/DQeeJ3EAVBOVAFKguQPXNs0CQwZNAmx8FQU1chkFah4pBaaCFQXwWE0D81/hACUmmQfoA2UA4M4NB+WLGQBaFOEEz17Y/a7NdQZ02SkA58kxByfktQFF2qUBlAUBCi0M9QwEqBUES8+0/vPzTQCXLw0GhLkFAjKHIQBtW9kBiV/BAacpoQTXsbUBawVZA/7a0QQ9rhUCyhuhCNFaHQXBkyT+jmthApMKzQF/36EDfse4/7TQJQPslUEENX6JAIMbtP7aIMUEidhxAfo92QqviEUDbxuNCsaoQQdESNEHZNwRCcC6HQuH9ij/zwL9AFnMLRAq9/z995ApBJ70uQCYEz0ExZQ5B + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - - - - - - - - - - - - - - - AAAAoIbFWEAAAACAKUFZQAAAAECNz1lAAAAAIIULWkAAAAAgZo5cQAAAAMD8v11AAAAAQKLHX0AAAADAHydgQAAAAIAAo2BAAAAAwGHEYEAAAAAAXh1hQAAAAMAAQmJAAAAAoCmEYkAAAACA9u5iQAAAAAC9hWNAAAAA4DDlZEAAAACAET5lQAAAAOAG/mVAAAAAYB8dZkAAAACAvY5mQAAAAKC+vGZAAAAAYDAqZ0AAAADAp0BnQAAAAMBqZ2dAAAAAIJKEZ0AAAABgVqhnQAAAAAAbQmhAAAAAIFKgaEAAAADgAjlpQAAAAEA/gmlAAAAAwAWmaUAAAADA6klqQAAAAEAcYGpAAAAAwMaDakAAAACAXKhqQAAAAEDlwWpAAAAAQPoIa0AAAACAVWNrQAAAAICJpWtAAAAAQHLHa0AAAADAdOdrQAAAAACMB2xAAAAAgMhDbEAAAACAzYNsQAAAAACaw2xAAAAAwJWgbUAAAAAAUr9tQAAAAACt521AAAAAAEUZbkAAAADAv4duQAAAAABQ5m5AAAAAgNYOb0AAAACAZ2ZvQAAAAABZg29AAAAAAE+lb0AAAAAA1r9vQAAAAOA+AHBAAAAAgHkbcEAAAADgbGFwQAAAAEB7cXBAAAAAgAWDcEAAAAAA1aRwQAAAAEDKznBAAAAAQPjfcEAAAABgsOlwQAAAAKDU/3BAAAAAAE0lcUAAAADA83BxQAAAAKC9gXFAAAAAwP+QcUAAAACAo59xQAAAAMBksnFAAAAAwPr+cUAAAABALxByQAAAAGDkO3JAAAAAAO5ickAAAAAgA5VyQAAAAMBConJAAAAAoEy4ckAAAABAq8pyQAAAAMCs1HJAAAAAAL3fckAAAABAzvhyQAAAAEDeFnNAAAAAgJQic0AAAAAAMTJzQAAAAKAjQ3NAAAAAAHV0c0AAAACAdYBzQAAAAGDDoHNAAAAAgGbAc0AAAABAYtpzQAAAAOBOw3VAAAAAIG3OdUAAAACAWuV1QAAAAMC2InZAAAAAoKU9dkAAAADgAKR2QAAAAEBjOXdAAAAAYG9qd0AAAADAwoR3QAAAAECx+HdAAAAAoPwKeEAAAABg1RR4QAAAAOAIUnhAAAAAoARgeEAAAAAgPNt4QAAAAKB95XhAAAAA4GwxeUAAAACAz255QAAAAAC5lnlAAAAA4NPBeUAAAADg4gN6QAAAAGCYK3pAAAAAIN51ekAAAACgZoJ6QAAAACC9pXpAAAAAQCXlekAAAACgrAR7QAAAAMC2IntAAAAAYO/ne0AAAABAJ/V7QAAAAEDr/ntAAAAAoE5jfEAAAADAcG58QAAAAKALiXxAAAAAwDC4fEAAAADASEV9QAAAAGAQT31AAAAAQP3ZfUAAAADAcAh+QAAAAGDUV35AAAAA4NM1gEAAAADg4EGBQAAAAGBCqoFA - - - - - - 774JQJmSgUCFREFAlnUUQOqOCUAMBBNAdMdcQIPoEUAcispAU8qjP2VRyT8LaktAKFXtPzw8uEBQK8BA7XivQFL6S0Cn2qZB1E3uPxP9CUAY+iZANg4TQgGBXEGDvDhBeZcJQHnbtz/0kzxBBAOZQAwiCkHuy1NAg/4PQfZoJUBaMztBXCt3QN9bL0KrzphAYmhvQJSNJUDowIFA4wm9QBtVPEBRy05B9I3TQKDx7T+VIT9BCjzTQO2vxkB/ISZB+NYbQEEmxkBdUIZAuEklQCkeoEBoYKhBVAYTQJ5n7kBCUKJAG25BQPGtG0Eg+lNACiKMQVZko0EO3jhAGwaCQXyM2UDrTQFBxVaTQGp+dkBs3qBBkfE3Qb4ZA0PiHK9AZrwJQDmph0HlU5dBcB8BQdk3QUClgpxAglXJQXNfLkK3JNJAP1mKQLyJhkFitVlB/EXNQHeiqEHGbiZBecH8QbotnEAGSgBBpSOBQKm7VEA4qkpCtbywQIt9ZkAScphA+qH/QKAbIULs90NBoXOJQW7GS0HLI6VBWcuWQhAr2kErkAxCToheQQi8OkIfVmtBhkE/QW2pmUOJi8ZA5GOAQtEHcEHbnGtBGpTUQKwoz0DLJzxB9rqFQGeWpUBLVK9AZyNEQdylW0GkfbFB8IjoQQRzOUIwbQhDXpM6QfhZoEL0HmhCQSj5QBH2q0HFFO9AePwuQf4c9kCJM8dA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - + - + - AAAA4B/kYEAAAADgTD9hQAAAAMCvxmRAAAAAIMDdZEAAAABAjiFlQAAAAIA0qGZAAAAAQHvlZkAAAABAJSRnQAAAAMBfSGdAAAAAwHWHZ0AAAAAAgsdnQAAAAICIL2hAAAAAoPCjaEAAAABAlsJoQAAAAODNPWpAAAAAIC+QakAAAACAHNxrQAAAAOC2JWxAAAAAYGT+bEAAAABAP8NtQAAAAGDb2W1AAAAA4DcHbkAAAACAwSZuQAAAAIDahG5AAAAAgPdDb0AAAABACWxvQAAAAOC4snBAAAAAQIIBcUAAAABA0eZxQAAAACA383FAAAAAQLAEckAAAADA0GRyQAAAAMA7pnJAAAAAAEzGckAAAABAPfNyQAAAAICJBHNAAAAAoHaDc0AAAAAgb7dzQAAAAMClF3RAAAAAgFrXdEAAAAAAbCt1QAAAAICRXHVAAAAAwLrOdUAAAABArBJ2QAAAAABmIXZAAAAA4Cg1dkAAAAAAQFl2QAAAACD2c3ZAAAAAwMi3dkAAAACAI8Z2QAAAAIC7EndAAAAA4AxLd0AAAACATGd3QAAAAOD4k3dAAAAAYDivd0AAAACg/tV3QAAAAOCxU3hAAAAAIKh+eEAAAAAgVJV4QAAAAABjsXhAAAAAgHPGeEAAAACAYtZ4QAAAAOB263hAAAAAIK43eUAAAADA0Hp5QAAAAIApx3lAAAAAQC/TeUAAAAAg/PB5QAAAAADTCHpAAAAAQA5IekAAAABg+FV6QAAAAEDthHpAAAAAILSWekAAAACgELR6QAAAACDPonxAAAAAwCRLfUAAAABgWHR9QAAAACDZP35AAAAAQAxUfkAAAACgPoB+QAAAAOAeZX9AAAAAwBW5f0AAAABgryeAQAAAAGDNL4BAAAAAwEA2gEAAAABgFV+AQAAAAICwrYBAAAAAgO7BgEAAAACgB82AQAAAAKCo5YBAAAAA4HYCgUAAAAAgPg+BQAAAAKCvQ4FAAAAAABJSgUAAAABAwGyBQAAAACC70YFAAAAAQCnsgUAAAADApQOCQAAAAGAZJYJAAAAAoMp7gkAAAAAAupSCQAAAAKBzs4JAAAAAgMXCgkAAAADAb92CQAAAAEC544JAAAAAQO0Gg0AAAAAAOQyDQAAAAMDefoNAAAAAYNuGg0AAAADAlwmEQAAAAOAUo4RAAAAAoLP7hEAAAACgE0eFQAAAAMBRWoVAAAAA4GZihUAAAACAmnKFQAAAAGD02YVAAAAAAPbjhUAAAAAgqySGQAAAACBCXoZAAAAAwJ2HhkAAAAAgp1uHQAAAAKDjh4dAAAAAoGiPh0AAAADgTqGHQAAAAMC9bIhAAAAAIKFyiEAAAADgXP2IQA== + NrgMGZxjYkA2uAwZnGNlQHFahe5LhGxAG7piYCZDcECTuYxC6ZJ0QEJ7qtfUU3hAunrUuZejfECYz67cbMR8QIpDj4IteoFAL5Uhi8L6gkC1bRGFebKDQMJ1xcYZA4dASE61wNC6h0Dtn0fJZTuJQKx7f91cU4xAGqbsbsdjjEDXpQHgqIuOQFdDSFUPNpBANcPSDQBKkUBuxhooQMqRQLXaySJWrpJAtdrJIlYOk0A18sA3rHKUQA== - + - rtGJQGsYyT8mgs9AVUjkQJu270BEsD1B94eLQH9vhECtvYVA9zgUQKmyLkCHfxpBA9S3QCU6FUAb0ZxAmp0BQa9chUDO8A1BFtWAQMEItEDerQNBUttcQDN2EkCv2IJAZWkuQGNhKEEMZ7ZASyJdQEMK+EAc9XdA1gq2P/57pkBfvxJAym3GQFlOAECoOq9A30dxQF4DuEBYCaQ/GmrPQKAb3UBARcJBiHFoQL9LCEEeNXxApK0mQBBoaEG/AhVAucOrQIbIA0Gt/ARA7uJ4QCoV2z9HvmNADiOMQbYlCEFpwldBM2lbQfqQ6kA1naJA8sNCQRKPk0B6uXdAHSoIQdU0V0GUAJlB2FdUQXhLJkFxwj5CF/PjQLSyvUEMvsdBeOJxQQEv7UAKprY/EGZZQVEKf0EM1iZBYtSoQSMyHEC1PEtAbGPrQCqb9EBYJFxC0B6XQImMHkIvQohBPXbwPwEvxkAUdGFCTV6+QIEg10CVo+0/A4/BQVnVwUExe4BAZ4WTQPeFGEHx6O0/Nm/bP556MUBusalBUAuTQUg1s0ICritBRBeUQz81BEJHDKZAUwmFQsZIYEGglWVA//ZSQAdpIkHXtyxB+8evQICqf0HEtTlAib8wQLaL7UDkfhFBJgYUQWQ7QUD7oWRBjaaJQXVre0DTLFNAO6/3QIJ4zUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQKiZa0AAAABAmeNuQAAAAMCgH29AAAAAgPc0b0AAAACAgF1vQAAAAEBPjnBAAAAAQP+xcEAAAABg2i1xQAAAAEC/knFAAAAAgHWfcUAAAABARkZyQAAAAECOq3JAAAAAwJK1ckAAAACAXuRyQAAAAMDzUXNAAAAAoF5PdEAAAADA3G90QAAAAEAHUXVAAAAAgB3wdUAAAAAA1zJ2QAAAAAApc3ZAAAAAgDsSd0AAAAAAOC53QAAAAEBQo3dAAAAAgJjxeUAAAABArP15QAAAAEA2tXpAAAAAwBfRekAAAABA5/J6QAAAAIDB0XtAAAAAAOS1fUAAAACA4QR+QAAAAECzcX9AAAAAQAZ+f0AAAACA3op/QAAAAEBA1H9AAAAAIMERgEAAAAAApzaAQAAAAAAYY4BAAAAAANaDgEAAAABgfWmBQAAAAMCpcoFAAAAAQJOagUAAAADgANKBQAAAAKCvIIJAAAAAoMQrgkAAAAAg196CQAAAAMB8E4NAAAAAoEqNg0AAAAAA65KDQAAAAED1HYRAAAAAYIhmhEAAAACgJnuEQAAAAIBsmYRAAAAAAP/5hEAAAADAJUuFQAAAAGDCiIVAAAAAIJ3ZhUAAAACAcg6GQAAAACB6FIZAAAAA4MZphkAAAACgR+aHQAAAACBZxIhA + NrgMGZxjYkCYvfARosNsQEMdzoN8QnFAzLzUXClzdUBDe6rX1FN4QPN9HNTXg31AW5C1Y2IqgEA= - + - tPxAQIhtU0AMQ4dBIuQRQaA0yT/e5SxBhuAiQQunBUEUzmNDTJokQb5QokAL6RZCwDjrP4vTjkAAUt1AfI6BQe8tsUE8ZSxCILyFQFWeCULCc1NAshehQMD1kD+KFstAa7iwQYt/PkFNDhZB6QCAQvAP50BTYxxANhEDQcVQjkBxwSxCUmQGQVb8jkBciWJAkDhgQHG3JEHj+S1BsV/TQMGArkFDsq5BEiSVQN6uzkEpNGFA4+aXQParhUE9acdAchYcQan6rkBQYx5AmPOTQI/LEkA99xJAU55FQhtLYUG8dwZBXKKAQt6hEkCm1ORAA/CAQEDra0ELoAlA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoOBrb0AAAACA9lNwQAAAAGA8YXBAAAAAgDDDc0AAAAAAhNNzQAAAACBQ3XNAAAAAADm3dEAAAAAAiPN0QAAAAOBcUnVAAAAAQL4yd0AAAACAT1V3QAAAAED2InhAAAAAAANSeEAAAAAA/2R4QAAAAECId3hAAAAAgNpBeUAAAACAXWR5QAAAAEBjFnpAAAAAQPJTekAAAAAAWSV7QAAAAIAuN3tAAAAAwJ/Be0AAAAAA1+V8QAAAAICJZn5AAAAAgA6lfkAAAADAWDN/QAAAAIBMZH9AAAAAAMTUf0AAAADAV6mAQAAAAOA+wIBAAAAA4BrKgEAAAAAAQwiBQAAAAODFI4FAAAAA4JbjgUAAAABgsyuCQAAAACCNOoJAAAAAoGtpgkAAAABAJ/qCQAAAAEChD4NAAAAA4KIkg0AAAABAY6uDQAAAAGDDu4NAAAAAoB84hEAAAAAgUYqEQAAAAKBNs4RAAAAAIAG5hEAAAAAg2MSEQAAAAODZ54RAAAAAoK8YhUAAAABAZkOFQAAAAABZoYVAAAAAoI6yhUAAAACAbdOFQAAAAOBA+oVAAAAAYDkshkAAAACgG3KHQAAAAGBLm4dAAAAA4Oe7h0AAAADgviKIQAAAAGDoNIhAAAAAQGpDiEAAAABgyq+IQAAAAAB3uYhAAAAAAB/TiEA= + KBZXds7jZUA= - + - AJURQeRt9UC3G5xAksQ3QEaPpkBp3P8/EUO2PwNpk0AUni5Af2P0QMEePUGodEpAlRASQtnygEAAc7hA5fMbQIiXNUFDL3hAGn1EQbQkXUEi+u9A532hQHCDH0GtH/NASmWBQLZbCkGUqC5A4PBlQCvfEkCc2N1Bt3BKQFBq7EDqr5xAdIeFQP3XrkANx3pAcxtdQCViH0Hi885AC6fyP7mXm0DurJxAExHuPxE11ECkTMk/7f+lQNsc7j81AqZBHaW2P6nRrEB1h5FAKaiFQD1VnkCr9xtAX4HCQTwDlUAogF1AHDYyQSD6eEAY5c9AYp6+QIRWK0LfEIFAh3EJQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAICOoakAAAACgNwJvQAAAAMCGem9AAAAAAERBcEAAAADAEWFwQAAAAADIAXFAAAAAQMzdckAAAACADe9yQAAAAMAaBnNAAAAAQJ5Rc0AAAADAF79zQAAAAAAHDXRAAAAAAHZxdEAAAADAuGx1QAAAAEAzYnZAAAAAQNLPdkAAAAAAQTd3QAAAAACCgndAAAAAgN8ieEAAAABAMWN4QAAAAEAZYnlAAAAAwAHgeUAAAADA1/J5QAAAAICMvnpAAAAAgJLgekAAAABAiO16QAAAAAChjntAAAAAwP/8e0AAAADAxkJ8QAAAAMAhknxAAAAAAJ7vfEAAAADA0S59QAAAAIDCP31AAAAAwKlhfUAAAAAAgm99QAAAAADCj31AAAAAQFCgfUAAAAAAbfd9QAAAAEA5fH5AAAAAwB+GfkAAAABAcKN+QAAAAAA2tn5AAAAAAOFmf0AAAAAgOQaEQAAAAKBix4RAAAAAQLMDhUAAAABgv5iFQAAAAMCBYYZAAAAAgEBqhkAAAAAAB5yIQA== + KBZXds7jZUDXkZP9yKNsQDtMc7KVAnNAXVV14xhzeECA2Fvk54J4QEsTdUCHo39A+j4O6utBgEBf3BqYO9KDQD4CB5FkioRAGS/7j7PSh0DS4qrMu5KIQDeAt3oLY4tA0hGZ9mcbjEDx0pdyg2OPQDN5HpnfEZBA+ABDzhd2kUDCoXyOC9qRQIcpocNDPpNAQrlzo2Gek0DRGXNhb0KVQJ/iY5+dnpVAUTFqdsUGl0AuC8KUyWaXQJshPBTxCplAizSykAVnmUA9g7hnLS+bQOhdooxBZ5tAmqyoY2kvnUBkTeIjXTOdQK3PIvB9j55AfzANPaq7n0D7X/rG1EmgQP6PJuriw6BA - + - h9KQQLqw2z+fkbJAUVzKQNVOXkC3kAlAPtg3QJffs0AeDghBJo1vQL0pQUAx4BJAoMHbPwTIJEDZvKlAvqAjQU9zkT9RpXFAxZzGQECKl0BU/4JAnA0dQG1sWUGppfA/c26zQf527kAzQsk/6Sh3QAruh0DMETdABjrrQOzsGkGOjW9A8LDbPwP6t0A+DZ1C4sp3QWU3VUFlcstB0+BJQKOZKkFFWYtAMfkcQRO95kAqbpFA7ZScQAUch0DdbdRAtqi4QJDavEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4J3dYEAAAADgi/5gQAAAAODSJ2JAAAAAoBdfYkAAAABAySVjQAAAAGCyRmNAAAAAQLYCZEAAAABgM+FkQAAAAGDZH2ZAAAAAwAVRZ0AAAACACGhnQAAAAMDenmdAAAAAAA5jaEAAAACAAHxoQAAAACA+BWpAAAAAAMFGakAAAACAp7NqQAAAAEBn6WpAAAAAoPpma0AAAABAMwZsQAAAAKCKR2xAAAAAgOxdbEAAAADgJuhsQAAAAMDVJG5AAAAAALrobkAAAACA8yZvQAAAAMB5SW9AAAAAAHvbb0AAAADgZSVwQAAAAED/L3BAAAAAQDhWcEAAAAAgQ5JwQAAAAEDwsXBAAAAAIC/CcEAAAADg69FwQAAAAKCY73BAAAAAwO8/cUAAAADgKsNxQAAAAIBZ9HFAAAAAAGsPckAAAABAlFVyQAAAAOAMwnJAAAAAACnPckAAAACAbQFzQAAAAGDEEnNAAAAAwCpAc0AAAACA/dFzQAAAAAANOXRAAAAAYDlGdEAAAABAsZB0QAAAAADTwHRAAAAAYO3jdEAAAAAAh+90QAAAAEBuCHVAAAAAwLRGdUAAAACgFlh1QAAAAEBznXVAAAAAoKoRdkAAAACgZzJ2QAAAAMCxxHZAAAAAIN3fdkAAAACgRAV3QAAAAAClIndAAAAAgBNyd0AAAADgQ4F3QAAAAADouHdAAAAAYG3Ud0AAAABgduZ3QAAAAODFMXhAAAAAIG5WeEAAAAAgN2d4QAAAAKDyf3hAAAAAQDileEAAAAAg51h5QAAAAIA/c3lAAAAAYN2DeUAAAAAggKV5QAAAAGBptHlAAAAAoCPNeUAAAAAg7/R5QAAAAGCEAnpAAAAA4P4lekAAAADg10l6QAAAAKA9VXpAAAAAYG5iekAAAAAgv3R6QAAAAGClmXpAAAAAQDyuekAAAADg37p6QAAAAICH33pAAAAA4JXzekAAAAAgugV7QAAAAKBHI3tAAAAAgLdHe0AAAABgY3l7QAAAAMDbi3tAAAAAIFZvfUAAAADAz0R+QAAAAKBzmH5AAAAAYHj6fkAAAACglxt/QAAAAGAsZn9AAAAA4OuUf0AAAACgStN/QAAAAECs439AAAAAAMcwgEAAAACA6FGAQAAAACCmWIBAAAAAwKKfgEAAAAAg2amAQAAAAOB024BAAAAA4FLkgEAAAACgRvCAQAAAACBZCoFAAAAAQIEygUAAAAAgoVKBQAAAAOAknoFAAAAAoOSqgUAAAADgz+GBQAAAAODgGYJAAAAA4BEjgkAAAADgP3aCQAAAAOCOioJAAAAA4DengkAAAADg1K6CQAAAAOB5uoJAAAAAIPHCgkAAAABAmcyCQAAAACBp9IJAAAAAIF0+g0AAAACgX2KDQAAAACCjeYNAAAAAoKp/g0AAAADAPIiDQAAAAIDCv4NAAAAAABPPg0AAAAAgg/+DQAAAAOCYBYRAAAAAgIQLhEAAAABAAh2EQAAAACDcUIRAAAAAoBt8hEAAAACgV4KEQAAAAICrwYRAAAAAYAPqhEAAAACgKjKFQAAAAGBwZIVAAAAA4NSahUAAAABgOfqFQAAAAOATAoZAAAAAIA0qhkAAAACADzyGQAAAAODtkoZAAAAAgOfFhkAAAAAgp9uGQAAAAIBvaodAAAAAgB9JiEAAAACga2KIQA== + U6vsr5viYUA2uAwZnGNiQOJgFSPMRGtAMtznJT+CcUCIMOwq1/J1QPk2fF9XM3ZAT4uAZO+jekA= - + - T4sqQl+sZUDzHXpAk4tTQLtwkkBGCK9AqSOsQPKdDkHocYA/TcmOQDU2gUBqnRNBo5W5P22H9ED74opAv2sDQW5gxkBsJJNAJcy8QMIfl0DQhJNAP10AQCAg00AtvgJBqhYcQKMsZUAN1GVAoGyrQMAoOEHIbZhAT0WiQLHz3EDM8JJAvDklQOe4gECq18g/nQOoQXEMrkDDaDpAigrtP0/lEkDxVK5B/mh3QW/pgkHQ+fZAvIQKQAJAU0D4Z4lAPP27Qek9N0CroaM/8byOQAK6VkEIE0FAelImQVbLCUFCYjtBAIcJQJzwvEAQsQZCHenLQTZBQUCtheJBRvnvQLUXyT83uoNBe9nBQK5mGUF0QwdBZVRqQeAuiUC9oQlAjpjPQCPkrkAOsYNBvRe9QLyGGUKUC5RA9JeaQTpgRUGXGL1AfEOMQWrIXEBFd/lAaEC/QkQjN0AIOLZBKnDkQWzkEkLqCHtBpcuXQSfIqkBTsiNBlMV0QBQkQUHu0xhBRF9iQeGy2EBLEoRB7P+zQL/ziUDMAR9BQk3dQCinyD+H5lxAdo/2QWD7XECHFoFAK7SRQZY8m0A6qo9AhNFiQ3NOCEFAOW9AYZKmQV2uSkFF35FBJTFyQcj+wUGDUQtBpiyLQbiQeEDNFhxAH0OVQIBPj0DO7jFCHNbiQDCpLkCX0QpCVMQdQicQCUD4waM/KGdcQIgf+ETXAVNACxUsQjD5e0KyAXFDCN6dQl7F7UFSNcxBYLiMQYZ9FUGoRwlAcndTQKjSZ0FKNVVA14aPQNjA3kAryxxAx4b5QMqDcEEsmNRAFLeVQUBFk0D2sc9AaFmqQCyqE0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYB6la0AAAAAA+D5uQAAAAMCChm9AAAAAgPUscEAAAADArKJwQAAAAGALlXJAAAAAIMSfckAAAAAA3vRyQAAAAABWknNAAAAAQKCic0AAAABAdXB0QAAAAOBAgXRAAAAAQLCRdEAAAADADvN0QAAAAABZNHVAAAAAQEJTdUAAAABAhnd1QAAAAABekXVAAAAAQMWwdUAAAACAyxJ2QAAAAMBKMHZAAAAAACs/dkAAAACAq052QAAAAEBhdHZAAAAAwLiedkAAAAAAPrB3QAAAAMAax3dAAAAAQJpueEAAAADAqBR5QAAAAAAXP3lAAAAAQJRfeUAAAADACuN5QAAAAECe8nlAAAAAwBoDekAAAADAHRp6QAAAAMA41XpAAAAAAOdje0AAAAAAN4B7QAAAAED2j3tAAAAAgDCme0AAAABAg9x7QAAAAAA673tAAAAAQFg+fEAAAABA9Yp8QAAAAIB6pXxAAAAAQNsOfUAAAABA5Ch9QAAAAIA+Qn1AAAAAQAJnfUAAAADAMLF9QAAAAABCw31AAAAAQItJfkAAAAAAdVp+QAAAAABzhX5AAAAAwFWffkAAAAAA/8h+QAAAAEAu2H5AAAAAQCflfkAAAADATgJ/QAAAAEBDQX9AAAAAQKdyf0AAAACA1o9/QAAAAIDtmn9AAAAAAFm4f0AAAACAYuZ/QAAAAIDH9X9AAAAA4PQNgEAAAADAayuAQAAAAMDVPoBAAAAAwIFSgEAAAAAgRFqAQAAAAKC/h4BAAAAAQE2PgEAAAABgApeAQAAAAEDMoYBAAAAAwJGogEAAAAAgV8KAQAAAAEB/04BAAAAAQNregEAAAADAcOiAQAAAAKBz8IBAAAAAIHb2gEAAAACg3SuBQAAAAMDegYFAAAAAYIqNgUAAAAAAzp6BQAAAAKDop4FAAAAAwMbHgUAAAACAMuCBQAAAAGAg74FAAAAAYHb3gUAAAAAg2v6BQAAAAEBMEoJAAAAA4FgkgkAAAADgUimCQAAAAMDwMYJAAAAAoIY4gkAAAADg2FSCQAAAAKDZeYJAAAAA4BCBgkAAAABgiK+CQAAAAOAYuYJAAAAAAIK+gkAAAADADseCQAAAAGBm04JAAAAA4CHxgkAAAACAwv6CQAAAAKCSCINAAAAAIM4hg0AAAABgVi2DQAAAAICOM4NAAAAAwCRTg0AAAAAg31uDQAAAAKBiYYNAAAAAwEhsg0AAAABgeHGDQAAAAOC5eYNAAAAAgMWBg0AAAACAAJyDQAAAAADKo4NAAAAAoBC1g0AAAADgJryDQAAAAODr0INAAAAAQHbYg0AAAACAjeKDQAAAAGDA74NAAAAA4MUAhEAAAABgiAmEQAAAAGDjDoRAAAAAoCoZhEAAAADAszGEQAAAAECjEoVAAAAA4AwYhUAAAABApDOFQAAAAGBfQYVAAAAAABpLhUAAAADgLF6FQAAAACA/ZoVAAAAA4G+UhUAAAACg1aOFQAAAAMA5uoVAAAAA4FHahUAAAACA0eaFQAAAAIAA7YVAAAAAIHMBhkAAAACgZhGGQAAAAIB4IYZAAAAAwHY7hkAAAABAW4KGQAAAACBdkoZAAAAA4CiahkAAAADgB+CGQAAAACBR64ZAAAAAIH/yhkAAAABghQSHQAAAAACXGodAAAAAIPclh0AAAAAAFy2HQAAAAGCKVIdAAAAAoP1rh0AAAAAgJ3KHQAAAAEDOeYdAAAAAQIiRh0AAAABg15eHQAAAAEBopIdAAAAAoB2zh0AAAABAmL2HQAAAAKAF0odAAAAAwCngh0AAAACg0vKHQAAAAOB6C4hAAAAAYEEiiEAAAAAgICyIQAAAAOBtSohAAAAAgA+GiEAAAABg27SIQAAAAOD8wIhAAAAAADXiiEAAAADgkeyIQAAAAMBh+IhA + KBZXds7jZUDodNMYclFwQBTpB48/A3JAaj0MlNdzdkAPNhuQIGJ4QGWKH5W40nxAkf5TC4aEfkAy9H10CPKBQKoCee+VWoNA - + - rYx8QIwOn0ARrA1BSFndQMlE5kCd8p1AFW5oQB1UoUBe5lxAebUJQAhECUEsW3xAwd4SQLdGZkBWwVNAnfDtP3VP0ECWASFBNEuqQPUzDEExJ7tBbdZlQGsxOkCOTwBAEizJPzAGpD+MGRxAelLuP+uNyD+QNt5BOfXtPxOC+UD40ZhBr+MjQdlTyD/vOMk/U2yTQIvtEkAU83pAKgdBQNSdk0C5HohBpACKQIZzdkHRXghB5nAsQa7L1EAOdqJAmT24QN0B0EHTh8pAOhBuQYAVFECqGldB5CklQJj0yD8GVABBOFskQU0xH0ErnCJC2DkcQTYWFECZkwJBpP6lQNvFmEAQ/lxAsGoiQfdFzkBkWh1ChZAoQQfOLEIbtXxDBsZQQs70JEARksdAUdD5QWYWrEGbdU9BtsLkQOsdc0HgBNpBN1AqQAAk5UH2ExVBzS2RQY6hTEGMxdhAJB4dQlW2vEDK4bNAz72rQUxpLUEQbVJCr4mdQkqG00FareNBB9ltQU08jkHAJotBSlhPQaBDokGtv5A/W19nQfniHEHnojJBGrMOQSOJikFj33RB+r2cQGqdkULTLPNAatHcQabxsEIoNZg/yMdJQD0peEAjQoRBICejP5ZVNkL+vx9CmSkDQVcy7j/+ScxBp5kqQipByUG0A3hC6psLQoH8gEDYuVpBepPzQn3tCUHt331ASeeFQdUpPUH4K15Bfp4aQWJMWkItGh1B4itkQjbTBEOza7Y/jlzUQFdHvUAJte5Bn42/QXmXzEBnwKFAd8mwQep9XECEUVtBm9fHQMYOnkFl0o9AMoDbP1vxQEGXKsk/aYx9Qg6aEkLWTAFA5N6yQ4PIN0MvVjFBc2UFQYL2vEAheihB5h+oQYwXDEGJ70NA5w/PQRRt7UBA+I5A6Jv5QVh1r0CHOQBAerFxQetGaUG2UgFCwnW4QGr/Q0EpUKZC + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAA+qYUAAAADgksphQAAAACC8Z2JAAAAAwLh5Y0AAAACAhqVjQAAAACAdxWNAAAAAQLypZUAAAACAquNlQAAAAGDroWZAAAAAwJbpZkAAAADgtQVnQAAAAMBKJ2dAAAAAAFZhZ0AAAADAS5BoQAAAAADop2hAAAAAwD7oaEAAAABg/CFpQAAAAMDhImpAAAAAAMeOakAAAACAGadqQAAAAGAHRWtAAAAAAMKBa0AAAADAfOJrQAAAACDaQ2xAAAAAwLdabEAAAACAxchsQAAAAODRJm1AAAAAYGtEbUAAAACAVOFtQAAAAGBPA25AAAAAILJHbkAAAAAATSZvQAAAAIDtYm9AAAAAgKGJb0AAAABgniJwQAAAAMCaMnBAAAAAwHpgcEAAAAAgc51wQAAAAEDxsXBAAAAAoDpDcUAAAABgcnVxQAAAAIAKhHFAAAAAoPjTcUAAAADAjZJyQAAAAIDupHJAAAAAAPfEckAAAADgjdFyQAAAAAC+U3NAAAAAIAqzc0AAAAAgqSN0QAAAAOD5L3RAAAAAgENzdEAAAABg8ZR0QAAAAMC5t3RAAAAAwDXIdEAAAACA6Ax1QAAAAGATLXVAAAAAwLY8dUAAAACAe1t1QAAAAMCLZnVAAAAAQLvhdUAAAACA7/N1QAAAAAAuDnZAAAAAANUudkAAAADA5UN2QAAAAAB+VnZAAAAAAHFmdkAAAABACXR2QAAAAEBNlXZAAAAAAKerdkAAAAAAk712QAAAAAAA0HZAAAAAwCD0dkAAAADg3/92QAAAACC/EndAAAAAoCE0d0AAAAAAokZ3QAAAAMC+UXdAAAAAoJZcd0AAAADgfWx3QAAAAOCIg3dAAAAAgB/Rd0AAAACAHP93QAAAAKDCFXhAAAAA4CgmeEAAAACgM1V4QAAAAOCosHhAAAAAYN3geEAAAABAlx15QAAAAACYNXlAAAAAALxjeUAAAABge3B5QAAAAOAOhnlAAAAAAKijeUAAAADg59J5QAAAACBk6HlAAAAAoNH2eUAAAACA5gB6QAAAAOD/D3pAAAAAoDQ0ekAAAACg3EB6QAAAAACSTHpAAAAAgJ1mekAAAACgpHV6QAAAAGDon3pAAAAAQAGtekAAAACgJcB6QAAAAOB60npAAAAAoLLgekAAAADgAu56QAAAAOCT/npAAAAAoCkTe0AAAACg8zF7QAAAAGCadHtAAAAAoPN/e0AAAACga6F7QAAAAKA48HtAAAAAIGX9e0AAAAAAYDB8QAAAAOBVTXxAAAAAoLVYfEAAAAAA0WV8QAAAAGB9iHxAAAAAgBaZfEAAAADgobV8QAAAAECl2XxAAAAAoISufkAAAABA/HR/QAAAACAH1H9AAAAAoPrjf0AAAABAshGAQAAAAMDYF4BAAAAAoJMygEAAAADArXKAQAAAAGDEfIBAAAAAYGGqgEAAAACgUbGAQAAAAEBRtoBAAAAAoNDCgEAAAAAABsiAQAAAAGDq44BAAAAAYPACgUAAAACgtQmBQAAAACA+EoFAAAAAYO5FgUAAAABg+nyBQAAAAODZgYFAAAAAgEiKgUAAAACANq6BQAAAAECYuIFAAAAAgFW+gUAAAABg/PqBQAAAAGCXFYJAAAAAoE8fgkAAAAAg/0KCQAAAAKBjU4JAAAAA4MhxgkAAAACA7n6CQAAAAEC5l4JAAAAAYOefgkAAAABAjrmCQAAAAKCWw4JAAAAAoHLjgkAAAADgwumCQAAAAEC+/YJAAAAAgA5Jg0AAAAAANVKDQAAAACDphoNAAAAA4EKMg0AAAACAwpODQAAAAKAAm4NAAAAAYOWsg0AAAACgTLODQAAAAKCp6oNAAAAAYKbwg0AAAABglAKEQAAAACCoEoRAAAAAoIQyhEAAAABA4zmEQAAAAGCpUYRAAAAAIEpihEAAAADgiWqEQAAAAAA0e4RAAAAAoFeDhEAAAAAgCouEQAAAAMBomYRAAAAAIFazhEAAAACgx8KEQAAAAIA6y4RAAAAAgKPWhEAAAADAJdyEQAAAACAk7YRAAAAAQCP8hEAAAABAHAOFQAAAAKCQGIVAAAAAIJkthUAAAABAHTOFQAAAAOCGjIVAAAAAIJqnhUAAAAAA1eOFQAAAAIAH7IVAAAAAwC87hkAAAACAaWKGQAAAAKAytIZAAAAAoI3ShkAAAACAMNyGQAAAAAD88IZAAAAAwBI8h0AAAAAgxlSHQAAAAODGXIdAAAAAAJJkh0AAAACA7MuHQAAAAIBQ1odAAAAAoEboh0AAAAAg2/OHQAAAAIDQEohAAAAAgPgbiEAAAADgH+6IQA== + NrgMGZxjYkA= - + - WeI3QF0G7ECLqiNBrCzRQCHaw0AMpnRA5wFmQBDUOUG3uX5B8yclQDz5GUGMGGZAYRAHQcxQ2ECsO+4/fFuKQEqt0kDYrx9AfPd1QKJ3OEE0wERAvvtAQBjqiECHi85AaVOHQaLXEkDQ0YxBeC+WQeTeJEDxZA5BNbIfQC1UU0AmVpxBcm8uQLrFgkESautA0laRPyim2z+i8DxBMqSOQbYJwUCeEPhAq8gTQeaexUCoI4NB6PXJQUo1YUG69I9AR2a2P8GLz0A9LsdAb7MJQDibqkBgNwJB2De3QEQsikDZ2IBAx3obQOwu1UD6gj1BqDxWQR6/MULR44lA35eTQI2rMECigUxAQU6OQFDne0FYz59ADF0YQeUgA0J2sOVA7yyjQPe3VUBsXgdBOPyoQRTLB0H03+FA1O0TQb/FN0BogBpBUHAFQVKyA0FCrLhAJXGcQf6LrEGs0rZBCyOZQEV5gUF3p7hA0VrKQeEFQUBSljxB23bMQQSNGUIXlVRBUNKpQdcTZkAs+DlA+lWPQf+hhkBifKpA9cOlQFFKZEHgwLJA5fGjP76Jm0FFNR9BDHz9QJUOEkCSZYdBD1GTQIxbiUDfduhBtq5VQKn8Y0HDhM5BAC8pQi4F7j+0KjtBdPX8P/Nyk0DkBqJAQLIaQQTRXEAgZSxBgQxXQXm8pEDFMr5AUz3uP/jG+kFU9KM/C19fQLxjpkKBZ0BCHD1tQbC4ykDj2WNCCesFQRp9HEH+sgdCQbkSQIS3M0JMH2ZA7YiGQOns3UGtbgBBfAH5QFugAEEBg1NBP7+lQKJNX0FgaZ5B88sLQDZbPUFfJV1AyoqAQIbwfUHk1NNAeq17QE5JZ0H6sipBTyArQQHF+UA57S1BVmOcQLZqLkA2D0FBFQr7QpDRJULHNPlATNM9QT6PB0HwqLpAvyJpQIOlU0FWRc5A8b1LQSV3fUGNoaVALSxvQHkhoUE30aNDTjHNQfjP/UCtkLZA8X4DQdOQbkERcURBRoXXQGaESkDCF5hA0phrQk9ry0Hs4h1BTg0WQR5I3UCCjwNBzTqcQK/XA0JPzFxADbK2QIlo+UAN0BNB/uo3QIMPHEBAfc9AcB8VQfjOPULkGjhBUCeGQIN83UBJbEBAoNG2Qf89EkHkDOtAhsMfQA/3jkA= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwJRBcUAAAACgFHZ0QAAAAAB/0HRAAAAAgLwHd0AAAADA6xV4QAAAAADZWXhAAAAAwFuVeUAAAABAbCF8QAAAAMDQNH1AAAAAgA8WfkAAAADAHkh+QAAAAAAp8X5AAAAAgA5If0AAAAAAKAKAQAAAAID024BAAAAAYG9BgUAAAACAxJyBQAAAAGCJeoJAAAAAQGb4gkAAAAAAwwKDQAAAACByW4NAAAAAYGFyg0AAAACgf4qDQAAAAGAH84RAAAAA4F4EhkAAAABAuBOGQAAAAKAYhIZAAAAAoGP1hkAAAACgSQOHQAAAAOA5DYdAAAAAgKQsh0AAAABAQ5OHQAAAAGAdqodAAAAA4K7ch0AAAADgDeSHQAAAACAjK4hAAAAA4BG0iEAAAAAgH/qIQA== + NrgMGZxjYkCAI9DqN6RuQN9iJOBzYnFA - + - 5coqQSRYbkDgRNs/L4YJQPzUDkGG79ZBoIAXQB8fHECyyz9AsObdP8VurECS17g/B170QGjWPkFz305AyXGeQJOOLkDhljNBwh8mQT4eUUFQxGFBbFqzQAOjpEHKkvg/BEU3QBbUG0DMIsJAAF6xQJK2OkCX1cBAcEFyQL2oAkEabkpAuLwqQR0SJ0CPKABAjuB9P/F59EA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQCBnZUAAAAAAPCNpQAAAAODdaGpAAAAAgDpKbkAAAADA+I1vQAAAAMC0UXBAAAAAQAzEcUAAAACAhVJyQAAAACDNhHJAAAAAgPeickAAAABA3MByQAAAAMA9NXRAAAAAAMGmdEAAAADAReN1QAAAAECH43ZAAAAAwObvdkAAAACAruF3QAAAAACY9XdAAAAAQKkTeEAAAABA0JN5QAAAAECI03lAAAAAAK6zekAAAACAwqt7QAAAAEBAuntAAAAAgMgGfEAAAADAi5R8QAAAAECVpHxAAAAAQHYEfUAAAABALZd9QAAAAEAyqH1AAAAAgCPWfUAAAABAHid+QAAAAMADUn5AAAAAwEllfkAAAABAwCB/QAAAAIBcQ39AAAAAgP0QgEAAAADAuEqAQAAAAOChbIBAAAAAYHSUgEAAAAAgUUiCQAAAAGA2hIJAAAAAwHiQgkAAAADgKKuCQAAAAIBpv4JAAAAAIHczg0AAAADgJXeDQAAAAOAmpYNAAAAAQEyyg0AAAABg1AqEQAAAAOB0OIRAAAAAIDE+hEAAAAAgNeOFQAAAAMCj64VAAAAA4DjzhUAAAACgoQOGQAAAAKDlbIhAAAAAIDuKiEAAAABgMP6IQA== + NrgMGZxjYkCJy7y2HKVqQBu6YmAmQ3BA - + - hL6QQC0r3T+cSQFB1HS2P8FtQkCX/kpAqohTQBhoJUCvpMs/PHTVQIjaN0AdyFNA/z0IQUWfeECc4o5A5Mi6QEajCUAfXxxAhZlpQaEnMUBvlI1AN/cNQRXZSkEBgg1ArqdTQMu6kUGhkrhAvS95QMAwQUD9gUFASAQuQBIkZ0DkwL1BKuFsQQV69kE8BRRBHCGjQNa8EELtIkpASWw2QYCREUGj9RJAa1wNQR5APUE5XaFAfPUgQZsQRUCNbM8/cTFmQMRTvUA3+RNAnn3JPxR+h0FuPbtCThO2QRqIk0DJcu4/gd+OQBLmm0E= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAG0DYUAAAACgbR5hQAAAAEDUyWFAAAAAAKtjYkAAAAAAjn5iQAAAAOBSn2NAAAAAQGbFY0AAAAAARORjQAAAAIDtJmRAAAAAYMeEZEAAAADgN2NlQAAAAIDLoWVAAAAAII3jZUAAAABAXURmQAAAAEB3LGdAAAAAYFphZ0AAAABAWKNnQAAAAIAvq2hAAAAAIIkmaUAAAAAAjENpQAAAAEAxg2lAAAAAQKLAaUAAAACAnOFpQAAAAIDmZWpAAAAAwPbJakAAAADgxaVrQAAAAICVCWxAAAAAAIVcbEAAAADgiIlsQAAAAICXpWxAAAAAwEcAbUAAAACgRSZtQAAAAODIfm1AAAAAoMoObkAAAAAA2j1uQAAAAEAyx25AAAAAgB3ebkAAAADA4iNvQAAAAMDgRm9AAAAAQGlpb0AAAACAGYFvQAAAAAA0nW9AAAAAYMMicEAAAADAcTFwQAAAAMB3PHBAAAAAoHt1cEAAAABAk5NwQAAAACBpsHBAAAAAgAzFcEAAAAAgZudwQAAAAICOM3FAAAAAQJNRcUAAAACgNWRxQAAAAMBkxXFAAAAAQCMOckAAAACAeFNyQAAAAADTdHJAAAAA4NHjckAAAACA2EJzQAAAAMDKh3NAAAAAgHDEc0AAAADAvdtzQAAAAABl5XNAAAAAgNrwc0AAAAAAIUl0QAAAAMAVU3RAAAAAgNRjdEAAAAAAHW50QAAAAAD7fXRAAAAAAFKydEAAAADAedR0QAAAAMDsFHVAAAAAwK5fdUAAAADAf3B1QAAAAGA+o3VAAAAAwCTjdUAAAACAt/N1QAAAAMDh/3VAAAAAQHtBdkAAAAAAS1N2QAAAAMC5ZHZAAAAA4N1zdkAAAADgS4N2QAAAACDho3ZAAAAAwCX2dkAAAACAvA13QAAAAOBDR3dAAAAAYO9id0AAAAAAh7F3QAAAACD1w3dAAAAA4APUd0AAAACgN/B3QAAAAOCOAXhAAAAAADgYeEAAAAAAuT14QAAAAABLVXhAAAAAwGOEeEAAAADgKbJ4QAAAAGDdxXhAAAAAoE4EeUAAAABgvA55QAAAAMDYIXlAAAAAoMQ8eUAAAADgs0t5QAAAAAAkYnlAAAAAoPaOeUAAAADgcKR5QAAAAOBNy3lAAAAA4LPVeUAAAADgbvh5QAAAAGA9J3pAAAAAQCBGekAAAABgu1F6QAAAACAQXXpAAAAAoB9uekAAAADgm6F6QAAAAMA0t3pAAAAAYF/EekAAAADg69Z6QAAAAMBP8XpAAAAA4FUJe0AAAACgNBR7QAAAAOCQhHtAAAAAYGllfUAAAADgjst9QAAAAOD4R35AAAAAoB6GfkAAAABACJd+QAAAAKAotX5AAAAAoAVRf0AAAABAEqV/QAAAAMBXE4BAAAAAIOo4gEAAAABgZ2GAQAAAAABdcoBAAAAAwPrUgEAAAABgFOeAQAAAAODj64BAAAAAwA7zgEAAAAAgKhOBQAAAAODbOYFAAAAAoJRBgUAAAAAg9VmBQAAAACAqa4FAAAAAQDx7gUAAAACAWIOBQAAAAODauYFAAAAAgLLJgUAAAABgO9KBQAAAAABI4YFAAAAAYKg3gkAAAABgfnGCQAAAAOA4e4JAAAAAQIWpgkAAAABgaPyCQAAAAKD4OYNAAAAAoBNtg0AAAADAtHiDQAAAACAJi4NAAAAAoMSUg0AAAACgecqDQAAAAOCC0YNAAAAAAErdg0AAAABAUeWDQAAAAKAc64NAAAAAoIMChEAAAAAAzlqEQAAAAKCMY4RAAAAAwCh0hEAAAABA15qEQAAAACAFqoRAAAAAwG/DhEAAAABgFcqEQAAAAKBp3IRAAAAAAEtEhUAAAAAASkqFQAAAACAAU4VAAAAAALBbhUAAAACgv5iFQAAAAKCC5IVAAAAAAPdThkAAAADgxoyGQAAAAGBHpIZAAAAAYByshkAAAADAxruGQAAAAKC/+oZAAAAAwB4Eh0AAAADgHVWHQAAAAMC9YodAAAAAYE2Lh0AAAACg+JOHQAAAAGAJ0YdAAAAAIHjjh0AAAACgRu6HQAAAAKD3MohAAAAAQE9tiEA= + NrgMGZxjYkA= - + - Bbi7Q/ZSU0Eqicg/KUsqQU8PvUBIU3FBbajlQFN4nECkTaFAB5LLQDjPgUCukNo/hVM0QktcOkAaSO9AIh2YQBlXHEAFqI5Ak2AKQYwBgEA6msZCFlNeQA+oG0D+Ha5A41d6QGoiCkCSfY5ALwUdQa68QEDHn4hBPNhEQZ2GG0Fc7BxBf7TBQN8fEkDf4yRD0NZtQNnYQ0XaMCNCcyNKQLbTnECamaM/QrjuQKuwSkARAxNArZL1QKnVxkHvcZ1AwnNeQARFU0ALOnhAsHPORKgSfUF4DBNAHqvBQPmSlkI4BRZBSJVlQWezy0AXG3dBNwMTQGV3qkBhWBxAsUKTQHeLzkD1YgxBECntQs/cjUDoULtAv36LQL2l/EDL7wpA8nw/Qe4kE0IlD71AF1oKQP5ntEEsxKM/ZZTZQER6vEANuldBbTj2Q6kBn0BXLcxApmgmQaB3wkHtOq9AY10bQe2CgUCpJrRAf52hQNbhMEFnvkxBUpA4QFYB/0C02E1BxQcuQQm/1EME1nVBdFN5QKgwL0GYvelBjMugQEZL7j+K0odBS1fcP2Mi0kGsHg9B8c7AQIVHVEHn4l1AN3RcQcdfL0FD1cBAcr4yQl/f7j+S67BB5Hq7P/xPQUDkOIJCHW9zQbkFVkHKq9NA2WumQXXAhkD8ND9Bq4anRHzY0UFJSKRAcmTBQEgOvEBnflFB+XiYQNoXU0EuiLFBxseXQODV3UHfsZ1BdviAQE6hnEDgLhNBUOypQaexLEFW4SdAZoLTQBQaH0H0S+1A5a6oQmThN0E081pBEV2hQI9Ol0EN1htAbpjJP3i4HECkWwxB95CXQO70nEBiby5Cg17JP8piGEINcqZAf98nQcBYHEGgnQxBRbZvQa6tHEbzkehD/omQQTgWVEASUwBBysdUQWkBXUBw4WVBjnUhQfC+GEG+a+dCLZeqQQeHNEF16ZZA4NoMQcwyeUBFnO0/u4yIQbJ1SkBIXBxAzQVEQecPGkELMjhAn01oQmyXXEHY7dNASXuQQ1M0OEDw11NAxU0pQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwO3GZ0AAAACAw7xxQAAAAIAXNnJAAAAAQI02dUAAAADAGGF1QAAAAIDFwHVAAAAAwDaHd0AAAADARMF4QAAAAMApQXlAAAAAwGRReUAAAADAJNV5QAAAAAAs7HlAAAAAgPExekAAAAAA2bB6QAAAAMAYYHtAAAAAwKQnfEAAAADATpR8QAAAAAB32n1AAAAAANX/fUAAAAAAJJd+QAAAAEA48X5AAAAAwPMRgEAAAACgfymAQAAAAMAxM4BAAAAAYLV4gEAAAABAV4OAQAAAACClmYBAAAAA4DqmgEAAAACAk6yAQAAAACAP9YBAAAAAIKsHgUAAAABAXxmBQAAAAGCbSYRAAAAAgLaahEAAAAAgjY+FQAAAAGB0zYZAAAAAoHIwiEAAAABgBmuIQA== + KBZXds7jZUDAIFw1+IJuQBTpB48/A3JAghmwS/+xdEBqPQyU13N2QIJ3jJ9Xw3tAkf5TC4aEfkBUHGoLA+qBQEgumC/vyoJAf0bsDU8ihEDZMhnIMIOFQH912jf7qodA94PVsogTiUA= - + - sQG2Pw5eeEDjtUlAOYMSQXhaJkGYyKVABIkfQaeMS0DIiwBAitYyQcMvpkB16HFANqKAQO95pUAQyo9ApQg4QDsDukGWUTFBIE7rQOy32z80IEdBtlrnQOOsj0Bc5ZxA5JLdP+pd0UA0cFtBAkUrQZngl0F7rthA9qM4QfDA7j/8DLRAc38zQQu1i0DPsKdBXETCQJFZhUA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwETiYEAAAABgsKdhQAAAAOADAmJAAAAAQOa8ZEAAAACAOuJkQAAAAMA652ZAAAAAAExCZ0AAAACASgJoQAAAAIB8YGhAAAAAgNvYaEAAAADA8wxpQAAAAMC4ImlAAAAAgC1LaUAAAACAM71pQAAAAADwRGpAAAAAQOmPakAAAADABqVqQAAAAOD5xWpAAAAAgAWoa0AAAADAxSRsQAAAAIALZ2xAAAAAAO6KbEAAAABga6NtQAAAACCpAm5AAAAAoCspbkAAAADApEVuQAAAAAAFb25AAAAAABWFbkAAAABAlQRvQAAAAEDaaG9AAAAAQF7kb0AAAAAgbBJwQAAAAMCFIHBAAAAAAHSTcEAAAACAkIJxQAAAAMCrq3FAAAAAQBbYcUAAAABgt+NxQAAAAICzUXJAAAAAQPGyckAAAACA+cRyQAAAACAGFHNAAAAAABIjc0AAAAAAQjVzQAAAAGAEd3NAAAAAoIWfc0AAAADA06x0QAAAAMDAAHVAAAAAYGQTdUAAAAAghUV1QAAAAAASUnVAAAAAgCJvdUAAAACAdH91QAAAAODCk3VAAAAAAJuqdUAAAAAg2vN1QAAAAIDv/3VAAAAAQOkRdkAAAACAmTh2QAAAAEClTHZAAAAA4DuVdkAAAACgY8l2QAAAAOBqEndAAAAAAKIid0AAAABgnjJ3QAAAAOA+THdAAAAAIMJvd0AAAADg1YF3QAAAAMAKqndAAAAAYEFTeEAAAADginN4QAAAAMCLsXhAAAAAIIvLeEAAAAAgXdZ4QAAAACDz4XhAAAAAgLzzeEAAAABgDwV5QAAAAOC8K3lAAAAA4J91eUAAAACgqJZ5QAAAAGCup3lAAAAAgJ60eUAAAADgUsx5QAAAAOAG7HlAAAAAoAMFekAAAADgBBJ6QAAAACA0Q3pAAAAA4FxYekAAAACgX2t6QAAAAMDEi3pAAAAAQGLTekAAAABgUT19QAAAAGC2hX1AAAAAQKdKfkAAAABAFZR+QAAAAOCEzX5AAAAAIKd2f0AAAACgRi2AQAAAAIAnP4BAAAAAgCRfgEAAAACg9n6AQAAAAECYrYBAAAAAoPThgEAAAACAHueAQAAAAOBv94BAAAAAgPIAgUAAAADgxU2BQAAAAGBMYoFAAAAAQJ6EgUAAAABAINqBQAAAAKBB+4FAAAAAYPcngkAAAADAJjOCQAAAAABvU4JAAAAAYNxogkAAAABgbW6CQAAAAKA1n4JAAAAAoMuygkAAAACg1LuCQAAAAMBPxIJAAAAAIAvNgkAAAAAAGtKCQAAAAAC/3YJAAAAAAJTjgkAAAADg4geDQAAAAEDIDoNAAAAAIIBPg0AAAADgAoiDQAAAACBOkINAAAAAoK3Tg0AAAAAgriuEQAAAACBIeoRAAAAAAOiahEAAAADA8biEQAAAAGDN04RAAAAAoIT8hEAAAAAgggGFQAAAAECjP4VAAAAAIEBahUAAAADANF+FQAAAAOD47YVAAAAAIMtSh0AAAABgI2SHQAAAAKC/nYdAAAAAoNmkh0A= + NrgMGZxjYkA= - + - goaLQWr3O0B1XoJAuySkQIHVkT91AfBAdBEfQB1fwUAehEFA0yorQb8mzUBC+pBAnRaPQBx94T8CIvBAtzvRQOwN9EDlqapA2be2QHItF0HPTrBAWQwHQWp0B0FcDChBdVVKQPUhWUHhHKBA4ZZ4QLfHLkDV5lNAq3YlQM/8S0Bz5TpBAGNEQKKvAEHXHOJAOGeSQSS3SkB2zglA9hY9QcqWJUDFamtAqyGBQImdHkH66apAImxGQaP0zUAD/xVBShoRQcTCwEFrK6FAvOlcQMdxuEClDAxAs5DGQafoq0BUUqNAQF9kQOHDU0A67yhBWQ45QE6+3EE15m1Bk0wYQUquUEEN8/dAODzAQIzabkDPpSJCTgjwQAXG2EBjraNBgM+AQEUCy0BGfAlABZ6qQB0ua0LoJ3pBZOzPQGXfgkCxL4ZBSTugQFs8oUHU+MNB6zJtQW4oHEK7RkpARyr1QdLAs0B/jwZB6St8QaJTqUEi25JBASu8QDY6wEDv4yxBoETIQPXUKUJmZwpBKFGLQo0D60FPPQtC+Tv8QdGEDUFQWqxBp4nxQWL3nEClKKZACktTQW1dNUE3cJ5AXRqsQVpSCEF1M0dBqCZdQIcr1EDEoiVAJzkCQYieSEFUn0pBQOXTQMdV10AdxMJChb5+QYB16EPa52tCzF0FQusMn0I8bP1ASkZTQLCcEkCmCctA6cacQPluakEvLK9AJOFIQVhE/kBR1t1AP81TQEb5kT9cxPBAy2MGQaLLhUC8rwlA12ILQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAFdeYkAAAACglYZiQAAAAIB/H2VAAAAAAHulZkAAAABA1o9nQAAAAADWXmhAAAAAAEqIakAAAAAgaaFqQAAAAKBEYWtAAAAAwAp8a0AAAABAA6RrQAAAACC1vWtAAAAAgBZQbEAAAADAvKVuQAAAAEBlZW9AAAAA4JkkcEAAAACg8zJwQAAAAOBcY3BAAAAAoDlwcEAAAADA139wQAAAAGCd1XBAAAAAgN9/cUAAAAAAfaBxQAAAAIBUrnFAAAAAoBPNcUAAAADg1N9xQAAAAGAQZXJAAAAAAEWxckAAAABAEcVyQAAAAMDF8XJAAAAA4L4cdEAAAACAr3J0QAAAAIDG4nRAAAAAAAMHdUAAAACAn251QAAAAIA6kXVAAAAAIDS5dUAAAAAgKBV2QAAAAGCvU3ZAAAAA4GlfdkAAAACA+cR2QAAAAEAI5HZAAAAAAOzxdkAAAADA0BR3QAAAACBGIndAAAAAABdkd0AAAABA2m93QAAAAGBZoHdAAAAA4F6wd0AAAABgqvB3QAAAAGAMVHhAAAAAIJeheEAAAABgB8Z4QAAAAEBu6nhAAAAAwPECeUAAAABgsg95QAAAAMD3IXlAAAAAwD4xeUAAAABgKz15QAAAAMAeUXlAAAAAwCtieUAAAACg0aZ5QAAAACDR03lAAAAAQDH2eUAAAACAJw96QAAAAKANJHpAAAAAQA81ekAAAACgL096QAAAAAAQY3pAAAAAAMOkekAAAADA88l6QAAAACAGVHtAAAAAgFJ7e0AAAAAgSLF7QAAAACB1xHtAAAAAoLbTe0AAAABgiO97QAAAAOD0L3xAAAAAIMtBfEAAAACAB098QAAAAIAHaXxAAAAAYE2vfEAAAACAgOd8QAAAAOBtFX1AAAAAYDZmfUAAAADABXd9QAAAAECign1AAAAAIFCrfUAAAABAzu59QAAAAMC0PH5AAAAAoLmWfkAAAABAaS1/QAAAACCasn9AAAAAINphgEAAAADAx5mAQAAAACA0yYBAAAAAgJNPgUAAAABgGJSBQAAAAKBfqIFAAAAAoM3AgUAAAACgjsqBQAAAAKCSAIJAAAAAoAwbgkAAAAAgKiCCQAAAAGCWJoJAAAAAgPxhgkAAAADgDJuCQAAAACAAoIJAAAAAAJe6gkAAAADAZ9CCQAAAAKAN14JAAAAAYOo7g0AAAAAg3XuDQAAAAODjgYNAAAAAoJa4g0AAAAAgaDOEQAAAAOAeOoRAAAAA4BBDhEAAAABAhVqEQAAAAADBZIRAAAAAoHKEhEAAAADg/LqEQAAAAKDJ2YRAAAAAIOLmhEAAAABgR/OEQAAAAMAVFYVAAAAAYAQfhUAAAABAkCSFQAAAAIAJOoVAAAAAYEhehUAAAADgnmiFQAAAAADHeIVAAAAAIEGdhUAAAADAcKyFQAAAACDiyIVAAAAAIEPthUAAAABgnEGGQAAAAEA5sYZAAAAAQBy8hkAAAABg+yGHQAAAAOAuP4dAAAAAYOrSh0AAAAAAExeIQAAAAKCiHIhAAAAAoKUsiEAAAAAAkYqIQAAAAOBJnIhAAAAAQFekiEAAAACAOquIQAAAAADAw4hA + NrgMGZxjYkDXkZP9yKNsQAoahmk8YnBA - + - Lo0lQAaRz0AkENNA3e9xQFRrAEAc+xtANKu2P7Um7z+C3jtB8avIP9zPxUAaONlAKQg9QAqhRUHmW0FAqOqcQNq49EDtsY5ALA04QE2lAkB8tNs/h8aMQElyb0DkQO4/KdvwP1y2CUCcaktABEakP3Fg5EE8UJNAaqZuQMxOpD8gwrY/kaBvQPS4jEBeRlNALgZWQGOBWEFIi8VA/FVlQIKIL0GSTU1BkAldQP51j0CTcG9ApkssQTkY7kCD3HNBYy4cQBumbEG6RY9Aaa22P+VQpEEswwBBPtO5QRHpW0IWNhBCGL4gQ+KrokHOf2NBi595QOXTDEHxkx9AJJbDQRLux0G0NWtBFtZKQcjXpUE+P5ZBtreFQD16CUARxHJAF7mNQSUAm0FvlohBZ53bP9gAY0FPAVZAMKzqQPyjhUAU2clBGYkJQMLLN0AuJ8hAvl0xQaSl5kBAY0tBMaZlQPPOckCM0uZAta3OQFLfpEB9TCZAoO4SQObMbUEiuVNAv1QBQU3dZUBVufFBvr+vQCEvpD/Y9K1BLJiEQgeA4z9/V+4/BjLxQLWmn0JVc1lC6TUmQEn4nEHWZyRBZLBAQP8z4kCvdEdB4UuwQOY1QEH664dBewkPQSH7XEDDkS9B4P8IQRkCtkFBIwhBDVnWQXIkPUF9ZDZBYOnDQVCf3UEt56JAAlEfQR7CW0KAn5lAW0KwQG969EAczRNB3ghoQGXkLkB1l/BAlPNEQBRZ4kF3bRNC7EvFQJi9yT85HiZBTZe/QDoWC0GKtHhAjp0SQA6ek0BQxgVB + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYC9iYkAAAADgmfxiQAAAAGCYqmNAAAAAgPmjZUAAAADgfd9lQAAAAKAyCWZAAAAAgPskZkAAAADAneVmQAAAAAAc52dAAAAAgP8haEAAAADgS2ZoQAAAAKCfhWhAAAAAQGa7aEAAAADActVoQAAAAMBxB2lAAAAAwDlFaUAAAAAA6INpQAAAAGAyqWlAAAAAgOHfaUAAAAAg3OtqQAAAAADBKWtAAAAAAPlLa0AAAACgzcRrQAAAAOB0cmxAAAAAwAaLbEAAAABAHaVsQAAAAKCQ42xAAAAAQE1kbUAAAACAp4ZtQAAAAABvq21AAAAAoBdCbkAAAAAgreVuQAAAAMAiAG9AAAAAwD1Bb0AAAABgXodvQAAAAMDWq29AAAAAgBzDb0AAAAAAsSVwQAAAAGCmU3BAAAAAYPt0cEAAAABgsqJwQAAAAGD5zXBAAAAAwPXjcEAAAADA+xBxQAAAACCbJHFAAAAAQOo1cUAAAAAA1YRxQAAAAEBBwHFAAAAAwCYPckAAAABAqH1yQAAAAMD4k3JAAAAAoAqickAAAAAAKeByQAAAAIBwW3NAAAAAIEZ0c0AAAADAc4ZzQAAAAEDJpnNAAAAAQBGzc0AAAACgZ/BzQAAAAIBKcnRAAAAAgM2fdEAAAACAgLZ0QAAAAGDv0nRAAAAAwLoEdUAAAACg6Bp1QAAAAACZQHVAAAAAAFFddUAAAADA5KF1QAAAAMBisXVAAAAAAETBdUAAAADgQ9B1QAAAAEDl7nVAAAAAAIsTdkAAAAAgxE12QAAAAEABb3ZAAAAAYBOCdkAAAAAAP6J2QAAAAMBN0nZAAAAAwHsCd0AAAACgEjZ3QAAAAECCR3dAAAAAAEVTd0AAAABABo93QAAAACAV1XdAAAAAAO8OeEAAAACAejZ4QAAAAEBBVHhAAAAAoEiFeEAAAADgV7Z4QAAAAICN1HhAAAAA4JjieEAAAAAgSu54QAAAAKAOEHlAAAAAAGIkeUAAAAAguDB5QAAAAOB1PnlAAAAAgMxjeUAAAACA6Hh5QAAAAABFj3lAAAAAIOoEekAAAADAkhZ6QAAAAADLNHpAAAAAYKVMekAAAACgAIJ6QAAAAECvw3pAAAAAoCLiekAAAACACvN6QAAAAIDMG3tAAAAA4L1be0AAAABANWp7QAAAAABcsXtAAAAAIFTEe0AAAAAA6fB7QAAAAOCKEnxAAAAA4C0lfEAAAADgY1V8QAAAAOBybHxAAAAA4IF/fEAAAACg+aB8QAAAACBKv3xAAAAAANvQfEAAAADgDf18QAAAAGB1BX9AAAAAoHGTf0AAAADgA9R/QAAAAKDY5H9AAAAAANYhgEAAAAAgZDCAQAAAAKD+OYBAAAAAQAdagEAAAACAunOAQAAAACCae4BAAAAAYPqBgEAAAACgQ6SAQAAAAMCfsYBAAAAA4JvKgEAAAACgrPSAQAAAAMAzIIFAAAAAILNLgUAAAADgI4iBQAAAAIDKjYFAAAAAgI6hgUAAAABgIKeBQAAAAGCH0oFAAAAAADrcgUAAAAAghfyBQAAAAKBEGIJAAAAAgNQdgkAAAABgRSiCQAAAAKAtLYJAAAAAgMQ0gkAAAABALk6CQAAAAIC+aoJAAAAAoKx8gkAAAABABZmCQAAAAGCaoIJAAAAA4POxgkAAAACA3SyDQAAAAMAQRINAAAAAAMpWg0AAAACgjGGDQAAAACCFdoNAAAAAINl7g0AAAABgnIyDQAAAAKCZlINAAAAAoI6kg0AAAABgBtuDQAAAAGAv4YNAAAAAIK7mg0AAAADAlvKDQAAAAMAuKIRAAAAAYC0thEAAAABAkD2EQAAAAKD3S4RAAAAAYBB8hEAAAABg35KEQAAAAICXn4RAAAAA4H+5hEAAAADAru+EQAAAAMBlCoVAAAAAoGgYhUAAAAAAXiOFQAAAAGAKOYVAAAAAoCJKhUAAAABABWCFQAAAACDzioVAAAAAoBebhUAAAACgv6uFQAAAAACYCIZAAAAAgFYRhkAAAAAgKB+GQAAAAGAjrYZAAAAAgKrDhkAAAACARi+HQAAAACDwOYdAAAAAoP1Uh0AAAACgdYOHQAAAAICgjodAAAAAIGaUh0AAAADgRaSHQAAAAKDU/YdAAAAAADdUiEAAAACgmFmIQAAAAOCMX4hAAAAA4OBqiEAAAACgh3yIQAAAAODplYhAAAAAQNDhiEA= + NrgMGZxjYkD1hHOUyCJpQFf+/uF9UnBAaYA5p9LBc0BXXNs11mN3QN0l+pbCwntAsmglgZm0fUAy1nXy2SmCQFCTEu+DcoJAMgVkHIayhUDkc7Yq23qGQJYyLjkSy4hARneFFC6TikAqE9J0adOMQNpXKVCFm45ARotQL951kECfwnm2CNqQQJB7Is0JepJAH9pwy16ekkAMa2JkJUaUQME77R6bwpRAI+40N1balUAeZd0a18KWQKMFLEysnpdAmlQdsvKOmEAyLopB2GaZQORE708ek5pA - + - e5UFQexuk0CyJRxAqb8tQFfiSUBCETdAc5cuQZfyjkDgpCpBA2wRQfBwDkGb2YJA5lKFQPgWkEDAO15AOoMYQftznEAsNq9AKsELQC3sl0ABfXhAwb8IQD6s10CYVYpBR2wlQNrPQkHZXrhARneOQKOqxUDPuDdAFFaPQKE2AECUlG9A627tP1nHDEHMDxxAdlYlQNJOtj9ZVgBBvnKvQSDie0G50+ZAVFXkQCqWhUCrEIpAT3gYQRZBA0EGxnhALAdBQFf5+UBNr6VAKBYNQLjFeEBPE3NBchqmQEiIAUBICRpBM2uAQbdouEC24+FAS3eiQKBBU0CGN2ZA19nhQAg4AEB6Ri5Aw6+EQMvEykDa+Y9Al8QwQNLUjkDxR75Ab3ADQQRj6kA6VlVBBe42QMf2ykCxQNs/tbmnQDnXLUBChapAzspbQNRpqkBs7FZAHNjgQLEhQ0AvfQlAeLlPQX6BeUDQ3GVAOyoCQSd9uEBXZwhCAv3NQJywdUCbarY/NGedQR7G2kGtV7JAiq3cQBkrb0F/sYJBbEXbPxjivECWilNAqbqzQAZjOUE7o6hB0ikEQfwu2z+qnDBAacjIP8lDykE11AxBWN21QVDDgkGBWXxCxrfTQH8XnUH9y8xBxNsEQaUNOUIq6u0/IAYIQYC+wUCFTs9An+IqQeOvPkETvKRA3QWYQZzoZUBWwIVB1U0kQnhlrELFnBJA0x9LQCnbOkAj56JBdamjP3aZuEC6EExB+SLwQGxr8ECL7ytBFh+mQNXYoz+0f0ZDz8XJQczCwUCdzQVB6U3gQNLe30ES4aM/BRFfQt6ZE0G95hNApeMJQZ1n9kH3fQlAvKziQLUXpkIbcaBBK/dvQfyslUGAYso/zeeEQFYgr0JoDslBw7ItQfrDOkDx0A9BjV2hQE39DkJe5oRBqPuFQFAWm0FPigtBXTzDQJGhykDeUZBBtI7cQdI6C0AUrUVC6OhcQAAieEEcFYpBJOM5QFcOQED0cYZALAbLPyRwnEDlflNAUt6OQDd4ukDVMlNA1TY2QcaJ30BmvY9ALlXLQY+I7T9/qBpBnzchQU+/wUEZRJE/ajMlQBy5EkBpfJlA+7OcQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAHEmYEAAAADAfERgQAAAAIAJZmFAAAAAIEehYUAAAAAAjOhhQAAAACCn/GJAAAAAYN+lZEAAAACAcuJkQAAAAIAryWVAAAAAYCliZkAAAACAiYZmQAAAAKA+KmdAAAAAALORZ0AAAABAbuFnQAAAAIBOZmhAAAAA4LRfaUAAAABAqIZpQAAAAID7pWlAAAAAAKgBakAAAABARihqQAAAAOBYhmpAAAAA4JmjakAAAAAAVsJqQAAAAGARJWtAAAAAAFEnbEAAAACg80hsQAAAAECzY2xAAAAA4FakbEAAAAAgh7xsQAAAAMA9O21AAAAAwG0HbkAAAACADiNuQAAAAMAsQ25AAAAAwDKEbkAAAAAA56ZuQAAAAMCv6W5AAAAAgG8lb0AAAACASIVvQAAAAADYqm9AAAAAQFLkb0AAAADA4CJwQAAAAEALNHBAAAAAgGGncEAAAABAjrNwQAAAAIBaUXFAAAAAALWRcUAAAABAxMhxQAAAAOAb4HFAAAAAALcVckAAAABA9SNyQAAAAMCaQ3JAAAAAgFtkckAAAACgsbJyQAAAAOAU8nJAAAAAAA4Bc0AAAABAAylzQAAAACDzQHNAAAAAAImBc0AAAACg4JBzQAAAACD/pHNAAAAAQCa0c0AAAABga9FzQAAAAEBhAnRAAAAAAPUcdEAAAAAgMjF0QAAAAIAbPXRAAAAAIGdcdEAAAABAHnV0QAAAAMCRhXRAAAAAwE2jdEAAAAAANM90QAAAAMDpEXVAAAAAQOMkdUAAAACgvVR1QAAAAOCStnVAAAAAII7RdUAAAACA+O91QAAAAABlFHZAAAAAoIIkdkAAAACAiS52QAAAAICsTXZAAAAAgBrPdkAAAAAgBeN2QAAAACAY83ZAAAAAQCsEd0AAAAAglhJ3QAAAAEBeKXdAAAAAYAc2d0AAAADAEEJ3QAAAAKAgU3dAAAAA4PGCd0AAAACgUrN3QAAAAKDEv3dAAAAAoFTcd0AAAADAdvN3QAAAAGCLB3hAAAAAYNASeEAAAACAnih4QAAAAOAnY3hAAAAAAMZ9eEAAAACgC414QAAAAKDawnhAAAAAYKfSeEAAAABgmQZ5QAAAAOB5iHlAAAAA4M8+ekAAAACANxZ7QAAAACBdJHtAAAAAYInUe0AAAABAY/F7QAAAAKAEGXxAAAAAwFAxfEAAAADgXlN8QAAAACBilXxAAAAAoCmzfEAAAABAex99QAAAAMDFPn1AAAAAQGl7fUAAAAAgQtt9QAAAACDaOH5AAAAAQB5GfkAAAABAblV+QAAAAKAFh35AAAAAQOzufkAAAAAg3RJ/QAAAACDUJ39AAAAAoMtZf0AAAADg33t/QAAAAMAGln9AAAAAwIL3f0AAAACA9hSAQAAAAKCDHYBAAAAAAAgrgEAAAACAkUaAQAAAAGAXVIBAAAAAgM9+gEAAAACA1IuAQAAAACC6sIBAAAAAwKfpgEAAAADgnWaBQAAAAGCugoFAAAAAoAOdgUAAAACAYqKBQAAAACC0r4FAAAAAIFnbgUAAAADAJOyBQAAAAMApDYJAAAAAIKclgkAAAADgZS2CQAAAAEAmZoJAAAAAgD5rgkAAAACgJ3OCQAAAAEByjYJAAAAAoNfNgkAAAABg0NWCQAAAACB+3YJAAAAAgJzigkAAAAAg6gODQAAAAMDJHoNAAAAAQJkjg0AAAAAAuiqDQAAAAODjkoNAAAAAIHS7g0AAAACgZmOEQAAAAGBum4RAAAAAgOKmhEAAAADgXb+EQAAAAGBp2YRAAAAAgH/8hEAAAADAzKyFQAAAAECv+YVAAAAAYKlChkAAAADgwqKGQAAAAABB+4ZAAAAAQIoKh0AAAADAamSIQAAAAKCfs4hA + NrgMGZxjYkDiYBUjzERuQBu6YmAmQ3BAmHHSiBQzd0BCe6rX1FN4QO7F1o2so3tAmM+u3GzEfECKQ4+CLdqBQF9I+6mNaoJAinJ9rNlihUAZm9uhBWuGQA== - + - I1ElQUsDDEGDr3tBZG2OQNq0G0BRJO0/8N6UQNCSiECmlI5ARSUmQM2tKUEsz+ZBRHAMQQq2CEAdU25AFlmGQLlhykAz36VAsG/NQMukO0EqFMZA76BdQcpfikAjoCVAikBcQt131UBt2ypBem6hQM3WFEHaakxBtJI8QXZ8NEGH1KpA5H4hQaybiUDeOUlAI8WxQAqSyj/Njp1AHNfcQEo630F/NZ9AyuO7QfJ7OEELNJdAoz24QOy9bEE1MMdASsEJQZc+e0CrkLdAg77/P8ydPkEQyjFBR0OcQEhPjUGiPo1AqyaDQV3qWkGo9rxAq3D8QN+nkED7fo5AQ55IQZFPLkBHG5NAbZaQP9EbikBYnbRAo1QbQLpxnEAtrlJAfuybQNy+rkAx1AlAgTAcQUza3kFRfw1BUwmTQEdVLkBhS4JBTeQSQp50XEDayc1BR5iNQWIGFEAXKpdBmjtOQvOKF0H4gK5BOEztP2yKjkC0Nu0/XIyTQehdF0EEVbZAT9N7Px9iJEGdACtB2nCUQf0oL0EO3ShCrV/MPy52mkG6pLNApc+dQRoth0JxtTVBXG6DQf2XVEFX2L1Amk0rQt6Y7D/WLZVAWCmvQN65v0CsqhFC8XMLQo5VPkLZYm9DmCsAQ2MRhkFgWoVAiT0CQKYTXEH+yLU/K67EQXqVK0EutYlAn+d4QHL4VkLoNr5B+fbqQHyaCUJjT8g/3g+5QOy1P0NzPNBAQwylQefz/z8/5ABA5qJ7Q/y2CUIm4shB79SOQZ4WSkC7lfJAFUeuQFyyVEDTsZA/YHllQfrDgEAN5F1AFnM3QKDY0UKcvvZBpsT0QF2kFUFkbtVBklafQdG+pj/iItRA56doQV5tGULZoxNCr6eLQZs+o0B6qgZBnMaAQP9gG0F4kexBbdbDQCVpmUAOGopAv9+3QHnM8T8l3rJA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAKkxcEAAAACAe/NxQAAAAAA2W3NAAAAAQMNDdEAAAADA05B0QAAAAOCkLHVAAAAAQIFSdkAAAAAAKZN2QAAAAEDEsHhAAAAAgBKHekAAAADAXXV7QAAAAICfoXtAAAAAQGxFfEAAAACAI2d8QAAAAMAp1nxAAAAAAGojfUAAAAAAqi19QAAAAACVlX1AAAAAACIDfkAAAADAEk5+QAAAAADStn5AAAAAQK/BfkAAAABAFc5+QAAAAICE+X5AAAAAQMUHf0AAAADAu1F/QAAAAEAN1X9AAAAAQNj3f0AAAADg4HyAQAAAACC9AYFAAAAAYGsbgUAAAACgeSmBQAAAAAC7QoFAAAAAIBtkgUAAAACgKouBQAAAAKA6q4FAAAAAgI/rgUAAAABgWheCQAAAAOCOJIJAAAAAIMIugkAAAADgbneCQAAAACD1qoJAAAAAYBXKgkAAAADgGdOCQAAAAGDBFoNAAAAAoC4ig0AAAAAg0CqDQAAAAED5OoNAAAAA4LpOg0AAAAAADmSDQAAAAKCsaoNAAAAAoMN6g0AAAAAg37yDQAAAAABV74NAAAAAQEsThEAAAABAtRuEQAAAAKAHNYRAAAAAwCdMhEAAAABginKEQAAAACAV0IRAAAAAgJUJhUAAAABgWBaFQAAAAIA7KoVAAAAAQP5bhUAAAAAg2maFQAAAAOBmqoVAAAAA4EDEhUAAAABgxxqGQAAAACCuLoZAAAAAIGlghkAAAAAg8dyGQAAAAOBb5IZAAAAAIFbzhkAAAADgZvmGQAAAAGCKJ4dAAAAAgEFth0AAAAAAenWHQAAAACBuh4dAAAAA4Mazh0AAAACggruHQAAAAICTz4dAAAAAYAf7h0AAAABAKjyIQAAAACCeQ4hAAAAAQMyAiEAAAADAfsOIQAAAAKCzy4hAAAAAwNn5iEA= + NrgMGZxjYkA= - + - rqS3QIf5/EDEIIVAqSkJQFvAeEBzakhBg9iGQI2Qt0BC1+w/tCdTQOPC4UC5Pi5AVOq+QNpshUCJiwxBKapIQb5IEEEql5A/qCqhQE9XykBJM8g/y2RAQdEfz0DqBpBArUr0QAKTQECjEglADoo7QXMO+EBiSDdA6jAJQPKtJUHKJh1AeOqAQBf0DkF1pm5AYi8DQbg0S0HWCUpAahWVQKHNkUGDbrlAIGy1QFxVVEFFW51A2umXQLWCX0CqHhJA8tIcQSVE7T8bxslBexDYQCdP60CgjC9ALPeBQDCfiUCWmLZBobWOQOsN60BG/p1BdKPKQI/VCEClxLNACChoQGVeBkKq0cc/5EehQGd0lED4ZmdBNo0JQDb0FEKfUK1BEEWjQG9hVUDb0thABpiQQf+PeUAuDp9BJQBWQlarykFgOiZBYwMOQTU2eEB/K1xALoYXQdtKEkDktM9BRuBUQg== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQEHOakAAAABAPAluQAAAAEBy4HBAAAAAQIgEcUAAAABAGwJyQAAAAGCD0XJAAAAAAA3mckAAAADAJLJ0QAAAAIDkxHVAAAAAQGYWdkAAAACA51N2QAAAAABcOXhAAAAAQJaGe0AAAAAAvjJ8QAAAAACk4HxAAAAAQOsEfUAAAACAW/x9QAAAAMBkZ35AAAAAwPWTfkAAAADAqSZ/QAAAAIADhn9AAAAAwC4jgEAAAACgcIeAQAAAAOA+x4BAAAAAAJ7bgEAAAAAgt2iBQAAAAEBZcYFAAAAA4L6igUAAAABA08qBQAAAAAAv+4FAAAAAoJwDgkAAAADggCCCQAAAAOBGMoJAAAAA4HJVgkAAAAAguXOCQAAAAKCcgIJAAAAAAK6LgkAAAACgKzCDQAAAACDUSYNAAAAAgEmLg0AAAACgrJ2DQAAAACDnx4NAAAAAANXjg0AAAAAgIg+EQAAAAGB/RIRAAAAAQAJghEAAAADgU3KEQAAAACCxj4RAAAAAYHeYhEAAAAAg4NiEQAAAAAD5AoVAAAAAgF9IhUAAAACg9FaFQAAAAODYdIVAAAAAAKSDhUAAAACgt5GFQAAAAGDAqIVAAAAA4LG4hUAAAAAg29OFQAAAACCL7oZAAAAAIMkDh0AAAABA3RmHQAAAAKBQQ4dAAAAAoFdMh0AAAAAgXuSHQAAAAGCDHYhAAAAA4BgziEAAAADg0TqIQAAAAMBWQohAAAAAICmbiEAAAADgesKIQAAAAIAIyYhA + NrgMGZxjYkDiYBUjzERrQEiYIzJJZG5A5VVLAVajdUBLjVkQ00J3QOWzJ1WutHxAEujtSetzfUBWB15H43KBQAkj5c6hQoJA6ucBgzp7hUDDdcXGGUOGQO6fR8lle4hA6hbwrOYDiUA= - + - U4KcQLxHtT8i7V9BdU3+QPCT/j8Ta1NB4lZGQXr4CECddfhASquOQIHOQEAma+0/FiurQPWlvkAiP8pAvH2+QKmmQUF8GAdB5gnMQBZMtz8aiwRCNB/tP+XKXUBhD0tBQjzKQGzRkUA2qb1AAeymQKTsk0CgajBC+29cQcJr0kCm8qlALAMtQefGCEBIqJdAc0+fQU5t7UBO5UFBTGMBQeDpgUHbvU1BkkI7QgvF3EBWUutAF3mYQBi06kAwtEFBZPrHP8R1qkDsGEtBipXpQTbjokFPIpRAJvI5QSJrYkG2vRBCko4pQmumrkBJbUxBDLA2QNa9qkClC0RBeANZQX/rB0GNyqJBQ5g3QixMCUDQcZBBP80PQUDzG0IYBw1C + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAGdTcEAAAADAHHR0QAAAAIBJv3RAAAAAwPVRdUAAAABAKvN6QAAAAADP5XtAAAAAAEZjfEAAAADAqKN8QAAAAMA2RH1AAAAAAKtFf0AAAACA1jGAQAAAAIDLO4BAAAAA4PFDgEAAAAAAhG+AQAAAAKDB5oFAAAAAABp5gkAAAADgk4uCQAAAAGBFC4NAAAAAIIXrhEAAAAAguyKFQAAAAOBSc4VAAAAAICb7hUAAAAAgMBSGQAAAAGDxiYZAAAAAgOV0h0AAAACg1IKHQAAAAKBDzIdAAAAAgO/ph0AAAABADxyIQAAAAMBhy4hA + NrgMGZxjYkAUn+iE5kFrQOzQoK8iBW9AsRC8uaGxdUDqDZFHgYN3QCW2fKmRsn1AEc/Yvi+Uf0BAYWN6qgGCQKa4KMpvWoNA - + - P+cRQCkqCUD35VJAoWqAQHmOQEDm8MRAYNd3QGTxHkDLxCNAWlq3PyA6JkAzXU5Bn8+AQEWsb0HylKFAFziOQBBgZUAKLS5AMHpmQJcStj9n3ghAXFOwQCU340BvNhlBa3okQI0ZIEEOKghB7qqdQA7qdEHIqVxA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoFcmb0AAAABgIcRwQAAAAMCWUHFAAAAAIAATdEAAAACgu7B0QAAAAIB1lHhAAAAAAIrJfUAAAACgbiKAQAAAAGAifIBAAAAAIMm+gEAAAADAAqqBQAAAAMBc4IFAAAAAYGRxgkAAAACAGqyCQAAAAACkKoNAAAAAYA1fg0AAAADg3mWDQAAAAKB0j4NAAAAAQL7ag0AAAAAg5iKEQAAAAKDhUoRAAAAAoK+IhEAAAAAgDbuEQAAAAEAIHIVAAAAAIBw9hUAAAADgSNmFQAAAAAACyoZAAAAAIDEAh0AAAACgBTyHQAAAAGCrQYdAAAAA4C1Sh0AAAABgp6KHQA== + NrgMGZxjYkCJy7y2HKVqQBu6YmAmQ3BAsyNeuPyCdECPXyNQFkR4QO7F1o2so3tAsWglgZm0fUCFujdmrgKCQFqQtWNiaoJAh5ZaCcSShUDo5wGDOpuGQBib26EFS4hABjm+bZIrikDS7buZfUuMQP0XPpzJw41A0hyqwynUj0B+IxbjOqaQQA== - + - 7UlxQShGg0C0TgJBVpWbQaueJEBtVNo/GhkuQRYaWUBFi/8/FxMEQVMTVUCN1BFATKTaP8qDrUDC1upA46VBQRe/6kDGwoBATFjEQfVoCUJ+MNdAklTMQBUBjkAr4opAVDQSQN/N3D9K/eBAelMKQfdTAUDqyOpAT8ulQFw+CkE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwMefZkAAAADgOu9mQAAAACBoyGtAAAAAgPHna0AAAADACKhsQAAAAMCMYW9AAAAA4A+Ab0AAAADAv6JvQAAAAAA2wG9AAAAAgLSucEAAAADglr1wQAAAAKDi0HBAAAAAQNfjcEAAAABAgvJwQAAAAEBPc3FAAAAAILOhcUAAAABgO69xQAAAAIDa0XFAAAAAAK7fcUAAAAAAsu5xQAAAAECLBHJAAAAAIGm9ckAAAADAjd5yQAAAAIBGI3NAAAAAYA53c0AAAACgG5JzQAAAAMDIBXRAAAAA4KQidEAAAAAAMXR0QAAAAMDGoHRAAAAAAL7DdEAAAAAA00R1QAAAAIATF3ZAAAAAgC0ydkAAAACAFEF2QAAAAEDRUHZAAAAAgDNidkAAAAAA6HJ2QAAAAEB1hnZAAAAAAFRBd0AAAABALkx3QAAAAAAoX3dAAAAAwAJ1d0AAAACAZ4l3QAAAAMCjhHhAAAAAwOOzeEAAAABAFEF5QAAAAIBzYnlAAAAAgLBweUAAAAAA4395QAAAAEDoHnpAAAAAgAI4ekAAAACAJF96QAAAAEAzp3pAAAAAAN7FekAAAADAQyN7QAAAAAD1b3xAAAAAAESffEAAAAAASSd+QAAAAED0h35AAAAAgLuzfkAAAADAfMB+QAAAAEDp0X5AAAAAAGVTf0AAAADA76t/QAAAAABcSIBAAAAAYOtfgEAAAAAAcKmAQAAAACDCsYBAAAAAIC/MgEAAAADguDGBQAAAAGDMNoFAAAAAIA1YgUAAAADgY2aBQAAAACBoa4FAAAAAYB/KgUAAAACg6NuBQAAAAEA0CYJAAAAAYM4bgkAAAABgHTuCQAAAAODFG4RAAAAAgEBThEAAAACgORmFQAAAAABbY4VAAAAA4GpuhUAAAADghHOFQAAAAEAhgoZAAAAAQEnPhkAAAABg5v+GQAAAAGCxL4hAAAAAoH1viEAAAABAOY+IQAAAAMAMmYhAAAAAQB+5iEAAAADA6eSIQA== + NrgMGZxjYkBcG3g88qJlQEMdzoN8QnFA1c6DlSfickBq3hX7KlN5QPyPywzW8npAxepfRu6jf0A= - + - eJabQBE00kCv/6ZAytfJPz4cJ0CJHzNBVayeQPI2MEGL+uhAIo+DQdydZUA1khxCiG8CQTJ//j/KTe9Am5E7QdhRj0GUwKZBzQKTQExNpEAbDUhBuFwKQC+LQUB6gwxBFRqWQU6ANkBUvD9ByaG1P8xyYEBHe3dAQDp2QMQls0AdGHhAhQXXQf0XhEJJMBZD1Z/rQj7FPULSAS5ATmKBQOBNEkAwguw/MhAKQUl0hkDRof4/mqVAQDAHskCBxm1BC0vvQFolZkBhWYZAjhT0QDtAG0BaX2VAM19lQJwywEEmD4pAcr0sQcxQSkHyVzZBe3ycQOfgLUDgYT5ByqXFQGCrBEHKo3w/ZupuQA0fCUBlwIVA+D+TQOieCECqlPlC8ePpQJZA8kPOn2tCFHTwP3oHCUBXYM1A8psFQRKsz0ERcJdAzILPQNlBSkED/N1B2E2xQlAClEI5B0pAr29GQZdQWUGXxpJBogLjQMKJ+0HTIDZBuEzMQRvG7D8= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYFQicEAAAABArl9wQAAAAKDglXBAAAAAQOdQckAAAACAB5hyQAAAACCyo3JAAAAAYMIvdEAAAAAAc0B0QAAAAIC3VHRAAAAAoKpodEAAAABAqA92QAAAAIBOMnZAAAAAwNnBd0AAAAAAwNN3QAAAAEC8lnhAAAAAABvJeEAAAACA2Nd4QAAAAEBcFHlAAAAAwN+EeUAAAADAMDR6QAAAAEDoZXpAAAAAgEl1ekAAAADAwqN6QAAAAICTVHtAAAAAQOhge0AAAADA2MN7QAAAAEBGEHxAAAAAgEdTfEAAAACAKwN9QAAAAEAgln1AAAAAwMqhfUAAAACA+7N+QAAAAAB42H5AAAAAgCX2fkAAAACARO9/QAAAAKBVA4BAAAAAoG03gEAAAACAJ0qAQAAAAOC5UYBAAAAAgG97gEAAAADA14iAQAAAAABFjoBAAAAAQKOYgEAAAABAZqCAQAAAAIBI2oBAAAAAoKjxgEAAAADAMmqBQAAAAIDXcoFAAAAAoEGxgUAAAACg4HOCQAAAAGCOj4JAAAAA4GxTg0AAAACgWSeEQAAAAKBzRIRAAAAAAGFShEAAAADgBGyFQAAAACDQdIVAAAAAoIcYhkAAAAAgz0yGQAAAAKAoYoZAAAAAIJt3hkAAAACgtZOHQAAAACDyI4hAAAAAIFsqiEAAAADgrTKIQAAAAOCFUYhA + KBZXds7jZUD60UzrnGVsQBTpB48/A3JA6yam0jxjdUBqPQyU13N2QOuEgiaVdHxAWPsL8UWkfUBtIcHBgdKBQKssdCLPWoJAmEtDxM0KhECiC/RQBvOFQJh6Me55k4dAojrierJ7iUA= - + - VZE3QboecEBF/ZJAixbaQDS7JEDljw5BxpUFQVEmoEED5RtA6AnPQPUB/z8aJeZAtEXqQJ74E0EQnY9Awn7cQIw32j/Bu9xA08hxQDcMkkBSsJdADv0TQGZG+EDuD4BAG0XwQFSkskB05XdApfgaQMKBkEEDO0BAvZw2QKo+OkCq4zZAzGITQT0FvUD1MhVAfTV+QMC8DEKfSEZBg76KQLzO+0CptwhAN3ImQPhGW0CgpS9CXanTQG9wI0KGfPhAOu++QAmpAEG5UUBAV8IkQN7zsUAFYsc/ra1RQAQcE0FnAyBBIqX3QTsmq0Cze2VA0pe8QMlaGkG+gVJBLOFaQLItukBl3U9B + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAgG5oY0AAAABge6ljQAAAAEC+J2VAAAAAQChlZUAAAADAcORlQAAAAEBVHWZAAAAAQFkhZ0AAAACAgVhoQAAAAIDxpmhAAAAAQA7DaEAAAABgASxpQAAAAKA2o2pAAAAAIPCPbEAAAACg7sdsQAAAAACLJW1AAAAAoBZAbkAAAAAAjWBuQAAAAEAei25AAAAAgANFb0AAAADAejJwQAAAAIChZXBAAAAAgANzcEAAAACA+pJwQAAAAKBF3XBAAAAAwJhEcUAAAABAymNxQAAAAAD+s3FAAAAAgO39cUAAAABA5RByQAAAAOB7JXJAAAAAwCqTckAAAACge6FyQAAAAIBHrXJAAAAAAP7PckAAAADghQJzQAAAAAAKUnNAAAAAwDJic0AAAAAAKH1zQAAAAADRznNAAAAAwFkodEAAAAAgfEB0QAAAAAA8VXRAAAAAoG5kdEAAAACAH3V0QAAAAEC7gHRAAAAAIEavdEAAAAAAp/l0QAAAAMBcN3VAAAAAgPlRdUAAAACgG3Z1QAAAAED+E3ZAAAAA4G0udkAAAABg6Fl2QAAAAICTAXdAAAAAAIAad0AAAADAKzN3QAAAAMCPTndAAAAAQE1hd0AAAAAAQHJ3QAAAAECtnndAAAAAINved0AAAABgP+x3QAAAAGBXDnhAAAAAYCYueEAAAACgu4Z4QAAAAGCnpHhAAAAA4Ee3eEAAAABgMtd4QAAAAOA1F3lAAAAAAPQgeUAAAACAekJ5QAAAAAAHfHlAAAAAoKWNeUAAAAAgYJd5QAAAACDYxHlAAAAAYKXYeUAAAABgk+R5QAAAAKDa8nlAAAAAAAoDekAAAAAgbBp6QAAAAEDkMHpAAAAAoHhRekAAAADg6op6QAAAAEBbl3pAAAAAAAijekAAAAAAlrx6QAAAAOBG4npAAAAAoFrwekAAAABgZQt7QAAAAKBuGHtAAAAAoEJSe0AAAAAgyGt7QAAAAKAggHtAAAAAYBmSe0AAAAAAvKN7QAAAAADw9ntAAAAAQBLLfUAAAABgA3R+QAAAACAHJH9AAAAAYOClf0AAAABAt7Z/QAAAAKDq9X9AAAAAoOEBgEAAAABgzlqAQAAAAOChY4BAAAAAIIiKgEAAAABg2MuAQAAAACBF24BAAAAAIAPxgEAAAAAAGfuAQAAAAGC2IYFAAAAAoJNJgUAAAADgu4GBQAAAAID8iYFAAAAAoAekgUAAAAAgmsCBQAAAAEBH4oFAAAAAwCyggkAAAAAgusuCQAAAAGBReoNAAAAA4Jfig0AAAACgE+uDQAAAACC1EIRAAAAAIE1ZhEAAAABA5YqEQAAAAMCoqoRAAAAAYFZqhUAAAACgq3SFQAAAAOCwwoVAAAAAwPhJhkAAAADg/2uGQAAAAIDrcoZAAAAAwEB7hkAAAABgzAWHQAAAAAC7eodAAAAA4ACEh0AAAACA0JuHQAAAAOC3o4dAAAAAIMzch0AAAACgLDKIQAAAAKCG4ohAAAAAQCP6iEA= - - - - - - juAbQTGZf0BbmLpAoeJUQKdOWUCJFX5BwZsVQb5oH0FjqIlAnruUQF449kAWTNxBhHvdQNoBEkDsrdk/lsotQA9IbkBQugBBFKABQXx3i0D7tCtBzf7GPzQeBUKn6f4/GtQRQBFlLkD1gMw/umBbQAD56z9+N61A43iJQB6hs0CLeD9ANCRIQaPMREAZQFVAoYctQACJ40AWWqpA3fpbQI6VWkDrq8BA6hiqQerIyT/Rf4BAfu7uQLxuJEFlCY5AH6LrP0W9LEEK2ddAm4g3QAoGNkFqFuNAedXzQJxRAkSwTgJCDBlCQN2ZUkC6eddA2IcyQU/HSUF0RCBBaMlyQGbHMEBnlus//C4GQa5JykDqNP8/YqBSQCFjAkAt3wBBZPkdQfEstkBLCAJBB3mPQbzmtkBveYFBlAeIQV7fqUDOgaBAtBPyP6j2rkM00bZCpPw2QDlmKEHHm+9A6JrrQKfC5UDDMoBA4UoBQcCnfEHYiYlBAt0XQTIngUCwFflAvyxAQFQIQ0DctnpA5GUMQWpyKEHSYUhAwSQNQQMZgELkeFpBaqMtQBQIs0BjXiFB9NYOQcvOm0ACenZA8s7TQP7TY0BBd7JBAFUvQDqO7j8IwgBB4cKJQOAek0H+mCpBKahAQvmMgEExSZRA5HooQaa+wEDOybQ/BPWkQH9eyT//DglAHpAaQP639kDTFBpBsPI2QAZhsECiRt1CPAQpQZuS/j8NSG5A/HeOQFYZuECtte9AV7mlQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwEHkYkAAAADAnw1kQAAAACCoh2RAAAAAQHCBZUAAAACgiahmQAAAAAAmBWhAAAAAAFHxaEAAAAAAaiJqQAAAAACxQGpAAAAAoI9takAAAAAAIOJqQAAAAEDpBWtAAAAAAANya0AAAADA6UZsQAAAAACCXmxAAAAAYBv9bEAAAAAg6yttQAAAAIBCRW1AAAAA4ExnbUAAAAAAxJ9tQAAAAECk521AAAAAQK2ubkAAAABAvcJuQAAAAGBfRW9AAAAAYCpmb0AAAACAOoRvQAAAAADSMnBAAAAAgFKTcEAAAACAqB9xQAAAAKDaQ3FAAAAAgHBhcUAAAAAgQrVxQAAAAIDfz3FAAAAAIHoDckAAAACgTR9yQAAAAMDfNnJAAAAAQNZickAAAABAygVzQAAAAADocXNAAAAAAM6ic0AAAADgHAJ0QAAAAECzRnRAAAAAgK5RdEAAAABAipt0QAAAAMBItXRAAAAAwGf3dEAAAACArhR1QAAAAIBZL3VAAAAAwEhBdUAAAADgKVV1QAAAAACPYnVAAAAA4Kl0dUAAAACABIZ1QAAAAEC7lHVAAAAAAMu1dUAAAADAfN91QAAAAOC8CnZAAAAAgJcWdkAAAACgD0d2QAAAAMCIU3ZAAAAAIIxydkAAAABAUZ92QAAAAIDZyXZAAAAAQDD0dkAAAADAmAV3QAAAAAALMHdAAAAA4JZKd0AAAABAaXJ3QAAAAEC9fHdAAAAAwMGLd0AAAABAYaF3QAAAAADirHdAAAAAIEoCeEAAAADA/aJ4QAAAAAD25HhAAAAAoGtveUAAAABAJ6N5QAAAAGCavXlAAAAAoBTleUAAAACg8gJ6QAAAAGBhMXpAAAAAgLd8ekAAAAAgrpN6QAAAAOAroXpAAAAAwIC0ekAAAADgleJ6QAAAAKBKBXtAAAAA4Ekle0AAAACAUH17QAAAAKBZ1ntAAAAAoHoDfEAAAADg1xV8QAAAAOBvNnxAAAAAoB5GfEAAAABAFFR8QAAAAIDPoHxAAAAAoCaxfEAAAACArd98QAAAACCTJn1AAAAAYMw1fUAAAADgUfN+QAAAAGCYW39AAAAAwAeZf0AAAABA1TqAQAAAACD2SIBAAAAAYN1UgEAAAACgX1yAQAAAAMBpjIBAAAAAQLbDgEAAAABAxtGAQAAAAKAe3oBAAAAAoIoMgUAAAABAyjGBQAAAAGAxc4FAAAAAAFh+gUAAAABgaoiBQAAAAMCAkIFAAAAAoA2XgUAAAACgJq+BQAAAAMDAw4FAAAAA4FrngUAAAABg1AOCQAAAAGBsFYJAAAAAIBkbgkAAAACg7iGCQAAAACDvTIJAAAAAQCxUgkAAAAAAazaDQAAAAIBTPINAAAAAYIxWg0AAAAAAcFyDQAAAAEAUfINAAAAAIIysg0AAAABgMLWDQAAAAKDZAIRAAAAA4PoPhEAAAABgIC6EQAAAAECRQIRAAAAAoI5WhEAAAADgh2yEQAAAAKAli4RAAAAAQD+ShEAAAADATJmEQAAAAGCBp4RAAAAAIEvJhEAAAABgbNqEQAAAAMB86oRAAAAAoPBKhUAAAADggluFQAAAAKD4loVAAAAAoMS6hUAAAADgZdGFQAAAAKCc4YVAAAAAgMjrhUAAAAAAbi2GQAAAAIAXQ4ZAAAAAgAFLhkAAAADgKpSGQAAAAODLvYZAAAAAYBHEhkAAAADgs1GHQAAAACAoXIdAAAAAYGlkh0AAAABA5rKHQAAAACCO1IdAAAAAQJYsiEAAAAAg/0SIQAAAAKBWTIhAAAAAYAhsiEAAAAAA9auIQAAAAIAoyIhAAAAAYILSiEAAAAAgtNuIQAAAACBT7ohAAAAAYFv6iEA= + NrgMGZxjYkDsFOgHcuJjQHJahe5LhGlAMCfsaXjDbkBgbopu1NJ0QL/UPaxqcndAgneMn1dDekDcJfqWwgJ7QKSAjtDas39A - + - DEKOQEyupUA2u6JAMNcZQNG/hEDYinxAJ2mlQMXC/j++QWVAQbmOQDtKOEDQ521A9jVAQCJ2UkCCYzZAWPPuPwoTUkD49a1AXM42QIwZe0BCr3lAMAKOQB96xEDpT7ZBZicDQQOLP0DSuC1ATAFNQeymd0AwwhtA8yTHP7l08T9EgApAnFtWQcjH10DtXtdAswzHP50VQEDFxxFAx0zbQGKzskCGJ4ZAsS4KQYYXzUFJC7tAep0aQPyNOkGKGlxBdE0eQLprFEAJg5JBJffNP8nNDkFFVTZAVFKIQI18UkCGkAtCUz5mQPNBJECPEspAvFAuQCx9hEGx4AdANzQGQdwzmUE8BItBuBdjQcTrLkCI9H1B4bWhQVpT7D9t+bdAGUYkQBa8Q0FI9+VALjITQT1yt0D8vJhB2oZ0QIME10CaGghB2URdQWvhW0AC6yRAHxH4QJs+hkEd9hRBRhwWQcbuJ0HMsI5BhhrZQVA6pUH0CVxALxLLQB5wskFh9B5CHtU9QTgm7EHcXJlC6YoHQMVj/j+AGapA3FK5QUAByECz3YRB1xPzQbs44UD26ZJA1qR2QM3cJUHZPt9AFdN3QHhTr0A6IIRB3ykdQlsAZEDloOpBn4JdQIcW/kBQKYNBPCZyQQjn0kBIOUhBU5avQE4b30FLszZAgEnsQG2su0E3Vi9BU29mQa+5jj//p25A0iSFQfLgaUGtZU1BoSHjQNLyJkESGaI/P7WFQBoSL0Bc7HtBh+ssQLMCqECVeIJB/mXIQGAe4EGluA9BcPA/QMD1LkGf4jNBnz4xQKUjTUGnmolAWuu5QYm1tEA1qs5At4QHQe2+iUB4JRdD8yquQXJFNEHIAFxAdZJ2QV91G0EZUKZAyAyBQARWCEBf38lATvAvQCaSoEDbUF1BUIWlQBp+1EE8+iNBCjUjQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgISGcUAAAADgXoVyQAAAAACHg3NAAAAAAP2Wc0AAAACAS/J0QAAAAMBkcXVAAAAAgCE1dkAAAAAAdZN2QAAAAEABoHZAAAAAQMFNd0AAAABAK6Z3QAAAAEDB0HdAAAAAwLTkd0AAAADArnV4QAAAAMAGknlAAAAAAL6VekAAAADAGqV6QAAAAIA0NnxAAAAAgO1DfEAAAADA0YR8QAAAAMD+BH1AAAAAACUlfkAAAAAAbDR+QAAAAICt5H5AAAAAoGN4gEAAAABAvo2AQAAAAECj3YBAAAAAQLMxgUAAAACgQZqBQAAAAOADooFAAAAAoIshgkAAAACgsyqCQAAAACCLOoJAAAAAoBNDgkAAAADgr9qCQAAAAODw64JAAAAAIBoDg0AAAACAEGODQAAAAGDuCIRAAAAAoA9shEAAAADgl7GEQAAAAKA4OYVAAAAAQAXKhUAAAACgKEOGQAAAAODlkoZAAAAAIGWdhkAAAADgmgCHQAAAAMASKYdAAAAAIPdTh0AAAABAatSHQAAAAOBRdIhAAAAAAE7ciEAAAADgAOKIQA== + NrgMGZxjYkCO7m7sniJrQN9iJOBzYnFACn7VSfXBdUAGJGxXInN5QA== - + - PixKQFkjlEBN1+VANmkkQE+ZI0HQN+w/d8cOQWwySUBgmAtB7Nx5P3ZPs0D8VKBAT4rYPyPixj8BHYlAL53TQGISgkDivzZABc+rQHVGjkDnwhFA0MwJQVzQxUBiAi9B3ur8QHHnkkAc5aRAFxW8QMzFXEFt2/4/x1dJQPpzzkAHXZlBgd6yQIktS0AGLNBADpKbQCELI0DbLOpAiW55QEtUvECW+OVAULKWQcQR9EDv5Os/fA3MQKkKZUFO2hBAR8DZPy02IUHHlDhBq8mfQc6AfEA= + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAoF7DXkAAAABgbCJgQAAAAGBSFWFAAAAAwFHiYUAAAADAFUhiQAAAAICXw2JAAAAAIGjbYkAAAABg+8RjQAAAAABqZWVAAAAAwEahZUAAAAAAdYdnQAAAACAuoWhAAAAAIPH6aEAAAADAledrQAAAAEAQJmxAAAAAwL4FbUAAAACAz0hvQAAAAEAQhm9AAAAAAFapb0AAAAAAqMBvQAAAAMCvMnBAAAAAoPVicEAAAABAAHBwQAAAAKDipHBAAAAAgA60cEAAAADgQfBwQAAAAGBvA3FAAAAAgBVjcUAAAABgebNxQAAAACCn0nFAAAAAQM8VckAAAADgQGRyQAAAAIBitHJAAAAAYEXQckAAAABAd99yQAAAAMA19HJAAAAAYEARc0AAAAAANyNzQAAAAACEPnNAAAAAwEtSc0AAAAAAJc5zQAAAACBM2HNAAAAAwMfyc0AAAADAphJ0QAAAAMA9VnRAAAAAgKR7dEAAAAAAz5B0QAAAAADlt3RAAAAAYCXUdEAAAAAAtwt1QAAAAIBKP3VAAAAAgFBPdUAAAADAinF1QAAAAIAQmHVAAAAAQGnJdUAAAABAgN91QAAAAAAM9nVAAAAAQBkXdkAAAADgcE92QAAAAMDBcXZAAAAAwMiPdkAAAABgLaJ2QAAAAOD+snZAAAAAoCHWdkAAAADgkfx2QAAAAGBOZ3dAAAAAYB91d0AAAADgiIV3QAAAAGB8j3dAAAAAYMefd0AAAABATbJ3QAAAAOD1xHdAAAAAAKIGeEAAAADg8BN4QAAAAACmJHhAAAAA4DNdeEAAAACguHZ4QAAAAOBYgXhAAAAAgBaWeEAAAADg+6V4QAAAACDdQ3lAAAAAwPWmekAAAAAgjER8QAAAAOAyZXxAAAAAQNuFfUAAAAAgtiJ+QAAAAEDQSX5AAAAAINhafkAAAADAaXB+QAAAACB8oH5AAAAAYJAqf0AAAAAgJoN/QAAAAKAwEYBAAAAA4A8ygEAAAAAg24KAQAAAAGBc24FAAAAAIN0NgkAAAADgKiKCQAAAAIAkK4JAAAAA4G0zgkAAAACgWkqCQAAAAGDPVIJAAAAA4GBggkAAAADgG8uCQAAAAOD/moNAAAAAwHmyg0AAAACAI+WDQAAAAODPeoRAAAAAYCOhhEAAAADg0QSFQAAAACDOAYZAAAAAgHOrhkAAAACgbgaHQAAAAKCHE4dAAAAA4ORSh0A= - - - - - - /7M1QCYZpUB/VM1A1KJSQHWnckA7XxBBjweFQKTMW0B4Bu5ALsT9P2RA4UARczZA7eYRQDaApUC/kqE/VbiYQHxTjUB/2KBA2rnOQCRuCEC80gZB8zeKQP1PsEC5qB5Bm8XtP8J2gUBEvOo/QDOcQN+RNkDgXH1A2JWVQPWa3kA+T/4/5uOhQGprt0C4nCxAzi+FQDsZGkFBDo5ATNj4QPGU2T+I465AsV3/QOv26z/ZcvxAANWTQtKXiEEe2jZAm8fGPxsYqkF0WQpBS1ozQTjVN0A0ZOxAdDy1QEvmmEEHcYRALHAtQMqTUUD8EZ1BUOsIQoYuI0A7EKtAaABkQZY0kUBMG2RAElN9QLWXQEF60sY/+J53QUbkzEDVC55A1iWjQXmgiEHJ00FBcLxrQR/nEkG8eD9BntV2QE9Uxj8HP+VAvZ+SQGPBT0H/8DVBncqHQudIEEFpxhpByq6BQaTOB0EdANk/JGNuQM1IsEFCiQhB7gwVQfKcl0BB62VBc65pQQABgUAll/VA13WsQPbWpEBCwxFAPe7zQDY07ECSIOs/y0htQX2080BDGcNAW54VQXyZEkEHd1JASAeKQEsS/j+ydCtBHd+gQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAALVPWEAAAADgrYRYQAAAAMDDwlhAAAAAABD8WEAAAADgm0dZQAAAAGCPRFpAAAAAwIp6WkAAAAAgzK5aQAAAAABgkVtAAAAAgBlHXEAAAABAz8tcQAAAAOAWSV1AAAAAQGmHXkAAAADAX1BfQAAAAOAGBmBAAAAAYNglYEAAAAAAP0dgQAAAAIDCZmBAAAAAwKClYEAAAAAA+eBgQAAAAEDfA2FAAAAAQFIgYUAAAACADGphQAAAAIC2rmFAAAAAgEDEYUAAAACAk+JhQAAAAEBeJmJAAAAAgJlFYkAAAAAAfWJiQAAAAMBpm2JAAAAAQPvLYkAAAABAfGVjQAAAAEBfg2NAAAAAAObtY0AAAAAg8ydkQAAAAECJRmRAAAAAQC5mZEAAAACAQZ9kQAAAAOCizGRAAAAA4HQLZUAAAACA2WRlQAAAAEDzoGVAAAAAANfCZUAAAABAEuRlQAAAAKDdZ2ZAAAAAAIGiZkAAAABAD9JmQAAAAABX52ZAAAAAoHMlZ0AAAAAA1kZnQAAAAEAxZ2dAAAAAAPmCZ0AAAADAuKRnQAAAAIA5wGdAAAAAQO4faEAAAACAimNoQAAAAABmxGhAAAAAoCfdaEAAAABAUCZpQAAAAEBhomlAAAAAQI++aUAAAACAh+1pQAAAAMA+DGpAAAAAQLovakAAAAAAPEZqQAAAAAA2ZWpAAAAAAOSmakAAAAAAws1qQAAAAMCqJGtAAAAAAINCa0AAAABADMFrQAAAAECiKGxAAAAAQLhkbEAAAADAQphsQAAAAIAgwWxAAAAAwJwdbUAAAACAz4VtQAAAAMCpqW1AAAAAAOvCbUAAAABAeOVtQAAAAMDE+G1AAAAAQMi+bkAAAADA3uNuQAAAAEB0C29AAAAAQOkmb0AAAADAHWJvQAAAAIALgG9AAAAAQAvBb0AAAABAS+FvQAAAAIDAIXBAAAAAYBs6cEAAAADAElhwQAAAACAAZHBAAAAAAH58cEAAAACAi5BwQAAAAID2oHBAAAAA4AizcEAAAAAg08RwQAAAAEB+0XBAAAAAIB7ncEAAAADAvvFwQAAAAEA+CnFAAAAAoPwscUAAAAAA40NxQAAAAAAYVHFAAAAAgF1kcUAAAACgJopxQAAAAGAhlnFAAAAAwP6hcUAAAADAHLxxQAAAAADdz3FAAAAAwPH6cUAAAAAA6QZyQAAAAADgHXJAAAAAIP0qckAAAACAQVRyQAAAAMAGeXJAAAAAwNVOdEAAAAAgdGR0QAAAAICYb3RAAAAAAGKidEAAAAAg3Q51QAAAAKDCQXVAAAAAoBq+dUAAAACAXuV1QAAAAGDu8HVAAAAAwDIBdkAAAACgXhN2QAAAAMDgm3ZAAAAA4BC+dkAAAADg5s12QAAAACDl2HZAAAAAIJkrd0AAAACgyF13QAAAAAA5nHdAAAAAoBW+d0AAAABg8sh3QAAAACBTT3hAAAAAgMxleEAAAABAUrV4QAAAAKDp03hAAAAAAKoTeUAAAAAA6jl5QAAAAIA5SHlAAAAAYLBzeUAAAABA9Yd5QAAAAKDfmHlAAAAAYD/FeUAAAAAgItN5QAAAACCl3XlAAAAA4IDneUAAAACgg/V5QAAAAKAMA3pAAAAAwK4dekAAAADgPlZ6QAAAAGCHZHpAAAAAoFNzekAAAAAg9Il6QAAAAGDk03pAAAAAQP3oekAAAADgXf16QAAAAOB8C3tAAAAA4D1Ee0AAAADgNFN7QAAAACAYXXtAAAAAQF8ffEAAAAAg7TF8QAAAAKBrhXxAAAAAwGDlfEAAAADgbgV9QAAAAKCD831AAAAAoIkyfkAAAAAg/IF+QAAAAGCIFn9AAAAAYPUkf0AAAADAJMd/QAAAAABOcoBAAAAAAOB5gEAAAAAAToaAQAAAAOBYs4BAAAAA4LnSgEAAAACg95uBQAAAAEBssoFAAAAAoHO8gUAAAABAhSKCQAAAAGCZWYJAAAAAoDNhgkAAAAAgHMSCQAAAAOBC+oJAAAAAoBoCg0AAAABgEYuDQAAAAEBjk4NAAAAAIDgrhUAAAABAcrqFQAAAAOCnO4ZAAAAAYOtChkAAAADgAkyGQAAAAOCQYoZAAAAA4I2DhkAAAAAgi76GQAAAAGAQxIZAAAAAQJ3LhkAAAADAjfOGQAAAAEACE4dAAAAAwD8bh0AAAADg7cKHQAAAAGDXO4hA + KBZXds7jZUA= - + - McwJQN3CCUBU1T5APo2SQI9gH0HX1QdCMTi8QJtY2D/e/3VAZAn9PwkkEUDe3iJC1EGsQLU6k0GEMpJAp6yiQVgXG0EvtohAsT8BQq+V+EOia+tBwxNBQZvekkD0BpxB288UQp8+EUCjPcpApbWgQBAY8kHJqhlBvtwGQDr1B0Cv7yxAvfYsQJbD6UCyAQpB3B4RQDSekkCc1ixAVeMHQM9aZkArpEtBVHLDQDs+m0CultZAl5p7QCTUzUD0appAiJhUQi7WEUGMMEJCg0PwQHd+oEIXxbZA5vNVQRflsUCSaZVAkzhyQOIxSkEjNmRBCJmkQOKWhUHN1I5BD4E/QRnc8T8dhB1BTpX0QVeoGEGgXthCtrnTQRkorEDgUw9Bcvw2Qbob/kDLShdBUpa3QWd6G0Hbg0hAMrbqPz0fu0Cohv5AIpGLQcyO30Bf6BFBQ9zHQSy2J0K2OBFAd5lzQPEXrEBQBxNCs1s/QoKisEDfeFdA4f5wQoApckFPcadDPA4uQsr2o0CVbipBGt4CQhmICUFVisVANUlfQVnCjkIZz55AwlOSQLTCZEOZPkdBcfsQQmynhEHUoMVBjqfZQISqxT/UyrZBuntYQRjiIkGx9RFCqlzaQBhYOkHHqw9CVYXpQNT7okIdkXRBDZW+QbqQvkFnJxBCR8JFQY3diEAN+oZBoAyHQ5OLEkLcz6FB+Lb2QEz7OUKVFARD8GsFQ4/06UByrDVB0vLJQNxe/EFgs+0/lQQzQdpg/UBmkixBeAauQFqBzUAplZJAxeawQsKHhEMUcJ1ApoegQAdh0EDAHMBAD92jQXmNSUXMwHBB1quEQaOOjUCsoXNBkLyEQMtfiUS5vdRA8ZQgQolwB0JOsg1BnliyQLjm5UCdsOJAHiwjQVW0xT+EBydBjFWQQQqX6D+lOX5BToMFQcNPqUGJYJFDpgv7QapROEHwGddAojt4QVK/9EDOlAtCK//RQa7yVkGWmHtBHYEWQQO0FkHShs9BijJUQTQefkPBFopCFis2QNjaFkGfLS1BWFIKQQOL2kArk+VAPvT8P4RNQkKdhodC4gZAQuiuhED+3fZBKqZvQSFRT0EGm9dA + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQP7ja0AAAADAqMVtQAAAAEAi7W1AAAAAgPWMbkAAAADABCJwQAAAAECPwnFAAAAAAODscUAAAABA9ZFyQAAAAACjs3JAAAAAwEwDc0AAAACgqjRzQAAAAAAURHNAAAAAwARTc0AAAAAgPLJzQAAAAEDnZXRAAAAAALa0dEAAAADAnuF0QAAAAID7H3VAAAAAQGRUdUAAAACAj9V1QAAAAEB183VAAAAAQE4VdkAAAACANpV2QAAAAEDg4XZAAAAAgOv/dkAAAABAZjV3QAAAAEBrR3dAAAAAwHxfd0AAAACACJd3QAAAAMBiBHhAAAAAwBMXeEAAAACAFU94QAAAAICwXnhAAAAAQFx3eEAAAAAAraZ4QAAAAMDi1XhAAAAAwAryeEAAAADAaQJ5QAAAAEDNJnlAAAAAALqWeUAAAACA2KN5QAAAAIAj4nlAAAAAANUjekAAAAAAN8Z6QAAAAMBSH3tAAAAAgFaAe0AAAAAA5Zd7QAAAAIDFc3xAAAAAQPzifEAAAAAAHzR9QAAAAAAvhn1AAAAAwAClfUAAAACAbRF+QAAAAADyO35AAAAAgIiAfkAAAAAALKV+QAAAAIAjGH9AAAAAQE41f0AAAAAAdWh/QAAAAED6d39AAAAAQJkygEAAAADgtpOAQAAAAMAeu4BAAAAAYJbBgEAAAACAsdKAQAAAAOAiGYFAAAAAoIFUgUAAAADgiWOBQAAAAKCcq4FAAAAAgF2zgUAAAABgm9SBQAAAAIBh6IFAAAAAoGz6gUAAAADg+EKCQAAAAEAwW4JAAAAAALdugkAAAAAgfp+CQAAAAKAAqoJAAAAA4JGzgkAAAACgRLmCQAAAAACQwoJAAAAAgPzKgkAAAACguOGCQAAAAIDKOYNAAAAAYKpKg0AAAAAgxVGDQAAAACCXdINAAAAAYG+Gg0AAAAAgt8qDQAAAAEBh6oNAAAAAwPvvg0AAAACgkUyEQAAAAEDiW4RAAAAAgJ98hEAAAAAgcoqEQAAAAGArkoRAAAAAAIO8hEAAAABAIeOEQAAAAIAt6oRAAAAAAKr8hEAAAACg9xKFQAAAAKBzG4VAAAAAYAMjhUAAAABgmDOFQAAAAECVTIVAAAAA4MFzhUAAAAAgoHuFQAAAACAVkYVAAAAAAH2qhUAAAAAgS7OFQAAAAKCKwoVAAAAAoKrYhUAAAAAAgRSGQAAAACCLPIZAAAAAoFZihkAAAADAH3SGQAAAAAD7k4ZAAAAAoLKyhkAAAABgTtuGQAAAAODyGodAAAAAYOYjh0AAAAAgI0KHQAAAAKDNS4dAAAAAoMJUh0AAAACgI1+HQAAAAADSQ4hAAAAAgJaMiEA= + NrgMGZxjYkDm926t/RFwQEMdzoN8QnFAmXHSiBSzdUDmVUsBViN3QO/F1o2sI3pADReTeAQ0f0CKQ4+CLRqBQLK1yz5O0oFA3d9NQZoKhECKcn2s2aKEQHDA8XzxEohARMVdpFGjiEA= - + - bM+IQCymI0AhEts/X/lkQLFvD0HSLPFA3f3XQPGVskBIuAdAgogrQMU/qUAvEV1AyCY2QIpyoEC7GxlAuWsQQp5jP0DJw5ZAm0iSQEHowUAdkDRADoO4QbwPSUAdthRBqdj9P6ICWkAwZpZA628jQNgmoEAybplBHtxRQALblkDfHM9AVA7qQM8uUUDVxCtAZPLSQCtfpUCDZZxBd6qFQPV+k0CvchhB2MoaQJxmFUFMuqRAVF+JQGEDCkEkg7JAJG7XQMpT2EAaFK5AQoPDQD8Hc0AWneo/1Lz3QJkc8EB3fwpBH5ESQNPHg0C+/0hA3zWnQAKOVEEssbtAaOH8QAO2XECJTgJB9HYXQYd2u0G0wFxCGsZVQaz2hEAh3elAczs/QNEcm0Byu4RAC6xkQWH8wECEJxNBLXYjQChX0UAGLjtBC1KbQOJ4W0E+3utAFY7aPw6uh0D0jP8/cVWuQC/+c0LbSplBhKw/QJKQDkFUZ1lBPE4SQOrQdkAwjCNAJzVYQQnHQkER1MZB+0ERQJCFWUCK8LI/IBkFQba0dUAJKhhCvdOMQW+bqUC4L4VCmteWQQqDDUE5pZJA1VYqQQgfW0ABwx5BuFiFQWs01EDy5QZAKM/RQHNWRkEBuLhB0kz9P74i/T9tVkZBOdIHQGppekFRWQVBVL0/QQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAOt9bEAAAABgfqRuQAAAAGCwp29AAAAAgKM0cEAAAADgY1NwQAAAAEB6ZHBAAAAAACjycEAAAABAewJxQAAAAIAjY3FAAAAAQIPickAAAADAsgRzQAAAAEBV0HNAAAAAIADjc0AAAACgOPV0QAAAAIDVBnVAAAAAAH4ndUAAAACg/aB1QAAAAMAkNXZAAAAAwIREdkAAAADAJDR3QAAAAIBsU3dAAAAAgNKEd0AAAADA4zd4QAAAAECRRHhAAAAAAClTeEAAAAAA9GZ4QAAAAAAU/nhAAAAAAF4WeUAAAAAA2yN5QAAAAIDLd3lAAAAAgHLGeUAAAAAASgx6QAAAAABlFnpAAAAAgLCxekAAAAAAgsF7QAAAAIAwa3xAAAAAwGfefEAAAACAtAV9QAAAAMC0In1AAAAAQAc2fUAAAABAW1p/QAAAAIBTv39AAAAAgAfmf0AAAADg9CmAQAAAAID5MYBAAAAAYHc5gEAAAAAgS4GAQAAAAOBpC4FAAAAA4A9NgUAAAAAAMnuBQAAAAKBkgYFAAAAAQAahgUAAAAAgIuuBQAAAAABuM4JAAAAAQAJzgkAAAABApsKCQAAAACBC2oJAAAAA4BEMg0AAAABg/KeDQAAAAMCqFoRAAAAAYI1AhEAAAACAVEqEQAAAAOA0ZIRAAAAAoA4ahUAAAABgMCKFQAAAAGCdMIVAAAAAYAuBhUAAAADgfBuGQAAAAOCFpoZAAAAAYMmrhkAAAADgL7KGQAAAAODmC4dAAAAAwKBQh0AAAAAAXY2HQAAAAMC5u4dAAAAAIHgNiEAAAACA+SiIQAAAAGBfMYhAAAAAoApEiEAAAAAAzl+IQAAAAICKaYhAAAAAQOOViEAAAAAgIayIQAAAAIBCsYhAAAAAYPvTiEA= + NrgMGZxjYkDiYBUjzERuQBu6YmAmQ3BA - + - pRyAQHfw6UDqchFAPkK3QMdJsj+vtbZAk4wHQOvyikDaOyRBWHbIQKXwEkEKK79AOsCtQEgW0UBLUnFB9bqbQP/FrUDlVWdA8kciQJEyKEFQHZtAlJYsQLLkhkANuqNBPC3SQQA43EBIJy1Aua2GQSvogEAuonhAwJbqP0KNFkEllp5AtbTXQIAsjkDeJVVBZvsVQQKk7UBVkRpAG14GQA8IgEB703VAueyDQLBECUC+TTZAl8wsQBlEBkFK9dc/hY/8P/4L6kAs3GVAgF2WQGRtm0HSC4BB+khjQPZ8GUHIn2xAIpMeQdovvkDWZzdA9ZCgQIOXmEEbQhNBQ4IbQBYBxUBQb7RBpI0sQF0rP0DNig5BPxmbQN8EA0HydiNArk+pQUDatUB/QWxAdOhvQDr5kUD2YrxAtztFQYnyskAhw4xBoI3XQIagwkBFbj5APfKKQA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgCLkcUAAAAAgVJdzQAAAAAAYVnRAAAAAANRkdkAAAADAVVN3QAAAAIATdXhAAAAAQEzjekAAAAAAH0F7QAAAAIAa+HtAAAAAQCFvfUAAAACA2AZ+QAAAAMAUIn5AAAAAABlDf0AAAABAO6B/QAAAAAD9CoBAAAAAAC93gEAAAACglJyAQAAAAEDoW4FAAAAAACN0gUAAAAAAVMSBQAAAACDa2YFAAAAAYN45gkAAAACAo2iCQAAAAEBOeIJAAAAAIL7GgkAAAABga+eCQAAAACDqE4NAAAAA4Mx3g0AAAADAHKODQAAAACBvxoNAAAAAgDIbhEAAAADAJimEQAAAAKBcOoRAAAAAwOJXhEAAAADAgmqEQAAAAGDpcYRAAAAAQFt6hEAAAACgaJeEQAAAACACsoRAAAAAwFrHhEAAAACAS+GEQAAAAOAf9IRAAAAAINsWhUAAAAAgtjuFQAAAACDPYYVAAAAA4LGlhUAAAACgkqqFQAAAACCT44VAAAAA4DgqhkAAAADgLVCGQAAAAKDNYYZAAAAA4MdwhkAAAADguXuGQAAAAIBwhYZAAAAAQB/GhkAAAACgvcyGQAAAAABW1oZAAAAAIHfghkAAAAAgJEGHQAAAAICFaodAAAAA4OJxh0AAAAAgvraHQAAAAGDBu4dAAAAA4GLEh0AAAABAPeKHQAAAAGDN6YdAAAAAgEoMiEAAAAAAShuIQAAAAECuVYhAAAAAwMlkiEAAAAAgm3KIQAAAAIC7eohAAAAAAKKPiEAAAABAr5qIQAAAAMAUoohAAAAAoJ/LiEAAAABgfdCIQA== + NrgMGZxjYkAKI3ffzmRvQEMdzoN8QnFArFID5xXDd0BDe6rX1FN4QKyw3zpu1H5ANR55p0EygEDquBNZjnKDQDRNZ9HtuoNA - + - tGadQLy1IkHx9s1A2WPJQKIn6T+0nS1BlfEJQUdvGkDvg4lAi09jQALvdkD/XABBsrp2QOh9IkHRBRNB9rtIQHwnS0BA3hxBRRyZQJIlbEAVGPlAz5qkQE8q20AsxdJASJUUQUx8LUFhjilBaFgeQcdBaUDF35tAlPnpQEeILEGByRhAj4UzQXdnLkKYWrFBp6YPQLt7mEDCeJFBnd85QXaa7D8qUnBBadCbQKYhg0E32AlCtXJDQZqDlEEt7K1A1R0fQUKrYUEICA5BShZbQP5/4EDhAolB4D6pQP/Fk0EQn1lA5eJyQcvTNUBAjFRB8XtrQUxixkElLjJC6RpRQGMsqEF6qHZAN81DQeuX+EA4pYhBIeqbQMpLEUO6UYdBXn+NQS4izEGJn8tBzIyQQbFFJEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgD8jYEAAAADAPQZiQAAAAKDiZ2JAAAAAQCyqYkAAAAAAuUdkQAAAAGDbY2RAAAAAwJCoZEAAAABARGRlQAAAAABK32VAAAAAQPgkZkAAAABAvoRmQAAAAGDSLWdAAAAAID5lZ0AAAAAAoRxoQAAAAOBUiWlAAAAAwHnmaUAAAACA5FBqQAAAAAD0gmpAAAAAYKGja0AAAABAP0hsQAAAAKBbaGxAAAAAgGijbEAAAAAAVMNsQAAAAMDT42xAAAAAwElhbUAAAABADGJuQAAAAAC0i25AAAAAQDOnbkAAAADAHuZuQAAAACCgMnBAAAAA4DBxcEAAAADAe5JwQAAAAIDXwHBAAAAAAAvRcEAAAACAbRFxQAAAACCjQnFAAAAAgB1tcUAAAABgz7BxQAAAAAA5wXFAAAAAoILScUAAAAAA8PlxQAAAAKBFE3JAAAAAADluckAAAAAgEZByQAAAAED1pHJAAAAAgLCxckAAAACADdFyQAAAAGCI5XJAAAAAAAL2ckAAAACgoBBzQAAAACCyM3NAAAAAoIVxc0AAAADgK45zQAAAAIBBo3NAAAAAgN4QdEAAAABg/zJ0QAAAAKDdUnRAAAAAwJ9fdEAAAACACIB0QAAAAIATjHRAAAAAoM+jdEAAAACAsTB1QAAAAEBzRHVAAAAA4GhPdUAAAACAp2B1QAAAAEBqc3VAAAAAABiDdUAAAAAAF7B1QAAAAGDbw3VAAAAAwNzWdUAAAAAA/fJ1QAAAAOCEO3ZAAAAA4ExKdkAAAADATXV2QAAAAGC0gnZAAAAAICWSdkAAAABgep12QAAAACDatnZAAAAA4HDEdkAAAACgEfJ2QAAAAGBB/nZAAAAAQGsod0AAAACg+mp3QAAAACBidXdAAAAA4GgUeEAAAABgvc55QAAAAADSAHpAAAAAYJ86ekAAAACgWPJ6QAAAACBtBntAAAAAADBFe0AAAADgA4B7QAAAAMDYvntAAAAAIKX1e0AAAABAIFN8QAAAAGDwpHxAAAAAwEjPfEAAAABA9vF8QAAAAKDXb31AAAAAQDIFfkAAAADgfy1+QAAAAKB9Wn5AAAAAYD5yfkAAAABAkRZ/QAAAAMBpI39AAAAAYB1Ef0AAAAAgHoF/QAAAAEB/nX9AAAAAQN6+f0AAAADA/9Z/QAAAAEC15X9AAAAAYGESgEAAAADgfkmAQAAAAGCWsoBAAAAAwFTZgEAAAABgwPqAQAAAAMBFMoFAAAAAoKNXgUAAAABgU2mBQAAAAIBphIFAAAAAwGOogUAAAACg3duBQAAAAOCXzIJAAAAAQHAag0AAAACgL36DQAAAAMCimoRAAAAAYGKBhUAAAABAAKeFQAAAAID7u4VAAAAAYC3VhkAAAABgyBGIQA== + NrgMGZxjYkAeR9VQy0JnQHzKEHuiRG1AtmSyHxSyc0Bgbopu1BJ0QNhttFCXInlAhy/S5YIjfED6draBGpN+QO5Ba3UNSoBA - + - UvUDQVGkPUGxXolAAOKfPzWrTEFVWj5BXSOiQIhanz8XQyhApBmlQEviYkA9TFNAhM4YQeLn0EC+/KhAE/jzQU0nbkBlbRlBa5dRQF4B4kCFrrM/wv+TQUqNI0BmavJASC/eQUETo0Bwfw5BsdXEP8yOWkHzSo1API8HQDx32EGLriRBjpdHQRDC6UDiLG1AqTWNQPedzUC5F1pADNibQG5uokDsHNxBy43QQIo3GkBSGgxBc2IoQKyWL0Hzk7M/e1tuQZZsNUBScdc/SoRbQFr6nj8gTttBEXDJQO2NJEEqDwdBS+FvQb1Wg0GMPW1AGhBIQeECiUCbRUBB8/z2QRwjBEEmGD1CRmPXPzIJZ0EHGbFBtv/HQG0XXEFVdABBlMmkQchZjULd4NdA1hDOQFCNoED7lvpAuhiYQdD+XkF2eiFAHsmVQQYQk0DUDIhByoKAQTasK0GIbYhANzAGQfwlxEAcmgNBwGf0QMnl0kDKI9FBS68jQLMoeUKEaiJCKc+rQX5Md0B+DRBBCqD8Pw0Ar0CxzrZAKtkXQT4/BkEweldBHYsAQWuZKEG/RMVA1vBRQaSS80EaMOo/HOZHQDxMP0BORLdBNp6yP5Gkq0Dx8yVBehcMQdea10DcpzVBuuK4QVa3q0I0wVFAxSHTQLxEgEDmcq5ADqeUQRQUiUBro5JA/luZQJjFXEE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAIHDpZUAAAAAA9f5lQAAAAIDxo2ZAAAAAgKnGZkAAAADAZI5oQAAAAOA24WhAAAAAAJkhaUAAAADA2gFqQAAAAABln2pAAAAAALAma0AAAADA0alrQAAAAMBehGxAAAAAwOAnbkAAAABA1n5uQAAAAEAWRG9AAAAAwBKmb0AAAAAAcd9vQAAAAAD9QXBAAAAAgI5bcEAAAABg5btwQAAAAICCzXBAAAAAAH8zcUAAAABA2UFxQAAAACDLU3FAAAAAoDvEcUAAAADAHNRxQAAAAIBf53FAAAAAQFglckAAAABgaKZyQAAAAAAttHJAAAAAIA3EckAAAABgJtByQAAAAMBs3nJAAAAAYOojc0AAAACgtV1zQAAAAABQanNAAAAAYOQCdEAAAACA3DB0QAAAAICXRHRAAAAAQFGXdEAAAABAILV0QAAAAID64HRAAAAAwK7zdEAAAADgzyJ1QAAAAMAeQXVAAAAAYC5UdUAAAADAMHV1QAAAAMBEg3VAAAAAIDe0dUAAAABgfM91QAAAACCe4XVAAAAAYCRBdkAAAABALWN2QAAAAMBadHZAAAAAYGKjdkAAAABAShd3QAAAAABTbndAAAAAQCeMd0AAAADgq6Z3QAAAAEC0sHdAAAAA4Nngd0AAAADgbjt4QAAAAMCVVHhAAAAAQKdxeEAAAADgq5R4QAAAAGC/03hAAAAAIMHoeEAAAACA0AB5QAAAAMDrEXlAAAAA4INDeUAAAAAAa1Z5QAAAACBRbXlAAAAAwHuOeUAAAABgFq95QAAAAMCGvXlAAAAAgFvzeUAAAACgVAl6QAAAAGDiNnpAAAAA4KhaekAAAAAg7mR6QAAAACB6gHpAAAAAgJXCekAAAAAge916QAAAAEDM9npAAAAA4D4we0AAAABgDmx7QAAAACCfzHtAAAAAIEcCfkAAAACgDCR/QAAAACDlaH9AAAAAwGDQf0AAAAAgFiOAQAAAAAAqN4BAAAAAoNJ6gEAAAAAgZIaAQAAAAKCutoBAAAAAYFe+gEAAAABgNouBQAAAAMCMwoFAAAAA4GEQgkAAAABgdiiCQAAAAKDvOoJAAAAAQCqfgkAAAAAgZqSCQAAAAKAYr4JAAAAAIMIIg0AAAAAgYxWDQAAAAMDxeoNAAAAAYL+Hg0AAAADAzbKDQAAAAEBkyoNAAAAAwM8EhEAAAABgdESEQAAAAIBuooRAAAAAwEZxhUAAAAAA47qFQAAAACAewYVAAAAAICEkhkAAAAAg/l6GQAAAAKD5ZoZAAAAA4AnuhkAAAABgjiSHQAAAACB0KYhAAAAAYFdciEAAAACgWNqIQA== + 7BToB3LiY0AoFld2zuNlQDAn7Gl4w25Ab5d1hqpCcUCYcdKIFHN2QG/1UdoCVHhA830c1NfDfECR/lMLhsR9QNkDK56EmoFA - + - kk2XQB5kWkCG8wZAkYW7QLLL4kAhnRhA0nYWQbdptUCSv55AYtWRQFMuUUCO5QdB/uCXQLFso0DQGBBAYUx1QBxlAEHq25pA6xrEP2RZmUAUkxlBRRPEP5OE+T+XMIlAz29RQGTLGUDEEI1A8RmZQD3g3UBXdsQ/N5q2QWMxuEEwmYBAzj2BQJO8sT/T7CJAIWjFQAU7VUE/6H1AY3PmP79VRUGbpLE/2F0IQWU9I0H9sy1ABvUOQbykFkE8Rn5AesS8QLoQB0ARVixAnyHXPxg0UEAYr9JA3ho0QDv8DkCd0MZB/lAAQgrZ0UCGD35AfQvXQLJwxEBmDypBolmtQNo8+z/Hn+k/9cBYQLSZZ0A07Pg/thTNQPssqEEjWTFBCPHHQdIFxEHAp45BREekQDYHiEH18LBARO7BQXbB/EDypWJAAowlQKIIDEFtzm9AoGOhQSRyUUHPuwVAl/JHQG3ClEDSa6RA1wxUQW7AIEE59DlB5U+OQWJY+0DYzTZAhlOkQFfTG0H2a8VATHGdQUrKJ0HCH4RAfupAQRHrC0G6gqRAMBdHQqfovEHWVoVB//YCQ1SGEEAtuJpAVHhpQUA6EEGuCgZBXU8OQZDkP0HCZlFBHvilQDVyNUEtSj1AlSLDQErE6UA2GtBAzbxGQaVlxEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIGf/XkAAAADgRCJgQAAAAIB+RWBAAAAAIMLjYEAAAACAb2RiQAAAAABWiWJAAAAA4LkEY0AAAACA3UVjQAAAAACG3GRAAAAA4MseZUAAAAAA0+hlQAAAAMAzP2ZAAAAAgJCqZkAAAACAYwlnQAAAAMD9YmdAAAAAwNuCZ0AAAADgs2RoQAAAAIDsqGhAAAAAgPHnaEAAAACAHChqQAAAAIDzQWpAAAAAAMyna0AAAAAg3OJrQAAAAIDQA2xAAAAAIMhGbEAAAABASmNsQAAAACD+qmxAAAAAwLP3bEAAAADAZr9tQAAAAAAD5W1AAAAAAKaHbkAAAACAaaluQAAAAECmxG5AAAAAwNPibkAAAACAowFvQAAAAIA2Nm9AAAAAQMBob0AAAAAAIedvQAAAAIBmFXBAAAAAYFlOcEAAAABgXcBwQAAAACCr63BAAAAAwOEmcUAAAADgGDdxQAAAACDgoHFAAAAAIBKwcUAAAACAQ79xQAAAAICW5XFAAAAAYAiCckAAAADgKKJyQAAAAKA6s3JAAAAAAM/AckAAAACAOuVyQAAAAIBj9HJAAAAAALQSc0AAAACArUJzQAAAAODBcnNAAAAAYNXTc0AAAAAgvu1zQAAAAACH/3NAAAAAQHcUdEAAAAAA8Sx0QAAAAAB/R3RAAAAAgMd/dEAAAACAVKF0QAAAAAAjs3RAAAAAwPbDdEAAAACA8Nh0QAAAAEBjBXVAAAAAANcidUAAAACgcDB1QAAAACCURHVAAAAAQINUdUAAAABgVGB1QAAAAAAZlHVAAAAAwJSudUAAAABAGMl1QAAAAIBn6HVAAAAAAIbydUAAAAAAKhN2QAAAAMBGJHZAAAAAwKoydkAAAACACEl2QAAAAACIVHZAAAAAwIhjdkAAAAAAdm52QAAAAAC7j3ZAAAAAgDDWdkAAAADg2eF2QAAAACDh7nZAAAAAIIf8dkAAAADA/DN3QAAAAKBMVXdAAAAA4Odid0AAAAAgMnl3QAAAAABFiHdAAAAAYAi4d0AAAADg4dZ3QAAAACAg83dAAAAAoBhbeEAAAACgcGd4QAAAAMANdXhAAAAAYNHleUAAAACglVJ6QAAAAGBphXpAAAAAoGbVekAAAABAnex6QAAAAIBiIntAAAAAgF/Ce0AAAAAgowZ8QAAAAEBHM3xAAAAA4HVHfEAAAAAgW4V8QAAAAMAzxnxAAAAAYJbTfEAAAADgBuR8QAAAAGA+Bn1AAAAA4F9kfUAAAACg4nN9QAAAAOAKmX1AAAAAQJDFfUAAAABApeJ9QAAAAMAi831AAAAAQGIFfkAAAABAGFh+QAAAAGDTiH5AAAAAYBE1f0AAAABAdH5/QAAAAAADCoBAAAAAYK9FgEAAAACgusKAQAAAAMBl24BAAAAAoOIZgUAAAAAgZh+BQAAAAABeKYFAAAAAoNJIgUAAAABg2WKBQAAAAIDzg4FAAAAAIBeigUAAAAAghKmBQAAAACB/24FAAAAAYErmgUAAAADAKuuBQAAAAADs84FAAAAAYJVrgkAAAACgx4GCQAAAAMAfjIJAAAAAgMKSgkAAAABg8+uCQAAAAOBSmoNAAAAAoIEkhEAAAABgMDyEQAAAAGAGqoRAAAAAwOjEhEAAAABA9NOEQAAAAKDN+oRAAAAA4P47hUAAAACA7VqFQAAAAOD/ioVAAAAAwAHrhUAAAADggPSFQAAAAMDiGoZAAAAAAA0jhkAAAADgYOyGQAAAAMAuYIhA + KBZXds7jZUBkuM9LfgRtQEiYIzJJZG5ApoGoFS+DdkCYcdKIFDN3QLbCjnNsw3pApt+EaYeUfUA= - + - Xq81QEAiIkPNuhRB9BXRQvgOQUIDDxBAZlTxQGmC6T8Ys1JBb7zDPy8200DvNKVAEJjYQFEnNUCb/xNBLkTJQLmyGUBITjVA1Fp/QJGrJkHmHHxBKEzEP4LFGEE+2CtANlieQjVWQkHqOP4/24+cQViXH0EkHEhAFM2pQ+fK20CBE3VAXSckQPPYT0BSPoNA43HdQKIeSUCE4KA/nUmUQE3KjD/7CYRA47yoQCUPvkBALtg/STSGQUwwpEBg961B3lkmQTgVB0F169FAWrcFQA2eFEFnz6BAXPidQC/QsEEIy4BBxu2kQBJ40EAsYGBA2H90P6mpL0FLbCtBZEqUQUG8GEAKXpNBNnhZQH5NJUAnO9lAZPPGQNJq9kG5tc1ANNI/Qj6vWkBbtZNBqEXXQEBBZEHC2VtCzX8iQaSP+UCrKMNDIYaXQVKd90HGguJDmQN5Qt94s0ES/iJAjBPeQbduB0NV8BVBfAfSQJ49QEAZXS5Bqg56QfA/8UHaqotBc7/TQOW5pEBkT7dAxzPVQi8+fUGiLUFBzzjEP9gF3EDt6uFBSjfBQGqIPkDbSZ5A3ucKQPksSkE9cmFCfKcUQX66mUJa8yRBZ1pYQQf0UEC+fxlBXWjUQwwGX0FVxBVB36L+QOFvLEAyUCdDoPijQQNmckHs7VhBiZRzQB6d0UHOw0FBdAGDQVxHAUH/E5NAhso0QhRKVUHzcCxAazZbQH7ubUGplbtAyIamQr8WFkEGg+5AMfINQApPFEMeqM5Axc1jQNOQ8UMHF8VBcx2DQD6DH0Es+uhAZ7GnQPeOqUDzzlpA8pfcQDLGkUFxDdNAc3MOQWbKY0ByCydCTLzdQ/d3f0EQ+LxEPn9fQqQrkkE3hOk/ + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQOOmaUAAAACgwURuQAAAAKDthW5AAAAAQCnGbkAAAACAeINvQAAAAMD2xG9AAAAAgCY0cEAAAAAA0kJwQAAAAOBrZHBAAAAAAEJ1cEAAAACACuNwQAAAAMCdVHFAAAAAwNn0ckAAAAAgRdNzQAAAAABr43NAAAAAwNZqdEAAAADAt3V0QAAAAEA7g3RAAAAAQDKldEAAAABAcSV1QAAAAMBWQ3VAAAAAwL1adkAAAABAdLR2QAAAAMDtw3ZAAAAAwLETd0AAAACAvN53QAAAAED2eHhAAAAAAJ2+eEAAAACAVPd4QAAAAAA/DnlAAAAAADWHeUAAAADARrN5QAAAAAAyw3lAAAAAAEDmeUAAAACAZlB6QAAAAIDDsnpAAAAAQHrtekAAAADAbVt7QAAAAEC+eXtAAAAAgB2Ue0AAAAAAxed7QAAAAAAJ9ntAAAAAwJYDfEAAAABAw1l8QAAAAIBygXxAAAAAgFy5fEAAAADA9cl8QAAAAMD3/XxAAAAAQHZOfUAAAACA1HR9QAAAAIB50n1AAAAAwMkRfkAAAAAAnCR+QAAAAEDoP35AAAAAQHiRfkAAAACAN9d+QAAAAECso39AAAAAwJfBf0AAAABg+AKAQAAAAGCJH4BAAAAAoOcwgEAAAAAgFUaAQAAAAGAjYYBAAAAAgCpqgEAAAACg9IeAQAAAAAAJkYBAAAAA4AXAgEAAAABAzMeAQAAAAOCx0IBAAAAAYNjbgEAAAABgrvqAQAAAAOAzEIFAAAAAILZxgUAAAABAIKGBQAAAAOAasYFAAAAAwDIRgkAAAAAghxqCQAAAAOBvIYJAAAAAYDswgkAAAABgW12CQAAAAAAPcoJAAAAAYKCXgkAAAABA8qCCQAAAAKDwqoJAAAAAoLK7gkAAAACgTcKCQAAAAGCS8oJAAAAAICIDg0AAAACg2wiDQAAAAGBVOoNAAAAA4DYXhEAAAADg8WeEQAAAAMDiboRAAAAAQGGThEAAAAAAdaSEQAAAACCSqYRAAAAA4CfrhEAAAACgsvuEQAAAAMAUBYVAAAAAIPYjhUAAAAAgAKOFQAAAAKAJ8IVAAAAAwEYYhkAAAAAgi16GQAAAAKA+aYZAAAAAoG9uhkAAAACA24qGQAAAAODnRodAAAAAIMRph0AAAAAgdXOHQAAAAGA1modAAAAAoHjOh0AAAADAutOHQAAAAOBW4YdAAAAAoEsKiEAAAAAgGRiIQAAAAGDhIYhAAAAAYIRDiEAAAACAh1WIQAAAAGDbcohAAAAA4Fx6iEAAAADgkZ2IQAAAAED88ohAAAAAgOH5iEA= + NrgMGZxjYkBImCMySWRuQBu6YmAmQ3BA - + - 7qXNQG9eokCXbe5AMi+pQEqLfkAUOhtAXU95QA3L0ED2Og9AEsf+P/lg5z85NnVAAtzkQJi0kUDjboNA1VxRQFb9nj/zUaRA/o45QL9rdkBmc61APx3tQGgKR0D86tlAW6Y9QLflD0Ep1OhAYr6WQeGz5j+L4BBBiW37P+tlfkC6wNJAbX6sQR5BdUB/NWVA2wYjQHw1sUC7bWRBFb9/QAqak0Cq9wNBeGpFQeRLEECAYdpAm7nRQM9gWUBxmiFA8wioQedi+z/qPEFA0OD3QHMgskAwRQdA7FxoQCNB6UCZIkRBnl7FQDdB3kAwSKZBoI3VQc/BIkHGJnZA8LwIQW3NfkHo9ulA1H4YQNNFt0CkziVB0dYiQPsegUGPYCpBZW0KQtVDt0BawSJAfg7pPzehm0DUpR9BDvDwQZOCLULXWu1ASs5FQWZkP0F8lPBB83SfQiO7pUEBgKJBzQViQdlSEECJyJ9AvxdIQJacqkCvyc1A72cDQg/TR0Arw7ZALvjDP3afc0EgCSNBxyl3QaDS1kCbz/JBsy12QemRxkFxZ1JAYXVGQMwolEF5KEFBb3a/QZ+UjD/qqjFB3CWFQS9hMkFI2htBvf6xQBf+VkFtNFFABDFRQKg6WkCIsCJBfxX/QDxZI0I9QZpB6qvIQQ== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYKvAZkAAAADAMaRoQAAAAAAJ5WpAAAAAgIeoa0AAAACAd8BrQAAAACCYRmxAAAAAYAGsbEAAAAAAFIRuQAAAAEB7IG9AAAAAgGRGcEAAAAAArSVyQAAAAEArcXNAAAAAgEL+c0AAAACA4nR0QAAAAEAZMHZAAAAAQGFBdkAAAADAVNJ2QAAAAIA1r3dAAAAAQLqQeUAAAACAjeJ5QAAAAMCMtHpAAAAAAJIke0AAAABAsNB7QAAAAEDMqXxAAAAAAOnmfEAAAACAEeR9QAAAAIBIsH9AAAAAYIRVgEAAAACg6PGAQAAAAKBLE4FAAAAAoIIagUAAAAAAJTOBQAAAAEDkQYFAAAAAoDtagUAAAACgl2SBQAAAAEB7jIFAAAAAYLHIgUAAAAAANuKBQAAAAOC8M4JAAAAAoGRZgkAAAAAgYnCCQAAAAABleYJAAAAAwIGLgkAAAABAPMmCQAAAACCwzoJAAAAA4GfJg0AAAADg7eGEQAAAAGBz6IRAAAAAILvihUAAAABg0QKGQAAAAKCSSYZAAAAAoN2thkAAAAAg2fmGQAAAAOC8MIdAAAAAgAdbh0AAAACgBlSIQAAAAGCVtIhA + NrgMGZxjYkCwLijacuRqQMZtNYzMxW5Ak7mMQumSdEBXXNs11mN3QJMXaZZBpHtAeWXdZlnUfEAg4DjQuIKBQITeFMOY0oFAtMDcCxCLhUAYv7j+79qFQEXFXaRRQ4hANhB16UdriUBF9EvO/cuLQDY/YxP084xAY0UIuVVcj0DHQ+SrNayPQPsSVnpWspFALRLEc0bakUDfKCmCjGaTQFg8RnaSspNAKKtpTq3ClEDYUz2L6HaVQIXUWUrpwpZAZ3ybgBQ/l0A3675YL0+YQH7/bVNF05hA - + - qonWP9f0NEDs45pAOM7LQPEjiUBOc/dAVjUEQbUvY0Bz+bI/udnDP9s5K0BU2pRAKC4sQJh7DkDxLek/ssvAQQ1ILUAab7E/xxuEQMWERUG+e39AAOtCQVnnsD9zupZBm7XOQHcpWUFIWJ8/Yd2kQAr3tkBn37A/9OSyQXWCH0KhoPhAAKv5PwtI6ECJuodB9coaQeMR00ETQ2tAPQpvQQr1bEHPaBlAmjljQI2l6UBDODFBPYSMQc6vMULpjKJA+1eyQFSAt0AiMCxAM+7iQEcW1EBgMOk/YYVHQB6MOkFE7cFA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoI8nYEAAAABg/gJhQAAAAMAlo2JAAAAAYIPFY0AAAACA3e5lQAAAAMAABmZAAAAAAP4qZkAAAAAAv01mQAAAAAD/BGhAAAAAgAJlaEAAAAAA5N9pQAAAAEAlbGpAAAAAQJyFakAAAABAwqFqQAAAAIBrI2tAAAAAgJdsa0AAAABAdKJrQAAAAMDJR2xAAAAAwGXkbEAAAAAA9YJtQAAAAEB3mm5AAAAAAIVnb0AAAABAQqNvQAAAAEBhwG9AAAAAQKMycEAAAADgKnZwQAAAACCLlnBAAAAAQISjcEAAAABg6MNwQAAAAMAwF3FAAAAAwCMlcUAAAADAvlBxQAAAAIClxHFAAAAAQIXhcUAAAACAdCByQAAAAKBjZ3JAAAAA4MSQckAAAABgRtVyQAAAAABeQnNAAAAAIJlic0AAAABAz3RzQAAAAECrn3NAAAAAwPW0c0AAAADg4r9zQAAAAADO5HNAAAAAwAz7c0AAAABAdRF0QAAAAEAWdXRAAAAA4LmAdEAAAADAILJ0QAAAACDkw3RAAAAAgEbjdEAAAACAlQJ1QAAAACC8D3VAAAAA4HJCdUAAAAAgW191QAAAAEBrg3VAAAAAwCGhdUAAAAAACcF1QAAAAACk8XVAAAAAwPP+dUAAAADAAhZ2QAAAAACIInZAAAAAIPNLdkAAAACgLV52QAAAAIBDanZAAAAAQLyLdkAAAABAjp52QAAAAACxwnZAAAAAYHnRdkAAAACAYDl3QAAAACD+UHdAAAAAYDaCd0AAAACg2yJ4QAAAAOAfNXhAAAAAIG5CeEAAAACggFZ4QAAAAMB/bXhAAAAAwF2CeEAAAACgf5d4QAAAAKDboXhAAAAA4DeweEAAAAAgzsF4QAAAACBh6HhAAAAAADoCeUAAAADA1xJ5QAAAAGDqWnlAAAAAAOVleUAAAADg47h7QAAAAECLzXtAAAAA4FEEfEAAAABALXh8QAAAAOCrx3xAAAAAoLQUfUAAAADAcTZ9QAAAAED3YX1AAAAAoP+XfUAAAABAJiV+QAAAAEBEdX5AAAAAwNKefkAAAABACup+QAAAAGDTFH9AAAAAoBiWf0AAAAAgm6l/QAAAAODH1H9AAAAA4IcUgEAAAAAAWUOAQAAAACBfYIBAAAAAYIxtgEAAAACApHKAQAAAAAB8moBAAAAAIJXagEAAAACgDQuBQAAAACB8GoFAAAAA4HI7gUAAAAAgDHGBQAAAAKD93IFAAAAAIJvpgUAAAAAASPaBQAAAAIAMJ4JAAAAAIL0xgkAAAAAAm2uCQAAAAOC8gYJAAAAAwIuTgkAAAADg96GCQAAAAGBxs4JAAAAAIIUdhEAAAACgmiyEQAAAAEBmO4VAAAAAINFzhUAAAADghHuFQAAAAGCV7IVAAAAAIJIbhkAAAABgjiOGQAAAAIDXRIZAAAAAYLxCh0A= + NrgMGZxjYkD+9P4gH+NsQEMdzoN8QnFAf9hb5OeCdUBDe6rX1FN4QKaZo1uWk31Anof0IpikfkA= - + - GRsHQSznK0DxQhlA4ZYiQPPEyECwZrZArMoGQPwCSUCSa1JApeVsQPT2ikBj2ZVAd6ZDQT4jwz/UpYNAFSoZQGjkmEBPbKtARiWpQOM3tEA6eiNB62o+QDdd90Ax1CtADwwQQPqlYUHYRS1ABSIHQVdET0B9jJFALUf7P2ulO0FrUcM/UUGEQHtjEEE+fllAPW9rQA3L2D/Si41AomueP/RdR0BRFH9AjUFjQMbVDUGYQZFAa7YhQQUgZkCg8StAc9OVQO61iECkE5RAUlO2QEs0rkHFgJFA7M0OQOnPIEANj3BAHyPfQOIZf0AHEBRBL6HFQaEwEkFVI8Y/pQCMQmSMoEE0JRNBwamgQDOllEADq0JBGnOTQG6A6D8xho5BmNUSQpJ27EGb3eNAnN+LQGUFo0EODcNBrXLbQAPcF0Gy/+c/nw0QQGvsc0AyvUhB4f/4QP3lhEE39KZAe8WRQEmdBkDSD0lB+ML6P7LHOUEobj5AD8MpQZe+y0CNZqdBeCEnQfPWnkFirfVAodNmQQDej0HKAotBUpCxQK1o+kC34FlAU+3SQAxKEkAuAu9B0RmeQXg1zEGfys9AJfluQUl05EDR5i1B+XbAQMcKa0DJIqdBzY8CQdOZpUHiHSVBWWafQEFEFUEhABVBZG7cQRLg6j9cfyhB97gAQUpUDUEOoW1ADXIQQVg/GUD6+hxBYsqYQVQKjUBfSpdBvK+4QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgNDpakAAAADgJkJsQAAAAEBdhW5AAAAAYPahcEAAAAAA/INxQAAAAIBd1XJAAAAAwH7Rc0AAAADAz3F2QAAAAMBplXlAAAAAAJjTeUAAAADARqh6QAAAAIDsj3tAAAAAgHnOe0AAAACACGB8QAAAAID4rXxAAAAAwPvSfEAAAABAavF8QAAAAID+d31AAAAAQNedfUAAAACAW5t+QAAAAEC/FoBAAAAA4OYfgEAAAADAsDCAQAAAAGBgUIBAAAAAQESMgEAAAABAF5qAQAAAAIASo4BAAAAAIHQSgUAAAADAVAyCQAAAAIALVoJAAAAAIKpkgkAAAABACMOCQAAAAAAa24JAAAAAQK2jg0AAAABgU2mEQAAAAGCZyIRAAAAA4E2EhUAAAADgPJGFQAAAAGARsIVAAAAAANb0hUAAAABg74GGQAAAAEDPXodAAAAAIHK2h0AAAADgIEWIQA== + NrgMGZxjYkBImCMySWRuQBu6YmAmQ3BAmHHSiBQzd0AbGD+0flR3QJjPrtxsRH5Aj73/o25Vf0DMlkWY4qqCQMcN7ntjM4NA - + - 9WvXQLoK+z9FxpxAnQBPQGnDHEE2hEpB8lidQPmQh0B+YLpAnAsZQI5GL0GfvrA/XXgIQdsDb0BOnPJAgOYPQENTPkDygqtAJf4EQQyx1kAr/A9AO7h1QGX/BEFajMhApROWQF7YUUBxemJA4aJFQWEma0D3H9FAkdeQQXeJ/kApL4lAGruQQUuBl0GwxvhAXNqVQO3wxEBW2Po/UNj7QKer8kBDzcBArpNQQLhUQ0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoEolZkAAAABA9d9nQAAAAACx5WlAAAAAQFSna0AAAAAAdGRtQAAAAEDGfG1AAAAAgFF5bkAAAABg0nBwQAAAAIDeknBAAAAAIFakcEAAAAAA/bBwQAAAAKDvznBAAAAAANxxcUAAAABAxJBxQAAAAGBT/XFAAAAAwOlVckAAAACA4G9yQAAAAIBx33JAAAAAAO4ic0AAAABA4DNzQAAAAAC4UXNAAAAAACF0c0AAAAAAvRh0QAAAAMAzMXRAAAAAQENzdEAAAACANCt1QAAAAAC7T3VAAAAAgDPAdUAAAADAAhV2QAAAAACBL3ZAAAAAwNVTdkAAAAAAZ3R2QAAAAICB2HZAAAAAwPnxdkAAAADAExF3QAAAAIDLVXdAAAAAAIJmd0AAAADAidV3QAAAAACVf3hAAAAAQEC1eEAAAAAAk9R4QAAAAIBW9XhAAAAAwN4ReUAAAAAAjyF5QAAAAEBDtXlAAAAAgKvjeUAAAACAFFR6QAAAAADtfnpAAAAAQJYNe0AAAACAn3p7QAAAAEDtkntAAAAAwDioe0AAAAAAJRF8QAAAAIAxKnxAAAAAQCBFfEAAAACAnYR8QAAAAMBpt3xAAAAAgGpsfUAAAADAr7B9QAAAAICN1n1AAAAAwNeTfkAAAABAJRR/QAAAAIDQg39AAAAA4L0ZgEAAAABg2DeAQAAAACDzTIBAAAAAAFhUgEAAAABAgluAQAAAAGBhdIBAAAAAwJaggEAAAACgrPmAQAAAAOAcAoFAAAAAwNIfgUAAAAAAaymBQAAAAIBSQYFAAAAAoJObgkAAAABgssuCQAAAAECw2oJAAAAAYEEjg0AAAADgeveDQAAAACDPGoRAAAAAgAVDhEAAAABg34KEQAAAACBeZIVAAAAAYJamhUAAAABA7QWGQAAAAKBgq4ZAAAAA4LC0hkAAAACgsMmGQAAAAIAB3IZAAAAAAPcyh0AAAAAgK1yHQAAAAGBAhodAAAAAwDKnh0AAAACgJe2HQAAAAKDe8odAAAAAIBOjiEAAAAAgRN+IQAAAACC55ohAAAAAoJbsiEA= + NrgMGZxjYkA= - + - npnpQCwdOEHGSxlBiH5HQD5il0Hx7lBA7CUFQKDGLkGYB01Ar6GfQOd5kUFydOVACcyGQX21jkAx78g/w8ZPQEsNFEAqUyJA9N1tQZHN2D83nWxA6kOzQMsA0kCeVz5BYoe/QASTXEEuDR9CTGSdQCRhm0BY4TRAb4XpQNYp4EBoc95A1baOQRU3b0CaXTpBhwGRP+f3sUCPqJZAcreDQXpaIEHXTxFAGVczQYEyWkAUSEBA3AxkQf7kK0DELJJASd49Qdbqx0EGh2dA/cKWQNWlZECY5TRASynQQCHkh0AZdSxBgTT8QMxegkKQyKVAwjgHQW1xY0HJjHlAz+y6QNLRAELYIZZAqw+WQGsSlEGYoTxAv+rWQHDbYkLFMKFAhoIJQYHM5kFL5klA67+2QHxqKkCmNlxA9AmvQea1NEHT3IlApqq/QA1xzUARcd5BFmTEQGJZGEIfC/s/+6bDQJCGjUFp3UFBGa1hQJ15wEDKgdtAfUasQTiLc0FycY1AVy+yQI+bPUH3+w9CfCZTQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwJ3EbUAAAABgo4JuQAAAAIDMJm9AAAAAIBk8b0AAAADgnANwQAAAAAA0JXNAAAAAYDh1c0AAAAAAaINzQAAAAICK0HVAAAAAoHIodkAAAABAJ0d2QAAAAIDEUnZAAAAAoJ3gdkAAAABAevB2QAAAAEAHondAAAAAwM9ReUAAAADANeZ5QAAAAIDrjHpAAAAAQHjQekAAAABAlfR6QAAAAAB1JXtAAAAAAN40e0AAAAAAIzN8QAAAAIADQ3xAAAAAwCxTfEAAAADAAIV8QAAAAAAT43xAAAAAwPqzfkAAAACg+UmAQAAAAOAKW4BAAAAAYCyagEAAAABgM9qAQAAAAIANGoFAAAAAQC1qgUAAAADAzZ+BQAAAAECoqYFAAAAAoEqzgUAAAABgLfmBQAAAAADsEYJAAAAAYO+SgkAAAABgQlqDQAAAACC3ZYNAAAAAYNdtg0AAAADAzOqDQAAAAMAYNYRAAAAAIDp/hEAAAAAg2PCEQAAAAOBNAoVAAAAAQFqLhUAAAAAAX5CFQAAAACA2+YVAAAAA4O6jhkAAAACAcy2HQAAAAEDiPIdAAAAAYOJEh0AAAACAgquHQAAAAGCqwodAAAAAoMcTiEAAAACgLFqIQAAAACDXoohAAAAAoBquiEA= + KBZXds7jZUA1uAwZnGNrQIkw7CrX8nJAQh3Og3zCdUBQi4Bk7yN5QJhx0ogUM3pAcpSClXKUfkC6etS5l6N/QJx3i2fFYoJA8B2OGCPag0DHoQ1qEZuEQIT+MVR64odAWoKxpWijiECvKLRWxhqKQO5iVeG/q4xAE1Z+c1IzjUB/Z9Z5AWSPQKRa/wuU649A1UgsvibOkEAExGQUEIKRQB85/ltS0pJAYe1UEEyCk0A1Tj9deO6TQA== - + - TLO/QOgFjD9JdJpAj/TnP/5An0ATGhBAUItjQK2SWUCWLfs/+/QrQKLUM0Dkx7tAQLIMQVZ9NUCQPONAlKaWQGhSC0EdmLE/Bb4GQGlWfkAVcJZAe5UQQeV5hkBqkNxApC6SQHLY/0D6zEZABeSWQAsDCUFE0T1A4SZ+QCrONkGOwo9AmU2IQHEx6j8btxhByqwYQf/+60B1ny9AXTNaQZbdBkAOeoVBjR2AQEB3E0GXO+1Ah6ocQXaXpECDXfxAgYrwQMESkUDMge9AxpmPQMnLtkAyV1BAKpXDP2Wuu0Bc4I1B8yWmQGrOIkGoTdJA1laIQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIMHfZ0AAAADgjo1oQAAAAMARmmlAAAAAwIVla0AAAACA5qBrQAAAAMDy6WtAAAAAgGcEbEAAAACAS0NsQAAAAOCxZmxAAAAAQNqkbkAAAADAL2dvQAAAAMDYpG9AAAAAgHMzcEAAAACgukVwQAAAAADcrXBAAAAAgKfQcEAAAADgL5FxQAAAAEA1s3FAAAAAAPP2cUAAAAAAmeNyQAAAAMCuo3NAAAAAAAZFdEAAAAAgIW90QAAAAADFg3RAAAAAwKDFdEAAAABgONJ0QAAAAEAWFHVAAAAAQHJGdUAAAAAAjVJ1QAAAAMDms3VAAAAAwCvjdUAAAADAihN2QAAAAACSM3ZAAAAAQDZJdkAAAAAA+MR2QAAAAECy1HZAAAAAgLFUd0AAAACA5Ot3QAAAAIBlA3hAAAAAwLo9eEAAAADAR5F4QAAAAIDFEHlAAAAAQCykeUAAAADAYvB5QAAAAEB7knpAAAAAwAj2ekAAAADAtCt7QAAAAMDewHtAAAAAgPTze0AAAAAALil8QAAAAAD5RHxAAAAAQClYfEAAAAAAMXN8QAAAAMBGsXxAAAAAQB/afEAAAACA7BZ9QAAAAEBXPX1AAAAAwIRjfUAAAABAx6R9QAAAAICPsH1AAAAAgAPwfUAAAAAAfvV+QAAAAICbcX9AAAAAAG+Cf0AAAACgOxuAQAAAAOBMQoBAAAAAYD5MgEAAAADgCWKAQAAAAGDihoBAAAAAYD8XgUAAAADg4ieBQAAAACA/f4FAAAAAQB+HgUAAAAAARZmBQAAAAIBBrIFAAAAAoCSzgUAAAADAZfOBQAAAAOB0+YFAAAAAoAMDgkAAAABA9ReCQAAAAGBmIoJAAAAAYCc6gkAAAABgfGmCQAAAAACokYJAAAAAoJydgkAAAADAg7aCQAAAAIDvwoJAAAAA4EX6gkAAAABA5DeDQAAAAED9R4NAAAAAoGVQg0AAAABganWDQAAAACCnlINAAAAAoBsqhUAAAADgbHyFQAAAAKDusYVAAAAAIBvdhUAAAADgcfKFQAAAACDmQoZAAAAAoDBNhkAAAABgv4KGQAAAACCDp4ZAAAAAILa6hkAAAACgtsqGQAAAAOBMIodAAAAAoMa4h0AAAAAA6zqIQAAAAACoW4hAAAAAYBp4iEAAAABgu8iIQAAAAIDv1IhAAAAAYPniiEA= + NrgMGZxjYkDGeRuljWJrQFf+/uF9UnBAV2JOwjaydUAeWZMbloN2QHll3WZZ1HxAfiOWOeXCfUDsF3BC1AmCQFCTEu+DcoJAUEU6X2AihUAK5vLm+3KGQG6W9km4sohAbOnB0E6LikA= - + - SHATQJbfoUAY4BZBOtaFQIo5SUEHXZ5BPQvpPz26jUCpE41AAcD+P2TKhULeBC9ATNCBQCANOEEpRtxAg2GcQEHyokGh17E/6irEP71rPEAuDKxBA6SfQNN9/EDXYiRAYvqbQhqhJUEeMABBoyYwQbj8CUF0NnFAyhSlQeIkdkD1ZlJCyJ9oQfwUDEHzSZ8/vSu7QLm5JUBP/Q9ANPwiQDINlUAPi1tBCIuEQO/YIEIuUOBAAJQhQL9MokAsorJAWmIEQcjC9kBauLZAy9lTQICp6kATj/lAYM1tQffl3UGeEiBBsCF8QSfPBkFq4CRBqh6bQMmmWkCAOAdAtOXNQN00LEHOMec/mUUQQC46pkFV38hAJkaGQMPL4EFebghAIGfSQJndFUK/bmNADjPFQEqSH0HyCVo/tIqpQdnNjkFT0EdAZ2nnQAdEUkEllBFClI3aQXtat0BBKQdB4+JiQfsKZUCYGNBAelI+QGVPq0A+m2hB/YfwQCKlN0KAE8xA50KqQN7KQECpvZVCvRoeQlfRGUEzq8BAMDMZQaGw/UHUPclAb4GFQCNdFUEFLiJALuZjQNulnUDNU1pA5bhGQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQBE7XkAAAADAC9hgQAAAAEAf5GVAAAAAQGajZkAAAADg3b5oQAAAAODj42hAAAAAwLMjaUAAAACA4KZpQAAAAICLI2pAAAAA4IZoakAAAACAxjxsQAAAAEA8JG1AAAAAgLCpbUAAAACAq+NtQAAAAAByCG9AAAAAgCfzb0AAAAAgGw9wQAAAAICRH3BAAAAAoI4zcEAAAADgg7NwQAAAAKD95HBAAAAAwKgRcUAAAABglBtxQAAAACAMcnFAAAAAIBGScUAAAADg4cJxQAAAAEBwA3JAAAAAwNoNckAAAAAA4TlyQAAAAICnUnJAAAAAQLBvckAAAACgLepyQAAAAIBRA3NAAAAAAEYPc0AAAAAgcDVzQAAAAIDOUXNAAAAAoF+Vc0AAAABgzsFzQAAAAAA18HNAAAAAoNgRdEAAAAAAjB90QAAAAABkdnRAAAAAoIKBdEAAAACAid50QAAAAIDo/3RAAAAAgL8ddUAAAACA9Dp1QAAAAIBPk3VAAAAAgOuidUAAAACgB7J1QAAAAIBF73VAAAAAANQDdkAAAADAHBB2QAAAAAAwI3ZAAAAAoFdNdkAAAACgsaJ2QAAAACCNs3ZAAAAAwNfOdkAAAADgFuN2QAAAAMDw/nZAAAAAIK8Td0AAAAAAbTF3QAAAACAcQ3dAAAAA4DRyd0AAAABgwZJ3QAAAAGCts3dAAAAAwBDQd0AAAAAAeZJ5QAAAACDK0XlAAAAA4Mo6e0AAAADApWN8QAAAAKDD5nxAAAAAIMD3fEAAAAAgUh59QAAAAMCBZn1AAAAAYPDEfUAAAADgCnN+QAAAAMDJKn9AAAAAwECAf0AAAABASJN/QAAAAKAAgoBAAAAA4PuSgEAAAADg56mAQAAAAKC3uoBAAAAAIBfTgUAAAACA5vmBQAAAAGA2CoJAAAAA4E9SgkAAAADgX6SCQAAAAOCtuYJAAAAAoIcrg0AAAAAgdVKDQAAAAEAErINAAAAAIJ78g0AAAAAg7CKEQAAAAKAEgoRAAAAA4MT9hEAAAAAAwhqFQAAAAOC6moVAAAAAoGXUhUAAAADA4eOFQAAAAGCVVIZAAAAAYEOzhkAAAADgxGOHQAAAAICEg4hA + NrgMGZxjYkAKI3ffzmRvQI8BR/y9MnFA+TZ8X1ezd0AXiDhKr8N5QA== - + - L328QBUJrkDdFXFBnimlQGrz+j9m9itAO+hHQJR2fkCEFZxA24MsQJSvSUG/+DRAe7ZlQYn8skCNlMQ//+3vQBDqGUBlhwBA/p9ZQEmqoEBmHgdAbgwaQORSsT8tvZ9A2casQX0K/D/mm59A2gXDQCCWY0CfwQxBy2aaQHlvEUFP+LtALWU/QS7Z80C7PgdAY0gzQuH2BkDxaAFBafL0QGX8yz+OQItA3Jg1QOXbF0FXpPtAXuiCQZreqUBj80pCHOsoQplT6EEj9nlB4292QB9BwkBgxeVA24/7P/6060GLoew/h62pQTJTKEHR/0pB4F7gQAisekHgPwdABRYsQKuN10AxExVBV+MCQRMew0CjbgZAt2jJQDTur0BxMw9BVbvWPzALsUCZC4hBzphiQHrAJ0HqmhNBN3bSQJd8hUFu0QJBLYEGQbBjnkBWjQdBEhEuQL8yP0CqcVlCfKX7PxK/IkAalbJAhiZjQANY4UDFYIpB6xyNQF3WLUHsaMpAqynuQNeIkkBcTTdBVAsqQZT480AqFsZAdbCGQC8oeEAJinRB + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYJHmYUAAAADgvGRiQAAAAGCRg2JAAAAAAHLCY0AAAACAVGBkQAAAAEB45mRAAAAAAInpZUAAAACA6CdmQAAAACCuBmdAAAAAwHikZ0AAAADA9MloQAAAAODfRWlAAAAAYFwCakAAAACAt11qQAAAAAAefmpAAAAA4IHKakAAAABga2trQAAAAKC7iGtAAAAAAImia0AAAADAldZrQAAAAOBQ7GtAAAAAoIccbEAAAADAH0JsQAAAAADKamxAAAAAQHuAbEAAAAAANb9sQAAAAICPB21AAAAAgC/mbUAAAADApUpuQAAAAMDWpW5AAAAAACEIb0AAAABAETVvQAAAAABhSW9AAAAAQOWHb0AAAAAAZKlvQAAAACCMK3BAAAAAIJhicEAAAAAA0nFwQAAAAECvsnBAAAAAoKsOcUAAAADArzNxQAAAAIABTHFAAAAAwL5zcUAAAADAMrJxQAAAAMAlxnFAAAAA4JDjcUAAAAAA3g9yQAAAAMAsH3JAAAAAQNGickAAAABgdrFyQAAAAAAWxHJAAAAAQHrTckAAAADASfNyQAAAAAAsBHNAAAAAQMogc0AAAADASzdzQAAAAMAlRnNAAAAAQMBac0AAAACg/nlzQAAAAAArk3NAAAAAgHCfc0AAAAAAE7JzQAAAAEDB9HNAAAAAAMMfdEAAAABAtTZ0QAAAAABZU3RAAAAAoANqdEAAAACgp3V0QAAAAGAVg3RAAAAAQOGidEAAAADAha50QAAAAKAruHRAAAAAwM4CdUAAAAAAaUR1QAAAAEAqX3VAAAAAwJd0dUAAAAAgMJ51QAAAAMDjs3VAAAAAAJbTdUAAAABgOEV2QAAAAKCtUnZAAAAAIBlidkAAAABg6YF2QAAAAGAA4nZAAAAA4Hv2dkAAAAAgajJ3QAAAACBJZHdAAAAAoFN0d0AAAAAghol3QAAAACAalndAAAAAwG0heUAAAABAQy55QAAAACAes3lAAAAA4GplekAAAABgpXV6QAAAACBimHpAAAAAoHqrekAAAADgEOJ6QAAAAKCZ9HpAAAAAYMCre0AAAABAKM97QAAAAMA2TnxAAAAAQKx4fEAAAABgEn19QAAAACDyp31AAAAAoNPofUAAAAAg5fh9QAAAAKDsyH5AAAAAQAoIf0AAAADA3UV/QAAAAMC71n9AAAAAYJ/nf0AAAAAg1gqAQAAAACDOEYBAAAAAoOtrgEAAAADg69GAQAAAAECW14BAAAAAQDs3gUAAAADgq1+BQAAAAABzaoFAAAAAgDR/gUAAAADgqJOBQAAAAMCto4FAAAAAYD5KgkAAAACgC5SCQAAAAAAkO4NAAAAAgNVDg0AAAACgJIKEQAAAAEB1vIRAAAAAIDAMhUAAAAAgdsOFQAAAAGAV9oZAAAAAYBH8hkAAAACAiIWHQAAAAMCvuYdAAAAAQInLh0AAAAAgDuSHQAAAAGCze4hA + NrgMGZxjYkBML328ejFwQEMdzoN8QnFAwNQ9rGoyeEBDe6rX1FN4QDE5qjRDhH9AxBfpcsGxgEApIdYyY3qCQOJopV0ZQoRAuiVXy6QyhUBEbHRHbFqIQLpURfVQu4hARJticRjji0AcWBTfo9OMQNWf4wlam45AnVTo5P0xkEAzUjLRzamQQK9BcmjpdZJAT2tN80N+kkAvWWl9PzqUQKyUPe9/fpRAeUk7G2s+lkD2hA+Nq4KWQA== - + - 5yPEP9JU6T/gJUdAmEAHQNZyEEAxnmFA02h/QK9sEEDEBStAUOSiQOwkmkASTOk/qOquQGEWbUC4TCFBkj5HQcMLDUGgqPs/W+juP551AEGzXPdAvN/7P64wZUDTXLhA1r4HQX0idkDZI7pAQYR1QPY4eUDtBNpAE0GqQIKa4kGYhdlAmtACQRR2n0B/RbtA1LnGQGBgHEGfNeFAj4jgQPpEoEARab9AzDVEQd7wDkEcKpJAZMMbQYgr50ClT0RBHWQHQVoi7UBXCUhAH9ASQaT4qEA3/ZBA5VToPwTuKkAI/31ACAxUQMg12EHSNZZAM27DP9Ns6D+Sf9tAL3LiQPyRJUAnpzRB7Rc0QOvmIkB0O4lBiNKyQJj/tUAUcwFB1Ly4QDhed0EgAXBCO3jWP1d+PUC1QgdA9ifXQJoK10BMXatBHXk6QaFKdUD69Y1Bmh+dQJLCZkENB5pBSAPzQHvWskDFVYlBrXUQQIl11j/escRAkcj2QORiEEBksZ9A7MhlQacSPkATPIhAipKbQE7aGUHLDnZCEz0BQj/GAEGiXUVB9e8ZQYFxqEC+fBpBF4A1QHnAekFbXB1C393gQFyff0DT2O5A+aJ4QCxYDkGIgUhBJfUIQaj4sUApyehArH0GQV/LmkAxmYNAgCn8QOye2kDtM4VBkIObQKiw00DJunVA9jr8QCYRUkA5z8ZA6EbpPyXvbEBf3UVB+sKkQHPm6j+TCg9A + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAABlPcEAAAACggK9wQAAAAEA8TXVAAAAAQNQlekAAAADA8dJ6QAAAAAAi3XpAAAAAwLHtekAAAAAAgWR7QAAAAIA5sHxAAAAAQMzhfkAAAAAgtQGAQAAAAOAPTYJAAAAAANl0gkAAAABA6uyCQAAAAABFEYNAAAAAoAlyg0AAAADgk3eDQAAAAED904NAAAAAYLSMhUAAAACgvqqGQAAAAACf5IZAAAAAoHwYh0AAAAAgysGHQAAAAMCc1IdAAAAAwAV6iEAAAAAAcouIQAAAAEAEm4hAAAAAYKmsiEA= + KBZXds7jZUA= - + - bWM0QG8OdkD0AwZAAfSBQbb+lkDihttAHe7bQB1ZUEAggeJAZJi2QHW91kAeAlFAxbPSQF8nR0APodlAHjEOQW0NwEA8oKJArD8HQD0sLEHgIx9BARumQBxB5EFkYmNBQsM3QTZcEkGUadY/7n1UQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQIQpaUAAAABgMIdtQAAAAKDfqG1AAAAAAISEbkAAAACg+SxwQAAAAGCX0nBAAAAAQDuGdEAAAADA//N0QAAAAEBtU3VAAAAAwPSidUAAAABAAzV2QAAAAIAjd3ZAAAAAQESvdkAAAAAA0PJ3QAAAAECAEXhAAAAAwIXBeEAAAAAAHSV5QAAAAACUbHlAAAAAgI35eUAAAACAdDV6QAAAAICKvXpAAAAAAHgVe0AAAABAr2d7QAAAAADNlHtAAAAAgIQVfEAAAABACEJ8QAAAAACjVnxAAAAAQC52fEAAAADAnKF8QAAAAMCs4nxAAAAAQOA5fUAAAABAebB9QAAAAEA+wn1AAAAAAOXUfUAAAADAx+B9QAAAAEBK8X1AAAAAAAwjfkAAAABAUr1+QAAAAEA/4H5AAAAAwNd7f0AAAAAA3vN/QAAAAKBmCoBAAAAAgIEvgEAAAADgYVGAQAAAACDxhoBAAAAAIGuRgEAAAABAd/OAQAAAAMCE/oBAAAAAoIkLgUAAAAAgDBOBQAAAAKDaJoFAAAAAIFlmgUAAAADgzzuCQAAAAMDpEINAAAAA4Ic9g0AAAADgE2KDQAAAAKAj0YNAAAAAoAjXg0AAAADgmRWEQAAAAODXGoRAAAAAwNNshEAAAADAHDqFQAAAAABxQIVAAAAAgDJahUAAAADgDo2FQAAAAADB14VAAAAAIB3mhUAAAABAuOuFQAAAAMAkQ4ZAAAAAoMhKhkAAAACg8buGQAAAAODiPodAAAAAoI8fiEAAAADgWGGIQAAAACBMlohA + NrgMGZxjYkDiYBUjzERrQMAgXDX4gm5AmXHSiBSzdUBgbopu1FJ2QLbCjnNsw3pAXHhwXLrjfUBSQEdo7fmAQCUbuFwUioJAUEU6X2DChEC0QxZSQBKFQFB0KIkMS4hASCS6jZcaiUBzTjyQ41KLQG7F5HNk24tA - + - usYhQDPS2T+aYndA2o1oQYwdwz/bQKBA8+UGQEOP4ECh3VdBR80YQNIqnUB/G4BARDKEQJEfLEB/8m1ANc2NQDOFb0EvjOhA3uWNQLQD80Az9eZA3mmNPzhibkCwcJpA++AQQBL9o0CRG58/bqrEQEfLP0EJILdADh52QdUiB0BMOC5Bw+KJQcpctkB0VhxBNxMjQPxZGUDqSA1B1E4gQX09+kDSiwlBEN8+QMrKFEFBmZFB+EAaQOzxUkFufY9AbsuEQH7P3UHMl15BzOM3QSyNUEAGghpBckmJQJTjDkEGhK9BSEF8QUVUlkGAtl5BIqnWP9RgqEH8TrFBSngiQAuBWUCAtJ1Az1ikQcLcn0BkmjhBpvoZQAAXx0BQmRpBdsOWQPhFfEHGz5ZA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwKysakAAAABg4WlrQAAAAEBFn2tAAAAAoJrEa0AAAACAiOhrQAAAAIDGkWxAAAAAoA8tbUAAAACgJFNwQAAAAACssXBAAAAAgFgWckAAAABAo5NyQAAAAODd5HJAAAAAQEtEdEAAAAAAPHR0QAAAAEBrWXVAAAAAAKlrdUAAAAAAhJF2QAAAAID7AndAAAAAgPgHeEAAAACA8SB4QAAAAIB3I3pAAAAAgMB1ekAAAACAKAR7QAAAAAD7UntAAAAAAPp4e0AAAADA/OB7QAAAAEBP4nxAAAAAgGdxfUAAAABAdYZ9QAAAAMD6wH1AAAAAgPfVfUAAAACAFmV+QAAAAEBgi35AAAAAwGGhfkAAAADASw1/QAAAAICxlH9AAAAAwASmf0AAAAAA59Z/QAAAAGCzA4BAAAAA4CkPgEAAAADgFSCAQAAAAKDTMYBAAAAAIGA+gEAAAAAg1nKAQAAAAOBLiYBAAAAA4A6wgEAAAAAgyPCAQAAAAECSGoFAAAAA4OMzgUAAAACAJjuBQAAAAGAjSIFAAAAAgH1qgUAAAADglHaBQAAAAMAy74JAAAAAoBFcg0AAAADAf0OEQAAAACAYS4RAAAAAYI9lhEAAAADAP7uEQAAAAKBswIRAAAAAQNTThEAAAACgagWFQAAAAOADM4VAAAAAoARihUAAAAAAA4KFQAAAAOC1iYVAAAAA4GashUAAAADgLt2GQAAAAICHI4dAAAAAwH9qh0AAAACg5nWHQAAAAECxr4dAAAAAwPjWh0AAAABgkRiIQAAAAMBGSohA + KBZXds7jZUA= - + - VXooQDvSg0BiyfE/h8ZIQWhJI0AO5S5ALyoHQajhjUATboBAU5G1QNmqyT8+K+w/dbUTQXEEI0GFZ21AGp7HQDpuiUDd1fs/RlkLQeyX50C608M/NKfzQC8+5UBvEFVBi+3bQDZ74D85IxNBnqyWQOLxREBQ18M/4JObQA6sgkEfFBFBM3M1QLeTjkFdMy5BBEeCQMJPFkFHbvs/ImbyQEK3xD+FhOBBQ6HyQL0FB0CKoD5A1hmmQXYOKUHPmABCvgAZQfGQsT/fVsFAVVNaQT11CEEEDyRCNoEQQDJ5kkCmbKZAEErTQJm+kECCXJ1AWPoZQRhaqUCvvwJBNA5FQTXW0kCQ+MhAgQsEQk6ScUA5A65AHOy1P6SKuEEZJhVBrD38P1x6lUHWVeVA + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAHheZ0AAAADgx4hnQAAAACCSLGlAAAAAAHQkakAAAAAgDghrQAAAAODIQW1AAAAAQEvgbkAAAABAHFRyQAAAAEDPXnJAAAAAwPR0ckAAAAAAAIZyQAAAAICclHNAAAAAwIbAc0AAAADASrJ1QAAAAEA0c3ZAAAAAgJ6idkAAAAAAGnp3QAAAAIDSE3hAAAAAgNYzeEAAAABAKXJ4QAAAAEBsDXlAAAAAAILFeUAAAAAAVdd5QAAAAAB5pXpAAAAAgLdxe0AAAADAL6V7QAAAAACgw3tAAAAAgDpQfEAAAABAQaZ8QAAAAMAn0nxAAAAAQMARfUAAAACA/bZ9QAAAAABc6n1AAAAAQBMmfkAAAADAmlV+QAAAAEB/Zn5AAAAAQCaVfkAAAACANNt+QAAAAMBB5X5AAAAAgKn9fkAAAADAQxF/QAAAAEA8IH9AAAAAwF+wf0AAAABAmeh/QAAAAMDU+X9AAAAAYDkNgEAAAAAgzBKAQAAAACDeH4BAAAAAIJMngEAAAAAgKUuAQAAAAEDqVoBAAAAAgOGKgEAAAADASY2CQAAAAEDDo4JAAAAAoAYVg0AAAADAvzGDQAAAAIAaaoNAAAAAINmkg0AAAAAgaB2EQAAAAMB+UoRAAAAAINWChEAAAABgg+GEQAAAACDX+YRAAAAAYEgZhUAAAAAg+mSFQAAAACADb4VAAAAAwEPkhUAAAABgpOqFQAAAACCM74VAAAAAAGg3hkAAAACAIECGQAAAACDNi4ZAAAAAACGUhkAAAACg67aGQAAAAAA1y4ZAAAAAAE3RhkAAAACgFweHQAAAAADGW4dAAAAAABekh0AAAAAAYtOHQAAAAOAc9YdAAAAAQEwUiEAAAAAAwiuIQAAAACBpUohAAAAAAFRziEAAAACgMZGIQAAAACBmt4hAAAAAgEvtiEAAAABgaPyIQA== + NrgMGZxjYkA= - + - rHIQQChrbUBpnhBBU8nnQD+YhEC2GipBkDWAQG98AkF7aNNAxi6dQKm3X0Fpq6xAOnWSQM7Tu0Bkk6lA0fnDP/7SxEBNaqpB9OrWP4rR8kBK9RJBW+IjQWuGmkBj/btAQqxHQIcqiUCS0ixB/nGuQDsV3D/CW3VAYeyIQOyL6T8JxrJA7/UrQBp1AkL9QSdBuv2ePxbX3kAJdVBA212uQNDWf0CSbtdAzJ7qQFevf0CtfuFAWERkQYyzK0ATTitB52ySQOwCF0FGVlJB+z7XP+i1+z/0dcpAKl/xQK6KiUDxJfw/vKFpQTLljUBvtY5BSlr8QIlsIkA2opNBtngJQUJgukA+0OlAp8ceQsoxAELcEKhAF1E/QW3sTEE890FCkT/cQBimUEBIs2BBSDtqQMlzBUFWwMFB8iFkQE44jEEEXNZA0Vh7QQ87oUC9eulAp+qdQOP0p0DX6AJBB3eOQcizGkI= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQKtmZUAAAABAJlloQAAAAOATpWhAAAAAQK4FaUAAAADgOx5qQAAAAABVHmxAAAAAgABGbEAAAAAAHeVsQAAAAIA0Rm1AAAAAwHqgbUAAAABAgIJuQAAAAACqmG5AAAAAgAW9b0AAAABA29ZvQAAAAECjI3BAAAAAwMRxcEAAAAAAZ/lwQAAAAMA5A3FAAAAAwAMkcUAAAACAe8NxQAAAAEDH7XFAAAAAwOADckAAAABAtQ1yQAAAAMBPYXJAAAAAAEKPckAAAABAsJ5zQAAAAEBLrXNAAAAAgCe8c0AAAACAc3d0QAAAAIDngXRAAAAAgBymdEAAAACAzLl0QAAAAMC9/nRAAAAAwGePdUAAAACAdJx1QAAAAIApHXZAAAAAAN4vdkAAAAAAt0B2QAAAAIDkl3ZAAAAAwBXUdkAAAAAAXfN2QAAAAACPs3dAAAAAQPLfd0AAAAAAbfR3QAAAAIBSFHhAAAAAQK85eEAAAADASKZ4QAAAAECIzXhAAAAAQDsReUAAAABA+XR5QAAAAECp/nlAAAAAAAIdekAAAADA11J6QAAAAICvXXpAAAAAgN9+ekAAAACATnl7QAAAAAAdnHtAAAAAAL2pe0AAAAAACdJ7QAAAAMDSM3xAAAAAgP5NfEAAAACAsc98QAAAAECL9nxAAAAAAJoMfUAAAADAFSB9QAAAAICsLX1AAAAAQORUfUAAAADA+YV9QAAAAIB78n1AAAAAQAUMfkAAAABAQR9+QAAAAAA4Qn5AAAAAQLBOfkAAAAAA4pF+QAAAAMA3nn5AAAAAgCeyfkAAAACAer1+QAAAAMC4zn5AAAAAQIQuf0AAAAAAilp/QAAAACBUcIBAAAAA4HrrgEAAAADgTP2AQAAAAMDHBoFAAAAAAO8igUAAAABglKGCQAAAAECSzYJAAAAAIBy3g0AAAACACgOEQAAAAKBnJoRAAAAAAFEuhEAAAADgCnCEQAAAAKBZn4RAAAAA4IW8hEAAAACA1PuEQAAAAODUKoVAAAAAYLp3hUAAAACA84qFQAAAAGBS7IVAAAAAYKF8hkAAAACAnkCHQAAAAOCHwodAAAAA4AXSh0A= + KBZXds7jZUAmWGpEdaJuQDtMc7KVAnNA - + - QnX7P/5uPkAIYpdAvS8HQBBpf0Ci5I9AEhFtQP4xgEDauAdBLfYaQcKTZECtpMBAe0d9QYkU1j9M1UdAiDWyQA+GgUH4DmtAhEG+QHfTh0AD5PhAFgaJQCSOsT9y97BA9zqPQZ7/N0IlmNlA5heOQLqs8kA+/MM/b3QiQBfd3EBOqAhAwlEGQLhVNUBEHlFAjmvBQItOGkJEBsY/JFMbQOlHVD9oreJAXpKAQBI50kBjR2ZBG1GHQa+f7UDluwdAQEI/QSTwU0Hz1B1B65tpQExTG0FamxxBqK0BQ/8D4UDnBodBjF8BQUyjPUCW/5tBloORQFyt70A++ohAShkYQR9JgkEugyBDb9wRQWq9aEEGZjVB5T7CQGRer0FspNBCOaC4QT9K8UAcFQdAHmqBQEbIAEIL7AhBN3WfQKQV2UFJGOlBhNJVQRFqYEHeQo5A1pYJQXkN00DoigxB345xQH8Y+z+L0mNBD9jpQENpl0D2rKtAScebQJqz9UAC+FFB+HwYQBcUFUEMLRBAGx3zQB3RA0KWNqBA7jW4QA== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQMSqY0AAAADgmqNkQAAAAICLIGZAAAAAANUjZ0AAAAAAMkZnQAAAAADRYGhAAAAAgNRkaUAAAACAgeJpQAAAAMBmqGpAAAAAoOu9akAAAABgaEZrQAAAAIDEhmxAAAAAwJopbUAAAAAgY+BtQAAAAAA5Tm5AAAAAQJClbkAAAACAsktvQAAAAOB9m29AAAAAQNzeb0AAAACgxCdwQAAAACAYj3BAAAAAIKezcEAAAACghe1wQAAAAKAtI3FAAAAAYO8ycUAAAABg1Z1xQAAAAACxyHFAAAAAQMrhcUAAAADADcZyQAAAACCRMXNAAAAAgIZGc0AAAAAgL2hzQAAAAKBCg3NAAAAAQL+Uc0AAAADA689zQAAAAIClU3RAAAAAQJBjdEAAAADgC7R0QAAAAAAT6HRAAAAAoFPzdEAAAACAzxF1QAAAAMCHc3VAAAAAgCaudUAAAACg+dZ1QAAAACCqRHZAAAAA4GhXdkAAAABAFHV2QAAAAEBMwXZAAAAAoL3SdkAAAADA8ut2QAAAAGC0CXdAAAAA4PUWd0AAAABAn1Z3QAAAAMD8dHdAAAAAAJOId0AAAACAY5J3QAAAAGAv4XdAAAAAIN7xd0AAAADguQV4QAAAAMB6FHhAAAAA4FcveEAAAABgRHp4QAAAAMDroHhAAAAAIOzAeEAAAABgItF4QAAAAODd8HhAAAAAgBYIeUAAAABgeBN5QAAAAKAnIXlAAAAAYOO/eUAAAABAedJ5QAAAAKD+6XlAAAAA4Ej7eUAAAADgogd6QAAAAGCZgXpAAAAAwI2kekAAAACgr716QAAAAKAB5XpAAAAA4EYGe0AAAACgVCh7QAAAAEA4V3tAAAAAIFl2e0AAAADg+p17QAAAAOCRsntAAAAA4JTCe0AAAACAEO57QAAAAGA6BXxAAAAAIHNMfEAAAAAgn3Z8QAAAAKAglXxAAAAAoHKkfEAAAABgK798QAAAACDyyXxAAAAAwEcDfUAAAACAKRh9QAAAAGCMIn1AAAAAwLg1fUAAAADg7kB9QAAAAMCGZ31AAAAAwCGkfUAAAAAgAa99QAAAACCEy39AAAAAIPcBgEAAAADgCYqAQAAAAKDGCoFAAAAAoItXgUAAAAAga3KBQAAAAMDzooFAAAAAYOKpgUAAAADgirOBQAAAACBLyYFAAAAAoJnZgUAAAADg2RCCQAAAAGBPG4JAAAAAINErgkAAAAAgRUKCQAAAAEBLV4JAAAAA4HGsgkAAAACgg7uCQAAAAOAJxYJAAAAAYBTTgkAAAADgYeWCQAAAAGCTAoNAAAAAoIEJg0AAAADAPR+DQAAAAKC4ZoNAAAAAIIWLg0AAAADAo5GDQAAAAAAEo4NAAAAAwEHLg0AAAABgMeqDQAAAACAzA4RAAAAA4MEqhEAAAACAX0mEQAAAAKADX4RAAAAAwFNrhEAAAACADIiEQAAAAMD+nIRAAAAAIL6shEAAAACAjMuEQAAAAKD5CYVAAAAAwIERhUAAAACAtSqFQAAAAED9WoVAAAAA4C9jhUAAAABgUpqFQAAAAGCfzIVAAAAAAAXYhUAAAABgVO2FQAAAAMADOoZAAAAAYK9zhkAAAABgiciGQAAAAGBrz4ZAAAAAYOoHh0AAAAAg7xCHQAAAACC9GIdAAAAAgFRsh0AAAABgSZSHQAAAAECYoodAAAAAYJa2h0AAAACg5d+HQAAAAAC95IdAAAAAIN8iiEAAAAAggi2IQAAAAAAMVIhAAAAAYDV1iEAAAACgBLaIQAAAAKDG+ohA + NrgMGZxjYkBML328ejFwQBu6YmAmQ3BAGxg/tH5Ud0DA1D2sajJ4QMAyGgDDQ39Aj73/o25Vf0BgSPupjSqDQFq/o40Os4NA - + - xzojQIJM1z969LE/tWgPQKLhPkAH3BlA6jGWQb1M/D8jJrlBoMYZQGQw1z9Vn2xAPeGoQP9dbUDYOgdABaeUQG2LD0DTS/xAumIuQWpD1z9hF8BArVEQQYrXEEHk6NY/SucZQAC17kBPoYhBmB8+QL5P5EDIlDVAPpZVQGGn6T8XIDdCA3NGQGZ0MED3y/dAxKxXQHdzyUBYxDVAckTpP5IwhED5Jc5AwUN+QBJvkkD53D1AcF0ZQFgVEkDab0BAmwWnQFrdeEGL+mRBjqxyQQna2T+Z/RlCA/JiQES5xEAOrZ9A0pROQfKWYEHcU85ABdsTQV6VskFw9JZAvxQkQYjaLUDhUAhCM5QrQYzDCkETGb5AdRASQA6/O0FrgsdB9z63QNOCEECIvspAGL4xQLcjHEFeokRB8nWAQWeDDkE2qeBAKw0KQpW9nkEoQjtBKC0DQlTuVUEMRQdDT1KbQIYKGkCv8J1DtJB8QVGCpEHsCo5A7fUXQrhB/EGXWThCla+RQUqThUDH44ZBVGRKQf9rqkGQjptAT/Z4QLfcNUDTLSNAXs6WQT7qC0Fbm9c/0GdBQbSUB0EK0JhAApFQQO82nkE9AS5BJmXEP+UT/ECJwItBDUJaQUYdAEEPOMlATWWxQZZlsEELgLE/GIYDQu3m9EAJV95ACWfEP3bFD0CO3VVCvNXAQLap00FoPcNAmH+hQFkQXkCXqDVBG82ZQAQ5yECBJUdAawQJQbel0UBzn1lBj5EaQeEUlEDaL4RBugy2QMW7m0ITxXpAbLsZQXJehkBL3OZAvuODQBVNXUFMbnBADGdBQToWDEFgKLBAz3/uP4ZPnz/UOPRAGkZZQbEv00HX85JBbn2BQeYuI0CoGMBAZucbQiu4xj8/E3dB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoMhLZUAAAAAAPypmQAAAAIDgx2hAAAAAIKhkbEAAAABAIpxsQAAAAIDzZG1AAAAA4AGLbUAAAADgBKVtQAAAAKCTAG5AAAAAQOGIbkAAAAAAEqhuQAAAAGDB1HJAAAAAAISkc0AAAABAt3R0QAAAAIBF83RAAAAAQDc2dUAAAACAZkF1QAAAAIBiU3VAAAAAwHGTdUAAAADAq6F2QAAAAEAC73ZAAAAAQCdRd0AAAABAMXJ3QAAAAECh03hAAAAAwMYEeUAAAAAAx0J5QAAAAMBPs3lAAAAAgKfDeUAAAACAttl5QAAAAEDoJnpAAAAAgCzFekAAAADArON6QAAAAMBfNHtAAAAAQFTNe0AAAACALYV8QAAAAIAwtnxAAAAAQP71fEAAAABAkTB9QAAAAAAaZH1AAAAAwDpnfkAAAADAd4J+QAAAAAA55H5AAAAAQBgbf0AAAADAmFF/QAAAAECJX39AAAAAgMRxf0AAAACArIF/QAAAAED4jn9AAAAAAEPFf0AAAAAAbAKAQAAAACBUE4BAAAAA4MkjgEAAAACg4imAQAAAACBBUYBAAAAAAPFZgEAAAACgnHWAQAAAAGDnfoBAAAAAoDqLgEAAAABgDpGAQAAAAKBqmYBAAAAA4MhzgkAAAACgGYiCQAAAACCJjYJAAAAA4GytgkAAAADgjMOCQAAAAKAt+4NAAAAAwKoqhEAAAAAgVJ6EQAAAAKDZyoRAAAAAIM0qhUAAAACg9qCFQAAAAOA214VAAAAAgBL9hUAAAADA+7mGQAAAACAmCodAAAAAYOA0h0AAAACgYlyHQAAAAAALwodA + NrgMGZxjYkA= - + - rPCxPyyyJkHOQd4/sOukQEJgiECtO91Aba12QCGLSUD07C9Bgsl/QGTeb0BSIcVBN7eRQFaKxECmpfs/i0mMPzbKEEAhGh5BlfGxQI6wjUA4f7dAx4ssQIGmRkL9mPdAZbboP8nMNkClq5FAiRGJQYSeEEAa2aVAWNsJQe36V0Ly11pB0Is2QavrgECXoWJA3CMGQJjUyUBPRStCfHTpP5Ri1z+gZFFBnStPQXb66UCLFkhADnUBQileoEA8TR9B4BArQZoJBEE22sQ/MVIcQRHmn0BfNhRCybnpP0r0fkBYa41ApfpMQmmRK0AztRlBYB/DQOlPg0I5iElBg5d/QNZku0KtZSxA4P8jQKNVSEFqoYVAFzJkQCo1WUIpWpJBglx+QII8eEGcFHhAQKbYQGwuSkJeCL1A + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYEWob0AAAABA4OVwQAAAAOCegnJAAAAAwBKldEAAAADAyAd1QAAAAADNinVAAAAAgCYwdkAAAADA3lZ2QAAAAIBrDXdAAAAAAEQld0AAAADATSR4QAAAAEDtFnlAAAAAwCCjeUAAAABA4SV6QAAAAACJCXxAAAAAgCusfEAAAAAAl1Z+QAAAAIDecn5AAAAAwOCEfkAAAABAf5d+QAAAAICZBX9AAAAAgCFXf0AAAAAAhpV/QAAAAADg1X9AAAAAALwPgEAAAAAAFBaAQAAAAKAvG4BAAAAAwFVTgEAAAACgEZGAQAAAAOCRr4BAAAAAIFS7gEAAAAAASQuBQAAAAMC0EYFAAAAAYKIhgUAAAAAgKTeBQAAAACC6c4FAAAAAIMaAgUAAAADg+oiBQAAAACCD9IFAAAAAQNYAgkAAAAAgWSyCQAAAAID2MYJAAAAAwO08gkAAAABgzHSCQAAAAIDSiYJAAAAA4NnLgkAAAADg7OGCQAAAAMANHINAAAAAgIhEg0AAAADg6UqDQAAAACBgUINAAAAAIIFYg0AAAADg7GKDQAAAACB/b4NAAAAAIO16g0AAAABgJ4mDQAAAACAe3INAAAAAICbjg0AAAADgkv6DQAAAACDgE4RAAAAAoNcrhEAAAABgjTiEQAAAAIAcTYRAAAAAoJ97hEAAAADAsIOFQAAAAMCb14VAAAAAQM3xhUAAAAAAmQmGQAAAAKDaDoZAAAAAIPFDhkAAAAAg7FOGQAAAACBNYYZAAAAAwGVqhkAAAABAQHqGQAAAACBCEodAAAAAIHdJh0AAAADgo1OHQAAAAMDBWIdAAAAAoN7Fh0AAAADAqdOHQAAAACBj3odAAAAAIOfjh0AAAABggwmIQAAAAGAoE4hAAAAA4ALpiEA= + NrgMGZxjYkA= - + - Sd4QQLf7IkA50j5Apb4SQRi1EEDP0NlA1zvFP5a6oUC2p69ADGZ2QN0PGkD5I+o/nr7zQIJiFEGXgYBAzF8LQYjqNUBCY9c/N5GwQVjlkECKngdA66msQO1Sy0D3iOk/Ur1kQIL8h0BJqgRB3k7XPxyq90DeE8FAJ0+AQVFHC0HDe8RAnn3EQFPstkBQozVBxQkaQKG+GUHIk3NBF8oQQGsmu0AGCRpA2Zl4QlCgbkC2x6dAOQKBQc81vEAD7OZAGnxcQkZ4fUG7F1hBdvGtQET+lkADffw/o6LEPwqlEEDs9pBCXqkRQaUfNUGom0RAQsKAQaOHUUC5aLxAXMFHQIoVRkF/rTVBlKQpQd5IhkEMfapAI/WJQYKVAEHCrvs/P+NrQG8cn0G6YjZBlMsZQP+GNUDa5vdAiHhjQcWohUGJmxpCaCiBQMYaNUIIIJ8/LizlQQ== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQP1MWkAAAABAl8taQAAAACDcMl1AAAAAYFS9XUAAAACgDgpeQAAAAMAUYmBAAAAAgJqmYEAAAACALwJhQAAAAMBvRmFAAAAAIEVnYUAAAADAx8VhQAAAAABDnGJAAAAAwADkYkAAAAAARF5jQAAAAECFKWRAAAAAgFFhZEAAAADAbIZkQAAAAADmQWVAAAAAwIWmZUAAAACAzTFmQAAAAMAhR2ZAAAAAAPzDZkAAAACgMv1mQAAAACBGLGdAAAAA4CZEZ0AAAACgjGVnQAAAAIBQnWdAAAAAoH7jZ0AAAABgI2JoQAAAACDX62hAAAAAYLwDaUAAAADA0hxpQAAAACBGX2lAAAAAgHJpakAAAAAAq79qQAAAAECR3mpAAAAAwLBCa0AAAADA57RrQAAAAECqRmxAAAAAQHh6bEAAAAAAI7tsQAAAAEC82mxAAAAAwJX3bEAAAABAXyRtQAAAAIBvXG1AAAAAAAuAbUAAAAAAQkFuQAAAAECRYm5AAAAAQBOJbkAAAADA0+ZuQAAAAAB5Im9AAAAAgNU2b0AAAADA28dvQAAAAADP229AAAAAAPL9b0AAAAAg1hNwQAAAAOBaJHBAAAAAgJ4ycEAAAABAvVRwQAAAAMCUcXBAAAAAACmAcEAAAADAo5NwQAAAAMCNw3BAAAAAwCffcEAAAACAaPBwQAAAAIBtFnFAAAAAoIojcUAAAACgBkNxQAAAAMBfUnFAAAAAAMl/cUAAAACA0rJxQAAAAGBDxnFAAAAAgJ7VcUAAAADgKfZxQAAAAOAREXJAAAAAIMMfckAAAAAgl1VyQAAAAAC7cHJAAAAAQMmWckAAAADgFaJyQAAAACA0snJAAAAAgJu/ckAAAABA/tFyQAAAAIAS4HJAAAAAIBrrckAAAAAAnxFzQAAAAGCHJnNAAAAAgJ8zc0AAAACgekRzQAAAAGBpf3NAAAAA4MqPc0AAAADALJ1zQAAAACDRtXNAAAAAwNbAc0AAAAAAY9FzQAAAAMD05nNAAAAAIB8AdEAAAAAA0A50QAAAAMCzO3RAAAAAQIVVdEAAAACAMmZ0QAAAAKCpeHRAAAAAgGGwdEAAAABgD750QAAAAECs33RAAAAAgDgadUAAAACAAOV3QAAAAGBtGHhAAAAAYBtUeEAAAADAFr94QAAAAGBuRHlAAAAAIN5cekAAAABg+qd6QAAAACBZCntAAAAAYOSle0AAAADg20Z8QAAAACAPtnxAAAAAQNnNfEAAAADgFgV9QAAAAGDeM31AAAAAwPnSfUAAAABAJCR/QAAAAKA0VX9AAAAA4OlKgEAAAABAt3OAQAAAAKAXuoBAAAAAoMbLgEAAAADARE+BQAAAAKDrEoJAAAAAQLJ9g0AAAACgs86DQAAAAGBkNYVAAAAA4BQ9hkA= + NrgMGZxjYkBImCMySWRuQN9iJOBzYnFAX26KbtRSdkDfwAA0zHN4QE0sistCg31AA0GkVT1CgEAmRbOPTUqCQC5rJliJeoJAUW81kpmChEAumhSCNQOGQORP2c3wiohAJXmUsGybiUDkfsf3nBOMQEPKUJvEK41AI0HL8PcVkEBrVXrrDZqQQA== - + - 2sF+QD7sGUAae9U/bZkYQAIUJ0GfpZtAvLSIQHrzA0Ic0rE/OCFtQMM51z/GQRpAMF4YQBhXxD+2DHBANl4PQE+WpECSVJ8/+dFZQOnr+z8bDplARu0hQG5l/D81uUZANoGfQK5mB0DKp5lA1o8HQWVqwUBIPDRAjCZHQBrQGUAx4u5BMWAuQRFc40DhCNc/fOkRQGA1wEBS51lA3XngQIuMFEFqGIBBRZC1QLT8lkGakVtBoJfbQGwaD0AysxBAjBW3QJblBUD1mD5DhseHQambD0C/Kdc/KIrEP4rsFkH7LrtBINm/Qfu/1j8QcqlAeqoNQZ0WSECWeRBAt0xxQKEvikFPgFBBwzl2QKIU8UCp4dBB7IK3QN7DE0FAq6dBLT6eQNy3zEBW6ZRBHBubQFxC20CZNJtACG92QYaOgkF2c71Bit4gQeBNs0KlBtJBAKqqP2geaEHvvGtBo09LQScLWUGnOw9A06NxQUD/XEA2pNlAQYQBQTGD6kH+QpJBvLdZQmajPEExlERBxBMTQpA/7EESwJJBT+LcQdEyYkAxC9JAEx5GQR2FEECmceBARZCiQavEu0C2SERE8M7DQR808UDVELxA5FcQQIL2ZUDV8JpAU8LWQsRCHEEshyxARFxtQFgAOUFmPdRAvWMQQLV41j/44rhA4CZbQAY24UAOWcQ/eMQhQE2EPUHLRRpBPf5UQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwCu1ZkAAAABARkZpQAAAAEAyCW1AAAAAwFkqbUAAAABgWWVtQAAAAODYhm5AAAAAIO9TcUAAAAAASWBxQAAAAEBPcXFAAAAAQOIydEAAAAAAhAN1QAAAAMANk3VAAAAAwH0DdkAAAADAA3R2QAAAAEAFo3ZAAAAAQP0xd0AAAACA4UF3QAAAAIB8YXhAAAAAgCpkeUAAAAAADKN5QAAAAECb4HpAAAAAALf2ekAAAACALRR7QAAAAADOl3xAAAAAgIPEfEAAAADA9c58QAAAAABR9nxAAAAAQHCofUAAAADAkdR9QAAAAIC7I35AAAAAQAxpfkAAAACA7Md+QAAAAMDiJX9AAAAAAKs2f0AAAADAhot/QAAAAEA5lX9AAAAAAGnDf0AAAACASAOAQAAAAKA9F4BAAAAAQOZVgEAAAABgTWCAQAAAAOCtcoBAAAAAwM6IgEAAAABgsaeAQAAAAIDmxIBAAAAAwDzsgEAAAADglfGAQAAAAOAOE4FAAAAAYMOCgUAAAACgLZKBQAAAAKBUn4FAAAAAoDyrgUAAAADgtbiBQAAAAAC/voFAAAAAQGLTgUAAAAAgCtuBQAAAAODF6oFAAAAA4K8cgkAAAAAgdCmDQAAAAGDRnoNAAAAAALSmg0AAAABg47qDQAAAACDG04NAAAAAQBIchEAAAADgFSWEQAAAACB5UoRAAAAAIM5YhEAAAADABmyEQAAAACAVlIRAAAAAAK6ihEAAAAAgEbOEQAAAAKAwLIVAAAAAIMFKhUAAAABginOFQAAAAKA1e4VAAAAAQMs5hkAAAABAUXKGQAAAAEAWm4ZAAAAAoGOohkAAAACgL7qGQAAAAMBTxoZAAAAAQGDchkAAAAAAne6GQAAAACAnOYdAAAAAYB9+h0AAAACgsayHQAAAAOCE+odAAAAAYJITiEAAAABg6zOIQA== + NrgMGZxjYkDGeRuljWJrQOzQoK8iBW9AAA5KvZ5BcUB2xqyr6ZN2QO7LSRoNcnhA6mttm9mUfkApbsLvvJJ/QIa6N2auAoJApjtiEKCBgkAXv7j+77qEQDdA46jhOYVANRB16UdLiEDxksOgWTqJQCzv9Bd/44tA8cGxygXDjEC7F1MNq6uNQB7IVnBn649AJg7qUvYxkEA= - + - JNOGQOhL1z906Ps/sLu5QC4F6EB6L4lAmRrXPyVntkCmPp1AacafQKD2/UCuFiNAeS2gQKNLgUAj7NY/mQDIQDLSa0CZg11A1i3CQA/VPkAsOaRA862ZQK79f0BpciRAWJC6QXfQWkAOJW1AeobqQeHJD0DFrm5A0zPVQde+LUCEANdAPTyFQI1d4EAJc95AktfDP6b12z/3gHJBi+icQaa1X0G7nglBP2ksQCG1SEHnoRlBSt+GQRSV1z8bFW1AsP4+QA35J0GrthBAJW+vQecuv0BNlL5AjhUbQGa7F0FTJZdAdQ5EQWsSXUASUMFB+73oQKC8a0K7DIlAOZ0tQLoV70G/hw9CqtscQQzZnEChVL1AVSwLQjJYOEEH7KhBjh2CQLK9WEJ71RlCesmHQYKAc0JMNxVBW1gOQcGREEDIuBdBVnwXQdISTkHaMFhCDkJIQDdM1z9V3z5A+B8TQVTmskA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoJAQd0AAAAAAXIJ3QAAAAED6EXhAAAAAYHtWeEAAAABAl0N5QAAAAKC2cnpAAAAAwBMxe0AAAABAMtJ7QAAAAMDUSn9AAAAAoFEogEAAAACATVSAQAAAAIBaZIBAAAAAQP5wgUAAAABAlGmCQAAAAACry4JAAAAAAIhKg0AAAACAfKSDQAAAAMALzYNAAAAAQBHSg0AAAABAC1yEQAAAAIAjZYRAAAAAQGGohEAAAABAv9mFQAAAAKBTk4ZAAAAAAGeihkAAAABAhVCHQAAAAMDbc4dAAAAAAMF7h0AAAABg5KKHQAAAACDKWohAAAAAgBrciEA= + KBZXds7jZUD4qwju5sJuQBTpB48/A3JA6hME1OGRdkA7qk8G7hN6QBHVS0uQon5AFLSnMS6igECIGZRP9NmCQDIFZByGMoRA - + - 4pBfQVrUPkAbcZZAi6S8QKQ4kkBA2IVBJF0sQIjVq0BvZatAuo62QB6uYkBHWUBBoF4rQJlXEEAPAoRAsiXHQKGUp0CNB9xAknv8Pzd7K0KXAzhBBuS/QC5n+j+YEhNBMTiyQN3tAEH8QtdA2WtuQBx/EECUOvFAb/N2QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgKVFa0AAAABAsCZsQAAAAABaQW5AAAAA4BKVb0AAAACgqcNwQAAAAEDe0XBAAAAAIPcPcUAAAACgjnZxQAAAAMB303FAAAAAgAUYckAAAAAAoJNyQAAAAAAepHJAAAAAwLogdEAAAADA4oJ0QAAAAADtwnRAAAAAYAYjdkAAAABAkfR2QAAAAMAz0XdAAAAAQEoCeEAAAADAgHN4QAAAAABotHhAAAAAwN1FeUAAAABAO/d5QAAAAIBxJnpAAAAAwNcFe0AAAAAAyzx7QAAAAIACJXxAAAAAAG3ofEAAAABAFCV9QAAAAED3BH5AAAAAwPh1f0AAAADAPaJ/QAAAAMDP2H9AAAAAYG8VgEAAAABg3TOAQAAAAKB8O4BAAAAAYK5KgEAAAACA5suAQAAAAOADCIFAAAAAgPODgUAAAADgxJ6BQAAAAGAH+IFAAAAAoGsggkAAAABgk2qCQAAAAKAyxIJAAAAA4FblgkAAAADg6xSDQAAAAKCakoNAAAAAoDrLg0AAAABAMtyDQAAAAMDX9INAAAAAoOx8hEAAAABg3qCEQAAAAECLsoRAAAAAYLnhhEAAAAAgae+EQAAAAGBP/oRAAAAAYEwahUAAAABA/DiFQAAAAMCuc4VAAAAA4A2ZhUAAAACgKOWFQAAAAGAT+YVAAAAAAMz2hkAAAAAg7gOIQAAAACCYDIhAAAAAoKZkiEA= + NrgMGZxjYkA= - + - 732KQH8x1z/ZD8Y/rHojQEKV30B98TVA1KMfQdrAt0AcB4RAzTyAQAKDZkEXHdk/bnmNQBt3/T8atMZAEzH+P4p9AEEYfwJB3lyyQMhOEkBxpLhA5hOgP4oZ90B0FoBAiB3KQOMRhEBj3zpAsrWSQMqbj0BGSnxAPFDXQFakB0CBLqlABbGIQEuxqUBoa1hBD3o/QGdEwUAnJhdBVV76QJsrUUGB7ZJA62caQC6LiECWRGRABFeEQOdJpUBFjm9BimhVQNe7QEIPZkxBrPvAQSsvr0HtySxAXhQjQIc9P0A/z39A1/45QUfqFEI3BfNANqStQDRt5kHTZjNBy70sQKQbvUE2oNlA+7R2QA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4FBfbUAAAABAIXBuQAAAAGA5bm9AAAAAwOkfcEAAAABADHRwQAAAAIBlAXFAAAAAgEdDcUAAAABAgcVyQAAAAMD9f3RAAAAA4HHddEAAAACAxFV1QAAAAECetHVAAAAAAK41d0AAAADAplR4QAAAAAA1pHhAAAAAAAcweUAAAADA6nJ6QAAAAIDjg3pAAAAAAP9Se0AAAADA0Nd7QAAAAECFEHxAAAAAgDu+fEAAAABAv/J8QAAAAECqBX1AAAAAgGAlfUAAAACA1jV+QAAAAEDxZH5AAAAAwP4Of0AAAADAZFF/QAAAAMADgn9AAAAAwN6sf0AAAACAkd9/QAAAAKCDUoBAAAAAwOpYgEAAAAAgnmyAQAAAAEDifIBAAAAAYPKDgEAAAACg66OAQAAAAODN54BAAAAAYDkQgUAAAADggR2BQAAAAOABbIFAAAAAQEujgUAAAACgAdeBQAAAACA6BoJAAAAAIJIngkAAAABAMVOCQAAAAID5W4JAAAAAwHuBgkAAAADg/dGCQAAAAGDcrINAAAAAoLjAg0AAAAAgasaDQAAAAGDH4YNAAAAAQBMKhEAAAACAExaEQAAAAMD+L4RAAAAAwCpBhEAAAAAAjlSEQAAAAIAvW4RAAAAAIFdihEAAAAAgKWmEQAAAAKCoc4RAAAAA4OS7hEAAAAAAEsyEQAAAAEAr1IRAAAAAQO/fhEAAAAAASgKFQAAAAEAlKoVAAAAAoJ1KhkAAAACA6ZGGQAAAAEB+24ZAAAAAIMD7hkAAAABAlFaHQAAAAABAZIdAAAAA4Dpzh0AAAACg2HqHQAAAAOD5gYdAAAAA4IfDh0AAAACgePqHQAAAAKBdAohAAAAAINFviEAAAADg6KOIQAAAAKBuuIhAAAAAANH3iEAAAAAgu/6IQA== + KBZXds7jZUA= - + - r0SEQbehxz/+HqVAn40HQcnfb0BRc7BAuhKKQQozN0EYZn9ADwx4QPaCSEB3M4dAVqYjQF0sR0BBzQdAcNLqP4QcqEFD7UZBTMeEQEVXGkC1w45Bv/oQQDkUuEFviKA/triwQMx7oEDhBqpAuheOQES62kAWSUdA8WiWQWJqLEAq051BTSS8QGPusUGglSJBZSbFQCPLhECNuu9AP/lWQU2pXEAbssFBh8fqPxYBLEDaMvRBfGWpQel95UCu9shAsrWWQTHK6j9/qJ5AAYwGQZMnakHazq5AAyuIQdiU3EDMnZNBRlk4QWY4WUJ42OVB+OnbQMK8F0J4iKRAEDRbQBXShEFd+1FAJiIYQoeW9UEQcgBCu1D9P3SwkkBWXP1BhmJBQZl8ZUF1zH5BsqU/QogbgEHuTyRBRSiDQSeMpEAk7UVBtOJHQeD2sj/51tc/w2bFP6ji+kE= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAAtIYUAAAADAi+RhQAAAAMCYQ2RAAAAAYAeqZEAAAABgDSNmQAAAAAAdRWZAAAAAwOvJZkAAAACAMKpnQAAAACDQwmdAAAAA4DSlaEAAAADAvyVpQAAAAGCaZGlAAAAAQCKDakAAAABggwlsQAAAAOD+RmxAAAAA4DGLbEAAAACAUKVsQAAAAOCTCW1AAAAAAIwhbUAAAAAgSbptQAAAACCkSG5AAAAAwKnmb0AAAABgJBFwQAAAAOA7lXBAAAAAAFShcUAAAABglLRxQAAAAABSvnFAAAAAYAsFckAAAADgtjNyQAAAAAAacXJAAAAAIJ/UckAAAAAgajFzQAAAAIAwY3NAAAAAoOd2c0AAAADgBIJzQAAAAADNkHNAAAAAQNCmc0AAAAAAILRzQAAAAKDGw3NAAAAAQA3jc0AAAABgdBZ0QAAAAIDJM3RAAAAAgEmTdEAAAADg3Mx0QAAAACAf53RAAAAAoOPxdEAAAABATf50QAAAAKC6FnVAAAAAQFQ0dUAAAACAqlZ1QAAAACAChHVAAAAAgJ6SdUAAAAAA96J1QAAAAKDCuHVAAAAAwDPTdUAAAABA5u51QAAAACBDAnZAAAAAoCIPdkAAAACAjDN2QAAAAOCWU3ZAAAAAQJRqdkAAAAAAi3V2QAAAAGDhnHZAAAAAgC20dkAAAABAYsd2QAAAAABTJHdAAAAAQPFPd0AAAAAgA3R3QAAAAMCihXdAAAAA4P7Qd0AAAABgZuB3QAAAAKCE/3dAAAAAIKAjeEAAAABARjF4QAAAAMB2dXhAAAAAgBGReEAAAADgQKx4QAAAAGCL9nhAAAAAICAKeUAAAACAeVd5QAAAAKA5e3lAAAAAYGjOeUAAAADgzxB6QAAAAOBzUXpAAAAAAOliekAAAACgZHR6QAAAACAAgnpAAAAAQDiVekAAAABgorR6QAAAAGBu63pAAAAA4Ldze0AAAADgHMJ7QAAAAOCOBnxAAAAAoJQUfEAAAACgKCR8QAAAAGDJL3xAAAAAYE4/fEAAAAAgpVZ8QAAAAGARfHxAAAAAADOVfEAAAADALUF9QAAAAGDARH5AAAAAoFAff0AAAAAg2UR/QAAAAMAXVX9AAAAAQGrbf0AAAABAnySAQAAAACA4uYBAAAAAYPbFgEAAAAAARfKAQAAAAOA/+YBAAAAA4NwLgUAAAAAgrpSBQAAAAODTy4FAAAAAQPDhgUAAAAAgXASCQAAAACCCEoJAAAAAwJ3KgkAAAABg7duCQAAAAOCWKoNAAAAAwBVBg0AAAAAAFp+DQAAAAGDww4NAAAAAwGLrg0AAAADguveDQAAAACCqE4RAAAAAQI6hhEAAAAAAJK+EQAAAAEAg1YRAAAAAgBLqhEAAAADg6DKFQAAAAKCMc4VAAAAAILR4hUAAAABAb4OFQAAAAMAm7IVAAAAAIBAihkAAAACA80qGQAAAAODgcYZAAAAAwDWEhkAAAADgEsWGQAAAAOBWBYdAAAAAYCArh0AAAADgxjqHQAAAACABQ4dAAAAA4OJph0AAAACAUtuHQAAAAOAhkYhA + NrgMGZxjYkBmiwPJSONqQBu6YmAmQ3BA2obJ21KCdUCPXyNQFkR4QAFIEVMBk31Aj73/o25Vf0AA03bTLFKCQFq/o40Os4NAuiVXy6RShkDun0fJZbuHQLpURfVQ24lAUs0R5vHTikA= - + - lK0cQFMtsz8d7ztBHP0sQCRTVUAJe9o/CzfYPwfhyUD6m9g/IGW1P9fgI0CShBZBWgnxPzi6skD3UptA0km2QBPdJUA4p0dAlsMiQMa7QkEi9hZBblahP6XY6j8tiDdBfU98QD6Rt0BEmxZBz8DFP//LfEFajeVAEIpIQI3eVECzfgVB6fApQUyGhEBb9NxAW8gKQIppckCk8qtAPnH9P5AZrkD00LdA2DjNQU3dEEHiQ5ZBBK8VQUkojj/TkI9AyonEQH2eJUC83P0/6dveQYOGq0DGwNFAKzPvQDc1IEEAyW1AjvcJQfZmj0BystZAlytOQck3kEGq8ulAp9IJQGAHD0GIIBdBBuZRQfifoj+5VtVAWyJAQRXSSEDFIFJC9w2OQMNymUAQ7RlBr+mgPyHPC0EcbCFBkwGzP8Gj6EDyAmlB0wufQatuIkC626FBg+zHQERsoUCO4VBASax/QIlVdkBeR6RBd/LOQNIYxT/NIwxCOmx/QMRs2UC5CS1AKOTyQcx1QkGCkhVCVGoHQULmF0FCutdAUp8HQPM9wUA57JhBUOKAQcW0CEJu3+o/LvhpQsSSs0HfxLJA3XCTQe33NkCmlRRBGDjUQAAtbEBLz5ZASbINQf8MDEHY0yVB6QhEQmYPiUExsmRAKn/KQc/TCUHhXnZAONiEQFN9PkD7CxdB8LDtP9WD00Ba88hBRu0gQj8Xb0Du4s9AYvVJQNyRSEBcjqRBw7vFP5TvuEFdI1xAvuiAQJpsfkFWwvw/cehtQEjgyUCXtSNA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAI9AXEAAAACABlJdQAAAAEBjTV5AAAAAAKrWXkAAAABgvQ1fQAAAAECMUF9AAAAAgNbUX0AAAADAiiNgQAAAACD5R2BAAAAAwBJrYEAAAADgo4ZgQAAAAEAy5WBAAAAAAAIKYUAAAADAhyJhQAAAAOAEZGFAAAAAgFWFYkAAAADAluBjQAAAAEB2JGRAAAAAYPdGZEAAAACgrQZlQAAAAMCWRWVAAAAAQFRpZUAAAABAW6dmQAAAAEDUQGdAAAAAQHLFZ0AAAACgUelnQAAAAADjpWhAAAAAwABsaUAAAADgQn9pQAAAAOBUxGlAAAAAQEjoaUAAAADAJjdqQAAAAGBOB2tAAAAA4Mcja0AAAABAoGVrQAAAAGCr4WtAAAAAQOkLbEAAAABAX21sQAAAAABepWxAAAAAwGMXbUAAAADANVxtQAAAAEAfiW1AAAAAAK+7bUAAAABAM+BtQAAAAEABAm5AAAAAgFNEbkAAAABAeoJuQAAAAAAf+25AAAAAQFhEb0AAAABAyFhvQAAAAACgoW9AAAAAwLsAcEAAAACgRjFwQAAAAKA1UXBAAAAAoLNhcEAAAADg+G5wQAAAAGAbinBAAAAAoO+TcEAAAACAYqFwQAAAAKBRtXBAAAAAQA7DcEAAAAAgT9twQAAAAGBNQXFAAAAAYOFfcUAAAADAsnNxQAAAAADNrnFAAAAAAB2/cUAAAADA/dNxQAAAAEB1FXJAAAAAIBtAckAAAABAwlJyQAAAAGBQc3JAAAAAYEuRckAAAACAO7FyQAAAAKBew3JAAAAAwI3VckAAAACgjONyQAAAAMCu93JAAAAAoI4Ec0AAAACAyxRzQAAAAMBhO3NAAAAAYEV7c0AAAAAgWqVzQAAAAKCe6HNAAAAAYIXzc0AAAACApwB0QAAAAECGEHRAAAAAgCEidEAAAAAAAjF0QAAAAECPUnRAAAAAAE5cdEAAAAAgpnB0QAAAAEDHgHRAAAAAwC6PdEAAAABA8bt0QAAAAMC63nRAAAAAoNYCdUAAAADAWhF1QAAAAIAzHXVAAAAAgPgsdUAAAAAgoDl1QAAAAOCrT3VAAAAAYBp7dUAAAABALIp1QAAAAABMonVAAAAAQCmydUAAAABAgcB1QAAAAGB86XVAAAAAoHMCdkAAAAAgHCh2QAAAAKCJRHZAAAAAIDJgdkAAAACgT0Z5QAAAAKDHhnlAAAAAQImmeUAAAACAqLh5QAAAAGACyHlAAAAAQPZ7ekAAAACg8PZ6QAAAAIA1B3tAAAAA4EZKe0AAAABAwmV7QAAAAGB36ntAAAAA4K4wfEAAAADA77F8QAAAAMDL5XxAAAAA4FyhfUAAAADgMvV9QAAAAGCZgn5AAAAA4OXdfkAAAABgtfl+QAAAAGBwxX9AAAAAINFKgEAAAADgDYuAQAAAAODM84BAAAAAgCwOgUAAAADAnGuBQAAAAIA4dIFAAAAAoHWpgUAAAACAnIiCQAAAAOABYoNAAAAAQASKg0AAAABA8smDQAAAAOBM4oZAAAAAwAwEh0A= + NrgMGZxjYkCwLijacuRqQOzQoK8iBW9A - + - Sr/YP4gLxj/R6RBB5aDTQP7ASEANMcY/jJ3QQL6jGkC+LS9ALq+OP74+sz9g7C1B6YJdQOg8CECUlIdBlGumQP6ALkGRoWRAiw9RQKgr/T/Ojr1AXf9HQNN/9kAKdDZAQbODQTxXm0AS4i5B1WfYP/C5jj9xLIBAhFIWQcv0AkHPY7Y/GSP8P6s5HkE9F3dAUdv4QBuokEDU6oVAVwcvQCQEvEARlQVBA/GNQGGBEUD01Ng/LGGQQFZe5kCM2jJBxyEAQU1TP0C4gDpBPOTpQNZUx0AwcPpAroOkQANhpUCJGp5ApBlXQVjmh0BhVi1AgiXrPwK7skA0R6RAZ+qOQDKCzECAdzVBwk73QG4xeUBL69tA1dqzP9RQWEHw8yJABmeQQBiwUkFEB/0/JCyuQQCVoEIdODVBwkuKQSjMmEHJsSNA1kZtQNEcg0Dc7o9BmMmcQejyokG87D9B3zqXQi5xaEGkuY9AYy3UQb9qjUBjTJtB9bETQVygOUG8nCRBkOJFQljbv0AXLfE/U5kBQjyxp0CnONNBlxQAQrDwn0EJ58hCQbFHQgCFhECJijZAWdcKQPvaxEHt0AdBmTxGQT+OSUCebVBBIJVmQWhmrkAidKtAiq74QCSY40DDzNg/ElfNQTQQykCPmoFBv8uSQIqvsz9rxiVBa3G4P8RVCUEpBYVBSsgeQdIVW0DL2jlBEckCQe2t6UC15hBB4rH9PwRx3UC5a1tASbEbQRohXkDZPNtAK9lcQVTef0BnMWNAtJ0bQQ== + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4OBlYUAAAACAwsVhQAAAAEBCZWJAAAAAwORGY0AAAADgFuJjQAAAAABm5GRAAAAAwI2hZUAAAABAZxxmQAAAAGBgQ2ZAAAAAwJYlZ0AAAACA6TtnQAAAAMCVZWdAAAAAwGRLaEAAAABAxO1oQAAAAIDrIGlAAAAAoEtpakAAAABgiudqQAAAAIC9AmtAAAAA4Ncna0AAAABAJoNrQAAAAIDFQmxAAAAAQI3DbEAAAABA1yZtQAAAAGCinG1AAAAAAFhCbkAAAADADFxvQAAAAEB/I3BAAAAA4HdScEAAAAAg1X5wQAAAAMB1knBAAAAAAK6wcEAAAACA29ZwQAAAAAA68XBAAAAAQNFBcUAAAACgvHJxQAAAAGCul3FAAAAAAF2icUAAAADgJsBxQAAAAEBJ03FAAAAAYOUcckAAAABAdbVyQAAAAECu9HJAAAAAwDFTc0AAAADAzV9zQAAAAIAlbXNAAAAAwKGBc0AAAAAA25VzQAAAAIDys3NAAAAAAHUzdEAAAACg30Z0QAAAAIDon3RAAAAAANS6dEAAAACgvfV0QAAAAGAnFHVAAAAAQNshdUAAAAAg4UN1QAAAAIDngXVAAAAAIOK9dUAAAABAZN51QAAAAAAh8nVAAAAAoGkBdkAAAADgxw12QAAAAABjNnZAAAAAAPhjdkAAAABAj292QAAAAABdoXZAAAAAAInUdkAAAAAA3N52QAAAAEBlBXdAAAAAgNUkd0AAAABghz13QAAAACD2gXdAAAAAIOmTd0AAAACgZMN3QAAAACBQ1HdAAAAAoInjd0AAAACgJQd4QAAAAAD+IXhAAAAAAL1ceEAAAAAAlLV4QAAAAIBBxnhAAAAAoJ/geEAAAAAAKAV5QAAAACB6LHlAAAAAIKA3eUAAAABAQUN5QAAAAAA2TnlAAAAAYHVleUAAAACguYB5QAAAAGBikXlAAAAAYGmkeUAAAADAVNN5QAAAACA15XlAAAAAoEoDekAAAABgQx16QAAAAAC6SXpAAAAAAGyfekAAAADAkL56QAAAAODZ5HpAAAAA4Lr+ekAAAADgZxF7QAAAAMCKJHtAAAAAoHs3e0AAAACAaqZ7QAAAAKDc2XtAAAAAwBoFfEAAAACAJCJ8QAAAAAAiNHxAAAAAQKJNfEAAAADg34Z8QAAAAKBooXxAAAAA4GnJfEAAAABgnNR8QAAAAMBKtn5AAAAAwLRTf0AAAADA+cN/QAAAAIBGcoBAAAAAgON9gEAAAAAAF5eAQAAAAEDWnoBAAAAAgDurgEAAAADA87eAQAAAAKBFx4BAAAAAgHzrgEAAAAAAwwKBQAAAAGBPV4FAAAAA4Lt5gUAAAAAgYoKBQAAAAIDWjYFAAAAA4AqagUAAAABg0rqBQAAAAODOwoFAAAAAICrUgUAAAAAgfz+CQAAAAABsRoJAAAAA4CpZgkAAAAAAZ2qCQAAAAOB4j4JAAAAAIJecgkAAAABAA72CQAAAAIAx7oJAAAAAgJHzgkAAAABg5/uCQAAAAODNAYNAAAAAwHchg0AAAAAghlqDQAAAACCfioNAAAAAYIWUg0AAAABgqqiDQAAAAKC3soNAAAAAYNI3hEAAAABgTFWEQAAAAAChaoRAAAAAwB56hEAAAAAg4n+EQAAAACD1l4RAAAAAIGOvhEAAAACgyMKEQAAAAGATyYRAAAAA4OL2hEAAAACANgSFQAAAAGDJU4VAAAAAwJKThUAAAAAgnaqFQAAAAKAytIVAAAAA4Hy7hUAAAABgyt6FQAAAAADt7YVAAAAA4G52hkAAAADgepqGQAAAAGDG0oZAAAAAoBvchkAAAADgklOHQAAAACCzW4dAAAAAYLeYh0AAAADgB7SHQAAAAICs+4hA + NrgMGZxjYkAeR9VQy0JnQI8BR/y9MnFAtmSyHxSyc0CPXyNQFkR4QPEGK/XD0npAR1sv+ltDf0Aq3dtEl7qAQDWymJXvWYJAu+Fc3dhyg0DmC9/fJKuFQJjfYrJ78oZABF2bynw7iUCYDlHcJ3uKQJg9PwbUQ41AUmEx1J97jkBbx334FWqQQA== - + - LzmbQUowEkIc7XJA+ragP/RfokD6WTZA1SZhQI8RCECM/SNACcsaQNgb6z+X36NB5RxuQMRRQ0HQf65AZFZRQE1X1UCS7cRATL6mPyw1bkD5zaNAWZ0jQeroFULxkDZAbPICQSacn0C2ZdJBHhQvQJdqxj+xQdtAarrvQaIUJEDYfY5AYNvAQTjpP0DcP4FAe0wTQSreI0ASnlpASyAtQE+ziUB0PmpBBEvuQG97HEChwrpA6e6bQNZLoEA+6/0/VXvqP8RivUAXVPE/99GGQZFRvEBzEplAL4piQNt46z9V0/dAZFb1QBvBlEGo82VC2YwRQJUJl0C2wDlB37eJQcD+1kDCwApBI2zEQL7eSECtnQBAFgrAQPLT2D+7JwNBc7+DQUKxI0AW//xAfFlGQbEkGEHvt0VAMbIlQcW24UApGcY/U79CQYdxIEKK2JtAMF6DQXBGaEHqhEFBn6w7QR93XUERiBFAXT6lQZUzfEL6TUpB2kOhP8STMkEok49BqvwZQl64RUFbpyxBP9FPQjUwKUE4G8tAXe6HQR1dvUCf1RxBkx84QZ7fBEKwxUZBCdafQfEXXUGFU7FAZzLtQPaGIkAbTFFBYXOvQIR2jkD8FNxCWkoIQtjr4EBj9v0/Bww0Qrj5IkE0ni9AUwINQUvvkkBHFYdCWkPDQVeUGUBFIQhA1wHNQMV2gEHElRhCcbZ3QepmMUJEUR1CkXSHQLR8oD/tP5xBRtJTQMypQUFqNINBkdd6QfqQ9kDHqD9AeLLkQf6quUC4LI5DXbu+QuxWXEEVb4tA/N6cQTRpgkEl83tAQguGQgf9aUID6zZBcDIPQgmpiUAuFAJC9KxCQSWULkF+CiVBSRopQa5JQ0HfirdAyPMfQbxKnEDMm+BAxkX7P9dgEUDTYMY/zwgjQWC/fEHyHNg/CZjGQW64zEAFKRBA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYMi+YEAAAACA6t5gQAAAAODo/WFAAAAAwMImZ0AAAACAsmFnQAAAAAC8/mhAAAAAoJAhaUAAAABA055pQAAAAAC34GlAAAAAQJSnakAAAAAgKsRqQAAAAAA0BWxAAAAAgLKHbEAAAACAgr5sQAAAAKCf7W1AAAAAQMcDcEAAAABAxERwQAAAAAB+gnBAAAAAoFgNcUAAAAAAVzVxQAAAAKALU3FAAAAAYJIDckAAAACAnXVyQAAAAACYgnJAAAAA4HWickAAAADgk/FyQAAAAMDtAXNAAAAAwBPMc0AAAACA8gR0QAAAACBms3RAAAAAADLTdEAAAADAwO50QAAAAEBVD3VAAAAA4EBEdUAAAACAPHN1QAAAAMDifnVAAAAAIG6ddUAAAADAwKt1QAAAACB6vXVAAAAAQO/QdUAAAAAAIB52QAAAAMADNnZAAAAAIDl1dkAAAABAj592QAAAAGCLs3ZAAAAAIEO+dkAAAABAWdF2QAAAAGAQE3dAAAAAoKUud0AAAAAgeEJ3QAAAAKBdY3dAAAAAYM6Wd0AAAABgVaR3QAAAACB9AXhAAAAAABUWeEAAAACgpTJ4QAAAAKAqUnhAAAAAIO5geEAAAAAAtHR4QAAAAKCAgXhAAAAAYD8eeUAAAACAASx5QAAAAIDibXlAAAAAYKl9eUAAAACAmwN6QAAAAOD0I3pAAAAA4NRdekAAAACg1np6QAAAAKDokXpAAAAAYGylekAAAABgP7B6QAAAAADw8HpAAAAA4LD/ekAAAADAjh97QAAAAGCRRXtAAAAAYDlPe0AAAACg3op7QAAAAGDyo3tAAAAAIMmBfkAAAABg2tR/QAAAAGA+GoBAAAAAgJhBgEAAAADgxE+AQAAAACBLeoBAAAAAIGqAgEAAAAAgquKAQAAAAOCl54BAAAAAYLMngUAAAACA11CBQAAAAODUqoFAAAAAIDUagkAAAADAMVKCQAAAACCSj4JAAAAAYGy7gkAAAABAtMOCQAAAAODEIoNAAAAAgEpDg0AAAACg1VaDQAAAAID+iINAAAAAgOSPg0AAAAAAFdGDQAAAACBpCIRAAAAAgDIShEAAAAAADaOEQAAAAMAy5IRAAAAAwMOIhUAAAADgzJqFQAAAAACe94VAAAAAIMokhkAAAADgHG2GQAAAAAD8coZAAAAAYHC5hkAAAADgtICHQAAAAKDihYhA + NrgMGZxjYkA/KJil8iNpQMZtNYzMxW5ARtUTyqeidEA+w2SRqbN1QDSTEycW03tAAcoCZU/kfUD8zFj93QGCQPdDAeFeioJAKdP9oj8qhUCKJKUctpKGQI0AyL/LQohAilOTRmIbikA= - + - OkrhQDoToUBWp1tA2jyhPwNiEUCirRBAnoONQLEFkkCjMAhA0qtTQHYr2D+xMr5AAXihP5ef2D+xCEBADUVtQMerJUGb3xpAVuMAQNMIQUDboRFApRiuQL+0NkAqHSdAtYoEQeDJW0BEZn5ABVPNQJlQc0D1MgVBg2nlQBGNlUEIfmdB4Xd4QHYudUDznD9Abw6WQRy55j+8LiFBQB6KQGpxeUByhP0/ThmHQTB/W0AF+0hAFxnXQBy5UkAYX3dAUEMhQYhTs0BR66A/+VxRQCY6tEDOdMY/hLIaQOtNRUGxw5FA0l++QCjqoD96mmBBZtpjQDm62j/J8N5B6vxkQGxLy0FDKAlAI3kRQh13C0EkNpdAkPVYQX4gdEK7BwBC4OUlQfKAPEKqeiJBIOsbQf3o40CWTFNAK6aAQUpz1ED/q9g/DA4hQYlZVkEsQQxBJkyXQSa/dkIu/ttAZ2J4QYDqR0H/mQ1B+SjNQTKma0GOkpBB+nGIQUO3s0GQsQlAQZyXQE8VCUGocsRD3EuXP1ecsUH4y+pCa+n0QAfuR0DRcKVAC3sGQcKELUArG6BAEKcuQTHaAUGPH4lA6tiFQNVr2ECZ4qFB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgD5jZ0AAAABATChpQAAAAIDkJmpAAAAAgDRnakAAAAAAzqVrQAAAAIDCJW1AAAAAgDFTcEAAAAAAdblwQAAAAAAWcXFAAAAAgITTckAAAABAVwRzQAAAAIA1E3NAAAAAgKBRdEAAAADAwt50QAAAAMD3MHVAAAAAQFZZdUAAAACA6oN1QAAAAMAXp3VAAAAAgJTtdkAAAABAvjV4QAAAAAAHSHlAAAAAwCbWeUAAAACA0/R5QAAAAMA+iHpAAAAAAGcue0AAAAAAfnF7QAAAAIAnhXtAAAAAQN28e0AAAACAtfF7QAAAAMA3LXxAAAAAwKGBfEAAAADA2Y58QAAAAMANE31AAAAAAKY4fUAAAAAAHlR9QAAAAIBFa31AAAAAwFCAfUAAAADAjqx9QAAAAIAE9X1AAAAAAHE/fkAAAABAh4J+QAAAAABRDH9AAAAAQB5Df0AAAACAxIJ/QAAAAEBeA4BAAAAAIAcqgEAAAABg+C6AQAAAAOBTU4BAAAAA4JlwgEAAAADgSXaAQAAAAOA5fIBAAAAAoEqBgEAAAACgyIeAQAAAAOA/pYBAAAAAYPmwgEAAAADgTLaAQAAAACCH3YBAAAAAgH/zgEAAAADgv/2AQAAAAKC2QIFAAAAAYNhngUAAAACgg4yCQAAAAOC4/YJAAAAAQJk+g0AAAABA41ODQAAAAEAXZYNAAAAAQLxwg0AAAABA8JiDQAAAAGD6foRAAAAAgN+LhEAAAABA02OFQAAAAOBGbYVAAAAAIFu8hUAAAABg9dqFQAAAAGCigoZAAAAAYLtVh0AAAAAAMQeIQAAAAKC5D4hAAAAA4F4YiEAAAADATYqIQAAAAAD304hA + NrgMGZxjYkD1hHOUyCJpQOJgFSPMRGtAxwSPFv4SckDuZ/o5VJJ0QBBx/GrXAnpA7sXWjawjekBCi16t4wGBQLC1yz5OEoFA/N0+pVsChUBqCKw2xhKFQPsMLc8Hy4dAkL7i4LIKiUC76GTj/kKLQLVfDcd/y4tA5hLn5Up7jUBIQLEC19OPQA== - + - ak4nQKcVtD9HnaI/vazfP8xrDEG4puZBvLALQeYX/j/yje5AmkJQQbsswkCDDtNAFSkVQYPjGkC/rhpAkM0RQTbqmEHI1yxBEeFKQSw/s0BxOFVB9SmgQOhvGUCpxBBB3tbhQHZmJkIvxxpAiTSgQIOfNkA0bgdB1dqFQN1L4EDzUQ5BcEb9P0pky0H0zglB5w2iQJuf/T/rthBBoA9tQHtRGkHzipdAYsfFQJNJMUEa8RZBRPCcQIb/xT88Gdk/QAe4QbXUX0IhUqtA1KaCQADQLkGKtUpBjP2TQcDs8kGPzJVAeRIIQmuwv0JwQ8VB6Ba8QKAfikEdOv5CMOMaQBj7wkJW3GxBsXEZQkysi0E6ydVBGTbBQFyuZ0G56o4/TdGmQsKlyUD9cUZBALd4QWRg6z/xkxVBfeDgQApFuUDoVZRB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAAJItaUAAAABgciBqQAAAAICB4mpAAAAAwBMDbUAAAAAAzCRtQAAAAKAPh21AAAAAQPIwcEAAAACA/CFxQAAAAECeRXFAAAAAIDaycUAAAAAgkNFxQAAAAEDMknRAAAAAYFOfdEAAAAAAYQN1QAAAAEBfJHVAAAAAgFlwdkAAAADAKqh3QAAAAECkJ3hAAAAAwGoZeUAAAABAmRd6QAAAAAANM3pAAAAAQLhjekAAAACAV8l6QAAAAAAMMntAAAAAABaje0AAAACAVd57QAAAAEAW7ntAAAAAAOx1fEAAAAAARpV8QAAAAMALx3xAAAAAgHjVfEAAAABA+Ax9QAAAAIAYK31AAAAAwNKZfUAAAAAA9OZ9QAAAAMCMBn5AAAAAgOVzfkAAAAAAWLR+QAAAAABCy35AAAAAAMIcf0AAAACARYV/QAAAAEBmrX9AAAAAwJfif0AAAABg8gKAQAAAAECmHYBAAAAAoH9KgEAAAAAALGSAQAAAAKCidoBAAAAA4Fx9gEAAAABgTIOAQAAAACDrvoBAAAAAIF3ZgEAAAABgkxyBQAAAACD/IoFAAAAAYCgwgUAAAADgJTuBQAAAAIA0QoFAAAAAoCxqgUAAAACA5HaBQAAAAKC2g4FAAAAAALKJgUAAAACgf6GBQAAAAMDVsoFAAAAA4Em6gUAAAAAAq8KBQAAAACB+2oFAAAAA4F7ggUAAAAAgaQmCQAAAAODdF4JAAAAA4JkggkAAAABgR02CQAAAAOBzfYJAAAAA4BOfgkAAAADAbqeCQAAAAMA9sYJAAAAAoIXagkAAAACgpGSDQAAAAIA1aoNAAAAAIIVzg0AAAADgZoCDQAAAAODli4NAAAAAwNaSg0AAAACglKyDQAAAACAZs4NAAAAAAIOihEAAAABgDquEQAAAAGBFd4VAAAAAIFi/hUAAAADAJMWFQAAAAMBm34VAAAAAIFT1hUAAAAAggzyGQAAAAKAlVIZAAAAAgCJshkAAAAAAHYyGQAAAACD7wIZAAAAAwCDKhkAAAACgPtuGQAAAACC28oZAAAAAADMOh0AAAACga1eHQAAAAGCboodAAAAAAD67h0AAAACAisSHQAAAAGA3bIhAAAAA4PGriEAAAADA0OmIQA== - - - - - - MY3aQOTDgEAi86VAjQ/ZQMWkgEAbL+w/+k3rPy2Om0DA3xpADy3TQAaJG0BFrxpAoSIRQD39IkA5XitBQ6GaQMKBb0C1k4hAVfjkQEI/6z98sOtAhRwDQfSA6kCfHP0/aD/BQGM3KkG7sBlAc41kQPIK/UA/0HZAvOzrQELR2kC0iYVAKOr9P/veUUGvsVtAZ6I2QE+fCEAsbLdAGSCgQOGsW0BYGrpBuSClQFWnP0DZc1FBk+pWQKfnSUFHBIZBt0QCQZEtSUCguLM/dnYyQep3d0A97uo/aJhAQZxzEUAi4gFB8TsEQqaw1ECr5h9BWMCJQcaXqEFQv3RCzFN2QfwhPUFT3/0/KpEzQUsgBEHqjUtBdBmqQOX7oEGpmAhAG6QHQTGGSEEimlZBQzBeQO8cjkDqcalB0A0JQHpn1kEKQ45AEFdfQlfglEFJewFCM6TqQMvzEEGMvztBGE6AQmSXW0Ho12RCvmzlQCF3OkGrHFtASVdbQDcAqkBxG4ZB30z+P7Av80AzykRBb9vXQZSzbEE7swhBVQIwQUbzUEE1iERCs372QH3TgUA= - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgPLMX0AAAADAKilgQAAAAEC0AmFAAAAAQJtlYUAAAABgoqRhQAAAAOB/XmJAAAAAgAqkYkAAAABAg8RiQAAAACBv4WJAAAAAgJ2EY0AAAACgtmJkQAAAAICDGmZAAAAAQA2iZ0AAAAAAPChqQAAAAEAEQWpAAAAAYDNrakAAAABAh6JqQAAAAECoA2tAAAAAYJYma0AAAACALWRrQAAAAIA3DWxAAAAAgONDbEAAAAAgEa1sQAAAAMDyem1AAAAAQAcsbkAAAABAImtvQAAAAIDs329AAAAAoLQRcEAAAAAAeyNwQAAAAGAdp3BAAAAAYIbdcEAAAACgDQ9xQAAAAIDnbnFAAAAAwGaEcUAAAACAq5RxQAAAAICqnnFAAAAAwKKzcUAAAABAC8JxQAAAAEDJ1XFAAAAAIPMSckAAAADAak9yQAAAAEDcnHJAAAAAAI2yckAAAABAd91yQAAAAIBX8XJAAAAAAAEUc0AAAADAvSBzQAAAACA4MHNAAAAAYNhCc0AAAACg5lJzQAAAAOBjcHNAAAAAQAmRc0AAAADAy+NzQAAAAEDh8XNAAAAAgLP7c0AAAADALzJ0QAAAAKCsQXRAAAAAQC9UdEAAAAAAStJ0QAAAAADB8HRAAAAAIDMDdUAAAABgCBV1QAAAAOBQIHVAAAAAwBEtdUAAAACgDlF1QAAAAGDPYXVAAAAAYFhxdUAAAACAg4N1QAAAAOA2kXVAAAAAgGKqdUAAAADgZ791QAAAAEDg8HVAAAAAgOoldkAAAADAUnN2QAAAAGDHk3ZAAAAAoDKsdkAAAAAgRMN2QAAAAMCm8XZAAAAAYI0Gd0AAAADgDBN3QAAAAOCBLHdAAAAAYDo2d0AAAABAFmF3QAAAAKAPlndAAAAAwEWnd0AAAADgJ853QAAAAOBg3ndAAAAAIAnud0AAAAAAXf13QAAAAKC4DXhAAAAAgOAzeEAAAAAgbVB4QAAAACDVXXhAAAAAYGZ0eEAAAAAg9ox4QAAAAEBSo3hAAAAAoPa3eEAAAAAAbsR4QAAAAMDv83hAAAAAYAsAeUAAAADgWpN7QAAAAEDwpnxAAAAAQKuxfEAAAACgX0Z9QAAAAOBiYX1AAAAAILFYfkAAAABAt99+QAAAAGDGCH9AAAAAoPhDf0AAAADg5lN/QAAAACARdn9AAAAAYAiFf0AAAACAYhqAQAAAAOAMIoBAAAAAIGctgEAAAAAAHFiAQAAAAGA5XYBAAAAAoCZogEAAAAAgCpWAQAAAAKDxmoBAAAAAoOzqgEAAAAAgmmuBQAAAAGDlo4FAAAAAQB+zgUAAAABg+7yBQAAAAIACzIFAAAAAoLvwgUAAAAAgHGmCQAAAAODA1IJAAAAAgJ2Kg0AAAAAAKbWDQAAAAOAjvINAAAAAIMTyg0AAAADAmDKEQAAAAMBhgoRAAAAAgIGWhEAAAACgrsyEQAAAACDvJ4VAAAAAAFdChUAAAABgN1SFQAAAAGC82oVAAAAAICrjhUAAAACgFcmGQAAAAGDzG4hAAAAA4OteiEA= + NrgMGZxjYkCs9CaTvbFwQEMdzoN8QnFA07VuCmzCeEBq3hX7KlN5QH0720CNaYBAyM8uueyxgEA= - + - cSjOQERWqECflBtAUg3yQOP6dkDcHNg/K0h9QedbJEC0/CJAE8MLQCX39UAiWaJAPS0tQNvUe0E1IBpBPxD/P3TeP0BjZuRA+mH9PxVztkDMQHs/It4sQBYJSUDkKuhAj7glQbquBEHMCglBVmKlQJYO/T+gibM/zj4QQb6B0EBMyexAmAamQBF7I0CkNsRAkS8LQI+qhEDVyupAk8mmQAWom0CaZEFA7AtJQFufP0BCviRA0xksQY4teEGBuK5BVyJ4QBCEtj+whbM/KQrtQN8dnEAPcY4/Kx1SQZN4m0CrN29AFzY3QPVxzECGLyxAsheAQCkXxkD+tRJBlrU/QEGI7kDIE/tAZFnMQHgrv0H5iOpAatG+QNKchEEotEBBNLatQCZywEDWzo9BKS+vQRXdMEK7SKRBipN0QU4T2EBW8glBmjt2QDxepUCcyHVChPaYQYpoJkLJQndAfwg/QIaUDkL4iWNAbnfyQU8n6z8udYlAnMg0QaGPzkHO0gdAL+8SQaxUVEHwrgRCtGznQDPZLkESOAhA27yTQIKPkkAGtfRB08HnQb2KqkHXhKlAKXfAQUhEKEFDu2hBCFGdQEn1A0LW2AFB0FE2QBPntUCeMY5ArwGhQYyO7kEuruVAJIyJQHMNgEAgc7dAHGF/QWu1I0DtTJpBTROrQMm3NUB0mQZB19/4QHZbYUH448xAcEckQK6Tn0F9zqRAOKMaQPbfbUAKyDJBrNqNQMFQYkGwRm5AW+qZQe+xlkCxNdtAnYCMQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAYIqkZUAAAADg4UdmQAAAAACNB2pAAAAAAPVBbEAAAABAlWZtQAAAAACKIHJAAAAAwCPkckAAAAAAhf9yQAAAAIB0z3RAAAAAQCUCdUAAAADAWlZ1QAAAAIDkxHVAAAAAgCj0dUAAAABAAFB2QAAAAADQU3dAAAAAgGp1d0AAAABAmlZ4QAAAAAAbU3pAAAAAgPwHe0AAAACAEkd7QAAAAMCv/3xAAAAAQMMjfkAAAAAA5mR+QAAAAADJoX5AAAAAQJOlf0AAAADAqNt/QAAAAIAyEoBAAAAAoJtxgEAAAAAAp6KAQAAAAGC8qoBAAAAAIHHTgEAAAAAgT+CAQAAAAOAayoFAAAAAQCzNgkAAAAAgMdqCQAAAAOBn1YNAAAAAAM0fhEAAAADgOoaEQAAAAKAqw4RAAAAAYF70hUAAAAAgAzSGQAAAAKAU54ZAAAAAwLHriEAAAAAgj/OIQA== - - - - - - ZgkUQJN4nEBiuKBAGfpIQGC7xT8MCEFBfhtlQGd2m0BlwohAt1Z/QKuBgEAZYVpAHOPGPyw06z9QKh5BKmQrQXx4AEEwstg/KbJIQNz7I0DYzM1AuBiHQBY730Bmddg/yvllQXE7EEDfJaFA4wwjQXHI2kBOFN9A1O/GP4iptUE8SZxAXPvFP45BEUCFrbM/FzHvQB9aekFMOrJAAI8eQRafMkHK961AUlcnQUefCUE= - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQJBVYUAAAABAy8VhQAAAAECOZ2NAAAAAQFvqY0AAAADg2uNkQAAAAKADZWVAAAAAQFi9ZUAAAACgeOllQAAAAGAaAGZAAAAAwNHdZkAAAADAcwJnQAAAAEAo6mhAAAAAgAcBaUAAAABgz0JpQAAAAMArRWpAAAAAoDCEakAAAAAAl8hqQAAAAADn/GpAAAAAgBsla0AAAAAAl6xrQAAAAGD5xmtAAAAAwOkebEAAAAAAzPxsQAAAAADnoW1AAAAA4OIibkAAAADA2ohuQAAAAMDCn25AAAAAAHPmbkAAAACAm01vQAAAAMBLYm9AAAAA4LKDb0AAAACA1+dvQAAAACBcJHBAAAAAoMpvcEAAAADgc7ZwQAAAAMAS0XBAAAAAIG7fcEAAAABA5UZxQAAAAMC8U3FAAAAAwMuDcUAAAADgdaJxQAAAAOCcxHFAAAAAwMHwcUAAAACArm9yQAAAAEDzkHJAAAAAQBGdckAAAAAgr6ZyQAAAAACDsXJAAAAA4CnhckAAAACAOfNyQAAAAOCFfnNAAAAAwFWSc0AAAABgErFzQAAAAIBJxHNAAAAAgNzRc0AAAADgZ/NzQAAAAICH/nNAAAAAIKdSdEAAAAAA4IV0QAAAAGB12HRAAAAAQL31dEAAAABAUSR1QAAAAEBaRnVAAAAAYBpgdUAAAABgbnl1QAAAAGA343VAAAAAAPwBdkAAAACAFBV2QAAAAAAvI3ZAAAAAQKw0dkAAAACgdGd2QAAAAKBydHZAAAAAIFyCdkAAAAAgb5J2QAAAAMBEu3ZAAAAAgNb1dkAAAADAIjF3QAAAAADERndAAAAAAMxUd0AAAABgiXF3QAAAAMBAtHdAAAAAoMLhd0AAAACAYDF4QAAAAOC6W3hAAAAAAGtueEAAAABA43l4QAAAAGBQj3hAAAAAoEibeEAAAACAl8V4QAAAAOAt33hAAAAAwOjveEAAAABgBAF5QAAAAKDdGXlAAAAAQDkveUAAAABg+Dl5QAAAAGBvY3lAAAAAoEF2eUAAAADAd6J5QAAAAECBrnlAAAAA4LjBeUAAAABg69d5QAAAACAH73lAAAAAQLIUekAAAABg3SB6QAAAAKBURHpAAAAAIGZuekAAAABApYR6QAAAAOCnmXpAAAAA4C2nekAAAACgssR6QAAAACCGz3pAAAAA4BrrekAAAADALQV7QAAAAGCwFHtAAAAAIItPe0AAAACgP5F7QAAAAGBdxXtAAAAAIPbhe0AAAAAAw/N7QAAAAODhE3xAAAAAYPdWfEAAAAAgSWF8QAAAAEB+eXxAAAAAYF2IfEAAAACgRJd8QAAAACBqpXxAAAAAAFW9fEAAAAAA3dd8QAAAAEDA9XxAAAAAYNgCfUAAAAAA9Bh9QAAAAMDyQX5AAAAA4Kj0fkAAAABgoHl/QAAAAGCdi39AAAAAwKbkf0AAAAAAJhCAQAAAAKCnF4BAAAAAQAwigEAAAAAgYiyAQAAAAMDeM4BAAAAAwGw9gEAAAADg7GWAQAAAACBma4BAAAAAwH96gEAAAAAgX4SAQAAAAADyq4BAAAAAILC5gEAAAADgDcKAQAAAACCd1IBAAAAAoIfagEAAAACAkQOBQAAAAMByE4FAAAAAIDoxgUAAAAAgvT6BQAAAAGB0XoFAAAAAAINkgUAAAADgmGqBQAAAAEB1lYFAAAAAIHGagUAAAACguKKBQAAAAMCAqIFAAAAAYHvCgUAAAABAyM2BQAAAACAB1IFAAAAA4HbkgUAAAACAe/mBQAAAAKAOBIJAAAAAQDsYgkAAAAAgLiCCQAAAAGATKoJAAAAAQJM/gkAAAADgkFmCQAAAAADXhoJAAAAA4JeggkAAAABAI66CQAAAAIB4vIJAAAAAoKDMgkAAAAAgP9mCQAAAAGCZ4oJAAAAAABrrgkAAAADg1/CCQAAAAAAkC4NAAAAAgAY1g0AAAAAgxUyDQAAAAODpU4NAAAAA4LlZg0AAAABAe3CDQAAAAEC6d4NAAAAAAGmKg0AAAADg4JKDQAAAAGCKmINAAAAA4JjHg0AAAADgityDQAAAAKA05YNAAAAAwFv8g0AAAADgQCqEQAAAAKD2OYRAAAAAYDxGhEAAAACg/XKEQAAAAKCSe4RAAAAAACSEhEAAAADgiaCEQAAAAADHt4RAAAAAIA7JhEAAAACghdGEQAAAAIBQ8IRAAAAAANAchUAAAAAgsyqFQAAAAGAGOIVAAAAAIDU9hUAAAABgV1+FQAAAAOB5ZIVAAAAAIN1zhUAAAAAgoJqFQAAAAKC52YVAAAAAwAZXhkAAAABg6ouGQAAAAAC8rIZAAAAAQJi1hkAAAACgLcmGQAAAAEAwQ4dAAAAAYF3Sh0AAAABgM+OHQAAAAKDl/IdAAAAAIEQLiEAAAACAJjuIQAAAAICbVIhAAAAAIMNdiEAAAACAFGWIQAAAAMBAa4hA + KBZXds7jZUBImCMySWRuQDtMc7KVAnNAS41ZENNCd0A7qk8G7hN6QA== - + - 0CiLQPdyBUGpWglAq1sVQLt9N0BKh7FARlYcQLlndkAroqA/UgOHQM60TEGlw1RAJ3igP1TjDUJ2GANAtPc/QVlTkkAkGWlAtvWKQGwyEUD23AJB4asIQUx7JUCBUNFA6yGcQLDZV0Fla/0/0P9HQCUitEDDfVZAGAQ/QM4HukD3+2NAgTV6QEjTzUAanxJCorp2QOHwB0AGdSNBFtXFPxCJEkBR3q1AnCTGQD16GkAMXutBIg0+QIG3PkGRh5NApOHDQGZUdkAa4axAR/R2QHHBPULo3D1AmF86QXMZqUCS7WtBLXAdQLTAjkLmoFZBxe8+QHEfCUF4cHJB7T89QXAcakDqrJ5AWn3fQOFunUBkqdZAQuJMQaQSI0DQ8g5Bi+R1QT+0+kBk/sRAXKeeQZFBYEBkoKA/7UboQFc4d0BuaRtBHCdRQHpSGUERyKBATo9DQOgiaUEEV1pA1pp/QJXCI0AgMnFBoRBBQDdR+kCWP55ByS77QQCPm0C3LVhAwJWOQUTm6j++HgFAllsUQpmZUUHKJDZAr4JKQe812UEYAaZBa/CqQR85XkH+NtpB6PENQqkwskEPfA9BE+GoQKoUO0GYelpAoKojQX/OGULxnjtBpk4sQEpizkE4GMs/af7tQVMzOkEvaDFCTlieQec34UC0pD9AbGlxQrqnjUCsjZFBNx6SQdLHDEEoDolAw/MQQNVxDUH+BP0/8GwiQPzrYkByZdpBQUQBQYQdhEB+YNhAAgfxQKRFnUBg6f1AC7ZyQQGr3kJvtt5Al5i7QD/ZSEBkFAVBPIt4QOxlp0AAhzlBPPiQQJHMEEF+n69BdDs2QUhfCUGTi6ZBe+m0QGBB40BsTypBo6u3QNNvA0F6rnpAHuN/QaRfiUAgwiNADtkZRFpItkEG8EhASd8vQQoM7UG2/xlCVoYVQZhTykDnAuZArYz9P1AI7T/eLOpAW3HHQNZRykAl/TlCgL6yP6VcpEH7kJNB3PaFQWr7tEAPxvxAN1G1QFxSsUK/EkBCLjiyQHhy5UOKUqxAokmnQf6JPkAew9FA3SoIQbE5kkKwgbdBaemHQWEcyUBKBIlAxN6fQHc66EHnj2pBsYMCQsXs6j9d1FRCO2lsQGV+wkLP2rpBBxw2QP0ZL0BjqDVA1Z5oQQquoEAlUrM/yqpWQb/wH0Gx4ixAKpwIQBGgCUHQ9GRB/fQ1QYmSxUBuo0BABSbDQCeikkHY7m1A + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAINlnbkAAAADAxaNuQAAAAGDpoXBAAAAAAAE9ckAAAADAzeFyQAAAAOA9vXNAAAAAAJfec0AAAABAE1J0QAAAAMD5DHVAAAAAAKODdUAAAAAA5LN1QAAAAEAQwnVAAAAAgB0vdkAAAACAfnB2QAAAAEA5o3ZAAAAAAOIveEAAAAAAkkJ4QAAAAACLXnlAAAAAwC5CekAAAAAAyqV8QAAAAACaA31AAAAAAEVkfUAAAACA8nl9QAAAAACG5H1AAAAAwD8FfkAAAABA/tV+QAAAAADjYn9AAAAAwCCmf0AAAACAfzSAQAAAAMBWOoBAAAAAYK2jgEAAAACg0o+BQAAAACB5Y4JAAAAAIKtqgkAAAACAVpCCQAAAAID7uYJAAAAAYFvjgkAAAADg6fKCQAAAAMCh+4JAAAAAYABGg0AAAACg24mDQAAAAABzuoNAAAAAoCnHg0AAAABAGguEQAAAAIDUToRAAAAAYLtphEAAAADggYqEQAAAAIBUmoRAAAAAYAWihEAAAACAaNqEQAAAAKCv8oRAAAAA4GwLhUAAAACARyCFQAAAAEBTJoVAAAAAQN41hUAAAACA+1+FQAAAAAAGaYVAAAAAwPhuhUAAAADgCoGFQAAAAECokIVAAAAAoMY2h0A= - - - - - - qTyiQGHMUUAS0dc/dBBMQcDmLEDBSNo/2rWAQD4ME0Gym5hA+6P6QDF+CkFHGX9ALDrAQEXoUUDmQdlACPx6PxhjW0BDr9tAb130QOGBZEDHtcxAwK4uQIX2EED0OBpAMIChQLDeEEBSUbY/l3j8P5fA7kBdHdxAegySQLEYH0LS6uo/gpYdQUhNxj++HjdAzU0ZQRVfK0I1arFBq85cQKjBSEAzuB5BAm2IQe6UB0CQoDBBTfN0QRi1gUBpoyxAjCUbQBLBR0BI7MU/WiB5QPuN6j+wPGRA641kQIyHUkFcQiNAJCZKQSNkOkE7+AVBfeI0QQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4N3mYUAAAACAoGtiQAAAAMAZfmNAAAAAANDjZEAAAAAg/WZlQAAAAMAJxmZAAAAAADIsZ0AAAABg4AtpQAAAAMDD3mlAAAAAgCWmakAAAAAAswRsQAAAAKBzYmxAAAAAYAuIbEAAAABAxZ5sQAAAAIDOJ21AAAAAQBCnbUAAAADAAIVuQAAAAMCJKG9AAAAAgCBqb0AAAACAc8ZvQAAAAIDjtXBAAAAAwMNmcUAAAABgSqNxQAAAAIAA4XFAAAAAAFkRckAAAADgpVRyQAAAAOC7j3JAAAAAgH/DckAAAACAmQRzQAAAAMCaEHNAAAAAAAMic0AAAADAWIJzQAAAACDGoXNAAAAAwKPxdEAAAAAgzV91QAAAAGBmcnVAAAAAgJR9dUAAAABAJZB1QAAAAEAnoXVAAAAA4HTDdUAAAADAZ9R1QAAAAECS4nVAAAAAANFudkAAAAAAWqJ2QAAAAEBss3ZAAAAAAEP4dkAAAADASgV3QAAAAMBDEndAAAAAYNlgd0AAAACgQJ53QAAAAGAYv3dAAAAAYPcXeEAAAAAg7SR4QAAAAICpQHhAAAAAoOFieEAAAACg63x4QAAAAGCYjXhAAAAA4LOheEAAAAAg5PV4QAAAAMA6DXlAAAAAIPQWeUAAAAAgCCF5QAAAAMACNnlAAAAAoI1ieUAAAACAcm95QAAAAGDEgnlAAAAA4PvFeUAAAACANNF5QAAAAIDF43lAAAAA4IjweUAAAAAgZyF6QAAAACBzRHpAAAAAoE9sekAAAACglX16QAAAAEDv3HpAAAAAgALuekAAAADAEQJ7QAAAACCbEHtAAAAAIIgje0AAAAAgI057QAAAAKBTWXtAAAAAAIF1e0AAAACgokp+QAAAAKCTln5AAAAAoC3EfkAAAAAgF0V/QAAAAMB2cn9AAAAAwODkf0AAAADgk2mAQAAAAGDii4BAAAAAgGC7gUAAAACgGtOBQAAAAMA++YFAAAAA4MIQgkAAAADAGSWCQAAAAAAVQoJAAAAAQA9igkAAAACgQ4SCQAAAAABKioJAAAAAYC64gkAAAABgd9SCQAAAAOD724JAAAAAILA6g0AAAACAP2KDQAAAAGArooNAAAAA4AA9hEAAAAAgZGWEQAAAAKAFbIRAAAAAAElzhEAAAADALaqEQAAAAIAUyYRAAAAAIDfThEAAAADgFveEQAAAAKCkAIVAAAAAIODrhUAAAADAHvyFQAAAAODSA4ZAAAAAYJI6hkAAAADgvHuGQAAAAKBTyYZAAAAA4Gsfh0AAAABA/9SHQAAAACCcc4hA + NrgMGZxjYkA/KJil8iNpQEMdzoN8QnFADtLLr2fCc0BDe6rX1FN4QA4wqAPA03pAMTmqNEOEf0Ca+Hc9N3KBQCkh1jJjeoJA - + - dxx/QNOw2D9gNJdAFpT9PyaeGkAc9f0/iXljQKtl5UCUu5hAApIJQRP/sz91A7dAta8XQbdWkkANSi9AbEelQDwQKEA1RghAYiFoQG9LSEDzksVAgn5VQI7fsz+X/RBBQoCUQOZlEEBhD8Y/nNKyQCFpoT/gbUhAm/7XQBe54kGfhjZAYLXOQJ7FxkC58VxAmN+zP2aPo0BU3kJA44GxQAW5GkBBj81AZZuXQN/uMEFRgcBAPlMHQU7dlUDHZhBBpbEJQVUooT+AChFAYAj+P5OZh0G4WVFAqsgUQVbe5kHmrHg/2ZaJQBm0dkBfBFJB/yp9QNk06z+izBtBpqnwQQjbP0KlL4hAP/9nQWL/mEBLSRNBdv01QCcZEEFMDCFBoGGXQdNzCkFYmSxCUeYgQTrgq0E2T2RC5YSEQBdPkkH4kg5BE+MZQX7zBEE1QyNAsHweQa/8RUG+irdBUQptQDchW0Cz8j1BpcFwQM8VskA6AudA7+LYPyOhk0Cp8w9BN+aPQZusAEHJN0hApIHrP55XAEHlpGdB3mH8QDTwjEEh2dNBNuGTQVDQTUF85/BAAzuGQIGYNkCmH4ZBSJccQcFv70AyT4pAW+EOQvQ7q0BB+6lArhGdQYawgkFF1whBTWKwQLqtbUDNIm1B + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAwKAgaUAAAABAMGZpQAAAACDWY2xAAAAAoATobUAAAADAjGNvQAAAAGAvFnBAAAAA4Cs+cEAAAAAA7MJwQAAAACA61HBAAAAAgD0ycUAAAABA44JxQAAAAEBRpHFAAAAAgL3zcUAAAAAAcKJyQAAAAIBvZ3NAAAAAoIWJc0AAAACAM7NzQAAAACA8w3NAAAAA4EcydEAAAACAMJN0QAAAAMBMxHRAAAAAAJh/dUAAAACADKN1QAAAAAAEEXZAAAAAQIckdkAAAABAizJ2QAAAAIDsk3ZAAAAAgACkdkAAAADAhDR3QAAAAMDqc3dAAAAAQEaBd0AAAABADdR5QAAAAACp4nlAAAAAQCr5eUAAAAAA94h7QAAAAIC6N3xAAAAAgLdFfEAAAACAFHh8QAAAAAAxpHxAAAAAgBy3fEAAAADAOwZ9QAAAAAAMkX1AAAAAQPWbfUAAAABAl0J+QAAAAECZWX5AAAAAQG5qfkAAAADAypB+QAAAAIDXr35AAAAAQJMEf0AAAADAW2R/QAAAAMDMp39AAAAAQKTFf0AAAACAcAyAQAAAACDSEoBAAAAAgFgggEAAAABg/mGAQAAAAEDqf4BAAAAAYJDggEAAAACgLFmBQAAAAGB6coFAAAAAoDN/gUAAAADgsdmBQAAAAKCV8oFAAAAAoHc5gkAAAAAg+j6CQAAAAOAiTIJAAAAAYDxRgkAAAACg1mKCQAAAAICVaIJAAAAAADpchEAAAADgwGqEQAAAAADJ9oRAAAAAoBYKhUAAAADAARSFQAAAAEDaY4VAAAAAwH37hUAAAABgFTuGQAAAAEDM0oZAAAAA4I/bhkAAAADgyfqGQAAAAKCZAodAAAAAABleh0AAAACAtmOHQAAAAADGi4dAAAAAIGmTh0A= - - - - - - I9uFQMg4gUCTM1JA37CIQKKPYkDInus/i3w1QJnYLUBcBNk/4oKpQJfCtEDB1gFBUIWnQCi3Q0HFvD5ANkNIQCZvvEAAkD9ARiMQQPlJUkB2Bdk/PH01QMRlUkC3gKJAVkWAQMC6fUFA59g/BIhrQRDOiEFlC4VACIg/QLv/UkA/Ay1AuwH+P8dJKUEsxxpArGsPQYJN4UC6Ysc/9Cw8QRoC2z9ibfFAv6/zQImJoEGTkMtASyluQZZooD/JxfdAwBHmQO9Ts0BVbXxBL5PrPyy1yEACtZxAZTsRQOVvxUAsM25AJmRNQBYwU0Fe7zRBRUotQIYjA0E1mdNAG1TsPzh6yUBZCQlAlMKUQCCMLUDLq/ZAhx+9QP4LSEJPBK5B+YfPQDIEtD/QsplAHFqFQI01E0Hd2+s/sd9bQOaDDUHiI0lAgxbrQIJhoEAzfRRD+rbwQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwGdjYUAAAACAbOZhQAAAAGCppmJAAAAAYHrfY0AAAABAZ5tkQAAAAMAdwGVAAAAAgD4qZkAAAABgX0doQAAAAAAL32hAAAAAAHOGaUAAAADgtP5pQAAAAADrQWpAAAAAYG6DakAAAABAletqQAAAAMAZh2tAAAAAAD/Ga0AAAAAgBCNsQAAAAGAlR2xAAAAAQLIHbUAAAACA62ZtQAAAAEAdfW1AAAAAQMTCbUAAAABAGiZuQAAAAIB+Q25AAAAAAGWCbkAAAACA1cNuQAAAAIA04m5AAAAAAOfHb0AAAACg7CFwQAAAAIDyPHBAAAAAgHZScEAAAACAbWRwQAAAAMD4cHBAAAAAwE+ccEAAAACAXMBwQAAAAMCb8nBAAAAAAH9jcUAAAACAjnpxQAAAACA8hHFAAAAAgLGRcUAAAAAgSdBxQAAAAKCnPXJAAAAAgKtPckAAAAAA815yQAAAAIAscnJAAAAAoDaFckAAAABAF6ZyQAAAAAATsnJAAAAAYBe+ckAAAABg6fRyQAAAAOB2GnNAAAAAYLJCc0AAAAAAsUxzQAAAAIAsf3NAAAAAwPnZc0AAAADA3yF0QAAAAACJc3RAAAAAQOd+dEAAAABgiKN0QAAAACBosHRAAAAAwD2/dEAAAABgYMx0QAAAAICi9HRAAAAAAHADdUAAAAAAUBJ1QAAAAEAeInVAAAAAgH4udUAAAAAgUsN1QAAAAGAj13VAAAAAQMPjdUAAAADAbPN1QAAAAADTAnZAAAAAALwfdkAAAACgZqJ2QAAAAEA8w3ZAAAAA4NjUdkAAAAAg1uF2QAAAAGDl+HZAAAAA4OgQd0AAAABA1Sh3QAAAAGD8ZXdAAAAAII9xd0AAAAAgIdJ3QAAAAKCm6ndAAAAA4AgEeEAAAADAzEV6QAAAAIChd3pAAAAAIAQme0AAAABg/aR7QAAAACC2L3xAAAAAYOVhfEAAAADgxeh8QAAAAKCVhn1AAAAAwG1VfkAAAABgaIV+QAAAAKAuSoBAAAAAoNyagEAAAAAAUPqAQAAAACDEG4FAAAAAYOU4gUAAAABgCkWBQAAAACAQeoFAAAAA4HSRgUAAAAAg5t2BQAAAACAY+4FAAAAA4MyagkAAAADAyLOCQAAAACDVQoNAAAAAIJ07hEA= + NrgMGZxjYkAbumJgJkNwQOh00xhyUXBAQ4EdZDWidkBCe6rX1FN4QGWKH5W4EnxAW5C1Y2IqgEB2iIjx1FGCQIOQPDN1YoNAlNlE3CzihUA94xwr7WKHQE4sJdSk4olAWzTZFUXzikB3LKyjtxqNQJ/30by9O49AmD/GzZeNkEAYfqmq//mQQC8BfH0wjpJA4i+Ya8ORkkBiR4+AGVaUQHnxTRtckpRA - + - fZoRQEnFqUAertw/qMQ2QDUQZUAzmqE/N5ETQOV5LUBS64RAGQO0P66/I0CAViNBpJY/QHMmgEG8DUlAaysaQNh7EkFk1ZJAzRRfQMpSlEC/C90/xJXzQGfrGkAYOhtB+Nu2P5o4GkBRsK9AhPiOQatomkBT4QtBagFXQIrJpEC6ZjFB4wtlQNP0UEHo9LpAhmmpQJ+McUAUfC1AdIGaQFoZJ0A7w1tAmCoXQWh1NEF1jvNAhNXLP50PtkBKCENBKTloQVrFbEFpradAVv3zQEdkpEEQg4RBYKo1QIJnGUGXkk1Ccph7QHJUBUKAmadBtuVPQY7/p0Dgd0dBcDVDQO5wOkGF/3dBEczxQOwu10FGvIdB4VgxQrXPA0E04V5A4LedQG6ML0HN8s5Aft+kQExE+EAvUIBATC/3QqwqsUCY3V1BqCZaQR4WbUCEvwBBy+rjQHqE0UBHBBpBcdZIQYR60UCTjiNBFLX9P1jkEEHCCShA8AULQnptc0BuyYdACa4MQvELs0BL0UpBder4QEPxUUFPl45BiZVSQGfmyD/jAEFA6gf1QK8HJEAHU0dBRR/mQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoDLEXUAAAAAATUBeQAAAACDuk15AAAAAwCekYEAAAAAg4idhQAAAAIDH6mFAAAAAgD1iYkAAAABA8Z1iQAAAAMCzwGJAAAAAYAjmYkAAAACAXwdjQAAAAIDHCGVAAAAAgCscZUAAAAAAV0FlQAAAAGD8J2ZAAAAA4MrCZ0AAAADAOOJnQAAAAKChXGhAAAAAgHyMaEAAAAAAVfFoQAAAAADTQmlAAAAA4BfFaUAAAABAlCJqQAAAAGAvgGpAAAAAAEmla0AAAACAMuVrQAAAAABvC2xAAAAAQN+BbEAAAACAKuVsQAAAAIAKHG1AAAAAwC5MbUAAAAAAL25tQAAAAIBQp21AAAAAACzGbUAAAABAUyduQAAAAIDrhW5AAAAAQIIZb0AAAADACUZvQAAAAMCPcW9AAAAAAA+gb0AAAAAAeMdvQAAAAEDwNnBAAAAAIGtEcEAAAABgCU9wQAAAAADqcXBAAAAAoOqAcEAAAABAvKBwQAAAAOAtwnBAAAAAgOXycEAAAADAhABxQAAAAMAeInFAAAAAwBw5cUAAAABAU0dxQAAAAODdYnFAAAAAoO5vcUAAAADA8YJxQAAAAICPkXFAAAAAgP2gcUAAAAAAuLJxQAAAAAD21HFAAAAAYAbicUAAAADAygFyQAAAAKCOC3JAAAAAwAcickAAAAAAljByQAAAAAAcQXJAAAAA4EtjckAAAACAoXpyQAAAAIC7inJAAAAAoMCVckAAAABA+bRyQAAAAADWx3JAAAAAwEDVckAAAABg6eZyQAAAAAAm/3JAAAAAIBMUc0AAAABAgyFzQAAAAEBtLnNAAAAAgGVSc0AAAABAlnZzQAAAAIAegnNAAAAA4JORc0AAAACAAqFzQAAAAADXsHNAAAAAgBTFc0AAAABg5vFzQAAAAOBxCHRAAAAAYNcndEAAAADgIzR0QAAAAEDNW3RAAAAAYCiOdEAAAABAEJ90QAAAAIB7vHRAAAAAAOjRdEAAAAAAXON0QAAAAADI83RAAAAAgHYBdUAAAABg9xx1QAAAAOC9MXVAAAAAIAtWdUAAAABAEad1QAAAAOBMvnVAAAAAgAHPdUAAAABgMOJ1QAAAAOCY8nVAAAAAoGEAdkAAAACgHRF2QAAAAODgXnZAAAAA4JlxdkAAAACgV4B2QAAAAMDU4XZAAAAAoCfudkAAAABgyfl2QAAAACDbB3dAAAAA4Ed0eUAAAADAIbR5QAAAACBvMXpAAAAAwEJNekAAAAAgiWR6QAAAAKCffHpAAAAAYMX8ekAAAADA8qx7QAAAAEA/1ntAAAAAoFMHfEAAAADAVEZ8QAAAAKBZhXxAAAAAYEpbfUAAAAAg0+Z9QAAAACBVJn5AAAAAYIRSfkAAAADArYh+QAAAAGDNn35AAAAAYByHf0AAAABgH7d/QAAAAEAO/n9AAAAA4FR8gEAAAADgBYqAQAAAACBgQYFAAAAA4L97gUAAAAAglouBQAAAAGB8q4FAAAAAoDqxgUAAAABgiMuBQAAAAMBZ0YFAAAAA4Mr+gUAAAABgIQyCQAAAAADoGYJAAAAAoKZsgkAAAAAgiISCQAAAAMAKg4NAAAAAAAsbhEAAAACAWzeEQAAAAOAYVYRAAAAAoL17hEAAAACg75GEQAAAAKAfz4RAAAAAQMgAhUAAAACgcBaFQAAAAIBNo4VA + KBZXds7jZUA= - + - JIekP5xnS0BJlZhAu6HYPyLHTEDIcotAeu/gQKizd0A3XV5BDRh7QV7wwkADmrdAHP6zQN4HqUAzwAlB/LWhP2gVtUAY3us/Bx9JQLZuG0En36VApnD+P5jaG0GjthFA0LwLQDXKsUCtNsRAOmQLQUbZxj9LJ25AmgYDQX1hiUBSnXRBHkn+P70qZECG9d1A8iN4QLuvxj+yDYVAcE+pQNNcVEACZCFBJHGZQW9XsUGyJpZBoH0vQkDKYEA0Ka5A4c/dQNHU/j/RQ6pBCiAyQUxu4UCe7AxBzRPxPwwAmEEwA0lBoEVsQdZSh0BeJpxAWT82QAKtk0G/vnc/+xReQXyojEAQ5I9AVn2MQBg+L0EqQhJBptGtP1iJYkHElwVBHggNQbhHkUAHrn9B9dk2QAEdNEFaEDhA7crGQLPE0kBWA2FBpjC0P75s+UE8mzZAznUAQIlESkGwn+tA9H70QKmPLUApEPdAWv8hQa2cd0CzyTpCKjUNQkDJVEJ/BcRBAtSZQFH/gUJVbphBy7obQcQf8UHJendA/RuPP23ycEF+YKRB9bu1QTxda0KceK9CCwxfQoggjz9SlShBLuObQKd6+ECEurxB3HvYQB8jh0DPbJBAZ7MmQZdsoEBgJAxBgr86QqZAI0FR0xpBYM1lQQy4jEF5v4FBAIZJQhdqtUHUJ/4/LZLMQJwm0kJB929ANUZuQJAI+EDSdipBTzIjQMvPEUBzl0tBcxXhQMwDakER3VtAvRTRQNQKNkGA6hNB+9YdQf93gED6+YZAV6saQXpcjkDWr5RBDVkqQbCOrUG72T9AXQKsQHgiQUDOmPpAS31mQHmh8EDQCZ9A + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgN2BYEAAAABg6ENhQAAAAGD652FAAAAAQJdfYkAAAADAJ8NiQAAAAABQsGVAAAAAgLfoZUAAAADAZO5mQAAAACBBRmdAAAAAYHcnaEAAAADAcVpoQAAAAKAxiWhAAAAAAAmNaUAAAABgSwRqQAAAAADTIWpAAAAAYN/BakAAAABAY+JqQAAAAMD85WtAAAAAgEEjbEAAAACAADxsQAAAAIBF5mxAAAAA4Lj/bEAAAACA80FtQAAAAIDH6W1AAAAAQFRfbkAAAACAfSZvQAAAAADLnW9AAAAAAMjJb0AAAABgmRVwQAAAAAAbIXBAAAAAQKlQcEAAAABgcG5wQAAAAEApoHBAAAAAQIACcUAAAACAoRxxQAAAAEDKT3FAAAAAwOuEcUAAAACAyrdxQAAAAGCG4nFAAAAAoND+cUAAAABAaRFyQAAAAGBvJHJAAAAAgI8zckAAAACAhUNyQAAAAADXVnJAAAAAQAprckAAAAAgANZyQAAAACDq8XJAAAAAQBgOc0AAAABAMypzQAAAAMBSUXNAAAAAACuFc0AAAADA3u5zQAAAAED3BnRAAAAAQM8TdEAAAACA9TR0QAAAAAD5UnRAAAAAQIVldEAAAADgOnx0QAAAAOB6kXRAAAAAoHCedEAAAABAq810QAAAAICc5HRAAAAAAOECdUAAAABANiB1QAAAAMA1UnVAAAAA4OdndUAAAACA8IN1QAAAAMD5snVAAAAAwMfkdUAAAADACBR2QAAAAIBtOnZAAAAAoKdTdkAAAADAL2N2QAAAAADScXZAAAAA4FSRdkAAAAAg0592QAAAAEDMrHZAAAAAwFK8dkAAAABg2fZ2QAAAAKDVAXdAAAAAIPBFd0AAAABAU1R3QAAAAICrg3dAAAAAIMaid0AAAADgF7N3QAAAAMD1z3dAAAAAIFXcd0AAAADAZRZ4QAAAAGAeJHhAAAAAoMsxeEAAAACAX2Z4QAAAAKBbdHhAAAAAYMqWeEAAAACAQ6R4QAAAACAs1XhAAAAAQEQdeUAAAAAA1WJ5QAAAACAb2XpAAAAA4LPEe0AAAADgcER8QAAAAMCNhn1AAAAAoGAmfkAAAAAgTjN+QAAAAOCy1X5AAAAA4J3nfkAAAAAgrE5/QAAAAGC0b39AAAAAoLYrgEAAAAAAsKSAQAAAACCAC4FAAAAAoGAsgUAAAABA2kqBQAAAAIA8mYFAAAAAIB6tgUAAAABAc+OBQAAAAGD66YFAAAAAgBsQgkAAAADAbDKCQAAAAKDlx4JAAAAAgAkKg0AAAABgmGeEQAAAAOCXbIRAAAAA4MMEhUAAAABA8lGFQAAAAMCUqoVAAAAAgMQBhkAAAACAolqGQA== + KBZXds7jZUC4fceqz1FyQDtMc7KVAnNA - + - vt+uQFcXG0D0JVBAG16lP7A7P0HCuxNBdag3Qfh1nEDS/RFAR9y0Pz8tGEFV8RBB3Nm3Pz0nf0B8gQdBPHEqQSPsyUBikGVAIbetQEYVgECUcElA/Wm8QNHRfkAgU5dAfRzgQHaqGkDuFpA/7NCJQNOyJECMko1AZ1w2QIpZe0CtVoVA4NUSQej9kkA6Pto/J6H4QPS3JECYLpBAG1M5QeOJTkHWHxpBXtmGQRO2CEBkDKxA1v+EQIZ4GkD/8VFAbehAQIOngkH4OhJATlikQKUH40DiS1xACbksQREPbkAEKZNA+XudQErPmELDUDdArkjeQE10jkCoxwdB2IjjQMxFgkAI7gJBVXBbQY77hUHEcepAy43qQH0Qm0F8fpNADtItQPK4CEAsNRtAoUGyQa3BHUGAogBBexuEQcHHlEBF2B5Bnd63QGgUtT8yT1lArOQMQRZuKUG+EjlAy9MdQUx1P0FIN5pBSgRuQBncjEFPpndB3XVcQJPk+ECsCwJAB6VoQAU2pEDe6zZBL2sbQPAaXEBgOQdCnOLcQApwLUDywT1BJ2jBQER/YUEQNqpBe896Pz3PlUCoGRhBgLU2QKdrzkBezCVASkpAQI74j0ChJPE/lchJQFZOOEDNOcdB2r8aQYMjqkCiuKQ/aCmTQVHMjkDQszlAj7y3QFAxi0A= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwA2iaEAAAABAJMRoQAAAAICbZWlAAAAAQAKBbUAAAABATEluQAAAAEDmWm9AAAAAwGIAcEAAAADgMD5wQAAAAEAG/3FAAAAAAMRCckAAAABA08B0QAAAAEAfYnVAAAAAAB2idkAAAADA+OF3QAAAAIDlXHhAAAAAACaWeUAAAAAAXhN6QAAAAEA4BHtAAAAAwOUDfEAAAADAgyZ9QAAAAEAFLn5AAAAAgPFVfkAAAACA05N+QAAAAABIrn5AAAAAwOjEfkAAAABATN5+QAAAAABDGX9AAAAAwGqkf0AAAADAbbB/QAAAAKAZIoBAAAAAoOstgEAAAABgoVeAQAAAAMASaoBAAAAA4EqngEAAAAAgP7SAQAAAAOB4/4BAAAAAIAMLgUAAAADgXRGBQAAAAOA0i4FAAAAAoGyugUAAAAAgwsuBQAAAAIBr24FAAAAAoFn9gUAAAADAWBKCQAAAAIDGy4NAAAAA4AWbhEAAAABgnOOEQAAAACBqAIVAAAAAoCM8hUAAAABgcAGGQAAAAACuMoZAAAAAYOhph0AAAABgIIuHQAAAAGD2XIhAAAAAQEHliEA= + NrgMGZxjYkBcG3g88qJlQOzQoK8iBW9A0BY+T/xBcECdKRjPP5N3QPfXhcaqUnhAvzIaAMMDfUBS5M8RbqN+QIwfsiVDqoFA - + - 4rySQPcel0BEKjhAfYhuQGT9P0DMM+4/bHC0QHzV/j+EDRJA0Wn/P/jgUkDgh25ADAnxPwh9CEDyXv0/KHsHQFUl/UC3yCRAaphlQLxX3UBsMnJB6SIYQRvutD8IQ2tBjX6yQO39tUFJSJNA9mucQI2h1EA5yJhA+6WkQBfJJUGvABtBzVuQQbYdFEGRLd9AbJTTQIIp2j/SCV1BrHKXQGqaT0GzPNs/1KuAQPMtYEEnd9FAcZ7qQAqXqEF36BFADj9dQBjsckFYUUpAUKUkQGFwE0HQf0hBaneKQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgLooY0AAAABAPoRjQAAAAEBDoGVAAAAAgGlIZkAAAABA3mpnQAAAAIB3OWhAAAAAgFgJaUAAAAAAByVpQAAAAMD8rGlAAAAAwKBBakAAAADAS+ZsQAAAAKChCm5AAAAAQMMnbkAAAAAAF2FuQAAAAMB5gG5AAAAAwJQIb0AAAADA3ShvQAAAAAACR29AAAAAANrqb0AAAABAADFwQAAAAGA1dHBAAAAAAJ/XcEAAAABAfyJxQAAAAKD6RnFAAAAAwHgEckAAAADABqRyQAAAAMAl9nJAAAAAwG1Xc0AAAADgY4lzQAAAAID1tXNAAAAAIGrhc0AAAABAAvNzQAAAAEDHXHRAAAAAAMugdEAAAAAAYsZ0QAAAAIDXI3VAAAAAAMotdUAAAABAYJ51QAAAAEBFznVAAAAAYGHydUAAAADAFf51QAAAAABZFXZAAAAAgDRddkAAAACAVJx2QAAAAMCv8HZAAAAAIE/+dkAAAADgRJJ3QAAAAKCWsHdAAAAAYL/0d0AAAABgMAN4QAAAAOBFL3hAAAAAYFtDeEAAAACgW3B4QAAAACAXg3hAAAAA4MubeEAAAADAX7N4QAAAAAAw/XhAAAAAIFIQeUAAAACgwMR5QAAAACDf1XlAAAAA4FLreUAAAAAgnwx6QAAAAABRI3pAAAAAABgvekAAAABgCE56QAAAAGBDXnpAAAAA4D5vekAAAADgA396QAAAAIArpnpAAAAAgAG3ekAAAADgfw97QAAAAIAyNXtAAAAAAGNxe0AAAADgpH97QAAAAAA9j3tAAAAAACfNe0AAAACASvJ7QAAAAEC7AnxAAAAAIHhSfEAAAACA+GV8QAAAAGAshHxAAAAAgIqmfEAAAADAiwJ9QAAAACADzH1AAAAAIO2lfkAAAACgZnx/QAAAAKDRY4BAAAAAYBCjgEAAAABgiqyAQAAAAGCzy4BAAAAAgEI0gUAAAACAxYeBQAAAAOAamYFAAAAAIK2hgUAAAADg4ciBQAAAACDx+YFAAAAAYM1TgkAAAACgomKCQAAAAICXioJAAAAAYDedgkAAAADgjbOCQAAAAMCh2oJAAAAAgLoTg0AAAADgXlmDQAAAACD9j4NAAAAA4LEEhEAAAAAg5RKEQAAAAECBQoRAAAAAYITZhEAAAABAJvCEQAAAACAmd4VAAAAAwHCLhUAAAACg+x2GQAAAAOArKIZAAAAAQO9whkAAAABg+4uGQAAAAIBCk4ZAAAAAgNnMhkAAAAAgYBeHQAAAAADnX4dAAAAAYCRsh0AAAADgDNuHQA== + NrgMGZxjYkA= - + - tySqQA87xj+/niRAjbqlQIB2ZUDD+BBB4iERQI1no0CHEf8/DlNJQNt+ZECARhtAzNW0P7/3hEA+n/tAtZKzQAQnLUB4coBAZauwQOjd2T/IZwhCBHjzQKsuFUDQ7hFAyFClQDXxE0BQj6E/tC8JQWMaMEHoaf4/+QExQEaod0CjuPNAKA62QM6twEAZkddAenxJQC8lRkH3kBJBr838QO2uiUBeE3tAvsMLQL17l0AmPQ9B9VjHP65eqEC4y5JAZBNBQHKOCECPGjBBCvypQMAuBULN6zZA/w+GQAdTVEAZAgBAxZazQfGXEEDHIAlBtSGqQZZNC0GsdYNBVuAAQnTg1EHHh/4/rDcZQpjx7UDNEShBG9P/QTWO/j/ef0xBf6ZxQFS2CEDOT+lA3MqIQZ0nW0I708RBuqtQQb8pNkDjdqtBVuHIQJR4CkAe2QdBx+2bQDpmYkErFjBB2CyzQAcTUkGitO5AUPV/QfJWIUFrRHJCPVqgQHvHiUAbQVNCYiZVQZ0+3EBECOZAB0hlQdn2B0HtU3pBcBJbQcaLL0HrKV5Cf93IQKbIEkIMyXdA86YIQK1jlEASdxZBq/VSQNNuxz9ALV5BMcc3Qd0eckDk0LBCFgDdQHl8KEHoY4VA2nteQNCdoEA= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQLlnaEAAAAAAn/FoQAAAAKCNpWpAAAAAAKBDbUAAAADA98RvQAAAAOB3FHJAAAAAwLhmckAAAAAAJ7dzQAAAAEDxMnRAAAAAQBphdUAAAAAAhWx1QAAAAIBL03VAAAAAQMTvdUAAAABAa0V4QAAAAIDrpnhAAAAAgL1SfEAAAAAAAGV8QAAAAIC0dnxAAAAAwArLfEAAAAAADwJ9QAAAAADw831AAAAAgJAGfkAAAADApyB+QAAAAABfZX5AAAAAQDl1fkAAAABAxLV+QAAAAEDl7H5AAAAAAAuef0AAAADAG+9/QAAAACA1AoBAAAAAYJ1LgEAAAADAJmOAQAAAAOAP/4BAAAAAILIagUAAAADgWJWBQAAAAOBvo4FAAAAAQMK+gUAAAADA78aBQAAAAGCD6YFAAAAAYFFDgkAAAABgqVeCQAAAAIBXZIJAAAAAgDd1gkAAAAAgKb+CQAAAAIDHyoJAAAAAoN7vgkAAAAAgKQqDQAAAAODOLYNAAAAA4Mo5g0AAAACgBlKDQAAAAIA5NoRAAAAAgGJfhUAAAABgM3SFQAAAAEC2j4VAAAAAwKNJhkAAAABA5amGQAAAAKCMhIdA + NrgMGZxjYkCs9CaTvbFwQI8BR/y9MnFAj18jUBZEeEDTtW4KbMJ4QMoBnCXGZH9A0xNLXsTTf0DpuBNZjnKDQJ5TrgrbsoNAnoKcNIc7h0CjC/RQBnOHQJ6xil4zxIpAwVywO14Di0DBi55lCoyOQDKSLpqKzI5APm+/LkFGkUBjOenqcGqRQA== - + - 2dQeQMxMCEA7DbpAWMC0P6/62T/GmKBBhR1yQItGl0DDSoVABTXgQFVt00DmlNg/8lh8QC1cZ0B3KehAdOGWQFlhoj+pkWhAFtrZP6ob/j8puoJAbDyWQcgbLUDWZX1AJQl7QO23kkBWJRtAA0UnQXm42T/kuy1AdZz+P1a0rkFSU8pA8vbZP2GsJEDCJqdAeGvsP9zXhEBIkfNAUhbyP6uNi0H/vAlB87erQJJmD0L3XKpA46mcQH1BcEHAEYFCOfjFQMIhq0AqhoBA/jPkQK0tjkAOnM5AByFSQN6/qUG+wrhB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgDwhZ0AAAACgqMZpQAAAAOCTZ2xAAAAAwCTibEAAAABgK0ZuQAAAAMCCc3BAAAAAgKjwcEAAAADAH1JxQAAAAOBI03JAAAAAAECTdUAAAACAELt2QAAAAIB13HdAAAAAAPkEeEAAAADA6RB4QAAAAEAas3hAAAAAQD3EeEAAAACATfJ4QAAAAMBBIXlAAAAAgA40ekAAAADAQVN6QAAAAIDw4npAAAAAgKn0ekAAAAAAu3B7QAAAAIA2kXtAAAAAwEMsfEAAAABAw1d8QAAAAID8ZXxAAAAAwFK0fEAAAABAuuR8QAAAAIA5x31AAAAAgA7UfUAAAACApjd+QAAAAECnQ35AAAAAQLplfkAAAADAwzJ/QAAAAEDI439AAAAAAKQFgEAAAABAsiOAQAAAAOCMiIBAAAAAoKONgEAAAAAgUpqAQAAAAMDoyoBAAAAA4D3QgEAAAAAgz9uAQAAAAGCX+4BAAAAAAOIZgUAAAABAljWCQAAAAECcm4JAAAAAoBbpgkAAAACAmUqDQAAAAAAJYYNAAAAA4Nezg0AAAADgFtGEQAAAAOC+6oVAAAAAYJZ6hkAAAADgWpqGQAAAAMAOXodAAAAAIHxEiEAAAABgdImIQAAAAOAsrIhAAAAAoFL7iEA= + NrgMGZxjYkCwLijacuRqQAoahmk8YnBAWHXwwJGDdEAx283g6nJ4QEYz8B0AtHtAjOcXLK7DfkDQH520YQKBQL3Si0QO+oJAZABB8LgKhUC9AXpuuoKGQFvfwB7woohAvTBomGYLikA= - + - UQaTQBxPOEDQdQpARpudQBQxxkDtjedAs64kQBuroEBotZJAPX3PQP/9bkA8yhNBMEkaQcfBJED2/cc/iGB3Qf7n7D9dh/M/o1gjQdr0/z9QZZ1B5xcJQDl9W0Cqc98/r+2iPyLwvUBqw5dA7h45QaqJ00BBdP4/9QzuQGy0bUE+gBpBc3ucQHtQlkCTfgBACytnQTUO2j/h8MBBg4rZQH7TQkFfELxAoE03QZVVXEBOrhVB+NGYQIxDhUAvR5A/UilKQUGDUUFBLbxBJJFZP5D0hEATbDdACOK4QREB/z+dJ6M/94MbQDM/LkDBVZlBdzdCQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwD4JXUAAAACA41hhQAAAAECJo2FAAAAAoPHqYkAAAAAACIRjQAAAAMDJ6GNAAAAAACrbZEAAAADAAGFlQAAAAACGhmZAAAAAQEGoZkAAAADA6SVnQAAAAGDTaWdAAAAAQIOpZ0AAAADgQZ1oQAAAAICjIGlAAAAAwP//aUAAAACAUgZrQAAAAIA3hmtAAAAAAC3la0AAAABA8wZsQAAAAOAZQmxAAAAAgMiDbEAAAACAiQVtQAAAAEBT5W1AAAAAAII3bkAAAAAAM2JuQAAAAIAHi25AAAAAABCkbkAAAAAAUcBuQAAAAIAYhm9AAAAAANakb0AAAADA3cFvQAAAACBbQXBAAAAA4K6EcEAAAADgX+RwQAAAACAqAnFAAAAAIBw1cUAAAACAm1RxQAAAAMA+ZXFAAAAAQMqhcUAAAABAo61xQAAAAICov3FAAAAAwGzucUAAAAAAIgNyQAAAAIBrD3JAAAAAIEkeckAAAACgvkZyQAAAAOAUg3JAAAAAYIzRckAAAADg4A9zQAAAAEDKhHNAAAAAoOmPc0AAAADgLgV0QAAAAABdJHRAAAAAABdBdEAAAABAJVB0QAAAACC2cnRAAAAAwOeLdEAAAABAxaF0QAAAAACbwXRAAAAAwHPWdEAAAABgoeR0QAAAAIAPJ3VAAAAAoIc0dUAAAADALkR1QAAAAMBEUnVAAAAAIPVhdUAAAAAA+XN1QAAAAIBJj3VAAAAAAI6idUAAAADg28h1QAAAAAAN1XVAAAAAwDpDdkAAAABgO1N2QAAAAGBqa3ZAAAAAIJeBdkAAAADgT492QAAAAEC4o3ZAAAAA4L3kdkAAAABgUvN2QAAAAOB0K3dAAAAAwI82d0AAAADAdVJ3QAAAAEAmdndAAAAAgOeCd0AAAAAguJN3QAAAAOC2PXlAAAAAILyEeUAAAACANlV6QAAAAKAbZHpAAAAAoAuHekAAAAAA3Sp7QAAAAGCDvHtAAAAAwDI2fEAAAADAJ098QAAAAMAQXXxAAAAAYNenfEAAAADAlWN9QAAAAKDhKn5AAAAAoFhRfkAAAAAg/ER/QAAAAGBJUX9AAAAAoIbFf0AAAABgSNZ/QAAAAKAi4H9AAAAA4AkCgEAAAABg/g6AQAAAAMCBqIBAAAAA4GCugEAAAAAAKM+AQAAAAAAPA4FAAAAAoJk2gUAAAACAmjuBQAAAAOAEX4FAAAAAgFJygUAAAADAhoeBQAAAAABplYFAAAAAoIGngUAAAABAHHGCQAAAAGCBjIJAAAAA4Ix7g0AAAADgGouEQAAAAEALa4VAAAAAoMaAh0AAAAAgIg2IQAAAAOABmohA + NrgMGZxjYkA= - + - IAvCQEHNpUDadDdAYxt8QP3CSUD+96BAINIbQD1mEkAZa0BAnbWQPyu2G0CHxKVA8BF2QaiFYUDQU+0/oTnPP12pG0DTEglAcUqjPwLJJEBHMShALqXaPyRHtkBCiE1AKG3dP55DREA4lZ1BSINZQZG0N0E/oo5AWM9AQOvsFUF8Ye0/Rlz0QON+hUCTrqZBoieXQZCPEkAdFI1AYF4RQY7BtT+pMYVAfMnhQKCyQEC0/QxByHCzQE/6ZUCpdjJBOrxaQctr7T/8bAlA9NKpP75y3ECTfRFBRlw1QYURmED8prpAKUg7Qeuh/z+PW2VAq7a6P1+q2j8wCahAZP9JQHL7HUEvvLhA3zVdQqaYpUD8dao/fV2GQUViXEAhfOFAqyTtP7APCUBVHUBAiguvQUzwu0FzZApBm1L0QVST7EHVqdNAOC78QIhuCkAh5xlBKgSGQU4db0BMd1xABu1sQI4KFkCumupAE8amQJi0AkEIX/1BnmJuQCKfX0HIZYpARWCPQVPzlEAE55RAHvUnQH4dUkKE+1VBie2OQN6vxkJ2afk/KQ4mQYjb6kCG4rRANkRxQPr2vEA50JRBGUqyQdGE00Bw8yJCGRCAQdYjk0Aw4HBAU7F5QZCcjkClbjdAH2gFQeaZwUA55P0/3kieQNG/rkCxmCBB + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4ENibkAAAABAj+ZvQAAAAMBQMXBAAAAAwJnscEAAAAAgoRVxQAAAACAui3FAAAAAgANGc0AAAAAA0rBzQAAAAEDC0nVAAAAAgHQnd0AAAADAp8R3QAAAAADDk3hAAAAAQJbWeEAAAADAEwV5QAAAAADdEnlAAAAAwCYgeUAAAADAMKR5QAAAAIB3Y3pAAAAAAJBuekAAAAAAMXh6QAAAAMA5LnxAAAAAgDbcfEAAAAAAS31+QAAAAADD3H5AAAAAQFvjf0AAAAAABVKAQAAAAICSloBAAAAAYKa+gEAAAACA1eCAQAAAAKA78YBAAAAAgLX5gEAAAADgcwOBQAAAAOD7J4FAAAAAIHExgUAAAADAgDuBQAAAAMAQTYFAAAAAwDV6gUAAAAAgE5WBQAAAACD+tYFAAAAA4LwOgkAAAABAfjGCQAAAAIBgYoJAAAAAACt3gkAAAADgRY2CQAAAAICblIJAAAAAwGzggkAAAADgCPGCQAAAAKBKD4NAAAAAoBwvg0AAAAAAwUyDQAAAACDJT4RAAAAAYJ5chEAAAABAv7yEQAAAACBbx4RAAAAA4P7LhUAAAADAotmFQAAAAOBG9oVAAAAAIBShhkAAAABgrdiGQAAAAGC64oZAAAAAYANbh0AAAABAQ2qHQAAAAOCreodAAAAAoEGdh0AAAADger6HQAAAAIB0AohAAAAAIEY8iEAAAAAA2nqIQAAAAMD0v4hAAAAAAFLHiEAAAACgas+IQA== + 4qRcexsiYEAoFld2zuNlQNS+X4D+xG5A - + - XdR6QJMP60DlxAlAuusOQVMapD9fXwFBuX4SQLRKJUA6iSVAvBb/P8iBAEBZTu4/OsvgQBuiuECEKItAh/kZQYivq0BNQMg/NNbTQP72i0H4HYpA2PK1QO5iz0Aac4dB9jOKQFHn3j/uzbNAKJXGQQNm+ECgFFBBlKwhQROfB0GBYgFAuo4lQJayyEH7QglAW5HbP4quykDaWJVAPOwAQZg//0BI75lCRFstQdvOkUHJayZASRtBQD04aUHVmN0/NjwUQWYKckD2YGhB6zAcQdrLz0EkbIVAe9VxQAC0EkBA+BtAjrx0QWXmo0EpjoNBOxlvQFGaU0DHgN1A5bucQFl37kCd3BxAGSuKQCoMl0FWdIRB1CqwQXCsdEE= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgMtBWUAAAAAAZEdaQAAAAMCdR1tAAAAAQIOhW0AAAACgb8xbQAAAAEBak1xAAAAAAHrGXEAAAACA2npdQAAAAACswl1AAAAAwA5kYEAAAABAkaVgQAAAAIAHxmBAAAAAgI5BYkAAAADAyqBiQAAAAECSgGNAAAAAoDKkY0AAAADAX8ljQAAAAADFWGRAAAAAgCtsZEAAAACgN+FkQAAAAMCUgGVAAAAAwGYkZkAAAABAP6hmQAAAAIADHmdAAAAAYLLkZ0AAAADAvgZoQAAAAIDrJGhAAAAAYMI9aEAAAAAgNl9oQAAAAEA65WhAAAAAQOaeaUAAAABgs9dpQAAAAMD6HWpAAAAAwFc/akAAAADAPWNqQAAAAIBPgWpAAAAAwArEakAAAACAofdqQAAAAMCEI2tAAAAAgDlfa0AAAAAAD3prQAAAAAC6pGtAAAAAAKW/a0AAAABAEeVrQAAAAMAZHmxAAAAAwK5ubEAAAAAAXpJsQAAAAIDKt2xAAAAAQD7fbEAAAACAxaltQAAAAABv7G1AAAAAQIIebkAAAADA5kpuQAAAAMAlY25AAAAAQBihbkAAAADAa8duQAAAAABs425AAAAAAJD3bkAAAACATiJvQAAAAACDU29AAAAAQBZxb0AAAACA74VvQAAAAEAQnm9AAAAAAFXib0AAAACglQ9wQAAAAIBuJXBAAAAAYKdHcEAAAAAgE1NwQAAAAODfbXBAAAAA4LKRcEAAAADAHaFwQAAAAKDOs3BAAAAAgMb0cEAAAABA+AlxQAAAAMDrLXFAAAAAQC1xcUAAAACgmH5xQAAAACDPkHFAAAAAwOuecUAAAAAAEbFxQAAAAEBuwXFAAAAAgNnNcUAAAADAK/JxQAAAAIDFAnJAAAAAwDoVckAAAACA3SVyQAAAAGA/V3JAAAAAQI+SckAAAAAANrJyQAAAAGDew3JAAAAA4CHPckAAAADAVeFyQAAAAMC68XJAAAAAgI8Tc0AAAADAAjFzQAAAAODOQXNAAAAAYAeDc0AAAADAHZFzQAAAAIDXsXNAAAAAgOzKc0AAAADgQFl0QAAAAAC9lXZAAAAA4Ocyd0AAAACgIF13QAAAAOCsdndAAAAAIAGQd0AAAACgoAB4QAAAAGAwSHhAAAAA4HuweEAAAAAga8J5QAAAAGAA7XlAAAAAIJz7eUAAAAAg9Rt6QAAAAOBlhXpAAAAAwJPmekAAAACgSgJ7QAAAAEB9cntAAAAA4Cb7e0AAAABgTBR8QAAAAGBijHxAAAAAYMCwfEAAAACgbVd9QAAAAEBZi31AAAAAYHWkfUAAAABAzCJ+QAAAAKBea35AAAAAwL1yf0AAAABgCDWAQAAAAIB3RIBAAAAAYJpogEAAAACACsGAQAAAAKC9G4FAAAAAAG2igUAAAAAAicuBQAAAAODbSYJAAAAAgD7EgkA= + KBZXds7jZUBML328ejFwQBTpB48/A3JAh9H1kSpSd0A7qk8G7hN6QKna98KtwnxA4xXa1oIpgECwtcs+ThKBQONEyAAvsoNAsOS5aPqahEDjc7Yq2zqHQETFXaRRo4hAncaWIlM7i0D+Fz6cyaOMQDCnOl6qQ49AfyMW4zoWkEAYaxREK2aRQP86DfiQ2pFARk+88qa+kkBiW+bhVmqTQI/R/L7HGpRArEu4f4JulUAe+lq08+KVQCxjr5TYMpdAaOosUh/nl0A= - + - 1d01QcNsLkCqJaZAhXTKQGOpgEAAR2lAVJhKQEEvKEBZZ7NBrDgfQQKfmUEXG+4/rTeBQLRft0DNj+A/ZjouQMG5/z/GVQxBnMysP7RrhUDGmbY/7ZrsQN2HFEAPW4pAwz/0QEqIZUCqfaFA+72bQP41m0FcWnRBGKd6QXRlc0EmL41BarVTQL8yg0G/hzNBiNsHQR01S0D8I4pA2nqFQUe24EA1ZmJBfJKpQAYVyz9S+AhBFOXIP4xTUEIOEXtBDUowQkZZO0A8AyRB+YGcQBj/MkGpdIFAlCTDQYZsJUB9FIFAzTevQHqFsEEQo4VAhE0zQciZ8z/MVQRCyZ7KQHYchEBIHjFARkQKQedHA0F6t/pBBtZ9QW64tj/Ce0pA/yVLQZzWW0IK9e0/C3L7QcULJkBunShCjuRFQcnMAkPaEJJB4cmYQUoV9UFFsNZAFKEQQZTAkEGJo89AooaTQED1FEHGXj1BiU8ZQfbDxEFEH+BA/7MnQVsX4kHvJ+JBxn5KQFlz90CtgWpBT7buQA43tUCasNs/a0dpQEo57j/UyidAmSkwQDjmmkGO0ts/CDvZQOkOgUDgw6xAd+S1Qb9lS0AczExAztKzQfh7gUBORUFACrNpQVWDnUDA4P9AohChQDX6wEAGaK9A4ik8QYFYkEDiLhhBcCG6QIErGEGzgV1AnGt5QF+WN0C1DalAx/52QIMy7j8X6MpA4TjiQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAANhBbEAAAADAksBwQAAAAGAgtXFAAAAAQA+kckAAAADAObRzQAAAAIBpQXRAAAAAgJlWdEAAAAAAIfN0QAAAAIDBVHVAAAAAIJoUdkAAAADAKSZ2QAAAAEALM3ZAAAAAgH5TdkAAAAAg4tF2QAAAAMCgYHdAAAAAQPakd0AAAAAAYsN3QAAAAADbzndAAAAAgNzld0AAAACAw5R4QAAAAMBqhHlAAAAAwKiyeUAAAADAnKJ6QAAAAIB91npAAAAAADcie0AAAAAA8EN7QAAAAIASwntAAAAAAJQCfEAAAABAFHd8QAAAAIAzAX1AAAAAwOiUfkAAAAAAtaJ+QAAAAEAYtn5AAAAAAKHxf0AAAAAAGgKAQAAAAICXRoBAAAAAgItLgEAAAADApouAQAAAACDA2YBAAAAA4HBpgUAAAACgOXCBQAAAAGA9lIFAAAAAIDypgUAAAABgkJGCQAAAAAC1CYNAAAAAoHbjg0AAAAAghyiEQAAAAACPfYRAAAAA4MoRhUAAAAAgXoqFQAAAAECg24VAAAAAAMrzhUAAAACAUgWGQAAAACCbGoZAAAAAYLQkhkAAAADgn06GQAAAAGANk4dAAAAAIP0kiEAAAABA8NGIQA== - - - - - - eenePx0ZHEDSJRxA1l4BQT75t0CfVe4/7nqjP7UEj0AzaZE/6bL5QAGtgEDIEeJAfZrxP+WdhUCesMFACJSIQPYevUCiIO8/dhWkP6htEkDpxjNB0GYBQXW0V0FQVZNA+CDbP6h64kBDugVBknU0QctCE0CvHo1BNEoGQasr8ECiYzFBphYBQDLn1EFNmkpAJXHEQUp8Z0Gn3hJCoYG7QbMJtj+Cuts/w6pHQDHUHEBkfeJA/02PQHgwvT9MX6Q/Gii3QNmQDEGaa/5AhAztQN/cEkAVEIhA7A1SQecybEErWhhBgleaQcvfLUE= - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQBZDcUAAAADA8GVxQAAAAODsr3JAAAAAwDZwc0AAAADAVLZzQAAAAACJ43NAAAAAwJ5YdEAAAABAZ3F0QAAAAKB1wnZAAAAAoCUPd0AAAAAAXnV3QAAAAGBqwnhAAAAAQNbQeEAAAADAEZB6QAAAAEA5gHtAAAAAAPOxe0AAAADA0MR7QAAAAMC5ZHxAAAAAQE7XfEAAAACABgN9QAAAAAD7IX5AAAAAgNIzfkAAAAAAa6N+QAAAAEBws35AAAAAgOuWf0AAAADAW9N/QAAAAGDPWIBAAAAAoJhrgEAAAABgu3OAQAAAAEAbA4FAAAAAoNdKgUAAAAAgc1KBQAAAACDJeoFAAAAAoJahgUAAAABgrtuBQAAAAGDY6oFAAAAAwM/JgkAAAACgPNOCQAAAAGAs44JAAAAAINf7gkAAAAAg2wmDQAAAAKAQGoNAAAAA4NtRg0AAAABAc1qDQAAAACDtX4NAAAAAYAmSg0AAAADgeaWDQAAAAACJ4oNAAAAAYKXqg0AAAAAgwgGEQAAAAKBsc4RAAAAAoGDchEAAAABgOwSFQAAAAKACCoVAAAAAYKwahUAAAAAghtGFQAAAAICz2IVAAAAA4KYKhkAAAADAKh+GQAAAACCEQYZAAAAAYLJKhkAAAABAY1KGQAAAAIDBYIZAAAAAoK2MhkAAAADgUpuGQAAAAKCl84ZAAAAAgM77hkAAAADgpyyHQAAAAOChQodAAAAAYOdXh0AAAAAgBqKHQAAAAIB3uodAAAAAoBTqh0AAAADAVjGIQAAAAGA4U4hAAAAAoGZiiEAAAAAgCZ+IQAAAAKAr0IhAAAAAIAzViEA= + NrgMGZxjYkCPTWWFSwNpQAoahmk8YnBAtmSyHxSyc0Bgbopu1NJ0QA== - + - /uG2PwnDbkCxIDhA+u+wQCZ2KUAkZiVAO8VKQKyHFUEQQphASUDiQN6xzEBu9RxBv+FvQK6hVUEQzz9B+DmKQQloqkB3AoFAXLycQHZJi0BPSGpBztdkQSIg6UERuu0/wrQlQBLyQEAjY9NACcZ4QCjbdUHdN6ZAkhuZQGhyXEATqfVAn7vjQBNztz+mJzhAIgOWQPsegUDELKQ/p/qIQJAcikCnMCVAMNZTQPgMo0EXRpJAKiPpQBEzH0Ep08NBnVccQEwHYECzPI1BBmLiQHby3UDwNi9AMXKPQDmTHUCsaAtBg84hQS9T3kBMORxA2JQTQHadykA5/AZBXbrKP5P6v0E+nG5CKmd3QGfi2z8+ZUFAMAW+QO02gkHqafxAcbSiQMVjxkBbDThANhOaQaX200B/HwFABAf5QA== + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQAlHXkAAAACAVgdhQAAAAIDjpWJAAAAAIDpgZEAAAAAAG4NkQAAAAEBzn2VAAAAAwKa+ZUAAAABACytmQAAAAMAg2WZAAAAAQCGEZ0AAAADA591nQAAAAOCzB2hAAAAA4KJIaEAAAABAdeVpQAAAAEBcBmpAAAAAwFUlakAAAABgHUFqQAAAAOChf2pAAAAAoBKqakAAAADgOgBrQAAAAMDbLGtAAAAAQIRGa0AAAAAAs4trQAAAAEDj42tAAAAA4CoAbEAAAACAJoZsQAAAAIB2am1AAAAAQJqYbUAAAAAAwCxuQAAAAED+gW9AAAAAgEfmb0AAAABAqApwQAAAAKBkMHBAAAAAQBdDcEAAAACASWZwQAAAACALkHBAAAAAwDKkcEAAAABA885wQAAAAMDOBHFAAAAAAFQ2cUAAAABg0kRxQAAAAGCqinFAAAAAoELQcUAAAADA7v1xQAAAAEA4HnJAAAAAQJQ1ckAAAADA0FFyQAAAAICoXXJAAAAAwMV7ckAAAAAgn5JyQAAAAKCnp3JAAAAAQOrJckAAAABAbetyQAAAAKCQC3NAAAAAYFYxc0AAAADAfNBzQAAAAICp83NAAAAAQDUOdEAAAAAgNCZ0QAAAAKDERXRAAAAAQONUdEAAAAAgPod0QAAAAICXy3RAAAAAwODVdEAAAADg6/90QAAAAABQF3VAAAAAwBlqdUAAAACgeXd1QAAAAEBwhnVAAAAAoPCTdUAAAADgraV1QAAAAEA2sHVAAAAAQFPvdUAAAADAVQp2QAAAAOCKQ3ZAAAAA4KlzdkAAAACg2ZN2QAAAAGC2oHZAAAAAYBuwdkAAAACATsR2QAAAAAD50XZAAAAAgGDxdkAAAABghQN3QAAAAECSHndAAAAAIBczd0AAAABA9V13QAAAAOCucXdAAAAAILGWd0AAAACAK6R3QAAAAEAisndAAAAAAL/Ad0AAAACAc853QAAAAIDc5XdAAAAAoLb8d0AAAACAEAt4QAAAAMBUPHhAAAAAIGhVeEAAAAAgKI54QAAAAKD+rnhAAAAAIBT2eEAAAABgggZ6QAAAACB+KHxAAAAA4MbyfEAAAACg6FR9QAAAACBxZH1AAAAA4J/TfUAAAABA+OR9QAAAACBYGn5AAAAA4Og0fkAAAABAXVN+QAAAAGCaBn9AAAAAYMsef0AAAADgKDF/QAAAACB6d39AAAAAYJobgEAAAADgzyKAQAAAAKBvK4BAAAAA4FpLgEAAAADAD5OAQAAAAGCDqoBAAAAAYPXRgEAAAAAgaeqAQAAAAKCCEIFAAAAAoFgigUAAAACg1zuBQAAAACAgkIFAAAAAYACugUAAAABA98uBQAAAAGCv3oFAAAAAYGkNgkAAAADgv3KCQAAAAAASnoJAAAAAQO7pgkAAAAAg9xuDQAAAAKCtSoNAAAAAAL5Ug0AAAADgTsqDQAAAAGDvE4RAAAAA4IeFhEAAAACg7JqEQAAAAOC0FoVAAAAAAHdbhUAAAAAgWOSFQAAAACAbvIZAAAAAQE+DiEAAAACAhIuIQA== + NrgMGZxjYkA= - + - tCOlP/2gOUEjpZJA8ih/P8Ac2UCoKac/T5UlQGtfmEA8YkFAixXGQCGVF0HcyYRAuu4uQOjnb0C7WqQ/Vq9VQRCAAEDQT7w/JJfuPzwtfkCcVLNAyxcBQY1ZpD8RqUFA7KCVQHz360DCua5Ak1SmQIWuokBLEnJAtEU+QZMuvj9YWZhAD1UcQH8Qy0DH155AkJ90QKa17j/HDK9AgXJeQNrXpUAfexxAP4xSQRPPb0AFXpE/oPbnQJ9h9EFep38/eFJTQBCn10AdA5BAXMIlQA3ol0BzmdFBJgWSQaQhGkF9/bpBb2j8QGCmmkCMiQBATgonQRDJRUFDfM5AnNgVQbh/wkDfrhVBFG6qQMPfAkImMsxAXz3TQXpxM0Fx7TZBOxSEQdLvs0CAYEtBo6HZQIBHKkALmatAZrZTQTG53EHquds/6iRoQbQ+QUA9cDxBf2sIQTIcOUG0i4xB7MC/QfkejUEZf7NAYtIgQQtHykGRCWhBR1BKQGGIu0AfNtZBdgfiQCxlgEKYuIVAt5tNQYAvJkG6Z91AXBfPQBHDLkD2AM1BtuCEQYzpC0E9nJNAKIAlQJn2dkGNPwhBxd7LQR2m7j/i6TBAXuQuQhjhWkH7dItAyyyfQGZP3EEkHeJASLgAQMClhUDgW6FACYfUQKxnZkDKFUdCxNT/QOBqLUHe9QlBqtQZQU/3KkFi5zZBDM6HQA8UFkBf280/zwEzQMBzvUA1ZGJB2ucaQWl3AEDauzhA5NaFQFi4LkI/HSFB1wmBQGpY8EA= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwENJakAAAABg9mBvQAAAACC6ZHFAAAAAQO+EcUAAAAAgjJRxQAAAACCaw3FAAAAAQHIWckAAAADA6pxyQAAAAKC6tXNAAAAAgCDFc0AAAABAtSF2QAAAAIAXM3dAAAAAwOdmd0AAAADA6MZ3QAAAAMCE03dAAAAAwGzld0AAAADAR2F4QAAAAEBd6HhAAAAAgGm0eUAAAADAaeB5QAAAAIDvBHtAAAAAwDI4e0AAAACAhIh7QAAAAABWU3xAAAAAADz0fEAAAADA2f99QAAAAMAbTn5AAAAAAF9ufkAAAAAAUql+QAAAAMCWE39AAAAAwDUjf0AAAAAAeLR/QAAAAMDg4X9AAAAAANQzgEAAAADglFuAQAAAACBehYBAAAAAAK+agEAAAACAVaKAQAAAACCQuoBAAAAAgIgRgUAAAAAATzuBQAAAAKCDQYFAAAAAwGGGgUAAAADAR5WBQAAAACDspIFAAAAAIJfggUAAAACA5x+CQAAAAACNK4JAAAAAoKFcgkAAAADgbpOCQAAAAMA0s4JAAAAAoLq6gkAAAADgrMOCQAAAACB4+4JAAAAAoL8hg0AAAADgbUKDQAAAAGDISoNAAAAAIOJhg0AAAACAgnyDQAAAAIDyioNAAAAA4AOYg0AAAABgrbuDQAAAACBKwYNAAAAAoJfUg0AAAAAgXNqDQAAAAOD244NAAAAAgG7sg0AAAACgF/WDQAAAAKBQVIRAAAAAYOV0hEAAAADgGnyEQAAAAACFg4RAAAAA4AqthEAAAABARciEQAAAAGBi04RAAAAAIDLfhEAAAAAAuu2EQAAAAMC0/IRAAAAAoMENhUAAAAAgoziFQAAAAAA+pIVAAAAA4EHihUAAAADA6OmFQAAAAOAiAoZAAAAAwNYshkAAAABgVX6HQAAAAGADBYhAAAAAICkMiEAAAADgpvyIQA== + U6vsr5viYUA2uAwZnGNiQOzQoK8iBW9AHvu2xz3ycEB5BwETAUN3QDlvbis3s3dAz1sFGJmze0CtFC8bJ7R/QHuOpscj4oFA6mo7yWrig0BybSb2WnqFQJ2XqPimsodATG4Ks736h0BMnfjcaYOLQP6ad+L5yotABvDY1OGDj0C47VfaccuPQFwOIwIPqpFAtPlTXxrOkUDJDpVgQOqSQA2QCnc4tpNARf7U91u2lEBXgNwUZLqVQI/uppWHupZAtKnMEKC6l0ClA+iWrdaXQLyGumneaplAZSu0hcnGmUB8roZY+lqbQBmwqmUaa5tAL8XrZkCHnEA= - + - SK0lQIQ7q0CbOqZAgp0DQaW0tz9uVTVBOnPOPwXe0EDsZHlAM9W2QE36AECgIf5A8T6AP/pw4UAES+xAfGVZQHBtIECFpbpAsNTcP3PU3D+WqgpBaD6IQNebtz9HsZI/XKmRQC32DkF0HGZBYQkNQRu4z0CrAMFAsa7BQKqshUBDeFVAc7UKQsB+q0CNG2FAfMzNQFxeoUBUU61Al1oTQKEa4T98QZ1ADRrwQFHdHkBnM1RA01ZJQdWa30Dz80pA7Y+HQW8Sh0AUjq9A7qM4QFgACkADAdtAyJmvQHIqOEA6sQRBh5ldQIngz0Bkce8/rOtyQZ2LSkDGNoVBf6k5QBA3vUFHe7ZAZQoAQc1lXUAw/RxBiuFoQVQNC0LUQ7NB1quqQOhpJkDy70xBs8N0QT4CZkBlyB5A9vgZQU3jT0ESGwhBMptWQUgMG0KpYXJBSWyoQfRMAUFjiZRBvlF5QfdSDEE= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAYLDGYUAAAAAA2V5kQAAAAICKKWZAAAAAAKVpaEAAAACAColoQAAAAEBCAmxAAAAAoKeHbkAAAACAHQNvQAAAAMDPjG9AAAAAADAgcEAAAABgLkJwQAAAAEDs5XBAAAAAIDkDcUAAAACgInVxQAAAAEDD1XFAAAAA4EjicUAAAABAUwRyQAAAAIAbE3JAAAAAAHqOckAAAADAcqVyQAAAAED+y3JAAAAAAG0Uc0AAAABgFVZzQAAAAKBd4nNAAAAAwNL0c0AAAAAALLB0QAAAAMDd9XVAAAAAYMZxdkAAAACg6tN2QAAAAOAh8XZAAAAAYPjwd0AAAADAYWJ4QAAAAGAIdXhAAAAAIBGPeEAAAAAgqxF5QAAAAGBZYHlAAAAAIEqDeUAAAABAW5t5QAAAAAAX7nlAAAAAwMYFekAAAADgrRJ6QAAAAGC4JnpAAAAAYGwyekAAAAAgkEt6QAAAAECni3pAAAAAoCyvekAAAACAPvt6QAAAAICiDntAAAAAoPAte0AAAABgblB7QAAAAEBGxHtAAAAAALLke0AAAAAg1Pl7QAAAAIBbFXxAAAAA4AslfEAAAADASTx8QAAAAKAtSnxAAAAAgPtTfEAAAABAA2V8QAAAAODrf3xAAAAAIAiVfEAAAAAA5qR8QAAAACAKw3xAAAAAILDOfEAAAABg0d98QAAAAOAv8nxAAAAAwE0ifUAAAABAQi59QAAAAGBNQn1AAAAAYH9ofUAAAADgrcF/QAAAAOCzAIBAAAAAAEoqgEAAAACgvL+AQAAAAGACDIFAAAAAAAs3gUAAAABA32qBQAAAAOAjGoJAAAAAAF4tgkAAAADAAziCQAAAAAC+ToJAAAAAgCxzgkAAAAAg+pOCQAAAAABZp4JAAAAA4ILXgkAAAACgaOaCQAAAAGByKoNAAAAA4A1rg0AAAADAvYWDQAAAAGDpjINAAAAA4Brqg0AAAADAff+DQAAAAIBeB4RAAAAAAH0zhEAAAADAmU2EQAAAACBUV4RAAAAAAOBvhEAAAACgXnaEQAAAAOCTjoRAAAAA4CmkhEAAAAAgtuWEQAAAAIDSFYVAAAAAIO0ahUAAAABAiTuHQAAAAOBBWYhAAAAA4O19iEAAAADgUsyIQAAAAEDL0YhAAAAAgB/1iEA= + NrgMGZxjYkA= - + - ff/JP6I1tz9LLA5Al2iKQMlS7z/CxRxAFgAoQfDmCkDQg6xAzy6iQOKyHECEw9w/aqqvQOEYmECUy0JAY7w2QS8hi0D23xxA/EOTQL6Qq0C+kzRB3RZ6QKvipD8I2ppA96wDQQBVWUFaEHBA0d5eQM4+J0GqIPk/LJbJP0KuCEH5iwVBwu7jQH/ebkCVAElBAICKQN40FkE4bkRBOEokQaQxE0AxuLxBi6FKQRHjskDwvJ9BbMNQQds2tECo6tRAkdEBQTjTSkFc5nBAcqvGQJ6eFEF+ykJB36I2QdLeyUDYR51AwyI3QCnAFkGKl6hATKmTQONjpj+aQZlAMywlQsokH0HbJZQ/IHzXQXU3LUHl8T9BBb/wQIbK3kACqtFA6HGmQJsws0HOaHtBraBNQd0Bw0A+F75AIJCRQdhOVkG5dRZBnGwBQSJOv0A0hSFBzPnUQP7GXUFJyplB3NEuQBaLYkGGPf9AOw5CQE2VukGacrRAzNvLQN47S0BrE9xAA8BjQfyFXUEKviBBkk16Qc+uJUDmvgtAUaPKQJBWdUGf589Apx8GQIBsikBOy2lAq8VMQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgPqjbEAAAAAApsZsQAAAAMDUJW1AAAAAgAGHbkAAAADgXVBwQAAAAEAM8nBAAAAAIOPIcUAAAACAnuNxQAAAAGBTDHJAAAAAwLTSckAAAABAArhzQAAAAMDaYnZAAAAAAJ+4dkAAAAAAaoh4QAAAAID+9XlAAAAAABmzekAAAADAd+N6QAAAAMAbQntAAAAAwNSne0AAAACARbF8QAAAAEDNMn1AAAAAADDVfUAAAABAFd99QAAAAEBqc35AAAAAALqOfkAAAABALYN/QAAAAGDqEoBAAAAAYFoygEAAAADAPjqAQAAAAEB2ToBAAAAAAAaLgEAAAABgqeiAQAAAAOBJD4FAAAAAoBNLgUAAAABA5quBQAAAACDAuoFAAAAA4CbqgUAAAACglBCCQAAAAKCkPoJAAAAAQIVwgkAAAADgnIKDQAAAAGCni4NAAAAAQGkwhUAAAACgp7iFQAAAAICkwIVAAAAAILD6hUAAAADAMkiGQAAAAGBLiIZAAAAAAPshh0AAAAAgf1uHQAAAAEDUi4dAAAAAoBG8h0AAAADA1+CHQAAAAKAI0YhA + NrgMGZxjYkD+9P4gH+NsQOzQoK8iBW9A2obJ21LCdEBkJtC0/7J2QNrkpS+r03tAi+cXLK7DfkCYHFWaISKAQCkh1jJj2oJAxSL6P4PqgkBWJ3vYxKKFQClQxFwPY4ZAgVH92hDbh0C8MGiYZmuKQIGA6wS9Y4tAsw/oxp0DjkCuhpCqHoyOQPCKRrb/lZBAoTMa8zpKkUA= - + - H9sAQM3FAEDqFj1AEejBQJtti0Hf3kpA3DAvQMhbWUGeQIFAIu0zQcKLT0CSnRNAAXaPQHrEikDACJhALK9mQNsIJ0J+ih5AVR8QQXUHAkBk9qhA+33fQP4fcEADHMtAJmZ9QPCfCEFX+DpBVp+DQSsqZ0CLF09BBQW6QTZBg0ADlERAk0EIQfl67z9/qJBAzjP+QF5Ij0AasSRB3AKFQbpwmEBUlWZAkt65QLzZY0FrJgpAloXJQCi5HECFmIVBHtMDQbKw4EAlE5VAimkfQa0Rj0HljGJB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYB9hY0AAAACg5oJjQAAAAICWhGRAAAAAIEukZkAAAACA6QpnQAAAAGCoJmdAAAAAwOLEZ0AAAADAygZoQAAAAEB/aWhAAAAAQGsAaUAAAADAtQZqQAAAAADmJmpAAAAAwN9CakAAAABAdiZrQAAAAABRxWtAAAAAAMXla0AAAABA+iNsQAAAAKDzRGxAAAAAQB1jbEAAAABAJChtQAAAAADERG1AAAAAoNlrbUAAAAAgnz9uQAAAAMCzhG5AAAAAgAEMb0AAAADACilvQAAAAIDQR29AAAAAQARrb0AAAABgl4lvQAAAAIArLnBAAAAAYDGzcEAAAADAdAZxQAAAAGAfMHFAAAAAIJ9FcUAAAACga2BxQAAAAECFc3FAAAAAQJ/QcUAAAAAAsBFyQAAAAKBudnJAAAAA4OCSckAAAABgsc1yQAAAAACuE3NAAAAAgH4ec0AAAADgAUBzQAAAAOBqYnNAAAAAAKiBc0AAAABgZaRzQAAAACD/4XNAAAAAADIHdEAAAACAciR0QAAAAMB9M3RAAAAAQDRFdEAAAADAWoN0QAAAAGDdlXRAAAAAoF/EdEAAAAAgPdB0QAAAAMD89XRAAAAAoDhAdUAAAABANVN1QAAAACDzdHVAAAAAgJ6YdUAAAABg18N1QAAAAAAE5nVAAAAAIILzdUAAAACgYQZ2QAAAAAC4InZAAAAAgNtAdkAAAABA8VJ2QAAAAAA0d3ZAAAAAwD6TdkAAAAAg76F2QAAAAEDgw3ZAAAAAQEbUdkAAAACAMfF2QAAAAMC8S3dAAAAAwExhd0AAAADg9ZN3QAAAAEBAoHdAAAAAoOPVd0AAAADgi/B3QAAAAGC+InhAAAAA4H19eEAAAACgp754QAAAAKDj4HhAAAAAIDn1eEAAAABgCRJ5QAAAAEBeInlAAAAAgDAueUAAAACgVzh5QAAAAODFaXlAAAAAIEt3eUAAAACA1IF5QAAAAKDnpnlAAAAAgOi/eUAAAACgDuJ5QAAAAKDN+HlAAAAAYE8vekAAAACgWGt6QAAAAAD3o3pAAAAAAHHRekAAAADgveJ6QAAAACDt/3pAAAAA4CUge0AAAACg1DB7QAAAAOCZPHtAAAAAAGpVe0AAAADAYGF7QAAAAKDUlHtAAAAAYFije0AAAABgO8d7QAAAAEC64XtAAAAA4EIFfEAAAAAgYh58QAAAACB0QnxAAAAAYPJRfEAAAACggl18QAAAAOA1aXxAAAAAIBuefEAAAACgdK98QAAAACDP13xAAAAAQKL4fEAAAAAAYSV9QAAAACAnMn1AAAAAwGbSfkAAAABgU4F/QAAAAMD+kn9AAAAAIOe0f0AAAAAgyDKAQAAAAKAZPoBAAAAAYOhJgEAAAABgHVCAQAAAAGCnWYBAAAAAIPpygEAAAAAgCXqAQAAAAMAak4BAAAAAoM+xgEAAAADAOdCAQAAAAGDi3oBAAAAAICH7gEAAAACg3gyBQAAAAGC4OoFAAAAA4Ft1gUAAAABgfnqBQAAAACC/gYFAAAAAoDaIgUAAAADgv46BQAAAAODxm4FAAAAAoD3igUAAAADA/w+CQAAAAGA+OoJAAAAA4HZIgkAAAABg8HKCQAAAAEBQiYJAAAAAoCqogkAAAACgXrOCQAAAAGD1vIJAAAAAIBr4gkAAAADAWh6DQAAAAMCxOINAAAAAQHJPg0AAAAAgs3+DQAAAAGDCsoNAAAAAYFnYg0AAAABgPuCDQAAAAIBYC4RAAAAAIKElhEAAAACAklWEQAAAAGBRbIRAAAAAYF2LhEAAAAAgBZSEQAAAACC7moRAAAAAINGhhEAAAADgarSEQAAAACDIvIRAAAAAYK0ahUAAAAAA1iKFQAAAAICHOYVAAAAAgIOKhUAAAADgCrKFQAAAAKBqwoVAAAAA4BEChkAAAACgjjuGQAAAAGAnToZAAAAAoGV0hkAAAAAgEoCGQAAAAEAVo4ZAAAAA4He9hkAAAABAhsSGQAAAAACj04ZAAAAAoGYxh0AAAACgkjuHQAAAAOD4UodAAAAAAExZh0AAAADARbSHQAAAAOB+vYdAAAAAICMyiEAAAAAgDVOIQAAAAKBsmIhAAAAAoG6siEAAAADgR8uIQAAAAMBL1IhAAAAA4GXciEAAAADAxumIQAAAAOCl84hA + NrgMGZxjYkDiYBUjzERrQJi98BGiw2xArVID5xXDdEAHAXHegIJ1QF1VdeMY83lACF9NMtkTe0A= - + - 1S8yQdYYkz/qAgFAbsdmQJDiXUDrzZNAsMcDQONZmEA6TuM/IqvKP4/bQUBYKTtBqF8vQFewy0DCNd0/rHnKQIQE3T8KIT1BTB5yQYefE0EbcydAVUvvP+nKKEADA3lBHFfcP0OipkBntJpBkYl/QeJ0hUDaUHlAZW/KPyiockAvUBFB2X8aQcRwgEH6ASZArUy0QJl7HEFCq6NAsMiKQOsm1kA0d71AcJr0P7H720BBwplAV1tUQAUHZ0B+OIFAq2VUQIwxSkBrQvBA4I8hQewL/UDML8hBoqw4QGtMCkBtdcZAwy2yQICd4kAr9N1AFgSvQMqKhkBz5tRAFyEwQS6sFEFbCDNAvuZqQQeFVEAcft0/KXwTQC3oHkE0NplB0lhwQA4QWEDHtnBBn8lGQF/UpT/8FAFAY00BQdH61EClbwpA0dcoQRTGrUGlEoVB+y7zQV3A5kDxpopAMOKcQZi3Z0Gdqk1B3jY5QVquW0H9uUZCc5dQQfW3bkHziT1B+fsuQK3zT0FVA5tAN34WQeCx3UAYoZNApn0FQiMzhkCeuhNAAD2tQQY93T8SgjhAuyAmQJGhCEFNGB1ArzAhQuMmD0HDax5C366iQppUgz8e1RRA9/aaQmBIVED+izJBr4jEQNaKkUKvw09Ba5XKP9sQrkAKQN5A/NGFQJSDIUHnDqBAi9LyQQxC4kCG3cVBqt4AQNpdKEB/T8NAY+KTQCL5z0BSS9RClv0PQT1LVECdQNVCAATdQjp5OUHi84hBjggpQbktIEAGCB5Aa8xJQmBPuUKwYWxBQyjSQJ0ikUGOkaRArU2nQaASd0FuUwRBndyOQYaK60BHBYdCm9dZQdZ/+EG0YNJAM1CIQYjL/0D80TpA2EEIQckhwUFdCCBBlxmBQWuY30EymG1BwfyIQWAOj0A8+KRBawwCQEdtBEGCvTdChp84QJtGjUDP0GZAKt1pQVHLoUBbg6pAqvu0QYYstUHgfBNA1z/KQ8gkyEKSmxxAV+QVQUL53UCIQ31CkyBzQDNE7z+llZhACYimQBdTZkALyN1A1hBLQIqLw0GQjbpBALvKQX3bE0AMZ11A + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQOznakAAAABAJ8NsQAAAAKD2JW5AAAAAAIjjbkAAAAAAQmpvQAAAAKBNx29AAAAAgMSvcEAAAABAPgRxQAAAAKA7EXFAAAAA4GJYcUAAAAAAwtFyQAAAAOD3EHNAAAAAAAS1c0AAAACAlWR0QAAAAIDHdHRAAAAAgAfedEAAAABAhTB1QAAAAADTfXZAAAAAwLtRd0AAAADAmvB3QAAAAMAkB3hAAAAAQPvieUAAAAAASe55QAAAAIBFB3pAAAAAgNReekAAAABAwyR7QAAAAEBldHtAAAAAwDDSe0AAAADA85l8QAAAAIBSUn1AAAAAwBlifUAAAABA2dZ9QAAAAMAmJn5AAAAAwENVfkAAAABAK3R+QAAAAICmgX5AAAAAAEnofkAAAADAy6N/QAAAAMBkBIBAAAAAgJlOgEAAAAAgb1WAQAAAAODzZIBAAAAAQH9+gEAAAAAALNqAQAAAACD4+oBAAAAAgKkZgUAAAAAAVSiBQAAAAMBGU4FAAAAAYCR+gUAAAADAIY+BQAAAAODCoYFAAAAAoH2qgUAAAACg37KBQAAAAEDLxIFAAAAAYAjMgUAAAADgwd2BQAAAAOBwU4JAAAAA4HJagkAAAAAA1WKCQAAAAMAhd4JAAAAAQJOvgkAAAAAgeb2CQAAAAKDSGINAAAAAIMIsg0AAAAAA6jODQAAAAKDeQYNAAAAAYA1qg0AAAAAgmKmDQAAAAID3t4NAAAAAYDnig0AAAABAjxKEQAAAAIDdIoRAAAAAYMlZhEAAAADAypKEQAAAAACVs4RAAAAAgKjrhEAAAABgUfyEQAAAAGB5Y4ZAAAAAIGZ/hkAAAABACZiGQAAAAGDYwoZAAAAAoOPshkAAAABg5QOHQAAAAGBhKYdAAAAA4FMuh0AAAADAbGSHQAAAACDqcIdAAAAAIMR4h0AAAACgYLmHQAAAAGA8wodAAAAAIEQQiEAAAAAAvhWIQAAAAAB/HYhAAAAA4JRXiEAAAACgpHCIQAAAAOCJoohAAAAAYBbliEA= + NrgMGZxjYkDiYBUjzERuQBu6YmAmQ3BArFID5xVDdkB2xqyr6ZN2QGSErAhYxH1A0xNLXsRTfkAxcUQu2GqCQOm4E1mOsoJA4JeTh8VKhkDEUehpL3OGQA2eOC0nc4lA4qKkVIcDikANzSZX0/uMQJz1hEz/A45A - + - 2gu4PwiAKEDTu69ApbgzQa7bHECqHEtAzmAvQIsadEHexaFAm5nKPx0hOkAjt9I/TyVQQeQetED7UGZAMr9KQMCgikBTXS9AuuSHQdLub0As9jtBoHU8QSIj7z8UukZBIdJAQWc6XUDYSktAkU0NQNjVGkGvJWtB6t5OQZCyGEGJs5FBeVs4QFQz60FSdy9AKBw6QPa+L0HGBThA1AfaQEVE6EBUG05B2yK0QDlZuj80oxFBtYCvQNDcAEAoPRpBkJEZQdnDk0C7PL5A3hkYQT8y6EBhkr9BStu0QOpAHUF+c2lCzZk9Qfjt7z/8edNAKruGQATwekACKaZAdkkTQpiLcUGMhShARY6rQKCxSkIUfwFCiYtTQT4MUEE7S5BAYkdCQHwWiUF9OAJC/q8hQeYBQEED24JBLqE0QdQOG0FoCI5B5ZBUQK1UPUDcfadBNPLPP51E8EBWvvpBSjX0QM/xEUH2CUxAATH4QHlTUkFcNB1BmDsnQSTY4kDcVwpAJ5m4Pw== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoJnlaEAAAABAzSVrQAAAAOB75GtAAAAAgLlEbEAAAACgQWNwQAAAAMCSc3BAAAAAwJq1cEAAAACgVfFxQAAAACCNsHJAAAAAAAjRckAAAAAg/gNzQAAAAIBqLHNAAAAAgPuDdUAAAABAy5F1QAAAAEBmo3VAAAAAQB20dUAAAACAH0J2QAAAAADOZHZAAAAAQGSCekAAAABAJAF7QAAAAMCzE3tAAAAAAPwxe0AAAACAQUZ7QAAAAIAxfHtAAAAAgE7Fe0AAAADAxzN8QAAAAEDzRHxAAAAAQBeDfEAAAAAASZJ8QAAAAICsIn1AAAAAgNx0fUAAAACAlZh9QAAAAABD0H1AAAAAwJYSfkAAAACAsWV+QAAAAIBIhn5AAAAAQOJPf0AAAAAAoWF/QAAAAMC7dX9AAAAAgNmif0AAAADATsN/QAAAAACpzX9AAAAAwBnZf0AAAAAATjqAQAAAAIAFaYBAAAAA4HCUgEAAAAAgSpqAQAAAAMCz2IBAAAAAYL/pgEAAAAAgQS+BQAAAACAnToFAAAAAgMxwgUAAAAAgx5SBQAAAAMDQq4FAAAAAYJvagUAAAACgxfmBQAAAAOB2LIJAAAAAIOdngkAAAACgEXuCQAAAAGAAmIJAAAAAAPfDgkAAAAAA0siCQAAAAOC794JAAAAA4Nb8gkAAAAAg0AODQAAAAAClCoNAAAAAgMAbg0AAAADgNSmDQAAAACAsO4NAAAAAYA1Kg0AAAAAgGYODQAAAAIAgi4NAAAAAoCexg0AAAAAgsbaDQAAAAGB1yINAAAAAoEXig0AAAABgriaEQAAAACCbLYRAAAAAIAc3hEAAAABgPj2EQAAAACCPQ4RAAAAAwD50hEAAAACASXqEQAAAAKCohoRAAAAAgJ2QhEAAAADAnqKEQAAAAOCVsoRAAAAAYHDBhEAAAACgLJyFQAAAAIA65IVAAAAAQFkyhkAAAAAALUOGQAAAAOBDY4ZAAAAAoKCThkAAAAAAE5uGQAAAAIBgoIZAAAAAIMvOhkAAAACAYeWGQAAAAKApEYdAAAAAwLQWh0AAAABgSVGHQAAAACB1gYdAAAAAIIegh0AAAAAg9bGHQAAAAAAZ5IdAAAAAgO7+h0AAAADgeyeIQAAAACBzL4hAAAAAQCNriEAAAADA0n6IQAAAACCkxIhAAAAAAHbJiEAAAACAC+KIQAAAAGAZ/YhA + NrgMGZxjYkDAIFw1+IJuQBu6YmAmQ3BAm7Im8CtidkBWXNs11mN3QJsQA0SEc31Akf5TC4aEfkA= - + - WuqlP5e+0UDP9wNAMK5dQC9P+UDanTpA1krUQCXg9EA0Qi9AIDdwQKLk40DFde8/JgCdQKR9nUBq6i5AdewlQYMSOEDZ/k9BDaFmQJW/I0HaQ8ZAJjefQQEaqT9d4zBAR/uSP+fclUEotvY/+WsPQfCan0CYFaJAQhJhQIi/ZkBW+KBAv3OBQJ+u7z/Tha9AsNDcQAgO30D1ZpRAFUAZQZA6dUJEfPg/kPWJQZdlmEDxjsZAfNpMQPdGZUESZmdAsKxEQdS73UBVwdpAMbMuQXNjp0BsQdxA+p+YQLB0E0CcDgNAhj1bQWOTxkDNhktBjhBmQm8ytj8e8oZCVAJ5QLTE20GTZXBAoqsKQeUCDUGdZSZBRtBUQJ/nmkHnXJhAdpK+QA2U1EDB0Y5BFp0dQWKh5UA939w/5vZOQQtxhEB5pjVBoAiGQEHy4UDV72NB2sm5QHRlmEHO24xATrciQkM3gkAx25lBm6+4QD7ajkH8sfRAJvpMQjMXn0GIZhFBcr+dQAx27kH++89ANmQpQXOPrEDaq4FAJoAAQdaBBUEYcj5Bmz1wQKZ4KEJgR7pBog63QCrlIUENpWJChxJaQaclXkA9FTFA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAADI8ZkAAAABA+C5oQAAAAIBJk2pAAAAAwExOa0AAAAAAekJsQAAAAKCZZmxAAAAAAJaMbEAAAAAg7YJuQAAAAIBmvm9AAAAAgB7fb0AAAABgNNRwQAAAAEAQ8HBAAAAAgC4QcUAAAABAlaVxQAAAAIAFE3JAAAAAQOQvckAAAACAbWNyQAAAAOC+n3JAAAAAQOmfc0AAAABAKrFzQAAAAID/vXRAAAAAwMrkdEAAAABAhiZ2QAAAAMByP3ZAAAAAABdOdkAAAAAAYN52QAAAAMCl3HdAAAAAQE3xd0AAAADAkgV4QAAAAMBHdHhAAAAAQPmteEAAAACAUsR4QAAAAEA6CnlAAAAAgEiAeUAAAADAVi56QAAAAMCYfnpAAAAAwIuPekAAAAAAuJl6QAAAAIAdYntAAAAAAH2Ze0AAAABAEV58QAAAAIBdu3xAAAAAgAENfUAAAABAPBx9QAAAAABXLn1AAAAAwAVAfUAAAADAnE19QAAAAMCEh31AAAAAwIOxfUAAAAAA1vB9QAAAAEB9An5AAAAAwGAzfkAAAAAAFEJ+QAAAAADZTX5AAAAAQJBdfkAAAACAs6N+QAAAAADMwX5AAAAAAHwkf0AAAABAYTp/QAAAAID+W39AAAAAQOV2gEAAAAAgwwCBQAAAACDaEIFAAAAA4DFMgUAAAABgnPKBQAAAAIACSIJAAAAAYL2pgkAAAABA1hGDQAAAAOA1woNAAAAAQH/og0AAAADAk/+EQAAAAMBHv4VAAAAAAHvShUAAAAAg3fKGQAAAAICdWIdAAAAAAOoKiEA= + NrgMGZxjYkAAVPW5y8NqQFf+/uF9UnBAJ2tCVJRydUBXXNs11mN3QE4sistCg31Afh0jrYR0f0AnRbOPTUqCQFJvNZKZwoNARZZveqXahUC2nP+uJduGQA== - + - 1i55QL66k0AgbV5ATppdQPTNEUF0xu9Aw+4aQcLk+UAsYyZButzSQcjMw0CLD2BA1HG4P63vHECQI0JAe36+QLKpuEAwLv5A+I4/Qt0oHEKd7YVASmhDQMvqA0GP/oVB3ojTQMFCFUEbIThBIFGUQNAiHUCuihdBiA42QdwmrUBon6FATgkdQJJcHkCXMX5CnWgTQjMzLkBIGMtA2tDqQTnFkj/REdlAZjhLQCT9a0Fw9P1CtiadQjQa20A6/yZBPbA4QehNyz9Y6UNBWklLQKjI2UHIyx5CkO0xQWzxaEELF/ZAklk7QaB+oUCOXFRArP+OQezWCkDl0+RAUqo9QcfPgEE1u4FA2bF6QAWHBUIEf0NAO4o+QMYiSkGdtZZB/XhEQIWTgUBYYJ5AEMKvQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4I7Ac0AAAACgcVV0QAAAAEA5MnZAAAAAQLNVd0AAAACAYmZ3QAAAAOD0v3hAAAAAoJyheUAAAAAArFh6QAAAAADg0HpAAAAAgC30ekAAAACAwa57QAAAAECBI31AAAAAYJx0fkAAAAAAjYV+QAAAAEAmNn9AAAAAYMUSgEAAAABgmGqAQAAAAACcmYBAAAAAwEOhgEAAAABAUVqBQAAAAIDFrIFAAAAAAKjCgUAAAACAy0OCQAAAAACqUoJAAAAAILPKgkAAAABgKxuDQAAAAIDuqoNAAAAAgIy0hEAAAADArnuFQAAAAKB/hIVAAAAAAIy1hUAAAADAv8OFQAAAAABqy4ZAAAAAQEvVhkAAAAAgnumGQAAAAMD38oZAAAAAAGE7h0AAAACAvUOHQAAAAMAlWodAAAAAYCbph0AAAACA4fKHQAAAAMARM4hAAAAAQIWiiEAAAADAWq2IQAAAAECm6YhA + NrgMGZxjYkA= - + - MZEvQFibNEFiGJVAbCcTQRbJeUCmNMs/jvKWQQdvJkH8wJBA5CneP2iIpj9uLxZA8GlUQXbMkz9uSMo/s4EUQMtJ8D+4ncJAwL/dP2Kqj0D1E05AJiKQQG2IQkDV2RxBG5IdQYNPGEDojx9BNwVAQVrs/UDAFfg/1Yv2QN1mmEDqTsdAaDeUQDPx/kDx97hAMM8wQHDB2UD6evVAWq8FQellX0BzBrk/ACYTQaMwC0DCf3BB + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgGohZkAAAACAbiNuQAAAAIBVYG5AAAAAAOVScEAAAABAfQ9xQAAAAECuwHJAAAAAwKPyckAAAADA4qF1QAAAAIDtsXVAAAAAAHjed0AAAAAAryB5QAAAAEBE8nlAAAAAQBshekAAAADAjaZ6QAAAAAC0B3tAAAAAgAU1fEAAAACAuLd8QAAAAICpzHxAAAAAAHEofUAAAABARaB9QAAAAECa/H1AAAAAgAk+fkAAAABAw1B+QAAAAAApB39AAAAAALpHf0AAAADAQL5/QAAAACA6HoBAAAAAQGUugEAAAACACTiAQAAAAKAuXIBAAAAAoHeHgEAAAABgWtGAQAAAAECp2IBAAAAAQLLrgEAAAAAgTvqAQAAAAGC8a4FAAAAAoPtCgkAAAAAAqcOCQAAAAGCOy4JAAAAAYJNQg0AAAADAWlyDQAAAAKDWYoNAAAAAgEHSg0AAAABApI6EQAAAAGDaBIVAAAAAgPMihUAAAABglDKFQAAAAODFBIZAAAAAYPAYhkAAAAAAvNKGQAAAAEATaIdAAAAAwJy+h0AAAAAAOdOHQAAAAODBIIhAAAAAAFs6iEA= + NrgMGZxjYkBImCMySWRuQI8BR/y9MnFAJCru7HxDdkDKo7/RbVN4QH82ODhAlHxAeLKDJA4ygECjSOY4rGKBQNzfTUGaSoNANimKdANrhUAJ5vLm+3KGQFR6Rl9b+4hACRXhEKj7iUAOzSZX0/uMQAlEzzpUhI1A - + - 4L6lP4/68EDReAFAlBYpQZbhpkDe2DpBN2LwPxp5+UDNeYFA5aUrQejPOED7NHJAFm4WQSONlkA3ciZAoQVkQdQmyz+CPTRB/ny5QFSbS0D8uN0/AHSHQG04j0Ar0EtAQWA0QUI83UFy6oRB/eEAQEAGFEByJJxB9E5hQRdoA0E67E1AvXsKQGqJAkLGnhFBNi6UQLL5CUGqTyZA1fKqQQgdokAASp1AFs2hQa6SZEFNgxlBCNmbQRvxikGx6jJAcHV5QC9i0T+HcoRBuUWFQY+1S0EowDNAvOs4QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwJjFV0AAAAAAZUhZQAAAAAB4TVpAAAAA4IhCXEAAAADgxslcQAAAAGA1yl1AAAAAIDhUX0AAAAAgp8tfQAAAAAAiIWBAAAAAoOdFYEAAAAAgAmlgQAAAAIBsoGBAAAAAgC/jYEAAAAAggv9gQAAAAECdpGFAAAAAALPGYUAAAACAuuphQAAAAEBXBmJAAAAAABJiYkAAAAAAraViQAAAAICvH2NAAAAAQFFiY0AAAADgrXtjQAAAACCBo2NAAAAAQKvlY0AAAABAtQZkQAAAAADbHWRAAAAAQJldZEAAAAAAt95kQAAAAEDdJ2VAAAAAoP9bZUAAAAAgq6VlQAAAAIB+5GVAAAAAYKgoZkAAAAAA2YBmQAAAAECKpGZAAAAAwLAlZ0AAAACgcUFnQAAAAMB7XmdAAAAAwDWEZ0AAAAAA0qVnQAAAAGC36GdAAAAAwCL+Z0AAAADAvR9oQAAAAMA9RGhAAAAAwEtiaEAAAADApYZoQAAAAIAU52hAAAAAgMwkaUAAAADAJ2hpQAAAAMDhfmlAAAAAAP26aUAAAAAA9eNpQAAAAMAUAmpAAAAAADobakAAAAAA6TlqQAAAAED5YGpAAAAAQPWAakAAAAAAxaVqQAAAAIBy52pAAAAAgNsfa0AAAABAZKNrQAAAAIB0x2tAAAAAwNTka0AAAACApQJsQAAAAICKJWxAAAAAwNxjbEAAAACAPpVsQAAAAMCNqmxAAAAAQOkobUAAAABAA0JtQAAAAAAgWm1AAAAAQDWWbUAAAABANsJtQAAAAEDGBG5AAAAAAM8ibkAAAAAATqRuQAAAAEBlzG5AAAAAAFTobkAAAABA5g5vQAAAAIC5JG9AAAAAwEBgb0AAAADACIBvQAAAAIDXmG9AAAAAwNrJb0AAAACAPOlvQAAAAIBSBnBAAAAAIK0YcEAAAAAA4yRwQAAAACCcTXBAAAAAIJdhcEAAAAAgynhwQAAAAMCFjXBAAAAAAB2hcEAAAACA/bFwQAAAAIANw3BAAAAA4BjScEAAAADApvBwQAAAAAA2AHFAAAAAgOkMcUAAAAAAIyRxQAAAAACOQnFAAAAAYEdkcUAAAADAbnBxQAAAAGBrf3FAAAAAQOuLcUAAAADg5p1xQAAAAKDnsXFAAAAAYBPAcUAAAADASNJxQAAAAMBRCnJAAAAAABIhckAAAADAuS5yQAAAACAPUXJAAAAAwCZ8ckAAAABA7KRyQAAAAABCVXRAAAAAgO9hdEAAAABAm3J0QAAAAMAQyHRAAAAA4LYQdUAAAAAgViF1QAAAAIBpjHVAAAAAYG2jdUAAAAAga611QAAAAKBTwHVAAAAA4NPUdUAAAACgOPB1QAAAAMBVv3ZAAAAAICrMdkAAAABgRxZ3QAAAAGCRJXdAAAAA4KJdd0AAAABgf513QAAAAKB0u3dAAAAAYI7Od0AAAABg6VB4QAAAAKCRtnhAAAAAQDXneEAAAAAAWh15QAAAACAqPnlAAAAA4MDDeUAAAADg2dB5QAAAAKCv5HlAAAAAIMj0eUAAAADArlV6QAAAACBgZHpAAAAAoFFuekAAAABA94N6QAAAAKA0zHpAAAAAQEf6ekAAAACgzgR7QAAAAEChN3tAAAAA4FREe0AAAADgy1J7QAAAACBya3tAAAAAoA52e0AAAACgN917QAAAAEApEnxAAAAAwEmSfUAAAACgIQd+QAAAAECFo35AAAAAoAYJf0AAAABgShN/QAAAACCyR39AAAAA4M7Gf0AAAAAAVXKAQAAAAKD8eYBAAAAAQET4gEAAAAAgwAGBQAAAAKCTJIFAAAAAIFR5gUAAAADgQqOBQAAAAGAKsoFAAAAAIP+8gUAAAABg7dOBQAAAAECdMIJAAAAAoDJcgkAAAAAAzWqCQAAAAADwoIJAAAAAoEjCgkAAAAAgbQODQAAAAMDwi4NAAAAAIBqTg0AAAAAAjJ2EQAAAAGCivIVAAAAAALPDhUAAAACgMOSFQAAAAKAxMoZAAAAAIGI6hkAAAADgmkOGQAAAAGD/woZAAAAA4JLLhkAAAAAgefuGQAAAAEDSFYdAAAAAgPEbh0A= + KBZXds7jZUDodNMYclFwQNvlv3T/InRADzYbkCBieEACpwfsrTN8QGvI12ScyYBAFLSnMS4igkA= - + - l+p4QGRBHUEJqI9BH5JUQMm/zEAlHWBADSXNPx8slEBn321BFOD4QKJcmECWP5NAZtKMQ5f5h0BvQtBAHTunQSRuKECk0gNBk4a9QPSTJkASb/9AvzbyP9RecECcZo9AxnwBQD6XuD+IknJAowBhQC9AFEFv/BRB9j/eQAN2ykDflE9BbERCQDg1QkAJVSpAKCY5Qi/EBkE0+5BBco0TQFoVtEH2dcZAfnkmQNDghkGA7aY/9xdwQRTZpT80EaNBRHTzQXLTCUHlZgpACY++QeZbCkFpJW1BtrQKQFl1KUDWsZlApGImQAYngUA+2BVBlhs9QhT/6kDEPrBBFHaPQBct3j9Bdh1A8vN5QNI8q0FlmwpB1Li3QbblpEBgBLVAn1SeQTjrFUH3fiFBCXA4QaW+3kDS6ixBlDSJQayou0F7A/hACh4dQbgJN0K+nqFAVzOiQEnsyj8T1AhBvSCFQdwtQkBVBChB6t+SQXSz30EXi5hCF1xiQ9xNbUHUMYE/OIqvQL41q0GtrudBEV8/QKzUxUEJ/hRCj5yvQMe1vUDRHaVBn3yjQnri+UE+8rtBLjT+QR0XZkKcEN1A8cgAQoU0pkBkmCFCWdsFQUXcoUC1qwBCEsquQew7S0E7vLZAU2EAQiZFHkBhcORAmU0DQNXQlUDMYV1B7mk0QaQ9qUHugytCtgvFQZbhkkFqQzJAKq1xQs1cv0G6UkVCfFCPQUrcE0DeB3ZBOlAfQWyRFUCS995BJXKuQhR/CEP3mnJBFTTCQC19s0SNToVBBDCwQWKXjkHzAwNA43uvQ+HR8kI2pqxAS53bQCwTKkF/XoFAV+PKP67wI0FEWIFAjLVUQIOkeEGRpt8/jvO8QF+soUBsMh1ASCcfQQ3nMUMuXgtC/O3FQH4gLEHx2stAvIIwQHFKFEHSyftBAycqQd8hx0Cb/rRAbEBpQUTOrUBOmphASx5nQFUe00DZD+JCaOprQdY98D/9j49BTMXrQLk4XkBM0lZAwmc5QEXnXEFWroRCi7qJQRi9nkF5NY5AZovnQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAALJObUAAAAAAzvJyQAAAAACYDXNAAAAA4E2Vc0AAAAAAshJ0QAAAAEAAhXVAAAAAgMO/dkAAAACA20N3QAAAAMBdYHhAAAAAAH1PeUAAAAAAv4N5QAAAAECXQ3pAAAAAQEBTe0AAAAAAEYZ8QAAAAIB0M4BAAAAAII9MgEAAAAAgXQqBQAAAAKD4OYJAAAAAAASXgkAAAABA2giDQAAAACCXI4NAAAAAICKCg0AAAACghZ+DQAAAAMDqPYRAAAAAIIlihEAAAABAOoCEQAAAAKBr0oRAAAAAIJZ6hkAAAACgQKeGQAAAAOBKyoZAAAAAYPTXhkAAAACgiwuHQAAAAOCBQYhAAAAAoDHUiEA= - - - - - - 9dvKP/BuekDGGd5AoMBwQDIOlEAmPfA/48vdPxbQMkHSfYtBBxMNQdWFAELWii9AADdhQY3Myj9M551AJkvDQB4SAUD+h4BB5NsTQbN5QkBt34xBO0urQL1Hw0HJGTlAv3j1QPOWUEEvaC9BGs2tQPzZE0F4+zhA4CcYQYem3UBpn/VAUadnQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQEcmZ0AAAACgZEduQAAAAIAkhHJAAAAAwKawdEAAAAAAGLN1QAAAAACBY3ZAAAAAgOdFd0AAAAAAyp53QAAAAIBbzndAAAAAAD5MekAAAACA24N6QAAAAECNZntAAAAAAL0nfEAAAACA12R8QAAAAIB8b3xAAAAAQA6GfEAAAAAABvZ8QAAAAIDMQ31AAAAAQI6vfUAAAACAVvt9QAAAAMBTgH5AAAAAQINHgUAAAACgc/qBQAAAAOCdi4JAAAAAQNXqgkAAAAAggjyEQAAAAOC80oRAAAAAoJMahUAAAADgkSGHQAAAACDEhIdAAAAAYJmMh0AAAADgdcqHQA== + NrgMGZxjYkBImCMySWRuQBu6YmAmQ3BAdsasq+mTdkBLjVkQ00J3QKaZo1uWk31AnYf0IpikfkDT+79Xd1KCQM5yaDv42oJA - + - g4ZfQRGYCkDLPR1A03gKQDKfmECcmZBBYoK1QcELskBSMvhAmfsTQIXPvUBoF15AF7YtQV80wkCCTyZA+j0QQlKGvUCp+8ZALKsVQOazGkExaJ1ACd8AQg7MJ0DFQktAGAeJQWJyu0ExNzBANs69QMJWx0Crb+xAnxyUQFjyHEA= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAA4I1gZ0AAAACAuldoQAAAAKCJempAAAAAwBWlbUAAAABAwP5tQAAAAMCVvm5AAAAAgBYlcEAAAADAAqRwQAAAAOB+snBAAAAAoK4vcUAAAADAFIVxQAAAACDD5HJAAAAAQN25c0AAAACAxQJ1QAAAAEAyFHVAAAAAgIBUdUAAAAAAeGF1QAAAAEAbsnVAAAAAQNTPdUAAAADADQV3QAAAAMBaRnhAAAAAwLFXeEAAAABA7px4QAAAAEAj53hAAAAAwF8keUAAAADApEN5QAAAAIDSunlAAAAAAPfyeUAAAABA0oF6QAAAAIDSj3pAAAAAQMKkfEAAAACAHm99QAAAAMCEhH1AAAAAAO7ifUAAAACALCB+QAAAAEA1NX5AAAAAwHB3fkAAAAAAjrB+QAAAAIA2/35AAAAAgIUPf0AAAABArjF/QAAAAACR1H9AAAAAAM37f0AAAAAgbEaAQAAAACAFtYBAAAAA4OPAgEAAAADADtKAQAAAAOA99oBAAAAAIAYCgUAAAABgeR6BQAAAAEDwL4FAAAAAAMs7gUAAAABA32eBQAAAAGBCcYFAAAAAoNyEgUAAAABg95SBQAAAAGAQroFAAAAAIPjZgUAAAACA+QOCQAAAAMC5FYJAAAAAgKwzgkAAAADgoFSCQAAAAOB/YoJAAAAAYAiQgkAAAADAQqOCQAAAAGASuYJAAAAAAL3KgkAAAABgP9iCQAAAAOAY4YJAAAAAgJTxgkAAAAAg0A2DQAAAAOAGI4RAAAAAQCdghEAAAADAAaGEQAAAAKBd14RAAAAAYPo8hUAAAABg3W6FQAAAAKClxYVAAAAAYIf6hUAAAAAgNRaGQAAAAKDXyYZAAAAAoM3bhkAAAADA7/SHQAAAAOBpMohAAAAAYFFoiEAAAADg0nGIQAAAAGCmi4hAAAAAQJ6SiEAAAACg7KKIQAAAACCT04hAAAAAAMThiEA= + NrgMGZxjYkCPTWWFSwNpQB77tsc98nBAjwFH/L0ycUB0T7vM1WJ1QOVVSwFWo3VAO6pPBu4TekDo9Hu8xWN9QJH+UwuGhH5A - + - jq4TQMplzkBDkApAH4S4P7mkHECT8pNAsMSIQG0OkECIg9FAK1e4P0JZtkAebHlAkY8kQY6PcEAgaSZApQ5LQEELv0BH8nhA+8QoQGDXnUCxwJdAsFbjQFivkkGgIkJAARtCQLfxk0AyNEJAFD49QSgO1UDCER1A3HwcQEJ1h0GUGnpA0aUTQNevakAikz1AFTSlP088oUF7N90/rP6/QfpRcUFaoEpA0aC5QCkawkBY7npBPl8DQpyJBEDVhJFB6R8dQPJI3T9+BqtBeH9UQK4qyEFE8BRAX0M9QQ1D0EDwDtdAJGnKQIl7iEFaw71AAMv2QbduxUGme7lC6UQfQGDge0DwJ0NAdgV0QeYLMELGUJZBqqU4QGkG10FQMy9AKoQvQF4VbkHq1hVBGFWBQIxzw0GzkYpA+YovQG6l4kCeg/5AwSCxQOqrMEJTDxNA228xQl1ZcEC4xfZBHqIjQTBHBkH5wSRBdBxXQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQPEEbkAAAACAEFBwQAAAAIBBZnBAAAAAoNpBcUAAAACALSZyQAAAAGC04HNAAAAAYHDyc0AAAADAI9N2QAAAACBIM3dAAAAAQMpUd0AAAACA4lB4QAAAAEBvW3hAAAAAwHNyeEAAAACAHwN5QAAAAIDtVXlAAAAAQFEUekAAAACA+rJ6QAAAAIAtz3pAAAAAgN4RfEAAAADAZ+Z8QAAAAAB8E31AAAAAAICTfkAAAABAtzV/QAAAAIBb139AAAAAQNg5gEAAAAAAFMGAQAAAAIDAyYBAAAAAYEeggUAAAACAlauBQAAAAOAl54FAAAAA4FT9gUAAAADgaweCQAAAAODDR4JAAAAAYMVxgkAAAADAx0qEQAAAAEAZaYRAAAAA4FWQhEAAAADgXXqFQAAAAIAzooVAAAAAQMYuhkAAAACg6b6GQAAAAEC964ZAAAAAwKRyh0AAAABAb3mHQAAAAGBQRIhAAAAAIKxZiEAAAACgNZKIQAAAACDk9YhA + NrgMGZxjYkAot2DdIQNrQMZtNYzMxW5ACAFx3oCCdUAeWZMbloN2QAhfTTLZk3xARRrbkkSUfkAVtKcxLgKBQEDeKTR6OoNAtm0RhXlSg0BADRheJsOGQHDA8XzxUodA+l/4VZ7DikBw79+mnduKQJsZYqnpE41AjkCckfXLjkAsHuNBK8yPQJEQoGYmapFAlqbotWuqkUAgOf5bUjKTQPPP2LGnqpNA0k9japi+lEBQ+cit46qVQA== - + - v275QFdeL0CH15E/C3OmQNApoUB5Ad9BbvW5QIuUb0Doi69ArOYQQYsyOkFGees/kjTWQVj1DEGCKRNAvim1QikQcEAlPQZBGjaPQCfulUFUTThATUNBQDg340C4osk/3m8LQYJ6LkD0Cl1AuznwQUhCO0FfFe8/xFtfQNffTEAa4NBBulimQfefcEA7bqZB0HJcQmUx40DntOhBqWnWQNDm60Dty45A4N2CQQ/eQUCKl7hAG5i4QD8dvkBLkYpA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgK1mYkAAAACAs6ViQAAAAGCNwWVAAAAAAJYCZ0AAAABAx2ZnQAAAAEDyqGdAAAAAAH+jaEAAAAAg6gFpQAAAAECjPWlAAAAAgD21aUAAAACAwM1pQAAAAABD4WtAAAAAQBrabEAAAAAAPwptQAAAAOAZqW1AAAAAgE3pbUAAAABAvwNuQAAAAEBT5W5AAAAAAEBlb0AAAAAAsZBvQAAAAKBsEnBAAAAA4P5BcEAAAAAA5HhwQAAAAKCnkXBAAAAAoKmqcEAAAABA5LRwQAAAAKAKNHFAAAAAoPdDcUAAAADAJVJxQAAAAMAzjnFAAAAAICjfcUAAAADAxnJyQAAAAKBOhXJAAAAAwMiSckAAAAAAwNNyQAAAAAAS9HJAAAAA4H5cc0AAAABAIXFzQAAAAOCde3NAAAAAoG+Fc0AAAACg1M9zQAAAAADN4HNAAAAAIATyc0AAAACARw50QAAAAEAZJHRAAAAAIDFRdEAAAAAAopB0QAAAAEC2wHRAAAAAQBTfdEAAAADA6gJ1QAAAAIBpE3VAAAAAoHchdUAAAAAg9DB1QAAAAKAkUXVAAAAAYGtydUAAAAAAR4B1QAAAAADMxHVAAAAAYDjQdUAAAADgedx1QAAAACAa9nVAAAAAAPABdkAAAAAAEBp2QAAAAEBAYXZAAAAAACR9dkAAAABg85d2QAAAAEA4xHZAAAAAQIXWdkAAAACArQB3QAAAAMDnDndAAAAAYKtvd0AAAAAA1KZ3QAAAACC1sndAAAAA4MHyd0AAAABgyQJ4QAAAACCvYHhAAAAAINmJeEAAAACAWZd4QAAAAGDyonhAAAAAgBPBeEAAAACgGdF4QAAAAIA6L3lAAAAAYCyAeUAAAAAAJat5QAAAAGBat3lAAAAAYH/reUAAAABgkgB6QAAAAKBTDHpAAAAA4NdDekAAAACgdFF6QAAAAKACX3pAAAAAIGKgekAAAADAUsZ6QAAAAKCB1npAAAAAgD3hekAAAADg8et6QAAAAID0D3tAAAAAwL2GfkAAAABAhAJ/QAAAACBlq39AAAAAwGbyf0AAAAAghCuAQAAAAOCwUYBAAAAAoEJ6gEAAAABgBM+AQAAAAAD2NoFAAAAAoCtbgUAAAACgDnOBQAAAAOADuIFAAAAAAGTNgUAAAADg8uKBQAAAACCSqoJAAAAAQJq3gkAAAABA8NOCQAAAAEAN4YJAAAAA4JsIg0AAAAAg+piDQAAAAGDRuYNAAAAAYGt4hEAAAABAWAqFQAAAAEDuMoVAAAAAgLxkhUAAAACgT3aFQAAAAGAGjIVAAAAAoHfihUAAAADgiKGGQAAAAGDzsYZAAAAAII0jh0AAAAAgeGuIQA== + KBZXds7jZUCmvpxNHCRnQGS4z0t+BG1AeiAWnryic0AyOsR5l5N1QKHhXRVrs3tAWfsL8UWkfUDQH520YWKBQEDeKTR62oJAX0j7qY0qg0BrCKw2xhKFQA== - + - eY1CQGVyKEFQtkpAhGr8QI7vjkAvVY9A9f7uP6wNY0EhE0tAHzJ1QBvCi0BkBXBAhpbcP+NhRUDOZiZBLvc3QO0TL0CGUzBA0khpQLUNyj9g1SFB36jUQIxTmECurYpA721yQGGXZkAC9ABA2qJ3QCjJwUAhACtBAkpCQZn5C0GPj1ZAzc34QM5eckCNs9w/thtOQdpKkEHqaw1AVpecQHIu7z9rsWJBkpPFQCJz3UDc5vxA+ooWQdXECUD0zoBAGTiAQVomXUF1fRxBQvUlQGz7PkFfhWZBYhidQKAWNUEC+lVA05BdQGY/OUFk27Y/ibtSQSU7b0Dllz5BpK2lQPkNzz/g9CVA/Me3P8pK60AEFS9BknOSP2w4R0Gp/pJAgWkpQLrbuUHdMPlA5sQAQdoPPUBmv41BaGI/QoCfTUEzIMo/oh8KQM8Rj0AsTm1BeUcLQeflCUB2eGhBiK+VQV9px0Hrez1Bj/9aP97iVkEYyB5AgWTxQFhmm0Ers8VAlEAxQPaGFECyoX1Bpz16QO29C0LQnwtAeplnQPxvvUDDMmBBLvfPQIWTU0AFBu5AyA7cQJbU5kAr2tRBXDU4QDrNuEA15TFAuPWXQbw2vUBH1PRACzl8QcDDHEAraLc/AOQAQHnUl0APg8ZAQo9BQBIiwkBpGp9APDSBQObQh0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4BBmZUAAAADgIodmQAAAAMCWKmdAAAAAIEaca0AAAACAv0ZtQAAAACAXZG1AAAAA4K4tcUAAAAAgOqBxQAAAAAAup3NAAAAAQFI1dEAAAABAJpJ1QAAAAIClxnVAAAAAAJoWdkAAAABAR+V2QAAAAMCjO3hAAAAAgP61eEAAAACAXgV5QAAAAEByM3tAAAAAAKuTe0AAAABAnq97QAAAAABOSXxAAAAAwLgAfUAAAACAZyd9QAAAAMB9hn1AAAAAAPyifUAAAADAw3d+QAAAAACmhX9AAAAAwBKuf0AAAABALeN/QAAAAKBRIoBAAAAAQABGgEAAAADgrmKAQAAAAGDYp4BAAAAAYHKtgEAAAAAgjNWAQAAAAGAl9YBAAAAAYJv7gEAAAADgoKuDQAAAAGB1zoNAAAAAoLUxhEAAAAAAJ7mEQAAAAKBNSoVAAAAAIPLhhkAAAADAAIWHQAAAAOBjOohAAAAAIPlBiEAAAAAgC12IQAAAAMByyohA + KBZXds7jZUA= - + - q/+AQAyxLkCQrLFAKDWFQMaXs0D40oBAetnbPzkRL0HHmwNB8TSWP4IJeEHUmwBAzAbwP5kzh0AaYQNB68ESQObAt0AKa+0/2vkSQGZs9ECYvI5AOAgAQHSQCUBxfqVBQrtvQCuArUE0zS5ABbIbQEstwEFWUgBAtJrfQHdsyz+VQaQ/su6CQDq9LkBIEpJBtuQ0QXK92EDf8lhB45gZQW8AO0GUPJxBkiEyQU2P+UCOdzdARcZUQAL0oEB40YBA + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAQKBeZUAAAABgIDxpQAAAACDyw29AAAAAYJVLcEAAAADA2PFxQAAAAMBoNHJAAAAAIGHTckAAAACAGutyQAAAAEAmeHNAAAAAwEWCc0AAAACAd+NzQAAAAEDjE3RAAAAAAE5bdEAAAACAj6F2QAAAAICB1nZAAAAAwOjxdkAAAACAS2V3QAAAAMBt4XdAAAAAQKm/eEAAAACAe8t4QAAAAEAxInlAAAAAQCmDeUAAAACAsZB5QAAAAMA1rnpAAAAAQDbkekAAAABA8vR6QAAAAABHBntAAAAAAMsYe0AAAABAGUN7QAAAAMD7UnxAAAAAAMBgfEAAAACAQux8QAAAAEBYFH1AAAAAAMchfUAAAADAelx9QAAAAAASb31AAAAAwA2dfUAAAAAA9iR+QAAAAMA9MX5AAAAAQBw/fkAAAABAUFV+QAAAAMB4jX5AAAAAwB70fkAAAABAmSd/QAAAACB8AoBAAAAAoBMSgEAAAACAzBiAQAAAAKDeXYBAAAAAoJNzgEAAAADgn3iAQAAAACDjiYBAAAAAQM+ZgEAAAACg5MKAQAAAAGAs0IBAAAAAABvZgEAAAADAqCOBQAAAAEA4JYJAAAAAIHbCgkAAAACAykyDQAAAACBuYYNAAAAAoFLBg0AAAAAgS4yEQAAAAMDl9IVAAAAAgI76hUAAAADAnCiGQAAAAGAhe4ZAAAAAgJOdhkAAAACAkvuGQAAAAGDRWYdAAAAA4D9gh0AAAADAh3+HQAAAACDzlIdAAAAAwCrOh0AAAACgJduHQAAAAAC/QIhAAAAAANS+iEA= + NrgMGZxjYkAmWGpEdaJuQI8BR/y9MnFA2obJ21KCdUAXiDhKr8N5QDWTEycW03tAOZE6ezI0f0AszgqszKGAQMlOQuN6woJAcJEDU0XqhEAtfAwAB9uFQCrk40q96ohAwFywO17jiUA= - + - bnsJQEigEkDel89AC5k3QFH02UBgCNFACETOQHR6QUBZ20FAbGBmQJ4kOEBkFsJAHXUJQHD/AEB8h55AUDZBQH7q3UCrho5ArFD7QGLYVkFweQlBWmlKQYT7G0BoUm9AXsDPQIu3DkFoRJRABTLGQJdkHEBERsJADbISQNHN+UGqc8tAEroAQCalikC/4i1CrCXyQNEc2EAAdopAVRX/QJ7XbEFOBmdAdFVCQUUMwEBzHkNA+ipXQWyP8EAXU9RAX2EGQfjRhUB16+dApNiiQJ4TC0G/S6tAXFjmQDC5U0CEo/hA19e8QbV7ZkB0gSFBpMKqQPApgUArgQBA/AuVQaZSGkGcTVFB7bjUQDcS3D+tq8BAU8v5QEyGy0BNVHJA+wqvQCRwXEAr7zZBNGbQQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoHnPZEAAAABgNABlQAAAAIDQqWVAAAAAQC4pZkAAAAAAE0dnQAAAAIBdBmhAAAAAQJ2qaEAAAADg7CJpQAAAAADAQ2lAAAAAAPEGakAAAAAAeeRqQAAAAKD3hWtAAAAAAFika0AAAADABbZsQAAAAICGpm1AAAAAwL/ibUAAAAAgLUluQAAAACCKhG5AAAAAIL6mbkAAAABgruhuQAAAAMDaS29AAAAAQKLvb0AAAAAg1FJwQAAAAIC8j3BAAAAAIOnQcEAAAACg/uBwQAAAAOCXE3FAAAAAwHuNcUAAAADACqBxQAAAAEA6vnFAAAAAAJBUckAAAACgx+9yQAAAACCHAXNAAAAAIJ5Ac0AAAAAA/1NzQAAAAMArYXNAAAAAQKhxc0AAAAAA/8FzQAAAAABJ/nNAAAAAYPASdEAAAAAgxWN0QAAAAIDKc3RAAAAAQGeQdEAAAADg+KJ0QAAAAAAQ03RAAAAAoLDsdEAAAAAgZR51QAAAAEAGTnVAAAAAAONzdUAAAAAggIF1QAAAAMDioHVAAAAAoBzHdUAAAAAAZhV2QAAAAKDkUnZAAAAAgBNidkAAAACggHV2QAAAAED8hXZAAAAAwN+SdkAAAADgnbN2QAAAACBI0XZAAAAAQM3sdkAAAACgaAB3QAAAAAAgEndAAAAAAO8od0AAAADgBjV3QAAAAEBiSXdAAAAAAE5dd0AAAAAg3XN3QAAAAGC6hXdAAAAAIPaRd0AAAABgt5x3QAAAAOBEAXhAAAAAwHwPeEAAAAAgW0R4QAAAAOAHWHhAAAAAQER2eEAAAAAg1YV4QAAAAODdlXhAAAAA4IO9eEAAAACgDPR4QAAAAAAjJHlAAAAAoC80eUAAAABg2Et5QAAAAADUpnlAAAAAgHPQeUAAAABgLeN5QAAAAODm93lAAAAAwIMEekAAAADgY3J6QAAAAEDOkHpAAAAAAB7gekAAAADAdfN6QAAAAICQBXtAAAAAQFIUe0AAAABgQCZ7QAAAAMB7MHtAAAAAAP5Te0AAAAAAjn97QAAAACAOkntAAAAAoNite0AAAACAZL97QAAAAABN7HtAAAAAQHMlfkAAAABAIEN+QAAAAMD8jn9AAAAAIDvyf0AAAAAAvnmAQAAAAIB/h4BAAAAA4Aa4gEAAAADgM/uAQAAAACCpKYFAAAAA4O9XgUAAAADAIZKBQAAAAEBXl4FAAAAAoGhhgkAAAABA3HuCQAAAACA/34JAAAAAoAOmg0AAAACgAfODQAAAAGAH/YNAAAAAYESthEAAAABAwwOFQAAAAED4iIVAAAAAYEH9hUAAAADAyyqGQAAAAGCcg4ZAAAAAQEOdhkAAAAAAzbWGQAAAAKBUDYdAAAAAAPAih0AAAAAAv0yHQAAAAAARfIdAAAAAgIyDh0AAAADgtbuHQAAAAICbAohAAAAAYKQsiEA= + KBZXds7jZUBImCMySWRuQDtMc7KVAnNAS41ZENNCd0BiDbspRBN7QHJOoYeBU39ARGeBUPmRgUA= - + - sD1WQCt6LEHgeWhBSE6RQRQsZkCJTpdAU2g6QDh+aEHJ4KVABZUuQP4A60BdSe4/pRYcQJ5TQUBrJf5ASm+fQKd+5kASfG9A/3IyQA7Hz0A/LSVA9dcnQAlZAEEcJzVBtrvgQBRb7j8sCWBBhz0cQCi4EUFoq1NApuHbP4eTN0FCNblAMBwuQJUMKUABNMBAq9dTQDym/z91XQBAf2NBQPxTX0CG/pdB9yGYQOtVQUDiZQtB0v0RQCTi7EH1jxJA+acXQXhNHEB8/IBAutcaQRmHO0BPyYVApgrMQM4nE0HXPFNAltQJQLMWfkHYbN4/gVIlQOgXA0E5IaJBhCPSQTOtOUFerrlA8xC7QOa8HkBmKilCGqT/P0hnG0CZWi1BxvRlQUKcCkFx+01AOHmuQXQUmEDVKC5ANKkOQfOphkDK75ZBvJIlQF7InUEuqKZAx1cAQM1tqkAqhFBCJPMQQGIWb0CMNHhA4PiZQECjs0C31qpALGrqQLqk3UD8CudA13aSQDbOmUHQsgxCgp0uQJS4d0EQlsZAweIjQWVnhUDxo/VBBHBIQWHv4UBszthAcb1CQYPvxkG5T4pAsvxSQTxq0UA6opFAeUMTQW+hA0HD03FAhk2pQGjIOkJ0sAdB8JN5QLgCiEHj7aVAFrsnQVK+b0A2eAlAo/vZQIQbr0BTsThA2RlJQVgUyUAqgY9CEFooQXC8jkBu0Y9A3ffIQA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoIpGbUAAAADAcGltQAAAAIDRAHJAAAAAQBkSckAAAABgMtNyQAAAAEBaFHNAAAAAwEpBeEAAAADAWUd5QAAAAAC6wntAAAAAANyUfUAAAACApqR9QAAAAEDBbn5AAAAAgEfCfkAAAABADFZ/QAAAAACa439AAAAAABLzf0AAAACAbwOAQAAAAGACNIBAAAAAYG48gEAAAACgJUOAQAAAAABnUoBAAAAA4CJ4gEAAAAAAwICAQAAAAOChwoBAAAAAwJvogEAAAABAuwyBQAAAACCiEoFAAAAAAJnRgUAAAADg6NqBQAAAAKAqCYJAAAAA4GEegkAAAAAA20OCQAAAAEAMWoJAAAAA4JJhgkAAAADAjmaCQAAAAIDl64JAAAAAYPP5gkAAAABAlPKDQAAAAKC++4NAAAAAIJs+hEAAAAAg0YOEQAAAACAqioRAAAAAoJaQhEAAAACAOROFQAAAAODNGYVAAAAA4Jh6hUAAAABADIuFQAAAAKA7ooVAAAAAIKKqhUAAAABgwLKFQAAAAADRu4VAAAAAIBbPhUAAAAAgwjeGQAAAACBMVIZAAAAA4JJZhkAAAADgloOGQAAAAGAl4oZAAAAAoHnnhkAAAADgujmHQAAAACDziYdAAAAAYETch0AAAACgAOSHQAAAAECe94dAAAAA4F4oiEAAAAAAVT+IQAAAAKBzbIhAAAAAAOpziEAAAAAAd5yIQAAAAGDgoYhAAAAA4DyoiEA= + NrgMGZxjYkDOIQhxcmNnQN9iJOBzYnFA525gjBHDckAGJGxXInN5QCIR2WHB43lAA0GkVT1CgECv2aibOIKAQAJwkn/pyoNAaSyJk7CChEC8wnJ3YcuHQGlbd71cC4hA2hMvYrlbi0BpimXnCJSLQPhk60wR7I5A/GoJI2Ccj0D8yWy7XjqRQC83bIZZ2pFAruDRyaTGkkA= - + - ACLUQMqC/z/jPJBAiq6TQSJMCEEawFFB3uW3Pwf2pUCexhRAdE9TQNS0kD/g4LpAjGLIP3Ji2EC9kRpBfdmDQQEq10DMEGZBUKoIQcnxeUDojTdANVy1QLzfaEBeWFpBfv2JQCmAokEPlDBAfAkPQZrsQ0FPI4pA422zQDx7s0A4e3NBCdjaPyz7NUEcEQ5C8VcJQEMwpUDEL89AmG8YQd/GUkDFuatAeVYqQdHFwUDYMctAbjclQOQol0Ff+GNCETsAQSM7AEBl8hVBargcQvXi+EAOgVJAmNiAQNN+4kCcIMBB8uFdQUoTvUBRvD1BMoytQDyYb0BOqxpBRYhPQRZAHECAB2VAMf6lQJYnpUGxx4pABqX0QA== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAA4CVibEAAAAAgK4dsQAAAAICsWm5AAAAAAJOycEAAAADgVYZxQAAAAGCecnJAAAAAANWQckAAAACAMKRyQAAAAKDRM3NAAAAAwNFGc0AAAADA5Q10QAAAAIDIU3RAAAAAQLt1dEAAAAAALJB2QAAAAECmpHZAAAAAQHLfdkAAAABAZgZ3QAAAAMBJEndAAAAAwCSyd0AAAABAjNJ3QAAAAMB9onhAAAAAAMzHeEAAAAAAcmZ5QAAAAAAoc3lAAAAAgIHGeUAAAAAAbjZ6QAAAAIBehHpAAAAAAPeSekAAAACAyGZ7QAAAAIBFp3tAAAAAQDstfEAAAADAMyV9QAAAAICwNX1AAAAAwLFFfUAAAADA1lV9QAAAAECJk31AAAAAwNLvfUAAAAAAxaF+QAAAAEDttH5AAAAAwHjTfkAAAABA2Ot+QAAAAEDmQ39AAAAAwBcEgEAAAADgEXmAQAAAAODAgoBAAAAAoPr/gEAAAAAg3R+BQAAAACDIUYFAAAAAIAFdgUAAAADghMmBQAAAAIDsCYJAAAAAAM9LgkAAAAAgw2mCQAAAAAASc4JAAAAAYKGYgkAAAACAWSODQAAAAGDCiINAAAAAoJ6Tg0AAAABgCbuDQAAAAGBg44NAAAAAYLHsg0AAAADAaAaEQAAAAGCqS4RAAAAAIMmHhEAAAACgi5KEQAAAAEB3bYVAAAAAAH2IhUAAAABg64+FQAAAAKDg1IVAAAAAIC/bhUAAAABgJfWFQAAAAEAuGIZAAAAAoAgdhkAAAABgaDSGQAAAAOByOoZAAAAAYPh+hkAAAADAcIaGQAAAAKCupoZAAAAAIFGshkA= - - - - - - zqaTPwR0qkDRznpAvb7cQHFFTUGqupdAml3iQPr0AEH3RBFB08afQNX+P0BOssdBCUkuQG7FnUAYvBJBAn+lQLKyXEC+HvxAryxTQIlbAUBoUAxB7bVeQYZ/B0EEm15Bt+Z7QO7iOEBrCphBzHnYQN5dCUBHTutAMt1mQQL7okDEjjdA6nvPQEtKRkFFRO0/luZSQAF9wUBLOaM/SA7jQA7SQ0HaezFA08dcQNOQWEEfvzdAkHLaQOa+G0AxQINBA8zsPyWNqkDUtiFB2LUbQDHPkEG+5epAMaztP7j5yUBjM4pAE4ITQTpBCEIk+ARB7tJiQQJnHUF4sJVBom+TQTg5L0FyghRBq2YYQWVD1kDNEylCkRwTQQBhGkHQvrhBiA57QUUXSkBPgv1A/2tLQeKt70CoeYZBqZt4QQ== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAwMGOX0AAAADAXsdfQAAAACB2KWBAAAAAwCeLYEAAAACAi+lgQAAAAMDAw2FAAAAAAH3hYUAAAABATGNiQAAAAEDJB2NAAAAAwNgmZEAAAADAxSVlQAAAAMD8JmZAAAAAwNooZ0AAAADApJdnQAAAAKCCAWhAAAAAYLw0aEAAAABAGqNoQAAAAIA8umhAAAAAABgjaUAAAABAjUNpQAAAAEB6aGlAAAAAoLBgakAAAADA9CRrQAAAAMBsaWtAAAAAgCiBa0AAAAAAswhsQAAAAIDixGxAAAAAQCFibUAAAABAnpVtQAAAAID0vG1AAAAAQD3jbUAAAAAAQoVuQAAAAMCZxW5AAAAAwKf2bkAAAACA3iZvQAAAAIBBhW9AAAAAwKyob0AAAABA5uZvQAAAAACWAHBAAAAAAD0ScEAAAAAgmiFwQAAAAKANRHBAAAAAgAFPcEAAAABAoGZwQAAAAAB3gHBAAAAAoCrRcEAAAACALPRwQAAAAED2HHFAAAAAgEIucUAAAACAS2RxQAAAAGAignFAAAAAgPnCcUAAAAAAE9NxQAAAAOB49XFAAAAAABcfckAAAABAM4FyQAAAAKBMn3JAAAAAoP/kckAAAAAAjU5zQAAAAECYYHNAAAAAgEF/c0AAAABAhwB0QAAAAGDWI3RAAAAAAC4zdEAAAABgZ0V0QAAAAGAaX3RAAAAAwHZ9dEAAAACArt50QAAAAKCRQXVAAAAAQBVZdUAAAACAsWd1QAAAAEAddnVAAAAAgL+GdUAAAABAH5t1QAAAACAbsHVAAAAA4Nm/dUAAAADAt891QAAAAGD1AnZAAAAAQPU4dkAAAACgSUl2QAAAAIBfU3ZAAAAAoIVjdkAAAADgU4B2QAAAACArkHZAAAAAwDHBdkAAAADgjOZ2QAAAAGDr8nZAAAAAwEQQd0AAAADg2ih3QAAAAODuNndAAAAAIDtFd0AAAACgZWN3QAAAAOA7c3dAAAAAoLmpd0AAAACAG315QAAAAKBU1HlAAAAAgB/oeUAAAAAAKmZ6QAAAAODTz3pAAAAAwB71ekAAAADgVg57QAAAAGAxu3tAAAAAQIMlfUAAAADA62t9QAAAACAxpH1AAAAAQAlHfkAAAADg269+QAAAAGBsw35AAAAAYOAEf0AAAADAQTh/QAAAAMBJQn9AAAAAoBWGf0AAAABAG9R/QAAAAKAfaIBAAAAAQHSHgEAAAAAg4NKAQAAAAODGFYFAAAAAoD1PgUAAAABgeV6BQAAAACAffoFAAAAAYO2kgUAAAABg5d2BQAAAAKDi9IFAAAAAoFf7gUAAAACA9gmCQAAAAODeGoNAAAAA4AxKg0AAAAAAjqGDQAAAAIBy0YNAAAAAQL0EhEAAAABgPkyEQAAAACDigYRAAAAAoPJbhkAAAADAMc2GQAAAAGDUOYdAAAAAgBaciEA= - - - - - - nfiXQOGO/z8++D9A8CGwQCGACEAnwIBA93D/PzJcx0B0x91ADIPZP4opf0DjfYBA0yAuQLqlXEAaf2VA/8aJQPoTmUC50rNATXzqQNtSXUD41xtAh/mlQMIQk0ACk0lAcor/P4vgjkDRS8g/GzMJQFSF3kDDiDdAfF9KQNT5gEDhxJtAkNXTQDnSI0BNTwlAjHLzQLzVFUEr0q5AdJgtQKmYHEB9UwlA0sRcQEt5U0DlzlxBjJr1QI8nX0B/Zb9AhANxQU5/eUDiz+w/RJLJQRnfxECah6tArZQ3QLYMJUCTuolA/bWrQDUYCEGxR4VA+0I2QdgCikBS1kdBTWpIQRzOaEHiZVNA7fU2QecswkCE4AxB6mtRQQPuIEJo2jBAI3IKQW8/SkHDm8g/GC82QQ4lyEBVVOtAjPU6QAAsEkH0Vf8/Nc/vPzzv9kCfdYRAjogTQRCLVUHuJdNB9QHpQFN1IUEJF9pAFgBaPx+I4UDyBTdB7+W5QIVGFUE/C0FArWrMQHgNhUBnSpBBwjKMQMeAbkDebdtBd4/9QJnR/UC2r0hBzFemQOMxPUHSwBxBBRDGQKIZAkHVgMVA4odfQUzP+kKI6SNBVrbuP/UEdEFaXwRBo6o3QS8D9kFfA3FBWwf9Qc7coUD2GJdA3o/tPwLs70BVdhJAcSk4QHtAj0AEjrBASqKPQBjopUCfiiRAmvwFQRF5REAi46lAWXg3QA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYHzBYUAAAABAdAVkQAAAAGBXRGRAAAAAAGSeZEAAAAAAzodlQAAAACCYiWdAAAAAgKfFakAAAAAgjeBrQAAAAIBhHWxAAAAAgFpCbEAAAACA899tQAAAAAAHO25AAAAAIGxhbkAAAABA5qRvQAAAAGDXRnBAAAAAoJmTcEAAAADA/ABxQAAAACCrL3FAAAAAYIE9cUAAAAAg21NxQAAAAODbenFAAAAAwJzSckAAAABAygFzQAAAAIBFH3NAAAAAoH1Bc0AAAACAZtBzQAAAAADUMnRAAAAAAENCdEAAAABgm050QAAAAGBvhHRAAAAAwEazdEAAAABApQJ1QAAAAABqEnVAAAAAAG1SdUAAAAAAYXB1QAAAAACohHVAAAAAAKCSdUAAAABA7Zx1QAAAAABe3XVAAAAAoJAPdkAAAADATXV2QAAAAEBsh3ZAAAAAQCCydkAAAABAlsd2QAAAAEDb1XZAAAAAAJzgdkAAAAAAs/J2QAAAACDOL3dAAAAAIPZwd0AAAABgqIR3QAAAACBsn3dAAAAAAHDvd0AAAABA8gN4QAAAAGBfV3hAAAAAAJKBeEAAAABgmZ54QAAAAEDatHhAAAAAwFz2eEAAAABAeSF5QAAAACCxWnlAAAAAoPdneUAAAAAgtqZ5QAAAAKCPuXlAAAAAYLcNekAAAABAmBp6QAAAAGBIK3pAAAAA4CdBekAAAADgNFF6QAAAACCjYHpAAAAAIApyekAAAAAgRKR6QAAAAMCTsXpAAAAAwFPBekAAAACg3dV6QAAAAMCK9npAAAAAoJhDe0AAAACgsVp7QAAAAMBkZHtAAAAAIJhue0AAAABgccR7QAAAAOBm2XtAAAAAYLHke0AAAAAgtvR7QAAAACDkE3xAAAAAIAQtfEAAAADgpEN8QAAAAGCOeHxAAAAA4In+fEAAAABgscN/QAAAAGAnIoBAAAAAwEpngEAAAADAi3uAQAAAAIDq1YBAAAAAYNYJgUAAAABAkT+BQAAAAOBxhoFAAAAA4OAVgkAAAACgfh2CQAAAAABDjYJAAAAAwGetgkAAAACgG7OCQAAAAKD4vIJAAAAA4KEHg0AAAABg1iWDQAAAACCmiYNAAAAAQLuSg0AAAABA2LqDQAAAAGCG2oNAAAAAYGb/g0AAAAAgVASEQAAAACCCCYRAAAAAoCA0hEAAAADgPFKEQAAAAMBIk4RAAAAAQPDPhEAAAABA26CFQAAAAKDj4YVAAAAAwDPqhUAAAAAg/BGGQAAAAOAoaIZAAAAA4FAQh0AAAABgilKHQAAAACBKeodAAAAAYECGh0AAAADAGIuHQAAAAGDoWohA + NrgMGZxjYkCO7m7sniJrQHzKEHuiRG1A - + - FE2OQIC9yT+Wr3dAenmqQFxlLkAFs8c/PoxAQDn2lEAdYAlADvalQFTnbkCvMABAjgh4QL8oeUG8i0xBZZiUQFy1XEB7AMZA2hquQK+A7T/7/DBBk4sYQYo760D4omVA8VHlQG0iZ0DD5e4/ZDMJQCPIrUDAg3hAF3ycQMobZkAt/hVBf/jaP67xoUDCkANBqemXQETEG0Dy/9pBHzHrP3ICikC/6vtAqbPsPyMDTUGdfo5APh0uQJYGrUD/xHpBIIPlQErADkGgbIBAEc3yQJotJkEWKjdBmDqBQIhQEEEY0dNA72acQMZwgUBraiNBb8OcQAR+SEGe+jBBZ0pIQbkbJUCZ4qJBcYfRQLBNK0EFIolAdEYcQUjRcED95e5BQEXdQBCQjkDTGhVBWgA8QRfRGkH2Oe4/kI8aQXWgpkBpnrJBAj79QUvm7D+zhstBd4RxQXwihUDq1pFBijVKQKltVEDrKblAnHeTQK9nBkEcY89ALZoRQMjFs0AnyPVARo8MQjOkA0FFCCpBjMmVQegWkUHuI4RBYsMvQap7qUHEi5JBRUtBQF3LQ0EJe+ZAYNcRQaJEr0JjTwpDpkv1QIupUEEWriNB1C90QZiCikCNRQlA5k4GQZ/xCEAfp+0/W8raPxD2GEGyzNo/25U3QJW3KkFbchVB + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAGedY0AAAADAV8VkQAAAAEC9/WRAAAAAYOg7ZkAAAACAtKpnQAAAAMCAGWhAAAAAQIjnaUAAAACAxCNqQAAAAAACnmpAAAAAgEJja0AAAADAxCtsQAAAAMCrRGxAAAAAoLTpbEAAAACAJ2ttQAAAAADug21AAAAAgFmsbkAAAACABmJvQAAAAIDshm9AAAAAQFrBb0AAAACAwCBwQAAAAOBBc3BAAAAAoD0DcUAAAACAoFJxQAAAAED/cXFAAAAAgDovckAAAAAAXldyQAAAACAilnJAAAAA4GC8c0AAAABAfBJ0QAAAAED/QXRAAAAAAOeJdEAAAACA0rB0QAAAAEAp1HRAAAAAgOgEdUAAAACARhR1QAAAAEDhJHVAAAAAQC90dUAAAACAgad1QAAAAIBgF3ZAAAAAALUkdkAAAADAQFJ2QAAAAGCOdHZAAAAAgH2+dkAAAABg9tx2QAAAAIAAMHdAAAAAoBlMd0AAAABATHB3QAAAAKBZjXdAAAAAgFTWd0AAAADAjzR4QAAAACA9PnhAAAAAYFJXeEAAAABAhJJ4QAAAAGBevHhAAAAA4BX5eEAAAAAghhN5QAAAAKDiNnlAAAAA4ORAeUAAAAAg6E95QAAAAMCLYHlAAAAA4OZweUAAAACgOn95QAAAAADkz3lAAAAAIEzweUAAAABgmAN6QAAAAOCRKXpAAAAAgOxiekAAAAAg0ox6QAAAACDIlnpAAAAAQN6qekAAAACAH+56QAAAAOAq/npAAAAAIMwge0AAAADAjV57QAAAAMAA1H5AAAAAIDv2fkAAAABgmQB/QAAAAGA1LYBAAAAAwLUzgEAAAACAh5CAQAAAAEDJGoFAAAAAIDpPgUAAAADgIWOBQAAAAGD6q4FAAAAAAMC0gUAAAADAEgOCQAAAACDOEIJAAAAAIGEkgkAAAACgnkCCQAAAACCKSYJAAAAAIOxqgkAAAABg6nmCQAAAAMDwCINAAAAAYPBug0AAAADAEnSDQAAAAOBAiINAAAAAQGONg0AAAADAEZODQAAAAKB6a4RAAAAAYKi5hEAAAABAaeaEQAAAACBM84RAAAAAYM9ahUAAAACglJyFQAAAAGB6HIZAAAAAAJZLhkAAAAAgv3yGQAAAACBt0IZAAAAAoLDVhkAAAABgM8GHQAAAAEBtsIhA + NrgMGZxjYkAbumJgJkNwQMRlXluOUnBA - + - waASQLpQlUCT8zpBbs6gQGYKQUDLtIBAcEEnQKVWyUD1b8g/olWhQMHAiEDxeMBApv9bQMS+skArPRhBk4TCQChxIkHWdaVAFYweQe3ZCkEQJ9RAM0ghQbevckCz/zZA0wPbPyqFvEAweUdBi7yXQA2NyD/IAxxBclYOQnxzXEADuvdAgzajP+RbYUGwMP5ApnPIP8mrF0GaYQJBdILYP3vH20C6mW5Au+qiQOrpRUFOAJE/YkTeQf2hEkABZupAyjGGQVw+qkCwSEJBCDMGQXEODEGrtBpBi2cEQckqv0GcxoBA1Ky8QPBrF0JXywxBx1cAQkBSt0BO2zdBJTeCQeILb0DvRy5Bf3iDQeyDkUEmAXpArCWLQNaqqEA5iwhC3+fMQYHM3z9T0u4/kkl4QLoXikB/2KNBa8iFQTaAuEIZ54ZAQ1gRQVSzvEA9Cj1DFZ1eQH2ZDEG4vaJAs5EMQcUqAUBnxDhBxlTtP+QRAEA5e8VA4uSlQvpVEEK6hSlCxNCKP04z9D+7BctAuEcuQKwE3UCzwQZBCZ36QMrIDEGCizFBXd34QG5aCUDWMRhB1YvqQFGKqkBMd4BA + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAAAPJVUAAAABAg0xWQAAAAMCrz1dAAAAAIJ2RWEAAAABg9NFYQAAAAOAeellAAAAAgPDLW0AAAADgb0hcQAAAAGDMEF1AAAAAgOY8XUAAAABAS1BeQAAAAAD6A19AAAAAQEw0X0AAAADAY8VfQAAAAOBiPGBAAAAAALmmYEAAAABgPN1gQAAAAMAKJmFAAAAAwExKYUAAAADgP2VhQAAAAEBywGFAAAAAAEbeYUAAAADAB0BiQAAAACBipmJAAAAAwK/GYkAAAAAAeuViQAAAAECtTGNAAAAAAIBmY0AAAACAKoVjQAAAAMCo5mNAAAAAgKQEZEAAAABAZCFkQAAAAADWZ2RAAAAAYMbBZEAAAADAq+NkQAAAAIB7AWVAAAAAYOskZUAAAABASUVlQAAAAEDspmVAAAAAwLTDZUAAAACAweJlQAAAAAC4AmZAAAAAYKkjZkAAAAAAVT1mQAAAAMAdqWZAAAAAgGQEZ0AAAACAbUBnQAAAAOBmamdAAAAA4FGEZ0AAAAAA3qRnQAAAAICSxGdAAAAAIObhZ0AAAADg5QBoQAAAAKDoJ2hAAAAAoKtWaEAAAADA74RoQAAAAOB5p2hAAAAAQJXjaEAAAABAAgJpQAAAAEAgJWlAAAAAAHRFaUAAAAAAPGBpQAAAAABthWlAAAAAwJetaUAAAADA70lqQAAAAEDCampAAAAAALiEakAAAAAAO6NqQAAAAMAcwWpAAAAAwKnmakAAAACA1QJrQAAAAMDIG2tAAAAAwARDa0AAAADA4WZrQAAAAIDopWtAAAAAQMPla0AAAAAAUQ1sQAAAAMAYImxAAAAAQIVJbEAAAAAAomJsQAAAAICmoGxAAAAAgPXebEAAAACAmwNtQAAAAMC/IW1AAAAAAPpHbUAAAAAASGhtQAAAAICrum1AAAAAgEPkbUAAAADAAQVuQAAAAIAALm5AAAAAgPpDbkAAAACAKWZuQAAAAIAYhG5AAAAAQIShbkAAAACApb5uQAAAAMCUD29AAAAAgKhjb0AAAAAArJdvQAAAAEBk5m9AAAAAgBwDcEAAAADA1yBwQAAAAOAYNXBAAAAAQF5DcEAAAABgF1FwQAAAACCCYXBAAAAA4A9vcEAAAAAg331wQAAAAEDcsXBAAAAAAF/DcEAAAACAW9FwQAAAAMD/4XBAAAAAgM0OcUAAAACADCFxQAAAAMD+L3FAAAAAQGlGcUAAAAAgDVFxQAAAAICxW3FAAAAAQFuQcUAAAADg8v5yQAAAAGAME3NAAAAAwNhWc0AAAACA7yN0QAAAAKAId3RAAAAAoNGvdEAAAADAJxZ2QAAAAGBzSXZAAAAAAEljdkAAAACgRxJ3QAAAAOAZNHdAAAAAoI5kd0AAAABAN9V4QAAAAOBR9HlAAAAAQHiRe0AAAADA8NF7QAAAAOCRsnxAAAAAoJLrfEAAAAAgGnF9QAAAAMD/431AAAAAYFRWfkAAAABgIXZ/QAAAAGBNQ4BA + NrgMGZxjYkCEfuNfSGJnQEMdzoN8QnFAMH3xjJLhckBq3hX7KlN5QFc+OQRB8npALM4KrMxBgEC/f8C9d4GBQFb4jK4YeoJA - + - c5hcQI/9vkF4XkFAvkXIP/N7YEHR+rhBdbxTQcIE6kHmcaM/gtItQMTnVkC56hBCxtzaPxalTED2R+0/FjFzQlqBaECLrjdAVc6OQMUKAUBXMl5AicORQGVkZ0AHwxdBNpHmQJI59ED73hFBvF1jQnIY2z8f8Ow/uzABQQUcCUFevfxAuetbQD7E9UASngpBnqqcQM6HJUCWV25ABURzQUD2AUAxEaVAZWjwQkoUFECOoxtAHnKiP4M6QkDy/WhB4d2yQGrVtT8veAFCfRHvQOps2kA/DpRAwjw6QR+rN0Ae6KVAxoVNQz5pgEGnaFRAY3+LQYj6HkHru8xApG5oQAPFtT+sSqpACGEXQY1ICUDArfJBtPgeQQVoi0FNoVpAC72/QPQgRkHM+J9C+Z2GQVlGlkCiElVBcDVPQcpIpT9Cda5BDt74QfNeu0AYlO9AWJhWQKxsuEBfoHBAFvDHP0crkEHQKIpArN2DQWIe/UIzqiBDMSdKQrWQoUEiGhhBwtuIQeIuZ0HJcMlAOchAQKTW50HKpZRBS67LQXyJr0GynBBCmEk+QQTIZUGV5rNAXtelQW42lkHiv61BbnoyQUDWSkIWT6U/4NqAQN4d0kEdWshAyxXSQB8YJUClJvpAs9uiQNQQaUGV1kBAxYkSQNsRr0CnI2hACYmJQbkZb0DDdoZCWHTKQIaMBUH0gaRCzWoKQKLYSUCEla1CJDSwQEHdgEBOlBFB8rmOQAXbikG2Yi5B + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAgBlgbkAAAACA34luQAAAACCTX3BAAAAA4KTzcEAAAACgtWRxQAAAAIAqYHNAAAAAIHHAc0AAAADACtJzQAAAAMCC4nNAAAAAAKXzc0AAAAAAYAR0QAAAAMDE9HRAAAAAQFEEdUAAAAAgshZ1QAAAAMAuRnZAAAAAgIdxdkAAAADA55V2QAAAAICFonZAAAAAwKDRdkAAAAAgJid3QAAAAMClM3dAAAAAAE5Sd0AAAABA4QR4QAAAAMDzL3hAAAAAAO9DeEAAAAAAHFJ4QAAAAEDPYHhAAAAAAGxxeEAAAABAhIF4QAAAAICrnHhAAAAAgL1ZeUAAAAAAH2R5QAAAAEDVbXlAAAAAQM0EekAAAADANxN6QAAAAMC6HnpAAAAAAMymekAAAADAdyV7QAAAAIDyL3tAAAAAwJ5TfEAAAABAeoZ8QAAAAEBJnHxAAAAAAA/gfEAAAABAifV8QAAAAIBYJn1AAAAAQPFkfUAAAAAAPCV+QAAAAACStX5AAAAAAJXffkAAAABAzER/QAAAAEAxVn9AAAAA4B4MgEAAAADAAFOAQAAAAADvgYBAAAAAQBCIgEAAAABgBaqAQAAAAEALz4BAAAAAYDsSgUAAAABAcxuBQAAAACA+S4FAAAAAoGJwgUAAAABgjZ6BQAAAAOD9o4FAAAAAoD+zgUAAAACghuOBQAAAACDS6oFAAAAAwBwjgkAAAAAgwimCQAAAAKA+MoJAAAAAwDy+gkAAAABgJaqDQAAAAKDotINAAAAAoC8LhEAAAAAgPB2EQAAAAKBeQYRAAAAAIIx0hEAAAAAgFqSEQAAAAOCh5oRAAAAA4MWJhUAAAABA2NiFQAAAAOAU6oVAAAAAQD8ChkAAAACghCGGQAAAAOALKoZAAAAAIO0yhkAAAADgyG2GQAAAAGDUmoZAAAAAYMWqhkAAAAAgua+GQAAAAACjM4dAAAAA4PZzh0AAAACgmJeHQAAAACCcoodAAAAAALC6h0AAAAAgreuHQAAAAKBCPIhAAAAA4BhLiEAAAACgR1eIQAAAAEBch4hA + NrgMGZxjYkDsFOgHcuJjQHZo0FeRAnFAjwFH/L0ycUCPXyNQFkR4QOoNkUeBA3lAsWglgZm0fUA= - + - 6rgkQG7Fd0CgoXhA1AQlQHxEt0B2BUtAoLwAQetppEHYYC5AR8EbQE0uj0DoajZAlviYQGtgCUBa3TZALFjXQJWzF0HI6IBARf4SQKP0JEDbRIBABogJQSznGkBCH+ZA77CmQfFSzkEyfIBApVmIQJz2XUCB9XdA4J+tQOXEiUFyJCRAzF62P9NdI0G0i4pAyun+QEjjnUCsfRFBemacQPo/yUAAgbNAwpuAQZcmzECJy4lA+jQJQLfNwUCYG1lBtIunQLfaoEApaghAWtHgQI+KG0DBDqtB4qLJQFt5qkBEywlBgPpAQZs7tj+Qx+RAyA6FQNx8h0CeT6FBYQq/QF+/hUAaDjtBy/hTQclbjkBAvetBv3YxQchis0Br4eJAd+cmQJcspEARIkFBdtGLQDiQ20FOYQFBBpjIQHoxLkCmoNs/IXcUQdg2AEB+d4ZBxhGIQTbJNkBQvK9Af1ykQHFas0DhOq9AOb00QfA+XUFlXbFACGwSQEYQS0EfZABAk9ASQuiylEDQlMVB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQKE8YEAAAAAA7wNhQAAAAACMYGJAAAAAYKbqYkAAAAAA0cZjQAAAAIATrGVAAAAAgMdnZkAAAADAraNmQAAAAMAUhWdAAAAAwDOlZ0AAAABAGMZoQAAAACAmHWlAAAAAQFkpakAAAABAc6ZqQAAAAIBJ5GpAAAAAgMnea0AAAABAeSVsQAAAAKAtpGxAAAAAwJgpbUAAAACAkmBtQAAAAAAu/W1AAAAAwAxhb0AAAACAkn1vQAAAAEAGpG9AAAAAYOAfcEAAAACgyDJwQAAAAGDvcHBAAAAAYBulcEAAAABgfd9wQAAAAGDCBXFAAAAAYPYRcUAAAABAeTNxQAAAAIDQgnFAAAAAwFzUcUAAAABgkv9xQAAAAMB3UHJAAAAAQKFickAAAADgvKFyQAAAAEASB3NAAAAAgNIvc0AAAAAALz1zQAAAAECFVHNAAAAAgMJic0AAAABAQ3FzQAAAAEBypHNAAAAAwCcEdEAAAACAIFF0QAAAAEBAi3RAAAAAQAqedEAAAABAy7R0QAAAAIBMz3RAAAAAAJ/xdEAAAADAuAB1QAAAAMDTIXVAAAAA4DhCdUAAAABAgWB1QAAAAIC1hXVAAAAAgN+RdUAAAACgsaB1QAAAAIB9vHVAAAAAwGThdUAAAABgfOx1QAAAAID+JHZAAAAAwJZedkAAAADAlI92QAAAACCXsXZAAAAAAIjJdkAAAAAgsdN2QAAAACAU8HZAAAAAIMQTd0AAAABAxkN3QAAAAGAvhndAAAAAIL6Vd0AAAADg96J3QAAAAAAwsHdAAAAAYJS/d0AAAAAgD893QAAAACAy5XdAAAAAINn6d0AAAACg9TF4QAAAAKCpRHhAAAAAgCdgeEAAAADAZHp4QAAAAKA2j3hAAAAAYHu8eEAAAAAg8tN4QAAAAOBv6HhAAAAA4G4Le0AAAABggfV7QAAAAKCiU3xAAAAAoJS+fEAAAAAg0UZ9QAAAAEAyYn1AAAAAYEWtfUAAAADAFcp9QAAAACAtV35AAAAAYHePfkAAAADAHbR+QAAAACD5w35AAAAA4DeKf0AAAACAKxuAQAAAAKDKJYBAAAAAIMNDgEAAAACg9EyAQAAAACDTVIBAAAAAQHmSgEAAAADgRa2AQAAAAKDa4oBAAAAA4FzrgEAAAABguQmBQAAAAKA0LIFAAAAAgC5BgUAAAAAgCMyBQAAAACCO0YFAAAAAAF/zgUAAAABAQniCQAAAAMD66oJAAAAAIAlSg0AAAABgdoqDQAAAAIDeloNAAAAA4J+ig0AAAAAAz7KDQAAAAMBH44NAAAAA4Djzg0AAAABAeh2EQAAAAKCxg4RAAAAA4KyihEAAAAAg0LuEQAAAAECw2YRAAAAAICQVhUAAAAAg3luFQAAAAKCLSYZAAAAAYOGEiEA= + NrgMGZxjYkA/KJil8iNpQEMdzoN8QnFAQh3Og3wCckCeKRjPP5N3QEJ7qtfUE3lAnof0IpikfkCdh/QimGR/QGBI+6mNaoJAznJoO/jagkCLcn2s2aKEQPmc6j1EE4VAiqFr1oXLh0CLoWvWhSuIQLenEHzn84pAi9BZADK0i0C31v6lk3yOQLjW/qWT3I5ApO0/n2qakECmW9FwdXKRQCQFN7TAXpJA - + - qgOCQDCObkCY6oBAUOAUQDbtB0GBcLhAde5FQDIEJUCPYB9AnFxvQc3m2j9P3cw/qSDuQH6S/z9bXIVAcN8aQGnf4UD6WRJAFsT4QC7rQEBD2DFA1ZLIP2vZjkCVZUlApgs7QO7GXEBZcRJAnI2xQLuqxz8MVsVAtA4YQY8ez0BuiEpB1A5aQURZKEEQHsFBIs2dQBnd2j9C0ahBKBaXQCQRn0CQMQZBYRwKQXT+2UC9Tu0/0GEJQLyUrEGeHbJBNZ+JQByjBUH8Ls1A9RaCQSa0FUG/FgFBOlTuQOFS7T+f20BAjVWEQGiqCEAvxolAeuXEQL9BKUIJv0RBXuXXQLMXFUG0fkxC0mKTQbRgNkG2AdJAq1IJQHUfJUBnDatBvQ60QrK5dz/owsFBAmygQZmjUkJgwgtAB0DYQdrAZEEMtpdAdN7qQKDfZUBiRvlAoxf8QKsqgkG9dfRA0HzvQISn7T+4klxAYkvcQHTLsEAWDOZAvRDtQHw8/j/8+5FC4XelQPaNEkAYW85AImizQNrtA0K4fphB5x2QP3p/wUBPWwRCMTvEQc3PL0EuqJxAhoVWQJFXbkB0zxxBd66hQaDwsUEaIy5AV2c6QYAvLkDd9GRAJV7aQGrK2j8bt9hAaOHIQLqvhUCIPfdAhC2TQOSCuECNyDZADj+2QAarDEFlghtADS4JQOFMLkA7jo5A0KlRQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAHECYkAAAADAJ6ZjQAAAAACbY2VAAAAAQBWyZUAAAABAuh1mQAAAAMB5KGdAAAAAQPBgZ0AAAAAgGMJnQAAAAIAOA2pAAAAAAJwjakAAAADAlldqQAAAAKDL5mpAAAAAQIala0AAAADgfsNrQAAAAACUTmxAAAAAgEFmbEAAAABAlLxtQAAAAGCMBG5AAAAAQO+GbkAAAAAgy6VuQAAAAID4Rm9AAAAAYDdhb0AAAADAUDZwQAAAAABKVnBAAAAAYAnDcEAAAACgsRVxQAAAAMDZMXFAAAAAwABTcUAAAACgS2BxQAAAACDRbXFAAAAA4M3icUAAAACgpnFyQAAAAAD0gXJAAAAAAKWTckAAAAAAUuNyQAAAAECa/HJAAAAAwE9zc0AAAACAzaJzQAAAAMBTMnRAAAAAwGw/dEAAAABA6E90QAAAAICmZHRAAAAAgHeVdEAAAABgk9B0QAAAAIAl4nRAAAAAQB71dEAAAADAPwF1QAAAAAA+YnVAAAAAIF+ddUAAAABga8F1QAAAAMB63XVAAAAAwDUOdkAAAADgUTZ2QAAAAIA5aHZAAAAAQDmkdkAAAACg8a52QAAAACAlxXZAAAAAoKRFd0AAAADAlm53QAAAAEAkgXdAAAAAAO2cd0AAAACAf7R3QAAAAKDoNXhAAAAAIFdLeEAAAABg+WN4QAAAAGBdeHhAAAAAYM6JeEAAAAAg48R4QAAAAEDl8nhAAAAAQFsReUAAAAAghiF5QAAAAGDxU3lAAAAAoGFieUAAAABA8Jl5QAAAAAC1qXlAAAAA4Pe2eUAAAAAAEMF5QAAAAOCd6HlAAAAAoIIAekAAAAAgtBJ6QAAAAOAUI3pAAAAAIPQsekAAAADgSz96QAAAAABwYnpAAAAAoHx2ekAAAACgoKx6QAAAAIBv6HpAAAAAID/7ekAAAABgYw97QAAAAGCcIntAAAAA4BI3e0AAAADgV1J7QAAAACC2fXtAAAAAoDeSe0AAAAAgN6Z7QAAAAKBkwHtAAAAAgLjhe0AAAAAgSAx8QAAAAAD+RXxAAAAAIAVZfEAAAAAAfY98QAAAAODQnHxAAAAAIOCwfEAAAADg6Nh8QAAAACCxB31AAAAA4CEjfUAAAADAO0J9QAAAAEDZw31AAAAAYOFtf0AAAADA1J9/QAAAAICqVYBAAAAAoDN4gEAAAACANYqAQAAAAKAhzoBAAAAAAFPggEAAAAAgreeAQAAAAKBT8oBAAAAAYO8CgUAAAAAgYDmBQAAAAOARc4FAAAAAYHt7gUAAAABA1Y+BQAAAAIA+poFAAAAAYB+2gUAAAABgo+SBQAAAAEA9+4FAAAAAoI4PgkAAAACg7BaCQAAAACDcQoJAAAAAYKBRgkAAAAAAj7GCQAAAAEAJyoJAAAAA4HPjgkAAAAAgkxKDQAAAAODMLoNAAAAAQEE7g0AAAAAg/X+DQAAAACDvdIRAAAAAwAmLhEAAAADAmZOEQAAAACAom4RAAAAA4A+mhEAAAADgqMOEQAAAAOBG7IRAAAAAoCI4hUAAAADATkGFQAAAAMDqWoVAAAAAYJFhhUAAAADg+ZiFQAAAAKBIvIVAAAAAYJf9hUAAAAAgn0OGQAAAACDLSYZAAAAAgMNhhkAAAABAR32GQAAAACDQuoZAAAAAoPe/hkAAAAAgQsiGQAAAAKCM04ZAAAAA4JnzhkAAAACAvQOHQAAAAIB4B4hAAAAAIL3HiEAAAAAARNSIQAAAAGDd24hAAAAAIC3hiEA= + NrgMGZxjYkCEfuNfSGJnQEMdzoN8QnFAaYA5p9LBc0BDe6rX1FN4QGneFfsq03pANR55p0EygEDIzy657HGBQGBI+6mNaoJA - + - HtDhQC277T9CIYpAhYpNQM+YyT81yyJBWNymQFpUOUCjcRNAxXztP1ljjkB9SrtAaHKYQH98r0CH9R1B1zKhQQik/z+hjxpBS+cIQEVeL0CcCStB20l6QBIkQkC8y+FAgLPwQNzYr0CHowlBHkhBQA4fMUEkzGZAxt0uQJjfb0A0VB1Bim+hQLPp2j+6yTZBbgh4QAhOUUEEiEhBmZ8OQT3GN0DJ6rxAh8PdQAD+RUEWpC1AuL6OQLRCXEApysFBEieKQI1/XEDCGxFBqCnMQAvmaEHLSUNBPUIcQPxGAECynC9C7mbDQWqO2kDIqQlBUJ44QHEbhkA/uc5AAgM7QfFUr0C0XFxBvoyjP4z1uEFPKuJAV77nQB3k5UB4HnFByoPOP3qFqkDolfZBrVOYQCa/OUCozFJAP1apQNO0tT9FMWZAucuHQLXjfD+lFQBA1sKLQds8xkB4r3FBh8YeQWLpIEEdckRCmUuFQd+j+UCecN1AnOeUQdNnlkB/umZAxtISQPhJ7j/utWVAidW+QUtJrkEMVf1BVLAmQDb8A0IjCs5AE4nzQJdMa0Fo345AhaE3QCht8kCRwlBCeERBQI2LtEDFWqVBGGGEQmLM6kAfU4VAY7V4QODKG0Isj6xBoqGIQe4Xl0CQI9BANXorQeRYk0AVWXhBXJ2HQrDw2kAilIpAA9qOQAyTh0HxvGBBPik6QXGGBkGnRFBCC4K4QimGfEHImx9BEwFkQKuLr0BN+NhAUWT5QIZGXEAKmbBBQmxBQg/b60Hd4QNBabCEQQkNnkHtNlRBa2HrQPoqX0DofRNBp4mCQIYKpkGnqM9CxHIfQqvAjkC0jFxApYoSQIwKU0D6JEFA16vsP+a1aUGHueFA67XePw== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwM4oYEAAAADAHUdgQAAAAMA9C2FAAAAAQH1kYkAAAACAdoRiQAAAACBPwmJAAAAAgMsjY0AAAAAgymhjQAAAAKAap2NAAAAAYEA5ZEAAAAAgEn5kQAAAAIB3pGZAAAAAwHoAZ0AAAABgUiNnQAAAAMBPhGdAAAAAAK6maEAAAADAwM1oQAAAAKCW5WhAAAAAABwuaUAAAADAnydqQAAAAEAjYmpAAAAAYCqsakAAAACgWeZqQAAAAAAMJWtAAAAAwLzsa0AAAADAMERsQAAAAKCBZGxAAAAAgHGBbEAAAACAmmptQAAAAGDIhW1AAAAAgAQObkAAAABAgEZuQAAAAEC/jm5AAAAAQPqkbkAAAACAg2dvQAAAAACLhG9AAAAAAFsScEAAAABgaCZwQAAAAID/RHBAAAAAwC9VcEAAAACgGZ5wQAAAACBk4XBAAAAAYGf1cEAAAABAPHhxQAAAAKAnhnFAAAAA4Bm6cUAAAABA4MZxQAAAAOB5+3FAAAAAwFILckAAAAAACxVyQAAAAEB9ZHJAAAAA4AKBckAAAABge45yQAAAAGCdm3JAAAAAwIymckAAAADAmcRyQAAAAEB60HJAAAAAoKDeckAAAACAVvFyQAAAACBTIHNAAAAAoM9fc0AAAADARZhzQAAAAEAQp3NAAAAAQLvPc0AAAADAPeFzQAAAAEB/8nNAAAAAoGMUdEAAAAAgMTR0QAAAAKCtQ3RAAAAAgN6FdEAAAACgDbR0QAAAAEAov3RAAAAAYOPIdEAAAABgIdR0QAAAAIDM5XRAAAAAgOIDdUAAAADgrRJ1QAAAAABHX3VAAAAAwJJ0dUAAAAAASqB1QAAAAGA+tHVAAAAAwHTEdUAAAADAOOR1QAAAAIBN8nVAAAAAgF0RdkAAAAAgQiJ2QAAAAKC9LXZAAAAAAEtNdkAAAAAAxmJ2QAAAAOB6n3ZAAAAAAL/BdkAAAAAgKVN3QAAAAECqcXdAAAAA4OZ+d0AAAADgFo93QAAAAECP43dAAAAAgD32d0AAAADgMVt4QAAAAOBrdHhAAAAAoIOEeEAAAAAA3Jx4QAAAACDetHhAAAAAYCvDeEAAAACgDfV4QAAAAABaAnlAAAAAwCQTeUAAAAAgUR55QAAAAKARQ3lAAAAAYElieUAAAAAA8ZJ5QAAAAGC6oXlAAAAAIG68eUAAAABgkUV6QAAAAAAk9ntAAAAAAB4YfEAAAADglCN8QAAAAIBiNXxAAAAA4IhQfEAAAABgP6J8QAAAACDxunxAAAAAIFzOfEAAAABANd58QAAAAKCmFH1AAAAA4GozfUAAAACg1WJ9QAAAAMDS631AAAAAIEJ2fkAAAAAg04V+QAAAACBN9n5AAAAA4P1Of0AAAAAgjZ5/QAAAAOBVrH9AAAAAIM/mf0AAAAAA1Q6AQAAAAEChFoBAAAAA4LUegEAAAABgQjOAQAAAAGDEXYBAAAAAIBtkgEAAAACg/2+AQAAAAIDAkIBAAAAAIGjEgEAAAADAHRuBQAAAAOB3KIFAAAAAgGNMgUAAAABgulaBQAAAAOAiaoFAAAAAABJ1gUAAAAAAGpSBQAAAAECymYFAAAAAoHOhgUAAAADgGLOBQAAAAKAIu4FAAAAA4OjJgUAAAABgLdqBQAAAAEBI34FAAAAAYG/ngUAAAACgEgOCQAAAAIAKCoJAAAAAYBEigkAAAABg1ieCQAAAAGAIMoJAAAAAoLM5gkAAAAAg3kOCQAAAAABpXIJAAAAAIPxjgkAAAAAginmCQAAAAKDckYJAAAAAYN+ZgkAAAADAlauCQAAAAACcs4JAAAAAIJ68gkAAAADgaQyDQAAAAIA7O4NAAAAA4GNEg0AAAADguJWDQAAAAGCKnINAAAAA4E3Eg0AAAAAgfdSDQAAAAOCS+oNAAAAAIEJ1hEAAAAAAXQWFQAAAAOCcKoVAAAAAoK4vhUAAAAAgG3WFQAAAAMBukoVAAAAAACOZhUAAAAAg3bOFQAAAAEBgvIVAAAAAQPlDhkAAAADgG02GQAAAAKCWhIZAAAAAoIQ8h0AAAAAAoEWHQAAAAOBntIdAAAAAgD40iEAAAADgjuOIQA== + KBZXds7jZUA= - + - /gmiQh5G3kFm359AjreCQ5bLfEAF0Z5AMQEMQYoSkkDjZ45ANWTiQQmY+z9rXFdBNw0LQWfFc0JfF/5A3asjQJ/YO0GBQ3BARPswQOo0pUBk2OJArqwIQXD94T+HANJAn9r1QDdg/EJESi9CpARSQddvuECPxQpA2r6LQfHNR0HOZb5Bb0IzQga0OkKkk5FASj5XQN7gIUELSkNDEzhbQeNM6kCRzw5B8mxGQb5TI0FYnxdAXMyxQNhPcUANHZlAzzCHQqJ03EDyAL9AtSo8Qedtr0FX7rdCT6okQZAcAkJfF1hAT9A4QU7PFEEIZhdAfzSlQGOWskDotQlC9yiXQC/0cEDw2KJB3VniP7if9EFeh0BATvzhP5XILkHAsidC9qg5QWcuuEDTUAlB7HEdQekXikE0ZwpAEgNLQd5Fz0Fp94RBMBkvQyR9KkPzEc1AhSOlQCBMW0FGylJC0TMSRb6hhUH8n1dBlefkQCGIi0I8aEpA0NBNQfmCWUH/miFBmnexQLB4i0CijXFBlr6SQlmexEBKZSZB7uQPQfsaV0HObepBySqBQkREYkE01CJCPA5KQO75fEFEWUlBktx9QMkgPkBpBatA2SE/QhipCEK7KQdB/pw8QQmdO0JSVBVBnBxMQrljZkBQWN9DOtY8Q6pQlkJs/RRBd2DeQ74fLEJGXmpB1aRcQUlw0ELDSnFAvrfoQSjWD0H9hTVElL0vQs++pUCJqppE/oE3Q9yRUUE9DsNAt7T/QG2BsUDp/DBCLrvXQOr40UCal8dCVpGaQWamO0NRqcRBgGIfQgyPDkODnxpCWNycQNA890Pt3jRDM6KrQIqGX0JJUg9Bh8SLRHsho0MpY5hAZBgfQbmTXUAx0AtBb/5HQfNpfUBFBLBE7cOoQnJNQkFk5wZCevIWQdIMfkBH0JNDEip4QWZ/i0DgJGhAVH3eQL3RPUEJrm9AfwLrQIbykUDLqhlCIsS9QO4ImkD+Ln1AE5ZIQUO7TkCy9wVCvxcARHIJpUK4VldAG9kuQrNe00AFsP1AHfuxQFuEcEA= + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoPWJWEAAAABAIEVZQAAAAMB2tllAAAAAAFQ7XEAAAACgqz9dQAAAAID4QV5AAAAAgI0hYEAAAADAiuFgQAAAACDzw2FAAAAA4L/mYUAAAADA0F9iQAAAAIArvGJAAAAAwBoEY0AAAADAIkBjQAAAAAB0BGRAAAAAwLuaZEAAAACAvdhlQAAAAIBAL2ZAAAAAwK1DZkAAAACAamRmQAAAAGDxn2ZAAAAAIJsfZ0AAAACA9D1nQAAAACDoXmdAAAAAAImpZ0AAAACAJsNnQAAAAMCx+2dAAAAA4E3/aEAAAABgWCNpQAAAAICiQ2lAAAAAII7CaUAAAADAjOBpQAAAAMDiCmpAAAAAgFgkakAAAAAA/4pqQAAAAEA6rWpAAAAAAPLEakAAAAAA8RtrQAAAAAC/Q2tAAAAAAHpja0AAAAAA5IBrQAAAAIAYomtAAAAAACrCa0AAAADA/+JrQAAAAIDtAmxAAAAAQEeCbEAAAACA46NsQAAAAICVJW1AAAAAAIVdbUAAAABAoH9tQAAAAIDbB25AAAAAQPAlbkAAAABAEFJuQAAAAICteW5AAAAAwAGgbkAAAABAi8NuQAAAAICr5m5AAAAAgI4ib0AAAACA9jxvQAAAAAC0gW9AAAAAgKGpb0AAAADAKAFwQAAAAAClFHBAAAAAYM8kcEAAAAAg3EFwQAAAAACyVXBAAAAAoFRicEAAAABA/XVwQAAAAMBJlHBAAAAAgEmicEAAAADAQbxwQAAAAKAJ0HBAAAAAAH7zcEAAAACA3kZxQAAAAIBJVHFAAAAAQONfcUAAAACALYNxQAAAAECWkXFAAAAAgAylcUAAAABAFLFxQAAAAIAHx3FAAAAAgNXccUAAAAAA7fFxQAAAAEBZFHJAAAAAAPc0ckAAAACA5UFyQAAAAACTYXJAAAAAAEuBckAAAADANpByQAAAAGCnnXJAAAAAgHyzckAAAAAAyPNyQAAAAIADCXNAAAAAIN8Tc0AAAABA+0BzQAAAAMBaTHNAAAAAQARhc0AAAAAAqW9zQAAAAIDjgXNAAAAAYKaVc0AAAACgPKBzQAAAAOCJsHNAAAAAIBvUc0AAAACgzSJ1QAAAAEBWsXVAAAAAABC9dUAAAACgxNN1QAAAACC66nVAAAAAoAIjdkAAAABgvHZ2QAAAAKC/g3ZAAAAA4LugdkAAAADAsLx2QAAAAMCXyXZAAAAAYHbodkAAAACgUZ13QAAAAGCVvXdAAAAAoKNJeEAAAACgFot4QAAAAOAWonhAAAAAILm2eEAAAABgH/t4QAAAAEDsBXlAAAAA4P/SeUAAAADgmuJ5QAAAACB2FHpAAAAAYKU1ekAAAACgv0d6QAAAAMBnVHpAAAAAQBBeekAAAABgWJF6QAAAAKAwznpAAAAAIJJJe0AAAABAz1Z7QAAAAOA3tHtAAAAAoEjge0AAAAAgyER8QAAAAOA2UXxAAAAAwB5bfEAAAADgpTZ9QAAAAMBcg31AAAAAQDW+fUAAAACglNV9QAAAAKCs9H1AAAAAoHYof0AAAADgv8Z/QAAAAGCgR4BAAAAAAGhzgEAAAABg0niAQAAAAGDUooBAAAAAoFvogEAAAABgQTKBQAAAAKDh0IFAAAAAAEL7gUAAAADgpgGDQAAAAKCVM4NAAAAA4HVKg0AAAAAgbIqDQAAAAAACw4NAAAAAIKYyhEAAAADgOT2GQAAAAGC7UoZAAAAAYJS7hkAAAABgxhSHQAAAAEDYuYdA + KBZXds7jZUDAIFw1+IJuQBTpB48/A3JAJ2tCVJRydUDbQ5zIVzR4QIJ3jJ9Xw3tANlDmExuFfkAlaZDsN/qAQH5VvaYZW4JAJZh+FuSChEASNmHicGOGQA== - + - k7F4QPofjkCWD4dA+D/LP3q2EEF4v+0/U6uOQOJNjUFJ7CRAvto3QGtR90DQtiRAwsfaP7u/L0A8zYJAknKiQGQmxUA1P0pAuycAQAvx5kA+z2NAyjCZQGRpcUBUoRtA+U6OQamMgz9y46VBRNYnQQ6zU0D9TbtBtZz3QLhD6UD6Ix1A8Vb0QBx+rkBZQwBAk0GKQK13EkA2aZNAIrfjQJIn4UBDcXxAdmVvQJ3mOUB1QmhAYpTDQHhJ1ED7iQFB2kmSPw5kDUIfFINB5HQlQMXlbkGOSt1AXWdMQSCTE0H/dhpCOC8TQQb98kCX+OtBuMktQWkFDUEXasg/87D4Qf9LrUKuSVlBOIDxQeB7tUHAg5BBooJFQTfOgkF6jtBAhydLQDKp50HCYwZBc5QwQkYG9ENdrmNCRuD3QNdVtEG733lAbPL2QfpHBkGNiXpAxQZvQVnPAUJ34RJAsJqzQF5vz0DY3a1B6h3oQcq6WkE0PJBBoPuuQbNQ+EA4YGZASfYPQWq14kFb341Adm97QhnThz87eFNA0qSBQHa3Y0EAR7ZBVXyaQbhG00Ahd5hA/6tmQUqi3UDWm4tAOx4GQmeSS0IAANRBJR6sQG4r+kJOB5ZDATkWQRbumECAgFxApnWBQPiuFEFJki1BoAM5QjEE3UDgXoFAm2JAQb8SxUDGbKtC0IKEQpPdm0Bk10FB8ovPQqRPOkMncxdBx+oSQOoOoUBD5FRBPJrGQU9LNEGtCnhA/zbaQEQ1k0BlKXhAUk1KQJjq4EA5/P8/zoXTQZJNu0ACwcZA2ZTIP5FzwkBAZDhAvXkJQOnqf0CW1lxAGYDYQPt9dEFlZIVAMi8uQJaenkAxypdAAqcAQPAcnUDlTzFB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoCB7ckAAAADA77lzQAAAAMA4VnZAAAAAgFLCekAAAACARdV6QAAAAACWZX1AAAAAANmSfUAAAADAoKZ9QAAAAADDd35AAAAAAO0mf0AAAAAgLhmAQAAAACDKIIBAAAAAAMDSgEAAAADgasGDQAAAAACmbIRAAAAAYJ6RhEAAAACgaQuFQAAAAGDKXIVAAAAAoD6yhUAAAACgkfyFQAAAACD6V4ZAAAAA4BSQhkAAAAAg9aSGQAAAAMAEu4dAAAAAQNjTiEAAAADgS+WIQAAAAOAd/4hA + NrgMGZxjYkCEfuNfSGJnQOJgFSPMRGtAfWFqBdTRckCUuYxC6RJzQNO1bgpsQndA6g2RR4GDd0D1vnA777J8QCWwCR0xpH5Apok6oMORgECmuCjKb1qDQA== - + - l5gSQBeMd0C48LU/0wWYQGzd8j80oXhASiuVQHQ+CkHOSLhBWgKfQEFu3UBbxYdBXomxQNO/EkAwfpxA+jjbP4ynU0AOnVNADDyVQbi5X0BKtQxB6f+rQD9LN0BJ6No/higtQbgBHUDtthtC + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAAEHIa0AAAABAX/9tQAAAAOC8J25AAAAAgEc2cEAAAADAOt5wQAAAAABtYnJAAAAA4Jpyc0AAAADAxjJ1QAAAAABoRHVAAAAAwEwveEAAAAAASbZ5QAAAAIAAJnpAAAAAQJkie0AAAABAA/l7QAAAAMAD+XxAAAAAgJCVfUAAAAAA0ad9QAAAAID7M35AAAAAgLZifkAAAACAALZ+QAAAAEADoX9AAAAAgOjRf0AAAABAq+B/QAAAAMAO9n9AAAAAwM8OgEAAAABAGzKAQAAAAGBmaoBAAAAAIEvYgEAAAADg+Z6BQAAAAEALgYJAAAAAYCO2gkAAAABgt+2CQAAAAKCvX4NAAAAAoLKOg0AAAAAgmpmDQAAAAABOwYNAAAAAQCKKhEAAAADg1I+EQAAAAMCkA4VAAAAAAFo2hUAAAAAgHEmFQAAAAGArUIVAAAAA4PpfhUAAAACAmriGQAAAAGD6MYdAAAAAAKfIiEA= + NrgMGZxjYkA/KJil8iNpQAoahmk8YnBAqJq9oOoidUAsI4iav9J1QMqjv9Ftk3pAU+TPEW7jfUBJ/6kFQ2KAQCkh1jJjeoJArSx0Is96g0BWJ3vYxKKFQGd/VBpHe4dAEHpb0DyjiUCUhfm/qKOKQHSnJe3Iu4xAlLTn6VQsjkDY1O8JVdSPQJTKxRJWGpFAtWw4UUtGkUDdTAbfdnaSQFfOtKSHapNAWTxGdpJClEDX5au53S6VQA== - + - Cp/eP95SuUD9XiVAoZZAQO6hh0As7lxA1/WOQZtEvkERz1NATByvQKFRu0DE+QdBTzMJQO/eN0C4YbY/wWbaQCILgUAvn/lA1vKcQEfpI0Hq+qJARGu4QPjbB0Ew1xVBRFRnQBuAM0HQIpZBhU2zQCGO8EHDyTdAd5NSQW/oKkFcBUpA4ZhqQZnsSkHLJ4NBeZ7sQP7tsEBgKA9BkpoCQnh1Q0D4zqZAXpGaQD8zFELwKck/QPvoQQ== + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAIEnDZ0AAAACgEEJpQAAAAKAFg2lAAAAAQKuDakAAAADApwJrQAAAAICsSmtAAAAAoBzha0AAAABAGkVsQAAAAACrJW1AAAAA4FNHbUAAAABgzGFtQAAAACB9hG1AAAAAoAJPbkAAAABAwGhuQAAAAEAwnG5AAAAA4L/fbkAAAAAAiCxvQAAAAEDSZ29AAAAAwAmLb0AAAADgCTRwQAAAAOCzU3BAAAAAoD6jcEAAAABAUMdxQAAAAMDn83FAAAAAAEgFc0AAAACA0IFzQAAAAEBVpHNAAAAAAOS2c0AAAADASsZzQAAAAID+73NAAAAAAJotdEAAAACA/UB0QAAAAIAxcHRAAAAAwFqDdEAAAADAHcR0QAAAAMAP1HRAAAAAwGf3dEAAAABAbRJ1QAAAAEBnQ3VAAAAAAAxTdUAAAAAAsGd1QAAAAMAEg3VAAAAAgByfdUAAAACA4eJ1QAAAAIBl9nVAAAAAwH0tdkAAAADAS0J2QAAAAICeU3ZAAAAAQFtndkAAAACA1752QAAAAMDT5XZAAAAAQD5Vd0AAAACAUeN3QAAAAABLVHhAAAAAgFoWeUAAAADAvlZ5QAAAAACKZHlAAAAAQFOFeUAAAAAANqd5QAAAAMAU7nlAAAAAwGyDekAAAADALJV6QAAAAMCvpHpAAAAAgOlFe0AAAABAAWd7QAAAAABvdXtAAAAAgEfNe0AAAABAzPV7QAAAAEDtAnxAAAAAwN0RfEAAAAAAhR58QAAAAMC8M3xAAAAAwH5GfEAAAAAAElZ8QAAAAAC2o3xAAAAAQH63fEAAAABAcfN8QAAAAIAaFX1AAAAAwPImfUAAAAAAQjZ9QAAAAEBhbH1AAAAAgGfUfUAAAABAgON9QAAAAEDVFX5AAAAAQAV3fkAAAAAAmoZ+QAAAAID5035AAAAAQBfffkAAAADAKPV+QAAAAMCAHX9AAAAAwBlNf0AAAABAKpd/QAAAACBaB4BAAAAAQNQVgEAAAACg9BqAQAAAACBpMIBAAAAAYPY7gEAAAACgV1OAQAAAAIAvWIBAAAAAYM1fgEAAAAAALWaAQAAAAIANnoBAAAAAQAakgEAAAAAAFKqAQAAAAEB5s4BAAAAA4HfHgEAAAABAatOAQAAAAGB124BAAAAA4BAXgUAAAACgjyWBQAAAAGAmK4FAAAAAAMUygUAAAACAIDqBQAAAAGBOU4FAAAAAoItwgUAAAABAk3qBQAAAACBIk4FAAAAAoPyYgUAAAAAg2aGBQAAAAGDQrIFAAAAAoE2zgUAAAACALbqBQAAAAOCjy4FAAAAAIObggUAAAACgR/WBQAAAAGBH+4FAAAAAwCwDgkAAAADgDwmCQAAAACBHI4JAAAAAoDtFgkAAAAAACU6CQAAAAKBKhIJAAAAA4LGSgkAAAAAAApqCQAAAAAAprYJAAAAAYJ20gkAAAAAge9CCQAAAAMCXOoNAAAAAYFJDg0AAAADgAlWDQAAAAMApW4NAAAAAAAJog0AAAADALXKDQAAAAKAvjYNAAAAAgPWphEAAAABgwrGEQAAAACC/vIRAAAAAwDTMhEAAAACA5tKEQAAAAEBDCoVAAAAAYGcphUAAAABgQjCFQAAAAMDTQYVAAAAAYMpLhUAAAADAGFuFQAAAAEAMkYVAAAAAYMKahUAAAABgZaGFQAAAAGBLpoVAAAAA4CC1hUAAAADgU7uFQAAAACAtwIVAAAAA4P/KhUAAAABgAtSFQAAAAOCI+4VAAAAA4EkRhkAAAADAjByGQAAAACD9Q4ZAAAAA4OJLhkAAAAAgaVyGQAAAAODda4ZAAAAAAKyMhkAAAABg5tKGQAAAAOCb8oZAAAAAgGX8hkAAAACgJVKHQAAAAOC5e4dAAAAAYL6kh0AAAABg6LuHQAAAAKBa3odAAAAAIIDnh0AAAACgPlqIQAAAAIBoY4hAAAAA4LSFiEAAAACgeKKIQAAAAOACw4hAAAAAwD7MiEAAAABg7dmIQAAAAED84YhAAAAAoDLsiEA= + NrgMGZxjYkA= - + - MGeBQQzCZUGs88lBrs/QQTHYZUEx0ZFBDsgNRF6ZQUMnIgBDa2OhQ/V15ULSD3RBzLaPQf/SrEGMXzNCLnhgQo58d0JRLH9FOg4gQ+4RPEINKdpBjdeBQmz6D0LxHShDrIcZQzEQOkEmjoFDTzuSQjjGj0H6VxJCLSUzQ54gIUNEuphBk03BQsPvSkVIUclD9PaAQbU3IUIgd49CVssPQ9pJnkH3QnRB9EtUQiqqzUOzxgNDD0svQgVEnkEsoTtCouGdQbtInkGGqGNC370jQ3S3j0LLwUhBttcEQ5NNdUIJ3x5CZ5lMQqlek0Jmty9Cik2nQmQtn0Iix/tB/a2uQt4LFEJpj0lCgjYTQh/GYkPbID5Cbt4aQigOPkP3rEhB+vrdQuNs2UL0QdBDpal6Q0A0gUGGjrdEjmxbQ6K0BkSm+dNCeBUbQin1lkEzJCND8mEeQ+zlK0GFmXVCgha7Qdk6wEJO77xBNYXDQQs/WEIBV1xBfsWAQoEVgkJB/XNBjQxnQYM/QkIMoblCkYJpRJFGL0KGHXFCiwjLQp+vmEE9kiJCwPFDQkjbU0LftBdCndG0Qdt4dEKEFkFDpUGBQRLG90GeLAdCu3zDQTuXQkIrzuNBWiM6Qdxdv0MagyND1OKyQ+oUHkJTvjhC0E0/Qo4ptkKNwDhBp2DGQ7IJlUJYgz5C3NsFQh8RyUGeZBVDvlTURHiRuUN3zztCDRUCQe+15kFq7hJDN0svQZ8vu0FHXIVCr3W/QRQtKkPakIhBTO8gQmtLa0I/0FdCsPrtQQA5uUJIb4BCJ3BCQu/cZkJNP4VC0cKPQTaFoUMm6tdBSku6QcszC0L6vYVCF8y8Qv59fEMepDJBHTDKQv4GWkGwwddB0p2FQjRpbkIwG2ZFYpCSRJqel0IHBxtC17EBQvNxokKxtJBBITSnQff1rkLp4JdBT46YQb1zIEHycUdBtMqLQo8HgUPQPrZBaSulQbIG6kK52IFCKeoPQyTCBUMAfQpDe6bSQg== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAgFPjZUAAAACA90RmQAAAAAApYWZAAAAAQOrKZkAAAABAOP9mQAAAAACQvWhAAAAAYK6HaUAAAACAd6VpQAAAAECYX2pAAAAA4L6BakAAAADAQ5lrQAAAAKDvw2tAAAAAoMdDbEAAAADgEV9sQAAAAAAcqWxAAAAA4BnabEAAAADAPY1uQAAAAGDeqG5AAAAAYDcIb0AAAAAAgSRvQAAAAICeYnBAAAAAQMlwcEAAAAAge7JwQAAAAKAOg3FAAAAAwM6QcUAAAACgsaJxQAAAAIAfsXFAAAAAABG7cUAAAACA6M5xQAAAACAjMHJAAAAAoOtdckAAAADgX3VyQAAAAIC0hnJAAAAAwCyqckAAAABA3bVyQAAAAAAG3HJAAAAAwMpUc0AAAACAQXZzQAAAAKCIknNAAAAA4Hmhc0AAAAAAJOFzQAAAAEDMH3RAAAAAIK1vdEAAAACACzp1QAAAAMCoRHVAAAAA4IVhdUAAAABAnXN1QAAAAIA/gnVAAAAAYIaydUAAAAAgMyR2QAAAACCuRHZAAAAAwFxUdkAAAAAA+W52QAAAAIBhg3ZAAAAAwPCTdkAAAACgk6t2QAAAAOD83HZAAAAAANMid0AAAABgLEJ3QAAAAIDvUXdAAAAAQDe3d0AAAABgBUN4QAAAAKDdUnhAAAAAYHpyeEAAAADApIJ4QAAAACAspXhAAAAAYI3beEAAAADgigV5QAAAAMBjEnlAAAAAwGwzeUAAAADgZz95QAAAACDuZXlAAAAAoBqneUAAAACgcL95QAAAAGBk0nlAAAAAgJH9eUAAAAAgGgh6QAAAAADEEnpAAAAAwPAsekAAAAAg7Et6QAAAAIDjc3pAAAAAYNR/ekAAAACg/4x6QAAAAOBn0npAAAAAgMv1ekAAAADgehV7QAAAAMDOZntAAAAAoO11e0AAAACASoJ7QAAAAOBfnHtAAAAAIPyoe0AAAADg+MR7QAAAAEBK43tAAAAAgEAFfEAAAABgaDB8QAAAAEDJVXxAAAAAAHx4fEAAAACAKZd8QAAAACAHtHxAAAAAAE3FfEAAAACgjut8QAAAAODs+XxAAAAAIOkXfUAAAACgqSR9QAAAAMAGMH1AAAAAQL5BfUAAAABgcVR9QAAAAMDKZX1AAAAAILh0fUAAAABgSIJ9QAAAAOAjmX1AAAAAoCfafUAAAABgGP9/QAAAAMCyW4BAAAAAgNtigEAAAACAjnWAQAAAAOBjvoBAAAAA4GDigEAAAACgU+2AQAAAAACEAYFAAAAA4NkagUAAAABgezGBQAAAAKCdTIFAAAAAoHxqgUAAAADAGniBQAAAAGBggoFAAAAAIF6KgUAAAABAgZKBQAAAAGAAvIFAAAAAQLQAgkAAAABgZAqCQAAAACC8GoJAAAAAICFKgkAAAAAgXU+CQAAAAMDAaoJAAAAAgFR0gkAAAAAgGZaCQAAAAODXI4NAAAAAoPSPg0AAAADgSQOEQAAAACD/CYRAAAAAgNRihEAAAADgN2qEQAAAACC4q4RAAAAAIAjahEAAAADAcuuEQAAAAECjJoVAAAAAINk6hUAAAACgi1WFQAAAAMBamoVAAAAAoH2rhUAAAACgE8OFQAAAAKBU0IVAAAAAAInphUAAAADg6vKFQAAAAADXw4ZAAAAAILEmh0AAAADAwlmIQAAAAKBRhIhAAAAA4CbCiEAAAAAgCMeIQAAAACCF84hA + NrgMGZxjYkBImCMySWRuQBu6YmAmQ3BAJCru7HxDdkBCe6rX1FN4QA== - + - PsJ7QaCZJkCtHu4/GP1uQMveXEDDuds/FkeHQL5knEB3Th1AM/duQD4VmEBWqq1ADxuNQTnVXEBpU6pAqFoAQPYKfUALEIBACdsTQQYHHEAu9flBXmMpQDrdq0AF1o5B2RCLQdvD3kEVu11Aeq2cQJ16SkDMuds/pUYkQFY4qUFvkoJA659KQODc5EBdob5AYZqIQWYQKEFItts/JERpQDQkTkEyZ7lAXHbGQC4zEUH2tI5ARGcsQRlqA0HElbxAnh0mQNaQcUE2Re0/uuuOQB87y0AtYLY/oh1uQgvJi0FSBu4/6B+HQA9q6kAPby5AQ+KjPxA++EAfK6pABBakP9mg+EHXQeVAdIouQKroQ0FRuD5CGi2qQKZBL0HnUD1BzWqTQN1oQEB/kkFB4p3rQYOa0T8TECZADdIcQTAzDkEpHr9AYEFBQEp2CEGxHW9BvpZEQVop9kBhBQNAIPJqQW06wkB4DtZBBmAIQhGJE0KCRi5A/m8MQRX3EUIFfYtCbBDCQXURSkDmAJ9BXA0KQcW8U0A3QUpATL1KQkbkG0CrSzFACIgGQlJzMUFe50NBQbXdQOK950HSHBxCAP/uQOLqlUEJb5xAueOOQOMC8UA9o3RBY9lJQMFv7kDjM2ZAn6wtQSI/okBznt1ADWFKQCI3o0DnjzNB/KMkQCYB0kAzm7hBwGAsQYuE5kCKhWFBtO25QF9vykGcsDNCl55AQJdBNEHq7jpBR0aqQcSc2EFQw5pBCGk4Qf9L1EAygkBAHoUlQaXWM0IVqnRBFD1TQfl0b0DVJEBAWzurQB//h0ChLAhBQ7dTQMh9qkBdK+tALVTJP9ZRkkF/Jr1AGOaWQV7pXkA4rt5A + AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAQAlDYUAAAAAAth9iQAAAAEA7YmJAAAAAQJUBY0AAAACACmRkQAAAACCCqGVAAAAAgKfFZUAAAABAR+RlQAAAAGARJ2ZAAAAAYBhiZkAAAAAAE8tmQAAAAAAPo2dAAAAAQK7+Z0AAAADA0UVoQAAAAABIpmhAAAAAAMRCaUAAAADAW55pQAAAAIAQu2lAAAAAIO/QaUAAAABAT/9pQAAAAEANgGpAAAAAAC2na0AAAADAdl9tQAAAAACBSW5AAAAAACNjbkAAAADgdYpuQAAAAMC1x25AAAAAAItFb0AAAAAAHWBvQAAAAIBdiW9AAAAAAMTGb0AAAACA+RVwQAAAAKBNY3BAAAAAYDCccEAAAADglbZwQAAAAIDV43BAAAAAYHhicUAAAACgxW9xQAAAAKA/fHFAAAAAYP2KcUAAAABgfcNxQAAAACAeAnJAAAAAAP8UckAAAABgYGByQAAAAGBRk3JAAAAAgGWhckAAAACAjrFyQAAAAEDUxXJAAAAAAJ/gckAAAABAURVzQAAAAECCNHNAAAAAQGVcc0AAAABAZ4JzQAAAAICvtHNAAAAAAH3Tc0AAAABA1uFzQAAAAIAVM3RAAAAAAEmIdEAAAABA5aJ0QAAAAEDHznRAAAAAAOfkdEAAAABAb/h0QAAAAMBzE3VAAAAAgFBRdUAAAACA7151QAAAAMDgkHVAAAAAQL+hdUAAAAAgzfF1QAAAAEAwAnZAAAAAQHcUdkAAAACgvR52QAAAAKD9NXZAAAAAYP9VdkAAAAAg7nd2QAAAAADZ6XZAAAAAYAUMd0AAAAAguy93QAAAAACgSHdAAAAAgHe7d0AAAAAAodF3QAAAACC+3XdAAAAAgEz1d0AAAABAThN4QAAAAGB7I3hAAAAAgAxheEAAAACAjJZ4QAAAAABDoHhAAAAAoGy/eEAAAAAgLdJ4QAAAAGAY5XhAAAAAQO7xeEAAAADgWBR5QAAAAAD3InlAAAAAAPsxeUAAAAAgoEh5QAAAAMDjfXlAAAAAYL6UeUAAAABg9aJ5QAAAACAptHlAAAAAIBfCeUAAAABAoNR5QAAAAOAd4nlAAAAAAMIIekAAAACgjR96QAAAACAQNHpAAAAAQJOGekAAAACAiqd6QAAAAOCFxnpAAAAAIHrVekAAAABgvuR6QAAAAMAn83pAAAAAgA4Ee0AAAABgRSJ7QAAAAOCdUHtAAAAAIMxje0AAAAAAYn57QAAAAKCmpXtAAAAAgDaye0AAAABAwcZ7QAAAAAAq1ntAAAAAwAnme0AAAAAgwPV7QAAAAKC1A3xAAAAAYMAffEAAAACgdC58QAAAAOC3bXxAAAAAYJ96fEAAAACgO4R8QAAAAKC8p3xAAAAAIEa7fEAAAACgYsh8QAAAACAn2nxAAAAAIAf0fEAAAACgGf98QAAAAGCAHn1AAAAAwKyNf0AAAADgtJh/QAAAAKAsvH9AAAAAwAXHf0AAAABgHzOAQAAAAKDMOoBAAAAAYMxBgEAAAADA0IKAQAAAAOBvioBAAAAAQKTfgEAAAACgmSWBQAAAAGAiaoFAAAAAYCWJgUAAAACA1qaBQAAAAKCcyYFAAAAA4ODOgUAAAACgb9SBQAAAAMBK2oFAAAAAYDP7gUAAAABgxRiCQAAAAABqLIJAAAAAYPY+gkAAAABg01CCQAAAAACEWoJAAAAAIBhjgkAAAACAfKaCQAAAAMBCrYJAAAAAoPSzgkAAAAAA37mCQAAAAIDv0IJAAAAA4DHrgkAAAACg7PqCQAAAAKDnAoNAAAAAQLsIg0AAAAAgshKDQAAAAKCwG4NAAAAAoKQ1g0AAAABgZ0uDQAAAAAA0VYNAAAAAYN5gg0AAAAAg2W6DQAAAAKCmdINAAAAAoLF8g0AAAADgN5eDQAAAAAC7q4NAAAAAAEK7g0AAAABgIMuDQAAAAGDN2oNAAAAAINXfg0AAAACgoOiDQAAAAGAZ/4NAAAAAgKAzhEAAAACgjW+EQAAAACCSe4RAAAAAoAqFhEAAAABA7IuEQAAAAABjnIRAAAAAoBS3hEAAAADAnc6EQAAAAGBV1YRAAAAAILLihEAAAADgqPGEQAAAAGBTF4VAAAAAwDU3hUAAAAAgyTyFQAAAAID3XoVAAAAAYC5khUAAAADAKXKFQAAAACC5A4ZAAAAAINYxhkAAAABA1FuGQAAAAGC9jYZAAAAAwCtdh0AAAADgMYqHQAAAAGCD1YdAAAAAQO4DiEAAAACAohqIQAAAAGALVYhAAAAAYBd5iEA= + NrgMGZxjYkA= - + - tywcQOIYrEBMFGhBUiTaP43PN0De5XJApzUDQYFSz0DiSoFBmUzPQGMxmkDtIXJAHsllQGlyfEAgSUpAvlkgQs5QSkAnCw1AZGHbP4/ms0DH8YVAmW03QZHQrkASTRtA70zIQFPFgUAfqR5B4jbzQG65GEHiVQ9BDzZTQBODoUBL7r9AqySDQZCS5UA4EtBAXAGBQP9K70DrzxJA6kCYQeR+tT8tYktAF9S6QODQwUD47JBBchBvQJ4sHEBPARJBq0cuQAnfyUAo5RdBJChXQWWDk0CdmEpBqjEIQUsQvEAEncRA2JcwQslDQUBrRJpAw/8uQPmDeEAP4ghAE50DQXoVyT8J7olA4PqAQLyk00C0YjdAq1sEQnsZXkA8FLY/Ac0bQFDsQkBNmb1ASz3/QCx9vUFETYpAFDFgQeo8nkEdfg1B7v4AQYSYxEExNrhA4ZPLQRcYjEEGWRVBLsm8QBz6mkDVtXhAnLN1QSZ7p0E+VUpBZDkcQV4/60CLB6NBXl6OQG+VoEDc+QpAzCUJQLpQCUAduOFAYiUJQBxNOEECxJlAmJO3QR7XCUBN/HVCFMZmQc4VEkCK9AlCfKcmQEcSJkGCImxCnXSmQQzbHEEURQBAYDpYQLhO5UE9HhJAx9A6QmbrJkIuzGtAhlJOQZzmikHh0QlCPGcrQbYp1UFY9dBAy/evQVRM10EN1ZNBE7YoQfi5xEFeX5FBr8pfQUi6/z8Xc9RBkSCmQOBUVkGiWDtCMhR4QVaMokKrxENA+7jSQVaetkLJWkJA2gi6QfoiUUIES/lAsSBbQDEYBUI7JQBAALBnQT6lu0NytQxBs9f9QMZkJkBbDgFB3tHtP4DYLkHkSP1BGFnTQJtFD0F5DN5A5y+zQc1zk0BkhxhCd5WZQpyC8UCul4VAB0S4QAtxZUFDeW9AslLCQaQ7g0H4EpJAiMEPQYoR30EfnW5ABr6qQA+sXUBSgaNDD1DKQXxotEFctzpBc+NAQHef0ECDZDRCpR6hQBufCUBNed1ATP8LQgoFR0J9A0RBM0NnQL0rQkGYojRClYl6QQ2zCUFMPDdCyrGWQUtyJUDUs45AaBvEQC0lMkC7YgpBbtSPQHYxQkEHW2ZA12WSQIyWpUB3HAlAX/oaQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwLkRXkAAAADAuyhgQAAAAKACQmBAAAAAQL6KYEAAAADAbUNhQAAAAOAQqmFAAAAA4Ox/YkAAAACgHSdkQAAAAIDARWVAAAAAwGoCZkAAAACAZUVmQAAAAMDy5WZAAAAA4G6gZ0AAAACAKaFoQAAAAGA4vGhAAAAAABpBaUAAAABA0mxpQAAAAADZRGpAAAAA4AeKakAAAAAAp6pqQAAAAICFYGtAAAAAYBika0AAAACAKIhsQAAAAIDHvmxAAAAAwAnlbEAAAABATyBtQAAAAABBgm5AAAAAwCZJb0AAAACA1JJvQAAAAAAoqG9AAAAAQHXib0AAAABgGjJwQAAAACC+ZHBAAAAA4GJzcEAAAABgPYJwQAAAAKBKlHBAAAAAwDLmcEAAAADAgv9wQAAAAADlFXFAAAAAgOo7cUAAAACgZnVxQAAAAACLw3FAAAAAYFnRcUAAAABAov9xQAAAAEA4FHJAAAAAwDkfckAAAADgm0NyQAAAAIBbkXJAAAAAwIuickAAAACAxcZyQAAAAEAb5HJAAAAAwIHxckAAAAAA1gRzQAAAACAfM3NAAAAAoFBPc0AAAABAwGJzQAAAAAA0g3NAAAAAoFmXc0AAAAAAqKFzQAAAAAD5sXNAAAAAYDDAc0AAAABAPxV0QAAAACCgP3RAAAAAAC9mdEAAAACASIN0QAAAACC4j3RAAAAAwLKidEAAAACAU790QAAAAODn6XRAAAAAQOD/dEAAAABAhRh1QAAAAIA3KXVAAAAAQJxDdUAAAACAKmF1QAAAACD4b3VAAAAAACCBdUAAAACAz6B1QAAAAAAm03VAAAAAIK0UdkAAAABgv0V2QAAAAKBgVnZAAAAAIBNzdkAAAACgLJF2QAAAAKD2nnZAAAAAAKCydkAAAABg8MB2QAAAAIDn23ZAAAAAgCr2dkAAAAAg0i53QAAAAOA1aHdAAAAAIKdzd0AAAACgMIt3QAAAAOAzBXlAAAAAQJH3eUAAAACgK0l6QAAAAADJvnpAAAAA4E5ue0AAAADAdJV7QAAAAGDCvntAAAAAQENCfEAAAADg6Ut8QAAAAKD4/H1AAAAA4BVafkAAAADg53R+QAAAACD3tX5AAAAAoDjffkAAAABA5wV/QAAAAGBbRn9AAAAAIFiNf0AAAABgt5h/QAAAAKCnpX9AAAAAwLjSf0AAAADA2CGAQAAAAKBWT4BAAAAAoNPTgEAAAABAi/qAQAAAACDlNoFAAAAAYNpRgUAAAADgXGCBQAAAAODMcIFAAAAAIOSqgUAAAACgbfuBQAAAAAB1BIJAAAAAIF4igkAAAABgbHyCQAAAACBb+oJAAAAAQB0bg0AAAAAg2y6DQAAAAODcyYNAAAAA4N8KhEAAAADgzYOEQAAAACAU04RAAAAA4O/5hEAAAADAUzqFQAAAAAAPlIVA + NrgMGZxjYkBxWoXuS4RsQBu6YmAmQ3BAYG6KbtRSdkCPXyNQFkR4QGDMZsIsZH1Aj73/o25Vf0DquBNZjrKCQFq/o40Os4NA6ucBgzo7hkBa7pG3ujuHQA== - + - 19QbQG9+XEB2Xi5A3IFoQMEAb0Bl2DVBPn9oQJ7fhUEO0+0/03MCQKF1CUB9HIpBbh8VQePis0A2oZdAOlCyQAEeS0DMVEJAGZm/QJvRQUHIcR5BgkgbQB+9vUBLdz9Bd++uQHnfrUDjFnxASEvtPyYm2ECmdUpA93EfQPgQcUAwXo5A0K7hP/PBXUHSHJhAlRFKQNpHZUB3HgBA18JVQJG8EkC4RxdBS0yyQIzBEEHKVa9AfEZTQAr7oEAi251A4TjlQKxoCUDDJGZAAPsKQU5DzkCTCRZBWpkkQGfkMUD6QihB8gI9QcC6C0E7D/RAhzSPQM2GdkBycb9AHz4IQcopd0HccMdAhv9eQVd/7T/YqTNBeZvbQAyfkUGqlANCAesIQawoIEIiORBBHJ1ZQfUGk0BSgJNBSrUbQHPbC0ForBJAkZvtP3UeuEBS0I5AQAKdQbagnEDuOHVBPRkNQpkTmkFnjhpB8+ZAQIIoqkAV/MNAeFNAQfWIVUDqmHZBvgr5QI4htkCk7EBBEschQQX2AkLpbkZBky3eP8slj0EjC/RA4uy1PzI0/UA0weJCGpDoQVIwu0CPzsFAAaHtQgOFhUBVGmxB41m2QdSEikBPUVlBKF3PQHZTHEBoTK9Atfr4QMPO2kDXXDpBzuAmQAErNkEQfBtAbV1tQWGdwUARrQ9Br92AQOUMvUA9ijdAKRJCQCqGs0Ce/wRB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8= - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwOlueUAAAACgCeV+QAAAAKDCV39AAAAAQD1if0AAAABg8NSBQAAAAAAa9IFAAAAAQHmyg0AAAADA8CCFQAAAAADFSoVAAAAAYAuhhUAAAACgBsWHQAAAAKCMA4hAAAAAoJWriEAAAABAkbuIQA== + NrgMGZxjYkDAIFw1+IJuQFf+/uF9UnBA - + - 1uUNQWJwyD86joVAXUkuQHbUW0Dmt4VAbRZKQNgA60BXPKdAwvojQFqHrkD2NqFAMdAFQcoa+UA= + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - - - - - - AAAAIKyfa0AAAADA/OVuQAAAAOB4aG9AAAAAADPlcEAAAABA8393QAAAAEARQ3lAAAAAgOugeUAAAAAAKsh5QAAAAEBf1XpAAAAAQLiee0AAAABA7i58QAAAAICdRHxAAAAAQH7GfEAAAADAMzF/QAAAAIBJU39AAAAAgCuWf0AAAAAARqR/QAAAAGBva4BAAAAAwCeQgEAAAACgf+uAQAAAACBqcYFAAAAAIAu4gUAAAAAgLwKCQAAAAIA0QoJAAAAA4IjSgkAAAABgD0ODQAAAAEBNYINAAAAA4CeDg0AAAAAg/4yDQAAAAKDRl4NAAAAAoHiqg0AAAACAqRqEQAAAAEBkYIRAAAAAYLe7hEAAAABgScmEQAAAAOCh8IRAAAAAID/6hEAAAAAgJkiFQAAAAOD0ioVAAAAA4EkmhkAAAABARjyGQAAAAGBnSYZAAAAAQEuNhkAAAAAA3NWGQAAAAIBH3IZAAAAAoJkRh0AAAACgk06HQAAAAIAO8ohA - - - - - - Afx4QGSyDUGSv9BAr1blQONK1EAq3jdARNQTQNtG2z87sRNBnUz/Pw5vCUBUecFAW7VAQB/HfEA+JxtAVKxaQWajDEEnLGtBPaD+QL9KCUCFOIxBRWTPQFYkg0FlZMg/S95MQiSGpUD3RopBOdi/QTZ3nEDSbUBANt6ZQaPfp0GWQJxATuO3QBze7D9fi2VAZsxnQi3ZgkFwoJZBKcIIQYq+pkFOACFBo+CXQHJ4b0KL8JdBlfwVQd2+c0DLQ5xA - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwG8hZkAAAAAg7eJmQAAAAIAeRmdAAAAAQFfrZ0AAAACAiCtqQAAAAMALQmpAAAAAQNKda0AAAABAs8trQAAAAGCfQGxAAAAAYJtJbUAAAABA/cRtQAAAAMBShW5AAAAAQGizcUAAAADgvsJxQAAAAAAgsnJAAAAAAIrTckAAAABgLOFyQAAAAMBU7HJAAAAAQA6Bc0AAAAAgib9zQAAAAEBh4HNAAAAA4DsBdEAAAABAWgB1QAAAAMCIVXVAAAAAAOyWdUAAAADApSd2QAAAAECtUnZAAAAAQF1kdkAAAADA4qd2QAAAAAD9ZXdAAAAAgMUReEAAAAAAIoZ4QAAAAIDEuXhAAAAAQBb1eEAAAADAtQJ5QAAAAEBrMnlAAAAAwLA9eUAAAADAoF95QAAAAIDBxHlAAAAAgG4jekAAAAAAJUF6QAAAAEAgTXpAAAAAgHxXekAAAACAo4x6QAAAAIDqwnpAAAAAQLXPekAAAACAQuN6QAAAAMAY9HpAAAAAQPsne0AAAACADGF7QAAAAIAw7HtAAAAAwBoHfEAAAABA8xN8QAAAAMAhM3xAAAAAQKeFfEAAAABAr7B8QAAAAAD60nxAAAAAQBoSfUAAAADAB0F9QAAAAIAbjn1AAAAAQF7RfUAAAABAOy1+QAAAAMBtzH5AAAAAQKcxf0AAAACAHWN/QAAAAEAPq39AAAAAwPrLf0AAAAAgyiCAQAAAAEAWQoBAAAAAIAZRgEAAAAAg0WCAQAAAAKAoeoBAAAAAAP6JgEAAAAAg+5GAQAAAAEC1qIBAAAAAYE2ugEAAAACgCrWAQAAAAKChwoBAAAAAYG/YgEAAAACAxt+AQAAAAMC0AoFAAAAAgEIPgUAAAAAgHlqBQAAAAKByYoFAAAAAIM1ogUAAAABg/4mBQAAAAKBfroFAAAAA4MK5gUAAAADAqsKCQAAAAKAuy4JAAAAAYCoag0AAAADAjV+DQAAAAOAda4NAAAAAgHOJg0AAAACgo/GDQAAAAIBN+oNAAAAAYLeAhEAAAABA8CuFQAAAAKApSoVAAAAAoJtihUAAAABgqCuGQAAAAGClM4ZAAAAAANcJh0AAAACAAxKHQAAAACCAXIdAAAAAIHJjh0AAAABgN5uHQAAAAIBEo4dA + KBZXds7jZUDiYBUjzERuQDtMc7KVAnNAk7mMQumSdEC1wo5zbAN6QCkKcw8EM3pA18uQpO9zf0CoZV1D2SGBQH1qyWo5coJADJMnYGU6hECfRN1xELqEQMpuX3Rc8oZAKuTjSr3Kh0CEwT9s1PKKQFfqiPAe84pAscfkETYbjkBOyQgfVouOQFRTMqC22ZBAvudW4tvZkEBr1gRz522SQBsRR94X2pJAMCaI3z32k0D6/mJoEzaUQEETEmMpGpVArBXIdlnClUCKlVIvSnaWQPYFmhSFxpdA0xeT+2rSl0AcmtPHiy6ZQHL12augkplAZRwUlKyKmkC85atJzJabQOUzC6kCT5xA - + - MfPrP38P3D9sDXhAAkKQPzYphEAQBDZBFeHHP+42hUCizXhATCazQKr4qEAEwAZB3N7bQN3FCUD6jBlBEJrvQvYtXEBGIxlB9tHFQL2d00DJCB1AsQ7PQKDwbkAMlqU/X1W1P95G/z+WL/VB62evQKuQykAxIXBB2DI4Qk49gEDOMzdARdb3QZWcG0D5wuw//0HVQBryLUB9pE5CA7FkQNtXMEMKthpBefxvQYBUq0GhgIFAOqcSQf7Fp0PsLbhBco/UQCCfnUAEp/8/VHXPQEHENkA0M9BA8YcFQe0q7D/D1SlBXXItQGtwekCkedk/dUZJQJKNA0FPOiVCJez1QM1RjUAuiCRCW0+zQUSxB0HVmhlBQPapQJPeQEHPsvNBaTiKQ4H/PUFqk3dB8JHsP2ziUUEl/QhAV7yWQjsfR0GnvuJAYPfnQEbsCECD8kVBp+E7QbxReECqK7NADXuoQJh5SEOydepB3AW0QO22K0H6NLNAfZMuQPcmwUOffNFBxOrZQBhi0EBN7i1A5J1cQVnGLUDzgZdAaLMvQ3LJIkIrK4dC2TUpQhDnX0C54gBB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAA4EdFa0AAAAAgAyttQAAAAIBEIG5AAAAAgENlbkAAAAAgNCNwQAAAAICbZ3BAAAAAIPvZcUAAAACAB5VyQAAAAKB+wXJAAAAA4GRCc0AAAAAA4mBzQAAAAMC3SHRAAAAAQORwdUAAAAAgLNV1QAAAAMB3FHZAAAAAwGIidkAAAAAApzB2QAAAAMAFW3ZAAAAAQGVydkAAAACAQIV2QAAAAACnFHdAAAAAgHMid0AAAADAUQV4QAAAAECdEHhAAAAAwGBWeEAAAACA0fV4QAAAAADAA3tAAAAAwGpEe0AAAADA+mZ7QAAAAAAUw3tAAAAAgCckfEAAAADAo0J8QAAAAMBuxHxAAAAAAHAifUAAAADAa0N9QAAAAIA/Zn1AAAAAgP0DfkAAAADABkR+QAAAAEBBsn5AAAAAAFJ/f0AAAACAXqZ/QAAAAIBuyH9AAAAAgGPVf0AAAADg3jGAQAAAAOBGnYBAAAAAwBy5gEAAAAAA38uAQAAAACAnQYFAAAAAoOdrgUAAAABg55OBQAAAAOD8q4FAAAAAYJ75gUAAAACgWAuCQAAAAGA1JIJAAAAAoJw6gkAAAADgOLuCQAAAAGAxBoNAAAAAIL0zg0AAAABgmUCDQAAAACDQXoNAAAAA4OVyg0AAAACA7JaDQAAAAGARo4NAAAAAoHvLg0AAAAAgDuODQAAAAADz9oNAAAAAoJEVhEAAAAAgZiOEQAAAAGA5KYRAAAAAoKo2hEAAAADgjVOEQAAAAODCfIRAAAAAoP+BhEAAAABgWKSEQAAAAOCPw4RAAAAAYCT8hEAAAACg7AeFQAAAAMBJNIVAAAAAAJU6hUAAAAAgiW6FQAAAAKDKe4VAAAAA4O6jhUAAAAAg87mFQAAAAKDM64VAAAAAIGIQhkAAAABAXYSHQAAAAMCwtYdAAAAA4CkDiEAAAAAglw+IQAAAAGD/O4hAAAAAgMpDiEAAAABgneqIQA== + KBZXds7jZUCPTWWFSwNpQIkw7CrX8nJA7mf6OVSSdEAQcfxq1wJ6QImOyH4vBHpAOybk7U6agEBCi16t4wGBQJ9TrgrbsoNAQrpM14+KhECfgpw0hzuHQDmZzAXHIohAA7BmURNUikCcxpYiU7uMQJS05+lUDI1AznpCpv8hkEDZAlJqVk6QQF2joJsr6pFAWRpJf6wSkkCmJeFnTEaTQAsxro3yXpRAWDxGdpLSlECHIO4kDiuWQNhTPYvolpZABzjlOWTvl0CKaqKZLiOYQAZa4jBK75lAZGHVNaDvmUCt4xUCwUubQIZx2UWgs5tA99Pnn+xPnUDjmslB3LOdQFT915soUJ9A - + - GPQIQAPnSUCcDS5ALSQ8QE7Ul0CE/LQ/D1ckQLW7pkBOQdo/4DUcQHTMLUCgpus/Dve0P24UHkAcSbNAohBiQWuzrkAbGRJALNy3QAARz0BSfa5At+viQAYNMEEZyNk/mUdxQXWIKkFpOBJABhgSQCicG0HOU+ZAGBgLQYdc6EB+Y5hBsVnUQJPjGkCP7E5BF0iCQO5dzUCQB41AnLmuQMDmkkB6dMRBcE46QGQGlkGbKMo/3pkbQRbzCEAj+eJA2Z3HQExLlUBq2aFA+j+8QN7VJECMoNxA3pncQUXxoUDndQZCqyB3QFsa7z8pDiBB5+mSQIiHF0Jd+8BAV1f/P7aMx0EvQwpBUI/TQKjKOkLXMVZBjAIrQZH+NkAanppBfuwSQWRLW0BvD4ZBND8BQapksECtkzZAl2xLQHFOIEK2qsVAQqltQbq9qEAVFv8/p+7zQGKfEUAky/NAwHM3QTjCF0EJs/9BORWTQA+jI0E= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - - - - - - AAAAIOS/Z0AAAADgdmJoQAAAAEC4qWhAAAAAAPeuakAAAADA/clqQAAAAOAQ32pAAAAAgMtqa0AAAAAAAktsQAAAAACobGxAAAAAwK5EbkAAAABgSr9uQAAAAGCyb29AAAAAQJzbb0AAAAAAPA1wQAAAAKDzWHBAAAAAgCG1cEAAAACAHfFwQAAAAMDO/XBAAAAAgHsNcUAAAABA9h9xQAAAAIBLpnFAAAAAgHEsckAAAACA5mNyQAAAAAAadXJAAAAAQIiGckAAAACAM5FyQAAAAIBaTnNAAAAAgDedc0AAAACAZ69zQAAAAAA4xHNAAAAAwIfWdEAAAABAy+J0QAAAAADDN3VAAAAAQOlDdUAAAAAAbTx2QAAAAADuUHZAAAAAwELZdkAAAABAeRR3QAAAAIBKcndAAAAAwE+id0AAAABAe+53QAAAAABr+3dAAAAAQHyEeEAAAAAAQsd4QAAAAEADDXlAAAAAABgleUAAAACAmFN5QAAAAID7ZHlAAAAAwKUTekAAAACAAR56QAAAAMB1ZXpAAAAAwE9/ekAAAAAAOo56QAAAAIBap3pAAAAAgNrkekAAAADAVvd6QAAAAEBqLXtAAAAAAG9Be0AAAABAeFV7QAAAAMBBhntAAAAAwC2de0AAAADAl657QAAAAEC0u3tAAAAAAG/ge0AAAADAciF8QAAAAEAmWHxAAAAAwMxmfEAAAAAABHN8QAAAAIDXi3xAAAAAAOn5fEAAAAAAoBV9QAAAAIAiMH1AAAAAwApAfUAAAAAAkVF9QAAAAMAQlX1AAAAAQD/WfUAAAADAE+t9QAAAAABNCn5AAAAAwJMpfkAAAABASjx+QAAAAADlUH5AAAAAQO5bfkAAAACAKYZ+QAAAAMD3on5AAAAAgEHOfkAAAADA+Pp+QAAAAACvPX9AAAAAgA5qf0AAAAAAt1mAQAAAAODLb4BAAAAAILN2gEAAAAAAkNOAQAAAAAC02oBAAAAAQH8bgUAAAACAnEyBQAAAAKAXU4FAAAAAAPN5gUAAAABg95OBQAAAAIAXGIJAAAAA4KrKgkAAAACAIFmDQAAAAACxeoNAAAAAQFOvg0AAAABgqc6DQAAAAGDb8YNAAAAAIN84hEAAAADg51OEQAAAAICBXIRAAAAAIPZzhEAAAACg1p2EQAAAAGBIpIRAAAAAoA7LhEAAAABgftKEQAAAAOBa5IRAAAAAIFjphEAAAABgIwmFQAAAAMDGRIVAAAAAIEVYhUAAAACgFF6FQAAAAAC10oVAAAAAYPnYhUAAAABgD+OFQAAAAMB8E4ZAAAAAIBcdhkAAAACg2jaGQAAAAGBzPIZAAAAAoGRnhkAAAADAQZ6GQAAAAIAk84ZAAAAAAIgyh0AAAACg32OHQAAAAIDze4dAAAAAILSDh0AAAAAAmfOHQAAAAGBp+odAAAAAIHbhiEA= - - - - - - Cy3cP0MBLkBdNeBA8Tw5QLZmZUBueS1ApDWxQGCUOEDwFMZAh+tYQmoy5UAiP41BOazsPwc7NkGgaI9AEdOLQfnCbkClYMpA7oQ4QGeasEDfqW5ALAC1P6/HAUFVFs9AbLDrPxMFC0H9s25AHaYqQnAmF0JgkNxA2h4fQcO77D8xz5dAj8K0QPvfLUDYDrxB0sbYQFi7l0C6eOw/3z6cQCKlp0FnuWRBGFv1QPLZ/j9TCNo//fzgQE88A0EfR5lB1p9JQAwq2kE7TtVAUhogQmwA60FoEB9BFY0/QHJjiUBMLTlAjx+UQH7xyj/8bxxCBqFuQaDDYUHoExJA7tBDQaQA7kBTgVVBMBELQv735UCzoD1CAFGXQBaLtkFWhXxCye0uQiv+jUA6io5A2itmQDFPfUG0plBAyQl8QcdMgEHqcStCOAYIQf17kEHQG3hAFIFkQdnfAUFEnz1BNXxCQY6FSUCA1sZBxva+QNYCU0FI4BlBcTjaP6Poj0L4VFtAkbXBQBKPSUL1j8NAp82jQSFhl0D8Hf5AmhbPQD93BkEyejJByJHsPyidBEERG6FAaNwTQfAAs0JKTwpCWMU4QU5UGkD0twhDGIctPxpfQECKMBJA7vSKQdDyx0EgswlDyTA7QVe3UUCbFxJA99gjQHqqEkBz/f4/xPzHQPiqkkGA1RlBCrQIQdQKeEBMA5ZBNiIkQOyixEAM2hBBXY5TQA== - - - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAoLSoakAAAADAscNtQAAAAEACVXBAAAAAgBKgcEAAAAAAfwRxQAAAAACa83FAAAAAwLcac0AAAACAtmJzQAAAAAAg83NAAAAAwMSkdEAAAADAQQB1QAAAAABRc3VAAAAAAHr/dUAAAABAlZZ2QAAAAIAf6HZAAAAAADoFd0AAAABA/cF3QAAAAMDFjXhAAAAAgBAVeUAAAABA96R5QAAAAACAwXlAAAAAgMhRekAAAABABp17QAAAAIBHuHtAAAAAwOaafEAAAACA5NJ8QAAAAMCCY31AAAAAQMqRfUAAAACAy39+QAAAAGC4u4BAAAAAgKmlgUAAAABgEv6BQAAAACAT8IJAAAAAoKCSg0AAAABgzcuEQAAAAMCr54RAAAAAQNLthUAAAAAgzv6HQA== + NrgMGZxjYkBa6U0me2NuQBu6YmAmQ3BAm7Im8CtidkAJeGK9lHN3QJsQA0SEc31AfR0jrYR0f0A= - + - 02obQE/MtD9T3khAKC3bPwRgZUAwuyNAxPKAQNKxEUABdiRA4A3+P224vUCypNk/rKjZP1MJr0D+aIlBWr7GPwpn2T/o3tk/936nQHsGsUDI0S5A0AjzQEASB0FW/L1AQBXWQVKHqkBMyohBFmuFQHEF5kCWG4BA03IFQXJQLkBpaxBBBBp4QAwqEUH0Ey9B0YgIQHX6d0A= + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAwPrmY0AAAABA1pplQAAAAADuJmZAAAAAoN1FZkAAAADAX+xmQAAAAMAqAWdAAAAAwN7FaEAAAACg8TxpQAAAAABtPmpAAAAAQF5makAAAABA4OhqQAAAAMCKHWxAAAAAgIAfbUAAAADgR4NtQAAAAICCpG5AAAAAwGSGb0AAAAAA3JxvQAAAAECoIHBAAAAAYFqicEAAAADAF8VwQAAAAKCT5HBAAAAAwJIGcUAAAADAqRZxQAAAAGBbRXFAAAAAABB1cUAAAABg0NNxQAAAAEAz4HFAAAAAAE7ycUAAAADAFQdyQAAAAOB4FXJAAAAAAFFDckAAAAAghFByQAAAACD8cHJAAAAAAGqlckAAAABAHMtyQAAAAEAL13JAAAAAgJbjckAAAAAghxJzQAAAAKAlb3NAAAAA4I+nc0AAAAAAJLRzQAAAAID/wXNAAAAAoLLgc0AAAABAawd0QAAAAKCSs3RAAAAA4K7mdEAAAACAYfB0QAAAAAB+EnVAAAAAABgidUAAAADAE1h1QAAAACBndHVAAAAAAPKUdUAAAACgkaZ1QAAAAADTxXVAAAAAgKzSdUAAAABgE+F1QAAAAKAx8nVAAAAAAKEjdkAAAAAANEd2QAAAAKAIb3ZAAAAAgKmmdkAAAAAgYbB2QAAAAIBGwHZAAAAA4ObgdkAAAAAA2Sl3QAAAAAA4UndAAAAAoNySd0AAAABgtqB3QAAAAOBjRHhAAAAA4ItVeEAAAAAgyXF4QAAAAKCWn3hAAAAA4PayeEAAAADgOcd4QAAAAMAC/3hAAAAAIGgTeUAAAAAATiF5QAAAAKC7K3lAAAAA4M5CeUAAAADgJE15QAAAAOA6bnlAAAAA4EqGeUAAAACAIKd5QAAAACCt3HlAAAAAYBAHekAAAAAg3RN6QAAAACANIXpAAAAAwEYxekAAAACgP0B6QAAAAOAHTXpAAAAAYOReekAAAAAg1nJ6QAAAAGASfXpAAAAA4PCuekAAAADgrb56QAAAACDh8XpAAAAAIFcHe0AAAAAgfDd7QAAAAABVQ3tAAAAA4OFPe0AAAAAgDmB7QAAAACDzhXtAAAAA4ObNe0AAAACg0eB7QAAAACB683tAAAAAwCQOfEAAAACgDo58QAAAAOCz/3xAAAAAIIVof0AAAADgvq9/QAAAAGAdnIBAAAAAoFX8gEAAAADACG6BQAAAAMAJkoFAAAAAoLnGgUAAAABAY9yBQAAAAGCgG4JAAAAAYDA0gkAAAADA5FeCQAAAACBwZoJAAAAA4IKugkAAAADgBr2CQAAAAOBNw4JAAAAAYIHggkAAAACAqwaDQAAAAEATD4NAAAAA4GlHg0AAAACAXmWDQAAAAKBPbINAAAAAoKqFg0AAAACgIIuDQAAAAOCEooNAAAAAICirg0AAAAAggrKDQAAAAKDP1INAAAAA4OL/g0AAAACA3gWEQAAAAGAKDIRAAAAAwDc1hEAAAAAgj0SEQAAAACBNaoRAAAAAgE2BhEAAAAAAqYiEQAAAAIAV1IRAAAAAYJpUhUAAAADgE2qFQAAAAOBXnYVAAAAAQPPThUAAAABgQmKGQAAAAMCpe4ZAAAAA4JKShkAAAAAAreSGQAAAAKABhYdAAAAAIMSxiEA= + NrgMGZxjYkA= - + - vgGOQEPEh0B949g/3m/HP0ploT/BaRFAuv5SQFw3pT/o2pJAGq77QC6bl0C8pSRAPz/8QOsAU0BuuFFAVpANQciB6ED6QslA4btuQNsYGEGAulpA3lKCQPRmJUFlnJpAtwlwQEttOkCggUBA0+QbQZhpZUCA251BX5scQB2l70B4ykFBdlmtQAI09EHfOCxBkc6JQLfzG0DRlklAGqpIQZgNekCTH9NA46fqP52td0AuPkBABkPZQHq1BUEAxeRAxIqSQOMjEkBcQyhBOrCIQZo/gkCiT2VB/Me7QcvYg0Cid/1Ac9h3QNPfP0Ak2aVARFfwPytMjkDuDHhAa3rTQA9siUAzcRxBdglOQYeZakGSHSxBX4IqQTb+5UCGxLQ/evQ6QUZRckFa1rxAJYIHQaji8UFS5i1AdWayQPmyF0GHrg1BxjwDQdzzK0ET44RADwpIQWUwLkHuGipCJmcSQYwbwkGM3LJBcIsLQnM7/z8M6S1ADwAeQah21UG/wdk/Z0M/QOt83kGgnvNAdWnvQOKiTkHBbndA4EVBQaJqfkIkdL9BTrzDQY1QtD9JUUBAaZBkQEaBvECminFArUkRQHD+EkEdOzlBcVyLQPksP0BIvDdBoLjFQAEujkDezKlBcDfvQBOBDkG1nulAQbqLQS6QDEFdLKhBw/KaQcBJwUHE1FFBZuONQvT5AEHXIVRBRY/YQAdg70AjBSJBlJLHP424C0Nly4hCe0ANQuntt0AxsQ1BC86+QPqDXUFKJwxBW7AcQUjsgED+wY5BOLO+QM0n3UAIHChB5y//P7yfyT+Vy41AxPXBQA== + AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYM8MXkAAAABgAyBgQAAAACALZGFAAAAAQJujYkAAAABg4r9iQAAAAOBBxmNAAAAAgHVEZEAAAABAamtkQAAAAECxfmVAAAAAoGCiZUAAAABAbe5lQAAAAKD8H2ZAAAAAADNvZkAAAABg0UZnQAAAAMAagWhAAAAAIM+EaUAAAAAAaH5qQAAAAABMlGpAAAAA4OfHakAAAABACgNrQAAAAMCsg2tAAAAAgMHha0AAAADAK/9rQAAAAADGv2xAAAAAwJkhbUAAAACAM0NtQAAAAMDbYG1AAAAAwDenbUAAAAAAW/NtQAAAAMB6RG5AAAAAwORlbkAAAABAY3xuQAAAAMDSpm5AAAAAQLfDbkAAAABAIypvQAAAAIDPf29AAAAAQKShb0AAAAAAZBZwQAAAAGAWInBAAAAAYGktcEAAAABAckNwQAAAAMASW3BAAAAAQK1zcEAAAAAA9ZBwQAAAAABWv3BAAAAAAEoBcUAAAADgQBtxQAAAAEBmMnFAAAAA4OZBcUAAAACg7VFxQAAAAIDmc3FAAAAAAPiEcUAAAAAAxJ9xQAAAAAAEtHFAAAAAwHbkcUAAAADAmwFyQAAAAABnJHJAAAAA4E8xckAAAADgPmNyQAAAAEAFo3JAAAAAgB7gckAAAABgPP1yQAAAAIBUC3NAAAAAoD8bc0AAAABAyjJzQAAAAMCxWnNAAAAAwP6Kc0AAAAAgE6FzQAAAAACfs3NAAAAAQNXAc0AAAABAkuFzQAAAAMA78nNAAAAAYAscdEAAAACAnEN0QAAAAIDOwnRAAAAAQEHSdEAAAAAg+Q11QAAAAODUF3VAAAAAoMhkdUAAAACAKHV1QAAAACBStnVAAAAAgAjhdUAAAABAAQZ2QAAAACCgtHdAAAAA4N1jeUAAAAAgeUx6QAAAAKDnZntAAAAAwJOOe0AAAADgGJ17QAAAAED+BXxAAAAAIH4kfEAAAADAjFp8QAAAAOCqw3xAAAAAQI9AfUAAAADgUFV9QAAAAEAI8X1AAAAAwLUDfkAAAABg6kx+QAAAAEAzpH5AAAAAYPDcfkAAAAAg/it/QAAAAEDWWX9AAAAAoP2nf0AAAACA/kCAQAAAAOC6zIBAAAAAIB7ogEAAAABgVyiCQAAAAMC5K4NAAAAA4A9zg0AAAACAhUyGQAAAACAB+IZA + NrgMGZxjYkDYkZP9yKNsQEMdzoN8QnFAr89nUoqCdkC3wo5zbEN5QHLWBSYws35AUkBHaO05gEDK74Or2RGCQEkfx5Yk0oNAXtAn5zAahkDaI0gvZoqGQIn6qel8UohA0QLIXZ0iikC0JCzsyIqKQLRTGhZ1E45AmwqREB87j0BpUmuA5tGQQNytpn27ZZFAsGYae/y1kUBr1gRz5y2TQD+PeHAofpNAhqMnaz5ilEDr7fuHPfKUQAKTZwJaLpZAZ907H1m+lkB+gqeZdfqXQOPMe7Z0iphAKuEqsYpumUD+mZ6uy76ZQLkJiaa2NptAjcL8o/eGm0AAHjihzBqcQBzrWpkjT51Aj0aWlvjinUAPXo2rTqefQAFvv3Jk259AkzlnVrphoEA+r/8EwNOgQB7EB1fN76BAYvAfa9CBoUBDvPAl4/GhQCDovzbeZ6JAZ/0QjPOfokDe318C7E2jQD++hEYIpqNAjPRXAApOpEAXf/gAHaykQLHsQM8fUKVAPHfhzzKupUA= - + - /U52QWmd7D/eFwBBWDa9QKdlSUDEkjdAgiRpQWrlXEC6oStBkjJcQKCE2EAnUSRAy+YHQK8+W0DhA1xAeSQ3QTKNgEC42v0/wyrpQCmktT9KnTxBz372QHrq7z8N/URBiQyAQFDxfUFEpJRBWrEIQJk3EkBp2u4/MfsIQPhEakF42BpAyii3QQY0yUDlTv9Ag37YP11ei0Avm2lB9QrIQFpFnUFcF/8/sd5MQCFRxz9+X8BAKqV3Qf+G/UAQJ39BwqbzQALs6UDw1ttA3F06QTBcKUG3qRJBkegtQAzyPkH6GrY/nJ0kQBBXHUC8GgNCuGQCQbQ2k0AgMklAEXuAQPTqY0Es709BT3DzQFpfP0HJ0ZRA2mVAQpIFBkPZt/xAwaCOQQRCjUKDFgpBnbfVQMsaY0J/2YFAj4cHQlEZ10G1Af8/RfsRQKB02T+kqwhAGJ4YQTfhz0Dm8rxAt9+9Qcq/FELckpdArFjLQENjP0FwZew/P+CJQNs8AEFgCsBAIGTEQPYaPkGD83lBWn23QcPgTUF8fZxAiUS+QCnWFEERryFBtuI2QPW9GkJaKepAvOjgQJxZ4kBHJo1B + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoCNObUAAAADAB6FuQAAAAECEJ3BAAAAAIBijcUAAAACAuPJxQAAAAMAOA3JAAAAA4ORQckAAAABgQRJzQAAAACDMJ3NAAAAAwOrvc0AAAACgYMR1QAAAAEAxUHZAAAAAwCQzd0AAAABAIFZ4QAAAAMCMRnlAAAAAwC1yeUAAAACAGpN5QAAAAEAaq3lAAAAAAOUFekAAAADAgKV6QAAAAIDuXHxAAAAAQOQkfkAAAABAJlZ/QAAAAACIZH9AAAAAwFEygEAAAAAAqnqAQAAAAOC9DYFAAAAA4C/6gUAAAAAgFVyCQAAAAGBBZ4JAAAAA4JuwgkAAAACgwumCQAAAAMAM/IJAAAAAIETzg0AAAABgMQOEQAAAAKBEQoRAAAAA4JpRhEAAAABAcoWEQAAAAIC9k4RAAAAAIBD7hEAAAACgogmFQAAAAMA3FIVAAAAAoIsdhUAAAAAgtqKFQAAAAIB9u4VAAAAAQFDNhUAAAAAgStWFQAAAAGCd8YVAAAAAoL5XhkAAAAAAlMCGQAAAAGA744ZAAAAAQEsbh0AAAAAgPiOHQAAAAOAITYdAAAAAoESnh0AAAADgMcyHQAAAAEB7DIhAAAAAYNMpiEAAAABgiT6IQAAAAOAtaYhAAAAAAB2NiEAAAACgypuIQAAAAMDopIhAAAAAQDa/iEA= + NrgMGZxjYkAot2DdIQNrQHzKEHuiRG1A - + - ydtTQL5ZwUA5CYBAgX9SQFpTF0HqIopAszK0P0Krh0HhjJNAB/euQE/NLUAm6R1BwD8bQMwwE0H3YfhA1OAJQB0SN0D5x9k/fp0kQBAIJEB2ydhA1/8uQXUHQEB53bVAf2AQQe5J60Akj9VBxml3QM4tCEGOV3VA5UEAQd8Y70FMf+FAwB7UQUdHuz+gNcFAZ5xSQA1z3EFuME9BuSq8QM8Ek0BnqutBIII5QfFhgUJtPUlA6DAJQhUci0E60olAJnxmQdXrGkBZCd9BzqpUQOmZO0BIsVFAhULiQH6xW0AMmjBBULhRQPJg/j9Wsco/AuGCQe4za0Fm0tg/FI3kPw== + AACAPwAAgD8AAIA/ - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAYB9nYkAAAAAATeZkQAAAAGBEaWVAAAAAwPDrZUAAAAAAXMhmQAAAAEAmzGhAAAAAgDL2aEAAAACgxmZpQAAAAICI5mlAAAAAwM0ma0AAAAAgM2drQAAAAMCoI2xAAAAAYDtIbEAAAAAAIWZsQAAAAMDVm21AAAAAgO/jbUAAAADAxYZuQAAAAGBbQ29AAAAAYHBrb0AAAACAQMRvQAAAAADXhHBAAAAAABRTcUAAAAAgOWVxQAAAAIDKb3FAAAAAQIrkcUAAAACA8yRyQAAAAMDPMnJAAAAAoEtVckAAAACAruByQAAAAEB4DnNAAAAAYIsic0AAAAAAwURzQAAAAMCL4nNAAAAAILsxdEAAAADA3pZ0QAAAAGASwHRAAAAAwIgRdUAAAACAnER1QAAAAMAfVXVAAAAAwKJ0dUAAAAAALYV1QAAAAAAClnVAAAAAwDgkdkAAAACAL0V2QAAAAIBpU3ZAAAAA4L9jdkAAAAAAEZ12QAAAAIDbr3ZAAAAAINy9dkAAAADgW+V2QAAAAEDU8XZAAAAAwKYYd0AAAACA8cV3QAAAAOAl03dAAAAAgInhd0AAAAAADEh4QAAAAKDrmHhAAAAAoNCreEAAAABA1854QAAAAGBwA3lAAAAAwClyeUAAAAAgXaR5QAAAAGCC2nlAAAAAICsBekAAAABAUkF6QAAAAMD0T3pAAAAA4G9jekAAAAAgbN16QAAAAMC97npAAAAAAIUBe0AAAABAox17QAAAAKDJLHtAAAAAYIBoe0AAAADgOYF7QAAAAOBtlHtAAAAAYHzfe0AAAACgXwR8QAAAAOCbFHxAAAAAgAs0fEAAAACgdFJ8QAAAAODBdHxAAAAAwGyIfEAAAABgO518QAAAACDoxHxAAAAAYEDRfEAAAADAkwd9QAAAAKASJH1AAAAAoCY4fUAAAACgV1d9QAAAAEA3AoBAAAAA4PksgEAAAADgc1iAQAAAAKCiX4BAAAAAIF9ygEAAAAAgineAQAAAAKC5n4BAAAAAIHPfgEAAAADA8+WAQAAAAAAvAYFAAAAAIH9TgUAAAAAAw3SBQAAAACBxgYFAAAAAYDDjgUAAAAAAQuqBQAAAAECU8YFAAAAAoLgTgkAAAACgjBmCQAAAAKC3OoJAAAAAoOdLgkAAAABAylyCQAAAAKAMYoJAAAAAYEFrgkAAAABgGJOCQAAAAGAZs4JAAAAAIELmgkAAAABAMQKDQAAAAOCbKYNAAAAA4EQvg0AAAABAWzmDQAAAAGA9V4NAAAAAQEGBg0AAAAAgFY2DQAAAACBmlYNAAAAAIAujg0AAAABAQ62DQAAAACDRuoNAAAAAAP3Tg0AAAACAugCEQAAAACCAcIRAAAAA4G54hEAAAABg3n2EQAAAAOBvjIRAAAAAIKm7hEAAAABgIe+EQAAAAKDlOoVAAAAAQMuThUAAAACA3e2FQAAAACCpE4ZAAAAAYOsghkAAAADgA0GGQAAAAKDGdYZAAAAAAOK6hkAAAADALcGGQAAAACD6yIZAAAAAIKVSh0AAAADA98WHQAAAAECJVIhAAAAAINTHiEAAAABgSdSIQAAAAAAm8YhA + KBZXds7jZUBK9xnL9URsQKPid1q/AnFA - + - ADZHQM38zkDcvcY/P/4jQESSbkBk2z9AERJAQGhrI0Gidv0/gyauQBZ0BUFaUtk/Of42QE8ipUBor4RAs+2HQacywEA7ux9BPu5uQcjbKUHmfLdApc7GP9CW2T8Y+1FAAL/rPxPHW0A7XjJByWlDQIJb6z/8Lf0/mTLcP8zKsz+nT+BAJ2HcQHZhuUEfIRNBE9kRQIhvGkHJJlNAsfrcQK2YAEDnavhA6eUJQXMoQkEozGRA4f0uQeVdiUCyqV9BJY+jQbip2T/cFqJB9FpBQdM1nUFO2zxBG813QIMU7D9bs6E/uUNLQTBbBEEK7xBBv/6EQE2fAELKlt5BHOtmQDb13D80+ElB36AjQJ8EgkA9VwFCjQ9mQcyWeEGqe09BW51UQZy4AUAMdYhBhJGEQP8kUkEKjQxBBO38QDoUKkLXY1JAzDcoQWdHnkLxy8BAvkDvQboEZUBSf5JBBRgTQnHnWkHjMkJBTjovQYz/2kEEGwJBYITcQNj+kkAJRrJBFZY8QpiL40E0iOpA7RIpQf6gMkJ5iBdBfUzhQCFnEUBU9CNAKJbIQVJwqkHAtV5AKIxEQqJ22T8bP+w/jybsP3qyj0Cm3UpBDNF5Qf/XoT+gho1CfV0PQRNCgkJmGQ1Cdf9wQYxfgEAkxrhA6QOXQCiqoUDHcOZAcNGBQCGj/j/qhLxAlp6jQORLB0F04UJBl2QaQW/6DUFVQupBLTEOQnCAtD8SZBBBgaQFQfNhxj/c5P5AO5UbQhRffkLpnRBAGAqWQK93nkDg4FtAVPxxQRmoXUG+8idB + AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - - + + - - + - + - AAAAoD+iYEAAAABACKNiQAAAAGCZwmNAAAAAwFUHZEAAAAAAr55lQAAAAEDq4mVAAAAAwBOoZkAAAABACAJnQAAAAMAtRWdAAAAAgGThZ0AAAABgdShoQAAAAMDBZmhAAAAAwNjFaUAAAACAVy9qQAAAACCjmGpAAAAAgLWqa0AAAABAwb9sQAAAAEDAZW1AAAAAQLucbUAAAABAkSFuQAAAAABJhW5AAAAAgEWkbkAAAAAAQsJuQAAAAABr325AAAAAADZlb0AAAAAAuuFvQAAAAAAuH3BAAAAAYABzcEAAAADAV4BwQAAAAOCBkXBAAAAAQMuhcEAAAAAAMdFwQAAAAAAa4nBAAAAAYAv0cEAAAAAgFgVxQAAAACCoEnFAAAAAQH4zcUAAAABAM3JxQAAAAADn0nFAAAAAAJovckAAAAAAyFJyQAAAAECiknJAAAAAIN6sckAAAACAW8FyQAAAAAC083JAAAAAADEdc0AAAACgITFzQAAAAICKQnNAAAAAQMJtc0AAAABAXxR0QAAAAIB2Q3RAAAAAAACCdEAAAAAgBpF0QAAAAGCSonRAAAAAoJDPdEAAAACAJO50QAAAAMCwVHVAAAAAwCJ0dUAAAAAAaoJ1QAAAAID9l3VAAAAAgAirdUAAAABAE711QAAAAMCczHVAAAAAAH/sdUAAAACgEDF2QAAAAMDnSnZAAAAAwFludkAAAACABJl2QAAAAGDdr3ZAAAAAoMG6dkAAAADAZst2QAAAAMAc8XZAAAAAAH8Ad0AAAABgMhh3QAAAAICIRHdAAAAA4Ohgd0AAAADgN5d3QAAAACCKsXdAAAAAYLPAd0AAAACgpcx3QAAAAMD22ndAAAAAIGT9d0AAAAAAfjR4QAAAAODEVXhAAAAAYFd7eEAAAACAc4V4QAAAAKDXoXhAAAAAIGB8ekAAAAAg0od6QAAAAKA8EntAAAAAINXEe0AAAABgLQZ8QAAAAKCjY31AAAAAYDyLfUAAAAAgqJ59QAAAAKCa2X1AAAAAwKMIfkAAAABAnlZ+QAAAAOCoZX5AAAAAIMShfkAAAADg5TB/QAAAACDeGIBAAAAAAMUdgEAAAACAsSOAQAAAACCdk4BAAAAAIO3ogEAAAACg0hmBQAAAAMDeaYFAAAAA4JKJgUAAAACgbY+BQAAAAEBjm4FAAAAAIKawgUAAAAAgMMqBQAAAAIBP2oFAAAAAIJQYgkAAAABAsnSCQAAAAGC+k4JAAAAAYCK9gkAAAAAgcdaCQAAAAKDMLYNAAAAAAMIyg0AAAAAANfyDQAAAACCebIRAAAAAIJ2EhEAAAABgYtiEQAAAACBA5IRAAAAAIEkMhUAAAACgteSFQAAAAMCr6YVAAAAA4PYFhkAAAADgE7uGQAAAAED0w4ZA + KBZXds7jZUDEZV5bjlJwQDeULWxqYnBAVeXpVsLyc0AVZmz6s8J2QN1r26Szg3xAAyRsVyLzfUABQaRVPYKCQDJ5ZnlSioJAX38LH7SyhUAqQSslULqFQPCDjLf1aohAISCrU4dSiUBKIDIjmoqMQDRHhV5us4xA+3Irbtq7j0DXJv4fk5GQQGHP6D4jYpFAUxY+t65dkkDdvijWPi6TQNMtNcwEIpRAJ6/6c2oylUB1j7EfQUaWQHAxO0CLjpZA8X7xtlwSmEAhsyK1tJqYQAgCxImNpplAftwSsfCamkBS8pUnuaqbQJPxU7IWt5tAzuHVvtR2nUDwGkSuUredQOJhmSbeEp9AB54WgYNLn0DjOzYXikugQPbZdMTcZ6BAbn2fgKIVoUAAmlZ44TWhQBySl37AFaJAvpH2Q+8bokCnHDh/06OiQOOJ3xIFHqNAVjEwffGjo0Buy0h8HeijQC7yozcGqqRALMPoRyvOpEBSM8SdFlilQP3zpnFJ4KVAdyutbCxapkC9fyJ8dMKmQDUjTTg6QKdAe3fCR4Kop0AnrjY8VQKoQBk5IEBwxKhA1AL1TqXOqEDewtYCqpypQOpp3mmO1qlAnLp2zreCqkAOq/7PnoSqQJnsZzm3TqtApnpYgrxQq0BmBtSM5zKsQGodJmPVYKxAJP5zWPUYrUA7TuSM83KtQF/YO4r+5K1ALr5VDPrmrUCDGVzwDpOuQIdJiBMdDa9A - + - HLA2QMjWOEEP0zZAeme7QP/YUUBkJv9AubDIQOx2oT/4O4hBNZAaQBaKZUCbstdAuPGAQDQM2T+is0lArSRJQICLUkBqsCRAJCTqQA/pNUDg9tFBoBQ/QJbEW0CpjlFAV4maQMbuGUA+ti9BFEprQdpCoUDCRSVA53HbQLhA/j+El3ZABo8MQaVxQUG2x85ArK3qPyj2NkBP24VBO+2NQBswtEEqfXZABhfUQFUYqkDuFtVAzoYEQVl0IUKE/cxAKvV2Qc3xJEAXuWNAaW23QFD+sUAQBUBA8/+JQZ7KLkHpGYlA4TFAQRTlg0H6dxNBC6VcQPxJrUDc6CNApHLhQYd/jUCLu/RAMR/+P/hfxkGcOHhC1szRQEoLBUH/wZhBNy0PQUbMqkC+GvRAdXiCQG3TSEKEzgZB2TcZQSvV8EHzhGlBV8CSQUh/gEHLtYlAH/cnQcRaSUF6LyRBmlSKQE2cd0CeGsBAQvAKQP5pKkHbt+JB7hbBQG3yXkGbtBZBLsMzQUaUtEE6SwBArJ1SQC10dkAgV+FAywpEQa92gUEwGb9BkILnQZ7cGkB/W7RAyiAkQIYVekFuB5xACcO8QAJOMkGjf1tAPGmxQCOyI0HwM85A53W3QA2jEkHdW/VAUw4bQHFDtT9MrXdA7ZJSQFH46j8obIBAH3LBQN0JYUEStGc/5ngtQEMcyUCPBpNA + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/ - + - - - - - - - - - - - - - - - - - + + - - - + - + - - + - + - AAAAwKS9aUAAAACAkyFrQAAAAIBhIW9AAAAA4EskcEAAAADgKINwQAAAAEBxP3JAAAAAgPZlckAAAABgsGRzQAAAAADthHRAAAAAQNNUdUAAAABAQIZ1QAAAAEAlqXZAAAAAwFnyd0AAAACAFPN4QAAAAADqA3lAAAAAAGyvfEAAAAAAIGd9QAAAAIC/dH1AAAAAQBlkfkAAAABAH5R+QAAAAMCexH5AAAAAQKTUfkAAAACA3AJ/QAAAAACpi39AAAAAAFiAgEAAAACgY5KAQAAAAAAOuoBAAAAAoIQ6gUAAAAAg4kaBQAAAAOCrXoJAAAAAQPd4gkAAAAAg4oKCQAAAAACt9IJAAAAAYNb6gkAAAADgMiuDQAAAAGDEM4NAAAAAYHlBg0AAAADAPZmDQAAAAMBp04NAAAAA4MoohEAAAABgiHGEQAAAAGDepoRAAAAAoGu1hEAAAADgIcqEQAAAACAo0YRAAAAAYHjXhEAAAADgnPeEQAAAAGC0M4VAAAAAoHFBhUAAAAAg31OGQAAAACDAtYZAAAAAYMn7hkAAAACgM7OHQAAAAKBX3IdAAAAAYOkaiEAAAACgNSCIQAAAAOB8WYhAAAAA4Ot8iEAAAACAtaiIQAAAACA2tIhA + kn+Pm8LCZECEfuNfSGJnQCTMEZkksnBAaYA5p9LBc0BLjVkQ08J4QHumMc5wg31AOUtZbUHzf0AF/752JMqBQJOELOXXkYNAzwaIKabihkCx1ejPLyKHQPgGD/m4GopA2tVvn0JaikD4JiyKmuqNQIznsjQQI45Ak5boF36JkEBGi1Av3tWQQKmrKRmkpZFAWgsUl+dxkkCk++U0E3aUQKForFD1jZRAVX3NqTyClkBDyiikMbKWQIre155HlpdAB5QyuILOmEBOqOGymLKZQDz1PK2N4plA8AleBtXWm0DtdiQit+6bQDdn9r/i8p1A6MbgPSa/nkBL57kn7I6fQP7bIT9M259AZn9YHqGpoECKL/qIvregQNFDqYPUm6FAi3dB7baroUDbA4s32WmiQJU3I6G7eaJAIhg6Mu9No0CHedUN3L+jQOAP2v38M6RAeQS/EfeBpECeB3rJChqlQDsJntYquqVAw/9imCAcpkBgAYelQLymQE5BzAE55qZAhflvdFa+p0A= - + - Ox3bQCjklkBAmbJAanpbQLLghECUA8Y/X/sHQMZZzkBsPaBAHiUtQJuuEED77f0/6u6iQHwFbkAevLxAWKjXQCQKAkEkjmNAyUtTQekT/j9gSvhAl4qNQGnDJUDlcSFBgMjYP6IqiUCsHcg/ZtHYP0r1okH76BpAGScRQENsNkDb5JZCO2cfQouYiUCR4UJAoUp4QdOFkEGqdIFAAoTxQFFi6z/fJVZBaoD7QG3mnEBc6m9BAqiYQG0ueUGUCYlA7HywQKDZ2D9KscRAuhzPQbB6ZkG2do1AWhEHQbZSkkEAt/JA4acHQdDyQ0G2C0xB + AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPw== @@ -88350,1692 +108658,2797 @@ - 19395 - 29476 - 39704 - 49581 - 60552 - 71265 - 80782 - 90897 - 100828 - 110312 - 120232 - 129673 - 139636 - 149645 - 160008 - 170020 - 180367 - 188581 - 198791 - 208647 - 218274 - 228872 - 238902 - 249237 - 259345 - 269386 - 279877 - 289994 - 300716 - 310915 - 321061 - 331743 - 342855 - 353762 - 365145 - 375155 - 385596 - 396755 - 407401 - 418644 - 428811 - 440251 - 451623 - 462237 - 474407 - 485439 - 496601 - 508204 - 519128 - 529907 - 540621 - 551947 - 567797 - 579574 - 591896 - 602016 - 612506 - 623861 - 634879 - 646054 - 656889 - 668373 - 679122 - 690285 - 700902 - 710759 - 721279 - 731776 - 743191 - 754893 - 766340 - 777253 - 788087 - 798323 - 809535 - 820177 - 831067 - 842166 - 853281 - 864888 - 875523 - 886117 - 896762 - 907382 - 918599 - 930296 - 941138 - 952021 - 963262 - 974182 - 984749 - 993709 - 1001855 - 1009465 - 1016916 - 1024892 - 1033309 - 1042007 - 1051616 - 1061768 - 1073465 - 1083873 - 1095187 - 1106671 - 1118324 - 1129191 - 1140085 - 1151760 - 1163066 - 1175173 - 1185527 - 1197202 - 1208972 - 1221253 - 1232791 - 1244272 - 1255514 - 1265574 - 1276015 - 1286314 - 1297230 - 1307975 - 1318882 - 1329646 - 1340753 - 1351736 - 1363438 - 1374634 - 1386598 - 1398607 - 1411628 - 1423278 - 1435072 - 1446803 - 1459165 - 1470767 - 1482250 - 1495030 - 1507214 - 1519658 - 1531909 - 1543613 - 1555145 - 1569255 - 1581524 - 1590812 - 1599335 - 1611710 - 1623296 - 1635179 - 1647431 - 1658146 - 1667231 - 1674992 - 1681869 - 1687957 - 1693980 - 1699767 - 1705902 - 1712309 - 1719521 - 1726829 - 1734330 - 1742115 - 1750219 - 1759762 - 1769918 - 1780869 - 1792031 - 1803592 - 1815775 - 1828266 - 1840599 - 1852876 - 1864866 - 1875898 - 1887133 - 1897561 - 1907202 - 1915180 - 1921650 - 1928011 - 1934551 - 1942146 - 1951545 - 1961626 - 1971829 - 1980337 - 1990034 - 1999594 - 2009185 - 2019331 - 2029871 - 2040973 - 2052720 - 2065042 - 2078615 - 2090606 - 2102185 - 2112397 - 2121331 - 2129007 - 2135830 - 2142530 - 2149523 - 2157143 - 2165920 - 2175279 - 2185426 - 2196744 - 2209003 - 2218500 - 2225326 - 2230441 - 2235490 - 2240316 - 2245221 - 2249981 - 2255768 - 2262163 - 2268989 - 2276374 - 2284691 - 2293341 - 2302618 - 2313075 - 2323376 - 2333997 - 2345084 - 2355644 - 2366856 - 2378421 - 2390794 - 2403321 - 2414876 - 2426271 - 2437658 - 2449774 - 2461455 - 2470073 - 2477665 - 2485668 - 2494221 - 2504426 - 2516424 - 2529514 - 2543262 - 2558240 - 2573088 - 2588257 - 2603869 - 2618314 - 2633454 - 2648027 - 2663059 - 2677260 - 2688164 - 2694224 - 2698724 - 2702732 - 2707030 - 2711866 - 2717684 - 2724918 - 2733887 - 2744523 - 2757031 - 2770461 - 2785746 - 2800620 - 2814142 - 2825804 - 2835636 - 2843480 - 2850475 - 2857889 - 2866557 - 2878615 - 2893686 - 2909852 - 2926248 - 2940812 - 2953476 - 2966091 - 2978060 - 2989291 - 3000259 - 3010519 - 3019506 - 3027770 - 3035669 - 3043674 - 3052103 - 3060850 - 3068078 - 3073444 - 3078329 - 3083346 - 3088661 - 3094746 - 3101971 - 3110216 - 3119086 - 3129011 - 3138603 - 3149654 - 3162613 - 3176205 - 3190582 - 3206599 - 3222642 - 3239468 - 3256015 - 3269687 - 3281363 - 3290400 - 3298637 - 3306681 - 3313602 - 3319338 - 3325542 - 3333663 - 3345842 - 3359675 - 3374768 - 3388704 - 3403662 - 3419034 - 3435298 - 3449888 - 3460908 - 3469076 - 3475999 - 3482681 - 3490469 - 3499454 - 3510601 - 3524789 - 3538448 - 3551070 - 3565223 - 3581665 - 3600255 - 3618139 - 3636372 - 3656317 - 3675556 - 3692814 - 3713341 - 3732897 - 3753406 - 3769608 - 3787626 - 3800261 - 3815236 - 3829238 - 3840818 - 3850473 - 3860388 - 3870208 - 3882413 - 3895832 - 3908829 - 3922968 - 3938857 - 3954435 - 3971194 - 3989070 - 4005610 - 4024328 - 4041117 - 4058205 - 4074722 - 4092367 - 4110490 - 4128340 - 4145333 - 4164610 - 4184827 - 4204009 - 4223539 - 4243951 - 4261991 - 4281306 - 4301452 - 4320695 - 4343105 - 4362392 - 4383454 - 4405804 - 4426992 - 4449671 - 4469533 - 4492072 - 4512769 - 4531624 - 4544241 - 4553995 - 4561782 - 4568944 - 4576226 - 4584174 - 4594036 - 4609007 - 4629571 - 4649615 - 4668734 - 4689691 - 4711786 - 4734634 - 4755950 - 4777466 - 4798327 - 4821957 - 4844745 - 4865399 - 4888417 - 4910957 - 4934344 - 4953058 - 4972796 - 4993524 - 5016701 - 5039276 - 5061798 - 5081708 - 5103770 - 5122959 - 5143533 - 5162392 - 5183167 - 5205901 - 5226779 - 5247553 - 5268868 - 5288762 - 5308518 - 5329624 - 5348939 - 5371607 - 5393263 - 5414755 - 5437334 - 5458820 - 5477550 - 5499907 - 5520192 - 5541533 - 5562764 - 5585318 - 5606881 - 5629152 - 5650937 - 5671763 - 5689996 - 5707301 - 5724223 - 5742113 - 5759658 - 5774719 - 5786363 - 5795136 - 5802851 - 5810175 - 5818824 - 5829584 - 5842965 - 5858704 - 5869065 - 5876683 - 5883414 - 5889569 - 5895895 - 5902271 - 5908762 - 5915541 - 5922240 - 5929036 - 5936213 - 5943585 - 5951321 - 5959076 - 5966830 - 5974550 - 5982290 - 5990122 - 5998389 - 6006672 - 6015773 - 6025125 - 6034542 - 6044393 - 6054417 - 6064872 - 6076045 - 6087988 - 6101141 - 6114513 - 6128637 - 6143942 - 6153227 - 6159574 - 6165468 - 6171427 - 6179339 - 6191208 - 6205363 - 6214221 - 6221974 - 6229855 - 6242546 - 6257486 - 6278279 - 6293554 - 6310490 - 6329056 - 6347748 - 6367778 - 6385681 - 6406542 - 6425599 - 6444876 - 6469269 - 6491282 - 6510337 - 6530102 - 6552685 - 6571395 - 6590743 - 6610018 - 6630380 - 6650007 - 6669697 - 6689724 - 6712298 - 6736531 - 6757868 - 6777816 - 6797292 - 6814321 - 6833461 - 6853489 - 6871070 - 6890616 - 6910154 - 6928547 - 6947310 - 6963474 - 6979727 - 6996465 - 7012829 - 7027193 - 7040769 - 7055450 - 7068821 - 7078913 - 7087533 - 7095924 - 7104348 - 7113399 - 7123230 - 7133144 - 7142996 - 7152672 - 7162525 - 7168092 - 7173732 - 7178211 - 7184465 - 7188846 - 7194801 - 7199069 - 7205186 - 7210381 - 7216786 - 7221846 - 7226487 - 7231550 - 7237443 - 7244182 - 7248874 - 7255909 - 7261791 - 7266773 - 7271547 - 7277446 - 7282665 - 7288539 - 7294454 - 7301836 - 7307381 - 7311988 - 7318405 - 7323925 - 7328423 - 7334520 - 7340618 - 7345628 - 7352198 - 7357248 - 7362421 - 7367454 - 7372147 - 7377472 - 7383088 - 7387974 - 7393968 - 7398709 - 7403531 - 7408213 - 7412662 - 7418031 - 7423309 - 7427914 - 7432510 - 7437719 - 7443182 - 7449200 - 7453952 - 7459493 - 7465344 - 7471858 - 7477203 - 7482711 - 7487959 - 7493447 - 7498507 - 7503817 - 7511871 - 7517046 - 7521632 - 7526161 - 7530517 - 7537231 - 7541862 - 7546589 - 7552942 - 7558942 - 7563765 - 7568937 - 7575462 - 7582074 - 7588392 - 7593313 - 7597961 - 7604144 - 7609230 - 7615116 - 7620811 - 7625495 - 7630810 - 7636694 - 7641417 - 7648665 - 7654580 - 7659591 - 7665777 - 7671681 - 7677654 - 7682466 - 7688254 - 7693515 - 7699413 - 7703654 - 7709337 - 7714229 - 7719992 - 7724850 - 7731507 - 7736352 - 7740866 - 7747393 - 7752651 - 7756940 - 7763356 - 7769358 - 7774912 - 7780503 - 7786332 - 7791055 - 7796165 - 7802062 - 7806528 - 7812741 - 7817196 - 7822969 - 7827842 - 7832371 - 7838588 - 7845623 - 7850373 - 7857836 - 7864444 - 7869812 - 7874344 - 7878964 - 7884488 - 7890962 - 7896548 - 7902535 - 7908569 - 7914059 - 7918970 - 7923514 - 7929933 - 7935451 - 7942477 - 7948689 - 7954052 - 7959959 - 7965113 - 7972068 - 7978112 - 7982928 - 7987746 - 7992825 - 7999331 - 8005900 - 8010887 - 8015351 - 8021705 - 8027981 - 8032447 - 8037245 - 8043088 - 8047524 - 8052758 - 8058162 - 8063809 - 8068688 - 8074432 - 8079302 - 8085108 - 8091463 - 8097287 - 8101976 - 8107125 - 8112739 - 8119555 - 8124869 - 8130228 - 8136031 - 8143263 - 8148788 - 8154327 - 8160107 - 8164493 - 8170953 - 8175922 - 8180875 - 8185741 - 8191148 - 8196017 - 8200830 - 8205998 - 8212670 - 8217594 - 8222121 - 8226813 - 8231443 - 8237346 - 8243857 - 8249533 - 8256285 - 8263125 - 8270439 - 8276485 - 8282236 - 8288594 - 8293982 - 8299611 - 8305398 - 8311000 - 8317240 - 8321982 - 8328144 - 8333185 - 8339473 - 8344091 - 8348833 - 8354823 - 8360082 - 8366149 - 8372135 - 8377939 - 8385940 - 8392794 - 8397652 - 8402016 - 8408003 - 8413109 - 8417668 - 8423967 - 8430293 - 8436028 - 8441704 - 8447366 - 8452006 - 8457449 - 8463341 - 8467967 - 8473130 - 8479518 - 8485707 - 8490257 - 8496263 - 8501715 - 8507515 - 8513772 - 8518843 - 8525120 - 8529940 - 8537521 - 8542763 - 8548538 - 8555848 - 8561017 - 8566214 - 8571099 - 8578524 - 8584689 - 8590512 - 8595321 - 8601428 - 8608119 - 8614304 - 8618926 - 8624865 - 8630832 - 8635820 - 8640945 - 8647924 - 8654519 - 8659913 - 8665065 - 8670460 - 8676586 - 8681725 - 8686505 - 8693723 - 8698910 - 8704563 - 8710529 - 8717517 - 8723446 - 8728183 - 8735045 - 8741540 - 8747226 - 8752397 - 8758491 - 8763197 - 8767995 - 8774839 - 8781353 - 8787623 - 8792947 - 8797861 - 8803830 - 8809323 - 8817500 - 8823489 - 8828115 - 8833945 - 8838628 - 8845459 - 8852373 - 8857259 - 8862298 - 8868746 - 8876030 - 8883560 - 8889576 - 8895712 - 8902446 - 8907808 - 8914646 - 8919592 - 8924429 - 8930931 - 8935768 - 8940695 - 8945420 - 8950481 - 8955987 - 8961074 - 8966035 - 8970969 - 8977943 - 8984261 - 8990783 - 8995540 - 9002710 - 9007955 - 9014986 - 9022510 - 9029019 - 9034877 - 9040076 - 9046161 - 9051101 - 9056741 - 9063089 - 9069592 - 9075198 - 9081203 - 9086173 - 9092719 - 9097987 - 9103868 - 9108698 - 9115460 - 9121984 - 9128657 - 9134468 - 9141637 - 9148685 - 9156032 - 9161780 - 9168392 - 9173536 - 9178322 - 9182819 - 9188551 - 9194786 - 9199297 - 9204418 - 9210674 - 9216165 - 9222263 - 9228518 - 9235012 - 9239875 - 9244661 - 9250993 - 9256128 - 9261211 - 9266222 - 9271805 - 9278602 - 9283340 - 9289944 - 9294806 - 9299506 - 9305542 - 9310903 - 9316122 - 9322087 - 9327276 - 9332492 - 9338077 - 9346273 - 9352591 - 9359252 - 9364285 - 9370718 - 9375742 - 9381792 - 9387905 - 9392741 - 9399611 - 9404915 - 9410354 - 9415774 - 9422622 - 9429014 - 9435111 - 9441532 - 9446333 - 9453002 - 9459419 - 9464442 - 9469578 - 9475727 - 9484072 - 9491258 - 9497519 - 9502482 - 9507470 - 9513250 - 9519146 - 9525224 - 9530263 - 9535734 - 9541104 - 9546503 - 9552490 - 9558439 - 9562889 - 9569980 - 9574889 - 9580784 - 9586733 - 9593558 - 9600444 - 9606860 - 9613495 - 9619570 - 9626814 - 9633663 - 9639007 - 9645122 - 9651123 - 9658052 - 9663170 - 9667730 - 9673048 - 9678507 - 9683823 - 9689985 - 9696544 - 9702254 - 9708678 - 9713885 - 9719949 - 9724782 - 9730584 - 9737668 - 9743886 - 9750806 - 9755578 - 9759980 - 9764397 - 9772381 - 9778850 - 9783837 - 9790258 - 9797005 - 9802253 - 9808111 - 9814688 - 9820974 - 9826229 - 9831116 - 9837903 - 9844288 - 9851144 - 9857199 - 9862259 - 9867432 - 9872321 - 9877008 - 9884583 - 9890756 - 9897468 - 9903778 - 9909076 - 9915499 - 9921725 - 9928678 - 9934788 - 9940628 - 9947462 - 9952180 - 9959432 - 9964820 - 9970121 - 9975608 - 9980339 - 9986673 - 9991968 - 9997390 - 10004150 - 10009881 - 10015922 - 10020907 - 10026975 - 10032143 - 10036843 - 10043975 - 10050545 - 10055891 - 10062265 - 10068476 - 10073123 - 10077750 - 10083271 - 10088714 - 10094684 - 10100399 - 10105775 - 10112346 - 10119147 - 10124323 - 10128902 - 10134878 - 10140177 - 10146200 - 10152222 - 10157276 - 10163447 - 10168138 - 10172718 - 10177616 - 10183113 - 10189543 - 10195624 - 10201644 - 10207092 - 10213964 - 10220134 - 10226316 - 10232456 - 10237563 - 10244132 - 10249919 - 10254861 - 10259226 - 10264108 - 10271663 - 10276579 - 10282632 - 10287494 - 10292585 - 10299204 - 10305004 - 10310892 - 10315878 - 10320805 - 10327180 - 10332450 - 10338356 - 10344945 - 10349388 - 10356391 - 10362482 - 10368089 - 10374111 - 10379850 - 10386973 - 10393879 - 10400040 - 10405216 - 10410862 - 10417455 - 10423102 - 10429622 - 10434555 - 10439787 - 10446829 - 10453490 - 10458752 - 10465514 - 10472068 - 10478348 - 10483579 - 10488471 - 10492802 - 10498767 - 10504509 - 10510930 - 10517825 - 10522915 - 10527179 - 10531521 - 10539039 - 10545278 - 10551057 - 10557327 - 10563327 - 10568373 - 10574592 - 10580529 - 10587017 - 10593184 - 10599796 - 10604869 - 10609430 - 10615036 - 10620174 - 10626586 - 10635078 - 10642602 - 10648305 - 10652588 - 10657329 - 10664047 - 10668692 - 10674539 - 10678933 - 10685285 - 10690974 - 10696272 - 10701641 - 10707699 - 10715329 - 10721798 - 10731398 - 10737484 - 10742970 - 10750153 - 10754492 - 10761820 - 10766812 - 10771781 - 10778476 - 10784275 - 10790384 - 10796046 - 10800573 - 10807227 - 10814620 - 10821284 - 10828745 - 10833611 - 10838782 - 10844901 - 10849258 - 10855213 - 10859895 - 10866401 - 10871336 - 10876028 - 10880529 - 10886555 - 10890866 - 10896231 - 10902485 - 10907419 - 10912263 - 10918233 - 10925336 - 10929692 - 10935710 - 10941090 - 10945961 - 10952123 - 10957422 - 10963215 - 10969889 - 10975149 - 10980458 - 10984835 - 10990379 - 10994728 - 10999859 - 11006402 - 11011189 - 11018103 - 11022556 - 11029315 - 11034244 - 11040554 - 11046046 - 11052765 - 11057698 - 11062543 - 11067342 - 11072364 - 11078507 - 11084049 - 11090739 - 11096297 - 11103065 - 11108666 - 11113246 - 11118353 - 11125381 - 11131563 - 11138175 - 11145219 - 11151193 - 11156717 - 11161989 - 11166678 - 11172342 - 11178217 - 11183634 - 11188416 - 11195087 - 11200674 - 11206405 - 11211378 - 11217774 - 11222571 - 11228078 - 11234830 - 11241738 - 11246410 - 11252914 - 11258579 - 11265654 - 11271480 - 11276892 - 11283205 - 11288892 - 11294177 - 11300348 - 11305859 - 11312569 - 11318654 - 11324643 - 11331328 - 11337759 - 11342455 - 11348002 - 11355032 - 11360601 - 11367688 - 11372728 - 11378263 - 11382588 - 11387680 - 11392138 - 11396949 - 11403645 - 11408713 - 11414619 - 11419515 - 11425538 - 11431224 - 11437497 - 11442896 - 11448122 - 11452916 - 11457334 - 11461821 - 11466849 - 11471478 - 11477117 - 11482519 - 11487643 - 11494639 - 11501433 - 11508048 - 11514810 - 11520444 - 11524907 - 11529781 - 11535610 - 11542810 - 11549039 - 11555109 - 11560931 - 11567400 - 11573036 - 11577827 - 11582577 - 11587984 - 11592260 - 11596988 - 11603941 - 11609388 - 11615435 - 11621462 - 11627451 - 11633688 - 11638588 - 11644765 - 11650317 - 11656105 - 11660495 - 11665971 - 11670906 - 11676176 - 11681065 - 11687612 - 11694372 - 11699223 - 11705115 - 11713487 - 11719807 - 11724543 - 11729053 - 11734487 - 11740805 - 11746962 - 11753578 - 11758216 - 11763123 - 11768392 - 11773084 - 11778803 - 11785043 - 11791518 - 11795876 - 11801698 - 11806790 - 11811746 - 11818691 - 11823175 - 11829078 - 11835293 - 11843537 - 11849361 - 11855064 - 11861014 - 11866202 - 11870776 - 11875929 - 11882596 - 11887943 - 11892137 - 11897256 - 11903209 - 11908232 - 11913884 - 11918647 - 11923515 - 11928249 - 11934734 - 11940095 - 11945410 - 11952074 - 11957489 - 11964000 - 11972586 - 11978741 - 11985917 - 11991008 - 11998503 - 12004776 - 12010970 - 12017313 - 12023553 - 12028067 - 12033180 - 12038575 - 12044000 - 12048741 - 12054907 - 12060939 - 12066804 - 12072612 - 12077609 - 12084242 - 12089711 - 12096182 - 12101391 - 12106852 - 12113040 - 12119527 - 12125115 - 12131013 - 12137415 - 12144189 - 12149852 - 12158488 - 12163856 - 12170270 - 12175063 - 12180626 - 12185690 - 12191714 - 12197041 - 12202773 - 12208134 - 12213195 - 12217486 - 12224295 - 12229063 - 12235844 - 12242070 - 12247062 - 12252392 - 12257042 - 12263414 - 12267895 - 12274075 - 12278573 - 12284574 - 12290177 - 12294682 - 12301254 - 12307936 - 12313060 - 12319274 - 12325392 - 12330517 - 12335347 - 12341131 - 12345580 - 12351889 - 12356659 - 12363718 - 12368975 - 12374565 - 12381132 - 12387587 - 12393274 - 12397849 - 12403933 - 12408376 - 12412566 - 12418823 - 12425091 - 12431329 - 12436236 - 12441408 - 12445945 - 12452315 - 12456936 - 12463331 - 12468380 - 12474950 - 12481498 - 12487473 - 12493207 - 12498707 - 12504866 - 12510484 - 12517513 - 12523198 - 12529619 - 12536057 - 12543083 - 12549836 - 12555333 - 12562055 - 12567548 - 12573791 - 12578333 - 12584642 - 12589685 - 12594384 - 12598824 - 12604984 - 12611649 - 12616805 - 12621692 - 12627375 - 12633127 - 12639358 - 12645782 - 12652109 - 12658220 - 12664337 - 12668648 - 12673275 - 12678967 - 12683898 - 12689720 - 12694468 - 12699336 - 12705194 - 12710221 - 12717053 - 12723728 - 12728385 - 12733701 - 12738549 - 12745816 - 12751504 - 12756560 - 12761458 - 12768123 - 12773673 - 12779904 - 12785607 - 12791535 - 12797534 - 12805444 - 12811292 - 12817171 - 12822663 - 12829622 - 12836739 - 12843269 - 12849362 - 12855354 - 12860300 - 12865261 - 12869993 - 12876452 - 12883271 - 12890696 - 12895245 - 12900125 - 12907196 - 12911744 - 12917998 - 12924336 - 12931605 - 12938380 - 12943723 - 12948812 - 12953225 - 12957672 - 12963128 - 12968121 - 12974324 - 12981056 - 12985848 - 12991620 - 12998865 - 13004840 - 13010135 - 13015308 - 13021343 - 13027284 - 13033852 - 13039769 - 13044609 - 13050726 - 13055365 - 13060900 - 13065819 - 13071555 - 13077165 - 13083304 - 13087686 - 13092821 - 13097960 - 13103318 - 13108907 - 13115534 - 13120713 - 13126007 - 13132071 - 13137435 - 13141876 - 13146884 - 13152197 - 13158482 - 13164736 - 13171495 - 13177249 - 13182486 - 13188138 - 13194403 - 13199043 - 13206670 - 13211587 - 13217490 - 13222772 - 13228453 - 13234929 - 13240916 - 13245738 - 13251591 - 13256422 - 13261340 - 13267288 - 13272355 - 13278461 - 13283345 - 13288548 - 13294823 - 13300191 - 13305857 - 13310655 - 13317857 - 13323348 - 13329113 - 13334253 - 13338916 - 13343735 - 13350807 - 13355289 - 13359729 - 13365129 - 13369839 - 13375821 - 13380526 - 13385680 - 13391790 - 13396852 - 13402062 - 13408179 - 13414138 - 13419855 - 13426040 - 13431563 - 13437630 - 13444228 - 13451319 - 13457898 - 13462269 - 13466950 - 13473920 - 13480454 - 13487821 - 13493909 - 13498079 - 13502775 - 13508442 - 13513842 - 13519945 - 13524487 - 13530878 - 13536589 - 13541554 - 13547891 - 13553943 + 3031 + 5247 + 7435 + 9786 + 12003 + 14799 + 17279 + 19467 + 21780 + 24065 + 26669 + 28888 + 31658 + 33013 + 35366 + 36721 + 39299 + 41489 + 44479 + 50640 + 52830 + 55020 + 57694 + 60079 + 63425 + 64780 + 66135 + 67490 + 69903 + 71258 + 72613 + 73968 + 76223 + 78413 + 80700 + 82890 + 85080 + 86435 + 87790 + 90175 + 91530 + 94268 + 96621 + 98974 + 101387 + 102742 + 105127 + 108345 + 111659 + 113946 + 116233 + 118488 + 120937 + 123224 + 125609 + 127924 + 130211 + 132817 + 135007 + 137226 + 139736 + 141955 + 144145 + 146558 + 150096 + 152315 + 153670 + 155925 + 158144 + 160363 + 162873 + 165479 + 167864 + 170634 + 172921 + 174276 + 176661 + 178880 + 181458 + 183713 + 185903 + 188385 + 191027 + 193217 + 195919 + 198109 + 201231 + 203486 + 204841 + 206196 + 209830 + 212049 + 214751 + 217261 + 219935 + 222481 + 225603 + 227918 + 229273 + 231588 + 233903 + 235260 + 237615 + 238972 + 241484 + 243741 + 246156 + 248571 + 250792 + 253179 + 255436 + 257725 + 259917 + 262138 + 264395 + 267423 + 270319 + 272770 + 275318 + 277510 + 278867 + 281351 + 283706 + 286478 + 287835 + 289192 + 290549 + 292806 + 294163 + 296355 + 298576 + 301124 + 303479 + 305834 + 308189 + 310446 + 312833 + 315090 + 317541 + 319896 + 322088 + 324405 + 327625 + 330173 + 332490 + 333847 + 336136 + 338357 + 340646 + 342867 + 345222 + 347637 + 349954 + 352309 + 353666 + 356274 + 359014 + 361235 + 362592 + 365043 + 367651 + 369908 + 372100 + 374648 + 376005 + 379129 + 380486 + 382678 + 384935 + 387290 + 389579 + 390936 + 393676 + 396063 + 398255 + 401283 + 403795 + 406016 + 408431 + 411807 + 414607 + 416924 + 419241 + 422013 + 424657 + 426946 + 429301 + 431590 + 433782 + 437580 + 440448 + 443152 + 445344 + 447633 + 448990 + 451886 + 454241 + 456530 + 458917 + 461368 + 463783 + 465975 + 468264 + 471256 + 473740 + 475961 + 478218 + 480410 + 481767 + 484891 + 487180 + 489401 + 491622 + 494073 + 496294 + 498486 + 500775 + 503032 + 505253 + 507608 + 509897 + 511254 + 513475 + 515696 + 518013 + 520330 + 521687 + 524042 + 526331 + 528718 + 530939 + 532296 + 534747 + 537162 + 539806 + 542027 + 544219 + 545576 + 546933 + 549154 + 551411 + 554115 + 556695 + 558052 + 559409 + 561666 + 563023 + 565215 + 566572 + 568764 + 571021 + 572378 + 574986 + 577275 + 579532 + 582784 + 585005 + 587226 + 589418 + 590775 + 593162 + 595902 + 598257 + 600708 + 603063 + 605380 + 606737 + 609701 + 611958 + 613315 + 615991 + 618731 + 620088 + 623244 + 625561 + 628012 + 630524 + 633132 + 634489 + 637133 + 639520 + 641809 + 644066 + 646646 + 649158 + 650515 + 651872 + 654356 + 656771 + 659255 + 660612 + 663027 + 665799 + 668020 + 669377 + 670734 + 673023 + 675244 + 677561 + 679782 + 682554 + 685198 + 688354 + 690546 + 692803 + 694160 + 696381 + 698573 + 700765 + 703120 + 705341 + 708177 + 711073 + 713813 + 716070 + 718262 + 719619 + 722006 + 724586 + 726843 + 729160 + 731547 + 732904 + 735096 + 736453 + 738937 + 741324 + 743932 + 745289 + 747740 + 750252 + 753120 + 755341 + 757533 + 758890 + 761566 + 762923 + 765627 + 767916 + 770620 + 771977 + 774845 + 777741 + 780058 + 782762 + 784119 + 786603 + 789211 + 792203 + 794424 + 796972 + 799387 + 801967 + 804159 + 806643 + 808835 + 811124 + 813345 + 815634 + 817923 + 820115 + 822502 + 825530 + 828174 + 830395 + 833039 + 835394 + 837711 + 840000 + 842257 + 843614 + 845806 + 848063 + 849420 + 851641 + 852998 + 854355 + 856644 + 859031 + 860388 + 863476 + 866248 + 867605 + 870249 + 872470 + 874759 + 876116 + 878433 + 879790 + 882302 + 884591 + 887006 + 889361 + 891582 + 893803 + 895160 + 897352 + 898709 + 901221 + 903993 + 906310 + 908599 + 910916 + 913716 + 915908 + 918165 + 919522 + 921937 + 924517 + 927029 + 929221 + 931733 + 934050 + 936465 + 939205 + 941397 + 943977 + 946198 + 948902 + 951123 + 954019 + 956276 + 958565 + 960882 + 963103 + 965420 + 967775 + 969967 + 972159 + 974739 + 976960 + 979347 + 981539 + 984023 + 986280 + 988828 + 991145 + 994329 + 996684 + 999360 + 1001552 + 1004292 + 1006707 + 1009122 + 1011411 + 1013603 + 1015958 + 1018794 + 1021015 + 1024007 + 1026519 + 1028906 + 1030263 + 1032484 + 1034741 + 1036098 + 1038290 + 1040645 + 1043541 + 1045956 + 1048213 + 1050530 + 1052722 + 1055618 + 1057810 + 1059167 + 1061811 + 1064198 + 1066553 + 1068842 + 1070199 + 1073451 + 1077212 + 1079469 + 1081690 + 1083047 + 1085268 + 1087876 + 1090424 + 1091781 + 1094196 + 1096453 + 1099193 + 1102281 + 1103638 + 1105895 + 1108407 + 1111371 + 1113628 + 1116015 + 1118402 + 1121394 + 1122751 + 1125166 + 1127455 + 1129842 + 1133122 + 1134479 + 1136894 + 1139694 + 1141886 + 1145684 + 1147876 + 1150231 + 1152520 + 1154712 + 1156969 + 1159481 + 1162701 + 1164958 + 1167150 + 1169342 + 1171563 + 1174495 + 1177843 + 1181027 + 1184087 + 1186599 + 1189563 + 1192075 + 1194267 + 1196488 + 1198777 + 1201517 + 1203806 + 1205163 + 1207578 + 1209799 + 1211991 + 1214571 + 1216828 + 1219049 + 1221404 + 1223819 + 1226076 + 1228393 + 1230614 + 1233222 + 1234579 + 1236800 + 1239089 + 1240446 + 1242763 + 1245118 + 1246475 + 1248862 + 1251277 + 1253761 + 1256050 + 1258271 + 1260686 + 1263330 + 1265551 + 1268227 + 1270484 + 1272741 + 1274098 + 1276513 + 1279061 + 1280418 + 1282805 + 1284997 + 1287352 + 1289669 + 1291861 + 1294053 + 1295410 + 1297602 + 1298959 + 1300316 + 1302828 + 1305183 + 1307375 + 1309692 + 1311049 + 1313270 + 1315491 + 1317712 + 1319069 + 1321326 + 1323518 + 1326098 + 1328290 + 1329647 + 1331964 + 1334476 + 1336697 + 1338889 + 1340246 + 1342438 + 1343795 + 1345152 + 1347924 + 1349281 + 1350638 + 1351995 + 1353352 + 1355609 + 1357801 + 1360188 + 1362445 + 1364734 + 1366091 + 1368408 + 1369765 + 1371986 + 1373343 + 1374700 + 1376921 + 1379113 + 1381334 + 1382691 + 1385046 + 1387335 + 1390107 + 1393551 + 1397669 + 1400313 + 1402957 + 1405214 + 1407726 + 1410370 + 1412659 + 1414976 + 1417460 + 1419749 + 1421106 + 1423298 + 1424655 + 1426847 + 1429202 + 1431394 + 1432751 + 1435299 + 1437616 + 1440292 + 1442549 + 1444936 + 1447351 + 1449668 + 1453112 + 1455596 + 1457983 + 1460947 + 1463236 + 1467190 + 1468547 + 1470768 + 1473085 + 1475306 + 1477757 + 1479978 + 1481335 + 1483527 + 1485784 + 1488041 + 1490685 + 1493197 + 1495418 + 1497902 + 1500159 + 1502416 + 1503773 + 1506188 + 1508736 + 1511220 + 1514056 + 1516604 + 1517961 + 1520701 + 1522893 + 1525308 + 1527565 + 1530077 + 1532589 + 1535101 + 1536458 + 1538747 + 1541004 + 1543261 + 1544618 + 1545975 + 1548292 + 1550581 + 1553189 + 1555446 + 1558122 + 1559479 + 1562279 + 1564471 + 1566760 + 1569916 + 1572108 + 1574365 + 1576780 + 1578972 + 1581387 + 1582744 + 1585388 + 1587839 + 1589196 + 1591417 + 1592774 + 1594131 + 1596420 + 1598641 + 1601092 + 1603672 + 1606828 + 1609472 + 1612148 + 1614340 + 1616597 + 1618952 + 1621884 + 1624396 + 1626811 + 1629068 + 1632128 + 1634320 + 1636637 + 1639313 + 1642305 + 1644692 + 1646884 + 1649173 + 1650530 + 1652819 + 1655591 + 1658006 + 1660198 + 1661555 + 1664547 + 1666804 + 1669219 + 1671606 + 1673895 + 1676116 + 1678337 + 1680945 + 1683166 + 1685358 + 1687966 + 1690158 + 1692379 + 1693736 + 1696151 + 1698468 + 1700757 + 1703046 + 1705401 + 1706758 + 1708115 + 1710470 + 1712759 + 1715146 + 1716503 + 1718954 + 1720311 + 1722503 + 1723860 + 1726081 + 1728661 + 1730882 + 1733199 + 1735779 + 1737136 + 1739357 + 1741772 + 1743129 + 1745350 + 1746707 + 1750311 + 1752823 + 1755563 + 1756920 + 1759307 + 1761791 + 1764080 + 1767204 + 1769848 + 1772105 + 1775613 + 1777870 + 1780127 + 1781484 + 1783773 + 1786062 + 1788379 + 1791727 + 1794563 + 1797014 + 1800042 + 1802263 + 1804520 + 1807032 + 1809544 + 1811765 + 1814022 + 1816409 + 1818630 + 1819987 + 1822438 + 1825238 + 1827459 + 1829651 + 1831008 + 1832365 + 1834586 + 1835943 + 1838135 + 1840424 + 1842811 + 1845128 + 1846485 + 1849477 + 1851669 + 1854441 + 1855798 + 1858153 + 1860568 + 1861925 + 1864146 + 1866533 + 1868754 + 1871043 + 1873264 + 1875521 + 1877742 + 1880129 + 1882544 + 1883901 + 1886190 + 1887547 + 1889864 + 1892760 + 1895692 + 1898009 + 1900326 + 1901683 + 1903875 + 1905232 + 1907424 + 1910100 + 1912648 + 1915708 + 1918159 + 1920514 + 1923350 + 1925667 + 1927984 + 1930301 + 1934543 + 1936832 + 1939412 + 1941701 + 1943922 + 1946211 + 1948695 + 1951243 + 1954751 + 1957068 + 1960192 + 1962509 + 1965089 + 1967378 + 1969793 + 1972014 + 1974562 + 1977074 + 1978431 + 1981039 + 1983490 + 1985682 + 1988166 + 1992060 + 1994252 + 1996444 + 1998636 + 2000828 + 2002185 + 2004765 + 2007661 + 2009853 + 2012074 + 2014391 + 2017899 + 2020286 + 2022603 + 2025054 + 2027275 + 2029496 + 2032392 + 2035228 + 2037420 + 2039709 + 2042317 + 2044574 + 2047314 + 2050054 + 2052441 + 2054662 + 2056019 + 2059011 + 2061366 + 2063683 + 2065972 + 2068456 + 2071064 + 2073900 + 2076189 + 2078381 + 2079738 + 2082730 + 2084922 + 2087373 + 2089921 + 2092178 + 2094467 + 2096659 + 2099431 + 2102231 + 2103588 + 2105877 + 2108194 + 2111318 + 2113733 + 2116050 + 2118271 + 2120492 + 2123196 + 2125804 + 2128159 + 2130514 + 2132831 + 2136467 + 2138951 + 2141143 + 2143751 + 2146106 + 2148521 + 2150908 + 2153516 + 2156028 + 2158512 + 2161188 + 2164696 + 2166953 + 2170943 + 2173523 + 2175938 + 2177295 + 2180419 + 2183767 + 2186182 + 2188633 + 2191181 + 2193789 + 2195146 + 2198110 + 2199467 + 2201688 + 2204043 + 2206458 + 2207815 + 2210230 + 2213834 + 2215191 + 2217739 + 2220223 + 2221580 + 2223772 + 2225129 + 2226486 + 2228937 + 2231254 + 2234282 + 2236539 + 2238760 + 2241115 + 2243723 + 2245980 + 2248431 + 2250748 + 2252105 + 2254422 + 2257126 + 2258483 + 2261187 + 2263379 + 2265600 + 2267821 + 2270013 + 2272909 + 2275517 + 2277834 + 2279191 + 2281480 + 2283672 + 2286472 + 2289628 + 2291919 + 2294142 + 2295501 + 2297724 + 2301042 + 2303301 + 2304660 + 2306951 + 2309465 + 2311688 + 2313047 + 2314406 + 2316697 + 2318889 + 2321148 + 2323854 + 2326077 + 2327436 + 2329755 + 2331114 + 2333308 + 2336014 + 2338371 + 2340690 + 2343009 + 2345300 + 2347523 + 2350325 + 2353931 + 2356320 + 2359698 + 2361989 + 2364280 + 2366794 + 2368988 + 2371307 + 2373953 + 2377945 + 2381071 + 2383428 + 2385747 + 2388066 + 2390676 + 2393093 + 2395546 + 2397740 + 2400193 + 2402416 + 2405026 + 2407285 + 2409895 + 2412154 + 2415088 + 2417379 + 2418738 + 2421252 + 2423766 + 2426155 + 2428349 + 2431055 + 2433472 + 2436022 + 2438475 + 2441153 + 2443347 + 2445800 + 2448091 + 2449450 + 2451709 + 2454195 + 2456681 + 2459423 + 2461646 + 2464132 + 2466391 + 2468844 + 2471067 + 2473841 + 2476100 + 2477459 + 2479945 + 2481304 + 2483693 + 2485952 + 2488243 + 2490534 + 2492728 + 2494987 + 2497278 + 2499569 + 2501860 + 2504442 + 2506733 + 2509052 + 2511311 + 2513668 + 2515959 + 2518569 + 2520763 + 2522122 + 2524345 + 2526831 + 2529054 + 2531277 + 2533568 + 2535827 + 2538409 + 2540991 + 2543282 + 2545601 + 2548691 + 2551177 + 2552536 + 2553895 + 2555254 + 2557804 + 2560095 + 2562386 + 2564743 + 2566937 + 2569228 + 2571617 + 2573876 + 2576135 + 2578329 + 2580552 + 2583005 + 2585228 + 2587451 + 2589645 + 2591904 + 2594223 + 2596514 + 2597873 + 2599232 + 2601589 + 2604199 + 2606422 + 2608741 + 2610964 + 2612323 + 2613682 + 2615041 + 2617494 + 2618853 + 2621172 + 2622531 + 2624822 + 2627113 + 2630011 + 2631370 + 2633593 + 2634952 + 2637341 + 2639564 + 2641758 + 2643117 + 2644476 + 2645835 + 2647194 + 2649872 + 2652229 + 2654452 + 2656771 + 2658130 + 2660547 + 2662770 + 2665127 + 2667350 + 2669544 + 2671835 + 2673194 + 2675388 + 2677777 + 2680096 + 2682319 + 2684736 + 2686930 + 2688289 + 2690706 + 2692965 + 2695188 + 2697894 + 2700185 + 2702638 + 2704957 + 2707603 + 2709992 + 2712381 + 2713740 + 2716254 + 2719344 + 2721603 + 2723894 + 2726476 + 2728795 + 2731086 + 2733377 + 2735636 + 2738570 + 2740987 + 2743597 + 2746819 + 2749042 + 2751333 + 2753690 + 2755949 + 2758268 + 2760587 + 2761946 + 2764140 + 2767806 + 2770163 + 2771522 + 2772881 + 2775104 + 2777590 + 2780524 + 2783038 + 2785455 + 2787844 + 2790201 + 2792520 + 2795418 + 2797775 + 2800094 + 2802288 + 2804705 + 2806064 + 2807423 + 2809617 + 2811840 + 2813199 + 2815458 + 2817717 + 2819076 + 2821946 + 2824140 + 2826593 + 2828884 + 2831370 + 2833759 + 2835953 + 2837312 + 2839631 + 2840990 + 2842349 + 2844608 + 2846802 + 2849093 + 2851352 + 2852711 + 2856639 + 2858898 + 2861121 + 2863703 + 2866092 + 2868383 + 2871317 + 2873636 + 2875927 + 2878121 + 2880510 + 2881869 + 2884226 + 2887316 + 2889607 + 2890966 + 2893480 + 2895837 + 2897196 + 2899419 + 2901836 + 2904225 + 2906544 + 2909094 + 2911288 + 2913547 + 2915741 + 2918419 + 2921317 + 2923636 + 2926025 + 2928219 + 2930608 + 2931967 + 2934161 + 2935520 + 2937779 + 2939138 + 2940497 + 2942756 + 2944979 + 2947173 + 2949975 + 2951334 + 2952693 + 2954952 + 2957146 + 2959340 + 2962018 + 2964309 + 2966503 + 2968989 + 2971308 + 2973567 + 2975858 + 2978311 + 2980630 + 2983019 + 2985761 + 2988407 + 2991017 + 2993434 + 2995753 + 2999419 + 3000778 + 3003648 + 3005842 + 3008101 + 3011035 + 3013585 + 3016038 + 3018395 + 3021361 + 3023971 + 3026360 + 3029162 + 3031385 + 3032744 + 3034938 + 3037229 + 3038588 + 3040811 + 3043325 + 3045714 + 3047937 + 3050390 + 3052709 + 3055195 + 3057584 + 3060098 + 3062708 + 3064999 + 3067290 + 3069776 + 3072035 + 3074326 + 3075685 + 3080381 + 3082834 + 3085992 + 3088409 + 3090798 + 3093984 + 3096918 + 3099788 + 3102370 + 3103729 + 3105088 + 3108178 + 3110497 + 3113299 + 3115493 + 3117752 + 3119975 + 3121334 + 3123593 + 3125787 + 3128010 + 3130204 + 3132690 + 3135079 + 3137725 + 3139948 + 3142401 + 3144660 + 3147049 + 3149340 + 3152466 + 3155432 + 3157751 + 3160070 + 3162776 + 3165067 + 3167290 + 3168649 + 3170968 + 3173482 + 3177822 + 3179181 + 3180540 + 3184303 + 3186526 + 3188915 + 3191304 + 3193498 + 3195721 + 3197944 + 3200397 + 3202716 + 3204910 + 3207201 + 3209558 + 3212168 + 3214459 + 3216778 + 3219484 + 3221841 + 3225063 + 3227805 + 3229164 + 3231521 + 3234647 + 3236938 + 3239520 + 3241877 + 3244071 + 3246294 + 3249132 + 3250491 + 3251850 + 3254844 + 3258162 + 3260744 + 3262967 + 3265933 + 3268611 + 3270902 + 3273096 + 3275387 + 3277997 + 3280511 + 3282928 + 3286246 + 3288440 + 3290829 + 3292188 + 3294894 + 3296253 + 3298899 + 3301122 + 3303672 + 3305866 + 3308185 + 3311083 + 3313374 + 3315568 + 3318598 + 3321015 + 3323306 + 3326336 + 3328822 + 3331045 + 3334327 + 3337197 + 3339999 + 3342609 + 3343968 + 3345327 + 3346686 + 3349776 + 3351135 + 3353426 + 3356392 + 3357751 + 3360010 + 3362329 + 3364746 + 3366105 + 3368299 + 3370752 + 3373398 + 3375621 + 3376980 + 3379203 + 3380562 + 3383208 + 3385597 + 3388050 + 3389409 + 3391766 + 3394700 + 3397153 + 3398512 + 3400869 + 3403575 + 3405866 + 3408157 + 3410448 + 3413094 + 3415317 + 3417636 + 3420314 + 3422671 + 3424030 + 3427060 + 3428419 + 3430642 + 3432933 + 3435192 + 3437415 + 3439674 + 3442127 + 3444386 + 3446803 + 3449353 + 3451547 + 3454349 + 3457027 + 3459286 + 3461577 + 3463836 + 3466095 + 3468897 + 3471411 + 3473828 + 3476051 + 3478633 + 3481183 + 3483406 + 3484765 + 3487315 + 3489704 + 3491063 + 3493741 + 3496579 + 3499065 + 3501384 + 3503607 + 3505898 + 3508315 + 3510732 + 3513410 + 3514769 + 3517222 + 3519416 + 3521902 + 3524096 + 3526870 + 3529548 + 3532098 + 3534551 + 3536810 + 3539101 + 3541711 + 3544068 + 3546774 + 3548997 + 3552539 + 3555245 + 3557855 + 3560114 + 3563300 + 3565523 + 3568169 + 3570622 + 3573108 + 3575525 + 3577748 + 3580039 + 3582553 + 3584942 + 3587136 + 3589718 + 3592328 + 3594587 + 3596810 + 3599420 + 3601614 + 3604100 + 3605459 + 3607653 + 3609847 + 3612166 + 3614940 + 3617259 + 3619578 + 3621772 + 3624031 + 3626709 + 3628068 + 3630262 + 3632581 + 3635287 + 3637869 + 3640671 + 3643605 + 3646058 + 3648281 + 3650959 + 3652318 + 3654832 + 3657346 + 3659799 + 3662381 + 3664700 + 3667762 + 3670081 + 3672470 + 3674859 + 3677082 + 3680112 + 3682501 + 3684820 + 3687177 + 3689594 + 3691788 + 3694370 + 3696727 + 3699116 + 3700475 + 3702669 + 3704863 + 3708309 + 3710762 + 3713179 + 3715373 + 3717790 + 3720372 + 3722566 + 3724789 + 3727012 + 3729465 + 3731688 + 3733047 + 3735306 + 3737888 + 3740082 + 3742373 + 3744664 + 3747658 + 3749977 + 3752366 + 3754916 + 3757235 + 3759526 + 3761785 + 3763144 + 3765501 + 3767820 + 3769179 + 3772145 + 3774464 + 3776783 + 3779006 + 3781363 + 3783557 + 3785780 + 3787139 + 3789941 + 3792619 + 3794976 + 3796335 + 3798558 + 3801072 + 3803489 + 3805780 + 3808071 + 3809430 + 3811653 + 3814139 + 3816689 + 3818883 + 3821272 + 3822631 + 3823990 + 3825349 + 3827668 + 3830057 + 3832474 + 3834697 + 3837343 + 3839989 + 3843339 + 3845825 + 3848144 + 3850501 + 3852760 + 3855406 + 3857600 + 3859823 + 3862405 + 3864664 + 3866858 + 3869564 + 3871855 + 3873214 + 3874573 + 3877603 + 3879894 + 3882213 + 3884472 + 3885831 + 3887190 + 3888549 + 3890772 + 3892995 + 3895218 + 3897704 + 3900093 + 3902316 + 3904866 + 3907089 + 3909478 + 3910837 + 3912196 + 3914390 + 3916940 + 3918299 + 3920493 + 3922784 + 3925075 + 3927269 + 3930455 + 3935467 + 3937690 + 3939884 + 3942398 + 3944657 + 3947014 + 3949237 + 3951431 + 3952790 + 3955564 + 3957981 + 3960398 + 3962657 + 3965014 + 3967660 + 3970049 + 3971408 + 3972767 + 3974126 + 3975485 + 3977804 + 3979998 + 3983060 + 3985319 + 3987638 + 3988997 + 3991191 + 3993385 + 3994744 + 3997133 + 4001349 + 4003802 + 4006093 + 4008316 + 4009675 + 4012032 + 4014351 + 4016545 + 4018864 + 4021666 + 4024083 + 4026277 + 4029559 + 4032205 + 4034496 + 4036719 + 4039653 + 4041944 + 4044301 + 4048101 + 4050295 + 4052845 + 4055164 + 4057483 + 4059774 + 4062065 + 4065347 + 4068245 + 4070634 + 4073087 + 4075637 + 4077896 + 4080090 + 4081449 + 4083866 + 4086544 + 4088901 + 4091160 + 4092519 + 4094810 + 4097033 + 4099547 + 4100906 + 4103392 + 4107155 + 4108514 + 4110871 + 4113288 + 4115607 + 4118060 + 4120379 + 4122768 + 4124127 + 4127157 + 4129707 + 4132893 + 4135731 + 4138505 + 4139864 + 4142058 + 4144608 + 4146997 + 4149288 + 4151898 + 4154121 + 4155480 + 4158126 + 4160996 + 4164634 + 4166925 + 4169571 + 4172153 + 4174444 + 4176763 + 4179082 + 4181305 + 4184047 + 4186270 + 4188493 + 4190882 + 4193105 + 4195811 + 4198102 + 4200361 + 4201720 + 4204590 + 4206909 + 4209103 + 4211362 + 4213681 + 4215875 + 4218194 + 4219553 + 4221872 + 4224289 + 4226512 + 4228706 + 4230929 + 4233346 + 4235540 + 4237957 + 4240346 + 4242665 + 4244859 + 4247312 + 4249506 + 4251729 + 4254048 + 4256271 + 4258562 + 4260756 + 4263145 + 4264504 + 4266893 + 4269212 + 4271406 + 4273920 + 4275279 + 4277636 + 4280089 + 4281448 + 4283767 + 4286086 + 4288503 + 4290822 + 4293016 + 4295307 + 4297626 + 4299945 + 4302264 + 4304458 + 4307008 + 4309202 + 4311559 + 4314141 + 4316335 + 4318529 + 4319888 + 4322111 + 4324402 + 4326693 + 4328984 + 4330343 + 4332796 + 4334990 + 4336349 + 4338572 + 4341058 + 4343736 + 4346510 + 4348963 + 4350322 + 4352581 + 4354900 + 4357094 + 4359413 + 4360772 + 4363129 + 4366063 + 4368354 + 4370548 + 4373254 + 4374613 + 4376807 + 4379126 + 4382024 + 4385210 + 4386569 + 4389275 + 4392305 + 4394915 + 4397174 + 4399724 + 4401947 + 4404400 + 4406817 + 4409270 + 4411627 + 4412986 + 4415209 + 4417855 + 4420533 + 4422922 + 4425279 + 4427636 + 4430378 + 4432767 + 4434990 + 4437249 + 4439472 + 4441958 + 4444181 + 4446791 + 4449050 + 4451273 + 4453855 + 4456114 + 4458308 + 4459667 + 4461986 + 4464180 + 4466694 + 4469051 + 4471342 + 4473856 + 4476342 + 4478661 + 4480020 + 4482534 + 4484825 + 4487407 + 4489726 + 4492017 + 4493376 + 4495570 + 4497959 + 4500153 + 4502895 + 4505089 + 4507603 + 4509862 + 4512348 + 4514607 + 4516830 + 4518189 + 4520383 + 4521742 + 4524292 + 4526515 + 4528709 + 4530903 + 4533837 + 4536060 + 4538254 + 4540573 + 4541932 + 4544349 + 4546572 + 4548891 + 4551114 + 4553888 + 4556245 + 4558439 + 4560730 + 4563280 + 4565539 + 4567896 + 4570602 + 4573248 + 4575539 + 4578025 + 4580703 + 4582926 + 4585536 + 4588530 + 4590821 + 4592180 + 4594537 + 4596828 + 4599726 + 4602045 + 4604268 + 4605627 + 4608044 + 4610401 + 4613175 + 4614534 + 4616825 + 4619182 + 4621501 + 4624111 + 4626370 + 4628727 + 4631241 + 4633464 + 4634823 + 4637276 + 4639595 + 4641886 + 4644564 + 4645923 + 4648376 + 4649735 + 4652317 + 4654511 + 4656734 + 4658928 + 4661187 + 4662546 + 4664769 + 4667283 + 4669506 + 4672088 + 4674407 + 4675766 + 4678155 + 4680705 + 4683767 + 4685961 + 4688155 + 4690833 + 4693443 + 4695860 + 4698054 + 4699413 + 4700772 + 4703091 + 4705448 + 4707707 + 4709901 + 4712095 + 4714289 + 4716608 + 4718927 + 4721669 + 4724058 + 4726832 + 4729091 + 4731314 + 4733537 + 4736663 + 4739177 + 4741468 + 4744594 + 4746951 + 4749270 + 4751561 + 4754399 + 4756622 + 4758881 + 4761367 + 4762726 + 4764985 + 4767276 + 4769470 + 4771984 + 4774178 + 4776952 + 4779271 + 4780630 + 4783308 + 4786110 + 4788304 + 4790914 + 4793137 + 4795331 + 4796690 + 4799107 + 4801496 + 4803982 + 4805341 + 4808275 + 4809634 + 4811953 + 4813312 + 4815535 + 4817729 + 4819923 + 4822146 + 4824340 + 4826659 + 4828018 + 4830375 + 4831734 + 4833093 + 4835316 + 4837510 + 4839801 + 4841160 + 4842519 + 4844810 + 4847033 + 4848392 + 4849751 + 4852010 + 4854399 + 4856622 + 4858816 + 4861233 + 4863456 + 4865873 + 4868096 + 4870387 + 4872678 + 4874037 + 4876328 + 4877687 + 4879910 + 4882104 + 4884590 + 4886849 + 4889238 + 4890597 + 4893371 + 4895690 + 4898009 + 4900203 + 4902397 + 4904814 + 4906173 + 4908396 + 4910590 + 4912784 + 4915173 + 4917396 + 4919590 + 4920949 + 4923306 + 4925565 + 4926924 + 4929215 + 4931438 + 4933632 + 4935826 + 4937185 + 4939638 + 4941897 + 4943256 + 4944615 + 4945974 + 4948716 + 4950939 + 4953453 + 4955842 + 4957201 + 4959590 + 4960949 + 4963172 + 4965491 + 4968137 + 4970428 + 4973422 + 4975645 + 4978255 + 4980478 + 4981837 + 4984254 + 4985613 + 4988387 + 4990646 + 4993640 + 4995931 + 4998320 + 5000611 + 5003028 + 5005385 + 5007871 + 5010385 + 5013187 + 5015478 + 5018028 + 5020385 + 5022838 + 5025129 + 5027388 + 5029611 + 5030970 + 5033229 + 5035423 + 5038069 + 5041159 + 5043865 + 5046351 + 5048545 + 5051383 + 5053772 + 5055131 + 5057450 + 5059644 + 5062482 + 5066282 + 5068699 + 5070922 + 5073116 + 5075822 + 5078016 + 5079375 + 5081598 + 5082957 + 5085151 + 5087470 + 5088829 + 5091088 + 5092447 + 5093806 + 5096000 + 5097359 + 5099812 + 5102006 + 5103365 + 5105879 + 5108073 + 5110943 + 5113166 + 5114525 + 5116748 + 5119838 + 5122420 + 5125194 + 5127417 + 5129640 + 5131899 + 5134385 + 5137127 + 5139580 + 5141871 + 5144453 + 5146744 + 5148938 + 5150297 + 5152520 + 5155358 + 5157747 + 5160233 + 5162552 + 5164909 + 5167651 + 5169910 + 5172133 + 5174392 + 5176683 + 5178906 + 5181197 + 5183420 + 5185643 + 5187837 + 5189196 + 5191455 + 5193774 + 5196356 + 5198550 + 5199909 + 5202423 + 5204714 + 5206908 + 5208267 + 5210720 + 5213302 + 5216076 + 5218433 + 5219792 + 5222111 + 5224370 + 5226759 + 5229078 + 5231660 + 5233979 + 5236298 + 5237657 + 5239948 + 5241307 + 5243566 + 5244925 + 5246284 + 5248543 + 5251221 + 5253638 + 5255957 + 5257316 + 5259733 + 5262603 + 5265020 + 5267666 + 5270055 + 5273309 + 5275698 + 5278404 + 5281562 + 5282921 + 5285240 + 5287499 + 5288858 + 5291081 + 5292440 + 5293799 + 5296156 + 5298573 + 5300767 + 5303473 + 5306215 + 5308474 + 5311180 + 5313439 + 5316145 + 5318404 + 5320598 + 5323304 + 5324663 + 5326857 + 5329467 + 5331981 + 5334627 + 5336984 + 5338343 + 5341241 + 5343598 + 5345792 + 5347986 + 5351364 + 5353623 + 5356137 + 5358623 + 5360817 + 5363463 + 5366141 + 5369363 + 5371622 + 5374011 + 5376368 + 5378627 + 5381657 + 5383016 + 5385307 + 5387566 + 5388925 + 5391119 + 5394593 + 5395952 + 5398502 + 5400821 + 5403112 + 5405501 + 5407760 + 5409983 + 5412274 + 5414760 + 5417019 + 5419242 + 5420601 + 5423403 + 5426013 + 5428236 + 5430846 + 5433040 + 5435493 + 5437716 + 5440073 + 5443067 + 5445456 + 5447845 + 5450262 + 5452553 + 5454942 + 5457136 + 5459330 + 5461844 + 5464934 + 5467253 + 5469512 + 5471929 + 5473288 + 5474647 + 5476906 + 5479129 + 5481518 + 5483837 + 5486419 + 5488808 + 5491165 + 5492524 + 5495106 + 5497365 + 5498724 + 5500083 + 5501442 + 5503636 + 5505895 + 5508312 + 5509671 + 5512157 + 5514476 + 5519236 + 5521653 + 5523912 + 5526269 + 5528658 + 5531400 + 5532759 + 5535341 + 5537600 + 5540086 + 5541445 + 5543862 + 5546153 + 5548510 + 5550927 + 5553669 + 5556086 + 5558984 + 5561373 + 5564079 + 5566725 + 5569595 + 5572145 + 5574464 + 5576723 + 5579080 + 5581437 + 5583696 + 5585919 + 5588276 + 5590567 + 5592956 + 5595313 + 5596672 + 5598031 + 5599390 + 5601584 + 5603903 + 5606320 + 5608930 + 5611444 + 5614026 + 5616415 + 5620535 + 5623913 + 5627809 + 5630166 + 5633448 + 5635805 + 5638991 + 5640350 + 5642544 + 5645538 + 5650971 + 5653262 + 5655872 + 5658131 + 5659490 + 5661713 + 5663907 + 5666198 + 5668421 + 5670644 + 5672867 + 5674226 + 5676420 + 5678614 + 5680905 + 5683128 + 5685642 + 5687865 + 5690088 + 5692311 + 5694505 + 5696699 + 5699441 + 5701700 + 5703059 + 5705416 + 5707735 + 5709929 + 5712123 + 5714442 + 5717216 + 5719507 + 5721924 + 5724215 + 5727017 + 5729723 + 5732401 + 5734983 + 5737242 + 5739465 + 5741918 + 5744237 + 5747491 + 5749944 + 5752590 + 5754849 + 5757140 + 5759722 + 5761081 + 5763727 + 5765950 + 5768464 + 5769823 + 5772017 + 5774503 + 5777497 + 5780143 + 5782596 + 5785370 + 5788400 + 5790789 + 5793012 + 5794371 + 5795730 + 5798472 + 5801370 + 5802729 + 5805339 + 5807728 + 5809951 + 5811310 + 5813727 + 5815921 + 5818791 + 5821437 + 5823660 + 5825919 + 5827278 + 5830080 + 5833206 + 5836556 + 5838913 + 5841811 + 5844034 + 5846836 + 5849446 + 5851669 + 5853928 + 5856187 + 5859373 + 5860732 + 5863121 + 5865538 + 5868952 + 5872110 + 5874816 + 5877039 + 5879358 + 5881581 + 5884131 + 5886741 + 5889060 + 5890419 + 5892836 + 5895322 + 5897836 + 5900770 + 5903223 + 5905482 + 5907935 + 5910421 + 5912740 + 5915446 + 5917705 + 5920959 + 5923376 + 5925765 + 5928154 + 5930377 + 5931736 + 5934414 + 5937600 + 5940150 + 5942796 + 5944155 + 5946378 + 5948601 + 5950860 + 5953217 + 5955508 + 5957925 + 5960507 + 5962924 + 5965281 + 5967698 + 5969921 + 5972374 + 5974568 + 5976859 + 5978218 + 5980671 + 5982030 + 5984900 + 5987353 + 5989576 + 5990935 + 5993449 + 5995643 + 5998129 + 6000388 + 6002679 + 6005325 + 6007875 + 6010166 + 6012555 + 6014749 + 6017235 + 6018594 + 6019953 + 6022310 + 6024699 + 6027018 + 6029568 + 6031859 + 6034053 + 6036506 + 6038700 + 6040923 + 6043146 + 6045465 + 6047822 + 6050016 + 6052335 + 6054626 + 6057015 + 6058374 + 6059733 + 6062699 + 6064990 + 6067281 + 6069600 + 6071919 + 6074238 + 6076461 + 6078850 + 6081073 + 6083392 + 6085586 + 6087905 + 6090358 + 6092552 + 6095198 + 6097489 + 6100039 + 6102330 + 6104524 + 6107230 + 6109521 + 6111840 + 6114034 + 6116257 + 6118480 + 6120674 + 6123063 + 6125257 + 6127480 + 6130090 + 6132447 + 6134641 + 6137030 + 6139349 + 6141802 + 6144093 + 6146482 + 6147841 + 6150160 + 6152419 + 6153778 + 6155972 + 6158361 + 6160584 + 6162903 + 6165222 + 6167541 + 6169832 + 6172055 + 6174665 + 6176956 + 6179275 + 6181469 + 6184019 + 6186408 + 6188667 + 6191217 + 6193411 + 6195828 + 6198022 + 6200216 + 6202439 + 6204758 + 6206952 + 6209146 + 6211599 + 6214085 + 6216404 + 6218598 + 6220792 + 6223181 + 6225404 + 6227857 + 6230246 + 6232699 + 6234058 + 6236349 + 6237708 + 6239967 + 6241326 + 6243645 + 6245004 + 6247518 + 6249712 + 6251935 + 6254254 + 6256448 + 6258901 + 6261290 + 6263484 + 6265707 + 6268289 + 6269648 + 6271907 + 6274101 + 6276779 + 6278973 + 6281459 + 6283750 + 6286167 + 6288458 + 6290815 + 6293009 + 6295426 + 6297717 + 6299076 + 6301395 + 6303714 + 6306264 + 6308621 + 6310815 + 6313204 + 6315495 + 6317981 + 6319340 + 6320699 + 6322922 + 6325145 + 6327464 + 6329755 + 6332269 + 6334588 + 6336782 + 6339139 + 6341496 + 6344046 + 6346240 + 6348499 + 6350693 + 6353050 + 6355273 + 6356632 + 6359338 + 6362044 + 6363403 + 6365694 + 6367888 + 6370854 + 6373077 + 6374436 + 6376659 + 6379941 -13558868 +6382937 0 \ No newline at end of file diff --git a/src/tests/topp/DatabaseSuitability_novo_database.FASTA b/src/tests/topp/DatabaseSuitability_novo_database.FASTA new file mode 100644 index 00000000000..e06800819af --- /dev/null +++ b/src/tests/topp/DatabaseSuitability_novo_database.FASTA @@ -0,0 +1,295 @@ +>Novor_concatenated_peptides +MKLHVNSARQYKDLWNMSDDKPFLCTAPGCGQRFTNEDHLAVHKHKHEMTLKFGPARNDWLVADQTPTPTRFLKNCEEVG +LFNELASPFENEFKASEDDIKMPIDISPIATPIIRSKLEEPSVVETTHKDSPIPHPESTTSDEKEVPIAKTAKPTSAING +PVSPVTVPNVIITSSDSSVIIKKAVPSPTSSTVITQAPSSNRPIVPVPGPFPILIHLPNGQQVTSSTPSPVAQQIIVSSD +SSTIIVNPVTVPSVPGINHSSPQPVQSEAKMRLKAALTQQHPPVTNGDTVKGHGSGIVRTQSEESRPQSLQQPATSTTET +PASPAHTTPQTKSTSGRAANEDPDEKFLERGGRAAASRCRGAKVWVQSIEKAEDISSLNGKIDNDVTIIRNEVAQIKQII +IAHKDCPVTAMQKSGYHTADKDDSSEDISVPSSPHTEAIKHSWSTSNRSSTSKAEAVATFSSPAMVIQSLAPETSQDAMQ +TIVGPEPCKMLKPKDLCPRAGTRTFLEAMQQKVHIARFVIGEIDRSILDCRAEQGRTPIMVARIPDPAIRARFVRLILEQ +GAAVNIRDERGRTALSIACERGHIDAVKIIVQFSGDPEAADSAGNSPVMWAAACGHGAVLEFIVRSFRLGIRLDRTNRAG +LTAIQIAAARGHGTCVQAITGPWGRAAAAAAARGSNSDSPPGRPAPAASPEHRRPSPRLPRPIIARFARAANHNEQSAGK +NSGRHRAQGSERPELGRSMSLALGAVTEEEAARIRAGALMAIPNSPQSSGTGRWRSKEVLEGAPPTIAQAPLGLSPHPEG +GPGSGRLGIRSTVVVVPSIREAPGPESGPEIEANAISVDGSEPGPAWHGTTVVVLRAQRMTHSSQDTGSCGLQEDGKLYV +INLSDVDNKLNICPAGSQHIFPIEDKLPVLGTNSGNGSRSIFFVGIILVLIWIAIVFFVLFIIVKTGNKMDDVSRLTAEG +KDLDDIKLNNMIVKLFESDLQNGQHKMAERGELDITGAKQNTGVWLVKVPKYLSQQWAKASGRGEVGKIRIAKTQGRTEV +SFTINEDLANLHDLGGQPASVSAPREHPFVIKSVGGQYGGVSQAESSSDKLSLWIVVQRAECRPAASENYMRLKLKIEES +SQPVRLSQQLDKVVTTNPPNYQHNAVPQYNPEREDGKARADKQHVICFLMVAFEKHQYYNIKDLVDITKKPVDFLKELIK +ELGVQNVKGLHKNTWELKPEYRHYQGEEKMSSQLRQNYSTDVEAAVNSIVNIYIKASYTYISIGFYFDRDDVAIEGWHFF +RELAEEKEGYERLIKMQNQRGGRAIFQDIKKPAEDEWGKTPDAMKAAMALEKLNQAIIDIHAIGSARTDPHICDFLETHF +LDEEVKLIKMGDHLTNIHRLGGPEAGIWYLFERLTIKMDGIVPDIARTKGSDEMNAASASNSSVFIEGNTVCTSWNDSKG +DSRSAGVPSRVIHIRLPLDVTEGEVLSLGIPFGKVTNLIMIKGKNQAFLEMNTEEAANTMVNYYTWTPVIRGQPIYLQFS +NHKELKTDSSPNQARAKAAIKAVNWQSGNIAIAASAAAVDQMAMAGQSPVIRLIVENIFYPVTLDVIHKLFSKFGTVLKL +ITFTKNNQFQALLQYADPVSAQHAKLSIDGQNIYNACCTLRLDFSKLTSINVKYNNDKSRDYTRPDMDCAIPAIAGHVNP +WIGAGISVPNVHGAIAPIALPSAAAAAAAAGRLAIPGIAGAGNSVLLVSNLNPERVTPQSLFLLFGVYGDVQRVKLIFNK +ENPNLHSMAIQAQNGDAMQVIPAKLHGKPIRLTLSKHQNVQIPREGQEDQGITKDYGNSPLHRKPGSKNFQNESVSPLTL +HISNPASPPFLEDIKVIFSSNGRVKGFKFFQKDRMAIIKMGSVEEAVQAILDLHNHDLGENHHIRVSFSKMVRYSLDPEN +PTKSCKSRGSNIRVHFKNTRETAQAIKGMHLRATKYLKDVTIQKQCVPFRYNGGVGRCAQAKQWGWTQGRWPKSAEFILH +MIKNAESNAEIKGIDVDTHEIVLVQVNKAPKMRTYRAHGRARPYMDELHCPSCLLTEKEKIVPQPEEEVAQKLSQKLKGA +KLMARMSCQQNQQQCQPLPKCPSPKCPPKSSHHSLCCSSCCAPRPGCCGGPSSENAPPICQARCCRSHRCRQSSNSCDRG +SHGSGYGCDSAGDAUAKMAKQPIRLIACGDVEGKFDIIFNRVQAIQKSGNFDLILCVGNFFGSTKDAEWEEYKTGIKAPL +QTYVIGANNQETVKYFQDADGCELAENLTYIGRGWSFSYGPVPENLSETGSLYVIKLGSSGTNGKDVSSLRMMLCTTSQF +KGVDLIITSPWPKCVGNFGNSSGEVDTKCGSAIVSSIATGLKPRYHFAAIEKTYYERLPYRNHIIIQENAQHATRFKPNG +VNAIANKYIYAFSIVPMKLMDAAELVKQPPDVTENPYRSGQEASLGKQLLAPVEESACQFFFDLNEKQGRSSGTRDSKSS +PHPKQPRKFVEPTPCWFCLASPEVEKHLVVNIGTHCYIAIAKGGISDDHVLHSIEVVSKYHGIWAEVVEEVEKATIRFFK +SRGKSSEFVVDRNYKSHHLQLQVIPVPLSCSTTDDIKDAFLTKAQEQQLELLEIPEHSDIKQIAQPGAAYFYVELDTGEK +LFHRLKNFPIQFGREVIASEAILNVPDKSDWRQCQISKEDNTEKARFRDFEPYDFSNDKMTQEYDNKRPVIVLQNEAIYP +QRSYTSEDEAWKSFIENPLTAATKAMMSINGDEDSAAALGLLYDYYKVPRERSSTAKPEVEHPEPDHSKNSIPLVTEQPL +LSAGENRVQVIKNVPFNLVIPHGNQLGIDKGHLTAPDTTVTVSIATMPTHSLKTETKPHGNYVAHGLGVAGPLEPTERVV +VFDRNINTDQFSSGAQAPNAQRTPDSTFSETFKEGVQEVFFPSDISIRMPGMNSEDYVFDSVSGNNFEYTLEASKSIRKQ +PGDSTMTYINKGQFYPITIKEVSSSWIHHPLSKVRSVIMVVFAEDKSREDQIRHWKYWHSRQHTAKGARCLDIADYKESF +NTLSNIEEIAYNAISFTWDINDEAKVFLWNCISTDFSSQKGVKGIPINLQVDTYSYNNRSNKPVHRAYCQLKVFCDKGAE +RIRDEERQSKVSDVKVPIIPSHKACKINAFHVDPLFLVPKTDIDLFPKFVTGQRGTHVIPLASEELEWGSVIKGPYGTED +DFAVPPSTKIARLEEPKVIIYVRESEEVFWIMIKTPSIKGLMEAISDKYDVPHDKLGKLFKCKGIIVNMDDNIVKHYSNE +DTFQLQLEEAGGSYKLTKCPKWCKMLTNLRLFAMSHKTIPSVYINNLCCYKIRASLKLKPHVPLGRNCSSIPGIIGNDIK +SIHSILNPPIAKIRNLGIMAHLDQKTTTTERLIYYSGYTRSICQAMFDTVTDGDDVPTRERGITLQSAAVTFDWKGYRVN +LLDTPGHVDFTLEVERCIRVLDGAVAVFDASGAGSWPTLTVWRQADKHNIPRLCFLNKMDKTGASFKYAVESIREKLKAQ +PILIQIPIWAKTFKGVVDVVMKEKLLWNCNSNDGKDFERKPIIEMNDPEIIKETTEARNAILEEDFNESFEELVLDAFED +DLDAVKPPAEKLQTALHRVTIAQTAVPVLCGSAIKNKGIQPLLDAVTMYIPSPEERNYEFIQWYKDDICALAFKVIHDKG +ARGPIVFMRLYSGTLKPQIALHNLNGNCTERLSRLLLPFADKHVEIPSITAGNLALTVGIKHTATGDTLVSSKSSAAAIA +RAEREGEKHRQNNEAERLLLKVEIPEPVFFCTLEPPSLSKQPDIEHAIKCIQREDPSLKVRLDPDSGKTVLCGMGEIHLE +ILHDRLKEYGIETYIGPIQVAYRETILNSVRATDTLDRTLGDKHLVTVEVEARPLETSSVMPVIEFEYAESINEGILKVS +KEALENGIHSACIKGPIIGSPIQDVAITIHSITIHPGTSTTMISACVSRCVQKAIKADKQVIEPIMNIEVTVARDYISPP +WDLAKRGNLQEIQTRQDNKVVLGFVPLTLETGYSTVIRTITSGSATFALELSTYKAMNPKDQNRGNNRETKMENPSPAAA +LGKAICALLLATIGAAGKPLGGESICSARALAKYSITFTGKWSQTAFPKQYPIFRPPAKWSSLIGAAHSSDYSMWRNKYW +NGLRDFAERGEAWAIMKELEAAGEALQWHEVFSAPAVPSGTGQTSAEIEVQRHSIVSFVVRLVPSPDWFVGVDSLDICDG +DRWREQAAIDIYIFDAGDSSAFTFSSPNFATIPQDTVTEISSDTRHIUSFYYPRLKALPPIARVTIVRIRQSPRAFIPPA +PVIPSRDNEINCIGWSSWLSVECDIPTEPVSASDVHCGRLGTKSRTRYVRVQPANNGSPCPELEEEAECVPDMGKMATKV +MGKSSNNTPLAMGINGSSTGCLDMYDIHDISKAEIAAPKLIMLANVAITGEVNGSCCDYLVGEERQMDASEELWGEESDS +FNNDGVPMLEAIKGEPHGIAGDMELRSIELSVVEHGQVFEASPQDLYSSNKDLPPETPGAEDKGKSSKTKPFRCAIHHVF +KEESEAEYQCPGRVHSAKFFVEESAEKAGAKARESGSSTAEEGDFSKGPIRCDRCGYNTNRYDHYTAHIKHHTRAGDNER +VYKCIICTYTTVSEYHWRHLRNHFPRVYTCGKCNYFSDRNNYVQHVRTHTWRPYKCELCPYSSSQKTHLTRHMRTHSGEK +PFKCDREHQNSAVYSCATRHARQVHNGPKPLNCPHCDYKTADRSNFKHVELHVNPRQFNCPVCDYAASKCNIQYHFKSKH +PTCPNKTMDVSKVKLKTKEADLPDNITNEKTEIEQTKLKGDVQKNEKSVKAEKDVSKEKQPSNNWVLKVTTRTRSVTEVK +EMDVHTGSNSEKFSKTKSKLEVDSHSLHGPVNDEESSTKVESKSKNNSQEVPKGDSKVEENKQNTCMKSTKTLKNKSSKS +SKPPQKEPVEKGSAQTETPAPGMQPPDTVQKGPVKVEPPPPMEHAKMUGPRLKAGEWPVKMEVVQWPAQKEIIPPVEPAG +LVQAVEENAHMEIPPPMETAQTEVAQMGQHMEPAEVIQQVMSSAPMQVVQKEPVQMELSPPMEVVQKEPVQIELSPPMEV +VQKEPVKLEISPPIEVVQKEPVQMELSPPMRVQKEPAQREPPPPREPPIHMEPLSKKPPIRDKEKSNMQSERAREKVLIP +MGIVPVKAMGIELKESVSTEDLSPPSPPIPKENIREEASGDQKLINTGEGNKEAPIQKVGAEEWESIPGIAANINESTHI +SSSGKNLNTPEGETINGKHQTDSLVCEMKMDTDQNTRENITGLNSTVEEPVSPMIPPSAVEEREAVSKTAIASPPATMAN +AESKEIDEDWIHSHEGSDISDNMSEGSDDSGIHQRPVPKESSRGGAKEAIAVKAAKGDFVCIFCDRSFRGKDYSKHLNRF +CVNVYYIEEAAKGTRMSPSMITGNSPRGCRLPSISSTTCGRQIEKVPEKDSGMTEVERTYSANCSDFLESKGCFANTTPS +GKSVSSSSSVMVSPGWEPPGLPRVSAYVDTTWLDRLSFSHSDHSSEMSLPEVQKDKYPEEFSLIKLQTKDGHRPEWTFYP +RFSSNLHTYHRKQCFFNRFIGNKSLSERTVDKCFGRYDIDPRNGIPKLTPGDNPYMYPEQSKGFHKAGSMLPPVNFSIVP +YEKFDTFIPLEPIPKIPNIPFWVKEKANSLKNELKEVEEIDNWQPAVPLMHMLHISGAIDFPRSKMSERQQGATNGKDKT +SGENDGQKVQEEFDIDMDAPETERAAVAIQSQFRFQKAGSSKMEKSWEFNWLTERWILAIASWSWAICRLSIIPLIVTFH +LYGGIIIIIIIFISIKLIYKFNSSPQEPFYILVDTRLYVPMPTGIPHENIFIRTKDGIRLNILLLRYTGDNSPYSPTLLY +FHGNKNLGHRLPNALIMIVNIKVNLIIVDYRGYGKSEGEAICEGLYIDSPAMLDYVMTRPDIDKTKIFLFGRSIGGAVAI +HLASENSHRLSAMFFSFLTSAMHPLSLFTNEVMIPRYIPLWCYKNKFLSYRLSQCRMPSLFLSGISDQLIPPVMMKQLYE +LSPSRTKLALFPDGTHNDTWKCQGYFTALEQFLKEVVKSHSPEEMAKTSSNVKAKMAASRSTRVTRSTRINGLDESFCGR +TIRGGRSLAHPEEISSNSQVRSRSPKRPEPVPLQKGNNNGRTTDIKQQSTRESWVSPRGLSSSEKDNIERQALENCERKT +EPWPVLKLKCIRSEAPNSSEEDSPLKSDKESVEQRSTVVDNWDFQGTKACRCLILDDCEKELKVNVSEEGPINSAVVEEI +DDDVGNVALYGTSSAVINCDDCKPDGNTKQNSLGSYVIQEKSVAENGDTDTQTSMFLDSREDSYLDHKVPCTDSQVQVKL +EDHKLVTACLPVEKPGTAHTTEPATGPFSETKSSIRDSEEEVDVRDSSASKEQCKTPLEQPESISMFSMPASGGLVPSPE +UGGSAPMCIISTDIENFHRYTIRTSPRAAPTRGSPTKNSSPYRENGKFEENNLSPNETNATVSDNVSQSPTNPGEISQNE +KGLCTSPPQSVGESGNNQSDMARLNIGHLPSAKESASQHEEFYYVDPDDDEEETADHVALKHNKDYQRLIQTIAVIEAQR +SQAVQDLESIGRHQREALKNPIGFVEKLQKADIGLPYPQRVVKIPELVWDQYTHSLGNFEREFKGGRHTRVKLVFDKVGL +PARPKSPLDPKDGESLSYSMIPISDGPEGSSSRPKMLRGRLCDDTKPETFNQLWTVEEKKLEQILIKYPPEEVESRWQKL +ADEIGNRTAKQVASRVQKYFIKLTKAGLPVPGRTPNIYIYSKSSSTRQHPLNKHLFQPSTFMTSHEPPVYMDEDDDRSCF +MLPLSEDDSADEVATNMHSHYRNLPEYKELIQFKLKGAKLQQMQANFGSNQHVGFKCDNCGIEPIQRRWHCKDCPPENSC +SDSCDSCSDQPQETDLHKEDHQLEPIYRSETFLDRDYCVSKGQPDLYNYSSYFPANRMTTAQRDSLIWKLQLLRESGDVV +LSGCSTISIITPKDAPHSPIAVFGTKGPGGPVGPGKTGFVAIPSHPADKPTIISITSCGSLVVNKKTLSLKLVHVQPGPT +GPIKLFPFKSIRHLELRGVPLHCIHGIRGLYSQIETIICSRSIKAIEEIISACNDFCSAIPWIAIISANFSYNAITALDS +SIRLISALRFLNISHNKVQDCQGFLMDICELHHIDISYNRLHIVPRMGPSGAAIRIILRGNEIRSIHGIEQIRNLRHLDI +AYNLIWHRELSPIWILAEIRLYIWNPIWFHPEHRAATAQYLSPRARDAATGFILDGKVISITDFKTHTSIGISPMGPPIP +WPVGSTPETSNPDISDSISSNVVTKPIIHKVKSRVRVRASLEPDTDSPESPRTINPSNLEIEPHKQVFWGANSSFRERFG +RNWIQYRSHLEPSGNPIPATPTTSAPSAPPASSKGPDTAPRPSPPQEEARGPQESPQKMSEEVRAEPQEEEEEKEGKEEK +EEGEMVEKGEEEAGEEEEEEQDQKEVEAELCRPLLVCPIEGPEGVRGRECFIRVTSAHLFEVEIQAARTLERLEMKAEPE +LEAACHAKAQRSPRPTGSDLIPGAPLISIRFSYICPDRQLRYLVLEPDAHAAVKELIAVITPVTNVAREQIGEARDLLIG +RFQCIRCGHEFKPEEPRMGIDSEWWRPLFQKTESPAVCPNCGSDHVVLLAVSRGTPNRERQGEKSLAPSPSASPVCHPPG +HGDHLDRAKNSPPQAPSTRDHGSWSLSPPPERCGIRSVDHRIRLFLDVEVFSWQEEFQCCLKVPVALAGHTGEFMCLVVV +SDRLYIIKVTGEMREPPASWLKITIAVPLQDISGIELGLAGQSIRLEWAAGQRCVILPRDARHCRAFIEELLDVLQSIPP +AWRNCWATEEEVTPQHRLWPIIEKDSSLEARQFFYLRAFIVEFAAPPSPEAPSGAADEDIIFLTSPTIIISSSPPAASGE +ASEKVPPSGPGPAVRVREQQPISSISSVIIYRSAPEDIRLLFYDEVSRLESFWALRVVCQEQITAIIAWIREPWEEIFSI +GLRTVIKESPALDRMSIFLSNIMGNDSSIWKENHNSTDIINPPGTGFTMICTLLTCIMTFAAIRSIYSIISILKMQNRTV +VSMIVASWWDDLMSVISVTFYGPVENPWQIFMFIQFICTTSAIMYICQGISSNLKATIIWYNFYTMHRGRSQTASRSGKV +LGVVITVWAASILISALPLCGWGAFVRTPWGCLVDCSSSYVIFISIVYAIAFGIIRISVPITHRLICSEEPPRLHSNYQE +LSRGASLPGTPPTAGRVVSISPEWPGPSIRSGGCSPSSDTVFGPGAPAAAGAEACRENRGTLYGTRSFTVSVAQKFAILI +AITKVVIWPLMMMHMVVKNVVGFKSLPLETFSFIITLIATTVTPVFVISKWTHIPCGCLINCRQNAYVAASDGKLKGFEF +NLSFQKSYGIYKLAHEDYYDDDENSLVHNPNLMNSECETTKDPQRDNRNLFNALKVEISTTPSLDSSTQRGINKCNETLD +TTAKQDSNNKDAFSDKTGGDLNYEETTFSEGPERLSCCGEWDSLDPKKSEEYRSKSERTPRGARSGYALAIPLCAFQGTV +SLHAPTGKTISISTYEVSAEGQKLTPASKLEVYRSKSVGHEPNSEDSSSTFVDTSVKLHLEPSKSINSLISVTDIAEEND +CIEDSTKVRSPSIRYSRENRFVSCDIGETASYSIFIPTSNDPGDINISIPDTVEAHRQNSKQHQERDGYQEEIQLINKAY +REEESKMAQRAVWLLSHEPGTPLCGTVRFSRYPTVEKARVFNGASYVPVPEDGPFLKAILFEIRLIDDDKDFVESRDSCS +RLNKTSLYGLLIGGEELWPVVAFIKNDMIYACVPIVEKTITFGKSVGSVSIIPPRPDFIFGIQDFLYSGQKNDSELNTKL +SKIPDIIIQACPGFTLIDANIQNSIDNTNFASVTQPQKQPAWKTGTYKGKPKWLSITEKVKSMQYDKQGIWTWQVVGTVT +CKCDIEGIMPNLMRLGFSTIIASDISTVCPHVIIDQIPSGNTPIGIDDTTDSAFSGPYKFPFTPPLESFNLCFYTSQVPV +PPIIGFYKMKEEEVQLRLTINLKLHESVKNNFEFCEAHLPFYNRGPLTHIEYKTSFGQLEVFREKSIIIWILGQKFPKSM +EISISGTVTFGAKSHEKQPFDPICTWTAYLKLHFRLIDYTLTGCYADKHSVKVFASGQPKLSAHRLISSDYYLWNSKAPA +PVTYGAARKMCTAISPKVRSSSALWKSYQHMDSPAPKHEANIIPMKEDIAIWITNLLGKELTAETFMEKLDHUTEALKCI +IAGPVKESMWNKPTKNLPIKLPCKTSAPSGSFFARDNTANFISWCRDLGVDETCIFESEGLVLHKQPREVCICIIELGRL +AARYGVEPPGIIKLEKELEQEEDPASLTRPSPSSKSSGKSTGWDLLNVKLSEPDPCKCPNKFCVERLSQGRYRVGEKLLF +LRMLHNKHVMVRVGGGWETFAGYIIKHDPCRMLQLSRVDGKTSPIQSKSPTIKDMNPDNYIVVSASYKAKELKMSEIICQ +WLNKELKVSRTVSPKSFAKAFSSGYILWVIHKFEIQDDFSEFIDSRVSSAKLNNFSRLEPTLNLIGVKFDKNVAHGILTE +QPGVATKLLYQIYIAIQKSSKMTQMEVGPSRLTNLRLQNMKSDTQFERIRHMIPRQTDFNLMRLTYRFGEAKHVKEDIAH +LHFEKLERFQKLKEEQRCFDIEKQYINRQNELMAKLKAAILQIPQPASNRTLKAIEAQKMMKEAEDVWELKFEAIIKDLQ +AKESASKTSLDTAGKTTTDIINTYSDDEYIKLQKLEEDAFAREQREKLIMDQIIAHEAQEEAYREEQIINRLMRQSQQER +IAVQLMHVRHEKEVLWQNRLFREKQHEERLKDFQDALDREAAIAKAGAKLDFEEQFLKEKFHDQIAVERAQARYEKHYSV +CANQDLLQVDLSTKVADYRMLTNNIIPYKLMHDWKELFFNAKPIYEQASVKTLPANPSREQITEIEKDLLDTNDYEEYKL +VVLLHGUGCNNSPKNIPPSNNCLGAWEGVARLAEKSLPPRAESTTPELPSFAVKGCIIGKTLSGKTTIIRSIQKDFPLUF +AKLAEKVITDLSIINPNEKVSEVIPIQKNDEEWIPVIQEEIKESQDPQHVFSQPDPIVEDADPGFETMISANADKTPKAE +EVKSSDSFLKLTTRAQIGAKSEQIIKGKSIPDVIIVDIIVNAINEIPVNQDCIIDGFPWENIANVILDCAITGCNRNITE +VERAQKSTIALDPATSKELPIPSPAFDFVLILDVSDTSSMSRMNDLIAEEISYKTAHEDISQRVAAENQDKDGDNQIRDQ +IQHRLIGFIDNWPLLEKWFSEPENILIKLNAELDKESLCEKVKELITTELAKNKVEKLEEKEAEKAAASLANPPAPPPTP +LQPPEPEKEKELHQSHVASKTPTAKGKPQSEAPHGKQESLQEGKGKGETAIKGSPKGKSSGGKVPVKLAADSTDTSPVAI +VPKPPKPGSEEWVYVNPEVPEEMPIFLVPYWEIIENSYINTLKTVLRHLREDQHTVIAYIYEIRTSFQEFIKRPDHKQDF +VAKWQADFNSIPDDLWDDEETKAEIHQRVNDLRDRLWDICDAREEAEQERLDIINESWLKDTLGMTMNHFFSLMQAEINR +FQDTKLIQDYYWGMESKLPVEDNKFTRLPIVQLDSKDNSESQIRLPIVPRLSLSIETVTPKPKTKSVIKGKMDNTEFNSE +VNELGDEKLVMDTWKQASLAVSHMVAAELHQRLMEEEKENQPADPKEKSPQMGANKVKEPPKQEDKKPKGKSPPMAEATP +VLVTTEELAELKNEIRVKLKEEHIAAIQFEEIATQFRLEILKTKAIAILEDIVTKVVDVYKLMEKWIGERYINEMASTEK +LTDVARYHIETSTKLQNEIYLSQEDFFINGNLKVFPDPPPSIRPPPVEKEEDGTITNQQIDSIRDQAMDLFPKGIIGNKA +FTDILIDLVTINIGTNNFPSNWMHITKPEIKEITSIITVNSEFVDWRFLLVTSMPWPIPLEEEIIETIKKAVDKEKLGTL +TFEQYMQAGIWFTGDEDIKLPENPIEPIPFNRQEHLIEFFFRLFADYEKDPPQLDYTQMLLYFACHPDTVEGVYRAISVA +VGTHVFQQVKASIPSAEKTSSTDAGPAEELMEPEENAAREERLKDDTEKEQKDEEIPENANNEKMSMETLIKVFKGGSEA +QDSNRFASHIKLENIYAEGFIKTFQDIGAKNLEPIEVAVLLKHPFIQDIISNYSDYKFPDLKLLLQRSEHVQGSDWRSPS +RHTEEKMAWENQTFNPMLFLKEAIFYMPTHIKTDIYIIIVMVSNGMSMVSVIIIYIDTQIHTPMYFIIAGIIIFDSNFND +TSTVPKMAFNYISGSKSISMAGCATKLFFYVSLIGSECFLIAVMSYDRYLALCHPIRYTNIMRPKLCGLMTAFSETAVAD +LIADMSGILGFSFSYCGSRELAHFFCDFPSLLLLSCNDTSIFEKVIFICCLVMLVFPVAILLASYARVIIAVIHMGSGWR +AFTTGPRLYMFLQGYYMGVVMIHSSFSDRSPMQDKLVSVFYTLITPMINPLIYSLRNKEVTRALRVIGKGKMRQPKAGTW +AARDPSIRPARTVIRDQDEYTAAENKSPRGTICPTWQRLHAREDACLFSRLFSEKMTAAVFFGCAFYLALAPGFAIVFTL +ATEPIRLIFLLAGAFFWLVSILISSIVWFMARVILDNKDGPTQKYLLIFGAFVSVYLQEMFRFAYYKLIKASEGIKSINP +WTAPSMRLIAYWGIGFGIMSRFSFVNTISDSIGPGTVGIHGDSPQFFLYSAFMTIVIIILHVFWGIVFFDGCEKWGIIII +VIITHIIVSAKTFISSYYGINIASAPGTKASVIIHTLSSIAANSCRSLKLCLICQDKNFIIYNQRSRMARLLRSATTPFI +ECPARGYCSQKAKGELCRDFVEALKAVRGSHVSTAAVVREQHGRDESVHRCEPPWVVWPQNVEQVSRLAALCYRQGVPIP +LFGTGTGLENVCAVKGRCVNITHMDRLIELNQEDFSVVVEPGVTRAINAHIRDSGIWSEGTAAMGCLSADAGPDVVSGTN +AVRYGTMRDNVDIVVEINIPGRLIHTQRGRHFRFGFWPELPHHTAWYSPCVSIGRSAAGYNLTGIFVGSEGTLGILTATT +IRLHPAPEATVAATCAFPSVKAAVDSTVHIIQAAVPVARLEFLDEVMMWCNRYSKLNCIVAPTCAKAGSGHFGANNREEK +IQRTEEIVQQNGASDFSWAKEAEERSRLWTARHNAWYAALATRPGCKGYSTDVCVPISRLPELVVQTKEDINMADDPNVI +IICHFNGDRHRISGTIGRELGRVKAFAEQLGRAIAIHGTCTGEHGLGMGKQLLQEEVQVGVETMRQLKAVLDPQGIMNPG +KMLPDWKSSIIIANAPLGTIFIILYMLLAIRAFVGRIRQPKPAPVHLLLLSITIADILLLIIIPFKLIEAASNFRWYIPK +VVCALTSFGFYSSLYCSTWIIAGISLERFEGVAFPVKYKLSRRPIPPATNIYQVIIVLTCHGFSMVWAVLAAIRQQVRSG +NEITCYENFTDNKLDVVIPVRLEICIVLFFLPMAVTLFCYWRFVWPFISKPPDGAKRARIVYGVLHSVNTCIFCVLFNIL +TVAHQRSPWWRSIATSSSFYFLIPDISANLSSFVPVRAFGRGIQVIRNKGSAEIGRGKDTAEGTNEDRGVGKWGMPSSDG +CCSKMLKFDKDEESGGGSNPFQHLEKSAVLQEARVFNETPINPRCAHILTKLIYLINKGEHLGTTEATEAFFAMTKLFQP +DNSTIRMCYITIKEMSCLAEDVILVTSSLTKDMTGKEDNYRGPAVRACEIAKEDTCVTLQIRYMKQALVDKVPWSSSALV +SSIHIIKCSFDVVKWVNEAKELAHYQVMINDSSAQILYHVRNDRLAVNKMLSKVTRHGIKSPFSFCFDLRVASKQLEEED +GSRDSPIFDFIESCLRNKHEMVVYELASAAVNLPGCSAKELAPAWIQLVSYSSPKAAIRYAAVRTINKVAMKHPSAVTAC +NLDLENLVTDSNRSIATIALTTIIKTGSESSIDRLMKQISSFMSEISDEFKVVVVQAISAICQKYPRHAVIMDIPPVTMI +REENFEYKAIVDCIISLIEENSESKETGLSHLCEFLEDCEFTVIATRLIHIIGQWPKTTNPSKYLRFLYNRVVLEHEEVR +AGAVSALAKFGAQNEEMIPSIIVIIKCVMDDDNEVRDRATFYLNVIEQKGAKAINAGYLLNGLTWIPGIERALKQYTIEP +SEQPFDIKSVPLATAPMAEQRTESTPITAVKQPEKVAATRQEIFEQQLAAVPEFRGLGPIFKSSLVYETESETLAVPEPR +CTKHTFTNHMVFKFDCTNTLNDKTIENVTVQMEPTEAYEVICYVPARSIPYNQPGTCYTIVAIPKEDPTRFTCATCMMKF +TVKDCDPTTGETDDEGYEDQEDFNDLEVTVADHLKKVMKLNFEAAWDEVGDEFEKEETFTLSTIKTLEWVANIVKFLGMH +PCERSDKVPDNKNTHTLLIARFRGGHDILVRSRLIIIDTVTMQVTARSLEEIPVDILIASRMGHRFLRGIITIIIPPPPL +YTRHRMLGPESVPPPKSRSKLMAPPRLGTHNGTFHCDEAIACAIIRLIPEYRDAELVRTRDPEKLASDYEGGVDVVLDCP +RHRYDHHQRSFTETMSSISPGKPWQTKLSSAGILYIHFGHKLIAQLLGTSEEDSMVGTLYDKMYENFVEEVDAVDNGLSK +WAEGEPRYAITTTISARVARLNPTWNHPDQDTEAGFKAMDLVQEEFIQRLDFYQHSWIPARALVEEAIAQRFQVDPSWLV +ELAKGACPWKEHIYHIESGLSPPVALFFVLYTDQAGQWRLQCVPKEPHSFQSRLPIPEPWRGIRDEALDKVSGIPGCLFV +HASGFTGGHHTREGAISMARATIAQRSYIPEAKMPFGNTHNKLNYAPYEEEPATLSKHNNHMAKVITIELYKIRDKETPS +GNVSEEDQVCRTMIFPHGPNDRTQIVDDVTPEVFKELFDPIISDRHGGYKPTDKHKTDINHENLKGGDDIDPNYVLSSRV +RTGRSLKGYTIPPHCSRGERAVEKLSVEAINSLTWFKGKYYPLKSMTEKEKKQILDDHFLFDQPVSPLIIASGMARDWPD +ARGLWHNDNKSFLVWVNEEDHIRVISMEKGGNMKEVFRFCVGIQKLEELFKAGHPFMWNKHLGYVLTCSPNIGTGIRGGV +HVKLAHISKHPKFEEIITRIRLQKGTGGVDTAAVGSVFDVSNADRLGSSEVEQVQLVVDGVKLMVEMEKLEKGQSIDDMI +PAQKMNAGPSWNKVQHSKNSSGKQSKSQVPHASSQPRSSLTAVTQPTEEKLKESLSPEARNPIGSRCQGASGNKLFIDFQ +SMKLIKENADEDSASDLSDSERLPIPPSPLTPPDINIRAEEIDPVRPSPTHPGKGGYYEPKTHGQGPHLDGPFSSWDLRD +MALIINAENKTEAVPRVGGLLGKYLDRLLQIEWIQVQTVQCEKAKGGKARPPTAPGTSGAIKSPGRSKLIASALSKPLPH +QEGASKSGPSRAFHHEELHPSHYAFETSPRPLDVLGGTRFCSQRQTIEMRTEEKSSKSTKLQRWDLSGSGSSSKVETSGH +IRVPKQAAVIIDSWSCKASKTQAHAHPRGKAESCGHATVSSEKLKTNGVKQNTYKLKMAGHLASDFAFSPPPGGGGDGPG +GPEPGWVDPRTSQGNFQGPPGGPGIGPGVGPGQGVGAEGEPQSTEIGGDSCNMAYCLUVGVGIVPQGGIETSSPPIGCGG +VGQGPGVGPGIGPGVPCTVTPGAVKLEKEKLEQNPEESQDLKALQKELEQFAKLIKGAKLTLGYTQADVGLTLGVIFGKV +FSQTTICRFEAIQLSFKNMCKLRPLIQKWVEEADNNENLQEICKAETIVQARTSIENRVRGNIENLFLKCPKPTIQQISH +LAQQIGIEKDVVRVWFCNRGAKGKSSQAYDSREDFEAAGSPFSNPVSFPIAPGPHFGTPGYGSPHFTAIYSWPFPWEAFP +PVSVTTIGSPMPLKMDGTTAPVTKSGAAKLVKNFLEAIKSNDFGKLKAIIIQRKLDVDTVFEVEDENMVLASYKQGYWLP +SYKLKSSWATGIHISVIFGHVECIIVIIDHNATINCRPNGKTPLHVACEMANVDCVKLICDRGAKLNCYSLSGHTALHFC +TTPSSLICAKQLVWRGANVNMKTNNKDEETPIHTAAHFGISEIVAFYVEHGAIVDSVNAHMETPLAIAAYWALREQEYST +EHHLVCRMLIDYKAEVNARDDDFKSPLHKAAWNCDHVLMHMELNAEAGAMIMEVNGCAAIQYVLKVTSVRPAAKPELCYQ +LILNHGAARLYPPQFHKVIQACHSCPKAIEVVVNAYEHLRWNTKWRAIPDDDIEKYWDFYHSLFTVCCNSPRTLMHISRC +AIRTIHNRCHRAIPILSIPISIKYLIIEPWNFKMDMMILVKQCCSPAVSKGAPICSPTCCIIPSCIPAGQSVDFPWAAVD +NMMVRGDTAVIRCYLEDQSKGAWLNRSSILFANDKWSVDPRVSISTLNKDYSLKLQNVDVTDDGPYTCSVQTQHTPRTMQ +VHITVQVPPKLYDLSNDMTVNEGTNVTLTCLATGQPEPSISWRHLSPSAKPFENGKYLDLSSPYRDQAGEYECSAENDVS +FPDVRVKVVVNFATPIQEIKSGTVTPGRSGLLRCEGARPPPAFEWYKGEKLFNGQQGLIIQNFSTRSIITVTNVTKEHFG +NYTCVAANKLGTTNASIPINPPSTAKYGITGSADVIFSCWYIVITISSFTSIFYLKNPSIKMPGGGPEMDDYMETLKDEE +WLWENVECNRHMLSRYINPAKLTPYIRQCKVIDEQDEDEVLNAPMIPSKLNRAGRLLDIIHTKGQRGYVVFLESIEFYYP +ELYKLVTGKEPTRFSTLVVEEGHEGITHFIMNEVLKLQQQMKAKDLQRCEIIARIRQIEDEKQMTLTRVEIITFQERYYK +MKEERDSYNDELVKVKDDNYNLAMRYAQLSEEKNMAVMRSRDLQIEIDQIKHRLNKMEEECKLERNQSLKLKNEVGWGVP +KEQVLEIERENEMIKTKNQEIQSLIQQKSLPDSDKALIDIIEHDREALEDRQEIVNRLYNIQEEARQAEELRDKYLEEKE +DIEIKCSTLGKDCEMYKHRMNTVMIQIEEVERERDQAFHSRDEAKTQFCQCLIEKDKYRQLRELEEKNDEMRLEMVREAC +LVNIESKIRLSKDSNNIDQSIPRNIPVTIISQDFGWSPRTNGQEADDSSTSEESPEDSKYFIPYHPPQRMQVKGIQIQRA +KSPISLKTSDFQAKGHEEEGTDASPSSCGSIPLTNSFTKMQPPRSRSSLMSLTAEPPGNDSLVREDAPHRSTDIEDNDSG +GFDALDIDDDSHERYSFPANVKENNFHKSEGLDACSSSSHLSSVMFRFSLERPFRPSVTSRHVRGPGPSVQHTTPNGMSP +GFQITILGGNARGSFVHWKPGSIAEKAGIREGHQLIIIWCIRGERQSVPIDTCTKEEAHWTLQRCSGPVTIHYKVNHEGY +RLVKDMEDGLITSGDSFYIRLNINISSQLDACTMSIKCDDVVHVRDTMYQDRHEWICARVDPFTDHDLDMGTIPSYSRAQ +QIILVKLQRLMHRGSREEVDGTHHTLRALRNTLQPEEAISTSDPRVSPRLSRASCVFKILKGFIMRSENKMNSNERVRLI +SGSPIGSLARSSIDATKLITEKQEELDPESEIGKNISLIPYSIVRAFYCERRPVIFTPTVLAKTLVQRLINSGQMEFTLC +KSDIVTRDEFIRGAKTETLIYSREKNPNAFECLAPANLEAVAAKNKHCIIEAGIGCTRDLIKSNIYPIVLFIRVCEKNLK +FRLLPRPETEEEFIRVCRLKEKELEAICPLYATVEPDMWGSVEELIRVVKDKLGEEQRMQDEDVILRMLRYPYFCRMYKE +CISCWLESGIPNLGVWPNRLHTTAEKYREYEAREQTDQTQAQEIHRSQDRDFETMAKLHLPVMVDEVVHCLSPQKGQIFI +DMTFGSGGHTKAIIQKESDLVIYAIDRDPGDYTSIHEAIVIYPKQLRAMIGQFSQAEAIIMKAGVKPGTFDGVLMDLGCS +SMQIDTPERGFSIRDGPLDMRMDGGRYPDMPTAADVVNALDKQALASLIRTYGEEKHAKLASAIVQARSLYPITRTQQIA +SLVAGAFPPSALYTRDLIQRSTHLATKTFQALRLFVNNELNEIYTGIKTAQKFLRPGGRLVAISFHSLEDRLVKFLIGLS +MTERFNLSVRQQVMKTSQLGSDHENTEEWMRAPIMWELLHKVLSPQDQDVQDNPRGRSAKIRAALKMARMNRPAPVEVTY +KNMRFLITHNPTNATINKFLEELKYGVTTIVRVCEATYDTTLVEKEGIHVLDWPFDDGAPPSNKLVDDWLSIVKLKFREE +PGCCLAVHCVQIGRAPVIVAIAIIWGMKYEWVQFLRGAKGAFNSKQIIYIEKYRPKMRIRDSNGHRNNCCIKMSMDVTFL +GTGAAYPSPTRGASAVVLRCEGECWLFDCGEGTQTQIMKSQIKAGRLTKLFLTHLHGDHFFGIPGILCTISIKSGSMVSK +QPIELYGPRLRDFIWRTMELSHTELVFHYVVHEIVPTADKCPAEEIKEFAHVNRADSPPKEEQGRTLLLDSEENSYLIFD +DEKFVVKAFRLFHRLPSFGFSVVEKRPGKLNAQKLKDLGVPPGPAYGKLKNGLSVVELNGVTLSPQDVIKKPLVGRLCII +GDDGSSVGDGGVKLCFEADLILHEATLDDAQMDKAKEHGHSTPQMAATFAKLCRAKLVITHFSQRYKPVAIAREGETREA +EIKQAESVLDLKEVTLAEDFMVISIPIKMAAAFRAAKSRGAREHRERSQPGFRHLGILEKDYKIRADDYRQEYLKALRAL +EKNPDEFYYKMTRVKLQDGVHLIKETKEEVTPEQLKLMRTQDVKYIEMKVAEAKLERLKSEIHIIDFQGKQQNKHVFFFD +TKEVEQFDVATHLQTAPELVDRVFNRPRLETIQKEKVKGVTNQTGIKIAKERGAKQYNCITQRLEREKLFVIAQKLQTRD +LMDKTQKVKVKETVNSPALYKFNTRMATENQNNLGQLGGPSTDKAPKGPTWRPLAAGKDPGPPDPKAPDPPTLKDAKAPA +SEKGDGAQSSTSPQALSPKGEGDRGGGPAEGSAGPPAALPKQTATPETSVKKPKAEQAGSGSKDPANPRVGKAAEGQAAA +RGSPAFLHSPSCPALISSSEKLIAKQPPSEASELTFEGVPMTHSPTDPRPAKAEEGKNLIAESQKEVGEKTPGQQQAKMQ +GDTSRGLEFQAVPSEKSEVGQAICLTAREEDCFQILDDCHGPPAPFPHRMVELRTGNVSSEFSMNSKEALGGGKFGAMCT +CVEKATGIKLAAKVLKQTPKDKEMVILEIEVMNQINHRNIIKIYAALETPHELVLFMEYLEGGEIFERLVDEDYHLTEVD +TMVFVRQICDGLIFMHKMRVIHLDLQPENLICVNTTGHIVKLLDFGIARYNPNEKLKVNFGTPEFLSPEVVNYDAGLSDK +TDMWSMRITYMLLHWNGSIVNNITETDDDGIFPSIGIFDEETFEAVSDEAKDFVSNILVKDQRARMNAAQCLAHPWLNNI +AEKAKCNRLKSQLLIKAQHAKWKNFLAVSAANRLSSAMIQSIRMKFLVFAFLLDSVMISLGADSSEEKFLRIGRFGYGYG +PYKPVPEKPIGLPQEPVPQYPSQGGUKMEDSSISSGVDVDKGFAIAFVVLIFLFILVMIFRCAKLVKNPYKASSTTTEPM +RMPDQLSVSEFVAETHEDYKAPTASSFTTRTAQCRNTVAALEEAIDVDRMVLYKMKSVKAINSSGIAHVENEEQYTKALE +KFGGNCVCRDDPDLGSAFIKFSVFTKELTAIFKNLLQNMNNIISFPLDSIIKGDLKGVKGDLKKPFDKAWKDYETKLTKL +EKEKEHAKLHGMIRTEISGAELAEEMEKERFFQIECMQYILKVNEIKLKGVDIIQNILKSGDGDKFFNCQAMGIKAVESL +KPSLETLSTDIHTIKQAQDEERQLIQLRDLIKSAIQVEQKEDSQLRQSTAYSLHQPQGNKEHGTERNGSIYKSDGLRVWQ +KCSVKNGFLTISHGTANRPPAKLNILTCQVKTNPEEKCFDLISHDRTYHFKAEDEQECQLWMSVLQNSKEEALNNAFKGD +DNTDVLNNAQEITKELLSEVQRMTGNDVCCDCGAPDPTWISTNIGILTCIECSGIHRELRHYSRMKSLTLDVRDSEILLA +KNIGNAGFNELRVSDEAPLCCECPNPGSDMNARDYITAKYLERYARHADNAAKLHSLCEAVKTRDLFGIIQAYADGVDIT +EKLPLANGHEPDETALHLAVRSVDRTSLHIVDFLVQNSGNLDKQTGKGSTALHYCCLTDNAECIKLILRGKASIELANES +DATPLDIAKLKHEHCEEIITQALSGRFNSHVHVEYEWRLIHEDLDESDDDMDEKLQPSPNREDRPLSFYKIGSNQIQSNA +VSLARDAANLAKEKGARAFMPSILKNETYQIISGSPPPAQPAAPSTTSAPPIPPRNVGKVQTASSANTLWKTNSVSVDGG +SRGARSSLPPIPPHVAPPDSRVTSTNPITPTPPPPVAKTPSVMEAISKPSKPAPPGLSQIRPPPIPPQPPSRLPQKQPAP +KDKSTPITNKGQPRGPVDMAPPKLVMANSIPGLAETASIPPRSQATKLKPKVKAIYNPGIHGLWWEKDEEGDVIIVDGES +FTIEDPNDAYGDPGRGFLFHVFWPEKMAASGKLSTCRLPPIPTLRELIKLLRLQAAKQLSQNFILDIRLTDKLVRAGNLT +NAYVYEVGPGPGGLTRSLINWVAEIIVVEKDTRFLPGLQMISDAAPGKIRLVHGDVITFKVEKAFSESLKRPWEDDPPNV +HIIGNLPFSADTPLIIKWLENISCRDGPFVYGRTQMTITFQKEVAERLAANTGSKGARSRLSVMAQYLCNVRHLFTVPTF +UVPKIIDVVGVVDAKAPLIQPKLEQPFKLVEKVVQNVFQFRYCHRGIRMLFPEAQRLESTGRLLEIWIDPTIRPRQLSIS +HFKSLCDVYRMCDEDPQIFAYNFREEIKSKNEEKEEDWENYRMAEVWDSGARAILAIRSAPCSKAAVIAPAAGAVASDGS +VGSSGGSSQGAIACPPPPPPPPIPPQIAGASGSGGSSGVSGDSAVAGAAPALVAAAAASVRQSPGPAIARLEGREFEFLM +RQPSVTIGRNSSQGSVDLSMGLSSFISRHLQLSFQEPHFYIRCLGKNGVFVDGAFQRGAPAIQLPKQCTFRFPSTALKLQ +FTSIYHKEEAPASPLRPLYPQISPLKLHLPEPDIRSMVSPVPSPTMLNVPNSCPASPRGAGSSSYRFVQNVTSDLGALAA +EFAAKAASEQQWTSGGDSPKDESKPPFSYAKLIVQALSSAQDRQITISGIYAHITKHYPYYRTADKGWQNSLRHNISINR +YFIKVPRSQEEPGKGSFWRLDPASEAKLVEQAFRGARGVSCFRTPFGPISSRSAPASPTHPGLMSPRSGGIQTPECISRE +GSPLPHDPEFGSKLASVPEYRYSKSAPGSPVSAPVHIAHGAPKKHSIVAKPVAYMPASIVTSKKPQHALHVPASVPSGQT +MVRVVTTSANSANGYIITSKGAANSHDAAQAVIDIGSEARGIEEKPTIAFAVDPAANVIKTVASKMAPGVPGHTVTIIQP +GPDVTIGKHHIPVRAVTQNGKHAVPTNSIQNAYAITSPIKILATQASSSAPVVVTRVCEVGPKEPAAAVAATATTTPATA +TTASASASSTGEPEVKSRVEEPSGAVTTPAGVLAAQPQGPGMRMVDTESPDSPSEDVSGPVVPYTVSSPSSAPSITDTIV +SGDSGPILGEDSSGSFGAAGFSGSSDEGIIPGSDGSVITDTISPASSPSSVTYPVVPGSVDESPSGALNLECRLCGDKAS +GYHYRHACEGCKGFFRTIRLKLVYDKCDRSCKLQKGGRNKCQYCRFHKCISRMSHNAIRFGRMPRSEKAKLKAEIITCEH +DLEDSETADIKSIAKLYEAYLKNFNMNKVKARVLLSGKASNNPPFVLHDMETLCMAEKTLVAKLVANGLQNKEAEVRLFH +CCKCCVTEVSVELTEFAKAIPGFANLDLNDQVTLIKYGVYEALFAIMSWMNKDGMIVAYGNGFITREFIKSIRKPFMLDC +EPKFDFAMKFKIWIDDSDISIFVAAILCCGDRPGIINVHIADKMQWLVHVIRLHLQSNHPDDIFIFPKLIQKMADLRQIV +TEHAQIVQIIKTESWAIHPILQEIYRMAEWLCPASWKRAKAMTAAAGSAGRAAVPLILCAILAPNAYVIDDSDGIGREFD +GVGWAGAQTSRLIVNYPEPYRSKLLDYLFQPNFGASIHIIKVEIGGDGQSDDGTEPSHMHYAVEENYFRGYEWWIMKEAK +NPNLTLIGIPWSFPGWLGKGFDWPYVNLKITAYYVVTWLVQKYHDIDLDYIGIWNERSYNANYIKLLRMLNYQGLQRVKL +IASDNLWESLSASMLIDAEIFKVVDVIGAHYPGTHSAKDAKLTGKLWSSEDFSTLNSDMGAGCWGRLINKNYLNGYMTST +IAWNLVASYYEQIPYGRCGIMTAKEPWSGHYAHASVWVPSEVETKFTQPGWYYLKTVGHIEKGGSYVALTDGLGNITLLI +ETMSHKHSKCRIPFLPYFNVSKQFATFVLKGSCYWVKLEPIEMTKLGKTSERFLFKKLDSLWLIDSDGSFTISIHEDEIF +TITTITTGRGSYPIPPKSQPFPSTYKDDFSAHHEGPDEIPPNFAQFRTQDAFNPPCSFFPYDVCTLRQVLNKYENYDGII +SQTVSADAAWTIFTNITIKCDVYIETPDTGGVFIAGRVNKGGIIIRSARGIFFWLFANGSYRVTGDIAGWILYAIGRVEV +TAKWYTITITLKGHFTSGMLNDKSRFNVPLDPFPKNGWAALGTHSFEFAKFDNFLVEATRMSMIKPSGLKAPTKLLKPGS +TAIKTPTAVVAPVEKTISSEKASYDDVFEEQTESSPTARVGERVWVNGNQPGFIQFIWTQFAPGQWQIVIDEPIGKNDGS +VARRYFQCEPLKGIFTRPSKLTRVQAECTQLGNAEIPASRATSPIMPKQPLNSPTSPSSSVMSATSTCLPLKEPSATPPI +SNLTKTASSGANSKVSQSEIKGERELKLGDRVIVNTKAGVVRFLGETDFAKGEWCRELDEPIGKNDGAVQTRYFQCQPKY +GLFAPVHKVTKLGFPSTTPAKAKANAVRVMATTSASLKSPSSRSSVFSWASASSISSAPRTGIITETSSRYARLSGTTQI +AEAIKEKQQHIEQLIAERDLERAEVAKATSHVWIEQEIAIARDGHDQHVLEIEAKMDQIRTMVEAADREKVEIINQLEEE +KVEDIQFRVEEESITKGDIEQKSQISEDPENTQTKLEHARLKELEQSIIFEKTKADKLQRELEDTRVATVSEKSRLMEIE +KDIAIRVQEVAEIRQFQPAPAGDVDMSLSLLQELSSIQEKLEVTRTDHQRELTSIKEHFGAREETHQKELKAIYTATEKL +SKENESIKSKLEHANKENSDVIAIWKSKLETAIASHQQAMEELKVSFSKGIGTETAEFAELKTQIEKMRLDYQHELENLQ +NQQDSERAAHAKEMEAIRAKLMKVLKEKENSIEAIRSKLDKAEDQHIVEMEDTINKLQEAEIKVKELEVLQAKCNEQTKV +IDNFTSQIKATEEKLIDIDALRASSEGKSEMKIRQQIEAAEKQLKHLELEKNAESSKASSITRELQGRELKLTNIQENIS +EWQVKETIEKELQILKEKFAEASEEAWVQRSMQETVNKLHQKEEQFNMISSDIEKIRENLADMEAKFREKDEREEQLIKA +KEKLENDLAEIMKMSGDNSSQLTKMREDARLKERDVEELQIKLTKANENASFLQKSIEDMTVKAEQSQQEAAKHEEEKEL +ERLSDLEKMETSHNQCQELKARYERATSETKTKHEEIIQNIQKTILDTEDKLKGAREENSGIIQEIEEIRQADKAKAAQT +AEWMQLMEQMTKEKTETIASLEDTKQTNAKLQNEIDTLKENNLKNVEEINKSKELITVENQKMEEFRELETLKQAAAQKS +QQLSAIMASPNVKLAEELGRSRDEVTSHQKLEEERSVINNQILEMKESKFLKDADEEKASLQKSISITTAVITEKDAEIE +KIRNEVTVLRGENASAKSLHWVQTIESDKVKLEIKVKNLEIQIKENKQLSSSSGNTDTQADEDERAQESQLDFLNSVLVD +IQRNQDLKMKVEMMSEEYNNLDDGNGNLAGSDDKEKQSKKPRSCQHHVPEPPDESMQAQTPCDETPSEDPPHSTHHGSRG +EERPYCELCEMFGHWATNCNGPRUK diff --git a/src/tests/topp/DatabaseSuitability_out_1.tsv b/src/tests/topp/DatabaseSuitability_out_1.tsv index d0449b5223e..3a48debeb60 100644 --- a/src/tests/topp/DatabaseSuitability_out_1.tsv +++ b/src/tests/topp/DatabaseSuitability_out_1.tsv @@ -1,8 +1,17 @@ key value -#top_db_hits 157 -#top_novo_hits 3 -db_suitability 0.98125 -#total_novo_seqs 1118 -#unique_novo_seqs 1111 -#ms2_spectra 1120 -spectral_quality 0.998214285714286 +#top_db_hits 556 +#top_novo_hits 362 +decoy_cut_off 0 +correction_factor 1.17647058823529 +#corrected_novo_hits 425.882352941176 +db_suitability 0.605664488017429 +corrected_suitability 0.566259285885454 +no_rerank_suitability 0.601307189542484 +corrected_no_rerank_suitability 0.561230993353364 +#total_novo_seqs 2359 +#high_scoring_novo_seqs 1989 +#unique_high_scoring_novo_seqs 1900 +#ms2_spectra 2789 +spectral_quality 0.713158838293295 +avg_EIC 0.898213572325255 +EIC_variance 0.0810684661838941 diff --git a/src/tests/topp/DatabaseSuitability_out_2.tsv b/src/tests/topp/DatabaseSuitability_out_2.tsv index 91f7c528352..4a9f1e824f1 100644 --- a/src/tests/topp/DatabaseSuitability_out_2.tsv +++ b/src/tests/topp/DatabaseSuitability_out_2.tsv @@ -1,8 +1,17 @@ key value -#top_db_hits 437 -#top_novo_hits 2 -db_suitability 0.995444191343964 -#total_novo_seqs 1118 -#unique_novo_seqs 1111 -#ms2_spectra 1120 -spectral_quality 0.998214285714286 +#top_db_hits 569 +#top_novo_hits 384 +decoy_cut_off 0 +correction_factor 1.10144927536232 +#corrected_novo_hits 422.95652173913 +db_suitability 0.597061909758657 +corrected_suitability 0.573613850536927 +no_rerank_suitability 0.59286463798531 +corrected_no_rerank_suitability 0.569016587677725 +#total_novo_seqs 2359 +#high_scoring_novo_seqs 1989 +#unique_high_scoring_novo_seqs 1900 +#ms2_spectra 2789 +spectral_quality 0.713158838293295 +avg_EIC 0.898213572325255 +EIC_variance 0.0810684661838941 diff --git a/src/tests/topp/DatabaseSuitability_out_3.tsv b/src/tests/topp/DatabaseSuitability_out_3.tsv index 4f5519d2952..06f73375c48 100644 --- a/src/tests/topp/DatabaseSuitability_out_3.tsv +++ b/src/tests/topp/DatabaseSuitability_out_3.tsv @@ -1,8 +1,17 @@ key value -#top_db_hits 297 -#top_novo_hits 3 -db_suitability 0.99 -#total_novo_seqs 1118 -#unique_novo_seqs 1111 -#ms2_spectra 1120 -spectral_quality 0.998214285714286 +#top_db_hits 619 +#top_novo_hits 400 +decoy_cut_off 0.000188722391121292 +correction_factor 1.15068493150685 +#corrected_novo_hits 460.27397260274 +db_suitability 0.607458292443572 +corrected_suitability 0.573533704799015 +no_rerank_suitability 0.589793915603533 +corrected_no_rerank_suitability 0.555459897448883 +#total_novo_seqs 2359 +#high_scoring_novo_seqs 1989 +#unique_high_scoring_novo_seqs 1900 +#ms2_spectra 2789 +spectral_quality 0.713158838293295 +avg_EIC 0.898213572325255 +EIC_variance 0.0810684661838941 diff --git a/src/tests/topp/FeatureFinderMetabo_1_output.featureXML b/src/tests/topp/FeatureFinderMetabo_1_output.featureXML index 390d5f5167d..c52bb059db9 100644 --- a/src/tests/topp/FeatureFinderMetabo_1_output.featureXML +++ b/src/tests/topp/FeatureFinderMetabo_1_output.featureXML @@ -1,21 +1,21 @@ - + - - + + 2312.697400000000016 898.441262420919543 1.743381e04 0.0 0.0 - 8.415887e-04 + 8.388079e-04 0 - + @@ -26,15 +26,15 @@ - + 2314.447200000000066 940.163447290168619 1.104869e04 0.0 0.0 - 5.333572e-04 + 5.315949e-04 0 - + @@ -44,15 +44,15 @@ - + 2164.341300000000047 941.056632137188444 5251.51416 0.0 0.0 - 2.535082e-04 + 2.526706e-04 0 - + @@ -62,13 +62,13 @@ - + 2316.188599999999951 962.648422921122688 1.939937e04 0.0 0.0 - 9.364729e-04 + 9.333786e-04 0 @@ -80,15 +80,15 @@ - + 2317.935599999999795 986.111637196558718 1.492724e04 0.0 0.0 - 7.205883e-04 + 7.182073e-04 0 - + @@ -98,15 +98,15 @@ - + 2291.961299999999937 1007.644615485409986 8302.935547 0.0 0.0 - 4.008106e-04 + 3.994863e-04 0 - + @@ -116,13 +116,13 @@ - + 2293.684699999999793 1032.787005476852983 3.504924e04 0.0 0.0 - 1.691945e-03 + 1.686354e-03 0 @@ -134,13 +134,13 @@ - + 2316.188599999999951 1063.913200666897183 3.838714e04 0.0 0.0 - 1.853076e-03 + 1.846953e-03 0 @@ -152,13 +152,13 @@ - + 2408.42450000000008 1071.108608353815498 2.710851e04 0.0 0.0 - 1.308619e-03 + 1.304295e-03 0 @@ -170,13 +170,13 @@ - + 2288.505599999999959 1087.004624746010904 2.505899e04 0.0 0.0 - 1.209682e-03 + 1.205685e-03 0 @@ -188,13 +188,13 @@ - + 2316.188599999999951 1092.612602618285109 2.896528e04 0.0 0.0 - 1.398251e-03 + 1.393631e-03 0 @@ -206,15 +206,15 @@ - + 2344.505599999999959 1092.698184307843576 1.729628e04 0.0 0.0 - 8.349496e-04 + 8.321907e-04 0 - + @@ -224,15 +224,15 @@ - + 2039.875 1094.520825014260709 9692.296875 0.0 0.0 - 4.678798e-04 + 4.663338e-04 0 - + @@ -248,7 +248,7 @@ 7.276006e04 0.0 0.0 - 3.512373e-03 + 3.500767e-03 0 @@ -260,13 +260,13 @@ - + 2288.505599999999959 1116.426936083696546 3.236812e04 0.0 0.0 - 1.562518e-03 + 1.557355e-03 0 @@ -278,15 +278,15 @@ - + 2232.995100000000093 1133.360903928212565 2.303624e04 0.0 0.0 - 1.112037e-03 + 1.108362e-03 0 - + @@ -296,15 +296,15 @@ - + 2443.465299999999843 1145.734905638842065 1.528611e04 0.0 0.0 - 7.379121e-04 + 7.354739e-04 0 - + @@ -314,13 +314,13 @@ - + 2293.684699999999793 1147.377890210826536 4.264683e04 0.0 0.0 - 2.058706e-03 + 2.051904e-03 0 @@ -338,7 +338,7 @@ 1.016094e05 0.0 0.0 - 4.905027e-03 + 4.888821e-03 0 @@ -350,15 +350,15 @@ - + 2425.991700000000037 1153.579336552857512 1.519085e04 0.0 0.0 - 7.333135e-04 + 7.308904e-04 0 - + @@ -368,13 +368,13 @@ - + 2319.671299999999974 1154.970300785766312 3.267961e04 0.0 0.0 - 1.577555e-03 + 1.572342e-03 0 @@ -386,13 +386,13 @@ - + 2150.143599999999879 1165.217620824715823 6.47591e04 0.0 0.0 - 3.126139e-03 + 3.11581e-03 0 @@ -410,7 +410,7 @@ 8.523495e04 0.0 0.0 - 4.114578e-03 + 4.100982e-03 0 @@ -422,15 +422,15 @@ - + 2269.29989999999998 1172.106326043556919 1.653637e04 0.0 0.0 - 7.98266e-04 + 7.956284e-04 0 - + @@ -440,13 +440,13 @@ - + 2243.350600000000213 1172.271464501962555 3.709003e04 0.0 0.0 - 1.79046e-03 + 1.784544e-03 0 @@ -464,7 +464,7 @@ 9.311434e04 0.0 0.0 - 4.494942e-03 + 4.48009e-03 0 @@ -476,13 +476,13 @@ - + 2295.404100000000199 1185.710825602869363 5.060493e04 0.0 0.0 - 2.442871e-03 + 2.434799e-03 0 @@ -494,13 +494,13 @@ - + 2298.8449999999998 1185.815077302755526 2.907875e04 0.0 0.0 - 1.403729e-03 + 1.399091e-03 0 @@ -512,13 +512,13 @@ - + 2317.935599999999795 1188.823540252722751 4.937873e04 0.0 0.0 - 2.383677e-03 + 2.375801e-03 0 @@ -536,7 +536,7 @@ 1.227689e05 0.0 0.0 - 5.926466e-03 + 5.906884e-03 0 @@ -548,13 +548,13 @@ - + 2061.20510000000013 1195.513886744233787 3.109732e04 0.0 0.0 - 1.501172e-03 + 1.496212e-03 0 @@ -572,7 +572,7 @@ 7.689005e04 0.0 0.0 - 3.711741e-03 + 3.699477e-03 0 @@ -584,13 +584,13 @@ - + 2153.70010000000002 1209.971779732758023 6.424237e04 0.0 0.0 - 3.101195e-03 + 3.090948e-03 0 @@ -602,13 +602,13 @@ - + 2479.38610000000017 1210.803503648388869 1.761308e04 0.0 0.0 - 8.502423e-04 + 8.474329e-04 0 @@ -626,7 +626,7 @@ 8.250765e04 0.0 0.0 - 3.982922e-03 + 3.969762e-03 0 @@ -644,7 +644,7 @@ 1.3271e05 0.0 0.0 - 6.406356e-03 + 6.385188e-03 0 @@ -656,15 +656,15 @@ - + 2458.847000000000207 1225.687069810073353 3.191908e04 0.0 0.0 - 1.540841e-03 + 1.53575e-03 0 - + @@ -680,7 +680,7 @@ 8.208762e04 0.0 0.0 - 3.962646e-03 + 3.949552e-03 0 @@ -692,13 +692,13 @@ - + 2387.537400000000162 1233.594546578699919 2.671982e04 0.0 0.0 - 1.289856e-03 + 1.285594e-03 0 @@ -716,7 +716,7 @@ 6.876337e04 0.0 0.0 - 3.319439e-03 + 3.308471e-03 0 @@ -734,7 +734,7 @@ 1.140783e05 0.0 0.0 - 5.506942e-03 + 5.488745e-03 0 @@ -752,7 +752,7 @@ 6.893667e04 0.0 0.0 - 3.327805e-03 + 3.316809e-03 0 @@ -770,7 +770,7 @@ 7.808848e04 0.0 0.0 - 3.769594e-03 + 3.757138e-03 0 @@ -788,7 +788,7 @@ 9.832357e04 0.0 0.0 - 4.746409e-03 + 4.730726e-03 0 @@ -806,7 +806,7 @@ 1.395116e05 0.0 0.0 - 6.734695e-03 + 6.712442e-03 0 @@ -818,13 +818,13 @@ - + 2474.221399999999903 1259.182728300069584 4.700604e04 0.0 0.0 - 2.26914e-03 + 2.261642e-03 0 @@ -836,15 +836,15 @@ - + 2496.664499999999862 1263.523413809446765 2.6503e04 0.0 0.0 - 1.279389e-03 + 1.275162e-03 0 - + @@ -860,7 +860,7 @@ 1.599836e05 0.0 0.0 - 7.722948e-03 + 7.69743e-03 0 @@ -878,7 +878,7 @@ 7.102944e04 0.0 0.0 - 3.42883e-03 + 3.417501e-03 0 @@ -890,13 +890,13 @@ - + 2387.537400000000162 1282.901589059656089 3.900747e04 0.0 0.0 - 1.883022e-03 + 1.8768e-03 0 @@ -914,7 +914,7 @@ 8.265814e04 0.0 0.0 - 3.990186e-03 + 3.977002e-03 0 @@ -932,7 +932,7 @@ 1.134307e05 0.0 0.0 - 5.475682e-03 + 5.457589e-03 0 @@ -950,7 +950,7 @@ 1.014895e05 0.0 0.0 - 4.899239e-03 + 4.88305e-03 0 @@ -962,13 +962,13 @@ - + 2264.094399999999951 1307.221298209387214 6.258196e04 0.0 0.0 - 3.021042e-03 + 3.01106e-03 0 @@ -980,13 +980,13 @@ - + 2264.094399999999951 1307.308289582173984 2.951788e04 0.0 0.0 - 1.424927e-03 + 1.420219e-03 0 @@ -1004,7 +1004,7 @@ 1.601613e05 0.0 0.0 - 7.731526e-03 + 7.705979e-03 0 @@ -1022,7 +1022,7 @@ 1.255625e05 0.0 0.0 - 6.061325e-03 + 6.041296e-03 0 @@ -1034,15 +1034,15 @@ - + 2176.892899999999827 1310.814943348755605 9874.204102 0.0 0.0 - 4.766611e-04 + 4.750861e-04 0 - + @@ -1052,13 +1052,13 @@ - + 2477.658600000000206 1311.644545299115634 6.483836e04 0.0 0.0 - 3.129966e-03 + 3.119624e-03 0 @@ -1070,13 +1070,13 @@ - + 2496.664499999999862 1316.131688047603575 3.252809e04 0.0 0.0 - 1.57024e-03 + 1.565052e-03 0 @@ -1094,7 +1094,7 @@ 2.282504e05 0.0 0.0 - 0.011018 + 0.010982 0 @@ -1112,7 +1112,7 @@ 7.525495e04 0.0 0.0 - 3.632809e-03 + 3.620806e-03 0 @@ -1130,7 +1130,7 @@ 1.350352e05 0.0 0.0 - 6.518605e-03 + 6.497067e-03 0 @@ -1142,13 +1142,13 @@ - + 2385.791000000000167 1336.280930913606653 4.891455e04 0.0 0.0 - 2.36127e-03 + 2.353468e-03 0 @@ -1166,7 +1166,7 @@ 1.450972e05 0.0 0.0 - 7.004331e-03 + 6.981187e-03 0 @@ -1178,13 +1178,13 @@ - + 2113.317300000000159 1340.411433765501442 2.523784e04 0.0 0.0 - 1.218315e-03 + 1.21429e-03 0 @@ -1202,7 +1202,7 @@ 8.314055e04 0.0 0.0 - 4.013474e-03 + 4.000213e-03 0 @@ -1220,7 +1220,7 @@ 2.09039e05 0.0 0.0 - 0.010091 + 0.010058 0 @@ -1238,7 +1238,7 @@ 1.571131e05 0.0 0.0 - 7.584378e-03 + 7.559318e-03 0 @@ -1250,13 +1250,13 @@ - + 2477.658600000000206 1368.586420807446075 6.232409e04 0.0 0.0 - 3.008594e-03 + 2.998653e-03 0 @@ -1268,13 +1268,13 @@ - + 2496.664499999999862 1373.294390171324721 5.277489e04 0.0 0.0 - 2.547622e-03 + 2.539203e-03 0 @@ -1292,7 +1292,7 @@ 2.733953e05 0.0 0.0 - 0.013198 + 0.013154 0 @@ -1304,13 +1304,13 @@ - + 2452.024600000000191 1385.29741588189836 5.852216e04 0.0 0.0 - 2.825062e-03 + 2.815727e-03 0 @@ -1328,7 +1328,7 @@ 8.999025e04 0.0 0.0 - 4.344133e-03 + 4.329779e-03 0 @@ -1346,7 +1346,7 @@ 1.506444e05 0.0 0.0 - 7.27211e-03 + 7.248082e-03 0 @@ -1358,13 +1358,13 @@ - + 2111.473399999999856 1388.207304847425803 2.804166e04 0.0 0.0 - 1.353665e-03 + 1.349193e-03 0 @@ -1376,13 +1376,13 @@ - + 2389.288000000000011 1394.390766224529671 5.78046e04 0.0 0.0 - 2.790422e-03 + 2.781202e-03 0 @@ -1400,7 +1400,7 @@ 1.73738e05 0.0 0.0 - 8.386919e-03 + 8.359207e-03 0 @@ -1418,7 +1418,7 @@ 1.11282e05 0.0 0.0 - 5.371958e-03 + 5.354208e-03 0 @@ -1430,15 +1430,15 @@ - + 2274.508600000000115 1416.066106820019968 5.467976e04 0.0 0.0 - 2.639576e-03 + 2.630855e-03 0 - + @@ -1454,7 +1454,7 @@ 2.924615e05 0.0 0.0 - 0.014118 + 0.014071 0 @@ -1472,7 +1472,7 @@ 2.408021e05 0.0 0.0 - 0.011624 + 0.011586 0 @@ -1490,7 +1490,7 @@ 2.294377e05 0.0 0.0 - 0.011076 + 0.011039 0 @@ -1508,7 +1508,7 @@ 1.267043e05 0.0 0.0 - 6.116445e-03 + 6.096235e-03 0 @@ -1520,15 +1520,15 @@ - + 2298.8449999999998 1434.419263953939662 4.388248e04 0.0 0.0 - 2.118355e-03 + 2.111356e-03 0 - + @@ -1544,7 +1544,7 @@ 3.863393e05 0.0 0.0 - 0.01865 + 0.018588 0 @@ -1556,13 +1556,13 @@ - + 2115.178199999999833 1439.597650158143324 3.022601e04 0.0 0.0 - 1.459111e-03 + 1.45429e-03 0 @@ -1580,7 +1580,7 @@ 1.832483e05 0.0 0.0 - 8.84601e-03 + 8.81678e-03 0 @@ -1598,7 +1598,7 @@ 1.61515e05 0.0 0.0 - 7.796874e-03 + 7.771111e-03 0 @@ -1616,7 +1616,7 @@ 1.042864e05 0.0 0.0 - 5.034257e-03 + 5.017622e-03 0 @@ -1634,7 +1634,7 @@ 2.531624e05 0.0 0.0 - 0.012221 + 0.012181 0 @@ -1646,13 +1646,31 @@ + + 2272.770899999999983 + 1477.648606922746922 + 6.867479e04 + 0.0 + 0.0 + 3.304209e-03 + 0 + + + + + + + + + + 2248.542199999999866 1477.839229434260915 1.249148e05 0.0 0.0 - 6.030055e-03 + 6.010131e-03 0 @@ -1670,7 +1688,7 @@ 3.162848e05 0.0 0.0 - 0.015268 + 0.015218 0 @@ -1688,7 +1706,7 @@ 1.084331e05 0.0 0.0 - 5.234429e-03 + 5.217133e-03 0 @@ -1700,15 +1718,15 @@ - + 2231.26260000000002 1478.863374293218158 4.286111e04 0.0 0.0 - 2.06905e-03 + 2.062214e-03 0 - + @@ -1724,7 +1742,7 @@ 1.900492e05 0.0 0.0 - 9.174315e-03 + 9.144001e-03 0 @@ -1736,15 +1754,15 @@ - + 2440.008200000000215 1490.072905916811351 3.337483e04 0.0 0.0 - 1.611116e-03 + 1.605792e-03 0 - + @@ -1760,7 +1778,7 @@ 7.337986e04 0.0 0.0 - 3.542293e-03 + 3.530588e-03 0 @@ -1778,7 +1796,7 @@ 2.477913e05 0.0 0.0 - 0.011962 + 0.011922 0 @@ -1790,13 +1808,13 @@ - + 2482.830800000000181 1498.838706124522332 6.594248e04 0.0 0.0 - 3.183265e-03 + 3.172747e-03 0 @@ -1814,7 +1832,7 @@ 1.343381e05 0.0 0.0 - 6.484952e-03 + 6.463524e-03 0 @@ -1826,13 +1844,13 @@ - + 2438.281399999999849 1502.414575785853685 4.570375e04 0.0 0.0 - 2.206274e-03 + 2.198984e-03 0 @@ -1850,7 +1868,7 @@ 8.329971e04 0.0 0.0 - 4.021157e-03 + 4.00787e-03 0 @@ -1868,7 +1886,7 @@ 1.167337e05 0.0 0.0 - 5.63513e-03 + 5.616511e-03 0 @@ -1886,7 +1904,7 @@ 4.538779e05 0.0 0.0 - 0.02191 + 0.021838 0 @@ -1904,7 +1922,7 @@ 2.783444e05 0.0 0.0 - 0.013437 + 0.013392 0 @@ -1922,7 +1940,7 @@ 2.313157e05 0.0 0.0 - 0.011166 + 0.011129 0 @@ -1940,7 +1958,7 @@ 1.42805e05 0.0 0.0 - 6.893677e-03 + 6.870899e-03 0 @@ -1952,13 +1970,13 @@ - + 2389.288000000000011 1533.17774319350724 4.720253e04 0.0 0.0 - 2.278625e-03 + 2.271096e-03 0 @@ -1976,7 +1994,7 @@ 3.080232e05 0.0 0.0 - 0.014869 + 0.01482 0 @@ -1994,7 +2012,7 @@ 3.179703e05 0.0 0.0 - 0.015349 + 0.015299 0 @@ -2012,7 +2030,7 @@ 3.032691e05 0.0 0.0 - 0.01464 + 0.014591 0 @@ -2024,15 +2042,15 @@ - + 2293.684699999999793 1546.898699613288045 2.61777e04 0.0 0.0 - 1.263686e-03 + 1.25951e-03 0 - + @@ -2048,7 +2066,7 @@ 1.206321e05 0.0 0.0 - 5.823319e-03 + 5.804078e-03 0 @@ -2066,7 +2084,7 @@ 1.318242e05 0.0 0.0 - 6.363597e-03 + 6.34257e-03 0 @@ -2078,15 +2096,15 @@ - + 2115.178199999999833 1554.735108172014634 1.799318e04 0.0 0.0 - 8.685912e-04 + 8.657211e-04 0 - + @@ -2096,13 +2114,13 @@ - + 2445.188799999999901 1564.59889480840161 5.103074e04 0.0 0.0 - 2.463426e-03 + 2.455286e-03 0 @@ -2120,7 +2138,7 @@ 2.952748e05 0.0 0.0 - 0.014254 + 0.014207 0 @@ -2138,7 +2156,7 @@ 1.901526e05 0.0 0.0 - 9.179305e-03 + 9.148975e-03 0 @@ -2156,7 +2174,7 @@ 3.002424e05 0.0 0.0 - 0.014494 + 0.014446 0 @@ -2174,7 +2192,7 @@ 9.568097e04 0.0 0.0 - 4.618843e-03 + 4.603581e-03 0 @@ -2192,7 +2210,7 @@ 9.669584e04 0.0 0.0 - 4.667833e-03 + 4.652411e-03 0 @@ -2210,7 +2228,7 @@ 3.814013e05 0.0 0.0 - 0.018412 + 0.018351 0 @@ -2228,7 +2246,7 @@ 2.396842e05 0.0 0.0 - 0.01157 + 0.011532 0 @@ -2246,7 +2264,7 @@ 1.437292e05 0.0 0.0 - 7.252087e-03 + 7.228125e-03 1 @@ -2264,7 +2282,7 @@ 7.754187e04 0.0 0.0 - 3.743207e-03 + 3.730839e-03 0 @@ -2282,7 +2300,7 @@ 1.079624e05 0.0 0.0 - 5.211708e-03 + 5.194487e-03 0 @@ -2300,7 +2318,7 @@ 2.803095e05 0.0 0.0 - 0.013531 + 0.013487 0 @@ -2318,7 +2336,7 @@ 3.697034e05 0.0 0.0 - 0.017847 + 0.017788 0 @@ -2330,13 +2348,13 @@ - + 2113.317300000000159 1619.303495718951808 1.964773e04 0.0 0.0 - 9.48462e-04 + 9.453281e-04 0 @@ -2348,15 +2366,15 @@ - + 2115.178199999999833 1619.402181722191472 1.603151e04 0.0 0.0 - 7.738947e-04 + 7.713376e-04 0 - + @@ -2372,7 +2390,7 @@ 2.81669e05 0.0 0.0 - 0.013597 + 0.013552 0 @@ -2390,7 +2408,7 @@ 1.543924e05 0.0 0.0 - 7.453043e-03 + 7.428416e-03 0 @@ -2402,13 +2420,13 @@ - + 2234.723199999999906 1626.845497679445771 3.200158e04 0.0 0.0 - 1.544824e-03 + 1.53972e-03 0 @@ -2426,7 +2444,7 @@ 1.363572e05 0.0 0.0 - 6.582423e-03 + 6.560673e-03 0 @@ -2444,7 +2462,7 @@ 2.934486e05 0.0 0.0 - 0.014166 + 0.014119 0 @@ -2456,15 +2474,15 @@ - + 2410.166400000000067 1653.878430965259213 2.171852e04 0.0 0.0 - 1.048426e-03 + 1.044962e-03 0 - + @@ -2480,7 +2498,7 @@ 7.61463e04 0.0 0.0 - 3.675838e-03 + 3.663692e-03 0 @@ -2498,7 +2516,7 @@ 2.193173e05 0.0 0.0 - 0.010587 + 0.010552 0 @@ -2516,7 +2534,7 @@ 1.432726e05 0.0 0.0 - 6.916249e-03 + 6.893396e-03 0 @@ -2534,7 +2552,7 @@ 1.494955e05 0.0 0.0 - 7.216652e-03 + 7.192807e-03 0 @@ -2546,15 +2564,15 @@ - + 2438.281399999999849 1660.372086927445025 2.933632e04 0.0 0.0 - 1.416163e-03 + 1.411483e-03 0 - + @@ -2570,9 +2588,9 @@ 7.709841e04 0.0 0.0 - 3.7218e-03 + 3.709502e-03 0 - + @@ -2588,7 +2606,7 @@ 1.215795e05 0.0 0.0 - 5.869053e-03 + 5.849661e-03 0 @@ -2606,7 +2624,7 @@ 3.689764e05 0.0 0.0 - 0.017812 + 0.017753 0 @@ -2624,7 +2642,7 @@ 9.235762e04 0.0 0.0 - 4.458413e-03 + 4.443681e-03 0 @@ -2642,7 +2660,7 @@ 1.335961e05 0.0 0.0 - 6.449131e-03 + 6.427821e-03 0 @@ -2660,7 +2678,7 @@ 1.624538e05 0.0 0.0 - 7.842193e-03 + 7.81628e-03 0 @@ -2672,15 +2690,15 @@ - + 2113.317300000000159 1689.807461949125582 3.022456e04 0.0 0.0 - 1.459041e-03 + 1.45422e-03 0 - + @@ -2696,7 +2714,7 @@ 2.2035e05 0.0 0.0 - 0.010637 + 0.010602 0 @@ -2714,7 +2732,7 @@ 2.456802e05 0.0 0.0 - 0.01186 + 0.011821 0 @@ -2726,15 +2744,15 @@ - + 2222.456000000000131 1702.64047500530728 2.194118e04 0.0 0.0 - 1.059174e-03 + 1.055675e-03 0 - + @@ -2744,13 +2762,13 @@ - + 2269.29989999999998 1705.015670597890676 4.531226e04 0.0 0.0 - 2.187375e-03 + 2.180148e-03 0 @@ -2762,15 +2780,15 @@ - + 2251.994400000000042 1705.284121726179819 2.624295e04 0.0 0.0 - 1.266835e-03 + 1.262649e-03 0 - + @@ -2786,7 +2804,7 @@ 2.157733e05 0.0 0.0 - 0.010416 + 0.010382 0 @@ -2798,13 +2816,13 @@ - + 2408.42450000000008 1724.993542854914949 6.319025e04 0.0 0.0 - 3.050406e-03 + 3.040327e-03 0 @@ -2816,15 +2834,15 @@ - + 2408.42450000000008 1726.213587695624938 3.118729e04 0.0 0.0 - 1.505516e-03 + 1.500541e-03 0 - + @@ -2840,7 +2858,7 @@ 2.351686e05 0.0 0.0 - 0.015098 + 0.015048 1 @@ -2852,13 +2870,13 @@ - + 2408.42450000000008 1745.760829132414756 5.418552e04 0.0 0.0 - 2.615717e-03 + 2.607075e-03 0 @@ -2876,7 +2894,7 @@ 2.101758e05 0.0 0.0 - 0.010146 + 0.010112 0 @@ -2888,13 +2906,13 @@ - + 2481.10109999999986 1748.477088871743263 6.268107e04 0.0 0.0 - 3.025826e-03 + 3.015829e-03 0 @@ -2906,15 +2924,15 @@ - + 2438.281399999999849 1752.475238664298104 4.212288e04 0.0 0.0 - 2.033413e-03 + 2.026695e-03 0 - + @@ -2924,15 +2942,15 @@ - + 2436.537800000000061 1752.786618650597347 3.489547e04 0.0 0.0 - 1.684522e-03 + 1.678956e-03 0 - + @@ -2942,13 +2960,13 @@ - + 2304.021200000000135 1752.942870439506805 5.639542e04 0.0 0.0 - 2.722396e-03 + 2.713401e-03 0 @@ -2966,7 +2984,7 @@ 2.391286e05 0.0 0.0 - 0.011544 + 0.011505 0 @@ -2984,7 +3002,7 @@ 1.120354e05 0.0 0.0 - 5.408324e-03 + 5.390454e-03 0 @@ -3002,7 +3020,7 @@ 1.027187e05 0.0 0.0 - 4.958578e-03 + 4.942193e-03 0 @@ -3014,15 +3032,15 @@ - + 2391.035699999999906 1782.393940800416658 2.212575e04 0.0 0.0 - 1.068084e-03 + 1.064555e-03 0 - + @@ -3038,7 +3056,7 @@ 2.376084e05 0.0 0.0 - 0.01147 + 0.011432 0 @@ -3050,15 +3068,15 @@ - + 2231.26260000000002 1789.957317640359861 2.526603e04 0.0 0.0 - 1.219676e-03 + 1.215646e-03 0 - + @@ -3074,7 +3092,7 @@ 1.350035e05 0.0 0.0 - 6.517071e-03 + 6.495538e-03 0 @@ -3092,7 +3110,7 @@ 1.303881e05 0.0 0.0 - 6.294273e-03 + 6.273475e-03 0 @@ -3104,13 +3122,13 @@ - + 2403.220400000000154 1826.459749047162632 6.688792e04 0.0 0.0 - 3.228905e-03 + 3.218236e-03 0 @@ -3128,7 +3146,7 @@ 1.08852e05 0.0 0.0 - 5.254653e-03 + 5.23729e-03 0 @@ -3146,7 +3164,7 @@ 1.457585e05 0.0 0.0 - 7.036255e-03 + 7.013005e-03 0 @@ -3158,13 +3176,13 @@ - + 2494.933700000000044 1857.737495000081708 3.016278e04 0.0 0.0 - 1.456059e-03 + 1.451248e-03 0 @@ -3176,15 +3194,15 @@ - + 2469.091399999999794 1858.745984190468562 3.515367e04 0.0 0.0 - 1.696986e-03 + 1.691379e-03 0 - + @@ -3200,7 +3218,7 @@ 8.905871e04 0.0 0.0 - 4.299164e-03 + 4.284958e-03 0 @@ -3218,7 +3236,7 @@ 8.228839e04 0.0 0.0 - 3.972338e-03 + 3.959213e-03 0 @@ -3230,13 +3248,13 @@ - + 2392.784000000000106 1886.071724297287119 5.862722e04 0.0 0.0 - 2.830133e-03 + 2.820782e-03 0 @@ -3254,7 +3272,7 @@ 9.071289e04 0.0 0.0 - 4.379016e-03 + 4.364547e-03 0 @@ -3266,13 +3284,13 @@ - + 2239.899699999999939 1888.17484040084355 4.652392e04 0.0 0.0 - 2.245866e-03 + 2.238446e-03 0 @@ -3284,13 +3302,13 @@ - + 2232.995100000000093 1888.290491312103768 3.919133e04 0.0 0.0 - 1.891897e-03 + 1.885646e-03 0 @@ -3308,7 +3326,7 @@ 7.994026e04 0.0 0.0 - 3.858985e-03 + 3.846234e-03 0 @@ -3320,15 +3338,15 @@ - + 2309.211800000000039 1926.099617064891163 1.986092e04 0.0 0.0 - 9.587536e-04 + 9.555857e-04 0 - + @@ -3344,7 +3362,7 @@ 8.636492e04 0.0 0.0 - 4.169125e-03 + 4.155349e-03 0 @@ -3356,13 +3374,13 @@ - + 2146.596000000000004 1965.622587674970873 6.654784e04 0.0 0.0 - 3.212488e-03 + 3.201874e-03 0 @@ -3380,7 +3398,7 @@ 1.071514e05 0.0 0.0 - 5.172558e-03 + 5.155467e-03 0 @@ -3392,13 +3410,13 @@ - + 2055.886300000000119 2038.847836648365728 6.202122e04 0.0 0.0 - 2.993973e-03 + 2.98408e-03 0 diff --git a/src/tests/topp/FeatureFinderMetabo_5_output.featureXML b/src/tests/topp/FeatureFinderMetabo_5_output.featureXML index 8ee90e00e5a..adae98a14e3 100644 --- a/src/tests/topp/FeatureFinderMetabo_5_output.featureXML +++ b/src/tests/topp/FeatureFinderMetabo_5_output.featureXML @@ -1,19 +1,19 @@ - + - - + + 2455.435500000000047 807.382443638583368 443.71933 0.0 0.0 - 1.905935e-04 + 1.898998e-04 0 @@ -26,13 +26,13 @@ - + 2231.26260000000002 826.494202213608446 936.980957 0.0 0.0 - 4.024672e-04 + 4.010024e-04 0 @@ -44,13 +44,13 @@ - + 2162.577000000000226 826.508365763651227 1220.867065 0.0 0.0 - 5.244065e-04 + 5.224979e-04 0 @@ -62,13 +62,13 @@ - + 2448.619299999999839 830.984658065170379 872.596436 0.0 0.0 - 3.748117e-04 + 3.734476e-04 0 @@ -80,13 +80,13 @@ - + 2489.747600000000148 850.310561004178567 889.756836 0.0 0.0 - 3.821827e-04 + 3.807918e-04 0 @@ -98,13 +98,13 @@ - + 2333.803600000000188 859.838729072722003 1294.553589 0.0 0.0 - 5.560575e-04 + 5.540338e-04 0 @@ -116,13 +116,13 @@ - + 2392.784000000000106 869.881504807722195 958.998474 0.0 0.0 - 4.119245e-04 + 4.104253e-04 0 @@ -134,13 +134,13 @@ - + 2410.166400000000067 875.346882182250283 1277.980103 0.0 0.0 - 5.489386e-04 + 5.469408e-04 0 @@ -152,13 +152,13 @@ - + 2321.427099999999882 878.989002108698173 1374.846191 0.0 0.0 - 5.90546e-04 + 5.883968e-04 0 @@ -170,13 +170,13 @@ - + 2157.24350000000004 891.202033653543936 1472.177856 0.0 0.0 - 6.323535e-04 + 6.300521e-04 0 @@ -188,13 +188,13 @@ - + 2086.912200000000212 897.467426386288935 690.754761 0.0 0.0 - 2.967041e-04 + 2.956243e-04 0 @@ -206,13 +206,13 @@ - + 2086.912200000000212 897.480138906082857 691.672119 0.0 0.0 - 2.970982e-04 + 2.960169e-04 0 @@ -224,15 +224,15 @@ - + 2312.697400000000016 898.441262420919543 2213.762939 0.0 0.0 - 9.508911e-04 + 9.474304e-04 0 - + @@ -242,13 +242,13 @@ - + 2202.48050000000012 922.142264658066097 985.091919 0.0 0.0 - 4.231325e-04 + 4.215926e-04 0 @@ -260,13 +260,13 @@ - + 2068.384500000000116 925.092448103213201 747.486023 0.0 0.0 - 3.210722e-04 + 3.199037e-04 0 @@ -278,13 +278,13 @@ - + 2103.947200000000066 930.695926617426494 700.078857 0.0 0.0 - 3.007091e-04 + 2.996147e-04 0 @@ -296,13 +296,13 @@ - + 2039.875 931.786876940217212 1654.587647 0.0 0.0 - 7.107051e-04 + 7.081185e-04 0 @@ -314,15 +314,15 @@ - + 2314.447200000000066 940.163447290168619 1307.569824 0.0 0.0 - 5.616485e-04 + 5.596044e-04 0 - + @@ -332,15 +332,15 @@ - + 2164.341300000000047 941.056632137188444 1056.727417 0.0 0.0 - 4.539026e-04 + 4.522506e-04 0 - + @@ -350,13 +350,13 @@ - + 2385.791000000000167 943.242995144159067 1150.341064 0.0 0.0 - 4.94113e-04 + 4.923147e-04 0 @@ -368,13 +368,13 @@ - + 2036.259600000000091 951.797959311024215 759.604126 0.0 0.0 - 3.262774e-04 + 3.250899e-04 0 @@ -386,13 +386,13 @@ - + 2333.803600000000188 954.870350753805951 1837.44873 0.0 0.0 - 7.892505e-04 + 7.863781e-04 0 @@ -404,13 +404,13 @@ - + 2382.276899999999841 956.402232731510253 1761.813232 0.0 0.0 - 7.567624e-04 + 7.540082e-04 0 @@ -422,13 +422,13 @@ - + 2438.281399999999849 960.594383559734752 1270.601318 0.0 0.0 - 5.457691e-04 + 5.437829e-04 0 @@ -440,13 +440,13 @@ - + 2317.935599999999795 960.932522180796809 2277.291992 0.0 0.0 - 9.781792e-04 + 9.746191e-04 0 @@ -458,13 +458,13 @@ - + 2316.188599999999951 962.648422921122688 2893.403809 0.0 0.0 - 1.242821e-03 + 1.238298e-03 0 @@ -476,13 +476,13 @@ - + 2041.685500000000047 972.829656890026513 1849.511841 0.0 0.0 - 7.944321e-04 + 7.915408e-04 0 @@ -494,13 +494,13 @@ - + 2319.671299999999974 985.979089801848886 1509.203857 0.0 0.0 - 6.482575e-04 + 6.458982e-04 0 @@ -512,15 +512,15 @@ - + 2317.935599999999795 986.111637196558718 2542.5625 0.0 0.0 - 1.092122e-03 + 1.088148e-03 0 - + @@ -530,13 +530,13 @@ - + 2438.281399999999849 1001.876146702152255 2195.648438 0.0 0.0 - 9.431103e-04 + 9.396779e-04 0 @@ -548,13 +548,13 @@ - + 2438.281399999999849 1001.890057045365211 2195.496582 0.0 0.0 - 9.43045e-04 + 9.396129e-04 0 @@ -566,15 +566,15 @@ - + 2291.961299999999937 1007.644615485409986 1697.887939 0.0 0.0 - 7.293042e-04 + 7.266499e-04 0 - + @@ -584,13 +584,13 @@ - + 2319.671299999999974 1010.676132659606537 2278.14209 0.0 0.0 - 9.785442e-04 + 9.749829e-04 0 @@ -602,13 +602,13 @@ - + 2050.569599999999809 1019.267521658935607 1788.61145 0.0 0.0 - 7.682732e-04 + 7.654771e-04 0 @@ -620,13 +620,13 @@ - + 2293.684699999999793 1032.787005476852983 3579.255127 0.0 0.0 - 1.537419e-03 + 1.531824e-03 0 @@ -638,13 +638,13 @@ - + 2401.490600000000086 1035.443047406048891 2472.212891 0.0 0.0 - 1.061905e-03 + 1.05804e-03 0 @@ -656,13 +656,13 @@ - + 2317.935599999999795 1036.568614716348748 3941.155518 0.0 0.0 - 1.692869e-03 + 1.686708e-03 0 @@ -674,13 +674,13 @@ - + 2139.367499999999836 1055.67440421619358 1174.69458 0.0 0.0 - 5.045737e-04 + 5.027374e-04 0 @@ -692,13 +692,13 @@ - + 2291.961299999999937 1059.341928449073293 2613.419678 0.0 0.0 - 1.122558e-03 + 1.118473e-03 0 @@ -710,13 +710,13 @@ - + 2166.123199999999997 1062.571062501704773 1465.160889 0.0 0.0 - 6.293395e-04 + 6.270491e-04 0 @@ -728,13 +728,13 @@ - + 2316.188599999999951 1063.913200666897183 3808.617676 0.0 0.0 - 1.635939e-03 + 1.629985e-03 0 @@ -746,13 +746,13 @@ - + 2408.42450000000008 1071.108608353815498 3306.525391 0.0 0.0 - 1.420272e-03 + 1.415103e-03 0 @@ -764,13 +764,13 @@ - + 2408.42450000000008 1071.174030373371352 3305.769531 0.0 0.0 - 1.419947e-03 + 1.41478e-03 0 @@ -782,13 +782,13 @@ - + 2288.505599999999959 1087.004624746010904 3411.417969 0.0 0.0 - 1.465327e-03 + 1.459994e-03 0 @@ -800,13 +800,13 @@ - + 2344.505599999999959 1091.175908126962668 2290.66333 0.0 0.0 - 9.839227e-04 + 9.803417e-04 0 @@ -818,13 +818,13 @@ - + 2316.188599999999951 1092.612602618285109 3641.495605 0.0 0.0 - 1.564154e-03 + 1.558461e-03 0 @@ -836,15 +836,15 @@ - + 2344.505599999999959 1092.698184307843576 2146.412598 0.0 0.0 - 9.219617e-04 + 9.186063e-04 0 - + @@ -854,15 +854,15 @@ - + 2039.875 1094.520825014260709 1996.709473 0.0 0.0 - 8.576588e-04 + 8.545374e-04 0 - + @@ -872,13 +872,13 @@ - + 2189.673200000000179 1101.381754439267979 1460.984863 0.0 0.0 - 6.275457e-04 + 6.252618e-04 0 @@ -890,13 +890,13 @@ - + 2408.42450000000008 1109.211026283574711 3896.336426 0.0 0.0 - 1.673617e-03 + 1.667526e-03 0 @@ -908,13 +908,13 @@ - + 2406.690999999999804 1109.332321478647373 5622.55127 0.0 0.0 - 2.415089e-03 + 2.406299e-03 0 @@ -926,13 +926,13 @@ - + 2429.510699999999815 1115.135040951183328 1997.037476 0.0 0.0 - 8.577996e-04 + 8.546778e-04 0 @@ -944,13 +944,13 @@ - + 2288.505599999999959 1116.426936083696546 3638.21167 0.0 0.0 - 1.562743e-03 + 1.557056e-03 0 @@ -962,13 +962,13 @@ - + 2323.173699999999826 1122.856975700477278 2981.11499 0.0 0.0 - 1.280496e-03 + 1.275836e-03 0 @@ -980,13 +980,13 @@ - + 2059.429500000000189 1128.798367724439231 1641.593994 0.0 0.0 - 7.051239e-04 + 7.025576e-04 0 @@ -998,13 +998,13 @@ - + 2103.947200000000066 1131.488009867404571 1492.822632 0.0 0.0 - 6.412212e-04 + 6.388875e-04 0 @@ -1016,15 +1016,15 @@ - + 2232.995100000000093 1133.360903928212565 2338.634033 0.0 0.0 - 1.004528e-03 + 1.000872e-03 0 - + @@ -1034,13 +1034,13 @@ - + 2229.519600000000082 1145.370387230336746 2571.195557 0.0 0.0 - 1.104421e-03 + 1.100402e-03 0 @@ -1052,15 +1052,15 @@ - + 2443.465299999999843 1145.734905638842065 3010.511719 0.0 0.0 - 1.293123e-03 + 1.288417e-03 0 - + @@ -1070,13 +1070,13 @@ - + 2293.684699999999793 1147.377890210826536 3333.729981 0.0 0.0 - 1.431957e-03 + 1.426746e-03 0 @@ -1088,13 +1088,13 @@ - + 2401.490600000000086 1150.339034686971445 7842.286133 0.0 0.0 - 3.368545e-03 + 3.356285e-03 0 @@ -1106,13 +1106,13 @@ - + 2411.914999999999964 1150.433831831611315 4790.793945 0.0 0.0 - 2.057819e-03 + 2.05033e-03 0 @@ -1124,13 +1124,13 @@ - + 2041.685500000000047 1152.318388335813324 1686.535278 0.0 0.0 - 7.244278e-04 + 7.217913e-04 0 @@ -1142,15 +1142,15 @@ - + 2425.991700000000037 1153.579336552857512 2449.276123 0.0 0.0 - 1.052052e-03 + 1.048224e-03 0 - + @@ -1160,13 +1160,13 @@ - + 2319.671299999999974 1154.970300785766312 3558.814453 0.0 0.0 - 1.528639e-03 + 1.523076e-03 0 @@ -1178,13 +1178,13 @@ - + 2054.11239999999998 1155.830753734437622 2062.743164 0.0 0.0 - 8.860227e-04 + 8.82798e-04 0 @@ -1196,13 +1196,13 @@ - + 2057.654100000000199 1159.333649302457616 1797.935791 0.0 0.0 - 7.722784e-04 + 7.694677e-04 0 @@ -1214,13 +1214,13 @@ - + 2150.143599999999879 1165.217620824715823 2715.054443 0.0 0.0 - 1.166214e-03 + 1.16197e-03 0 @@ -1232,13 +1232,13 @@ - + 2462.251800000000003 1170.756857495230179 5639.312988 0.0 0.0 - 2.422288e-03 + 2.413473e-03 0 @@ -1250,13 +1250,13 @@ - + 2457.136899999999969 1170.877263060064024 4998.224609 0.0 0.0 - 2.146918e-03 + 2.139104e-03 0 @@ -1268,15 +1268,15 @@ - + 2269.29989999999998 1172.106326043556919 2552.4729 0.0 0.0 - 1.096379e-03 + 1.092389e-03 0 - + @@ -1286,13 +1286,13 @@ - + 2243.350600000000213 1172.271464501962555 3328.118164 0.0 0.0 - 1.429547e-03 + 1.424344e-03 0 @@ -1304,13 +1304,13 @@ - + 2234.723199999999906 1172.384648689819869 3775.268311 0.0 0.0 - 1.621614e-03 + 1.615712e-03 0 @@ -1322,13 +1322,13 @@ - + 2295.404100000000199 1185.710825602869363 4297.005371 0.0 0.0 - 1.845719e-03 + 1.839002e-03 0 @@ -1340,13 +1340,13 @@ - + 2298.8449999999998 1185.815077302755526 4015.384766 0.0 0.0 - 1.724753e-03 + 1.718476e-03 0 @@ -1358,13 +1358,13 @@ - + 2470.794800000000123 1187.252669011258831 3002.270996 0.0 0.0 - 1.289584e-03 + 1.28489e-03 0 @@ -1376,13 +1376,13 @@ - + 2317.935599999999795 1188.823540252722751 4289.386719 0.0 0.0 - 1.842446e-03 + 1.835741e-03 0 @@ -1394,13 +1394,13 @@ - + 2312.697400000000016 1190.889855345169281 2272.266846 0.0 0.0 - 9.760206e-04 + 9.724685e-04 0 @@ -1412,13 +1412,13 @@ - + 2373.39240000000018 1192.347279509126338 2237.756592 0.0 0.0 - 9.611973e-04 + 9.57699e-04 0 @@ -1430,13 +1430,13 @@ - + 2404.953599999999824 1194.542476258981878 8382.875977 0.0 0.0 - 3.600748e-03 + 3.587643e-03 0 @@ -1454,7 +1454,7 @@ 9053.735352 0.0 0.0 - 3.888906e-03 + 3.874753e-03 0 @@ -1466,13 +1466,13 @@ - + 2424.226500000000215 1194.764112541080976 3105.169922 0.0 0.0 - 1.333783e-03 + 1.328928e-03 0 @@ -1484,13 +1484,13 @@ - + 2061.20510000000013 1195.513886744233787 2699.322998 0.0 0.0 - 1.159457e-03 + 1.155237e-03 0 @@ -1502,13 +1502,13 @@ - + 2047.017800000000079 1195.572740413149631 4003.219482 0.0 0.0 - 1.719527e-03 + 1.713269e-03 0 @@ -1520,13 +1520,13 @@ - + 2153.70010000000002 1209.971779732758023 4454.312012 0.0 0.0 - 1.913288e-03 + 1.906325e-03 0 @@ -1538,13 +1538,13 @@ - + 2135.693000000000211 1210.084711515850131 2627.180176 0.0 0.0 - 1.128469e-03 + 1.124362e-03 0 @@ -1556,13 +1556,13 @@ - + 2479.38610000000017 1210.803503648388869 3697.257568 0.0 0.0 - 1.588106e-03 + 1.582326e-03 0 @@ -1574,13 +1574,13 @@ - + 2083.146999999999935 1210.80444130007777 1371.235962 0.0 0.0 - 5.889954e-04 + 5.868517e-04 0 @@ -1592,13 +1592,13 @@ - + 2251.994400000000042 1214.056667504326697 5051.470703 0.0 0.0 - 2.169789e-03 + 2.161892e-03 0 @@ -1610,13 +1610,13 @@ - + 2234.723199999999906 1214.205825919648532 6053.291504 0.0 0.0 - 2.600107e-03 + 2.590644e-03 0 @@ -1628,13 +1628,13 @@ - + 2238.182299999999941 1214.298757310506971 5694.870117 0.0 0.0 - 2.446152e-03 + 2.43725e-03 0 @@ -1646,13 +1646,13 @@ - + 2182.374899999999798 1214.402878333462922 2011.98999 0.0 0.0 - 8.642223e-04 + 8.61077e-04 0 @@ -1670,7 +1670,7 @@ 8923.033203 0.0 0.0 - 3.832765e-03 + 3.818816e-03 0 @@ -1682,13 +1682,13 @@ - + 2470.794800000000123 1215.893763385928651 5352.865723 0.0 0.0 - 2.299249e-03 + 2.290881e-03 0 @@ -1700,13 +1700,13 @@ - + 2028.732899999999972 1220.782294928955935 1394.613647 0.0 0.0 - 5.990369e-04 + 5.968567e-04 0 @@ -1718,13 +1718,13 @@ - + 2450.31919999999991 1225.607053633452551 5027.473145 0.0 0.0 - 2.159481e-03 + 2.151622e-03 0 @@ -1736,15 +1736,15 @@ - + 2458.847000000000207 1225.687069810073353 4431.668945 0.0 0.0 - 1.903562e-03 + 1.896634e-03 0 - + @@ -1754,13 +1754,13 @@ - + 2339.143799999999828 1226.436865422794199 2081.589111 0.0 0.0 - 8.941177e-04 + 8.908636e-04 0 @@ -1772,13 +1772,13 @@ - + 2304.021200000000135 1233.137030717076641 5826.268066 0.0 0.0 - 2.502593e-03 + 2.493485e-03 0 @@ -1790,13 +1790,13 @@ - + 2387.537400000000162 1233.594546578699919 4241.747559 0.0 0.0 - 1.821984e-03 + 1.815353e-03 0 @@ -1808,13 +1808,13 @@ - + 2077.572200000000066 1238.083817651421441 2425.785156 0.0 0.0 - 1.041962e-03 + 1.03817e-03 0 @@ -1826,13 +1826,13 @@ - + 2050.569599999999809 1238.224126570075669 6702.783203 0.0 0.0 - 2.879087e-03 + 2.868609e-03 0 @@ -1850,7 +1850,7 @@ 9173.567383 0.0 0.0 - 3.940378e-03 + 3.926038e-03 0 @@ -1862,13 +1862,13 @@ - + 2418.93769999999995 1248.7479818050615 6107.48291 0.0 0.0 - 2.623384e-03 + 2.613837e-03 0 @@ -1880,13 +1880,13 @@ - + 2150.143599999999879 1258.309771722706273 4905.931641 0.0 0.0 - 2.107275e-03 + 2.099606e-03 0 @@ -1898,13 +1898,13 @@ - + 2153.70010000000002 1258.382567560334337 5351.137207 0.0 0.0 - 2.298507e-03 + 2.290141e-03 0 @@ -1916,13 +1916,13 @@ - + 2253.720200000000205 1258.884156878683825 5130.066406 0.0 0.0 - 2.203549e-03 + 2.195529e-03 0 @@ -1934,13 +1934,13 @@ - + 2232.995100000000093 1259.163579725601267 6650.740723 0.0 0.0 - 2.856733e-03 + 2.846336e-03 0 @@ -1952,13 +1952,13 @@ - + 2474.221399999999903 1259.182728300069584 5337.607422 0.0 0.0 - 2.292695e-03 + 2.284351e-03 0 @@ -1970,13 +1970,13 @@ - + 2460.544499999999971 1260.428709224738213 4252.327637 0.0 0.0 - 1.826528e-03 + 1.819881e-03 0 @@ -1988,15 +1988,15 @@ - + 2496.664499999999862 1263.523413809446765 3859.077637 0.0 0.0 - 1.657613e-03 + 1.65158e-03 0 - + @@ -2012,7 +2012,7 @@ 1.119357e04 0.0 0.0 - 4.808044e-03 + 4.790545e-03 0 @@ -2024,13 +2024,13 @@ - + 2457.136899999999969 1264.429355774872647 7208.741699 0.0 0.0 - 3.096415e-03 + 3.085145e-03 0 @@ -2042,13 +2042,13 @@ - + 2075.709100000000035 1267.840100208356716 1825.073486 0.0 0.0 - 7.83935e-04 + 7.810819e-04 0 @@ -2060,13 +2060,13 @@ - + 2453.727699999999913 1274.56929857598152 6634.988281 0.0 0.0 - 2.849967e-03 + 2.839595e-03 0 @@ -2078,13 +2078,13 @@ - + 2167.89409999999998 1280.222809959991764 2102.64502 0.0 0.0 - 9.031619e-04 + 8.99875e-04 0 @@ -2096,13 +2096,13 @@ - + 2387.537400000000162 1282.901589059656089 3917.125977 0.0 0.0 - 1.682547e-03 + 1.676423e-03 0 @@ -2114,13 +2114,13 @@ - + 2052.341800000000148 1284.026420246943644 6262.366699 0.0 0.0 - 2.689913e-03 + 2.680123e-03 0 @@ -2132,13 +2132,13 @@ - + 2062.998500000000149 1284.056847864000929 5329.855957 0.0 0.0 - 2.289366e-03 + 2.281034e-03 0 @@ -2150,13 +2150,13 @@ - + 2295.404100000000199 1284.476309025774526 7401.810059 0.0 0.0 - 3.179345e-03 + 3.167773e-03 0 @@ -2168,13 +2168,13 @@ - + 2401.490600000000086 1294.030967145802606 7532.21875 0.0 0.0 - 3.23536e-03 + 3.223585e-03 0 @@ -2186,13 +2186,13 @@ - + 2115.178199999999833 1295.775439621113037 1772.718384 0.0 0.0 - 7.614465e-04 + 7.586753e-04 0 @@ -2204,13 +2204,13 @@ - + 2224.237799999999879 1302.633982459959498 2404.104004 0.0 0.0 - 1.032649e-03 + 1.028891e-03 0 @@ -2222,13 +2222,13 @@ - + 2204.306999999999789 1305.490032894085971 2268.874268 0.0 0.0 - 9.745634e-04 + 9.710165e-04 0 @@ -2240,13 +2240,13 @@ - + 2264.094399999999951 1307.221298209387214 7533.489258 0.0 0.0 - 3.235906e-03 + 3.224129e-03 0 @@ -2258,13 +2258,13 @@ - + 2264.094399999999951 1307.308289582173984 7087.981445 0.0 0.0 - 3.044544e-03 + 3.033463e-03 0 @@ -2282,7 +2282,7 @@ 9296.977539 0.0 0.0 - 3.993387e-03 + 3.978853e-03 0 @@ -2294,13 +2294,13 @@ - + 2271.0304000000001 1308.725016143996072 3223.374756 0.0 0.0 - 1.384556e-03 + 1.379517e-03 0 @@ -2312,13 +2312,13 @@ - + 2150.143599999999879 1310.691871018473421 6149.245117 0.0 0.0 - 2.641323e-03 + 2.63171e-03 0 @@ -2330,13 +2330,13 @@ - + 2153.70010000000002 1310.79824769429456 3787.271484 0.0 0.0 - 1.62677e-03 + 1.620849e-03 0 @@ -2348,15 +2348,15 @@ - + 2176.892899999999827 1310.814943348755605 2033.441528 0.0 0.0 - 8.734365e-04 + 8.702578e-04 0 - + @@ -2366,13 +2366,13 @@ - + 2477.658600000000206 1311.644545299115634 6085.001953 0.0 0.0 - 2.613728e-03 + 2.604215e-03 0 @@ -2384,13 +2384,13 @@ - + 2475.940700000000106 1311.684161827405433 4660.80127 0.0 0.0 - 2.001982e-03 + 1.994696e-03 0 @@ -2402,13 +2402,13 @@ - + 2257.177700000000186 1312.172516320249315 4180.531738 0.0 0.0 - 1.795689e-03 + 1.789154e-03 0 @@ -2420,13 +2420,13 @@ - + 2496.664499999999862 1316.131688047603575 4854.717773 0.0 0.0 - 2.085277e-03 + 2.077687e-03 0 @@ -2444,7 +2444,7 @@ 1.096938e04 0.0 0.0 - 4.711743e-03 + 4.694595e-03 0 @@ -2456,13 +2456,13 @@ - + 2453.727699999999913 1327.645189368392948 6510.078125 0.0 0.0 - 2.796314e-03 + 2.786136e-03 0 @@ -2474,13 +2474,13 @@ - + 2460.544499999999971 1327.74957038804132 6734.67041 0.0 0.0 - 2.892784e-03 + 2.882256e-03 0 @@ -2492,13 +2492,13 @@ - + 2055.886300000000119 1333.380046936116287 6526.722656 0.0 0.0 - 2.803463e-03 + 2.79326e-03 0 @@ -2510,13 +2510,13 @@ - + 2385.791000000000167 1336.280930913606653 4096.368652 0.0 0.0 - 1.759538e-03 + 1.753135e-03 0 @@ -2534,7 +2534,7 @@ 8959.030273 0.0 0.0 - 3.848227e-03 + 3.834222e-03 0 @@ -2546,13 +2546,13 @@ - + 2113.317300000000159 1340.411433765501442 2308.145996 0.0 0.0 - 9.91432e-04 + 9.878238e-04 0 @@ -2570,7 +2570,7 @@ 9292.375 0.0 0.0 - 3.991411e-03 + 3.976884e-03 0 @@ -2582,13 +2582,13 @@ - + 2285.020500000000084 1356.215215619805122 2246.996826 0.0 0.0 - 9.651663e-04 + 9.616536e-04 0 @@ -2600,13 +2600,13 @@ - + 2253.720200000000205 1359.464029420998486 5575.115723 0.0 0.0 - 2.394713e-03 + 2.385998e-03 0 @@ -2618,13 +2618,13 @@ - + 2248.542199999999866 1359.528395588975172 6981.986816 0.0 0.0 - 2.999015e-03 + 2.988101e-03 0 @@ -2642,7 +2642,7 @@ 9597.606445 0.0 0.0 - 4.122519e-03 + 4.107515e-03 0 @@ -2654,13 +2654,13 @@ - + 2403.220400000000154 1366.421868177671968 2888.244141 0.0 0.0 - 1.240605e-03 + 1.23609e-03 0 @@ -2672,13 +2672,13 @@ - + 2150.143599999999879 1367.661159049037224 8044.424805 0.0 0.0 - 3.455371e-03 + 3.442795e-03 0 @@ -2690,13 +2690,13 @@ - + 2477.658600000000206 1368.586420807446075 8093.239258 0.0 0.0 - 3.476338e-03 + 3.463686e-03 0 @@ -2708,13 +2708,13 @@ - + 2496.664499999999862 1373.294390171324721 6734.713867 0.0 0.0 - 2.892803e-03 + 2.882275e-03 0 @@ -2726,13 +2726,13 @@ - + 2494.933700000000044 1373.37047916700908 7071.990723 0.0 0.0 - 3.037675e-03 + 3.02662e-03 0 @@ -2750,7 +2750,7 @@ 1.306903e04 0.0 0.0 - 5.613622e-03 + 5.593192e-03 0 @@ -2762,13 +2762,13 @@ - + 2477.658600000000206 1374.304888717603035 6380.844238 0.0 0.0 - 2.740803e-03 + 2.730828e-03 0 @@ -2786,7 +2786,7 @@ 9107.383789 0.0 0.0 - 3.91195e-03 + 3.897713e-03 0 @@ -2804,7 +2804,7 @@ 9726.496094 0.0 0.0 - 4.177881e-03 + 4.162676e-03 0 @@ -2822,7 +2822,7 @@ 9011.737305 0.0 0.0 - 3.870867e-03 + 3.856779e-03 0 @@ -2834,13 +2834,13 @@ - + 2472.509500000000116 1387.048571118285281 4232.441895 0.0 0.0 - 1.817987e-03 + 1.81137e-03 0 @@ -2852,13 +2852,13 @@ - + 2111.473399999999856 1388.207304847425803 2562.340088 0.0 0.0 - 1.100618e-03 + 1.096612e-03 0 @@ -2870,13 +2870,13 @@ - + 2118.887700000000223 1390.335030855253081 2037.723633 0.0 0.0 - 8.752759e-04 + 8.720903e-04 0 @@ -2888,13 +2888,13 @@ - + 2384.029300000000148 1394.343647380196899 4531.572266 0.0 0.0 - 1.946474e-03 + 1.93939e-03 0 @@ -2906,13 +2906,13 @@ - + 2389.288000000000011 1394.390766224529671 4233.919434 0.0 0.0 - 1.818621e-03 + 1.812003e-03 0 @@ -2930,7 +2930,7 @@ 1.183727e04 0.0 0.0 - 5.084534e-03 + 5.066029e-03 0 @@ -2942,13 +2942,13 @@ - + 2011.356899999999996 1405.705621462865338 1288.644287 0.0 0.0 - 5.535193e-04 + 5.515047e-04 0 @@ -2960,13 +2960,13 @@ - + 2441.740600000000086 1406.568889230097284 4715.479004 0.0 0.0 - 2.025469e-03 + 2.018097e-03 0 @@ -2978,13 +2978,13 @@ - + 2128.238100000000031 1407.061573267852509 1351.10083 0.0 0.0 - 5.803466e-04 + 5.782344e-04 0 @@ -3002,7 +3002,7 @@ 9513.444336 0.0 0.0 - 4.086368e-03 + 4.071496e-03 0 @@ -3014,13 +3014,13 @@ - + 2346.297999999999774 1412.194746150905985 3370.946289 0.0 0.0 - 1.447943e-03 + 1.442673e-03 0 @@ -3032,13 +3032,13 @@ - + 2264.094399999999951 1415.983335625712243 8246.658203 0.0 0.0 - 3.542238e-03 + 3.529346e-03 0 @@ -3050,15 +3050,15 @@ - + 2274.508600000000115 1416.066106820019968 5546.625488 0.0 0.0 - 2.382476e-03 + 2.373805e-03 0 - + @@ -3074,7 +3074,7 @@ 1.030221e04 0.0 0.0 - 4.425173e-03 + 4.409068e-03 0 @@ -3092,7 +3092,7 @@ 1.037971e04 0.0 0.0 - 4.458461e-03 + 4.442235e-03 0 @@ -3104,13 +3104,13 @@ - + 2394.530499999999847 1420.153105479096439 6819.658691 0.0 0.0 - 2.92929e-03 + 2.918629e-03 0 @@ -3128,7 +3128,7 @@ 1.081248e04 0.0 0.0 - 4.64435e-03 + 4.627448e-03 0 @@ -3146,7 +3146,7 @@ 9218.65332 0.0 0.0 - 3.959744e-03 + 3.945333e-03 0 @@ -3158,13 +3158,13 @@ - + 2274.508600000000115 1432.722392786964747 3247.595947 0.0 0.0 - 1.39496e-03 + 1.389883e-03 0 @@ -3176,13 +3176,13 @@ - + 2310.957300000000032 1434.147957512943776 4761.923828 0.0 0.0 - 2.045418e-03 + 2.037974e-03 0 @@ -3194,13 +3194,13 @@ - + 2436.537800000000061 1434.169765759915208 3989.498291 0.0 0.0 - 1.713634e-03 + 1.707397e-03 0 @@ -3212,15 +3212,15 @@ - + 2298.8449999999998 1434.419263953939662 4050.839844 0.0 0.0 - 1.739982e-03 + 1.733649e-03 0 - + @@ -3236,7 +3236,7 @@ 9960.074219 0.0 0.0 - 4.278212e-03 + 4.262641e-03 0 @@ -3254,7 +3254,7 @@ 1.987254e04 0.0 0.0 - 8.535975e-03 + 8.504909e-03 0 @@ -3266,13 +3266,13 @@ - + 2498.393099999999777 1436.765811488686495 3578.586914 0.0 0.0 - 1.537132e-03 + 1.531538e-03 0 @@ -3284,13 +3284,13 @@ - + 2115.178199999999833 1439.597650158143324 2954.701904 0.0 0.0 - 1.269151e-03 + 1.264532e-03 0 @@ -3308,7 +3308,7 @@ 9805.576172 0.0 0.0 - 4.211849e-03 + 4.19652e-03 0 @@ -3320,13 +3320,13 @@ - + 2036.259600000000091 1444.618474717485469 5580.834473 0.0 0.0 - 2.39717e-03 + 2.388445e-03 0 @@ -3344,7 +3344,7 @@ 1.168641e04 0.0 0.0 - 5.019734e-03 + 5.001466e-03 0 @@ -3356,13 +3356,13 @@ - + 2424.226500000000215 1454.125871813733738 3627.559082 0.0 0.0 - 1.558168e-03 + 1.552497e-03 0 @@ -3374,13 +3374,13 @@ - + 2385.791000000000167 1457.734044026306492 7848.974121 0.0 0.0 - 3.371418e-03 + 3.359148e-03 0 @@ -3392,13 +3392,13 @@ - + 2385.791000000000167 1463.608305868869366 2272.992432 0.0 0.0 - 9.763323e-04 + 9.72779e-04 0 @@ -3416,7 +3416,7 @@ 1.433887e04 0.0 0.0 - 6.159061e-03 + 6.136646e-03 0 @@ -3430,11 +3430,11 @@ 2258.91359999999986 - 1477.646378480966632 + 1477.643088796139182 1.068621e04 0.0 0.0 - 4.590111e-03 + 4.573406e-03 0 @@ -3442,7 +3442,25 @@ - + + + + + + 2272.770899999999983 + 1477.648606922746922 + 8503.905273 + 0.0 + 0.0 + 3.639441e-03 + 0 + + + + + + + @@ -3452,7 +3470,7 @@ 1.047413e04 0.0 0.0 - 4.499019e-03 + 4.482645e-03 0 @@ -3470,7 +3488,7 @@ 1.411264e04 0.0 0.0 - 6.061888e-03 + 6.039826e-03 0 @@ -3488,7 +3506,7 @@ 9520.112305 0.0 0.0 - 4.089232e-03 + 4.074349e-03 0 @@ -3500,15 +3518,15 @@ - + 2231.26260000000002 1478.863374293218158 5563.307129 0.0 0.0 - 2.389641e-03 + 2.380944e-03 0 - + @@ -3518,13 +3536,13 @@ - + 2257.177700000000186 1483.141064673577603 5744.023926 0.0 0.0 - 2.467266e-03 + 2.458286e-03 0 @@ -3536,13 +3554,13 @@ - + 2260.634700000000066 1483.241533383165461 5687.453613 0.0 0.0 - 2.442967e-03 + 2.434076e-03 0 @@ -3554,13 +3572,13 @@ - + 2440.008200000000215 1484.113386756506543 5282.203613 0.0 0.0 - 2.268897e-03 + 2.26064e-03 0 @@ -3572,13 +3590,13 @@ - + 2143.000300000000152 1485.008226930302044 4507.282227 0.0 0.0 - 1.936041e-03 + 1.928994e-03 0 @@ -3590,15 +3608,15 @@ - + 2440.008200000000215 1490.072905916811351 5897.334961 0.0 0.0 - 2.533118e-03 + 2.523899e-03 0 - + @@ -3608,13 +3626,13 @@ - + 2496.664499999999862 1494.510465496383858 3820.780029 0.0 0.0 - 1.641163e-03 + 1.63519e-03 0 @@ -3626,13 +3644,13 @@ - + 2109.600800000000163 1494.928493316985851 4043.383545 0.0 0.0 - 1.736779e-03 + 1.730458e-03 0 @@ -3644,13 +3662,13 @@ - + 2401.490600000000086 1496.455227276361939 7564.854981 0.0 0.0 - 3.249378e-03 + 3.237552e-03 0 @@ -3668,7 +3686,7 @@ 1.276182e04 0.0 0.0 - 5.481663e-03 + 5.461713e-03 0 @@ -3686,7 +3704,7 @@ 1.644805e04 0.0 0.0 - 7.065029e-03 + 7.039317e-03 0 @@ -3698,13 +3716,13 @@ - + 2081.286000000000058 1498.536900118983112 1897.686523 0.0 0.0 - 8.151249e-04 + 8.121583e-04 0 @@ -3722,7 +3740,7 @@ 1.130837e04 0.0 0.0 - 4.857353e-03 + 4.839675e-03 0 @@ -3740,7 +3758,7 @@ 1.267555e04 0.0 0.0 - 5.444605e-03 + 5.42479e-03 0 @@ -3752,13 +3770,13 @@ - + 2438.281399999999849 1502.414575785853685 6476.43457 0.0 0.0 - 2.781863e-03 + 2.771738e-03 0 @@ -3770,13 +3788,13 @@ - + 2295.404100000000199 1502.598202800621266 7046.496094 0.0 0.0 - 3.026725e-03 + 3.015709e-03 0 @@ -3788,13 +3806,13 @@ - + 2494.933700000000044 1503.92368684652979 8346.483398 0.0 0.0 - 3.585116e-03 + 3.572068e-03 0 @@ -3812,7 +3830,7 @@ 9441.053711 0.0 0.0 - 4.055273e-03 + 4.040514e-03 0 @@ -3830,7 +3848,7 @@ 2.257226e04 0.0 0.0 - 9.695599e-03 + 9.660312e-03 0 @@ -3842,13 +3860,13 @@ - + 2375.188700000000154 1505.027479183735522 4505.585938 0.0 0.0 - 1.935312e-03 + 1.928268e-03 0 @@ -3866,7 +3884,7 @@ 1.254876e04 0.0 0.0 - 5.390144e-03 + 5.370527e-03 0 @@ -3878,13 +3896,13 @@ - + 2211.623500000000149 1507.236417549069756 2979.209961 0.0 0.0 - 1.279678e-03 + 1.275021e-03 0 @@ -3896,13 +3914,13 @@ - + 2075.709100000000035 1507.328521341787109 3806.966553 0.0 0.0 - 1.63523e-03 + 1.629278e-03 0 @@ -3914,13 +3932,13 @@ - + 2410.166400000000067 1510.345322471506506 4769.240723 0.0 0.0 - 2.048561e-03 + 2.041106e-03 0 @@ -3938,7 +3956,7 @@ 1.533419e04 0.0 0.0 - 6.586589e-03 + 6.562617e-03 0 @@ -3950,13 +3968,13 @@ - + 2124.465799999999945 1522.389743168097994 3434.416748 0.0 0.0 - 1.475206e-03 + 1.469837e-03 0 @@ -3968,13 +3986,13 @@ - + 2019.160100000000057 1525.255072669362335 2387.186768 0.0 0.0 - 1.025383e-03 + 1.021651e-03 0 @@ -3992,7 +4010,7 @@ 1.016244e04 0.0 0.0 - 4.365136e-03 + 4.349249e-03 0 @@ -4004,13 +4022,13 @@ - + 2298.8449999999998 1529.325855755067551 4606.952148 0.0 0.0 - 1.978852e-03 + 1.97165e-03 0 @@ -4022,13 +4040,13 @@ - + 2417.183500000000095 1532.974026406655185 5182.966309 0.0 0.0 - 2.226271e-03 + 2.218169e-03 0 @@ -4040,13 +4058,13 @@ - + 2389.288000000000011 1533.17774319350724 4825.842285 0.0 0.0 - 2.072874e-03 + 2.065329e-03 0 @@ -4058,13 +4076,13 @@ - + 2021.09089999999992 1541.017058906415514 2128.317383 0.0 0.0 - 9.141891e-04 + 9.10862e-04 0 @@ -4082,7 +4100,7 @@ 1.730368e04 0.0 0.0 - 7.432557e-03 + 7.405507e-03 0 @@ -4094,13 +4112,13 @@ - + 2330.259700000000066 1541.171207938832367 4991.407227 0.0 0.0 - 2.14399e-03 + 2.136187e-03 0 @@ -4112,13 +4130,13 @@ - + 2153.70010000000002 1541.700234428523572 3775.210938 0.0 0.0 - 1.621589e-03 + 1.615688e-03 0 @@ -4130,13 +4148,13 @@ - + 2378.744999999999891 1543.056743745400581 2642.845459 0.0 0.0 - 1.135198e-03 + 1.131066e-03 0 @@ -4148,13 +4166,13 @@ - + 2403.220400000000154 1543.673444228010339 4420.617188 0.0 0.0 - 1.898815e-03 + 1.891904e-03 0 @@ -4172,7 +4190,7 @@ 9497.956055 0.0 0.0 - 4.079715e-03 + 4.064867e-03 0 @@ -4190,7 +4208,7 @@ 1.274328e04 0.0 0.0 - 5.473698e-03 + 5.453776e-03 0 @@ -4202,13 +4220,13 @@ - + 2436.537800000000061 1544.853146422547297 3602.057129 0.0 0.0 - 1.547214e-03 + 1.541583e-03 0 @@ -4226,7 +4244,7 @@ 1.51019e04 0.0 0.0 - 6.486811e-03 + 6.463202e-03 0 @@ -4238,13 +4256,13 @@ - + 2218.869599999999991 1545.536325936164076 3237.866943 0.0 0.0 - 1.390781e-03 + 1.385719e-03 0 @@ -4256,13 +4274,13 @@ - + 2253.720200000000205 1545.981538778982667 3608.641846 0.0 0.0 - 1.550042e-03 + 1.544401e-03 0 @@ -4274,15 +4292,15 @@ - + 2293.684699999999793 1546.898699613288045 4267.239258 0.0 0.0 - 1.832933e-03 + 1.826263e-03 0 - + @@ -4292,13 +4310,13 @@ - + 2260.634700000000066 1550.418467958756992 6310.133789 0.0 0.0 - 2.71043e-03 + 2.700566e-03 0 @@ -4310,13 +4328,13 @@ - + 2258.91359999999986 1550.541371959744538 6757.609375 0.0 0.0 - 2.902637e-03 + 2.892073e-03 0 @@ -4334,7 +4352,7 @@ 9615.90332 0.0 0.0 - 4.130377e-03 + 4.115345e-03 0 @@ -4346,13 +4364,13 @@ - + 2111.473399999999856 1554.642545876823078 2364.874756 0.0 0.0 - 1.015799e-03 + 1.012102e-03 0 @@ -4364,15 +4382,15 @@ - + 2115.178199999999833 1554.735108172014634 3018.401855 0.0 0.0 - 1.296513e-03 + 1.291794e-03 0 - + @@ -4382,13 +4400,13 @@ - + 2135.693000000000211 1558.430322627787064 2800.88501 0.0 0.0 - 1.203081e-03 + 1.198703e-03 0 @@ -4400,13 +4418,13 @@ - + 2445.188799999999901 1564.59889480840161 5539.378418 0.0 0.0 - 2.379363e-03 + 2.370703e-03 0 @@ -4418,13 +4436,13 @@ - + 2039.875 1565.596825582884321 2932.653809 0.0 0.0 - 1.259681e-03 + 1.255096e-03 0 @@ -4436,13 +4454,13 @@ - + 2392.784000000000106 1568.617193430428415 3752.50708 0.0 0.0 - 1.611837e-03 + 1.605971e-03 0 @@ -4454,13 +4472,13 @@ - + 2384.029300000000148 1569.41300686590921 4696.563965 0.0 0.0 - 2.017344e-03 + 2.010002e-03 0 @@ -4472,13 +4490,13 @@ - + 2403.220400000000154 1571.155997488063804 4412.478516 0.0 0.0 - 1.895319e-03 + 1.888421e-03 0 @@ -4490,13 +4508,13 @@ - + 2401.490600000000086 1571.462352608251877 6389.264648 0.0 0.0 - 2.74442e-03 + 2.734432e-03 0 @@ -4514,7 +4532,7 @@ 1.279456e04 0.0 0.0 - 5.495726e-03 + 5.475725e-03 0 @@ -4532,7 +4550,7 @@ 1.15965e04 0.0 0.0 - 4.981117e-03 + 4.962988e-03 0 @@ -4544,13 +4562,13 @@ - + 2026.832400000000007 1574.099644969882547 1505.588013 0.0 0.0 - 6.467044e-04 + 6.443508e-04 0 @@ -4568,7 +4586,7 @@ 1.348874e04 0.0 0.0 - 5.793901e-03 + 5.772815e-03 0 @@ -4580,13 +4598,13 @@ - + 2036.259600000000091 1576.50412407525323 2150.497559 0.0 0.0 - 9.237164e-04 + 9.203545e-04 0 @@ -4598,13 +4616,13 @@ - + 2193.318900000000212 1576.567377263860635 3084.084473 0.0 0.0 - 1.324726e-03 + 1.319904e-03 0 @@ -4616,13 +4634,13 @@ - + 2220.666900000000169 1576.654751032828472 2906.367188 0.0 0.0 - 1.24839e-03 + 1.243846e-03 0 @@ -4634,13 +4652,13 @@ - + 2052.341800000000148 1576.707552416621411 2694.540772 0.0 0.0 - 1.157403e-03 + 1.15319e-03 0 @@ -4652,13 +4670,13 @@ - + 2436.537800000000061 1577.385703203038929 7994.827637 0.0 0.0 - 3.434067e-03 + 3.421569e-03 0 @@ -4670,13 +4688,13 @@ - + 2300.573800000000119 1577.722515613650103 7355.443848 0.0 0.0 - 3.159429e-03 + 3.14793e-03 0 @@ -4694,7 +4712,7 @@ 1.067083e04 0.0 0.0 - 4.583506e-03 + 4.566824e-03 0 @@ -4706,13 +4724,13 @@ - + 2130.114000000000033 1579.950973706372906 3681.593506 0.0 0.0 - 1.581377e-03 + 1.575622e-03 0 @@ -4730,7 +4748,7 @@ 3.113338e04 0.0 0.0 - 0.013373 + 0.013324 0 @@ -4742,13 +4760,13 @@ - + 2486.284500000000207 1580.32251415878477 6382.256836 0.0 0.0 - 2.74141e-03 + 2.731432e-03 0 @@ -4760,13 +4778,13 @@ - + 2470.794800000000123 1581.365533415807249 4866.044434 0.0 0.0 - 2.090142e-03 + 2.082535e-03 0 @@ -4778,13 +4796,13 @@ - + 2482.830800000000181 1592.890963125830922 5259.572754 0.0 0.0 - 2.259177e-03 + 2.250954e-03 0 @@ -4802,7 +4820,7 @@ 1.648833e04 0.0 0.0 - 7.082333e-03 + 7.056557e-03 0 @@ -4814,13 +4832,13 @@ - + 2217.072200000000066 1597.599023793801734 2035.157715 0.0 0.0 - 8.741737e-04 + 8.709922e-04 0 @@ -4832,13 +4850,13 @@ - + 2150.143599999999879 1600.118034275960099 6345.790527 0.0 0.0 - 2.725746e-03 + 2.715826e-03 0 @@ -4856,7 +4874,7 @@ 1.372786e04 0.0 0.0 - 6.180053e-03 + 6.157561e-03 1 @@ -4868,13 +4886,13 @@ - + 2238.182299999999941 1607.722628651317564 4867.573731 0.0 0.0 - 2.090799e-03 + 2.083189e-03 0 @@ -4886,13 +4904,13 @@ - + 2079.423499999999876 1609.392297555993991 2154.165283 0.0 0.0 - 9.252917e-04 + 9.219242e-04 0 @@ -4904,13 +4922,13 @@ - + 2066.577400000000125 1609.962135191748075 3212.484375 0.0 0.0 - 1.379878e-03 + 1.374856e-03 0 @@ -4922,13 +4940,13 @@ - + 2368.008200000000215 1612.961009187492664 3590.615723 0.0 0.0 - 1.542299e-03 + 1.536686e-03 0 @@ -4940,13 +4958,13 @@ - + 2316.188599999999951 1616.462765924304676 7692.102539 0.0 0.0 - 3.304036e-03 + 3.292011e-03 0 @@ -4958,13 +4976,13 @@ - + 2122.593600000000151 1617.447476843464301 1627.227173 0.0 0.0 - 6.989528e-04 + 6.96409e-04 0 @@ -4976,13 +4994,13 @@ - + 2316.188599999999951 1618.045399840169239 3477.179932 0.0 0.0 - 1.493574e-03 + 1.488139e-03 0 @@ -5000,7 +5018,7 @@ 9675.181641 0.0 0.0 - 4.15584e-03 + 4.140715e-03 0 @@ -5018,7 +5036,7 @@ 1.137033e04 0.0 0.0 - 4.883965e-03 + 4.86619e-03 0 @@ -5036,7 +5054,7 @@ 1.568602e04 0.0 0.0 - 6.737713e-03 + 6.713192e-03 0 @@ -5048,13 +5066,13 @@ - + 2113.317300000000159 1619.303495718951808 2633.152344 0.0 0.0 - 1.131034e-03 + 1.126918e-03 0 @@ -5066,15 +5084,15 @@ - + 2115.178199999999833 1619.402181722191472 2614.531006 0.0 0.0 - 1.123035e-03 + 1.118948e-03 0 - + @@ -5090,7 +5108,7 @@ 1.48039e04 0.0 0.0 - 6.358809e-03 + 6.335666e-03 0 @@ -5102,13 +5120,13 @@ - + 2300.573800000000119 1623.116111530553098 5382.34082 0.0 0.0 - 2.31191e-03 + 2.303496e-03 0 @@ -5120,13 +5138,13 @@ - + 2257.177700000000186 1624.252437586806764 7005.165039 0.0 0.0 - 3.008971e-03 + 2.99802e-03 0 @@ -5138,13 +5156,13 @@ - + 2234.723199999999906 1626.845497679445771 4604.616699 0.0 0.0 - 1.977849e-03 + 1.970651e-03 0 @@ -5162,7 +5180,7 @@ 9606.09375 0.0 0.0 - 4.126164e-03 + 4.111147e-03 0 @@ -5174,13 +5192,13 @@ - + 2290.243399999999838 1630.376973731679755 4468.344727 0.0 0.0 - 1.919315e-03 + 1.91233e-03 0 @@ -5198,7 +5216,7 @@ 8968.276367 0.0 0.0 - 3.852198e-03 + 3.838179e-03 0 @@ -5210,13 +5228,13 @@ - + 2344.505599999999959 1639.687652079963527 2368.59375 0.0 0.0 - 1.017397e-03 + 1.013694e-03 0 @@ -5228,13 +5246,13 @@ - + 2107.714800000000196 1641.615776482670754 2707.037354 0.0 0.0 - 1.16277e-03 + 1.158538e-03 0 @@ -5246,13 +5264,13 @@ - + 2445.188799999999901 1646.908370499508919 5574.96582 0.0 0.0 - 2.394649e-03 + 2.385934e-03 0 @@ -5270,7 +5288,7 @@ 1.476124e04 0.0 0.0 - 6.340487e-03 + 6.317411e-03 0 @@ -5282,13 +5300,13 @@ - + 2355.29340000000002 1652.486960853003211 2705.270508 0.0 0.0 - 1.162011e-03 + 1.157782e-03 0 @@ -5300,13 +5318,13 @@ - + 2401.490600000000086 1653.673821449090838 3460.516602 0.0 0.0 - 1.486417e-03 + 1.481007e-03 0 @@ -5318,13 +5336,13 @@ - + 2304.021200000000135 1653.873107272204607 4475.086426 0.0 0.0 - 1.922211e-03 + 1.915215e-03 0 @@ -5336,15 +5354,15 @@ - + 2410.166400000000067 1653.878430965259213 4443.199707 0.0 0.0 - 1.908515e-03 + 1.901569e-03 0 - + @@ -5354,13 +5372,13 @@ - + 2408.42450000000008 1653.952915661737734 5236.44043 0.0 0.0 - 2.24924e-03 + 2.241054e-03 0 @@ -5378,7 +5396,7 @@ 1.317651e04 0.0 0.0 - 5.659787e-03 + 5.639188e-03 0 @@ -5390,13 +5408,13 @@ - + 2050.569599999999809 1656.058283297260914 2688.547363 0.0 0.0 - 1.154828e-03 + 1.150625e-03 0 @@ -5408,13 +5426,13 @@ - + 2073.875900000000002 1656.268107236271362 2162.165771 0.0 0.0 - 9.287283e-04 + 9.253482e-04 0 @@ -5432,7 +5450,7 @@ 1.122181e04 0.0 0.0 - 4.820174e-03 + 4.802631e-03 0 @@ -5450,7 +5468,7 @@ 9106.232422 0.0 0.0 - 3.911456e-03 + 3.89722e-03 0 @@ -5462,15 +5480,15 @@ - + 2438.281399999999849 1660.372086927445025 6149.944824 0.0 0.0 - 2.641623e-03 + 2.632009e-03 0 - + @@ -5480,15 +5498,15 @@ - + 2436.537800000000061 1660.50552961995686 7396.729981 0.0 0.0 - 3.177162e-03 + 3.165599e-03 0 - + @@ -5498,13 +5516,13 @@ - + 2293.684699999999793 1660.746054440915259 6195.061523 0.0 0.0 - 2.661003e-03 + 2.651318e-03 0 @@ -5522,7 +5540,7 @@ 1.007604e04 0.0 0.0 - 4.328022e-03 + 4.31227e-03 0 @@ -5540,7 +5558,7 @@ 2.119219e04 0.0 0.0 - 9.102809e-03 + 9.06968e-03 0 @@ -5552,13 +5570,13 @@ - + 2090.683799999999792 1663.909646590840112 1875.602173 0.0 0.0 - 8.056389e-04 + 8.027067e-04 0 @@ -5570,13 +5588,13 @@ - + 2455.435500000000047 1664.241880891806431 6214.334473 0.0 0.0 - 2.669281e-03 + 2.659566e-03 0 @@ -5588,13 +5606,13 @@ - + 2332.035199999999804 1664.420120255678967 3898.365967 0.0 0.0 - 1.674489e-03 + 1.668395e-03 0 @@ -5606,13 +5624,13 @@ - + 2070.204200000000128 1666.752901632215298 2400.04834 0.0 0.0 - 1.030907e-03 + 1.027155e-03 0 @@ -5624,13 +5642,13 @@ - + 2222.456000000000131 1667.09611975880739 2163.453857 0.0 0.0 - 9.292815e-04 + 9.258995e-04 0 @@ -5642,13 +5660,13 @@ - + 2366.192199999999957 1673.577201874392358 2750.124268 0.0 0.0 - 1.181278e-03 + 1.176978e-03 0 @@ -5666,7 +5684,7 @@ 1.061102e04 0.0 0.0 - 4.557817e-03 + 4.541229e-03 0 @@ -5684,7 +5702,7 @@ 1.1592e04 0.0 0.0 - 4.979184e-03 + 4.961063e-03 0 @@ -5696,13 +5714,13 @@ - + 2137.533399999999801 1686.458428937829922 2576.378906 0.0 0.0 - 1.106648e-03 + 1.10262e-03 0 @@ -5720,7 +5738,7 @@ 9378.62207 0.0 0.0 - 4.028457e-03 + 4.013795e-03 0 @@ -5732,15 +5750,15 @@ - + 2113.317300000000159 1689.807461949125582 2808.694092 0.0 0.0 - 1.206435e-03 + 1.202045e-03 0 - + @@ -5756,7 +5774,7 @@ 9469.191406 0.0 0.0 - 4.067359e-03 + 4.052557e-03 0 @@ -5774,7 +5792,7 @@ 1.125212e04 0.0 0.0 - 4.833191e-03 + 4.8156e-03 0 @@ -5786,13 +5804,13 @@ - + 2231.26260000000002 1700.389095037112838 5055.802246 0.0 0.0 - 2.17165e-03 + 2.163746e-03 0 @@ -5804,15 +5822,15 @@ - + 2222.456000000000131 1702.64047500530728 2541.370117 0.0 0.0 - 1.09161e-03 + 1.087637e-03 0 - + @@ -5822,13 +5840,13 @@ - + 2269.29989999999998 1705.015670597890676 4037.526123 0.0 0.0 - 1.734263e-03 + 1.727951e-03 0 @@ -5840,15 +5858,15 @@ - + 2251.994400000000042 1705.284121726179819 5314.135254 0.0 0.0 - 2.282613e-03 + 2.274306e-03 0 - + @@ -5858,13 +5876,13 @@ - + 2260.634700000000066 1705.438140933784553 5601.017578 0.0 0.0 - 2.405839e-03 + 2.397084e-03 0 @@ -5876,13 +5894,13 @@ - + 2279.761399999999867 1705.448709197251674 3942.632813 0.0 0.0 - 1.693503e-03 + 1.68734e-03 0 @@ -5894,13 +5912,13 @@ - + 2258.91359999999986 1705.570855190427665 5915.277832 0.0 0.0 - 2.540825e-03 + 2.531578e-03 0 @@ -5912,13 +5930,13 @@ - + 2245.080699999999979 1707.930859112959524 4422.660156 0.0 0.0 - 1.899692e-03 + 1.892778e-03 0 @@ -5930,13 +5948,13 @@ - + 2207.970299999999952 1708.029880411750128 2689.51123 0.0 0.0 - 1.155242e-03 + 1.151038e-03 0 @@ -5948,13 +5966,13 @@ - + 2349.877399999999852 1710.562675675082119 2247.015137 0.0 0.0 - 9.651741e-04 + 9.616614e-04 0 @@ -5972,7 +5990,7 @@ 1.451849e04 0.0 0.0 - 6.236215e-03 + 6.213519e-03 0 @@ -5984,13 +6002,13 @@ - + 2408.42450000000008 1724.993542854914949 6974.856934 0.0 0.0 - 2.995953e-03 + 2.985049e-03 0 @@ -6002,15 +6020,15 @@ - + 2408.42450000000008 1726.213587695624938 5878.927734 0.0 0.0 - 2.525212e-03 + 2.516021e-03 0 - + @@ -6020,13 +6038,13 @@ - + 2319.671299999999974 1729.120632824486165 3546.831787 0.0 0.0 - 1.523492e-03 + 1.517948e-03 0 @@ -6038,13 +6056,13 @@ - + 2420.703899999999976 1730.071457064374727 6491.769043 0.0 0.0 - 2.788449e-03 + 2.778301e-03 0 @@ -6056,13 +6074,13 @@ - + 2445.188799999999901 1731.276383042900306 6881.774902 0.0 0.0 - 2.955971e-03 + 2.945213e-03 0 @@ -6080,7 +6098,7 @@ 1.03495e04 0.0 0.0 - 5.746591e-03 + 5.725677e-03 1 @@ -6092,13 +6110,13 @@ - + 2364.38590000000022 1741.399460625984602 3826.713867 0.0 0.0 - 1.643712e-03 + 1.63773e-03 0 @@ -6110,13 +6128,13 @@ - + 2408.42450000000008 1745.760829132414756 4187.17334 0.0 0.0 - 1.798542e-03 + 1.791996e-03 0 @@ -6134,7 +6152,7 @@ 8845.698242 0.0 0.0 - 3.799547e-03 + 3.785718e-03 0 @@ -6146,13 +6164,13 @@ - + 2176.892899999999827 1747.476714103651148 3159.871582 0.0 0.0 - 1.357279e-03 + 1.352339e-03 0 @@ -6170,7 +6188,7 @@ 9441.136719 0.0 0.0 - 4.055309e-03 + 4.04055e-03 0 @@ -6182,15 +6200,15 @@ - + 2438.281399999999849 1752.475238664298104 6151.422852 0.0 0.0 - 2.642258e-03 + 2.632642e-03 0 - + @@ -6200,15 +6218,15 @@ - + 2436.537800000000061 1752.786618650597347 4889.314453 0.0 0.0 - 2.100137e-03 + 2.092494e-03 0 - + @@ -6218,13 +6236,13 @@ - + 2304.021200000000135 1752.942870439506805 5369.201172 0.0 0.0 - 2.306266e-03 + 2.297872e-03 0 @@ -6236,13 +6254,13 @@ - + 2498.393099999999777 1754.589240566867147 7500.060059 0.0 0.0 - 3.221547e-03 + 3.209822e-03 0 @@ -6260,7 +6278,7 @@ 1.551791e04 0.0 0.0 - 6.665504e-03 + 6.641245e-03 0 @@ -6272,13 +6290,13 @@ - + 2373.39240000000018 1758.327881058539333 2774.028076 0.0 0.0 - 1.191545e-03 + 1.187209e-03 0 @@ -6290,13 +6308,13 @@ - + 2191.491899999999987 1759.479599350060198 2132.590088 0.0 0.0 - 9.160244e-04 + 9.126906e-04 0 @@ -6308,13 +6326,13 @@ - + 2059.429500000000189 1760.535200854103096 3703.443848 0.0 0.0 - 1.590763e-03 + 1.584973e-03 0 @@ -6326,13 +6344,13 @@ - + 2184.213400000000092 1760.827818120870006 2105.912842 0.0 0.0 - 9.045656e-04 + 9.012734e-04 0 @@ -6344,13 +6362,13 @@ - + 2364.38590000000022 1763.479137881151928 4162.853516 0.0 0.0 - 1.788096e-03 + 1.781588e-03 0 @@ -6368,7 +6386,7 @@ 1.146033e04 0.0 0.0 - 4.922624e-03 + 4.904709e-03 0 @@ -6380,13 +6398,13 @@ - + 2452.024600000000191 1769.9955030384981 7085.214355 0.0 0.0 - 3.043355e-03 + 3.032279e-03 0 @@ -6398,13 +6416,13 @@ - + 2457.136899999999969 1770.795921012489998 4311.923828 0.0 0.0 - 1.852127e-03 + 1.845386e-03 0 @@ -6416,13 +6434,13 @@ - + 2475.940700000000106 1772.968118010326862 5567.5 0.0 0.0 - 2.391442e-03 + 2.382739e-03 0 @@ -6434,13 +6452,13 @@ - + 2355.29340000000002 1773.140973952856939 2173.953613 0.0 0.0 - 9.337915e-04 + 9.30393e-04 0 @@ -6452,13 +6470,13 @@ - + 2389.288000000000011 1781.361288596899385 6638.880859 0.0 0.0 - 2.851639e-03 + 2.84126e-03 0 @@ -6470,13 +6488,13 @@ - + 2013.308199999999943 1781.614467802368154 1938.381226 0.0 0.0 - 8.326047e-04 + 8.295745e-04 0 @@ -6488,15 +6506,15 @@ - + 2391.035699999999906 1782.393940800416658 2686.496582 0.0 0.0 - 1.153947e-03 + 1.149747e-03 0 - + @@ -6506,13 +6524,13 @@ - + 2425.991700000000037 1787.01928808604498 4134.257813 0.0 0.0 - 1.775813e-03 + 1.76935e-03 0 @@ -6524,13 +6542,13 @@ - + 2255.449300000000221 1788.492495312662641 6459.61084 0.0 0.0 - 2.774636e-03 + 2.764538e-03 0 @@ -6542,13 +6560,13 @@ - + 2239.899699999999939 1788.888347594420338 8342.342773 0.0 0.0 - 3.583337e-03 + 3.570296e-03 0 @@ -6560,13 +6578,13 @@ - + 2368.008200000000215 1789.284271600648481 2185.400879 0.0 0.0 - 9.387086e-04 + 9.352922e-04 0 @@ -6578,15 +6596,15 @@ - + 2231.26260000000002 1789.957317640359861 3798.570557 0.0 0.0 - 1.631623e-03 + 1.625685e-03 0 - + @@ -6596,13 +6614,13 @@ - + 2269.29989999999998 1795.001398551328293 3419.355957 0.0 0.0 - 1.468737e-03 + 1.463391e-03 0 @@ -6614,13 +6632,13 @@ - + 2290.243399999999838 1795.380811731576841 3418.321777 0.0 0.0 - 1.468293e-03 + 1.462949e-03 0 @@ -6632,13 +6650,13 @@ - + 2300.573800000000119 1812.923264513726736 7498.412598 0.0 0.0 - 3.220839e-03 + 3.209117e-03 0 @@ -6650,13 +6668,13 @@ - + 2048.792699999999968 1824.297429695063101 7462.410645 0.0 0.0 - 3.205375e-03 + 3.193709e-03 0 @@ -6668,13 +6686,13 @@ - + 2403.220400000000154 1826.459749047162632 5317.625488 0.0 0.0 - 2.284112e-03 + 2.275799e-03 0 @@ -6686,13 +6704,13 @@ - + 2404.953599999999824 1826.594482483783168 2996.494629 0.0 0.0 - 1.287103e-03 + 1.282418e-03 0 @@ -6704,13 +6722,13 @@ - + 2159.018000000000029 1849.915857067343268 5231.913086 0.0 0.0 - 2.247296e-03 + 2.239117e-03 0 @@ -6722,13 +6740,13 @@ - + 2160.792899999999918 1850.078883514961262 5493.819336 0.0 0.0 - 2.359794e-03 + 2.351205e-03 0 @@ -6740,13 +6758,13 @@ - + 2180.544100000000071 1850.314686872928178 1798.878052 0.0 0.0 - 7.726831e-04 + 7.69871e-04 0 @@ -6758,13 +6776,13 @@ - + 2159.018000000000029 1851.306211040947119 2462.196045 0.0 0.0 - 1.057602e-03 + 1.053753e-03 0 @@ -6776,13 +6794,13 @@ - + 2477.658600000000206 1851.457793337312296 5571.125488 0.0 0.0 - 2.393e-03 + 2.38429e-03 0 @@ -6794,13 +6812,13 @@ - + 2234.723199999999906 1855.408123772344879 7041.180664 0.0 0.0 - 3.024441e-03 + 3.013434e-03 0 @@ -6812,13 +6830,13 @@ - + 2494.933700000000044 1857.737495000081708 3976.156006 0.0 0.0 - 1.707903e-03 + 1.701687e-03 0 @@ -6830,15 +6848,15 @@ - + 2469.091399999999794 1858.745984190468562 8040.007813 0.0 0.0 - 3.453474e-03 + 3.440905e-03 0 - + @@ -6854,7 +6872,7 @@ 1.128547e04 0.0 0.0 - 4.847518e-03 + 4.829876e-03 0 @@ -6866,13 +6884,13 @@ - + 2411.914999999999964 1861.106362241100669 3724.39624 0.0 0.0 - 1.599763e-03 + 1.59394e-03 0 @@ -6884,13 +6902,13 @@ - + 2111.473399999999856 1861.731592947639456 1780.469849 0.0 0.0 - 7.647761e-04 + 7.619927e-04 0 @@ -6902,13 +6920,13 @@ - + 2450.31919999999991 1873.943570655607573 5114.477051 0.0 0.0 - 2.196853e-03 + 2.188857e-03 0 @@ -6920,13 +6938,13 @@ - + 2455.435500000000047 1874.887984972805043 3516.690918 0.0 0.0 - 1.510546e-03 + 1.505048e-03 0 @@ -6938,13 +6956,13 @@ - + 2217.072200000000066 1882.867865359508187 3051.675293 0.0 0.0 - 1.310805e-03 + 1.306034e-03 0 @@ -6956,13 +6974,13 @@ - + 2392.784000000000106 1886.071724297287119 3865.905518 0.0 0.0 - 1.660546e-03 + 1.654503e-03 0 @@ -6974,13 +6992,13 @@ - + 2264.094399999999951 1887.821392702418507 4830.452637 0.0 0.0 - 2.074854e-03 + 2.067303e-03 0 @@ -6992,13 +7010,13 @@ - + 2239.899699999999939 1888.17484040084355 5680.992188 0.0 0.0 - 2.440191e-03 + 2.43131e-03 0 @@ -7010,13 +7028,13 @@ - + 2232.995100000000093 1888.290491312103768 5263.36084 0.0 0.0 - 2.260803e-03 + 2.252575e-03 0 @@ -7028,13 +7046,13 @@ - + 2260.634700000000066 1896.26679422874281 3794.730957 0.0 0.0 - 1.629974e-03 + 1.624042e-03 0 @@ -7046,13 +7064,13 @@ - + 2066.577400000000125 1902.473044385195408 3491.11792 0.0 0.0 - 1.499561e-03 + 1.494104e-03 0 @@ -7064,13 +7082,13 @@ - + 2429.510699999999815 1905.776242873348338 3372.955322 0.0 0.0 - 1.448806e-03 + 1.443533e-03 0 @@ -7082,13 +7100,13 @@ - + 2055.886300000000119 1925.539005116900398 3995.851807 0.0 0.0 - 1.716363e-03 + 1.710116e-03 0 @@ -7100,15 +7118,15 @@ - + 2309.211800000000039 1926.099617064891163 3167.814209 0.0 0.0 - 1.360691e-03 + 1.355738e-03 0 - + @@ -7118,13 +7136,13 @@ - + 2298.8449999999998 1926.231525200926399 4580.848145 0.0 0.0 - 1.96764e-03 + 1.960479e-03 0 @@ -7136,13 +7154,13 @@ - + 2131.976400000000012 1942.451435159602852 3527.444824 0.0 0.0 - 1.515165e-03 + 1.50965e-03 0 @@ -7154,13 +7172,13 @@ - + 2146.596000000000004 1965.622587674970873 3422.646729 0.0 0.0 - 1.47015e-03 + 1.4648e-03 0 @@ -7172,13 +7190,13 @@ - + 2467.373399999999947 1974.956453968896994 5709.044922 0.0 0.0 - 2.452241e-03 + 2.443316e-03 0 @@ -7190,13 +7208,13 @@ - + 2368.008200000000215 1979.791958769012126 2048.631836 0.0 0.0 - 8.799614e-04 + 8.767588e-04 0 @@ -7208,13 +7226,13 @@ - + 2452.024600000000191 1990.974228715835352 4443.127441 0.0 0.0 - 1.908484e-03 + 1.901538e-03 0 @@ -7226,13 +7244,13 @@ - + 2243.350600000000213 1999.204506622155577 4051.918701 0.0 0.0 - 1.740445e-03 + 1.734111e-03 0 @@ -7244,13 +7262,13 @@ - + 2245.080699999999979 1999.696842134426106 2598.513428 0.0 0.0 - 1.116155e-03 + 1.112093e-03 0 @@ -7262,13 +7280,13 @@ - + 2258.91359999999986 2006.142636863591633 2452.111572 0.0 0.0 - 1.05327e-03 + 1.049437e-03 0 @@ -7280,13 +7298,13 @@ - + 2157.24350000000004 2021.417036982934178 2183.390625 0.0 0.0 - 9.378451e-04 + 9.344318e-04 0 @@ -7298,13 +7316,13 @@ - + 2433.037100000000009 2027.915779492303955 3624.992676 0.0 0.0 - 1.557065e-03 + 1.551398e-03 0 @@ -7316,13 +7334,13 @@ - + 2052.341800000000148 2038.507052451994014 2145.962402 0.0 0.0 - 9.217683e-04 + 9.184136e-04 0 @@ -7334,13 +7352,13 @@ - + 2055.886300000000119 2038.847836648365728 2846.309082 0.0 0.0 - 1.222593e-03 + 1.218143e-03 0 @@ -7352,13 +7370,13 @@ - + 2472.509500000000116 2106.609275430416801 3959.736328 0.0 0.0 - 1.70085e-03 + 1.69466e-03 0 @@ -7370,13 +7388,13 @@ - + 2267.559699999999793 2123.752496312702988 2986.810059 0.0 0.0 - 1.282943e-03 + 1.278274e-03 0 @@ -7388,13 +7406,13 @@ - + 2234.723199999999906 2124.178592733207097 3275.249023 0.0 0.0 - 1.406838e-03 + 1.401718e-03 0 @@ -7406,13 +7424,13 @@ - + 2425.991700000000037 2158.43797154434651 3686.187012 0.0 0.0 - 1.58335e-03 + 1.577588e-03 0 @@ -7424,13 +7442,13 @@ - + 2048.792699999999968 2165.960363158551445 2066.913818 0.0 0.0 - 8.878141e-04 + 8.845829e-04 0 @@ -7442,13 +7460,13 @@ - + 2048.792699999999968 2166.157700178903269 2044.827393 0.0 0.0 - 8.783272e-04 + 8.751306e-04 0 @@ -7460,13 +7478,13 @@ - + 2278.000700000000052 2228.498294594558047 2820.496094 0.0 0.0 - 1.211505e-03 + 1.207096e-03 0 @@ -7478,13 +7496,13 @@ - + 2440.008200000000215 2243.86149085149782 3486.425293 0.0 0.0 - 1.497545e-03 + 1.492095e-03 0 @@ -7496,13 +7514,13 @@ - + 2146.596000000000004 2246.276209592173473 1800.389893 0.0 0.0 - 7.733325e-04 + 7.70518e-04 0 @@ -7514,13 +7532,13 @@ - + 2458.847000000000207 2256.809613887613978 3208.048096 0.0 0.0 - 1.377972e-03 + 1.372957e-03 0 @@ -7532,13 +7550,13 @@ - + 2489.747600000000148 2314.980438239352679 4989.45752 0.0 0.0 - 2.143152e-03 + 2.135352e-03 0 @@ -7550,13 +7568,13 @@ - + 2477.658600000000206 2318.025199605150192 3470.603027 0.0 0.0 - 1.490749e-03 + 1.485324e-03 0 @@ -7568,13 +7586,13 @@ - + 2028.732899999999972 2319.747987874790852 2378.918945 0.0 0.0 - 1.021832e-03 + 1.018113e-03 0 @@ -7586,13 +7604,13 @@ - + 2109.600800000000163 2336.675777917258984 2145.842773 0.0 0.0 - 9.217169e-04 + 9.183624e-04 0 @@ -7604,13 +7622,13 @@ - + 2038.080400000000054 2339.755267092985832 2405.273682 0.0 0.0 - 1.033152e-03 + 1.029392e-03 0 @@ -7622,13 +7640,13 @@ - + 2196.987799999999879 2341.366849344557522 2999.620117 0.0 0.0 - 1.288445e-03 + 1.283756e-03 0 @@ -7640,13 +7658,13 @@ - + 2298.8449999999998 2365.684241179867968 5432.611328 0.0 0.0 - 2.333503e-03 + 2.32501e-03 0 @@ -7658,13 +7676,13 @@ - + 2436.537800000000061 2374.462259667185208 4260.0 0.0 0.0 - 1.829824e-03 + 1.823164e-03 0 @@ -7676,13 +7694,13 @@ - + 2420.703899999999976 2377.241147700768579 2760.998779 0.0 0.0 - 1.185949e-03 + 1.181633e-03 0 @@ -7694,13 +7712,13 @@ - + 2176.892899999999827 2387.553497868932482 2985.706787 0.0 0.0 - 1.282469e-03 + 1.277801e-03 0 @@ -7712,13 +7730,13 @@ - + 2491.470400000000154 2394.930374960132667 2643.39917 0.0 0.0 - 1.135435e-03 + 1.131303e-03 0 @@ -7730,13 +7748,13 @@ - + 2267.559699999999793 2395.095794669935003 4101.064941 0.0 0.0 - 1.761555e-03 + 1.755144e-03 0 @@ -7748,13 +7766,13 @@ - + 2337.361899999999878 2414.01388777655302 5433.109863 0.0 0.0 - 2.333717e-03 + 2.325223e-03 0 @@ -7766,13 +7784,13 @@ - + 2218.869599999999991 2421.80533376366111 4180.989746 0.0 0.0 - 1.795886e-03 + 1.78935e-03 0 @@ -7784,13 +7802,13 @@ - + 2323.173699999999826 2430.391894274914193 5454.859375 0.0 0.0 - 2.343059e-03 + 2.334532e-03 0 @@ -7802,13 +7820,13 @@ - + 2206.14449999999988 2472.306304048488528 2901.064697 0.0 0.0 - 1.246112e-03 + 1.241577e-03 0 @@ -7820,13 +7838,13 @@ - + 2052.341800000000148 2476.370434826502333 2132.211914 0.0 0.0 - 9.15862e-04 + 9.125288e-04 0 @@ -7838,13 +7856,13 @@ - + 2182.374899999999798 2484.812656781351961 1677.706909 0.0 0.0 - 7.206357e-04 + 7.18013e-04 0 @@ -7856,13 +7874,13 @@ - + 2304.021200000000135 2513.069308537294091 3572.873047 0.0 0.0 - 1.534678e-03 + 1.529093e-03 0 @@ -7874,13 +7892,13 @@ - + 2467.373399999999947 2517.87812251899004 4536.842285 0.0 0.0 - 1.948738e-03 + 1.941645e-03 0 @@ -7892,13 +7910,13 @@ - + 2005.559999999999945 2531.6359123809425 903.462891 0.0 0.0 - 3.880699e-04 + 3.866576e-04 0 @@ -7910,13 +7928,13 @@ - + 2295.404100000000199 2567.720594625829108 2391.19751 0.0 0.0 - 1.027106e-03 + 1.023368e-03 0 @@ -7928,13 +7946,13 @@ - + 2489.747600000000148 2623.064403275978748 3040.320801 0.0 0.0 - 1.305928e-03 + 1.301175e-03 0 @@ -7946,13 +7964,13 @@ - + 2460.544499999999971 2632.804929636627094 3773.222412 0.0 0.0 - 1.620735e-03 + 1.614837e-03 0 @@ -7964,13 +7982,13 @@ - + 2021.09089999999992 2651.758833214901188 1825.215698 0.0 0.0 - 7.83996e-04 + 7.811427e-04 0 @@ -7982,13 +8000,13 @@ - + 2489.747600000000148 2696.378224347779906 4103.30127 0.0 0.0 - 1.762516e-03 + 1.756102e-03 0 @@ -8000,13 +8018,13 @@ - + 2498.393099999999777 2696.91342006621062 4547.990723 0.0 0.0 - 1.953526e-03 + 1.946417e-03 0 @@ -8018,13 +8036,13 @@ - + 2351.68769999999995 2763.663289846052521 2143.226563 0.0 0.0 - 9.205932e-04 + 9.172427e-04 0 diff --git a/src/tests/topp/FileConverter_30_output.mzML b/src/tests/topp/FileConverter_30_output.mzML index e5164d821fb..eb303d5a3ad 100644 --- a/src/tests/topp/FileConverter_30_output.mzML +++ b/src/tests/topp/FileConverter_30_output.mzML @@ -12,6 +12,13 @@ + + + + + + + @@ -140,7 +147,7 @@ - + @@ -10223,244 +10230,244 @@ - 11388 - 14431 - 17081 - 19731 - 22381 - 25031 - 27681 - 30330 - 32980 - 35630 - 38280 - 40931 - 43582 - 46233 - 48884 - 51535 - 54186 - 56837 - 59488 - 62139 - 64790 - 67441 - 70092 - 72743 - 75393 - 78044 - 80695 - 83346 - 85997 - 88648 - 91299 - 93950 - 96601 - 99251 - 101902 - 104552 - 107203 - 109854 - 112505 - 115156 - 117807 - 120458 - 123109 - 125760 - 128410 - 131061 - 133712 - 136363 - 139014 - 141665 - 144316 - 146967 - 149618 - 152268 - 154919 - 157570 - 160221 - 162872 - 165523 - 168174 - 171190 - 173841 - 176492 - 179143 - 181794 - 184445 - 187095 - 189746 - 192397 - 195048 - 197699 - 200350 - 203001 - 205652 - 208303 - 210954 - 213605 - 216256 - 218907 - 221558 - 224209 - 226860 - 229511 - 232161 - 234812 - 237463 - 240114 - 242765 - 245416 - 248067 - 250718 - 253369 - 256019 - 258670 - 261320 - 263971 - 266622 - 269273 - 271924 - 274575 - 277226 - 279878 - 282530 - 285181 - 287833 - 290485 - 293137 - 295789 - 298441 - 301093 - 303745 - 306397 - 309048 - 311700 - 314352 - 317004 - 319656 - 322308 - 324960 - 327977 - 330629 - 333281 - 335933 - 338585 - 341237 - 343888 - 346540 - 349192 - 351844 - 354496 - 357148 - 359800 - 362452 - 365104 - 367756 - 370408 - 373060 - 375712 - 378364 - 381016 - 383668 - 386320 - 388971 - 391623 - 394275 - 396927 - 399579 - 402231 - 404883 - 407535 - 410187 - 412838 - 415490 - 418141 - 420793 - 423445 - 426097 - 428749 - 431401 - 434053 - 436705 - 439357 - 442008 - 444660 - 447312 - 449964 - 452616 - 455268 - 457920 - 460572 - 463224 - 465875 - 468527 - 471179 - 473831 - 476483 - 479135 - 481787 - 484804 - 487483 - 490162 - 492841 - 495520 - 498199 - 500877 - 503556 - 506235 - 508914 - 511593 - 514272 - 516951 - 519630 - 522309 - 524988 - 527667 - 530346 - 533025 - 535704 - 538383 - 541062 - 543741 - 546419 - 549098 - 551777 - 554456 - 557135 - 559814 - 562493 - 565172 - 567851 - 570529 - 573208 - 575886 - 578565 - 581244 - 583923 - 586602 - 589281 - 591960 - 594639 - 597318 - 599996 - 602675 - 605354 - 608033 - 610712 - 613391 - 616070 - 618749 - 621428 - 624106 - 626785 - 629464 - 632143 - 634822 - 637501 + 11874 + 14917 + 17567 + 20217 + 22867 + 25517 + 28167 + 30816 + 33466 + 36116 + 38766 + 41417 + 44068 + 46719 + 49370 + 52021 + 54672 + 57323 + 59974 + 62625 + 65276 + 67927 + 70578 + 73229 + 75879 + 78530 + 81181 + 83832 + 86483 + 89134 + 91785 + 94436 + 97087 + 99737 + 102388 + 105038 + 107689 + 110340 + 112991 + 115642 + 118293 + 120944 + 123595 + 126246 + 128896 + 131547 + 134198 + 136849 + 139500 + 142151 + 144802 + 147453 + 150104 + 152754 + 155405 + 158056 + 160707 + 163358 + 166009 + 168660 + 171676 + 174327 + 176978 + 179629 + 182280 + 184931 + 187581 + 190232 + 192883 + 195534 + 198185 + 200836 + 203487 + 206138 + 208789 + 211440 + 214091 + 216742 + 219393 + 222044 + 224695 + 227346 + 229997 + 232647 + 235298 + 237949 + 240600 + 243251 + 245902 + 248553 + 251204 + 253855 + 256505 + 259156 + 261806 + 264457 + 267108 + 269759 + 272410 + 275061 + 277712 + 280364 + 283016 + 285667 + 288319 + 290971 + 293623 + 296275 + 298927 + 301579 + 304231 + 306883 + 309534 + 312186 + 314838 + 317490 + 320142 + 322794 + 325446 + 328463 + 331115 + 333767 + 336419 + 339071 + 341723 + 344374 + 347026 + 349678 + 352330 + 354982 + 357634 + 360286 + 362938 + 365590 + 368242 + 370894 + 373546 + 376198 + 378850 + 381502 + 384154 + 386806 + 389457 + 392109 + 394761 + 397413 + 400065 + 402717 + 405369 + 408021 + 410673 + 413324 + 415976 + 418627 + 421279 + 423931 + 426583 + 429235 + 431887 + 434539 + 437191 + 439843 + 442494 + 445146 + 447798 + 450450 + 453102 + 455754 + 458406 + 461058 + 463710 + 466361 + 469013 + 471665 + 474317 + 476969 + 479621 + 482273 + 485290 + 487969 + 490648 + 493327 + 496006 + 498685 + 501363 + 504042 + 506721 + 509400 + 512079 + 514758 + 517437 + 520116 + 522795 + 525474 + 528153 + 530832 + 533511 + 536190 + 538869 + 541548 + 544227 + 546905 + 549584 + 552263 + 554942 + 557621 + 560300 + 562979 + 565658 + 568337 + 571015 + 573694 + 576372 + 579051 + 581730 + 584409 + 587088 + 589767 + 592446 + 595125 + 597804 + 600482 + 603161 + 605840 + 608519 + 611198 + 613877 + 616556 + 619235 + 621914 + 624592 + 627271 + 629950 + 632629 + 635308 + 637987 -640210 +640696 0 \ No newline at end of file diff --git a/src/tests/topp/GNPSExport_1_mostint.ini b/src/tests/topp/GNPSExport_1_mostint.ini index 6c6c886b7a8..68fe008960d 100644 --- a/src/tests/topp/GNPSExport_1_mostint.ini +++ b/src/tests/topp/GNPSExport_1_mostint.ini @@ -17,7 +17,6 @@ - diff --git a/src/tests/topp/GNPSExport_2_merged.ini b/src/tests/topp/GNPSExport_2_merged.ini index 16397a19b7a..79976d5817d 100644 --- a/src/tests/topp/GNPSExport_2_merged.ini +++ b/src/tests/topp/GNPSExport_2_merged.ini @@ -16,8 +16,7 @@ - - + diff --git a/src/tests/topp/GNPSExport_3_binsize.ini b/src/tests/topp/GNPSExport_3_binsize.ini index d3f28712cad..0fc640a961f 100644 --- a/src/tests/topp/GNPSExport_3_binsize.ini +++ b/src/tests/topp/GNPSExport_3_binsize.ini @@ -17,7 +17,6 @@ - diff --git a/src/tests/topp/IDFileConverter_34_input.idXML b/src/tests/topp/IDFileConverter_34_input.idXML new file mode 100644 index 00000000000..32c45616cf1 --- /dev/null +++ b/src/tests/topp/IDFileConverter_34_input.idXML @@ -0,0 +1,48 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/tests/topp/IDFileConverter_34_output.idXML b/src/tests/topp/IDFileConverter_34_output.idXML new file mode 100644 index 00000000000..8c8c0baeb2f --- /dev/null +++ b/src/tests/topp/IDFileConverter_34_output.idXML @@ -0,0 +1,50 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/tests/topp/IDMerger_6_input1.oms b/src/tests/topp/IDMerger_6_input1.oms new file mode 100644 index 00000000000..3e17c86da59 Binary files /dev/null and b/src/tests/topp/IDMerger_6_input1.oms differ diff --git a/src/tests/topp/IDMerger_6_input2.oms b/src/tests/topp/IDMerger_6_input2.oms new file mode 100644 index 00000000000..1fec19a2bef Binary files /dev/null and b/src/tests/topp/IDMerger_6_input2.oms differ diff --git a/src/tests/topp/IDMerger_6_output.idXML b/src/tests/topp/IDMerger_6_output.idXML new file mode 100644 index 00000000000..c6b23f78e92 --- /dev/null +++ b/src/tests/topp/IDMerger_6_output.idXML @@ -0,0 +1,514 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/tests/topp/IDRipper_2_input.idXML b/src/tests/topp/IDRipper_2_input.idXML index 3aa35e94b24..e7c7c38cee0 100644 --- a/src/tests/topp/IDRipper_2_input.idXML +++ b/src/tests/topp/IDRipper_2_input.idXML @@ -21,25 +21,25 @@ - + - + - + - - + + @@ -47,14 +47,14 @@ - + - + diff --git a/src/tests/topp/IDRipper_2_input_0_0.idXML b/src/tests/topp/IDRipper_2_input_0_0.idXML new file mode 100644 index 00000000000..4ce5b638a69 --- /dev/null +++ b/src/tests/topp/IDRipper_2_input_0_0.idXML @@ -0,0 +1,20 @@ + + + + + + + + + + + + + + + + + + + + diff --git a/src/tests/topp/IDRipper_2_input_1_0.idXML b/src/tests/topp/IDRipper_2_input_1_0.idXML new file mode 100644 index 00000000000..5050caf5a5f --- /dev/null +++ b/src/tests/topp/IDRipper_2_input_1_0.idXML @@ -0,0 +1,18 @@ + + + + + + + + + + + + + + + + + + diff --git a/src/tests/topp/IDRipper_2_input_2_1.idXML b/src/tests/topp/IDRipper_2_input_2_1.idXML new file mode 100644 index 00000000000..2cdc89688a6 --- /dev/null +++ b/src/tests/topp/IDRipper_2_input_2_1.idXML @@ -0,0 +1,24 @@ + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/tests/topp/IDRipper_2a_output_0.idXML b/src/tests/topp/IDRipper_2a_output_0.idXML new file mode 100644 index 00000000000..50437f43174 --- /dev/null +++ b/src/tests/topp/IDRipper_2a_output_0.idXML @@ -0,0 +1,34 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/tests/topp/IDRipper_2a_output_1.idXML b/src/tests/topp/IDRipper_2a_output_1.idXML new file mode 100644 index 00000000000..2cdc89688a6 --- /dev/null +++ b/src/tests/topp/IDRipper_2a_output_1.idXML @@ -0,0 +1,24 @@ + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/tests/topp/MapAlignerIdentification_8_input1.oms b/src/tests/topp/MapAlignerIdentification_8_input1.oms new file mode 100644 index 00000000000..fe12af4e553 Binary files /dev/null and b/src/tests/topp/MapAlignerIdentification_8_input1.oms differ diff --git a/src/tests/topp/MapAlignerIdentification_8_input2.oms b/src/tests/topp/MapAlignerIdentification_8_input2.oms new file mode 100644 index 00000000000..9df4e3f9ae8 Binary files /dev/null and b/src/tests/topp/MapAlignerIdentification_8_input2.oms differ diff --git a/src/tests/topp/MapAlignerIdentification_8_output1.trafoXML b/src/tests/topp/MapAlignerIdentification_8_output1.trafoXML new file mode 100644 index 00000000000..1186ce21823 --- /dev/null +++ b/src/tests/topp/MapAlignerIdentification_8_output1.trafoXML @@ -0,0 +1,25 @@ + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/tests/topp/MassTraceExtractor_1_output.featureXML b/src/tests/topp/MassTraceExtractor_1_output.featureXML index fe5be192704..9fe9b66b31f 100644 --- a/src/tests/topp/MassTraceExtractor_1_output.featureXML +++ b/src/tests/topp/MassTraceExtractor_1_output.featureXML @@ -6,7 +6,7 @@ - + 2463.956400000000031 1580.197859410612182 @@ -1725,7 +1725,7 @@ 2482.830800000000181 1498.837019052358301 - 65942.476563 + 6.594248e04 0.0 0.0 0.75 @@ -1746,7 +1746,7 @@ 2460.544499999999971 1858.862398516143685 - 89058.710938 + 8.905871e04 0.0 0.0 0.95 @@ -2059,7 +2059,7 @@ - + @@ -2467,7 +2467,7 @@ 2453.727699999999913 1385.387060397074492 - 89990.257813 + 8.999025e04 0.0 0.0 0.909091 @@ -2780,7 +2780,7 @@ 2481.10109999999986 1748.47963526859121 - 62681.074219 + 6.268107e04 0.0 0.0 0.8 @@ -2908,7 +2908,7 @@ 2401.490600000000086 1350.256046170471336 - 83140.546875 + 8.314055e04 0.0 0.0 0.916667 @@ -3015,7 +3015,7 @@ 2452.024600000000191 1385.298391826477655 - 58522.164063 + 5.852216e04 0.0 0.0 0.8 @@ -3325,11 +3325,11 @@ 2258.91359999999986 - 1477.642664768809027 + 1477.621969219701668 0.0 0.0 0.0 - 0.9375 + 0.8 0 @@ -3337,6 +3337,24 @@ + + + + + + + + + + + 2272.770899999999983 + 1477.652071836585719 + 6.867479e04 + 0.0 + 0.0 + 0.909091 + 0 + @@ -3357,18 +3375,13 @@ - - - - - - - - - + + + + - + 2404.953599999999824 1194.543149370763558 1.227689e05 @@ -3403,7 +3416,7 @@ - + 2494.933700000000044 1503.930302667402202 0.0 @@ -3420,7 +3433,7 @@ - + 2239.899699999999939 1788.892893887402806 2.376084e05 @@ -3475,7 +3488,7 @@ - + 2264.094399999999951 1415.983140515858395 0.0 @@ -3491,13 +3504,13 @@ - + - + 2477.658600000000206 1368.579810946581802 - 62324.09375 + 6.232409e04 0.0 0.0 0.875 @@ -3523,7 +3536,7 @@ - + 2150.143599999999879 1367.665555775264465 1.571131e05 @@ -3590,10 +3603,10 @@ - + 2469.091399999999794 1858.746951875560853 - 35153.671875 + 3.515367e04 0.0 0.0 0.666667 @@ -3604,16 +3617,15 @@ - + - + - - + 2436.537800000000061 1577.394172348956772 - 95680.96875 + 9.568097e04 0.0 0.0 0.857143 @@ -3637,7 +3649,7 @@ - + 2385.791000000000167 1457.734222446774766 1.042864e05 @@ -3674,7 +3686,7 @@ - + 2401.490600000000086 1150.337922005885048 1.016094e05 @@ -3707,7 +3719,7 @@ - + 2316.188599999999951 1616.460645828166435 0.0 @@ -3721,13 +3733,13 @@ - + - + 2401.490600000000086 1496.455216109495041 - 73379.859375 + 7.337986e04 0.0 0.0 0.875 @@ -3753,10 +3765,10 @@ - + 2264.094399999999951 1307.221642559634802 - 62581.957031 + 6.258196e04 0.0 0.0 0.909091 @@ -3788,7 +3800,7 @@ - + 2401.490600000000086 1294.034961347402714 1.014895e05 @@ -3825,7 +3837,7 @@ - + 2498.393099999999777 1754.589354014070295 0.0 @@ -3852,7 +3864,7 @@ - + 2300.573800000000119 1812.922953695029719 1.350035e05 @@ -3895,7 +3907,7 @@ - + 2048.792699999999968 1824.306487701514243 1.303881e05 @@ -3974,7 +3986,7 @@ - + 2295.404100000000199 1284.472303958225439 1.134307e05 @@ -4013,10 +4025,10 @@ - + 2436.537800000000061 1660.509561431195834 - 77098.414063 + 7.709841e04 0.0 0.0 0.75 @@ -4029,16 +4041,15 @@ - + - - + 2300.573800000000119 1577.721705200596489 - 96695.84375 + 9.669584e04 0.0 0.0 0.933333 @@ -4078,7 +4089,7 @@ - + 2457.136899999999969 1264.430708070599394 0.0 @@ -4095,10 +4106,10 @@ - + 2264.094399999999951 1307.312380869767139 - 29517.875 + 2.951788e04 0.0 0.0 0.75 @@ -4116,7 +4127,7 @@ - + 2452.024600000000191 1770.000893917799885 0.0 @@ -4135,7 +4146,7 @@ - + 2494.933700000000044 1373.365818971819181 0.0 @@ -4156,7 +4167,7 @@ - + 2234.723199999999906 1855.41477232542843 0.0 @@ -4173,7 +4184,7 @@ - + 2257.177700000000186 1624.249985792710277 1.543924e05 @@ -4210,7 +4221,7 @@ - + 2248.542199999999866 1359.515029788546372 0.0 @@ -4253,10 +4264,10 @@ - + 2408.42450000000008 1725.004198420220064 - 63190.246094 + 6.319025e04 0.0 0.0 0.923077 @@ -4292,7 +4303,7 @@ - + 2394.530499999999847 1420.166747276147362 0.0 @@ -4309,7 +4320,7 @@ - + 2258.91359999999986 1550.543807615319338 1.206321e05 @@ -4338,10 +4349,10 @@ - + 2496.664499999999862 1373.293820545423159 - 52774.890625 + 5.277489e04 0.0 0.0 0.75 @@ -4356,10 +4367,10 @@ - + - + 2460.544499999999971 1327.744179120149738 0.0 @@ -4384,10 +4395,10 @@ - + 2050.569599999999809 1238.226337186796854 - 68763.367188 + 6.876337e04 0.0 0.0 0.961538 @@ -4449,7 +4460,7 @@ - + 2232.995100000000093 1259.161807740312725 1.395116e05 @@ -4486,7 +4497,7 @@ - + 2389.288000000000011 1781.357076908130011 1.027187e05 @@ -4515,10 +4526,10 @@ - + 2453.727699999999913 1274.571004938492479 - 71029.4375 + 7.102944e04 0.0 0.0 0.875 @@ -4544,7 +4555,7 @@ - + 2055.886300000000119 1333.379875051591398 1.350352e05 @@ -4607,10 +4618,10 @@ - + 2438.281399999999849 1502.413716160823924 - 45703.75 + 4.570375e04 0.0 0.0 0.833333 @@ -4632,7 +4643,7 @@ - + 2255.449300000000221 1788.495209079753522 0.0 @@ -4681,7 +4692,7 @@ - + 2401.490600000000086 1571.466983093499266 0.0 @@ -4702,7 +4713,7 @@ - + 2486.284500000000207 1580.327171141993631 0.0 @@ -4719,7 +4730,7 @@ - + 2477.658600000000206 1374.303992701997913 0.0 @@ -4744,7 +4755,7 @@ - + 2260.634700000000066 1550.413373617427851 0.0 @@ -4775,10 +4786,10 @@ - + 2052.341800000000148 1284.031321385801903 - 82658.140625 + 8.265814e04 0.0 0.0 0.964286 @@ -4844,7 +4855,7 @@ - + 2293.684699999999793 1660.746684642003629 1.215795e05 @@ -4877,10 +4888,10 @@ - + 2438.281399999999849 1752.474127136558991 - 42122.882813 + 4.212288e04 0.0 0.0 0.666667 @@ -4891,16 +4902,15 @@ - + - - + 2438.281399999999849 1660.374517955722695 - 29336.316406 + 2.933632e04 0.0 0.0 0.666667 @@ -4911,13 +4921,12 @@ - + - - + 2150.143599999999879 1310.690378076152456 1.255625e05 @@ -4964,7 +4973,7 @@ - + 2418.93769999999995 1248.746770069613376 0.0 @@ -4983,10 +4992,10 @@ - + 2477.658600000000206 1311.649828499070509 - 64838.363281 + 6.483836e04 0.0 0.0 0.857143 @@ -5010,10 +5019,10 @@ - + 2455.435500000000047 1664.243311565589238 - 92357.617188 + 9.235762e04 0.0 0.0 0.833333 @@ -5035,10 +5044,10 @@ - + 2234.723199999999906 1214.206949715836799 - 82507.648438 + 8.250765e04 0.0 0.0 0.9 @@ -5068,10 +5077,10 @@ - + 2440.008200000000215 1490.081464544535038 - 33374.832031 + 3.337483e04 0.0 0.0 0.666667 @@ -5082,16 +5091,15 @@ - + - - + 2408.42450000000008 1726.198999538127964 - 31187.291016 + 3.118729e04 0.0 0.0 0.666667 @@ -5102,16 +5110,15 @@ - + - - + 2304.021200000000135 1233.138728332439314 - 82087.625 + 8.208762e04 0.0 0.0 0.888889 @@ -5139,7 +5146,7 @@ - + 2257.177700000000186 1483.138857066638593 1.900492e05 @@ -5182,7 +5189,7 @@ - + 2467.373399999999947 1974.953772618587436 0.0 @@ -5205,7 +5212,7 @@ - + 2238.182299999999941 1214.29192180916607 0.0 @@ -5224,7 +5231,7 @@ - + 2260.634700000000066 1483.243224391901549 0.0 @@ -5241,10 +5248,10 @@ - + 2239.899699999999939 1888.180979999532156 - 46523.921875 + 4.652392e04 0.0 0.0 0.875 @@ -5270,10 +5277,10 @@ - + 2462.251800000000003 1170.755889952774396 - 85234.945313 + 8.523495e04 0.0 0.0 0.9 @@ -5303,10 +5310,10 @@ - + 2406.690999999999804 1109.336786706115618 - 72760.0625 + 7.276006e04 0.0 0.0 0.888889 @@ -5334,7 +5341,7 @@ - + 2260.634700000000066 1705.438224356114006 0.0 @@ -5353,7 +5360,7 @@ - + 2253.720200000000205 1359.460122212964279 0.0 @@ -5372,7 +5379,7 @@ - + 2445.188799999999901 1646.903999771671806 0.0 @@ -5395,7 +5402,7 @@ - + 2477.658600000000206 1851.450151395030844 0.0 @@ -5412,7 +5419,7 @@ - + 2475.940700000000106 1772.964004979080983 0.0 @@ -5429,10 +5436,10 @@ - + 2453.727699999999913 1327.632828604823772 - 75254.945313 + 7.525495e04 0.0 0.0 0.875 @@ -5458,10 +5465,10 @@ - + 2274.508600000000115 1416.065635383784411 - 54679.761719 + 5.467976e04 0.0 0.0 0.75 @@ -5474,16 +5481,15 @@ - + - - + 2445.188799999999901 1564.599377895510997 - 51030.742188 + 5.103074e04 0.0 0.0 0.8 @@ -5503,7 +5509,7 @@ - + 2160.792899999999918 1850.082864816962683 1.457585e05 @@ -5544,7 +5550,7 @@ - + 2323.173699999999826 2430.404730158154962 0.0 @@ -5561,7 +5567,7 @@ - + 2337.361899999999878 2414.006739739888872 0.0 @@ -5578,7 +5584,7 @@ - + 2298.8449999999998 2365.67555796176157 0.0 @@ -5595,7 +5601,7 @@ - + 2300.573800000000119 1623.124350464663621 0.0 @@ -5614,7 +5620,7 @@ - + 2470.794800000000123 1215.895501188430444 0.0 @@ -5633,10 +5639,10 @@ - + 2153.70010000000002 1258.386410413451813 - 78088.484375 + 7.808848e04 0.0 0.0 0.941177 @@ -5680,10 +5686,10 @@ - + 2474.221399999999903 1259.1831878547423 - 47006.035156 + 4.700604e04 0.0 0.0 0.8 @@ -5703,7 +5709,7 @@ - + 2062.998500000000149 1284.064106635773214 0.0 @@ -5723,10 +5729,10 @@ - + 2403.220400000000154 1826.456628955782207 - 66887.921875 + 6.688792e04 0.0 0.0 0.857143 @@ -5750,10 +5756,10 @@ - + 2251.994400000000042 1705.281316497947046 - 26242.945313 + 2.624295e04 0.0 0.0 0.666667 @@ -5764,13 +5770,12 @@ - + - - + 2440.008200000000215 1484.110225460171705 0.0 @@ -5787,10 +5792,10 @@ - + 2232.995100000000093 1888.293724225544111 - 39191.324219 + 3.919133e04 0.0 0.0 0.833333 @@ -5812,7 +5817,7 @@ - + 2482.830800000000181 1592.897193759113634 0.0 @@ -5829,10 +5834,10 @@ - + 2408.42450000000008 1653.94350238241941 - 76146.296875 + 7.61463e04 0.0 0.0 0.875 @@ -5858,10 +5863,10 @@ - + 2295.404100000000199 1502.602916171766538 - 83299.710938 + 8.329971e04 0.0 0.0 0.9 @@ -5891,7 +5896,7 @@ - + 2417.183500000000095 1532.97260916874211 0.0 @@ -5908,10 +5913,10 @@ - + 2253.720200000000205 1258.881784690813674 - 98323.570313 + 9.832357e04 0.0 0.0 0.9375 @@ -5953,10 +5958,10 @@ - + 2450.31919999999991 1873.938387099267175 - 82288.390625 + 8.228839e04 0.0 0.0 0.857143 @@ -5980,7 +5985,7 @@ - + 2231.26260000000002 1700.388569568593084 0.0 @@ -5996,10 +6001,10 @@ - + - + 2251.994400000000042 1214.053793493582589 0.0 @@ -6018,7 +6023,7 @@ - + 2450.31919999999991 1225.608269266977004 0.0 @@ -6045,7 +6050,7 @@ - + 2403.220400000000154 1194.62891485428213 0.0 @@ -6061,10 +6066,10 @@ - + - + 2457.136899999999969 1170.876404672434774 0.0 @@ -6083,7 +6088,7 @@ - + 2489.747600000000148 2314.974231343878728 0.0 @@ -6100,10 +6105,10 @@ - + 2150.143599999999879 1258.309207258501147 - 68936.671875 + 6.893667e04 0.0 0.0 0.875 @@ -6129,10 +6134,10 @@ - + 2436.537800000000061 1752.779504432386602 - 34895.46875 + 3.489547e04 0.0 0.0 0.666667 @@ -6143,16 +6148,15 @@ - + - - + 2238.182299999999941 1607.719861908759185 - 77541.867188 + 7.754187e04 0.0 0.0 0.857143 @@ -6176,7 +6180,7 @@ - + 2470.794800000000123 1581.365173555694355 0.0 @@ -6190,13 +6194,13 @@ - + - + 2264.094399999999951 1887.82393960485706 - 90712.890625 + 9.071289e04 0.0 0.0 0.9375 @@ -6238,10 +6242,10 @@ - + 2389.288000000000011 1533.166128592738232 - 47202.527344 + 4.720253e04 0.0 0.0 0.833333 @@ -6263,7 +6267,7 @@ - + 2411.914999999999964 1150.428071369290819 0.0 @@ -6283,7 +6287,7 @@ - + 2410.166400000000067 1510.340304992629171 0.0 @@ -6300,7 +6304,7 @@ - + 2441.740600000000086 1406.572697662624705 0.0 @@ -6317,7 +6321,7 @@ - + 2384.029300000000148 1569.412468089101594 0.0 @@ -6331,10 +6335,10 @@ - + - + 2420.703899999999976 1730.064598409902828 0.0 @@ -6353,7 +6357,7 @@ - + 2298.8449999999998 1529.325256919291405 0.0 @@ -6367,13 +6371,13 @@ - + - + 2234.723199999999906 1626.845465787215744 - 32001.582031 + 3.200158e04 0.0 0.0 0.75 @@ -6391,10 +6395,10 @@ - + 2298.8449999999998 1926.22245531895669 - 86364.914063 + 8.636492e04 0.0 0.0 0.923077 @@ -6430,7 +6434,7 @@ - + 2498.393099999999777 2696.910508141144874 0.0 @@ -6447,7 +6451,7 @@ - + 2467.373399999999947 2517.885524009300752 0.0 @@ -6464,10 +6468,10 @@ - + 2304.021200000000135 1752.946450501326581 - 56395.414063 + 5.639542e04 0.0 0.0 0.875 @@ -6493,7 +6497,7 @@ - + 2384.029300000000148 1394.34657648862003 0.0 @@ -6522,7 +6526,7 @@ - + 2143.000300000000152 1485.01288748395973 0.0 @@ -6539,7 +6543,7 @@ - + 2375.188700000000154 1505.010889941685036 0.0 @@ -6556,7 +6560,7 @@ - + 2258.91359999999986 1705.573178129435746 0.0 @@ -6577,7 +6581,7 @@ - + 2304.021200000000135 1653.869265434631188 0.0 @@ -6596,7 +6600,7 @@ - + 2290.243399999999838 1630.370884173736613 0.0 @@ -6613,10 +6617,10 @@ - + 2153.70010000000002 1209.969498783981635 - 64242.367188 + 6.424237e04 0.0 0.0 0.933333 @@ -6656,7 +6660,7 @@ - + 2452.024600000000191 1990.984164015995702 0.0 @@ -6673,7 +6677,7 @@ - + 2245.080699999999979 1707.930072773763641 0.0 @@ -6690,7 +6694,7 @@ - + 2403.220400000000154 1543.676602836300845 0.0 @@ -6707,7 +6711,7 @@ - + 2403.220400000000154 1571.155105886805131 0.0 @@ -6726,7 +6730,7 @@ - + 2457.136899999999969 1770.795829372830895 0.0 @@ -6749,10 +6753,10 @@ - + 2295.404100000000199 1185.713677273791745 - 50604.933594 + 5.060493e04 0.0 0.0 0.875 @@ -6778,10 +6782,10 @@ - + 2317.935599999999795 1188.829541061234522 - 49378.726563 + 4.937873e04 0.0 0.0 0.833333 @@ -6803,10 +6807,10 @@ - + 2231.26260000000002 1478.868009040648985 - 42861.113281 + 4.286111e04 0.0 0.0 0.666667 @@ -6817,16 +6821,15 @@ - + - - + 2293.684699999999793 1546.897968527719968 - 26177.699219 + 2.61777e04 0.0 0.0 0.666667 @@ -6837,13 +6840,12 @@ - + - - + 2436.537800000000061 2374.455513888613496 0.0 @@ -6860,7 +6862,7 @@ - + 2460.544499999999971 1260.429612268375195 0.0 @@ -6877,10 +6879,10 @@ - + 2387.537400000000162 1233.594676269925913 - 26719.818359 + 2.671982e04 0.0 0.0 0.75 @@ -6898,10 +6900,10 @@ - + 2389.288000000000011 1394.390258284156062 - 57804.597656 + 5.78046e04 0.0 0.0 0.8 @@ -6918,10 +6920,10 @@ - + - + 2472.509500000000116 1387.046741357674364 0.0 @@ -6938,10 +6940,10 @@ - + 2408.42450000000008 1745.764346789435194 - 54185.523438 + 5.418552e04 0.0 0.0 0.857143 @@ -6965,7 +6967,7 @@ - + 2218.869599999999991 2421.780736948472622 0.0 @@ -6982,7 +6984,7 @@ - + 2257.177700000000186 1312.16869174050953 0.0 @@ -7001,7 +7003,7 @@ - + 2364.38590000000022 1763.467819358898623 0.0 @@ -7020,7 +7022,7 @@ - + 2425.991700000000037 1787.016982820515977 0.0 @@ -7037,7 +7039,7 @@ - + 2489.747600000000148 2696.381141200040929 0.0 @@ -7054,7 +7056,7 @@ - + 2267.559699999999793 2395.112125813016974 0.0 @@ -7071,7 +7073,7 @@ - + 2159.018000000000029 1849.911152883856175 1.08852e05 @@ -7106,7 +7108,7 @@ - + 2445.188799999999901 1731.252155436006433 0.0 @@ -7125,10 +7127,10 @@ - + 2298.8449999999998 1434.417966257205308 - 43882.484375 + 4.388248e04 0.0 0.0 0.75 @@ -7141,13 +7143,12 @@ - + - - + 2109.600800000000163 1494.930060302881657 0.0 @@ -7170,10 +7171,10 @@ - + 2269.29989999999998 1705.014585993074434 - 45312.257813 + 4.531226e04 0.0 0.0 0.75 @@ -7191,10 +7192,10 @@ - + 2298.8449999999998 1185.813721144892952 - 29078.748047 + 2.907875e04 0.0 0.0 0.75 @@ -7212,10 +7213,10 @@ - + 2047.017800000000079 1195.568683268919131 - 76890.046875 + 7.689005e04 0.0 0.0 0.933333 @@ -7255,10 +7256,10 @@ - + 2055.886300000000119 1925.53573538872638 - 79940.257813 + 7.994026e04 0.0 0.0 0.952381 @@ -7310,7 +7311,7 @@ - + 2436.537800000000061 1434.171453830163955 0.0 @@ -7329,10 +7330,10 @@ - + 2494.933700000000044 1857.740805200160594 - 30162.777344 + 3.016278e04 0.0 0.0 0.75 @@ -7350,7 +7351,7 @@ - + 2472.509500000000116 2106.609040881149667 0.0 @@ -7373,7 +7374,7 @@ - + 2279.761399999999867 1705.449968442681893 0.0 @@ -7390,10 +7391,10 @@ - + 2410.166400000000067 1653.87955944276905 - 21718.521484 + 2.171852e04 0.0 0.0 0.666667 @@ -7404,13 +7405,12 @@ - + - - + 2317.935599999999795 1036.568819849625015 0.0 @@ -7431,10 +7431,10 @@ - + 2387.537400000000162 1282.904379321650595 - 39007.464844 + 3.900747e04 0.0 0.0 0.833333 @@ -7456,7 +7456,7 @@ - + 2408.42450000000008 1109.215109797630703 0.0 @@ -7477,7 +7477,7 @@ - + 2310.957300000000032 1434.15391798688438 0.0 @@ -7496,10 +7496,10 @@ - + 2392.784000000000106 1886.069672220106895 - 58627.222656 + 5.862722e04 0.0 0.0 0.875 @@ -7525,10 +7525,10 @@ - + 2496.664499999999862 1263.523844257507335 - 26503.0 + 2.6503e04 0.0 0.0 0.666667 @@ -7539,13 +7539,12 @@ - + - - + 2332.035199999999804 1664.41982662663122 0.0 @@ -7562,7 +7561,7 @@ - + 2364.38590000000022 1741.383466916858424 0.0 @@ -7579,7 +7578,7 @@ - + 2496.664499999999862 1494.511552404640042 0.0 @@ -7596,10 +7595,10 @@ - + 2316.188599999999951 1063.910959706645144 - 38387.136719 + 3.838714e04 0.0 0.0 0.857143 @@ -7623,7 +7622,7 @@ - + 2075.709100000000035 1507.332975369508176 0.0 @@ -7646,10 +7645,10 @@ - + 2231.26260000000002 1789.955679854335131 - 25266.029297 + 2.526603e04 0.0 0.0 0.666667 @@ -7660,12 +7659,12 @@ - + - + 2260.634700000000066 1896.260243048696111 0.0 @@ -7682,10 +7681,10 @@ - + 2234.723199999999906 1172.385032853179155 - 93114.335938 + 9.311434e04 0.0 0.0 0.916667 @@ -7719,7 +7718,7 @@ - + 2153.70010000000002 1541.694662553193211 0.0 @@ -7736,7 +7735,7 @@ - + 2460.544499999999971 2632.809943482679046 0.0 @@ -7763,7 +7762,7 @@ - + 2392.784000000000106 1568.612544709515305 0.0 @@ -7780,7 +7779,7 @@ - + 2411.914999999999964 1861.108409265364116 0.0 @@ -7797,10 +7796,10 @@ - + 2479.38610000000017 1210.803444261422101 - 17613.074219 + 1.761308e04 0.0 0.0 0.75 @@ -7818,7 +7817,7 @@ - + 2425.991700000000037 2158.43189149058253 0.0 @@ -7835,7 +7834,7 @@ - + 2130.114000000000033 1579.953491090372154 0.0 @@ -7852,10 +7851,10 @@ - + 2316.188599999999951 1092.618746079637958 - 28965.277344 + 2.896528e04 0.0 0.0 0.833333 @@ -7877,10 +7876,10 @@ - + 2288.505599999999959 1116.428192672393152 - 32368.123047 + 3.236812e04 0.0 0.0 0.833333 @@ -7902,7 +7901,7 @@ - + 2424.226500000000215 1454.128127680843591 0.0 @@ -7923,7 +7922,7 @@ - + 2433.037100000000009 2027.930235518036625 0.0 @@ -7940,7 +7939,7 @@ - + 2253.720200000000205 1545.981547779113498 0.0 @@ -7954,10 +7953,10 @@ - + - + 2436.537800000000061 1544.845812218319679 0.0 @@ -7974,7 +7973,7 @@ - + 2368.008200000000215 1612.963987090975479 0.0 @@ -7991,10 +7990,10 @@ - + 2293.684699999999793 1032.779543848730327 - 35049.238281 + 3.504924e04 0.0 0.0 0.833333 @@ -8016,7 +8015,7 @@ - + 2498.393099999999777 1436.765246084252794 0.0 @@ -8033,7 +8032,7 @@ - + 2304.021200000000135 2513.064041020490549 0.0 @@ -8050,10 +8049,10 @@ - + 2319.671299999999974 1154.971945295734713 - 32679.609375 + 3.267961e04 0.0 0.0 0.8 @@ -8073,7 +8072,7 @@ - + 2319.671299999999974 1729.119733941482536 0.0 @@ -8087,10 +8086,10 @@ - + - + 2131.976400000000012 1942.465465553880676 0.0 @@ -8107,7 +8106,7 @@ - + 2455.435500000000047 1874.894064950339271 0.0 @@ -8126,7 +8125,7 @@ - + 2066.577400000000125 1902.456534976035982 0.0 @@ -8143,7 +8142,7 @@ - + 2440.008200000000215 2243.857209548877108 0.0 @@ -8160,7 +8159,7 @@ - + 2316.188599999999951 1618.045684024738421 0.0 @@ -8177,7 +8176,7 @@ - + 2477.658600000000206 2318.014651592224254 0.0 @@ -8194,7 +8193,7 @@ - + 2401.490600000000086 1653.678708094527792 0.0 @@ -8211,7 +8210,7 @@ - + 2124.465799999999945 1522.406847407997475 0.0 @@ -8228,10 +8227,10 @@ - + 2146.596000000000004 1965.618215529441841 - 66547.84375 + 6.654784e04 0.0 0.0 0.916667 @@ -8265,7 +8264,7 @@ - + 2269.29989999999998 1794.999537592121897 0.0 @@ -8284,7 +8283,7 @@ - + 2290.243399999999838 1795.378460538437139 0.0 @@ -8303,7 +8302,7 @@ - + 2429.510699999999815 1905.781693309870661 0.0 @@ -8320,7 +8319,7 @@ - + 2346.297999999999774 1412.192162040373887 0.0 @@ -8337,7 +8336,7 @@ - + 2475.940700000000106 1311.686868899564615 0.0 @@ -8354,10 +8353,10 @@ - + 2054.11239999999998 1734.074633225930711 - 85422.992188 + 8.542299e04 0.0 0.0 0.916667 @@ -8391,10 +8390,10 @@ - + 2293.684699999999793 1147.377254982826116 - 42646.832031 + 4.264683e04 0.0 0.0 0.857143 @@ -8418,10 +8417,10 @@ - + 2243.350600000000213 1172.268029964475318 - 37090.027344 + 3.709003e04 0.0 0.0 0.8 @@ -8441,10 +8440,10 @@ - + 2385.791000000000167 1336.285490639492082 - 48914.550781 + 4.891455e04 0.0 0.0 0.833333 @@ -8466,10 +8465,10 @@ - + 2288.505599999999959 1087.005137665215898 - 25058.990234 + 2.505899e04 0.0 0.0 0.8 @@ -8489,10 +8488,10 @@ - + 2408.42450000000008 1071.107697734962812 - 27108.507813 + 2.710851e04 0.0 0.0 0.833333 @@ -8514,7 +8513,7 @@ - + 2408.42450000000008 1071.178508174235049 0.0 @@ -8533,7 +8532,7 @@ - + 2234.723199999999906 2124.179140349334375 0.0 @@ -8552,7 +8551,7 @@ - + 2274.508600000000115 1432.722115421303897 0.0 @@ -8566,10 +8565,10 @@ - + - + 2218.869599999999991 1545.537929618879389 0.0 @@ -8583,10 +8582,10 @@ - + - + 2271.0304000000001 1308.725413583838645 0.0 @@ -8600,10 +8599,10 @@ - + - + 2066.577400000000125 1609.969517198138874 0.0 @@ -8620,7 +8619,7 @@ - + 2458.847000000000207 2256.809150794891593 0.0 @@ -8634,13 +8633,13 @@ - + - + 2458.847000000000207 1225.692422125370968 - 31919.078125 + 3.191908e04 0.0 0.0 0.666667 @@ -8651,16 +8650,15 @@ - + - - + 2309.211800000000039 1926.1005238998614 - 19860.921875 + 1.986092e04 0.0 0.0 0.666667 @@ -8671,13 +8669,12 @@ - + - - + 2176.892899999999827 1747.476207979715809 0.0 @@ -8697,7 +8694,7 @@ - + 2153.70010000000002 1310.797669217842213 0.0 @@ -8722,7 +8719,7 @@ - + 2424.226500000000215 1194.763280435235629 0.0 @@ -8739,7 +8736,7 @@ - + 2193.318900000000212 1576.558433283908244 0.0 @@ -8756,7 +8753,7 @@ - + 2217.072200000000066 1882.877261024707877 0.0 @@ -8773,7 +8770,7 @@ - + 2489.747600000000148 2623.069736047591505 0.0 @@ -8792,10 +8789,10 @@ - + 2115.178199999999833 1554.73098504394261 - 17993.175781 + 1.799318e04 0.0 0.0 0.666667 @@ -8806,16 +8803,15 @@ - + - - + 2443.465299999999843 1145.734815447223809 - 15286.112305 + 1.528611e04 0.0 0.0 0.666667 @@ -8826,13 +8822,12 @@ - + - - + 2470.794800000000123 1187.249517865873713 0.0 @@ -8849,7 +8844,7 @@ - + 2196.987799999999879 2341.359266245458912 0.0 @@ -8869,7 +8864,7 @@ - + 2404.953599999999824 1826.594623879892879 0.0 @@ -8886,7 +8881,7 @@ - + 2176.892899999999827 2387.574513672157082 0.0 @@ -8903,7 +8898,7 @@ - + 2323.173699999999826 1122.857481451570266 0.0 @@ -8922,7 +8917,7 @@ - + 2211.623500000000149 1507.234399501374583 0.0 @@ -8939,10 +8934,10 @@ - + 2115.178199999999833 1439.597243330192669 - 30226.009766 + 3.022601e04 0.0 0.0 0.8 @@ -8962,7 +8957,7 @@ - + 2039.875 1565.593710434741524 0.0 @@ -8979,10 +8974,10 @@ - + 2391.035699999999906 1604.226603754754251 - 40110.386719 + 4.011039e04 0.0 0.0 0.75 @@ -9000,7 +8995,7 @@ - + 2220.666900000000169 1576.656597218770912 0.0 @@ -9014,10 +9009,10 @@ - + - + 2206.14449999999988 2472.310034296892354 0.0 @@ -9036,7 +9031,7 @@ - + 2403.220400000000154 1366.419909103018881 0.0 @@ -9053,10 +9048,10 @@ - + 2055.886300000000119 2038.84861657800343 - 62021.21875 + 6.202122e04 0.0 0.0 0.916667 @@ -9090,7 +9085,7 @@ - + 2278.000700000000052 2228.494438800908029 0.0 @@ -9107,10 +9102,10 @@ - + 2113.317300000000159 1689.802195106107092 - 30224.560547 + 3.022456e04 0.0 0.0 0.75 @@ -9123,13 +9118,12 @@ - + - - + 2135.693000000000211 1558.43102543008672 0.0 @@ -9146,10 +9140,10 @@ - + 2496.664499999999862 1316.126666684950123 - 32528.085938 + 3.252809e04 0.0 0.0 0.75 @@ -9167,7 +9161,7 @@ - + 2373.39240000000018 1758.328150063438898 0.0 @@ -9181,10 +9175,10 @@ - + - + 2420.703899999999976 2377.247410547876825 0.0 @@ -9201,7 +9195,7 @@ - + 2366.192199999999957 1673.575964979986566 0.0 @@ -9221,10 +9215,10 @@ - + 2150.143599999999879 1165.219660654223617 - 64759.097656 + 6.47591e04 0.0 0.0 0.888889 @@ -9252,7 +9246,7 @@ - + 2107.714800000000196 1641.61203121075414 0.0 @@ -9269,7 +9263,7 @@ - + 2355.29340000000002 1652.488998719614074 0.0 @@ -9286,10 +9280,10 @@ - + 2061.20510000000013 1195.512523472867997 - 31097.322266 + 3.109732e04 0.0 0.0 0.75 @@ -9307,7 +9301,7 @@ - + 2052.341800000000148 1576.709687623625769 0.0 @@ -9328,7 +9322,7 @@ - + 2207.970299999999952 1708.037605890950999 0.0 @@ -9345,7 +9339,7 @@ - + 2050.569599999999809 1656.058355223321996 0.0 @@ -9365,7 +9359,7 @@ - + 2491.470400000000154 2394.933329775858965 0.0 @@ -9382,7 +9376,7 @@ - + 2378.744999999999891 1543.058420289444257 0.0 @@ -9399,10 +9393,10 @@ - + 2113.317300000000159 1619.308644991756864 - 19647.728516 + 1.964773e04 0.0 0.0 0.75 @@ -9420,7 +9414,7 @@ - + 2135.693000000000211 1210.081076060645046 0.0 @@ -9441,10 +9435,10 @@ - + 2115.178199999999833 1619.40361695242791 - 16031.504883 + 1.603151e04 0.0 0.0 0.666667 @@ -9455,13 +9449,12 @@ - + - - + 2291.961299999999937 1059.341096186457889 0.0 @@ -9475,10 +9468,10 @@ - + - + 2245.080699999999979 1999.697063195239025 0.0 @@ -9492,10 +9485,10 @@ - + - + 2137.533399999999801 1686.456499970404138 0.0 @@ -9509,10 +9502,10 @@ - + - + 2229.519600000000082 1145.377093018779533 0.0 @@ -9529,10 +9522,10 @@ - + 2111.473399999999856 1388.205231722672806 - 28041.664063 + 2.804166e04 0.0 0.0 0.857143 @@ -9556,10 +9549,10 @@ - + 2269.29989999999998 1172.105559692837915 - 16536.365234 + 1.653637e04 0.0 0.0 0.666667 @@ -9570,13 +9563,12 @@ - + - - + 2243.350600000000213 1999.208070843411633 1.071514e05 @@ -9621,10 +9613,10 @@ - + 2222.456000000000131 1702.64003700561625 - 21941.175781 + 2.194118e04 0.0 0.0 0.666667 @@ -9635,13 +9627,12 @@ - + - - + 2401.490600000000086 1035.439432484255121 0.0 @@ -9666,7 +9657,7 @@ - + 2159.018000000000029 1851.308213001305603 0.0 @@ -9685,7 +9676,7 @@ - + 2258.91359999999986 2006.142549879525632 0.0 @@ -9702,10 +9693,10 @@ - + 2425.991700000000037 1153.574853797090327 - 15190.849609 + 1.519085e04 0.0 0.0 0.666667 @@ -9716,13 +9707,12 @@ - + - - + 2077.572200000000066 1238.07926345488454 0.0 @@ -9742,7 +9732,7 @@ - + 2267.559699999999793 2123.75102565189718 0.0 @@ -9765,7 +9755,7 @@ - + 2038.080400000000054 2339.758483827517466 0.0 @@ -9784,7 +9774,7 @@ - + 2224.237799999999879 1302.633056629694465 0.0 @@ -9803,7 +9793,7 @@ - + 2070.204200000000128 1666.754348889208586 0.0 @@ -9820,7 +9810,7 @@ - + 2295.404100000000199 2567.718472341390225 0.0 @@ -9837,7 +9827,7 @@ - + 2019.160100000000057 1525.259351390177244 0.0 @@ -9854,7 +9844,7 @@ - + 2028.732899999999972 2319.746735627988528 0.0 @@ -9868,10 +9858,10 @@ - + - + 2344.505599999999959 1639.687778191748521 0.0 @@ -9890,7 +9880,7 @@ - + 2111.473399999999856 1554.636841548292068 0.0 @@ -9910,10 +9900,10 @@ - + 2232.995100000000093 1133.368114257607203 - 23036.236328 + 2.303624e04 0.0 0.0 0.75 @@ -9926,16 +9916,15 @@ - + - - + 2113.317300000000159 1340.408733704457518 - 25237.837891 + 2.523784e04 0.0 0.0 0.833333 @@ -9957,10 +9946,10 @@ - + 2391.035699999999906 1782.396219566908258 - 22125.751953 + 2.212575e04 0.0 0.0 0.666667 @@ -9971,13 +9960,12 @@ - + - - + 2344.505599999999959 1091.177236905401742 0.0 @@ -9991,10 +9979,10 @@ - + - + 2319.671299999999974 1010.674573073613487 0.0 @@ -10013,7 +10001,7 @@ - + 2317.935599999999795 960.934507902038604 0.0 @@ -10027,10 +10015,10 @@ - + - + 2385.791000000000167 1463.60656246576059 0.0 @@ -10047,7 +10035,7 @@ - + 2312.697400000000016 1190.88960105607157 0.0 @@ -10064,7 +10052,7 @@ - + 2204.306999999999789 1305.492029367388568 0.0 @@ -10081,7 +10069,7 @@ - + 2349.877399999999852 1710.563494007342342 0.0 @@ -10098,7 +10086,7 @@ - + 2285.020500000000084 1356.215081809946923 0.0 @@ -10112,10 +10100,10 @@ - + - + 2373.39240000000018 1192.348969324752943 0.0 @@ -10132,10 +10120,10 @@ - + 2312.697400000000016 898.442197547117644 - 17433.810547 + 1.743381e04 0.0 0.0 0.75 @@ -10148,13 +10136,12 @@ - + - - + 2438.281399999999849 1001.880180994943203 0.0 @@ -10171,7 +10158,7 @@ - + 2368.008200000000215 1789.27827348577307 0.0 @@ -10188,7 +10175,7 @@ - + 2157.24350000000004 2021.413931083681746 0.0 @@ -10205,7 +10192,7 @@ - + 2355.29340000000002 1773.133005714387309 0.0 @@ -10222,7 +10209,7 @@ - + 2222.456000000000131 1667.095989377709429 0.0 @@ -10239,7 +10226,7 @@ - + 2073.875900000000002 1656.267669305452955 0.0 @@ -10255,10 +10242,10 @@ - + - + 2079.423499999999876 1609.391405974875852 0.0 @@ -10275,7 +10262,7 @@ - + 2036.259600000000091 1576.508449272028884 0.0 @@ -10292,7 +10279,7 @@ - + 2052.341800000000148 2038.50932821745937 0.0 @@ -10309,7 +10296,7 @@ - + 2109.600800000000163 2336.688670848598122 0.0 @@ -10326,7 +10313,7 @@ - + 2351.68769999999995 2763.66821911014631 0.0 @@ -10343,7 +10330,7 @@ - + 2191.491899999999987 1759.490910111304856 0.0 @@ -10360,7 +10347,7 @@ - + 2052.341800000000148 2476.377094377018693 0.0 @@ -10377,7 +10364,7 @@ - + 2021.09089999999992 1541.019046506892892 0.0 @@ -10394,7 +10381,7 @@ - + 2184.213400000000092 1760.827948257183607 0.0 @@ -10408,10 +10395,10 @@ - + - + 2167.89409999999998 1280.222192675265205 0.0 @@ -10425,10 +10412,10 @@ - + - + 2150.143599999999879 1600.097848458560975 0.0 @@ -10448,7 +10435,7 @@ - + 2339.143799999999828 1226.437974895149182 0.0 @@ -10465,7 +10452,7 @@ - + 2048.792699999999968 2165.962612244281445 0.0 @@ -10486,7 +10473,7 @@ - + 2054.11239999999998 1155.831566919638362 0.0 @@ -10505,7 +10492,7 @@ - + 2368.008200000000215 1979.795755255997847 0.0 @@ -10522,7 +10509,7 @@ - + 2048.792699999999968 2166.149537916085137 0.0 @@ -10547,7 +10534,7 @@ - + 2118.887700000000223 1390.346511356856581 0.0 @@ -10564,7 +10551,7 @@ - + 2217.072200000000066 1597.598306848667107 0.0 @@ -10581,7 +10568,7 @@ - + 2176.892899999999827 1310.817168756022738 9874.204102 @@ -10595,13 +10582,12 @@ - + - - + 2429.510699999999815 1115.133948922959689 0.0 @@ -10618,7 +10604,7 @@ - + 2039.875 1094.522284442304908 9692.296875 @@ -10632,13 +10618,12 @@ - + - - + 2013.308199999999943 1781.599929419857745 0.0 @@ -10655,7 +10640,7 @@ - + 2081.286000000000058 1498.530686130788354 0.0 @@ -10672,7 +10657,7 @@ - + 2090.683799999999792 1663.912430014374877 0.0 @@ -10689,7 +10674,7 @@ - + 2059.429500000000189 1760.521096454612234 0.0 @@ -10706,7 +10691,7 @@ - + 2041.685500000000047 972.831998747499142 0.0 @@ -10720,10 +10705,10 @@ - + - + 2333.803600000000188 954.866389744992716 0.0 @@ -10740,10 +10725,10 @@ - + 2344.505599999999959 1092.69216864737723 - 17296.279297 + 1.729628e04 0.0 0.0 0.666667 @@ -10754,13 +10739,12 @@ - + - - + 2021.09089999999992 2651.768820400709046 0.0 @@ -10777,7 +10761,7 @@ - + 2075.709100000000035 1267.840300353106386 0.0 @@ -10791,10 +10775,10 @@ - + - + 2146.596000000000004 2246.272910147074981 0.0 @@ -10813,7 +10797,7 @@ - + 2180.544100000000071 1850.318922036793992 0.0 @@ -10830,7 +10814,7 @@ - + 2057.654100000000199 1159.33366255838996 0.0 @@ -10844,10 +10828,10 @@ - + - + 2050.569599999999809 1019.266814986486338 0.0 @@ -10864,7 +10848,7 @@ - + 2111.473399999999856 1861.738919469866687 0.0 @@ -10881,7 +10865,7 @@ - + 2382.276899999999841 956.39423629365092 0.0 @@ -10898,10 +10882,10 @@ - + 2316.188599999999951 962.64017072599097 - 19399.371094 + 1.939937e04 0.0 0.0 0.875 @@ -10927,7 +10911,7 @@ - + 2182.374899999999798 1214.398382394599594 0.0 @@ -10946,7 +10930,7 @@ - + 2291.961299999999937 1007.643228737881714 8302.935547 @@ -10960,13 +10944,12 @@ - + - - + 2041.685500000000047 1152.318377858492113 0.0 @@ -10983,7 +10966,7 @@ - + 2182.374899999999798 2484.814075325462 0.0 @@ -11000,7 +10983,7 @@ - + 2039.875 931.795554914020386 0.0 @@ -11017,7 +11000,7 @@ - + 2059.429500000000189 1128.797748401011859 0.0 @@ -11031,10 +11014,10 @@ - + - + 2122.593600000000151 1617.447431406701753 0.0 @@ -11048,10 +11031,10 @@ - + - + 2438.281399999999849 1001.893429231310165 0.0 @@ -11068,7 +11051,7 @@ - + 2319.671299999999974 985.9752485275867 0.0 @@ -11085,7 +11068,7 @@ - + 2026.832400000000007 1574.093762625984255 0.0 @@ -11102,7 +11085,7 @@ - + 2103.947200000000066 1131.492774164013326 0.0 @@ -11121,7 +11104,7 @@ - + 2157.24350000000004 891.190116418851062 0.0 @@ -11138,7 +11121,7 @@ - + 2166.123199999999997 1062.572526419833366 0.0 @@ -11155,7 +11138,7 @@ - + 2189.673200000000179 1101.381686948322113 0.0 @@ -11169,13 +11152,13 @@ - + - + 2317.935599999999795 986.116018462931265 - 14927.244141 + 1.492724e04 0.0 0.0 0.666667 @@ -11186,13 +11169,12 @@ - + - - + 2028.732899999999972 1220.782415434320228 0.0 @@ -11206,10 +11188,10 @@ - + - + 2321.427099999999882 878.989082516390795 0.0 @@ -11223,10 +11205,10 @@ - + - + 2083.146999999999935 1210.805608908535533 0.0 @@ -11243,7 +11225,7 @@ - + 2128.238100000000031 1407.061623791390957 0.0 @@ -11257,13 +11239,13 @@ - + - + 2314.447200000000066 940.163888614342795 - 11048.685547 + 1.104869e04 0.0 0.0 0.666667 @@ -11274,13 +11256,12 @@ - + - - + 2333.803600000000188 859.839054483881796 0.0 @@ -11294,10 +11275,10 @@ - + - + 2011.356899999999996 1405.701226361153204 0.0 @@ -11314,7 +11295,7 @@ - + 2410.166400000000067 875.347138682796412 0.0 @@ -11331,7 +11312,7 @@ - + 2162.577000000000226 826.509231882562858 0.0 @@ -11345,10 +11326,10 @@ - + - + 2139.367499999999836 1055.67118133254894 0.0 @@ -11365,7 +11346,7 @@ - + 2385.791000000000167 943.243799990050093 0.0 @@ -11382,7 +11363,7 @@ - + 2164.341300000000047 941.057114739685517 5251.51416 @@ -11396,13 +11377,12 @@ - + - + - - + 2115.178199999999833 1295.780800698684971 0.0 @@ -11421,7 +11401,7 @@ - + 2202.48050000000012 922.145188880033516 0.0 @@ -11440,7 +11420,7 @@ - + 2438.281399999999849 960.591811391263718 0.0 @@ -11457,7 +11437,7 @@ - + 2392.784000000000106 869.880271097778746 0.0 @@ -11471,10 +11451,10 @@ - + - + 2231.26260000000002 826.497120454381957 0.0 @@ -11488,10 +11468,10 @@ - + - + 2036.259600000000091 1444.626931819982247 0.0 @@ -11510,7 +11490,7 @@ - + 2005.559999999999945 2531.63309890227174 0.0 @@ -11527,7 +11507,7 @@ - + 2489.747600000000148 850.310551092932428 0.0 @@ -11544,7 +11524,7 @@ - + 2448.619299999999839 830.984650931916008 0.0 @@ -11561,7 +11541,7 @@ - + 2036.259600000000091 951.800337209775989 0.0 @@ -11580,7 +11560,7 @@ - + 2068.384500000000116 925.091281331198616 0.0 @@ -11597,7 +11577,7 @@ - + 2103.947200000000066 930.69175957813502 0.0 @@ -11614,7 +11594,7 @@ - + 2086.912200000000212 897.479034657866919 0.0 @@ -11631,7 +11611,7 @@ - + 2086.912200000000212 897.466400662699925 0.0 @@ -11648,7 +11628,7 @@ - + 2455.435500000000047 807.379367572553292 0.0 diff --git a/src/tests/topp/MassTraceExtractor_2_output.featureXML b/src/tests/topp/MassTraceExtractor_2_output.featureXML index 4a1f6df149f..5573b97c339 100644 --- a/src/tests/topp/MassTraceExtractor_2_output.featureXML +++ b/src/tests/topp/MassTraceExtractor_2_output.featureXML @@ -60,7 +60,7 @@ 2481.10109999999986 1748.47963526859121 - 62681.074219 + 6.268107e04 0.0 0.0 0.8 @@ -96,13 +96,13 @@ - + 2494.933700000000044 1373.333544966754971 - 46556.207031 + 4.655621e04 0.0 0.0 0.857143 @@ -152,7 +152,7 @@ 2453.727699999999913 1327.718122775611391 - 61671.355469 + 6.167136e04 0.0 0.0 0.833333 @@ -198,7 +198,7 @@ 2438.281399999999849 1752.474127136558991 - 42122.882813 + 4.212288e04 0.0 0.0 0.666667 @@ -209,16 +209,15 @@ - + - 2441.740600000000086 1660.410322066413301 - 59894.828125 + 5.989483e04 0.0 0.0 0.8 @@ -285,7 +284,7 @@ 2440.008200000000215 1490.081464544535038 - 33374.832031 + 3.337483e04 0.0 0.0 0.666667 @@ -296,16 +295,15 @@ - + - 2408.42450000000008 1726.198999538127964 - 31187.291016 + 3.118729e04 0.0 0.0 0.666667 @@ -316,11 +314,10 @@ - + - 2260.634700000000066 @@ -367,7 +364,7 @@ 2445.188799999999901 1564.599377895510997 - 51030.742188 + 5.103074e04 0.0 0.0 0.8 @@ -390,7 +387,7 @@ 2474.221399999999903 1259.1831878547423 - 47006.035156 + 4.700604e04 0.0 0.0 0.8 @@ -413,7 +410,7 @@ 2232.995100000000093 1888.293724225544111 - 39191.324219 + 3.919133e04 0.0 0.0 0.833333 @@ -451,7 +448,7 @@ - + @@ -470,7 +467,7 @@ - + @@ -493,7 +490,7 @@ - + @@ -512,7 +509,7 @@ - + @@ -537,7 +534,7 @@ 2436.537800000000061 1752.779504432386602 - 34895.46875 + 3.489547e04 0.0 0.0 0.666667 @@ -548,16 +545,15 @@ - + - 2264.094399999999951 1307.313859909159419 - 25446.478516 + 2.544648e04 0.0 0.0 0.833333 @@ -595,7 +591,7 @@ - + @@ -621,7 +617,7 @@ 2234.723199999999906 1626.845465787215744 - 32001.582031 + 3.200158e04 0.0 0.0 0.75 @@ -642,7 +638,7 @@ 2496.664499999999862 1503.972141472828753 - 64232.71875 + 6.423272e04 0.0 0.0 0.75 @@ -663,7 +659,7 @@ 2441.740600000000086 1502.329804103765582 - 49625.757813 + 4.962576e04 0.0 0.0 0.75 @@ -707,7 +703,7 @@ 2231.26260000000002 1478.868009040648985 - 42861.113281 + 4.286111e04 0.0 0.0 0.666667 @@ -718,16 +714,15 @@ - + - 2293.684699999999793 1546.897968527719968 - 26177.699219 + 2.61777e04 0.0 0.0 0.666667 @@ -738,16 +733,15 @@ - + - 2387.537400000000162 1233.594676269925913 - 26719.818359 + 2.671982e04 0.0 0.0 0.75 @@ -806,7 +800,7 @@ 2491.470400000000154 1504.081029614124191 - 70292.257813 + 7.029226e04 0.0 0.0 0.75 @@ -850,7 +844,7 @@ 2494.933700000000044 1857.740805200160594 - 30162.777344 + 3.016278e04 0.0 0.0 0.75 @@ -890,7 +884,7 @@ 2496.664499999999862 1263.523844257507335 - 26503.0 + 2.6503e04 0.0 0.0 0.666667 @@ -901,16 +895,15 @@ - + - 2231.26260000000002 1789.955679854335131 - 25266.029297 + 2.526603e04 0.0 0.0 0.666667 @@ -921,7 +914,7 @@ - + @@ -942,13 +935,13 @@ - + 2316.188599999999951 1092.618746079637958 - 28965.277344 + 2.896528e04 0.0 0.0 0.833333 @@ -973,7 +966,7 @@ 2288.505599999999959 1116.428192672393152 - 32368.123047 + 3.236812e04 0.0 0.0 0.833333 @@ -998,7 +991,7 @@ 2319.671299999999974 1154.971945295734713 - 32679.609375 + 3.267961e04 0.0 0.0 0.8 @@ -1021,7 +1014,7 @@ 2300.573800000000119 1752.92261282419031 - 23293.619141 + 2.329362e04 0.0 0.0 0.75 @@ -1034,11 +1027,10 @@ - + - 2269.29989999999998 @@ -1062,7 +1054,7 @@ 2288.505599999999959 1087.005137665215898 - 25058.990234 + 2.505899e04 0.0 0.0 0.8 @@ -1085,7 +1077,7 @@ 2408.42450000000008 1071.107697734962812 - 27108.507813 + 2.710851e04 0.0 0.0 0.833333 @@ -1148,7 +1140,7 @@ 2389.288000000000011 1533.197998114165785 - 40785.117188 + 4.078512e04 0.0 0.0 0.75 @@ -1161,11 +1153,10 @@ - + - 2398.01740000000018 @@ -1189,7 +1180,7 @@ 2285.020500000000084 1147.395286969477866 - 24388.466797 + 2.438847e04 0.0 0.0 0.8 @@ -1204,11 +1195,10 @@ - + - 2489.747600000000148 @@ -1245,13 +1235,13 @@ - + 2115.178199999999833 1554.73098504394261 - 17993.175781 + 1.799318e04 0.0 0.0 0.666667 @@ -1262,11 +1252,10 @@ - + - 2323.173699999999826 @@ -1290,7 +1279,7 @@ 2458.847000000000207 1225.692422125370968 - 31919.078125 + 3.191908e04 0.0 0.0 0.666667 @@ -1301,16 +1290,15 @@ - + - 2115.178199999999833 1439.597243330192669 - 30226.009766 + 3.022601e04 0.0 0.0 0.8 @@ -1352,7 +1340,7 @@ 2496.664499999999862 1316.126666684950123 - 32528.085938 + 3.252809e04 0.0 0.0 0.75 @@ -1393,7 +1381,7 @@ 2438.281399999999849 1502.422300972263884 - 36254.183594 + 3.625418e04 0.0 0.0 0.8 @@ -1457,7 +1445,7 @@ 2113.317300000000159 1619.308644991756864 - 19647.728516 + 1.964773e04 0.0 0.0 0.75 @@ -1499,7 +1487,7 @@ 2115.178199999999833 1619.40361695242791 - 16031.504883 + 1.603151e04 0.0 0.0 0.666667 @@ -1510,16 +1498,15 @@ - + - 2269.29989999999998 1172.105559692837915 - 16536.365234 + 1.653637e04 0.0 0.0 0.666667 @@ -1530,16 +1517,15 @@ - + - 2222.456000000000131 1702.64003700561625 - 21941.175781 + 2.194118e04 0.0 0.0 0.666667 @@ -1550,11 +1536,10 @@ - + - 2159.018000000000029 @@ -1578,7 +1563,7 @@ 2425.991700000000037 1153.574853797090327 - 15190.849609 + 1.519085e04 0.0 0.0 0.666667 @@ -1589,16 +1574,15 @@ - + - 2387.537400000000162 1282.921559200116462 - 33933.78125 + 3.393378e04 0.0 0.0 0.8 @@ -1613,11 +1597,10 @@ - + - 2077.572200000000066 @@ -1700,7 +1683,7 @@ 2391.035699999999906 1782.396219566908258 - 22125.751953 + 2.212575e04 0.0 0.0 0.666667 @@ -1711,16 +1694,15 @@ - + - 2385.791000000000167 1336.288878542912244 - 32761.529297 + 3.276153e04 0.0 0.0 0.75 @@ -1773,7 +1755,7 @@ - + @@ -1837,7 +1819,7 @@ 2344.505599999999959 1092.69216864737723 - 17296.279297 + 1.729628e04 0.0 0.0 0.666667 @@ -1848,11 +1830,10 @@ - + - 2146.596000000000004 @@ -2019,7 +2000,7 @@ 2317.935599999999795 986.116018462931265 - 14927.244141 + 1.492724e04 0.0 0.0 0.666667 @@ -2030,16 +2011,15 @@ - + - 2314.447200000000066 940.163888614342795 - 11048.685547 + 1.104869e04 0.0 0.0 0.666667 @@ -2050,11 +2030,10 @@ - + - 2115.178199999999833 diff --git a/src/tests/topp/NucleicAcidSearchEngine_11_out.idXML b/src/tests/topp/NucleicAcidSearchEngine_11_out.idXML index 4a56fefd14c..ddeab20d52f 100644 --- a/src/tests/topp/NucleicAcidSearchEngine_11_out.idXML +++ b/src/tests/topp/NucleicAcidSearchEngine_11_out.idXML @@ -8,7 +8,7 @@ - +
@@ -17,6 +17,7 @@ + diff --git a/src/tests/topp/QualityControl_1_out.consensusXML b/src/tests/topp/QualityControl_1_out.consensusXML index 0fc4256b817..c2b37bdee30 100644 --- a/src/tests/topp/QualityControl_1_out.consensusXML +++ b/src/tests/topp/QualityControl_1_out.consensusXML @@ -1,9123 +1,9123 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/tests/topp/QualityControl_1_out.mzTab b/src/tests/topp/QualityControl_1_out.mzTab index 065ce8e058b..97eb9b64160 100644 --- a/src/tests/topp/QualityControl_1_out.mzTab +++ b/src/tests/topp/QualityControl_1_out.mzTab @@ -6,7 +6,7 @@ MTD description OpenMS export from consensusXML MTD protein_search_engine_score[1] [, , one-peptide-rule XTandem, ] MTD peptide_search_engine_score[1] [MS, MS:1003114, OpenMS:Best PSM Score, ] MTD psm_search_engine_score[1] [MS, MS:1003115, OpenMS:Target-decoy PSM q-value, ] -MTD software[1] [MS, MS:1000752, TOPP software, 2.6.0-pre-disabled-20210520] +MTD software[1] [MS, MS:1000752, TOPP software, 2.7.0-pre-fix-activation-modes-2021-12-27] MTD software[2] [MS, MS:1001476, X!Tandem, ] MTD software[2]-setting[1] db:C:\Users\bielow\AppData\Local\Temp\20190911_152818_14688_1\QualityControl\006_DecoyDatabase\out\crap_to_database_minimal_mrgd.fasta MTD software[2]-setting[2] db_version:null @@ -144,574 +144,574 @@ PRT ES-0001a_PROKKA_03139 null null null crap_to_database_minimal_mrgd null null PRT ES-0002a_PROKKA_00085 null null null crap_to_database_minimal_mrgd null null 0.0 null null null null null null null null null null null null null null null 0 protein_details PEH sequence accession unique database database_version search_engine best_search_engine_score[1] search_engine_score[1]_ms_run[1] search_engine_score[1]_ms_run[2] search_engine_score[1]_ms_run[3] modifications retention_time retention_time_window charge mass_to_charge spectra_ref peptide_abundance_study_variable[1] peptide_abundance_stdev_study_variable[1] peptide_abundance_std_error_study_variable[1] peptide_abundance_study_variable[2] peptide_abundance_stdev_study_variable[2] peptide_abundance_std_error_study_variable[2] peptide_abundance_study_variable[3] peptide_abundance_stdev_study_variable[3] peptide_abundance_std_error_study_variable[3] opt_global_cv_MS:1000889_peptidoform_sequence opt_global_cf_id opt_global_feature_id opt_global_E-Value opt_global_PSM_explained_ion_current opt_global_XTandem_score opt_global_b_ions opt_global_b_score opt_global_calibrated_mz_error_ppm opt_global_delta opt_global_fragment_mass_error_da opt_global_fragment_mass_error_da_variance opt_global_fragment_mass_error_ppm opt_global_fragment_mass_error_ppm_variance opt_global_hyperscore opt_global_is_contaminant opt_global_mass opt_global_missed_cleavages opt_global_mz_raw opt_global_mz_ref opt_global_nextscore opt_global_protein_references opt_global_cv_MS:1002217_decoy_peptide opt_global_uncalibrated_mz_error_ppm opt_global_y_ions opt_global_y_score opt_global_mass_to_charge_study_variable[1] opt_global_retention_time_study_variable[1] opt_global_mass_to_charge_study_variable[2] opt_global_retention_time_study_variable[2] opt_global_mass_to_charge_study_variable[3] opt_global_retention_time_study_variable[3] -PEP AHGDLSENAEYHAAK ES-0001a_PROKKA_02064 1 null null null 0.0 0.0 null null null 1337.244148906265536 null 3 538.249862207404362 ms_run[1]:spectrum=219 2.314716928e09 null null 9.07414528e08 null null 2.36496496e08 null null AHGDLSENAEYHAAK 0 5785370176150438919 8.399999999999999e-15 0.499570653936673 70.299999999999997 9 24.899999999999999 0.44433146663662 7.0e-04 [-5.086029759127086e-05, -2.070591978053926e-05, 6.124219427761091e-05, -2.804822337338919e-04, 2.599896540687041e-04, -4.174118226387691e-04, -1.651231990535962e-04, 1.597216974801086e-03, -1.661525834606437e-04, 1.141739240665629e-03, 3.273611263239218e-04, 1.404428255455059e-03, 1.417478421899432e-03, -2.845604299182014e-04, 7.139913997207259e-04, -2.505282399397402e-03, 1.710844722992988e-03] 1.04975804030547e-06 [-0.345723117856535, -0.099022442488319, 0.280734435006384, -0.969899067046051, 0.682115930465384, -0.979274588037528, -0.334098030239428, 2.747816001711164, -0.281944626670212, 1.607380720502823, 0.455711386670567, 1.779133336640007, 1.719503488882102, -0.317805972487502, 0.790310139343994, -2.445530662126883, 1.657033383209536] 1.662501800856901 70.299999999999997 0 1611.728474705952067 0 538.252212161182001 538.249862207404362 28.100000000000001 unique 0 4.365916171351089 10 24.300000000000001 538.249862207404362 1334.865975417892969 538.249862207404362 1337.95166280597914 538.249862207404362 1338.914808494924273 +PEP AHGDLSENAEYHAAK ES-0001a_PROKKA_02064 1 null null null 0.0 0.0 null null null 1337.244148906265536 null 3 538.249862207404362 ms_run[1]:spectrum=219 2.314716928e09 null null 9.07414528e08 null null 2.36496496e08 null null AHGDLSENAEYHAAK 0 5785370176150438919 8.399999999999999e-15 0.499570653936673 70.299999999999997 9 24.899999999999999 0.44433146663662 7.0e-04 [-5.086029759127086e-05, -2.070591975211755e-05, 6.124219433445433e-05, -2.804822336770485e-04, 2.599896541255475e-04, -4.174118225819257e-04, -1.651231989967528e-04, 1.597216974801086e-03, -1.661525834606437e-04, 1.141739240665629e-03, 3.273611263239218e-04, 1.404428255455059e-03, 1.417478421899432e-03, -2.845604299182014e-04, 7.139913997207259e-04, -2.505282399397402e-03, 1.710844722992988e-03] 1.049758040290642e-06 [-0.345723117856535, -0.099022442352397, 0.280734435266955, -0.969899066849488, 0.68211593061452, -0.97927458790417, -0.334098030124416, 2.747816001711164, -0.281944626670212, 1.607380720502823, 0.455711386670567, 1.779133336640007, 1.719503488882102, -0.317805972487502, 0.790310139343994, -2.445530662126883, 1.657033383209536] 1.662501800788809 70.299999999999997 0 1611.728474705952067 0 538.252212161182001 538.249862207404362 28.100000000000001 unique 0 4.365916171351089 10 24.300000000000001 538.249862207404362 1334.865975417892969 538.249862207404362 1337.95166280597914 538.249862207404362 1338.914808494924273 PEP ARAEDAMDEASGR ES-0001a_PROKKA_00065 1 null null null 0.0 0.0 null null null 1344.663908527821604 null 3 460.205376301870956 ms_run[1]:spectrum=217 7.6629952e08 null null 2.96929312e08 null null 3.737894e07 null null ARAEDAMDEASGR 1 6079338524867909733 3.4e-06 0.434528234483428 35.899999999999999 5 17.5 -1.144818852771412 -1.6e-03 [-3.702517883539258e-04, -6.570139531163477e-04, -3.200123733222426e-04, 1.600123511025231e-04, 3.181092884005921e-04, 3.354473695935667e-04, -3.692231746640573e-03, -2.138401139632151e-03] 2.007530375875187e-06 [-1.160036816456196, -1.683746427340118, -0.616294743348211, 0.294545267353177, 0.517849333536571, 0.528863981605796, -4.95382309396997, -2.485482062129352] 3.499056400466703 35.899999999999999 0 1377.592718949927075 1 460.206695556641023 460.205376301870956 22.199999999999999 unique 0 2.866665271640651 7 17.899999999999999 460.205376301870956 1351.913479559237203 460.205376301870956 1339.392829267640082 460.205376301870956 1342.685416756587529 -PEP GLHNEGSQTLQAR ES-0001a_PROKKA_00281 1 null null null 0.0 null 0.0 null null 1368.786287104103394 null 3 470.90765881027113 ms_run[2]:spectrum=205 9.32361e06 null null 7.711435e06 null null null null null GLHNEGSQTLQAR 2 5360692749920258796 2.7e-03 0.246454686334403 24.300000000000001 1 13.9 0.922281149889566 1.3e-03 [0.03669358856672, 1.833047864181481e-04, -1.587478074327464e-04, 6.64994821761411e-04, -1.580010330997084e-03, 2.108108860738867e-04] 2.266588023882942e-04 [214.440927347881058, 1.0467444178291, -0.644907149031396, 1.777041144871322, -3.242385624287787, 0.358310835334971] 7677.27902232328961 24.300000000000001 0 1409.702449958271245 0 470.909454345703068 470.907658810270959 20.899999999999999 unique 0 3.812924675392222 5 15.4 470.90765881027113 1373.675612717518561 470.907658810270959 1363.896961490688227 null null +PEP GLHNEGSQTLQAR ES-0001a_PROKKA_00281 1 null null null 0.0 null 0.0 null null 1368.786287104103394 null 3 470.90765881027113 ms_run[2]:spectrum=205 9.32361e06 null null 7.711435e06 null null null null null GLHNEGSQTLQAR 2 5360692749920258796 2.7e-03 0.246454686334403 24.300000000000001 1 13.9 0.922281149889566 1.3e-03 [0.03669358856672, 1.833047864181481e-04, -1.58747807375903e-04, 6.64994821761411e-04, -1.580010330997084e-03, 2.108108860738867e-04] 2.266588023881542e-04 [214.440927347881058, 1.0467444178291, -0.644907148800472, 1.777041144871322, -3.242385624287787, 0.358310835334971] 7677.279022319939031 24.300000000000001 0 1409.702449958271245 0 470.909454345703068 470.907658810270959 20.899999999999999 unique 0 3.812924675392222 5 15.4 470.90765881027113 1373.675612717518561 470.907658810270959 1363.896961490688227 null null PEP MIAEAMQK ES-0001a_PROKKA_00962 1 null null null 0.0 0.0 null null 6-UNIMOD:35 1320.913844348583325 null 2 469.227715781370989 ms_run[1]:spectrum=72 5.4522368e07 null null 2.510415e07 null null null null null MIAEAM(Oxidation)QK 3 17763620004723453763 5.800000000000003e-06 0.208212098181508 34.899999999999999 1 16.899999999999999 -1.3858075048468 -1.3e-03 [-1.631403376904927e-04, -5.939267018675309e-04, 7.14408883482065e-05, 2.805449923357628e-03, -2.549889472902578e-06, -8.488473345096281e-04] 1.741482816905398e-06 [-0.665520836125359, -1.406719942740342, 0.144838869234326, 4.508293143703797, -3.677776801246026e-03, -1.052628051549418] 4.697622049191153 34.899999999999999 0 936.439578110620005 0 469.228942944333028 469.227715781370989 25.100000000000001 unique 0 2.615282347495423 7 19.800000000000001 469.227715781370989 1330.384901995518703 469.227715781370989 1311.442786701648629 null null -PEP DAEAEAYAR ES-0001a_PROKKA_03080 1 null null null 0.0 0.0 null null null 1344.456842254575349 null 2 498.22507395567095 ms_run[1]:spectrum=118 7.769875e06 null null 4.4389312e07 null null null null null DAEAEAYAR 4 18116955262754587677 8.1e-05 0.158976263862311 30.399999999999999 2 16.0 -2.369385951580624 -2.4e-03 [-5.941231422639248e-04, 6.569431212710697e-05, -2.384486326718616e-04, 4.876379901929795e-03, 1.318182536238055e-03] 5.009722277420597e-06 [-1.879458915734385, 0.136790050083961, -0.391349061266926, 7.167602968129319, 1.628634842994767] 12.213545106234704 30.399999999999999 0 994.43323400281804 0 498.225870267101925 498.22507395567095 20.100000000000001 unique 0 1.598296578396282 6 16.899999999999999 498.22507395567095 1331.416025207441862 498.22507395567095 1357.497659301709064 null null +PEP DAEAEAYAR ES-0001a_PROKKA_03080 1 null null null 0.0 0.0 null null null 1344.456842254575349 null 2 498.22507395567095 ms_run[1]:spectrum=118 7.769875e06 null null 4.4389312e07 null null null null null DAEAEAYAR 4 18116955262754587677 8.1e-05 0.158976263862311 30.399999999999999 2 16.0 -2.369385951694715 -2.4e-03 [-5.941231422639248e-04, 6.569431207026355e-05, -2.384486327855484e-04, 4.876379901816108e-03, 1.318182536238055e-03] 5.009722277309358e-06 [-1.879458915734385, 0.136790049965601, -0.391349061453512, 7.167602967962213, 1.628634842994767] 12.21354510597874 30.399999999999999 0 994.43323400281804 0 498.225870267101925 498.225073955671007 20.100000000000001 unique 0 1.59829657828219 6 16.899999999999999 498.22507395567095 1331.416025207441862 498.22507395567095 1357.497659301709064 null null PEP VGEAAASGELRK ES-0001a_PROKKA_01329 1 null null null 0.0 0.0 null null null 1339.189180443508576 null 2 594.322579838470915 ms_run[1]:spectrum=175 3.17420096e08 null null 1.40868096e08 null null null null null VGEAAASGELRK 5 260928917346100589 9.700000000000001e-14 0.559132163160661 66.099999999999994 5 21.199999999999999 -0.363113188387407 -4.0e-04 [1.819604244133188e-04, 5.998424359177079e-05, -6.641274001140118e-05, 1.762638634090763e-04, -2.923201632256678e-04, -2.666667278390378e-04, -1.39862803126789e-03, -3.991602104633785e-04, -1.304333511598088e-05, -4.192983411712703e-04, -2.952012650894176e-04, -8.71718182679615e-04, -2.893669696959478e-03, 6.304612281837763e-04] 7.445379765440241e-07 [1.236876861402162, 0.381828962142624, -0.232098966419684, 0.49349182870897, -0.702189721822098, -0.622741764440359, -2.801452124865263, -0.662658309525149, -0.018919999052857, -0.551395512097876, -0.355036104625664, -0.96588693257379, -2.805172113578691, 0.579164900525362] 1.321750565929295 66.099999999999994 0 1186.630175130665975 1 594.324656327186972 594.322579838470915 27.800000000000001 unique 0 3.493874852644945 12 22.300000000000001 594.322579838470915 1336.052345557553508 594.322579838470915 1342.326015329463644 null null -PEP YHLGASSDR ES-0001a_PROKKA_01599 1 null null null 0.0 null 0.0 null null 1343.0295715923221 null 2 503.241057987570969 ms_run[2]:spectrum=103 2.197018e07 null null 1.615293e07 null null null null null YHLGASSDR 6 16840186854814138036 0.011 0.422323445055044 21.800000000000001 1 17.0 -0.019615297310882 0.0 [3.279141989764867e-05, 4.072531903602794e-04, 3.336154520638956e-04, -4.09508279972215e-04] 1.375917031173434e-07 [0.187252261118019, 1.352418697097486, 0.563284106973502, -0.580572441548437] 0.646346957805478 21.800000000000001 0 1004.467543299154045 0 503.242507814000987 503.241057987570969 17.199999999999999 unique 0 2.880978026348722 3 17.800000000000001 503.241057987570969 1345.885722209047344 503.241057987570969 1340.173420975596628 null null +PEP YHLGASSDR ES-0001a_PROKKA_01599 1 null null null 0.0 null 0.0 null null 1343.0295715923221 null 2 503.241057987570969 ms_run[2]:spectrum=103 2.197018e07 null null 1.615293e07 null null null null null YHLGASSDR 6 16840186854814138036 0.011 0.422323445055044 21.800000000000001 1 17.0 -0.019615297310882 0.0 [3.279141989764867e-05, 4.072531902465926e-04, 3.336154520638956e-04, -4.09508279972215e-04] 1.37591703093377e-07 [0.187252261118019, 1.35241869671995, 0.563284106973502, -0.580572441548437] 0.64634695756088 21.800000000000001 0 1004.467543299154045 0 503.242507814000987 503.241057987570969 17.199999999999999 unique 0 2.880978026348722 3 17.800000000000001 503.241057987570969 1345.885722209047344 503.241057987570969 1340.173420975596628 null null PEP LHHLVDDK ES-0001a_PROKKA_00009 1 null null null 0.0 null 0.0 null null 1356.940449331591935 null 2 488.764168567321008 ms_run[2]:spectrum=169 3.312722e07 null null 2.966952e07 null null null null null LHHLVDDK 7 3963149378438661089 5.2e-07 0.462030309171498 39.100000000000001 5 18.100000000000001 0.770276121255016 8.0e-04 [3.486591841692643e-04, 8.21362102300327e-04, 3.205254362228516e-04, 1.357709973262899e-03, 2.875845706284963e-05, 5.879707795202194e-04, 4.966451946302186e-04, 2.708061478756463e-03, 2.845286583465168e-03, 1.359374712706085e-03, -8.848513332395669e-04] 1.232378632829727e-06 [2.370012483784645, 3.270401253254304, 1.222727332869118, 3.599761054262602, 0.074079799335166, 1.234622920982742, 0.990727911907926, 4.595237365452857, 3.977260234432882, 1.871442355536136, -1.065552484155355] 3.028497157281308 39.100000000000001 0 975.514537167836011 0 488.765960579927025 488.764168567321008 19.699999999999999 unique 0 3.666415668870277 6 18.199999999999999 488.764168567321008 1361.757707254325396 488.764168567321008 1352.123191408858474 null null -PEP TLHSDEGAHFDK ES-0001a_PROKKA_01616 1 null null null 0.0 0.0 null null null 1338.764500382855658 null 3 452.877476703937703 ms_run[1]:spectrum=141 2.92292896e08 null null 7.8630152e07 null null null null null TLHSDEGAHFDK 8 16277983992011910871 1.5e-10 0.234539029273457 53.299999999999997 6 17.899999999999999 -1.729227521759519 -2.3e-03 [1.486099819203446e-06, 3.141612268677818e-04, 1.072925885523546e-04, 3.841862010176556e-04, 3.020479928181885e-04, -5.487288062795415e-04, -3.372991617425214e-04, 2.442397578874989e-03, -1.329219180888686e-03, -1.713615372068489e-03, -4.118868325804215e-04, 1.115294476903728e-03, -1.904247843299345e-03] 1.356720007771154e-06 [0.010101770679164, 1.460270790523974, 0.409295381306437, 1.090824692092122, 0.738127974618346, -1.004506459946615, -0.608561045148487, 3.621985260344321, -1.795463381020984, -2.133038461754999, -0.50765111449234, 1.214394942776461, -1.893968855034786] 2.633180730340397 53.299999999999997 0 1355.608251326910022 0 452.878514108589002 452.877476703937703 25.300000000000001 unique 0 2.290696059449874 9 18.800000000000001 452.877476703937703 1335.22879527725172 452.877476703937703 1342.300205488459369 null null -PEP TCHAHPTMSETVR ES-0001a_PROKKA_01604 1 null null null 0.0 0.0 null null 2-UNIMOD:4 1341.745244741960505 null 3 509.566139339470965 ms_run[1]:spectrum=193 4.269184e08 null null 8.009676000000001e07 null null null null null TC(Carbamidomethyl)HAHPTMSETVR 9 483781179592362750 3.7e-04 0.253702344648361 27.699999999999999 3 14.199999999999999 656.846899687877794 1.004 [-7.616664356646652e-05, -1.363217188668386e-03, -1.086680592663924e-03, -1.708904978841019e-03, 8.495376567907442e-04, 1.617532266891431e-03, -2.4594972757086e-03, -1.59058722078953e-03] 1.95021366074545e-06 [-0.434942319488086, -3.415347401639997, -2.311193208927618, -2.890033879202475, 1.399013399533671, 2.239263404444452, -2.987009649539954, -1.72805278607955] 4.514971562827361 27.699999999999999 0 1526.680709434533128 0 509.902862548828011 509.566139339470965 17.899999999999999 unique 0 660.803737456979661 5 15.699999999999999 509.566139339470965 1343.797519512691451 509.566139339470965 1339.692969971229331 null null +PEP TLHSDEGAHFDK ES-0001a_PROKKA_01616 1 null null null 0.0 0.0 null null null 1338.764500382855658 null 3 452.877476703937703 ms_run[1]:spectrum=141 2.92292896e08 null null 7.8630152e07 null null null null null TLHSDEGAHFDK 8 16277983992011910871 1.5e-10 0.234539029273457 53.299999999999997 6 17.899999999999999 -1.729227521759519 -2.3e-03 [1.486099819203446e-06, 3.141612268677818e-04, 1.072925885523546e-04, 3.841862010176556e-04, 3.020479927613451e-04, -5.487288062795415e-04, -3.372991617425214e-04, 2.442397578874989e-03, -1.329219180888686e-03, -1.713615372068489e-03, -4.118868325804215e-04, 1.115294476903728e-03, -1.904247843299345e-03] 1.356720007767142e-06 [0.010101770679164, 1.460270790523974, 0.409295381306437, 1.090824692092122, 0.738127974479435, -1.004506459946615, -0.608561045148487, 3.621985260344321, -1.795463381020984, -2.133038461754999, -0.50765111449234, 1.214394942776461, -1.893968855034786] 2.633180730324379 53.299999999999997 0 1355.608251326910022 0 452.878514108589002 452.877476703937703 25.300000000000001 unique 0 2.290696059449874 9 18.800000000000001 452.877476703937703 1335.22879527725172 452.877476703937703 1342.300205488459369 null null +PEP TCHAHPTMSETVR ES-0001a_PROKKA_01604 1 null null null 0.0 0.0 null null 2-UNIMOD:4 1341.745244741960505 null 3 509.566139339470965 ms_run[1]:spectrum=193 4.269184e08 null null 8.009676000000001e07 null null null null null TC(Carbamidomethyl)HAHPTMSETVR 9 483781179592362750 3.7e-04 0.253702344648361 27.699999999999999 3 14.199999999999999 656.846899687877794 1.004 [-7.616664356646652e-05, -1.36321718872523e-03, -1.086680592720768e-03, -1.708904978841019e-03, 8.495376566770574e-04, 1.617532266891431e-03, -2.4594972757086e-03, -1.59058722078953e-03] 1.950213660710399e-06 [-0.434942319488086, -3.41534740178241, -2.311193209048514, -2.890033879202475, 1.399013399346452, 2.239263404444452, -2.987009649539954, -1.72805278607955] 4.514971562808359 27.699999999999999 0 1526.680709434533128 0 509.902862548828011 509.566139339470965 17.899999999999999 unique 0 660.803737456979661 5 15.699999999999999 509.566139339470965 1343.797519512691451 509.566139339470965 1339.692969971229331 null null PEP VEEHEEGQSAMLTR ES-0001a_PROKKA_02364 1 null null null 0.0 0.0 null null 11-UNIMOD:35 1339.536342769552221 null 3 544.5825128372378 ms_run[1]:spectrum=98 9.275923840000001e08 null null 2.73858e07 null null null null null VEEHEEGQSAM(Oxidation)LTR 10 10721652433759411040 6.699999999999998e-09 0.404499577129379 46.700000000000003 6 22.0 0.193360553716651 3.0e-04 [-1.8735892936661e-04, 9.327076207910068e-05, -5.741670184988834e-05, 8.755086810197099e-06, 4.463625350581424e-05, 2.675724873597574e-04, 3.322204308915389e-04, -5.757702352866545e-04, 5.70967492649288e-04, -7.074879931678879e-06, 8.233011674292356e-04, -2.647291364610283e-04] 1.404559060821319e-07 [-1.069895212651791, 0.407085633031838, -0.207906007346585, 0.022492154514299, 0.090134227829392, 0.498936088598424, 0.547024096984901, -0.922320883853746, 0.822298817524994, -9.391787019510117e-03, 1.016011724114125, -0.282111425685783] 0.407260159108255 46.700000000000003 0 1630.726025013728986 0 544.584749791274021 544.5825128372378 26.699999999999999 unique 0 4.10764940755482 6 23.100000000000001 544.5825128372378 1329.14116419633433 544.5825128372378 1349.931521342770111 null null -PEP LNADSTVASK ES-0001a_PROKKA_02449 1 null null null 0.0 null 0.0 null null 1333.235519397697999 null 2 503.264199115170982 ms_run[2]:spectrum=22 5.601772e07 null null 2.436962e07 null null null null null LNADSTVASK 11 16957076264515771445 4.4e-03 0.207928511720928 23.399999999999999 2 14.199999999999999 0.842259025647645 9.0e-04 [1.059376448012017e-03, 0.180525453218195, -2.813449617065089e-03, -8.817120072990292e-04, 1.758165341698259e-03] 6.536919197598367e-03 [4.643653286345571, 770.99908666791805, -9.404140152936431, -1.246487966507312, 2.258708378822411] 1.192053710706784e05 23.399999999999999 0 1004.514693054427994 0 503.266082763671989 503.264199115170982 19.600000000000001 unique 0 3.742862107653926 4 16.199999999999999 503.264199115170982 1334.306249734877383 503.264199115170982 1332.164789060518615 null null -PEP EALQGEHEAHAEAVAR ES-0001a_PROKKA_02337 0 null null null 0.0 0.0 null null null 1365.422743124529234 null 3 573.279932991037867 ms_run[1]:spectrum=351 8.976131199999999e08 null null 3.45596512e08 null null null null null EALQGEHEAHAEAVAR 12 2891595416484307757 1.0e-09 0.486938040334701 50.0 4 22.899999999999999 0.82586763799736 1.4e-03 [0.024213820120266, -0.02372843235031, -6.832584944049813e-06, 4.665883267307436e-05, -1.788409605296693e-04, 7.20772130819114e-04, -1.63582201639656e-03, -2.148675220041696e-04, -9.422265042076106e-04, -2.361712563470064e-03, -1.456342518054043e-03, 4.935677752655465e-04, 8.157555630532443e-04, -2.49472360587788e-03] 8.962369600729154e-05 [239.628972763002423, -137.066758400506785, -0.033978255475665, 0.189549797524437, -0.5692471059469, 2.087836088505999, -3.929793269434683, -0.394032406216292, -1.528741459061801, -3.69707852382705, -1.933026413960189, 0.644889396804341, 0.989469463702202, -2.616440621090369] 5819.697591588350406 50.0 0 1716.819389932833019 0 573.28263147699397 573.279932991037867 26.600000000000001 non-unique 0 4.707099971253912 11 22.899999999999999 573.279932991037867 1372.28411872687002 573.279932991037754 1358.561367522188448 null null -PEP TVAVHSTADADAMHVR ES-0001a_PROKKA_03139 1 null null null 0.0 0.0 null null 13-UNIMOD:35 1346.411636081096503 null 3 566.273901911670919 ms_run[1]:spectrum=314 4.53811488e08 null null 2.06319904e08 null null null null null TVAVHSTADADAM(Oxidation)HVR 13 12633067014209621448 3.0e-13 0.378091003319412 64.099999999999994 8 20.100000000000001 0.590929124422709 1.0e-03 [6.13798176743785e-03, -8.246355008623141e-06, 5.090558687470548e-06, 7.65787035561516e-06, 6.009246744156371e-04, -7.270741144793647e-04, 4.331466489020386e-04, 1.081011106577989e-03, -3.993901616468065e-04, -2.253879583804519e-04, 2.212929434790567e-04, 4.848552686098628e-04, -6.883186127879526e-04, 1.418259715137538e-03, -2.439052696217914e-03, 1.121310371217987e-03, 1.255065004215794e-03, -3.419468700940342e-04] 2.841119313988888e-06 [60.732816872874651, -0.047090020077396, 0.025310627442491, 0.028137333676147, 2.191657042960237, -1.95856011632312, 1.053253659848191, 2.126769684289337, -0.715391846722971, -0.358145920116248, 0.297298596946419, 0.594635106034592, -0.780024911229831, 1.524338760312571, -2.435528704799094, 1.049429060622324, 1.138386542856977, -0.287464664296793] 205.078830796775748 64.099999999999994 0 1695.800880217922895 0 566.276438949810995 566.273901911670919 27.399999999999999 unique 0 4.480231441907338 12 19.5 566.273901911671032 1353.455876108138 566.273901911670919 1339.367396054055007 null null -PEP STHIEQVAAR ES-0001a_PROKKA_01511 1 null null null 0.0 0.0 null null null 1373.90734258229304 null 2 556.296364710870989 ms_run[1]:spectrum=352 1.763402e07 null null null null null null null null STHIEQVAAR 14 408515835869111042 1.2e-05 0.418249578776658 33.700000000000003 2 15.199999999999999 -0.374580314117956 -4.0e-04 [-1.546892605119865e-05, -0.027027040081322, 4.231592625956182e-04, 1.572153014876676e-03, 1.527980690127606e-03, 2.070176494385123e-03, 7.085745536414834e-04, 5.105982984332513e-04] 9.84770099475481e-05 [-0.088333819919829, -109.796359694521584, 1.297453889174854, 3.776838968088607, 3.478771541847082, 3.803233086198458, 1.052292445197413, 0.649247065956453] 1564.49189642063584 33.700000000000003 0 1110.577759732865843 0 556.298326330168948 556.296364710870989 20.0 unique 0 3.526212685171654 7 17.199999999999999 556.296364710870989 1373.90734258229304 null null null null -PEP QPDHAHIEYCR ES-0001a_PROKKA_00457 1 null null null 0.0 0.0 null null 10-UNIMOD:4 1374.137159925884816 null 3 475.882455979171084 ms_run[1]:spectrum=345 2.643894e07 null null null null null null null null QPDHAHIEYC(Carbamidomethyl)R 15 16272699868664386909 1.1e-03 0.304902392745 25.899999999999999 1 11.199999999999999 0.472295685806995 7.0e-04 [-6.941838503848885e-05, 5.690767266628427e-04, -5.80287691036574e-05, 8.569670072802182e-04, -2.206144192996362e-03] 1.442192672217342e-06 [-0.396407035809706, 1.142235961857768, -0.09251216888974, 1.157532325885984, -2.514415271977154] 2.25839105024358 25.899999999999999 0 1424.626212808893115 0 475.884581139781005 475.882455979171084 19.800000000000001 unique 0 4.465725901890174 5 17.5 475.882455979171084 1374.137159925884816 null null null null -PEP CRGFSGTMPATPATAAQR ES-0001a_PROKKA_01939 1 null null null 0.040816326530612 0.040816326530612 null null 0-UNIMOD:385,1-UNIMOD:4,8-UNIMOD:35 1342.956491586368202 null 4 470.470091586621209 ms_run[1]:spectrum=233 6.587051e06 null null null null null null null null .(Ammonia-loss)C(Carbamidomethyl)RGFSGTM(Oxidation)PATPATAAQR 16 15661595637935237873 0.011 0.043046230701053 21.800000000000001 3 15.4 0.738084709558554 1.4e-03 [-1.517954907228614e-04, 0.090749401037215] 4.131513765105368e-03 [-0.866813604110302, 120.46446407993993] 7360.639472222052973 21.800000000000001 0 1877.852649466524099 1 470.472320556641023 470.470091586621095 19.300000000000001 unique 0 4.737750730149585 4 16.800000000000001 470.470091586621209 1342.956491586368202 null null null null +PEP LNADSTVASK ES-0001a_PROKKA_02449 1 null null null 0.0 null 0.0 null null 1333.235519397697999 null 2 503.264199115170982 ms_run[2]:spectrum=22 5.601772e07 null null 2.436962e07 null null null null null LNADSTVASK 11 16957076264515771445 4.4e-03 0.207928511720928 23.399999999999999 2 14.199999999999999 0.842259025647645 9.0e-04 [1.059376448012017e-03, 0.180525453218195, -2.813449617008246e-03, -8.817120072990292e-04, 1.758165341698259e-03] 6.536919197597266e-03 [4.643653286345571, 770.99908666791805, -9.404140152746431, -1.246487966507312, 2.258708378822411] 1.192053710706629e05 23.399999999999999 0 1004.514693054427994 0 503.266082763671989 503.264199115170982 19.600000000000001 unique 0 3.742862107653926 4 16.199999999999999 503.264199115170982 1334.306249734877383 503.264199115170982 1332.164789060518615 null null +PEP EALQGEHEAHAEAVAR ES-0001a_PROKKA_02337 0 null null null 0.0 0.0 null null null 1365.422743124529234 null 3 573.279932991037867 ms_run[1]:spectrum=351 8.976131199999999e08 null null 3.45596512e08 null null null null null EALQGEHEAHAEAVAR 12 2891595416484307757 1.0e-09 0.486938040334701 50.0 4 22.899999999999999 0.82586763819567 1.4e-03 [0.024213820120266, -0.02372843235031, -6.832584915628104e-06, 4.665883272991778e-05, -1.788409604728258e-04, 7.20772130819114e-04, -1.63582201639656e-03, -2.148675220041696e-04, -9.422265042076106e-04, -2.361712563470064e-03, -1.456342518054043e-03, 4.935677752655465e-04, 8.157555630532443e-04, -2.49472360587788e-03] 8.962369600730087e-05 [239.628972763002423, -137.066758400506785, -0.033978255334324, 0.189549797755361, -0.569247105765969, 2.087836088505999, -3.929793269434683, -0.394032406216292, -1.528741459061801, -3.69707852382705, -1.933026413960189, 0.644889396804341, 0.989469463702202, -2.616440621090369] 5819.697591587780153 50.0 0 1716.819389932833019 0 573.28263147699397 573.279932991037754 26.600000000000001 non-unique 0 4.707099971452222 11 22.899999999999999 573.279932991037867 1372.28411872687002 573.279932991037754 1358.561367522188448 null null +PEP TVAVHSTADADAMHVR ES-0001a_PROKKA_03139 1 null null null 0.0 0.0 null null 13-UNIMOD:35 1346.411636081096503 null 3 566.273901911670919 ms_run[1]:spectrum=314 4.53811488e08 null null 2.06319904e08 null null null null null TVAVHSTADADAM(Oxidation)HVR 13 12633067014209621448 3.0e-13 0.378091003319412 64.099999999999994 8 20.100000000000001 0.590929124422709 1.0e-03 [6.13798176743785e-03, -8.246355008623141e-06, 5.090558659048838e-06, 7.65787035561516e-06, 6.009246744156371e-04, -7.270741144793647e-04, 4.331466489020386e-04, 1.081011106577989e-03, -3.993901616468065e-04, -2.253879583804519e-04, 2.212929434790567e-04, 4.848552686098628e-04, -6.883186129016394e-04, 1.418259715137538e-03, -2.439052696217914e-03, 1.121310371217987e-03, 1.255065004215794e-03, -3.419468700940342e-04] 2.841119314005451e-06 [60.732816872874651, -0.047090020077396, 0.025310627301177, 0.028137333676147, 2.191657042960237, -1.95856011632312, 1.053253659848191, 2.126769684289337, -0.715391846722971, -0.358145920116248, 0.297298596946419, 0.594635106034592, -0.780024911358664, 1.524338760312571, -2.435528704799094, 1.049429060622324, 1.138386542856977, -0.287464664296793] 205.078830796900547 64.099999999999994 0 1695.800880217922895 0 566.276438949810995 566.273901911670919 27.399999999999999 unique 0 4.480231441907338 12 19.5 566.273901911671032 1353.455876108138 566.273901911670919 1339.367396054055007 null null +PEP STHIEQVAAR ES-0001a_PROKKA_01511 1 null null null 0.0 0.0 null null null 1373.90734258229304 null 2 556.296364710870989 ms_run[1]:spectrum=352 1.763402e07 null null null null null null null null STHIEQVAAR 14 408515835869111042 1.2e-05 0.418249578776658 33.700000000000003 2 15.199999999999999 -0.374580314117956 -4.0e-04 [-1.546892605119865e-05, -0.027027040081265, 4.231592625387748e-04, 1.572153014876676e-03, 1.527980690070763e-03, 2.070176494385123e-03, 7.085745536414834e-04, 5.105982984332513e-04] 9.847700994703638e-05 [-0.088333819919829, -109.796359694290672, 1.297453889000566, 3.776838968088607, 3.478771541717665, 3.803233086198458, 1.052292445197413, 0.649247065956453] 1564.491896412949018 33.700000000000003 0 1110.577759732865843 0 556.298326330168948 556.296364710870989 20.0 unique 0 3.526212685171654 7 17.199999999999999 556.296364710870989 1373.90734258229304 null null null null +PEP QPDHAHIEYCR ES-0001a_PROKKA_00457 1 null null null 0.0 0.0 null null 10-UNIMOD:4 1374.137159925884816 null 3 475.882455979171084 ms_run[1]:spectrum=345 2.643894e07 null null null null null null null null QPDHAHIEYC(Carbamidomethyl)R 15 16272699868664386909 1.1e-03 0.304902392745 25.899999999999999 1 11.199999999999999 0.472295685806995 7.0e-04 [-6.941838503848885e-05, 5.690767266059993e-04, -5.80287691036574e-05, 8.569670072802182e-04, -2.206144192996362e-03] 1.442192672196008e-06 [-0.396407035809706, 1.142235961743673, -0.09251216888974, 1.157532325885984, -2.514415271977154] 2.258391050170392 25.899999999999999 0 1424.626212808893115 0 475.884581139781005 475.882455979171084 19.800000000000001 unique 0 4.465725901890174 5 17.5 475.882455979171084 1374.137159925884816 null null null null +PEP CRGFSGTMPATPATAAQR ES-0001a_PROKKA_01939 1 null null null 0.040816326530612 0.040816326530612 null null 0-UNIMOD:385,1-UNIMOD:4,8-UNIMOD:35 1342.956491586368202 null 4 470.470091586621209 ms_run[1]:spectrum=233 6.587051e06 null null null null null null null null .(Ammonia-loss)C(Carbamidomethyl)RGFSGTM(Oxidation)PATPATAAQR 16 15661595637935237873 0.011 0.043046230701053 21.800000000000001 3 15.4 0.738084709558554 1.4e-03 [-1.517954907228614e-04, 0.090749401037442] 4.131513765126036e-03 [-0.866813604110302, 120.464464080241783] 7360.639472258676506 21.800000000000001 0 1877.852649466524099 1 470.472320556641023 470.470091586621095 19.300000000000001 unique 0 4.737750730149585 4 16.800000000000001 470.470091586621209 1342.956491586368202 null null null null PEP AMDAMEAVNSEIR ES-0001a_PROKKA_00233 1 null null null 0.040816326530612 0.040816326530612 null null 5-UNIMOD:35 1337.153364587125907 null 3 484.886767318204363 ms_run[1]:spectrum=177 3.308736e06 null null null null null null null null AMDAM(Oxidation)EAVNSEIR 17 2397821182616381677 9.700000000000001e-03 0.124586043831349 22.0 4 16.399999999999999 683.758764165397793 0.995 [9.451933402004897e-03, -1.910360917094067e-03, 0.061117379700477] 1.128486026794981e-03 [92.624172995186925, -9.792800247843379, 183.471155554949235] 9348.894543503520254 22.0 0 1452.633109284645116 0 485.220245361328011 484.886767318204363 19.300000000000001 unique 0 687.744161318398938 1 11.199999999999999 484.886767318204363 1337.153364587125907 null null null null -PEP HGAIADTVQR ES-0001a_PROKKA_02310 0 null null null 0.022222222222222 0.022222222222222 null null null 1372.884604403604499 null 2 534.28325714707114 ms_run[1]:spectrum=330 1.321496e07 null null null null null null null null HGAIADTVQR 18 17490602855430133683 6.5e-03 0.263769288251654 22.699999999999999 2 14.4 -4.941147170064491 -5.3e-03 [-2.230275205477028e-04, 4.416607757775637e-04, -0.26868575194203, -2.671212588552407e-03, 6.71489889100485e-04, 4.467479794584506e-03] 0.012085442538411 [-1.273577284681639, 2.263909424665428, -1009.62324937342521, -3.874929741749567, 0.768753450931737, 4.801158765510657] 1.700794352144329e05 22.699999999999999 0 1066.546681416191859 0 534.28271484375 534.283257147071026 17.199999999999999 non-unique 0 -1.015010883781184 4 15.1 534.28325714707114 1372.884604403604499 null null null null -PEP EIESAGGVAK ES-0001a_PROKKA_00640 1 null null null 0.0 0.0 null null null 1338.528624741224121 null 2 480.753467067321026 ms_run[1]:spectrum=188 1.68964e07 null null null null null null null null EIESAGGVAK 19 16456444246742030262 2.8e-05 0.29502108296776 32.200000000000003 0 0.0 -0.415022972713853 -4.0e-04 [-2.92834609183501e-05, 1.445943014175555e-04, 1.163353835522685e-04, -7.654634358118528e-04, 3.005065616434877e-05, 1.163224329729928e-03, 6.78180471709311e-04] 3.632574989050447e-07 [-0.199054466642751, 0.662820788712991, 0.366736002676914, -1.774941326884451, 0.059826305673037, 1.973806747652517, 0.944050615160831] 1.327334417605753 32.200000000000003 0 959.491982153634012 0 480.755184699911013 480.753467067321026 17.699999999999999 unique 0 3.572792933693564 7 17.399999999999999 480.753467067321026 1338.528624741224121 null null null null +PEP HGAIADTVQR ES-0001a_PROKKA_02310 0 null null null 0.022222222222222 0.022222222222222 null null null 1372.884604403604499 null 2 534.28325714707114 ms_run[1]:spectrum=330 1.321496e07 null null null null null null null null HGAIADTVQR 18 17490602855430133683 6.5e-03 0.263769288251654 22.699999999999999 2 14.4 -4.941147169851708 -5.3e-03 [-2.230275205477028e-04, 4.416607757775637e-04, -0.26868575194203, -2.671212588552407e-03, 6.71489889100485e-04, 4.467479794584506e-03] 0.012085442538411 [-1.273577284681639, 2.263909424665428, -1009.62324937342521, -3.874929741749567, 0.768753450931737, 4.801158765510657] 1.700794352144329e05 22.699999999999999 0 1066.546681416191859 0 534.28271484375 534.283257147070913 17.199999999999999 non-unique 0 -1.015010883568401 4 15.1 534.28325714707114 1372.884604403604499 null null null null +PEP EIESAGGVAK ES-0001a_PROKKA_00640 1 null null null 0.0 0.0 null null null 1338.528624741224121 null 2 480.753467067321026 ms_run[1]:spectrum=188 1.68964e07 null null null null null null null null EIESAGGVAK 19 16456444246742030262 2.8e-05 0.29502108296776 32.200000000000003 0 0.0 -0.415022972713853 -4.0e-04 [-2.92834609183501e-05, 1.445943014743989e-04, 1.163353835522685e-04, -7.654634358118528e-04, 3.005065616434877e-05, 1.163224329729928e-03, 6.78180471709311e-04] 3.632574989041638e-07 [-0.199054466642751, 0.662820788973561, 0.366736002676914, -1.774941326884451, 0.059826305673037, 1.973806747652517, 0.944050615160831] 1.327334417638095 32.200000000000003 0 959.491982153634012 0 480.755184699911013 480.753467067321026 17.699999999999999 unique 0 3.572792933693564 7 17.399999999999999 480.753467067321026 1338.528624741224121 null null null null PEP DHGHMLAVGMSAR ES-0001a_PROKKA_00113 1 null null null 0.022222222222222 0.022222222222222 null null 5-UNIMOD:35,10-UNIMOD:35 1362.392985666823506 null 3 471.883579598371227 ms_run[1]:spectrum=324 2.16609e07 null null null null null null null null DHGHM(Oxidation)LAVGM(Oxidation)SAR 20 8750610341055170222 2.9e-03 0.177299688533632 24.199999999999999 3 13.300000000000001 -3.707013207504146 -5.2e-03 [-1.942613564551721e-04, 1.883435709657988e-03, -9.65867718946356e-04, -3.179918767273193e-04, -2.874245242992402e-03, 1.035997622807372e-03, 8.433475427409576e-04] 2.435873334598032e-06 [-1.109310861122328, 5.652770104801247, -2.159939484658186, -0.591893642935273, -4.837095503888335, 1.628124858142548, 1.083534551821508] 10.901078209276209 24.199999999999999 0 1412.623661558814092 0 471.883716920815004 471.883579598371 21.5 unique 0 0.29100915976207 4 15.0 471.883579598371227 1362.392985666823506 null null null null -PEP TGADAIAHGATGK ES-0001a_PROKKA_00615 1 null null null 0.0 0.0 null null null 1336.346782851598846 null 2 585.299104742770965 ms_run[1]:spectrum=153 1.030302e08 null null null null null null null null TGADAIAHGATGK 21 1538614739236598383 5.0e-05 0.249270475605543 31.199999999999999 3 15.699999999999999 -0.794461050910478 -9.0e-04 [-9.487825548148976e-05, 2.724076459230673e-04, 1.35264089010434e-03, 1.764937801112865e-03, -5.903903638682095e-04, 2.048374449714174e-03, 3.544198820122801e-03, 4.645649106919336e-03] 3.253669701584548e-06 [-0.596431926298459, 1.183796716571461, 3.122147646414017, 3.094756335553135, -0.920562474142248, 2.715162341743621, 4.293616360215442, 4.939632965577665] 4.627004516134647 31.199999999999999 0 1168.582726557315937 0 585.300903320312955 585.299104742770851 16.800000000000001 unique 0 3.072920371020095 6 15.1 585.299104742770965 1336.346782851598846 null null null null -PEP AIAATQEAAAK ES-0001a_PROKKA_02568 1 null null null 0.0 0.0 null null null 1335.687566881161502 null 2 522.787841194921043 ms_run[1]:spectrum=158 3.389584e07 null null null null null null null null AIAATQEAAAK 22 7593904497987550495 4.0e-04 0.252543641828147 27.600000000000001 2 16.5 1.081976140962626 1.1e-03 [-2.999329625197333e-04, 3.996861204882407e-04, -5.613867075453527e-04, 1.475999195690747e-03, -5.881191831349497e-04, 1.913523712232745e-03] 1.167694772677018e-06 [-2.038795757421335, 2.158966435157295, -2.191499464339949, 2.3909584593107, -0.818682194176208, 2.42399188977588] 5.0531176839569 27.600000000000001 0 1043.562260744241939 0 522.790466308593977 522.787841194921043 17.399999999999999 unique 0 5.021374764443889 5 17.199999999999999 522.787841194921043 1335.687566881161502 null null null null +PEP TGADAIAHGATGK ES-0001a_PROKKA_00615 1 null null null 0.0 0.0 null null null 1336.346782851598846 null 2 585.299104742770965 ms_run[1]:spectrum=153 1.030302e08 null null null null null null null null TGADAIAHGATGK 21 1538614739236598383 5.0e-05 0.249270475605543 31.199999999999999 3 15.699999999999999 -0.794461051104715 -9.0e-04 [-9.487825548148976e-05, 2.724076459230673e-04, 1.35264089010434e-03, 1.764937801112865e-03, -5.903903638682095e-04, 2.048374449714174e-03, 3.544198820122801e-03, 4.645649106919336e-03] 3.253669701584548e-06 [-0.596431926298459, 1.183796716571461, 3.122147646414017, 3.094756335553135, -0.920562474142248, 2.715162341743621, 4.293616360215442, 4.939632965577665] 4.627004516134647 31.199999999999999 0 1168.582726557315937 0 585.300903320312955 585.299104742770965 16.800000000000001 unique 0 3.072920370825858 6 15.1 585.299104742770965 1336.346782851598846 null null null null +PEP AIAATQEAAAK ES-0001a_PROKKA_02568 1 null null null 0.0 0.0 null null null 1335.687566881161502 null 2 522.787841194921043 ms_run[1]:spectrum=158 3.389584e07 null null null null null null null null AIAATQEAAAK 22 7593904497987550495 4.0e-04 0.252543641828147 27.600000000000001 2 16.5 1.081976140962626 1.1e-03 [-2.999329625197333e-04, 3.996861205166624e-04, -5.613867074885093e-04, 1.475999195690747e-03, -5.881191832486366e-04, 1.913523712119059e-03] 1.167694772630692e-06 [-2.038795757421335, 2.15896643531082, -2.191499464118048, 2.3909584593107, -0.818682194334464, 2.423991889631865] 5.053117683797763 27.600000000000001 0 1043.562260744241939 0 522.790466308593977 522.787841194921043 17.399999999999999 unique 0 5.021374764443889 5 17.199999999999999 522.787841194921043 1335.687566881161502 null null null null PEP EESIEEMHHADK ES-0001a_PROKKA_01670 1 null null null 0.0 0.0 null null null 1329.077615283921887 null 3 485.545398677737637 ms_run[1]:spectrum=40 1.28333296e08 null null null null null null null null EESIEEMHHADK 23 9584885256633395211 1.2e-05 0.090298991698725 33.700000000000003 3 17.100000000000001 -0.474629108412599 -7.0e-04 [0.036618493513885, -2.776807893383193e-04, 3.546826907268041e-04, 2.689708239586253e-03, 3.122680213891726e-04, 4.076116304759125e-03] 2.091418477461967e-04 [281.572702222459157, -0.83343359032903, 0.754265645533046, 4.42900011173503, 0.360013863968686, 4.090759747306581] 1.305363075982887e04 33.700000000000003 0 1453.613675270961267 0 485.547101809036974 485.545398677737694 17.899999999999999 unique 0 3.507666438438008 8 15.6 485.545398677737637 1329.077615283921887 null null null null -PEP AAVAQQSEIGK ES-0001a_PROKKA_00038 1 null null null 0.0 0.0 null null null 1375.9195884786036 null 2 551.298573242770999 ms_run[1]:spectrum=358 6.0764752e07 null null null null null null null null AAVAQQSEIGK 24 1956474085255764048 1.5e-04 0.369503601180581 29.199999999999999 3 16.800000000000001 0.311946562846278 4.0e-04 [-3.578231551557565e-04, -2.056555509852842e-04, -7.427419851069317e-05, 5.232962478203262e-04, -2.730911435264716e-04, 1.482706271531242e-03, -3.185115292126284e-03, 1.925948146435985e-03] 2.367651032443843e-06 [-2.500834441820469, -1.007452359584689, -0.306728157478102, 1.670874564695223, -0.512084662048508, 2.241933666239682, -4.034804265428493, 2.238310596022525] 5.160323980416382 29.199999999999999 0 1100.582937503389985 0 551.300898895309956 551.298573242770999 22.699999999999999 unique 0 4.21849910707618 5 16.399999999999999 551.298573242770999 1375.9195884786036 null null null null -PEP AMVTGTGTVTK ES-0001a_PROKKA_01941 1 null null null 0.022222222222222 0.022222222222222 null null 2-UNIMOD:35 1340.609581839867133 null 2 541.28153460777105 ms_run[1]:spectrum=238 2.81674e07 null null null null null null null null AM(Oxidation)VTGTGTVTK 25 13841324114643036477 4.7e-03 0.35576544095466 23.300000000000001 1 16.399999999999999 -0.680263610368754 -7.0e-04 [2.296245119453033e-04, 2.412730883293079e-03, -1.262471454538172e-03, -6.899724094182602e-03] 1.581895521701695e-05 [1.048131875929613, 3.63709712754093, -1.651552728136593, -7.990570594015176] 24.920400151539372 23.300000000000001 0 1080.547779853737893 0 541.283287182651975 541.281534607770936 17.5 unique 0 3.237824993066678 4 16.699999999999999 541.28153460777105 1340.609581839867133 null null null null +PEP AAVAQQSEIGK ES-0001a_PROKKA_00038 1 null null null 0.0 0.0 null null null 1375.9195884786036 null 2 551.298573242770999 ms_run[1]:spectrum=358 6.0764752e07 null null null null null null null null AAVAQQSEIGK 24 1956474085255764048 1.5e-04 0.369503601180581 29.199999999999999 3 16.800000000000001 0.311946562846278 4.0e-04 [-3.578231551273348e-04, -2.056555509852842e-04, -7.427419851069317e-05, 5.232962478203262e-04, -2.730911435264716e-04, 1.482706271531242e-03, -3.185115292126284e-03, 1.925948146435985e-03] 2.367651032441104e-06 [-2.50083444162183, -1.007452359584689, -0.306728157478102, 1.670874564695223, -0.512084662048508, 2.241933666239682, -4.034804265428493, 2.238310596022525] 5.160323980290133 29.199999999999999 0 1100.582937503389985 0 551.300898895309956 551.298573242770999 22.699999999999999 unique 0 4.21849910707618 5 16.399999999999999 551.298573242770999 1375.9195884786036 null null null null +PEP AMVTGTGTVTK ES-0001a_PROKKA_01941 1 null null null 0.022222222222222 0.022222222222222 null null 2-UNIMOD:35 1340.609581839867133 null 2 541.28153460777105 ms_run[1]:spectrum=238 2.81674e07 null null null null null null null null AM(Oxidation)VTGTGTVTK 25 13841324114643036477 4.7e-03 0.35576544095466 23.300000000000001 1 16.399999999999999 -0.680263610368754 -7.0e-04 [2.29624511973725e-04, 2.412730883179393e-03, -1.262471454651859e-03, -6.899724094296289e-03] 1.581895521716944e-05 [1.048131876059345, 3.637097127369551, -1.651552728285317, -7.990570594146835] 24.920400151813539 23.300000000000001 0 1080.547779853737893 0 541.283287182651975 541.281534607770936 17.5 unique 0 3.237824993066678 4 16.699999999999999 541.28153460777105 1340.609581839867133 null null null null PEP LHVVAQEGSK ES-0001a_PROKKA_01833 1 null null null 0.022222222222222 0.022222222222222 null null null 1346.769371698332634 null 2 534.295833210871024 ms_run[1]:spectrum=235 1.242454e07 null null null null null null null null LHVVAQEGSK 26 14800863841171904138 8.200000000000001e-03 0.362290478331002 22.399999999999999 2 17.100000000000001 -1.693192235120009 -1.8e-03 [-0.021011669623363, -1.995608064930821e-04, 1.020446588313462e-04, 2.646504496738089e-03, -1.066938814233254e-03] 9.335040757835401e-05 [-89.737916732441576, -0.794587320047522, 0.291374128083683, 3.684025568996926, -1.30521747096298] 1631.23202126641786 22.399999999999999 0 1066.575304157087885 0 534.297026261578026 534.295833210871024 14.4 unique 0 2.232940316663611 3 16.5 534.295833210871024 1346.769371698332634 null null null null PEP LEGGAREDGLK ES-0001a_PROKKA_01597 1 null null null 0.022222222222222 0.022222222222222 null null null 1321.085820131688024 null 2 572.801480258720972 ms_run[1]:spectrum=12 3.68551e07 null null null null null null null null LEGGAREDGLK 27 16934477088655128147 4.4e-03 0.320505794612185 23.399999999999999 3 15.1 0.155742155194225 2.0e-04 [9.765741481260193e-05, 8.921240026324995e-04, 4.068366757792319e-04, -1.176313828523234e-03, 1.720399642408665e-03, -6.590262481154241e-03] 9.028584237707806e-06 [0.663826747577198, 3.669269789435876, 1.282513124225907, -1.420009244449226, 1.906325418205192, -6.600227798107067] 12.944234470505114 23.399999999999999 0 1143.588586002573948 1 572.803792958153963 572.801480258720972 19.800000000000001 unique 0 4.037523492339444 3 16.600000000000001 572.801480258720972 1321.085820131688024 null null null null PEP EREESIEEMHHADK ES-0001a_PROKKA_01670 1 null null null 0.0 0.0 null null null 1334.718290311365308 null 3 580.593300546437718 ms_run[1]:spectrum=140 8.0332872e07 null null null null null null null null EREESIEEMHHADK 28 1158234167857570400 2.4e-11 0.393119048845914 56.5 8 18.699999999999999 -0.178399183455442 -3.0e-04 [1.186454856281216e-04, 1.704975817347076e-03, 1.944127880051383e-04, 2.761661209547128e-04, -1.022711748191796e-03, -1.426061072493212e-03, 3.295245562640048e-05, -1.997832754341289e-03, 7.051732563922997e-05, -2.844057142965539e-03, 1.39782089468099e-03, 1.154842229993847e-03, 2.781295472118472e-03, 2.030221314726077e-03] 2.531499807273199e-06 [0.806493260039378, 6.504072058423761, 0.583512270687136, 0.587292875977164, -1.879169014465948, -2.348219244175339, 0.05220040490422, -2.705861549363948, 0.094736496477426, -3.278914045798819, 1.600445527555194, 1.158990999209913, 2.774532680565179, 1.791143212911096] 6.401949199656577 56.5 0 1738.757761506887846 1 580.595445493313946 580.593300546437718 26.399999999999999 unique 0 3.694405144202831 8 18.199999999999999 580.593300546437718 1334.718290311365308 null null null null PEP LHQCGLPK ES-0001a_PROKKA_00010 1 null null null 0.0 null 0.0 null 4-UNIMOD:4 1369.478476348175718 null 2 476.755288932321037 ms_run[2]:spectrum=231 null null null 9.633359000000001e06 null null null null null LHQC(Carbamidomethyl)GLPK 29 16947715694437791700 4.0e-03 0.153569730689135 23.600000000000001 3 16.300000000000001 0.574386391332653 5.999999999999999e-04 [5.163092386908374e-04, -1.282184766466798e-04, 6.862305233426014e-04, -7.200610227755533e-04, -3.820078055923659e-03] 3.365758293364997e-06 [2.114586591862322, -0.51052497496693, 1.150889605992094, -1.025201733819925, -5.385359745850602] 8.359275001771376 23.600000000000001 0 951.496572614600041 0 476.756941761307019 476.755288932321037 14.1 unique 0 3.466828841445114 3 16.0 null null 476.755288932321037 1369.478476348175718 null null -PEP MIDHVYR ES-0001a_PROKKA_00010 1 null null null 0.0 null 0.0 null 1-UNIMOD:35 1340.805156157117153 null 2 475.231646852571032 ms_run[2]:spectrum=122 null null null 1.621961e07 null null null null null M(Oxidation)IDHVYR 30 1854108673051224350 0.035 0.430057957092135 19.800000000000001 0 0.0 0.793775642863409 8.0e-04 [2.243488424085172e-04, 1.951349363025656e-03, -1.995452243363616e-03] 3.914548429800658e-06 [1.281122566553373, 3.397730655083013, -2.894743119387227] 10.252185038306834 19.800000000000001 0 948.449495226212093 0 475.2333984375 475.231646852571032 17.699999999999999 unique 0 3.685749761339805 3 16.699999999999999 null null 475.231646852571032 1340.805156157117153 null null -PEP HAGEVMMAPR ES-0001a_PROKKA_00009 1 null null null 0.0 null 0.0 null 6-UNIMOD:35,7-UNIMOD:35 1365.221746963075475 null 2 565.757703393020961 ms_run[2]:spectrum=240 null null null 1.144956015625e05 null null null null null HAGEVM(Oxidation)M(Oxidation)APR 31 8028454635397639934 0.024 0.109483637643421 20.5 1 16.600000000000001 -1.413779330412132e04 -2.2e-03 [4.460714008587274e-04, 7.322261145077391e-04, 0.147417696802336] 7.18622797809698e-03 [2.547247990224068, 3.501743418345251, 187.005539958520785] 1.128323598034031e04 20.5 0 1113.503722910930037 0 557.760765114683977 565.757703393020961 18.5 unique 0 -1.413491717457299e04 3 15.5 null null 565.757703393020961 1365.221746963075475 null null -PEP IASVSANAGADPHR ES-0001a_PROKKA_00977 1 null null null 0.0 null 0.0 null null 1368.954833187076019 null 3 455.900504111704379 ms_run[2]:spectrum=285 null null null 6.8089192e07 null null null null null IASVSANAGADPHR 32 13936574731846433390 1.1e-08 0.530029915533974 45.899999999999999 2 17.800000000000001 0.636931176818751 9.0e-04 [3.968495553579032e-04, 2.92916539081034e-04, 8.357710700011012e-04, 8.949490494956081e-04, 2.89522146613308e-03, -2.082939377828552e-03, 3.800027826628138e-04, -1.283220779669136e-03, 5.430671668591458e-03, 1.536897801770465e-04, -8.407676773458661e-06] 4.008907926047467e-06 [2.266171358129462, 1.582234017548274, 3.070875893876649, 2.186906319537448, 5.522517198362515, -3.499005485753359, 0.582543880952495, -1.773989059152069, 6.485187903513573, 0.169181137212131, -8.445976426503965e-03] 8.516264527612968 45.899999999999999 0 1364.680554066534114 0 455.902110228402023 455.900504111704379 21.899999999999999 unique 0 3.522954423517553 11 18.899999999999999 null null 455.900504111704379 1368.954833187076019 null null -PEP SGTQVATGDTGRYDAK ES-0001a_PROKKA_00371 1 null null null 0.0 null 0.0 null null 1339.129998886821113 null 3 542.928788937870991 ms_run[2]:spectrum=65 null null null 1.1086e07 null null null null null SGTQVATGDTGRYDAK 33 10181358076211083327 0.014 0.269885708775312 21.399999999999999 0 0.0 1.552671647170385 2.5e-03 [4.106567974702102e-04, -1.844624570424003e-04, 0.047267640613427, 4.191824294707658e-03, 7.791096576283962e-04] 4.255251305159407e-04 [2.791441558823041, -0.845576554996485, 87.168351618471604, 5.172470701828379, 0.793020138487678] 1456.545462358561508 21.399999999999999 0 1625.767066383710926 1 542.931213378906023 542.928788937870991 17.800000000000001 unique 0 4.465486237661029 5 15.800000000000001 null null 542.928788937870991 1339.129998886821113 null null +PEP MIDHVYR ES-0001a_PROKKA_00010 1 null null null 0.0 null 0.0 null 1-UNIMOD:35 1340.805156157117153 null 2 475.231646852571032 ms_run[2]:spectrum=122 null null null 1.621961e07 null null null null null M(Oxidation)IDHVYR 30 1854108673051224350 0.035 0.430057957092135 19.800000000000001 0 0.0 0.793775642863409 8.0e-04 [2.243488424085172e-04, 1.951349362798283e-03, -1.995452243590989e-03] 3.914548429838008e-06 [1.281122566553373, 3.397730654687104, -2.894743119717071] 10.252185038348063 19.800000000000001 0 948.449495226212093 0 475.2333984375 475.231646852571032 17.699999999999999 unique 0 3.685749761339805 3 16.699999999999999 null null 475.231646852571032 1340.805156157117153 null null +PEP HAGEVMMAPR ES-0001a_PROKKA_00009 1 null null null 0.0 null 0.0 null 6-UNIMOD:35,7-UNIMOD:35 1365.221746963075475 null 2 565.757703393020961 ms_run[2]:spectrum=240 null null null 1.144956015625e05 null null null null null HAGEVM(Oxidation)M(Oxidation)APR 31 8028454635397639934 0.024 0.109483637643421 20.5 1 16.600000000000001 -1.413779330412132e04 -2.2e-03 [4.460714008587274e-04, 7.322261145361608e-04, 0.147417696802449] 7.186227978106721e-03 [2.547247990224068, 3.501743418481173, 187.005539958664997] 1.128323598034972e04 20.5 0 1113.503722910930037 0 557.760765114683977 565.757703393020961 18.5 unique 0 -1.413491717457299e04 3 15.5 null null 565.757703393020961 1365.221746963075475 null null +PEP IASVSANAGADPHR ES-0001a_PROKKA_00977 1 null null null 0.0 null 0.0 null null 1368.954833187076019 null 3 455.900504111704379 ms_run[2]:spectrum=285 null null null 6.8089192e07 null null null null null IASVSANAGADPHR 32 13936574731846433390 1.1e-08 0.530029915533974 45.899999999999999 2 17.800000000000001 0.636931176818751 9.0e-04 [3.968495553579032e-04, 2.929165391094557e-04, 8.357710700579446e-04, 8.949490495524515e-04, 2.895221466246767e-03, -2.082939377714865e-03, 3.800027827765007e-04, -1.28322077955545e-03, 5.430671668705145e-03, 1.536897802907333e-04, -8.407676659771823e-06] 4.008907926058711e-06 [2.266171358129462, 1.582234017701798, 3.07087589408551, 2.186906319676352, 5.52251719857937, -3.499005485562384, 0.582543881126777, -1.773989058994903, 6.485187903649337, 0.169181137337277, -8.445976312299246e-03] 8.516264527613952 45.899999999999999 0 1364.680554066534114 0 455.902110228402023 455.900504111704379 21.899999999999999 unique 0 3.522954423517553 11 18.899999999999999 null null 455.900504111704379 1368.954833187076019 null null +PEP SGTQVATGDTGRYDAK ES-0001a_PROKKA_00371 1 null null null 0.0 null 0.0 null null 1339.129998886821113 null 3 542.928788937870991 ms_run[2]:spectrum=65 null null null 1.1086e07 null null null null null SGTQVATGDTGRYDAK 33 10181358076211083327 0.014 0.269885708775312 21.399999999999999 0 0.0 1.552671647170385 2.5e-03 [4.106567974702102e-04, -1.844624569855569e-04, 0.047267640613313, 4.191824294707658e-03, 7.791096576283962e-04] 4.255251305135468e-04 [2.791441558823041, -0.845576554735915, 87.168351618261937, 5.172470701828379, 0.793020138487678] 1456.54546234882946 21.399999999999999 0 1625.767066383710926 1 542.931213378906023 542.928788937870991 17.800000000000001 unique 0 4.465486237661029 5 15.800000000000001 null null 542.928788937870991 1339.129998886821113 null null PEP HWAESAPR ES-0001a_PROKKA_02208 1 null null null 0.0 null 0.0 null null 1368.629636526768081 null 2 477.233035423770957 ms_run[2]:spectrum=279 null null null 3.759738e06 null null null null null HWAESAPR 34 15811276187092556632 9.4e-03 0.222738076687575 22.100000000000001 1 13.4 2.827248603737057 2.7e-03 [6.641873013109034e-04, 8.025050004221157e-04, -9.207637117469858e-04, 4.263031501068326e-04, 8.818305188924569e-04] 5.512037318994108e-07 [3.792777939001657, 2.475755472305329, -1.646327464264976, 0.676327524726675, 1.080145328490341] 4.177886994202052 22.100000000000001 0 952.454216426866083 0 477.235765122742976 477.233035423770957 16.100000000000001 unique 0 5.719844959170867 4 16.300000000000001 null null 477.233035423770957 1368.629636526768081 null null -PEP DPGLTEQGHAEAK ES-0001a_PROKKA_02449 1 null null null 0.0 null 0.0 null null 1339.149056324709818 null 3 451.552881746470973 ms_run[2]:spectrum=137 null null null 1.981166e07 null null null null null DPGLTEQGHAEAK 35 908238849079171658 7.0e-07 0.302959220782806 38.600000000000001 2 18.300000000000001 0.984770433233666 1.3e-03 [1.944075404765044e-04, 3.551449014480568e-04, 3.299995690326796e-04, 3.372701323200999e-04, 8.178875546036579e-04, -2.056902425351836e-03, -4.81997960832814e-05, 2.215255947589867e-03, 1.429044737506047e-03, 1.103241490227447e-03] 1.251975620516967e-06 [1.321486192795953, 1.666666322669926, 1.512719190706856, 1.248647103180535, 1.955594489035446, -3.70420471227624, -0.078717962773998, 2.992098802350975, 1.643692623856852, 1.136824589730579] 3.27456038400177 38.600000000000001 0 1351.638149866881122 0 451.55462901069194 451.55288174647103 19.300000000000001 unique 0 3.86945647241158 9 17.100000000000001 null null 451.552881746470973 1339.149056324709818 null null -PEP TEAAAPVHVQK ES-0001a_PROKKA_03028 1 null null null 0.0 null 0.0 null null 1347.006562977680915 null 2 575.814390290621077 ms_run[2]:spectrum=155 null null null 7.6070752e07 null null null null null TEAAAPVHVQK 36 1514245238518921079 3.5e-03 0.324910456376053 23.800000000000001 2 15.6 0.55377277000534 5.999999999999999e-04 [6.636513366231611e-04, -0.286774076856432, 3.179500403120983e-04, 1.580635965183319e-03, 3.035350390177882e-03, 3.195106649172885e-03] 0.013876578330056 [2.87173679198216, -1042.165335487494531, 1.052345454262119, 2.234367440854582, 3.899188241635945, 3.47093780496154] 1.819602507369676e05 23.800000000000001 0 1149.614865388359931 0 575.816392228501968 575.814390290621077 15.800000000000001 unique 0 3.476706929607451 4 16.100000000000001 null null 575.814390290621077 1347.006562977680915 null null -PEP AAEIDYTHK ES-0001a_PROKKA_00014 1 null null null 0.0 null 0.0 null null 1368.112306944289458 null 2 524.258916583271002 ms_run[2]:spectrum=247 null null null 5.6613552e07 null null null null null AAEIDYTHK 37 7432567594246648638 7.9e-03 0.231989099699003 22.399999999999999 3 15.800000000000001 1.214924904088085 1.3e-03 [2.897852646412957e-04, 9.279940010742394e-04, 6.592857667442331e-04, 0.011726300745295, 4.933007453473692e-04] 2.484651986740437e-05 [2.025316025821626, 3.410186765720097, 2.320025980724721, 17.678770361273113, 0.743695995704724] 49.287079689022136 22.399999999999999 0 1046.504554103427836 0 524.261077574121032 524.258916583271002 15.5 unique 0 4.121991599328913 3 13.4 null null 524.258916583271002 1368.112306944289458 null null -PEP AREALQGEHEAHAEAVAR ES-0001a_PROKKA_02337 0 null null null 0.0 null 0.0 null null 1366.609645930902616 null 4 486.996325245546075 ms_run[2]:spectrum=280 null null null 2.0062e07 null null null null null AREALQGEHEAHAEAVAR 38 12248387919634632679 1.1e-03 0.296291444851596 25.800000000000001 3 14.300000000000001 0.714716310562463 1.4e-03 [4.315775750853845e-04, 0.140734079282396, 9.367664695787425e-04, 6.145028384366924e-03, 5.285283843363686e-04, 5.5602325039672e-04, 1.731269505398814e-03, -2.754786930836417e-04, 4.491653018476427e-03] 2.14870804319175e-03 [2.464482387002851, 674.548660255855907, 2.250427326618279, 14.350180309401242, 1.234229960101391, 1.027182197572619, 3.174869252729347, -0.446958026891092, 5.961841956424117] 5.001556307045708e04 25.800000000000001 0 1943.957587371968202 1 486.998083453989978 486.996325245546188 18.699999999999999 non-unique 0 3.610311521144531 7 15.5 null null 486.996325245546075 1366.609645930902616 null null +PEP DPGLTEQGHAEAK ES-0001a_PROKKA_02449 1 null null null 0.0 null 0.0 null null 1339.149056324709818 null 3 451.552881746470973 ms_run[2]:spectrum=137 null null null 1.981166e07 null null null null null DPGLTEQGHAEAK 35 908238849079171658 7.0e-07 0.302959220782806 38.600000000000001 2 18.300000000000001 0.984770433359551 1.3e-03 [1.944075404765044e-04, 3.551449014764785e-04, 3.29999569089523e-04, 3.372701323200999e-04, 8.178875546036579e-04, -2.056902425351836e-03, -4.81997960832814e-05, 2.215255947589867e-03, 1.429044737506047e-03, 1.10324149011376e-03] 1.251975620498461e-06 [1.321486192795953, 1.666666322803307, 1.512719190967426, 1.248647103180535, 1.955594489035446, -3.70420471227624, -0.078717962773998, 2.992098802350975, 1.643692623856852, 1.136824589613432] 3.274560384049534 38.600000000000001 0 1351.638149866881122 0 451.55462901069194 451.552881746470973 19.300000000000001 unique 0 3.869456472537465 9 17.100000000000001 null null 451.552881746470973 1339.149056324709818 null null +PEP TEAAAPVHVQK ES-0001a_PROKKA_03028 1 null null null 0.0 null 0.0 null null 1347.006562977680915 null 2 575.814390290621077 ms_run[2]:spectrum=155 null null null 7.6070752e07 null null null null null TEAAAPVHVQK 36 1514245238518921079 3.5e-03 0.324910456376053 23.800000000000001 2 15.6 0.55377277000534 5.999999999999999e-04 [6.636513365947394e-04, -0.286774076856432, 3.179500402552549e-04, 1.580635965183319e-03, 3.035350390177882e-03, 3.195106649172885e-03] 0.013876578330054 [2.871736791859174, -1042.165335487494531, 1.05234545407398, 2.234367440854582, 3.899188241635945, 3.47093780496154] 1.81960250736946e05 23.800000000000001 0 1149.614865388359931 0 575.816392228501968 575.814390290621077 15.800000000000001 unique 0 3.476706929607451 4 16.100000000000001 null null 575.814390290621077 1347.006562977680915 null null +PEP AAEIDYTHK ES-0001a_PROKKA_00014 1 null null null 0.0 null 0.0 null null 1368.112306944289458 null 2 524.258916583271002 ms_run[2]:spectrum=247 null null null 5.6613552e07 null null null null null AAEIDYTHK 37 7432567594246648638 7.9e-03 0.231989099699003 22.399999999999999 3 15.800000000000001 1.214924904088085 1.3e-03 [2.897852646697174e-04, 9.279940011310828e-04, 6.592857667442331e-04, 0.011726300745295, 4.933007453473692e-04] 2.484651986731467e-05 [2.025316026020267, 3.410186765928986, 2.320025980724721, 17.678770361273113, 0.743695995704724] 49.287079688512627 22.399999999999999 0 1046.504554103427836 0 524.261077574121032 524.258916583271002 15.5 unique 0 4.121991599328913 3 13.4 null null 524.258916583271002 1368.112306944289458 null null +PEP AREALQGEHEAHAEAVAR ES-0001a_PROKKA_02337 0 null null null 0.0 null 0.0 null null 1366.609645930902616 null 4 486.996325245546075 ms_run[2]:spectrum=280 null null null 2.0062e07 null null null null null AREALQGEHEAHAEAVAR 38 12248387919634632679 1.1e-03 0.296291444851596 25.800000000000001 3 14.300000000000001 0.714716310795908 1.4e-03 [4.315775750853845e-04, 0.140734079282396, 9.367664695787425e-04, 6.145028384366924e-03, 5.28528384393212e-04, 5.5602325039672e-04, 1.731269505398814e-03, -2.754786930836417e-04, 4.491653018476427e-03] 2.148708043191512e-03 [2.464482387002851, 674.548660255855907, 2.250427326618279, 14.350180309401242, 1.234229960234133, 1.027182197572619, 3.174869252729347, -0.446958026891092, 5.961841956424117] 5.001556307045452e04 25.800000000000001 0 1943.957587371968202 1 486.998083453989978 486.996325245546075 18.699999999999999 non-unique 0 3.610311521377976 7 15.5 null null 486.996325245546075 1366.609645930902616 null null PEP EVPEAIRK ES-0001a_PROKKA_00034 1 null null null 0.0 null 0.0 null null 1360.432160975934039 null 2 471.274369115170998 ms_run[2]:spectrum=301 null null null 1.884832e07 null null null null null EVPEAIRK 39 8307032032160154054 2.5e-03 0.311942510974264 24.399999999999999 1 15.199999999999999 0.682136163280244 5.999999999999999e-04 [-1.17289190768588e-05, 1.425899902130823e-03, -2.549393916524423e-04, 7.934819735737619e-04] 5.915544225108036e-07 [-0.051191545354084, 2.92591261603431, -0.413609052030576, 1.11220648061148] 2.259836546709944 24.399999999999999 0 940.534828243380048 1 471.276052927517924 471.274369115170998 19.800000000000001 unique 0 3.57289183811758 4 18.600000000000001 null null 471.274369115170998 1360.432160975934039 null null -PEP HHIDVQEDDYSK ES-0001a_PROKKA_02243 1 null null null 0.0 null null 0.0 null 2643.051593606741335 null 3 495.891674778370998 ms_run[3]:spectrum=276 null null null null null null 6.183844e07 null null HHIDVQEDDYSK 40 11636883978787665968 2.6e-06 0.157842864906593 36.299999999999997 5 18.5 1.153123307187215 1.7e-03 [6.626830081586377e-04, 7.840940205028346e-04, 9.331092488764625e-04, -8.346429676180378e-04, 2.188413019439395e-04, -9.993572211897117e-05, -9.84615058541749e-04, -2.92690108244642e-03] 1.654862419243367e-06 [4.504590939917608, 2.849954503968444, 2.970411596028147, -2.10127344956312, 0.434868042745428, -0.165922250597181, -1.569702895155643, -3.870002780367201] 8.306394511744596 36.299999999999997 0 1484.654910407544094 0 495.893768310546989 495.891674778370998 25.0 unique 0 4.221753020811237 7 17.800000000000001 null null null null 495.891674778370998 2643.051593606741335 +PEP HHIDVQEDDYSK ES-0001a_PROKKA_02243 1 null null null 0.0 null null 0.0 null 2643.051593606741335 null 3 495.891674778370998 ms_run[3]:spectrum=276 null null null null null null 6.183844e07 null null HHIDVQEDDYSK 40 11636883978787665968 2.6e-06 0.157842864906593 36.299999999999997 5 18.5 1.153123307187215 1.7e-03 [6.626830081586377e-04, 7.840940205028346e-04, 9.331092488764625e-04, -8.346429676748812e-04, 2.188413019439395e-04, -9.993572211897117e-05, -9.846150586554359e-04, -2.92690108244642e-03] 1.654862419275218e-06 [4.504590939917608, 2.849954503968444, 2.970411596028147, -2.101273449706227, 0.434868042745428, -0.165922250597181, -1.569702895336885, -3.870002780367201] 8.306394511947161 36.299999999999997 0 1484.654910407544094 0 495.893768310546989 495.891674778370998 25.0 unique 0 4.221753020811237 7 17.800000000000001 null null null null 495.891674778370998 2643.051593606741335 PEP MRSEHDPIEQVK ES-0001a_PROKKA_00113 1 null null null 0.04 null null 0.04 1-UNIMOD:35 2532.186827553377952 null 3 495.5769214507377 ms_run[3]:spectrum=267 null null null null null null 3.000859e07 null null M(Oxidation)RSEHDPIEQVK 41 4541108828465316439 5.199999999999998e-04 0.245390434927236 27.100000000000001 4 14.699999999999999 -1.314039517244168 -1.9e-03 [8.097928287043032e-04, -2.39660070218406e-03, 1.653132350156739e-04, 3.443655380124255e-04, -1.153534386730826e-04, -2.139906877118847e-03] 1.857416019108835e-06 [5.504570653663756, -4.761940297948632, 0.31777659429358, 0.558702594282218, -0.16169096009517, -2.770808043932438] 12.161105314509561 27.100000000000001 0 1483.70698132892403 1 495.577789306641023 495.576921450737643 24.600000000000001 unique 0 1.751203225604495 6 16.899999999999999 null null null null 495.5769214507377 2532.186827553377952 -PEP HGPSMMVGGTEQAYER ES-0001a_PROKKA_00887 1 null null null 0.04 null null 0.04 5-UNIMOD:35,6-UNIMOD:35 1693.903828938687184 null 3 594.59090247770439 ms_run[3]:spectrum=170 null null null null null null 5.4103352e07 null null HGPSM(Oxidation)M(Oxidation)VGGTEQAYER 42 15885310422564479494 1.3e-03 0.308824566650602 25.5 2 13.199999999999999 0.649389220369545 1.2e-03 [0.143118870816181, 1.40598295502059e-03, 5.520615376326532e-04, 4.947062022893078e-04, 7.241857503004212e-04, 4.071351133916323e-05, 3.372262644006696e-03, -6.195798917133288e-03] 2.565903795727148e-03 [428.931212216140409, 2.671915603714684, 1.025637231108273, 0.74244474120269, 1.075667308042043, 0.051188580550343, 3.536971236907007, -6.131699537537191] 2.296063329747011e04 25.5 0 1780.752036395567757 0 594.593740827922034 594.59090247770439 14.9 unique 0 4.773618644039585 6 15.6 null null null null 594.59090247770439 1693.903828938687184 -PEP DAEAEAYAR ES-0001a_PROKKA_03080 1 null null null 0.0 null null 0.0 null 1639.822992317327817 null 2 498.22507395567095 ms_run[3]:spectrum=159 null null null null null null 7.0638992e07 null null DAEAEAYAR 43 2682651823457244033 4.2e-05 0.386267536460712 31.5 2 17.399999999999999 1.253514172038339 1.3e-03 [8.710621729903778e-04, 1.407148222199339e-03, 1.126552142011406e-03, 1.487515235453429e-03, 1.41139040545113e-03, 2.477899281529972e-04, -1.728305373148942e-03] 1.322973575203568e-06 [4.656310246505134, 4.451395819887964, 2.752929484848833, 3.097334867661562, 2.316416345379301, 0.364216869936469, -2.135347929944892] 5.731759179804258 31.5 0 994.436844042182088 0 498.227239790278986 498.22507395567095 19.100000000000001 unique 0 4.347100780858068 6 17.899999999999999 null null null null 498.22507395567095 1639.822992317327817 -PEP QQIEETTSDYDREK ES-0001a_PROKKA_00962 1 null null null 0.0 null null 0.0 0-UNIMOD:28 2376.506686675307719 null 3 575.591842991037652 ms_run[3]:spectrum=284 null null null null null null 9.733957e06 null null .(Gln->pyro-Glu)QQIEETTSDYDREK 44 7667142817179785782 2.5e-11 0.383483647764141 56.399999999999999 7 19.800000000000001 580.903863645461797 1.003 [8.642106935212723e-04, 1.000020680351099e-03, 6.53091673484596e-04, 7.325936460915727e-04, 0.024283889091237, 1.10917060965221e-04, 0.019273344071166, -5.641228342483373e-04, 0.020303791786205, -0.01128717749782, -2.495471112752057e-03, -3.440126184614201e-03, -3.192214939076621e-03, 0.021740811981545, -4.708929772505144e-03, -0.017714165907819, -9.679183645630474e-03] 1.474180018897589e-04 [5.874476351872784, 4.165054117870455, 1.849164932059151, 1.694812289145551, 50.358053040508082, 0.202668397915087, 31.530149277877797, -0.794151317330779, 28.503958264238346, -13.980212167525961, -3.023443838489126, -3.770390702981253, -3.149838782997954, 21.410628645461138, -4.225145857672586, -14.244908133112796, -7.482872657006554] 302.20727493647405 56.399999999999999 0 1724.756790149228891 1 575.928466796875 575.591842991037652 28.5 unique 0 584.830744105228291 12 20.800000000000001 null null null null 575.591842991037652 2376.506686675307719 +PEP HGPSMMVGGTEQAYER ES-0001a_PROKKA_00887 1 null null null 0.04 null null 0.04 5-UNIMOD:35,6-UNIMOD:35 1693.903828938687184 null 3 594.59090247770439 ms_run[3]:spectrum=170 null null null null null null 5.4103352e07 null null HGPSM(Oxidation)M(Oxidation)VGGTEQAYER 42 15885310422564479494 1.3e-03 0.308824566650602 25.5 2 13.199999999999999 0.649389220369545 1.2e-03 [0.143118870816181, 1.40598295502059e-03, 5.520615376326532e-04, 4.947062022893078e-04, 7.241857503004212e-04, 4.071351133916323e-05, 3.372262643893009e-03, -6.195798917246975e-03] 2.565903795728405e-03 [428.931212216140409, 2.671915603714684, 1.025637231108273, 0.74244474120269, 1.075667308042043, 0.051188580550343, 3.536971236787767, -6.131699537649701] 2.296063329747375e04 25.5 0 1780.752036395567757 0 594.593740827922034 594.59090247770439 14.9 unique 0 4.773618644039585 6 15.6 null null null null 594.59090247770439 1693.903828938687184 +PEP DAEAEAYAR ES-0001a_PROKKA_03080 1 null null null 0.0 null null 0.0 null 1639.822992317327817 null 2 498.22507395567095 ms_run[3]:spectrum=159 null null null null null null 7.0638992e07 null null DAEAEAYAR 43 2682651823457244033 4.2e-05 0.386267536460712 31.5 2 17.399999999999999 1.253514171924247 1.3e-03 [8.710621729903778e-04, 1.407148222199339e-03, 1.126552141954562e-03, 1.487515235396586e-03, 1.411390405337443e-03, 2.477899280393103e-04, -1.728305373148942e-03] 1.322973575169494e-06 [4.656310246505134, 4.451395819887964, 2.752929484709926, 3.097334867543201, 2.316416345192714, 0.364216869769365, -2.135347929944892] 5.731759179841272 31.5 0 994.436844042182088 0 498.227239790278986 498.225073955671007 19.100000000000001 unique 0 4.347100780743976 6 17.899999999999999 null null null null 498.22507395567095 1639.822992317327817 +PEP QQIEETTSDYDREK ES-0001a_PROKKA_00962 1 null null null 0.0 null null 0.0 0-UNIMOD:28 2376.506686675307719 null 3 575.591842991037652 ms_run[3]:spectrum=284 null null null null null null 9.733957e06 null null .(Gln->pyro-Glu)QQIEETTSDYDREK 44 7667142817179785782 2.5e-11 0.383483647764141 56.399999999999999 7 19.800000000000001 580.90386364526421 1.003 [8.642106935212723e-04, 1.000020680351099e-03, 6.53091673484596e-04, 7.325936460915727e-04, 0.024283889091237, 1.10917060965221e-04, 0.019273344071166, -5.641228343620242e-04, 0.020303791786205, -0.011287177497934, -2.495471112865744e-03, -3.440126184727887e-03, -3.192214939190308e-03, 0.021740811981431, -4.708929772732518e-03, -0.017714165908046, -9.679183645857847e-03] 1.474180018910204e-04 [5.874476351872784, 4.165054117870455, 1.849164932059151, 1.694812289145551, 50.358053040508082, 0.202668397915087, 31.530149277877797, -0.794151317490823, 28.503958264238346, -13.980212167666771, -3.023443838626866, -3.770390703105854, -3.149838783110131, 21.410628645349174, -4.225145857876599, -14.244908133295636, -7.482872657182333] 302.207274938131206 56.399999999999999 0 1724.756790149228891 1 575.928466796875 575.591842991037765 28.5 unique 0 584.830744105030703 12 20.800000000000001 null null null null 575.591842991037652 2376.506686675307719 PEP AVAAGMNPMDLKR ES-0001a_PROKKA_00962 1 null null null 0.0 null null 0.0 6-UNIMOD:35,9-UNIMOD:35 1885.877849182207683 null 3 469.235730350104348 ms_run[3]:spectrum=207 null null null null null null 2.82256e07 null null AVAAGM(Oxidation)NPM(Oxidation)DLKR 45 12700797421507150295 4.699999999999999e-05 0.231932483669655 31.300000000000001 2 15.5 715.190067828545125 1.007 [8.938249125378661e-04, 0.039759889785756, 6.686248113965121e-04, 2.651298189562112e-04, 8.474812041185942e-04, -2.043674430751707e-05, -1.019706834313183e-03, -4.042453425654458e-04] 1.962941003473962e-04 [5.223600378653026, 190.555422477745964, 2.761201878392123, 0.874398583662762, 2.035756221544278, -0.038463741024303, -1.315049808569087, -0.454486039479015] 4481.570079662537864 31.300000000000001 0 1405.692139851450065 1 469.572631835938012 469.235730350104348 26.800000000000001 unique 0 717.979181982361865 7 18.399999999999999 null null null null 469.235730350104348 1885.877849182207683 PEP LNHDEISVEGRK ES-0001a_PROKKA_00653 1 null null null 0.0 null null 0.0 null 2391.297579540218976 null 3 466.244159498204283 ms_run[3]:spectrum=271 null null null null null null 6.7890784e07 null null LNHDEISVEGRK 46 5032776509579168616 1.0e-04 0.289769806926533 29.899999999999999 5 17.399999999999999 1.674635728505091 2.4e-03 [-0.022738075314919, 6.742710618254932e-04, -0.045938477506922, 1.096320312967691e-03, -3.318397605198697e-04, -7.945962299800158e-04, -1.74725459714864e-04, -2.768283928730853e-03, -2.681942167896523e-03] 2.552282249154803e-04 [-124.18376240042798, 1.87175135627158, -125.792265211249969, 2.240690098159382, -0.564021071224746, -1.304193091745228, -0.258707496482192, -3.83234755131253, -3.313580889941622] 3006.105524364722442 29.899999999999999 0 1395.712991461683032 1 466.246223181175026 466.244159498204283 24.100000000000001 unique 0 4.4261851407722 4 17.899999999999999 null null null null 466.244159498204283 2391.297579540218976 -PEP VDVSANMTHHDEER ES-0001a_PROKKA_00834 1 null null null 0.04 null null 0.04 null 2268.57138544034342 null 3 547.242490461371062 ms_run[3]:spectrum=235 null null null null null null 5.39523e07 null null VDVSANMTHHDEER 47 16867376966425626307 1.7e-03 0.319826062108759 25.100000000000001 2 16.199999999999999 605.457804140196572 0.994 [-0.106731192609587, 1.091525267923998e-03, 1.20957762294438e-03, -1.282986151693422e-03, 1.096967287708139e-03, -2.637075017219104e-03, -5.218390883783286e-03] 1.60401916460884e-03 [-987.749168263221236, 6.233050448080061, 5.623258048101165, -2.961620236744976, 1.600734420933274, -3.206759302846168, -5.651299717669949] 1.394759672992691e05 25.100000000000001 0 1639.699638693620955 0 547.575805664062955 547.242490461371062 17.199999999999999 unique 0 609.081364297717187 5 14.6 null null null null 547.242490461371062 2268.57138544034342 -PEP NDDPTAASRPYDEDR ES-0001a_PROKKA_02368 1 null null null 0.04 null null 0.04 null 2012.688995184908436 null 3 574.583570239304436 ms_run[3]:spectrum=210 null null null null null null 1.061026e08 null null NDDPTAASRPYDEDR 48 15549990804335418566 1.6e-03 0.297254689017388 25.199999999999999 3 17.699999999999999 0.97197498581862 1.7e-03 [9.072695108898188e-04, 6.804109509630507e-04, 9.260299777906766e-04, 9.220922727877223e-04, 1.428631536271041e-03, -6.9455691686926e-03, -4.143706718878093e-03] 1.081843088400871e-05 [5.180875603673995, 2.957316510829397, 3.191601146640034, 2.671925055518596, 3.408088642542584, -10.075923850703171, -5.216596053126183] 32.104077240769847 25.199999999999999 0 1720.730556760172931 0 574.586375485975054 574.583570239304436 20.899999999999999 unique 0 4.882225695124221 5 16.600000000000001 null null null null 574.583570239304436 2012.688995184908436 -PEP QQIEETTSDYDREK ES-0001a_PROKKA_00962 1 null null null 0.0 null null 0.0 null 2419.467949418945864 null 3 581.267359324371 ms_run[3]:spectrum=299 null null null null null null 1.1232919552e10 null null QQIEETTSDYDREK 49 7704484650440628992 7.600000000000003e-08 0.403310583322612 42.5 3 25.100000000000001 2.501883924363955 4.4e-03 [1.012686208184732e-03, 7.472956346532556e-04, 0.17973485702413, 6.09991229168827e-04, -3.765736789773655e-04, -1.428522772016549e-03, -4.947026036347779e-03, -2.896905210377554e-03, -6.009503963809948e-03, -1.515939773298669e-03] 3.295536933869604e-03 [7.846275146639085, 2.906357929507246, 434.992711655548874, 1.411178812404145, -0.688077952581736, -2.011021664715218, -5.993680035809363, -3.17501855643426, -5.929728734764926, -1.360195832826469] 1.90066554046183e04 42.5 0 1740.784611363186059 1 581.271128049516051 581.267359324371 31.0 unique 0 6.483634569522703 8 25.399999999999999 null null null null 581.267359324371 2419.467949418945864 -PEP MATAGTNAEMAAEKAAR ES-0001a_PROKKA_02758 1 null null null 0.0 null null 0.0 1-UNIMOD:35,10-UNIMOD:35 2454.480602716632802 null 3 575.934669186904444 ms_run[3]:spectrum=261 null null null null null null 2.374671e07 null null M(Oxidation)ATAGTNAEM(Oxidation)AAEKAAR 50 1879209601617812738 6.600000000000001e-13 0.045492214118156 62.700000000000003 13 21.600000000000001 6.607124913824096 0.011 [0.075075056073558, 0.033073428473585] 8.820683605233999e-04 [173.711740211607122, 76.519217136781336] 4723.193270825271611 62.700000000000003 0 1724.793593977304681 1 575.940734863281023 575.934669186904444 58.600000000000001 unique 0 10.531882696248523 9 21.300000000000001 null null null null 575.934669186904444 2454.480602716632802 -PEP IASVSANAGADPHR ES-0001a_PROKKA_00977 1 null null null 0.04 null null 0.04 null 1778.523671328968021 null 3 455.900504111704379 ms_run[3]:spectrum=126 null null null null null null 5.3506168e07 null null IASVSANAGADPHR 51 4926310518952851654 1.7e-03 0.306442291317293 25.0 2 15.300000000000001 1.632278018837307 2.2e-03 [5.84121412487093e-04, 9.803327970416831e-04, 3.299020274880604e-04, 3.273884130976512e-03, -1.151547319750534e-03, -2.150889807580825e-03] 3.500317488023527e-06 [3.335569353113081, 5.295419319318428, 0.806151846463743, 5.499602463682733, -1.765320874882019, -2.160687797630713] 11.528376255451322 25.0 0 1364.681915403915127 0 455.902452265851025 455.900504111704379 21.800000000000001 unique 0 4.273200246711813 5 15.699999999999999 null null null null 455.900504111704379 1778.523671328968021 +PEP VDVSANMTHHDEER ES-0001a_PROKKA_00834 1 null null null 0.04 null null 0.04 null 2268.57138544034342 null 3 547.242490461371062 ms_run[3]:spectrum=235 null null null null null null 5.39523e07 null null VDVSANMTHHDEER 47 16867376966425626307 1.7e-03 0.319826062108759 25.100000000000001 2 16.199999999999999 605.457804140196572 0.994 [-0.106731192609587, 1.091525267923998e-03, 1.20957762294438e-03, -1.282986151693422e-03, 1.096967287708139e-03, -2.637075017219104e-03, -5.218390883896973e-03] 1.604019164608429e-03 [-987.749168263221236, 6.233050448080061, 5.623258048101165, -2.961620236744976, 1.600734420933274, -3.206759302846168, -5.651299717793066] 1.394759672992636e05 25.100000000000001 0 1639.699638693620955 0 547.575805664062955 547.242490461371062 17.199999999999999 unique 0 609.081364297717187 5 14.6 null null null null 547.242490461371062 2268.57138544034342 +PEP NDDPTAASRPYDEDR ES-0001a_PROKKA_02368 1 null null null 0.04 null null 0.04 null 2012.688995184908436 null 3 574.583570239304436 ms_run[3]:spectrum=210 null null null null null null 1.061026e08 null null NDDPTAASRPYDEDR 48 15549990804335418566 1.6e-03 0.297254689017388 25.199999999999999 3 17.699999999999999 0.97197498581862 1.7e-03 [9.072695108898188e-04, 6.804109509630507e-04, 9.260299777906766e-04, 9.220922727877223e-04, 1.428631536271041e-03, -6.945569168578913e-03, -4.143706718878093e-03] 1.08184308837792e-05 [5.180875603673995, 2.957316510829397, 3.191601146640034, 2.671925055518596, 3.408088642542584, -10.075923850538247, -5.216596053126183] 32.104077240199295 25.199999999999999 0 1720.730556760172931 0 574.586375485975054 574.583570239304436 20.899999999999999 unique 0 4.882225695124221 5 16.600000000000001 null null null null 574.583570239304436 2012.688995184908436 +PEP QQIEETTSDYDREK ES-0001a_PROKKA_00962 1 null null null 0.0 null null 0.0 null 2419.467949418945864 null 3 581.267359324371 ms_run[3]:spectrum=299 null null null null null null 1.1232919552e10 null null QQIEETTSDYDREK 49 7704484650440628992 7.600000000000003e-08 0.403310583322612 42.5 3 25.100000000000001 2.501883924363955 4.4e-03 [1.012686208184732e-03, 7.472956346532556e-04, 0.17973485702413, 6.09991229168827e-04, -3.765736789773655e-04, -1.428522772130236e-03, -4.947026036461466e-03, -2.896905210491241e-03, -6.009503963923635e-03, -1.515939773526043e-03] 3.295536933872567e-03 [7.846275146639085, 2.906357929507246, 434.992711655548874, 1.411178812404145, -0.688077952581736, -2.011021664875262, -5.993680035947102, -3.175018556558861, -5.929728734877103, -1.360195833030483] 1.900665540462587e04 42.5 0 1740.784611363186059 1 581.271128049516051 581.267359324371 31.0 unique 0 6.483634569522703 8 25.399999999999999 null null null null 581.267359324371 2419.467949418945864 +PEP MATAGTNAEMAAEKAAR ES-0001a_PROKKA_02758 1 null null null 0.0 null null 0.0 1-UNIMOD:35,10-UNIMOD:35 2454.480602716632802 null 3 575.934669186904444 ms_run[3]:spectrum=261 null null null null null null 2.374671e07 null null M(Oxidation)ATAGTNAEM(Oxidation)AAEKAAR 50 1879209601617812738 6.600000000000001e-13 0.045492214118156 62.700000000000003 13 21.600000000000001 6.607124914021493 0.011 [0.075075056073558, 0.033073428473585] 8.820683605233999e-04 [173.711740211607122, 76.519217136781336] 4723.193270825271611 62.700000000000003 0 1724.793593977304681 1 575.940734863281023 575.93466918690433 58.600000000000001 unique 0 10.531882696445921 9 21.300000000000001 null null null null 575.934669186904444 2454.480602716632802 +PEP IASVSANAGADPHR ES-0001a_PROKKA_00977 1 null null null 0.04 null null 0.04 null 1778.523671328968021 null 3 455.900504111704379 ms_run[3]:spectrum=126 null null null null null null 5.3506168e07 null null IASVSANAGADPHR 51 4926310518952851654 1.7e-03 0.306442291317293 25.0 2 15.300000000000001 1.632278018837307 2.2e-03 [5.84121412487093e-04, 9.803327970701048e-04, 3.299020275449038e-04, 3.273884131090199e-03, -1.151547319636848e-03, -2.150889807467138e-03] 3.500317487987846e-06 [3.335569353113081, 5.295419319471953, 0.806151846602646, 5.49960246387371, -1.765320874707738, -2.160687797516509] 11.528376255453045 25.0 0 1364.681915403915127 0 455.902452265851025 455.900504111704379 21.800000000000001 unique 0 4.273200246711813 5 15.699999999999999 null null null null 455.900504111704379 1778.523671328968021 PSH sequence PSM_ID accession unique database database_version search_engine search_engine_score[1] modifications retention_time charge exp_mass_to_charge calc_mass_to_charge spectra_ref pre post start end opt_global_FFId_category opt_global_FWHM opt_global_ScanEventNumber opt_global_activation_method opt_global_base_peak_intensity opt_global_cf_id opt_global_feature_id opt_global_identified opt_global_ion_injection_time opt_global_map_index opt_global_rt_align opt_global_rt_raw opt_global_spectrum_reference opt_global_total_ion_count opt_global_cv_MS:1000889_peptidoform_sequence opt_global_E-Value opt_global_PSM_explained_ion_current opt_global_XTandem_score opt_global_b_ions opt_global_b_score opt_global_calibrated_mz_error_ppm opt_global_delta opt_global_fragment_mass_error_da opt_global_fragment_mass_error_da_variance opt_global_fragment_mass_error_ppm opt_global_fragment_mass_error_ppm_variance opt_global_hyperscore opt_global_is_contaminant opt_global_mass opt_global_missed_cleavages opt_global_mz_raw opt_global_mz_ref opt_global_nextscore opt_global_protein_references opt_global_cv_MS:1002217_decoy_peptide opt_global_uncalibrated_mz_error_ppm opt_global_y_ions opt_global_y_score -PSM AHGDLSENAEYHAAK 0 ES-0001a_PROKKA_02064 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1340.063645186759913 3 538.250101368755054 538.249862207404362 ms_run[1]:spectrum=219 R E 38 52 internal 34.608987643258935 1 HCID 3.4973759375e05 0 5785370176150438919 1 6.532086525112 0 1340.063645186759913 1350.101318359380002 spectrum=219 4.865988e06 AHGDLSENAEYHAAK 8.399999999999999e-15 0.499570653936673 70.299999999999997 9 24.899999999999999 0.44433146663662 7.0e-04 [-5.086029759127086e-05, -2.070591978053926e-05, 6.124219427761091e-05, -2.804822337338919e-04, 2.599896540687041e-04, -4.174118226387691e-04, -1.651231990535962e-04, 1.597216974801086e-03, -1.661525834606437e-04, 1.141739240665629e-03, 3.273611263239218e-04, 1.404428255455059e-03, 1.417478421899432e-03, -2.845604299182014e-04, 7.139913997207259e-04, -2.505282399397402e-03, 1.710844722992988e-03] 1.04975804030547e-06 [-0.345723117856535, -0.099022442488319, 0.280734435006384, -0.969899067046051, 0.682115930465384, -0.979274588037528, -0.334098030239428, 2.747816001711164, -0.281944626670212, 1.607380720502823, 0.455711386670567, 1.779133336640007, 1.719503488882102, -0.317805972487502, 0.790310139343994, -2.445530662126883, 1.657033383209536] 1.662501800856901 70.299999999999997 0 1611.728474705952067 0 538.252212161182001 538.249862207404362 28.100000000000001 unique 0 4.365916171351089 10 24.300000000000001 -PSM ARAEDAMDEASGR 1 ES-0001a_PROKKA_00065 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1339.88320030223008 3 460.204849450080019 460.205376301870956 ms_run[1]:spectrum=217 K L 40 52 internal 10.592152715830633 1 HCID 1.29804716796875e04 1 6079338524867909733 1 119.999997317790985 0 1339.883200302231217 1349.895751953130002 spectrum=217 1.184895703125e05 ARAEDAMDEASGR 3.4e-06 0.434528234483428 35.899999999999999 5 17.5 -1.144818852771412 -1.6e-03 [-3.702517883539258e-04, -6.570139531163477e-04, -3.200123733222426e-04, 1.600123511025231e-04, 3.181092884005921e-04, 3.354473695935667e-04, -3.692231746640573e-03, -2.138401139632151e-03] 2.007530375875187e-06 [-1.160036816456196, -1.683746427340118, -0.616294743348211, 0.294545267353177, 0.517849333536571, 0.528863981605796, -4.95382309396997, -2.485482062129352] 3.499056400466703 35.899999999999999 0 1377.592718949927075 1 460.206695556641023 460.205376301870956 22.199999999999999 unique 0 2.866665271640651 7 17.899999999999999 -PSM GLHNEGSQTLQAR 2 ES-0001a_PROKKA_00281 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1360.334233316699965 3 470.908093119528019 470.907658810270959 ms_run[2]:spectrum=205 R L 122 134 internal 13.384653461780705 3 HCID 1.3368134765625e04 2 5360692749920258796 1 119.999997317790985 1 1360.334233316696782 1355.403442382809999 spectrum=205 3.379100390625e04 GLHNEGSQTLQAR 2.7e-03 0.246454686334403 24.300000000000001 1 13.9 0.922281149889566 1.3e-03 [0.03669358856672, 1.833047864181481e-04, -1.587478074327464e-04, 6.64994821761411e-04, -1.580010330997084e-03, 2.108108860738867e-04] 2.266588023882942e-04 [214.440927347881058, 1.0467444178291, -0.644907149031396, 1.777041144871322, -3.242385624287787, 0.358310835334971] 7677.27902232328961 24.300000000000001 0 1409.702449958271245 0 470.909454345703068 470.907658810270959 20.899999999999999 unique 0 3.812924675392222 5 15.4 -PSM MIAEAMQK 3 ES-0001a_PROKKA_00962 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 6-UNIMOD:35 1326.498875208709933 2 469.227065522080977 469.227715781370989 ms_run[1]:spectrum=72 K V 161 168 internal 14.070216008690339 1 HCID 4.349269921875e04 3 17763620004723453763 1 119.999997317790985 0 1326.498875208710388 1315.557006835940001 spectrum=72 2.69727e05 MIAEAM(Oxidation)QK 5.800000000000003e-06 0.208212098181508 34.899999999999999 1 16.899999999999999 -1.3858075048468 -1.3e-03 [-1.631403376904927e-04, -5.939267018675309e-04, 7.14408883482065e-05, 2.805449923357628e-03, -2.549889472902578e-06, -8.488473345096281e-04] 1.741482816905398e-06 [-0.665520836125359, -1.406719942740342, 0.144838869234326, 4.508293143703797, -3.677776801246026e-03, -1.052628051549418] 4.697622049191153 34.899999999999999 0 936.439578110620005 0 469.228942944333028 469.227715781370989 25.100000000000001 unique 0 2.615282347495423 7 19.800000000000001 -PSM DAEAEAYAR 4 ES-0001a_PROKKA_03080 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1332.241489266449889 2 498.223893468179995 498.22507395567095 ms_run[1]:spectrum=118 K E 46 54 internal 17.053721190328179 1 HCID 6532.47265625 4 18116955262754587677 1 119.999997317790985 0 1332.241489266449207 1324.727661132809999 spectrum=118 9.2244546875e04 DAEAEAYAR 8.1e-05 0.158976263862311 30.399999999999999 2 16.0 -2.369385951580624 -2.4e-03 [-5.941231422639248e-04, 6.569431212710697e-05, -2.384486326718616e-04, 4.876379901929795e-03, 1.318182536238055e-03] 5.009722277420597e-06 [-1.879458915734385, 0.136790050083961, -0.391349061266926, 7.167602968129319, 1.628634842994767] 12.213545106234704 30.399999999999999 0 994.43323400281804 0 498.225870267101925 498.22507395567095 20.100000000000001 unique 0 1.598296578396282 6 16.899999999999999 -PSM VGEAAASGELRK 5 ES-0001a_PROKKA_01329 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1335.573521154449963 2 594.322364032104019 594.322579838470915 ms_run[1]:spectrum=175 K N 447 458 internal 11.719468527791332 1 HCID 8.71427734375e04 5 260928917346100589 1 32.913912087679002 0 1335.573521154457694 1340.982299804690001 spectrum=175 8.848173125000001e05 VGEAAASGELRK 9.700000000000001e-14 0.559132163160661 66.099999999999994 5 21.199999999999999 -0.363113188387407 -4.0e-04 [1.819604244133188e-04, 5.998424359177079e-05, -6.641274001140118e-05, 1.762638634090763e-04, -2.923201632256678e-04, -2.666667278390378e-04, -1.39862803126789e-03, -3.991602104633785e-04, -1.304333511598088e-05, -4.192983411712703e-04, -2.952012650894176e-04, -8.71718182679615e-04, -2.893669696959478e-03, 6.304612281837763e-04] 7.445379765440241e-07 [1.236876861402162, 0.381828962142624, -0.232098966419684, 0.49349182870897, -0.702189721822098, -0.622741764440359, -2.801452124865263, -0.662658309525149, -0.018919999052857, -0.551395512097876, -0.355036104625664, -0.96588693257379, -2.805172113578691, 0.579164900525362] 1.321750565929295 66.099999999999994 0 1186.630175130665975 1 594.324656327186972 594.322579838470915 27.800000000000001 unique 0 3.493874852644945 12 22.300000000000001 -PSM YHLGASSDR 6 ES-0001a_PROKKA_01599 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1342.998368909379906 2 503.241048116347997 503.241057987570969 ms_run[2]:spectrum=103 K E 344 352 internal 14.791779518349699 1 HCID 1.03491796875e04 6 16840186854814138036 1 119.999997317790985 1 1342.998368909386954 1327.033935546880002 spectrum=103 5.09338671875e04 YHLGASSDR 0.011 0.422323445055044 21.800000000000001 1 17.0 -0.019615297310882 0.0 [3.279141989764867e-05, 4.072531903602794e-04, 3.336154520638956e-04, -4.09508279972215e-04] 1.375917031173434e-07 [0.187252261118019, 1.352418697097486, 0.563284106973502, -0.580572441548437] 0.646346957805478 21.800000000000001 0 1004.467543299154045 0 503.242507814000987 503.241057987570969 17.199999999999999 unique 0 2.880978026348722 3 17.800000000000001 -PSM LHHLVDDK 7 ES-0001a_PROKKA_00009 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1343.325555567899983 2 488.76454505068898 488.764168567321008 ms_run[2]:spectrum=169 K I 1257 1264 internal 33.801800536276524 1 HCID 9690.1630859375 7 3963149378438661089 1 119.999997317790985 1 1343.325555567897027 1344.216186523440001 spectrum=169 8.708416406250001e04 LHHLVDDK 5.2e-07 0.462030309171498 39.100000000000001 5 18.100000000000001 0.770276121255016 8.0e-04 [3.486591841692643e-04, 8.21362102300327e-04, 3.205254362228516e-04, 1.357709973262899e-03, 2.875845706284963e-05, 5.879707795202194e-04, 4.966451946302186e-04, 2.708061478756463e-03, 2.845286583465168e-03, 1.359374712706085e-03, -8.848513332395669e-04] 1.232378632829727e-06 [2.370012483784645, 3.270401253254304, 1.222727332869118, 3.599761054262602, 0.074079799335166, 1.234622920982742, 0.990727911907926, 4.595237365452857, 3.977260234432882, 1.871442355536136, -1.065552484155355] 3.028497157281308 39.100000000000001 0 975.514537167836011 0 488.765960579927025 488.764168567321008 19.699999999999999 unique 0 3.666415668870277 6 18.199999999999999 -PSM TLHSDEGAHFDK 8 ES-0001a_PROKKA_01616 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1334.525320668790073 3 452.876693575741001 452.877476703937703 ms_run[1]:spectrum=141 K I 267 278 internal 23.035222900873357 2 HCID 7.72456015625e04 8 16277983992011910871 1 119.999997317790985 0 1334.525320668798031 1332.26171875 spectrum=141 3.6063059375e05 TLHSDEGAHFDK 1.5e-10 0.234539029273457 53.299999999999997 6 17.899999999999999 -1.729227521759519 -2.3e-03 [1.486099819203446e-06, 3.141612268677818e-04, 1.072925885523546e-04, 3.841862010176556e-04, 3.020479928181885e-04, -5.487288062795415e-04, -3.372991617425214e-04, 2.442397578874989e-03, -1.329219180888686e-03, -1.713615372068489e-03, -4.118868325804215e-04, 1.115294476903728e-03, -1.904247843299345e-03] 1.356720007771154e-06 [0.010101770679164, 1.460270790523974, 0.409295381306437, 1.090824692092122, 0.738127974618346, -1.004506459946615, -0.608561045148487, 3.621985260344321, -1.795463381020984, -2.133038461754999, -0.50765111449234, 1.214394942776461, -1.893968855034786] 2.633180730340397 53.299999999999997 0 1355.608251326910022 0 452.878514108589002 452.877476703937703 25.300000000000001 unique 0 2.290696059449874 9 18.800000000000001 -PSM TCHAHPTMSETVR 9 ES-0001a_PROKKA_01604 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 2-UNIMOD:4 1336.711504239540091 3 509.900846278282018 509.566139339470965 ms_run[1]:spectrum=193 R E 442 454 internal 11.855606100049148 1 HCID 1.20141552734375e04 9 483781179592362750 1 119.999997317790985 0 1336.711504239545775 1344.832153320309999 spectrum=193 5.1737265625e04 TC(Carbamidomethyl)HAHPTMSETVR 3.7e-04 0.253702344648361 27.699999999999999 3 14.199999999999999 656.846899687877794 1.004 [-7.616664356646652e-05, -1.363217188668386e-03, -1.086680592663924e-03, -1.708904978841019e-03, 8.495376567907442e-04, 1.617532266891431e-03, -2.4594972757086e-03, -1.59058722078953e-03] 1.95021366074545e-06 [-0.434942319488086, -3.415347401639997, -2.311193208927618, -2.890033879202475, 1.399013399533671, 2.239263404444452, -2.987009649539954, -1.72805278607955] 4.514971562827361 27.699999999999999 0 1526.680709434533128 0 509.902862548828011 509.566139339470965 17.899999999999999 unique 0 660.803737456979661 5 15.699999999999999 -PSM VEEHEEGQSAMLTR 10 ES-0001a_PROKKA_02364 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 11-UNIMOD:35 1329.671519123339976 3 544.582618138014027 544.5825128372378 ms_run[1]:spectrum=98 R R 93 106 internal 13.3963864847114 1 HCID 1.70612234375e05 10 10721652433759411040 1 9.462557733059001 0 1329.671519123335656 1320.139770507809999 spectrum=98 2.259707e06 VEEHEEGQSAM(Oxidation)LTR 6.699999999999998e-09 0.404499577129379 46.700000000000003 6 22.0 0.193360553716651 3.0e-04 [-1.8735892936661e-04, 9.327076207910068e-05, -5.741670184988834e-05, 8.755086810197099e-06, 4.463625350581424e-05, 2.675724873597574e-04, 3.322204308915389e-04, -5.757702352866545e-04, 5.70967492649288e-04, -7.074879931678879e-06, 8.233011674292356e-04, -2.647291364610283e-04] 1.404559060821319e-07 [-1.069895212651791, 0.407085633031838, -0.207906007346585, 0.022492154514299, 0.090134227829392, 0.498936088598424, 0.547024096984901, -0.922320883853746, 0.822298817524994, -9.391787019510117e-03, 1.016011724114125, -0.282111425685783] 0.407260159108255 46.700000000000003 0 1630.726025013728986 0 544.584749791274021 544.5825128372378 26.699999999999999 unique 0 4.10764940755482 6 23.100000000000001 -PSM LNADSTVASK 11 ES-0001a_PROKKA_02449 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1319.454846770930089 2 503.264622993984972 503.264199115170982 ms_run[2]:spectrum=22 R E 192 201 internal 10.640166869860778 1 HCID 1.0550435546875e04 11 16957076264515771445 1 119.999997317790985 1 1319.454846770930317 1305.121459960940001 spectrum=22 3.056265625e04 LNADSTVASK 4.4e-03 0.207928511720928 23.399999999999999 2 14.199999999999999 0.842259025647645 9.0e-04 [1.059376448012017e-03, 0.180525453218195, -2.813449617065089e-03, -8.817120072990292e-04, 1.758165341698259e-03] 6.536919197598367e-03 [4.643653286345571, 770.99908666791805, -9.404140152936431, -1.246487966507312, 2.258708378822411] 1.192053710706784e05 23.399999999999999 0 1004.514693054427994 0 503.266082763671989 503.264199115170982 19.600000000000001 unique 0 3.742862107653926 4 16.199999999999999 -PSM EALQGEHEAHAEAVAR 12 ES-0001a_PROKKA_02337,ES-0002a_PROKKA_00085 0 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1373.084785036940048 3 573.280406444382038 573.279932991037867 ms_run[1]:spectrum=351 R,R E,E 308,308 323,323 internal 12.764106366350712 1 HCID 1.19584203125e05 12 2891595416484307757 1 10.549360886216 0 1373.084785036938911 1383.747680664059999 spectrum=351 1.563189125e06 EALQGEHEAHAEAVAR 1.0e-09 0.486938040334701 50.0 4 22.899999999999999 0.82586763799736 1.4e-03 [0.024213820120266, -0.02372843235031, -6.832584944049813e-06, 4.665883267307436e-05, -1.788409605296693e-04, 7.20772130819114e-04, -1.63582201639656e-03, -2.148675220041696e-04, -9.422265042076106e-04, -2.361712563470064e-03, -1.456342518054043e-03, 4.935677752655465e-04, 8.157555630532443e-04, -2.49472360587788e-03] 8.962369600729154e-05 [239.628972763002423, -137.066758400506785, -0.033978255475665, 0.189549797524437, -0.5692471059469, 2.087836088505999, -3.929793269434683, -0.394032406216292, -1.528741459061801, -3.69707852382705, -1.933026413960189, 0.644889396804341, 0.989469463702202, -2.616440621090369] 5819.697591588350406 50.0 0 1716.819389932833019 0 573.28263147699397 573.279932991037867 26.600000000000001 non-unique 0 4.707099971253912 11 22.899999999999999 -PSM TVAVHSTADADAMHVR 13 ES-0001a_PROKKA_03139 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 13-UNIMOD:35 1368.146557833340012 3 566.274236539411959 566.273901911670919 ms_run[1]:spectrum=314 K L 35 50 internal 12.161534730827714 1 HCID 5.060534765625e04 13 12633067014209621448 1 87.147802114487007 0 1368.146557833337738 1374.17578125 spectrum=314 3.2510103125e05 TVAVHSTADADAM(Oxidation)HVR 3.0e-13 0.378091003319412 64.099999999999994 8 20.100000000000001 0.590929124422709 1.0e-03 [6.13798176743785e-03, -8.246355008623141e-06, 5.090558687470548e-06, 7.65787035561516e-06, 6.009246744156371e-04, -7.270741144793647e-04, 4.331466489020386e-04, 1.081011106577989e-03, -3.993901616468065e-04, -2.253879583804519e-04, 2.212929434790567e-04, 4.848552686098628e-04, -6.883186127879526e-04, 1.418259715137538e-03, -2.439052696217914e-03, 1.121310371217987e-03, 1.255065004215794e-03, -3.419468700940342e-04] 2.841119313988888e-06 [60.732816872874651, -0.047090020077396, 0.025310627442491, 0.028137333676147, 2.191657042960237, -1.95856011632312, 1.053253659848191, 2.126769684289337, -0.715391846722971, -0.358145920116248, 0.297298596946419, 0.594635106034592, -0.780024911229831, 1.524338760312571, -2.435528704799094, 1.049429060622324, 1.138386542856977, -0.287464664296793] 205.078830796775748 64.099999999999994 0 1695.800880217922895 0 566.276438949810995 566.273901911670919 27.399999999999999 unique 0 4.480231441907338 12 19.5 -PSM STHIEQVAAR 14 ES-0001a_PROKKA_01511 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1373.139313009530042 2 556.296156333203953 556.296364710870989 ms_run[1]:spectrum=352 K L 78 87 internal 8.723310607010971 2 HCID 9162.568359375 14 408515835869111042 1 119.999997317790985 0 1373.139313009529133 1383.897216796880002 spectrum=352 6.391895703125e04 STHIEQVAAR 1.2e-05 0.418249578776658 33.700000000000003 2 15.199999999999999 -0.374580314117956 -4.0e-04 [-1.546892605119865e-05, -0.027027040081322, 4.231592625956182e-04, 1.572153014876676e-03, 1.527980690127606e-03, 2.070176494385123e-03, 7.085745536414834e-04, 5.105982984332513e-04] 9.84770099475481e-05 [-0.088333819919829, -109.796359694521584, 1.297453889174854, 3.776838968088607, 3.478771541847082, 3.803233086198458, 1.052292445197413, 0.649247065956453] 1564.49189642063584 33.700000000000003 0 1110.577759732865843 0 556.298326330168948 556.296364710870989 20.0 unique 0 3.526212685171654 7 17.199999999999999 -PSM QPDHAHIEYCR 15 ES-0001a_PROKKA_00457 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 10-UNIMOD:4 1372.733814391760006 3 475.882680736401994 475.882455979171084 ms_run[1]:spectrum=345 R G 272 282 internal 14.166971727359718 1 HCID 1.261669140625e04 15 16272699868664386909 1 119.999997317790985 0 1372.733814391756823 1382.813232421880002 spectrum=345 9.0166234375e04 QPDHAHIEYC(Carbamidomethyl)R 1.1e-03 0.304902392745 25.899999999999999 1 11.199999999999999 0.472295685806995 7.0e-04 [-6.941838503848885e-05, 5.690767266628427e-04, -5.80287691036574e-05, 8.569670072802182e-04, -2.206144192996362e-03] 1.442192672217342e-06 [-0.396407035809706, 1.142235961857768, -0.09251216888974, 1.157532325885984, -2.514415271977154] 2.25839105024358 25.899999999999999 0 1424.626212808893115 0 475.884581139781005 475.882455979171084 19.800000000000001 unique 0 4.465725901890174 5 17.5 -PSM CRGFSGTMPATPATAAQR 16 ES-0001a_PROKKA_01939 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.040816326530612 0-UNIMOD:385,1-UNIMOD:4,8-UNIMOD:35 1342.48392363996004 4 470.470438833402 470.470091586621095 ms_run[1]:spectrum=233 R R 214 231 internal 13.72878030239437 1 HCID 1.19163837890625e04 16 15661595637935237873 1 119.999997317790985 0 1342.483923639960494 1352.536499023440001 spectrum=233 7.947425e04 .(Ammonia-loss)C(Carbamidomethyl)RGFSGTM(Oxidation)PATPATAAQR 0.011 0.043046230701053 21.800000000000001 3 15.4 0.738084709558554 1.4e-03 [-1.517954907228614e-04, 0.090749401037215] 4.131513765105368e-03 [-0.866813604110302, 120.46446407993993] 7360.639472222052973 21.800000000000001 0 1877.852649466524099 1 470.472320556641023 470.470091586621095 19.300000000000001 unique 0 4.737750730149585 4 16.800000000000001 -PSM AMDAMEAVNSEIR 17 ES-0001a_PROKKA_00233 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.040816326530612 5-UNIMOD:35 1335.681219909009997 3 485.218312894986013 484.886767318204363 ms_run[1]:spectrum=177 R G 376 388 internal 14.248695934639889 1 HCID 9213.4462890625 17 2397821182616381677 1 119.999997317790985 0 1335.68121990901318 1341.498657226559999 spectrum=177 5.3423546875e04 AMDAM(Oxidation)EAVNSEIR 9.700000000000001e-03 0.124586043831349 22.0 4 16.399999999999999 683.758764165397793 0.995 [9.451933402004897e-03, -1.910360917094067e-03, 0.061117379700477] 1.128486026794981e-03 [92.624172995186925, -9.792800247843379, 183.471155554949235] 9348.894543503520254 22.0 0 1452.633109284645116 0 485.220245361328011 484.886767318204363 19.300000000000001 unique 0 687.744161318398938 1 11.199999999999999 -PSM HGAIADTVQR 18 ES-0001a_PROKKA_02310,ES-0002a_PROKKA_00060 0 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 null 1370.840944700019918 2 534.280617174866961 534.283257147071026 ms_run[1]:spectrum=330 K,K A,A 293,293 302,302 internal 9.183672525030508 2 HCID 7129.2314453125 18 17490602855430133683 1 119.999997317790985 0 1370.840944700018099 1378.563598632809999 spectrum=330 2.55185625e04 HGAIADTVQR 6.5e-03 0.263769288251654 22.699999999999999 2 14.4 -4.941147170064491 -5.3e-03 [-2.230275205477028e-04, 4.416607757775637e-04, -0.26868575194203, -2.671212588552407e-03, 6.71489889100485e-04, 4.467479794584506e-03] 0.012085442538411 [-1.273577284681639, 2.263909424665428, -1009.62324937342521, -3.874929741749567, 0.768753450931737, 4.801158765510657] 1.700794352144329e05 22.699999999999999 0 1066.546681416191859 0 534.28271484375 534.283257147071026 17.199999999999999 non-unique 0 -1.015010883781184 4 15.1 -PSM EIESAGGVAK 19 ES-0001a_PROKKA_00640 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1336.296029554639972 2 480.753267543587981 480.753467067321026 ms_run[1]:spectrum=188 R E 63 72 internal 11.469419233551031 1 HCID 8482.3193359375 19 16456444246742030262 1 119.999997317790985 0 1336.296029554648158 1343.724853515630002 spectrum=188 5.3927765625e04 EIESAGGVAK 2.8e-05 0.29502108296776 32.200000000000003 0 0.0 -0.415022972713853 -4.0e-04 [-2.92834609183501e-05, 1.445943014175555e-04, 1.163353835522685e-04, -7.654634358118528e-04, 3.005065616434877e-05, 1.163224329729928e-03, 6.78180471709311e-04] 3.632574989050447e-07 [-0.199054466642751, 0.662820788712991, 0.366736002676914, -1.774941326884451, 0.059826305673037, 1.973806747652517, 0.944050615160831] 1.327334417605753 32.200000000000003 0 959.491982153634012 0 480.755184699911013 480.753467067321026 17.699999999999999 unique 0 3.572792933693564 7 17.399999999999999 -PSM DHGHMLAVGMSAR 20 ES-0001a_PROKKA_00113 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 5-UNIMOD:35,10-UNIMOD:35 1370.255468685810001 3 471.881830319709025 471.883579598371 ms_run[1]:spectrum=324 R G 93 105 internal 14.8885812137659 1 HCID 1.39820693359375e04 20 8750610341055170222 1 119.999997317790985 0 1370.255468685805909 1377.476318359380002 spectrum=324 4.561177734375e04 DHGHM(Oxidation)LAVGM(Oxidation)SAR 2.9e-03 0.177299688533632 24.199999999999999 3 13.300000000000001 -3.707013207504146 -5.2e-03 [-1.942613564551721e-04, 1.883435709657988e-03, -9.65867718946356e-04, -3.179918767273193e-04, -2.874245242992402e-03, 1.035997622807372e-03, 8.433475427409576e-04] 2.435873334598032e-06 [-1.109310861122328, 5.652770104801247, -2.159939484658186, -0.591893642935273, -4.837095503888335, 1.628124858142548, 1.083534551821508] 10.901078209276209 24.199999999999999 0 1412.623661558814092 0 471.883716920815004 471.883579598371 21.5 unique 0 0.29100915976207 4 15.0 -PSM TGADAIAHGATGK 21 ES-0001a_PROKKA_00615 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1334.84531546881999 2 585.298639745429 585.299104742770851 ms_run[1]:spectrum=153 K G 113 125 internal 11.020001402634543 2 HCID 7984.3330078125 21 1538614739236598383 1 119.999997317790985 0 1334.845315468827948 1335.079345703130002 spectrum=153 4.064709765625e04 TGADAIAHGATGK 5.0e-05 0.249270475605543 31.199999999999999 3 15.699999999999999 -0.794461050910478 -9.0e-04 [-9.487825548148976e-05, 2.724076459230673e-04, 1.35264089010434e-03, 1.764937801112865e-03, -5.903903638682095e-04, 2.048374449714174e-03, 3.544198820122801e-03, 4.645649106919336e-03] 3.253669701584548e-06 [-0.596431926298459, 1.183796716571461, 3.122147646414017, 3.094756335553135, -0.920562474142248, 2.715162341743621, 4.293616360215442, 4.939632965577665] 4.627004516134647 31.199999999999999 0 1168.582726557315937 0 585.300903320312955 585.299104742770851 16.800000000000001 unique 0 3.072920371020095 6 15.1 -PSM AIAATQEAAAK 22 ES-0001a_PROKKA_02568 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1334.968049348759905 2 522.788406838892001 522.787841194921043 ms_run[1]:spectrum=158 R L 191 201 internal 13.125201167049472 2 HCID 1.0964890625e04 22 7593904497987550495 1 119.999997317790985 0 1334.968049348767181 1336.395263671880002 spectrum=158 5.212320703125e04 AIAATQEAAAK 4.0e-04 0.252543641828147 27.600000000000001 2 16.5 1.081976140962626 1.1e-03 [-2.999329625197333e-04, 3.996861204882407e-04, -5.613867075453527e-04, 1.475999195690747e-03, -5.881191831349497e-04, 1.913523712232745e-03] 1.167694772677018e-06 [-2.038795757421335, 2.158966435157295, -2.191499464339949, 2.3909584593107, -0.818682194176208, 2.42399188977588] 5.0531176839569 27.600000000000001 0 1043.562260744241939 0 522.790466308593977 522.787841194921043 17.399999999999999 unique 0 5.021374764443889 5 17.199999999999999 -PSM EESIEEMHHADK 23 ES-0001a_PROKKA_01670 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1321.796503511390029 3 485.545168223758026 485.545398677737694 ms_run[1]:spectrum=40 R L 46 57 internal 11.238176732321396 1 HCID 1.12844462890625e04 23 9584885256633395211 1 119.999997317790985 0 1321.796503511388437 1309.482543945309999 spectrum=40 9.73995859375e04 EESIEEMHHADK 1.2e-05 0.090298991698725 33.700000000000003 3 17.100000000000001 -0.474629108412599 -7.0e-04 [0.036618493513885, -2.776807893383193e-04, 3.546826907268041e-04, 2.689708239586253e-03, 3.122680213891726e-04, 4.076116304759125e-03] 2.091418477461967e-04 [281.572702222459157, -0.83343359032903, 0.754265645533046, 4.42900011173503, 0.360013863968686, 4.090759747306581] 1.305363075982887e04 33.700000000000003 0 1453.613675270961267 0 485.547101809036974 485.545398677737694 17.899999999999999 unique 0 3.507666438438008 8 15.6 -PSM AAVAQQSEIGK 24 ES-0001a_PROKKA_00038 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1373.886915821909952 2 551.298745218466024 551.298573242770999 ms_run[1]:spectrum=358 R R 37 47 internal 9.369755402785149 1 HCID 7297.9287109375 24 1956474085255764048 1 119.999997317790985 0 1373.88691582190495 1386.057495117190001 spectrum=358 6.328161328125e04 AAVAQQSEIGK 1.5e-04 0.369503601180581 29.199999999999999 3 16.800000000000001 0.311946562846278 4.0e-04 [-3.578231551557565e-04, -2.056555509852842e-04, -7.427419851069317e-05, 5.232962478203262e-04, -2.730911435264716e-04, 1.482706271531242e-03, -3.185115292126284e-03, 1.925948146435985e-03] 2.367651032443843e-06 [-2.500834441820469, -1.007452359584689, -0.306728157478102, 1.670874564695223, -0.512084662048508, 2.241933666239682, -4.034804265428493, 2.238310596022525] 5.160323980416382 29.199999999999999 0 1100.582937503389985 0 551.300898895309956 551.298573242770999 22.699999999999999 unique 0 4.21849910707618 5 16.399999999999999 -PSM AMVTGTGTVTK 25 ES-0001a_PROKKA_01941 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 2-UNIMOD:35 1343.966264244480044 2 541.281166393639978 541.281534607770936 ms_run[1]:spectrum=238 K Y 255 265 internal 55.57512082257584 1 HCID 7395.04296875 25 13841324114643036477 1 119.999997317790985 0 1343.966264244477316 1353.84130859375 spectrum=238 3.596691015625e04 AM(Oxidation)VTGTGTVTK 4.7e-03 0.35576544095466 23.300000000000001 1 16.399999999999999 -0.680263610368754 -7.0e-04 [2.296245119453033e-04, 2.412730883293079e-03, -1.262471454538172e-03, -6.899724094182602e-03] 1.581895521701695e-05 [1.048131875929613, 3.63709712754093, -1.651552728136593, -7.990570594015176] 24.920400151539372 23.300000000000001 0 1080.547779853737893 0 541.283287182651975 541.281534607770936 17.5 unique 0 3.237824993066678 4 16.699999999999999 -PSM LHVVAQEGSK 26 ES-0001a_PROKKA_01833 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 null 1342.812269446430037 2 534.294928545314974 534.295833210871024 ms_run[1]:spectrum=235 R S 11 20 internal 11.526443730094821 3 HCID 5702.083984375 26 14800863841171904138 1 119.999997317790985 0 1342.812269446430491 1352.83447265625 spectrum=235 4.05230390625e04 LHVVAQEGSK 8.200000000000001e-03 0.362290478331002 22.399999999999999 2 17.100000000000001 -1.693192235120009 -1.8e-03 [-0.021011669623363, -1.995608064930821e-04, 1.020446588313462e-04, 2.646504496738089e-03, -1.066938814233254e-03] 9.335040757835401e-05 [-89.737916732441576, -0.794587320047522, 0.291374128083683, 3.684025568996926, -1.30521747096298] 1631.23202126641786 22.399999999999999 0 1066.575304157087885 0 534.297026261578026 534.295833210871024 14.4 unique 0 2.232940316663611 3 16.5 -PSM LEGGAREDGLK 27 ES-0001a_PROKKA_01597 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 null 1317.000803990639952 2 572.801569468058006 572.801480258720972 ms_run[1]:spectrum=12 K L 179 189 internal 11.166805182652702 1 HCID 5266.595703125 27 16934477088655128147 1 119.999997317790985 0 1317.000803990632448 1303.42919921875 spectrum=12 4.063264453125e04 LEGGAREDGLK 4.4e-03 0.320505794612185 23.399999999999999 3 15.1 0.155742155194225 2.0e-04 [9.765741481260193e-05, 8.921240026324995e-04, 4.068366757792319e-04, -1.176313828523234e-03, 1.720399642408665e-03, -6.590262481154241e-03] 9.028584237707806e-06 [0.663826747577198, 3.669269789435876, 1.282513124225907, -1.420009244449226, 1.906325418205192, -6.600227798107067] 12.944234470505114 23.399999999999999 0 1143.588586002573948 1 572.803792958153963 572.801480258720972 19.800000000000001 unique 0 4.037523492339444 3 16.600000000000001 -PSM EREESIEEMHHADK 28 ES-0001a_PROKKA_01670 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1334.481564268410011 3 580.59319696906698 580.593300546437718 ms_run[1]:spectrum=140 K L 44 57 internal 20.712996930619507 1 HCID 2.1052552734375e04 28 1158234167857570400 1 103.755883872509003 0 1334.481564268415923 1331.964111328130002 spectrum=140 1.965055625e05 EREESIEEMHHADK 2.4e-11 0.393119048845914 56.5 8 18.699999999999999 -0.178399183455442 -3.0e-04 [1.186454856281216e-04, 1.704975817347076e-03, 1.944127880051383e-04, 2.761661209547128e-04, -1.022711748191796e-03, -1.426061072493212e-03, 3.295245562640048e-05, -1.997832754341289e-03, 7.051732563922997e-05, -2.844057142965539e-03, 1.39782089468099e-03, 1.154842229993847e-03, 2.781295472118472e-03, 2.030221314726077e-03] 2.531499807273199e-06 [0.806493260039378, 6.504072058423761, 0.583512270687136, 0.587292875977164, -1.879169014465948, -2.348219244175339, 0.05220040490422, -2.705861549363948, 0.094736496477426, -3.278914045798819, 1.600445527555194, 1.158990999209913, 2.774532680565179, 1.791143212911096] 6.401949199656577 56.5 0 1738.757761506887846 1 580.595445493313946 580.593300546437718 26.399999999999999 unique 0 3.694405144202831 8 18.199999999999999 -PSM LHQCGLPK 29 ES-0001a_PROKKA_00010 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 4-UNIMOD:4 1367.627629215819979 2 476.755562774070995 476.755288932321037 ms_run[2]:spectrum=231 K K 365 372 internal 10.760517135077333 2 HCID 1.60192158203125e04 29 16947715694437791700 1 119.999997317790985 1 1367.627629215822026 1361.740112304690001 spectrum=231 6.8701484375e04 LHQC(Carbamidomethyl)GLPK 4.0e-03 0.153569730689135 23.600000000000001 3 16.300000000000001 0.574386391332653 5.999999999999999e-04 [5.163092386908374e-04, -1.282184766466798e-04, 6.862305233426014e-04, -7.200610227755533e-04, -3.820078055923659e-03] 3.365758293364997e-06 [2.114586591862322, -0.51052497496693, 1.150889605992094, -1.025201733819925, -5.385359745850602] 8.359275001771376 23.600000000000001 0 951.496572614600041 0 476.756941761307019 476.755288932321037 14.1 unique 0 3.466828841445114 3 16.0 -PSM MIDHVYR 30 ES-0001a_PROKKA_00010 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 1-UNIMOD:35 1340.986298937499896 2 475.232024079877021 475.231646852571032 ms_run[2]:spectrum=122 K H 604 610 internal 23.947428242391013 1 HCID 4041.740478515625 30 1854108673051224350 1 119.999997317790985 1 1340.986298937499896 1331.251953125 spectrum=122 1.9846349609375e04 M(Oxidation)IDHVYR 0.035 0.430057957092135 19.800000000000001 0 0.0 0.793775642863409 8.0e-04 [2.243488424085172e-04, 1.951349363025656e-03, -1.995452243363616e-03] 3.914548429800658e-06 [1.281122566553373, 3.397730655083013, -2.894743119387227] 10.252185038306834 19.800000000000001 0 948.449495226212093 0 475.2333984375 475.231646852571032 17.699999999999999 unique 0 3.685749761339805 3 16.699999999999999 -PSM HAGEVMMAPR 31 ES-0001a_PROKKA_00009 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 6-UNIMOD:35,7-UNIMOD:35 1369.167341146950093 2 557.75913792223605 565.757703393020961 ms_run[2]:spectrum=240 R E 648 657 internal 5.308392397062852e05 1 HCID 1.371776953125e04 31 8028454635397639934 1 119.999997317790985 1 1369.167341146946228 1364.584106445309999 spectrum=240 6.26011953125e04 HAGEVM(Oxidation)M(Oxidation)APR 0.024 0.109483637643421 20.5 1 16.600000000000001 -1.413779330412132e04 -2.2e-03 [4.460714008587274e-04, 7.322261145077391e-04, 0.147417696802336] 7.18622797809698e-03 [2.547247990224068, 3.501743418345251, 187.005539958520785] 1.128323598034031e04 20.5 0 1113.503722910930037 0 557.760765114683977 565.757703393020961 18.5 unique 0 -1.413491717457299e04 3 15.5 -PSM IASVSANAGADPHR 32 ES-0001a_PROKKA_00977 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1366.160929978110062 3 455.900794488948975 455.900504111704379 ms_run[2]:spectrum=285 R L 69 82 internal 11.236026778915786 1 HCID 1.7297701171875e04 32 13936574731846433390 1 119.999997317790985 1 1366.160929978110062 1379.48291015625 spectrum=285 1.27761140625e05 IASVSANAGADPHR 1.1e-08 0.530029915533974 45.899999999999999 2 17.800000000000001 0.636931176818751 9.0e-04 [3.968495553579032e-04, 2.92916539081034e-04, 8.357710700011012e-04, 8.949490494956081e-04, 2.89522146613308e-03, -2.082939377828552e-03, 3.800027826628138e-04, -1.283220779669136e-03, 5.430671668591458e-03, 1.536897801770465e-04, -8.407676773458661e-06] 4.008907926047467e-06 [2.266171358129462, 1.582234017548274, 3.070875893876649, 2.186906319537448, 5.522517198362515, -3.499005485753359, 0.582543880952495, -1.773989059152069, 6.485187903513573, 0.169181137212131, -8.445976426503965e-03] 8.516264527612968 45.899999999999999 0 1364.680554066534114 0 455.902110228402023 455.900504111704379 21.899999999999999 unique 0 3.522954423517553 11 18.899999999999999 -PSM SGTQVATGDTGRYDAK 33 ES-0001a_PROKKA_00371 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1341.151465721600061 3 542.929631928008007 542.928788937870991 ms_run[2]:spectrum=65 K N 135 150 internal 9.006311955387515 2 HCID 8389.22265625 33 10181358076211083327 1 119.999997317790985 1 1341.151465721603472 1317.4931640625 spectrum=65 3.947778515625e04 SGTQVATGDTGRYDAK 0.014 0.269885708775312 21.399999999999999 0 0.0 1.552671647170385 2.5e-03 [4.106567974702102e-04, -1.844624570424003e-04, 0.047267640613427, 4.191824294707658e-03, 7.791096576283962e-04] 4.255251305159407e-04 [2.791441558823041, -0.845576554996485, 87.168351618471604, 5.172470701828379, 0.793020138487678] 1456.545462358561508 21.399999999999999 0 1625.767066383710926 1 542.931213378906023 542.928788937870991 17.800000000000001 unique 0 4.465486237661029 5 15.800000000000001 -PSM HWAESAPR 34 ES-0001a_PROKKA_02208 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1367.077198653799996 2 477.234384680204016 477.233035423770957 ms_run[2]:spectrum=279 K D 18 25 internal 14.674233177593932 1 HCID 1.17125712890625e04 34 15811276187092556632 1 119.999997317790985 1 1367.077198653794994 1377.581909179690001 spectrum=279 3.501478125e04 HWAESAPR 9.4e-03 0.222738076687575 22.100000000000001 1 13.4 2.827248603737057 2.7e-03 [6.641873013109034e-04, 8.025050004221157e-04, -9.207637117469858e-04, 4.263031501068326e-04, 8.818305188924569e-04] 5.512037318994108e-07 [3.792777939001657, 2.475755472305329, -1.646327464264976, 0.676327524726675, 1.080145328490341] 4.177886994202052 22.100000000000001 0 952.454216426866083 0 477.235765122742976 477.233035423770957 16.100000000000001 unique 0 5.719844959170867 4 16.300000000000001 -PSM DPGLTEQGHAEAK 35 ES-0001a_PROKKA_02449 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1339.588599639180075 3 451.553326422398015 451.55288174647103 ms_run[2]:spectrum=137 R A 26 38 internal 9.401733921594454 2 HCID 6665.875 35 908238849079171658 1 119.999997317790985 1 1339.588599639186214 1334.591796875 spectrum=137 8.2797203125e04 DPGLTEQGHAEAK 7.0e-07 0.302959220782806 38.600000000000001 2 18.300000000000001 0.984770433233666 1.3e-03 [1.944075404765044e-04, 3.551449014480568e-04, 3.299995690326796e-04, 3.372701323200999e-04, 8.178875546036579e-04, -2.056902425351836e-03, -4.81997960832814e-05, 2.215255947589867e-03, 1.429044737506047e-03, 1.103241490227447e-03] 1.251975620516967e-06 [1.321486192795953, 1.666666322669926, 1.512719190706856, 1.248647103180535, 1.955594489035446, -3.70420471227624, -0.078717962773998, 2.992098802350975, 1.643692623856852, 1.136824589730579] 3.27456038400177 38.600000000000001 0 1351.638149866881122 0 451.55462901069194 451.55288174647103 19.300000000000001 unique 0 3.86945647241158 9 17.100000000000001 -PSM TEAAAPVHVQK 36 ES-0001a_PROKKA_03028 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1339.203378378560046 2 575.814709160950997 575.814390290621077 ms_run[2]:spectrum=155 K L 17 27 internal 10.747240306669006 2 HCID 1.00205283203125e04 36 1514245238518921079 1 119.999997317790985 1 1339.203378378562547 1338.115600585940001 spectrum=155 3.0826111328125e04 TEAAAPVHVQK 3.5e-03 0.324910456376053 23.800000000000001 2 15.6 0.55377277000534 5.999999999999999e-04 [6.636513366231611e-04, -0.286774076856432, 3.179500403120983e-04, 1.580635965183319e-03, 3.035350390177882e-03, 3.195106649172885e-03] 0.013876578330056 [2.87173679198216, -1042.165335487494531, 1.052345454262119, 2.234367440854582, 3.899188241635945, 3.47093780496154] 1.819602507369676e05 23.800000000000001 0 1149.614865388359931 0 575.816392228501968 575.814390290621077 15.800000000000001 unique 0 3.476706929607451 4 16.100000000000001 -PSM AAEIDYTHK 37 ES-0001a_PROKKA_00014 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1369.606365386800007 2 524.25955351848495 524.258916583271002 ms_run[2]:spectrum=247 R K 493 501 internal 13.159276685824052 2 HCID 8264.25 37 7432567594246648638 1 119.999997317790985 1 1369.606365386797961 1366.143188476559999 spectrum=247 2.5236453125e04 AAEIDYTHK 7.9e-03 0.231989099699003 22.399999999999999 3 15.800000000000001 1.214924904088085 1.3e-03 [2.897852646412957e-04, 9.279940010742394e-04, 6.592857667442331e-04, 0.011726300745295, 4.933007453473692e-04] 2.484651986740437e-05 [2.025316025821626, 3.410186765720097, 2.320025980724721, 17.678770361273113, 0.743695995704724] 49.287079689022136 22.399999999999999 0 1046.504554103427836 0 524.261077574121032 524.258916583271002 15.5 unique 0 4.121991599328913 3 13.4 -PSM AREALQGEHEAHAEAVAR 38 ES-0001a_PROKKA_02337,ES-0002a_PROKKA_00085 0 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1366.936132652859897 4 486.996673309763025 486.996325245546188 ms_run[2]:spectrum=280 R,R E,E 306,306 323,323 internal 22.557614567216504 2 HCID 1.24830234375e04 38 12248387919634632679 1 119.999997317790985 1 1366.936132652851484 1377.879028320309999 spectrum=280 3.92809375e04 AREALQGEHEAHAEAVAR 1.1e-03 0.296291444851596 25.800000000000001 3 14.300000000000001 0.714716310562463 1.4e-03 [4.315775750853845e-04, 0.140734079282396, 9.367664695787425e-04, 6.145028384366924e-03, 5.285283843363686e-04, 5.5602325039672e-04, 1.731269505398814e-03, -2.754786930836417e-04, 4.491653018476427e-03] 2.14870804319175e-03 [2.464482387002851, 674.548660255855907, 2.250427326618279, 14.350180309401242, 1.234229960101391, 1.027182197572619, 3.174869252729347, -0.446958026891092, 5.961841956424117] 5.001556307045708e04 25.800000000000001 0 1943.957587371968202 1 486.998083453989978 486.996325245546188 18.699999999999999 non-unique 0 3.610311521144531 7 15.5 -PSM EVPEAIRK 39 ES-0001a_PROKKA_00034 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1362.755588959440047 2 471.274690588460999 471.274369115170998 ms_run[2]:spectrum=301 R A 64 71 internal 12.049799108372635 1 HCID 1.24751162109375e04 39 8307032032160154054 1 119.999997317790985 1 1362.755588959432316 1386.480712890630002 spectrum=301 7.84778125e04 EVPEAIRK 2.5e-03 0.311942510974264 24.399999999999999 1 15.199999999999999 0.682136163280244 5.999999999999999e-04 [-1.17289190768588e-05, 1.425899902130823e-03, -2.549393916524423e-04, 7.934819735737619e-04] 5.915544225108036e-07 [-0.051191545354084, 2.92591261603431, -0.413609052030576, 1.11220648061148] 2.259836546709944 24.399999999999999 0 940.534828243380048 1 471.276052927517924 471.274369115170998 19.800000000000001 unique 0 3.57289183811758 4 18.600000000000001 -PSM HHIDVQEDDYSK 40 ES-0001a_PROKKA_02243 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 2466.867733796049834 3 495.892246602619025 495.891674778370998 ms_run[3]:spectrum=276 R G 17 28 internal 12.598074094769345 1 HCID 2.0101361328125e04 40 11636883978787665968 1 119.999997317790985 2 2466.867733796053926 1387.679809570309999 spectrum=276 3.9486503125e05 HHIDVQEDDYSK 2.6e-06 0.157842864906593 36.299999999999997 5 18.5 1.153123307187215 1.7e-03 [6.626830081586377e-04, 7.840940205028346e-04, 9.331092488764625e-04, -8.346429676180378e-04, 2.188413019439395e-04, -9.993572211897117e-05, -9.84615058541749e-04, -2.92690108244642e-03] 1.654862419243367e-06 [4.504590939917608, 2.849954503968444, 2.970411596028147, -2.10127344956312, 0.434868042745428, -0.165922250597181, -1.569702895155643, -3.870002780367201] 8.306394511744596 36.299999999999997 0 1484.654910407544094 0 495.893768310546989 495.891674778370998 25.0 unique 0 4.221753020811237 7 17.800000000000001 -PSM MRSEHDPIEQVK 41 ES-0001a_PROKKA_00113 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.04 1-UNIMOD:35 2418.637183753699901 3 495.576270243079023 495.576921450737643 ms_run[3]:spectrum=267 K N 286 297 internal 15.123018283987754 1 HCID 8372.26171875 41 4541108828465316439 1 119.999997317790985 2 2418.637183753698992 1385.949462890630002 spectrum=267 7.72049296875e04 M(Oxidation)RSEHDPIEQVK 5.199999999999998e-04 0.245390434927236 27.100000000000001 4 14.699999999999999 -1.314039517244168 -1.9e-03 [8.097928287043032e-04, -2.39660070218406e-03, 1.653132350156739e-04, 3.443655380124255e-04, -1.153534386730826e-04, -2.139906877118847e-03] 1.857416019108835e-06 [5.504570653663756, -4.761940297948632, 0.31777659429358, 0.558702594282218, -0.16169096009517, -2.770808043932438] 12.161105314509561 27.100000000000001 0 1483.70698132892403 1 495.577789306641023 495.576921450737643 24.600000000000001 unique 0 1.751203225604495 6 16.899999999999999 -PSM HGPSMMVGGTEQAYER 42 ES-0001a_PROKKA_00887 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.04 5-UNIMOD:35,6-UNIMOD:35 1452.10036340851002 3 594.591288598626989 594.59090247770439 ms_run[3]:spectrum=170 R I 131 146 internal 14.782359573333674 3 HCID 6998.2802734375 42 15885310422564479494 1 119.999997317790985 2 1452.100363408510248 1351.2734375 spectrum=170 3.49504296875e04 HGPSM(Oxidation)M(Oxidation)VGGTEQAYER 1.3e-03 0.308824566650602 25.5 2 13.199999999999999 0.649389220369545 1.2e-03 [0.143118870816181, 1.40598295502059e-03, 5.520615376326532e-04, 4.947062022893078e-04, 7.241857503004212e-04, 4.071351133916323e-05, 3.372262644006696e-03, -6.195798917133288e-03] 2.565903795727148e-03 [428.931212216140409, 2.671915603714684, 1.025637231108273, 0.74244474120269, 1.075667308042043, 0.051188580550343, 3.536971236907007, -6.131699537537191] 2.296063329747011e04 25.5 0 1780.752036395567757 0 594.593740827922034 594.59090247770439 14.9 unique 0 4.773618644039585 6 15.6 -PSM DAEAEAYAR 43 ES-0001a_PROKKA_03080 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1347.541357714359947 2 498.225698487862019 498.22507395567095 ms_run[3]:spectrum=159 K E 46 54 internal 20.438186713965965 1 HCID 1.53017236328125e04 43 2682651823457244033 1 119.999997317790985 2 1347.541357714359492 1347.324951171880002 spectrum=159 9.154648437500001e04 DAEAEAYAR 4.2e-05 0.386267536460712 31.5 2 17.399999999999999 1.253514172038339 1.3e-03 [8.710621729903778e-04, 1.407148222199339e-03, 1.126552142011406e-03, 1.487515235453429e-03, 1.41139040545113e-03, 2.477899281529972e-04, -1.728305373148942e-03] 1.322973575203568e-06 [4.656310246505134, 4.451395819887964, 2.752929484848833, 3.097334867661562, 2.316416345379301, 0.364216869936469, -2.135347929944892] 5.731759179804258 31.5 0 994.436844042182088 0 498.227239790278986 498.22507395567095 19.100000000000001 unique 0 4.347100780858068 6 17.899999999999999 -PSM QQIEETTSDYDREK 44 ES-0001a_PROKKA_00962 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 0-UNIMOD:28 2516.329991712930223 3 575.926206516513958 575.591842991037652 ms_run[3]:spectrum=284 K L 351 364 internal 13.55221786939784 2 HCID 4.241182421875e04 44 7667142817179785782 1 119.999997317790985 2 2516.329991712930678 1389.454345703130002 spectrum=284 6.95983375e05 .(Gln->pyro-Glu)QQIEETTSDYDREK 2.5e-11 0.383483647764141 56.399999999999999 7 19.800000000000001 580.903863645461797 1.003 [8.642106935212723e-04, 1.000020680351099e-03, 6.53091673484596e-04, 7.325936460915727e-04, 0.024283889091237, 1.10917060965221e-04, 0.019273344071166, -5.641228342483373e-04, 0.020303791786205, -0.01128717749782, -2.495471112752057e-03, -3.440126184614201e-03, -3.192214939076621e-03, 0.021740811981545, -4.708929772505144e-03, -0.017714165907819, -9.679183645630474e-03] 1.474180018897589e-04 [5.874476351872784, 4.165054117870455, 1.849164932059151, 1.694812289145551, 50.358053040508082, 0.202668397915087, 31.530149277877797, -0.794151317330779, 28.503958264238346, -13.980212167525961, -3.023443838489126, -3.770390702981253, -3.149838782997954, 21.410628645461138, -4.225145857672586, -14.244908133112796, -7.482872657006554] 302.20727493647405 56.399999999999999 0 1724.756790149228891 1 575.928466796875 575.591842991037652 28.5 unique 0 584.830744105228291 12 20.800000000000001 -PSM AVAAGMNPMDLKR 45 ES-0001a_PROKKA_00962 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 6-UNIMOD:35,9-UNIMOD:35 1820.500105543080053 3 469.571323083921016 469.235730350104348 ms_run[3]:spectrum=207 K G 106 118 internal 10.120284163665303 1 HCID 5.398216015625e04 45 12700797421507150295 1 119.999997317790985 2 1820.500105543083464 1364.490356445309999 spectrum=207 3.5062359375e05 AVAAGM(Oxidation)NPM(Oxidation)DLKR 4.699999999999999e-05 0.231932483669655 31.300000000000001 2 15.5 715.190067828545125 1.007 [8.938249125378661e-04, 0.039759889785756, 6.686248113965121e-04, 2.651298189562112e-04, 8.474812041185942e-04, -2.043674430751707e-05, -1.019706834313183e-03, -4.042453425654458e-04] 1.962941003473962e-04 [5.223600378653026, 190.555422477745964, 2.761201878392123, 0.874398583662762, 2.035756221544278, -0.038463741024303, -1.315049808569087, -0.454486039479015] 4481.570079662537864 31.300000000000001 0 1405.692139851450065 1 469.572631835938012 469.235730350104348 26.800000000000001 unique 0 717.979181982361865 7 18.399999999999999 -PSM LNHDEISVEGRK 46 ES-0001a_PROKKA_00653 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 2436.456117832849941 3 466.244940287331985 466.244159498204283 ms_run[3]:spectrum=271 R E 93 104 internal 16.924723598114447 1 HCID 1.901232421875e04 46 5032776509579168616 1 119.999997317790985 2 2436.456117832846758 1386.588745117190001 spectrum=271 2.1894440625e05 LNHDEISVEGRK 1.0e-04 0.289769806926533 29.899999999999999 5 17.399999999999999 1.674635728505091 2.4e-03 [-0.022738075314919, 6.742710618254932e-04, -0.045938477506922, 1.096320312967691e-03, -3.318397605198697e-04, -7.945962299800158e-04, -1.74725459714864e-04, -2.768283928730853e-03, -2.681942167896523e-03] 2.552282249154803e-04 [-124.18376240042798, 1.87175135627158, -125.792265211249969, 2.240690098159382, -0.564021071224746, -1.304193091745228, -0.258707496482192, -3.83234755131253, -3.313580889941622] 3006.105524364722442 29.899999999999999 0 1395.712991461683032 1 466.246223181175026 466.244159498204283 24.100000000000001 unique 0 4.4261851407722 4 17.899999999999999 -PSM VDVSANMTHHDEER 47 ES-0001a_PROKKA_00834 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.04 null 2103.435653253170131 3 547.573822697978017 547.242490461371062 ms_run[3]:spectrum=235 R L 1514 1527 internal 11.076211295306717 5 HCID 3234.274658203125 47 16867376966425626307 1 119.999997317790985 2 2103.435653253166493 1374.64111328125 spectrum=235 2.66390234375e04 VDVSANMTHHDEER 1.7e-03 0.319826062108759 25.100000000000001 2 16.199999999999999 605.457804140196572 0.994 [-0.106731192609587, 1.091525267923998e-03, 1.20957762294438e-03, -1.282986151693422e-03, 1.096967287708139e-03, -2.637075017219104e-03, -5.218390883783286e-03] 1.60401916460884e-03 [-987.749168263221236, 6.233050448080061, 5.623258048101165, -2.961620236744976, 1.600734420933274, -3.206759302846168, -5.651299717669949] 1.394759672992691e05 25.100000000000001 0 1639.699638693620955 0 547.575805664062955 547.242490461371062 17.199999999999999 unique 0 609.081364297717187 5 14.6 -PSM NDDPTAASRPYDEDR 48 ES-0001a_PROKKA_02368 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.04 null 1854.549002493839907 3 574.584128720161971 574.583570239304436 ms_run[3]:spectrum=210 R D 220 234 internal 9.686313626991714 1 HCID 1.4138255859375e04 48 15549990804335418566 1 119.999997317790985 2 1854.549002493836952 1365.7119140625 spectrum=210 9.67412578125e04 NDDPTAASRPYDEDR 1.6e-03 0.297254689017388 25.199999999999999 3 17.699999999999999 0.97197498581862 1.7e-03 [9.072695108898188e-04, 6.804109509630507e-04, 9.260299777906766e-04, 9.220922727877223e-04, 1.428631536271041e-03, -6.9455691686926e-03, -4.143706718878093e-03] 1.081843088400871e-05 [5.180875603673995, 2.957316510829397, 3.191601146640034, 2.671925055518596, 3.408088642542584, -10.075923850703171, -5.216596053126183] 32.104077240769847 25.199999999999999 0 1720.730556760172931 0 574.586375485975054 574.583570239304436 20.899999999999999 unique 0 4.882225695124221 5 16.600000000000001 -PSM QQIEETTSDYDREK 49 ES-0001a_PROKKA_00962 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 2646.07782697022003 3 581.268813587833051 581.267359324371 ms_run[3]:spectrum=299 K L 351 364 internal 15.318896749317419 1 HCID 7.083205625e05 49 7704484650440628992 1 1.260202378035 2 2646.077826970222304 1394.109252929690001 spectrum=299 7.603294e06 QQIEETTSDYDREK 7.600000000000003e-08 0.403310583322612 42.5 3 25.100000000000001 2.501883924363955 4.4e-03 [1.012686208184732e-03, 7.472956346532556e-04, 0.17973485702413, 6.09991229168827e-04, -3.765736789773655e-04, -1.428522772016549e-03, -4.947026036347779e-03, -2.896905210377554e-03, -6.009503963809948e-03, -1.515939773298669e-03] 3.295536933869604e-03 [7.846275146639085, 2.906357929507246, 434.992711655548874, 1.411178812404145, -0.688077952581736, -2.011021664715218, -5.993680035809363, -3.17501855643426, -5.929728734764926, -1.360195832826469] 1.90066554046183e04 42.5 0 1740.784611363186059 1 581.271128049516051 581.267359324371 31.0 unique 0 6.483634569522703 8 25.399999999999999 -PSM MATAGTNAEMAAEKAAR 50 ES-0001a_PROKKA_02758 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 1-UNIMOD:35,10-UNIMOD:35 2335.854165585260034 3 575.938474459205963 575.934669186904444 ms_run[3]:spectrum=261 - Q 1 17 internal 13.729326321911684 3 HCID 4.4979684375e05 50 1879209601617812738 1 119.300231337547004 2 2335.854165585264127 1382.9794921875 spectrum=261 1.0509862e07 M(Oxidation)ATAGTNAEM(Oxidation)AAEKAAR 6.600000000000001e-13 0.045492214118156 62.700000000000003 13 21.600000000000001 6.607124913824096 0.011 [0.075075056073558, 0.033073428473585] 8.820683605233999e-04 [173.711740211607122, 76.519217136781336] 4723.193270825271611 62.700000000000003 0 1724.793593977304681 1 575.940734863281023 575.934669186904444 58.600000000000001 unique 0 10.531882696248523 9 21.300000000000001 -PSM IASVSANAGADPHR 51 ES-0001a_PROKKA_00977 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.04 null 1359.536602133669931 3 455.901248268076017 455.900504111704379 ms_run[3]:spectrum=126 R L 69 82 internal 16.747860831034977 1 HCID 3796.8984375 51 4926310518952851654 1 119.999997317790985 2 1359.536602133666747 1339.605346679690001 spectrum=126 3.57308671875e04 IASVSANAGADPHR 1.7e-03 0.306442291317293 25.0 2 15.300000000000001 1.632278018837307 2.2e-03 [5.84121412487093e-04, 9.803327970416831e-04, 3.299020274880604e-04, 3.273884130976512e-03, -1.151547319750534e-03, -2.150889807580825e-03] 3.500317488023527e-06 [3.335569353113081, 5.295419319318428, 0.806151846463743, 5.499602463682733, -1.765320874882019, -2.160687797630713] 11.528376255451322 25.0 0 1364.681915403915127 0 455.902452265851025 455.900504111704379 21.800000000000001 unique 0 4.273200246711813 5 15.699999999999999 -PSM AAEIDYTHK 52 ES-0001a_PROKKA_00014 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1374.772815783770057 2 524.258397962905974 524.258916583271002 ms_run[1]:spectrum=366 R K 493 501 internal null 1 HCID 9600.0029296875 -1 not mapped 1 119.999997317790985 null 1374.772815783766191 1388.806274414059999 spectrum=366 6.6572828125e04 AAEIDYTHK 1.8e-05 0.36944223715417 33.0 3 17.600000000000001 -0.989244719781279 -1.0e-03 [1.649390825093633e-04, 9.433138916392636e-05, 5.9410654785097e-05, 1.991387803172984e-04, 1.441844095324996e-03, 0.01080909896109, -4.239010388573661e-04, -2.496022017112409e-03, -2.360620701210792e-03] 1.559334890862623e-05 [1.152763124460555, 0.641218072209788, 0.218321916366241, 0.700769176904131, 2.629745618236219, 16.295981358150211, -0.639069590197563, -3.214892015867502, -2.607163670395672] 33.337353075365783 33.0 0 1046.502242992269885 0 524.260462335711964 524.258916583271002 20.199999999999999 unique 0 2.948452362117723 6 16.800000000000001 -PSM AETAHLSGGEFQR 53 ES-0001a_PROKKA_00153 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.040816326530612 null 1334.831073064299972 3 468.565843372309018 468.228509434404316 ms_run[1]:spectrum=152 K A 128 140 internal null 1 HCID 2.04706484375e04 -1 not mapped 1 119.999997317790985 null 1334.831073064305883 1334.929931640630002 spectrum=152 1.221190703125e05 AETAHLSGGEFQR 0.011 0.183644478531361 21.800000000000001 3 14.199999999999999 720.447241267269874 1.012 [-0.028903782999009, -6.848088586252743e-03] 2.432268280144506e-04 [-165.052283137551768, -9.877077420540644] 1.203967223465836e04 21.800000000000001 0 1402.675700716614074 0 468.567718505859034 468.228509434404316 20.0 unique 0 724.451981500368106 2 17.199999999999999 -PSM AHGDLSENAEYHAAK 54 ES-0001a_PROKKA_02064 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1329.347817897960113 3 538.249471977174039 538.249862207404362 ms_run[1]:spectrum=96 R E 38 52 internal null 1 HCID 1.1151990234375e04 -1 not mapped 1 119.999997317790985 null 1329.347817897962386 1319.636108398440001 spectrum=96 1.27121875e05 AHGDLSENAEYHAAK 1.5e-09 0.404311118057907 49.299999999999997 6 18.300000000000001 -0.724998291170529 -1.2e-03 [-6.288116347263895e-05, 3.751600374641839e-04, -1.680838711308752e-04, -3.139323624168355e-04, 1.340597262355914e-04, -5.734222735895855e-04, 2.917467039651456e-04, 7.421905387445804e-04, 2.190462441831187e-05, 1.988979359680343e-03, 1.913743747081753e-04, -5.30945308128139e-04, 3.356331312261318e-03] 1.208947461620224e-06 [-0.300718174298163, 1.719734937599794, -0.581228934271802, -0.823641487813082, 0.314512613351142, -1.160220085364939, 0.501914438833055, 1.259424500095541, 0.030838101841295, 2.768809333708695, 0.242433551517823, -0.644074926028533, 3.715090501251668] 2.122870380989415 49.299999999999997 0 1611.726586531209023 0 538.251582767523018 538.249862207404362 20.600000000000001 unique 0 3.196582552942822 9 18.100000000000001 -PSM AHGDLSENAEYHAAK 55 ES-0001a_PROKKA_02064 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1371.909091595649898 3 538.250138423196972 538.249862207404362 ms_run[1]:spectrum=336 R E 38 52 internal null 1 HCID 9.92205078125e04 -1 not mapped 1 22.865802049637001 null 1371.909091595643758 1380.806762695309999 spectrum=336 1.538726875e06 AHGDLSENAEYHAAK 2.7e-15 0.456181249139385 72.299999999999997 9 22.699999999999999 0.513173921637739 8.0e-04 [-5.819008504204248e-05, -2.891003560989702e-05, -2.180186012310514e-04, -3.792328373606324e-04, -4.583611045632097e-04, 1.690538725824808e-04, -3.797233392788257e-04, 7.541631302956375e-04, 1.275281532684858e-03, -1.804062330847955e-04, -1.230348941589909e-04, 1.586798368521158e-03, -4.88659988263862e-04, -1.090927937070774e-03, -2.079140001114865e-03, -7.189763696032969e-03, 1.954354769850397e-03, -0.010023578808159] 8.888138116116283e-06 [-0.278283911583666, -0.132523705407564, -0.75390171818619, -0.9949655906343, -1.075344198460836, 0.342051063435499, -0.653267454801186, 1.279740812877625, 1.795386263203032, -0.251139087790578, -0.155860921280959, 1.924900787673608, -0.545750731507433, -1.207537528180161, -2.029551887964379, -6.963623467168059, 1.745728773592657, -8.440934310306952] 7.396375436447359 72.299999999999997 0 1611.728585869277822 0 538.252249215746019 538.249862207404362 26.899999999999999 unique 0 4.434758853197902 11 22.5 -PSM AMVTGTGTVTK 56 ES-0001a_PROKKA_01941 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 2-UNIMOD:35 1331.16508630957992 2 541.281899093395964 541.281534607770936 ms_run[1]:spectrum=112 K Y 255 265 internal null 1 HCID 1.8353326171875e04 -1 not mapped 1 119.999997317790985 null 1331.165086309582875 1322.642700195309999 spectrum=112 8.19453515625e04 AM(Oxidation)VTGTGTVTK 5.7e-07 0.414518670106743 39.0 2 17.899999999999999 0.673375317138192 7.0e-04 [1.639863191940094e-04, 1.134493276992998e-04, -4.452661313507633e-04, -8.98494051000398e-04, -2.955998750280742e-03, 1.473113842735074e-03, -3.273961754075572e-04, -7.049702511494615e-04, -2.188015272395205e-03] 1.705775501958174e-06 [1.114697794597653, 0.517844787810567, -1.794266854772652, -2.824136792463618, -5.850010302999619, 2.429494909913787, -0.493536886930985, -0.922235142312145, -2.533940525186821] 6.05367058530392 39.0 0 1080.549245253249865 0 541.284019884821987 541.281534607770936 20.100000000000001 unique 0 4.591468380408586 8 18.399999999999999 -PSM DPGLTEQGHAEAK 57 ES-0001a_PROKKA_02449 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1321.622818742999925 3 451.551966791144025 451.55288174647103 ms_run[1]:spectrum=38 R A 26 38 internal null 1 HCID 1.9683384765625e04 -1 not mapped 1 119.999997317790985 null 1321.622818742993331 1309.263305664059999 spectrum=38 2.4596778125e05 DPGLTEQGHAEAK 4.2e-08 0.372859523467736 43.5 3 20.0 -2.02624180686467 -2.7e-03 [8.904081823857268e-06, 6.675706885062027e-06, 1.471528258889521e-05, 3.972870166535358e-05, 8.676429714000733e-04, 4.592369193119339e-04, 4.160734499691898e-05, 2.069528860602077e-04, 0.030588961275726, 3.215020250650014e-03, 0.028049591144054, -7.78757266402863e-04, 3.786459228194872e-03] 1.173760307020141e-04 [0.060525539086149, 0.031328552937078, 0.067454907393203, 0.147084261230952, 2.264248233705622, 1.098049705626389, 0.074929234125692, 0.337987105852293, 49.877416971357853, 4.342459051727157, 37.836268780348831, -0.895729532439425, 3.901720517904713] 267.049323986059449 43.5 0 1351.634070973119151 0 451.553782687770934 451.55288174647103 25.100000000000001 unique 0 1.995206622132294 10 19.0 -PSM EREESIEEMHHADK 58 ES-0001a_PROKKA_01670 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1314.456969620629934 3 580.593210884724954 580.593300546437718 ms_run[1]:spectrum=2 K L 44 57 internal null 1 HCID 9.9820203125e04 -1 not mapped 1 19.640719518065001 null 1314.456969620616974 1300.21826171875 spectrum=2 8.982995624999999e05 EREESIEEMHHADK 3.8e-11 0.412818766303252 55.700000000000003 8 21.600000000000001 -0.154431187337699 -3.0e-04 [-3.162433350212268e-05, -9.102084396772625e-05, -5.132910779366284e-04, 6.35289972137798e-04, -3.49063430348906e-04, -7.265310981665607e-04, -3.489041018838179e-04, -1.275919719887497e-03, 1.136504198370858e-03, 3.047184408046633e-03, 3.450556254620096e-03, -1.595720873410755e-03, 1.897484063988486e-03, -6.13380520917417e-04] 2.350494755573041e-06 [-0.214966559306275, -0.347222595160201, -1.540596405635281, 1.351003061224308, -0.641382269788733, -1.196340282414294, -0.552703434231681, -1.728103667645152, 1.526836490316969, 3.513099510112173, 3.950740288901361, -1.601453498582487, 1.89287028263045, -0.541149060451736] 3.47320135593878 55.700000000000003 0 1738.757803253861766 1 580.59545940901603 580.593300546437718 29.0 unique 0 3.71837321629543 8 20.800000000000001 -PSM EREESIEEMHHADK 59 ES-0001a_PROKKA_01670 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1354.827079112410047 3 580.593026777835007 580.593300546437718 ms_run[1]:spectrum=271 K L 44 57 internal null 1 HCID 1.38421845703125e04 -1 not mapped 1 119.999997317790985 null 1354.827079112408228 1362.02978515625 spectrum=271 1.41721203125e05 EREESIEEMHHADK 3.3e-11 0.409108522770452 55.899999999999999 8 18.100000000000001 -0.471532486600639 -8.0e-04 [-4.898369189731966e-05, -8.462940024855925e-05, -4.607200374380227e-04, -1.902143723782501e-03, -9.787149227804548e-04, -1.239607805473497e-03, -4.242952188178606e-03, -5.555213101615664e-05, -3.703877341308726e-03, 3.30955956883372e-04, 6.662475050234207e-04, -1.617958884025939e-03, 2.043897206476686e-03, -1.225232554361355e-03] 2.747206640914351e-06 [-0.332966881612816, -0.25400743445242, -0.979763900336108, -3.495070388223028, -1.611598030802839, -1.963678522225411, -5.746647789628165, -0.074631506748433, -4.270200923484159, 0.378930507497261, 0.66864099832262, -1.6140247753402, 1.803208636770028, -0.964342399541098] 4.16268068887129 55.899999999999999 0 1738.757250933191926 1 580.595275301536844 580.593300546437718 26.899999999999999 unique 0 3.401270902141552 8 17.600000000000001 -PSM EREESIEEMHHADK 60 ES-0001a_PROKKA_01670 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1375.388028394339926 3 581.266113056891982 580.593300546437718 ms_run[1]:spectrum=370 K L 44 57 internal null 1 HCID 1.8179005859375e04 -1 not mapped 1 119.999997317790985 null 1375.388028394344246 1390.743896484380002 spectrum=370 2.9059834375e05 EREESIEEMHHADK 3.1e-11 0.253284348787788 56.0 9 18.0 1158.836159185840415 2.018 [-5.423257391612424e-06, 4.424890562404471e-06, 3.690930541893067e-04, -1.649134672675245e-03, 8.867363978879439e-04, -1.122339284620466e-04, -4.949992803631176e-04, 4.075912020084616e-03, -3.840245619812777e-04, 2.766926300978412e-03, 3.307658603262098e-03, 1.656287734363104e-03, -2.516733321726861e-03, -2.981398525889745e-03] 4.268587462521799e-06 [-0.036864618241804, 0.016879891653419, 0.784910620276915, -3.030182045969406, 1.460141865025982, -0.177791196387087, -0.670426249037549, 5.475783734461845, -0.442741993889469, 3.168013041103069, 3.319541362511856, 1.652260428090879, -2.220363748139681, -2.346565962690594] 5.643254808460148 56.0 0 1740.776509770362736 1 581.268363736626952 580.593300546437718 35.399999999999999 unique 0 1162.712676074430647 8 17.899999999999999 -PSM ISAGAGQDDMR 61 ES-0001a_PROKKA_00090 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.040816326530612 null 1377.504277606840105 2 560.755994198000053 560.756215496120944 ms_run[1]:spectrum=381 R N 473 483 internal null 1 HCID 7359.0537109375 -1 not mapped 1 119.999997317790985 null 1377.50427760684488 1397.409057617190001 spectrum=381 2.04446953125e04 ISAGAGQDDMR 9.4e-03 0.17587367887011 22.100000000000001 1 13.0 -0.39464229691247 -4.0e-04 [-8.006937808886505e-04, 2.724771178463925e-04, 1.565097070965749e-03, -6.554451102829262e-04] 1.186039407690488e-06 [-3.981107620559139, 0.889984380975615, 1.842695571323494, -0.71213917901203] 6.527667891019388 22.100000000000001 0 1119.497435462458043 0 560.758178710937955 560.756215496120944 16.800000000000001 unique 0 3.501013029830464 4 16.300000000000001 -PSM LHHLVDDK 62 ES-0001a_PROKKA_00009 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 null 1376.623337178079964 2 488.76432926404101 488.764168567321008 ms_run[1]:spectrum=378 K I 1257 1264 internal null 2 HCID 8423.5361328125 -1 not mapped 1 119.999997317790985 null 1376.623337178081556 1394.634521484380002 spectrum=378 5.754366796875e04 LHHLVDDK 5.3e-03 0.221250869682218 23.100000000000001 1 16.399999999999999 0.328781711787282 3.0e-04 [8.97468285074865e-05, -1.044684321414024e-04, -1.006914105232681e-04, 3.536751948331585e-03, 1.861555358004807e-03] 2.605328795292534e-06 [0.610054499065088, -0.415959892042634, -0.384113477179218, 6.001420142342735, 2.562791194791538] 7.313063706297487 23.100000000000001 0 975.514105594540069 0 488.766273856454973 488.764168567321008 17.300000000000001 unique 0 4.307372081173826 4 16.399999999999999 -PSM LNADSTVASK 63 ES-0001a_PROKKA_02449 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 null 1355.73690658260989 2 503.263783714086003 503.264199115170982 ms_run[1]:spectrum=273 R E 192 201 internal null 1 HCID 7342.7080078125 -1 not mapped 1 119.999997317790985 null 1355.736906582606707 1362.694702148440001 spectrum=273 6.336698046875e04 LNADSTVASK 5.3e-03 0.110683750899125 23.100000000000001 3 14.9 -0.82541354165305 -8.0e-04 [-8.135431184541631e-05, -0.109948739349477, 0.013974948887778, -2.649062794375823e-03, -3.898219567417982e-03] 2.550198284537792e-03 [-0.356607151563808, -367.510883510958081, 33.739752108436804, -4.472274707141946, -5.008027965624406] 2.815863298150354e04 23.100000000000001 0 1004.513014494630056 0 503.265777587891023 503.264199115170982 19.5 unique 0 3.136469319328556 3 16.199999999999999 -PSM SDQSSQHFIHAR 64 ES-0001a_PROKKA_02567 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1377.599041976070112 3 471.559668466981009 471.560370413137719 ms_run[1]:spectrum=382 M Q 2 13 internal null 2 HCID 1.01109541015625e04 -1 not mapped 1 119.999997317790985 null 1377.599041976078524 1397.70751953125 spectrum=382 8.891153906250001e04 SDQSSQHFIHAR 1.6e-05 0.339237091293781 33.200000000000003 1 16.800000000000001 -1.488560533818245 -2.1e-03 [-3.970389755636461e-05, -1.850685009969766e-04, 1.646903455139182e-04, -1.927375993204805e-04, -8.255947066686531e-04, -1.459577822970459e-03, -1.613597648542964e-03] 5.089210442144697e-07 [-0.226725302406334, -0.911370063672415, 0.669048492171285, -0.502949022698618, -1.66350251372991, -2.268653480947124, -2.067584733480212] 1.137988642250215 33.200000000000003 0 1411.657176000629988 0 471.561553955078011 471.560370413137719 19.199999999999999 unique 0 2.509841824188678 7 17.600000000000001 -PSM VEEHEEGQSAMLTR 65 ES-0001a_PROKKA_02364 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 11-UNIMOD:35 1340.424821669520043 3 544.582345236810966 544.5825128372378 ms_run[1]:spectrum=221 R R 93 106 internal null 1 HCID 1.38036865234375e04 -1 not mapped 1 119.999997317790985 null 1340.424821669517542 1350.499877929690001 spectrum=221 2.18624296875e05 VEEHEEGQSAM(Oxidation)LTR 9.899999999999999e-09 0.382091608193484 46.0 6 18.199999999999999 -0.307759472410411 -5.0e-04 [-2.641886854348741e-04, -2.465948026042497e-04, 1.037837945432329e-04, 1.419125018173872e-04, 5.030976958551037e-04, 5.380452240615341e-04, 1.584309176678289e-03, 1.144172311455804e-03, 1.613452863125531e-03, -2.99793563840467e-04, 2.824388788098986e-03, 4.693673660085551e-04] 9.027469778215339e-07 [-1.508624172539249, -1.076277271492408, 0.375801354929338, 0.364578671529541, 0.938114374275451, 0.885928966016507, 2.537889857060816, 1.647819798618303, 2.141832201086968, -0.369966408072719, 3.21159367306159, 0.500186335985527] 2.00545685208037 46.0 0 1630.725206310119802 0 544.584476889173971 544.5825128372378 22.899999999999999 unique 0 3.606527734314367 8 18.899999999999999 -PSM VEEHEEGQSAMLTR 66 ES-0001a_PROKKA_02364 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 11-UNIMOD:35 1371.974392244389946 3 544.58246307381296 544.5825128372378 ms_run[1]:spectrum=337 R R 93 106 internal null 2 HCID 9288.853515625 -1 not mapped 1 119.999997317790985 null 1371.974392244389719 1380.956298828130002 spectrum=337 1.5859321875e05 VEEHEEGQSAM(Oxidation)LTR 2.6e-10 0.384211692539093 52.299999999999997 7 17.199999999999999 -0.091379035623375 -1.0e-04 [1.327195614635457e-04, 1.257209970617623e-04, 4.702000023257824e-04, -4.31807118445704e-04, -5.810632511611402e-04, 1.453223617318145e-03, -8.311740951967295e-04, 2.305469045950304e-03, 9.308822338880418e-04, 1.481221968333557e-04, 1.371378062003714e-03, -1.858606888731629e-03, -0.07485681779076, -4.274097103461827e-03] 4.019607472573406e-04 [0.75788233800827, 0.54871655954604, 1.702595272600084, -1.109329083652627, -1.083494901225878, 2.392833983290205, -1.331449906813121, 3.320301934404311, 1.235730890891267, 0.182793240843017, 1.559384857306067, -1.980644239538352, -74.22752600001219, -4.168154896299568] 399.028190613479751 52.299999999999997 0 1630.725559821125899 0 544.584594726562955 544.5825128372378 21.899999999999999 unique 0 3.822908881719145 9 18.399999999999999 -PSM AHGDLSENAEYHAAK 67 ES-0001a_PROKKA_02064 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1339.324111082429909 3 538.250686982663979 538.249862207404362 ms_run[2]:spectrum=157 R E 38 52 internal null 1 HCID 1.5219321875e05 -1 not mapped 1 22.611554712057 null 1339.324111082429454 1338.769653320309999 spectrum=157 2.00888975e06 AHGDLSENAEYHAAK 1.0e-15 0.500632349997889 76.799999999999997 10 23.399999999999999 1.532327860213006 2.5e-03 [2.042405331224018e-04, 2.443686443598381e-04, 4.110837488724428e-04, -1.414629625173802e-04, 1.151964497296376e-03, 9.852094992197635e-04, -2.915718514486798e-04, -1.799152973944729e-04, 8.95250994858543e-04, -8.747649974338856e-04, 7.918112642073538e-04, 8.516680384218489e-04, 1.131174173451655e-03, -1.532015860448155e-03, 1.37578068449784e-03, -1.800408774897733e-03, -6.165979079924e-04, -1.589981695815368e-04, 3.643559521151474e-03] 1.450782900657112e-06 [1.388326007669224, 1.168650332298371, 1.884409357654283, -0.489174638766428, 3.022325398874371, 2.311363919641609, -0.589944852089793, -0.309522213282716, 1.519153071618147, -1.231524976776826, 1.102261020559484, 1.078895267894018, 1.372195800467323, -1.71100314451999, 1.52283826513534, -1.75746848516309, -0.597204003279237, -0.142025226877462, 3.068270042302536] 2.213710688885532 76.799999999999997 0 1611.730231547678841 0 538.252254029472056 538.249862207404362 28.0 unique 0 4.443702145847722 11 22.800000000000001 -PSM AHGDLSENAEYHAAK 68 ES-0001a_PROKKA_02064 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1369.757067597480045 3 538.250411864882039 538.249862207404362 ms_run[2]:spectrum=257 R E 38 52 internal null 1 HCID 7.38765390625e04 -1 not mapped 1 47.001756727695003 null 1369.757067597472769 1369.347534179690001 spectrum=257 1.01818825e06 AHGDLSENAEYHAAK 3.9e-15 0.501012108693254 71.599999999999994 9 22.199999999999999 1.021193903186363 1.7e-03 [2.701999123928545e-04, 3.281104202130791e-04, 3.982338192827228e-04, -1.080719510468953e-04, 3.43673750421658e-04, 1.724937823155415e-05, 3.78132349965199e-05, 1.512676927632128e-03, 2.95080049227181e-04, -7.79916016426796e-05, 1.354226483385901e-03, 2.086751767819806e-03, -2.238021402604318e-03, 1.294580936473722e-03, 4.305274981106777e-03, -2.29004246648401e-04, 5.459330511712324e-03] 3.174594391204983e-06 [1.836685205968064, 1.569130739408367, 1.825505235001698, -0.373709532681764, 0.901671802615072, 0.040468134454895, 0.076508494274129, 2.602375214353387, 0.50072188216617, -0.10979932402822, 1.885185438906213, 2.643502522111914, -2.71488126416359, 1.445828408391422, 4.765467023221258, -0.223542426622499, 5.287617740116088] 3.720065187659687 71.599999999999994 0 1611.729406194333024 0 538.251978910843036 538.249862207404362 27.0 unique 0 3.932566615052673 11 21.699999999999999 -PSM ARAEDAMDEASGR 69 ES-0001a_PROKKA_00065 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1361.356349387609953 3 460.205519371752985 460.205376301870956 ms_run[2]:spectrum=311 K L 40 52 internal null 2 HCID 3821.37939453125 -1 not mapped 1 119.999997317790985 null 1361.356349387602904 1389.356079101559999 spectrum=311 3.281051171875e04 ARAEDAMDEASGR 1.0e-03 0.396052830200745 26.0 2 14.4 0.310882682810655 4.0e-04 [7.808367854522658e-07, 1.084840106386764e-03, 6.790235733546979e-04, 8.331942183303909e-04, -4.497766458371189e-04, 1.056010043043898e-03, 2.188727333987117e-04] 3.372887869134198e-07 [4.458893640361905e-03, 3.398915286734387, 1.740151042900653, 1.604604258311192, -0.82793347816274, 1.719076169538186, 0.345073223827737] 1.968031255765094 26.0 0 1377.594728714946086 1 460.206848144531023 460.205376301870956 18.0 unique 0 3.198230042191339 6 15.800000000000001 -PSM DPGLTEQGHAEAK 70 ES-0001a_PROKKA_02449 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1369.542147202120077 3 451.552821541817991 451.55288174647103 ms_run[2]:spectrum=246 R A 26 38 internal null 1 HCID 3272.590576171875 -1 not mapped 1 119.999997317790985 null 1369.542147202120077 1365.843017578130002 spectrum=246 2.2386513671875e04 DPGLTEQGHAEAK 0.022 0.204988832913966 20.600000000000001 2 15.1 -0.133328023079059 -2.0e-04 [1.161508606060124e-04, 5.909106218382476e-05, 6.263058285469469e-04, -3.719965825439431e-04, -4.107576955902914e-05] 1.297819540071682e-07 [0.789536034435678, 0.277309579585727, 2.870988131504807, -1.377211945781513, -0.067083290009655] 2.400126663834845 20.600000000000001 0 1351.636635225141163 0 451.554124128584988 451.55288174647103 16.300000000000001 unique 0 2.751354634594763 4 15.1 -PSM TVAVHSTADADAMHVR 71 ES-0001a_PROKKA_03139 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 13-UNIMOD:35 1362.935105070079999 3 566.274264228123002 566.273901911670919 ms_run[2]:spectrum=299 K L 35 50 internal null 1 HCID 1.01543349609375e04 -1 not mapped 1 119.999997317790985 null 1362.935105070072723 1386.11181640625 spectrum=299 5.884263671875e04 TVAVHSTADADAM(Oxidation)HVR 7.0e-03 0.186199428892323 22.600000000000001 4 16.800000000000001 0.639825446413904 1.1e-03 [6.280325695840361e-03, 1.394679219401951e-04, 2.433649915758451e-04, -4.936882987749414e-06, 1.076165775941718e-03, 1.874958951475492e-04] 6.051021553308044e-06 [62.141251772844043, 0.796418203854771, 1.210028409942956, -0.018139602460695, 2.616840150990829, 0.335844614022315] 624.118005806234919 22.600000000000001 0 1695.800963284055797 0 566.27591774663199 566.273901911670919 21.300000000000001 unique 0 3.559823177910618 3 13.9 -PSM VEEHEEGQSAMLTR 72 ES-0001a_PROKKA_02364 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 11-UNIMOD:35 1342.166896097149902 3 544.582589209146022 544.5825128372378 ms_run[2]:spectrum=69 R R 93 106 internal null 1 HCID 1.33242060546875e04 -1 not mapped 1 119.999997317790985 null 1342.166896097155814 1318.6337890625 spectrum=69 1.67657859375e05 VEEHEEGQSAM(Oxidation)LTR 1.4e-09 0.444519676698706 49.5 8 17.899999999999999 0.140239369464188 2.0e-04 [2.83118343162414e-04, 8.986983569343465e-04, 6.072539633805718e-05, -4.829013641938218e-05, 1.499535269772423e-03, 1.369532527746742e-03, 5.471593642596417e-04, 2.238607923686686e-03, 2.051040005767391e-03, 3.263504411165741e-03, 3.534928368594592e-03, 4.6974207148196e-03] 2.280107209789298e-06 [1.616720169075411, 3.922420932156905, 0.219886797576635, -0.124059216477019, 2.796147950778288, 2.255030770599095, 0.876489400674831, 3.224009549139678, 2.722721952694823, 4.027394682065178, 3.76703409036409, 4.580985569231864] 2.410278839653916 49.5 0 1630.725938227124971 0 544.584175751879002 544.5825128372378 22.899999999999999 unique 0 3.053558647224686 7 18.800000000000001 -PSM VEEHEEGQSAMLTR 73 ES-0001a_PROKKA_02364 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 11-UNIMOD:35 1365.454449136349922 3 544.583297619797008 544.5825128372378 ms_run[2]:spectrum=287 R R 93 106 internal null 1 HCID 6791.52734375 -1 not mapped 1 119.999997317790985 null 1365.454449136344692 1380.934692382809999 spectrum=287 8.945252343749999e04 VEEHEEGQSAM(Oxidation)LTR 1.2e-07 0.460253603725989 41.700000000000003 5 17.0 1.441071905007257 2.4e-03 [4.531988009262022e-04, 3.363660840705052e-04, -5.794009296096192e-04, 9.109413235819375e-05, 1.248433118689718e-03, 9.116977132634929e-04, -1.204870668061631e-03, -9.968301451408479e-04, 2.003461273261564e-03, -7.854438186996049e-04, -0.09647616852385, 1.421682710770256e-03] 7.809166303170926e-04 [2.587948325332859, 1.468089219086203, -2.098012077443454, 0.234024327201435, 2.327923708681947, 1.501173835043217, -1.930070905702156, -1.435619821050086, 2.659561965999907, -0.969293084963783, -109.702408442488604, 1.515031332666586] 1015.736721236479184 41.700000000000003 0 1630.72806345907793 0 544.584884164713003 544.5825128372378 20.300000000000001 unique 0 4.354395191369952 7 17.600000000000001 -PSM YHLGASSDR 74 ES-0001a_PROKKA_01599 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1363.369244536909946 2 503.241490740446977 503.241057987570969 ms_run[2]:spectrum=210 K E 344 352 internal null 1 HCID 6350.365234375 -1 not mapped 1 119.999997317790985 null 1363.369244536911765 1357.567993164059999 spectrum=210 2.9779609375e04 YHLGASSDR 0.03 0.261884099446356 20.100000000000001 1 15.199999999999999 0.859931575812169 9.0e-04 [3.621074987449902e-04, -2.92710978442301e-05, 4.448787590035863e-03, 2.509743652922225e-03] 4.310497444326308e-06 [2.067780172966886, -0.09720434596003, 7.511436683359016, 3.558140510215353] 10.285270255697382 20.100000000000001 0 1004.468428547352005 0 503.242950439453011 503.241057987570969 13.5 unique 0 3.760527588131368 3 16.199999999999999 -PSM AHGDLSENAEYHAAK 75 ES-0001a_PROKKA_02064 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 2072.074193421380187 3 538.250364038463999 538.249862207404362 ms_run[3]:spectrum=40 R E 38 52 internal null 1 HCID 8.661365625e04 -1 not mapped 1 35.566587001084997 null 2072.074193421379277 1311.043212890630002 spectrum=40 1.212806125e06 AHGDLSENAEYHAAK 3.2e-14 0.457780577521513 68.0 8 22.399999999999999 0.932338482315485 1.5e-03 [8.697395445267375e-04, 9.743825957855279e-04, 1.187526180245868e-03, 1.376634555413148e-03, 1.198213701854911e-03, 1.681730179825536e-04, 1.471218176050115e-03, 5.25292948623246e-05, 6.124559921545369e-04, -1.035594768154624e-03, 4.088371540547087e-04, -1.172861273062154e-03, -8.863521134117036e-05, 4.461548629706158e-04, -1.486712028395232e-03, -5.524365426254008e-03, -2.115637093311307e-03, -9.683789458904357e-03] 7.903421597898498e-06 [5.912058743213367, 4.659814467332919, 5.443624207117792, 4.760360587492102, 3.143666070347368, 0.394544557609272, 2.976753705645236, 0.09037021222447, 1.039277707655067, -1.45794679318798, 0.56913216449642, -1.485783686033001, -0.1075208996372, 0.498279680513427, -1.645627091285705, -5.350607106141792, -1.889794322530398, -8.154795034974834] 13.551147759386149 68.0 0 1611.729262715078903 0 538.252259568849013 538.249862207404362 35.100000000000001 unique 0 4.453993605903864 11 21.899999999999999 -PSM AHGDLSENAEYHAAK 76 ES-0001a_PROKKA_02064 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 2074.340807862340171 3 538.250409926082966 538.249862207404362 ms_run[3]:spectrum=231 R E 38 52 internal null 1 HCID 3.721855078125e04 -1 not mapped 1 76.484225690364994 null 2074.340807862340625 1373.597290039059999 spectrum=231 5.589546875e05 AHGDLSENAEYHAAK 7.5e-15 0.481345846036622 70.5 10 21.100000000000001 1.017591860325942 1.7e-03 [8.447437778329459e-04, 8.996501245519539e-04, 1.301830782637126e-03, 7.80872115569764e-04, 2.377696356234083e-03, 9.227753218397083e-04, 1.398758366349284e-03, 1.60303838845266e-03, 6.091233591405398e-04, 6.54051594892735e-04, -2.444788912043805e-04, -2.205634734195883e-03, -9.096395099277288e-04, -3.902003341636373e-03, -3.458489283616473e-03, -7.075015355439973e-04, -8.805062343526515e-04, -5.903129177113442e-03] 4.831527552832993e-06 [5.742149898714681, 4.302419484971801, 5.967596908446528, 2.700232119129312, 6.238188854884875, 2.164889382943528, 2.83014390259319, 2.757831030249393, 1.033622556519949, 0.920796874102177, -0.340333062063666, -2.794103770567855, -1.103458286758109, -4.357879157670299, -3.828168166624628, -0.690627411540858, -0.852811599344918, -4.971071367116061] 12.382021527383769 70.5 0 1611.72940037793569 0 538.252305456893055 538.249862207404362 25.699999999999999 unique 0 4.539247773649936 10 20.5 -PSM ARAEDAMDEASGR 77 ES-0001a_PROKKA_00065 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1978.967811638229932 3 460.205948713197017 460.205376301870956 ms_run[3]:spectrum=52 K L 40 52 internal null 1 HCID 9.80345e04 -1 not mapped 1 115.265935659408996 null 1978.96781163822925 1314.775390625 spectrum=52 7.955159375e05 ARAEDAMDEASGR 2.9e-10 0.606469643721019 52.100000000000001 8 21.300000000000001 1.24381712065388 1.7e-03 [8.71129998898823e-04, 1.078877912959797e-03, 9.293505670484592e-04, 7.823266639661597e-04, 1.318251527095526e-03, 5.742070439964664e-04, 8.163809736743133e-04, 2.976897839062076e-04, 9.554802727507195e-05, -1.087537378111847e-03, -2.219323841472942e-03, -2.036960262671528e-03] 1.483602132408499e-06 [4.974504383484747, 4.647522938315559, 2.911750616961536, 2.004888509928906, 3.078407097725955, 1.10583468737376, 1.502766195834967, 0.484608472049219, 0.150640352912885, -1.459135869287695, -2.89986547928426, -2.367576457152135] 6.504885737770593 52.100000000000001 0 1377.596016739278184 1 460.207185266856982 460.205376301870956 31.600000000000001 unique 0 3.930777603169933 7 21.300000000000001 -PSM ARAEDAMDEASGR 78 ES-0001a_PROKKA_00065 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.04 null 2246.313766649100216 3 460.206496596468014 460.205376301870956 ms_run[3]:spectrum=250 K L 40 52 internal null 2 HCID 6365.05322265625 -1 not mapped 1 119.999997317790985 null 2246.313766649100216 1379.76708984375 spectrum=250 4.21822421875e04 ARAEDAMDEASGR 7.600000000000001e-04 0.417871164913598 26.5 2 15.5 2.434336178470101 3.4e-03 [7.184602909262594e-04, 1.685635702415311e-04, -9.775910837106494e-05, 3.818963593857916e-04, -1.437160132127247e-04, 1.277254031379016e-03, 3.228138439226314e-04] 2.449968062559584e-07 [4.10269864554108, 0.528126949130516, -0.250529762235639, 0.735473807933925, -0.264547525506656, 2.079238717712622, 0.508946053210217] 2.410098309375989 26.5 0 1377.597660389091061 1 460.207733154296932 460.205376301870956 18.100000000000001 unique 0 5.121305719883327 5 16.0 -PSM AVVSARPEDHAADAAHAAQNSK 79 ES-0001a_PROKKA_01384 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 2758.993455450689908 4 554.776101435636974 554.775530881121199 ms_run[3]:spectrum=317 R E 348 369 internal null 1 HCID 5.835392578125e04 -1 not mapped 1 96.604242920876004 null 2758.99345545068536 1398.160278320309999 spectrum=317 3.588280625e05 AVVSARPEDHAADAAHAAQNSK 2.2e-13 0.262476888150286 64.599999999999994 4 20.600000000000001 1.028442106790605 2.3e-03 [8.344973788894094e-04, 8.964953806582798e-04, 8.339096771408094e-04, 5.765869015021963e-04, 2.202699672011477e-03, -1.640414406665514e-03, 2.602185528530754e-04, -1.397867232981298e-03, -5.358295010523761e-03, 2.467793581899969e-03, 1.203693378897697e-03, -5.573743192826441e-03, -3.054619030535832e-03, -5.891290766612656e-03, -0.022507117156465] 3.877917625378979e-05 [5.672499952541944, 5.239206856039483, 3.561512174474361, 2.134074689604447, 6.32618348699932, -3.444466166136233, 0.475473085525153, -2.260748394004138, -7.093514114246357, 2.986137495507605, 1.341231716261139, -6.022583604535041, -3.016965331490491, -5.437188888115269, -17.425578187210178] 39.608689321606398 64.599999999999994 0 2215.07529987546377 0 554.778153217910017 554.775530881121199 36.100000000000001 unique 0 4.726842917265882 17 19.199999999999999 -PSM EALQGEHEAHAEAVAR 80 ES-0001a_PROKKA_02337,ES-0002a_PROKKA_00085 0 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1373.223424354910094 3 573.280538835276047 573.279932991037867 ms_run[3]:spectrum=161 R,R E,E 308,308 323,323 internal null 1 HCID 4514.59912109375 -1 not mapped 1 119.999997317790985 null 1373.223424354912368 1348.443603515630002 spectrum=161 6.26374140625e04 EALQGEHEAHAEAVAR 6.3e-05 0.509045225252352 30.800000000000001 2 16.5 1.056803497410172 1.8e-03 [0.024703006725417, -0.023138555461315, 1.170576977102655e-03, 7.185182322757555e-04, 0.011522512489506, 1.47897678488107e-03, 1.416136455418382e-03, 4.609333745975164e-05, -1.587206641374905e-03, -4.16021584783266e-04] 1.402052981106008e-04 [244.470145411493547, -133.659347753386982, 6.684467658287815, 3.573171246330358, 55.228238975305658, 3.552998404850176, 2.596966027505487, 0.074785410563788, -2.106724430658196, -0.504612745567229] 8613.931537939830378 30.800000000000001 0 1716.819787105514934 0 573.282772510995983 573.279932991037867 20.300000000000001 non-unique 0 4.95311242328079 8 17.300000000000001 -PSM ITEEMMAR 81 ES-0001a_PROKKA_00010 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.04 5-UNIMOD:35,6-UNIMOD:35 2238.001439752809802 2 498.727855100405009 506.725537797320897 ms_run[3]:spectrum=249 K L 693 700 internal null 1 HCID 1.26005185546875e04 -1 not mapped 1 119.999997317790985 null 2238.001439752805709 1379.468872070309999 spectrum=249 1.088172734375e05 ITEEM(Oxidation)M(Oxidation)AR 1.5e-03 0.029468970220734 25.199999999999999 1 12.9 -1.578306617756215e04 -4.0e-04 [7.469871264902395e-04, 6.340947495857563e-04] 6.372344381571943e-09 [3.472113642369401, 2.575986678394733] 0.401521767781228 25.199999999999999 0 995.441157267268068 0 498.729400634766023 506.725537797320897 19.0 unique 0 -1.578001613519063e04 5 16.699999999999999 -PSM QQIEETTSDYDREK 82 ES-0001a_PROKKA_00962 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1806.107496959089985 3 581.267081247134001 581.267359324371 ms_run[3]:spectrum=205 K L 351 364 internal null 1 HCID 9190.4814453125 -1 not mapped 1 119.999997317790985 null 1806.107496959092714 1363.973999023440001 spectrum=205 1.56119140625e05 QQIEETTSDYDREK 1.5e-06 0.33523759734389 37.299999999999997 4 18.100000000000001 -0.478398163148223 -8.0e-04 [7.715506949637074e-04, -6.542986810700313e-04, 7.610576961951665e-04, -6.656293176092731e-04, -1.429837696605318e-03, -1.416143242977341e-03, -1.183557285230563e-03, -5.87110644846689e-03] 4.31916903657218e-06 [5.977961379682906, -1.76737888458083, 1.760662194030469, -1.216242354703966, -2.012872767047838, -1.715760018426334, -1.297183052365127, -5.793168424880462] 11.583045155672108 37.299999999999997 0 1740.779414341088796 1 581.269395691149953 581.267359324371 24.199999999999999 unique 0 3.503322087996505 7 18.300000000000001 -PSM TCHAHPTMSETVR 83 ES-0001a_PROKKA_01604 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 2-UNIMOD:4 1971.5281933122601 3 509.566804223888028 509.566139339470965 ms_run[3]:spectrum=53 R E 442 454 internal null 2 HCID 7432.98779296875 -1 not mapped 1 119.999997317790985 null 1971.52819331225146 1315.073608398440001 spectrum=53 9.00284453125e04 TC(Carbamidomethyl)HAHPTMSETVR 6.9e-07 0.379154747213258 38.600000000000001 4 16.600000000000001 1.30480494234675 2.0e-03 [6.961282580277839e-04, 6.812081387010949e-04, 1.211413130079109e-03, 6.568510352167323e-04, -1.170794683957865e-05, 2.585185780731081e-03, -1.439475752249564e-04, -7.221719730523546e-04, -3.04301337337165e-03, 8.948179988692573e-04, -4.958106110279914e-03] 4.429510088073193e-06 [3.975173711620747, 2.599181819028652, 3.228411476019224, 1.645647146353381, -0.024900902260328, 4.371966014993033, -0.237051983464577, -0.999753330472588, -3.695678137037777, 0.972152118267745, -4.688474251135405] 8.780068525541799 38.600000000000001 0 1525.678583271351272 0 509.568442418633026 509.566139339470965 17.5 unique 0 4.519686423918745 7 17.5 -PSM TVAVHSTADADAMHVR 84 ES-0001a_PROKKA_03139 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.04 13-UNIMOD:35 2093.69872462596004 3 566.274389074803025 566.273901911670919 ms_run[3]:spectrum=37 K L 35 50 internal null 1 HCID 9042.0537109375 -1 not mapped 1 119.999997317790985 null 2093.698724625956857 1310.176391601559999 spectrum=37 3.84017578125e04 TVAVHSTADADAM(Oxidation)HVR 1.8e-04 0.326420796171663 29.0 4 17.300000000000001 0.860295928281373 1.5e-03 [6.644860405359054e-03, 7.235286838636057e-04, 8.008590029930929e-04, 7.173449292849909e-04, 1.359257784372403e-03, -1.371051475530294e-03, -8.067962176028232e-05, -0.012200665349837] 2.813902305080083e-05 [65.748173493344169, 4.131641217735727, 3.981929116859947, 2.635742406031147, 3.30521600408632, -2.178627890145192, -0.086714071692172, -10.25674008369794] 559.677078784496871 29.0 0 1695.801337824095981 0 566.276553020431038 566.273901911670919 20.399999999999999 unique 0 4.681672157536304 5 14.199999999999999 -PSM VEEHEEGQSAMLTR 85 ES-0001a_PROKKA_02364 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.04 11-UNIMOD:35 2110.307680151639943 3 544.582760691278963 544.5825128372378 ms_run[3]:spectrum=34 R R 93 106 internal null 1 HCID 8678.4462890625 -1 not mapped 1 119.999997317790985 null 2110.307680151638124 1309.510620117190001 spectrum=34 4.394687109375e04 VEEHEEGQSAM(Oxidation)LTR 4.5e-04 0.214438583957134 27.399999999999999 3 14.199999999999999 0.455126698563468 8.0e-04 [9.351690684695768e-04, 1.196851860271408e-03, 6.796887581117517e-04, 7.085316483426141e-04, 7.459723927922823e-04, -1.193386186969292e-03, 5.106100986722595e-04, -4.551733121616053e-04] 6.423265104043268e-07 [5.340193353783884, 5.223729133581202, 2.461154531425734, 1.820245036774746, 1.390997077221048, -1.911674024268342, 0.735373004172802, -0.561715979468472] 6.478022555109057 27.399999999999999 0 1630.726452673523909 0 544.584715404512053 544.5825128372378 19.600000000000001 unique 0 4.044506061675975 5 15.199999999999999 -PSM AHGDLSENAEYHAAK 86 ES-0001a_PROKKA_02064 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1326.459844618040052 3 538.250357895523962 538.249862207404362 ms_run[2]:spectrum=33 R E 38 52 internal 19.022241740206976 1 HCID 1.0954421875e05 -1 5785370176150438919 1 46.379625797271999 1 1326.45984461804369 1308.330322265630002 spectrum=33 1.425496e06 AHGDLSENAEYHAAK 1.0e-15 0.521536692473826 75.299999999999997 10 22.800000000000001 0.920925678580911 1.5e-03 [2.559608932983792e-04, 3.566435059667583e-04, 5.654878165444188e-04, 2.314043468345517e-04, 1.282259706840705e-04, 5.561813494523449e-04, 2.986263617117402e-04, 3.483206318719567e-04, 6.056383214172456e-04, 8.960010585497003e-04, 8.616171882067647e-04, 2.286803845663599e-04, 1.792206172581246e-03, 7.230578850112579e-04, -1.038649901374811e-04, -1.253894650290022e-03, -9.304689824602974e-04, -5.515256380022038e-04, -1.383283491350085e-03, -1.288896028654563e-03] 6.766461262466384e-07 [1.739895405087984, 1.705585235175973, 2.592198149546517, 0.869533300078532, 0.443401522021345, 1.459212521544896, 0.700596369057537, 0.704766124125303, 1.041926486567081, 1.520425856085156, 1.213015027818425, 0.318340348853691, 2.270371402302878, 0.877121328079576, -0.115999663788586, -1.387923798775456, -0.908277017917016, -0.534178456749015, -1.235618952167218, -1.085389452101967] 1.365557435728605 75.299999999999997 0 1611.729244286258791 0 538.251924941318975 538.249862207404362 35.299999999999997 unique 0 3.832298082072254 12 22.199999999999999 -PSM AHGDLSENAEYHAAK 87 ES-0001a_PROKKA_02064 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1341.644135232149893 3 538.250642446769007 538.249862207404362 ms_run[3]:spectrum=133 R E 38 52 internal 29.115197494565169 1 HCID 4.72473984375e04 -1 5785370176150438919 1 64.538039267062999 2 1341.644135232154895 1341.626586914059999 spectrum=133 6.479014375e05 AHGDLSENAEYHAAK 6.2e-15 0.486187965144174 70.799999999999997 10 21.399999999999999 1.4495858140019 2.4e-03 [8.973110678027751e-04, 8.903023160087287e-04, 7.852665910377255e-04, 1.115272128231481e-03, 2.070189553535329e-03, -9.036586442334738e-05, 9.266515264698683e-04, 3.906800088770979e-05, 5.740701791410174e-04, -1.294423801368794e-03, -9.249384163467766e-04, -1.669721495773047e-03, -4.657237194123809e-03, -2.613925661194116e-03, -2.984511589374961e-03, -3.335672252887889e-03, -4.377737380991675e-03, -0.012110717889527, -7.006055470128558e-03] 1.209581052372979e-05 [6.099476305486573, 4.257715224370283, 3.599664828550379, 3.856577232269348, 5.431405640381016, -0.212004044582156, 1.874917949060896, 0.067211706166274, 0.974140750443126, -1.822335423338148, -1.287584060549668, -2.115207497781152, -5.649564381457335, -2.919313788655114, -3.303526864602681, -3.25611546834214, -4.240044047093349, -10.817907278026807, -5.899854246627412] 19.220948971033451 70.799999999999997 0 1611.730097939993812 0 538.252537979736985 538.249862207404362 25.5 unique 0 4.97124573641167 10 20.899999999999999 -PSM ARAEDAMDEASGR 88 ES-0001a_PROKKA_00065 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1371.569382885480081 3 460.205294786630986 460.205376301870956 ms_run[1]:spectrum=334 K L 40 52 internal 10.592152715830633 1 HCID 7.94454140625e04 -1 6079338524867909733 1 119.999997317790985 0 1371.569382885473033 1380.053100585940001 spectrum=334 6.599338125e05 ARAEDAMDEASGR 3.6e-10 0.592378681249903 51.799999999999997 7 20.899999999999999 -0.177127961052125 -2.0e-04 [2.26973687233567e-04, 1.656087330275113e-04, -2.553241138230078e-04, -1.375031631027923e-04, 8.634162940666101e-04, 9.939472283804207e-05, 3.038079696580098e-04, 7.107321156354374e-04, 3.230219904253318e-04, 2.037089852819918e-04, 6.419080784780817e-04, 3.253215566019207e-04, 3.334188523922421e-03] 8.111631574376659e-07 [1.296111491403491, 0.7133989641323, -0.799956628111182, -0.352382865727805, 2.016266845374409, 0.191418989727483, 0.55923932765421, 1.156999074925985, 0.509274215533591, 0.273313904702027, 0.838745136183847, 0.378124047154766, 3.369911976396616] 1.109801809204868 51.799999999999997 0 1377.594054959580035 1 460.20714089474302 460.205376301870956 25.899999999999999 unique 0 3.834359533658521 7 21.0 -PSM ARAEDAMDEASGR 89 ES-0001a_PROKKA_00065 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1343.882423404759948 3 460.205501930198011 460.205376301870956 ms_run[2]:spectrum=90 K L 40 52 internal 10.06670774196458 1 HCID 1.06895810546875e04 -1 6079338524867909733 1 119.999997317790985 1 1343.882423404761767 1323.2109375 spectrum=90 3.689188671875e04 ARAEDAMDEASGR 4.8e-04 0.2706951550971 27.300000000000001 3 14.300000000000001 0.272983179954372 4.0e-04 [3.878158754844208e-04, 4.621550958745502e-04, 4.652158941098605e-05, 3.716823623335586e-03, 1.376563986354995e-03, 1.271737320280408e-03, 3.227526751516052e-03, 7.739984002569145e-03] 6.639973790357023e-06 [2.214585394855964, 1.447979302168405, 0.119222064605164, 7.158032163673711, 2.53393194085312, 2.070258077190959, 5.088496149527519, 8.996250068807489] 9.43598104070772 27.300000000000001 0 1377.594676390281165 1 460.206830702923014 460.205376301870956 17.399999999999999 unique 0 3.160330424093225 5 14.9 -PSM ARAEDAMDEASGR 90 ES-0001a_PROKKA_00065 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1358.160168917150031 3 460.205721131802989 460.205376301870956 ms_run[2]:spectrum=197 K L 40 52 internal 10.06670774196458 1 HCID 2.2422359375e04 -1 6079338524867909733 1 119.999997317790985 1 1358.160168917149576 1353.990356445309999 spectrum=197 1.62933109375e05 ARAEDAMDEASGR 2.8e-07 0.586509605467806 40.200000000000003 4 18.5 0.74929574878839 1.0e-03 [2.532575157374595e-04, 1.049414719034303e-03, 7.224315081657551e-04, 5.044050121796317e-04, 1.042731609800285e-03, 3.338633806606595e-04, 7.44100783435897e-04, 1.073755245670327e-03, 1.476719885772582e-03, 4.578661615255442e-03, 1.592674904145497e-03] 1.427306095877153e-06 [1.446202775451396, 4.520603230385755, 2.263451989161378, 1.292651599195956, 2.008141132704967, 0.614564301059001, 1.211319847728163, 1.692875025919444, 1.98129737661265, 5.982679278834323, 1.851179758414351] 2.500376797212764 40.200000000000003 0 1377.595333995096098 1 460.20704990519198 460.205376301870956 23.600000000000001 unique 0 3.636644435735194 8 18.800000000000001 -PSM ARAEDAMDEASGR 91 ES-0001a_PROKKA_00065 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1353.857109443970103 3 460.205936558000985 460.205376301870956 ms_run[3]:spectrum=153 K L 40 52 internal 22.109897616872296 1 HCID 1.34855439453125e04 -1 6079338524867909733 1 119.999997317790985 2 1353.857109443969421 1346.239135742190001 spectrum=153 8.13242421875e04 ARAEDAMDEASGR 5.2e-06 0.448661149107713 35.100000000000001 4 17.0 1.217404573869652 1.7e-03 [1.166005652407875e-03, 4.277650963331325e-04, 1.179101696038742e-03, 8.582164912809276e-04, 4.171947533677667e-04, -1.16245034973872e-04, 9.589974330310724e-04, 6.600021521308008e-04, -1.430531322171191e-03, -4.858480000734744e-03] 3.423222128494833e-06 [6.658363546661239, 1.842699784227653, 3.69424651216916, 2.199373307407889, 0.803453100215288, -0.213979887608305, 1.561149578672594, 1.040554786484704, -1.919326734262247, -5.647053149774166] 10.662148794448434 35.100000000000001 0 1377.595980273689975 1 460.207173111568977 460.205376301870956 24.699999999999999 unique 0 3.904364856534385 6 17.0 -PSM GLHNEGSQTLQAR 92 ES-0001a_PROKKA_00281 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 null 1372.790859872859983 3 470.90796783835799 470.907658810270959 ms_run[1]:spectrum=346 R L 122 134 internal 10.079136274737174 2 HCID 6558.95166015625 -1 5360692749920258796 1 119.999997317790985 0 1372.790859872858846 1382.961791992190001 spectrum=346 4.05532421875e04 GLHNEGSQTLQAR 1.3e-03 0.384772994030273 25.600000000000001 1 16.0 0.656239246165129 9.0e-04 [0.036612973951748, 5.105489967149879e-05, 1.598306967593999e-04, 7.091314853937547e-04, 1.28871500362493e-03, 7.445149021805264e-04] 2.164683327477717e-04 [213.96980763820423, 0.291544112285521, 0.649306347229233, 1.894985923846098, 2.64460992411395, 1.265436341964523] 7535.307090002288533 25.600000000000001 0 1409.70207411476099 0 470.909851074219034 470.907658810270959 20.899999999999999 unique 0 4.655400920030881 5 16.199999999999999 -PSM MIAEAMQK 93 ES-0001a_PROKKA_00962 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 6-UNIMOD:35 1309.582049075959958 2 469.227772330751009 469.227715781370989 ms_run[2]:spectrum=4 K V 161 168 internal 18.200168769514313 1 HCID 3.562624609375e04 -1 17763620004723453763 1 119.999997317790985 1 1309.582049075959731 1300.879150390630002 spectrum=4 1.56452296875e05 MIAEAM(Oxidation)QK 4.1e-06 0.209983106294453 35.600000000000001 2 16.699999999999999 0.120515856411775 1.0e-04 [6.719804559622844e-04, -8.007056238170662e-04, 1.277346490269338e-04, 2.48706591150949e-04, 1.355480081542737e-03, -1.421163710006113e-03] 1.004473649049207e-06 [2.741302373422647, -1.896477403265559, 0.258968534054757, 0.399665740010015, 1.955046778076335, -1.762339028679025] 3.557342465419175 35.600000000000001 0 936.440991727960068 0 469.229128457025013 469.227715781370989 22.600000000000001 unique 0 3.010639837570466 7 19.199999999999999 -PSM DAEAEAYAR 94 ES-0001a_PROKKA_03080 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1363.586638061960002 2 498.225106918894028 498.22507395567095 ms_run[2]:spectrum=296 K E 46 54 internal 12.294924197037492 2 HCID 1.6487138671875e04 -1 18116955262754587677 1 119.999997317790985 1 1363.586638061958183 1384.77294921875 spectrum=296 1.1663040625e05 DAEAEAYAR 3.3e-06 0.537724236496426 35.899999999999999 2 18.300000000000001 0.06616130901566 1.0e-04 [1.803632773089703e-04, 3.766801861502245e-04, 2.916645455286471e-04, 3.400747330033482e-04, -2.548360707237407e-04, 2.472310899463537e-03, -2.1932152253612e-04, 1.45975273642307e-03, -1.430360128438224e-03] 1.203486462410447e-06 [1.029947211928532, 2.013564432955954, 1.18487652568118, 1.07579800127564, -0.622737028084498, 5.147896687104468, -0.359957073346943, 2.145634314131321, -1.767231987349181] 3.955766220723675 35.899999999999999 0 994.435660904246106 0 498.226551298094989 498.22507395567095 22.300000000000001 unique 0 2.965210908213538 7 19.100000000000001 -PSM VGEAAASGELRK 95 ES-0001a_PROKKA_01329 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1365.863900657280055 2 594.32260322297202 594.322579838470915 ms_run[1]:spectrum=304 K N 447 458 internal 11.719468527791332 1 HCID 1.200121484375e04 -1 260928917346100589 1 119.999997317790985 0 1365.863900657271188 1371.34814453125 spectrum=304 4.280728125e04 VGEAAASGELRK 6.800000000000001e-04 0.365404680313936 26.699999999999999 2 15.4 0.039346479333898 1.0e-04 [-7.574977584567932e-05, 4.355104526325704e-04, -5.375110806653538e-04, 3.423645282509824e-04, 2.296984183544737e-03, 3.121329156101638e-04, 1.742762591106839e-03] 1.016370236782916e-06 [-0.482184263096387, 1.522020110955152, -0.892338902345123, 0.496616585608076, 3.02063386806729, 0.375399659788438, 1.931027305354725] 1.915400580847544 26.699999999999999 0 1186.630653512401977 1 594.324895518813946 594.322579838470915 16.399999999999999 unique 0 3.896335797405614 5 16.399999999999999 -PSM VGEAAASGELRK 96 ES-0001a_PROKKA_01329 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1339.867860745400094 2 594.323267845509008 594.322579838470915 ms_run[2]:spectrum=162 K N 447 458 internal 10.19565796189929 1 HCID 1.0866662109375e04 -1 260928917346100589 1 119.999997317790985 1 1339.867860745402822 1340.226806640630002 spectrum=162 3.5046140625e04 VGEAAASGELRK 1.2e-03 0.288500819251953 25.699999999999999 2 14.300000000000001 1.157632338788155 1.4e-03 [2.552665677910682e-04, 1.770790724435756e-04, 6.916486352110951e-04, 1.523901092355118e-03, -3.15414252509072e-03, -9.457055149368898e-04, -5.130497111167642e-04] 2.241959913089663e-06 [1.624896186283575, 0.49577419668522, 1.148227462006538, 2.210493479438445, -4.147834279510506, -1.137392151908626, -0.568472726133981] 4.648687260314377 25.699999999999999 0 1186.631982757475953 1 594.325008398299019 594.322579838470915 15.0 unique 0 4.086265456654906 5 15.4 -PSM YHLGASSDR 97 ES-0001a_PROKKA_01599 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 null 1341.4951603858201 2 503.240769902613977 503.241057987570969 ms_run[1]:spectrum=227 K E 344 352 internal 27.283188161665883 2 HCID 1.199970703125e04 -1 16840186854814138036 1 119.999997317790985 0 1341.495160385824192 1351.60009765625 spectrum=227 6.308661328125e04 YHLGASSDR 6.100000000000001e-03 0.329641857797835 22.899999999999999 2 17.399999999999999 -0.572459167270623 -5.999999999999999e-04 [-1.607247452284355e-04, -1.801201462399149e-04, 1.508860244143762e-04, 4.079475555727186e-04, 1.086005360093623e-03] 2.716977644150876e-07 [-0.917803256326823, -0.598148422811111, 0.364271068964777, 0.68878816347149, 1.539663089320253] 0.986485581028212 22.899999999999999 0 1004.466986871686004 0 503.242763698583019 503.241057987570969 18.699999999999999 unique 0 3.389451208276695 3 17.300000000000001 -PSM LHHLVDDK 98 ES-0001a_PROKKA_00009 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 null 1351.14041946077009 2 488.763527822432025 488.764168567321008 ms_run[1]:spectrum=259 K I 1257 1264 internal 18.885139001815126 2 HCID 3952.6220703125 -1 3963149378438661089 1 119.999997317790985 0 1351.140419460772137 1359.358764648440001 spectrum=259 3.1124029296875e04 LHHLVDDK 6.8e-03 0.330051106100312 22.699999999999999 1 16.199999999999999 -1.310948981512505 -1.3e-03 [-2.016462905203298e-04, -4.441264514412069e-04, -1.944401246873895e-04, 1.262487758651787e-03, -1.505643284872349e-03] 9.754540301329755e-07 [-1.370691631085897, -1.768369516110959, -0.741742240065004, 2.650975828362611, -2.072809350726759] 3.674709294848598 22.699999999999999 0 975.512502711322099 0 488.765472412108977 488.764168567321008 15.800000000000001 unique 0 2.66763578801465 4 15.6 -PSM LHHLVDDK 99 ES-0001a_PROKKA_00009 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1368.326251703749904 2 488.765398263812017 488.764168567321008 ms_run[2]:spectrum=271 K I 1257 1264 internal 33.801800536276524 1 HCID 5990.18701171875 -1 3963149378438661089 1 119.999997317790985 1 1368.32625170374854 1374.754516601559999 spectrum=271 4.121231640625e04 LHHLVDDK 7.7e-03 0.406403520713239 22.5 2 16.699999999999999 2.515930115363726 2.5e-03 [4.337859725467297e-04, 3.123803126072744e-04, 4.040431306293613e-04, 6.442432960511724e-04, 5.449610533787563e-03] 5.01675412856309e-06 [2.948662237812469, 1.243798518316901, 1.541327219768732, 1.65952623919275, 7.502443497572267] 6.820324887807409 22.5 0 975.516243594082084 0 488.766813795649 488.764168567321008 16.800000000000001 unique 0 5.41207498034495 3 17.100000000000001 -PSM TLHSDEGAHFDK 100 ES-0001a_PROKKA_01616 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1356.035167086779893 3 452.876976963643017 452.877476703937703 ms_run[1]:spectrum=275 K I 267 278 internal 23.035222900873357 1 HCID 5.800975e04 -1 16277983992011910871 1 119.999997317790985 0 1356.0351670867758 1362.913940429690001 spectrum=275 2.403740625e05 TLHSDEGAHFDK 2.3e-10 0.196848534182434 52.600000000000001 6 17.100000000000001 -1.103477917079719 -1.5e-03 [2.608921650448792e-05, 6.089154734922886e-05, -2.021743919158325e-04, -8.495147802705105e-04, -5.891907971999899e-04, -2.275558741757777e-04, -1.076129491025313e-03, 3.274657686006321e-03, -6.188389524140803e-03, -1.643865594928684e-03, -1.439903239543128e-03, 1.888676512180609e-03] 5.058358649140935e-06 [0.177341574853738, 0.283033488474721, -0.771246606555769, -2.412037954933474, -1.439831484206468, -0.416565237677573, -1.941571643375107, 4.856196212269181, -8.359062927951511, -2.046216786504471, -1.774682816966424, 2.056496514983461] 9.634806140687449 52.600000000000001 0 1355.609101490616013 0 452.878797497482026 452.877476703937703 21.699999999999999 unique 0 2.916447852377523 10 18.100000000000001 -PSM TLHSDEGAHFDK 101 ES-0001a_PROKKA_01616 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1335.929117389649946 3 452.877335076501026 452.877476703937703 ms_run[2]:spectrum=52 K I 267 278 internal 18.764607310204816 1 HCID 4.363870703125e04 -1 16277983992011910871 1 119.999997317790985 1 1335.929117389654948 1313.453369140630002 spectrum=52 2.13776734375e05 TLHSDEGAHFDK 9.700000000000001e-08 0.168784321312684 42.0 4 15.5 -0.312727931861147 -4.0e-04 [1.80258621782059e-04, 6.019532139589501e-05, 8.07095346431197e-04, 7.476518865701109e-04, 1.12021771280979e-03, -6.454734519820704e-04, 3.924389761323255e-03, -8.094295446881006e-05, 2.017513723330921e-03] 1.881254762879317e-06 [1.225308849819064, 0.229630651623007, 2.291595925173106, 1.82706982292633, 2.050677704882157, -0.95721325194709, 4.884920173023203, -0.088135211458411, 2.006623334268028] 2.875057947376089 42.0 0 1355.610175829190212 0 452.878641668709975 452.877476703937703 22.399999999999999 unique 0 2.572361912874714 8 17.600000000000001 -PSM TCHAHPTMSETVR 102 ES-0001a_PROKKA_01604 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 2-UNIMOD:4 1368.809036701260084 3 509.566188122819995 509.566139339470965 ms_run[1]:spectrum=318 R E 442 454 internal 11.855606100049148 1 HCID 1.754498828125e04 -1 483781179592362750 1 119.999997317790985 0 1368.809036701253717 1375.125 spectrum=318 2.58283703125e05 TC(Carbamidomethyl)HAHPTMSETVR 6.3e-09 0.41822159302634 46.799999999999997 6 18.0 0.095735068057949 2.0e-04 [2.411311018590823e-05, 4.787910359027592e-05, -8.35460996142956e-04, -6.762464807934521e-04, -1.403517737685434e-03, -5.515582157045174e-04, 2.198680556375621e-04, -6.621871691550041e-04, 0.089821398840854, 2.933850523731962e-04, 0.046464572784316, 2.093971322324251e-03, 8.072111680803573e-04, 6.302992907421867e-03] 6.797238737142419e-04 [0.137695605100132, 0.182684980541373, -2.226500440471729, -1.694239685535495, -2.985054381063408, -1.093759015364587, 0.371832335685437, -1.090485766277587, 132.716846194004347, 0.406153512135417, 57.69552717426901, 2.543085779121444, 0.87697391864081, 5.96022337849243] 1413.622163404197181 46.799999999999997 0 1525.676734968147002 0 509.568203266493015 509.566139339470965 23.0 unique 0 4.050361401025036 8 19.399999999999999 -PSM TCHAHPTMSETVR 103 ES-0001a_PROKKA_01604 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 2-UNIMOD:4 1358.628774345040029 3 509.566697231553974 509.566139339470965 ms_run[2]:spectrum=198 R E 442 454 internal 11.638347881510148 2 HCID 5538.22021484375 -1 483781179592362750 1 119.999997317790985 1 1358.628774345035026 1354.288818359380002 spectrum=198 4.615178515625e04 TC(Carbamidomethyl)HAHPTMSETVR 0.017 0.183959569774782 21.0 1 11.4 1.09483743117647 1.7e-03 [4.103218931277297e-04, 2.829667886089737e-03, 2.113144152076529e-03, 3.088983017505598e-03, 1.267193658577526e-03] 1.233553991418658e-06 [0.693920485457229, 4.659879708951816, 2.925373709641355, 3.75150733919636, 1.376710125409078] 2.692831326521374 21.0 0 1525.678262294348997 0 509.568176269531023 509.566139339470965 17.100000000000001 unique 0 3.997381110719348 4 15.300000000000001 -PSM VEEHEEGQSAMLTR 104 ES-0001a_PROKKA_02364 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 11-UNIMOD:35 1350.608456491310108 3 544.582984796385972 544.5825128372378 ms_run[2]:spectrum=185 R R 93 106 internal 28.369337712227459 1 HCID 5689.8310546875 -1 10721652433759411040 1 119.999997317790985 1 1350.608456491314655 1349.329467773440001 spectrum=185 7.53782890625e04 VEEHEEGQSAM(Oxidation)LTR 1.2e-06 0.389029817305659 37.700000000000003 5 15.9 0.866643964957282 1.4e-03 [2.615642179364386e-04, 2.861023011746511e-05, 4.851122492937066e-04, 8.328875483130105e-04, 2.40882053049063e-04, 4.370209072703801e-04, -1.123519773614134e-03, -1.570162922689633e-03, -1.187907636108321e-03, -3.199079947080463e-05] 6.802511922864248e-07 [1.493637402376606, 0.124871003291229, 1.756592552621025, 2.139720123377107, 0.44916706701712, 0.71958538649042, -1.799755678775303, -2.261325086404432, -1.576927894878295, -0.039478903482686] 2.37443001811256 37.700000000000003 0 1630.727124988844935 0 544.584571340338016 544.5825128372378 20.100000000000001 unique 0 3.77996548124717 7 17.300000000000001 -PSM LNADSTVASK 105 ES-0001a_PROKKA_02449 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 null 1331.329117018080069 2 503.264375136979027 503.264199115170982 ms_run[1]:spectrum=113 R E 192 201 internal 11.115132990897449 2 HCID 6185.0537109375 -1 16957076264515771445 1 119.999997317790985 0 1331.329117018078023 1322.941040039059999 spectrum=113 3.1345287109375e04 LNADSTVASK 3.0e-03 0.376363511751655 24.100000000000001 2 15.699999999999999 0.3497602419452 4.0e-04 [2.072375338286747e-04, 9.224527860851595e-05, 2.984242337333853e-05, -8.778377798535075e-05, -1.324903221416207e-03, 3.556173480546931e-03, -2.179341269084034e-04] 2.297155587380786e-06 [0.908401594941594, 0.308335903091839, 0.097785676859943, -0.148200779088648, -1.873033267791241, 4.568602648769506, -0.244201117712696] 3.920356430074789 24.100000000000001 0 1004.514197340416104 0 503.266369012785049 503.264199115170982 19.5 unique 0 4.31164707897365 4 16.600000000000001 -PSM EALQGEHEAHAEAVAR 106 ES-0001a_PROKKA_02337,ES-0002a_PROKKA_00085 0 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1368.860797965560096 3 573.280390783689995 573.279932991037867 ms_run[2]:spectrum=266 R,R E,E 308,308 323,323 internal 37.626652173150205 1 HCID 3.618188671875e04 -1 2891595416484307757 1 53.418584167957 1 1368.860797965554184 1373.316528320309999 spectrum=266 4.35400625e05 EALQGEHEAHAEAVAR 2.3e-10 0.51561515295685 52.5 4 20.899999999999999 0.798549933083077 1.4e-03 [0.024397833919849, -0.023433697654212, 1.424356569259544e-04, 2.695744644825027e-04, 2.223066906026361e-04, 6.262391026439218e-04, 3.810727611721632e-04, 9.230873619117119e-04, 8.930367827133523e-04, -3.350838291680702e-03, 2.172656177435783e-03, 1.803116455562304e-03, 1.665671497903531e-04, 7.705945247153068e-03, 0.217564097121567] 3.21556855793817e-03 [241.450041786775728, -135.364230025016383, 0.813365170110487, 1.340586337222002, 0.707597632462892, 1.814005484712228, 0.915464614737292, 1.692793452306221, 1.448932234557746, -5.245478419604075, 2.88380084174765, 2.187087349548848, 0.17469392433851, 7.98185972876881, 199.501466425169753] 7829.543064244125162 52.5 0 1716.819342950756891 0 573.282065996384972 573.279932991037867 25.899999999999999 non-unique 0 3.720704710482244 12 20.699999999999999 -PSM TVAVHSTADADAMHVR 107 ES-0001a_PROKKA_03139 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 13-UNIMOD:35 1359.65844965698011 3 566.274740513534994 566.273901911670919 ms_run[2]:spectrum=203 K L 35 50 internal 11.271826367309416 1 HCID 1.981178125e04 -1 12633067014209621448 1 119.999997317790985 1 1359.658449656977609 1354.955688476559999 spectrum=203 9.60043125e04 TVAVHSTADADAM(Oxidation)HVR 2.4e-07 0.323849784408588 40.399999999999999 4 18.5 1.480912083788252 2.5e-03 [6.221132352507652e-03, 4.257457183882707e-04, 4.982374185544813e-04, 3.314209139944069e-04, 2.610844961736802e-04, -2.869081242806715e-04, 1.006364705972373e-03, 4.093358107866152e-04, 2.17899827691781e-03, -3.452616398362807e-03, 6.118812709019039e-03, -2.30648819660928e-03] 8.105568663371754e-06 [61.555557872645437, 2.431180128166261, 2.477272624315289, 1.217740757060004, 0.634861661337109, -0.513912841574911, 1.599133406162718, 0.549926989598305, 2.341976928984415, -3.231287319395295, 5.549970736823979, -1.938996707179891] 310.59209015242601 40.399999999999999 0 1695.802392140291886 0 566.276394033518045 566.273901911670919 19.800000000000001 unique 0 4.400912418377804 8 16.199999999999999 -PSM EESIEEMHHADK 108 ES-0001a_PROKKA_01670 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1335.416987061900045 3 485.543887644815982 485.545398677737694 ms_run[1]:spectrum=170 R L 46 57 internal 11.238176732321396 1 HCID 5789.6591796875 -1 9584885256633395211 1 119.999997317790985 0 1335.416987061908912 1340.117919921880002 spectrum=170 6.59868515625e04 EESIEEMHHADK 4.1e-04 0.076628676258646 27.600000000000001 4 16.199999999999999 -3.1120322133156 -4.5e-03 [2.630923967217314e-05, -1.001680588046838e-03, -2.724064114545399e-05, -0.19779834124887, 1.343104955140007e-03] 7.832268040055941e-03 [0.178837183395868, -3.006453024165203, -0.057929750493903, -396.61692495896267, 2.21161979906862] 3.143773662657601e04 27.600000000000001 0 1453.609833534135078 0 485.545821225712018 485.545398677737694 19.300000000000001 unique 0 0.870254306754354 6 14.800000000000001 -PSM null 109 null null crap_to_database_minimal_mrgd null null null null 1300.0126953125 null 465.537655624524007 null ms_run[1]:spectrum=0 null null null null null null 1 HCID 6778.25244140625 null null 0 119.999997317790985 null 1314.294111611222661 1300.0126953125 spectrum=0 2.617128125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 110 null null crap_to_database_minimal_mrgd null null null null 1301.354736328130002 null 524.591318306504945 null ms_run[1]:spectrum=4 null null null null null null 1 HCID 1.49679150390625e04 null null 0 119.999997317790985 null 1315.357330705811137 1301.354736328130002 spectrum=4 3.002340234375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 111 null null crap_to_database_minimal_mrgd null null null null 1301.504272460940001 null 575.946924102029016 null ms_run[1]:spectrum=5 null null null null null null 2 HCID 6723.9951171875 null null 0 119.999997317790985 null 1315.475799269649997 1301.504272460940001 spectrum=5 3.157133984375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 112 null null crap_to_database_minimal_mrgd null null null null 1301.94384765625 null 564.257874921966959 null ms_run[1]:spectrum=8 null null null null null null 1 HCID 8014.38037109375 null null 0 119.999997317790985 null 1315.824048492824204 1301.94384765625 spectrum=8 1.46428466796875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 113 null null crap_to_database_minimal_mrgd null null null null 1302.690551757809999 null 466.904380621752978 null ms_run[1]:spectrum=9 null null null null null null 2 HCID 7024.7197265625 null null 0 119.999997317790985 null 1316.415617639772563 1302.690551757809999 spectrum=9 3.0638158203125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 114 null null crap_to_database_minimal_mrgd null null null null 1303.875854492190001 null 456.729977528020015 null ms_run[1]:spectrum=13 null null null null null null 2 HCID 4799.0283203125 null null 0 119.999997317790985 null 1317.354662337649643 1303.875854492190001 spectrum=13 2.8233072265625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 115 null null crap_to_database_minimal_mrgd null null null null 1304.663940429690001 null 517.225070948089979 null ms_run[1]:spectrum=17 null null null null null null 1 HCID 6952.880859375 null null 0 119.999997317790985 null 1317.979015846348602 1304.663940429690001 spectrum=17 3.437608203125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 116 null null crap_to_database_minimal_mrgd null null null null 1305.691162109380002 null 550.262742291772042 null ms_run[1]:spectrum=21 null null null null null null 1 HCID 1.17787958984375e04 null null 0 119.999997317790985 null 1318.792822348163327 1305.691162109380002 spectrum=21 2.1003541015625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 117 null null crap_to_database_minimal_mrgd null null null null 1305.839599609380002 null 454.884128259873023 null ms_run[1]:spectrum=22 null null null null null null 2 HCID 6096.74072265625 null null 0 119.999997317790985 null 1318.910420530718739 1305.839599609380002 spectrum=22 2.0848291015625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 118 null null crap_to_database_minimal_mrgd null null null null 1306.68798828125 null 484.91036106857598 null ms_run[1]:spectrum=26 null null null null null null 1 HCID 7085.63427734375 null null 0 119.999997317790985 null 1319.58254830107694 1306.68798828125 spectrum=26 3.656422265625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 119 null null crap_to_database_minimal_mrgd null null null null 1307.62451171875 null 464.20105137662398 null ms_run[1]:spectrum=30 null null null null null null 1 HCID 7105.017578125 null null 0 119.999997317790985 null 1320.324499992331539 1307.62451171875 spectrum=30 2.7913919921875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 120 null null crap_to_database_minimal_mrgd null null null null 1308.823852539059999 null 590.798927392880955 null ms_run[1]:spectrum=34 null null null null null null 1 HCID 7221.29541015625 null null 0 119.999997317790985 null 1321.274666228848901 1308.823852539059999 spectrum=34 2.3368939453125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 121 null null crap_to_database_minimal_mrgd null null null null 1309.044067382809999 null 568.262012351189014 null ms_run[1]:spectrum=36 null null null null null null 1 HCID 7579.83251953125 null null 0 119.999997317790985 null 1321.449129322047838 1309.044067382809999 spectrum=36 3.2153302734375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 122 null null crap_to_database_minimal_mrgd null null null null 1310.66796875 null 586.27170016614798 null ms_run[1]:spectrum=47 null null null null null null 1 HCID 1.555588671875e04 null null 0 119.999997317790985 null 1322.734425917495628 1310.66796875 spectrum=47 2.98926015625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 123 null null crap_to_database_minimal_mrgd null null null null 1310.817504882809999 null 594.321499211565993 null ms_run[1]:spectrum=48 null null null null null null 2 HCID 8542.91796875 null null 0 119.999997317790985 null 1322.852460602560541 1310.817504882809999 spectrum=48 1.8104126953125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 124 null null crap_to_database_minimal_mrgd null null null null 1311.605346679690001 null 557.231075013693044 null ms_run[1]:spectrum=52 null null null null null null 1 HCID 1.6792982421875e04 null null 0 119.999997317790985 null 1323.472606366864966 1311.605346679690001 spectrum=52 8.103228906249999e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 125 null null crap_to_database_minimal_mrgd null null null null 1311.7548828125 null 523.279433032569045 null ms_run[1]:spectrum=53 null null null null null null 2 HCID 6687.29052734375 null null 0 119.999997317790985 null 1323.589917666519568 1311.7548828125 spectrum=53 1.52381279296875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 126 null null crap_to_database_minimal_mrgd null null null null 1312.053100585940001 null 471.551245644521998 null ms_run[1]:spectrum=54 null null null null null null 3 HCID 1.579379296875e04 null null 0 119.999997317790985 null 1323.823420483277687 1312.053100585940001 spectrum=54 3.4563140625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 127 null null crap_to_database_minimal_mrgd null null null null 1312.20263671875 null 589.815654154073968 null ms_run[1]:spectrum=55 null null null null null null 4 HCID 6656.56103515625 null null 0 119.999997317790985 null 1323.940263406059557 1312.20263671875 spectrum=55 2.66733125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 128 null null crap_to_database_minimal_mrgd null null null null 1313.137939453130002 null 528.906855702065968 null ms_run[1]:spectrum=59 null null null null null null 1 HCID 5301.16796875 null null 0 119.999997317790985 null 1324.666777820499419 1313.137939453130002 spectrum=59 2.73898515625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 129 null null crap_to_database_minimal_mrgd null null null null 1313.627807617190001 null 562.220344910543986 null ms_run[1]:spectrum=63 null null null null null null 1 HCID 7801.2080078125 null null 0 119.999997317790985 null 1325.043846709467971 1313.627807617190001 spectrum=63 1.7794134765625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 130 null null crap_to_database_minimal_mrgd null null null null 1315.000244140630002 null 531.775071277941947 null ms_run[1]:spectrum=68 null null null null null null 1 HCID 6113.05029296875 null null 0 119.999997317790985 null 1326.084488352217477 1315.000244140630002 spectrum=68 2.7682974609375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 131 null null crap_to_database_minimal_mrgd null null null null 1316.180908203130002 null 496.578076397117002 null ms_run[1]:spectrum=77 null null null null null null 1 HCID 5310.39892578125 null null 0 119.999997317790985 null 1326.957069532070364 1316.180908203130002 spectrum=77 3.1650935546875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 132 null null crap_to_database_minimal_mrgd null null null null 1316.847778320309999 null 574.59268041073301 null ms_run[1]:spectrum=79 null null null null null null 1 HCID 9261.8076171875 null null 0 119.999997317790985 null 1327.438916900091954 1316.847778320309999 spectrum=79 1.7973857421875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 133 null null crap_to_database_minimal_mrgd null null null null 1317.621459960940001 null 514.243086319003055 null ms_run[1]:spectrum=84 null null null null null null 1 HCID 9481.5458984375 null null 0 119.999997317790985 null 1327.986692000019048 1317.621459960940001 spectrum=84 2.42271640625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 134 null null crap_to_database_minimal_mrgd null null null null 1317.77001953125 null 498.528234570670008 null ms_run[1]:spectrum=85 null null null null null null 2 HCID 6723.57080078125 null null 0 119.999997317790985 null 1328.090394855179966 1317.77001953125 spectrum=85 6.762684375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 135 null null crap_to_database_minimal_mrgd null null null null 1318.26025390625 null 562.889471156836976 null ms_run[1]:spectrum=89 null null null null null null 1 HCID 7524.39697265625 null null 0 119.999997317790985 null 1328.429030019831316 1318.26025390625 spectrum=89 1.4909923828125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 136 null null crap_to_database_minimal_mrgd null null null null 1319.195678710940001 null 565.277769077998983 null ms_run[1]:spectrum=93 null null null null null null 1 HCID 4277.71533203125 null null 0 119.999997317790985 null 1329.059031424952082 1319.195678710940001 spectrum=93 2.407680859375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 137 null null crap_to_database_minimal_mrgd null null null null 1321.31396484375 null 494.767169467593988 null ms_run[1]:spectrum=104 null null null null null null 1 HCID 1.53398037109375e04 null null 0 119.999997317790985 null 1330.397202770852346 1321.31396484375 spectrum=104 3.1251357421875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 138 null null crap_to_database_minimal_mrgd null null null null 1321.463623046880002 null 596.661335545092015 null ms_run[1]:spectrum=105 null null null null null null 2 HCID 6801.5400390625 null null 0 119.999997317790985 null 1330.486622801984595 1321.463623046880002 spectrum=105 2.4830298828125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 139 null null crap_to_database_minimal_mrgd null null null null 1321.903198242190001 null 527.798705089059013 null ms_run[1]:spectrum=108 null null null null null null 1 HCID 6966.0439453125 null null 0 119.999997317790985 null 1330.745048066316258 1321.903198242190001 spectrum=108 2.4484275390625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 140 null null crap_to_database_minimal_mrgd null null null null 1322.123413085940001 null 562.592230910477042 null ms_run[1]:spectrum=110 null null null null null null 1 HCID 7664.51318359375 null null 0 119.999997317790985 null 1330.87209341362086 1322.123413085940001 spectrum=110 2.0893513671875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 141 null null crap_to_database_minimal_mrgd null null null null 1324.207275390630002 null 515.232096672049011 null ms_run[1]:spectrum=115 null null null null null null 1 HCID 1.0831298828125e04 null null 0 119.999997317790985 null 1331.98857008648929 1324.207275390630002 spectrum=115 2.6925095703125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 142 null null crap_to_database_minimal_mrgd null null null null 1324.508422851559999 null 552.903297619842988 null ms_run[1]:spectrum=116 null null null null null null 2 HCID 4308.7158203125 null null 0 119.999997317790985 null 1332.136265323223597 1324.508422851559999 spectrum=116 2.62466328125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 143 null null crap_to_database_minimal_mrgd null null null null 1325.245239257809999 null 458.547201415498023 null ms_run[1]:spectrum=120 null null null null null null 1 HCID 1.01231357421875e04 null null 0 119.999997317790985 null 1332.482040482862885 1325.245239257809999 spectrum=120 3.2027146484375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 144 null null crap_to_database_minimal_mrgd null null null null 1325.393798828130002 null 489.566808770936973 null ms_run[1]:spectrum=121 null null null null null null 2 HCID 9853.7548828125 null null 0 119.999997317790985 null 1332.549006743172868 1325.393798828130002 spectrum=121 2.545051171875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 145 null null crap_to_database_minimal_mrgd null null null null 1325.542236328130002 null 525.906743611679985 null ms_run[1]:spectrum=122 null null null null null null 3 HCID 9474.21484375 null null 0 119.999997317790985 null 1332.614976076276435 1325.542236328130002 spectrum=122 2.21305546875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 146 null null crap_to_database_minimal_mrgd null null null null 1325.83935546875 null 474.571773548566 null ms_run[1]:spectrum=123 null null null null null null 4 HCID 7217.42578125 null null 0 119.999997317790985 null 1332.744160103532067 1325.83935546875 spectrum=123 2.7079025390625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 147 null null crap_to_database_minimal_mrgd null null null null 1326.859252929690001 null 577.314886994054973 null ms_run[1]:spectrum=125 null null null null null null 1 HCID 1.43952626953125e04 null null 0 119.999997317790985 null 1333.157680125496199 1326.859252929690001 spectrum=125 3.142197265625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 148 null null crap_to_database_minimal_mrgd null null null null 1327.0078125 null 596.863361272520024 null ms_run[1]:spectrum=126 null null null null null null 2 HCID 3569.478759765625 null null 0 119.999997317790985 null 1333.213935102634878 1327.0078125 spectrum=126 2.846675e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 149 null null crap_to_database_minimal_mrgd null null null null 1328.535034179690001 null 550.898612843467049 null ms_run[1]:spectrum=129 null null null null null null 1 HCID 7291.8330078125 null null 0 119.999997317790985 null 1333.730538030762546 1328.535034179690001 spectrum=129 2.890641796875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 150 null null crap_to_database_minimal_mrgd null null null null 1328.834106445309999 null 548.603724578778042 null ms_run[1]:spectrum=130 null null null null null null 2 HCID 6472.57763671875 null null 0 119.999997317790985 null 1333.818057170058182 1328.834106445309999 spectrum=130 2.29629453125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 151 null null crap_to_database_minimal_mrgd null null null null 1329.430419921880002 null 460.87992644613098 null ms_run[1]:spectrum=131 null null null null null null 3 HCID 1.2013009765625e04 null null 0 119.999997317790985 null 1333.978688034205334 1329.430419921880002 spectrum=131 5.059761328125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 152 null null crap_to_database_minimal_mrgd null null null null 1330.377563476559999 null 557.256809549097966 null ms_run[1]:spectrum=133 null null null null null null 1 HCID 1.54774375e04 null null 0 119.999997317790985 null 1334.197703432985918 1330.377563476559999 spectrum=133 7.75548828125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 153 null null crap_to_database_minimal_mrgd null null null null 1330.526977539059999 null 570.604657949189004 null ms_run[1]:spectrum=134 null null null null null null 2 HCID 6655.66552734375 null null 0 119.999997317790985 null 1334.228560560049345 1330.526977539059999 spectrum=134 3.366004296875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 154 null null crap_to_database_minimal_mrgd null null null null 1330.974609375 null 533.240642591792039 null ms_run[1]:spectrum=135 null null null null null null 3 HCID 3.98667421875e04 null null 0 119.999997317790985 null 1334.315524698610943 1330.974609375 spectrum=135 7.22476953125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 155 null null crap_to_database_minimal_mrgd null null null null 1331.123291015630002 null 516.923802426185944 null ms_run[1]:spectrum=136 null null null null null null 4 HCID 7700.0810546875 null null 0 119.999997317790985 null 1334.34267860080854 1331.123291015630002 spectrum=136 3.8284765625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 156 null null crap_to_database_minimal_mrgd null null null null 1331.271728515630002 null 527.241394931096011 null ms_run[1]:spectrum=137 null null null null null null 5 HCID 3617.281494140625 null null 0 119.999997317790985 null 1334.36896986456145 1331.271728515630002 spectrum=137 1.267765625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 157 null null crap_to_database_minimal_mrgd null null null null 1331.56982421875 null 523.91822484732495 null ms_run[1]:spectrum=138 null null null null null null 6 HCID 6095.13232421875 null null 0 119.999997317790985 null 1334.419403859755676 1331.56982421875 spectrum=138 2.654515234375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 158 null null crap_to_database_minimal_mrgd null null null null 1332.856811523440001 null 561.253490140173994 null ms_run[1]:spectrum=142 null null null null null null 3 HCID 1.18002294921875e04 null null 0 119.999997317790985 null 1334.605556691165248 1332.856811523440001 spectrum=142 2.865540234375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 159 null null crap_to_database_minimal_mrgd null null null null 1333.00537109375 null 495.271897975553998 null ms_run[1]:spectrum=143 null null null null null null 4 HCID 4594.78076171875 null null 0 119.999997317790985 null 1334.624228673160587 1333.00537109375 spectrum=143 3.536279296875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 160 null null crap_to_database_minimal_mrgd null null null null 1334.056762695309999 null 495.615982498972016 null ms_run[1]:spectrum=147 null null null null null null 1 HCID 1.3756990234375e04 null null 0 119.999997317790985 null 1334.74384331527699 1334.056762695309999 spectrum=147 4.159922265625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 161 null null crap_to_database_minimal_mrgd null null null null 1334.206298828130002 null 574.78823642214104 null ms_run[1]:spectrum=148 null null null null null null 2 HCID 6535.68212890625 null null 0 119.999997317790985 null 1334.759390773684572 1334.206298828130002 spectrum=148 3.0997865234375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 162 null null crap_to_database_minimal_mrgd null null null null 1335.377563476559999 null 563.547672146626951 null ms_run[1]:spectrum=154 null null null null null null 3 HCID 1.068548828125e04 null null 0 119.999997317790985 null 1334.873376347874228 1335.377563476559999 spectrum=154 1.9652099609375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 163 null null crap_to_database_minimal_mrgd null null null null 1336.245727539059999 null 555.887968052653037 null ms_run[1]:spectrum=157 null null null null null null 1 HCID 1.3430923828125e04 null null 0 119.999997317790985 null 1334.954044791491242 1336.245727539059999 spectrum=157 4.050769921875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 164 null null crap_to_database_minimal_mrgd null null null null 1336.5439453125 null 455.219301649585987 null ms_run[1]:spectrum=159 null null null null null null 3 HCID 2.33198828125e04 null null 0 119.999997317790985 null 1334.982073931288369 1336.5439453125 spectrum=159 4.502921484375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 165 null null crap_to_database_minimal_mrgd null null null null 1336.993530273440001 null 482.220245777295986 null ms_run[1]:spectrum=160 null null null null null null 4 HCID 1.0144814453125e04 null null 0 119.999997317790985 null 1335.025353121608305 1336.993530273440001 spectrum=160 2.00378515625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 166 null null crap_to_database_minimal_mrgd null null null null 1338.003051757809999 null 465.860927208274006 null ms_run[1]:spectrum=162 null null null null null null 1 HCID 7244.22314453125 null null 0 119.999997317790985 null 1335.130422727305586 1338.003051757809999 spectrum=162 3.4595625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 167 null null crap_to_database_minimal_mrgd null null null null 1339.231323242190001 null 568.262195456066024 null ms_run[1]:spectrum=166 null null null null null null 1 HCID 5547.33251953125 null null 0 119.999997317790985 null 1335.282695979612299 1339.231323242190001 spectrum=166 3.0576484375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 168 null null crap_to_database_minimal_mrgd null null null null 1339.600463867190001 null 526.896242270928042 null ms_run[1]:spectrum=168 null null null null null null 1 HCID 8685.759765625 null null 0 119.999997317790985 null 1335.335724314633126 1339.600463867190001 spectrum=168 2.3571634765625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 169 null null crap_to_database_minimal_mrgd null null null null 1340.493530273440001 null 464.201783795955976 null ms_run[1]:spectrum=172 null null null null null null 1 HCID 8723.0078125 null null 0 119.999997317790985 null 1335.481596808663198 1340.493530273440001 spectrum=172 2.2163330078125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 170 null null crap_to_database_minimal_mrgd null null null null 1342.285522460940001 null 505.723583751272997 null ms_run[1]:spectrum=181 null null null null null null 1 HCID 8814.52734375 null null 0 119.999997317790985 null 1335.868672726316618 1342.285522460940001 spectrum=181 2.1555556640625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 171 null null crap_to_database_minimal_mrgd null null null null 1342.732666015630002 null 509.565489741492002 null ms_run[1]:spectrum=182 null null null null null null 2 HCID 6857.46435546875 null null 0 119.999997317790985 null 1335.989020155263688 1342.732666015630002 spectrum=182 1.648225e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 172 null null crap_to_database_minimal_mrgd null null null null 1344.023559570309999 null 566.273961114378039 null ms_run[1]:spectrum=189 null null null null null null 2 HCID 4448.828125 null null 0 119.999997317790985 null 1336.40012976462549 1344.023559570309999 spectrum=189 1.34760703125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 173 null null crap_to_database_minimal_mrgd null null null null 1344.981689453130002 null 561.758737522590991 null ms_run[1]:spectrum=194 null null null null null null 2 HCID 1.17735888671875e04 null null 0 119.999997317790985 null 1336.774057547809434 1344.981689453130002 spectrum=194 2.18339140625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 174 null null crap_to_database_minimal_mrgd null null null null 1345.130126953130002 null 471.885045760833009 null ms_run[1]:spectrum=195 null null null null null null 3 HCID 5206.73291015625 null null 0 119.999997317790985 null 1336.837749867108641 1345.130126953130002 spectrum=195 2.033212109375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 175 null null crap_to_database_minimal_mrgd null null null null 1345.833129882809999 null 575.894800246156024 null ms_run[1]:spectrum=199 null null null null null null 1 HCID 5248.7509765625 null null 0 119.999997317790985 null 1337.161819585884359 1345.833129882809999 spectrum=199 2.14526171875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 176 null null crap_to_database_minimal_mrgd null null null null 1347.063232421880002 null 575.270351570492039 null ms_run[1]:spectrum=205 null null null null null null 1 HCID 6418.81591796875 null null 0 119.999997317790985 null 1337.824456955731421 1347.063232421880002 spectrum=205 2.8327482421875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 177 null null crap_to_database_minimal_mrgd null null null null 1347.282470703130002 null 490.241672190336999 null ms_run[1]:spectrum=207 null null null null null null 1 HCID 1.11377587890625e04 null null 0 119.999997317790985 null 1337.956229638170498 1347.282470703130002 spectrum=207 2.8357333984375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 178 null null crap_to_database_minimal_mrgd null null null null 1349.093139648440001 null 514.242598039391964 null ms_run[1]:spectrum=214 null null null null null null 1 HCID 3923.69580078125 null null 0 119.999997317790985 null 1339.21844121359004 1349.093139648440001 spectrum=214 1.28869599609375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 179 null null crap_to_database_minimal_mrgd null null null null 1350.6484375 null 493.22762392617301 null ms_run[1]:spectrum=222 null null null null null null 2 HCID 1.4542017578125e04 null null 0 119.999997317790985 null 1340.563177287336885 1350.6484375 spectrum=222 2.766338671875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 180 null null crap_to_database_minimal_mrgd null null null null 1350.797973632809999 null 576.23473570803003 null ms_run[1]:spectrum=223 null null null null null null 3 HCID 5071.78076171875 null null 0 119.999997317790985 null 1340.704441387511452 1350.797973632809999 spectrum=223 2.029194921875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 181 null null crap_to_database_minimal_mrgd null null null null 1351.451538085940001 null 472.854250177531981 null ms_run[1]:spectrum=226 null null null null null null 1 HCID 1.319488671875e04 null null 0 119.999997317790985 null 1341.344637412898464 1351.451538085940001 spectrum=226 3.7661171875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 182 null null crap_to_database_minimal_mrgd null null null null 1351.748657226559999 null 475.73305494612498 null ms_run[1]:spectrum=228 null null null null null null 3 HCID 8144.08447265625 null null 0 119.999997317790985 null 1341.647473008588122 1351.748657226559999 spectrum=228 3.1273126953125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 183 null null crap_to_database_minimal_mrgd null null null null 1352.0478515625 null 524.823861476811999 null ms_run[1]:spectrum=229 null null null null null null 4 HCID 7115.923828125 null null 0 119.999997317790985 null 1341.959537147562969 1352.0478515625 spectrum=229 2.9476345703125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 184 null null crap_to_database_minimal_mrgd null null null null 1352.68505859375 null 522.214906277180944 null ms_run[1]:spectrum=234 null null null null null null 2 HCID 1.31854814453125e04 null null 0 119.999997317790985 null 1342.646834649109223 1352.68505859375 spectrum=234 4.695145703125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 185 null null crap_to_database_minimal_mrgd null null null null 1353.580810546880002 null 573.613557585900026 null ms_run[1]:spectrum=236 null null null null null null 4 HCID 4357.701171875 null null 0 119.999997317790985 null 1343.661407285354471 1353.580810546880002 spectrum=236 2.7907306640625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 186 null null crap_to_database_minimal_mrgd null null null null 1354.2900390625 null 478.177840230502 null ms_run[1]:spectrum=239 null null null null null null 2 HCID 6505.6865234375 null null 0 119.999997317790985 null 1344.500996378712898 1354.2900390625 spectrum=239 2.749609765625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 187 null null crap_to_database_minimal_mrgd null null null null 1355.028930664059999 null 517.225376122848957 null ms_run[1]:spectrum=242 null null null null null null 1 HCID 6479.646484375 null null 0 119.999997317790985 null 1345.406027771568915 1355.028930664059999 spectrum=242 1.3856060546875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 188 null null crap_to_database_minimal_mrgd null null null null 1355.873291015630002 null 525.424811623017945 null ms_run[1]:spectrum=247 null null null null null null 1 HCID 6332.61669921875 null null 0 119.999997317790985 null 1346.473515272745544 1355.873291015630002 spectrum=247 2.2738416015625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 189 null null crap_to_database_minimal_mrgd null null null null 1356.171264648440001 null 588.326936371268971 null ms_run[1]:spectrum=248 null null null null null null 2 HCID 5691.2919921875 null null 0 119.999997317790985 null 1346.857737391563205 1356.171264648440001 spectrum=248 2.859693359375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 190 null null crap_to_database_minimal_mrgd null null null null 1356.762451171880002 null 572.800895710689019 null ms_run[1]:spectrum=251 null null null null null null 1 HCID 8727.7275390625 null null 0 119.999997317790985 null 1347.630263522114774 1356.762451171880002 spectrum=251 1.6174404296875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 191 null null crap_to_database_minimal_mrgd null null null null 1357.0595703125 null 526.577029466100044 null ms_run[1]:spectrum=252 null null null null null null 2 HCID 8401.90234375 null null 0 119.999997317790985 null 1348.023180580932376 1357.0595703125 spectrum=252 2.1075060546875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 192 null null crap_to_database_minimal_mrgd null null null null 1357.945068359380002 null 485.503285063946009 null ms_run[1]:spectrum=255 null null null null null null 1 HCID 1.3586921875e04 null null 0 119.999997317790985 null 1349.209874508590701 1357.945068359380002 spectrum=255 4.288576953125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 193 null null crap_to_database_minimal_mrgd null null null null 1358.094482421880002 null 561.265872356824048 null ms_run[1]:spectrum=256 null null null null null null 2 HCID 5710.17333984375 null null 0 119.999997317790985 null 1349.412117383365512 1358.094482421880002 spectrum=256 2.0745283203125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 194 null null crap_to_database_minimal_mrgd null null null null 1358.76171875 null 550.898964506154016 null ms_run[1]:spectrum=258 null null null null null null 1 HCID 6215.82373046875 null null 0 119.999997317790985 null 1350.320944601861811 1358.76171875 spectrum=258 3.2303396484375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 195 null null crap_to_database_minimal_mrgd null null null null 1360.146850585940001 null 500.271362204569016 null ms_run[1]:spectrum=263 null null null null null null 1 HCID 3.653423046875e04 null null 0 119.999997317790985 null 1352.227772896051192 1360.146850585940001 spectrum=263 1.83580765625e05 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 196 null null crap_to_database_minimal_mrgd null null null null 1360.295532226559999 null 469.909832862011001 null ms_run[1]:spectrum=264 null null null null null null 2 HCID 8555.4296875 null null 0 119.999997317790985 null 1352.433316046173786 1360.295532226559999 spectrum=264 6.0991421875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 197 null null crap_to_database_minimal_mrgd null null null null 1360.445068359380002 null 531.775132312896972 null ms_run[1]:spectrum=265 null null null null null null 3 HCID 1.08007890625e04 null null 0 119.999997317790985 null 1352.640095950494697 1360.445068359380002 spectrum=265 2.704862109375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 198 null null crap_to_database_minimal_mrgd null null null null 1360.593627929690001 null 455.197908902042002 null ms_run[1]:spectrum=266 null null null null null null 4 HCID 9234.4658203125 null null 0 119.999997317790985 null 1352.845550734871495 1360.593627929690001 spectrum=266 3.699194921875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 199 null null crap_to_database_minimal_mrgd null null null null 1361.290161132809999 null 557.256888555506976 null ms_run[1]:spectrum=268 null null null null null null 1 HCID 9976.595703125 null null 0 119.999997317790985 null 1353.808295595502386 1361.290161132809999 spectrum=268 2.522305078125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 200 null null crap_to_database_minimal_mrgd null null null null 1363.134155273440001 null 575.814356168838003 null ms_run[1]:spectrum=277 null null null null null null 1 HCID 8728.462890625 null null 0 119.999997317790985 null 1356.333731270881572 1363.134155273440001 spectrum=277 3.22414921875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 201 null null crap_to_database_minimal_mrgd null null null null 1363.282836914059999 null 494.768023956875993 null ms_run[1]:spectrum=278 null null null null null null 2 HCID 9686.7001953125 null null 0 119.999997317790985 null 1356.534682285119288 1363.282836914059999 spectrum=278 4.209893359375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 202 null null crap_to_database_minimal_mrgd null null null null 1363.431274414059999 null 513.946571846434949 null ms_run[1]:spectrum=279 null null null null null null 3 HCID 1.22019443359375e04 null null 0 119.999997317790985 null 1356.734762805314631 1363.431274414059999 spectrum=279 3.1748650390625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 203 null null crap_to_database_minimal_mrgd null null null null 1363.579956054690001 null 499.90960805962402 null ms_run[1]:spectrum=280 null null null null null null 4 HCID 1.45592724609375e04 null null 0 119.999997317790985 null 1356.934601321861919 1363.579956054690001 spectrum=280 8.419805468750001e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 204 null null crap_to_database_minimal_mrgd null null null null 1365.871826171880002 null 468.901047290059978 null ms_run[1]:spectrum=290 null null null null null null 1 HCID 6546.3935546875 null null 0 119.999997317790985 null 1359.920909874363815 1365.871826171880002 spectrum=290 4.705258984375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 205 null null crap_to_database_minimal_mrgd null null null null 1366.1708984375 null 585.301322317350014 null ms_run[1]:spectrum=291 null null null null null null 2 HCID 5599.37158203125 null null 0 119.999997317790985 null 1360.294363589248405 1366.1708984375 spectrum=291 1.4369099609375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 206 null null crap_to_database_minimal_mrgd null null null null 1367.139038085940001 null 553.783911852444021 null ms_run[1]:spectrum=293 null null null null null null 1 HCID 7097.3701171875 null null 0 119.999997317790985 null 1361.470999948082863 1367.139038085940001 spectrum=293 2.306246484375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 207 null null crap_to_database_minimal_mrgd null null null null 1368.595336914059999 null 455.566525945122976 null ms_run[1]:spectrum=295 null null null null null null 1 HCID 7234.5361328125 null null 0 119.999997317790985 null 1363.133520344011913 1368.595336914059999 spectrum=295 2.2631326171875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 208 null null crap_to_database_minimal_mrgd null null null null 1369.562866210940001 null 477.232225808606017 null ms_run[1]:spectrum=297 null null null null null null 1 HCID 5429.70556640625 null null 0 119.999997317790985 null 1364.155302557981486 1369.562866210940001 spectrum=297 2.57655390625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 209 null null crap_to_database_minimal_mrgd null null null null 1370.497192382809999 null 521.920245674451053 null ms_run[1]:spectrum=301 null null null null null null 1 HCID 4220.16455078125 null null 0 119.999997317790985 null 1365.077164039920945 1370.497192382809999 spectrum=301 2.2488451171875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 210 null null crap_to_database_minimal_mrgd null null null null 1370.79638671875 null 548.604117353952006 null ms_run[1]:spectrum=302 null null null null null null 2 HCID 6258.46435546875 null null 0 119.999997317790985 null 1365.359395805674922 1370.79638671875 spectrum=302 1.52984267578125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 211 null null crap_to_database_minimal_mrgd null null null null 1371.496826171880002 null 464.201323441548993 null ms_run[1]:spectrum=305 null null null null null null 2 HCID 4715.05517578125 null null 0 119.999997317790985 null 1365.996372352960407 1371.496826171880002 spectrum=305 1.53077958984375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 212 null null crap_to_database_minimal_mrgd null null null null 1372.093994140630002 null 496.719067129053997 null ms_run[1]:spectrum=306 null null null null null null 3 HCID 6625.3828125 null null 0 119.999997317790985 null 1366.513930619075381 1372.093994140630002 spectrum=306 3.558390234375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 213 null null crap_to_database_minimal_mrgd null null null null 1372.900390625 null 486.219682758750025 null ms_run[1]:spectrum=310 null null null null null null 1 HCID 8232.5908203125 null null 0 119.999997317790985 null 1367.177079575713378 1372.900390625 spectrum=310 9.249525e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 214 null null crap_to_database_minimal_mrgd null null null null 1373.49462890625 null 553.764378791252057 null ms_run[1]:spectrum=311 null null null null null null 2 HCID 4037.127685546875 null null 0 119.999997317790985 null 1367.640523898480069 1373.49462890625 spectrum=311 1.49920703125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 215 null null crap_to_database_minimal_mrgd null null null null 1374.325317382809999 null 585.927353749291001 null ms_run[1]:spectrum=315 null null null null null null 2 HCID 1.1473169921875e04 null null 0 119.999997317790985 null 1368.254159007034104 1374.325317382809999 spectrum=315 3.429771484375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 216 null null crap_to_database_minimal_mrgd null null null null 1374.77099609375 null 500.250305147025983 null ms_run[1]:spectrum=316 null null null null null null 3 HCID 7420.419921875 null null 0 119.999997317790985 null 1368.567614421328244 1374.77099609375 spectrum=316 3.327033984375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 217 null null crap_to_database_minimal_mrgd null null null null 1375.72119140625 null 481.252994457977991 null ms_run[1]:spectrum=319 null null null null null null 2 HCID 7746.95556640625 null null 0 119.999997317790985 null 1369.201004313028761 1375.72119140625 spectrum=319 1.37328203125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 218 null null crap_to_database_minimal_mrgd null null null null 1377.626220703130002 null 553.29660688164995 null ms_run[1]:spectrum=325 null null null null null null 2 HCID 7555.8232421875 null null 0 119.999997317790985 null 1370.339098886545344 1377.626220703130002 spectrum=325 1.8415880859375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 219 null null crap_to_database_minimal_mrgd null null null null 1378.4140625 null 568.262195456066024 null ms_run[1]:spectrum=329 null null null null null null 1 HCID 1.33922021484375e04 null null 0 119.999997317790985 null 1370.76325814521033 1378.4140625 spectrum=329 2.6608017578125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 220 null null crap_to_database_minimal_mrgd null null null null 1379.384155273440001 null 570.772502290442048 null ms_run[1]:spectrum=332 null null null null null null 1 HCID 4012.1533203125 null null 0 119.999997317790985 null 1371.25210346453855 1379.384155273440001 spectrum=332 1.512405078125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 221 null null crap_to_database_minimal_mrgd null null null null 1381.729370117190001 null 451.552932635148011 null ms_run[1]:spectrum=341 null null null null null null 1 HCID 6379.2724609375 null null 0 119.999997317790985 null 1372.301639775114154 1381.729370117190001 spectrum=341 7.5671265625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 222 null null crap_to_database_minimal_mrgd null null null null 1383.258911132809999 null 479.549783755458009 null ms_run[1]:spectrum=347 null null null null null null 3 HCID 1.02151376953125e04 null null 0 119.999997317790985 null 1372.903494639876726 1383.258911132809999 spectrum=347 3.0716958984375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 223 null null crap_to_database_minimal_mrgd null null null null 1383.407470703130002 null 503.241048195277983 null ms_run[1]:spectrum=348 null null null null null null 4 HCID 6160.08154296875 null null 0 119.999997317790985 null 1372.959108813127841 1383.407470703130002 spectrum=348 4.2403828125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 224 null null crap_to_database_minimal_mrgd null null null null 1384.41552734375 null 541.281509580952047 null ms_run[1]:spectrum=354 null null null null null null 1 HCID 6674.3203125 null null 0 119.999997317790985 null 1373.325169744649656 1384.41552734375 spectrum=354 3.143971875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 225 null null crap_to_database_minimal_mrgd null null null null 1384.863159179690001 null 530.913196695758984 null ms_run[1]:spectrum=355 null null null null null null 2 HCID 5852.63330078125 null null 0 119.999997317790985 null 1373.482060357200226 1384.863159179690001 spectrum=355 3.15357265625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 226 null null crap_to_database_minimal_mrgd null null null null 1385.011840820309999 null 465.20123101048199 null ms_run[1]:spectrum=356 null null null null null null 3 HCID 8570.73046875 null null 0 119.999997317790985 null 1373.533491643904881 1385.011840820309999 spectrum=356 2.3122978515625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 227 null null crap_to_database_minimal_mrgd null null null null 1386.2060546875 null 454.884280847231025 null ms_run[1]:spectrum=359 null null null null null null 2 HCID 1.7835099609375e04 null null 0 119.999997317790985 null 1373.936101871690426 1386.2060546875 spectrum=359 4.724581640625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 228 null null crap_to_database_minimal_mrgd null null null null 1387.47216796875 null 557.965478882293951 null ms_run[1]:spectrum=361 null null null null null null 1 HCID 2.3026044921875e04 null null 0 119.999997317790985 null 1374.347722878480226 1387.47216796875 spectrum=361 1.67246765625e05 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 229 null null crap_to_database_minimal_mrgd null null null null 1387.620849609380002 null 486.995864185839992 null ms_run[1]:spectrum=362 null null null null null null 2 HCID 1.557404296875e04 null null 0 119.999997317790985 null 1374.395378938157364 1387.620849609380002 spectrum=362 4.4519953125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 230 null null crap_to_database_minimal_mrgd null null null null 1387.770263671880002 null 588.326401084021995 null ms_run[1]:spectrum=363 null null null null null null 3 HCID 5628.24755859375 null null 0 119.999997317790985 null 1374.443169584323414 1387.770263671880002 spectrum=363 1.6678724609375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 231 null null crap_to_database_minimal_mrgd null null null null 1388.955810546880002 null 589.776376191506984 null ms_run[1]:spectrum=367 null null null null null null 2 HCID 4246.1376953125 null null 0 119.999997317790985 null 1374.820294864468906 1388.955810546880002 spectrum=367 1.9057431640625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 232 null null crap_to_database_minimal_mrgd null null null null 1389.856201171880002 null 575.767420284582954 null ms_run[1]:spectrum=368 null null null null null null 3 HCID 7677.31103515625 null null 0 119.999997317790985 null 1375.106177067934141 1389.856201171880002 spectrum=368 3.331183203125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 233 null null crap_to_database_minimal_mrgd null null null null 1392.102783203130002 null 467.225638053344028 null ms_run[1]:spectrum=371 null null null null null null 2 HCID 5897.4248046875 null null 0 119.999997317790985 null 1375.819487273001414 1392.102783203130002 spectrum=371 3.414055859375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 234 null null crap_to_database_minimal_mrgd null null null null 1392.65966796875 null 567.452706613677947 null ms_run[1]:spectrum=373 null null null null null null 1 HCID 9460.8310546875 null null 0 119.999997317790985 null 1375.996303245370882 1392.65966796875 spectrum=373 9.221939062500001e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 235 null null crap_to_database_minimal_mrgd null null null null 1392.808227539059999 null 460.41714507125198 null ms_run[1]:spectrum=374 null null null null null null 2 HCID 3.204600390625e04 null null 0 119.999997317790985 null 1376.043472258604652 1392.808227539059999 spectrum=374 3.1536915625e05 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 236 null null crap_to_database_minimal_mrgd null null null null 1394.185791015630002 null 575.269528939483052 null ms_run[1]:spectrum=377 null null null null null null 1 HCID 1.013332421875e04 null null 0 119.999997317790985 null 1376.480861177547695 1394.185791015630002 spectrum=377 7.92269296875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 237 null null crap_to_database_minimal_mrgd null null null null 1394.783081054690001 null 468.549669111900016 null ms_run[1]:spectrum=379 null null null null null null 3 HCID 4255.71875 null null 0 119.999997317790985 null 1376.670506191315326 1394.783081054690001 spectrum=379 4.98809921875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 238 null null crap_to_database_minimal_mrgd null null null null 1398.568237304690001 null 487.209700124575988 null ms_run[1]:spectrum=384 null null null null null null 1 HCID 2.4020734375e04 null null 0 119.999997317790985 null 1377.872327688746736 1398.568237304690001 spectrum=384 2.51891828125e05 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 239 null null crap_to_database_minimal_mrgd null null null null 1399.167358398440001 null 466.248773763664019 null ms_run[1]:spectrum=385 null null null null null null 2 HCID 1.00154873046875e04 null null 0 119.999997317790985 null 1378.062554079013353 1399.167358398440001 spectrum=385 8.842754687499999e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 240 null null crap_to_database_minimal_mrgd null null null null 1300.182495117190001 null 529.584580201594008 null ms_run[2]:spectrum=0 null null null null null null 1 HCID 4833.505859375 null null 0 119.999997317790985 null 1307.940026368070448 1300.182495117190001 spectrum=0 2.521305078125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 241 null null crap_to_database_minimal_mrgd null null null null 1301.027587890630002 null 474.572663290080016 null ms_run[2]:spectrum=5 null null null null null null 2 HCID 1.01360986328125e04 null null 0 119.999997317790985 null 1309.931912177444019 1301.027587890630002 spectrum=5 3.06393984375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 242 null null crap_to_database_minimal_mrgd null null null null 1301.17626953125 null 462.749365424208008 null ms_run[2]:spectrum=6 null null null null null null 3 HCID 6513.27587890625 null null 0 119.999997317790985 null 1310.282318134969728 1301.17626953125 spectrum=6 2.6927953125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 243 null null crap_to_database_minimal_mrgd null null null null 1301.966430664059999 null 514.243562799268034 null ms_run[2]:spectrum=10 null null null null null null 1 HCID 7072.4853515625 null null 0 119.999997317790985 null 1312.142651043849128 1301.966430664059999 spectrum=10 2.4188279296875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 244 null null crap_to_database_minimal_mrgd null null null null 1302.455322265630002 null 516.590601508740974 null ms_run[2]:spectrum=14 null null null null null null 1 HCID 1.3105150390625e04 null null 0 119.999997317790985 null 1313.290619506525673 1302.455322265630002 spectrum=14 2.09037578125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 245 null null crap_to_database_minimal_mrgd null null null null 1302.603881835940001 null 498.254353871369972 null ms_run[2]:spectrum=15 null null null null null null 2 HCID 2879.808837890625 null null 0 119.999997317790985 null 1313.638765091602863 1302.603881835940001 spectrum=15 1.09829453125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 246 null null crap_to_database_minimal_mrgd null null null null 1305.270874023440001 null 577.314491523300944 null ms_run[2]:spectrum=23 null null null null null null 2 HCID 8230.4736328125 null null 0 119.999997317790985 null 1319.79318968681855 1305.270874023440001 spectrum=23 2.4963544921875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 247 null null crap_to_database_minimal_mrgd null null null null 1305.569091796880002 null 548.603808777961945 null ms_run[2]:spectrum=24 null null null null null null 3 HCID 1.209488671875e04 null null 0 119.999997317790985 null 1320.465549626618895 1305.569091796880002 spectrum=24 2.41643046875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 248 null null crap_to_database_minimal_mrgd null null null null 1305.718627929690001 null 587.297536664167978 null ms_run[2]:spectrum=25 null null null null null null 4 HCID 5449.33203125 null null 0 119.999997317790985 null 1320.80115018120091 1305.718627929690001 spectrum=25 1.44310029296875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 249 null null crap_to_database_minimal_mrgd null null null null 1306.892578125 null 586.272759574639963 null ms_run[2]:spectrum=28 null null null null null null 1 HCID 1.41777041015625e04 null null 0 119.999997317790985 null 1323.395851710341731 1306.892578125 spectrum=28 2.1701810546875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 250 null null crap_to_database_minimal_mrgd null null null null 1307.0419921875 null 562.258368668548997 null ms_run[2]:spectrum=29 null null null null null null 2 HCID 8775.3310546875 null null 0 119.999997317790985 null 1323.720522861192876 1307.0419921875 spectrum=29 1.54354794921875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 251 null null crap_to_database_minimal_mrgd null null null null 1307.487670898440001 null 458.547321268596022 null ms_run[2]:spectrum=30 null null null null null null 3 HCID 7774.62255859375 null null 0 119.999997317790985 null 1324.680720250724107 1307.487670898440001 spectrum=30 3.2091361328125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 252 null null crap_to_database_minimal_mrgd null null null null 1307.63623046875 null 490.901928787710972 null ms_run[2]:spectrum=31 null null null null null null 4 HCID 2404.384521484375 null null 0 119.999997317790985 null 1324.997932764661073 1307.63623046875 spectrum=31 1.14172353515625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 253 null null crap_to_database_minimal_mrgd null null null null 1308.929443359380002 null 494.746887767228998 null ms_run[2]:spectrum=34 null null null null null null 2 HCID 2523.739990234375 null null 0 119.999997317790985 null 1327.693184177605417 1308.929443359380002 spectrum=34 1.67651328125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 254 null null crap_to_database_minimal_mrgd null null null null 1309.896118164059999 null 594.32292806955104 null ms_run[2]:spectrum=36 null null null null null null 1 HCID 8860.4072265625 null null 0 119.999997317790985 null 1329.621740951182346 1309.896118164059999 spectrum=36 2.5484470703125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 255 null null crap_to_database_minimal_mrgd null null null null 1310.044555664059999 null 484.750268094696025 null ms_run[2]:spectrum=37 null null null null null null 2 HCID 1.36719921875e04 null null 0 119.999997317790985 null 1329.910693436279644 1310.044555664059999 spectrum=37 2.8506291015625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 256 null null crap_to_database_minimal_mrgd null null null null 1310.194213867190001 null 570.605999087640953 null ms_run[2]:spectrum=38 null null null null null null 3 HCID 6672.4580078125 null null 0 119.999997317790985 null 1330.199991855957705 1310.194213867190001 spectrum=38 1.7786228515625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 257 null null crap_to_database_minimal_mrgd null null null null 1310.4912109375 null 597.063558535478023 null ms_run[2]:spectrum=39 null null null null null null 4 HCID 1.19638955078125e04 null null 0 119.999997317790985 null 1330.767937461948577 1310.4912109375 spectrum=39 2.7071421875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 258 null null crap_to_database_minimal_mrgd null null null null 1310.639770507809999 null 489.567582268183003 null ms_run[2]:spectrum=40 null null null null null null 5 HCID 2921.045166015625 null null 0 119.999997317790985 null 1331.048884188396869 1310.639770507809999 spectrum=40 1.23099560546875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 259 null null crap_to_database_minimal_mrgd null null null null 1311.361572265630002 null 580.594994069252948 null ms_run[2]:spectrum=42 null null null null null null 1 HCID 5182.21044921875 null null 0 119.999997317790985 null 1332.382869133705299 1311.361572265630002 spectrum=42 2.095154296875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 260 null null crap_to_database_minimal_mrgd null null null null 1312.118041992190001 null 567.307251659780945 null ms_run[2]:spectrum=46 null null null null null null 1 HCID 8728.7080078125 null null 0 119.999997317790985 null 1333.72265800731725 1312.118041992190001 spectrum=46 2.6306845703125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 261 null null crap_to_database_minimal_mrgd null null null null 1312.267700195309999 null 585.300038888434983 null ms_run[2]:spectrum=47 null null null null null null 2 HCID 6677.04248046875 null null 0 119.999997317790985 null 1333.980287432229261 1312.267700195309999 spectrum=47 2.0373611328125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 262 null null crap_to_database_minimal_mrgd null null null null 1312.564819335940001 null 533.24173449108298 null ms_run[2]:spectrum=48 null null null null null null 3 HCID 5.697038671875e04 null null 0 119.999997317790985 null 1334.48422507176474 1312.564819335940001 spectrum=48 8.490267187500001e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 263 null null crap_to_database_minimal_mrgd null null null null 1312.713256835940001 null 482.220100977819016 null ms_run[2]:spectrum=49 null null null null null null 4 HCID 1173.4378662109375 null null 0 119.999997317790985 null 1334.732165723499065 1312.713256835940001 spectrum=49 1.285490234375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 264 null null crap_to_database_minimal_mrgd null null null null 1313.602905273440001 null 555.887077717404964 null ms_run[2]:spectrum=53 null null null null null null 2 HCID 7690.69873046875 null null 0 119.999997317790985 null 1336.162779928400141 1313.602905273440001 spectrum=53 2.7593744140625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 265 null null crap_to_database_minimal_mrgd null null null null 1313.75146484375 null 455.218809615347993 null ms_run[2]:spectrum=54 null null null null null null 3 HCID 9511.08984375 null null 0 119.999997317790985 null 1336.392118829849096 1313.75146484375 spectrum=54 1.98935e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 266 null null crap_to_database_minimal_mrgd null null null null 1315.774169921880002 null 558.81727822995299 null ms_run[2]:spectrum=58 null null null null null null 1 HCID 5029.67138671875 null null 0 119.999997317790985 null 1339.220350049547278 1315.774169921880002 spectrum=58 2.1592958984375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 267 null null crap_to_database_minimal_mrgd null null null null 1317.193115234380002 null 557.25618686112 null ms_run[2]:spectrum=64 null null null null null null 1 HCID 3277.402587890625 null null 0 119.999997317790985 null 1340.848089757257867 1317.193115234380002 spectrum=64 2.127730078125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 268 null null crap_to_database_minimal_mrgd null null null null 1317.790283203130002 null 485.219389945246007 null ms_run[2]:spectrum=66 null null null null null null 3 HCID 1.2823337890625e04 null null 0 119.999997317790985 null 1341.437243817449826 1317.790283203130002 spectrum=66 2.5217640625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 269 null null crap_to_database_minimal_mrgd null null null null 1317.938842773440001 null 526.576105553266984 null ms_run[2]:spectrum=67 null null null null null null 4 HCID 2339.625244140625 null null 0 119.999997317790985 null 1341.574589687524394 1317.938842773440001 spectrum=67 1.5164859375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 270 null null crap_to_database_minimal_mrgd null null null null 1320.478271484380002 null 578.606462571996985 null ms_run[2]:spectrum=74 null null null null null null 1 HCID 1.24844365234375e04 null null 0 119.999997317790985 null 1343.317132836399423 1320.478271484380002 spectrum=74 2.2729150390625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 271 null null crap_to_database_minimal_mrgd null null null null 1320.626831054690001 null 495.272429376992022 null ms_run[2]:spectrum=75 null null null null null null 2 HCID 6993.11279296875 null null 0 119.999997317790985 null 1343.381798455407306 1320.626831054690001 spectrum=75 2.4237248046875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 272 null null crap_to_database_minimal_mrgd null null null null 1321.976440429690001 null 468.900927580367011 null ms_run[2]:spectrum=82 null null null null null null 1 HCID 1.4558751953125e04 null null 0 119.999997317790985 null 1343.782134935673639 1321.976440429690001 spectrum=82 3.870716796875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 273 null null crap_to_database_minimal_mrgd null null null null 1322.1259765625 null 575.272488535213029 null ms_run[2]:spectrum=83 null null null null null null 2 HCID 1.01750771484375e04 null null 0 119.999997317790985 null 1343.806987567782926 1322.1259765625 spectrum=83 2.7356880859375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 274 null null crap_to_database_minimal_mrgd null null null null 1322.275512695309999 null 563.22390730899599 null ms_run[2]:spectrum=84 null null null null null null 3 HCID 7174.5400390625 null null 0 119.999997317790985 null 1343.82819733781912 1322.275512695309999 spectrum=84 1.9370322265625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 275 null null crap_to_database_minimal_mrgd null null null null 1322.425048828130002 null 548.912706751249971 null ms_run[2]:spectrum=85 null null null null null null 4 HCID 1.43171669921875e04 null null 0 119.999997317790985 null 1343.845831777625563 1322.425048828130002 spectrum=85 2.95111796875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 276 null null crap_to_database_minimal_mrgd null null null null 1322.573608398440001 null 597.264424609335947 null ms_run[2]:spectrum=86 null null null null null null 5 HCID 5777.75341796875 null null 0 119.999997317790985 null 1343.859877397087075 1322.573608398440001 spectrum=86 2.5590181640625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 277 null null crap_to_database_minimal_mrgd null null null null 1323.359497070309999 null 480.753837580686025 null ms_run[2]:spectrum=91 null null null null null null 2 HCID 1.2834259765625e04 null null 0 119.999997317790985 null 1343.879255831697492 1323.359497070309999 spectrum=91 2.6943958984375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 278 null null crap_to_database_minimal_mrgd null null null null 1323.508056640630002 null 509.566368684751978 null ms_run[2]:spectrum=92 null null null null null null 3 HCID 988.08111572265625 null null 0 119.999997317790985 null 1343.873042637980689 1323.508056640630002 spectrum=92 8262.92578125 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 279 null null crap_to_database_minimal_mrgd null null null null 1324.637817382809999 null 541.281849059663955 null ms_run[2]:spectrum=96 null null null null null null 1 HCID 1.3593755859375e04 null null 0 119.999997317790985 null 1343.733080640737171 1324.637817382809999 spectrum=96 3.0242353515625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 280 null null crap_to_database_minimal_mrgd null null null null 1324.787353515630002 null 566.274589425048021 null ms_run[2]:spectrum=97 null null null null null null 2 HCID 5496.67626953125 null null 0 119.999997317790985 null 1343.703193749341608 1324.787353515630002 spectrum=97 2.52161015625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 281 null null crap_to_database_minimal_mrgd null null null null 1325.086059570309999 null 570.772826199548945 null ms_run[2]:spectrum=98 null null null null null null 3 HCID 1051.6248779296875 null null 0 119.999997317790985 null 1343.636252443324565 1325.086059570309999 spectrum=98 9314.4052734375 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 282 null null crap_to_database_minimal_mrgd null null null null 1325.9853515625 null 526.559687146639021 null ms_run[2]:spectrum=99 null null null null null null 4 HCID 2299.199951171875 null null 0 119.999997317790985 null 1343.381342467210288 1325.9853515625 spectrum=99 1.36651669921875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 283 null null crap_to_database_minimal_mrgd null null null null 1327.331909179690001 null 571.243388291381962 null ms_run[2]:spectrum=104 null null null null null null 2 HCID 6704.5341796875 null null 0 119.999997317790985 null 1342.875729194399582 1327.331909179690001 spectrum=104 1.363076953125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 284 null null crap_to_database_minimal_mrgd null null null null 1327.849365234380002 null 568.262734302467038 null ms_run[2]:spectrum=106 null null null null null null 1 HCID 7399.091796875 null null 0 119.999997317790985 null 1342.650878661628894 1327.849365234380002 spectrum=106 3.10782109375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 285 null null crap_to_database_minimal_mrgd null null null null 1328.516479492190001 null 549.799605871620997 null ms_run[2]:spectrum=108 null null null null null null 1 HCID 1.21800556640625e04 null null 0 119.999997317790985 null 1342.342697900586927 1328.516479492190001 spectrum=108 2.3636537109375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 286 null null crap_to_database_minimal_mrgd null null null null 1328.6650390625 null 477.842611849274022 null ms_run[2]:spectrum=109 null null null null null null 2 HCID 1.4639255859375e04 null null 0 119.999997317790985 null 1342.271806941121667 1328.6650390625 spectrum=109 2.764601171875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 287 null null crap_to_database_minimal_mrgd null null null null 1328.814575195309999 null 575.773646649593047 null ms_run[2]:spectrum=110 null null null null null null 3 HCID 4028.36767578125 null null 0 119.999997317790985 null 1342.199762612286577 1328.814575195309999 spectrum=110 2.2705080078125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 288 null null crap_to_database_minimal_mrgd null null null null 1329.589599609380002 null 534.296418748676047 null ms_run[2]:spectrum=115 null null null null null null 1 HCID 7084.9833984375 null null 0 119.999997317790985 null 1341.817906133918541 1329.589599609380002 spectrum=115 1.757557421875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 289 null null crap_to_database_minimal_mrgd null null null null 1330.825805664059999 null 561.758187109478968 null ms_run[2]:spectrum=119 null null null null null null 1 HCID 5855.19921875 null null 0 119.999997317790985 null 1341.197549816509991 1330.825805664059999 spectrum=119 2.448449609375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 290 null null crap_to_database_minimal_mrgd null null null null 1332.027099609380002 null 575.744655040252042 null ms_run[2]:spectrum=127 null null null null null null 1 HCID 4540.44970703125 null null 0 119.999997317790985 null 1340.613098554398448 1332.027099609380002 spectrum=127 2.556590625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 291 null null crap_to_database_minimal_mrgd null null null null 1332.395874023440001 null 588.326602441431987 null ms_run[2]:spectrum=129 null null null null null null 1 HCID 7413.32373046875 null null 0 119.999997317790985 null 1340.442787826356152 1332.395874023440001 spectrum=129 2.1858607421875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 292 null null crap_to_database_minimal_mrgd null null null null 1332.54541015625 null 559.273571090977043 null ms_run[2]:spectrum=130 null null null null null null 2 HCID 6280.8623046875 null null 0 119.999997317790985 null 1340.37539509770545 1332.54541015625 spectrum=130 1.43721171875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 293 null null crap_to_database_minimal_mrgd null null null null 1332.9931640625 null 531.776345928571004 null ms_run[2]:spectrum=131 null null null null null null 3 HCID 5996.39453125 null null 0 119.999997317790985 null 1340.18022511455024 1332.9931640625 spectrum=131 1.34059775390625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 294 null null crap_to_database_minimal_mrgd null null null null 1333.856201171880002 null 514.243562799268034 null ms_run[2]:spectrum=133 null null null null null null 1 HCID 5224.50927734375 null null 0 119.999997317790985 null 1339.837615013104824 1333.856201171880002 spectrum=133 2.385659765625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 295 null null crap_to_database_minimal_mrgd null null null null 1334.294799804690001 null 465.537430890170015 null ms_run[2]:spectrum=136 null null null null null null 1 HCID 8281.85546875 null null 0 119.999997317790985 null 1339.683805450791397 1334.294799804690001 spectrum=136 1.9881693359375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 296 null null crap_to_database_minimal_mrgd null null null null 1334.740478515630002 null 500.272455664869995 null ms_run[2]:spectrum=138 null null null null null null 3 HCID 2.116162890625e04 null null 0 119.999997317790985 null 1339.543848793324969 1334.740478515630002 spectrum=138 7.543290625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 297 null null crap_to_database_minimal_mrgd null null null null 1335.6748046875 null 470.220045891607981 null ms_run[2]:spectrum=142 null null null null null null 1 HCID 4274.28564453125 null null 0 119.999997317790985 null 1339.311780051396227 1335.6748046875 spectrum=142 3.319459375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 298 null null crap_to_database_minimal_mrgd null null null null 1336.454833984380002 null 550.248823236100975 null ms_run[2]:spectrum=147 null null null null null null 1 HCID 1.122021875e04 null null 0 119.999997317790985 null 1339.191373969100368 1336.454833984380002 spectrum=147 2.81543359375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 299 null null crap_to_database_minimal_mrgd null null null null 1336.603393554690001 null 471.883920235147002 null ms_run[2]:spectrum=148 null null null null null null 2 HCID 5162.76953125 null null 0 119.999997317790985 null 1339.176872801718446 1336.603393554690001 spectrum=148 1.590507421875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 300 null null crap_to_database_minimal_mrgd null null null null 1337.965942382809999 null 527.767191225275042 null ms_run[2]:spectrum=154 null null null null null null 1 HCID 1.49253583984375e04 null null 0 119.999997317790985 null 1339.185580630670529 1337.965942382809999 spectrum=154 2.08570234375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 301 null null crap_to_database_minimal_mrgd null null null null 1342.608642578130002 null 573.280734454208982 null ms_run[2]:spectrum=164 null null null null null null 1 HCID 7779.177734375 null null 0 119.999997317790985 null 1341.620666036728835 1342.608642578130002 spectrum=164 2.622016796875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 302 null null crap_to_database_minimal_mrgd null null null null 1343.05517578125 null 541.261790384302003 null ms_run[2]:spectrum=165 null null null null null null 2 HCID 1.0983171875e04 null null 0 119.999997317790985 null 1342.056440557495534 1343.05517578125 spectrum=165 3.57753671875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 303 null null crap_to_database_minimal_mrgd null null null null 1343.203857421880002 null 521.919625700725987 null ms_run[2]:spectrum=166 null null null null null null 3 HCID 1529.0465087890625 null null 0 119.999997317790985 null 1342.208260489972645 1343.203857421880002 spectrum=166 1.292340625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 304 null null crap_to_database_minimal_mrgd null null null null 1343.5029296875 null 563.252994499280021 null ms_run[2]:spectrum=167 null null null null null null 4 HCID 1.57746162109375e04 null null 0 119.999997317790985 null 1342.523456173581508 1343.5029296875 spectrum=167 2.69602578125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 305 null null crap_to_database_minimal_mrgd null null null null 1344.664794921880002 null 580.593493053624002 null ms_run[2]:spectrum=170 null null null null null null 2 HCID 789.4940185546875 null null 0 119.999997317790985 null 1343.86413681566637 1344.664794921880002 spectrum=170 1.02439375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 306 null null crap_to_database_minimal_mrgd null null null null 1345.112548828130002 null 452.877813279392001 null ms_run[2]:spectrum=171 null null null null null null 3 HCID 1.30793759765625e04 null null 0 119.999997317790985 null 1344.426011308549732 1345.112548828130002 spectrum=171 4.986620703125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 307 null null crap_to_database_minimal_mrgd null null null null 1346.040649414059999 null 477.23420375653501 null ms_run[2]:spectrum=174 null null null null null null 1 HCID 7620.5361328125 null null 0 119.999997317790985 null 1345.6610580207157 1346.040649414059999 spectrum=174 2.2175947265625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 308 null null crap_to_database_minimal_mrgd null null null null 1346.4892578125 null 582.301180835812033 null ms_run[2]:spectrum=175 null null null null null null 2 HCID 6560.40625 null null 0 119.999997317790985 null 1346.288707430351678 1346.4892578125 spectrum=175 1.7314724609375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 309 null null crap_to_database_minimal_mrgd null null null null 1346.6376953125 null 486.219966732764021 null ms_run[2]:spectrum=176 null null null null null null 3 HCID 1252.413818359375 null null 0 119.999997317790985 null 1346.500383847540888 1346.6376953125 spectrum=176 9393.2197265625 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 310 null null crap_to_database_minimal_mrgd null null null null 1347.238037109380002 null 548.269825432740049 null ms_run[2]:spectrum=177 null null null null null null 4 HCID 8507.5888671875 null null 0 119.999997317790985 null 1347.375152033292125 1347.238037109380002 spectrum=177 1.5466119140625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 311 null null crap_to_database_minimal_mrgd null null null null 1347.386596679690001 null 455.567288785444021 null ms_run[2]:spectrum=178 null null null null null null 5 HCID 4254.87548828125 null null 0 119.999997317790985 null 1347.595940694117871 1347.386596679690001 spectrum=178 2.4037984375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 312 null null crap_to_database_minimal_mrgd null null null null 1347.6484375 null 557.256980315700048 null ms_run[2]:spectrum=180 null null null null null null 1 HCID 6589.10009765625 null null 0 119.999997317790985 null 1347.988934869978039 1347.6484375 spectrum=180 2.7068892578125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 313 null null crap_to_database_minimal_mrgd null null null null 1348.017333984380002 null 583.942200406866959 null ms_run[2]:spectrum=182 null null null null null null 1 HCID 2079.208984375 null null 0 119.999997317790985 null 1348.55039535400465 1348.017333984380002 spectrum=182 8957.7080078125 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 314 null null crap_to_database_minimal_mrgd null null null null 1348.466918945309999 null 454.885131425781992 null ms_run[2]:spectrum=183 null null null null null null 2 HCID 6570.4677734375 null null 0 119.999997317790985 null 1349.245789414073897 1348.466918945309999 spectrum=183 1.8122837890625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 315 null null crap_to_database_minimal_mrgd null null null null 1349.7783203125 null 590.916910179479032 null ms_run[2]:spectrum=186 null null null null null null 2 HCID 4647.125 null null 0 119.999997317790985 null 1351.329290785807643 1349.7783203125 spectrum=186 2.7893646484375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 316 null null crap_to_database_minimal_mrgd null null null null 1350.445190429690001 null 500.250620996586974 null ms_run[2]:spectrum=188 null null null null null null 1 HCID 8144.87158203125 null null 0 119.999997317790985 null 1352.410670835164183 1350.445190429690001 spectrum=188 2.521633984375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 317 null null crap_to_database_minimal_mrgd null null null null 1350.743286132809999 null 534.284028650052051 null ms_run[2]:spectrum=189 null null null null null null 2 HCID 3544.28759765625 null null 0 119.999997317790985 null 1352.896866433903597 1350.743286132809999 spectrum=189 1.2500875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 318 null null crap_to_database_minimal_mrgd null null null null 1351.445434570309999 null 578.94172764528696 null ms_run[2]:spectrum=191 null null null null null null 1 HCID 3926.556640625 null null 0 119.999997317790985 null 1354.045431565742774 1351.445434570309999 spectrum=191 1.46234619140625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 319 null null crap_to_database_minimal_mrgd null null null null 1352.532836914059999 null 556.29621325100004 null ms_run[2]:spectrum=195 null null null null null null 1 HCID 6982.78125 null null 0 119.999997317790985 null 1355.821328906012923 1352.532836914059999 spectrum=195 2.4850017578125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 320 null null crap_to_database_minimal_mrgd null null null null 1354.437377929690001 null 469.227067948130014 null ms_run[2]:spectrum=199 null null null null null null 3 HCID 7056.93994140625 null null 0 119.999997317790985 null 1358.860335558778843 1354.437377929690001 spectrum=199 3.2000912109375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 321 null null crap_to_database_minimal_mrgd null null null null 1354.5869140625 null 553.783175123739056 null ms_run[2]:spectrum=200 null null null null null null 4 HCID 9619.07421875 null null 0 119.999997317790985 null 1359.092206705509852 1354.5869140625 spectrum=200 1.722540234375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 322 null null crap_to_database_minimal_mrgd null null null null 1354.735473632809999 null 484.711426403721987 null ms_run[2]:spectrum=201 null null null null null null 5 HCID 5636.63525390625 null null 0 119.999997317790985 null 1359.321300038784102 1354.735473632809999 spectrum=201 2.4997724609375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 323 null null crap_to_database_minimal_mrgd null null null null 1355.105346679690001 null 541.282521134212971 null ms_run[2]:spectrum=204 null null null null null null 2 HCID 1642.7650146484375 null null 0 119.999997317790985 null 1359.885825611580003 1355.105346679690001 spectrum=204 9056.34765625 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 324 null null crap_to_database_minimal_mrgd null null null null 1355.552978515630002 null 553.296238150089039 null ms_run[2]:spectrum=206 null null null null null null 4 HCID 6063.74853515625 null null 0 119.999997317790985 null 1360.556800417774639 1355.552978515630002 spectrum=206 1.7198255859375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 325 null null crap_to_database_minimal_mrgd null null null null 1356.708374023440001 null 506.259845661852012 null ms_run[2]:spectrum=208 null null null null null null 1 HCID 4854.74365234375 null null 0 119.999997317790985 null 1362.215824662883279 1356.708374023440001 spectrum=208 1.8634763671875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 326 null null crap_to_database_minimal_mrgd null null null null 1358.007446289059999 null 568.261473756870032 null ms_run[2]:spectrum=213 null null null null null null 1 HCID 5155.4326171875 null null 0 119.999997317790985 null 1363.928035066326402 1358.007446289059999 spectrum=213 2.0876875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 327 null null crap_to_database_minimal_mrgd null null null null 1358.93115234375 null 531.246623435263018 null ms_run[2]:spectrum=218 null null null null null null 1 HCID 5160.17431640625 null null 0 119.999997317790985 null 1365.026137811813669 1358.93115234375 spectrum=218 2.141490625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 328 null null crap_to_database_minimal_mrgd null null null null 1359.525268554690001 null 484.762268534109978 null ms_run[2]:spectrum=219 null null null null null null 2 HCID 6060.11279296875 null null 0 119.999997317790985 null 1365.672392760670164 1359.525268554690001 spectrum=219 2.6258822265625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 329 null null crap_to_database_minimal_mrgd null null null null 1360.16357421875 null 481.251842204763022 null ms_run[2]:spectrum=223 null null null null null null 1 HCID 6185.96875 null null 0 119.999997317790985 null 1366.309423882080409 1360.16357421875 spectrum=223 1.931205859375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 330 null null crap_to_database_minimal_mrgd null null null null 1361.591064453130002 null 551.299967454510011 null ms_run[2]:spectrum=230 null null null null null null 1 HCID 1.0271150390625e04 null null 0 119.999997317790985 null 1367.518008152675748 1361.591064453130002 spectrum=230 1.815649609375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 331 null null crap_to_database_minimal_mrgd null null null null 1361.8896484375 null 589.77652361790399 null ms_run[2]:spectrum=232 null null null null null null 3 HCID 1.1009248046875e04 null null 0 119.999997317790985 null 1367.734559732788966 1361.8896484375 spectrum=232 2.032480859375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 332 null null crap_to_database_minimal_mrgd null null null null 1362.974609375 null 546.742059146365023 null ms_run[2]:spectrum=236 null null null null null null 1 HCID 8742.0400390625 null null 0 119.999997317790985 null 1368.421289422816699 1362.974609375 spectrum=236 3.0464744140625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 333 null null crap_to_database_minimal_mrgd null null null null 1363.124145507809999 null 586.775199419926025 null ms_run[2]:spectrum=237 null null null null null null 2 HCID 1079.536376953125 null null 0 119.999997317790985 null 1368.503985562320167 1363.124145507809999 spectrum=237 5968.3642578125 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 334 null null crap_to_database_minimal_mrgd null null null null 1363.722412109380002 null 497.233421928776011 null ms_run[2]:spectrum=238 null null null null null null 3 HCID 939.76953125 null null 0 119.999997317790985 null 1368.806920904009985 1363.722412109380002 spectrum=238 4256.1171875 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 335 null null crap_to_database_minimal_mrgd null null null null 1364.733764648440001 null 570.770796894173031 null ms_run[2]:spectrum=241 null null null null null null 2 HCID 1.21268564453125e04 null null 0 119.999997317790985 null 1369.221119154288544 1364.733764648440001 spectrum=241 1.8981576171875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 336 null null crap_to_database_minimal_mrgd null null null null 1364.88330078125 null 575.271450940772979 null ms_run[2]:spectrum=242 null null null null null null 3 HCID 7360.94970703125 null null 0 119.999997317790985 null 1369.272312973954058 1364.88330078125 spectrum=242 3.772993359375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 337 null null crap_to_database_minimal_mrgd null null null null 1365.03271484375 null 514.243929009084013 null ms_run[2]:spectrum=243 null null null null null null 4 HCID 3106.104736328125 null null 0 119.999997317790985 null 1369.320954537909074 1365.03271484375 spectrum=243 1.09064111328125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 338 null null crap_to_database_minimal_mrgd null null null null 1366.5888671875 null 467.226250043884988 null ms_run[2]:spectrum=248 null null null null null null 3 HCID 1539.2769775390625 null null 0 119.999997317790985 null 1369.684705090842272 1366.5888671875 spectrum=248 1.6992578125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 339 null null crap_to_database_minimal_mrgd null null null null 1368.337280273440001 null 506.888574319259021 null ms_run[2]:spectrum=252 null null null null null null 1 HCID 6100.3798828125 null null 0 119.999997317790985 null 1369.808028794277107 1368.337280273440001 spectrum=252 2.47976875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 340 null null crap_to_database_minimal_mrgd null null null null 1369.141967773440001 null 541.013317028215056 null ms_run[2]:spectrum=255 null null null null null null 1 HCID 6295.283203125 null null 0 119.999997317790985 null 1369.774149429224735 1369.141967773440001 spectrum=255 2.8319306640625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 341 null null crap_to_database_minimal_mrgd null null null null 1370.374267578130002 null 594.825650462057979 null ms_run[2]:spectrum=260 null null null null null null 1 HCID 7161.6318359375 null null 0 119.999997317790985 null 1369.623716124722705 1370.374267578130002 spectrum=260 3.1399509765625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 342 null null crap_to_database_minimal_mrgd null null null null 1373.764038085940001 null 575.520656711223978 null ms_run[2]:spectrum=267 null null null null null null 2 HCID 2256.923095703125 null null 0 119.999997317790985 null 1368.703893848799453 1373.764038085940001 spectrum=267 2.8223982421875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 343 null null crap_to_database_minimal_mrgd null null null null 1374.2119140625 null 464.899291768611022 null ms_run[2]:spectrum=268 null null null null null null 3 HCID 1.04307880859375e04 null null 0 119.999997317790985 null 1368.538032761179466 1374.2119140625 spectrum=268 2.499434375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 344 null null crap_to_database_minimal_mrgd null null null null 1374.360473632809999 null 492.533973373127026 null ms_run[2]:spectrum=269 null null null null null null 4 HCID 4509.01611328125 null null 0 119.999997317790985 null 1368.48118498328472 1374.360473632809999 spectrum=269 2.316059765625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 345 null null crap_to_database_minimal_mrgd null null null null 1375.052490234380002 null 460.617993708252982 null ms_run[2]:spectrum=272 null null null null null null 2 HCID 8350.056640625 null null 0 119.999997317790985 null 1368.205312951430869 1375.052490234380002 spectrum=272 1.008401796875e05 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 346 null null crap_to_database_minimal_mrgd null null null null 1375.675903320309999 null 581.267342987922007 null ms_run[2]:spectrum=275 null null null null null null 1 HCID 8991.8369140625 null null 0 119.999997317790985 null 1367.942730955637444 1375.675903320309999 spectrum=275 2.4375984375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 347 null null crap_to_database_minimal_mrgd null null null null 1376.121459960940001 null 561.957039033775004 null ms_run[2]:spectrum=276 null null null null null null 2 HCID 8613.60546875 null null 0 119.999997317790985 null 1367.747973219363303 1376.121459960940001 spectrum=276 1.8447232421875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 348 null null crap_to_database_minimal_mrgd null null null null 1376.419555664059999 null 588.327196550372946 null ms_run[2]:spectrum=277 null null null null null null 3 HCID 1337.4866943359375 null null 0 119.999997317790985 null 1367.614761718206637 1376.419555664059999 spectrum=277 9849.951171875 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 349 null null crap_to_database_minimal_mrgd null null null null 1378.028442382809999 null 560.756566657732037 null ms_run[2]:spectrum=281 null null null null null null 3 HCID 7609.2705078125 null null 0 119.999997317790985 null 1366.864769366826067 1378.028442382809999 spectrum=281 1.707869140625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 350 null null crap_to_database_minimal_mrgd null null null null 1378.32568359375 null 452.876592579958981 null ms_run[2]:spectrum=282 null null null null null null 4 HCID 5571.38134765625 null null 0 119.999997317790985 null 1366.722082549491915 1378.32568359375 spectrum=282 1.8053234375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 351 null null crap_to_database_minimal_mrgd null null null null 1378.623779296880002 null 465.748654427586018 null ms_run[2]:spectrum=283 null null null null null null 5 HCID 6319.69677734375 null null 0 119.999997317790985 null 1366.578195136056365 1378.623779296880002 spectrum=283 2.4434107421875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 352 null null crap_to_database_minimal_mrgd null null null null 1382.648681640630002 null 583.917969525076956 null ms_run[2]:spectrum=289 null null null null null null 1 HCID 1.2491380859375e04 null null 0 119.999997317790985 null 1364.620370476689004 1382.648681640630002 spectrum=289 1.9307125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 353 null null crap_to_database_minimal_mrgd null null null null 1382.797119140630002 null 505.767331409454016 null ms_run[2]:spectrum=290 null null null null null null 2 HCID 3556.30126953125 null null 0 119.999997317790985 null 1364.548136330250827 1382.797119140630002 spectrum=290 2.0746369140625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 354 null null crap_to_database_minimal_mrgd null null null null 1383.246826171880002 null 500.250685667108996 null ms_run[2]:spectrum=291 null null null null null null 3 HCID 6917.80908203125 null null 0 119.999997317790985 null 1364.329295380022359 1383.246826171880002 spectrum=291 2.6650234375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 355 null null crap_to_database_minimal_mrgd null null null null 1383.95654296875 null 557.591268833914 null ms_run[2]:spectrum=293 null null null null null null 1 HCID 1816.366455078125 null null 0 119.999997317790985 null 1363.983925867367816 1383.95654296875 spectrum=293 1.04169130859375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 356 null null crap_to_database_minimal_mrgd null null null null 1384.624389648440001 null 509.566636196585023 null ms_run[2]:spectrum=295 null null null null null null 1 HCID 7348.29736328125 null null 0 119.999997317790985 null 1363.658931611476191 1384.624389648440001 spectrum=295 2.7459150390625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 357 null null crap_to_database_minimal_mrgd null null null null 1385.3701171875 null 513.739902232160944 null ms_run[2]:spectrum=297 null null null null null null 3 HCID 9230.9140625 null null 0 119.999997317790985 null 1363.296038189939281 1385.3701171875 spectrum=297 4.278328125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 358 null null crap_to_database_minimal_mrgd null null null null 1386.630249023440001 null 562.269178327283953 null ms_run[2]:spectrum=302 null null null null null null 2 HCID 908.59423828125 null null 0 119.999997317790985 null 1362.682820185266792 1386.630249023440001 spectrum=302 9019.330078125 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 359 null null crap_to_database_minimal_mrgd null null null null 1387.078857421880002 null 546.607477041648053 null ms_run[2]:spectrum=303 null null null null null null 3 HCID 3206.13330078125 null null 0 119.999997317790985 null 1362.464513862765671 1387.078857421880002 spectrum=303 2.310318359375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 360 null null crap_to_database_minimal_mrgd null null null null 1387.379028320309999 null 541.282298133661016 null ms_run[2]:spectrum=304 null null null null null null 4 HCID 8675.8564453125 null null 0 119.999997317790985 null 1362.318441686707502 1387.379028320309999 spectrum=304 2.1035353515625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 361 null null crap_to_database_minimal_mrgd null null null null 1387.527587890630002 null 529.928817425408056 null ms_run[2]:spectrum=305 null null null null null null 5 HCID 1026.7005615234375 null null 0 119.999997317790985 null 1362.246148137184719 1387.527587890630002 spectrum=305 8815.8447265625 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 362 null null crap_to_database_minimal_mrgd null null null null 1388.388061523440001 null 454.227876334247014 null ms_run[2]:spectrum=307 null null null null null null 1 HCID 1.6089982421875e04 null null 0 119.999997317790985 null 1361.827415819552698 1388.388061523440001 spectrum=307 5.7588796875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 363 null null crap_to_database_minimal_mrgd null null null null 1388.687255859380002 null 555.021513586150945 null ms_run[2]:spectrum=308 null null null null null null 2 HCID 5676.4560546875 null null 0 119.999997317790985 null 1361.68181886813727 1388.687255859380002 spectrum=308 2.3718359375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 364 null null crap_to_database_minimal_mrgd null null null null 1389.207641601559999 null 568.261279784972999 null ms_run[2]:spectrum=310 null null null null null null 1 HCID 8446.197265625 null null 0 119.999997317790985 null 1361.428583534040854 1389.207641601559999 spectrum=310 2.6697947265625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 365 null null crap_to_database_minimal_mrgd null null null null 1390.243408203130002 null 473.722743963274013 null ms_run[2]:spectrum=314 null null null null null null 1 HCID 3722.56494140625 null null 0 119.999997317790985 null 1360.924548392156567 1390.243408203130002 spectrum=314 1.7303560546875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 366 null null crap_to_database_minimal_mrgd null null null null 1390.543090820309999 null 597.902850355922965 null ms_run[2]:spectrum=315 null null null null null null 2 HCID 9757.2119140625 null null 0 119.999997317790985 null 1360.778713828422042 1390.543090820309999 spectrum=315 1.7807828125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 367 null null crap_to_database_minimal_mrgd null null null null 1391.390625 null 481.252818764291987 null ms_run[2]:spectrum=317 null null null null null null 1 HCID 9546.33203125 null null 0 119.999997317790985 null 1360.366278237368533 1391.390625 spectrum=317 1.936977734375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 368 null null crap_to_database_minimal_mrgd null null null null 1391.837280273440001 null 503.241155048114024 null ms_run[2]:spectrum=318 null null null null null null 2 HCID 1.1347462890625e04 null null 0 119.999997317790985 null 1360.148922364162672 1391.837280273440001 spectrum=318 2.329525390625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 369 null null crap_to_database_minimal_mrgd null null null null 1391.98583984375 null 495.243742941063999 null ms_run[2]:spectrum=319 null null null null null null 3 HCID 6449.2529296875 null null 0 119.999997317790985 null 1360.076628814644891 1391.98583984375 spectrum=319 2.931000390625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 370 null null crap_to_database_minimal_mrgd null null null null 1392.2060546875 null 551.299845384574041 null ms_run[2]:spectrum=321 null null null null null null 1 HCID 5555.71240234375 null null 0 119.999997317790985 null 1359.969465656606644 1392.2060546875 spectrum=321 2.9250583984375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 371 null null crap_to_database_minimal_mrgd null null null null 1394.06884765625 null 516.764734276020022 null ms_run[2]:spectrum=323 null null null null null null 1 HCID 4634.208984375 null null 0 119.999997317790985 null 1359.062974641273513 1394.06884765625 spectrum=323 2.213993359375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 372 null null crap_to_database_minimal_mrgd null null null null 1394.330444335940001 null 586.273858204040039 null ms_run[2]:spectrum=325 null null null null null null 1 HCID 2541.903564453125 null null 0 119.999997317790985 null 1358.935673838791445 1394.330444335940001 spectrum=325 1.27108125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 373 null null crap_to_database_minimal_mrgd null null null null 1395.937133789059999 null 576.791515411699947 null ms_run[2]:spectrum=327 null null null null null null 1 HCID 3172.2861328125 null null 0 119.999997317790985 null 1358.15381048729887 1395.937133789059999 spectrum=327 2.04232421875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 374 null null crap_to_database_minimal_mrgd null null null null 1396.3876953125 null 590.772806623652969 null ms_run[2]:spectrum=328 null null null null null null 2 HCID 6756.28662109375 null null 0 119.999997317790985 null 1357.934553715502489 1396.3876953125 spectrum=328 2.0787796875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 375 null null crap_to_database_minimal_mrgd null null null null 1396.756469726559999 null 524.76062040288798 null ms_run[2]:spectrum=330 null null null null null null 1 HCID 5716.14111328125 null null 0 119.999997317790985 null 1357.755097007946461 1396.756469726559999 spectrum=330 2.1037640625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 376 null null crap_to_database_minimal_mrgd null null null null 1397.203247070309999 null 524.681984044121009 null ms_run[2]:spectrum=331 null null null null null null 2 HCID 5519.55908203125 null null 0 119.999997317790985 null 1357.537681731660996 1397.203247070309999 spectrum=331 1.719935546875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 377 null null crap_to_database_minimal_mrgd null null null null 1397.800537109380002 null 570.771403848817045 null ms_run[2]:spectrum=332 null null null null null null 3 HCID 3563.68701171875 null null 0 119.999997317790985 null 1357.247022456557261 1397.800537109380002 spectrum=332 1.0580759765625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 378 null null crap_to_database_minimal_mrgd null null null null 1398.724243164059999 null 548.251851655435985 null ms_run[2]:spectrum=335 null null null null null null 1 HCID 9597.98828125 null null 0 119.999997317790985 null 1356.797519342994292 1398.724243164059999 spectrum=335 1.9408791015625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 379 null null crap_to_database_minimal_mrgd null null null null 1399.171264648440001 null 492.237587558002019 null ms_run[2]:spectrum=336 null null null null null null 2 HCID 2132.475830078125 null null 0 119.999997317790985 null 1356.57998526054439 1399.171264648440001 spectrum=336 6831.07568359375 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 380 null null crap_to_database_minimal_mrgd null null null null 1399.622924804690001 null 560.937083690701002 null ms_run[2]:spectrum=337 null null null null null null 3 HCID 4581.71142578125 null null 0 119.999997317790985 null 1356.360193861020662 1399.622924804690001 spectrum=337 1.367350390625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 381 null null crap_to_database_minimal_mrgd null null null null 1300.738525390630002 null 514.280730390525946 null ms_run[3]:spectrum=2 null null null null null null 1 HCID 5847.44775390625 null null 0 119.999997317790985 null 2329.144525226734913 1300.738525390630002 spectrum=2 1.8160814453125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 382 null null crap_to_database_minimal_mrgd null null null null 1302.3193359375 null 580.592710261135949 null ms_run[3]:spectrum=9 null null null null null null 1 HCID 9337.7099609375 null null 0 119.999997317790985 null 2289.708153012121329 1302.3193359375 spectrum=9 3.13941015625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 383 null null crap_to_database_minimal_mrgd null null null null 1302.46875 null 570.288328953995006 null ms_run[3]:spectrum=10 null null null null null null 2 HCID 9613.193359375 null null 0 119.999997317790985 null 2285.980730649894213 1302.46875 spectrum=10 1.45595107421875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 384 null null crap_to_database_minimal_mrgd null null null null 1302.916381835940001 null 563.590452820650967 null ms_run[3]:spectrum=11 null null null null null null 3 HCID 1783.1405029296875 null null 0 119.999997317790985 null 2274.813689961689306 1302.916381835940001 spectrum=11 1.1391716796875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 385 null null crap_to_database_minimal_mrgd null null null null 1304.29248046875 null 555.887769623667055 null ms_run[3]:spectrum=17 null null null null null null 1 HCID 1035.3095703125 null null 0 119.999997317790985 null 2240.484251816829328 1304.29248046875 spectrum=17 1.113805859375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 386 null null crap_to_database_minimal_mrgd null null null null 1304.959716796880002 null 452.878457298179001 null ms_run[3]:spectrum=19 null null null null null null 1 HCID 1.3656818359375e04 null null 0 119.999997317790985 null 2223.83875293440633 1304.959716796880002 spectrum=19 5.3748015625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 387 null null crap_to_database_minimal_mrgd null null null null 1305.179931640630002 null 590.917005642535969 null ms_run[3]:spectrum=21 null null null null null null 1 HCID 6360.890625 null null 0 119.999997317790985 null 2218.345068341712249 1305.179931640630002 spectrum=21 2.7151126953125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 388 null null crap_to_database_minimal_mrgd null null null null 1305.952514648440001 null 557.257427272147993 null ms_run[3]:spectrum=24 null null null null null null 1 HCID 4509.302734375 null null 0 119.999997317790985 null 2199.071493071729947 1305.952514648440001 spectrum=24 2.34151328125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 389 null null crap_to_database_minimal_mrgd null null null null 1306.469970703130002 null 475.229616836513003 null ms_run[3]:spectrum=26 null null null null null null 1 HCID 6660.23828125 null null 0 119.999997317790985 null 2186.162552390719611 1306.469970703130002 spectrum=26 1.830391015625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 390 null null crap_to_database_minimal_mrgd null null null null 1306.76806640625 null 548.937823422297015 null ms_run[3]:spectrum=27 null null null null null null 2 HCID 2412.693603515625 null null 0 119.999997317790985 null 2178.725979344636471 1306.76806640625 spectrum=27 8759.2724609375 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 391 null null crap_to_database_minimal_mrgd null null null null 1308.841552734380002 null 455.567402026122977 null ms_run[3]:spectrum=32 null null null null null null 1 HCID 3933.7490234375 null null 0 119.999997317790985 null 2126.998858229489088 1308.841552734380002 spectrum=32 1.51906005859375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 392 null null crap_to_database_minimal_mrgd null null null null 1309.807739257809999 null 488.765129619131017 null ms_run[3]:spectrum=35 null null null null null null 2 HCID 7784.2470703125 null null 0 119.999997317790985 null 2102.895469343216519 1309.807739257809999 spectrum=35 1.55307509765625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 393 null null crap_to_database_minimal_mrgd null null null null 1311.192626953130002 null 534.28342441908103 null ms_run[3]:spectrum=41 null null null null null null 2 HCID 6636.6025390625 null null 0 119.999997317790985 null 2068.346771059152161 1311.192626953130002 spectrum=41 1.8914482421875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 394 null null crap_to_database_minimal_mrgd null null null null 1311.34130859375 null 470.908620292412024 null ms_run[3]:spectrum=42 null null null null null null 3 HCID 3539.002685546875 null null 0 119.999997317790985 null 2064.637620375296592 1311.34130859375 spectrum=42 1.9028216796875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 395 null null crap_to_database_minimal_mrgd null null null null 1311.641479492190001 null 504.248010860242005 null ms_run[3]:spectrum=43 null null null null null null 4 HCID 8944.6044921875 null null 0 119.999997317790985 null 2057.149277573995278 1311.641479492190001 spectrum=43 1.6991216796875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 396 null null crap_to_database_minimal_mrgd null null null null 1311.789916992190001 null 485.220764904782016 null ms_run[3]:spectrum=44 null null null null null null 5 HCID 6253.70166015625 null null 0 119.999997317790985 null 2053.446217449430151 1311.789916992190001 spectrum=44 2.435586328125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 397 null null crap_to_database_minimal_mrgd null null null null 1312.309326171880002 null 556.297399011221955 null ms_run[3]:spectrum=46 null null null null null null 1 HCID 5343.33056640625 null null 0 119.999997317790985 null 2040.488552293096291 1312.309326171880002 spectrum=46 2.291653515625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 398 null null crap_to_database_minimal_mrgd null null null null 1313.919677734380002 null 568.597483459827004 null ms_run[3]:spectrum=48 null null null null null null 1 HCID 2507.0439453125 null null 0 119.999997317790985 null 2000.315222389094288 1313.919677734380002 spectrum=48 1.3385935546875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 399 null null crap_to_database_minimal_mrgd null null null null 1314.2177734375 null 530.912478617576994 null ms_run[3]:spectrum=49 null null null null null null 2 HCID 4146.61376953125 null null 0 119.999997317790985 null 1992.878649343011148 1314.2177734375 spectrum=49 1.8210869140625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 400 null null crap_to_database_minimal_mrgd null null null null 1314.518920898440001 null 553.295997118348964 null ms_run[3]:spectrum=50 null null null null null null 3 HCID 4155.28515625 null null 0 119.999997317790985 null 1985.365944304048298 1314.518920898440001 spectrum=50 2.5320771484375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 401 null null crap_to_database_minimal_mrgd null null null null 1315.520263671880002 null 497.567647584776012 null ms_run[3]:spectrum=54 null null null null null null 3 HCID 3250.52294921875 null null 0 119.999997317790985 null 1960.385514861708089 1315.520263671880002 spectrum=54 1.37933173828125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 402 null null crap_to_database_minimal_mrgd null null null null 1315.970825195309999 null 479.213397671241012 null ms_run[3]:spectrum=55 null null null null null null 4 HCID 1344.1412353515625 null null 0 119.999997317790985 null 1949.145387460768006 1315.970825195309999 spectrum=55 1.0571349609375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 403 null null crap_to_database_minimal_mrgd null null null null 1317.463256835940001 null 572.9408239288 null ms_run[3]:spectrum=57 null null null null null null 1 HCID 2.81814921875e04 null null 0 119.999997317790985 null 1911.91379775428095 1317.463256835940001 spectrum=57 3.1684896875e05 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 404 null null crap_to_database_minimal_mrgd null null null null 1318.399047851559999 null 551.29885558347496 null ms_run[3]:spectrum=60 null null null null null null 1 HCID 1.33891484375e04 null null 0 119.999997317790985 null 1888.568683515163684 1318.399047851559999 spectrum=60 2.049901953125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 405 null null crap_to_database_minimal_mrgd null null null null 1318.547729492190001 null 561.706254977578055 null ms_run[3]:spectrum=61 null null null null null null 2 HCID 1.34960634765625e04 null null 0 119.999997317790985 null 1884.859532831058232 1318.547729492190001 spectrum=61 2.72419140625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 406 null null crap_to_database_minimal_mrgd null null null null 1318.697265625 null 541.282622135465999 null ms_run[3]:spectrum=62 null null null null null null 3 HCID 1200.3243408203125 null null 0 119.999997317790985 null 1881.129065189185894 1318.697265625 spectrum=62 9224.234375 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 407 null null crap_to_database_minimal_mrgd null null null null 1318.995239257809999 null 477.233738204289978 null ms_run[3]:spectrum=63 null null null null null null 4 HCID 7023.7802734375 null null 0 119.999997317790985 null 1873.695537422748203 1318.995239257809999 spectrum=63 1.80256640625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 408 null null crap_to_database_minimal_mrgd null null null null 1319.44189453125 null 501.557115823861011 null ms_run[3]:spectrum=64 null null null null null null 5 HCID 927.07440185546875 null null 0 119.999997317790985 null 1862.552858972204831 1319.44189453125 spectrum=64 1.15039375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 409 null null crap_to_database_minimal_mrgd null null null null 1320.005737304690001 null 451.553351470884991 null ms_run[3]:spectrum=66 null null null null null null 1 HCID 7318.21630859375 null null 0 119.999997317790985 null 1848.48671200226795 1320.005737304690001 spectrum=66 3.243842578125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 410 null null crap_to_database_minimal_mrgd null null null null 1320.1552734375 null 588.326594418399054 null ms_run[3]:spectrum=67 null null null null null null 2 HCID 1.14210126953125e04 null null 0 119.999997317790985 null 1844.756244360395613 1320.1552734375 spectrum=67 2.2997396484375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 411 null null crap_to_database_minimal_mrgd null null null null 1320.304809570309999 null 575.269652517401028 null ms_run[3]:spectrum=68 null null null null null null 3 HCID 5350.25146484375 null null 0 119.999997317790985 null 1841.025776718523275 1320.304809570309999 spectrum=68 3.255216796875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 412 null null crap_to_database_minimal_mrgd null null null null 1321.05908203125 null 506.88913200027099 null ms_run[3]:spectrum=69 null null null null null null 4 HCID 9929.2470703125 null null 0 119.999997317790985 null 1822.208993404571402 1321.05908203125 spectrum=69 1.81143828125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 413 null null crap_to_database_minimal_mrgd null null null null 1321.208618164059999 null 516.241833764627017 null ms_run[3]:spectrum=70 null null null null null null 5 HCID 1521.554443359375 null null 0 119.999997317790985 null 1818.478525762699064 1321.208618164059999 spectrum=70 5962.296875 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 414 null null crap_to_database_minimal_mrgd null null null null 1322.47412109375 null 578.939359627852014 null ms_run[3]:spectrum=73 null null null null null null 1 HCID 770.1094970703125 null null 0 119.999997317790985 null 1786.908111032892066 1322.47412109375 spectrum=73 8541.3037109375 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 415 null null crap_to_database_minimal_mrgd null null null null 1322.772216796880002 null 469.910981074748008 null ms_run[3]:spectrum=74 null null null null null null 2 HCID 3312.779541015625 null null 0 119.999997317790985 null 1779.471537986559724 1322.772216796880002 spectrum=74 1.57347939453125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 416 null null crap_to_database_minimal_mrgd null null null null 1323.930419921880002 null 476.755651264769995 null ms_run[3]:spectrum=76 null null null null null null 1 HCID 1.307723046875e04 null null 0 119.999997317790985 null 1750.577924119884983 1323.930419921880002 spectrum=76 2.369530078125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 417 null null crap_to_database_minimal_mrgd null null null null 1324.079956054690001 null 524.259621380577983 null ms_run[3]:spectrum=77 null null null null null null 2 HCID 1.18306435546875e04 null null 0 119.999997317790985 null 1746.847456478012646 1324.079956054690001 spectrum=77 1.685464453125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 418 null null crap_to_database_minimal_mrgd null null null null 1324.228515625 null 487.247176580450002 null ms_run[3]:spectrum=78 null null null null null null 3 HCID 3443.4892578125 null null 0 119.999997317790985 null 1743.141351073801843 1324.228515625 spectrum=78 1.55498359375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 419 null null crap_to_database_minimal_mrgd null null null null 1326.86376953125 null 557.760614688695 null ms_run[3]:spectrum=84 null null null null null null 1 HCID 7574.8671875 null null 0 119.999997317790985 null 1677.399852743935298 1326.86376953125 spectrum=84 2.1723958984375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 420 null null crap_to_database_minimal_mrgd null null null null 1327.160888671880002 null 492.533052193852996 null ms_run[3]:spectrum=85 null null null null null null 2 HCID 8613.11328125 null null 0 119.999997317790985 null 1669.987641935264492 1327.160888671880002 spectrum=85 1.767669921875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 421 null null crap_to_database_minimal_mrgd null null null null 1328.418090820309999 null 475.882735772906983 null ms_run[3]:spectrum=87 null null null null null null 1 HCID 5690.408203125 null null 0 119.999997317790985 null 1638.624306225830878 1328.418090820309999 spectrum=87 2.415466015625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 422 null null crap_to_database_minimal_mrgd null null null null 1330.613647460940001 null 546.607312474548962 null ms_run[3]:spectrum=93 null null null null null null 1 HCID 1.0561775390625e04 null null 0 119.999997317790985 null 1583.851905402981402 1330.613647460940001 spectrum=93 2.4398521484375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 423 null null crap_to_database_minimal_mrgd null null null null 1330.76318359375 null 594.322014670041995 null ms_run[3]:spectrum=94 null null null null null null 2 HCID 9288.662109375 null null 0 119.999997317790985 null 1580.121437761109064 1330.76318359375 spectrum=94 2.2624505859375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 424 null null crap_to_database_minimal_mrgd null null null null 1331.061889648440001 null 555.607742446214957 null ms_run[3]:spectrum=95 null null null null null null 3 HCID 1.4151677734375e04 null null 0 119.999997317790985 null 1572.669638316300279 1331.061889648440001 spectrum=95 2.1217939453125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 425 null null crap_to_database_minimal_mrgd null null null null 1331.211303710940001 null 562.265087399454046 null ms_run[3]:spectrum=96 null null null null null null 4 HCID 1.05307353515625e04 null null 0 119.999997317790985 null 1568.94221595407339 1331.211303710940001 spectrum=96 1.6791787109375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 426 null null crap_to_database_minimal_mrgd null null null null 1331.359985351559999 null 464.565349945845014 null ms_run[3]:spectrum=97 null null null null null null 5 HCID 2507.307373046875 null null 0 119.999997317790985 null 1565.233065270217367 1331.359985351559999 spectrum=97 9863.0 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 427 null null crap_to_database_minimal_mrgd null null null null 1332.491577148440001 null 471.88424468892498 null ms_run[3]:spectrum=101 null null null null null null 1 HCID 1967.17822265625 null null 0 119.999997317790985 null 1537.003322379696783 1332.491577148440001 spectrum=101 8611.3916015625 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 428 null null crap_to_database_minimal_mrgd null null null null 1333.089965820309999 null 514.604641124352952 null ms_run[3]:spectrum=102 null null null null null null 2 HCID 4405.7607421875 null null 0 119.999997317790985 null 1522.075361252667335 1333.089965820309999 spectrum=102 2.3333025390625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 429 null null crap_to_database_minimal_mrgd null null null null 1333.310180664059999 null 580.927254450150031 null ms_run[3]:spectrum=104 null null null null null null 1 HCID 6210.29931640625 null null 0 119.999997317790985 null 1516.581676659973482 1333.310180664059999 spectrum=104 3.442208984375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 430 null null crap_to_database_minimal_mrgd null null null null 1335.593383789059999 null 564.932538181814948 null ms_run[3]:spectrum=112 null null null null null null 1 HCID 1.46071650390625e04 null null 0 119.999997317790985 null 1459.622765007118915 1335.593383789059999 spectrum=112 3.5243859375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 431 null null crap_to_database_minimal_mrgd null null null null 1335.742919921880002 null 583.91678687592605 null ms_run[3]:spectrum=113 null null null null null null 2 HCID 6066.04736328125 null null 0 119.999997317790985 null 1455.892297364996921 1335.742919921880002 spectrum=113 1.62389541015625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 432 null null crap_to_database_minimal_mrgd null null null null 1336.189697265630002 null 503.903012588343017 null ms_run[3]:spectrum=114 null null null null null null 3 HCID 7777.53955078125 null null 0 119.999997317790985 null 1444.746573634808556 1336.189697265630002 spectrum=114 1.56109931640625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 433 null null crap_to_database_minimal_mrgd null null null null 1337.078002929690001 null 555.887585936406026 null ms_run[3]:spectrum=117 null null null null null null 1 HCID 6665.39990234375 null null 0 119.999997317790985 null 1422.586073201924819 1337.078002929690001 spectrum=117 1.7697048828125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 434 null null crap_to_database_minimal_mrgd null null null null 1337.226440429690001 null 465.748667618917011 null ms_run[3]:spectrum=118 null null null null null null 2 HCID 9022.6591796875 null null 0 119.999997317790985 null 1418.883013077359465 1337.226440429690001 spectrum=118 1.8440783203125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 435 null null crap_to_database_minimal_mrgd null null null null 1337.375 null 468.566814316014018 null ms_run[3]:spectrum=119 null null null null null null 3 HCID 1341.149169921875 null null 0 119.999997317790985 null 1415.176907673148662 1337.375 spectrum=119 5005.3447265625 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 436 null null crap_to_database_minimal_mrgd null null null null 1337.966064453130002 null 557.591304806520952 null ms_run[3]:spectrum=122 null null null null null null 1 HCID 2927.169189453125 null null 0 119.999997317790985 null 1400.431663328331752 1337.966064453130002 spectrum=122 1.7075634765625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 437 null null crap_to_database_minimal_mrgd null null null null 1338.268188476559999 null 597.567706902420014 null ms_run[3]:spectrum=123 null null null null null null 2 HCID 5822.5830078125 null null 0 119.999997317790985 null 1392.894596051957024 1338.268188476559999 spectrum=123 1.459691015625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 438 null null crap_to_database_minimal_mrgd null null null null 1339.902465820309999 null 454.228087113603976 null ms_run[3]:spectrum=127 null null null null null null 2 HCID 2.573392578125e04 null null 0 119.999997317790985 null 1352.227724355457667 1339.902465820309999 spectrum=127 8.40469140625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 439 null null crap_to_database_minimal_mrgd null null null null 1341.122680664059999 null 488.765275233812986 null ms_run[3]:spectrum=130 null null null null null null 1 HCID 7376.71044921875 null null 0 119.999997317790985 null 1335.446069306229447 1341.122680664059999 spectrum=130 2.3638533203125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 440 null null crap_to_database_minimal_mrgd null null null null 1341.271362304690001 null 481.25570913736999 null ms_run[3]:spectrum=131 null null null null null null 2 HCID 697.9483642578125 null null 0 119.999997317790985 null 1336.191944593540484 1341.271362304690001 spectrum=131 6967.75732421875 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 441 null null crap_to_database_minimal_mrgd null null null null 1341.846801757809999 null 544.58376601780401 null ms_run[3]:spectrum=135 null null null null null null 1 HCID 1.31462568359375e04 null null 0 119.999997317790985 null 1347.98340791901478 1341.846801757809999 spectrum=135 3.343691015625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 442 null null crap_to_database_minimal_mrgd null null null null 1341.995483398440001 null 513.739902608542025 null ms_run[3]:spectrum=136 null null null null null null 2 HCID 1.3384048828125e04 null null 0 119.999997317790985 null 1353.619658429900028 1341.995483398440001 spectrum=136 1.017194453125e05 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 443 null null crap_to_database_minimal_mrgd null null null null 1342.735107421880002 null 505.768017369224026 null ms_run[3]:spectrum=139 null null null null null null 1 HCID 961.453369140625 null null 0 119.999997317790985 null 1391.370173508419384 1342.735107421880002 spectrum=139 1.22948115234375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 444 null null crap_to_database_minimal_mrgd null null null null 1344.3671875 null 568.262586880955951 null ms_run[3]:spectrum=144 null null null null null null 1 HCID 1154.591552734375 null null 0 119.999997317790985 null 1435.102616493129062 1344.3671875 spectrum=144 8493.01953125 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 445 null null crap_to_database_minimal_mrgd null null null null 1345.303588867190001 null 509.566858356829982 null ms_run[3]:spectrum=148 null null null null null null 1 HCID 2484.220947265625 null null 0 119.999997317790985 null 1396.093753494463044 1345.303588867190001 spectrum=148 1.8561693359375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 446 null null crap_to_database_minimal_mrgd null null null null 1345.601806640630002 null 530.912051375379974 null ms_run[3]:spectrum=149 null null null null null null 2 HCID 4454.5595703125 null null 0 119.999997317790985 null 1380.63971914663216 1345.601806640630002 spectrum=149 1.51254033203125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 447 null null crap_to_database_minimal_mrgd null null null null 1346.387573242190001 null 540.767811669590969 null ms_run[3]:spectrum=154 null null null null null null 2 HCID 1.04049638671875e04 null null 0 119.999997317790985 null 1350.053811071093151 1346.387573242190001 spectrum=154 2.148311328125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 448 null null crap_to_database_minimal_mrgd null null null null 1346.685668945309999 null 543.256541639394982 null ms_run[3]:spectrum=155 null null null null null null 3 HCID 3109.4228515625 null null 0 119.999997317790985 null 1345.562620011193076 1346.685668945309999 spectrum=155 6811.2470703125 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 449 null null crap_to_database_minimal_mrgd null null null null 1348.813598632809999 null 551.299775892857042 null ms_run[3]:spectrum=163 null null null null null null 1 HCID 1.1869826171875e04 null null 0 119.999997317790985 null 1383.536425919360227 1348.813598632809999 spectrum=163 2.438264453125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 450 null null crap_to_database_minimal_mrgd null null null null 1350.012329101559999 null 586.59370026511499 null ms_run[3]:spectrum=164 null null null null null null 2 HCID 1107.439697265625 null null 0 119.999997317790985 null 1416.949053885355397 1350.012329101559999 spectrum=164 1.01411328125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 451 null null crap_to_database_minimal_mrgd null null null null 1350.755981445309999 null 451.553515981217004 null ms_run[3]:spectrum=166 null null null null null null 1 HCID 5928.763671875 null null 0 119.999997317790985 null 1437.677132252854563 1350.755981445309999 spectrum=166 2.4225306640625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 452 null null crap_to_database_minimal_mrgd null null null null 1350.975341796880002 null 471.27522820370001 null ms_run[3]:spectrum=168 null null null null null null 1 HCID 9889.533203125 null null 0 119.999997317790985 null 1443.791439020364578 1350.975341796880002 spectrum=168 2.2567046875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 453 null null crap_to_database_minimal_mrgd null null null null 1351.123901367190001 null 475.555132173150014 null ms_run[3]:spectrum=169 null null null null null null 2 HCID 1.1047068359375e04 null null 0 119.999997317790985 null 1447.932291182679364 1351.123901367190001 spectrum=169 2.3981314453125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 454 null null crap_to_database_minimal_mrgd null null null null 1351.421997070309999 null 492.238346387146009 null ms_run[3]:spectrum=171 null null null null null null 4 HCID 1.25671845703125e04 null null 0 119.999997317790985 null 1456.241215570825034 1351.421997070309999 spectrum=171 2.0451029296875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 455 null null crap_to_database_minimal_mrgd null null null null 1351.570556640630002 null 522.027182842574007 null ms_run[3]:spectrum=172 null null null null null null 5 HCID 2439.43603515625 null null 0 119.999997317790985 null 1460.382067733418808 1351.570556640630002 spectrum=172 2.122955859375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 456 null null crap_to_database_minimal_mrgd null null null null 1352.023559570309999 null 560.936670212664012 null ms_run[3]:spectrum=173 null null null null null null 6 HCID 2716.095947265625 null null 0 119.999997317790985 null 1473.008774696733781 1352.023559570309999 spectrum=173 1.51761806640625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 457 null null crap_to_database_minimal_mrgd null null null null 1352.886962890630002 null 576.791199064858006 null ms_run[3]:spectrum=175 null null null null null null 1 HCID 1133.20263671875 null null 0 119.999997317790985 null 1497.074713353102197 1352.886962890630002 spectrum=175 8589.515625 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 458 null null crap_to_database_minimal_mrgd null null null null 1353.333740234380002 null 469.59103728543198 null ms_run[3]:spectrum=176 null null null null null null 2 HCID 1.401307421875e04 null null 0 119.999997317790985 null 1509.527892411711491 1353.333740234380002 spectrum=176 3.283184375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 459 null null crap_to_database_minimal_mrgd null null null null 1353.482299804690001 null 554.495692616948986 null ms_run[3]:spectrum=177 null null null null null null 3 HCID 2895.143798828125 null null 0 119.999997317790985 null 1513.668744574026277 1353.482299804690001 spectrum=177 1.04401953125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 460 null null crap_to_database_minimal_mrgd null null null null 1355.350708007809999 null 486.997001536453013 null ms_run[3]:spectrum=180 null null null null null null 1 HCID 8953.5751953125 null null 0 119.999997317790985 null 1565.747531096037619 1355.350708007809999 spectrum=180 2.6538431640625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 461 null null crap_to_database_minimal_mrgd null null null null 1355.796508789059999 null 509.815132113832021 null ms_run[3]:spectrum=181 null null null null null null 2 HCID 1038.43505859375 null null 0 119.999997317790985 null 1578.173490091130816 1355.796508789059999 spectrum=181 1.8344646484375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 462 null null crap_to_database_minimal_mrgd null null null null 1356.094604492190001 null 450.581812979797974 null ms_run[3]:spectrum=182 null null null null null null 3 HCID 1028.382080078125 null null 0 119.999997317790985 null 1586.482414479555473 1356.094604492190001 spectrum=182 1.1164822265625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 463 null null crap_to_database_minimal_mrgd null null null null 1356.9130859375 null 452.87760281236001 null ms_run[3]:spectrum=184 null null null null null null 1 HCID 5874.36376953125 null null 0 119.999997317790985 null 1609.296230213904892 1356.9130859375 spectrum=184 1.9848916015625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 464 null null crap_to_database_minimal_mrgd null null null null 1357.580444335940001 null 492.53378460964899 null ms_run[3]:spectrum=186 null null null null null null 1 HCID 643.7197265625 null null 0 119.999997317790985 null 1627.897741119279772 1357.580444335940001 spectrum=186 1.105396484375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 465 null null crap_to_database_minimal_mrgd null null null null 1358.631469726559999 null 529.941357094339992 null ms_run[3]:spectrum=187 null null null null null null 2 HCID 2229.547607421875 null null 0 119.999997317790985 null 1657.193334478327415 1358.631469726559999 spectrum=187 1.13017421875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 466 null null crap_to_database_minimal_mrgd null null null null 1359.492553710940001 null 557.759699170227009 null ms_run[3]:spectrum=189 null null null null null null 1 HCID 1.17550859375e04 null null 0 119.999997317790985 null 1681.194625483775553 1359.492553710940001 spectrum=189 4.02711484375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 467 null null crap_to_database_minimal_mrgd null null null null 1360.906372070309999 null 546.601105023792002 null ms_run[3]:spectrum=194 null null null null null null 1 HCID 4307.7060546875 null null 0 119.999997317790985 null 1720.602472439049052 1360.906372070309999 spectrum=194 2.3319740234375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 468 null null crap_to_database_minimal_mrgd null null null null 1362.366088867190001 null 491.246594348406973 null ms_run[3]:spectrum=199 null null null null null null 1 HCID 2629.4814453125 null null 0 119.999997317790985 null 1761.289662379857646 1362.366088867190001 spectrum=199 1.56999462890625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 469 null null crap_to_database_minimal_mrgd null null null null 1363.605102539059999 null 463.965515267903015 null ms_run[3]:spectrum=203 null null null null null null 1 HCID 7475.13427734375 null null 0 119.999997317790985 null 1795.825117965751815 1363.605102539059999 spectrum=203 1.4408248046875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 470 null null crap_to_database_minimal_mrgd null null null null 1365.861450195309999 null 566.273531863619951 null ms_run[3]:spectrum=211 null null null null null null 2 HCID 3947.794189453125 null null 0 119.999997317790985 null 1858.717074719667835 1365.861450195309999 spectrum=211 1.21635947265625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 471 null null crap_to_database_minimal_mrgd null null null null 1366.16259765625 null 588.325790162794988 null ms_run[3]:spectrum=212 null null null null null null 3 HCID 8055.0859375 null null 0 119.999997317790985 null 1867.111061806510406 1366.16259765625 spectrum=212 1.6838021484375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 472 null null crap_to_database_minimal_mrgd null null null null 1366.311157226559999 null 464.214217395099013 null ms_run[3]:spectrum=213 null null null null null null 4 HCID 9061.037109375 null null 0 119.999997317790985 null 1871.251913968825193 1366.311157226559999 spectrum=213 2.058978515625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 473 null null crap_to_database_minimal_mrgd null null null null 1367.4541015625 null 583.81206219221599 null ms_run[3]:spectrum=216 null null null null null null 1 HCID 9210.3857421875 null null 0 119.999997317790985 null 1903.109595806533889 1367.4541015625 spectrum=216 2.1425349609375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 474 null null crap_to_database_minimal_mrgd null null null null 1368.055419921880002 null 549.252761833389968 null ms_run[3]:spectrum=217 null null null null null null 2 HCID 5579.06640625 null null 0 119.999997317790985 null 1919.870349916702935 1368.055419921880002 spectrum=217 2.0976130859375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 475 null null crap_to_database_minimal_mrgd null null null null 1368.274658203130002 null 465.748659908625996 null ms_run[3]:spectrum=219 null null null null null null 1 HCID 5832.81298828125 null null 0 119.999997317790985 null 1925.98125417606434 1368.274658203130002 spectrum=219 3.0135326171875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 476 null null crap_to_database_minimal_mrgd null null null null 1368.794189453130002 null 564.77555856276399 null ms_run[3]:spectrum=221 null null null null null null 1 HCID 1.35899814453125e04 null null 0 119.999997317790985 null 1940.462327966621842 1368.794189453130002 spectrum=221 4.821782421875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 477 null null crap_to_database_minimal_mrgd null null null null 1368.94384765625 null 599.262224170028958 null ms_run[3]:spectrum=222 null null null null null null 2 HCID 2802.899658203125 null null 0 119.999997317790985 null 1944.633802700322576 1368.94384765625 spectrum=222 2.51489140625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 478 null null crap_to_database_minimal_mrgd null null null null 1370.36083984375 null 473.576479623415992 null ms_run[3]:spectrum=224 null null null null null null 1 HCID 1.33913671875e04 null null 0 119.999997317790985 null 1984.130114862162827 1370.36083984375 spectrum=224 2.104620703125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 479 null null crap_to_database_minimal_mrgd null null null null 1370.510375976559999 null 547.588837204109041 null ms_run[3]:spectrum=225 null null null null null null 2 HCID 778.80706787109375 null null 0 119.999997317790985 null 1988.298187087993711 1370.510375976559999 spectrum=225 1.0856203125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 480 null null crap_to_database_minimal_mrgd null null null null 1372.15283203125 null 561.788205268307024 null ms_run[3]:spectrum=227 null null null null null null 1 HCID 6243.9892578125 null null 0 119.999997317790985 null 2034.078931414180033 1372.15283203125 spectrum=227 1.5915896484375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 481 null null crap_to_database_minimal_mrgd null null null null 1372.75 null 533.282696195709946 null ms_run[3]:spectrum=228 null null null null null null 2 HCID 1.3407140625e04 null null 0 119.999997317790985 null 2050.724000254266684 1372.75 spectrum=228 2.13093984375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 482 null null crap_to_database_minimal_mrgd null null null null 1372.898681640630002 null 526.907754232373009 null ms_run[3]:spectrum=229 null null null null null null 3 HCID 3048.822998046875 null null 0 119.999997317790985 null 2054.868254924729627 1372.898681640630002 spectrum=229 9288.8671875 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 483 null null crap_to_database_minimal_mrgd null null null null 1373.746704101559999 null 544.583076288515031 null ms_run[3]:spectrum=232 null null null null null null 2 HCID 5101.2177734375 null null 0 119.999997317790985 null 2078.505477580301886 1373.746704101559999 spectrum=232 2.7880255859375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 484 null null crap_to_database_minimal_mrgd null null null null 1374.193481445309999 null 513.740352241268965 null ms_run[3]:spectrum=233 null null null null null null 3 HCID 8197.634765625 null null 0 119.999997317790985 null 2090.958656638910725 1374.193481445309999 spectrum=233 5.6043265625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 485 null null crap_to_database_minimal_mrgd null null null null 1374.342041015630002 null 505.768178893529012 null ms_run[3]:spectrum=234 null null null null null null 4 HCID 3709.593017578125 null null 0 119.999997317790985 null 2095.099508801504271 1374.342041015630002 spectrum=234 2.519858984375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 486 null null crap_to_database_minimal_mrgd null null null null 1376.105834960940001 null 532.264603017198056 null ms_run[3]:spectrum=237 null null null null null null 1 HCID 2429.41064453125 null null 0 119.999997317790985 null 2144.262346019424967 1376.105834960940001 spectrum=237 2.87195859375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 487 null null crap_to_database_minimal_mrgd null null null null 1376.404052734380002 null 518.263422361002995 null ms_run[3]:spectrum=238 null null null null null null 2 HCID 4891.24365234375 null null 0 119.999997317790985 null 2152.574672915719475 1376.404052734380002 spectrum=238 2.768833984375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 488 null null crap_to_database_minimal_mrgd null null null null 1376.854614257809999 null 568.595042077814014 null ms_run[3]:spectrum=239 null null null null null null 3 HCID 716.68304443359375 null null 0 119.999997317790985 null 2165.133329720244546 1376.854614257809999 spectrum=239 1.0495955078125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 489 null null crap_to_database_minimal_mrgd null null null null 1377.153930664059999 null 557.256957459891055 null ms_run[3]:spectrum=240 null null null null null null 4 HCID 4673.1240234375 null null 0 119.999997317790985 null 2173.476279187924774 1377.153930664059999 spectrum=240 2.5704123046875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 490 null null crap_to_database_minimal_mrgd null null null null 1377.415161132809999 null 540.767773025370957 null ms_run[3]:spectrum=242 null null null null null null 1 HCID 1.12902353515625e04 null null 0 119.999997317790985 null 2180.757646178477444 1377.415161132809999 spectrum=242 3.6793453125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 491 null null crap_to_database_minimal_mrgd null null null null 1377.563598632809999 null 509.567611536294976 null ms_run[3]:spectrum=243 null null null null null null 2 HCID 6295.529296875 null null 0 119.999997317790985 null 2184.89509583292238 1377.563598632809999 spectrum=243 2.0877439453125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 492 null null crap_to_database_minimal_mrgd null null null null 1377.712280273440001 null 469.730898253503028 null ms_run[3]:spectrum=244 null null null null null null 3 HCID 1.10706083984375e04 null null 0 119.999997317790985 null 2189.039350503386231 1377.712280273440001 spectrum=244 1.10629328125e05 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 493 null null crap_to_database_minimal_mrgd null null null null 1378.311401367190001 null 526.940834988139955 null ms_run[3]:spectrum=245 null null null null null null 4 HCID 6181.33203125 null null 0 119.999997317790985 null 2205.738859470504394 1378.311401367190001 spectrum=245 1.61844716796875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 494 null null crap_to_database_minimal_mrgd null null null null 1378.609497070309999 null 553.76462054683202 null ms_run[3]:spectrum=246 null null null null null null 5 HCID 1.44370576171875e04 null null 0 119.999997317790985 null 2214.047783858650291 1378.609497070309999 spectrum=246 2.6206716796875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 495 null null crap_to_database_minimal_mrgd null null null null 1378.759033203130002 null 568.262586880955951 null ms_run[3]:spectrum=247 null null null null null null 6 HCID 2668.5771484375 null null 0 119.999997317790985 null 2218.215856084760162 1378.759033203130002 spectrum=247 1.310711328125e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 496 null null crap_to_database_minimal_mrgd null null null null 1379.915649414059999 null 480.248393025901976 null ms_run[3]:spectrum=251 null null null null null null 3 HCID 2894.315185546875 null null 0 119.999997317790985 null 2250.454618811415003 1379.915649414059999 spectrum=251 1.43148974609375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 497 null null crap_to_database_minimal_mrgd null null null null 1380.363403320309999 null 527.607577005314056 null ms_run[3]:spectrum=252 null null null null null null 4 HCID 1.11791328125e04 null null 0 119.999997317790985 null 2262.935017933540166 1380.363403320309999 spectrum=252 2.595312109375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 498 null null crap_to_database_minimal_mrgd null null null null 1380.511840820309999 null 456.234480752044988 null ms_run[3]:spectrum=253 null null null null null null 5 HCID 5873.94921875 null null 0 119.999997317790985 null 2267.072467587985102 1380.511840820309999 spectrum=253 3.796043359375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 499 null null crap_to_database_minimal_mrgd null null null null 1381.2236328125 null 586.282906153558997 null ms_run[3]:spectrum=255 null null null null null null 1 HCID 2.0253548828125e04 null null 0 119.999997317790985 null 2286.912491383342058 1381.2236328125 spectrum=255 1.890819375e05 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 500 null null crap_to_database_minimal_mrgd null null null null 1381.373291015630002 null 598.90456675206201 null ms_run[3]:spectrum=256 null null null null null null 2 HCID 1.3629697265625e04 null null 0 119.999997317790985 null 2291.083966117321324 1381.373291015630002 spectrum=256 1.35732296875e05 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 501 null null crap_to_database_minimal_mrgd null null null null 1381.972412109380002 null 577.574383226253985 null ms_run[3]:spectrum=257 null null null null null null 3 HCID 9038.888671875 null null 0 119.999997317790985 null 2307.783475084439942 1381.972412109380002 spectrum=257 1.9468990234375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 502 null null crap_to_database_minimal_mrgd null null null null 1382.68115234375 null 594.588246044789003 null ms_run[3]:spectrum=259 null null null null null null 1 HCID 1.5781216796875e04 null null 0 119.999997317790985 null 2327.538436181099769 1382.68115234375 spectrum=259 2.5570009765625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 503 null null crap_to_database_minimal_mrgd null null null null 1382.83056640625 null 591.595977976318977 null ms_run[3]:spectrum=260 null null null null null null 2 HCID 1.1383470703125e04 null null 0 119.999997317790985 null 2331.703105899060574 1382.83056640625 spectrum=260 3.341572265625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 504 null null crap_to_database_minimal_mrgd null null null null 1383.428100585940001 null 562.578072614903022 null ms_run[3]:spectrum=262 null null null null null null 4 HCID 910.87115478515625 null null 0 119.999997317790985 null 2348.35838226303531 1383.428100585940001 spectrum=262 1.00185302734375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 505 null null crap_to_database_minimal_mrgd null null null null 1387.191040039059999 null 592.597971457141057 null ms_run[3]:spectrum=272 null null null null null null 2 HCID 5857.06201171875 null null 0 119.999997317790985 null 2453.24409200625314 1387.191040039059999 spectrum=272 3.1513474609375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 506 null null crap_to_database_minimal_mrgd null null null null 1388.199096679690001 null 566.595672235176949 null ms_run[3]:spectrum=278 null null null null null null 1 HCID 1.20412021484375e04 null null 0 119.999997317790985 null 2481.342002570871955 1388.199096679690001 spectrum=278 2.5923541015625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 507 null null crap_to_database_minimal_mrgd null null null null 1388.34765625 null 523.239818480817007 null ms_run[3]:spectrum=279 null null null null null null 2 HCID 3847.284912109375 null null 0 119.999997317790985 null 2485.482854733186741 1388.34765625 spectrum=279 1.8543072265625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 508 null null crap_to_database_minimal_mrgd null null null null 1388.79833984375 null 485.886958205033977 null ms_run[3]:spectrum=280 null null null null null null 3 HCID 7202.982421875 null null 0 119.999997317790985 null 2498.044914045860423 1388.79833984375 spectrum=280 2.9058974609375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 509 null null crap_to_database_minimal_mrgd null null null null 1389.304809570309999 null 594.250236891744976 null ms_run[3]:spectrum=283 null null null null null null 1 HCID 1.467514453125e04 null null 0 119.999997317790985 null 2512.161919486820807 1389.304809570309999 spectrum=283 2.9733697265625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 510 null null crap_to_database_minimal_mrgd null null null null 1389.754516601559999 null 573.279199443180005 null ms_run[3]:spectrum=285 null null null null null null 3 HCID 2360.11328125 null null 0 119.999997317790985 null 2524.696758735978165 1389.754516601559999 spectrum=285 1.46746025390625e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 511 null null crap_to_database_minimal_mrgd null null null null 1395.048706054690001 null 523.918401264856016 null ms_run[3]:spectrum=303 null null null null null null 1 HCID 4635.58154296875 null null 0 119.999997317790985 null 2672.263528072697227 1395.048706054690001 spectrum=303 3.417159375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 512 null null crap_to_database_minimal_mrgd null null null null 1395.268920898440001 null 589.017259193944028 null ms_run[3]:spectrum=305 null null null null null null 1 HCID 4171.017578125 null null 0 119.999997317790985 null 2678.401652395574274 1395.268920898440001 spectrum=305 2.9214388671875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 513 null null crap_to_database_minimal_mrgd null null null null 1396.211547851559999 null 521.271330212205953 null ms_run[3]:spectrum=309 null null null null null null 1 HCID 1.18709951171875e04 null null 0 119.999997317790985 null 2704.675818704336507 1396.211547851559999 spectrum=309 3.18646484375e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 514 null null crap_to_database_minimal_mrgd null null null null 1396.5107421875 null 569.59252972330205 null ms_run[3]:spectrum=310 null null null null null null 2 HCID 5801.09814453125 null null 0 119.999997317790985 null 2713.015365664146884 1396.5107421875 spectrum=310 4.07894921875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 515 null null crap_to_database_minimal_mrgd null null null null 1399.24609375 null 566.308992939112954 null ms_run[3]:spectrum=321 null null null null null null 1 HCID 1.0057494140625e04 null null 0 119.999997317790985 null 2789.258763572703174 1399.24609375 spectrum=321 3.215871875e04 null null null null null null null null null null null null null null null null null null null null null null null null -PSM null 516 null null crap_to_database_minimal_mrgd null null null null 1399.543212890630002 null 451.886857011221025 null ms_run[3]:spectrum=322 null null null null null null 2 HCID 906.3585205078125 null null 0 119.999997317790985 null 2797.540467897611507 1399.543212890630002 spectrum=322 8259.560546875 null null null null null null null null null null null null null null null null null null null null null null null null +PSM AHGDLSENAEYHAAK 0 ES-0001a_PROKKA_02064 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1340.063645186759913 3 538.250101368755054 538.249862207404362 ms_run[1]:spectrum=219 R E 38 52 internal 34.608987643258935 1 HCD 3.4973759375e05 0 5785370176150438919 1 6.532086525112 0 1340.063645186759913 1350.101318359380002 spectrum=219 4.865988e06 AHGDLSENAEYHAAK 8.399999999999999e-15 0.499570653936673 70.299999999999997 9 24.899999999999999 0.44433146663662 7.0e-04 [-5.086029759127086e-05, -2.070591975211755e-05, 6.124219433445433e-05, -2.804822336770485e-04, 2.599896541255475e-04, -4.174118225819257e-04, -1.651231989967528e-04, 1.597216974801086e-03, -1.661525834606437e-04, 1.141739240665629e-03, 3.273611263239218e-04, 1.404428255455059e-03, 1.417478421899432e-03, -2.845604299182014e-04, 7.139913997207259e-04, -2.505282399397402e-03, 1.710844722992988e-03] 1.049758040290642e-06 [-0.345723117856535, -0.099022442352397, 0.280734435266955, -0.969899066849488, 0.68211593061452, -0.97927458790417, -0.334098030124416, 2.747816001711164, -0.281944626670212, 1.607380720502823, 0.455711386670567, 1.779133336640007, 1.719503488882102, -0.317805972487502, 0.790310139343994, -2.445530662126883, 1.657033383209536] 1.662501800788809 70.299999999999997 0 1611.728474705952067 0 538.252212161182001 538.249862207404362 28.100000000000001 unique 0 4.365916171351089 10 24.300000000000001 +PSM ARAEDAMDEASGR 1 ES-0001a_PROKKA_00065 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1339.88320030223008 3 460.204849450080019 460.205376301870956 ms_run[1]:spectrum=217 K L 40 52 internal 10.592152715830633 1 HCD 1.29804716796875e04 1 6079338524867909733 1 119.999997317790985 0 1339.883200302231217 1349.895751953130002 spectrum=217 1.184895703125e05 ARAEDAMDEASGR 3.4e-06 0.434528234483428 35.899999999999999 5 17.5 -1.144818852771412 -1.6e-03 [-3.702517883539258e-04, -6.570139531163477e-04, -3.200123733222426e-04, 1.600123511025231e-04, 3.181092884005921e-04, 3.354473695935667e-04, -3.692231746640573e-03, -2.138401139632151e-03] 2.007530375875187e-06 [-1.160036816456196, -1.683746427340118, -0.616294743348211, 0.294545267353177, 0.517849333536571, 0.528863981605796, -4.95382309396997, -2.485482062129352] 3.499056400466703 35.899999999999999 0 1377.592718949927075 1 460.206695556641023 460.205376301870956 22.199999999999999 unique 0 2.866665271640651 7 17.899999999999999 +PSM GLHNEGSQTLQAR 2 ES-0001a_PROKKA_00281 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1360.334233316699965 3 470.908093119528019 470.907658810270959 ms_run[2]:spectrum=205 R L 122 134 internal 13.384653461780705 3 HCD 1.3368134765625e04 2 5360692749920258796 1 119.999997317790985 1 1360.334233316696782 1355.403442382809999 spectrum=205 3.379100390625e04 GLHNEGSQTLQAR 2.7e-03 0.246454686334403 24.300000000000001 1 13.9 0.922281149889566 1.3e-03 [0.03669358856672, 1.833047864181481e-04, -1.58747807375903e-04, 6.64994821761411e-04, -1.580010330997084e-03, 2.108108860738867e-04] 2.266588023881542e-04 [214.440927347881058, 1.0467444178291, -0.644907148800472, 1.777041144871322, -3.242385624287787, 0.358310835334971] 7677.279022319939031 24.300000000000001 0 1409.702449958271245 0 470.909454345703068 470.907658810270959 20.899999999999999 unique 0 3.812924675392222 5 15.4 +PSM MIAEAMQK 3 ES-0001a_PROKKA_00962 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 6-UNIMOD:35 1326.498875208709933 2 469.227065522080977 469.227715781370989 ms_run[1]:spectrum=72 K V 161 168 internal 14.070216008690339 1 HCD 4.349269921875e04 3 17763620004723453763 1 119.999997317790985 0 1326.498875208710388 1315.557006835940001 spectrum=72 2.69727e05 MIAEAM(Oxidation)QK 5.800000000000003e-06 0.208212098181508 34.899999999999999 1 16.899999999999999 -1.3858075048468 -1.3e-03 [-1.631403376904927e-04, -5.939267018675309e-04, 7.14408883482065e-05, 2.805449923357628e-03, -2.549889472902578e-06, -8.488473345096281e-04] 1.741482816905398e-06 [-0.665520836125359, -1.406719942740342, 0.144838869234326, 4.508293143703797, -3.677776801246026e-03, -1.052628051549418] 4.697622049191153 34.899999999999999 0 936.439578110620005 0 469.228942944333028 469.227715781370989 25.100000000000001 unique 0 2.615282347495423 7 19.800000000000001 +PSM DAEAEAYAR 4 ES-0001a_PROKKA_03080 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1332.241489266449889 2 498.223893468179995 498.225073955671007 ms_run[1]:spectrum=118 K E 46 54 internal 17.053721190328179 1 HCD 6532.47265625 4 18116955262754587677 1 119.999997317790985 0 1332.241489266449207 1324.727661132809999 spectrum=118 9.2244546875e04 DAEAEAYAR 8.1e-05 0.158976263862311 30.399999999999999 2 16.0 -2.369385951694715 -2.4e-03 [-5.941231422639248e-04, 6.569431207026355e-05, -2.384486327855484e-04, 4.876379901816108e-03, 1.318182536238055e-03] 5.009722277309358e-06 [-1.879458915734385, 0.136790049965601, -0.391349061453512, 7.167602967962213, 1.628634842994767] 12.21354510597874 30.399999999999999 0 994.43323400281804 0 498.225870267101925 498.225073955671007 20.100000000000001 unique 0 1.59829657828219 6 16.899999999999999 +PSM VGEAAASGELRK 5 ES-0001a_PROKKA_01329 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1335.573521154449963 2 594.322364032104019 594.322579838470915 ms_run[1]:spectrum=175 K N 447 458 internal 11.719468527791332 1 HCD 8.71427734375e04 5 260928917346100589 1 32.913912087679002 0 1335.573521154457694 1340.982299804690001 spectrum=175 8.848173125000001e05 VGEAAASGELRK 9.700000000000001e-14 0.559132163160661 66.099999999999994 5 21.199999999999999 -0.363113188387407 -4.0e-04 [1.819604244133188e-04, 5.998424359177079e-05, -6.641274001140118e-05, 1.762638634090763e-04, -2.923201632256678e-04, -2.666667278390378e-04, -1.39862803126789e-03, -3.991602104633785e-04, -1.304333511598088e-05, -4.192983411712703e-04, -2.952012650894176e-04, -8.71718182679615e-04, -2.893669696959478e-03, 6.304612281837763e-04] 7.445379765440241e-07 [1.236876861402162, 0.381828962142624, -0.232098966419684, 0.49349182870897, -0.702189721822098, -0.622741764440359, -2.801452124865263, -0.662658309525149, -0.018919999052857, -0.551395512097876, -0.355036104625664, -0.96588693257379, -2.805172113578691, 0.579164900525362] 1.321750565929295 66.099999999999994 0 1186.630175130665975 1 594.324656327186972 594.322579838470915 27.800000000000001 unique 0 3.493874852644945 12 22.300000000000001 +PSM YHLGASSDR 6 ES-0001a_PROKKA_01599 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1342.998368909379906 2 503.241048116347997 503.241057987570969 ms_run[2]:spectrum=103 K E 344 352 internal 14.791779518349699 1 HCD 1.03491796875e04 6 16840186854814138036 1 119.999997317790985 1 1342.998368909386954 1327.033935546880002 spectrum=103 5.09338671875e04 YHLGASSDR 0.011 0.422323445055044 21.800000000000001 1 17.0 -0.019615297310882 0.0 [3.279141989764867e-05, 4.072531902465926e-04, 3.336154520638956e-04, -4.09508279972215e-04] 1.37591703093377e-07 [0.187252261118019, 1.35241869671995, 0.563284106973502, -0.580572441548437] 0.64634695756088 21.800000000000001 0 1004.467543299154045 0 503.242507814000987 503.241057987570969 17.199999999999999 unique 0 2.880978026348722 3 17.800000000000001 +PSM LHHLVDDK 7 ES-0001a_PROKKA_00009 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1343.325555567899983 2 488.76454505068898 488.764168567321008 ms_run[2]:spectrum=169 K I 1257 1264 internal 33.801800536276524 1 HCD 9690.1630859375 7 3963149378438661089 1 119.999997317790985 1 1343.325555567897027 1344.216186523440001 spectrum=169 8.708416406250001e04 LHHLVDDK 5.2e-07 0.462030309171498 39.100000000000001 5 18.100000000000001 0.770276121255016 8.0e-04 [3.486591841692643e-04, 8.21362102300327e-04, 3.205254362228516e-04, 1.357709973262899e-03, 2.875845706284963e-05, 5.879707795202194e-04, 4.966451946302186e-04, 2.708061478756463e-03, 2.845286583465168e-03, 1.359374712706085e-03, -8.848513332395669e-04] 1.232378632829727e-06 [2.370012483784645, 3.270401253254304, 1.222727332869118, 3.599761054262602, 0.074079799335166, 1.234622920982742, 0.990727911907926, 4.595237365452857, 3.977260234432882, 1.871442355536136, -1.065552484155355] 3.028497157281308 39.100000000000001 0 975.514537167836011 0 488.765960579927025 488.764168567321008 19.699999999999999 unique 0 3.666415668870277 6 18.199999999999999 +PSM TLHSDEGAHFDK 8 ES-0001a_PROKKA_01616 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1334.525320668790073 3 452.876693575741001 452.877476703937703 ms_run[1]:spectrum=141 K I 267 278 internal 23.035222900873357 2 HCD 7.72456015625e04 8 16277983992011910871 1 119.999997317790985 0 1334.525320668798031 1332.26171875 spectrum=141 3.6063059375e05 TLHSDEGAHFDK 1.5e-10 0.234539029273457 53.299999999999997 6 17.899999999999999 -1.729227521759519 -2.3e-03 [1.486099819203446e-06, 3.141612268677818e-04, 1.072925885523546e-04, 3.841862010176556e-04, 3.020479927613451e-04, -5.487288062795415e-04, -3.372991617425214e-04, 2.442397578874989e-03, -1.329219180888686e-03, -1.713615372068489e-03, -4.118868325804215e-04, 1.115294476903728e-03, -1.904247843299345e-03] 1.356720007767142e-06 [0.010101770679164, 1.460270790523974, 0.409295381306437, 1.090824692092122, 0.738127974479435, -1.004506459946615, -0.608561045148487, 3.621985260344321, -1.795463381020984, -2.133038461754999, -0.50765111449234, 1.214394942776461, -1.893968855034786] 2.633180730324379 53.299999999999997 0 1355.608251326910022 0 452.878514108589002 452.877476703937703 25.300000000000001 unique 0 2.290696059449874 9 18.800000000000001 +PSM TCHAHPTMSETVR 9 ES-0001a_PROKKA_01604 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 2-UNIMOD:4 1336.711504239540091 3 509.900846278282018 509.566139339470965 ms_run[1]:spectrum=193 R E 442 454 internal 11.855606100049148 1 HCD 1.20141552734375e04 9 483781179592362750 1 119.999997317790985 0 1336.711504239545775 1344.832153320309999 spectrum=193 5.1737265625e04 TC(Carbamidomethyl)HAHPTMSETVR 3.7e-04 0.253702344648361 27.699999999999999 3 14.199999999999999 656.846899687877794 1.004 [-7.616664356646652e-05, -1.36321718872523e-03, -1.086680592720768e-03, -1.708904978841019e-03, 8.495376566770574e-04, 1.617532266891431e-03, -2.4594972757086e-03, -1.59058722078953e-03] 1.950213660710399e-06 [-0.434942319488086, -3.41534740178241, -2.311193209048514, -2.890033879202475, 1.399013399346452, 2.239263404444452, -2.987009649539954, -1.72805278607955] 4.514971562808359 27.699999999999999 0 1526.680709434533128 0 509.902862548828011 509.566139339470965 17.899999999999999 unique 0 660.803737456979661 5 15.699999999999999 +PSM VEEHEEGQSAMLTR 10 ES-0001a_PROKKA_02364 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 11-UNIMOD:35 1329.671519123339976 3 544.582618138014027 544.5825128372378 ms_run[1]:spectrum=98 R R 93 106 internal 13.3963864847114 1 HCD 1.70612234375e05 10 10721652433759411040 1 9.462557733059001 0 1329.671519123335656 1320.139770507809999 spectrum=98 2.259707e06 VEEHEEGQSAM(Oxidation)LTR 6.699999999999998e-09 0.404499577129379 46.700000000000003 6 22.0 0.193360553716651 3.0e-04 [-1.8735892936661e-04, 9.327076207910068e-05, -5.741670184988834e-05, 8.755086810197099e-06, 4.463625350581424e-05, 2.675724873597574e-04, 3.322204308915389e-04, -5.757702352866545e-04, 5.70967492649288e-04, -7.074879931678879e-06, 8.233011674292356e-04, -2.647291364610283e-04] 1.404559060821319e-07 [-1.069895212651791, 0.407085633031838, -0.207906007346585, 0.022492154514299, 0.090134227829392, 0.498936088598424, 0.547024096984901, -0.922320883853746, 0.822298817524994, -9.391787019510117e-03, 1.016011724114125, -0.282111425685783] 0.407260159108255 46.700000000000003 0 1630.726025013728986 0 544.584749791274021 544.5825128372378 26.699999999999999 unique 0 4.10764940755482 6 23.100000000000001 +PSM LNADSTVASK 11 ES-0001a_PROKKA_02449 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1319.454846770930089 2 503.264622993984972 503.264199115170982 ms_run[2]:spectrum=22 R E 192 201 internal 10.640166869860778 1 HCD 1.0550435546875e04 11 16957076264515771445 1 119.999997317790985 1 1319.454846770930317 1305.121459960940001 spectrum=22 3.056265625e04 LNADSTVASK 4.4e-03 0.207928511720928 23.399999999999999 2 14.199999999999999 0.842259025647645 9.0e-04 [1.059376448012017e-03, 0.180525453218195, -2.813449617008246e-03, -8.817120072990292e-04, 1.758165341698259e-03] 6.536919197597266e-03 [4.643653286345571, 770.99908666791805, -9.404140152746431, -1.246487966507312, 2.258708378822411] 1.192053710706629e05 23.399999999999999 0 1004.514693054427994 0 503.266082763671989 503.264199115170982 19.600000000000001 unique 0 3.742862107653926 4 16.199999999999999 +PSM EALQGEHEAHAEAVAR 12 ES-0001a_PROKKA_02337,ES-0002a_PROKKA_00085 0 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1373.084785036940048 3 573.280406444382038 573.279932991037754 ms_run[1]:spectrum=351 R,R E,E 308,308 323,323 internal 12.764106366350712 1 HCD 1.19584203125e05 12 2891595416484307757 1 10.549360886216 0 1373.084785036938911 1383.747680664059999 spectrum=351 1.563189125e06 EALQGEHEAHAEAVAR 1.0e-09 0.486938040334701 50.0 4 22.899999999999999 0.82586763819567 1.4e-03 [0.024213820120266, -0.02372843235031, -6.832584915628104e-06, 4.665883272991778e-05, -1.788409604728258e-04, 7.20772130819114e-04, -1.63582201639656e-03, -2.148675220041696e-04, -9.422265042076106e-04, -2.361712563470064e-03, -1.456342518054043e-03, 4.935677752655465e-04, 8.157555630532443e-04, -2.49472360587788e-03] 8.962369600730087e-05 [239.628972763002423, -137.066758400506785, -0.033978255334324, 0.189549797755361, -0.569247105765969, 2.087836088505999, -3.929793269434683, -0.394032406216292, -1.528741459061801, -3.69707852382705, -1.933026413960189, 0.644889396804341, 0.989469463702202, -2.616440621090369] 5819.697591587780153 50.0 0 1716.819389932833019 0 573.28263147699397 573.279932991037754 26.600000000000001 non-unique 0 4.707099971452222 11 22.899999999999999 +PSM TVAVHSTADADAMHVR 13 ES-0001a_PROKKA_03139 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 13-UNIMOD:35 1368.146557833340012 3 566.274236539411959 566.273901911670919 ms_run[1]:spectrum=314 K L 35 50 internal 12.161534730827714 1 HCD 5.060534765625e04 13 12633067014209621448 1 87.147802114487007 0 1368.146557833337738 1374.17578125 spectrum=314 3.2510103125e05 TVAVHSTADADAM(Oxidation)HVR 3.0e-13 0.378091003319412 64.099999999999994 8 20.100000000000001 0.590929124422709 1.0e-03 [6.13798176743785e-03, -8.246355008623141e-06, 5.090558659048838e-06, 7.65787035561516e-06, 6.009246744156371e-04, -7.270741144793647e-04, 4.331466489020386e-04, 1.081011106577989e-03, -3.993901616468065e-04, -2.253879583804519e-04, 2.212929434790567e-04, 4.848552686098628e-04, -6.883186129016394e-04, 1.418259715137538e-03, -2.439052696217914e-03, 1.121310371217987e-03, 1.255065004215794e-03, -3.419468700940342e-04] 2.841119314005451e-06 [60.732816872874651, -0.047090020077396, 0.025310627301177, 0.028137333676147, 2.191657042960237, -1.95856011632312, 1.053253659848191, 2.126769684289337, -0.715391846722971, -0.358145920116248, 0.297298596946419, 0.594635106034592, -0.780024911358664, 1.524338760312571, -2.435528704799094, 1.049429060622324, 1.138386542856977, -0.287464664296793] 205.078830796900547 64.099999999999994 0 1695.800880217922895 0 566.276438949810995 566.273901911670919 27.399999999999999 unique 0 4.480231441907338 12 19.5 +PSM STHIEQVAAR 14 ES-0001a_PROKKA_01511 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1373.139313009530042 2 556.296156333203953 556.296364710870989 ms_run[1]:spectrum=352 K L 78 87 internal 8.723310607010971 2 HCD 9162.568359375 14 408515835869111042 1 119.999997317790985 0 1373.139313009529133 1383.897216796880002 spectrum=352 6.391895703125e04 STHIEQVAAR 1.2e-05 0.418249578776658 33.700000000000003 2 15.199999999999999 -0.374580314117956 -4.0e-04 [-1.546892605119865e-05, -0.027027040081265, 4.231592625387748e-04, 1.572153014876676e-03, 1.527980690070763e-03, 2.070176494385123e-03, 7.085745536414834e-04, 5.105982984332513e-04] 9.847700994703638e-05 [-0.088333819919829, -109.796359694290672, 1.297453889000566, 3.776838968088607, 3.478771541717665, 3.803233086198458, 1.052292445197413, 0.649247065956453] 1564.491896412949018 33.700000000000003 0 1110.577759732865843 0 556.298326330168948 556.296364710870989 20.0 unique 0 3.526212685171654 7 17.199999999999999 +PSM QPDHAHIEYCR 15 ES-0001a_PROKKA_00457 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 10-UNIMOD:4 1372.733814391760006 3 475.882680736401994 475.882455979171084 ms_run[1]:spectrum=345 R G 272 282 internal 14.166971727359718 1 HCD 1.261669140625e04 15 16272699868664386909 1 119.999997317790985 0 1372.733814391756823 1382.813232421880002 spectrum=345 9.0166234375e04 QPDHAHIEYC(Carbamidomethyl)R 1.1e-03 0.304902392745 25.899999999999999 1 11.199999999999999 0.472295685806995 7.0e-04 [-6.941838503848885e-05, 5.690767266059993e-04, -5.80287691036574e-05, 8.569670072802182e-04, -2.206144192996362e-03] 1.442192672196008e-06 [-0.396407035809706, 1.142235961743673, -0.09251216888974, 1.157532325885984, -2.514415271977154] 2.258391050170392 25.899999999999999 0 1424.626212808893115 0 475.884581139781005 475.882455979171084 19.800000000000001 unique 0 4.465725901890174 5 17.5 +PSM CRGFSGTMPATPATAAQR 16 ES-0001a_PROKKA_01939 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.040816326530612 0-UNIMOD:385,1-UNIMOD:4,8-UNIMOD:35 1342.48392363996004 4 470.470438833402 470.470091586621095 ms_run[1]:spectrum=233 R R 214 231 internal 13.72878030239437 1 HCD 1.19163837890625e04 16 15661595637935237873 1 119.999997317790985 0 1342.483923639960494 1352.536499023440001 spectrum=233 7.947425e04 .(Ammonia-loss)C(Carbamidomethyl)RGFSGTM(Oxidation)PATPATAAQR 0.011 0.043046230701053 21.800000000000001 3 15.4 0.738084709558554 1.4e-03 [-1.517954907228614e-04, 0.090749401037442] 4.131513765126036e-03 [-0.866813604110302, 120.464464080241783] 7360.639472258676506 21.800000000000001 0 1877.852649466524099 1 470.472320556641023 470.470091586621095 19.300000000000001 unique 0 4.737750730149585 4 16.800000000000001 +PSM AMDAMEAVNSEIR 17 ES-0001a_PROKKA_00233 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.040816326530612 5-UNIMOD:35 1335.681219909009997 3 485.218312894986013 484.886767318204363 ms_run[1]:spectrum=177 R G 376 388 internal 14.248695934639889 1 HCD 9213.4462890625 17 2397821182616381677 1 119.999997317790985 0 1335.68121990901318 1341.498657226559999 spectrum=177 5.3423546875e04 AMDAM(Oxidation)EAVNSEIR 9.700000000000001e-03 0.124586043831349 22.0 4 16.399999999999999 683.758764165397793 0.995 [9.451933402004897e-03, -1.910360917094067e-03, 0.061117379700477] 1.128486026794981e-03 [92.624172995186925, -9.792800247843379, 183.471155554949235] 9348.894543503520254 22.0 0 1452.633109284645116 0 485.220245361328011 484.886767318204363 19.300000000000001 unique 0 687.744161318398938 1 11.199999999999999 +PSM HGAIADTVQR 18 ES-0001a_PROKKA_02310,ES-0002a_PROKKA_00060 0 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 null 1370.840944700019918 2 534.280617174866961 534.283257147070913 ms_run[1]:spectrum=330 K,K A,A 293,293 302,302 internal 9.183672525030508 2 HCD 7129.2314453125 18 17490602855430133683 1 119.999997317790985 0 1370.840944700018099 1378.563598632809999 spectrum=330 2.55185625e04 HGAIADTVQR 6.5e-03 0.263769288251654 22.699999999999999 2 14.4 -4.941147169851708 -5.3e-03 [-2.230275205477028e-04, 4.416607757775637e-04, -0.26868575194203, -2.671212588552407e-03, 6.71489889100485e-04, 4.467479794584506e-03] 0.012085442538411 [-1.273577284681639, 2.263909424665428, -1009.62324937342521, -3.874929741749567, 0.768753450931737, 4.801158765510657] 1.700794352144329e05 22.699999999999999 0 1066.546681416191859 0 534.28271484375 534.283257147070913 17.199999999999999 non-unique 0 -1.015010883568401 4 15.1 +PSM EIESAGGVAK 19 ES-0001a_PROKKA_00640 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1336.296029554639972 2 480.753267543587981 480.753467067321026 ms_run[1]:spectrum=188 R E 63 72 internal 11.469419233551031 1 HCD 8482.3193359375 19 16456444246742030262 1 119.999997317790985 0 1336.296029554648158 1343.724853515630002 spectrum=188 5.3927765625e04 EIESAGGVAK 2.8e-05 0.29502108296776 32.200000000000003 0 0.0 -0.415022972713853 -4.0e-04 [-2.92834609183501e-05, 1.445943014743989e-04, 1.163353835522685e-04, -7.654634358118528e-04, 3.005065616434877e-05, 1.163224329729928e-03, 6.78180471709311e-04] 3.632574989041638e-07 [-0.199054466642751, 0.662820788973561, 0.366736002676914, -1.774941326884451, 0.059826305673037, 1.973806747652517, 0.944050615160831] 1.327334417638095 32.200000000000003 0 959.491982153634012 0 480.755184699911013 480.753467067321026 17.699999999999999 unique 0 3.572792933693564 7 17.399999999999999 +PSM DHGHMLAVGMSAR 20 ES-0001a_PROKKA_00113 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 5-UNIMOD:35,10-UNIMOD:35 1370.255468685810001 3 471.881830319709025 471.883579598371 ms_run[1]:spectrum=324 R G 93 105 internal 14.8885812137659 1 HCD 1.39820693359375e04 20 8750610341055170222 1 119.999997317790985 0 1370.255468685805909 1377.476318359380002 spectrum=324 4.561177734375e04 DHGHM(Oxidation)LAVGM(Oxidation)SAR 2.9e-03 0.177299688533632 24.199999999999999 3 13.300000000000001 -3.707013207504146 -5.2e-03 [-1.942613564551721e-04, 1.883435709657988e-03, -9.65867718946356e-04, -3.179918767273193e-04, -2.874245242992402e-03, 1.035997622807372e-03, 8.433475427409576e-04] 2.435873334598032e-06 [-1.109310861122328, 5.652770104801247, -2.159939484658186, -0.591893642935273, -4.837095503888335, 1.628124858142548, 1.083534551821508] 10.901078209276209 24.199999999999999 0 1412.623661558814092 0 471.883716920815004 471.883579598371 21.5 unique 0 0.29100915976207 4 15.0 +PSM TGADAIAHGATGK 21 ES-0001a_PROKKA_00615 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1334.84531546881999 2 585.298639745429 585.299104742770965 ms_run[1]:spectrum=153 K G 113 125 internal 11.020001402634543 2 HCD 7984.3330078125 21 1538614739236598383 1 119.999997317790985 0 1334.845315468827948 1335.079345703130002 spectrum=153 4.064709765625e04 TGADAIAHGATGK 5.0e-05 0.249270475605543 31.199999999999999 3 15.699999999999999 -0.794461051104715 -9.0e-04 [-9.487825548148976e-05, 2.724076459230673e-04, 1.35264089010434e-03, 1.764937801112865e-03, -5.903903638682095e-04, 2.048374449714174e-03, 3.544198820122801e-03, 4.645649106919336e-03] 3.253669701584548e-06 [-0.596431926298459, 1.183796716571461, 3.122147646414017, 3.094756335553135, -0.920562474142248, 2.715162341743621, 4.293616360215442, 4.939632965577665] 4.627004516134647 31.199999999999999 0 1168.582726557315937 0 585.300903320312955 585.299104742770965 16.800000000000001 unique 0 3.072920370825858 6 15.1 +PSM AIAATQEAAAK 22 ES-0001a_PROKKA_02568 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1334.968049348759905 2 522.788406838892001 522.787841194921043 ms_run[1]:spectrum=158 R L 191 201 internal 13.125201167049472 2 HCD 1.0964890625e04 22 7593904497987550495 1 119.999997317790985 0 1334.968049348767181 1336.395263671880002 spectrum=158 5.212320703125e04 AIAATQEAAAK 4.0e-04 0.252543641828147 27.600000000000001 2 16.5 1.081976140962626 1.1e-03 [-2.999329625197333e-04, 3.996861205166624e-04, -5.613867074885093e-04, 1.475999195690747e-03, -5.881191832486366e-04, 1.913523712119059e-03] 1.167694772630692e-06 [-2.038795757421335, 2.15896643531082, -2.191499464118048, 2.3909584593107, -0.818682194334464, 2.423991889631865] 5.053117683797763 27.600000000000001 0 1043.562260744241939 0 522.790466308593977 522.787841194921043 17.399999999999999 unique 0 5.021374764443889 5 17.199999999999999 +PSM EESIEEMHHADK 23 ES-0001a_PROKKA_01670 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1321.796503511390029 3 485.545168223758026 485.545398677737694 ms_run[1]:spectrum=40 R L 46 57 internal 11.238176732321396 1 HCD 1.12844462890625e04 23 9584885256633395211 1 119.999997317790985 0 1321.796503511388437 1309.482543945309999 spectrum=40 9.73995859375e04 EESIEEMHHADK 1.2e-05 0.090298991698725 33.700000000000003 3 17.100000000000001 -0.474629108412599 -7.0e-04 [0.036618493513885, -2.776807893383193e-04, 3.546826907268041e-04, 2.689708239586253e-03, 3.122680213891726e-04, 4.076116304759125e-03] 2.091418477461967e-04 [281.572702222459157, -0.83343359032903, 0.754265645533046, 4.42900011173503, 0.360013863968686, 4.090759747306581] 1.305363075982887e04 33.700000000000003 0 1453.613675270961267 0 485.547101809036974 485.545398677737694 17.899999999999999 unique 0 3.507666438438008 8 15.6 +PSM AAVAQQSEIGK 24 ES-0001a_PROKKA_00038 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1373.886915821909952 2 551.298745218466024 551.298573242770999 ms_run[1]:spectrum=358 R R 37 47 internal 9.369755402785149 1 HCD 7297.9287109375 24 1956474085255764048 1 119.999997317790985 0 1373.88691582190495 1386.057495117190001 spectrum=358 6.328161328125e04 AAVAQQSEIGK 1.5e-04 0.369503601180581 29.199999999999999 3 16.800000000000001 0.311946562846278 4.0e-04 [-3.578231551273348e-04, -2.056555509852842e-04, -7.427419851069317e-05, 5.232962478203262e-04, -2.730911435264716e-04, 1.482706271531242e-03, -3.185115292126284e-03, 1.925948146435985e-03] 2.367651032441104e-06 [-2.50083444162183, -1.007452359584689, -0.306728157478102, 1.670874564695223, -0.512084662048508, 2.241933666239682, -4.034804265428493, 2.238310596022525] 5.160323980290133 29.199999999999999 0 1100.582937503389985 0 551.300898895309956 551.298573242770999 22.699999999999999 unique 0 4.21849910707618 5 16.399999999999999 +PSM AMVTGTGTVTK 25 ES-0001a_PROKKA_01941 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 2-UNIMOD:35 1343.966264244480044 2 541.281166393639978 541.281534607770936 ms_run[1]:spectrum=238 K Y 255 265 internal 55.57512082257584 1 HCD 7395.04296875 25 13841324114643036477 1 119.999997317790985 0 1343.966264244477316 1353.84130859375 spectrum=238 3.596691015625e04 AM(Oxidation)VTGTGTVTK 4.7e-03 0.35576544095466 23.300000000000001 1 16.399999999999999 -0.680263610368754 -7.0e-04 [2.29624511973725e-04, 2.412730883179393e-03, -1.262471454651859e-03, -6.899724094296289e-03] 1.581895521716944e-05 [1.048131876059345, 3.637097127369551, -1.651552728285317, -7.990570594146835] 24.920400151813539 23.300000000000001 0 1080.547779853737893 0 541.283287182651975 541.281534607770936 17.5 unique 0 3.237824993066678 4 16.699999999999999 +PSM LHVVAQEGSK 26 ES-0001a_PROKKA_01833 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 null 1342.812269446430037 2 534.294928545314974 534.295833210871024 ms_run[1]:spectrum=235 R S 11 20 internal 11.526443730094821 3 HCD 5702.083984375 26 14800863841171904138 1 119.999997317790985 0 1342.812269446430491 1352.83447265625 spectrum=235 4.05230390625e04 LHVVAQEGSK 8.200000000000001e-03 0.362290478331002 22.399999999999999 2 17.100000000000001 -1.693192235120009 -1.8e-03 [-0.021011669623363, -1.995608064930821e-04, 1.020446588313462e-04, 2.646504496738089e-03, -1.066938814233254e-03] 9.335040757835401e-05 [-89.737916732441576, -0.794587320047522, 0.291374128083683, 3.684025568996926, -1.30521747096298] 1631.23202126641786 22.399999999999999 0 1066.575304157087885 0 534.297026261578026 534.295833210871024 14.4 unique 0 2.232940316663611 3 16.5 +PSM LEGGAREDGLK 27 ES-0001a_PROKKA_01597 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 null 1317.000803990639952 2 572.801569468058006 572.801480258720972 ms_run[1]:spectrum=12 K L 179 189 internal 11.166805182652702 1 HCD 5266.595703125 27 16934477088655128147 1 119.999997317790985 0 1317.000803990632448 1303.42919921875 spectrum=12 4.063264453125e04 LEGGAREDGLK 4.4e-03 0.320505794612185 23.399999999999999 3 15.1 0.155742155194225 2.0e-04 [9.765741481260193e-05, 8.921240026324995e-04, 4.068366757792319e-04, -1.176313828523234e-03, 1.720399642408665e-03, -6.590262481154241e-03] 9.028584237707806e-06 [0.663826747577198, 3.669269789435876, 1.282513124225907, -1.420009244449226, 1.906325418205192, -6.600227798107067] 12.944234470505114 23.399999999999999 0 1143.588586002573948 1 572.803792958153963 572.801480258720972 19.800000000000001 unique 0 4.037523492339444 3 16.600000000000001 +PSM EREESIEEMHHADK 28 ES-0001a_PROKKA_01670 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1334.481564268410011 3 580.59319696906698 580.593300546437718 ms_run[1]:spectrum=140 K L 44 57 internal 20.712996930619507 1 HCD 2.1052552734375e04 28 1158234167857570400 1 103.755883872509003 0 1334.481564268415923 1331.964111328130002 spectrum=140 1.965055625e05 EREESIEEMHHADK 2.4e-11 0.393119048845914 56.5 8 18.699999999999999 -0.178399183455442 -3.0e-04 [1.186454856281216e-04, 1.704975817347076e-03, 1.944127880051383e-04, 2.761661209547128e-04, -1.022711748191796e-03, -1.426061072493212e-03, 3.295245562640048e-05, -1.997832754341289e-03, 7.051732563922997e-05, -2.844057142965539e-03, 1.39782089468099e-03, 1.154842229993847e-03, 2.781295472118472e-03, 2.030221314726077e-03] 2.531499807273199e-06 [0.806493260039378, 6.504072058423761, 0.583512270687136, 0.587292875977164, -1.879169014465948, -2.348219244175339, 0.05220040490422, -2.705861549363948, 0.094736496477426, -3.278914045798819, 1.600445527555194, 1.158990999209913, 2.774532680565179, 1.791143212911096] 6.401949199656577 56.5 0 1738.757761506887846 1 580.595445493313946 580.593300546437718 26.399999999999999 unique 0 3.694405144202831 8 18.199999999999999 +PSM LHQCGLPK 29 ES-0001a_PROKKA_00010 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 4-UNIMOD:4 1367.627629215819979 2 476.755562774070995 476.755288932321037 ms_run[2]:spectrum=231 K K 365 372 internal 10.760517135077333 2 HCD 1.60192158203125e04 29 16947715694437791700 1 119.999997317790985 1 1367.627629215822026 1361.740112304690001 spectrum=231 6.8701484375e04 LHQC(Carbamidomethyl)GLPK 4.0e-03 0.153569730689135 23.600000000000001 3 16.300000000000001 0.574386391332653 5.999999999999999e-04 [5.163092386908374e-04, -1.282184766466798e-04, 6.862305233426014e-04, -7.200610227755533e-04, -3.820078055923659e-03] 3.365758293364997e-06 [2.114586591862322, -0.51052497496693, 1.150889605992094, -1.025201733819925, -5.385359745850602] 8.359275001771376 23.600000000000001 0 951.496572614600041 0 476.756941761307019 476.755288932321037 14.1 unique 0 3.466828841445114 3 16.0 +PSM MIDHVYR 30 ES-0001a_PROKKA_00010 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 1-UNIMOD:35 1340.986298937499896 2 475.232024079877021 475.231646852571032 ms_run[2]:spectrum=122 K H 604 610 internal 23.947428242391013 1 HCD 4041.740478515625 30 1854108673051224350 1 119.999997317790985 1 1340.986298937499896 1331.251953125 spectrum=122 1.9846349609375e04 M(Oxidation)IDHVYR 0.035 0.430057957092135 19.800000000000001 0 0.0 0.793775642863409 8.0e-04 [2.243488424085172e-04, 1.951349362798283e-03, -1.995452243590989e-03] 3.914548429838008e-06 [1.281122566553373, 3.397730654687104, -2.894743119717071] 10.252185038348063 19.800000000000001 0 948.449495226212093 0 475.2333984375 475.231646852571032 17.699999999999999 unique 0 3.685749761339805 3 16.699999999999999 +PSM HAGEVMMAPR 31 ES-0001a_PROKKA_00009 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 6-UNIMOD:35,7-UNIMOD:35 1369.167341146950093 2 557.75913792223605 565.757703393020961 ms_run[2]:spectrum=240 R E 648 657 internal 5.308392397062852e05 1 HCD 1.371776953125e04 31 8028454635397639934 1 119.999997317790985 1 1369.167341146946228 1364.584106445309999 spectrum=240 6.26011953125e04 HAGEVM(Oxidation)M(Oxidation)APR 0.024 0.109483637643421 20.5 1 16.600000000000001 -1.413779330412132e04 -2.2e-03 [4.460714008587274e-04, 7.322261145361608e-04, 0.147417696802449] 7.186227978106721e-03 [2.547247990224068, 3.501743418481173, 187.005539958664997] 1.128323598034972e04 20.5 0 1113.503722910930037 0 557.760765114683977 565.757703393020961 18.5 unique 0 -1.413491717457299e04 3 15.5 +PSM IASVSANAGADPHR 32 ES-0001a_PROKKA_00977 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1366.160929978110062 3 455.900794488948975 455.900504111704379 ms_run[2]:spectrum=285 R L 69 82 internal 11.236026778915786 1 HCD 1.7297701171875e04 32 13936574731846433390 1 119.999997317790985 1 1366.160929978110062 1379.48291015625 spectrum=285 1.27761140625e05 IASVSANAGADPHR 1.1e-08 0.530029915533974 45.899999999999999 2 17.800000000000001 0.636931176818751 9.0e-04 [3.968495553579032e-04, 2.929165391094557e-04, 8.357710700579446e-04, 8.949490495524515e-04, 2.895221466246767e-03, -2.082939377714865e-03, 3.800027827765007e-04, -1.28322077955545e-03, 5.430671668705145e-03, 1.536897802907333e-04, -8.407676659771823e-06] 4.008907926058711e-06 [2.266171358129462, 1.582234017701798, 3.07087589408551, 2.186906319676352, 5.52251719857937, -3.499005485562384, 0.582543881126777, -1.773989058994903, 6.485187903649337, 0.169181137337277, -8.445976312299246e-03] 8.516264527613952 45.899999999999999 0 1364.680554066534114 0 455.902110228402023 455.900504111704379 21.899999999999999 unique 0 3.522954423517553 11 18.899999999999999 +PSM SGTQVATGDTGRYDAK 33 ES-0001a_PROKKA_00371 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1341.151465721600061 3 542.929631928008007 542.928788937870991 ms_run[2]:spectrum=65 K N 135 150 internal 9.006311955387515 2 HCD 8389.22265625 33 10181358076211083327 1 119.999997317790985 1 1341.151465721603472 1317.4931640625 spectrum=65 3.947778515625e04 SGTQVATGDTGRYDAK 0.014 0.269885708775312 21.399999999999999 0 0.0 1.552671647170385 2.5e-03 [4.106567974702102e-04, -1.844624569855569e-04, 0.047267640613313, 4.191824294707658e-03, 7.791096576283962e-04] 4.255251305135468e-04 [2.791441558823041, -0.845576554735915, 87.168351618261937, 5.172470701828379, 0.793020138487678] 1456.54546234882946 21.399999999999999 0 1625.767066383710926 1 542.931213378906023 542.928788937870991 17.800000000000001 unique 0 4.465486237661029 5 15.800000000000001 +PSM HWAESAPR 34 ES-0001a_PROKKA_02208 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1367.077198653799996 2 477.234384680204016 477.233035423770957 ms_run[2]:spectrum=279 K D 18 25 internal 14.674233177593932 1 HCD 1.17125712890625e04 34 15811276187092556632 1 119.999997317790985 1 1367.077198653794994 1377.581909179690001 spectrum=279 3.501478125e04 HWAESAPR 9.4e-03 0.222738076687575 22.100000000000001 1 13.4 2.827248603737057 2.7e-03 [6.641873013109034e-04, 8.025050004221157e-04, -9.207637117469858e-04, 4.263031501068326e-04, 8.818305188924569e-04] 5.512037318994108e-07 [3.792777939001657, 2.475755472305329, -1.646327464264976, 0.676327524726675, 1.080145328490341] 4.177886994202052 22.100000000000001 0 952.454216426866083 0 477.235765122742976 477.233035423770957 16.100000000000001 unique 0 5.719844959170867 4 16.300000000000001 +PSM DPGLTEQGHAEAK 35 ES-0001a_PROKKA_02449 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1339.588599639180075 3 451.553326422398015 451.552881746470973 ms_run[2]:spectrum=137 R A 26 38 internal 9.401733921594454 2 HCD 6665.875 35 908238849079171658 1 119.999997317790985 1 1339.588599639186214 1334.591796875 spectrum=137 8.2797203125e04 DPGLTEQGHAEAK 7.0e-07 0.302959220782806 38.600000000000001 2 18.300000000000001 0.984770433359551 1.3e-03 [1.944075404765044e-04, 3.551449014764785e-04, 3.29999569089523e-04, 3.372701323200999e-04, 8.178875546036579e-04, -2.056902425351836e-03, -4.81997960832814e-05, 2.215255947589867e-03, 1.429044737506047e-03, 1.10324149011376e-03] 1.251975620498461e-06 [1.321486192795953, 1.666666322803307, 1.512719190967426, 1.248647103180535, 1.955594489035446, -3.70420471227624, -0.078717962773998, 2.992098802350975, 1.643692623856852, 1.136824589613432] 3.274560384049534 38.600000000000001 0 1351.638149866881122 0 451.55462901069194 451.552881746470973 19.300000000000001 unique 0 3.869456472537465 9 17.100000000000001 +PSM TEAAAPVHVQK 36 ES-0001a_PROKKA_03028 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1339.203378378560046 2 575.814709160950997 575.814390290621077 ms_run[2]:spectrum=155 K L 17 27 internal 10.747240306669006 2 HCD 1.00205283203125e04 36 1514245238518921079 1 119.999997317790985 1 1339.203378378562547 1338.115600585940001 spectrum=155 3.0826111328125e04 TEAAAPVHVQK 3.5e-03 0.324910456376053 23.800000000000001 2 15.6 0.55377277000534 5.999999999999999e-04 [6.636513365947394e-04, -0.286774076856432, 3.179500402552549e-04, 1.580635965183319e-03, 3.035350390177882e-03, 3.195106649172885e-03] 0.013876578330054 [2.871736791859174, -1042.165335487494531, 1.05234545407398, 2.234367440854582, 3.899188241635945, 3.47093780496154] 1.81960250736946e05 23.800000000000001 0 1149.614865388359931 0 575.816392228501968 575.814390290621077 15.800000000000001 unique 0 3.476706929607451 4 16.100000000000001 +PSM AAEIDYTHK 37 ES-0001a_PROKKA_00014 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1369.606365386800007 2 524.25955351848495 524.258916583271002 ms_run[2]:spectrum=247 R K 493 501 internal 13.159276685824052 2 HCD 8264.25 37 7432567594246648638 1 119.999997317790985 1 1369.606365386797961 1366.143188476559999 spectrum=247 2.5236453125e04 AAEIDYTHK 7.9e-03 0.231989099699003 22.399999999999999 3 15.800000000000001 1.214924904088085 1.3e-03 [2.897852646697174e-04, 9.279940011310828e-04, 6.592857667442331e-04, 0.011726300745295, 4.933007453473692e-04] 2.484651986731467e-05 [2.025316026020267, 3.410186765928986, 2.320025980724721, 17.678770361273113, 0.743695995704724] 49.287079688512627 22.399999999999999 0 1046.504554103427836 0 524.261077574121032 524.258916583271002 15.5 unique 0 4.121991599328913 3 13.4 +PSM AREALQGEHEAHAEAVAR 38 ES-0001a_PROKKA_02337,ES-0002a_PROKKA_00085 0 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1366.936132652859897 4 486.996673309763025 486.996325245546075 ms_run[2]:spectrum=280 R,R E,E 306,306 323,323 internal 22.557614567216504 2 HCD 1.24830234375e04 38 12248387919634632679 1 119.999997317790985 1 1366.936132652851484 1377.879028320309999 spectrum=280 3.92809375e04 AREALQGEHEAHAEAVAR 1.1e-03 0.296291444851596 25.800000000000001 3 14.300000000000001 0.714716310795908 1.4e-03 [4.315775750853845e-04, 0.140734079282396, 9.367664695787425e-04, 6.145028384366924e-03, 5.28528384393212e-04, 5.5602325039672e-04, 1.731269505398814e-03, -2.754786930836417e-04, 4.491653018476427e-03] 2.148708043191512e-03 [2.464482387002851, 674.548660255855907, 2.250427326618279, 14.350180309401242, 1.234229960234133, 1.027182197572619, 3.174869252729347, -0.446958026891092, 5.961841956424117] 5.001556307045452e04 25.800000000000001 0 1943.957587371968202 1 486.998083453989978 486.996325245546075 18.699999999999999 non-unique 0 3.610311521377976 7 15.5 +PSM EVPEAIRK 39 ES-0001a_PROKKA_00034 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1362.755588959440047 2 471.274690588460999 471.274369115170998 ms_run[2]:spectrum=301 R A 64 71 internal 12.049799108372635 1 HCD 1.24751162109375e04 39 8307032032160154054 1 119.999997317790985 1 1362.755588959432316 1386.480712890630002 spectrum=301 7.84778125e04 EVPEAIRK 2.5e-03 0.311942510974264 24.399999999999999 1 15.199999999999999 0.682136163280244 5.999999999999999e-04 [-1.17289190768588e-05, 1.425899902130823e-03, -2.549393916524423e-04, 7.934819735737619e-04] 5.915544225108036e-07 [-0.051191545354084, 2.92591261603431, -0.413609052030576, 1.11220648061148] 2.259836546709944 24.399999999999999 0 940.534828243380048 1 471.276052927517924 471.274369115170998 19.800000000000001 unique 0 3.57289183811758 4 18.600000000000001 +PSM HHIDVQEDDYSK 40 ES-0001a_PROKKA_02243 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 2466.867733796049834 3 495.892246602619025 495.891674778370998 ms_run[3]:spectrum=276 R G 17 28 internal 12.598074094769345 1 HCD 2.0101361328125e04 40 11636883978787665968 1 119.999997317790985 2 2466.867733796053926 1387.679809570309999 spectrum=276 3.9486503125e05 HHIDVQEDDYSK 2.6e-06 0.157842864906593 36.299999999999997 5 18.5 1.153123307187215 1.7e-03 [6.626830081586377e-04, 7.840940205028346e-04, 9.331092488764625e-04, -8.346429676748812e-04, 2.188413019439395e-04, -9.993572211897117e-05, -9.846150586554359e-04, -2.92690108244642e-03] 1.654862419275218e-06 [4.504590939917608, 2.849954503968444, 2.970411596028147, -2.101273449706227, 0.434868042745428, -0.165922250597181, -1.569702895336885, -3.870002780367201] 8.306394511947161 36.299999999999997 0 1484.654910407544094 0 495.893768310546989 495.891674778370998 25.0 unique 0 4.221753020811237 7 17.800000000000001 +PSM MRSEHDPIEQVK 41 ES-0001a_PROKKA_00113 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.04 1-UNIMOD:35 2418.637183753699901 3 495.576270243079023 495.576921450737643 ms_run[3]:spectrum=267 K N 286 297 internal 15.123018283987754 1 HCD 8372.26171875 41 4541108828465316439 1 119.999997317790985 2 2418.637183753698992 1385.949462890630002 spectrum=267 7.72049296875e04 M(Oxidation)RSEHDPIEQVK 5.199999999999998e-04 0.245390434927236 27.100000000000001 4 14.699999999999999 -1.314039517244168 -1.9e-03 [8.097928287043032e-04, -2.39660070218406e-03, 1.653132350156739e-04, 3.443655380124255e-04, -1.153534386730826e-04, -2.139906877118847e-03] 1.857416019108835e-06 [5.504570653663756, -4.761940297948632, 0.31777659429358, 0.558702594282218, -0.16169096009517, -2.770808043932438] 12.161105314509561 27.100000000000001 0 1483.70698132892403 1 495.577789306641023 495.576921450737643 24.600000000000001 unique 0 1.751203225604495 6 16.899999999999999 +PSM HGPSMMVGGTEQAYER 42 ES-0001a_PROKKA_00887 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.04 5-UNIMOD:35,6-UNIMOD:35 1452.10036340851002 3 594.591288598626989 594.59090247770439 ms_run[3]:spectrum=170 R I 131 146 internal 14.782359573333674 3 HCD 6998.2802734375 42 15885310422564479494 1 119.999997317790985 2 1452.100363408510248 1351.2734375 spectrum=170 3.49504296875e04 HGPSM(Oxidation)M(Oxidation)VGGTEQAYER 1.3e-03 0.308824566650602 25.5 2 13.199999999999999 0.649389220369545 1.2e-03 [0.143118870816181, 1.40598295502059e-03, 5.520615376326532e-04, 4.947062022893078e-04, 7.241857503004212e-04, 4.071351133916323e-05, 3.372262643893009e-03, -6.195798917246975e-03] 2.565903795728405e-03 [428.931212216140409, 2.671915603714684, 1.025637231108273, 0.74244474120269, 1.075667308042043, 0.051188580550343, 3.536971236787767, -6.131699537649701] 2.296063329747375e04 25.5 0 1780.752036395567757 0 594.593740827922034 594.59090247770439 14.9 unique 0 4.773618644039585 6 15.6 +PSM DAEAEAYAR 43 ES-0001a_PROKKA_03080 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1347.541357714359947 2 498.225698487862019 498.225073955671007 ms_run[3]:spectrum=159 K E 46 54 internal 20.438186713965965 1 HCD 1.53017236328125e04 43 2682651823457244033 1 119.999997317790985 2 1347.541357714359492 1347.324951171880002 spectrum=159 9.154648437500001e04 DAEAEAYAR 4.2e-05 0.386267536460712 31.5 2 17.399999999999999 1.253514171924247 1.3e-03 [8.710621729903778e-04, 1.407148222199339e-03, 1.126552141954562e-03, 1.487515235396586e-03, 1.411390405337443e-03, 2.477899280393103e-04, -1.728305373148942e-03] 1.322973575169494e-06 [4.656310246505134, 4.451395819887964, 2.752929484709926, 3.097334867543201, 2.316416345192714, 0.364216869769365, -2.135347929944892] 5.731759179841272 31.5 0 994.436844042182088 0 498.227239790278986 498.225073955671007 19.100000000000001 unique 0 4.347100780743976 6 17.899999999999999 +PSM QQIEETTSDYDREK 44 ES-0001a_PROKKA_00962 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 0-UNIMOD:28 2516.329991712930223 3 575.926206516513958 575.591842991037765 ms_run[3]:spectrum=284 K L 351 364 internal 13.55221786939784 2 HCD 4.241182421875e04 44 7667142817179785782 1 119.999997317790985 2 2516.329991712930678 1389.454345703130002 spectrum=284 6.95983375e05 .(Gln->pyro-Glu)QQIEETTSDYDREK 2.5e-11 0.383483647764141 56.399999999999999 7 19.800000000000001 580.90386364526421 1.003 [8.642106935212723e-04, 1.000020680351099e-03, 6.53091673484596e-04, 7.325936460915727e-04, 0.024283889091237, 1.10917060965221e-04, 0.019273344071166, -5.641228343620242e-04, 0.020303791786205, -0.011287177497934, -2.495471112865744e-03, -3.440126184727887e-03, -3.192214939190308e-03, 0.021740811981431, -4.708929772732518e-03, -0.017714165908046, -9.679183645857847e-03] 1.474180018910204e-04 [5.874476351872784, 4.165054117870455, 1.849164932059151, 1.694812289145551, 50.358053040508082, 0.202668397915087, 31.530149277877797, -0.794151317490823, 28.503958264238346, -13.980212167666771, -3.023443838626866, -3.770390703105854, -3.149838783110131, 21.410628645349174, -4.225145857876599, -14.244908133295636, -7.482872657182333] 302.207274938131206 56.399999999999999 0 1724.756790149228891 1 575.928466796875 575.591842991037765 28.5 unique 0 584.830744105030703 12 20.800000000000001 +PSM AVAAGMNPMDLKR 45 ES-0001a_PROKKA_00962 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 6-UNIMOD:35,9-UNIMOD:35 1820.500105543080053 3 469.571323083921016 469.235730350104348 ms_run[3]:spectrum=207 K G 106 118 internal 10.120284163665303 1 HCD 5.398216015625e04 45 12700797421507150295 1 119.999997317790985 2 1820.500105543083464 1364.490356445309999 spectrum=207 3.5062359375e05 AVAAGM(Oxidation)NPM(Oxidation)DLKR 4.699999999999999e-05 0.231932483669655 31.300000000000001 2 15.5 715.190067828545125 1.007 [8.938249125378661e-04, 0.039759889785756, 6.686248113965121e-04, 2.651298189562112e-04, 8.474812041185942e-04, -2.043674430751707e-05, -1.019706834313183e-03, -4.042453425654458e-04] 1.962941003473962e-04 [5.223600378653026, 190.555422477745964, 2.761201878392123, 0.874398583662762, 2.035756221544278, -0.038463741024303, -1.315049808569087, -0.454486039479015] 4481.570079662537864 31.300000000000001 0 1405.692139851450065 1 469.572631835938012 469.235730350104348 26.800000000000001 unique 0 717.979181982361865 7 18.399999999999999 +PSM LNHDEISVEGRK 46 ES-0001a_PROKKA_00653 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 2436.456117832849941 3 466.244940287331985 466.244159498204283 ms_run[3]:spectrum=271 R E 93 104 internal 16.924723598114447 1 HCD 1.901232421875e04 46 5032776509579168616 1 119.999997317790985 2 2436.456117832846758 1386.588745117190001 spectrum=271 2.1894440625e05 LNHDEISVEGRK 1.0e-04 0.289769806926533 29.899999999999999 5 17.399999999999999 1.674635728505091 2.4e-03 [-0.022738075314919, 6.742710618254932e-04, -0.045938477506922, 1.096320312967691e-03, -3.318397605198697e-04, -7.945962299800158e-04, -1.74725459714864e-04, -2.768283928730853e-03, -2.681942167896523e-03] 2.552282249154803e-04 [-124.18376240042798, 1.87175135627158, -125.792265211249969, 2.240690098159382, -0.564021071224746, -1.304193091745228, -0.258707496482192, -3.83234755131253, -3.313580889941622] 3006.105524364722442 29.899999999999999 0 1395.712991461683032 1 466.246223181175026 466.244159498204283 24.100000000000001 unique 0 4.4261851407722 4 17.899999999999999 +PSM VDVSANMTHHDEER 47 ES-0001a_PROKKA_00834 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.04 null 2103.435653253170131 3 547.573822697978017 547.242490461371062 ms_run[3]:spectrum=235 R L 1514 1527 internal 11.076211295306717 5 HCD 3234.274658203125 47 16867376966425626307 1 119.999997317790985 2 2103.435653253166493 1374.64111328125 spectrum=235 2.66390234375e04 VDVSANMTHHDEER 1.7e-03 0.319826062108759 25.100000000000001 2 16.199999999999999 605.457804140196572 0.994 [-0.106731192609587, 1.091525267923998e-03, 1.20957762294438e-03, -1.282986151693422e-03, 1.096967287708139e-03, -2.637075017219104e-03, -5.218390883896973e-03] 1.604019164608429e-03 [-987.749168263221236, 6.233050448080061, 5.623258048101165, -2.961620236744976, 1.600734420933274, -3.206759302846168, -5.651299717793066] 1.394759672992636e05 25.100000000000001 0 1639.699638693620955 0 547.575805664062955 547.242490461371062 17.199999999999999 unique 0 609.081364297717187 5 14.6 +PSM NDDPTAASRPYDEDR 48 ES-0001a_PROKKA_02368 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.04 null 1854.549002493839907 3 574.584128720161971 574.583570239304436 ms_run[3]:spectrum=210 R D 220 234 internal 9.686313626991714 1 HCD 1.4138255859375e04 48 15549990804335418566 1 119.999997317790985 2 1854.549002493836952 1365.7119140625 spectrum=210 9.67412578125e04 NDDPTAASRPYDEDR 1.6e-03 0.297254689017388 25.199999999999999 3 17.699999999999999 0.97197498581862 1.7e-03 [9.072695108898188e-04, 6.804109509630507e-04, 9.260299777906766e-04, 9.220922727877223e-04, 1.428631536271041e-03, -6.945569168578913e-03, -4.143706718878093e-03] 1.08184308837792e-05 [5.180875603673995, 2.957316510829397, 3.191601146640034, 2.671925055518596, 3.408088642542584, -10.075923850538247, -5.216596053126183] 32.104077240199295 25.199999999999999 0 1720.730556760172931 0 574.586375485975054 574.583570239304436 20.899999999999999 unique 0 4.882225695124221 5 16.600000000000001 +PSM QQIEETTSDYDREK 49 ES-0001a_PROKKA_00962 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 2646.07782697022003 3 581.268813587833051 581.267359324371 ms_run[3]:spectrum=299 K L 351 364 internal 15.318896749317419 1 HCD 7.083205625e05 49 7704484650440628992 1 1.260202378035 2 2646.077826970222304 1394.109252929690001 spectrum=299 7.603294e06 QQIEETTSDYDREK 7.600000000000003e-08 0.403310583322612 42.5 3 25.100000000000001 2.501883924363955 4.4e-03 [1.012686208184732e-03, 7.472956346532556e-04, 0.17973485702413, 6.09991229168827e-04, -3.765736789773655e-04, -1.428522772130236e-03, -4.947026036461466e-03, -2.896905210491241e-03, -6.009503963923635e-03, -1.515939773526043e-03] 3.295536933872567e-03 [7.846275146639085, 2.906357929507246, 434.992711655548874, 1.411178812404145, -0.688077952581736, -2.011021664875262, -5.993680035947102, -3.175018556558861, -5.929728734877103, -1.360195833030483] 1.900665540462587e04 42.5 0 1740.784611363186059 1 581.271128049516051 581.267359324371 31.0 unique 0 6.483634569522703 8 25.399999999999999 +PSM MATAGTNAEMAAEKAAR 50 ES-0001a_PROKKA_02758 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 1-UNIMOD:35,10-UNIMOD:35 2335.854165585260034 3 575.938474459205963 575.93466918690433 ms_run[3]:spectrum=261 - Q 1 17 internal 13.729326321911684 3 HCD 4.4979684375e05 50 1879209601617812738 1 119.300231337547004 2 2335.854165585264127 1382.9794921875 spectrum=261 1.0509862e07 M(Oxidation)ATAGTNAEM(Oxidation)AAEKAAR 6.600000000000001e-13 0.045492214118156 62.700000000000003 13 21.600000000000001 6.607124914021493 0.011 [0.075075056073558, 0.033073428473585] 8.820683605233999e-04 [173.711740211607122, 76.519217136781336] 4723.193270825271611 62.700000000000003 0 1724.793593977304681 1 575.940734863281023 575.93466918690433 58.600000000000001 unique 0 10.531882696445921 9 21.300000000000001 +PSM IASVSANAGADPHR 51 ES-0001a_PROKKA_00977 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.04 null 1359.536602133669931 3 455.901248268076017 455.900504111704379 ms_run[3]:spectrum=126 R L 69 82 internal 16.747860831034977 1 HCD 3796.8984375 51 4926310518952851654 1 119.999997317790985 2 1359.536602133666747 1339.605346679690001 spectrum=126 3.57308671875e04 IASVSANAGADPHR 1.7e-03 0.306442291317293 25.0 2 15.300000000000001 1.632278018837307 2.2e-03 [5.84121412487093e-04, 9.803327970701048e-04, 3.299020275449038e-04, 3.273884131090199e-03, -1.151547319636848e-03, -2.150889807467138e-03] 3.500317487987846e-06 [3.335569353113081, 5.295419319471953, 0.806151846602646, 5.49960246387371, -1.765320874707738, -2.160687797516509] 11.528376255453045 25.0 0 1364.681915403915127 0 455.902452265851025 455.900504111704379 21.800000000000001 unique 0 4.273200246711813 5 15.699999999999999 +PSM AAEIDYTHK 52 ES-0001a_PROKKA_00014 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1374.772815783770057 2 524.258397962905974 524.258916583271002 ms_run[1]:spectrum=366 R K 493 501 internal null 1 HCD 9600.0029296875 -1 not mapped 1 119.999997317790985 null 1374.772815783766191 1388.806274414059999 spectrum=366 6.6572828125e04 AAEIDYTHK 1.8e-05 0.36944223715417 33.0 3 17.600000000000001 -0.989244719781279 -1.0e-03 [1.64939082537785e-04, 9.433138916392636e-05, 5.941065484194041e-05, 1.991387803172984e-04, 1.441844095324996e-03, 0.01080909896109, -4.239010388573661e-04, -2.496022017112409e-03, -2.360620701210792e-03] 1.559334890861051e-05 [1.152763124659195, 0.641218072209788, 0.218321916575129, 0.700769176904131, 2.629745618236219, 16.295981358150211, -0.639069590197563, -3.214892015867502, -2.607163670395672] 33.337353075262612 33.0 0 1046.502242992269885 0 524.260462335711964 524.258916583271002 20.199999999999999 unique 0 2.948452362117723 6 16.800000000000001 +PSM AETAHLSGGEFQR 53 ES-0001a_PROKKA_00153 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.040816326530612 null 1334.831073064299972 3 468.565843372309018 468.228509434404316 ms_run[1]:spectrum=152 K A 128 140 internal null 1 HCD 2.04706484375e04 -1 not mapped 1 119.999997317790985 null 1334.831073064305883 1334.929931640630002 spectrum=152 1.221190703125e05 AETAHLSGGEFQR 0.011 0.183644478531361 21.800000000000001 3 14.199999999999999 720.447241267269874 1.012 [-0.028903782999009, -6.84808858636643e-03] 2.432268280119431e-04 [-165.052283137551768, -9.877077420704616] 1.203967223463291e04 21.800000000000001 0 1402.675700716614074 0 468.567718505859034 468.228509434404316 20.0 unique 0 724.451981500368106 2 17.199999999999999 +PSM AHGDLSENAEYHAAK 54 ES-0001a_PROKKA_02064 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1329.347817897960113 3 538.249471977174039 538.249862207404362 ms_run[1]:spectrum=96 R E 38 52 internal null 1 HCD 1.1151990234375e04 -1 not mapped 1 119.999997317790985 null 1329.347817897962386 1319.636108398440001 spectrum=96 1.27121875e05 AHGDLSENAEYHAAK 1.5e-09 0.404311118057907 49.299999999999997 6 18.300000000000001 -0.724998291170529 -1.2e-03 [-6.288116344421724e-05, 3.751600375210273e-04, -1.680838710740318e-04, -3.139323623599921e-04, 1.340597262924348e-04, -5.734222735327421e-04, 2.917467039651456e-04, 7.421905387445804e-04, 2.190462441831187e-05, 1.988979359680343e-03, 1.913743747081753e-04, -5.30945308128139e-04, 3.356331312261318e-03] 1.208947461592897e-06 [-0.300718174162242, 1.719734937860364, -0.581228934075239, -0.823641487663946, 0.3145126134845, -1.160220085249926, 0.501914438833055, 1.259424500095541, 0.030838101841295, 2.768809333708695, 0.242433551517823, -0.644074926028533, 3.715090501251668] 2.122870380913084 49.299999999999997 0 1611.726586531209023 0 538.251582767523018 538.249862207404362 20.600000000000001 unique 0 3.196582552942822 9 18.100000000000001 +PSM AHGDLSENAEYHAAK 55 ES-0001a_PROKKA_02064 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1371.909091595649898 3 538.250138423196972 538.249862207404362 ms_run[1]:spectrum=336 R E 38 52 internal null 1 HCD 9.92205078125e04 -1 not mapped 1 22.865802049637001 null 1371.909091595643758 1380.806762695309999 spectrum=336 1.538726875e06 AHGDLSENAEYHAAK 2.7e-15 0.456181249139385 72.299999999999997 9 22.699999999999999 0.513173921637739 8.0e-04 [-5.819008501362077e-05, -2.89100355530536e-05, -2.18018601174208e-04, -3.79232837303789e-04, -4.583611045063663e-04, 1.690538726393243e-04, -3.797233392788257e-04, 7.541631302956375e-04, 1.275281532684858e-03, -1.804062330847955e-04, -1.230348941589909e-04, 1.586798368521158e-03, -4.88659988263862e-04, -1.090927937070774e-03, -2.079140001114865e-03, -7.189763696032969e-03, 1.954354769850397e-03, -0.010023578808159] 8.888138116144615e-06 [-0.278283911447744, -0.132523705146993, -0.753901717989628, -0.994965590485164, -1.075344198327477, 0.342051063550512, -0.653267454801186, 1.279740812877625, 1.795386263203032, -0.251139087790578, -0.155860921280959, 1.924900787673608, -0.545750731507433, -1.207537528180161, -2.029551887964379, -6.963623467168059, 1.745728773592657, -8.440934310306952] 7.396375436497857 72.299999999999997 0 1611.728585869277822 0 538.252249215746019 538.249862207404362 26.899999999999999 unique 0 4.434758853197902 11 22.5 +PSM AMVTGTGTVTK 56 ES-0001a_PROKKA_01941 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 2-UNIMOD:35 1331.16508630957992 2 541.281899093395964 541.281534607770936 ms_run[1]:spectrum=112 K Y 255 265 internal null 1 HCD 1.8353326171875e04 -1 not mapped 1 119.999997317790985 null 1331.165086309582875 1322.642700195309999 spectrum=112 8.19453515625e04 AM(Oxidation)VTGTGTVTK 5.7e-07 0.414518670106743 39.0 2 17.899999999999999 0.673375317138192 7.0e-04 [1.639863191940094e-04, 1.134493277277215e-04, -4.452661313507633e-04, -8.98494051000398e-04, -2.955998750394429e-03, 1.473113842621387e-03, -3.27396175521244e-04, -7.049702512631484e-04, -2.188015272508892e-03] 1.705775502006109e-06 [1.114697794597653, 0.517844787940299, -1.794266854772652, -2.824136792463618, -5.850010303224607, 2.429494909726291, -0.493536887102364, -0.922235142460869, -2.533940525318482] 6.053670585463424 39.0 0 1080.549245253249865 0 541.284019884821987 541.281534607770936 20.100000000000001 unique 0 4.591468380408586 8 18.399999999999999 +PSM DPGLTEQGHAEAK 57 ES-0001a_PROKKA_02449 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1321.622818742999925 3 451.551966791144025 451.552881746470973 ms_run[1]:spectrum=38 R A 26 38 internal null 1 HCD 1.9683384765625e04 -1 not mapped 1 119.999997317790985 null 1321.622818742993331 1309.263305664059999 spectrum=38 2.4596778125e05 DPGLTEQGHAEAK 4.2e-08 0.372859523467736 43.5 3 20.0 -2.026241806738786 -2.7e-03 [8.904081823857268e-06, 6.675706913483737e-06, 1.471528264573863e-05, 3.972870166535358e-05, 8.676429714000733e-04, 4.592369193119339e-04, 4.160734499691898e-05, 2.069528860602077e-04, 0.030588961275726, 3.215020250650014e-03, 0.028049591144054, -7.78757266402863e-04, 3.786459228081185e-03] 1.173760307019668e-04 [0.060525539086149, 0.031328553070458, 0.067454907653773, 0.147084261230952, 2.264248233705622, 1.098049705626389, 0.074929234125692, 0.337987105852293, 49.877416971357853, 4.342459051727157, 37.836268780348831, -0.895729532439425, 3.901720517787565] 267.049323985635056 43.5 0 1351.634070973119151 0 451.553782687770934 451.552881746470973 25.100000000000001 unique 0 1.995206622258178 10 19.0 +PSM EREESIEEMHHADK 58 ES-0001a_PROKKA_01670 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1314.456969620629934 3 580.593210884724954 580.593300546437718 ms_run[1]:spectrum=2 K L 44 57 internal null 1 HCD 9.9820203125e04 -1 not mapped 1 19.640719518065001 null 1314.456969620616974 1300.21826171875 spectrum=2 8.982995624999999e05 EREESIEEMHHADK 3.8e-11 0.412818766303252 55.700000000000003 8 21.600000000000001 -0.154431187337699 -3.0e-04 [-3.162433350212268e-05, -9.102084396772625e-05, -5.132910779366284e-04, 6.35289972137798e-04, -3.49063430348906e-04, -7.265310981665607e-04, -3.489041018838179e-04, -1.275919719887497e-03, 1.136504198370858e-03, 3.047184408046633e-03, 3.450556254620096e-03, -1.595720873410755e-03, 1.897484063988486e-03, -6.13380520917417e-04] 2.350494755573041e-06 [-0.214966559306275, -0.347222595160201, -1.540596405635281, 1.351003061224308, -0.641382269788733, -1.196340282414294, -0.552703434231681, -1.728103667645152, 1.526836490316969, 3.513099510112173, 3.950740288901361, -1.601453498582487, 1.89287028263045, -0.541149060451736] 3.47320135593878 55.700000000000003 0 1738.757803253861766 1 580.59545940901603 580.593300546437718 29.0 unique 0 3.71837321629543 8 20.800000000000001 +PSM EREESIEEMHHADK 59 ES-0001a_PROKKA_01670 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1354.827079112410047 3 580.593026777835007 580.593300546437718 ms_run[1]:spectrum=271 K L 44 57 internal null 1 HCD 1.38421845703125e04 -1 not mapped 1 119.999997317790985 null 1354.827079112408228 1362.02978515625 spectrum=271 1.41721203125e05 EREESIEEMHHADK 3.3e-11 0.409108522770452 55.899999999999999 8 18.100000000000001 -0.471532486600639 -8.0e-04 [-4.898369189731966e-05, -8.462940024855925e-05, -4.607200374380227e-04, -1.902143723782501e-03, -9.787149227804548e-04, -1.239607805473497e-03, -4.242952188178606e-03, -5.555213101615664e-05, -3.703877341308726e-03, 3.30955956883372e-04, 6.662475050234207e-04, -1.617958884025939e-03, 2.043897206476686e-03, -1.225232554361355e-03] 2.747206640914351e-06 [-0.332966881612816, -0.25400743445242, -0.979763900336108, -3.495070388223028, -1.611598030802839, -1.963678522225411, -5.746647789628165, -0.074631506748433, -4.270200923484159, 0.378930507497261, 0.66864099832262, -1.6140247753402, 1.803208636770028, -0.964342399541098] 4.16268068887129 55.899999999999999 0 1738.757250933191926 1 580.595275301536844 580.593300546437718 26.899999999999999 unique 0 3.401270902141552 8 17.600000000000001 +PSM EREESIEEMHHADK 60 ES-0001a_PROKKA_01670 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1375.388028394339926 3 581.266113056891982 580.593300546437718 ms_run[1]:spectrum=370 K L 44 57 internal null 1 HCD 1.8179005859375e04 -1 not mapped 1 119.999997317790985 null 1375.388028394344246 1390.743896484380002 spectrum=370 2.9059834375e05 EREESIEEMHHADK 3.1e-11 0.253284348787788 56.0 9 18.0 1158.836159185840415 2.018 [-5.423257391612424e-06, 4.424890562404471e-06, 3.690930541893067e-04, -1.649134672675245e-03, 8.867363978879439e-04, -1.122339284620466e-04, -4.949992803631176e-04, 4.075912020084616e-03, -3.840245619812777e-04, 2.766926300978412e-03, 3.307658603262098e-03, 1.656287734363104e-03, -2.516733321726861e-03, -2.981398525889745e-03] 4.268587462521799e-06 [-0.036864618241804, 0.016879891653419, 0.784910620276915, -3.030182045969406, 1.460141865025982, -0.177791196387087, -0.670426249037549, 5.475783734461845, -0.442741993889469, 3.168013041103069, 3.319541362511856, 1.652260428090879, -2.220363748139681, -2.346565962690594] 5.643254808460148 56.0 0 1740.776509770362736 1 581.268363736626952 580.593300546437718 35.399999999999999 unique 0 1162.712676074430647 8 17.899999999999999 +PSM ISAGAGQDDMR 61 ES-0001a_PROKKA_00090 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.040816326530612 null 1377.504277606840105 2 560.755994198000053 560.756215496120944 ms_run[1]:spectrum=381 R N 473 483 internal null 1 HCD 7359.0537109375 -1 not mapped 1 119.999997317790985 null 1377.50427760684488 1397.409057617190001 spectrum=381 2.04446953125e04 ISAGAGQDDMR 9.4e-03 0.17587367887011 22.100000000000001 1 13.0 -0.39464229691247 -4.0e-04 [-8.006937808886505e-04, 2.724771178463925e-04, 1.565097070965749e-03, -6.554451102829262e-04] 1.186039407690488e-06 [-3.981107620559139, 0.889984380975615, 1.842695571323494, -0.71213917901203] 6.527667891019388 22.100000000000001 0 1119.497435462458043 0 560.758178710937955 560.756215496120944 16.800000000000001 unique 0 3.501013029830464 4 16.300000000000001 +PSM LHHLVDDK 62 ES-0001a_PROKKA_00009 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 null 1376.623337178079964 2 488.76432926404101 488.764168567321008 ms_run[1]:spectrum=378 K I 1257 1264 internal null 2 HCD 8423.5361328125 -1 not mapped 1 119.999997317790985 null 1376.623337178081556 1394.634521484380002 spectrum=378 5.754366796875e04 LHHLVDDK 5.3e-03 0.221250869682218 23.100000000000001 1 16.399999999999999 0.328781711787282 3.0e-04 [8.97468285074865e-05, -1.044684321414024e-04, -1.006914105232681e-04, 3.536751948331585e-03, 1.861555358004807e-03] 2.605328795292534e-06 [0.610054499065088, -0.415959892042634, -0.384113477179218, 6.001420142342735, 2.562791194791538] 7.313063706297487 23.100000000000001 0 975.514105594540069 0 488.766273856454973 488.764168567321008 17.300000000000001 unique 0 4.307372081173826 4 16.399999999999999 +PSM LNADSTVASK 63 ES-0001a_PROKKA_02449 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 null 1355.73690658260989 2 503.263783714086003 503.264199115170982 ms_run[1]:spectrum=273 R E 192 201 internal null 1 HCD 7342.7080078125 -1 not mapped 1 119.999997317790985 null 1355.736906582606707 1362.694702148440001 spectrum=273 6.336698046875e04 LNADSTVASK 5.3e-03 0.110683750899125 23.100000000000001 3 14.9 -0.82541354165305 -8.0e-04 [-8.135431184541631e-05, -0.10994873934942, 0.013974948887835, -2.649062794375823e-03, -3.898219567417982e-03] 2.550198284536231e-03 [-0.356607151563808, -367.510883510768167, 33.739752108574045, -4.472274707141946, -5.008027965624406] 2.81586329814822e04 23.100000000000001 0 1004.513014494630056 0 503.265777587891023 503.264199115170982 19.5 unique 0 3.136469319328556 3 16.199999999999999 +PSM SDQSSQHFIHAR 64 ES-0001a_PROKKA_02567 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1377.599041976070112 3 471.559668466981009 471.560370413137605 ms_run[1]:spectrum=382 M Q 2 13 internal null 2 HCD 1.01109541015625e04 -1 not mapped 1 119.999997317790985 null 1377.599041976078524 1397.70751953125 spectrum=382 8.891153906250001e04 SDQSSQHFIHAR 1.6e-05 0.339237091293781 33.200000000000003 1 16.800000000000001 -1.488560533577159 -2.1e-03 [-3.970389755636461e-05, -1.850685009969766e-04, 1.646903455707616e-04, -1.927375993204805e-04, -8.255947066686531e-04, -1.459577823084146e-03, -1.613597648656651e-03] 5.089210443003372e-07 [-0.226725302406334, -0.911370063672415, 0.66904849240221, -0.502949022698618, -1.66350251372991, -2.26865348112383, -2.067584733625885] 1.137988642505378 33.200000000000003 0 1411.657176000629988 0 471.561553955078011 471.560370413137605 19.199999999999999 unique 0 2.509841824429765 7 17.600000000000001 +PSM VEEHEEGQSAMLTR 65 ES-0001a_PROKKA_02364 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 11-UNIMOD:35 1340.424821669520043 3 544.582345236810966 544.5825128372378 ms_run[1]:spectrum=221 R R 93 106 internal null 1 HCD 1.38036865234375e04 -1 not mapped 1 119.999997317790985 null 1340.424821669517542 1350.499877929690001 spectrum=221 2.18624296875e05 VEEHEEGQSAM(Oxidation)LTR 9.899999999999999e-09 0.382091608193484 46.0 6 18.199999999999999 -0.307759472410411 -5.0e-04 [-2.641886854348741e-04, -2.465948026042497e-04, 1.037837945432329e-04, 1.419125018173872e-04, 5.030976958551037e-04, 5.380452240615341e-04, 1.584309176678289e-03, 1.144172311455804e-03, 1.613452863125531e-03, -2.99793563840467e-04, 2.824388788098986e-03, 4.693673660085551e-04] 9.027469778215339e-07 [-1.508624172539249, -1.076277271492408, 0.375801354929338, 0.364578671529541, 0.938114374275451, 0.885928966016507, 2.537889857060816, 1.647819798618303, 2.141832201086968, -0.369966408072719, 3.21159367306159, 0.500186335985527] 2.00545685208037 46.0 0 1630.725206310119802 0 544.584476889173971 544.5825128372378 22.899999999999999 unique 0 3.606527734314367 8 18.899999999999999 +PSM VEEHEEGQSAMLTR 66 ES-0001a_PROKKA_02364 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 11-UNIMOD:35 1371.974392244389946 3 544.58246307381296 544.5825128372378 ms_run[1]:spectrum=337 R R 93 106 internal null 2 HCD 9288.853515625 -1 not mapped 1 119.999997317790985 null 1371.974392244389719 1380.956298828130002 spectrum=337 1.5859321875e05 VEEHEEGQSAM(Oxidation)LTR 2.6e-10 0.384211692539093 52.299999999999997 7 17.199999999999999 -0.091379035623375 -1.0e-04 [1.327195614635457e-04, 1.257209970617623e-04, 4.702000023257824e-04, -4.31807118445704e-04, -5.810632511611402e-04, 1.453223617318145e-03, -8.311740951967295e-04, 2.305469045950304e-03, 9.308822338880418e-04, 1.481221968333557e-04, 1.371378062003714e-03, -1.858606888731629e-03, -0.07485681779076, -4.274097103461827e-03] 4.019607472573406e-04 [0.75788233800827, 0.54871655954604, 1.702595272600084, -1.109329083652627, -1.083494901225878, 2.392833983290205, -1.331449906813121, 3.320301934404311, 1.235730890891267, 0.182793240843017, 1.559384857306067, -1.980644239538352, -74.22752600001219, -4.168154896299568] 399.028190613479751 52.299999999999997 0 1630.725559821125899 0 544.584594726562955 544.5825128372378 21.899999999999999 unique 0 3.822908881719145 9 18.399999999999999 +PSM AHGDLSENAEYHAAK 67 ES-0001a_PROKKA_02064 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1339.324111082429909 3 538.250686982663979 538.249862207404362 ms_run[2]:spectrum=157 R E 38 52 internal null 1 HCD 1.5219321875e05 -1 not mapped 1 22.611554712057 null 1339.324111082429454 1338.769653320309999 spectrum=157 2.00888975e06 AHGDLSENAEYHAAK 1.0e-15 0.500632349997889 76.799999999999997 10 23.399999999999999 1.532327860213006 2.5e-03 [2.042405331224018e-04, 2.443686443882598e-04, 4.110837489292862e-04, -1.414629624605368e-04, 1.15196449735322e-03, 9.85209499276607e-04, -2.915718513918364e-04, -1.799152973944729e-04, 8.95250994858543e-04, -8.747649974338856e-04, 7.918112642073538e-04, 8.516680384218489e-04, 1.131174173451655e-03, -1.532015860448155e-03, 1.37578068449784e-03, -1.800408774897733e-03, -6.165979079924e-04, -1.589981695815368e-04, 3.643559521151474e-03] 1.450782900660108e-06 [1.388326007669224, 1.168650332434293, 1.884409357914854, -0.489174638569866, 3.022325399023507, 2.311363919774968, -0.58994485197478, -0.309522213282716, 1.519153071618147, -1.231524976776826, 1.102261020559484, 1.078895267894018, 1.372195800467323, -1.71100314451999, 1.52283826513534, -1.75746848516309, -0.597204003279237, -0.142025226877462, 3.068270042302536] 2.213710688950795 76.799999999999997 0 1611.730231547678841 0 538.252254029472056 538.249862207404362 28.0 unique 0 4.443702145847722 11 22.800000000000001 +PSM AHGDLSENAEYHAAK 68 ES-0001a_PROKKA_02064 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1369.757067597480045 3 538.250411864882039 538.249862207404362 ms_run[2]:spectrum=257 R E 38 52 internal null 1 HCD 7.38765390625e04 -1 not mapped 1 47.001756727695003 null 1369.757067597472769 1369.347534179690001 spectrum=257 1.01818825e06 AHGDLSENAEYHAAK 3.9e-15 0.501012108693254 71.599999999999994 9 22.199999999999999 1.021193903186363 1.7e-03 [2.701999123928545e-04, 3.281104202415008e-04, 3.982338193395663e-04, -1.080719509900518e-04, 3.436737504785015e-04, 1.724937828839757e-05, 3.781323505336331e-05, 1.512676927632128e-03, 2.95080049227181e-04, -7.79916016426796e-05, 1.354226483385901e-03, 2.086751767819806e-03, -2.238021402604318e-03, 1.294580936473722e-03, 4.305274981106777e-03, -2.29004246648401e-04, 5.459330511712324e-03] 3.174594391176446e-06 [1.836685205968064, 1.569130739544289, 1.825505235262269, -0.373709532485202, 0.901671802764208, 0.040468134588254, 0.076508494389142, 2.602375214353387, 0.50072188216617, -0.10979932402822, 1.885185438906213, 2.643502522111914, -2.71488126416359, 1.445828408391422, 4.765467023221258, -0.223542426622499, 5.287617740116088] 3.72006518759527 71.599999999999994 0 1611.729406194333024 0 538.251978910843036 538.249862207404362 27.0 unique 0 3.932566615052673 11 21.699999999999999 +PSM ARAEDAMDEASGR 69 ES-0001a_PROKKA_00065 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1361.356349387609953 3 460.205519371752985 460.205376301870956 ms_run[2]:spectrum=311 K L 40 52 internal null 2 HCD 3821.37939453125 -1 not mapped 1 119.999997317790985 null 1361.356349387602904 1389.356079101559999 spectrum=311 3.281051171875e04 ARAEDAMDEASGR 1.0e-03 0.396052830200745 26.0 2 14.4 0.310882682810655 4.0e-04 [7.808367854522658e-07, 1.084840106386764e-03, 6.790235733546979e-04, 8.331942183303909e-04, -4.497766458371189e-04, 1.056010043043898e-03, 2.188727333987117e-04] 3.372887869134198e-07 [4.458893640361905e-03, 3.398915286734387, 1.740151042900653, 1.604604258311192, -0.82793347816274, 1.719076169538186, 0.345073223827737] 1.968031255765094 26.0 0 1377.594728714946086 1 460.206848144531023 460.205376301870956 18.0 unique 0 3.198230042191339 6 15.800000000000001 +PSM DPGLTEQGHAEAK 70 ES-0001a_PROKKA_02449 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1369.542147202120077 3 451.552821541817991 451.552881746470973 ms_run[2]:spectrum=246 R A 26 38 internal null 1 HCD 3272.590576171875 -1 not mapped 1 119.999997317790985 null 1369.542147202120077 1365.843017578130002 spectrum=246 2.2386513671875e04 DPGLTEQGHAEAK 0.022 0.204988832913966 20.600000000000001 2 15.1 -0.133328022953174 -2.0e-04 [1.161508606060124e-04, 5.909106221224647e-05, 6.263058286037904e-04, -3.719965825439431e-04, -4.107576955902914e-05] 1.297819540224963e-07 [0.789536034435678, 0.277309579719108, 2.870988131765378, -1.377211945781513, -0.067083290009655] 2.400126664129154 20.600000000000001 0 1351.636635225141163 0 451.554124128584988 451.552881746470973 16.300000000000001 unique 0 2.751354634720648 4 15.1 +PSM TVAVHSTADADAMHVR 71 ES-0001a_PROKKA_03139 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 13-UNIMOD:35 1362.935105070079999 3 566.274264228123002 566.273901911670919 ms_run[2]:spectrum=299 K L 35 50 internal null 1 HCD 1.01543349609375e04 -1 not mapped 1 119.999997317790985 null 1362.935105070072723 1386.11181640625 spectrum=299 5.884263671875e04 TVAVHSTADADAM(Oxidation)HVR 7.0e-03 0.186199428892323 22.600000000000001 4 16.800000000000001 0.639825446413904 1.1e-03 [6.280325695840361e-03, 1.394679219401951e-04, 2.433649915474234e-04, -4.936882987749414e-06, 1.076165775941718e-03, 1.874958951475492e-04] 6.051021553320288e-06 [62.141251772844043, 0.796418203854771, 1.210028409801641, -0.018139602460695, 2.616840150990829, 0.335844614022315] 624.118005806798692 22.600000000000001 0 1695.800963284055797 0 566.27591774663199 566.273901911670919 21.300000000000001 unique 0 3.559823177910618 3 13.9 +PSM VEEHEEGQSAMLTR 72 ES-0001a_PROKKA_02364 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 11-UNIMOD:35 1342.166896097149902 3 544.582589209146022 544.5825128372378 ms_run[2]:spectrum=69 R R 93 106 internal null 1 HCD 1.33242060546875e04 -1 not mapped 1 119.999997317790985 null 1342.166896097155814 1318.6337890625 spectrum=69 1.67657859375e05 VEEHEEGQSAM(Oxidation)LTR 1.4e-09 0.444519676698706 49.5 8 17.899999999999999 0.140239369464188 2.0e-04 [2.83118343162414e-04, 8.986983569343465e-04, 6.072539633805718e-05, -4.829013641938218e-05, 1.499535269772423e-03, 1.369532527746742e-03, 5.471593642596417e-04, 2.238607923686686e-03, 2.051040005767391e-03, 3.263504411165741e-03, 3.534928368594592e-03, 4.6974207148196e-03] 2.280107209789298e-06 [1.616720169075411, 3.922420932156905, 0.219886797576635, -0.124059216477019, 2.796147950778288, 2.255030770599095, 0.876489400674831, 3.224009549139678, 2.722721952694823, 4.027394682065178, 3.76703409036409, 4.580985569231864] 2.410278839653916 49.5 0 1630.725938227124971 0 544.584175751879002 544.5825128372378 22.899999999999999 unique 0 3.053558647224686 7 18.800000000000001 +PSM VEEHEEGQSAMLTR 73 ES-0001a_PROKKA_02364 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 11-UNIMOD:35 1365.454449136349922 3 544.583297619797008 544.5825128372378 ms_run[2]:spectrum=287 R R 93 106 internal null 1 HCD 6791.52734375 -1 not mapped 1 119.999997317790985 null 1365.454449136344692 1380.934692382809999 spectrum=287 8.945252343749999e04 VEEHEEGQSAM(Oxidation)LTR 1.2e-07 0.460253603725989 41.700000000000003 5 17.0 1.441071905007257 2.4e-03 [4.531988009262022e-04, 3.363660840705052e-04, -5.794009296096192e-04, 9.109413235819375e-05, 1.248433118689718e-03, 9.116977132634929e-04, -1.204870668061631e-03, -9.968301451408479e-04, 2.003461273261564e-03, -7.854438186996049e-04, -0.09647616852385, 1.421682710770256e-03] 7.809166303170926e-04 [2.587948325332859, 1.468089219086203, -2.098012077443454, 0.234024327201435, 2.327923708681947, 1.501173835043217, -1.930070905702156, -1.435619821050086, 2.659561965999907, -0.969293084963783, -109.702408442488604, 1.515031332666586] 1015.736721236479184 41.700000000000003 0 1630.72806345907793 0 544.584884164713003 544.5825128372378 20.300000000000001 unique 0 4.354395191369952 7 17.600000000000001 +PSM YHLGASSDR 74 ES-0001a_PROKKA_01599 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1363.369244536909946 2 503.241490740446977 503.241057987570969 ms_run[2]:spectrum=210 K E 344 352 internal null 1 HCD 6350.365234375 -1 not mapped 1 119.999997317790985 null 1363.369244536911765 1357.567993164059999 spectrum=210 2.9779609375e04 YHLGASSDR 0.03 0.261884099446356 20.100000000000001 1 15.199999999999999 0.859931575812169 9.0e-04 [3.621074987449902e-04, -2.927109795791694e-05, 4.448787590035863e-03, 2.509743652922225e-03] 4.310497444466681e-06 [2.067780172966886, -0.097204346337565, 7.511436683359016, 3.558140510215353] 10.285270256542365 20.100000000000001 0 1004.468428547352005 0 503.242950439453011 503.241057987570969 13.5 unique 0 3.760527588131368 3 16.199999999999999 +PSM AHGDLSENAEYHAAK 75 ES-0001a_PROKKA_02064 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 2072.074193421380187 3 538.250364038463999 538.249862207404362 ms_run[3]:spectrum=40 R E 38 52 internal null 1 HCD 8.661365625e04 -1 not mapped 1 35.566587001084997 null 2072.074193421379277 1311.043212890630002 spectrum=40 1.212806125e06 AHGDLSENAEYHAAK 3.2e-14 0.457780577521513 68.0 8 22.399999999999999 0.932338482315485 1.5e-03 [8.697395445267375e-04, 9.743825958139496e-04, 1.187526180302712e-03, 1.376634555469991e-03, 1.198213701911754e-03, 1.68173018039397e-04, 1.471218176106959e-03, 5.25292948623246e-05, 6.124559921545369e-04, -1.035594768154624e-03, 4.088371540547087e-04, -1.172861273062154e-03, -8.863521134117036e-05, 4.461548629706158e-04, -1.486712028395232e-03, -5.524365426254008e-03, -2.115637093311307e-03, -9.683789458904357e-03] 7.903421597963098e-06 [5.912058743213367, 4.659814467468841, 5.443624207378363, 4.760360587688664, 3.143666070496505, 0.39454455774263, 2.976753705760249, 0.09037021222447, 1.039277707655067, -1.45794679318798, 0.56913216449642, -1.485783686033001, -0.1075208996372, 0.498279680513427, -1.645627091285705, -5.350607106141792, -1.889794322530398, -8.154795034974834] 13.55114775977842 68.0 0 1611.729262715078903 0 538.252259568849013 538.249862207404362 35.100000000000001 unique 0 4.453993605903864 11 21.899999999999999 +PSM AHGDLSENAEYHAAK 76 ES-0001a_PROKKA_02064 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 2074.340807862340171 3 538.250409926082966 538.249862207404362 ms_run[3]:spectrum=231 R E 38 52 internal null 1 HCD 3.721855078125e04 -1 not mapped 1 76.484225690364994 null 2074.340807862340625 1373.597290039059999 spectrum=231 5.589546875e05 AHGDLSENAEYHAAK 7.5e-15 0.481345846036622 70.5 10 21.100000000000001 1.017591860325942 1.7e-03 [8.447437778329459e-04, 8.996501245803756e-04, 1.301830782693969e-03, 7.808721156266074e-04, 2.377696356290926e-03, 9.227753218965518e-04, 1.398758366406128e-03, 1.60303838845266e-03, 6.091233591405398e-04, 6.54051594892735e-04, -2.444788912043805e-04, -2.205634734195883e-03, -9.096395099277288e-04, -3.902003341636373e-03, -3.458489283616473e-03, -7.075015355439973e-04, -8.805062343526515e-04, -5.903129177113442e-03] 4.83152755289529e-06 [5.742149898714681, 4.302419485107723, 5.9675969087071, 2.700232119325875, 6.238188855034013, 2.164889383076886, 2.830143902708203, 2.757831030249393, 1.033622556519949, 0.920796874102177, -0.340333062063666, -2.794103770567855, -1.103458286758109, -4.357879157670299, -3.828168166624628, -0.690627411540858, -0.852811599344918, -4.971071367116061] 12.382021527777889 70.5 0 1611.72940037793569 0 538.252305456893055 538.249862207404362 25.699999999999999 unique 0 4.539247773649936 10 20.5 +PSM ARAEDAMDEASGR 77 ES-0001a_PROKKA_00065 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1978.967811638229932 3 460.205948713197017 460.205376301870956 ms_run[3]:spectrum=52 K L 40 52 internal null 1 HCD 9.80345e04 -1 not mapped 1 115.265935659408996 null 1978.96781163822925 1314.775390625 spectrum=52 7.955159375e05 ARAEDAMDEASGR 2.9e-10 0.606469643721019 52.100000000000001 8 21.300000000000001 1.24381712065388 1.7e-03 [8.71129998898823e-04, 1.078877912959797e-03, 9.293505670484592e-04, 7.823266639661597e-04, 1.318251527095526e-03, 5.742070439964664e-04, 8.163809736743133e-04, 2.976897839062076e-04, 9.554802727507195e-05, -1.087537378111847e-03, -2.219323841472942e-03, -2.036960262671528e-03] 1.483602132408499e-06 [4.974504383484747, 4.647522938315559, 2.911750616961536, 2.004888509928906, 3.078407097725955, 1.10583468737376, 1.502766195834967, 0.484608472049219, 0.150640352912885, -1.459135869287695, -2.89986547928426, -2.367576457152135] 6.504885737770593 52.100000000000001 0 1377.596016739278184 1 460.207185266856982 460.205376301870956 31.600000000000001 unique 0 3.930777603169933 7 21.300000000000001 +PSM ARAEDAMDEASGR 78 ES-0001a_PROKKA_00065 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.04 null 2246.313766649100216 3 460.206496596468014 460.205376301870956 ms_run[3]:spectrum=250 K L 40 52 internal null 2 HCD 6365.05322265625 -1 not mapped 1 119.999997317790985 null 2246.313766649100216 1379.76708984375 spectrum=250 4.21822421875e04 ARAEDAMDEASGR 7.600000000000001e-04 0.417871164913598 26.5 2 15.5 2.434336178470101 3.4e-03 [7.184602909262594e-04, 1.685635702415311e-04, -9.775910837106494e-05, 3.818963593857916e-04, -1.437160132127247e-04, 1.277254031379016e-03, 3.228138439226314e-04] 2.449968062559584e-07 [4.10269864554108, 0.528126949130516, -0.250529762235639, 0.735473807933925, -0.264547525506656, 2.079238717712622, 0.508946053210217] 2.410098309375989 26.5 0 1377.597660389091061 1 460.207733154296932 460.205376301870956 18.100000000000001 unique 0 5.121305719883327 5 16.0 +PSM AVVSARPEDHAADAAHAAQNSK 79 ES-0001a_PROKKA_01384 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 2758.993455450689908 4 554.776101435636974 554.775530881121199 ms_run[3]:spectrum=317 R E 348 369 internal null 1 HCD 5.835392578125e04 -1 not mapped 1 96.604242920876004 null 2758.99345545068536 1398.160278320309999 spectrum=317 3.588280625e05 AVVSARPEDHAADAAHAAQNSK 2.2e-13 0.262476888150286 64.599999999999994 4 20.600000000000001 1.028442106790605 2.3e-03 [8.344973788894094e-04, 8.964953806582798e-04, 8.339096771408094e-04, 5.765869015021963e-04, 2.202699672011477e-03, -1.640414406665514e-03, 2.602185528530754e-04, -1.397867232981298e-03, -5.358295010523761e-03, 2.467793581899969e-03, 1.203693378897697e-03, -5.573743192826441e-03, -3.054619030535832e-03, -5.891290766612656e-03, -0.022507117156238] 3.877917625313698e-05 [5.672499952541944, 5.239206856039483, 3.561512174474361, 2.134074689604447, 6.32618348699932, -3.444466166136233, 0.475473085525153, -2.260748394004138, -7.093514114246357, 2.986137495507605, 1.341231716261139, -6.022583604535041, -3.016965331490491, -5.437188888115269, -17.425578187034141] 39.608689321196614 64.599999999999994 0 2215.07529987546377 0 554.778153217910017 554.775530881121199 36.100000000000001 unique 0 4.726842917265882 17 19.199999999999999 +PSM EALQGEHEAHAEAVAR 80 ES-0001a_PROKKA_02337,ES-0002a_PROKKA_00085 0 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1373.223424354910094 3 573.280538835276047 573.279932991037754 ms_run[3]:spectrum=161 R,R E,E 308,308 323,323 internal null 1 HCD 4514.59912109375 -1 not mapped 1 119.999997317790985 null 1373.223424354912368 1348.443603515630002 spectrum=161 6.26374140625e04 EALQGEHEAHAEAVAR 6.3e-05 0.509045225252352 30.800000000000001 2 16.5 1.056803497608481 1.8e-03 [0.024703006725417, -0.023138555461315, 1.170576977102655e-03, 7.185182323041772e-04, 0.011522512489506, 1.47897678488107e-03, 1.416136455418382e-03, 4.609333745975164e-05, -1.587206641374905e-03, -4.16021584783266e-04] 1.402052981105953e-04 [244.470145411493547, -133.659347753386982, 6.684467658287815, 3.573171246471699, 55.228238975305658, 3.552998404850176, 2.596966027505487, 0.074785410563788, -2.106724430658196, -0.504612745567229] 8613.931537939377449 30.800000000000001 0 1716.819787105514934 0 573.282772510995983 573.279932991037754 20.300000000000001 non-unique 0 4.953112423479101 8 17.300000000000001 +PSM ITEEMMAR 81 ES-0001a_PROKKA_00010 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.04 5-UNIMOD:35,6-UNIMOD:35 2238.001439752809802 2 498.727855100405009 506.725537797320953 ms_run[3]:spectrum=249 K L 693 700 internal null 1 HCD 1.26005185546875e04 -1 not mapped 1 119.999997317790985 null 2238.001439752805709 1379.468872070309999 spectrum=249 1.088172734375e05 ITEEM(Oxidation)M(Oxidation)AR 1.5e-03 0.029468970220734 25.199999999999999 1 12.9 -1.578306617756226e04 -4.0e-04 [7.469871264902395e-04, 6.340947496425997e-04] 6.372344375154754e-09 [3.472113642369401, 2.575986678625658] 0.40152176757429 25.199999999999999 0 995.441157267268068 0 498.729400634766023 506.725537797320953 19.0 unique 0 -1.578001613519074e04 5 16.699999999999999 +PSM QQIEETTSDYDREK 82 ES-0001a_PROKKA_00962 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1806.107496959089985 3 581.267081247134001 581.267359324371 ms_run[3]:spectrum=205 K L 351 364 internal null 1 HCD 9190.4814453125 -1 not mapped 1 119.999997317790985 null 1806.107496959092714 1363.973999023440001 spectrum=205 1.56119140625e05 QQIEETTSDYDREK 1.5e-06 0.33523759734389 37.299999999999997 4 18.100000000000001 -0.478398163148223 -8.0e-04 [7.715506949637074e-04, -6.542986810700313e-04, 7.610576961951665e-04, -6.656293176092731e-04, -1.429837696719005e-03, -1.416143243091028e-03, -1.18355728534425e-03, -5.871106448580576e-03] 4.31916903673643e-06 [5.977961379682906, -1.76737888458083, 1.760662194030469, -1.216242354703966, -2.012872767207882, -1.715760018564073, -1.297183052489728, -5.793168424992638] 11.583045155947755 37.299999999999997 0 1740.779414341088796 1 581.269395691149953 581.267359324371 24.199999999999999 unique 0 3.503322087996505 7 18.300000000000001 +PSM TCHAHPTMSETVR 83 ES-0001a_PROKKA_01604 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 2-UNIMOD:4 1971.5281933122601 3 509.566804223888028 509.566139339470965 ms_run[3]:spectrum=53 R E 442 454 internal null 2 HCD 7432.98779296875 -1 not mapped 1 119.999997317790985 null 1971.52819331225146 1315.073608398440001 spectrum=53 9.00284453125e04 TC(Carbamidomethyl)HAHPTMSETVR 6.9e-07 0.379154747213258 38.600000000000001 4 16.600000000000001 1.30480494234675 2.0e-03 [6.961282580277839e-04, 6.812081386442515e-04, 1.211413130079109e-03, 6.568510351598889e-04, -1.170794689642207e-05, 2.585185780731081e-03, -1.439475753386432e-04, -7.221719730523546e-04, -3.04301337337165e-03, 8.948179988692573e-04, -4.958106110279914e-03] 4.429510088050259e-06 [3.975173711620747, 2.599181818811762, 3.228411476019224, 1.645647146210968, -0.024900902381225, 4.371966014993033, -0.237051983651796, -0.999753330472588, -3.695678137037777, 0.972152118267745, -4.688474251135405] 8.780068525478381 38.600000000000001 0 1525.678583271351272 0 509.568442418633026 509.566139339470965 17.5 unique 0 4.519686423918745 7 17.5 +PSM TVAVHSTADADAMHVR 84 ES-0001a_PROKKA_03139 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.04 13-UNIMOD:35 2093.69872462596004 3 566.274389074803025 566.273901911670919 ms_run[3]:spectrum=37 K L 35 50 internal null 1 HCD 9042.0537109375 -1 not mapped 1 119.999997317790985 null 2093.698724625956857 1310.176391601559999 spectrum=37 3.84017578125e04 TVAVHSTADADAM(Oxidation)HVR 1.8e-04 0.326420796171663 29.0 4 17.300000000000001 0.860295928281373 1.5e-03 [6.644860405359054e-03, 7.235286838636057e-04, 8.008590029646712e-04, 7.173449292849909e-04, 1.359257784372403e-03, -1.371051475530294e-03, -8.067962176028232e-05, -0.012200665349837] 2.813902305079087e-05 [65.748173493344169, 4.131641217735727, 3.981929116718631, 2.635742406031147, 3.30521600408632, -2.178627890145192, -0.086714071692172, -10.25674008369794] 559.677078784675587 29.0 0 1695.801337824095981 0 566.276553020431038 566.273901911670919 20.399999999999999 unique 0 4.681672157536304 5 14.199999999999999 +PSM VEEHEEGQSAMLTR 85 ES-0001a_PROKKA_02364 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.04 11-UNIMOD:35 2110.307680151639943 3 544.582760691278963 544.5825128372378 ms_run[3]:spectrum=34 R R 93 106 internal null 1 HCD 8678.4462890625 -1 not mapped 1 119.999997317790985 null 2110.307680151638124 1309.510620117190001 spectrum=34 4.394687109375e04 VEEHEEGQSAM(Oxidation)LTR 4.5e-04 0.214438583957134 27.399999999999999 3 14.199999999999999 0.455126698563468 8.0e-04 [9.351690684695768e-04, 1.196851860271408e-03, 6.796887581117517e-04, 7.085316483426141e-04, 7.459723927922823e-04, -1.193386186969292e-03, 5.106100986722595e-04, -4.551733121616053e-04] 6.423265104043268e-07 [5.340193353783884, 5.223729133581202, 2.461154531425734, 1.820245036774746, 1.390997077221048, -1.911674024268342, 0.735373004172802, -0.561715979468472] 6.478022555109057 27.399999999999999 0 1630.726452673523909 0 544.584715404512053 544.5825128372378 19.600000000000001 unique 0 4.044506061675975 5 15.199999999999999 +PSM AHGDLSENAEYHAAK 86 ES-0001a_PROKKA_02064 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1326.459844618040052 3 538.250357895523962 538.249862207404362 ms_run[2]:spectrum=33 R E 38 52 internal 19.022241740206976 1 HCD 1.0954421875e05 -1 5785370176150438919 1 46.379625797271999 1 1326.45984461804369 1308.330322265630002 spectrum=33 1.425496e06 AHGDLSENAEYHAAK 1.0e-15 0.521536692473826 75.299999999999997 10 22.800000000000001 0.920925678580911 1.5e-03 [2.559608932983792e-04, 3.5664350599518e-04, 5.654878166012622e-04, 2.314043468913951e-04, 1.282259707409139e-04, 5.561813495091883e-04, 2.986263617685836e-04, 3.483206319288001e-04, 6.056383214172456e-04, 8.960010585497003e-04, 8.616171882067647e-04, 2.286803845663599e-04, 1.792206172581246e-03, 7.230578850112579e-04, -1.038649901374811e-04, -1.253894650290022e-03, -9.304689824602974e-04, -5.515256380022038e-04, -1.383283491350085e-03, -1.288896028654563e-03] 6.766461262558969e-07 [1.739895405087984, 1.705585235311895, 2.592198149807088, 0.869533300292129, 0.443401522217908, 1.459212521694033, 0.700596369190896, 0.704766124240316, 1.041926486567081, 1.520425856085156, 1.213015027818425, 0.318340348853691, 2.270371402302878, 0.877121328079576, -0.115999663788586, -1.387923798775456, -0.908277017917016, -0.534178456749015, -1.235618952167218, -1.085389452101967] 1.365557435816857 75.299999999999997 0 1611.729244286258791 0 538.251924941318975 538.249862207404362 35.299999999999997 unique 0 3.832298082072254 12 22.199999999999999 +PSM AHGDLSENAEYHAAK 87 ES-0001a_PROKKA_02064 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1341.644135232149893 3 538.250642446769007 538.249862207404362 ms_run[3]:spectrum=133 R E 38 52 internal 29.115197494565169 1 HCD 4.72473984375e04 -1 5785370176150438919 1 64.538039267062999 2 1341.644135232154895 1341.626586914059999 spectrum=133 6.479014375e05 AHGDLSENAEYHAAK 6.2e-15 0.486187965144174 70.799999999999997 10 21.399999999999999 1.4495858140019 2.4e-03 [8.973110678027751e-04, 8.903023160371504e-04, 7.852665910945689e-04, 1.115272128288325e-03, 2.070189553592172e-03, -9.036586436650396e-05, 9.266515265267117e-04, 3.906800088770979e-05, 5.740701791410174e-04, -1.294423801368794e-03, -9.249384163467766e-04, -1.669721495773047e-03, -4.657237194123809e-03, -2.613925661194116e-03, -2.984511589374961e-03, -3.335672252887889e-03, -4.377737380991675e-03, -0.012110717889527, -7.006055470128558e-03] 1.20958105238247e-05 [6.099476305486573, 4.257715224506206, 3.599664828810951, 3.856577232465912, 5.431405640530152, -0.212004044448798, 1.874917949175909, 0.067211706166274, 0.974140750443126, -1.822335423338148, -1.287584060549668, -2.115207497781152, -5.649564381457335, -2.919313788655114, -3.303526864602681, -3.25611546834214, -4.240044047093349, -10.817907278026807, -5.899854246627412] 19.22094897148602 70.799999999999997 0 1611.730097939993812 0 538.252537979736985 538.249862207404362 25.5 unique 0 4.97124573641167 10 20.899999999999999 +PSM ARAEDAMDEASGR 88 ES-0001a_PROKKA_00065 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1371.569382885480081 3 460.205294786630986 460.205376301870956 ms_run[1]:spectrum=334 K L 40 52 internal 10.592152715830633 1 HCD 7.94454140625e04 -1 6079338524867909733 1 119.999997317790985 0 1371.569382885473033 1380.053100585940001 spectrum=334 6.599338125e05 ARAEDAMDEASGR 3.6e-10 0.592378681249903 51.799999999999997 7 20.899999999999999 -0.177127961052125 -2.0e-04 [2.26973687233567e-04, 1.656087330275113e-04, -2.553241138230078e-04, -1.375031631027923e-04, 8.634162940666101e-04, 9.939472283804207e-05, 3.038079696580098e-04, 7.107321156354374e-04, 3.230219904253318e-04, 2.037089852819918e-04, 6.419080784780817e-04, 3.253215566019207e-04, 3.334188523922421e-03] 8.111631574376659e-07 [1.296111491403491, 0.7133989641323, -0.799956628111182, -0.352382865727805, 2.016266845374409, 0.191418989727483, 0.55923932765421, 1.156999074925985, 0.509274215533591, 0.273313904702027, 0.838745136183847, 0.378124047154766, 3.369911976396616] 1.109801809204868 51.799999999999997 0 1377.594054959580035 1 460.20714089474302 460.205376301870956 25.899999999999999 unique 0 3.834359533658521 7 21.0 +PSM ARAEDAMDEASGR 89 ES-0001a_PROKKA_00065 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1343.882423404759948 3 460.205501930198011 460.205376301870956 ms_run[2]:spectrum=90 K L 40 52 internal 10.06670774196458 1 HCD 1.06895810546875e04 -1 6079338524867909733 1 119.999997317790985 1 1343.882423404761767 1323.2109375 spectrum=90 3.689188671875e04 ARAEDAMDEASGR 4.8e-04 0.2706951550971 27.300000000000001 3 14.300000000000001 0.272983179954372 4.0e-04 [3.878158754844208e-04, 4.621550958745502e-04, 4.652158941098605e-05, 3.716823623335586e-03, 1.376563986354995e-03, 1.271737320280408e-03, 3.227526751516052e-03, 7.739984002569145e-03] 6.639973790357023e-06 [2.214585394855964, 1.447979302168405, 0.119222064605164, 7.158032163673711, 2.53393194085312, 2.070258077190959, 5.088496149527519, 8.996250068807489] 9.43598104070772 27.300000000000001 0 1377.594676390281165 1 460.206830702923014 460.205376301870956 17.399999999999999 unique 0 3.160330424093225 5 14.9 +PSM ARAEDAMDEASGR 90 ES-0001a_PROKKA_00065 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1358.160168917150031 3 460.205721131802989 460.205376301870956 ms_run[2]:spectrum=197 K L 40 52 internal 10.06670774196458 1 HCD 2.2422359375e04 -1 6079338524867909733 1 119.999997317790985 1 1358.160168917149576 1353.990356445309999 spectrum=197 1.62933109375e05 ARAEDAMDEASGR 2.8e-07 0.586509605467806 40.200000000000003 4 18.5 0.74929574878839 1.0e-03 [2.532575157374595e-04, 1.049414719034303e-03, 7.224315081657551e-04, 5.044050121796317e-04, 1.042731609800285e-03, 3.338633806606595e-04, 7.44100783435897e-04, 1.073755245670327e-03, 1.476719885772582e-03, 4.578661615255442e-03, 1.592674904145497e-03] 1.427306095877153e-06 [1.446202775451396, 4.520603230385755, 2.263451989161378, 1.292651599195956, 2.008141132704967, 0.614564301059001, 1.211319847728163, 1.692875025919444, 1.98129737661265, 5.982679278834323, 1.851179758414351] 2.500376797212764 40.200000000000003 0 1377.595333995096098 1 460.20704990519198 460.205376301870956 23.600000000000001 unique 0 3.636644435735194 8 18.800000000000001 +PSM ARAEDAMDEASGR 91 ES-0001a_PROKKA_00065 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1353.857109443970103 3 460.205936558000985 460.205376301870956 ms_run[3]:spectrum=153 K L 40 52 internal 22.109897616872296 1 HCD 1.34855439453125e04 -1 6079338524867909733 1 119.999997317790985 2 1353.857109443969421 1346.239135742190001 spectrum=153 8.13242421875e04 ARAEDAMDEASGR 5.2e-06 0.448661149107713 35.100000000000001 4 17.0 1.217404573869652 1.7e-03 [1.166005652407875e-03, 4.277650963331325e-04, 1.179101696038742e-03, 8.582164912809276e-04, 4.171947533677667e-04, -1.16245034973872e-04, 9.589974330310724e-04, 6.600021521308008e-04, -1.430531322171191e-03, -4.858480000734744e-03] 3.423222128494833e-06 [6.658363546661239, 1.842699784227653, 3.69424651216916, 2.199373307407889, 0.803453100215288, -0.213979887608305, 1.561149578672594, 1.040554786484704, -1.919326734262247, -5.647053149774166] 10.662148794448434 35.100000000000001 0 1377.595980273689975 1 460.207173111568977 460.205376301870956 24.699999999999999 unique 0 3.904364856534385 6 17.0 +PSM GLHNEGSQTLQAR 92 ES-0001a_PROKKA_00281 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 null 1372.790859872859983 3 470.90796783835799 470.907658810270959 ms_run[1]:spectrum=346 R L 122 134 internal 10.079136274737174 2 HCD 6558.95166015625 -1 5360692749920258796 1 119.999997317790985 0 1372.790859872858846 1382.961791992190001 spectrum=346 4.05532421875e04 GLHNEGSQTLQAR 1.3e-03 0.384772994030273 25.600000000000001 1 16.0 0.656239246165129 9.0e-04 [0.036612973951748, 5.105489967149879e-05, 1.598306968162433e-04, 7.091314853937547e-04, 1.28871500362493e-03, 7.445149021805264e-04] 2.164683327476253e-04 [213.96980763820423, 0.291544112285521, 0.649306347460157, 1.894985923846098, 2.64460992411395, 1.265436341964523] 7535.307089998951597 25.600000000000001 0 1409.70207411476099 0 470.909851074219034 470.907658810270959 20.899999999999999 unique 0 4.655400920030881 5 16.199999999999999 +PSM MIAEAMQK 93 ES-0001a_PROKKA_00962 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 6-UNIMOD:35 1309.582049075959958 2 469.227772330751009 469.227715781370989 ms_run[2]:spectrum=4 K V 161 168 internal 18.200168769514313 1 HCD 3.562624609375e04 -1 17763620004723453763 1 119.999997317790985 1 1309.582049075959731 1300.879150390630002 spectrum=4 1.56452296875e05 MIAEAM(Oxidation)QK 4.1e-06 0.209983106294453 35.600000000000001 2 16.699999999999999 0.120515856411775 1.0e-04 [6.719804559622844e-04, -8.007056238170662e-04, 1.277346490269338e-04, 2.48706591150949e-04, 1.355480081542737e-03, -1.421163710006113e-03] 1.004473649049207e-06 [2.741302373422647, -1.896477403265559, 0.258968534054757, 0.399665740010015, 1.955046778076335, -1.762339028679025] 3.557342465419175 35.600000000000001 0 936.440991727960068 0 469.229128457025013 469.227715781370989 22.600000000000001 unique 0 3.010639837570466 7 19.199999999999999 +PSM DAEAEAYAR 94 ES-0001a_PROKKA_03080 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1363.586638061960002 2 498.225106918894028 498.225073955671007 ms_run[2]:spectrum=296 K E 46 54 internal 12.294924197037492 2 HCD 1.6487138671875e04 -1 18116955262754587677 1 119.999997317790985 1 1363.586638061958183 1384.77294921875 spectrum=296 1.1663040625e05 DAEAEAYAR 3.3e-06 0.537724236496426 35.899999999999999 2 18.300000000000001 0.066161308901568 1.0e-04 [1.803632773089703e-04, 3.766801861502245e-04, 2.916645455854905e-04, 3.400747330033482e-04, -2.548360707805841e-04, 2.472310899406693e-03, -2.193215226498069e-04, 1.459752736309383e-03, -1.430360128438224e-03] 1.203486462373217e-06 [1.029947211928532, 2.013564432955954, 1.184876525912105, 1.07579800127564, -0.622737028223405, 5.147896686986106, -0.359957073533529, 2.145634313964216, -1.767231987349181] 3.955766220692491 35.899999999999999 0 994.435660904246106 0 498.226551298094989 498.225073955671007 22.300000000000001 unique 0 2.965210908099446 7 19.100000000000001 +PSM VGEAAASGELRK 95 ES-0001a_PROKKA_01329 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1365.863900657280055 2 594.32260322297202 594.322579838470915 ms_run[1]:spectrum=304 K N 447 458 internal 11.719468527791332 1 HCD 1.200121484375e04 -1 260928917346100589 1 119.999997317790985 0 1365.863900657271188 1371.34814453125 spectrum=304 4.280728125e04 VGEAAASGELRK 6.800000000000001e-04 0.365404680313936 26.699999999999999 2 15.4 0.039346479333898 1.0e-04 [-7.574977584567932e-05, 4.355104526325704e-04, -5.375110806653538e-04, 3.423645282509824e-04, 2.296984183544737e-03, 3.121329156101638e-04, 1.742762591106839e-03] 1.016370236782916e-06 [-0.482184263096387, 1.522020110955152, -0.892338902345123, 0.496616585608076, 3.02063386806729, 0.375399659788438, 1.931027305354725] 1.915400580847544 26.699999999999999 0 1186.630653512401977 1 594.324895518813946 594.322579838470915 16.399999999999999 unique 0 3.896335797405614 5 16.399999999999999 +PSM VGEAAASGELRK 96 ES-0001a_PROKKA_01329 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1339.867860745400094 2 594.323267845509008 594.322579838470915 ms_run[2]:spectrum=162 K N 447 458 internal 10.19565796189929 1 HCD 1.0866662109375e04 -1 260928917346100589 1 119.999997317790985 1 1339.867860745402822 1340.226806640630002 spectrum=162 3.5046140625e04 VGEAAASGELRK 1.2e-03 0.288500819251953 25.699999999999999 2 14.300000000000001 1.157632338788155 1.4e-03 [2.552665677910682e-04, 1.770790724435756e-04, 6.916486352110951e-04, 1.523901092355118e-03, -3.15414252509072e-03, -9.457055149368898e-04, -5.130497111167642e-04] 2.241959913089663e-06 [1.624896186283575, 0.49577419668522, 1.148227462006538, 2.210493479438445, -4.147834279510506, -1.137392151908626, -0.568472726133981] 4.648687260314377 25.699999999999999 0 1186.631982757475953 1 594.325008398299019 594.322579838470915 15.0 unique 0 4.086265456654906 5 15.4 +PSM YHLGASSDR 97 ES-0001a_PROKKA_01599 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 null 1341.4951603858201 2 503.240769902613977 503.241057987570969 ms_run[1]:spectrum=227 K E 344 352 internal 27.283188161665883 2 HCD 1.199970703125e04 -1 16840186854814138036 1 119.999997317790985 0 1341.495160385824192 1351.60009765625 spectrum=227 6.308661328125e04 YHLGASSDR 6.100000000000001e-03 0.329641857797835 22.899999999999999 2 17.399999999999999 -0.572459167270623 -5.999999999999999e-04 [-1.607247452284355e-04, -1.801201463536017e-04, 1.508860243006893e-04, 4.079475555727186e-04, 1.086005360093623e-03] 2.716977644463988e-07 [-0.917803256326823, -0.598148423188645, 0.364271068690313, 0.68878816347149, 1.539663089320253] 0.986485581161338 22.899999999999999 0 1004.466986871686004 0 503.242763698583019 503.241057987570969 18.699999999999999 unique 0 3.389451208276695 3 17.300000000000001 +PSM LHHLVDDK 98 ES-0001a_PROKKA_00009 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 null 1351.14041946077009 2 488.763527822432025 488.764168567321008 ms_run[1]:spectrum=259 K I 1257 1264 internal 18.885139001815126 2 HCD 3952.6220703125 -1 3963149378438661089 1 119.999997317790985 0 1351.140419460772137 1359.358764648440001 spectrum=259 3.1124029296875e04 LHHLVDDK 6.8e-03 0.330051106100312 22.699999999999999 1 16.199999999999999 -1.310948981512505 -1.3e-03 [-2.016462905203298e-04, -4.441264514412069e-04, -1.944401246873895e-04, 1.262487758651787e-03, -1.505643284872349e-03] 9.754540301329755e-07 [-1.370691631085897, -1.768369516110959, -0.741742240065004, 2.650975828362611, -2.072809350726759] 3.674709294848598 22.699999999999999 0 975.512502711322099 0 488.765472412108977 488.764168567321008 15.800000000000001 unique 0 2.66763578801465 4 15.6 +PSM LHHLVDDK 99 ES-0001a_PROKKA_00009 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1368.326251703749904 2 488.765398263812017 488.764168567321008 ms_run[2]:spectrum=271 K I 1257 1264 internal 33.801800536276524 1 HCD 5990.18701171875 -1 3963149378438661089 1 119.999997317790985 1 1368.32625170374854 1374.754516601559999 spectrum=271 4.121231640625e04 LHHLVDDK 7.7e-03 0.406403520713239 22.5 2 16.699999999999999 2.515930115363726 2.5e-03 [4.337859725467297e-04, 3.123803126072744e-04, 4.040431306293613e-04, 6.442432960511724e-04, 5.449610533787563e-03] 5.01675412856309e-06 [2.948662237812469, 1.243798518316901, 1.541327219768732, 1.65952623919275, 7.502443497572267] 6.820324887807409 22.5 0 975.516243594082084 0 488.766813795649 488.764168567321008 16.800000000000001 unique 0 5.41207498034495 3 17.100000000000001 +PSM TLHSDEGAHFDK 100 ES-0001a_PROKKA_01616 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1356.035167086779893 3 452.876976963643017 452.877476703937703 ms_run[1]:spectrum=275 K I 267 278 internal 23.035222900873357 1 HCD 5.800975e04 -1 16277983992011910871 1 119.999997317790985 0 1356.0351670867758 1362.913940429690001 spectrum=275 2.403740625e05 TLHSDEGAHFDK 2.3e-10 0.196848534182434 52.600000000000001 6 17.100000000000001 -1.103477917079719 -1.5e-03 [2.608921650448792e-05, 6.089154734922886e-05, -2.021743919158325e-04, -8.495147802705105e-04, -5.891907972568333e-04, -2.275558741757777e-04, -1.076129491025313e-03, 3.274657686006321e-03, -6.188389524140803e-03, -1.643865594928684e-03, -1.439903239543128e-03, 1.888676512180609e-03] 5.058358649141025e-06 [0.177341574853738, 0.283033488474721, -0.771246606555769, -2.412037954933474, -1.439831484345379, -0.416565237677573, -1.941571643375107, 4.856196212269181, -8.359062927951511, -2.046216786504471, -1.774682816966424, 2.056496514983461] 9.634806140699002 52.600000000000001 0 1355.609101490616013 0 452.878797497482026 452.877476703937703 21.699999999999999 unique 0 2.916447852377523 10 18.100000000000001 +PSM TLHSDEGAHFDK 101 ES-0001a_PROKKA_01616 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1335.929117389649946 3 452.877335076501026 452.877476703937703 ms_run[2]:spectrum=52 K I 267 278 internal 18.764607310204816 1 HCD 4.363870703125e04 -1 16277983992011910871 1 119.999997317790985 1 1335.929117389654948 1313.453369140630002 spectrum=52 2.13776734375e05 TLHSDEGAHFDK 9.700000000000001e-08 0.168784321312684 42.0 4 15.5 -0.312727931861147 -4.0e-04 [1.80258621782059e-04, 6.019532139589501e-05, 8.07095346431197e-04, 7.476518865132675e-04, 1.12021771280979e-03, -6.454734519820704e-04, 3.924389761323255e-03, -8.094295446881006e-05, 2.017513723330921e-03] 1.881254762881531e-06 [1.225308849819064, 0.229630651623007, 2.291595925173106, 1.827069822787419, 2.050677704882157, -0.95721325194709, 4.884920173023203, -0.088135211458411, 2.006623334268028] 2.875057947364617 42.0 0 1355.610175829190212 0 452.878641668709975 452.877476703937703 22.399999999999999 unique 0 2.572361912874714 8 17.600000000000001 +PSM TCHAHPTMSETVR 102 ES-0001a_PROKKA_01604 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 2-UNIMOD:4 1368.809036701260084 3 509.566188122819995 509.566139339470965 ms_run[1]:spectrum=318 R E 442 454 internal 11.855606100049148 1 HCD 1.754498828125e04 -1 483781179592362750 1 119.999997317790985 0 1368.809036701253717 1375.125 spectrum=318 2.58283703125e05 TC(Carbamidomethyl)HAHPTMSETVR 6.3e-09 0.41822159302634 46.799999999999997 6 18.0 0.095735068057949 2.0e-04 [2.411311018590823e-05, 4.78791035334325e-05, -8.35460996142956e-04, -6.762464808502955e-04, -1.403517737742277e-03, -5.515582157045174e-04, 2.198680556375621e-04, -6.621871692686909e-04, 0.089821398840854, 2.933850523731962e-04, 0.046464572784089, 2.093971322324251e-03, 8.072111680803573e-04, 6.302992907421867e-03] 6.797238737134436e-04 [0.137695605100132, 0.182684980324484, -2.226500440471729, -1.694239685677908, -2.985054381184304, -1.093759015364587, 0.371832335685437, -1.090485766464806, 132.716846194004347, 0.406153512135417, 57.695527173986662, 2.543085779121444, 0.87697391864081, 5.96022337849243] 1413.622163403810646 46.799999999999997 0 1525.676734968147002 0 509.568203266493015 509.566139339470965 23.0 unique 0 4.050361401025036 8 19.399999999999999 +PSM TCHAHPTMSETVR 103 ES-0001a_PROKKA_01604 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 2-UNIMOD:4 1358.628774345040029 3 509.566697231553974 509.566139339470965 ms_run[2]:spectrum=198 R E 442 454 internal 11.638347881510148 2 HCD 5538.22021484375 -1 483781179592362750 1 119.999997317790985 1 1358.628774345035026 1354.288818359380002 spectrum=198 4.615178515625e04 TC(Carbamidomethyl)HAHPTMSETVR 0.017 0.183959569774782 21.0 1 11.4 1.09483743117647 1.7e-03 [4.103218931277297e-04, 2.829667885976051e-03, 2.113144152076529e-03, 3.088983017505598e-03, 1.267193658577526e-03] 1.233553991368192e-06 [0.693920485457229, 4.659879708764597, 2.925373709641355, 3.75150733919636, 1.376710125409078] 2.692831326336177 21.0 0 1525.678262294348997 0 509.568176269531023 509.566139339470965 17.100000000000001 unique 0 3.997381110719348 4 15.300000000000001 +PSM VEEHEEGQSAMLTR 104 ES-0001a_PROKKA_02364 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 11-UNIMOD:35 1350.608456491310108 3 544.582984796385972 544.5825128372378 ms_run[2]:spectrum=185 R R 93 106 internal 28.369337712227459 1 HCD 5689.8310546875 -1 10721652433759411040 1 119.999997317790985 1 1350.608456491314655 1349.329467773440001 spectrum=185 7.53782890625e04 VEEHEEGQSAM(Oxidation)LTR 1.2e-06 0.389029817305659 37.700000000000003 5 15.9 0.866643964957282 1.4e-03 [2.615642179364386e-04, 2.861023011746511e-05, 4.851122492937066e-04, 8.328875483130105e-04, 2.40882053049063e-04, 4.370209072703801e-04, -1.123519773614134e-03, -1.570162922689633e-03, -1.187907636108321e-03, -3.199079947080463e-05] 6.802511922864248e-07 [1.493637402376606, 0.124871003291229, 1.756592552621025, 2.139720123377107, 0.44916706701712, 0.71958538649042, -1.799755678775303, -2.261325086404432, -1.576927894878295, -0.039478903482686] 2.37443001811256 37.700000000000003 0 1630.727124988844935 0 544.584571340338016 544.5825128372378 20.100000000000001 unique 0 3.77996548124717 7 17.300000000000001 +PSM LNADSTVASK 105 ES-0001a_PROKKA_02449 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.022222222222222 null 1331.329117018080069 2 503.264375136979027 503.264199115170982 ms_run[1]:spectrum=113 R E 192 201 internal 11.115132990897449 2 HCD 6185.0537109375 -1 16957076264515771445 1 119.999997317790985 0 1331.329117018078023 1322.941040039059999 spectrum=113 3.1345287109375e04 LNADSTVASK 3.0e-03 0.376363511751655 24.100000000000001 2 15.699999999999999 0.3497602419452 4.0e-04 [2.072375338286747e-04, 9.224527866535936e-05, 2.984242337333853e-05, -8.778377798535075e-05, -1.324903221416207e-03, 3.556173480546931e-03, -2.179341269084034e-04] 2.29715558737643e-06 [0.908401594941594, 0.308335903281842, 0.097785676859943, -0.148200779088648, -1.873033267791241, 4.568602648769506, -0.244201117712696] 3.920356430061583 24.100000000000001 0 1004.514197340416104 0 503.266369012785049 503.264199115170982 19.5 unique 0 4.31164707897365 4 16.600000000000001 +PSM EALQGEHEAHAEAVAR 106 ES-0001a_PROKKA_02337,ES-0002a_PROKKA_00085 0 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1368.860797965560096 3 573.280390783689995 573.279932991037754 ms_run[2]:spectrum=266 R,R E,E 308,308 323,323 internal 37.626652173150205 1 HCD 3.618188671875e04 -1 2891595416484307757 1 53.418584167957 1 1368.860797965554184 1373.316528320309999 spectrum=266 4.35400625e05 EALQGEHEAHAEAVAR 2.3e-10 0.51561515295685 52.5 4 20.899999999999999 0.798549933281387 1.4e-03 [0.024397833919849, -0.023433697654212, 1.424356569259544e-04, 2.695744645109244e-04, 2.223066906594795e-04, 6.262391026439218e-04, 3.810727611721632e-04, 9.230873619117119e-04, 8.930367827133523e-04, -3.350838291680702e-03, 2.172656177435783e-03, 1.803116455562304e-03, 1.665671497903531e-04, 7.705945247153068e-03, 0.217564097121567] 3.215568557937986e-03 [241.450041786775728, -135.364230025016383, 0.813365170110487, 1.340586337363343, 0.707597632643824, 1.814005484712228, 0.915464614737292, 1.692793452306221, 1.448932234557746, -5.245478419604075, 2.88380084174765, 2.187087349548848, 0.17469392433851, 7.98185972876881, 199.501466425169753] 7829.543064243182926 52.5 0 1716.819342950756891 0 573.282065996384972 573.279932991037754 25.899999999999999 non-unique 0 3.720704710680554 12 20.699999999999999 +PSM TVAVHSTADADAMHVR 107 ES-0001a_PROKKA_03139 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 13-UNIMOD:35 1359.65844965698011 3 566.274740513534994 566.273901911670919 ms_run[2]:spectrum=203 K L 35 50 internal 11.271826367309416 1 HCD 1.981178125e04 -1 12633067014209621448 1 119.999997317790985 1 1359.658449656977609 1354.955688476559999 spectrum=203 9.60043125e04 TVAVHSTADADAM(Oxidation)HVR 2.4e-07 0.323849784408588 40.399999999999999 4 18.5 1.480912083788252 2.5e-03 [6.221132352507652e-03, 4.257457183882707e-04, 4.982374185260596e-04, 3.314209139944069e-04, 2.610844961736802e-04, -2.869081242806715e-04, 1.006364705972373e-03, 4.093358107866152e-04, 2.17899827691781e-03, -3.452616398362807e-03, 6.118812709019039e-03, -2.30648819660928e-03] 8.10556866337409e-06 [61.555557872645437, 2.431180128166261, 2.477272624173974, 1.217740757060004, 0.634861661337109, -0.513912841574911, 1.599133406162718, 0.549926989598305, 2.341976928984415, -3.231287319395295, 5.549970736823979, -1.938996707179891] 310.592090152517983 40.399999999999999 0 1695.802392140291886 0 566.276394033518045 566.273901911670919 19.800000000000001 unique 0 4.400912418377804 8 16.199999999999999 +PSM EESIEEMHHADK 108 ES-0001a_PROKKA_01670 1 crap_to_database_minimal_mrgd null [, , XTandem, ] 0.0 null 1335.416987061900045 3 485.543887644815982 485.545398677737694 ms_run[1]:spectrum=170 R L 46 57 internal 11.238176732321396 1 HCD 5789.6591796875 -1 9584885256633395211 1 119.999997317790985 0 1335.416987061908912 1340.117919921880002 spectrum=170 6.59868515625e04 EESIEEMHHADK 4.1e-04 0.076628676258646 27.600000000000001 4 16.199999999999999 -3.1120322133156 -4.5e-03 [2.630923967217314e-05, -1.001680588046838e-03, -2.724064114545399e-05, -0.19779834124887, 1.343104955140007e-03] 7.832268040055941e-03 [0.178837183395868, -3.006453024165203, -0.057929750493903, -396.61692495896267, 2.21161979906862] 3.143773662657601e04 27.600000000000001 0 1453.609833534135078 0 485.545821225712018 485.545398677737694 19.300000000000001 unique 0 0.870254306754354 6 14.800000000000001 +PSM null 109 null null crap_to_database_minimal_mrgd null null null null 1300.0126953125 null 465.537655624524007 null ms_run[1]:spectrum=0 null null null null null null 1 HCD 6778.25244140625 null null 0 119.999997317790985 null 1314.294111611222661 1300.0126953125 spectrum=0 2.617128125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 110 null null crap_to_database_minimal_mrgd null null null null 1301.354736328130002 null 524.591318306504945 null ms_run[1]:spectrum=4 null null null null null null 1 HCD 1.49679150390625e04 null null 0 119.999997317790985 null 1315.357330705811137 1301.354736328130002 spectrum=4 3.002340234375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 111 null null crap_to_database_minimal_mrgd null null null null 1301.504272460940001 null 575.946924102029016 null ms_run[1]:spectrum=5 null null null null null null 2 HCD 6723.9951171875 null null 0 119.999997317790985 null 1315.475799269649997 1301.504272460940001 spectrum=5 3.157133984375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 112 null null crap_to_database_minimal_mrgd null null null null 1301.94384765625 null 564.257874921966959 null ms_run[1]:spectrum=8 null null null null null null 1 HCD 8014.38037109375 null null 0 119.999997317790985 null 1315.824048492824204 1301.94384765625 spectrum=8 1.46428466796875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 113 null null crap_to_database_minimal_mrgd null null null null 1302.690551757809999 null 466.904380621752978 null ms_run[1]:spectrum=9 null null null null null null 2 HCD 7024.7197265625 null null 0 119.999997317790985 null 1316.415617639772563 1302.690551757809999 spectrum=9 3.0638158203125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 114 null null crap_to_database_minimal_mrgd null null null null 1303.875854492190001 null 456.729977528020015 null ms_run[1]:spectrum=13 null null null null null null 2 HCD 4799.0283203125 null null 0 119.999997317790985 null 1317.354662337649643 1303.875854492190001 spectrum=13 2.8233072265625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 115 null null crap_to_database_minimal_mrgd null null null null 1304.663940429690001 null 517.225070948089979 null ms_run[1]:spectrum=17 null null null null null null 1 HCD 6952.880859375 null null 0 119.999997317790985 null 1317.979015846348602 1304.663940429690001 spectrum=17 3.437608203125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 116 null null crap_to_database_minimal_mrgd null null null null 1305.691162109380002 null 550.262742291772042 null ms_run[1]:spectrum=21 null null null null null null 1 HCD 1.17787958984375e04 null null 0 119.999997317790985 null 1318.792822348163327 1305.691162109380002 spectrum=21 2.1003541015625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 117 null null crap_to_database_minimal_mrgd null null null null 1305.839599609380002 null 454.884128259873023 null ms_run[1]:spectrum=22 null null null null null null 2 HCD 6096.74072265625 null null 0 119.999997317790985 null 1318.910420530718739 1305.839599609380002 spectrum=22 2.0848291015625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 118 null null crap_to_database_minimal_mrgd null null null null 1306.68798828125 null 484.91036106857598 null ms_run[1]:spectrum=26 null null null null null null 1 HCD 7085.63427734375 null null 0 119.999997317790985 null 1319.58254830107694 1306.68798828125 spectrum=26 3.656422265625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 119 null null crap_to_database_minimal_mrgd null null null null 1307.62451171875 null 464.20105137662398 null ms_run[1]:spectrum=30 null null null null null null 1 HCD 7105.017578125 null null 0 119.999997317790985 null 1320.324499992331539 1307.62451171875 spectrum=30 2.7913919921875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 120 null null crap_to_database_minimal_mrgd null null null null 1308.823852539059999 null 590.798927392880955 null ms_run[1]:spectrum=34 null null null null null null 1 HCD 7221.29541015625 null null 0 119.999997317790985 null 1321.274666228848901 1308.823852539059999 spectrum=34 2.3368939453125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 121 null null crap_to_database_minimal_mrgd null null null null 1309.044067382809999 null 568.262012351189014 null ms_run[1]:spectrum=36 null null null null null null 1 HCD 7579.83251953125 null null 0 119.999997317790985 null 1321.449129322047838 1309.044067382809999 spectrum=36 3.2153302734375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 122 null null crap_to_database_minimal_mrgd null null null null 1310.66796875 null 586.27170016614798 null ms_run[1]:spectrum=47 null null null null null null 1 HCD 1.555588671875e04 null null 0 119.999997317790985 null 1322.734425917495628 1310.66796875 spectrum=47 2.98926015625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 123 null null crap_to_database_minimal_mrgd null null null null 1310.817504882809999 null 594.321499211565993 null ms_run[1]:spectrum=48 null null null null null null 2 HCD 8542.91796875 null null 0 119.999997317790985 null 1322.852460602560541 1310.817504882809999 spectrum=48 1.8104126953125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 124 null null crap_to_database_minimal_mrgd null null null null 1311.605346679690001 null 557.231075013693044 null ms_run[1]:spectrum=52 null null null null null null 1 HCD 1.6792982421875e04 null null 0 119.999997317790985 null 1323.472606366864966 1311.605346679690001 spectrum=52 8.103228906249999e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 125 null null crap_to_database_minimal_mrgd null null null null 1311.7548828125 null 523.279433032569045 null ms_run[1]:spectrum=53 null null null null null null 2 HCD 6687.29052734375 null null 0 119.999997317790985 null 1323.589917666519568 1311.7548828125 spectrum=53 1.52381279296875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 126 null null crap_to_database_minimal_mrgd null null null null 1312.053100585940001 null 471.551245644521998 null ms_run[1]:spectrum=54 null null null null null null 3 HCD 1.579379296875e04 null null 0 119.999997317790985 null 1323.823420483277687 1312.053100585940001 spectrum=54 3.4563140625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 127 null null crap_to_database_minimal_mrgd null null null null 1312.20263671875 null 589.815654154073968 null ms_run[1]:spectrum=55 null null null null null null 4 HCD 6656.56103515625 null null 0 119.999997317790985 null 1323.940263406059557 1312.20263671875 spectrum=55 2.66733125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 128 null null crap_to_database_minimal_mrgd null null null null 1313.137939453130002 null 528.906855702065968 null ms_run[1]:spectrum=59 null null null null null null 1 HCD 5301.16796875 null null 0 119.999997317790985 null 1324.666777820499419 1313.137939453130002 spectrum=59 2.73898515625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 129 null null crap_to_database_minimal_mrgd null null null null 1313.627807617190001 null 562.220344910543986 null ms_run[1]:spectrum=63 null null null null null null 1 HCD 7801.2080078125 null null 0 119.999997317790985 null 1325.043846709467971 1313.627807617190001 spectrum=63 1.7794134765625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 130 null null crap_to_database_minimal_mrgd null null null null 1315.000244140630002 null 531.775071277941947 null ms_run[1]:spectrum=68 null null null null null null 1 HCD 6113.05029296875 null null 0 119.999997317790985 null 1326.084488352217477 1315.000244140630002 spectrum=68 2.7682974609375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 131 null null crap_to_database_minimal_mrgd null null null null 1316.180908203130002 null 496.578076397117002 null ms_run[1]:spectrum=77 null null null null null null 1 HCD 5310.39892578125 null null 0 119.999997317790985 null 1326.957069532070364 1316.180908203130002 spectrum=77 3.1650935546875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 132 null null crap_to_database_minimal_mrgd null null null null 1316.847778320309999 null 574.59268041073301 null ms_run[1]:spectrum=79 null null null null null null 1 HCD 9261.8076171875 null null 0 119.999997317790985 null 1327.438916900091954 1316.847778320309999 spectrum=79 1.7973857421875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 133 null null crap_to_database_minimal_mrgd null null null null 1317.621459960940001 null 514.243086319003055 null ms_run[1]:spectrum=84 null null null null null null 1 HCD 9481.5458984375 null null 0 119.999997317790985 null 1327.986692000019048 1317.621459960940001 spectrum=84 2.42271640625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 134 null null crap_to_database_minimal_mrgd null null null null 1317.77001953125 null 498.528234570670008 null ms_run[1]:spectrum=85 null null null null null null 2 HCD 6723.57080078125 null null 0 119.999997317790985 null 1328.090394855179966 1317.77001953125 spectrum=85 6.762684375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 135 null null crap_to_database_minimal_mrgd null null null null 1318.26025390625 null 562.889471156836976 null ms_run[1]:spectrum=89 null null null null null null 1 HCD 7524.39697265625 null null 0 119.999997317790985 null 1328.429030019831316 1318.26025390625 spectrum=89 1.4909923828125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 136 null null crap_to_database_minimal_mrgd null null null null 1319.195678710940001 null 565.277769077998983 null ms_run[1]:spectrum=93 null null null null null null 1 HCD 4277.71533203125 null null 0 119.999997317790985 null 1329.059031424952082 1319.195678710940001 spectrum=93 2.407680859375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 137 null null crap_to_database_minimal_mrgd null null null null 1321.31396484375 null 494.767169467593988 null ms_run[1]:spectrum=104 null null null null null null 1 HCD 1.53398037109375e04 null null 0 119.999997317790985 null 1330.397202770852346 1321.31396484375 spectrum=104 3.1251357421875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 138 null null crap_to_database_minimal_mrgd null null null null 1321.463623046880002 null 596.661335545092015 null ms_run[1]:spectrum=105 null null null null null null 2 HCD 6801.5400390625 null null 0 119.999997317790985 null 1330.486622801984595 1321.463623046880002 spectrum=105 2.4830298828125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 139 null null crap_to_database_minimal_mrgd null null null null 1321.903198242190001 null 527.798705089059013 null ms_run[1]:spectrum=108 null null null null null null 1 HCD 6966.0439453125 null null 0 119.999997317790985 null 1330.745048066316258 1321.903198242190001 spectrum=108 2.4484275390625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 140 null null crap_to_database_minimal_mrgd null null null null 1322.123413085940001 null 562.592230910477042 null ms_run[1]:spectrum=110 null null null null null null 1 HCD 7664.51318359375 null null 0 119.999997317790985 null 1330.87209341362086 1322.123413085940001 spectrum=110 2.0893513671875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 141 null null crap_to_database_minimal_mrgd null null null null 1324.207275390630002 null 515.232096672049011 null ms_run[1]:spectrum=115 null null null null null null 1 HCD 1.0831298828125e04 null null 0 119.999997317790985 null 1331.98857008648929 1324.207275390630002 spectrum=115 2.6925095703125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 142 null null crap_to_database_minimal_mrgd null null null null 1324.508422851559999 null 552.903297619842988 null ms_run[1]:spectrum=116 null null null null null null 2 HCD 4308.7158203125 null null 0 119.999997317790985 null 1332.136265323223597 1324.508422851559999 spectrum=116 2.62466328125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 143 null null crap_to_database_minimal_mrgd null null null null 1325.245239257809999 null 458.547201415498023 null ms_run[1]:spectrum=120 null null null null null null 1 HCD 1.01231357421875e04 null null 0 119.999997317790985 null 1332.482040482862885 1325.245239257809999 spectrum=120 3.2027146484375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 144 null null crap_to_database_minimal_mrgd null null null null 1325.393798828130002 null 489.566808770936973 null ms_run[1]:spectrum=121 null null null null null null 2 HCD 9853.7548828125 null null 0 119.999997317790985 null 1332.549006743172868 1325.393798828130002 spectrum=121 2.545051171875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 145 null null crap_to_database_minimal_mrgd null null null null 1325.542236328130002 null 525.906743611679985 null ms_run[1]:spectrum=122 null null null null null null 3 HCD 9474.21484375 null null 0 119.999997317790985 null 1332.614976076276435 1325.542236328130002 spectrum=122 2.21305546875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 146 null null crap_to_database_minimal_mrgd null null null null 1325.83935546875 null 474.571773548566 null ms_run[1]:spectrum=123 null null null null null null 4 HCD 7217.42578125 null null 0 119.999997317790985 null 1332.744160103532067 1325.83935546875 spectrum=123 2.7079025390625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 147 null null crap_to_database_minimal_mrgd null null null null 1326.859252929690001 null 577.314886994054973 null ms_run[1]:spectrum=125 null null null null null null 1 HCD 1.43952626953125e04 null null 0 119.999997317790985 null 1333.157680125496199 1326.859252929690001 spectrum=125 3.142197265625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 148 null null crap_to_database_minimal_mrgd null null null null 1327.0078125 null 596.863361272520024 null ms_run[1]:spectrum=126 null null null null null null 2 HCD 3569.478759765625 null null 0 119.999997317790985 null 1333.213935102634878 1327.0078125 spectrum=126 2.846675e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 149 null null crap_to_database_minimal_mrgd null null null null 1328.535034179690001 null 550.898612843467049 null ms_run[1]:spectrum=129 null null null null null null 1 HCD 7291.8330078125 null null 0 119.999997317790985 null 1333.730538030762546 1328.535034179690001 spectrum=129 2.890641796875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 150 null null crap_to_database_minimal_mrgd null null null null 1328.834106445309999 null 548.603724578778042 null ms_run[1]:spectrum=130 null null null null null null 2 HCD 6472.57763671875 null null 0 119.999997317790985 null 1333.818057170058182 1328.834106445309999 spectrum=130 2.29629453125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 151 null null crap_to_database_minimal_mrgd null null null null 1329.430419921880002 null 460.87992644613098 null ms_run[1]:spectrum=131 null null null null null null 3 HCD 1.2013009765625e04 null null 0 119.999997317790985 null 1333.978688034205334 1329.430419921880002 spectrum=131 5.059761328125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 152 null null crap_to_database_minimal_mrgd null null null null 1330.377563476559999 null 557.256809549097966 null ms_run[1]:spectrum=133 null null null null null null 1 HCD 1.54774375e04 null null 0 119.999997317790985 null 1334.197703432985918 1330.377563476559999 spectrum=133 7.75548828125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 153 null null crap_to_database_minimal_mrgd null null null null 1330.526977539059999 null 570.604657949189004 null ms_run[1]:spectrum=134 null null null null null null 2 HCD 6655.66552734375 null null 0 119.999997317790985 null 1334.228560560049345 1330.526977539059999 spectrum=134 3.366004296875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 154 null null crap_to_database_minimal_mrgd null null null null 1330.974609375 null 533.240642591792039 null ms_run[1]:spectrum=135 null null null null null null 3 HCD 3.98667421875e04 null null 0 119.999997317790985 null 1334.315524698610943 1330.974609375 spectrum=135 7.22476953125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 155 null null crap_to_database_minimal_mrgd null null null null 1331.123291015630002 null 516.923802426185944 null ms_run[1]:spectrum=136 null null null null null null 4 HCD 7700.0810546875 null null 0 119.999997317790985 null 1334.34267860080854 1331.123291015630002 spectrum=136 3.8284765625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 156 null null crap_to_database_minimal_mrgd null null null null 1331.271728515630002 null 527.241394931096011 null ms_run[1]:spectrum=137 null null null null null null 5 HCD 3617.281494140625 null null 0 119.999997317790985 null 1334.36896986456145 1331.271728515630002 spectrum=137 1.267765625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 157 null null crap_to_database_minimal_mrgd null null null null 1331.56982421875 null 523.91822484732495 null ms_run[1]:spectrum=138 null null null null null null 6 HCD 6095.13232421875 null null 0 119.999997317790985 null 1334.419403859755676 1331.56982421875 spectrum=138 2.654515234375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 158 null null crap_to_database_minimal_mrgd null null null null 1332.856811523440001 null 561.253490140173994 null ms_run[1]:spectrum=142 null null null null null null 3 HCD 1.18002294921875e04 null null 0 119.999997317790985 null 1334.605556691165248 1332.856811523440001 spectrum=142 2.865540234375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 159 null null crap_to_database_minimal_mrgd null null null null 1333.00537109375 null 495.271897975553998 null ms_run[1]:spectrum=143 null null null null null null 4 HCD 4594.78076171875 null null 0 119.999997317790985 null 1334.624228673160587 1333.00537109375 spectrum=143 3.536279296875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 160 null null crap_to_database_minimal_mrgd null null null null 1334.056762695309999 null 495.615982498972016 null ms_run[1]:spectrum=147 null null null null null null 1 HCD 1.3756990234375e04 null null 0 119.999997317790985 null 1334.74384331527699 1334.056762695309999 spectrum=147 4.159922265625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 161 null null crap_to_database_minimal_mrgd null null null null 1334.206298828130002 null 574.78823642214104 null ms_run[1]:spectrum=148 null null null null null null 2 HCD 6535.68212890625 null null 0 119.999997317790985 null 1334.759390773684572 1334.206298828130002 spectrum=148 3.0997865234375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 162 null null crap_to_database_minimal_mrgd null null null null 1335.377563476559999 null 563.547672146626951 null ms_run[1]:spectrum=154 null null null null null null 3 HCD 1.068548828125e04 null null 0 119.999997317790985 null 1334.873376347874228 1335.377563476559999 spectrum=154 1.9652099609375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 163 null null crap_to_database_minimal_mrgd null null null null 1336.245727539059999 null 555.887968052653037 null ms_run[1]:spectrum=157 null null null null null null 1 HCD 1.3430923828125e04 null null 0 119.999997317790985 null 1334.954044791491242 1336.245727539059999 spectrum=157 4.050769921875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 164 null null crap_to_database_minimal_mrgd null null null null 1336.5439453125 null 455.219301649585987 null ms_run[1]:spectrum=159 null null null null null null 3 HCD 2.33198828125e04 null null 0 119.999997317790985 null 1334.982073931288369 1336.5439453125 spectrum=159 4.502921484375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 165 null null crap_to_database_minimal_mrgd null null null null 1336.993530273440001 null 482.220245777295986 null ms_run[1]:spectrum=160 null null null null null null 4 HCD 1.0144814453125e04 null null 0 119.999997317790985 null 1335.025353121608305 1336.993530273440001 spectrum=160 2.00378515625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 166 null null crap_to_database_minimal_mrgd null null null null 1338.003051757809999 null 465.860927208274006 null ms_run[1]:spectrum=162 null null null null null null 1 HCD 7244.22314453125 null null 0 119.999997317790985 null 1335.130422727305586 1338.003051757809999 spectrum=162 3.4595625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 167 null null crap_to_database_minimal_mrgd null null null null 1339.231323242190001 null 568.262195456066024 null ms_run[1]:spectrum=166 null null null null null null 1 HCD 5547.33251953125 null null 0 119.999997317790985 null 1335.282695979612299 1339.231323242190001 spectrum=166 3.0576484375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 168 null null crap_to_database_minimal_mrgd null null null null 1339.600463867190001 null 526.896242270928042 null ms_run[1]:spectrum=168 null null null null null null 1 HCD 8685.759765625 null null 0 119.999997317790985 null 1335.335724314633126 1339.600463867190001 spectrum=168 2.3571634765625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 169 null null crap_to_database_minimal_mrgd null null null null 1340.493530273440001 null 464.201783795955976 null ms_run[1]:spectrum=172 null null null null null null 1 HCD 8723.0078125 null null 0 119.999997317790985 null 1335.481596808663198 1340.493530273440001 spectrum=172 2.2163330078125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 170 null null crap_to_database_minimal_mrgd null null null null 1342.285522460940001 null 505.723583751272997 null ms_run[1]:spectrum=181 null null null null null null 1 HCD 8814.52734375 null null 0 119.999997317790985 null 1335.868672726316618 1342.285522460940001 spectrum=181 2.1555556640625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 171 null null crap_to_database_minimal_mrgd null null null null 1342.732666015630002 null 509.565489741492002 null ms_run[1]:spectrum=182 null null null null null null 2 HCD 6857.46435546875 null null 0 119.999997317790985 null 1335.989020155263688 1342.732666015630002 spectrum=182 1.648225e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 172 null null crap_to_database_minimal_mrgd null null null null 1344.023559570309999 null 566.273961114378039 null ms_run[1]:spectrum=189 null null null null null null 2 HCD 4448.828125 null null 0 119.999997317790985 null 1336.40012976462549 1344.023559570309999 spectrum=189 1.34760703125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 173 null null crap_to_database_minimal_mrgd null null null null 1344.981689453130002 null 561.758737522590991 null ms_run[1]:spectrum=194 null null null null null null 2 HCD 1.17735888671875e04 null null 0 119.999997317790985 null 1336.774057547809434 1344.981689453130002 spectrum=194 2.18339140625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 174 null null crap_to_database_minimal_mrgd null null null null 1345.130126953130002 null 471.885045760833009 null ms_run[1]:spectrum=195 null null null null null null 3 HCD 5206.73291015625 null null 0 119.999997317790985 null 1336.837749867108641 1345.130126953130002 spectrum=195 2.033212109375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 175 null null crap_to_database_minimal_mrgd null null null null 1345.833129882809999 null 575.894800246156024 null ms_run[1]:spectrum=199 null null null null null null 1 HCD 5248.7509765625 null null 0 119.999997317790985 null 1337.161819585884359 1345.833129882809999 spectrum=199 2.14526171875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 176 null null crap_to_database_minimal_mrgd null null null null 1347.063232421880002 null 575.270351570492039 null ms_run[1]:spectrum=205 null null null null null null 1 HCD 6418.81591796875 null null 0 119.999997317790985 null 1337.824456955731421 1347.063232421880002 spectrum=205 2.8327482421875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 177 null null crap_to_database_minimal_mrgd null null null null 1347.282470703130002 null 490.241672190336999 null ms_run[1]:spectrum=207 null null null null null null 1 HCD 1.11377587890625e04 null null 0 119.999997317790985 null 1337.956229638170498 1347.282470703130002 spectrum=207 2.8357333984375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 178 null null crap_to_database_minimal_mrgd null null null null 1349.093139648440001 null 514.242598039391964 null ms_run[1]:spectrum=214 null null null null null null 1 HCD 3923.69580078125 null null 0 119.999997317790985 null 1339.21844121359004 1349.093139648440001 spectrum=214 1.28869599609375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 179 null null crap_to_database_minimal_mrgd null null null null 1350.6484375 null 493.22762392617301 null ms_run[1]:spectrum=222 null null null null null null 2 HCD 1.4542017578125e04 null null 0 119.999997317790985 null 1340.563177287336885 1350.6484375 spectrum=222 2.766338671875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 180 null null crap_to_database_minimal_mrgd null null null null 1350.797973632809999 null 576.23473570803003 null ms_run[1]:spectrum=223 null null null null null null 3 HCD 5071.78076171875 null null 0 119.999997317790985 null 1340.704441387511452 1350.797973632809999 spectrum=223 2.029194921875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 181 null null crap_to_database_minimal_mrgd null null null null 1351.451538085940001 null 472.854250177531981 null ms_run[1]:spectrum=226 null null null null null null 1 HCD 1.319488671875e04 null null 0 119.999997317790985 null 1341.344637412898464 1351.451538085940001 spectrum=226 3.7661171875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 182 null null crap_to_database_minimal_mrgd null null null null 1351.748657226559999 null 475.73305494612498 null ms_run[1]:spectrum=228 null null null null null null 3 HCD 8144.08447265625 null null 0 119.999997317790985 null 1341.647473008588122 1351.748657226559999 spectrum=228 3.1273126953125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 183 null null crap_to_database_minimal_mrgd null null null null 1352.0478515625 null 524.823861476811999 null ms_run[1]:spectrum=229 null null null null null null 4 HCD 7115.923828125 null null 0 119.999997317790985 null 1341.959537147562969 1352.0478515625 spectrum=229 2.9476345703125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 184 null null crap_to_database_minimal_mrgd null null null null 1352.68505859375 null 522.214906277180944 null ms_run[1]:spectrum=234 null null null null null null 2 HCD 1.31854814453125e04 null null 0 119.999997317790985 null 1342.646834649109223 1352.68505859375 spectrum=234 4.695145703125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 185 null null crap_to_database_minimal_mrgd null null null null 1353.580810546880002 null 573.613557585900026 null ms_run[1]:spectrum=236 null null null null null null 4 HCD 4357.701171875 null null 0 119.999997317790985 null 1343.661407285354471 1353.580810546880002 spectrum=236 2.7907306640625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 186 null null crap_to_database_minimal_mrgd null null null null 1354.2900390625 null 478.177840230502 null ms_run[1]:spectrum=239 null null null null null null 2 HCD 6505.6865234375 null null 0 119.999997317790985 null 1344.500996378712898 1354.2900390625 spectrum=239 2.749609765625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 187 null null crap_to_database_minimal_mrgd null null null null 1355.028930664059999 null 517.225376122848957 null ms_run[1]:spectrum=242 null null null null null null 1 HCD 6479.646484375 null null 0 119.999997317790985 null 1345.406027771568915 1355.028930664059999 spectrum=242 1.3856060546875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 188 null null crap_to_database_minimal_mrgd null null null null 1355.873291015630002 null 525.424811623017945 null ms_run[1]:spectrum=247 null null null null null null 1 HCD 6332.61669921875 null null 0 119.999997317790985 null 1346.473515272745544 1355.873291015630002 spectrum=247 2.2738416015625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 189 null null crap_to_database_minimal_mrgd null null null null 1356.171264648440001 null 588.326936371268971 null ms_run[1]:spectrum=248 null null null null null null 2 HCD 5691.2919921875 null null 0 119.999997317790985 null 1346.857737391563205 1356.171264648440001 spectrum=248 2.859693359375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 190 null null crap_to_database_minimal_mrgd null null null null 1356.762451171880002 null 572.800895710689019 null ms_run[1]:spectrum=251 null null null null null null 1 HCD 8727.7275390625 null null 0 119.999997317790985 null 1347.630263522114774 1356.762451171880002 spectrum=251 1.6174404296875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 191 null null crap_to_database_minimal_mrgd null null null null 1357.0595703125 null 526.577029466100044 null ms_run[1]:spectrum=252 null null null null null null 2 HCD 8401.90234375 null null 0 119.999997317790985 null 1348.023180580932376 1357.0595703125 spectrum=252 2.1075060546875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 192 null null crap_to_database_minimal_mrgd null null null null 1357.945068359380002 null 485.503285063946009 null ms_run[1]:spectrum=255 null null null null null null 1 HCD 1.3586921875e04 null null 0 119.999997317790985 null 1349.209874508590701 1357.945068359380002 spectrum=255 4.288576953125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 193 null null crap_to_database_minimal_mrgd null null null null 1358.094482421880002 null 561.265872356824048 null ms_run[1]:spectrum=256 null null null null null null 2 HCD 5710.17333984375 null null 0 119.999997317790985 null 1349.412117383365512 1358.094482421880002 spectrum=256 2.0745283203125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 194 null null crap_to_database_minimal_mrgd null null null null 1358.76171875 null 550.898964506154016 null ms_run[1]:spectrum=258 null null null null null null 1 HCD 6215.82373046875 null null 0 119.999997317790985 null 1350.320944601861811 1358.76171875 spectrum=258 3.2303396484375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 195 null null crap_to_database_minimal_mrgd null null null null 1360.146850585940001 null 500.271362204569016 null ms_run[1]:spectrum=263 null null null null null null 1 HCD 3.653423046875e04 null null 0 119.999997317790985 null 1352.227772896051192 1360.146850585940001 spectrum=263 1.83580765625e05 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 196 null null crap_to_database_minimal_mrgd null null null null 1360.295532226559999 null 469.909832862011001 null ms_run[1]:spectrum=264 null null null null null null 2 HCD 8555.4296875 null null 0 119.999997317790985 null 1352.433316046173786 1360.295532226559999 spectrum=264 6.0991421875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 197 null null crap_to_database_minimal_mrgd null null null null 1360.445068359380002 null 531.775132312896972 null ms_run[1]:spectrum=265 null null null null null null 3 HCD 1.08007890625e04 null null 0 119.999997317790985 null 1352.640095950494697 1360.445068359380002 spectrum=265 2.704862109375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 198 null null crap_to_database_minimal_mrgd null null null null 1360.593627929690001 null 455.197908902042002 null ms_run[1]:spectrum=266 null null null null null null 4 HCD 9234.4658203125 null null 0 119.999997317790985 null 1352.845550734871495 1360.593627929690001 spectrum=266 3.699194921875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 199 null null crap_to_database_minimal_mrgd null null null null 1361.290161132809999 null 557.256888555506976 null ms_run[1]:spectrum=268 null null null null null null 1 HCD 9976.595703125 null null 0 119.999997317790985 null 1353.808295595502386 1361.290161132809999 spectrum=268 2.522305078125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 200 null null crap_to_database_minimal_mrgd null null null null 1363.134155273440001 null 575.814356168838003 null ms_run[1]:spectrum=277 null null null null null null 1 HCD 8728.462890625 null null 0 119.999997317790985 null 1356.333731270881572 1363.134155273440001 spectrum=277 3.22414921875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 201 null null crap_to_database_minimal_mrgd null null null null 1363.282836914059999 null 494.768023956875993 null ms_run[1]:spectrum=278 null null null null null null 2 HCD 9686.7001953125 null null 0 119.999997317790985 null 1356.534682285119288 1363.282836914059999 spectrum=278 4.209893359375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 202 null null crap_to_database_minimal_mrgd null null null null 1363.431274414059999 null 513.946571846434949 null ms_run[1]:spectrum=279 null null null null null null 3 HCD 1.22019443359375e04 null null 0 119.999997317790985 null 1356.734762805314631 1363.431274414059999 spectrum=279 3.1748650390625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 203 null null crap_to_database_minimal_mrgd null null null null 1363.579956054690001 null 499.90960805962402 null ms_run[1]:spectrum=280 null null null null null null 4 HCD 1.45592724609375e04 null null 0 119.999997317790985 null 1356.934601321861919 1363.579956054690001 spectrum=280 8.419805468750001e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 204 null null crap_to_database_minimal_mrgd null null null null 1365.871826171880002 null 468.901047290059978 null ms_run[1]:spectrum=290 null null null null null null 1 HCD 6546.3935546875 null null 0 119.999997317790985 null 1359.920909874363815 1365.871826171880002 spectrum=290 4.705258984375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 205 null null crap_to_database_minimal_mrgd null null null null 1366.1708984375 null 585.301322317350014 null ms_run[1]:spectrum=291 null null null null null null 2 HCD 5599.37158203125 null null 0 119.999997317790985 null 1360.294363589248405 1366.1708984375 spectrum=291 1.4369099609375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 206 null null crap_to_database_minimal_mrgd null null null null 1367.139038085940001 null 553.783911852444021 null ms_run[1]:spectrum=293 null null null null null null 1 HCD 7097.3701171875 null null 0 119.999997317790985 null 1361.470999948082863 1367.139038085940001 spectrum=293 2.306246484375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 207 null null crap_to_database_minimal_mrgd null null null null 1368.595336914059999 null 455.566525945122976 null ms_run[1]:spectrum=295 null null null null null null 1 HCD 7234.5361328125 null null 0 119.999997317790985 null 1363.133520344011913 1368.595336914059999 spectrum=295 2.2631326171875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 208 null null crap_to_database_minimal_mrgd null null null null 1369.562866210940001 null 477.232225808606017 null ms_run[1]:spectrum=297 null null null null null null 1 HCD 5429.70556640625 null null 0 119.999997317790985 null 1364.155302557981486 1369.562866210940001 spectrum=297 2.57655390625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 209 null null crap_to_database_minimal_mrgd null null null null 1370.497192382809999 null 521.920245674451053 null ms_run[1]:spectrum=301 null null null null null null 1 HCD 4220.16455078125 null null 0 119.999997317790985 null 1365.077164039920945 1370.497192382809999 spectrum=301 2.2488451171875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 210 null null crap_to_database_minimal_mrgd null null null null 1370.79638671875 null 548.604117353952006 null ms_run[1]:spectrum=302 null null null null null null 2 HCD 6258.46435546875 null null 0 119.999997317790985 null 1365.359395805674922 1370.79638671875 spectrum=302 1.52984267578125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 211 null null crap_to_database_minimal_mrgd null null null null 1371.496826171880002 null 464.201323441548993 null ms_run[1]:spectrum=305 null null null null null null 2 HCD 4715.05517578125 null null 0 119.999997317790985 null 1365.996372352960407 1371.496826171880002 spectrum=305 1.53077958984375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 212 null null crap_to_database_minimal_mrgd null null null null 1372.093994140630002 null 496.719067129053997 null ms_run[1]:spectrum=306 null null null null null null 3 HCD 6625.3828125 null null 0 119.999997317790985 null 1366.513930619075381 1372.093994140630002 spectrum=306 3.558390234375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 213 null null crap_to_database_minimal_mrgd null null null null 1372.900390625 null 486.219682758750025 null ms_run[1]:spectrum=310 null null null null null null 1 HCD 8232.5908203125 null null 0 119.999997317790985 null 1367.177079575713378 1372.900390625 spectrum=310 9.249525e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 214 null null crap_to_database_minimal_mrgd null null null null 1373.49462890625 null 553.764378791252057 null ms_run[1]:spectrum=311 null null null null null null 2 HCD 4037.127685546875 null null 0 119.999997317790985 null 1367.640523898480069 1373.49462890625 spectrum=311 1.49920703125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 215 null null crap_to_database_minimal_mrgd null null null null 1374.325317382809999 null 585.927353749291001 null ms_run[1]:spectrum=315 null null null null null null 2 HCD 1.1473169921875e04 null null 0 119.999997317790985 null 1368.254159007034104 1374.325317382809999 spectrum=315 3.429771484375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 216 null null crap_to_database_minimal_mrgd null null null null 1374.77099609375 null 500.250305147025983 null ms_run[1]:spectrum=316 null null null null null null 3 HCD 7420.419921875 null null 0 119.999997317790985 null 1368.567614421328244 1374.77099609375 spectrum=316 3.327033984375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 217 null null crap_to_database_minimal_mrgd null null null null 1375.72119140625 null 481.252994457977991 null ms_run[1]:spectrum=319 null null null null null null 2 HCD 7746.95556640625 null null 0 119.999997317790985 null 1369.201004313028761 1375.72119140625 spectrum=319 1.37328203125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 218 null null crap_to_database_minimal_mrgd null null null null 1377.626220703130002 null 553.29660688164995 null ms_run[1]:spectrum=325 null null null null null null 2 HCD 7555.8232421875 null null 0 119.999997317790985 null 1370.339098886545344 1377.626220703130002 spectrum=325 1.8415880859375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 219 null null crap_to_database_minimal_mrgd null null null null 1378.4140625 null 568.262195456066024 null ms_run[1]:spectrum=329 null null null null null null 1 HCD 1.33922021484375e04 null null 0 119.999997317790985 null 1370.76325814521033 1378.4140625 spectrum=329 2.6608017578125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 220 null null crap_to_database_minimal_mrgd null null null null 1379.384155273440001 null 570.772502290442048 null ms_run[1]:spectrum=332 null null null null null null 1 HCD 4012.1533203125 null null 0 119.999997317790985 null 1371.25210346453855 1379.384155273440001 spectrum=332 1.512405078125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 221 null null crap_to_database_minimal_mrgd null null null null 1381.729370117190001 null 451.552932635148011 null ms_run[1]:spectrum=341 null null null null null null 1 HCD 6379.2724609375 null null 0 119.999997317790985 null 1372.301639775114154 1381.729370117190001 spectrum=341 7.5671265625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 222 null null crap_to_database_minimal_mrgd null null null null 1383.258911132809999 null 479.549783755458009 null ms_run[1]:spectrum=347 null null null null null null 3 HCD 1.02151376953125e04 null null 0 119.999997317790985 null 1372.903494639876726 1383.258911132809999 spectrum=347 3.0716958984375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 223 null null crap_to_database_minimal_mrgd null null null null 1383.407470703130002 null 503.241048195277983 null ms_run[1]:spectrum=348 null null null null null null 4 HCD 6160.08154296875 null null 0 119.999997317790985 null 1372.959108813127841 1383.407470703130002 spectrum=348 4.2403828125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 224 null null crap_to_database_minimal_mrgd null null null null 1384.41552734375 null 541.281509580952047 null ms_run[1]:spectrum=354 null null null null null null 1 HCD 6674.3203125 null null 0 119.999997317790985 null 1373.325169744649656 1384.41552734375 spectrum=354 3.143971875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 225 null null crap_to_database_minimal_mrgd null null null null 1384.863159179690001 null 530.913196695758984 null ms_run[1]:spectrum=355 null null null null null null 2 HCD 5852.63330078125 null null 0 119.999997317790985 null 1373.482060357200226 1384.863159179690001 spectrum=355 3.15357265625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 226 null null crap_to_database_minimal_mrgd null null null null 1385.011840820309999 null 465.20123101048199 null ms_run[1]:spectrum=356 null null null null null null 3 HCD 8570.73046875 null null 0 119.999997317790985 null 1373.533491643904881 1385.011840820309999 spectrum=356 2.3122978515625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 227 null null crap_to_database_minimal_mrgd null null null null 1386.2060546875 null 454.884280847231025 null ms_run[1]:spectrum=359 null null null null null null 2 HCD 1.7835099609375e04 null null 0 119.999997317790985 null 1373.936101871690426 1386.2060546875 spectrum=359 4.724581640625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 228 null null crap_to_database_minimal_mrgd null null null null 1387.47216796875 null 557.965478882293951 null ms_run[1]:spectrum=361 null null null null null null 1 HCD 2.3026044921875e04 null null 0 119.999997317790985 null 1374.347722878480226 1387.47216796875 spectrum=361 1.67246765625e05 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 229 null null crap_to_database_minimal_mrgd null null null null 1387.620849609380002 null 486.995864185839992 null ms_run[1]:spectrum=362 null null null null null null 2 HCD 1.557404296875e04 null null 0 119.999997317790985 null 1374.395378938157364 1387.620849609380002 spectrum=362 4.4519953125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 230 null null crap_to_database_minimal_mrgd null null null null 1387.770263671880002 null 588.326401084021995 null ms_run[1]:spectrum=363 null null null null null null 3 HCD 5628.24755859375 null null 0 119.999997317790985 null 1374.443169584323414 1387.770263671880002 spectrum=363 1.6678724609375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 231 null null crap_to_database_minimal_mrgd null null null null 1388.955810546880002 null 589.776376191506984 null ms_run[1]:spectrum=367 null null null null null null 2 HCD 4246.1376953125 null null 0 119.999997317790985 null 1374.820294864468906 1388.955810546880002 spectrum=367 1.9057431640625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 232 null null crap_to_database_minimal_mrgd null null null null 1389.856201171880002 null 575.767420284582954 null ms_run[1]:spectrum=368 null null null null null null 3 HCD 7677.31103515625 null null 0 119.999997317790985 null 1375.106177067934141 1389.856201171880002 spectrum=368 3.331183203125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 233 null null crap_to_database_minimal_mrgd null null null null 1392.102783203130002 null 467.225638053344028 null ms_run[1]:spectrum=371 null null null null null null 2 HCD 5897.4248046875 null null 0 119.999997317790985 null 1375.819487273001414 1392.102783203130002 spectrum=371 3.414055859375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 234 null null crap_to_database_minimal_mrgd null null null null 1392.65966796875 null 567.452706613677947 null ms_run[1]:spectrum=373 null null null null null null 1 HCD 9460.8310546875 null null 0 119.999997317790985 null 1375.996303245370882 1392.65966796875 spectrum=373 9.221939062500001e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 235 null null crap_to_database_minimal_mrgd null null null null 1392.808227539059999 null 460.41714507125198 null ms_run[1]:spectrum=374 null null null null null null 2 HCD 3.204600390625e04 null null 0 119.999997317790985 null 1376.043472258604652 1392.808227539059999 spectrum=374 3.1536915625e05 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 236 null null crap_to_database_minimal_mrgd null null null null 1394.185791015630002 null 575.269528939483052 null ms_run[1]:spectrum=377 null null null null null null 1 HCD 1.013332421875e04 null null 0 119.999997317790985 null 1376.480861177547695 1394.185791015630002 spectrum=377 7.92269296875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 237 null null crap_to_database_minimal_mrgd null null null null 1394.783081054690001 null 468.549669111900016 null ms_run[1]:spectrum=379 null null null null null null 3 HCD 4255.71875 null null 0 119.999997317790985 null 1376.670506191315326 1394.783081054690001 spectrum=379 4.98809921875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 238 null null crap_to_database_minimal_mrgd null null null null 1398.568237304690001 null 487.209700124575988 null ms_run[1]:spectrum=384 null null null null null null 1 HCD 2.4020734375e04 null null 0 119.999997317790985 null 1377.872327688746736 1398.568237304690001 spectrum=384 2.51891828125e05 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 239 null null crap_to_database_minimal_mrgd null null null null 1399.167358398440001 null 466.248773763664019 null ms_run[1]:spectrum=385 null null null null null null 2 HCD 1.00154873046875e04 null null 0 119.999997317790985 null 1378.062554079013353 1399.167358398440001 spectrum=385 8.842754687499999e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 240 null null crap_to_database_minimal_mrgd null null null null 1300.182495117190001 null 529.584580201594008 null ms_run[2]:spectrum=0 null null null null null null 1 HCD 4833.505859375 null null 0 119.999997317790985 null 1307.940026368070448 1300.182495117190001 spectrum=0 2.521305078125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 241 null null crap_to_database_minimal_mrgd null null null null 1301.027587890630002 null 474.572663290080016 null ms_run[2]:spectrum=5 null null null null null null 2 HCD 1.01360986328125e04 null null 0 119.999997317790985 null 1309.931912177444019 1301.027587890630002 spectrum=5 3.06393984375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 242 null null crap_to_database_minimal_mrgd null null null null 1301.17626953125 null 462.749365424208008 null ms_run[2]:spectrum=6 null null null null null null 3 HCD 6513.27587890625 null null 0 119.999997317790985 null 1310.282318134969728 1301.17626953125 spectrum=6 2.6927953125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 243 null null crap_to_database_minimal_mrgd null null null null 1301.966430664059999 null 514.243562799268034 null ms_run[2]:spectrum=10 null null null null null null 1 HCD 7072.4853515625 null null 0 119.999997317790985 null 1312.142651043849128 1301.966430664059999 spectrum=10 2.4188279296875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 244 null null crap_to_database_minimal_mrgd null null null null 1302.455322265630002 null 516.590601508740974 null ms_run[2]:spectrum=14 null null null null null null 1 HCD 1.3105150390625e04 null null 0 119.999997317790985 null 1313.290619506525673 1302.455322265630002 spectrum=14 2.09037578125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 245 null null crap_to_database_minimal_mrgd null null null null 1302.603881835940001 null 498.254353871369972 null ms_run[2]:spectrum=15 null null null null null null 2 HCD 2879.808837890625 null null 0 119.999997317790985 null 1313.638765091602863 1302.603881835940001 spectrum=15 1.09829453125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 246 null null crap_to_database_minimal_mrgd null null null null 1305.270874023440001 null 577.314491523300944 null ms_run[2]:spectrum=23 null null null null null null 2 HCD 8230.4736328125 null null 0 119.999997317790985 null 1319.79318968681855 1305.270874023440001 spectrum=23 2.4963544921875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 247 null null crap_to_database_minimal_mrgd null null null null 1305.569091796880002 null 548.603808777961945 null ms_run[2]:spectrum=24 null null null null null null 3 HCD 1.209488671875e04 null null 0 119.999997317790985 null 1320.465549626618895 1305.569091796880002 spectrum=24 2.41643046875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 248 null null crap_to_database_minimal_mrgd null null null null 1305.718627929690001 null 587.297536664167978 null ms_run[2]:spectrum=25 null null null null null null 4 HCD 5449.33203125 null null 0 119.999997317790985 null 1320.80115018120091 1305.718627929690001 spectrum=25 1.44310029296875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 249 null null crap_to_database_minimal_mrgd null null null null 1306.892578125 null 586.272759574639963 null ms_run[2]:spectrum=28 null null null null null null 1 HCD 1.41777041015625e04 null null 0 119.999997317790985 null 1323.395851710341731 1306.892578125 spectrum=28 2.1701810546875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 250 null null crap_to_database_minimal_mrgd null null null null 1307.0419921875 null 562.258368668548997 null ms_run[2]:spectrum=29 null null null null null null 2 HCD 8775.3310546875 null null 0 119.999997317790985 null 1323.720522861192876 1307.0419921875 spectrum=29 1.54354794921875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 251 null null crap_to_database_minimal_mrgd null null null null 1307.487670898440001 null 458.547321268596022 null ms_run[2]:spectrum=30 null null null null null null 3 HCD 7774.62255859375 null null 0 119.999997317790985 null 1324.680720250724107 1307.487670898440001 spectrum=30 3.2091361328125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 252 null null crap_to_database_minimal_mrgd null null null null 1307.63623046875 null 490.901928787710972 null ms_run[2]:spectrum=31 null null null null null null 4 HCD 2404.384521484375 null null 0 119.999997317790985 null 1324.997932764661073 1307.63623046875 spectrum=31 1.14172353515625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 253 null null crap_to_database_minimal_mrgd null null null null 1308.929443359380002 null 494.746887767228998 null ms_run[2]:spectrum=34 null null null null null null 2 HCD 2523.739990234375 null null 0 119.999997317790985 null 1327.693184177605417 1308.929443359380002 spectrum=34 1.67651328125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 254 null null crap_to_database_minimal_mrgd null null null null 1309.896118164059999 null 594.32292806955104 null ms_run[2]:spectrum=36 null null null null null null 1 HCD 8860.4072265625 null null 0 119.999997317790985 null 1329.621740951182346 1309.896118164059999 spectrum=36 2.5484470703125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 255 null null crap_to_database_minimal_mrgd null null null null 1310.044555664059999 null 484.750268094696025 null ms_run[2]:spectrum=37 null null null null null null 2 HCD 1.36719921875e04 null null 0 119.999997317790985 null 1329.910693436279644 1310.044555664059999 spectrum=37 2.8506291015625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 256 null null crap_to_database_minimal_mrgd null null null null 1310.194213867190001 null 570.605999087640953 null ms_run[2]:spectrum=38 null null null null null null 3 HCD 6672.4580078125 null null 0 119.999997317790985 null 1330.199991855957705 1310.194213867190001 spectrum=38 1.7786228515625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 257 null null crap_to_database_minimal_mrgd null null null null 1310.4912109375 null 597.063558535478023 null ms_run[2]:spectrum=39 null null null null null null 4 HCD 1.19638955078125e04 null null 0 119.999997317790985 null 1330.767937461948577 1310.4912109375 spectrum=39 2.7071421875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 258 null null crap_to_database_minimal_mrgd null null null null 1310.639770507809999 null 489.567582268183003 null ms_run[2]:spectrum=40 null null null null null null 5 HCD 2921.045166015625 null null 0 119.999997317790985 null 1331.048884188396869 1310.639770507809999 spectrum=40 1.23099560546875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 259 null null crap_to_database_minimal_mrgd null null null null 1311.361572265630002 null 580.594994069252948 null ms_run[2]:spectrum=42 null null null null null null 1 HCD 5182.21044921875 null null 0 119.999997317790985 null 1332.382869133705299 1311.361572265630002 spectrum=42 2.095154296875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 260 null null crap_to_database_minimal_mrgd null null null null 1312.118041992190001 null 567.307251659780945 null ms_run[2]:spectrum=46 null null null null null null 1 HCD 8728.7080078125 null null 0 119.999997317790985 null 1333.72265800731725 1312.118041992190001 spectrum=46 2.6306845703125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 261 null null crap_to_database_minimal_mrgd null null null null 1312.267700195309999 null 585.300038888434983 null ms_run[2]:spectrum=47 null null null null null null 2 HCD 6677.04248046875 null null 0 119.999997317790985 null 1333.980287432229261 1312.267700195309999 spectrum=47 2.0373611328125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 262 null null crap_to_database_minimal_mrgd null null null null 1312.564819335940001 null 533.24173449108298 null ms_run[2]:spectrum=48 null null null null null null 3 HCD 5.697038671875e04 null null 0 119.999997317790985 null 1334.48422507176474 1312.564819335940001 spectrum=48 8.490267187500001e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 263 null null crap_to_database_minimal_mrgd null null null null 1312.713256835940001 null 482.220100977819016 null ms_run[2]:spectrum=49 null null null null null null 4 HCD 1173.4378662109375 null null 0 119.999997317790985 null 1334.732165723499065 1312.713256835940001 spectrum=49 1.285490234375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 264 null null crap_to_database_minimal_mrgd null null null null 1313.602905273440001 null 555.887077717404964 null ms_run[2]:spectrum=53 null null null null null null 2 HCD 7690.69873046875 null null 0 119.999997317790985 null 1336.162779928400141 1313.602905273440001 spectrum=53 2.7593744140625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 265 null null crap_to_database_minimal_mrgd null null null null 1313.75146484375 null 455.218809615347993 null ms_run[2]:spectrum=54 null null null null null null 3 HCD 9511.08984375 null null 0 119.999997317790985 null 1336.392118829849096 1313.75146484375 spectrum=54 1.98935e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 266 null null crap_to_database_minimal_mrgd null null null null 1315.774169921880002 null 558.81727822995299 null ms_run[2]:spectrum=58 null null null null null null 1 HCD 5029.67138671875 null null 0 119.999997317790985 null 1339.220350049547278 1315.774169921880002 spectrum=58 2.1592958984375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 267 null null crap_to_database_minimal_mrgd null null null null 1317.193115234380002 null 557.25618686112 null ms_run[2]:spectrum=64 null null null null null null 1 HCD 3277.402587890625 null null 0 119.999997317790985 null 1340.848089757257867 1317.193115234380002 spectrum=64 2.127730078125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 268 null null crap_to_database_minimal_mrgd null null null null 1317.790283203130002 null 485.219389945246007 null ms_run[2]:spectrum=66 null null null null null null 3 HCD 1.2823337890625e04 null null 0 119.999997317790985 null 1341.437243817449826 1317.790283203130002 spectrum=66 2.5217640625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 269 null null crap_to_database_minimal_mrgd null null null null 1317.938842773440001 null 526.576105553266984 null ms_run[2]:spectrum=67 null null null null null null 4 HCD 2339.625244140625 null null 0 119.999997317790985 null 1341.574589687524394 1317.938842773440001 spectrum=67 1.5164859375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 270 null null crap_to_database_minimal_mrgd null null null null 1320.478271484380002 null 578.606462571996985 null ms_run[2]:spectrum=74 null null null null null null 1 HCD 1.24844365234375e04 null null 0 119.999997317790985 null 1343.317132836399423 1320.478271484380002 spectrum=74 2.2729150390625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 271 null null crap_to_database_minimal_mrgd null null null null 1320.626831054690001 null 495.272429376992022 null ms_run[2]:spectrum=75 null null null null null null 2 HCD 6993.11279296875 null null 0 119.999997317790985 null 1343.381798455407306 1320.626831054690001 spectrum=75 2.4237248046875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 272 null null crap_to_database_minimal_mrgd null null null null 1321.976440429690001 null 468.900927580367011 null ms_run[2]:spectrum=82 null null null null null null 1 HCD 1.4558751953125e04 null null 0 119.999997317790985 null 1343.782134935673639 1321.976440429690001 spectrum=82 3.870716796875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 273 null null crap_to_database_minimal_mrgd null null null null 1322.1259765625 null 575.272488535213029 null ms_run[2]:spectrum=83 null null null null null null 2 HCD 1.01750771484375e04 null null 0 119.999997317790985 null 1343.806987567782926 1322.1259765625 spectrum=83 2.7356880859375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 274 null null crap_to_database_minimal_mrgd null null null null 1322.275512695309999 null 563.22390730899599 null ms_run[2]:spectrum=84 null null null null null null 3 HCD 7174.5400390625 null null 0 119.999997317790985 null 1343.82819733781912 1322.275512695309999 spectrum=84 1.9370322265625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 275 null null crap_to_database_minimal_mrgd null null null null 1322.425048828130002 null 548.912706751249971 null ms_run[2]:spectrum=85 null null null null null null 4 HCD 1.43171669921875e04 null null 0 119.999997317790985 null 1343.845831777625563 1322.425048828130002 spectrum=85 2.95111796875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 276 null null crap_to_database_minimal_mrgd null null null null 1322.573608398440001 null 597.264424609335947 null ms_run[2]:spectrum=86 null null null null null null 5 HCD 5777.75341796875 null null 0 119.999997317790985 null 1343.859877397087075 1322.573608398440001 spectrum=86 2.5590181640625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 277 null null crap_to_database_minimal_mrgd null null null null 1323.359497070309999 null 480.753837580686025 null ms_run[2]:spectrum=91 null null null null null null 2 HCD 1.2834259765625e04 null null 0 119.999997317790985 null 1343.879255831697492 1323.359497070309999 spectrum=91 2.6943958984375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 278 null null crap_to_database_minimal_mrgd null null null null 1323.508056640630002 null 509.566368684751978 null ms_run[2]:spectrum=92 null null null null null null 3 HCD 988.08111572265625 null null 0 119.999997317790985 null 1343.873042637980689 1323.508056640630002 spectrum=92 8262.92578125 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 279 null null crap_to_database_minimal_mrgd null null null null 1324.637817382809999 null 541.281849059663955 null ms_run[2]:spectrum=96 null null null null null null 1 HCD 1.3593755859375e04 null null 0 119.999997317790985 null 1343.733080640737171 1324.637817382809999 spectrum=96 3.0242353515625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 280 null null crap_to_database_minimal_mrgd null null null null 1324.787353515630002 null 566.274589425048021 null ms_run[2]:spectrum=97 null null null null null null 2 HCD 5496.67626953125 null null 0 119.999997317790985 null 1343.703193749341608 1324.787353515630002 spectrum=97 2.52161015625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 281 null null crap_to_database_minimal_mrgd null null null null 1325.086059570309999 null 570.772826199548945 null ms_run[2]:spectrum=98 null null null null null null 3 HCD 1051.6248779296875 null null 0 119.999997317790985 null 1343.636252443324565 1325.086059570309999 spectrum=98 9314.4052734375 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 282 null null crap_to_database_minimal_mrgd null null null null 1325.9853515625 null 526.559687146639021 null ms_run[2]:spectrum=99 null null null null null null 4 HCD 2299.199951171875 null null 0 119.999997317790985 null 1343.381342467210288 1325.9853515625 spectrum=99 1.36651669921875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 283 null null crap_to_database_minimal_mrgd null null null null 1327.331909179690001 null 571.243388291381962 null ms_run[2]:spectrum=104 null null null null null null 2 HCD 6704.5341796875 null null 0 119.999997317790985 null 1342.875729194399582 1327.331909179690001 spectrum=104 1.363076953125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 284 null null crap_to_database_minimal_mrgd null null null null 1327.849365234380002 null 568.262734302467038 null ms_run[2]:spectrum=106 null null null null null null 1 HCD 7399.091796875 null null 0 119.999997317790985 null 1342.650878661628894 1327.849365234380002 spectrum=106 3.10782109375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 285 null null crap_to_database_minimal_mrgd null null null null 1328.516479492190001 null 549.799605871620997 null ms_run[2]:spectrum=108 null null null null null null 1 HCD 1.21800556640625e04 null null 0 119.999997317790985 null 1342.342697900586927 1328.516479492190001 spectrum=108 2.3636537109375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 286 null null crap_to_database_minimal_mrgd null null null null 1328.6650390625 null 477.842611849274022 null ms_run[2]:spectrum=109 null null null null null null 2 HCD 1.4639255859375e04 null null 0 119.999997317790985 null 1342.271806941121667 1328.6650390625 spectrum=109 2.764601171875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 287 null null crap_to_database_minimal_mrgd null null null null 1328.814575195309999 null 575.773646649593047 null ms_run[2]:spectrum=110 null null null null null null 3 HCD 4028.36767578125 null null 0 119.999997317790985 null 1342.199762612286577 1328.814575195309999 spectrum=110 2.2705080078125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 288 null null crap_to_database_minimal_mrgd null null null null 1329.589599609380002 null 534.296418748676047 null ms_run[2]:spectrum=115 null null null null null null 1 HCD 7084.9833984375 null null 0 119.999997317790985 null 1341.817906133918541 1329.589599609380002 spectrum=115 1.757557421875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 289 null null crap_to_database_minimal_mrgd null null null null 1330.825805664059999 null 561.758187109478968 null ms_run[2]:spectrum=119 null null null null null null 1 HCD 5855.19921875 null null 0 119.999997317790985 null 1341.197549816509991 1330.825805664059999 spectrum=119 2.448449609375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 290 null null crap_to_database_minimal_mrgd null null null null 1332.027099609380002 null 575.744655040252042 null ms_run[2]:spectrum=127 null null null null null null 1 HCD 4540.44970703125 null null 0 119.999997317790985 null 1340.613098554398448 1332.027099609380002 spectrum=127 2.556590625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 291 null null crap_to_database_minimal_mrgd null null null null 1332.395874023440001 null 588.326602441431987 null ms_run[2]:spectrum=129 null null null null null null 1 HCD 7413.32373046875 null null 0 119.999997317790985 null 1340.442787826356152 1332.395874023440001 spectrum=129 2.1858607421875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 292 null null crap_to_database_minimal_mrgd null null null null 1332.54541015625 null 559.273571090977043 null ms_run[2]:spectrum=130 null null null null null null 2 HCD 6280.8623046875 null null 0 119.999997317790985 null 1340.37539509770545 1332.54541015625 spectrum=130 1.43721171875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 293 null null crap_to_database_minimal_mrgd null null null null 1332.9931640625 null 531.776345928571004 null ms_run[2]:spectrum=131 null null null null null null 3 HCD 5996.39453125 null null 0 119.999997317790985 null 1340.18022511455024 1332.9931640625 spectrum=131 1.34059775390625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 294 null null crap_to_database_minimal_mrgd null null null null 1333.856201171880002 null 514.243562799268034 null ms_run[2]:spectrum=133 null null null null null null 1 HCD 5224.50927734375 null null 0 119.999997317790985 null 1339.837615013104824 1333.856201171880002 spectrum=133 2.385659765625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 295 null null crap_to_database_minimal_mrgd null null null null 1334.294799804690001 null 465.537430890170015 null ms_run[2]:spectrum=136 null null null null null null 1 HCD 8281.85546875 null null 0 119.999997317790985 null 1339.683805450791397 1334.294799804690001 spectrum=136 1.9881693359375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 296 null null crap_to_database_minimal_mrgd null null null null 1334.740478515630002 null 500.272455664869995 null ms_run[2]:spectrum=138 null null null null null null 3 HCD 2.116162890625e04 null null 0 119.999997317790985 null 1339.543848793324969 1334.740478515630002 spectrum=138 7.543290625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 297 null null crap_to_database_minimal_mrgd null null null null 1335.6748046875 null 470.220045891607981 null ms_run[2]:spectrum=142 null null null null null null 1 HCD 4274.28564453125 null null 0 119.999997317790985 null 1339.311780051396227 1335.6748046875 spectrum=142 3.319459375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 298 null null crap_to_database_minimal_mrgd null null null null 1336.454833984380002 null 550.248823236100975 null ms_run[2]:spectrum=147 null null null null null null 1 HCD 1.122021875e04 null null 0 119.999997317790985 null 1339.191373969100368 1336.454833984380002 spectrum=147 2.81543359375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 299 null null crap_to_database_minimal_mrgd null null null null 1336.603393554690001 null 471.883920235147002 null ms_run[2]:spectrum=148 null null null null null null 2 HCD 5162.76953125 null null 0 119.999997317790985 null 1339.176872801718446 1336.603393554690001 spectrum=148 1.590507421875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 300 null null crap_to_database_minimal_mrgd null null null null 1337.965942382809999 null 527.767191225275042 null ms_run[2]:spectrum=154 null null null null null null 1 HCD 1.49253583984375e04 null null 0 119.999997317790985 null 1339.185580630670529 1337.965942382809999 spectrum=154 2.08570234375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 301 null null crap_to_database_minimal_mrgd null null null null 1342.608642578130002 null 573.280734454208982 null ms_run[2]:spectrum=164 null null null null null null 1 HCD 7779.177734375 null null 0 119.999997317790985 null 1341.620666036728835 1342.608642578130002 spectrum=164 2.622016796875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 302 null null crap_to_database_minimal_mrgd null null null null 1343.05517578125 null 541.261790384302003 null ms_run[2]:spectrum=165 null null null null null null 2 HCD 1.0983171875e04 null null 0 119.999997317790985 null 1342.056440557495534 1343.05517578125 spectrum=165 3.57753671875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 303 null null crap_to_database_minimal_mrgd null null null null 1343.203857421880002 null 521.919625700725987 null ms_run[2]:spectrum=166 null null null null null null 3 HCD 1529.0465087890625 null null 0 119.999997317790985 null 1342.208260489972645 1343.203857421880002 spectrum=166 1.292340625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 304 null null crap_to_database_minimal_mrgd null null null null 1343.5029296875 null 563.252994499280021 null ms_run[2]:spectrum=167 null null null null null null 4 HCD 1.57746162109375e04 null null 0 119.999997317790985 null 1342.523456173581508 1343.5029296875 spectrum=167 2.69602578125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 305 null null crap_to_database_minimal_mrgd null null null null 1344.664794921880002 null 580.593493053624002 null ms_run[2]:spectrum=170 null null null null null null 2 HCD 789.4940185546875 null null 0 119.999997317790985 null 1343.86413681566637 1344.664794921880002 spectrum=170 1.02439375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 306 null null crap_to_database_minimal_mrgd null null null null 1345.112548828130002 null 452.877813279392001 null ms_run[2]:spectrum=171 null null null null null null 3 HCD 1.30793759765625e04 null null 0 119.999997317790985 null 1344.426011308549732 1345.112548828130002 spectrum=171 4.986620703125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 307 null null crap_to_database_minimal_mrgd null null null null 1346.040649414059999 null 477.23420375653501 null ms_run[2]:spectrum=174 null null null null null null 1 HCD 7620.5361328125 null null 0 119.999997317790985 null 1345.6610580207157 1346.040649414059999 spectrum=174 2.2175947265625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 308 null null crap_to_database_minimal_mrgd null null null null 1346.4892578125 null 582.301180835812033 null ms_run[2]:spectrum=175 null null null null null null 2 HCD 6560.40625 null null 0 119.999997317790985 null 1346.288707430351678 1346.4892578125 spectrum=175 1.7314724609375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 309 null null crap_to_database_minimal_mrgd null null null null 1346.6376953125 null 486.219966732764021 null ms_run[2]:spectrum=176 null null null null null null 3 HCD 1252.413818359375 null null 0 119.999997317790985 null 1346.500383847540888 1346.6376953125 spectrum=176 9393.2197265625 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 310 null null crap_to_database_minimal_mrgd null null null null 1347.238037109380002 null 548.269825432740049 null ms_run[2]:spectrum=177 null null null null null null 4 HCD 8507.5888671875 null null 0 119.999997317790985 null 1347.375152033292125 1347.238037109380002 spectrum=177 1.5466119140625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 311 null null crap_to_database_minimal_mrgd null null null null 1347.386596679690001 null 455.567288785444021 null ms_run[2]:spectrum=178 null null null null null null 5 HCD 4254.87548828125 null null 0 119.999997317790985 null 1347.595940694117871 1347.386596679690001 spectrum=178 2.4037984375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 312 null null crap_to_database_minimal_mrgd null null null null 1347.6484375 null 557.256980315700048 null ms_run[2]:spectrum=180 null null null null null null 1 HCD 6589.10009765625 null null 0 119.999997317790985 null 1347.988934869978039 1347.6484375 spectrum=180 2.7068892578125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 313 null null crap_to_database_minimal_mrgd null null null null 1348.017333984380002 null 583.942200406866959 null ms_run[2]:spectrum=182 null null null null null null 1 HCD 2079.208984375 null null 0 119.999997317790985 null 1348.55039535400465 1348.017333984380002 spectrum=182 8957.7080078125 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 314 null null crap_to_database_minimal_mrgd null null null null 1348.466918945309999 null 454.885131425781992 null ms_run[2]:spectrum=183 null null null null null null 2 HCD 6570.4677734375 null null 0 119.999997317790985 null 1349.245789414073897 1348.466918945309999 spectrum=183 1.8122837890625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 315 null null crap_to_database_minimal_mrgd null null null null 1349.7783203125 null 590.916910179479032 null ms_run[2]:spectrum=186 null null null null null null 2 HCD 4647.125 null null 0 119.999997317790985 null 1351.329290785807643 1349.7783203125 spectrum=186 2.7893646484375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 316 null null crap_to_database_minimal_mrgd null null null null 1350.445190429690001 null 500.250620996586974 null ms_run[2]:spectrum=188 null null null null null null 1 HCD 8144.87158203125 null null 0 119.999997317790985 null 1352.410670835164183 1350.445190429690001 spectrum=188 2.521633984375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 317 null null crap_to_database_minimal_mrgd null null null null 1350.743286132809999 null 534.284028650052051 null ms_run[2]:spectrum=189 null null null null null null 2 HCD 3544.28759765625 null null 0 119.999997317790985 null 1352.896866433903597 1350.743286132809999 spectrum=189 1.2500875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 318 null null crap_to_database_minimal_mrgd null null null null 1351.445434570309999 null 578.94172764528696 null ms_run[2]:spectrum=191 null null null null null null 1 HCD 3926.556640625 null null 0 119.999997317790985 null 1354.045431565742774 1351.445434570309999 spectrum=191 1.46234619140625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 319 null null crap_to_database_minimal_mrgd null null null null 1352.532836914059999 null 556.29621325100004 null ms_run[2]:spectrum=195 null null null null null null 1 HCD 6982.78125 null null 0 119.999997317790985 null 1355.821328906012923 1352.532836914059999 spectrum=195 2.4850017578125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 320 null null crap_to_database_minimal_mrgd null null null null 1354.437377929690001 null 469.227067948130014 null ms_run[2]:spectrum=199 null null null null null null 3 HCD 7056.93994140625 null null 0 119.999997317790985 null 1358.860335558778843 1354.437377929690001 spectrum=199 3.2000912109375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 321 null null crap_to_database_minimal_mrgd null null null null 1354.5869140625 null 553.783175123739056 null ms_run[2]:spectrum=200 null null null null null null 4 HCD 9619.07421875 null null 0 119.999997317790985 null 1359.092206705509852 1354.5869140625 spectrum=200 1.722540234375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 322 null null crap_to_database_minimal_mrgd null null null null 1354.735473632809999 null 484.711426403721987 null ms_run[2]:spectrum=201 null null null null null null 5 HCD 5636.63525390625 null null 0 119.999997317790985 null 1359.321300038784102 1354.735473632809999 spectrum=201 2.4997724609375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 323 null null crap_to_database_minimal_mrgd null null null null 1355.105346679690001 null 541.282521134212971 null ms_run[2]:spectrum=204 null null null null null null 2 HCD 1642.7650146484375 null null 0 119.999997317790985 null 1359.885825611580003 1355.105346679690001 spectrum=204 9056.34765625 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 324 null null crap_to_database_minimal_mrgd null null null null 1355.552978515630002 null 553.296238150089039 null ms_run[2]:spectrum=206 null null null null null null 4 HCD 6063.74853515625 null null 0 119.999997317790985 null 1360.556800417774639 1355.552978515630002 spectrum=206 1.7198255859375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 325 null null crap_to_database_minimal_mrgd null null null null 1356.708374023440001 null 506.259845661852012 null ms_run[2]:spectrum=208 null null null null null null 1 HCD 4854.74365234375 null null 0 119.999997317790985 null 1362.215824662883279 1356.708374023440001 spectrum=208 1.8634763671875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 326 null null crap_to_database_minimal_mrgd null null null null 1358.007446289059999 null 568.261473756870032 null ms_run[2]:spectrum=213 null null null null null null 1 HCD 5155.4326171875 null null 0 119.999997317790985 null 1363.928035066326402 1358.007446289059999 spectrum=213 2.0876875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 327 null null crap_to_database_minimal_mrgd null null null null 1358.93115234375 null 531.246623435263018 null ms_run[2]:spectrum=218 null null null null null null 1 HCD 5160.17431640625 null null 0 119.999997317790985 null 1365.026137811813669 1358.93115234375 spectrum=218 2.141490625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 328 null null crap_to_database_minimal_mrgd null null null null 1359.525268554690001 null 484.762268534109978 null ms_run[2]:spectrum=219 null null null null null null 2 HCD 6060.11279296875 null null 0 119.999997317790985 null 1365.672392760670164 1359.525268554690001 spectrum=219 2.6258822265625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 329 null null crap_to_database_minimal_mrgd null null null null 1360.16357421875 null 481.251842204763022 null ms_run[2]:spectrum=223 null null null null null null 1 HCD 6185.96875 null null 0 119.999997317790985 null 1366.309423882080409 1360.16357421875 spectrum=223 1.931205859375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 330 null null crap_to_database_minimal_mrgd null null null null 1361.591064453130002 null 551.299967454510011 null ms_run[2]:spectrum=230 null null null null null null 1 HCD 1.0271150390625e04 null null 0 119.999997317790985 null 1367.518008152675748 1361.591064453130002 spectrum=230 1.815649609375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 331 null null crap_to_database_minimal_mrgd null null null null 1361.8896484375 null 589.77652361790399 null ms_run[2]:spectrum=232 null null null null null null 3 HCD 1.1009248046875e04 null null 0 119.999997317790985 null 1367.734559732788966 1361.8896484375 spectrum=232 2.032480859375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 332 null null crap_to_database_minimal_mrgd null null null null 1362.974609375 null 546.742059146365023 null ms_run[2]:spectrum=236 null null null null null null 1 HCD 8742.0400390625 null null 0 119.999997317790985 null 1368.421289422816699 1362.974609375 spectrum=236 3.0464744140625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 333 null null crap_to_database_minimal_mrgd null null null null 1363.124145507809999 null 586.775199419926025 null ms_run[2]:spectrum=237 null null null null null null 2 HCD 1079.536376953125 null null 0 119.999997317790985 null 1368.503985562320167 1363.124145507809999 spectrum=237 5968.3642578125 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 334 null null crap_to_database_minimal_mrgd null null null null 1363.722412109380002 null 497.233421928776011 null ms_run[2]:spectrum=238 null null null null null null 3 HCD 939.76953125 null null 0 119.999997317790985 null 1368.806920904009985 1363.722412109380002 spectrum=238 4256.1171875 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 335 null null crap_to_database_minimal_mrgd null null null null 1364.733764648440001 null 570.770796894173031 null ms_run[2]:spectrum=241 null null null null null null 2 HCD 1.21268564453125e04 null null 0 119.999997317790985 null 1369.221119154288544 1364.733764648440001 spectrum=241 1.8981576171875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 336 null null crap_to_database_minimal_mrgd null null null null 1364.88330078125 null 575.271450940772979 null ms_run[2]:spectrum=242 null null null null null null 3 HCD 7360.94970703125 null null 0 119.999997317790985 null 1369.272312973954058 1364.88330078125 spectrum=242 3.772993359375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 337 null null crap_to_database_minimal_mrgd null null null null 1365.03271484375 null 514.243929009084013 null ms_run[2]:spectrum=243 null null null null null null 4 HCD 3106.104736328125 null null 0 119.999997317790985 null 1369.320954537909074 1365.03271484375 spectrum=243 1.09064111328125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 338 null null crap_to_database_minimal_mrgd null null null null 1366.5888671875 null 467.226250043884988 null ms_run[2]:spectrum=248 null null null null null null 3 HCD 1539.2769775390625 null null 0 119.999997317790985 null 1369.684705090842272 1366.5888671875 spectrum=248 1.6992578125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 339 null null crap_to_database_minimal_mrgd null null null null 1368.337280273440001 null 506.888574319259021 null ms_run[2]:spectrum=252 null null null null null null 1 HCD 6100.3798828125 null null 0 119.999997317790985 null 1369.808028794277107 1368.337280273440001 spectrum=252 2.47976875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 340 null null crap_to_database_minimal_mrgd null null null null 1369.141967773440001 null 541.013317028215056 null ms_run[2]:spectrum=255 null null null null null null 1 HCD 6295.283203125 null null 0 119.999997317790985 null 1369.774149429224735 1369.141967773440001 spectrum=255 2.8319306640625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 341 null null crap_to_database_minimal_mrgd null null null null 1370.374267578130002 null 594.825650462057979 null ms_run[2]:spectrum=260 null null null null null null 1 HCD 7161.6318359375 null null 0 119.999997317790985 null 1369.623716124722705 1370.374267578130002 spectrum=260 3.1399509765625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 342 null null crap_to_database_minimal_mrgd null null null null 1373.764038085940001 null 575.520656711223978 null ms_run[2]:spectrum=267 null null null null null null 2 HCD 2256.923095703125 null null 0 119.999997317790985 null 1368.703893848799453 1373.764038085940001 spectrum=267 2.8223982421875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 343 null null crap_to_database_minimal_mrgd null null null null 1374.2119140625 null 464.899291768611022 null ms_run[2]:spectrum=268 null null null null null null 3 HCD 1.04307880859375e04 null null 0 119.999997317790985 null 1368.538032761179466 1374.2119140625 spectrum=268 2.499434375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 344 null null crap_to_database_minimal_mrgd null null null null 1374.360473632809999 null 492.533973373127026 null ms_run[2]:spectrum=269 null null null null null null 4 HCD 4509.01611328125 null null 0 119.999997317790985 null 1368.48118498328472 1374.360473632809999 spectrum=269 2.316059765625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 345 null null crap_to_database_minimal_mrgd null null null null 1375.052490234380002 null 460.617993708252982 null ms_run[2]:spectrum=272 null null null null null null 2 HCD 8350.056640625 null null 0 119.999997317790985 null 1368.205312951430869 1375.052490234380002 spectrum=272 1.008401796875e05 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 346 null null crap_to_database_minimal_mrgd null null null null 1375.675903320309999 null 581.267342987922007 null ms_run[2]:spectrum=275 null null null null null null 1 HCD 8991.8369140625 null null 0 119.999997317790985 null 1367.942730955637444 1375.675903320309999 spectrum=275 2.4375984375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 347 null null crap_to_database_minimal_mrgd null null null null 1376.121459960940001 null 561.957039033775004 null ms_run[2]:spectrum=276 null null null null null null 2 HCD 8613.60546875 null null 0 119.999997317790985 null 1367.747973219363303 1376.121459960940001 spectrum=276 1.8447232421875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 348 null null crap_to_database_minimal_mrgd null null null null 1376.419555664059999 null 588.327196550372946 null ms_run[2]:spectrum=277 null null null null null null 3 HCD 1337.4866943359375 null null 0 119.999997317790985 null 1367.614761718206637 1376.419555664059999 spectrum=277 9849.951171875 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 349 null null crap_to_database_minimal_mrgd null null null null 1378.028442382809999 null 560.756566657732037 null ms_run[2]:spectrum=281 null null null null null null 3 HCD 7609.2705078125 null null 0 119.999997317790985 null 1366.864769366826067 1378.028442382809999 spectrum=281 1.707869140625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 350 null null crap_to_database_minimal_mrgd null null null null 1378.32568359375 null 452.876592579958981 null ms_run[2]:spectrum=282 null null null null null null 4 HCD 5571.38134765625 null null 0 119.999997317790985 null 1366.722082549491915 1378.32568359375 spectrum=282 1.8053234375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 351 null null crap_to_database_minimal_mrgd null null null null 1378.623779296880002 null 465.748654427586018 null ms_run[2]:spectrum=283 null null null null null null 5 HCD 6319.69677734375 null null 0 119.999997317790985 null 1366.578195136056365 1378.623779296880002 spectrum=283 2.4434107421875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 352 null null crap_to_database_minimal_mrgd null null null null 1382.648681640630002 null 583.917969525076956 null ms_run[2]:spectrum=289 null null null null null null 1 HCD 1.2491380859375e04 null null 0 119.999997317790985 null 1364.620370476689004 1382.648681640630002 spectrum=289 1.9307125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 353 null null crap_to_database_minimal_mrgd null null null null 1382.797119140630002 null 505.767331409454016 null ms_run[2]:spectrum=290 null null null null null null 2 HCD 3556.30126953125 null null 0 119.999997317790985 null 1364.548136330250827 1382.797119140630002 spectrum=290 2.0746369140625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 354 null null crap_to_database_minimal_mrgd null null null null 1383.246826171880002 null 500.250685667108996 null ms_run[2]:spectrum=291 null null null null null null 3 HCD 6917.80908203125 null null 0 119.999997317790985 null 1364.329295380022359 1383.246826171880002 spectrum=291 2.6650234375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 355 null null crap_to_database_minimal_mrgd null null null null 1383.95654296875 null 557.591268833914 null ms_run[2]:spectrum=293 null null null null null null 1 HCD 1816.366455078125 null null 0 119.999997317790985 null 1363.983925867367816 1383.95654296875 spectrum=293 1.04169130859375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 356 null null crap_to_database_minimal_mrgd null null null null 1384.624389648440001 null 509.566636196585023 null ms_run[2]:spectrum=295 null null null null null null 1 HCD 7348.29736328125 null null 0 119.999997317790985 null 1363.658931611476191 1384.624389648440001 spectrum=295 2.7459150390625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 357 null null crap_to_database_minimal_mrgd null null null null 1385.3701171875 null 513.739902232160944 null ms_run[2]:spectrum=297 null null null null null null 3 HCD 9230.9140625 null null 0 119.999997317790985 null 1363.296038189939281 1385.3701171875 spectrum=297 4.278328125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 358 null null crap_to_database_minimal_mrgd null null null null 1386.630249023440001 null 562.269178327283953 null ms_run[2]:spectrum=302 null null null null null null 2 HCD 908.59423828125 null null 0 119.999997317790985 null 1362.682820185266792 1386.630249023440001 spectrum=302 9019.330078125 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 359 null null crap_to_database_minimal_mrgd null null null null 1387.078857421880002 null 546.607477041648053 null ms_run[2]:spectrum=303 null null null null null null 3 HCD 3206.13330078125 null null 0 119.999997317790985 null 1362.464513862765671 1387.078857421880002 spectrum=303 2.310318359375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 360 null null crap_to_database_minimal_mrgd null null null null 1387.379028320309999 null 541.282298133661016 null ms_run[2]:spectrum=304 null null null null null null 4 HCD 8675.8564453125 null null 0 119.999997317790985 null 1362.318441686707502 1387.379028320309999 spectrum=304 2.1035353515625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 361 null null crap_to_database_minimal_mrgd null null null null 1387.527587890630002 null 529.928817425408056 null ms_run[2]:spectrum=305 null null null null null null 5 HCD 1026.7005615234375 null null 0 119.999997317790985 null 1362.246148137184719 1387.527587890630002 spectrum=305 8815.8447265625 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 362 null null crap_to_database_minimal_mrgd null null null null 1388.388061523440001 null 454.227876334247014 null ms_run[2]:spectrum=307 null null null null null null 1 HCD 1.6089982421875e04 null null 0 119.999997317790985 null 1361.827415819552698 1388.388061523440001 spectrum=307 5.7588796875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 363 null null crap_to_database_minimal_mrgd null null null null 1388.687255859380002 null 555.021513586150945 null ms_run[2]:spectrum=308 null null null null null null 2 HCD 5676.4560546875 null null 0 119.999997317790985 null 1361.68181886813727 1388.687255859380002 spectrum=308 2.3718359375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 364 null null crap_to_database_minimal_mrgd null null null null 1389.207641601559999 null 568.261279784972999 null ms_run[2]:spectrum=310 null null null null null null 1 HCD 8446.197265625 null null 0 119.999997317790985 null 1361.428583534040854 1389.207641601559999 spectrum=310 2.6697947265625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 365 null null crap_to_database_minimal_mrgd null null null null 1390.243408203130002 null 473.722743963274013 null ms_run[2]:spectrum=314 null null null null null null 1 HCD 3722.56494140625 null null 0 119.999997317790985 null 1360.924548392156567 1390.243408203130002 spectrum=314 1.7303560546875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 366 null null crap_to_database_minimal_mrgd null null null null 1390.543090820309999 null 597.902850355922965 null ms_run[2]:spectrum=315 null null null null null null 2 HCD 9757.2119140625 null null 0 119.999997317790985 null 1360.778713828422042 1390.543090820309999 spectrum=315 1.7807828125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 367 null null crap_to_database_minimal_mrgd null null null null 1391.390625 null 481.252818764291987 null ms_run[2]:spectrum=317 null null null null null null 1 HCD 9546.33203125 null null 0 119.999997317790985 null 1360.366278237368533 1391.390625 spectrum=317 1.936977734375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 368 null null crap_to_database_minimal_mrgd null null null null 1391.837280273440001 null 503.241155048114024 null ms_run[2]:spectrum=318 null null null null null null 2 HCD 1.1347462890625e04 null null 0 119.999997317790985 null 1360.148922364162672 1391.837280273440001 spectrum=318 2.329525390625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 369 null null crap_to_database_minimal_mrgd null null null null 1391.98583984375 null 495.243742941063999 null ms_run[2]:spectrum=319 null null null null null null 3 HCD 6449.2529296875 null null 0 119.999997317790985 null 1360.076628814644891 1391.98583984375 spectrum=319 2.931000390625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 370 null null crap_to_database_minimal_mrgd null null null null 1392.2060546875 null 551.299845384574041 null ms_run[2]:spectrum=321 null null null null null null 1 HCD 5555.71240234375 null null 0 119.999997317790985 null 1359.969465656606644 1392.2060546875 spectrum=321 2.9250583984375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 371 null null crap_to_database_minimal_mrgd null null null null 1394.06884765625 null 516.764734276020022 null ms_run[2]:spectrum=323 null null null null null null 1 HCD 4634.208984375 null null 0 119.999997317790985 null 1359.062974641273513 1394.06884765625 spectrum=323 2.213993359375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 372 null null crap_to_database_minimal_mrgd null null null null 1394.330444335940001 null 586.273858204040039 null ms_run[2]:spectrum=325 null null null null null null 1 HCD 2541.903564453125 null null 0 119.999997317790985 null 1358.935673838791445 1394.330444335940001 spectrum=325 1.27108125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 373 null null crap_to_database_minimal_mrgd null null null null 1395.937133789059999 null 576.791515411699947 null ms_run[2]:spectrum=327 null null null null null null 1 HCD 3172.2861328125 null null 0 119.999997317790985 null 1358.15381048729887 1395.937133789059999 spectrum=327 2.04232421875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 374 null null crap_to_database_minimal_mrgd null null null null 1396.3876953125 null 590.772806623652969 null ms_run[2]:spectrum=328 null null null null null null 2 HCD 6756.28662109375 null null 0 119.999997317790985 null 1357.934553715502489 1396.3876953125 spectrum=328 2.0787796875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 375 null null crap_to_database_minimal_mrgd null null null null 1396.756469726559999 null 524.76062040288798 null ms_run[2]:spectrum=330 null null null null null null 1 HCD 5716.14111328125 null null 0 119.999997317790985 null 1357.755097007946461 1396.756469726559999 spectrum=330 2.1037640625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 376 null null crap_to_database_minimal_mrgd null null null null 1397.203247070309999 null 524.681984044121009 null ms_run[2]:spectrum=331 null null null null null null 2 HCD 5519.55908203125 null null 0 119.999997317790985 null 1357.537681731660996 1397.203247070309999 spectrum=331 1.719935546875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 377 null null crap_to_database_minimal_mrgd null null null null 1397.800537109380002 null 570.771403848817045 null ms_run[2]:spectrum=332 null null null null null null 3 HCD 3563.68701171875 null null 0 119.999997317790985 null 1357.247022456557261 1397.800537109380002 spectrum=332 1.0580759765625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 378 null null crap_to_database_minimal_mrgd null null null null 1398.724243164059999 null 548.251851655435985 null ms_run[2]:spectrum=335 null null null null null null 1 HCD 9597.98828125 null null 0 119.999997317790985 null 1356.797519342994292 1398.724243164059999 spectrum=335 1.9408791015625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 379 null null crap_to_database_minimal_mrgd null null null null 1399.171264648440001 null 492.237587558002019 null ms_run[2]:spectrum=336 null null null null null null 2 HCD 2132.475830078125 null null 0 119.999997317790985 null 1356.57998526054439 1399.171264648440001 spectrum=336 6831.07568359375 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 380 null null crap_to_database_minimal_mrgd null null null null 1399.622924804690001 null 560.937083690701002 null ms_run[2]:spectrum=337 null null null null null null 3 HCD 4581.71142578125 null null 0 119.999997317790985 null 1356.360193861020662 1399.622924804690001 spectrum=337 1.367350390625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 381 null null crap_to_database_minimal_mrgd null null null null 1300.738525390630002 null 514.280730390525946 null ms_run[3]:spectrum=2 null null null null null null 1 HCD 5847.44775390625 null null 0 119.999997317790985 null 2329.144525226734913 1300.738525390630002 spectrum=2 1.8160814453125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 382 null null crap_to_database_minimal_mrgd null null null null 1302.3193359375 null 580.592710261135949 null ms_run[3]:spectrum=9 null null null null null null 1 HCD 9337.7099609375 null null 0 119.999997317790985 null 2289.708153012121329 1302.3193359375 spectrum=9 3.13941015625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 383 null null crap_to_database_minimal_mrgd null null null null 1302.46875 null 570.288328953995006 null ms_run[3]:spectrum=10 null null null null null null 2 HCD 9613.193359375 null null 0 119.999997317790985 null 2285.980730649894213 1302.46875 spectrum=10 1.45595107421875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 384 null null crap_to_database_minimal_mrgd null null null null 1302.916381835940001 null 563.590452820650967 null ms_run[3]:spectrum=11 null null null null null null 3 HCD 1783.1405029296875 null null 0 119.999997317790985 null 2274.813689961689306 1302.916381835940001 spectrum=11 1.1391716796875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 385 null null crap_to_database_minimal_mrgd null null null null 1304.29248046875 null 555.887769623667055 null ms_run[3]:spectrum=17 null null null null null null 1 HCD 1035.3095703125 null null 0 119.999997317790985 null 2240.484251816829328 1304.29248046875 spectrum=17 1.113805859375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 386 null null crap_to_database_minimal_mrgd null null null null 1304.959716796880002 null 452.878457298179001 null ms_run[3]:spectrum=19 null null null null null null 1 HCD 1.3656818359375e04 null null 0 119.999997317790985 null 2223.83875293440633 1304.959716796880002 spectrum=19 5.3748015625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 387 null null crap_to_database_minimal_mrgd null null null null 1305.179931640630002 null 590.917005642535969 null ms_run[3]:spectrum=21 null null null null null null 1 HCD 6360.890625 null null 0 119.999997317790985 null 2218.345068341712249 1305.179931640630002 spectrum=21 2.7151126953125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 388 null null crap_to_database_minimal_mrgd null null null null 1305.952514648440001 null 557.257427272147993 null ms_run[3]:spectrum=24 null null null null null null 1 HCD 4509.302734375 null null 0 119.999997317790985 null 2199.071493071729947 1305.952514648440001 spectrum=24 2.34151328125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 389 null null crap_to_database_minimal_mrgd null null null null 1306.469970703130002 null 475.229616836513003 null ms_run[3]:spectrum=26 null null null null null null 1 HCD 6660.23828125 null null 0 119.999997317790985 null 2186.162552390719611 1306.469970703130002 spectrum=26 1.830391015625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 390 null null crap_to_database_minimal_mrgd null null null null 1306.76806640625 null 548.937823422297015 null ms_run[3]:spectrum=27 null null null null null null 2 HCD 2412.693603515625 null null 0 119.999997317790985 null 2178.725979344636471 1306.76806640625 spectrum=27 8759.2724609375 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 391 null null crap_to_database_minimal_mrgd null null null null 1308.841552734380002 null 455.567402026122977 null ms_run[3]:spectrum=32 null null null null null null 1 HCD 3933.7490234375 null null 0 119.999997317790985 null 2126.998858229489088 1308.841552734380002 spectrum=32 1.51906005859375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 392 null null crap_to_database_minimal_mrgd null null null null 1309.807739257809999 null 488.765129619131017 null ms_run[3]:spectrum=35 null null null null null null 2 HCD 7784.2470703125 null null 0 119.999997317790985 null 2102.895469343216519 1309.807739257809999 spectrum=35 1.55307509765625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 393 null null crap_to_database_minimal_mrgd null null null null 1311.192626953130002 null 534.28342441908103 null ms_run[3]:spectrum=41 null null null null null null 2 HCD 6636.6025390625 null null 0 119.999997317790985 null 2068.346771059152161 1311.192626953130002 spectrum=41 1.8914482421875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 394 null null crap_to_database_minimal_mrgd null null null null 1311.34130859375 null 470.908620292412024 null ms_run[3]:spectrum=42 null null null null null null 3 HCD 3539.002685546875 null null 0 119.999997317790985 null 2064.637620375296592 1311.34130859375 spectrum=42 1.9028216796875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 395 null null crap_to_database_minimal_mrgd null null null null 1311.641479492190001 null 504.248010860242005 null ms_run[3]:spectrum=43 null null null null null null 4 HCD 8944.6044921875 null null 0 119.999997317790985 null 2057.149277573995278 1311.641479492190001 spectrum=43 1.6991216796875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 396 null null crap_to_database_minimal_mrgd null null null null 1311.789916992190001 null 485.220764904782016 null ms_run[3]:spectrum=44 null null null null null null 5 HCD 6253.70166015625 null null 0 119.999997317790985 null 2053.446217449430151 1311.789916992190001 spectrum=44 2.435586328125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 397 null null crap_to_database_minimal_mrgd null null null null 1312.309326171880002 null 556.297399011221955 null ms_run[3]:spectrum=46 null null null null null null 1 HCD 5343.33056640625 null null 0 119.999997317790985 null 2040.488552293096291 1312.309326171880002 spectrum=46 2.291653515625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 398 null null crap_to_database_minimal_mrgd null null null null 1313.919677734380002 null 568.597483459827004 null ms_run[3]:spectrum=48 null null null null null null 1 HCD 2507.0439453125 null null 0 119.999997317790985 null 2000.315222389094288 1313.919677734380002 spectrum=48 1.3385935546875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 399 null null crap_to_database_minimal_mrgd null null null null 1314.2177734375 null 530.912478617576994 null ms_run[3]:spectrum=49 null null null null null null 2 HCD 4146.61376953125 null null 0 119.999997317790985 null 1992.878649343011148 1314.2177734375 spectrum=49 1.8210869140625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 400 null null crap_to_database_minimal_mrgd null null null null 1314.518920898440001 null 553.295997118348964 null ms_run[3]:spectrum=50 null null null null null null 3 HCD 4155.28515625 null null 0 119.999997317790985 null 1985.365944304048298 1314.518920898440001 spectrum=50 2.5320771484375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 401 null null crap_to_database_minimal_mrgd null null null null 1315.520263671880002 null 497.567647584776012 null ms_run[3]:spectrum=54 null null null null null null 3 HCD 3250.52294921875 null null 0 119.999997317790985 null 1960.385514861708089 1315.520263671880002 spectrum=54 1.37933173828125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 402 null null crap_to_database_minimal_mrgd null null null null 1315.970825195309999 null 479.213397671241012 null ms_run[3]:spectrum=55 null null null null null null 4 HCD 1344.1412353515625 null null 0 119.999997317790985 null 1949.145387460768006 1315.970825195309999 spectrum=55 1.0571349609375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 403 null null crap_to_database_minimal_mrgd null null null null 1317.463256835940001 null 572.9408239288 null ms_run[3]:spectrum=57 null null null null null null 1 HCD 2.81814921875e04 null null 0 119.999997317790985 null 1911.91379775428095 1317.463256835940001 spectrum=57 3.1684896875e05 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 404 null null crap_to_database_minimal_mrgd null null null null 1318.399047851559999 null 551.29885558347496 null ms_run[3]:spectrum=60 null null null null null null 1 HCD 1.33891484375e04 null null 0 119.999997317790985 null 1888.568683515163684 1318.399047851559999 spectrum=60 2.049901953125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 405 null null crap_to_database_minimal_mrgd null null null null 1318.547729492190001 null 561.706254977578055 null ms_run[3]:spectrum=61 null null null null null null 2 HCD 1.34960634765625e04 null null 0 119.999997317790985 null 1884.859532831058232 1318.547729492190001 spectrum=61 2.72419140625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 406 null null crap_to_database_minimal_mrgd null null null null 1318.697265625 null 541.282622135465999 null ms_run[3]:spectrum=62 null null null null null null 3 HCD 1200.3243408203125 null null 0 119.999997317790985 null 1881.129065189185894 1318.697265625 spectrum=62 9224.234375 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 407 null null crap_to_database_minimal_mrgd null null null null 1318.995239257809999 null 477.233738204289978 null ms_run[3]:spectrum=63 null null null null null null 4 HCD 7023.7802734375 null null 0 119.999997317790985 null 1873.695537422748203 1318.995239257809999 spectrum=63 1.80256640625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 408 null null crap_to_database_minimal_mrgd null null null null 1319.44189453125 null 501.557115823861011 null ms_run[3]:spectrum=64 null null null null null null 5 HCD 927.07440185546875 null null 0 119.999997317790985 null 1862.552858972204831 1319.44189453125 spectrum=64 1.15039375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 409 null null crap_to_database_minimal_mrgd null null null null 1320.005737304690001 null 451.553351470884991 null ms_run[3]:spectrum=66 null null null null null null 1 HCD 7318.21630859375 null null 0 119.999997317790985 null 1848.48671200226795 1320.005737304690001 spectrum=66 3.243842578125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 410 null null crap_to_database_minimal_mrgd null null null null 1320.1552734375 null 588.326594418399054 null ms_run[3]:spectrum=67 null null null null null null 2 HCD 1.14210126953125e04 null null 0 119.999997317790985 null 1844.756244360395613 1320.1552734375 spectrum=67 2.2997396484375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 411 null null crap_to_database_minimal_mrgd null null null null 1320.304809570309999 null 575.269652517401028 null ms_run[3]:spectrum=68 null null null null null null 3 HCD 5350.25146484375 null null 0 119.999997317790985 null 1841.025776718523275 1320.304809570309999 spectrum=68 3.255216796875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 412 null null crap_to_database_minimal_mrgd null null null null 1321.05908203125 null 506.88913200027099 null ms_run[3]:spectrum=69 null null null null null null 4 HCD 9929.2470703125 null null 0 119.999997317790985 null 1822.208993404571402 1321.05908203125 spectrum=69 1.81143828125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 413 null null crap_to_database_minimal_mrgd null null null null 1321.208618164059999 null 516.241833764627017 null ms_run[3]:spectrum=70 null null null null null null 5 HCD 1521.554443359375 null null 0 119.999997317790985 null 1818.478525762699064 1321.208618164059999 spectrum=70 5962.296875 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 414 null null crap_to_database_minimal_mrgd null null null null 1322.47412109375 null 578.939359627852014 null ms_run[3]:spectrum=73 null null null null null null 1 HCD 770.1094970703125 null null 0 119.999997317790985 null 1786.908111032892066 1322.47412109375 spectrum=73 8541.3037109375 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 415 null null crap_to_database_minimal_mrgd null null null null 1322.772216796880002 null 469.910981074748008 null ms_run[3]:spectrum=74 null null null null null null 2 HCD 3312.779541015625 null null 0 119.999997317790985 null 1779.471537986559724 1322.772216796880002 spectrum=74 1.57347939453125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 416 null null crap_to_database_minimal_mrgd null null null null 1323.930419921880002 null 476.755651264769995 null ms_run[3]:spectrum=76 null null null null null null 1 HCD 1.307723046875e04 null null 0 119.999997317790985 null 1750.577924119884983 1323.930419921880002 spectrum=76 2.369530078125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 417 null null crap_to_database_minimal_mrgd null null null null 1324.079956054690001 null 524.259621380577983 null ms_run[3]:spectrum=77 null null null null null null 2 HCD 1.18306435546875e04 null null 0 119.999997317790985 null 1746.847456478012646 1324.079956054690001 spectrum=77 1.685464453125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 418 null null crap_to_database_minimal_mrgd null null null null 1324.228515625 null 487.247176580450002 null ms_run[3]:spectrum=78 null null null null null null 3 HCD 3443.4892578125 null null 0 119.999997317790985 null 1743.141351073801843 1324.228515625 spectrum=78 1.55498359375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 419 null null crap_to_database_minimal_mrgd null null null null 1326.86376953125 null 557.760614688695 null ms_run[3]:spectrum=84 null null null null null null 1 HCD 7574.8671875 null null 0 119.999997317790985 null 1677.399852743935298 1326.86376953125 spectrum=84 2.1723958984375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 420 null null crap_to_database_minimal_mrgd null null null null 1327.160888671880002 null 492.533052193852996 null ms_run[3]:spectrum=85 null null null null null null 2 HCD 8613.11328125 null null 0 119.999997317790985 null 1669.987641935264492 1327.160888671880002 spectrum=85 1.767669921875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 421 null null crap_to_database_minimal_mrgd null null null null 1328.418090820309999 null 475.882735772906983 null ms_run[3]:spectrum=87 null null null null null null 1 HCD 5690.408203125 null null 0 119.999997317790985 null 1638.624306225830878 1328.418090820309999 spectrum=87 2.415466015625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 422 null null crap_to_database_minimal_mrgd null null null null 1330.613647460940001 null 546.607312474548962 null ms_run[3]:spectrum=93 null null null null null null 1 HCD 1.0561775390625e04 null null 0 119.999997317790985 null 1583.851905402981402 1330.613647460940001 spectrum=93 2.4398521484375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 423 null null crap_to_database_minimal_mrgd null null null null 1330.76318359375 null 594.322014670041995 null ms_run[3]:spectrum=94 null null null null null null 2 HCD 9288.662109375 null null 0 119.999997317790985 null 1580.121437761109064 1330.76318359375 spectrum=94 2.2624505859375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 424 null null crap_to_database_minimal_mrgd null null null null 1331.061889648440001 null 555.607742446214957 null ms_run[3]:spectrum=95 null null null null null null 3 HCD 1.4151677734375e04 null null 0 119.999997317790985 null 1572.669638316300279 1331.061889648440001 spectrum=95 2.1217939453125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 425 null null crap_to_database_minimal_mrgd null null null null 1331.211303710940001 null 562.265087399454046 null ms_run[3]:spectrum=96 null null null null null null 4 HCD 1.05307353515625e04 null null 0 119.999997317790985 null 1568.94221595407339 1331.211303710940001 spectrum=96 1.6791787109375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 426 null null crap_to_database_minimal_mrgd null null null null 1331.359985351559999 null 464.565349945845014 null ms_run[3]:spectrum=97 null null null null null null 5 HCD 2507.307373046875 null null 0 119.999997317790985 null 1565.233065270217367 1331.359985351559999 spectrum=97 9863.0 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 427 null null crap_to_database_minimal_mrgd null null null null 1332.491577148440001 null 471.88424468892498 null ms_run[3]:spectrum=101 null null null null null null 1 HCD 1967.17822265625 null null 0 119.999997317790985 null 1537.003322379696783 1332.491577148440001 spectrum=101 8611.3916015625 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 428 null null crap_to_database_minimal_mrgd null null null null 1333.089965820309999 null 514.604641124352952 null ms_run[3]:spectrum=102 null null null null null null 2 HCD 4405.7607421875 null null 0 119.999997317790985 null 1522.075361252667335 1333.089965820309999 spectrum=102 2.3333025390625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 429 null null crap_to_database_minimal_mrgd null null null null 1333.310180664059999 null 580.927254450150031 null ms_run[3]:spectrum=104 null null null null null null 1 HCD 6210.29931640625 null null 0 119.999997317790985 null 1516.581676659973482 1333.310180664059999 spectrum=104 3.442208984375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 430 null null crap_to_database_minimal_mrgd null null null null 1335.593383789059999 null 564.932538181814948 null ms_run[3]:spectrum=112 null null null null null null 1 HCD 1.46071650390625e04 null null 0 119.999997317790985 null 1459.622765007118915 1335.593383789059999 spectrum=112 3.5243859375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 431 null null crap_to_database_minimal_mrgd null null null null 1335.742919921880002 null 583.91678687592605 null ms_run[3]:spectrum=113 null null null null null null 2 HCD 6066.04736328125 null null 0 119.999997317790985 null 1455.892297364996921 1335.742919921880002 spectrum=113 1.62389541015625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 432 null null crap_to_database_minimal_mrgd null null null null 1336.189697265630002 null 503.903012588343017 null ms_run[3]:spectrum=114 null null null null null null 3 HCD 7777.53955078125 null null 0 119.999997317790985 null 1444.746573634808556 1336.189697265630002 spectrum=114 1.56109931640625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 433 null null crap_to_database_minimal_mrgd null null null null 1337.078002929690001 null 555.887585936406026 null ms_run[3]:spectrum=117 null null null null null null 1 HCD 6665.39990234375 null null 0 119.999997317790985 null 1422.586073201924819 1337.078002929690001 spectrum=117 1.7697048828125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 434 null null crap_to_database_minimal_mrgd null null null null 1337.226440429690001 null 465.748667618917011 null ms_run[3]:spectrum=118 null null null null null null 2 HCD 9022.6591796875 null null 0 119.999997317790985 null 1418.883013077359465 1337.226440429690001 spectrum=118 1.8440783203125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 435 null null crap_to_database_minimal_mrgd null null null null 1337.375 null 468.566814316014018 null ms_run[3]:spectrum=119 null null null null null null 3 HCD 1341.149169921875 null null 0 119.999997317790985 null 1415.176907673148662 1337.375 spectrum=119 5005.3447265625 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 436 null null crap_to_database_minimal_mrgd null null null null 1337.966064453130002 null 557.591304806520952 null ms_run[3]:spectrum=122 null null null null null null 1 HCD 2927.169189453125 null null 0 119.999997317790985 null 1400.431663328331752 1337.966064453130002 spectrum=122 1.7075634765625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 437 null null crap_to_database_minimal_mrgd null null null null 1338.268188476559999 null 597.567706902420014 null ms_run[3]:spectrum=123 null null null null null null 2 HCD 5822.5830078125 null null 0 119.999997317790985 null 1392.894596051957024 1338.268188476559999 spectrum=123 1.459691015625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 438 null null crap_to_database_minimal_mrgd null null null null 1339.902465820309999 null 454.228087113603976 null ms_run[3]:spectrum=127 null null null null null null 2 HCD 2.573392578125e04 null null 0 119.999997317790985 null 1352.227724355457667 1339.902465820309999 spectrum=127 8.40469140625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 439 null null crap_to_database_minimal_mrgd null null null null 1341.122680664059999 null 488.765275233812986 null ms_run[3]:spectrum=130 null null null null null null 1 HCD 7376.71044921875 null null 0 119.999997317790985 null 1335.446069306229447 1341.122680664059999 spectrum=130 2.3638533203125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 440 null null crap_to_database_minimal_mrgd null null null null 1341.271362304690001 null 481.25570913736999 null ms_run[3]:spectrum=131 null null null null null null 2 HCD 697.9483642578125 null null 0 119.999997317790985 null 1336.191944593540484 1341.271362304690001 spectrum=131 6967.75732421875 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 441 null null crap_to_database_minimal_mrgd null null null null 1341.846801757809999 null 544.58376601780401 null ms_run[3]:spectrum=135 null null null null null null 1 HCD 1.31462568359375e04 null null 0 119.999997317790985 null 1347.98340791901478 1341.846801757809999 spectrum=135 3.343691015625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 442 null null crap_to_database_minimal_mrgd null null null null 1341.995483398440001 null 513.739902608542025 null ms_run[3]:spectrum=136 null null null null null null 2 HCD 1.3384048828125e04 null null 0 119.999997317790985 null 1353.619658429900028 1341.995483398440001 spectrum=136 1.017194453125e05 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 443 null null crap_to_database_minimal_mrgd null null null null 1342.735107421880002 null 505.768017369224026 null ms_run[3]:spectrum=139 null null null null null null 1 HCD 961.453369140625 null null 0 119.999997317790985 null 1391.370173508419384 1342.735107421880002 spectrum=139 1.22948115234375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 444 null null crap_to_database_minimal_mrgd null null null null 1344.3671875 null 568.262586880955951 null ms_run[3]:spectrum=144 null null null null null null 1 HCD 1154.591552734375 null null 0 119.999997317790985 null 1435.102616493129062 1344.3671875 spectrum=144 8493.01953125 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 445 null null crap_to_database_minimal_mrgd null null null null 1345.303588867190001 null 509.566858356829982 null ms_run[3]:spectrum=148 null null null null null null 1 HCD 2484.220947265625 null null 0 119.999997317790985 null 1396.093753494463044 1345.303588867190001 spectrum=148 1.8561693359375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 446 null null crap_to_database_minimal_mrgd null null null null 1345.601806640630002 null 530.912051375379974 null ms_run[3]:spectrum=149 null null null null null null 2 HCD 4454.5595703125 null null 0 119.999997317790985 null 1380.63971914663216 1345.601806640630002 spectrum=149 1.51254033203125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 447 null null crap_to_database_minimal_mrgd null null null null 1346.387573242190001 null 540.767811669590969 null ms_run[3]:spectrum=154 null null null null null null 2 HCD 1.04049638671875e04 null null 0 119.999997317790985 null 1350.053811071093151 1346.387573242190001 spectrum=154 2.148311328125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 448 null null crap_to_database_minimal_mrgd null null null null 1346.685668945309999 null 543.256541639394982 null ms_run[3]:spectrum=155 null null null null null null 3 HCD 3109.4228515625 null null 0 119.999997317790985 null 1345.562620011193076 1346.685668945309999 spectrum=155 6811.2470703125 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 449 null null crap_to_database_minimal_mrgd null null null null 1348.813598632809999 null 551.299775892857042 null ms_run[3]:spectrum=163 null null null null null null 1 HCD 1.1869826171875e04 null null 0 119.999997317790985 null 1383.536425919360227 1348.813598632809999 spectrum=163 2.438264453125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 450 null null crap_to_database_minimal_mrgd null null null null 1350.012329101559999 null 586.59370026511499 null ms_run[3]:spectrum=164 null null null null null null 2 HCD 1107.439697265625 null null 0 119.999997317790985 null 1416.949053885355397 1350.012329101559999 spectrum=164 1.01411328125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 451 null null crap_to_database_minimal_mrgd null null null null 1350.755981445309999 null 451.553515981217004 null ms_run[3]:spectrum=166 null null null null null null 1 HCD 5928.763671875 null null 0 119.999997317790985 null 1437.677132252854563 1350.755981445309999 spectrum=166 2.4225306640625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 452 null null crap_to_database_minimal_mrgd null null null null 1350.975341796880002 null 471.27522820370001 null ms_run[3]:spectrum=168 null null null null null null 1 HCD 9889.533203125 null null 0 119.999997317790985 null 1443.791439020364578 1350.975341796880002 spectrum=168 2.2567046875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 453 null null crap_to_database_minimal_mrgd null null null null 1351.123901367190001 null 475.555132173150014 null ms_run[3]:spectrum=169 null null null null null null 2 HCD 1.1047068359375e04 null null 0 119.999997317790985 null 1447.932291182679364 1351.123901367190001 spectrum=169 2.3981314453125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 454 null null crap_to_database_minimal_mrgd null null null null 1351.421997070309999 null 492.238346387146009 null ms_run[3]:spectrum=171 null null null null null null 4 HCD 1.25671845703125e04 null null 0 119.999997317790985 null 1456.241215570825034 1351.421997070309999 spectrum=171 2.0451029296875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 455 null null crap_to_database_minimal_mrgd null null null null 1351.570556640630002 null 522.027182842574007 null ms_run[3]:spectrum=172 null null null null null null 5 HCD 2439.43603515625 null null 0 119.999997317790985 null 1460.382067733418808 1351.570556640630002 spectrum=172 2.122955859375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 456 null null crap_to_database_minimal_mrgd null null null null 1352.023559570309999 null 560.936670212664012 null ms_run[3]:spectrum=173 null null null null null null 6 HCD 2716.095947265625 null null 0 119.999997317790985 null 1473.008774696733781 1352.023559570309999 spectrum=173 1.51761806640625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 457 null null crap_to_database_minimal_mrgd null null null null 1352.886962890630002 null 576.791199064858006 null ms_run[3]:spectrum=175 null null null null null null 1 HCD 1133.20263671875 null null 0 119.999997317790985 null 1497.074713353102197 1352.886962890630002 spectrum=175 8589.515625 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 458 null null crap_to_database_minimal_mrgd null null null null 1353.333740234380002 null 469.59103728543198 null ms_run[3]:spectrum=176 null null null null null null 2 HCD 1.401307421875e04 null null 0 119.999997317790985 null 1509.527892411711491 1353.333740234380002 spectrum=176 3.283184375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 459 null null crap_to_database_minimal_mrgd null null null null 1353.482299804690001 null 554.495692616948986 null ms_run[3]:spectrum=177 null null null null null null 3 HCD 2895.143798828125 null null 0 119.999997317790985 null 1513.668744574026277 1353.482299804690001 spectrum=177 1.04401953125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 460 null null crap_to_database_minimal_mrgd null null null null 1355.350708007809999 null 486.997001536453013 null ms_run[3]:spectrum=180 null null null null null null 1 HCD 8953.5751953125 null null 0 119.999997317790985 null 1565.747531096037619 1355.350708007809999 spectrum=180 2.6538431640625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 461 null null crap_to_database_minimal_mrgd null null null null 1355.796508789059999 null 509.815132113832021 null ms_run[3]:spectrum=181 null null null null null null 2 HCD 1038.43505859375 null null 0 119.999997317790985 null 1578.173490091130816 1355.796508789059999 spectrum=181 1.8344646484375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 462 null null crap_to_database_minimal_mrgd null null null null 1356.094604492190001 null 450.581812979797974 null ms_run[3]:spectrum=182 null null null null null null 3 HCD 1028.382080078125 null null 0 119.999997317790985 null 1586.482414479555473 1356.094604492190001 spectrum=182 1.1164822265625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 463 null null crap_to_database_minimal_mrgd null null null null 1356.9130859375 null 452.87760281236001 null ms_run[3]:spectrum=184 null null null null null null 1 HCD 5874.36376953125 null null 0 119.999997317790985 null 1609.296230213904892 1356.9130859375 spectrum=184 1.9848916015625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 464 null null crap_to_database_minimal_mrgd null null null null 1357.580444335940001 null 492.53378460964899 null ms_run[3]:spectrum=186 null null null null null null 1 HCD 643.7197265625 null null 0 119.999997317790985 null 1627.897741119279772 1357.580444335940001 spectrum=186 1.105396484375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 465 null null crap_to_database_minimal_mrgd null null null null 1358.631469726559999 null 529.941357094339992 null ms_run[3]:spectrum=187 null null null null null null 2 HCD 2229.547607421875 null null 0 119.999997317790985 null 1657.193334478327415 1358.631469726559999 spectrum=187 1.13017421875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 466 null null crap_to_database_minimal_mrgd null null null null 1359.492553710940001 null 557.759699170227009 null ms_run[3]:spectrum=189 null null null null null null 1 HCD 1.17550859375e04 null null 0 119.999997317790985 null 1681.194625483775553 1359.492553710940001 spectrum=189 4.02711484375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 467 null null crap_to_database_minimal_mrgd null null null null 1360.906372070309999 null 546.601105023792002 null ms_run[3]:spectrum=194 null null null null null null 1 HCD 4307.7060546875 null null 0 119.999997317790985 null 1720.602472439049052 1360.906372070309999 spectrum=194 2.3319740234375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 468 null null crap_to_database_minimal_mrgd null null null null 1362.366088867190001 null 491.246594348406973 null ms_run[3]:spectrum=199 null null null null null null 1 HCD 2629.4814453125 null null 0 119.999997317790985 null 1761.289662379857646 1362.366088867190001 spectrum=199 1.56999462890625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 469 null null crap_to_database_minimal_mrgd null null null null 1363.605102539059999 null 463.965515267903015 null ms_run[3]:spectrum=203 null null null null null null 1 HCD 7475.13427734375 null null 0 119.999997317790985 null 1795.825117965751815 1363.605102539059999 spectrum=203 1.4408248046875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 470 null null crap_to_database_minimal_mrgd null null null null 1365.861450195309999 null 566.273531863619951 null ms_run[3]:spectrum=211 null null null null null null 2 HCD 3947.794189453125 null null 0 119.999997317790985 null 1858.717074719667835 1365.861450195309999 spectrum=211 1.21635947265625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 471 null null crap_to_database_minimal_mrgd null null null null 1366.16259765625 null 588.325790162794988 null ms_run[3]:spectrum=212 null null null null null null 3 HCD 8055.0859375 null null 0 119.999997317790985 null 1867.111061806510406 1366.16259765625 spectrum=212 1.6838021484375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 472 null null crap_to_database_minimal_mrgd null null null null 1366.311157226559999 null 464.214217395099013 null ms_run[3]:spectrum=213 null null null null null null 4 HCD 9061.037109375 null null 0 119.999997317790985 null 1871.251913968825193 1366.311157226559999 spectrum=213 2.058978515625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 473 null null crap_to_database_minimal_mrgd null null null null 1367.4541015625 null 583.81206219221599 null ms_run[3]:spectrum=216 null null null null null null 1 HCD 9210.3857421875 null null 0 119.999997317790985 null 1903.109595806533889 1367.4541015625 spectrum=216 2.1425349609375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 474 null null crap_to_database_minimal_mrgd null null null null 1368.055419921880002 null 549.252761833389968 null ms_run[3]:spectrum=217 null null null null null null 2 HCD 5579.06640625 null null 0 119.999997317790985 null 1919.870349916702935 1368.055419921880002 spectrum=217 2.0976130859375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 475 null null crap_to_database_minimal_mrgd null null null null 1368.274658203130002 null 465.748659908625996 null ms_run[3]:spectrum=219 null null null null null null 1 HCD 5832.81298828125 null null 0 119.999997317790985 null 1925.98125417606434 1368.274658203130002 spectrum=219 3.0135326171875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 476 null null crap_to_database_minimal_mrgd null null null null 1368.794189453130002 null 564.77555856276399 null ms_run[3]:spectrum=221 null null null null null null 1 HCD 1.35899814453125e04 null null 0 119.999997317790985 null 1940.462327966621842 1368.794189453130002 spectrum=221 4.821782421875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 477 null null crap_to_database_minimal_mrgd null null null null 1368.94384765625 null 599.262224170028958 null ms_run[3]:spectrum=222 null null null null null null 2 HCD 2802.899658203125 null null 0 119.999997317790985 null 1944.633802700322576 1368.94384765625 spectrum=222 2.51489140625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 478 null null crap_to_database_minimal_mrgd null null null null 1370.36083984375 null 473.576479623415992 null ms_run[3]:spectrum=224 null null null null null null 1 HCD 1.33913671875e04 null null 0 119.999997317790985 null 1984.130114862162827 1370.36083984375 spectrum=224 2.104620703125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 479 null null crap_to_database_minimal_mrgd null null null null 1370.510375976559999 null 547.588837204109041 null ms_run[3]:spectrum=225 null null null null null null 2 HCD 778.80706787109375 null null 0 119.999997317790985 null 1988.298187087993711 1370.510375976559999 spectrum=225 1.0856203125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 480 null null crap_to_database_minimal_mrgd null null null null 1372.15283203125 null 561.788205268307024 null ms_run[3]:spectrum=227 null null null null null null 1 HCD 6243.9892578125 null null 0 119.999997317790985 null 2034.078931414180033 1372.15283203125 spectrum=227 1.5915896484375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 481 null null crap_to_database_minimal_mrgd null null null null 1372.75 null 533.282696195709946 null ms_run[3]:spectrum=228 null null null null null null 2 HCD 1.3407140625e04 null null 0 119.999997317790985 null 2050.724000254266684 1372.75 spectrum=228 2.13093984375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 482 null null crap_to_database_minimal_mrgd null null null null 1372.898681640630002 null 526.907754232373009 null ms_run[3]:spectrum=229 null null null null null null 3 HCD 3048.822998046875 null null 0 119.999997317790985 null 2054.868254924729627 1372.898681640630002 spectrum=229 9288.8671875 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 483 null null crap_to_database_minimal_mrgd null null null null 1373.746704101559999 null 544.583076288515031 null ms_run[3]:spectrum=232 null null null null null null 2 HCD 5101.2177734375 null null 0 119.999997317790985 null 2078.505477580301886 1373.746704101559999 spectrum=232 2.7880255859375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 484 null null crap_to_database_minimal_mrgd null null null null 1374.193481445309999 null 513.740352241268965 null ms_run[3]:spectrum=233 null null null null null null 3 HCD 8197.634765625 null null 0 119.999997317790985 null 2090.958656638910725 1374.193481445309999 spectrum=233 5.6043265625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 485 null null crap_to_database_minimal_mrgd null null null null 1374.342041015630002 null 505.768178893529012 null ms_run[3]:spectrum=234 null null null null null null 4 HCD 3709.593017578125 null null 0 119.999997317790985 null 2095.099508801504271 1374.342041015630002 spectrum=234 2.519858984375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 486 null null crap_to_database_minimal_mrgd null null null null 1376.105834960940001 null 532.264603017198056 null ms_run[3]:spectrum=237 null null null null null null 1 HCD 2429.41064453125 null null 0 119.999997317790985 null 2144.262346019424967 1376.105834960940001 spectrum=237 2.87195859375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 487 null null crap_to_database_minimal_mrgd null null null null 1376.404052734380002 null 518.263422361002995 null ms_run[3]:spectrum=238 null null null null null null 2 HCD 4891.24365234375 null null 0 119.999997317790985 null 2152.574672915719475 1376.404052734380002 spectrum=238 2.768833984375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 488 null null crap_to_database_minimal_mrgd null null null null 1376.854614257809999 null 568.595042077814014 null ms_run[3]:spectrum=239 null null null null null null 3 HCD 716.68304443359375 null null 0 119.999997317790985 null 2165.133329720244546 1376.854614257809999 spectrum=239 1.0495955078125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 489 null null crap_to_database_minimal_mrgd null null null null 1377.153930664059999 null 557.256957459891055 null ms_run[3]:spectrum=240 null null null null null null 4 HCD 4673.1240234375 null null 0 119.999997317790985 null 2173.476279187924774 1377.153930664059999 spectrum=240 2.5704123046875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 490 null null crap_to_database_minimal_mrgd null null null null 1377.415161132809999 null 540.767773025370957 null ms_run[3]:spectrum=242 null null null null null null 1 HCD 1.12902353515625e04 null null 0 119.999997317790985 null 2180.757646178477444 1377.415161132809999 spectrum=242 3.6793453125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 491 null null crap_to_database_minimal_mrgd null null null null 1377.563598632809999 null 509.567611536294976 null ms_run[3]:spectrum=243 null null null null null null 2 HCD 6295.529296875 null null 0 119.999997317790985 null 2184.89509583292238 1377.563598632809999 spectrum=243 2.0877439453125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 492 null null crap_to_database_minimal_mrgd null null null null 1377.712280273440001 null 469.730898253503028 null ms_run[3]:spectrum=244 null null null null null null 3 HCD 1.10706083984375e04 null null 0 119.999997317790985 null 2189.039350503386231 1377.712280273440001 spectrum=244 1.10629328125e05 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 493 null null crap_to_database_minimal_mrgd null null null null 1378.311401367190001 null 526.940834988139955 null ms_run[3]:spectrum=245 null null null null null null 4 HCD 6181.33203125 null null 0 119.999997317790985 null 2205.738859470504394 1378.311401367190001 spectrum=245 1.61844716796875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 494 null null crap_to_database_minimal_mrgd null null null null 1378.609497070309999 null 553.76462054683202 null ms_run[3]:spectrum=246 null null null null null null 5 HCD 1.44370576171875e04 null null 0 119.999997317790985 null 2214.047783858650291 1378.609497070309999 spectrum=246 2.6206716796875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 495 null null crap_to_database_minimal_mrgd null null null null 1378.759033203130002 null 568.262586880955951 null ms_run[3]:spectrum=247 null null null null null null 6 HCD 2668.5771484375 null null 0 119.999997317790985 null 2218.215856084760162 1378.759033203130002 spectrum=247 1.310711328125e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 496 null null crap_to_database_minimal_mrgd null null null null 1379.915649414059999 null 480.248393025901976 null ms_run[3]:spectrum=251 null null null null null null 3 HCD 2894.315185546875 null null 0 119.999997317790985 null 2250.454618811415003 1379.915649414059999 spectrum=251 1.43148974609375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 497 null null crap_to_database_minimal_mrgd null null null null 1380.363403320309999 null 527.607577005314056 null ms_run[3]:spectrum=252 null null null null null null 4 HCD 1.11791328125e04 null null 0 119.999997317790985 null 2262.935017933540166 1380.363403320309999 spectrum=252 2.595312109375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 498 null null crap_to_database_minimal_mrgd null null null null 1380.511840820309999 null 456.234480752044988 null ms_run[3]:spectrum=253 null null null null null null 5 HCD 5873.94921875 null null 0 119.999997317790985 null 2267.072467587985102 1380.511840820309999 spectrum=253 3.796043359375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 499 null null crap_to_database_minimal_mrgd null null null null 1381.2236328125 null 586.282906153558997 null ms_run[3]:spectrum=255 null null null null null null 1 HCD 2.0253548828125e04 null null 0 119.999997317790985 null 2286.912491383342058 1381.2236328125 spectrum=255 1.890819375e05 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 500 null null crap_to_database_minimal_mrgd null null null null 1381.373291015630002 null 598.90456675206201 null ms_run[3]:spectrum=256 null null null null null null 2 HCD 1.3629697265625e04 null null 0 119.999997317790985 null 2291.083966117321324 1381.373291015630002 spectrum=256 1.35732296875e05 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 501 null null crap_to_database_minimal_mrgd null null null null 1381.972412109380002 null 577.574383226253985 null ms_run[3]:spectrum=257 null null null null null null 3 HCD 9038.888671875 null null 0 119.999997317790985 null 2307.783475084439942 1381.972412109380002 spectrum=257 1.9468990234375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 502 null null crap_to_database_minimal_mrgd null null null null 1382.68115234375 null 594.588246044789003 null ms_run[3]:spectrum=259 null null null null null null 1 HCD 1.5781216796875e04 null null 0 119.999997317790985 null 2327.538436181099769 1382.68115234375 spectrum=259 2.5570009765625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 503 null null crap_to_database_minimal_mrgd null null null null 1382.83056640625 null 591.595977976318977 null ms_run[3]:spectrum=260 null null null null null null 2 HCD 1.1383470703125e04 null null 0 119.999997317790985 null 2331.703105899060574 1382.83056640625 spectrum=260 3.341572265625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 504 null null crap_to_database_minimal_mrgd null null null null 1383.428100585940001 null 562.578072614903022 null ms_run[3]:spectrum=262 null null null null null null 4 HCD 910.87115478515625 null null 0 119.999997317790985 null 2348.35838226303531 1383.428100585940001 spectrum=262 1.00185302734375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 505 null null crap_to_database_minimal_mrgd null null null null 1387.191040039059999 null 592.597971457141057 null ms_run[3]:spectrum=272 null null null null null null 2 HCD 5857.06201171875 null null 0 119.999997317790985 null 2453.24409200625314 1387.191040039059999 spectrum=272 3.1513474609375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 506 null null crap_to_database_minimal_mrgd null null null null 1388.199096679690001 null 566.595672235176949 null ms_run[3]:spectrum=278 null null null null null null 1 HCD 1.20412021484375e04 null null 0 119.999997317790985 null 2481.342002570871955 1388.199096679690001 spectrum=278 2.5923541015625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 507 null null crap_to_database_minimal_mrgd null null null null 1388.34765625 null 523.239818480817007 null ms_run[3]:spectrum=279 null null null null null null 2 HCD 3847.284912109375 null null 0 119.999997317790985 null 2485.482854733186741 1388.34765625 spectrum=279 1.8543072265625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 508 null null crap_to_database_minimal_mrgd null null null null 1388.79833984375 null 485.886958205033977 null ms_run[3]:spectrum=280 null null null null null null 3 HCD 7202.982421875 null null 0 119.999997317790985 null 2498.044914045860423 1388.79833984375 spectrum=280 2.9058974609375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 509 null null crap_to_database_minimal_mrgd null null null null 1389.304809570309999 null 594.250236891744976 null ms_run[3]:spectrum=283 null null null null null null 1 HCD 1.467514453125e04 null null 0 119.999997317790985 null 2512.161919486820807 1389.304809570309999 spectrum=283 2.9733697265625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 510 null null crap_to_database_minimal_mrgd null null null null 1389.754516601559999 null 573.279199443180005 null ms_run[3]:spectrum=285 null null null null null null 3 HCD 2360.11328125 null null 0 119.999997317790985 null 2524.696758735978165 1389.754516601559999 spectrum=285 1.46746025390625e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 511 null null crap_to_database_minimal_mrgd null null null null 1395.048706054690001 null 523.918401264856016 null ms_run[3]:spectrum=303 null null null null null null 1 HCD 4635.58154296875 null null 0 119.999997317790985 null 2672.263528072697227 1395.048706054690001 spectrum=303 3.417159375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 512 null null crap_to_database_minimal_mrgd null null null null 1395.268920898440001 null 589.017259193944028 null ms_run[3]:spectrum=305 null null null null null null 1 HCD 4171.017578125 null null 0 119.999997317790985 null 2678.401652395574274 1395.268920898440001 spectrum=305 2.9214388671875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 513 null null crap_to_database_minimal_mrgd null null null null 1396.211547851559999 null 521.271330212205953 null ms_run[3]:spectrum=309 null null null null null null 1 HCD 1.18709951171875e04 null null 0 119.999997317790985 null 2704.675818704336507 1396.211547851559999 spectrum=309 3.18646484375e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 514 null null crap_to_database_minimal_mrgd null null null null 1396.5107421875 null 569.59252972330205 null ms_run[3]:spectrum=310 null null null null null null 2 HCD 5801.09814453125 null null 0 119.999997317790985 null 2713.015365664146884 1396.5107421875 spectrum=310 4.07894921875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 515 null null crap_to_database_minimal_mrgd null null null null 1399.24609375 null 566.308992939112954 null ms_run[3]:spectrum=321 null null null null null null 1 HCD 1.0057494140625e04 null null 0 119.999997317790985 null 2789.258763572703174 1399.24609375 spectrum=321 3.215871875e04 null null null null null null null null null null null null null null null null null null null null null null null null +PSM null 516 null null crap_to_database_minimal_mrgd null null null null 1399.543212890630002 null 451.886857011221025 null ms_run[3]:spectrum=322 null null null null null null 2 HCD 906.3585205078125 null null 0 119.999997317790985 null 2797.540467897611507 1399.543212890630002 spectrum=322 8259.560546875 null null null null null null null null null null null null null null null null null null null null null null null null diff --git a/src/tests/topp/THIRDPARTY/proteins.cnlcp b/src/tests/topp/THIRDPARTY/proteins.cnlcp new file mode 100644 index 00000000000..c830623e7c1 Binary files /dev/null and b/src/tests/topp/THIRDPARTY/proteins.cnlcp differ diff --git a/src/tests/topp/THIRDPARTY/proteins.csarr b/src/tests/topp/THIRDPARTY/proteins.csarr new file mode 100644 index 00000000000..2b6f3ad7ef4 Binary files /dev/null and b/src/tests/topp/THIRDPARTY/proteins.csarr differ diff --git a/src/tests/topp/THIRDPARTY/proteins.cseq b/src/tests/topp/THIRDPARTY/proteins.cseq new file mode 100644 index 00000000000..5d18224287b Binary files /dev/null and b/src/tests/topp/THIRDPARTY/proteins.cseq differ diff --git a/src/tests/topp/TMTElevenPlexMethod_test.ini b/src/tests/topp/TMTElevenPlexMethod_test.ini index cd5f90e3cad..0819a1f4cb4 100644 --- a/src/tests/topp/TMTElevenPlexMethod_test.ini +++ b/src/tests/topp/TMTElevenPlexMethod_test.ini @@ -13,7 +13,7 @@ - + diff --git a/src/tests/topp/TMTTenPlexMethod_test.ini b/src/tests/topp/TMTTenPlexMethod_test.ini index 3939aae4733..b5d3efe93ec 100644 --- a/src/tests/topp/TMTTenPlexMethod_test.ini +++ b/src/tests/topp/TMTTenPlexMethod_test.ini @@ -13,7 +13,7 @@ - + diff --git a/src/topp/CMakeLists.txt b/src/topp/CMakeLists.txt index c8c36a33605..8a984db5d21 100644 --- a/src/topp/CMakeLists.txt +++ b/src/topp/CMakeLists.txt @@ -42,7 +42,7 @@ cmake_minimum_required(VERSION 3.9.0 FATAL_ERROR) include_directories(SYSTEM ${OpenMS_INCLUDE_DIRECTORIES}) add_definitions(/DBOOST_ALL_NO_LIB) -find_package(Qt5 COMPONENTS Core Network REQUIRED) +find_package(Qt5 COMPONENTS Core Network Sql REQUIRED) # add all the tools include(executables.cmake) @@ -60,7 +60,8 @@ endforeach(i) if(WITH_GUI) ## TODO Check if the find command actually does anything but double check. ## Libraries are I think anyway already hardcoded in OpenMS_GUI_LIBRARIES - find_package(Qt5 COMPONENTS Core Network Widgets Svg OpenGL PrintSupport REQUIRED) + find_package(Qt5 COMPONENTS Core Network Widgets Svg OpenGL PrintSupport Sql REQUIRED) + find_package(Qt5 COMPONENTS WebEngineWidgets) if (NOT Qt5Widgets_FOUND) message(STATUS "QtWidgets module not found!") message(FATAL_ERROR "To find a custom Qt installation use: cmake <..more options..> -D QT_QMAKE_EXECUTABLE='") diff --git a/src/topp/CometAdapter.cpp b/src/topp/CometAdapter.cpp index ebc98ddb926..fc0ee8f0e91 100644 --- a/src/topp/CometAdapter.cpp +++ b/src/topp/CometAdapter.cpp @@ -343,7 +343,7 @@ class TOPPCometAdapter : } IntList binary_modifications = getIntList_("binary_modifications"); - if (binary_modifications.size() != 0 && binary_modifications.size() != variable_modifications.size()) + if (!binary_modifications.empty() && binary_modifications.size() != variable_modifications.size()) { throw OpenMS::Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Error: List of binary modifications needs to have same size as variable modifications."); } diff --git a/src/topp/ConsensusID.cpp b/src/topp/ConsensusID.cpp index 43d6de304f3..53afa1a61d8 100644 --- a/src/topp/ConsensusID.cpp +++ b/src/topp/ConsensusID.cpp @@ -250,7 +250,7 @@ class TOPPConsensusID : prot_ids[0].setSearchParameters(search_params); //TODO for completeness we could in the other algorithms, collect all search engines and put them here - // or maybe put it in a DataProcessingStep + // or maybe put it in a DataProcessing step //TODO actually this only makes sense if there was only one search engine. (see the alternative // setProteinIdentificationSettings_) // best, worst, average can also be used on PEP scores for different search engines. IDPEP does not @@ -280,7 +280,7 @@ class TOPPConsensusID : String original_SE = "Unknown"; String original_SE_ver = "0.0"; vector mvkeys; - + old_sp.getKeys(mvkeys); for (const String & mvkey : mvkeys) { @@ -428,7 +428,7 @@ class TOPPConsensusID : new_sp.setMetaValue(SE+":precursor_mass_tolerance_unit",sp.precursor_mass_tolerance_ppm ? "ppm" : "Da"); new_sp.setMetaValue(SE+":digestion_enzyme",sp.digestion_enzyme.getName()); new_sp.setMetaValue(SE+":enzyme_term_specificity",EnzymaticDigestion::NamesOfSpecificity[sp.enzyme_term_specificity]); - + const auto& chg_pair = sp.getChargeRange(); if (chg_pair.first != 0 && chg_pair.first < min_chg) { @@ -561,7 +561,7 @@ class TOPPConsensusID : new_sp.fragment_mass_tolerance = frag_tol_ppm; new_sp.fragment_mass_tolerance_ppm = true; } - + new_sp.missed_cleavages = mc; prot_id.setDateTime(DateTime::now()); @@ -570,7 +570,7 @@ class TOPPConsensusID : prot_id.setSearchParameters(new_sp); //TODO for completeness we could in the other algorithms, collect all search engines and put them here - // or maybe put it in a DataProcessingStep + // or maybe put it in a DataProcessing step if (allsamese) { prot_id.setMetaValue("ConsensusIDBaseSearch", get<0>(se_ver_settings[0]) + String(":") + get<1>(se_ver_settings[0])); @@ -836,7 +836,7 @@ class TOPPConsensusID : OPENMS_LOG_FATAL_ERROR << "ConsensusID on idXML without the --per_spectrum flag expects a merged idXML file" "with multiple runs. Only one run found in the first file." << std::endl; } - + // merge peptide IDs by precursor position - this is equivalent to a // feature linking problem (peptide IDs from different ID runs <-> // features from different maps), so we bring the data into a format @@ -896,7 +896,7 @@ class TOPPConsensusID : { auto& ids = cfeature.getPeptideIdentifications(); consensus->apply(ids, runid_to_se, old_size); - + if (!ids.empty()) { PeptideIdentification& pep_id = ids[0]; diff --git a/src/topp/ConsensusMapNormalizer.cpp b/src/topp/ConsensusMapNormalizer.cpp index 4bc799d91fb..64fea6709d3 100644 --- a/src/topp/ConsensusMapNormalizer.cpp +++ b/src/topp/ConsensusMapNormalizer.cpp @@ -146,7 +146,7 @@ class TOPPConsensusMapNormalizer : } else if (algo_type == "quantile") { - if (acc_filter != "" || desc_filter != "") + if (!acc_filter.empty() || !desc_filter.empty()) { OPENMS_LOG_WARN << endl << "NOTE: Accession / description filtering is not supported in quantile normalization mode. Ignoring filters." << endl << endl; } diff --git a/src/topp/DatabaseSuitability.cpp b/src/topp/DatabaseSuitability.cpp index 66199754026..df4b34fde3b 100644 --- a/src/topp/DatabaseSuitability.cpp +++ b/src/topp/DatabaseSuitability.cpp @@ -34,12 +34,15 @@ #include +#include #include +#include #include #include #include #include #include +#include #include #include #include @@ -59,10 +62,11 @@ using namespace std; @dot digraph sample_workflow { node [ style="solid,filled", color=black, fillcolor=grey90, width=1.5, fixedsize=true, shape=square, fontname=Helvetica, fontsize=10 ]; - edge [ arrowhead="open", style="solid" ]; + edge [ style="solid" ]; rankdir="LR"; splines=ortho; mzml [ label="mzML file(s)" shape=oval fillcolor=white group=1]; + db [ label="database in question" shape=oval fillcolor=white ]; novor [ label="NovorAdapter" URL="\ref OpenMS::NovorAdapter" group=2]; id_filter [ label="IDFilter" URL="\ref OpenMS::IDFilter" group=2]; id_convert [ label="IDFileConverter" URL="\ref OpenMS::IDFileConverter" group=2]; @@ -75,13 +79,16 @@ digraph sample_workflow { mzml -> novor; mzml -> comet; comet -> pep_ind; - pep_ind -> db_suit [ xlabel="in_id" ]; + pep_ind -> db_suit [ xlabel="in_id" fontsize=10 ]; novor -> id_filter; id_filter -> id_convert; + id_convert -> db_suit [ xlabel="novo_database" fontsize=10 ]; id_convert -> decoy_db; + decoy_db -> db [ dir=back ]; + db_suit -> db [ dir=back xlabel="database" fontsize=10 ]; decoy_db -> comet; - mzml -> db_suit [ xlabel="in_spec" ]; - novor -> db_suit [ xlabel="in_novor" ]; + mzml -> db_suit [ xlabel="in_spec" fontsize=10 ]; + novor -> db_suit [ xlabel="in_novo" fontsize=10 ]; db_suit -> tsv; } @enddot @@ -96,8 +103,9 @@ To generate the de novo "database": For re-ranking all cases where a peptide hit only found in the de novo "database" scores above a peptide hit found in the actual database are checked. In all these cases the cross-correlation scores of those peptide hits are compared. If they are similar enough, the database hit will be re-ranked to be on top of the de novo hit. You can control how much of cases with similar scores will be re-ranked by using the @p reranking_cutoff_percentile.@n For this to work it is important @ref TOPP_PeptideIndexer ran before. However it is also crucial that no FDR was performed. This tool does this itself and will crash if a q-value is found. You can still control the FDR that you want to establish using the corresponding flag. -@note For identification search the only supported search engine for the time being is Comet because the Comet cross-correlation score is needed for re-ranking.@n -You can still uses other search engines and disable the re-ranking via the @p no_rerank flag in this tool. This will probably result in an underestimated suitability though.@n +@note For identification search the recommended search engine is Comet because the Comet cross-correlation score is recommended for re-ranking.@n +If you use other search engines re-ranking will be turned off automatically. You can still enforce re-ranking by using the 'force' flag.@n +In this case the tool will use the default score of your search engine. This can result in undefined behaviour. Be warned.@n The results are written directly into the console. But you can provide an optional tsv output file where the most important results will be exported to. @@ -140,14 +148,20 @@ class DatabaseSuitability : void registerOptionsAndFlags_() override { - registerInputFile_("in_id", "", "", "Input idXML file from peptide search with combined database with added de novo peptide. PeptideIndexer is needed, FDR is forbidden."); - setValidFormats_("in_id", {"idXML"}); + registerInputFile_("in_id", "", "", "Input idXML file from a peptide identification search with a combined database. PeptideIndexer is needed, FDR is forbidden."); + setValidFormats_("in_id", { "idXML" }); registerInputFile_("in_spec", "", "", "Input MzML file used for the peptide identification"); setValidFormats_("in_spec", {"mzML"}); registerInputFile_("in_novo", "", "", "Input idXML file containing de novo peptides (unfiltered)"); - setValidFormats_("in_novo", {"idXML"}); + setValidFormats_("in_novo", { "idXML" }); + registerInputFile_("database", "", "", "Input FASTA file of the database in question"); + setValidFormats_("database", { "FASTA" }); + registerInputFile_("novo_database", "", "", "Input deNovo sequences derived from MzML given in 'in_spec' concatenated to one FASTA entry"); + setValidFormats_("novo_database", { "FASTA" }); registerOutputFile_("out", "", "", "Optional tsv output containing database suitability information as well as spectral quality.", false); setValidFormats_("out", {"tsv"}); + registerDoubleOption_("novo_threshold", "double", 60, "Minimum score a de novo sequence has to have to be defined as 'correct'. The default of 60 is proven to be a good estimate for sequences generated by Novor.", false, true); + setMinFloat_("novo_threshold", 0); registerSubsection_("algorithm", "Parameter section for the suitability calculation algorithm"); } @@ -161,8 +175,12 @@ class DatabaseSuitability : String in_id = getStringOption_("in_id"); String in_spec = getStringOption_("in_spec"); String in_novo = getStringOption_("in_novo"); + String db = getStringOption_("database"); + String novo_db = getStringOption_("novo_database"); String out = getStringOption_("out"); + double novo_threshold = getDoubleOption_("novo_threshold"); + //------------------------------------------------------------- // reading input //------------------------------------------------------------- @@ -179,14 +197,29 @@ class DatabaseSuitability : vector pep_ids; x.load(in_id, prot_ids, pep_ids); + if (prot_ids.empty()) + { + OPENMS_LOG_ERROR << "No ProteinIdentifications found in idXML given in 'in_id'. Aborting!" << endl; + return ILLEGAL_PARAMETERS; + } + vector novo_prots; vector novo_peps; x.load(in_novo, novo_prots, novo_peps); + FASTAFile f; + vector database; + f.load(db, database); + + vector novo_database; + f.load(novo_db, novo_database); + //------------------------------------------------------------- // calculations //------------------------------------------------------------- + Size total_number_novo_seqs = novo_peps.size(); + IDFilter::filterHitsByScore(novo_peps, novo_threshold); set unique_novo; for (const auto& pep_id : novo_peps) { @@ -207,10 +240,19 @@ class DatabaseSuitability : Ms2IdentificationRate::IdentificationRateData spectral_quality = q.getResults()[0]; + QCBase::SpectraMap mapping; + mapping.calculateMap(exp); + vector copy_ids(pep_ids); //unattractive solution for now + FalseDiscoveryRate fdr; + fdr.apply(copy_ids); + PSMExplainedIonCurrent eic; + eic.compute(copy_ids, prot_ids[0].getSearchParameters(), exp, mapping); + PSMExplainedIonCurrent::Statistics eic_result = eic.getResults()[0]; + DBSuitability s; Param p = getParam_().copy("algorithm:", true); s.setParameters(p); - s.compute(pep_ids); + s.compute(std::move(pep_ids), exp, database, novo_database, prot_ids[0].getSearchParameters()); DBSuitability::SuitabilityData suit = s.getResults()[0]; @@ -220,12 +262,14 @@ class DatabaseSuitability : OPENMS_LOG_INFO << suit.num_top_db << " / " << (suit.num_top_db + suit.num_top_novo) << " top hits were found in the database." << endl; OPENMS_LOG_INFO << suit.num_top_novo << " / " << (suit.num_top_db + suit.num_top_novo) << " top hits were only found in the concatenated de novo peptide." << endl; - OPENMS_LOG_INFO << suit.num_interest << " times scored a de novo hit above a database hit. Of those times " << suit.num_re_ranked << " top de novo hits where re-ranked." << endl; - OPENMS_LOG_INFO << "database suitability [0, 1]: " << suit.suitability << endl - << endl; - OPENMS_LOG_INFO << unique_novo.size() << " / " << spectral_quality.num_peptide_identification << " de novo sequences are unique" << endl; + OPENMS_LOG_INFO << suit.getCorrectedNovoHits() << " top deNovo hits after correction." << endl; + OPENMS_LOG_INFO << suit.num_interest << " times scored a de novo hit above a database hit. Of those times " << suit.num_re_ranked << " top de novo hits where re-ranked using a decoy cut-off of: " << suit.cut_off << "." << endl; + OPENMS_LOG_INFO << "database suitability [0, 1]: " << suit.suitability << endl; + OPENMS_LOG_INFO << "database suitability after correction: " << suit.getCorrectedSuitability() << endl << endl; + OPENMS_LOG_INFO << spectral_quality.num_peptide_identification << " / " << total_number_novo_seqs << " de novo sequences are high scoring. Of those " << unique_novo.size() << " are unique." << endl; OPENMS_LOG_INFO << spectral_quality.num_ms2_spectra << " ms2 spectra found" << endl; - OPENMS_LOG_INFO << "spectral quality (id rate of de novo sequences) [0, 1]: " << spectral_quality.identification_rate << endl; + OPENMS_LOG_INFO << "spectral quality (id rate of high scoring de novo sequences) [0, 1]: " << spectral_quality.identification_rate << endl << endl; + OPENMS_LOG_INFO << "avg. explained ion current [0, 1]: " << eic_result.average_correctness << " - variance: " << eic_result.variance_correctness << endl << endl; if (!out.empty()) { @@ -242,11 +286,20 @@ class DatabaseSuitability : os << "key\tvalue\n"; os << "#top_db_hits\t" << suit.num_top_db << "\n"; os << "#top_novo_hits\t" << suit.num_top_novo << "\n"; + os << "decoy_cut_off\t" << suit.cut_off << "\n"; + os << "correction_factor\t" << suit.getCorrectionFactor() << "\n"; + os << "#corrected_novo_hits\t" << suit.getCorrectedNovoHits() << "\n"; os << "db_suitability\t" << suit.suitability << "\n"; - os << "#total_novo_seqs\t" << spectral_quality.num_peptide_identification << "\n"; - os << "#unique_novo_seqs\t" << unique_novo.size() << "\n"; + os << "corrected_suitability\t" << suit.getCorrectedSuitability() << "\n"; + os << "no_rerank_suitability\t" << suit.suitability_no_rerank << "\n"; + os << "corrected_no_rerank_suitability\t" << suit.suitability_corr_no_rerank << "\n"; + os << "#total_novo_seqs\t" << total_number_novo_seqs << "\n"; + os << "#high_scoring_novo_seqs\t" << spectral_quality.num_peptide_identification << "\n"; + os << "#unique_high_scoring_novo_seqs\t" << unique_novo.size() << "\n"; os << "#ms2_spectra\t" << spectral_quality.num_ms2_spectra << "\n"; os << "spectral_quality\t" << spectral_quality.identification_rate << "\n"; + os << "avg_EIC\t" << eic_result.average_correctness << "\n"; + os << "EIC_variance\t" << eic_result.variance_correctness << "\n"; os.close(); } diff --git a/src/topp/EICExtractor.cpp b/src/topp/EICExtractor.cpp index f45cc34b2af..6bf5cf1cfd1 100644 --- a/src/topp/EICExtractor.cpp +++ b/src/topp/EICExtractor.cpp @@ -238,7 +238,7 @@ class TOPPEICExtractor : }*/ // number of header files and input files must be identical - if (in_header.size() > 0 && in.size() != in_header.size()) + if (!in_header.empty() && in.size() != in_header.size()) { OPENMS_LOG_FATAL_ERROR << "Error: number of input file 'in' and 'in_header' files must be identical!" << std::endl; return ILLEGAL_PARAMETERS; @@ -315,7 +315,7 @@ class TOPPEICExtractor : pp.setParameters(p); pp.pick(tic_gf, tics_pp); - if (tics_pp.size()) + if (!tics_pp.empty()) { OPENMS_LOG_INFO << "Found " << tics_pp.size() << " auto-rt peaks at: "; for (Size ipp = 0; ipp != tics_pp.size(); ++ipp) diff --git a/src/topp/FeatureFinderCentroided.cpp b/src/topp/FeatureFinderCentroided.cpp index 38bb985c408..5d3bf4ebb5b 100644 --- a/src/topp/FeatureFinderCentroided.cpp +++ b/src/topp/FeatureFinderCentroided.cpp @@ -219,7 +219,7 @@ class TOPPFeatureFinderCentroided : //load seeds FeatureMap seeds; - if (getStringOption_("seeds") != "") + if (!getStringOption_("seeds").empty()) { FeatureXMLFile().load(getStringOption_("seeds"), seeds); } diff --git a/src/topp/FileConverter.cpp b/src/topp/FileConverter.cpp index 63dda33fb7b..5ad793c73f7 100644 --- a/src/topp/FileConverter.cpp +++ b/src/topp/FileConverter.cpp @@ -50,13 +50,14 @@ #include #include #include +#include +#include #include #include #include #include #include - using namespace OpenMS; using namespace std; @@ -90,7 +91,7 @@ using namespace std; Maybe most importantly, data from MS experiments in a number of different formats can be converted to mzML, the canonical file format used by OpenMS/TOPP for experimental data. (mzML is the PSI approved format and supports traceability of analysis steps.) - + Thermo raw files can be converted to mzML using the ThermoRawFileParser provided in the THIRDPARTY folder. On windows, a recent .NET framwork needs to be installed. On linux and mac, the mono runtime needs to be present and accessible via the -NET_executable parameter. The path to the ThermoRawFileParser can be set @@ -125,6 +126,7 @@ using namespace std; @ref OpenMS::KroenikFile "kroenik" @ref OpenMS::EDTAFile "edta" @ref OpenMS::SqMassFile "sqmass" + @ref OpenMS::OMSFile "oms" @note See @ref TOPP_IDFileConverter for similar functionality for protein/peptide identification file formats. @@ -137,13 +139,13 @@ using namespace std; String extractCachedMetaFilename(const String& in) { - // Special handling of cached mzML as input types: + // Special handling of cached mzML as input types: // we expect two paired input files which we should read into exp std::vector split_out; in.split(".cachedMzML", split_out); if (split_out.size() != 2) { - OPENMS_LOG_ERROR << "Cannot deduce base path from input '" << in + OPENMS_LOG_ERROR << "Cannot deduce base path from input '" << in << "' (note that '.cachedMzML' should only occur once as the final ending)" << std::endl; return ""; } @@ -168,15 +170,15 @@ class TOPPFileConverter : { registerInputFile_("in", "", "", "Input file to convert."); registerStringOption_("in_type", "", "", "Input file type -- default: determined from file extension or content\n", false, true); // for TOPPAS - vector input_formats = {"mzML", "mzXML", "mgf", "raw", "cachedMzML", "mzData", "dta", "dta2d", "featureXML", "consensusXML", "ms2", "fid", "tsv", "peplist", "kroenik", "edta"}; + vector input_formats = {"mzML", "mzXML", "mgf", "raw", "cachedMzML", "mzData", "dta", "dta2d", "featureXML", "consensusXML", "ms2", "fid", "tsv", "peplist", "kroenik", "edta", "oms"}; setValidFormats_("in", input_formats); setValidStrings_("in_type", input_formats); - + registerStringOption_("UID_postprocessing", "", "ensure", "unique ID post-processing for output data.\n'none' keeps current IDs even if invalid.\n'ensure' keeps current IDs but reassigns invalid ones.\n'reassign' assigns new unique IDs.", false, true); String method("none,ensure,reassign"); setValidStrings_("UID_postprocessing", ListUtils::create(method)); - vector output_formats = {"mzML", "mzXML", "cachedMzML", "mgf", "featureXML", "consensusXML", "edta", "mzData", "dta2d", "csv", "sqmass"}; + vector output_formats = {"mzML", "mzXML", "cachedMzML", "mgf", "featureXML", "consensusXML", "edta", "mzData", "dta2d", "csv", "sqmass", "oms"}; registerOutputFile_("out", "", "", "Output file"); setValidFormats_("out", output_formats); registerStringOption_("out_type", "", "", "Output file type -- default: determined from file extension or content\nNote: that not all conversion paths work or make sense.", false, true); @@ -264,12 +266,9 @@ class TOPPFileConverter : //------------------------------------------------------------- // reading input //------------------------------------------------------------- - typedef PeakMap MSExperimentType; - MSExperimentType exp; - - typedef FeatureMap FeatureMapType; - FeatureMapType fm; + MSExperiment exp; + FeatureMap fm; ConsensusMap cm; writeDebug_(String("Loading input file"), 1); @@ -296,7 +295,7 @@ class TOPPFileConverter : writeLog_("RawFileReader reading tool. Copyright 2016 by Thermo Fisher Scientific, Inc. All rights reserved"); String net_executable = getStringOption_("NET_executable"); QStringList arguments; -#ifdef OPENMS_WINDOWSPLATFORM +#ifdef OPENMS_WINDOWSPLATFORM if (net_executable.empty()) { // default on Windows: if NO mono executable is set use the "native" .NET one net_executable = getStringOption_("ThermoRaw_executable"); @@ -304,12 +303,12 @@ class TOPPFileConverter : else { // use e.g., mono arguments << getStringOption_("ThermoRaw_executable").toQString(); - } + } #else // default on Mac, Linux: use mono net_executable = net_executable.empty() ? "mono" : net_executable; arguments << getStringOption_("ThermoRaw_executable").toQString(); -#endif +#endif arguments << ("-i=" + in).c_str() << ("--output_file=" + out).c_str() << "-f=2" // indexedMzML @@ -340,7 +339,8 @@ class TOPPFileConverter : fh.loadFeatures(in, fm, in_type); fm.sortByPosition(); if ((out_type != FileTypes::FEATUREXML) && - (out_type != FileTypes::CONSENSUSXML)) + (out_type != FileTypes::CONSENSUSXML) && + (out_type != FileTypes::OMS)) { // You will lose information and waste memory. Enough reasons to issue a warning! writeLog_("Warning: Converting features to peaks. You will lose information! Mass traces are added, if present as 'num_of_masstraces' and 'masstrace_intensity' (X>=0) meta values."); @@ -534,7 +534,7 @@ class TOPPFileConverter : CONVERSION_MZDATA)); MzDataFile f; f.setLogType(log_type_); - ChromatogramTools().convertChromatogramsToSpectra(exp); + ChromatogramTools().convertChromatogramsToSpectra(exp); f.store(out, exp); } else if (out_type == FileTypes::MZXML) @@ -546,7 +546,7 @@ class TOPPFileConverter : f.setLogType(log_type_); f.getOptions().setForceMQCompatability(force_MaxQuant_compatibility); f.getOptions().setWriteIndex(write_scan_index); - //ChromatogramTools().convertChromatogramsToSpectra(exp); + //ChromatogramTools().convertChromatogramsToSpectra(exp); f.store(out, exp); } else if (out_type == FileTypes::DTA2D) @@ -556,7 +556,7 @@ class TOPPFileConverter : FORMAT_CONVERSION)); DTA2DFile f; f.setLogType(log_type_); - ChromatogramTools().convertChromatogramsToSpectra(exp); + ChromatogramTools().convertChromatogramsToSpectra(exp); if (TIC_DTA2D) { // store the total ion chromatogram (TIC) @@ -597,14 +597,18 @@ class TOPPFileConverter : { MapConversion::convert(cm, true, fm); } + else if (in_type == FileTypes::OMS) + { + OMSFile().load(in, fm); + IdentificationDataConverter::exportFeatureIDs(fm); + } else // not loaded as feature map or consensus map { // The feature specific information is only defaulted. Enough reasons to issue a warning! writeLog_("Warning: Converting peaks to features will lead to incomplete features!"); fm.clear(); fm.reserve(exp.getSize()); - typedef FeatureMapType::FeatureType FeatureType; - FeatureType feature; + Feature feature; feature.setQuality(0, 1); // override default feature.setQuality(1, 1); // override default feature.setOverallQuality(1); // override default @@ -660,16 +664,16 @@ class TOPPFileConverter : } else if (out_type == FileTypes::EDTA) { - if (fm.size() > 0 && cm.size() > 0) + if (!fm.empty() && !cm.empty()) { OPENMS_LOG_ERROR << "Internal error: cannot decide on container (Consensus or Feature)! This is a bug. Please report it!"; return INTERNAL_ERROR; } - if (fm.size() > 0) + if (!fm.empty()) { EDTAFile().store(out, fm); } - else if (cm.size() > 0) + else if (!cm.empty()) { EDTAFile().store(out, cm); } @@ -707,6 +711,16 @@ class TOPPFileConverter : SqMassFile sqm; sqm.store(out, exp); } + else if (out_type == FileTypes::OMS) + { + if (in_type != FileTypes::FEATUREXML) + { + OPENMS_LOG_ERROR << "Incompatible input data: FileConverter can only convert featureXML files to oms format."; + return INCOMPATIBLE_INPUT_DATA; + } + IdentificationDataConverter::importFeatureIDs(fm); + OMSFile().store(out, fm); + } else { writeLog_("Unknown output file type given. Aborting!"); diff --git a/src/topp/FileFilter.cpp b/src/topp/FileFilter.cpp index 4314e26a582..3f0c4e1ac79 100644 --- a/src/topp/FileFilter.cpp +++ b/src/topp/FileFilter.cpp @@ -175,6 +175,16 @@ class TOPPFileFilter : return false; } + static void replacePrecursorCharge(MSExperiment& e, int charge_in, int charge_out) + { + for (auto& s : e.getSpectra()) + { + for (auto& p : s.getPrecursors()) + { + if (p.getCharge() == charge_in) { p.setCharge(charge_out); } + } + } + } static bool checkPeptideIdentification_(BaseFeature& feature, const bool remove_annotated_features, @@ -237,7 +247,7 @@ class TOPPFileFilter : } } //flag: sequences or accessions - if (sequences.size() > 0 || accessions.size() > 0) + if (!sequences.empty() || !accessions.empty()) { bool sequen = false; bool access = false; @@ -267,11 +277,11 @@ class TOPPFileFilter : } } } - if (sequences.size() > 0 && accessions.size() > 0) + if (!sequences.empty() && !accessions.empty()) { return sequen && access; } - if (sequences.size() > 0) + if (!sequences.empty()) { return sequen; } @@ -377,6 +387,7 @@ class TOPPFileFilter : setMinFloat_("spectra:blackorwhitelist:similarity_threshold", -1.0); setMaxFloat_("spectra:blackorwhitelist:similarity_threshold", 1.0); + registerStringOption_("spectra:replace_pc_charge", "in_charge:out_charge", ":", "Replaces in_charge with out_charge in all precursors.", false, false); addEmptyLine_(); registerTOPPSubsection_("feature", "Feature data options"); registerStringOption_("feature:q", "[min]:[max]", ":", "Overall quality range to extract [0:1]", false); @@ -544,11 +555,11 @@ class TOPPFileFilter : bool no_chromatograms(getFlag_("peak_options:no_chromatograms")); //ranges - double mz_l, mz_u, rt_l, rt_u, it_l, it_u, charge_l, charge_u, size_l, size_u, q_l, q_u, pc_left, pc_right, select_collision_l, remove_collision_l, select_collision_u, remove_collision_u, select_isolation_width_l, remove_isolation_width_l, select_isolation_width_u, remove_isolation_width_u; + double mz_l, mz_u, rt_l, rt_u, it_l, it_u, charge_l, charge_u, size_l, size_u, q_l, q_u, pc_left, pc_right, select_collision_l, remove_collision_l, select_collision_u, remove_collision_u, select_isolation_width_l, remove_isolation_width_l, select_isolation_width_u, remove_isolation_width_u, replace_pc_charge_in, replace_pc_charge_out; //initialize ranges - mz_l = rt_l = it_l = charge_l = size_l = q_l = pc_left = select_collision_l = remove_collision_l = select_isolation_width_l = remove_isolation_width_l = -1 * numeric_limits::max(); - mz_u = rt_u = it_u = charge_u = size_u = q_u = pc_right = select_collision_u = remove_collision_u = select_isolation_width_u = remove_isolation_width_u = numeric_limits::max(); + mz_l = rt_l = it_l = charge_l = size_l = q_l = pc_left = select_collision_l = remove_collision_l = select_isolation_width_l = remove_isolation_width_l = replace_pc_charge_in = -1 * numeric_limits::max(); + mz_u = rt_u = it_u = charge_u = size_u = q_u = pc_right = select_collision_u = remove_collision_u = select_isolation_width_u = remove_isolation_width_u = replace_pc_charge_out = numeric_limits::max(); String rt = getStringOption_("rt"); String mz = getStringOption_("mz"); @@ -564,6 +575,7 @@ class TOPPFileFilter : String select_collision_energy = getStringOption_("spectra:select_collision_energy"); String remove_isolation_width = getStringOption_("spectra:remove_isolation_window_width"); String select_isolation_width = getStringOption_("spectra:select_isolation_window_width"); + String replace_pc_charge = getStringOption_("spectra:replace_pc_charge"); int mz32 = getStringOption_("peak_options:mz_precision").toInt(); int int32 = getStringOption_("peak_options:int_precision").toInt(); @@ -623,6 +635,8 @@ class TOPPFileFilter : parseRange_(remove_isolation_width, remove_isolation_width_l, remove_isolation_width_u); //select isolation window width parseRange_(select_isolation_width, select_isolation_width_l, select_isolation_width_u); + //parse precursor charge from in to out + parseRange_(replace_pc_charge, replace_pc_charge_in, replace_pc_charge_out); } catch (Exception::ConversionError& ce) { @@ -637,7 +651,7 @@ class TOPPFileFilter : // handle remove_meta StringList meta_info = getStringList_("f_and_c:remove_meta"); - bool remove_meta_enabled = (meta_info.size() > 0); + bool remove_meta_enabled = (!meta_info.empty()); if (remove_meta_enabled && meta_info.size() != 3) { writeLog_("Param 'f_and_c:remove_meta' has invalid number of arguments. Expected 3, got " + String(meta_info.size()) + ". Aborting!"); @@ -738,7 +752,7 @@ class TOPPFileFilter : // remove forbidden precursor charges IntList rm_pc_charge = getIntList_("peak_options:rm_pc_charge"); - if (rm_pc_charge.size() > 0) + if (!rm_pc_charge.empty()) { exp.getSpectra().erase(remove_if(exp.begin(), exp.end(), HasPrecursorCharge(rm_pc_charge, false)), exp.end()); } @@ -864,6 +878,12 @@ class TOPPFileFilter : exp.getSpectra().erase(remove_if(exp.begin(), exp.end(), IsInIsolationWindowSizeRange(select_isolation_width_l, select_isolation_width_u, true)), exp.end()); } + // reannoate precursor charge if both range values are set + if (replace_pc_charge_in != -1 * numeric_limits::max() && replace_pc_charge_out != numeric_limits::max()) + { + replacePrecursorCharge(exp, (int)replace_pc_charge_in, (int)replace_pc_charge_out); + } + //remove empty scans exp.getSpectra().erase(remove_if(exp.begin(), exp.end(), IsEmptySpectrum()), exp.end()); diff --git a/src/topp/FileInfo.cpp b/src/topp/FileInfo.cpp index 94b7a87d281..07a4c0c7056 100644 --- a/src/topp/FileInfo.cpp +++ b/src/topp/FileInfo.cpp @@ -195,9 +195,9 @@ class TOPPFileInfo : public TOPPBase { os << "Ranges:" << '\n' - << " retention time: " << String::number(map.getMin()[Peak2D::RT], 2) << " .. " << String::number(map.getMax()[Peak2D::RT], 2) << " sec (" << String::number((map.getMax()[Peak2D::RT] - map.getMin()[Peak2D::RT]) / 60, 1) << " min)\n" - << " mass-to-charge: " << String::number(map.getMin()[Peak2D::MZ], 2) << " .. " << String::number(map.getMax()[Peak2D::MZ], 2) << '\n' - << " intensity: " << String::number(map.getMinInt(), 2) << " .. " << String::number(map.getMaxInt(), 2) << '\n' + << " retention time: " << String::number(map.getMinRT(), 2) << " .. " << String::number(map.getMaxRT(), 2) << " sec (" << String::number((map.getMaxRT() - map.getMinRT()) / 60, 1) << " min)\n" + << " mass-to-charge: " << String::number(map.getMinMZ(), 2) << " .. " << String::number(map.getMaxMZ(), 2) << '\n' + << " intensity: " << String::number(map.getMinIntensity(), 2) << " .. " << String::number(map.getMaxIntensity(), 2) << '\n' << '\n'; } @@ -205,17 +205,17 @@ class TOPPFileInfo : public TOPPBase void writeRangesMachineReadable_(const Map& map, ostream &os) { os << "general: ranges: retention time: min" - << '\t' << String::number(map.getMin()[Peak2D::RT], 2) << '\n' + << '\t' << String::number(map.getMinRT(), 2) << '\n' << "general: ranges: retention time: max" - << '\t' << String::number(map.getMax()[Peak2D::RT], 2) << '\n' + << '\t' << String::number(map.getMaxRT(), 2) << '\n' << "general: ranges: mass-to-charge: min" - << '\t' << String::number(map.getMin()[Peak2D::MZ], 2) << '\n' + << '\t' << String::number(map.getMinMZ(), 2) << '\n' << "general: ranges: mass-to-charge: max" - << '\t' << String::number(map.getMax()[Peak2D::MZ], 2) << '\n' + << '\t' << String::number(map.getMaxMZ(), 2) << '\n' << "general: ranges: intensity: min" - << '\t' << String::number(map.getMinInt(), 2) << '\n' + << '\t' << String::number(map.getMinIntensity(), 2) << '\n' << "general: ranges: intensity: max" - << '\t' << String::number(map.getMaxInt(), 2) << '\n'; + << '\t' << String::number(map.getMaxIntensity(), 2) << '\n'; } template diff --git a/src/topp/FileMerger.cpp b/src/topp/FileMerger.cpp index eba442d91ea..eef5cc27481 100644 --- a/src/topp/FileMerger.cpp +++ b/src/topp/FileMerger.cpp @@ -152,13 +152,13 @@ class TOPPFileMerger : TransformationDescription trafo; if (first_file) // no transformation necessary { - rt_offset_ = map.getMax()[0] + rt_gap_; + rt_offset_ = map.getMaxRT() + rt_gap_; trafo.fitModel("identity"); } else // subsequent file -> apply transformation { TransformationDescription::DataPoints points(2); - double rt_min = map.getMin()[0], rt_max = map.getMax()[0]; + double rt_min = map.getMinRT(), rt_max = map.getMaxRT(); points[0] = make_pair(rt_min, rt_offset_); rt_offset_ += rt_max - rt_min; points[1] = make_pair(rt_max, rt_offset_); @@ -185,7 +185,7 @@ class TOPPFileMerger : // file type FileHandler file_handler; FileTypes::Type force_type; - if (getStringOption_("in_type").size() > 0) + if (!getStringOption_("in_type").empty()) { force_type = FileTypes::nameToType(getStringOption_("in_type")); } diff --git a/src/topp/GNPSExport.cpp b/src/topp/GNPSExport.cpp index a16e759d550..9673318add0 100644 --- a/src/topp/GNPSExport.cpp +++ b/src/topp/GNPSExport.cpp @@ -32,19 +32,9 @@ // $Authors: Abinesh Sarvepalli and Louis Felix Nothias$ // $Contributors: Fabian Aicheler and Oliver Alka from Oliver Kohlbacher's group at Tubingen University$ // -------------------------------------------------------------------------- -#include + #include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include +#include using namespace OpenMS; using namespace std; @@ -54,49 +44,37 @@ using namespace std; //---------------------------------------------------------- /** @page TOPP_GNPSExport GNPSExport - @brief Export MS/MS data in .MGF format for GNPS (http://gnps.ucsd.edu). - GNPS (Global Natural Products Social Molecular Networking, http://gnps.ucsd.edu) is an open-access knowledge base for community-wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. The GNPS web-platform makes possible to perform spectral library search against public MS/MS spectral libraries, as well as to perform various data analysis such as MS/MS molecular networking, network annotation propagation (http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006089), and the Dereplicator-based annotation (https://www.nature.com/articles/nchembio.2219). The GNPS manuscript is available here: https://www.nature.com/articles/nbt.3597 - This tool was developed for the Feature Based Molecular Networking (FBMN) workflow on GNPS (https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash2.jsp) - Please cite our preprint: Nothias, LF., Petras, D., Schmid, R. et al. Feature-based molecular networking in the GNPS analysis environment. Nat Methods 17, 905–908 (2020). https://doi.org/10.1038/s41592-020-0933-6 - See the FBMN workflow documentation here (https://ccms-ucsd.github.io/GNPSDocumentation/featurebasedmolecularnetworking/) -In brief, after running an OpenMS "metabolomics" pipeline, the GNPSExport TOPP tool can be used -on the consensusXML file and corresponding mzML files to generate the files needed for FBMN on GNPS. +In brief, after running an OpenMS "metabolomics" pipeline, the GNPSExport, together with the TextExporter TOPP tool, can be used +on the consensusXML file and the mzML files to generate the files needed for FBMN. These two files are: - - The MS/MS spectral data file (.MGF format) which is generated with the GNPSExport util. - - The feature quantification table (.CSV format) which is generated with the TextExport util. - + - The feature quantification table (.TXT format) which is generated with the TextExport util. + For each consensusElement in the consensusXML file, the GNPSExport produces one representative consensus -MS/MS spectrum (named peptide annotation in OpenMS jargon) outputted in the MS/MS spectral file (.MGF file). -Several modes for the generation of the consensus MS/MS spectrum are available and described below. -Note that these parameters are defined in the GNPSExport INI parameters file. - +MS/MS spectrum (named peptide annotation in OpenMS jargon) which is appended in the MS/MS spectral file (.MGF file). +An example command is available and described below. +Note that the parameters for the spectral file generation are defined in the GNPSExport INI parameters file, [available with that link](openms_gnpsexport/GNPSExport.ini)). Representative command: @code GNPSExport -ini iniFile-GNPSExport.ini -in_cm filefilter.consensusXML -in_mzml inputFile0.mzML inputFile1.mzML -out GNPSExport_output.mgf @endcode -The GNPSExport TOPP tool can be run on a consensusXML file and the corresponding mzML files to generate a MS/MS spectral file (MGF format) -and corresponding feature quantification table (.TXT format) that contains the LC-MS peak area intensity. - Requirements: - - The IDMapper has to be run on the featureXML files, in order to associate MS2 scan(s) (peptide annotation) with each - features. These peptide annotations are used by the GNPSExport. + - The IDMapper needs to be run on the featureXML files in order to associate MS2 scan(s) (peptide annotations) with each + feature for FBMN. An empty idXML or mzid (peptide annotation format) file is needed as an input. - The FileFilter has to be run on the consensusXML file, prior to the GNPSExport, in order to remove consensusElements without MS2 scans (peptide annotation). - Parameters: - Binning (ms2_bin_size): Defines the binning width of fragment ions during the merging of eligible MS/MS spectra. - Cosine Score Threshold (merged_spectra:cos_similarity): Defines the necessary pairwise cosine similarity with the highest precursor intensity MS/MS scan. - - Output Type (output_type): Options for outputting GNPSExport spectral processing are: -# [RECOMMENDED] merged_spectra @@ -106,29 +84,31 @@ Options for outputting GNPSExport spectral processing are: . -# Most intense: most_intense - For each consensusElement, the GNPSExport will output the most intense MS/MS scan (with the highest precursor ion intensity) as consensus MS/MS spectrum. . - Note that mass accuracy and the retention time window for the pairing between MS/MS scans and a LC-MS feature or consensusElement is defined at the IDMapper tool step. - A representative OpenMS-GNPS workflow would sequentially use these OpenMS TOPP tools: 1. Input mzML files 2. Run the @ref TOPP_FeatureFinderMetabo tool on the mzML files. - 3. Run the @ref TOPP_IDMapper tool on the featureXML and mzML files. - 4. Run the @ref TOPP_MapAlignerPoseClustering tool on the featureXML files. + 3. Run the @ref TOPP_MapAlignerPoseClustering tool on the featureXML files. + MapAlignerPoseClustering -in FFM_inputFile0.featureXML FFM_inputFile1.featureXML -out MapAlignerPoseClustering_inputFile0.featureXML MapAlignerPoseClustering_inputFile1.featureXML + 4. Run the @ref TOPP_IDMapper tool on the featureXML and mzML files. + IDMapper -id emptyfile.idXML -in MapAlignerPoseClustering_inputFile0.featureXML -spectra:in MapAlignerPoseClustering_inputFile0.mzML -out IDMapper_inputFile0.featureXML + IDMapper -id emptyfile.idXML -in MapAlignerPoseClustering_inputFile1.featureXML -spectra:in MapAlignerPoseClustering_inputFile1.mzML -out IDMapper_inputFile1.featureXML 5. Run the @ref TOPP_MetaboliteAdductDecharger on the featureXML files. 6. Run the @ref TOPP_FeatureLinkerUnlabeledKD tool or FeatureLinkerUnlabeledQT, on the featureXML files and output a consensusXML file. - 8. Run the @ref TOPP_FileFilter on the consensusXML file to keep only consensusElements with at least MS/MS scan (peptide identification). - 9. Run the @ref TOPP_GNPSExport on the "filtered consensusXML file" to export an .MGF file. - 10. Run the @ref TOPP_TextExporter on the "filtered consensusXML file" to export an .TXT file. - 11. Upload your files to GNPS and run the Feature-Based Molecular Networking workflow. Instructions are here: + FeatureLinkerUnlabeledKD -in IDMapper_inputFile0.featureXML IDMapper_inputFile1.featureXML -out FeatureLinkerUnlabeledKD.consensusXML + 7. Run the @ref TOPP_FileFilter on the consensusXML file to keep only consensusElements with at least MS/MS scan (peptide identification). + FileFilter -id:remove_unannotated_features -in FeatureLinkerUnlabeledKD.consensusXML -out FileFilter.consensusXML + 8. Run the @ref TOPP_GNPSExport on the "filtered consensusXML file" to export an .MGF file. + GNPSExport -ini iniFile-GNPSExport.ini -in_cm filtered.consensusXML -in_mzml inputFile0.mzML inputFile1.mzML -out GNPSExport_output.mgf + 9. Run the @ref TOPP_TextExporter on the "filtered consensusXML file" to export an .TXT file. + TextExporter -in FileFilter.consensusXML -out FeatureQuantificationTable.txt + 10. Upload your files to GNPS and run the Feature-Based Molecular Networking workflow. Instructions are here: https://ccms-ucsd.github.io/GNPSDocumentation/featurebasedmolecularnetworking/ - The GitHub for that ProteoSAFe workflow and an OpenMS python wrappers is available here: https://github.com/Bioinformatic-squad-DorresteinLab/openms-gnps-workflow - An online version of the OpenMS-GNPS pipeline for FBMN running on CCMS server (http://proteomics.ucsd.edu/) is available on GNPS: https://ccms-ucsd.github.io/GNPSDocumentation/featurebasedmolecularnetworking-with-openms/ - GNPS (Global Natural Products Social Molecular Networking, https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash2.jsp) is an open-access knowledge base for community-wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. @@ -137,7 +117,6 @@ as well as to perform various data analysis such as MS/MS molecular networking, Network Annotation Propagation (http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006089) and the DEREPLICATOR (https://www.nature.com/articles/nchembio.2219) The GNPS paper is available here (https://www.nature.com/articles/nbt.3597) - The command line parameters of this tool are: @verbinclude TOPP_GNPSExport.cli INI file documentation of this tool: @@ -161,205 +140,6 @@ class TOPPGNPSExport : public TOPPBase } ) {} -private: - static constexpr double DEF_COSINE_SIMILARITY = 0.9; - static constexpr double DEF_MERGE_BIN_SIZE = static_cast(BinnedSpectrum::DEFAULT_BIN_WIDTH_HIRES); - - static constexpr double DEF_PREC_MASS_TOL = 0.5; - static constexpr bool DEF_PREC_MASS_TOL_ISPPM = false; - - static constexpr double DEF_PEPT_CUTOFF = 5; - static constexpr double DEF_MSMAP_CACHE = 50; - - /** - * @brief Bin peaks by similar m/z position and averaged intensities - * @param peaks Vector of Peak1D peaks sorted by m/z position - * @param bin_width Size of bin - * @param binned_peaks Result vector with binned peaks passed in by reference - */ - void binPeaks_( - const vector &peaks, - const double bin_width, - vector &binned_peaks - ) - { - double last_mz = peaks.at(0).getMZ(); - double sum_mz = 0, sum_intensity = 0; - int count = 0; - for (auto& spec : peaks) - { - if (count > 0 && spec.getMZ() - last_mz > bin_width) - { - if (sum_intensity > 0) - { - Peak1D curr(sum_mz/count, sum_intensity/count); - binned_peaks.push_back(curr); - } - last_mz = spec.getMZ(); - sum_mz = 0; - sum_intensity = 0; - count = 0; - } - - sum_mz += spec.getMZ(); - sum_intensity += spec.getIntensity(); - count += 1; - } - if (count > 0) - { - Peak1D curr(sum_mz/count, sum_intensity/count); - binned_peaks.push_back(curr); - } - } - - /** - * @brief Flatten spectra from MSExperiment into a single vector of Peak1D peaks - * @param exp MSExperiment containing at least 1 spectrum - * @param bin_width Size of binned scan (m/z) - * @param merged_peaks Result vector of peaks passed in by reference - */ - void flattenAndBinSpectra_( - MSExperiment &exp, - const double bin_width, - vector &merged_peaks - ) - { - // flatten spectra - vector flat_spectra; - for (unsigned long i = 0; i < exp.getSpectra().size(); ++i) - { - MSExperiment::SpectrumType &spec = exp.getSpectrum(i); - for (auto& spec : spec) - { - Peak1D curr(spec.getMZ(), spec.getIntensity()); - flat_spectra.push_back(curr); - } - } - - sort(flat_spectra.begin(), flat_spectra.end(), [](const Peak1D &a, const Peak1D &b) - { - return a.getMZ() < b.getMZ(); - } - ); - - // bin peaks - binPeaks_(flat_spectra, bin_width, merged_peaks); - - // return value is modified merged_peaks passed by reference - } - - /** - * @brief Private function that outputs MS/MS Block Header - * @param output_file Stream that will write to file - * @param scan_index Current scan index in GNPSExport formatted output - * @param feature_id ConsensusFeature Id found in input mzXML file - * @param feature_charge ConsensusFeature's highest charge as mentioned in the input mzXML file - * @param feature_mz m/z position of PeptideIdentification with highest intensity - * @param spec_index Spectrum index of PeptideIdentification with highest intensity - * @param feature_rt ConsensusFeature's retention time specified in input mzXML file - */ - void writeMSMSBlockHeader_( - ofstream &output_file, - const String &output_type, - const int &scan_index, - const String &feature_id, - const int &feature_charge, - const String &feature_mz, - const String &spec_index, - const String &feature_rt - ) - { - if (output_file.is_open()) - { - output_file << "BEGIN IONS" << "\n" - << "OUTPUT=" << output_type << "\n" - << "SCANS=" << scan_index << "\n" - << "FEATURE_ID=e_" << feature_id << "\n" - << "MSLEVEL=2" << "\n" - << "CHARGE=" << to_string(feature_charge == 0 ? 1 : feature_charge) << "+" << "\n" - << "PEPMASS=" << feature_mz << "\n" - << "FILE_INDEX=" << spec_index << "\n" - << "RTINSECONDS=" << feature_rt << "\n"; - } - } - - /** - * @brief Private function to write peak mass and intensity to output file - * @param output_file Stream that will write to file - * @param peaks Vector of peaks that will be outputted - */ - void writeMSMSBlock_( - ofstream &output_file, - const vector &peaks - ) - { - if (output_file.is_open()) - { - output_file << setprecision(4) << fixed; - for (auto& peak : peaks) - { - output_file << peak.getMZ() << "\t" << peak.getIntensity() << "\n"; - } - - output_file << "END IONS" << "\n" << endl; - } - } - - /** - * @brief Private method used to sort PeptideIdentification map indices in order of annotation's intensity - * @param feature ConsensusFeature annotated with PeptideIdentifications - * @param featureMaps_sortedByInt Result vector of map indices in order of PeptideIdentification intensity - */ - void sortElementMapsByIntensity_(const ConsensusFeature& feature, vector>& element_maps) - { - // convert element maps to vector of pair(map, intensity) - for (ConsensusFeature::HandleSetType::const_iterator feature_iter = feature.begin();\ - feature_iter != feature.end(); ++feature_iter) - { - element_maps.push_back(pair(feature_iter->getMapIndex(), feature_iter->getIntensity())); - } - - // sort elements by intensity - sort(element_maps.begin(), element_maps.end(), [](const pair &a, const pair &b) - { - return a.second > b.second; - }); - - // return value will be reformatted vector element_maps passed in by value - } - - /** - * @brief Retrieve list of PeptideIdentification parameters from ConsensusFeature metadata, sorted by map intensity - * @param feature ConsensusFeature feature containing PeptideIdentification annotations - * @param sorted_element_maps Sorted list of element_maps - * @param pepts Result vector of of PeptideIdentification annotations sorted by map intensity in feature - */ - void getElementPeptideIdentificationsByElementIntensity_( - const ConsensusFeature& feature, - vector>& sorted_element_maps, - vector>& pepts - ) - { - for (pair& element_pair : sorted_element_maps) - { - int element_map = element_pair.first; - vector feature_pepts = feature.getPeptideIdentifications(); - for (PeptideIdentification& pept_id : feature_pepts) - { - if (pept_id.metaValueExists("spectrum_index") && pept_id.metaValueExists("map_index") - && (int)pept_id.getMetaValue("map_index") == element_map) - { - int map_index = pept_id.getMetaValue("map_index"); - int spec_index = pept_id.getMetaValue("spectrum_index"); - pepts.push_back(pair(map_index,spec_index)); - break; - } - } - } - - // return will be reformatted vector pepts passed in by value - } - protected: // this function will be used to register the tool parameters // it gets automatically called on tool execution @@ -374,23 +154,9 @@ class TOPPGNPSExport : public TOPPBase registerOutputFile_("out", "", "", "Output MGF file"); setValidFormats_("out", ListUtils::create("mgf")); - registerStringOption_("output_type", "", "most_intense", "specificity of mgf output information", false); - setValidStrings_("output_type", ListUtils::create("merged_spectra,most_intense")); - addEmptyLine_(); - // registerIntOption_("msmap_cache", "", DEF_MSMAP_CACHE, "Number of msmaps that can be cached during export for optimized performance", false, true); - // setMinInt_("msmap_cache", 0); - registerIntOption_("peptide_cutoff", "", DEF_PEPT_CUTOFF, "Number of most intense peptides to consider per consensus element; '-1' to consider all identifications", false, true); - setMinInt_("peptide_cutoff", -1); - registerDoubleOption_("ms2_bin_size", "", DEF_MERGE_BIN_SIZE, "Bin size (Da) for fragment ions when merging ms2 scans", false, false); - setMinFloat_("ms2_bin_size", 0); - - registerTOPPSubsection_("merged_spectra", "Options for exporting mgf file with merged spectra per consensusElement"); - registerDoubleOption_("merged_spectra:precursor_mass_tolerance", "", DEF_PREC_MASS_TOL, "Precursor mass tolerance (Da) for ms annotations", false); - setMinFloat_("merged_spectra:precursor_mass_tolerance", 0); - registerDoubleOption_("merged_spectra:cos_similarity", "", DEF_COSINE_SIMILARITY, "Cosine similarity threshold for merged_spectra output", false); - setMinFloat_("merged_spectra:cos_similarity", 0); + registerFullParam_(GNPSMGFFile().getDefaults()); } // the main function is called after all parameters are read @@ -399,162 +165,14 @@ class TOPPGNPSExport : public TOPPBase //------------------------------------------------------------- // parsing parameters //------------------------------------------------------------- - double cos_sim_threshold(getDoubleOption_("merged_spectra:cos_similarity")); - double bin_width(getDoubleOption_("ms2_bin_size")); - String consensus_file_path(getStringOption_("in_cm")); StringList mzml_file_paths = getStringList_("in_mzml"); String out(getStringOption_("out")); - String output_type(getStringOption_("output_type")); - - int pept_cutoff((output_type == "merged_spectra") ? getIntOption_("peptide_cutoff") : 1); - - ofstream output_file(out); - - ProgressLogger progress_logger; - progress_logger.setLogType(log_type_); - - - //------------------------------------------------------------- - // reading input - //------------------------------------------------------------- - // ConsensusMap - ConsensusXMLFile consensus_file; - ConsensusMap consensus_map; - consensus_file.load(consensus_file_path, consensus_map); - - - //------------------------------------------------------------- - // preprocessing: allocate memory - //------------------------------------------------------------- - // max_msmap_cache = std::min(max_msmap_cache, static_cast(mzml_file_paths.size())); - int max_msmap_cache = static_cast(mzml_file_paths.size()); - MzMLFile *mzml_files = new MzMLFile[max_msmap_cache]; - MSExperiment *specs_list = new MSExperiment[max_msmap_cache]; - - map msmaps_cached; // = - Size num_msmaps_cached = 0; - - - //------------------------------------------------------------- - // write output (+ merge computations) - //------------------------------------------------------------- - progress_logger.startProgress(0, consensus_map.size(), "parsing features and ms2 identifications..."); - for (Size cons_i = 0; cons_i < consensus_map.size(); ++cons_i) - { - progress_logger.setProgress(cons_i); - - const ConsensusFeature &feature = consensus_map[cons_i]; - - // determine feature's charge - BaseFeature::ChargeType charge = feature.getCharge(); - for (ConsensusFeature::HandleSetType::const_iterator feature_iter = feature.begin();\ - feature_iter != feature.end(); ++feature_iter) - { - if (feature_iter->getCharge() > charge) - { - charge = feature_iter->getCharge(); - } - } - - // compute most intense peptide identifications (based on precursor intensity) - vector> element_maps; - sortElementMapsByIntensity_(feature, element_maps); - vector> pepts; - getElementPeptideIdentificationsByElementIntensity_(feature, element_maps, pepts); - - // discard poorer precursor spectra for 'merged_spectra' and 'full_spectra' output - if (pept_cutoff != -1 && pepts.size() > (unsigned long) pept_cutoff) - { - pepts.erase(pepts.begin()+pept_cutoff, pepts.end()); - } - - // validate all peptide annotation maps have been loaded - for (vector>::iterator pepts_iter=pepts.begin(); pepts_iter!=pepts.end(); pepts_iter++) - { - int map_index = pepts_iter->first; - - // load missing MzMLFile files + MSExperiment specs - if (msmaps_cached.find(map_index) == msmaps_cached.end()) - { - MzMLFile mzmlfile; - mzml_files[num_msmaps_cached] = mzmlfile; - - MSExperiment exp; - specs_list[num_msmaps_cached] = exp; - mzml_files[num_msmaps_cached].load(mzml_file_paths[map_index], specs_list[num_msmaps_cached]); - - msmaps_cached[map_index] = num_msmaps_cached; - num_msmaps_cached += 1; - } - } - - // identify most intense spectrum - const int best_mapi = (pepts[0]).first; - const int best_speci = (pepts[0]).second; - auto best_spec = specs_list[msmaps_cached[best_mapi]][best_speci]; - - // write block output header - writeMSMSBlockHeader_( - output_file, - output_type, - (cons_i + 1), - feature.getUniqueId(), - charge, - feature.getMZ(), - best_speci, - best_spec.getRT() - ); - - // store outputted spectra in MSExperiment - MSExperiment exp; - - // add most intense spectrum to MSExperiment - exp.addSpectrum(best_spec); - - if (output_type == "merged_spectra") - { - // merge spectra that meet cosine similarity threshold to most intense spectrum - BinnedSpectrum binned_highest_int(best_spec, bin_width, false, 1, BinnedSpectrum::DEFAULT_BIN_OFFSET_HIRES); - - // Retain peptide annotations that do not meet user-specified cosine similarity threshold - for (pair &pept : pepts) - { - int map_index = pept.first; - int spec_index = pept.second; - auto test_spec = specs_list[msmaps_cached[map_index]][spec_index]; - - BinnedSpectrum binned_spectrum(test_spec, bin_width, false, 1, BinnedSpectrum::DEFAULT_BIN_OFFSET_HIRES); - - BinnedSpectralContrastAngle bsca; - double cos_sim = bsca(binned_highest_int, binned_spectrum); - - if (cos_sim >= cos_sim_threshold) - { - exp.addSpectrum(test_spec); - } - } - } - - // store outputted peaks in vector - vector peaks; - flattenAndBinSpectra_( - exp, - bin_width, - peaks - ); - - // write peaks to output block - writeMSMSBlock_( - output_file, - peaks - ); - } - - output_file.close(); - delete [] mzml_files; - delete [] specs_list; + GNPSMGFFile gnps; + gnps.setLogType(log_type_); + gnps.setParameters(getParam_()); // copy tool parameter to library class/algorithm + gnps.run(consensus_file_path, mzml_file_paths, out); return EXECUTION_OK; } diff --git a/src/topp/GenericWrapper.cpp b/src/topp/GenericWrapper.cpp index a18fa7cb61b..64eeb4b72a0 100644 --- a/src/topp/GenericWrapper.cpp +++ b/src/topp/GenericWrapper.cpp @@ -331,7 +331,7 @@ class TOPPGenericWrapper : Internal::ToolExternalDetails tde_; - ExitCodes wrapExit(const ExitCodes return_code) + ExitCodes wrapExit(const ExitCodes return_code) const { if (return_code != EXECUTION_OK) { @@ -416,7 +416,7 @@ class TOPPGenericWrapper : if (type == gw.types[i]) { tde_ = gw.external_details[i]; - if (tde_.working_directory.trim() == "") + if (tde_.working_directory.trim().empty()) { tde_.working_directory = "."; } diff --git a/src/topp/IDFileConverter.cpp b/src/topp/IDFileConverter.cpp index 741cedac09c..88cf83033a1 100644 --- a/src/topp/IDFileConverter.cpp +++ b/src/topp/IDFileConverter.cpp @@ -44,6 +44,7 @@ #include #include #include +#include #include #include #include @@ -52,6 +53,7 @@ #include #include #include +#include #include #include @@ -88,8 +90,7 @@ using namespace std; -IDFileConverter can be used to convert identification results from external tools/pipelines (like TPP, Sequest, Mascot, OMSSA, X! Tandem) -into other (OpenMS-specific) formats. +IDFileConverter can be used to convert identification results from external tools/pipelines (like TPP, Sequest, Mascot, OMSSA, X! Tandem) into other (OpenMS-specific) formats. For search engine results, it might be advisable to use the respective TOPP Adapters (e.g. OMSSAAdapter) to avoid the extra conversion step. The most simple format accepted is '.tsv': A tab separated text file, which contains one or more peptide sequences per line. @@ -219,21 +220,22 @@ class TOPPIDFileConverter : p.setValue("min_charge", 1, "Minimum charge"); p.setValue("max_charge", 1, "Maximum charge"); p.setValue("precursor_charge", 0, "Manually set precursor charge. (default: 0, meaning max_charge + 1 will be used as precursor charge)"); - return p; + return p; } void registerOptionsAndFlags_() override { registerInputFile_("in", "", "", "Input file or directory containing the data to convert. This may be:\n" - "- a single file in a multi-purpose XML format (.pepXML, .protXML, .idXML, .mzid),\n" + "- a single file in OpenMS database format (.oms),\n" + "- a single file in a multi-purpose XML format (.idXML, .mzid, .pepXML, .protXML),\n" "- a single file in a search engine-specific format (Mascot: .mascotXML, OMSSA: .omssaXML, X! Tandem: .xml, Percolator: .psms, xQuest: .xquest.xml),\n" "- a single file in fasta format (can only be used to generate a theoretical mzML),\n" "- a single text file (tab separated) with one line for all peptide sequences matching a spectrum (top N hits),\n" "- for Sequest results, a directory containing .out files.\n"); - setValidFormats_("in", ListUtils::create("pepXML,protXML,mascotXML,omssaXML,xml,psms,tsv,idXML,mzid,xquest.xml,fasta")); + setValidFormats_("in", ListUtils::create("oms,idXML,mzid,fasta,pepXML,protXML,mascotXML,omssaXML,xml,psms,tsv,xquest.xml")); registerOutputFile_("out", "", "", "Output file", true); - String formats("idXML,mzid,pepXML,FASTA,xquest.xml,mzML"); + String formats("oms,idXML,mzid,pepXML,fasta,xquest.xml,mzML"); setValidFormats_("out", ListUtils::create(formats)); registerStringOption_("out_type", "", "", "Output file type (default: determined from file extension)", false); setValidStrings_("out_type", ListUtils::create(formats)); @@ -250,9 +252,9 @@ class TOPPIDFileConverter : registerFlag_("ignore_proteins_per_peptide", "[Sequest only] Workaround to deal with .out files that contain e.g. \"+1\" in references column,\n" "but do not list extra references in subsequent lines (try -debug 3 or 4)", true); registerStringOption_("scan_regex", "", "", "[Mascot, pepXML, Percolator only] Regular expression used to extract the scan number or retention time. See documentation for details.", false, true); - registerFlag_("no_spectra_data_override", "[+mz_file only] Setting this flag will avoid overriding 'spectra_data' in ProteinIdentifications if mz_file is given and 'spectrum_reference's are added/updated. Use only if you are sure it is absolutely the same mz_file as used for identification.", true); - registerFlag_("no_spectra_references_override", "[+mz_file only] Setting this flag will avoid overriding 'spectrum_reference' in PeptideIdentifications if mz_file is given and a 'spectrum_reference' is already present.", true); - registerDoubleOption_("add_ionmatch_annotation", "", 0,"[+mz_file only] Will annotate the contained identifications with their matches in the given mz_file. Will take quite some while. Match tolerance is .4", false, true); + registerFlag_("no_spectra_data_override", "[+mz_file only] Avoid overriding 'spectra_data' in protein identifications if 'mz_file' is given and 'spectrum_reference's are added/updated. Use only if you are sure it is absolutely the same 'mz_file' as used for identification.", true); + registerFlag_("no_spectra_references_override", "[+mz_file only] Avoid overriding 'spectrum_reference' in peptide identifications if 'mz_file' is given and a 'spectrum_reference' is already present.", true); + registerDoubleOption_("add_ionmatch_annotation", "", 0, "[+mz_file only] Annotate the identifications with ion matches from spectra in 'mz_file' using the given tolerance (in Da). This will take quite some time.", false, true); registerFlag_("concatenate_peptides", "[FASTA output only] Will concatenate the top peptide hits to one peptide sequence, rather than write a new peptide for each hit.", true); registerIntOption_("number_of_hits", "", 1, "[FASTA output only] Controls how many peptide hits will be exported. A value of 0 or less exports all hits.", false, true); @@ -348,7 +350,6 @@ class TOPPIDFileConverter : for (Size j = 0; j < peptide_ids_seq.size(); ++j) { - // We have to explicitly set the identifiers, because the normal set ones are composed of search engine name and date, which is the same for a bunch of sequest out-files. peptide_ids_seq[j].setIdentifier(*in_files_it + "_" + i); @@ -399,8 +400,9 @@ class TOPPIDFileConverter : else { FileTypes::Type in_type = fh.getType(in); - - if (in_type == FileTypes::PEPXML) + switch (in_type) + { + case FileTypes::PEPXML: { String mz_name = getStringOption_("mz_name"); if (mz_file.empty()) @@ -421,17 +423,18 @@ class TOPPIDFileConverter : peptide_identifications, mz_name, lookup); } } + break; - else if (in_type == FileTypes::IDXML) + case FileTypes::IDXML: { IdXMLFile().load(in, protein_identifications, peptide_identifications); // get spectrum_references from the mz data, if necessary: if (!mz_file.empty()) { SpectrumMetaDataLookup::addMissingSpectrumReferences( - peptide_identifications, - mz_file, - false, + peptide_identifications, + mz_file, + false, !getFlag_("no_spectra_data_override"), !getFlag_("no_spectra_references_override"), protein_identifications); @@ -443,8 +446,9 @@ class TOPPIDFileConverter : } } } + break; - else if (in_type == FileTypes::MZIDENTML) + case FileTypes::MZIDENTML: { OPENMS_LOG_WARN << "Converting from mzid: you might experience loss of information depending on the capabilities of the target format." << endl; MzIdentMLFile().load(in, protein_identifications, @@ -463,23 +467,26 @@ class TOPPIDFileConverter : } } } + break; - else if (in_type == FileTypes::PROTXML) + case FileTypes::PROTXML: { protein_identifications.resize(1); peptide_identifications.resize(1); ProtXMLFile().load(in, protein_identifications[0], peptide_identifications[0]); } + break; - else if (in_type == FileTypes::OMSSAXML) + case FileTypes::OMSSAXML: { protein_identifications.resize(1); OMSSAXMLFile().load(in, protein_identifications[0], peptide_identifications, true); } + break; - else if (in_type == FileTypes::MASCOTXML) + case FileTypes::MASCOTXML: { if (!mz_file.empty()) { @@ -495,8 +502,9 @@ class TOPPIDFileConverter : MascotXMLFile().load(in, protein_identifications[0], peptide_identifications, lookup); } + break; - else if (in_type == FileTypes::XML) // X! Tandem + case FileTypes::XML: // X! Tandem { ProteinIdentification protein_id; ModificationDefinitionsSet mod_defs; @@ -533,8 +541,9 @@ class TOPPIDFileConverter : } } } + break; - else if (in_type == FileTypes::PSMS) // Percolator + case FileTypes::PSMS: // Percolator { String score_type = getStringOption_("score_type"); enum PercolatorOutfile::ScoreType perc_score = @@ -551,8 +560,9 @@ class TOPPIDFileConverter : PercolatorOutfile().load(in, protein_identifications[0], peptide_identifications, lookup, perc_score); } + break; - else if (in_type == FileTypes::TSV) + case FileTypes::TSV: { ProteinIdentification protein_id; protein_id.setSearchEngineVersion(""); @@ -581,13 +591,15 @@ class TOPPIDFileConverter : peptide_identifications.push_back(pepid); } } + break; - else if (in_type == FileTypes::XQUESTXML) + case FileTypes::XQUESTXML: { XQuestResultXMLFile().load(in, peptide_identifications, protein_identifications); } + break; - else if (in_type == FileTypes::FASTA) + case FileTypes::FASTA: { // handle out type if (out_type != FileTypes::MZML) @@ -663,7 +675,7 @@ class TOPPIDFileConverter : logger.endProgress(); logger.startProgress(0, 1, "Storing..."); - + MzMLFile mz_file; mz_file.store(out, exp); @@ -671,9 +683,18 @@ class TOPPIDFileConverter : return EXECUTION_OK; } + break; - else + case FileTypes::OMS: { + IdentificationData id_data; + OMSFile().load(in, id_data); + IdentificationDataConverter::exportIDs(id_data, protein_identifications, + peptide_identifications); + } + break; + + default: writeLog_("Error: Unknown input file type given. Aborting!"); printUsage_(); return ILLEGAL_PARAMETERS; @@ -685,32 +706,32 @@ class TOPPIDFileConverter : // writing output //------------------------------------------------------------- logger.startProgress(0, 1, "Storing..."); - - if (out_type == FileTypes::PEPXML) + switch (out_type) + { + case FileTypes::PEPXML: { bool peptideprophet_analyzed = getFlag_("peptideprophet_analyzed"); String mz_name = getStringOption_("mz_name"); PepXMLFile().store(out, protein_identifications, peptide_identifications, mz_file, mz_name, peptideprophet_analyzed); } + break; - else if (out_type == FileTypes::IDXML) - { + case FileTypes::IDXML: IdXMLFile().store(out, protein_identifications, peptide_identifications); - } + break; - else if (out_type == FileTypes::MZIDENTML) - { + case FileTypes::MZIDENTML: MzIdentMLFile().store(out, protein_identifications, peptide_identifications); - } + break; - else if (out_type == FileTypes::XQUESTXML) - { - XQuestResultXMLFile().store(out, protein_identifications, peptide_identifications); - } + case FileTypes::XQUESTXML: + XQuestResultXMLFile().store(out, protein_identifications, + peptide_identifications); + break; - else if (out_type == FileTypes::FASTA) + case FileTypes::FASTA: { Size count = 0; Int max_hits = getIntOption_("number_of_hits"); @@ -769,13 +790,22 @@ class TOPPIDFileConverter : entry.sequence = all_p + all_but_p; entry.identifier = protein_identifications[0].getSearchEngine() + "_" + Constants::UserParam::CONCAT_PEPTIDE; entry.description = ""; - + f.writeNext(entry); } } + break; - else + case FileTypes::OMS: { + IdentificationData id_data; + IdentificationDataConverter::importIDs(id_data, protein_identifications, + peptide_identifications); + OMSFile().store(out, id_data); + } + break; + + default: writeLog_("Unsupported output file type given. Aborting!"); printUsage_(); return ILLEGAL_PARAMETERS; diff --git a/src/topp/IDFilter.cpp b/src/topp/IDFilter.cpp index 9f74a3060e2..e50bb91fbb6 100644 --- a/src/topp/IDFilter.cpp +++ b/src/topp/IDFilter.cpp @@ -290,7 +290,7 @@ class TOPPIDFilter : // handle remove_meta StringList meta_info = getStringList_("remove_peptide_hits_by_metavalue"); - bool remove_meta_enabled = (meta_info.size() > 0); + bool remove_meta_enabled = (!meta_info.empty()); if (remove_meta_enabled && meta_info.size() != 3) { writeLog_("Param 'remove_peptide_hits_by_metavalue' has invalid number of arguments. Expected 3, got " + String(meta_info.size()) + ". Aborting!"); diff --git a/src/topp/IDMerger.cpp b/src/topp/IDMerger.cpp index 9cb4939df60..5e480c9d4ff 100644 --- a/src/topp/IDMerger.cpp +++ b/src/topp/IDMerger.cpp @@ -32,10 +32,12 @@ // $Authors: Hendrik Weisser $ // -------------------------------------------------------------------------- -#include +#include #include +#include +#include +#include #include -#include using namespace OpenMS; using namespace std; @@ -176,13 +178,13 @@ class TOPPIDMerger : String filename) { if (test_mode_) { filename = File::basename(filename); } - - for (ProteinIdentification & protein : proteins) + + for (ProteinIdentification& protein : proteins) { protein.setMetaValue("file_origin", DataValue(filename)); } - for (PeptideIdentification & pep : peptides) + for (PeptideIdentification& pep : peptides) { pep.setMetaValue("file_origin", DataValue(filename)); } @@ -190,13 +192,16 @@ class TOPPIDMerger : void registerOptionsAndFlags_() override { - registerInputFileList_("in", "", StringList(), "Input files separated by blanks"); - setValidFormats_("in", {"idXML"}); - registerOutputFile_("out", "", "", "Output file"); - setValidFormats_("out", {"idXML"}); + vector formats = {"idXML", "oms"}; + registerInputFileList_("in", "", StringList(), "Input files separated by blanks (all must have the same type)"); + setValidFormats_("in", formats); + registerOutputFile_("out", "", "", "Output file (must have the same type as the input files)"); + setValidFormats_("out", formats); + registerStringOption_("out_type", "", "", "Output file type (default: determined from file extension)", false); + setValidStrings_("out_type", formats); registerInputFile_("add_to", "", "", "Optional input file. IDs from 'in' are added to this file, but only if the (modified) peptide sequences are not present yet (considering only best hits per spectrum).", false); - setValidFormats_("add_to", {"idXML"}); - registerStringOption_("annotate_file_origin", "", "true", "Store the original filename in each protein/peptide identification (meta value: file_origin).", false); + setValidFormats_("add_to", {"idXML"}); // .oms input currently not supported + registerStringOption_("annotate_file_origin", "", "true", "Store the original filename in each protein/peptide identification (meta value: 'file_origin') - idXML input/output only", false); setValidStrings_("annotate_file_origin", {"true","false"}); registerFlag_("pepxml_protxml", "Merge idXML files derived from a pepXML and corresponding protXML file.\nExactly two input files are expected in this case. Not compatible with 'add_to'."); registerFlag_("merge_proteins_add_PSMs", "Merge all identified proteins by accession into one protein identification run but keep all the PSMs with updated links to potential new protein ID#s. Not compatible with 'add_to'."); @@ -247,9 +252,70 @@ class TOPPIDMerger : return ILLEGAL_PARAMETERS; } + // check file types: + FileTypes::Type type; + String out_type = getStringOption_("out_type"); + if (!out_type.empty()) + { + type = FileTypes::nameToType(out_type); + } + else + { + type = FileHandler::getTypeByFileName(out); + } + for (const String& file_name : file_names) + { + FileTypes::Type current_type = FileHandler::getType(file_name); + if ((type == FileTypes::UNKNOWN) && (current_type != FileTypes::UNKNOWN)) + { + type = current_type; // determine output file type from input + continue; + } + if (current_type != type) + { + writeLog_("Mixing different file types is not supported. Aborting!"); + printUsage_(); + return ILLEGAL_PARAMETERS; + } + } + if (type == FileTypes::UNKNOWN) + { + writeLog_("Could not determine input/output file type. Aborting!"); + printUsage_(); + return ILLEGAL_PARAMETERS; + } + //------------------------------------------------------------- // calculations //------------------------------------------------------------- + + if (type == FileTypes::OMS) + { + if (!add_to.empty() || pepxml_protxml || merge_proteins_add_PSMs) + { + // 'annotate_file_origin' is on by default - just ignore it + writeLog_("Options are currently not supported when merging .oms files. Aborting!"); + printUsage_(); + return ILLEGAL_PARAMETERS; + } + + OMSFile oms_file; + // load first file (others will be merged in): + IdentificationData data; + oms_file.load(file_names[0], data); + // merge in other files: + for (Size index = 1; index < file_names.size(); ++index) + { + IdentificationData more_data; + oms_file.load(file_names[index], more_data); + data.merge(more_data); + } + + oms_file.store(out, data); + return EXECUTION_OK; + } + + // file type: idXML vector proteins; vector peptides; @@ -291,9 +357,9 @@ class TOPPIDMerger : void mergeIds_(StringList file_names, bool annotate_file_origin, - const String &add_to, - vector & proteins, - vector & peptides) + const String& add_to, + vector& proteins, + vector& peptides) { map proteins_by_id; vector > peptides_by_file; diff --git a/src/topp/IDRipper.cpp b/src/topp/IDRipper.cpp index cd9a43f0670..c9ded8de32b 100644 --- a/src/topp/IDRipper.cpp +++ b/src/topp/IDRipper.cpp @@ -29,7 +29,7 @@ // // -------------------------------------------------------------------------- // $Maintainer: Timo Sachsenberg$ -// $Authors: Immanuel Luhn$ +// $Authors: Immanuel Luhn, Leon Kuchenbecker$ // -------------------------------------------------------------------------- #include @@ -103,7 +103,7 @@ class TOPPIDRipper : { public: TOPPIDRipper() : - TOPPBase("IDRipper", "Split protein/peptide identification file into several files according to annotated file origin.") + TOPPBase("IDRipper", "Split protein/peptide identification file into several files according to identification run and annotated file origin.") { } @@ -114,9 +114,9 @@ class TOPPIDRipper : { registerInputFile_("in", "", "", "Input file, in which the protein/peptide identifications must be tagged with 'file_origin'"); setValidFormats_("in", ListUtils::create("idXML")); - registerOutputFile_("out", "", "", "The path to this file is used as the output directory.", false, false); - setValidFormats_("out", ListUtils::create("idXML")); - registerStringOption_("out_path", "", "", "Directory for the output files after ripping according to 'file_origin'. If 'out_path' is set, 'out' is ignored.", false, false); + registerOutputFile_("out", "", "", "Path to the output directory to write the ripped files to.", false, false); + registerFlag_("numeric_filenames", "Do not infer output filenames from spectra_data or file_origin but use the input filename with numeric suffixes."); + registerFlag_("split_ident_runs", "Split different identification runs into separate files."); } ExitCodes main_(int, const char **) override @@ -127,25 +127,21 @@ class TOPPIDRipper : String file_name = getStringOption_("in"); String out_dir = getStringOption_("out"); - String out_dir_ = getStringOption_("out_path"); - String output_directory; + bool numeric_filenames = getFlag_("numeric_filenames"); + bool split_ident_runs = getFlag_("split_ident_runs"); - //if neither 'out' nor 'out_dir' is set throw an exception - if (out_dir.empty() && out_dir_.empty()) + if (out_dir.empty()) { - throw Exception::InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Please specify an output directory! There are two options to do so. Use 'out' to specify the directory and basename of the resulting files, or use 'out_path' to specify a path"); + throw Exception::InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Please specify an output directory!"); } - QString dir_path = (!out_dir.empty() ? - QFileInfo(out_dir.toQString()).absolutePath() : - QFileInfo(out_dir_.toQString()).absolutePath()); + QString dir_path = QFileInfo(out_dir.toQString()).absoluteFilePath(); if (!QDir(dir_path).exists()) { - throw Exception::InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Specified path does not exist"); + throw Exception::InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "Specified path does not exist or is not a directory."); } - output_directory = dir_path.toStdString(); - + String output_directory = dir_path.toStdString(); //------------------------------------------------------------- // calculations @@ -161,35 +157,40 @@ class TOPPIDRipper : throw Exception::Precondition(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "idXML file has to store protein and peptide identifications!"); } - map, vector > > ripped; + IDRipper::RipFileMap ripped; // rip the idXML-file into several idXML according to the annotated file origin IDRipper ripper; - ripper.rip(ripped, proteins, peptides); + ripper.rip(ripped, proteins, peptides, numeric_filenames, split_ident_runs); //------------------------------------------------------------- // writing output //------------------------------------------------------------- - map, vector > >::iterator it; - for (it = ripped.begin(); it != ripped.end(); ++it) + for (IDRipper::RipFileMap::iterator it = ripped.begin(); it != ripped.end(); ++it) { + const IDRipper::RipFileIdentifier& rfi = it->first; + const IDRipper::RipFileContent& rfc = it->second; + QString output = output_directory.toQString(); - // create full absolute path with filename - String out = QDir::toNativeSeparators(output.append(QString("/")).append(it->first.toQString())).toStdString(); - OPENMS_LOG_INFO << "Storing file: '" << out << "'." << std::endl; - QDir dir(output_directory.toQString()); - if (!dir.exists()) + String out_fname; + if (numeric_filenames) + { + String s_ident_run_idx = split_ident_runs ? '_' + String(rfi.ident_run_idx) : ""; + String s_file_origin_idx = '_' + String(rfi.file_origin_idx); + out_fname = QFileInfo(file_name.toQString()).completeBaseName().toStdString() + s_ident_run_idx + s_file_origin_idx + ".idXML"; + } + else { - if (!File::writable(output_directory)) - { - OPENMS_LOG_WARN << "Warning: Cannot create folder: '" << output_directory << "'." << std::endl; - return CANNOT_WRITE_OUTPUT_FILE; - } - dir.mkpath("."); + out_fname = QFileInfo(rfi.out_basename.toQString()).completeBaseName().toStdString() + ".idXML"; } - IdXMLFile().store(out, it->second.first, it->second.second); + + String out = QDir::toNativeSeparators(output.append(QString("/")).append(out_fname.toQString())).toStdString(); + OPENMS_LOG_INFO << "Storing file: '" << out << "'." << std::endl; + + QDir dir(output_directory.toQString()); + IdXMLFile().store(out, rfc.prot_idents, rfc.pep_idents); } return EXECUTION_OK; } diff --git a/src/topp/InclusionExclusionListCreator.cpp b/src/topp/InclusionExclusionListCreator.cpp index 9369f7c0538..b2b29fdaf71 100644 --- a/src/topp/InclusionExclusionListCreator.cpp +++ b/src/topp/InclusionExclusionListCreator.cpp @@ -172,13 +172,13 @@ class TOPPInclusionExclusionListCreator : std::cout << "strategy " << strategy << std::endl; String pt_model_file(getStringOption_("pt_model")); - if (include == "" && exclude == "") + if (include.empty() && exclude.empty()) { writeLog_("Error: No input file given."); return MISSING_PARAMETERS; } // currently we can handle only inclusion OR exclusion, will be possible with the traML output - if (include != "" && exclude != "") + if (!include.empty() && !exclude.empty()) { writeLog_("Error: Currently only inclusion OR exclusion, both will be possible with the traML output coming soon"); return ILLEGAL_PARAMETERS; @@ -204,7 +204,7 @@ class TOPPInclusionExclusionListCreator : // std::cout << "\n\n\n\n" << iel_param.getValue("RT:unit") << "\n\n"; - if (include != "") + if (!include.empty()) { FileTypes::Type in_type = fh.getType(include); @@ -372,7 +372,7 @@ class TOPPInclusionExclusionListCreator : //------------------------------------------------------------- // loading input: exclusion list part //------------------------------------------------------------- - if (exclude != "") + if (!exclude.empty()) { FileTypes::Type ex_type = fh.getType(exclude); // std::vector excl_targets; diff --git a/src/topp/LuciphorAdapter.cpp b/src/topp/LuciphorAdapter.cpp index 9ceb8779f83..1eb6caed831 100644 --- a/src/topp/LuciphorAdapter.cpp +++ b/src/topp/LuciphorAdapter.cpp @@ -593,7 +593,7 @@ class LuciphorAdapter : ProteinIdentification::SearchParameters search_params; String error = parseLuciphorOutput_(out, l_psms, lookup); - if (error != "") + if (!error.empty()) { error = "Error: LuciPHOr2 output is not correctly formated. " + error; writeLog_(error); diff --git a/src/topp/MSGFPlusAdapter.cpp b/src/topp/MSGFPlusAdapter.cpp index ea08609e1c1..137bdae7ce4 100644 --- a/src/topp/MSGFPlusAdapter.cpp +++ b/src/topp/MSGFPlusAdapter.cpp @@ -347,7 +347,7 @@ class MSGFPlusAdapter : for (MSSpectrum& ms : exp) { String id = ms.getNativeID(); // expected format: "... scan=#" - if (id != "") + if (!id.empty()) { rt_mapping[id].push_back(ms.getRT()); rt_mapping[id].push_back(ms.getPrecursors()[0].getMZ()); @@ -659,7 +659,7 @@ class MSGFPlusAdapter : } int scan_number = 0; - if ((elements[2] == "") || (elements[2] == "-1")) + if ((elements[2].empty()) || (elements[2] == "-1")) { scan_number = elements[1].suffix('=').toInt(); } diff --git a/src/topp/MaRaClusterAdapter.cpp b/src/topp/MaRaClusterAdapter.cpp index b7901eff90b..07116321233 100644 --- a/src/topp/MaRaClusterAdapter.cpp +++ b/src/topp/MaRaClusterAdapter.cpp @@ -218,7 +218,7 @@ class MaRaClusterAdapter : for (Size i = 0; i < csv_file.rowCount(); ++i) { csv_file.getRow(i, row); - if (row.size() > 0) + if (!row.empty()) { row[0] = String(filename_to_idx_map.at(row[0])); @@ -443,7 +443,7 @@ class MaRaClusterAdapter : } } - if (all_protein_ids.size() == 0) + if (all_protein_ids.empty()) { ProteinIdentification protid; all_protein_ids.push_back(protid); diff --git a/src/topp/MapAlignerIdentification.cpp b/src/topp/MapAlignerIdentification.cpp index b99910e129c..d52845b2d5d 100644 --- a/src/topp/MapAlignerIdentification.cpp +++ b/src/topp/MapAlignerIdentification.cpp @@ -41,6 +41,7 @@ #include #include #include +#include using namespace OpenMS; using namespace std; @@ -199,10 +200,11 @@ class TOPPMapAlignerIdentification : void applyTransformations_(vector& data, const vector& transformations) { + bool store_original_rt = getFlag_("store_original_rt"); for (Size i = 0; i < data.size(); ++i) { - MapAlignmentTransformer::transformRetentionTimes(data[i], - transformations[i]); + MapAlignmentTransformer::transformRetentionTimes( + data[i], transformations[i], store_original_rt); } } @@ -232,31 +234,49 @@ class TOPPMapAlignerIdentification : if (!reference_file.empty()) { FileTypes::Type filetype = FileHandler::getType(reference_file); - if (filetype == FileTypes::MZML) + switch (filetype) + { + case FileTypes::MZML: { PeakMap experiment; MzMLFile().load(reference_file, experiment); algorithm.setReference(experiment); } - else if (filetype == FileTypes::FEATUREXML) + break; + case FileTypes::FEATUREXML: { FeatureMap features; FeatureXMLFile().load(reference_file, features); algorithm.setReference(features); } - else if (filetype == FileTypes::CONSENSUSXML) + break; + case FileTypes::CONSENSUSXML: { ConsensusMap consensus; ConsensusXMLFile().load(reference_file, consensus); algorithm.setReference(consensus); } - else if (filetype == FileTypes::IDXML) + break; + case FileTypes::IDXML: { vector proteins; vector peptides; IdXMLFile().load(reference_file, proteins, peptides); algorithm.setReference(peptides); } + break; + case FileTypes::OMS: + { + IdentificationData id_data; + OMSFile().load(reference_file, id_data); + algorithm.setReference(id_data); + } + break; + default: // to avoid compiler warnings + throw Exception::WrongParameterType(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, + "reference:file"); + } } return Int(reference_index) - 1; // internally, we count from zero @@ -264,16 +284,19 @@ class TOPPMapAlignerIdentification : void registerOptionsAndFlags_() override { - String formats = "featureXML,consensusXML,idXML"; + String formats = "featureXML,consensusXML,idXML,oms"; TOPPMapAlignerBase::registerOptionsAndFlagsMapAligners_(formats, REF_FLEXIBLE); // TODO: potentially move to base class so every aligner has to support design - registerInputFile_("design", "", "", "input file containing the experimental design", false); + registerInputFile_("design", "", "", "Input file containing the experimental design", false); setValidFormats_("design", ListUtils::create("tsv")); + + registerFlag_("store_original_rt", "Store the original retention times (before transformation) as meta data in the output?"); + registerSubsection_("algorithm", "Algorithm parameters section"); registerSubsection_("model", "Options to control the modeling of retention time transformations from data"); } - Param getSubsectionDefaults_(const String & section) const override + Param getSubsectionDefaults_(const String& section) const override { if (section == "algorithm") { @@ -314,10 +337,12 @@ class TOPPMapAlignerIdentification : vector transformations; + switch (in_type) + { //------------------------------------------------------------- // perform feature alignment //------------------------------------------------------------- - if (in_type == FileTypes::FEATUREXML) + case FileTypes::FEATUREXML: { vector feature_maps(input_files.size()); FeatureXMLFile fxml_file; @@ -331,18 +356,19 @@ class TOPPMapAlignerIdentification : loadInitialMaps_(feature_maps, input_files, fxml_file); //------------------------------------------------------------- - // Extract (optional) fraction identifiers and associate with featureXMLs + // extract (optional) fraction identifiers and associate with featureXMLs //------------------------------------------------------------- String design_file = getStringOption_("design"); // determine map of fractions to runs - map > frac2files; + map> frac2files; // TODO: check if can be put in common helper function if (!design_file.empty()) { // parse design file and determine fractions - ExperimentalDesign ed = ExperimentalDesignFile::load(design_file, false); + ExperimentalDesign ed = ExperimentalDesignFile::load(design_file, + false); // determine if design defines more than one fraction (note: fraction and run IDs are one-based) frac2files = ed.getFractionToMSFilesMapping(); @@ -369,7 +395,7 @@ class TOPPMapAlignerIdentification : if (frac2files.size() == 1) // group one fraction { performAlignment_(algorithm, feature_maps, transformations, - reference_index); + reference_index); applyTransformations_(feature_maps, transformations); } else // group multiple fractions @@ -397,10 +423,8 @@ class TOPPMapAlignerIdentification : fraction_transformations.end()); Size f = 0; - for (size_t feature_map_index = 0; - feature_map_index != n_fractions; - ++feature_map_index, - ++f) + for (size_t feature_map_index = 0; feature_map_index != n_fractions; + ++feature_map_index, ++f) { feature_maps[feature_map_index].swap(fraction_maps[f]); } @@ -412,11 +436,12 @@ class TOPPMapAlignerIdentification : storeTransformedMaps_(feature_maps, output_files, fxml_file); } } + break; //------------------------------------------------------------- // perform consensus alignment //------------------------------------------------------------- - else if (in_type == FileTypes::CONSENSUSXML) + case FileTypes::CONSENSUSXML: { std::vector consensus_maps(input_files.size()); ConsensusXMLFile cxml_file; @@ -431,14 +456,15 @@ class TOPPMapAlignerIdentification : storeTransformedMaps_(consensus_maps, output_files, cxml_file); } } + break; //------------------------------------------------------------- // perform peptide alignment //------------------------------------------------------------- - else if (in_type == FileTypes::IDXML) + case FileTypes::IDXML: { - vector > protein_ids(input_files.size()); - vector > peptide_ids(input_files.size()); + vector> protein_ids(input_files.size()); + vector> peptide_ids(input_files.size()); IdXMLFile idxml_file; ProgressLogger progresslogger; progresslogger.setLogType(log_type_); @@ -467,6 +493,74 @@ class TOPPMapAlignerIdentification : progresslogger.endProgress(); } } + break; + + //------------------------------------------------------------- + // perform spectrum match alignment + //------------------------------------------------------------- + case FileTypes::OMS: + { + vector id_data(input_files.size()); + OMSFile oms_file; + ProgressLogger progresslogger; + progresslogger.setLogType(log_type_); + progresslogger.startProgress(0, input_files.size(), + "loading input files"); + for (Size i = 0; i < input_files.size(); ++i) + { + progresslogger.setProgress(i); + oms_file.load(input_files[i], id_data[i]); + } + progresslogger.endProgress(); + + // add data processing information: + DateTime processing_time = DateTime::now(); // use same for each file + IdentificationData::ProcessingSoftware sw(toolName_(), version_); + if (test_mode_) sw.setVersion("test"); + String reference_file = getStringOption_("reference:file"); + for (IdentificationData& id : id_data) + { + IdentificationData::ProcessingSoftwareRef sw_ref = + id.registerProcessingSoftware(sw); + IdentificationData::ProcessingStep step(sw_ref); + for (const String& input_file : input_files) + { + IdentificationData::InputFileRef ref = + id.registerInputFile(IdentificationData::InputFile(input_file)); + step.input_file_refs.push_back(ref); + } + if (!reference_file.empty()) + { + IdentificationData::InputFileRef ref = + id.registerInputFile(IdentificationData::InputFile(reference_file)); + step.input_file_refs.push_back(ref); + } + step.date_time = processing_time; + step.actions.insert(DataProcessing::ALIGNMENT); + id.registerProcessingStep(step); + } + + performAlignment_(algorithm, id_data, transformations, reference_index); + applyTransformations_(id_data, transformations); + + if (!output_files.empty()) + { + progresslogger.startProgress(0, output_files.size(), + "writing output files"); + for (Size i = 0; i < output_files.size(); ++i) + { + progresslogger.setProgress(i); + oms_file.store(output_files[i], id_data[i]); + } + progresslogger.endProgress(); + } + } + break; + + default: // to avoid compiler warnings + throw Exception::WrongParameterType(__FILE__, __LINE__, + OPENMS_PRETTY_FUNCTION, "in"); + } if (!trafo_files.empty()) { diff --git a/src/topp/MapAlignerPoseClustering.cpp b/src/topp/MapAlignerPoseClustering.cpp index 224eaee63a4..2f2d2896fa0 100644 --- a/src/topp/MapAlignerPoseClustering.cpp +++ b/src/topp/MapAlignerPoseClustering.cpp @@ -242,9 +242,26 @@ class TOPPMapAlignerPoseClustering : FeatureXMLFile f_fxml_tmp; // do not use OMP-firstprivate, since FeatureXMLFile has no copy c'tor f_fxml_tmp.getOptions() = f_fxml.getOptions(); f_fxml_tmp.load(in_files[i], map); - if (i == static_cast(reference_index)) trafo.fitModel("identity"); - else algorithm.align(map, trafo); - if (out_files.size()) + if (i == static_cast(reference_index)) + { + trafo.fitModel("identity"); + } + else + { + try + { + algorithm.align(map, trafo); + } + catch (Exception::IllegalArgument& e) + { + OPENMS_LOG_ERROR << "Aligning " << in_files[i] << " to reference " << in_files[reference_index] + << " failed. No transformation will be applied (RT not changed for this file)." << endl; + writeLog_("Illegal argument (" + String(e.getName()) + "): " + String(e.what()) + "."); + trafo.fitModel("identity"); + } + } + + if (!out_files.empty()) { MapAlignmentTransformer::transformRetentionTimes(map, trafo); // annotate output with data processing info @@ -264,7 +281,7 @@ class TOPPMapAlignerPoseClustering : { algorithm.align(map, trafo); } - if (out_files.size()) + if (!out_files.empty()) { MapAlignmentTransformer::transformRetentionTimes(map, trafo); // annotate output with data processing info @@ -284,7 +301,6 @@ class TOPPMapAlignerPoseClustering : { plog.setProgress(++progress); // thread safe progress counter } - } plog.endProgress(); diff --git a/src/topp/MapNormalizer.cpp b/src/topp/MapNormalizer.cpp index 12c24c85c0d..103c053675d 100644 --- a/src/topp/MapNormalizer.cpp +++ b/src/topp/MapNormalizer.cpp @@ -116,7 +116,7 @@ class TOPPMapNormalizer : //determine maximum peak exp.updateRanges(); - double max = exp.getMaxInt() / 100.0; + double max = exp.getMaxIntensity() / 100.0; for (MSSpectrum& ms : exp) { diff --git a/src/topp/MapStatistics.cpp b/src/topp/MapStatistics.cpp index 00c3f6cca48..5c29900e62e 100644 --- a/src/topp/MapStatistics.cpp +++ b/src/topp/MapStatistics.cpp @@ -306,9 +306,9 @@ class TOPPMapStatistics : os << "Number of features: " << feat.size() << endl << endl << "Ranges:" << endl - << " retention time: " << String::number(feat.getMin()[Peak2D::RT], 2) << " : " << String::number(feat.getMax()[Peak2D::RT], 2) << endl - << " mass-to-charge: " << String::number(feat.getMin()[Peak2D::MZ], 2) << " : " << String::number(feat.getMax()[Peak2D::MZ], 2) << endl - << " intensity: " << String::number(feat.getMinInt(), 2) << " : " << String::number(feat.getMaxInt(), 2) << endl + << " retention time: " << String::number(feat.getMinRT(), 2) << " : " << String::number(feat.getMaxRT(), 2) << endl + << " mass-to-charge: " << String::number(feat.getMinMZ(), 2) << " : " << String::number(feat.getMaxMZ(), 2) << endl + << " intensity: " << String::number(feat.getMinIntensity(), 2) << " : " << String::number(feat.getMaxIntensity(), 2) << endl << endl; // Charge distribution @@ -342,9 +342,9 @@ class TOPPMapStatistics : os << " total: " << setw(6) << cons.size() << endl << endl; os << "Ranges:" << endl - << " retention time: " << String::number(cons.getMin()[Peak2D::RT], 2) << " : " << String::number(cons.getMax()[Peak2D::RT], 2) << endl - << " mass-to-charge: " << String::number(cons.getMin()[Peak2D::MZ], 2) << " : " << String::number(cons.getMax()[Peak2D::MZ], 2) << endl - << " intensity: " << String::number(cons.getMinInt(), 2) << " : " << String::number(cons.getMaxInt(), 2) << endl; + << " retention time: " << String::number(cons.getMinRT(), 2) << " : " << String::number(cons.getMaxRT(), 2) << endl + << " mass-to-charge: " << String::number(cons.getMinMZ(), 2) << " : " << String::number(cons.getMaxMZ(), 2) << endl + << " intensity: " << String::number(cons.getMinIntensity(), 2) << " : " << String::number(cons.getMaxIntensity(), 2) << endl; // file descriptions const ConsensusMap::ColumnHeaders& descs = cons.getColumnHeaders(); diff --git a/src/topp/MascotAdapter.cpp b/src/topp/MascotAdapter.cpp index 6fffda0bbab..054b77556b0 100644 --- a/src/topp/MascotAdapter.cpp +++ b/src/topp/MascotAdapter.cpp @@ -336,7 +336,7 @@ class TOPPMascotAdapter : outputfile_name = getStringOption_("out"); boundary = getStringOption_("boundary"); - if (boundary != "") + if (!boundary.empty()) { writeDebug_(String("Boundary: ") + boundary, 1); } @@ -426,7 +426,7 @@ class TOPPMascotAdapter : { // full pipeline: mascot_cgi_dir = getStringOption_("mascot_directory"); - if (mascot_cgi_dir == "") + if (mascot_cgi_dir.empty()) { writeLog_("No Mascot directory specified. Aborting!"); return ILLEGAL_PARAMETERS; @@ -437,7 +437,7 @@ class TOPPMascotAdapter : mascot_data_dir = getStringOption_("temp_data_directory"); - if (mascot_data_dir == "") + if (mascot_data_dir.empty()) { writeLog_("No temp directory specified. Aborting!"); return ILLEGAL_PARAMETERS; @@ -486,11 +486,11 @@ class TOPPMascotAdapter : mascot_infile.setInstrument(instrument); mascot_infile.setPrecursorMassTolerance(precursor_mass_tolerance); mascot_infile.setPeakMassTolerance(peak_mass_tolerance); - if (mods.size() > 0) + if (!mods.empty()) { mascot_infile.setModifications(mods); } - if (variable_mods.size() > 0) + if (!variable_mods.empty()) { mascot_infile.setVariableModifications(variable_mods); } @@ -574,7 +574,7 @@ class TOPPMascotAdapter : } // from if(!mascot_in) else { - if (boundary != "") + if (!boundary.empty()) { mascot_infile.setBoundary(boundary); } diff --git a/src/topp/MassTraceExtractor.cpp b/src/topp/MassTraceExtractor.cpp index 3b2f727b835..5f99c577da3 100644 --- a/src/topp/MassTraceExtractor.cpp +++ b/src/topp/MassTraceExtractor.cpp @@ -170,7 +170,7 @@ class TOPPMassTraceExtractor : (mz_data_file.getOptions()).setMSLevels(ms_level); mz_data_file.load(in, ms_peakmap); - if (ms_peakmap.size() == 0) + if (ms_peakmap.empty()) { OPENMS_LOG_WARN << "The given file does not contain any conventional peak data, but might" " contain chromatograms. This tool currently cannot handle them, sorry."; @@ -340,7 +340,7 @@ class TOPPMassTraceExtractor : } // print some stats about standard deviation of mass traces - if (stats_sd.size() > 0) + if (!stats_sd.empty()) { std::sort(stats_sd.begin(), stats_sd.end()); OPENMS_LOG_INFO << "Mass trace m/z s.d.\n" diff --git a/src/topp/MyriMatchAdapter.cpp b/src/topp/MyriMatchAdapter.cpp index a3d33988a08..c8c87d338c2 100644 --- a/src/topp/MyriMatchAdapter.cpp +++ b/src/topp/MyriMatchAdapter.cpp @@ -395,7 +395,7 @@ class MyriMatchAdapter : parameters << "-FragmentMzTolerance" << String(getDoubleOption_("fragment_mass_tolerance")) + " " + fragment_mass_tolerance_unit; StringList slf = getStringList_("SpectrumListFilters"); - if (slf.size() > 0) + if (!slf.empty()) { if (myrimatch_version_i.myrimatch_minor <= 1) { // use quotes around the slf arguments (will be added automatically by Qt during call), i.e. "-SpectrumListFilters" "peakPicking false 2-" diff --git a/src/topp/NoiseFilterGaussian.cpp b/src/topp/NoiseFilterGaussian.cpp index be74625fd0f..08fd0a49f34 100644 --- a/src/topp/NoiseFilterGaussian.cpp +++ b/src/topp/NoiseFilterGaussian.cpp @@ -193,7 +193,7 @@ class TOPPNoiseFilterGaussian : PeakMap exp; mz_data_file.load(in, exp); - if (exp.empty() && exp.getChromatograms().size() == 0) + if (exp.empty() && exp.getChromatograms().empty()) { OPENMS_LOG_WARN << "The given file does not contain any conventional peak data, but might" " contain chromatograms. This tool currently cannot handle them, sorry."; diff --git a/src/topp/NoiseFilterSGolay.cpp b/src/topp/NoiseFilterSGolay.cpp index 14acb00d236..719b1d6297b 100644 --- a/src/topp/NoiseFilterSGolay.cpp +++ b/src/topp/NoiseFilterSGolay.cpp @@ -195,7 +195,7 @@ class TOPPNoiseFilterSGolay : PeakMap exp; mz_data_file.load(in, exp); - if (exp.empty() && exp.getChromatograms().size() == 0) + if (exp.empty() && exp.getChromatograms().empty()) { OPENMS_LOG_WARN << "The given file does not contain any conventional peak data, but might" " contain chromatograms. This tool currently cannot handle them, sorry."; diff --git a/src/topp/OMSSAAdapter.cpp b/src/topp/OMSSAAdapter.cpp index 85892c1efc9..fda3b628842 100644 --- a/src/topp/OMSSAAdapter.cpp +++ b/src/topp/OMSSAAdapter.cpp @@ -580,7 +580,7 @@ class TOPPOMSSAAdapter : vector split; it->split(',', split); - if (it->size() > 0 && (*it)[0] != '#') + if (!it->empty() && (*it)[0] != '#') { if (split.size() < 2) { @@ -621,7 +621,7 @@ class TOPPOMSSAAdapter : writeDebug_("Inserting unknown fixed modification: '" + *it + "' into OMSSA", 1); } } - if (mod_list.size() > 0) + if (!mod_list.empty()) { parameters << "-mf" << ListUtils::concatenate(mod_list, ","); } @@ -647,7 +647,7 @@ class TOPPOMSSAAdapter : } } - if (mod_list.size() > 0) + if (!mod_list.empty()) { parameters << "-mv" << ListUtils::concatenate(mod_list, ","); } @@ -660,7 +660,7 @@ class TOPPOMSSAAdapter : parameters << "-mux" << File::absolutePath(unique_usermod_name); ofstream out(unique_usermod_name.c_str()); out << "" << "\n"; - out << "" << "\n"; + out << R"()" << "\n"; UInt user_mod_count(1); for (vector >::const_iterator it = user_mods.begin(); it != user_mods.end(); ++it) @@ -694,7 +694,7 @@ class TOPPOMSSAAdapter : } if (ts == ResidueModification::C_TERM) { - if (origin == "" || origin == "X") + if (origin.empty() || origin == "X") { out << "\t\t7" << "\n"; } @@ -705,7 +705,7 @@ class TOPPOMSSAAdapter : } if (ts == ResidueModification::N_TERM) { - if (origin == "" || origin == "X") + if (origin.empty() || origin == "X") { out << "\t\t5" << "\n"; } @@ -721,7 +721,7 @@ class TOPPOMSSAAdapter : out << "\t" << ModificationsDB::getInstance()->getModification(it->second)->getDiffAverageMass() << "" << "\n"; out << "\t0" << "\n"; - if (origin != "") + if (!origin.empty()) { out << "\t" << "\n"; out << "\t\t" << origin << "" << "\n"; diff --git a/src/topp/OpenPepXL.cpp b/src/topp/OpenPepXL.cpp index 2342eb73802..3706278d2a1 100644 --- a/src/topp/OpenPepXL.cpp +++ b/src/topp/OpenPepXL.cpp @@ -263,16 +263,16 @@ class TOPPOpenPepXL : // write output progresslogger.startProgress(0, 1, "Writing output..."); - if (out_idXML.size() > 0) + if (!out_idXML.empty()) { IdXMLFile().store(out_idXML, protein_ids, peptide_ids); } - if (out_mzIdentML.size() > 0) + if (!out_mzIdentML.empty()) { MzIdentMLFile().store(out_mzIdentML, protein_ids, peptide_ids); } - if (out_xquest.size() > 0 || out_xquest_specxml.size() > 0) + if (!out_xquest.empty() || !out_xquest_specxml.empty()) { vector input_split_dir; vector input_split; @@ -280,11 +280,11 @@ class TOPPOpenPepXL : input_split_dir[input_split_dir.size()-1].split(String("."), input_split); String base_name = input_split[0]; - if (out_xquest.size() > 0) + if (!out_xquest.empty()) { XQuestResultXMLFile().store(out_xquest, protein_ids, peptide_ids); } - if (out_xquest_specxml.size() > 0) + if (!out_xquest_specxml.empty()) { XQuestResultXMLFile::writeXQuestXMLSpec(out_xquest_specxml, base_name, preprocessed_pair_spectra, spectrum_pairs, all_top_csms, spectra); } diff --git a/src/topp/OpenPepXLLF.cpp b/src/topp/OpenPepXLLF.cpp index 485cedeba80..6a7dd673f4c 100644 --- a/src/topp/OpenPepXLLF.cpp +++ b/src/topp/OpenPepXLLF.cpp @@ -258,16 +258,16 @@ class TOPPOpenPepXLLF : // write output progresslogger.startProgress(0, 1, "Writing output..."); - if (out_idXML.size() > 0) + if (!out_idXML.empty()) { IdXMLFile().store(out_idXML, protein_ids, peptide_ids); } - if (out_mzIdentML.size() > 0) + if (!out_mzIdentML.empty()) { MzIdentMLFile().store(out_mzIdentML, protein_ids, peptide_ids); } - if (out_xquest.size() > 0 || out_xquest_specxml.size() > 0) + if (!out_xquest.empty() || !out_xquest_specxml.empty()) { vector input_split_dir; vector input_split; @@ -275,11 +275,11 @@ class TOPPOpenPepXLLF : input_split_dir[input_split_dir.size()-1].split(String("."), input_split); String base_name = input_split[0]; - if (out_xquest.size() > 0) + if (!out_xquest.empty()) { XQuestResultXMLFile().store(out_xquest, protein_ids, peptide_ids); } - if (out_xquest_specxml.size() > 0) + if (!out_xquest_specxml.empty()) { XQuestResultXMLFile::writeXQuestXMLSpec(out_xquest_specxml, base_name, all_top_csms, spectra); } diff --git a/src/topp/OpenSwathAnalyzer.cpp b/src/topp/OpenSwathAnalyzer.cpp index 55691e35b8a..4e0596a78e3 100644 --- a/src/topp/OpenSwathAnalyzer.cpp +++ b/src/topp/OpenSwathAnalyzer.cpp @@ -182,7 +182,7 @@ class TOPPOpenSwathAnalyzer : public TOPPBase // null transformation. String trafo_in = getStringOption_("rt_norm"); TransformationDescription trafo; - if (trafo_in.size() > 0) + if (!trafo_in.empty()) { TransformationXMLFile trafoxml; String model_type = getStringOption_("model:type"); @@ -216,7 +216,7 @@ class TOPPOpenSwathAnalyzer : public TOPPBase mzmlfile.load(in, *exp.get()); // If there are no SWATH files, it's just regular SRM/MRM Scoring - if (file_list.size() == 0) + if (file_list.empty()) { MRMFeatureFinderScoring featureFinder; featureFinder.setParameters(feature_finder_param); diff --git a/src/topp/OpenSwathChromatogramExtractor.cpp b/src/topp/OpenSwathChromatogramExtractor.cpp index d7c380f8eab..c9f7708460d 100644 --- a/src/topp/OpenSwathChromatogramExtractor.cpp +++ b/src/topp/OpenSwathChromatogramExtractor.cpp @@ -220,7 +220,7 @@ class TOPPOpenSwathChromatogramExtractor // null transformation. String trafo_in = getStringOption_("rt_norm"); TransformationDescription trafo; - if (trafo_in.size() > 0) + if (!trafo_in.empty()) { TransformationXMLFile trafoxml; diff --git a/src/topp/OpenSwathFeatureXMLToTSV.cpp b/src/topp/OpenSwathFeatureXMLToTSV.cpp index 51382cc08b8..faa1fe12542 100644 --- a/src/topp/OpenSwathFeatureXMLToTSV.cpp +++ b/src/topp/OpenSwathFeatureXMLToTSV.cpp @@ -157,7 +157,7 @@ void write_out_body_(std::ostream &os, Feature *feature_it, TargetedExperiment & const OpenMS::TargetedExperiment::Peptide &pep = transition_exp.getPeptideByRef(peptide_ref); sequence = pep.sequence; - if (pep.protein_refs.size() > 0) + if (!pep.protein_refs.empty()) { // For now just take the first one, assuming the protein name is the id protein_name = pep.protein_refs[0]; @@ -184,7 +184,7 @@ void write_out_body_(std::ostream &os, Feature *feature_it, TargetedExperiment & } // handle decoy tag - if (peptide_transition_map.find(peptide_ref) != peptide_transition_map.end() && peptide_transition_map[peptide_ref].size() > 0) + if (peptide_transition_map.find(peptide_ref) != peptide_transition_map.end() && !peptide_transition_map[peptide_ref].empty()) { const ReactionMonitoringTransition *transition = peptide_transition_map[peptide_ref][0]; #if 1 @@ -447,7 +447,7 @@ class TOPPOpenSwathFeatureXMLToTSV String locale_before = String(OpenMS::Internal::OpenMS_locale); feature_file.load(file_list[0], feature_map); setlocale(LC_ALL, locale_before.c_str()); - if (feature_map.getIdentifier().size() == 0) + if (feature_map.getIdentifier().empty()) { feature_map.setIdentifier("run0"); } @@ -484,12 +484,12 @@ class TOPPOpenSwathFeatureXMLToTSV for (Size i = 1; i < file_list.size(); ++i) { feature_file.load(file_list[i], feature_map); - if (feature_map.getIdentifier().size() == 0) + if (feature_map.getIdentifier().empty()) { feature_map.setIdentifier("run" + (String)i); } - if (feature_map.size() < 1) + if (feature_map.empty()) { continue; } diff --git a/src/topp/OpenSwathRTNormalizer.cpp b/src/topp/OpenSwathRTNormalizer.cpp index 5d662ce4f52..83d36691e57 100644 --- a/src/topp/OpenSwathRTNormalizer.cpp +++ b/src/topp/OpenSwathRTNormalizer.cpp @@ -210,7 +210,7 @@ class TOPPOpenSwathRTNormalizer : public TOPPBase // If we have a transformation file, trafo will transform the RT in the // scoring according to the model. If we don't have one, it will apply the // null transformation. - if (getStringOption_("rt_norm").size() > 0) + if (!getStringOption_("rt_norm").empty()) { String trafo_in = getStringOption_("rt_norm"); String model_type = "linear"; //getStringOption_("model:type"); diff --git a/src/topp/PTModel.cpp b/src/topp/PTModel.cpp index ffe3b194c32..856f3999647 100644 --- a/src/topp/PTModel.cpp +++ b/src/topp/PTModel.cpp @@ -44,6 +44,8 @@ #include +#include "svm.h" + using namespace OpenMS; using namespace std; diff --git a/src/topp/PTPredict.cpp b/src/topp/PTPredict.cpp index fd44acb2253..548c2912cdc 100644 --- a/src/topp/PTPredict.cpp +++ b/src/topp/PTPredict.cpp @@ -158,12 +158,12 @@ class TOPPPTPredict : Param additional_parameters; ParamXMLFile paramFile; paramFile.load(in_params_name, additional_parameters); - if (additional_parameters.getValue("kernel_type") != DataValue::EMPTY) + if (additional_parameters.getValue("kernel_type") != ParamValue::EMPTY) { svm.setParameter(SVMWrapper::KERNEL_TYPE, String( additional_parameters.getValue("kernel_type").toString()).toInt()); } - if (additional_parameters.getValue("border_length") == DataValue::EMPTY + if (additional_parameters.getValue("border_length") == ParamValue::EMPTY && svm.getIntParameter(SVMWrapper::KERNEL_TYPE) == SVMWrapper::OLIGO) { writeLog_("No border length saved in additional parameters file. Aborting!"); @@ -171,7 +171,7 @@ class TOPPPTPredict : return ILLEGAL_PARAMETERS; } border_length = String(additional_parameters.getValue("border_length").toString()).toInt(); - if (additional_parameters.getValue("k_mer_length") == DataValue::EMPTY + if (additional_parameters.getValue("k_mer_length") == ParamValue::EMPTY && svm.getIntParameter(SVMWrapper::KERNEL_TYPE) == SVMWrapper::OLIGO) { writeLog_("No k-mer length saved in additional parameters file. Aborting!"); @@ -179,7 +179,7 @@ class TOPPPTPredict : return ILLEGAL_PARAMETERS; } k_mer_length = String(additional_parameters.getValue("k_mer_length").toString()).toInt(); - if (additional_parameters.getValue("sigma") == DataValue::EMPTY + if (additional_parameters.getValue("sigma") == ParamValue::EMPTY && svm.getIntParameter(SVMWrapper::KERNEL_TYPE) == SVMWrapper::OLIGO) { writeLog_("No sigma saved in additional parameters file. Aborting!"); diff --git a/src/topp/PeakPickerHiRes.cpp b/src/topp/PeakPickerHiRes.cpp index 9516d14cdf3..1d062b86214 100644 --- a/src/topp/PeakPickerHiRes.cpp +++ b/src/topp/PeakPickerHiRes.cpp @@ -239,7 +239,7 @@ class TOPPPeakPickerHiRes : PeakMap ms_exp_raw; mz_data_file.load(in, ms_exp_raw); - if (ms_exp_raw.empty() && ms_exp_raw.getChromatograms().size() == 0) + if (ms_exp_raw.empty() && ms_exp_raw.getChromatograms().empty()) { OPENMS_LOG_WARN << "The given file does not contain any conventional peak data, but might" " contain chromatograms. This tool currently cannot handle them, sorry."; diff --git a/src/topp/PepNovoAdapter.cpp b/src/topp/PepNovoAdapter.cpp index 3980ad5e4b4..b4ee5f90e6b 100644 --- a/src/topp/PepNovoAdapter.cpp +++ b/src/topp/PepNovoAdapter.cpp @@ -301,7 +301,7 @@ class TOPPPepNovoAdapter : for (std::map::const_iterator key_it=mods_and_keys.begin(); key_it!=mods_and_keys.end();++key_it) { - if (ptm_command!="") + if (!ptm_command.empty()) { ptm_command+=":"; } diff --git a/src/topp/PrecursorIonSelector.cpp b/src/topp/PrecursorIonSelector.cpp index 33fd2f8b2c0..563accb0b54 100644 --- a/src/topp/PrecursorIonSelector.cpp +++ b/src/topp/PrecursorIonSelector.cpp @@ -215,13 +215,13 @@ class TOPPPrecursorIonSelector : { pisp.loadPreprocessing(); } - else if (db_path == "") + else if (db_path.empty()) { writeLog_("No database file specified. Aborting!"); printUsage_(); return ILLEGAL_PARAMETERS; } - else if (rt_model == "" || dt_model == "") + else if (rt_model.empty() || dt_model.empty()) { pisp.dbPreprocessing(db_path, store_preprocessing); } @@ -231,7 +231,7 @@ class TOPPPrecursorIonSelector : } PeakMap exp; - if (raw_data != "") + if (!raw_data.empty()) { MzMLFile().load(raw_data, exp); } @@ -284,13 +284,13 @@ class TOPPPrecursorIonSelector : // writing output //------------------------------------------------------------- - if (next_prec != "") + if (!next_prec.empty()) { f_file.store(next_prec, new_precursors); } } - if (out != "") + if (!out.empty()) { f_file.store(out, f_map); } diff --git a/src/topp/PrecursorMassCorrector.cpp b/src/topp/PrecursorMassCorrector.cpp index 7b542ccbe65..29eb3d51bf4 100644 --- a/src/topp/PrecursorMassCorrector.cpp +++ b/src/topp/PrecursorMassCorrector.cpp @@ -136,7 +136,7 @@ class TOPPPrecursorMassCorrector : exp.sortSpectra(); FeatureMap feature_map; - if (feature_in != "") + if (!feature_in.empty()) { FeatureXMLFile().load(feature_in, feature_map); } @@ -155,7 +155,7 @@ class TOPPPrecursorMassCorrector : exp2.clear(false); for (const MSSpectrum& ms : exp) { - if (ms.size() != 0) + if (!ms.empty()) { exp2.addSpectrum(ms); } @@ -186,7 +186,7 @@ class TOPPPrecursorMassCorrector : writeLog_("Did not find a MS1 scan to the MS/MS scan at RT=" + String(it->getRT())); continue; } - if (ms1_it->size() == 0) + if (ms1_it->empty()) { writeDebug_("No peaks in scan at RT=" + String(ms1_it->getRT()) + String(", skipping"), 1); continue; diff --git a/src/topp/ProteinResolver.cpp b/src/topp/ProteinResolver.cpp index 75c56a63ff5..fb3f54dd058 100644 --- a/src/topp/ProteinResolver.cpp +++ b/src/topp/ProteinResolver.cpp @@ -372,7 +372,7 @@ class TOPPProteinResolver : { const vector& identifications = *res.peptide_identification; const PeptideIdentification& pi = ProteinResolver::getPeptideIdentification(identifications, peptide_entry); - if (pi.getHits().size() == 0) + if (pi.getHits().empty()) { // this should not happen... std::cerr << "PeptideEntry " << peptide_entry->sequence << " from " << peptide_entry->origin << " with " << peptide_entry->intensity << " has no hits!\n"; @@ -609,7 +609,7 @@ class TOPPProteinResolver : dir.setSorting(QDir::Name | QDir::IgnoreCase); QFileInfoList list = dir.entryInfoList(); - if (list.size() == 0) + if (list.empty()) { throw Exception::InvalidParameter(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, String("Input path ('") + input_path + "') does not contain a valid input file. Check file types! Allowed are .idXML and .consensusXML files."); diff --git a/src/topp/RTModel.cpp b/src/topp/RTModel.cpp index 687c5314f99..ea5c730f90f 100644 --- a/src/topp/RTModel.cpp +++ b/src/topp/RTModel.cpp @@ -49,6 +49,8 @@ #include #include +#include "svm.h" + using namespace OpenMS; using namespace std; @@ -346,10 +348,10 @@ class TOPPRTModel : String inputfile_positives = getStringOption_("in_positive"); String inputfile_negatives = ""; String inputfile_name = ""; - if (inputfile_positives != "") + if (!inputfile_positives.empty()) { inputfile_negatives = getStringOption_("in_negative"); - if (inputfile_negatives != "") + if (!inputfile_negatives.empty()) { separation_prediction = true; } diff --git a/src/topp/RTPredict.cpp b/src/topp/RTPredict.cpp index 411164c8f45..73539018ad6 100644 --- a/src/topp/RTPredict.cpp +++ b/src/topp/RTPredict.cpp @@ -46,6 +46,8 @@ #include #include +#include "svm.h" + using namespace OpenMS; using namespace std; @@ -225,9 +227,9 @@ class TOPPRTPredict : String outputfile_name_positive = getStringOption_("out_id:positive"); String outputfile_name_negative = getStringOption_("out_id:negative"); // for separation prediction, we require both files to be present! - if (outputfile_name_positive != "" || outputfile_name_negative != "") + if (!outputfile_name_positive.empty() || !outputfile_name_negative.empty()) { - if (outputfile_name_positive != "" && outputfile_name_negative != "") + if (!outputfile_name_positive.empty() && !outputfile_name_negative.empty()) { separation_prediction = true; } @@ -241,12 +243,12 @@ class TOPPRTPredict : // either or String input_id = getStringOption_("in_id"); String input_text = getStringOption_("in_text"); - if (input_text != "" && input_id != "") + if (!input_text.empty() && !input_id.empty()) { writeLog_("Two input parameter files given, only one allowed! Use either -in_id:file or -in_text:file!"); return ILLEGAL_PARAMETERS; } - else if (input_text == "" && input_id == "") + else if (input_text.empty() && input_id.empty()) { writeLog_("No input file given. Aborting..."); return ILLEGAL_PARAMETERS; @@ -256,7 +258,7 @@ class TOPPRTPredict : // (can use both) String output_id = getStringOption_("out_id:file"); String output_text = getStringOption_("out_text:file"); - if (output_text == "" && output_id == "" && !separation_prediction) + if (output_text.empty() && output_id.empty() && !separation_prediction) { writeLog_("No output files given. Aborting..."); return ILLEGAL_PARAMETERS; @@ -299,17 +301,16 @@ class TOPPRTPredict : Param additional_parameters; ParamXMLFile paramFile; paramFile.load(in_params_name, additional_parameters); - if (additional_parameters.exists("first_dim_rt") - && additional_parameters.getValue("first_dim_rt") != DataValue::EMPTY) + if (additional_parameters.exists("first_dim_rt") && additional_parameters.getValue("first_dim_rt") != ParamValue::EMPTY) { first_dim_rt = additional_parameters.getValue("first_dim_rt").toBool(); } - if (additional_parameters.getValue("kernel_type") != DataValue::EMPTY) + if (additional_parameters.getValue("kernel_type") != ParamValue::EMPTY) { svm.setParameter(SVMWrapper::KERNEL_TYPE, String(additional_parameters.getValue("kernel_type").toString()).toInt()); } - if (additional_parameters.getValue("border_length") == DataValue::EMPTY + if (additional_parameters.getValue("border_length") == ParamValue::EMPTY && svm.getIntParameter(SVMWrapper::KERNEL_TYPE) == SVMWrapper::OLIGO) { writeLog_("No border length saved in additional parameters file. Aborting!"); @@ -317,7 +318,7 @@ class TOPPRTPredict : return ILLEGAL_PARAMETERS; } border_length = String(additional_parameters.getValue("border_length").toString()).toInt(); - if (additional_parameters.getValue("k_mer_length") == DataValue::EMPTY + if (additional_parameters.getValue("k_mer_length") == ParamValue::EMPTY && svm.getIntParameter(SVMWrapper::KERNEL_TYPE) == SVMWrapper::OLIGO) { writeLog_("No k-mer length saved in additional parameters file. Aborting!"); @@ -325,7 +326,7 @@ class TOPPRTPredict : return ILLEGAL_PARAMETERS; } k_mer_length = String(additional_parameters.getValue("k_mer_length").toString()).toInt(); - if (additional_parameters.getValue("sigma") == DataValue::EMPTY + if (additional_parameters.getValue("sigma") == ParamValue::EMPTY && svm.getIntParameter(SVMWrapper::KERNEL_TYPE) == SVMWrapper::OLIGO) { writeLog_("No sigma saved in additional parameters file. Aborting!"); @@ -333,29 +334,29 @@ class TOPPRTPredict : return ILLEGAL_PARAMETERS; } sigma = String(additional_parameters.getValue("sigma").toString()).toDouble(); - if (!separation_prediction && additional_parameters.getValue("sigma_0") == DataValue::EMPTY) + if (!separation_prediction && additional_parameters.getValue("sigma_0") == ParamValue::EMPTY) { writeLog_("No sigma_0 saved in additional parameters file. Aborting!"); cout << "No sigma_0 length saved in additional parameters file. Aborting!" << endl; return ILLEGAL_PARAMETERS; } - if (!separation_prediction && additional_parameters.getValue("sigma_0") != DataValue::EMPTY) + if (!separation_prediction && additional_parameters.getValue("sigma_0") != ParamValue::EMPTY) { sigma_0 = additional_parameters.getValue("sigma_0"); } - if (!separation_prediction && additional_parameters.getValue("sigma_max") == DataValue::EMPTY) + if (!separation_prediction && additional_parameters.getValue("sigma_max") == ParamValue::EMPTY) { writeLog_("No sigma_max saved in additional parameters file. Aborting!"); cout << "No sigma_max length saved in additional parameters file. Aborting!" << endl; return ILLEGAL_PARAMETERS; } - if (!separation_prediction && additional_parameters.getValue("sigma_max") != DataValue::EMPTY) + if (!separation_prediction && additional_parameters.getValue("sigma_max") != ParamValue::EMPTY) { sigma_max = additional_parameters.getValue("sigma_max"); } } - if (input_text != "") + if (!input_text.empty()) { loadStrings_(input_text, peptides); if (svm.getIntParameter(SVMWrapper::KERNEL_TYPE) == SVMWrapper::OLIGO) @@ -377,7 +378,7 @@ class TOPPRTPredict : // calculations //------------------------------------------------------------- - if (input_id != "") + if (!input_id.empty()) { for (Size i = 0; i < identifications.size(); i++) { @@ -484,7 +485,7 @@ class TOPPRTPredict : } for (Size i = 0; i < temp_counter; ++i) { - if (svm.getIntParameter(SVMWrapper::KERNEL_TYPE) == SVMWrapper::OLIGO && output_text == "") + if (svm.getIntParameter(SVMWrapper::KERNEL_TYPE) == SVMWrapper::OLIGO && output_text.empty()) { predicted_modified_data.insert(make_pair(temp_modified_peptides[i], (predicted_retention_times[i] * total_gradient_time))); @@ -504,7 +505,7 @@ class TOPPRTPredict : predicted_retention_times.clear(); } - if (input_id != "") + if (!input_id.empty()) { if (!separation_prediction) { @@ -651,11 +652,11 @@ class TOPPRTPredict : } else { - if (output_text != "") // text + if (!output_text.empty()) // text { writeStringLabelLines_(output_text, predicted_data); } - if (output_id != "") // idXML + if (!output_id.empty()) // idXML { idXML_file.store(output_id, protein_identifications, diff --git a/src/topp/SeedListGenerator.cpp b/src/topp/SeedListGenerator.cpp index 66d2ecaf8de..6cc67b56c0e 100644 --- a/src/topp/SeedListGenerator.cpp +++ b/src/topp/SeedListGenerator.cpp @@ -43,6 +43,11 @@ #include #include +// TODO REMOVE +#include + +#include + using namespace OpenMS; using namespace std; @@ -128,8 +133,8 @@ namespace OpenMS registerInputFile_("in", "", "", "Input file (see below for details)"); setValidFormats_("in", ListUtils::create("mzML,idXML,featureXML,consensusXML")); - registerOutputFileList_("out", "", StringList(), "Output file(s)"); - setValidFormats_("out", ListUtils::create("featureXML")); + registerOutputPrefix_("out_prefix", "", String(), "Output file prefix"); + setValidFormats_("out_prefix", ListUtils::create("featureXML")); addEmptyLine_(); registerFlag_("use_peptide_mass", "[idXML input only] Use the monoisotopic mass of the best peptide hit for the m/z position (default: use precursor m/z)"); } @@ -137,7 +142,8 @@ namespace OpenMS ExitCodes main_(int, const char **) override { String in = getStringOption_("in"); - StringList out = getStringList_("out"); + String out_prefix = getStringOption_("out_prefix"); + SeedListGenerator seed_gen; // results (actually just one result, except for consensusXML input): Map seed_lists; @@ -145,11 +151,24 @@ namespace OpenMS Size num_maps = 0; FileTypes::Type in_type = FileHandler::getType(in); + StringList out; + out.push_back(out_prefix + "_0.featureXML"); // we manually set the name here + if (in_type == FileTypes::CONSENSUSXML) { ConsensusMap consensus; ConsensusXMLFile().load(in, consensus); num_maps = consensus.getColumnHeaders().size(); + ConsensusMap::ColumnHeaders ch = consensus.getColumnHeaders(); + size_t map_count = 0; + // we have multiple out files + out.clear(); + for([[maybe_unused]] const auto& header : ch) + { + out.push_back(out_prefix + "_" + String(map_count) + ".featureXML"); // we manually set the name here + ++map_count; + } + if (out.size() != num_maps) { writeLog_("Error: expected " + String(num_maps) + @@ -195,17 +214,15 @@ namespace OpenMS //annotate output with data processing info: addDataProcessing_(features, getProcessingInfo_( DataProcessing::DATA_PROCESSING)); + OPENMS_LOG_INFO << "Writing " << features.size() << " seeds to " << out[num_maps] << endl; FeatureXMLFile().store(out[num_maps], features); } return EXECUTION_OK; } - }; - } - int main(int argc, const char ** argv) { TOPPSeedListGenerator t; diff --git a/src/topp/TextExporter.cpp b/src/topp/TextExporter.cpp index 2574ade7f18..da97517d4c8 100644 --- a/src/topp/TextExporter.cpp +++ b/src/topp/TextExporter.cpp @@ -809,7 +809,7 @@ namespace OpenMS else { output << feat << String(feat.getQuality(0)) << String(feat.getQuality(1)); - if (feat.getConvexHulls().size() > 0) + if (!feat.getConvexHulls().empty()) { output << String(feat.getConvexHulls().begin()->getBoundingBox().minX()) << String(feat.getConvexHulls().begin()->getBoundingBox().maxX()); diff --git a/src/topp/XTandemAdapter.cpp b/src/topp/XTandemAdapter.cpp index 0d80c5eae02..0ac279c2d46 100644 --- a/src/topp/XTandemAdapter.cpp +++ b/src/topp/XTandemAdapter.cpp @@ -101,7 +101,7 @@ using namespace std; An example of a configuration file (named "default_input.xml") is contained in the "bin" folder of the @em X!Tandem installation and in the %OpenMS installation under OpenMS/share/CHEMISTRY/XTandem_default_config.xml. If you want to use the XML configuration file and @em ignore most of the parameters set via this adapter, use the @p ignore_adapter_param flag. - Then, the config given via @p default_config_file is used exclusively and only the values for the paramters @p in, @p out, @p database and @p xtandem_executable are taken from this adapter. + Then, the config given via @p default_config_file is used exclusively and only the values for the parameters @p in, @p out, @p database and @p xtandem_executable are taken from this adapter. @note This adapter supports 15N labeling by using the XTandem_residue_mass.bioml.xml file (which defines modified AA masses) as provided in OpenMS/share/OpenMS/CHEMISTRY/. To use it, specify the full path (which will depend on your system!) to this bioml.xml file diff --git a/src/utils/AccurateMassSearch.cpp b/src/utils/AccurateMassSearch.cpp index 99a4cc0cf2b..15cf5b14248 100644 --- a/src/utils/AccurateMassSearch.cpp +++ b/src/utils/AccurateMassSearch.cpp @@ -41,6 +41,8 @@ #include #include #include +#include +#include #include using namespace OpenMS; @@ -101,7 +103,7 @@ class TOPPAccurateMassSearch : setValidFormats_("out", ListUtils::create("mzTab")); registerOutputFile_("out_annotation", "", "", "A copy of the input file, annotated with matching hits from the database.", false); - setValidFormats_("out_annotation", {"featureXML", "consensusXML"}); + setValidFormats_("out_annotation", {"featureXML", "consensusXML", "oms"}); // move some params from algorithm section to top level (to support input file functionality) Param p = AccurateMassSearchEngine().getDefaults(); @@ -146,16 +148,24 @@ class TOPPAccurateMassSearch : ams_param.setValue("positive_adducts", getStringOption_("positive_adducts")); ams_param.setValue("negative_adducts", getStringOption_("negative_adducts")); + if (file_ann.hasSuffix("oms")) + { + ams_param.setValue("id_format", "ID"); // use IdentificationData to store id results + } + writeDebug_("Parameters passed to AccurateMassSearch", ams_param, 3); // mzTAB output data structure MzTab mztab_output; - MzTabFile mztab_outfile; + MzTabM mztabm_output; AccurateMassSearchEngine ams; ams.setParameters(ams_param); ams.init(); + std::string idf = std::string(ams.getParameters().getValue("id_format")); + bool id_format = idf == "ID" ? true : false; + FileTypes::Type filetype = FileHandler::getType(in); if (filetype == FileTypes::FEATUREXML) @@ -166,17 +176,35 @@ class TOPPAccurateMassSearch : //------------------------------------------------------------- // do the work //------------------------------------------------------------- - ams.run(ms_feat_map, mztab_output); + if (id_format) // if format ID is used, MzTabM output will be generated + { + ams.run(ms_feat_map, mztabm_output); + } + else + { + ams.run(ms_feat_map, mztab_output); + } //------------------------------------------------------------- // writing output //------------------------------------------------------------- - // annotate output with data processing info - //addDataProcessing_(ms_feat_map, getProcessingInfo_(DataProcessing::IDENTIFICATION_MAPPING)); - if (!file_ann.empty()) + + if (file_ann.hasSuffix("featureXML")) { FeatureXMLFile().store(file_ann, ms_feat_map); } + else if (file_ann.hasSuffix("oms")) + { + OMSFile().store(file_ann, ms_feat_map); + } + } + else if (filetype == FileTypes::CONSENSUSXML && id_format) + { + throw Exception::InvalidValue(__FILE__, + __LINE__, + OPENMS_PRETTY_FUNCTION, + "FATAL: CONSENSUSXML is currently not supporting ID and its MzTabM (v2.0.0-M) output, please use legacy_id", + ""); } else if (filetype == FileTypes::CONSENSUSXML) { @@ -193,15 +221,22 @@ class TOPPAccurateMassSearch : // writing output //------------------------------------------------------------- - // annotate output with data processing info - //addDataProcessing_(ms_feat_map, getProcessingInfo_(DataProcessing::IDENTIFICATION_MAPPING)); if (!file_ann.empty()) { ConsensusXMLFile().store(file_ann, ms_cons_map); } } - mztab_outfile.store(out, mztab_output); + if(id_format && filetype == FileTypes::FEATUREXML) + { + MzTabMFile mztabm_file; + mztabm_file.store(out, mztabm_output); + } + else + { + MzTabFile mztab_file; + mztab_file.store(out, mztab_output); + } return EXECUTION_OK; } diff --git a/src/utils/CMakeLists.txt b/src/utils/CMakeLists.txt index af184b16418..48f5d4816dd 100644 --- a/src/utils/CMakeLists.txt +++ b/src/utils/CMakeLists.txt @@ -42,7 +42,7 @@ cmake_minimum_required(VERSION 3.9.0 FATAL_ERROR) include_directories(SYSTEM ${OpenMS_INCLUDE_DIRECTORIES}) add_definitions(/DBOOST_ALL_NO_LIB) -find_package(Qt5 COMPONENTS Core Network REQUIRED) +find_package(Qt5 COMPONENTS Core Network Sql REQUIRED) # add all the tools set(UTILS_executables) @@ -56,7 +56,8 @@ endforeach(i) # some regular UTILS tools need the GUI lib, only build them when WITH_GUI is enabled if(WITH_GUI) - find_package(Qt5 COMPONENTS Core Network Widgets Svg OpenGL REQUIRED) + find_package(Qt5 COMPONENTS Core Network Widgets Svg OpenGL Sql REQUIRED) + find_package(Qt5 COMPONENTS WebEngineWidgets) if (NOT Qt5Widgets_FOUND) message(STATUS "QtWidgets module not found!") message(FATAL_ERROR "To find a custom Qt installation use: cmake <..more options..> -D QT_QMAKE_EXECUTABLE='") diff --git a/src/utils/CVInspector.cpp b/src/utils/CVInspector.cpp index c6411018c45..27ca0bd2b87 100644 --- a/src/utils/CVInspector.cpp +++ b/src/utils/CVInspector.cpp @@ -84,7 +84,7 @@ class TOPPCVInspector : registerStringList_("cv_names", "", StringList(), "List of identifiers (one for each ontology file)."); - registerInputFile_("mapping_file", "", "", "Mapping file in CVMapping (XML) format.", false); + registerInputFile_("mapping_file", "", "", "Mapping file in CVMapping (XML) format."); setValidFormats_("mapping_file", ListUtils::create("XML")); registerStringList_("ignore_cv", "", ListUtils::create("UO,PATO,BTO"), "A list of CV identifiers which should be ignored.", false); @@ -102,7 +102,7 @@ class TOPPCVInspector : String subterm_line; for (Size i = 0; i < 4 * indent; ++i) subterm_line += " "; String description = child_term.description; - if (child_term.synonyms.size() != 0) + if (!child_term.synonyms.empty()) { description += String(" -- Synonyms: '") + ListUtils::concatenate(child_term.synonyms, ", ") + "'"; } @@ -116,7 +116,7 @@ class TOPPCVInspector : { tags.push_back("value-type=" + ControlledVocabulary::CVTerm::getXRefTypeName(child_term.xref_type)); } - if (child_term.units.size() > 0) + if (!child_term.units.empty()) { StringList units; for (set::const_iterator u_it = child_term.units.begin(); u_it != child_term.units.end(); ++u_it) @@ -125,7 +125,7 @@ class TOPPCVInspector : } tags.push_back(String("units=") + ListUtils::concatenate(units, ",")); } - if (child_term.xref_binary.size() > 0) + if (!child_term.xref_binary.empty()) { StringList types; for (StringList::const_iterator u_it = child_term.xref_binary.begin(); u_it != child_term.xref_binary.end(); ++u_it) @@ -134,7 +134,7 @@ class TOPPCVInspector : } tags.push_back(String("binary-array-types=") + ListUtils::concatenate(types, ",")); } - if (tags.size() != 0) + if (!tags.empty()) { subterm_line += String(" (") + ListUtils::concatenate(tags, ", ") + ")"; } @@ -167,7 +167,7 @@ class TOPPCVInspector : CVMappingFile().load(mapping_file, mappings); //store HTML version of mapping and CV - if (getStringOption_("html") != "") + if (!getStringOption_("html").empty()) { TextFile file; file.addLine(""); @@ -260,7 +260,7 @@ class TOPPCVInspector : const ControlledVocabulary::CVTerm& child_term = cv.getTerm(tit->getAccession()); String description = child_term.description; - if (child_term.synonyms.size() != 0) + if (!child_term.synonyms.empty()) { description += String(" -- Synonyms: '") + ListUtils::concatenate(child_term.synonyms, ", ") + "'"; } @@ -298,7 +298,7 @@ class TOPPCVInspector : { tags.push_back("value-type=" + ControlledVocabulary::CVTerm::getXRefTypeName(term.xref_type)); } - if (term.units.size() > 0) + if (!term.units.empty()) { StringList units; for (set::const_iterator u_it = term.units.begin(); u_it != term.units.end(); ++u_it) @@ -307,7 +307,7 @@ class TOPPCVInspector : } tags.push_back(String("units=") + ListUtils::concatenate(units, ",")); } - if (term.xref_binary.size() > 0) + if (!term.xref_binary.empty()) { StringList types; for (StringList::const_iterator u_it = term.xref_binary.begin(); u_it != term.xref_binary.end(); ++u_it) @@ -317,7 +317,7 @@ class TOPPCVInspector : tags.push_back(String("binary-array-types=") + ListUtils::concatenate(types, ",")); } } - if (tags.size() != 0) + if (!tags.empty()) { term_line += String(" (") + ListUtils::concatenate(tags, ", ") + ")"; } @@ -326,7 +326,7 @@ class TOPPCVInspector : // check whether we need the whole tree, or just the term itself if (tit->getAllowChildren()) { - file.addLine(String("
"); + file.addLine(String("